Thermodynamics of Certain Refractory Compounds

THERMODYNAMIC TABLES, BIBLIOGRAPHY, AND PROPERTY FILE

List of Contributors

ANTHROP, D. F., Ph.D., Aerojet-General Nucleonics, San Ramon, California

BARRIAULT, R. J., PH.D., (Deceased)

DREIKORN, R. E., PH.D., IBM Components Div., Owego, N. Y.

FEBER, R. C., Ph.D., Los Alamos Scientific Lab., Los Alamos, New Mexico

GRIFFEL, M., Ph.D., Institute for Defense Analyses, Washington, D. C.

LEIGH, C. H., PH.D., Parametrics Inc., Waltham, Mass.

Panish, M. B., Ph.D., Bell Telephone Laboratories, Murray Hill, New Jersey

SCHICK, H. L., Ph.D., Lockheed Missiles & Space Co., Research Laboratories, Palo Alto, California

WARD, C. H., Ph.D., Auburn University, Auburn, Alabama

Thermodynamics of Certain Refractory Compounds

HAROLD L. SCHICK

PRINCIPAL CONTRIBUTOR AND EDITOR
IN COLLABORATION WITH THE CONTRIBUTORS

VOLUME II

Thermodynamic Tables, Bibliography, and Property File SECTIONS VII, VIII, and IX

ACADEMIC PRESS New York and London

PREFACE

Since 1954, the Thermal & Solid State Branch of the Air Force Materials Laboratory has had a continuing interest in delineating materials-environment interactions under extreme thermal environments. This interest has most frequently resulted in the Air Force sponsorship of research programs aimed at the measurement of certain optical, thermophysical and thermodynamic properties of materials, kinetic studies of materials-environment interactions, the development of improved techniques for making these measurements, and the consolidation of literature data in some of these areas. This compilation spawned from these interests.

The magnitude of this effort, as has probably been the case with most works of this type, was underestimated. The work presented here is thus a contribution rather than a completed effort. It is hoped that others will continue in this effort. Thermodynamics has demonstrated itself as an important theoretical tool for predicting the chemical and physical behavior of materials under diverse environmental conditions. Much basic thermodynamic data have been and are now being obtained from many research programs throughout the world. However there has always been a distinct need for a program staffed by highly specialized personnel to evaluate, integrate, extrapolate and otherwise reduce these data to make them available in an interconsistent form directly useful to scientists and engineers for design purposes. The recent establishment of the National Standard Reference Data Program finally indicates the realization that we can no longer afford to be without such a continuing effort to help support and guide our research.

There are certain unique features to this work which have not generally been characteristic of other works of this type or at least not in this degree of detail or in this combination. It is believed that these are desirable features and should be considered in any future work of this type. The user's right to disagree has been profusely aided and abetted since the details of the critical analysis leading to the choice of accepted values are presented. Accuracy estimates are listed for most of the tabulated values. The fact that many of the tables extend to 6000°K and contain tabulation of data at close intervals of temperature is considered a great advantage. The program served as a proving ground for many computer techniques whose impact in the information generation, storage, and retrieval areas are yet to be felt.

The help of Mr. Edmund J. Rolinski and Dr. Emile Rutner of the Thermal & Solid State Branch is gratefully acknowledged as are the unknown visionaries in the higher echelons of the Department of Defense who assigned the special funds for the initiation of this effort. The thanks of the Air Force, the U. S. Government and the scientific community are due to the collaborators and contributors to this compilation. Special gratitude is due to Messrs. Hyman Marcus, Jules I. Wittebort and Leo F. Salzberg whose vision, faith, coperation, patience and understanding were essential in carrying this work to this point.

Paul W. Dimiduk
Thermal and Solid State Branch
Materials Physics Division
Air Force Materials Laboratory

FOREWORD

This publication is based on a final report (ASD-TR-61-260 Pt. II, 1964) prepared by the Research and Advanced Development Division of the Avco Corporation on Contract AF33(657)-8223 under Project No. 7360, The Chemistry and Physics of Materials: Task No. 736001, Thermodynamics and Heat Transfer. was administered under the direction of the Materials Physics Division of the Air Force Materials Laboratory, Research and Technology Division; the RTD monitor on the program was Mr. Paul Dimiduk of the Thermophysics Section. The data reported herein was compiled between 1 June 1962 and 31 December 1963. This work includes a study of the thermodynamics of the borides, carbides, nitrides, and oxides of 31 elements in the temperature range from 0° to 6000°K. The elements are (a) group ΠA -- beryllium, magnesium, calcium, and strontium; (b) group ΠB -scandium, yttrium, and lanthanum, (c) group IVA -- silicon; (d) group IVB -- titanium, zirconium, and hafnium, (e) group VB - vanadium, niobium, and tantalum; (f) group VIB -- chromium, molybdenum, and tungsten; (g) group VIB --manganese, technetium, and rhenium; (h) group VIII -- rhodium, osmium, iridium, and platinum; (i) rare earths -- cerium, neodymium, samarium, gadolinium, and dysprosium; and (j) net....des -- uranium and thorium. More than 160 thermodynamic tables, together with comprehensive discussions, have been prepared. The work has been summarized in two volumes.

Volume 1 (published separately, 690 pp, 1966) presents a summary of the techniques used to analyze thermodynamic data and gives the data analyses for refractories considered. Volume 2 (this book) is a compilation of thermodynamic tables generated on this project. It also contains a bibliography and property file. The latter is essentially a subject index for use with the bibliography.

This work has been the result of the efforts of a group of scientists, including Doctors H. L. Schick, D. F. Anthrop, R. J. Barriault, R. E. Dreikorn, R. C. Feber, M. Griffel, C. H. Leigh, M. B. Panish, and C. H. Ward. Project Directors were R. J. Barriault (deceased June 1962), C. H. Leigh (June to December 1962), and H. L. Schick (December 1962 to December 1963). The contributions of different scientists can be identified by reference to the thermodynamic tables of Volume 2. Each of these tables is labeled with the initials of the responsible scientist and the approximate date of the analysis. The corresponding discussion in Volume 1 was also prepared by the same scientist.

His fellow co-workers wish to express their reeling of loss at the untimely passing of Dr. Roland J. Barriault at the beginning of this project in June, 1962. His enthusiasm and leadership were invaluable in a previous contract, AF 33 (616)-7327.

Prof. W. L. Klemperer of Harvard University has acted as consultant on spectroscopic and thermodynamic problems.

Many individuals located throughout the world have been kind enough to provide information to assist this work. An effort has been made to acknowledge such help below. Any omissions are entirely accidental.

L. Akerlind
C. B. Alcock

University of Stockholm Imperial College of London

FOREWORD

University of Uppsala B. Aronsson Oxford University R. F. Barrow National Bureau of Standards C. Beckett Argonne National Laboratories J. Berkowitz Arthur D. Little Company J. Berkowitz-Mattuck G. Brauer University of Freiburg L. Brewer University of California E. R. Cohen North American Aviation R. H. Crist Union Carbide Research Institute T. Dergazarian Dow Chemical Company P. Dimiduk Research and Technology Division R. T. Dolloff National Carbon Company Heat Division, National Bureau of Standards, Washington, D. C. T. B. Douglas J. W. M. DuMond California Institute of Technology Massachusetts Institute of Technology J. Elliott R. D. Freeman Oklahoma State University Chemical Abstracts R. R. Freeman M. A. Greenbaum Rocket Power, Pasadena, California E. Greenberg Argonne National Laboratories C. B. Henderson Atlantic Research Corporation G. Herzberg National Research Council of Canada D. L. Hildenbrand Aeronutronics M. Hoch University of Cincinnati R. Honig Radio Corporation of America W. N. Hubbard Argonne National Laboratories E. Huber Los Alamos Scientific Laboratory R. Hultgren University of California D. Jackson Lawrence Radiation Laboratory, Livermore, California L. Kaufman Manlabs K. K. Kelley Bureau of Mines R. Kieffer University of Vienna, Reutte-Tyrol New York University K. Komarek J. E. Kunzler Bell Telephone Laboratories T. F. Lyon General Electric Company Rice Institute J. L. Margrave C. Moore National Bureau of Standards J. A. Morrison National Research Council of Canada H. Nowotny University of Vienna C. D. Pears Southern Research Institute B. Pollock Atomics International H. Prophet Dow Chemical Company E. Rudy Aerojet-General, Sacramento, California S. J. Schneider National Bureau of Standards A. Sheindlin Academy of Science, USSR D. R. Stull and associates Dow Chemical Company C. Trulson Union Carbide, Tarrytown, New York H. Voress Atomic Energy Commission D. Wagman National Bureau of Standards E. Westrum University of Michigan

University of Illinois

C. A. Wert

FOREWORD

Several scientific meetings have provided opportunity for many valuable discussions. They include:

- 1. A colloquium on diborides held at Arthur D. Little Company under A. D. Little-Manlabs sponsorship in January 1963.
- 2. An NRC-OCT conference on critical tables of thermodynamic data held at the National Academy of Science on 14-15 March 1963 under the dual chairmanship of Prof. E. Westrum and Dr. G. Waddington.
- 3. The Stanford Research Institute Symposium on High Temperature Technology at Asilomar, California, in September 1963.
- 4. A JANAF Thermochemical Panel Meeting in New York City on 5-7 November 1963.

The cooperation of the library staffs at the Massachusetts Institute of Technology, the Cambridge Research Laboratories at Hanscom Field, The New York office of the Atomic Energy Commission, the Division of Technical Information Extension at Oak Ridge, and Avco RAD has been invaluable.

Analyses were aided by the work of the following summer students at Avco RAD: Messrs. J. Hopps (Boston University) and K. Spears (University of Kansas).

Computer and associated programming were aided by the work of Messrs. W. Duffy, E. Levine, J. Paskalides, L. Reid, E. Vancor, and others.

Bibliography preparation, computations, and general assistance with computer facilities were provided by Miss Charlotte Topliffe, and Messrs. D. V. LaRosa, W. L. Perry, W. Wise, G. Costas, G. Hitchcock, and K. Campbell.

Especially valuable throughout this project has been the wide range of help given by Mrs. Patricia Topham, Mrs. Irene A. Hutnick, and Messrs. D. V. LaRosa and L. I. Rose.

The work reported herein was performed at Avco RAD with the help of all levels of management. Dr. M. E. Malin (Vice-President of Research) showed a continuing interest in the progress of this work.

One of us (H. L. Schick) would also like to express appreciation to Mr. R. Capiaux of Lockheed Missiles and Space Company for support in the final stages of publishing this document.

Vol. 2. Thermodynamic Tables, Bibliography, and Property File (Sections VII, VIII, and IX)

TABLE OF CONTENTS

		Page
	List of Contributors	ii
	Preface	v
	Foreword	vii
	List of Tables	xiii
	Filing Order of Thermodynamic Tables	2-3
	Thermodynamic Table Index	2-13
VII.	THERMODYNAMIC TABLES	2-25
VIII.	BIBLIOGRAPHY	2-351
IX.	PROPERTY FILE	2-695

LIST OF TABLES

(Continued from Volume 1)

			Page
Table	89	Boron Reference State	2-25
	90	Boron Ideal Monatomic Gas	2-27
	91	Hafnium Diboride Condensed Phase	2-29
	92	Niobium Diboride Condensed Phase	2-31
	93	Tantalum Diboride Condensed Phase	2-33
	94	Titanium Diboride Condensed Phase	2-35
	95	Zirconium Diboride Condensed Phase	2-37
	96	Beryllium Reference State	2-39
	97	Beryllium Ideal Monatomic Gas	2-41
	98	Beryllium Oxide Condensed Phase	2-43
	99	Beryllium Oxide Ideal Molecular Gas	2-45
	100	Beryllium Carbide Condensed Phase	2-47
	101	Dimeric Beryllium Oxide Ideal Molecular Gas	2-49
	102	Beryllium Nitride Condensed Phase	2-51
	103	Trimeric Beryllium Oxide Ideal Molecular Gas	2-53
	104	Tetrameric Beryllium Oxide Ideal Molecular Gas	2-55
	105	Pentameric Beryllium Oxide Ideal Moiecular Gas	2-57
	106	Hexameric Beryllium Oxide Ideal Mclecular Gas	2-59
	107	Carbon Reference State	2-61
	108	Carbon Ideal Monatomic Gas	2-63
	109	Hafnium Carbide Condensed Phase	2-65

			Page
Table	110	Dimolybdenum Carbide Condensed Phase	2-67
	111	Niobium Carbide Condensed Phase	2-69
	112	Diniobium Carbide Condensed Phase	2 - 71
	113	Silicon Carbide Condensed Phase	2-73
	114	Tantalum Carbide Condensed Phase	2-75
	115	Ditantalum Carbide Condensed Phase	2-77
	116	Thorium Carbide Condensed Phase	2 - 79
	117	Titanium Carbide Condensed Phase	2-81
	118	Tungsten Carbide Condensed Phase	2-83
	119	Ditungsten Carbide Condensed Phase	2-85
	120	Zirconium Carbide Condensed Phase	2-87
	121	Diatomic Carbon Ideal Molecular Gas	2 -89
	122	Trimolybdenum Dicarbide Condensed Phase	2-91
	123	Thorium Dicarbide Condensed Phase	2-93
	124	Thorium Dicarbide Ideal Molecular Gas	2 - 95
	125	Triatomic Carbon Ideal Molecular Gas	2 - 47
	126	Calcium Reference State	2 -99
	127	Calcium Ideal Monatomic Gas	2-101
	128	Calcium Oxide Condensed Phase	2-103
	129	Calcium Oxide Ideal Molecular Gas	2-105
	130	Cerium Reference State	2-107
	131	Cerium Ideal Monatomic Gas	2-109

			Page
Table	132	Cerium Oxide Ideal Molecular Gas	2-111
	133	Chromium Reference State	2-113
	134	Chromium Ideal Monatomic Gas	2-115
	135	Chromium Monoxide Ideal Molecular Gas	2-117
	136	Chromium Dioxide Condensed Phase	2-119
	137	Chromium Dioxide Ideal Molecular Gas	2-121
	138	Chromium Trioxide Condensed Phase	2-123
	139	Chromium Trioxide Ideal Molecular Gas	2-125
	140	Hafnium Reference State	2-127
	141	Hafnium Ideal Monatomic Gas	2-129
	142	Hafnium Nitride Condensed Phase	2-131
	143	Hamium Monoxide Ideal Molecular Gas	2-133
	144	Hatnium Dioxide Condensed Phase	2-135
	145	Hafnium Dioxide Ideal Molecular Gas	2-137
	146	Iridium Reference State	2-139
	147	Iridium Ideal Monatomic Gas	2-141
	148	Iridium Monoxide Ideal Molecular Gas	2-143
	149	Magnesium Reference State	2-145
	150	Magnesium Ideal Monatomic Gas	2-147
	151	Magnesium Oxide Condensed Phase	2-149
	152	Magnesium Oxide Ideal Molecular Gas	2-151
	153	Magnesium Nitride Condensed Phase	2-153

			Page
Table	154	Manganese Reference State	2-155
	155	Manganese Ideal Monatomic Gas	2-157
	156	Manganese Oxide Ideal Molecular Gas	2-159
	157	Molybdenum Reference State	2-161
	158	Molybdenum Ideal Monatomic Gas	2-163
	159	Molybdenum Monoxide Ideal Molecular Gas	2-165
	160	Molybdenum Dioxide Condensed Phase	2-167
	161	Molybdenum Dioxide Ideal Molecular Gas	2-169
	162	Molybdenum Trioxide Condensed Phase	2-171
	163	Molybdenum Trioxide Ideal Molecular Gas	2-173
	164	Nitrogen Ideal Monatomic Gas	2-175
	165	Niobium Nitride Condensed Phase	2-177
	106	Diniobium Nitride Condensed Phase	2-179
	167	Tantalum Nitride Condensed Phase	2-181
	168	Ditantalum Nitride Condensed Phase	2-183
	169	Titanium Nitride Condensed Phase	2 -185
	170	Zirconium Nitride Condensed Phase	2 -187
	171	Nitrogen Reference State	2-189
	172	Silicon Nitride Condensed Phase	2-191
	173	Niobium Reference State	2-193
	174	Niobium Ideal Monatomic Gas	2-195
	175	Niobium Monoxide Condensed Phase	2-197

			Page
Table	176	Niobium Monoxide Ideal Molecular Gas	2-199
	177	Niobium Dioxide Condensed Phase	2-201
	178	Niobium Dioxide Ideal Molecular Gas	2-203
	179	Niobium Pentoxide Condensed Phase	2-205
	180	Oxygen Ideal Monatomic Gas	2-207
	181	Osmium Monoxide Ideal Molecular Gas	2-209
	182	Platinum Monoxide Ideal Molecular Gas	2-211
	183	Rhenium Monoxide Ideal Molecular Gas	2-213
	184	Rhodium Monoxide Ideal Molecular Gas	2-215
	185	Silicon Monoxide Ideal Molecular Gas	2-217
	186	Strontium Monoxide Condensed Phase	2-219
	187	Strontium Monoxide Ideal Molecular Gas	2-221
	188	Tantalum Monoxide Ideal Molecular Gas	2-223
	189	Technetium Monoxide Ideal Molecular Gas	2 - 225
	190	Thorium Monoxide Ideal Molecular G	2-227
	191	Titanium Monoxide Condensed Phase	2-229
	192	Titanium Monoxide Ideal Molecular Gas	2-231
	193	Uranium Monoxide Ideal Molecular Gas	2-233
	194	Tungsten Monoxide Ideal Molecular Gas	2-235
	195	Yttrium Monoxide Ideal Molecular Gas	2-237
	196	Zirconium Monoxide Ideal Molecular Gas	2-239
	197	Overen Reference State	2 _ 241

			Page
Table	198	Osmium Dioxide Ideal Molecular Gas	2-243
	199	Silicon Dioxide Condensed Phase	2-245
	200	Silicon Dioxide Ideal Molecular Gas	2-247
	201	Tantalum Dioxide Ideal Molecular Gas	2-249
	202	Titanium Dioxide Condensed Phase	2-251
	203	Titanium Dioxide Ideal Molecular Gas	2-253
	204	Uranium Dioxide Condensed Phase	2-255
	205	Uranium Dioxide Ideal Molecular Gas	2-257
	206	Vanadium Dioxide Ideal Molecular Gas	2-259
	207	Tungsten Dioxide Condensed Phase	2-261
	208	Tungsten Dioxide Ideal Molecular Gas	2-263
	209	Zirconium Dioxide Condensed Phase	2-265
	210	Zirconium Dioxide Ideal Molecular Gas	2-267
	211	Osmium Trioxide Ideal Molecular Gas	2-269
	212	Titanium Sesquioxide Condensed Phase	2-271
	213	Tungsten Trioxide Condensed Phase	2-273
	2]4	Tungsten Trioxide Ideal Molecular Gas	2-275
	215	Osmium Tetroxide Ideal Molecular Gas	2-277
	216	Tantalum Pentoxide Condensed Phase	2-279
	217	Trititanium Pentoxide Condensed Phase	2-281
	218	Rhenium Heptoxide Condensed Phase	
		Osmium Reference State	3 305

			Page
Table	220	Osmium Ideal Monatomic Gas	2-287
	221	Platinum Reference State	2 -289
	222	Platinum Ideal Monatomic Gas	2-291
	223	Rhenium Reference State	2-293
	224	Rhenium Ideal Monatomic Gas	2-295
	225	Rhodium Reference State	2-297
	226	Rhodium Ideal Monatomic Gas	2-299
	227	Scandium Reference State	2-301
	228	Scandium Ideal Monatomic Gas	2-303
	229	Willicon Reference State	2-305
	230	Silicon Ideal Monatomic Gas	2-307
	231	Strontium Reference State	2-309
	232	Strontium Ideal Monatomic Gas	2-311
	233	Tantalum Reference State	2-313
	234	Tantalum Ideal Monatomic Gas	2-315
	235	Technetium Reference State	2-317
	236	Technetium Ideal Monatomic Gas	2 - 319
	237	Thorium Reference State	2 -321
	238	Thorium Ideal Monatomic Gas	2 - 323
	239	Titanium Reference State	2-325
	240	Titanium Ideal Monatomic Gas	2-327
	241	Uranium Reference State	2-329

			Page
Table	242	Uranium Ideal Monatomic Gas	2-331
	243	Vanadium Reference State	2-333
	244	Vanadium Ideal Monatomic Gas	2-335
	245	Tungsten Reference State	2-337
	246	Tungsten Ideal Monatomic Gas	2-339
	247	Yttrium Reference State	2-341
	248	Yttrium Ideal Monatomic Gas	2-343
	249	Zirconium Reference State	2-345
	250	Zirconium Ideal Monatomic Gas	2-347

VII. THERMODYNAMIC TABLES

This document (volume 2) is made up of thermodynamic tables compiled during this project. In addition, any tables from an earlier project which have not been revised during the present work are included in this volume. Hence, the present volume is a complete compilation of the latest tables generated on both projects.

For the user who wishes to know only the important source data, a brief summary is provided on the back of each table. This summary has been patterned after that of the JANAF thermochemical tables. The brief summaries on the backs of these tables are necessarily very sketchy and only refer to data actually used in producing the tables. For the user who wishes a complete background of all data considered in the analyses prior to to ble preparation, it is necessary that the data analyses of volume 1 be consulted. Data analyses for tables carried over from the previous contract may be found in the earlier work.

For many of the tables included herein, uncertainty estimates have been provided. These uncertainty estimates (when included) always physically follow the tables to which they refer. The estimates serve two purposes:

- 1. They provide rough guides to the accuracy of the data tabulated. However because of the wide range in quality of thermodynamic data reported in the literature, it is often difficult to give a reliable estimate of the uncertainty. In some cases, the present estimates may do injustice to very precise data and similarly in other cases the opposite may occur. However, overall, the present estimates are a rough guide to the quality of the data.
- 2. For the casual user who may feel that data tabulated to three significant figures have this accuracy, the uncertainty estimates provide a more realistic appraisal of the situation.

The order in which the tables are placed is according to the modified Hill³ indexing system for chemical compounds as used by the JANAF Thermochemical Panel Compilation, ⁴ Chemical Abstracts, and the Classification Division of the U.S. Patent Office. In the upper right-hand corner of each table is an alphabetic arrangement of the atomic symbols in the chemical formula. The order of the tables is alphabetic according to this compound symbol except for carbon compounds which include the very large organic category. In carbon compounds, the elemental symbol "C" always comes first, immediately followed by "H" if hydrogen is present. The other elemental symbols in carbon compounds then

Manuscript released by authors (December 1963) for publication as an ASD Technical Documentary Report.

follow in their regular order. The numbers of atoms of the elements in the compound play a secondary role in determining the tables' positions. Their influence is subordinate to the order in which the atomic symbols occur in the compound symbol. For example, any compound symbol containing "C₂" would come after all others containing "C," regardless of any other element symbols the compound symbol might contain. Reference state and condensed phase tables have been placed before ideal gas tables.

Solid lines with double entries have been used to designate primary transitions, such as solid-state changes, melting points, and normal boiling points, in reference state and condensed phase tables. Dotted lines have been used in the corresponding places in ideal gas tables to indicate discontinuities in the heats of formation of the gases due to the primary transitions in the reference-state phases. Since primary transitions in condensed phases of compounds are not reflected as discontinuities in heats of formation of the corresponding ideal gases, double entries have not been included at such temperatures in ideal gas tables of compounds. Double entries with no lines have been used in tables of compounds to indicate discontinuities in heats of formation due to transitions in the elements.

Two indexes to the tables of this section follow. The filing order presented in tabular form shows the arrangement of tables exactly as they appear (tables 89 to 250). A second index arranged alphabetically can be used for ease in locating a given table.

REFERENCES FOR SECTION VII

- 1. Barriault, R. J. et al, Thermodynamics of Certain Refractory Compounds, ASD TR 61-260, Pt. I, Vol. 1 (May 1962).
- Schick, H. L. et al., Thermodynamics of Certain Refractory Compounds, ASD TR 61-260. Pt. II Vol. 1 (1964), present work.
- 3. Hill, E. A., J. Am. Chem. Soc. 22, 478 (1900).
- 4. Dergazarian, T. E. et al. JANAF Interim Thermochemical Tables, Vols. 1 and 2, Dow Chem. Co., Midland, Mich. (31 December 1960).

THE THERMODYNAMIC TABLES*

Table	Title	Conventional Formula	Filing Order
	Boron		
89	Reference State	В	В
90	Ideal Monatomic Gas	В	В
	Hafnium Diboride		
91	Condensed Phase	HfB ₂	B ₂ Hf
	Niobium Diboride		
92	Condensed Phase	NbB ₂	B ₂ Nb
	Tantalum Diboride		
93	Condensed Phase	TaB ₂	B ₂ Ta
	Titanium Diboride		
94	Condensed Phase	TiB2	B ₂ Ti
	Zirconium Diboride		
95	Condensed Phase	ZrB ₂	B ₂ Zr
	Beryllium		_
96	Reference State	Be	Ве
97	Ideal Monatomic Gas	Be	Ве
	Beryllium Oxide		
98	Condensed Phase	BeO	BeO
99	Ideal Molecular Gas	BeO	BeO
	Beryllium Carbide	; ! !	
100	Condensed Phase	Be ₂ C	Be ₂ C
	Dimeric Beryllium Oxide		
101	Ideal Molecular Gas	Be ₂ O ₂	Be ₂ O ₂
	Beryllium Nitride		
102	Condensed Phase	Be ₃ N ₂	Be ₃ N ₂
	Trimeric Beryllium Oxide		
103	Ideal Molecular Gas	Be ₃ O ₃	Be ₃ O ₃
L			

Table	Title	Conventional Formula	Filing Order
104	Tetrameric Beryllium Oxide Ideal Molecular Gas	Be ₄ O ₄	Be ₄ O ₄
105	Pentameric Beryllium Oxide Ideal Molecular Gas	Be ₅ O ₅	Be ₅ O ₅
106	Hexameric Beryllium Oxide Ideal Molecular Gas	Be ₆ O ₆	Be ₆ O ₆
107 108	Carbon Reference State Ideal Monatomic Gas	C C	C C
109	Hafnium Carbide Condensed Phase	HfC	СНſ
110	Dimolybdenum Carbide Condensed Phase	Mo ₂ C	CMo ₂
111	Niobium Carbide Condensed Phase	NъС	CNb
112	Diniobium Carbide Condensed Phase	Nb ₂ C	CNP5
113	Silicon Carbide Condensed Phase	SiC	CSi
114	Tantalum Carbide Condensed Phase	TaC	СТа
115	Ditantalum Carbide Condensed Phase	Ta ₂ C	CTa ₂
116	Thorium Carbide Condensed Phase	ThC	CTh
117	Titanium Carbide Condensed Phase	TiC	CTi
118	Tungsten Carbide Condensed Phase	wc	C W

Table	Title	Conventional Formula	Filing Order
	Ditungsten Carbide		
119	Condensed Phase	w ₂ C	CW ₂
	Zirconium Carbide		
120	Condensed Phase	ZrC	CZr
	Diatomic Carbon		
121	Ideal Molecular Gas	C ₂	C ₂
	Trimolybdenum Dicarbide		
122	Condensed Phase	Mo ₃ C ₂	C ₂ Mo ₃
	Thorium Dicarbide		
123	Condensed Phase	ThC ₂	C ₂ Th
124	Ideal Molecular Gas	ThC ₂	CZTh
	Triatomic Carbon		
125	Ideal Molecular Gas	C ₃	C ₃
	Calcium		
126	Reference State	Ca	Ca
127	Ideal Monatomic Gas	Ca	Ca
	Calcium Oxide		
128	Condensed Phase	CaO	CaO
129	Ideal Molecular Gas	CaO	CaO
	Cerium		
130	Reference State	Ce	Се
131	Ideal Monatomic Gas	Ce	Се
	Cerium Oxide		
132	Ideal Molecular Gas	CeO	CeO
	Chromium		
133	Reference State	Cr	Cr
134	Ideal Monatomic Gas	Cr	Cr
	Chromium Monoxide		
135	Ideal Molecular Gas	CrO	CrO
		1	<u> </u>

Table	Title	Conventional Formula	Filing Order
	Chromium Dioxide		
136	Condensed Phase	CrO ₂	CrO ₂
137	Ideal Molecular Gas	CrO ₂	CrO ₂
		_	
	Chromium Trioxide		
138	Condensed Phase	CrO_3	CrO ₃
139	Ideal Molecular Gas	CrO_3	CrO ₃
	Hafnium		
140	Reference State	Hf	Hf
141	Ideal Monatomic Gas	Hf	Hf
	Hafnium Nitride		
142	Condensed Phase	HfN	HfN
	Hafnium Monoxide		
143	Ideal Molecular Gas	HfO	HfO
144	Hafnium Dioxide	****	
144 145	Condensed Phase	HfO ₂	HfO ₂
143	Ideal Molecular Gas	H _f O ₂	HfO ₂
	Iridium		
146	Reference State	Ir	Ir
147	Ideal Monatomic Gas	Ir	Ir
	Iridium Monoxide		
148	Ideal Molecular Gas	IrO	
	ideal Molecular Gas	IFO	IrO
	Magnesium		
149	Reference State	Mg	Mg
150	Ideal Monatomic Gas	Mg	Mg
	Magnesium Oxide		
151	Condensed Phase	MgO	Mac
152	Ideal Molecular Gas	MgO	MgO MgO
			MRO
	Magnesium Nitride		
153	Condensed Phase	Mg ₃ N ₂	Mg ₃ N ₂
	Manganese		- 3 2
154	Reference State	74	
155	Ideal Monatomic Gas	Mn Mn	Mn
		Mn	Mn

Table	Title	Conventional Formula	Filing Order
	Manganese Oxide		
156	Ideal Molecular Gas	MnO	MnO
	Molybdenum		
157	Reference State	Mo	Мо
158	Ideal Monatomic Gas	Мо	Мо
	Molybdenum Monoxide		
159	Ideal Molecular Gas	MoO	МоО
	Molybdenum Dioxide		
160	Condensed Phase	MoO ₂	MoO ₂
161	Ideal Molecular Gas	MoO ₂	MoO ₂
	Molybdenum Trioxide		
162	Condensed Phase	MoO ₃	MoO ₃
163	Ideal Molecular Gas	MoO ₃	MoO ₃
	Nitrogen		
164	Ideal Monatomic Gas	N	N
	Niobium Nitride		
165	Condensed Phase	NbN	NNb
	Diniobium Nitride		
166	Condensed Phase	Nb ₂ N	NNb ₂
	Tantalum Nitride		
167	Condensed Phase	TaN	NTa
	Ditantalum Nitride		
168	Condensed Phase	Ta ₂ N	NTa ₂
	Titanium Nitride		
169	Condensed Phase	TiN	NTi
	Zirconium Nitride		
170	Condensed Phase	ZrN	NZr
	Nitrogen		
171	Reference State	N ₂	N ₂
		_	

Table	Title	Conventional Formula	Filing Order
	Silicon Nitride		
172	Condensed Phase	Si ₃ N ₄	N ₄ Si ₃
	Niobium		
173	Reference State	Nb	Nb
174	Ideal Monatomic Gas	Nb	Nъ
	Niobium Monoxide		
175	Condensed Phase	NbO	NbO
176	Ideal Molecular Gas	NbO	NЪО
	Niobium Dioxide		
177	Condensed Phase	NbO ₂	NbO ₂
178	Ideal Molecular Gas	NbO ₂	NbO ₂
	Niobium Pentoxide		
179	Condensed Phase	Nb ₂ O ₅	Nb ₂ O ₅
	Oxygen		
180	Ideal Monatomic Gas	0	0
	Osmium Monoxide		
181	Ideal Molecular Gas	OaO	OOs
	Platinum Monoxide		
182	Ideal Molecular Gas	PtO	OPt
	Rhenium Monoxide		
183	Ideal Molecular Gas	ReO	ORe
	Rhodium Monoxide		
184	Ideal Molecular Gas	RhO	ORh
	Silicon Monoxide		
185	Ideal Molecular Gas	SiO	OSi
	Strontium Monoxide		
186	Condensed Phase	SrO	05-
187	Ideal Molecular Gas	SrO	O S r O S r
	To-Asla 24		00 1
188	Tantalum Monoxide		
100	Ideal Molecular Gas	TaO	OTa

Table	Title	Conventional Formula	Filing Orde
	Technetium Monoxide		0.5
189	Ideal Molecular Gas	TcO	OTc
190	Thorium Monoxide	TD 0	OTh
1 70	Ideal Molecular Gas	ThO	OTh
191	Titanium Monoxide	m:0	077:
-	Condensed Phase	TiO	OTi
192	Ideal Molecular Gas	TiO	OTi
	Uranium Monoxide		
193	Ideal Molecular Gas	UO	OU
	Tungsten Monoxide		
194	Ideal Molecular Gas	wo	ow
	Yttrium Monoxide		
195	Ideal Molecular Gas	YO	OY
	Zirconium Monoxide		
196	Ideal Molecular Gas	ZrO	OZr
	Oxygen		
197	Reference State	02	02
	Osmium Dioxide		
198	Ideal Molecular Gas	(sO ₂	O ₂ Os
	Silicon Dioxide		
199	Condensed Phase	SiO ₂	O ₂ Si
200	Ideal Molecular Gas	SiO2	O ₂ Si
	Tantalum Dioxide		
201	Ideal Molecular Gas	TaO2	O ₂ Ta
	Titanium Dioxide		
- 202	Condensed Phase	TiO2	O ₂ Ti
203	Ideal Molecular Gas	TiO ₂	OzTi
	Uranium Dioxide		
204	Condensed Phase	UO ₂	O ₂ U
205	Ideal Molecular Gas	UO ₂	
	ideal wither day	1 552	O ₂ U

Table	Title	Conventional Formula	Filing Order
206	Vanadium Dioxide Ideal Molecular Gas	vo ₂	o ₂ v
207 208	Tungsten Dioxide Condensed Phase Ideal Molecular Gas	wo ₂ wo ₂	0 ₂ w 0 ₂ w
209 210	Zirconium Dioxide Condensed Phase Ideal Molecular Gas	ZrO ₂ ZrO ₂	O ₂ Zr O ₂ Zr
211	Osmium Trioxide Ideal Molecular Gas	OsO ₃	O ₃ Os
212	Titanium Sesquioxide Condensed Phase	Ti ₂ O ₃	0 ₃ Ti ₂
213 214	Tungsten Trioxide Condensed Phase Ideal Molecular Gas	wo₃ wo₃	0 ₃ w 0 ₃ w
215	Osmium Tetroxide Ideal Molecular Gas	OsO ₄	O ₄ Os
216	Tantalum Pentoxide Condensed Phase	Ta ₂ O ₅	O ₅ Ta ₂
217	Trititanium Pentoxide Condensed Phase	Ti ₃ O ₅	O ₅ Ti ₃
218	Rhenium Heptoxide Condensed Phase	Re ₂ O ₇	O ₇ Re ₂
219 220	Osmium Reference State Ideal Monatomic Gas	Os Os	Os Os
221 222	Platinum Reference State Ideal Monatomic Gas	Pt Pt	Pt Pt

		Conventional	
Table	Title	Formula	Filing Order
	Rhenium		
223	Reference State	Re	Re
224	Ideal Monatomic Gas	Re	Re
	Rhodium		
225	Reference State	Rh	Rh
226	Ideal Monatomic Gas	Rh	Rh
	Scandium		
227	Reference State	Sc	Sc
228	Ideal Monatomic Gas	Sc	Sc
	Silicon		
229	Reference State	Si	Si
230	Ideal Monatomic Gas	Si	Si
	Strontium		
231	Reference State	Sr	Sr
232	Ideal Monatomic Gas	Sr	Sr
	Tantalum		
233	Reference State	Ta	Ta
234	Ideal Monatomic Gas	Та	Ta
	Technetium		
235	Reference State	Tc	Tc
236	ldeal Monatomic Gas	Tc	Tc
	Thorium		
237	Reference State	Th	Th
238	Ideal Monatomic Gas	Th	Th
	Titanium		
239	Reference State	$\tau_{\mathbf{i}}$	Ti
240	Ideal Monatomic Gas	Ti	Ti
	Uranium		
. 241	Reference State	υ	U
242	Ideal Monatomic Gas	U	U
	Vanadium		
243	Reference State	v	v
244	Ideal Monatomic Gas	V	v

Table	Title	Conventional Formula	Filing Order
	Tungsten		
245	Reference State	W	w
246	Ideal Monatomic Gas	w	w
:	Yttrium		
247	Reference State	Y	Y
248	Ideal Monatomic Gas	Y	Y
	Zirconium		
249	Reference State	Zr	Zr
250	Ideal Monatomic Gas	Zr	Zr

^{*}At the bottom of the tables are listed the dates on which the tables have been completed and the initials of the scientist who prepared them. The same scientist has been responsible for the corresponding discussions which are given in volume 1 of this report.

Name	Initials
Anthrop, D.F.	DFA
Dreikorn, R.E.	RED
Feber, R.C.	RCF
Griffel, M.	MG
Panish, M.B.	мвр
Schick, H. L.	HLS
Ward, C. H.	Снw

 $\underline{\mathtt{B}}$

Alphabetical Listing		Table	Page
Beryllium			
Reference State		96	2 - 39
Ideal Monatomic Gas		97	2-41
Beryllium Carbide			
Condensed Phase		100	2 - 47
Beryllium Nitride			
Condensed Phase		102	2 - 51
Beryllium Oxide			
Condensed Phase		98	2-43
Ideal Molecular Gas		99	2 -45
Dimeric Beryllium Oxide			
Ideal Molecular Gas		101	2-49
Hexameric Beryllium Oxide			
Ideal Molecular Gas		106	2-59
Pentameric Beryllium Oxide			
Ideal Molecular Gas		105	2 - 57
Tetrameric Beryllium Oxide			
Ideal Molecular Gas		104	2 - 55
Trimeric Beryllium Oxide			
Ideal Molecular Gas		103	2 -53
Boron			
Reference State		89	2 -25
Ideal Monatomic Gas		90	2-27
	6		
	<u>c</u>		
Calcium			
Reference State		126	2 00
Ideal Monatomic Gas		127	2-99 2-101

Alphabetical Listing	Table	Page
Calcium Oxide		
Condensed Phase	128	2-103
Ideal Molecular Gas	129	2 - 105
Carbon		
Reference State	107	2 - 61
Ideal Monatomic Gas	108	2 - 63
Diatomic Carbon		
Ideal Molecular Gas	121	2-89
Triatomic Carbon		
Ideal Molecular Gas	1 25	2 - 97
Cerium		
Reference State	130	2-107
Ideal Monatomic Gas	131	2-109
Cerium Oxide		
Ideal Molecular Gas	132	2-111
Chromium		
Reference State	133	2-113
Ideal Monatomic Gas	134	2-115
Chromium Dioxide	•	
Condensed Phase	136	2-119
Ideal Molecular Gas	137	2-121
Chromium Monoxide		
Ideal Molecular Gas	135	2-117
Chromium Trioxide		
Condensed Phase	138	2-123
Ideal Molecular Gas	139	2-125
	13,	2-125
	<u>D</u>	
Diatomic Carbon		
Ideal Molecular Gas	121	_
morecular das	121	2-89

Alphabetical Listing	<u>Table</u>	Page
Dimeric Beryllium Oxide Ideal Molecular Gas	101	2 -49
Dimolybdenum Carbide Condensed Phase	110	2-67
Diniobium Carbide Condensed Phase	112	2 - 71
Diniobium Nitride Condensed Phase	166	2-179
Ditantalum Carbide Condensed Phase	1!5	2 - 77
Ditantalum Nitride Condensed I'hase	168	2-183
Ditungsten Carbide Condensed Phase	119	2 -85
	<u>н</u>	
Hafnium		
Reference State	140	2-127
Ideal Monatomic Gas	141	2-129
Hafnium Carbide		
Condensed Phase	109	2 - 65
Hafnium Diboride		
Condensed Phase	91	2-29
Hafnium Dioxide		
Condensed Phase	144	2-135
Ideal Molecular Gas	145	2-137
Hafnium Monoxide		
Ideal Molecular Gas	143	2-133

Alphabetical Listing	Table	Page
Hafnium Nitride Condensed Phase	142	2-131
Hexameric Beryllium Oxide Ideal Molecular Gas	106	2 - 59
	ī	
Iridium		
Reference State	146	2-139
Ideal Monatomic Gas	147	2-141
Iridium Monoxide		
Ideal Molecular Gas	148	2-143
	М	
	444	
Magnesium		
Reference State	149	2-145
Ideal Monatomic Gas	150	2-147
Magnesium Nitride	•	
Condensed Phase	153	2-153
	133	2-155
Magnesium Oxide		
Condensed Phase	151	2-149
Ideal Molecular Gas	152	2-157
Manganese		
Reference State	154	2-155
Ideal Monatomic Gas	155	2-157
Manganese Oxide		
Ideal Molecular Gas	156	
	130	2-159
Molybdenum		
Reference State	157	2-161
Ideal Monatomic Gas	158	2-163

Alphabetical Listing	Table	Page
Molybdenum Dioxide		2-167
Condensed Phase	160	2-167
Ideal Molecular Gas	161	2-109
Molybdenum Monoxide		
Ideal Molecular Gas	159	2 - 165
Molybdenum Trioxide		
Condensed Phase	162	2-171
Ideal Molecular Gas	163	2-173
Dimolybdenum Carbide		
Condensed Phase	110	2 - 67
Trimolybdenum Dicarbide		
Condensed Phase	122	2-91
	N	
		
Niobium		
Reference State	173	2-193
Ideal Monatomic Gas	174	2-195
Niobium Carbide		
Condensed Phase	111	2-69
N'alt Date 1		
Niobium Diboride Condensed Phase	92	2-31
Condensed I hase		
Niobium Dioxide		
Condensed Phase	177	2 - 201
Ideal Molecular Gas	178	2-203
Niobium Monoxide		
Condensed Phase	175	2-197
Ideal Molecular Gas	176	2-199
Niobium Nitride		
Condensed Phase	165	2-177

Alphabetical Listing	Table	Page
Niobium Pentoxide Condensed Phase	179	2 - 205
Diniobium Carbide Condensed Phase	112	2-71
Diniobium Nitride Condensed Phase	166	2-179
Nitrogen Reference State Ideal Monatomic Gas	171 164	2-189 2-175
	<u>o</u>	
Osmium Reference State Idea: Monatomic Gas	219 220	2 -285 2 -287
Osmium Dioxide Ideal Molecular Gas	198	~ 2 - 2 4 3
Osmium Monoxide Ideal Molecular Gas	181	2 - 209
Osmium Tetroxide Ideal Molecular Gas	215	2-277
Osmium Trioxide Ideal Molecular Gas	211	2-269
Oxygen Reference State Ideal Monatomic Gas	197 180	2 -241 2 -207

	P		
Alphabetical Listing		Table	Page
Pentameric Beryllium Oxide			
Ideal Molecular Gas		105	2-57
Platinum Reference State		221	2-289
Ideal Monatomic Gas		221 222	2-291
radar monaronne das			, =
Platinum Monoxide			
Ideal Molecular Gas		182	2-211
	R		
Rhenium	••		
Reference State		423	2-293
Ideal Monatomic Gas		224	2-295
Rhenium Heptoxide			
Condensed Phase		218	2-283
Rhenium Monoxide		1.02	2-213
Ideal Molecular Gas		183	2-213
Rhodium			
Reference State		225	2-297
Ideal Monatomic Gas		226	2-299
Rhodium Monoxide			
Ideal Molecular Gas		184	2-215
Med Moree day			
	<u>s</u>		
	_		
Scandium			
Reference State		227	2 - 301
Ideal Monatomic Gas		228	2 - 30 3
Silicon			
Reference State		229	2-305
Ideal Monatomic Gas		230	2 - 307

Alphabetical Listing	Table	Page
Silicon Carbide		
Condensed Phase	113	2 - 73
Silicon Dioxide		
Condensed Phase	199	2-245
Ideal Molecular Gas	200	2-247
Silicon Monoxide		
Ideal Molecular Gas	185	2-217
Silicon Nitride		
Condensed Phase	172	2-191
Strontium		
Reference State	231	2-309
Ideal Monatomic Gas	232	2-311
Strontium Monoxide		
Condensed Phase	186	2-219
Ideal Molecular Gas	187	2-221

2-20

 $\frac{\mathbf{T}}{}$

Alphabetical Listing	Table	Page
Tantalum		
Reference State	233	2-313
Ideal Monatomic Gas	234	2 - 315
Tantalum Carbide		
Condensed Phase	114	2 - 75
Tantalum Diboride		
Condensed Phase	93	2 - 33
Tantalum Dioxide		
Ideal Molecular Gas	201	2-249
Tantalum Monoxide		2 222
Ideal Molecular Gas	188	2-223
Tantalum Nitride		
Condensed Phase	167	2-181
Tantalum Pentoxide		
Condensed Phase	216	2 - 279
Ditantalum Carbide		
Condensed Phase	115	2 - 77
Ditantalum Nitride		
Condensed Phase	168	2-183
Technetium		
Reference State	235	2-317
Ideal Monatomic Gas	236	2 - 319
Technetium Monoxide		
Ideal Molecular Gas	189	2-225
Tetrameric Beryllium Oxide		
Ideal Molecular Gas	104	2 - 55

T (Cont'd)

		
Alphabetical Listing	Table	Page
Thorium		
Reference State	237	2-321
Ideal Monatomic Gas	238	2 - 32 3
Thorium Carbide	1	3.70
Condensed Phase	116	2 - 79
Thorium Dicarbide		3 02
Condensed Phase	123	2-93
Ideal Molecular Gas	124	2 - 95
Thorium Monoxide		2 22 7
Ideal Molecular Gas	190	2 - 227
Titanium		
Reference State	239	2 - 325
Ideal Monatomic Gas	240	2 - 327
Titanium Carbide		
Condensed Phase	117	2 -81
Titanium Diboride		2.25
Condensed Phase	94	2 - 35
Titanium Dioxide		v.
Condensed Phase	. 202	2-251
Ideal Molecular Gas	203	2 - 25 3
Titanium Monoxide		2 - 229
Condensed Phase	191	2-231
Ideal Molecular Gas	192	2-231
Titanium Nitride		2.1/5
Condensed Phase	169	2 - 165
Titanium Sesquioxide		
Condensed Phase	212	2-271
Trititanium Pentoxide		3 101
Condensed Phase	217	2 - 281
Triatomic Carbon		
Ideal Molecular Gas	1 2 5	2 - 97
Trimeric Beryllium Oxide		
Ideal Molecular Gas	103	2-53

T (Concl'd)

Alphabetical Listing	Table	Page
Trimolybdenum Dicarbide		
Condensed Phase	122	2-91
Condensed I have	122	2-71
Trititanium Pentoxide		
Condensed Phase	217	2-281
_		
Tungsten	245	2-337
Reference State	245	
Ideal Monatomic Gas	240	2 - 339
Tungsten Carbide		
Condensed Phase	118	2-83
		2 - 0 3
Tungsten Dioxide		
Condensed Phase	207	2-261
Ideal Molecular Gas	208	2-263
Tungsten Monoxide		
Ideal Molecular Gas	194	2-235
Tungsten Trioxide		
Condensed Phase	213	2-273
Ideal Molecular Gas	213	2-275
ideal Molecular Gas	214	2-213
Ditungsten Carbide		
Condensed Phase	119	2 - 85
	<u>u</u>	

Uranium Reference State	241	2 220
Ideal Monatomic Gas	241 242	2-329 2-311
ideal Monatomic Gas	242	2-311
Uranium Dioxide		
Condensed Phase	204	2-255
Ideal Molecular Gas	205	2 - 257
		- 251
Uranium Monoxide		
Ideal Molecular Gas	193	2-233

 $\underline{\mathbf{v}}$

	<u> </u>	
Alphabetical Listing	Table	Page
Vanadium		
Reference State	243	2-333
Ideal Monatomic Gas	244	2-335
Vanadium Dioxide		
Ideal Molecular Gas	206	2 - 259
ideal Molectual Gas	200	,
	<u>Y</u>	
Yttrium		
Reference State	247	2 - 341
Ideal Monatomic Gas	248	2-343
	,	
Yttrium Monoxide		
Ideal Molecular Gas	195	2-237
	<u>z</u>	
Zirconium		
Reference State	249	2-345
Ideal Monatomic Gas	250	2-347
Zirconium Carbide		
Condensed Phase	120	2-87
Zirconium Diboride		
Condensed Phase	95	2 - 37
Zirconium Dioxide		
Condensed Phase	209	2 - 265
Ideal Molecular Gas	210	2-267
iddal Moleculai Gas	210	2-201
Zirconium Monoxide		
Ideal Molecular Gas	196	2-239
		u-u3)
Zirconium Nitride		
Condensed Phase	170	2-187

VII THERMODYNAMIC TABLES

Reference State for Calculating AH*, AF*, and Log Kp. Solid B from 0* to 2450*K. Liquid B from 2450* to 3970*K, Gaseous B from 3970* to 6000*K.

	(."	—çal/"K gf		<i>/</i>	. Keul/gfw		l co K
1,"K	("	51	(1 - H ₂₀₈)/1	, н н. м.	$\Delta H_{\mathbf{f}}^{*}$	AF,	Log Kp
0	0.000	0.000	INFINITE	-0.290			
298-15	2.823	1.392	1.392	0.000			
300	2.845	1.409	1.389	0.006			
600	3.841	2.374	1.516	0.343			
500	4.498	3.307	1.783	0.762			
600	4.966	4.170	2.108	1.237			
700	5.333	4.964	2.461	1.752			
800	5.639	5.697	2.820	2 • 301			
\$00	5.902	6.377	3.,78	2.879			
000	6.130	7.011	3.531	3.481			
100	6.329	7.605	3.874	4.104			
50C	6.502	8.163 8.689	4.208 4.532	4.746 5.403			
300 400	6 • 65 <i>7</i> 6 • 783	9.187	4.847	6.075			
50C	6.897	4.659	5.153	6.759			
400	6.996	10.107	5.448	7.454			
600 700	7.083	10.534	5.735	8.158			
806	7.160	10.941	5.013	8 - 870			
900	7.228	11.330	6.282	9.590			
2000	7.288	11.703	6.545	10.316			
2100	. 141	12.019	6.798	11.047			
200	7.388	12.402	7.045	11.784			
2300	7.436	12.731	7.285	12.525			
7400	7.468	13.048	7.519	13.269			
2450	7.485	13.222 15.522		13.642			
2450 2500	7.500 7.500	15.673		19.652			
				.0.402			
5600	7.500	15.967 16.250		21.152			
2700	7.500 7.500	16.523		21.902			
2900 2800	7.500	16.786		22.652			
3000	7.500	17.041		23.402			
	7 400	17 757	4.496	24.152			
3100	7.500 7.500	17.267 17.526		24.902			
3200	7.500	17.756		25.652			
1300 1400	7.500	17.979		_ u • 402			
3500	7.500	18.141	10.439	27.152			
1600	7.500	18.406	10.658	27.902			
3700	7.500	18.614	. 10.870	28.652			
3800	7.500	18.814		29.402			
3900	7.500	14.00		30.152 30.676			
3969.46	7.500	19.142 49.51		151.248			
3969.96 4000	4.981	49.55		151.397			
		7.	4 12.626	151.896			
4100	4.985	44.67		152.394			
4200	4.993	49.91		152.893			
4300 4400	4.997	50.02	7 15.165	153.393			
4500	5.002	50.13		153.893			
4400	5.008	50.24	9 16.685	154.393			
4600 4700	5.015	50.35	7 17.401	154 - 894			
4800	5.022	50.46	3 18.089	. 55 . 396			
4900	5.030	50.56	6 18.750	.55.899			
5000	5.038	50.66	8 14.388	156.402	•		
5100	5.048	50.76					
5200	5.058	50.86					
5300	5.069	50.96					
5400	5.081	51.05 51.15					
5500	5.093	-1-13	· .				
5600	5.107	51 - 24					
5700	5.121	51.33					
5800	5.136	51.42 51.51		160.98	3		
5900	5.157 5.168	51.55					
6000							
							ні
			15 Ma:	rch 1963			174

0°K to 2450°K U K to 2450 K Crystal 2450 K to 3969. 96 K Liquid 3969. 96 K to 6000 K Ideal Monatomic Gas

Crystal

$$\Delta H_{f0}^{o} = 0$$
 $\Delta H_{8298, 15}^{o} = 133.0 \text{ Kcal gfw}^{-1}$
 $T_{m} = 2450^{\circ}\text{K}$
 $T_{b} = 3969.96^{\circ}\text{K}$

 $\Delta H_{1298.15}^{\circ} = 0$ $S_{298.15}^{0} = 1.392 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$ $\Delta H_m = 5.635 \text{ Kcal gfw}^{-1}$ ΔH, = 120. 572 Kcal gfw⁻¹

Co data from Wise et al .

Structure

Elemental boron has several crystalline modifications See earlier report 2 (p 1-76) for further details

Heat of Formation

Zero by definition

Heat Capacity and Entropy

Low temperature data from Johnston et al 3 and Wise et al 1

Melting

Several values discussed in earlier report 2

Heat of Sublimation

An average of several determination having scatter of about 8 Kcal See text for more details.

References

- 1. Wise, S., J. Margrave and R. L. Altman, J. Phys. Chem. 64, 915 (1960).
- 2. Barriault, R. J. et al, Thermodynamics of Certain Refractory Compounds. Pt. I, Vol. 1, ASD TR-61-260 (May 1962).
- 3. Johnston, H. L., H. N. Hersh and E. C. Kerr, J. Am. Chem. Soc. 73, 1112 (1951)

BORON (B)

(REFERENCE STATE)

GFW - 10.82

SUMMARY OF UNCERTAINTY ESTIMATES

T, °K	ر چ	cai/°K <i>ef</i> = S _T (F _T - H ₂₉₈)/T	H _T - H ₂₉₀	. Kcal/gf+ ΔH _f	AF1	Log Kp
298+15 1000 2000 2450 2450 3000 3969+96	\$ 0.200 \$ 0.200 \$ 0.200 \$ 0.200 \$ 1.000 \$ 1.000	# 0.020 # 0.260 # 0.400 # 0.420 # 0.720 # 0.920	* 0.020 * 0.120 * 0.230 * 0.250 * 0.250 * 0.350 * 0.520	# 04000 # 0.140 # 0.340 # 0.430 # 1.160 # 1.710			

Reference State for Calculating \\B'_1, \State F'_1, and Log K_p Solid B from 0° to 2450°K,
Liquid B from 2450° to 3970°K Gaseous B from 3970° to 6000°K.

	C	cal/"K gi	•	·	Krul/gfw		
T,"K	()	S.I	(FT - H ²⁹⁸)/1	H _T - H ₂₉₈	ΛH _f	ΔF_{I}^{2A}	Log Kp
0	0.000	0.000	INFINITE	-1.511	131.779	131.779	INFINIT
298.15	4.971	36.649	35.649	0.000	133.000	122.489	-89.78
300	4.971	36.680	36.650	0.009	133.003	172.422	-89.18
400	4.970	38.110	36.845	0.506	133.163	118.869	-64.94
500	4.969	39.218	37.212	1.003	133.241	115.286	-50.36
600	4 040						
700	4.969	40.124 40.830	37.624	1.500	133.263	111.691	-40.68
800	4.968	41.554	38.037	1.997	133.245	108.097	-33.74
900	4.968	42.139	38.436	2.494	133.193	104.508	-28.54
000	4.968	42.662	38.815 39.175	2.991 3.487	133.112	100.927 97.355	-24.50 -21.27
			,,,,,	3.407	133,000	914377	-21.021
100	4.968	43.136	39.514	3.984	132.880	93.796	-18.63
200	4.968	43.56R	39.833	4 - 481	132.735	90.250	-16.43
300	4.968	43.966	47.136	4.978	132.575	86.715	-14.57
400	4.968	44 4	40.423	5.475	137.400	83.194	-12.98
500	4.968	44.477	40.475	5.972	132.213	79.687	-11.60
600 700	4.968 4.968	44.998	40.955	6.468	132-014	76.189	-10.47
800	4.968	45.299 45.583	41.272	6.965	. 31 - 807	72.707	-9.34
	4.968		41.437	7.462	.31.592	69.237	-8.40
900		45 - 851	41.667	7.959	131.369	65.778	-7.56
000	4.465	46.106	41.878	8.446	131.140	62.334	-6.81
1110	4.46#	46.34.	42.086	8.952	130.905	58.896	-6.12
700	4.768	46.580	42.285	9.449	130.665	55.472	-5.51
300	4.968	46.801	42.476	9 . 746	130.421	52.061	-4.94
400	4.968	47.012	42.660	10.443	130-174	48.662	-4.43
450	4.468	47.114	42.750	10.691	130.049	47.015	-4.19
450	4.966	47.114	42.750	10.691	124.414	47.015	-4.19
500	4.96R	47.215	42.839	10.940	124.288	45.433	-3.97
2600	4.968	47.410	43.011	11.437	124.035	42.284	-3.55
7700	4.468	47.547	43.177	11.933	123.781	39.146	-3.16
2600	4.768	47.778	43.338	12.430	123.528	36.017	-2.81
7 900	4.969	47.957	43.494	12.927	123.275	32.895	-2.47
3000	4.469	48.121	43.646	13.424	123.022	29.782	-5.16
3100	4.769	48.284	43.793	13.921	122.769	26.680	-1.88
3200	4.975	48.441	43.935	14.418	122.516	23.586	-1.61
3300	4.970	48.594	44.374	14.915	172.263	20.497	-1.35
3400	4.971	48.743	44.213	15.412	1; 510	17.414	-1.11
3400	4.972	48.887	44.341	15.909	12 . '57	14.343	-0.89
-							
3600	4.973	49.027	44.469	10.406	121.504	11.281	-0.68
3700	4.975	49.163	44.544	16-904	121.252	8.272	-0.48
1800	4.977	49.216	44.716	17.401	170.999	5 • 1 7 2	-0.29
3900	4.979	49.424	44.835	17.899	120.747	2.124	-0.11
3969.96	4.981	49.513	44.916	.8-247	120.571	0.000	0.00
3969.46	4.981	49.113	44.916	18.247			
4000	4.982	49.551	44.941	18.397			
			44.066	18.896			
4100	4.985 4.986	49.674	45.176	19.394			
4200		49.912		19.893			
4300	4.991			21.393			
4400 4500	4.997	50.U.7		20.893			
- 300							
4600	5.008	40.244		21 - 393			
4700	5.015	40.357	4 648	21.894			
4800	5.022	50.463	44.79	22.396			
4900	5.030	50.566		72.899			
5000	5.038	47.668	45.987	23.402			
				22.004			
5100	5.048	50.768		23.906 24.412			
200	4.04R	50.866		24.918			
5300	5.369	40.962		25.426			
5400	5.081	51.057 51.151		25.934			
5500	5.041	71.171	40.471				
5600	5.107	51.242		26.444			
5700	5.1.1	51.333	46.603	70.956			
5800	5.135	41.422		27.468			
1900	5.152	51.510		27.983			
6000	5.168	51.597	46.847	28.499			
							ыı.e
			15 14	ch 1963			HLS

2-27

В

IDEAL MONATOMIC GAS

$$\Delta H_{f0}^{o} = 131.779 \text{ Kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 133.0 \text{ Kcal gfw}^{-1}$$
Ground State Configuration $P_{\frac{1}{2}}$

$$S_{298.15}^{o} = 36.649 \text{ cal degK}^{-1} \text{ gfw}^{-1}$$

$$H_{298.15}^{o} = 1.511 \text{ Kcal gfw}^{-1}$$

Electronic Levels and Multiplicities

Data from earlier report.

Heat of Formation

An average of several determinations having scatter of about 8 Kcal. See earlier report! and volume 1, this report for more details.

Heat Capacity and Entropy

From earlier report.

Reference

Barriault, R. J. et al. Thermodynamics of Certain Refractory Compounds.
 Pt. I, Vol. 1, ASD TR-61-260 (May 1962).

80	H on. Manate		E.MMAHY WF	LIDEAL UNI ERTAIN	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ŧ	igf w	~ ነዕ•ሐ5
	1 'h	(,	- المنت المنت المنت المنت ا			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ì	1 K
		,						ļ
								1
	298 - 15	10.001	± 0.001	* 0.30.	± 0.000	. 4 . 300	14.300	12.910.
	1.00	* 0.001	+ U. Od.	+ 0.00,)(.	•		
	200.	* 0.001	+ 7.601	* O • O * '	* J. 35.2			1
	2451	± 0.001	* J. 60,	1 1.00.	. 0.002			
	245C	t 0.001	* 0.001	 0.001 	+ 0.002			
	300C	· 0.90.	* 0.0cl	10.01	+ 0 + 30 3			
	3969.46	* U.TO:	+ 0.001	* 0.001	10.004			1
								ì

B₂Hf

Reference State for Calculating Mi, Mi, and Logk. Solid Hf from 0° to 2495°K, Liquid Hf from 2495° to 4985°K, Gaseous Hf from 4985° to 6000°K, Solid B from 0° to 2450°K, Liquid B from 2450° to 3970°K, Gaseous B from 3970° to 6000°K, Solid HfB2 from 0° to 3523°K, Liquid HfB2 from 3523° to 6000°K.

		rat K			w		
1 %	(_F	۲,	of a three T	Г _{н 1} н ₂₉₈	Kenigiw Alij	14	Log K
٥	0.000	0.000	"			-	•
298-15	12.000	11.066	INFINITE 11.068	-1.706 0.300	-79.691 -80.000	-79.611 -79.277	1NF1N1TL 50.109
300	12.080	11.142	11.068	0.022	-80.002	-79.274	57.748
400 500	14.941	15.065 18.567	11.584	1.392	-79.970	-74.035	43.181
	,	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12.638	4.365	-79.937	-78.806	34.444
600	17.224	41.032	13.887	4.647	-79.930	-70.585	28.623
700 800	17.816 18.266	24.334 26.744	15.190	6.401	-79.948	-7d.350	24.463
900	18.633	28.917	16.487 17.749	40.051 8.206	-79.999	-70.127	21.342
1000	18.949	30.897	18.966	11.931	-80.203	-77.688 -77.637	16.967
							10170
1100	19.490	32.716 34.401	20.135 21.254	.3.840	-80.349	-77.374	15.572
1300	19.734	35.971	22.326	15.776 17.737	-80.523 -80.721	-77.096 -76.803	14-040
1400	19.965	37.442	23.354	.4.722	-80.940	-76.494	12.91. 11.94.
1500	20.188	34.827	24.34C	11.730	-81-177	-70.166	11.047
1600	20.404	40.136	25.281	23.766		74 437	
1700	20.616	41.380	26.41	75.811	-61.432 -61.700	-75.827 -75.466	10.357 9.701
1800	20.823	42.564	21.074	27.883	-81.980	-75.093	9.1.7
1900 2000	21.027 21.228	44.779	21.111	29.375	-04.274	-74.705	8.593
		776117	2h.135	32.C88	-82.575	-74.292	9.118
	21.294	45.167	28.998	32 - 190	-82.676	~74.153	7.971
2011	21.294	45.127	28.458	32.790	-84.326	-74.153	7.971
2100	21•426 21•626	45.820 46.821	24.524 20.288	14.221 16.374	-84.55	-73.822 -73.305	7.682
2300	21.622	47.787	3028	38.540	-84-850 -85-17s	-72.773	7 • 282 6 • 915
2400	22.017	44.720	11.745	40.738	-85.499	-72.224	0.577
2450	22.114 22.114	49.175	3 6 . 3 70	41.841	-85.644	-71.85y	0.410
2495	22.201	49.578	32.096 22.406	41.841 42.836	-90.914 -91.086	-71.854 -71.387	6.41C 6.27
2495	22.201	49.576	32.416	42.838	-102.325	-71.387	6.253
2500	22.211	44.622	72.442	42.949	-102.528	-71.323	0.235
2600	22.405	50.497	35.120	45.180	- 33 367	. 70. 04.	f
1 2750	22.597	1.146	33.760	47.430	-102.397	-70.0d4 -68.841	5 • 691 5 • 572
2800	72.764	50.472	44.422	47.700	-102.477	-67.593	5.270
2450	22.481	42.414	45.048	51.988	02.489	-66.350	5.000
1000	23.172	53.757	35.658	54.296	-1 17.481	-65.099	4.742
1100	23.362	44.520	36.255	50.023	-40. 454	-63.852	4.501
3200	23.553	55.205	16.637	58.968	-10 .404	-62.608	4.270
. 33-0	23.741	45.992	37.40	-1-333	-102.344	-61-368	4.064
3400	23.412 24.122	46.704 47.400	37.464 48.5.5	63.717	-102-260 102-157	-60.127 -58.808	3.865
							, ,
3523	24.165	57.559_	38.631	_56-675_	-102.130_	58.631_	2.625
3600	24.165	61.758	16.613 19.165	86.675 86.530	-82.130 -82.041	-58.601 -56.087	3.635 3.526
3700	74.165	64.420	44.838	40.952	-81.925	-57.423	3.392
3800	24.164	** . 365	40.444	43. 104	-81.838	-56.759	3 . 2 64
3906	24-165	65.692	41.707	45 • 785 47 • 476	-91.933 -#1.945	-56.109 -55.646	444 مو د ۵۰ د د
3969.96	24.165 24.165	66.122	41.567	77.476	-322.751	-55.648	3.063
4000	24-165	66.104	41.754	A4.50.	-122.565	-53.024	2.4.0
				VA A		m., a	
4100	24.165 24.165	66.40,	42.952	. 30.618	-321.326	-40.205	5.045
4300	24-165	64.955	43.574	105.451	- 320 - 70%	-31.513	1.703
4400	24.165	68.107	44.0.	137.868	-120.091	-20.844	1.333
4500	24.165	64.140	44.643	110.284	-314.475	0-100	0.980
	3, 1:*		45.18.	1701	-318.858	-13.546	0.044
4600	24.165 24.165	70.201	45.700	.15.17	-118.244	-0.410	0.321
4800	24 - 165	70.710	40.624	111.534	- 517 - 631	-0.291	0.013
4900	24.165	71.206	46.728	119.950	-317.021	6.309	-0-281
4985.40	24 - 165	71.625	47.151 47.151	122-014	-316.500 -449.796	11.941	-0.523 -0.523
4985.40 5000	24.165 24.165	71 • 6 2 5 71 • 6 7 6	47.23	30 7	-449.719	10.295	-0.58.
1000						23 5/4	-0.004
5100	24.165	72.175	47.708	127.200	-449.205 -448.704	22.546 31.795	-0.966 -1.336
	24.165	72.644 7104	40.103 40.048	154.010	-448.212	41.020	-1.091
5200				1.12.033	-447.732	50.248	-2.034
5300	24.165 24.165	73.556	47.100				
	24 • 1 65 24 • 1 65 24 • 1 65	71.556 73.449	47.100	134.449	-447.201	>9.474	-2.503
5500 5400 5500	24 • 165 24 • 165	73.449	4 4 9 9 9 4				
5500 5400 5500 5600	24-165 24-165 24-165	73.449	44.945	134.449	-447.201 -446.802 -446.356	08.674 77.884	-2.363 -2.660 -2.986
5300 5400 5500 5600 5700	24 - 165 24 - 165 24 - 165 24 - 165	73.449	44.554 44.995 40.427 50.852	136-860 139-282 141-699	-446.802 -446.356 -445.917	08-674 77-884 87-009	-2.660 -2.986 -3.281
5500 5400 5500 5600	24-165 24-165 24-165	73.449 74.435 74.863	44.554 44.995 40.427	136.866	-446.802	08.674 77.884	-2.60° -2.986

HAFNIUM DIBORIDE (HfB2)

gfw = 200.14

$$\Delta H_{f298.15}^{\bullet} = -80.0 \text{ kcal gfw}^{-1}$$
 $S_{298.15}^{\circ} = 11.068 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$ $T_{m} = 3523 \,^{\circ}\text{K}$ $\Delta H_{m} = 20.0 \text{ kcal gfw}^{-1}$ $H_{298.15}^{\bullet} - H_{0}^{\bullet} = 1.706 \text{ kcal gfw}^{-1}$ $C_{p}^{\bullet} = 17.632 + 1.867 \times 10^{-3} \text{ T}^{-5}.501 \times 10^{5} \text{ T}^{-2} \text{ cal deg K}^{-1} \text{ gfw}^{-1}$ $298.15 \,^{\circ}\text{K} < T < 2813 \,^{\circ}\text{K}$

Structure

Hexagonal type (isotypic with ZrB2). Narrow range of homogeneity.

Heat of Formation

Value is based on tensimetric data of Paderno et al, 1 vaporization data of Krupka; 2 and nitrogen equilibria of Rudy and Benesovsky. 3

Heat Capacity and Entropy

Low-temperature data have been estimated. High-temperature data of Mezaki et al⁴ and Pears et al⁵ have been recalculated. Heat-capacity equation has been extrapolated to melting point. Data for liquid are estimated.

Melting and Vaporization

Heat of fusion is estimated.

References

- 1. Paderno, Y. et al, Tsvetnye Metally 11, 48-50 (1959).
- 2. Krupka, M., LA-2611 (1962).
- 3. Rudy, E. and F. Benesovsky, Monatsh. Chem. 92, 427 (1961).
- 4. Mezaki, R. et al, In: Thermodynamics of Nuclear Materials, Internati. At. Energy Agency, Vienna (1962).
- 5. Pears, C. D. et al, ASD TDR 62-765 (January 1963).

Reference State for Calculating NH₁, NI₁, and LogK_p. Solid Nb from 0° to 2741°K, Liquid Nb from 2741° to 5032°K, Caseous Nb from 5032° to 6000°K, Solid B from 0° to 2450°K, Liquid B from 2450° to 3970°K, Caseous B from 3970° to 6000°K, Solid NbB₂ from 0° to 3273°K, Liquid NbB₂ from 3273° to 6000°K.

	,-·	rel kyf		· · · ·	_ heat gfw		
1,"k	(h	51	(1 н. ¹⁰⁸), г _/	'н, н, м	1 H ₁	31,3	I ug Kp
0	0.000	0.000	*******				
298 • 15	11.500	0.000 8.960	INFINITE B.960	-1.630 0.000	-41.686 -41.900	-41.686 -41.058	INFINITE
300	11.557	9.031	8.960	0.021	-41.902	-41.055	30.095 29.907
400	13.797	12.695	9.445	1.300	-41.897	-40.771	22.275
500	15.207	15.934	10.425	2.754	-41.890	-40.489	17.697
600	16.291	18.805	11.58/	4.331	-41.882	-40.212	14.647
700	17.220	21.388	12.806	6.007	-41.864	-39.934	12.467
800	18.067	23.743	14.028	7.772	-41.835	-39.661	10.834
900	18.866	25.918	15.230	9.619	-41.792	-39.392	9.565
1000	19.635	27.945	16.401	11.544	-41.728	-39.128	8.551
1100	20.385	29.852	17.538	13.546	-41.639	-38.871	7.723
1200	21.122	31.657	18.640	15.621	-41.524	-38.625	7.034
1300	21.550	33.365	19.708	17.755	-41.390	-38.391	6.454
1400	21.979	34.978	20.741	19.931	-41.254	-38.163	5.957
1500	22.407	36.509	21.742	22.150	-41.108	-37.946	5.528
160C	22.835	31.969	22.711	24.412	-40.951	-37.743	5.155
1700	23.263	39.366	23.650	26.717	-40.778	-37.548	4.827
1800	23.692	40.708	24.560	29.065	-40.588	-37.362	4.536
1900	24.120	42.000	75.444	31 - 456	-40.381	-37.190	4.278
2000	24.548	43.248	26.304	33.889	-40-153	-37.024	4.046
2100	24.976	44.456	27.139	36 • 365	-39.902	-36.877	3.838
2200	25.405	44.628	27.953	38.894	-39.629	-36.741	3 • 650
2300	25.833	46.767	26.747	41 - 446	-39.331	-36.617	3.479
2400	26.261	47.875	29.521	44.051	-39.006	-36.505	3.324
2450	26.475	48.419	29.001	45.369	-38.833	-36.353	3.243
2450	25.475	48.419	29.901	45.359	-50-103	-36.353	3.243
2500	26.689	48.956	30.276	46.679	-49.925	-36.075	3.154
2600	27-118	50.011	31.015	49.389	-49.546	-35.530	2.986
2700	27.546	51.042	31.738	52.122	-49.133	-34.999	2.833
2741	27.722	51.459	32.030	53.255	-48.953	-34.787	2.774
2741	27.722	51.459	32.033	53.255	-55.353	-34.787	2.774
2800	27.974	57.052	32.440	54.898	-55.068	-34.346	2.681
2900	28.403	53.041	13.139	57.717	-54.549	-33.615	2.533
300C	28.831	54.011	33.818	60.579	-53.987	-32.900	2.397
3100	29.259	54.964	34.485	63.483	-54.383	-32.203	2.270
3200	29.687	55.899	35.140	60.430	-51.736	-31.535	2.154
3273	30.000	56.572	35.610_	68•609_	52.235_	31.057_	2.074
1273	30.000	62.683	15.610	88.609	-32.235	-31.057	2.074
3300	30.000	62.979	15.833	89.419	-32.047	-31.050	2.056
340C	30.000	63.825	36.643	92.419	-31.347	-31.027	1.994
3500	30.000	64.695	37.432	95.419	-30.647	-31.029	1.937
3600	30.000	65.540	38.201	98.419	-79.947	-31.046	1.885
3700	30.000	66.362	38.951	101-419	-29.247	-31.089	1.836
3800	30.000	67.162	39.683	104-419	-28.547	-31.142	1.791
3900	30.000	67.941	40.398	107-419	-27.847	-31.230	1.750
3969.96	30.000	68.474	40.888	109.518	-27.356	-31.288	1.722
3969.96	30.000	68.474	40.988	109.518	-268.500	-31.288	1.722
4000	30.000	68.701	41.076	110.419	-268.137	-29.488	1.011
4100	30.000	69.441	41.778	113.419	-766.935	-23.540	1.255
4200	10.000	70.164	42.440	116.419	-265.731	-17.620	0.917
4300	30.000	70.870	43.098	119.419	-264.529	-11.714	0.595
4400	30.000	71.560	43.73	122.419	-263.329	-5.851	0.291
4500	30.000	72.234	44.36	125.419	-262.129	-0.014	0.001
4600	30.000	72.893	44.476	128.419	-260.929	5.793	-0.275
	30.000	73.539	41.517	131.419	-259.731	11.581	-0.539
4700	30.000	74.170	46.160	134.419	-258.535	17.346	-0.790
4800 4900	30.000	74.789	46.744	137-419	-257.341	23.074	-1.029
5000	30.000	75.395	47.311	140-419	-256.147	28.790	-1.258
	30 000	75.584	47.488	141.366	-255.771	30.520	-1.326
5031.58	30.000	75.584	47.498	141.366	-418.344	30.520	-1.326
5031.58	30.000 30.000	75.989		147.419	-417.570	36.620	-1.569
5100	30.000	76.572		146.419	-416.449	45.522	-1.913
5200	30.000	77.143		149.419	-415.333	54.360	-2.242
5300	30.000	77.704	44.478	152.419	-414.226	63.238	
5400 5500	30.000	78.754		155.419	-413.125	72.076	-2.864
	20.000	70 704	50.506	158.419	-412.032	80.874	
5600	30.000	78.794 79.3 ⁷ 6		101.419	-410.948	89.673	
5700	30.000	79.848		104.419	-409.868	98.446	
5800	30.000	80.360		167.419	-408.798	107-205	
5900	30.000		1	170.419	-407.134	115.948	-4.223
6000	30.000	80.86	42.461				

$$AH_{1298, 15} = -41.9 \text{ kcal gfw}^{-1}$$

 S_{298}^{*} 15 = 8. 96 cal deg K⁻¹gfw⁻¹

Tm = 3273 K

 $\Delta H_{\rm m} = 20.0 \, \rm kcal \, gfw^{-1}$

3773°K< T < 6000°K

 $H_{298,15}^{\circ} - H_{0}^{\circ} = 1.630 \text{ kcal g(w-1)}$

 $C_n^* = 13,004 + 6,9491 \times 10^{-3} \, T - 3,1784 \times 10^5 \, T^{-2}$ 298, $15^* \, K \le T \le 1200^* \, K$

 $C_p^* = 15.983 + 0.0042826 \text{ T cal deg K}^{-1} \text{ gfw}^{-1} = 1200^* \text{K} < \text{T} < 3273^* \text{K}$

 $C_n^* = 30, 0 \text{ cal deg } K^{-1} \text{ gfw}^{-1}$

Structure

NbB2 has a hexagonal structure

Heat of Formation

Based on unpublished heat of combustion studies by Huber 1

Heat Capacity and Entropy

Low temperature data was obtained by Westrum² for NbB_{1,975}. A minor correction was made to the stoichiometric composition. Data from 298.15 to 1200°K were analyzed by Shomate method using Tilleux's enthalpy values Data above 1200°K was estimated.

Melting and Vaporization

Melting point was tabulated by Nowotny et al4. Heat of melting was estimated

References

- Huber, E., Jr., Private Communication, April 1, 1963.
 Westrum E.F., In: Kaufman, L. and E. Clougherty, Investigation of Boride Compounds for Very High Temperature Applications, Man Labs Semi-Annual Report No. 2, Contract AF33(657)-8635 (April 1963); See Also Final Report, Same Contract, RTD-TDR-63-4096, Part I (December 1963).
- Tilleux, E. W., M. S. Thesis, U. of Wisconsin, January 1963
 Nowotny, H. et al., Z. Metallkunde 50, 417 (1959).

NIØBIUM DIBØRIDE (NbB2)

(CONDENSED PHASE)

GFW * 114.55

SUMMARY OF UNCERTAINTY ESTIMATES

	<u></u>		(g/w	T H ₂ - H ₂₀₈	Kest µlw		
T,°K	(p	⁵ T	-(F1 - H ⁵⁰⁸)	T' 'H7 - H20H	XH _f	111,	1 og Kp
298.15	±0.500	±0.100	±0.100	±0.000			
1000	±0.500	±0.705	10.354	±0.351			
1500	±0.500	±0.908	±0.507	±0.601			
1500	±2.000	±0.908	±0.507	±0.601			
2000	±2.000	±1.483	±0.683	±1.601			
3000	£2.000	±2.294	±1.094	±3.601			
3273	±2.000	+2.468	±1.201	14.147			
3273	±3.000	£3.996	±1.201	£9.147			
4000	±3.000	44.598	±1.766	±11.328			
5000	±3.000	±5.267	±2.402	±14.328			
6000	±3.000	45.814	±2.926	±17.328			

Reference State for Calculating VH*, VF* and Log Kp. Solid Ta from 0* to 3270*K. Liquid Ta from 3270* to 5706*K. Gaseous Ta from 5706* to 6000*K. Solid B from 0* to 2450*K. Liquid B from 2450* to 3970*K. Gaseous B from 3970* to 6000*K. Solid TaB2 from 0* to 3373*K. Liquid TaB2 from 3373* to 6000*K.

			TADZ Irom 35			·	
	("		RIV	<u></u>	_ Kcal/gfw		
Т,"К	C,	T	-(F7 - H298)/1	'н _Т - н _{29н}	Kcal/gfw ΔH _i	Δ F ₂ ²)	Log Kp
С	0.000	0.000	INFINITE	-1 446		40 700	14514175
298.15	11.500	10.603	10.603	-1.665 C.000	-49.700 -50.000	-49.700 -49.374	1NF1N1TE 36.190
300	11.559	10.674	10.603	0.021	-50.002	-49.371	35.965
400	13.759	14.337	11.088	1 - 300	-50.016	-49.158	26.857
500	15.019	17.553	12.066	2.743	-50.044	-48.939	21.390
600	15.908	20.373	13.221	4.791	-50.088	-48.717	17.744
700	16.623	22.881	14.475	5.919	-50.139	-48.483	15.136
BOC	17.245	25.142	15.625	7.613	-50.199	-48.242	13.179
900	17.813	27.206	16.779	2.366	-50.262	-47.994	11.654
1000	18.347	29.111	17.936	11.174	-50.324	-47.739	10.433
1166	18.854	30.883	19.034	13.035	-50.378	-47.478	9.432
1200	19.356	32.546	20.091	14.946	-50.426	-47.212	8.598
1300	19.842	34.114	21.110	16.906	-50.459	-46.945	7.192
1400	20.3/1	35.602	22.092	18.914	-50.480	-46.672	7.286
1500	20.794	31.020	23,041	20.970	-50.485	-46.398	6.760
1600	21.263	26.377	23.957	23.012	-50.472	-46.128	6.300
1 7 00	21.72B	39.680	24.844	25.272	-50.436	-45.857	5.895
1800	22.191	40.435	25.703	27.418	-50.379	-45.58B	5.535
1970	22.652	42.148	26.517	29.560	-50.300	-45.328	5.214
2000	23.111	41.321	27.341	31.748	-50.199	-45.064	4.924
2130	23.569	44.460	26.135	34.282	-50.073	-44.815	4.664
2200	24.026	44.567	28.902	36.662	-49.925	-44.566	4.427
2300	24.462	46.645	29.650	39.088	-49.755	-44.326	4.212
2400	24.937	47.647	30.340	41.553	-49.562	-44.094	4.015
2450	25 • 164	48.213	30.739	42.611	-49.460	-43.880	3.914
2450 2500	25.164 25.391	46.213	30.737 31.094	47.811 44.075	-60•130 -60•626	-43.880 -43.542	3.914 3.806
•							
2600	25.845	49.728	31.791	46.637	-60.397	-42.863	3.603
2700	26.298	40.712	32.474	47.244	-60.157	-42.192	3.415
2800	26.751	61.677	33.142	51 - 896	-59.912 -59.672	-41.530	3.241
2900 3000	27.204 27.656	52.624 53.553	13.798 34.441	54.594 57.337	-59.449	-40.880 -40.235	3.081 2.931
, , ,							
\$100	28.108	54.468	35.072	60.125	-59.250 -59.087	-34.593 -38.966	2.461
3200	28.560 28.876	55.367 55.969	35.693 36.120	62.959 64.969	58.987	-18.526	2.661 2.575
3270 3270	28.876	11.984	36.170	64.969	.5.687	+38.526	2.575
330C	29.011	56.252	36.30.	05.837	- 5.524	-36.278	2.535
3373	29.341	56.871	36.741	67.967	55.108	-37.682	2.441
3373	30.000	62.821	36.741	87.967	-45.108	-37.682	2.441
3400	30.000	61.060	36.949	88.777	-44.934	-37.674	2.418
3500	30.000	63.930	37.107	91.777	-44.284	-37.414	7.336
3600	30.000	64.775	30.448	94.777	-43.634	-37.221	2.260
3700	30.000	65.597	39.170	97.777	-42.984	-37.057	2.189
383C	30.000	66.397	37.876	100.777	-42.334	-36.901	2.122
3900	30.000	67.176	4C.566	103.777	-41.684	- 36 - 775	2.061
3969.46	30.000	67.709	41.040	105.876	-41.228	-36.689	2.020
3969.46 4000	30.000 30.000	61.739	41.040 41.241	105.876 106.777	82.372	-36.689 -34.924	2.020
4000	20 00 00	₩ · • · · · ·					
4100	30.000	68.676	41.901 42.547	109.777	-280.872 -279.719	-28.664 -22.519	1.526
4200	30.000	69.327 70.105	41.180	115.777	-278.566	-16.404	0.834
4300	30.000 30.000	70.105	43.800	118.777	-277.416	-10.325	0.513
4400 4500	30.000	71.469	44 77	121.777	-1/0.200	-4.266	0.207
	20 222	77 126	45.003	124.777	-275.116	1.759	-0.084
4600	30.000	72.128	45.587	127.717	-273.96A	7.772	-0.361
4700	30.000	73.405	46.150	130.777	-272.872	13.758	-0.626
4800	30.000 30.000	74.024	46.722	133.777	-271.678	19.707	-0.879
4900 5000	30.000	74.630	47.274	136.777	-270.534	25.650	-1.121
					340 307	21 6. 6	
5100	30.000 30.000	75.224 75.806	47.817 48.349	139.777 142.777	-269.392 -269.254	31.559 37.454	-1.352 -1.574
5200 5300	30.000	76.378	48.873	145.777	-267.116	43.306	-1.786
5400	30.000	76.939	44.387	148.777	-265.982	49.160	-1.990
5500	30.000	77.489	49.893	151.777	-264.848	54.995	-2 -185
* - 40	10 200	78.030	50.391	.54.777	-263.718	60.790	-2.372
5600 5 7 00	10.000 30.000	78.561	50.860	157.777	-262.592	66.582	-2.553
5706 - 65	30.000	78.596	50.913	157.9//	-262.216	06.963	-2.564
5706.65	30.000	78.596	50.913	-	-443.739	66.963	-2.564
5800	30.000	79.082	51.362	160.:77	-447.847	75.303	-2.837
5900	30.000	79.595	51.836		-441.990 -440.943	84.231 93.148	-3.120
8000	30.000	80.099	52.303		770.777	7 7 6 1 4 6	-3.393
			31 Decemb	er 1963			HLS

$$\Delta H_{f298. \ 15}^{o} = -50.0 \text{ kcal gfw}^{-1}$$

$$T_{m} = 3373^{\circ} K$$

$$\Delta H_{m} = 20.0 \text{ kcal gfw}^{-1}$$

$$H_{298. \ 15}^{o} = H_{0}^{o} = 1.665 \text{ kcal gfw}^{-1}$$

$$C_{p}^{o} = 14.212 + 0.44947 \times 10^{-2} T = 0.36017 \times 10^{6} T^{-2} \text{cal deg K}^{-1} \text{gfw}^{-1}$$

$$298. \ 15^{\circ} K \ll T \ll 3373^{\circ} K$$

(CONDENSED PHASE) gfw = 202.59

3373°K ₹T ₹6000°K

Structure

 ${\rm TaB}_2$ has an hexagonal structure of the A1B $_2$ (C32) type. It has a wide homogeneity range.

Heat of Formation

Rough estimate used.

 $C_n^0 = 30.0 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

TANTALUM DIBORIDE (TaB,)

Heat Capacity and Entropy

Low-temperature data estimated See text for details. High-temperature data by Mezaki¹ and Neel et al² analyzed in this work and extrapolated to melting point.

Melting and Vaporization

Heat of fusion estimated

References

- 1. Mezaki, R., M S. Thesis, U. Wisc. (1961).
- 2. Neel, D. S. et al, WADD TR 60-924 (1962)

TANTALUM DISORIDE (TAB2)

(CONDENSED PHASE)

GFW = 202.59

SUMMARY OF UNFERTAINTY ESTIMATES

				cel / cl	K giw		_				
T,ºK		ζς°		S _T	-{	FT - H ₂₉₈ 1	·τ)	HT - H20	γH ₁	111	tog K _p
298.15	*	1.000	ŧ	1.000	ŧ	1.000	±	0.000	± 10.000		
1000	*	1.000	*	2.210	£	1.508		0.702			
2000	±	1.000	±	2.903	±	2.052	±	1 - 702			
2450	±	1.000	*	3.106	±	4.228		2.152			
2450	±	2.000	±	3.106	*	228	±	2.152			
3000	±	2.000	ŧ	3.511	±	2.427	*	3.252			
3373	*	2.000	*	3.746	±	2.560	ŧ	3.998			
3373	±	4.000	±	5.228	±	2.560	±	8.998			
4000	*	4.000	*	5.910	*	3.034		1.506			
5000	ŧ	4.000	±	6.803	±			5.506			
6000	±	4.000	±	7.532	£	4.281		9.506			

Reference State for Calculating \ H*, \ A F*, and Log K, Solid Ti from 0* to 1950*K, Liquid Ti from 1950* to 3550*K, Caseous Ti from 3550* to 6000*K, Solid B from 0* to 2450*K, Liquid B from 2450* to 3970*K, Caseous B from 3970* to 6000*K, Solid TiB2 from 0* to 3193*K, Liquid TiB2 from 3193* to 6000*K.

0 0.000 0.000 INFINITE -1.381 -66.501 INFINITE -1.381 0.66.501 INFINITE -1.381 0.66.501 INFINITE -1.381 0.66.501 INFINITE -1.381 0.000 10.517 6.765 6.700 0.000 -66.655 -65.828 48.300 10.517 6.765 6.760 0.000 -66.655 -65.828 48.300 11.381 11.300 8.004 2.653 -67.001 -66.096 28.300 11.381 11.300 8.004 2.653 -67.001 -65.096 28.300 11.381 11.300 8.004 2.653 -67.001 -65.096 28.300 11.381 11.300 11.392 118.704 10.397 5.815 -67.106 -66.306 20.300 11.300 17.244 20.060 11.578 7.506 -67.301 -66.307 17.300 17.244 20.060 11.578 7.506 -67.301 -66.307 17.300 17.244 20.060 11.578 7.506 -67.301 -66.307 17.300 18.232 28.913 11.506 11.002 -67.735 -67.437 -63.452 17.300 18.232 28.913 11.506 11.002 -67.735 -67.437 -63.452 17.300 11.500 18.232 28.913 11.506 11.002 -67.735 -67.437 -63.452 17.301 11.501 11.501 11.501 11.502 17.333 -67.437 -62.273 11.1155 11.502 17.333 -67.437 -62.273 11.1155 11.502 17.333 -67.437 -62.273 11.1155 11.502 17.333 -67.437 -62.273 11.1155 11.502 17.333 -67.437 -62.273 11.1155 11.502 17.333 -67.437 -62.273 11.1150 11.502 17.304 11.702 -68.464 -62.019 11.1160 11.502 17.304 11.702 -68.464 -62.019 11.1160 11.502 17.304 11.702 -68.464 -62.019 11.1160 11.502 17.304 11.702 -68.464 -62.019 11.1160 11.116 11.302 11.502 17.304 11.502 17.702 11.301 11.502 17.304 11.502 17.702 11.301 11.502 17.304 11.502 17.702 11.301 11.502 17.304 11.502 17.702 11.304 11.502 17.702 11.300 11.116 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703 11.502 17.703		30114 11152	rom o to	3193 °K, Liqu	d TiB, fro	m 3193° to	6000 ° K.	
10								·
298.15	T,°K	ر _ه *	SŤ	-(FT - H200)/T	H+ - H	α. ω/ g/Ψ Λμ.º	A E	les ¥
298.15	0				1 298		47	Log Kp
10.5 10.5 10.7						-66.501	-66.501	INFINIT
13.373 10.241 7.105 10.00 7.006 7.007 7.006 7.007 7.007 7.006 7.007 7.								48.25
14.888 13.400 8.094 2.053 -67.030 -65.076 28.600 15.851 16.202 9.217 4.191 -67.086 -64.711 28.600 17.724 28.900 11.578 7.506 -67.301 -65.078 28.600 17.724 28.900 11.578 7.506 -67.301 -63.887 7.506 -67.301 -63.887 7.506 -67.301 -63.887 7.506 -67.301 -63.887 7.506 -67.301 -63.887 7.506 -67.301 -63.887 7.506 -67.301 -63.887 7.506 -67.301 -63.887 -63								47.95
1000								35.77
1000				3.074	2.623	-67.001	-65.096	28.45
100			16.202	9.217	4.191	-67.086	-64.711	23.67
17,204 20,460 11,378 7,506 -67,305 -63,487 17, 17, 17, 17, 17, 18, 19, 19, 11, 17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19								20.07
1000				11.578				17.45
1000					9.253			15.40
1155	1000	10.232	24.913	13.861	11.052	-67 → 582	-63.001	13.76
1155	1100	18.692	26-673	14 047	12 000			
1155								12.42
1900								11.78
1300								11.78
1400		19.557						11.29
1500 20.379 37.723 18.910 20.719 -69.309 -60.257 8. 1600 20.779 34.051 19.815 22.777 -69.507 -59.652 8. 1700 21.176 36.322 20.690 24.874 -69.584 -59.033 7. 1800 21.568 36.544 21.537 27.012 -69.701 -56.410 7. 1900 21.958 37.720 22.358 29.188 -69.806 -57.781 6. 1900 22.952 38.273 27.760 30.291 -69.851 -57.465 6. 1900 22.152 38.273 27.760 30.291 -73.551 -57.465 6. 2000 22.344 38.857 23.155 31.403 -73.568 -57.048 6. 2107 22.731 39.956 23.929 33.657 -73.576 -56.226 5. 2700 23.488 42.058 25.413 38.280 -73.596 -55.001 5. 2700 23.488 42.058 25.413 38.280 -73.596 -55.001 5. 2700 23.488 43.067 26.133 40.649 -73.428 -53.533 4. 43.067 43.561 26.480 41.848 -73.375 -53.240 4. 43.067 43.561 26.480 41.848 -73.375 -53.240 4. 25.00 24.640 45.008 27.508 45.501 -84.428 -53.240 4. 26.00 24.640 45.008 27.508 45.501 -84.42 -51.331 4. 2700 25.020 45.945 28.173 47.984 -84.299 -50.059 3. 2800 25.378 46.862 28.824 30.505 -84.038 -48.793 3. 2800 25.377 47.760 29.462 33.064 -83.779 -47.582 3. 3100 26.532 49.504 30.087 53.064 -83.779 -47.582 3. 3100 26.6532 49.504 30.087 53.064 -83.779 -47.582 3. 3100 26.6532 49.504 30.087 53.064 -83.779 -47.582 3. 3100 25.000 57.193 31.258 60.778 -47.803 -48.924 3. 3100 25.000 58.017 32.113 85.485 -60.558 -43.887 2. 3200 25.000 59.840 33.999 91.735 -60.058 -42.071 2. 3300 25.000 59.840 33.999 91.735 -60.058 -42.071 2. 3300 25.000 60.483 33.635 79.885 -60.558 -33.887 2. 3400 25.000 60.484 37.716 102.885 -60.558 -33.887 2. 3400 25.000 60.484 37.796 37.985 -60.058 -42.071 2. 3500 25.000 60.484	1400							
1600	1500	20.379						9 • 50 · 8 • 7 7 ·
1700						0.1007	5000	0
100						-69.457	-59.652	8.14
1900 21,998 37,720 22,358 29,188 -6,806 -57,781 6,806 -57,781 6,806 -57,781 6,806 -57,781 6,806 -57,781 6,806 -57,781 6,806 -57,781 6,806 -57,781 6,806 -57,781 6,806 -57,781 6,806 -57,781 6,806 -57,781 6,806 -57,806 -57,781 6,806 -57,806 -57,781 6,806 -57,806 -57,781 6,806 -57,806 -57,781 6,806 -57,806 -57,781 6,806 -57,806 -57,781 6,806 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806 -57,781 -57,806							-59.033	7.58
1980								7.09
22-150								6.64
2000								6.44
2100								6.44
27/10			20.0077	690179	21 • 40 3	-13.368	-21.048	6.23
27/00	2100	22.731	39.956	23.929	33.657	-73.576	-56.226	5 . 85
23.498		23.115	41.023					5.50
24.600	7 3 0 0	23.498	42.058	75.415	38 - 280			5.18
24.00			43.067	26.130	40.649	-73.428		4.89
2500						-73.375	-53.240	4.74
2600								4.74
2700	2500	24.260	44.049	26.827	43.056	-84.587	-52.607	4.59
2700	2600	24-640	45-009	27.508	45.501	m84.447	-51 231	4 . 4 .
2800								4.31
2900								3.80
3000	2900							3.58
3193	3000	26.155						3.37
3193								
3193								3.17
3200								³ •00
3300								3 • 0 0 2 • 9 9
3400								2 • 87
3500	3400							2.75
3550								2 4 6 4
3550								
3600								2.59
3700								2.59
3800								2 4 4 5
3900								2 4 1 8
3969.96								1.69
1969.96								1.51
\$100								1.51
4100								1.36
107.985								
\$100								0.83
4400	_			38.315				0.32
4600 25.000 65.771 40.108 115.485 -399.746 22.007 -1.6 4600 25.000 66.321 40.672 117.985 -399.175 31.369 -1.6 4600 25.000 66.858 41.223 120.485 -398.617 40.728 -1.6 4600 25.000 67.385 41.763 122.985 -398.617 50.773 -2.6 4600 25.000 67.900 42.291 125.485 -397.534 59.399 -2.6 5000 25.000 68.405 42.808 127.985 -397.006 68.725 -3.6 5100 25.000 68.405 42.808 127.985 -397.006 68.725 -3.6 5100 25.000 69.386 43.812 132.985 -395.983 87.330 -3.6 5100 25.000 69.386 43.812 132.985 -395.983 87.330 -3.6 5100 25.000 69.862 44.299 135.485 -395.486 66.613 -3.6 5100 25.000 70.329 44.776 137.985 -394.996 105.896 -4.6 5100 25.000 70.328 45.705 142.985 -394.514 115.178 -4.6 5100 25.000 71.238 45.705 142.985 -394.514 115.178 -4.6 5100 25.000 71.681 46.601 147.985 -394.042 124.429 -4.6 5100 25.000 72.116 46.601 147.985 -393.579 133.693 -5.6 5100 25.000 72.116 46.601 147.985 -393.121 142.930 -5.6 5100 25.000 72.563 47.037 150.485 -393.673 152.176 -5.6				38.5				-0.16
\$600								-0.62
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	4500	25.000	65.771	40.108	117.487	- 377. /46	22.007	-1.06
4700	4400	25 - 000	66-121	40.472	117.985	-399-175	31.360	-1.49
4800 25.000 67.385 41.763 122.985 -398.070 50.073 -2.4900 25.000 67.900 42.291 125.485 -397.534 59.399 -2.5000 25.000 68.405 42.808 127.985 -397.504 59.399 -2.5000 25.000 68.405 42.808 127.985 -397.006 68.725 -3.500 25.000 69.386 43.315 130.485 -395.484 96.613 -3.5000 25.000 69.862 44.299 135.485 -395.484 96.613 -3.5000 25.000 70.329 44.776 137.985 -394.996 105.896 -4.5000 25.000 70.788 45.245 140.485 -394.514 115.178 -4.5000 25.000 71.238 45.705 142.985 -394.042 124.429 -4.5000 25.000 71.681 46.157 145.485 -393.579 133.693 -5.5000 25.000 72.116 46.601 147.985 -393.121 142.930 -5.5000 25.000 72.543 47.037 150.485 -393.121 142.930 -5.5000 25.000 72.543 47.037 150.485 -393.121 142.930 -5.5000 25.000 72.543 47.037 150.485 -393.121 142.930 -5.5000 25.000 72.543 47.037 150.485 -393.673 152.176 -5.5000 25.000 72.543 47.037 150.485 -393.673 152.176 -5.5000 25.000 72.543 47.037 150.485 -393.673 152.176 -5.5000 25.000 72.543 47.037 150.485 -393.673 152.176 -5.5000 25.000 72.543 47.037 150.485 -393.673 152.176 -5.5000 72.543 47.037 150.485 -393.673 152.								-1.89
4900 25.000 67.900 42.291 125.485 -397.534 59.399 -2. 5000 25.000 68.405 42.808 127.985 -397.006 68.725 -3. 5100 25.000 68.900 43.315 130.485 -396.489 78.031 -3. 5200 25.000 69.386 43.812 132.985 -395.484 96.613 -3. 5300 25.000 70.329 44.776 137.985 -395.484 96.613 -3. 5300 25.000 70.329 44.776 137.985 -394.996 105.896 -4. 5500 25.000 70.788 45.245 140.485 -394.514 115.178 -4. 5600 25.000 71.238 45.705 142.985 -394.042 124.429 -4. 5700 25.000 71.681 46.157 145.485 -393.121 142.930 -5. 5800 25.000 72.116 46.601 147.985 -393.121 142.930 -5.								-2.28
25.000			67.900		125.485	-397.534		-2.64
5200 25.000 69.386 43.812 132.985 -395.983 87.330 -3. 5300 25.000 69.862 44.299 135.485 -395.484 96.613 -3. 5400 25.000 70.329 44.776 137.985 -395.484 96.613 -3. 5500 25.000 70.788 45.245 140.485 -394.514 115.178 -4. 5500 25.000 71.238 45.705 142.985 -394.514 115.178 -4. 5700 25.000 71.681 46.157 145.485 -393.579 133.693 -5. 5800 25.000 72.116 46.601 147.985 -393.121 142.930 -5. 5800 25.000 72.543 47.037 150.485 -393.673 152.176 -5.					127. 985	-397.006	68.725	-3.00
5200 25.000 69.386 43.812 132.985 -395.983 87.330 -3. 5300 25.000 69.862 44.299 135.485 -395.484 96.613 -3. 5400 25.000 70.329 44.776 137.985 -395.484 96.613 -3. 5500 25.000 70.788 45.245 140.485 -394.514 115.178 -4. 5500 25.000 71.238 45.705 142.985 -394.514 115.178 -4. 5700 25.000 71.681 46.157 145.485 -393.579 133.693 -5. 5800 25.000 72.116 46.601 147.985 -393.121 142.930 -5. 5800 25.000 72.543 47.037 150.485 -393.673 152.176 -5.				43 315	134.495	- 194 . 495	78 421	_ • • ·
25.000								-3.34
3400 25.000 70.329 44.776 137.985 -394.996 105.896 -46.3500 25.000 70.788 45.245 140.485 -394.514 115.178 -46.3500 25.000 71.238 45.705 142.985 -394.042 124.429 -46.35700 25.000 71.681 46.157 145.485 -393.579 133.693 -56.3500 25.000 72.116 46.601 147.985 -393.121 142.930 -56.3500 25.000 72.543 47.037 150.485 -393.673 152.176 -56.3500 25.000 72.543 47.037 150.485 -393.673								-3.67
5500 25.000 70.788 45.245 140.485 -394.514 115.178 -4. 5600 25.000 71.238 45.705 142.985 -394.042 124.429 -4. 5700 25.000 71.681 46.157 145.485 -393.579 133.693 -5. 5800 25.000 72.116 46.601 147.985 -393.121 142.930 -5. 5900 25.000 72.543 47.037 150.485 -392.673 152.176 -5.								-3.98 -4.28
3600 25.000 71.238 45.705 142.985 -394.042 124.429 -4. 5700 25.000 71.681 46.157 145.485 -393.579 133.693 -5. 5800 25.000 72.116 46.601 147.985 -393.121 142.930 -5. 5900 25.000 72.543 47.037 150.485 -392.673 152.176 -5.								-4.57
5700 25.000 71.681 46.157 145.485 -393.579 133.693 -5. 5800 25.000 72.116 46.601 147.985 -393.121 142.930 -5. 5900 25.000 72.543 47.037 150.485 -392.673 152.176 -5.	,,,,,,	.,,,,,,						
5700 25.000 71.681 46.157 145.485 -393.579 133.693 -5. 5800 25.000 72.116 46.601 147.985 -393.121 142.930 -5. 5900 25.000 72.543 47.037 150.485 -392.673 152.176 -5.	5600	25.000						-4.85
5800 25.000 72.116 46.601 147.985 -393.121 142.930 -5. 5900 25.000 72.543 47.037 150.485 -392.673 152.176 -5.		25.000						-5.12
5900 25.000 72.543 47.037 150.485 -392.6673 152.176 -5	5800							-5.38
6000 25.000 (2.40) 41.400 122.702 -322.221 101.408 -3.	= 000	25.000						-5 -63
15 March 1963 HI			77 047	47.444	157.9R5	-392.241	161-40"	

$$\Delta H_{f298. 15}^{o} = -66.85 \text{ Kcal gfw}^{-1}$$

$$S_{298. 15}^{o} = 6.7 \pm 0.5 \text{ cal degK}^{-1} \text{ gfw}^{-1}$$

$$T_{m} = 3193^{o}\text{K}$$

$$\Delta H_{m} = 22.032 \pm 50 \text{ Kcal gfw}^{-1}$$

$$H_{298. 15}^{o} = 1.381 \text{ Kcal gfw}^{-1}$$

$$298. 15^{o}\text{K} \angle T \angle 3193^{o}\text{K}$$

$$C_{p}^{o} = 14.99 + 3.74 \times 10^{-3}\text{T} - 4.98 \times 10^{5}\text{T}^{-2} \text{ cal degK}^{-1} \text{ gfw}^{-1}$$

$$C_{p}^{o} = 25.0 \text{ cal deg K}^{-1} \text{ gfw}^{-1} \text{ (estd.) above T} = 3193^{o}\text{K}$$

Structure

TiB₂ is of the hexagonal, AlB₂(C32) structure with a narrow homogeneity range.

Heat of Formation

Calorimetric value of Epel'baum and Starostina were chosen. It was consistent within about ± 3 Kcal with vaporization data and nitride equilibria. See text for details.

Heat Capacity and Entropy

Low temperature data were estimated. High temperature data from Kelley,² in agreement with other data, were used. See volume 1, this report for details. Heat capacity above melting point was estimated.

Melting and Heat of Sublimation

Melting point by Post et al. 3 Heat of fusion estimated.

References

- 1. Epel'baum, V. A. and M. I. Starostina, Chem. Abst. 54, 23701 (1960).
- 2. Kelley, K. K., Bur. Mines, Bull. 584 (1960).
- 3. Post, B., F. W. Glaser and D. Moskowitz, Acta. Met. 2, 20-5 (1954).

TITANIUM DIBORIDE (TLB2) (CONDENSED PHASE) GFW = 69.54

SUMMARY OF UNCERTAINTY ESTIMATES

T,°K	ر _ه -	cel/ 'K S _T	-(FT - H298)/T	HT - H298	.Kcal gfw NH _f	AFI	1 og Kp
298.15	± 0.300	±0.500	±0.500	±0.000			
1000	± 40 • 650	±0.863	±0.500	±0.211			
2000	± 1.500	±1.556	±0.951	±1.211			
3000	± 2.000	±2.367	#1.297	±3.211			
3193	± 2.000	+2.492	±1.365	±3.597			
3193	± 3,000	±4.058	±1.365	±8.597			
4000	± 3.000	±4.734	±1.979	±11.018			
5000	± 3.000	±5.403	±2.600	±14.018			
6000	± 3.000	±5.950	±3.114	±17.018			

Reference State for Calculating \(^{\text{H}}_{f}\), \(^{\text{F}}_{f}\), and \(^{\text{Log}}_{D}\) Solid \(^{\text{Zr from 0}}\) to 2125 \(^{\text{K}}_{L}\). Liquid \(^{\text{Zr from 2125}}\) to 4644 \(^{\text{K}}_{L}\), \(^{\text{Gaseous Bfrom 4644}}\) to 6000 \(^{\text{K}}_{L}\), Solid \(^{\text{B}}_{L}\) from 0 \(^{\text{to 3970}}\) to 3970 \(^{\text{K}}_{L}\), \(^{\text{Gaseous Bfrom 4970}}\) to 6000 \(^{\text{K}}_{L}\), Solid \(^{\text{ZrB2}}_{L}\) from 0 \(^{\text{to 3313}}\) K.

Liquid \(^{\text{ZrB2}}_{L}\) from 1313 \(^{\text{M}}_{L}\), \(^{\text{6000}}_{L}\)

		cel/~K	gfw		_Kcal/gfw		
7,°K	′c _P	Ϋ́	-(FT - H298)/1	н _т - н ₂₉₈		AF P	Log Kp
0	0.000	0.000	INFINITE	-1.590	-12.691	-72.697	INFINITE
298+15	11.530	8.590	8.590	0.000	-73.000	-71.961	52.746
300	11.596	8.662	H.570	0.021	-73.002	-71.957	52.418
400	14.077	12.379	9.080	1.320	-73.008	-71.606	39.122
500	15.467	15.681	10.077	2.802	-13.037	-71.251	31 - 142
600	16.427	18.590	11.259	4.399	-73.091	-70.892	25.821
700	17.185	21.181	12.494	6.081	-73.162	-70.518	22.016
800	17.835	23.519	1 4.729	7.832	-73.251	-70.135	19.159
900	18.477	25.654	14.93/	9.646	-73.352	-69.739	16.934
000	18.970	27.674	10.108	:1.516	-73.462	-69.331	15.152
100	19.493	29.457	17.240	13.439	-13.577	-68.913	13.691
135	19.671	30.070	17.626	14.124	-73-618	-68.764	13.240
135	19.671	30.070	17.626	14.124	-74.533		
200	19.998	31.175	18.330	15.414	-74.595	-68.764	13.240
	20.491	32.795				-68.433	12.463
300			19.381	17.438	-74.675	-67.917	11.417
400 500	20.975 21.452	34.331	20.394 21. ² 73	19.511 21.633	-14.136 -74.772	-67.194 -66.866	10.520 9.742
,,,,				11.037		00.000	,,,,
600	21.925	37.194	22.318	23.802	-14.783	-66.341	9.061
700	22.393	38.537	23.233	26.018	74.765	-65.812	8.460
800	72.859	39.831	74.119	28.280	-74-/17	-65.287	7.927
900	23.322	41.079	24.977	30.589	-74.638	-64.767	7.450
000	23.784	42.287	25.415	32.945	-74.524	-64.24R	7.020
100	24.243	43.458	26.627	35.346	-74.375	-63.741	6.633
125	24.358	41.746	26.827	35.954	-74.332	-63.616	6.542
125	24.358	43.746	26.827	15.954	-79.232	-63.616	6.542
200	24.702	44.547	21.418	31.193	-79.099	-63.065	6.265
300	25.154	45.705	28.189	40.286	~78.888	-62.342	5.924
400	25.615	46.76	26.94.	42.825	-78.637	-61.626	5.612
450	25.843	47.316	29.311	44.112	-78.496	-61.171	5.456
450	25.643	47.316	29.311	44.112	-89.766	-61.171	5.456
500	26.071	47.840	24.677	45.409	-89.619	-60.595	5.297
	24 4 24		20.205	48 030	- 80 300	-59.438	4.996
600	26.526	49.872 49.681	³0.395 ₹1.048	48.039 50.715	-89.289 -88.913	-58.299	4.719
2700	26.981		31.787	51.435	-88.493	-57.172	4.462
800	27.435	50.871				-56.061	4.225
1900 1 0 00	27.888 28.347	11.841 52.795	32.46? 33.123	56.202 59.013	-88.026 -87.515	-54.964	4.00
3100 3200	28.795 29.247	* 3 • 7 ± } * 4 • 6 5 3	43.773 34.411	61•870 64•772	-44.958 -41.356	-53.885 -52.840	3.799
	24.700	16.150	35.038	67.719	-84 709	-51.794	3.430
300		65.676	75.119	68.106	-8620	-51.658	3.408
3113		61.222	3.119	- 93.106	-60.620	-51.658	3.408
3313	29.758	61.994	36.848	94.695	-60.033	-51.434	3.300
3400 3500	29.758	64.856	_	48.671	-59.357	-51.192	3.190
					(0.40)		2.00
3600	29.758	66.510	37.460 38.234	104.622	-58.682 -58.006	-50.964 -50.759	3 • 0 94 2 • 991
3700	29.758 29.758	67.404	36.988	107.598	-57.330	-50.569	2.900
3 A O C				110.574	-56.654	-50.403	2.82
390C	29.758	68.077	34.724	112.656	-56.180	-50.292	2.76
969.96	29.758	68.606	40.229	112.656	-297.324	-50.292	2.76
969.96 6000	29.758 29.758	68.606 68.430	40.443	113.550	-296.968	-48.420	2.64
-000	£ 7 # 1 30						
4100	29.758	69.565		116.525	-295.791 -74.611	-42.225 -36.053	2 • 25° 1 • 87°
200	29.758	70.262	41.829	119.50.			
4300	29.758	70.982	42.499	122.477	-793.433	-29.701	1.52
4400	29.758	71.666 72.335		125.453 128.429	-292.257 -291.061	-23.790 -17.699	1 • 1 8 0 • 8 6
4500	29.758	17 . 133	- • • •				
4600	29.758	72.989		131.404	-289.906	-11.645	0.55
4644.05	29.758	73.273		132.715	-289.389	-8.977	0.42
4644.05	29.758	73.273	44.695	132.715	-424.843	-8.977	0.42
4700	29.758	73.629		134.380	-474.240	-3.966	0.18
4800	29.758	74.255		137.356	-423.169	4.962	-0.22
4900	29.758	74.869		140.332	-422.106	13.867	-0.61
5000	29.758	75.470		143.308	-421.047	22.760	-0.99
E 1 0 0	29. 58	76.060	47.377	146.283	-419.996	31.616	-1.35
5100 5200	29.758	76.637		149.259	-418.953	40.469	-1.70
5200	29.758	77.204		152.235	-417.914	49.282	-2.03
5300	29.758	77.160		155.211	-416.882	58.090	-2.35
5400 5500	29.758	78.307		158-187	-415.853	66.887	-2.65
		70 0/7	50.064	161-162	-414.833	75.646	-2.95
5600	29.758 29.758	78.843 79.369		164-138	-413.819	84.405	-3.23
5700		79.887		167-114	-412.806	93.129	-3.50
5800	29.758	80.396		170.090	-411.802	101.846	-3.77
	24.758	.,,,0					
5900 6000	29.758	80.846	52.052	173.066	-410.802	110.552	-4.02

$$\Delta H_{1298, 15}^{o} = -73.0 \text{ Kcal gfw}^{-1}$$

$$S_{298, 15}^{o} = 8.59 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$\Delta H_{m} = 25.000 \pm 5.000 \text{ Kcal gfw}^{-1}$$

$$C_{p}^{o} = 14.888 + 4.50 \times 10^{-3} \text{T} - 4.178 \times 10^{5} \text{T}^{-2} \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$298.15^{\circ} \text{K} < T < 3313^{\circ} \text{K}$$

Structure

ZrB, is of the hexagonal AlB₂ (C32) structure with a narrow homogeneity range.

Heat of Formation

The value chosen is based primarily on three calorimetric determinations $^{1,\,2,\,3}$ and is in general agreement with vaporisation studies. $^{4,\,5}$

Heat Capacity and Entropy

Low temperature data by Westrum and Feick. This data was joined by the Shomate method to Margrave' and Southern Research Institute data. Melting and Heat of Sublimation

Melting temperature from Glaser and Post. 9 Heat of fusion estimated. References

- 1. Hubbard, W., J. Margrave and E. Greenberg, private communication with E. Greenberg (December 1962).
- Huber, E. J., E. L. Head and C. E. Holley, unpublished work quoted by
- Leitnaker et al. ⁴

 3. Epel'baum, V. A. and M. I. Starostina, Bor Trudy Konf. Khim Bora i Ego Soedinenii 1955, 97 published (1958).
- 4. Leitnaker, J. M., M. G. Bowman and P. W. Gilles, J. Chem. Phys. 36, 350 (1962).
- 5. Goldstein, H W. and O. C Trulson, Union Carbide Corporation Rept. (31 December 1962).
- Westrum, E. and G. Feick, J. Chem. Eng. Data 8, 193 (1963).
 Margrave, J. L., In: A. D. Little Third Semiannual Progress Rept., Contract AF33(616)-7472 (August 1962).
- 8. Neel, D. S., C. D. Pears and S. Oglesby, Jr., Southern Research Inst., WADD TR-60-924 (1960).
- 9. Glaser, F. W. and B. Post, Trans. A.I.M.E. 197, 1117 (1953).

ZIRCONIUM DIBORIDE (ZrB2) (CONDENSED PHASE) GFW = 112.86 SUMMARY OF UNCERTAINTY ESTIMATES

		<u></u>		–çel∕°K		•	6	т – н ₂₉₈	1	col/gfv	A F	
T,°K		طی		sŤ	(F _T	– н ₂₉₈)/т\	H	T - H ₂₉₈		$\Delta H_{\tilde{I}}^{*}$	AF	Log K _p
298.15	ŧ	0.300	±	0.050	±	0.050	Ŧ	0.000	*	2. 000		
1000	*	1.000		0.698		0.338		0.561				
2000	*	2.000		1.879		0.849		2.061				
3000	±	2.000		2.690		1.336		4.061				
3313		2.000		2.888		14474		4.687				
3313		4.000		4.398		14474		9.687				
4000		4.000		5.151		2.043		2.435				
5000		4.000		6.044		2.757		6.435				
6000		4.000		6-773		3.368		20.435				

Reference State for Calculating AH*, AF*, and Log Kp. Solid Be from 0* to 1556*K, Liquid Be from 1556*to 2768*K, Gaseous Be from 2768* to 6000*K

T,°K	(°	cal/"K gi	(FT - H298)/T	HT - HYON	Kral 'gtw	11	Log Kp
.,	`P	ST	·· T = ·· 298" · L	"T - "798	,	,,,	a np
0	0.000	0.000	INFINITE	-0.467			
298-15	3.932	2.282	2.282	0.000			
300	3.951	2.317	2.283	0.007			
400	4.773	3.465	2.447	0.447			
500	5.260	4.687	2.787	0.950			
600	5.588	5.676	3.186	1.494			
700	5.846	6.557	3.606	2.066			
800	6.072	7.353	4.025	2.662			
900	6.287	8.081	4.437	3.280			
000	6.508	8.754	4.835	3.919			
100	6.720	9.384	5.219	4.582			
200	6.938	9.978	5.590	5.266			
300	7.156	10.542	5.949	5.971			
400	7.374	11.080	6.296	6 • 697			
500	7.592	11.596	6.633	7.445			
556	7.714_	11.877	6.817	7.874			
556	6.878	14.139	6.817	11.394			
600	6.901	14.331	7.021	11.697			
700	6.952	14.751	7.464	12.390			
.800 .900	7.004 7.055	15.150 15.530	7.680	13.088			
900	7.107	15.893	8.273 8.645	13.791			
100	7-159	16.741	9.000	15.212			
230 2300	7•209 7•26]	16.575	9.33 <i>1</i> 9.659	15.930 16.654			
400	7.312	17.207	9.968	17.387			
500	7.364	17.507	10.264	18.116			
2600 2700	7.415	17.796	10.548	18.855			
2767.61	7•466 7•501	18.281	10.827 11.002	19.599 20.108			
767.61	4.994	-4317		90.277			
2800	4.997	47.475	11.3/6	90.437			
2900	5.007	43.851	12.493	90.937			
3000	5.021	44.021	13.542	91.438			
3100	5.037	44.186	14.528	91.941			
3200	5.057	44.346		92.446			
3300	5.081	44.502		92.943			
3400	5.109	44.654		93.452			
3500	5.147	44.803	17.953	93.975			
3600	5.179	44.948	18.700	94.491			
3700	5.221	45.090		95.010			
3800	5.268	44.230	20.089	95.535			
3900	5.320	45.368		96.064			
4000	5.378	45.503	21.353	96.599			
4100	5.440	45.637	21.944	97.140			
4200	5.508	45.769		97.687			
4300	5.581	45.899	23.052	98.242			
4400	5.658	46.028		98.804			
4500	5.741	46 - 156	24.073	99.173			
4600	5.828	46.283	24.554	99.952			
4700	5.919	46.410		100.539			
4800	6.014	46.535	25.465	101-136			
4900	6.113	46.660	25.896	101-742			
5000	6.215	46.785	26.313	102.358			
5100	6.320	46.909	26 16	102.985			
5200	6.428	47.033		103.622			
5300	6.53R	47.156		104.271			
5400	6.649	47.279	27.848	104.930			
5500	6.763	47.402	28.202	105.601			
5600	6.877	47.525	28.546	106.283			
5700	6.993	47.648	78.880	106.976			
5800	7.108	47.771	29.205	107-681			
5900	7.224	47.893		108 • 398 109 • 126			
6000	7.340	48.016	2,,020				
				mber 1962			RC

0 'K to 1556 'K Crystal

1556 °K to 2767.61 °K Liquid

2767.61 *K to 6000 *K Ideal Monatomic Gas

$$\Delta H^{\circ}_{f0} = 0 \text{ Kcal gfw}^{-1}$$

 $\Delta H^{\circ}_{9298.15} = 78.0 \text{ kcal gfw}^{-1}$

$$\Delta H^{\circ}_{1298.15} = 0 \text{ kcal gfw}^{-1}$$

$$S^{\circ}_{298.15} = 2.282 \pm .020 \text{ cal degK}^{-1}_{gfw}^{-1}$$

$$T_{m} = 1556^{\circ} \pm 3 ^{\circ} K$$

$$\Lambda H_{m} = 3.520 \pm .080 \text{ Kcal gfw}^{-1}$$

 $\Delta H_{w} = 70.169 \pm .870 \text{ Kcal gfw}^{-1}$

$$C_p^* = 4.322 + 2.18 \times 10^{-3} \text{ T cal deg K}^{-1} \text{ gfw}^{-1}$$
 $600 \text{ °K} \le T \le 1560 \text{ °K}$
 $C_p^* = 6.079 + 5.138 \times 10^{-4} \text{ T cal deg K}^{-1} \text{ gfw}^{-1}$
 $1560 \text{ °K} \le T \le 2200 \text{ °K}$

(latter equation extrapolated to 2768°K).

Structure

H. C. P. to about 20°K below Tm, B. C. C. to Tm

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Heat capacities from Kantor, et al 1.

Melting

Based on several determinations²,

Vaporization

Based on earlier report2.

References

- 1. Kantor, P., et al, Fiz. Met. i. Metalloved 10, 835 (1960).
- 2. Barriault, R. J., et al. Thermodynamics of Certain Refractory Compounds, ASD TR 61-260 Pt. 1 (May 1962).

BERYLLIUM (Be)

IREFERENCE STATES

GFW . 9.013

SUMMARY OF UNCERTAINTY ESTIMATES

	cal "K glw								
T,°K	ζc.	S _T -(1)	L - H ²⁰⁸),L,	H _T - H ₂₉₈	NH _f	71,	l ⊕g K		
298.15	± 0.050	± 0.020	[‡] 0.020	* 0.000					
1000	± 0.050	± 0.070	± 0.030	± 0.040					
1556	± 0.050	± 0.100	* 0.060	* 0.060					
1556	± 0.100	± 0.155	± 0.060	# 0.140					
2000	± 0.150	± 0.185	± 0.080	₹ 0.500					
2767.61	± 0.300	± 0.255	± 0.120	± 0 • 320					
2767.61	± 0.001	± 0.002	± 0.003	± 0.001					
3000	± 0.001	± 0.007	0.00	* 0.001					
4000	± 0.002	± 0.00°	+ 0.003	± 0.007					
4000	± 0.002	± 0.003	± 0.003	+ 0.004					
6000	± 0.002	# 0.003	+ 0.004	10.005					

Reference State for Calculating AH*, AF *, and Log Kp.
Solid Be from 0 * to 1556 *K, Liquid Be from 1556 * to 2768 *K, Gaseous Be from 2768 * to 6000 *K.

0	ĭ,°K	("			/	_Kcal/gfw	(0)	
298.15	1, K	`P	١,	(F ₁ н ₂₉₈)/т`	H _T - H ₂₉₈	ΔH_{f}	AIT'	Log K _p
278.15	٥	0.000	0.000	INFINITE	-1.481	76.086	76.086	14514175
100	298+15	4.968						
400 4.988 34.005 32.740 0.506 78.059 65.883 -35.99: 000 4.968 36.070 33.520 1.003 78.050 55.800 -21.78: 700 4.968 36.070 33.520 1.500 78.066 59.800 -21.78: 700 4.968 37.449 14.33 913 1.995 77.7930 55.700 -17.78: 000 4.968 38.057 35.070 3.487 77.801 59.754 -14.48: 000 4.968 38.557 35.070 3.487 77.568 47.765 -10.43* 100 4.968 39.031 35.409 3.984 77.402 44.791 -8.89* 2700 4.968 39.403 155.409 3.984 77.402 44.791 -8.89* 2700 4.968 39.463 15.729 4.481 77.215 41.833 -7.61 100 4.968 39.463 15.729 4.481 77.215 41.833 -7.61 100 4.968 39.463 15.29 4.481 77.215 41.833 -6.53 100 4.968 40.724 36.519 5.477 77.006 38.892 -6.53 100 4.968 40.727 36.591 5.971 76.526 33.663 -4.81 100 4.968 40.724 36.318 6.249 76.6375 31.443 -4.81 100 4.968 40.754 36.738 6.249 77.855 31.443 -4.81 100 4.968 40.754 36.738 6.249 77.855 31.443 -4.81 100 4.968 40.754 36.738 6.249 77.855 31.443 -4.81 100 4.968 40.754 36.738 6.249 77.855 31.443 -4.81 100 4.968 40.754 36.738 6.249 77.855 31.443 -4.81 100 4.968 40.754 36.738 6.249 77.855 31.443 -4.81 100 4.968 40.754 36.738 6.249 77.855 31.443 -4.81 100 4.968 41.746 37.558 7.958 7.958 7.958 7.958 7.958 100 4.968 41.746 37.558 7.9	300				0.009			
500	400		34.005					-35.995
700	500	4.968	35.114					-27.466
700	600	4.968	36.020	33.520	1.500	78.006	59.800	-21.781
800	700	4.968	36.785					
900	800	4.968	37.444	14.332				
000	900	4.968	38.034					
200	000	4.968	38.557	35.070				-10.439
200	100	4.968	39.031	35.409	3.984	77.402	44.791	-A.A90
300		4.968						
4906								
500								
556	500							-4.81
556	556	4.968	40.754	36.738	6.249	76.375	31.463	-4.414
600	556	4.968	40.754	36.738	6.749	72.855	31.443	-4.416
700	600	4.968						-4.13
800	700							-3.55
900	800			37.322			24.986	-3.034
100	900			37.558	7.958			-2.57
1200	000	4.969	42.001		8.455			-2.15
1200	100	4.969	42.744	37.981	8.952	71.740	17.140	-1.78
1310	200							-1.44
140C 4.974 42.907 38.556 10.443 71.061 9.389 -0.85 1500 4.977 43.110 38.734 10.941 70.875 6.825 -0.59 1500 4.982 43.306 38.900 11.439 70.875 6.825 -0.59 15700 4.988 43.494 39.073 11.937 70.338 1.722 -0.13 15767.61 4.994 43.617 39.182 12.277 70.169 0.000 0.00 15767.61 4.997 43.675 39.234 12.437 15900 4.997 43.675 39.234 12.437 15900 5.071 44.186 39.689 13.941 1500 5.037 44.386 39.547 13.438 15100 5.037 44.346 39.832 14.446 15300 5.057 44.346 39.832 14.466 15300 5.179 44.948 40.367 15.462 1500 5.179 44.948 40.367 16.491 1500 5.21 45.090 40.493 17.010 1500 5.21 45.090 40.493 17.010 1500 5.21 45.090 40.493 17.010 1500 5.378 45.503 40.853 18.599 14100 5.460 45.637 40.968 19.140 1400 5.540 45.637 40.968 19.140 1400 5.568 45.230 40.853 18.599 14100 5.460 45.637 41.081 19.687 1400 5.5741 46.156 41.407 21.373 1400 5.741 46.156 41.407 21.373 1400 5.658 46.078 41.901 20.804 1400 5.658 46.078 41.901 20.804 1400 5.658 46.078 41.912 20.242 1400 5.919 46.410 41.614 22.559 1500 6.215 46.785 41.913 24.358 15100 6.113 46.660 41.815 23.742 1400 5.678 46.104 41.614 22.559 1500 6.215 46.785 41.913 24.358 15100 6.104 46.953 41.913 24.358 15100 6.104 46.953 41.913 24.358 15100 6.104 46.953 41.913 24.358 15100 6.104 46.953 41.913 24.358 15100 6.104 46.953 41.913 24.358 15100 6.170 46.909 42.01 24.995 1500 6.215 46.785 41.913 24.358 1500 6.174 47.525 42.475 28.283 1500 7.108 47.771 42.292 26.930 1500 7.108 47.771 42.292 26.930 1500 7.108 47.771 42.293 26.930 1500 7.108 47.771 42.633 29.681 1500 7.108 47.771 42.633 29.681 1500 7.108 47.771 42.633 29.681	300							-1 -13
1800 4.977 43.110 38.734 10.941 70.875 6.825 -0.59 1800 4.982 43.306 38.906 11.439 70.584 4.269 -0.35 1767.61 4.948 43.494 39.073 11.937 70.338 1.722 -0.13 1767.61 4.994 43.617 39.187 12.277 1767.61 4.994 43.617 39.187 12.277 1800 4.997 43.675 39.234 12.437 1900 5.007 43.851 39.390 12.937 1900 5.007 43.851 39.390 12.937 1900 5.057 44.346 39.689 13.941 13100 5.037 44.186 39.689 13.941 1300 5.057 44.346 39.832 14.466 13300 5.081 44.602 39.971 14.953 1300 5.109 44.604 40.106 15.462 13500 5.147 44.803 40.238 15.975 13600 5.147 44.803 40.238 15.975 13600 5.178 45.900 40.493 17.010 13830 5.268 45.230 40.466 17.535 13900 5.370 45.368 40.736 18.599 14100 5.440 45.637 40.968 19.140 1400 5.450 45.637 40.968 19.140 1400 5.460 45.637 40.968 19.140 1400 5.460 45.637 40.968 19.140 1400 5.478 45.93 40.853 18.599 14100 5.480 45.637 40.968 19.140 14200 5.508 45.769 41.081 19.687 1400 5.494 46.106 17.535 1400 5.494 46.106 12.373 1400 5.678 46.078 41.910 20.804 1400 5.678 46.078 41.910 20.804 1400 5.678 46.078 41.910 20.804 1400 5.688 46.078 41.910 20.804 1400 5.678 46.078 41.913 24.358 15100 6.320 46.909 42.01 24.955 1500 6.428 47.03 42.100 25.622 1500 6.428 47.03 42.100 25.622 1500 6.428 47.03 42.100 25.622 1500 6.428 47.03 42.100 25.622 1500 6.428 47.03 42.100 25.622 1500 6.428 47.04 42.100 25.622 1500 6.428 47.07 42.292 26.930 1500 6.708 47.768 42.565 28.976 1500 6.708 47.771 42.633 29.681 11.126	400							-0.85
1700	500	4.477	43.110		10.941	70.875	6.825	-0.59
1700	600	4.982	41.306	38.906	11.439	70.584	4.269	-0.35
17.67.61 4.994 43.617 39.182 12.277 70.169 0.000 0.00 17.67.61 4.994 43.617 39.182 12.277 18.00 4.997 43.675 39.234 12.437 18.00 5.007 43.851 39.390 12.937 18.00 5.021 44.021 39.542 13.438 18.100 5.057 44.346 39.832 14.446 18.300 5.057 44.346 39.832 14.446 18.300 5.057 44.346 39.832 14.446 18.300 5.011 44.502 39.971 14.953 18.00 5.119 44.604 40.106 15.462 18.500 5.179 44.948 40.367 16.491 18.500 5.21 45.000 40.493 17.010 18.500 5.21 45.000 40.493 17.010 18.500 5.21 45.000 40.493 17.010 18.500 5.378 45.503 40.853 18.599 14.00 5.440 45.637 40.866 17.535 18.000 5.378 45.503 40.853 18.599 14.00 5.440 45.637 40.968 19.140 14.00 5.440 45.637 40.968 19.140 14.00 5.458 45.769 41.081 19.687 14.00 5.581 45.899 41.192 20.242 14.000 5.581 45.899 41.192 20.242 14.000 5.581 46.028 41.300 20.804 14.00 5.468 46.028 41.300 20.804 14.00 5.494 46.156 41.407 21.373 14.000 5.919 46.410 41.614 22.539 14.00 5.919 46.410 41.614 22.539 15.000 6.113 46.660 41.815 23.136 16.00 6.113 46.660 41.815 23.136 16.00 6.320 46.909 42.01 24.985 15.00 6.38 47.156 42.199 26.271 15.000 6.428 47.0.3 42.100 25.622 15.000 6.428 47.0.3 42.100 25.622 15.000 6.428 47.0.3 42.100 25.662 15.000 6.884 47.493 42.413 30.398	700							-0.13
1767-6 4.994	2767.61		43-617	20 10	12.277			0.00
100	767.61			39.182	12.277			
1000 5.07	800			34.234	12.437			
\$100	900		43.851	39.390				
3700	3000	5.021	44.021	39.542	13.438			
3700	3100	5.037	44.186	39.689	13.941			
1300								
1400	3300							
3500 5.142 44.803 40.238 15.975 3600 5.179 44.948 40.367 16.491 3700 5.221 45.090 40.493 17.010 3800 5.268 45.230 40.616 17.535 3900 5.370 45.368 40.736 18.064 4000 5.378 45.503 40.853 18.599 4100 5.440 45.637 40.968 19.140 4200 5.508 45.769 41.081 19.687 4300 5.581 45.899 41.192 20.242 4400 5.658 46.028 41.300 20.804 4500 5.741 46.156 41.407 21.373 4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4900 6.113 46.600 41.815 23.742 5000 6.215 46.785 41.715 23.136 <td< td=""><td>3400</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	3400							
3700 5.221 45.090 40.493 17.010 3800 5.268 45.230 40.616 17.535 3900 5.320 45.368 40.736 18.064 4000 5.378 45.503 40.853 18.599 4100 5.440 45.637 40.968 19.140 4200 5.508 45.769 41.081 19.687 4300 5.581 45.899 41.192 20.242 4400 5.658 46.028 41.300 20.804 4500 5.741 46.156 41.407 21.373 4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4900 6.113 46.604 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.370 46.909 42.01 24.985 5200 6.428 47.023 42.105 25.622 5300 6.538 47.754 42.292 26.930 5500 6.649 47.279 42.222 26.930 5700	3500		44.803	40.238	15.975			
3700 5.221 45.090 40.493 17.010 3800 5.268 45.230 40.616 17.535 3900 5.320 45.368 40.736 18.064 4000 5.378 45.503 40.853 18.599 4100 5.440 45.637 40.968 19.140 4200 5.508 45.769 41.081 19.687 4300 5.581 45.899 41.192 20.242 4400 5.658 46.028 41.300 20.804 4500 5.741 46.156 41.407 21.373 4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4900 6.113 46.604 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.370 46.909 42.01 24.985 5200 6.428 47.023 42.105 25.622 5300 6.538 47.754 42.292 26.930 5500 6.649 47.279 42.222 26.930 5700	3600	5.179	44.948	40.367	16.491			
3800 5.268 45.230 40.616 17.535 3800 5.370 45.368 40.736 18.064 4000 5.378 45.503 40.853 18.559 4100 5.440 45.637 40.968 19.140 4200 5.508 45.769 41.081 19.687 4300 5.581 45.899 41.192 20.242 4400 5.658 46.028 41.300 20.804 4500 5.741 46.156 41.407 21.373 4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4900 6.113 46.660 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.320 46.909 42.01 24.985 5200 6.428 47.03 42.105 25.622 5300 6.538 47.756 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.763 47.407 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5700 6.993 47.648 42.565 28.976 5700 7.224 47.893 42.741 30.998								
3900 5.370 45.368 40.736 18.064 4000 5.378 45.503 40.853 18.599 4100 5.440 45.637 40.968 19.140 4200 5.508 45.769 41.081 19.687 4300 5.581 45.899 41.192 20.242 4400 5.658 46.028 41.300 20.804 4500 5.741 46.156 41.407 21.373 4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4890 6.113 46.660 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.370 46.909 42.01 24.985 5200 6.428 47.02 42.2105 25.622 5300 6.538 47.56 42.199 26.271 5400 6.649 47.279 42.292 26.930 5								
4000 5.378 45.503 40.853 18.599 4100 5.440 45.637 40.968 19.140 4200 5.508 45.769 41.081 19.687 4300 5.581 45.899 41.192 20.242 4400 5.658 46.028 41.300 20.804 4500 5.741 46.156 41.407 21.373 4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4800 6.014 46.535 41.715 23.136 4800 6.113 46.660 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.370 46.909 42.01 24.985 5200 6.428 47.0.3 42.105 25.622 5300 6.538 47.556 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.664 47.279 42.292 26.930 5500 6.763 47.402 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.608 42.565 29.976 5700 6.993 47.608 42.565 29.976 5700 7.224 47.893 42.741 30.998								
4700 5.708 45.769 41.081 19.687 4300 5.681 45.899 41.192 20.242 4400 5.658 46.028 41.300 20.804 4500 5.741 46.156 41.407 21.373 4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4800 6.113 46.660 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.320 46.909 42.01 24.985 5200 6.428 47.0.3 42.105 25.622 5300 6.538 47.556 42.199 26.271 5500 6.649 47.279 42.292 26.930 5500 6.669 47.402 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.608 42.475 28.283 5700 6.993 47.608 42.653 29.681 5700 7.224 47.893 42.741 30.998	4000							
4700 5.708 45.769 41.081 19.687 4300 5.681 45.899 41.192 20.242 4400 5.658 46.028 41.300 20.804 4500 5.741 46.156 41.407 21.373 4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4800 6.113 46.660 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.320 46.909 42.01 24.985 5200 6.428 47.0.3 42.105 25.622 5300 6.538 47.556 42.199 26.271 5500 6.649 47.279 42.292 26.930 5500 6.669 47.402 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.608 42.475 28.283 5700 6.993 47.608 42.653 29.681 5700 7.224 47.893 42.741 30.998			45 437	40 049	.9,140			
4300 5.581 45.899 41.192 20.242 4400 5.658 46.028 41.300 20.804 4500 5.741 46.156 41.407 21.373 4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4900 6.113 46.660 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.320 46.909 42.01 24.985 5200 6.428 47.03 42.105 25.622 5300 6.538 47.356 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.763 47.407 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5700 6.993 47.648 42.565 28.976 5700 7.224 47.893 42.741 30.998								
4400 5.658 46.078 41.300 20.804 4500 5.741 46.156 41.407 21.373 4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4900 6.113 46.660 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.370 46.909 42.01 24.985 5200 6.428 47.0.3 42.105 25.622 5300 6.428 47.0.3 42.105 25.622 5300 6.649 47.279 42.292 26.930 5500 6.649 47.279 42.292 26.930 5500 6.669 47.402 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.604 42.565 28.976 5700 6.993 47.604 42.565 28.976 5700 7.224 47.893 42.741 30.998								
4500 5.741 46.156 41.407 21.373 4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4900 6.113 46.660 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.370 46.909 42.01 24.985 5200 6.428 47.0.3 42.105 25.622 5300 6.538 47.556 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.763 47.402 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5700 6.993 47.648 42.565 28.976 5700 7.224 47.893 42.741 30.998								
4600 5.828 46.283 41.511 21.952 4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4900 6.113 46.660 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.320 46.909 42.01 24.985 5200 6.428 47.03 42.105 25.622 5300 6.538 47.756 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.763 47.407 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5700 6.993 47.648 42.565 28.976 5700 7.224 47.893 42.741 30.998								
4700 5.919 46.410 41.614 22.539 4800 6.014 46.535 41.715 23.136 4900 6.113 46.660 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.320 46.909 42.01 24.985 5200 6.428 47.0.3 42.105 25.622 5300 6.538 47.56 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.763 47.402 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5500 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.998	7,00	74141						
4800 6.014 46.535 41.715 23.136 4900 6.117 46.660 41.815 23.747 5000 6.215 46.785 41.913 24.358 5100 6.320 46.909 42.01 24.985 5200 6.428 47.0.3 42.105 25.622 5300 6.538 47.756 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.763 47.407 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5700 6.993 47.648 42.565 28.976 5800 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.998	4600							
4900 6.113 46.660 41.815 23.742 5000 6.215 46.785 41.913 24.358 5100 6.320 46.909 42.01 24.985 5200 6.428 47.0.3 42.105 25.622 5300 6.538 47.56 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.763 47.407 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5700 6.993 47.648 42.565 28.976 5800 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.998	4700							
5000 6.215 46.785 41.913 24.358 5100 6.370 46.909 42.01' 24.985 5200 6.428 47.23 42.105 25.622 5300 6.538 47.156 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.763 47.402 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5800 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.998	4800							
5100 6.370 46.909 42.01 24.985 5200 6.428 47.0.3 42.105 25.622 5300 6.538 47.756 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.763 47.402 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5700 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.998	4900 5000							
5200 6.428 47.0_3 42.105 25.622 5300 6.538 47.156 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.763 47.407 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5800 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.998	,,,,,,							
5300 6.538 47.356 42.199 26.271 5400 6.649 47.279 42.292 26.930 5500 6.763 47.402 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5700 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.398	5100							
5400 6.649 47.279 42.292 26.930 5500 6.763 47.402 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5800 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.398	5200							
5500 6.763 47.407 42.384 27.601 5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5800 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.398	5300							
5600 6.877 47.525 42.475 28.283 5700 6.993 47.648 42.565 28.976 5800 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.398								
5800 6.993 47.648 42.565 28.976 5800 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.398	7,000				30 300			
5700 5800 7.108 47.771 42.653 29.681 5900 7.224 47.893 42.741 30.598								
5800 7.224 47.893 42.741 30.398 5900 7.224 47.893 42.741 31.126					_			
7900 1022 10 014 42 020 31-126								
	P000	14341	-3,0010					

gfw = 9.013

$$\Delta H_{f0}^{o} = 76.986 \text{ kcal fgw}^{-1}$$

$$\Delta H_{f298.15}^{\circ} = 78.000 \pm .500 \text{ kcal gfw}^{-1}$$

$$S_{298, 15}^{o} = 32.545 \pm .002 \text{ cal deg } \text{K}^{-1}\text{gfw}^{-1}$$

 $H_{298.15}^{\circ} - H_{0}^{\circ} = 1.481 \text{ Kcal gfw}^{-1}$

Electronic levels and multiplicities

All levels from Moore !

Heat of Formation

Based on previous report. 2

Heat Capacity and Entropy

Calculated using monatomic-gas program.

References

- 1. Moore, C., NBS Circular 467, Vol. 1 (15 June 1949).
- 2. Barriault, R. J. et al., Thermodynamics of Certain Refractory Compounds, ASD TR 61-760, Part I (May 1962)

BERYLLIUM . MENATOMIC (Be)

(IDEAL GAS)

UFW = 9.013

SUMMARY OF UNCERTAINTY ESTIMATES

		cel/°K gfw			kcal gfw		
T,°K	(°p	s _r -0	FT - H; 28) T	н _г - н ₂₉₈	VH ^t	111	Leg Kp
298.15	* 0.000	± 0.002	± 0.002	±0.000	±0.500	+0.510	±0.37
1000	* 0.000	± 0.007	±0.002	±0.000	± 0.540	±0.530	±0.12
1556	* 0.000	1 0.002	± 0.002	±0.000	±0.560	±0.580	10.08
1556	* 0.000	+ 0.055	±0.002	±0.080	±0.640	±0.580	±0.10
2000	± 0.000	+ 0.057	± 0.00 s	±0.080	±0.700	±0.670	±0.07
2767-61	± 0.000	* 0.057	± 0.003	±0.080	±0.870	10.840	±0.07
2767.61	± 0.000	± 0.386	± 0.003	±0.950			
3000	± 0.001	± 0.388	£ 0.003	±0.951			
4000	± 0.002	± 0.391	± 0.003	±0.952			
5000	± 0.002	± 0.391	± 0.003	±0.954			
6000	± 0.002	± 0.391	± 0.004	+0.955			

Reference State for Calculating A H^{*}₂, A F ^{*}₃, and Log K₂ Solid Be from 0 ° to 1556 °K, Liquid Be from 1556 ° to 2768 °K, Gaseous Be from 2768 ° to 6000 °K, Gaseous O₂, Solid BeO from 0 ° to 2820 °K, Liquid BeO from 2820 ° to 4500 °K.

0 0.000 0.000 INFINITE		(Alw		_Kcal/gfw		
298.15 6.105 3.376 3.376 0.000 1.35.100 13.120 99 300 8.148 3.414 3.376 0.001 1.43.100 13.120 99 400 8.803 5.467 3.643 0.730 1.43.178 1.33.722 73 500 9.310 7.412 4.704 1.604 1.43.173 1.38.120 99 400 10.178 9.186 4.889 2.578 1.43.178 1.33.722 73 600 10.178 9.186 4.889 2.578 1.43.178 1.33.722 73 600 10.714 10.793 5.619 3.622 1.43.038 1.26.649 39 800 11.154 12.794 6.359 4.716 1.42.793 1.26.649 39 900 11.4598 13.588 7.089 5.849 1.42.831 1.21.991 29 1000 11.776 14.815 7.801 7.014 1.42.718 1.19.683 26 1100 12.005 15.948 8.491 8.203 1.42.813 1.21.991 29 1100 12.197 17.001 9.157 9.413 1.42.510 1.15.099 26 1100 12.005 18.975 10.416 11.885 1.42.229 1.15.099 18 1400 12.003 18.975 10.416 11.885 1.42.229 1.15.09 26 1500 12.678 19.777 11.011 13.142 1.42.756 1.08.276 17 1500 12.678 19.777 11.011 13.142 1.42.756 1.08.276 17 1500 12.678 19.777 13.011 13.142 1.42.756 1.08.276 17 1500 12.678 19.777 13.014 13.142 1.42.756 1.08.276 17 1500 12.678 19.777 13.014 13.142 1.42.756 1.08.276 17 1500 12.678 19.777 13.014 13.142 1.42.756 1.08.276 17 1500 12.678 19.777 13.014 13.142 1.42.756 1.09.276 17 1500 12.678 19.777 13.014 13.142 1.42.756 1.09.276 17 1500 12.678 19.777 13.014 13.142 1.42.756 1.09.276 17 1500 12.678 19.777 13.014 13.142 1.42.756 1.09.276 17 1500 12.678 19.777 13.014 13.142 1.42.756 1.09.276 17 1500 12.678 19.777 13.014 13.142 1.42.758 1.09.00.776 15 1556 12.773 20.235 13.33 13.851 1.42.221 1.00.007 15 1556 12.773 20.235 13.33 13.851 1.42.221 1.00.976 15 1556 12.773 20.235 13.33 13.851 1.42.221 1.00.007 15 1500 13.600 13.600 12.600 13.600 1	T, "K	C.	J.	-(FT - H29H)/T	HT H29H	ΛH	ΛF	Log Kp
298.15 6.105 3.376 3.376 0.000 1.33.100 13.120 99 300 6.148 3.414 3.376 0.001 1.43.103 138.120 99 400 8.803 5.467 3.643 0.730 1.43.178 133.722 73 500 9.310 7.412 4.704 1.604 1.43.173 13.355 77 600 10.178 9.186 4.889 2.578 1.43.178 1.33.722 73 600 10.178 9.186 4.889 2.578 1.43.178 1.23.722 73 600 10.178 9.186 4.889 2.578 1.43.178 1.23.722 73 600 10.178 9.186 4.889 2.578 1.43.178 1.23.997 46 700 10.714 10.793 5.619 3.622 1.43.038 1.26.649 39 900 11.154 12.754 6.3559 4.716 1.42.793 1.26.649 39 900 11.498 13.588 7.089 5.849 1.42.813 1.21.991 29 1000 11.776 14.815 7.801 7.014 1.42.718 1.119.683 26 1100 12.005 15.948 8.491 8.203 1.42.612 1.17.386 23 1700 12.197 17.001 9.157 9.413 1.42.510 1.15.099 26 1100 12.007 12.903 18.975 10.416 11.885 1.42.212 1.17.386 23 1800 12.678 19.777 11.011 13.142 1.42.715 1.12.818 18 1400 12.678 19.777 11.011 13.142 1.42.756 1.08.276 17 1500 12.678 19.777 11.011 13.142 1.42.756 1.08.276 17 1500 12.678 19.777 11.011 13.142 1.42.756 1.08.276 17 1500 12.678 19.777 13.0146 11.885 1.42.212 1.10.007 15 1556 12.723 20.245 11.333 13.851 1.42.221 1.07.007 15 1556 12.723 20.245 11.333 13.851 1.42.221 1.07.007 15 1500 12.678 19.779 13.014 1.4142 1.05.609 10.8276 17 1700 13.642 21.375 12.147 15.704 1.45.348 1.00.980 11 1700 13.642 22.846 13.188 18.351 1.45.348 1.00.980 11 1700 13.442 22.846 13.188 18.351 1.45.348 1.00.980 11 1700 13.442 22.846 13.188 18.351 1.45.348 1.00.980 19 1700 13.860 24.212 14.174 21.081 1.44.051 -98.048 10 1700 13.860 24.223 17.094 30.806 1.43.007 88.753 9 1700 14.878 26.104 15.849 25.333 1.44.051 -88.753 9 1700 15.114 27.846 16.819 29.774 1.43.225 -79.175 6 1800 15.100 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000 17.000 35.036 18.835 50.000	0	0.000	0.000	********				
000								
100								99.7
100								
100								57.4
100	600	10.128	9.186	4.889	2.578	-143.121	-128.997	46.9
11.154	700							39.5
11-498	800	11.154						33.9
1100	900	11.49R	13.588	7.089	5.849			29.6
1200	000	11.776	14.815	7.801	7.014			26 • 1
1300					8 - 203	-142.612	-117.386	23 • 3
1400						-142.510	-115.099	20 • 9
1500								18.9
1556								17.2
1556	500	12.628	19.772	11.011	13.142	-142.256	-108.276	15.7
1600								15.0
1700								15 40
1800								14 44
1900								13.2
13.651 23.541 13.688 19.706 -144.967 -96.048 10								11.43
14.069								10.4
14.069	100	13.860	24.217	14.174	21.081	-144.75R	~93.6A5	9.7
2300								940
2400 14.487 26.104 15.549 25.333 -144.051 -86.342 7 2500 14.696 26.699 15.982 26.792 -143.789 -83.940 7 2600 14.905 27.280 16.406 28.272 -143.515 -81.555 6 2767.61 15.256 28.223 17.094 30.806 -143.023 -77.565 6 2767.61 15.256 28.223 17.094 30.806 -213.192 -77.565 6 2760 15.365 28.509 17.303 31.602 -213.012 -75.039 5 2820 17.000 31.984 17.303 31.602 -212.902 -75.039 5 2890 17.000 31.984 17.303 31.602 -197.462 -75.039 5 3000 17.000 35.934 18.80.3 51.802 -197.462 -75.039 4 3100 17.000 35.593 18.80.3 51.802 -197.462 -75.039<								8.4
2500 14.696 26.699 15.982 26.792 -143.789 -83.940 7 2600 14.905 27.280 16.406 28.277 -143.515 -81.555 6 2700 15.114 27.846 16.819 29.774 -143.225 -79.175 6 2767.61 15.256 28.223 17.094 30.806 -143.023 -77.565 6 2800 15.365 28.200 17.223 31.295 -213.014 -75.998 5 2820 15.365 28.509 17.303 31.602 -212.902 -75.039 5 2820 17.000 31.984 17.303 31.602 -212.902 -75.039 5 2800 17.000 34.459 17.169 48.402 -197.462 -75.039 5 3000 17.000 35.593 18.8335 50.102 -196.880 -71.551 5 3100 17.000 36.133 19.414 53.502 -19.459 -62.956			26.104					7 . 5
2700 15.114 27.846 16.819 29.774 -143.225 -79.175 6 2767.61 15.256 28.223 17.094 30.806 -143.023 -77.665 6 2767.61 15.256 28.223 17.094 30.806 -213.192 -77.665 6 2800 15.365 28.509 17.303 31.602 -213.014 -75.998 5 2820 17.000 33.984 17.303 31.602 -212.902 -75.039 5 2890 17.000 34.459 17.769 48.402 -197.462 -75.039 5 3000 17.000 35.036 18.335 50.102 -196.880 -71.551 5 3000 17.000 35.593 18.80.3 51.802 -19.439 -62.956 4 3100 17.000 36.456 19.928 55.202 -19.015 -58.694 4 3200 17.000 36.456 19.928 55.202 -19.015 -54.455		14.696				-143.789	-83.940	7.3
2767-61 15.256 28.223 17.094 30.806 -143.073 -77.565 6 2767-61 15.256 28.223 17.094 30.806 -213.192 -77.565 6 2800 15.365 28.509 17.303 31.602 -213.014 -75.039 5 2820 17.000 31.984 17.303 31.602 -212.902 -75.039 5 2900 17.000 31.984 17.303 47.042 -197.462 -75.039 5 3000 17.000 34.459 17.169 48.402 -196.886 -71.551 5 3000 17.000 35.593 18.80. 51.802 -19.439 -62.956 4 3200 17.000 36.559 18.80. 51.802 -19.439 -62.956 4 3200 17.000 36.559 18.80. 51.802 -19.439 -62.956 4 3200 17.000 36.559 18.80. 51.802 -19.439 -62.956 4 3400 17.000 37.164 20.428 56.902	7600	14.905	27.280	16.406	28.277	-143.515	-81.555	6 . 6
2767-61 15.256 28.223 17.094 30.806 -213.192 -77.565 6 2800 15.323 28.400 17.223 31.295 -213.014 -75.998 5 2820 15.365 28.509 17.303 31.602 -212.902 -75.039 5 2820 17.000 33.984 17.303 47.042 -197.462 -75.039 5 2900 17.000 34.459 17.169 48.402 -196.168 -71.551 5 3000 17.000 35.036 18.335 50.102 -196.158 -67.239 4 3100 17.000 35.593 18.802 51.802 -19.439 -62.956 4 3200 17.000 36.133 19.414 53.502 -13.775 -58.694 4 3300 17.000 36.656 19.928 55.202 -19.015 -54.455 3 3400 17.000 37.656 20.913 50.602 -192.608 -46.038 2 3500 17.000 38.135 21.384 60.302 -191.913 -41.861 2 3700 17.000 38.601 21.844 62.002 -191.223 -37.702 2	7700	15.114	27.846	16.819	29.774	-143.225	-79.175	6.4
2800 15.323 28.400 17.223 31.295 -213.014 -75.998 5 2820 15.365 28.509 17.303 31.602 -212.902 -75.639 5 2820 17.000 33.984 17.303 47.642 -197.462 -75.639 5 2900 17.000 34.459 17.769 48.402 -196.880 -71.551 5 3000 17.000 35.036 18.335 50.102 -196.158 -67.239 4 3100 17.000 35.593 18.80.1 51.802 -19.439 -62.956 4 3200 17.000 36.456 19.928 55.202 -19.75 -58.694 4 3400 17.000 37.164 20.428 56.902 -193.308 -50.236 3 3500 17.000 37.656 20.913 50.602 -197.608 -46.038 2 3600 17.000 38.135 21.384 60.302 -191.913 -41.861	2767.61		28.22					6 • 1
282C								6.1
2820 17.000 33.984 17.303 47.042 -197.462 -75.039 5 2900 17.000 34.459 17.169 48.402 -196.880 -71.551 5 3000 17.000 35.036 18.335 50.102 -196.158 -67.239 4 3100 17.000 35.593 18.805 51.802 -19.439 -62.956 4 3200 17.000 36.133 19.41 53.502 -19.775 -58.694 4 3300 17.000 36.656 19.928 55.202 -19.015 -54.455 3 3400 17.000 37.164 20.428 56.902 -193.308 -50.236 3 3500 17.000 37.165 20.913 50.602 -192.608 -46.038 2 3600 17.000 38.135 21.384 60.302 -191.913 -41.861 2 3700 17.000 38.656 20.913 50.602 -191.223 -37.702 2 3800 17.000 39.054 27.290 63.702 -190.541 -33.561 1 3900 17.000 39.496 22.726 65.402 -189.864 -29.433 1 4000 17.000 39.926 23.150 67.102 -189.864 -29.433 1 4100 17.000 40.776 23.970 70.502 -187.881 -17.171 6400 17.000 41.567 23.970 70.502 -187.881 -17.171 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.280 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.761 73.902 -187.288 -13.115 6400 17.000 41.567 24.76								5 • 9
2900 17.000 34.459 17.169 48.402 -196.880 -71.551 5 3000 17.000 35.036 18.335 50.102 -196.158 -67.239 4 3100 17.000 35.593 18.80.1 51.802 -19.439 -62.956 4 3200 17.000 36.456 19.414 53.502 -19.015 -54.455 3 3400 17.000 36.456 19.428 56.902 -193.308 -50.236 3 3500 17.000 37.656 20.413 50.602 -197.608 -46.038 2 3600 17.000 38.135 21.384 60.302 -191.913 -41.861 2 3800 17.000 39.542 22.290 63.702 -190.541 -33.561 1 3900 17.000 39.496 22.726 65.402 -189.864 -29.433 1 4000 17.000 39.926 23.150 67.102 -189.934 -21.244								
3000 17.000 35.036 18.335 50.102 -196.158 -67.239 4 3100 17.000 35.593 18.80.) 51.802 -19.439 -62.956 4 3200 17.000 36.133 19.414 53.502 -15.75 -58.694 4 3300 17.000 36.656 19.928 55.202 -19.015 -54.455 3 3400 17.000 37.656 20.913 50.602 -193.308 -50.236 3 3500 17.000 38.135 21.384 60.302 -191.913 -41.861 2 3600 17.000 38.601 21.944 62.002 -191.223 -37.702 39.05 17.000 39.054 22.200 63.702 -190.541 -33.561 1 3900 17.000 39.466 23.150 67.102 -189.864 -29.433 1 4000 17.000 39.926 23.150 67.102 -189.195 -25.332 1								5 • 1 5 • 1
3200 17.000 36.133 19.414 53.502 -1 775 -58.694 4 3300 17.000 36.656 19.928 55.202 -19.015 -54.455 3 3400 17.000 37.656 20.913 50.602 -193.308 -50.236 3 3500 17.000 38.135 21.384 60.302 -191.913 -41.861 2 3600 17.000 38.601 21.484 62.002 -191.223 -37.702 3800 17.000 39.054 22.220 63.702 -190.541 -33.561 1 3900 17.000 39.466 23.150 67.102 -189.864 -29.433 1 4000 17.000 39.976 23.150 67.102 -189.195 -25.332 1 4100 17.000 40.76 23.970 70.502 -187.838 -17.71 71.71 73.902 -187.238 -13.115 64.00 -187.208 -13.115 64.00 -187.202 -187.238								4.1
3200 17.000 36.133 19.414 53.502 -1 775 -58.694 4 3300 17.000 36.656 19.928 55.202 -19.015 -54.455 3 3400 17.000 37.656 20.913 50.602 -193.308 -50.236 3 3500 17.000 38.135 21.384 60.302 -191.913 -41.861 2 3600 17.000 38.601 21.484 62.002 -191.223 -37.702 3800 17.000 39.054 22.220 63.702 -190.541 -33.561 1 3900 17.000 39.466 23.150 67.102 -189.864 -29.433 1 4000 17.000 39.976 23.150 67.102 -189.195 -25.332 1 4100 17.000 40.76 23.970 70.502 -187.838 -17.71 71.71 73.902 -187.238 -13.115 64.00 -187.208 -13.115 64.00 -187.202 -187.238	3100	17.000	16.50	18.8	51.862	-14 .630	-62.956	4.0
3300 17.000 36.656 19.928 55.202 -19.015 -54.455 3 3400 17.000 37.164 20.428 56.902 -193.308 -50.236 3 3500 17.000 37.1656 20.913 50.602 -192.608 -46.038 2 3600 17.000 38.135 21.384 60.302 -191.913 -41.861 2 3700 17.000 38.601 21.844 62.002 -191.223 -37.702 2 3800 17.000 39.054 27.290 63.702 -190.541 -33.561 1 3900 17.000 39.496 22.726 65.402 -189.864 -29.433 1 4000 17.000 39.926 23.150 67.102 -189.864 -25.332 1 4100 17.000 40.76 23.565 68.802 -189.534 -21.244 1 4200 17.000 40.776 23.970 70.502 -187.881 -17.171 63.000 17.000 41.156 24.365 72.202 -187.238 -13.115 0 4400 17.000 41.567 24.751 73.902 -186.603 -9.072								4.0
3400 17.000 37.164 20.428 56.902 -193.308 -50.236 3 3500 17.000 37.656 20.913 50.602 -192.608 -46.038 2 3600 17.000 38.135 21.384 60.302 -191.913 -41.861 2 3800 17.000 38.601 21.844 62.002 -191.923 -37.702 2 3900 17.000 39.054 22.290 63.702 -190.541 -33.561 1 3900 17.000 39.4496 72.726 65.402 -189.864 -29.433 1 4000 17.000 39.426 23.150 67.102 -189.195 -25.332 1 4100 17.000 40.776 23.970 70.502 -187.881 -17.171 1 4200 17.000 40.4156 72.202 -187.288 -13.115 0 4400 17.000 41.567 24.751 73.902 -186.603 -9.072								3.0
3500 17.000 37.656 20.913 50.602 -192.608 -46.038 2 3600 17.000 38.135 21.384 60.302 -191.913 -41.861 2 3700 17.000 38.601 21.944 62.002 -191.223 -37.702 2 3800 17.000 39.054 22.220 63.702 -190.541 -33.561 1 3900 17.000 39.469 22.726 65.402 -189.864 -29.433 1 4000 17.000 39.926 23.150 67.102 -189.195 -25.332 1 4100 17.000 40.76 23.970 70.502 -187.881 -17.171 4300 17.000 40.76 23.970 70.502 -187.288 -13.115 0 4400 17.000 41.567 24.751 73.902 -186.603 -9.072 -9.072							-50.236	3 •
3700 17.000 38.601 21.944 62.002 -191.223 -37.702 2 3800 17.000 39.654 27.290 63.702 -190.541 -33.561 1 3900 17.000 39.496 72.726 65.402 -189.864 -29.433 1 4000 17.000 39.926 23.150 67.102 -189.195 -25.332 1 4100 17.000 40.76 23.565 68.802 -189.534 -21.244 1 4200 17.000 40.76 23.970 70.502 -187.881 -17.171 0 4300 17.000 41.156 24.365 72.202 -187.238 -13.115 0 4400 17.000 41.567 24.751 73.902 -186.603 -9.072 -5.002						-192.60A	-46.038	2 •
3800 17.000 39.054 22.290 63.702 -190.541 -33.561 1 3900 17.000 39.496 22.726 65.402 -189.864 -29.433 1 4000 17.000 39.926 23.150 67.102 -189.195 -25.332 1 4100 17.000 40.76 23.565 68.802 -189.534 -21.244 1 4200 17.000 40.76 23.970 70.502 -187.881 -17.171 1 4300 17.000 41.156 24.365 72.202 -187.238 -13.115 0 4400 17.000 41.547 24.751 73.902 -186.603 -9.072	3600	17.000	38.139	21.384				2 •
3900 17.000 39.496 22.726 65.402 -189.866 -29.433 1 4000 17.000 39.926 23.150 67.102 -189.195 -25.332 1 4100 17.000 40.76 23.970 70.502 -187.881 -17.171 6300 17.000 40.76 23.970 70.502 -187.881 -17.171 6300 17.000 41.156 24.365 72.202 -187.238 -13.115 6400 17.000 41.547 24.751 73.902 -186.603 -9.072	3700							2 • :
4000 17.000 39.926 23.150 67.102 -189.195 -25.332 1 4100 17.000 40.76 23.565 68.802 -189.534 -21.244 1 4200 17.000 40.76 23.970 70.502 -187.881 -17.171 0 4300 17.000 41.156 24.365 72.202 -187.238 -13.115 0 4400 17.000 41.547 24.751 73.902 -186.603 -9.072 0	3800							1 •
4100 17.000 40.76 23.565 68.802 -189.534 -21.244 1 4200 17.000 40.76 23.970 70.502 -187.881 -17.171 0 4300 17.000 41.156 24.365 72.202 -187.238 -13.115 0 4400 17.000 41.547 24.751 73.902 -186.603 -9.072								1 •
4200 17.000 40.776 23.970 70.502 -187.881 -17.171 0 4300 17.000 41.156 24.365 72.202 -187.238 -13.115 0 4400 17.000 41.547 24.751 73.902 -186.603 -9.072 0 6	400C	17.000	39.97	5 21.150	67.102	-184.142	-20.112	1 •
4300 17.000 41.156 24.365 72.202 -187.238 -13.115 0								1.
4400 17.000 41.547 24.751 73.90? -186.603 -9.072								0.
24 110 76 44 -195 979 -5 440								ŏ.
								0.
	4500	17.00	44.0					

$$\Delta H^{\circ}_{f298,15} = -143.100 \pm Kcal gfw^{-1}$$
 S°_{298,15} = 3.376 ± .050 cal deg K⁻¹gfw⁻¹

$$T_{m} = 2820 \text{ °K}$$
 $\Delta H_{m} = 15.440 \pm .500 \text{ Kcal gfw}^{-1}$

$$H^{\circ}_{298.15} - H^{\circ}_{0} = 0.687 \text{ Kcal gfw}^{-1}$$

Structure

Solid has hexagonal (wurtzite-type) structure.

Heat of Formation

Cosgrove and Snyder 1

Heat Capacity and Entropy

Heat capacities of solid from Victor and Douglas² for T< 1500°K and from Kandyba, et al³ for T> 1500°K.

Melting and Vaporization

Based on the mass spectrometric results of Chupka, et al4

References

- 1. Cosgrove, L.A. and P.E. Snyder, J. Am. Chem. Soc. 75, 3102 (1953).
- 2. Victor and Douglas, NBS Report 6484 (1959).
- 3. Kandyba, V. V., et al., Doklady Akad. Nauk SSSR 131, 566 (1960).
- Chupka W.A., J. Berkowitz, and C.F. Giese, J. Chem. Phys. 30, 827 (1959).

		cel/ SK gfw-			Kcal 'gl*		
T, "K	C,	S _T -(F	T - H ₂₉₈) 'T	H _T - H ₂₉₈	ΛH [€]	141	log K _p
298 • 15	± 0.100	± 0.050	± 0.050	± 0.000	± 4.000	± 4.000	± 2.95
1000	± 0.300	# 0.150	± 0.080	± 0.070	± 4.110	± 4.110	± 0.9
2000	± 0.700	± 0.290	# 0.150	± 0.270	± 4.470	+ 4.460	± 0.4
2820	± 1.560	± 0.444	4 0.220	± 0.630	± 5.500	± 5.460	± 0.4
2620	± 1.000	± 0.620	± 0.220	± 1.130	± 6.000	± 5.960	± 0.4
4000	± 2.000	± 1.140	± 0.420	± 2.900	£ 7.780	± 6.530	± 0.3

IDEAL MOLECULAR GAS

Reference State for Calculating \ H_f^*, \ \Lambda F_f^*, and Log Kp Solid Be from 0° to 1556°K. Liquid Be from 1556° to 2768°K, Gaseous Be from 2768° to 6000°K; Gaseous O2, Gaseous BeO.

T, °K	γ° P	s _t r	-(FT - H ₂₉₈)/T	/K" - H"	_Kcal/gfw \DH'_{f}	ΔF	Log K
	Р	,		1 798	*****	,	
0	0.000	0.000	INFINITE	-2.677	29.547	29.547	INFINIT
298-15	7.046	47.209	47.209	0.000	30 - 120	24.031	-17.61
300	7.049	47.252	47.209	0.013	30.119	23.993	-17.47
400	7.254	49.36	47.488	0.727	30.039	21.960	-11.99
500	7.510	50.952	48.021	1.465	29.908	19.956	-8.72
600	7.757	52.344	48.628	2.229	29.750	17.980	-6.54
700	7.970	53.556	49.248	3.016	29.576	16.031	-5.00
800	8 • 1 46	54.632	49.855	3.822	29.387	14.108	-3.85
900	8.289	55.600	50.440	4 - 644	29.184	12.213	-2.96
000	8.406	56.480	51.001	5 • 479	29.967	10.337	-2.25
100	8.504	57.285	51.536	6.324	28.729	8.484	-1.66
200	8.588	58.029	52.046	7.179	28.476	6.654	-1.21
300	8 • 665	58 • 720	52.534	8.042	28 • 206	4.845	-0.81
400 500	8.737 8.810	59.364 59.970	52.999 53.443	8.912 9.789	27.918 27.611	3.058 1.296	-0.19
556	8.852	60.290	53.681	10.284	27.446	0.320	-0.04
556	8.852	60.290	53.681 53.681	10.284 10.284	27.446 -3.912	0.320	-0.04
600	8.885	60.541	53.869	10.284	23.806	-0.349	0.04
700	8.966	61.082	54.278	11.567	23.564	-1.852	0.2
800	9.052	61.597	54.670	12.467	23.322	-3.338	0.4
900	7.146	62.088	54.048	13.377	23.082	-4.813	0.5
000	9.246	62.560	55.412	14.297	22.844	-6.276	0.6
100	9.353	63.014	55.763	15.227	22.608	-7.722	0.8
200	9.465	63.451	56.103	16.167	22.375	-9.163	0.9
300	9.582	63.875	56.431	17.120	22.145	-10.588	1.00
400	9.703	64.285	56.750	18.084	21.920	-12.005	1.0
500	9.827	64.684	57.060	19.061	21.700	-13.415	1.1
600	9.951	65.072	57.360	20.049	21.482	-14.816	1 • 2
700	10.076	65.450	57.653	21.051	21.272	-16.207	1.3
767-61	10.159	65.700	57.847	21.737	21.128	-17.149	1.3
767.61	10.159	65.700	57.847	21.737	-49.041	-17.149	1.3
800	10.199	65.818	57.938	22.065	-49.025	-16.780	1.3
900 3000	10.320 10.437	66.179 66.530	58.216 58.488	23.091 24.128	-48.971 -48.912	-15.627 -14.478	1.1
				25.178	-48.843	-13.333	0.9
100	10.551	66.875 67.212	58.753 59.012	25 • 178 26 • 239		-12.187	0.8
3200	10.659	67.541	59.266	27.310	-4987	-11.051	0.7
3300	10.763	67.8.4	59.514	28.391	-48 '99	-9.908	0.6
3400 3500	10.953	68.171	59.757	29.482	-48.508	-8.772	0.5
3600	11.038	68.491	59.996	30.582	-48.413	-7.644	0.4
3700	11.118	68.794	60.229	31.690	-48.315	-6.506	0.3
3800	11.191	69.092	60.459	32.806	-48.217	-5.383	0.3
3900	11.258	69.384	60.684	33.929	-48-117	-4.255	0.2
4000	11.319	69.670	60.906	35.058	-48.019	-3.136	0.1
4100	11.374	69.950	61-123	36.193	-47.923	-2.012	0.1
200	11.423	70.226	61.337	37.333	-47.830	-0.893	0.0
4300	11.467	70.495	61.547	38.478	-47.742	0.222	-0.0
4400	11.506	70.760	61.754	39.628	-47.657	1.335	-0.0 -0.1
\$500	11.540	71.019	61.957	40.780	-47.580	2.445	-0.1
600	11.570	71.274	62.157	41.937	-47.510 -47.449	3.555 4.670	-0.1
100	11.595	71.523	62.354	43.096	-47.398	5.770	-0.2
4800	11.617	71.76R	62.548	44.757	-47.357		
50 00	11.635 11.649	72.008 72.244	62.73 62.921	45.421 46.586	-47.328	6.874 7.985	-0 • 3 -0 • 3
			63.113	47.752	-47.314	9.088	-0.3
5100	11.661	72.476 72.703	63.295	48.920	-47.313	10.199	-0.4
5200	11.669 11.676	72.926	63.475	50.088	-47.331	11.300	-0.4
5300 5400	11.680	73.145	63.653	51.257	-47.364	12.403	-0.9
5400 5500	11.682	73.360	63.828	52.427	-47.418	13.505	-0.5
5600	11.682	73.572	64.001	53.597	-47.493	14.614	-0.5
5700	11.65	73.779	64.171	54.766	-47.594	15.722	-0.6
5800	11.6 h	73.983	64.339	55.936	-47.720	16.838	-0.6
5900	11.674	74.184	64.505	57-105	-47.879	17.942	-0.6
6000	11.670	74.381	64.669	58.274	-48.071	19.062	-0.6

$$\Delta H^{\bullet}_{f0} = 29.547 \text{ Kcal gfw}^{-1}$$

$$\Delta H^{\circ}_{f298,15} = 30.120 \pm 3.000 \,\mathrm{Kcalgfw}^{-1}$$

Ground State Configuration =
$$^{1}\Sigma^{+}$$
 S²298.15 = 47.209 cal deg K⁻¹gfw⁻¹

$$H^{\circ}$$
 298.15 $-H^{\circ}_{0}$ = 2.077 Kcal gfw⁻¹

Heat of Formation

Derived from data of Chupka et all.

Heat Capacity and Entropy

Calculated using diatomic gas program. Spectroscopic constants were from Herzberg. 2 Stretching constants, $\mathrm{D_e}$ values, not given by Herzberg were estimated with Dunham 3 equations.

References

- 1. Chupka, W., et al, J. Chem Phys. 30, 827 (1959).
- 2. Herzberg, G., Spectra of Diatomic Molecules, Van Nostrand, N.Y. (1950).
- 3. Dunham, J.L., Phys. Rev. 41, 721 (1932).

Reference State for calculating ΔH_f^0 , ΔF_f^0 , and $\text{Log } K_p$: Solid Be from 0° to 1556°K, Liquid Be from 1556° to 2767°K, Gaseous Be from 2767° to 6000°K; Solid C; Solid Be₂C from 0° to 2400°K, Liquid Be₂C from 2400° to 3500°K.

т, %	C.		-(F ^c _T - H ² ₅₉₈)/T	H ² - H ² 98	Kcal/gfv ЛН?	AFT	Log Kp
298.15	10.340	4.000	4.000	0.000	-23.800	-23.227	17.025
300	10.350	4.064	4.000	0.019	-23.799	-23.222	16.917
400	10.860	7.111	4.412	1.080	-23.864	-23.027	12-581
500	11.371	9.590	5.207	2.191	-24.078	-22.793	9.963
600 700	11.882 12.392	11.70s 13.578	6.118 7.053	3 • 354 4 • 568	-24.381	-22.512	8.200
800	12.903	15.266	7.976	5.832	-24.736 -25.123	-22.172 -21.702	6.922 5.950
900	13.413	16.815	8.873	7-148	-25.530	-21.337	5.181
1000	13.924	18.255	9.740	8.515	-25.947	-20.850	4.557
1100	14-435	19.606	10.576	9.933	-26.378	-20.322	4.037
1200	14.945	20.884	11.382	11-402	-26.813	-19.755	3.598
1300 1400	15.456 15.966	22.100	12-160	12.922	-27.252	-19.150	3.219
1500	16.477	23·264 24·383	12.912 13.640	14.493	-27.689 -28.127	-18.511 -17.839	2 - 890
1556	16.763	24.992	14.037	17.046	-28.372	-17.448	2.451
1556	16.763	24.992	14.037	17.046	-35.412	-17.448	2.451
1600	16.988	25.463	14.345	17.788	-35.528	-16.939	2.314
1700	17.498	26.508	15.030	19.513	-35.763	-15.768	2.027
1800	18.009	27.523	15.696	21 - 288	-35.963	-14.586	1.771
1550 2 000	18.519 19.030	28.510 29.473	16.345 16.977	23.114 24.992	-36 • 125 -36 • 248	-13.394 -12.194	1.541
2100	19.541	30.414	17.595	26.920	-36.333	-10.984	1.143
2200	20.051	31.335	18.198	28.900	-36.380	-9.773	0.971
2300	20.562	32.237	18.789	30.931	-36.389	-8.565	0.814
2400	21.072	33.123_	19.368	_33.012_	36.369_	7.350	0.669
2400 2500	21.072 21.072	40.623	19.368	51.012 53.120	-18.369 -18.315	-7.350 -6.890	0.669
2600	21.072	42.310	21.069	55.227	-18.285	-6.437	0.541
2700	21.072	43.105	21.870	57.334	-18.266	-5.980	0.484
2767.61	21.072	43.626	22.395	58.759	-18.265	-5.669	0.448
2767-61	21.072	43.626	22.395	58.759	-158.603	-5.669	0.448
2800	21.072	43.871	22.642	59.441	-158-436	-3.900	0.304
2900 3000	21.072 21.072	44.611 45.325	23.387 24.107	61.548	-157.933 -157.432	1.610 7.106	-0.121 -0.518
3100	21.072	46.016	24.802	65.763	-150.737	12.585	-0.887
3200	21.072	46.685	25.476	67.870	-156.448	18.043	-1.232
3300	21.072	47.334	26.128	69.977	-155.945	23.482	-1.555
3400	21.072	47.963	26.761	72.084	-155-467	28.917	-1.859
3500	21.072	48.573	27.376	74-192	. 155-018	34.335	-2.144
			15 June l	963			RED

$$\Delta H_{f298.15}^{\circ} = -23.8 \pm 1.8 \text{ kcal gfw}^{-1}$$

$$S_{298.15}^{\circ} = 4.0 \pm 1.0 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$T_{m} = 2400 \,^{\circ}\text{K}$$

$$\Delta H_{m} = 18.0 \text{ kcal gfw}^{-1}$$

$$C_{p}^{\circ} = 8.818 + 5.106 \times 10^{-3} \text{T cal deg K}^{-1} \text{ gfw}^{-1}$$

$$298.15 \,^{\circ}\text{K} \leq T \leq 2400 \,^{\circ}\text{K}$$

$$C_{p}^{\circ} = 21.072 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$2400 \,^{\circ}\text{K} \leq T \leq 3500 \,^{\circ}\text{K}$$

Structure

Face-centered-cubic C1-type: a = 4.33 kX.

Heat of Formation

Third Law calculation of Pollock's data yields -23.8 ± 1.8 kcal gfw-1.

Heat Capacity and Entropy

The heat-capacity equation of Neely et al² has been extrapolated to 2400 °K. A constant heat capacity of 21,072 cal degK⁻¹ gfw⁻¹ has been used to 3500 °K. An entropy value of 4.0 \pm 1 is based on Krikorian's 3 estimate of Δ F₂₉₈ and Δ H₂₉₈.

Melting and Vaporization

The melting point of 2400 ± 30°K is based upon the Brewer et al4 value of 2373 °K and Gaev's reported decomposition at 2423 °K.

References

- Pollock, B., J. Phys. Chem. <u>63</u>, 587 (1959).
 Neely, J., C. Teeter, and J. Trice, J. Am. Ceram. Soc. <u>33</u>, 363 (1950).
- 3. Krikorian, O., UCRL 2888 (1955).
- 4. Brewer, L., L. Bromley, P. Gilles, and N. Lofgren, The Chemistry and Metallurgy of Miscellaneous Materials, In: Thermodynamics, McGraw-Hill, New York (1950).
- 5. Gaev, I., AEC-TR-3036, Transl. from Zh. Neorg. Khim. 1, 196 (1956).

(CONDENSED PHASE) GF# = 30.037 BERYLLIUM CARBIDE (Re,C) SUMMARY OF UNCERTAINTY ESTIMATES

. °K	′ (° P	ed -()	FҰ - Н3 ₉₈)/Т ^¹	HT - H298	ΛΗγ	AF9 \	1 og K
298.15	± 0.775	± 1.000	± 1.000	± 0.000	± 1.800		
500	± 0.852	± 1.419	± 1.091	± 0.164			
1000	± 1.044	± 2.069	± 1.430	1 0.638			
1500	± 1.235	± 2.528	± 1.723	± 1.208			
2000	± 1.427	± 2.910	± 1.973	± 1.874			
2400	± 1.580	± 3.184	* 2.152	± 2.475			
2400	± 3.000	± 4.684	± 2.152	± 6.075			
2500	± 3.000	± 4.806	± 2.256	± 6.375			
3000	± 3.000	± 5.353	± 2.728	± 7.875			
3500	± 3.000	± 5.815	± 3.137	± 9.375			

Reference State for Calculating \H*. \F*, \F*, and Log Kp. Solid Be from 0* to 1556*K, Liquid Be from 1556* to 2768*K, Gaseous Be from 2768* to 6000*K, Gaseous Oz, Gaseous BezOz

T 0#	("	<u></u>	-(FT - H ₂₉₈)/T	(_ Kcal/gfw		
T,°K	(p	5 _T	-(F _Т - Н ₂₉₈)/Г`	H _T - H ₂₉₈	ΔH_f	A F/	Log Kp
0	0.000	0.000	INFINITE	-3.000	-101.691	-101.691	INFINITE
298 - 15	10.831	58.562	58.562	0.000	-101.700	-103.188	75.635
300	10.866	58.629	58.562	0.020	-101.707	-103.197	75.175
400	12.712	62.012	59.011	1.200	-102.117	-103.633	56.620
500	14.265	65.022	59.918	2.552	-102.502	-103.965	45.441
600	15.461	67.734	60.998	4.041	-102.857	-104.225	374962
700	16.356	70.188	62.139	5.634	-103.185	-104.428	32.602
800 900	17.026	72.418	63.2A6	7 - 305	-103.504	-104.584	28.570
1000	17.533 17.922	74.454 76.323	64.416 65.514	9.034 10.808	-103.825 -104.157	-104.698 -104.777	25 • 423 22 • 898
1100	18.225	78.046	66.576	12 414	-104 514		20 4 8 2 6
1200	18.464	79.642	67.599	12.616 14.451	-104.514 -104.895	~104.825 -104.839	19.093
1300	18.657	81.128	68.584	16.307	-105.306	-104.821	17.621
1400	18.813	82.516	69.530	18.181	-105.748	-104.769	16.354
1500	18.942	83.819	70.439	20.069	-106.226	-104.679	15.251
1556	19.003	84.513	70.932	21.132	-106.512	-104.613	14.693
1556	19.003	84.513	70.932	21.132	-113.580	-104.613	14 + 693
1600	19.048	85.045	71.314	21.969	-113.735	-104.361	14.254
1700	19.138	86.203	72.156	23.878	-11 -095	-103.764	13.339
1800	19.214	87.299	72.967	25.796	-114.462	-103.147	12.523
1900 2000	19.279 19.335	8H • 334 84 • 330	73.749 74.504	27.721 29.652	-114.837 -115.222	-102.509 -101.852	11.791
, 500	170133	0,0,0	14.704	67.016	1170262	101.6072	
210.	19.383	90.274	75.232	31.588	-115.618	-101.169 -100.472	10.528
2300 2300	19.426 19.463	91.177 92.041	75.93 <i>1</i> 76.618	33.528 35.473	-116.025 -116.444	-100.472	9.981 9.479
2400	19.495	92.041	77.778	37.421	-116.874	-99.019	9.016
2500	19.524	93.667	77.918	39.372	-117.319	-98.268	8.590
2600	19.550	94.433	78.539	41.325	-117.776	-97.498	8 - 195
2700	19.573	95.1.1	79.141	43.282	-118.245	-96.710	7.828
2767.61	1	95.6 7	79.540	44.613	-118.572	-96.164	74592
2767.61	19.587	95.657	14.540	44.613	-258.882	-96.164	7.592
2800	14.594	95.884	19.726	45.240	-258.877	-94.280	7.359
3 9 0 C	19.612	96.572	80.295	47.200	-258.865	-88.401	6.662
3000	19.629	97.237	80.849	49.163	-258.856	-82.518	6.011
3100	19.644	97.881	81.388	51 • 126	-258.856	-76.637	5.403
3200	19.658	98.404	81.913	63.091	-258.863	-70.762	4.833
3300	19.671	99.110	A2.425	55.058	-250.875	-64.889	4.297
3400 3500	14.682 14.693	99.697 100.268	82.925 84.417	57.076 58.994	-251. 27	-59.010 -53.123	3.793 3.317
					369 047	-47 26A	2.040
3600	19.702	100.821	84.988 84.353	60.964 62.935	-258.767 -259.015	-47.250 -41.364	2 • 868 2 • 443
3700 3800	19.711 19.720	101.363 101.888	84.808	64.907	- 159.078	-35.485	2.041
3900	17.127	102.401	84.252	66.879	-259.153	-29.593	1.658
4000	19.734	162.900	85.687	68.852	-259.242	-23.708	1.295
4100	19.741	103.386	86.113	70.826	-259.346	-17.818	0.950
4100 4200	19.747	103.864	86.530	72.800	-259.466	-11.921	0.620
4300	19.753	104.328	86.939	74.775	-259.504	-6.029	0.306
4400	19.758	104.782	87.339	16.751	~259.760	-0.126	0.006
4500	19.763	105.227	87.732	78.727	-259.933	5.769	-0.280
4600	19.768	105.561	88.117	80.704	-260 • 130	11.676	-0.55
4700	19.77.	106.056	88.494	82.681	-260.348	17.605	-0.81
4800	19.776	106.503	86.865	84.658	~ 60 • 592	23.513	-1.07
4900 5000	19.780 19.784	106.410 107.310	89.229 89.587	86.636 88.514	-260.859 -261.154	29.434 35.365	-1.313 -1.54
,000						A1 . 3A1	-1.77
5100	19.787	107.702	89.938	90.593	-261.479 -261.834	41.304	-1.74
5200	19.790	108.086	90.284 90.623	94.551	-262.226	53.187	-2.19
5300	19.793	108.463 108.833	90.957	96.531	-262.652	59.150	-2.19
5400 5500	19.796 19.799	109.196	91.285	98.510	-263-120	65.115	-2.58
	19.802	109.553	91.608	100-491	-263.630	71.088	-2.77
560C	19.804	109.904	91.926	102.471	-264.188	77.075	-2.95
5700 5800	19.806	110 6	92.239	104.451	-264.802	81.076	-3.13
5900	19.8	110.777	92.547	106 - 432	-265.476	89.077	-3.29
6000	19.411	110.920	92.951	108-413	-266.215	95.106	-3.46
			15 Septen	nber 1962			RCF

DIMERIC BERYLLIUM OXIDE (Be2O2) (IDEAL MOLECULAR GAS) gfw= 50.026

$$\Delta H_{f0}^{*} = -101.691 \text{ Kcalgfw}^{-1}$$

$$\Delta H^{\bullet}_{f298.15} = -107.700 \text{ kcal gfw}^{-1}$$

Point Group = planar

$$S^{\bullet}_{298.15} = 58.562 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$H^{\circ}_{298.15} - H^{\circ}_{0} = 3.000 \text{ Kcal gfw}^{-1}$$

Bond lengths and angles:

Be-O distance = 1.63 A

Heat of Formation

Third law calculations of the data of Chupka, et al were made.

Heat Capacity and Entropy

Values of C_p^* , S_t^* , $(F-H_{298}^*)/T$ and $H-H_{298}^*$ given by Hildenbrand 2 were used.

References

- 1. Chupka, W., et al. J. Chem. Phys. 30, 827 (1959).
- 2. Hildenbrand, D.L., Aeronutronic Publ. No. C-623, Contract NOrd 17980 (Sept. 1959).

CONDENSED PHASE

Reference State for Calculating AH₁, Al₁, and Log K_p. Solid Be from 0° to 1556°K, Liquid Be from 1556° to 2767°K, Gaseous Be from 2767° to 6000°K, Gaseous N₂. Solid Be₃N₂ from 0° to 2470°K, Liquid Be₃N₂ from 2470° to 3500°K.

500 500 500 500 500 500 500 500	16.498 16.580 19.825 21.884 23.477 24.849 26.104 27.291 28.435 29.552 30.650 31.734 32.809 33.877	12.000 12.102 17.362 22.020 26.155 29.879 33.280 36.424 39.358 42.121 44.740 47.236 49.627	12.000 12.000 12.695 14.104 15.774 17.528 19.287 21.019 22.707	0.000 0.031 1.867 3.958 6.228 8.646 11.194 13.864 16.651	-132.000 -132.003 -132.184 -132.305 -132.405 -132.388 -132.388 -132.322	-119.890 -119.814 -115.724 -111.591 -107.443 -103.284 -99.126 -94.967	87 • 878 87 • 280 63 • 225 48 • 774 39 • 134 32 • 245 27 • 679
298-15 00 600 600 600 600 600 600 600	16.580 19.875 21.884 23.477 24.849 26.104 27.291 28.435 29.52 30.650 31.734 37.809 33.877	12.102 17.362 22.020 26.155 29.879 33.280 36.424 39.358 42.121 44.740 47.236	12.000 17.695 14.104 15.774 17.528 19.287 21.019 22.707 24.348 25.939	0.031 1.867 3.958 6.228 8.646 11.194 13.864 16.651	-132.003 -132.184 -132.305 -132.380 -132.405 -132.388 -132.332	-119.814 -115.724 -111.591 -107.443 -103.284 -99.126 -94.967	87.280 63.225 48.774 39.134 32.245 27.079
500 500 500 700 800 900 900 000 100 700 300 400 556	16.580 19.875 21.884 23.477 24.849 26.104 27.291 28.435 29.52 30.650 31.734 37.809 33.877	12.102 17.362 22.020 26.155 29.879 33.280 36.424 39.358 42.121 44.740 47.236	12.000 17.695 14.104 15.774 17.528 19.287 21.019 22.707 24.348 25.939	0.031 1.867 3.958 6.228 8.646 11.194 13.864 16.651	-132.003 -132.184 -132.305 -132.380 -132.405 -132.388 -132.332	-119.814 -115.724 -111.591 -107.443 -103.284 -99.126 -94.967	87.280 63.225 48.774 39.134 32.245 27.079
500 500 700 700 800 900 000 100 700 300 556	19.875 21.884 23.477 24.849 26.104 27.291 28.435 29.552 30.650 31.734 37.809 33.877	17.362 22.020 26.155 29.879 33.280 36.444 39.358 42.121 44.740 47.236	17.695 14.104 15.774 17.528 19.287 21.019 22.707 24.348 25.939	1-867 3-958 6-228 8-646 11-194 13-864 16-651	-132.184 -132.305 -132.380 -132.405 -132.388 -132.332	-115.724 -111.591 -107.443 -103.284 -99.126 -94.967	63.225 48.774 39.134 32.245 27.079
500 500 700 900 900 900 900 900 900 9	21.884 23.477 24.849 26.104 27.291 28.435 29.552 30.650 31.734 32.809 33.877	22.020 26.155 29.879 33.280 36.474 39.358 42.121 44.740 47.236	14.104 15.774 17.528 19.287 21.019 22.707 24.348 25.939	3.958 6.228 8.646 11.194 13.864 16.651	-132.305 -132.380 -132.405 -132.388 -132.332	-111.591 -107.443 -103.284 -99.126 -94.967	48.774 39.134 32.245 27.079
500 700 800 900 000 100 700 300 400 556	23.477 24.849 26.104 27.291 28.435 29.552 30.650 31.734 32.809 33.877	26.155 29.879 33.280 36.424 39.358 42.121 44.740 47.236	15.774 17.528 19.287 21.019 22.707 24.348 25.939	6.228 8.646 11.194 13.864 16.651	-132.380 -132.405 -132.388 -132.332	-107.443 -103.284 -99.126 -94.967	39 • 134 32 • 245 27 • 079
700 900 900 000 100 700 300 400 556	24.849 26.104 27.291 28.435 29.552 30.650 31.734 32.809 33.877	29.879 33.280 36.424 39.358 42.121 44.740 47.236	17.528 19.287 21.019 22.707 24.348 25.939	8.646 11.194 13.864 16.651	-132.405 -132.388 -132.332	-103.284 -99.126 -94.967	32 • 245 27 • 079
800 900 000 100 700 300 400 556	26.104 27.291 28.435 29.552 30.650 31.734 32.809 33.877	33.280 36.424 39.358 42.121 44.740 47.236	19.287 21.019 22.707 24.348 25.939	11.194 13.864 16.651	-132.388 -132.332	-99.126 -94.967	27.079
900 000 100 700 300 400 500	27.291 28.435 29.52 30.650 31.734 37.809 33.877	36.4/4 39.358 42.121 44.740 47.236	21.019 22.707 24.348 25.939	13.864 16.651	-132.332	-94.967	
000 700 300 400 500	28.435 29.552 30.650 31.734 32.809 33.877	39.358 42.121 44.740 47.236	22.107 24.348 25.939	16.651			
100 200 300 400 500	29.552 30.650 31.734 32.809 33.877	42.121 44.740 47.236	24.348 25.939		-132.236		23.060
200 300 400 556 556	30.650 31.734 32.809 33.877	44.740 47.236	25.939	19.550		-90.822	19.848
300 400 556 556	31.734 32.809 33.877	47.236	25.939		-132-114	-86.691	17.223
400 500 556 556	32.809 33.877			22.561	-131.956	-82.572	15.038
500 556 556	33.877	49.627	27.482	25.680	-131.763	-78.466	13.191
556 556			28.979	28.907	-131.535	-74.376	11.610
556	34.472	51.927	36.433	32 • 24 2	-131.273	-70.300	10.242
556		53.180	31.229	34 - 155	-131.115	-68.028	9.554
	34.469	53.180	31.229	34 - 155	-141.675	-68.028	9.554
600	34.936	54.147	31.846	35.682	- 41.425	-65.945	9.007
700	35.994	.6.297	33.221	39.229	-140.799	-61.245	7.873
800 000	37.049	58.384	34.561	42.881	-140.090	-56.584 -51.966	6 • 870 5 • 977
900 nor	78.101 79.151	60.415 62.346	35.869 37.146	46 • 639 50 • 501	-139.295 -138.414	-47.392	5.179
1		0.00		,,,,,,,,			
100	40.199	64.312	38.395	54.468	-137.447	-42.856	4.460
200	41.246	66.226	39.617	58 - 541	-136 • 393	-38.374	3.812
300	42.291	68.083	40.814	62 - 717	-135.258	-33.942	3 • 2 2 5
400	43.336	69.905 71.161	41.989 42.798	66.999 70.058	-134.046	-29.560 -26.537	2 • 692 2 • 348
470	44.057	83.661	42.798	100.933	-102.254	-26.537	2.348
son	44.067	84.193	43.291	102.255	-101.851	-25.605	2.238
	44.067	85.921	44.898	106-662	-100.537	-22.583	1.898
600 700	44.067	87.584	46.448	111.068	-99.242	-19.610	1.587
767.61	44.007	88.674	47.466	114.048	-98.383	-17.627	1.392
767.61	44.057	68.674	47.466	114.048	-308.890	-17.627	1.392
800	44.067	89.187	47.946	115.475	-308.229	-14.249	1.112
900	44.067	90.734	49.395 50.798	119-882 124-288	-306.205 -304.186	-3.782 6.618	0.285 -0.482
000	44.067	92 1	200110	1240200	3041100	0.010	00402
100	44.067	43.672	£2.153	128.695	-30, -173	10.946	-1.195
200	44.067	95.071	53.477	133-102	-301.169	27.206	-1.858
300	44.057	96.427	54.758 56.20 1	137.509	-296 .141 -296 .152	37.398 47.540	-2.477 -3.056
400	44.067 44.067	97.143 99.020	57.214	146.322	-294.205	57.626	-3.598
500	44407	,,,,,,,					

 $\Delta H_{1298.15}^2 = -132 \pm 3 \text{ kcal gfw}^{-1}$

 $S_{298, 15}^* = 12 \pm 2 \text{ cal deg}^{-1} \text{ gfw}^{-1}$

Tm = 2470°K

 $\Delta H_{\rm m} = 30.875 \pm 3.7 \, \rm kcal \, gfw^{-1}$

 $C_p = 18.510 + 10.377 \times 10^{-3} \text{ T} - 45.390 \times 10^{+4} \text{ T}^{-2} \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

298°K ≤ T ≤ 2470°K

Cp = 44.06 cal deg K-1 gfw-1

2470°K < T < 3500°K

Structure

Body centered anti-Mn₂O₃ (D5) structure: a = 8.13 \pm 0.10 kX.

Heat of Formation

Value obtained from NBS Report 6645 based on Neumann et al 2 direct nitriding.

Heat Capacity and Entropy

Low-temperature data was estimated by Kelley. High-temperature data of Sato and Kelley was recalculated and extrapolated. Liquid heat capacity assumed equal to that of solid at m.p. and constant to 3500°K.

Melting and Vaporization

Melting point assumed at 2470°K based on Brewer et al.

References

- 1. Beckett, C. W., et al, Prelim, Report, Selected Light Element Compds, NBSR 6645 (1960).
- 2. Neumann, B., C. Kroger, & H. Haebler, Z Anorg, U Allgem Chim. 204,81 (1932).
- 3. Kelley, K. K., Bur of Mines Bulletin 407 (1937).
- 4. Sato, S., Sci Papers Inst. Phys. Chem. Research (Tokyo) 34,888 (1938).
- 5. Kelley, K. K., U.S. Bureau of Mines Report 584 (1960).
 6 Brewer, L., L. Bromley, P. Gilles, & N. Lofgren., The Chem & Met of Miscellaneous Materials., McGraw-Hill (1950).

BERYLLIUM NITRIDE (Be3N2)

(CONDENSED PHASE)

GFW = 55.055

SUMMARY OF UNCERTAINTY ESTIMATES

		cal/°K	ste		Kcal giw		
T, "K	رد _ي	2,1	.(F _T - H ₂₉₈) T	\ н _т - н ₂₉₈	NH _I	111	log K _p
298.15	±0.826	± 2.000	± 2.000	±0.000	±3.000		
500	£1.094	± 2.501	± 2 • 105	±0-198			
1000	±1.421	± 3.368	± 2.535	±0.832			
1500	±1.693	±3.996	£ 2.922	±1.612			
1556	±1.723	£4.059	± 2.961	*1 • 707			
1556	±2.757	+4.059	+ 2 . 961	+1 + 707			
2000	±3.132	±4.796	±3.289	±3.015			
2470	£3.525	±5.497	± 3 • 643	±4 + 580			
2470	±5.000	±6.995	± 3 • 6 4 3	±8 • 280			
2500	±5.000	± 7.056	+ 3 . 684	£8.430			
3000	45.000	±7.967		±10.930			
3500	±5.000	£8.738		± 13.430			

Reference State for Calculating AH₁² AF₁² and Log K_p Solid Be from 1° to 1556°K, Liquid Be from 1551° to 2718°K, Caseous Be from 2768° to 6000°K, Caseous O₂, Caseous Be₃O₃

1 %		Call N K			_ Krai piw		
T, "k	C p.	21	(I _T = Ho _{gg})/1 ^N	′н _т - н _{уон}	VH4	111	lo∦ K _P
^							_
ი 298•15	0.000 15.367	0.000	INFINITE		-251.936	-251.936	INFINITE
300	15.443	64.254	64.254	0.000	-252.700	-247.899	181.706
400	19.195	64.349 69.375	64.254 64.907		-252.713 -253.359	-247.868	180.563
500	22-101	13.936	66.258	1 • 7 • 7 3 • 8 3 8	-253.893	-246.156 -244.288	106.773
600	24.248	78.165	67.895	6.161	-254.336	242.327	88.263
700	25.820	82.02H	69.645	8 • 669	~754.710	-240.296	75.020
800	26.981	85.555	71.415	11.312	-255.052	-238.215	65 • 074
900 000	27.850 28.513	88.786 91.756	73.168 /4.880	14.056 16.875	-255.383 -255.723	-236.086 -233.925	57.327 51.122
							_
200 200	29.078 29.434	94.499	76.540	19.753	-256.092	-231.731	46.039 41.796
300	29.758	97.042 99.412	78.144 79.690	72.677 25.637	~256.492 ~256.933	-229.503 -227.240	38.201
400	30.072	101.627	81.179	28.627	-257.417	-224.941	35.113
500	30.238	103.706	82.612	31 • 640	-257.951	-222.599	32.431
556	30.341	104.814	83.387	33.341	-258.275	-221.264	31.076
556	30. 141	104.814	83.387	33.341	-268.877	-221.264	31.076
600	30.418	105.663	83.992	34.673	-269.033	-219.925	30.039
700	30.568	107.512	85.322	37.723	-26 .387	-216.845	27.876
800	30.696	109.763	86.604	40.786	~269.751	-213.747	25.951
900 000	30.805 30.898	110.926 112.508	87.840 89.035	43.862 46.947	-270.125 -270.514	-210.625 -207.486	24.226
							21.26
10	30.979	.14.018	90.189	50.041	-270.918	-204.319 -201.138	19.980
200	31.050	115.461	91 • 305 92 • 385	53.143 56.251	-271.337 -271.775	-197.938	18.80
300 400	31 • 117 31 • 167	116.842 118.168	93.432	59.365	-272.228	-194.715	17.730
400 500	31.715	119.441	94.447	62.484	-212.703	-191.476	16.73
600	41.258	120.666	95.432	65-608	-273.194	-188.219	15.82
700	41 • 296	121.847	96.389	68.736	-273.705	-184.945	14.97
767.61	31.321	122.624	97.022	70.865	-274.063	-182.703	14.42
767.61	31.321	122.624	97.022	70.865	-484.528	-182.703	14.42
2800	31.331	122.985	97.318	71.867	-484.458	-179.211	13.98
900	31.362	124.085	98.223	75.002	-484.246	-168.314	12.68
3000	31.340	125.149	44.102	78.139	-484.040	-157.413	11.46
3100	31.415	176.174	99.959	81.28C 84.422	-483.843 -483.659	-146.523 -135.652	10.32
3200	31.438	127.177	100.794	87.567	-483.483	-124.789	8.26
3300	31.460	128.144	101.609 102.403	90.714	-45 18	-113.917	7.32
3400 3500	31.479 31.496	129.084 129.997	103.178	93.864	-483 , 9	-103.045	6.43
	31.513	130.884	103.936	97.014	-483.U33	-92.199	5.59
3600 3 7 00	31.528	131.748	104.676	100.166	-482.909	-81.338	4.80
3700 3800	31.541	112.589	105.399	103.319	-492.809	-70.488	4.05
3900	31.554	137.408	106.107	106-474	-482.774	-59.632	3.34
4000	31.566	134.207	106.900	109.630	-482.661	-48.790	2.66
4100	31.577	134.987	107.478	112.787	-482.621	-37.942	2.02
4200	31.587	135.748	108.147	115.946	-482.603 -682.613	-27.089 -16.243	0.82
4300	31.597	136.491	108.792	119.105	-482.613 -482.652	-5.394	0.26
4400 4500	31.606 31.614	137.218	109.430	122.265	-482 14	5.442	-0.26
			110.669	128.588	-482.813	16.294	-0.7
4600	31.622	138.623	111.271	131.751	-482.943	27.166	-1.26
4700	31.629 31.636	139.969	111.862	1 14 . 914	-452-111	18.010	-1.7
4800 4800	31.642	140.6-2	112.442	138.078	-483.314	48.869	-2.18
4900 5000	31.648	141.741	113.012	141.742	-483.560	59.740	-2.61
5100	31.654	141.888	113.572	144-407	-483.851	70.614	-3.0
5100 5200	31.659	142.502	114.123	14/-573	-484 - 186	80.095	-3.30
5300	31.664	143.106	114.664	150.739	-484.577 -485.018	92.364	-3.80 -4.1
5400	31.669	143.697	115.196	153.906	-485.018 -485.522		-4.5
550C	31.674	144.279	115.720				
5600	31.678	144.849	116.235 116.742	160-241	-486.091 -486.730		-5.2
5700	31.682	145.410 145.961	117.241	166.578		140.946	-5.5
5800	31.686 31.6'	146.503	117.732	169.746	-488,266	157.887	
5900 6000	31.64)	147.036	118.216	172.916	-489.177	168.877	-6 • 1

TRIMERIC BERYLLIUM OXIDE (Be₃O₃) (IDEAL MOLECULAR GAS) gfw = 75.039

$$\Delta H_{f0}^{*} = -251.936 \text{ Kcal gfw}^{-1}$$

$$\Delta H^{*}_{f298.15} = -252.700 \pm kcal gfw^{-1}$$

Point Group = planar

$$S^{\bullet}_{298.15} = 64.254 \text{ cal degK}^{-1} \text{gfw}^{-1}$$

 $H^{\circ}_{298.15} - H^{\circ}_{0} = 3.750 \text{ Kcal gfw}^{-1}$

Bond lengths and angles:

Be-O distance = 1.63 A

Heat of Formation

Third law calculations of data by Chupka, et al were made.

Heat Capacity and Entropy

Values given by Hildenbrand² were used.

References

- 1. Chupka, W., et al, J. Chem. Phys. 30, 827 (1959).
- 2. Hildenbrand, D. L., Aeronutronic Publ. No. C-623, Contract NOrd 17980 (1959).

Reference State for Calculating \H; \A F; and Log Kp Solid Be from 0° to 1556 K. Liquid Be from 1556° to 2768 K. Gaseous Be from 2768° to 6000 K, Gaseous O2, Gaseous Be4O4

		cal/'K	Alw		Kcul/gfw		
T, °K	′ς μ _p	٠,	-(F _T - H ₂₉₈)/T	'н" - н ₂₉₈	ΔḦ́	11	Log Kp
n	0.000	0.000	INFINITE	-4.500	-376.082	-376.082	INFINITE
298-15	21.520	72.309	72.309	0.000	-377.600	-167.215	269.163
300	21.625	72.442	72.310	0.039	-377.615	-367.149	267.45
400	26.751	79.393	73.222	2.468	-378.366	-363.546	198.623
500	10.685	85.507	75.107	5.349	-378.959	-359.766	157.24
600	33.581	91.6/1	77.387	8.570	-379.426	-355.885	129.62
700	36.696	97.015	79.815	12.040	-379.798	-351.932	109.87
800	37.257	101.889	82.274	15.691	-380.127	-347.930	95.04
900 1000	38.425 39.316	106.348 110.444	84.705 97.077	19.478 23.367	-380.440 -380.763	-343.882 -339.803	83.50. 74.26
							74.20
1100	40.006	114.775	89.375	27.335	-381.125	-335.696	66 • 69
1200	40.551	117.730	91.594	31 • 364	-381.52A	-331.554	60 • 38
1300	40.486	120.994	93.731	35.441	-381.985	-327.375	55.03
1400 1500	41.340	124.045	95.789 97.769	39.558 43.707	-382.500 -383.083	-323.158 -318.895	46.46
		120.707	71.10	43.707	-303.003	-310.079	40.40
1556 1556	41.765 41.765	128.430	48.837	46.044	-383.444	-316.479	44.44
1600		128-430	98.839	46.044	-397.580	-316.479	44.44
700	41.871 42.073	129.602	99.675	47.883	-397.725	-314.197	42.91
1800	42.244	132.147	101.511	52.080	99 - 066	-308.966	39.71
		134.557	103.281	56.796	~398.420	-303.719	36 . 87
1900 2000	47.340 42.516	136.845	104.987 106.635	60.528 64.774	-398.18A -399.174	-298.448 -293.158	34.32
			_				
2100	42.625	141.099	108.227	69.031	-399.581	-287.840	29.95
2200	42.719	143.085	109.767	73.298	-400-008	~282.509	28.06
2300	42.803	144.985	111.257	77.575	-400.459	-277.161	26 • 33
2400 2500	42.876 42.941	146.809	112.701 114.100	81.859 86.150	-400.931 -401.432	-271.786 -266.395	24 • 74 ! 23 • 28
		/ \					
2600	42.998	150.246	115.458 116.777	90.447 94.749	-401.955	-260.985	21.693
270C	43.050	151 - 869			~402.505 ~403.893	-255.557	20.68
7767.61	43.081 43.081	152.938	117.650	97.678	-402.892	-251.850 -251.850	19.88
7767-61		152.938	117.650	97.678	-683.512		19.88
2806 2900	43.096 43.138	153.436	118.058 119.305	99.056 103.368	-683.378 -682.962	-246.857 -231.275	19.26
30un	43.175	156.412	120.517	107.684	-682.554	-215.693	15.71
3100	43.209	157.628	121.698	112.003	-682.161	-200.131	14.10
3200	43.240	159.701	122.849	116.326	-681.782	-184.598	12.60
3300	43.269	160.532	123.970	120.651	-6.1.415	-169.071	11.19
1400	43.294	161.824	125.06.	124.979	-68 063	-153.550	9.87
3500	43.318	161.079	126.13.	129.310	-681 732	-138.028	8.61
360C	43.340	164.300	127.177	133.643	-680.419	-122.544	7.43
3700	43.360	165.487	128.196	137.978	-680-122	-107.041	6.32
3800	43.378	166.644	129.193	142.315	-679.855	-91.563	5.26
3900	43.395	167.771	130.167	146.654	-679.610	-76.072	4.26
4000	43.411	168.820	131.121	150.994	-679.394	-60.604	3.31
4100	43.426	169.7/2	132.055	155.336	-679.208	-45.135	2.40
4100 4200	43.440	170.989	132.970	159.680	-679.052	-29.664	1.54
4700 4300	43.453	172.011	133.866	164.024	-678.934	-14.207	0.72
	43.464	173.010	134.744	168.370	-679.852	1.258	-0.06
4400 4500	43.476	173.987	135.605	172.717	-618.803	16.704	-0.81
	43 484	174.943	136.450	177.065	-678.803	32.159	-1.52
4600 4700	43.486	175.878	137.279	181.41	-578.843	47.642	-2.21
470C	43.505	176.794	138.093	185.765	-678.935	63.083	-2.87
4800 4800	43.514	177.691	138.897	190.116	-679.074	78.541	-3.50
490C 500C	43.522	178.570		194.467	-679.24	94.015	-4.10
		170	140 449	198.820	-679.524	109.491	-4.69
5100	43.529	179.432	140.44B	203.174	-679.839	123.108	-5.17
5200	43.536	180.278	141.106 141.151	207.527	-680.227	140.438	-5.79
5300	43.543	181.107	147.683	211.882	-680.684	155.947	-6.31
5400 5500	43.550	182.720		216.237	-681.223	171.443	-6.81
				720.593	-681.849	186.953	-7.29
5600	43.567	183.505 184.276		224.950	-682.568	202.483	-7.76
570C	43.567		145.498	229.307	-683.399	218.037	-8.21
5800 5100	43.172	[85.034 185.779		273.664	-684.352	233.581	-8.65
5400 6300	43.577 •3.582	186.511		238.022	-685.436	249.178	-9.01
			15 Sente	mber 1762			nge

TETRAMERIC BERYLLIUM (IDEAL MOLECULAR GAS) gfw = 100,052 OXIDE (Be404)

 $\Delta H^{\circ}_{f0} = -376.082 \text{ Keal gfw}^{-1}$

 $\Lambda H^{\bullet}_{f298,15} = -377.600 \pm 4.000 \, \text{Kcal gfw}^{-1}$

Point Group = planar

 $S^{\circ}_{298.15} = 72.309 \text{ cal degK}^{-1} \text{gfw}^{-1}$

H^{*}298.15 -H^{*}0= 4.500 Kcal gfw⁻¹

Bond lengths and angles:

Be-O distance = 1.63 A

Heat of Formation

Based on data of Chupka et al 1.

Heat Capacity and Entropy

Values given by Hildenbrand were used.

References

- 1. Chupka, W., et al, J. Chem. Phys. 30, 827 (1959).
- 2. Hildenbrand, D. L., Aeronutronic Publ. No. C-623, Contract NOrd 17980 (1959).

2-56

Reference State for Calculating AH*, AF*, and Log Kp. Solid Be from 0* to 1556*K. Liquid Be from 1556* to 2768*K, Gaseous Be from 2768* to 6000*K, Gaseous O2, Gaseous Be5O5

T 00	(°		0 0	(Kcal/giw		
T, °K	P	S _T	-(F ^L - H ³⁹⁸)/L	H _T - H ₂₉₈	ΔH	VE	Log Kp
0	0.006	0.0.0	INFINITE	_6 254	-500 333	-686 433	INCINE
298.15	27.673	79.700	79.700	-5.250 0.000	-500.227 -502.500	-500.227 -486.332	356.474
300	27.806	79.871	79.701	0.051	-502.517	-486.231	354.202
400	34.307	88.798	80.873	3.169	-503.374	-480.671	762.614
500	39.269	97.013	83.292	6.860	-504.025	-474.911	207.57
600 700	42.913 45.573	104.513	86.214 89.323	10.979 15.410	-504.516 -504.888	-469.045 -463.103	170 - 841
800	47.532	117.558	92.469	20.070	-505 - 202	-457.113	144.580
900	49.000	123.245	95.578	24.901	-505.497	-451.079	109.53
000	50.118	128.469	98.609	29.859	-505.804	~445.017	97.25
100	50.985	133.288	101.546	34.916	-506.159	-438.929	87 . 20
200	51.668	137.754	104.379	40.050	-506.565	-432.806	78.82
300	52.215	141.912	107.108	45.245	-507.038	-426.646	71 • 722
400 500	52.658 52.022	145.799	109.735 112.262	50.489 55.774	-507.584 -508.214	-420.446 -414.194	60 • 34 !
556	53-196	151.383	113.626	58.750	~508.610	-410.659	57.67
556	53.196	151.383	113.626	58.750	-526.280	-410.659	57.67
600	53.325	152.877	114.694	61.092	-526.41R	-407.406	55 . 64
700	53.578	156.117	117.036	66.437	-526 45	-399.958	51.41
800	53.793	159.186	119.293	71.806	-527-089	-392.494	47.65
900 000	53.976 54.134	162.099 164.872	121.470 123.572	77•195 82•601	-527.450 -527.834	-385.009 -377.504	44.28
100	54.270	167.517	125.602	88.021	-528.244	-369.968	38.50
200	54.389	170.044	127.565	93.454	-528.679	-362.421	36.00
300	54.493	177.464	129.465	98.898	-529.145	-354.857	33.71
400	54.585	174.785	131.305	104.353	-529.635	-347.262	31.62
500	54.666	177.015	133.089	109-815	-530-162	-339.654	29.69
600	54.738	179.161	134.820	115.286	-530.717	-332.025	27.90
700	54.803	181.228	136.501	120.763	-531 - 305	-324.377	26 • 25
767.61	54.843	182.588 187.588	137.613		-531.722	-319.156 -319.156	25 • 19 25 • 19
767.61 800	54.843 54.861	181.222	137.613	124.491 126.246	-882.496 -882.297	-312.643	24.40
900	54.913	185.146	139.722	131.735	-881 -678	-292.307	22.02
1000	54.960	187.011	141.268	137.229	-881.069	-271.982	19.81
1100	55.003	188.814	142.773	142.727	-880.478	-251.681	17.74
200	55.042	190.060	144.239	148.229	-879.906	-231.417	15 - BC
300	55.078	192.255	144.668	153.735	-879. `48	-211-169	13.98
1400 1500	55.110 55.147	193.400 195.447	147.063 148.424	164.757	-878.67 -878	-190.926 -170.688	12.27 10.65
1600	55.167	197.051	149.753	. 10 - 273	-877.805	-150.494	9.13
3700	55.192	198.561	151.052	175.791	-877.334	-130.287	7.69
1800	55.215	200.035	152.327	181.311	-87 .902	-110.110	6.33
1900	55.237	2 470	154.564	186.834	-876.496	-89.925	5.03
•000	55.257	202.664	154.779	192.358	-876.127	-69.766	3.61
10C	55.275	204.211	155.968	197.885	-875.795 -875.501	-49.606 -29.450	2.64
•200	55.297	205.565	157.134 158.275	208.944	-A75.253	-9.312	C . 47
4300	55.30R	206.867 208.138	154.394	214.475	-875.053	10.830	-0.53
4400 4500	55.323 55.337	209.382	160.491	220.008	-874.892	30.948	-1.50
460 0	55.350	210.598	161.567	225.543	-874.792	51.078	-7.42
6700	55.363	711.789	162.623	231.578	174.144	71.238	-3.31
6800	55.374	212.954	163.660	236 - 615	-874.760	91.344	-4 - 1
4900 5000	55.385 55.395	214.096 215.215	164.677 165.677	242.153 247.692	-874.835 -874.978	111.472	-4.31 -5.75
			166.654	253.232	-875.198	151.759	-6.50
5100	55.405	216.312 217.388	167.624	258.774	-875.492	169.579	-7.12
5200	55.414	718.444	168.573	264.315	-875.878	197.036	-7.91
5 3 C C	55.427 55.430	219.480	169.506	269.858	-876 - 349	212.212	-8.56
540C 5500	55.438	220.497	170.424	275.401	-876.924	232.374	-9.2
5600	55.445	221.496	171.327	280.945	-817.607	252.551	-9.85
5700	55.457	222.478	172.216	286.490	-878.4C7 -879.346	272.751 292.979	-10.4
5800	55.45P	223.442	174.091	.192.036 .297.587	-879 · 146	113.193	-11.6
5900	55.465	274.390		3039	~881 • 693	333.474	-12.1
600C	55.470	225.322	11-400-1				••••
							RCF

PENTAMERIC BERYLLIUM OXIDE (Be505) (IDEAL MOLECULAR GAS) g(w = 125.065

$$\Delta H^{\circ}_{f0} = -500.227$$
 Kcal gfw -1

$$\Delta H^{\bullet}_{f298.15} = -502. \text{ Kcal gfw}^{-1}$$

Point Group = planar

$$S^{\bullet}_{298.15} = 79.700 \text{ cal deg} K^{-1} \text{gfw}^{-1}$$

$$H^{\bullet}_{298.15} - H^{\bullet}_{0} = 5.250 \text{ Kcal gfw}^{-1}$$

Bond lengths and angles:

Be-O distance = 1.63 A .

Heat of Formation

Based on data of Chupka et al.

Heat Capacity and Entropy

Values given by Hildenbrand² were used.

References

- 1. Chupka, W., et al, J. Chem. Phys. 30, 827 (1959).
- 2 Hildenbrand, D. L., Aeronutronic Publ. No. C-623, Contract NOrd 17980 (1959).

Reference State for Calculating \H; \LP\$ and Log K, Solid Be from 0° to 1556°K. Liquid Be from 1556° to 2768°K. Gaseous Be from 2768° to 6000°K, Gaseous O2, Gaseous Be6O6

T, °K	("	, a	-(1 H ₂₉₈)/1\		Kcal/gfw		
•• •	`р	1,4	-u 1 H5/8)/1	H ₁ - H ₂₉₈	ΔHÏ	V + 3)	Log Kp
0	0.000	0.000	INFINITE	-6.000	-629.773	-629.773	INFINIT
298 15	33.825	86.687	86.687	0.000	-632.800	-610.729	447.65
300	33.988	86.896	86.688	0.062	-632.819	-610.591	444.79
400	41.864	97.798	86.121	3.870	-633.781	-603.035	329.46
500	47.853	107.817	91.073	8.371	-634.491	-595.255	760.17
600	52.246	116.951	94.637	13.388	-635.006	-587.362	213.93
700	55.449	125.258	98.427	18.781	-635.376	-579.391	180.86
800	57.808	132.624	102.261	24.450	-635.677	-571.374	156.06
900	59.574	139.740	106.047	30.323	-635.954	-563.313	136.76
1000	60.920	146.089	109.738	36 • 351	-636.244	-555.227	121.33
1100	61.963	151.946	113.312	42.497	-636.593	-547.118	108.69
1200	62.785	157.375	116.761	48.736	-637.002	-538.974	98 - 15
1300	63.443	167.427	120.082	55.049	~637.490	-530.793	89.23
1400	63.976	167.149	123.277	61.421	-638.056	-522.568	81.5
1500	64.414	171.578	126.351	67.841	-638.744	-514.28R	74.92
1556	64.622	173.932	128.009	71.456	-639.176	-509.610	71.57
1556	64.627	173.932	128.009	71.456	-660.296	-509.610	71.57
1600	64.778	175.747	129.309	74.301	-660.427	-505.370	69.02
1700	65.083	177.684	132.158	80.795	-660.740	-495.664	63.71
1800	65.341	183.412	134.902	87.316	-561.074	-485.943	58.99
1900	65.562	186.951	137.549	93.862	-661.428	-476.202	54.77
2000	65.751	190.318	140.104	100-428	-661.810	-466.440	50.96
2100	65.915	1930	142 573	107.011	-667 777		
2200	66.058	196.60	142.573	107-011	-662.223	-456.648	47.52
2300	66.183	199.539	144.959	113.610	-662.665	-446.843	44.38
2400	66.294	202.359	149.506	120.222	-663.145 -663.655	-437.024 -427.170	41.52
2500	66.392	205.067		133.481	-664.208	-417.303	38 • 89 36 • 47
2600	64 670		153.778				
2 7 00	66.479 66.556	210.183	155.821	140.124 146.776	-664.795 -665.421	-407.414	34 • 24
2767.61	56.604	211.834	157.172	151.305		-397.506	32 - 17
2767.61	46.604	211.834	157.172		-665.866 -1086.880	-390.744 -390.744	30.85
2800	66.626	212.605	157.806		-1086.615	-382.698	30.85 29.87
2900	66.689	214.944	159.736		-1085.794	~357.570	76.94
3000	66.746	217.206	161.615		-1084.984	-332.458	24.21
1100	44 303	216 205	143 443			107 12	
3100 3200	66.797 66.844	219.395	163.443		~1084.196	-307.374	21.66
		221.517	165.225		-1083.429	-282.342	19.26
3300 3400	66.887 66.925	223.574	166.962		-1082.680	-257.333	17.04
3500	66.925 66.961	725.577 727.512	168.657		-10×1.953 -10×1.259	-232.328 -207.333	14.93
	44 00:						
3600	66.994	229.399	171.926		-1086 591	-182.393	11.07
3700	67.024	231.235	173.504		-1079.947	-157.439	9.29
3600 3000	67.052	233.023	175.047		-1079.348	-132-522	7.62
3900 4000	67.078 67.102	234.765 236.461	176.556 178.033		-1078.782 -1078.259	-107.599 -82.712	6 • 0 2 4 • 5 1
4100 4200	67.124 67.145	238.121 239.738	179.478 180.894		-1077.782 -1077.351	-57.874 -32.939	3.01
4300	67.164	241.319	182.281		-1076.974	-8.083	3.4
4400	67.182	247.863	183.640		-1076.653	16.781	-0.8
4500	67.199	244.373	184.973		-1074 - 381	41.610	-2.0
4400	67 714) L E B E A	184.380	274-020	-1076.182	66.455	_2 \
4600 4700	67.21° 67.229	245.850 247.296	186.280 187.563		-1076.045	91.334	-3.15
4700 4800			188.822		-1075.984		
4800 4900	67.243 67.256	248.711 250.098	190.059		-1075.994	116.149	-5.2
5000	67.268	251.457	191.273		-1076.08;	165.835	-7.2
			163 (107 415	1074 371	100 : 27	
5100 5200	67.280 67.291	252.789 254.966	192.46 193.639		-1076.271 -1076.545	190.687 212.746	-8.1°
5200 5300	67.301	255.377	194.792		-1076.928	240.370	-9.9
5300	67.311	256.636	195.926		-1077.415	265.252	-10.7
5400 5500	67.320	257.871	197.041		-1078.025	290.122	-11.5
		250 Ac.	100 130	341.200	-1078.765	315.004	
5600 5700	67.329 67.337	259.084 260.276	198•138 199•219		-1079.646	315.006 339.916	-12.2
5800	67.345	261.447	200.280		-1080.694	364.864	-13.7
5900	67.752	262.598			-1081.924	389.782	-14.4
6000	67.159	263.730		368.236	-1083.351	414.794	-15.1

HEXAMERIC BERYLLIUM OXIDE (Be606) (IDEAL MOLECULAR GAS) gfw=150.078

$$\Delta H^{\circ}_{f0} = -629.773 \text{ Kcal gfw}^{-1}$$

 $\Delta H^{\circ}_{1298.15} = -632.800 \pm 40.000 \text{ Kcalgfw}^{-1}$

Point Group = planar

S*298.15 = 86.687 cal degK-1gfw-1

$$H^{\circ}_{298.15} - H^{\circ}_{0} = 6.000 \text{ Kcal gfw}^{-1}$$

Bond lengths and angles:

Heat of Formation

Based on data of Chupka et al 1.

Heat Capacity and Entropy

Values given by Hildenbrand were used.

References

- 1. Chupka, W., et al, J. Chem. Phys. 30, 827 (1959).
- 2. Hildenbrand, D. L., Aeronutronic Publ. No. C-623, Contract NOrd 17980 (1959).

REFERENCE STATE

С

Reference State for Calculating VIII, A. F., and Log Kp. Solid Graphite from 0 to 6000 K

T,°K	C.					111	
	r	T1) 12	Н ₇₉₈) 'Т`	н _Т - н ₇₉₈	ΔH_f		log K _p
٥	0.000	0.000 1	NFINITE	0.252			
298.15	2.038	1.359	1.359	0.000			
300	2.054	1.372	1.359	0.004			
400	2.851	2.075	1.450	0.250			
500	3.496	2.784	1.646	0.569			
600	4.038	3.471	1.893	0.947			
700	4.440	4.126	2.166 2.449	1.831			
800	4.740	4.739 5.311	2.736	2 • 31 8			
900 000	4.970 5.149	5.844	3.020	2.824			
100	5.304	6.342	3.300	3.347			
200	5.430	6.809	3.573	3.883			
300	5.527	7.248	3.839	4.437			
1400 1500	5 • 605 5 • 669	7.661 8.050	4.098	4.988 5.552			
1600	5.721	5.417	4.591	6.122			
1700	5.765	8.765	4.827	4.696			
1 800	5.803	9.096	5.055	7.275			
1900	5 . 836	9.411	5.276	7.857			
2000	5.865	9.711	5.490	A . 442			
2100	5.891	3.948	5.698	9.029			
5500	5.914	10.277	5.900 4.095	9.620 10.212			
2300	5.936	10.536	6.286	10.807			
2400 2500	5.956 5.974	10.789	6.471	11.403			
2600	5.992	11.267	6.651	12.002			
2700	6.009	11.497	6.826	17.602			
2800	6.026	11.712	6.997	13.203			
2900	6.042	11.924	7.163	13.807			
1000	6.057	17.129	7.325	14.412			
1100	6.073	12.328	7.483 7.638	15.018 15.676			
3200	6.088	12.521 12.708	7.788	16.236			
3300	6.114	12.891	7.936	16.847			
3400 3500	6.134	11.068	8.080	17.460			
3600	6.150	13.241	8.221	14.074			
1700	6.165	11.410	A . 35	18.690			
3800	6.181	13.075	R.494	19.307			
3900	6.197	13.736	B • 626	19.926 20.546			
4000	6.211	13.693	A.755				
4100	6.230	14.046	8.883	21.168			
4200	6.247	14.197	9,008	21.792			
4300	6.264	14.344	9.130	73.045			
440C 4500	6.281 6.299	14.488 14.629	9.368	23.674			
47(11)			4.484	24.305			
4600	6.317	14.766	9.598	24.937			
4700	6.135	15.038	9.710				
4800	6.354	15.164	9.820				
4900 5000	6.377	15.298	9.928				
5100	6.417	15.424	10.015	27.487			
5200	6.432	15.549	10,140	28.129			
5300	6.452	15.672	10.243	28.773			
5400	6.473	15.793	10.34	29.419 10.068			
5500	6.494	15.917	10.445	-0.000			
5600	6.516	16-029	10.543				
5700	6.548	16.144	10.641				
5800	6.560	16.2°R	10.831				
5900	6.583	16.371 16.481	10.924				
6000	6.606	104401					
							CHV

(REFERENCE STATE)

gfw = 12.011

0°K to 6000 °K Crystal

$$\Delta H^{\bullet}_{f0} = 0$$

$$^{\Lambda H^{\bullet}}_{1298.15} = 0$$

$$\Lambda H^{\circ}_{8298.15} = 170.890 \text{ Kcal gfw}^{-1}$$

$$S^{\circ}_{298.15} = 1.359 \text{ cal } \deg K^{-1} = \text{gfw}^{-1}$$

$$H^{\circ}_{298.15} - H^{\circ}_{0} = 0.252 \text{ Kcal gfw}^{-1}$$

Structure

The graphite structure is used as the reference state.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Data from JANAF tables were used in this table.

Reference

1. JANAF Thermochemical Tables, Dow Chemical Co.(31 December 1960).

C

Reference State for Calculating VH, VH, and Log Kp.

T, "K	G.		,	(· ·	Kral/g(w		
٠, ٨	` r	`1	(Γ ₁	. н _т н _{29н}	ZH ¹	44,	Log Kp
0	0.000	0.000	14514.175				
298.15	4 . 981	37.761	INFINITE	-1.562	169.580	169.580	INFINITE
300	4.981	37.792	37.761	0.000	170.890	160.037	-117.304
400	4.975	19.224	37.761 37.957	0.009	170.895	159.969	-116.532
500	4.973	40.334	38.325	0.507 1.004	171.147 171.325	156.287 152.55 0	-85.387 -66.677
600	4.971	41.740	36.738	1.502	171.445	148.783	-54.192
700	4.970	42.007	39.152	1.999	171.517	145.000	-45.269
800	4.970	42.670	39.551	7.496	171.555	141.209	-38.575
900	4.970	43.256	34.931	2.993	171.565	137.415	-33.361
1000	4.969	43.779	40.290	3.490	171.556	133.620	-29.201
1100 1200	4.969	44.253	40.629	3.986	171.529	129.828	-25.793
	4.970	44.685	40.949	4 - 483	171.490	126.039	-22.954
1300 1400	4.971 4.972	45.083	41.252	4.980	171.438	122.253	-20.552
500	4.975	45.452 45.795	41.539 41.811	5.478 5.975	171.380 171.313	118.473 114.695	-18.494 -16.710
1600	4.978	46.116	42.071				
700	4.984	46.418	42.071	6.473 6.911	171.241	110.923	-15.151
800	4.990	46.703	42.553	7.469	1,084	107.156	-13.775 -12.553
900	4.998	46.973	42.179	7.969	171.002	99.653	-11.460
2000	5.008	47.229	47.995	8.469	170.917	95.880	-10.477
2100	5.019	47.474	43.202	8.970	170.831	92.131	-9.586
2201	5.032	47.708	43.402	9.473	170.743	88.386	-8.780
2300	5.046	47.932	41.544	9.977	170.655	84.642	-8.042
2400	5.061	48.147	43.779	10.482	170.565	80.906	-7.367
2500	5.077	48.354	43.958	10.989	170.476	77.172	-6.746
2600	5.094	48.553	44.131	11.497	170.385	73.442	-6.17
2700	5-112	48.746	44.298	12.008	170.296	69.714	-5.64
7800	5.130	48.7.7	44.461	12.520	170.207	65.992	~5.151
2900 3000	5.149 5.168	49.112 49.287	44.618 44.771	13.034 13.550	170.117 170.028	62.271 58.553	-4.693 -4.265
3100 3200	5.187 5.206	49.457 49.622	44.919 45.064	14.067 14.587	169.939 169.851	54.838 51.128	-3.866 -3.492
1300	5.224	49.782	45.204	15.108	169.762	47.417	-3.140
3400	5.243	49.439	45.341	15.632	169.675	43.713	-2.81
3500	5.261	50.091	45.475	16.157	169.587	40.009	-2.496
3600	5.279	50.239	45.605	16.684	157. 00	36.308	-2.204
3700	4.296	50.384	45.732	17.213	169.4 3	32.609	-1.926
3800	5.313	50.526	45.856	17.743	169.376	28.913	~1.66
3900	5.329	50.664	45.978	18.275	169.239	25.217	-1.413
4000	5.345	50.799	46.097	18.809	169.153	21.527	-1.176
4100	5.360	50.931	46.213	19.344	169.066	17.837	-0.950
4200	5.375	51.061	46.327	19.881	168.979	14.150	-0.73
4300	5.388	51.187	46.439	20.419	168-891	10.463	-0.53
4400 4500	5.402 5.414	51.431 51.433	46.548 46.655	20.959 21.499	168.804 168.715	6.779 3.098	-0.330 -0.150
		51.552	46.760	22.042	168-627	-0.580	0.02
4600 4700	5.426 5.437	51.669	46.863	22.585	160.>38	-4.258	0.19
4800	5.448	51.783	46.965	23.129	168.447	-7.933	0.36
4900	5.459	51.896	47.064	23.674	168.356	-11.607	0.51
5000	5.468	52.006	47.162	24.221	168.265	-15.280	0.66
5100	5.477	52.115	47.258	24.768	168.171	-18.948	0-81
5700	5.486	52.221	47. 15.2	75.316	168.077	-22.615	0.95
5300	5.494	52.326	47.445	25.865	167.982	-26.282	1 • 08
5400	5.502	52.428	47.537	26-415	167.886	-29.945	1.21
5500	5.509	52.529	47.627	26.966	167.788	~33.608	1.33
5600	5.516	52.629	47.715	27.517	167.689	-17.273	1.45
5700	5.523	52.726	47.802	28.069	167.588	-40.928	1.56
5800	5.529	52.827	47.888	28.621	167.485	-44.584 -48.243	1.68
5900	5.535	42.917	47.972	29.175 29.728	167.382 167.276	-48.243 -51.898	1.78
6000	5.541	53.010	48.055	2 5 4 7 5 5			,
							СНУ

gfw = 12.011

$$\Delta H^{\bullet}_{f0} = 169.580 \text{ Kcal gfw}^{-1}$$

4H*1298.15 = 170.890 Kcal gfw-1

Ground State Configuration $^{3}P_{o}$ $S^{*}_{298.15} = 37.761 \text{ cal } \deg K^{-1}_{gfw}^{-1}$

H°298.15-H° =1.562 Kcal gfw-1

Electronic levels and multiplicities

Source of Data

Atomic energy levels from Moore 1.

Heat of Formation

Value consistent with JANAF² was chosen.

Heat Capacity and Entropy

Calculated on monatomic gas computer program.

References

- 1. Moore, C., Atomic Energy Levels, Vol.1, Nat'l. Bur. Stds. (1949).
- 2. JANAF Thermochemical Tables, Dow Chemical Co. (1960).

CARBON - MONATOMIC (C)

(IDEAL GAS)

GFW - 12.011

SUMMARY OF UNCERTAINTY ESTIMATES

T. *A	C _p	cα. Κ μ/υ _ - Γ γ	1 - H ₂₀₈ / 1	H _T - H ₂₀₈	Calgha	NE.
± 298.15 ± 1000 ± 7000 = 3000 ± 4000 ± 5000 ± 6000	± 0.000 ± 0.000 ± 0.000 ± 0.000 ± 0.000 ± 0.000 ± 0.000	±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002	# 0.002 # 0.002 # 0.002 # 0.002 # 0.003 # 0.003	±0.000 ±0.000 ±0.000 ±0.001 ±0.001 ±0.001	+0.450	

Reference State for Calculating AHr, AFr, and Log Kp: Solid Hf from 0° to 2495°K, Liquid Hf from 2495° to 4985°K, Gaseous Hf from 4985° to 6000°K; Solid C, Solid HfC from 0° to 3900°K

T, 'K	(i	— сай К д "Ÿ	(F ₁ - H _{29H}) T	(HT - H219H	Kcal/gfv All _f	VI,	Log Kp
٥	0.000	0.000	INFINITE	1 404	-64 407	-54.807	INFINIT
298-15	8.228	9.852	9.852	-1.494 0.000	-54.807 -55.000	-54.339	39.85
300	8.274	9.903	9.852	0.015	-55.001	-54.335	39.584
400	9.916	12.539	10.200	0.936	-54.990	-54-114	29.565
500	10.746	14.850	10.905	1.973	-54.974	-53.899	23.550
600	11.256	16.857	11.733	3.074	-54.976	-53.686	19.554
700	11.615	18.621	17.594	4.214	-54.998	-53.470	10.693
800	11.894	20.191	13.441	5.375	-55.039	-53.248	14.540
900 1000	12.126 12.329	21.605 22.894	14.276 15.075	6.596 7.817	-55.101 -55.177	-53.020 -52.786	12.874
1000	12.327	22.074	13.073	7.017	-330111	324700	,
1100	12.513	24.078	15.840	9.061	-55.267	-52.543	10.439
1200	12.684	25.1/4	16.573	10-321	-55.369	-52.290	9.523
1300 1400	12.846	26.195	17.274	11.598	-55.486	-52.028	8.746
1500	13.152	27.153 28.055	17.946 18.590	12.890 14.198	-55.610 -55.743	-51.758 -51.478	8.079 7.500
						2.00.0	,
1600 1700	13.299	28.909	19-209	15.021	-5 005	-51-190	6.992
1800	13.443 13.584	29.719 30.492	1 7 . 80 s 20 . 37 b	18.409	->6.149	-50.889 -50.585	6.542
1900	13.724	31.230	20.928	19.575	-56.351	-50.269	5.782
2000	13.863	31.418	21.461	20.954	-56.519	-49.944	5.427
	3 1/2/						
2033 2033	.3.408 13.408	32.165	21.633	21.412	-56.275	-47.836	5.357
2100	14.000	32.165 32.617	21.033	21.412	-58.225	-47.836	5.357
2200	14.136	33.272	21.976 22.474	22 • 34 7 23 • 75 4	-58.542 -58.522	-49.557 -49.133	5.157 4.881
300	14.272	33.903	22.958	25.174	-58.707	-48.705	4.628
2400	14.406	34.513	23.427	26.608	-58.898	-48.266	4.395
495	14.534	35.075	23.859	27.983	-59.084	-47.837	4.190
2495 2500	14.534	35.075	23.859	27.983	~64.323	-47.837	4 - 190
700	.4.541	35.104	23.884	28.0>6	-64.320	-47.805	4.179
600	14.674	35.677	24.32>	29.516	-64.259	-47.148	3.963
700	14.608	36.233	24.755	30.340	-64-185	-46.470	3.703
2800 2000	14.941	36 - 774	25-175	32.478	-64.098	-45.836	3.577
7900 3000	15.073 15.206	37.301 37.614	25.584 25.983	33.979 35.492	-64.001 -63.893	-45.186 -44.539	3.405 3.245
1100	15.338	38.315	26.373	37.020	-6371	-43.696	3.095
3200	15.470 15.602	38.804 34.282	26 • 754 27 • 126	,8•560 40•114	-63.45	-43.256 -42.622	2 • 954 2 • 6 23
3300 3400	15.007	34.702	21.491	+1 - 0 0 0	-03.5	-41.992	2.699
500	15-805	40.208	21.840	41.260	-63-113	-41.507	2.503
	16 60.	40 444	20.197	44.853	-64.994	-40.744	2.475
3600 3700	15.996 16.128	40.656	28.540	40.400	-62.803	-40.130	2.210
3800	16.259	41.528	26.870	48.079	-62.601	-39.514	2.275
3900	16.393	41.452	29.206	49.711	-62.388	-38.910	5 - 1 4 1
							HLS

$$\Delta H_{f298..15}^{\circ} = -55.0 \text{ kcal gfw}^{-1}$$
 $S_{298..15}^{\circ} = 9.852 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$ $T_{m} = 3900 \,^{\circ}\text{K}$ $H_{298..15}^{\circ} - H_{0}^{\circ} = 1.494 \text{ kcal gfw}^{-1}$ $C_{p}^{\circ} = 11.3404 + 1.30 \times 10^{-3} \text{ T}^{-3}.112 \times 10^{5} \text{ T}^{-2} \text{ cal deg K}^{-1} \text{ gfw}^{-1}$ $298..15 \,^{\circ}\text{K} < \text{T} < 3900 \,^{\circ}\text{K}$

Structure

Face-centered-cubic NaCl-type.

Heat of Formation

Intermediate value is based on equilibrium data from Zhelankin et al, 1 vaporization data of Coffman et al, 2 and calorimetry value of Kelley. 3

Heat Capacity and Entropy

Low-temperature data are estimated. High-temperature data have been evaluated by Shomate method using data from Coffman et al² and Neel et al. Data are extrapolated to 3900°K.

Melting and Vaporization

Melting point is estimated from observations of Bowman⁶ and data of Avarbe et al. ⁷

References

- 1. Zhelankin, V. I. et al, Russ. J. Phys. Chem. 33, 251-253 (1959).
- 2. Coffman, J. A. et al, WADD TR 60-646, Part II (January 1963).
- 3. Kelley, K. K., private communication.
- Schick, H. L., et al, Vol. 1, this work, section IVB9. 2b1; also see section IIID.
- 5. Neel, D. S., et al, WADD TR 60-924 (1961).
- 6. Bowman, M., discussions at A.D. Little colloquium (28-29 January 1963).
- 7. Avarbe, P. G., et al, Zh. Prik. Khim. 35, 1976 (1962).

HAFNIUM CARBIDE (HIC) ICUNDENSED PHASE) OFW # 190.511

SUMMARY OF UNCERTAINTY ESTIMATES

r 1x	(p	cal K glw	- н ₂₉₈ , т	$r_{\rm H_I}^{-}$.	Keal yfa Ally	M, '	Log K
298.15	± 0.500	± 0.500	+ 0.500	± 0.000	≜ 5 00 0		
1000	± 0.500	± 1.105	± 0.754	± 0.351			
1000	± 1.000	± 1.105	1 0.754	± 0.351			
2000	± 1.000	± 1.798	£ 1.123	± 1.351			
2000	± 2.000	+ 1.798	± 1.123	£ 1.351			
3000	± 2.000	± 2.609	£ 1.492	± 3.351			
3900	± 2.000	± 3.134	± 1.813	* 5.151			

Reference State for Calculating \M", \F', and Log Kp Solid Mo from 0° to 2890°K, Liquid Mo from 2890° to 4965°K, Gaseous Mo from 4965° to 6000°K, Solid C; Solid Mo₂C from 0° to 2693°K.

		cal/_k			Real glw		
1, "K	(P	۲,	்பு மன்ற	H ₁ H _{20H}	YHI	14,	Log Kp
0							
298 - 15	12.553	17.100	17.100	0.000	-11.535	-12.155	8.91
300	12.610	17.178	17-100	0.023	-11.538	-12-159	8.85
400	14.710	21.131	17.625	1.402	-11.573	-12.359	6.75
500	15.834	24.544	18.676	2.934	-11.576	-12.551	5.48
600	16.573	27.500	19.906	4.557	-11.575	-12.751	4.64
700	17.131	30.099	21.180	6.243	-11.584	-12.946	4.04
800	17.592	32.417	22.443	7.980	-11.586	-13.141	3.59
900	17.996	34.513	23.669	9.759	-11.594	-13.334	3 • 2 3
1000	18.366	36.428	24.851	11.578	-11-601	-13.528	2.95
1100	18.713	38.195	25.984	13.432	-11.630	-13.720	2.72
1200	19.044	39.838	27.071	15.320	-11.678	-13.906	2.53
1300	19.365	41.375	28.113	17.240	-11.747	-14.091	2.36
1400	19.677	42.821	29.112	19.192	-11.831	-14.268	2.22
1500	19.984	44.189	30.012	21.176	-11-911	-14.439	2.10
1600	20.286	45.489	30.996	23.189	-12.028	-14.602	1.99
1700	20.585	46.728	31.885	25.233	-12-172	-14.762	1.89
1800	20.881	47.913	32.743	27 - 306	-12 346	-14.908	1.81
1900	21.174	49.049	33.571	29.409	-12.553	-15.044	1.73
2000	21.466	50.143	34.373	31.541	-12.796	-15.173	1.65
2100	21.757	51.197	35.149	33.702	-13.078	-15.283	1.59
2200	22.047	42.216	35.902	35.892	-13.405	-15.381	1.52
2300	22.335	53.203	36.632	38 - 111	-13.776	-15.461	1.46
2400	22.623	54 - 159	37.343	40.359	-14-197	-15.526	1.41
2500	22.910	55.089	38.034	42.636	-14-672	-15.568	1.36
2600	23.197	55.993	38.108	44.941	-15.206	-15.599	1.31
2693	23.463	56.813	39.319	47.111	-15.754	-15.604	1.26

15 September 1961

$$\Delta H_{f298.15}^{\bullet} = -11.54 \text{ kcal gfw}^{-1}$$
 $S_{298.15}^{\bullet} = 17.10 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$
 $T_{\text{m}} = 2693 ^{\circ} \text{K}$
 $C_{\text{p}}^{\bullet} = 15.92 + (2.82 \times 10^{-3}) \text{ T} - (3.74 \times 10^{5}) \text{T}^{-2} \text{ cal deg K}^{-1} \text{ gfw}^{-1}$
 $298.15 ^{\circ} \text{K} < \text{T} < 2693 ^{\circ} \text{K}$

Structure

Dimolybdenum carbide has a hexagonal close-packed structure with a = 3.002 A and c = 4.724 A 1.

Heat of Formation

The heat of formation was calculated from the free energy functions and the free energy of formation at 1270°K that was determined by Gleiser and Chipman. 2

Heat Capacity and Entropy

The heat capacity and entropy are estimates of Krikorian. 3

Melting and Vaporization

The melting temperature was determined by Nadler and Kempter. 4

Reterences

- 1. Hansen, M., Constitution of Binary Alloys, McGraw-Hill, New York
- 2. Gleiser, M. and J. Chipman, J. Phys. Chem. 66, 1539 (1962).
- 3. Krikorian, O., Estimation of High Temperature Heat Capacities of Carbides, UCRL-6785 (1962).
- 4. Nadler, M.R. and C.P. Kempter, J. Phys. Chem., 64, 1468 (1960).

CONDENSED PHASE

Reference State for Calculating Air, Air, and LogKp. Solid Nb from 0° to 2741°K,
Liquid Nb from 2741° to 5032°K, Gaseous Nb from 5032° to 6000°K,
Solid C, Solid NbC from 0° to 3753°K, Liquid NbC from
3753° to 6000°K.

1 K	′ ′,	· (al ¥		(keal glw	- \	
•	`r	T.	(1 Н ⁵⁰⁸ , г	'н _т н ₂₉₈	AH _I	Mil	Log K _p
0	0.000	0.000	INFINITE	-1.258	-33.342	-33.342	INFINITE
298.15	8 . 886	A. 700	8.700	0.000	-33.600	- 11.105	24.200
300	8.919	8.755	8.700	0.016	-33.599	-33.102	24.114
400	10.137	11.509	4.061	0.977	-33.484	-32.953	18.004
500	10.743	13.848	4.796	2.026	-31.363	-32.835	14.321
600	11.228	15.856	10.643	3-128	-33.258	-32.740	11.925
700	11.559	17.613	11.515	4 - 268	-33.171	-32.660	10.196
800	11.835	14.175	12.377	5 - 4 3 8	-33.098	-32.593	8.904
900	12.078	20.583	13.212	6 • 6 3 4	-33.037	- 12 - 533	7.900
1000	12.301	21.867	14.014	7.853	-32.981	-32.461	7.098
1100	12.511	21.050	14.782	9.094	-32.930	-32.432	0.445
1200	12.712	24.147	15.518	10.355	-32.881	-32.340	5.899
1300	12.907	25.172	16.221	11.636	-32.835	-32.351	5.400
1400	13.097	26.135	16.695	12.936	-32.187	-32.313	> 044
1500	13.283	21.045	11.542	14.200	- 52 . 137	-32.203	4.703
1600	13.468	27.404	18.163	15.593	- 3284	-32.254	4.400
1700	13.650	28.711	18.761	16.949	-12.026	-32.230	4.143
1800	13.830	24.516	14.337	18.323	- 12.565	-32.209	3.910
1900	14.010	30.268	14.892	19.715	-32.499	-32.188	3.702
2000	14.188	30.445	20.429	21.125	-32.427	-52.174	3.510
2100	14.366	31.686	20.949	22.552	-32-350	-32.164	3.347
200	14.543	32.361	21.452	23.998	-32.267	-32.157	3 - 194
2300	14.719	34.011	21.941	25.461	-32-1/8	-32.136	3.0>>
2400	14.895	34.641	22.415	20.942	-32.084	- 32 . 155	2.728
2500	15.071	34.253	22.817	28.440	-31.983	-32.160	2.011
2600	15.246	34.847	23.326	29.956	-31.877	-32.170	2.704
7700	15.471	35.426	21.763	1.489	-31.764	- 12 - 1 62	2.605
7741	15.492	35.659	23.939	32.123	- 41 - 715	-32.188	2.566
2741	15.492	35.659	24.939	32-123	-38.115	- 2.188	2.566
2800	15.545	35.990	24.190	33.040	-38.025	-32.063	2.502
7900 3000	15.770 15.944	36.540 31.078	24.606 25.013	46.194	-37.861 -37.680	-31.851 -31.650	2 • 4 U Q 2 • 3 U G
3100 3200	16.118	37.603	25.411 25.800	57•7 9 7 34•417	-37.483 -37.77	-31.452 -31.201	2.217
3300	16.466	38.022	56.181	41.055	-3741	-31.079	2.0>8
3400	16.640	39.116	26.554	42.711	-36.	-30.897	1.906
3500	10.813	14.001	26.920	44.303	- 10.0	-30.730	1.719
3600	16.487	40.017	27.219	40.073	-36.263	-30.564	1.070
3700	17.160	40.545	27.631	47 - 781	-3' .971	-30.414	1.796
3753	17.252	42.784	27.815	_48-691_	35.810_	30.335_	1.700
3753	17.252	46.651	27.815	10.643	-13.810	-30.335	1.766
3800	17.252	46.866	16.344	11.000	-13.000	-33.541	1.7>0
3900	17.252	47.314	28.538	73.224	-13.59	-30.995	1.7.7
•000	17.252	47.15.	24.015	14.954	-13.054	-31.444	1.710
100	17.252	48.177	74.472	70.674	-12.151	416-16-	1.701
1200	17.252	48.5 + 3	54.450	10.404	-12.4 10	-32.302	1.665
4300	11.252	48-717	30.364	40.154	-14.131	-32.003	1.670
4400	17-252	44.345 44.763	30.74c	81.855 84.380	-11.052 -1550	-11.345	1.643
4500	17.252	47.703		5 - 7110		,	
4600	17.252	50.102	31.618	45.305	-11-262	-34.336	1.63
4700	17.252	50.511	32.016	87.030	-10.969	14.841	1.010
600	17.252	50.876	32.406	48.75.2 40.481	-10.679 -10.389	-37.324	1.670
49 00 5000	17.252 17.252	51.252 51.601	12.187 11.154	A5.400	-10.105	- 30 . 340	1.59
,,,,,							
5031.58	17.252	51.709	13.270	12.721 92.721	-17.017	-30.024 -30.024	7 • 2 A Y
5031.58	11.252	51.109	33.276 11.524	42.127	-112.433	-34.708	1.470
5100	17.252	51.442	31.024	45.050	-172.217	-32.071	1.340
5200	17.252	52.211	31.002	77.381	-172.008	-29.381	4.214
5300	17.252	52.606 52.928	34.5/5	94.107	-171.805	-20.686	1.040
5400 5500	17•252 17 252	53.745	14.91	100-84	-171-017	-24.008	0.754
			15. 26	102.557	-171.474	-21.330	0.824
5600 5700	17.252	53.556 54.861	15.24.	104.28.	-171-244	-10.049	0.715
5700 5400	17.252	54.101	15.064	106.007	171-070	-15.908	0.604
5600 5900	17.252	14.476	36.140	107.733	-170-901	-13.298	0.473
6000	17.252	24.746	16.401	109.458	-170.139	-10.632	0.367

NIOBIUM CARBIDE (NbC) (CONDENSED PHASE) gfw = 104.921
$$\Delta H_{f298.15}^{*} = -33.6 \text{ kcal gfw}^{-1}$$
 $S_{298.15}^{*} = 8.7 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

$$T_{m} = 3753 \text{ °K}$$
 $\Delta H_{m} = 22.000 \text{ kcal gfw}^{-1}$

 $H_{298.15}^{\bullet} - H_{0}^{\bullet} = 1.258 \text{ kcal gfw}^{-1}$ $G_{p}^{\bullet} = 10.79 + 1.726 \times 10^{-3} \text{T} - 2.15 \times 10^{5} \text{T}^{-7} \text{ caldeg K}^{-1} \text{ gfw}^{-1}$

Structure

Cubic NaCl B1-type with a variable range of homogeneity.

Heat of Formation

Combustion data reported by Huber et al have been used.

Heat Capacity and Entropy

Low-temperature data are estimated. High-temperature data of Gel'd and Kusenko are extrapolated to the melting point. Heat capacity of liquid is estimated equal to the heat capacity of solid at the melting point.

Melting and Vaporization

Heat of fusion is estimated.

References

- 1. Huber, E. J., Jr., et al, J. Phys. Chem. 65, 1846 (1961).
- Gel'd, P. V. and F. G. Kusenko, Izv. A. N. SSSR O. T. N. Met. 1 Top. (2), 79-86 (1960).

MIGBIUM LARBIDE (NDC) (CONDENSED PHASE)

of = = 104.921

SUMMARY OF UNCERTAINTY LOTIMATES

x	C C	S (1)		HT - 17298	AAC.	M, 1	1 5
	` P	т ''	1 - (1798)	77 - 179H	· mr	**,	LogAp
298.15	* 0.500	± 0.500	* 0.500	± 0.000	± 0.800		
1000	± 0.500	± 1.105		* 0.351			
1000	± 1.000	4 1-195		± 0.351			
2000	± 1.000	± 1.798	# 1.123				
3000	± 1.000	± 2.204		1 4.351			
3753	± 1.000	± 2.428		# 3.104			
3753	± 2.000	± 3.760	± 1.601	# 8.104			
4000	± 2.000	± 3.867	± 1.73d	# 8.598			
5000	± 2.000	± 4.334		1 10.598			
6000	± 2.000	* 4.698	4 2.599	± 12.598			

CONDENSED PHASE

Reference State for Calculating Alf, Af. and Log Kp. Solid Nb from 0° to 2741°K, Liquid Nb from 2741° to 5032°K, Gaseous Nb from 5032° to 6000°K, Solid C, Solid Nb₂C from 0° to 3363°K.

	(-cal K g	/ =		- Kcal/gfw	,	
TK .	C Cp	٦,	а 1 н ^{50н} 1 д,	אניל ^א - אניל	AH	MY	ing K _p
٥	0.000	0.000	INFINITE	-2.472	-40.272	-46.272	INFINI
298.15	14.468	16.000	16.003	0.000	-46.600	-45.599	33.4
3 0 0	14.502	16.090	16.000	0.027	-46.599	-45.572	2.66
400	15.799	20.460	16.587	1.549	-46.523	-45.267	24.7
500	16.560	24.073	17.734	3.169	-46.440	-44.964	19.6
600	17.111	21.143	19.057	4.854	-46.371	-44.675	16.2
700	17.562	29.815	20.403	6.588	-46.318	-44.397	13.8
800	17.460	37.166	21.731	8 - 365	-46.276	-44.126	12.0
900	18.327	34.323	23.013	10.179	-46.245	-43.859	10.6
1000	18.675	36.212	24.243	12-029	-46.215	-43.597	9.5
1100	19.011	38.068	25.419	13.914	-46.187	-43.334	8.60
1200	19.338	39.735	26.543	15.831	-46.158	-43.077	7.8
1300	19.659	41.247	27.619	17.781	-46.129	-42.822	7 - 1
1400	19.975	47.765	28.049	19.763	-46.095	-42.567	6.6
1500	20.289	44.154	24.637	21.776	-46.056	-42.317	6.1
1600	20.600	45.473	30.586	23.821	-46.311	-42.070	5.7
1700	20.909	46.737	31.499	25.896	-45.958	-41.826	5.3
1800	21.217	47.935	32.319	28.002	-45.899	-41.585	5.0
1900	21.523	44.011	33.228	30.139	-45.832	-41.345	4 . 7
2000	21-829	50.203	34.049	32-307	-45.755	-41.110	4.4
2100	22.134	51.275	34.844	34.505	-45.670	-40.880	4 - 2
2200	22.43A	52.312	35.015	36.734	-45.576	-40.658	4.0
2300	22.741	51.316	36.362	18.993	-45.473	-40.434	3.84
2400	23.044	54.240	37.087	41.282	-45.363	-40.218	3.60
2500	23.347	55.237	37.796	43.601	-45.242	-40.002	3.4
2600	23.650	56.158	36.485	45.951	-45.113	-39.798	3.3
2700	23.952	57.057	39.150	166.6.	-44.973	-39.596	3.2
2741	24.076	57.414	14.421	49.316	-44.912	-39.517	3.1
2741	24.076	57.414	39.427	49.316	-57.712	-39.517	3.1
260C	24.254	67.433	39.811	50.744	-57.585	-34.124	4.0
2900	24.556	54.770	40.451	53-182	-57.349	-38.468	2.8
3000	24.857	59.627	41.070	55.053	-57.083	-37.825	2.7
3100	25.154	60.447	41.080	28.124	-56.788	-37.185	2.6
3200	25.460	61.251	42.281	60.685	-56.4.5	-36.562	2 . 4
3300	25.761	02.007	42.873	1.240	-56.4.4	-35.944	2.3
3363	25.951	12.526	43.237	64.875	-55.811	-35.563	2.3

15 June 1965 HLS

DINIOBIUM CARBIDE (Nb₂C) (CONDENSED PHASE) gfw = 197.831

$$\Delta H_{1298.15} = -46.6 \text{ kcal gfw}^{-1}$$

$$S_{298,15}^{2} = 16.0 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$H_{298.15}^{\bullet} - H_{0}^{\bullet} = 2.472 \text{ kcal gfw}^{-1}$$

$$C_{\rm p}^{\bullet} = 15.88 + 3.0 \times 10^{-3} \,\mathrm{T} - 2.050 \times 10^{5} \,\mathrm{T} - 2 \,\mathrm{cal}\,\deg\,\mathrm{K}^{-1}\,\mathrm{gfw}^{-1}$$

Structure

Hexagonal close-packed type with a variable range of homogeneity.

Heat of Formation

Huber et all have used bomb calorimetry to obtain the heat of formation.

Heat Capacity and Entropy

Entropy at 298.15 °K has been estimated. High-temperature heat-capacity data of Gel'd and Kusenko² have been extrapolated to peritectic temperature.

References

- 1. Huber, E. J., Jr., et al, J. Phys. Chem. 65, 1846 (1961).
- 2. Gel'd, P. V. and F. G. Kusenko, Izv. Akad. Nauk SSSR OTN Met. 1 Top. 1960, 79-86 (1960).

DINIOBIUM CARBIDE (Nb2C) (CONDENSED PHASE) UFW . 197.831 SUMMARY OF UNCERTAINTY ESTIMATES

	1			-11 K P			, -		Kci' glw		
X		¹ r		`ĭ	11	H-GM T	• н	г Изм	NH _I	N _f	Log Kp
298 - 15	t	0.500	ŧ	1.500	ŧ	1.500		0.000	. 2.000		
1000	ŧ	0.500	±	2.105	£	1.754	ŧ	0.351			
1000	*	1.000	+	2.105	£	1.754	ż	0.351			
2000	*	1.000	1	2.798		2.123	1	1 - 351			
2000		1.000	*	2.748	±	2.125	ŧ	1 - 351			
3000	ŧ	1.000	*	3.204	ŧ	2.420	ŧ	2.331			
3363	ź	1.000	+	3.318	2	2.511	±	2.714			

HLS

CONDENSED PHASE

Reference State for Calculating AHr. A Fr. and Log K. Solid St from 0 to 1690 K. Liquid St from 1690 to 3566 K. Gaseous St from 3566 to 6000 K, Solid C, Solid StC from 0 to 3103 K

		cal/°K	614		_Kcal/gfv		
T, *K	رگ	۶۴	-(FT - H298)/T	H _T - H ₂₉₈	A H ₁	ΔF	Log Kp
0	0.000	0.000	INFINITE	-0.781	-16.260	-16.260	INFINITE
298.15	6.418	3.970	3.970	0.000	-16.500	-15.928	11.675
300	6.472	4.010	3.970	0.012	-16.501	-15.924	11.600
400	8.423	6.175	4.252	0.769	-16.498	-15.731	8.594
500	9.424	8.173	4.840	1.666	-16.469	-15.542	6.793
600	10.051	9.950	5.547	2.642	-16.445	-15.360	5.595
700	10.501	11.535	6.291	3.671	-16.432	-15.180	4.739
800	10.857	12.961	7.037	4.739	-16.428	-15.002	4.098
900	11.159	14.257	7.7.8	5-840	-16.431	-14.823	3.599
1000	11.426	15.447	8.478	6.970	-16.436	-14.645	3.201
1100	11.671	16.548	9.162	8-125	-16.443	-14.465	2.874
1200	11.901	17.573	9.821	9.303	-16.450	-14.286	2.602
1300	12.171	18.535	10.454	10.505	-16.455	-14.104	2.371
1400	12.332	19.441	11.064	11.727	-16.456	-13.923	2.173
1500	12.538	20.299	11.641	12.971	-16.453	-13.741	2.002
1600	12.740	21.114	12.218	14.235	-16.444	-13.562	1.852
1690	12.916	21.816	12.710	15.389	-16.10	-13.399	1.733
1690	12.918	21.816	12.710	15.389	-28.380	-13.399	1.733
1700	12.938	21.893	12.764	15.519	-28.377	-13.311	1.711
1800	13.134	22.638	13.292	16.822	-28.356	-12.425	1.509
1900	13.327	23.353	13.803	18.145	-28.326	-11.541	1.327
20 00	.3.519	24.041	14.298	19.488	-29.285	-10.660	1.165
2100	13.709	24.706	14.777	20.849	-28.226	-9.778	1.018
2200	13.899	25.348	15.243	22.230	-28.152	-8.901	0.884
2300	14.087	25.970	15.696	23.629	-28.060	-8.031	0.763
2400	14.275	26.573	16.137	25.047	-27.953	-7.162	0.652
2500	14.462	27.160	16.565	26.484	-27.827	-6.298	0.551
2600	14.648	27.711	16.985	27.939	-27.687	-5.440	0.451
2700	14.834	28.287	17.393	29.413	-27.528	-4.588	0.371
2800	15.020	28.830	17.792	30.906	-27.352	-3.740	0.292
2900	15.205	29.360	18.182	32.417	-27.160	-2.902	0.219
3000	15.390	29.879	18.563	33.947	-26.951	-2.067	0.151
3100	15.574	30.386	18.936	35.495	-26.724	-1.242	0.086
3103	15.580	30.431	18.947	35.542	-26.716	-1.215	0.086

31 December 1963

SILICON CARBIDE (8-SIC)

(CONDENSED PHASE)

gfw = 40, 101

 $\Delta H_{\rm f, 298, 15}^{\rm o} = -16.5 \, \rm kcal \, gfw^{-1}$

 $S_{298,\ 15}^{0} = 3$, 97 cal degK⁻¹gfw⁻¹

Tperitectic = 3103°K

 $H_{298, 15}^{o} - H_{0}^{o} = 0.781 \text{ kcal gfw}^{-1}$

 $C_{\rm p}^{\rm o} = 9.97 + 1.82 \times 10^{-3} \, {\rm T} - 3.64 \times 10^5 \, {\rm T}^{-2} \, {\rm cal \ deg K}^{-1} \, {\rm g fw}^{-1}$ 298. $15^{\rm o} \, {\rm K} \le T \le 3103^{\rm o} \, {\rm K}$

Structure

 β -SiC has a cubic structure. The temperature of transformation to the high temperature, 1. e., hexagonal or a-form of SiC, 1s ill defined. Present table gives data for only cubic-SiC, but data for hexagonal SiC are probably not very different.

Heat of Formation

A variety of calorimetric, Si-C-O equilibria, vaporization, solubility, and phase-diagram data reviewed. Final choice based on Si-C-O equilibria. [, 2, 3] See volume 1, this report (section IVB25, 2) for details.

Heat Capacity and Entropy

Low-temperature data from Kelley and King. 4 High-temperature data from Kelley.

Melting and Vaporization

Peritectic decomposition value from Scace and Slack, 6

References

- 1. Baird, J. D. and J. Taylor, Trans. Faraday Soc. 54, 526 (1958).
- Kay, D. and J. Taylor, Trans Faraday Soc. 56, 1372 (1960).
 Rein, R. and J. Chipman, J. Phys. Chem. 67, 839 (1963).
- 4. Kelley, K. and E. King, U.S. Bur. Mines, Bull. 592 (1961).
- Kelley, K., U. S. Bur. Mines, Bull. 584 (1960).
 Scace, R. and G. Slack, J. Chem. Phys. 30, 1551 (1959).

SILICON CARBIDE (SIC)

(CONDENSED PHASE)

GFW . 40.101

SUMMARY OF UNCERTAINTY ESTIMATES

- 4		Co		cal ' 'K	. gt-		\mathcal{L}		_	Kral glw YH _f		
T,°K		° p		ь	-/1	T - H2981	Τ.	н _т - н ₂₉₈		2111	111	Log Kp
298.15		0.100	±	0.020	*	0.020	ŧ	0.000	,	2, 000		
1000	±	0.100	*	0.141	ŧ	0.071	±	0.070				
1000		0.500	*	0.141		0.071	ŧ	0.070				
2000	*	0.500	±	0.488	±	0.202	*	0.570				
200C	±	2.000	±	0.488	*	0.202	±	0.570				
3000	2	2.000		1.299	ŧ	0.442	ŧ	2.570				
3103	±	2.000	ŧ	1.366		0.471		2.776				

Reference State for Calculating Mip. Mip. and Log Kp. Solid La from 0° to 3270°K, Liquid Ta from 3270° to 5706°K, Giveous La from 5706° to 6000°K, Solid C, Solid LaC from 0° to 3273°K, Liquid LaC from 4273° to 6000°K

', " K	(°,		-(FT - H29H)/T	(Kcul/gfw AH	,	l n - ¥
	P	٦,	T = 4.598% I	'Н _Т - Н _{29Н}	, 11	AF,	Log K _p
٥	0.000	0.006	INFINITE	-1.557	-34.547	-34.547	INFINITE
298-15	6.790	10.110	10.110	0.000	-34.600	-34.251	25.106
300	8 . 8 2 4	10.164	10.110	0.016	-34.599	-34.251	24.949
400	10.118	12.901	10.475	0.971	-34.509	-34.249	18.655
500	10.862	15.245	11.200	2.022	-34.410	-34.066	14 - 890
600	11.391	17.274	12.047	3.136	-34.316	-34.007	12.386
700 800	11.817	19.063	12.924	4.297	-34.229	-33.962	10.603
900	12.189	20.665	13.793	5.498	-34.143	-33.930	9.269
000	12.529 12.850	22.121 23.458	14.639 15.455	6.734 8.003	-34.054 -33.957	-33.908 -33.898	8 • 234 7 • 408
100	13.158	24.697	16.239				
200	13.457	25.855	16.993	9 • 303 10 • 634	-33.849 -33.729	-33.896 -33.906	6 • 734 6 • 175
300	13.750	26.943	17.717	11.994	-33.597	-33.927	5.703
400	14.038	27.973	18.413	13-384	-33.448	-33.956	5 • 301
500	14.323	28.951	19.083	14.802	-33.287	-33.998	4.953
600	14.006	29.885	19.729	16.248	-33-110	-34.051	4.651
700	14.886	30.779	20.353	17.723	-32.915	-34-115	4 . 386
1800	15.166	31.637	20.956	19.226	-32.706	-34.191	4.151
900	15.444	32.465	21.541	20.756	-32-481	-34.283	3.943
000	15.721	33.264	22.107	22.314	-32.243	-34.384	3.757
2100	15.997	34.038	22.657	23.900	-31.990	-34.497	3 4 5 9 0
200 200	16.2 <i>12</i> 16.547	34.788 35.518	23.191	25.514	-31.725	-34.620	3.439
400	16.822	36.728	23.711 24.218	27.155 28.823	-31.450 -31.167	-34.759 -34.910	3.303 3.179
500	17.096	36.920	24.712	30.519	-30.881	-35.070	3.066
600	17.370	37.596	25.195	242	-30.590	-35.245	2.962
700	17.644	38.257	25.667	33.993	-30.306	-35.429	2.868
800	17.917	38.903	26.128	35.771	-30.036	-35.625	2.781
900	18.190	39.537	26.579	37.576	-29.793	-35.827	2.700
000	18.463	40.158	27.022	39.409	-29.585	-36.043	2.626
100	18.736	40.768	27.455	41.269	-29.420	-36.259	2.556
200	19.008	41.367	27.881	43.156	-29.307	-36.482	2.491
270	19.199	41.780	28.174	44.493	-29.262	-36.637	2.449
3270	19.199	41.780	28.174 28.298	44.493	-35.2.2 -35.8.2	-36.637 -36.646	2 • 449 2 • 427
300	19•281 19•553	41.956	28.708	47.012	-35.34.	-36.677	2.357
1400 1500	19.826	43.106	29.112	48.981	-34.836	-36.725	2.293
600	20.098	43.669	29.508	50.978	-34 303	-36.785	2.233
700	20.370	44.223	29.898	53.001	-33.746	-36.861	2.177
800	20.642	44.770	30.283	55.052	-33.162	-36.956	2 • 1 2 5
900	20.914	45.310	30.661	57.129	-32.554	-37.065	2.077
+000	21.186	45.843	31.034	59.234	-31.919	-37.188	2.032
100	21.458	46.369	31.402	61 - 367	-31.258	-37.331	1.996
200	21.730	46.889	31.764	63.526	-30.573	-37.481	1.950
273	21 • 929 _	47.265		_65·120_	_=30.6>6_	-37.608	1 • 923
273	16.000	53.116	32.026	90-120	~5.056 ~5.023	-37.608 -37.812	1.923
.300	16.000	53.217	32.158	90.552 92.152	-4.700	-38.578	1.922
1400 1500	16.000	53.585 53.944	37.641 33.111	93.752	• 179	-39.347	1.911
600	16.000	54.296	33.567	95.352	-4.660	2-111	1.906
1700	16.000	54.640	34.012	76.952	-4.542	0.884	1.901
600	16.000	54.977	34.445	y8.552	-4.427	-41.656	1.897
1900	16.000	55.307	34.868	100.152	-4.313	-42.440	1.893
5000	16.000	55.630	35.280	101.752	-4.201	-43.220	1.889
100	16.000	55.947	15.682	103.352	-4.092	-43.994	1.88
5200	16.000	56.258	36.075	104.952	-3.984	-44.782	1.882
300	16.000	56.562	36.458	106.552	-3.878	-45.566	1 4879
5400	16.000	56.862	36 • 8 3 3	108-152	≈3.774 ≈3.673	-46.350	1 • 876
3500	16.000	57.155	37.200	109.752	-3.673	-47.140	
600	16.000	57.443	37.559 37.911	111.352 112.952	-3.573 -3.476	-47.934 -48.730	1.871
3700	16.000	57.727 57.745	37.934	113.058	-3.469	-48.787	1.86
5706.65	16.000 16.000	57.745	37.934	113.058	-184.692	-48.787	1.86
5706•65 5800	16.000	58.005		114.552	-184.757	-46.560	1.75
5900 5900	16.000	58.278	38.592	116.152	-184.832	-44.182	1.63
6000	16.000	58.547		117.752	-184.912	-41.794	1.52

TANTALUM CARBIDE (TaC) (CONDENSED PHASE)

gfw = 192, 961

$$\Lambda H_{f298. 15}^{*} = -34.6 \pm 0.9 \text{ kcal gfw}^{-1}$$

$$S_{298, 15}^{\bullet} \approx 10, 11 \text{ cal deg} \text{K}^{-1} \text{ gfw}^{-1}$$

Tm = 4273°K

$$H_{298.15}^{\circ} - H_{0}^{\circ} = 1.557 \text{ kcal gfw}^{-1}$$

$$C_{p}^{*} = 10.347 + 0.0027131T - 2.1033 \times 10^{5}T^{-2} \text{ caldeg K}^{-1} \text{ gfw}^{-1}$$
 298. $15^{\circ}\text{K} \le T \le 4273^{\circ}\text{K}$

 $C_{\rm D}^{*} = 16.0 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

 $\Delta H_{\rm m} = 25$. kcal gfw⁻¹

Structure

TaC exists in a f. c. c. structure with variable homogeneity range.

Heat of Formation

Heat of formation is from Huber et al. 1

Heat Capacity and Entropy

Low-temperature data of Kelley² was used. High-temperature data of Neel, et al³ and Mezaki⁴ was combined by Shomate method and extrapolated to melting point. Data above melting point was estimated.

Melting and Vaporization

Heat of fusion was estimated.

References

- Huber, E. J. Jr., et al, J. Phys. Chem. 67, 793 (1963).
 Kelley, K. K., J. Am. Chem. Soc. 62, 818 (1940).
 Neel, D. S., et al, WADD TR 60-924 (1962).
 Mezaki, R., Thesis, M. S., U. of Wisconsin (1961).

TANTALUM CARBIDE (TaC)

(CONDENSED PHASE)

GFW = 192 961

		cal/°K	st=		Kcel/g/v				
T, *K	[/] c _{\$}	s _T	-(FT - H298)/T	HT - H798	∆H ₁	Δ F ₂)	i.og K _p		
298.15	±0.500	±0.080	±0.080	±Q.000	±0.900				
1000	±0.500	+0.685	±0.334	±0.351					
1000	± 2.000	±0.685	±0.334	±0.351					
2000	± 2.000	± 2.071	±0.896	± 2 • 351					
3000	± 2.000	£2.882	±1.432	±4.351					
4000	± 2.000	±3.458	±1.670	±6.351					
4273	± 2.000	±3.590	±1.976	£6.897					
4273	£ 3.000	±4.760	±1.976	£11.897					
5000	± 3.000	±5.231	±2.416	±14.078					
6000	£3.000	±5.778	±2.932	£17.078					

Reference State for Calculating Nig. Nig. and Log Kp. Solid Ta from 0° to 3270°K, Liquid Ta from 3270° to 5706°K. Caseous Li from 5706° to 6000°K, Solid LajC from 0° to 3773°K.

	<i>i</i> .	_ral_k	g(=		Acil plw		
, ' K	4,	, 1	_(1 — н.ом.т _/	н ₁ н ₇₉₈	YIII	11,	I ng Kp
o	0.000	0.000	INFINITE	-2.729			4 4 m 4 4 4 8 4
298.15	14.567	19.500	17.500	0.000	-46.961	-46.961	INFINIT
300	14.601	19.590	13.500	0.000	-47.200 -47.199	-46.693	34 + 22
400	15.931	23.993	20.072	1.551	-47.149	-46.690	34 • 01
500	16.725	27.639	21.247	3.196	-47.099	-46.528 -46.378	25 + 420 20 + 27
600	17.302	30.742	22.511	4.897	~47.058	-46.239	16.84
700	17.793	33.448	23.941	6.655	-47.025	-46.104	14.39
800	18.724	35.852	25.282	8 - 456	-46.995	-45.975	12.55
900	18.624	36.022	26.579	10.298	-46.960	-45.849	11.13
1000	19.005	40.004	27.824	12.180	-46.916	-45.730	9.99
1100	19.374	41.833	29.016	14.099	-46.858	-45.614	9.06
1200	19.734	43.534	30.155	16.054	-46.789	-45.503	8.28
1300	20.098	45.127	31.246	18.045	-46.705	-45.399	7.63
1400	20.437	46.629	32.292	20.072	-46.504	-45.302	7.07
1500	20.784	48.051	33.296	22-133	-46 493	-45.214	6.58
1600	21.128	49.403	34.260	24.228	-46.356	-45.131	6.16
700	71.470	10.694	35.189	26.358	-46.272	-45.058	5.79
1 800	21 • R11	51.931	36.085	28.522	-46.067	-44.993	5.46
1 900	22.150	53.119	36.951	30.720	-45.897	-44.941	5.16
2000	22.489	54.264	37.748	32.952	-45.720	-44.896	4 • 90
2100	22.827	55.370	38.599	35.218	-45.533	-44.859	4.66
2200	23.164	56.439	39.386	37.518	-45.340	-44.828	4.45
300	23.500	57.476	40.150	39.851	-45.147	-44.810	4 • 25
2400	23.836	58.484	40.893	42.218	-44.955	-44.802	4.08
2500	24.172	59.464	41.616	44.618	-44.779	-44.797	3.91
2600	24.50A	60.418	42.321	47.052	-44.610	-44.803	3.76
. 700	24.843	61.349	43.009	49.520	-44.476	-44.810	3 • 6 2
2800	25.178	62.219	43.680	52.021	-44.390	-44.828	3 • 4 9
2 9 00	25.513	63.148	44.336	54.555	-44.376	-44.842	3 • 37
3000	25.847	64.019	44.978	57.123	-44.453	-44.863	3 • 2 6
310C	26.182	64.872	45.606	59.725	-44.635	-44.872	3.16
3200	26.516	65.708	46.271	62.359	-44.041	-44.874	3.06
1270	26 • 750	66.285	46.644	44.224	-4" 1	-44.865	2 . 99
1270	26 • 750	66.285	46.644	64.224	-58.00	-44.865	2 • 99
3300	26.850	66.529	46.924	65.028	-58.5	-44.745	2 • 96
3400	27.184	67.336	47.415	37.729	-58.132	-44.334	2 • 85
3500	27.518	68.120	47.946	70.465	-57.709	-43.931	2.74
3600	27.852	69.909	48.566	73.233	-57.255	-43.546	2 • 64
3700	28.186	69.676	49.126	76.035	-56.769	-43.171	2.55
3773	28.430	70.229	49.529	78 - 102	-56.392	-42.963	2 • 48

15 September 1963 HLS

$$\Delta H_{1298. \ 15}^{\circ} = -47. \ 2 \pm 3.4 \ \text{kcal gfw}^{-1}$$
 $S_{298. \ 15}^{\circ} = 19.5 \pm 1 \ \text{cal degK}^{-1} \ \text{gfw}^{-1}$ $T_{\text{m}} = T_{\text{peritectic}} = 3773 \ ^{\circ}\text{K}$ $H_{298. \ 15}^{\circ} - H_{0}^{\circ} = 2.729 \ \text{kcal gfw}^{-1}$ $C_{0}^{\circ} = 15.88 \pm 3.33 \times 10^{-3} \text{T} - 2.050 \times 10^{5} \text{T}^{-2} \ \text{cal deg K}^{-1} \ \text{gfw}^{-1}$ $298. \ 15 \ ^{\circ}\text{K} \le T \le 3773 \ ^{\circ}\text{K}$

Structure

Ta2C is hexagonal with variable range of homogeneity.

Heat of Formation

Combustion value from Huber et all

Heat Capacity and Entropy

Low-temperature and high-temperature data were estimated.

Melting and Vaporization

Peritectic temperature is given by Storms. 2

References

- 1. Huber, E. J., Jr., et al, J. Phys. Chem. 67, 793 (1963).
- 2. Storms, E. K., LAMS-2674, (March 1962).

DITANTALUM CARBIDE (TA_C) (CONDENSED PHASE) DEW = 373.911

SUMMARY OF UNCERTAINTY ESTIMATE

		G K	21%		K + , f +		
1, A	• ,	t	$\Gamma_{\rm f} = H_{\rm CM} / T$	$\exists u_1 \mid u_{2\alpha}$	Νн,	MA	·
298.15	±1.00°	±1.000	*1.000	10.000	1 3 41/11		
1300	#1.00°	+2.210	£4.508	10.702			
1000	*3.00	£ 2 . 2 . 11	+1.50.6	+ 0 - 702			
2000	±3.60°	14.240	17.437	1 3.70			
3000	±3.009	15.506	+3.272	1 6 . 70 7			
3773	11,000	16.1.4	+ > - 803	150.61			

Reference State for Calculating Air, Air, and Log Kp: Solid Th from 0° to 2028°K, Liquid In from 2028° to 5060°K, Gascous Th from 5060° to 6000°K, Solid C, Solid ThC from 0° to 2898°K.

- 0.	1		gt=		Keit gfw		
I, ^k	C _P	51	и _т н _{юн}) :	г <mark>/ н</mark> т н ⁵⁹⁸	1114	11,	Leg K _p
0							
298-15	10.198	11.500	11.500				
300	10.235	11.563	11.500	0.000	-7.000	-6.219	4 . 559
400	11.628	14.723	11.922	0.019	-6.997	-6.214	4.52
500	12.373	17.405	12.757	1.121	-6.808	-5.981	3.266
		,	16.191	2.324	-6.615	-5.797	2.534
600	12.863	19.707	13.728	3.587			
700	13.233	21.718	14.729	4.893	-6.448	-5.649	2.058
800	13.538	23.506	15.717	6.231	-6.310	-5.527	1.726
900	13.807	25.116	16.673		-6.199	-5.424	1.482
1000	14.052	26.584		7.599	-6.112	-5.332	1.29
	140072	20.304	17.592	8.992	-6.046	-5.250	1.14
100	14.282	27.934	18.471	10.409	-6.006	-5.172	1.027
200	14.502	29.186	19.313	11.848	-5.998	-5.098	0.926
1 300	14.714	30.355	20.118	13.309	-6.029	-5.021	0.844
400	14.921	31.453	20.889	14.791	-6.104	-4.941	0.771
1500	15.125	32.490	21.628	16.293	-6.237	-4.855	0.70
			2 2 2 2 2 2	,	- 0 • 2 3 /	-4.000	0.70
1600	15.325	33.412	22.338	17-816	-6. 38	-4.755	0.649
1633	15.391	33.786	22.566	18.322	-6.522	-4.719	0.63
633	15.391	33.786	22.566	18.322	-7.175	-4.719	0.631
1700	15.523	34.407	23.020	19.358	-7.26)	-4.615	0.593
1800	15.719	35.300	23.678	20.920	-7.378	-4.457	0.541
900	. 5. 914	34.155	24.312	22.502	-7.478	-4.291	0.494
2000	16.108	36.977	24.925	24.103	-7.562	-4.122	0.494
		2007.	240727	24.103	-7.702	-4.122	0.450
2028	16.162	37.201	25.093	24.555	-7.582	-4.074	0.439
2028	16.162	37.201	25.093	24.555	-11-435	-4-074	0.439
2100	16.301	37.767	25.518	25.724	-11.481	-3.810	0.397
200	16.493	36.530	26.092	27.363	-11.533	-3.443	0.342
2300	16.684	39.267	26.649	29.022	-11.566	-3.076	0.292
400	16.875	39.981	27.190	2 . 700	-11.583	-2.706	0.246
2500	17.06%	40.674	27.715	32 - 39 7	-11.582	-2.335	0.204
		45.5.4	,	,, • , • ,	-11.705	~ 2 • 7 3 3	0.204
600	17.255	41.347	28.227	34 - 113	-11.565	-1.966	0.165
700	17.445	42.002	28.725	35.848	-11.530	-1.600	0.130
800	17.634	42.640	29.210	37.602	-11.477	-1.229	0.096
878	17.820	43.250	29.675	39.339	-11.410	-0.874	0.066

15 September 1963 MBP

$$\Delta H_{1298.15}^{2} = -7 \pm 6 \text{ kcal gfw}^{-1}$$

$$S_{298.15}^{\bullet} = 11.5 \pm 5 \text{ cal deg}^{-1} \text{ gfw}^{-1}$$

$$T_m = 2898 \pm 25 \, {}^{\circ}\text{K}$$

$$C_{p}^{\circ} = (12.43 \pm .30) + (1.87 \pm .04) \times 10^{-3} \text{T} - (2.48 \pm 0.40) \times 10^{5} \text{T}^{-2} \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$298 \, ^{\circ} \text{K} < \text{T} < 2898 \, ^{\circ} \text{K}$$

Face centered cubic (NaCl type)

Heat of Formation

Measured by Huber and Holley

Heat Capacity and Entropy

Empirical equation developed by Krikorian.

Melting and Vaporization

Melting point - Wilhelm & Chiotti.3

References

- Huber, E. J., Jr., and C. E. Holley Jr., Paper No. 26, IAEA Symposium, Vienna, June 1962.
- Krikorian, O. H., UCRL 2888
- Wilhelm, H., and Chiotti, P., Trans. Am. Soc. Met. 42, 1295 (1950).

THERTIM CARPINE (INC) CIONDENCED PHASES 51 W - 244.00 1 SUMMARY OF UNCERTAINTY ESTIMATES 4 10 45 Control of the Home 10.500 298 • 15 500 1006 +0.256 +0.*00 : 0.00r 16.000 :0.300 +0.531 ±0.335 £ 0.965 10.648 +0-217 1500 2000 ±0.379 21.112 10.824 10.575 +C.399 11.198 +1.258 10.871 10.769 2898 10.415

CONDENSED PHASE

Reference State for Calculating AH*, AF*, and Log Kp. Solid II from 0 to 1950 K, Liquid Ti from 1950 to 3550 K, Gaseous Ti from 3550 to 6000 K, Solid C. Solid TiC from 0 to 3212 K, Liquid TiC from 3213 to 6000 K

0		<u></u>	«el/"K	Ma-		_Kenl/glw		
298.15	T, °K	(°	ير	-(1 1 - H ₂₉₈)/1	'н _т - н _{уун}	**	4 F ₆₎	Log Kp
299.15 8.041 9.770 9.860 9.7912 8.653 9.810 9.7912 8.653 9.810 9.7912 8.653 9.810 9.7912 8.653 9.810 9.7912 8.653 9.810 9.7912 8.653 9.810 9.7912 8.653 9.810 9.7912 8.653 9.810 9.7912 8.653 9.810 9.7912 8.653 9.810 9.7912 8.653 9.810 9.792 9.810 9.792 9.810 9.792 9.810 9.793 9.810 9.793 9.810 9.793 9.810 9.793 9.810 9.793 9.810 9.793 9.810 9.793 9.810 9.793 9.810 9.793 9.810 9.793 9.810 9.793 9.810 9.822 9.833		0.000	0.000	INFINITE	-1-161	-43.A29	-41.829	INCINIT
1000		8.041	5.790					
1000	-		5.840					
10.798			8.453					
11.13	500	10.798	10.770	6.835				18.666
1000	600	11.316	12.788	7.663				
11-91								15.46
1900		11.911						
1000			17.549					10.129
1155	1000	12.272	18.833	11.208	7.825			9.06
1155 12,486 20,617 12,181 9,744 -40,072 -41,078 7,11155 12,486 20,617 12,181 9,744 -40,072 -41,078 7,11155 12,486 20,617 12,181 9,744 -40,072 -41,078 7,11160 12,058 20,617 12,181 9,744 -40,072 -41,078 7,11760 12,058 12,050 10,307 -40,998 -40,026 7,41360 12,057 24,066 13,756 11,567 -45,055 -40,885 6,1460 12,677 23,046 13,756 12,838 -45,140 -0,237 6,71460 12,677 23,046 13,756 12,838 -45,140 -0,237 6,7147 14,100 -45,222 -39,885 5,7147 14,100 -45,222 -39,885 5,7147 14,100 -45,222 -39,885 5,7147 14,100 -45,222 -39,885 5,7147 14,100 -45,222 -39,885 5,7147 14,100 -45,222 -39,885 5,7147 14,100 -45,222 -39,885 5,7147 14,100 -45,222 -39,885 5,7147 14,100 -45,222 -39,885 5,7147 14,100 -3,637 -38,127 5,7147 14,100 -3,637 -38,127 5,7147 14,100 -3,637 -38,127 5,7147 14,100 -3,637 -38,127 5,7147 14,100 -3,637 -38,127 3,7147 -45,100 -3,637 -38,127 3,7147 -45,100 -3,637 -38,127 3,7147 -45,100 -3,637 -38,127 -45,100 -3,637 -38,127 -45,100 -3,637 -38,127 -45,100 -3,637 -38,127 -45,100 -3,637 -38,127 -45,100 -3,637 -38,127 -45,100 -3,637 -38,127 -45,100 -3,637 -38,127 -45,100 -3,637 -38,127 -45,100 -3,637 -34,100 -3,637	1100	12.414	20.009	11.774	9.059	≈43.904	-41 319	0 10
12-96			20.617					7.77
1.000				12.181				7.77
1400					10.307	-44.998		7.45
1500 12.87 23.930 14.517 14.103 -45.149 -39.287 5.88 1600 12.970 24.764 15.131 15.412 -45.311 -39.525 5.28 1700 13.066 27.553 15.721 10.714 -45.45 -39.150 5.28 1800 13.160 26.303 16.286 18.025 -45.45 -38.791 4.79 1900 13.216 27.017 16.833 19.346 -45.65 -38.791 4.79 1900 13.226 27.575 17.100 20.010 -45.65 -38.223 4.28 1950 13.226 27.575 17.100 20.010 -45.55 -38.223 4.28 1950 13.236 27.679 17.361 20.676 -4.785 -37.940 4.1 1950 13.236 27.679 17.361 20.676 -4.785 -37.940 4.1 1950 13.236 27.679 17.361 20.676 -4.785 -37.940 4.1 1950 13.236 27.679 17.361 20.676 -4.785 -37.940 4.1 2000 13.340 27.679 17.361 20.676 -4.785 -38.223 4.2 2000 13.340 27.679 17.361 20.676 -4.785 -38.223 4.2 2000 13.340 27.679 17.361 20.676 -4.785 -36.216 3.2 2000 13.479 27.579 18.435 27.717 -40.514 -36.216 3.2 2000 13.677 27.579 18.435 27.4717 -40.514 -36.216 3.2 2000 13.677 27.579 17.740 27.495 -49.561 -35.052 3.0 2000 13.487 31.264 20.173 28.836 -49.585 -34.471 2.2 2000 13.473 30.727 17.740 27.495 -49.561 -35.052 3.0 2000 14.177 31.777 22.160 35.869 -49.586 -34.471 2.2 2000 14.170 34.777 21.771 33.031 -49.599 -32.148 2.3 2000 14.170 34.777 21.787 34.460 -49.599 -32.148 2.3 2000 14.170 34.770 21.787 34.460 -49.599 -32.148 2.3 2000 14.177 34.170 27.578 37.487 -29.77 -30.990 2.3 2010 14.171 34.170 27.578 34.460 -49.599 -32.148 2.3 2010 14.177 34.170 27.578 34.460 -49.599 -32.148 2.3 2010 14.170 34.170 27.578 34.460 -49.599 -32.148 2.3 2010 14.170 34.170 27.578 34.460 -49.599 -30.799 -30.799 -30.799 -30.799 -30.799 -30.799 -30.799 -30.799						-45.065	-40.585	6.82
1600								6.281
1700		13.00			144170	47.272	-34.665	5.81
1800								5.399
1900								5.034
1960								4.710
1956					- 1			4.418
13.440	1950							4.284
1200	2000	11.340						4.146
1200	2100	14.429	28.352	17.862	22,014	~49.474	-17.364	3 000
13.602	5500							3 • 889 3 • 655
13-686		13.602						3.44)
13.073 13.073 10.722 10.720 20.455 -40.567 -35.052 3.0					26.082	-47.544	-35.632	3.24
1700	, J (, U	13.773	10,722	11.747	27.455	-49.561	-35.052	3.064
1700				20.173	2P 836	-47.585	-34.471	2.89
14-107 32-741 21-471 33-031 -49-597 -77-777 24-45000 14-140 33-77 21-187 34-446 -49-595 -52-148 7-3 31-77 31-77 21-187 34-446 -49-595 -52-148 7-3 31-77 31-77 22-148 7-3 31-77 31-77 22-148 7-3 31-77 31-77 22-148 7-3 31-77 31-77 22-148 7-3 31-77 31-77 22-148 7-3 31-77 31-77 22-148 7-3 31-77 31-77 22-148 7-3 31-77 22-148 7-3 31-77 7-3 31-566 22-7 31-7 31-566 22-7 31-7 31-566 22-7 31-7 31-566 22-7 31-7 31-566 22-7 31-					30.226	-47.595	-13.892	2.743
14-190								2.600
100								2 • 466
14.377		140170		210,67	24.440	-4 ** 550	-32.140	6. 34 6
14.366								2 • 2 2 5
18-00								2.116
16.00								2 • 102
1840								2.102
16.00								1.99
14:00								1.939
14:00	3550	17.200	47.075	24 . 36 4	4.7 - 8.74	= 18.907	-31 697	١ ٥٠٠
16.00								1.914
16.000								1.601
1800								1.586
16.000				51.613				1.382
4100 16:000 44:375 76:872 11:679 -130:601 -15:610 0:6 4200 16:000 44:761 77:313 73:279 -130:114 -12:886 0:6 4300 16:000 45:137 27:723 74:879 -130:437 -10:005 0:5 4400 16:000 45:507 27:113 76:479 30:472 -7:205 0:6 4500 16:000 45:864 76:514 78:073 -170:429 30:472 -7:205 0:6 4500 16:000 45:864 76:514 78:073 -170:120 -4:413 0:7 4600 16:000 45:864 76:514 78:073 -170:120 -4:413 0:7 4600 16:000 46:400 29:77 -27:410:250 1:183 -0.6 4800 16:000 46:400 29:77 -27:410:250 1:183 -0.6 4800 16:000 46:877 79:631 1:879 -130:236 6:781 -0.6 4800 16:000 47:277 2:086 84:479 -130:236 6:781 -0.7 4800 16:000 47:550 30:334 86:079 -130:234 9:575 -0.4 48100 16:000 47:550 30:334 86:079 -130:234 9:575 -0.4 48100 16:000 48:178 30:673 47:677 -130:230 7:766 0:6 48100 16:000 48:178 31:310 90:879 -130:307 17:366 0:6 48100 16:000 48:183 31:310 90:879 -130:307 17:366 0:6 48100 16:000 48:183 31:310 90:879 -130:307 17:366 0:6 48100 16:000 48:183 31:310 90:879 -130:307 17:366 0:6 48100 16:000 48:183 31:310 90:879 -130:307 17:366 0:6 48100 16:000 48:483 31:310 90:879 -130:307 17:366 0:6 48100 16:000 48:483 31:310 90:879 -130:307 17:366 0:6 48100 16:000 48:483 31:310 90:879 -130:307 17:366 0:6 48100 16:000 48:483 31:310 90:879 -130:400 20:564 0:6 48100 16:000 48:483 31:310 90:879 -130:400 20:564 0:6 48100 16:000 48:483 31:310 90:879 -130:400 20:664 0:6600 16:000 48:483 31:310 90:879 -130:400 20:664 0:6600 16:000 48:483 31:310 90:879 -130:400 20:664 0:6600 16:000 48:483 31:310 90:879 -130:400 20:664 0:6600 16:000 48:483 31:310 90:879 -130:400 20:664 0:6600 16:000 48:483 31:310 90:877 -130:400 20:6762 0:6600 16:000 48:483 31:310 90:877 -130:400 20:6762 0:6600 16:000 48:483 31:310 90:877 -130:400 20:6762 0:6600 16:000 48:483 31:310 90:477 -130:400 20:6762 0:6600 16:000 48:483 31:310 90:477 -130:400 20:6762 0:6600 16:000 48:483 31:310 90:477 -130:400 20:6762 0:6600 16:000 48:483 31:310 90:477 -130:400 20:6762 0:6600 16:000 48:483 31:310 90:477 -130:400 20:6762 0:6600 16:000 48:483 31:310 90:477 -130:400 20:6762 0:6600 16:000 48:483 31:310 90:477 -130:400 2		14.000	41.57	: F. 5		-130.690		1.190
4900 16.000 44.761 27.333 73.279 -130.414 -12.806 0.6 4300 16.300 45.507 27.123 74.879 -130.414 -12.806 0.6 4400 16.000 45.507 27.123 74.879 -130.417 -10.005 0.6 4500 16.000 45.864 26.514 78.073 -170.200 -4.413 0.7 4600 16.000 45.864 26.514 78.073 -170.280 612 0.6 4600 16.000 46.716 28.895 19.679 -130.280 612 0.6 4700 16.000 46.710 29.631 0679 -130.230 612 0.0 4800 16.000 47.277 29.816 84.479 -130.234 9.670 -0.1 4900 16.000 47.850 30.334 86.079 -130.234 9.575 -0.4 4100 16.000 47.861 30.879 47.679 -130.234 <th< td=""><td>4000</td><td>16.550</td><td>41.980</td><td>26.46</td><td>70.079</td><td>-130.710</td><td>-18.418</td><td>1.000</td></th<>	4000	16.550	41.980	26.46	70.079	-130.710	-18.418	1.000
4900 16.000 44.761 27.333 73.279 -130.414 -12.806 0.6 4300 16.300 45.507 27.123 74.879 -130.414 -12.806 0.6 4400 16.000 45.507 27.123 74.879 -130.417 -10.005 0.6 4500 16.000 45.864 26.514 78.073 -170.200 -4.413 0.7 4600 16.000 45.864 26.514 78.073 -170.280 -1.612 0.6 4600 16.000 46.700 29.757 -276 -10.250 1.183 -0.6 4800 16.000 46.877 29.631 0.479 -130.236 4.980 -0.1 4800 16.000 47.277 2.486 84.479 -130.236 4.980 -0.1 4900 16.000 47.550 30.334 86.079 -130.234 9.575 -0.4 4100 16.000 47.867 30.479 47.679 -130.234 9.575 <td>+100</td> <td>16.000</td> <td>44.3/5</td> <td>26.832</td> <td>11.679</td> <td>-110.601</td> <td>-15.610</td> <td>0.832</td>	+100	16.000	44.3/5	26.832	11.679	-110.601	-15.610	0.832
16.00								C.666
16.000		16.100		27.723	74.879	-130.43?		0.50
16.000		16.000	44.50					0.358
16.000	1500	16.000	45.864	1,0 + 2.14	78.077	-110-100	-4.413	0.214
16.000	600	16.000	45.216	28.405		-130.280	612	0.07
16.000			~6.500			-130.251		-0.05
\$100								-0.181
\$100								-0.30
16.000	5000	16.000	47.440	1(), 714	86.079	-1 40 • .' 44	9.575	-0.419
16.000								-0.63
\$400 16.000 48.767 \$1.667 \$1.479 \$13.449 \$20.762 \$0.6500 \$16.000 49.077 \$11.677 \$94.079 \$130.498 \$20.762 \$0.6500 \$16.000 49.078 \$12.78 \$94.679 \$130.498 \$26.597 \$14.000 \$16.000 49.047 \$10.68 \$17.77 \$130.498 \$26.597 \$150.000 \$16.000 49.047 \$10.68 \$17.77 \$130.498 \$29.100 \$1.6800 \$16.000 \$10.478 \$130.477 \$11.0676 \$14.771 \$14.0676 \$14.771 \$14.0676 \$14.771 \$14.0676 \$14.771 \$14.0676 \$14.771 \$14.0676 \$14.771 \$14.0676 \$14.771 \$14.0676 \$14.771 \$14.0676 \$14.771 \$14.0676 \$14.771 \$14.0676 \$14.771 \$14.0676								-5.63
1500 16:000 49:07 11:77 94:079 -:40:400 25:564 -0:5600 16:000 49:053 12:.78 90:675 -130:498 26:577 -130:570 16:000 49:047 42:580 77:277 -130:574 29:166 -1:5800 16:000 49:055 30:977 78:879 -130:597 31:966 -1:5900 16:000 10:1-8 31:68 100:477 -130:676 30:771 -1:68								-0.74
0600 16.000 44.001 1218 94.675 -130.458 26.007 -1.6 05700 16.000 44.647 41.00 77.277 -130.524 24.166 -1.6 05800 16.000 44.525 30.977 78.879 130.597 31.966 -1.6 05900 16.000 10.1-8 31.68 100.479 -1.00.676 34.771 -1.6								-0.840 -0.940
5700 16.000 49.047 (1.580 7.277 -130.524 29.166 -1.5 5800 16.000 49.525 30.977 78.879 (100.597 31.966 -1.5 5900 16.000 10.1-8 31.68 100.479 -130.676 14.771 -1.5					94. E **		36 7	
1800 16.000 49.975 30.971 78.819 -130.597 31.966 -1.5								-1.029
5900 16.000 10.1-H 11.6H 100.4/9 -110.676 14.771 -1.								-1.20
100 000 000 000 000 000 000 000 000 000							14.771	-1.28
				2 4 4 4 4	10.00	-1 10 - 161	37.572	-1.16

TITANIUM CARBIDE (TiC) (CONDENSED PHASE)
$$gfw = 59.911$$
 $\Delta H_{f298. \ 15}^{\circ} = -44.13 \text{ kcal } gfw^{-1}$
 $S_{298. \ 15}^{\circ} = 5.79 \text{ cal } deg K^{-1} gfw^{-1}$
 $T_{rm} = 3213^{\circ} K$
 $\Delta H_{rm}^{\circ} = 20.0 \text{ kcal } gfw^{-1}$
 $H_{298. \ 15}^{\circ} = H_{0}^{\circ} = 1.101 \text{ kcal } gfw^{-1}$
 $C_{p}^{\circ} = 11.83 + 0.80 \times 10^{-3} \text{ T} - 3.58 \times 10^{5} \text{ T}^{-2} \text{ cal } deg K^{-1} gfw^{-1}$
 $298.15^{\circ} K \leq T \leq 3213^{\circ} K$

Structure

TiC has an f. c. c. structure (NaCl type) with variable homogeneity range.

Heat of Formation

Several possible values examined in the text. The calorimetric value from $\operatorname{Humphrey}^1$ accepted.

Heat Capacity and Entropy

Low-temperature data from Kelley. 2 High-temperature data by Naylor, 3

Melting and Vaporization

Heat of fusion estimated.

References

- 1. Fumphrey, G., J. Am. Chem. Soc. 73, 2261 (1951).
- 2. Kelley, K. K., Ind. Eng. Chem. 36, 865 (1944).
- 3. Naylor, B., J. Am. Chem. Soc. 68, 370 (1946).

CONDENSED PHASE

Reference State for Calculating 'M'₁, M'₁, and Log K_p. Solid W from 0° to 3650°K, Liquid W from 3650° to 5891°K, Gaseous W from 5891° to 6000°K, Solid C, Solid WC from 0° to 3058°K.

. .	C.		(1 1 11,508) 1,	(H1 - H/108	VHI	MI	Log K _p
O							
298.15	9.869	9.500	9.500	0.000	-8.400	-8.493	6.2
300	9.410	9.561	9.500	0.018	-8.397	-0.473	6.1
400	11.419	12.646	9.910	1.094	-8 - 155	-8.551	4.6
500	12.228	12.588	10.729	2.280	-7.889	-8.691	3.7
600	12.762	17.567	11.683	1001	-7.623	-0.065	3.2
700	13.165	14.566	12.064	4.828	-1.365	-9.105	2.84
800	13.499	21.346	13.645	0.161	-1.113	-7.358	2 . 5 !
900	13.793	22.954	14.591	7.526	-6.863	-4.670	2.34
1000	14.062	24.471	15.502	8.919	-6.608	-4.976	2.1
1100	14.315	25.113	16.375	10.338	-6+352	-10.347	2.0
1200	14.556	27.029	17.211	11.782	-6.090	-10.697	1.94
1300	14.789	28.204	18.012	13.249	-5.831	-11.118	1.80
1400	15.017	24.308	18.780	14.739	-5.570	-11.536	1.80
1500	15-241	30.352	14.517	10.525	-5.308	-11.971	1.74
1600	15.461	31.342	20.225	.7.788	-5.645	-12.424	1.6
1700	15.674	12.206	20.907	19.345	-4.713	-15.833	1.6
1800	15.895	31.169	21.504	20.923	-4. is	-13.377	1.64
1900	16.1.0	34.054	22.199	12.524	-4.241	-13.876	1.5
200C	16.323	34.005	22.813	24.145	-3.404	-14.394	i • 5 7
2100	16.535	35.667	23.401	25.788	- 1.089	-14.918	1.55
2200	100141	0.461	23.163	17.452	-3.409	-15.462	1.5:
2300	16.957	31.210	24.542	14.137	- 3 - 1 2 3	-10.018	1.54
24(10)	17.167	37.936	25.365	30.844	-4.834	-10.584	1.5
2500	17.37/	38.041	25.611	32.571	-4.540	-17.163	4 • 50
2600	17.586	34.327	26.121	34.3.7	/44	-17.72	1.4
27 30	17.795	34.345	26.629	30.088	-1.942	-18.355	1.40
2800	18.004	40.646	27.116	37.876	-1.030	-10.367	1.4
2900	18.212	41.261	27.595	14.689	-1.326	-19.591	1.4
3000	10.420	41.405	. 6.36.	41.52.	012	-20.229	1.4
3058	14.542	42.256	26.328	42.572	-0.878	-23.604	1.4

15 June 1963

DFA

$$\Delta H_{f298.15}^{\circ} = -8.4 \text{ kcal gfw}^{-1}$$
 $S_{298.15}^{\circ} = 9.5 \text{ cal deg } K^{-1} \text{ gfw}^{-1}$ $T_{m} = 3058 \text{ °K}$ $C_{p}^{\circ} = 12.27 + 2.06 \times 10^{-3} \text{ T} - 2.68 \times 10^{5} \text{ T}^{-2} \text{ cal deg } K^{-1} \text{ gfw}^{-1}$ 298.15 °K $\leq T \leq 3058 \text{ °K}$

Structure

The structure of α -WC is simple hexagonal. A high-temperature form with face-centered cubic structure has been reported. See text for details.

Heat of Formation

The heat of formation of -8.4 kcal gfw⁻¹ used is that reported by Huff and co-workers who corrected the value reported by McGraw and co-workers.²

Heat Capacity and Entropy

No low-temperature heat capacity data have been reported. The value for \$298.15 is that estimated by Krikorian. The high-temperature heat capacity equation was also estimated by Krikorian.

Melting and Vaporization

Coffman and co-workers⁴ investigated the vaporization of WC but were unable to obtain thermodynamic data. The melting point of 3058 K reported by Sara and Dolloff⁵ has been used.

References

- 1. Huff, G., E. Squitieri, and P. E. Snyder, JACS 70, 3380 (1948).
- 2. McGraw, L. D., H. Settz, and P. E. Snyder, JACS 69, 329 (1947).
- 3. Krikorian, O., Estimation of High-Temperature Heat Capacities of Carbides, UCRL 6785 (1962).
- Coffman, J. A., G. M. Kibler, T. F. Lyon, and B. D. Acchione, WADD-TR-60-646, Part II (1963).
- 5. Sara, R. V. and R. T. Dolloff, WADD-TR-60-143, Part III (1962).

TUNGSTEN CARBIDE (WC) (CONDENSED PHASE) GFW = 195.871

SUMMARY OF UNCERTAINTY ESTIMATES

	,	,		-tal K gt	•	- ,			Real gin		
T, 1K	,	' P		٧٠ .	or r	- н _{2′ян} - т	۱ ′۱	ч ₁ н _{гик}	AH,	Mr.	Logik
298.15	*	1.000	+	0.500	ŧ	0.500	+	0.000	. U.200		
500	±	1.000		1.017	ż	0.613	_	0.202			
1000	ŧ	1.000	*	1.710		1.008		0.702			
1500	±	1.000	•	2.116		1.314		1.202			
2000	*	1.000	*	2.403		1.554		1.702			
2500	ŧ	1.000		2.626		1.746		2.202			
3000		1.000		2.809		1.908		2.702			
3058	*	1.000		2.828		1.925		2.760			

CW₂

Reference State for Calculating Mi, Mi, and Log Kp. Solid W from 0° to 3650°K, Liquid W from 3650° to 5891°K, Caseous W from 5891° to 6000°K, Solid C, Solid WyC from 0° to 3068°K

	· ·	u X)			- Ke il giw	,	
1 'K	/ (_P	`1	O 1 H 2000 1	H ₁ H ₂₉₈	VH _L	111	Log Kp
٥							
298.15	18.320	19.500	19.500	0.000	-11.000	-11.740	8.60
300	18.373	19.613	14.500	0.034	-10.992	-11.744	8.50
400	20.325	25.201	20.243	1.401	-10.467	-12.054	6.58
500	21.368	29.858	21.719	4.070	-9.897	-12.535	>.47
600	22.053	33.818	23.414	6.243	-9.318	-13.095	4.76
700	22.510	37.258	25.151	8.475	-8.739	-11.795	4.30
800	22.996	40.301	26-858	10.754	-8.103	-14.529	3.96
900	23.370	43.031	28.506	13.073	~1.587	-15.394	3.73
1000	23.712	45.511	30.084	15.427	-1.003	-16.252	3.55
1100	24.032	47.787	31.592	17.814	-6.419	-17.250	3.42
1200	24.338	44.841	31.030	10.233	-5.828	-10.211	1011
1300	24.634	51.851	34.403	22.682	-5.246	-14.320	3.24
1400	24.922	51.647	35.716	25.160	-4.070	-20.428	3.18
1500	25.205	55.416	16.912	27.660	-4-102	-21.572	3 - 14
1600	25.484	51.052	38.176	30.200	~3.744	-22.755	ان 1 ء و
1700	25.760	58.605	34.333	32.763	-2 189	-23.974	.۵0 د
1800	26.033	60.085	40.445	35.352	-2.445	-25.224	.06 و
1900	26.304	61.500	41.510	17.969	-1-104	-26.504	3.04
2000	26.573	62.456	42.549	40.613	-1.371	-27.814	3.00
2100	24.841	54.159	41.548	43.284	-3.841	-24.144	3.03
2200	27.106	65.414	44.513	45.981	-0.021	- 30 - 507	3.03
2300	27.314	66.615	45.448	48.705	0.197	-31.871	اون، و
2400	27.640	67.145	46.355	51.456	0.707	-33.298	، د ن ، د
2500	27.404	68.459	41.236	54.233	1.214	-34.722	3.03
2600	24.164	70.028	48.091	51.037	1.713	- 56 . 17 5	3.040
2700	28.437	71.046	48.424	59.867	2.209	-31.638	3.040
2800	28.696	72.135	44.734	,2.723	2.698	-39.120	3.05
2900	28.959	73.147	50.524	55.606	3.103	-40.623	. 60 و د
1000	29.221	74.133	51.299	68.015	3.061	-42.146	3.070
1068	29.400	74.190	51.808	10.508	3.784	-40.156	0.070ء د

15 June 1963

DEA

$$\Delta H_{f298.15}^{\bullet} = -11.0 \text{ kcal gfw}^{-1}$$
 $S_{298.15}^{\bullet} = 19.5 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

 $T_{m} = 3068 \, ^{\circ} K$

$$C_{\mathbf{p}}^{\bullet} = 21.45 + 2.60 \times 10^{-3} \text{ T} - 3.48 \times 10^{5} \text{ T}^{-2} \text{ caldeg K}^{-1} \text{ gfw}^{-1}$$
 298.15 °K $\leq T \leq 3068$ °K

Structure

The crystal structure of W₂C is simple hexagonal. Lattice parameters are given in the text.

Heat of Formation

The heat of formation of -11.0 kcal gfw⁻¹ estimated by Krikorian¹ has been used since no experimental values have been reported.

Heat Capacity and Entropy

No low temperature heat capacity data have been reported. The entropy at 298.15 K is that estimated by Krikorian. The high-temperature heat capacity equation is that estimated by Krikorian.

Melting and Vaporization

No vaporization data have been reported. The melting point of 3068 °K reported by Sara and Dolloff³ has been adopted.

References

- 1. Krikorian, O., High Temperature Studies, UCRL-2888 (April 1955).
- 2. Krikorian, O., Estimation of High Temperature Heat Capacities of Carbides, UCRL-6785 (1962).
- 3. Sara, R. V. and R. T. Dolloff, WADD-TR-60-143, Part III (1962).

DITUNGSTEN CARBIDE (W2C) (CONDENSED PHASE) GFW = 3/9.13.

SUMMARY OF UNCERTAINTY ESTIMATES

		-		al ka				-	N.	C + g**		
1 %		Þ		רי	11 ($n^{5,96} \cdot 1$	′	н _{1 - н} ым		MIL	M	Logik
298-15	±	1.400	±	1.000	ŧ	1.000		U.GOO	ŧ	4.000		
500	±	1.400		1.724	*	1.157	ŧ	0.283				
1000	ŧ	1.400	ŧ	2.674	ŧ	1.714	r	0.963				
1500	+	1.400	ŧ	3.262		2.140	±	1.663				
2000	ŧ	1.400	1	3.605	r	4.473	1	2.383				
2500	ŧ	1.400	2	3.977		2.744		3.003				
3000		1.400		4.232	±	2.371		3 - 783				
3068	ŧ	1.400	£	4.264	±	3.000		1.878				

Reference State for Calculating AH*, AF*, and Log Kp. Solid Zr from 0° to 2125°K, Liquid Zr from 2125° to 4644°K, Gaseous Zr from 4644° to 6000°K, Solid C. Solid ZrC from 0° to 3693°K, Liquid ZrC from 3693° to 6000°K.

	<u></u>	cal/"K	g/w		Kcal/gfw			
Т, "К	'(^p	۶r	-(Е <mark>Т</mark> Н <mark>208</mark>)/Т	H _T - H ₂₉₈	Кса!/gfw ^ Н _f	A F 2 1	Log K _p	
0	0.000							
79A • 15	9.058	0.000	INFINITE	-1.401	-47.836	-47.B36	INFINITE	
300	9.098	7.964	7.964	0.000	-48.000	-47.199	34.596	
400	10.588	8.020	7.964	0.617	-47.998	-47.194	34.380	
500	11.395	10.868	8.342	1.010	-41.882	-46.943	25.647	
	,	11.324	9.099	7.113	-47.771	-46.722	20.421	
60(11.935	15.452	9.285	3.281	-47.682	-46.521	16.944	
700	12.346	17.324	10.202	4.495	-47.616	-46.313	14.465	
800	12.694	18.996	11.511	5.148	-47.564	-46.154	12.608	
900	13.000	20.509	12.695	7.033	-47.525	-45.979	11.165	
იიი	13.282	21.894	13.547	8.347	-47.493	-45.410	10.011	
100	13.548	23.172	14.364	0 40-				
135	13.672	23.588	14.638	2.687 10.167	-47.466 -47.454	-45.643	9.068	
135	13.672	23.588	14.638	10.167		-45.580	8.776	
200	13.803	24.362	15.148	.1.056	-48.369	-45.580	8.776	
300	14.051	21.477	15.900	12.449	-48.344 -49.290	-45.426 -45.184	8.273	
400	14.293	26.527	16.62.	13.866	-48.214	-44.94A	7.596	
500	14.530	27.521	17.316	15.308	-48	-44.718	7.016 6.515	
670	14.765	25.466	17.984	16.772	-48.027	-44.494	6.077	
71.0	14.998	27.364	1F • 627	18.261	-47.902	-44.275	5.692	
800	15.228	30.232	14.248	19.772	-41.160	-44.067	5.350	
900	1: -4-7	3 .062	. 9 . 848	21 - 306	-47.598	-43.866	5.045	
000	15.685	31.860	20.429	22.863	-47.416	-43.676	4.772	
100	15.71.5	32.631	20.992	24.443	-47.213	-43.493	4.526	
128	15.96B	12.617	21.128	24.884	-47.116	-43.444	4.468	
125	15.968	3. 817	21.128	24.884	-52-016	-43.444	4.468	
200	.6. 37	33.377	21.538	16.045	-51.899	-43.147	4.286	
300	16.363	34.099	22.068	27.670	-51 -656	-42.756	4.063	
400	10.587	34.000	22.584	27.318	-51.413	-42.372	3.858	
500	16.812	35.484	23.087	30.988	-51.139	-42.003	3.672	
600	17.036	36.14°	23.576	32.680	-50.846	-41.640	3.500	
17(C 18(C	17.254 17.462	17.424	24.054 24.520	14.395	-50.531	-41.296	3.343	
900	17.705	35.042	24.976	36 - 1 3 2	-53.195	7.958	3.197	
ooc	17.928	38.646	25.421	17.892 19.673	-49.839 -49.463	-47.634	3.062	
		70.		77.673	-44.463	-40.323	2.937	
1100	18.151	79.237	25.857	417	-49.064	-43.024	2.822	
1200	18.373	34.617	20.285	43.303	-48.64	-39.741	2.714	
300	18.646	40.386	26.703	45.152	-48.208	-39.469	2.614	
400	18.817	40.944	27.114	41.022	-41.749	- 19.211	2.520	
5500	19.019	41.493	27.517	48.915	-47.269	-38.967	2.433	
1600	19.261	42.032	27.913	50.830	-46.768	- 38 • 7 3 7	2.352	
691	19.467	42.526	26.215	52.6.1	-46.284	-38.539	2.281	
693	14.000	47.947	28.275	72.631	-26.284	-38.539	7.281	
370C	19.000	41.978	28.312	12.764	-26.250	-38.558	2.277	
900	19.000	48.484	28.836	74.664	-25.167	-38.899	2.237	
1900	19.000	48.478	29.346	76.564	-25.286	-39.248	2.199	
000	19.000	49.459	29.843	78.464	-24.804	-39.612	7.164	
100	14: 000		30.427	90 344	-24.328	-39.989	2.131	
100	14.000 19.000	49.928 50.386	30.799	80.364 82.264	-23.852	-40.377	2.101	
300		50.833	31.260	84.104	-23.632	-40.776	2.07	
400	19.000 19.000	51.270	31.710	80.064	-22.905	-41.189	2.046	
500	19.000	51.697	32.149	87.964	-22.434	-4 .605	2.021	
				_				
600	19.000	52.114	32.579	-864	-71.965	-42.038	1.997	
644.05	19.000	52.294	32.764	90.701	-21.758	-42.227	1.987	
644.05	19.000	52.294	32.764	90.701	-157.212	-42.227	1.987	
700	13.000	52.523	37.999	21.764	-157.005	-40.847	1.899	
800	19.000	52.923	33.410	93.664	-156.641	-38.381	1.747	
900	19.000	53.315	33.817	95.564	-156.284	-35.917	1.602	
000	19.000	53.699	14.206	97.464	-155.933	-33.465	1.463	
100	10.300	64 A74	34.592	49.364	-155.590	-31.022	1.329	
100	19.000	54.075 54.444	14.970	101.264	-155.253	-28.578	1.201	
200 300	19.000	54.806	35.341	101.164	-154.922	-26.148	1.076	
900 9400	19.000	55.161	35.705	105.064	-154.596	-23.722	0.960	
50r	, 4.000 ! 4.00c	55.510	16.362	106.964	-154.276	-21.303	0.846	
						10 00:	A	
660	14.000	55.857	36.412	108.864	-153.961	-18.886 -16.473	0.737	
700	4.00C	56.188	36.756	110.764	-153-652	-14.070	0.530	
SEC.	* 6* 00%	56.519	37.094	112.664	-153.346	-11.674	0.432	
91	, 9• nor	. 6 . 844	17.426	114.564	-153.045 -152.748	-9.276	5.338	
• •	4 m + 100	57.161	31.753	116.464	-1 1/0/40	,,,,,	0.558	
							HLS	

$$\Delta H_{f298. 15}^{o} = -48.0 \text{ Kcal gfw}^{-1}$$

$$S_{298. 15}^{o} = 7.964 \text{ cal deg } K^{-1} \text{ gfw}^{-1}$$

$$T_{m} = 3693^{0} \text{K}$$

$$\Delta H_{m} = 20.0 \text{ Kcal gfw}^{-1}$$

$$H_{298. 15}^{o} = 1.401 \text{ Kcal gfw}^{-1}$$

$$C_{p}^{o} = 11.336 + 2.207 \times 10^{-3} \text{T} = 2.610 \times 10^{5} \text{T}^{-2} \text{ cal deg } K^{-1} \text{ gfw}^{-1}$$

$$298.15^{0} \text{K} \angle \text{T} \angle = 3693^{0} \text{K}$$

Structure

ZrC his a cubic, NaCl (B1) type structure.

Heat of Formation

Choice based on vaporization from Knudsen cell by Pollock, and Langmuir vaporization by Pollock and Coffman et al.

Heat Capacity and Entropy

Low-temperature data by Westrum 3 and Westrum and Feick 4 . High-temperature data based on estimates of Krikorian 5 joined low-temperature data. It agreed with available experimental data of Margrave 6 and Southern Res. Inst. 7

Melting and Vaporization

Melting temperature from Dolloff and Sara 8 Heat of melting estimated

References

- Pollock, B. D., J. Phys. Chem. 65, 731 (1961)
 Coffman, J. A. et al. WADD TR-60-646, Pt. II (1961).
- 3. Westrum, E , in A. D. Little Third Semiannual Prog. Rept., Contract AF33(616)-7472 (August 1962)
- Westrum, E. and G. Feick, Manuscript courtesy of E. Westrum.
- 5. Krikorian, O H., UCRL-6785 (6 February 1962).
- Margrave, J., in A. D. Little Rept., ASD-TDR-62-204, Pt. I. AD 277500 (April 1962).
- Neel, D. S. et al. Southern Res Inst. WADD TR-60-924 (February 1962)
- 8. Dolloff, R. T. and R. V. Sara, Nat. Carbon Co. Prog. Rept. No. 3, Contract AF33(616)-6286 (10 December 1962).

ZIRCONIUM CARBIDE (ZrC) ICONDENSED PHASE OFW - 104.231 SUMMARY OF UNCERTAINTY ESTIMATES

						``	1			11,1	
Т, 'К		(b	ר	I	11	H , HC, H	Hr-	H _{27H}	Kcal y(w ΛH _β	11,	1 , 4
298.15	ŧ	0.300	±	0.050	£	0.050	± 0	.000	£5,000		
1000		0.500	±	C.413	#	0.202	± 0	.211			
2000	ŧ	0.850	1	0.898	±	0.443	+ 0	.911			
3000	±	1.000	+	1.304	1	0.667	± 1	.911			
3693	*	1.000	±	1.512	ŧ	0.807	1 2	604			
3693	±	1.000	±	2.865	+	0.807	£ 7.	.604			
4000	±	2.000	1	3.025	£	0.971	± 8	-218			
5000	ŧ	2.000	ŧ	3.471	t	1.428	±10	·218			
6000	1	2.000	±	3.836	4	1.600	112	-218			

Reference State for Calculating NH $_f^*$, NF $_f^*$, and Log K $_p$ Solid Graphite from 0 * to 6000 *K

T,"k	1, "		· · · · · · · · · · · · · · · · · · ·	/ [,] ⁶	1H,	4 6 1	iog K _D
1, K	, t·	Si	(г <u>)</u> н _{29в} , г,	'Н _Т - П _{РОВ}	7 n(AFE'	1 of wb
0	0.000	0.000	INFINITE	-2.528	196.636	196.636	INFINITE
298.15	10.312	47.630	47.630	0.000	198.660		-135.800
300	10.302	47.694	41.630	0.019	198.671		-134.902
400	9.478	50.548	44.025	1.009	199.169	189.610	-98.676
500	8.878	52.592	48.744	1.924	199.446	175.934	-76.897
600	8.606	54.182	44.523	2.796	199.562	171.218	-62.363
700	8.516	55.501	50.285	3.651	199.567	166.493	-51.979
800	8.512	56.637	51.010	4.502	199.500	161.770	-44.191
900	8.546	57.641	1.692	5.355	199.379	157.062	-38.138
000	A.599	5A.544	52.333	6.717	199.224	157.367	-33.298
1100	8.659	59.366	52.935	7.075	199.041	147.692	-29.342
1200	A . 724	60-123	53.503	7.944	198.838	143.032	-26.048 -23.264
1300	8.791	60.824 61.478	54.040 54.548	8.819 9.702	198.615 198.386	138.389	-20.881
1400 1500	8.861 8.932	62.092	55.030	10.592	198.148	129.161	-18.818
1400	9.005	62.670	55.440	11.489	197.905	124.568	-17.014
1600 1700	9.078	63.218	55.929	12.393	1 -7 - 661	119.955	-15.426
1800	9.151	63.739	56.348	13-304	197 414	115.434	-14.015
1900	9.225	64.2 6	56.750	14.223	19769	110.886	-12.754
2000	9.297	64.711	* 7.137	15.147	196.975	176.346	-11.620
2100	9.369	65.167	57.508	16.082	195.684	101.825	-10.597
5500	9.439	64.604	57.856	17.023	196.443	97.317	~9.667
7300	9.508	66.025	58.212	17.970	196.206	92.807	-8.818
2400	4.639	66.431 66.823	58.546 58.869	18.924	195.977 175.739	88.325 83.843	-8.043 -7.329
2500	4.614	66 • 62 3	~ • 30 r				
56CD	9.701	61.203	59.183	20.852	195.508 195.281	79.373 74.906	-6.063
2700	9.761	57.570 67.926	54.487 14.762	21.4825 22.834	195.058	70.451	-5.479
7900 7900	7.818 9.873	69.271	40.169	13.788	194.814	66.007	-4.974
3000	4. 125	/8.c07	50.448	24. 78	194.614	51.553	-4.485
		(5.03)	60.619	.5.773	, 94. 397	47.136	-4.028
3700 3700	9.475	68.933 64.251	60 B94	26.773	194.181	42.714	-3.600
3 3	.0.167	64.500	61.143	27.778	1 +3. +66	48.584	-3.196
140.	10.110	(+.861	51.395	18.197	194.794	43.884	-2.821
1500	10.151	70.15	61.64.	29.800	1910 40	39.473	۳°.46'
3601	10.184	70.442	51.8hl	10.917	133.419	·1 •682	-2 -1 30
3 7 00	10.226	77.7.1	62.117	11.838	193. 9	37.684	-1.81. -1.51.
1800	10.260	73.4.5	- 2 - 347	47.4867	197.6	26.296 21.915	-1.22
3900	11.243	71 . 767	12.572	33.493 34.721	192.489	17.516	-0.95
→ 00(10.323	71.4.3	-2.113	, , .			
4100	, 17 . 453	71 - 771	13.009	14.945	191. 79	14.161	-0.70 -0.45
4200	, 1.38D	12.526	63.221	36.091	192.257	8.903 438	-0.22
4300	10.406	11.713	13.55	14.331	171.643	0.075	-0.00
441	10.431	72.117 72.747	61.842	47.117	1 +1 - 429	-4.215	0.70
4500	10.454	72.14				10	0.41
4600	10.476	77.978	64.024	41.164	191.214	-8.620 -12.758	0.41
4700	10.447	74.204	64.22 '	42.212 43.263	190.773	-17.299	0.78
480	10.517	73.42° 73.642	64.598	44.316	140.560	-21.634	0.30
49 00 5000	10.536 10.554	73.855	64.781	45. 171	197. (19	. 24.965	1 • 1 4
			64 04 1	40.427	1 20 • 113	-11.284	1.29
5100	10.571	74.26	64.961 65.135	47.485	189.487	-14.676	1 • • 5
5200	10.587	14.472	65.41	49.545	144.559	- 48.923	
5300 5400	10.61+	74.671	65.465	43.000	199.429	-41.227	1 - 74
5500	10.633	14.866	65.654	10.669	199-193	-47.542	1.81
	,	75.056	65.820	61.713	HA . 95"	~51.85¢	
5501	10.647 10.661	75.747		52.799	189.717	-55.139	
ちすいで ちおいい	10.674	74.413	64.146	53.866	188.474	-60-442	
5 8 CC	10.687	71.616	66.105	· 334	197.978	-64.735 -69.018	
6000	10.700	75 - 196	61.46.	50.004	1110113		

DIATOMIC CARBON (C₂) (IDEAL MOLECULAR GAS)

gfw = 24.022

 $\Delta H^{\circ}_{f0} = 196.636 \text{ Kcal gfw}^{-1}$

 $\Delta H^*_{f298,15} = 198.660 \text{ Kcal gfw}^{-1}$

Ground State Configuration 1 xg+

 $S^{\circ}_{298,15} = 47.630 \text{ cal } \text{deg K}^{-1} \text{ gfw}^{-1}$

 $H^{\circ}_{298.15}-H^{\circ}_{0}=2.528 \text{ Kcal gfw}^{-1}$

Spectroscopic constants from Clementi, 1 for 13 electronic states were used. See volume 1, this study (section IVA4c) for details.

Heat of Formation

Based on data of Drowart, et al2.

Heat Capacity and Entropy

Calculated on diatomic gas computer program.

- 1. Clementi, E., Astrophys. J. 133, 303 (1961).
- 2. Drowart, J., et al, J. Chem. Phys. 31, 1131 (1959).

Reference State for Calculating AH, AIT, and Log Kn. Solid Mo from 0° to 2890°K.

		cal/'K	elw-		Kcal/gfw		
т, "к	("	s_1^{\prime}	-0. L - H ⁵⁰⁸ 1/1/	H _T - H ₂₉₈	AH,	AF	l og K _p
0							
298.15	24.639	23.710	23.710	0.000	-13.970	-14.120	10.350
300	24.741	23.863	23.710	0.046	-13.965	-14.121	10.286
400	28.516	31.564	24.735	2.732	-13.523	-14.236	7.776
500	30.539	38.164	26.778	5.693	-13.024	-14.464	6.322
600	31.673	43.856	29.161	8.817	-12.522	-14.808	5.393
700	32.882	48.848	31.624	12.057	-12.037	-15.226	4 . 754
800	33.717	53.295	34.060	15.388	-11.544	-15.716	4 . 293
900	34.452	57.309	36.424	18.797	-11.059	-16.266	3 . 950
000	35.173	60.975	38.698	22.276	-10.572	-16.871	3.687
100	35.754	64.352	40.879	25.820	-10.114	-17.525	3.482
200	36.357	67.489	42.967	29.426	-9.680	-18.216	3.317
300	36.940	70.422	44.968	33.091	-9.273	-18.946	3 - 1 8 5
400	37.509	73.181	46.885	36 - 814	-8.882	-19.704	3.076
500	38.068	75.788	48.726	40-593	-8.481	-20.492	2 . 986
600	36.618	78.762	50.495	44.427	-8.127	-21.300	2 • 909
700	39.163	80.620	52.199	48.316	807	-22.138	2.846
800	39.702	82.874	53.841	52.259	-1.524	-22.988	?•791
900	40.238	85.034	55.426	56.256	-7.283	-23.854	2.744
000	40.770	87.112	56.959	60.307	-7.087	-24.736	2.703
100	41.300	99.114	58.442	64.410	-6.942	-25.619	2.666
200	41.826	91.047	59.881	68.567	-6.856	-26.510	2 • 6 3 3
300	42.354	92.918	61.277	72.776	-6.828	-27.407	2 • 604
400	42.879	94.732	62.633	77.038	-6.867	-28.298	2.577
2500	43.403	96.443	63.952	81 - 352	-6.979	-29.182	2 • 5 5 1
600	43.925	98.206	65.237	85.718	-7-171	-30.074	2.528
700	44.447	99.873	66.489	90 - 137	-7.441	-30.950	2 • 50
2890 2890	44.968 45.436	101.499 102.929	67.711	24 - 608	-7.796	-31.809	2 • 483
2890	45.436	102.929	68•785 68•785	98•676 98•676	-8.198 -28.148	-32.573 -32.573	2 • 4 6 3 2 • 4 6 3
2900	45.488	103.086	68.903	99.130	-28-116	-32.582	2 • 455
2921	45.607	103.446	69.174	100 - 178	-28.036	-32.607	2.436

15 September 1963

DFA

TRIMOLYBDENUM DICARBIDE (Mo₃C₂) (CONDENSED PHASE) gfw = 311.87

$$\Delta H_{f298, 15}^{\bullet} = -1.3, 97 \text{ kcal gfw}^{-1}$$
 $S_{298, 15}^{\bullet} = 23, 71 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

$$T_{m} = 2923^{\circ} K$$

$$C_p^{\circ} = 30.65 + (5.14 \times 10^{-3}) \text{ T} - (6.71 \times 10^{5}) \text{ T}^{-2} \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$
 298.15° K $\leq T \leq 2923$ ° K

Structure

 Mo_3C_2 has a hexagonal structure (a = 3.00 A c = 14.61 A) with a high-temperature cubic form (a = 4.26 A).

Heat of Formation

The heat of formation was calculated from the free-energy functions and the free energy at 1700°K. The free energy at 1700°K was calculated from the disproportionation reaction of Mo₃C₂ to Mo₂C and C.

Heat Capacity and Entropy

The heat-capacity equation was estimated by Krikorian². The entropy was calculated from an estimated S^{*}_{298.15}, Mo₃C₂ of 0.5 e. u.

Melting and Vaporization

The melting temperature was determined by Nowotny.

Returences

- Nowotny, H., E. Parthe, R. Kieffer and F. Benesovsky, Monat Chem 85, 255 (1954).
- Krikorian, O., Estimation of High Temperature Heat Capacities of Carbides, UCRL-6785 (1962).

Reference State for Calculating AH, AF, and LogKp: Solid Th from 0° to 2028*K, Liquid Th from 2028* to 5060*K, Caseous Th from 5060* to 6000*K, Solid ThC₂ from 0° to 2928*K.

	·	cal k	,lw _	<i></i>	_kralytwa		
Γ,"Κ	4	`1	(1 H ¹⁰⁸ (-1 ₇	'н ₁ – н _{юн}	λH_f	111	Log Kp
0							
298 - 15	10.249	15.100	15.100	0.000	-46.600	~46.487	34.074
300	10.289	15.164	15.100	0.019	-46.601	-46.487	33.864
400	11.762	18.352	15.525	1.131	-46.648	-46.442	25.374
500	12.552	21.068	16.369	2.350	-46.758	-46.379	20.271
600	13.072	23.406	17.352	3.632	~46.950	-46.288	16.860
700	13.465	25.451	18.366	4.960	-47.215	-46.157	14.410
800	13.791	21.271	19.367	6.323	-47.538	-45.985	12.562
200	14.017	28.412	20.338	7.717	-47.912	-45.768	11.114
იიი	14.135	30.409	21.271	9.138	-48.324	-45.509	9.946
100	14.583	31.767	22.166	10.584	-48.778	-45.206	8.98
300	14.818	33.066	23.021	12.054	-49.275	-44.860	8.17
300	15.04	44.761	23.840	13.547	-49.823	-44.469	7.47
400	15.266	35.384	24.625	15.063	-50.420	-44.034	6.87
r.00	15.484	36.445	25.378	16.600	-51.082	-43.558	6 • 34
600	15.698	37.451	26.102	18.159	-51 817	-43.032	5.87
6 1 3	15.768	37.772	26.334	18.679	-57.075	-42.846	5.73
633	15.768	37.712	26.334	18.679	-52.129	-42.846	5.73
700	15.909	38.409	26.798	19.740	-53.175	-42.432	5 . 45
800	16.119	39.3.5	27.468	21.341	-53.832	-41.780	5.07
100	15.727	·C.202	28.116	22.964	-54.473	-41.094	4.72
000	16.534	41.044	28.741	24.607	-55.100	-40.374	4.41
0.18	16.592	41.275	28.91 1	25.070	-55.273	-40.167	4.32
028	15.597	41.275	28.913	25.070	-59.126	-40.167	4.32
100	10.741	41.856	29.346	26.270	-59.564	-39.483	4.10
200	14.945	42.640	29.933	27.955	-60.161	-38.513	3.82
300	17.150	43.377	30.502	79.660	-60.740	- 17.520	3.56
400	17.355	44.132	31.055	385 - 1د	-61.305	-36.496	3.32
• (* (* (* (* (* (* (* (* (* (* (* (* (*	17.55E	44.844	31.592	33.130	-61.852	-35.450	3 • 0 9
600	17.761	4 5.27	32.115	34.896	-62.384	-34.383	2 • 8 9
700	17.764	40.21,	32.625	36.683	-62.897	-33.300	2.69
800	18.167	46.865	33.122	18.489	-63.393	-32.191	2.51
90-	18.36 /	47.504	33.607	40.316	-63.874	-31.070	2.34
928	18.421	47.686	33.741	40.831	-64.005	-30.754	2.29

15 September 1963

$$\Delta H_{f298.15}^{\bullet} = -46.6 \text{ kcal gfw}^{-1}$$

$$S_{298.15}^{\bullet} = 15.1 \pm 3.0 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

 $T_{\rm m} = 2928 \pm 25 \, {}^{\circ}{\rm K}$

$$C_p^{\bullet}$$
 = (12.60 ± 1.16) + (2.00 ± 0.18) 10⁻³ T -(2.63 ± 0.20) × 10⁵T⁻² cal deg K gfw 298 *K < T < 2928*K

Heat of Formation

Computed indirectly; see volume 1, this study (section IVB29. 2). Heat Capacity and Entropy

Empirical equation developed by Krikorian. 1

Melting and Vaporization

Melting point from Wilhelm and Chiotti. 2 Vaporization of Jackson and co-workers. 3

References

- 1. Krikorian, O. H., UCRL 2888
- 2. Wilhelm, H., and Chiotti, P., Trans. Am. Soc. Met. 42, 1295 (1950).
- 3. Jackson. D. D., G. W. Barton, O. H. Krikorian, and R. S. Newbury, UCRL 6701 (1962).

THURIUM DICARBIDE (ThC2)

(CONDENSED PHASE)

GFW = 256.072

		cel/'K	61-	,	_Kcal 'gfw		
T, °K	ζς _p	s' _T	-(F C - H298)/T	'н _т - н ₂₉₈	AH _E	11,1	Log K _p
298.15	± 0.989	±3.000	±3.000	± 0.000			
500	±1.170	±3.564	±3.120	± 0.222			
1000	±1.320	±4.428	±3.579	+0.849			
1500	± 1 • 421	±4.982	±3.959	£ 1.535			
2000	±1.515	+5.404	±4.270	+ 2 - 269			
2500	±1.607	±5.752	±4.532	± 3.050			
2928	+1.685	±6.012	±4.730	13.754			

Reference State for Calculating AH, AF, and Log Kp: Solid Th from 0° to 2028°K, Liquid Th from 2028° to 5060°K, Gaseous Th from 5060° to 6000°K, Solid C; Gaseous ThC2.

, °K	("	K		H _T - H ₂₉₈	_ KCOI/gIW		
	`р	1,	-(1 - H ₂₉₈)/T	н _Т - н ₂₉₈	ΔH_{f}^{\prime}	AF,	Log Kp
0	0.000	0.000	INFINITE	-2.469	162.791	142 701	
298-15	10.255	61.136	61.136	0.000	163.200	162.791 149.587	1NF1N1TE
300	10.271	61.199	61.136	0.019	163.199	149.503	-108-907
400	10.876	64.245	61.547	1.079	163-100	144.949	-79.193
500	11.312	66.720	62.342	2.189	162.881	140.434	-61.381
600	11.731	68.819	63.251	3.341	162.559	135.973	-49.526
700	12.159	70.659	64.180	4.535	162.160	131.573	-41.077
800	12.588	72.311	65.095	5.773	161.712	127.233	-34 .757
900	13.003	73.818	6'.982	7.053	161.224	122.952	-29 .855
1000	13.389	75.208	66.836	8.372	160.710	118.726	-25.946
1100 1200	13.736	76.501 77.710	67.656	9.729	160.167	114.555	-22.759
1300	14.296	78.844	68.444 69.201	11-118	159.589	110.432	-20 +112
1400	14.505	79.911	69.928	12.535	158.965	106.361	-17.880
1500	14.668	80.918	70.628	13.976 15.435	158.293 157.553	102.342 98.367	-15.976 -14.331
1600	14.790	81.869	71.301	16.908	156.732	94.450	
1633	14.822	82.171	71.517	17.397	151,442	93.170	-12.901 -12.469
1633	14.822	82.171	71.517	17.397	155.789	93.170	-12.469
1700	14.875	82.768	71.949	18.392	155.277	90.612	-11.648
1800	14.928	83.620	72.574	19.882	154.509	86.830	-10.542
1900	14.953	84.478	73.177	21.376	153.739	83.090	-9.557
2000	14.956	A5.195	73.759	22.872	152.965	79.390	-8.675
2028	14.953	85.403	73.918	23.291	152.748	78.363	-8.444
2028	14.953	85.403	73.918	23.291	148.895	78.363	-8.444
2100	14.941	85.924	74.321	24.367	148.333	75.869	-7.895
2200	14.912	86.614	74.864	25.860	147.544	72.439	-7.196
2300	14.871	87.281	75.390	27.349	146.749	69.038	-6.560
2400 2500	14.823 14.768	87.913 88.517	75.898 76.391	28 • 834 30 • 313	145.944 145.131	65.681 62.352	-5.981 -5.451
2600	14.710	89.095	76.869	31.787	144.307	59.057	-4.964
2700	14.650	89.649	77.332	33.255	143.475	55.791	-4.516
2800	14.588	90.180	77.781	34.717	142.635	52.564	-4.103
2900	14.526	90.691	78.218	36.173	141.783	49.358	-3.720
3000	14.464	91.183	78.642	37.622	140.922	46.185	-3.36
3100	14.403	91.656	79.054	39.066	140-054	43.041	-3.034
1200	14.344	92.112	79.455	40.503	13 .175	39.930	-2.72
3300	14.286	92.553	79.845	41.934	138 6	36.836	-2.439
3400 3500	14.231 14.177	92.978 93.390	80.225 60.596	43•360 44•781	137. 10 136.485	33.782 30.743	-2 • 171 -1 • 92
3600	14.126	93.789	80.957	46.196 47.606	1 \5.572 134.650	27.736 24.753	-1.684 -1.46
3700	14.077	94.175	81.309			21.794	-1.25
3800	14.030	94.550 94.914	81.652 81.988	49.011 50.412	133.721 132.784	18.857	-1.05
3900 4000	13.985 13.942	45.267	82.315	51.808	131.840	15.952	-0.87
4100	13.401	95.611	82.635	53.200	130.888	13.066	-0.69
4200	13.862	95.946	82.948	54.589	129.929	10.207	-0.53
4300	13.825	96.271	83.254	55.973	128.461	7.364	-0.37
4400	13.790	96.584	83.554	57.354	127.988	4.545	-0.22
4500	13.757	96.898	83.847	58 - 711	127.007	1.754	-0.08
4600	13.725	97.200	84.134	60.105	126-019	-1.020	0.04
4700	13.694	97.495	84.415	61.476	175.026	-3.772	0.17
4800	13.666	97.783	84.691	62.844	124.024	-6.499	0 • 29
4900	13.638	98.065	84.961 85.225	64•7 0 9 65•572	123.017 122.004	-9.206 -11.895	0.41
5000	13.612	98.340	37.447	031312			
5060.26	13.597	98.503 98.503	85.383 85.383	66 • 39 ? 66 • 39 ?	121 • 389 -1 • 376	-13.504 -13.504	0.58 0.58
5060.26	13.597 13.587	98.501	85.485	56.937	-1.717	13.597	0.58
5100	13.563	98.873	85.740	68.289	-2.581	-13.824	0.58
5200 5300	13.541	99.131	85.990	69.644	-3.455	-14-027	0.57
5400	13.519	99.384	86.236	70.997	-4.339	-14.217	0.57
5500	13.499	99.637	86.471	72 - 348	-5.234	-14.395	0-57
5600	13.479	99.875	86.714	73.697	-6.136	-14.555	0.56
5700	13.461	100.113	86.947	75.044	-7.049	-14.691	0.56
5800	13.443	100.347	87.176	76 - 389	-7.970	-14.814	0.55
5900	13.426	100.577	87.402	77.733	-8.890	-14.913	0.55
6000	13.410	100.802	97.623	79.075	-9.835	-15.010	0.54

THORIUM DICARBIDE (ThC2) (IDEAL MOLECULAR GAS) gfw = 256.072

$$\Delta H_{f0}^{\bullet} = 162.791 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298, 15}^{\bullet} = 163.2 \text{ kcal gfw}^{-1}$$

$$H_{0}^{2}98.15 - H_{0}^{\bullet} = 2.469 \text{ kcal gfw}^{-1}$$

$$S_{298.15}^{\bullet} = 61.136 \text{ cal degK}^{-1} \text{ gfw}^{-1}$$

Vibrational Levels and Multiplicities

 ω , cm⁻¹

592

1756

399

Bond lengths and angles:

C-C distance = 1.31 A

Electronic Contribution First ten levels for Th IIIl

Computed from vaporization data of Jackson & co-workers² by third law method

Heat Capacity and Entropy

Computed using the spectroscopic data given above.

- 1. De Bruin, T. L., P. F. Klinkenbert, and P. Schuurmans, Zeit. Phys. 118,58 (1941).
- 2. Jackson, D. D., G. W. Barton, O. J. Krikorian, and R. S. Newbury, UCRL 6701 (April 1962).

Reference State for Calculating AH_f, AF_f, and Log K_p Solid Graphite from 0° to 6000°K.

- n-	C			(" "	_Kcal/gfw		
Т, "К	C.	ST	(F _T н _{жун})/т ⁾	'н _т - н ₂₉₈	ΔH_{ℓ}^{\prime}	41 ()	Log K _p
0	0.000	0.000	INFINITE	m2 . 23 0	107 229	107 275	
298-15	9.388	50.689	50.689	-2.319 0.000	187.377	187.377	INFINITE
300	9.407	50.748	50.690	0.000	188.940	175.043 174.956	-128 - 304
400	10.311	53.583	51.070	1.005	189.195	170.252	-127.449 -93.017
500	11.030	55.964	51.817	2.073	189.306	166.001	-72.555
600 700	11.623	58.029 59.859	57.684	3.207	189.306	160.737	-58.546
800	12.524	61.504	53.581 54.470	4 • 395	189.219	155.982	-48.697
900	17.862	62.999	55.336	5.627 6.897	189.074	151.242	~41 • 315 ~35 • 579
000	13.141	64.369	56.172	8.198	188.666	146.525	-30.999
100	13.373	65.633	56.975	9.524	188.423	137.158	-27.249
200	13.566	66.805	57.746	10.871	188.162	132.508	~24.132
300 400	13.727	67.898	58.485	12.236	187.883	127.881	-21.498
500	13.862 13.977	68.920 69.880	59.195 59.875	13.615 15.008	187.591 187.292	123.278	-19.244
600	14.074	70.786	60.529				
700	14.158	71.641	61.158	16.410 17.822	186.784 180.674	114.131 109.589	-15.589 -14.088
800	14.230	72.453	61.763	19.241	186.356	105.064	-12.756
900	14.292	73.224	62.346	20.668	186.037	100.556	-11.566
000	14.347	73.958	62.908	22.100	185.714	96.064	-10.497
100	14.394	74.659	63.451	23.537	185.390	91.589	-9.531
200	14.436	75.330	63.976	24.978	185.058	87.133	-8.655
400	14.473 14.506	75.973	64.484 64.976	26.424	184.728 184.392	82.683 78.257	~7.856
500	14.536	76.589 77.182	65.452	27•873 29•325	184.056	73.843	-7.126 -6.455
600	14.562	77.753	65.914	30.780	183.714	69.441	~5.837
700	14.586	78.303	66.363	32.237	183.371	65.051	-5.26
800	14.607	78.834	66.799	33.697	183.028	60.679	-4.736
900 1000	14.676 14.644	79.346 79.843	67.223 67.635	35 • 159 36 • 627	182.678 182.326	56.312 51.960	-4.244 -3.78
1100 1200	14.660	80.323	68.037 68.428	38.087 39.554	181.973 181.616	47.616 43.296	-3.356 -2.957
300	14.687	81.240	68.810	41.022	181.254	38.970	-2.581
1400 1500	14.700 14.711	81 • 679 82 • 105	69.182 69.545	42.491	180+890 180-522	34.670 30.373	-2.228 -1.896
3600	14.721	82.520	69.899	45.434	180.1.2	26.089	-1.584
3700	14.731	82.973	70.246 70.585	46.906 48.380	179• '6 179•399	21.815 17.548	-1.00°
8800 8900	14.739 14.748	83.316 83.699	70.916	49.854	179.016	13.291	-0.74
000	14.755	84.073	71.241	51.329	1 8.631	9.048	-0.49
100	14.762	84.437	71.558	52.805	178.241	4.813	-0.25
200	14.769	84.793	71.869	54.282	177.846	0.592	-0.03
100	14.775	A5.1/1	72.173	55.759	177.445	-3.625	0.184
400 500	14.781 14.786	85.813	72.472 72.765	57.23 7 58.715	177.042 176.633	-7.836 -12.033	0.389
						-16.220	0.77
4600 1700	14.791	86.138	73.052 73.334	60.194 61.673	176.219 175.802	-20.398	0.94
.700 .800	14.796	86.456 86.767	73.610	63.153	175.377	-24.562	1.11
900	14.804	87.073	73.882	64 • 633	174.949	-28.729	1.28
5000	14.808	87.372	74.149	66.114	174.516	-32.885	1.43
5100	14.812	87.665	74.411	67.595	174.074	-37.021	1.58
5200	14.815	87.953	74.669	69.076	173.629	-41.153	1.73
5300	14.819	86.235	74.927	70.558	173.179	-45.283	1 • 86
540C 5500	14.827 14.825	88.512 88.784	75.171 75.416	72.040 73.522	172•723 172•258	-49.394 -53.504	1 • 9 9 2 • 1 2
			75.657	75.005	171.791	-57.618	2 • 2 4
5600 5700	14.827 14.830	89.051 89.313	75.895	76 - 488	171.315	-61.703	2 4 3 6
5800	14.833	89.571	76.178	77.971	170.833 170.345	-65.778 -69.862	2 4 4 7 2 4 5 8
5900 6000	14.835 14.837	89.875 90.075	76.358 76.585	79.454 80.938	169.849	-73.938	2 • 6 9
			15 Septen	her 1962			СН

TRIATOMIC CARBON (C₃) (IDEAL MOLECULAR GAS) gfw = 36.033

 $\Delta H^{\bullet}_{f0} = 187.377 \text{ Kcal } \text{gfw}^{-1}$

ΔH°_{f298.15}= 188.940 Kcal gfw⁻¹

Point Group D, h

S*298.15= 50.689 cal deg K⁻¹ gfw⁻¹

 $H^{\circ}_{298.15} - H^{\circ}_{0} = 2.319 \text{ Kcal gfw}^{-1}$

Vibrational levels and multiplicities

ω, cm-l

ω cm⁻¹

1300 (1)

2200 (1)

550 (2)

Bond lengths and angles:

C-C distance = 1.281 A

C-C-C Angle = 180 deg

Moment of inertia: = $65.448 \times 10^{-40} \text{ gcm}^2$

 $\sigma = 2$

Heat of Formation

Based on data of Drowart, et all

Heat Capacity and Entropy

Calculated on polyatomic gas computer program.

Reference

1. Drowart, J., et al, J. Chem. Phys. 31, 1131 (1959).

REFERENCE STATE

Ca

Reference State for Calculating AH₁, AF₁, and Log K_p. Solid Ca from 0° to 1123°K, Liquid Ca from 1123° to 1765°K, Gaseous Ca from 1765° to 6000°K.

T 0~		cal/"K g		/ " "	_Kral/gfw	9	Log K.	
T,°K	C B	ST	-(FT - H298)/T	HT - H298	ΔH	VE,	Log Kp	
0	0.000	A A0A	*1.54					
298 - 15	6.280	0.000 9.950	INFINITE	-1 - 375				
300	6.287	9.989	9.950	0.000				
400	6.647	11.847	9.950	0.012				
500	7.008	13.369	10.201 10.687	0.658 1.341				
600	7.36A	14.678	11.245	2.060				
700	7.729	15.841	11.820	2.815				
737	7 - 862	16.243	12.532	3.103				
737	7.665	16.568	12.032	3.343				
800	8.083	17.214	12.415	3.839				
900	8.775	18.205	13.004	4 • 682				
000	9.490	19.167	13.572	5.595				
100 123	10-221	20.105	14.123	64580				
123	10.390	20 • 319_	14.248	6+817				
200	7.400	22.162	14.248	8.887				
300	7.400	22.653	14.772	9.457				
400	7.400	23.245	15.401	10-197				
500	7.400	23.793 24.304	15.981 16.519	10.937 11.677				
600	7.400	24.781	17.021	12.417				
700	7.400	25.230	17.491	13.157				
765	7.400	25.504	17.777	13.638				
765	4.980	45.827	17.777	49.509				
800	4.987	45.927	18.325	49.683				
900	4.991	46.197	19.785	50.182				
000	5.008	46.453	21.112	50.682				
100	5.030	46.698	22.325	51 - 184				
200	5.061	46.933	23.438	51.689				
1300 1400	5.101	47.158 47.377	24.464 25.415	∍2•197 52•709				
500	5.153 5.219	47.588	26.297	53.228				
24.00	5.300	47.794	27.120	53.753				
7600 7700	5.397	47.996	27.889	54.288				
2800	5.511	48.14	28.611	54.833				
900	5.644	48.390	29.290	55-391				
3000	5.796	48.584	29.930	55.963				
3100	5.968	48.777	30.535	56.551				
3200	6.160	48.969	31.107	57.157				
3300	6.371	49.162	31.652	57.783				
3400	6.601	49.355	32.169	58.432				
3500	6.849	49.550	32.663	59-104				
3600	7.115	49.747		59.802				
3700	7.397	49.946		60.528				
3800	7.692	50.147		61 - 282				
3900	8.001	50.351		62.067				
4000	8.370	50.557	34.836	62.883				
4100	8.648	50.767		63.731				
4200	8.983	50.979		64.613				
4300	9.323	51.194		65.528				
4400	9.666	51.413		66.477				
4500	10.010	51.634	36.643	67.461				
4600	10.353	51.858		68.479				
4700	10.694	57.084		69•532 70•618				
4800	11.030	52.313		71.737				
4900	11.367	52.543		72.890				
5000	11.687	52.776						
5100	12.004	53.011 53.247		74 • 075 75 • 290				
5200	12.313	53.484		76.537				
5300	12.612 12.902	53.723		77.813				
5400 5500	13.181	53.967		79.117				
	13.450	54.202	39.816	80.448				
5600 5700	13.708	54.44		81.806				
5700 5800	13.954	54 . 6 R	·	83.190				
5800 5900	14.190	54.92		84.597				
. 01	14.414	51.16		86.027				

2-99

0°K to 1123°K Crystal

11230K to 17650K Liquid

17650K to 60000K Ideal Monatomic Gas

$\Delta H_{f0}^{O} = 0$	$\Delta H_{f298, 15}^{o} = 0$
ΔH ^o _{8298, 15*} = 42. 220 kcal gfw ⁻¹	S ⁰ 298. 15 9. 95 cal degK ⁻¹ gtw ⁻¹
$T_t = 737^{\circ}K$	$\Delta H_{\rm t}=0.240~{\rm kcal~gtw}^{-1}$
$T_{\rm m} = 1123^{\rm o} K$	$\Delta H_{\rm tri} = 2.070{\rm kcal}{\rm gfw}^{-1}$
$T_b = 1765^{\circ}K$	$\Delta H_{\chi} \approx 35.871 kralgtw^{-1}$
$H_{298.15}^{\circ}$ - H_{0}° = 1. 375 kcal g/w ⁻¹	
$C_p^0 = 5.205 + 3.605 \times 10^{-3} \text{ T cal deg K}^{-1} \text{ g/w}^{-1}$	298, 15° K $\leq T \leq 137^{\circ}$ K
$C_p^o = 1.50 + 7.74 \times 10^{-3} \text{T+2.5} \times 10^5 \text{T}^{-2} \text{cal deg} \text{K}^{-1} \text{gfw}^{-1}$ $C_p^o = 7.400 \text{ cal deg} \text{K}^{-1} \text{gfw}^{-1}$	$737^{\circ}K \le T \le 1123^{\circ}K$ $1123^{\circ}K \le T \le 1765^{\circ}K$

Structure

Low-temperature form has an f. c. c. structure, above 737°K, Ca has a b. c. c. structure.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Low-temperature data from Kelley and King, 1 High-temperature data based on Jauch, 2 and Eastman, Williams, and Young. 3

Mesting

Melting point from Kubaschewski et al. 4

Vaporization

Average of several determinations.

Further details by Barriault et al. 5

References

- 1. Kelley, K. K. and E. G. King, U.S. Bur. Mines, Bull. 592 (1901).
- 2. Jauch, R., Diplomarbeit, Techn. Hochschule, Stuttgart (1946).
- 3. Eastman, E.D., A. M. Williams, and T. F. Young, J. Ain. Chem. Soc. 46, 1178(1924).
- Kubaschewski, O. et al, Z. Elektrochem. 54, 275 (1950).
 Barriault, R. J. et al, ASD TR 61-260 (May 1962), Pt. 1.

CALCIUM (Ca)

(REFERENCE STATE)

GFW = 40.08

T, *K	ردهٔ	5 _T -(F _T	— Н ₂₉₈) Т' Н	Ke ii gfw	\F ₁ \	1 од К _р
278 15	±0.100	±0.100	± 0 • 100	±0.000		
737	*0.200	± 0 • 140	± 0 • 1 2 0	4 0 • 0 7 0		
737	± 0 • 300	± 0.230	40.120	±0.080		
1123	±1.000	±0.370	+0.180	±0.220		
1123	±0.500	± 0.460	±0.180	±0.320		
1765	±1.500	± 0.690	± 0.320	* 0 • 6 • 0		
1765	±0.000	+ 0.002				
2000	±0.000	± 0.002				
3000	±0.001	+ 0 • 002				
4000	±0.002	# 0.002				
5000	±0.003	£ 0.003				
6000	±0.003	± 0.003				

IDEAL MONATOMIC GAS

Ca

Reference State for Calculating M_{L}^{\bullet} , M_{L}^{\bullet} , and Log K_{p} . Solid Ca from 0° to 1123°K, Liquid Ca from 1123° to 1765°K, Gaseous Ca from 1765° to 6000°K.

	·	cal/"K p	(Iw	·	_ Kcn1/gfw		
Г, ^К	', 'r	,,	(F , - H ⁵⁰⁸)\1	H, H, 198	AH,	1 +1	Log Kp
0	0.000	0.000	INFINITE	-1.481	42.114	42.114	INFINITE
798-15	4.968	36.993	36.993	0.000	42.220	34.157	-25.037
300	4.968	37.024	36.993	0.009	42.217	34.107	-24.846
400 400	4.968	38.453	37.188	0.506	42.06B	31.426	-17.170
500	4.968	39.562	37.556	1.003	41.887	28.786	-12.582
600 700	4.968 4.968	40.468 41.233	37.968 38.381	1.500	41.660	26.186	-9.538
737	4.968	41.489	38.731	1.996 2.180	41.797	23.627	-7.376 -6.728
737	4.968	41.489	38.531	2.180	41.057	22.690	-6.728
008	4.468	41.897	36.780	2.493	40.874	21.127	-5.771
900	4.768	42.482	39.160	2.990	40.528	18.679	-4.536
000	4.468	43.005	39.519	3.487	40.112	16.273	-3.556
100	4.468	43.479	39.85/	3.984	39.624	13.913	-2.764
123	4.968	43.582	39.933	4.098	39.501	13.376	
123	4.968	43.5HZ	39.933	4.098	37.431	13.376	-2.603
200	4.96B	43.411	40.178	4.481	31.244	11.733	-2.137
300	4.968	44.109	40.480	4.977	37. 00	9.616	-1.617
400	4.769	44.677	40.74.7	5.474	36.107	7.518	-1.174
500	4.977	45.020	41.039	5.971	36.5.4	5.438	-0.792
400	, 073						
60C	4 • 972	45.341	41.298	6.468	36 • 271	3.375	-0.461
700	4.976	4 . 642	41.545	6.966	36.029	1.327	-0.171
765	4.98C	45.827	41.696	7 • 289	35.871	0.000	0.000
765	4.480	45.827	41.676	7.289			
P00	4.407	45.427	41./81	7.463			
ዓስሶ የዕራ	4.493 5.608	46.197	42.006	7.962			
იტი	*** O ** 8	46.451	42.222	8 • 462			
100	6 • O 3 ©	46.648	42.429	8.964			
200	5.061	46.153	42.629	.469			
300	f . 1 C 1	47.15P	42.821	9.971			
400 500	* • 1 * 3 5 • 21 4	47.177 47.588	43.006 43.185	10.489 11.008			
500	5.214	47.000	43.167	11.000			
600	5.300	47.744	44.358	11.533			
70C	. 147	47.946	43.521	12.068			
800	5 - 52 1	48 - 1 44	43.690	12.613			
1000 1000	5.644 5.796	48.390 48.584	41.848 44.003	13.171			
1100	5.968	48.7.7	44.154	14.331			
300	6.160	48.969	44.301	4.937			
30C	6.371	49.162	44.446	15.563			
1400	6.60	44.34	44.587	16.212			
400	6.847	40.40	44.726	16.884			
1600	7.115	49.747	44.861	17.582			
1700	7.397	44.946	44.998	18.308			
1800	1.692	50.147	46.131	19.062			
900	8.001	.0.351	4 - 26 '	19.847			
.000	H . 320	50.551	45.392	20.663			
100	H.648	50.767	45.520	21.511			
200	8.983	.0.979	45.548	22.393			
300	9.323	41.194	45.774	23.308			
400	9.000	51.413	45.900	24.257			
500	10.010	51.614	46.025	25.241			
4600	10.353	51.858	46.149	26.259			
700	10.694	12.084	46.271	27.312			
•80C	11.030	52.313		28.398			
900	11.362	52.543		29.517			
5000	11.687	52.776		30.670			
	11 004	53.011	46.165	31.855			
5100 5200	12.004	54.247		33.070			
5 3 0 0	12.612	53.484		34 . 31 7			
540C	12.402	53.721		34.593			
540C	13.191	51.702		36.897			
	11.450	54.202	47.376	38.228			
56 TO	13.450	54.442		39.586			
1770	13,954	54.683	_	40.970			
5 A () (5 A () (14.190	14.423		42.377			
~ ~ O.	14.414	55.164		43.807			

CALCIUM (Ca) (IDEAL MONATOMIC GAS) gfw - 40.08

 $\Delta H_{f0}^{0} = 42.114 \text{ kcal gfw}^{-1}$

 $\Delta H_{f298, 15}^{o} = 42.220 \text{ kcal gfw}^{-1}$

Ground State Configuration = 150

S⁰_{298.15} = 26.993 cal degK⁻¹gfw⁻¹

 $H_{298, 15}^{0} - H_{0}^{0} = 1.481 \text{ kcal gfw}^{-1}$

Electronic Levels and Multiplicities

Energy Levels from Moore. 1

Heat of Formation

Average of several determinations.

Heat Capacity and Entropy

Calculated on monatomic gas-computer program.

Further details by Barriault et al. 2

References

- Moore, C., Atomic Energy Levels, Vol. 1, Nat. Bur. Stds. (1949).
- Barriault, R. J. et al, ASD TR 61-260 (May 1962), Pt. I.

CALCIUM . MONATOMIC (Ca)

(IDEAL GAS)

GFW - 40.08

		cal 'Kgt	·		Keul gfw		
T, *K	رد <mark>هٔ</mark>	S Т -	-(F _T - H ₂₉₈) T	H _Т - Н _{УУЯ}	NH _f	¥1, *	I · y Ap
298.15	± 0.000	± 0.002	± 0.002	± 0.000	± 0.250	+ 0.300	1 0.27
737	± 0.000	± 0.002	+ 0.002	£0.000	4 0 . 250	± 0 - 140	10.11
737	± 0.000	± 0.002	± 0.002	± 0.000	± Q.250	± 0.340	+ 0 - 11
1123	± 0.000	± 0.002	± 0.002	± 0.000	± 0.450	± 0.450	# 0.08
1123	± 0.000	± 0.002	+ 0.002	± 0.000	± Q.550	1 0.450	10.08
1765	± 0.000	± 0.002	± 0.002	± 0.000	1 0.8/0	± 0.830	+ 0 - 10
1765	± 0.000	± 0.002	+ 0.002	+ 0.000			
2000	± 0.000	± 0.002	± 0.002	± 0.000			
3000	± 0.001	± 0.002	± 0.002	10.001			
4000	± 0.002	± 0.002	± 0.002	± 0.002			
5000	± 0.003	± 0.003	± 0.003	± 0.003			
6000	± 0.003	± 0.003	± 0.003	+ 0 - 005			

Reference State for Calculating MF, MF, and Log K, Solid Ca from 0° to 1123°K, Liquid Ca from 1123° to 1765°K, Gaseous Ca from 1765°K to 4000°K, Gaseous O₂. Solid CaO from 0° to 2860°K, Liquid CaO from 2860° to 6000°K.

T 0.	("	c ni / "K ,	(f *		Kraligfw		
1,"k	'(P	٦,	(1	, н, — н, м		VE'	Log Kp
0	0.000	0.000	INFINITE	-1.668	-150.666	-150.666	INFINITE
298 - 15	10.230	9.561	9.561	0.000	-151.410	-143.988	105.541
300	10.254	9.624	9.561	0.019	-151.410	-143.942	104.857
400	11.120	12.70a	9.976	1.093	-151.336	-141.463	77.288
500	11.579	15.243	10.784	2.230	-151.248	-139.005	60.756
600	11.078	17.383	11-710	3.404	-151.171	-136.564	49.741
700	12-101	19.231	12.655	4.603	-15].115	-134.134	41.877
737	12.177	19.856	13.001	5.052	-151-101	-133.237	39.508
737	12.172	19.856	13.001	5.052	-151.341	-133.237	39.508
800	12.283	20.859	13.581	5.822	-151.319	-131.690	35.974
900 1000	12.442 12.587	22.315 23.634	14.472 15.323	7.059 8.310	-151.333 -151.408	-129.236 -126.778	31.381 27.706
		2					
1100 1123	12.722 12.752	24.840 25.103	16.134	9.576	-151.547	-124.309	24.697
			16.315	9.869	-151.588	-123.739	24.080
1123 1200	12•757 17•851	25.103 25.952	16.315 16.907	9.869	-153.658	-123.739	24.080
1300	12.975	20.402	17.643	10.855 17.146	-153.569 -153.447	-121.690	22.162
1400	13.095	27.952	18.345	13.449	-153.315	-119.039 -116.397	18.170
1500	13.214	28.859	19.016	14.765	-153.17	-113.765	16.575
1600	13.330	29.716	14.658	16.092	-153.026	-111.142	15.181
1700	13.445	30.527	20.274	17.431	-152.869	-108.529	13.952
1764.79	13.514	31.033	20.661	18.307	-152.762	-106.843	13.229
1764.79	13.519	31.033	20.661	18.307	-188.633	-106.843	13.229
1800	13.559	31.249	20.865	18.781	-188.489	-105.219	12.775
1 900	13.672	32.015	21.434	20.143	-188.073	-100.605	11.572
200C	13.784	12.719	21.982	21.515	-187.651	-96.011	10.491
210c	13.896	33.415	22.510	22.899	-187.222	-91.439	9.516
550C	14.007	34.064	23.021	74.295	-186.787	-86.888	8 • 6 3 1
2300	14-118	34.689	23.514	25.701	-186-347	-82.359	7.826
2400	14.228	35.292	23.993	27.118	-185.902	-77.845	7.086
2500	14.33A	35.875	24.456	78.546	-185.457	-73.354	6.41
260¢	14.448	36.439	24.906	29.986	-185.009	-68.878	5.789
2700	14.558	36.987	25.344	31.436	-184.563	-64.422	5.21
2800	14.667	37.518	25.769	32.897	-184.117	-59.979	4 - 68
2860	14.733	37.870_ 43.844	26.019 26.019	3.779_ 50.979	_~183.857_ ~166.o52	57.327_ -57.327	4 . 38(
2860 2900	16.500	44.073	26.266	51.639	-166-467	-55.793	4.20
300C	16. "01"	44.617	26.869	53.289	-165.4	-51.989	3.78
3100	16.500	45.173	27.451	54.939	-165.222	-48.203	3.39
3200	16.500	45.547	28.013	56.589	-164.659	-44.442	3.039
3300	16.500	46.205	28.551	58.239	-164.117	-40.690	2.69
3400	16.500	46.647	29.083	59.889	-163-601	-36.961	2.370
350C	16.500	47.116	24.593	61.539	-163.110	-33.242	2.07
3600	16.500	47.541	88C.0F	63.189	-162-647	-29.537	1.79
3700	16.500	48.093	30.569	64.839	-162.214	-25.845	1.52
3800	16.500	48.533	31.035	66.489	-161.B10	-22.164	1.27
3900	16.500	48.561	31.490	68.139	-161-140	-18.495	1.03
4000	16.500	49.37	31.932	64.799	-161.102	-14.835	0.81
4100	16.500	49.766	32.362	71 - 439	-167.798	-11.179	0.59
4200	16.500	.0.184	37.782	73.089	160-530	-7.534	0.39
4300	15.500	50.572	11.171	74 - 739	-160.296	-1.894	0.19
4400	16.500	50.952	33.590	76 - 389	-160.099	-0.254	0.01
4500	16.500	51.3.2	33.980	78.039	-159.939	3.375	-0.16
4600	16.500	51.585	34 - 361	79.689	-159.815	7.003	-0.33
4700	16.500	57.040	34.734	81.339	-159.72R	10.629	-0.49
4800	16.500	52.387	35.398	87.989	-159.678 -159.663	14.255	-0.64 -0.79
4900	16.500	52 • 72 B	35.454 35.803	86.289	-159.687	21.500	-0.94
5000	16.500	53.Jc1					
5100	16.500	53.38F 53.708	10.145	87.939 89.589	-159.747 -159.842	25.128 28.753	-1.07
5200	16.500	54.022	36.807	91.239	-159.975	12.179	-1.33
5300	16•50: 16•500	54.331	37.124	17.889	-160-145	36.013	-1.45
5400 5500	16.500	54.63	37.445	94.439	-160.352	19.649	-1.57
	16.500	54.931	37.754	96 - 189	-160-596	43.287	-1.68
5600 5700	16.500	55.223	19.058	27.839	-160.880	46.933	-1.79
5 9 0 0	16.500	15.510	38.356	19.489	-161-206	50.587	-1.90
5900	16.500	15.792	18.610	101-139	-161-574	54.241	-2.00
			38.938	102.783	-161.986	47.904	-2.10
6000	16.609	16.064	10 . 4.14	10. •		•	

$$\Delta H_{f298. 15}^{o} = -151. 410 \text{ kcal } \text{gfw}^{-1} \qquad S_{298. 15}^{o} = 9.561 \text{ cal } \text{deg } \text{K}^{-1} \text{gfw}^{-1}$$

$$T_{m} = 2860^{\circ} \text{K} \qquad \Delta H_{m} = 17. 200 \text{ kcal } \text{gfw}^{-1}$$

$$H_{298. 15}^{o} - H_{0}^{o} = 1.668 \text{ kcal } \text{gfw}^{-1}$$

$$C_{p}^{o} = 11.67 + 1.08 \times 10^{-3} \text{T} - 1.56 \times 10^{5} \text{T}^{-2} \text{ cal } \text{deg } \text{K}^{-1} \text{gfw}^{-1}$$

$$298. 15^{\circ} \text{K} \leq \text{T} \leq 2860^{\circ} \text{K}$$

$$C_{p}^{o} = 16.5 \text{ cal } \text{deg } \text{K}^{-1} \text{gfw}^{-1}$$

$$2860^{\circ} \text{K} \leq \text{T} \leq 6000^{\circ} \text{K}$$

Structure

An fcc (NaCl) type.

Heat of Formation

Obtained from combustion calorimetry by Huber and Holley.

Heat Capacity and Entropy

Low-temperature data of Nernst and Schwers² and Parks and Kelley³ analyzed by Barriault et al.⁴ High-temperature data of Kelley⁵ extrapolated to melting point. Liquid heat capacity estimated.

Melting and Vaporization

Heat of fusion estimated.

- 1. Huber, E. J. and C. E. Holley, J. Phys. Chem. 60, 498 (1956).
- Nernst, W. and F. Schwers, Sitzb. Konig. Preuss. Akad. Wiss. 1, 355 (1914).
- 3. Parks, G. S. and K. K. Kelley, J. Phys. Chem. 30, 47 (1926).
- 4. Barriault, R. J. et al, ASD TR 61-260 (May 1962), Pt. 1.
- 5. Kelley, K. K., U.S. Bur. Mines, Bull. 584 (1960).

CALCIUM EXIDE (CaO)	(CONDENSED PHASE)	GFW = 56.08
	SUMMARY OF UNCERTAINTY ESTIMATES	

		cal / "K gfw.			Keal glw		
T, °K	′c _p	S _T -(1	FT - H ₂₉₈)/T	, н. – н. ₂₀₈	AH _f	۱۰٬۱	log K _p
298 • 15	± 0.200	±0.150	±0.150	± 0.000	±0.500	±0.570	±0.42
1000	± 0.430	±0.290	+0.210	+0.080	±0.760	±0.870	±0.19
2000	± 0.930	± 0.460	±0.300	±0.330	±1.700	±1.540	±0.17
2860	± 1.740	±0.610	± 0.370	±0.680	± 2 • 050	±1.860	±0.14
2860	± 1.000	±1.100	±0.370	± 2 . 080	4 3 450	±1.860	±0.14
4000	± 2.000	± 1.600	±0.650	± 3 • 790	±5.160	± 3 • 320	±0.16

CaO

			,		Kcal/gfw		
T, °K	(°	57	-(FT - H ₂₉₈)/T	н _т - н ₂₉₈	4H ₁	1 F1	Log Kp
o	0.000	0.000	10010175				
298-15		0.000	INFINITE	-2.117	1.095	1.095	INFINIT
300	7.553	54.217	54.217	0.000	0.800	-5.092	3.73
400	7 - 561	54.263	54.217	0.014	0.795	-5.129	3.73
500	7.957 8.233	56.495 58.30]	54.518 55.100	0.791 1.601	0.572 0.333	-7.070 -8.953	3.86 3.91
400				1.001	0.333	-0.775	3.71.
600 700	8.427 8.564	59.820 61.130	55.763	2.434	0.069	~10.786	3.92
737	8.604	61.572	56.439	3.284	-0.224	-12.573	3.92
737	8.604	61.572	56.685	3.602	-0.341	-13.222	3.92
800	8.663		56.685	3.605	-0.581	-13.222	3.92
900	8.737	62.281	57.099	4.146	-0.786	-14.295	3.90
000	8.795	63.305 64.229	57.732 58.337	5.016 5.892	-1.165 -1.617	-15.960 -17.582	3.87
100							
123	8.841 8.857	65.069 65.253	58.911 59.039	6.774	-2.139	-19.153	3.80
123	8.850	65.253		6.978	-2.269	-19.508	3.79
200	8.879	65.840	59.039 59.457	6.978	-4 · 3 3 9	-19.508	3.79
300	8.911	66.552	59.457 59.976	7.660	-4.55/	-20.540	3.74
400	8.938	67.214	60.469	8.550	-4.8 3 -5.114	-21.862	3.67
500	8.463	67.831	60.940	9.447 10.337	-5.113 -5.393	-23.161 -24.441	3.61 3.56
600	8.985	68.411	61.389		-6.423		
700	5.005	68.956	61.818	11.235 12.134	-5.613 -5.956	-25.702 -26.944	3.51 3.46
764 . 74	9.017	69. 194	62.087	12.720	-6.139	-27.750	3.43
764 - 79	9.017	69.794	62.081	12.720	-42.010	-27.750	3.43
800	9.023	69.471	62.229	13.036	-42.024	-27.465	3.33
900	9.041	69.960	62.623	13.939	-42.067	-26.654	3.06
000	4.05A	70.424	63.007	14.844	-42.112	-25.842	2 . 82
100	9.015	70.866	63.366	15.750	-42.161	-25.027	2.60
500	9.091	71.289	63.117	1 .659	-47.213	-24.211	2.40
300	9.108	71.694	64.055	17.569	-42.269	-23.393	2.22
1400	9.125	7.2.082	64.382	18.480	-42.331	-22.570	2.05
500	9.142	72.455	64.697	19.394	-42.399	-21.746	1.90
600	4.161	72.814	65.003	20.309	-42.476	-20.919	1.75
700	4.180	73.160	45.299	21.226	-42.563	-20.091	1.62
800	9.200	73.495	65.586	22.145	-42.660	-19.256	1.50
900	9.221	73.618	65.865	23.066	-42.771	-18.420	1.38
1000	4.244	14.132	66.135	21.989	-42. "	-17.577	1.28
3100	9.268	74.436	66.399	24.915	-43.03.	-16.732	1.18
320C	4.293	74.731	66.655		-43.195	-15.886	1.08
3300	9.123	75.017	66.904	26.773	-43.374	-15.027	0.99
1400	9.349	75.247	67.147	27.707	-43 574	-14.169	0.91
3500	4.378	7 .568	67.385	28.643	-43.797	-13.303	0.83
360	9.410	75.834	67.616	29.583	-44.044	-12.428	0.75
1700	9.443	76.092	67.842	30.525	-44.318	-11.547	0.68
3800	9.477	76.345	68.36	31 - 471	-44.619	-10.659	0.61
3 9 00	9.513	76.593	68.280	32.421	-44.94R	-9.767	0.54
4000	9.551	76.835	68.491	33.374	-45.307	-8.862	0.48
4100	9.590	71.072	68.698	34.331	-45.696	-7.945	0.42
4100 4300	9.630	77.304	68.901	35.292	-46.117	-7.075	0.36
4200 4200	9.672	17.532	69.100	30.757	-46.369	~6.093	0.31
4300 4400	9.714	~7.766	69.295	37.227	.7.052	-5.144	0.25
4500	9.758	77.975	69.486	38.200	-47.56R	-4-191	0.20
	0 803	78.191	69.614	39.179	-48.115	3.225	0.15
4600 4300	9.803	78.404	64.859	-0-161	-48-697	-2.250	0.10
4700	9.849		70.040	41.149	-49.30R	-1.257	0.05
480C	9.896	78.613	70.218	42.141	-49.952	-0.256	0.01
4900 5 0 00	9.444	76.818 79.), l	70.393	43.138	-50.628	0.760	-0.03
	,				. 5.1 . 3.37	1 700	- 0 0
5100	10.042	79.220 79.417	70.566 70.735	44.140 45.147	-51.336 -52.074	1.789 2.833	-0.07 -0.17
5 7 00 5 3 00	10.142	79.611	70.907	46 - 159	-52.845	3.887	-0.16
540C	10.193	79.803	71.067	47.176	-53.64R	4.958	-0.20
550C	10.744	79.992	71.229	48.198	-54.483	6.044	-0.24
	10 394	80.178	71 - 388	49.221	-55.350	7.148	-0.2
5600	10.296 10.348	80.363	/1.546	40.758	-56.252	8.261	-0.3
5700	10.400	80.545	11.701	51.296	-57.190	9.398	-0.3
5800		80.725	71.854	52.139	-58.164	10.547	-0.3
5900	10.453	80.77		13.18	-59.1/9	11.714	-0.4
600.1	10.505	6U - 1U 1					

CALCIUM OXIDE (CaO)

$$\Delta H_{f0}^{o} = 1.095 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 0.800 \text{ kcal gfw}^{-1}$$
Ground State Configuration =
$$\Sigma$$

$$S_{298.15}^{o} = 54.217 \text{ cal deg K}^{-1}\text{gfw}^{-1}$$

$$H_{298.15}^{o} = 2.117 \text{ kcal gfw}^{-1}$$

				cı	m-1				
State	g	E	$\omega_{ m e}$	$\omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}$	ω _e y _e	Ве	$\alpha_{ m e}$	$\gamma_{\rm e}$ xl 0^5	D _e ×10 ⁶
x³Σ	-	0	850.0	5.0	-	0.53	0.004	-	0.7
χ' ¹ Σ	-	15000	732. 11	4.81	-	0. 44447	0.00335	-	0.656
³ Σ	-	20000	725. 0	4.0	-	0.45	0.003	-	0.7

Heat of Formation

Average heat of dissociation of 100 kcal gfw⁻¹ adopted. Based on works of Brewer, Gaydon, and Ackermann et al. 4

Heat Capacity and Entropy

Calculated on diatomic-gas program using above spectroscopic constants.

- 1. Brewer, L., Chem. Revs. 52, 1 (1953).
- 2. Brewer, L., U.S. AEC Rept., UCRL-8356 (1958).
- 3. Gaydon, A. G., Dissociation Energies, 2nd ed., Chapman and Hall, London (1953).
- 4. Ackermann, R. J., R. J. Thorn, and G. H. Winslow, Planet. Space Sci. 3, 12 (1961).

TABLE 130

CERIUM

REFERENCE STATE

Reference State for Calculating \(\mathbb{H}_1^*\), \(\mathbb{K}_1^*\), and \(\mathbb{Log}\) \(\mathbb{K}_p\). Solid Ce from 0° to 1077°K, \(\mathbb{Liquid}\) irom 1077° to 4271°K, \(\mathbb{Gas}\) irom 4271° to 6000°K.

1,°K	C'	cml/°K gfs	(t ¹ = H ^{50R}), J	/ .	Kenl/gfw	11	las K
., .	` I [,]	י- וי	$\alpha 1 = a^{\lambda 0} B_{\lambda_0 1}$	'н ₁ - н ₂₉₈	VH.	14'	l.og K
Ç.	0.000	0.000	1NF1N1*(-2.133			
298.15	6.440	17.640	17.640	0.000			
300	6.446	17.680	17.640	0.012			
400	6.759	19.576	11.891	0.672			
500	7.096	21.120	18.391	1.364			
600 700	7.45A 7.840	22.446 23.623	18.959	2.092			
800	R . 248	74.647	19.543 20.121	2 • 856 3 • 661			
900	8.680	25.693	20.685	3 4 5 6 7 4 4 5 6 7			
1000	9.135	26.631	21.235	5.397			
003	9.149_	26.658_	21.250_	5.425			
1003	9.041	27.356	21.250	6.125			
077	9.047	28.000_	21.692_	6.794			
1077	9.345	29 • 4 9	21.692	8.032			
1100 1700	9.345	29.347	21.650 22.509	8.247			
1300	9.145	30.160 30.965	21.126	9.182			
1 4 i) (:	9.345	31.604	23.101	10.116 11.051			
r G C	9.34	32.245	24.245	11.985			
1600	9.345	37.849	24.774	12.920			
1700	9.345	33.415	25.266	13.854			
1800	9 - 345	34.949	25.731	14.789			
1 300 1000	9.344	34.454	26.179 26.605	15.723 16.658			
Sicc	4.341	34.340	27.013	17.592			
2200	9.345	35.871	27.403	18.527			
2300	4.346	36.240	21.779	19.461			
24(C	9.346	36.648	28.139	20.396			
2506	4. 145	37.01.	28.487	21.350			
2600 2700	9.34° 9.345	37.736 37.736	28.822	22.265 23.199			
2800	9.345	38.078	29.146 29.459	24.134			
2900	9.345	38.406	29.762	25.068			
3000	9.344	38.723	30.055	26.003			
317	4.145	34.024	10.340	26.937			
371	9.345	34.326	30.616	1.872			
1300	345	34.843 34.843	10.884	28.806			
3400 3540	4.34.	4(.16)	31.145 31.799	9.741 12.675			
3600	4. 546	40.427	31.646	31.610			
37.11	4.344	4C.683		22.544			
3900	9. 141	41.432	12.12.	33.419			
3900	4.444	41.174		74 - 41 3			
400 0	9. 145	41.411	37.574	35.348			
4100 4200	9.145	42.023 41.642		36 • 282 37 • 21 7			
4210 - 71_	9,345	4. He 7		37.880			
427	4.262			124.889			
4301	r.216	62.422		125-127			
4400	6.264	6 '. 641	24.210	125.951			
4500	8.317	62.828	14.655	126.780			
4600	9.460	63.011		7.614 128.457			
470C	8.407	63.141		129.295			
4800	8.457	61.565 63.563		130.142			
4901 5000	8.44F	61.71		140.994			
5100	8.584	63.354	36.032	131.951			
5200	A.624	64.042		132 • 711			
5300	8.663	64.217		133.576			
5400	8.699	64.374		134.444			
5500	8.734	64.549					
5670 5700	8.766 8.795	64 • 647					
5800	8.822	65.00					
5900	8.846	65.150					
6000	8.868	65.30					

2-107

Ce

	0°K to 1077°K 1077°K to 4271°K 4271°K to 6000°K	Crystal Liquid Ideal Monatomic Gas
$\Delta H_{f0}^{o} = 0$		ΔH° _{(298.15} 0
$\Delta_{H_{6298.15}^{\circ}} = 95.$	000 kcal gfw ^{-l}	S _{298, 15} - 17, 640 cal deg K ⁻¹ gfw ⁻¹
T _t = 1003°K		$\Delta H_t = 0.700 \text{ kcal gfw}^{-1}$
T _m = 1077°K		$\Delta H_{\rm m} = 1.238~{ m kcal~gfw}^{-1}$
T _b = 4271°K		$\Delta H_v = 87.009 \text{ kcal gfw}^{-1}$
$H_{298.15}^{0} - H_{0}^{0} = 1.50$	9 kcal gfw ⁻¹	
$C_p^0 = 5.649 + 2.300$	× 10 ⁻³ T + 11.862 x	c 10 ⁻⁷ T ² cal deg K ⁻¹ gfw ⁻¹
		298. 15°K <u>∠</u> T <u>∠</u> 1003°K
$C_{p}^{o} = 9.047 \text{ cal deg}$	K ⁻¹ gfw ⁻¹	1003°K <u>≺</u> T <u>≺</u> 1077°K
Cp = 9.345 cal deg	K ⁻¹ gfw ⁻¹	1077°K <u><</u> T <u><</u> 4271°K

Structure

y-Ce is f.c.c. from 260° to 1003°K. 8-Ce is b.c.c. from 1003° to 1077°K.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Low-temperature data estimated See volume 1, this study (section IVA5) for details. High-temperature data by Spedding et al. 1

Melting and Vaporization

Heats of transition and fusion from Spedding et al. $^{\rm 1}$ Heat of vaporization value recommended by Spedding and Daane. $^{\rm 2}$

References

- Spedding, F. H. et al, J. Phys. Chem. 64, 289 (1960)
 Spedding, F. H. and A. H. Daane, Met. Rev. 5, 297 (1960).

CERIUM (Ce)

IREFERENCE STATE)

GFW = 140.13

		_cal/ "K gfw		Kcal gf	•	
T.°K	/c.p	ST -IFT	- н ₂₉₈)∕т ≀н	т – н ₂₉₈ Ун	VE ₁	l og K
298-15	± 0.050	± 0.600	± 0.800	± 0.000		
1003	± 0.050	± 0.830	± 0 . 810	± 0.020		
1003	± 0.050	± 0.838	± 0.810	+ 0.028		
1077	± 0.050	± 0.840	+ 0 - 810	± 04030		
1077	± 0.050	± 0.844	± 0 . 810	# 0+034		
2000	± 0.100	± 0.900	± 0.840	±0.110		
3000	± 1.000	±1.120	± 0.900	± 0 • 660		
4000	± 2.900	±1.680	±1.030	± 2 • 610		
4270.73	± 3.400	±1.890	± 1.080	# 3+460		
4270.73	± 0.300	± 0.770	± 0.660	± 0.490		
5000	± 0.400	± 0.630	± 0.680	± 0.750		
6000	± 0.500	± 0.910	±0.710	±1.200		

Reference State for Calculating Mi. M., and Log Kp. Solid Ge from 0° to 1077°K, Liquid Ge from 1077° to 4271°K, Gaseous Ge from 4271° to 6000°K.

	(:	cal/Кд		C	_Kcul/gfw		
1,"k	C.	7,1	(1 T H ₂₉₈)/1	н г - н 298	$\Delta H_{\tilde{I}}^{\prime\prime}$	SF1'	Log Kp
•							
0	0.000	0.000	INFINITE	-1.509	95.624	95.624	INFINITE
298 - 15	5 - 4 3 8	41.591	43.591	0.000	95.000	87.263	-63.962
300	5.447	43.625	43.541	0.010	94.998	87.215	-63.533
400	5 - 894	45.255	43.810	0.577	94.905	84.635	-46.240
500	6.219	46.608	44.238	1.185	94.821	82.076	-35.874
600	6.455	47.763	44.732	1.819	94.127	79.536	-28.970
700	6.666	48.774	45.239	2.475	94.619	77.013	-24.043
800	6 . 8 74	49.678	45.138	3.157	94.491	74.506	-20.353
900	7.073	50.449	46.222	3.849	94.342	72.017	-17.487
000	7.748	51.254	46.688	4.566	94.169	69.545	-15.198
001	7.253	51.275	46.702	4.588	94.163	69.472	
003	7.253	51.275	46.702	4.588	93.463	69.472	-15.137
077	7 • 361	51.796	47.034	5.128	93.334	67.707_	-13.739
077	7.361	51.796	47.034	5.128	92.096	67.707	-13.739
100	7.391	51.952	47.135	5.298	92.051	67.186	-13.348
200	7.497	41.559	47.564	6.043	91.861	64.934	-11.826
300	7.571	53.702	47.975	6.796	91 10	62.696	-10.540
400	7.618	53.766	48.368	7.556	91.505	60.475	-9.440
500	7.645	54.242	48.741	8.319	91.334	58.264	-R.489
600	7.657	54.786	49.108	9.084	91.164	56.066	-7.658
700	7.060	55.250	49.456	9.850	90.996	53.877	-6.926
800	1.658	55.668	49.790	10.616	90.827	51.697	-6.277
900	7.653	56.102	50.112	11.387	90.659	49.527	-5.697
000	7.648	56.494	50.421	12.147	90.489	41.368	-5.176
100	7.644	-6.867	50.719	12.911	90.319	45.217	-4.706
200	7.641	41.221	51.007	13.676	90.149	43.071	-4.279
2300	7.040	51.563	51.284	14.440	89.919	40.938	-3.890
4((7.642	17.888	51.553	15.204	89.808	38.806	-3.534
400	7.647	58.200	51.813	15.968	89.638	36.685	-3.207
2600	7.656	58.500	52.064	16.733	89.468	44.571	-2.906
700	1.666	48.789	52.308	17.499	89.300	32.463	-2.628
2 AC L	7.680	54.066	52.544	18.267	89.133	30.362	-2.370
2900	7.698	49.318	42.114	19.036	88.968	28.265	-2.130
1000	1.718	54.544	52.94	19.806	88.803	26.174	-1.907
3100	7.74.	*9.651	53.214	20.579	88	24.091	-1.698
3206	1.764	60.049	53.425	21.355	88.48	22.011	-1.503
13(10)	7.799	60.438	53.631	22.133	88. 177	19.935	-1.320
1400	1.832	60.572	51.837	2915	88.174	17.864	-1.148
1500	7.867	60.744	54.028	23.700	88.024	15.798	-0.986
1600	1.405	61.021	54.219	24.488	87.878	13.737	-0.834
3700	7.445	61.249	14.406	25.281	87.737	11.680	-0.690
3800	7. 347	61.451	54.568	26.077	87.598	9.629	-0.554
	8.030	61.659	54.767	26.878	87.465	7.578	-0.425
3900 4000	4.075	61.00	54.34.	27.683	87.335	5.528	-0.302
		62.063	55.113	28.443	87.211	3.488	-0.186
4100	8.12.7	(2.254	55.201	24.308	87.091	1.445	-0.075
4200	h . 16 .		55.398	29.884	87.009	0.000	0.000
4270.71	M.202			29.889	0.00	5	
4270.71	8.202	62.396	55.398				
4300	F • 216	62.452	55.446	30.127 30.951			
4400	8.264	62.041	55.607				
4500	8.31.	67.87R	54.765	1].780			
4600	8 - 160	63.011	55.921	.614			
4700	H-407	63-191	56.074	33.452			
4800	8.453	63.364	56.274	34.295			
4900	8.498	63.443	56.371	35.142			
5000	8.542	63.715	56.517	15.994			
5100	8.584	63.885	56.659	36 - 851			
5200	B.624	64.052		47.711			
5300	9.663	64.217	56.918	38.576			
5400	8.699	64.174		39.444			
5500	8.734	64.539		40.315			
5600	8.766	64.64		41.190			
5700	R. 794	64.852		42.068			
- 800	A . 822	65.005	41.400	42.949			
49CC	8.445	64.156		43.833			
600C	A . H . P	65 - 105		44.71A			

$$\Delta_{H_{f0}^{o}} = 95.624 \text{ kcal gfw}^{-1}$$
 $\Delta_{H_{f298.15}^{o}} = 95.000 \text{ kcal gfw}^{-1}$

Ground State Configuration = $^{2}D_{1\frac{1}{2}}$
 $S_{298.15}^{o} = 43.591 \text{ cal deg K}^{-1}\text{gfw}^{-1}$
 $H_{298.15}^{o} - H_{0}^{o} = 1.509 \text{ kcal gfw}^{-1}$

Electronic Levels and Multiplicities

Electronic levels for Ce were assumed to be same as those for La as given by Moore. 1

Heat of Formation

Based on several values. Value by Spedding and Daane 2 adopted.

Heat Capacity and Entropy

Calculated on monatomic-gas computer program.

References

- 1. Moore, C., Atomic Energy Levels, Vol. 3, Nat. Bur. Stds. (U.S.)
- 2. Spedding, F. H. and A. H. Daane, Met. Rev. 5, 297 (1960).

CERIUM - MONATOMIC (Ca) IIDEAL GASI SUMMARY OF UNCERTAINTY ESTIMATES GFW = 140.13

т, °к	⟨ĉ,	cel/°K S _T	-(F ₁ - H ₂₉₈)'T	HT - H798	_Kcal/gtw SH _f	11	log Kp
298 • 15	± 0.200	±0.500	±0.500	±0.000	± 2 • 500	± 2.890	± 2 • 120
1003	± 0 • 150	±0.590	±0.540	±0.050	± 2.570	# 3.850	10.840
1003	± 0 • 150	±0.590	±0.540	±0.050	£ 2.580	# 3.850	4 0 . 840
1077	± 0.150	±0.600	±0.540	+0.060	± 2.590	± 3.950	.0.800
1077	± 0.150	±0.600	±0.540	±0.060	± 2.600	± 3.950	40.800
2000	± 0.100	±0.670	±0.590	±0.170	± 2.780	± 5 • 360	± 0.590
3000	± 0.100	±0.710	±0.620	±0.270	± 3.430	£ 7.060	+0.510
4000	± 0.200	±0.760	±0.650	±0.420	± 5.530	± 9.220	± 0.500
4270.73	± 0.300	±0.770	*0.660	±0.490	# 6.450	± 9.930	# 0-510
4270.73	± 0.300	±0.770	±0.660	±0.490			
5000	± 0.400	±0.830	#0.680	±0.750			
6000	± 0.500	±0.910	±0.710	±1.200			

Reference State for Calculating Alif. AFf., and Log Kp. Solid Ge from 0° to 1077°K, Liquid Ge from 1077° to 4271°K, Gaseous Ge from 4271° to 6000°K, Gaseous O2, Gaseous GeO.

	(Afv		Kcal/gfw		
T,ºK	(°	, T	- (FT H298)/T	ит - н ₂₉₈	1 H ₁	AF1	Log Kp
٥	6 000						
298.15	0.000	0.000	INFINITE	-2.114	-30.044	-30.044	INFINITE
300	7.521	57.219	57.219	0.000	-31.100	-35.595	26.090
400	7.529	57.266	57.200	0.014	-31-105	-35.617	25.946
500	7.915	59.487	57.520	0.787	-31.347	-37.092	20.265
300	8.196	61.285	58.099	1.593	-31.598	-38.501	16.828
600	8.391	62.798	58.759	2.423	-31.874	-39.855	14.516
700	8.528	64.163	59.432	3.270	-32.180	-41.162	12.851
800	8.626	65.248	60.488	4.178	-32.526	-42.421	11.586
900	8.699	66.264	60.719	4.994	-32.913	-43.636	10.596
000	8.755	67.188	61.321	5.867	-33.344	-44.805	9.792
003	8.756	67.213	61.338	5.893	-33.358	-44.838	9.769
.003 .077	8 - 756	67.213	61.338	5.893	-34.058	-44.838	9.769
	8.789	67.837	61.763	6-543	-34.387	-45.621	9.257
1077	8.789	67.837	61.763	6.543	-35.625	-45.621	9.257
100	8.799	68.025	61.693	6.745	-35.735	-45.834	9.106
200	8.834	68.792	62.436	7 - 626	-36.213	-46.731	8.510
300	8.864	69.500	62.953	8.511	-36. 71	-47.590	8.000
1400 1500	8.889 8.911	70 • 158 70 • 772	63.444 63.913	9.399 10.289	-37 • 1 70 -37 • 649	-48.410 -49.197	7.557 7.168
1600 1700	8.933 R.954	71.348 71.890	64.360 64.787	11-181	-38.130 -38.611	-49.950 -50.674	6 • 823
800	8.975	72.402	65.196	12.076 12.972		-50-674	6.514
900	B.999	72.888	65.588	13.871	-39.094 -39.576	-51.371 -52.039	6 • 2 3 7 5 • 9 8 6
2000	9.025	73.351	65.965	14.772	-40.060	-52.682	5.757
2100	9.054	73.792	66.327	15.676	-40.543	-53.300	5.547
2200	9.087	74.214	66.676	16.583	-41.027	-53.897	5.354
7300	9.125	74.618	67.013	17.493	-41.509	-54.471	5.176
2400	9.167	75.008	67.338	14.408	-41.990	-55.027	5.011
500	9.215	75.383	67.652	19.327	-42.469	-55.559	4.857
2600	9.268	75.745	67.957	20.251	-42.946	-56.074	4.713
2700	9.125	76.096	68.252	21.181	-43.419	-56.570	4.579
2 6 0 C	9.387	76.437	68.538	22.116	-43.889	-57.048	4.453
2900	9.454	76.767	68.916	23.058	-44.356	-57.509	4.334
3000	9.525	77.084	69.087	24.007	-44.817	-57.958	4.222
	0 (00	77 . ^-	40.350	24 043	-45.774	_68 39F	4.116
3100	9.600 9.678	77.403 77.709	69.350 69.607	24.963 25.927	-45.7;	-58.385 -58.804	4.016
3200	9.759	78.008	69.857	26.899	-46.17	-59.206	3.92
3300 3400		78.301	70.101	27.879	-46.610	-59.594	3.830
3500	9.842 9.926	78.588	70.340	28.868	-47.043	-59.970	3.74
		70 340	70 672	29.864	-47.471	-60.334	3.66
3600	10.012	78.349	70.573 70.801	30.870	-47.889	-60.685	3.584
3700	10.098	74.144			-48.303	-61.023	3.50
3800	10.184	79.415	71.024	31.884	-48.708	-61.354	3.43
3900 4000	10.270	79.681 79.942	71.243 71.458	32.907 33.938	-49.108	-61.678	3.37
							3.30
4100	10.439	80.199	71.66B 71.874	34.97B 36.026	-49.500 -49.85	-61.985 -62.285	3.24
4200 4270 73	10.521	80.472	72.018	36.775	-50.157	-62.494	3.19
4270.73	10.578	80.629	72.018	36.775	-137.166	-62.494	3.19
4270.73	10.578 10.601	80.701	72.017	37.092	-137.243	-61.987	3.15
4 300	10.501	80.701	72.276	38 - 146	11.27	-60.232	2.99
4400 4500	10.754	81.187	72.472	39.217	-137.770	-58.474	2 . 8 4
			12 444	.0.204	-138-A33	~ \A - 7A=	3.40
4600 4700	10.827 10.896	81.474 81.658	72.664 72.853	.0.296 .1.382	-138.033 -138.296	-54.943	2.69
4800	10.963	81.888	73.039	42.415	-138.559	-53.158	2.42
		82.115	73.223	43.575	-138.823	-51.384	2.29
4900 5000	11.026 11.087	82.119	73.403	44.680	-139.090	-49.600	2.16
			73 501	45.792	-139.360	-47.808	2.04
5100 5200	11.144	82.560 82.177	73.581 73.756	46.909	-139.633	-46.008	1.93
5300	11.247	82.991	71.929	48-031	-139.913	-44.210	1 + 82
5400	11.295	83.202	74.099	49.158	-140-198	-42.402	1.71
5500	11.338	83.410	74.261	50.289	-140.490	-40.590	1.61
	11.379	83.616	74.432	51.425	-140.792	-38.769	1.51
5600 5700	11.417	83.818	74.596	57.565	-141-107	-36.948	1.41
5800	11.451	84.017	74.757	53.708	-141.437	-35.116	1.32
5900	11.483	84.214	14.916	54.854	-141.785	-33.283	1.23
6000	11.512	84.407	75.074	56.004	-142-153	-31 -436	1.14

CERIUM MONOXIDE (CeO)

$$\Delta H_{f0}^{o} = -30 044 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298 15}^{o} = -31.1 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298 15}^{o} = -31.1 \text{ kcal gfw}^{-1}$$

$$S_{298.15}^{o} = -57 219 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$H_{298.15}^{o} = -H_{0}^{o} = 2 114 \text{ kcal gfw}^{-1}$$

	1			cm ⁻¹												
State	g	E	ω _e	ω _e x	ω _e y _e	Ве	$\alpha_{ m e}$	γ _e ×10 ⁵	Dexide							
X A B X' D E	2 2 2 2 2 2	0 12764 3 13817 2 13720. 34276. 34584	865 785.3 788.3 840.2 791.7 807 9	2. 99 2. 13 1 76 2 58 1. 72 2. 04	-	0. 359 0. 326 0. 327 0. 349 0. 329 0. 335			0 25 0.22 0.23 0.23 0 23 0 23							

Heat of Formation

Based on data of Walsh, Dever, and White. 1 See volume 1, this study (section IVB5. 4) for details.

Heat Capacity and Entropy

Calculated using above spectroscopic constants, which are from $Herzberg^2$ or have been estimated.

- Walsh, P. N., D F. Dever, and D White, J Phys. Chem 65, 1410 (1961).
- 2. Herzberg, G, Spectra of Diatomic Molecules I., 2nd ed, Van Nostrand, N. Y (1950)

Reference State for Calculating VIII, AFT, and Log Kp. Solid Gr from 0° to 2148°K, Liquid Gr from 2148 to 2967°K, Gaseous Cr from 2967 to 6000°K.

	Commercial/'K gfw						
r, nk	(°°	,"	(FT H208) 'T	H1 - H208	1H _f	1+1	Log Kp
0	0.000	0.000	INFINITE	0.070			•
298.15	5.577	5.680		-0.970			
100	5.579	5.714	5.680	0.000			
311.65	5.597	5.934	5.681 5.687	0.010			
311.65	5.591	5.918	5.687	0.077			
400	5.800	7.400	5.913				
500	6.090	8.744	6.354	0.595 1.220			
400				1.270			
600 700	6.415 6.755	9.978 10.995	6.861	1.870			
800	7.103	11.902	7.380	2.530			
900	7.455	12.726	7.890	3.210			
1000	7.810	13.495	₽•38 <i>2</i> 8•855	3.910 4.640			
1100				4.040			
1100 1200	8 • 1 6 7 8 • 5 2 5	14.229	9.310	5.410			
1300		14.942	9.750	6 • 2 3 0			
1400	0.884	15.638	10.1/7	7.100			
1500	9.243	16.312 16.961	10.591 10.994	8.010			
.,	,,,,,	10.701	10.774	8.950			
1600	9.964	17.587	11.387	9.920			
164P	10.137	17.882_	11.571	10.400			
164R	10.137	18.36R	11.571	11.200			
1700	10.324	18.684	11.784	11.730			
1 800	, C • 6A5	17.284	12.184	12.780			
1900	11.046	19.879	12.573	13.880			
\$0cc	11.408	20.463	12.953	15.020			
208B	11.726	20.975	13.261	16.065			
2088	11.726	21.142	13.281	16.415			
2100	11.769	21.212	11.37	16.560			
2148	11.942	21.486	13.517	17.117			
2148	4.470	23.786	13.517	2.057			
2200	9.400	24 1	13.763	22.545			
2300	9.400	74.477	14.218	23.485			
5400	9.400	24.829	14.652	24.425			
2500	9.400	25.213	15.067	25.365			
2600	9.400 9.400	25.581 25.936	15.464	26.305			
2 7 00			15.845	27.245			
2800	9.400	26.278	16.717	28.185			
2900 2047	9.400 9.400	26.608 26.822	16.565 16.794	19.125 29.755			
2967	7.117			109.974			
2967 3000	7.353	53.943	16.794	110.216			
3100	7.4A1	54.186	18.393	110.958			
3200	7.599	54.475	19.515	111.712			
3300	7.713	74.661	20.577	112.478			
3400	7.825	44.893	21.583	113.255			
3500	7.935	55.121	22.537	114.043			
3600	8.045	45.346	23.445	114.842			
370C	8.157	45.568	24.311	115.652			
3800	6.270	55.787	25.136	116.473			
3900	8.386	56.004	21.926	117.306			
400C	8.506	56.217	26.679	118.151			
4100	8.631	56.429	27.402	119.008			
4200	8.761	56.638	28.096	119.877			
	8.896	56 · 846	28.762	120.760			
4300	9.036	57.052	29.403	21.657			
4400 4500	9.183	57.257	30.020	122.567			
4600	9.335	57.460	30.614	123.493			
4700	9.492	57.663	31.187	124.435			
4800	9.654	57.864	31.741 32.276	125.392			
4900 5000	9.821 9.992	58.065 58.265	32.276	127.356			
5000							
5100	10.167	58.465		128.364			
5200	10.344	58.664		130.433			
5300	10.524	58.863					
5400	10.705 10.887	59.061 59.259		131.495			
5500	40.007	.,,,					
5600	11.069	59.457		133-672			
5700	11.250	59.405		134.788			
5800	11.429	59.852		135.922			
	11 (01	60.049	36.816	1 4 7 4 () 7 4			
5900 6000	11.605 11.779	60.745		1 18 . 24 3			

21480K to 29670 K Liquid

2967°K to 6000°K Ideal Monatomic Gas

$\Delta H_{f0}^{o} = 0$	$\Delta H_{f298, 15}^{o} = 0$
$\Delta H_{8298, 15}^{o} = 94.820 \text{ kcal g/w}^{-1}$	S ^o _{298, 15} = 5, 68 cal degK ⁻¹ gfw ⁻¹
$T_t = 311,65^{0}K$	$\Delta H_t = 0.0014 \text{ kcal gfw}^{-1}$
T _t = 1648°K	$\Delta H_t = 0.800 \text{ kcal gfw}^{-1}$
$T_t = 2088^{\circ}K$	$\Delta H_t = 0.350 \text{ kcal gfw}^{-1}$
$T_{\rm m} = 2148^{\rm o} \rm K$	$\Delta H_{\rm m}$ = 4. 92 kcal gfw ⁻¹
T _b = 2967°K	$\Delta H_{v} = 80.220 \text{ kcal gfw}^{-1}$
$H_{298, 15}^{0} - H_{0}^{0} = 0.970 \text{ kcal gfw}^{-1}$	

298. 15 -Hō

Structure

The stable form at 298, 150K is b. c. c., an antiferromagnetic transition occurs at 311,650K. A second occurs at 16480K. At 20880K, the b. c. c. transforms into f. c. c. structure.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Low-temperature data from earlier works of Hultgren and identical with their final tabulation. 1 High-temperature data primarily from Kelley. 2 Data for liquid estimated.

Melting

An average of five determinations used.

Vaporization

An average of five determinations used.

Further details by Barriault et al. 3

References

- Hultgren, R. et al, Selected Values of Thermodynamic Properties of Metals and Alloys, Wiley, New York (1963).
 Kelley, K., U. S. Bur. Mines, Bull. 584 (1960).
 Barriault, R. J. et al, ASD TR 61-260 (May 1962), Pt. 1.

CHRONIUM (Cr)

(REFERENCE STATE)

GFW - 52.01

		_col/ok ste		K	cal/g/w		
T, °K	c*	S _T -(F _T	- н ₂₉₈)/т [\] н	т - Н ² 98	ΛH,	1 + 1°	Log K
298.15	± 0 • 200	±0.070	± 0.070	+ 0.000			
311.65	±0.200	±0.080	± 0.070	± 0.003			
311.65	±0.200	±0.080	± 0.070	± 0.003			
1000	± 0.700	±0.600	± 0.290	± 0.310			
1648	±1.200	±1.070	± 0.510	± 0.930			
1648	±1.200	±1.190	± 0.510	± 1.130			
2000	±1.200	±1.420	± 0.640	± 1 • 1 50			
2088	±1.200	±1.470	± 0.680				
2088	±1.200	±1.520	± 0.680	* 1 • 660 * 1 • 760			
2184	±1.200	*1.550	± 0.700	± 1 . 830			
2184	±1.000	\$2.020	± 0.700	± 2 • 830			
2967	±1.000	± 2 • 340	* 1.450	± 2 • 650			
2967	±0.000	±0.003	- 11470	= 2.650			
3000	±0.001	-0000,					
4000	± 0.001	±0.003					
5000	± 0.002	±0.003					
6000	±0.002	*0.003					

Reference State for Calculating AH?, AF?, and Log Kp. Solid Cr from 0° to 2148°K, Liquid Cr from 2148° to 2967°K, Gaseous Cr from 2967° to 6000°K.

		cel/"K	stw		Kcal/gfo		
T, "K	C.	s _r	-(+ 1 - H398)/L	H _T - H ₂₉₈	ΔH	Λ F''	Log Kp
0	0.000	0.000	INFINITE	-1 (8)	04 365	0/ 411	* ******
298.15	4.968	41.637	41.637	-1.481	94.309	94.309	INFINITE
300	4.968	41.668	41.637	0.000	94.820	84.099	-61.644
311.65	4.968	41.857	41.642	0.067	94.819	84.033	~61.215
311.65	4.968	41.857	41.642	0.067	74.809	83.615 83.615	58.633
400	4.968	43.097	41.832	0.506	94.731	80.452	-58.633 -43.955
500	4.968	44.206	42.200	1.003	94.603	76.897	-33.610
600	4.96R	45.111	42.612	1.500	94.450	73.369	-26.723
700	4.968	45.877	43.025	1.996	94.286	69.868	-21.81
800	4.969	46.541	43.424	2.493	94.103	66.393	-18.137
900	4.972	47.126	43.803	2.990	93.900	62.942	-15.284
000	4.980	41.450	44.162	3.488	93.668	59.513	-13.00
100	4.996	48.126	44.501	3.987	93.397	56.109	-11.14
1200	5.023	46.561	44.822	4.487	93.077	52.734	-9.60
1300	5.065	48.165	45.125	4.992	92.712	49.387	-8.30
1400	5.125	49.342	45.413	5.501	92.311	46.070	-7.19
1500	5.203	49.698	45.687	6.017	91.887	42.780	-6.23
1600	5.300	50.037	45.948	6.542	91.442	39.523	-5.39
1648	5.353	50.195	46.070	6.798	91.218	37.965	-5.03
1648	5.353	50.195	46.070	6.798	90.418	37.965	-5.034
1700	5.414	50.362	46.199	7.078	90.168	36.314	-4.66
1800	5.545	50.675	46.439	7.626	89.666	33.161	-4.02
1900	5.688	50.979	46.670	8.187	89.127	30.035	-3.45
2000	5 - 8 4 1	51.274	46.892	8.763	88.563	26.222	-2 . 86
2088	5.982	51.529	47.082	9.284	88.039	24.244	-2.53
2088	5.982	51.529	47.082	9.784	87.689	24.244	-2.53
2100	6.001	51.563	47.108	9.356	87.616	23.879	-2.48
2148	6.080	51.700	47.209	9.646	87.349	22.449	-2.28
2146	" 6.080 T	51.700	47.209	•646	82.409	22.449	-2.28
5200	6.165	51.846	47.317	9.964	82.239	21.001	-2.08
2300	6.330	57.124	47.120	10.589	81.924	18.225	-1.73
2400	6.493	12.397	47.717	11.230	81.625	15.463	-1.40
2500	6.652	57.66	47.910	11.987	81.342	12.713	-1.11
2600	6.806	52.929	48.09B	12.560	81.075	9.971	-0.83
2700	4.954	53.188	48.282	13.248	80.823	7.241	-0.58
2800	7.095	13.444	48.462	13.951	89.5AK	4.519	-0.35
2900	7 . 2 10	53.695	48.638	14.667	80	1.810	-0.13
7967	7.317	13.8.1	48.754	15.154	80.2 /	0.000	0.00
2967	7.317	1143.841	48.754	15.154			
300C	7.359	53.943	48.810	.5.396			
3100	7.481	54.186	48.980	16 - 138			
3200	7.599	54.425	49.146	16.892			
3300	7.713	54.661	49.310	17.658			
1400	7.874	4.843	44.471	18.435			
3500	7.935	55.121	49.629	19.223			
3600	R.045	55.346	49.785	20.022			
3700	8.157	15.568	44.938	20.832			
1800	8.270	45.787	50.089	21.653			
3900	8.386	56.004	50.238	22.486			
4000	8.506	56.217	50.385	23.331			
4100	8.641	*6.429	50.529	24.188			
4200	A.761	*6.638	50.672	25.057			
4300	A . 896	56.846		25.940			
4400	9.036	47.052		76.837			
4500	9.183	47.257		c7.747			
	0 116	57.460	51.227	28.673			
4600	9.335	57.663		29.615			
4700	9.492	67.864		30.572			
4800	9.654 9.871	- 7 . 864 - 8 . 065		31.546			
4900 5000	9.997	58.265		12.536			
*10C	10.167	44.465	41.88A	11.544			
	10.344	58.664		34.570			
5200		58.863		35.613			
5300	10.574	59.061		16 . 675			
540C 5500	10.705 10.887	54.259		17.754			
		En es	52.519	38.852			
560C	11.069	59.457		39.968			
5700	11.210	59.65		41.102			
5800	11.479	59.857		42.254			
5900 6000	11.605 11.779	60.04°		43.423			

(IDEAL MONATOMIC GAS)

gfw = 52.01

CHROMIUM (Cr)

$$\Delta H_{f0}^{0} = 94.309 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298-15}^{0} = 94.820 \text{ kcal gfw}^{-1}$$

Ground State Configuration = ⁷S₃

$$S_{298.15}^{0} = 41.637 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

 $H_{298,15}^{0}$ - H_{0}^{0} = 1.481 kcal gfw⁻¹

Electronic Levels and Multiplicities

Energy levels from Moore. 1

Heat of Formation

Vapor-pressure measurements from five sources used.

Heat Capacity and Entropy

Calculated using monatomic-gas program.

Further details by Barriault et al. 2

References

- 1. Moore, C. Atomic Energy Levels, Vol. 2, Nat. Bur. Stds. (1952).
- 2. Barriault, R. et al, ASD TR 61-260 (May 1962), Pt. 1.

CHROMIUM. MONATOMIC (Cr)

(IDEAL GAS)

GFW = 52.01

T %	<u>(</u> ;	- ۲	(F _T = H ₂₉₈) 7	/ H ₇ - H ₁₀₉	ΛH,	N 2 . 1	' # K,
F	. L	-1	. (·	,	,
298 • 15	± 0.000	±0.002	10.002	± 0.000	±0.500	± 0 • 5 ≥ 0	10.38
311.65	± 0.000	+0.002	±0.002	± 0.000	+0.500	±0.520	+ 0 - 36
311.65	± 0.000	±0.002	±0.002	+ 0.000	±0.500	10.570	. 0 . 36
1000	± 0.000	±0.002	:0.002	+ 0.000	10.810	±0.790	+0-170
1648	+ 0.000	±0.002	+0.002	+ 0.000	11.430	+ 1 - 3+0	+ 0 - 18
1648	* 0.000	±0.002	±0.002	.0.000	#1.630	41.340	.0.18
2000	± 0.001	+0.002	+0.003	± 0.000	±2.050	+1.790	10.20
2086	4 0.001	10.002	20.003	+ 0.000	#2.162	11.930	10.200
2088	± 0.001	±0.002	±0.203	± 0.000	*2.260	11.930	+ 0 - 20
2148	+ 0.001	40.002	± 0.00 1	± 0.001	+2.330	± 2.010	10.200
2148	± 0.001	+0.002	10.003	. 0.001	± 3 • 3 30	12.010	10.200
2967	10.001	±0.003	+0.003	+ 0.001	±3.150	: 4.810	10.350
2967	# 0.001	±0.003	10.003	10.001			
3000	± 0.001	40.003	.0.003	0.001			
4000	± 0.001	+0.003	40.003	10.002			
5000	± 0.002	±0.003	10.303	10.003			
6200	± 0.002	±0.003	±0.003	+ 9.005			

IDEAL MOLECULAR GAS

CrO

Reference State for Calculating ¹ H₁, AF₁, and Log K_D. Solid Cr from 0° to 2148°K, Liquid Cr from 2148° to 2967°K, Gaseous Cr from 2967° to 6000°K, Gaseous O₂, Gaseous CrO.

		cal/"K gf	V,		_ Kcal/gfw	. —	
T,°K	′c _p ′	s' _T	(F r - H ₂₉₈)/1	H _T - H ₂₉₈	VH,	Λ F ₁ "\	Log Kp
				_			
0	0.000		INFINITE	-2.440	49.567	-	INFINITE
98.15	8.288	56.689	56.689	0.000	50.000	42.098	-30.657
300	8.289	56.740	56.689	0.015	49.998	42.049	-30.631
111.65	8.296	57.057	56.697	0.112	49.987	41.744	-29.272
11.65	8.296	57.057	56.697	0.112	49.986	41.744	-29.272
•00	8.397	59.138	57.015	0.849	49.893	39.416	-21.535
500	8.526	61.025	57.635	1.695	49.748	36.813	-16.090
600	8 • 6 3 5	62.590	58.334	2.554	49.579	34.241	-12.472
700	8.720	63.928	59.040	3.421	49.397	31.699	-9.896
800	8.786	65.096	59.725	4.297	49.194	29.185	-7.973
900	8.838	66.134	60.381	5.178	48.968	26.697	-6.483
000	8.880	67.068	61.004	6.064	48.711	24.234	-5.296
100	8.915	67.916	61.594	6.954	48.411	21.801	-4.331
200	8.945	68.693	62.154	7.847	48.060	19.397	-3.532
300	8.971	69.410	62.685	8.743	47.658	17.026	-2.862
400	8.994	70.076	63.189	9.641	47.214	14.686	-2.292
500	9.016	70.697	63.669	10.541	46.73P	12.378	-1.803
600	9.036	71.279	64.127	11.444	46.235	10.104	-1.380
	9.045	71.547	64.339	11.878	45.974	9.021	-1.196
648	9.045	71.547	64.339	11.878	45.175	9.021	-1.196
648			64.564	12.349	44.886	7.886	-1.014
700	9.054	71.778		13.255	44.79A	5.728	-0.695
800	1.072	72.346	64.987		43.659	3.601	-0.414
900 2000	9.089 9.106	72.837 73.304	65.383 65.768	14.143	42.979	1.50B	-0.165
				15 676	42.337	-0.303	0.032
7088	9.1.21	73.696	66.094	15.975	41.947	~0.303	0.032
2088	9.121	73.696	66.094	15.875	41.897	-0.540	0.056
2166	9.1 19	73.749	46.137	.5.984			0.151
7148	9.137	73.955	66.310	16.422	41.559	-1-489	0.15.
2148	9.1.2	73.955	66.310	16 422	36.619	-1.489	
5500	9.141	74.174	66.443	16.897	36.370	-2.402	0.239
2300	9.159	74.581	56.936	17.912	35.586	-4.154	0.395
7400	9.178	74.971	67.167	18.729	35.402	-5.882	0.536
250C	4.197	75.346	67.487	19.548	34.918	-7.595	0.664
	0 714	75.70A	67.797	20.569	34.437	-9.290	0.781
2600	9.218 9.240	76.056	68.097	21.492	33.947	-10.962	0.887
2700		76.343	68.387	22.417	33.46^	-12.617	0.985
2800	9.263		68.669	77.344	32.9	-14.251	1.074
2900	9.788	76.719	68.854	23.967	32.64	-15.345	1.130
2966.82	V • 306	16.932		23.967	-47.572	-15.345	1.130
2966.87 3000	9.315	76.937 77.035	68.854 65.943	7-274	-47.664	-14.976	1.091
.500			40 110	25. 201	-47.771	-13.888	0.979
3100	9.343	77.341	69.210	75.701	-48.75C	-12.784	0.973
3700	4.373	11.434	69.464	76 - 143	-48-560	-11.672	0.773
3300	4.404	77.928	69.772	27.082		-10.550	5.678
1400	4.43A	79.210	49.968	28.024	-49.879		0.589
1500	9.473	7 K . 4 R E	7008	78.970	-49.208	-9.426	
3600	4.510	78.753	10.447	29.919	-49.547	-8.287	0.501
	9.548	79.01	70.671	30.472	-49.895	-7.134	0.42
1700	9.580	79.271	70.894	31.879	-51.251	-5.977	0.344
3800	9.630	74.521	71.111	32.795	-50.618	-4.805	0.269
3900 4000	9.674	7.766	71.328	13.755	-50.994	-3.644	0.19
			71.537	34.725	-11.419	-2.448	
4100	4.719	AU-007	71.743	15.700	-51.773	-1.256	
4200	9.765	RO.243		36.679	-52.179	052	0.00
4300	9.812	80.474	71.944	-663	-52.595	1.163	
4400	9.861	80.70? 80.745	72.147 72.336	14.652	-53.022	2.381	
4500	9.911	000.0				3.616	-0.17
4600	9.962	81.145	72.526	39.647	-51.46] -53.915	4.85	
4700	10.014	81.361	72.713	40.646	-54.380	6.101	
4800	10.067	81.574	72.897	41.651	-54.860	7.360	
4900	10.170	A1.784		42.662		8.630	
5000	10.175	61.941	71.255	41.678			
	10.230	82.144	73.430	44.690		9.90	
5100	10.286	A2.396	71.602	45.727		12.49	
5200		87.59	73.772	46 - 760		13.79	
5300	10.343	82.791		47.800			
5400 5500	10.400	A2.984			58.093	15.10	
	•			49.89	-58.702	16.44	
5600	10.515	87.17			- 40. 128	17.77	
5700	10.574	B1.36					
	10.633	B 1 . 5 5				20.48	5 -0.7
5800		_					
5 8 0 0 5 9 0 0	10.692	81.73 83.97	R 74.740			21.85	2 -0.7

CHROMIUM MONOXIDE (CrO) (IDEAL MOLECULAR GAS) gfw = 68.01

$$\Delta H_{f0} = 49.567 \text{ Kcal gfw}^{-1}$$

$$\Delta H^{*}_{f298.15} = 50.000 \text{ Kcal gfw}^{-1}$$

Ground State Configuration $^{1}\Sigma$

S²298.15 = 56.689 cal deg K⁻¹ gfw⁻¹

$$H^{\circ}_{298.15} - H^{\circ}_{0} = 2.440 \text{ Kcal gfw}^{-1}$$

Spectroscopic constants for ten electronic levels from Herzberg $^{\rm l}$ were used. See text for details.

Heat of Formation

Based on work of Grimley et al2.

Heat and Capacity and Entropy

Calculated on diatomic gas computer program.

- Herzberg, G., Molecular Spectra and Molecular Structure I., Van Nostrand, N. Y. (1950).
- 2. Grimley, R., et al. J. Chem. Phys. 34, 664 (1961).

Reference State for Calculating AH2, AF2, and Log Kp. Solid Cr from 0° to 2148°K, Liquid Cr from 2148° to 2967°K, Gaseous Cr from 2967 to 6000°K; Gaseous O2; Solid CrO2.

		cal/ck giv Kral/giv Kral/giv							
T,°K	Ċ₽ [®]	s _T	-(F " - H298)/T	HT - H298	Kral/gfw ΔHj	A FI	Los Kp		
0	0.000	0.20	INFINITE	-1.950	-138.855	-138.855	INFINITE		
298.15	13.380	9.900	9.900	0.000	-140.000	-126.647	27.67		
300	13.430	9.983	9.903	0.024	-139.999	-126.600	27.66		
311.65	13.670	10.501	9.914	0.183	-139.990	-126.034	27.54		
311.65	13.670	10.501	9.914	0.183	-139.991	-126.034	27.54		
400	15.070	14.094	10.451	1.457	-139.861	-122.102	26.684		
500	16.150	17.584	11.542	3.021	-139.653	-117.687	25.71		
600	17.000	20.602	12.802	4.680	-139.400	-113.315	24.76		
700	17.740	23.279	14.112	6.417	-139.100	-108.991	23.81		
800	18.430	25.693	15.410	8.226	-138.769	-104.711	22.88		

15 September 1962

CHW

CHROMIUM DIOXIDE (CrO₂) (CONDENSED PHASE) gfw = 84.01 $\Delta H^{*}_{f298.15} = -140.000 \text{ Kcal gfw}^{-1}$ S*298.15= 9.900 cal deg K⁻¹gfw⁻¹ $H^{*}_{298.15} - H^{*}_{0} = 1.900 \text{ Kcal gfw}^{-1}$ C* = 14.13 + 5.80 x 10⁻³ T -2.20 x 10⁵ T⁻² cal deg K⁻¹ gfw⁻¹

$$C_{p}^{*} = 14.13 + 5.80 \times 10^{-3} \text{ T} - 2.20 \times 10^{5} \text{ T}^{-2} \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$298.15 \text{ ^*K} \leq \text{ T} \leq 800 \text{ ^*K}$$

Structure

CrO2 is considered to remain solid until decomposition occurs near 800°K.

Heat of Formation

Based on work of Ariya et al. 1

Heat Capacity and Entropy

Data were estimated.

References

1. Ariya, S., et al, J. Gen. Chem. USSR 23,1307 (1953).

IDEAL MOLECULAR GAS

Reference State for Calculating ΔH_{f}^{*} , ΔF_{f}^{*} , and $Log~K_{p}^{*}$. Solid Cr from 0° to 2148°K. Liquid Cr from 2148° to 2967°K, Gaseous Cr from 2967° to 6000°K, Gaseous O₂: Gaseous CrO₂.

		rel/°K	pl=		Kral/gfw		
T,"K	′ς _p	٦,	-(F1 H208)/1	H _T - H ₂₉₈	าห์	AF?	Log Kp
٥	0.000	0.000					
298-15	10.453	0.000 61.856	INFINITE	-2.640	-18.595	-18.595	INFINITE
300	10.473	61.921	61.856 61.856	0.000	-19.000	-21.137	15.493
311.65	10.599	62.322	61.856	0.019	-19.004	-21.150	15.407
311.65	10.599	62.322	61.866	0.142	~19.031	-21.225	14.884
400	11.422	65.071	62.279	1.117	-19.032 -19.201	-21.225	14.884
500	12.085	67.696	63.107	2.294	-19.380	-21.833 -22.470	11.928 9.821
600	12.537	40.043					
700	12.849	69.942 71.899	64.064 65.046	3.527 4.797	-19.553 -19.720	-23.072 -23.645	8 • 4 0 3 7 • 3 8 2
800	13.070	73.630	66.013	6.093	-19.902	-24.194	6 4 6 0 9
900	13.230	75.179	66.947	7.409	~20.100	-24.719	6.002
000	13.350	76.480	67.842	8.738	-20.329	-25.220	5.512
100	13.441	77.857	68.695	10.078	-20.598	-25.697	6.106
200	13.512	79.029	69.508	11.426	-20.918	-26.146	5 • 105
300	13.569	80.113	70.282	12.780	-21.291	-26.566	4.762
400	13.614	81.120	71.021	14.139	-21, 706	-26.958	4.208
500	13.651	82.061	71.726	15.502	-22.153	-27.318	3.980
600	13.681	82.943	72.400	16.869	-22.633	-27.646	3.776
648	13.694	83.348	72.713	17.526	-22.880	-27.798	-
648	13.694	83.348	72.713	17.526	- 13.680	-27.798	3 • 686 3 • 686
700	11.707	83.773	73.045	18.239	-23.956	-27.921	
800	13.728	84.557	13.663	19.610	-24.524	-28.138	3.589
300	13.747	85.300	74.256	20.984	-25.144		3.416
000	13.762	86.4.6	74.826	22.360	-25.808	-28.371 -28.470	3.258 3.111
088	13.774	A6.599	75.310	23.571	-26.439	-28.576	2.991
2088	13.774	86.599	75.310	23.571	-26.789	-28.576	2.991
100	13.776	86.677	75.374	13.737	-26.877	-28.581	2.974
148	11.782	86.989	75.630	24.398	-27.210	-28.594	2.909
146	13.782	A6.989	75.630	24.398	-32-150	-28.594	2.909
200	13.788	A7.319	75.903	25.115	- 12 - 395	-28.501	2.831
300	13.798	87.932	76.413	26.494	-32.872	-28.315	2.690
400	11.807	PB -519	76.905	27.614	-33.354	-28.106	2.559
500	17.615	P . 083	77.381	29.256	-33.840	-27.878	2.437
600	13.872	89.625	77.841	30.637	-34.331	-27.628	2.322
700	13.829	40.147	79.288	32.020	-34 677	-27.365	2.21
2800	13.834	90.610	78.720	3.403	-35.3	-27.076	2.113
900	13.840	91.125	79.140	34 - 787	-35.8 5	-26.773	2.018
7966.87	13.843	41.451	74.414	15.714	-36.174	-26.561	1.956
2966.82	13.843	91.451	74.414	35.714	-116.389	-26.561	1.956
3000	13.844	41.605	79.548	36 - 171	-116.488	-25.554	1.86.
3100	13.848	92.059	79.944	37.556	-116.802	-22.515	1.587
3200	13.852	92.448	8029	38.541	-117.133	-19.472	1.33(
	13.856	97.925	80.705	40.326	-117.479	-16.414	1.087
3300	13.854	97.97.	81.070	41.712	-117.840	-13.342	0.858
140C 3500	13.862	93.740	81.426	43.098	-118.216	-10.262	0.641
	1 4 0	0, 111	g1 77.	44-494	-118.6.	-7.178	0.436
1600 3700	13.864	94.131	81.774 82.113	44.484 45.87]	-119.011	-4.074	0.24
1800	13.869	94.880	82.444	47.258	-119.430	-0.961	0.05
3900	13.871	95.241	82.768	48.645	-119.965	2.165	-0.12
•00C	13.873	95.592	83.084	50.032	2.315	5.296	-0.28
100	13.975	95.434	83.393	51-419	-170.781	8.446	-0.450
-100	13.875		83.696	52.807	-121.262	11.600	-0.60
4200	13.877	96.269					
300	13.678	96.595	83.992	.4.195	-121.760	14.771 17.956	-0.75
∙400 •500	13.880	96.914	84.282 84.566	55•582 56•970	-122.278 -122.811	21.150	-0.89: -1.02
4600 4700	13.887	97.517 97.3 0	84.845 85.118	58.359 59.747	-123.364 -123.939	24.357 27.570	-1.15 -1.28
4700 4 9 00	13.885	98.172	85.380	61.135	-124.535	30.806	-1.40
4800 4900	13.886	98.409	85.649	67.524	-125.153	34.045	-1.51
5000	13.887	98.689	85.907	63.912	-125.796	37.305	-1.63
	13 000	98.964	86.160	65 - 301	-126.465	40.576	-1.73
5100	13.888	99.234	86.409	66 • 690	-127.162	43.857	-1.84
5200	13.889	99.448	86.653	68.079	-127.889	47.159	-1.94
5 100	13.884	99.498	86.894	69.468	-128-650	50.463	-2.04
5400 5500	13.890 19.891	100.013	87.130	70.857	-129.445	43.796	-2.13
		100 312	07 343	72.744	-130.281	57.137	-2.23
5600	13.892	100.263	87.362 87.591	72.246 73.635	-131.160	60.500	-2.32
5 700	13.892	100.509	87.591	75.024	-132.089	63.870	-2.40
5800	13.893	100.751	87.816 88.037	76.414	-133.072	67.266	-2.49
5900	13.893 13.894	100.988	88.255	77.803	-134.117	70.668	-2.57

CHROMIUM DIOXIDE (CrO₂)

(IDEAL MOLECULAR GAS) gfw = 84.01

$$\Delta H_{f0}^{o} = -18,595 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o}$$
 = -19.000 kcal gfw⁻¹

Point Group = C2v

$$S_{298.15}^{o} = 61.856 \text{ cal deg } K^{-1} \text{gfw}^{-1}$$

 $H_{298.15}^{o} - H_{0}^{o} = 2.640 \text{ kcal gfw}^{-1}$

Vibrational Levels and Multiplicities

ω, cm ⁻¹	ω, cm ⁻¹
870 (1)	926 (1)
388 (1)	

Bond lengths and angles:

Product of moments of inertia:

$$I_A I_B I_C = 3.40637 \times 10^{-115} g^3 cm^6$$
 $\sigma - 2$

Heat of Formation

Based on mass-spectrometric work of Grimley $\underline{et} \ \underline{al}^1$.

Heat Capacity and Entropy

Calculated using estimated spectroscopic constants.

Reference

1. Grimley, R. T. et al, J. Chem. Phys. 34, 664 (1961).

CONDENSED PHASE

Reference State for Calculating AH, AF, and Log Kp: Solid Cr from 0° to 2148°K, Liquid Cr from 1967°K, Gaseous Cr from 2967 to 6800°K, Gaseous O₂, Solid CrO₃ from 0° to 470°K, Liquid CrO₃ from 470° to 800°K

		cel/"K	gf=		_Kcal/gfw		
T, "K	(°	Sτ	efw	HT - H298	ΔH_{ℓ}°	V+L	log Kp
o	0.000	0.000	INFINITE	-2.970	-140.288	-140.788	INFINIT
298.15	18.090	18.260	18.260	0.000	-141.400	-123.234	90.32
300	18.130	18.341	18.260	0.034	-141.396	-123.121	89.68
311.65	18.390	19.067	18.274	0.247	-141.374	-122.398	85 . B3
311.65	18.390	19.067	18.274	0.247	-141.375	-122.398	85 • 83
400	19.930	23.853	18.993	1.944	-141.135	-117.062	63.95
470	20.840	27.141	19.967	3.372	-140.914	112.853_	52.47
470	29.000	38.541	19.967	8.730	-135.556	-117.853	52.47
500	29.000	40.336	21.136	9.600	-135.201	-111.431	48.70
400	29.000	45.623	24.790	12.500	-134.085	-106.782	36.89
600	29.000	50.093	28.093	15.400	-133.010	-102.318	31.94
700 800	29.000	53.966	31.091	18.300	-131.998	-98.004	26 . 7

15 September 1962

CHW

Structure

See volume 1, this study (section IVB6. 4. 3) for details.

Heat of Formation

The value of Mah adopted.

Heat Capacity and Entropy

An equation estimated in an analogous manner to that used for $CrO_{Z(s)}$.

Melting and Vaporization

See volume 1, this study (section IVB6. 4. 3) for details.

Reference

1. Mah, A. D., J. Am. Chem. Soc. 76, 3363 (1954).

Reference State for Calculating M_{L}^{\prime} , M_{L}^{\prime} , and $\log K_{p}^{\prime}$. Solid Cr from 0° to 2148°K, Liquid Cr from 2148° to 2967°K, Gaseous Cr from 2967°to 6000°K, Gaseous O2, Gaseous CrO3

I."k	(· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		h. al <i>i pt</i> w		
	۲,	1 ر	и ₁ н ₂₉₈ 7/1	'н _т - н ₂₉₈	ΔH_{f}	317	Log Kp
0	0.000	0.000	INFINITE	-3.108	-47 434	47 494	14.514.17
298 - 15	13.881	64.500	64.500	0.000	-67.426	-67.426	INFINIT
100	13.916	64.586	64.500		-68-400	-64.020	46 - 92
311.65	14.104	65.201	64.566	0.026	-68.404	-63.993	46.616
311.65	14.104	65.201		0.198	-68.423	-63.825	44.750
400	15.533		64.566	0.198	-68.474	-63.825	44.75
500	16.663	68.824 72.419	65.967 66.187	1.503 3.116	-68.576 -68.685	-62.491 -60.956	34 - 14.
				34115	09.007	- 50 4 7 7 0	26.64
600 700	17.441 17.584	75.530	67.491	4.824	-68.761	-59.402	21.63
800		78.767	68.839	5.596	-68.814	-57.840	16.02
	18.371	60.900	70 - 171	8.415	-68.873	-56.268	15.37
900 000	18.654 18.867	82.F71 P4.848	71.463 72.704	10.267	-68.941	-54.689	13.28
			77 . 11 4	12.144	-69.036	-53.099	11.60
1160	19.029	86.654	13.892	14.039	-69-170	-51.499	10.23
200	19.156	88.316	75.025	15.748	-69.353	-49.885	9.08
1300	1	84.853	76.108	17.867	-69.587	-48.253	8 - 11
1400	19.33A	91.283	77.141	19.799	-6° 863	-46.603	7.27
1500	14.404	92.620	78.129	21.736	-73.172	-44.933	6.54
600	19.419	61 67.	76 07				
		93.874	79.074	73.679	-79.5.4	-43.237	5.90
64 R	19.481	34.445	79.509	24.615	-70.594	-42.416	5.62
64F	19.481	94.44.	79.509	74.515	-71.494	-42.416	5.62
7 1	19.504	0 (79.980	15.628	-71.700	-41.499	5.33
1690	17.543	96.171	FO.849	27.580	-72.131	-39.710	4.82
0 0	14.576	17.221	F).483	29.536	-72.616	-37.894	4 4 3 5
.00.	19.605	98.333	P2.486	11.495	-73.147	-36.052	3.93
2386	19.626	94.077	63.166	13.222	-73.661	-34.408	3.60
ABO	14.626	99.0.7	63.166	43.222	-74.011	-34.408	3.60
1100	19.629	99.191	63.259	12.457	-74.084	-34.178	3.55
			8++617				
114H	19.639	47.632		34.400	-74.354	-33.740	3.38
2146	19.63.	99.637	P3.617	34.400	-19.294	-33.240	3.38
7711	19.650	100.104	84.004	35.421	-19.472	-32.120	3.19
7 3 ()	14.664	110.47h	84.723	17.387	-79.820	-29.960	2 . 84
74 "	19.6H	101.816	418	79.355	-80.174	-27.787	2.53
75 (19.700	195.414	66.390	41.324	-80.537	-25.598	2 • 2 3
1600	19.713	.03.1-2	66.74.	43.295	-50.904	-23.392	1.96
77.0	14.7:4	104.137	A7.37.	45.266	-A' 'A1	-21.171	1.71
28.0	14.734	104.654	47.783	47.239	-81.	-18.936	1 . 4 7
951	19.744	165.547	Fr. 577	49.213	-82	-16.692	1.25
7966 · H.	19.749	125.997	68.904	50.536	82.313	-15.179	1.18
7966 • HZ	14.74	105.997	P8.964	50.536	-162.532	-15.179	1.18
3000	19.752	106.216	84.154	51.188	-167.592	-13.536	0.98
			36. 31.		143 304	. 0	
3107	19.76	1.6.864	99.714	7-164	-162.794	-8.553	0.60
32.30	19.766	107.491	-0.760	55.140	-163.015	- 7 - 584	1.24
3300	1 4.77 *	OB.100	40.772	57.117	-163-251	1.406	-0.09
1400	19.779	106.000	≠1 ± 30 9	59.094	-163.507	6.399	-0.41
150C	14.784	134.264	9814	61.073	-163.776	11.403	-0.71
360€	19.789	109.621	92.307	63.251	-164,5	16.409	-0.99
1700	15.793	110.367	42.7m7	65.030	-164.367	21.430	-1.26
3800	1 + . 797	110.871	41.257	67.010	-164.685	26.452	-1.52
3900	19.801	111.40	21.716	68.995	-165.022	31.496	-1.76
400C	19.804	111.507	94.164	70.970	182.375	36.532	-1.99
	10 000	112 300	94.603	72.951	-165.745	41.586	-2.2
410C	19.808	117.746	94.011	74.931	-166.134	46.649	-2.4
4200	19.811	112.673		76.913	-100.539		
4300	14.814	113.339	45.453			51.720	-2.6
4400	19.816	113.795	45.864	78.894 80.876	-166.968 -167.412	56.808 61.893	-2.8. -3.0:
4500	14.814	114.240	46.268	00.010	10.0415	J. (U)	,,,,
4600	19.821	114.676	16.663	82.858	-167.880	67.004	-3.1
4700	19.823	115.102	97.31	84.840	-168.372	72.112	-3.3
4800	19.825	115.520	97.431	86.823	-168.886	77.742	-3.5
	19.827	115.928	97.845	88.805	-169.42A	82.369	- 3 . 6
4900 5000	19.829	116.3.9	98.171	90.788	-169.996	87.520	-3.8
		114 731	0 . 611	92.771	-170.596	92.677	-3.9
5100	19.811	116.722	98.51) 98.885	94.754	~171.279	97.843	-4.1
5200	19.832		49.232	96.717	-171.899	103-027	-4.2
5300	19.834	117.484		98.7.1	-172.609	108.221	-4.3
5400 5500	14.835 19.836	117.855		100.704	-173.362	113.443	-4.5
. ,					. 12, 1.7	118 44-	
5600	19.838	110.577		102.688	-174.167 -175.027	118.664	-4.6 -4.7
5700	19.839	114.928			-175.953	129.166	-4.8
5800	19.840	119.273		106.656	-176.912	134.449	-4.9
5900	19.841	119.612	101.198	108.640			
		119.945		110.624	-178.035	139.740	-5.0

CHROMIUM TRIOXIDE (CrO₃) (IDEAL MOLECULAR GAS) gfw = 100.01

$$\Delta H_{f0}^{o} = -67.426 \text{ kcal gfw}^{-1}$$

Point Group = D_{3h}
 $\Delta H_{f298.15}^{o} = -68.400 \text{ kcal gfw}^{-1}$

S^o_{298.15} = 64.500 cal deg K⁻¹gfw⁻¹

 $H_{298.15}^{0} - H_{0}^{0} = 3.108 \text{ kcal gfw}^{-1}$

Vibrational Levels and Multiplicities

ω , cm⁻¹	ω , cm ⁻¹
840 (1)	1023 (2)
3 97 (1)	374 (2)

Bond lengths and angles:

Cr-O distance =
$$1.627 \text{ Å}$$

O-Cr-O angle = 120°

Product of moments of inertia:

$$I_A I_B I_C = 2.34688 \times 10^{-114} g^3 cm^6$$
 $\sigma = 6$

Heat of Formation

Based on the mass-spectrometric data of Grimley et al

Heat Capacity and Entropy

Calculated from estimated spectroscopic constants.

Reference

 Grimley, R. T., R. P. Burns, and M. G. Inghram, J. Chem. Phys. 34, 664 (1961). Reference State for Calculating \Hi, \Fi, and Log Kp. Solid Hi from 0° to 2495°K, Liquid Hi from 2495° to 4985°K, Caseous Hi from 4985° to 6000°K

, °K	('p	K grw		,	CAI, grw	9	
, •	' Þ	γ ¹ ¬(E ¹	- H ₂₇₈ 1/T	н н. 2014	AH	111	1 og Kp
0	0.000	0.000					
298.15	6.390	0.000	INFINITE	-1.435			
300	6.400	10.710	10.710	0.000 0.012			
•00	6.850	10.750	10.710				
500	7.162	12.654	10.964 11.460	0.676 1.378			
600 700	7.332	15.536	1:.030	2.103			
700 800	7.502 7.672	16.678 17.692	12.613	2.845 3.603			
900	7.842	18.60	13.740	4.379			
000	8.011	19.440	14.269	5.172			
100	8.181	20.212	14.774	5.981			
200	8.350	20.931	15.258	6.807			
300	8.519	21.607	15.721	7.652			
. 00	8.689	27.744	16.164	8.512			
500	8.859	22.850	16.590	9.389			
600	4.028	23.427	16.999	10.284			
700	9.198	23.979	17.394	11.175			
800	7.368	24.510	17.774	12.123			
90	9.537	25.021	18.142	13.069			
000	9.107	25.514	18.459	14.031			
031	9.764	25.673_	18.614_	14.352			
C 3 3	9.164	26.485	18.614	16.002			
100	9.877	26.803	18.870	16.660			
200	10.046	27.267	19.241	17.656			
300	10.216	27.717	19.610	18.669 19.699			
403	10.386	28.155 28.562	19.947	20.694			
495 495	8.000	30.662	20.268	25.933			
4 9 7 4 10 11	8.000	30.678	20.289	25.973			
	8.000	30.991	20.694	26.773			
16 10 17: C	8.000	31.293	21.081	27.573			
800	8.000	31.584	21.451	28.373			
900	8.000	31.864	21.805	29.173			
เด็ดดัง	8.000	32.136	22.145	29.973			
3100	8.100	32.348	22.472	30.773			
200	я.000	32.652	22.785	31.573			
300	6.000	32.899	23.089	32.373			
400	8.000	33.137	23.381	33.173			
3500	8.000	31.264	23.663	33.973			
3600	6.000	33.595	23.936	34.773			
3700	A.000	33.814	24.200	35.573			
3800	6.000	34.021	24.456	36.373			
3900	8.000	34.235	24.704	37.173			
60 00	8.000	34.438	24.944	37.973			
4100	8.000	34.633	25.178				
4200	8.000	34.878	25.406				
4300	9.00C	35.016	25.627				
4400	8.000	35.200	25.843				
4500	A - 000	35.380	26.053	41.47()			
4600	8.000	35.556	26.25	42.773			
4700	0.000	35.728	76.457				
4800	8.000	35.896	26.652				
4900	8.00C	36.061	26.942 27.001				
4985.40	8.000	36.200 62.936	27.301				
4984.40 500C	8.885 8.898	62.962	27.100				
1000				180-176			
5100	8.988 0.474	63.139 63.315	27.811 28.49				
5200	9.07A	63.488	29.150	181.992	•		
5300	9.252	63.661	24.78	8 182.91			
5400 5500	9.337	63.831	10.40	5 183.84	?		
	9.419	64.000	31.00	4 184.780			
5600 5700	9.500	64.167	31.58	4 195 - 72	5		
5700 5800	9.578	64.333	32.14				
5000	9.651	64.448	32.69				
6000	9.775	64.661	33.22	6 144.61	v		

0[°]K to 2495⁰K 2495⁰K to 4⁹85 40⁰K 4985 40⁰K to 6000⁰K

(rystal Liquid Ideal Monatomic Gas

AH10 = 0 ΔH₍₂₉₈₋₁₅ - 0 $S_{298-15}^{0} = 10^{-710} \text{ cal deg } \text{K}^{-1} \text{ gfw}^{-1}$ AH 298 15 - 144 924 Kcal gfw-1 T, = 2031°K ΔH, - 1 650 ± 0 200 Kcal gfw-1 ΔH_m = 5 239 ± 1 000 Kcal gfw⁻¹ Tm = 2495°K T_k = 4985 40°K △H₀ - 133 296 Kcal gfw⁻¹ H298 15-H0 1 435 Kcal gfw-1

Co = 6 3147 + 1 69646 x 10 - 31 cal deg K-1 g/w-1 was used from 500° to 2495° K

Structure

H C P up to 2013 K, B C C from 2013 to 2415 K

Heat of Formation

Zero by definition

Heat Capacity and Entropy

Low-temperature data of Burk et al was joined onto Fieldhouse and Lang's high temperature data

Melting

See Barriault et al

Heat of Sublimation

An average of two determinations Seevolume 1, this study (section IVA9) for details

References

- Burk D L I Esterman and S A Friedberg Z Physik Chem. Neue Folge 16 183 (1958)
 Fieldhouse, I B and J Lang WADD TR-60-904 (July 1961) and private
- communication

 Barriault, R. J. et al., Thermodynamics of Certain Refractory Compounds
 Pt. I. Vol. 1. ASD TR-61-260 (May 1962)

MAFAIUM (HD)

IRFFERENCE STATE)

66 w = 178.50

I TE	,c ^t	21 - F	1 ч 505, 1	, н <mark>. ц Уан — , н</mark> і	NI,	1 A N
298.15	± 0 • 100	± 0.050	10.050	+0.000		
500	+ 0 - 100	± 0 . 1 G Z	10.061	± 0 • 0 2 0		
500	± 0.500	±0.102	± 0.061	10.020		
1000	10.500	± 0.448	+0.178	10.270		
1500	± 0.500	10.651	+ 0 - 304	+0.520		
1500	+1.000	± 0.651	± 0 . 304	± 0 • 520		
2000	± 1 .000	+0.939	+ 0 - 429	±1.020		
2033	± 1.000	+ 0 - 955	. 0.437	11.053		
2033	± 1.000	± 1.053	10.437	+1.253		•
2495	± 1.000	11.258	10.571	11.715		
2495	± 2.00G	±1.659	+0.571	12.715		
3000	± 2.000	+ 2 . 028	+ 0 - 786	± 3 • 725		
4000	12.000	. 2.603	+1.172	15.725		
4985.40	+ 2.000	13.043	41.500	17.696		

Reference State for Calculating A H₁, AF₁, and Log Kp: Solid Hi from 0° to 2495°K, Liquid Hi from 2495° to 4985°K, Gascous Hi from 4985° to 6000°K

	("		JI-		Kcal/gfw		
T,°K	P	s _T	-(FT - H298)/T	'н _г - н ₂₉₈	ΔH _I	ΔF_i^{A}	Log Kp
0	0.000	0.000	INFINITE	-1-481	144.878	144.878	INFINIT
298.15 300	4.972	44.645	44.645	0.300	144.924	134.806	-98.81
400	4.973	44.675	44.545	0.009	144.921	134.743	-98.15
500	5.010 5.114	46.110 47.237	44.840 45.211	0.508 1.013	144.756	131.37	-71.77
400				1.013	144.559	128.048	-55.96
600 700	5 • 285 5 • 500	48.184 49.015	45.629	1.533	144.354	124.765	-45 444
800	5.734	49.764	46.055 46.472	2.072	144.151	121.515	~37.93
900	5.970	50.453	46.877	2.634	143.955	118.297	~32.31
1000	6.196	51.094	47.267	3.219 3.827	143.764 143.579	115.101	-27.94°
100	6.407	51.695	47.642	4.458	143.401	108.769	-21.60
200	6.596	52.260	48.004	5.108	143.225	105.629	-19.23
1300	6.763	52.795	48.352	5.176	143.048	102.504	-17.23
1400	6.906	53.302	48.688	6.460	142.872	99.390	-15.51
1500	7.026	53.782	49.011	7.157	142.692	96.293	-14.02
1600	7.123	54.239	49.324	7.864	142.504	93.204	-12.73
700	7.201	54.673	44.626	8.581	142.310	90.130	-11.58
1800	7.260	55.087	49.918	9.304	142.105	87.065	-10.57
1900	7.305	55.481	50.200	10.032	141.887	84.014	-9.66
200C	7.338	15.856	50.474	10.764	141.657	80.974	-8.64
2033	7.346	55.976	50.562	11.007	141.579	79.974	-8.59
2033	7.346	55.976	50.562	11.007	139.929	79.974-	8.59
2100	7.361	56.215	50.719	11.499	139.763	77.999	-8.11
2700	7.378	56.558	50.996	12.236	139.504	75.063	-7.45
2300	7.391	56.886	51.245	12.975	139.230	72.141	-6.85
2400 2400	7.401	57.201	51.486	13.714	138.939	69.230	-6.30
2495 2495	7.411	- 57.488	51 - 709	- :4.418-	138.648	66.479-	5 .87
2495 2500	7.411	57.468 57.503	51.709 51.721	14.418	133.409	66.479	-5.82 -5.80
24.00	7 () 3	17.70/	£1.040	16 107	122 2/8	43.441	
2600 2700	7.423 7.436	17.794 58.074	51.949 52.171	15.197 15.940	133.34R 133.291	63.661 60.981	-5.35 -4.93
2800	7.453	58.345	52.386	16.684	133.235	58.306	-4.55
2900	7.474	58.607	52.596	17.430	133.181	55.630	-4.19
1000	7.499	58.861	52.801	18.179	133.130	57.956	-3.85
3100	7.530	59.107	53.000	18.930	133.64.	50.287	-3.54
3200	7.565	59.347	53.195	19.685	133.0 *	47.615	-3.25
3300	7.606	59.580	13.385	c0.444	132.995	44.947	-2.97
3400	7.653	59.80A	43.571	21.207	132.958	42.278	-2.71
3500	7.704	60.030	53.752	21.974	13. • 925	19.611	-2.47
3600	7.761	60.248	51.929	22.748	132.899	16.949	-2.24
370C	7.822	60.462	54.103	23.527	132.878	34.783	-2.02
3800	7.889	60.671	44.273	24.317	132.863	31.619	-1.81
3900	7.959	60.877	54.440	.15.105	132.856	28.954	-1.62
400C	8.033	61.079	54.603	25.904	137.855	50.588	-1.43
4100	6.111	61.279	54.764	26.711	132.862	23.621	-1.25
4230	8.191	61.475	54.921	27.526	132.877	20.461	-1.09
4300	8.275	61.669	55.076	28.350	132.701	18.293	-0.93
4400	8.360	61.860	66.228	2981	132,732	15.630	-0.77
4500	A . 44A	62.049	55.377	30.027	132.973	12.966	-0.63
4 6 00	8.537	62.235	55.524	30.871	133.022	0.296	-0.46
4700	8.627	62.420	55.669	31.729	. 13.080	7.628	~ 0.35
4800	8.717	62.603	55.812	32.596	133.147	4.956	-0.22
4900	8.808	62.783	55.952	11.473	133.224	2.285	-0.10
4985.40	8.885	62.936	46.071_	34.228	133.296	0.000	0.00
4985.40	8.885	67.936		34.228			
5000	898	62.962	56.091	14.358			
5100	8.988	63.139	56.227	35.252			
5200	9.078	63.315	56.362	36.156			
5 300	9.166	63.488	46.494	37.068			
5400	9.252	63.661	56.626	37.989			
5500	9.337	63.811	56.755	18.418			
5600	9.419	64.300		39.856			
5700	9.500	64.167		40.802			
	9.578	64.111		41.756			
5800		64.498	57.258	47.717			
1.300	9.653						
	9.725	64.561	57.380	43.086			

$$\triangle H_{f0}^{o} = 144.878 \text{ Kcal gfw}^{-1}$$

Ground State Configuration ${}^{3}F_{2}$
 S_{298}^{o}
 $H_{298.15}^{o} - H_{0}^{o} = 1.481 \text{ Kcal gfw}^{-1}$

$$\Delta_{\text{H}_{\text{f298. 15}}^{\text{o}}} = 144.924 \text{ Kcal gfw}^{-1}$$

 $S_{\text{298. 15}}^{\text{o}} = 44.645 \text{ cal degK}^{-1} \text{ gfw}^{-1}$

Electronic Levels and Multiplicities

Data from earlier report using levels from Moore were used.

Heat of Formation

Vapor-pressure data from two sources were used and averaged. Volume 1, this report (section IVA9) contains additional details.

Heat Capacity and Entropy

Calculated on monatomic gas program

References

- 1. Barriault, R. J. et al., Thermodynamics of Certain Refractory Compounds, Pt. I, Vol. 1, ASD TR-61-260 (May 1962).
- 2. Moore, C., Atomic Energy Levels, Vol. 3, Nat. Bur. Std. (U.S.), Circ. 467 (1958)

HAFNIUM, MONATOMIC (HI) 11DEAL GAS) GFW = 178.50

SUMMARY OF UNCERTAINTY ESTIMATES

T, % C, S, -(F, -H, 208) T H, H, Y, Lug K									
Τ, "Κ	رد ۾	s _T -(F ₁	- Н ₂₉₈) 'Т	H _T - H ₂₉₈	1 H _f	14.	l∞g K _p		
298.15	±0.000	+0.002	±0.002	±0.000	±3.000				
1000	±0.001	±0.002	±0.003	±0,000					
2000	±0.001	±0.003	±0.003	±0.001					
2033	±0.001	±0.003	±0.003	±0.001					
2033	*0.001	±0.003	40.003	±0.001					
2495	40.001	±0.003	±0.003	±0.001					
2495	±0.001	±0.003	±0.003	±0.001					
3000	*0. 001	±0.003	±0.003	±0.001					
4000	±0.003	+0-003	±0.003	±0.003					
5000	±0.006	±0.004	+0.003	±0.007					
6000	±0.011	±0.006	±0.003	±0.015					

Reference State for Calculating \Hi, \Fi, and Log Kp: Solid Hi Irom 0° to 2495°K,
Liquid Hi from 2495° to 4985°K, Gascous Hi from 4985° to 6000°K;
Gascous N2; Solid HfN from 0° to 3583°K, Liquid HfN from 3583° to 6000°K

- n		Cal/ K	BIV		Kcal/gfw		
T, "K	C _P	٦r	-(FT - H ₂₉₈)/T	HT - H798	ΔH_{ℓ}	VE	Log Kp
c	0.000	0.000	INFINITE	-1.773	-87.542	-87.542	INFINIT
298-15	9.800	10.700	10.700	0.000	-88.240	-81.414	59.67
300	9.826	10.761	10.700	0.018	-88.240	-81.371	59.27
400	10.827	13.741	11.100	1.056	-88.215	-79.085	43.20
500	11.409	16.224	11.883	2-170	-88.154	-76.811	33.57
600	11.82A	18.342	12.788	3.333	-88.073	-74.552	27.15
700	12.168	20.192	13.716	4.533	-87.978	-72.306	22.57
800	12-467	21.837	14.630	5.765	-87.876	-70.072	19.14
900 000	12.743	23.321 24.677	15.515 16.364	7•026 8•313	-87.171 -87.664	-67.853 -61.645	16.47
				0.317		-0.0047	140,41
100 200	13.253 13.497	25•928 27•092	17.177 17.956	9 • 6 2 6 1 0 • 9 6 4	-87.554 -87.442	-63.449	12.60
300	13.736	28.182	18.701	12.325	-87.337	-61.262 -59.084	9.93
400	13.972	29.209	19.415	13.711	-87.216	-56.916	8 . 88
500	14.205	30.180	20.101	15.120	-87.099	-54.756	7.97
600	14.436	31.105	20.760	16.552	-86.98	-52.604	7.18
700	14.666	31.987	21.394	18.007	-86.857	-50.458	6.48
900	14.895	32.831	22.007	19.485	-86 - 731	-48.322	5.86
900	15.123	33.643	22.598	20.986	-86.603	-46.192	5.31
000	1.150	34.424	23.170	22.509	-86.471	-44.067	4.81
1033	15.424	34.676	23.354	23.017	-86.426	-43.367	4.66
013	15-424	34.676	23.354	23-017	-88.076	-43.367	4.66
100	15.576	35.179	23.724	24.056	-87.983	-41.897	4.36
200	15.802	35.909	24.261	25.625	-87.843	-43.005	4.27
100	16.027	36.616	24.183	27.216	-87.699	-37.519	3.56
400	16.253	37.303	25.290	28.830	-87.551	-35.342	3.21
495	16.464	17.938	25.760	30 384	-87.407	-33.276	2.91
2495 2500	16.465 16.477	37.938 37.971	25.760 25.784	30 • 384 30 • 467	-92.646 -92.625	-33.276 -33.156	2.91 2.99
2600 2700	16.707 16.926	38.622 39.256	26.26u 26.735	32.126 33.807	-92.204 -+1.762	-30.789 -28.435	2.58
800	17.151	39.876	27.193	35.511	-91.298	-26.097	2.03
2900	17.375	40.481	27.641	37.237	-90.814	-23.777	1.79
3000	17.599	41.074	26.079	39.986	-90.307	-21.475	1.56
3100	17.822	41.655	28.508	40.157	-89.778	-19.189	1.35
1200	16.046	42.224	18.727	42.550	-89.229	-16.918	1.15
3300	18.270	42.783	29.339	44.366	-88.657	-14.668	0.97
1401	18.493	43.332	29.742	46.204	-88.064	-12.434	0.79
3500	16.717	43.671	30.138	48.06	-87.449	-10.218	0.63
1561	18.403	44. 117	13.402	49.626_	-86.922_	-8.396_	0.51
1587	16.000	- 44.446	30.462	64.620	-71.922	-8.396	0.51
360C	16.000	48.674	30.541	64.898	-71.862	-8.093	0.49
3700	16.000	49.012	31.040	66.498	-71.509	-6.326 -4.570	0.26
3800	16.000	44.634	31.519 31.984	68.098 69.678	-71-156 -70-804	-2.822	0.15
3900 4000	16.000 16.000	10.760	12.435	71.298	-10.453	-1.084	0.0
					70 10:	2 44.	. 0. 0.
4100	16.000	· ` . 65°	3,2.875 33.303	7498 74.494	-70.101 -49.710	2.369	-0.0
4200	16.00C	51.417	3 4 . 720	75.098	-65.400	4.079	-0.20
4300 4400	16.000	11.785	14.126	77.648	-69.050	5.788	-0.20
4500	16.000	52.144	14.523	19.298	-68.701	.482	-0.3
		52.446	34.910	898	-68.352	9.167	-0.4
4600	16.000	_	35.287	d2.498	-68.003	10.855	-0.5
4700	16.000	52.840 53.177	35.657	84.038	-67.655	12.526	-0.5
4801	16.000	51.507	16.018	85.678	-67.107	14.192	-0.6
4900	16.000	53.763	34.117	87.364	-67.010	15.613	-0.6
4985.4 4985.4	16.000	53.763	36.319	87.064	-200.306	15.613	-0.6
5000	15.000	53.830	36.371	8798	-200.268	16.240	-0.7
* * * * *	14 330	54.147	16.716	80.898	-200.015	20.571	-0.8
5100 5200	16.000 16.000	54.458	37.054	90.478	-199.772	24.896	-1.0
5300	16.000	54.762	37.385	97.098	-199.518	29.213	-1.2
5400	16.000	45.062	37.710	93.698	-109.313	33.527	-1.3
5500	16.000	55.35.5	18.528	95.298	-199.096	37.834	-1.5
5600	16.000	55.641	34.440	96.898	-198.884	42.145	-1.6
570C	16.000	55.927	48.600	98.498	-138.690	46.445	-1.7
5600	16.000	46.204	14.747	100.09B	-198.499	50.740	-1.9
5901	16.000	16.476	14.241	101.698	-199.316	55.047	-2.0
. 701	10.000	6.747	Com (31	101-538	-1 +8 . 1 4 1	59.131	-2.1

HAFNIUM NITRIDE (HfN)

(CONDENSED PHASE)

gfw = 192.508

 $\Delta H_{f,298,15} = -88.24 \text{ kcal gfw}^{-1}$

S_{298, 15} - 10, 7 cal degK⁻¹gtw⁻¹

 $T_{m} = 3583^{\circ}K$

 $\Delta H_{m} = 15.0 \text{ kcal gfw}^{-1}$

 $H_{298.15}^{0}$ - H_{0}^{0} = 1.773 kcal gfw⁻¹

$$C_p^0 = 10.936 + 2.2268 \times 10^{-3} \text{ T} - 1.5998 \times 10^5 \text{ T}^{-2} \text{cal deg K}^{-1} \text{ gfw}^{-1} - 298.15^0 \text{ K} \le T \le 3583^0 \text{ K}$$

 $C_{\rm p}^{\rm o} = 16.0 \, {\rm cal \, deg K^{-1} \, gfw^{-1}}$

 $3583^{\circ}K < T < 6000^{\circ}K$

Structure

HfN has an fcc structure [NaCl (Bl) type] with variable homogeneity range.

Heat of Formation

Combustion-calorimetry data of Humphrey used.

Heat Capacity and Entropy

Low-temperature data estimated. High-temperature data of Neel et al² recalculated in present work and extrapolated to melting point.

Melting and Vaporization

Heat of fusion estimated.

References

- 1. Humphrey, G. L., J. Am. Chem. Soc. 75, 2806 (1953).
- 2. Neel, D. S. et al, WADD TR 60-924 (February 1962).

Reference State for Calculating AH₁°, Al₁°, and Log K_p. Solid Hf from 0° to 2495°K, Liquid Hf from 2495° to 4985°K, Gaseous Hf from 4985° to 6000°K, Gaseous O₂, Gaseous HfO

i 'x	<i>(</i> , ,)	rai K			Kcal/gfw		
	' CÉ	۲۰	-(1 г. н3 ₉₈)/т °	'н ₁ - н ₂₉₈	ΔH_{f}	AFY '	Log Kp
٥	0.000						
298.15	0.000 7.471	0.000 57.736	INFINITE	-2-108	19.360	19.360	INFINITE
300	7.479	57.783	57.736 57.737	0.000 0.014	18.996 18.991	12.281 12.239	-9.002 -8.916
400	7.911	59.994	58.035	0.784	18.742	10.024	-5.477
500	8.310	61.803	58.613	1.595	18.486	7.873	-3.441
600	8.671	63.351	59.277	2.444	18.232	5.773	-2.103
700	8.990	64.712	59.958	3.328	17.985	3.715	-1.160
800	9.265	65.931	60.630	4.241	17.741	1.695	-0.463
900	9.495	67.035	61.281	5-179	17.496	-0.296	0.072
000	9.682	68.046	61.908	6.138	17.248	-2.260	0.444
100	9.830	68.476	62.508	7-114	16.996	-4.198	0.834
200	9.943	69.836	63.084	8.103	16.735	-6.113	1.113
300 400	10.025	70.636	63.634	9.102	16.460	-8.006	1.346
500	10.080	71.381	64.161	10-107	16.173	-9.878	1.542
300	10-114	72.078	64.666	11-117	15.871	-11.728	1.709
600	10.130	72.731	65.150	12.130	15.>5.	-13.558	1.852
700	10-131	73.345	65.614	13-143	15-211	-15.366	1.975
1800 1900	10.122	73.924	66.060	14-155	14.851	-17.156	2.083
2000	10.103	74.471	66.488	15-167	14.470	-18.923	2.177
		14.488	66.900	16.176	14-067	-20.668	2 • 258
033	10.070	75.153	67.033	16.508	13.929	-21.241	2.283
033	10.070	75 • 153	67.033	16.508	12.279	-21-241	2.283
100	10.050	75.479	67.297	17.182	11.991	-22.341	2.325
200 200	10.018	75.946	67.680	18-186	11.543	-23.967	2.381
400	9.983 9.948	76.341 76.815	68.049	19-186	11-072	-25.570	2.430
495	9.914	77.200	66.400 68.733	20 • 182 21 • 176	10.577 10.086	-27.155 -28.636	2.473
495	9.914	77.200	68.733	21.126	4.847	-20.636	2.508 2.508
500	9.912	77.220	64.750	21.175	4.832	-28.703	2.509
600	9.876	77.608	64.083	22.165	4.557	-30.039	2.525
700	9.840	77.980	64.406	23-151	4.273	-31.366	2.539
100	9.805	78.318	64.719	24.133	3.984	-32.681	2.551
900	9.771	78.661	70.022	25.112	3.689	-33.986	2.561
1000	9.734	79.012	70.316	26.087	3.388	-35.279	2.570
100	9.707	19.331	10.602	21.059	3.082	30.561	2.577
200	9.676	74.638	70.879	28.029	2.771	37.834	2.584
300	9.647	79.436	71.149	28.995	2.455	-39.097	2.589
1400 1500	9.619 9.593	80.223 80.502	71.412 71.668	29.958 30.919	2 • 1 ÷2	-40.353 -41.598	2.594 2.597
3600	9.567	80.772	71.917	31.677	1.475	-42.832	2.600
700	9.543	81.033	72.160	32.832	1-140	-44.059 -45.275	2.602
800	9.520	81.287 81.534	72.391 72.628	33.785 34.736	0.801 0.457	-40.483	2.604 2.605
1900 1000	9•498 9•477	81.775	72.853	35.685	0.110	-47.682	2.605
	2	0.1 600	73.074	30.631	-0.242	-48.875	2.605
100	9.457 9.437	82.008 82.236	73.289	37.576	-0.597	-50.052	2.604
300	9.414	82.458	73.500	38.519	-0.956	-51.227	2.604
400	4.402	82.674	73.706	39.460	-1-319	-52.390	2.602
500	9.386	82.885	73.908	40.399	-1 85	-53.548	2.601
600	9.370	83.041	74.105	41 - 337	-2.055	-54-146	2.599
700	9.355	83.243	74.299	4 273	-2.430	-55. 37	2.596
800	9.341	83.490	74.488	40 08	-2.808	-56.966 -58.093	2.594 2.591
900	9.327	83.6AZ	74.674 74.829	44.142 44.938	-3.191 -3.522	-59.043	2.588
985.40	9.316	83.843	74.829 74.829	44.938	-136.818	-54.043	2.588
985.40	9.316 9.314	83.843 83.670	74.856	45.074	-136.888	-58.819	2.571
			76 334	46.004	-137.377	-57.249	2.423
100	9 • 302 9 • 290	84.055 84.235	75.034 75.204	46.934	-137.881	-55.671	2.340
300 300	9.279	84.412	75.381	47.863	-138.400	-54.088	2.230
400	9.268	84.585	75.550	46.790	-138.938	-52.469	2-124
500	9.258	84.755	75.716	49.716	139.494	-50.884	1.022
600	9.248	84.922	75.879	50-641	-140.070	-49.265	1.923
700	9.239	85.086	76.034	51.566	-140-667	-47.637	1.826
800	9.230	85.246	76.196	52.489	-141.290	-45.996	1.733
900	9.221	85.404	76.351	53.412	-141.939 -142.018	-44.341 -42.678	1.642
000	9.213	85.554	76.503	54.334	-145.010	-45.00.0	,,-

 $\Delta H_{f0} = 19.360 \text{ kcal gfw}^{-1}$

 $\Delta H_{f298, 15} = 18.996 \text{ kcal gfw}^{-1}$

Ground-State Configuration = 3π

 $S_{298, 15}^{\bullet} = 57.736 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

 $H_{298.15}^{\bullet} - H_{0}^{\bullet} = 2.108 \text{ kcal gfw}^{-1}$

State	g	E	$\omega_{\mathbf{e}}$	ω _e x _e	ω _e y _e	Be	α _e	γ _e × 10 ⁵	D _e × 106
3 ₁₇₂	2	cm ⁻¹ 4003				cm ⁻¹ 0.3792		cm-1	cm-1
3 ₁₇	2	2084	895			0.3792			
³ π ₀	2	0	895			0.3792			

Heat of Formation

A preliminary value based on the work of Ackermann and Thorn has been used.

Heat Capacity and Entropy

Have been calculated using above spectroscopic constants. 2, 3

References

- 1. Ackermann, R. J. and R. J. Thorn, In: Progress in Ceramic Science, J. E. Burke, ed., Pergamon Press, New York (1961).
- 2. Krishnamurty, S. G., Proc. Phys. Soc. (London) 64A, 852 (1951).
- 3. Brewer, L. and M. S. Chandrasekharaiah, UCRL-8713 (June 1960).

Reference State for Calculating AHr. Air. and Logk, Solid Hi from 0° to 2495°K, Liquid Hi from 2495° to 4985°K, Gaseous Hi from 4985° to 6000°K, Solid HiO, from 0° to 3173°K, Liquid HiO, from 3173° to 6000°K

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
0,000	, .	· ·				Kenl gin		
14-400	• •	' P	`1	η I - Н ⁵⁹⁸ 1 Т,	, н ^д - ң ^{лов}	Alty	14 '	Log Kp
14-400				INFINITE	-2.345	-264.695	-264.895	INFINITE
1000						-266.060		
17.079								
17.07								
100					31231	2031030		1001303
800							-238.968	87.040
1000								
1000								
1100								
1200								
1900								
1400 20.109 41.566 271.199 10.177 -263.210 -264.781 31.566 1900 20.314 44.961 28.148 22.217 -262.793 -200.616 29.228 1600 20.314 44.961 28.148 22.217 -262.793 -200.616 29.228 1700 20.864 45.535 30.045 26.334 -262.386 -192.343 26.726 1800 21.032 46.341 30.939 28.4426 -262.111 184.232 22.853 1900 21.032 46.341 30.939 28.4426 -262.111 184.232 22.853 1900 21.238 47.874 31.800 30.540 -261.837 -184.1134 21.179 1973 21.402 30.400 44.46 37.410 34.598 -291.136 -181.110 20.005 1973 7.600 44.46 37.410 34.598 -291.136 -181.110 20.005 1973 7.600 50.725 32.939 36.138 -258.700 -174.785 19.219 19.279 19.200 26.000 50.725 32.939 36.138 -258.700 -174.785 19.219 19.29 19.00 8 39.200 26.000 50.725 32.939 36.138 -258.700 -174.785 19.219 19.29 19.00 8 39.200 30.00 8 39.200 26.000 57.777 34.688 40.590 -279.181 -172.133 17.099 19.240 26.000 57.777 34.688 40.590 -279.181 -172.133 17.099 19.240 26.000 57.00 57.00 35.998 35.194 43.100 -228.510 -104.193 17.999 19.245 2455 26.000 57.00 57.00 35.998 45.700 -277.602 -104.281 17.999 19.245 26.000 57.00 57.00 35.998 45.700 -277.602 -104.281 17.999 19.245 26.00 57.00 57.00 35.998 45.700 -277.602 -104.281 17.999 19.245 26.00 57.00 57.00 35.998 45.700 -277.602 -104.281 17.999 19.245 26.00 57.00 57.00 35.998 45.700 -277.602 -104.281 17.999 19.245 27.000 57.00 57.00 35.998 45.700 -277.602 -104.281 17.999 19.245 27.000 57.00 57.00 37.998 45.700 -277.602 -104.281 17.999 17.998 17.99								
1500 20.341								
1600	1500							
1700								
1800								
1900								
1973								
1973	1971	21.422						
2033				32.410	34.598	-259.136	-181-150	20.065
2033	2000	16.000	20.548	32.649	35 - 300	-258.939	-180.084	19-678
2033	2033	26.000	50.725	32.939	36.15A	-258.700	-174-744	19.110
2100								
2300	2100	26.000	51.568	33.520				
2400								
2495								
2495								
2500								
2700								
2700								
2800								
2900								
1000 26.000 60.841 40.408 61.300 -228.176 -140.372 10.226								
1173								
1173					(2.002		2	0. (30
3171								
3700					90.198	-231.721		
3400	3200	26.000						
3500 26.000 72.728 44.357 99.300 -229.004 -173.642 7.720 3600 26.000 73.461 45.155 101.900 -228.182 -120.642 7.324 3700 26.000 74.866 46.682 107.100 -276.548 -114.710 6.597 3900 26.000 75.562 47.414 109.700 -225.737 111.760 6.264 4000 26.000 76.700 48.125 112.300 -224.929 -108.668 5.948 4100 26.000 76.700 48.125 112.300 -224.929 -108.668 5.948 4100 26.000 77.469 49.492 117.500 -223.25 -103.100 5.365 4300 26.000 77.469 49.492 117.500 -223.25 -103.100 5.365 4300 26.000 78.080 50.150 120.100 -222.228 -103.246 5.095 4400 26.000 78.080 50.150 120.100 -222.228 -103.246 5.095 4500 26.000 79.262 51.418 12° 300 -220.947 -94.°55 4.594 4500 26.000 80.393 52.627 130.500 -219.384 -69.011 4.139 4.800 26.000 80.393 52.627 130.500 -219.384 -69.011 4.139 4.800 26.000 80.393 52.627 130.500 -219.384 -69.011 4.139 4.800 26.000 80.4940 53.211 133.100 -218.611 -66.242 3.927 4.985 4.900 26.000 81.477 53.783 135.700 -217.844 -83.496 3.724 4.985 4.900 26.000 81.477 53.783 135.700 -217.844 -83.496 3.724 4.985 4.900 26.000 81.475 53.483 135.700 -217.844 -83.496 3.724 4.985 4.000 81.426 54.261 137.921 -217.195 -81.156 3.558 4.985 4.000 82.000 81.477 53.483 135.700 -217.844 -83.496 3.724 4.985 4.000 82.000 81.426 54.261 137.921 -217.195 -81.156 3.558 4.985 4.900 3.500								
3600								
3700	,,,,,,	20.000	,,,,,,,,	44.771		,		
3800 26.000 74.866 46.682 107.100 -226.548 -114.710 6.597 3900 26.000 75.542 47.414 109.700 -225.737 111.780 6.264 4000 26.000 76.700 48.125 112.300 -224.929 -108.668 7.948 4100 26.000 76.842 48.818 114.900 -224.125 -103.100 5.649 4700 26.000 77.464 49.492 117.500 -223.25 -103.100 5.365 4300 26.000 78.080 50.150 120.100 -223.25 -103.100 5.365 4400 26.000 78.080 50.150 120.100 -223.25 -103.100 5.95 4500 26.000 78.080 50.792 127.700 -211.736 -97.12 48.83 4500 26.000 79.834 52.031 127.900 -220.163 -91.798 4.594 4600 26.000 80.393 52.621 130.500	3600	26.000	73.461	45.152	101-900			
3900	3700							
4000								
4100								
4700	4500	20.000						
4700 26.000 77.464 49.492 117.500 -223.25 -103.100 5.365 4300 26.000 78.080 50.150 120.100 -222.228 -103.246 5.095 4500 26.000 74.678 50.772 127.700 -221.796 -97.12 4.898 4500 26.000 77.202 51.418 12.300 -220.947 -94.125 4.594 4600 26.000 80.339 52.627 130.500 -219.388 -89.011 4.139 4800 26.000 80.940 59.211 133.100 -218.611 -80.496 3.724 4985.40 26.000 81.477 53.783 135.700 -217.884 -89.496 3.724 4985.40 26.000 81.426 54.261 137.921 -217.195 -81.156 3.558 4985.40 26.000 81.926 54.261 137.921 -217.195 -81.156 3.558 5000 26.000 81.926 54.261 137.921 -217.195 -81.156 3.558 5100 26.000 81.92	4100	26.000						
4400								
4500 26.000 79.62 51.418 12.300 -220.947 -94.75 4.594 4600 26.000 79.834 52.030 127.900 -220.103 -94.798 4.361 4700 26.000 80.933 52.627 130.500 -219.384 -89.011 4.139 4800 26.000 80.940 53.211 133.100 -218.611 -86.242 3.927 4900 76.000 81.477 53.783 135.700 -217.1844 -83.496 3.724 4985.40 26.000 81.926 54.261 137.921 -217.195 -81.156 3.558 4985.40 26.000 81.926 54.261 137.921 -350.491 -81.156 3.558 5100 26.000 82.002 54.342 138.300 -350.394 -80.370 3.513 5100 26.000 82.002 54.342 138.300 -350.394 -80.370 3.513 5200 26.000 83.517 54.889 140.900 -349.738 -74.973 3.213 5200 26.000 83.517 55.951 146.100 -348.487 -64.225 2.6488 5300 76.000 84.033 56.466 148.700 -347.496 -58.862 2.382 5500 26.000 84.480 56.971 151.300 -347.330 -53.513 2.126 5600 76.000 84.480 56.971 151.300 -347.330 -53.513 2.126 5600 76.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.093 -42.837 1.642 5800 26.000 85.409 57.952 156.500 -346.097 -20.882 5800 26.000 85.409 57.952 156.500 -346.097 -20.882								
4600								
4700	- 700	2						
4800		26.000						
4900	4700							
4900								
\$4983.40								
\$100								
\$100								3.513
5100							-74-474	4.214
5200								
5300								
5500 26.000 84.480 56.971 151.400 -347.330 -53.513 2.126 5600 76.000 84.948 57.466 153.900 -346.795 -48.170 1.880 5700 26.000 85.409 57.952 156.500 -346.293 -42.837 1.642 5800 26.000 85.861 48.430 159.100 -345.831 -37.517 1.414 5900 76.000 86.305 48.898 161.700 -345.413 -47.190 1.192 6000 76.000 86.742 59.359 164.300 -345.047 -26.882 0.979						- 347.896	->8.862	2.362
5600					151 - 100	- 347. 300	-53.513	2 • 1 2 6
5600 76.000 84.448 71.450 73.45.293 -42.837 1.642 75.000 76.000 85.409 57.952 156.500 -346.293 -42.837 1.642 75.000 76.000 85.661 48.430 159.100 -345.813 -37.517 1.414 75.000 76.000 86.305 58.898 161.700 -345.413 -32.190 1.192 75.000 76.000 86.305 58.898 161.700 -345.413 -32.190 1.192 75.000 76.000 86.305 58.898 161.700 -345.047 -26.882 0.979			0	41.444	154.900	-346.795	-48.170	1.687
5700 26.000 85.801 58.430 159.100 -345.831 -37.517 1.414 5800 26.000 85.861 58.430 159.100 -345.413 -37.517 1.414 5900 76.000 86.305 58.898 161.700 -345.413 -37.190 1.192 6007 6.000 86.747 59.359 164.300 -345.047 -26.882 0.979								
78-00						-345.831	-37.517	
6007 6.000 46.74/ 54.359 164.300 -365.047 -26.602 0.979				58.898	161.700			
16 June 196 ' HLS				44.359	164. 100	- 147.047	-40.004	0.719

HAFNIUM DIOXIDE (H(O2)	(CONDENSED PHASE)	gfw = 210.50
$\Delta H_{f298.15}^{\bullet} = -266.060 \text{ kcal gfw}^{-1}$	s [°] 298. 1	5 · 14, 188 cal deg K ⁻¹ gfw ⁻¹
T _t = 1973 °K	$\Delta H_t =$	2.5 kcal gfw ⁻¹
T _m = 3173 °K	ΔH _m =	25.0 kcal gfw ⁻¹
$H_{298.15}^{\bullet} - H_{0}^{\bullet} = 2.345 \text{ kcal gfw}^{-1}$		
$C_{\mathbf{p}}^{\bullet} = 17.2346 + 2.1628 \times 10^{-3} \text{T} - 0$	30930 x 10 ⁶ T-2 298,15 al degK ⁻¹ gfw ⁻¹	*K ≤ T ≤ 1973 *K
$C_{p}^{\bullet} = 26.0 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$		X ≤ T ≤ 3173°K
$C_{\rm D}^{\bullet} = 26.0 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$	3173 °K	X ≤ T ≤ 6000 °K

Structure

Monoclinic from low temperature to 1973 K; tetragonal above 1973 K.

Heat of Formation

Heat-of-combustion determination is by Humphrey. 1

Heat Capacity and Entropy

Low-temperature data are from Todd. High-temperature data of Orr have been joined to Todd data to 1973 K. Above 1973 K, data from Pears et al have been used. Data above melting point have been estimated.

Melting and Vaporization

Transition and melting temperatures are from Curtis et al. 5 Heats of transition have been derived to be consistent with Orr 3 and Pears et al. 4 Heat of fusion is estimated.

References

- 1. Humphrey, G. L., J. Am. Chem. Soc. 75, 2806 (1953).

- Todd, S. S., J. Am. Chem. Soc. <u>75</u>,3035 (1953).
 Orr, R. L., J. Am. Chem. Soc. <u>75</u>,1231 (1953).
 Pears, C. D. et al. ASD TDR 62-765 (January 1963).
 Curtis, C. E., L. M. Doney, and J. R. Johnson, J. Am. Ceram. Soc. 37, 458 (1954).

HAFNIUM DIGXIDE (HIO2)

(CONDENSED PHASE)

GF# = 210.50

SUMMARY OF UNCERTAINTY ESTIMATES

°K	(°	cal/"1⊀ g "%"	-(F) - H)00)/I	HY - HOOR	-Kcal'gfw - ΛΗγ	AF7	i aa K
•	_b	ד	-(1 t - 4298). 1	''T - ''298	*****	,	Log Kp
298-15	± 0.250	± 0.100	± 0.100	± 0.000	± 4.000		
500	± 0.250	± 0.229	± 0.128	± 0.050			
500	± 0.500	± 0.229	± 0.128	* 0.050			
1000	± 0.500	± 0.576	± 0.275	± 0.300			
1000	± 1.000	± 0.576	± 0.275	± 0.300			
1973	± 1.000	± 1.255	± 0.610	* 1.273			
1973	± 3.000	* 1.762	± 0.610	± 2.273			
2000	* 3.000	* 1.803	± 0.626	± 2.354			
3000	* 3.000	* 3.019	± 1.235	* 5.354			
3173	± 3.000	± 3.188	± 1.337	4 5.873			
3173	± 3.000	# 4.763	± 1.337	± 10.873		•	
4000	± 3.000	# 5.45B	± 2.120	± 13.354			
3000	± 3.000	# 6.128	± 2.857	# 16.354			
6000	± 3.000	± 6.675	± 3.449	± 19.354			

Reference State for Calculating Mg, Mg, and Log Kp. Solid Hf from 0° to 2495°K, Liquid Hf from 2495° to 4985°K, Gaseous Hf from 4985° to 6000°K, Gaseous O2, Gaseous HfO2.

, "K	((al/ K		·	Kcal'gfw		
. •	'(_p	Τ,	-(t ₁ - H ₂₉₈)/t'	'н ₁ - н _{29й}	NH _f	111,	t og K _p
0	0.000	0.000	INFINITE	-2.767	-40 263	(0.011	
298-15	11.525	60.475	60.475	0.000	-69.257 -70.000	-69.257 -70.226	INFINITE 51.475
300 400	11.545	60.547	60.475	0.021	-70.004	-70.227	51.158
500	12.478 13.125	64.003 66.861	60.940	1.225	-70.174	-70.277	38 • 396
		000001	61.847	2.507	-70.325	-70.286	30.721
600	13.566	69.296	67.891	3.843	-70.470	-70.266	25.593
700 800	13.870	71.411	63.960	5.216	-70-616	-70.222	21.923
900	14.085 14.241	73.278	65.010	6.614	-70.774	-70.153	19.164
000	14.350	74.947 76.454	66.023 66.992	8.031	-70.947	-70.065	17.013
			30.772	9.461	-71 - 138	-69.956	15.288
100	14.447	77.826	67.916	10.902	-71.345	-69.829	13.873
1200 1300	14.516	79.047	68.795	12.350	-71.571	-69.681	12.690
400	14.571 14.615	80.251	69.632	13.804	-71.819	-69.514	11.686
500	14.651	81.332 82.342	70.429 71.190	15.264 16.727	-72.083 -72.367	-69.327 -69.119	10.822
						0,411,	10.00
1600 1700	14-681	83.288	71.917	18-194	-72.672	-68-894	9.410
ACC	14.706 14.727	84.179	72.613	19.663	-72.997	-68.648	8 - 825
900	14.745	85.020 85.817	73.279 73.918	21.135	-73.342	-68.384	8.303
2000	14.760	86.574	74.537	22 • 608 24 • 084	-73.709 -74.095	-68.098 -67.790	7.833 7.407
				2	0	5	7.40
7031	14.764	66.815	14.729	24.571	-74.227	-67.684	7.276
7033	14.764	86.815	74.729	24.571	-75.877	-67.684	7.276
2100 2200	14.773 14.785	87.294 87.982	75•123 75•692	25.560 27.038	-76.154	-67.613	7.01
2300	14.795	88.639	76.240	27•038 28•517	-76.583 -77.033	-66.986 -66.538	6 • 654
2400	14.803	89.769	76.770	29.997	-77.505	-66.074	6.01
2495	14.811	89.844	77.257	31 - 404	-77.974	-65.611	5.74
2495	14.811	89.844	77.257	31.4.4	-83.213	-65.611	5.74
2500	14.811	89.873	77.282	31 - 478	-83.226	-65.575	5.73
2600	14.818	90.454	77.778	32.959	-83.477	-64.865	5.45
2700	14.824	91.014	78.258	34 - 442	-83.732	-64.146	5.19
7800	14.830	91.551	78.723	35.924	-83.992	-63.414	4.94
5 900	14.835	92.074	79.174	37.408	-84.256	-62.675	4.72
300 0	14.839	92.577	79.613	38.491	-84.575	-61.927	4.51
3100	14.844	93.063	80.039	40.275	-84.794	-61 - 165	4.31
3200	14.847	93.535	80.453	41.860	-85.075	50.400	4 - 12
3300	14.851	93.991	AC.857	43. 145	-85.355	19.625	3.949
1400	14.854	94.435	81.250	44.430	-85.640	-58-841	3.78
3500	14.857	94.864	81.632	46.316	-85.928	-58.044	3.62
1600	14.849	95.284	87.006	47.801	-86-221	-57.245	3.47
3700	14.862	95.691	82.370	49.287	-86.516	-56.436	3.33
3800	14.864	96.088	87.726	50.774	-86.814	-55.617 -54.794	3.19
390C 4000	14.866 14.868	96.474 96.850	43.074 93.413	52.260 53.747	-87.117 -87.422	-53.960	3 • 07: 2 • 94:
,							
4100	14.870	97.717 97.576	83.746 84.071	55.234 56.721	-87.731 -98.044	-53.124 -52.272	2 • 83 2 • 72
4200 4300	14.871	97.926	34.389	58.208	-88.360	-51.415	2.61
4400 4400	14.874	98.267	84.700	59.695	-88.681	-50.548	2.51
4500	14.875	98.602	85.006	61-183	-89.004	-49.682	2.41
		00 030	96 305	67-670	-89.333	-48.873	2.31
4600 4700	14.877	98.9 <u>2</u> 9 99.249	85.305 85.598	62.670 64.158	-89.666	-47.615	2.22
	14.879	99.562	85.886	6 46	-90.005	-47.022	2.14
4800 4900	14.880	99.869	86.168	67.134	-90.150	-46.122	2.05
4985.40	14.881	100.126	86.405	68-405	-90.651	-45.347	1.98
4985.40	14.881	100.126	P6.405	68.405	-223.947	-45.347	1.98
5000	14.881	100.169	80.445	68.627	-224.012	-44.875	1.95
	14 863	100.464	86.717	70.110	-224.468	-41.236	1.76
5100 5200	14.882 14.883	100.753	86.984	71.598	-224.944	-37.635	1.58
5300	14.884	101.036	47.247	73.087	-225.440	-34.034	1.40
5400	14.884	101.315	87.505	74.575	-225.961	-30.413	1.23
5500	14.885	111.588	P7.758	76+063	-226.507	-26.781	1.06
5600	14.886	101.856	86.007	77.552	-227.083	-23.139	0.90
5700	14.886	102.120	88.253	79.041	-227.692	-19.492	0.74
5800	14.887	102.378	A8.494	80.529	-278.342	-15.828	0.59
5900	14.888	102.633	AR. 732	82.018 83.507	-229.035 -229.780	-12.151 -8.458	0.45
6000	14.888	107.883	88.965	0.10 707			J

$$\Delta H_{f0}^{\bullet} = -69.257 \text{ kcal gfw}^{-1}$$

$$\Delta H_{1298.15}^{\bullet} = -70.000 \text{ kcal gfw}^{-1}$$

Point Group D , h

$$S_{298,15}^{\bullet} = 60.475 \text{ cal deg} \text{K}^{-1} \text{ gfw}^{-1}$$

$$H_{298.15}^{\bullet} - H_{0}^{\bullet} = 2.767 \text{ kcal gfw}^{-1}$$

Vibrational Levels and Multiplicities

Bond lengths and angles:

Moments of inertia:

I = 16.085 x
$$10^{-39}$$
 gm cm² $\sigma = 2$
B_o = 0.174 cm⁻¹

Heat of Formation

Based primarily on observations of Shchukarev and Semenov1.

Heat Capacity and Entropy

Estimated structural data was used to calculate properties on polyatomic gas computer program.

Reference

 Shchukarev, S. A., and G. A. Semenov, Izv. V. U. Z. Khim. 1 Khim. Tekh. No. 5,845 (1962).

HAFNIUM DIOXIDE (HfO2) | TIDEAL MOLECULAR GAS) | GFW = 210.50

		cel / 'K	gl=		Kvali'gfw-		
T, °K	/c"	s _T	·11 - H 398) (1)	H _T - H _{29H}	٧н,	4 F 1 '	LogKp
298-15	±1.000	± 3.000	± 3.000	±0.000	±15 000		
1000	±1.000	± 4.210	± 3.508	± 0.702			
2000	£1.000	±4.903	£4.052	± 1 . 702			
3000	±1.000	£5.309	£4.408	± 2 . 702			
4000	±1.000	\$5.596	± 4.671	£ 3.702			
5000	£1.000	£5.820	± 4.879	£4.702			
6000	±1.000	±6.002	* 5.052	± 5 . 702			

RIFERENCE STATE

Reference State for Calculating \IIf, \Ff, and Log Kp: Solid Ir from 0" to 2700°K, Liquid Ir from 2700° to 4712°K, Gaseous Ir from 4712° to 6000°K

	(r/w		Kcal/-4		
T,"K	(P	۱,	-(F 1 - H ^{MM})/1/	H ₁ - H ₂₉₈	AH _f	AF	l.og K _p
o	0.000						
298.15	6.110	0.000		-1.274			
300	6.117	A.497 A.535	8.497	0.000			
400 500	6.393	10.335	8.498 8.740	0.011 0.638			
600		11.784	9.208	1.288			
700	6.774 6.936	13.003	9.741	1.956			
800	7.091	14.996	10.286 10.817	2 • 642			
900	7.243	15.840	11.329	3.343			
1000	7.391	16.611	11.819	4 • 060 4 • 792			
1100	7.538	17.327	12.287	5.539			
1200	7.685	17.485	12.735	6 - 300			
1400	7.830 7.474	18.605	13.162	7.075			
1500	8.118	19.191	13.572 13.966	7.866			
1600	8.262			9.670			
1700	8.406	20.275	14.344	9.489			
1800	8.549	20.78G 21.264	14.708	0.323			
1900	101, 12	21.710	15.058 15.397	11.170 12.032			
2000	8.835	22.180	15.725	12.909			
2100	4.978	27.614	16.043	13.799			
2300	9.121	23.034	16.351	14.704			
2400	9.263	23.444	16.691	15.623			
3500	9.404	23.841 24.228	16.942 17.226	16.557 17.505			
2600	4.691	24.60					
2700	9.633	24.973	17.502 17.772	18.467			
2700	10.000	27.273	17.772	25.652			
2000	10.000 10.000	27.637 27.988	18.118	26.652			
1000	:0.000	28.328	16.453 18.777	27.652 28.652			
3100	10.000	28.655	19 000				
1200	10.100	38.472	19.090	79.652			
3300	10.000	29.280	19.cA8	30.652			
3400	10.100	24.576	14.974	32.652			
45.30	10.000	24.868	20.253	33.652			
3600	10.000	30.150	20.524	34.652			
3700 380:	10.000	30.424	20.788	35.652			
3900	10.000	30.691 40.950	21.046	16.652			
40 0€	16.000	31.204	21.296 21.541	37.652 38.652			
4100	10.000	31.450	21 110				
4200	.0.000	31.642	21.779 22.013	19.652 40.652			
4300	10.000	31.927	22.240	41.652			
4400 4500	10.000	32 - 157	22.464	42.652			
45 NO	10.000	32.381	22.681	43.652			
4600 4700	10.000	32.601	22.844	44.652			
4711.**	10.000	72.816 72.844	23.163	45.052			
4711.55	—17.556 <u>—</u>	-62.914-	-3.130 -	147. 3			
4800	7.567	632	23.863	188.397			
4900	7.479	63.718	:4.665	189.154			
5000	7.592	63.423	25.438	189.911			
1100	7.605	63.572	26.185	190.672			
5200	7.618	63.719	26.935	,91.414			
5 3 a C	7.632	63.86ª	27.622	192.196			
5400 5500	1.646 7.661	64.007		197.966			
			28.925	191.725			
500 5700	7.676 7.692	64.286		194.49;			
SECC	7.708	64.556		96.031			
596c	7.726	64.688		196.953			
NOO	7.744	64.818		197.576			

Ir

0°K to 2700°K 2700°K to 4711 55°K

Crystal Liquid 4711. 55°K to 6000°K Ideal Monatomic Gas

 $\Delta H_{00}^{o} = 0 \text{ kcal gfw}^{-1}$

 $\Delta H_{1298-15}^{0} = 0 \text{ kcal g fw}^{-1}$

 $\Delta H_{8298, 15}^{o}$ = 158 000 kcal gfw⁻¹ = $S_{298, 15}^{o}$ = 8 497 cal deg K⁻¹gfw⁻¹

Tm - 2700°K

△H_m 6.210 kcal giw⁻¹

T_K 4711, 55°K

ΔH₀ - 141, 960 kcal gfw⁻¹

H_{298.15}-H₀ 1 274 kcal giw-1

 $C_{D}^{O} = 5.997 + 1.422 \times 10^{-3} \text{T} + 0.2763 \times 10^{5} \text{T}^{-2} \text{ cal deg K}^{-1} \text{gtw}^{-1}$

298 15^{0} K $\angle 1 \angle 2700^{0}$ K

Co - 10,000 cal deg K-1gfw-1

2700°K < T < 4711, 55°K

Structure

An fcc (A1) type 1

Heat of Formation

Zero by definition

Heat Capacity and Entropy

See volume 1, this study (section IVA10) for details.

Melting

An average of three determinations adopted.

Vaporization

An extrapolation of $\Delta F_{\mathbf{f}}^{0}$ of the ideal gas to zero adopted

Reference

1. Owens, E. A and E. L. Yates, Phil Mag. 15, 472 (1933)

IRIDIUM (Ir)

IREFERENCE STATEL

GFW = 192.2

		cal ' 'K g/w		K	icac gl=		
T,~K	(°	ST - FT	- H ₂₉₈ /T	Н _Г - Н ₂₉₈	111,	111,	Log K
			٧				
298.15	±0.070	±0.040	±0.040	*0.000			
1000	±0.500	±0.390	±0.190	±0.200			
2000	±1.000	±0.900	40.420	±0.950			
2700	£1.500	+1.270	+0.590	*1.810			
2700	±1.500	£1.640	±0.590	#2.810			
3000	±1.130	±1.730	±0.710	* 3.070			
4000	.3.130	£2.340	£1.040	±5.200			
4711.55	±4.560	£2.970	±1.280	±7.940			
4711.55	±0.002	±0.003	±0.003	±0.003			
5000	±0.002	±0.003	±0.003	±0.003			
6000	±0.004	40.004	±0.003	*0.006			

Reference State for Calculating Alfr, AFr, and Log Kp. Solid Ir from 0' to 2700°K, I iquid Ir from 2700 to 4712'K, Gaseous Ir from 4712' to 6000°K

	((M)	g! w		_ Kcal∕ <i>yf</i> w		
T, "K	C _P	51	_ (г_1 н _{29н})/г ⁾	и _т - и ₂₉₈	111 ₁	11,	log Kp
_					•	'	• р
	0.000	0.000	INFINITE	-1.481	14.1 10.		
298-15	4.969	45.742	46.242	0.000	157.793	157.793	INFINIT
300	4.469	46.273	46.242	0.009	158.000	146.746	-107.56
400	4.976	47.703	46.431	0.506	157.998	146.677	-106.849
50(5.007	48.816	46.806	1.005	157.868 157.717	142.921	-78.08
600	4 07-					139.201	~60.84
700	5.075	49.734	47.219	1.509	157.553	135.514	-49.35
800	5-180	50.524	47.636	2.021	151.379	131.855	-41.16
900	5.314	51 4	48.047	2.546	157.203	129.220	-35.020
1000	5.465	51 . 859	48.431	3.085	157.025	124.608	-30.25
	7.527	52.443	44.404	3.639	156.847	121.015	-26.44
1100	5.780	57.966					
1200	5.433	51.495	49.159	4.209	154.670	117.441	-23.332
1300	6.079	51.976	47.500	4.795	156.495	113.882	-20.740
1400	6.215	54.432	49.826 50.139	5 - 396	156.321	110.337	-18.548
1500	5. 140	4.665	50.439	6.010	156.144	106.806	-16.67
		,	71.0413	6.638	155.96A	101.591	-15.049
1600	6.455	55.278	50.727	7.218	166 200	66. 73	
1700	6.560	55.672	51.008	1.929	155.789	99.784	-13.629
1800	6 - 654	56.050	51.278	8.590	155.606	96.290	-12.376
1900	6.739	6.412	51.539	9.259	155.427	12.804	-11.267
2000	6 - 815	56.760	1.791	9.937	155.227 155.078	89.330	-10.275
				7.731	4334U/8	85.868	-9.383
1100	6.HA3	47.094	£2.036	10.622	154.8/3	93 414	
ንስና:	6.944	57.415	52.273	11.314	154.610	82.415	-8.577
3111	6.444	57.725	52.503	12.011	154.388	78.972	-7.845
140C	7.04H	.8.024	62.727	12.713	154.156	75.540	-7.176
9 5 (1)(1)	7. 193	58.313	-2.945	13.420	153.915	72.116 68.703	#6 • 56 T
						000 / (1)	-6.006
e i C	7-143	18.192	* 1.157	14.132	151.065	65.297	-4.489
700	1-170	_ 'A.852_	53.363	14.6 7	.153.405	51.904_	-5.011
7 .	7.170	58.862	53.363	14.847	147.195	61.904	-5.011
180(7 04	* 9.125	64.564	15.966	146.914	58.751	-4.585
306	1.735	49.377	53.760	16.288	146.636	55.610	-4.191
ימרים	7.263	14.625	53.952	17.012	146.360	12.475	-3.823
1100	7.2AV	19.861	54.138	17.740	145.08B	49.351	- 1 - 4 79
1200	7 - 31 3	60.093	54.371	18-470	145.818	46.210	-1.157
137 (7.136	60.316	44.449	19.203	145.511	43.124	-2.856
1400	7.351	60.537	54.014	19. 377	145.284	40.020	-2.572
1501	7.377	60.751	54.44	20.674	145.022	16.912	-2.306
v. 2.0							
1600	7-396	60.454	55.011	21 -4 4	144.761	33.847	-2.055
3700 1000	7.413	61.162	55.175	22 - 153	144.501	30.768	-1.817
880C	7.430	61.360	55.335	.2.895	144.74	21.772	-1.593
190C	7.446	61.55	55.497	23.637	143.487	24.636	-1.380
.000	7.461	61.74.	55.646	.4 . 38 5	143.733	21.585	-1.179
100	7 / 3:						
300	7.475	61.926	55.7±1	25.131	143.479	18.526	-0.98
200	1.489	62.107	44.945	25.881	143.228	15.486	-0.806
300	7.503	6283	56.0.0	26.629	142.977	12.445	-0.632
400 400	7.516	62.456	56.233	27.380	147.728	9.416	- 0 - 468
500	7.574	62 + 625	56. 171	28 - 132	147.480	6.386	-0.310
4.10	7 6. 1	4.3		10.00			_
610 700	7.541	62.190	56.511	28.886	147.234	3.362	-0.160
	7.554	62.953	56.640	29.641	141.949	0.348	-0.016
711.55	7.556	62.971.		_79.728	141.460	0.000	0.000
711.55	7.556	62.971	56.661	29.728			
. ନଦ୍ଦ 	7.567	63-112	56.779	10.397			
900	7.579	63.268	56.910				
000	7.592	61.421	57.039	11. +13			
100	1 . 4.						
100	7.605	63.572	57.165	42.672			
500	7.618	63.719	57.290	33.434			
100	7.632	63.865	57.413	14.196			
400	7.646	64.007	67.633	14.960			
500	7.661	64.148	57.652	15.725			
400	7 4 24	44 794	57.770	14. (603			
600	7.676	64.286		36.492 37.261			
700	7.697	61 .427	57.885	38.031			
800	7.70A	64.556	57.999 58.111	18.852			
900 000	7.126 7.444	64.6A8 64.818	58.222	39.576			

 $\Delta H_{f0}^{o} = 157.793 \text{ kcal gfw}^{-1}$ $\Delta H_{f298.15}^{o} = 158.000 \text{ kcal gfw}^{-1}$ $\Delta H_{f298.15}^{o} = 158.000 \text{ kcal gfw}^{-1}$ $S_{298.15}^{o} = 4.969 \text{ cal deg K}^{-1} \text{gfw}^{-1}$ $H_{298.15}^{o} = 1.481 \text{ kcal gfw}^{-1}$

Electronic Levels and Multiplicities

Energy levels from Moore. 1

Heat of Formation

Third-Law determination of the Panish and Reif data. 2

Heat Capacity and Entropy

Obtained from the monatomic gas-computer program.

References

- 1. Moore, C., Nat. Bur. Stds. (U.S.), Circ. 467, Vol. 3 (1 May 1958).
- 2. Panish, M. B. and L. Reif, J. Chem. Phys. 34, 1915 (1961).

IRIDIUM. MONATOMIC (Ir) IIDEAL GAS) GFW = 192.2

SUMMARY OF UNCERTAINTY ESTIMATES

		cal "K #	1.	,	Keningto		
T, °K	′c _p −	ST	(FT - H298)/T	์ห _ร - ห _{รอย}	NH _f	111	log kp
298+15	± 0.000	* 0.002	± 0.002	± 0.000	±1.000	±1.010	+0.740
1000	± 0.000	± 0.002	± 0.003	± 0. 000	±1.200	±1.190	+0.260
2000	. 0.001	± 0.003	± 0.003	± 0.001	± 1.950	± 1.850	+0.200
2700	± 0.001	± 0.003	± 0.003	± 0.001	± 2.810	\$2.600	+0.210
2700	± 0.001	# 0.003	± 0.003	± 0.001	± 3.810	*2.600	±0.210
3000	± 0.001	± 0.003	± 0.003	± 0.001	±4.070	±3.140	±0.230
4000 2	± 0.001	± 0.003	± 0.003	± 0.002	±6.200	*5.170	± 0.28
4711.55	± 0.002	± 0.003	± 0.003	± 0.003	± 8.940	# 7.050	* 0.33
4711.55	± 0.002	± 0.003	+0.003	* 0.003			
5000	± 0.002	± 0.003	± 0.003	± 0.003			
6000	± 0.004	+ 0.004	± 0.003	± 0.006			

Reference State for Calculating \H; \AF*, and Log K Solid Ir from 0° to 2700 °K, Liquid Ir from 2700° to 4712°K, Gaseous Ir from 4712° to 6000°K, Gaseous O₂, Gaseous IrO.

T 00	0				Kcal/glw			
T, °K	P	5"	-(F1 - H298)/T	H ₀ - H ₀ 298	ΔH	A F	Log Kp	
0	0.000						·	
298.15	0.000 7.623	0.000	INFINITE	-2.124	106.394	106.394	INFINITE	
300	7.631	59.634	59.634	0.000	106.000	98.059		
400	8.011	59.681	59.634	0.014	105.996	98.010	-71.876 -71.397	
500	8.270	61.931 63.749	59.938	0.797	105.798	95.378	-52.110	
600			60.524	1.612	105.597	92.796	-40.559	
700	8.442	65.272	61.192	2.448	105.387	90.256	-17 674	
800	8.558	66.583	61.871	3.299	105.164	87.750	-37.874 -27.396	
900	8.640 8.698	67.731	62.533	4.159	104.974	85.280	-23.296	
1000		68.753	63.168	5.026	104.667	82.840	-20.115	
	8.742	69.671	63.774	5.898	104.392	80.429	-17.577	
1100 1200	8 . 775	70.506	64.348	6.774	104.103	78.046	-15.506	
1300	8 • 801	71.271	64.894	7.653	103.797	75.691	-13.785	
	8.821	71.976	65.412	8.534	103.474	73.362	-12.333	
1400 1500	8.837	72.630	65.904	9.417	103.134	71.059	-11.092	
1,000	8.850	73.241	66.373	10.301	102.779	68.780	-10.021	
1600 1700	8 - 861	73.812	66.821	11.187	102.407	66.524	-9.086	
1800	8.870	74.350	67.248	12.073	102.019	64.292	-8.265	
1900	8.878	74.857	67.657	12.960	101.61	62.084	-7.538	
2000	8 - 884 8 - 890	75.337	68.048	13-849	101.193	59.901	-6.890	
	8.890	75.793	68.424	14.738	100.756	57.740	-6.309	
2100	8 . 8 9 5	76.227	68.785	15.627	100.302	55.601	-5.786	
2200 2300	* A 69	76.641	69.133	16.516	99.831	53.483	-5.313	
2300 2400	8.903	77.036	69.468	17-407	99.344	51.388	-4.883	
2400 2400	8.906	77.415	69.792	18.297	98.840	49.311	-4.490	
2500	8.909	77.779	70.104	19.188	98.320	47.259	-4.131	
2600	8.911	78 - 128	70.406	20.079	97.782	45.226	-3.801	
2700	8.914	78.465	70.698	20.970	97.229	43.216	-3.498	
2700	8.914	78.465	70.698	20.970	91.019	43.216	-3.498	
2800	8.916	78.789	70.981	21.361	90.439	41.457	-3.236	
2900	8.917	79.162	71.256	22.753	89.857	39.716	-2.993	
3000	8.919	79.404	71.523	23.645	89.272	37.997	-2.768	
3100	8.921	79.697	71.782	24.537	88.686	36.298	-2.559	
3200	8.922	79.980	72.033	25.429	88.097	34.619	-2.364	
3300	8.923	80.254	72.218	26 - 321	87.507	32.958	-2.183	
3400 3500	8.924	80.521	72.517	27.214	86.914	31.314	-2.013	
3700	8.925	80.780	72.749	28 - 106	86.319	29.688	-1.854	
3600	8.926	81.031	72.976	28.999	85.724	28.076	-1.704	
3700	8.977	81.276	73.197	29.891	85.125	26.483	-1.564	
3800	8.928	81.514	73.413	30.784	84.526	24.906	-1.432	
1900	8.929	81.746	73.623	31.677	83.924	23.349	-1.308	
•000	8.929	81.972	73.829	32.570	83.32.	21.802	-1.191	
100	8.930	82.192	74.030	33.463	82.716	20.273	-1.081	
·200	0.931	82.407	74.227	34 - 356	82.109	18.758	-0.976	
• 3 00	8 • 931	A2.618	74.420	35.249	81.501	17.257	-0.877	
400 500	8.932 A.932	82.823 83.024	74.609 74.794	36.142 37.035	80.890 80.277	15.769	-0.783	
				51.037	900211	14.294	-0.694	
600 700	8.933	83.220	74.975	37.929	79.663	12.836	-0.610	
711.55	8.933	83.417	75.152	38 - 822	79.046	11.394	-0.530	
711.55	8.933 8.933	81.435 83.435	75.173	38.929	78.974	11.232	-0.521	
800	8.933 8.933	83.435	75.173	38.929	-62.986	11.232	-0.521	
900	8.934	83.784	75.326 75.497	39.715	-63.321	12.628	-0.575	
000	8.934	83.965	75.664	40.609	-63.700 -64.087	1411 15.475	-0.634 -0.691	
100	0 034	96 143						
100 200	8.934 8.935	84.14? 84.315	75.829 75.990	42.395	-64.478	17.408	-0.746	
300	A • 935	84.485	76.149	43.289	-64.876	19.020	-0.799	
400	R.935	84.652	76.305	44 • 182	-65.282	20.641	-0.851	
500	8.936	84.816	76.458	45.076 45.969	-65.696 -66.120	22.262 23.899	-0.901 -0.950	
600	8.936	84.977	76.609					
700	8.736	85.136	76.757	46.863 47.757	-66.556 -67.008	25.536 27.192	-0.997	
800	8.936	85.290	76.903	48 650	-67.477	28.851	-1.043 -1.087	
900	8.937	F .444	77.046	49.544	-67.964	30.521	-1.087	
000	8.937	64.594	77.188	70.437	-68.478	32.194	-1.173	
			15 September				RCF	

$$\Delta H_{f0}^{o} = 106.394 \text{ kcal gfw}^{-1}$$
 $\Delta H_{f298.15}^{o} = 106.000 \text{ kcal gfw}^{-1}$

Ground State Degeneracy= 4

$$S_{298.15}^{\circ} = 59.634 \text{ cal deg K}^{-1} \text{gfw}^{-1}$$

$$H_{298.15}^{o} - H_{0}^{o} = 2.124 \text{ kcal gfw}^{-1}$$

	cm ⁻¹									
State g E ω_e $\omega_e \times_e$ $\omega_e \times_e$ $\omega_e \times_e$ $\omega_e \times_e$	γ _e ×10 ⁵	D _e ×10 ⁶								
X 4 0.0 790 0.335										

Heat of Formation

Data of Schafer and Heitland adopted in compilation.

Heat Capacity and Entropy

Determined from using spectroscopic contants. See volume 1, this study (section IVA10.4) for details.

Reference

Schafer, H. and H. J. Heitland, Z. Anorg. Allgem. Chem. 304, 249 (1960).

Reference State for Calculating VIII, VFT and Log K. Solid Mg from 0° to 923°K, Liquid Mg from 923° to 1377°K, Gaseous Mg from 1377° to 6000°K.

1, "K	1.	cal Kafw T (I)	H ₂₉₈)/T		al∕gfw ∆H _f	AF!	Log Kp
Č.	0.000	0.000	INFINITE	-1.195			
298-15	5.951	7.800	7.600	0.000			
300	5.957	7.836	7.800	0.011			
400 500	6.212 6.490	4.587 11.001	8.037 8.492	0 • (70 1 • 254			
600	6.508	12.212	9.013	1.919			
700	7.137	13.286	9.548	2.616			
800	7.470	14.261	10.017	3.347			
900	7.807	15.160	1093	4.110			
923	7.885	15.358	_10.709_	4 • 291			
923 1000	7.800 7.800	17.662 18.287	10.709 11.268	6.418 7.019			
1100	7.800	19.030	11.940	7.799			
1200	7.800	19.709	12.560	8.579			
1300	7.800	20.333	13.134	9.359			
1376.37	7.800	20.778	_ 13.545_	9.960			
1376.17	4.40#	41.162	11.545	40.700			
1400	4.968	43.186	14.035	40.814			
1500	4.968	44.531	15.990	41.311			
1600	4.468	43.851	17.721	41.808			
1700	4.968	44.153	19.268	42.305			
1800	4.968	44.437	20.659 21.917	42.801 43.298			
7000 1900	4.468	44.960	23.062	43.795			
2100	4.464	4507	24.111	44.292			
1200	4.470	45.434	25.075	44.789			
2300	4.972	45.655	25.965	45.286			
2400	4.974	45.866	26.740	45.783			
2.00	4.978	46.064	27.557	4 .281			
2600	4.983	46.265	28.273	46.779			
2700	4.984	46.453	28.943	47.278			
2800	4.998	46.634	29.571	47.777 48.277			
2900 3000	5.009 5.023	46.810 46.980	30.163 30.720	48.779			
	5.040	47.145	31.248	49.282			
4100 3200	5.060	47.305	31.747	49.787			
1300	5.085	47.461	32.220	50.294			
3400	5.114	47.614	32.672	50.804			
3500	5.146	47.762	33.100	51.317			
1600	5.186	47.908	33.510	51.834			
3700	5.224	48.051	33.901	52.354			
3800	5.278	48.191	34.275 34.614	52.8R0 53.410			
3900 4000	5.332 5.392	48.328 48.464	34.978	53.946			
	5.457	48.548	35.308	54.489	1		
4100 4200	5.528	48.730	35.626	55.038			
4300	5.604	48.861	35.933				
4400	.686	48.991	36.228	56.159			
4400	5.773	49.120	36.513	56.73	?		
4600	5.866	49.248	36.788				
4700	5.964	49.374	37.055	57.90			
4800	6.067	49.502	37.313				
4900	6.176	49.628	37.563 37.806				
5000	6.284	49.754					
5100	6.407	49.879	38.040 38.270				
5200	6.530	50.005	38.493				
5300	6 • 6 5 8 6 • 7 9 0	50.256	38.709				
5400 5500	6.927	50.382	38.920				
5600	7.069	50.508					
5700	7.215	50.635	39.32				
5800	7.366						
5900	7.527						
6000	7.687	71.010					

 0°K to 923°K
 Crystal

 923°K to 1376. 37°K
 Liquid

 1376. 37°K to 6000°K
 Ideal Monatomic Gas

 $\Delta H_{f0}^{o} = 0 \text{ kcal gfw}^{-1}$

 $\Delta H_{6298, 15}^{o} = 0 \text{ kcal gfw}^{-1}$

 $\Delta H_{a298, 15}^{o} = 35.340 \text{ kcal gfw}^{-1}$

 $S_{298, 15}^{o} = 7.800 \text{ cal deg } K^{-1} \text{gfw}^{-1}$

T_ = 923°K

 $\Delta H_m = 2.127 \text{ kcal gfw}^{-1}$

T_b = 1376. 37°K

 $\Delta H_{\rm u} = 30.740 \text{ kcal gfw}^{-1}$

 $H_{298, 15}^{o} - H_{0}^{o} = 1.195 \text{ kcal gfw}^{-1}$

Structure

See Barriault et al for further details.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

See Barriault et al for further details.

Melting

See Barriault et al l for further details.

Vaporization

See Barriault et al for further details.

Reference

 Barriault, R. J. et al., Thermodynamics of Certain Refractory Compounds, Vol. 1, ASD TR 61-260, Pt. I (May 1962).

MAGNESIUM (Mg)

(REFERENCE STATE)

GFW . 24.32

	cel/ oK glu Keal/glu Keal/glu								
Т, *к	′င္စ္စီ	S _T -(F	г - н ₂₉₈)/т	H _T - H ₂₉₈	ΔH	1 F / 1	Log K		
298.15	± 0.030	±0.030	±0.030	±0.000					
923	±0.060	±0.060	±0.020	±0.040					
923	*0.160	±0.090	±0.020	±0.070					
1376.37	± 0.600	±0.210	#0.070	±0.200					
1376.37	±0.000	#0.002							
2000	± 0.000	±0.002	4						
3000	# 0.001	±0.002							
4000	± 0.002	± 0.003							
5000	± 0 . 002	± 0 4 0 0 3							
6000	±0.002	±0.003							

IDEAL MONATOMIC GAS

Reference State for Galculating AH*, AF*, and Log K. Solid Mg from 0* to 923*K,
Liquid Mg from 923* to 1377*K, Gaseous Mg from 1377* to 6000*K.

T,"K	(p	≂ =cel/"K gi Sπ	-(F H ₂₉₈)/T	HT H298	Kcal/gfw A H _f	AI	Log Kp
0	0.000	0.000	INFINITE	-1.481	35.054	35.054	INFINIT
298.15	4.468	35.504	35.504	0.000	35.340	27.080	-19.84
300	4.968	35.535	35.504	0.009	35.338	27.029	-19.69
400	4.968	36.964	15.699	0.506	35.226	24.775	-13.26
500	4.968	38.073	36.067	1.003	35.089	21.553	-9.42
600	4.968	38.978	36.479	1.500	34.921	18.860	-6.86
700	4.968	34.744	36.897	1.996	34.720	16.199	-5.05
800	4.968	40.408	37.291	7.493	34.486	13.569	-3.70
900	4.968	40.993	37.671	2.990	34.220	10.970	-2.66
	4.468	41.118	37.755	3.104	34.153	10.377	-2.45
921	4.468	41.118	37.755	3.104	32.026	10.377	2.45
ono	4.468	41.516	38.029	3.4R7	31.808	8.580	-1.87
1100	4.968	41.990	38.368	3.984	31.525	6.269	-1 -24
200	4.968	42.422	18.688	4.481	31 - 242	3.986	-0.7
1300	4.96F	42.820	38.991	4.977	30.95B	1.726	-0.29
	4.968	41.102	39.210	5.360	30.740	0.000	0.0
376.37	4.968	43.107	49.210	5.360			
1376.37	4.968	41.188	39.278	5.474			
1400 1500	4.468	43.531	39.550	5.971			
	. 04.8	43.061	19.809	6.468			
1600	4.96B	43.851	40.056	6.965			
1700	4 • 9 K B		40.791	7.461			
1 800	4.968	44.437	40.517	7.958			
1900	4.968	44.704	40.732	8.455			
2000	. 1/ 9.	44.410	40017				
2100	4.769	45.207	40.740	8.952			
2500	4.970	45.434	41.139	9.449			
2300	4.172	45.655	41.330	9.946			
2401	4.974	45.856	41.515	10.443			
2500	4.978	44.067	41.693	10.941			
2420	4.983	46.265	41.865	11. 39			
2600	4.9F0	46.453	42.032	11.938			
7700	4.048	46.634	42.193	12.437			
2800	4.744	45.810	42.349	12.937			
1000 1000	5.000 5.021	46.980		13.439			
				12.0/3			
3100	5.040	47.145		13.942			
3200	5.060	47.105		14.954			
3300	5.085	47.461		15.464			
1400	5.114	47.614		15.917			
3500	148	41.762	470171				
3600	5.186	47.908		16.594			
1700	4,229	40.051		17.014			
3000	5.278	48 . 1 º 1		17.540			
1900	4.317	48. 1.1		19.070			
4000	5.392	44.46	4 1 4 1 4 1 3	18.606			
	5.457	48.54	43.928	19.149			
4100		48.73		19.698			
4200	5.578	48.46		70.254			
4300	5 . 65 A	48.94		20.819			
4400	5.686 5.773	44.12	•	21.392			
4 →('')				21.974			
4600	5.866	44.24		27.565			
4700	. 914	49.37		23.167			
4800	6.067	49.50		73.779			
4900	6.176 6.289	44.62 44.75		24.402			
5000	0.564	- , • ·					
5100	6.407	49.87		25.037 25.684			
5200	6.530	50.00		_			
5300	6.658	50.13					
5400	4.790	50.25	6 45.253				
5500	6.921	50.36	45.346				
	7.069	50.50	OR 45.437				
5600	7.71	50.6	35. 45.527				
5700	7.366	50.70	51 45.614				
5800	7.522		gy 45.704	30.589			
5900	7.687			31.349			
6000	/ • O O C						
							RC

$$\Delta H_{f0}^{o} = 30.054 \text{ kcal gfw}^{-1}$$

 $\Delta H_{f0}^{o} = 30.054 \text{ kcal gfw}^{-1}$ $\Delta H_{f298, 15}^{o} = 35.340 \text{ kcal gfw}^{-1}$

Ground State Configuration = ${}^{1}S_{0}$ $S_{298.15}^{0}$ = 35.504 cal deg K⁻¹gfw⁻¹

 $H_{298, 15}^{0}$ - H_{0}^{0} = 1.481 kcal gfw⁻¹

Electronic Levels and Multiplicities

Energy levels from Moore. 1

Heat of Formation

See Barriault et al. 2

Heat Capacity and Entropy

See Barriault et al. 2

References

- 1. Moore, C., NBS Circ. 467, Vol. 1 (15 June 1949).
- 2. Barriault, R. J. et al, Thermodynamics of Certain Refractory Compounds, ASD TR 61-260, Pt. I (May 1962).

MAGNESIUM . MONATOMIC (Mg)

(IDEAL GAS)

GFW = 24.32

		cel/°K	stw				
T, °K	[′] c _p	ST	-(FT - H298)/T	HT - H298	∆H _f	14,1	tog K
				•			
298.15	± 0.000	*0.002	±0.000	±0.000	± 0.250	±0.260	±0.190
923					± .290	±0.270	± 0.060
923					± • 320	+0.270	±0.060
1000	± 0.000	±0.002	±0.002	*0.000			
1376.37					± .450	±0.350	±0.060
2000	± 0.000	±0.002	±0.003	±0.001			
3000	± 0.0 01	±0.002	±0.003	±0.001			
4000	± 0.002	±0.003	±0.003	±0.002			
5000	± 0.002	±0.003	±0.003	±0.004			
6000	± 0.002	±0.003	±0.003	±0-005			

Reference State for Calculating \$\text{H}_{0}^{\circ}\$ \$\text{N}_{0}^{\circ}\$ and Log \$K\$. Solid Mg from 0* to 923*K, Liquid Mg from 923* to 1377*K, Gaseous Mg from 1377* to 4000*K, Gaseous O2. Solid MgO from 0* to 3998*K. Liquid MgO from 1098* to 4000*K.

	(:	cal "K		·	Kcal 'gfw	·\	
1, ^K	' p	21	-(F ₁ н _{79Н})/г ⁾	′н _т н _ж	7H,	11/1	Log Kp
C	0.000	0.000					
298 - 15	8.906	0.00C 6.449	INFINITE	-1.235	-147./03	-142.703	INFINITE
300	8.939	6.495	6.439	0.000	-143.700	-135.988	99.67
400	10.14R	9.252	6.440 6.807	0.01/ 0.978	-143.701	-135.941	99.028
500	10.854	11.599	7.538	2.031	-143.704 -143.650	-133.351 -130.770	72.850 57.15
600	11.323	13.622	6.387	3.141			
700	11.656	15.394	9.263	4.241	-143.583 -143.517	-128.199 -125.646	46 . 694
MUU	11.905	16.967	10.130	5.469	-143.471	-123.090	39 • 22 ! 33 • 62 !
900	12.09#	18.381	10.970	6.670	-143.440	-120.544	29.27
923 923	12-135	18.683	11.154	6.949	-143.436	-119.955	28.402
000	12.115	18.683 19.663	11.154	6.949 '.888	-145.561 -145.541	-119.955	28 • 40 2
				• 0 0 0	-145.54.	-117.824	25.749
200 100	12.375 12.478	20.837	12.547	7.119	-145.513	-115.354	22.858
300	12.565	21.91H 22.921	13.283	10.362	-145.414	-112.2H6	20.449
376.17	1.062.	21.044	13.787	11.614	-145.441	-109.524	18.412
376.37	17.627	23.644	14.575	12.584 12.584	-145.394 -176.134	-107.401	17.045
400	12.638	27.85-	14.659	12.874	-176.058	-107.401 -106.251	17.045
5 30	10.701	24.724	14.301	14.141	-175.77	-101.276	16 • 586 14 • 755
አ ጋህ	12.756	25.550	15.916	15.414	-175.:81	~96.325	
7 00	12.804	26.125	16.506	16.692	-175.046	-96.325 -91.393	13.157
e10	12.945	21.048	17.272	. 7.975	-174.70	-86.481	10.500
୨୯୯ ୧୯୯	2.882	21.154	17.616	19.261	-174.361	-81.590	9.185
. 11 (1)	12.415	28.415	18.139	20.551	-174.018	-76.716	8.383
140	12.345	24.046	14.544	21.844	-173.675	-71.860	7.478
200	12.971	24.644	19.131	23-140	-173.332	-67.020	6.658
ግ ባ (* ሩ (ነ) ር	12.194	30.2.6	14.671	24.418	-172.989	-67.196	· • 910
500	13.116 13.035	10.740 31.11	20.055 20.494	25.739	-172.301	-57.185 -52.589	5.225
				7.04.	-172.50	-22.709	4.597
600 7 €:	13.052 13.068	41.674	20.921	28.346	-171.965	-47.808	4.018
Arin.	13.082	32.316 32.771	21.444 21.794	27.652	-171.627	-43.040	3.484
9110	13.095	44.261	22.124	10.959 12.268	-171.290 -170.955	- 39.284	2.948
rco	13.107	14.6-5	22.40	34. 79	-170-623	-11.539 -28.807	2.527 2.594
^ 4 R	14.118	34.116	22.853	14.863	-170.400	3, 170	
298	14.600	40.04E -	- 22.464	53.363	-151.800	-24.178_ -24.178	1.706
100	14.00	40.047	22.474	53.397	-151.791	-24.094	1.699
200	14.10-	40.561	23.420	54.85.	-151.316	-19.946	1.365
300	14.600	41.010	33.340	26.31.	-150.446	-15.891	1.052
400 500	14.601	41.446	24.4"4	57 12	-150.3H1	-11.802	Ċ.759
		41 64	1446	20.533	-147.921	- 7.737	C - 483
61 C 70 1	14.600	42.263	21.42.	60.5%	-147.467	-1.676	0.223
800	14.60	47.667	25.882 26.329	63.61	-149.017	A. 367	-0.022
900	14.600	4 3 . 4 4 4	26.764	55.072	-148.576	4.41A	-0.253
יחנ	14.600	43.614	27.186	66.532	-147.712	12.426	-0.679

Structure

An fcc (NaCl) type.

Heat of Formation

Based on data of Holley and Huber.

Heat Capacity and Entropy

Several sources available. Analysis by the Nat. Bur. Stds. $(U.S.)^2$ used for low-and high-temperature data. The latter extrapolated to melting point from 1200° K. Liquid C_p estimated. Heat of fusion estimated.

References

- 1. Holley, C. E. and E. J. Huber, J. Am. Chem. Soc. 73, 5577 (1951).
- 2. Nat. Bur. Stds. (U.S.) Rept. 6484 (1959).

MAGNESIUM BXIDE (MgO) (CB

(CONDENSED PHASE)

GFW - 40.32

		Co ST -(F2 - H208)/T HT - H208 AH, AF,								
T, °K	C.	S _T	-(FT - H298)/T	ит – н ₂₉₈	1 H ₁ "	111	Log Kp			
298.15	± 0.050	±0.020	±0.020	±0.000	±0.500	±0.510	0.37			
921					* .610	± 0.580	0.140			
923					± .640	± 0.580	0.14			
1000	± 0.280	±0.160	±0.080	±0.080						
1376.37					± .900	± 0.760	0.120			
1376.37					*1.350	± 0.760	0.120			
2000	±0.940	±0.390	±0.180	±0.410	±1.560	± 1.000	0.11			
3098	±1.760	± 0.570	±0.290	±0.860	£2.010	± 1.620	0.110			
3098	£1.000	±1.050	±0.290	42.360	43.510	+ 1 -620	0.11			
4000	± 2.000	±1.440	±0.500	± 3 . 750	±4+900	± 2.820	0.15			

Reference State for Calculating AH*, AF*, and Log K: Solid Mg from 0* to 923*K.

Liquid Mg from 923* to 1377*K, Gaseous Mg from 3177* to 6000*K; Gaseous O2, Gaseous M

- 0.	(çel/^K #	I'w	<i></i> ·-	_ Kcal 'gfw	al 'glw		
T, *K	'C P	2,1	(1 н <mark>‱)/1</mark> ,	'н _т - н ₂₉₈	1 H	VF.	Log Kp	
0	0.000	0.000	INFINITE	2 112				
798.15	7.506	52.891	52.891	-2.112	-10.980	-10.980	INFINITE	
300	7.514	52.918	52.891	0.000	-11.100	-17.238	12.635	
400	7.912	55.156		0.014	-11-104	-17.276	12.585	
500	A . 211	56.955	53.191	0.786	-11.296	-19.305	10.547	
			53.170	1.593	-11-488	-21.286	9.303	
600 700	8.425 8.591	68.477	54.430	2.425	-11.699	-23.225	8.459	
800		59.784	55.103	3.276	-11.934	-25.128	7.845	
	8.698	60.937	55.742	4.140	-12.200	-26.996	7.375	
900	8.784	61.967	56.395	5.015	-12.495	-28.827	7.000	
923	8.807	62.189	56.537	5.217	-12.568	-29.244	6.924	
923	8.807	62.189	56.537	5.217	-14.695	-29.244	6.924	
000	8.862	62.897	57.000	5.847	-14.936	-30.449	6.654	
100	8.924	63.744	57.575	6.787	-15.245	-31.985	6.355	
200	8.977	64.523	58.122	7.682	-15.554	-33.493	6.100	
300	9.023	65.244	58.642	8.582	-15.863	-34.975	5.880	
376.37	9.056	65.764	59.026	9.278				
376.37	9.056	65.764	59.026		-16.100	-36.106	5.73(
400	9.066	65.914		9.278	-46.840	-36.106	5.730	
50C	9.105	66.541	59.138 59.611	9.486 10.395	-46.846 -46.869	-35.922 -35.141	5 • 607 5 • 120	
400	0.344							
600 700	9.141 9.176	67.130 67.686	60.963 60.496	11.307	-46.892	-34.360	4 . 693	
800	9.210	68.211	60.446		-46.915 -46.934	-33.576 -42.780	4.316	
900	9.243	6P • 711		13.142	-46.936	-32.789	3.98	
000	4.275	6106	61.308 61.690	14.065 14.991	-46.957 -46.978	-32.005 -31.218	3.68 3.41	
• • • •	0.34.							
300	9.306 9.338	69.640 70.074	42.059	15.970	-46.999	-30.432	3.16	
•			62.414	16.852	-47.020	-29.643	2.94	
300 400	9.369	70.440	62.757	11.788	-47.039	-28.855	2.74	
500	9.401 4.437	70.890 71.276	63.088 63.409	18.726 19.668	-47.059 -47.079	-28.064 -27.276	2.55	
			0.477	171000	47.077	2	1 . 70	
6/1°C	9.465	71 - 64 7	63.719	20.613	-47.098	-26.483	2.22	
700	4.498	72.006	64.021	21.561	-47.118	-25.695	2.080	
F0^	9 • 1 31	72.353	64.113	22.512	-47.137	-24.904	1.94	
900 000	% • 5 6 5 % • 6 0 0	12.684 13.016	64.591 64.874	23.467	-47.156 -47.176	-24.111 -23.324	1.69	
				• • • • • • • • • • • • • • • • • • • •				
098	9.635	73.326	65.138	25 - 368	-47.195	-22.549	1.59	
1098	9.63.	73.126	65.138	25.368	-47.195	-22.549	1.59	
100	9.636	71.333	65.143	25.387	-47.194	22.528	1.58	
1500	9.673	73.641	65.405	26	-47.215	?1.738	1.48	
1300	9.711	73.941	65.661	27.322	-47.236	- 0.950	1.38	
1400	9.750	74.233	65.911	28.295	-47.258	10.156	1.29	
1400	9.791	74.516	66.155	29-212	-47.281	-19.369	1.20	
600	9.833	74.747	66.393	30.253	-47.306	-18.575	1.12	
700	9.876	75.00,	66.626	31.238	-47.331	-17.786	1.05	
800	9.921	15.345	66.854	32.228	-47. 160	-16.996	0.97	
1900	4.467	75 - 5 - 16	67.078	33.222	-47.390	-16.207	0.90	
000	10.014	74.852	67.297	34.221	-47.423	-15.418	0.84	
100	10-064	76.10	67.511	35.225	-47.460	-14.630	0.78	
200	10-114	16.349	67.722	36.234	-47.500	13.843	0.72	
300	10.157	76.591	67.929	37.248	-47.544	-13.052	0.66	
400	10.220	76.829	68 - 132	38.267	-47.594	-12.266	0.60	
500	10.276	77.063	68.332	39.292	-47.647	-11.483	0.55	
400	10.332	77.293	68.528	40.372	-47.707	-10.695	0.50	
600 700	10.391	71.520	68.721	41.359	-47.772	-9.516	0.46	
		77.744	68.911	47 400	-47.846	-9.1.5	0.41	
800	10.450	77.965	69.098	438	-47.927	-8.334	0.37	
900	10.511	78.187	69.282	44.502	-48.016	-7.545	0.33	
000	10.573	10.157	070404	774701	-0.010	•		
100	10.637	78.397	69.464	45.563	-48.115	-6.770	0.29	
200	10.701	78.610	69.643	46.629	-48.276	-5.978	0.25	
300	10.767	78.820	69.819	47.702	-48.3-9	-5.188	0.21	
400	10.834	7,.027	69.993	48.782	-48.485	-4.404 -3.617	0.14	
500	10.901	7~.212	70.165	49.868	-48.637	- 7.01/	0.14	
000	10.470	77.436	10.335	50.967	-48.807	-2.837	0.11	
700	11.019	71.637	10.503	52.062	-48.996	-2.043	0.07	
800	11.110	79.836	70.069	54.168	-49.712	-1.260	0.04	
900	11.101	80.041	70.811	54.282	-49.453	-0.462	0.01	
5000	11,252	80.229	70.945	55.403	-49.725	0.124	-0.01	

$$\Delta H_{f0}^{o} = -10 980 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = -11.100 \text{ kcal gfw}^{-1}$$
Ground State Configuration = $^{3}\Sigma$

$$S_{298.15}^{o} = 52.891 \text{ cal deg K}^{-1} \text{gfw}^{-1}$$

$$H_{298.15}^{o} = 2.112 \text{ kcal gfw}^{-1}$$

		<u> </u>		cm-l					
State	g	E	$\omega_{ m e}$	ω _e x _e	$\omega_{e} v_{e}$	Вe	α _ر	γ _e x10 ⁵	D _e x10 ⁶
x³Σ	3	0	902	13.0	_	0. 625	0. 000		1.2
³ Σ	3	26863.9	817	9. 5	_	0. 585	0.008	_	1.2
x' ¹ Σ	1	19200.	782.84	5. 15		0. 5711	0. 005	-	1.22
$A^{1}\pi$	2	22694.4	664.4	3. 91		0. 5056	0.0046	-	1.2
Β ¹ Σ	1	39204.7	824. 1	4. 76	_	0. 5822	0.0045	-	1.2

Heat of Formation

Several values of the heat of dissociation of MgO had been reported. An intermediate value adopted. See valume 1, this study (section IVB12.4) for details.

Heat Capacity and Entropy

Calculated using above spectroscopic constants. Brewer and Porter's analysis was given greatest weight.

Reference

1. Brewer, L. and R. Porter, J. Chem. Phys. 22, 1876 (1954).

Reference State for Calculating ΛH₁°, ΛF₁°, and Log K_p: Solid Mg from 0° to 923°K, Liquid Mg from 923° to 1377°K, Gaseous Mg from 1377° to 6000°K, Gaseous N₂; α - Mg₃N₂ from 0° to 823°K, β - Mg₃N₂ from 823° to 1061°K, γ - Mg₃N₂ from 1061° to 2500°K

	/	cal/K gfw -			-Kcal/glw		
^a k	, c.,	5°F -(FF	- н ₃₉₈)/т	'н _т – н ₃₉₈	лнү	AFY	Log Kp
0							
298 - 15	24.986	22.400	22.400	0.000	-110.200	-96.255	70.5
300	25.000	22.555	22.400	0.046	-110.200	-96.169	70.0
400	25.730	29.847	23.340	2.583	-110-187	-91.494	49.9
500	26.460	35.667	25.282	5.192	-110-183	-80.822	37.90
600 700	27.190	40.555	27.431	7.875	-110-208	-82.149	29.9
	27.920	44.801	29.615	10.630	-110-271	-77.468	24.1
800	28.650	48.577	31.754	13.459	-110.378	-72.774	19.6
823	26 + 616	_49.392	32.235_	14.120_	110.417_	71.700_	19.0
823	29.600	49.659	32.235	14.340	-110-197	-71.700	19.0
900	29.600	52.306	33.841	16-619	-110.267	-68.086	16.5
923	29.600	53.053	34.311	17.300	-110.307	-67.011	15.80
923	29.600	53.053	34.311	17.300	-116.688	-67.011	15.8
1000	29.600	55 • 425	35.846	19.579	-116.808	-62.862	13.7.
1061	29.600 29.540	57.178 57.423	37.023_ 37.023	21 • 384_ 21 • 644	116.912_ -116.652	59.596_	12.2
1100	29.540	58.489	37.765	22.796	-116.719	-57.471	11.4
1200	29.540	61.060	34.601	25.750		-52.074	9.4
1300	29.540	63.424	41.344	28.704	-117.103	-46.665	7.8
1377	29.540	65.124	42.626	30.979	-117.263	-42.507	6.7
1377	29.540	65.124				-42.507	6.7
1400	29.540	65.613	43.000	30.979 31.658	~209.483 ~209.335	-39.701	6.1
1500	24.540	67-051	44.576	34.612	-208 - 701	-27.609	4.0
1600	24.540	69.558	46.079	664 و د ر	-208.074	-15.558	2.1
1700	29.540	71.348	47.513	40.520	-207.453	-3.540	0.4
1800	29.540	71.037	48.884	43-474	-206.836	8.441	-1.0
1900	29.540	74.634	50.198	46.428	-206.226	20.379	-2.3
2000	24.540	76.149	51.458	49.38/	-205.621	32.286	-3.5
5100	29.540	77.591	52.668	52.236	-205.019	44.168	-4.5
5500	29.540	78.965	53.833	55.290	-204.421	56.022	-5.5
2300	29.540	80.27H	54.954	58.244	-203-827	67.847	-6-4
2400	29.540	81.535	56.036	61.198		79.646	-7.2
2500	29.540	82.741	57.080	64.152	-202.649	91.420	-7.9

MAGNESIUM NITRIDE (MEIN2)	(CONDENSED PHASE)	gfw = 100, 976
---------------------------	-------------------	----------------

$\Delta H_{f298.15}^{\circ} = -110.2 \pm 0.275 \mathrm{kcal}\mathrm{gfw}^{-1}$	S _{298.15} = 22.4 cal deg K ⁻¹ gfw ⁻¹
TtF 823°± 3°K	ΔH_{t1} = 0.220 kcal gfw ⁻¹
T _{t2} =1061°± 5°K	ΔH _{t2} =0.260 kcal gfw-1
$C_p^* = 22.81 + 7.30 \times 10^{-3} T \text{ cal deg K}^{-1} \text{ gfw}^{-1}$	298.15°K ≤ T ≤ 823°K
$C_{p}^{*} = 29.60 \text{ cal deg } K^{-1} \text{ gfw}^{-1}$	823°K < T < 1061°K
$C_{\mathbf{p}}^{\bullet} = 29.54 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$	1061°K ≤ T ≤ 2500°K

Structure

Low-temperature or α-phase body-centered cubic D5-type: a = 9.95 kX (no crystallographic data exist for β and γ phases).

Heat of Formation

Mitchell's value of -110.2 \pm 0.275 kcal gfw⁻¹ has been used for these calculations.

Heat Capacity and Entropy

Mitchell's 1 value of 22.4 has been used for the entropy; also, his heatcapacity data have been used.

Melting and Vaporization

Magnesium nitride decomposes on heating, and the data are conflicting; accordingly, the y phase has been extrapolated to 2500 K.

Reference

1. Mitchell, D. W., Ind. Eng. Chem. 41, 2027 (1949).

MAGNESIUM NITRIDE (Mg3N2)

(CONDENSED PHASE)

GFW - 100.976

				cal/K gfw					Kcal	/gt=		
Υ, ° Κ	•	C _b	9	ኝ -(1	የት -	н ₂₉₈)/т `	"HY	~ H398	Λ	нү	147	Log Kp
298.15	*	1.180		3.200	*	3.200	*	0.000	±	0.275		
500	*	1.180	*	3.810	±	3.334	*	0.238				
823	*	1.180		4.398	*	3.646	±	0.619				
823	ŧ	1.760	*	4.505	ŧ	3.646	*	0.707				
1000	*	1.780	*	4.852	ŧ	3.629	*	1.022				
1061	*	1.780	*	4.957	*	3.891	*	1-131				
1061	•	1.040	*	5.097	*	3.891	±	1.279				
1500	*	1.040	*	5.457	*	4.300	*	1.736				
2000	*	1.040	*	5.756	±	4.628	*	2.256				
2500	*	1.040	*	5.988	±	4.878	±	2.776				

Reference State for Calculating AH_f. AF_f. and Log K: Solid Mn from 0° to 1517°K, Liquid Mn from 1517° to 2319°K, Gaseous Mn from 2319° to 6000°K.

		çal/°K gfw-			Kcal/gfv		
T, *K	(,	-√r -(F	:Т - Н ₂₉₈)/Т \ /	н _т н ₂₉₈	ΔH_{f}°	ΔF _f	Log Kp
٥	0.000			-1-194			
98.15	6.290	7.640	7.640	0.000			
00	6.301	7.679	7.640	0.012			
.00	6.822	9.567	7.894	0.669			
00	7.244	11.135	8.390	1.373			
00	7.628	12.490	8.963	2.117			
700		13.694	9.554	2.898			
800		14.785	10.141	3.715			
900	8.700	15.788	10.713	4.568			
990	9.012	16.632	_11.213	_5 • 36 5			
990	8.983	17.168	11.213	5 • 896 5 • 985			
000	8.990	17.259	11.275	34763			
100	9.056	18.119	11.857	6.888			
200	9.122	18.909	17.412	7.797			
300	9.188	19.642	12.941	8.712			
374	94737	20.152	_13.315	$-\frac{9.394}{9.943}$			
374	10.700	20.552	13.315	10.221			
400	10.700	20.829	13.452 13.504	10.328			
410	11.300	21.138	13.504	10.764			
500	11.300	21.837	13.983	11.781			
			14 073	11.073			
917	_11.300	_21.964 _. _24.272	14.072 14.072	_11.973 _15.473			
517	11.000	24.857	14.616	16.386			
(600 (700	11.000	25.524	15.238	17.486			
800	11.000	26.153	15.827	18.586			
900	11.000	26.748	16.387	19.686			
2000	11.000	27.312	16.919	20.786			
21.00	11.000	21.849	17.427	21.886			
2100	11.000	28.360	17.912	22.986			
2200 2300	11.000	28.849	18.377	24.086			
2318-80	11.000	28.939	18.463	24.295			
2318.60	4.006	51.688	18.463	77.048			
2400	5.018	51.861	19.588	77.454			
2500	5.040	52.066	20.884	77.956			
	5.067	52.264	22.086	78.462			
7600	5.101	52.456	23.208	78.970			
2700 2800	5.142	52.642	24.255	79.482			
2900	5.193	52.824	25.238	79.999			
3000	5.253	53.001	26.161	80.521			
		53.174	27.029	81.050			
3100	5.322 5.403	53.344	27.848	81.586			
1200	5.495	53.512	28.624	82.131			
3300	5.598	53.677	29.358	82.685			
3400 3500	5.713	47.841	30.055	83.251			
,,,,,			-0 710	83.828			
3600	5.841	44.004	30.718	84.419			
3700	5.981	54.166	31.350 31.952	85.025			
3800	6.133	54.327 54.489	32.528	85.646			
3900	6.247 6.473	54.650	33.079	86.285			
4000	3.4.3			04 04 5			
4100	6.661	54.813	33.608	86.941			
4200	6.859	44.975	34.114	87.617			
4300	7.068	55.139	34.601	88.313 89.031			
4400	7.287	55.304	35.070 35.522	89.771			
4500	7.415	55.471	35.527	374114			
	7.751	55.638	35.957	90.534			
4600	7.995	45.808	36.377	91.322			
4700 4800	8.244	55.979	36.785	92.134			
4900	8.500	56.151	37.178	92.971			
5000	8.759	56.325	37.558	93.834	•		
		56.502	37.927	94 • 72	3		
5100	9.022	56.679		95 • 636	3		
5200	9.288	56.859	38.636	96 - 58			
5300	9.554 9.821	57.040	38.975	97.54			
5400	10.088	57.222		98.54	•		
5500	_			99.56	7		
5600	10.352	57.40		100.61			
5700	10.614	57.592 57.779		101.68	9		
	10.873	57.96					
5800							
5800 5900 6000	11.127	58.15			4		

	0 ⁰ K to 1517 ⁰ K 1517 ⁰ K to 2319 ⁰ K 2319 ⁰ K to 6000 ⁰ K	Grystal Liquid Ideal Monatomic Gas
ΔH ₀ - 0	2717 K 10 1000 K	ΔH _{1298, 15} - 0
ΔH _{*298, 15}	57, 000 kcal gfw ⁻¹	$S_{298, 15}^{0} = 7.640 \text{ cal deg } K^{-1}\text{gfw}^{-1}$
T _t - 990°K		$\Delta H_t \approx 0.531 \text{ kcal gfw}^{-1}$
T _t = 1374°K		△H _t = 0, 549 kcal gfw ⁻¹
T _t - 1410 ⁰ K		△H _t 0, 436 kcal gfw ⁻¹
T _m = 1517 ⁰ K		$\Delta H_{m} = 3.500 \text{ kcal gfw}^{-1}$
Tb - 51190K		$\Delta H_{\rm v} \simeq$ 52, 753 kcal gfw ⁻¹
H298 15-H0 1	194 kcal gfw ⁻¹	
Cp 5 704 + 3	380 x 10 ⁻³ T - 0 375 x 1	10 ⁵ T ⁻² cal deg K ⁻¹ gfw ⁻¹
		298 150K <u></u> T <u> 4 990</u> 0K
Cp - 8 330 + 0 (660 x 10 ⁻³ T cal deg K*	¹ gfw ⁻¹ 990°K ∠ T ∠1374°K
Cp = 10 700 cal	deg K ⁻¹ gfw ⁻¹	1174°K ∠ T ∠ 1410°K
Cp - 11 300 cal	deg K ⁻¹ gfw ⁻¹	1410°K & T & 1517°K
$C_p^0 = 11,000$ cal	deg K ⁻¹ gfw ⁻¹	1517°K <u>∠</u>

Structure

Four modifications Room-temperature form (α - Mn) has b c c

Heat of Formation

Zero by definition

Heat Capacity and Entropy

Low-temperature data reported by several authors adopted. High-temperature data of Naylor $^{\rm L,\,Z}$ adopted and extrapolated to boiling point

Melting and Vaporization

Determination of $Sully^3$ adopted. Heat of vaporasation calculated. See volume 1, this study (section IVAI3) for details

References

- Naylor B F. J. Chem Phys 13, 328 (1945)
 Kelley K K. B F Naylor, and G H Shomate, U.S. Bur Mines, Tech Paper 686 (1946)
 Sully, A. H., Manganese, Metallurgy of the Rare Metals 3, Butterworths, London (1955)

MANGANESE (Mn)

(REFERENCE STATE)

GFW = 54.94

		cal/°K	6/4				
T,°K	ζς "	s _T	$-(F_{T}^{o} - H_{290}^{o})/T$	HT - H298	ΛH _i	1 Fi	Log Kp
298.15	± 0.050	±0.040	±0.040	±0.000			
990	± 0.050	± 0.070	±0.050	±0.020			
990	± 0.050	*0.150	±0.050	±0.100			
1374	±0.100	±0.180	±0.080	±0.130			
1374	* 0.200	±0.230	±0.080	±0.210			
1410	± 0.300	± 0.240	±0.090	±0.220			
1410	+ 0.500	± 0.290	±0.090	± 0.280			
1517	± 0 • 500	± 0.320	±0.100	± 0 • 330			
1517	± 0 ± 500	±0.650	±0.100	± 0 . 830			
2000	± 1.610	± 0.950	±0.270	±1.350			
2318-80	± 2.310	±1.230	± 0 + 380	±1.980			
2318.80	* 0.000	*0.002	±0.003	±0.000			
3000	± 0.000	±0.002	± 0.003	± 0.001			
4000	± 0.001	±0.003	± 0.003	±0.001			
5000	± 0.002	40.003	40.003	± 0.002			
6000	± 0.003	±0.003	± 0.003	* 0.004			

Reference State for Calculating A H. AF. and Log K. Solid Mn from 0° to 1517°K, Liquid Mn from 1517° to 2319°K, Gaseous Mn from 2319° to 6000°K.

Τ, "Κ	("	n	Blw		Kcal/glw		
	TP.	يرج	-(FT - H298)/T	HT - H29H	ΔH	110	Log Kp
0	0.000	0.000	INFINITE	-3 .01			
298.15	4.968	41.494	41.494	-1.481 0.000	66.713	66.713	INFINIT
300	4.968	41.525	41.494		67.000	56.907	-41.7
400	4.968	42.954	41.689	0.009	66.997	56.844	-41.40
500	4.968	44.063	42.057	0.506 1.003	66.837 66.630	53.482 50.167	-29.22
600	4.968	44 040			00000	20.167	-21.92
700	4.968	44.968	42.469	1.500	66.383	46.896	-17.06
enn	4 • 968	45.734	47.882	1.996	66.098	43.670	~13.63
900	4.968	46.398 46.983	43.281	2.493	65.778	40.488	-11.06
990	4.968	47.457	43.660	2.990	65.422	37.348	-9.00
990	4 . 968	47.457	43.985 985 - د 4	3.437	65.072	34.556	~7.62
1000	4.968	47.506	44.019	3 • 4 3 7 3 • 4 8 7	64.541	34.556 34.254	`-7.62 -7.48
1100	4.968	47.980	44.358				
1200	4.968	48.412	44.678	3.984 4.481	64.096	31.249	-6.20
1 300	4.968	48.810	44.981	4.977	63.684	28.281	-5.15
1374	4.968	49.085	45.195	5.345	63.265 62.951	25.348	-4.26
1374	4.968	49.085	45.195	5.345	62.402	23.197	3.69
1400	4.968	49.178	45.268	5.474	62.253	23.197 22.458	-3.69 -3.50
1410	4.968	49.213	45.295	5.524	62.196	22.175	-3.43
1410	4.968	49.213	45.295	5.524	6 .760	22.175	-3.43
1500	4.968	49.521	45.540	5.971	61.190	19.664	-2.86
1517	4.768	49.577	45.586	6.055	61.082	19.193	-2.76
1517	4.968	49.577	45.586	6.055	57.582	19.193	-2.76
1600	4.969	49.841	45.799	6.468	57.082	17.107	-2.3
1700	4.469	50.143	46.046	6.965	56.479	14.626	-1.80
1800	4.971	50.427	46.281	7.462	55.876	12.183	-1.4
1900 2000	4.973	50.695	46.507	7.959	55.273	9.772	-1.1
2 3000	4.7//	50.951	46.727	8 • 4 5 6	54.670	7.394	-0.80
2100	4.982	51.194	46.930	8.954	54.068	5.044	-0.5
2.20°C	4.791	51.426	47.129	9.453	53.467	2.723	-0.2
2300	5.002	51.648	47.320	9.953	52.867	0.431	
2318.60	5.004	51.652	65.529	17.753	52.753	0.000	0.00
231A.AC	5.005	51.652	65.529	17.753			
2400	5.018	51.861	47.505	10.454			
2503	5.040	52.066	47.684	10.956			
2600	5.067	264	47.855	11.462			
2700	4.101	5 456	48.023	11.970			
2800	5.142	42.642	48.184	12.482			
3900 3000	5.193 1.253	52.824 53.001	48.341 48.494	12.999 13.521			
3100	5.322	53.174	48.642	14.050			
3200	5.403	53.344	48.786	14.586			
3300	5.445	53.512	48.927	15.131			
3400 3500	5.598 5.713	53.677 53.841	49.064 49.198	15•685 16•251			
.500		27004I	4 7 4 1 7 0	10.291			
3600	5.841	54.004	49.330	16.828			
3700	5.981	54 - 166	49.458	17.419			
3800	6.133	54.327	49.584	18.025			
3900	6.297	54.489	49.708	18.646			
4000	6.473	54.650	49.829	19.285			
4100	6.661	54.613	49.949	19.941			
4200	6.859	54.975	50.067	20.617			
4300	7.068	55.139	50.183	21 - 31 3			
4400	7.287	55.304	50.297	22.031			
4500	7.515	55.471	50.410	22.771			
4600	7.751	55.638	50.522	23.534			
4700	7.995	55.808	50.633	24.322			
4800	8.244	55.979	50.742	25.134			
4900	8.500	56-151	50.851	25.971			
5000	8.759	56.325	50.959	26.834			
5100	9.022	56.502	51.066	27.723			
5200	9.288	56.679	51.172	28.638			
5100	9.554	56.859	51.278	29.580			
5400	9.821	57.040		30.549			
5500	10.085	57.272	51.487	31.545			
5600	10.352	57.407	51.591	32.567			
5700	10.614	57.592		33.615			
5800	10.873	57.779	51.798	34 . 689			
1900	11.127	57.967	51.901	35.789			
6000	11.376	58.156	52.004	36.914			

$$\triangle H_{f0}^{o} = 66.713 \text{ kcal gfw}^{-1}$$

Ground State Configuration = ${}^{6}S_{2\frac{1}{2}}$
 $S_{298.15}^{o} = 41.494 \text{ cal deg } K^{-1}\text{gfw}^{-1}$
 $H_{298.15}^{o} = 1.481 \text{ kcal gfw}^{-1}$

Electronic Levels and Multiplicities

Spectroscopic energy levels from Moore. 1

Heat of Formation

An average $\Delta H_{298.15}$ value determined from three calculations. See volume 1, this study (section IVA13) for details.

Heat Capacity and Entropy

Calculated on monatomic-gas computer program.

Reference

1. Moore, C., Nat. Bur. Stds. (U.S.) Circ. 467, Vol. II (August 1952).

MANGANESE . MONATOMIC (Mn) (IDEAL GAS) SUMMARY OF UNCERTAINTY ESTIMATES

GFW = 54.94

T, *K		cal/°l	Kcal/gfv				
	رد*	s _T	-(FT - H298)/T	H _T - H ₂₉₈	3H ₁	AF	Log K
298.15	±0.000	±0.002	±0.002	± 0.000	± 0.300	±0.310	
990					± • 320	± 0.350	
990					* .400	±0.350	
1000	±0.000	±0.002	±0.002	* 0.000			
1 3 7 4					± .430	±0.410	
1374					* •510	±0.410	
1410					± •520	± 0.430	
1410					± .580	±0.430	
1517					± +630	±0.450	
1517					£ 1 · 130	± 0 4 4 5 0	
2000	± 0.000	±0.002	±0.003	± 0.000	±1.650	± 0.840	
2318.80					± 2 • 280	±1.180	
3000	± 0.000	±0.002	±0.003	± 0.001			
4000	± 0.001	#0.003	±0.003	± 0.001			
5000	± 0.002	±0.003	±0.003	± 0.002			
6000	± 0.003	.0.003	±0.003	= 0.004			

Reference State for Calculating AH?, AF?, and Log Kp. Solid Mn from 0° to 1517°K, Liquid Mn from 1517° to 2319°K, Gaseous Mn from 2319° to 6000°K, Gaseous O₂; Gaseous MnO

T, "K (S Kel/gfw Krel/gfw								
1, "K	(p	51	(L) - H _{50H})/I	′н ₁ - н ₂₉₈	ΔHĴ	AFT)	Log Kp	
o	0.000	0.000	INFINITE				•	
298.15	7.569	55.616	55.616	-2.118	31.000	31.000	INFINIT	
300	7.577	55.663	55.616	0.000	30.600	23.602	-17.30	
400	7.968	57.899	55.918	0.014	30.595	23.558	-17.16	
500	8.247	59.709	56.501	0 • 192 ! • 604	30 • 361 30 • 104	21.247 18.998	-11.60 -8.30	
600	8.439	61.23]				101770	- 8 . 70	
700	8.573	62.542	57.166	2.439	29.817	16.803	-6.12	
800	8 . 6 71	63.694	57.843	3.290	29.499	14.658	-4.57	
900	8.744	64.719	58.503 59.138	4.152	29.144	12.563	-3.43	
990	A . 795	65.554		5.023	28.755	10.512	-2.55	
990	8.795	65.554	57.683 59.683	5.812	28.375	8.706	-1.92	
1000	8.801	65.644	59.743	5 • 81 2 5 • 900	27.844 27.801	8.706 8.513	-1.92	
1100	8 . 8 4 6	44			170.001	9.713	-1.86	
1200	8.884	66.485 67.256	60.318 60.865	6.783	27.362	6.606	-1.31	
1300	8.915	67.968	61.384	7.669	26.915	4.738	-0.86	
1374	4.436	68.461	61.75)	8.559	26 - 461	2.909	-0.48	
1374	8.936	68.461	61.751	9.220	26.172	1.578	-0.25	
1400	8.943	64.630	61.478	9.220	25.573	1.578	-0.25	
1410	8.943	58.594	61.927	9.452	25.414	1.126	-0.17	
1410	A . 945	68 . 6 +4	61.927	9.542	2 • 353	0.951	-0.14	
1500	A . 967	69.248	62.349	9.542 10.349	24.917 24.314	0.951 -0.559	-0.14 0.08	
1517	9 071	40 000				V • 727	0.08	
1517	8.971 8.971	69.348	62.476	10.501	24.201	-0.838	0.12	
1600	8.948	69.34F	67.426	10.501	20.701	-0.838	0.12	
1700	3.00A	64.821 70.313	62.749	11.246	20.169	-2.006	0.27	
1800	4.026	70.888	63.229	12-145	19.527	-3.373	0.43	
1900	1.043	71.177	63.640 54.035	13.047	18.484	-4.701	0.57	
2000	4.059	71.841	64.414	13.951 14.856	18.241 17.596	-5.993 -7.252	0.68	
2100	9.075	7) 26.					0.79	
2200	9.090	72.244 72.107	64.774	15.762	15.949	-8.478	0.88	
2300	9.105	1111	65.179	16-671	16.303	-9.674	0.96	
7318.80	4.109	7165	45.467	17.580	15.653	-10.840	1.030	
2318.47	9.109	1. 185	65.529	17.753	15.530	-11.057	1.04	
2400	9.119 9.119	12.499	65.529	17.753	-37.223	-11.057	1.04	
2500	9.134	12.499	65.794 66.110	18.491 19.404	-37.265 -37.318	-10.144 -9.011	0.924	
1460							0.78	
2600 2700	9.149 9.164	14.576	66.416	20.318	-37.376	-7.881	0.66	
2800	9.174	14.716	66.712 66.949	21 - 234	-3736	-6.745	0.54	
290C	4.194	75.231	67.278	77.151	- 5	- 610	0.430	
100c	9.211	75.545	67.549	23.070 23.990	-37.6 ·	-4.468 -3.326	0.33	
							,,,,,	
3}**C 32CC	9.27A 9.246	75.P48 76.142	67.912 68.068	24.912	~37.738	-2.181	0.154	
3 3 3 0	9.264	75.427	66.317	25 - 836	-31.831	~1.037	0.071	
3400	9.282	76.704	66.563	26.761 27.589	-37.934 -38.045	0.118	-0.000	
3500	9.302	16.914	68.747	28.618	-38.045 -38.169	1.270 2.427	-0.082 -0.152	
1600 1700	9.343	11.237 71.443	69.023 69.755	29.549 30.482	-38.304	3.584	-0.216	
3800		71.743	69.255		-38.452	4.748	-0.280	
3900	9.364 9.387	77.987	67.475	31.418	~38.415	5.917	-0.340	
4000 4000	9.410	78.276	69.611 69.902	32.355 33.295	-38.793 -38.988	7.089 8.266	-0.39°	
4100 4200	9.433 9.458	78.459 78.686	70.107	34.237	39 100	9.456	-0.504	
• 200 • 300	9.45H 9.483		70.311	35.18.	-39.431	10.633	-0.55	
		78.911 79.130	70.519	36 - 129	-39.682	11.826	-0.60	
4400 4500	9.500 9.535	79.345	70.703 70.854	17.079 38.031	-19.954 -40.247	.3.026 14.229	-0.64°	
4600	9.562	79.556	71.081	38.997	-40.562	15.438	-0.73	
4700	4.540	79.763	71.264	19.945	-40.903	16.655	-0.774	
4800	9.61R	79.967	71.445	40.90°	-41.268	17.882	-0.814	
• 900 • 000	9.647	80.166	71.622	41.869	-41.658 -42.026	19.112	-0.852	
5000	4.677	80.361	71.796	42.836	-47.074	20.345	-0.889	
5100	9.101	80.556	71.967	43.806	-42.518	21.588	-0.925	
5200	7.738	80.746	72.135	44.119	-42.990	22.852	-0.960	
300	7.760	60.934	72.301	45.755	-43.492	24.115	-0.994	
400	9.801	A1.114	77.464	46.73.	-44.027	25.389	-1.02	
1500	9.833	81.300	72.624	47.717	-44.597	26.676	-1.060	
5600	9.865	81.474	72.782	48.701	-45.192	27.971	-1.092	
1700	9.899	81.656	72.938	49.692	-45.827	29.278	-1.123	
800	9.932	81.830	73.091	50.586	-46.477	30.591	-1.15	
900	4.466	82.002	73.243	51.682	-47.213	31.927	-1.182	
000	10.001	82.172	73.392	52.683	-47.970	33.258	-1.21	
50(/1/								

$$\Delta H_{f0}^{o} = 31.000 \text{ kcal gfw}^{-1}$$

$$\Delta H_{1298, 15}^{o} = 30.600 \text{ kcal gfw}^{-1}$$

Ground State Degeneracy = 4

$$S_{298, 15}^{0} = 55.616$$
 cal deg K^{-1} gfw⁻¹

$$H_{298.15}^{0}$$
 - H_{0}^{0} = 2.118 kcal gfw⁻¹

				cn	n-1 —				
State	g	E	$\omega_{\mathbf{e}}$	ω _ε κ _e	ω _e y _e	В _е	Oξ	yexi0 ⁵	D _e x10 ⁶
х	4	0	8 3 9 . 5 5	4. 79	_	0. 499	_	_	0.71
A	2	17909. 59	762.75	9.60	0.06	0.453	_	_	0.64

Heat of Formation

Based on DasSarma.

Heat Capacity and Entropy

Calculated using above spectroscopic constants based on DasSarma 1 and Herzberg. 2

- Das Sarma, J. M., Z. Physik 157, 98 (1959).
- 2. Herzberg, G., Spectra of Diatomic Molecules, I., 2nd ed, Van Nostrand, N. Y. (1950).

Reference State for Calculating Mi, AF, and Log Kp: Solid Mo from 0° to 2890°K,
Liquid Mo from 2890° to 4965°K, Gaseous Mo from 4965°K to 6000°K.

T,°K	'C₽	٦̈́	(F _T - H ₂₉₈)/T	H, H, 198	_ Kcal/gfw 	AF	I *
٥	0.000					Ar _t	Log Kp
298.15	5.680	0.000	INFINITE	-1.092			
300	5.690	6 • 830 6 • 865	6.830	0.000			
400	5.970	8.545	6.830	0.011			
500	6-150	9.905	7.057 7.499	0.595			
600			1.447	1 • 203			
700	6.280	11.035	7.993	1.825			
800	6.350	12.013	8.499	2.460			
900	6.440 6.550	12.868	8.993	3.100			
1000	6.700	13.633	9.467	3.750			
	0.100	14.329	9.919	4.410			
1100	6.860	1 977	14				
1 200	7.050	1 .586	10.349	5.090			
1 100	7.240	16.162	10.761 11.154	5.790			
1400	7.450	16.710	11.531	6.510			
1500	7.680	17.221	11.894	7.25A 8.000			
1600	•			0.000			
700	7.432	17.731	12.244	8.780			
800	B . 200	19.220	12.580	9.587			
900	8.486	18.697	12.907	10.421			
onn	8.791 9.112	19.163	13.224	11.285			
	7.117	19.622	13.532	12.180			
1100	9.451	20.075	12 000				
200	9.808	20.523	13.833	13.108			
300	10.182	20.967	14.127	14.071			
400	13.574	.1.409	14.697	15.070			
·500	10.783	21.849	14.975	16.107 17.185			
600				114163			
700	11.411	22.288	14.247	18.305			
ACC	11.855	22.727	15.516	19.468			
890	17.317	23.166	15.782	20.676			
#90	12.74%	23.563	16.018	21.804			
900	10.000	25.864 25.899	16.018	21.454			
000	10.000	26 • 23R	16.053	28.554			
	• • •	20 0 2 3 7	16.387	29.554			
1.50	.0.000	26.566	16.710	30.554			
200	10.50	26.883	17.022	11.554			
300	10.000	27.141	17.326	32.554			
40	10.00	27.484	17.620	33.554			
50c	16.060	27.719	17.906	34.554			
108							
70	10.000	28.061 28.335	18.185	1554			
80	10.000	28.602	18.456 18.719	36.554			
90.	10.000	28.861	18.975	77.554 38.554			
one	.0.000	29.114	19.226	39.554			
				J J			
100	10.000	2 361	19.470	40.554			
200	10.000	29.602	19.758	41.524			
300	10.000	2++646	19.947	42.554			
400	10.000	3 -068	20.169	43.554			
5 C C	10.000	30.242	20.391	44.554			
600	10 300	22 () =	20				
700	10.000	30.517	20.609	45.554			
800	10.000	30.7.7 30.438	20.822 21.031	46.554			
900	10.000	31.144	21.235	47.554			
965	10.000	31.276	21.366	48.554			
964	12.401	736	- 21.366 ·	190.501			
000	12.500	49.822		190.936			
100	12.775	60.072	22.386	1200			
200	13.033	60.327		193.491			
300	13.275	60.573	23.817	194.806			
400	13.498	(O.B. 3		196.145			
50C	11.703	11.071	25.163	197.505			
400	13 600		36 05	100 005			
600 700	13.889	61.371		198.885			
700 800	14.05h 14.204	61.569 61.815	26.432 27.040	101 • 696 200 • 283			
900	14.134	62.058		203.123			
000	14.444	63.300		204.562			

0°K to 2890°K Crystal 2890°K to 4965°K Liquid 4965°K to 6000°K Ideal Monatomic Gas

 $\Delta H_{f0}^{o} = 0$

 $\Delta H_{f298.15}^{o} = 0$

 $\Delta H_{8298, 15}^{o} = 158.200$ kcal g(w⁻¹

So 298, 15 = 6.83 cal degK-lgfw-1

 $T_{m} = 2890^{\circ} K$

 $\Delta H_m = 6.650 \text{ kcal g/w}^{-1}$

Th = 4965°K

 $\Delta H_{v} = 141.300 \text{ kcal gfw}^{-1}$

 $H_{298, 15}^{0}$ - H_{0}^{0} = 1.092 kcal gfw⁻¹

 $C_{\rm D}^{\rm o} = 6.026 - 0.217 \times 10^{-3} \, \text{T+0.0880} \times 10^{-5} \, \text{T}^2 \, \text{caldeg} \, \text{K}^{-1} \, \text{gfw}^{-1}$ 1500°K < T < 2890°K

Structure

Mo has a b.c.c. structure.

Heat of Formation

Zero by definition,

Heat Capacity and Entropy

Low-temperature data from Stull and Sinke, ¹ and Hultgren. ² Data to 1500°K from Stull and Sinke. ¹ Equation derived from range above 1500°K, based on Rasor and McClelland3 data.

Melting

Melting temperature in agreement with several sources.

Vapor-pressure data of Edwards et al4 used.

Further details by Barriault et al. 5

References

- Stull, D. R. and G. C. Sinke, <u>Thermodynamic Properties of Elements</u>, Am. Chem. Soc., Washington, D. C. (1956).
 Hultgren, R. et al. <u>Selected Values of Thermodynamic Properties of</u>
- Metals and Alloys, Wiley, New York (1963).

 3. Rasor, N. and J. McClelland, J. Phys. Chem. Solids 15, 17 (1960).

 4. Edwards, J. W. et al, J. Am. Chem. Soc. 74, 1539 (1952).

- 5. Barriault, R. J. et al, ASD TR 61-260 (May 1962), Pt. 1.

MOLYBDENUM (Mo)

(REFERENCE STATE)

GFW - 95.95

			T (80,H - 14)-	<i>(</i> , , , , , , , , , , , , , , , , , , ,	Real give		
Т, °К	رِح هٔ	s _T	-(F _T - H ₂₉₈) T	H' - H'298	NH _I	71,	I ∘g K _p
298.15	±0.300	±0.100	±0.100	±0.000			
1000	±0.500	±0.600	±0.320	±0.280			
2000	±0.800	±1.050	±0.580	±0.930			
2890	±2.000	±1.570	±0.820	±2.180			
2890	±2.000	+1.920	±0.820	±3.180			
3000	±2.000	±1.990	±0.860	±3.400			
4000	±3.000	+2-170	±1.240	+5.900			
4965	±4.000	43.470	±1.600	±9.270			
1965	±0.004	+0.003		-,,,,,			
5000	±0.004	*0.003					
6000	±0.005	+0.004					

Reference State for Calculating \H_1^*. \F_1^*, and Log K : Solid Mo from 0° to 2890°K, Liquid Mo from 2890° to 4965°K, Gaseous Mo from 4965° to 6000°K.

	cal/oK g/v								
1,"K	′c <mark>p</mark>	s"	-(FT - H298)/T	HT - H298	ΛH	۸۴۵)	Log Kp		
0	0.000								
298 - 15	4.968	0.000	INFINITE	-1.481	157.811	157.811	INFINIT		
300	4.968	47.462	43.462	0.000	158.200	147.278	-107.95		
400	4.968	43.493	43.463	0.009	158.198	147.210	-107-237		
500	4.968	46.031	43.657 44.025	0.506 1.003	158.111 158.000	153.560 139.937	-78.434 -61.163		
			440027	1.003	136.000	137.73	-01110		
600	4.968	46.937	44.437	1.500	157.875	136.334	-49.65		
700	4.968	47.703	44.851	1.996	157.736	132.754	-41.446		
600	4.968	48.366	45.249	2.493	157.593	129.195	-35.293		
900	4.968	48.951	45.629	2.990	157.440	125.654	-30.51		
1000	4.968	49.475	45.988	3.487	157.277	122.131	-26.690		
1100	4.969	49.948	46.327	3.984	157.094	118.624	-23.56		
1200	4.970	50.381	46.647	4 - 481	156.891	115.136	-20.96		
1 300	4.972	50.77B	46.949	4.978	156.668	111.666	-18.772		
1400	4.977	51.147	47.236	5.475	156.425	108.213	-16.89		
1500	4.985	51.491	47.509	5.973	156-173	104.778	-15.26		
1600	4.998	51.813	57.768	6.472	155.892	101.362	-13.849		
1700	5.017	52.116	48.015	6.973	155.586	97.961	-12.59		
1800	5.043	52.404	48.251	7.476	155.255	94.581	-11.48		
1900	5.079	52.677	48.476	7.982	154.897	91.221	-10.49		
2000	5 - 1 2 5	52.939	48.693	8.492	154.512	87.878	-9.60		
2100	5.183	53.190	48.901	9.007	154.099	84.557	-8.79		
2200	5.255	53.433	49.102	9.529	153.658	81.299	-8.07		
2300	5.340	53.669	49.295	10.059	153.189	77.977	-7.40		
2400	5.440	53.89P	49.482	10.598	152-691	74.717 71.480	-6.804 -6.32		
2500	5.556	54.122	49.663	11-14/	152.162	,1.400	-0.52		
2600	5.689	54.343	49.839	11.710	151.605	68.260	-5.73		
2700	5.834	54.560	50.010	12.286	151.018	65.067	-5.26		
2800	6.006	54.776		12.878	150.402	61.897	-4.83		
2890	6.171	54.968	50.323	13.426	149.822	59.057	4.46		
2890	6.171	*4.968	50.323	13.426	143.172	59.057			
3900	6.190	54.984	50.339	13.487	143.133	58.771	-4.42		
3000	6.342	55.203	50.497	14.116	142.762	55.869	-4.07		
3100	6.611	55.416	50.652	14.766	142.412	52.979	-3.73		
3200	6.847	55.629	50.805	15.439	142.085	50.096	-3.42		
3300	7.099	5 844		16.136	141.782	47.226	-3.12		
3400	7.367	56.060		16.860	141.506	44.363	-2.85		
3500	7.650	46.277	51.246	17.610	141.256	41.510	-2.59		
	3.0.4			10.000		20 ///	-2 24		
3600	7.946	56.447 56.719		18.390 19.200	141. 136	38.664 35.827	-2.34 -2.11		
3700	8.254 8.573	56.943		20.041	140.687	32.992	-1.89		
3800	8.901	57.170		20.915	140.561	30.155	-1.69		
3900 4000	9.235	51.400		21.822	140.468	27.328	-1.49		
1000		-					_		
4100	9.575	57.632		22.762	140.408	24.498	-1.30		
4200	9.917	57.867		23.736	140.382	21.672	-1.12		
4300	10.260	58.104		24.745	140.391	18.851	-0.95		
4400	10.601	58.344		25.788	140-434	16.020	-0.79		
4500	10.939	48.586	52.616	26.865	140.511	13.190	-0.64		
4600	11.271	58.830	52.748	27.976	140-622	10.359	-0.49		
4700	11.959	59.076		29.119	140.765	7.529	-0.35		
4800	11.909	59.323		30.295	140.941	4.690	-0.21		
4900	12.211	59.572		31.501	141-147	1.852	-0.08		
	12.401	59.735		32.301	141.297	0.000	0.00		
4965	12.401	59.735		32.301					
4965 5000	12.500	59.822		32.736					
		-							
5100	12.775	60.072		34.000					
5200	13.033	60.322		35.291					
5300	13.275	60.573		36 • 606					
5400	13.498	60.821		37.945					
5500	13.703	61.073	53.926	39.305					
5600	13.889	61.321	54.056	40.685					
5700	14.056	61.569	54.186	42.083					
5800	14.204	61.815	54.315	43.496					
5900	14.314	62.058	54.444	44-923					
6000	14.444	62.300	54.573	46.362					
				1962			CHV		

MOLYBDENUM (Mo) (IDEAL MONATOMIC GAS)

gfw = 95.95

$$\Delta H_{f0}^{o} = 157.811 \text{ kcal gfw}^{-1}$$

$$\Delta H_{(298-15)}^{0} = 158.200 \text{ kcal gfw}^{-1}$$

$$S_{298, 15}^{0} = 43.462$$
 cal degK⁻¹gfw⁻¹

$$H_{298.15}^{0}$$
 - H_{0}^{0} = 1.481 kcal gfw⁻¹

Electronic Levels and Multiplicities

Atomic energy levels from Moore. 1

Heat of Formation

Calculated from vapor-pressure data of Edwards et al. 2

Heat Capacity and Entropy

Calculated on monatomic gas-computer program.

Further details by Barriault et al. 3

References

- 1. Moore, C., Atomic Energy Levels, Vol. III, Nat. Bur. Stds. (1958).
- 2. Edwards, J. et al, J. Am. Chem. Soc. 74, 1539 (1952).
- 3. Barriault, R. J. et al, ASD TR 61-260 (May 1962), Pt. 1.

MALYBDENUM. MONATOMIC (Mo)

(IDEAL GAS)

GFW - 95.95

SUMMARY OF UNCERTAINTY ESTIMATES

		cel ² K	11-		. Acal glw		
T,°K	′c _p °	s _T	-(FT - H298)'T	HT - H298	ΔH_{t}	211,	log K _p
298.15	± 0.000	±0.002	± 0.002	± 0.000	± 0.800	+0.830	±0.61
1000	± 0.000	±0.002	± 0.002	± 0.000	± 1.080	±1.120	± 0 . 24
2000	± 0.000	±0.002	±0.003	±0.000	±1.730	+1.970	+0.22
2890	± 0.001	±0.003	± 0.003	± 0.001	+ 2 - 980	+3.180	+0.24
2890	± 0.001	±0.003	± 0.003	± 0.001	± 3.980	+3-180	+0.240
3000	± 0.001	±0.003	± 0.003	±0.001	#4.200	. 3.390	+0.250
4000	± 0.002	±C.003	±0.003	± 0 • 002	+6.700	+5.770	+0.320
4965	± 0.004	±0.003	+0.003	± 0.004	40.070	.8.760	+0.390
4965	± 0.004	#0.003	± 0.003	+0.004	2000.0	4	- 00 110
5000	± 0.004	±0.003	+0.203	± 0 • 004			
6000	± 0.005	+0.004	+0.303	± 0.008			

Reference State for Calculating A H7, A F7, and Log Kp: Solid Mo from 0° to 2890°K, Liquid Mo from 2890° to 4965°K, Gaseous Mo from 4965° to 6000°K,

798-15 7300 800 7500 800 700 800 800 800 800 800 800 800 8		0.000 54.587 54.634 56.861 58.662 60.175 61.478 62.621 63.639 64.555 65.387 66.150 66.150 67.508 68.117 68.689 69.225 69.731 70.667	(FI - H ₂₉₈)/T INFINITE 54.587 54.788 55.469 56.130 56.803 57.461 58.792 58.693 59.264 59.807 60.322 60.812 61.279 61.725 62.557 62.557 62.948 63.322 63.683	-2-116 0-000 0-014 0-789 1-597 2-427 3-272 4-129 4-992 5-862 6-735 7-612 8-492 9-373 10-256 11-141 12-027 12-913 13-800 14-688	87.413 87.400 87.396 87.232 87.067 86.718 86.537 86.342 86.138 85.912 85.665 85.105 84.804 84.108 83.715 83.291	AF ₁ ' 87.413 80.467 80.424 78.124 75.869 73.643 71.448 69.278 67.133 65.010 62.906 60.827 56.729 54.714 52.717 50.743 48.794 44.958	Log Kp INFINITE -58.981 -58.586 -42.683 -33.161 -26.823 -22.4306 -18.925 -16.301 -14.207 -12.498 -11.078 -8.855 -7.971 -7.200 -6.523 -5.924 -5.390 -4.913
798-15 77 300 7500 86 600 87 600 88 800 88 9	3-842 -552 -203 -388 -515 -604 -6669 -717 -754 -783 -806 -824 -839 -840	54.587 54.634 56.861 58.662 60.175 61.478 62.621 63.639 64.555 65.387 66.150 66.854 67.508 68.117 68.689 69.225 69.731 70.211 70.667	54.587 54.587 54.688 55.469 56.130 56.803 57.461 58.992 58.493 59.264 59.807 60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	0.000 0.014 0.789 1.597 2.427 3.272 4.129 4.992 5.862 6.735 7.612 8.492 9.373 10.256 11.141 12.027 12.913 13.800	87.400 87.296 87.232 87.067 86.897 86.513 86.537 86.142 86.138 85.912 85.665 85.306 85.105 84.804 84.470 84.108 83.715	80.467 80.424 78.124 75.869 73.643 71.448 69.278 67.133 65.010 62.906 66.827 58.767 56.729 54.714 52.717 50.743 48.794 48.862	-58.981 -58.586 -42.683 -33.161 -26.823 -22.4306 -14.207 -12.498 -11.078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.924 -5.390
300 7 400 8 600 8	.550 .932 .5388 .515 .6669 .717 1.754 1.806 1.807 1.808 1.808 1.809 1.80	54.634 56.861 58.662 60.175 61.478 62.621 63.639 64.555 65.387 66.150 66.854 67.508 68.117 68.689 69.225 69.731 70.211 70.211 70.211 70.211	54.587 54.587 54.688 55.469 56.130 56.803 57.461 58.992 58.493 59.264 59.807 60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	0.000 0.014 0.789 1.597 2.427 3.272 4.129 4.992 5.862 6.735 7.612 8.492 9.373 10.256 11.141 12.027 12.913 13.800	87.400 87.296 87.232 87.067 86.897 86.513 86.537 86.142 86.138 85.912 85.665 85.306 85.105 84.804 84.470 84.108 83.715	80.467 80.424 78.124 75.869 73.643 71.448 69.278 67.133 65.010 62.906 66.827 58.767 56.729 54.714 52.717 50.743 48.794 48.862	-58.981 -58.586 -42.683 -33.161 -26.823 -22.4306 -14.207 -12.498 -11.078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.924 -5.390
400		56.861 58.662 60.175 61.478 62.621 63.639 64.555 65.387 66.854 67.508 68.117 68.689 69.731 70.211 70.667 71.100 7.514	54.888 55.469 56.130 56.803 57.461 58.792 58.793 59.264 59.807 60.322 60.812 61.279 61.725 62.150 62.948 63.322	0.014 0.789 1.597 2.427 3.272 4.129 4.992 5.862 6.735 7.612 8.492 9.373 10.256 21.141 12.027 12.913 13.800	87.296 87.232 87.667 86.897 86.718 86.537 86.342 86.138 85.912 85.665 85.105 84.804 84.470 84.108 83.715	80.424 78.124 75.869 73.643 71.448 69.278 67.133 65.010 62.906 60.827 58.767 56.729 54.714 52.717 50.743 48.794 46.862	-58.586 -42.683 -33.161 -26.823 -22.306 -18.925 -16.301 -14.207 -12.498 -11.078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.924
500 8 8 900 8 8 900 8 90	203 3.388 3.515 3.604 3.717 3.754 3.763 3.806 3.807 3.80	58.662 60.175 61.462 62.621 63.639 64.555 65.387 66.150 66.854 67.508 68.117 68.689 69.225 69.731 70.667 71.100	55.469 56.130 56.803 57.461 58.792 58.493 59.264 59.807 60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	1.597 2.427 3.272 4.129 4.992 5.862 6.735 7.612 8.492 9.373 10.256 11.141 12.027 12.913 13.800	87.232 87.067 86.897 86.718 86.537 86.342 86.138 85.912 85.665 85.396 85.105 84.804 84.470 84.108 83.715	78.124 75.869 73.643 71.448 69.278 67.133 65.010 62.906 66.827 58.767 56.729 54.714 52.717 50.743 48.794 46.862	-42.683 -33.161 -26.823 -22.4306 -18.925 -16.301 -14.207 -12.498 -11.078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.390
600 8 8 900 8 900 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8 8 900 8	3.388 3.515 3.6604 3.6604 3.677 3.754 3.877 3.8806 3.8871 3.8871 3.8871 3.8873 3.8873 3.8893 3.8971 3.8901 3.901	60.175 61.478 62.621 63.639 64.555 65.387 66.150 66.854 67.508 68.117 68.689 69.225 69.731 70.667 71.100	56.130 56.803 57.461 58.992 58.493 59.264 59.807 60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	2.427 3.272 4.129 4.992 5.862 6.735 7.612 8.492 9.373 10.256 11.141 12.027 12.913 13.800	86.897 86.718 86.537 86.342 86.138 85.912 85.665 85.105 84.804 84.470 84.108 83.715 83.7291	73.643 71.448 69.278 67.133 65.010 62.906 60.827 58.767 56.729 54.714 52.717 50.743 48.794 46.862	-26.823 -22.306 -18.925 -16.301 -14.207 -12.498 -11.078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.924
700 8800 889	1.515 1.604 1.717 1.754 1.783 1.624 1.636	61.478 62.621 63.639 64.555 65.387 66.150 66.854 67.508 68.117 68.689 69.225 69.731 70.211 70.667	56.803 57.461 58.792 58.693 59.264 59.807 60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	3.272 4.129 4.992 5.862 6.735 7.612 8.492 9.373 10.256 11.141 12.027 12.913 13.800	86.718 86.537 86.142 86.138 85.912 85.665 85.105 84.804 84.470 84.108 83.715 83.291	71.448 69.278 67.133 65.010 62.906 60.827 58.767 56.729 54.714 52.717 50.743 48.794 46.862	-22.306 -18.925 -16.301 -14.207 -12.498 -11.078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.924 -5.390
800 8 900 8	1.604 1.669 1.717 1.754 1.763 1.806 1.824 1.839 1.839 1.839 1.839 1.839 1.849	62.621 63.639 64.555 65.387 66.150 66.854 67.508 68.117 68.689 69.225 69.731 70.667 71.100 7.514	56.803 57.461 58.792 58.693 59.264 59.807 60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	3.272 4.129 4.992 5.862 6.735 7.612 8.492 9.373 10.256 11.141 12.027 12.913 13.800	86.718 86.537 86.142 86.138 85.912 85.665 85.105 84.804 84.470 84.108 83.715 83.291	71.448 69.278 67.133 65.010 62.906 60.827 58.767 56.729 54.714 52.717 50.743 48.794 46.862	-22.306 -18.925 -16.301 -14.207 -12.498 -11.078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.924 -5.390
900 8 900 8	1.669 1.717 1.754 1.806 1.806 1.808 1.839	63.639 64.555 65.387 66.150 66.854 67.508 68.117 68.689 69.225 69.731 70.211 70.667 71.100 7.514	57.461 58.492 58.493 59.264 59.867 60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	4.129 4.992 5.862 6.735 7.612 8.492 9.373 10.256 11.141 12.027 12.913 13.800	86.537 86.142 86.138 85.912 85.665 85.396 85.105 84.804 84.470 84.108 83.115 83.291	69.278 67.133 65.010 62.906 60.827 58.767 56.729 54.714 52.717 50.743 48.794 46.862	-18.925 -16.301 -14.207 -12.498 -11.078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.934
000 8 100 8	1.717 1.754 1.763 1.806 1.8024 3.839 3.839 3.851 3.851 3.877 3.887 3.889 3.899 3.899 3.899 3.899	64.555 65.387 66.150 66.854 67.508 68.117 68.689 69.225 69.731 70.211 70.667 71.100	58.493 59.264 59.807 60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	5.862 6.735 7.612 8.492 9.373 10.256 11.141 12.027 12.913 13.800	86.342 86.138 85.912 85.665 85.396 85.105 84.804 84.470 84.108 83.715	67.133 65.010 62.906 60.827 58.767 56.729 54.714 52.717 50.743 48.794 46.862	-16.301 -14.207 -12.498 -11.078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.924
100 8 300 8 300 8 400 8 500 8 600 8	1.754 1.763 1.606 1.624 3.839 3.851 3.851 3.877 3.877 3.877 3.898 3.899 3.899 3.991	65.387 66.150 66.854 67.508 68.117 68.689 69.225 69.731 70.211 70.667 71.100	59.264 59.807 60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	6.735 7.612 8.492 9.373 10.256 11.141 12.027 12.913 13.800	85.912 85.665 85.396 85.105 84.804 84.470 84.108 83.715 83.291	62.906 60.827 58.767 56.729 54.714 52.717 50.743 48.794 46.862	-12.498 -11.078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.390
200 8 300 8	1.783 1.804 1.824 1.839 3.851 1.861 1.861 1.877 1.888 1.898 1.898 1.898 1.898 1.898 1.898 1.898	66.150 66.854 67.508 68.117 68.689 69.225 69.731 70.211 70.667	59.807 60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	7.612 8.492 9.373 10.256 11.141 12.027 12.913 13.800	85.665 85.396 85.105 84.804 84.470 84.108 83.715 83.291	60.827 58.767 56.729 54.714 52.717 50.743 48.794 46.862	-11.4078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.924
200 8 300 8	1.783 1.804 1.824 1.839 3.851 1.861 1.861 1.877 1.888 1.898 1.898 1.898 1.898 1.898 1.898 1.898	66.150 66.854 67.508 68.117 68.689 69.225 69.731 70.211 70.667	59.807 60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	7.612 8.492 9.373 10.256 11.141 12.027 12.913 13.800	85.665 85.396 85.105 84.804 84.470 84.108 83.715 83.291	60.827 58.767 56.729 54.714 52.717 50.743 48.794 46.862	-11.4078 -9.879 -8.855 -7.971 -7.200 -6.523 -5.924
400 8 500 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3.824 3.839 3.851 3.870 3.877 3.877 3.883 3.877 3.889 3.899 3.899 3.991 3.991 3.991 3.991	67.508 68.117 68.689 69.225 69.731 70.211 70.667 71.100	60.322 60.812 61.279 61.725 62.150 62.557 62.948 63.322	8.492 9.373 10.256 11.141 12.027 12.913 13.800	85.396 85.105 84.804 84.470 84.108 83.715 83.291	58.767 56.729 54.714 52.717 50.743 48.794 46.862	-9.879 -8.855 -7.971 -7.200 -6.523 -5.924 -5.390
500 6 600 7 700 6 800 6 800 6 900 6 7000 6 7000 6 7000 7 7	3.839 3.851 3.861 3.870 3.877 3.883 3.889 3.889 3.899 3.901 8.901	68.689 69.225 69.731 70.211 70.667 71.100	61.279 61.725 62.150 62.557 62.948 63.322	10.256 11.141 12.027 12.913 13.800	85.105 84.804 84.470 84.108 83.715 83.291	56.729 54.714 52.717 50.743 48.794 46.862	-8.855 -7.971 -7.200 -6.523 -5.924 -5.390
600 6 700 6 800 6 900 6	3.851 3.870 3.877 3.877 3.883 3.889 3.889 3.899 3.901 8.901	68.689 69.225 69.731 70.211 70.667 71.100	61.725 62.150 62.557 62.948 63.322	11.141 12.027 12.913 13.800	84.470 84.108 83.715 83.291	52.717 50.743 48.794 46.862	-7.200 -6.523 -5.924 -5.390
700 8 800 8	3.861 3.870 3.877 8.863 3.889 4.693 3.889 8.901 8.901	69.225 69.731 70.211 70.667 71.100	62.150 62.557 62.948 63.322	12.027 12.913 13.800	84.108 83.715 83.291	50.743 48.794 46.862	-6.523 -5.924 -5.390
700 8 800 8	3.861 3.870 3.877 8.863 3.889 4.693 3.889 8.901 8.901	69.225 69.731 70.211 70.667 71.100	62.150 62.557 62.948 63.322	12.027 12.913 13.800	84.108 83.715 83.291	50.743 48.794 46.862	-6.523 -5.924 -5.390
800 (800 (800 (800 (800 (800 (800 (800	3.870 3.877 3.883 3.889 3.889 3.899 8.901 8.904	69.731 70.211 70.667 71.100	62.557 62.948 63.322	12.913	83.715 83.291	48.794 46.862	-5.924 -5.390
1900 2100 2100 2100 2200 2400 2500 2600 2600 2690 2690 2690 2690 3100	3.877 8.883 8.889 4.693 8.898 8.901 8.904	70.667 71.100 71.514	62.94B 63.322	13.800	83.291	46.862	-5.390
2100 2200 2300 4400 2500 2500 2700 2890 2890 2890 2890 2890 3000	3.889 4.693 8.898 9.901 8.904	70.667 71.100 7514	63.322				
2200 2300 2400 2500 2500 2800 2890 2890 2890 3100 3100 3300 3300 3300	4.698 8.898 8.901 8.904	7, .514	63.683				
2500 (4.698 8.898 8.901 8.904	7, .514	024041	15 577	93 3/3	42 A=2	
7300 (8.901 8.901 8.904		64.029	15.577 16.466	82.342 81.813	43.073 41.219	-4.482
2400 (2500 (9.401 8.404 8.407		64.363	17.356	81.246	39.385	-3.742
2500 2700 2800 2890 2900 2900 3100 3100 3100 3100 3100 3100	8.407	72.28A	64.686	18.246	80.637	37.579	-3.42
27.00 (280) (2800 (2800 (280) (2800 (2800 (2800 (2800 (2800 (2800		72.651	64.997	19.136	79.985	35.800	-3.129
27.00 (280) (2800 (2800 (280) (2800 (2800 (2800 (2800 (2800 (2800		73.001	45.208	20.027	70. 204	34 A47	_2 04
2800 2890 2890 2900 3100 3200 3300 3400 3500		73.337	65.298 65.540	20.027 20.917	79.290 78.549	34.047 32.314	-2.861 -2.61
2890 1990 1990 1900 1900 1900 1900 1900	8.912	73.661	65.37/	21.809	71.761	30.621	-2.39
2890 2900 3100 3100 3300 3300 3400 3500	8.714	73.943	66.119	42.611	77.009	29.117	-2.20
1900 1000 1100 1100 1100 1100 1100 1100	8.414	73.943	66.119	22.611	70.359	29.117	-2.20
3100 1200 1300 3400 3500	8.914	73.974	66.146	22.700	70.300	28.980	-2.18
3200 3400 3400 3500	8.416	14.276	66.412	23.591	69.715	27.564	-2.00
3200 3400 3400 3500	e.918	74.568	46.471	24.483	69.129	26.167	-1.84
3400 3400 3500 3600	8.914	74.852	66.671 66.922	25.375	58.540	24.790	-1.69
3400 3500 3600	8.921	75.126	67.166	26.267	67.949	23.433	-1.55
3600	8.422	75.342	67.404	27.159	67.3 7	22.093	-1.42
	8.9.3	75.651	67.636	TH.051	46.74	20.766	-1.29
		75 007	47 647	39.044	44 141	19.465	-1.18
3700	8.924 8.925	75.902 76.147	67.862 68.083	28.944 43.836	66•16' 65•567	18.178	-1.18 -1.07
	8.926	76.185	68.298	30.729	64.967	16.906	-C.97
	8.927	76.617	68.509	31.621	64.365	15.639	-0.87
	8.928	76.843	68.714	32.514	63.762	14.408	-0.78
		77 462	(9 01 -	11 607	63.157	13.177	-0.70
. •	8.92H	77.063 77.278	68.915 69.112	33.407 34.300	62.550	11.966	-0.62
	8.929 8.930	77.489	69.304	35.191	61.941	10.776	-0.24
	8.430	77.694	69.493	36.086	61.330	9.583	-0.47
	8.931	77.895	69.671	36.979	60.71P	8.415	-0.40
				17 072	40.103	7 74 7	_A
	8.931	78.041 78.283	69.858 70.035	37.872 38.765	60.103 59.4 8 5	7.263 6.124	-0.34 -0.28
	6.932	78.471	70.209	39.658	19,855	4.992	-0.22
	8.932	78.655	70.379	40.551	58.241	3.886	-0.17
4900 4965	8.933	78.773	70.488	41.132	57.834	1.168	-0.13
	A.933	74.773	70.488	41 - 137	-83.463	.168	-5.13
5000	8.933	78.836	70.547	1.445	-83.767	3.775	-0.16
							4
	8.411	74.012	70.711	42.338	-84.663 -85.591	5.534 7.311	-0.23 -0.30
	A. 934	79.186	70.872 71.331	43.231 44.125	-86.549	9.111	-0.30
	8.934 8.434	74.156 79.523	71.331	45.018	-87.539	10.930	-0.44
5400 5500	A.735	79.687	71.340	45.912	-88.557	12.760	-0.50
. • • •					00 . 22	,, ,,	
5600	N. 435	77.648	71.490	46.805	-89.608 -90.688	14.610	-0.57
5700	P . 435	RO.006	71.638	47.699 48.592	-91.800	18.380	-0.69
5800	8.415	80.162 80.314	71.784 71.927	49.486	-92.943	20.278	-0.75
5900 6000	8.436 8.936	80.465	77.068	50.379	-94.122	22.218	-0.80
avor		• • •					

MOLYBDENUM MONOXIDE (MoO) (IDEAL MOLECULAR GAS) gfw = 111.95

$$\Delta H_{f0} = 87.413 \text{ kcal gfw}^{-1}$$

$$\Delta H_{1298, 15} = 87.400 \text{ kcal gfw}^{-1}$$

Ground State Configuration = $^{1}\Sigma$

$$S_{298.15}^{\bullet} = 54.587 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$H_{298.15}^{\bullet} - H_{0}^{\bullet} = 2.116 \text{ kcal gfw}^{-1}$$

				cr	n - 1				
State	8	E	ω _e	ωe _x e	ω _e y _e	B _e	a _e	γ _e x 10 ⁵	D _e x 10 ⁶
¹ Σ	1	0.0	840	-	-	0.41076	**	-	-
								}	

Heat of Formation

Based on mass spectrometric observations of De Maria et al

Heat Capacity and Entropy

Calculated using above estimated spectroscopic constants. Further details by Barriault, et al. 2

- De Maria G. et al, J. Chem. Phys. 32, 1373 (1960).
 Barriault, R. J., et al, ASD TR 61-260 (May 1962), Pt. 1.

Reference State for Calculating AH²₁, AF²₁, and Log K_p: Solid Mo from 0° to 2890°, Liquid Mo from 3890° to 4965°K, Gaseous Mo from 4965° to 6000°K; Gaseous O₂; Solid MoO₂.

		cal/°K glv Kcal/gfv Kcal/gfv							
T,*K	(°	۶°	(FT - H ₂₉₈)/T	HT - H298		V by	Log Kp		
0	0.000	0.000	INFINITE	-1.995	-139.628	-139.628	INFINITE		
298.15	13.380	11.060	11.060	0.000	-140.800	-127.450	93, 419		
300	13.421	11.143	11.060	0.025	-140.799	-127.367	92.782		
400	15.075	15.232	11.607	1.450	-140.668	-122.906	67.150		
500	16.148	18.730	12.690	3.020	-140.437	-118.489	51.789		
600	16.996	21.774	13.957	4.690	-140.145	-114.128	41.569		
700	17.739	24.468	15.268	6.440	-139.807	-109.817	34 . 285		
800	18.425	26.898	16.573	8.260	-139.425	-105.559	28.836		
900	19.079	29.112	17.845	10.140	-139.009	-101.350	24.610		
1000	19.712	31.145	19.075	12.070	-138.567	-97.189	21.240		
1100	20.332	33.022	20.258	14.040	-138.116	-93.073	18.491		
1200	20.943	34.781	21.398	16.060	-137.644	-89.000	16.20		
1300	21.547	36.429	22.491	18.120	-137.161	-84.968	14.284		
1400	22.147	37.992	23.542	20.230	-136.655	-80.972	12.64		
1500	22.743	39.503	24.556	22.420	-136.085	-77.013	11.220		
1600	22.337	41.007	25.538	24.750	-135.412	-73.096	9.98		
1700	23.929	42.565	26.494	27.320	-134.532	-69.231	8.900		
1800	24.519	44.256	27.434	30.280	-133.295	-65.425	7.94		
1900	25-108	46.180	28.369	33.840	-131.493	-61.701	7.09		
2000	25.695	48.457	29.317	38.280	-128.848	-58.094	6.341		

(CONDENSED PHASE) gfw = 127.95 MOLYBDENUM DIOXIDE (MoO₂)

 $\Delta H_{f298, 15}^{o} = -139.628 \text{ kcal gfw}^{-1}$

S_{298, 15} - 11, 060 cal degK⁻¹gfw⁻¹

 $H_{298,15}^{\circ} - H_{0}^{\circ} = 1.995 \text{ kcal gfw}^{-1}$

$$C_p^o = 14.11 + 5.82 \times 10^{-3} \text{ T} - 2.18 \times 10^5 \text{ T}^{-2} \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$
 298, $15^o \text{K} \le T \le 2000^o \text{ K}$

Structure

MoO2 retains a solid structure to its disproportionation temperature.

Heat of Formation

Heat of formation by Mah. 1

Heat Capacity and Entropy

Low-temperature data by King. 2 High-temperature data by King et al, 3 valid to 1800° K extrapolated to 2000° K.

Melting and Vaporization

MoO2 disproportionates rather than melts.

Further details by Barriault et al. 4

- 1. Mah, A. D., J. Phys. Chem. 61, 1572 (1957).
- 2. King, E. G., J. Am. Chem. Soc. 80, 1799 (1959).
- 3. King, E. G. et al, U. S. Bur. Mines, Rept. 5064 (1960).
- 4. Barriault, R. J. et al , ASD TR 61-260 (May 1962), Pt. 1.

Reference State for Calculating AH₁, AF₁, and Log K_p: Solid Mo from 0° to 2890°K, Liquid Mo from 2890° to 4965°K, Gaseous Mo from 4965° to 6000°K;

Gaseous O₂, Gaseous MoO₂

T, °K	("		RI		Kcal/gfw		
٠, ٨	(P	,1	(E ¹ H ₃₀₈)/1,	HT - H298		A F 2)	Log Kp
0 298-15	0.000	0.000	INFINITE	-2.670	0.207	4 201	
300	10.663 10.683	63.874	63.874	0.000	0.297 -0.200	0.297	INFINITE
400	11.674	63.940	63.874	0.020	-0.204	-2.596 -2.611	1 • 903 1 • 902
500	12.256	67.151 69.817	64.306	1.138	-0.380	-3.386	1.850
		4,401,	65.149	2.334	-0.523	-4.118	1.800
600	17.677	72.091	66.121	3.582	-4		
700 800	12.962	74.068	67.118	4 • 865	-0.653 -0.782	-4.826	1.758
900	13.162	75.813	68.098	6.172	~0.913	-5.513 -6.179	1.721
.000	13.307	77.372	69.044	7.496	-1.053	-6.829	1.688
.000	13.414	78.780	69.748	8.832	-1.205	-7.462	1 • 6 3 1
100	13.496	00 012					1.071
200	13.559	80.06 <i>2</i> 81.240	70.810	10.178	-1.378	-8.081	1.605
300	13.609	82.327	71.631	11.531	-1.573	-8.681	1.581
400	13.649	-3.337	72.412 73.157	12.889	-1.792	-9.265	1.558
500	13.682	4.280	73.867	14.252	-2.033	-9.832	1.535
			. 3 • 00 7	15.619	-2.286	-10.379	1.512
1600	13.709	85.164	74.546	16.988	-3.576	10 000	
700	13.731	85.995	75.195	18.360	-2.574 -2.892	-10.909	1 • 490
1800	13.750	86.781	75.817	19.734	-3. 41	-11.422 -11.912	1.468
900	13.767	87.525	76.414	21.110	-3.623	-17.384	1.446 1.424
000	13.780	88.231	76.967	22.488	-4.040	-12.834	1.402
100	13 103	00 -4					
200	13.792	88.904	77.539	23.866	-4.496	-13.264	1.380
100	17.803	87.546 80.140	78.070	25.246	-4.390	-13.669	1.358
400	13.812	90.160	78.583	26.627	-5.524	-14.053	1.335
500	13.827	90.748	79.077	28.008	-6.102	-14.410	1.312
W.		91.312	74.556	29.391	-6.725	-14.745	1.289
600	13.833	91.854	80.018	30.714	-7.394	-16 Ac:	
776	13.839	92.376	80.466	32.157	-8.112	-15.051	1.265
2800	12.844	97.880	80.901	33.541	-8.875	-15.333 -15.585	1 • 241
890	13.848	91.317	81.271	.788	-9.612	-15.762	1.216
2890	13.848	93.317	81.271	34 - 788	-16.262	15.762	1.192
900	13.848	73.366	81.322	34.926	-16.319	-15.785	1.190
3000	13.852	91.835	81.732	36.311	-16.886	-15.759	1.148
3100	13.856	94.290	82.129	37.696	-17.458	-15.708	1.107
3700	13.859	44.729	82.516	39.082	-18.034	-15.648	1.069
3300 3400	13.862	45.156	A2.893	40+468	-18.613	-15.563	1.031
350C	13.865 13.868	95.570 95.972	83.260	41.855	-19.104	-15.463	0.994
,,,,,	11000	4417	83.617	43.241	-19 ,.	-15.341	0.958
3600	13.870	96.363	83.966	44.628	-20.37.	-15 204	4 4 4 4 4 4 4
1700	13.872	96.743	84.306	44.015	-20.969	-15.206 -15.052	0.923 0.989
1800	13.874	97.113	84.638	47.403	-21.566	-14.885	0.856
3900	13.876	97.473	84.963	48.790	-22 168	-14.703	C . 824
400C	13.87H	97.824	85.280	50.178	-22.722	-14.500	0.792
							3
410C	13.879	98.167	85.790	51.566	-23.380	-14.289	0.762
470C	13.881	98.501	85.893	52.954	-23.992	-14.057	3.731
4300	13.882	98.4.8	66.190	54.342	-24.607	-13.807	C • 702
400	13.884	94.147	84.481	55.730	-25.227	-13.548	0.673
450C	13.885	4 459	86.766	57.119	-25.849	-13.280	0.645
400	13 004	06 14.	0 / 0/ .	60 647	-24 / 74	-12 000	A
600 300	13.986	91.764	87.046 87.319	58.507	-26.477	-12.990	0.617
.700 •800	13.887	100.061	87.319 87.588	59.896 61.294	-27.109 17. 48	-12.690	0.590
900	13.888	100.642	87.85	61.284 62.673	- 48 - 32	-12.374 -12.044	0.563
965	13.897	100.624	88.019	61.576	-28.816	-11.817	0.523
965	13.890	100.824	85.019	63.576	-170.113	-1 . 817	0.520
5000	13.890	100.922	88.110	4.062	-170.426	-10.705	0.468
							, , , , , ,
5100	13.890	10,.198	88.364	65.451	-171.351	-7.502	0.321
5200	13.891	101.467	110.88	06.840	-172.313	-4.280	0.180
300	11.892	101.732	86.858	68.229	-173.312	-1.039	0.043
540C	13.893	101.942	A4.049	69.619	-1/4.349	2.225	-0.090
1500	11.893	102.246	P +. 136	71.008	-175.425	5.511	-0.219
5600	11.894	102.497	84.569	77.397	-176.543	8.803	-0.344
5700	13.895	102.743	84.,48	73.787	-177.103	12.135	-0.465
5800	13.695	10. 984	10.021	75.176	-178.911	15.480	-0.496
5900	13.896	101.222	90.245	76.561	-180.169	18.839	-0.698
3000	13.896	103.45	40.463	77.955	-181.484	22.236	-0.810
			May 1962				СН₩

MOLYBDENUM DIOXIDE (MoO2) (IDEAL MOLECULAR GAS) gfw = 127.95

$$\Delta H_{f0}^{0} = 0.297 \text{ kcal gfw}^{-1}$$

$$\Delta H_{1298, 15}^{o} = -0.200 \text{ kcal gfw}^{-1}$$

$$S_{298,15}^{0} = 63.874 \text{ cal deg K}^{-1} \text{gfw}^{-1}$$

$$H_{298, 15}^{0} - H_{0}^{0} = 2.670 \text{ kcal gfw}^{-1}$$

Vibrational Levels and Multiplicities

ω cm ^{−1}	ω, cm ⁻¹
824 (1)	857 (1)
367 (1)	

Bond lengths and angles:

Mo-O distance = 1.73 A

O-Mo-O Angle = 107 deg

Product of moments of inertia: $I_A I_B I_C = 6.2826 \times 10^{-115} g^3 cm^6$, $\sigma = 2$

Heat of Formation

Average of calculations based on data by DeMaria $\underline{et\ al}^{1}$ and by Burns et al. 2

Heat Capacity and Entropy

Calculated on polyatomic gas-computer program using estimated spectroscopic constants.

Further details by Barriault et al. 3 '

- 1. DeMaria, G. et al, J. Chem. Phys. 32, 1373 (1960).
- 2. Burns, R. et al, J. Chem. Phys. 32, 1363 (1960).
- 3. Barriault, R. et al, ASD TR 61-260 (May 1962), Pt. 1.

CHW

Reference State for Calculating \H_1^*, \AF_1^*, and Log Kp: Solid Mo from 0° to 2890°K, Liquid Mo from 2890° to 4965°K, Gaseous Mo from 4965° to 6000°K; Gaseous O2, Solid MoO3 from 0° to 1070°K, Liquid MoO3 from 1070°

T, °K		cul/cK	Blw		Kenl/gfw		
•. •	رده	Ϋ́T	-(FT - H298)/T	HT - H298	ΔH	A F	Log Kp
0	0.000	(.000	1451				
298.15	17.934	18.580	INFINITE	-3.009	-176.905	-176.905	INFINIT
300	17.977	18.671	18.580	0.000	-178.100	-159.686	117.04
400	19.777	24 - 130	18.581	0.033	-178.098	-159.572	116.24
500	21.030	28.684	19.310	1.928	-177.851	-153.431	83.82
		20000	20.742	3.971	-177.513	-147.361	64.406
600	22.067	32.612	22				04.400
700	23.001	36.084	22.400	6.127	-177.113	-141.369	51.491
800	23.882	39.213	24.11.	6.381	-176.659	-135.447	42.28
900	24.731	42.076	25.805	10.726	-176.152	-129.593	35.401
1000	25.560		27.457	13.157	-175.591	-123.807	30.06
	* > * > 60	44.724	29.053	15.671	-174.979	-118.084	25 • 806
1070_	26.133	46.473	30.136				23.60
1070	30.200	57.392		17.481	-174.526	-114.123	23.309
1100	30.200	58.227	30.891	29.164	-162.843	-114.123	23.309
1200	30.200	60.855		30.070	-162.519	-112.756	22 • 401
1300	30.200	63.272	33.280	33.090	-161.471	-108.277	19.719
1400	30.200	65.511	35.495	36-110	-160.456	-103.887	17.464
1500	30.200		37.561	39.130	-159.47.	-99.576	15.544
	30.4200	67.594	34.494	42 - 150	-158.509	-95.331	13.889
							. ,

MOLYBDENUM TRIOXIDE (MoO3) (CONDENSED PHASE)

gfw = 143.95

 $\Delta H_{f298, 15}^{o} = -178.100 \text{ kcal gfw}^{-1}$

S298, 15=18, 58 cal degK-1gfw-1

 $T_{m} = 1070^{\circ} K$

 $\Delta H_m = 11.683 \text{ kcal gfw}^{-1}$

 $H_{298, 15}^{o} - H_{0}^{o} = 3.009 \text{ kcal gfw}^{-1}$

 $C_{p}^{o} = 17.97 + 7.80 \times 10^{-3} \text{ T-2.} \ 10 \times 10^{5} \text{ T}^{-2} \text{ cal deg K}^{-1} \text{ g fw}^{-1}$ 298. $15^{o} \text{ K} \le T \le 1070^{o} \text{ K}$

 $C_p^o = 30.2 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

 1070° K < T < 1500° K

Structure

MoO3 melts at 1070°K.

Heat of Formation

Based on Mah. 1

Heat Capacity and Entropy

Low-temperature data from Kelley and King. 2 High-temperature data by King et al.

Melting and Vaporization

The melting point is an average of four values.

Further details given by Barriault et al. 4

Referen es

- Mah, A. D., J. Phys. Chem. 61, 1572 (1957).
 Kelley, K. and E. King, U. S. Bur. Mines, Bull. 592 (1961).
 King, E. et al, U. S. Bur. Mines, Rept. 5664 (1960).
 Barriault, R. et al, ASD TR 61-260 (May 1962), Pt. 1.

Reference State for Calculating MI, AF, and Log Kp. Solid Mo from 0° to 2890°K, Liquid Mo from 2890° to 4965°K, Gaseous Mo from 4965° to 6900°K, Gaseous MoO.

1, °K	(°	çal/'K		C	_Kcal/gfw		
•, •	ф.	12	-(FT H ₂₉₈)/T	H ₁ - H ₂₉₈	7 H	1 F ()	Log Kp
٥	0.000	0.000					
298 - 15	14.498	0.000	INFINITE	-3.227	-80.023	-80.023	INFINIT
300	14.533	66.653 66.742	66.653	0.000	-81.000	-76.919	56.38
400	16.105	71.153	66.653 67.244	0.027	-81.004	-76.894	56.01
500	17.147	74.867	68.407	1 • 5 6 4 3 • 2 3 0	-81.115 -81.154	-75.504 -74.094	41.25. 32.38
600	17.838	78.059	40. 70.				32 • 30
700	18.308	80.846	69.756 71.145	4 - 982	-81.158	-72.682	26 47
800	18.637	83.313	72.515	6 • 790 8 • 639	-81.150 -81.139	-71.271	22.25
900	18.876	85.523	73.840	10.515	-81.133	-69.861 -68.451	19.58 16.62
1000	19.052	87.521	75-110	12.412	-81.138	-67.041	14.65
1100	19.186	84.344	76.322	14.324	-81 - 165	-65.629	
1200	19.291	91.018	77.478	16.248	-81.213	-64.716	13.03
1300 1400	19.374	92 - 565	78.500	18.181	-81.2A5	-62.798	10.55
1500	19.44C 19.494	94.004	79.631	20.122	~81.380	-61.373	9.58
	17.494	95.347	BO.634	22.069	-81.489	-59.940	A . 73
1600	19.539	96.606	81.593	24.021	-81. 32	-58.496	7.99
1700	19.576	47.137	82.512	15.977	-A1.45A	-57.049	7.33
1800 1900	19.607	98.912	£3.392	27.736	-82.016	-55.586	6.74
2006	19.657	99.973	84.737	29.898	-82.259	-54-110	6.224
	1 - 0 0 17	100.761	85.049	11 - 862	-82.543	-52.620	5.75
210(1,.677	1.1.940	85.831	33.829	-82.860	-51.116	5.31
2200	19.694	102.856	86.584	35.798	-83.221	-44.597	4.92
2300 2400	19.709	10:.732	87.311	37.768	-83.624	-48.059	4.56
2500	19.722 19.734	104.571	88.013 88.691	39.739 41.712	-94.072	-46.507	4 • 23
				710117	-84.569	-44.930	3.920
2600 2100	19.744	106.150	89.348	43.686	-85.113	-43.334	3 . 64
2800	19.762	107.614	84.984 90.601	45.661	-85.709	-41.715	3.37
2890	14.76H	101.614	91.140	47.637 49.415	-86.353 -86.983	-40.071	3.120
2690	19.766	108.23%	71.140	49.415	-93.613	-38.576 -38.576	2.91
2900	19.769	108.308	91.200	49.613	-93.677	-38.384	2.891
300C	19.776	100.478	91.781	51.590	-94.128	-36.46R	2.65
3100	19.782	10%.626	92.346	53.568	-94.586	-34.531	9 . 1 .
1200	19.767	110.255	42.846	55.547	-95.050	-32.598	2.434
3300	19.792	110.864	43.432	57.526	-95. 5	-30.634	2.02
3400	19.797	111.455	43.953	27.505	-95.9	-28.665	1.84
3500	19.801	115.058	94.461	61.485	-96.4"	-26.670	1.66
1600	19.805	112.586	94.957	63.466	-96.962	-24.667	1.49
3 7 CC	19.809	113.129	95.441	65.446	-97 453	-22.655	1.330
1800	19.812	111.657	14.613	67.427	-97.949	-20.626	1.18
3900	19.815	114-172	+6.375	69.409	-98.451	-18.584	1.04
4000	19.818	114.674	46.926	71.190	-98.95H	-16.528	0.90
4100	19.821	115.163	97.167	13.372	-99.470	-14.461	0.77
4200	1 / . 8 2 3	111.641	97.699	75.354	-99.988	-12.382	C . 54
4300	19.825	116.107	98.122	77.337	-100.509	-10.281	C • 52
440C 4500	19.827 14.829	116.563 117.00 -	98.536 98.941	79.319 81.302	-101.04 -101.573	-8.180 -6.066	0.40
		• • • • •				20000	
4600	19.831	117.444	94.339	93.295	-10314	-3.933	0.18
4700	19.873	117.871	94.729	85.269	0.062	-1.791	0.08
4800 4900	19.835	116.289	100-111	97.252	-103.219	0.370	-0.01
490C 4965	19.836 19.837	118.098	100.486 100.725	87.235 10.525	-101.786 -104.161	7.533 3.957	-0.11 -0.17
4965	19.637	118.958	100.725	3.525	-245.458	3.957	-0.17
5000	19.838	119.098	100.854	91.219	-245.745	5.710	-0.25
100	10.030	11	121 21	21. 202	. 7. 4 . 7.7	14 7	
5100 5200	19.839	119.491	101.216	23.203 95.187	-246.600 -247.497	10.746 15.798	-0.460
5300	19.841	120.254	101.920	47.171	-248.438	20.871	-0.86
400	19.843	120.626	102.263	99.155	-249.245	25.969	-1.051
5500	19.844	120.489	102.600	101.139	-250.458	31.086	-1.235
5600	19.845	171.347	102.937	103-124	-251.544	46.216	-1.41
5700	19.846	121.648	103.258	10504	-252.686	41.371	-1.58
5800	19.847	122.043	103.579	101.093	53.895	46.551	-1.75
5900	19.847	122.383	103.872	107.378	-255.164	51.737	-1.910
5000	19.848	122.716	10400	111.061	56.015	50.464	-2.67
			M (y 19t				сни

MOLYBDENUM TRIOXIDE (MoO3) (IDEAL MOLECULAR GAS) gfw = 143.95

$$\Delta H_{f0}^{0} = -80.023 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298, 15}^{o} = -81.000 \text{ kcal gfw}^{-1}$$

$$S_{298, 15}^{o} = 66.653 \text{ cal deg} K^{-1} \text{gfw}^{-1}$$

 $H_{298, 15}^{\circ} - H_{0}^{\circ} = 3.227 \text{ kcal gfw}^{-1}$

Vibrational Levels and Multiplicities

ω, cm ⁻¹	ω, cm ⁻¹
800 (1)	897 (2)
344 (1)	317 (2)

Bond lengths and angles:

Mo-O distance = 1, 73 Å

O-Mo-O Angle = 120 deg

Product of moments of inertia: $I_A I_B I_C = 3.392032 \times 10^{-114} \text{g}^3 \text{cm}^6$, $\sigma = 6$

Heat of Formation

An average based on the works of DeMaria et al and Burns et al. 2

Heat Capacity and Entropy

Calculated on polyatomic gas-computer program using estimated spectroscopic constants.

Further details given by Barriault \underline{et} al. 3

- DeMaria, G. et al, J. Chem. Phys. 32, 1373 (1960).
 Burns, R. et al, J. Chem. Phys. 32, 1363 (1960).
 Barriault, R. J. et al, ASD TR 61-260 (May 1962), Pt. 1.

Reference State for Calculating $^{A}H_{p}^{e}$, $^{A}F_{p}^{e}$, and Log $^{K}K_{p}$:
Gaseous $^{N}N_{p}$ from 0 to 6000 ^{e}K

			eous N, fro	-			
		cel/°K gfw			Kral/glw		
T, °K	(c)	s _T -0	т - н _{уув} у/т\	HT - H298	ΛH _j	1 F 1	Log Kp
^	0.000	0 000 1	NC 1 N 1 T C	-1 (01	112 514	112 626 1	NEINITE
0 298•15	4.968	0.000 1 36.615	NEINITE	0.000	112.536	112.536 1	-79.812
300	4.968	36.645	36.615 36.615	0.009	112.983	108.861	-79.301
400	4.968	38.074	36.809	0.506	113.131	107.465	-58.713
500	4.968	39.183	37.177	1.003	113.277	106.032	-46.344
600	4.968	40.089	37.590	1.500	113.417	104.569	-38.087
700	4.968	40.855	38.003	1.996	113.550	103-084	-32.183
800	4.968	41.518	38.462	2.493	113.675	101.580	-27.749
900	4.968	42.103	38.781	2.990	113.792	100.061	-24.297
1000	4.968	42.627	39.140	3.487	113.902	98.530	-21.777
1100	4.968	43.100	39.479	3.984	114.005	96.987 95.437	-19.269 -17.381
200	4.968	43.533 43.930	39.799 40.101	4.481	114.192	93.879	-15.782
1300	4.968	44.298	40.388	5.474	114.278	92.312	-14.410
1400 1500	4.968	44.641	40.661	5.971	114.361	90.740	-13.220
1600	4.968	44.962	40.919	6.468	114.440	89.164	-12.179
1700	4.968	45.263	41.166	6.965	114.51€	87.580	-11.259
1800	4.968	45.547	41.402	7.461	114 87	85.993	-10.440
1900	4.969	45.816	41.627	7.958	114.658	84.402	~9.708
2000	4.969	46.070	41.843	8.455	114.726	82.810	-9.049
2100	4.970	46.313	42.050	8.952	114.792	81.211	-8.451 -7.908
5300	4.971	40.544	42.249	9.449	114.857	79.610	-7.412
2300	4.972	46.765	42.441	9.946	114.920	78.006 79.402	-6.957
2400	4.975 4.978	46.977 47.180	42.625 42.803	10.444	114.982 115.042	74.792	-6.538
2500					115.102	73.179	-6.151
2600	4.982	47.375	42.976	11-439	115.162	71.567	-5.793
2700	4.987	47.563	43.142	11.938 12.437	115.162	69.952	-5.460
2800	4.993	47.745	43.459	12.936	115.278	68.334	-5.150
3000 3000	5.001 5.010	47.920 48.090	43.459	13.437	115.337	66.714	-4.86
	5.022	48.254	43.758	13.938	115.397	65.091	-4.589
1100	5.022	48.414	43.901	14.441	115.455	63.469	-4.33
3200	4.050	48.569	44.040	14.945	115.515	61.843	-4.09
3300	5.066	48.720	44.176	15.451	115.575	60.215	-3.87
3400 3500	5.085	48.867	44.308	15.959	115.638	58.584	-3.65
3600	5.107	49.011	44.436	16.468	115.700	56.956	-3.45 -3.26
3700	5.130	45.151	44.562	16.980	115.707	55.323	-3.08
3800	5.155	49.288	44.684	17.494	115.83	53.691 52.054	-2.91
3900	5.183	49.422	44.804	18-011	115.902	50.416	-2.75
4000	5.213	49.554	44.921	18.531			
4100	5.244	49.683	45.036	19.054	116-048	48.774 47.137	-2.60 -2.45
4200	5.278	49.810	45.148	19-590		45.487	-2.31
4300	5.314	49.935	45.258	20-110		43.843	-2.17
4400	5.351 5.390	50.057 50.178	45.366 45.471	20.643 21.180		42.195	-2.04
4500	7 . 370					40.544	-1.92
4600	5.431	50.297	45.575 45.676	21.721		38.899	-1.80
4700	5.473	50.414				37.246	-1.69
4800	5.517	50.530				35.584	
4900 5000	5.562 5.608	50.757				33.930	-1.4
9000				24.49	116.974	::.267	-1.3
5100	5.654	50.686					-1.2
5200	5.702	50.978				28.948	
5300	5.751	51.088				27.277	
5400 5500	5.800 5.850	51 • 1 9 5 • 1 • 3 0 2					-1.0
5500				27.37	9 117.592		
5600	5.899 5.950	51.406 51.51	46.600	27.97	1 117-730	22.260	5 - J.8
5700	6.000	51.61	44.69	28.56			
5800 5900	6.050	51.720	46.11		1 118.019 9 118.170		
6000	6.100	51.82	2 46.85				
				1962			RCF

NITROGEN, MONATOMIC (N) (IDEAL GAS) gfw = 14.008 $\Delta H_{f0}^{o} = 112.536 \text{ kcal } gfw^{-1}$ $\Delta H_{f298.15}^{o} = 112.980 \text{ kcal } gfw^{-1}$ $S_{298.15}^{o} = 36.615 \text{ cal } \deg K^{-1} gfw^{-1}$ $H_{298.15}^{o} = -H_{0}^{o} = 1.481 \text{ kcal } gfw^{-1}$

Electronic Levels and Multiplicities

Atomic energy levels from Moore. 1

Heat of Formation

Based on review by Brewer and Scarcy. 2

Heat Capacity and Entropy

Calculated on monatomic gas-computer program.

Further details in report by Barriault et al. 3

References

- 1. Moore, C. Atomic Energy Levels, Vol. 1, Nat. Bur. Stds. (1949).
- 2. Brewer, L. and A. Searcy, Ann. Rev. Phys. Chem. 8, 259 (1956).
- 3. Barriault, R. et al, ASD TR 61-260 (May 1962), Pt. 1.

NITROGEN MONATOMIC (N) IIDEAL GAS)

SUMMARY OF UNCERTAINTY ESTIMATES

GFW = 14.008

		cal 'K	gi+		_Kial place	•	
ז "ג	ردئ	5 _T	-1FT - H298' T	HT - H208	\H ₁	VI,	trak,
298.15	±0.000	±0.002	± 0.002	± 0.000	±0.100	±0.100	0.076
1000	±0.000	±0.002	± 0.002	±0.000	*0.100	±0.100	0.02
2000	±0.000	*0.002	± 0.002	± 0.000	±0.100	£0.110	0.01
3000	±0.000	£0.602	±0.002	± 0.001	+0.100	± 0.110	0.01
4000	±0.000	±0.002	± 0.002	± 0.001	±0.100	±0.120	0.00
5000	±0.001	#0.005	± 0.002	±0.001	± 0 • 100	+0.120	0.00
6000	±0.001	±0.002	± 0.303	± 0.002	+0.100	10.130	0.00

Reference State for Calculating AH*, AF*, and Log Kp. Solid Nb from 0* to 2741*K, Liquid Nb from 2741* to 5031*K, Gaseous Nb from 5031* to 6000*K; Gaseous N₂, Solid NbN from 0* to 2323*K, Liquid NbN from 2323*

T, °K	()		Elw		Kcal/etw.		
	` P	1,	-(E ¹ H ₂ ⁵⁰⁸)/1	`н _т н	298 AH	AF	Log K
0	0.000	0.000	INFINITO			•	в р
298•15 300	10.300	10.500	10.500	-1.846		-56.046	INFINITE
400	10.310 10.850	10.564	10.500	0.000 0.019	-000	-50.124	36.740
500	11.390	13.604	10.911	1.077		-50.084	36.485
		16.083	11.705	2.189		-47.961 -45.872	26 - 204
600 600	11.930	18.207	12.615			47.012	20.050
700	11.930	18.207	12.615	3 • 35 5 3 • 35 5		-43.815	15.959
800	12.128 12.327	50.061	13.550	4.558		-43.815	15.959
900	12.525	21.694	14.468	5.781	-55.622	-41.794 -39.803	13.048
1000	12.724	23.157 24.487	15.353	7.023	-55.408	-37.838	10.873
			16.201	8.286	-55.189	-35.898	9 • 188 7 • 845
1100	12.922	25.709	17.011	9.568			,
1300	13.121	26.842	17.7A3	10.870		-33.979	6.751
1400	13.319 13.518	27.700	18.521	12.192		-32.081 -30.202	5 . 842
1500	13.716	24.694 29.834	19.227	13.534	-54.276	-28.340	5.077
		27.034	19.203	14.896	-54.034	-26.496	4.424 3.860
1600	13.915	30.725	20.552	1	_		,,,,,
1643	14.000	31.095	20.823	16.277	-51.786	-24.669	3.369
170	15.000	31 - 704	20.823	17.877	-53.676 -52.676	-23.888	3.177
1 ADL	15.000	32.215 33.073	21.196	18.732	-52.476	-23.888 -22.893	3.177
1900	15.000	11.884	21.033	20.232	-52.134	-21.163	2.943 2.569
2000	15.000	34.653	72.446 23.137	21.732	-51.805	-19.451	2.237
2100				23.232	-51.487	-17.755	1.940
2100 2200	15.000	35.385	23.60B	24 - 132	-51.189	-16 077	
2300	15.000 15.000	36 • Cn 3	24.159	26.232	-50.885	-16.077 -17.713	1.673
2323	15.000	16.740 16.849	24.642	27.132	~50.601	-12.760	1.760
23.23	- is ooc -	41.634		28.0.1	-50.537	-12.073	1.136
2400	15.000	42.123	25.360	39.077	-37.537	-12.073	1.136
25C1	1 00	42.716	20.043	40.237	- 19. 129 - 19. 067	-11.488	1.046
2601	15 000				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-10.331	0.903
270	15.000 15.000	41.324	25.536	43.232	-38.816	-9.187	0.772
2741	15.000	44.116	27.422	44.132	-38.57E	-8.051	0.652
2741	15.000	44.116	27.572 21.572	45.347	-38.480	-7.591	0.605
26.00	15.000	44.436	21.914	45. 147	-44.880	-7.591	0.605
5000	35.000	44. 167	28.55	47.732	-44.46R	6.789	2.530
30Cu	15.000	45.470	29.260	49.24.	-44.210	1.435 4.059	0.410
3100						4.077	0.299
1200	15.700 15.000	45.462	24. (01	50.712	-43.952	-2.763	0.195
1100	1:.000	46.439	30.16 30.618	57 - 232	-43.696	-1.441	0.098
14C(15.200	47.146	31.103	53.732 55.232	-43.440	-0.124	0.008
1500	15.000	47.7R3	11.573	56.732	-43.185 -42.931	1.148 2.489	-0.076
1600							-0.155
1700	11.200 11.000	44.200	12.130	58.232	-42.677	3.778	-0.229
igac	15.000	48.616 49.016	37.477	57.732	-42.424	5.068	-0.299
9.0	15.000	44.400	32.903 33.321	61 - 232	-42.171	0.346	°•365
000	15.000	49.786	13.728	64.232	-41.917 -41.068	7 • t 20 8 • 888	-0.427
				0467 12	-41.008	8.484	-0.486
100	15.000	10.156	34.124	65.712	-41.4:	10.150	-0.541
30c	15.000	10.518	44.510	67.232	1-106	11.473	-0.593
400	15.000 15.000	(0.871	34.866	r8.71.	-40.914	12.65	-0.643
500	15.000	51.215 51.552	14.241	70. 17	-47.666	13.950	-0.690
			10.612	71 • •	-40-416	15.133	-0.735
600	15.000	-1.882	35.962	73.232	-40.167	16.366	-0.778
700	15.300	52.205	36.304	74.73	-19.91A	17.591	-0.778
8CC	15.000	52.521	16.619	75 - 232	-37.670	18.812	-0.856
900 00a	15.000	5.7 · R 30	16.966	77.732	-10.47.	20.031	-0.893
oca	15.000	. 4.133	47.286	19 12	~19.175	.1.240	-0.928
031.58	15.000	53.727	17.186	19.706	- 39.097	22 656	A
011.58	15.000	53.727	17.386	79.706	-:01.670	21.555 21.555	-0.936 -0.936
100	15.000	, 4 10	37.620	8C - 732	-2.1.547	24.533	-1.054
200	15.000	53.721	17.90	82 32	-10 . 162	29.010	-1.220
300 600	15.000	44.CO1	16.278	81.712	H81.10.	13.457	-1.380
40 ሮ 50 ሮ	15.000	4.287	78.553 30.703	85.212	-201-019	17.884	-1.533
	15.000	4.461	18.793	H6 * 113	-700.856	42.299	-1.681
600	15.000	54.833	39.577	88.232	-200.698	46.719	-1.823
700	15.000	55.09H	19.356	89.732	-200.545	51.133	-1.960
900	15.000	45.354	19.629	91.232	00.396	55.556	-2.091
200	15.000	55.616	39.898	92.732	-200.252	55.966	-2.221
000	15.000	55.868	40.102	94.232	-200-112	64.173	-2.345

	NIOBIUM NITRIDE (NEN)	(CONDENSED PHASE)	gfw = 106. 918
	▲H ⁹ _{1298. 15} = -56. 5 kcal gfw ⁻¹	S ^o 298. 1	$_5$ = 10, 5 cal degK-1gfw-1
	T _t = 1643 ⁰ K	∆ H _t = 1	l. 0 kcal gfw ^{-l}
	T _m = 2323°K	ΔH _m =	11.0 kcal gfw ⁻¹
	$H_{298, 15}^{\circ} - H_{0}^{\circ} = 1.846 \text{ kcal gfw}^{-1}$		
,	$C_{\rm p}^{\rm o}$ = 8, 69 + 5, 40 x 10 ⁻³ T cal de	gK ⁻¹ gfw ⁻¹ 298, 15	°K≤ T≤ 600°K
	$C_p^0 = 10.7391 + 1.9847 \times 10^{-3} T$	cal degK ⁻¹ gfw ⁻¹ 600°K ≤	T ≤ 1643°K
	Cp = 15, 0 cal degK ⁻¹ gfw ⁻¹	1643 ⁰ K	

Structure

Low-temperature form is hcp. Above 1643°K, it is consider to be fcc.

Heat of Formation

Based on combustion data of Mah and Gellert, 1

Heat Capacity and Entropy

Low-temperature data estimated. Data from 298, $15^{\rm O}$ to $600^{\rm O}{\rm K}$ based on Kelley, $^{\rm Z}$ Data above $600^{\rm O}{\rm K}$ estimated.

Melting and Vaporisation

Heats of transition and melting estimated.

References

- 1. Mah, A. D. and N. L. Gellert, J. Am. Chem. Soc. 78, 3261 (1956).
- 2. K. K. Kelley, U. S. Bur. Mines, Bull. 584 (1960).

NIBBIUM NITRIDE (NEN)

ICONDENSED PHASE!

GFW - 106.918

				cal/°K	g(w_		_		Kcal 'gfw		
T, *K		رحهٔ		ST	-(F	- Н ₂₉₈)/Т	' ′н	г <mark>т - н₂₉₈</mark>	ΔH _f	1 Fi	Log Kp
298.15	*	0.500	±	1.000	±	1.000	ŧ	0.000	±0.400		
600	+	0.500	*	1.350	•	1.098	*	0.151			
600	*	1.000	ŧ	1.350	*	1.098	*	0.151			
1000		1.000	*	1.860	*	1.310	4	0.551			
1643	±	1.000	±	2.357	*	1.630	±	1 - 194			
1643	±	2.000	±	2.966	±	1.630	±	2.194			
2000	*	2.000		3.359	ŧ	1.905	*	2.908			
2323	±	2.000	±	3.658	*	2.128	±	3.554			
2323	±	2.000	•	5.380	*	2.128	±	74554			
3000	±	2.000	*	5.892	*	2.922	*	8.908			
4000	*	2.000	±	6.467	*	3.740	* 1	0.908			
5000	±	2.000	±	6.913	±	4 . 332	#1	2 . 908			
6000	*	2.000	*	7.278	±	4.793	± 1	4.968			

Reference State for Calculating AH₄*, AF₄*, and Log K_p: Solid Nb from 0° to 2741°K, Liquid Nb from 2741° to 5031°K, Gaseous Nb from 5031° to 6000°K; Gaseous N₂, Solid Nb₂N from 0° to 2673°K

		cal/°K g					
T,°K	رهٔ	s _T	-(F _T - H ₂₉₈)/τ	H _T - H ₂₉₈	ΔḦ́	V E	Log Kp
٥	0.000	0.000	INFINITE	-2.938	-59.874	-59.874	INFINITE
298.11	16.130	19.000	19.000	0.000	-60.500	-53.975	39.56
300	16.138	19.100	19.000	0.030	-60.498	-53.934	39.28
400	16.547	21.798	19.538	1.664	-60.413	-51.756	28.27
500	16.955	27.534	20.856	3.379	-60.307	-49.608	21.68
600	17.364	30.662	22.231	5.055	-60.186	-41.478	17.29
700	17.773	33.369	23.638	6.812	-60.048	-45.372	14.16
800	18.182	35.769	25.007	8.610	-59.898	-43.284	11.82
900	18.591	37.935	26.375	10.448	-59.736	-41.218	10.00
1000	19.000	39.914	27.546	12.328	-59.557	-39.170	8.56
1000	19.000	39.914	27.586	12.328	-59.557	-39.170	8.56
1100	19.209	41.735	28.791	14.238	-59.375	-37.139	7.37
1200	19.418	43.416	29.941	16.170	-59.195	-35.127	6.39
1300	19.628	44.978	31.038	18.122	-59.021	-33.128	5.56
1400	19.837	46.440	32.087	20.095	-58.851	-31.141	4.86
1500	20.046	47.816	33.290	22.090	-58.680	-29.169	4.25
1600	20.255	49.117	34.051	24.105	-5P.51"	-27.256	3.71
1730	20.464	50.351	34.974	26.141	-5A.3 o	-25.257	3.24
1800	20.674	51.526	35.861	28.197	-58.182	-23.315	2.83
1300	20.883	* 2 . 650	36.715	30.275	-58.019	-21.380	2 • 4 5
2000	51.003	53.726	37.539	32.374	-57.855	-19.455	2 • 1 2
2100	11.301	54.760	28.335	34.434	-51.691	-17.540	1.82
2200	2 \$ 10	15.756	37.104	36.634	- 1.528	-18.934	1.86
2300	21.120	56.717	34.849	38.796	-51.365	-13.731	1 • 30
2400	21.929	47.646	40.571	40.978	-51.202	-11.840	1.0
2500	22.138	58.545	41.273	43.182	-57.037	-9.951	C • 6
7600	22.347	59.417	41.954	45.406	-56.873	-8.072	
2673	72.101	67.038	42.439	47.043	-56.753	-6.701	0.5

31 December 1963

HLS

TANTALOM NITRIDE (Tan)	(CONDENSED PHASE)	gfw 194, 958
$\Delta H_{f298, 15}^{0} = -59.95 \text{ kcal g/w}^{-1}$	Se 298. 15	. 0 caldegK ⁻¹ gfw ⁻¹
T _m = 3363°K	ΔH _m - 16.0	kcal gfw ⁻¹
H _{298. 15} -H ₀ 0=1.779 kcal gfw-1		
$C_p^o = 7,73 + 7,80 \times 10^{-3} \text{1 caldegK}$	$^{-1}$ gfw ⁻¹ 298, 15°K \leq 1	r≤ 1000°K
$C_p^0 = 15.53 \text{ cal deg } K^{-1} \text{gfw}^{-1}$	1000°K < T ≤	3363 ⁰ K
$C_p^0 = 15.0 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$	3363 ⁶ K≤ r≤	6000°K

(COMPENSIONS MILLS

Structure

TaN has an hexagonal structure and a limited homogeneity range.

Heat of Formation

Data of Mah and Gellert slightly iltered.

Heat-Capacity and Entropy

TANTAL HM SITTOHES / T- NO

Low-temperature data estimated. Data from 298.15° to 1000° K use Kelley ² equation which is extrapolated above 773°K. Data above 1000° K estimated.

Melting and Vaporization

Heat of melting estimated.

References

- 1. Mah, A. D. and N. L. Gellert, J. Am. Chem. Soc. 78, 3261 (1956).
- 2. Kelley, K. K., U. S. Bur. Mines, Bull. 584 (1960).

TANTALUM NITRIDE (TEN)

ICONDENSED PHASE I

GFW = 194.958

SUMMARY OF UNCERTAINTY ESTIMATES

				ا" به عِسســـــــــــــــــــــــــــــــــــ	C gtw		_		Kcul gfw		
T, "K		رحيه		S _T	-()	FT - H ₂₉₈ 1	τ,	HT - H208	1 H _f	111	lug K _p
298.15	•	0.200	±	1.000	ŧ	1.000		0.000	± 4, 900		
1000	*	0.200	±	1.242	ŧ	1.102	•	04140			
1000	*	1.000	*	1.242	±	1.162	±	0+140			
2000	*	1.000	±	1.935	±	1.365	*	14140			
200c	±	2.000	±	1.935	±	1 . 365	*	1 - 1 + 0			
3000	±	2.000	±	2.746	±	1.699	*	3+1+0			
3363	±	2.000	*	2.975	*	1 . 825	ŧ	3.866			
3363	±	2.000	ŧ	4 . 461		1.825		8+866			
4000	±	2.000	*	4.608	±			10.140			
5000	*	2.000	*	5.255	*	2.826		12+140			
6000	*	2.000	±		±			144140			

Reference State for Calculating Mil, AF, and Loy Kp. Solid Ia from 0° to 3270°K, Liquid Ia from 3270° to 5706°K, Gaseous Ta from 5706° to 6000°K.

Gaseous N2, Solid Ia, N from 0° to 3000°K, Liquid Ia, N from 3000° to 6000°K

-									
	·	cmi/"K	r/w				_Xcal/plw		
Τ, "Κ	'e';	5 ₁	α ₁ μ ₂₉	H)/T	/H _T	н ^о 1998	ΔH_f	11	Log Kp
(0.000	0.000	INFINIT	۲.	-3.16.	3	-64.011	-64.011	INFINITE
298 - 15	16.205	27.000	22.000		0.00		-64.600	-58.421	42.871
300	16.237	22.100	22.000		0.04	_	-64 . 19A	-58.382	42.529
4 C C	1/.4/P	SE * 95 H	27.650		1.72		-14.493	-16.324	10.772
5 () N	1841	10.444	51.926	,	3.51	•	-64.320	-54.300	23.734
600	18.908	34 . 139	**. 386	,	5.31	2	-64-101	-52.317	19.055
100	10.454	37 +1	26.88		7.29	1	-63.843	-50.372	15.726
8°C	19.957	39.927	56.500		9.16	1	-63.557	-48.467	13.240
000 900	20.434 20.896	44.467	29.77		11.78		-63.277	-46.599	11.315
	, , • ,	44.477	-1.13	•	13.34	. 7	-62.889	-44.770	9.784
100	21.447	46.475	1.7 . 44		15.46	0	-62.509	-42.976	8.538
200	71.791	48.471	33.417		17.61		-62.102	-41.219	7.507
300 400	22+230 22+666	.0.144	14 . BF		19.81		-61 4665	-39.495	6.639
500	21.000 21.049	51.797 51.375	36.03 27.14		22.06 24.35		-61.200 -60.713	-37.806 -36.153	5.902 5.267
						-	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•••
500 700	24.531	54.87.	38.70		26.61		-6).197	-14.532	4.717
P.C.O.	, 3 , 364 24 , 388	16.319 17.700	49.72		23.00		-19.55	2.944	4.235
475	24.815	. 1. 10.6	40.21 41.17		31.47		-58.50n	-31.389 -29.867	3.811 3.435
, n, c	25.241	10.314	47.05		36.4		-57.957	-28.375	3.101
1.5.5		()							
155 200	4 . 4 . 4 . 3	11.56	4 '. 44 4 1 NE		41.5		-51.21A -51.639	-26.915 -28.781	2.8501
21.3	26 15 18	43.	44.7.		44.1		-57.391	-24.077	2 • 859 2 • 288
44.2	4. 14.	10.00	41.54		46.8		-55.314	-22.710	2.768
47	17.166	46.175	45.33		49.5		-54.687	-21.361	1.867
V. (11.790	11.01	412	,	£2.4	. 7	-54.030	-20.043	1.685
7. 1	n . 14	119.31.5	47.40		55		-53.402	-18.743	1.517
PEC.	25 645 615	-4.34	45.63		57.		-52.814	-17.476	1.364
100	4.111	70.4	4 . 3 %		10.4		-52.287	-15.221	1.222
	14 A 14	.71.44.	_ 17.18		4 1 8		51.847 _	14.969	1.092
1 1	2.500	74.6AL	111.00	4	A5. A	9	-19.847	-14.989	1.092
1110		74.423	(1.1)		88.0	٠. ،	-30-112	-14.487	1.021
1200		A .1 17	11.41	h	2C . ₹		-30.7.9	-14.974	0.754
1776		F + 24	٠.۶.		91.4	7 7	-31.204	-11.598	0.909
12.75	2.50	PO. + 4	17.62		91.B		-44.7,64	-14.rea	0.909
3300	3.5 6	'C•F ^	۲. • ۱۳		, .·		-44. "	-1 3 4 7	0.882
14CC 4501	20.00	6).50 6).61	54.41		34.8 3.0		-44.467 -44.313	11.424	0.795 0.714
	. •			-	•	•	• • •		
16.01		P = . 'H'			40.3		-44.267	-10.488	0.647
17(O	2.127	P3.404	٠, ٠,٠		161.		-44.1'	-9.551	0.564
3 U . ' .	7.10	Cu	36.44		٠,٠٩		-44.061 -44.061	-8.617 -7.687	0.496
491 P 40 C	7.500	54. * BF	5 3 5 6 . 7 p		106 • 1 108 • 1		-4 + 85°	-6.760	0.367
•									
41.0	52.500	er. "]4	h • 14		115-5		-43./48	-5.835	0.311
4266		46.0156	1 - 4		112.5		-43.547	-4.907 -1.989	0.255
4300	17.13.1	но•′ ^н " g •••;	60.0.		.15.0 117.3		3.447	-3.070	0.153
44(^ 44(*)	12.10.	97.F0F	112.00		117.5		-43.348	-2.156	0.105
• • •							,	. 1 . 33*	
4600	27.00	F . 1111	41.4		171.8 174.0		-6:241	-1.237 -0.323	0.059
47CC	22.50	641 . Ad	6 1 • 31 6 2 • 94		126.		-43.052	0.589	-0.027
4800	22.50	P4	61.4		12H.5		-47.974	1.89	-0.066
49 00 500€	22.60	97.1	4.			٠^.	-62.857	395	-0.105
							-47.759	3.309	-0.142
5166	22.500	90.624	64.5 64.5		1 44.0		-47.663	4.206	-0.142 -0.177
. 200	77.500	91.061	6		111		-42.556	5.106	-0.211
5 300	22.000	91.4.0	66.3		10 F		-42.470	6.002	-0.243
፣ 4 ጎር ፣ ዳ ር ር	22.50	41.416	(0.4		:42.0		-47.374	6.963	-0.274
				. •	: 44 .	. 1 7	-47.279	7.802	-0.304
5600 5700	22.100	93.127	66.9	? e.	140	5.7	-4.7.1A.	8.685	-0.333
5700 5706.65	22.102	3.157	6.7.		141.0	7.5	-42-176	8.742	-0.13
5706.65	33. 33	1.113	1. 1 . 4	9.5	146.0	75.	434.62	d.742	-0.33
1800	27.526	1.6.11	57.4		148 - 1		40++841 -+05+083	15.504 22.749	-0.584 -0.843
5900	22.00	94.304	66.3		151.		-425.331	30.011	
50^·	7,433	9201	B., • .				•		
					iber l				HLS

```
DITANTALUM NITRIDE(Ta_2N) (CONDENSED PHASE) gfw = 375.908

\Delta H_{f298. \ 15}^{\circ} = -64.6 \ kcal \ gfw^{-1} S_{298. \ 15}^{\circ} = 22.0 \ kcal \ gfw^{-1}

T_m = 3000^{\circ} K \Delta H_m = 22.0 \ kcal \ gfw^{-1}

H_{298. \ 15}^{\circ} = H_0^{\circ} = 3.163 \ kcal \ gfw^{-1}

C_p^{\circ} = 16.845 + 0.0042193T - 1.6868 \times 10^5 T^{-2} cal \ deg K^{-1} gfw^{-1} 298.15^{\circ} K \le T \le 3000^{\circ} K

C_p^{\circ} = 22.5 \ cal \ deg K^{-1} gfw^{-1} 3000^{\circ} K \le T \le 6000^{\circ} K
```

Structure

Ta2N has an hexagonal structure and a variable homogeneity range.

Heat of Formation

Calorimetric value of Mah used.

Heat Capacity and Entropy

Low-temperature data estimated. High-temperature data reported by Pears et al² recomputed assuming Ta₂N rather than TaN. See volume 1, this work (section IVB27. 3. 2) for details.

Melting and Vaporization

Heat of fusion estimated,

References

- 1. Mah, A. D., J. Am. Chem. Soc. 80, 3872 (1958).
- 2. Pears, C. D., et al, ASD TDR 62-765 (January 1963).

DITANTALUM NITRIDE (FazN)

ICONDENSED PHASE!

GFW + 375.908

					gi-	 ,	~	HT - H208	gfw		
T, °K		ر حهٔ		ST.	-(F	T - H ₂₉₈)	Έ,	H _T - H ₂₉₈	/ н¦	111	l∢ g K p
298.15	ŧ	1.000	±	2.000	ŧ	2.000	ŧ	0.000			
1000	+	1.000	±	3.210	±	2.508	±	0.702			
1000	*	2.000	±	3.210	*	2.508	ŧ	0.702			
2000	±	2.000	±	4.596	±	3.246	±	2.702			
3000	±	2.000	±	5.407	*	3.840	±	4 . 702			
3000	±	3.000	±	7.074	±	3.840	±	9 • 702			
4000	*	3.000	ŧ	7.937	*	4.762	*	12.702			
5000	+	3.000	±	8.607	ŧ	5.466	±	15.702			
6000	±	3.000	±	9.153	±	6.037	±	18.702			

NTi

Reference State for Calculating NH^{*}₁, NF^{*}₁, and Log K_p. Solid Ti from 0° to 1950°K, Laquid Ti from 1950° to 3550°K, Gaseous II from 3550° to 6000°K, Gaseous N₂, Solid TiN from 0° to 3223°K, Liquid TiN from 3223° to 6000°K

	(·		_Kcal/gfw				
T,"K	(h	S _T	(F T H ₂₉₈)/T	HT - H798	ΔH_{ℓ}^2	A F	Log Kp
700	0.000	0.000	INFINITE	-1.310	-19.814	-79.874	INFINITE
298•15 300	8.860	7.240	1.240	0.000	-80.750	-73.900	54.167
400	A • 903	7.295	1.240	2.011	-80.751	-73.857	
400 500	10.436	10.096	7.512	2.774	-80.742	-71.558	53.802 39.095
10.0	11.196	12.514	P . 25 /	2.079	-80.457	-64.270	30.277
600	11.652	14.50	9.221	3.223	-80.543	-67.003	74 405
700	11.764	16.420	10.128	4.405	-80.418	-64.757	24 • 405 20 • 217
AOO	15.193	18.C33	11.01	5.613	-80.292	-62.528	17.081
300	12.301	19.457	11.875	6.843	-80.167	-60.314	14.646
000	12.554	20.196	12.705	8.090	-AC.047	-58.115	12.700
100	12.699	21.999	14.496	9.353	- 12.232		
154	17.774	22.671	14.916	10.054	-79.870	-55.928 -54.728	11.111
1 5 5	17.774	22.021	13.216	10.054	-80.820	-54.728	10.355
500	12.837	د ۱۰۱۱ ماد م	14.21 7	10.640	-80.771	-53.713	9.782
300	12.957	.4.14.	14.773	11.717	-80.556	-51.463	A.651
401	13.075	2, 161	15.663	13.221	-80.564	-49.220	7.683
500	13.168	26.01+	16.323	14.534	- 80 - 41 A	-46.986	6.845
600	13. 14R	26.467	16.00	15.859	-80.370	-44.757	6.113
200	13.404	27.477	17.54,2	17.194	-A0.277	-42.534	5.468
A ^ 1*	13.11	74.446	16.146	18.540	-80.186	-40.316	4.895
900	13.614	20.170	1 P . 70A	19.996	-80.098	-38.104	4.383
950	1 1 2 1	4	11.341	20.578	-80.0 4	-36.979	4.147
O.V	13.065	2 . 6 . 6	146.41	20.578	-81.754	-36.999	4.147
0()	.3.716	,0.81 U	13.24)	21 • 267	-81.58K	-35.91	3.912
100	13.917	10,112	19.771	22.639	-83.539	-33.410	3.477
2.1	13.717	21.1.7	22.276	24.021	-83.485	-34.327	3.410
300	14. 11.	11.818	20.164	75.467	-B 1.223	-28.649	2.722
401	1 1 1 .	11.416	21.734	26.823	-H .052	-26.282	2.393
	14.713	1 6	21.6.6	20.345	-8973	-23.919	2.091
400	14.310	31.554	12.14	29.612	-52.684	-21.565	1.812
7,70	14.407	34.0.6	21.574	31.107	-92.4AB	-19.217	1.55
יו ה אַ	14.574	14.6.1	22.995	32.553	-92.292	-15.876	1.317
501	14 7	34.13.	13.405	74.008	-82.069	-14.544	1.096
rc -c	14.597	5.121	21.474	45.473	-91.846	-12.221	0.890
יר ני	14.793	4.115	24.194	4 746	-81.61	-9.907	0.696
300	14.583	16.563	74.514	.432	-81.47	-7.525	0.519
ריין	14.711	34.490	24.560	39.174	-81.31	-7.065	0.479
- די קי	14. 100	41.344	74.667	51.774	-66.117	-7.066	0.479
300	11.000	41.722	26.563	, - • 300	-66.041	-5.650	0.374
400	16.00	42.300	25.551 26.033	56.606 18.206	-65.688 -65.14	-3.828 -2.014	0.246
1400	16.700	47.11.3	. 6.	W • 2 C · ·	-0	7.0.14	0.11
4 5 5 6	16.000	42.1 10	26.269	20.000	-65.157	-1.113	0.06
3 5 5 (*	16.0000	46.840	26.269	55.006	-16/.614	-1.113	0.06
14,00	16.000	4114	16.401	9.806	-167.442	1.213	-0.07
3 7 C O	16.000	44.552	26.756	61.406	-167.107	4.014	-0.34
1800	16.000	41.97	77.334	63.006	-166.793 -166.486	10.548 15.248	-0.60
330	16.000	44.100	77.829 28.248	66.26	-166.194	17.240	-0.85 -1.08
1000	1 D • 1 1111						
100	16.000	45.195	76.657	67.891	-165.016	24.554 29.200	-1.30 -1.51
1200	16.101	44.580	36.666	1.00h	-165.397	11.934	-1.72
300	16.000	45.257	25.444 24.923	72.506	-165.155	r.468	-1.91
ኔፋቦቦ ኔちሮር	16.000 16.700	46.311	30.194	74.706	-164.775	088	-2.09
• • • •							
4600	16.000	47.036	30.556	75 • 806 77 • 406	-164.496	47.712 52.321	-2.26 -2.43
4700	16.000	47.380	10.911 31.257	19.006	-164.237	56.938	-2.59
4800	16.000	41.717		90.505	-164.107	61.544	-3.74
4900	16.000	48.047	31.597	92.206	-163.925	66.145	-2.89
500C	16.000	48.370	11.02	76 . K.	10.1014		
5100	16.000	48.687	32.754	93.806	-161.753	70.748 75.344	-3.03
sžan	16.000	48.008	12.573	85.406 87.005	-163.588 -163.431	79.941	-3.16 -3.29
5 3 0 0	16.000	49.302	17.986 33.193	88.50	~163.281	84.525	-3.42
ጜፋቦቦ ጜዳቦቦ	16.000 16.000	49.602 49.895	33.444	30. 700	-163.137	89.115	-3.54
					-163 202	91 701	-3 46
560C	16.000	50.164	43.784 14.050	91.800 93.400	-163.300	93.7Cl 98.281	-3.65 -3.76
5 700	16.000	50.467 50.745	34.364	95.006	-162.741	102.866	-1.87
5800	16.000	51.018	34 - 644	96.606	-162-619	107.448	-3.98
5900 1000	16.000 16.000	51.287	14.920	98.206	-162.501	112.015	-4.08
6000	10.000	* * • * * * *					

2-185

TITANIUM NITRIDE (TiN)

(CONDENSED PHASE)

gfw = 61.908

 $\Delta H_{298.15}^{9} = -80.750 \text{ kcal gfw}^{-1}$

 $S_{298.15}^{\circ} = 7.24 \text{ cal deg K}^{-1} \text{gfw}^{-1}$

Tm = 3223°K

 $\Delta H_{\rm m} = 15.0 \text{ kcal gfw}^{-1}$

 $H_{298, 15}^{0}$ - H_{0}^{0} = 1. 310 kcal gfw⁻¹

 $C_p^o = 11.91 + 0.94 \times 10^{-3} \text{ T} - 2.96 \times 10^5 \text{ T}^{-2} \text{ caldeg K}^{-1} \text{ g fw}^{-1}$ 298. $15^o \text{K} \le \text{T} \le 3223^o \text{K}$

 $C_{\rm p}^{\rm o} = 16.0 \, {\rm cal} \, {\rm deg} {\rm K}^{-1} \, {\rm gfw}^{-1}$

3223°K < T < 6000°K

Structure

TiN has a cubic structure (NaCl type) with a wide homogeneity range.

Heat of Formation

Combustion data of Humphrey modified to be consistent with present compi-

Heat Capacity and Entropy

Low-temperature data from Shomate. 2 High-temperature data of Naylor 3 valid to 17380K extrapolated to melting point. Data above melting point estimated.

Melting and Vaporization

Heat of fusion estimated.

- Humphrey, G. L., J. Am. Chem. Soc. 73, 2261 (1951).
- 2. Shomate, C. H., J. Am. Chem. Soc. 68, 310 (1946).
- 3. Naylor, B. F., J. Am. Chem. Soc. 68, 370 (1946).

Reference State for Calculating AH*, AF*, and Log Kp:
Solid 7r from 0* to 2125*K. Liquid 2r from 2125* to 4644*K,
Gaseous 7r from 4644* to 6000*K; Gaseous N2;
Solid ZrN from 0* to 3253*K,
Liquid ZrN from 3253* to 6000*K.

T,°K	Co-	cel/"K	Ria-		Kcal/g/w		
-, -	` p	€.1	чт - н ₂₉₈ ут	(H ₁ " - H ₂₉₈	ΛH	V E	Log Kp
0	0.000	0.000	INFINITE	-1.575	-86.526	44 634	
798.15	9.666	9.290	3.290	0.000		-96.526	INFINIT
300 400	7.693	9.350	9.290	0.018	-87.300 -87.299	-80.477	58.98
500	10.697	17.793	7.685	1.043	-87.254	-85.434 -78.151	58.59
7011	11.252	14.744	10.459	2.143	-97.178	-75.884	47.69 33.16
600	11.630	16.831	11 261				
700	11.925	18.547	11.351 12.266	3.288	-87.091	-73.633	26.82
800	12.175	20.246	13.166	4 • 466 5 • 672	-86.999 -86.907	-71.397	22.29
900	12.400	21.703	14.030	6.920	-86.818	-69.175 -66.964	18 • 89
coc	12.608	23.020	14.869	8.151	-84.734	-64.762	16.26
:00	12.806	24.231	15.666	9.422	-86.645	-62.570	12.43
135 134	17.872	24.634	15.937	9.871	-86.615	-61.805	11.90
200	12.673	24.634	15.937	9.871	-87.530	-61.805	11.90
300	13.182	25.354 26.402	16.421	10.712	-87.464	-60.333	10.98
400	13.164	27.385	17.155 17.851	12.021	-97.351	-58.077	9.76
500	13.544	20.313	18.518	13.348 14.694	-87.2.4 -87.083	-55.830 -53.593	8.71 7.80
600	13.721	29.1.3	17.158	16.057	-86.928		
700	13.496	30.030	19.773	17.438	-85.758	-51.365 -49.147	7.01 6.31
80%	14.071	30.82	20.365	18.836	-86.574	-46.939	5.69
900	14.744	31.540	20.236	20.252	-86.375	-44.743	5.14
one	14.417	12.330	21.487	21.685	-86.161	-42.557	4 • 65
100	14.589	33.037	22.021	23.135	-85.931	-40.384	4.20
17.	14.632	33.210	22.151	23.501	-85.870	-40.337	4.14
125 200	14.637	33.210	22.151	23.501	-90.770	-40.337	4.14
300	14.941	33.720 34.380	22.537	24.603	-90.593	-41.345	4.10
401	15.102	35.019	23.038 23.524	0.087 27.589	-90.343	-35.664	3.38
ዓ ባር	15.272	35.619	23.996	29.108	-70.077 -89.795	-33.293 -30.931	3.03 2.70
600	15.443	36.741	24.455	30.544	-89.497	-28.580	
700	15.612	34.827	24.903	32.196	-89.184	-26.248	2.40
የሰር	15.787	37.348	25.339	13.766	-88.854	-23.922	1.86
900	15.952	37.965	25.764	35.353	-88.509	-21.605	1.62
10(n	16-121	18.449	26.140	36.956	-88.148	-19.308	1.40
1100	16.790	14.030	26.586	38.577	-87./	-17.018	1.20
1200	16.454	19.550	26.983	40.214	-87.3 ~	-14.743	1.00
1,253	16.544	39.871	27.190	1.089	-97.161	13.543_	0.91
257	16.000	24.964	27.170	61.089	-67.lel	-13.543	0.91
33°C	16.000	46.197	27.459	61.841	-66 993	-12.768	0.84
1400 1500	10.000 16.000	46.176 41.140	28.017 28.557	63.441	-66.638 -66.284	-11-130 -9-502	0.71
3 6 00	16.001	47.591	24.079	66.641	-65.930	~7.884	A 43
3700	16.000	48.024	29.586	69.741	-65.577	-6.277	0.47
BOC	16.000	48.456	30.777	69.841	-65.224	-4.682	0.26
900	15.000	44.871	30.543	71.441	-64.872	-3.087	0.17
000	16.000	49.277	31-016	73.041	-64.5.	-1.50A	0.08
100	16.000	49.672	31.465	74.641	-64-169	0.063	-0.00
200	16.000	50.057	31.905	76.241	-63.818	1.620	-0.08
100	16.000	50.434	32.331	77.841	-63.458	3.178	-0.16
4 CC	16.000	10.801	32.747	19.441	-63.118	4.722	-0.23
500	16.000	41.161	33.152	81.041	-62.769	6.262	-0.30
600	16.000	51.511	13.547	87.641	-62.420	7.793	-0.37
644.05	16.000	51.665	33.718	81.346	-62.265	8.467	-0.39
644.05	16.000	51.665	33.718	83.346	-197.719	8.467	-0.39
702	16.000	51 . A 4. 7	33.933	84.741	-197.579	10.949	-0.50
800	16.000	52.194	34.310	85.841 87.441	-197.332 -1+7.091	15.382 19.816	-0.70
900	16.000	52.524 52.847	34.678 35.039	89.041	-196.854	24.235	-0.86
3000	16.000	• 17 - 1					
100	16.000	53.164 53.474	35.391 35.736	90.641 92.241	-196.623 -196.397	28.651 33.070	-1.22 -1.39
5200 5300	16.000	59.779	36.073	93.841	-190-176	37.483	-1.54
4C0	16.000	54.078	36.404	95.44.	-195.95B	41.887	-1.69
500	16.000	54.372	36.728	97.041	-195.743	46.287	-1.83
600	16.000	54.660	37.046	98.641	-195.533	50.690	-1.9
700	16.000	44.943	37.357	100.241	-195.326	55.086 59.475	~2.11
600	16.000	55.222	37.663	101-841	-195.120 -194.918	59.475 63.864	-2.24
900	16.000	55.495	17.967 18.257	103.441	-194.718	68.253	-2.30 -2.40
soor	16.000	55.764	104/71			~~~	

ZIRCONIUM NITRIDE (ZrN)

(CONDENSED PHASE)

gfw - 105, 228

 $\Delta H_{f298.15}^{o} = -87.3 \text{ kcal gfw}^{-1}$

S⁰298, 15 - 9, 29 caldegK⁻¹gfw⁻¹

 $T_{\rm m} = 3253^{\rm o} K$

 $\Delta H_{\rm m}$ - 20, 0 kcal gfw⁻¹

 $H_{298, 15}^{\circ} - H_{0}^{\circ} = 1.575 \text{ kcal gfw}^{-1}$

 $C_D^0 = 11.10 + 1.68 \times 10^{-3} \text{T} - 1.72 \times 10^5 \text{T}^{-2} \text{cal deg K}^{-1} \text{g fw}^{-1}$

298. 15°K < T< 3253°K

 $C_D^0 = 16.0 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

3253°K< T< 6000°K

Structure

ZrN has a cubic structure isotypic with NaCl. It has a fairly wide homogeneity range.

Heat of Formation

Based on the work of Mah and Gellert, I but in agreement with Neumann et al² and Smagina et al.³

Heat Capacity and Entropy

The low-temperature data of Todd4 used. High-temperature data of Coughlin and King⁵ extrapolated to melting point.

Melting and Vaporization

Melting temperature by Agte and Moers, 6

- Mah, A. D. and N. L. Gellert, J. Am. Chem. Soc. 78, 3261 (1956).
- Neumann, B. et al, Z. Anorg. Chem. 218, 379 (1934).
- Smagina, E. I. et al, Dokl. Akad. Nauk SSSR 115, 354 (1957).
 Todd, S. S., J. Am. Chem. Soc. 72, 2914 (1950).
- 5. Coughlin, J. P. and E. G. King, J. Am. Chem. Soc. 72, 2262 (1950).
- 6. Agte, C. and K. Moers, Z. Anorg. Chem. 198, 239 (1931).

REFERENCE STATE

N₂

Reference State for Calculating AH₂, AF₃, and Log K_p: Gaseous Diatomic N₂ from 0° to 6000°K.

[*		Diatomic N2	from 0° to	h and Log 6000°K.	κ _p ։	
			##				-
T, "K	(b	5"	-(1 H ₂₉₈)/T	H, - H, 298	_Kcul/gfw ΔH _j	AF"	Log K _p
0	0.000	0.000	tur turne			•	
298.15	6.961	45.771	INF 1 N 1 T C 45 • 771	-2.072			
300	6.961	45.814	45.771	0.000 0.013			
400 500	6.991	47.820	46.045	0.710			
,,,,	7.070	49.388	46.562	1.413			
600	7.197	50.687	43				
700	7.351	51.808	47.144 47.732	2.126			
800	7.513	52.800	48.305	2 • 85 3			
900	7.670	53.695	48.855	3 • 596 4 • 356			
1000	7.815	54.510	49.380	5.130			
1100	7.945	44 2/1					
1200	8.061	55.261 55.958	49.881	5.918			
1300	8.162	56.607	50.359 50.815	6.719			
1400	8.250	57.215	51.251	7•530 8•351			
1500	8.328	57.787	51.667	94180			
1600	8.396						
1700	A . 456	58.327	52.067	10.016			
1000	8.509	36.838 49.322	52.450 52.819	10.858			
1900	8.555	59.784	53.173	11.707 12.560			
200C	8.597	60.224	53.515	13.418			
2100	9 4 3 4			-			
2200	8 • 6 3 5 8 • 6 6 8	60.644	43.844	14.279			
2300	8.698	61.047	51.163	15.144			
2400	8.726	61.803	54.471 54.768	16.013 16.884			
2500	8.751	62.160	55.057	17.758			
3400		Ac:					
2600	8.774 8.795	62.504	55.337	18.634			
2800	8.814	62.835	55.608	19.513			
2900	8.832	63.156 63.465	55.872 56.129	20.393			
3000	8.844	63.765	56.378	21 • 276 22 • 160			
3100	8 . 8 6 5	64.055	56.621	23.045			
1300	8.879	64.337	56.858	23.933			
3400	9.893 8.906	64.610 64.876	57.089	24 • 821			
3500	0.916	65.134	57.314 57.534	25.711 26.602			
				20.802			
1600	8.910	65.386	57.748	27.495			
3700 3800	8.941	65-631	57.958	28.388			
3900	8.951 8.961	65.869 66.102	58.163	29.283			
4000	8.971	66.329	58.364 58.560	30 • 1 7 6 31 • 0 7 5			
			,	31.0073			
4100	8.980	66.551	58.752	31 4 9 7 3			
4200	8.989	66.767	58.941	32.871			
4300 4400	8.998	66.979	59.125	33.770			
4500	9.006 9.014	67.186 67.388	59•306 59•483	34 • 671			
		0.000		35.572			
4600	9.022	67.587	59.657	36.474			
4700	9.010	67.781	59.828	37 • 376			
4800 4900	9.038	67.97	59.996	38.280			
5000	9.045 9.053	68.157 68.340	60.161 60.322	39.184 40.089			
		5555	00.744	-C - U - 7			
5100	9.060	68.520	60.481	40.994			
5200	9.068	68.696	60.638	41.901			j
5300	9.075	68.868	60.792	42.808			
5400 5500	9.083	69.038	60.943	43.716			
350c	9.090	69.205	61.091	44.624			
5600	9.098	69.369	61.238	45.534			
5700	9.105	69.530	61.382	45.444			
5800	9.113	69.689	61.524	47.355			
5900	9.122	69.844	61.664	48.267			į
6000	9.130	69.998	61.801	49.179			1
			May 1962				RCF

(REFERENCE STATE) gfw = 28.016

$$\Lambda H_{f0}^{\bullet} = 0.0 \text{ kcal gfw}^{-1}$$

 $\Lambda H_{f298.15}^{\bullet} = 0.0 \text{ kcal gfw}^{-1}$

Ground State Configuration $-^{-1}\Sigma_g^+$

 $S_{298,15}^{\bullet} = 45.771 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

 $H_{298.15}^{\bullet}$ - H_{0}^{\bullet} = 2.072 kcal gfw⁻¹

	1			C1	m ⁻¹				
State	8	E	ω _e	ω _e π _e	$\omega_e y_e$	B _e	a _e	$\gamma_e \times 10^5$	D _e × 10 ⁶
$x^{-1}\Sigma_g^+$	1	0.0	2357.93	14. 186	-0.0124	1. 9981	0.01709	-4.6	6
$\Lambda^{-3}\Sigma_{u}^{+}$	3	49757.2	1460.19	13.888	-0.025	1.440	0.013	-	5.6
в ³ П _в	6	59314.2	1733.89	14.47	-	1.6376	0.0184	-	5, 8

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Calculated on diatomic gas-computer program using above spectroscopic constants.

Reference

1. Barriault, R. J., et al. ASD TR 61-620 (May 1962), Pt. 1.

MITROGEN (N2)

IREFERENCE STATE

GFW = 28,016

	cal 'ok glu								
T, °K	′င္နံ	ςÌ	-(FT - H296) T	'H _T - н _{29н}	2 Hf	14,1	LIKE		
298 - 15	±0.000	±0.002	+ 0.002	± 0.000					
1000	±0.000	±0.003	± 0.002	± 0.000					
2000	±0.000	±0.003	± 0.003	± 0.001					
3000	*0.000	±0.004	± 0.003	±0.001					
4000	±0.000	+0.004	± 0.003	± 0.001					
5000	±0.000	±0.004	#0.003	± 0.001					
6000	+0.000	+0.004	± 0.003	± 0.001					

Reference State for Calculating AH^{*}₁. AF^{*}₁, and Log K₂: Solid Si from 0° to 1690°K, Liquid Si from 1690° to 3566°K, Gameous Si from 3566° to 6000°K; Gameous N₂; Solid Si₃N₄ from 0° to 4000°K.

		rai/°K	A1*		Kcsl/gfw		
T, *K	'c,*	5"	-(F ₁ - H ₂₉₈)/T	H _T - H ₂₉₈	ΔH _f	A F	Log Kp
0	0.000	0.000	INFINITE	-5.598	-175.147	-175.147	INFINI
298 • 15	30.900	25.600	25.600	0.000	-176.000	-152.288	111.6
100	30.941	25.791	25.601	0.057	-175.996		
400	32.544	34.935	26.836	3.239		-152.141	110.8
500	33.542	42.311	29.217	6.547	-175.732 -175.477	-144.228 -136.383	78.7 59.6
600	34.304	48.446	31.929	9.940	-175 272	-130 407	
700	34.953	51.834	34.685	13.404	-175.232	-128.587	46.8
800	35.542	58.540	37.379		-174.995	-120.832	37.7
900	36.097	62.758		16.929	-174.771	-113.111	30.8
1000	36.629	66.589	39.968 42.442	20.511 24.147	-174.560 -174.359	-105.416 -97.743	25.65 21.3
1100	37.148	70 105	44 300				
		70.105	44.799	27.836	-174.163	-90.091	17.8
1 200	37.657	73.359	47.045	31.577	-173.971	-82.458	15.0
1 300	3R • 160	76.193	49.187	35 - 368	-173.776	-74.838	12.5
1400	38.657	79.239	51.233	39.209	-173.578	-67.234	10.4
1500	39.151	81.923	53.191	43.099	-173.377	-59.647	8.6
1600	39.642	84.466	55.066	47.039	-177.154	-52.069	7.1
1690	40.083	R6.647	56.691	50.626	-172.965	-45.268	5 . 8
1690	40.083	86.647	56.691	50.626	-208.815	-45.268	5 . 8
1700	40.131	A6.884	6.868	51-027	-208.789	-44.299	5 . 6
1800	40.619	A9.191	58.600	55.065	-208.55B	-34.676	4.7
1900	41.105	91.400	60.268	59.151	-208 - 311	-24.971	2.9
2000	1.590	93.521	61.878	63.286	-208.043	-15.328	1.6
2100	42 - 74	95.562	63.434	67.459	-207.727	-5.703	0.5
2200	42.557	97.531	64.939	71 - 701	-207.373	-9.288	0.9
2100	43.040	54.433	66.398	75.980	-206.977	13.504	-1.2
2400	43.522	101.275	67.813				
2500	44.004	103.061	49.187	80 • 308 84 • 685	-206.539 -206.055	23.078	-2 • 1
7600	44.485	104.777		89.109	-205.531	42.176	-3.5
270C	44.766	106.484		93.582	~704.961	11.688	-4 • 1
2800	45.447	108.128		98.103	-204.348	61.182	-4.7
7900	45.720	100.137		102.671	-203.691	70.657	-5 • 3
3000	46.408	111.2.7	75.534	107.28B	-202.990	80.107	-5 .8
3100	46.889	112.876	76.712	111.953	-202.240	89.530	-6.3
3200	47.369	114.323	77.864	116.666	-201.451	98.931	-6.7
3300	47.849	115.788	78.992	121.427	-200 -:1	108.305	-7.1
3400	48.179	117.223	80.045	176.236	-199. 1	117.658	-7.5
3500	44.804	116.431	81.176	131.092	-198 `	126.981	-7.9
3564.77	49.124	119.543	81.875	134.313	-198.164	133.092	-8.1
3565.77	49.124	114.543		134.313	-477.649	133,092	-B • 1
	44.288	170.013		15.997	-472.141	138.903	-8.4
3600		121.370		140.950	-470.627	155.860	-9.2
3700	44.768			145.941	-467.077	172.172	-7.0
3800	40.247	122.703			-467.469	189.637	-10.6
3900 4001	50.727 51.206	124.015	-	151.000 156.036	-465.820	206.472	-11.

31 December 1963

HLS

SILICON NITRIDE (S13N4)

(CONDENSED PHASE)

gfw = 140.302

 $\Delta H_{1298}^{0} = -176.0 \text{ kcal gfw}^{-1}$

 $S_{298,15}^{0} = 25.6 \text{ cal deg K}^{-1} \text{gfw}^{-1}$

T sublimation = 2170°K

 $H_{298,15}^{o}$ - H_{0}^{o} = 5.598 kcal gfw⁻¹

 $C_p^o = 32.074 + 0.0047867T - 0.23122 \times 10^6 \, T^{-2} \, cal \, deg K^{-1} \, gfw^{-1}$ 298. $15^o K \le T \le 4000^o K$

Structure

 α - Si_3N_4 is probably hexagonal as is β - Si_3N_4 .

Heat of Formation

Based on dissociation-pressure measurements of Pehlke and Elliott, 1

Heat Capacity and Entropy

Low-and high-temperature data estimated by Pehlke and Elliott. An equation derived based on their data and extrapolated. Experimental enthalpies of Neel et al² somewhat larger than the estimated values used here.

Melting and Vaporization

Si3N4 considered to sublime rather than melt.

References

- 1. Pehike, R.D. and J. F. Elliott, Trans. AIME 215, 781 (1959).
- 2. Neel, D. S. et al, WAD TR 60-924 (1962).

SILICON NITRIDE (SI3N4)

(CONDENSED PHASE).

GFW - 140,102

Ť,°K	C,	cel ** S_	-/F T - H2981	T HT Hyon SH	····	Leg K _o
	P		. 1278		1	. •р
298.15	± 5.000	± 4.000	+ 4.000	+ 0.000 +6 000		
500	+5.000	+ 6.585	± 4.567	* 1.009		
1000	± 5.000	± 10.051	± 6.542	+ 34509		
1500	± 5.000	±12.078	+ 8.072	4 64009		
1690	±5.000	±12.674	+ 84557	4 64959		
2000	± 5.000	±13.517	+ 9+262	4 84509		
2500	± 5 • 000	± 14 . 632	±10.229	± 11 4009		
3000	± 5.000	± 15.544	±11.041	± 134509		
3500	* 5.000	± 16.315	±11.741	±16+009		
3565 - 77	±5.000	± 16.408	+11+826	± 16+338		
4000	±5.000	± 16.982	£12.355	+184509		

Reference State for Calculating AH^a, AF^a, and Log K_p. Solid Nb from 0° to 2741°K, Liquid Nb from 2741° to 5032°K, Gaseous Nb from 5032° to 6000°K.

	("	(el/°K	Bl*		Kral/gfw		
T, "K	(p	٥̈́T	-(FT H298)/T	H, - H, 238	$\Delta H_{\mathbf{f}}^{\prime\prime}$	A F 2	Log Kp
0	0.000	0.000	INFINITE	-1.264			
298.15	5.946	9.000	9.000	0.000			
300	5.948	9.037	9.000	0.011			
400	6.044	10.761	9.235	0.611			
500	6.140	12.120	9.680	1.220			
600	6.236	13.248	10.184	1.839			
700	6.332	14.216	10.697	2.467			
800	6.428	15.068	11.187	3.105			
900	6.524	15.831	11.661	3.753			
1000	6.620	16.523	12.113	4.410			
100	6.716	17.159	12.544	5.077			
1200	6.812	17.747	12.953	5.753			
1300	6.908	18.296	13.343	6.439			
1400	7.004	18.812	13.716	7.135			
1500	7.100	19.298	14.072	7.840			
1600	7.196	19.759	14.413	8.555			
1700	7.292	20.199		9.279			
800	7.388	20.618		10.013			
900	7.484	21.020		10.757			
2000	7.580	2406	15.652	11.510			
2100	7.676	21.779	15.935	12.273			
2200	7.172	22.138		13.045			
2300	7.868	22.486		13.827			
2400	7.964	22.822		14.619			
2500	8.060	23.149		15.420			
2600	8.156	23.467	17.225	16.231			
2700	8.252	23.777		17.051			
2741	8.291	23.902	17.557	17.390			
2741	8.000	26.237		23.790			
280C	8.000	26.407		24 • 262			
2900	6.000	26.688		25.062			
3000	8.000	26.959	18.338	25.862			
3100	0.000	27.221	18.621	26.662			
3200	8.000	27.474	18.893	27.462			
330C	9.000	27.721	19.157	28 + 26 2			
1400	A . 000	27.960		29.062			
3500	8.000	28.192	19.660	79.862			
3600	8.000	28.418	19.900	30.662			
3700	6.000	28.617		31.462			
3800	8.000	28.850		32.262			
3900	P.000	29.058		33.062			
4000	8.000	29.260	20.795	33.862			
4100	8.000	29.458	21.004	34 + 66?			
4200	8.000	29.651		35.462			
4300	8.000	29.839		36.262			
4400	8.000	30.023		37.062			
4500	8.000	30.203	21.789	37.862			
4600	8.000	30.379	21.974	38.662			
4700	8.000	30.551	22.154	39.462			
4800	8.000	30.719	22.331	40.202			
4900	8.000	30.884	22.504	41.062			
500C	8.000	31.046	22.673	41.862			
5031.58	8.GOG	31.062	22.713	42.115			
5031.58	8.600	61.391		.04 . 588			
5100	8.640	63.510		205.277			
5200	B.695	61.678		206-144			
5300	8.749	61.844		:07.016			
5400	8.800	64.008	25.510	207.893			
5500	8.848	64.170		208.776			
5600	8.895	JN . 330	26.890	209.663			
5700	8.939	64.486	27.548	210.555			
5800	8.981	64 . 644	28.187	211.451			
5900	9.021	64.798	78.806	212 - 351			
600C	9.059	64.95(29.401	213+255			
			15 March	1963			HLS

0°K to 2741°K 2741°K to 5032°K 5032°K to 6000°K Crystal Liquid Ideal Monatomic Gas

 $\Delta H_{00}^{\circ} = 0$ $\Delta H_{(298.15}^{\circ} = 0$ $S_{298, 15}^{0} = 9.0 \text{ cal deg} \text{K}^{-1} \text{ gfw}^{-1}$ ΔH_{0.298, 15} = 171, 836 Kcal gfw⁻¹ .T. = 2741°K ∆H_m = 6,400 ± 1,000 Kcal gfw⁻¹ (Estd.) Th = 5031 58°K $\Delta H_{\nu} = 162.573 \text{ Kcal gfw}^{-1}$ H_{298 15}-H₀ = 1.264 Kcal gfw⁻¹ Co = 5.66 + 0.96 x 10-3T cal deg 1 gfw-1 for 298.15°K 4 T 2741°K $C_{\rm D}^{\rm o} = 8.00 \pm 2.0 \text{ cal deg}^{-1} \text{ gfw}^{-1} \text{ for liquid } (2^741^{\rm o}\text{K} \leq T \leq 5032^{\rm o}\text{K}) \text{ (Eatd.)}$

Structure

Solid has a B. C. C. type structure.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Entropy at 298. 15°K from Kelley and King 1 High-temperature data of Kelley 2 was extrapolated.

Melting

Temperature of fusion from Schofield 3 Heat of fusion estimated by Kelley 2 and by Stull and Sinke 4

Heat of Sublimation

Data of Speiser et al 5 was used.

References

- Kelley, K. K. and E. G. King, U. S. Bur. Mines, Bull. 592 (1961)
 Kelley, K. K., U. S. Bur. Mines, Bull. 584 (1960).
 Schoffeld, T. H., J. Inst. Metals 85, 372 (1957).

- 4. Stull, D. R. and G. C. Sinke, Thermodynamic Properties of the Elements (19: 5 Speiser, R., P. Blackburn and H. L. Johnston, J. Electrochem. Soc. 106, 52-3 (1959).

NIBBIUM (Nb)

(REFERENCE STATE)

GFW - 92.91

	Col/ °K alvKcal/glv							
T.ºK	ح	s _T	-(FT - H298)/T	н _г - н ₂₉₈	ΛHγ̈́	151	Log Kp	
298.15	±0.100	±0.400	#0.400	±0.000				
1000	± 0 • 300	±0.660	40.489	40.170				
2000	±0.500	±0.925	+0.640	#0.570				
2741	±1.000	#1.129	#0.742	±1.061				
2741	# 2.000	41.494	+0.742	#2.061				
3000	# 2.000	#1.674	+0.814	±2.579				
4000	# 2.000	± 2.250	+1.105	±4.579				
5000	# 2 · 000	#2.696	41.380	46.579				
5031.58	± 2.000	#2.708	±1.388	46.642				

Reference State for Calculating AH*, AF*, and Log Kp: Solid Nb from 0° to 2741°K, Liquid Nb from 2741° to 5032°K, Gameous Nb from 5032° to 6000°K.

T, °K	C.		-(F " - H ₂₉₈)/T	H _T - H ₂₉₈	Kcal/glw	ΔF	Log Kp
0	0.000				•	•	
298-15	0.000 7.208	0.000	INFINITE	-1.997	171.103	171-163	INFINIT
300	7.208	44.537	44.492 44.492	0.000	171.836	161.254	-118.19
400	7.086	46.597	44.774	0.013 0.729	171 -838	161.188	-117.42
500	6.893	48.157	45.301	1.428	171.954 172.044	157.620 154.026	-86 · 11 ·
600	6.704	49.397	45.884	2.108	172.165	150.416	-54.78
700	6.541	50.418	46.461	2.776	172.139	146.798	-45.83
800	6.402	51.282	47.011	3.417	172.148	143.177	-39+11
900	6.285	52.029	47.528	4.651	172.134	139.556	-33.88
1000	6.186	52.686	48.012	4.674	172.100	135.937	-29.70
1100 1200	6.103 6.035	53.272	48.464	5.289	172.048	132.324	-26.28
1300	5.981	53.800 54.280	48.887	5.895	171.978	128.716	~23.44
1400	5.941	54.722	49.283	6.496	171.893	125.114	-21.03
1500	5.915	55.131	49.656	7.092 7.685	171.793 171.681	121.520	-18.96 -17.18
1600	5.903	55.512	50.340	8 • 276	171.557	114.353	-15.61
1700	5.904	55.870	50.655	8.866	171.423	110.781	-14.24
1800	5.918	56.208	50.954	9.457	17 .280	107.218	-13.01
1900	5 . 945	56.528	51.239	10.050	171.129	103.664	-11.92
2000	5.984	56.834	51.511	10-646	170.972	100-117	-10.94
2100	6.034	57.127	51.772	11.247	170.810	96.579	-10.05
5500	6.094	57.409	52.022	11.853	170.644	93.046	-9.24
2300	6-164	7.682	52.262	12.466	170.475	89.524	-8.50
2400 2500	6 • 2 4 2 6 • 3 2 8	57.946 Je.202	52.493 52.716	13.086 13.715	170.303 170.131	86.007 82.500	-7.83 -7.21
2600 2700	6.419 6.516	58.452 58.696	52.932 53.141	14.352 14.999	169.957 169.784	78.997 75.502	-6.64 -6.11
2741	6.556	58.795	53.225	15.267	169.713	74.070	-5.90
2741	6.556	58.795	53.225	15.267	163.313	74.070	-5.90
2800	6.616	58.935	53.344	15.655	163.229	72.150	-5.63
2900	6.719	59.169	53.541	16.322	163.096	68.901	-5.19
3000	6.825	59.399	53.732	16.999	167.973	65.653	-4.78
3100	6.931	59.624	53.919	17.687	162.861	62.413	-4.40
1200	7.038	59.846	54.100	18.385	162.759	59.172	-4.04
3300	7.144	60.064	54.278	19.095	162.669	55.937	-3.70
3400 3500	7.250 7.354	60.279 60.491	54.451 54.621	19.814	162.588	52.706 49.473	-3.38 -3.08
			54.787	21.285	1629	46.244	-2.80
3600 3700	7.456 7.555	60.699 60.905	54.949	22.036	162.410	43.016	-2.54
3800	7.652	61.108	55.109	22.796	162.370	39.791	-2.28
3900	7.747	61.308	55.265	23.566	1 2.340	36.564	-2.04
4000	7.838	61.505	55.419	24.345	162.319	33.341	-1.82
4100	7.926	61.700	55.569	25.133	162.307	30.118	-1.60
4200	8.011	61.892	55.718	25.930	162.304	26.891	-1.39
4300	8.093	62.081	55.863	26.736	162.310	23.669	-1.20
4400	8.172	62.268	56.007	27.549	162.323	20.445	-1.01
4500	8.247	62.453	56.148	28.370	162.344	17.220	-0.83
4600	8.320	62.635	56.287	29.198	162.372	13.995	
4700	8.390	62.814	56.424	30.034	162.438	10.766	
4800	8.456	62.992	56.559	30 - 876	167.450	7.541	-0.34
4900 5000	8.520 8.581	√3.167 A".339	56.692 56.823	31.725 32.580	162.499 162.554	1.084	-0-19
			56.864	32.851	162.572	0.000	-0.01
5031.58	8.600 8.600	63.393	56.864	32.851		0.000	5.01
5031.58	8.640	63.510	56.953	33.441			
5100 5200	8.695	63.678	57.081	34 - 308			
5200	8.749	63.844	57.207	35.180			
5300	8.800	64.008	57.331	36.057			
5400 5500	8.646	64.170		36.940			
5600	8.895	64.330	57.575	37.827			
5700	8.939	64.488	57.695	38.719			
5800	4.981	64.644	57.814	39.615			
5900	9.021	64.798		40.515			
6000	9.059	64.950	58.046	41.419			
			15 March	1 4 4 0 1			HLS

$$\Delta H_{f0}^{o}$$
 = 171.103 Kcal gfw⁻¹

Ground State Configuration $D_{\frac{1}{2}}^{o}$
 H_{298-15}^{o} - H_{0}^{o} = 1.997 Kcal gfw⁻¹

$$\Delta H_{f298. 15}^{o} = 171.836 \text{ Kcal gfw}^{-1}$$

 $S_{298. 15}^{o} = 44.492 \text{ cal degK}^{-1} \text{ gfw}^{-1}$

Electronic Levels and Multiplicities

All energy levels listed by Moore

Heat of Formation

Vapor-pressure data of Speiser et al 2 were used.

Heat Capacity and Entropy

Calculated using the monatomic gas program.

References

- 1. Moore, C. E., Natl. Bur. Standards (U.S.), Circ. 467, Vol. 2 (1952).
- Speiser, R., P. Blackburn and H. L. Johnston, J. Electrochem. Soc. 106, 52 (1959).

NIGBIUM - MONATOMIC (Nb)

(IDEAL GAS)

GFW = 92.91

		cal 'K	BIV		_Kcal glw		
T, °K	ردځ	ST	-(FT - H298)'T	'н _т - н ₂₀₈	1 Hf	NI,	⊢∉ K _p
298.15	±0.001	±0.002	±0.003	±0.000	±4.000		
1000	±0.000	±0.003	±0.003	±0.000			
2000	±0.000	±0.003	±0.003	±0.001			
3000	±0.001	±0.003	+0.003	±0.001			
4000	±0.002	±0.003	±0.003	±0.002			
5000	±0.002	±0.004	±0.003	±0.004			
5031.58	±0.002	±0.004	±0.003	±0.004			
6000	±0.003	+0.004	+0.003	±0.006			

Reference State for Calculating 147, AF7, Log Kp: Solid Nb from 0° to 2741°K, Liquid Nb from 2741° to 5032°K, Gaseous Nb from 5032° to 6000°K, Gaseous O₂, Solid NbO from 0° to 2218°K, Liquid NbO from 2218° to 6000°K.

n _k	'. ·		' '	, -		``	
, ° K	'ε , ,	` 1	-(F1 H298)/T,	н ₁ - н ₂₉₈	NH _i	711,	Log Kp
0	0.000	0.000	INFINITE	-1.800	-97.198	-97.198	INFINIT
298-15	9.860	12.000	12.000	0.000	-97.700	-91.289	66.91
300	9.875	17.061	12.000	0.018	-97.699	-91.249	66.47
400 500	10.491	14.994	12.396	1.039	-97.633	-89.108	48.68
,00	10.902	17.381	13.162	2.110	-97.537	-86.987	38.02
600 700	11.232 11.525	19.399	14.037	3.217	-97.427	-84.887	30.91
800	11.798	21.153	14.931	4 - 355	-97 • 305	-82.807	25 . 85
900	12.058	24.114	15.808 16.654	5.521 6.714	÷97•176	-80.744	22.05
000	12.312	25.398	17.465	7.933	-97•038 -96•890	-78.699 -76.668	19.11 16.75
100	12.560	26.583	18.241	9.176	-96.734	-74.653	14.83
200	12.806	27.687	18.983	10.445	-96.565	-72.654	13.23
300	13.049	28 • 721	19.692	11.737	-96.387	-70.668	11.88
1400 1500	13.290 13.530	29.697 30.622	20.372 21.025	13.054 14.395	-96.198 -95.997	-68.696 -66.739	10.72 9.72
600	13.769	21 602					
700	14.008	31.503 32.345	21•653 22•257	15.760 17.149	-91 • 786 -95 • 562	-64.797 -62.867	8 . 85
800	14.246	33.152	22.840	18.562	-95.328	-62.867 -60.950	8.08 7.40
900	14.483	33.929	23.403	19.998	-95.083	-59.045	6.79
2000	14.720	34.678	23.949	21.459	-94.875	-57.156	6.24
2100	14.957	35.402	24.477	22.943	~94.557	-55.279	5.75
2200	15.194	36.103	24.989	24.450	-94.277	-53.415	5 • 30
2218	15.236	36 • 227 42 • 088	25.080 —	_24.724_	-94.226	_ 53.083_	5•23
2300	15.000	42.088 42.633	25.080	37.724 38.954	-81.22d	-53.083 -52.044	5 • 23
400	15.000	43.271	26.415	40.454	-80.766	-50.791	4 4 6 2
7500	15.000	43.884	27.102	41.954	-80.531	-49.546	4.33
5600	15.000	44.472	27.759	43.454	-80.308	-48.312	4.06
2700	15.000	45.C38	28.388	44.954	-80-097	-47.084	3 . 8 1
7741	15.00C	45.264	28.639	45.569	-80-C14	-46.586	3 4 7 1
2741 2800	15.000 15.000	45 • 764 45 • 583	28.639 28.993	45.569 46.454	-86.414 -84.370	-46.586 -45.729	3471
2900	15.000	46.110	29.574	47.954	-86.279 -86.053	-44.283	3 • 5 6 3 • 3 3
3000	15.000	46.618	30.134	49.454	-85.829	-42.850	3.12
3100	15.000	47.11C	30.673	10.954	-8,,,,,,	-41.415	2.92
3200	15.000	47.586	31.195	52.454	۹5. و 85.	-19.999	2.73
3100	15.000	48.048	31.698	53.954	-er •1 ·	-38.581	2.55
3400 3500	15.000 15.000	48.496 48.931	32.186 32.658	55.454 56.954	-84.956 -84.743	-37.172 -35.769	2.36
3600	15.000	49.353	33.116	58.454	-84.537	-34.374	7.08
3700	15.000	49.764	33.560	59.754	-84.323	-32.993	1.94
3800	15.000	50.164	33.992	61.454	-84.115	-11.597	1.87
3900	15.000	50.554	34.412	62.954	-83.910	-30.220	1.69
4000	15.000	50.934	34.820	64.454	-83.706	-28.842	1 • 5 7
4100	15.000	51.304	35.218	65.954	-83.544	-27.475	1.46
4200	15.000	*1.665	35.605	67.454	-83.304	-26-111	1 • 3 !
4300	15.000	52.018	35.983	68.954	-83-105	-24.751	1 • 2 !
4400 4500	15.000 15.000	12.363 52.700	36.351 36.711	70.454 71.954	-82.909 -82.715	-23.393 -22.046	1.0
4600	15.000	53.030	37.062	73.454	-82.523	- 70.696	0.91
4700	15.000	53.353	37.405	74.954	-82.333	. 7 . 356	0.90
4800	15.000	53.66R	37.740	16.454	-82.147	-18.013	0 . 8
4900	15.000	53.978 54.281	38.069 36.390	77.754 79.454	-81.964 -81.784	-16.681 -15.350	0.7
5000							
5031.58 5031.58	15.000 15.000	54.375	38.49C 38.490	79.928 79.928	-81.728 -244.301	-14.993 -14.993	0 4 6 1 0 4 6 1
5100	15.000	54.578	38.704	80.954	-244.224	-11.872	0 4 5 0
5200	15.000	54.869	39.012	82.454	-244.121	-7.314	0.30
5300	15.000	55.155	39.314	83.954	-244-029	-2.764 1.790	0.1
5400	15.000 15.000	55.435 55.710	39.610 39.901	85.454 86.954	-243.95D -243.886	6.335	-0.0°
5500					-243.836	10.887	-0.4
5600 5700	15.000	55.481 56.246	40.185 40.465	88.454	-243.804	15.434	-0.5
5800	.4 100	56.507	40.739	91.454	-243.792	19.991	-0.7
5900	1000	46.761	41.009	92.954	-243.801	24.536	-0.9
6000	1 .0 1	77.016	41.273	94.454	-243.839	29.092	~1.0

$$\Delta H_{f298, 15}^{\bullet} = -97.7 \text{ kcal gfw}^{-1} \qquad S_{298, 15}^{\bullet} = 12.0 \pm 1.5 \text{ cal deg K}^{-1} \text{gfw}^{-1}$$

$$T_{m} = 2218^{\circ} \text{K} \qquad \Delta H_{m} = 13.0 \pm 4.0 \text{ kcal gfw}^{-1}$$

$$H_{298, 15}^{\bullet} - H_{0}^{\bullet} = 1.800 \text{ kcal gfw}^{-1}$$

$$C_{p}^{\bullet} = 10.04 + 2.35 \times 10^{-3} \text{T} - 0.783 \times 10^{5} \text{T}^{-2} \text{ cal deg K}^{-1} \text{gfw}^{-1} \qquad 298.15^{\circ} \text{K} \leq T \leq 2218^{\circ} \text{K}$$

$$C_{p}^{\bullet} = 15.0 \text{ cal deg K}^{-1} \text{gfw}^{-1} \qquad 2218^{\circ} \text{K} \leq T \leq 6000^{\circ} \text{K}$$

Structure

NbO has a cubic (NaCl type) lattice with ordered vacancies.

Heat of Formation

An average, rounded value based on two calorimetric and two equilbria determinations, $l\!=\!4$

Heat Capacity and Entropy

Low temperature data estimated. High temperature data from Gel'd and Kusenko⁵ up to 1800°K. Data at higher temperatures are estimated.

Melting and Vaporization

Melting temperature is from Elliott. 6 Heat of fusion is estimated.

References

- 1. Kusenko, F.G. and P V. Gel'd, Izv. Sibirsk. Otd. A.N. SSSR 1960, No. 2, 46-52 (1960).
- 2. Morozova, M. P. and T. A Stolyarova, Zhur Ob Khim. 30, 3848 (1960).
- 3. Lavrent'ev, V.I., Y.I. Gerasimov and T.N Rezukhina, Dokl. Akad. Nauk SSSR 136, 1372 (1961).
- Brewer, L., Chem. Revs. 52, 1-75 (1953).
 Gel'd, P. V. and F. G. Kusenko, Izv. Akad Nauk SSSR O T. N. Met. 1 Top 1960, No. 2, 79-86 (1960).
- 6. Elliott, R., Trans. Am. Soc. Metals 52, 990 (1960).

NIBBIUM MONOXIDE (NEO)

(CONDENSED PHASE)

GFW - 108.91

SUMMARY OF UNCERTAINTY ESTIMATES

		cal/°K	Ma		_ Kcal, gfw		
T,*K	C _v	۶r	(FT - H298)/T	HT - H298	Kent, gfw YHj	4 Fi	Fow K
298.15	±0.500	±1.500	±1.500	±0.000	±2.000		
1000	±0.500	±2.105	±1.754	±0.351			
1500	±0.500	±2.306	±1.907	±0.601			
1500	±1.000	±2.308	+1.907	+0.601			
2000	±1.000	±2.595	±2.045	*1 - 101			
2218	±1.000	£2.699	+2-104	+1.319			
2218	± 2.000	+4.502	*2.104	+5 - 319			
3000	± 2.000	±5.106	£2.812	46.883			
4000	£ 2.000	+5.682	+3.461	.8.883			
5000	± 2.000	±6.128	43.951	±10+883			
6000	± 2.000	±6.493	#4.346	±12.883			

Reference State for Calculating AH_I, AF_I, and Log K_D. Solid Nb from 0° to 2741°K, Liquid Nb from 2741° to 5032°K, Gaseous Nb from 5032° to 6000°K; Gaseous O₂; Gaseous NbO.

	("		#I*		_Kcal/gfw		
', "K	(p	ST	-(FT - H, 108)/1,	H, - H, 398	ΔH	ΛF _f	Log Kp
0	0.000	0.000	INFINITE	-2.099	46.219	46.219	INFINITE
298 • 15 300	7 - 358	57.091	57.091	0.000	46.017	36.984	-28.575
400	7•366 7•735	17.136	57.091	0.014	46.013	38.941	-28+367
500	8.034	59.307 61.067	57.384 57.950	0.769 1.558	45.813 45.628	36.614	-20+004
600	8 • 254					34.335	-15.007
700	8.413	62.552 63.837	58.597 59.255	2 • 373 3 • 207	45.446	32.094	-11.690
800	8.530	64.968	59.900	4.054	45.073	27.699	330 -7.567
900	8 . 6 1 8	65.978	60.520	4.912	44.876	25.539	-6.201
000	8.686	66.890	61.113	5.777	44.670	23.400	-5.114
100	8.739	67.720	61.676	6.649	44.456	21.285	-4.229
200	8.782	68.483	62.212	7.525	44.232	19.188	-3.494
300	8.817	69.187	62.722	8 - 405	43.997	17.116	-2.876
500	8 • 8 4 7 8 • 6 7 2	69.842	63.207	9.288	43.752	15.052	-2.350
300	0.072	70.453	63.670	10.174	43.498	13.010	-1.696
600	8 . 8 9 3	71.026	64.112	11.062	43.1.3	10.986	-1.501
700	8.913	71.566	64.535	11.953	42.958	8.977	-1.154
1800 1900	8.931 8.947	72.076	64.940	12.845	42.672	6.987	-0.848
2000	8.963	72.559 73.018	65.328 65.701	13.739	42.375 42.067	5.014 3.057	-0.577 -0.334
2100 2 20 0	6.979 8.994	73.456 73.874	66.060 66.406	15.531	41.748	1.114	-0.116 0.081
300	9.011	74.275	66.740	16.430 17.330	41.419	-0.815	0.081
400	9.029	74.658	67.062	18.232	40.728	-2.728 -4.627	0.421
500	9.048	75.027	67.373	19.136	40.367	-6.507	0.569
2600	9.069	75.383	67.674	20.042	39.996	-8.374	0.704
700	9.092	75.726	67.966	20.950	39.615	-10.228	0.828
741	9.102	75.863	68.083	21.323	39.456	-10.985	0.876
741	9.102	75.863	68.083	21.323	33.056	-10.985	0.876
2800	9.118	76.057	68.249	21.860	32.843	-11.929	0.931
900	9.146	76.377	68.524	22.773	32.482	-13.521	1.619
3000	9.177	76.688	68.791	23.690	32.123	-15.103	1.100
1100	9.211	76.989	69.051	24.609	31.764	-16.670	1.175
3200	9.248	77.283	69.304	25.532	31.406	-18.231	1.245
3300	9.288	77.568	69.550	26.459	31 • 05) 30 • 69 6	-19.775 -21.308	1.310
3400 3500	9.332 9.379	77.846 78.117	69.790 70.024	20.325	30.34	-22.833	1.426
		70 202	70 353	20.246	29.995	-24.350	1.478
3600 3700	9.429 9.482	78.382 78.642	70.253 70.476	29.265 30.211	29.651	-25.855	1.52
3700 3800	9.539	78.895	70.695	31.162	29.309	-27.351	1.57
3900	9.598	79.144	70.908	32.119	28.972	-28.838	1.61
4000	9.661	79.388	71.118	33.062	28.639	-30.317	1.65
4100	9.776	79.628	71.322	34.051	28.310	-31.785	1.69
4100 4200	9.794	79.863	71.523	35.027	27.986	-33.250	1.73
4300	9.865	80.094	71.720	36.010	27.668	-34.703	1.76
4400	9.938	80.322	71.913	37.000	27.357	-36.149	1.79
4500	10.013	80.547	72.103	37.997	27.045	-37.593	1 - 82
46 00	10.090	80.768	72.289	39.003	26.743	-39.023	1.85
4700	10.168	80.986	72.472	40.015	25.444	-40.454	1.88
4800	10.249	81.201	72.652	41.036	26.152	-41.873	1.90
4900	10.330	81.414	72.829	42.065	25.864	-4 . 288	1.93
5000	10.413	81.623	73.003	3.102	25.581	-44.698	1.95
5031.58	10.440	81.689	73.057	43.431	25.491	-45.203	1 • 96
5031.58	10.440	81 - 689	73.057	43.431	-137.081	-45.203	1 • 96
5100	10.497	81.831	73.174	44-147	-137.314	-43.952	1.88
5200	10.582	82.036		45.201	-137.657	-42.118	1.77
5300	10.667	82.238	73.510	46 • 263	-138.003	-40.286 -38.434	1 466
5400	10.753	82.439	73.673 73.835	47.334	-138.354 -138.710	-36.585	1.45
5500	10.839	82.637	() (0)				
5600	10.925	82.834		49.301	~139.072	-34.727 -32.865	1.35
5700	11.012	83.028	74.152 74.307	50.598 51.703	-139.443 -139.826	-30.987	1.16
5800	11.098	83.221 83.412		52.816	-140.224	-29.108	1.07
5900 6000	11.184	83.601		53.939	-140.637	-27.219	0.99
9000	110107						
				ember 196			HLS

$$\Delta H_{f0}^{\bullet} = +46.219 \text{ kcal gfw}^{-1}$$

Ground State Configuration
$$^2\Lambda$$

$$\Delta H_{f298.15}^{\bullet} = +46.017 \text{ kcal gfw}^{-1}$$

$$S_{298.15}^{\bullet} = 57.091 \text{ cal deg}^{-1} \text{gfw}^{-1}$$

$$H_{298.15}^{\circ} - H_{0}^{\circ} = 2.099 \text{ kcal gfw}^{-1}$$

					-cm ⁻¹ -				1
State	g	E	ω _e	ω _e × _e	ω _ε	В	a _e	$y_e \times 10^5$	D _e x 10 ⁶
x ² a	4	0.0	989.03	3.83		0.4323	0.0024	-	0.26
С	4	15,400	919.5	20.3	-	0.41	-	-	-
В	4	18,280	998.	16.0	-	0.41	-	-	-
A ² \	4	21,385.3	850.48	3.37	-	0.4003	0.0020	-	0.30

Based on work of Shchukarev et al. 1

Heat Capacity and Entropy

Calculated using constants shown above. 2-5

References

- Shchukarev, S. A., et al., Izv. V. U. Z. Khim. 1 Khim. Tekh. 5, 691 (1962).
- Uhler, U., Naturwissenschaften 41, 137-8 (1954).
- Uhler, U. Arkiv Fysik 8, 265 (1954).
 Rao, V.R., Ind. J. Physics 24, 35 (1950).
- 5. Rao, V.R. and D. Premaswarup, Ind. J. Physics 27, 399 (1953).

NIGBIUM MONOXIDE (NEO)

(IDEAL MOLECULAR GAS)

GFW = 108.91

SUMMARY OF UNCERTAINTY ESTIMATES

		cal/°K		,	_Kral gfw		
T, *K	ر _{\$}	5 ° T	~(FT - H798)/T	HT - H298	ΛH,	$\Delta F_{k}^{(A)}$	log K _P
298-15	±1.000	±1.000	±1.000	±0.000	± 5, 000		
1000	±1.000	±2.210	±1.508	±0.702			
2000	±1.000	±2.903	±2.052	+1.702			
3000	±1.000	±3.309	±2.408	12.702			
4000	±1.000	£3.596	±2.671	+3.702			
5000	±1.000	+ 3 - 820	*2.879	*4.702			
6000	*1.000	±4.002	±3.052	±5.702			

Reference State for Calculating ΔΗ,", ΔΕ,", and Log Kp: Solid Nb from 0° to 2741°K, a-NbO₂ from 0° to 1090°K, β-NbO₂ from 1090° to 1200°K, γ-NbO₂ from 1200° to 2270°K, Liquid NbO₂ from 2270° to 6000°K.

T 84	0	cel/°K	£1=		Kcal/gfw		
T, °K	(p	s _T	-(FT - H298)/T	HT - H291		AF?	Log K
0	0.000	0.000				•	. ,
298 - 15	13.740	0.000 13.030	INFINITE	-2.222	-189.083	-189.083	INFINIT
300	13.768	13.115	13.030	0.000	-190.200	-176.790	129.58
400	15.074	17.262	13.030 13.587	0.025	-190.199	-176.707	128.72
500	16.192	20.748	14.679	1.470	-190.064	-172.227	94 • 09
		_		3.034	~189.840	-167.792	73.33
600	17.236	23.793	15.949	4.706	-189.543	-142 460	
700 800	18.245	26.526	17.268	6.480	-189.174	-163.409 -159.082	59.51
900	19.235	29.027	18.584	8.354	-188.736	-154.813	49 466
1000	20.215	31.349	19.875	10.327	-188.225	-150.603	36 . 57
	21.188	33.530	21.132	12.397	-187.640	-146.452	32.00
090	22.060	35.393	22 222				
090	22.200	36.053	22.233-	_14.343	187.049_	142.770	28.62
1100	22.200	36.256	22.360		-186.329		28 462
200	22.200	38.187	23.600	15.285	-186.258	-142.371	28.28
200	19.850	38 - 187	23.600	17•505- 17•505-	185.562_	138.413_	25 • 20
300	19.850	39.776	24.784	19.490	-185.562 -185.120	-138.413	25 • 20
400	19.850	41.247	25.908	21.475		-134.503	22.61
1500	19.850	42.617	26.977	23.460	-184.695 -184.785	-130.624 -126.777	20.39
400	10					1500111	18.47
1600	19-850	43.898	27.995	25.445	-183.892	-122.957	16.794
700	19.850	45 - 101	28.966	27.430	-183.514	-119.160	15.316
900	19.850	46.236	29.894	29.415	-183.152	-115.385	14.009
000	19.850	47.309	30.783	31 - 400	-182.805	-111.629	12.840
. 300	19.850	48.327	31.635	33.385	-182.473	-107.890	11.789
100	19.850	40 301					
200	19.850	49.296	32.453	35.370	-182-157	-104.169	10.841
270	19.850	50.219 50.841	33.240	37 - 355	-181.855	-100.464	9.980
270	20.000	57.449	33.773	38 • 745	181.652_	97.877_	9.423
300	20.000	57.712	34.083	53.745	-166-652	-97.877	9 • 423
400	20.000	58.563	35.086	54 • 34 5 56 • 34 5	~166.563	-96.967	9 • 214
500	20.000	59.379	36.041	58.345	-166.277 -166.006	-93.950	8 + 5 5 5
						-90.940	7.950
600	20.000	60.164	36.954	60.345	-165.749	-87.942	7.392
700	20.000	60.918	37.828	62.345	-165.507	-84.957	6 . 876
741	20.000	61.220	38.175	63.165	-165.412	-83.734	6.676
741	20.000	61.220	38.175	63.165	-171.812	-83.734	6.676
800	20.000	61.646	38.665	64 - 345	-171-660	-81.837	6.387
900	20.000	62.348	39.470	66.345	-171 -438	-78.634	5.926
000	20.000	63.026	40.244	.8 . 34 5	-171-1-1	-75.441	5.496
100	20.000	63.681	40.989	70 3:5	-174		
200	20.000	64.316	41.709	70 • 345 72 • 345	-170.917	-72.248	5 • 693
300	20.000	64.932	42.403	74.345	-170.679 -170.444	-69.077	4.717
400	20.000	65.529	43.074	76 - 34 5	-176.214	-65.902 -62.734	4 - 364
500	20.000	66.109	43.724	78.345	-169.988	-59.577	4 • 032 3 • 720
							3.120
600	20.000	66.672	44.354	80.345	-169.766	-56.428	3 4 4 2 5
700	20.000	67.220	44.965	82.345	-169.547	-53.285	3 1 4 7
800	20.000	67.753	45.557	84.345	-169.332	-50-140	2 . 884
900	20.000	68.273	46.113	86.345	-169.121	-47.008	2.634
00 0	20.000	68.779	46.693	88 • 34 5	-168.917	-43.876	2.397
	20 224					_	
100	20.000	69.273	47.238	90.345	-168.709	-40.755	2 • 1 7 2
200 300	20.000	69.755	47.768	92.345	-168.509	-37.639	1 4 9 5 8
400	20.00C 20.000	70.226 10.685	48.285	94 - 345	-148.312	-34.519	1.754
300	20.000	71.135	48.789 49.280	96 • 345	-168-120	-31.408	1 + 5 6 0
			770200	98.345	-167.931	8.304	1.375
600	20.000	71.574	49.760	0.345	-147-747	-26 100	
700	20.000	72.005	50.229	102-345	-167.747	-25.198	1+197
800	20.000	72.426		104.345	-167.568 -167.395	-22.105	1.028
900	20.000	72.838		106.345	~167.228	-19.008	0 • 865
000	20.000	73.242		108.345	-167.069	-15.917 -12.830	0.710
	20000				10.1009	-12.69	0.561
011.58	20.000	73.368	51.710	108.977	-167.021	-11.921	0.518
731.58	20.000	73.368		108.977	-329.594	-11.921	0.518
100	20.000	73.638	52.002	110-345	-329.534	-7.600	0.326
200	20.000	74.027		112.345	-329.461	-1.284	0.054
300	20.000	74.407		114.345	-329.406	5.025	-0.207
•00	20.000	74.781		116.345	-329.371	11.339	-0.459
500	20.000	75.148	53.631	118.345	-329.359	17.650	-0.701
		_					
500	20.000	75.509			-329.373	23.955	-0.935
700	20.000	75.863		127.345	-329.417	30.270	-1.161
000	20.000	76 - 211		124 - 345	-329.497	36.592	-1.379
900	20.000	76.552		126.345	-329.618 -329.787	42.909	-1.589
000	20.000	76.889	55.498	128.345	-329.787	49.230	-1.793
			15 Septe				

 $\Delta H_{1298, 15}^{\circ} = -190.2 \text{ kcal gfw}^{-1}$ $S_{298, 15}^{\bullet} = 13.03 \text{ cal deg K}^{-1}\text{gfw}^{-1}$ $T_t = 1090^{\circ} K$ $\Delta H_t = 0.720 \text{ kcal gfw}^{-1}$ T, = 1200°K $\Delta H_t = 0$ Tm = 2270°K AHm = 15.0 cal gfw-1 $H_{2.98.15}^{\circ} - H_{0}^{\circ} = 2.222 \text{ kcal g/w}^{-1}$ $C_0^* = 11.70 + 9.56 \times 10^{-3} \text{T} - 0.72 \times 10^5 \text{T}^{-2} \text{ caldeg K}^{-1} \text{ gfw}^{-1}$ 298. 15°K < T < 1090°K $C_D^* = 22.20 \text{ cal deg } K^{-1} \text{gfw}^{-1}$ 1090°K ≤ T ≤ 1200°K $C_{\rm p}^* = 19.85 \text{ cal deg } K^{-1} \text{gfw}^{-1}$ 1200°K < T < 2270°K $C_{D}^{*} = 20, 0 \text{ cal deg } K^{-1} \text{gfw}^{-1}$ 2270°K < T < 6000°K

Structure

Brauer $^{\rm l}$ reported that NbO $_{\rm 2}$ has a narrow range of homogeneity with a structure related to that of rutile. Other forms appear possible.

Heat of Formation

Three calorimetric determinations were recomputed. 2-4 See volume 1, this study (section IVB15. 4. 2) for details.

Heat Capacity and Entropy

Low temperature data from King, 5 Data from 298.15 to 1800°K from King and Christensen, 6 Data above 1800°K are estimated.

Mesting and Vaporization

Melting temperature is average of two determinations.

References

- Brauer, G., Z. Anorg. Chem. 248, 1-31 (1941).
 Morozova M. P. and T. A. Stolyarova, Zhur. Ob. Khim. 30, 3848 (1960).
- 3. Kusenko, F.G. and P.V. Gel'd, Izv. Sibir Otd A. N. S. S. R. 1960, No. 2, 46-52 (1960).
- 4. Mah, A.D., J. Am. Chem. Soc 80, 3872 (1958).
- King, E.G., J., Am. Chem. Soc. 80, 1799 (1958).
 King, E.G. and A.U. Christensen, Bur Mines Rept 5789 (1961).

NIBBIUM DIEXIDE (NEO2)

(CONDENSED PHASE)

GFW = 124.91

SUMMARY OF UNCERTAINTY ESTIMATES

		cal/'K	st=		Kral/gl=		
T,*K	ردهٔ	s _T	-(F " H ₂₉₈)/T	HT - H79H	. Keal/gfw VHj	A F 1	lng K _p
298-15	±0.200	±0.070	±0.070	± 0.000	±1.000		
1000	± 0 • 200	±0.312	±0.172	+0-140			
1090	± 0 • 200	±0.329	+0.184	+0.158			
1090	± 0.500	+0.421	.0.164	+ 0 - 258			
1200	± 0.500	+0.469	±0.208	+0.313			
1200	±1.000	* 0 - 552	+0-208	+0.413			
1500	±1.000	+0.776	±0.300	+0.713			
2000	±1.000	£1.063	+0.457	±1.213			
2270	±1.000	£1.190	≥0.536	+1.483			
2270	£ 2.00C	± 3.393	±0.536	+6.483			
3000	± 2.000	+3.950	±1 + 30 2	£7.943			
4000	± 2.000	±4.526	£2.040	4 9 . 94 3			
5000	± 2.000	44.972	±2.583	±11.943			
6000	£ 2.000	+ 5 - 336	+1.013	±13.943			

Reference State for Calculating AH, AF, and Log Kp: Solid Nb from 0° to 2741°K, Liquid Nb from 2741° to 5032°K, Gaseous Nb from 5032° to 6000°K; Gaseous O2; Gaseous NbO2.

		cel/"K	st=		Kcal/gfw		
', °K	ζ, _P	s _T	-(FT - H298)/T	H _T - H ₂₉₈	AH _t	V E	Log Kp
0	0.000						
298.15	0.000 11.218	0.000 61.031	INFINITE	-2.691	-50.403	-50.403	INFINITE
300	11.239	61.101	61.031 61.031	0.000	-51.051	-51.953	38 • 080
400	12.314	64.484	61.485	0.021 1.200	-51 • 054 -51 • 185	-51.958 -52.237	37.850 28.540
500	13.236	67.334	62.377	2.478	-51.247	-52.492	22.943
600	13.986	69.816	63.415	3.841	-51.259	-52.739	19.209
700	14.562	72.018	64.490	5.270	-51.235	-52.989	16.543
800	14.980	73.991	65.556	6.748	-51.193	-53.241	14.544
900	15.267	75.773	66.594	8.261	-51.142	-53.501	12.991
,000	15.452	77.392	67.594	9.798	-51.090	-53.765	11.750
100	15.562	78.871	68.553	11.349	-51.045	-54.034	10.735
200	15.619	80.227	69.470	12.909	-51.009	-54.308	9.890
300	15.639	81.479	70.346	14-472	-50.989	-54.584	9.176
400 500	15.636 15.618	82.638	71.163 71.983	16.036 17.599	-50.985 -50.997	-54.860 -55.137	8.564 8.033
1600 1700	15.591 15.559	84.723	72.748	19.159	~51.029	-55.413	7.569
800	15.524	86.556	73.481 74.183	20.717	-51.078	-55.687	7.159
900	15.489	87.394	74.856	22•271 23•821	-51 - 1 - 7 -51 - 235	-55.956	6.794
000	15.454	88 - 188	75.503	25.369	-51 • 235 -51 • 340	-56.219 -56.477	6.466
100	15.421	88 041	74 125				5.904
200	15.390	88.941 89.657	76.125 76.724	26.912 28.453	-51.466 -51.608	-56.732 -56.980	5.660
300	15.360	90.341	77.302	29.990	-51.769	-57.222	5.437
400	15.332	90.994	77.859	31.525	~51.948	-57.457	5.232
500	15.306	91.619	78.397	33.057	-52.145	-57.681	5.042
600	15.482	92.219	78.917	34.586	-52.359	-57.897	4.866
700	15.259	92.795	79.420	36-113	~52.590	-58.106	4.703
741	15.251	93.025	79.622	36.739	-52.689	-50.191	4.640
741	15.251	93.025	79.622	36.739	-59.089	-58.191	4.640
800	15.238	93.350	79.908	37.638	-59.218	-58.169	4.540
900	15.219	93.884	80.381	39.161	~59.443	-58.127	4.380
0000	15.201	94.400	60.839	40.682	-59.674	-58.077	4.231
100	15-185	94.898	81.285	42.201	-59.912	-58.017	4.090
3200	15.170	95.380	81.718	43.719	-60.156	-57.957 -57.882	3.958
3300 3400	15.155 15.142	95.847 96.299	82.139 82.549	45.235 46.750	-60.405 -60.660	~57.800	3.833 3.715
500	15.130	56.738	82.948	48.764	-60.9.0	-57.712	3.603
	16 110	07 144	02 317	40 774	61 186	-67 617	3.400
3600 3700	15.119 15.108	97.164 97.578	83.337 83.716	49.776 51.287	-61.186 -61.456	-57.617 -57.515	3.498 3.397
3800	15.098	97.981	84.086	52.798	-61.730	-57.401	3.301
900	15.089	98.373	84.448	54.307	-62.0.0	-57.287	3.210
000	15.080	98.755	84.801	55.815	-62.294	-57.159	3.123
100	15.072	99.127	85.146	57.323	-62.582	-57.029	3.040
200	15.065	99.490	85.483	58.830	-62.875	-56.889	2.960
300	15.058	99.844	85.813	60.336	-63-172	-56.740	2.884
400	15.051	100.190	86.135	61.842	-63.474	-56.582	2.810
500	15.045	100.529	86.452	63.346	-63.781	-56.428	2.740
600	15.039	100.859	86.761	64.851	-64.092	-56.254	2.673
700	15.034	101.183	87.065	66.354	-64.410	-56.085	2.608
800	15.028	101-499	87.362	67.857	-64.734	-55.899	2.545
900	15.023	101.809	87.654	69.360	-65.064	-55.711	2 • 485
3000	15.019	102.112	87.940	70.862	-65.403	-55.516	2 • 4 2 6
3031.58	15.017	102.207	88.029	4 336	-65.513	-55.514	2 • 4 1 1
3031.58	15.017	102.207	88.029	71.336	~228.086	-55.514	2.411
3100	15.015	102.410	88.221	72.364	-228.366	-53.167	2 • 278
5200	15.010	102.701	88.496	73.865	-228.792	-49.720	2 - 090
300	15.006	102.987	68.767	75 - 366	-229.236 -229.701	-46.276 -42.816	1.908 1.733
3400	15.003	103.268	89.033 89.294	76 • 866 78 • 306	-230.189	-39.347	1.563
3500	14.999	103.243					,
5600	14.996	103.813	89.551	79.866 81.365	-230 • 703 -231 • 248	-35.875 -32.389	1.466
5700	14.993	104.078	89.804 90.052	82-865	-231.828	-28.883	1.088
3800	14.990	104.595	90.092	84 . 363	-232.451	-25.374	0.940
5900 6000	14.987	104.595	90.537	85.862	-233.121	-21.855	8.796
- + • •		-2,,					
			15 Septer				HLS

(IDEAL MOLECULAR GAS) gfw = 124.91

$$\Delta H_{40}^2 = -50.403 \text{ kcal gfw}^{-1}$$

$$\Lambda H_{1298.15} = -51.051 \text{ kcal gfw}^{-1}$$

Point Group D.h

$$S_{298.15}^{\circ} = 61.031 \text{ cal deg}^{-1} \text{ gfw}^{-1}$$

 $H_{0.15}^{2} - H_{0}^{6} = 2.691 \text{ kcal gfw}^{-1}$

Vibrational Levels and Multiplicities

Bond lengths and angles:

Nb-O distance = 1.691 A

O-Nb-O angle = 180°

Moment of inertia:

 $B_e = 0.18424 \text{ cm}^{-1}$

Heat of Formation

Data of Shchukarev et all was recalculated.

Heat Capacity and Entropy

Estimated structural data was used. Electronic levels were approximated as equal to those of Nb⁺⁴.

Reference

1. Shchukarev, S.A., G.A. Semenov, and K.E. Frantseva, Doklady Akad. Nauk SSSR 145, 119 (1962).

NIBBIUM DIEXIDE (NbO2)

(IDEAL MOLECULAR GAS)

GFW = 124.91

 $\sigma = 2$

SUMMARY OF UNCERTAINTY ESTIMATES

		cal/°K	8f*		Kcel/gfw		
T, *K	رث	s _T	-(FT - H298)/T	HT - H798	ΔH_{f}^{2}	A F ₁ ² \	l og K _P
298-15	±1.000	±3.000	±3.000	±0.000	± 5. 000		
1000	±1.000	±4.210	±3.508	±0.702			
2000	£1.000	±4.903	±4.052	±1.702			
3000	±1.000	±5.309	44.408	±2.702			
4000	±1.000	±5.596	44.671	±3.702			
5000	±1.000	±5.820	±4.879	+4.702			
6000	±1.000	±6.002	45.052	±5.702			

Reference State for Calculating AH, AH, AH, and Log Kp: Solid Nb from 0° to 2741°K, Liquid Nb from 2741° to 5032°K, Gaseous Nb from 5032° to 6000°K, Gaseous O₂.
Solid Nb₂O₅ from 0° to 1785°K, Liquid Nb₂O₅ from 1785° to 6000°K.

				1000	_ Kcal/glw		
°K	′(p	Ť	-(F _Т - н ₂₉₈)/т [\]	HT - H298	$\Delta H_{\mathbf{f}}^{c}$	V Fi	Log Kp
0	0.000	0.000	INFINITE	-5.325	-452.210	-452.210	INFINITE
298-15	31.564	32.800	32.800			-422.484	309.674
300	31.658	32.996	32.801	0.058	-454.596	-422.285	307.620
400	35.135	42.640	34.092	3.419	-454.210	-411.565	224 . 858
500	37.020	50.700	36.631	7.035	-453.640	-400.968	175.255
600	38 • 278	57.567	39.562	10.803	-453-000	-390.491	142.229
700	39.239	63.542	42.570	14.681	-452.320	-380 -128	1184676
800	40.043	68 - 836	45.529	18.646	~451.626	-369.862	101.037
900	40.755 41.410	73.594 77.922	48.387 51.127	22.686 26.795	-450.917 -450.192	-359.684 -349.583	87.339 76.398
100	42.028	81.898	53.747	30.967	~449.452	-339.558	67.461
200	42.620	85.581	56.248	35.199	-448.692	-329.601	60.026
300	43.195	89.015	58 • 638	39.490	-447.915	-319.711	53.746
400	43.757	92.237	60.924	43.838	-447.119	-309.878	48 - 372
500	44.309	95.274	63.114	48.241	-446.301	-300.104	43.723
600	44.854	98 - 152	65.214	52.700	-445.4 5	-290.385	39.663 36.087
1700	45.393	100.887	67.233	57.212	-444.608	-280.721	33.367
785	45 - 848	103.113	68.889	-61.090-	-443.864 -419.274	272.541_ 272.541_	33.367
1785	57.900 57.900	116.889	68.889 69.291	85.680 86.548	-418.963	-271.312	32.940
1 800 1 900	57.900 57.900	117.373	71.905	92.338	-416.896	-263.165	30.269
2000	57.900	127.474	74.409	98.128	-414.867	-255.120	27.877
210C	57.900	126.298	76.814	103.918	-412.863	-247.186	25.724
2200	57.900	128.992	79.125	109.708	-410.894	-239.344	23.776
2300	57.900	131.566	81.349	115.498	-408.958	-231.589	22.005
2400	57.900	134.030	83.493	121.288	-407.057	-223.920	20 • 390
2500	57.900	136.394	85.562	127.078	-405-189	-216.326	18.910
2600	57.900	138.664	87.561	132.868	-403.351	-208.805	17.551 16.298
2700	57.900	140.850	89.495	138.658	~401.546	-201.363 -198.330	15.813
2741	57.900	141.722	90.269	141.032	-400.815 -413.615	-198.330	15.813
2741	57.900	141.722	90.269 91.367	144.448	-412.533	-193.704	15.119
2800	57.900 57.900	144.987	93.181	150.238	-410.713	-185.919	14.011
2900 3000	57.900	146.950	94.941	156.028	-408.903	-178.203	12.981
2100	57.900	148.848	96.649	161.818	-407-10-	-170.530	12.022
3100 3200	57.900	150.687	98.309	167.608	-405.321	-162.938	11.126
3300	57.900	152.468	99.923	173.398	-403.543	-155.386	10.290
3400	57.900	154.197		179.188	-401.778	-147.888 -140.445	9.506
3500	57.900	155.875	103.024	184.978	-400.023		
3600	57.900	157.506		190.768 196.558		-133.057 -125.718	8.077 7.426
3700	57.900	159.093		202.348		-118.412	6.81
3800	57.900	162.141		208 - 138		-111.164	6 • 22
3900 4000	57.900 57.900	163.607		213.928		-103.950	5.67
	57.900	165.036	111.447	219.718	-389.686		
4100	57.900	166.437		275.508	-387.996	-89.662	
4200	57.900	167.794		231.298	-386 • 313		
4400	57.700	169.125	115.241	237.088			
4500	57.900	170.426		242.878	-382.981	-68.523	3.32
4600	57.900	171.699		248.668			
4700	57.900	172.944		254.458			
4800	57.900	174.16		24 248			
4900	57.900 57.900	175.351		26e • 338 271 • 828			
5000						-31.976	1438
5031.58	57.900	176.89		273.657		1	1438
5031.58	57.900	176.89		277.616	-698.541	-22.900	0.98
5100	57.900 57.900	178.79		283.408	-697.135	-9.657	
5200	57.900	179.90		289.198	-695.771		
5300 5400	57.900	180.98	3 126.355	294.986			
5500	57.900	102.04		300.778	-693.194		
5600	57.900	181.08	8 128.344	306 - 561			
5700	57.900	184.11	3 129.314	312.35			
5800	57.900	185.12		318.14			
5900	57.900	186.11		323.93			
6000	57.900	187.08	, 136.120				

$$\Delta H_{f298, 15}^{*} = -454.6 \pm 1.0 \text{ kcal gfw}^{-1}$$
 $S_{298, 15}^{*} = 32.8 \pm 0.2 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$ $T_{m} = 1785^{\circ}\text{K}$ $\Delta H_{m} = 24,590 \text{ kcal gfw}^{-1}$

 $H_{298, 15}^{\circ}$ - H_{0}° = 5, 325 kcal gfw⁻¹

$$C_p^* = 36.90 + 5.12 \times 10^{-3} T$$
 -6. $10 \times 10^5 T^{-2}$ caldeg K^{-1} gfw⁻¹ 298.15° K $\leq T \leq 1785$ ° K

 $C_0^* = 57.90 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$ 1785°K < T < 6000°K

Structure

The α -Nb₂O₅ (high temperature form) reported by Holtzberg I was considered to have a monoclinic unit cell.

Heat of Formation

Average of five calorimetric measurements, 2-6

Heat Capacity and Entropy

Low temperature data from King. 7 High temperature data from Kelley. 8 Data above 1809°K were extrapolated.

Melting and Vaporization

Heat of melting was from Kelley⁸ and Orr. ⁹

References

- 1. Holtzberg, F. et al, J. Am. Chem. Soc. 79, 2039 (1957).
- Humphrey, G. L., J. Am. Chem. Soc. 76, 978 (1954).
 Morozova, M. P. and T. A. Stolyarova, Zhur Ob. Khim 30, 3848 (1960).
 Kusenko, F. G. and P. V. Gel'd, Zhur Ob. Khim 30, 3847 (1960).

- Huber, E. G. Jr., et al, J. Phys. Chem. 65, 1846 (1961).
 Kornilov, A. N., et al, Dokl. Akad Nauk SSSR 144, 355 (1962).
 King, E. G., J. Am. Chem. Soc 76, 3289 (1954).
 Kelley, K. K., U.S. Bur. Mines Bull. 584 (1960).

- 9. Orr, R. L., J. Am. Chem. Soc. 75, 2808 (1953).

NIBBIUM PENTOXIDE (Nb,O5)

(CONDENSED PHASE)

GFW = 265.82

SUMMARY OF UNCERTAINTY ESTIMATES

		cel/°K	st		_ Kcal gra		
T,°K	C.	۶۴	-(FT - H298)/T	HT - H298	ΛH _I	AF?\	Log Kp
298 • 15	± 0 • 300	±0.200	±0.200	±0.000	±1.000		
500	£0.300	±0.355	±0.234	± 0 • 061			
500	±1.000	±0.355	±0.234	± 04061			
1000	±1.000	±1.048	±0.486	±0.561			
1785	±1.000	±1.628	#0.874	±1.346			
1765	±1.000	±2.188	±0.874	± 2 + 346			
2000	±1.000	£2.302	+1.021	±2.561			
2000	£ 2.000	£ 2.302	±1.021	± 2 • 561			
3000	± 2.000	±3.113	±1.592	±4.561			
3000	£ 3.000	±3-113	±1.592	± 4 . 561			
4000	± 3.000	±3.976	±2.085	± 7.561			
5000	+ 3.000	+4.645		±10.561			
6000	± 3.000	±5.192		±13.561			

OXYGEN

IDEAL MONATOMIC GAS

Reference State for Calculating AH*, AF*, and Log Kp.
Gaseous O2 from 0* to 6000*K.

T 6	C	cal/°K	stw		_Kcal/gfw		
T,°K	(°	s _T	-(FT - H298)/T	H _T - H ₂₉₈	ΔH,	A F	Log K
Ó					•		Log up
298-15	0.000 5.237	L • 000	INFINITE	-1.608	58.986	f 9 . o. /	
300	5.235	3F • 469	38.469	0.000	59.557	58.986	INFINIT
400	5.135	38.501	38.469	0.010	59.561	55.393 55.367	~40.60
500	5.081	39.992 41.131	38.673	0.528	59.724	53.945	~40.33
	,,,,,	41.131	39.055	1.038	59.868	52.483	-29.47 -22.93
600	5.049	42.054	39.480				
700	5.029	42.831	39.905	1.544	59.996	50.994	-18.54
800	5.015	43.502	40.314	2 • 0 4 8	60.111	49.484	-15.44
900	5.006	44.092	40.701	2 • 5 5 0 3 • 0 5 2	60.214	47.959	-13410
1000	4.999	44.619	41.067	3.552	60 • 309 60 • 395	46.421	-11.27
1100				3.772	004395	44.873	-9.80
1200	4.994	45.095	41.412	4.051	60.475	43.317	
1300	4.987	45.529	41.737	4.551	60.550	41.754	-8.60
1400	4.984	45.929	42.045	5.049	60.621	40.184	-7.60 -6.75
1500	4.982	46.298	42.335	5.548	60.688	38.610	-6.02
	44,02	46.642	42.611	6.046	60.750	37.031	-5.39
1600	4.981	46.963	(2				
1700	4.979	47.265	42.873	6.544	60.810	35.448	-4.84
1800	4.979	47.550	43.123 43.361	7.042	60.866	33.860	-4.35
1900	4.978	47.819	43.588	7.540	60.920	32.271	-3.91
2000	4.978	47.074	43.806	8.038	60.971	30.679	-3.52
	-		728000	8.536	61.019	29.083	-3.17
2100	4.978	48.317	44.016	9.034	43 444		
2200	4.979	48.549	44.216	9.532	61.064	27.484	-2.86
2300	4,980	48.770	44.410	10.029	61-107	25.884	-2.57
2400	4.981	48.982	44.596	10.527	61.145	24.282	-2.30
2500	4.984	49.186	44.775	11.026	61.218	22.679 21.075	~2.06
2600	4 004					210013	-1.84
2700	4.986	49.381	44.949	11.524	61.249	19.468	-1.63
2800	4.990	59.569	45.116	12.023	61.280	17.861	-1.44
2900	4.994	49.751	42.279	12.522	61.307	16.249	-1.26
3000	5.004	49.926	45.436	13.022	61.334	14.642	-1.10
	7.004	50.096	45.588	13.522	61.357	13.033	-0.94
3100	5.010	50.260	44 300				
3200	5.017	50.419	45.736	14.023	61.380	11.420	-0.80
1300	5.025	50.574	45.880	14.524	61 - 400	9.810	-0.67
3400	5.033	50.724	46.020	15.026	61.419	8.196	-0.54
3500	5.041	50.870	46.156	15.529	61.438	6.585	-0.42
		20.0.0	46.289	16.033	61.455	4.967	-0.31
3600	5.050	51.012	46.418	16.537	41 474	•	_
3700	5.060	91.150	46.544	17.043	61.470	3.354	-0.204
3800	5.070	51.265	46.667	17.549	61.485 61.498	1.741	-0.103
3900	5.081	51.417	46.787	18.057	61.512	0.125	-0.00
4000	5.091	51.546	46.905	18.565	61.524	-1.490 -3.107	0.083
					~,.	- 20107	0.170
4100	5.103	51.672	47.019	19.075	61.536	-4.719	0.25
4200	5.114	51.795	47.132	19.586	61.547	-6.337	0.25
4300	5.126	51.916	47.242	20.098	61.557	-7.953	0.404
4400 4400	5.136	52.033	47.349	20.611	61.567	-9.567	0.47
•500	5.150	52.149	47.455	21.126	61.576	-11.188	0.54
600	5.143	62 242					38,74.
700	5.162	52.262	47.558	21.641	61.583	-12.801	0.608
800	5 • 1 74 5 • 1 86	52.374	47.659	22.158	61.589	-14.416	0.670
900	5.198	52.483	47.758	22.676	61.594	-16.033	0.730
000	5.210	52.590 52.695	47.856	23.195	61.596	-17.652	0.787
	> 0 Z 1 U	/E . D Y 7	47.952	23.715	61.596	-19.268	0.842
100	5.222	52.798	48.046	24.237	41.500	- 24	
200	5.234	52.900	48.138	24.237	61.593	-20.885	0.895
300	5.246	52.999	48.229	24 • 760 25 284	61.586	-22.499	0.946
400	5.258	53.098	48.318	25.109	61.574	-24.114	0.994
500	5.269	53.194	48.406	26.335	61.555	-25.731	1.041
				-4.333	61.528	-27.348	1.087
600	5 - 280	53.289	48.492	26.863	61.493	-28.957	
700	5.292	53.383	48.577	27.392	61.445		1.130
800	5.302	53.475	48.661	27.921	61.383	-30.571 -32.182	1.172
900	5.313	53.566	48.743	28.452	61.303	-33.793	1.213
000	5.323	53.655	48.824	28.984	61.202	-35.399	1.252

2-207

0

OXYGEN, MONATOMIC (O) (IDEAL GAS) gfw = 16,000 $\Delta H_{f0}^{0} = 58.986 \text{ kcal gfw}^{-1}$ $\Delta H_{f298.15}^{0} = 59.557 \text{ kcal gfw}^{-1}$ Ground State Configuration = $^{3}P_{2}$ $S_{298.15}^{0} = 38.469 \text{ cal degK}^{-1}\text{gfw}^{-1}$ $H_{298.15}^{0} = ^{1} - ^{1}$

Electronic Levels and Multiplicities

Energy levels from Moore. 1

Heat of Formation

Dissociation energy from Brix and Herzberg. 2

Heat Capacity and Entropy

Calculated on monatomic gas-computer program.

See Barriault et al3 for further details.

References

- 1. Moore, C. Atomic Energy Levels, Vol. 1, Nat. Bur. Stds. (1949).
- 2. Brix, P. and G. Herzberg, J. Chem. Phys. 21, 2240 (1953).
- 3. Barriault, R. J. et al, ASD TR 61-260 (May 1962), Pt. 1.

PRYGEN. MONATORIC (6) (IDEAL GAS)

SUMMARY OF UNCERTAINTY ESTIMATES

GFW - 16.000

		cal/^K	61-		_Kcal gfw		
T,°K	′c _p °	s _T	-(FT - H298)/T	HT - H298	ΛH _f	181 V	log K _p
298.15	±0.000	±0.002	±0.002	±0.000	±0.020	± 0.021	±0.015
1000	±0.000	±0.002	±0.002	±0.000	±0.021	+ 0.024	±0.005
2000	±0.000	±0.002	±0.002	±0.000	±0.022	± 0.028	±0.003
3000	±0.000	±0.002	±0.002	±0.000	# 0.025	± 0.032	+0.002
4000	±0.000	±0.002	±0.003	±0.001	±0.035	4 0 - 044	±0.002
5000	±0.000	±0.002	±0.003	±0.001	±0.078	+ 0.053	±0.002
6000	±0.000	±0.002	+0.003	±0.001	±0.428	± 0.077	*0.003

Reference State for Calculating \H'_f, \F'_f, and Log K_p Solid Os from 0° to 3290°K.

Liquid Os from 3290° to 5270°K, Gaseous Os from 5270° to 6000°K; Gaseous O₂; Gaseous OsO 00s

	/ "	TOTAL A	814				
T, °K	′ c "	S _T	-(F 1 - H298)/T	Hr - Hr	Kcel/gfw 'AH''		
•				179	· · · · · · · · · · · · · · · · · · ·	A F	Log Kp
0 298•15	0.000	0.000	INFINITE	-2.124	102.110		
300	7.614	60.396	60.396	0.000		102.123	INFINIT
400	7.623 8.003	60.433	60.396	0.014	10,000	93.624	-68.62
500	8.263	62.691	60.700	0.796	101.997 101.873	93.572	-68.16
	0.261	64.507	61.286	1.611	101.665	90.791	-49.60
600	8.436	66.030				88.051	-38.48
700	8.554	67.340	61.953	7.446	101.504	85.343	-31.089
800	8 . 6 3 6	-6.488	67.631	3.296	101.339	82.663	-25 .80
900	8 . 695	41.509	63.293	4.156	101.166	80.006	-21.856
1000	8.739	70.427	63.9.8	5.022	100.981	77.372	-18.788
			64.533	5 - 894	100.787	74.760	-16.338
1100	8.773	71.262	65.107				
1200	P.799	72.026	65.652	6.770	100.581	72.167	-14.338
1300	8.814	72.711	66.170	7.649	100.366	69.593	-12.674
1400	8.836	73.386	66.662	8 • 5 3 0	100.139	67.037	-11.269
1500	8.849	73.996	67.131	9.417 10.797	99.901	64.501	-10.069
1400			•••	10.777	99.656	61.981	-9.030
1600 1700	8 - 860	74.567	67.578	11.182	99.396	50 / 3/	
1800	8.869	75.105	68.005	12.069	99.1 7	59.476 56.991	-8.124
1300	8.877	75.612	68.414	12.956	98.547	54.519	-7.326
3000	8 - 8 8 4	76.092	68.806	13.844	98.550	52.063	-6.619
	8.884	76.544	64.181	14.733	98.255	49.626	-5.988
2100	8.894			-			-5.423
2200		76.982	64.543	15.622	97.941	47.202	-4.912
2300	8.902	7 . 345	67.890	16.511	47.616	44.794	-4.450
2400	8 • 90 2 8 • 90 5	77.791	10.225	17.402	97.283	42.399	-4.029
2500	8.908	78 - 170	70.548	18.292	96.936	40.021	-3.644
		78.534	70.861	19.183	96.579	37.654	-3.292
2400	8.911	74.883	71 147				
2700	8.913	79.219	71 - 162	20.074	96.210	35.309	-2.968
2800	8.715	79.544	71.455 71.738	20.965	95.830	32.970	-2.669
5900	R • → 1 7	74.856	72.012	21-856	95.439	30.550	-2.392
3000	8.919	80.159	72.279	12.748	95.037	28.344	-2.136
	-			23.640	94.625	26.051	-1.898
11CF	H.920	80.451	12.538	24.532	94 344	33	
1500	8.422	AC . 734	72.790	25.424	94.200	23.773	-1.676
35.40	8.423	PC . 982	71.010	26.277	93.765 93.764	21.506	-1.469
3200	A.421	AC.982	73.010	26.227		19.482	-1.294
1300	4.923	61.00%	73.034	26.316	85.79A 85.749	19.482	-1.294
3400	A.424	P1.275	71.273	27.208	85.25	19.282	-1.277
45 G.O	4 . 4,74,	81.534	73.505	101.3	84 . 76	17.274 15.282	-1.110
44.00						121272	-0.954
1600	4.926	61.786	73.732	28.993	54.265	13.301	-0.807
1700 1800	h . 127	82.030	73.953	29.886	83.767	11.339	-0.670
3900	A. 42H	0 / 68	74.169	30.119	83.268	9.388	-0.540
4007	8.428	97.100	74.379	31.671	82.765	7.450	-0.417
4000	8.929	8	14.585	32.564	82.262	5.526	-0.302
4100							
4200	A. 910	92.447	74.786	13.457	81.757	3.616	-0.193
43(0	8.930 8.93]	81.162	74.983	34 - 350	81.250	1.717	-0.089
4400	8.432	83.372	75.176	35.243	80.747	-0.172	0.009
4500	8.432 8.432	83.777 83.778	75.364	36.137	80.232	-2.047	0.102
	,,,	0 2 6 7 7 18	75.549	17.030	79.710	-1.912	0.190
4600	8 - 432	81.974	75.730	37 6	70 15:		
4700	8.933	H166	75.908	37.923	79.204	-1.760	0.274
4800	8.443	44.345	76.0A2	38.816 39.704	78.695	-7.604	0.354
4900	8.934	84 . 39			74 160	-9.434	0.430
4000	8.934	84.714	76.252 76.420	40.603	77.644	-11.251	0.502
				~1.470	77.116	-13.260	0.571
5100	F. 934	84.896	76.584	4 190	74 501	-14 05:	
1200	8.935	85.070	16.746	43.283	76.585 76.048	-14.856	0.637
5269.57	8.935	85.189	76.857	43.283	76.048	-16.643	0.699
5269.57	8.935	85.189	76.857	43.909	75.672 -100.729	-17.895 -17.895	0.742
1300	8.434	85.240	76.905	44.177	-100.889	-17.401	0.742
5400	8.435	85.407	77.061	45.070	-101.419	-15.817	0.718
5500	8.936	85.571	77.214	45.964	-101.960	-14.388	0.6.0
			• •		*********	140100	0.572
560C	8 . 436	85.742	77.364	46.857	-102-516	-12.624	0.493
5700	8.936	A4.890	77.513	47.751	-103.086	-11-014	0.422
5800	8.936	45.045	77.658	49.644	-103-676	-9.386	0.354
• 900	8.436	86.148	77.47.	49.538	104.785	-7.752	0.287
400 0	A.937	86.34R	17.443	50.431	-104.919	-6.108	0.222

2-209

$$\triangle_{\text{H}_{f0}^{\circ}} = 102.123 \text{ kcal gfw}^{-1}$$

Ground State Degenercy = 6

 $\Delta_{\text{H}_{f298.15}^{\circ}} = 102.000 \text{ kcal gfw}^{-1}$
 $S_{298.15}^{\circ} = 60.396 \text{ cal deg K}^{-1} \text{gfw}^{-1}$
 $A_{298.15}^{\circ} = 60.396 \text{ cal deg K}^{-1} \text{gfw}^{-1}$

					cm ⁻¹ -				
State	g	E	ယ္ဇ	ω _e x _e	ω_{e}^{γ}	В _е	$\alpha_{\mathbf{e}}$	γ _e ×10 ⁵	D _e x10 ⁶
х	6	0. 0	795	3. 6		0. 34	0. 0019		0. 24

Value estimated. See volume 1, this study (section IVB18. 4, 1) for details.

Heat Capacity and Entropy

Spectroscopic constants from Brewer $\underline{et} \ \underline{al}^{\ l}$ used.

Reference

1. Brewer, L. and M. S. Chandrasekharaiah, U. S. At. Energy Comm. Rept. UCRL-8713 Rev. (June 1960).

Reference State for Calculating AH*, AF*, and Log Kp. Solid Pt from 0° to 2043°K, Liquid Pt from 2043° to 4108°K, Gaseous Pt from 4108° to 6000°K; Gaseous O2; Gaseous Pt

T, °K	/ <u>,</u> ,,	çal/°K	114		Kcal/gfw		
·, A	C,b	Ä	-(FT - H ₂₉₈)/Т	HT - H298	ΛH	ΔF,	Log Kp
0	0.000						•
298-15	0.000 7.631	0.000	INFINITE	-2.125	88.797	88.797	INFINITE
300	7.639	60.495	60.495	0.000	88.600	80.836	-59.251
400	8.019	60.543	60.496	0.014	88.597	80.787	-58.851
500	8.276	62.795 64.614	60.800	0.798	88.399	78.215	-42.733
		04.614	61.387	1.614	88.209	75.691	-33.083
600	8.447	66.140	42 A66				
700	8.562	67.451	62.055 62.735	2.451	88.015	73.206	-26.664
800	8.643	68.600		3 - 301	87.813	70.753	-22.089
900	8.701	69.621	63.397 64.033	4.162	87.599	68.331	~18.666
1000	8.744	70.540	64.639	5.029	87.370	65.936	-16.011
			04.037	5.902	87.127	63.567	-13.892
1100	8.717	71.375	65.214	6.778	96 969	41 222	
1 200	8.802	72.140	65.760	7.657	86.869 86.598	61.223	-12.163
300	8.822	72.846	66.278	8.538	86.312	58.903	-10.727
400	8.838	73.500	66.771	9.421	86.012	56 • 606 54 • 332	-9.516
1500	8.851	74.110	67.240	10.306	85.697	54.332 52.082	~8.481 ~7.588
						224002	-7.588
1600	8.867	74.687	67.687	11.191	85.367	49.852	-4 - 850
1700	8 - 8 7 1	75.219	68.115	12.078	85.024	47.640	-6.809
1800	A.879	75.727	68.524	12.965	84.564	45.453	-6.124 -5.518
1900	8 . 885	76.207	68.916	13.854	8292	43.284	-4.979
2000	8.891	76.663	69.292	14.742	83.903	41.136	-4.495
20/2							- • • • • •
2043	8.893	76.852	69.447	15.125	83.732	40.276	-4.308
2043	8.893	76.852	69.447	15.125	79.034	40.276	-4.308
210r	8.895	71.097	69.653	15.632	78.797	39.140	-4.073
7200	A. 900	77.511	70.001	16.521	78.381	37.260	-3.701
7300 7400	8 • 90 3	77.906	70.336	17.412	17.964	35.400	-3.364
2400 2400	8.906	78.285	70.659	18.302	77.543	33.560	-3.056
750c	6.300	78.644	70.972	19.193	77.120	31.734	-2.774
2600	0.013	70 000	••				
7700	A.912	78.998	71.274	20.084	76.695	29.927	-2.515
2800	4.914	79.335	71.566	20.975	76.267	28.138	-2.277
2900	6.916 6.718	79.659	71.849	21.867	75.838	26.364	-2.058
3000	8.919	79.972	77.124	22.758	75.405	24.604	-1.854
	0.41.4	80.274	72.391	23.650	74.971	22.859	-1.665
3100	8.921	80.567	72.650	24 64 7	7,		
320C	8.927	80.850		24.542	74.534	21.130	-1.490
3300	8.923	81.124	72.902	25.434	74.095	19.414	-1.326
140C	8.924	81.12	73.147	26.327	73.655	17.713	-1.173
1500	8.926	81.650	73.385 73.618	27.219	73.213	16.025	-1.030
		5.30		28.112	72.769	14.349	-0.896
360C	8.926	81.901	73.844	29.004	72.	12 400	-A ===
3700	8.927	82.146	14.065	29.897	72 • / . / 71 • b " •	12.689	-0.770
3800	8.928	82.384	74.281	30.790	71.425	11.037	-0.652
3900	6.929	82.616	74.492	31.683	70.973	9.398	-0.541
000	8.930	82.842	74.698	32.575	70.973	7.771	-0.435
					. • 214	6.158	-0.336
100	9.930	83.062	74.899	33-468	70.064	4.554	.A 34.5
108.34	8.930	83.079	74.915	33.539	70.024	4.639	~0.243
108.34	8.430	83.074	74.915	33.539	-51.495	4.639	-0.247
200	8.931	83.277	75.096	34 - 361	-51.667	5.671	-0.247
100	8.931	83.488	75.289	35.755	-51.861	7.038	-0.295 -0.358
400	8.932	83.693	75.478	36 - 148	-52.060	8.410	-0.418
500	8.937	83.894	75.662	37.041	-52.264	9.792	-0.476
							0.410
600	8.933	84.030	75.943	37.934	-52.471	11.173	-0.531
700	8.933	84.282	76.021	38.927	-52.684	12.559	-0.584
800	8.934	84.470	76.195	39.721	-52.401	13.948	-0.635
90C	8.934	84.654	76.366	40.614	-53.123	15.343	-0.084
000	8.934	84 . 835	76.533	41.508	-53.351	16.745	-0.732
					-		
100	8.935	85.012	76.698	42.401	-53.587	18.144	-0.777
200	8.915	85.165	76.859	41.294	-53.829	19.560	-0.822
300	8.735	85.356	77.518	44.188	-54.080	20.975	-0.865
400	A. 935	85.573	77.174	45.082	-54.340	22.196	-0.906
500	8.936	85.686	77.327	45.975	-54.611	23.818	-0.946
						-	
600	8.916	85.847	77.478	46.869	-54.895	25.250	-0.985
700	A.936	86.006	77.626	47.762	~55.195	26.687	-1.523
800	8.936	86.161	17.712	48.656	-55.512	28.126	-1-060
900	8.937	86.314	77.916	49.550	-55.850	29.571	-1.595
000	8.937	86.464	78.057	50.441	-56.213	31.030	-1.130

$$\Delta H_{f0}^{o} = 88.797 \text{ kcal gfw}^{-1}$$

$$\Delta_{\rm H_{f298,\,15}}^{\rm o} = 88.600 \,\rm kcal \, gfw^{-1}$$

$$S_{298.15}^{\circ} = 60.495 \text{ cal deg K}^{-1}\text{gfw}^{-1}$$

$$H_{298.15}^{\circ} - H_{0}^{\circ} = 2.125 \text{ kcal gfw}^{-1}$$

					cm	- 1			
State	g	E	ယ္ဧ	ω _e × _e	ω _e y _e	В _е	αe	γ _e ×10 ⁵	D _e x10 ⁶
х	6	0	785	-	-	0. 334	-	_	_

Estimated by analogy to data for PtO2.

Heat Capacity and Entropy

Calculated using above estimated constants. See volume 1, this study (section IVB20. 4. 1) for details.

Reference State for Calculating AH^a, AF^a, and Log Kp; Solid Re from 0° to 3453°K, Liquid Re from 1453° to 5960°K, Gaseous Re from 5960° to 6000°K; Gaseous O₂; Gaseous R

T, °K	1,"	cal/oK			Kcal/gfw		
-, -	' P	s _T	-(FT - H298)/T	HT - H291		A F	Log K
0	0.000	0.000		27.		- 1	~p
298.15	7.515	59.382	INFINITE	-2.113	90.231	90.231	INFINI
300	7.523	59.429	59.382	0.000	90.000		
400	7.905	61.647	59.382	0.014	89.996	82.202	-60.2
500	8.180	63.443	59.682	0.786	89.791	79.636	-59.8 -43.5
400		-,,,,	60.560	1.591	89.600	77.119	~33.7
600 700	0.368	64.952	60.920	3 410			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
800	8.499	66.252	61.591	2.419	89.408	74.640	-27.10
900	8.591	67.393	62.246	3.263	89.212	72.195	-22.5
	8.658	68.409	62.876	4-118	89.004	69.778	-19.00
1000	8.708	69.324	63.476	4.980 5.849	88.782	67.387	-16.36
1100				2.049	88.550	65.023	-14.21
1200	8.747	70.156	64.046	6.722	88.304		
1300	8.776	70.919	64.587	7.598	88.043	62.682	~12.45
1400	6.800	71.622	65.102	8.477	87.768	60.364	-10.99
1500	8.819 8.834	72.275	65.591	9.358	87.479	58.067 55.795	-9.76
	8.834	72.884	66.057	10.240	87.173	55.795 53.542	-8.71
1600	8.847	73 / * * *			• . , 3	13.342	-7.80
1700	8.858	73.455 73.991	66.502	11.124	86.852	51.310	-7.00
180C	8.867	74.498	66.927	12.010	96.515	49.098	-6.31
1900	8.874	74.478	67.333	12.896	86 161	46.909	-5.69
2000	8.881	75.433	67.723	13.783	85.190	44.739	-5.14
		4 3 5	68.097	14.671	85.40/	42.588	-4.65
2100	8.886	75.866	40			· · · · · · · · · · · · · · · · · · ·	
550C	8.891	76.280	68.457	15.559	84.994	40.458	-4.21
2300	A . 896	76.675	68.803	16.448	84.570	38.347	-3.80
2400	8.844	77.054	69.137 69.459	17.337	84 - 125	36.255	-3.44
2500	8.903	77.417	69.770	18.227	83.663	34.184	-3.11
34.00	_			19.117	83.180	32.131	-2.80
2600	8.406	77.166	70.071	20.008	82.678	20 100	
2700	8.408	78.102	70.362	20.898	82.154	30.100	-2.53
2800 2800	8.911	78.426	70.645	21.789	81.611	28.088	-2.27
2900	8.913	78.739	70.918	22.680	81.046	26.093	-2.03
300C	8.915	79.041	71.184	23.572	80.462	24.122	-1.81
33.00					000402	22.168	-1.61
3100 3200	8.917	79.334	71.442	24.463	79.853	20.239	_1
3300	A.718	79.617	71.693	25.355	79.224	18.325	-1.42
3400	8.920	79.891	71.938	26.247	78.575	16.430	-1.25 -1.08
3457	8 • 921	80.158	72.175	27.139	77.901	14.559	-0.93
3453	A.922	60.296	72.299	27.612	77.535	13.575	-0.85
3500	8.922	80.296	72.299	27.612	69.592	13.575	-0.85
	8.922	80.416	72.407	28.031	69 "44	12.813	-0.800
3600	8.423	80.668	73				2 3 0 0 (
3700	8.924	80.412	72.633	28.924	68.5	11.209	-0.680
3800	8.925	81.150	72.854	29.816	67.87.	9.625	-0.566
3900	8.926	81.382	73.369 73.279	30.708	67-171	8.063	-0.464
6000	8.927	81.608	73.279 73.484	31.601	66.469	6.515	-0.369
				32.494	65.766	4.990	-0.27
1 00	8.928	81.828	73.085	33.:86	65.040	3	
4200	8.928	82.043	73.882	34.279	65.060	3.478	-0.185
430C	8.929	82.254	74.074	35.172	64.353 63.645	1.985	-C · 103
400	8.430	82.459	74.262	36.065	62.934	0.508	-0.026
500	8.930	82.660	74.447	36.958	62.221	-0.952 -2.399	0.047
				-		20377	0.116
600	8.931	82.856	74.627	37.851	61.506	-3.822	A 103
700	8.931	83.046	74.804	38.744	60.789	-5.231	0.182
800	8.932	61.236	74.978	39.637	60.C68	-6.631	
900	8.937	83.420	75.149	40.510	95	-8.012	0.302
000	8.933	83.601	75.316	41.474	58.618	-9.380	
						500	0.413
100	8.933	83.777	75.480	42.317	57.886	-10.730	0.460
200	8.933	81.951	75.641	3.210	57.149	-12.066	0.507
300	8.934	84.121	75.800	44.104	56.407	-13.395	0.552
400	8.934	84.288	74.955	44.997	55.656	-14.701	0.595
500	0.934	84.452	76.108	45.890	54.896	-15.993	0.635
400			74 34 3				- 1000
600 700	8.935	84.613	76.259	46.784	54.127	-17.276	0.674
	8.935	84.771	76.407	47.677	53.344	-18.545	0.711
9 00	8.935	84.927	76.552	48.571	52.546	-19.791	0.746
900 940-47	8.935	85.079	76.695	49.464	51 • 72A	-21.026	0.779
960-67 960-67	8.936	85.169	76.780	50.000	51.219	-21.762	0.798
000	8.936 8.936	85.169 85.229	76.780 76.836		-117.096	-21.762	0.798
			- www.r- * W		-117.511	-21.132	0.770

RHENIUM MONOXIDE (ReO) (IDEAL MOLECULAR GAS) gfw = 202.22

$$\Delta H_{f0}^{o}$$
 = 90. 231 kcal gfw⁻¹ $\Delta H_{f298. 15}^{o}$ = 90. 000 kcal gfw⁻¹ Ground State Degeneracy = 4 $S_{298. 15}^{o}$ = 59. 382 cal deg K⁻¹gfw⁻¹ $H_{298. 15}^{o}$ = 2. 113 kcal gfw⁻¹

					cm ⁻¹				
State	g	E	$\omega_{ m e}$	ω _e x _e	ω _e y _e	Вe	α _e	γ _e xl0 ⁵	D _e x10 ⁶
х	4	0	858	_	_	0. 355	-	_	_

Heat of Formation

Estimated by comparison with neighboring elements in periodic table.

Heat Capacity and Entropy

Calculated using above estimated spectroscopic constants. See volume 1, this study (section IVB21.4.1) for details.

Reference State for Calculating Ahr, AFr, and Log Kp; Solid Rh from 0° to 2239°K, Liquid Rh from 2239° to 3996°K, Gaseous Rh from 3996° to 6000°K; Gaseous O₂; Gaseous RhO.

	C.	cel/°K	BIA-	(° °	_Kcal/gfw		
T, °K	C.	s _T	-(FT - H298)/T	HT - H298	ΔH	A Fi	Log Kp
_							
0	0.000	0.000	INFINITE	-2.119	88.691	88.691	INFINIT
298-15	7.575 7.583	57.727	57.727	0.000	88 - 400	80.739	-59.18
300 400	7.965	57.774 60.011	57.727 58.030	0.014	88.396	80.692	-58.781
500	8.231	61.819	58.613	1.603	88.209	78.152 75.659	-42.698 -33.069
600	8.411	63.336	59.277	2.436	87.806	73.208	-26.66
700	8.533	64.643	59.952	3.283	87.578	70.793	-22.10
800	8.619	65.788	60.612	4 - 141	H7.330	68.412	-18.68
900 000	8.682 8.728	66.807 67.724	61.244 61.847	5.006 5.877	87.060 86.768	66.063 63.745	-16.04; -13.93;
100	8.763	68.558	62.420	6.752	86.453	61.458	-12.210
200	8.790	69.322	62.964	7.629	86.116	59.201	-10.78
300	8.812	70.026	63.480	8.509	85.756	56.972	-9.57
400 500	8.829 8.844	70.680 71.289	63.971 64.439	9.392 10.275	85•376 84•972	54.772 52.600	-8.550 -7.66
600 700	8.855 8.865	71.861	64.885 65.312	11.160 12.046	84.547 84.099	50.455 48.338	-6.89
800	8.873	72.905	65.720	12.933	83.628	48.338 46.247	-6.214 -5.61
900	8.880	73.385	66.110	13.821	93.136	44.186	-5.08
000	8.886	73.840	66.486	14.709	82.621	42.148	-4.60
100	8.891	74.274	66.846	15.598	82.083	40.139	-4.17
200	8.896	74.688	67.193	16.487	81.523	38.155	-3.79
239	8.898	74.843	67.324	16.834	A1.299	37.389	-3.64
239	8.698	74.843	67.324	16.834	76.149	37.389	-3.64
1300 1400	8.900 8.903	75.083 75.462	67.528 67.851	17.377 18.267	75.803 75.231	36.334	-3.45.
500	8.906	75.826	68.162	19.158	74.659	34.629 32.951	-3.15 -2.88
600	8.909	76 - 175	68.464	20.049	74.083	31.295	-2.63
700	8.911	76.511	68.756	20.940	73.506	29.657	-2.40
800	8.914	76.835	69.039	21.831	72.925	28.046	-2.18
900	6.916 8.917	77.148 77.450	69.313 69.579	22.722 23.614	72 • 342 71 • 758	26.455 24.882	-1.99 -1.81
100	8.919	77.743	69.838	24.506	71 - 172	23.329	-1.64
200	8.920	78.026	70.089	25.398	70.583	21.797	-1.48
30C	0.922	78.301	70.334	26.290	69.993	20.278	-1.34
1400 1500	8.923 8.924	78.567 78.826	70.572 70.804	27.182 28.074	68.329	18.783	-1.20 -1.08
1600	8.925	79.077	71.031	28.967	68.208	15.840	-0.96
3700	8.925	79.322	71.031	29.859	67.610	14.396	-0.85
800	8.927	79.560	71.467	30.752	6010	12.964	-0.74
900	8.928	79.791	71.677	31.645	66.409	11.552	-0.64
995.89	8.928	80.008	71.875	32.502	65.826	10.206	-0.55
995.69	8.926	80.008	71.875	32.502	-52.319	10.206	-0.55
.000	A.928	80.017	71.883	32.538	-52.327	10.258	-0.56
100	8.929	80.238	72.084	33.430	-57-610	11.824	-0.63
200	8.930	80.453	72.281	34.323	-57.895 -53.184	13.405	-0.69 -0.76
•300 •400	8.930 8.931	80.663 80.869	72.473 72.662	35.216 36.109	-53.477	16.574	-0.76
500	8.931	81.069	72.846	37.003	-53.771	18.173	-0.88
600	8.932	81.266	73.027	37.896	-54.071	19.777	-0.94
700	8.932	81.458	73.205	38 - 789	-54.375	21.378	-0.99
.800	8.933	81.646	73.379	39.682	-54.683	77.998	-1.04
.900 .000	8.933 8.933	81.830 82.010	73.549 73.717	40.575 41.469	-54.995 -55.313	24.624 26.250	-1.09 -1.14
100	8.934	82.187	73.881	42.362	~55.638	27.883	-1.19
5200	8.934	82.361	74.042	43.256	-55.969	29.531	-1.24
300	8.935	82.531	74.201	44.149	-56.309	31.179	-1.28
400	8.935	87.698	74.357	45.042	-56.658	12.829	-1.32
500	8.935	87.867	74.510	45.936	-57.016	14.497	-1.37
600	8.935 8.936	83.023 83.181	74.661 74.809	46.829	-57.390 -57.776	36.155 37.835	-1 - 4 1 - 1 - 4 5
5700 5400	8.936	83.337	74.007	48-617	-58-180	39.520	-1.46
5 8 00 5900	8.936	87.489	75.098	49.510	-58.605	41.212	-1.52
5000	8.936	83.639	75.239	50.404	-59.054	47.908	-1.56

$$\Delta H_{f0}^{o} = 88.691 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 88.400 \text{ kcal gfw}^{-1}$$
Ground State Degeneracy = 4
$$S_{298.15}^{o} = 57.727 \text{ cal deg K}^{-1}\text{gfw}^{-1}$$

$$H_{298.15}^{o} = 2.119 \text{ kcal gfw}^{-1}$$

		cm ⁻¹							
State	g	E	$\omega_{\mathbf{e}}$	ω _e × _e	ω _e γ _e	Вe	α _e	γ _e x10 ⁵	D _e x10 ⁶
х	4	0	820	_		0. 373	_	_	_

Estimated by analogy to data for RhO_{2(g)}.

Heat Capacity and Entropy

Calculated using above estimated spectroscopic constants.

Reference State for Calculating AH,". AF, and Log Kp. Solid Si from 0° to 1690°K, Liquid Si from 1690° to 3566°K, Gaseous Si from 3566° to 6000°K; Gaseous O2, Gaseous SiO.

T, 'K	′ (°			1	Kcal/giw .		
	Р	Ή	(F 1 H398)/	T' 'H'T - II'	298 АНУ	AF7	Log Kp
٥	0.000	0.000	INFINITE	-2.40			
298-15	7.146	50.544	50.544	-2.083 0.000		-24.316	INFINITE
300	7.151	50.588	50.544	0.01		-30.453	22.322
400 500	7.442	52.684	50.828	0.742		-30.493	25.517
500	7.736	54.377	51.374	1.502		-32.624 -34.719	17.824 15.175
600	7.983	55.810	51.997	2 100			
700	8 - 178	57.056	52.632	2.288 3.096		-36.781	13.397
800	8.329	58.158	53.256	3.922		-38.814	12.119
900	8 • 447	59.146	53.856	4.761		-40.824	11.152
1000	8.539	60.041	54.431	5.611		-42.810 -44.774	10 • 395 9 • 785
1100	8-613	60.859	54.978	4 44.0			,,
1200	8 • 6 7 3	61.611	55.500	6 • 468 7 • 3 3 3		-46.719	9.282
1300	8.723	62.307	55.997	8 • 203		-48.647	8.859
1400	8.764	62.955	56.472	9.077		-50.555	8.499
1500	8.799	63.561	56.924	9.955		-52.449 -54.323	8.187 7.914
1600	8.829	64.130	57.357				7.714
1690	8.853	64.614	57.731	10.837		-56.183	7.674
1690	8.853	64.614	57.731	11.633		-57.845	7.480
1700	8.855	64.666	51.711	11-633		-57.845	7.480
1800	8 . 8 7 8	65.173	58.169	11.72 <u>1</u> 12.608	-38.751	-57.957	7.450
1900	8 • 8 9 9	65.653	58.550	13.497	-39.012 -39.281	-59.080	7.173
2000	8.418	06.110	58.917	14.388	-39.281	-60-187 -61-280	6.923
2100	8.934	66.546	59.330				6 - 696
2200	8.950	66.962	59.270 59.610	15-280		-62.360	6.490
2300	8.964	67.360	59.938	16.174 17.070	-40-110	-63.425	6.300
2400	8.977	67.742	60.256	17.967	~40.387	-64.480	6.127
2500	8.990	68-109	60.562	18.865	-40.668	-65.523	5.966
3400					-40.749	-66.551	2.819
2600 2700	9.001	68.462	60.860	49.765	-41.230	-67.570	6 4 4 0
2800	9.012	68.801	61.148	20.000	-41.513	-66.561	5 • 5 5 7 5 • 6 8 0
2900	9.023	69.129	61.427	21.567	-41.799	-69.576	5.430
3000	9.033 9.043	69.446 69.753	61-648	22.470	-42.085	-70.563	5.318
	,,,,,	0,4,,,	61.961	23.374	-42.373	-71.538	5.211
3100	9.053	70.050	62.218	24.279	-42.662	-72.507	4
3200	9.063	70.337	62.467	25 -185	-42.953	-73.466	5.111
3300 3400	9.072	70.616	62.710	26.091	-43. '64	-74.414	5.017 4.928
3500	9•08 <i>2</i> 9•092	70.687 71.151	62.946	66.999	-43.5.	-75.351	4.843
	,,,,,	71.151	63.177	27.908	-43.83.	-76.283	4.763
3565.77	9.099	71.320	63.326	28.506	-44.024	-76.892	
3565•17 3600	9.099	71 - 320	63.326	28.506	-135.519	-76.892	4.713
3700	9.102	71 - 407	63.402	58.818	-135.062	-70.326	4.634
3800	9.112	71.657	63.622	29.728	-135.694	-74.002	4.411
3900	9.123	71.400	61.637	30.640	-135.826	-73.031	4.200
1000	9 • 1 35 9 • 1 • 7	72.137 72.369	64.047	31.553	-135.960	-71.380	4.000
		12.504	64.252	32.467	-136.093	-69.718	3.809
100	9.160	72.595	64.453	33.382	-136.229	-68.062	3.628
300	9.174	72.616	64.650	34.299	-136.365	-66.393	3.455
·	9.184	73.032	64.842	35.217	-136.499	-64.727	3.290
400 500	9 • 20 5 9 • 22 3	73.244	65.031	36-137	-136.635	-03.055	3.132
	7.663	73.451	65.216	37.058	-136.772	-61.381	2.981
600	9.242	73.654	65.397	37.982	-136.909	-59.704	3 844
700	9.262	73.854	65.575	18.907	-137.045	-51.026	3 6 8 3 6
800	9.284	74.049	65.750	19.834	-137.184	-20.346	2 • 698 2 • 565
900	9.307	74.241	65.922	764	-137.322	-54.663	2 • 4 3 8
000	9.333	74.429	66.090	41.695	-137.462	-52.970	2.315
100	9.360	74.615	66.256	42.630	=1 27.404	-61 220	
200	9.384	74.747	66.419	43.568	-137.605 -137.748	-51.279 -49.588	2.197
100	9.421	74.976	66.579	44.508	-1 37.895	-47.843	2.084
400	9.454	15.153	06.730		-138.045	-46.191	1.975
500	9.489	75.327	60.841		-138-202	-44.486	1.869
600	9.527	75.444	67.043				
700	9.567	75.668	67.194		-138.365 -138.538	-42.780 -41.083	1 - 669
800	9.608	75.835	67.342		-138.722	-34.300	1.575
900	9.652	76.000	67.487	50.226	-138.921	-17.645	1.465
000	9.649	76.161	67.631	51.193	-139.137	-35.932	1.309
			15 June 1	963			HLS

$$\Delta H_{f0} = -24.316 \text{ kcal gfw}^{-1}$$

Ground State Configuration 1_{Σ}^{+}
 $H_{298.15} - H_{0} = 2.083 \text{ kcal gfw}^{-1}$

$$\Delta H_{f298.15}^{\circ} = -24.04 \text{ kcal gfw}^{-1}$$

 $S_{298.15}^{\circ} = 50.544 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

State	g	E	шe	ωe xe	ω _e y _e	Be	αe	γ _e x 10 ⁵	De x 106
l _Σ +	1	cm ⁻¹	cm ⁻¹ 1241.44	cm-1 5.92	cm ⁻¹ 0.0	cm ⁻¹ 0.72729	cm-1 0.00508	cm-1 0.0	cm ⁻¹ 1.02
3 ₇	6	32000	1000	6.0	0.0	0.67656	0.0	0.0	1.4

As interim measure, the value by Wise et all has been used. This value may be modified slightly by using internally self-consistent functions generated on this project.

Heat Capacity and Entropy

Have been calculated using ground-state data by Lagerquist and Uhler² and excited state from Verma and Mulliken.³

References

- 1. Wise, S. S. et al, J. Phys. Chem. 67, 815 (1963).
- 2. Lagerquist, A. and U. Uhler, Arkiv Physik 6, 95 (1953).
- 3. Verma, R. D. and R. S. Mulliken, Can. J. Phys. 39, 908 (1961).

SILICON MONOXIDE (SIO)

TIDEAL MOLECULAR GÁST

UFH = 44.09

SUMMARY OF UNCERTAINTY ESTIMATES

r, ′ax	1	C.		— cal "K 	•	- НЗ ₉₈) Т	4	_{ኘ ነኝ%}	- Kenl/gfw = AHZ	AFI	L og K _p
298.15	*	0.005	*	0.005	ŧ	0.005	±	0.000	± 0, 450		
1000	*	0.005	±	0.006	*	0.005	*	0.005			
2000	*	0.008	±	0.008	±	0.006	±	0.010			
3000	±	0.010	±	0.010	±	0.008		0.020			
4000	*			0.012		0.009		0.030			
5000	*			0.035		0.015		0.130			
6000	*	0.700		0.110				0.500			

Reference State for Calculating AH° AF° and Log Kp: Solid Sr from 0° to 1045°K. Liquid Sr from 1045° to 1641°K, Gaseous Sr from 1641° to 4000°K; Gaseous Oz; Solid SrO from 0° to 2690°K, Liquid SrO from 2690° to 6000°K.

298-15 300 10 400 11 500 12 600 12 860 13 862 13 862 13 862 13 862 13 1000 13 1005 13 1005 13 1006 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 14 1200 14 1200 14 1200 14 1200 14 1200 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	0.000 0.000 0.000 0.000 13 0.0784 13 1.663 16 2.138 19 2.453 21 2.694 23 3.006 25 3.0071 26 3.233 27 3.303 28 3.303 39 39 39 39 39 39 39 39 39 39 39 39 39	\$\text{\$\sigma}\$.0000 3.0000 3.0127 5.365 9.023 1.265 3.204 3.204 3.879 3.441 3.411 4.411	-(FT - H ² 798)/ INFINITE 13.060 13.060 13.496 14.343 15.315 16.307 17.278 17.862 17.862 17.862 17.862 17.862 17.862 21.7982 18.212 19.106 19.494 19.494 19.494 19.494 23.4059 23.928 23.928 23.928 23.928 23.928 24.307 24.929 25.527 26.104 26.661 27.790 27.720 28.224 28.713	-2.03R -2.03R 0.000 0.020 0.148 2.340 3.570 4.828 6.108 6.910 6.910 6.910 7.406 8.721 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 17.501 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609 30.128	-140.551 -141.100 -141.099 -140.987 -140.860 -140.661 -140.6778 -140.778 -140.800 -140.800 -140.800 -140.800 -140.800 -140.804 -142.774 -142.701 -142.701 -142.245 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.539 -172.023 -171.502	AF; -140.551 -133.961 -133.961 -133.917 -131.539 -129.192 -126.868 -124.563 -122.267 -120.847 -119.969 -117.655 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	Log Kp INFINITE 98.192 97.554 71.866 56.467 46.216 38.888 33.406 38.29.131 25.712 24.387 22.895 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 10.408 9.412 8.513
298.15 300 10 400 11 500 12 600 12 700 800 13 1000 13 1005 13 1005 13 1000 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1500 16 16 16 16 16 16 16 16 16 16 16 16 16	0.760 13 0.784 13 1.663 16 2.138 19 2.453 21 2.694 23 3.006 25 3.006 25 3.006 25 3.006 25 3.03 28 3.233 27 3.333 27 3.333 28 3.303 28 3.303 28 3.303 28 3.403 28 3.532 30 3.674 31 3.681 32 3.6949 33 3.6949 33 3.6949 33 3.6949 33 3.6949 33 3.6949 33 3.7949 33 3.7949 36 3.797 36 3.797 36 3.797 36 3.797 37 3.797 38 3.898 38 3.997 39 3.797 39	3-060 3-165 3-265 3-204 3-912 3-879	INFINITE 13.060 13.496 14.343 15.315 16.307 17.218 17.862 17.862 18.212 19.106 19.494 19.494 19.494 19.494 23.492 23.928 24.307 22.984 23.659 23.928 24.307 24.929 25.527 26.104	-2.03R 0.000 0.020 1.148 2.340 3.570 4.828 6.108 6.910 6.910 7.406 8.721 9.318 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 17.501 18.338 19.766 21.207 22.662	-140.551 -141.100 -141.099 -140.987 -140.860 -140.661 -140.6778 -140.778 -140.800 -140.800 -140.800 -140.800 -140.800 -140.804 -142.774 -142.701 -142.701 -142.245 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.539 -172.023 -171.502	-140.551 -133.961 -133.917 -131.539 -129.192 -126.868 -124.563 -122.267 -120.847 -120.847 -119.655 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -199.288 -94.877 -90.492 -86.133 -81.801	INFINITE 98.192 97.554 71.866 56.467 46.216 38.888 33.400 30.638 30.638 29.131 25.712 24.387 22.899 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 10.408 9.412
298.15 300 10 400 11 500 12 600 12 700 800 13 862 13 862 13 862 13 1000 13 1005 13 11000 13 11000 13 11000 13 11000 13 11000 13 11000 13 11000 13 11000 13 11000 13 11000 13 11000 14 11000 14 11000 14 11000 14 11000 14 11000 14 11000 14 11000 14 11000 16 11000 16 11000 17 18 10 1100 1100 1100 1100 1100	0.760 13 0.784 13 1.663 16 2.138 19 2.453 21 2.694 23 3.006 25 3.006 25 3.006 25 3.006 25 3.03 28 3.233 27 3.333 27 3.333 28 3.303 28 3.303 28 3.303 28 3.403 28 3.532 30 3.674 31 3.681 32 3.6949 33 3.6949 33 3.6949 33 3.6949 33 3.6949 33 3.6949 33 3.7949 33 3.7949 36 3.797 36 3.797 36 3.797 36 3.797 37 3.797 38 3.898 38 3.997 39 3.797 39	3-060 3-165 3-265 3-204 3-912 3-879	13.060 13.060 13.060 13.496 14.343 15.315 16.307 17.278 17.862 18.212 19.106 19.494 19.957 20.768 21.541 22.779 22.984 23.659 23.928 24.307 24.929 25.527 76.104 26.661 27.199 27.770 28.224 28.713	0.000 0.020 1.148 2.340 3.570 4.828 6.108 6.910 7.406 8.721 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 18.338 19.766 21.207 22.662	-141.100 -141.099 -140.860 -140.861 -140.661 -140.678 -140.778 -140.778 -140.778 -140.774 -142.771 -142.771 -142.771 -142.45 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049	-133.961 -133.917 -131.539 -129.192 -126.868 -124.563 -122.267 -120.847 -120.847 -119.655 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -199.288 -94.877 -90.492 -86.133 -81.801 -77.490	98.192 97.554 71.866 56.467 46.216 38.888 33.400 30.638 30.638 29.131 25.712 24.387 22.899 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 9.412 8.513
300	0.784 13 1.663 16 2.6138 21 2.694 23 2.694 24 3.006 25 3.0071 26 3.033 28 3.333 27 3.333 28 3.3386 29 3.3386 29 3.3386 29 3.348 32 3.4949 33 3.613 32 3.613 32	3-127 5-365 5-365 3-704 3-912 3-879 3-441 3-441 1-095 3-355 3-374 3-31 3-236 3-374 3-31 3-236 3-374 3-31 3-31 3-31 3-31 3-31 3-31 3-31 3-3	13.060 13.060 13.060 13.496 14.343 15.315 16.307 17.278 17.862 18.212 19.106 19.494 19.957 20.768 21.541 22.779 22.984 23.659 23.928 24.307 24.929 25.527 76.104 26.661 27.199 27.770 28.224 28.713	0.000 0.020 1.148 2.340 3.570 4.828 6.108 6.910 7.406 8.721 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 18.338 19.766 21.207 22.662	-141.100 -141.099 -140.860 -140.861 -140.661 -140.678 -140.778 -140.778 -140.778 -140.774 -142.771 -142.771 -142.771 -142.45 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049	-133.961 -133.917 -131.539 -129.192 -126.868 -124.563 -122.267 -120.847 -120.847 -119.655 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -199.288 -94.877 -90.492 -86.133 -81.801 -77.490	98.192 97.554 71.866 56.467 46.216 38.888 33.400 30.638 30.638 29.131 25.712 24.387 22.899 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 9.412 8.513
400 112 600 12 600 12 600 12 862 13 862 13 1000 13 1005 13 11000 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 15 1100 15 1100 17 11	1.663 16 2.138 19 2.453 21 2.694 23 2.894 24 3.006 25 3.006 25 3.007 26 3.233 28 3.303 28 3.3	5-365 7-023 1-265 3-204 3-207 3-879 3-849 3-441 3-66 3-355 3-331 -236 -335 -331 -236 -335 -331 -236 -359 -371 -411 -689 -6	13.060 13.496 14.343 15.315 16.377 17.278 17.862 18.212 19.106 19.494 19.494 19.957 20.768 21.5541 22.779 22.984 23.659 23.928 23.928 23.928 23.928 23.928 23.928 23.928 24.307 26.661 27.199 27.770 28.224 28.713	0.020 1.148 2.340 3.570 4.828 6.108 6.910 7.406 8.721 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 18.338 19.766 21.207 22.662	-141.099 -140.987 -140.860 -140.600 -140.778 -140.778 -140.786 -140.800 -142.774 -142.774 -142.774 -142.775 -142.45 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.023 -171.502	-133.917 -131.539 -129.192 -126.868 -124.563 -122.267 -120.847 -119.969 -117.655 -116.613 -115.238 -112.748 -110.270 -107.805 -107.805 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	97.554 71.856 56.467 46.21(38.888 33.400 30.638 29.131 25.712 24.387 22.895 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 9.412 8.513
500 12 600 12 700 12 862 13 862 13 862 13 900 13 1000 13 1005 13 1100 13 1100 13 11700 13 11700 13 11700 13 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 14 11700 17 117	2.138 19 2.453 21 7.694 23 2.894 24 3.006 25 3.006 25 3.071 26 3.233 27 3.33.23 28 3.303 28 3.303 28 3.303 28 3.313 32 3	9.023 1.265 3.204 3.912 3.879 3.879 3.411 .095 3.266 3.355 .374 .335 .374 .316 .593 .593 .593 .593 .593 .689 .435 .151 .840 .84	14.343 15.315 16.307 17.278 17.862 17.862 18.212 19.106 19.494 19.494 19.494 19.957 20.768 21.541 22.779 22.984 23.659 23.928 24.307 24.929 25.527 26.104 26.661 27.199 27.770 28.224 28.713	1-148 2-340 3-570 4-828 6-108 6-910 7-406 8-721 9-318 9-318 10-052 11-398 12-758 14-133 15-521 16-923 17-501 18-338 19-766 21-207 22-662 24-129 25-609 2-103 28-609	-140.987 -140.860 -140.660 -140.678 -140.878 -140.800 -140.800 -142.774 -142.774 -142.774 -142.77 -142.245 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.023 -171.502	-131.539 -129.192 -126.868 -124.563 -122.267 -120.847 -119.969 -117.655 -116.613 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	71.866 56.467 46.216 38.888 33.400 30.638 29.131 25.712 24.387 22.895 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 9.412 8.513
600 12 700 12 800 12 862 13 862 13 862 13 900 13 1000 13 1005 13 1100 13 1200 23 1300 12 1400 3 1500 13 1500 14 1200 14 1200 14 1200 14 1200 14 1200 14 1200 14 1200 14 1200 14 1200 14 1200 14 1200 14 1200 14 1200 14 1200 17 1200 1	2.453 21 2.694 23 2.894 24 3.006 25 3.071 26 3.033 28 3.303 28 3.386 29 3.532 30 2.674 31 3.813 32 3.949 33 3.063 34 3.138 34 3.188 34 3.188 36 3.188 38 3.188 38 3.188 38 3.188 38 3.188 38 3.1	1.265 3.704 4.917 4.877 4.441 1.095 -265 -374 -335 -374 -331 -236 -236 -337 -236 -341 -910 -689 -435 -151 -8503 -144 -764	15.315 16.307 17.218 17.862 18.212 19.106 19.494 19.957 20.768 21.5541 22.779 22.984 23.928 23.928 23.928 24.307 24.929 25.527 26.104 26.661 27.199 27.770 28.224 28.713	2.340 3.570 4.828 6.108 6.910 7.406 8.721 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-140.860 -140.661 -140.600 -140.578 -140.786 -140.800 -142.774 -142.774 -142.775 -142.45 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.023 -171.502	-129.192 -126.868 -124.563 -122.267 -120.847 -119.969 -117.655 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	56.467 46.210 38.888 33.400 30.638 29.131 25.712 24.387 22.899 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 9.412
700 12 870 12 862 13 862 13 862 13 900 13 1000 13 1005 13 1100 13 1100 13 1200 13 1500 13 1500 13 1500 14 12 1400 14 1500 14 1600 14 1700 14 1800 14 1800 14 1900 14 1900 14 1900 15 2500 15 2600 15 2600 15 2600 17 3000 17 3000 17 3000 17 3100 17 3200 17 3300 17 3300 17 3300 17 3400 17 3500 17 3600 17 3700 17	7.694 23 2.894 24 3.006 25 3.006 25 3.0071 26 3.033 27 3.333 27 3.333 32 3.386 29 3.532 30 3.586 29 3.532 30 3.586 29 3.533 34 3.513 32 3.513 34 3.513 34 3.513 34 3.513 34 3.513 34 3.513 35 3.513 36 3.	3.204 3.214 3.879 3.879 3.441 3.441 3.441 3.526 3.55 3.374 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.41 3.59 3.59 3.59 3.59 3.68 3.88 3.8	16.307 17.278 17.862 17.862 18.212 19.106 19.494 19.494 19.957 20.768 21.541 22.779 22.984 23.659 23.928 23.928 24.307 24.929 25.527 76.104 26.661 27.199 27.770 28.224 28.713	4.828 6.108 6.910 7.406 8.721 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 18.338 19.766 21.207 22.662	-140.749 -140.660 -140.778 -140.778 -140.786 -140.800 -142.774 -142.774 -142.771 -142.45 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.023 -171.502	-126.868 -124.563 -122.267 -120.847 -119.969 -117.655 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	46 - 216 38 - 888 33 - 400 30 - 638 29 - 131 25 - 712 24 - 387 22 - 895 20 - 533 18 - 537 16 - 828 15 - 349 14 - 056 13 - 572 12 - 764 11 - 519 9 - 412 8 - 513
700	7.694 23 2.894 24 3.006 25 3.006 25 3.0071 26 3.033 27 3.333 27 3.333 32 3.386 29 3.532 30 3.586 29 3.532 30 3.586 29 3.533 34 3.513 32 3.513 34 3.513 34 3.513 34 3.513 34 3.513 34 3.513 35 3.513 36 3.	3.204 3.214 3.879 3.879 3.441 3.441 3.441 3.526 3.55 3.374 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.41 3.59 3.59 3.59 3.59 3.68 3.88 3.8	16.307 17.278 17.862 17.862 18.212 19.106 19.494 19.494 19.957 20.768 21.541 22.779 22.984 23.659 23.928 23.928 24.307 24.929 25.527 76.104 26.661 27.199 27.770 28.224 28.713	4.828 6.108 6.910 7.406 8.721 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 18.338 19.766 21.207 22.662	-140.661 -140.600 -140.778 -140.786 -140.800 -140.800 -142.774 -142.771 -142.777 -142.255 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049	-124.563 -122.267 -120.847 -120.847 -119.969 -117.655 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	38.888 33.400 30.638 29.131 25.712 24.387 22.899 20.533 16.828 15.349 14.056 13.572 12.764 11.519 9.412
862 13 867 13 900 13 1000 13 1000 13 1005 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 15 1100 15 1100 15 1100 17 1	2.894 24 3.006 25 3.071 26 3.033 27 3.033 28 3.303 28 3.386 29 3.386 29 3.39		17.218 17.862 17.862 18.212 19.106 19.494 19.494 19.957 20.768 21.541 22.279 22.984 23.659 23.928 23.928 23.928 23.928 24.307 26.661 27.199 27.770 28.224 28.713	6.108 6.910 7.406 8.721 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 18.338 19.766 21.207 22.662	-140.600 -140.578 -140.778 -140.786 -140.800 -142.774 -142.771 -142.759 -142.245 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.023 -171.502	-124.563 -122.267 -120.847 -120.847 -119.969 -117.655 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	38.888 33.400 30.638 29.131 25.712 24.387 22.899 20.533 16.828 15.349 14.056 13.572 12.764 11.519 9.412
862 13 900 13 1000 13 1000 13 1005 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 13 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1100 14 1200 14 1200 14 1200 15 2500 15 2600 15 2600 17 2700 17 2800 17 2800 17 3000 17 3100 17	3.006 25 3.006 25 3.007 26 3.007 26 3.003 28 3.303 28 3.303 28 3.308 29 3.532 30 3.6813 32 3.6813 32 3.6813 32 3.6813 32 3.6813 32 3.6813 34 3.6949 33 3.6083 34 3.6138 34 3.613	2.879 2.879 2.441 2.627 2.411 2.266 2.355 2.371 2.736 2.930 2.910 2.689 2.435 2.151 2.840 2.503 2.144 2.764	17.862 17.862 18.212 19.106 19.494 19.494 19.957 20.768 21.541 22.279 23.928 23.928 23.928 24.307 24.929 25.527 26.104 26.661 27.199 27.720 28.224 28.713	6.910 6.910 7.406 8.721 9.318 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 18.338 19.766 21.207 22.662	-140.578 -140.778 -140.800 -140.800 -142.774 -142.774 -142.559 -142.77 -142.245 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.023 -171.502	-120.847 -120.847 -119.969 -117.655 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	33.400 30.638 29.131 25.712 24.387 22.895 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 9.412 8.513
900 13 1000 13 1000 13 1000 13 1000 13 1100 13 1100 13 1100 13 1200 13 1300 12 1400 .3 1500 .3 1600 .4 1640.43 .4 1640.43 .4 1640.44 .4 1700 14 1800 14 1900 14 2000 14 2000 14 2000 15 2500 15 2600 15 2600 15 2600 17 2700 17 2800 17 2800 17 3000 17 3100 17 3100 17 3100 17 3300 17 3300 17 3300 17 3400 17 3500 17 3600 17 3700 17	3.071 26 3.233 27 3.303 28 3.303 28 3.303 29 3.532 30 3.674 31 3.6949 33 3.083 34 3.138	.441 .411 .411 .266 .355 .374 .331 .236 .593 .593 .593 .593 .593 .151 .840 .503 .144	17.862 18.212 19.106 19.494 19.494 19.957 20.768 21.541 22.779 23.928 23.928 23.928 24.307 24.929 25.527 26.104 26.661 27.199 27.770 28.224 28.713	6.910 7.406 8.721 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 17.501 18.338 19.766 21.207 22.662	-140.778 -140.804 -140.804 -142.774 -142.771 -142.777 -142.45 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049	-120.847 -119.969 -117.655 -116.613 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -101.909 -101.909 -101.909 -99.208 -94.877 -90.492 -86.133 -81.801 -77.490	30.638 30.638 29.131 25.712 24.387 22.899 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 10.408 9.412
1000 13 1045 13 1045 13 1100 13 11700 13 1300 12 1400 3 1500 3 1600 14 1640.43 14 1700 14 1800 14 1700 14 1800 14 1700 14 1800 14 1700 15 200 15 200 15 200 15 200 17 200	3.233 27 3.303 28 3.303 28 3.303 28 3.386 29 3.6532 30 3.674 31 3.674 31 3.674 31 3.674 33 3.674 31 3.	.411 .411 .095 .266 .355 .374 .736 .933 .593 .593 .593 .689 .435 .151 .840 .503 .144	18.212 19.106 19.494 19.494 19.957 20.768 21.541 22.779 22.984 23.659 23.928 23.928 23.928 24.307 74.929 25.527 26.104 26.661 27.199 27.770 28.224 28.713	7.406 8.721 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-140.786 -140.800 -140.800 -142.774 -142.771 -142.559 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.023 -171.502	-119.969 -117.655 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	29.131 25.712 24.387 24.387 22.895 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 9.412 8.513
1045 13 1045 13 1100 13 1100 13 1200 13 1300 12 1400 .3 1500 .3 1500 .3 1600 .4 1640.43 .4 1700 14 1800 14 1900 14 2000 14 2000 14 2000 15 2000 15 2000 17 2000 17 3000 17 3000 17 3000 17 3100 17 3100 17 3200 17 3300 17 3300 17 3300 17 3400 17 3700 17	3.303 28 3.303 28 3.308 29 3.532 30 2.674 31 3.813 32 3.949 33 3.083 34 2.138 34 2.138 34 2.138 35 3.479 36 3.609 37 2.739 38 3.868 38 3.868 38 3.873 36 3.873 36 3.773 36 3.7	.411 .411 .095 .266 .355 .374 .331 .236 .593 .593 .594 .910 .689 .435 .151 .840 .503 .144	19.106 19.494 19.494 19.957 20.768 21.541 22.279 23.659 23.928 23.928 24.307 24.929 25.577 26.104 26.661 27.199 27.720 28.224 28.713	8.721 9.318 9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-140.800 -140.804 -142.774 -142.770 -142.559 -142.77 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.539 -172.023 -171.502	-117.655 -116.613 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	25.712 24.387 24.387 22.899 20.533 18.537 16.828 15.349 14.056 13.572 13.572 12.764 11.519 10.408 9.412
1045 13 1100 13 1100 13 1200 13 1300 12 1400 .3 1500 .3 1600 .4 1640.4 .4 1700 14 1700 14 1700 14 1700 14 1700 14 1700 14 1700 14 1700 15 1700 17 1700	3-303 28 3-386 29 3-532 30 3-674 31 3-813 32 3-949 33 3-138 34 3-138 34 3-138 34 3-138 34 3-138 35 3-79 36 3-868 38 3-997 39 3-125 40 3-753 40 3-753 40	.411 .0956 .355 .374 .331 .236 .593 .094 .910 .689 .435 .151 .840 .503 .144	19.494 19.957 20.768 21.541 22.779 22.984 23.659 23.928 23.928 24.307 24.929 25.577 26.104 26.661 27.199 27.770 28.224 28.713	9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-140.804 -142.774 -142.770 -142.559 -142.77 -142.245 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.023 -171.502	-116.613 -116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -99.208 -94.877 -90.492 -86.133 -81.801	24.387 24.387 22.899 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 9.412 8.513
10045 13 1100 13 1100 13 1200 .3 13000 12 14000 .3 15000 .3 1600 .4 1640.43 .4 1700 14 1800 14 1900 14 1900 14 2000 14 2000 14 2000 15 2500 15 2600 15 2600 17 3000 17 3100 17	3-303 28 3-386 29 3-532 30 3-674 31 3-813 32 3-949 33 3-138 34 3-138 34 3-138 34 3-138 34 3-138 35 3-79 36 3-868 38 3-997 39 3-125 40 3-753 40 3-753 40	.411 .0956 .355 .374 .331 .236 .593 .094 .910 .689 .435 .151 .840 .503 .144	19.494 19.957 20.768 21.541 22.779 22.984 23.659 23.928 23.928 24.307 24.929 25.577 26.104 26.661 27.199 27.770 28.224 28.713	9.318 10.052 11.398 12.758 14.133 15.521 16.923 17.501 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-142.774 -142.7701 -142.559 -142.777 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.023 -171.502	-116.613 -115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -199.288 -94.877 -90.492 -86.133 -81.801 -77.490	24.387 22.899 20.533 18.537 16.828 15.349 14.056 13.572 13.572 12.764 11.519 10.408 9.412
1200	3-386 29 3-532 30 3-674 31 3-813 32 3-949 33 3-949 33 3-949 33 3-138 34 3-138 34 3-138 35 3-479 36 3-609 37 3-609 37 3-868 38 3-947 39 3-868 38 3-947 39 3-947	.095 .266 .374 .374 .331 .236 .593 .593 .593 .094 .435 .151 .840 .503 .144	19.957 20.768 21.541 22.779 22.984 23.928 23.928 23.928 24.307 24.929 25.527 26.104 26.661 27.199 27.770 28.224 28.713	10.052 11.398 12.758 14.133 15.521 16.923 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-142.701 -142.559 -142.77 -142.245 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.023 -171.502	-115.238 -112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801	22.895 20.533 18.537 16.828 15.349 14.056 13.572 12.764 11.519 9.412 8.513
1300 12 1400 .3 1500 .3 1500 .3 1600 .4 1640.43 .4 1700 14. 1700 14. 1800 14. 1700 14. 2000 14. 2000 14. 2000 15. 2500 15. 2600 .5 2690 .7 2700 .7 2700 .7 2700 .7 2700 .7 2700 .7 2700 .7 2700 .7 2700 .7 2700 .7 300	3.674 31 3.674 31 3.6749 33 3.6749 33 3.6749 34 3.6749 36 3.6749 36 3.7449 36 3.	.355 .374 .331 .236 .593 .593 .594 .910 .689 .435 .151 .840 .503 .144	20.768 21.541 22.779 22.984 23.659 23.928 23.928 24.307 24.929 25.527 26.104 26.661 27.199 27.720 28.224 28.713	11.398 12.758 14.133 15.521 16.923 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-142.559 -142.177 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.539 -172.023 -171.502	-112.748 -110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801	20.533 18.537 16.828 15.349 14.056 13.572 13.572 12.764 11.519 10.408 9.412 8.513
1400	3.813 32 3.949 33 3.083 34 3.138 34 3.216 35 3.479 36 3.609 37 3.739 38 3.868 38 3.868 38 3.873 40 3.873 40 4.875	.374 .331 .236 .593 .593 .694 .910 .689 .435 .151 .840 .503 .144	22.779 22.984 23.928 23.928 23.928 24.307 24.929 25.527 26.104 26.661 27.199 27.7720 28.224 28.713	12.758 14.133 15.521 16.923 17.501 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-142./77 -142.245 -142.072 -141.888 -141.802 -174.814 -174.534 -173.552 -173.049 -172.539 -172.023 -171.502	-110.270 -107.805 -105.350 -102.907 -101.909 -101.909 -99.208 -94.877 -90.492 -86.133 -81.801 -77.490	18.537 16.828 15.349 14.056 13.572 12.764 11.519 10.408 9.412 8.513
1500	3-949 33 3-083 34 3-138 34 3-138 34 3-216 35 3-216 35 3-348 35 3-479 36 3-609 37 3-739 38 3-868 38 3-997 39 3-125 40 3-125 40 3-131 41	.236 .593 .593 .593 .094 .910 .689 .435 .151 .840 .503 .144	22.984 23.659 23.928 24.307 24.929 25.57 26.104 26.661 27.199 27.720 28.224 28.713	15.521 16.923 17.501 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-142.245 -142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.023 -171.502	-107.805 -105.350 -102.907 -101.909 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801	16.828 15.349 14.056 13.572 13.572 12.764 11.519 10.408 9.412 8.513
1600		.236 .593 .593 .094 .910 .689 .435 .151 .840 .503 .144	23.659 23.928 23.928 24.307 24.929 25.527 26.104 26.661 27.199 27.720 28.224 28.713	16.923 17.501 17.501 18.338 19.766 21.207 22.662 24.129 25.609	-142.072 -141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.539 -172.023 -171.502	-105.350 -102.907 -101.909 -101.909 -99.288 -94.887 -90.492 -86.133 -81.801 -77.490	15.349 14.056 13.572 13.572 12.764 11.519 10.408 9.412 8.513
1640-43	.138 34 .138 34 .216 35 .348 35 .479 36 .609 37 .739 38 .868 38 .997 39 .125 40 .753 40	.593 .593 .094 .910 .689 .435 .151 .840 .503 .144	23.928 23.928 24.929 25.527 26.104 26.661 27.199 27.720 28.224 28.713	17.501 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-141.888 -141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.539 -172.023 -171.502	-102.907 -101.909 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801	14.056 13.572 13.572 12.764 11.519 10.408 9.412
1640-4	-138 34 -138 34 -216 35 -216 35 -348 35 -479 36 -609 37 -739 38 -868 38 -997 39 -125 40 -753 40 -381 41	.593 .593 .094 .910 .689 .435 .151 .840 .503 .144	23.928 23.928 24.929 25.527 26.104 26.661 27.199 27.720 28.224 28.713	17.501 17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-141.802 -174.814 -174.531 -174.046 -173.552 -173.049 -172.539 -172.023 -171.502	-101.909 -101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	13.572 13.572 12.764 11.519 10.408 9.412
1700	.138 34 .216 35 .348 35 .479 36 .609 37 .739 38 .868 38 .997 39 .125 40 .753 40	.543 .094 .910 .689 .435 .151 .840 .503 .144	23.928 24.307 24.929 25.527 26.104 26.661 27.199 27.720 28.224 28.713	17.501 18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-174.814 -174.531 -174.046 -173.552 -173.049 -172.539 -172.023 -171.502	-101.909 -99.288 -94.877 -90.492 -86.133 -81.801 -77.490	13.572 12.764 11.519 10.408 9.412
1800	.348 35. .479 36. .609 37. .739 38. .868 38. .997 39. .125 40. .753 40.	.910 .689 .435 .151 .840 .503 .144	24.307 24.929 25.527 76.104 26.661 27.199 27.720 28.224 28.713	18.338 19.766 21.207 22.662 24.129 25.609 2.103 28.609	-174.531 -174.046 -173.552 -173.049 -172.539 -172.023 -171.502	-99.288 -94.877 -90.492 -86.133 -81.801 -77.490	12.764 11.519 10.408 9.412 8.513
1900	.479 36 .609 37 .739 38 .868 38 .997 39 .125 40 .253 40	.689 .435 .151 .840 .503 .144	24.929 25.527 26.104 26.661 27.199 27.720 28.224 28.713	19.766 21.207 22.662 24.129 25.609 2103 28.609	-174.046 -173.552 -173.049 -172.539 -172.023 -171.502	-94.877 -90.492 -86.133 -81.801 -77.490	11.519 10.408 9.412 8.513
2000 14. 2100 14. 2200 14. 2300 14. 2400 15. 2400 15. 2600 15. 2690 17. 2700 17. 2800 17. 3000 17. 3100 17. 3300 17. 3400 17. 3400 17. 3400 17. 3400 17. 3400 17. 3400 17. 3400 17. 3400 17. 3600 17. 3700 17. 3600 17. 3700 17. 3600 17. 3600 17. 3700 17. 3600 17. 3600 17. 3600 17. 3600 17. 3600 17. 3600 17. 3600 17. 3600 17. 3600 17. 3600 17. 3700 17. 3600 17. 3600 17. 3600 17. 3600 17. 3600 17. 3600 17. 3600 17. 3600 17.	.609 37739 38868 38997 39125 40253 40.	.435 .151 .840 .503 .144 .764	76.661 27.199 27.720 28.224 28.713	22.662 24.129 25.609 2.103 28.609	-173.552 -173.049 -172.539 -172.023 -171.502	-90.492 -86.133 -81.801 -77.490	10.408 9.412 8.513
2100	.739 38. .868 38. .997 39. .125 40. .753 40.	• 151 • 840 • 503 • 144 • 764	76.661 27.199 27.720 28.224 28.713	24.129 25.609 2.103 28.609	-172.539 -172.023 -171.502	-86.133 -81.801 -77.490	9.412
2200	.868 38. .997 39. .125 40. .253 40.	• 840 • 503 • 144 • 764	77.199 27.720 28.224 28.713	25 • 609 2 • • 103 28 • 609	-172.023 -171.502	-77.490	
2300 14. 2400 15. 2400 15. 2500 15. 2600 15. 2690 17. 2700 17. 2800 17. 2900 17. 3000 17. 3100 17. 3200 17. 3400 17. 3500 17. 3600 17. 3700 17. 3700 17. 4000 17. 4400 17. 4400 17. 4400 17. 4400 17. 4400 17. 4400 17. 4400 17. 4500 17.	.868 38. .997 39. .125 40. .253 40.	• 840 • 503 • 144 • 764	77.199 27.720 28.224 28.713	25 • 609 2 • • 103 28 • 609	-172.023 -171.502	-77.490	
2400 150 2500 150 2500 150 2500 150 2690 150 2690 170 2800 170 2900 170 3200 170 3300 170 3400 170 3500 170 3500 170 3600 170 3600 170 3600 170 3600 170 3600 170 3600 170 3600 170 3600 170 3600 170 3600 170 3600 170 3600 3700	•125 40 • • • • • • • • • • • • • • • • • •	• 144 • 764	28.224 28.713	2 · • 103 28 • 609	-171.502		7.69R
2500 15. 2600 15. 2690 17. 2690 17. 2700 17. 2800 17. 3000 17. 3300 17. 3300 17. 3400 17. 3500 17. 3600 17. 3600 17. 3700 17. 4000 17.	•253 40•	764	28.713	28.609	-174 075		
2600 15. 2690 17. 2600 17. 2700 17. 2800 17. 2800 17. 3900 17. 3100 17. 3400 17. 3500 17. 3600 17. 3600 17. 3900 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17.	. 181 41.			30.128	-170.978	-68.943	6.956 6.278
2690 15. 2690 17. 2690 17. 2700 17. 2800 17. 3900 17. 3300 17. 3400 17. 3400 17. 3500 17. 3600 17. 3600 17. 3600 17. 3600 17. 4000 17. 4000 17. 4000 17. 4400 17. 4400 17. 4400 17. 4400 17. 4500 17. 4600 17.		365	29.189		-170.452	-64.705	5.656
269C 15. 269C 17. 269C 17. 270C 17. 280C 17. 390C 17. 3100 17. 3200 17. 3300 17. 3400 17. 3500 17. 3600 17. 3700 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17.				11 (60			
2700 17. 2800 17. 2800 17. 3900 17. 3100 17. 3200 17. 3300 17. 3400 17. 3500 17. 3600 17. 3600 17. 3700 17. 4100 17. 4200 17. 4400 17. 4500 17. 4600 17. 4600 17. 4600 17. 4600 17. 4600 17.		841	29.605	31.659 33.049	-169.926 -169.456	-60.482	5.084
2800 17. 2900 17. 3100 17. 3200 17. 3200 17. 3300 17. 3400 17. 3500 17. 3600 17. 3600 17. 3600 17. 4100 17. 4400 17. 4400 17. 4400 17. 4400 17. 4400 17. 4500 17. 4600 17. 4600 17. 4600 17. 4600 17. 4600 17.		876	29.605	49.149	-153.356	56.707_ -56.707	4 • 607
290C 17. 300C 17. 3100 17. 3200 17. 3200 17. 3400 17. 3500 17. 3600 17. 3600 17. 3600 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17. 4000 17.		939	29.673	49.319	-153.289	-56.344	4.607
300C 17. 3100 17. 3200 17. 3200 17. 3300 17. 3400 17. 3600 17. 3600 17. 3800 17. 3800 17. 4000 17. 4100 17. 4400 17. 4400 17. 4600 17. 4600 17. 4600 17. 4600 17. 4600 17. 47.00 17. 4800 17.		557	30.336	51.019	-152.67h	-52.766	4.561
3100 17. 3200 17. 3200 17. 3300 17. 3400 17. 3500 17. 3600 17. 3600 17. 3800 17. 3800 17. 4000 17. 4100 17. 4400 17. 4400 17. 4400 17. 4400 17. 4500 17. 4600 17. 4600 17. 4600 17. 4600 17.	•	154	30.975	5 .719	-151.989	-49.211	3.708
3200 17. 3300 17. 3300 17. 3400 17. 3500 17. 3600 17. 3700 17. 3800 17. 3800 17. 4000 17. 4100 17. 4200 17. 4400 17. 4500 17. 4600 17. 4600 17. 4600 17. 4600 17. 4600 17.	•000 49.	730	31.590	54.419	-151.369	-45.675	3.327
3300 17. 3400 17. 3500 17. 3500 17. 3600 17. 3800 17. 3800 17. 3900 17. 4000 17. 4100 17. 4400 17. 4400 17. 4400 17. 4400 17. 4500 17. 6400 17. 6400 17. 6400 17. 6400 17.	.000 50.	287	32.184	56.119	-150.774		
3400 17. 3500 17. 3600 17. 3700 17. 3700 17. 3700 17. 4000 17. 4000 17. 4000 17. 4400 17. 4400 17. 4500 17. 4600 17. 4600 17. 4600 17. 4600 17. 4600 17. 4600 17.	.000 50.	827	32.759	57.819	-150.207	-42.160 -38.669	2.972
3500 17. 3600 17. 3700 17. 3800 17. 38900 17. 4000 17. 4100 17. 4200 17. 4300 17. 4400 17. 4600 17. 4600 17. 4600 17. 4600 17. 4600 17. 4700 17.		350	33.314	59.519	-149.069	-35.190	2.641
3600 17. 3700 17. 3800 17. 3800 17. 3900 17. 4000 17. 4200 17. 4400 17. 4400 17. 4500 17. 4600 17. 4600 17. 4600 17. 4600 17. 4600 17. 4600 17.		858	33.852	61.219	-149.163	-31.731	2.040
3700 17. 3800 17. 3800 17. 3800 17. 4100 17. 4100 17. 4200 17. 4300 17. 4400 17. 4400 17. 4600 17. 4600 17. 4600 17. 4600 17. 4600 17.	.uon 52.	350	34.374	62.919	-148.689	-28.282	1.766
3700 17. 3800 17. 3800 17. 3800 17. 4100 17. 4100 17. 4200 17. 4300 17. 4400 17. 4400 17. 4600 17. 4600 17. 4600 17. 4600 17. 4600 17.	.000 52.	829	34 990			4	
3800 17. 3900 17. 4000 17. 4100 17. 4200 17. 4300 17. 4400 17. 4500 17. 4500 17. 4600 17. 4600 17. 4600 17. 4700 17. 4900 17.	000 53.		34.880 35.371	64.619 66.319	-148.250	-24.850	1.508
4000 17. 4100 17. 4200 17. 4300 17. 4300 17. 4500 17. 4600 17. 4600 17. 4600 17. 4600 17. 4700 17. 4700 17.	.000 53.		35.849	68.019	-147.847 -147.483	-21.428 -18.012	1.266
4100 17.4 4200 17.6 4300 17.6 4400 17.6 4500 17.6 4500 17.6 4600 17.6 4800 17.6 4800 17.6	.000 54.	190	36.313	69.719	-147.157	-14.611	1.036
4200 17.4 4300 17.4 4400 17.6 4500 17.6 4600 17.6 4600 17.6 4600 17.6 4600 17.6	000 54.	671	36.766	71.419	-146.870	-11.217	0.819
4200 17.4 4300 17.4 4400 17.6 4500 17.6 4600 17.6 4600 17.6 4600 17.6 4600 17.6	000	0+0					- 1013
4900 17.4 4400 17.4 4500 17.6 4600 17.6 4700 17.6 4800 17.6 5000 17.6		040 450	37.206	73.119	-146.624	-7.827	0.417
4400 17.4 4500 17.6 4600 17.6 4600 17.6 4800 17.6 5000 17.6			37.636 38.055	74.819	-14(.418	-4.444	0.231
4600 17.6 4700 17.6 4800 17.6 4800 17.6 5000 17.6			38.464	76.519 78.219	-146.252	-1.061	0.054
4600 17.6 4700 17.6 4800 17.6 4900 17.6 5000 17.6			38.863	73.919	-146.126 -146.039	2-310 5-685	-0.115
4700 17.6 4800 17.6 4900 17.6 5000 17.6					2.2.0,	2.007	-0.276
4800 17.0 4900 17.0 5000 17.0			34.253	81.619	-145.991	9.057	-0.430
6900 17.0 5000 17.0			19.635	83.319	-145.983	12.427	-0.578
5000 17.0			40.008	85.019	-146.011	15.797	-0.719
			40.373	86.719	-146.076	19.168	-0.855
	784	-1-	40.730	88.419	-146.177	22.544	-0.985
3100 17.0	000 58.	751	41.080	90.119	-146.314	25.919	-1
5200 17.0		081	41.423	91.819	-146.485	29.292	-1.111 -1.231
300 17.0			41.759	93.519	-146.691	32.682	-1.348
5400 17.0	000 59.4		42.089	95.219	-146.931	36.068	-1.460
3500 17.0	000 59.4	U 3 4	42.413	96.919	-147.203	39.459	-1.568
600 17.0	000 59.4		42.730	98.619	-147.511	42.857	-1.477
700 17.0	000 59.4 000 19.7 000 60.6	341			-147.853	46.267	-1.672
800 17.0	000 59.4 000 19.7 000 60.6				-148.231	49.673	-1.774 -1.872
900 17.0	000 59.4 000 19.7 000 60.6 000 60.3	641				53.097	-1.872
17.0	000 59.4 000 19.7 000 60.6 000 60.3 000 60.9 000 61.2	641 937 228		103.719	-148.646		
	000 59.4 000 19.7 000 60.6 000 60.3 000 60.9 000 61.2	641 937 228	43.648		-149.101	56.524	-2.059

Structure

An f. c. c. (NaCl) type.

Heat of Formation

Based on data from Rossini et al. 1

Heat Capacity and Entropy

Low-temperature data by Anderson, ² High-temperature data valid to 1266°K by Lander³ and Kelley⁴ extrapolated to melting point. Liquid heat capacity estimated.

Melting and Vaporization

Heat of fusion estimated. See Barriault et al 5 for details.

References

- 1. Rossini, F. et al, Nat. Bur. Stds. (U.S.) Circ. 500 (1952).
- 2. Anderson, C. T., J. Am. Chem. Soc. 57, 429 (1935).
- 3. Lander, J. J., J. Am. Chem. Soc. 73, 5794 (1951).
- 4. Kelley, K. K., U. S. Bur. Mines, Bull. 584 (1960).
- 5. Barriault, R. J. et al. ASD TR 61-260, Pt. I (May 1962).

STRENTIUM MONOXIDE (STO)

(CONDENSED PHASE)

GFW - 103.63

SUMMARY OF UNCERTAINTY ESTIMATES

		cel / el	K glw-	\	_kcal gfw		-73 1113-2221
T,°K	/c _p *	ئرد	-(FT - H298)	/T HT - H298	УH _f	11,1	Log K _p
298 - 15	± 0.200	± 0.200	± 0.200	±0.000	± 2.000	± 2.210	± 1.620
1000	± 0.940	± 0.650	± 0.390	± 0.260	± 2.440	± 2.960	± 0.650
2000	± 1.780	± 0.940	±0.600	± 0.680	± 3.730	± 4.250	# 0.460
2690	± 2.680	± 1.070	± 0.700	± 0.990	± 4.040	± 4.930	± 0.400
2690	# 1.000	±1.590	±0.700	± 2 . 390	± 5.440	± 4.930	± 0.400
4000	± 2.000	± 2.190	±1.100	±4.350	± 7.400	£ 7.450	# 0.410

Reference State for Calculating AH, AF, and Log Kp: Solid Sr from 0° to 1045°K, Liquid Sr from 1045° to 1641°K, Gaseous Sr from 1641° to 6000°K; Gaseous O₂; Gaseous SrO.

7.% 298.15 300 400 500 600 700 860 700 862 862 962 900 1005 1100 1200 1300 1400 1500 1640.43 1640.43 1700 1800 1900 2100 2100 2100 2200 2300 2400 2600	0.000 7.910 7.918 8.277 8.501 8.644 8.742 8.813 8.848 8.846 8.909 8.925 8.925 8.925	\$\frac{2}{5}\tag{7}	-(F _T - H ₂₉₈)/T INFINITE 57-145 57-145 57-460 58-067 58-756 59-454 60-135 60-543	-2 • 161 0 • 000 0 • 015 0 • 826 1 • 666 2 • 523 3 • 393	-11.874 -12.300 -12.303 -12.509 -12.734	11.874 -18.305 -18.342 -20.325 -22.254	Log Kp INFINITE 13.417 13.362 11.104
298.15 300 400 500 600 700 860 862 862 900 1000 1045 1100 1200 1300 1400 1500 1640.43 1640.43 1700 1800 1900 2100 2200 2300 2400 2500 2600 2600	7.910 7.918 8.277 8.501 8.644 8.742 9.813 8.848 8.848 8.866 8.909 9.925 8.925	57.145 57.194 59.525 61.398 62.961 64.302 65.474 66.133 66.133	57.145 57.145 57.460 58.067 58.756 59.454 60.135	-2.161 0.000 0.015 0.826 1.666	-11.874 -12.300 -12.303 -12.509 -12.734	-11.874 -18.305 -18.342 -20.325	INFINITE 13.417 13.362
298-15 300 400 500 600 700 800 862 862 900 1000 1045 1100 1200 1300 1400 1500 1600 1640.43 1700 1800 1900 200 2100 2200 2300 2400 2600 2600	7.910 7.918 8.277 8.501 8.644 8.742 9.813 8.848 8.848 8.866 8.909 9.925 8.925	57.145 57.194 59.525 61.398 62.961 64.302 65.474 66.133 66.133	57.145 57.145 57.460 58.067 58.756 59.454 60.135	0.000 0.015 0.826 1.666	-12.300 -12.303 -12.509 -12.734	-18.305 -18.342 -20.325	13.417 13.362
300 400 500 600 700 800 862 862 900 1000 1045 1100 1200 1300 1400 1500 1400 1500 1640.43 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2600 2600	7.918 8.277 8.501 8.644 8.742 8.813 8.848 8.866 8.909 8.925 8.925	57.145 57.194 59.525 61.398 62.961 64.302 65.474 66.133 66.133	57.145 57.145 57.460 58.067 58.756 59.454 60.135	0.000 0.015 0.826 1.666	-12.300 -12.303 -12.509 -12.734	-18.305 -18.342 -20.325	13.417 13.362
400 500 600 700 800 862 862 900 1000 1045 1100 1200 1300 1400 1500 1640.43 1700 1800 1900 2000 2100 2200 2300 2400 2400 2500 2600 2600 2600	8.277 8.501 8.644 8.742 8.813 8.848 8.848 8.909 8.909	57.194 59.525 61.398 62.961 64.302 65.474 66.133 66.133	57.145 57.460 58.067 58.756 59.454 60.135 60.543	0.015 0.826 1.666	-12.300 -12.303 -12.509 -12.734	-18.305 -18.342 -20.325	13.417 13.362
500 600 700 800 862 862 900 1000 1045 1100 1200 1300 1400 1500 1600 1640.43 1700 1800 1900 2100 2200 2300 2400 2400 2500 2600 2600 2600 2600	8.277 8.501 8.644 8.742 8.813 8.848 8.848 8.909 8.909	59.525 61.398 62.961 64.302 65.474 66.133 66.133	57.460 58.067 58.756 59.454 60.135 60.543	0.826 1.666 2.523	-12.303 -12.509 -12.734	-18.342 -20.325	13.362
600 700 800 862 862 900 1000 1045 1100 1200 1300 1400 1500 1640.43 1640.43 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2600	8.501 8.644 8.742 8.813 8.848 8.866 8.909 8.925 8.925	61.398 62.961 64.302 65.474 66.133 66.133	58.067 58.756 59.454 60.135 60.543	1 • 666 2 • 523	-12.509 -12.734	-20.325	
700 800 862 862 900 1000 1045 1100 1200 1300 1400 1500 1640.43 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2600	8.644 8.742 8.813 8.848 8.848 8.909 8.925 8.925	62.961 64.302 65.474 66.133 66.133	58.756 59.454 60.135 60.543	2.523	-12.734		11.104
700 800 862 862 900 1000 1045 1100 1200 1300 1400 1500 1640.43 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2600	8.742 8.813 8.848 8.866 8.909 8.925 8.925	64.302 65.474 66.133 66.133 65.515	59.454 60.135 60.543	2.523		-46.4274	
800 862 900 1000 1045 1045 1100 1200 1300 1400 1500 1640.43 1640.43 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2600	8.742 8.813 8.848 8.866 8.909 8.925 8.925	64.302 65.474 66.133 66.133 65.515	59.454 60.135 60.543				9.727
800 862 900 1000 1045 1045 1100 1200 1300 1400 1500 1640.43 1640.43 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2600	8 · 813 8 · 848 8 · 848 8 · 866 8 · 909 8 · 925 8 · 925	65.474 66.133 66.133 65.515	60.135 60.543		-12.996	-26 122	
862 862 900 1000 1045 1045 1100 1200 1300 1400 1500 1640.43 1640.43 1700 1800 2000 2100 2200 2300 2400 2500	8.848 8.848 8.866 8.909 8.925 8.925 8.944	66.133 66.133 65.515	60.135 60.543		-13.295	-24.133	8.790
862 900 1000 1045 1100 1200 1300 1400 1500 1600 1640.43 1700 1800 1900 2100 2200 2300 2400 2500 2600 2600	8.848 8.866 8.909 8.925 8.925 8.944	66.133 65.515	60.543	4.271		-25.966	8.107
900 1000 1045 1045 1100 1200 1300 1400 1500 1600 1640.43 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2600	8.866 8.909 8.925 8.925 8.944	65.515		4.818	-13.637	-27.753	7.581
1000 1045 1045 1100 1200 1300 1400 1500 1640.43 1700 1800 2900 2100 2200 2400 2500 2600 2600	8.909 8.925 8.925 8.944		60.543		-13.870	-28.838	7.311
1045 1045 1100 1200 1300 1400 1500 1600 1640.43 1700 1800 1900 2700 2700 2700 2700 2700 2700 2700 2	8.925 8.925 8.944		60.787	4.818	-14.070	-28.838	7.311
1045 1100 1200 1300 1400 1500 1640-43 1700 1800 1900 2200 2300 2400 2500 2600 2600 2600	8.925 8.944	67.452	61.408	5.155 6.044	-14.236 -14.677	-24.486	7.160
1100 1200 1300 1400 1500 1640-43 1700 1800 1900 2700 2700 2700 2700 2700 2700 2700 2	8.925 8.944	47 04.			-14.677	-31.157	6.809
1100 1200 1300 1400 1500 1640-43 1700 1800 1900 2700 2700 2700 2700 2700 2700 2700 2	8.944	67.844	61.676	ú • 445	-14.878	-31.894	
1200 1300 1400 1500 1600 1640.43 1640.43 1700 1800 1900 2700 2100 2200 2300 2400 2500 2600 2600		67.844	61.676	6.445	-16.848		6 • 6 70
1300 1400 1500 1600 1640-43 1700 1800 2900 2100 2200 2300 2400 2500 2600 2600	8.972	68.302	61.996	6.936		-31.894	6 • 6 7 0
1400 1500 1640-43 1640-43 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2600		69.082	62.555		-17.017	-32.681	6.493
1500 1600 1640.43 1640.43 1700 1800 1900 2700 2100 2200 2300 2400 2500 2600 2600 2600	9.000	69.801	63.085	7.832	-17.325	-34.093	6.209
1600 1640.43 1640.43 1700 1800 2900 2100 2700 2700 2700 2700 2500 2600 2600	9.024	70.469		8.731	-17.634	-35.477	5.964
1600 1640.43 1640.43 1700 1800 2900 2100 2700 2700 2700 2700 2500 2600 2600	9.046	71.093	63.589	9.632	-17.946	-36.839	5.751
1640.43 1640.43 1700 1800 1900 2700 2100 2200 2300 2400 2500 2600 2600			64.369	10.536	-18.257	-38.177	5.562
1640.43 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2600	9.068	71.677	64.575	11.442	-18.569	-39.494	£ 30:
1700 1800 2900 2100 2200 2300 2400 2500 2600 2600		71.707	64.708	11.813	-18.690	-40.029	5 . 394
1800 1900 2000 2100 2200 2300 2400 2500 2600 2600	9.011	71.907	64.708	11.813	-51.702		5.331
1900 2000 2100 2200 2300 2400 2500 2600 2690	9.089	72.228	64.963	12.349	-51.720	-40.029	5.331
2000 2100 2200 2300 2400 2500 2600 2690	9.111	72.748	65.387	13.259		-39.604	5.091
2100 2200 2300 2400 2500 2600 2690	9.132	73.242	65.753	14.172	-51.753	-38.992	4.722
2200 2300 2400 2500 2600 2690	9.155	73.711	66.168	15.086	-51.787 -51.825	-38.177 -37.460	4.391
2200 2300 2400 2500 2600 2690	9.177	70 100				- 31 6 4 0 0	4.093
2300 2400 2500 2600 2690	9.201	74 - 156	66.538	16.002	-51.866	-36.743	3.824
2400 2500 2600 2690		74.586	66.895	16.921	-51.912	-36.022	3.578
2500 2600 2690	9.276	74.996	67.238	17.843	-51.962	-35.297	
2600 2690	9.252	75.390	67.570	18.767	-52.020	-34.573	3.354
2690	9.278	75.768	67.891	19.693	-52.087	-33.849	3.148 2.959
	9.305	76.133	68.201	20.622			
	9.331	76.451	68.473	21.461	-52.164	-33.116	2.784
2690	9.331	76.451	68.473		-52.245	-32.460	2.637
2700	9.334	76.485		21.461	-52.245	-32.460	2.637
2800	9.363	76.826	68.502	21.554	-52.254	-32.384	2.621
2900	9.392		68.794	22.489	-52.35R	-31.648	2.470
3000	9.423	77.156 77.475	69.077	2377	-52.400	-30.908	2.329
			69.353	24.367	-52.621	-30.163	2.197
3100 3200	9.454	77.785	69.620	25.111	-52.782	-29.410	2.073
	9.486	78.087	69.881	26.258	-52.968	-28.660	
3100	9.518	78.380	70.135	27.208	-53.1.3		1.957
3400	9.551	78.666	70.383	28.162		-27.899	1.848
3500	9.585	78.944	70.674	29.119	-53.420 -53.689	-27.136 -26.358	1.744
3600	9.619	79.216	70.860				1.000
700	9.653	79.481	71.091	30.079	-53.990	-25.579	1.553
1800	9.688	79.740		31.042	-54.324	-24.791	1.464
900	9.724	79.993	71.316	32.009	-54.692	-23.987	1.379
000	9.760	8C.241	71.537 71.753	32.980	-55.096	-23.183	1.299
			.10/33	33.954	-55.535	-22.366	1.222
100	9.796	80.484	71.964	34.931	-56.012	-21.533	1.148
200	9.833	80.722	72.171	35.912	-50.525	-20.692	1.077
300	9.870	60.955	72.375	36.897	-57.374	-19.838	
400	9.908	81.184	72.574	37.886	-57.659	-18-975	1.008
500	9.946	81.409	72.769	38 - 878	-58.280	-18.192	0.942
600	9.985	81.410	73 643	20 122			
700	10.024	81.630 81.847	72.962 73.150	39.875	-58.935	-17.204	0.817
800				40.875	-59.627	-16.295	0.758
	10.063	82.060	73.336	41.879	-60.351	-15.379	0.700
900	10.103	82.270	73.518	42.887	-61.108	-14.444	0.644
000	10.144	82.477	73.697	43.899	-61.897	-13.490	0.590
100	10.184	82.681	73.874	44.915	-62.718	-12.530	
200	10.226	82.881		45.935	-63.569		0.537
300	10.267	83.079				-11.556	0.486
400	10.310			46.959	~64.450	-10.554	0.435
500	10.352	° 3.274 d 3.466		47.987 49.030	-65 -363 -66 - 302	-9.541	0.386
				77040	-66 • 302	-8.513	0.338
600 700	10 200	83.656	14.717	50.056	-67.274	-7.470	0.292
700	10.395						
800	10.439	83.843	74.878	51.097	-68.275	-6.400	
9 0 0	10.439		74.878 75.038	51.097		-6.400	0.245
ბიი	10.439	83.843	74.878 75.038	51.097	-68.275 -69.307	-6.400 -5.331	0.245
	10.439	83.843 84.028	74.878 75.038 75.145	51 • 097 52 • 14 3	-68.275	-6.400	0.245

$$\Delta H_{f0}^{o}$$
 = -11.874 kcal gfw⁻¹

Ground State Configuration = $^{3}\Sigma$

$$\Delta H_{(298, 15)}^{o} = -12.300 \text{ kcal gfw}^{-1}$$

 $S_{298, 15}^{o} = 57.145 \text{ cal deg } K^{-1}\text{gfw}^{-1}$

$H_{298, 15}^{0}$ - H_{0}^{0} = 2.161 kcal s	$_{8.15}^{-}H_{0}^{o}$	=	2.	161	kcal	gfw-1
--	------------------------	---	----	-----	------	-------

				C1	m-1 —				
State	g	E	$\omega_{ m e}$	$\omega_{e}^{x_{e}}$	ω _e y _e	B _e	$\alpha_{ m e}$	γ _e xl0 ⁵	Dex106
x ³ Σ	3	0	653. 47	3. 95		0. 3379	0. 0021	_	0.42
A' Σ	1	10885	619.6	0. 9	_	0. 3047	0. 0011	_	3. 2
Β' ¹ Σ	2	24004. 0	520. 0	3. 5	-	0. 2936	0. 002	_	0. 37
C' Σ	1	28546. 4	480. 2	2. 6	_	0. 2742	0. 0021		0. 35

Calculated from vapor-pressure data analyzed by Ackermann and Thorn, based on work of Moore et al. 2

Heat Capacity and Entropy

Calculated using above spectroscopic constants. See volume 1, this study (section IVB26.4) and Barriault et al 3 for details.

References

- 1. Ackermann, R. and R. Thorn, p. 50 of Prog. Ceramics Science, edited by J. E. Burke, Pergamon Press (1961).
- Moore, G. E. et al. J. Chem. Phys. 18, 1572 (1950).
 Barriault, R. et al. ASD TR 61-260, Pt. I (May 1962).

Reference State for Calculating AHr, AFr, and Log Kp: Solid Ta from 0° to 3270°K, Liquid Ta from 3270° to 5706°K, Gaseous Ta from 5706° to 6000°K; Gaseous O2; Gaseous TaO.

F 0+		(el/°K	g/v		V 1 / .		
Γ, °K	(C)	Ϋ́T	-(FT - H298)/T	H"1 - H"25	Kcal/gfw ρg ΔΗ''		
			. 298.		9R 1371	AF _f	LOR KP
0	0.000	0.000	INFINITE				
298.15 300	7.954	58.568	58.568	-2.258 0.000		52.110	INFINITE
400	7.956	58-618	58.568	0.000	7.0713	44.774	-32.819
500	8 • 1 1 6 8 • 2 8 7	60.927	58.882	0.818	51.970 51.799	44.730	-32 +584
	0.201	62.757	59.480	1.638		42.341 39.997	-23 • 133
600	8.431	64.281	40			276771	-17.482
700	8.542	65.589	60.157 60.842	2.414		37.690	-13.728
800	8.628	66.736	61.508	3 - 323		35.413	-11.056
900 1000	8.694	67.756	62.147	4.182 5.048		33.165	~ .060
1000	8.745	68.674	62.754	5.920		30.940 28.739	-7.513
1100	8.787	40 414				201139	-6.281
1200	8 - 820	69.510 70.276	63.331	6.797	50.432	26.559	-5.277
1 300	8 . 8 4 8	70.983	63.878 64.398	7.677	50.213	24.399	-4.443
1400	8.872	71.640	64.892	8 • 561 9 • 447	49.989	22.256	-3.741
1500	8.892	72.253	65.363	10.335	49.758	20.131	-3.143
1400				.00333	49.518	18.023	-2.626
1600 1700	8.910	72.827	65.811	11.225	49.271	15.932	134
1800	8.925	73.368	66.240	12.117	49.215	13.856	-2.176
1900	8.939	73.878	66-650	13.010	48.749	11.796	-1.781 -1.432
2000	8.964	74 • 362	67.044	13.905	48.474	9.748	-1.121
	J. 704	74.822	67.421	14.801	48 - 185	7.719	-0.843
2100	6.974	74.259	67.784	15 (00			
2200	8 . 984	75.677	68.134	15.697	47.882	5.703	-0.593
2300	8.994	76.077	68.470	16.595	47.566	3.702	-0.368
2400	9.003	76.460	68.795	18.394	47.233	1.717	-0.163
2500	9.012	76.827	69.109	19.295	46.505	-0.257 -2.213	0.023
2600	0.000					2.213	0.193
2700	9.020 9.029	77.181	69.413	20.197	46.108	-4.154	0.349
2800	9.037	77.522 77.850	69.707	21.099	45.674	-6.078	0.492
2900	9.045	78 - 168	69.992	22.002	45.199	-7.989	0.624
3000	9.054	78.474	70.269 70.537	22.906	44.671	-9.880	0.745
			.0.,,,	23.811	44.080	-11.751	0.856
3100	9.063	78.772	70.798	24.717	43.419		
3200	9.072	79.060	71.052	25.624	42.679	-13.600 -15.430	0.959
3270	9.079	79.256	71.226	26.259	42-111	-16.695	1.054
3270 3300	9.079	79.256	71.226	26.259	35.411	-16.695	1.116
3400	9.081	79.339	71.299	26.532	35.284	-17.172	1.137
3500	9.091 9.102	79.610	71.540	- 440	34.857	-18.759	1.206
	7.102	79.874	71.774	28.350	34.430	-20.325	1.269
600	9.113	80.131	72.003	29.261			
1700	9.125	80.381	72.226	30.173	34.002 33.574	-21.886	1.329
800	9.138	80.625	72.444	31.086	3344	-23.433 -24.967	1.384
900	9.152	80.862	72.657	32.000	32.714	-26.493	1.436 1.485
.000	9.166	81.094	72.865	32.915	32.284	-28.005	1.530
100	9.182	81 - 321	72 0.0				
200	9.199	81.543	73.069 73.268	33.834	31.854	-29.510	1.573
300	9.216	81.760	73.464	34 - 753	31.423	-30.998	1.613
400	9.235	81.972	73.655	35.673 36.596	30.991 30.560	-32.483 -33.955	1.651
500	9.255	82.180	73.842	37.520	30.129	~33.955 ~35.417	1.686
							1.720
600 700	9.276	82.384	74.026	38 • 447	29.698	-36.867	1.751
800	9.298	82.584	74.206	39.376	27.250	-38.359	1.781
900	9.321	82.780	74.383	40.307	28.834	-39.743	1.809
000	9.346 9.371	82.973 83.162	74.557 74.727	41.240	28.400	-41.174	1.836
	7.714	0,0102	74.727	47.176	27.966	-42.587	1.861
100	9.397	83.348	74.895	43.114	27.529	-43.994	1 000
200	9.425	83.532	75.059	44.055	27.090	-45.392	1.885
300	9.454	83.712	75.221	44.999	26.647	-46.785	1.908
400	9.483	83.889	75.381	45.946	26.200	-48-170	1.929 1.949
500	9.514	84-064	75.537	46.896	25.748	-49.538	1.968
400	0.4:-						
600 700	9.545	84.236	75.692	47.849	25.287	-50.907	1.987
706.65	9.577 9.580	84.406	75.843 75.853	48.805	24.817	-52.263	2.004
706 • 65	9.580	84.417	75.853	48.869	24.786	-52.353	2 • 005
800	9.611	84.573	75.993		-156.436 -157.041	-52.353 -50.649	2 • 005
900	9.644	84.738	76.140		-157.707	-48.811	1 • 908 1 • 808
000	9.679	84.901	76.285		-158.394	-46.955	1.710
			15 Septembe	r 1963			HLS

TANTALUM MONOXIDE (TaO) (IDEAL MOLECULAR GAS) gfw = 196.95

 $\Delta H_{f0}^{*} = 52.110 \text{ kcal gfw}^{-1}$

 $\Delta H_{f298, 15}^{\circ} = 51.973 \text{ kcal gfw}^{-1}$

Ground State Configuration 2 \(\Delta \)

 $S_{298, 15}^{\bullet} = 58.568 \text{ cal deg}^{-1} \text{ gfw}^{-1}$

 $H_{298.15}^{\circ} - H_{0}^{\circ} = 2.258 \text{ kcal gfw}^{-1}$

						- cm ⁻¹			
State	g	E	ω _e	ω _e x _e	سو ۷و	В _е	a _e	$\gamma_e \times 10^5$	D _e x 10 ⁶
$\int_{0.27}^{2} \Delta_{3/2}$	2	0 (1013. 17	5.0	0.0	0.4029	0.002	0.0	0.0
2 A 5/2	2	300. €							
§2 _{71/2}	2	23348	896.	4. 1	0.0	0.3772	0.0019	0.0	0.0
2 "3/2	2	24364	898. 5						
c {2 s	4	26679	903.01	4. 15	0.0	0.3775	0.0019	0.0	0.0

Heat of Formation

Vaporization data reported by Inghram et all were analyzed.

Heat Capacity and Entropy

Calculated using spectroscopic constants above, based primarily on the work of Premaswarup and Barrow. ²

References

- 1. Inghram, M. G., et al, J. Chem. Phys. 27, 569 (1957).
- 2. Premaswarup, D. and R. F. Barrow, Nature 180, 602 (1957).

TANTALUM MONOXIDE (TAO) (IDEAL MOLECULAR GAS) GFW = 196.95

SUMMARY OF UNCERTAINTY ESTIMATES

Reference State for Calculating AH, AF, and Log Kp. Solic Tc from 0° to 2473°K. Liquid Tc from 2473° to 4840°K, Gaseous Tc from 4840° to 6000°K; Gaseous O2; Gaseous TcO.

T 0	0	cel/°K	Rfw		Kcal/gfw		
T,°K	C _P	5 ₄	-(FT - H298)/T	H _T - H ₂₉	M ΔH ²	A F	I •
Ċ	0 000			- 79	1		Log Kp
298+15	0.000	0.000	INFINITE	-2.114	00 44.		
300	7.521	57.538	57.538	0.000	89.004	99.004	INFINITE
400	7.529	57.584	57.538	0.014	88.600	81 - 136	-59.47
500	7.911	59.805	57.838	0.014	88.597	81.090	-59.071
	8.185	61.602	58.417	1.592	88.425	78.614	-42.950
600	8.373	4		4.772	88.253	76.181	-33.297
700		63.112	59.077	2.421	80.47	7	
800	8.502	64.413	59.748	3.265	88.074 87.880	73.783	-26 . 874
900	8.594	65.554	60.404	4.120		71.416	-22.296
1000	8 • 661	66.571	61.034	4.983	87.664	69.079	-18.871
1000	8.710	67.486	61.634	5.852	87.431	66.769	-16.213
1100				2.622	87.175	64.488	-14.093
1200	8.748	68.318	62.204	6.725	04 000		
	8.778	69.080	62.746	7.601	86.898	62.232	-12.364
1300	8.801	69.784	63.261		86.600	60.002	~10.927
1400	8.870	70.437	63.750	8.480	86.280	57.798	-9.716
1500	8.835	71.046	64.217	9 • 361	85.939	55.620	-8.682
			07.217	10.244	85.576	53.466	-7.790
1600	8.848	71.617	64.442				
1700	8.858	72.153	64.662	11.128	85.191	51.338	-7.012
1800	8.867	72.660	65.087	12.013	84.784	49.235	-6.329
1900	8.875		65.493	12.900	84.356	47.158	
2000	8.881	73.140	65.883	13.787	83.70	45.102	-5.725
-	0.001	73.595	66.258	14.675	93.433	43.072	-5.188
4100	0 0					- 20017	-4.706
2200	8 • 887	74.028	66.617	15.563	82.030		
	8 • 8 9 2	74.442	66.964	16.452	82.938	41.068	-4.274
2300	A . 896	74.837	67.298	17.341	82.422	39.784	-3.882
400	4.500	75.216	67.620		91.881	37.125	-3.527
24 73	8.902	75.483	67.848	18.231	81.320	35.192	-3.204
2473	8.902	75.483	67.848	18.881	80.896	33.796	-2.987
∡ 500	8.903	75.579		18.881	75.208	33.796	-2.987
	_		67.931	19-121	75.053	33.344	~2.915
2000	8 . 906	75.929	68 272	30 4.			
2700	8.909	76.265	68.232	20.012	74.478	31.687	-2.663
. 800	8.911		68.523	20.903	73.900	30.052	-2.432
. 900	8.913	76.565	68.805	21.794	73.320	28.439	
3000		76.902	69.079	22.685	72.737	26.846	-2.220
.00	8.915	77.204	69.345	23.576	72.152	25.275	-2.023
-100							-1.841
:100	P.917	77.496	69.603	24.468	71.565	22 722	
3200	8.918	77.774	69.854	25.360		22.722	~1.672
3300	8.920	78.054	70.099		70.976	22.189	-1.515
3400	8.921	78.320	70.337	26 • 251	70.385	20.670	-1.369
3500	8.922	78.579		27.144	69.793	19.174	-1.232
			70.568	28.036	69.198	17.699	-1.105
'600	8.923	78.830	70 70.				
3700	8.925		70.794	28.,28	68.601	16.235	-0.986
3600		79.074	71.015	29.820	68.002	4.785	-0.873
3900	0.925	79.312	71.230	30 - 71 3	67.403	13.358	-3.768
1000	8.926	79.544	71-440	31.605	66.800	11.944	-0.669
- 0(1)	8.927	79.770	71.646	32.498	66.197	10.542	
	_ 1			. •		100742	-0.576
-100	A.978	79.94	71.847	33.391	65.592	0.165	
420C	8.429	80.206	72.043	34.284		9.15B	-0.488
4300	8.929	80.416	72.215	35.177	64.985	7.792	-0.405
400	8.930	A0.621	72.424		64.377	0.440	-0.327
500	8.930	80.822	72.67A	36.070	63.766	5.097	-0.253
			* D . M	36.963	63.153	3.770	-0.183
600	0.931	a) 010	77 100				
700		81.018	77.189	37.856	62.538	2.456	-0.117
800	8.931	81.210	77.766	38.749	61.921	1.161	-0.054
	8.932	81.3~8	73.140	19.542	61.300	-0.126	
840-07	8.932	81 . 472	73.208	39.999	6250	-0.640	0.006
840.07	8.932	81.472	73.208	19.999	-78.362	-0.640	0.029
900	A.932	81.583	73.310	40.535	-79.045		0.029
000	A. 933	81.763	73.477	41.428		0.319	-0.015
				-10-4-10	-79.426	1.9/1	-0.0A6
100	8.931	81.940	73 44 5		70		
200	8.433			47	-79.A15	3.588	-0.154
300		82.113		43.51	-90-213	5.234	-0.220
	8.934	82.284		44-108	-80.621	6.877	-3.284
400	8.934	82.451	74.11'	45.002	-81.039	8.534	-0.345
500	8.934	82.614			-81.469	10.200	-0.405
							0.00
600	8.415	82.775	74.420	46.789	-81.912	11.877	-0
700	H . 935	82.934			-82.371	13.554	-0.464
800	8 . 935	83.069			-92.948		-0.520
900	A . 936	61-242				14.219	-0.574
000	8.936	8 1 . 192			-83.346 -43.868	16.939 18.646	-0.627
				-			-0.679
			15 Decemb	1962			RCF

TECHNETIUM MONOXIDE (TcO) (IDEAL MOLECULAR GAS) gfw = 115

$$\Delta H_{f0}^{o} = 89.004 \text{ kcal gfw}^{-1}$$

Ground State Degeneracy = 4

$$H_{298.15}^{\circ} - H_{0}^{\circ} = 2.114 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 88.600 \text{ kcal gfw}^{-1}$$

 $S_{298.15}^{o} = 57.538 \text{ cal deg K}^{-1} \text{gfw}^{-1}$

				cn	n - 1				
State	g	E	ω _e	ω _e ×e	ω _e γ _e	B _e	α _e	γ _e ×10 ⁵	D _e ×10 ⁶
х	4	0	854			0. 385			

Heat of Formation

Estimated by comparison of dissociation energies of oxides of neighboring elements in periodic table.

Heat Capacity and Entropy

Calculated using above estimated spectroscopic constants.

Reference State for Calculating AH, AF, and Log Kp. Solid Th from 0° to 2028°K. Liquid Th from 2028° to 5060°K. Gaseous Th from 5060° to 6000°K, Gaseous O2; Gaseous ThO.

- 0	(0	(al/°K			Kcal/gfw		
T, "K	СÞ	S _T	-(F _T - H ₂₉₈)/T	H _T - H ₂₉₈	ΔHμ	A P ₁	Log Kp
0	0.000	0.000	*******				
298.15	7.627	58.836	INFINITE 58.836	-2.125 0.000	-7.172 -7.640	-7.172	INFINITE
300	7.636	58.883	58.836	0.014	-7.649	-14.399	10.554
400	8.033	61.137	59.141	0.798		-14.441	
500	8.340	62.963	59.728	1.618	-8.084 -8.493	-16.639 -18.730	9.091
600	8.602	64.508	60.399	2.465	-0 000	- 10 720	7 46
700	8 - 851	65.852	61.084	3.338	-8.888 -9.268	-20.739 -22.684	7.554
800	9.095	67.050	61.756	4.235	-9.634	-24.576	6.713
900	9.331	68.135	62.406	5.156	-9.984	-26.423	6.416
.000	9.551	69.130	63.029	6.101	-10.317	-28.231	6.169
100	9.750	70.050	63.626	7.066	-10.635	-30.007	5.96
200	9.923	70.906	64.198	8.050	-10.939	-31.755	5.78
300	10.067	71.706	64.745	9.050	-11.232	-33.478	5.62
400	10.183	72.456	65.269	10.062	-11.516	-35.178	5.49
1500	10.273	73.162	65.772	11.085	-11.792	-36.859	5.37
600	10.338	73.827	66.255	12.116	-12.063	~38.521	5.26
633	10.354	74.039	66.410	12.116	-12-152	-39.066	5.220
633	10.354	74.039	66.410	12.457	-12.006	-39.066	5.22
700	10.382	74.456	66.719	13.152	-13.144	-40.137	5.160
800	10.408	75.050	67.166	14.192	-13.648	-41.711	5.064
900	10.419	75.613	67.595	15.233	-14.154	-43.255	4.975
2000	10.418	76.147	68.010	16.275	-14.662	-44.774	4 . 89
2028	10.417	76.292	68.123	16.567	-14.805	-45.195	4.870
2028	10.417	76.292	68.123	16.567	-18.658	-45.195	4.870
100	10.408	76.656	68.410	17.317	-19.026	-46.130	4.80
200	10.391	77.140	68.796	18.357	-19.542	-47.408	4.70
300	10.368	77.601	69.169	19.395	-20.062	-48.664	4.624
400	10.342	78.042	69.529	20.430	-20.588	-49.896	4 . 54
500	10.312	78.464	69.879	21.463	-21.117	-51.109	4.46
2600	10.281	78.868	70.217	22.493	-21.655	-52.296	4.39
700	10.249	79.255	70.544	23.519	-22.197	-53.466	4.32
2800	10.217	79.628	70.862	24.542	-22.745	-54.613	4.26
900	10.186	79.986	71.171	25.563	-23.299	-55.744	4.20
3000	10.154	80.331	71.471	26.580	-23.858	-56.854	4.14
3100	10.124	80.664	71.762	27.594	-24.422	-57.942	4.08
3200	10.095	80.985	72.046	28.604	-24.973	-59.018	4.03
3300	10.067	81.295	72.322	~9.613	-25.541	-60.074	3.97
3400	10.040	81.596	72.590	30.618	-26.146	-61.107	3.92
3500	10.015	81.687	72.852	31.621	-26.7:1	-62.130	3.87
3600	9.991	82.169	73.107	32.621	-27.320	-63.132	3 • 83
3700	9.969	82.443	73.356	33.619	-21.912	-64.121	3.78
3800	9.948	82.709	73.599	34.615	-28.509	-65.094	3.74
3900	9.928	82.967	73.837	35 . 1 69	-29.109	-66.052	3.70
60 00	9.910	83.219	74.069	36.600	-29.714	-66.994	3.66
4100	9.893	83.464	74.295	37.591	-30.321	-67.918	3 • 6 2
4200	9.877	83.702	74.517	38.579	-30.913	-68.830	3.58
1300	9.862	83.935	74.734	39.566	-31.548	-69.728	3.54
4400	9.849	84-162	74.956	40.552	-32-166	-70.652	3 . 50
4500	9.836	84.384	75.154	41.536	-32.787	-71.477	3.47
4600	9.825	84.601	75.357	42.519	-33.412	-72.330	3.43
6700	9.815	84.813	75.557	43.501	-34.041	-73.177	3.40
4800	9.805	85.020	75.753	44.482	-34.673	- 4.002	3.36
4900	9.797	85.223	75.945	45.462	-35.309	4.817	3.33
5000	9.790	85.421	76.133	.6.441	-35.951	-75.620	3.30
5040-74	9.785	85.538	76.244	47.029	-36.341	-76.092	3 . 28
5060.26 5060.26	9.785	85.538	76.244	47.029	-159.106	-76.092	3.28
	9.783	85.616	76.318	47.420	-159.296	-75.450	3.23
5100 5200	9.777	85.806	76.499	48.398	-159.785	-73.805	3.10
5300 5300	9.112	85.993	76.677	49.375	-160.286	-72.144	2.97
5400	9.767	86.177	76.852	50.352	-160.798	-70.480	2.65
5500	9.763	86.357	77.025	51.329	-161.321	-68.814	2 • 7 3
5400	9.760	86.514	77.194	52 - 30 4	-161-860	-67.126	2.62
5600 5700	9.758	86.708	77.360	53.281	-162.414	-65.432	2.50
5800	9.756	86.878	77.524	54.257	-162.986	-63.729	2.40
5900	9.755	87.046	77.685	55.232	-163.590	-62.014	2 • 2 9
6000	9.754	87.211	77.843	56.207	-164-198	-60-290	2 - 1 9
							RC

$$\Delta H_{f0}^{o} = -7.172 \text{ kcal gfw}^{-1}$$
Ground State Configuration = $^{3}\pi_{0}$

$$\Delta H_{f0}^{o} = -7.172 \text{ kcal gfw}^{-1}$$
 $\Delta H_{f298.15}^{o} = -7.640 \text{ kcal gfw}^{-1}$

al gfw ^{-l}

					cm-l				
State	g	E	ω _e	ω _e x _e	ω _e y _e	Вe	$\alpha_{\mathbf{e}}$	γ _e x10 ⁵	D _e x10 ⁶
х ³ я	2 2	0 2721 4177	800	3, 5	_	0. 327	0. 0018	_	0. 22

Calculated from data of Darnell et al. 1

Heat Capacity and Entropy

Calculated using spectroscopic constants above, which are based on Krishnamurty experimental data 2 and data estimated here.

References

- Darnell, A. J. et al, J. Phys. Chem. 64, 341 (1960).
 Krishnamurty, S. G., Proc. Phys. Soc. (London) 64A, 852 (1951).

Reference State for Calculating AH*, AF*, and Log Kp: Solid Ti from 0° to 1950°K, Liquid Ti from 1950° to 3550°K, Gaseous Ti from 3550° to 6000°K; Gaseous O2; Solid TiO from 0° to 2010°K. Liquid TiO from 2010° to 6000°K.

		cal/°K	g(Kcal/gfv		
T,°K	(°	s''	- (FT - H29H)/T	HT - H298	ΔH	ΔF	Log Kp
Ò	0.000	0.000			•	•	•
298-15	9.551	9.990	1NF1N1TE 9.990		-123.436	-123.436	INFINITE
100	9.583	10.049	9.990	0.000	-124-150	-117.637	86.226
400	10.847	12.998	10.384	0.018 1.046	-124.149 -124.096	-117.597 -115.419	85 • 665 63 • 059
500	11.626	15.507	11.164	2.177	-123.985	-113.261	49.504
600	12.213	17.681	12.073	3 • 365	-123.843	-111.129	40.477
700	12.710	19.602	13.014	4.611	-123.679	-109.023	34.037
80C	13.159	21.329	13.947	5.905	-123.494	-106.942	29.214
900 1000	13.580 13.984	22.403 24.355	14.856 15.734	7.242	-123.289	-104.884	25.468
			130134	8.621	-123.064	-102.850	22.477
1100 1155	14.376 14.589	25.706 26.413	16.580	10.039	-122-820	-100.842	20.034
1155	14.589	26.413	17.031	10.835	-122.676	-99.745	18.873
1200	14.761	26.974	17.031 17.394	10.835 11.496	-123.626 -123.503	-99.745	18.673
1264	15.004	27.747	17.899			-98.817 97.506_	17.996 16.858
1264	15.642	28.396	17.899	-13.268-	123.320_ -122.500	-97.506	16.858
1300	15.750	28.836	18.195	13.833	-122.372	-96.796	16.272
1400	16.050	30.014	18.998	15.423	-127.CO4	-94.842	14.805
1500	16.350	31 - 1 32	19.770	17.043	-121.619	-92.916	13.537
1600	16.650	12.197	20.514	18.693	-121.219	-91.016	12.432
1700	16.950	33.215	21.231	20.373	-120.801	-89.140	11.459
800	17.250	34.193	21.924	22.083	-120.367	-87.290	10.598
900	17.550	35.133	22.595	23.823	-119.915	-85.465	9.830
1950	17-700	35.591	22.922	24.704	-119.682	-84.560	9.477
950	17.700	35.591	22.922	24.704	-123.382	-84.560	9.477
2000	17.850	36.041	23.244	25.593	-123.120	-83.568	9.131
2010	17.880	36.130	23.308	_25.172_	-123.066	-83.370	9.065
2010	14.500	43.095	23.308	39.772		-83.370	9.065
100	14.500	43.731	24.170	41.077	-108.889	-82.225	8.557
200	14.500	44.405	25.075	42.527	-108-694	-80.961	8.042
2300	14.500	45.050	25.929	43.977	-108.502	-79.704	7.573
2400	14.500	45.667	26.739	45.427	-108.313	-78.455	7.144
500	14.500	46.259	27.508	46.877	-108.127	-77.216	6.750
7600	14.500	46.827	28.240	48.327	-107.943	-75.981	6.386
2700	14.500	47.375	28.919	49.777	-107.762	-74.758	6.051
2870	14.500	47.902	29.607	51.227	-107.583	-73.537	5.740
2900	14.500	48.411	30.246	52.677	-107.407	-72.323	5 - 450
1000	14.500	48.90?	30.860	54.127	-107.233	-71.117	5.181
3100	14.500	49.378	31.450	55.577	-107.06	-69.917	4.929
3200	14.500	44.818	32.017	57.027	-106.893	-68.721	4 • 693
3300	14.500	50.284	32.564	58.477	-106.725	-67.529	4.472
340C	14-500	50.717	33.09 <i>2</i> 33.601	59.927 61.377	-106.560 -106.397	-66.345 -65.163	4 • 264 4 • 069
3500	14.500	51.137	33.601	01.97/	-100.377	-07.103	4.069
155C	14.500	51.343	33.850	62.102	-106.316	-64.577	3.975
3550	14.500	51.343	33.850	62.102	-208.773	-64.577	3.975
160C	14.500	51 • 546	34.094	62.827	-208-698	-62.545	3.797
3700	14.500	51.943	34.571	64.277	-208-559	-58.486	3.454
3800	14.500	57.330	35.033	65.727	-208.435	-54.430 -50.383	3 - 130
3 9 00 4000	14.500 14.500	52.707 53.074	35.482 35.917	67.177 68.627	-208.329 -208.234	-50.383 -46.332	2.823 2.531
4100	14.500	53.432	36.340	70.077	-208.155	-42.285	2 • 254
4200	14.500	53.781	36.751	71.527	-203-030	-38.239	1.990
4 300	14.500	54.122	37.151	72.977		-34.194	1.738
4400 4500	14.500	54.456	37.540 37.920	74.427 75.817	-208.000 -207.975	-31.148 -20.113	1.268
-,00							
4600	14.500	55.100	38.290	77.327	-207.962	-22.067	1.048
4700	14.500	55.412	38.651	78.777 80.227	-207.962 -207.975	-18.029 -13.983	0.838
4600	14.500	55.717	39.003	81.677	-207.999	-9.943	0.443
4900 5000	14.500 14.500	56.016 56.309	39.34B 39.684	83.127	-208.036	-5.900	0.256
5000	14.500	70.509					
5100	14.500	56.596	40.013	84.577	-208.086 -208.148	-1.857 2.189	-0.092
5200	14.500	56.878	40.334	86.027 87.477	-208-221	6.238	-0.092
5300	14.500	57.154	40.649 40.957	88.927	-208.313	10.283	-0.416
5400 5500	14.500 14.500	57.425 57.691	40.957 41.259	90.377	-208.418	14.337	-0.570
2300							-0.71
5600	14.500	57.953 58.209	41.555 41.845	91 • 827 93 • 277	-208.539 -208.678	18.384 22.443	-0.866
5700	14.500	48.461	47.179	94.727	-208.838	26.502	-0.99
5800	14.500 14.500	58.709	42.408	96.177	-209.021	30.566	-1.13
5900 6000	14.500	58.953	42.682	97.627	-209.229	34.628	-1.26

TITARIOM MOROXIDE (TIO)	(CONDENSED FIRSE)	gtw = 03.70
$\Delta H_{f298.15}^{\circ} = -124.15 \text{ kcal gfw}^{-1}$		S _{298, 15} =9, 99 cal degK ⁻¹ gfw ⁻¹
$T_t = 1264^{\circ}K$		ΔH_t =0.820 kcal gfw ⁻¹
T _m = 2010°K		ΔH _m =14.0 kcal gfw ⁻¹
$H_{298.15}^{\circ}$ - H_{0}° = 1.473 kcal gfw ⁻¹		
$C_p^o = 10.57 + 3.60 \times 10^{-3} \text{ T-1.86} \times 10^5$	T-2cal degK-1gfw-1	298. 15 ⁰ K≤ T≤ 1264 ⁰ K
$C_p^0 = 11.85 + 3.0 \times 10^{-3} \text{ T cal deg K}^{-1} \text{ g}$	fw ⁻¹	$1264^{\circ}\text{K} \le T \le 2010^{\circ}\text{K}$
$C_0^0 = 14.5 \text{ cal deg K}^{-1} \text{gfw}^{-1}$		2010°K < T < 6000°K

CONDENSED BUASEL

afw - 63 90

Structure

TiO has an f. c. c. NaCl (Bl) type structure with random vacancies of titanium and oxygen lattices.

Heat of Formation

Based on combustion calorimetry of Mah et al.

Heat Capacity and Entropy

TITANIIIM MONOYIDE (T.O)

Low-temperature data measured by Shomate, 2 An additional entropy contribution of 1, 68 e. u. added to account for random vacant T₁ and O vacancies as noted by Hoch et al. High-temperature data of Naylor valid to 1800°K extrapolated to melting point. Other data estimated.

Melting and Vaporization

Melting point from Brewer. 5 Heat of fusion estimated by Kubaschewski and Evans.

References

- 1. Mah, A. D. et al. U.S. Bur. of Mines, Rept. 5316 (1957).
- 2. Shomate, C., J. Am. Chem. Soc. 68, 310 (1946).
- 3. Hoch, M. et al, J. Phys. Chem. Solids 23, 1463 (1962).
- Naylor, B. F., J. Am. Chem. Soc. 68, 1077 (1946).
- Brewer, L., Chem. Revs. 52, 1-75 (1953). 5.
- Kubaschewski, O. and E. Evans, Metallurgical Thermochemistry, Pergamon Press, New York (1958).

TITANIUM MONOXIDE (TIO) SUMMARY OF UNCERTAINTY ESTIMATES

(CONDENSED PHASE) GFW = 63.90

Reference State for Calculating AH, AF, and Log K, Solid T1 from 0° to 1950°K, Liquid Ti from 1950° to 3550°K, Gaseous T1 from 3550° to 6000°K, Gaseous O₂, Gaseous TiO.

T, %			de	\			
	, c.,	54	и» -(FY - Н3 ₉₈)/1	, H ² - H3	Kcal/glw - 98 ЛН/	AFY	Log K
٥	0.000					•	ъ.
298.15	7.814	0.000	INFINITE	-2.49	1 12.896	17.476	INFINIT
300	7.821	55.989 56.037	35.989	0.00	0 13.000		-4.250
400	8.144	58.333	55.989	0.01	4 12.996		-4.191
500	8.405	60.179	56.300	0.81			-1.838
			56.897	1 - 64		1.023	-0.441
600	8.595	61.730	57.577	2 40	2 12.434 8 12.217 6 11.986		
700	8.730	63.065	58.268	2.47	2 12.434	-1.281	0.467
800	8.825	64.238	58.942	4 • 23	12.217	-3.551	1.109
900	8.893	65.281	59.589	5.12			1.581
1000	8.941	66.221	60.206				
1100					111476	-10-172	2.223
1155	8.977	67.075	60.793	6.910	11.201	-12.326	3 440
1155	8.992	67.513	61.102	7.404			2.449
1200	8.992	67.513	61.102		10.092		2.554
1300	9.003 9.022	67.857	61.349	7 - 809	9.960		2.625
1400	9.038	68.578	61.878	8.711			2.763
1500	9.050	69.248	61.878 62.381	9-614			2.877
.,,,,	7.050	69.872	62.859	10-518	9. 05		2.972
1600	9.061	70					2.7.72
1700	9.070	70.456 71.006	63.316	11.424			3.053
1800	9.079	71.524	63.753	12.330	8.306	-24.278	3.121
1900	9.088	72.016	64.170		7.938	~26.183	3.179
1950	4.092	72.242	64.570			-28.068	3.248
1950	9.092	72.252 72.252 72.482	64.764	14.601		-29-002	3.250
2000	9.097	72.482	64.764 64.954			-29.002	3.250
			U7.774	15.055	3.492	-29.838	3.260
2100	9.106	72.926	65.323	15.966			
2200	9.115	73.350	65.679	15.966		-31.496	3.276
2300	9.125	73.755	66.021	17.789		-33.139	3.292
2400	9.135	74.144	66.352	17.769	2.459	-34.765	3.303
2500	9-146	74.517	66.671	19.702 19.616	2-112	-36.376	3.312
				.,,,,,	1.761	-37.974	3.320
2600	9.157	74.876 75.222 75.556	66.980	20.531	1.410	-39.555	
2700	9.169	75.222	67.279	21.447		-41.126	3.325
2800	9.180	75.556	67.568	22.364			3.329
2900	9.193	75.878 76.140	67.849	23.283			3.331
3000	9.205	76.140	68.122	24.203	-0.008	-45.753	3.342
3100		_				430133	3.313
3200	9.217	76.492	68.388 68.646 68.897	25.124	-0. '-!	-47.275	3.333
3300	9.230	76.785	68.646	20.046	-0.724		3.332
3400	9.243	77.069	68.897	26.970	-1.083		3.330
3500	9.255 9.268	0000	69.141	27.895	-1.442	-51.761	3.327
*****	**200	77-614	69.380	28-821	-1.804	-53.239	3.324
3550	9.274	77.746	69.497 69.497 69.6.2 69.839 70.061 70.277	20 201			
3550	9.274	77.746	69-497	29.285	-1.984	-53.974	3.323
3600	9.281	77.876	69.6.	29.262	-104.440		3.323
3700	9.293	78.130	69.839	2077	-104.626		3.2.3
3800	9.306	78.378	70-061	30.677	-105.009		3.061
3900	9.318	78.620	70.277	32-538	-105.405	-50.386	2.898
4000	9.330	78.857	70.489			-48.934	2.742
				33.471	-100.240	-47.470	2.594
4100	9.342	79.087	70.696	34.404	-106-678	-45-004	3
4200	9.354	79.313	70.499	35.339	-107.128	-45.995	2.452
1300	9.365	74.533	71.097	36.275		-44.511	2 - 316
4400		79.749	71.097 71.292	37.212	-103.065	-43.012 -41.507	2.186
500	9.387	79.960	71.482	38.150		-39-992	2.062
							1.942
4600	9.398	80.167	71.669	090	-109.049	-38.460	1.827
100	9.409	80.369	71.852	40.030	-109.559	-30.923	1.717
800	9.419	80.568	72.032	40.971	-110.081	-35.372	1.610
900	9.429	80.762	72.208	41.914	-110.612	-33.807	1.508
000	9.439	80.953	72.382	42.857	-111-156	-32.240	1.409
100	9.448	81.140	72.552	43.801	-111.712	-30.656	1.314
200	9.458	81.324	72.719	44.747	-112.278	-29.063	1.221
300	9.467	81.505	72.884	45.693	-112-857	-27.458	1.132
400	9.476	81-682	13.045	46.640	-113.450	-25.842	1.046
500	9.485	01.857	73.204	47.588	-114.057	-24.210	0.962
600	9.493	A1 A10	72 7/1				
700	9.493 9.502	82.028 82.197	73.361	48 - 537	-114-679	-55.280	0.881
800	9.510	82.197	73.515 73.666	49.487	-112031d	-20.926	0.405
900	9.518	82.526	73.816	50.438 51.389	-115.977	-17.262	0.726
000	9.526	82.686	73.963		-116.659 -117.365	-17.592	0.652
	,.,20	-21000		~ < • > 7 = 1	-4110300	-15.908	0.579
			15 June 1	963			HLS

$$\Delta H_{f0}^{\bullet} = 12.896 \text{ kcal gfw}^{-1}$$

$$\Delta H_{6298, 15}^{\circ} = 13.0 \text{ kcal gfw}^{-1}$$

Ground-State Configuration = 3π

$$S_{298,15}^{\bullet} = 55.989 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

 $H_{298.15}^{\circ}$ - H_{0}° = 2.291 kcal gfw⁻¹

State	g	E	щe	ω _e x _e	ω _e y _e	Вe	α _e	$\gamma_e \times 10^5$	$D_e \times 10^6$
		cm ⁻¹	cm-l	cm-1	cm-l	cm-1	cm-l	cm-l	cm-l
x ³ π	(2	0	1008.6	4.61	0	0.5355	0.0031	0	0.603
	K2.	66.7	1008.6	4.61	0	0.5355	0.0031	0	0.603
	(2	141.3	1008.6	4.61	٠,١	0.5355	0.0031	0	0.603
a ^l Δ	2	581	1009.6	0.0	0	0.5362	0.0	0	0.604
$q_1\Sigma$	1	1708	1023.8	4.64	0	0.5490	0.00337	o	0.0
b ¹ π	2	10814	918.7	3.75	0	0.513	0.0029	0	0.0

Heat of Formation

Has been based on a preliminary analysis; a value of $\Delta H_{298.15}^{\circ} = 13.0 \text{ kcalgfw}^{-1}$ is accepted. See volume 1, this study (section IVB 30.4.1) for further references.

Heat Capacity and Entropy

Have been calculated by use of diatomic gas program. Energy levels are based on Herzberg, 1 Phillips, 2 and Pettersson and Lindgren. 3

References

- Herzberg, G., Spectra of Diatomic Molecules, Van Nostrand, New York (1950).
- 2. Phillips, J. G., Astrophys. J. 115, 567 (1952).
- 3. Pettersson, A. V. and B. Lindgren, Arkiv Fysik 22, 491 (1962).

TITANIUM MONEXIDE (TIO)

(IDEAL MOLECULAR GAS)

GFW = 63.90

SUMMARY OF UNCERTAINTY ESTIMATES

°x	1			-cal/K gi		- 1/20a)/T	1		- Kcal/gfw		
Т.		P		St .	-(F¥	- H398)/T		ή - Η ₂₉₈	119	417	Log K _p
298.15	•	0.300	±	1.500	±	1.500	±	0.000	± 5, 000		
1000	*	0.300	*	1.500	*	1.500	*	0.200			
2000	±	0.200	*	2.000	±	2.000		0.300			
3000	*	0.200	±	2.000	*	2.000	±	0.400			
4000	*	0.200	*	2.000		2.000		0.600			
5000	*	0.200	*	2.000	±	2.000		0.800			
6000	*	0.200	*	2.000	*	2.000	4				

Reference State for Calculating AH, AF, and Log K, Solid U from 0° to 1406°K, Liquid U from 1406° to 4124°K, Gaseous U from 4124° to 6000°K; Gaseous O2; Gaseous UO.

r, % k	CP St -(Ft - H30g)/T H2 - H30g AH9 AP9								
	_b	٣ -	(F) - H398)/T	H2 - H398	лну	AP9 '	Log Kp		
٥	0.000	0.000	10514125				_		
298-15	7.429	57.657	INFINITE	-2-105	-11.346	-11.346	INFINITE		
300	7.436	57.703	57.657 57.657	0.000 0.014	-11-800	-18-108	13-273		
400	7.812	59.846	57.954	0.777	-11.804 -12.081	-18.148 -20.221	13.220		
500	8.098	61.671	56.525	1.573	-12.382	-22.221	9.712		
600	8.300	63.167	59.178	2 • 394	-12.726	-24-158	8.799		
700	8.443	64.458	59.842	3.231	-13.134	-26.032	8.147		
800	8.545	65.592	60.441	4.081	-13.629	-27.841	7.60		
900	8.620	66.603	61.115	4.939	-14.429	-29.563	7.183		
940	8 - 644	66.979	61.357	5.285	-14.503	-30.260	7.03		
940	8.644	66.979	61.357	5.285	-15.188	-30.260	7.03		
1000	8.676	67.514	61.710	5-804	-15.527	-31-210	6.821		
1048	8.698	67.922	61.985	6.221	-15.798	-31.957	6.664		
1048	8.698	67.922	61.985	6.221	-16.918	-31.957	6.66		
1100 1200	8.719 8.753	68.344	62.276	6.674	-17-160	-32.697	6.49		
1300	8.780	69.104 69.805	62.814	7.548	-17.625	-34.089	6.20		
1400	8 - 801	70.457	63.325 63.811	8.424	-18.092	-35.442	> 95		
1406	8.802	70.494	63.840	9 • 30 4 9 • 35 6	-18.559 -18.588	-36.759 -36.839	5 · 73		
1406	8.802	70.494	63.840	9.356	-23.288	-36.839	5.72		
1500	8.819	71.065	64.275	10.185	-23.728	-37.730	5.49		
1600	روه د د	71.034	64.717	11.067	-24.200	-38.647	5.27		
1700	8.845	72.170	65.140	11.951	-24.672	-39.535	5.08		
1800	8.855	72.676	65.545	12.836	-25.147	-40.397	4.90		
1900	8.864	73.155	65.933	13.722	-25.623	-41.232	4.74		
2000	8.872	73.610	66.305	14.609	-26.101	-42-038	4.59		
2100	8.879	74.043	66.664	15.496	-26.582	-42.826	4.45		
2200	8 - 8 6 4	74.456	67.009	16.385	-27.063	-43.587	4.33		
2300 2400	8.889	74.851 75.229	67.341 67.662	17.273 18.162	-27.548 -28.035	-44.328 -45.046	4.21 4.10		
2500	8.897	75.593	67.972	19.052	-28.524	-45.746	3.99		
2600	8.900	75.942	68.272	19.942	-29.015	-46.425	3.90		
2700	8.903	76.278	68.562	20.832	-29.510	-47.085	3.81		
2800	8.906	76.601	68.843	21.722	-30.005	-47.724	3.72		
2900	8.909	76.914	64.116	22.613	-30.503	-48.350	3.64		
3000	8.911	77.216	69.381	23.504	-31.003	-48.956	3.56		
3100	8.913	77.508	69.639	24.395	-31.>06	49.547	3.49		
3200	8.415	77.791	64.884	25.287	-32.010	-50 - 122	3.42		
3300	8.916	78.066	70.133	26.178	-32.516	-50.681	2.25		
3400 3500	8.918	78.33 <i>2</i> 78.590	70.370 70.601	27.070 27.962	-33.024 -33.53.	-51.221 -51.747	3.29 3.23		
3600	8.920	78.842	70.827 71.047	28.854	-34.046 -34.560	-52.262 -52.763	3.17 3.11		
3700	8.922 8.923	79.086 79.324	71.261	30.638	-35.075	-53.245	3.06		
3800 3900	8.924	79.556	71.471	31.530	-35.593	-53.715	3.01		
4000	8.925	74.782	71.670	32.423	-30-111	-54.174	2.96		
4100	8.425	80.002	71.876	33.315	-36.632	-54.620	2.91		
4123+63	8.926	80.053	71.923	33.526	-36.755	-54.723	2.90		
4123-63	8.926	80.053	71.923	33.526	-143.656	->4.727	2 • 90		
4200	8. 726	80.217	72.072	34 - 208	-144.143	-53.069	2.76		
4300	8.927	80.427	72.264	35.100	-144.187	-50.896	2.58		
4400	8.928 8.928	80.632	72.452 72.636	35.993 36.886	-145.439 -146.096	-48.703 -46.479	2 • 4 1 2 • 2 5		
4500	0.740								
4600	8.429	81.029 81.221	72.817 72.993	37•179 38•672	-146.761 -147.431	-44.281	2.10		
4700	8. > 30	81.409	73.167	39.565	-148.110	-37.771	1.81		
4800	8.930	81.404	73.337	40.458	-148.794	-37.532	1.67		
4900 5000	8.931 8.931	81.774	73.504	41.351	-149-487	-35.250	1.54		
		81.951	73.668	42.244	-150-187	-32.900	1.41		
5100 5200	8.932 8.932	82.144	73.829	43.137	-150.694	-30.650	1.24		
5300	8.432	82.294	73.987	44.030	-151-609	-28.333	1-16		
5400	8.933	97.461	74.142 74.295	44.924	-152.334 -153.069	-25.997 -23.650	1.05		
5500	8.933	82.625				-21.289	0.81		
5600	8.933	82.786	74.445 74.593	46.710	-153.816 -154.575	-16.914	0.72		
5700 5800	8.934	83.100	74.738	48.497	-155.352	-10.518	0.62		
5800 5900	8.734	83.252	74.881	49.390	-156.146	-14.114	0.52		
6000	8.935	83.403	75.022	50.284	-156.960	-11.704	0.42		

URANIUM MONOXIDE (UO) (IDEAL MOLECULAR GAS) gfw = 254.07
$$\Delta H_{f0} = -11.346 \text{ kcal gfw}^{-1} \qquad \Delta H_{f298.15}^{\bullet} = -11.8 \pm 10 \text{ kcal gfw}^{-1}$$
 Ground State Configuration $^{1}\Sigma$ $S_{298.15}^{\bullet} = 57.7 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

H _{298.15}	-H ₀	=	2.105	kc al	gfw ⁻¹
---------------------	-----------------	---	-------	-------	-------------------

, -		oscopic stants
	cm	-1
ω _e	=	920
Be	=	0. 2924

Heat of Formation

Calculated from the data of DeMaria, Burns, Drowart, and Inghram. $^{\rm l}$

Heat Capacity and Entropy

Calculated using the diatomic gas program and the constants listed above.

Reference

 DeMaria, G., P. Burns, J. Drowart, and M. Inghram, J. Chem. Phys. 32, 1373 (1960).

Reference State for Calculating AH, AF, and Log K. Solid W from 0° to 3650°K, Liquid W from 3650° to 5891°K, Gaseous W from 5891° to 6000°K; Gaseous O₂; Gaseous WO.

		-1/0-					
T,°K	(°	S _T		1	Kcal/gfw_		
•		1°	-(FT - H ₂₉₈)/T	.\ н _т – н ₂₉₈	ΔH_{I}^{2}	ΔF	Log K
0	0.000	0.000	INFINITE		•	<u>-</u>	~~ в
298.15	7.601	56.597	56.597	-2.122	97.510	97.510	INFINITE
300 400	7.609	56.643	56.597	0.000	97.400	90.166	-66.090
500	7.990	58.888	56.900	0.014 0.795	97.396	90.121	-65.650
,,,,	8.252	60.701	57.485	1.608	97.234	87.730	-47.93
600	8 - 4 2 8	(2.22			97.081	85.362	-37.310
700	8.547	62.222	58.151	2.443	96.931	02.04	
800	8.631	63.531	58.828	3.292	96.777	83.044 80.728	-30.24
900	8.691	64.678 65.698	59.489	4.151	96.616	78.461	-25 • 203
1000	8.736	66.616	60.123	5.017	96.446	76.184	~21.433 ~18.499
			60.728	5.989	96.273	73.962	-16.164
1100	8.770	67.450	61.301		_		
1200 1300	8.796	68.215	61.846	6.164	96.088	71.717	-14.246
1400	8 • 817	68.920	62.363	7.642 8.523	95.896	69.535	-12.663
1500	8.834	69.574	62.855	9.405	25.689	67.319	-11.317
1500	8.847	70.183	63.374	10.290	95.466 95.230	65.145	-10-169
1600	0 0.0				77.230	62.988	-9.177
1700	8.859	70.755	63.771	11.175	94.971	60 8. 3	
1800	8 • 868 8 • 474	71.292	64.197	12.061	94.70:	60 .843 58 .721	-8.310
1900	8.876 8.883	71.799	64.606	12.948	94.410	56.614	-7.549
2000	8 • 88 B	72.279	64.997	13.836	94.104	54.521	-6.873 -6.271
		72.735	65.373	14.725	93.780	52.444	-5.731
2100	P.843	73.169	44				70131
220r	L . B . H	73.583	65.734 66.081	15.614	93.439	50.387	-5.244
2300	8.901	73.478	66.416	16.503	93.080	48.345	-4.802
2400	8.705	74.357	66.739	17.393	92.705	46.320	-4.401
2500	8.908	74.721	67.051	18.284 19.174	92.311	44.314	-4.035
2400				1 7 0 6 7 4	91.900	42.323	-3.700
2600	8.910	75.070	67.353	20.065	91.472	40 343	
2760	0.913	75.407	67.645	20.956	91.078	40.347	-3.391
590C 580C	R.915	75 • 731	67.928	21. 48	90.565	38.386 36.445	-3.107
3000	9.917	76.044	68.202	22.739	90.085	34.525	-2.845
700	6.418	76.346	68.469	23.631	89.588	32.613	-2.602 -2.376
3100	4.420	74 435					- 6 6 7 7 6
3200	8.921	76.638 76.922	68.728	24.523	89.075	30.724	-2.166
3300	A . 922	77.196	68.979	25.415	88.543	28.854	-1.971
3400	8.424	77.463	69.224	26 • 307	87.995	26.994	-1.788
3500	8.925	77.721	69.463 69.695	27.200	87.431	25.153	-1.617
	• •		07.097	28.092	86.848	23.328	-1.457
3600	A . 326	77.973	69.921	28.985	04 3.0		
3640	8.427	78.095	70.032	29.431	86.249	21.528	-1.307
3650	8.927	78.095	70.032	29.431	85.944 77.549	20.633	-1.235
3700	4.927	78.217	70.142	29.877	77.250	20.633	-1.235
3800	8.927	78.455	70.358	30.770	76.65	19.851 18.312	-1.172
3900	8.928	78.687	70.569	31.663	76.049	16.774	-1.053
•000	8.929	78.913	10.774	32.555	75.445	15.276	-0.940 -0.835
100	6 030	30					-0.035
200	8.930 8.930	79.134	10.976	13.448	74.840	13.768	-0.734
300	8.931	79.349	71.172	34 • 341	74.233	12.247	-0.637
400	6.431	79.559 79.764	71 - 365	35.234	73.624	10.827	-0.550
500	8.932	79.764	71.554	36.128	73.014	9.372	-0.465
-		170707	71.738	37.021	72.402	7.929	-0.385
600	8.932	80.161	71.919	17.01			
700	8.933	80.353	72.097	37.914	71.787	6.509	-0.309
800	A.933	80.542	72.271	38.807	71 - 169	5.095	-0.237
900	8.937	80.726	72.441	39.700 40.594	70.549	3.691	-0.168
000	8.434	80.906	72.609	41.487	69.926	2. 13	-0.103
					69.299	00	-0.041
100	8.934	81.083	72.773	81 د 42	68.668	=0.422	A 4
200	8.935	81.257		43.274	68.031	-0.427 -1.768	0.018
300	8.435	81.427		44.167	67.387	-3.101	0.074
400	h . 935	81.594		45.061	66.737	-4.417	0.128
500	8.935	81.758		45.954	66.078	-5.731	0.179
						. 20 (21	0.228
600	8.936	81.919		46.848	65.438	-7.034	0.274
700 800	8.936	82.071	73.701	47.742	64 - 726	-8.322	0.319
800 891	8.936	82.232	73.847	48.635	64.027	-9.593	0.361
891 841	8.436	8~.371		49.449	63.376	-10.739	0.398
900	8.436	87.371			28.89	-10.739	0.398
900 900	8.936 8.937	82.385 82.535		9.529 -1	28.951	-10.567	0.391
			·	50.422 -1	29.663	-8.550	0.311
			May 1962				

$$^{\circ}$$
 H_{f0} = 97.510 kcal gfw⁻¹

$$^{\circ}$$
 A H_{1298, 15} = 97.400 kcal gfw⁻¹

Ground State Configuration =
1

$$S_{298,15}^{\bullet} = 56.597 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$H_{298.15}^{\bullet} - H_{0}^{\bullet} = 2.122 \text{ kcal gfw}^{-1}$$

		<u> </u>		cn	n ⁻¹ —				1
State	R	E	ωe	ωe ^x e	ω _e y _e	Be	a _e	$y_e \times 10^5$	D _e × 10 ⁶
12	1	0.0	803	-	-	0.36149	-	-	-

Heat of Formation

Based on work of DeMaria and co-workers.

Heat Capacity and Entropy

Calculated using estimated constants. 2

References

- De Maria, G. et al., J. Chem. Phys. 32, 1373 (1960).
 Barriault, R. J. et al., ASD TR 61-260, (May 1962), Pt. 1.

IDEAL MOLECULAR GAS

Reference State for Calculating AH, AF, and Log K; Solid Y from 0° to 1803°K. Liquid Y from 1803° to 3605°K. Gaseous Y from 3605° to 6000°K; Gaseous O2; Gaseous YO.

		cal/°K	Blv		Keel/-t-		
T,°K	′c _p	s _T	-(FT - HZ98)/T	HT - HX	Kcal/gfw рв Ан _і ї	ΔF	Log K _p
0	0.000	0.000	INFINITE			•	np
298 • 15	7.537	55.883	55.883	-2.115	-11.800	-11.800	INFINIT
300	7.545	55.930	55.883	0.000	-12.148	-18.334	13.43
400 500	7.932	58.156	56.184	0.014 0.789	-12.152	-18.373	13.384
500	8.210	59.958	56.764	1.597	~12.375 ~12.592	-20.412	11.15
600	8.401	61.473			12.572	-22.396	9.789
700	8.535	62.778	57.426	2.428	-12.814	-24.337	8.864
800	8.630	63.925	58.100	3.275	-13.046	-26.239	8.192
900	8.701	64.945	58.758 59.389	4.134	~13.294	-28.108	7.678
1000	8.755	65.865	59.992	5.000	-13.561	-29.942	7.27
			3.6772	5.873	~13.845	-31.747	6.938
1100	8.797	66.701	60.564	6.751	-16 14 7		
1 200 1 3 0 0	8.830	67.468	61.108	7.632	-14.147 -14.469	~33.523	6 • 6 6 6
400	8 - 8 5 8	68.176	61.625	8.517	-14.808	-35.270 -36.990	6.423
500	8.881 8.900	68.834	62.117	9.404	-15.169	-38.685	6.216
	34,00	69.447	62.585	10.293	~15.549	-40.350	5.879
1600	8.918	70.022	43 021				,,,,
700	8.933	70.563	63.032 63.459	11.184	-15.951	-41.990	5.735
1758	8.940	70.859	63.696	12.076	-16.373	-43.605	5 • 606
758	8.940	70.859	63.696	12.594 12.594	-16.679	-44.527	5.535
800	8.946	71.074	63.868	12.970	-17 318	-44.577	5.535
803	8.946	71.088	63.880	12.997	-17.981 -17.992	-45.166	5.484
803	8.946	71.088	63.980	12.997	-20.724	-45.211	5 4 8 0
900	A. 954	71.558	64.761	13.865	-21.289	-45.211	5 - 480
0000	6.972	72.018	64.637	14.762	-21.872	-46.516 -47.826	5 • 350 5 • 226
100	8.984	72					2.220
20c	8.984	72.456	64.999	15.660	-72.458	-49.109	5.111
300	9.010	72•874 73•275	65.348	16.559	-23.044	-50.365	5.003
400	9.025	73.659	65.684 66.008	17.459	-23.632	-51.594	4.902
500	9.041	74.027	66.322	18.361	-24.222	-52.798	4.808
			000322	19.264	-24.813	-53.977	4.718
600	9.059	74.382	66.625	-3.169	-25.404	_66	
700	9.078	74.725	66.919	21.076	-25.997	-55.130	4.634
80C	9.100	75.044	67.203	21.985	-26.589	-56.265 -57.374	4 - 554
900 000	9.1.24	75.375	67.480	22.896	-27.182	-58.462	4.478
000	9.151	75.685	67.748	23.810	-27.774	-59.531	4.337
100	4.141	75.986	40.000				
200	9.213	76.278	68.309 68.364	24.727	-28.367	-60.578	4.271
30C	9.249	76.562	68.261	25.646	-28.959	-61.609	4.207
400	9.287	76.839	68.510 68.751	26.569	~29.5/8	-62.621	4.147
500	9.320	77.10e	68.986	27.496 28.427	~30-13	-63.615	4.089
	=		J., , , , , ,	.0.421	-30.7.	-64.590	4.033
600	9.372	77.372	64.216	29.362	-31 - 307	-65.552	3.070
604 - 66	9.374	77.384	69.226	29.406	-31.334	-65.596	3.979 3.977
604.48	9.174	77.384	69.226	29.406	-118.512	-65.596	3.977
700 2 00	9.41P	77.629	69.440	30.301	-118.358	-64.207	3.792
800 900	9.467	77.861	69.659	31.246	-118.741	-62.739	3.608
900 000	9.514	78.]28	69.873	32.195	-119.147	-61.259	3.433
	9.571	78.370	70.083	33.150	-119.571	-59.774	3.266
100	9.629	78.607	70 204	24 33.6			
200	9.687	78.840	70.288 70.489		-120.014	-58.273	3.106
300	9.747	79.065	70.686		-120.476	-56.760	2.953
40C	9.869	79.294	70.879	37.025	-120.954 -121.448	-55.234	2.807
00	9.872	79.516	71.069		-121.448	-53.702	2.667
						-52.162	2.533
500	9.936	79.734	71.255	39.000	-122.477	-50.500	2.4.44
700	10.002	79.948	71.438		-123.010	-50.599 -4034	2.404
100	10.068	80.160	71.618		-123.555	1.459	2.161
000	10.135	80.369	71.795	•013	-124-108	-45.867	2.046
000	10.203	80.574	71.968		-124.672	-44.258	1.934
00	10 33:	44		_			
00 200	10.271	80.777	72.140		-125.244	-42.656	1.828
00	10.339	80.978 81.176	72.308 72.474		-125.823	-41.029	1.724
00	10.475	81.372	72.637		-126.410 -127.00s	-19.393	1.624
00	10.543	81.56			-127.005 -127.609	-37.744 -36.087	1.528
					** 1 + 00/3	-36.087	1 . 4 34
00	10.610	81.756	12.957	49.278	-128.220	-14.422	1.345
00	10.677	A1.944			-128.936	-32.742	1.255
00	10.743	42.132	73.267	51.416	-129.474	- 11.041	1.170
000	10.808	82.317	73.420	52.495 .	-130.122	-29.346	1.087
000	10.872	A 500	71.570	5 181 -	-110.785	-27.628	1.006
			15 March J				

$$\Delta H_{f0}^{o} = -11.8 \text{ Kcal gfw}^{-1}$$
Ground State Configuration
$$\sum_{H_{298.15}^{o} - H_{0}^{o} = 2.115 \text{ Kcal gfw}^{-1}$$

$$\Delta_{\text{H}_{f298-15}^{\circ}} = -12.148 \text{ Kcal gfw}^{-1}$$

 $S_{298.15}^{\circ} = 55.883 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

		<u></u>			cm ⁻¹				
State	g	E	ų	ų×.	4g ^y e	B _e	α,	% × 10 ⁵	D _e × 10 ⁷
Σ	2	0. 0	852. 5	2. 45	0. 0273	0. 3889	0. 0016	0. 0	3. 2
A 27	2	16294. 72	812.7	2.80	0. 0	0. 3867	0. 0019	0. 0	3. 5
A T	2	16722, 75	808. 9	2. 96	0. 0	0. 3867	0. 0019	0. 0	3. 5
в	2	20741. 92	765. 03	7. 75	0. 0	0. 3742	0. 0039	0. 0	3. 9

Heat of Formation

From a study of vaporization of Y_2O_3 by Walsh <u>et al.</u> 1

Heat Capacity and Entropy

Calculated on diatomic gas program.

Reference

1. Walsh, P. N., H. W. Goldstein and D. White, J. Am. Ceram. Soc. 43, 229 (1960).

IDEAL MOLECULAR GAS

Reference State for Calculating AH, AF, and Log Kp: Solid Zr from 0° to 2125°K, Liquid Zr from 2125° to 4644°K, Gaseous Zr from 4644° to 6000°K; Gaseous O₂, Gaseous ZrO.

- ~		cal/%			Kcal/glw		
T, "K	C.	ኝ	-(FҰ - НӼ ₉₈)/Т \	Hg - H298	ΔΗγ	AFY	Log Kp
ð.	0.000	A 000	*1.==				
298.15	8.632	0.000 57.055	INFINITE 57.055	~2.335	21.116	21.116	INFINITE
300	8.636	57.108	57.055	0.000 0.016	21 • 100 21 • 098	14.165	-10.382
400	8.829	59.621	57.396	0.890	20.986	14.122	-10-287
500	8.948	61.605	58.047	1.779	20.837	9.535	-6.453 -4.167
600	9.016	63.243	54.780	2.678	20 483	3 201	2 4 5 4
700	9.058	64.637	59.520	3.582	20.657 20.449	7.291 5.079	-2.656 -1.586
800	9.079	65.848	60.237	4.489	20.215	2.899	-0.772
900	9.090	66.918	60.921	5.397	19.957	0.750	-0.182
1000	9.096	67.876	61.569	6 • 307	19.677	-1.368	0.299
1100	9.098	68.743	62.183	7.216	19.375	-3.460	0 - 6 8 7
1135	9.099	69.028	62.389	7.535	19.266	-4.184	0.806
1135	9.099	69.028	62.389	7.535	18.351	-4.184	0.806
1200	9.099	69.535	62.763	8-126	18-152	-5.470	0.996
1300	9.100	70.263	63.312	9.036	17.843	-7.425	1.248
1500	9+101 9+102	70.937 71.565	63.833 64.328	9.946	17.531	-9.358 -11.268	1.461
						111100	
1600 1700	9 • 105 9 • 108	72 • 153 72 • 705	64.799	11-767	16.899	-13-157	1.797
1800	9.112	73.226	65.248 65.677	12.677	16.577	-15-025	1.932
1900	7.118	73.719	66.087	14.500	16.254 15.929	-16.875 -18.706	2.049 2.152
2000	9.124	74.186	66.480	15.412	15.601	-20.520	2.242
2100	9.136	74 4 2 2	44 84 0	14 224		-43 316	
2125	9.132	74.632 74.740	66.858 66.950	16.325	15.271 15.189	-22.319 -22.764	2.323 2.341
	9.132	74.740	66.950	16.553	10.288	-22.764	2.341
2125	9.138	75.057	67.221	17.238	10.231	-23.926	2.377
2300	9.146	75.463	67.571	18.152	9.688	-25.465	2.420
2400	9.155	75.853	67.908	19.067	9.342	-26.985	2.457
2500	9.164	76.227	68.233	19.983	8.993	-28.491	2.491
2600	94173	76.586	68.548	20.900	8.644	-29.983	2.520
2700	9.183	76.933	68.852	21.818	8.293	-31.465	2.547
2000	9.192	77.267	69.147	22.737	7.942	-32.932	2.570
2900	9.202	77.590	69.432	23.656	7.586	-34.381	2.591
3000	9.212	77.902	69.710	24.577	7.231	-35.826	2.610
3100	9 • 2 2 2	78.204	69.979	24.499	6.875	-37.253	2.626
3200	9.232	78.497	70.241	26.421	6.516	-38.674	2.641
3300	9.242	78.782	70.495	27.345	6.157	-40.079	2.654
3400	9+251	79.058	70.743	28 • 270	5.798	-41.475	2.600
3500	9.261	79.326	70.985	29.195	5.435	-42.861	2.676
3600	9.270	79.588	71.220	30.122	5.073	-44.235	2.685
3700	9.280	79.842	71.450	31.049	4.710	-45.600	2.693
3600	9.289	80.090	71.674	31.978	4.347	-46.956 -48.299	2.700 2.706
39 0 0 4000	9 • 298 9 • 307	80 • 331 80 • 567	71.893 72.108	32.907 33.837	3.615	-49.638	2.712
4100 4200	9.315 9.324	80.797 81.022	72.317 72.522	34.768 35.700	3 • 2 4 8 2 • 6 8 0	-50.966 -52.287	2.717 2.721
4300	9.332	81.242	12.722	36.633	2.512	-53.591	2.724
4400	9.340	81.456	72.919	37.567	2-142	-54.897	2.727
4500	9.348	81.667	73.111	38.501	1.770	-56.187	2.729
4600	4.356	81.873	13.299	39.436	1.397	-57.468	2.730
4644 • 05	9.360	81.962	73.381	19.849	1.234	-56.030	2.731
4644.05	4.360	81.962	73.381	. 849	-134.220	-58.030	2.731
4700	9.364	82.074	73.484	40.372	-134.485	-57.113	2.656
4800	9.371	82.272	73.666	41.309	-134.963	-55.467	2.525
4900	9.379	82.465	73.844	42.247	-135.448	-53.804	2.400
5000	9.386	82.655	74.018	43.185	-135.942	-52.130	2.270
5100	9.391	82.842	74.190	44.124	-136.444	-50.458	2.162
5200	y. 401	83.024	74.358	45.064	-136.955	-40.702	2.049
5300	9.408	83.204	74.524	46-004	-137.476	-47.066	1.941
5400	9.414	83.380	74.687	46.945	-138.007	-45.358	1.836
5500	9.421	H3.554	74.847	47.887	-138.549	-43.638	1.734
5600	9.428	83.724	75.004	48.829	-139-105	-41.903	1.635
5700	9.435	83.891	75.159	49.772	-119.676	-40-164	1.540
5800	9.441	84.056	75.312	50.716	-140-264	-38.417	1.448
5900	9.448	84.218	75.462	51.661	-140.871	-36.655	1.370
6000	9.454	84.377	75.610	52.606	-141.502	- 54.880	1.270
				lune 1963			HLS

$$\Delta H_{f0}^{\circ} = 21.116 \text{ kcal gfw}^{-1}$$

Ground-State Configuration = 3Δ

 $H_{298,15}^{\circ} - H_{0}^{\circ} = 2.335 \text{ kcal gfw}^{-1}$

$$s_{298.15}^{*} = 57.055 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

State	g	E	ധം	ω _e x _e	ω _e y _e	Be	$\alpha_{\rm e}$	$\gamma_{\rm e} \times 10^5$	D _e x 10 ⁶
		cm-l	cm-l	cm-l	cm-1	cm ⁻¹	cm-1	cm-l	cm-1
$c^1\Sigma$	1	9171.2	938.1	1.80		0.3951	0.0019		0.35
$\mathbf{a^l}\Sigma$	1	1320.3	978.07	5.04		0.4241	0.0023		0.33
x³∆	2	605.1				0.4156			
	2	297.2	936.5	3.47		0.4156	0.0021		0.32

Heat of Formation

No analysis has been performed; data of JANAF Tables have been accepted temporarily.

Heat Capacity and Entropy

Have been calculated; have used above energy levels. See volume 1, this study (section IVB35.4.1) for details.

Reference

1. JANAF, Thermochemical Tables (30 September 1961).

ZIRCONIUM MONOXIDE (ZrO) (IDEAL MOLECULAR GAS)

GFW - 107.22

		,		cal/'X	gf w		1		~ Kcal/gfw ΔH?	\	
r, ° x		P		ዓ	-(F'f	– н3 ₉₈)/т `	٠,	H ₀ - H ₂ 38	ЛНР	AFY '	Log K
298.15	±	0.200	*	1.000	*	1.000	±	0.000	±5 000		
1000	*	0.500	±	1.700	±	1.200	ż	0.500			
2000	±	0.500	±	2.000	*	1.600	±	1.000			
3000	±	0.500	•	2.200	±	1.800	ŧ	1.300			
4000	±	0.500	*	2.300		1.900	±	1.600			
5000	*	0.500	ŧ	2.400	*	2.000	±	1.900			
6000	*	0.500	*	2.400		2.000	*	2.000			

OXYGEN

REFERENCE STATE

02

Reference State for Calculating ΔH_{f}^{*} , ΔF_{f}^{*} , and Log K_{p} :

Gameous Diatomic O2 from O* to 6000*K.

			Diatomir O2 f				
		cel/°K	elv		K1/-4		
7, °K	(°	s,,	-(FT - H298)/T	HT - H298	Kcal/gfw AH _f	ΔF	Log Kp
0	0.000	0.000			•	•	•р
298.15	7.021	49.007	INFINITE	-2.075			
300	7.024	49.051	49.007 49.007	0.000			
400	7.196	51.092	49.284	0.013 0.723			
500	7.431	52.723	49.814	1.454			
				,			
600	7.670	54.099	50.417	2.210			
700	7.884	55.298	51.030	2.987			
800	8.064	56.363	51.631	3.785			
900	8.213	57.321	52.211	4 4 5 9 9			
1000	8.336	58.193	52.167	5.427			
1100	0.410						
1200	8 • 439 8 • 527	58 - 993	53.297	6 • 266			
1300	8.604	25.731 60.417	53.803	7.114			
1400	8 • 6 7 4	61.057	54.285	7.971			
1500	8.738	61.657	54.746 55.107	8 - 835			
	,	01.0077	55.187	9.705			
1600	8.799	62.223	55.609	10.582			
1700	8.858	62.759	56.014	11.465			
1800	8.915	63.267	56.403	12.354			
1900	8.972	63.750	56.777	13.248			
2000	9.028	64.212	57.138	14.148			
2100	9.083	64.654	57.485	15.054			
5500	9.138	65.077	57.821	15.965			
2300	5.193	65.485	58.145	16.881			
2400	9.246	65.877	58.459	17.803			
2500	9.299	66.256	58.763	18.731			
2400							
2600	9 • 351	66.622	59.059	19.663			
2700	9.402	66.975	59.345	20.601			
2800	9.451	67.318	59.624	21.543			
2900	9.499	67.651	59.895	2 - 491			
1000	9.546	67.974	60.159	23.443			
3100	9.591	68.288	60.417	24.400			
3200	9.635	68.593	60.667	24 • 400 25 • 362			
3300	9.677	68.890	60.912	26.327			
3400	9.718	69.180	61.151	27.297			
3500	9.758	69.462	61.385	28.271			
3600	9.796	69.738	61.613	29.249			
1700	9.833	70.007	61.836	30.230			
3800	9.869	70.269	62.055	31.215			
1900	9.905	70.526	62.269	32.204			
4000	9.940	70.778	62.479	33.196			
4100	9.976	71.024	62.684	34 • 192			
4200	10.012	71.265	62.886	35.192			
4300	10.049	71.501	63.084	36 • 195			
4400	10.088	14.733	63.278	37.203			
4500	10.130	71.960	63.468	38.214			
4400	10 174	77 14	43 161	10 33A			
4600 4700	10.176	72 - 184	63.656	39.230			
4700	10.226	72.404	63.840	40 • 251			
4800 4900	10.283	72.620	64.021	41.278			
5000	10.421	72.834 73.044	54.199 64.374	42.311 43.352			
,,,,,,	10.721	77.044	0-67/-	- 10 JJ.			
5100	10.506	73.252	64.546	44.402			
5200	10.607	73.459	64.716	45.462			
5300	10.724	73.663	64.883	535			
5400	10.863	73.867	65.048	41.623			
5500	11.027	74.070	65.211	48.728			
5600	11.222	74.274	65.371	49.855			
5700	11.453	74.479	65.530	51.007			
5800	11.727	74.685	65.687	52.191			
5900	12.052	74.895	65.842	53.412			
6000	12.439	75.109	65.996	54.677			
			May 196	.2			RCF

OXYGEN
$$(O_2)$$
 (REFERENCE STATE) gfw = 32,000
 $\Delta H_{f0}^{\bullet} = 0.0 \text{ kcal gfw}^{-1}$ $\Delta H_{f298.15}^{\bullet} = 0.0 \text{ kcal gfw}^{-1}$
Ground State Configuration = ${}^{3}\Sigma_{g}$ $S_{298.15}^{\bullet} = 49.007 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$
 $H_{298.15}^{\bullet} - H_{0}^{\bullet} = 2.075 \text{ kcal gfw}^{-1}$

				cm	-1				
State	В	E	ωę	ω _e x _e	ω _e y _e	Be	a _e	$y_e \times 10^5$	$D_e \times 10^6$
χ ³ Σ _g	3	-0. 244	1580.1622	12.07	. 0546	1, 44531	0.01579	-	4. 96
$a^{-1}\Delta_{g}$	2	7882.36	1509.1	12.9	-	1.426	0.0171	-	5. 1
b ¹ Σ _g ⁺	1	13120. 917	1432.507	13.9406	01075	1.40007	0.01817	-4.3	5.36
$\Lambda^{-3}\Sigma_{u}^{+}$	3	35008.0	801.	15.0	-	0.91	0.015	-	3 .4
$^{1}\Sigma_{u}^{-}$	7	36212.8	650.41	17.03	-0.106	0.826	0.0205	-83.0	5.3
B ³ ኒ	3	49357.6	709. 4	8.0	-0.375	0.819	0.011	-	4.4

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Calculated on diatomic gas-computer program, using above spectroscopic constants. Complete details of data used given by Barriault et all.

Reference

1. Barriault, R. J. et al, ASD TR 61-260 (May 1962), Pt. 1.

BYYGEN (O2) (REFERENCE STATE) GFW = 32.000

SUMMARY OF UNCERTAINTY ESTIMATES

		cal/°X	d-		Kcal/g/w		
T, ° K	C.	s _T	-(FT - H ₂₉₈)/T	HT - H298	ΛH _f	Λ F ()	Log Kp
298 - 15	± 0.000	±0.003	±0.003	± 0.000			
1000	± 0.001	±0.004	±0.004	± 0.001			
2000	± 0.002	±0.005	40.004	± 0.002			
3000	± 0.005	+0.007	±0.004	# 0.005			
4000	+ 0.014	±0.009	±0.006	± 0.014			
5000	± 0.089	±0.018	±0.007	40.057			
6000	± 0.673	±0.081	±0.013	± 0.407			

Reference State for Calculating ΔH_f^* , ΔF_f^* , and Log K_p . Solid Os from 0° to 3290°K, Liquid Os from 3290° to 5270°K, Gaseous Os from 5270° to 6000°K; Gaseous O2; Gaseous

7 0	C.	cal/°K	#I#	_	Kcal/glu		
T, °K	رد <mark>ه</mark>	ST	-(FT - H298)/T	HT - H298	_	AF	Log K _D
•						,	
0 298.15	0.000	0.000	INFINITE	-2.849	17 00.		
300	11.914	61.455	61.455	0.000	17.836	17.836	INFINIT
400	11.934	61.529	61.456	0.022	17.400	16.014	-11.73
500	12.835	65.095	61.936	1.264	17.398	16.005	-11.65
700	13.422	68.026	67.869	2.579	17.330	15.553	-8.49
600	12 004			20017	17.306	15.113	-6.60
700	13.805 14.063	70.510	63.941	3.941	17.294	14.675	
800		72.659	65.036	5 . 336	17.286	14.240	-5.34
900	14.242	74.549	66.110	6 - 751	17.268	13.805	-4.44
1000	14.467	76.234	67.143	8 - 182	17.241	13.373	-3.77
	14.40/	77.754	48.129	9.624	17.203	12.947	-3.24
1100	14.539	30 15.				,	-2.82
1200	14.595	79 - 136	69.068	11.075	17.153	12.524	-2.48
1300	14.639	80.403	69.961	12.532	17.092	12.104	-2.20
1400	14.674	81.573	70.809	13.993	17.017	11.692	-1.96
1500	14.703	82.660	71.617	15.459	16.931	11.286	-1.76
		83.673	72.388	16.928	16.834	10.885	-1.58
1600	14.727	84 437	3-				- 1 - 28
1700	14.747	84.623	73.123	18-400	16.723	10.491	-1.43
1800	14.764	85.516	73.826	19.873	16.599	10.107	-1.29
1900	14.778	86.360	74.499	21.349	10.463	9.728	-1.18
2000	14.790	87-158	75.145	22.826	16.314	9.357	-1.07
		87.917	75.764	24.304	16.152	8.998	-0.98
2100	14.800	80 / 10	34				
2200	14.810	88.638	76.360	25.784	15.976	8.645	-0.90
2300	14.818	89.327	76.934	27.264	15.787	8.301	-0.82
2400	14.875	89.986	77.487	28.746	15.586	7.963	-0.75
2500	14.831	90.616	78.021	30.228	15.370	7.637	-0.69
. ,	140001	91.222	78.537	31 • 711	15.141	7.318	-0.640
2600	14 934	01 00					20040
270C	14.836	91.804	79.037	33.194	14.898	7.010	-0.589
2800	14.841	92 - 364	79.520	34 • 678	14.642	6.711	-0.543
2900		92.503	79.988	36.162	14.373	6.424	-0.501
3000	14.850	93.424	80.443	37.647	14.090	6.142	-0.463
,500	14.853	93.428	80.884	39.132	13.795	5.874	-0.428
1100							J20
3100 3200	14.856	34.415	81.312	40.618	13.486	5.620	-0.396
	14.859	24.887	91.729	42.103	13.163	5.368	-0.367
329C	14-862	95.298	82.094	43.440	12.862	5.155	-0.342
3290	14.862	95.298	82.094	43.440	5.295	5.155	-0.342
330C	14.862	95.344	82.135	43.589	5.258	5.154	-0.341
3400	14.864	95.788	82.530	45.076	4.375	5.157	-0.331
3500	14.867	96.219	82.915	46.562	4.417	5.171	-0.323
1400	14 5 -						2.723
3600 3700	14.869	96.637	83.290	48.049	4.0 16	5.196	-0.315
3700 3800	14.871	97.045	83.657	49.536	3.702	5.231	-0.309
3800 3800	14.872	97.441	84.014	51.023	3.304	5.282	-0.304
190 0	14.874	97.828	84.363	52.511	4.903	5.337	-0.299
4000	14.875	98.204	84.705	53.998	2.498	5.404	-0.295
							- • • • • •
4100	14.877	98.572	85.039	55.486	2.090	5.481	-0.292
6200	14.878	98.930	85.365	56.973	1.677	5.573	-0.290
300	14.879	99.280	85.685	58.461	1.262	5.670	-0.288
400	14.881	99.622	85.998	59.949	0.842	5.775	-0.287
500	14.882	99.957	86.304	61.437	0.419	5.893	-0.286
400							
600	14.883	100.284	86.604	62.926	-0.008	6.029	-0.286
70C	14.883	100.604	86.899	64.414	-0.441	6.162	-0.287
800	14.884	100.917	87.188	65.702	-0.880	6.307	-0.287
900	14.885	101.224	87.471	67.391	-1.324	6.463	-0.287
000	14.886	101.525	87.749	68.879	-1.777	6.630	-0.290
							5 • 2 70
100	14.887	101.820	88.027	70.368	-2.238	6.802	-0.291
200	14.887	102.109	88.290	71.857	-2.709	6.990	-0.291
269.57	14.888	102.307	88.475	12.899	-3.044	7.113	
269.57	14.888	102.307	88.475		-179.445	7.113	-0.295 -0.295
300	14.888	102.392	88.554		-179.588	8.199	
400	14.889	102.671	88.813		-180.066	11.752	-0.338
500	14.889	102.944	89.067		-180.565	15.151	-0.476
						170121	-0.602
600	14.890	103.212	89.317	77.812	-181.088	18.878	-0.737
700	14.890	103.476	89.563		-181.639		
800	14.891	103.735	89.805		-182.225	22•462 26•054	-0.861
900	14.891	103.989	70.044		-182.850	29.654	-0.982
000	14.892	104.240	90.278		-183.521	33.270	-1.098 -1.212
			16 6	mber 1962	,	_	HW

$$\Delta H_{f0}^{o} = 17.836 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298-15}^{o} = 17.400 \text{ kcal gfw}^{-1}$$

Point Group = Dogv

$$S_{298-15}^{0} = 61.455 \text{ cal deg } K^{-1} \text{gfw}^{-1}$$

$$H_{298.15}^{\circ} - H_{0}^{\circ} = 2.849 \text{ kcal gfw}^{-1}$$

Vibrational Levels and Multiplicities

Bond lengths and angles:

$$\sigma = 2$$

$$O-Os-O$$
 angle = 180^{O}

Heat of Formation

Estimated from Brewer et al data. 1

Heat Capacity and Entropy

Determined from the estimated spectroscopic data. See volume 1, this study (section IVB18. 4. 2) for details.

Teference

1. Brewer, L. and G. M. Rosenblatt, Chem. Revs. 61, 257 (1961)."

2-244

Reference State for Calculating AHI, AFI and Log Kp. Solid S1 from 0° to 1690°K, Liquid Si from 1690° to 3566°K, Gaseous Si from 3566° to 6000°K, Gaseous O2: a-Quartz from 0° to 848°K, B-Quartz from 848° to 1298°K, a-Cristobalite from 1298° to 1996°K, Liquid SiO2 from 1996° to 6000°K.

r. "K	(F	(al/ 'K	#IV		Kcal/gfw	•	
	, b	L	-(I T H ₂₉₈)/T'	· н _Т - н ₂₉₈	Λн,	AFI	Log Kp
0	0.000	0.000	INFINITE	-1.664	-216.820	-216.820	INFINIT
298 - 15	10.627	10.000	10.000		-218.000	-205.019	150.27
300	10.680	10.066	10.000	0.020	-218.002	-204.939	149.29
400 500	12.812	13.457	10.448	1 - 204	-218.036	-200.576	109.58
300	14.240	16.477	11.358	2.560	-217.960	-196.217	85.76
600	15.390	19.178	12.440	4.043	-217.807	-191.881	69.85
700	16.409	21.628	13.580		~217.585	-187.577	58.56
800	17.358	23.882	14.729	7.322	-217.299	-183.310	50.07
848	_17.798_	_24.906_	15.276	8.166	-217.139_	181.276_	46.71
848 900	16.055	25.248	15.276	8 • 456	-216.849	-181.276	46.71
000	16.156 16.350	26.206 27.919	15.880 17.000	9.293 10.919	-216.759 -216.590	-179.097 -174.920	43.48 38.22
			1,1000	10.,,,	2100770	-114.720	30.022
100 200	16.544 16.738	29.486 30.934	18.065	12.563	-216.424	-170.762	33.92
298	16.928	32.255	19.078 20.023	14.228	-216.256	-166.618	30 • 34
298	17.048	32.394	20.023	_15.877	-216•092_ -215•912	162.570_ -162.570	27.37 27.37
300	17.052	32.420	20.042	16.091	-215.908	-162.489	27.31
400	17.256	33.691	20.972	17.807	-215.723	-158.387	24.72
500	17.460	34.889	21.860	19.543	-215.234	-154.296	22.48
600	17.664	36.022	22.710	21.299	-215.340	-150.221	20.51
690	17.848	36.994	23.445	22.897	-215.160	-146.564	18.95
690	17.848	36.994	23.445	22.897	-227.110	-146.564	18.95
700	1 .868	31.099	23.525	23.075	-227.090	-146.087	18.78
800	18.072	38.126	24.308	24.872	-226.885	-141.327	17.15
900	18.276	39.109	25.062	26.690	-226.672	-136.581	15.71
996	18-472_	_40.014.	25.759	_28.454_	-226.460_	132.032_	14 • 45
996	21.660 21.660	41.067	25•759 25•790	30.554 30.640	-224.360 -224.339	-132.032 -131.848	14.45
100	21.660	42.167	26.545	37.806	~223.794	-127.238	13.24
200 2300	21.660 21.660	43.174	27.278 27.990	37.138	-223.255	-122.652 -118.093	12.18
400	21.660	45.059	28.682	39.304	-222.192	-113.554	11.22 10.34
500	21.660	45.943	29.355	41.470	-221.669	-109.040	9.53
2600	21 440	46.793	30.010	43.636	-221.151	-104.544	8.78
700	21.660 21.660	47.610	30.646	45.802	-220.638	-100.069	8.10
800	21.660	48.398	31.266	47.968	-220.130	-95.612	7.46
900	21.660	49.158	31.870	50.134	-219.5.7	-91.174	6 . 87
3000	21.660	49.892	32.459	12.300	-219.176	-86.753	6.32
3100	21.660	50.602	33.033	54.466	-218.635	-82.347	5 . 80
3200	21.660	51.290	33.593	56.632	-218.147	-77.962	5 . 32
3300	21.660	51.957	14.139	58.798	-217.661	-73.585	4.87
3400	21.660	52.603	34.673	60.964	-217.181	-69.226	4.45
3500	21.660	53.231	35.194	63.130	-216.704	-64.879	4.05
3565.77	21.660	53.634	35.530	64.555	-216.392	-62.026	3.80
3565.77	21.660	53.634	35.530	64.555	-307.887	-62.026	3 . 80
600	21.660	53.841	35.704	65.296	-307.669	-59.672	3.62
3700	21.660	55.012	36.202	67.462	-307.035	-52.791 -45.925	3.11
3800	21.660	55.575	36.689 37.166	69•628 71•794	-306.406 -305.781	-39.080	2.64
900 900	21.660 21.660	56.123	37.633	73.960	-305.158	-32.244	1.76
			38 501	74 3 .4	-336 F63	-25.435	1.50
100	21.660 21.660	56.658 57.180	38.091 38.539	76•126 78•292	-303.927	-18.626	1 • 3 5
1200 1200	21.660	57.690	38.979	80.458	-303.316	-11.845	0.60
4300 4400	21.660	58.188	39.410	92.624	-302.710	071ءد	0.29
500	21.660	58.675	39.832	4.790	-302-107	1.690	-0.01
			40 343	86.956	-301.510	8 4 4 3 5	-0440
600 6700	21.660 21.660	59.151 59.617	40.247 40.654	89.122	-300.916	15.167	-0140
800	21.660	60.073	41.054	91.288	-300.329	21.885	-0.99
900	21.660	60.519	41.447	93.454	-299.748	28.592	-1 • 2
5000	21.660	60.957	41.833	95.620	-299.174	35.290	-1.54
5100	21.660	61.386	42.212	97.786	-298%610	41.978	-1.7
5200	21.660	61.806	42.585	99.952	-298.055	48-651	-2.0
5300	21.660	62.219	42.951	102-118	~297.513	55.316	-2 - 21
5400	21.660	62.624	43.312	104.284	-296.985	61.968	-2.50
5500	21.660	63.021	43.667	106-450	-296.475	68.616	-2.7
5600	21.660	63.411	44.016	108-616	-295.987	75.250	-2.9
5700	21.660	63.795	44.359	110.782	-295.524 -295.093	81.877 88.501	-3 · 1 -3 · 3
5800	21.660	64.172	44.698 45.031	112.948	-294.699	95.119	-3.5
5900 5000	21.660 21.660	64.542 64.906	45.359	117.280	-294.349	101.728	-3.7

 $\Delta H_{f298, 15}^* = -218.0 \text{ kcal gfw}^{-1}$ $S_{298, 15}^* = 10.00 \pm 0.10 \text{ cal deg}^{-1} \text{gfw}^{-1}$ $\Delta H_{t} = 0.290 \text{ kcal gfw}^{-1}$ $T_t = 848^{\circ} K$ $\triangle H_t = 0.180 \text{ kcal gfw}^{-1}$ $T_t = 1298^{\circ} K$ $\Delta H_{\rm m} = 2.100 \,\mathrm{kcal} \,\mathrm{gfw}^{-1}$ Tm = 1996 K $H_{298, 15} - H_0^* = 1.664$ cal gfw⁻¹ $C_0^* = 11.22 + 8.20 \times 10^{-3} T^{-2.70} \times 10^5 T^{-2} \text{ caldeg K}^{-1} \text{ gfw}^{-1}$ 298.15°K $\leq T \leq 848$ °K $C_p^* = 14.41 + 1.94 \times 10^{-3} \text{T caldeg K}^{-1} \text{ gfw}^{-1}$ 848° K $\leq T \leq 1298$ ° $C_n^* = 14.40 + 2.04 \times 10^{-3} \text{T cal degK}^{-1} \text{gfw}^{-1}$ 1298*K < T < 1996*K $C_{p}^{\bullet} = 21.66 \quad \text{degK}^{-1} \text{gfw}^{-1}$ 1996°K < T < 6000°K

Structure

The stable forms of SiO2 are considered to be a-quartz (hexagonal) up to 848°K; β-quartz (hexagonal) up to 1298°K, β-cristobalite (cubic) up to 1996°K

Heat of Formation

Average of calorimetric values by Golutvin¹, Wise, et al², Good, et al³

Heat Capacity and Entropy

Low-temperature data from Anderson and Kelley and King 5 High-temperature data from Kelley. Data above melting point from Schick. 7

Melting and Vaporization

Heat of fusion was an average value from Schick. 7

References

- 1. Golutvin, Yu. Zh. Fiz. Khim. 30, 2251 (1956)

- Wiscs, et al, S. S. J. Phys. Chem. 67, 815 (1963).
 Good, W., et al, J. Phys. Chem. 66, 380 (1962)
 Anderson, C. T., J. Am. Chem. Soc. 58, 568 (1936)
 Kelley, K. K., King, E. G., Bur. Mines Bull. 592 (1961).
- 6. Kelley, K. K., Bur. of Mines Bull., 584 (1960).
- 7. Schick, H., Chem. Revs. 60, (1963).

SILICON DIOXIDE (SIO,)

(CONDENSED PHASE)

GFW = 60.09

SUMMARY OF UNCERTAINTY ESTIMATES

, °K	C ²	5 _T	-(F _T - H ₂₉₈)/T	HT - H298	…Kral′g(Ψ ΛΗ _ξ	14)	log K _p
298.15	±0.100	±0.100	±0.100	±0.000	± 0. 500		
848	±0.100	±0.205	±0.140	±0.055			
848	±0.200	+0.240	±0.140	±0.085			
1000	±0.200	±0.273	±0.157	±0.115			
1298	±0.200	+0.325	±0.190	±0.175			
1298	±0.200	±0.364	±0.190	±0.225			
1996	±0.200	±0.450	±0.267	±0+365			
1996	±1.000	±0.951	±0.267	±1.365			
2000	±1.000	±0.953	±0.268	£1.369			
3000	±1.000	±1.358	±0.569	±2+369			
4000	±1.000	±1.646	±0.804	±3 • 36 9			
5000	±1.000	±1.869	±0.995	44.369			
6000	±1.000	±2.051	±1.156	+5 + 36 9			

Reference State for Calculating AH2, AF2, and Log Kp. Solid Si from 0° to 1690°K, Liquid Si from 1690° to 3566°K, Gaseous Si from 3566° to 6000°K, Gaseous O2; Gaseous SiO2.

F 6.	/ "	(ai/ K	·		Kcal/gfw		
r, ^k	C.	١,	-(L , - H ⁵³⁸)\J _J	H ₁ - H ₂₉		AF	Log K
						·	- 7
0 298.15	0.000	0.000	INFINITE	-2.517	75		
300	10.467	54.526	54.526	0.000	-77.106 -77.433	-77.106	INFINITE
400	10.486	54 - 590	54.526	0.019	-77.436	-77.728	56 = 973
500	11.475 12.162	57.741	54.949	1.117	-77.556	-77.730 -77.809	564623
	12.102	60.373	55.778	2 • 298	-77.655	-77.860	42 • 51 1 34 • 63 1
600 700	12.727	62.643	56.737	3.543	-77.740	- 77 000	
800	13.154	64 • 638	57.126	4.838	-77.813	-77.893 -77.912	28 • 371
900	13.477	66.417	58.703	6.171	-77.883	-77.923	24 4 3 2 4 2 1 4 2 8 6
1000	13.724 13.916	68.019	59.651	7.531	-77.954	-77.923	18.922
	1 76 716	69.475	60.561	8.914	-78.028	-77.914	17.027
l 100 l 200	14.066	70.809	61.433	10.313	-78.107	-77.899	15 . 74
1300	14.186	72.038	62.266	11.726	-78.191	-77.877	15 • 476 14 • 183
400	14.283 14.362	73.178	63.063	13.150	-78.282	-77.849	13.087
500	14.427	74.239	67.823	14.582	-78.381	-77.811	12.146
		75.232	64.551	16.522	-78.488	-77.766	11.330
1600 1690	14.481	76 - 165	65.248	17.467	7.605	-77.715	10.615
1690	14.523	76.959	65.851	18.77?	-16.719	-77.663	10.043
700	14.523	76.959	65.851	18.772	-90.668	-77.663	10.043
800	14.527 14.566	77.044	65.917	18.917	-90.681	-77.586	9.974
900	14.599	77.876	66.558	20.372	-90.818	-76.810	9.326
000	14.627	78.664 79.414	67.175 67.768	21.830	-90.965	-76.029	8.745
	_		07.00	23.292	-91-120	-75.237	8.221
100 200	14.652	80.128	68.340	24.756	-91.277	-74.440	7.747
1300	14.674	80.810	68.891	26 • 222	-91.438	-73.634	7.314
400	14.693 14.710	61.463	69.424	27.690	-91.601	-72.824	6.920
500	14.725	82.084 82.689	69.938 70.437	29 • 161 30 • 632	-91.768 -91.940	-72.002	6 • 5 5 6
400				10.032	- 71 • 440	-71.178	6.222
7600 700	14.738	83.267	70.919	32-105	-92.115	-70.340	5.912
830	14.760	83.824	71.387	33.580	-92.293	-69.503	5 • 626
200	14.770	84.360 84.878	71.841 72.281	35.055	~92.476	-68.655	5 . 359
000	14.778	85.179	72.710	36.532 38.009	-92.662 -92.853	-67.799 -66.939	5 • 109 4 • 876
100	14.786	96 944	71.14.				44,770
300	14.786	86.334	73.126	39.487	-93.047	-66.068	4+658
300	14.900	86.789	73.537 73.926	40.966	-93 246	-65.199	4.453
400	14.806	87.231	74.311	42.446	-5446 -93.c.2	-64.315	4 • 259
£00	14.811	87.660	74.687	45.407	-63., 2	-63.428 -62.537	4.077 3.905
565.17	14.815	87.936	74.928	46.303			
565.77	14.815	87.916	74.928	46 • 382 46 • 382	-93.998 -115.493	-61.943	3 • 796
600	14.816	88.077	75.053	46.889	-185.509	-61.943	3 • 796
70C	14.821	88.483	75.410	48.371	-185.559	-60.761 -57.294	3.689 3.384
800	14.825	88.879	75.760	49.853	-185.614	-53.827	3.096
900	14.829	89.264	76.101	51.336	-185.672	-50.359	2.822
000	14.831	89.639	76.435	52.819	-185.732	-46.885	2.562
100	14.836	90.006	76.761	54.302	-185.798	+43.416	2 21.
200	14.840	90.363	77.081	55.786	-185.866	+43.415 -39.935	2.314
300	14.843	90.717	77.394	57.270	-185.937	-36.463	2 • 0 7 8 1 • 8 5 3
400	14.845	91.054	77.700	58.755	-186.012	-32.980	1.638
50C	14.848	91.387	78.001	60.239	-186.091	-29.503	1.433
60C	14.850	91.714	78.295	61.724	-186.175	~26.A1a	1.224
700	14.853	92.033	78.584	63.209	-186.262	-26.019 -72.537	1 • 236
800	14.855	97.346	78.868	64.695	-186.355	-19.055	0.868
900	14.857	92.652	79.146	66.180	-186.455	-15.566	0.694
000	14.859	92.952			-186.561	-12.073	0.528
100	14.860	93.247	79.687	69-152	-194.477	-0	
200	14.867	93.535			-186.677 -186.802	-8.578 -5.085	0+368 0+214
300	14.864	93.818	80.210	72.124	-186.940	-1.590	0.066
•00	14.865	94.096	80.464	73.611	-187-091	1.915	-0.077
500	14.866	94.369	80.715	75.097	-187.261	5.419	-0.215
600	14.868	94.637	80.961	76.584	-187.452	8.925	-0.348
700	14.865	94.900	81.203	78-071	-187.668	12.433	-0.477
800	14.870	95.159	81.442	79.558	-187.916	15.953	-0.601
90 0	14.871	45.417		81.045	-188.201	19.480	-0.722
000	14.873	95.663	81.907	82.532	-188.530	23.007	-0.838

$$\Delta H_{f0}^{\bullet} = -77.106 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298, 15}^{\circ} = -77.433 \text{ kcal gfw}^{-1}$$

Point Group D

$$S_{298, 15}^{\bullet} = 54,526 \text{ cal deg}^{-1} \text{ gfw}^{-1}$$

$$H_{298.15}^{\bullet} - H_{0}^{\bullet} = 2.517 \text{ kcal gfw}^{-1}$$

Vibrational Levels and Multiplicaties

Bond lengths and angles:

Moment of inertia:

$$I = 12.0976 \times 10^{-39} \text{ gm cm}^2$$

$$B_e = 0.23135 \text{ cm}^{-1}$$

Heat of Formation

Vapor-pressure data of Porter et all was used. Results in general agreement with earlier analyses by Schick and Brewer and Rosenblatt.

Heat Capacity and Entropy

Estimated values for spectroscopic constants were used.

References

- 1. Porter, R., et al, J. Chem. Phys. 23, 216 (1955).
- 2. Schick, H., Chem. Revs. 60, 331 (1960).
- 3. Brewer, L., and G. Rosenblatt, Chem. Revs. 61, 257 (1961).

SILICON DIOXIDE (SIC)

(IDEAL MØLECULAR GAS)

GFW = 60.09

		cel/°K	B(#		_Kcal/gfw		
T,°K	/ _C *	۶Ť	-(FT - H298)/T	H _T - H ₂₉₈	YH _f	AFi	log K _p
298.15	±1.000	±1.000	±1.000	±0.000	± 5, 000		
1000	£1.000	±2.210	±1.508	±0.702			
2000	±1.000	±2.903	±2.052	k1.702			
3000	±1.000	±3.309	±2.408	±2.702			
4000	±1.000	±3.596	£2.671	±3.702			
5000	±1.000	±3.820	£2.879	£4.702			
6000	±1.000	±4.002	±3.052	±5.702			

Reference State for Calculating Alt, AF, and Log Kp: Solid Ta from 0° to 3270°K, Liquid Ta from 3270° to 5706°K, Gaseous Ta from 5706° to 6000°K; Gaseous O2; Gaseous TaO2.

	(.	cal/°K			_Kcal/gfw		
, °K	()	ST	-(FT - H ₂₉₈)/T	'н _Т - н ₂₉₈	ΔH	ΔF	Log Kp
0	0.000	0.000	INFINITE	-2.675	-45.950	-45.950	INFINIT
298 - 15	11.071	62.527	62.527	0.000	-46.708	-47.781	35.02
300	11.091	62.595	62.527	0.020	-46.712	-47.788	34.81
400 500	12.022	65.919	62.974	1.178	-46.883	-48.120	26 . 29
300	12.725	68.681	63.847	2.417	-47.008	-48.413	21.16
600	13.231	71.048	64.854	3.716	-47.107	-48.684	17.73
700	13.594	73.117	65.890	5.059	-47.190	-48.941	15.27
800	13.862	74.950	66.910	6.432	-47.271	-49.186	13.43
900 1000	14.068 14.235	76.595 78.086	67.897 68.842	7.829 9.244	-47.348 -47.427	-49.421	12.00
			00.042	7.244	-47.427	-49.646	10.85
l 100 l 200	14.380	79.450	69.745	10.675	-47.504	-49.864	9.90
1300	14.513	80.707	70.607	12.120	-47.582	-50.075	9.12
400	14.639 14.761	81.874	71.430	13.578	-47.660	-50.282	8.45
500	14.881	83.986	72.215 72.966	15.048 16.530	-47.739 -47.820	-50.480 -50.672	7 • 8 8 7 • 3 8
	14 000						
1 600 1 700	14.999 15.113	84.950	73.685 74.375	18.024 19.529	-47.902 -47.086	-50.860 -51.043	6.94
800	15.223	86.730	75.037	21.046	-48.073	-51.219	6.21
900	15.328	87.555	75.675	22.574	-48.162	-51.393	5.91
2000	15.426	88.344	76.288	24.112	-48.259	-51.558	5.63
2100	15.518	89.099	76.881	25.659	-48.364	-51.723	5 • 38
2200	13-605	89.823	77.453	27.215	-48.477	-51.878	5.15
2300	15.678	90.518	78.006	28.779	-48.603	-52.030	4.94
2400	15.746	91.187	78.541	30.350	-48.744	-52.178	4.75
2500	15.806	91.831	79.060	31.928	-48.908	-52.318	4.57
2600	15.859	92.452	79.563	33.511	-49.090	-52.449	4.40
2700	15.904	93.051	80.052	35.099	-49.307	-52.575	4.25
2800	15.942	93.630	80.526	36 • 692	-49.563	-52.692	4.11
2900	15.974	94.190	80.988	36.288	-49.873	-52.798	3.97
3000	16.000	94.732	81.437	39.886	-50.247	-52.894	3.85
3100	16.019	95.257	81.874	41.487	-50.692	-52.970	3.73
3200	16.034	95.766	82.301	43.090	-51.217	-53.041	3.62
3270	16.042	96 • 113	82.593	44.213	-51.634	-53.075	3.54
3270	16.042	96 - 113	82.593	44-213	-58.334	-53.075	3.54
3300 3400	16.044 16.050	96.260 96.739	82.716 83.122	44.694 46.299	-58.398 -58.61	-53.024 -52.862	3.51 3.39
3500	16.052	97.204	83.517	41.704	-58.837	-52.682	3.28
3600 3700	16.051 16.047	97.656 98.096	83.904 84.281	49.509 51.114	-59.055 -59.281	-52 .5 08 -52 .32 1	3.18 3.09
3800	16.041	98.524	84.651	52.718	-59.512	-52.131	2.99
3900	16.032	98.940	85.012	54.322	-59.147	-51.934	2 . 91
4000	16.021	99.346	85.365	55.925	-59.986	-51.728	2 . 8 2
4100	16.009	99.742	85.711	57.526	-60.231	-51.521	2.74
4200	15.995	100.127	86.050	59-126	-60.481	-51.303	2.66
4300	15.980	100.503	86.381	60.725	-60.735	-51.077	2.59
4400	15.964	100.871	86.707	67.322	-60.996	-50.853	2.52
4500	15.948	101.279	87.025	63.918	-61.261	-50.618	2.45
4600	15.931	101.580	87.338	65.512	-61.533	-50.374	2 • 39
4700	15.913	101.922	87.645	67-104	-61.812	-50.130	2 • 33
4800	15.895	102.257	87.945	68 - 695	-62.028	-49.871	2.2
4900	15.877	102.584	88.241	70.283	-62.393	-49.619	2 • 2 1
5000	15.858	102.905	88.531	71.870	-62.697	-49.353	2 - 1 9
5100	15.840	103.719	88.816	455	-63.012	-49.080	2.10
5200	15.821	103.526	89.096	75.036	-63.339	-48.804	2.09
5300	15.803	103.827	89.371	76.619	-63.681	-48.521	2.00
5400	15.784	104.123	89.641	78.198	-64.040	-48.225	1.9
5500	15.766	104.412	89.907	79.776	-64.417	-47.923	1.90
5600	15.748	104.696	90.169	81.352	-64.818	-47.621	1.85
5700	15.731	104.975	90.426	82.976	-65.246	-47.306	1.8
5706.65	15.729	104.993	90.443	83.030	-65.276	-47.284	1 . 8
5706-65	15.729	104.993		83.030	-246.499	-47.284 -44.017	1.8
5800	15.713	.05.248		84.498 96.068	-247.084 -247.753	-40.513	1.50
5900	15.696	105.516		86.068 87.637	-248.470	-36.982	1.3
6000	15.679	105.780	91.174	01001	F40.410	,,,,,,,,	1.03

(IDEAL MOLECULAR GAS) gfw = 212.95

$$\Delta H_{f0}^{\bullet} = -45.950 \text{ kcal. gfw}^{-1}$$

$$\Delta H_{f298.15}^{\bullet} = -46.708 \text{ kcal gfw}^{-1}$$

Point Group Doh

$$S_{298.15}^{\bullet} = 62.527 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$H_{298.15}^{\circ} - H_{0}^{\circ} = 2.675 \text{ kcal gfw}^{-1}$$

Vibrational Levels and Multiplicities

Bond lengths and angles:

$$Ta - O distance = 1.687 A$$

Moments of inertia

$$I = 15.12 \times 10^{-39} \text{ gm cm}^2$$

$$\sigma = 2$$

$$B_e = 0.185111 \text{ cm}^{-1}$$

Heat of Formation

Vaporization data of Inghram et al 1 was used.

Heat Capacity and Entropy

Spectroscopic constants were estimated. See volume 1, this study (section IVB27.4.2) for details.

Reference

 Inghram, M., W. Chupka, and J. Berkowitz, J. Chem. Phys. <u>27</u>, 569 (1957)

TANTALUM DIBXIDE (TaO2) (IDEAL MBLECULAR GAS)

GFW = 212.95

- 4	(-	cal/°K S+	-(FT - H)08)/T	(,° ,,°	_ Kcal/gfw ^ \ H _d	ΔF	log K
T, *K	ط,	°7	-(FT - H298)/1	nT - H298	,	arı	rog np
298.15	±1.000	±3.000	± 3.000	±0.000	± 10. 000		
1000	±1.000	±4.210	±3.508	±0.702			
2000	±1.000	±4.903	44.052	±1.702			
3000	±1.000	±5.309	±4.408	±2.762			
4000	±1.000	+5.596	±4.671	±3+702			
5000	±1.000	±5.820	±4.879	±4.702			
6000	±1.000	£6.002	±5.052	±5.702			

Reference State for Calculating AHO AFO, AFO, and Log Kp: Solid Ti from 0° to 1950°K, Liquid Ti from 1950° to 3550°K, Gaseous Ti from 3550° to 6000°K; Gaseous O2; Solid TiO2 from 0° to 2143°K, Liquid TiO2 from 2143° to 6000°K.

- 0	(°	al/"K	BI		Kcal/giw		
T, "K	C.	s'T	-(FT - H298)/T	HT - H298	ΔH	۸F	Log Kp
0	0.000						•
298-15	13.160	0.000	INFINITE	-7.064	-224.639	-224.639	INFINITE
300	13.221	12.040	12.040	0.000	-225.800	-212.593	155.827
400	15.363	16.262	12.040	0.024	-225.800	-212-511	154.807
500	16.370	19.810	12.590	1.469	-225.685	-208.094	113.692
		.,,,,,	13.689	3.061	-225.473	-203.720	89.042
600	16.930	22.849	14.969	4.728	-225 226	.100 .00	
700	17.278	25.487	16.287	6.440	-225.235 -224.994	-199.392 -195.104	72.625
600	17.514	27.810	17.585	8.180	-224.762	-190.850	60.911 52.135
900 1000	17.685	29.884	18.838	9.941	-224.540	-186-623	45 • 316
1000	17.815	31.754	20.038	11.716	-224.333	-182-421	39.866
1100	17.918	22					,,,,,,,,
1155	17.967	33.457	21.182	13.503	-224.139	-178.240	35 4411
1155	17.967	34.332	21.787	14-490	-224.037	-175.947	334291
1200	18.004	35.020	21.787 22.271	14.490 15.299	-224.987	-175.947	334291
1300	18.077	36.464	23.308	17.103	-224.907	-174.038	31 • 695
1400	18.140	37.806	24.296	18.914	-22' •738 -224 •581	-169.808 -165.587	28.546
1500	18.197	39.059	25.239	20.731	-224.434	-161.379	25 • 848
1400	10 2					,	23.512
1600	18.248	40.235	26.140	27.553	-224.300	-157.181	21.469
1700 1800	18.295	41.343	27.002	24 - 380	-224.177	-152.989	19.667
1900	18.340	42 - 390	27.828	26 • 21 2	-224.065	-148.805	18.067
1950	18.382	43.383	28.620	28.048	-223.964	-144.624	16.635
1950	18.402	43.860 43.860	29.005	28.968	-223.917	-142.537	15.974
2000	18.421	44.327	29.005	28.968	-227.617	-142.537	15.974
		77 0 32 1	29.382	29.888	-227.549	-140.356	15.337
2100	18.459	45.226	30.116	31.732	-227.411	-136.002	14.163
2143	18.475	45.601	30.423	32.526	-227.352	-134.131	14.153
2143	18.475	52.600	30.423	47.526	-212.352	134.131-	13.678
2200	18.475	53.085	31,003	48.580	-212.274	-132.049	13.117
2300	18.475	53.906	31.982	50.427	-212.143	-128.409	12.201
2400	18 - 475	54 • 693	32.912	52.275	-212.017	-124.770	11.361
2500	18.475	55.447	33.798	54 • 122	-211.898	-121.138	10.589
2600	10-475	64 171	94				
2700	18.475	56.171 56.869	34.645	55.970	~211.782	-117.507	9.877
2800	18.475	57.541	35.455 36.232	57.817	-211.673	-113.885	9.218
2900	18.475	58 • 189	36.978	59.665 61.512	-211.567	-110.264	8.606
3000	18.475	58.615	37.695	63.360	-211.1 7	-106.648 -103.034	8 • 037 7 • 506
			• • • •	0,0,00		1071074	500
3100	18.475	59.421	38.386	65.207	-211.282	-99.422	7.009
3200	18.475	60.008	39.053	67.055	-211.196	-95.819	6.544
3300	18.475	60.576	39.697	68.902	-21: -114	-92.213	6.107
3400	18 - 475	61.128	40.319	70.750	-211.036	-88.610	5 • 696
350C	18.475	61.663	40.921	72.597	-210.963	-85.009	5.308
3860	10 475	41 03-	41 315	72 421	-314 00-		
3550	18.475	61.925	41.215	73.521	-210.927	-83.211	5 • 122
3550	18.475	61.925	41.215	73.521	-313.384	-83.211	5+122
3600 3700	18.475 18.475	62.184	41.505 42.070	74.445 76.292	->13.355 -313.309	-79.971	4 . 855
3800	18.475	63.182	42.619	78.140	-313.280	-73.486 -67.002	4 • 3 • 0 3 • 8 5 3
3900	18.475	63.662	43.153	79.987	-313.270	-60.526	3.392
4000	18.475	64.130	43.671	81 - 835	-313.274	-54.040	2.952
							,,,
4100	18.475	64.586	44.176	83.682	-313-296	-47.561	2 • 5 3 5
4200	18.475	65.032	44.667	85.530	-313.333	¥1.076	2.137
4300	18.475	65.466	45.146	87.377	-313.386	- 14.592	1.758
4400	18.475	65.891	45.613	89.225	-313.454	-28.108	1 • 396
4500	18.475	66.306	46.068	91.072	-313.537	-21.626	1.050
4600	18.475	66.717	46.512	92.920	-313.634	-15.129	0.719
4700	18.475	67.110	46.946	94.767	-313.748	-8.641	0+402
4800	18.475	67.499	47.370	96.615	-313.876	-2.144	01098
4900 5000	18.475	67.879	47.785	98.462	-314+020	4.353	-0 - 1 94
5000	18.475	68.253	48.191	100.310	-314.179	10.850	-0.474
5100	18.475	68.619	48.588	102.157	-314.357	17.353	-0.744
5200	18.475	68.977	48.976	104.005	-314.551	23.862	-1.003
5300	18.475	69.329	49.357	105.852	-314.766	30.375	-1.252
5400	18.475	69.675	49.730	107.700	-315.002	36.888	-14493
5500	18.475	70.014	50.096	109-547	-315.262	43.414	-1.725
5600	18.475	70.346	50.455	111.395	-315.549	49.933	-1.949
5700	18.475	70.673	50.806	113.242	-315.867	56.475	-2.165
5800	18.475	70.995	51.157	115.090	-316.221	63.011	-2.374
5900	18.475	71.311	51.491	116.937	-316.617	69.560	-2.577
		71.621	51.824	118.785	-317.060	76.114	-2.772
6000	18.475						
6000	10.479						

$$\Delta H_{f298, 15}^{\bullet} = -225, 8 \text{ kcal gfw}^{-1}$$

$$S_{298,15}^{\bullet} = 12.04 \text{ cal deg}^{-1} \text{ gfw}^{-1}$$

$$T_m = 2143 \, ^{\circ} K$$

$$\Delta H_{\rm m} = 15.0 \text{ kcal gfw}^{-1}$$

$$H_{298, 15}^{\circ} - H_{0}^{\circ} = 2.064 \text{ kcal gfw}^{-1}$$

$$C_{D}^{\bullet} = 17.97 + 0.28 \times 10^{-3} \text{T} - 4.35 \times 10^{5} \text{T}^{-2} \text{ cal deg}^{-1} \text{ gfw}^{-1}$$
 298.15 °K $\leq T \leq 2143$ °K

$$C_{\rm p}^{\bullet} = 18.475 \text{ cal deg } \text{K}^{-1} \text{ gfw}^{-1}$$

The stable form of TiO2 is rutile with a tetragonal structure.

Heat of Formation

Based on combustion data of Mah et all and agreeing with Humphrey, 2 and Ariya et al³.

Heat Capacity and Entropy

Low-temperature data based on Kelley and King analysis. 4 High-temperature data from Kelley. 5 Data above melting point is estimated.

Melting and Vaporization

Melting point is from Brauer and Littke. 6 Heat of fusion was estimated.

References

- Mah, A. et al, Bur. of Mines Rept. 5316 (1957).
 Humphrey, G. L., J. Am. Chem. Soc. 73, 1587 (1951).
- 3. Ariya, S., et al, J. Inorg. Chem. (Russia) 3, 13 (1957).
- 4. Kelley, K., E. G. King., Bur. of Mines Bull. 592 (1961).
- 5. Kelley, K., Bur. of Mines Bull. 584 (1960).
- 6. Brauer, G., W. J. Littke., J. Inorg. Nucl. Chem. 16, 67 (1960).

TITANIUM DIEXIDE (TLO2)

(CONDENSED PHASE)

GFW . 79.98

		cel/"K	Bl=		Kcal'gla		
T, °K	/cp	sτ	-(FT - H298)/T	'н _т - н ₂₉₈	111 ₁	1 F/	Log Kp
298.15	±0.200	±0.040	±0.040	±0.000	±1 000		
1000	±0.200	+0.282	±0.142	±0+140			
2000	±0.200	±0.421	+0.250	± 0 = 340			
2143	±0.200	+0.434	±0.262	± 0 - 36 9			
2143	± 2.000	+2.768	+0.262	± 5 • 36 9			
3000	± 2.000	± 3 - 440	±1.079	± 7.083			
4000	± 2.000	+4.016	+1.745	± 9 . 083			
5000	± 2.000	±4.462		11.083			
6000	± 2.000	±4.827		13.083			

Reference State for Calculating AHP, AFP, and Log Kp: Solid Ti from 0° to 1950°K, Liquid Ti from 1950° to 3550°K, Gaseous Ti from 3550° to 6000°K; Gaseous O2, Gaseous TiO2.

7 00			giv.		Kcal/gfw		
1,°K	(° P	1,	-(+ 1 - н ₂₉₈)/1	H ₁ - H ₂		A F	l on K
0				•	/m /		Log Kp
298.15	0.000	0.000	INFINITE	-3 (43			
300	11.120	56.562	56.562	-2.662 0.000		-82.327	INFINITE
400	11-140	56.631	56.562	0.021		-82.957	60.806
500	12.091	59.972	57.011	1.184	-82.893	-82.957	60.432
	12.788	67.749	57.889	2.430		-82.953	45 4 3 2 1
600	13.283	65.127	50.000			-82.910	36.238
700	13.635	67.203	58.902	3.735		-87.841	30 - 174
800	13.889	69.041	59-942	5.082	-83.442	-82.752	25.835
900	14.078	70.688	60.967	6.459	-83.573	-82.645	22.577
1000	14.220	72.179	61.957 62.906	7.858	-83.713	-82.520	20.038
1100				9.273	-83.866	-82.379	18.003
1155	14.329	73.540	63.812	10.701	-84.031	-82.223	14 000
1155	14.378	74.240	64.292	11.490	-84.127		16.335
1200	14.378	74.240	64.292	11.490	-85.077	-82-130	15.540
1300	14.415	74.790	64.675	12.138	-85.158	-82.130	15.540
1400	14.483	75.947	65.498	13.583	-85.348	-82.013	14.936
1500	14.538	77.022	66.284	15.034	-85.551	-81.745	13.742
1300	14.583	78.027	67.033	16.490	-85 765	-81.461 -81.160	12.716
1600	14.620	78.969				0.0100	11 - 825
1700	14.652	79.856	67.750	17.950	-85.993	-80.847	11.043
1800	14.678	80.695	68.436	19.414	-86.233	-80.517	10.351
1900	14.701	81.489	69.094	20.881	-86.486	-80-174	9.734
1950	4.711		69.726	22.349	-86.753	-79.816	9.180
1950	14.711	dl • 871	70.033	23.085	-86.890	-79.632	8.924
2000	14.720	81 - 871 82 - 343	70.033	23.085	-90.590	-79.632	8.924
		82.243	70.333	23.821	-90.706	-79.348	8.670
2100	14.737	82.962	70.918	25.293	-04 0:4		
2200	14.751	83.648	71.481	26.768	-90.940	-78.776	8.198
2300	14.764	84.304	72.024	28.244	-91.176	-78.191	7.767
7400	14.775	84.933	72.549	79.721	-91.416	-77.595	7.373
2500	14.785	85.536	73.056	31.199	-91.661 -91.911	-76.988	7.010
3400					,,,,,,,	-76.372	6.676
7600 7700	14.794	86.116	73.548	32.678	-92.164	-75.745	6.367
800	14-802	86.674	74.024	34.157	-92.423	-75.111	6.080
90C	14.809	67.213	74.485	35.638	-92.694	-74.462	5.812
3000	14-816	87.733	74.933	37.119	-92.951	-73.807	5.562
,000	14.821	88.235	75.368	38-601	-93.221	-73.143	5.328
3100	14.827	00 731	74				
3200	14.831	88.721 89.192	75.791	40.084	-93.495	-72.468	5.109
300	14.836		76.202	4: .566	-95.77	-71.786	4.903
400	14.840	89.648	76.603	43.050	-94.05	-71.092	4.708
500	14.843	90.091 90.522	76.993	44.534	-94.34	-70.392	4.525
		,0.522	77.374	46.018	-94.632	-69.684	4.351
550	14.845	90.732	77.560	46-760	-94.778	-69.325	4 140
1550	14.845	90.732	77.560	46.760	-197.235	-69.325	4 • 268
600	14.847	90.940	77.745	47.502	-197.388	-67.525	4 • 268
700	14.850	91.347	78.107	48.987	-197.704		4.099
800	14.852	91.743	78.460	50.472	-198.038	-63.913 -60.288	3.775
900	14.855	92 • 128	78.806	51.957	-198.390	-56.662	3.467
000	14.857	92.505	79.144	53.443	-198.756	-53.022	3 • 175
• • • •					,0	2,.022	2 • 897
100	14.860	92.871	79.474	54.929	-199.139	-49.373	2 • 632
200	14.862	93.230	79.797	56.415	-199.538	-45.712	2.379
300	14.864	93.579	80.114	57.901	-199.952	-42.044	2.137
400	14.866	93.921	80.424	59+388	-230,381	-38.366	1.906
500	14.867	14.255	80.727	60.874	-200.825	-34.681	1.684
600	14.869	94.582	81.025	42 243	-301		
700	14.870	94.902	81.025	62 • 361	-201.283	- 13.979	1.472
800	14.872			3.848	-201.757	-27.275	1.268
900		95.215	81.603	65 - 335	-202.246	-23.552	1.072
000	14.873	95.521 95.822	81.884	66.823	-202.749	-19.822	0.884
	44014	77.022	82.160	68.310	-203.269	-16.085	0.703
100	14.875	96.117	82.431	69.797	-203.807	-12:323	A
200	14.877	96.405	82.697	71 - 285	-204.361	-12.337 -8.577	0.529
300	14.876	96.689	82.958	72.773	-204.935	-4.800	0 • 360
400	14.879	96.967	83.215		-205.531	-1.021	0.198
500	14.880	97.240	83.467		-206.151	2.784	0 • 0 4 1 -0 • 1 1 1
. 00	14 620						0-111
500 700	14.880	97.50A	83.716	77 • 236	-206.798	6.581	-0.257
700	14.881	97.771	83.960		-207.475	10.408	-0.399
300	14.882	98.030			-208.188	14.243	-0.537
900	14.683	98.265			-208.943	18.088	-0.670
000	14.883	90.535	P4.670	81.189	-209.746	21.948	-0.799
			15 Septen	mer 1963			HLS

TITANIUM DIOXIDE (TiO_2) (IDEAL MOLECULAR GAS) gfw = 79.90

$$\Delta H_{f0}^{\bullet} = -82.327 \text{ kcal gfw}^{-1}$$

$$\Delta H^{\circ}_{1298.15} = -82.890 \text{ kcal gfw}^{-1}$$

$$S_{298.15}^{\bullet} = 56.562 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

 $H_{298.15}^{\bullet} - H_{0}^{\bullet} = 2.662 \text{ kcal gfw}^{-1}$

Vibrational Levels and Multiplicities

$$\omega$$
, cm⁻¹

1127.8 (1)

294.1 (2)

Bond lengths and angles:

Moments of inertia:

$$I = 13.9429 \times 10^{-39} \text{ gcm}^2$$

 $\sigma = 2$

$$B_a = 0.20074 \text{ cm}^{-1}$$

Heat of Formation

Vaporization data of Berkowitz et allwas recalculated.

Heat Capacity and Entropy

Estimated spectroscopic constants were used.

Reference

1. Berkowitz, J., et al, J. Phys. Chem. 61 1569 (1957)

TITANIUM DISKIDE (TIO2)

(IDEAL MOLECULAR GAS)

		cal/ °K			_Kcal/gfw		
T,°K	'د هٔ	s _T	-(FT - H298)/T	H _T - H ₂₉₈	AH,	AF ₁	Log Kp
298.15	±1.000	±3.000	±3.000	±0.000	± 5. 000		
1000	±1.000	±4.210	±3.508	±0.702			
2000	#1.000	±4.903	#4.052	±1.702			
3000	±1.000	±5.309	44.408	±2.702			
4000	±1.000	#5.596	±4.671	±3.702			
5000	±1.000	±5.820	44.879	±4+702			
6000	±1.000	+6.002	±5.052	±5.702			

Reference State for Calculating ΔH_{i}^{o} , ΔF_{i}^{o} , and $Log K_{p}$: Solid U from 0° to 1406°K, Liquid U from 1406° to 4124°K, Gaseous U from 4124° to 6000°K, Gaseous O₂; Solid UO₂ from 0° to 3000°K.

T .~		· al/K	afw				
T, 'K	′ (°	ማ	-(Fg - H398)/T	(17)	Kcal/gfw .		
	•	•	(, I - 1,588), 1	HZ - HZ91	в Дну	AF7 \	Log Kp
U	ن د ن ن	ر د د د	INFINITE				-
298.15	15.300	40.047		-2.726	-2200220	-420.330	INFINIT
300	15.360	10.724	10.027	0.303	-424.47	-240.200	103.74
400	17.373	23.445	160031	0.028	-4290147	-240.467	479.520
500	18.426	21.446	44.567	1-074	ーとつせ。 きゅり	-242.200	424.27
•		210990	20.00	3.467	-420.013	-230.104	404.074
6CC	19.372	30.667	21.950				
700	19.526	31.642		2 . 346	-228.279	-234.100	80.267
800	19.877	36.474	23.440	7.277	-257.962	-230.034	71.822
900	20.169	38.62	24.713	9.248	-257.755	~220.127	61.772
940	20.275	37.711	26.351	11-521	-257.617	-222.102	53.97
940	20.275		26.482	-2.00J	ーインフ・コナコ	-220.008	21.502
1303	20.424	39.711	26.882	12.060	-258.278	-220.608	51.201
	201424	40.971	27.643	13.591	-25004	-210.207	47.607
1048	20.237	44.931	دير وه ي				
1048	20.537	41.731	20.320	44.264	-479.00A	-510.511	420103
1100	20.655	42.940	20.320	14.264	-2,9.189	-216.271	45.103
120C	20.869	44.735		42.335	-254.032	-214-160	42.549
1300	21.072	40.413	30.225	17.441	-256.714	-210-101	30.203
1430	21.266	47.762	34.407	46.709	-とつは、ノソ4	-200.004	34.044
14-6	21.277	48.073	32	51.052	-279.070	-<02.001	34.540
1406	21.277	48.073	32.031	21.723	-226.05/	-201.012	21.00
1500	21.454	47.455	32.601	21.723	-202.735	-201.012	34.300
		77.733	33.612	23.761	-262.405	-197.749	50.411
1600	21.637	0.046	34.047	23.916			
1736	21.817	52-163	35.643	20.030	-202.342	-172.421	20-423
lecc	21 . + +4	53.415	26.272	20.6279	-261-007	-101.174	24.317
19 C	27.155	54.00.	37	22.467	-201-501	ニャンチ・カイイ	66.436
2005	22.341	55.750	30.374	34.1.3	-200.382	-140.047	ره7•02
			300,,,4	34.713	-200.471	-170.470	17.204
21	22.512	50.045	34.247	30.955	-260.000	-172.291	17
22.0	22.682	57.076	40.071	.2.5	-209.010	-100-150	17.20
2300	22.851	:6.408	40.050		-<>970	-163.773	10.700
2430	23.01+	51.004	41.043		-238.714		13.500
25 0	23.467	60.027	42.161		-258.246	-127.642	14.522
				400070	-230.540	-125.734	13.014
16.	23.353	61.740	40.110	40.425	-227.700	-124.042	14.740
723	23.523	02.024	43.822		-627.670	-147.074	
80.	23.605	63.402	44.20=		-256.173	-143.514	44.744
900	23.651	64.3.7	45.177		-236.254	-143.314	11.501
Out	24.316	65.428	45.327		-230.2.7	-137.401	10.511

15 June 1963

 $\Delta H_{f298, 15}^{\bullet} = -259.2 \pm 0.6 \text{ kcal gfw}^{-1}$ $S_{298, 15}^{\bullet} = 18.63 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

T_m = Uncertain. See volume 1, this study (section IVB32, 4, 2).

 $H_{298,15}^{\bullet} - H_{0}^{\bullet} = 2.726 \text{ kcal gfw}^{-1}$

Cp data have been selected and smoothed (see below).

Structure

Face-centered-cubic CaF4-type.

Heat of Formation

Taken from Coughlin. 1

Heat Capacity and Entropy

Low-temperature data are from Jones, Gordon, and Long² joined to Kelley's equation. 3

Melting and Vaporization

See volume 1, this study (section IVB32.4.2).

References

- 1. Coughlin, V. P., U.S. Bur. Mines, Bull. 542 (1954).
- 2. Jones, W. M., J. Gordon, and E. A. Long, J. Chem. Phys. 20, 695 (1952).
- 3. Kelley, K. K., U.S. Bur. Mines, Bull. 584 (1960).

URANIUM DIOXIDE (UO2) (CONDENSED PHÁSE)

GFW = 270.07

"K	-	C2		~-catir K €	_/ L &	- 1/T	(C. W	- Kcal'gtw - AH;	1Fi	log K _n
•		_b		7	-(, 1	~ 112987/ 1	·	'T = 11298	3111	,	· Og Kp
298.15	*	0.200	±	0.100	±	0.100	*	0.000	± 0.600		
500	*	0.200		0.203	*	0.123	*	0.040			
500	±	0.500	ŧ	0.203		0.123	*	0.040			
1000	±	0.500	±	0.550	±	0.260	±	0.290			
2000	*	0.500	ŧ	0.897	*	0.501	ŧ	0.790			
2000	±	1.000	*	0.897		0.501	±	0.790			
3000	±	1.000	*	1.302	*	0.705	±	1.790			

Reference State for Calculating ΔH_{f}^{o} , ΔF_{f}^{o} , and $Log K_{p}$. Solid U from 0° to 1406°K, Liquid U from 1406° to 4124°K, Gaseous U from 4124° to 6000°K; Gaseous O₂, Gaseous UO₂

1, %x	G			\	Kcal/glu		
	` P	ኻ	(F) - H) ₉₈)/T	, , H _o = H	296 ΔH7	AFT	Log Kp
٥							- on np
298-15	0.000	0.000	INFINITE	-2.62	9 -116.03	4	
300	10.386		68.200	0.00			INFINITE
400	10.406	,	68.201	0.01			87.332
500	11.362 12.036	1.0000	68.621	1.110			86.804
	12.036	74.009	69.445	2.28			65.469
600	12.497	76.247	20			100421	52.636
700	12.817		70.396	3.510	-117.915	-120.964	44.059
800	13.044		71.374	4.777		-121.444	37.915
900	13.209		72.331	6.071		-121.866	33.241
940	13.262	82.047	13.268 73.629	7 - 384			29.679
940	13.262		73.629	7.913		-122.350	28.445
1000	13.332	82.870	74.159	7.913			20.445
14.4				8.711	-120.534	-122.476	26.766
1048	13.380	83.496	74.573	9.352	-120.781	-1.19.44.	
1100	13.380	83.496	74.573	9.352		-122.564	25.558
	13-426	84.146	75.010	10.049			25.558
1200 1300	13.499	85.317	75.821	11.395			24.355
1400	13.557	86.400	76.594	12.748			22.330
	13.604	87.406	77.330	14-106		-122-607	20.611
1406	13.607	87.465	77.373	14.186		-122.564 -122.561	19.132
1500	13.607	87.465	77.313	14.188		-155.201	19.050
4 200	13.642	88.346	78.034	15.469		-122.178	19.050
160-	13.49.					1/0	17.800
1700	13.700	89.228	78.706	16.835	-128.923	-121.742	16.628
1 800	13.700	90.058	79.350	18.203	-129.353	-121.281	15.591
1900	13.741	90.841	79.967	19.575	-129.785	-120.794	14.666
2000	13.757	91.584 92.249	80.559	20.948	-130.221	-120.283	13-835
-	7	92.789	81.128	22.323	-130-661	-119.746	13.085
2100	13.771	92.961	81.675	12 400			
2200	13.784	93.602	82.203	23.699	-131-106	-119.190	12.404
2300	13.794	94.214	82.712	25.077	-131.554	-118.610	11.782
2400	13.804	94.802	83.204	26.456 27.836	-132.006	-118.014	11.213
2500	13.812	95.365	83.679	29.217	-132.463	-117.396	10.690
					-132.925	-116.760	10.207
2600	13.819	95.907	84.139	30.598	-133.391	-116-103	0.750
2700	13.826	96.429	84.584	31.980	-133.862	-115.429	9.759 9.343
2800	13.832	96.932	85.016	33.363	-134.336	-114.735	8.955
2900	13.837	97.417	85.436	34.747	-134.815	-114.030	8.593
3000	13.842	97.887	85.843	36 • 131	-135 98	-113.304	8.254
3100	13 844	00 210					
3200	13.846 13.850	98.340	86.239	37.515	-135.79-	-112.561	7.935
3300	13.854	98.780	86.624	38.900	-136.2.5	-111.806	7.636
3400	13.857	99.620	86.999	40.785	-136.773	-111.034	7.353
3500	13.860	100.027	67.364	41.671	-137.272	-110.244	7.000
	.,,,,,,,	1001027	87.720	43.057	-131.715	-109.440	6.833
3600	13.863	100.412	88-367	44.443	-130 103		
3700	13.865	100.792	88.406	45.829	-138.282 -138.792	-108-623	6.594
3800	13.868	101.162	88.737	47.216	-139.305	-107.794	6.367
3900	13.870	101.522	89.060	48-603	-139.822	-106.949	0.151
4000	13.872	101.873	89.376	49.990	-140.342	-106.516	5.945
					1400342	-103.516	5.748
4100	13.874	102.216	84.685	51.377	-140.866	-104.335	5.561
4123.61	13.874	102.246	84.757	51.705	-140.990	-104.122	2.201
4123-63	13.874	105.546	84.757	51.705	-447.891	-104.126	2.218
4200	13.876	102.550	87.987	52.764	48 83	-101.452	5.279
1300	13.877	102.877	40.284	54.152	-249.033	-97.947	4.978
440 0	13.879	103.196	90.573	55.540	-249.694	-14.424	4.690
\$500	13.880	103.508	90.857	56.928	-250.361	3 - 871	4.414
400							
600	13.881	103.813	91.135	58.316	-251.039	-87.335	4.149
700	13.883	104.111	91.408	59.704	-251.725	-83.766	3.895
800	13.884	104.404	91.676	61-092	-252.422	-80.184	3.651
900	13.885	104.690	91.939	62-481	-253.127	-76.595	3.416
000	13.886	104.470	42.147	63.869	-253.845	-72.980	3.190
100	13.887	106.266	92 460	46 340	- >64 - 31		
200	13.887	105.245			-254.574	-69.356	2.972
300	13.884	105.780			-255.315	-65.707	2.761
400	13.889	106.039			-256.071	-62.060	2.559
500	13.890	106.274			-256.846 -257.637	~58.388 =54.702	2 • 36 5
	•					-54.702	2.174
600	13.891	106.544		72.202	-258.452	-51.004	1.990
700	13.892	106.790			-259.291	-47.283	1.813
800	13.892	107.032	94.104	74.981	-260-164	-43.549	1.041
900	13.893	107.269			-201.072	-17.804	1.474
000	13.893	107.503			-262.024	-30.042	1.313
						_	

$$\Delta H_{f0}^{*} = -116.0 \text{ kcal gfw}^{-1}$$

$$\Delta H_{\rm f} 298.15 = -117 \pm 10.0 \, \rm kcal \, gfw^{-1}$$

$$H_{298.15}^{\circ} - H_{0}^{\circ} = 2.629 \text{ kcal gfw}^{-1}$$
 $S_{298.15}^{\circ} = 68.2 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

$$S_{298,15}^{\circ} = 68.2 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

Vibration Levels

$$\omega (cm^{-1})$$

 ω (cm⁻¹)

900

925

400

Bond lengths and angles:

Heat of Formation

Computed see volume 1, this study (section IVB32. 4.2).

Heat Capacity and Entropy

Computed using the polyatomic gas program and the above estimated constants,

References

See volume 1, this study (section IVB32.4.2).

TABLE 206

VANADIUM DIOXIDE

IDEAL MOLECULAR GAS

02V

Reference State for Calculating AH, AF, and Log Kp: Solid V from 0° to 2190°K, Liquid V from 2190° to 3648°K, Gaseous V from 3648° to 6000°K; Gaseous O2; Gaseous VO2.

°K	(çai/°K ı)	(" "	_ Kcal/glw		
, .	(°	ST	(FT - H ₂₉₈)/T'	HT - H298	$\Delta H_{\mathbf{f}}$	ΛF _f ^γ \	1.08 Kp
0	0.000	0.000	INFINITE	-2.785	-55.464	-55.464	INFINITE
298-15	12.266	59.912	59.912	0.000	-55.876	-57.076	41.836
300	12.290	59.988	59.913	0.023	-55.877	-57.084	41 .584
400 500	13.260 13.793	63.671	60.408	1.305	-55.902	-57.480	31 4404
	13.773	66-693	61.372	2 • 660	-55.894	-57.875	25 • 296
600	14.104	69.237	62.476	4.056	-55.893	-58.272	21 4224
700 800	14.299	71.427	63.602	5.477	-55.911	-58.668	184316
900	14.429	73 - 346	64.703	6.914	-55.959	-59.059	16.133
000	14.521 14.588	75.051 76.584	65.760 66.767	8 • 362 9 • 817	-56.037 -56.147	-59.443 -59.814	14.434
1100	14 400						
200	14.639 14.678	77.977 79.253	67.723 68.632	11.279 12.745	-56∙287 -56•457	-60 • 174 -60 • 521	11.955 11.022
300	14.709	80.429	69.495	14.214	-56.659	-60.852	10.230
400	14.735	81.520	70.315	15.687	-56.890	-61.167	9.548
1 500	14.755	82.537	71.096	17.161	-57.151	-61.462	8.955
1600	14.772	83.490	71.841	18.637	-57.442	-61.740	8.433
700	14.786	84.386	72.553	20.115	-= 7.164	-61.999	7.976
1800	14.798	85.231	73.234	21.595	-55.115	-62.239	7.556
1 900	14-809	86.032	73.887	23.075	-58.497	-62.458	7.184
2000	14-818	86.792	74.513	24.556	-58.909	-62.654	6.846
2100	14-825	87.515	75.115	26.038	-59.353	-62.831	6.539
2190	14.831	88.137	75.638	27.373	-59.777	-62.972	6.284
2190	14.631	88.137	75.638	27.373	-63.977	-62.972	6.284
2200	14.832	88.205	75.695	27.521	-64.015	-62.967	6 • 255
2300	14.636	88 - 864	76.253	29.005	-64.397	-62.912	5.978
2400 2500	14.843	89.496 90.102	76.792 77.312	30.489 31.973	-64.785 -65.179	-62.838 -62.748	5 • 722 5 • 48 5
2600 2700	14.852	90.684 91.245	77.815 78.307	33.458 34.944	-65.576 -65.978	-62.641 -62.523	5 4 2 6 5
2800	14.859	91.785	78.774	36.430	-66.384	-62.386	4.869
2900	14.862	92.306	79.232	37.916	-66.796	-62.239	4.690
3000	14.865	92.810	79.676	39.402	-67.212	-62.074	4.522
3100	14.867	93.298	80.108	40.889	-67.632	-61.893	4.363
3200	14.869	93.770	80.528	42.375	-68.058	-61.706	4.214
3300	14.071	94.227	80.936	43.862	-68.486	-61.499	4.073
3400 3500	14.873 14.875	94.671 95.103	81.333	45.350 46.837	-69.55	-61.279 -61.049	3.939 3.812
3600	14.076	95.522	82.098	48.325	-69. :95 -70.006	-60-801	3 4 6 9 1
3647.68	14.877	95.717	82.275 82.275	49.034 49.034	-70.006 -179.880	-60.684 -60.684	3 • 6 3 6 3 • 6 3 6
3647.68 3700	14.877	95.717 95.929	82.275 82.466	49.812	-179.977	-58.969	3.483
3800	14.879	96.326	82.826	51 - 300	-180-175	-55.697	3 • 203
3900	14.880	96.713	83.177	54.788	-180.389	-52.417	2 4931
4000	14.882	97.089		54.276	-180.618	-49.128	2.684
4100	14.883	97.457	83.856	55.764	-180.863	-45.843	2.44
4200	14.884	97.815		57.253	-181-124	-42.545	2.214
4300	14.885	98.166	84.505	58.741	-181. 01	-39.239	1.99
4400	14.886	98.509	84.819	60.230		~35.931 ~32.415	1.789
4500	14.886	98 • 842	85.127	61.718	-105.003	-32.615	-
4600	14.887	99.170		63.207	-182-332	-29.288	1 4 3 9
4700	14.888	99.490		64.696	-182.676	-25.956	1 • 20
4800	14.888	99.803		66.185	-183-038	-22.617 -19.268	0.85
4900 5000	14.889 14.890	100.110	86.299	67.673 69.162	-183.419 -183.819	-15.916	0.69
,,,,,,	1 3 6 7 7 7						
5100	14.890	100.706		70.651 72.140	-184.239 -184.680	-12.557 -9.180	0453 A438
5200	14.891 14.891	100.995	87.122 87.386	73.629	-185.145	-5.796	0+23
5300 5400	14.892	101.557		75.119	~185.635	-2.411	0409
5500	14.892	101.830		76.608	-186.153	0.994	-0.03
	14.604	102.099	88.153	78.097	-186.703	4.402	-0.17
5600 5700	14.893 14.893	102.362		79.586	-187.288	7.821	-0 • 30
5800	14.893	102.621	88.643	81.076	-187.913	11.253	-0.42
5900	14.894	102.876		82.565	-188.585	14.706	-0.54
6000	14.894	103.126	89.117	84.054	-189.309	18.164	-0.66
			15 8	otember 19	63		нLs

VANADIUM DIOXIDE (VO₂)

(IDEAL MOLECULAR GAS) gfw = 82.95

 $\Delta H_{10} = -55.464 \text{ kcal gfw}^{-1}$

 $\Delta H_{f298, 15}^{\circ} = -55.876 \text{ kcal gfw}^{-1}$

Point Group D∞h

 $S_{298,15}^{\circ} = 59.912 \text{ cal deg } K^{-1} \text{ gfw}^{-1}$

 $H_{298,15} - H_{0} = 2.785 \text{ kcal gfw}^{-1}$

Vibrational Levels and Multiplicities

Bond lengths and angles:

V-O distance = 1.59 A

O-V-O angle = 180°

Moment of inertia:

$$I = 13.4312 \times 10^{-39} \text{ gm cm}^2$$

 $\sigma = 2$

 $B_e = 0.20838 \text{ cm}^{-1}$

Heat of Formation

Fased on Brewer and Rosenblattl analysis of data by Berkowitz et al. 2

Heat Capacity and Entropy

Estimated data were used to calculate thermodynamic functions.

References

- 1. Brewer, L. and G. Rosenblatt, Chem Rev. 61, 257 (1961).
- 2. Berkowitz, J. et al, J. Chem. Phys. 27,87 (1957).

VANADIUM DIØXIDE (VO2)

LIDEAL MOLECULAR GASI

GFW * 82.95

		cal'~K	gfw	,			
Τ, [^] Κ	′ € _P	S _T	-(FT - H ₂₉₈)'T	'н _т - н ₂₉₈	1 H ₁	111	Log Kp
298.15	±1.000	±3.000	+3.000	±0.000	±10 000		
1000	±1.000	±4.210	£3.508	±0.702			
2000	±1.000	±4.903	±4.052	±1.702			
3000	±1.000	+5.309	±4.408	±2.702			
4000	±1.000	±5.596	14.671	±3.702			
5000	£1.000	£5.820	+4.879	±4.702			
6000	±1.000	±6.002	£5.052	t5.702			

CONDENSED PHASE

0₂W

Reference State for Calculating AH, AF, and Log K, Solid W from 0° to 3650°K, Liquid W from 3650° to 5891°K, Gaseous W from 5891° to 6000°K, Gaseous O2; Solid WO2

		cel/°K	giv		Kcal/gfw-			
T,°K	ς,	s _T	-(FT - H298)/T	HT - H298		A F	Log Kp	
0	0.000	0.000	INFINITE				•	
298.15	13.320	12.080		-2.077	-139.747	-139.747	INFINITE	
300	13.350	12.162	12.080	0.000	-140.940	-127.596	93.526	
400	15.172	16.266	12.080	0.025	-140.939	-127.513	92.889	
500	16.160	19.767	12.618	1.459	-140.803	-123.041	67.223	
		19.767	13.707	3.030	-140.564	-118.636	51.853	
600	16.860	22.827	14.994					
700	17.425	25.493	16.293	4 • 700	~140.257	-114.277	41.623	
800	17.916	27.884		6.440	-139.908	-109.977	34.339	
900	18.366	30.026	17.596	8.230	-139.538	-105.713	28.878	
1000	18.790	31.975	14.859	10.050	-139.160	-101.524	24.652	
	100170	21.975	20.075	11.900	-138.770	-97.342	21.273	
1100	19.197	33.767	21 246					
200	19.592	35.419	21.240	13.780	~138.369	-93.242	18.524	
1300	19.978	36.965	22.352	15.680	-137.963	~89.130	16.232	
1400	20.359	38.417	23.419	17.610	-137.549	-85.107	14.307	
1500	20.736		24.438	19.570	-137.126	-81.091	12.658	
	70.756	39.804	25.417	21.580	-136.673	-77.103	11.233	
1600	21.109	41.147	26.359	22 44			. ,	
700	21.479	47.468	27.268	23.660	-136.173	-73.150	9.991	
1800	21.847	43.771		25.840	-13° 593	-69.231	8.900	
900	22.214	45.058	28.149	28-120	-134.935	-65.345	7.934	
000	22.580		29.005	30.500	-134.196	-61.499	7.074	
. •	44.000	46.330	29.840	32.980	-133.379	-57.692	6.304	

May 1962

CHW

gfw = 215.86

$$\Delta H_{f298. \ 15}^{o} = -139.747 \ \text{Kcal gfw}^{-1}$$
 $S_{298. \ 15}^{o} = 12.080 \ \text{cal deg K}^{-1} \ \text{gfw}^{-1}$ $H_{298. \ 15}^{o} = H_{0}^{o} \ 2.693 \ \text{Kcal gfw}^{-1}$ $C_{p}^{o} = 15.49 + 3.58 \times 10^{-3} \ \text{T} - 2.80 \times 10^{5} \ \text{T}^{-2} \ \text{cal deg K}^{-1} \ \text{gfw}^{-1}$ $400^{\circ} \text{K} \times \text{T} \times 1800^{\circ} \text{K}$

Structure

WO2 remains solid until disproportionation occurs.

Heat of Formation

Based on data by Mah. 1

Heat Capacity and Entropy

Low temperature data by King et al. 2 High temperature data from same workers.

Melting and Vaporization

WO2 does not melt, but rather disproportionates.

Further details in report by Barriault et al. 3

References

- 1. Mah, A. D., J. Am. Chem. Soc. 81 1582 (1959).
- 2. King, E.G., et al, U.S. Bur. Mines. Rept. 5664 (1960).
- 3. Barriault, R., et al, ASD-TR-61-260 May (1962), Pt. 1.

TUNGSTEN DIOXIDE

IDEAL MOLECULAR GAS

0₂W

Reference State for Calculating AH², AF², and Log Kp: Solid W from 0° to 3650°K, Liquid W from 3650° to 5891°K, Gaseous W from 5891° to 6000°K; Gaseous WO₂,

		Gaseous O2; Gaseous WO2,						
		cel/°K	stw		Y-al/-1-			
T,°K	C,	s _T	-(FT - H298)/T	HT - H298	Kcal/g/w ΔH _ε	ΔF	loe K	
0	0.000	0.000				,	Log Kp	
298 • 15 300	10.814	65.893	INFINITE 65.893	-2.693 0.000	14.477	14.477	INFINITE	
400	10.835	65.960	65.893	0.020	13.900 13.896	11.200	-8.209	
500	11.762 12.370	69.213 71.908	66.330	1.153	13.731	11.183	-8.146 -5.635	
		71.908	67.184	2 • 362	13.608	9.466	-4.019	
600	12.767	74.201	68.167	3.620	12 540			
700 800	13.035	76.190	69.174	4.911	13.503 13.403	8.659 7.846	-3.154	
900	13.272 13.356	77.944	70.163	6.224	13.296	7.074	-2.450 -1.932	
1000	13.455	79.509 80.922	71.116	7.554	13.184	6.285	-1.526	
			72.027	8.894	13.064	5.546	-1.212	
1100	13.530	82.208	72.895	10.244	12.935	4.777		
120C 1300	13.588	83.386	73.721	11.600	12.797	4.067	-0.949 -0.741	
1400	13.634 13.671	84.477	74.507	12.961	12.642	3.318	-0.558	
1500	13.701	85.489 86.433	75•256 75•970	14 - 326	12.470	2.605	-0.407	
				15.695	12.282	1.908	-0.278	
1600	13.726	87.318	76.652	17.066	12.073	1.222	-0.167	
1700	13.764	88.151	77.304	18-440	11.847	0.551	-0.071	
1900	13.764	88.937 89.682	77.929	19.816	11.601	-0.108	0.013	
2000	13.792	90.389	78.528 79.103	21.193	11. `37	-0.751	0.086	
	- · ·	, . ,	. , • 10 3	22.571	11.052	-1.378	0.151	
2100	13.803	91.062	79.657	23.951	10.749	-1.991	0.207	
2200 2300	13-612	91.704	80.190	25.332	10.426	-2.592	0.257	
2400	13.820 1:.828	92.319	80.704	26.713	10.084	-3.176	0.302	
2500	13.834	92.907 93.472	81 • 200 81 • 680	28.096 27.479	9.722	-3.744	0.341	
			01.000	414417	9.340	-4.298	0.376	
2600	13.840	94.014	82.144	30.863	8.939	-4.836	0.406	
2700	13.845	94.537	82.593	32.247	8.518	-5.357	0.434	
2900	13.850	95.040 95.526	83.029	33.632	8.078	-5.863	0.458	
3000	13.857	95.996	83.452 83.862	35.017 31.402	7.618	-6.354	0.479	
ı			0,,00	3 4402	7.138	-6.828	0.497	
3100	13.861	96.450	84.761	37.788	6.640	-7.282	0.513	
3200	13.864	96.891	84.649	39.175	6.122	-7.725	0.528	
3400	13.867	97.317 97.731	85.029	40.561	5.586	-8.158	0.540	
3500	13.871	98.133	85.394 85.752	41.948	5.030	-8.558	0.550	
			034737	43.335	4.456	-8.946	0.559	
3600	13.874	98.524	86.101	44.722	3.862	-9.317	0.566	
3650	13.875	98.714	86.272	45.416	3	-9.497	0.569	
3650	13.875 13.876	98.714 98.904	86.272	45.416	-4.8.6	-9.497	0.569	
1800	13.877	99.274	86.442 86.775	46.110 4.497	-5 • 1 3 _•	-9.561	0.565	
1900	13.879	97.635	87.100	48.885	-6.331	-9.671 -9.770	0.556	
4000	13.881	99.986	87.418	50.273	-6 935	-9.844	0.538	
4100	12 002	100 000						
4200	13.882 13.883	100.329 100.664	87.729 86.033	51.661	-7.543	-9.918	0.529	
4300	13.885	100.990	88.330	53.049 54.438	-8.155 -8.769	-9.962 -9.989	0.518	
4400	13.886	101.309	88.622	55.826	-9.389	-10.014	0.508	
4500	13.887	101.622	88.907	57.215	-10.011	-10.026	0.487	
4600	12 800	101 027	941 127					
4700	13.888 13.884	101.927 102.225	84.187 84.461	58•604 59•993	-10.638 -11.270	-10.014	0.476	
4800	13.890	102.518	89.730	61.382	-11.270	-9.992 -9.955	0.465	
4900	13.891	107.804	89.994	62.771	12.552	-9.908	0.442	
500c	13.891	103.085	40.254	64.160	-13.204	-9.845	0.430	
5100	13.892	103.360	90.507	65.549	-11.946	773	1	
5200	13.894	101.630	90.757	5.938	-13.865 -14.536	- 1.772 - 4.682	0.419	
5300	13.894	103.894	91.002	J • 327	-15.220	-9.577	0.395	
5400	13.894	104.154	91.244	69.717	-15.918	-9.466	0.383	
5500	13.895	104.409	91.481	71.106	-16.634	-9.339	0.371	
5600	13 004	104 450	01 314	12 404			i	
5600 5700	13.895	104.659	91.714	72.496 73.885	-17.371 -18.134	-9.201 -9.040	0.359	
5800	13.896	105-147	92.169	75.215	-18.928	-8.874	0.347	
5891	11.897	105.364	92.371	76.540	-19.684	-8.701	0.323	
5891	13.897	105.364	92.371		-211.949	-8.701	0.323	
5900 6000	13.897 13.897	105.385 105.618	92.341 92.609		-212•021 -212•869	-8.396 -4.926	0.311	
	• *****							
			May 196	2			CHW	

TUNGSTEN DIOXIDE (WO₂) (IDEAL MOLECULAR GAS) gfw = 215.86

 $\Delta H_{f0}^{0} = 14.477 \text{ Kcal gfw}^{-1}$

 $\Lambda H_{f298.15}^{o} = 13.900 \text{ Kcal gfw}^{-1}$

Point Group Cav

 $S_{298,15}^{0} = 65.893 \text{ cal } \text{deg K}^{-1} \text{gfw}^{-1}$

 $H_{298,15}^{0} - H_{0}^{0} = 2.693 \text{ Kcal gfw}^{-1}$

Vibrational levels and multiplicities

Bond lengths and angles:

W - O distance - 1.78 A

O - W - O Angle = 107 deg

Product of moments of inertia: $I_A I_B I_C = 8.80082 \times 10^{-115} \text{ g}^3 \text{ cm}^6$ $\sigma = 2$

Heat of Formation

Based on work of DeMaria et al. 1

Heat Capacity and Entropy

Calculated using spectroscopic constants. See Barriault et al 2 for further details.

References

- 1. DeMaria, G., et al., J. Chem. Phys. 32 1373 (1960).
- 2. Barriault, R. et al, ASD-TR-61-260 May (1962), Pt. 1.

CONDENSED PHASE

Reference State for Calculating AH?, AF?, and Log Kp. Solid Zr from 0° to 2125°K. Liquid Zr from 2125° to 4644°K, Gaseous Zr from 4644° to 6000°K; Gaseous O2; Monoclinic ZrO2 from 0° to 1478°K, Tetragonal ZrO2 from 1478° to 2973°K, Liquid ZrO2 from 2973° to 6000°K.

T, °K	("	دها/ °K	` `		Kcal/gfw		
	رده م	ST	-(F _T - н ₂₉₈)/Т	HT - H298	ΔH	A F	Log Kp
0 298•15	0.000	0.000	INFINITE	-2.091	-260.203	-	·
300	13.397	12.120	12.120	0.000	-261.500	-260.203 -247.732	INFIMIT(181.584
400	15.260	12.203	12.120	0.025	-261.499	-247.647	180.40
500	16.196	16.353 19.868	12.674	1 • 472	-261.393	-243.042	132 478
		.,,,,	13.771	3.049	-261 - 220	-238.474	104.232
600	16.787	22.877	15.044	4.700	-261.026	-222 042	
700 800	17.214	25.498	16.354	6-401	-260.825	-233.942 -229.444	85 - 209
900	17.555	27.820	17.645	8.140	-260.626	-224.975	71.632 61.45
1000	17.845	29.905	18.893	9.910	-260.429	-220.530	53.549
	18.104	31.798	20.091	11.708	-260.235	-216.107	47.22
1100	18.342	33.535	21.235	12 520			
1135	18.422	34.111	21.623	13.530 14.174	-260.044	-211.704	42.060
1135	18.472	34.111	21.623	14.174	-259.976 -260.891	-210.166	40 • 46
1200	18.567	35.141	22.328	15.376	-260.755	-210.166 -207.266	40.46
1300	18.781	36 • 636	23.372	17.243	-260.535	-202.818	37.746
1400	18.989	38.035	24.369	19.132	-260.300	-198.387	34 · 09 9
1478	19•147	39.069_	25.118_	20.619	-260-107	194.941_	28.824
1478	17.800	40.030	25-118	22.039	-258.687	-194.941	28.824
1500	17.800	40.293	25.339	22.431	-258.661	-193.994	28.264
1600	17.800	41		4.			
1 700	17.800	41.441	26.310	24.211	- 38.548	-189.687	25.909
1800	17.800	42.521 43.538	27.232	25.991	-258.441	-185.386	23.832
1900	17.800	44.500	28.110 28.947	27.771	-258.340	-181.092	21.987
2000	17.800	45.413	29.748	29.551	-258.244	-176.802	20.336
2000	17.800	45.413	29.748	31 • 331 31 • 331	-258-154	-172.518	18.851
				-4-331	-258.154	-172.518	18.851
2100	18.437	46.297	30.515	33.143	-258.038	-168.239	17.508
2125	18.596	46.516	30.702	33.605	-258.000	-167.169	17.192
2125	18.596	46.516	30.702	33.605	-262.900	-167.169	17.192
2200	19.074	47-170	31.252	35.018	-262.771	-163.791	16.270
2300	19.712	48.032	31.963	36.957	-262.548	-159.300	15.136
2400 2500	20.349	48.884	32.650	38.960	-262.267	-154.815	14.097
2500	20.986	49.728	33.317	41.027	-261.928	-150.348	13.143
2600	21.422						
2700	21 • 6 2 3 22 • 2 6 0	50.563	33.964	43.158	-261.529	-145.888	12.262
2800		51.391	34.594		-261.073	-141.453	11.449
2900	22.898 23.535	52.212	35.209	474610	-260.557	-137.032	10.695
2973	24.000	53.027 53.618_	35.809 36.239	49.931	-259.984	-132.627	9.995
2973	24.000	62.027	36.239		-259.528_	129.427_	9.514
3000	24.000	62.244	36.472		-234.528 -234.353	-129.427 -128.474	9.514
					23.033,	-1201414	9.359
3100	24.000	63.031	37.316		-233.110	-124.951	8.809
3200	24.000	63.793	38.132	82.114	-23.、172	-121.458	8 . 295
3300	24.000	64.531	38.921		-232.437	-117.980	7.813
3400	24.000	65.248	39.684		-231.807	-114.518	7.361
3500	24.000	65.943	40.425	89.314	-731-181	-111.077	6.936
3600	24.000	66.619	61.143	01 714	- 220		
700	24.000	67.277	41.143 41.841		-230.559	-107.654	6.535
800	24.000	67.917	41.841 42.518		-229.940	-104.250	6 - 157
900	24.000	68.540	43.178		-229.325 -228.714	-100.859	5 . 800
000	24.000	69.148	43.819		-228.714 -228.106	-97.486	5.463
					223.100	-94.124	5.142
100	24.000	69.741	44.444	103.714	-227.502	-90.784	4 • 839
200	24.000	70.319	45.054		-226.902	-87.460	4.551
300	24.000	70.684	45.648		-226.305	-84.142	4.276
400	24.000	71 - 435	46.228		-225.713	-80.845	4.015
500	24.000	71.975	46.794	113-314	~225.124	-77.558	3.767
	24 222						
600	24.000	72.502			-224.540	-74.280	3 4 5 2 9
644.05	24.000	72.731			-224.283	-72.840	3.428
644.05	24.000	72.731			-359.737	-72.840	34428
700 800	24.000	73.018			-359.469	-69.388	3 . 226
900	24.000 24.000	73.524 74.019			-358.997	-63.222	2 4 8 7 8
000	24.000	74.503		122.914	-358.537	-57.057	2 • 5 4 5
-550	24.000	140703	7 7 6 4 4 1	125.314	-358.089	-50.910	2 • 225
100	24.000	74.979	49.937	127.714	-357.655	-44.776	1.414
200	24.000	75.445			-357.236	-38.638	1.624
300	24.000	75.902			-356.834	-32.514	1.341
400	24.000	76.350			-356.450	-26.395	1.068
	24.000	76.791			-356.086	-20.287	0.806
500							
500	3. 000	33 334	52.274	139.714	-355.748	-14.176	A
600	24.000	77.223					0.553
600 700	24.000	77.648	52.716	142-114	-355.438	-8.078	0.310
600 700 800	24.000 24.000	77.648 78.065	52.716 53.149	142.114 · 144.514 ·	-355•438 -355•161	-8.078 -1.979	0.310 0.075
600 700	24.000	77.648	52•716 53•149 53•575	142-114 144-514 146-914	-355.438	-8.078	0.310

$$\Delta H_{f298, 15}^{\bullet} = -261.5 \text{ kcal gfw}^{-1}$$

$$S_{298, 15}^{\bullet} = 12.12 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$T_{t} = 1478 \text{ °K}$$

$$\Delta H_{t} = 1.42 \text{ kcal gfw}^{-1}$$

$$T_{m} = 2973 \text{ °K}$$

$$\Delta H_{m} = 25.0 \text{ kcal gfw}^{-1}$$

$$H_{298, 15}^{\bullet} - H_{0}^{\bullet} = 2.091 \text{ kcal gfw}^{-1}$$

$$G_{p}^{\bullet} = 16.64 + 1.80 \times 10^{-3} \text{ T}^{-3}.36 \times 10^{5} \text{ T}^{-2} \text{ cal deg}^{-1} \text{ gfw}^{-1}$$

$$298.15 \text{ °K} \leq T \leq 1478 \text{ °K}$$

$$C_{p}^{\bullet} = 17.80 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$1478 \text{ °K} \leq T \leq 2000 \text{ °K}$$

$$C_{p}^{\bullet} = 5.056 + .006372T \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$2973 \text{ °K} \leq T \leq 6000 \text{ °K}$$

$$C_{p}^{\bullet} = 24.0 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$2973 \text{ °K} \leq T \leq 6000 \text{ °K}$$

ZrO2 exists as monoclinic form below 1478°K and tetragonal above.

Heat of Formation

Combustion calorimetry was used by Humphrey. 1

Heat Capacity and Entropy

Low temperature data from Kelley² and Kelley and King. ³ High temperature data to 2000°K from Kelley. ⁴ Data above 2000°K estimated,

Melting and Vaporization

Heat of melting was estimated.

References

- Humphrey, G. L., J. Am. Chem. Soc. 76, 978 (1954).
 Kelley, K. K., Ind. Eng. Chem. 36, 377 (1944).
 Kelley, K. K., and E. G. King, Bur. of Mines. Bull. 592 (1961).
- 4. Kelley, K. K., Bur. of Mines Bull. 584 (1960).

ZIRCONIUM DIOXIDE (ZrO2)

(CONDENSED PHASE)

GFW = 123.22

SUMMARY OF UNCERTAINTY ESTIMATES

		cal/°B	stv	Kral/glw-				
T, °K	رح _ه ا	sτ	-(FT - H298)/T	HT - H298	AH	VE()	Log Kp	
298.15	*0.300	*0.080	±0.080	±0.000	± 2, 00u			
1000	±0.300	±0.443	±0.232	±0.211				
1478	±0.300	±0.560	±0.321	±0.354				
1478	±2.000	±0.560	±0.321	±0.354				
2000	±2.000	±1.165	±0.466	±1.398				
2973	±2.000	±1.958	±0.833	±3+344				
2973	±2.000	14.649	±0.833	±11.344				
1000	±2.000	#4.667	±0.868	±11.398				
4000	±2.000	±5.242	±1.893	±13.398				
5000	±2.000	±5.689	±2.609	±15.398				
6000	±2.000	±6.053		±17.398				

Reference State for Calculating AHr. AFr., and Log Kp: Solid Zr from 0° to 2125°K, Liquid Zr from 2125° to 4644°K, Gaseous Zr from 4644° to 6000°K; Gaseous Og; Gaseous ZrOg.

T, °K	(cp			(0 0	Kral/gfw		
•, •	, Ь	Τ ^ζ	-(F _T - H _{29B})/T ¹	HT - H298	ΔH	AF ₁	Log Kp
0	0.000	0.000	INFINITE	2 224			
298 • 15	11.365	58.551	58 - 551	-2 • 725 0 • 000	-81.794 -82.457	-81.794	INFINITE
300	11+385	58.621	58.551	0.021	-82.460	-82.533 -82.533	60 • 495 60 • 123
400	12.329	62.033	59.010	1.209	-82.613	-82.534	454092
500	12.998	64.860	59.905	2 • 478	-82.748	-82.498	36.058
600 700	13.461	67.274	60.937	3.802	-82.881	-82.435	30.025
600	13.784	69.374	61.996	5.165	-83.018	-82.351	25.710
900	14.014 14.182	71.231 72.892	63.03	6.556	-83.167	-82.245	22.467
1000	14.308	74.393	64.041 65.002	7.966 9.391	-83.330 -83.509	-82.120 -81.975	19.941 17.915
1100	14.405						
1135	14.433	75.761 76.213	65.919	10.827	-83.704	-81.813	16.254
1135	14.433	76.213	66.229 66.229	11.331	-83.776	-81.751	15.741
1200	14.480	77.018	66.792	11.331	-84.691	-81.751	15.741
1300	14.540	78.179	67.624	12.271	-84.817	-81.580	14 -857
1400	14.588	79.259	68.417	15.179	-85.013 -85.210	-81.303 -81.011	13.668 12.646
1500	14.627	80.267	69.174	16.639	-85.410	-80.703	11.758
1600	14.660	81.212	69.897	18-104	-85.612	-80.383	10.979
1700	14.687	82.101	70.589	19.571	-85.818	-80.050	10.291
1800	14.710	82.941	71.252	21.041	-86.027	-79.705	9.677
1900	14.729	83.737	71.988	22.513	-86.239	-79.347	9.127
2000	14. 146	84 473	72.500	23.987	-86.455	-78.979	8.630
2100	14.760	85.213	73.088	25.462	-86.676	-78.599	8.180
2125	14.764	85.388	73.232	25.831	-86 - 731	-78.502	8.073
21 <i>2</i> 5	14.764	85.388	73.232	25.831	-91 • 631	-78.502	8.073
2200	14.773	65.900	73.655	26.939	-91.807	-78.035	7.752
2300 2400	14.784	86.557	74.202	28 • 417	-92.045	-77.406	7.355
2400 2500	14.794	87.186 87.740	74.730 15.240	29•895 31•375	-92.289 -92.537	-76.764 -76.112	6.990 6.653
2600	14.810	40 .71	75.734				
2700	14.817	88.371 88.930	76.213	32.856 34.337	-92.788 -93.045	-75.447 -74.781	6.342
2800	14.823	89.469	76.677	35.819	-93.305	-74.099	6.053 5.783
2900	14.828	89.984	77.127	37.302	-93.570	-73.406	5.532
3000	14.833	90.492	77.564	38.785	-93.839	-72.707	5.296
3100	14.838	90.979	77.989	40.268	-94.113	-71.994	5.075
3200	14.842	91.450	78.402	41 - 752	-94.39.	-71.279	4.868
1300	14.845	91.906	78.804	43.237	-94.671	.70.551	4.672
3400	14.849	92.350	79.196	44.721	-94.957	-69.816	4.487
3500	14.852	92.780	79.578	4606	-95.246	-69.069	4.313
3600	14.855	93.199	79.951	47.692	~95.5Cu	-68.320	4.147
370C	14.857	93.606	80.314	49.177	-95.834	-67.557	3 • 990
3800	14.860	94.002	80.669	50 - 66 3	-96.133	-66.790	3.841
3900 4000	14.862 14.864	94.388 94.764	81.016 81.355	52.149 53.636	-96.436 -96.741	-66.011 -65.225	3.699 3.564
4100	14.866	95-131	81.687 82.011	55 • 1 2 2 56 • 609	-97•051 -97•364	-64.437 -63.637	3.435 3.311
4200	14.868	95.490 95.839	82.011 82.329	58.096	-97.680	-62.827	3.193
4300	14.670	96.181	82.640	59.583	-98.001	-62.015	3.080
4400 4500	14.873	96.515	87.944	61.070	-98.325	-61.190	2.972
4600	14.874	96.342	83.243	62.557	-98.654	-60.359	2 4 8 6 8
4644 • 05	14.875	96.984	83.373	63.212	-98.800	-59.189	2.823
4644.05	14.875	96.984	83.373	63.212	-234.254	-59. A9	2.823
4700	14.875	97.162	83.536	6 345	-234.495	-57.890	2.692
4800	14.876	97.475	83.823	65.532	-234.936	-54.127	2 • 464
4900	14.878	97.782	84.105	67.020	-235.388	-50.352	2 • 246
5000	14.879	98.083	84.381	68.508	-235.852	-46.567	2.035
5100	14.880	98.377	84.653	69.996	-236.330	-42.784	1.833
5200	14.681	98.666	84.920	71.484	-236.823	-38.980	1.638
5300	14.881	98.950	85.182	72.972	-237.333	-35.170 -31.346	1.450 1.269
5400 5500	14.882	99.228 99.501	85.439 85.692	74.460 75.948	-237.861 -238.409	-27.512	1.093
						-23.668	0.924
5600	14.884	103.011	85.941	77.437 18.925	-238.982 -239.584	-19.814	0.760
5700	14.885	100.033	86.186	80.413	-240.219	-15.948	0.601
5800	14.885	100.742	86.427 86.664	81.902	-240.893	-12.070	0.447
5900 6000	14.886 14.886	100.546	86.878	83.391	-241-613	-8.177	0.298

ZIRCONIUM DIOXIDE (ZrO₂) (IDEAL MOLECULAR GAS) gfw = 123, 22

$$\Delta H^{\bullet}_{f0} = -81.794 \text{ kcal gfw}^{-1}$$

$$^{\Lambda H^{\bullet}}_{f298, 15} = -82.457 \text{ kcal gfw}^{-1}$$

Point Group Doch

$$H^{\bullet}_{298.15} - H^{\bullet}_{0} = 2.725 \text{ kcal gfw}^{-1}$$
 $S^{\bullet}_{298.15} = 58.551 \text{ cal degK}^{-1}_{gfw}^{-1}$

Vibrational Levels and Multiplicities

Bond lengths and angles:

Moments of inertia:

$$I = 15.8638 \times 10^{-39} \text{ gcm}^2$$

$\sigma = 2$

Heat of Formation

Data of Chupka, et al was analyzed by third law method.

'leat Capacity and Entropy

Above basic input data was used.

Reference

1. Chupka, W. J., J. Berkowitz, M. Inghram, J. Chem. Phys. 26, 1207 (1957).

ZIRCONIUM DIOXIDE (ZrO2) (IDEAL MOLECULAR GAS)

GFW = 123.22

		cul/°K	8f*	Kral/gfw				
T,°K	/(p	s _T	-(FT - H298)/T	HT - H298	$\Delta H_{t}^{''}$	ΔE_I^{2N}	Log Kp	
298.15	±1.000	±3.000	±3.000	±0.000	±7 00 0			
1000	±1.000	±4.210	±3.508	±0.702				
2000	±1.000	±4.903	±4.052	±1.702				
3000	£1.000	±5.309	±4.408	± 2 . 702				
4000	±1.000	£5.596	±4.611	± 3.702				
5000	±1.000	+5.820	±4.879	± 4 . 702				
6000	±1.000	+6.002	+5.052	. 5 . 702				

Reference State for Calculating AH?, AF?, and Log Kp Solid Os from 0° to 3290°K Liquid Os from 3290° to 5270°K, Gaseous Os from 5270° to 6000°K; Gaseous OsO₃.

T 0	C	cal/"K	M		Kral/gfw		
Τ, "Κ	, C.	ST.	(FT - H ₂₉₈)/T	H'T - H29		1F	log K
0	0.000	0.000	! N.C * * * * -			- 1	
298-15	14.994	69.201	INFINITE 69.201	~3.331		-66.80%	INFINIT
300	15.029	69.294	69.201	0.000		-64.190	47.050
400 500	16.535	73.839	69.811	0.028 1.611		-64.167	46.74
	17.494	77.640	71.007	3.317		-62.940 -61.703	34 • 38 ? 26 • 96 9
600	18.115	80.888	72.390			203	40170
700	18.529	83.714	73.810	5.099 6.933		-60.469	22.029
800 900	18.817	86.208	75.207	8 • 801		-59.242	18.49
1000	19.023	88.437	76.555	10.693		-58.020 -56.802	15.850
	19.175	90.449	77.846	12.604		-55.587	13.793
1100	19.291	92.283	79.076	14 633			
1200	19.380	93.965	80.248	14.527 16.461		-54.372	10.802
1300 1400	19.450	95.519	81.363	18.403	-67.736 -67.759	-53.158	9 • 681
1500	19.507	96.963	82.427	20.351	-67.795	-51.943 -50.726	8.732
	19.553	98.310	83.44]	22.304	-67.843	-49.504	7.918 7.212
1600	19.591	99.573	84 (10			- 7., -7	
1700	19.622	100.762	84.410 85.338	24 • 261	-67.947	-48.281	6 • 5 9 5
1800	19.649	101.884	86.226	26 • 222 28 • 185	~67.9A4	-47.052	6.049
1900	19.671	102.947	87.178	30.151	-68.07A -68.185	-45.818	5.563
2000	14.691	1-2.957	81.897	32.119	-68.307	-44.577 -43.330	5.127
2100	707	104.918	03 . 01			-20100	4.735
2200	19.722	105.632	88.685	34.089	-68.446	-42.078	4.379
230C	14.735	106.712	89.444 90.176	36.061	-68.599	-40.818	4.055
2400	14.746	107.552	90.882	38.033 40.008	-68 • 768	-39.555	3.758
2500	19.756	108.359	91.566	41.983	-68.952 -69.153	-38.279 -37.001	3.486
2600	19.764	100 13				J. • UU I	3.234
2 7 00	19.772	109.134 109.880	92.726 92.867	43.959	-69.36A	-35.704	3.001
2800	19.779	110.599	92.867 93.487	45.935 47.913	-69.602	-34.410	2.785
5300	19.785	111.293	94.089	49.891	~69.84R	-33.100	2.583
3000	19.791	111.964	94.674	51 - 870	-70.112 -70.389	-31.783 -30.458	2.395
3100	14.796	112 412	0.5			20.4476	2.219
1200	19.801	112.613 113.741	95.242 95.795	53.849	-70.683	-29.117	2.053
1290	14.805	113.740	96.214	55.829 57.612	-70.992 -71.792	-27.776	1.897
1290	19.805	113.790	96.279	57.612	-71.282 -78.860	-26.555	1.764
3300	19.805	113.651	96.333	57.810	-78.849 -78.8 <i>P</i>	-26.555 -26.395	1.764
3400	19.804	114.442	96.857	- 90	-79.260	-24.799	1.748
3500	19.813	115.016	97.367	61.771	-19.640	-23.187	1.448
3600	19.816	115.575	97.865	43 75 7	84 454		
3700	19.819	116.11A	98.35]	63.753 65.735	-80.025 -80.414	-21.571	1.309
3800	19.822	116.646	96.82€	67.717	-80.810	-19.94] -18.299	1.178
3900 4000	14.874	117.161	99.290	69.699	-81.211	-16.653	1.052
.000	19.827	117.663	94.743	71.681	-81.617	-14.990	0.819
4100	19.829	118.153	100.186	73.664	-82.028	-12 212	
4200	19.831	118.630	100.619	75.647	-82.445	-13.319 -11.633	0.710
4300	9.833	119.097	101.044	77.630	-82.866	-9.943	0.605
4400 4500	19.835	119.553	101.459	79.614	-83.295	-8.242	0.409
	19.836	119.994	101.866	81.59/	-83.728	-6.533	0.317
4600	19.638	120.434	102.265	83.581	-84.16F	_,	
4700	14.839	1.0.861	102.656	85.565	-84.51	-4.803 -3.072	0.228
4800	14.841	121.279	103.040	87.549	-85.072	-1.332	0.143
4900 5000	19.842	121.688	103.416	89.533	-85.53A	020	-0.019
7000	14.843	122.089	103.786	91-517	-86.015	4 - 100	-0.095
5100	19.844	122.482	104.148	93+502	-86.505	3.952	
5200	19.845	14 867	104.505	95.486	~87.011	3.952 5.733	-0.169
5269.51	19.846	123.132	104.750	96.876	-87.374	6.979	-0.241
5269.57	14.846	123.132	104.750	96 - 876	-263.775	6.979	-0.289 -0.289
5 3 0 0	19.846	123.245	104.855	97.471	-263.930	8.544	-0.289
5400	19.847	123.616	105.199	99.455	-264.457	13.697	-0.554
5500	19.848	1 Z 9 A 1	105.537	101.440	-265.012	18.696	-0.743
5600	19.849	124.338	105.870	103.425	-265.603	24.020	-0 0:-
5700	19.850	1 14 - 640		105.410	-266.234	29.208	-0.937 -1.120
5800	19.851	125.035	106.518	107.395	-766.916	34.411	-1.297
5900 6000	19.851	125.374		109.380	~267.655	39.621	-1.468
0000	14.025	125.708	107.147	111.365	-268.463	44.844	-1.633

OSMIUM TRIOXIDE (OsO3)

(IDEAL MOLECULAR GAS)

gfw = 238, 2

$$\Delta H_{f0}^{o} = -66.809 \text{ kcal gfw}^{-1}$$

 $\Delta H_{6298, 15}^{\circ} = -67.800 \text{ kcal gfw}^{-1}$

Point Group = D_{3h}

 $S_{298.15}^{0} = 69.201 \text{ cal deg } K^{-1}\text{gfw}^{-1}$

 $H_{298.15}^{0}$ - H_{0}^{0} = 3.331 kcal gfw⁻¹

Vibrational Levels and Multiplicities

ω,	cm ⁻¹	ω,	cm ⁻¹
764	(1)	811	(2)
291	(1)	292	(2)

Bond lengths and angles:

Os-O distance = 185 A

O-Os-O angle = 120°

Product of moments of inertia:

$$I_A I_B I_C = 5.072420 \times 10^{-114} g^3 cm^6 \sigma = 6$$

Heat of Formation

Based on Grimley et al mass-spectrometric data.

Heat Capacity and Entropy

Spectroscopic data estimated. See volume 1, this study (section IVB18.4.3) for details.

Reference

 Grimley, R. T., R. P. Burns, and M. G. Inghram, J. Chem. Phys. 33, 308 (1960).

Reference State for Calculating AH², AF², and Log K_p: Solid Ti from 0° to 1950°K, Liquid Ti from 1950° to 3550°K, Gaseous Ti from 3550° to 6000°K; Gaseous O₂; Solid Ti₂O₃ from 0° to 2093°K, Liquid Ti₂O₃ from 2093° to 6000°K.

T, *K	C.	cal/°K)	00	_Kcel/glw		
_	ه.	S _T	-(FT - H ₂₉₈)/T'	'HT - H298	ΔH	A F	Log Kp
0 298•15	0.000	0.000	INFINITE	-3.435	-361.423	-361.423	INFINIT
300	23.267	18.830	18.830	0.000	-363.400	-342.726	251.213
400	23.366	18.974	18.830	0.043	-363-398	-342.598	249.570
473	28.718 32.625	26.429	19.811	2.647	-363.099	-335.698	183.400
473	30.736	31.562 32.016	21 • 231	4.886_	362.600_	330.757_	152.819
500	31.250	33.737	21.231 21.860	5.101	-362.385 -362.203	-330.757 -328.934	152.819
600	32.627	39.566	24.337	9.138			
700	33.508	44.666	26.884	12.447	-361.483 -360.727	-322.348 -315.885	98.61
800	34.126	49.183	24.395	15.831	-359.960	-309.532	84.55
900	34.591	53.231	31.822	19.268	-359.194	-303.272	73.64
1000	34.960	56.895	34.149	22.746	-358.438	-297.098	64.92
1100	35.267	60.242	36.371	26.258	-351.693	291.002	57.81
1155	35.417	61.966	37.549	28.201	-357.287	-287.676	54.43
1155	35.417	61.966	37.549	28.201	-359.187	-287.676	54 . 43
1200	35.532 35.766	63.322	38.491	29.798	-358.857	-284.897	51.88
1300 1400	35.980	66 • 1 76 68 • 834	40.512	33 • 36 3	-358 • 1 33	-278.765	46.86
1500	36.177	71.323	42.44] 44.284	36.950 40.558	-357.422 -356.719	-272.686 -266.658	38.85
1600	21 62	7364	46.048	44.185	-356.030		
1700	36.537	75.874	47.738	47.830	-355.351	-260.678 -254.738	35.60 32.74
1800	36.705	77.967	49.360	51.493	-354.684	-248.840	30.21
1900	36.867	79.956	50.918	55.171	-354.029	-242.975	27.94
1950	36.947	80.915	51.675	57.017	-353.704	-240.056	26.90
1950	36.947	80.915	51.675	57-017	-361.104	-240.056	26.90
2000	37.025	81.451	52.418	58.866	-360.734	-236.958	25.89
2093	37-168_	83.537	53.764		360.035_	-231.220_	24.14
2091	37.500	98.348	53.764	93.316	-329.035	-231.220	24.14
7100	37.500	98.474	53.912	93.578	-328.981	-230.891	24.02
2200 2300	37.500 37.500	100.218	55.978 57.938	97.328	-328.197	-226.240 -221.625	22.47
2400	37.500	101.885	59.803	101-078 104-828	-327.421 -326.654	-217.040	21.05
2500	37.500	105.012	61.580	108.578	-325.896	-212.489	19.76 18.57
260¢	17.500	106.483	63.279	112.328	-325.144	-207.963	17.48
2700	37.500	107.898	64.906	116.078	-324.401	-203.475	16.46
2000	17.500	109.762	66.466	115 13	-323.664	99.006	15.53
2900	17.100	110.578	67.964	123.578	-322.936	14.566	14.66
3000	17.500	111.849	64.406	127.328	-322.214	- 70.154	13.85
3100	37.100	113.076	70.795	131-078	-321.500	-185.762	13.09
320C	31.500	114.764	72.135	134.828	-320.79.	-181.398	12.38
3300	37.500	115.42	73.430	138,578	-320.090	-177.049	11.72
3400 3500	17.500 17.500	110.542	74.681 75.893	142.328	-319.395 -318.706	-172.723 -168.420	11.10
							_
155C	37.500	118-161	76.484	147.953	-318.363	-166.276	10.23
3550	17.500	118.161	76.484	147.953	-523.277 -522.947	-166.276 -161.251	10.23 9.78
1600	17.500	118.686 119.713	77.067 78.206	153.578	-522.309	-151.212	8.93
3700 3800	37.500 37.500	120.713	79.311	157.32H	-521.704	-141.186	8.12
3900	37.500	121.558	80.385	161.078	-521.134	-131.184	7.35
4000	37.500	12637	H1 - 430	164.8/8	-520.592	-121-190	6.62
4100	17.40C	121.563	82.446	168.578	-520.082	-111.279	5.92
420C	37.500	124.467	83.436	172.328	-519.602	-101.7 0	5.26
4300	37.500	125.344	84.401	174 18	-519.150	-91.283	4.63
4400	37.500	126.211	R5.341	179.528	-518.728	-81.134	04
4500	37.500	127.054	86.259	183.578	-518.333	-71.409	3.46
4600	21.500	127.878	27.154	187.328	-517.965	-61.465	2.92
4700	17.500	176.684	GFO.AK	191.078	-517.626	-51.555	2.39
4800	17.500	124.474	88.885	194.828	-517.315	-41.634	1.89
4900	37.500	130.247	69.721	198.578	-517-030	-31.721	1.41
5000	37 . 500	131.005	40.219	202.328	-516.774	-21.820	0.95
5100	31.500	137.747	91.340	706.078	-516.549	-11.923	0.51
5200	47.100	1 .474	92.124	209.828	-516.353	-2.031 7.868	0.08
5300	17.500	133.190	92.892	213.578	-516.064	17.748	-0.32 -0.71
5400	.37.50	133.891	41.645	217.324	-515.976	27.647	-1.09
5500	17.500	134.57.	94. 14 1	221.078			
5600	37.500	135.255	95.107	224+978 228+578	-515.932 -515.936	47.524	-1.46 -1.81
5700	17.500	135.919	94.817	237.318	-515.998	57.312	-2-15
5800	17.500	136.5/3	16.514 17.198	36.0 8	-516.174	67.211	-2.49
5900 6000	47.500 37.500	137.642	47.870	239.929	916.324	77.138	-2.80

TITANIUM SESQUIOXIDE (T12O3) (CONDENSED PHASE) gfw = 143.80 $\Delta H_{f298, 15}^{o} = -363, 4 \text{ kcal gfw}^{-1}$ So = 18.83 caldegK-1gfw-1 T. = 4730K $\Delta H_{s} = 0.215 \text{ kcal gfw}^{-1}$ Tm = 20930K ΔH_m-31, 0 kcal gfw⁻¹ $H_{298.15}^{0}$ - H_{0}^{0} = 3.435 kcal gfw⁻¹ $C_p^0 = 7.31 + 53.52 \times 10^{-3} \text{ T cal deg K}^{-1} \text{ g fw}^{-1}$ 298. 15°K < T < 473°K $C_p^o = 34.68 + 1.30 \times 10^{-3} \, T - 10.20 \times 10^5 \, T^{-2} \, cal \, deg \, K^{-1} \, g \, (w^{-1})$ $473^o \, K \leq T \leq 2093^o \, K$ $C_0^0 = 37.5 \text{ cal deg } K^{-1} \text{gtw}^{-1}$ 2093°K < T < 6000°K

Structure

 ${\rm Ti}_2{\rm O}_3$ has hexagonal structure with narrow homogeneity range according to Andersson et al.

Heat of Formation

Combustion calorimetric data of Mah et al used.

Heat Capacity and Entropy

Low-temperature data by Shomate, 3 High-temperature data by Naylor4 to 1750°K extrapolated to melting point. Data at higher temperatures estimated,

Melting and Vaporization

Melting point from Brauer and Littke. 5 Heat of fusion estimated.

References

- Andersson, S. et al, Acta Chem. Scand. 11, 1653 (1957).
 Mah, A. et al, U.S. Bur. Mines, Rept. 5316 (1957).
 Shomate, C., J. Am. Chem. Soc. 68, 310 (1946).
 Naylor, B., J. Am. Chem. Soc. 68, 1077 (1946).
 Brauer, G. and W. Littke, J. Inorg. Nuclear Chem. 16, 67 (1960).

TITANIUM SESQUIOXIDE (TijO3) (CONDENSED PHASE) GFW - 144.80

SUMMARY OF UNCERTAINTY ESTIMATES

			cal	k giw		$\overline{}$		Ka gla		
T, "k		′c _p	1,	-, i	T - H ₂₉₈ 1	T`	HT - HACH	N a pla NH ₁	NI, N	1 rkp
298.15		0.400	± 0.090	£	0.090	£	0.000	11.500		
473	*	0.400	± 0.275	±	0.127	ŧ	0.070			
473	ŧ	1.000	+ 0.380	ŧ	0.127	ŧ	0.120			
1000	±	1.000	± 1.129	ŧ	0.48/	ŧ	0.647			
2000	ŧ	1.000	1 1.822		0.999	ŧ	1.647			
2043	ŧ.	1.000	± 1.868		1.036	*	1.740			
2093	±	5.000	1 5.690	£	1.036	ŧ	9.740			
3000	*	5.000	+ 7.490	+	2.732	ŧ	16.275			
4000	£	5.000	± 8.928	±	4.110	1.	19.275			
500C		5.000	110.044	ŧ	5.189	ŧ	24.275			
6000	ŧ	5.000	+ 10 - 956	±	6.076	ŧ	29.275			

Reference State for Calculating AH2, AF2, and Log Kp: Solid W; Gaseous O2; Solid WO3 from 0° to 1745°K, Liquid WO3 from 1745° to 2000°K.

		cal/°K	s/w		Kcal/glw		
T, °K	ح	s _T	-(FT - H ₂₉₈)/Т	HT - H298	ΔH°	ΔF	Log Kp
O	0.000	0.000	INFINITE	-2.962	-200.115	-200 115	14514175
298.15	17.600	18.150	18.150			-200 - 115	INFINITE
300	17.650	18.259		0.000	-201.460	-182.620	133.858
400	19.849	23.663	18.150	0.033	-201.458	-182.503	132.947
500	21.182	28.249	18.870 20.299	1.917 3.975	-201 • 226 -200 • 866	-176.205 -169.999	96 • 269 74 • 303
						10,0,,,	, 4000
600 700	22.060 22.724	32.193 35.645	21.961 23.674	6 • 139	-200.443	-163.852	59.686
800	23.273	38.716	25.366	8.380 10.680	-199.982 -199.501	-157.803	49.266
900	23.756	41.486	27.005	13.033	-198.996	-151.797	41.467
1000	24.198	44.012	28.582	15.430	-198.473	-145.130 -139.986	35 • 24 1 30 • 59 2
	24 400						
1050 1050	24.408 23.678	45 • 197 ₋ 45 • 587	29.344 29.344	16.646_ 17.056	198.207_ -197.797	137.085_ -137.085	28.532 28.532
1100	23.815	46.691	30.106	18.243	-197.559	-134.200	26.662
1200	24.090	48.775	31.577	20.638	-197.082	-128.438	23.391
1300	24.365	50.714	32.975	23.061	-196.603	-122.764	20.636
1400	24.640	52.530	34.308	25.511	-196.127	-117.107	18.280
1500	24.915	54.239	35.580	27.989	-195.627	-111.479	16.242
1600 1700	25 • 1 90 25 • 465	55.856 57.391	36.797 37.963	30.494 33.027	-195.150 -194.659	-105.883	14.462
						-100.320	
1744	25.589_	58.058_	38 • 473	_ 34 • 1 76_		97.833_	12 • 25
1745	31.500	68.115	38.473	51.726	-176.890	-97.833	12.25
1800	11.500	69.093	34.394	53.458	-176.294	-95.344	11.576
1900	31.500	70.745	41.001	56-608	-175.232	-90.871	10-45
2000	31.500	72.411	42.532	59.758	-174.195	-86.458	9.44

May 1962

CHW

$$\Delta H_{f298. 15}^{o} = -201. 460 \text{ Kcal gfw}^{-1} \qquad S_{298. 15}^{o} = 18. 15 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$T_{t} = 1050 \text{ °K} \qquad \qquad \Delta H_{t} = 0. 410 \text{ Kcal gfw}^{-1}$$

$$T_{m} = 1745 \text{ °K} \qquad \qquad \Delta H_{m} = 17. 550 \text{ Kcal gfw}^{-1}$$

$$H_{298. 15}^{o} - H_{0}^{o} 2. 962 \text{ Kcal gfw}^{-1}$$

$$G_{p}^{o} = 21. 26 + 3. 38 \times 10^{-3} \text{ T} - 4. 42 \times 10^{5} \text{ T}^{-2} \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$400 \text{ °K} \leq T \leq 1050 \text{ °K}$$

$$G_{p}^{o} = 20. 79 + 2. 75 \times 10^{-3} \text{ T cal deg K}^{-1} \text{ gfw}^{-1} \qquad 1050 \text{ °K} \leq T \leq 1745 \text{ °K}$$

$$G_{p}^{o} = 31. 5 \text{ cal deg K}^{-1} \text{ gfw}^{-1} \qquad 1745 \text{ °K} \leq T \leq 2000 \text{ °K}$$

Structure

The low temperature form is monoclinic, high temperature form is tetragonal.

Heat of Formation

Combustion calorimetry value by Mah was used.

Heat Capacity and Entropy

Low temperature data by King et al. High temperature data also based on King et al. Details of analysis given by Barriault et al. 3

Melting and Vaporization

Heat of melting from King et al. 2

References

- 1. Mah, A. D., J. Am. Chem. Soc. 81, 1582 (1959).
- 2. King, E. G., et al, Bur. Mines. Rept. 5664 (1960).
- 3. Barriault, R., et al, ASD-TR-61-260 (May 1962), Pt. I.

IDEAL MOLECULAR GAS

Reference State for Calculating AH2, AF2, and Log Kp. Solid W from 0° to 3650°K, Liquid W from 3650° to 5891°K, Gaseous W from 5891° to 6000°K; Gaseous O2; Gaseous WO3.

		cal/°K	BIT		Kcal/gfw		
T,°K	,c., β	s _T	-(FT - H298)/T	'н _т - н ₂₉₈	A H ₂	A F	Log Kp
٥	0.000	0.000	INFINITE	-3.296	-64.089	-64.089	INFINI
298.15	14.936	68.626	68.626	0.000	-65-100	-61.309	44.9
300	14.972	68.718	68.626	0.028	-65.103	-61.286	44.6
400	16.514	73.253	69.234	1.608	-65.175	-59.990	32.7
500	17.487	77.051	70.428	3 • 311	-65.170	-58.703	75.6
600	18.113	80.299	71.809	5.094	-65.128	-57.401	20.9
700	18.530	83.124	73.228	6.927	-65.075	-56.131	17.5
800	18.818	85.618	74.624	8.795	-65.026	-54.843	14.9
900 1000	19.025 19.177	87.847 89.860		10.688 12.598	-64.981 -64.945	-53.591 -52.306	13.0
1100	19.292	91.693					
1200	19.381	93.376		14.522 16.456	-64.920 -64.904	-51.065 -49.782	10.1
1 100	19.452	94.930		18.398	-64.906	-48.549	8.1
1400	19.508	96.374		20.346	-64.927	-47.292	7.3
1500	19.554	97.721		22.299	-64.967	-46.031	6.7
1600	19.592	98.985	83.824	24.256	-65.02A	-44.766	6 • 1
1700	19.623	100.173		26.217	-65 9	-43.500	5.5
1800	19.649	101.296		28 • 181	-65.211	-42.226	5.1
1 900 2000	19.672	102.359		30•147 32•115	-65.333 -65.478	-40.943 -39.656	4.7
2100	19.708	104.329					3.9
2200	19.722	104.329		34 • 085 36 • 057	-65.644 -65.832	-38.359 -37.055	
2300	19.735	106.124		38.029	-66.041	-35.742	3.6 3.3
2400	19.746	106.964		40.004	-66.271	-34.426	3.1
2500	19.756	107.770		41.979	-66.525	-33.093	2 . 8
2600	19.765	108.54		43.955	-66.800	-31.749	2.6
2700	19.772	109.291		45.932	-67.098	-30.391	2 • 4
2800	19.779	110.010		47.909	-67.416	-29.028	2.2
2900	19.786	110.70		49.887	-67.757	-27.652	2 • 0
3000	14.791	111.37	94.087	51.866	-68.119	-26.265	1 • 9
3100	19.797	112.024		53.846	-68.502	-24.856	1.7
3200	19.801	112.653		55.826	-68.908	-23.450	1.6
3400	19.804 14.809	113.262		57•806 59•787	-69.132 -69.780	-22.014 -20.577	1.4
3400 3500	19.813	114.426		61.768	-70.244	-19.117	1.1
3600	19.816	114.986	97.278	63.749	-70.730	-17.647	1.0
3650	19.818	115.256		64.740	-70.987	-16.907	1.0
1650	19.818	115.258		64.740	-79.38 <i>2</i>	-16.907	1.0
3700	14.814	115.529		65.731	-79.626	-16.058	0.9
3800	19.822	116.05		67.713	-80 - 21	-14.334	0.0
3900	19.824	116.57		69.695	-80.623	-12.589	0.
4000	19.827	117.07	5 59.155	71.678	-81.128	-10.836	0 • 9
4100	19.829	117.56		73.661	-81.639	-9.077	0.
4200	19.831	118.04		75.644 71.627	-82.156 -82.677	-7.300 -5.504	0.
4300	19.834 19.835	118.50		79.610	-83.207	-3.696	0.
4500	19.836	119.41		81.594	-83.737	-1.899	0.0
4600	19.838	119.84	6 101.677	83.578	-84.279	-0.060	0.0
4700	19.839	120.27		85.561	-84.82A	1.772	-0.
4800	19.841	120.64	1 102.452	87.545	-85.384	3.634	-0.
4900	19.842	121.10	0 102.829	89.530	-85.949	5 483	-0.
5000	19.843	121.50		91.514	-86.526	7 365	-0.
5100	19.844	121.69		99.498	-87.117	9.241	-0.
5200	19.845	122.27		95.483	-87.722	11.149	-0.
5300	19.846	122.65		97.467	-88.348	13.054	-0.
5400	19.847	123.02		99.457	-88.995 -89.667	16.918	-0. -0.
5500	19.848	123.39	2 104.949	101-437			
5600	19.849	123.75	0 105.282 1 105.609	103.422	-90.373 -91.116	18.855 20.822	-8:
5700	19.850	124.44		107.392	-91.907	22.800	-0.
5800	19.851	124.44		109-198	-92-677	24.613	-0.
5891	19.852 19.852	24.75		109.198	-284.942	24.613	-0.
5891 5900	19.857	1:4.78		109.377	-285.015	25.087	-0.
6000	19.852	125.12		111.362	-285.900	30.360	-1.
			May 196				CHW

TUNGSTEN TRIOXIDE (WO3) (IDEAL MOLECULAR GAS)

Rfw = 231.86

$$\Delta H_{f0}^{0} = 64.089 \text{ Kcal gfw}^{-1}$$

Point Group Dah

$$H_{298.15}^{\circ} - H_{0}^{\circ} = 3.296 \text{ Kcal gfw}^{-1}$$

Vibrational levels and multiplicities

Bond lengths and angles

W - O distance = 1.78 A

O-W-O Angle 120 deg

Product of moments of inertia $I_A I_B I_C = 4.024423 \times 10^{-114} \text{ g}^3 \text{ cm}^6$

Heat of Formation

Based on work of DeMaria et al. 1

Heat Capacity and Entropy

Calculated using above estimated spectroscopic constants. Details are given by Barriault et al. 2

References

- 1. DeMaria, G. et al, J. Chem Phys. 32,1373 (1960)
- 2. Barriault, R et al, ASD-TR-61-260 (May 1962), Pt. I.

Reference State for Calculating Ali, AF, and Log Kp: Solid Os from 0° to 3290°K, Liquid Os from 3290° to 5270°K, Gaseous Os from 5270° to 6000°K, Gaseous Oz; Gaseous OsO4

T, "K	C _p	(al/ "K # S _T	-(FT - H298)/T	HT - H798	_Kcal/gfw 	AF	Log Kp
			,,	1 771	'	,	• р
0	0.000	0.000	INFINITE	-3.689	-78.829	-78.829	INFINIT
298 • 15 300	17.727 17.776	70.800	70.800	0.000	-80.500	-70.061	51.35
400	19.994	70.909 76.345	70.800 76.345	0.033 1.928	-80.504	-69.996	50.98
500	21.530	80.983	72.965	4.000	-80.629 -80.618	-66.469 -62.928	36.31 27.50
600	22.581	85.CO7	74.644	6.218	-80.539	-59.396	21.63
700	23.312	88.546	76.383	8.514	-80.423	-55.882	17.44
800 900	23.832 24.211	91 • 695 94 • 525	78 • 103	10.873	-80.295	-52.385	14.31
000	24.495	97.091	79.774 81.379	13.276 15.712	-80.164 -80.036	-48.905 -45.436	11.67
100	24.717	99.436	82.915	18.173	-79.915	-41.981	8.34
200	24.881	101.594	84.383	20.653	-79.801	-38.538	7.01
1300 1400	25.015 25.123	103.591	85.785	23.148	-79.699	-35.107	5.90
500	25.211	107.185	87.124 88.404	25.655 28.172	-79.608 -79.527	-31.679 -28.258	4.94
1600	25.284	108.815	89.629	30.697	- 79 • 46?	-24.844	3.39
700	25.345	1.0.350	90.804	33.228	-19.411	-21.432	2.75
800	25.397	144.800	91.930	35.765	-79.3 5	-18.022	2.16
1900 2000	25.441 25.478	114.480	93.012	38 - 307	-79. 153	-14.614	1.66
7000	236478	114.460	94.053	40.853	-79.347	-11.204	1 • 2 2
7100	25.511	115.774	95.056	43.403	-79.359	-7.798	0.8
2200 23 0 0	25.539 25.564	116.911	96.023 96.956	45.955 48.511	-79.387 -79.430	-4.389 -0.982	0.4
2400	25.58ª	119.136	97.857	51.068	-79.493	2.432	-0.2
2500	25.605	.20.180	98.729	53.628	-79.573	5.845	-0.5
2600	25.622	121-185	99.574	56 - 189	-79.670	9.268	-0.7
2700 2000	75.637	122.152	100.392	58 4 75 2	-79.785 -79.814	12.688 16.117	-1.0
2800 2900	25.651 25.663	123.085	101.186 101.957	61 • 31 6 63 • 882	-79.916 -80.066	19.547	-1.2 -1.4
3000	25.614	124.855	102.706	66.449	-80-231	22.985	-1.6
310C	25.684	125.697	103.434	69.017	-80.415	26.434	-1.8
3200	25.693	126.511	104.143	71.586	-80.616	29.878	-2.0
3290	25.701 25.701	127.225	104.763	73.898 73.898	-80.811 -88.378	32.992 32.992	-2.1 -2.1
3290 3300	25.702	127.304	104.832	74.155	-88.403	33.363	-2.2
340C	25.704	128.071	105.505	76.726	-88.672	37.055	-2.3
3500	25.716	128.817	106.160	79.297	-88.94-	40.761	-2.5
3600	25.723	129.541	106.800	81.869	-89.234	44.467	-2.6
1700	25.129	130.246	107.424	84•442 87•015	-89.522 -89.819	48.186 51.919	-2.8 -2.9
3800 3900	25.734 25.739	130.942	108.033 108.629	89.589	-90.123	55.649	-3.1
4000	25.744	132.252	109.212	97.163	-90.433	59.392	-3.2
4100	25.748	137.888	109.741	94.757	-90.751	63.143	-3.3
4200	25.752	133.509	110.339	97.313	-91.075	66.903	-3.4
4300	25.756	134.11	110.885 111.420	99.888 102.464	-91 • 406 -91 • 746	70.671 74.442	-3.5 -3.6
4400 4500	25.760 25.763	134.707		105.040	-92.092	78.220	-3.7
		125 057	112.457	107.616	-92.448	82.023	-3.8
4600 4700	25.766 25.769	135.852		110-193	-92.813	85.819	-3.9
4800	25.771	136.949	113.455	112.770	-93.190	89.626	-4.0
4900	25.774 25.776	137.480	113.940	115.347 117.925	-93.983	93.440 97.265	-4 • 1 -4 • 2
5000							
5100	25.779	139.012	114.893 115.343	: 1.503 1081	-94.405 -94.847	104.937	-4.3 -4.4
5200 5269.57	25.781 25.782	139.012		124.890	-95.170	107.623	-4.4
5269.57	25.782	139.356	115.659	124.886	-271.571	107.623	-4.4
5300	25.783	139.503		125.659	-271.709 -272.196	109.807 117.021	-4.5 -4.1
5400 5500	25.785 25.786	139.985 140.458		128.237 130.816	-272.700	124.078	-4.9
				133.394	-273.261	131.460	-5.1
5600 5700	25.788 25.790	140.923		135.973	-273.874	138.705	-5.3
5800	25.791	141.828	117.939	138.552	-274.554	145.961	-5 . !
5900	25 • 793	142.707		141.131 143.711	-275.310 -276.155	153.228 160.514	-5 · 6
6000	25.794	. 42 . 101				•	
			15 Septen				CHW

OSMIUM TETROXIDE (OsO_4) (IDEAL MOLECULAR GAS) gfw = 254.2

$$\Delta H_{f0}^{o} = -78.829 \text{ kcal gfw}^{-1}$$

 $\Delta H_{f298.15}^{o} = -80.500 \text{ kcal gfw}^{-1}$

Point Group = Td

 $S_{298, 15}^{0} = 70.800 \text{ cal deg K}^{-1} \text{gfw}^{-1}$

 $H_{298,15}^{0}$ - H_{0}^{0} = 3.689 kcal gfw⁻¹

Vibrational Levels and Multiplicities

ω,	cm ⁻¹	ω , cm ⁻¹
971	(1)	959.7 (3)
328	(2)	328 (3)

Bond lengths and angles:

Product of moments of inertia:

$$I_A I_B I_C = 1.4250638 \times 10^{-113} g^3 cm^6$$
 $\sigma = 12$

Heat of Formation

Coughlin's value adopted. 1

Heat Capacity and Entropy

Determined from spectroscopic data. See volume 1, this study (section IVB18.4.4) for details.

Reference

1. Coughlin, J. P., U S. Bur. Mines, Bull. 542 (1954).

Reference State for Calculating AH9, AF9, and Log Kp: Solid Ta from 0° to 3270°K, Liquid Ta from 3270° to 5706°K, Gaseous Ta from 5706° to 6000°K, Gaseous O₂: Solid Ta₂O₅ from 0° to 2150°K, Liquid Ta₂O₅ from 2150° to 6000°K.

r, •κ	(-		110		Kcul/glw	ره م) "
	`р	٤,1	-(FT - H _{29H})/T	′н _т – н ₂₉₈	ΛH	ΛF	Log Kp
0	0.000	0.000	INFINITE	-5.495	-486.291	-486.291	INFINITE
298 - 15	32.296	34.200	34.200	0.000	-488.700	-456.453	334.573
300	32 • 390	34.400	34.201	0.060	-488.694	-456.253	332 4364
400 500	35.924 37.912	44.261 52.508	35.521	3 • 496	-488.271	-445.496	243.396
,00	310712	32.308	38.117	7.195	-487.666	-434.869	190.072
600	39.292	59.548	41.117	11.059	~486.976	-424.373	154 - 570
700	40-384	65.689	44.198	15.044	-486.231	-413.998	129.250
800 900	41.323	71 - 144	47.231	19-131	-485.451	-403.732	110.289
000	42 • 1 73 42 • 968	76.061 80.546	50.166 52.983	23.306 27.563	-484.631 -483.776	-393.565 -383.491	95 ± 566 83 ± 808
100	43.727	84.677	66 (30	23 800		-373.506	74 • 205
200	44.461	88.514	55.679 58.257	31 • 898 36 • 308	-482.877 -481.937	-363.604	66.218
300	45.178	92.101	60.724	40.790	-480.955	-353.785	59.474
400	45.882	95.475	63.087	45.343	-479.932	-344.041	53.705
500	46.577	98.664	65.353	49.966	-478.870	-334.370	48.715
600	47.265	101-692	67.531	54 - 658	-477.769	-324.774	44.360
700	47.947	104.578	69.626	59.419	-476-627	-315.247	40.526
900	48 - 625	107.338	71.645	64.247	-475.452	-305.787	37.126
900	49.300	109.985	73.593	69.144	-474.236	-296.394	34 • 091
2000	49.972	112.531	75.477	74.107	-472.993	-287.064	31.367
100	50.642	114.985	77.300	79.138	-471 - 719	-277.800	28.910
2150	50.976	_116.181_	78-191	-81·678_	471.070_	273.193_	27.769
2150	56.000 56.000	132.981 134.268	78.191 79.450	T17.798 120.598	-434.950 -434.052	-269.434	27.769 26.764
2300	56.000	136.757	81.888	126.198	-432.290	-261.992	24 . 894
2400	56.000	139.141	84.225	131.798	-430-575	-254.632	234186
500	56.000	141.427	86.467	137.398	-428.923	247.334	21.621
2600	56.000	143.623	88.624	142.998	-427.319	-240.100	20 - 181
7700	56.000	145.736	90.700	148.598	-425.798	-232.928	18.853
2800	56.000	147.773	92.702	154.198	-424.367	-225.814	17.625
2900	56.000	149.738	94.635	159.798	-423.053	-218.743	16.484
3000	56.000	151.637	96.504	165.398	-421.873	-211.724	470463
3100	56.000	153.473	98.312	170.998	-420.844	-204.726	14.432
3200	56.000	155.251	100.064	176.598	-419.981	-197.777 -192.917	13.507 12.893
3270	56.000	156.463	101.258	180.518	-419.470 -432.878	- 92.917	12.893
3270	56.000 56.000	156.463 156.974	101.258 101.762	182.198	-432.433	-190.717	12.630
3300 3400	56.000	158.646	103.411	187. '98	-430.958	-183.419	11.789
3500	56.000	160.269	105-012	193.398	-429.493	-176.148	10.999
3600	56.000	161.847	106.569	198.998	-428.038	-168.935	10.255
3700	56.000	163.381	108.084	204.598	-426.591	-161.761	9.554
3800	56.000	164.874	109.559	210.198	-425.153	-154.617	8.892
3900	56.000	166.329	110.996	215.798	-423.726 -422.306	-147.518 -140.450	8 • 2 6 6 7 • 6 7 3
4000	56.000	167.747	112.397	221.398	-422.306	-1400430	
4100	56.000	169.130	113.764	226.998	-420.896	-133.427	7.112
4200	56.000	170.479	115.098	232.598	-419.496 -418.103	-126.421 -119.459	6.578
4300	56.000	171.797	116.402 117.675	238.198		-112.526	5.589
4400 4500	56.000 56.000	174.084	118.921	249.398		-105.638	5 • 130
-				254.998	-413.991	-98.753	4 4 6 9 2
4600	56.000	175.573	120.139 121.331	250.598		-91.912	4.27
4700	56.000 56.000	176.778 177.957	122.499	26, , 38		-85.099	3 . 874
4800 4900	56.000	179.111	123.642	271 - 198	-409.993	-78.318	34493
5000	56.000	180.243	124.763	277.398	-408.696	-71.560	3.12
		101 242	125.862	282.998	-407.421	-64.824	2.77
5100	56.000 56.000	181.352 182.439	126.939	288.598	-406-171	-58+114	2:44
5200 5300	56.000	183.506	127.997	294.198		-51.437	24121
5400	56.000	184.553	129.034	299.798		-44.766 -38.115	1481
5500	56.000	185.580	130.053	305.398	- 402 10 30	,,,,,,	
5600	56.000	166.589	131.054	310.998		-31.496	
5700	56.000	187.580	132.037	316.598		-24.891	0.95
5706.65	56.000	187.646	132.102	316.971		-24.450 -24.450	
5706.65	56.000	187.646	132.102	316.971 322.198			
5800	56.000	188.554	133.953	327.798			
5900 6000	56.000 •56.000	190.453	134.886	333.398			-0.49
							HLS

TANTALUM PENTOXIDE (Ta,
$$O_5$$
) (CONDENSED PHASE) gfw = 441.90

$$\Delta H_{f298.15}^{\bullet} = -488.7 \pm 0.4 \text{ kcal. gfw}^{-1} \qquad S_{298.15}^{\bullet} = 34.2 \pm 0.3 \text{ caldeg K}^{-1} \text{ gfw}^{-1}$$

$$T_{m} = 2150 \text{ °K} \qquad \qquad \Lambda H_{m} = 36.12 \text{ kcal gfw}^{-1}$$

$$H_{298.15}^{\bullet} - H_{0}^{\bullet} = 5.495 \text{ kcal gfw}^{-1}$$

$$C_{p}^{\bullet} = 37.0 + 6.56 \times 10^{-3} \text{ T} - 5.92 \times 10^{5} \text{ T}^{-2} \text{ caldeg K}^{-1} \text{ gfw}^{-1} \qquad 298.15 \text{ °K} \leq T \leq 2150 \text{ °K}$$

$$C_{p}^{\bullet} = 56 \text{ caldeg K}^{-1} \text{ gfw}^{-1} \qquad 2150 \text{ °K} \leq T \leq 6000 \text{ °K}$$

Structure

Structure is in doubt. Often orthorhombic structure is quoted.

Heat of Formation

Based on average of Humphrey and Huber et al. 2

Heat Capacity and Entropy

Low temperature data is from Kelley. ³ High temperature data from Orr⁴ is extrapolated to melting point. Data above melting point is estimated.

Melting and Vaporization

Heat of fusion is estimated.

References

- 1. Humphrey, G. L., J. Am. Chem. Soc. 76,978 (1954)
- 2. Huber, E. J., Jr., et al, J. Phys. Chem 67, 793 (1963)
- 3. Kelley, K. K., J. Am. Chem. Soc. 62 818 (1940)
- 4. Orr, R. L., J. Am. Chem. Soc. 75, 2808 (1953)

TANTALUM PENTØXIDE (Ta2O5) (CONDENSED PHASE) GFW = 441.90

SUMMARY OF UNCERTAINTY ESTIMATES

		cal/°K	417-		Kcal/gfw		
T, °K	C,	s _T	-(FT - H298)/T	HT - H298	ΔH_{I}^{2}	VE	Log Kp
298.15	±1.000	±0.300	±0.300	±0.000	± 0. 400		
1000	±1.000	±1.510	#0.808	±0.702			
2000	±1.000	±2.203	±1.352	±14702			
2150	±1.000	±2.276	#1.414	±1.852			
2150	±4+000	+4.601	+1.414	±6+852			
3000	44.000	±5.934	42.517	±10+252			
4000	±4.000	±7.085	£3.522	±14.252			
5000	44.000	±7.977		±18+252			
6000	44.000	±8.706	±4.998	± 22 • 252			

Reference State for Calculating AHf, AFf, and Log Kp. Solid Ti from 0° to 1950°K, Liquid Ti from 1950° to 3550°K, Gaseous Ti from 3550° to 6000°K; Gaseous O2. Solid Ti305 from 0° to 2173°K, Liquid Ti305 from 2173° to 6000°K

T, °K	(c)	cal/°K g ST	-(FT - H298)/T	H _T - H ₂₉₈	_Kcml/gfw ΛΗ _μ ο	ΔF	Log K _p
0	P 000				•	•	p
298.15	0.000 44.265	0.000	INFINITE	-5.510	-584.523	-584.523	INFINIT
300	44.320	30.900 31.174	30.900 30.901	0.000	-587.650	-553.778	405.91
400	47.270	44.328	32.674	0.082	-587.633	-553.568	403.25
450	48.745	47.781_	34.288	4 • 56 l 7 • 06 2	-586.689 -586.159_	-542.352 536.878_	296 • 31 260 • 73
450	45.200	54.959	34.288	9.302	-583.919	-536.878	260.73
500	45.600	59.742	36.598	11.572	-583.553	-531.629	232.36
600	46.400	68.126	41.173	16.172	-582.862	-521.309	189.87
700	47.200	75.339	45.551	20.852	-582.206	-511.104	159.56
800 900	48.000 48.800	81.694 87.394	49.679	25.612	-581 571	-500.990	136.85
1000	49.600	92.577	53.558 57.205	30•452 35•372	-580.941 -580.311	-490.954 -480.987	119.21
1100	50.400	97.341	60.640	40.372	-579.671	-471.088	93.59
1155	50.840	99.811	62.447	43.156	-579.309	-465.666	88 - 10
1155	50.840	99.811	62.447	43.156	-582.159	-465.666	88 - 10
1200	51.200	101.761	63.885	45.452	-581 .859	-461.132	83.98
1300	52.000	105.891	66.959	50.612	-581 - 175	-451.104	75.83
1400	52.800	109.774	69.880	55.852	-580. +%5	-441.123	68.85
1500	53.600	113.444	72.663	61.172	-579.170	-431.198	62.82
1600	54.400	116.929	75.321	66.572	-578.946	-421.321	57.54
1700	55.200	120.251	77.867	72.052	-578.136	-411.493	52.89
1900	56.000 56.000	121.428	90-311	77-612	-577.292	-401.716	48.77
1950	56.800	126.478	82.661	83.252	-576.410	-391.983	45.08
1950	57.200 57.200	127.958	83.803	86.102	-575.954	-387.132	43.38
2000	57.600	127.958 129.411	83.803 84.926	86.102 88.972	-587.054 -586.515	-387.132 -382.016	43.38
2100	58.400	132.241	87.112	94.772	-585.380	-371.819	38.69
2173	58.984	134.241	98.662	99.016_	584.510_	364.412_	36 • 64
2173	60.000	157-256	88.662		-534.510	-364.412	36 • 64
\$50C	60.000	1.7.997	89.508	150.676	-534.153	-362.299	35.98
2300	60.000	160.664	92.544	156.676	-532.843	-354.519	33.66
2400 2500	60.000 60.000	163.21P 165.667	95.436 98.197	162.676	-531.548 -530.268	-346.790 -339.124	31.57 29.64
1400	(0.000	140 030	100 017	124 474	. 538 309	131 404	77 04
2600 2 7 06	60.000 60.000	168.020	100.837 103.368	174.676	-528.998 -527.743	-131.494 -321.929	27 • 8 6 26 • 21
28CC	60.000	172.467	105.797	186.676	-526.493	-316.397	24.69
2900	60.000	174.572	108 - 132	191.676	-525	-308.915	23.27
3000	60.000	176.607	110.381	198.576	-524.041	-301.478	21.96
3100	60.000	178.574	112.549	204 • 676	-522.841	-294.075	20.7
3200	60.000	180.474	114.642	210.676	-521.646	-286.720	19.50
3300	60.000	182.32	116.046	216.676	-520. 5H	-279.340	18.50
3400	60.000	184.116	118.623	222.676	-519.283	-272-101	17.49
3500	60.000	185.856	120.519	228.676	-518.118	-264.847	16.5
3550	60.000	186.707	121.446	231.676	-517.538	-261.238	16.0
3550	60.000	186.707	121.446	231.676	-824.909	-261.238	16.0
3600	60.000	187.546	172.358	234.676	-824.349	-253.302 -237.452	15.3
3700	60.000	184.190	124.142 125.975	240.676 246.676	-823.262 -822.226	-221.628	1 = • 0 i
7900 7900	60.000 61.000	190.790 192.348		252.676	-821.243	-205.846	11.5
4000	60.000	171.867		258.676	-820.303	-190.068	10.3
		195.344	130.794	264.676	-819.412	-174.325	9.2
4100 4200	₩0.000 ₩0.000	196.745	•	270.676	-818.567	-15 .595	8.2
430C	60.000	198.207		276.676	-817.765	-14984	7.2
4400	60.000	199.586		676	-817.009	-127.194	6.3
4500	60.000	200.934		268.675	-816.294	-111.541	5.4
460C	60.000	202.253	138.193	294.676	-815.621	-95.869	4.5
4700	000.000	203.544		100.676	-814.993	-80.238	3.7
4800	60.000	204.807		106.676	-814.408	-64.601	2.9
4900	60.000	206.044		312.676	-813.864	-48.976	2 • 1
5000	60.000	207.256		318.676	-813.365	-33.375	1 • 4
5100	60.000	208.444		124 - 676	-812.915	-17.776	0.7
520C	60.000	09.609		330.676	-812.511	-2.192	0.0
5300	60.000	.10.752		136.676	-812-160	13.404	-0.5
5400 5500	60.000 60.000	211.874 212.975		342.676 348.676	-811.868 -811.637	44.561	-1 •1 -1 • 7
				354.676	-811.478	60-116	
5600 5 7 00	60.000 60.000	214.056 215.118		360.676	-811.397	75.705	-2.9
5800	60.000	216.161		360.676	-811.411	91.278	
5900	60.000	217.187		372.676		106.863	
2 7176	60.000	218.195		378.676	-811.770	122.438	-4.4
6000	B(• 000						

TRITITANIUM PENTOXIDE (Ti3O5) (CONDENSED PHASE) gfw = 223.70

$$\Delta H_{f298. \ 15}^{O} = -587. \ 65 \ kcal \ gfw^{-1}$$

$$T_{t} = 450^{\circ}K$$

$$\Delta H_{t} = 2.240 \ kcal \ gfw^{-1}$$

$$T_{m} = 2173^{\circ}K$$

$$\Delta H_{m} = 50.0 \ kcal \ gfw^{-1}$$

$$H_{298. \ 15}^{O} - H_{0}^{O} = 5.510 \ kcal \ gfw^{-1}$$

$$C_{p}^{O} = 35.47 + 29.50 \times 10^{-3} T \ cal \ degK^{-1} gfw^{-1}$$

$$298^{\circ}K \le T \le 450^{\circ}K$$

$$C_{p}^{O} = 41.60 + 8.00 \times 10^{-3} T \ cal \ degK^{-1} gfw^{-1}$$

$$298^{\circ}K \le T \le 2173^{\circ}K$$

$$C_{p}^{O} = 60.0 \ cal \ degK^{-1} gfw^{-1}$$

$$2173^{\circ}K \le T \le 6000^{\circ}K$$

Structure

According to Asbrink and Magneli, 1 the low-temperature form of Ti₃O₅ is monoclinic, and the high-temperature form is of anosovite type.

Heat of Formation

Calorimetric value as compiled by Kelley and Mah² used.

Heat Capacity and Entropy

Low-temperature data by Shomate. 3 High-temperature data by Naylor⁴ to 1600°K extrapolated to melting point. Data at higher temperatures estimated.

Melting and Vaporization

Heat of fusion estimated.

References

- 1. Asbrink, S. and A. Magneli, Acta Cryst. 12, 575 (1959).
- 2. Kelley, K. and A. Mah, U.S. Bur. Mines, Rept. 5490 (1959).
- 3. Shomate, C., J. Am. Chem. Soc. 68, 310 (1946).
- 4. Naylor, B., J. Am. Chem. Soc. 68, 1077 (1946).

TRITITANIUM PENTOXIDE (T1305) (CONDENSED PHASE)

GFW = 223.70

			cel/°K	elv			Kual/gfw		
T, *K		C.	s _T	-(FT - H	198)/T	HT - H 298	A H _i	ΔF_{ℓ}^{Ω}	Log Kp
298.15	±	1.000	± 0.200	± 0.20	0 ±	0.000	± 2.000		
450	*	1.000	# 0.612	# 0.21		0.152			
450	*	2.000	± 1.278	# 0.27		04452			
1000	*	2.000	# 2.875	# 1.32		1.552			
2000		2.000	± 4.262	# 2.46		3.552			
2173	*	2.000	# 4.428	# 2.63		34896			
2173	*	5.000	± 9.029	± 2.63		13.698			
3000	±	5.000	±10.642	# 4.6		18.033			
4000		5.000	±12.080	# 6.32		23.033			
5000	*	5.000	±13.196	# 7.59	-	28.033			
6000	*	5.000	±14.108	# 8.60		33.033			

Reference State for Calculating AN, AF, and Log Kp: Solid Re from 0° to 3453°K, Liquid Re from 3453° to 5961°K, Gaseous Re from 5961° to 6000°K, Gaseous O₂, Solid Re₂O₇ from 0° to 570°K, Liquid Re₂O₇ from

T, %		cal/% #					
•. •	(p	Sq	(F4 - И3 ₉₈)/Т	HT - HS-	Kcal/glw -		
6	0.000				7114	Aly	Log Kp
290.15	39.737	0.000 49.543	INFINITE	-7.246	-294-070	-294.070	INFINIT
30 0 40 0	39.850	49.789	49.543	0.000	-296.700	-294.070 -255.032 -254.774 -240.869	186.93
500	45.344 50.250	62.028	51.175	4.341	-296.693	-254.774	185.59
570	534537	79.475	57.095 57.095 59.622 62.400	12.757	-304 222		99.28
370 600	71.100	105.791	57.095	27.757	274.300_ -279.300	217.696_	83.46
634	71.100	113.357	62.400	29.890	-278.357	-214.463	83.465 78.11
						-210.878	72.689
			Tune 1963				

- ---

$$\Delta H_{f298. 15}^{\bullet} = -296.7 \text{ kcal gfw}^{-1}$$

$$S_{298. 15}^{\bullet} = 49.54 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$T_{m} = 570 \,^{\circ} \text{K}$$

$$\Delta H_{m} = 15.0 \text{ kcal gfw}^{-1}$$

$$\Delta H_{v} = 17.3 \text{ kcal gfw}^{-1}$$

$$H_{298. 15}^{\bullet} - H_{0}^{\bullet} = 7.246 \text{ kcal gfw}^{-1}$$

$$C_{p}^{\bullet} = 29.15 + 4.4 \times 10^{-2} \text{ T} - 2.25 \times 10^{5} \text{ T}^{-2} \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$298.15 \,^{\circ} \text{K} \leq T \leq 570 \,^{\circ} \text{K}$$

$$C_{p}^{\bullet} = 71.10 \text{ cal deg K}^{-1} \text{ gfw}^{-1} \text{ (estimated)}$$

$$570 \,^{\circ} \text{K} \leq T \leq 634 \,^{\circ} \text{K}$$

Structure

Preliminary investigations of crystal structure indicate an orthorhombic type. l

Heat of Formation

Heat of formation has been determined by Roth and Becker, 2 and by Boyd et al. 3 The average of these two determinations has been adopted here.

Heat Capacity and Entropy

Entropy at 298 °K has been calculated from low-temperature heat-capacity data of Busey. 4 Heat capacity of solid has been extrapolated to melting point. Heat capacity of liquid is estimated.

Melting and Vaporization

Melting and boiling temperatures have been calculated from vapor-pressure data of Ogawa⁵ and Smith et al. 6

References

- Wilhelmi, V., Acta Chem. Scand. 8, 693 (1954).
- Roth, W. A. and G. Becker, Z. Physik Chem. 159, 27 (1932).
- 3. Boyd, G. E., J. W. Cobble, and W. T. Smith, Jr., J. Am. Chem. Soc. 75, 5773 (1953).
- 4. Busey, R. H., J. Am. Chem. Soc. 78, 3263 (1956).
- 5. Ogawa, E., Bull. Chem. Soc. Japan $\overline{7}$, 265 (1932).
- 6. Smith, W. T., L. E. Line, and W. A. Bell, J. Am. Chem. Soc. 74, 4964 (1952).

RHENIUM HEPTOXIDE (Re207) ICONDENSED PHASE! GF# = 484.44 SUMMARY OF UNCERTAINTY ESTIMATES

- Kcal/alw ----S4 -(F4 - H308)/T H4 - H308 AH7 T. X ± 0.040 ± 0.050 ± 0.040 ± 0.050 ± 0.050 4 2-000 * 0.000 300 400 500 ± 0.050 ± 0.052 ± 0.000 ± 0.004 ± 0.062 ± 0.071 # 0.040 ± 0.040 ± 0.055 ± 0.008 570 570 600 ± 0.057 ± 0.057 ± 0.040 ± 0.076 ± 0.011 ± 0.953 ± 1.004 ± 1.060 ± 1.000 * 0.511 ± 1.000 ± 1.000 # 0.103 # 0.153

Reference State for Calculating AHr. AFr. and Log Kp: Solid Os from 0° to 3290°K,
Liquid Os from 3290° to 5270°K, Gaseous from 5270° to 6000°K.

T, °K	(°	; el/°k	-	(1°°	_ Kcal/glw	9	
•		4	-(FT - H298)/T	H _T - H ₂₉₈	ΔH	ΛF,	Log Kp
0 298•15	0.000	0.000		-1.210			
300	5.952 5.954	7.800 7.837		0.000			
400	6.042	9.562	7.801 8.035	0.011			
500	6.130	10.919	8.481	0.611 1.219			
600	6.218	12 044					
700	6.306	12.045	8.983	1.837			
800	6.394	13.858	9.491 9.985	2.463			
900	6.482	14.616		3.098 3.742			
1000	6.570	15.303	10.909	4.394			
1100	6.658	15.934	11.338	5.056			
1200	6.746	16.517	11.745	5.726			
1300	6.834	17.060	12.133	6.405			
1500	6.922 7.010	17.570 18.051	12.504	7.093			
		10.071	12.858	7.789			
1600	7.098	18.506	13.196	8.495			
1700 1800	7 • 1 8 6	18.939	13.522	9.209			
1900	7.274 7.362	19.352	13.834	9.932			
2000	7.450	19.748 20.127	14.135 14.425	10.664			
2100				11.404			
2100 2200	7.538	20.493	14.706	12.154			
2300	7.626 7.714	20.846 21.187	14.977	12.912			
2400	7.802	21.517	15.239 15.494	13.679 14.455			
2500	7.890	21.837	15.741	15.239			
2600	7.978	22.146					
700	A.066	22.148 22.451	15.982 16.216	16.033 16.835			
2800	8.154	22.746	16.444	17.646			
2900	8.242	23.034	16.666	18.466			
3000	8.330	23.315	16.883	19.294			
3100	8.418	23.589	17.095	20.132			
3200	8.506	23.858	17.302	20.978			
3290	8.585	24.095_	17.485	21.747			
3290 3300	9.000	26.395	17.485	29.314			
3400	9.000 9.000	26.422 26.691	17.512 17.778	29.404			
3500	9.000	26.952	18.036	30 • 30 4 31 • 20 4			
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
3600 3700	9.000 9.000	27.205 21.452	18.287	32 • 104			
3800	9.000	27.692	18.53 <i>2</i> 18.770	33.004 33.904			
1900	9.000	27.926	19.001	34.804			
600C	9.000	28.153	19.227	35.704			
100	9.000	28.376	10 440	24 484			
200	9.000	28.593	19.448 19.663	36.604 37.504			
300	9.000	28.804	19.873	38.404			
400	9.000	29.011	20.078	39.304			
500	9.000	29.213	20.279	40.204			
600	9.000	29.411	20.476	41.104			
700	9.000	29.605	20.668	42.004			
800 900	9.000 9.000	29.794 29.980	20.856	42.904			
000	9.000	30.162	21.040 21.221	43.804 44.704			
300	9.000	30.340	21.398	45.604			
200 269-57	9.000 9.000	30.515 30.634	21.572 21.690	46.504 47.130			
269.57		64.110	21.690	223.531			
300	8.773	64.161	21.935	223.798			
400	8.809	64.326	22.719	224.677			
500	8.838	64.488	23.447	225.560			
600	8 . 866	64.647	74.210	226 • 445			
700	8.893	64.804	24.921	227.333			
800	8.919	64.959	25.610	228+274			
900	8.944	65.112 65.262	26.279 26.927	229.117			
	0 . 700	07.202	209721	230.012			

0°K to 3290°K 3290°K to 5269, 57°K 5269. 57°K to 6000°K

Crystal Liquid Ideal Monatomic Gas

 $\Delta H_{00}^{o} = 0 \text{ kcal gfw}^{-1}$

$$\Delta H_{1298, 15}^{\circ} = 0 \text{ kcal gfw}^{-1}$$

$$\Delta H_{a298, 15}^{o} = 187.400 \text{ kcal gfw}^{-1}$$
 $S_{298, 15}^{o} = 7.800 \text{ cal deg K}^{-1}\text{gfw}^{-1}$

$$S_{298.15}^{9} = 7.800 \text{ cal deg K}^{-1} \text{gfw}^{-1}$$

T_ = 3290°K

Th = 5269. 57°K

Hy = 176. 401 kcal gfw-1

 $H_{298, 15}^{0}$ - H_{0}^{0} = 1.210 kcal gfw⁻¹

$$C_p^0 = 5.690 + 0.880 \times 10^{-3} \text{T cal deg K}^{-1} \text{gfw}^{-1}$$
 298. $15^0 \text{K} \le T \le 3290^0 \text{K}$

$$C_{\rm p}^{\rm o}$$
 = 9.000 cal deg K⁻¹gfw⁻¹

3290°K < T < 5269. 57°K

Structure

An hcp (A3) type. See volume 1, this study (section IVA18) for details.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Kelley's equation used in compilation and extrapolated to melting point.

Melting

See volume 1, this study (section IVA18) for details.

Vaporization

Data from Panish and Reif. 2

References

- 1. Kelley, K. K., U. S. Bur. Mines, Bull. 584 (1960).
- 2. Panish, M. B. and L. Reif, J. Chem. Phys. 37, 128 (1962).

SMIUM (Os)

(REFERENCE STATE)

GFW - 190.2

cal/°K gfv Kcal/gfv Kcal/gfv											
T,*K	رد .	s *	-(FT - H298)/T	HT - H298	٧Hg	1 F1	Log Kp				
298.15	±0.100	*0.500	±0.500	±0.000							
1000	±0.500	±0.740	±0.600	+0.140							
2000	±1.000	±1.260	40.810	±0.890							
3000	±1.500	±1.770	±0.890	±2.140							
3290	#1.640	±1.910	±14120	±2.580							
3290	+0+450	±2.270	#1.120	±3.780							
4000	±1.750	±2.490	±1.350	#4.570							
5000	+3+350	±3.080	#14640	±7.220							
5269.57	±4.050	±3.230	±1.660	±8.290							
5269.57	±0.008	±0.010	#0.005	±0.029							
4000	±0.004	±0.001	±0.406	±0.034							

Reference State for Calculating AH, AF, and Log Kp: Solid Os from 0° to 3290°K, Liquid Os from 3290° to 5270°K, Gaseous Os from 5270° to 6000°K

		cel/°K	-1-		rom 5270°		
T, *K	C.	s	-(FT - H298)/T	HT - H298	Kcel/gfw ΔH _e	AF	
^			2,76			arı	Log Kp
0 298 • 15	0.000	0.000	INFINITE	-1.481	187.129	187.129	
300	4.968	46.002	46.002	0.000	187.400	176.010	-129.01
400	4.969	46.032	46.002	0.009	187.398	175.940	-128.46
500	4.996	47.462 48.574	46.197	0.506	187.295	172.135	-94.04
		40.374	46.565	1.005	187.186	168.358	-73.58
600	5.044	49.489	46.978	1 404			
700	5.122	50.272	47.394	1.506 2.014	187.069	164.603	-59.95
800	5.231	50.962	47.798	2.532	186.951	160.868	-50.22
900	5.367	51.586	48.185	3.061	186.834 186.719	157.150 153.446	-42.92
1000	5.522	52.159	46.554	3.606	186.612	149.755	-37.26 -32.72
1100	5.691	52.694	48.906				
1200	5.867	53.196	49.243	4.166	186.510	146.075	-29.02
1300	6.042	53.673	49.565	5.340	186.418	142.403	-25.93
1400	6.211	54-127	49.875	5.952	186.335 186.259	138.738	~23.32
1500	6.372	54.561	50.173	6.582	186.193	135.081 131.428	-21.08 -19.14
1600	6.571	977 م	60				
1700	6.658	******	50.460 50.738	7.226	186 - 131	127.778	-17.45
1800	6.782	55.761	50.738 51.006	7.885	186.076	124.133	-15.95
1900	6.894	56.130		8.557	18 .025	120.490	-14.62
2000	6.996	56.486	51.266 51.519	9.241 9.936	185.977 185.932	116.851 113.212	-13.44 -12.37
3100	7 000						-12031
2100	7.088	56.830	51.763	10.640	185.887	109.580	-11.40
2200	7-173	57.162	52.001	11.353	185.841	105.948	-10.52
2300	7.251	57.482	52.233	12.074	185.795	102.314	-9.72
2400 2500	7.324	57.793	52.458	12.803	185.748	98.686	-8.98
2 300	7.393	58.093	52.677	13.539	185.700	95.060	-8.31
2600	7.459	58.384	52.891	14.282	185.649	91.437	-7.68
2700	7.523	58.667	53.100	15.031	185.596	87.813	-7.10
2800	7.584	58.942	53.304	15.786	185.540	84.192	-6.57
2900	7.645	59.209	53.503	16.548	185.487	80.573	-6.07
3000	7.704	59.469	53.697	17.315	185.421	76.958	-5.60
3100	7.763	59.722	53.888	18.088	185.356	73.342	-5.17
3200	7.821	59.970	54.074	18.868	185.290	69.730	-4.76
3290	7.072	60.188_	54.238		_ 185.227		
3290	7.872	60.188	54.238	19.574	177.660	66.483	-4.41
3300	7.878	60.211	54.256	19.653	177.649	66.145	-4.38
3400	7.934	60.447	54.435	20.443	177.539	62.766	-4.03
3500	7.990	60.678	54.610	71.239	17 15	59.391	-3.70
3600	8.045	60.904	54.782	22.041	177.531	56.018	-3.40
3700	8.098	61.175	54.950	22.848	177.244	52.653	-3.11
3800	8.151	61.347	55.115	23.661	177.157	49.289	-2.83
3900	8.203	61.554	55.278	24.478	17".074	45.920	-2.57
4000	8.253	61.763	55.437	25 • 301	176.997	42.560	-2.32
4100	8.302	61.967	55.594	26.129	176.925	39.201	-2.09
4200	8.350	62.168	55.748	26.962	176.858	35.843	-1.86
4300	8.396	62.365	55.900	27.799	176.795	32.484	-1.65
4400	8.441	62.558	56.049	28.641	176.737	29.128	-1.44
4500	8.484	62.748	56.196	29.487	176.683	25.773	-1.25
4600	8.526	62.935	56.340	30.338	176.634	22.426	-1 .64
4700	8.567	63.119	56.482	31.192	176.588	19.074	-1.06 -0.88
					176.547		_
4800 4900	8.604 8.643	63.478	56.623 56.761	32.351 32.913	176.509	15.718	-0.71
5000	8.679	63.653	56.847	33.779	176.475	12.367 9.020	~0.55 ~0.39
5100	8.713	63.825	57.031	34.649	176.445	5.672	-0.24
5200	8.746	63.994	57.163	35.522	176.418	2.327	-0.09
5269.57	8.769	64-110	57.254	36 • 131	_176.401	0.000	0.00
5269.57	8.769	64.110	57.254	36 • 131			
5300	8.773	64.161	57.294	36.398			
5400	8.809	64 - 326	57.622 57.569	37.277 38.160			
5500	8.818	64.488	57.549	38.160			
5600	8.866	64 - 647	57.675	39.045			
5700	8.893	64.804	57.798	39.933			
5800	8.919	64.959	57.921	40.824			
5900	8.944	65.112	58.041	41.717			
6000	8.968	65.767	58.160	42.612			
			15 Septemi	10/3			RCF

$$\Delta H_{f0}^{o} = 187.129 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 187.400 \text{ kcal gfw}^{-1}$$
Ground State Configuration = $^{5}D_{4}$

$$S_{298.15}^{o} = 46.002 \text{ cal deg } K^{-1}\text{gfw}^{-1}$$

$$H_{298.15}^{o} = 1.481 \text{ kcal gfw}^{-1}$$

Electronic Levels and Multiplicities

Energy levels from Van Kleef. 1, 2

Heat of Formation

Data from Panish and Reif. 3

Heat Capacity and Entropy

Calculated from monatomic gas-computer program.

References

- Van Kleef, T., Koninkl. Ned. Akad. Wetenschap. Proc. <u>B63</u>, 549 (1960).
- 2. Van Kleef, T. and P. Klinkenberg, Physica 27, 83 (1961).
- 3. Panish, M. B. and L. Reif, J. Chem. Phys. 37, 128 (1962).

SMIUM. HENATENIC (Oa)

(IDEAL GAS)

GFW = 190.2

		cal / °K	Kcal gfw				
T.°K	c*	S _T	-(FT - H298)/T	HT - H298	Kcal ′gfw ∆H _f	111	log Kp
298.15	±0.000	±0.002	±0.002	±0.000 °	±1.500	± 1.650	±0.840
1000	±0.000	±0.002	±0,003	±0.000	±1.640	± 2.100	±0.380
2000	*0.002	±0.003	±0.003	±0.001	±2.390	± 3.120	±0.296
3000	±0.008	±0.004	±0.003	±0.005	+3-640	± 4.170	±0.270
3290	±0.009	±0.005	±0.003	±0.008	+4.090	± 5.180	±0.310
3290	±0.009	±0.005	±0.003	+0.008	±5.290	± 5.180	±0.31
4000	±0.013	±0.007	+0.004	+0.016	±6.090	± 6.900	±0.35
5000	±0.010	±0.010	#0.002	±0.027	±8.750	± 9.700	±0.40
5269.57	±0.008	±0.010	±0.005	+0.029	±9.820	±10.250	#0.41
5269.57	*0.008	±0.010	± 0.005	±0.029			20.2
6000	+0.004	±0.011	+ 0.006	±0.034			

PLATINUM

REFERENCE STATE

Reference State for Calculating AHr, AFr, and Log Kp: Solid Pt from 0° to 2043°K, Liquid Pt from 2043° to 4108°K, Gaseous Pt from 4108° to 6000°K

· ·	(.	cel/°K	8.0	_Kcal/gfw			
T, *K	C,	st	-(FT - H298)/T	H _T - H ₂₉₈	ΔH	AF	Log Kp
0	0.000	0.000	•••				-
298.15	6.180	0.000 9.950	INFINITE	-1.372			
300	6.183	9.988	9.950 9.950	0.000			
400	6.339	11.790	10.195	0.011			
500	6.464	13.218	10.661	0.638 1.278			
600	6.583	14.407					
700	6.704	15.431	11.189 11.724	1.931			
800	6.827	16.334	12.245	2.595 3.271			
900	6.951	17.145	12.745	3.960			
1000	7.076	17.884	13.222	4.662			
1100	7.201	18.564	13.677				
1200	7.326	19.196	14.111	5.376 6.102			
1300	7.452	19.788	14.525	6.841			
1400 1500	7.577	20.344	14.921	7.592			
1,00	7.703	20.871	15.301	8.356			
1600	7.828	21.373	15.665	9.133			
1700	7.954	21.851	16.014	9.922			
1800	8.080	22.309	16.352	10.724			
1900 2000	8.206	22.749	16.677	11.538			
2000	8.332	23.173	16.991	12.365			
2043	8.386	23.351_	17.149	_12.724			
2043	8.500	25.651	17.149	17.423			
2100 2200	8 - 500	25.885	17.358	17.908			
2300	8.500 8.500	26.281	17.754	18.758			
2400	8 • 500	26.658	18.133	19.608			
2500	8.500	27.020 27.367	18.496	20.458			
		2	18.844	21.308			
2600	8.500	27.701	19.178	22.158			
2700 2800	8.500	28.021	19.500	23.009			
2900	8.500 8.500	28.331	19.810	23.858			
1000	8.500	28.679 28.917	20.109	24.708			
		200,11,	20.398	25.558			
3100	8.500	29.196	20.677	26.408			
3200	8.500	29.466	20.948	27.258			
3300 3400	8.500	29.727	21.210	28.108			
3500	8.500 8.500	29.981 30.227	21.464	28.958			
		300227	21.711	29.808			
3600	8.500	30.467	21.951	30.658			
3700 3800	8.500	30.700	22.184	31.500			
3900	8.500	30.926	22.411	32 - 358			
4000	8.500 8.500	31.147 31.362	22.632 22.848	33.208			
				34.058			
4100 4108.34	8.500	31.572 31.589	23.058	34.908			
4108.34	5.829	-61.168	23.126 23.126	_34.979 156.498			
4200	5.850	61.297		157.032			
4300	5.873	61.435		157.619			
4400	5 • 8 9 5	61.570	25.614	158.207			
4500	5.917	61.703	26.415	158.798			
4600	5.939	61.833	27.183	159.390			
4700	5.960	61.961	27.922	159-985			
4800	5.982	62.087	28.632	160.583			
4900 5000	6.003	62.210		161.182			
,,,,,	6.024	62.332	29.975	161.783			
5100	6.046	62.451	30.610	162-387			
5200	6.067	62.569	31.224	162.992			
5300	6.089	62.685		163-600			
5400 5500	6.111	62.799 62.911		164 - 210			
		OL 4711	J68743 .	164.822			
5600 5700	6.155	63.022		65.437			
5800	6 • 178 6 • 202	63.131		166.053			
900	6.225	63.239 63.345		166.672 167.294			
5000	6.250	63.450		67.917			

GFW = 195.09

	0°K to 2043°K 2043°K to 4108°K 4108°K to 6000°K	Crystal Liquid Ideal Monatomic Gas
$\Delta H_{0}^{o} = 0$		$\Delta_{\text{H}_{1298.15}^{\circ}=0}$
$\Delta_{\rm H_{8298.15}^{o}} = 135.$	100 kcal gfw ⁻¹	$S_{98.15}^2 = 9.950 \text{ cal deg } \text{K}^{-1}\text{gfw}^{-1}$
T _m = 2043°K		$\Delta H_{\rm m} = 4.699 \text{ kcal gfw}^{-1}$
T _b = 4108°K		Δ H _v = 121.519 kcal gfw ⁻¹
$H_{298.15}^{0} - H_{0}^{0} = 1.372$	kcal gfw ⁻¹	
$C_p^o = 6.028 + 0.969$	ж 10 ⁻³ Т - 0.1220 ж	10 ⁵ T ⁻² cal deg K ⁻¹ gfw ⁻¹
		298. 15° K \leq T \leq 500°K
$C_p^0 = 5.810 + 1.260$	$\times 10^{-3} T - 0.060 x$	10 ⁵ T ⁻² cal deg K ⁻¹ gfw ⁻¹
		500°K <u>∠</u> T <u>∠</u> 2043°K
$C_p^0 = 8.500 \text{ cal deg } I$	K ⁻¹ gfw ⁻¹	2043°K <u>∠</u> T <u>∠</u> 4108°K

Structure

An f. c. c. (Al) type.

Hea of Formation

Zero by definition.

Heat Capacity and Entropy

Kelley et al¹ calculated S₂₉₈ and that value adopted. Heat-capacity data based on measurements of several authors. Liquid heat capacity estimated.

Melting and Vaporization

Heat of fusion estimated. Melting point estimated from works of several authors. Heat of vaporization calculated. See volume 1, this study (section IVA20) for details.

Reference

1. Kelley, K. K. and E. G. King, U. S. Bur. Mines, Bull. 592 (1961).

PLATINUM (Pt) (REFERENCE STATE)

SUMMARY OF UNCERTAINTY ESTEMATES

		cel/°K	d*		Kcal/gfw				
T, *K	′ c•	s _T	-(FT - H298)/T	HT - H298	ΔHμ	$\Delta F_I^{\alpha \lambda}$	Log Kp		
290.15	±0.020	±0.050	±0.050	±0.000					
1000	±0.020	±0.070	40.060	±0.010					
2043	±0.100	±0.120	40.080	±0.080					
2043	40.420	±0.510	40.080	40.880					
3000	± 2.050	±0.980	#0.290	#2.060					
4000	±3.750	±1.810	40.570	44.960					
4108.34	±3.930	#14910	40.610	*5.370					
4108.34	40.000	+0.003	+0.003	#0.001					
5000	±0.001	+0.003	#0.003	#0.001					
4000	-0.001	±0.003	40.003	*0.002					

Reference State for Calculating AH, AF, and Log Kp: Solid Pt from 0° to 2043°K, Liquid Pt from 2043° to 4108°K, Gaseous Pt from 4108° to 6000°K

		cal/°K	-1				
T, °K	΄ ς•	s _T	-(FT - H298)/T	H _T - H ₂₉₈	_Kcal/gfw AH _i	A F	Log Ko
_				298			~ a ~p
0	0.000	0.000	INFINITE	-1.572	134.900	134.900	INFINITE
298•15 300	6.102	45.962	45.962	0.000	135.100	124.363	-91.156
400	6.113 6.459	45.999	45.962	0.011	135.100	124.296	-90.545
500	6.435	47.817 49.260	46.207 46.679	0.644	135-106	120.695	-65.942
			40.077	1.291	135.113	117.091	-51.178
600	6.260	50.419	47.209	1.926	135.095	113.488	-41.336
700 800	6.059	51.369	47.738	2.542	135.047	109.890	-34.308
900	5.877 5.728	52.166	48.243	3.138	134.966	106.302	-29.039
1000	5.609	52.849 53.446	48.717	3.718	134.858	102.725	-24.944
• +	2.007	37.440	49.161	4.285	134.723	99.161	-21.671
1100	5.517	53.976	49.575	4.841	134.565	95.612	-18.995
1200	5.447	54.453	49.962	5.389	134.387	92.079	-16.769
1300	5.395	54.887	50.325	5.931	134.190	88.560	-14.886
1400 1500	5.358 5.333	55.285 55.654	50.665	6.469	133.977	85.058	-13.278
.,	,,,,,	,,,,,,,,	50.985	7.003	133.747	81.574	-11.889
1600	5.318	55.998	51.288	7.536	133.503	78.103	-10.668
1700	5.311	56.320	51.575	8.067	133.245	74.646	-9.596
1800	5.310	56.623		8.598	13",974	71.209	-8.646
1900	5.316	56.911		9.129	132.691		-7.791
2000	5.326	57.184	52.353	9.661	132.396	64.376	-7.03
2043	5.332	47.304	52.463	0.401	122 247	43.631	-4.72
2043	5.332	57.294	52.453 52.453	9.891	127.568	62.921	
2100	5.340	57.444		10.195	127.387	61.115	-6.36
2200	5.356	57.693		10.729	127.071	57.964	-5.75
2300	5.376	57.931	53.033	11.266	126.758	54.830	-5.210
2400	5.397	58.160		11.805	126.447	51.710	-4.70
2500	5.421	58.381	53.443	12.346	126.138	48.602	-4.249
2600	5.445	58.594	53.637	12.889	125.831	45.507	-3.82
2700	5.470	58.800		13.435	125.527	42.425	
2800	5.496	59.000		13.983	125.225	39.351	-3.07
2900	5,523	59.193		14.534	124.926	36.291	-2.73
3000	5.549	59.381		15.087	124.629	33.241	-2.42
				_			
3100	5.576	59.563		15.644	124.336	30.196	-2.12
3200	5.603 5.629	59.740 59.913		16.203 16.764	124.045 123.756	27.167 24.144	-1.85°
3300 3400	5.655	60.082		17.328	123.470	21.129	-1.35
3500	5.681	60.246		17.895	127 187	18.123	-1.13
,,,,,							
3600	5.707	60.406		18.465	155. 0.	15.126	-0.90
3700	5.732	60.563		19.037	122.6.9	12.134	-0.71
3600	5.756	60.716		19.611	122.353	9.153	-0.52 -0.34
3900	5.780 5.804	60.866		20.188 20.767	177.080 121.809	6.174 3.208	-0.17
4000	3 · 004	01.013	// OE 1	200,07	,	20100	
4100	5.827	61.156	55.949	21.349	121.541	0.247	-0.01
4108.34	5.829	61.168	55.960	21.398	121.519	0.000	0.00
4108.34	5.829	91.100	,,,,,,,	21.398			
4200	5.850	61.297		21.932			
4300	5.673	61.435		22.519			
4400	5.895	61.570		23.107 23.698			
4500	5.917	010103	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	23.0.4			
4600	5.939	61.833	56.553	24.290			
4700	5.960	61.961		24.885			
4800	5.982	62.087	56.778	25.483			
4900	6.003	62.210	56.888	26.082			
5000	6.024	62.332	56.995	26.683			
			47 141	27.287			
5100	6.046	62.451		27.892			
5200	6.067 6.089	62.569 62.685		28.500			
5300 5400	6.111	62.799		29.110			
5500	6.133	62.911		29.722			
2,00		•	·				
5600	6.155	63.022		30.337			
5700	6.178	63.131	57.701	30.953			
5800	6.202	63.239		31·572 32·194			
5900	6.225 6.250	63.450		32.817			
6000	0.670	57.470					

$$\Delta H_{f0}^{o} = 134.900 \text{ kcal gfw}^{-1}$$
 $\Delta H_{f298.15}^{o} = 135.100 \text{ kcal gfw}^{-1}$

Ground State Configuration = $^{3}D_{3}$
 $S_{298.15}^{o} = 45.962 \text{ cal deg K}^{-1}\text{gfw}^{-1}$
 $H_{298.15}^{o}^{-1} = 1.572 \text{ kcal gfw}^{-1}$

Electronic Levels and Multiplicities

Spectroscopic energy levels from Moore. 1

Heat of Formation

Based on several reported values. See volume 1, this study (section IVA20) for details.

Heat Capacity and Entropy

Calculated on monatomic-gas computer program.

Reference

1. Moore, C., Nat. Bur. Stds. (U.S.) Circ. 467, Vol. 3 (May 1958).

PLATINUM . MONATOMIC (Pt)

(IDEAL GAS)

GFW = 195.09

I, °K	c,	ST	-(FT - H298)/T	H _T - H ₂₉₈	_Kcal gle NH _j	111)	tog kp
298.15	± 0.000	± 0.002	±0.003	± 0.000	± 0.300	± 0 • 320	± 0 • 2 3 0
1000	± 0.000	± 0.003	±0.003	±0.000	±0.310	±0.360	±0.080
2000	±0.000	± 0.003	±0.003	±0.000 .	•		
2043	± 0.000	± 0.003	±0.003	± 0.000	± 0.380	±0.470	±0.050
2043	± 0.000	± 0.003	±0.003	± 0.000	± 1 - 180	±0.470	+0.050
3000	± 0.000	± 0.003	±0.003	± 0.001	± 2 • 360	±1.180	+0.090
4000	± 0.000	± 0.003	±0.003	± 0.001	± 5.260	+ 2.590	+ 3 - 140
4108.34	± 0.000	± 0.003	±0.003	± 0.001	£ 5 . 670	+2.820	+0.150
4108.34	± 0.000	± 0.003	±0.003	± 0.001			20010
5000	# 0.001	± 0.003	±0.003	± 0.001			
6000	# 0.001	± 0.003	±0.003	± 0.002			

Reference State for Calculating AHI, AFI, and Log Kp. Solid Re from 0° to 3453°K, Liquid Re from 3453° to 5960°K, Gaseous Re from 5960° to 6000°K

T 0L	0	çel/°K	Kcal/gfw.				
T,°K	C _p	s _T	-(FT - H298)/T	HT - H298	ΔH	14 P	Log Kp
٥	0.000	0.000	INFINITE	_1 ^4			•
298-15	6.160	8.886		-1 - 307			
300	6.162	8.924	8 • 886 8 • 886	0.000			
400	6.262	10.710	9.129	0.011			
500	6.365	12.119	9.591	0.633			
			7.071	1.264			
600	6.472	13.789	10.112	1.906			
700	6.583	14.295	10.640	2 • 558			
800	6.697	15.181	11.153	3.222			
900	6.815	15.977	11.645	3 4 8 9 8			
1000	6.936	16.701	12.115	4.585			
1100	7.061	17.368	12.563	5 - 285			
1200	7.189	17.988	12.989	5.998			
1300 1400	7.321	18.568	13.396	6.723			
1500	7.456	19-116	13.786	7.462			
1300	7.595	19.635	14.158	8.215			
1600	7.73A	20.130	14.516	8.981			
1700	7.884	20.603	14.860	9.762			
1800	8.033	21.058	15.192	10.558			
1900	8.186	21.496	15.513	11.369			
2000	8.343	21.920	15.822	12.195			
2100	8.503	22.331	16.123	13.038			
2210	8.667	22.730	16.414	13.896			
2300	8.834	23.114	16.697	14.771			
2400 2400	9.005	23.479	16.973	15.663			
2500	9.179	23.870	17.241	16.572			
2600	9.357	24.233	17.501	17.499			
2700	9.539	24.590	17.759	18.444			
2800	9.773	24.940	18.009	19.407			
2900	9.912	25.285	18.254	20.389			
30 00	10-104	25.624	18.494	21.389			
3100	10.300	25.958	18.730	22.410			
3200	10.499	26.289	18.961	23.450			
3300	10.701	26.615	19.188	24.509			
3400	10.908	26.937	19.411	25.590			
3453	11.018	27.107	19.528_	26.171			
3453	11.000	79.407	19.528	34.113			
3500	11.000	29.556	19.661	34.630			
3600	11.000	29.865	19.940	35.730			
3700	11.000	30.167	20.213	36.830			
3800	11.000	30.460	20.479	37.930			
3900	11.000	30.746	20.738	39.030			
4000	11.000	31.024	20.992	40.130			
4100	11.000	11.296	21.240	41.230			
4200	11.000	31.561	21.483	42.330			
4300	11.000	31.620	21.720	43.430			
4400	11.000	32.073	21.952	44.530			
4500	11.000	12.120	22.180	45.630			
460C	11.000	32.562	22.403	46.730			
6700	11.000	32.798	22.622	47.830			
4800	11.000	33.030	22.836	48.930			
4900	11.000	33.257	23.047	50.030			
5000	11.000	33.479	23.253	51.130			
5100	11-000	33.697	23.464	62.22A			
5100 5200	11.000 11.000	33.910	23•456 23•655	52 • 230 53 • 330			
5300	11.000	34.120	23.850	54.430			
5400	11.000	34.326	24.042	55.530			
5500	11.000	34.527	24.231	56.630			
5600	11.000	34.726 34.920	24.417 24.599	57•730 58•830			
5700 5 80 0	11.000	35.112	24.779	59.930			
5800 5900	11.000	35.300	24.956	61.030			
5960.67	11.00	35.412_	25.061	_61.696			
5960.67	-13.15/-	63.650	25.061	230.011			
6000	13.178	63.738	25.316	230.530			

0°K to 3453°K 3453°K to 5960°K 5960°K to 6000°K Crystal Liquid Ideal Monatomic Gas

$$\Delta H_{f0}^{o} = 0$$

$$\Delta_{H_{1298.15}^{\circ}} = 0$$

$$\Delta H_{8298, 15} = 185.370 \text{ kcal gfw}^{-1}$$

$$\Delta H_{m}$$
= 7.942 kcal gfw⁻¹

$$\Delta_{\rm H_{\odot}} = 168.315 \, \rm kcal \, \, gfw^{-1}$$

 $H_{298, 15}^{\circ} - H_{0}^{\circ} = 1.307 \text{ kcal gfw}^{-1}$

$$C_{\rm p}^0 = 5.883 + 0.876 \times 10^{-3} \text{T} + 0.0177 \times 10^{-5} \text{T}^2 \text{ cal deg K}^{-1} \text{gfw}^{-1}$$

$$C_{\rm p}^{\rm o}$$
 = 11.000 cal deg K⁻¹gfw⁻¹

Structure

An h. c. p. (A3) type.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Entropy based on Keesom et al. 1 High-temperature heat-capacity data of Jaeger et al 2 joined to low-temperature data. Liquid heat capacity estimated.

Melting and Vaporization

Heat of fusion estimated. Sims et al 3 melting point adopted. Heat of vaporization calculated and based on Sherwood et al. 4

References

- 1. Keesom, P. H. and C. A. Bryant, Phys. Rev. Letters 2, 260 (1959).
- Jaeger, F. M. and E. Rosenbohm, Proc. Acad. Sci. Amsterdam 36, 786 (1933).
- Sims, C. T., C. M. Craighead, and R. I. Jaffee, J. Metals 7, 168 (1955).
- 4. Sherwood, E. M. et al, J. Electrochem. Soc. 102, 650 (1955).

RHENIUM (Re)

IREFERENCE STATE)

GFW - 186.22

T, *K	<u></u>	cal/°K ST	-(FT - H298)/T	H _T - H ₂₉₈	Kenl/gfw	ΔF	Log K
-, -	7	-1		7	•	•	- ,
298.15	±0.040	±0.050	±0-050	± 0.000			
1000	±0.100	+0.090	±0.070	± 0.020			
2000	±0.500	+0.290	±0.130	+ 0 - 320			
3000	±1.000	#0.600	#0.240	± 1.070			
3453	±1.500	±0.770	±0.300	±1.640			
3453	*1.550	±1.210	±0.300	* 3.140			
4000	±1.750	±1.380	+0.440	± 3.770			
5000	± 3 • 950	#2.010	#0.690	+ 6 - 620			
5940.47	±6.070	± 2 . 890	40.970	±11.430			
5960.67	±0.009	±0.005	+0.003	± 0.012			

Reference State for Calculating AH², AF², and Log K_p: Solid Re from 0° to 3453°K, Liquid Re from 3453° to 5960°K, Gaseous Re from 5960° to 6000°K

T 0r	0				_Kcal/glw		
T,ºK	,c.,μ,	ST	-(FT - H ⁰ 298)/Т	HT - H298	ΔH	A F	Log Kp
0	0.000						
298-15	0.000 4.968	0.000	INFINITE	-1.481	185.196	185.196	INFINITE
300	4.968	45.133 45.163	45.133	0.000	185.370	174.563	-127.952
400	4.968	46.593	45.133	0.009	185.368	174.496	-127.114
500	4.968	47.701	45.328 45.696	0.506 1.003	185.243 185.109	170.890 167.318	-93.366
600	4.968	40 403			.071.07	10.4310	-73.131
700	4.968	48.607 49.373	46.108 46.521	1.500	184.964	163.772	~59.651
800	4 . 968	50.036	46.920	1.996 2.493	184.808	160.253	-50.031
900	4.968	50.622	47.299	2.990	184.641 184.462	156.756 153.281	-42.822
1000	4.968	51.145	47.658	3.487	184.272	149.827	-37 • 220 -32 • 743
1100	4.968	51.619	47.997	2 00/	10. 0.0		
1200	4.969	52.051	48.317	3.984 4.481	184.069 183.853	146.393	-29.084 -26.038
1300	4.971	52.449	48.620	4.978	183.634	139.579	-23.464
1400	4.974	52.817	48.907	5 . 475	183.383	136.201	-21.261
1500	4.979	53.160	49.179	5.972	183.127	132.838	-19.354
1600	4.989	53.482	49.438	6.471	182.860	129.495	-17.687
1700	5.004	53.785	49.685	6.970	18 .578	126.168	-16.291
1800	5.075	54.071	49.921	7.472	182.284	122.858	-14.916
1900 2000	5 • 0 5 6 5 • 0 9 7	54.344	50.146	7.976	181.977	119.567	-13.75
2000	5.097	54.604	50.363	8.483	181.658	116.288	-12.70
2100	5.150	54.854	50.571	8.995	181.327	113.029	-11.76
220c	5.218	55.095	50.771	9.514	180.988	109.785	-10.90
2300	5.301	45.329	50.964	10.040	180.639	106.556	-10.12
2400 2500	5.401 5.518	55.557 55.779	51.151 51.331	10.574 11.120	180.281 179.918	103.343	-9.41(-8.75
							-01/20
2600 2700	5.655 5.810	55.998	51.507	11.679	179.550	96.960	-8.15
2800	4.984	56.215 56.429	51.677 51.843	12.252 12.841	179.178	93.791	~7.59 ~7.07
2900	6.178	56.642	52.005	13.449	178.430	90.635 87.492	-7.07 -6.59
3000	6.390	56.855		14.078	178.059	84.363	-6.14
3100	6.620	57.069	52.318	14.730	177 440	91 747	_ 6 73
3200	6.866	57.283	52.469	14.728 15.402	177.688 177.322	81.247 78.144	~5.72
3300	7.127	57.498	52.619	16.101	176.962	75.048	-4.97
3400	7.402	57.715	52.765	16.878	176.608	71.966	-4.62
3453	7.552	57.830		_17.224.	176.423_	70.337	4.45
3453 3500	7.552 7.688	57.830 57.933		17.224 17.582	168.3°2	70.337 68.998	-4.45
3600 3700	7.984 8.288	58.154 58.377	53.052 53.193	18.366 19.179	168.006 167.719	66.167	-4.01
3800	8.596	58.602	53.333	20.023	167.463	63.344	-3.74 -3.48
3900	8.908	58.829	53.471	20.899	167.239	57.711	-3.23
4000	9.220	59.059	53.608	21.805	167.045	54.906	-3.00
4100	9.531	59.290	53.743	22.743	166.883	52.108	-2.77
4200	9.838	59.524	51.878	23.711	166.751	49.311	-2.56
4300	10.138	59.759	54.012	24.710	166.650	46.514	-2.36
4400	10.431	49.995	54.145	25.739	166.579	43.721	-2.17
4500	10.714	60.233	54.278	26.796	166.236	40.929	-1.98
4600	10.986	60.471	54.410	27.881	166.521	38.138	-1.81
4700	11.244	60.710		28.993	166.533	35.346	-1.64
4800	11.489	60.950		30.129	: 60 - 569	32.552	-1.48
4900	11.719	61.189		31.290	166.630	29.766	-1.32
5000	11.932	61.428	54.913	32.473	166.713	26.970	-1.17
5100	12.130	61 - 666		33.676	166.816	24.174	-1.03
5200	12.311	61.903		34.898	166.938	21.378	-0.89
5300	12.475	67.139		36.138	167.078	18.574	-0.76
5400	12.673	62 - 374		37.393	167.233	15.767	-0.63
5500	12.754	62.607	55.578	38 • 662	167.402	12.962	-0.51
5600	12.869	62.838		39.943	167.583	10.157	-0.19
5700	12.968	63.066		41.235	167.775	7.342	-0.28
5800	13.052	63.293		42.536	167.976	4.526	-0.17
5900	13.122	63.516	56.085 56.161	43.845	168.185	1.709	0.00
5960.67 5960.67	-13.157 13.157	63.650	56.161	44.64:	*********	3.000	0.00
6000	13.178	63.738		45.160			
			16 Decem	mber 1962			RCF

$$\Delta H_{f0}^{o} = 185.196 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 185.370 \text{ kcal gfw}^{-1}$$
Ground State Configuration = ${}^{6}S_{2\frac{1}{2}}$

$$S_{298.15}^{o} = 45.133 \text{ cal deg } K^{-1}\text{gfw}^{-1}$$

$$H_{298.15}^{o} = 1.481 \text{ kcal gfw}^{-1}$$

Electronic Levels and Multiplicaties

Spectroscopic energy levels from Moore. 1

Heat of Formation

Third-Law calculation. Sherwood et al 2 vapor-pressure data.

Heat Capacity and Entropy

Calculated on monatomic-gas computer program.

References

- 1. Moore, C., Nat. Bur. Stds. (U.S.) Circ. 467, Vol. 3 (1958).
- 2. Sherwood, E. M. et al, J. Electrochem. Soc. 102, 650 (1955).

RHENIUM • MONATOMIC (\tilde{R}^e) (IDEAL GAS) GFW = 186.22 SUMMARY OF UNCERTAINTY ESTIMATES

		cal / °K	Alw		_ heat gfw		
τ, ° κ	C,	s ^o T	-(FT - H298)/T	HT - H298	ΔH_{I}	1 F 1 1	LogKp
298.15	± 0.000	±0.002	± 0.002	±0.000	±1.500	+1.520	£1.110
1000	± 0.000	±0.002	±0.003	±0.000°	±1.520	±1.570	±0.340
2000	±0.000	±0.002	▲0.003	±0.000	+1.820	+1.760	+0-192
3000	± 0.001	±0.003	±0.003	±0.001	±2.570	± 2 • 220	±0.160
3453	± 0.002	±0.003	±0.003	±0.001	±3.140	±2.540	£0.160
3453	±0.002	±0.003	±0.003	±0.001	#4.640	± 2.540	±0.160
4000	±0.003	±0.003	±0.003	±0.002	±5.270	± 3.260	±0.180
5000	±0.006	±0.004	±0.003	±0.006	±8.130	±4.950	±0.220
5960.67	± 0.009	± 0.005	±0.003	+0.012	# 12.940	±7.280	+0.270
5960.67	±0.009	±0.005	+0.003	± 0 • 012			

Reference State for Calculating AH, AF, and Log Kp: Solid Rh from 0° to 2239°K, Liquid Rh from 2239° to 3996°K, Gaseous Rh from 3996° to 6000°K

		cal/°K	elv				
T, *K	C.	ST	-(FT - H298)/T	HT - H298	_ Kcal/gfw ΔΗ _f	A F	Log K
Ó	0.000						
298.15	5.940	0.000	INFINITE	-1.174			
300	5.947	7.530 7.567	7.530	0.000			
400	6.262	9.323	7.530 7.767	0.011			
500	6.517	10.748	8.225	0.622 1.261			
600	4 747			1.201			
700	6.747 6.966	11.957	8.749	1.925			
800	7.180	13.014	9.284	2.611			
900	7.389	13.958	9.811	3.318			
1000	7.597	15.605	10.320 10.809	4.046			
				4.796			
1100 1200	7.603	16.339	11.279	5.566			
1300	8.008 8.212	17.026	11.730	6 • 356			
1400	8.416	17.675 18.292	12.162	7.167			
1500	8.620	18.879	12.578 12.979	7.999			
			16.717	8 • 850			
1600	8.823	19.442	13.365	9.722			
1700 1800	9.026	19.983	13.739	10.615			
1900	9.229 9.432	20.505	14.100	11.528			
2000	9.634	21.009 21.498	14.451	12.461			
	,	21.470	14.791	13.414			
2100	9.837	21.973	15.122	14.388			
2200	10.039	22.435	15.444	15.381			
2219	10.118	22.612_	15.567	15.774			
2300	10.000	24.912	15.567	20.924			
2400	10.000	25 - 181	15.818	21.534			
2500	10.000	25.607 26.015	16.217	22.534			
		10.01)	16.601	23.534			
2600	10.000	26.407	16.971	24.534			
2700	10.000	26.785	17.327	25.534			
2800 2900	10.000	27.148	17.672	26.534			
3000	10.000	27.499	18.005	27.534			
, , , , ,	10.000	27.838	18.327	28.534			
3100	10.000	28.166	18.639	20 624			
3200	10.000	28.484	18.942	29.534 30.534			
3300	10.000	28.791	19.235	31.534			
3400	10.000	29.090	19.521	32.534			
3500	10.000	29.380	19.798	73.534			
3600	10.000	30 441					
3700	10.000	29.661 29.935	20.069 20.332	34.534			
3800	10.000	30.202	20.588	35.534 36.534			
3900	10.000	30.462	20.838	37.534			
3995.85	10.000	30.706_	21.072	38.497			
3995.85	6.761	60.269	21.072	156.642			
4000	6.764	60.275	21.108	156.667			
4100	4 770	40					
4200	6.778 6.793	60.442	22.065	157.344			
4300	6.808	60.606 60.766	22.982 23.859	158.022			
4400	6.823	60.923	24.699	158•702 159•384			
4500	6.839	61.076	25.506	160.067			
4600	6.854	61.227		160.752			
4700	6.870	61.374	27.025	161-438			
4900	6.887	61.519	27.743 28.434	162.126			
5000	6.920	61.801	29.100	162.815 63.506			
	• -			3,1,00			
5100	6.937	61.938	29.742	164.199			
5200	6.955	62.073	30.363	164.894			
5300	6.973	62.206		165.590			
5400 5500	6.992 7.011	62.336		166.288			
3300	1.011	62.465	32.104	166.988			
5600	7.030	62.591	32.646	167.691			
5700	7.051	62.716		168.395			
5800	7.072	62.638		169.101			
5900	7.093	62.960	34.179	169-809			
6000	7.115	63.079	34.659	170.519			
			15 Decemb	1063			RCF

0°K to 2239°K 2239°K to 3996°K 3996°K to 6000°K

Crystal Liquid Ideal Monatomic Gas

$$\Delta H_{f0}^{\circ} = 0$$

$$\Delta H_{f298, 15}^{\circ} = 0$$

$$\Delta H_{8298.15}^{\circ} = 132.770 \text{ kcal gfw}^{-1}$$

$$S_{298.15}^{0} = 7.530 \text{ cal deg K}^{-1} \text{gfw}^{-1}$$

$$T_m = 2239^{\circ}K$$

$$\Delta H_m = 5.150 \text{ kcal gfw}^{-1}$$

$$T_{h} = 3996^{\circ} K$$

$$\Delta H_{v} = 118.145 \text{ kcal gfw}^{-1}$$

$$H_{298.15}^{o}$$
- H_{0}^{o} = 1.174 kcal gfw⁻¹

$$C_p^0 = 5.600 + 2.020 \times 10^{-3} T - 0.2334 \times 10^5 T^{-2} \text{ cal deg } K^{-1} \text{gfw}^{-1}$$

$$C_p^0 = 10.000 \text{ cal deg } K^{-1} \text{gfw}^{-1}$$
 2239°K \angle T \angle 3996°K

Structure

An f. c. c. (Al) type.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Kelley and King's S298 value adopted. High-temperature heat-capacity equation joined to low-temperature data. See volume 1, this study (section IVA22) for details.

Melting and Vaporization

Heat of fusion estimated. Melting-point values of several authors reported. Heat of vaporization calculated. Several vapor-pressure measurements reported. See volume 1, this study (section IVA22) for details

Reference

1. Kelley, K. K. and E. G. King, U. S. Bur. Mines, Bull. 592 (1961).

RHODIUM (Rh)

(REFERENCE STATE)

GFW = 102.91

	cal/ok gfwKcal/gfw						
T,°K	E.	sτ	-(FT - H298)/T	HT - H298	ΔḦ́,	A FI	Log Kp
298-15	± 0.070	± 0.050	± 0.050	± 0.000			
1000	± 0.100	+0.110	# 0.070	± 0.040			
2000	± 0.200	± 0.220	± 0.120	± 0 - 190			
2239	± 0 • 200	± 0.240	± 0.140	± 0.230			
2239	± 0.500	± 0.600	± 0.140	±1.030			
3000	± 2.000	4 0.960	± 0.300	±1.980			
3995.89	± 4.000	± 1.620	± 0.580	±4.970			
3995 . 89	± 0.001	+ 0.003	± 0.003	± 0.002			
5000	# 0.001	+ 0.003	± 0.003	+ 0.002			
6000	# 0.001	± 0.003	± 0.003	± 0.003			

DEAL MONATOMIC GAS

Rh

Reference State for Calculating AH, AF, and Log Kp: Solid Rh from 0° to 2239°K, Liquid Rh from 2239° to 3996°K, Gaseous Rh from 3996° to 6000°K

T,*K	cal/°K gtw Kcal/gtw Δθ' ΔF' Log K.								
1, °K	ф.	ST	-(FT - H ₂₉₈)/T	'н _т - н ₂₉₈	ΔH	VE.	Log Kp		
٥	0.000	0.000	INFINITE						
298.15	5.023	44.388	44.388	-1.483	132.461	132.461	INFINITE		
300	5.025	44.419	44.388	0.000	132.770	121.781	-89.264		
400	5 . 1 74	45.883	44.587	0.516	132.768 132.666	121.713	-88.664 -64.492		
500	5.386	47.060	44.967	1.046	132.554	114.398	-50.001		
600 700	5 • 618 5 • 839	48.062 48.945	45.402	1.596	132.441	110.778	-40.349		
800	6.034	49.738	45.846 46.284	2 • 169	132.328	107.177	~33.461		
900	6-198	50.458	46.708	2 • 763 3 • 375	132.215	103.591	-28.298		
000	6.329	51.118	47.117	4.002	132.099 131.977	100.021 96.463	-24.287 -21.681		
100	6.430	51.727	47.508	4.640	131.844	92.918	-18.460		
200 300	6.505	52.290	47.884	5.287	131.701	89.384	-16.278		
400	6 • 5 5 8 6 • 5 9 4	52.812	48.243	5.940	131.543	85.865	-14.435		
500	6.617	53.300 53.756	48.587 48.917	6.598 7.259	131.369 131.179	82.359 78.863	-12.856 -11.490		
600	6.629	54.183	49.232	7.921	130.968	75.383	-10.296		
700	6.635	54.585	49.536	8.584	130.739	71.913	-9.245		
800	6.636	54.965	49.827	9.248	130.490	68.461	-8.312		
900	6.634	55.323	50.107	9.911	130.220	65.024	-7.479		
000	6.631	55.663	50.376	10.575	129.931	61.600	-6.731		
2100 2200	6.622	55.987	50.636	11.237	129.619	58.191	-6.056		
239	6.623 6.627	56.295 56.410	50.886 50.980	11.900	129.289 129.154_	54.798	-5.443		
239	6.622	56.410		12.158	124.004	53.480- 53.480	-5.220		
300	6.620	56.589	51.128	12.562	123.798	51.557	-4.899		
400	6.618	56.871	51.361	13.224	123.460	48.424	-4.409		
7500	6.618	57-141	51.587	13.886	123.122	+5 - 305	-3.960		
600	6.620	57.401		14.548	122.784	42.199	-3.547		
7700	6.623	57.651	52.017	15.210	127.446	39.107	~3.165		
2800	6.677	57.892		15.872	122.108	36.027	-2.812		
2900 3000	6.634 6.641	58.124 58.349		16.535 17.199	121.435	32.961 29.963	-2.484 -2.178		
3100	6.650	58.567		17.864	121.100	26.855	-1.893		
3200	6.660	58.779		18.529	120.765	23.820	-1.627		
3300	6.671	56.984		19.196	120.432	77.794	-1.377		
3400 3500	6 • 6 8 3 6 • 6 9 5	59.183 59.377		19.863	120.099	11.782	-1 • 1 4 3 -0 • 9 2 2		
3600	6.708	59.566		21.202	119.438	11.781	-0.715		
3700	6.721	59.750		21.874	119.110	8.794	-0.519		
3800	6.735	59.929		22.547	118.783	5.820	-0.335		
1900	6.749	60.104		23.221	118.457	2.849	-0.160		
3995 • 89	6.763		54.295	23.872	118.145	0.000	0.000		
3995.89	6.763	60.269 60.275	54.295	23.872 23.897					
				24.574					
4100	6.778 6.793	60.442		25.252					
4200 4300	6.808	60.766		25.932					
4400	6.823	60.923		26.614					
4500 4500	6.839	61.076		27.297					
460C	6.854	61 • 22		27.982					
4700	6.870	61.374		28.668					
4800	6.887	61.519		29.3					
4900	6.903	61.661		30.04					
5000	6.970	61.801		30.736					
5100	6.937	61.938		31 • 429 32 • 124					
5200	6.955	62.200		32.820					
5300	6.973 6.992	62.33		33.518					
5400 5500	7.011	62.46	56.243	34.218					
5600	7.030	62.50		34.921					
5700	7.051	62.11		35.625					
5800	7.072	62.83	9 56.575	36 • 331 37 • 039					
5900	7.093	62.96 63.07	0 56.682 9 56.787	37.749					
6000	7.115	07.07	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2					

$$\Delta_{H_{f0}^{o}} = 132.461 \text{ kcal } \text{gfw}^{-1}$$
 $\Delta_{H_{f298.15}^{o}} = 132.770 \text{ kcal } \text{gfw}^{-1}$

Ground State Configuration = ${}^{4}F_{4\frac{1}{2}}$
 $S_{298.15}^{o} = 44.388 \text{ cal } \text{deg } \text{K}^{-1} \text{gfw}^{-1}$
 $H_{298.15}^{o} = 1.483 \text{ kcal } \text{gfw}^{-1}$

Electronic Levels and Multiplicities

Spectroscopic energy levels from Moore. 1

Heat of Formation

An average of two determinations adopted. See volume 1, this study (section IVA22) for details.

Heat Capacity and Entropy

Calculated on monatomic-gas computer program.

Reference

1. Moore, C., Nat. Bur. Stds. (U.S.) Circ. 467, Vol. 3 (May 1958).

RHODIUM: MONATOMIC (Rh)

(IDEAL GAS)

GFW = 102.91

	cal/oK ataKcal/gfv							
T, °K	C,	s _T	-(FT - H298)/T	HT - H298	AH,	1+1	Log Kp	
298.15	+ 0.000	± 0.002	± 0.002	±0.000	±1.600	±1.620	±1.190	
1000	± 0.001	± 0.002	± 0.003	±0.000	±1.640	±1.670	± 0.360	
2000	± 0.001	± 0.003	± 0.003	±0.001	±1.790	±1.850	±0.200	
2239	± 0.001	± 0.003	± 0.003	±0.001	±1.630	±1.920	±0.190	
2239	± 0.001	± 0.003	€ 0.003	±0.001	±2.630	±1.920	+0.190	
3000	± 0.001	+0.003	± 0.003	±0.001	±3.580	± 2.520	± 0 . 180	
3995.89	± 0.001	± 0.003	# 0.003	±0.001	±6.570	± 3.930	± 0.210	
3995.89	# 0.001	± 0.003	± 0.003	+0.002	•			
4000	± 0.001	± 0.003	± 0.003	±0.002				
5000	± 0.001	± 0.003	± 0.003	±0.002				
6000	# 0.001	± 0.003	± 0.003	±0.003				

REFERENCE STATE

Sc

Reference State for Calculating AH_f, AF_f, and Log K_D: Solid Sc from 0° to 1812°K Laquid Sc from 1812° to 3021°K, Gaseous Sc from 3021° to 6000°K

		cal/°K	•		.Kcal/gfw		
T, °K	C.	s _T	-(+ T - H ₂₉₈)/T	'н _т ~ н ₂₉₈	ΔH_{f}^{n}	Λ F ₁ \	Log Kp
Ó	0.000	0.000	INFINITE	1 244			
298-15	6.000	9.000		-1.280			
300	6.002	9.037	9.000 9.000	0.000			
400	6.110	10.778		0.011			
500	6.218	12.154	9.236 9.688	0.617 1.233			
600	6.326	13.297	10.197	1.860			
700	6.434	14.280	10.711	2.498			
800	6.542	15.146	11.212	3.147			
900	6.650	15.923	11.693	34807			
000	6.758	16.629	12.152	4.477			
100	6.866	17.276	12.589	5 • 158			
200	6.974	17.880	13.005	5 • 850			
300	7.082	18.443	13.402	6.553			
400	7.190	18.972	13.782	7.267			
500	7.328	19.471	14.144	7.991			
600	7•406 7•415	19.946 19.984	14.492	8.726			
608	6.000-	-20.202-	14.520	8 . 786			
700	8.000	20.647	14.520	9.136			
800	8.000	21.104	14.840 15.175	9.872 10.672			
812	8.000			10.768			
		-21.158-	¹⁵ •215				
812	8.000	23.238	15.215	14.536			
900	8.000	23.618 24.028	15.596 16.007	15.242 16.042			
.000	2.000	24.020	18.007	10.042			
100	8.000	24.418	16.398	16.842			
200	8.000	24.790	16.771	17.642			
300	8.000	25.146	17.128	18.442			
400	8.000	25.486	17.468	19.242			
500	8.000	25.813	17.796	20.042			
2600	8.000	26.127	18.111	20.842			
700	8.000	26.429	18.413	21.642			
2800	8.000	26.720	18.705	22.442			
900	8.000	27.000	18.986	23.242			
1000	8.000	27.271	19.257	24.042			
3021	8.000	27.326	19.312_	24.210			
3021	6.248	53.651	19.312	103.731			
3100	6.397	53.815	20.193	104.229			
3200	6.599	54.021	21.246	104.879			
3 3 0 0	6.810	54.227	22.242	105.549			
3400	7.031	54.434	23.187	106.241			
3500	7.259	43.641	24.082	106.955			
3600	7.492	54.849	24.934	107.693			
3700	7.730	55.057	25.745	108-454			
3800	7.969	55.267	26.520	109.239			
3900	8.208	55.477	27.260	110.048			
•000	8.446	55.688	27.968	110.881			
4100	8.680	55.899	28.646	111.737			
4200	8.909	56.111	29.298	112.616			
4300	9.132	56.323	79.923	113.518			
4400	9.347 9.554	56.536 56.748	30.526 31.106	114.442 115.388			
4600	9.750	56.960	31.666	116.353			
4700	9.936	57.172	32.207	117•337 11- 140			
4800	10.111	57.383	32.729	119.359			
4900 5000	10.274 10.425	57.593 57.802	33.234 33.723	120.394			
,500							
5100	10.563 10.689	58.010 58.216	34.197 34.657	121.444			
5200 5300	10.803	58.421	35.104	123.581			
5400	10.905	58.624	35.538	124.667			
5500	10.994	58.825	35.959	125.762			
5600	11.072	49.024	36.370	126.865			
5700	11.139	54.220	36.768	127.976			
5800	11.190	59.415	37.158	129.093			
5900	11.242	59.606	37.536	130.215			
6000	11.279	59.796	37.906	131.341			

0 °K to 1812 °K Crystal

1812 °K to 3021 °K Liquid

3021 °K to 6000 °K Ideal Monatomic Gas

Structure

Low temperature form is h. c. p.; high temperature form is probably b. c. c. Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Low temperature data estimated by Kelley and King $^{\rm l}$. High temperature data estimated by Kelley $^{\rm 2}$.

Melting

Melting point by Spedding et al.

Vaporization

Based on data of Spedding et al. 3

Further details given by Barriault et al.

References

- 1. Kelley, K., E. King, Bur. Mines. Bull. 592 (1961).
- 2. Kelley, K., Bur. Mines. Bull. 584 (1960).
- 3. Spedding, F. H., et al, Trans AIME 218 608 (1960).
- 4. Barriault, R., et al, ASD-TR-61-260(May 1962), Pt. I.

SCANDIUM (Sc)

(REFERENCE STATE)

GFW = 44.96

		cal/°K	etv		_Kcal/gfw		
T, °K	ς <mark>,</mark>	s _T	-(FT - H298)/T	HT - H298	ΛH,	A Fi	Log Kp
6				± .040			
298.15	± 0.200	± 0.500	± 0.500	± 0.000			
1000	± 0.350	± 0.830	# 0.640	± 0.190			
1608	± 0.500	± 1.090	± 0.800	# 0.460			
1608	± 1.000	± 1.150	± 0.800	± 0.560			
1612	± 1.500	± 1.300	± 0.850	€ 0.810			
1812	± 0.400	± 1.410	± 0.850	± 1.010			
3021	± 2.300	± 2.100	± 1.220	# 2.640			
3021	± 0.001	± 0.002					
4000	± 0.002	± 0.003					
5000	± 0.002	# 0.003					
6000	± 0.002	± 0.003					

Reference State for Calculating AH; AF; and Log Kp: Solid Sc from 0° to 1812°K, Liquid Sc from 1812° to 3021°K, Caseous Sc from 3021° to 6000°K

		cal/°k	g/w		Keal/-4-		
T,°K	′c <u>°</u> °	s _r	-(FT - H298)/T	H° H°	Kcal/gfw	, -9	
	,	-•	· 1 - 11298/1	H _T - Н ₂₉₈	ΛH	ΔF_{ℓ}	Log Kp
0 298•15	0.000	0.000	INFINITE	-1.674	89.106	89.106	14514.185
300	5.283	41.750	41.750	0.000	89.500	79.736	INFINITE
400	5.279	41.783	41.750	0.010	89.499	79.665	~58.445 ~58.033
500	5.148	43.281	41.955	0.530	89.413	76.412	
,00	5.085	44.422	42.339	1.042	89.309	73.174	-41.748 -31.983
600	5.049	45 344					21.070
700	5.028	45.346 46.122	42.765	1.548	89.188	69.959	-25.480
800	5.014	46.793	43.191	2.052	89.054	66.763	-20.843
900	5.004	47.383	43.600	2.554	88.907	63.590	-17.371
1000	4.997	47.909	43.988	3.055	88.748	60.434	-14.675
	4	41.709	44.355	3.555	88.578	57.297	-12.522
1100	4.992	48.386	44 300				
1200	4.989		44.700	4.054	88.396	54.178	-10.764
1300	4.988	48 - 820	45.025	4.553	88.203	51.076	-9.302
1400	4.989	49.219	45.333	5.052	87.999	47.990	-8.067
1500	4.993	49.589	45.624	5.551	87.784	44.921	-7.012
	70775	49.933	45.900	6.050	87.559	41.866	-6.100
1600	5.001	50.256	44 112				•
1608		50.280	46.162	6.550	87.324	38.828	-5.303
1608	5.00	50.280	46.182	. 6.590	. 87.304	. 38 - 587	5.244
700	5.014	50.559	46.182	6.590	86.954	38.587	-5.244
800	5.034	50.846	46-412	7.050	86.678	35.828	-4.606
812	5.0.7	50.879	46.650	7.553	86.381	32.845	-3.988
812		50.879	46.677	7.614	.86 • 346	_ 32.490	3.919
900	5.062	51.119	46.677	7.614	82.576	32.490	-3.919
000	5.099	51.380	46.878	8.058	82.316	30.064	-3.458
	,,	71.900	47.097	8.566	82.024	27.320	-2.985
2100	5.148	51.630	47.247	0.000		_	
200	5.208	51.870	47.507	9.078	81 • 736	24.591	-2.559
2300	5.282	52 - 103	47.509	9.595	81.453	21.876	-2 - 173
400	5.369	52.330	47.704 47.892	10.120	81-178	19.175	-1.822
500	5.472	52.551		10-652	80.910	16.482	-1.501
-		76 0 7 7 1	48.074	11.19+	80.652	13.805	-1.207
2600	5.589	52.768	48.750	11 767			_
700	5.722	52.981	48.250 48.421	11.747	80 • 405	11.139	-0.936
800	5.869	53.192		12.312	80.170	8.478	-0.686
900	6.032	53.401	48.588	12.892	79.950	5.828	-0.455
000	6.208	53.608	48.750 48.909	13.487	79.745	3.184	-0.240
			70.707	14.099	79.557	0.544	-0.040
1021	6.248	53.651	48.941	14.221	70.531	A A = -	_
021	6.248	53.651	48.941	14.231	79.521	0.000	0.000
100	6.397	53.815	49.064	14.729			
200	6.599	54.021	49.215	15.379			
300	6.810	54.227	49.364	16.049			
400	7.031	54.434	49.510	16.741			
500	7.259	54 - 641	49.654	17.455			
600	7.492	54.849	49.795	18.193			
700	7.730	55.057	49.935	18.954			
800	7.969	55.267	50.072	19.739			
900	8.208	55.477	50.208	20.548			
000	8.446	55.688	50.342	21.381			
100	8.680	55.899	50.475	22.237			
200	8.909	56.111	50.607	23.116			
300	9.132	56.323		24.018			
400	9.347	56.536		24.942			
500	9.554	56.748		25.888			
600	9.750	56.960		26.84			
700	9.936	57.172	51.249	27.83			
800	10.111	57.383	51.375	28.840			
900	10.274	57.593	51.499	29.859			
000	10.425	57.802		30.894			
				-			
100	10.563	58.010	51.747	31.944			
200	10.689	58.216		33+006			
900	10.803	58.421		34.081			
•00	10.905	58.624		35 • 167			
500	10.994	58.825		36.262			
							
500	11.072	59.024	52 • 351	37+365			
700	11.139	59.220		384476			
300	11.196	59.415		39.593			
900	11.242	59.606		0.715			
000	11.279	59.796		11.841			
			>= + ·				

$$\Delta H_{f0}^{o} = 89.106 \text{ Kcal gfw}^{-1}$$
 $\Delta H_{f298.15}^{o} = 89.500 \text{ Kcal gfw}^{-1}$

Ground State Configuration $^{2}D_{1-1/2}$
 $S_{298.15}^{o} = 41.750 \text{ cal degK}^{-1} \text{ gfw}^{-1}$
 $H_{298.15}^{o} - H_{0}^{o} = 1.674 \text{ Kcal gfw}^{-1}$

Electronic levels and multiplicities

Source of Data

Energy Level.

Heat of Formation

Based on vaporization data of Spedding et al².

Heat Capacity and Entropy

Calculated using monatomic gas computer program.

Further details given by Barriault et al³.

References

- 1. Moore, C., Atomic Energy Levels, Vol. 1, Nat. Bur. Stds. (1949).
- 2. Spedding, F. H., et al, Trans AIME 218,608 (1960).
- 3. Barriault, R. et al, ASD TR-01-260(May 1962), Pt. I.

SCANDIUM, MONATOMIC (Sc) (IDEAL GAS) GFW = 44.96

τ,°κ	C.b	s _T	-(F _T - H ₂₉₈)/	/T H _T - H ₂	Kcal-gfw 198 AH _f	151	Log K _p
298.15							
	± 0.000	± 0.002	± 0.002	± 0.000	± 0.500		* 0.480
1000	± 0.000	± 0.002	± 0.002	± 0.000	* 0.500	* 1.060	* 0.230
1608	± 0.000	± 0.002	± 0.002	± 0.000	± 0.500	± 1.790	± 0.240
1608	± 0.000	± 0.002	± 0.002	± 0.000	± 0.600	# 1.790	± 0.240
1812	± 0.000	± 0.002	± 0.003	± 0.000	± 0.850	4 1.940	* 0.230
1812	± 0.000	± 0.002	± 0.003	± 0.000	± 1.050	# 1.940	* 0.230
3021	± 0.001	± 0.002	+ 0.003	# 0.001	± 2.680		* 0.270
3021	± 0.001	± 0.002	± 0.003	# 0.001	1000	3.070	3.2.0
4000	± 0.002	± 0.003	± 0.003	± 0.002			
5000	± 0.002	± 0.003	± 0.003	# 0.004			
6000	± 0.002	± 0.003	± 0.003	* 0.005			

Reference State for Calculating ^Hi, ^Fi, and Log Kp: Solid Si from 0° to 1690°K, Liquid Si from 1690° to 3566°K, Gaseous Si from 3566° to 6000°K

	(cal/°K			Kcal/gfw		
T, °K	C.b	s _T	-(FT - H298)/T	H _T - H ₂₉₈	ΛH,	AF ₁	Log Kp
0	0.000						
298-15	4.739	0.000	INFINITE				
300	4.754	4-530	4.530	0.000			
400	5.330	4.559 6.017	4.530	0.009			
500	5.634	7.242	4.725 5.109	0-517			
			20103	1.066			
600	5.831	8.287	5.554	1.640			
700	5.981	9.198	6.011	2.231			
800	6.114	10.005	6.460	2.836			
900 1000	6 • 232	10.732	6 . 895	3.453			
1000	6.340	11.394	7.313	4.082			
1100	6.441	12.003	7.712	4.721			
1200 1300	6 - 5 3 6	12.568	8.093	5.370			
1400	6.628	13.095	8 • 458	6.028			
1500	6.718 6.806	13.589	8.807 9.142	6 • 695			
1400		_	70142	1.372			
1600 1690	6.8/4	14.498	9.463	8.057			
1690	6.973	14.877. 21.948	9.741	8 • 681			
1700	6.981	21.948	9.741	20.631			
1800	7.068	22.391	9.813 10.501	20.700			
1900	7.154	22.775	11.137	21 • 403 22 • 114			
2000	7.355	23.143	11.728	22.831			
3100							
2100	7-1-5	23.492	12.280	23.546			
2200 2300	7-1-5	23.825	12.197	24.262			
2300 2400	7.155 7.1.5	24.143	13.283	244977			
2500	7.1.5 7.155	24.448 24.740	13.742 14.176	25 • 69 3 26 • 60 8			
			• 1 / 0	26 • 408			
2600	7.155	25.020	14.588	27.124			
2700 2800	7.155	25.290	14.979	27.839			
2800 2900	7.155	25.550	15.352	28.555			
3000	7.155 7.155	25.802 26.044	15.708 16.049	29•270 29•986			
			.0.047	27.700			
3100	755	26.279	16.375	30.701			
3200	7.155	26.506	16.688	31 - 417			
3300	7.155	26.726	16.989	32 • 1 32			
3400 3500	7.155 7.155	26.940 27.147	17.279	32.548			
		21017/	17.558	33.563			
3565.77	7-155	27.280	17.736	_34.033			
3565.77	5.506	52.939	17.736	125.528			
3600 3700	5.508 5.513	52.992	18.071	125.716			
3800	5.516	53.143	19.017 19.917	126.267			
3900	5.519	53.434	20.774	126.819 127.371			
4000	5.521	53.574	21.593	127.922			
4100 4200	5.522 5.522	53.710	22.374	128.475			
4300		53.843	23.123	129.027			
4400	5.522	53.973	234838	129.579			
4500	5.522 5.521	54.100 54.224	24.525 25.184	130.131 130.683			
4600 4 3 00	5.520	54.345	25.816	131.236			
4700 400	5.518 5.517	54.464	26.424	131.787			
⊌800 ⊌900	5.517 5.515	54.580 54.694	27.009 27.573	132. 19			
3000	5.513	54.805	28.117	132.8.1			
3100	5.512	54.915	28.642	133.994			
5200	5.510	55.022	29.148	134.545			
3300 3400	5.509 5.508	55.126 55.229	29.637 30.110	135.096 135.646			
5500	5.508	55.331	30.568	130.040			
600 5700	5.507	55.430	31.011	136.748			
5700 5800	5.508 5.509	55.927 55.623	31.439	137•299 137•850			
900 900	5.509 5.511	55.717	31.656 32.260	137.850			
3000	5.514	45.810	32.651	138.952			

0°K to 1690°K Crystal 1690°K to 3565. 77°K Liquid 3565. 77°K to 6000°K Ideal Monatomic Gas

Co data was selected and smoothed (See below).

Structure

Silicon has a cubic A4 (i. e., diamond type) structure.

Heat of Formation

Zero by definition.

"Heat Capacity and Entropy

Low temperature data from Stull and Sinke. 1 Kelley's equation used to 600°K. From 600° to 1900°K, the data of Kantor et al³ joined Kelley's data. Above 1900°K estimated data were used.

Melting

Data of Kantor et al were used.

Heat of Sublimation

Several sources were reviewed. See gas table (table 230), this volume, also see volume 1, this study (section IVA25).

References

- 1. Stull, D. R. and G. C. Sinke, Thermodynamic Properties of the Elements (1956).
- Kelley, K. K., Bur. Mines, Bull. 584 (1960).
 Kantor, P. B., O. M. Kisil and E. M. Fornichov, Ukr. Fiz. Zh. 5, 358-362 (1960).

SILICON (SI)

(REFERENCE STATE)

GFW = 28.09

		cal/°K			.Kcsl/glw		
T, °K	/c _p	s _t	-(FT - H298)/T	H _T - H ₂₉₈	ΛH	AF ₁	Log Kp
298.15	± 0.100	± 0.050	± 0.050	± 0.000			
1000	± 0.100	± 0.171	± 0.101	± 0.070			
1000	± 0.500	± 0.171	± 0.101	± 0.070			
1690	± 0.500	± 0.433	± 0.188	± 0.415			
1690	± 0.500	± 0.552	# 0.188	± 0.615			
1900	± 0.500	± 0.610	± 0.231	± 0.720			
1900	± 1 • 000	± 0.610	£ 0.231	± 0.720			
2000	± 1.000	+ 0.662	± 0.251	± 0.820			
3000	± 1.000	# 1.067	# 0.460	± 1.820			
3565.77	± 1.000	# 1.240	± 0.571	± 2.386			

IDEAL MONATOMIC GAS

Si

Reference State for Calculating ΛH_f^* , ΛF_f^* , and Log Kp: Solid Si from 0° to 1690°K, Liquid Si from 1690° to 3566°K, Gaseous Si from 3566° to 6000°K

		cel/°K	glw		_Kcal/gfw		
T, *K	ردي.	s _t	-(FT - H298)/T	HT - H298	ΛH _ℓ	ΛF	Log Kp
0 298.15	0.000	0.000	INFINITE	-1.805	107.371	107.371	INFINITE
300	5.319 5.315	40.123	40.123 40.123	0.000	108-407	97.795	-71 .682
400	5.166	41.662	40.330	0.010 0.533	108.408	97.729 94.165	-71 • 192 -51 • 447
500	5.095	42.806	40.715	1.046	108.387	90.604	-39.601
600	5.056	43.731	41.143	1.553	108.320	87.054	-31.708
700	5.033	44.509	41.570	2.057	108.233	83.516	-26.074
800	5.019	45.180	41.980	2.560	108.131	79.991	-21.851
900 000	5.012 5.012	45.770 46.299	42.369 42.736	3.061 3.563	108.015 107.888	76.480 72.984	-18.571 -15.950
100	5.017	46.776	43.082	4.064	107.750	69.500	-13.808
200	5.027	47.213	43.408	4.566	107.603	66.029	-12.025
300	5.043	47.616	43.717	5.070	107.449	62.570	-10.519
400 500	5.063 5.087	47.991 48.341	44.009 44.286	5.575 6.082	107.287 107.117	59.124 55.691	-9.229 -8.114
600	5.113	48.670	44.550	6.592	106.942	52.268 49.196	-7.139
690	5.139	48.950	44.777	7.054	106.780 94.830	49.196	-6.362
690 700	5 • 1 3 9 5 • 1 4 2	48.950 48.981	44.777 44.801	7.105	94.812	48.927	-6.290
800	5.172	49.276	45.042	7.621	94.625	46.233	-5.613
900	5.202	49.556	45.272	8.139	94.432	43.551	-5.009
000	5.232	49.824	45.493	8.661	94.237	40.877	-4.467
100	.261	50.080	45.705	9.186	94.047	38.215	-3.977
200	5.289	50.325	45.910	9.713	93.858	35.558	-3.532
300	5.316	50.561	46.107	10.243	93.673	32.912	-3.127
1400	565	50.787 51.006	46.481	10.776 11.312	93 .49 0 93.311	30 • 275 27 • 645	-2.757 -2.417
600	5.386	51.217	46.659	11.849	93.132	25.022	-2.103
700	5.406	51.420	46.832	12.389	92.957	22.404	-1.813
800	5.424	51.617	46.999	12.930	92.782	19.795	-1.545
900	5.440	51.808	47.162	13.473	92.610	17.190	-1.295
1000	5.454	51.993	47.320	14.018	92.439	14.594	-1.063
100	5 • 467	52.172	47.473	14.564	92.270 92.101	12.003 9.415	-0.846 -0.643
3200	5.478	52.345	47.623 47.769	15.111 15.660	92.101	6.833	-0.453
300 3400	5.487 5.495	52.514 52.678	47.911	16.209	91.768	4.258	-0.274
500	5.502	52.837	48.049	16.759	91.603	1.689	-0.10
3565 • 77	5.506	. 52.939	48.138	. 17-121	91.495	0.000	0.000
3565.77	5.506	52.939	48.138	17.121			
3600	5.508	52.992	48.184	17.309			
3700	5.513	53.143	48.316	17.860			
3800	5.516	53.291	48.445	18-417			
3900 4000	5.519 5.521	53.434 53.574	48.571 48.695	18.964 19.515			
4100	5.522	53.710	48.815	20.068			
200	5.522	53.843	48.914	20.620			
4300	5.522	53.973	49.049	21 • 172			
4400 4500	5.522 5.521	54.100 54.224		21•724 22•276			
	5.520	54.345	49.383	22.829			
4600 4700	5.520 5.518	54.464	49.489	23.380			
	5.517	54.580	_	23.932			
4800 4900	5.515	54.694		24.484			
5000	5.513	54.805		25.035			
5100	5.512	54.915	49.898	25.587			
5200	5.510	55.022		26.138			
5300	5.509	55.126		26.689			
5400 5500	5.5C8 5.508	55.229 55.331		27.239 27.790			
5600	5.507	55.430	50.369	28 • 341			
5700	5.508	55.527	50.458	28.892			
5800	5.509	55.623	50.547	29.443			
5900	5.511	55.717		29.994 30.545			
6000	5.514	55.810	50.719	10 6 74 7			

$$\Delta_{H_{f0}^{o}} = 107.371 \text{ Kcal gfw}^{-1}$$

Ground State Configuration P_{0}
 $\Delta_{H_{f298.15}^{o}} = 108.407 \text{ Kcal gfw}^{-1}$
 $S_{298.15}^{o} = 40.123 \text{ cal degK}^{-1} \text{ gfw}^{-1}$
 $H_{298.15}^{o} = 1.805 \text{ Kcal gfw}^{-1}$

Electronic Levels and Multiplicities

All energy levels from Moore $^{\rm l}$ were used to calculate functions in an earlier report. $^{\rm 2}$

Heat of Formation

Based on vapor pressure data of Davis et al. 3 Several other sources of data were reviewed and are discussed in volume 1, this study (section IVA25).

Heat Capacity and Entropy

Calculated in an earlier report. 2

References

- 1. Moore, C., Nat. Bur. Std. (U.S.), Circ. 467, Vol. 1 (1949).
- Barriault, R. J. et al. Thermodynamics of Certain Refractory Compounds Pt. I, Vol. 1, ASD TR-61-260 (May 1962).
- 3. Davis, S. G., D. F. Anthrop and A. W. Searcy, J. Chem. Phys. 34, 659 (1961).

SILICON MONATOMIC (S1) (IDEAL GAS) GFW = 28.09

SUMMARY OF UNCERTAINTY ESTIMATES

		cel/ °K			Kcal giw		
T,°K	′C _p	s _T	-(FT - H298)/T	H _T - H ₂₉₈	NH _f	A F _f ^A	Leg K _P
298-15	± 0.000	± 0.002	± 0.002	± 0.000	± 3.000		
1000	± 0.000	± 0.002	± 0.002	± 0.000			
2000	± 0.000	± 0.002	± 0.002	± 0.000			
3000	± 0.000	± 0.002	± 0.003	± 0.001			
4000	± 0.000	± 0.002	± 0.003	± 0.001			
5000	± 0.000	± 0.002	± 0.003	± 0.001			
6000	± 0.001	± 0.003	± 0.003	± 0.002			

REFERENCE STATE

Reference State for Calculating $\Lambda H_{\ell}^{\bullet}$, $\Lambda F_{\ell}^{\bullet}$, and Log Kp: Solid Sr from 0° to 1045°K, Liquid Sr from 1045° to 1641°K, Gaseous Sr from 1641° to 6000°K

T, "k	C.	cal/°K		(· ·	-Kcal/gfw		
•• •	ه,	81	-(FT - H ₂₉₈)/T	H _T ~ H ₂₉₈	۸H	۸ Fi	Log Kp
0	0.000	0.000	INCLUITE				
298-15	6.400	12.500	INFINITE	-1.550			
300	6.407	12.540	12.500	0.000			
400	6.807	14.438	12.501	0.012			
500	7.207	15.999	12.757 13.253	0.673 1.373			
600	7 (47			,			
700	7.607 8.007	17.349	13.826	2 • 1 1 4			
800	8.407	19.647	14.416	2 • 895			
862	8 . 655	20.283	15.001 15.359	3.715			
862	9.160	20.515	15.359	-4.244			
900	9.160	20.910	15.586	4.444			
000	9-160	21.875	16.167	4 • 792 5 • 768			
045	9.160	22.270	16.421				
045	7.800	24.163	16.421	- 6 - 120			
100	7.800	24.563	16.818	8.090 8.519			
200	7.800	25.242	17.493	9.299			
300	7.800	25.866	18.113	10.079			
400	7.800	26.444	18.688	10.859			
500	7.800	26.982	19.223	11.639			
600	7.800	27.486	19.724	12.419			
641.	7.800	27.680	19.927	12.419			
641	4.977	47.797	19.922	45.743			
700	7.983	47.975	20.895	46.036			
800	4.591	48.260	72.407	46.535			
900	5.007	48.530	23.775	47.035			
000	5.03]	48.787	25.019	47.537			
100	5.065	49.033	26.156	48.041			
200	5.111	49.270	27.202	48.550			
300	5 - 1 71	49.499	28.167	49.064			
400	5.249	49.720	29.060	49.58			
500	5.345	49.936	29.890	50.114			
600	5.461	50.148	30.666	50.654			
700	5.600	50.357	31.391	51.207			
800	5.762	*0.563	32.072	51.775			
900	5.949	50.769	32.713	52 • 361			
000	6.159	50.974	33.319	52.966			
100	6.194	51.180	33.892	53.593			
200	6.653	51.387	34.435	54.245			
300	6.933	51.596	34.952	54.924			
400	7.235	51.807	35.444	د 55 • 63			
500	7.556	52.021	35.915	56.372			
600	7.894	52.219	16.365	57.144			
700	8.247	52.460	36.197	57.951			
800	8-611	52.685	37.213	58.794			
900	8.984	52.913	37.612	59.674			
000	9.364	53.145	37.997	60.591			
100	9.741	53.381	38.370	61.547			
200	10.131	53.621	38.730	62.541			
300	10.513	53.864	39.080	63.57:			
400	10.891	54.110	39.418	64.643			
500	11.267	54.159	39.748	65.751			
600	11.625	54.610	40.068	66.895			
700	11.979	54.864	40.380	68.076			
800	12.320	55.120	40.684	69.			
900	12.650	55.377	40.981	70.539			
000	12.965	55 • 636	41.272	71.820			
100	13.267	55.896	41.556	73.132			
200	13.554	56.156	41.833	74.473			
300	13.826	56.417	42.107	75.842			
400	14.082	56.678	42.374	77.238			
500	14.324	56.938	42.636	78.658			
600	14.550	57.198	42.894	80.102			
700	14.762	57.458	43.148	81.568			
800	14.959	57.716	43.396	83.054			
900	51.141	57.974	43.642	84.559			
000	15.309	58.230	43.883	86.081			

0 oK to 1045 oK Crystal

1045 °K to 1641 °K Liquid

1641 °K to 6000 °K Ideal Monatomic Gas

1045°K ≤ T ≤ 1641°K

$$\Delta H_{f0}^{O} = 0$$

$$\Delta H_{f298. \ 15}^{O} = 0$$

$$\Delta H_{g298. \ 15}^{O} = 39.070 \text{ Kcal gfw}^{-1}$$

$$S_{298. \ 15}^{O} = 12.5 \text{ cal dog K}^{-1} \text{ gfw}^{-1}$$

$$T_{t} = 862 \text{ °K}$$

$$\Delta H_{t} = 0.200 \text{ Kcal gfw}^{-1}$$

$$T_{m} = 1045 \text{ °K}$$

$$\Delta H_{m} = 1.970 \text{ Kcal gfw}^{-1}$$

$$T_{b} = 1641 \text{ °K}$$

$$\Delta H_{v} = 33.012 \text{ Kcal gfw}^{-1}$$

$$H_{298. \ 15}^{O} - H_{0}^{O} = 1.550 \text{ Kcal gfw}^{-1}$$

$$C_{p}^{O} = 5.207 + 4.00 \times 10^{-3} \text{ T cal dog K}^{-1} \text{ gfw}^{-1}$$

$$862^{O} \text{K} \leq T \leq 1045^{O} \text{K}$$

$$C_{p}^{O} = 9.16 \text{ cal dog K}^{-1} \text{ gfw}^{-1}$$

Structure

Low-temperature form (a - Sr) has f. c. c. structure; high-temperature form (y - Sr) has b. c. c. structure.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

 $C_{\rm p}^{\rm o} = 7.80 \, {\rm cal \, deg \, K}^{-1} \, {\rm gfw}^{-1}$

Low-temperature data estimated by Kelley and King. 1 High-temperature lata were estimated.

Melting

Average of three melting point values was used.

Vaporization-pressure determinations were averaged; see Barriault² for details.

References

- 1. Kelley, K. and E. King, Bur. Mines. Bull. 592 (1961).
- 2. Barriault, R., et al, ASD-TR-61-260 (May 1962), Pt. 1.

STRENTIUM (Sr)

(REFERENCE STATE)

GFW . 87.63

SUMMARY OF UNCERTAINTY ESTIMATES

		cal/°K			Kcal/gfw		
T,°K	′ c••	s _T	-(FT - H ₂₉₈)/T	H _T - H ₂₉₈	ΛHĴ	V11,	Log Kp
298. 15	± 0.200	± 0.500	± 0.500	± 0.000			
862	± 0.300	± 0.610	± 0.540	± 0.060			
862	± 0.600	± 0.730	# 0.540	± 0.160			
1045	± 1.000	± 0.760	± 0.580	± 0.190			
1045	± 0.500	± 0.910	± 0.580	± 0.340			
1641	± 1.500	± 1 • 130	± 0.740	± 0.640			
1641	± 0.000	± 0.002					
2000	± 0.000	± 0.002					
3000	± 0.001	± 0.002					
4000	± 0.002	± 0.003					
5000	± 0.003	± 0.003					
6000	± 0.003	± 0.003					

Reference State for Calculating AH_f, AF_f, and Log K_p: Solid Sr from 0° to 1045°K, Liquid Sr from 1045°K to 1641°K, Gaseous Sr from 1641° to 6000°K

T, °K	G	cal/°K S _T	-(FT - H298)/T	(u° u°	_Kcal/gfw AH	ΔF.	
	,	-1	-11 T - 11 298 // 1	HT - H298	sn _l	AF1	Log Kp
0	0.000	0.000	INFINITE	-1.481	39.139	39.139	INFINITE
298.15	4.968	39.325	39.325	0.000	39.070	31.072	-22.775
300 400	4.968	39.356	39.325	0.009	39.067	31.023	-22.599
500	4.968 4.968	40.785	39.520	0.506	38.903	28.365	-15.497
"	4.700	41.894	39.688	1.003	38.700	25.752	-11.256
600	4.968	42.799	40.300	1.500	38.456	23.186	-8.445
700	4.968	43.565	40.713	1.996	38.171	20.662	-6.451
800	4.968	44.729	41.122	2.493	37.848	18.183	-4.967
862	4.968 4.968	44 • 600_	41.350	2.801	. 37.627	16.666	
900	4.968	44.600	41.350	2.801	37.427	16.666	-4.225
1000	4.968	45.337	41.492 41.850	2.990 3.487	37.268 36.849	15.755 13.387	-3.876
1045	4 04 0					13.307	-2.926
1045	4.968 4.968	45.556	42.005	3 • 711	36.661	12.335	~2 • 580
1100	4.968	45.811	42.005	3.711	34 - 691	12.335	-2.580
1200	4.968	46.243	42.189 42.509	3.984	34.535	11.162	-2.218
1300	4.969	46.641	42.812	4.481	34.252	9.051	-1.648
1400	4.969	47.009	43.099	4.977 5.474	33.96A	6.961	-1 - 170
1500	4.971	47.352	43.371	5.971	33.685 33.402	4.895 2.848	-^.764 -0.415
1600	4.975	47.673					
1641	4.977	47.797	43.630 43.731	6.496	33.120	0.82	-0.112
1641	4.971	47.797	43.731	- 6 • 673 - 6 • 673	32.012	0.04.	0.000
1700	4 981	47.975	43.877	6.966			
1800	4.991	48.260	44.112	7.465			
1900	5.007	48.530	44.338	7.965			
2000	5.031	48.787	44.554	8.467			
2100	5.065	49.033	44.761	8.971			
2200	5.111	49.270	44.961	9.480			
2300	5.171	49.499	45.153	9.994			
2400	5.249	49.720	45.339	10.515			
2500	5.345	49.936	45.519	11.044			
2600	5.461	50.148	45.693	11 604			
2700	5.600	50.357	45.862	11.584			
2800	5.762	50.563	46.026	12.705			
2900	5.949	50.769	46.186	13.291			
3000	6.159	50.974	46.342	13.896			
3100	6.394	51-180	46.495	14.513			
3200	6.653	51.387	46.644	14.523 15.175			
3300	6.933	51.596	46.791	15.854			
3400	7.235	51.807	46.936	16.563			
3500	7.556	52.021	47.078	17.302			
3600	7.804	62 230	.7 310	10 AT:			
3700	7.894 8.247	52.239 52.460	47.218 47.357	18.074			
3800	8.611	52.685	47.494	18•881 19•724			
3900	8.984	52.913	47.630	20.604			
4000	9.364	53.145	47.765	21.521			
4100	0.747	63 20.	. 7				
4100	9.747 10.131	53.381	47.899 48.033	22•477 23•471			
4300	10.131	53.621 53.864	48.033	23.471			
4400	10.891	54.110	48.298	25.573			
4500	11.262	54.359	48.430	26.681			
4400		E4 430					
4600	11.625	54.610	48.561	27.825 29.00			
				. ,			
4800	12.320	55.120	48.824	30.22.			
5000	12.650 12.965	55.377 55.636	48.955 49.086	31 • 469 32 • 750			
	,0,						
5100	13.767	55.896	49.217	34.062			
5200	13.554 13.826	56.156 56.417	49.348 49.479	35.403 36.772			
5400	14.085	56.678	49.610	38.168			
5500	14.324	56.938	49.741	39.588			
5600	14.550	57-174	49.871	41.032			
5700	14.767	57.458	50.002	42.498			
5800	14.959	57.716 57.974	50.133 50.264	43.984 45.489			
5900 6000	14.141 15.309	58.230	50.394	47.011			
	.,.,,	,					
1							
			May 1962				

$$\Delta H_{f0}^{o} = 39.139 \text{ Kcal gfw}^{-1}$$

Ground State Configuration ${}^{1}S_{0}$
 $S_{298.15}^{o} = 39.070 \text{ Kcal gfw}^{-1}$
 $S_{298.15}^{o} = 39.325 \text{ cal degK}^{-1} \text{ gfw}^{-1}$
 $S_{298.15}^{o} = 39.325 \text{ cal degK}^{-1} \text{ gfw}^{-1}$

Electronic levels and multiplicities

Source of Data

Energy levels from Moore.

Heat of Formation

Average of two vapor pressure determinations. Details by Barriault et al 2 .

Heat Capacity and Entropy

Calculated using monatomic gas computer program.

References

- 1. Moore, C., Atomic Energy Levels, Vol, II Nat. Bur. Stds. (1952)
- 2. Barriault, R., et al, ASD-TR-61-260 (May 1962), Pt. I.

STRENTIUM . MENATEMIC (Sr)

(IDEAL GAS)

GFW - 87.63

		cal/°K	414		_Kcal/gfw		
T, °K	C.	s ^o T	-(FT - H298)/T	н _т - н ₂₉₈	ΛHÏ	V E	Log K _p
298 • 15	± 0.000	±0.002	± 0.002	± 0.000	± 0.500	±0.560	± 0.410
862	± 0.000	± 0.002	± 0.002	± 0.000	± 0.500	±1.000	± 0.250
862	± 0.000	± 0.002	± 0.002	* 0.000	± 0.500	±1.000	* 0.250
1045	± 0.000	± 0.002	±0.002	± 0.000	± 0.600	± 1.200	± 0.250
1045	± 0.000	± 0.002	±0.002	* 0.000	± 0.750	±1.200	± 0.250
1641	± 0.000	± 0.002	± 0.002	± 0.000	± 1.050	±1.800	* 0.240
1641	± 0.000	± 0.002	± 0.002	± 0.000			
2000	± 0.000	± 0.002	± 0.002	± 0.000			
3000	± 0.001	± 0.002	± 0.002	± 0.001			
4000	± 0.002	± 0.003	± 0.003	± 0.002			
5000	± 0.003	± 0.003	± 0.003	± 0.004			
6000	± 0.003	±0.003	± 0.003	± 0.006			

Reference State for Calculating ΛH_f*, ΛF_f*, and Log Kp: Solid Ta from 0° to 3270°K, Liquid Ta from 3270° to 5706°K, Gaseous Ta from 5706° to 6000°K

T,°K	ري	cel/°K S _T			_Kcal/gfw		
•••	ds.	ST	-(F _T - H ₂₉₈)/1	L, HL - H298	ΔḦ́	A F	Log Kp
٥	0.000	0.000	INFINITE				
298 - 15	6.069	9.920	9.920	-1 - 358			
300 400	6.074	9.958	9.920	0.000			
500	6.270	11.735	10.161	0.011 0.630			
,,,,	6.382	13.147	10.622	1.263			
600	6-461	14.318					
700	6.525	15.319	11.143	1 • 905			
800	6.580	16.194	11.670 12.182	2.554			
900	6 • 6 3 0	16.972		3.210			
1000	6.673	17.673	12.672 13.137	3•870 4•536			
1100	6.720	18.311	12 550				
1200	6.769	18.898	13.579	5 • 205			
1300	6.824	19.442	13.998 14.396	5.880			
1400	6.883	19.950	14.775	6.559			
1500	6.949	20.428	15.136	7.244 7.937			
1600	7.022	20.878	15 (0)				
1700	7.102	21.306	15.481 15.811	8.636			
1800	7 - 190	21.715	16.128	9 • 342			
1900	7.289	22.106	16.432	10.057			
2000	7.398	22.483	16.725	10.780 11.515			
2100	9			11.0313			
2200 2100	7.521	22.847	17.008	12.261			
2300	7 .57	23.200	17.282	13.019			
2400	7•81 <i>2</i> 7•995	23.543	17.547	13.793			
2500	8.215	23.880	17.803	14.583			
	0.715	24.212	18.053	15.397			
2600	8.491	24.539	18.296	14 330			
2700	8.851	24.866	18.534	16.230 17.097			
2800	9.309	25.195	18.765	18.004			
2900	9.873	25.531	18.993	18.962			
3000	10.532	25.877	19.216	19.982			
3100	11.266						
3200	12.065	26.234	19.437	21.071			
3270	12.663	26.604	19.655	22.237			
3270	8.500	26.871 28.920	_ 19.807	23.102			
3300	8.500	28.998	19.807	29.802			
3400	8.500	29.252	19.890	30.057			
3500	8.500	29.498	20.161 20.425	30・907 31・7シブ			
1400				31013			
3600 3700	8.500	29.738	20.680	32.607			
3800	8.500	29.970	20.928	33.457			
3900	8.500 8.500	30.197	21.169	34.307			
000	8.500	30.418 30.633	21.403	35.157			
	00500	30.633	21.631	36.007			
100	8.500	30.843	21.853	36.857			
200	8.500	31.048	22.070	37.707			
300	8.500	31.748	22.281	38.557			
400	8.500	31.443	22.487	39.407			
500	8.500	31.634	22.688	40.257			
600	8.500	31.821	22 ges	41 14-			
700	8.500	32.004	22.885 23.077	41.107			
800	8.500	32.183	23.265	41.957 42.807			
900	8.500	32.358	23.448	-			
000	8.500	32.530	23.628	43.657			
100	8.500	12 400					
200	8.500	32.698	23.805	45 • 35 •			
300	8.500	32.863	23.977	46 • 207			
400	8 - 500	33.025	24.146	47.057			
500	8.500	33.184 33.340	24.475	47.907			
		222740	-44413	48.757			
600 700	8.500	33.493		49.607			
700 70 6.6 5	8.500	33.644	24.791	50.457			
706.65	6.500	_33.654	24.801	50.513			
800	10.126	65.409		31 • 736			
900	10.161 10.197	65.571		32.683			
000	10.229	65.747 65.919		33.701			
		22	*00144 5	34.722			
			15 March	1041			

0°K to 3270°K 3270°K to 5706°K Crystal Liquid 5706 K to 6000 K Ideal Monatomic Gas

Structure

Solid has B. C. C. A2 type structure, with no reported transitions to melting point.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Low temperature data from Kelley and Sterrett and Wallace, 5 High temperature data is from Kelley (298.15° to 950°K), and Lehman et al. 1, 2, 3 for 950° to 3270°K. Liquid Cp is estimated.

Melting

Several values were available. The value listed by Stull and Sinke was used. Heat of melting was an average of two estimates.

Heat of Sublimation

From Edwards, Johnston and Blackburn. 7

References

- Lehman, G. W., WADD TR 60-581 (1960).
 Taylor, R. E. and R. A. Finch, NAA-SR-6034 (1961)
 Rasor, N. and J. McClelland, WADC TR 56-400, AD118144 (1957).

- Kelley, K. K., Bur. Mines, Bull. 592 (1961).
 Sterrett, K. F. and W. E. Wallace, J. Am. Chem. Soc. 80, 3177 (1958)
 Stull, D. R. and G. C. Sinke, Thermodynamic Properties of the Elements (1956).
 Edwards, J. W., H. L. Johnston, and P. E. Blackburn, J. Am. Chem. Soc. 73, 172 (1951).
 Kelley, K. K., Bur. Mines, Bull. 584 (1960).

TANTALUM (Ta)

(REFERENCE STATE)

GFW = 180.95

	<u></u>	cal/*K	stv-		Kcal/gfw		
T, °K	, C2	ST	-(FT - H298)/T	H _T - H ₂₉₈	ΔH	۸ F _i	Log Kp
298.15	± 0.050	± 0.040	± 0.040	± 0.000			
1000	# C.100	# 0.103	# 0.065	± 0.036			
2000	± 0.500	# 0.345	40.136	40.418			
3000	± 1.000	+ 0.639	± 0.249	+1.168			
3270	# 1.000	± 0.725	40.285	41.438			
3270	# 2.000	± 1.031	± 0.285	± 2.436			
4000	4 2.000	± 1.434	# 0.459	± 3.898			
5000	# 2.000	# 1.880	± 0.700	4 5.078			

Reference State for Calculating AH₂, AF₂, and Log K_p: Solid Ta from 0° to 3270°K, Liquid Ta from 3270° to 5706°K, Gaseous Ta from 5706° to 6000°K.

			W 3106 K, G				
- n.	C.		alw		_Kcal/gfw		
T,*K	C _p	ST	-(FT - H298)/T	HT - H298	ΔH	AF1	Log Kp
0	0.000	0.000	INFINITE	-1 (02	10. 00-		
298-15	4.985	44.243	44.243	-1.482 0.000	186.398	186.398	INFINITE
300 400	4.986	44.274	44.243	0.009	186.520	176.289 176.225	-129.217 -128.374
500	5.081 5.278	45.719	44.440	0.512	186.404	172.810	-94.415
	,,,,,	46.872	44.815	1.029	186.288	169.426	-74.052
600	5.541	47.857	45.241	1.570	186.187	166.063	-40 404
700	5.827	48.733	45.679	2.138	186-106	162.716	-60.486 -50.800
800 900	6.110	49.530	46.111	2.735	186.047	159.379	-43.538
1000	6.376 6.621	50.265 50.949	46.532	3.359	186.011	156.048	-37.892
	0.021	70.744	46.940	4.009	185.995	152.719	-33.375
1100	6.844	51.591	47.334	4.683	186.000	149.392	~29.680
1200	7.044	52.195	47.714	5.377	186.019	146.063	-26.600
1300 1400	7.221	52.766	48.081	6.091	186.054	142.732	-23.994
1500	7.377 7.514	53.307	48.435	6 - 821	186.099	139.398	-21.760
.,	7.0714	53.821	48.777	7.565	186.150	136.061	~19.823
1600	7.633	54.310	49.108	8.323	186.209	132.719	-10 120
1700	7.739	54.776	49.428	9.092	186.272	129.373	-18.128 -16.631
1800	7.832	55.221	49.737	9.870	186.335	126.026	-15.301
1900 2000	7.916	55.647	50.037	10.658	186 +00	122.672	-14-110
2000	7.993	56.055	50.328	11.453	186.460	119.316	-13.038
2100	8.064	56.446	50.610	12.256	186.517	116 066	-13 4/-
2200	8.132	56.823	50.884	13.066	186.569	115.958	-12.067 -11.185
2300	8 • 1 96	57.186	51.150	13.882	186.611	109.235	-10.379
2400	0.258	57.536	51.409	14.705	186.644	105.868	-9.640
2500	8.319	57.874	51.661	15.534	186.659	102.502	-8.960
2600	8.378	58.202	61 004	14 240	104		
2700	8.437	58.202	51.906 52.145	16.369 17.210	186.661	99.136 95.772	-8.333 -7.752
2800	8.495	58.827	52.378	18.056	186.574	92.406	-7.212
2900	8.552	59.126	52.606	18.909	186.469	89.044	-6.710
3000	8.610	59.417	52.828	9.767	186.307	85.686	-6.242
3100	8.667	59.700	53.045	30 (3)	104 000		
3200	8.725	59.976	53.258	20.631 21.500	186.082	82.337 78.992	-5.804 -5.395
3270	8.766	60.166				76.663_	
3270	8.766	60.166	53.403	22.112	178.832	76.663	-5.124
3300	8.783	60.246	53.465	22.376	178.841	75.725	-5.015
3400	8.841	60.509	53.669	23.257	178.872	72.595	-4.666
3500	8.900	60.766	53.868	24.144	178.9'4	69.472	-4.338
3600	8.959	61.018	54.063	25.037	178.952	66.343	-4.027
3700	9.019	61.264	54.254	25.936	179.00.	63.216	-3.734
3800	9.079	61.505	54.442	76.841	179.056	60.085	-3.455
3900	9.139	61.742	54.626	27.752	179.117	56.952	-3.191
4000	9.200	61.974	54.807	28.668	179 183	53.818	-2.940
4100	9.261	62.202	54.984	20.502	170.257	EA 400	
4200	9.322	62.202	55.159	29.592 30.521	179.257	50.685 47.548	-2.702 -2.474
4300	9.383	62.646	55.330	31.456	179.421	44.411	-2.257
4400	9.444	62.862	55.499	32.397	179.512	41.269	-2.050
4500	9.504	63.075	55.665	33.345	179.610	38.126	-1.852
4600	9.564	43 305	55.470	34.200	170.712	34 004	-1 445
4700	9.564	63.285 63.491	55.829 55.989	34.298 35.258	179.713	34.980 31.836	-1.662 -1.480
4800	9.680	63.694	56.148	36.223	179.938	28.684	-1.480
4900	9.737	63.894	56.304	37.194	180.059	25.528	-1.139
3000	9.792	64.092	56.458	38.170	180.185	22.372	-0.978
		4			104		A
5100	9.846	64.286	56.609	39.152	180.317	14.222	-0.824
5200 5300	9.897	64.478	56.759 56.906	7.139 *1.131	180.454	16.056	-0.675
5300 5400	9.947 9.995	64.667 64.853	57.052	42.128	180.596	12.894 9.726	-0.532
5500	10.040	65.037	57.195	43.130	180.895	6.562	-0.394 -0.261
						,	0.201
5600	10.083	65.218	57.337	44-136	181.051	3.391	-0.132
3700	10-124	65.397	57.477	45-147	181.212	0.212	-0.008
5706•65 5706•62	_10.126 10.126	65.409	57.486 57.486	.45.214 45.214	181-223	0•000.	
5800	10.126	65.573	57.615	46.161	55000	0.000	-0.000
5900	10.197	65.747	57.751	47.179			
6000	10.229	65.919	57.886	48.200			
			15 Marc	.L 1967			*** ~
			- Amari				HLS

$$\Delta H_{f0}^{o} = 186.398 \text{ Kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 186.522 \text{ Kcal gfw}^{-1}$$
Ground State Configuration ${}^{4}F_{1\frac{1}{2}}$

$$S_{298.15}^{o} = 44.243 \text{ cal degK}^{-1}\text{gfw}^{-1}$$

$$H_{298}^{o} - H_{0}^{o} = 1.482 \text{ Kcal gfw}^{-1}$$

Electronic Levels and Multiplicaties

All levels listed by Moore

Heat of Formation

The data of Edwards, Johnston, and Blackburn were used. Other data analyzed included that of Langmuir and Malter, ³ Gebhardt, Seghezzi, and Keil, ⁴ and Fiske, ⁵

Heat Capacity and Entropy

Calculated using the monatomic gas program.

References

- 1. Moore, C., National Bureau of Standards (U.S.) Circular 467, Vol. 3 (1958).
- 2. Edwards, J. W., H. L. Johnston, P. E. Blackburn, J. Am. Chem. Soc. 73, 172 (1951).
- Langmuir, D. and L. Malter, Phys. Rev. 55, 748 (1939).
 Gebhardt, E., H. Seghezzi, and H. Keil, Z. Metallkunde 53, 524 (1962).
- 5. Fiske, R., Phys. Rev. 61, 513 (1942).

TANTALUM. MONATOMIC (Ta) (IDEAL GAS) GFW = 180.95 SUMMARY OF UNCERTAINTY ESTIMATES

		cai/°K			Kcal gfw		
T,°K	′c _p °	s _T	-(FT - H298)/T	HT - H 798	ΔH _f	VE	Log Kp
298.15	± 0.000	± 0.002	± 0.002	± 0.000	± 3, 000		
1000	± 0.001	± 0.002	± 0.003	± 0.000	5		
2000	± 0.002	±0.003	± 0.003	± 0.001			
3000	± 0.006	± 0.004	± 0.003	± 0.004			
4000	± 0.012	± 0.006	±0.004	± 0.012			
5000	# 0.016	± 0.009	± 0.004	± 0.026			
5706.65	± 0.014	± 0.011	± 0.005	± 0.038			
6000	+ 0.013	± 0.012	± 0.005	± 0.041			

Reference State for Calculating AH*, AF*, and Log Kp: Solid Tc from 0* to 2473*K, Liquid Tc from 2473* to 4840*K, Gaseous Tc from 4840* to 6000*K.

		cal/"K	RIW		Y1/ 4		
T, °K	C,	s _T	-(FT - H298)/T	HT - H298	_Kcal/gfw AH _i	A F.	1
٥	0.000			· · · · · · · · · · · · · · · · · · ·			Log Kp
298-15	0.000 5.800	0.000	INFINITE	-1.230			
300	5.804	8.000	8.000	0.000			
400	6.004	8.036	8.000	0.011			
500	6.204	9.733	8.230	0.601			
		11.094	8.671	1 • 212			
600	6.404	12.243	0 170				
700	6.604	13.245	9.173	1.842			
800	6.804	14.140	9.685 10.187	2.492			
900	7.004	14.953	10.672	3.163			
1000	7.204	15.701	11.138	3 • 8 5 3 4 • 5 6 4			
1100	7	_		9.204			
1200	7.404 7.604	16.397	11.585	5.294			
1300	7.804	17.050	12.013	6.044			
1400	8.004	17.667	12.425	6.815			
1500	8.204	18.252 18.811	12.820	7.605			
		10.011	13.201	8.416			
1600	8.404	19.347	13.569	0 2.4			
1700	8.604	19.863	13.924	9 • 246			
1800	8.804	20.360	14.268	10.096 10.967			
1900	9.004	20.842	14.601	11.857			
2000	9.204	21.309	14.925	12.768			
2100	0.44:			/00			
2200	9.404	21.762	15.240	13.698			
2300	9.604	22.204	15.546	14.648			
2400	9.804	22.636	15.845	15.619			
2473	10.150	23.057	16.137	16.609			
2473	10.000	23.359	16.346	_17.345			
2500	10.000	25 - 654	16.346	23.033			
		25.768	16.447	23.303			
2600	10.000	26.160	14 413				
2700	10.000	26.537	16.813	24 - 30 3			
2800	10.000	26.901	17.166	25.303			
2900	10.000	27.252	17.507 17.837	26 • 303			
3000	10.000	27.591	18.157	27.303			
2100				28.303			
3100	10.000	27.919	18.466	29.303			
3200	10.000	28.236	18.767	30.303			
3300	10.000	28.544	19.058	31.303			
3400	10.000	28.843	19.342	32 - 303			
3500	10.000	29.133	19.618	33.303			
3400							
3600 3700	10.000	29.414	19.886	34.303			
370ରୁ 3 80 0	10.000	29.688	20.147	35.303			
3900	10.000	29.955	20.402	36.303			
4000	10.000	30.215	20.650	37.303			
. 300	10.000	30.468	20.892	36.303			
4100	10.000	30 717	21 122				
4200	10.000	30.715	21.129	39.103			
4300	10.000	30.956	21.360	40 - 30 3			
4400	10.000	31.191 31.421	21.586	41.303			
500	10.000	31.646	21.807	42.303			
		2	22.073	43.303			
600	10.000	31.866	22.234	44.303			
700	10.000	32.081	22.44?	45.303			
800	10.000	32.291	22.645	46.303			
840.07	10.000	_ 32.374	22.724	46.704			
840.07	7.499	61.273	22.724 1	86.575			
900	7.522	61.366		87.024			
000	7.559	61.518		87.778			
100	7 60.						
200	7.594	61.668		88.536			
300	7.628	61.816	25.413 1	89.297			
400	7-660	61.961		90.061			
500	7•691 7•720	62 - 105		90.829			
	7.720	62.246	27.410 1	91 • 600			
600	7.748	42.30/	20 44.				
700	7.774	62.386 62.523		92 • 373			
800	7.798	62.658		93.149			
900	7-821	62.792		93.928			
000	7.842	62.923		94•709 95•492			
				-			
			15 Decem	her 1962			RCF

0°K to 2473°K 2473°K to 4840°K 4840°K to 6000°K

Crystal Liquid Ideal Monatomic Gas

$$\Delta H_{f0}^{o} = 0$$

$$\Delta H_{f298, 15}^{\circ} = 0$$

$$\Delta_{\rm H_{a298,\ 15}} = 155.000 \text{ kcal g/s}^{-1}$$

$$S_{298, 15}^{\circ} = 8.000 \text{ cal deg } K^{-1}\text{gfw}^{-1}$$

$$\Delta H_m = 5.688 \text{ kcal gfw}^{-1}$$

$$\Delta H_{\rm w} = 139.871 \, \rm kcal \, \, gfw^{-1}$$

$$H_{298, 15}^{\circ} - H_{0}^{\circ} = 1.230 \text{ kcal gfw}^{-1}$$

$$C_{\rm p}^{\rm o}$$
 = 5.200 + 2.000 x 10⁻³T cal deg K⁻¹gfw⁻¹ cal deg K⁻¹gfw⁻¹

$$C_{\rm p}^{\rm o}$$
 = 10.000 cal deg K⁻¹gfw⁻¹

Structure

An h. c. p. (A3) type.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Brewer's 1 estimate of 5^2_{298} adopted. Kelley's 2 high-temperature heat-capacity data adopted. Based on Brewer's 1 heat-content estimates. Liquid heat capacity estimated.

Melting and Vaporization

Heat of fusion estimated. Vapor-pressure data of Brewerl used in calculating b. p. Heat of vaporization calculated.

References

- Brewer, L., Paper 3, Chemistry and Metallurgy of Miscellaneous Materials: Thermodynamics, Nat. Nucl. Energ. Ser. IV-19B, McGraw-Hill, N. Y. (1950). 2. Kelley, K. K., U. S. Bur. Mines, Bull. 584 (1960).

TECHNETIUM (Tc)

(REFERENCE STATE)

GFW = 99

		cal/°K			. Acal gfw		
T, °K	,c.	s _T	-(FT - H298)/T	HT - 1298	14	11,	log K _p
298.15	± 0.100	± 0.500	± 0.500	± 0.000			
1000	± 0.500	# 0.740	± 0.600	± 0.140			
2000	± 1.000	± 1.260	± 0.600	£ 0.890			
2473	± 1.250	± 1.500	± 0.810	£1.420			
2473	± 0.500	± 1.900	± 0.920	± 2.420			
3000	± 1.550	± 2.100	± 0.920	# 2.960			
4000	# 3.550	± 2.830	± 1.110	±4.510			
4840.07	± 5.230	± 3.670	± 1.700	± 8 • 200			
4840.07	± 0.001	# 0.003	± 0.003	± 0.002			
5000	± 0.001	± 0.003	± 0.003	± 0.002			
6000	± 0.001	± 0.003	± 0.003	± 0.003			

Isotope of longest known half-life.

Reference State for Calculating AH*, AF*, and Log Kp: Solid Tc from 0* to 2473*K,
Liquid Tc from 2473* to 4840*K, Gaseous Tc from 4840* to 6000*K.

T, °K		cal/°1					
	رگي (s _T	-(FT - H298)/	T HT - H25	— Kcal/gfw g ΔH	ΔF.	Log K
						•	р
0 248•15	0.000		INIINITE				
300	4 • 470	43.250		-1 -481	154.749	154.749	INFINITE
400	4.970		47.250	0.000	155.000	144.490	-105.204
426	4.797		43.445	0.009	154.908	144.475	-105 208
'''	5.106	45.444	43.815	0.507	154.916	140.214	-76.288
600	_			1.012	154.800	137.42R	-60.067
700	5.328	46.75/	44.233	1			
	• 660	47.612	44.459	1.532	154.690	133.764	-44.794
R((6.060	48.414	45.000	2.081	154.597	130.514	-40.748
900	6.477	49.151	4 . 492	2.667	154.504	121.786	-34.717
1000	6.863	47.144	45.871	3.294	154.441	123.662	-30.028
			4	3.961	154.397	120.245	-26.278
1100	7.184	10.524	46.284				
1200	7.424	-1.160	46.664	4.664	154.370	116.831	-23.211
1300	7.511	11.761		5.375	154.351	113.419	-20.655
1400	7.663	62.326	47.033	6.146	154.331	110.010	-18.493
1500	7.683	12.656	47.391	6.909	154.304	106.631	-16.640
		2 0 0 00	47.138	7.677	154.261	101.194	-15.035
1600	7.657	13.41	4.1 23.	_			
17c t	7.597	43.E14	41.074	8.444	154.198	99.772	-13.610
1800	7.517	4.240	41.398	9.207	154. 11	26.314	-12.372
19.0	7.426	4.650	46.711	9.263	153.496	93.003	-11.292
2000	7.332	5.02F	49.013	17.110	151.8.3	89.617	-10.308
	. • , , ,	7 • UZF	44.304	11.448	153.680	86.242	-9.424
2100	7.241	* 5 . 384	. =		=		- 7 6 4 6 4
2200	7.156		4 1.585	12.176	153.478	82.876	_H 47L
2300	7.0 F.	.711	49.817	17.896	153.248	77.516	-6.625 -7.839
2400	7.015	16.035	60.118	13.608	152. 139	76.172	-7.23A
2471		66.396	60.371	14.313	152.704	72.838	
2473	6-974		[[• 547	14.923	_152.47A	70.416	-6.632
2000	6 - 974	6.647	50.549	14.823	146.770	70.416	-6.223
-	6.961	6.620	*P•615	15.011	146.778	69.580	-6.082
2600	(. VIB	14 (15					0.02
27. 0	6.487	10.612	10.81.2	15.705	145.472	66.499	-5.590
ZROC	6.866		51.787	10.375	146.09	53.432	-5.134
2900	1.856	17.403	51.302	17.083	145.780	67.374	-4.712
3000	€.854	17.643	51.516	17.769	145.465	57.411	-4.320
. •	4	17.674	-3.724	18.454	145.151	54.299	-3.955
3100	4.840	66				- • • •	,,,,,
3200	6.860	"F • 101	51.926	19-140	144.937	51.274	-3.615
29~	6.874	0.317	52.134	19.827	144.524	44.261	-3.296
3416	6.894	16.170	17.314	20.515	144.212	45.245	-2.997
3500	4-450	19.717	52.500	21.206	143.95	42.263	-2.717
	6.017	68.93F	52.681	: . 399	143.391	39.280	-2.4-3
3611	6. 184					//	. • • • 7
37((7.021	67.144	17.857	22.596	143.274	36.304	-2.204
3800	7.061	67.326	5 t+0 t0	23.296	142.771	13.333	-1.767
1900	7.102	19.511	1 1 1 78	24.700	142.597	17. 175	-1.747
400.	7.144	19.677	11.362	24 - 708	142.405	27.423	-1.537
• • •	1 4 4	* 4 . c 7 t	51.52	25.420	142-117	24.476	-1.337
4100	7.1FR	60 011	4 3				
4200	7.231	60.054	64.660	26.137	141.434	21.541	-1.146
300	7.275	60.271	53.834		141. 151	15.609	-0.968
400		60.300	43.964		141 A7	11 .649	-0.727
• 4 110 • 5 C C	7.3] 6	67.567	64.132		141-010	12.770	-0.534
• • • •	7.361	60.732	54.277	29.047	140.744	1.457	-0.477
400			_				V • • · · ·
160°	7.403	60.694	54.419		140.482	0.147	-0.300
700	7.444	01.054	54.558		140.22	4.0%	-0.187
BCO SAN NE	7.464	(1.21)	54.675	31.274	11 77.	1.160	-0.053
F40.07	1.477		-54.749		137.871	0.000	0.000
8407	7.494	61.273	54.749	31.575	-	•	
963	7.522	61.366	54 . B 3.7	17.024			
coc	7.554	61.518	44.76.	3 778			1
100	7.594	61.668	54.792	13.536			
50 <u>0</u>	7.628	61.616		24.297			
3 F C	1.660	61.461		** • C61			l
4 C C	7.691	62.105		15.829			
510	1.127	62.746		36.600			
			*				ł
6 ቦ ቦ	7.748	62.346	55.712	37.373			1
7 C O	7.774	67.523		38.149			- 1
8CC	7.748	1.618	17.947	85.058			1
9 C	7.P21	47.793	61.36.	10.709			ĺ
244	7.842	12.923		0.412			1
			15 Decemb				

$$\Delta H_{f0}^{o} = 154.749 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 155.000 \text{ kcal gfw}^{-1}$$
Ground State Configuration = ${}^{6}S_{2\frac{1}{2}}$

$$S_{298.15}^{o} = 43.250 \text{ cal deg K}^{-1}\text{gfw}^{-1}$$

$$H_{298.15}^{o} - H_{0}^{o} = 1.481 \text{ kcal gfw}^{-1}$$

Electronic Levels and Multiplicities

Spectroscopic energy levels from Moore. 1

Heat of Formation

Estimate of Stull and Sinke adopted. Based on vapor-pressure estimates of Brewer. 3

Heat Capacity and Entropy

Calculated on monatomic-gas computer program.

References

- 1. Moore, C., Nat. Bur. Stds. (U.S.) Circ. 467, Vol. 3 (May 1958).
- 2. Stull, D. R. and G. C. Sinke, Advances in Chemistry, Ser. 18, Am. Chem. Soc., Washington, D. C. (1956).
- 3. Brewer, L., Paper 3, Chemistry and Metallurgy of Miscellaneous Materials: Thermodynamics, Natl. Nucl. Energ. Ser. IV-19B, McGraw-Hill, N. Y. (1950).

TECHNETIUM. MONATOMIC (Tc)

LIDEAL GAST "

GFW . 99

SUMMARY OF UNCERTAINTY ESTIMATES

		cal/°K	g/*		Kcal/gfw		
T,°K	′c _p °	s _T	-(FT - H298)/T	HT - H278	7 Hf	111	Log K _p
298.15	±0.000	± 0.002	± 0.002	± 0.000	± 5.000	± 5.150	+3.770
1000	±0.001	± 0.002	± 0.002	± 0.000	± 5.140	± 5.600	±1.220
2000	±0.001	± 0.003	± 0.003	± 0.001	± 5.890	£ 6.610	+0.720
2473	±0.001	± 0.003	± 0.003	± 0.001	± 6.420	£ 7.280	±0.640
2473	±0.001	± 0.003	± 0.003	± 0.001	± 7.420	± 7.280	±0.640
3000	± 0X001	± 0.003	± 0.003	± 0.001	± 7.960	+ 8 - 340	+0.610
4000	±0.001	# 0.003	± 0.003	± 0.002	± 9.510	±11.810	±0.650
4840.07	± 0.001	± 0.003	± 0.003	± 0.002	±13.200	±14.600	±0.660
4840.07	±0.001	± 0.003	± 0.003	± 0.002			
5000	± 0.001	± 0.003	± 0.003	±'0.002			
6000	±0.001	± 0.003	± 0.003	± 0.003			

Isotope of longest known half-life.

REFERENCE STATE

Reference State for Calculating AH*, AF*, and Log Kp: Solid Th from 0° to 2028°K,

	/ -	cal/°K	[fw	ind Log Kp:			
T, *K	ζς,	ST	-(FT - H290)/T	(00	Kcal/gfw		
	•	•	- 1 298)/T	HT - H298	ΔH	ΔFμ	Log K
0	0.000					•	
298.15	6.532	0.000	INFINIT	E -1.556			
300	6.537	12.760	12.760	0.000			
400	6.792	12.800 14.716	12.760	0.012			
500	7.047	16.259	13.020	0.679			
400		,	13.518	1.370			
600	7.302	17.566	14.086				
700 800	7.557	18.711	14.667	2.088			
900	7.812	19.737	15.238	2.831			
1000	8.067	20.671	15.790	3.599			
1000	8.368	21.536	16.322	4.393 5.214			
1100	8 728			20214			
1200	8.730 9.170	22.350	16.833	6.068			
1300	9.702	23.128	17.325	6.963			
1400	10.341	23.882	17.801	7.906			
1500	11.104	24.624	18.262	8.907			
		25.362	18.710	9.978			
1600	12.001	26.107	10 100				
1633	12.338	26.356	19.150	11.132			
1633	11.000	26.756	19.293- 19.293	11.533			
1700	11.000	27.198	19.596	12.186			
1800	11.000	27.827	20.036	12.923			
1900 2000	11.000	28.422	20.462	15.123			
. 000	11.000	28.986	20.874	16.223			
2028	11 000						
2028	11.000	29.139	20.987	16.531			
2100	11.000	31.422	20.987	20.384			
2200	11.000	31.934	21.339	21.176			
2300	11.000	32.423	21.809	22.276			
2400	11.000	32.891	22.260	23.376			
2500	11.000	33.340	23.110	24 • 476			
2400			234110	25.576			
2600	11.000	33.772	23.512	26.676			
2700 2800	11.000	34.187	23.899	17.776			
2900	11.000_	34.587_	24.274_	28.876			
3000	11.000	34.973	24.636	29.976			
,,,,,	11.000	35.346	24.987	31.076			
3100	11.000	35.707					
3200	11.000	36.056	25.327	32.176			
3300	11.000	36.394	25.657	33.276			
3400	11.000	36.723	25.977 26.289	34 • 376			
1500	11.000	37.042	26.591	35 • 476 10 • 576			
2400							
3600 3700	11.000	37.351	26.886	37.676			
3800	11.000	37.653	27.173	38.776			
3900	11.000	37.946	27.452	39.876			
4000	11.000	38.232	27.725	40.976			
		38.510	27.991	42.076			
4100	11.000	38.782	20.361				
4200	11.000	39.047	28.251 28.505	43.176			
4300	11.000	19.106	28.753	44 • 276 45 • 376			
4400	11.000	39.559	28.996	45 • 476			
4500	11.000	39.806	29.234	47.576			
4400							
4600 4700	11.000	40.048	29.466	48.676			
4800	11.000	40.284	29.693	49.776			
4900	11.000	40.516	29.917	50.876			
5000	11.000	40.743	30.136	51 • 976			
		40.965	30.350	53.076			
5060.26	11.000	41.097	10 477				
5060.26	9.340	65.357	- 30.477	1.739			
5100	9.356	65.430		176.504			
3200	9.394	65.612		176.875			
300	9.430	65.792		177481 <i>2</i> 1784753			
400	9.464	65.968		79.698			
500	9.496	66.142		80.646			
600	9.525	66.314		81.597			
700	9.552	66.482	34 . 456	82.551			
900	9 • 5 7 5	66.649		83.507			
000	9.596	66.813		84 • 466			
	9.613	66.974	36.070 1	85.426			
			15 Decembe				

2-321

Th

Crystal 0°K to 2028°K 2028°K to 5060°K 5060°K to 6000°K Ideal Monatomic Gas ΔH0 = 0 ΔH₁₂₉₈ 15 0 S298, 15 = 12.760 cal deg K-1gfw-1 ∆H_{0298, 15} = 137, 700 kcal gfw⁻¹ T, = 1633°K $\Delta H_t = 0.653 \text{ kcal gfw}^{-1}$ Tm = 2028 K $\Delta H_m = 3.853 \text{ kcal gfw}^{-1}$ Th = 5060°K △H., = 122, 765 kcal gfw-1 H_{298, 15}-H₀ = 1.556 kcal gfw-1 $C_D^0 = 5.773 + 2.548 \times 10^{-3} \text{T cal deg K}^{-1} \text{gfw}^{-1} = 298.15^0 \text{K} \angle T \angle 800^0 \text{K}$ $C_{\rm p}^{\rm o} = 5.553 + 4.928 \times 10^{-3} \text{T} - 4.703 \times 10^{-6} \text{T}^2 \text{ cal deg K}^{-1} \text{g/s}^{-1}$ 800°K ∠ T ∠ 1633°K C_p = 11.000 cal deg K⁻¹gfw⁻¹ 1633°K <u>≼</u> T <u>≼</u> 2028°K $C_p^0 = 11,000 \text{ cal deg } K^{-1} \text{gfw}^{-1}$ 2028°K < T < 5060°K

Structure

Two modifications f. c. c. (A1) and b. c. c. (A2) type.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Low-temperature data from Griffel and Shochdopole. 1 Wallace's 2 hightemperature heat-capacity data joined smoothly to low-temperature data Liquid heat capacity estimated.

Melting and Vaporization

Heat of fusion taken from estimate of Stull and Sinke. Vapor-pressure data of Darnell et al⁴ adopted. See volume 1, this study (section IVA29) for details.

References

- 1. Griffel, M and R. E. Shochdopole, J. Am Chem Soc. 75, 5250

- Griffel, M. and R. E. Shochdopole, J. Am. Chem. Soc. 15, 5230 (1953).
 Wallace, D., Phys. Rev. 120, 84 (1956).
 Stull, D. R. and G. C. Sinke, Advances in Chemistry, Ser. 18, Am. Chem. Soc. Washington, D. C. (1956).
 Darnell, A. J., W. A. McCollum, and T. A. Milne, J. Phys. Chem. 64, 341 (1960).

THORIUM (Th)

(REFERENCE STATE)

GFW = 232.05

		cai/°K			Kcal, gfw		
T, *K	/c*	2,	-(FT - H298)/T	HT - H298	ΛH	141	log K _p
298.15	± 0.050	± 0.200	± 0.200	± 0.000			
1000	± 0,150	± 0.260	# 0.220	± 0.040			
1633	± 0.250	+ 0.360	± 0.260	± 0.160			
1633	± 1.000	± 0.480	± 0.260	± 0 . 360			
2028	± 1.000	± 0.700	± 0.320	± 0 4 760			
2026	± 0.600	± 1.190	± 0.320	± 1.760	-		
3000	± 2.800	± 1.860	± 0.720	± 3.410			
4000	± 5.000	± 2.980	± 1.150	± 7.310			
5060.26	± 7.300	+ 4.420	± 1.690	±13.830			
5060.26	± 0.500	± 0.465	± 0.220	± 1.230			
6000	± 0.600	± 0.575	# 0.280	± 1.780			

TABLE 238

THORIUM

IDEAL MONATOMIC GAS

Reference State for Calculating AH2. AF2, and Log Kp: Solid Th from 0° to 2028°K, Liquid Th from 2028° to 5060°K, Gaseous Th from 5060° to 6000°K.

		cal/°K g	lv		_Kcal/glw		
T, *K	ر _گ	s <mark>t</mark>	-(FT - H298)/T	HT - H298	ΔH	ΔF	Log Kp
0	0.000	0.000	INFINITE	-1-481	137.775	137.775	INFINITE
298-15	4.969	45.426	45.426	0.000	137.700	127.961	-93.793
300	4.969	45.457	45.426	0.009	137.697	127.900	-93.171
400	4.982	46.688	45.621	0.506	137-527	124.660	-68.108
500	5.039	48.004	45.990	1.007	137.337	121.464	-53.089
600 700	5.171 5.388	48.934 49.746	46.405 46.826	1.517	137.129 136.913	118.309 115.189	~43.092 ~35.962
800	5.679	50.484	47.237	2.597	136.698	112.101	-30.623
900	6.022	51.172	47.637	3.182	136.489	109.038	-26.477
1000	6.390	51.825	48.023	3.802	136.288	105.999	-23.165
1100	6.761	52.452	48.398	4.460	136.092	102.978	-20.459
1200	7.116	53.056	48.761	5.154	135.891	99.977	-18.207
1300	7.441	53.638	49.114	5.882	135.676	96.993	-16.305
1400	7.729	54.201	49.457	6.641	135.434	94.027	-14.678
1500	7.975	54.742	49.791	7.426	135.148	91.078	-13.269
1600	8.180	55.264	50-117	8.235	134.803	88.153	-12.041
1633			50.222	8 • 508	134 • 675	87.193.	11.669
1633	8.240	55.432	50.222	8.508	174.022	87.193	-11.669
1700	8.346	55.765	50.435	9.061	133.838	85.274	-10.962
1800	8.476	56.246	50.744	9.903	133.580	82.426	-10.007
1900	8.574	56.707	51.046	10.755	133.332	79.590	-9.155
2000	8-646	57.149	51.340	11.616	133.093	76.768	-8.388
2028	8.661	57.268	51.420	11.859	133.028	75.982	-8.168
2028	8.661	57.268	51.420	11.859	129.175	75.982	~8.188
2100	8 . 695	57.572	51.627	12-484	129.008	74.095	-7.711 -7.101
2200	8.727	57.977	51.907	13.355	128.779	71.484	-7.101
2300	8.745	58.365	52.179	14.229	128-553	68.886	-6.545
7400	8.754	58.738	52.445	15-104	128.328	66.295	-6.037 -5.570
2500	8.755	59.095	52.703	15.979	128.103	63.718	
2600	8 - 751	59.438	52.956	16.854	127.878	61.146 58.582	-5.140 -4.742
2700	8.746	59.769	53.202 53.442	17.729	127.653	56-030	477
2800				19.477	127.201	53.481	-4.030
2900 3000	8.735 8.732	60.393 60.687		20-351	126.975	50.943	-3.711
		60.976		21.224	126.748	48.414	-3.413
3100	8.732	61.253		22.097	126.521	45.892	-3.134
3200	8.735 8.742	61.522		22.971	125 - 295	43.373	-2.872
3300	8.754	61.783		23.846	126-670	40.868	-2.627
3400 3500	8.769	62.037		24.722	125.846	38.363	-2.395
3600	8.789	62.284	55.173	25.600	125.624	35.867	-2.177
3700	8.812	62.525	55.369	26.480		33.375	-1.97
3800	8.839	62.761		27.362	125.186	30.890	-1.776
3900	8.870	62.991		28.247	124.971	28-410	-1.59
4000	8.903	63.216		29.136	124.760	25.940	-1.41
4100	8.940	63.436	56.112	30.028	124.552	23.470	-1.25 -1.09
4200	8.978	63.652	56.289	30.924	124.348	21.007	
4300	9.018	63.863		31.824	124.148	18.551	-0.94
4400	9.060	64.071		32.728	123.752	16.097	
4500	9.103	64.275	56.801	33.636	123.760	13.648	-0.66
4600	9.146	64.476		34.548		11.205	
4700	9.189	64.673		35.465		8.760	
4800	9.232	64 . 86	57.286	36 - 386		6.329	
4900	9.275	65.058	57.443	37.312		3.896	
5000	9.316	65.245		38 • 241		1.465	
5060-26		65 • 35	57.689_	38 - 804	122.765	0.000	0.00
5060.26	9.340	65 • 35	57.689	38 • 804			
5100	9.356	65 • 430		39.175			
5200	9.394	65.612		40-112			
5300	9.430	65.79		41.053 41.998			
5400 5500	9.464 9.496	65.96		42.946			
				43.891	,		
5600	9.525	66.31		44.851			
5700	9.552	66.48		45.807			
5800	9.575	66.64					
5900	9.596	66.81					
6000	9.613	66.97	770020	714121	-		

2-323

Th

$$\Delta H_{f0}^{o} = 137.775 \text{ kcal gfw}^{-1}$$
 $\Delta H_{f298.15}^{o} = 137.700 \text{ kcal gfw}^{-1}$

Ground State Configuration = $^{3}F_{2}$
 $S_{298.15}^{o} = 45.426 \text{ cal deg K}^{-1}\text{gfw}^{-1}$
 $H_{298.15}^{o} = 1.481 \text{ kcal gfw}^{-1}$

Electronic Levels and Multiplicities

Spectroscopic energy levels from Zalubas. 1

Heat of Formation

Vapor-pressure data from Darnell et al. 2 $\triangle \overset{\circ}{H}_{298}$ derived from a Third Law calculation.

Heat Capacity and Entropy

Calculated from the monatomic-gas computer program. See volume 1, this study (section IVA29) for details.

References

- 1. Zalubas, R., J. Res. Natl. Bur. Stds. (U.S.) 63A, 275 (1959).
- Darnell, A. J., W. A. McCollum, and T. A. Milne, J. Phys. Chem. 64, 341 (1960).

THERIUM: MENATEMIC (Th)

(IDEAL GAS)

GFW - 232.05

		cal/°1	K #14		Kcal/gfw		
т, °к	c,	s _T	-(FT - H298)/T	H _T - H ₂₉	• ΛΗ _ι	1 FI	Log Kp
298-15	± 0.010	± 0.005	± 0.005	± 0.000	± 1.000	± 1.060	± 0.780
1000	* 0.100	* 0.059	± 0.027	± 0.032	± 1.070	± 1.250	± 0.270
1633	± 0.160	± 0.120	± 0.050	± 0.120	± 0.280	± 1.510	± 0.200
1633	± 0. 160	± 0.120	± 0.050	± 0.120	± 0.480	± 1.510	± 0.200
2028	± 0.200	± 0.160	± 0.070	± 0.180	± 0.940	± 1.790	± 0.190
2028	± 0.200	± 0.160	± 0.070	± 0.180	± 1.940	± 1.790	± 0.190
3000	± 0.300	± 0.260	± 0.120	± 0.430	± 3.840	± 3.520	± 0.260
4000	# 0.400	± 0.365	± 0.170	± 0.780	± 8.090	+ 6.280	+ 0 - 340
5060.26	± 0.500	# 0.465	± 0.220	± 1.230	±15.060	+10.660	+ 0.460
5060.26	± 0.500	# 0.465	# 0.220	± 1.230			
6000	± 0.600	# 0.575	* 0.280	± 1 . 780			

REFERENCE STATE

Ti

Reference State for Calculating AH²₁, AF²₁, and Log K_p: Solid Ti from 0° to 1950°K, Liquid Ti from 1950° to 3550°K, Gaseous Ti from 3550° to 6000°K.

		om 1950° t					
T,°K	(cb	cal/°K a S _T		000	Kcal/glu		
	P	٦.	-(F _T - H ₂₉₈)/T	H _T - H ₂₉₈	ΔH	AF ₁	Log Kp
٥	0.000	0.000	INFINITE				
298 - 15	5.970	7.330		-1.150			
300	5.980	7.367	7.330 7.330	0.000			
400	6.360	9.147	7.570	0.011			
500	6.620	10.595	8.035	0.631			
			0.0,,	1.280			
600	6.840	11.822	8.566	1.953			
700	7.020	12.890	9.109	2.647			
ROO	7-180	13.838	9.642	3.357			
900	7.330	14.693	10.157	4.082			
1000	7.470	15.472	10.650	4.822			
1100	7.600	16.190	11.121	5.576			
1155	7.667_	16.563	11.372	5.996			
1155	7.667	17.385	11.372	6.946			
1200	7.720	17.679	11.603	7.292			
1300	7.840	18.302	12.094	8.070			
1400	7.950	18.887	12.559	8.860			
1500	8.060	19.439	12.999	9.660			
1600	8.160	19.963	13.418	10.471			
1700	8.260	20.460	13.818	11.292			
1800	8.360	20.935	14.200	12.123			
1900	8.460	21.390	14.567	12.964			
1950	8.510	21.610	14.745	13.388			
1950	8.000	23.507	14.745	17.088			
2000	8.000	23.710	14.966	17.489			
2100	8.000	24.101	15.392	18.289			
2200	8.000	24.473	15.796	19.089			
2300	8.000	24.829	16.181	19.889			
2400	8.000	24.169	16.549	20.689			
2500	8.000	25.496	16.900	21.489			
	-						
2600	8.000	25.809	17.237	22.289			
2700	8.000	26.111	17.560	23.089			
2800	8.000	26.402	17.871	23.889			
2900	8.000	26.683	18.170	24.689			
3000	8.000	26.954	18.458	25.489			
				40 /			
3100	8.000	27.217	18.736	26.289			
3200	8.000	27.470	19.005	27.089			
3300	8.000	27.717	19.266	27.889			
3400	8.000	27.955	19.518	28.689			
3500	8.000	28.187	19.762	29.489			
\overline{X}							
3550	8.000	28.303	19.881	29.889			
3550	8.068	- 57.162	19.881	132.346			
3600	8.137	57.275	20.400	132.751			
3700	8.274	57.500	21.400	133.571			
3800	8.408	57.723	22.353	134.405			
3900	8.539	57.943	23.262	135.253			
4000	8.666	58.160	24.132	136.113			
	5.500	>0.0100	1 3 .				
4100	8.790	58.376	24.965	136.986			
4200	8.910	58.589	25.763	137.871			
4300	9.026	58.800	26.529	138.768			
4400	9.137	59.009	27.265	139.676			
4500	9.244	59.216	27.972	140.595			
. 300	7 - 4 -	270610	410714	. 40 - 272			
4600	9.346	59.420	28.654	141.524			
4700	9.443	59.622	29.310				
4800	9.535	59.822	29.944	142.464			
4900	9.623	60.019	30.556	144.371			
5000	9.706	60.214	31.147	145.337			
	,	001214	7 1 7 7	. 4/0331			
5100	9.784	60.407	31.719	344.313			
5200				146.312			
5300	9.857 9.926	60.598	32.272				
5400		60.787	32.809	148-283			
	9.990	60.973	33.328	149.279			
5500	10.050	61.157	33.833	150.281			
6400		41		161 300			
5600 5700	10-105	61.336	34.322	151 - 289			
5700 5800	10.155	61.517	34.798	152.302			
5800	10.202	61.694	35.260	153.320			
5900	10.245	61.869	35.710	154 - 342			
6000	10.284	62.042	36.147	155.368			

0 °K to 1950 °K Crystal

1950 °K to 3550 °K Liquid

3550 °K to 6000 °K Ideal Monatomic Gas

 $\Delta H_{f0}^{o} = 0$

ΔH (298. 15 = 0

ΔH_{a298, 15} = 112, 490 Kcal gfw⁻¹

S^o_{298, 15} = 7.330 cal degK⁻¹ gfw⁻¹

T. = 1155 OK

 $\Delta H_{\rm c} = 0.950 \, \text{Kcal gfw}^{-1}$

Tm = 1950 °K

ΔH_m = 3.700 Kcal gfw⁻¹

Th = 3550 °K

ΔH_v = 102, 458 Kcal gfw⁻¹

 $H_{298.15}^{o} - H_{0}^{o} = 1.150 \text{ Kcal gfw}^{-1}$

Structure

Low temperature form ($_6$ - Ti) is h.c.p.; high temperature form ($_8$ - Ti) is b.c.c.

Heat of Formation

Zero by definition

Heat Capacity and Entropy

JANAF tables results were accepted for this table.

Melting

Five values agreed with JANAF1.

Vaporisation

Three determinations had been made. Further details are given by Barriault et al. 2 .

References

- 1. JANAF Thermochemical Tables, Dow Chemical Co., Midland Mich. (1960).
- 2. Barriault, R., et al, ASD TR-61-260 (May 1962), Pt. I.

TITANIUM (T1)

(REFERENCE STATE)

GFW - 47.90

		cal/°K	et v		_Kcal/giv		
¥, •K	c.	ST	-(FT - H298)/T	H _T - H ₂₉₈	AH,	AF1	Log Kp
298 - 15	±0.050	±0.020	±0.020	±0.000			
1000	£0.500	±0.346	±0.157	±0.189			
1155	± 0.500	+0.418	±0.188	#0.266			
1155	± 0.500	# 0.504	±0.188	*0.366			
1950	±1.000	# 0.896	+0.403	+0.962			
1950	41.000	41.152	#0.403	±1.462			
2000	± 1.000	± 1.177	#0.421	+1.512			
3000	# 2.000	+ 1.785	±0.781	# 3.012			
3550	# 2.000	± 2.121	+0.963	*4.112			
3550	± 2.000	* 0.003	+0.264	± 1.002			
4000	± 0.002	+ 0.003	+0.253	± 1.002			
5000	± 0.005	± 0.003	40.203	- 1.003			
6000	± 0.010	± 0.003	40.170	± 1.004			

IDEAL MONATOMIC GAS

Ti

Reference State for Calculating AH^{*}₁, AF^{*}₁, and Log K_p: Solid T₁ from 0° to 1950°K, Liquid Ti from 1950° to 3550°K, Gaseous Ti from 3550° to 6000°K.

		cel/°K	B/=		Kcal/		
T, °K	′cೄ*	sr	-(FT - H298)/T	HT - H298	Kcai/glw AH _i	1.0	
	•	•		''T - 1'298	anı	AF,	Log Kp
0	0.000	0.000	INFINITE	-1 000			
298.15	5.838	43.068	43.068	-1.802 0.000	111.838	111.838	INFINI
300	5 • 8 3 1	43.104	43.068	0.000	112.490	101.835	-74.6
400 500	5.522	44.735	43.293	0.577	112.490	101.769	-74.1
500	5.344	45.946	43.707	1.120	112.436 112.330	98.201 94.654	-53.6
600	5.237	44 011				74.074	-41.3
700	5.170	46.911 47.712	44.164	1.648	112.185	91.132	~33.1
800	5.128	48.400	44.615	2.168	112.011	87.636	-27.3
900	5.104	49.002	45.046 43.453	2 • 683	111.816	84.167	-22.9
1000	5.095	49.539	45.835	3.194	111.602	80.724	-19.6
			.,,,	3.704	111.372	77.305	-16.8
1100 1155	5.106	50.025	46.194	4 - 214	111-128	73.909	
1155	5.118_	50 - 275	46.383	4 . 496	110.990	72.052	-14.6
1200	5.118 5.132	50.275	46.383	4.496	110.040	72.052	=13.6
1300	5.176	50.471	46.532	4.726	109.974	70.574	-13.6 -12.8
1400	5.237	50.883	46.851	5.241	109.661	67.306	-11.3
1500	5.313	51.269	47.153	5.762	109.392	64.057	-9.9
	20213	51.633	47.446	6.289	109.119	60.829	-8.8
1600	5.403	51.978	47.713	4.025	160		
1700	5.506	52.309	47.974	6 • 8 2 5	108.844	57.619	-7.8
1800	5.616	52.627	48.223	7.370 7.926	108.568	54.425	-6.99
1900	5.736	52.934	48.463	0 101	108.293 108.020	51.248	-6.2
1950	5.799	53.084	48.580	8.782	107.994	48.087	-5.53
1950	5.799	53.084	48.580	8.782	107.884	46.512 46.512	-5 • 2 !
2000	5.863	53.231	48.694	9.074	104.075	45.033	-5.21
2100	5.995	53 /34					-4.92
2200	6 • 1 3 1	53.520	48.917	9.667	103.868	42.087	-4.38
2300	6.269	53.802 54.078	49.133	10.273	103.674	39.150	-3.86
2400	6.411	54.348	49.342	10.893	103.494	36.222	-3.44
2500	6.553	54.612	49.545 49.742	11.527	103.328	33.299	-3.03
		. 4.012	770146	12.175	103-176	30.386	-2.65
2600	6.698	54.872	49.934	12.837	103.038	27 . 20	
2700	6.843	55.127	50.122	13.514	102.915	27.475	-2.30
2800	6.988	55.379	50.305	14.206	102.807	24.57 <u>1</u> 21.672	-1.98
2900 1000	7.134	55.627	50.485	14.912	102.713	18.776	-1.69
3000	7.281	55.871	50.660	15.633	102.634	15.883	-1.41 -1.15
3100	7.427	54 112			_		,
3200	7.571	56.112 56.350	50.832	16.368	102.569	12.994	-0.91
3300	7.715	56.585	51.001	17.118	102.519	10.102	-0.69
3400	7.857	56.818	51.166 51.320	17.882	10, 483	7.218	-0.47
3500	7.998	57.048	51.329 51.489	18.661 19.454	102.462	4.328	-0.27
3850				1 424	102 15	1.443	-0.09
3550	8.068	57.162	51.569	19.856	102.458	0.009	0.00
1550 1600	8.068	57.162	51.569	19.856			0.00
3700	8.137	57.275	51.647	20.261			
800	8.274	57.500	51.802	21.081			
900	8.408 8.539	57.722	51.955	21.915			
000	8.666	57.942 58.140	52.106	22.763			
	0.000	58.160	57.254	23.623			
100	8.790	58.376	52.401	24.496			
200	8.910	58.589	52.546	25.381			
300	9.026	58.800	52.689	26.277			
400	9.137	59.009	52.830	27.186			
500	9.244	59.215	52.970	28.105			
600	0 344						
700	9.346 9.443	59.419	53.108	29.034			
800	9.535	59.621 59.821	53.244	29.974			
900	9.623	60.019	53.379	30.923			
000	9.706	60.019	53.513	31 • 881			
	,.,,	00.0214	53.645	32.847			
100	9.784	60.407	53.775	33.822			
200	9.857	60.598	53.905	34.804			
300	9.926	60.786	54.033	35.793			
400	9.990	60.972	54.160	36.789			
500	10.050	61.156	54.285	37.791			
600	10.105	41 220					
700	10.105	61.338	54.509	38 • 798			
600	.10.202	61.517	54.533	39.812			
900	10.245	61.869	54.654 54.778	40.829			
000	10.284	62.041	54.775 54.895	41 - 852			
-		32.041	/~•0¥7	42.878			
			May 1962				

TITANIUM, MONATOMIC (Ti) (IDEAL GAS)

gfw = 47.90

 $\Delta H_{f0}^{o} = 111.838 \text{ Kcal gfw}^{-1}$

 $\Lambda H_{f298, 15}^{O} = 112.490 \text{ Kcal gfw}^{-1}$

Ground State Configuration 3F_2

S^o_{298.15} = 43.068 cal degK⁻¹ gfw⁻¹

H^o_{298, 15} - H^o₀ 1.802 Kcal gfw⁻¹

Electronic levels and multiplicities

Atomic energy levels from Moore!

Heat of Formation

Based on three vaporization determinations.

Heat Capacity and Entropy

A table had been calculated using the data from the present project. ² It agreed well with JANAF³. In the interest of consistency, the latter data were accepted.

References

- 1. Moore, C., Atomic Energy Levels Vol. 1 Nat. Bur. Stds. (1949)
- 2. Barriault, R., et al, ASD TR-61-260 (May 1962), Pt. I.
- 3. JANAF Thermochemical Tables, Dow Chemical Co. (1960).

TITANIUM: MONATOMIC (TI)

(IDEAL GAS)

GFW = 47.90

		cal/°K	gl=		_ Kcal gfw		
T,*K	C _p	s _T	-(FT - H298)/T	HT - H298	NH _I	14,	Log K _p
298.15	± 0.000	±0.002	±0.003	±0.000	±1.000	±1.007	±0.738
1000	±0.001	±0.002	± 0.003	±0.001	.1.190	±1.160	±0.253
1155	± 0.001	±0.002	±0.003	±0.001	*1.267	±1.220	+0.230
1155	± 0.001	±0.002	±0.003	±0.001	±1.367	+1.220	± 7.230
1950	± 0.001	±0.002	±0.003	±0.001	±1.963	±1.791	± 0 • 200
1950	± 0.001	±0.002	±0.003	±0.001	±2.463	±1.791	±0.200
2000	± 0.001	*0.002	±0.003	±0.001	±2.513	+1.848	±0.201
3000	± 0.001	±0.003	± 0.003	± 0 • 002	± 4.014	4 3.352	+0.244
3550	± 0.002	±0.003	± 0.003	± 0 • 002	±5.114	± 4.429	± 0.272
3550	± 0.002	±0.003	± 0.003	± 0 • 002			
4000	± 0.002	±0.003	± 0.002	+0.002			
5000	± 0.005	*0.003	± 0.003	± 0.003			
6000	± 0.010	±0.003	± 0.004	+ 0.004			

Reference State for Calculating AN, AF, AF, and Log Kp: Solid U from 0° to 1406°K, Liquid U from 1406° to 4124°K, Gaseous U from 4124° to 6000°K.

		cal/K gf	V		Kcal/gfw		
T, %	(C.		-(F% - Н3 ₉₈)/Т	HY - H398	ΔΗγ	AFY	Log Kp
	•	•	. 276	1 298			пр
٥	0.000	0.000	INFINITE	-1.521			
298-15	6.598	11.995	11.995	0.000			
300	6.608	12.036	11.995	0.012			
400	7.074	14.002	12.260	0.697			
500	7.569	15.632	12.776	1-428			
600	8.193	17.065	13.373	2.215			
700	8.983	18.385	13.996	3.072			
800	9.953	19.646	14.624	4.018			
900	11.109	20.883	15.251	5.069			
940	_11.625	21.377_	15.501	5.524			
940	10.150	22.106	15.501	6.209			
1000	10.150	22.734	15.916	6.818			
1048	10.150	23.210	16.239	7 - 305			
1048	9.150	24.278	16.239	8.425			
1100	9.150	24.722	16.630	8.901			
1200	9.150	25.518	17.338	9.816			
1300	9.150	26.250	17.996	10.731			
1400	9.150	26.928	18-610	11.646			
1406	9•150	26.967_	18.645	11.701			
1406	9.150	30.310	18.645	16.401			
1500	70170	30.902	1 7 . 3 7 3	17.201			
1600	9.150	31.493	20.133	18.176			
1700	9.150	32.048	20.818	19.091			
1600	9.150	32.571	21.456	20.006			
1900	9.150	33.065	22.054	20.921			
2000	9.150	33.535	22.617	21.836			
2160	0.158	33 001	22 147	22.761			
2100 2200	9.150 9.150	33.981 34.407	23.147 23.650	22•751 23•666			
2300	9.150	34.813	24.126	24.581			
2400	9.150	35.203	24.580	25.496			
2500	9.150	35.576	25.012	26.411			
2600	9.150	35.935	25.425	27.326			
2700	94150	36.281	25.821	28.241			
2600	9-150	36.613	26.201 26.565	29.156 30.071			
2900 3000	9.150 9.150	36.934 37.245	26.916	30.986			
3000	,	310243		200720			
3100	9.150	37.545	27.254	31.901			
3200	9.150	37.835	27.580	32.816			
3300	9.150	36.117	27.895	33.731			
3400	9.150	38.390	28.200	34 • 646			
3500	9.150	38 - 655	28.495	35.561			
3600	9.150	38.913	28.781	36 - 476			
3700	9.150	39.164	29.058	37.391			
3800	9.150	39.408	29.327	38.306			
3900	9.150	39.645	29.589	39.221			
4000	9.150	39.877	29.843	40.136			
4100	9.150	40 103	30.090	41-051			
4100 4123.63	9.150	40.103	30.090	41.267			
4123.63	10.286	-66.079	30.147	148.168			
4200	10.327	66.268	30.803	148.955			
4500	10.377	66.512	31.630	149.990			
4400	10.425	66.751	32.426	151.031			
4500	10.472	66.985	33.191	152.075			
4400	10 515	67.216	33.928	153.125			
4600 4700	10.515 10.557	67.443	34.639	. +•178			
4800	10.595	67.665	35.325	155.236		,	
4900	10.630	67.884	35.986	156.297			
5000	10.662	68.099	36.627	157.362			
5100	10.690	68.311	37.246	158-430			
5200	10.715	68.519	37.846	159.500			
5300	10.735	68.723	38.426 38.989	160-572 161-647			
5400	10.751 10.763	68.924 69.121	39.535	162.722			
5500	10.763	070121	,,,				
5600	10.770	69.315	40.065	163.799			
5700	10.773	64.506	40.580	164.876			
5800	10.771	69.693	41.081	165.954			
5900	10.765	69.877	41.567	167.030			
6000	10.755	70.058	42.040	168-106			
			15 June	1963			MBP

0°K to 1406°K Crystal 1406°K to 4124°K 4124°K to 6000°K Liquid Ideal Monatomic Gas $\Delta_{H_{10}^{o}} = 0$ AH1298, 15 = 0 ΔH_{a298, 15} = 117.064 kcal gfw⁻¹ S298, 15 = 11. 995 cal deg K-1gfw-1 T_t = 940°K AH, = 0.685 kcal gfw-1 T. = 1048°K AH, = 1, 120 kcal gfw-1 Tm = 1406°K △H_m = 4.700 kcal gfw⁻¹ Th = 41240K AH, = 106, 901 kcal gfw-1 $H_{298.15}^{0} - H_{0}^{0} = 1.521 \text{ kcal gfw}^{-1}$ Co = emoothed data 298. 15°K & T & 940°K $C_{\rm p}^0 = 10.150 \text{ cal deg } \text{K}^{-1}\text{gfw}^{-1}$ 940°K ∠ T ∠ 1048°K $C_{\rm p}^{\rm o} = 9.150 \, {\rm cal} \, {\rm deg} {\rm K}^{-1} {\rm gfw}^{-1}$ 1048°K & T & 4124°K

Structure

Elemental uranium exists in three modifications (α , β , and γ) below melting point.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Low-temperature heat capacity by Flotow and Lohr. $^{\rm l}$ High-temperature heat capacity from Ginnings and Corruccini, $^{\rm 2}$

Melting and Vaporization

Heat of fusion based on work of Rauh and Thorn 3 Vapor-pressure data of Ackermann et al. 4 and Rauh and Thorn 3 adopted.

References

- Flotow, H. E. and H. R. Lohr, J. Phys. Chem. 64, 904 (1960).
 Ginnings, D. C. and R. J. Corruccini, J. Res. NES 19, 309 (1947).
 Rauh, E. G. and R. J. Thorn, J. Chem. Phys. 22, 1414 (1954).
 Ackermann, R. J., E. G. Rauh, and R. J. Thorn, J. Chem. Phys. 37, 2693 (1962).

URANIUM (U)

IREFERENCE STATE!

GFW = 238.07

		cel/%	stw		Kcal/gfw		
τ, °κ	, c.	የት	-(F _T - H ₂₉₈)/T	HT - H298	ΔН7	SF7	l.og Kp
298.15	± 0.030	* 0.050	± 0.050	± 0.000			
350	± 0.030	± 0.055	± 0.050	± 0.002			
350	± 0.040	* 0.055	± 0.050	* 0.002			
600	± 0.040	± 0.076	± 0.057	+ 0.015			
600	* 0.100	± 0.076	* 0.057	* 0.015			
900	± 0.100	* 0.117	± 0.071	± 0.042			
900	± 0.500	+ 0.117		± 0.042			
939	± 0.500	* 0.138	* 0.073	* 0.061			
939	± 0.600	± 0.138	± 0.073	± 0.061			
940	* 0,600	± 0.139	± 0.073	± 0.062			
940	* 0.200	± 0.192	± 0.073	± 0.112			
1000	± 0.200	± 0.204	# 0.081	± 0.124			
1048	# C.200	# 0.214	± 0.087	± 0.133			
1048	± 0.200	± 0.261	± 0.087	± 0.183			
1406	± 0.200	± 0.320	± 0.139	± 0.255			
1406	± 0.400	# 0.462	± 04139	± 0.455			
2000	# 0.400	± 0.603	± 0.257	± 0.69Z			
2000	± 1.000	± 0.603	± 0.257	± 0.692			
3000	± 1.000	± 1.009	± 0.445	± 1.692			
3000	± 1.500	± 1.009	± 0.445	± 1.692			
4000	± 1.500	= 1.440	± 0.642	± 3.192			
4123.63	± 1.500	± 1.486	# 0.667	* 3.377			
4123.63	4 2.000	± 1.534	± 0.667	± 3.577			
5000	# 2.000	± 1.920	± 0.854	± 5.330			
6000	± 2.000	\$ 2.284	± 1.062	± 7.330			

Reference State for Calculating AH, AF, and Log Kp: Solid U from 0° to 1406°K, Liquid U from 1406° to 4124°K, Gaseous U from 4124° to 6000°K.

T, 🗙	(, ,				- Kcal/gfw _		
·· •	΄ C _P P	S¥	-(F) - H298)/1	L, HJ - H201	ΔH7		
1 .			- 7.11	1 291	,,,,,	AFY '	Log K _p
	0.000		INFINITE				
298-1		47.72		~1.553		117.002	INFINIT
400	5.666	47.76	47.726	0.000		106.411	-77.99
500	5.724		47.950	0.010		106.345	-77.468
1	5.665	50-676	48.373	1.152		102.788	-56 - 156
600	5.593	6) 70-		11172	116.788	99.266	-43.387
700	5.559		10.047	1-714	116.563	04 2	
800	5.580		.,	2.271		95.781 92.340	-34 -867
900	5.660		,	2.828	115.874	88.948	-28.828
940	5.707			3.389		85.611	-24.298 -20.788
940	5.707			3.617	116 165	84.292	-19.597
1000	5.792			3.617	114.472	84.292	-19.597
		- 11300	50.606	3.962	114.208	82.374	-18.002
1048	5 . 873	54 • 841	50.794				
1048	5 • 873	54.841		4.242		80.850	-16.860
1100	5.970	55.128	50.992	4.549	112.881	80.850	-16.860
1300	6.182	55.656	51.359	5.157	112.712	79.266	-1>.748
1400	6.420	56 - 160	51.709	5.787	112.405	76.239	-13.884
1406	6.674	56.645	52.044	6.441	112.120	73.237	-12.312
1406	6 6 6 8 9	56.674	52.064	6-481		70.256	-10.967
1500	6+689	56.674	52.064	6.481	¹¹¹ -844 107-144	70 • 077	-10.892
1,500	6.936	57.115	52.367	7.122	106.925	70.071	-10-892
1600	7 264					67.606	-9.850
1700	7+200 7+460	57.571	52.678	7.829	106.717	64.992	
1800	7.712	58.015	52.979	8.562	106.235	62.390	-8.877
1900	7.951	58.449	53.271	9.320	106.378	59.797	-8.020
2000	8.176	58.872	53.555	10-104	106.247	57.213	-7.260 -6.581
-		59.286	53.831	10.910	106.138	54.636	-5.970
2100	8.385	59.690	54.100				2.7.0
2200	8.577	60.084	54.363	11.738	106.051	52.062	-> -418
2100	8.753	60.470	54.620	12.587	105.985	49.495	-4.917
2400	8.412	60.846	54.872	13.453 14.537	105.936	46.927	-4.459
2500	9.056	61.212	55.118	15.235	105.905	44.363	-4.040
2600					105.888	41.798	-3.654
2700	9.185	61.570	55.360	16.147	105.885	39.234	
2800	9.302	61.919	55.596	17.072	105.895	36.671	-3.298
2900	9 • 40 7 9 • 50 2	62.259	55.828	18-007	105.915	34-108	-2.968
3000	9.589	62.591	56.056	18.953	105.946	31.541	-2.662 -2.377
	,,,,,	62.915	56.279	19.907	105.985	28.976	-2.111
3100	9.669	63.230	56.498	20 0.4			
3200	9.742	63.538	56.713	20.010	106.033	26.408	-1.862
3300	9.811	63.839	56.925	21.841 22.819	106.089	.3.838	-1.628
3400	9.877	64.133	57.132	23-803	106.152	21.266	-1.408
3500	9.939	64.420	57.336	24.794	106.221 106.297	18.694	-1-202
3600	0 0				,	16-119	-1.006
3700	9.999	64.701	57.537	25.791	106.379	13.542	-0 033
3800	10-057	64.976	57.135	26.794	106.467	10.961	-0.822
3900	10.114 10.169	65.245	57.929	27.802	106.560	8.378	-0.482
4000	10.223	65.508	58.120	58-816	106.659	5.795	-0.325
		65.767	58.308	29.836	106.764	3.206	-0.175
4100	10.276	66.020	58.493	10 04 -			
4123.63	10.288	66.079	58.536	30 - 861	106.874	0.613	-0.03
4123.63	10.288	66.079	58.536	31-104	106.901	0.003	-0.000
4200	10.327	66.268	58.675	31 - 104			
4300	10.377	66.512	58.854	31.891 32.926			i
4400	10.425	66.751	59.031	33.967			1
4500	10.472	66.985	59.205	35.011			1
4400							i
4600	10.515	67.216	59.377	36.L			1
4700	10.557	67.443	59.546	37-114			- 1
4800	10.595	67.665	59.713	38 - 172			j
4900	10.630	67.884	59.877	39.233			I
5000	10.662	68.099	60.040	40.298			1
5100	10.690	40 311	40.00=				l
5200	10.715	68.311 68.519		41 - 366			1
5300	10.735	68.723		42 • 436			ı
5400	10.751	68.924		43.508			1
5500	10.763	6921		44.583			- 1
				45.658			1
5600	10.770	69.315	60.969	46.735			i
5700	10.773	69.506		47.812			1
5800	10.771	69.643		8-890			I
5900	10.765	69.877	61.408	9.966			i
6000	10.755	70.058		1.042			1
							1
			15 June 196				

$$\Delta H_{f0}^{o} = 117.032 \text{ kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 117.064 \text{ kcal gfw}^{-1}$$

$$H_{298.15}^{o} - H_{0}^{o} = 1.553 \text{ kcal gfw}^{-1}$$

$$S_{298.15}^{o} = 47.726 \text{ cal deg } K^{-1} \text{gfw}^{-1}$$

Electronic Levels and Multiplicities

Spectroscopic energy levels from Blaise. 1

Heat of Formation

Vapor-pressure data from Rauh and Thorn² adopted to calculate $\Delta_{H_{1298, 15}}$.

Heat Capacity and Entropy

Calculated on monatomic-gas computer program.

References

- Blaise, J., unpublished work, provided by C. M. Moore (Sitterly), NBS (1963).
- 2. Rauh, E. G. and R. J. Thorn, J. Chem. Phys. 22, 1414 (1954)

URANIUM, MONATOMIC (U)

IIDEAL GAST

GFW - 238.07

1, °K	,	C _o		54	-(F¥ -	- H ₂₉₈)/Т	, HJ	- H ₂ 98	7H [‡]	AFY	Log Ap
298.15	•	.000	*	.002	*	.002	±	.000			
940	±	.000	*	.002	*	.002	*	.000			
1000	*	.000	±	-002	±	•002	*	.000			
1048	±	.000	*	.002	±	.002	±	.000			
1406	±	-001	*	.002		.002	*	.000			
2000	*	.001	*	.003	±	.003	±	.001			
3000	*	.002	*	.003	±	.003	±	-002			
4000	±	.002	±	.003	±	.003	±	.003			
5000	±	.002	±	.003	±	.003	*	.004			
6000	±	.002	*	.004	±	.003	*	.005			

REFERENCE STATE

Reference State for Calculating AH_f*, AF_f*, and Log K_p: Solid V from 0° to 2190°K, Liquid V from 2190° to 3648°K, Gaseous V from 3648° to 6000°K.

		cel/°N			_Kcal/gfw		
T, °K	C.	s _T	-(F _T - н ₂₉₈)/7	H _T - H ₂₉₈	ΛH,	ΔF	Log Kp
0	0.000	0.000	INFINITE	-1.122			
298.15	5.894	6.880	6.880	0.000			
300	5 . 896	6.916	6.880	0.011			
400 500	6.057	8.633	7.113	0.608			
	6.270	10.007	7.559	1.224			
600 700	6.504 6.747	11.170	8.066	1.863			
800	6.995	12.191	8 . 584	2.525			
900	7.247	13.946	9.093	3.212			
1000	7.500	14.723	9•586 10•062	3•924 4•661			
1100	7.755	15.450	10 510				
1200	8.010	16.135	10.519 10.958	5.424			
1300	8.266	16.787	11.382	6.212			
1400	8.522	17.409	11.790	7•026 7•866			
1500	8.779	18.005	12.185	8.731			
1600	9.036	18.580	12.567	9 (3)			
1700	9.293	19.136	12.937	9•621 10•538			
1800	9.550	19.674	13.296	11.480			
1900 2000	9.808	20.197	13.646	12.448			
	1.065	20.707	13.986	13.441			
2100	10.323	21.204	14.318	14.461			
2190	1 0.554_	21.642	14.610	_15.400			
2200	9.500	23.560	14.610	19.600			
2300	9.500 9.500	23.603	14.651	19.695			
2400	9.500	24.026	15.049	20.645			
2500	9.500	24.430 24.818	15.432 15.800	21.595 22.5.5			
2600							
2700	9.500 9.500	25.190 25.549	16.154	23.495			
2800	9.500	25.894	16.495 16.825	24 • 445			
2900	9.500	26.228	17.143	25 • 395 26 • 345			
3000	9.500	26.550	17.451	27.295			
3100	9.500	26.861	17 764				
3200	9.500	27.163	17.750	28.245			
3300	9.500	27.455	18.039 18.320	29.145			
3400	9.500	27.739	18.593	30 • 1 4 5 31 • 0 9 5			
3500	9.500	28.014	18.858	32.045			
3600	9.500	28.282	19.117	33 005			
3647.68	9.500	28.407	19.237	32.995			
3647.68	6.890	58.528		33.448			
3700	6.950	58.627		143.683			
3800	7.068	58.814		144.384			
3900	7-188	58.999	21.795	45.097			
•000	7.311	59.183	22.728	145.822			
100	7.435	59.365	23.619	146.559			
200	7.560	59.546	24.472	47.309			
300	7.685	59.725	25.290	48 • 071			
400 500	7.810 7.935	59.903	26.074	48.846			
	737	60.083	26.828	49.633			
600 700	8.058	60.256		50.433			
800	8.180	60.430		51. 1			
900	8.419	60.604 60.776		.52+069			
000	8.534	60.947		52.905 53.753			
100							
200	. 8.648 8.758	61.118 61.287		54 • 612 55 • 482			
300	8.866	61.454		56.363			
400	8.970	61.621		57.255			
500	9.071	61.787		58.157			
600	9.169	61.951	33.546 1	50.Aca			
700	9.264	62.114		59.069 59.991			
800	9.354	62.276		60.922			
900	9.442	62.437	35.003 1	61.862			
000	9.526	62.596		62-810			

2-333

.,

0°K to 2190°K 2190°K to 3648°K 3648°K to 6000°K

Crystal Liquid Ideal Monatomic Gas

 $\Delta H_{00}^{o} = 0$ AH(298 15 = 0 $\Delta H_{6298, 15}^{o} = 123.010 \text{ Kcal gfw}^{-1}$ S298 15 = 6.88 ± 05 cal degK-1 gfw-1 Tm = 2190°K ΔH_m = 4.2 Kcal gfw⁻¹ T. = 3647.68°K $\Delta H_{ii} = 109.874 \text{ Kcal gfw}^{-1}$ H298 15-H0 = 1 122 Kcal gfw-1

 $C_{\rm p}^{\rm o} = 4.90 \pm 2.58 \times 10^{-3} \rm T + 0.20 \times 10^{5} T^{-2} \ cal \ deg^{-1} \ gfw^{-1}$ 298. 15°K $\angle T \angle$ 2190°K C_p = 9.5 ± 1 cal deg⁻¹gfw⁻¹ for liquid (2190°K ∠ T ∠ 3648°K) (Estd)

Structure

Solid has b. c. c. A2 type structure to melting point.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Low temperature data by Anderson, 1 Stull and Sinke, 2 and Bieganeki and Stalineki High temperature data from Kelley. 4 Liquid heat capacity estimated by Kelley 4

Melting

Estimated by Stull and Sinke. 2

Heat of Sublimation

Recalculation of vapor pressure data of Edwards et al

References

- Anderson, C. T., J. Am. Chem. Soc. 52, 2296 (1930).
 Stull, D. R. and G. Sinke, Thermodynamic Properties of the Elements (1956).
 Bieganski, Z. and B. Stalinski, Buil.de l'acad. Pol. des sci., Serie des science Chim. 9, 367 (1961).
 Kelley, K. K., Bur. Mines, Bull. 584 (1960).
 Edwards, J., H. Johnston and P. Blackburn, J. Am. Chem. Soc. 73, 4727 (1951).

VANADIUM (V)

(REFERENCE STATE)

GFW = 50.95

		cal/°K	stv		Kcal/gfw		
T, *K	ر ح ۽	s _T	-(FT - H298)/T	HT - H298	ΔH	^ F ₁ 2 1	Log Kp
298.15	±0.050	±0.050	±0.050	±0.000			
1000	±0.200	±0.214	±0.104	±0.110			
2000	±1.000	±0.583	±0.228	±0.710			
2190	±1.000	#0.674	±0.263	#0.900			
2190	± 2.000	#1.131	±0.263	±1.900			
3000	± 2.000	#1.760	±0.587	±3.520			
3647.68	± 2.000	42.125	#0.814	±4.720			
3847.68	±0.001	±0.003					
4000	#0.001	±0.003					
5000	±0.002	±0.003					
6000	€0.003	±0.004					

VANADIUM

IDEAL MONATOMIC GAS

Reference State for Calculating ΛH^{*}₄, Λ F^{*}₄, and Log K_p: Solid V from 0° to 2190° K, Liquid V from 2190° to 3648° K, Gaseous V from 3648° to 6000° K.

		cel/°K	stv		Kcal/gfw		
T, *K	C,	s _T	-(FT - H298)/T	HT - H298	ΔH	A F	Log Kp
٥	0.000	0 000	thethete		•		
298+15	6.217	0.000	INFINITE	-1.890	122.242	122.242	INFINIT
300	6.209	43.546	43.546 43.546	0.000	123.010	112.078	-82 - 152
400	5.891	45.321	43.785	0.011 0.615	123.010	112.010	-81.599
500	5.783	46.621	44.227	1.197	123.017 122.983	108.341 104.676	-59 • 192 -45 • 752
600 700	5.804	47.676	44.717	1.775	122.922	101.019	-36 • 79
800	5.875 5.949	48.576	45.205	2 - 359	122.844	97.375	-30 - 400
900	6.003	50.069	45.677 46.127	2.951 3.548	122.749	93.743	~25 • 606
000	6.032	50.704	46.553	4.150	122.634 122.499	90.123 86.519	-21.884 -18.90
1100	6.038	51.279	46.957	4.754	122.340	82.928	-16.476
1200	6.026	51.804	47.339	5.357	122.155	79.352	-14.45
1300	6.003	52.285	47.702	5.959	121.943	75.795	-12.742
1400 1500	5.974 5.943	52.729 53.140	48.045 48.371	6.558 7.154	121.702	72.253 68.731	-11.279
1600	5.913	53.523	48.681	7.746	121.135	65.227	-8.909
1700	5.887	53.881	48.977	8.336	120.808	61.747	-7.937
1800	5.867	54.216	49.259	8.924	120.454	58.277	-7.075
1900 2000	5 • 8 5 3 5 • 8 4 6	54.533 54.833	49.528 49.786	9.510 10.095	120.072 119.664	54.834 51.410	-6.307 -5.616
2100							
	5.848 5.857	55.119 55.364	50.033 50.247	10.680 11.206	119.229	48.008	-4.99(-4.48'
2190	5.857	55.364	50.247	11.206	114-616	44.965	-4.48
2200	5.858	55.391	50.270	11.265	114.580	44.647	-4.43
2300	5 • 877	55.652	50.499	11.851	114-216	41.476	-3.941
2400 2500	5.904 5.940	55.902 56.144	50.719 50.931	12.440	113.855 113.498	38.322 35.183	-3.490 -3.076
2600	5.985	56.378	51.136	13.629			
2700	6.038	56.605	51.334	14.230	113.144	32.057 28.944	-2.694 -2.343
2800	6.099	56.825	51.526	14.337	112.452	25.846	-2.01
2900	6.168	57.040	51.713	15.450	112.115	22.757	-1.71
3000	6.245	57.251	51.894	16.070	111.785	19.681	-1.434
3100	6.328	57.457	52.070	16.699	111.464	16.617	-1.17
3200	6-418	57.659	52.242	17.336	111-151	13.561	~0.9Z
3300 3400	6.515 6.617	57.858 58.054	52.409 52.572	17.983 18.639	110.848	10.517 7.481	-0.48
3500	6.723	58.248	52.731	19.306	110.271	4.453	-0.27
3600	6.835	58.439	52.887	19.984	109.999	1.437	-0.08
			52.960		109.873	-0.002	0.000
3647.68	6.889	58.529	52.960	20.311			
3700	6.950	58.627 58.814	53.040 53.189	20.673			
3800 3900	7.068 7.188	58.999	53.189 53.336	21.374 22.087			
4000	7.311	59.183	53.480	22.812			
4100	7.435	59.365	53.621	23.549			
4200	7.560	59.546	53.760	24.299			
4300	7.685	59.725		25.061			
4400 4500	7.810 7.935	59.903 60.080		25.836 26.623			
4600	8.058	60.256	54.294	27.423			
4700	8.180	60.430	54.423	28.235			
4800	8.300	60.604	54.550	29.059			
4900	8.419	60.776	54.675	29.895 30 743			
5000	8.534	60.947					
5100	8.648	61.118		31.602 32.472			
5200 5300	8.758	61.287	55.047	33.353			
5400	8.970	61.621		34.245			
5500	9.071	61.787		35.147			
5600	9.169	61.951	55.512	36.059			
5700	9.264	62.114		36.981			
5800	9.354	62.276		37.912			
5900 6000	9.442 9.526	62.596		38.852 39.800			
			15 March	1043			HLS

2-335

V

$$\Delta H_{f0}^{o} = 122.242 \text{ Kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 123.010 \pm 4.0 \text{ Kcal gfw}^{-1}$$
Ground State Configuration $F_{1\frac{1}{2}}$

$$S_{298.15}^{o} = 43.546 \text{ cal degK}^{-1} \text{ gfw}^{-1}$$

$$H_{298.15}^{o} = 1.890 \text{ Kcal gfw}^{-1}$$

Electronic Levels and Multiplicities

All energy levels listed by Moore were used.

Heat of Formation

The vapor pressure data of Edwards, Johnston and Blackburn² were used

Heat Capacity and Entropy

Calculated using the monatomic gas program.

References

- 1. Moore, C., Nat. Bur. Std. (U S.), Circ. 467, Vol. 1 (1949).
- 2. Edwards, J., H. Johnston and P. Blackburn, J. Am. Chem. Soc. 73, 4727 (1951)

GFW = 50.95

VANADIUM+ MONATOMIC (V) (IDEAL GAS)

T,*K	Ç,	cel/°K (S _T	-(FT - H298)/T	H _T - H ₂₉₈	Kcol/g/v	A F	Log Kp
298 - 15	± 0.000	± 0.002	± 0.003	± 0.000	± 4.000		
1000	± 0.000	± 0.002	± 0.003	± 0.000			
2000	± 0.000	± 0.003	± 0.003	± 0.001			
3000	± 0.001	# 0.003	+ 0.003	± 0.001			
3647-68	± 0.001	± 0.003	± 0.003	± 0.002			
4000	± 0.001	± 0.003	± 0.003	± 0.002			
5000	± 0.002	± 0.003	± 0.003	± 0.003			
6000	± 0.003	+ 0.004	± 0.003	± 0.005			

Reference State for Calculating ΔH₁, ΔF₁, and Log K_p: Solid W from 0° to 3650°K,
Liquid W from 3650° to 5891°K, Gaseous W from 5891° to 6000°K.

T, °K	/_0	cel/°K	Bia-		_Kcal/gfw				
-, -	င်္စ	ST	-(FT - H298)/T	HT - H298	ΛH ²	AF.	Lee F		
0	0.000	,0.000			•		Log Kp		
298.15	5.800	7.830		-1.195					
300	5.810	7.866	7.830	0.000					
400	5.960	9.580	7.830	0.011					
500	6.040	10.901	8.082	0.599					
	-	101701	8.501	1.200					
600	6.110	12.027	9.015						
700	6.180	12.955	9.496	1.807					
600	6.240	13.803	9.999	2 • 4 2 1					
900	6.300	14.523	10.444	3.043 3.671					
1000	6.360	15.209	10.906	4.303					
1100	6.430	14							
1200	6.520	15.799	11.305	4.943					
1300	6.650	16.382	11.724	5.589					
1400	6.800	16.888 17.386	12.082	6.248					
1500	6.950	17.860	12.442 12.788	6.921					
1400			12.000	7.608					
1600 1700	7.100	18.313	13.119	8.311					
1800	7.250	18.748	13.437	9.028					
1900	7.400	19.167	13.744	4.761					
5000	7.550	19.571	14.040	10.508					
2000	7.700	19.962	14.326	11.271					
2100	7.850	20.342	14 . 44						
2200	8.000	20.710	14.605	12.048					
2300	8.150	21.069	14.873	12.841					
2400	8.300	21.069	15.135	13.648					
2500	4.450	21.761	15.389 15.638	14.471					
2400				15.308					
2600 2700	8.600	22.095	15.879	16-161					
2800	8 - 750	22.423	16.116	17.028					
2900	8 • 900	22.744	16.347	17.911					
3000	9.050 9.200	23.059	16.573	18.808					
	74200	23.368	16.794	19.721					
3100	9.350	23.672	17.011	20.648					
3200	9.500	23.971	17.224	21.591					
3300	9.650	24.266	17.433	22.548					
3400	9.800	24.556	17.638	23.521					
3500	9.950	24.842	17.840	24.1508					
3600	10.100	25 . 1 24	10.600						
3650	10.175	25.125 25.265	18.039	25.511					
3650	_io.ooo_	-27.565-	$-\frac{18.137}{18.137}$	_26.017					
3700	10.000	27.701	18.137	34.412					
3800	10.000	27.968	18.265 18.51/	34.712					
3900	10.000	28.227	18.762	35.912 36.912					
4000	10.000	28.481	19.003	37.912					
4100	16 6								
4100 4200	10.000	28.777	19.236	38.912					
4300	10.000	28.968	19.465	39.912					
4400	10.000	29.204	19.690	40.912					
4500	10.000	29.434	19.909	41.912					
	10.000	29.658	20.122	42.912					
4600	10.000	29.878	20.332	43.912					
4700	10.000	30.093	20.537	44.912					
4800	10.000	30.304	20.739	45.912					
4900	10.000	30.510	20.936	46.912					
5000	10.000	30.712	21.130	47.912					
5100	10.000	30.910	21.319	44 013					
5200	10.000	31.104	21.506	48.912					
5300	10.000	31.295	21.689	49.912 50 912					
5400	10.000	31.482	21.869	51, 12					
5500	10.000	31.665	22.045	52.912					
		-							
5600	10.000	31.845	22.218	53.912					
5700 5800	10.000 10.000	32.022	22.388	54.912					
5891	10.000	32.196 32.352	22.556 22.706	55.912					
5891	- 9.682	-64.988		56+822 49•087					
5900	9.688	65.003		49.174					
6000	9.753	65.166		50-146					

0 °K to 3650 °K Crystal

3650 °K to 5891 °K Liquid

5891 °K to 6000 °K Ideal Monatomic Gas

$$\Delta H_{f0}^{o} = 0$$

$$\Delta H_{0298, 15}^{0} = 203.100 \text{ Kcal gfw}^{-1}$$

$$S_{298.15}^{\circ} = 7.830 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$$

$$\Delta H_{..} = 192.265 \text{ Kcal gfw}^{-1}$$

$$H_{298.15}^{\circ} - H_{0}^{\circ} = 1.195 \text{ Kcal g/w}^{-1}$$
 $C_{p}^{\circ} = 4.70 + 1.5 \times 10^{-3} \text{T cal degK}^{-1} \text{ g/w}^{-1}$

Structure

Tungsten exists with the b. c. c. structure.

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Low temperature data by Clusius and Franzosini! These data were joined smoothly to the equation given above based on Schomaker et al2. Data for liquid tungsten were estimated.

Melting

Several values had been reported. The value adopted is consistent with several other computations.

Vaporization

Based on two experimental determinations. See Barriault et al 3 for details.

References

- Clusius, K., and P. Franzosini, Z. Naturforsch. A14 99 (1959)
- Schomaker, V., et al., Contract DA-30-069-ORD-2787, Prog. Rept. (31 Dec. 1960). Barriault, R., et al., ASD TR-61-260 May (1962), Pt. I.

TUNGSTEN (W)

IREFERENCE STATE)

GFW = 183.86

		cel/°J	(giv	Kcal/glw		
T, *K	رح.	s _T	-(FT - H298)/T	HT - H298 4H	۸ F _l	l.og Kp
296.15	± 0.100	± 0.050	± 0.050	± 0.000		
1000	± 0.500	± 0.410	± 0.200	± 0.210		
2000	± 0.500	# 0.760	# 0.410	± 0.710		
3000	± 1.000	± 1.060	# 0.570	± 1.460		
3650	± 1.500	# 1.300	# 0.680	± 2.270		
3650	± 2.000	± 1.580	# 0.680	± 3.270		
4000	± 2.000	# 1.760	± 0.770	± 3.970		
5000	± 3.000	± 2.320	± 1.030	± 6.470		
5891	± 4.000	+ 2.890	± 1.260	± 9.590		
5891	# 04007	# 0.005		_		
6000	± 0.007	± 0.005				

TUNGSTEN

IDEAL MONATOMIC GAS

W

Reference State for Calculating AH₁°, AF₁°, and Log K_p: Solid W from 0° to 3650°K, Liquid W from 3650° to 5891°K, Gaseous W from 5891° to 6000°K.

	/ •	b	Blw	/ 0 ^	7.	2	
T,°K	ς,	۶Ť	(FT H ₂₉₈)/T	HT - H298	ΛHμ	ΔF	Log Kp
0	0.000	0.000	INFINITE	-1.486	202.809	202.809	
298.15	5.092	41.551	41.551	0.000	203.100		INFINITE
300	5.097	41.583	41.551	0.009	203.100	193.046	-141.500
400	5.536	43.101	41.755	0.538	203.039	189.631	-140.582 -103.604
500	6.297	44.413	42.158	1-128	203.028	186.272	-81.415
	7 24 .						
600 700	7.251 7.218	45.643	42.637	1.804	203.097	182.927	-66.628
800	9.026	46.835	43.152	2.578	203.257	179.541	-56.053
900	9.577	47.987 49.085	43.685	3.442	203.499	176.151	-48.120
1000	9.586	50.111	44.724 44.762	4 • 375 5 • 348	203.804 204.145	172.697 169.244	-41.935 -36.986
			******	34340	2040143	1071244	70.700
100	9.904	51.054	45.292	6.338	204.495	165.714	-32.923
200	9.788	51.912	45.809	7.324	204.835	162.197	-29.539
1300	9.569	52.687	46.308	8.292	205.144	158.607	-26.663
400	9.298	53.387	46.789	9.236	205.415	155.015	-24.198
500	9.008	54.018	47.251	10.151	205.643	151.407	-22.059
1600	8.721	54.590	47.692	11.038	205.827	147.784	-20.185
700	8.451	55.111	48.113	11.896	205.968	144.153	-18.531
800	8.206	55.587	48.515	12.729	206.068	140.513	-17.060
900	7.987	56.025	48.899	13.538	206 - 130	136.870	-15.743
2000	7.797	56.429	49.266	14.327	206.155	133.220	-14.557
7100	7.635	56-806	49.616	15.098	206 • 150	129.576	-13.485
2200	7.500	57.158	49.951	15.855	206 - 114	125.930	-12.509
2300	7.391	57.484	50.271	16.599	206.051	122.286	-11.619
2400	1 • 3 ^ 6 7 • 2 4 3	57.801	50.579	17.334	205.963	118.646	-10.804
7500	7.243	58.098	50.874	18.061	205.853	115.010	-10.054
2600	7.201	58.381	51.157	18.783	205.722	111.379	-9.362
7700	7.179	58.653	51.430	19.502	205.574	107.752	-8.721
2800	7.173	58.913	51.692	20.220	205.409	104.132	-8.127
2 90 0	7.184	59.165	51.946	20.937	205.229	100.520	-7.575
3000	7.209	59.409	52.190	21.657	205.036	96.909	-7.059
3100	7.241	59.646	52.427	22.380	204.832	93.310	-6.578
3200	7 • 297 7 • 35 7	59.877 60.103	52.656	23.107	704.616	89.718 86.130	-6.127 -5.704
3300			52.878 53.094	23.839 24.578	204•391 204•157	82.552	-5.306
3400 3500	7.426 7.503	60.323 60.540	53.304	25.325	203.917	78.974	-4.931
5 .00							
3600	7.586	60.752	53.508	26.079	203.668	75.413	-4.578
3650	7.630	60.857-	53.608			73.631-	
3650	7.630	60.857	53.608	26.160	195.14B	73.631	-4.409
3700	7.675	60.961	53.706	26.842	195.030	71.969	-4.251
3800	7.769	61.167	53.900	27.615	194.803	68.647	-3.948
3900	7.866	61.370	54.089	28.396 29.118	194.584 194.376	65.325 62.016	-3.661 -3.388
4000	7.965	61.570	54.274	270110	1744370	02.010	- 7 - 300
4100	8.067	61.768	54.454	29.989	194.177	58.704	-3.129
4200	8.169	61.964	54.63C	30.801	193.989	55.401	-2.883
4300	8.273	62.157	54.803	31.623	193.813	52.116	-2.649
4400	8.376	62.349	54.973	32.456	193.644	48.818	-2.425
4500	B.478	62.538	55.139	33.298	193.486	45.522	-2.211
					102 215		
4600	8.580	62.726	55.301	34 - 151	193.339	42.242	-2.007
4700	8.680	67.911	55.461	35.014	193.202	38.963 35.674	-1.812
4800	8.778	63.095	55.619	35.887 36.770	193.075	32.399	-1.624 -1.445
4900 5000	8.874 8.968	63.277 63.457	55.773 55.925	36•770 37•662	192.350	29.125	-1.273
5000	0.400	01.457	316723	J. • • • • •	1,2,,		102.5
5100	9.059	61.636	56.074	38.563	192.751	25.352	-1.108
5200	9.148	63.812	56.221	3' 473	192.661	24.554	-0.949
5300	9.234	63.988	56.366	40 93	192.581	18.312	-0.755
5400	9.317	64.161	56.509	41.320	192.508	16.043	-0.649
5500	9.397	64.377	56.650	42.256	192.444	12.771	-0.507
					101 222		
5600	9.474	64 - 503	56.788	43.199	192.387	9.509	
5700	9.548	64.671	56.925	44.150	192.338	6.242	-0.239
5800	9.619	64.838	57.060	45.109	192.297 192.265	2.975	-0.112 0.000
5891			57.181 57.181	45.987	1720207	0.000	0.000
5891	9.68? 9.688	64.988 65.003	57.193	46.074			
5900 6000	9.088	6-166	57.325	47.046			
5550	70177	, •100					

TUNGSTEN, MONATOMIC (W) (IDEAL GAS)

gfw = 183.86

 $\Delta H_{10}^{o} = 202.809 \text{ Kcal gfw}^{-1}$

 $\Delta H_{f298.15}^{o} = 203.100 \text{ Kcal gfw}^{-1}$

Ground State Configuration $^5\mathrm{D}_0$

 $S_{298.15}^{o} = 41.551 \text{ cal deg K}^{-1} \text{ gfw}^{-1}$

 $H_{298.15}^{o} - H_{0}^{o}$ 1.486 Kcal gfw⁻¹

Electronic levels and multiplicities

Atomic energy levels from Moore 1.

Heat of Formation

Based on experimental vaporization studies by Jones \underline{et} \underline{al}^2 and $\underline{Zwikker}^3$. Details given by Barriault \underline{et} \underline{al}^4 .

Heat Capacity and Entropy

Calculated on monatomic gas computer program.

References

- 1. Moore, C., Atomic Energy Levels, Vol. III, Nat. Bur. Stds. (1958).
- 2. Jones, H. A., I. Langmiur, G. MacKay, Phys. Rev. 30, 201 (1927).
- 3. Zwikker, C., Physica 5,249 (1925)
- 4. Barriault, R., et al, ASD TR-61-260(May 1962), Ft. I.

TUNGSTEN. MONATOMIC (W) (IDEAL GAS)

SUMMARY OF UNCERTAINTY ESTIMATES

GFW ♥ 183.86

T,°K		⟨c°,		s_T^2	~(F	 T - H ₂₉₈)/	τ, ,	HT - H298	Kcal glw		1111		log K _p
298.15	±	0.000	±	0.002	±	0.002	±	0.000	± 1.800	¥	1.820	T	1.330
1000	*	0.001	ŧ	0.003	±	0.003	±	0.001	± 2.010	±	2.000	4	0.440
2000	±	0.001		0.003	±	0.003	*	0.001	± 2.510	±	2.630	*	0.290
3000	±	0.001	±	0.003	±	0.003	*	0.002	± 3.260	±	3.520	±	0.260
3650	±	0.002	±	0.003	*	0.003	*	0.002	± 4.070	*	4.290	£	0.260
3650		0.002	±	0.003	*	0.003	±	0.002	± 5.070	±	4.290	±	0.260
4000	±	0.003	*	0.003	*	0.003	±	0.003	± 5.770	±	4.890	*	0.270
5000	4	0.006	±	0.00		0.003	*	0.007	± 8.280	±	6.970	*	0.300
5891	±	0.007	±	0.005	+	0.003	*	0.012	* 1.140	±	9.240	#	0.340
5891	±	0.007	*	0.005	*	0.003	*	0.012					
6000	±	0.007	±	0.005	±	0.003	_±	0.013					

YTTRIUM

REFERENCE STATE

Y

Reference State for Calculating ΛH_f^* , ΛF_f^* , and Log K_p: Solid Y from 0° to 1803°K, Liquid Y from 1803° to 3605°K, Gaseous Y from 3605° to 6000°K.

		cal/"K /	K1 A		_Kcal/glw		
T, "K	⟨c ^b _e	s _T	-(FT - H298)/T	'н _т - н ₂₉₈	ΔH_I^2	Δ F ₁ 1	Log Kp
0	0.000	0.000	INFINITE	-1.426			
298 • 15	6.349	10.630	10.630	0.000			
300	6.352	10.669	10.630	0.012			
400	6.509	12.518	10.881	0.655			
500	6.669	13.987	11.360	1.314			
600 700	6.832	15.218	11.903	1.989			
800	6.998	16.283	12.455	2.680			
900	7.168 7.340	17.229	12.993	3.388			
000	7.516	18.083 18.865	13.512 14.609	4.114 4.857			
100	7.695	19.590	14.484	5.617			
200	7.876	20.267	14.938	6.396			
300	8.061	20.905	15.373	7.192			
400	8.249	21.509	15.789	8.008			
500	8.441	22.085	16.190	8.842			
600	8 • 635	22.636	16.576	9.696			
760	8.832	23.165	16.948	10.569			
758	8.948	23.464	17.158 _	11.085			
758	8.371	24.140	17.158	12.274			
.000	8.371	24.338	17.323	12.676			
803	8.371_	24.352.	17.335	12.651			
803	10.303	25.867	17.335	15.383			
900	10.403	26.407	17.784	16.382			
2000	10.303	26.935	18.229	17.412			
2100	10.303	27.438	18.656	18.443			
200	10.303	27.917	19.366	19.473			
300	10.303	28.375	19.461	20.503			
400	10.303	28.814	19.841	21.534			
500	10.303	29.234	20.209	22.564			
2600	10.303	29.638	20.564	23.594			
700	10.303	30.027	20.907	24.625			
800	10.303	30.402	21.239	25.655			
900	10.303	30.763	21.562	26.685			
3000	10.303	31.113	21.874	27.715			
1100	10.303	31.450	22.178	28.746			
3200	10.303	31.778	22.473	29.776			
3300	10.303	32.095	22.759	70 RO6			
3400	10.303	32.402	23.038	31.837			
3500	10.303	32.701	23.310	32.867			
3600	10.303	32.991	23.575	33.897			
1604.6F	10.303_	33.004		33.945			
3604.68	8.004	57.262	23.587	120.623			
3700	8.237	57.485		121.394			
3800	8-477	57.708		127.232			
3900	8.714	57.931	26.146	123.092			
4000	8.944	58.155	26.937	123.975			
4100	9.166	58.378		124.880			
200	9.380	58.602		125.808			
4 3 0 0	9.583	58.824		126.756			
4400 4800	9.774 9.954	59.046 59.266		127.724			
4500	76774	. , . , 00					
4600	10.121	59.486		129.714			
4700	10.276	59.704		130.734			
4800	10.417	59.920		1 769			
4900	10.544	60.134		132.817			
5000	10.659	60.346	33.359	133.877			
5100	10.761	60.556		134.948			
5200	10.850	60.763		136.029			
5300	10.927	60.968		137.118			
5400 5500	10.992 11.046	61.170		138.214 139.316			
		-1.566		140.423			
5600 5700	11.090 11.123	61.760		141.529			
5800	11.148	61.951	37.166	142.647			
5900	11.164	62.138		143.763			
6000	11.172	62.327		144.880			

0°K to 1803°K Crystal 1803°K to 3605°K Liquid 3605°K to 6000°K Ideal Monatomic Gas

$$\Delta H_{f0}^{o} = 0$$

$$\Delta H_{f298.15}^{o} = 0$$

$$\Delta H_{s298.15}^{o} = 101.326 \text{ Kcal gfw}^{-1}$$

$$S_{298.15}^{o} = 10.630 \text{ cal degK}^{-1} \text{ gfw}^{-1}$$

$$T_{t} = 1758^{o} \text{K}$$

$$\Delta H_{t} = 1.189 \text{ Kcal gfw}^{-1}$$

$$\Delta H_{m} = 2.732 \text{ Kcal gfw}^{-1}$$

$$T_{b} = 3604.68^{o} \text{K}$$

$$\Delta H_{v} = 86.678 \text{ Kcal gfw}^{-1}$$

$$H_{298.15}^{o} - H_{0}^{o} = 1.426 \text{ Kcal gfw}^{-1}$$

 $C_{D}^{O} = 5.899 + 1.462 \times 10^{-3} T + 15.492 \times 10^{-8} T^{2} \text{ cal deg} K^{-1} \text{ gfw}^{-1}$

 $C_{p}^{o} = 8.371 \text{ cal deg} \text{K}^{-1} \text{ gfw}^{-1} \text{ for } 1758^{o} \angle T \angle 1803^{o} \text{K}; C_{p}^{o} = 10.303 \text{ cal deg} \text{K}^{-1} \text{ gfw}^{-1} \text{ for liquid}$

Structure.

h. c. p. to 1758°K; b. c. c. from 1758° to 1803°K

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Low temperature data by Jennings et al. 1 High temperature data by Berg. 2

Melting

Melting points, heat of transition, and heat of fusion from Berg. 2

Heat of Sublimation

Vaporization data from Ackermann and Rauh³ were used.

References

- 1. Jennings, L. D., R. E. Miller and F. H. Spedding, J. Chem. Phys. 33, 1849 (1960)
- 2. Berg, J. R., Ph.D. Thesis, Iowa State Univ. (1961).
- 3. Ackermann, R J. and E. G. Rauh, J. Chem. Phys. 36, 448 (1962).

YTTRIUM

IDEAL MONATOMIC GAS

Y

Reference State for Calculating Alf, AF, and Log Kp: Solid Y from 0° to 1803°K, Liquid Y from 1803° to 3605°K, Gaseous Y from 3605° to 6000°K

		cal/°E	el-		Kcal/-t-		
T, °K	C _p	S _T	-(FT - H298)/T	HT - H298	Kcal/gfw ΔΗμ	A F	Log Kp
	r	•		1298		,	р
0	0.000	0.000	INFINITE	-1.639	101.539	101.539	INFINITE
298 • 15	6.181	42.870	42.870	0.000	101.326	91.714	-67.225
300	6 • 181	42.909	42.871	0.011	101.325	91.654	-66.767
400	6.045	44.673	43.112	0.624	101.295	88.434	-48.316
500	5.826	45.999	43.563	1.218	101.230	85.225	-37.250
600	5.638	47.044	44.059	1.791	101 120		
700	5.494	47.901	44.548	2.347	101.128	82.033 78.861	-29.879
800	5.388	48.628	45.014	2.891	100.829	75.709	-24.620 -20.682
900	5.308	49.258	45.451	3.426	100.638	72.581	-17.624
1000	5.249	49.814	45.860	3.953	100.422	69.475	-15.183
1100	5.203	50.312	46.243	4.476	100.185	66.391	-13.190
1200	5.169	50.763	46.601	4.994	99.924	63.331	-11.534
1300	5.144 5.127	51.175	46.937	5.510	99.644	60.293	-10.136
1400 1500	5.119	51.556 51.909	47.254	6.023	99.341	57.275	-8.941
1,00	,,	31.409	47.552	6.536	99.020	54.283	-7.909
1600	5.120	52.240	47.835	7.047	98.677	51.312	-7.009
1700	5.130	52.550	48.103	7.560	98.317	48.363	-6.217
1758_	5.143	67 771	40 361	7.590	97.831_	46.665.	
1758	5.143	52.721	48.251	7.590	96.642	46.665	-5.801
1800	5.153	52.844	48.359	8.074	96.774	45.461	-5.520
1803	5 - 154	52.852	48.366	8.090		45.377	5.500
1803	5.154	52.852	48.366	8.090	94.033	45.377	-5.500
1900	5.187	53.124	48.602	8.591	93.535	42.772	-4.920
2000	5.235	53.391	48.835	9.112	93.026	40.114	-4.383
2100				_			<u> </u>
2100	5 • 2 9 8	53.648	49.058	9.638	92.521	37.482	-3.901
2200	5.377	53.896	49.272	10.172	92.025	34.873	-3.464
2300	5.472	54.137	49.479	10.714	91.537	32.285	-3.068
2400	5.584	54.372	49.678	11.267	91.059	29.718	-2.706
2500	5.713	54.601	49.870	11.832	90.594	27.174	-2.375
2600	5.858	54.830	50.056	12.410	90.142	24.647	-2.072
2700	6.020	55.054	50.237	13.004	89.705	22.135	-1.792
2800	6.198	55.276	50.413	13.615	89.286	19.639	-1.533
2900	6.389	55.497	50.585	14.244	88.885	17.160	-1.293
3000	6.594	55.717	50.752	14.893	88.504	14.692	-1.070
							2.2.0
3100	6.810	55.936	50.916	15.563	88.143	12.238	-0.863
3200	7.035	56-156	51.076	16.255	87.805	9.797	-0.669
3300	7.26B	56.376	51.234	16.970	87.490	7.359	-0.487
3400	7.507	56.597	51.388	17.709	87.198	4.936	-0.317
3500	7.750	56.818	51.540	18.4:2	86.931	2.521	-0.157
3600	7.993	57.039	51.690	19.259	86.688	0.112	-0.007
3604.68		57.049.			86.678	-0.001	0.000
3604.68	8.004	57.049	51.697	19.297	303010	0.001	3.000
3700	8.237	57.262	51.837	20.070			
3800	8.477	57.485	51.983	20.906			
3900	8.714	57.708	52.127	21.766			
4000	8.944	57.931	52.269	22.649			
4100	9.166	58.155	52.410	23.554			
4200	9.380	58.378	52.549	24 • 482			
4300	9 • 5 8 3	58.602	52.688	25.430			
4400	9.774	58.824 59.046	57.825 52.960	26•398 27•384			
4500	9.954	J7.040	72.700	_ , • 50 4			
4600	10.121	59.266	53.095	28.388			
4700	10.276	59.486	53.229	29.408			
4800	10.417	59.704	53.361	30.443			
4900	10.544	59.920	53.493	31 91			
5000	10.659	60.134	53.624	32 • 1			
5100	10.761	60.346	53.753	33.627			
5200	10.850	60.556	53.882	34 • 703			
5300	10.927	60.763	54.010	35.792			
5400	10.992	60.968	54.137	36 • 888 37 • 990			
5500	11.046	61.170	54.263	310770			
5600	11.090	61.370	54.388	39.097			
5700	11.423	61.566	54.512	40.208			
5800	11.148	61.760	54.636	41.321			
5900	11.164	61.951	54.758	42.437			
6000	11.172	62.138	54.880	43.554			

$$\Delta H_{f0}^{o} = 101.539 \text{ Kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 101.326 \text{ Kcal gfw}^{-1}$$
Ground State Configuration $^{2}D_{3/2}$

$$S_{298.15}^{o} = 42.870 \text{ cal degK}^{-1} \text{ gfw}^{-1}$$

$$H_{298.15}^{o} - H_{0}^{o} = 1.639 \text{ Kcal gfw}^{-1}$$

Electronic Levels and Multiplicities

Energy levels from Moore.

Heat of Formation

Based on data of Ackermann and Rauh.

Heat Capacity and Entropy

Calculated on monatomic gas program.

References

- 1. Moore, C. E., Nat. Bur. Std. (U.S.), Circ. 467, Vol. II (1952).
- 2. Ackermann, R. J. and E. G. Rauh, J. Chem. Phys. 36, 448 (1962).

Reference State for Calculating AH₁*, AF₁*, and Log K_p: Solid Zr from 0° to 2125°K, Liquid Zr from 2125° to 4644°K, Gaseous Zr from 4644° to 6000°K.

		cal/°K gf	T		Kcal/gfw		
T,°K	C _p	S _T	(FT - H298)/T	H _T - H ₂₉₈	ΛH	ΛF	Log Kp
0	0.000						·
298-15	6.001	0.000		-1.313			
300	6.015	9.290	,	0.000			
400	6.555	9.327	9.290	0.011			
500	6.882	11.140	9.534	0.642			
		12.040	10.009	1.315			
600	7.124	13.917	10.557	2 417			
700	7.327	15.031	11.118	2.016 2.739			
800	7.508	16.021	11.670	3.481			
900	7.677	16.915	12.204	4.240			
1000	7.838	17.732	12.717	5.016			
1100	7.994	18.487	13.207	5.808			
1135	8.048	18.738	13.374	6.088			
1135	7.900	19.544	13.374	7.003			
1200	7.900	19.984	13.720	7.517			
1300	7.900	20.617	14.227	8.307			
1400	7.900	21.202	14.704	9.097			
1500	7.900	21.747	15.156	9.887			
1600	7.900	22.257	15.584	10.677			
1700	7.900	22.736	15.991	11.467			
1800	7.900	23.187	16.378	12.257			
1900	7.900	23.614	16.748	13.047			
2000	7.900	24.020	17.101	13.837			
2100	7.900	24.405	17.440	14.627			
2125	7.900_	_ 24.499	17.523_	14.824			
2125	8.000	26.805	17.523	19.724			
2200	8.000	27.082	17.844	20.324			
2300	8.000	27.438	18.253	21.124			
2400	8.000	27.778	18.643	21.924			
2500	8.000	28.105	19.015	22.774			
2600	8.000	28.418	19.371	2:.524			
2700	8.000	28.720	19.711	24.324			
2800	8.000	29.011	20.038	25.124			
2900	8.000	29.292	20.353	25.924			
3000	8.000	29.563	20.655	26.724			
3100	8.000	29.826	30 04 7				
3200	8.000		20.947	27.524			
3300	8.000	30.080 30.326	21.228	28.324			
3400	8 • OOO	30.565	21.500 21.763	29.124			
3500	8.000	30.796	22.018	30.724			
3600	9 000						
3700	8.000 8.000	31.022	22.265	31.524			
3800	8.000	31.241	22.505	32.324			
3900	8.000	31.454 31.662	22.737	33.124			
4000	8.000	31.865	22.964 23.184	33.924 34.72:			
4100 4200	8.000 8.000	32.062	23.398	35.524			
4300		32.255	23.606	36.324			
4400	8.000 8.000	32.443 32.627	23.810	37.124			
4500	8.000	32.807	24.008 24.202	37.924 38.724			
			F-4505	300124			
4600 4644.05	8.000	12.983	24.391	39.524			
4644.05	8 • 000	—13·059-	24.473	39.876			
4700	8•95 <i>2</i> 8• 9 84	62.226 62.334	24.473 24.923	175.330 175.832			
4800	9.039	62.524	25.704	175.832			
4900	9.091	62.711	26.458	1 640			
5000	9.139	62.895	27.185	178.551			
5100 5200	9 • 1 8 5	63.076	27.886	179.467			
5200 5300	9.226	63.255	28.565	180.388			
5300 5400	9 • 265 9 • 300	63.431 63.605	29.221 29.856	181.313			
5500	9.332	63.775	30.471	182•241 183•172			
5600 5700	9.361 9.387	63.944	31.068 31.646	184.107 185.045			
5800	9.409	64.273	32.207	185.984			
5900	9.429	64.434	32.752	186.926			
6000	9.446	64.593	31.282	187.870			

0°K to 2125°K 2125°K to 4644.05°K 4644 05°K to 6000°K

Crystal Liquid
Ideal Monatomic Gas

 $\Delta H_{co}^{o} = 0$ ΔH_{1298}^{o} 15 = 0 S_{298 15} = 9, 29 cal degK⁻¹ gfw⁻¹ ΔH_{0298 15} = 143. 126 Kcal gfw⁻¹ T_t = 1135°K △H, = 0 915 Kcal gfw⁻¹ Tm - 2125°K AHm = 4. 900 Kcal gfw-1 Tb = 4644.05°K ΔH_o = 135 454 Kcal gfw⁻¹ H_{298 15}-H₀ = 1.313 Kcal gfw⁻¹ $C_{\rm B}^0 = 6.50 + 1.42 \times 10^{-3} \text{T} = 0.82 \times 10^5 \text{T}^{-2} \text{ cal degK}^{-1} \text{gfw}^{-1}$ 298. 15°K ≤ T ≤ 1135°K $C_{p}^{0} = 7.900 \text{ cal deg } K^{-1} \text{ gfw}^{-1} \text{ 1135} \le T \le 2125^{\circ} K$ $C_p^0 = 8.00$ cal deg K^{-1} gfw⁻¹ 2125 $\leq T \leq 4644$ K Structure

h. c. p. to 1135°K, b. c. c. from 1135°K to melting point

Heat of Formation

Zero by definition.

Heat Capacity and Entropy

Low temperature data from Skinner and Johnston $\frac{1}{2}$ High temperature data from Kelley $\frac{2}{2}$

Melting

Temperature of transition point and heat of transition from Kelley 2 Heat of fusion from Kelley. 2 Melting temperature from Hultgren et al. 3

Heat of Sublimation

An average of the data by Trulson and Goldstein and Skinner et al

References

- Skinner, G B and H L Johnston, J Am. Chem. Soc. 73, 4549 (1951)

 Kelley, K K, Bur Mines, Bull. 584 (1960)

 Hultgren, R et al. Selected Values. U of California, Berkeley (1960)

 Truison, O C and H W Goldstein, Union Carbide Quarterly Progress Rept., Contract DA-30-069-2787 (31 March 1962).

 Skinner, G B, J W Edwards and H L Johnston, J Am. Chem Soc 73, 134 (1951) 174 (1951)

ZIRCONIUM (Zr)

IREFERENCE STATE)

GFW - 91.22

SUMMARY OF UNCERTAINTY ESTIMATES

				_cel/°K	g(w			_Kcal/gfw		
T, *K		ζ [°]		₹ T	-{ ₽ 1	– н _а 398)/т	HT - H298	ΔH	1 F)	Log Kp
298 • 15	4	0.050	±	0.040	±	0.040	± 0.000			
1000		0.500	*	0.123	*	0.065	± 0.058			
1135	*	0.500	*	0.185	*	0.077	± 0.123			
1135		0.500	•	0.273		0.077	± 0.223			
2000	*	1.000	•	0.569		0.229	# 0.680			
2125	•	1.000	±	0.625		0.251	± 0.796			
2125	*	2.000	*	0.860		0.251	± 1.296			
3000	*	2.000		1.550	*	0.535	± 3.046			
1000	•	2.000	*	2.125		0.864	± 5.046			
4644 • 05	*	2.000		2.465	•	1.088	± 6.532			
644.05	•	0.002	•	0.004						
5000		0.002	*	0.004						
6000	*	0.001								
6000	*	0.001	*	0.004						

Reference State for Calculating AH₁, AF₁, and Log K_p: Solid Zr from 0° to 2125°K, Liquid Zr from 2125° to 4644°K, Gaseous Zr from 4644° to 6000°K.

	(cal/°K gl	-		. Kcal/gfw		
T, "K	(°	s _T	·(FT - H298)/T	HT - H298	ΔH	AF1	Log Kp
0	0.000	0.000	INFINITE	-1.629	142.810	142.810	INFINITE
298-15	6.368	43.317	49.317	0.000	143.126	132.981	-97.473
300	6.375	43.356	43.317	0.012	143.127	132.918	-96.826
400	6.612	45.231	43.571	0.664	143.148	129.511	-70.758
500	6.594	46.707	44.056	1.326	143.137	126.102	-55.117
600	6.464	47.899	44.601	1.979	143.089	122.700	-44.691
700	6.316	48.884	45.144	2.618	143.005	119.308	-37.248
800	6.199	49.719	45.665	3.243	142.888	115.930	-31.669
900	6.133	50.445	46.157	3.859	142.745	112.568 109.224	-27.334 -23.870
000	6.121	51.090	46.619	4.472	142.702	1070224	
100	6.156	51.675	47.052	5.085	142.403	105.897	-21.039 -20.166
135	6.177	51.868	47.198	. 5 301	142.339	104.736	-20.166 -20.166
135	6.177	51.868 52.213	47.198 47.460	5 • 301 5 • 704	141.424 141.313	102.638	-18.692
1200 1300	6 • 2 2 6 6 • 3 2 0	52.715	47.845	6.331	141.150	99.423	-16.714
400	6.428	53.188	48.210	6.969	140.998	96.218	-15.020
500	6.542	53.635	48.557	7.617	140.856	93.024	-13.553
1400	6 • 655	54.061	48.888	8 • 277	140.7 5	89.840	-12.271
1 600 1 700	6.764	54.468	49.204	8.948	140.607	86.664	-11.141
1800	6.866	54.857	49.507	9.629	140.498	83.494	-10-137
900	6.960	55.231	49.799	10.321	140.400	80.329	-9.240
2000	7.047	55.590	50.080	11.021	140.310	77.168	-8.432
3100	1.128	55.936	50.350	11.730	140.229	74.015	-7.702
2100	7.148	56-020	50.416.	11.909			-7.531
7125 2125	7.148	56.020	50.416	11.909	135.311	73.228	-7.531
2200	7.204	56.269		12.447	135.249	71.036	-7.056
2300	7.276	56.591	50.865	13.171	135.173	68.118	
7400	7.345	56.902	51.110	13.902	135.104	65.205	
2500	7.413	57.204	51.348	14.640	135.042	62.294	~5.445
2600	7.481	57.496	51.578	15.384	134.986	59.388	-4.992
2700	7.549	57.779		16.136	134.938	56.478	-4.571
2800	7.618	58.055	52.021	16.894	134.896	53.574	-4.181
2900	7.688	58.323	52.234	17.659	134.861	50.671	-3.818 -3.480
3000	7.760	58.585	52.441	18.432	134.834	47.768	-3.480
3100	7.833	58.841	57.644	19.212	134.814	44.865	
3700	7.908	59.091	52.841	19.999	134.801	41.964	
3300	7.984	59.335	53.034	20.793	134.79	39.064	
3400	8.061	59.575	53.223	21.595	134.797	36.162 33.261	
3500	8.139	59.810	53.408	22.405	134.807		
3600	8.217	60.040	53.589	23.223	134.825	30.360	
3700	8.294	60.266	53.767	24.049	134.8"	27.457 24.551	
3800	8.371	60.488		24.882	134.884	21.653	
3900	8.447	60.737		25.723	134.925	18.746	
4000	8.522	60.922	54.279	26.571	1340713		
4100	8.595	61.133		27.427	135.029	15.842	
4200	8.666	61.341	54.605	28.290	135.092	12.930	
4300	8.735	61.546	54.764	29.160	135.162		
4400	8.802	61.747		30.037 30.921	135.239		
4500	8.865	61.946	55.075	200721			
4600	8.926	62.141	55.226	31.810			
4644.05	8.952	62.226	55.292			0.00	
4644.05	8.952	62.220	77.272				
4700	8.984	62.33		32.706			
4800	9.039	62.52	55.522	3, .07 34.,14			
4900	9.091	62.71		35.425			
5000	9.139	62.89	5 55.810				
5100	9.185	63.07		36 - 341			
5200	9.226	63.25		37.262 38.187			
5300	9.265	63.43		39.115			
5400	9.300	63.60					
5500	9.332	63.77	5 56.494	40.040			
5600	9.361	61.94					
5700	9.387	64.11	0 56.756				
5800	9.409	64.27					
5900	9.429	64.43					
6000	9.446	64.59	, ,,,,,,				
							HLS

$$\Delta H_{f0}^{o} = 142.810 \text{ Kcal gfw}^{-1}$$

$$\Delta H_{f298.15}^{o} = 143.126 \text{ Kcal gfw}^{-1}$$
Ground State Configuration $^{3}F_{2}$

$$S_{298.15}^{o} = 43.317 \text{ cal degK}^{-1}\text{gfw}^{-1}$$

$$H_{298.15}^{o} = 1.629 \text{ Kcal gfw}^{-1}$$

Electronic Levels and Multiplicities

All levels from Moore.

Heat of Formation

An average heat of formation based on the work of Trulson and Goldstein 2 and Skinner et al 3 was used.

Heat Capacity and Entropy

Calculated using monatomic gas program.

References

- 1. Moor, C., Atomic Energy Levels, Vol. 2 (1952).
- Trulson, O. C. and H. W. Goldstein, in Union Carbide Quarterly Progress Rept. by Lowrie et al under Contract DA-30-069-2787 (31 March 1962).
- Skinner, G. B., J. W. Edwards and H. L. Johnston, J. Am. Chem. Soc. 73, 174 (1951).

ZIRCONIUM. MONATOMIC (Zr) (IDEAL GAS) GFW = 91.22 $^{\circ}$ SUMMARY OF UNCERTAINTY ESTIMATES

				_cel/°K	el =				K c	al/glw		
T,*K		c.		۶°	-(F _T	- н ₂₉₈)/Т	4	н _т - н ₂₉₈		ΛH _I	117	Log Kp
298,15	±	0.001	ŧ	0.002	+	0.003	Ŧ	0.000	ŧ	4.000		
000	±	0.001	±	0.002	±	0.003	ŧ	0.000				
1135	±	0.001	*	0.002	±	0.003	±	0.000				
1135	±	0.001	±	0.002	*	0.003	*	0.000				
2000	*	0.001	*	0.003		0.003	±	0.001				
2125	*	0.001	±	0.003	•	0.003	*	0.001				
2125	*	0.001	*	0.003		0.003	ŧ	0.001				
3000	±	0.002	*	0.003		0.003		0.002				
000	*	0.002	±	0.003	*	0.003	*	0+003				
644.05	±	0.002	•	0.004	*	0.003	±	0.005				
3000	*	0.002	±	0.004		0.003		0.005				
5000	*	0.001	*	0.004	2	0.003		0.006				

VIII BIBLIOGRAPHY

BIBLIOGRAPHY AND PROPERTY FILE

This document, volume 2, provides a key to much thermodynamic and related literature for refractories of interest. A bibliography (section VIII) and subject or property file (section IX) are included herein. The present bibliography has been utilized in the work reported in volume 1 (Discussion) and volume 2 (Thermodynamic Tables).

Basically, the present bibliography has been compiled by finding pertinent references for 35 elements, and their borides, carbides, nitrides, and oxides. The elements of interest include: beryllium, boron, calcium, carbon, cerium, chromium, dysprosium, gadolinium, hafnium, iridium, lanthanum, magnesium, manganese, molybdenum, niobium, nitrogen, neodymium, osmium, oxygen, platinum, rhenium, rhodium, samarium, scandium, silicon, strontium, tantalum, technetium, thorium, titanium, tungsten, uranium, vanadium, yttrium, and zirconium.

The manner of compiling this bibliography has been described in section IIB of volume 1. For complete information, that section should be consulted. Many abstracting sources have been utilized. The literature available through October 1963 Chemical Abstracts has been included herein.

The authors are well aware of many deficiencies of the present work, and no claim is made for completeness. An earlier bibliography can be consulted for further references. There may be a small amount of duplication of that earlier work by this work, but in general this is not expected to be too large. The references cited in this bibliography may often contain data of a nonliermodynamic nature. However, if it appeared that the article might provide useful complementary material, it was included. Also, in some cases, data for compounds of not immediate interest have been included because of their relationships to compounds which are of interest.

It is felt that the present bibliography can provide a good basis for the investigation of thermodynamic properties of the given compounds. However, the careful worker who wants a very complete bibliography must expect to delve deeper by further cross referencing, by usage of abstract indexes, etc. For example, in the analyses of volume 1, many references have been discovered which are not in the bibliography.

Manuscript released by authors (December 1963) for publication as an ASD Technical Documentary Report.

Barriault, R. J. et al, ASD TR 61-260, Pt. I, Vol. 2 (May 1962).

In utilizing the present bibliography, one normally should consult the subject or property file (section IX) first. A given compound is listed in column ②, of this file, by the usual chemical formula arranged alphabetically. Once, a particular compound has been found, desired properties can be selected from column ①. In this column, a mnemonic code has been used. For codes which are not immediately obvious, one can consult the property-file-code sheet at the beginning of section IX. After a desired reference is located in the property or subject file of section IX, it can then be located in the alphabetic or main bibliography of section VIII. To locate it there, one uses the information in the last three columns (③,④,⑤) of the property file of section IX. Usually, the author's name will be sufficient, but the year information and the code number in the last column provide the positive identification of a particular reference.

- Column © identifies the left-most column in heavy print on the first, alternate lines for a given reference. It refers to SPK, THER, THER, TRT, etc., on the sample page of the property file.
- Column ② identifies the second or right-most column, in light print on the first, alternate lines for a given reference. It refers to TC, TC, etc., on the sample page of the property file.
- Column 69 identifies the left-most column in light print on the second, alternate lines for a given reference. It refers to SHADMI, SCHICK, MARGRAVE, etc., on the sample page of the property file.
- Column ③ identifies the middle column in heavy print in the second, alternate lines for a given reference. It refers to the last two digits of the year of publication, e.g. 61, 62, 61, etc.
- Column (9 identifies the serial number on the right-most column on the second, alternate lines for a given reference. On the sample page of the property file, it is illustrated as 700954, 300995, 700967, etc.

ABRAHAMS, S MAGNETIC AND CRYSTAL STRUCTURE ØF TITANIUM SESQUIØXIDE PHYS REV 130, 2230 (1963)	201991 201991 201991
ABRIKØSØV, N LIANG, T SHASKHØV, Y VØLATILITY ØF BØRØN ØXIDE IN HELIUM AND HYDRØGEN IN THE PRESFNCE ØF WATER VAPØR IZVFST A N SSSR ØTN MET TØP 1960, NØ 4, 156 (1960) CA 55, 11005 (1961)	300848 300848 300848 300848 300848
ABSHIRE • E NØTESTINE • S BIBLIØGRAPHY ØF HAFNIUM BM-IC-7928 (1960) NS 15 • 517 (1961)	600649 600649 600649
ACKERMANN R VAPØR PRESSURE ØF THØRIA J AM CHEM SØC 78 • 1767 (1956) NSA 10 • 7489 (1956)	601262 601262 601262 601262
ACKERMANN, R (ARGØNNE NATL LAB LEMØNT ILL) HIGH-TEMP-THERMØDYNAMIC PRØPERTIES ØF UØ2 J CHFM PHYS 25, 1089 (1956) NSA 11, 2880 (1957)	601322 601322 601322 601322 601322
ACKERMANN: R THE HIGH-TEMPERATURE: HIGH VACUUM VAPORIZATION AND THERMODYNAMIC PROPERTIES OF UO2 ANL-5482 NSA 9: 7981 (1955)	601273 601273 601273 601273
ACKERMANN, R GILLES, P THØRN, R (UNIV KANSAS) HIGH-TEMPERATURE THERMØDYNAMIC PRØPERTIES ØF URANIUM DIØXIDE J CHEM PHYS 25, 1089 (1956) CA 51, 5526 (1957)	601045 601045 601045 601045 601045
ACKERMANN, R GILLES, P THØRN, R HIGH TEMPERATURE THERMØDYNAMIC PRØPERTIES ØF URAHIUM DIØXIDE J CHEM PHYS 29, 237 (1958) CA 52, 17936 (1958)	601078 601078 601078 601078
ACKERMANN R RAUH E (ARGONNE NATL LAB LEMONT ILL) VAPOR PRESSURES OF SCANDIUM, YTTRIUM AND LANTHANUM J CHEM PHYS 36, 448 (1962) NUCL SCI ABSTR 16, 10003 (1962)	700840 700840 700840 700840 700840
ACKERMANN. R. RAUH. E. THØRN. R. EFFECT ØF ØXYGEN ØN THE VAPØR PRESSURE ØF URANIUM JØURNAL ØF CHEM PHYS 37. 2693 (1962) BHT NØ 4 (1962)	601685 601685 601685 601685
ACKERMANN, R J RAUH, E G THØRN, R J CANNØN, M C (ARGØNNE NAT LAB ARGØNNE ILL) (UTAH STATE UNIV LØGAN UTAH) A THERMØDYNAMIC STUDY ØF THE THØ2 SYSTEM AT HIGH TEMPERATURES J PHYS CHEM 67, 762 (1963) BHT NØ 2, 27 (1963)	301164 301164 301164 301164 301164 301164
ACKERMANN R THORN R	300255

HIGH TEMPERATURE VAPORIZATION OF INORGANIC SUBSTANCES ENTROPY CONSIDERATIONS CONG INTERN CHIM ET PURE APPL 16 (1957) MEM SECT CHIM MINERALE 609-14 PUB (1958) CA 54, 8261 (1960)	300255
ACKERMANN, R THØRN, R REACTIONS YIELDING VOLATILE ØXIDES AT HIGH TEMPERATURES FREE ENERGIES ØF GASEOUS AL20, ZR0, TH0, TA0, ZR02, TH02, TA02, U02, AND W03 U S ATOMIC ENERGY COMM ANL 5824, 24 (1958) CA 52, 12533 (1958)	601087 601087 601087 601087 601087
ACKERMANN, R THØRN, R (ARGØNNE NAT LAB LEMØNT ILL) FREE ENERGIES ØF FØRMATIØN ØF GASEØUS URANIUM, MØLYBDENUM AND TUNGSTEN TRIØXIDES J PHYS CHEM 64, 350 (1960) CA 54, 17030 (1960)	601174 601174 601174 601174 601174
ACKERMANN, R THØRN, R HIGH-TEMPERATURE THERMØDYNAMIC PRØPERTIES ØF REACTØR MATERIALS PRØC U N INTERN CØNF PEACEFUL USES AT ENERGY 2ND GENEVA 28, 180 (1958) CA 54, 1056 (1960)	601208 601208 601208 601208 601208 601208
ACKERMANN R THØRN R VAPØRIZATIØN ØF ØXIDES PRØGRESS IN CERAMIC SCIENCE I 9 39 (1961) NSA 15 • 26061 (1961)	700908 700908 700908 700908
ACKERMANN R THØRN R (ARGØNNE NATL LAB LEMØNT ILL) REACTIONS YIELDING VØLATILE ØXIDES AT HIGH TEMPERATURES FREE ENERGIES ØF GASEØUS AL20, ZRØ, THØ, TAØ, ZRØ2, THØ2 TAØ2, VØ2 AND WØ3 ANL-5824 (1958) NSA 12, 5209 (1958)	601510 601510 601510 601510 601510 601510
ACKERMANN R THØRN R (ARGØNNE NATL LAB LEMØNT ILL) VAPØRIZATIØN PRØPFRTIES ØF THØRIUM URANIUM, AND PLUTØNIUM METALS AND ØXIDES IAFA SYMPØSIUM ØN THE THERMØDYNAMICS ØF NUCLEAR MATERIALS, PRØC VIENNA, MAY 1962 NSA 16, 25400 (1962)	601616 601616 601616 601616 601616 601616
ACKERMANN, R THØRN, R THERMØDYNAMIC PRØPERTIES ØF CØMPØUNDS ØF ACTINIDE ELEMENTS IAEA SYMPØSIUM ØN THE THERMØDYNAMICS ØF NUCLEAR MATERIALS, PRØC, VIENNA, MAY 1962 NSA 16, 25398 (1962)	601615 601615 601615 601615 601615
ACKERMANN, R THØRN, R GILLES, P (ARGØNNE NAT LAB LEMØNT ILL) VAPØR PRESSURE ØF THØRIA J AM CHEM SØC 78, 1767 (1956) CA 50, 9811 (1956)	600983 600983 600983 600983 600983
ACKERMANN, R THØRN, R WINSLØW, G (ARGØNNE NATL LAB LEMØNT ILL)	301391 301391

FUNDAMENTAL ASPECTS ØF VAPØRIZATIØN U S AT ENERGY CØMM ANL 6663. 27 (1962) CA 58. 11971 (1963)	301391 301391 301391
ACKERMANN, R THØRN, R WINSLØW, G SYSTEMATIC TRENDS IN VAPØRIZATIØN AND THERMØDYNAMIC PRØPERTIES ØF ØXIDES PLANETARY AND SPACE SCIENCE 3, 12 (1961)	700580 700580 700580 700580
ACKET, G A VØLGER, J (RIJKS UNIV UTRECHT NETHERLANDS) MEASUREMENTS ØF THE BULK CØNDUCTIVITY ØF SLIGHTLY REDUCED RUTILE (TIØ2) PARALLEL AND PFRPENDICULAR TØ THE C-AXIS PHYSICA 29, 225 (1963) CA 59, 2249C (1963)	301165 301165 301165 301165 301165 301165
ADAM• J RØGERS• M (AT ENERGY RES ESTAB HARWELL ENGLAND) THE CRYSTAL STRUCTURE ØF ZRØ2 AND HFØ2 ACTA CRYST 12• 951 (1959) CA 55• 26605 (1961)	300852 300852 300852 300852 300852
ADAMS. M THERMAL CONDUCTIVITY III. PROLATE SPHEROIDAL ENVELOPE METHOD DATA FOR AL203. BEO. MGO. THO2. ZRO2 J AM CERAM SOC 37. 74 (1954) CA 48. 4788 (1954) NSA 8. 2416 (1954)	600961 600961 600961 600961 600961
ADAMS. M JACØB. L ELECTRICAL CØNDUCTIVITY ØF STRØNTIUM ØXIDE NATUR 188. 130 (1960) CA 55. 6147 (1961)	200763 200763 200763 200763
AFAF. M BAND SPECTRUM ØF ZIRCØNIUM ØXIDE PRØC PHYS SØC 63A. 1156 (1950) CA 45. 2774 (1951)	600914 600914 600914 600914
AFANASYEV, A THE FOURTH UKRAINIAN CONFERENCE ON PHYSICAL CHEMISTER UKRAIN KHIM ZHUR 27, 4 (1961)	400603 400603 400603
AFENKØV• N APPLICATIØN ØF THE LAW ØF CØRRESPØNDING STATES TØ THE CØMPRESSIBILITY AND HEAT CAPACITY ØF LIGUIDS IZV VYSSHIKH UCHEBN ZAVEDENII KHIM TEKNØL 5• 672 (1962) CA 58• 1920 (1963)	301392 301392 301392 301392 301392
AGEEV. N. KARPINSKII. Ø PETRØVA. L THE MECHANISM ØF DECØMPØSITIØN ØF THE B-SØLID SØLUTIØN ØF FUSIØNS ØF TITANIUM WITH RHENIUM ZH NEØRGAN KHIM 6. 251 (1961) CA 57. 6862 (1962)	201762 201762 201762 201762 201762
AGEEV. N. KØPETSKII. C REACTIØN ØF THE VII-A SUBGRØUP ELEMENTS WITH TRANSIIIØN METALS DØKLADY AKAD NAUK SSSR 129. 559 (1959) CA 56. 1124 (1962)	201230 201230 201230 201230 201230
AGGARWAL. P. GØSWAMI. A A NEW PHASE STRUCTURE ØF MØLYBDENUM	700514 700514

PRØC PHYS SØC (LØNDØN) 70B. 708 (1957)	700514
CA 52. 12502 (1958)	700514
AGLADZE, R MANPØRIUYA, G	700551
THERMAL STABILITY ØF NITRIDED ELECTRØLYTIC MANGANESE	700551
ZHUR PRIKLAD KHIM 34, 345 (1961)	700551
AGTE+ C BLUM+ G TITANIUM CARBIDE-BASED HIGH TEMPERATURE MATERIALS NEUE HUTTE VI+ 139 (1961) CØTS 46+ 104 (1961)	300342 300342 300342 300342
AHEARN, A THURMØND, C MASS-SPECTRØGRAPHIC DETECTION OF MOLECULAR SPECIES IN GROUP III-V COMPOUNDS J PHYS CHEM 66, 575 (1962) BHTG NO 4, 13 (1962)	300471 300471 300471 300471 300471
AINSLIE N MACKENZIE J TURNBULL D	600837
MELTING KINETICS OF QUARTZ AND CRISTOBALITE	600837
J PHYS CHEM 65 + 1718 (1961)	600837
AKERLIND, L RØTATIØNAL ANALYSIS ØF THE RED AND GREEN-YELLØW SYSTEMS ØF LANTHANUM ØXIDE ARK FYS (SWEDEN) 22, 65 (1962) PA 65, 10247 (1962)	300610 300610 300610 300610 300610
AKERLIND, L RØTATIØNAL ANALYSIS ØF THE BLUE-GREEN AND ØRANGE SYSTEMS ØF SCANDIUM ØXIDE ARK FYS (SWEDEN) 22, 41 (1962) PA 65, 10246 (1962)	300611 300611 300611 300611 300611
AKERLIND, L	700635
RØTATIØN ANALYSIS ØF THE BAND SYSTEM ØF SCANDIUM ØXIDE	700635
NATURWISSENSCHAFTEN 48, 375 (1961)	700635
CT NØ 13, (1961)	700635
AKERLIND, L	700894
(UNIV STØCKHØLM STØCKHØLM 6EDE58	700894
RØTATIØN ANALYSIS ØF THE BAND SYSTEMS ØF LANTHANUM ØXIDE	700894
NATURWISS 49, 7 (1962)	700894
CA 57, 1754 (1962)	700894
AKHACHINSKIY, V KØPYTIN, L HEATS ØF FØRMATIØN ØF INTERMETALLIC CØMPØUNDS ØF PU WITH AI AND FE AND ØF U WITH FE SYMPØSIUM ØN THERMØDYNAMICS ØF NUCLEAR MATERIALS, VIENNA (1962) AEC-TR-5451	301104 301104 301104 301104 301104
AKIMOV. A ARC AND SPARK SPECTRA OF GADOLINIUM DYSPROSIUM ERBIUM AND THULIUM IN THE ALTERNATING CURRENT ARC OPTIKA I SPEKTROSKOPIYA 3. 545 (1957) CA 52. 6919 (1958)	601099 601099 601099 601099
AKISHIN. P KHØDEEV. Y	300453
DETERMINATION OF HEAT OF SUBLIMATION OF URANIUM	300453
TETRAFLUORIDE BY THE MASS SPECTROMETRIC METHOD	300453
ZHUR FIZ KHIM 35. 1169 (1961)	300453
BHTG NO 4. 2 (1962)	300453

AKISHIN. P KHØDEEV. Y MASS SPECTROMETRIC STUDY ØF THE COMPOSITION ØF VAPOR ØVER ZR. TI. AND BØRØN NITRIDES ZHUR NEØRG KHIM I NØ 4. 941 (1962) RUSS ACC 15. NØ 4. 1214 (1962)	300592 300592 300592 300592 300592
AKISHIN• P NAURMØV• V (M V LØMØNØSØV STATE UNIV MØSCØW RUSSIA) AN ELECTRØGRAPHIC STUDY ØF THE STRUCTURE ØF GASEØUS SCF3 AND THE ESTIMATIØN ØF SCANDIUM HALØGEN DISTANCES IN SCCL3• SCBR3 AND SCI3 ZHUR STRUKT KHIM 2• 3 (1961) CA 56• 91 (1962)	201201 201201 201201 201201 201201 201201 201201
AKISHIN, P NIKITIN, Ø GØRØKHØV, L DETERMINATIØN ØF THE HEAT ØF SUBLIMATIØN ØF BØRØN BY THE MASS-SPECTRØSCØPIC METHØD DØKLADY A N SSSR 129, 1075 (1959) CA 56, 1005 (1962)	300352 300352 300352 300352 300352
AKISHIN. P A VILKOV, L V ZASORIN. E Z RAMBIDI. N G SPIRIDONOV. V P (STATE UNIV MOSCOW RUSSIA) ELECTRON-DIFFRACTION STUDY OF THE MOLECULAR STRUCTURE OF SOME GASEOUS ØXIDES J PHYS SOC JAPAN 17 SUPPL B-II 18 (1962 CA 59, 4609G (1963)	301167 301167
AKRAM. K SMELTZER. W THE HIGH TEMPERATURE ØXIDATIØN KINETICS ØF ZIRCØNIUM CAN MET QUART 1. NØ 1. 41 (1962) CA 57. 13212 (1962)	201872 201872 201872 201872
ALBERMAN+ K ANDERSON+ J THE ØXIDES ØF URANIUM J CHFM SØC 1949+ 2+ 303 (1949) CA 44+ 8755 (1950) NSA 4+ 4277 (1950)	400538 400538 400538 400538 400538
ALBFRTSØN• W THE SPECTRUM ØF NEUTRAL IRIDIUM IR1 PHYS REV 54• 183 (1938)	900122 900122 900122
ALCOCK C GRIFVESON P STUDY OF URANIUM BORIDES AND CARBIDES BY MEANS OF THE KNUDSEN EFFUSION TECHNIQUE IAEA SYMP PROC-VIENNA (1962) NSA 16. 35375 (1962)	601606 601606 601606 601606 601606
ALCOCK. C. HOOPER. G. THERMODYNAMICS OF GASEOUS OXIDES OF THE PLATINUM GROUP METALS PROC ROY SOC (LONDON) 254. 551 (1960) CA 54. 23694 (1960)	601161 601161 601161 601161
ALDRED. F (MØRGAN REFRACTØRIES LTD NESTØN ENGLAND) ALUMINA CERAMICS TRANS BRIT CERAM SØC. 61 705 (1962) CA 58. 8746 (1963)	201993 201993 201993 201993 201993
ALEKSANDRØVSKAYA• A ALEYHØNKØVA• Y SINITSYNA• L GØDNEV• I (CHEM-TECHNØL INST IVANØVØ RUSSIA) THFRMØDYNAMIC FUNCTIØNS ØF GASEØUS SILICØN TETRAIØDIDE	201610 201610 201610

AND ZIRCØNIUM TETRAIØDIDE IZV VYSSHIKH UCHEBN ZAVEDENII. KHIM I KHIM TEKHNØL 5. NØ 1. 171 (1962) CA 57. 2925 (1962)	201610 201610 201610 201610
ALEKSEEV, V I SHVARTSMAN, L A THERMØDYNAMICS ØF REACTIØNS ØF TUNGSTEN CARBIDE FØRMATIØN IZV A N SSSR Ø T1N MET I GØRM DELØ 1963, 1 91 CA 58, 10793D (1963)	301168 301168 301168 301168
ALEKSANDRØVSKAYA+ A GØDNEV+ I SVERDLIN+ A (CHEM TECHNØL INST IVANØVØ SSSR) THERMØDYNAMIC FUNCTIØNS ØF HAFNIUM HALIDES CA 59+ 3367 (1963)	301393 301393 301393 301393
ALEKSEEV. V SHVARTSMAN, L FREE ENERGY ØF FØRMATIØN ØF MØLYBDENUM CARBIDE IZV A N SSSR ØTD TEKHN NAUK MET I TØPLIVØ 1962, NØ 6, 171 (1962)	300846 300846 300846 300846
ALEKSEEVA, V SHVARTSMAN, L EQUILIBRIUM IN THE SYSTEM V2C-H2-CH4-V DØKLADY AKAD NAUK SSSR 133, 1331 (1960) CA 55, 12018 (1961)	600909 600909 600909 600909
ALEKSEEVA. V SHVARTSMAN. L FREE ENERGY ØF FØRMATIØN ØF SØME VANADIUM AND CHRØMIUM CARBIDE FIZ METAL I METALLØVED AKAD NAUK SSSR 11. 545 (1961) CT NØ 12. (1961) CA 55. 26636 (1961)	700632 700632 700632 700632 700632
ALEKSEYEVSKIY. N HIGH RESØLVING MASS-SPECTRØMETER VEST AK NAUK SSSR 6. 67 (1958)	400600 400600 400600
ALENARD. S TWO NEW MANGANESE BORIDES OBTAINED BY FUSION ELECTROLYSIS COMPT REND 253. 1213 (1961) CA 56. 8457 (1962)	201402 201402 201402 201402
ALEXANDER, C VAPOR-SOLID EQUILIBRIA IN THE URANIUM ØXIDE-ØXYGEN SYSTEM DISS ABST 22, NØ 11, 3864 (1961) BHT NØ 2, 28 (1962)	300533 300533 300533 300533
ALEXANDER, C SHEVIN, T (BATTELLE MEMØRIAL INST CØLUMBUS ØHIØ) URAN1UM ØXIDE PRESSURE-TEMPERATURE-CØMPØSITIØN RELATIØNSHIPS FRØM 1000 TØ 2000 DEGREE K U S AT ENERGY CØMM TID-7622, 139 (1962) CA 57, 15872 (1962)	201921 201921 201921 201921 201921 201921
ALEXEEV, V SCHVARZMAN, L FREE ENERGY ØF MN23C6 DØKLADY AKAD NAUK SSSR 141, NØ 2 346 (1961)	300405 300405 300405
ALLEN. R URANIUM AND ITS COMPOUNDS BIBLIOGRAPHY OF UNCLASSIFIED LITERATURE USAEC TECH INFORM SERVICE. OAK RIDGE.TENN TID-3041. 3 (1953) CA 48. 2501 (1954)	600965 600965 600965 600965
ALLEN+ R GLASIER+ L JØRDAN+ P	200828

SPECTRAL EMISSIVITY. TOTAL EMISSIVITY. AND THERMAL CONDUCTIVITY OF MOLYBDENUM. TANTALUM. AND TUNGSTEN ABOVF 2300 DEGREES K J APPL PHYS 31. 1382 (1960) CA 55. 3199 (1961)	200828 200828 200828 200828 200828
ALLEN. B C MAYKUTH, D J JAFFEE, R I (BATTELLE MEM INST COLUMBUS OHIO) THE EFFECT OF IMPURITIES AND STRUCTURE ON THE TENSILE TRANSITION TEMPERATURE OF CHROMIUM TRANS AIME 227, 724 (1963) CA 59, 4865F (1963)	301169 301169 301169 301169 301169
ALLENDØRFER• A THE MELTING PØINT ØF URANIUM Z NATURFØRSCH 5A• 234 (1950) CA 44• 8187 (1950) NSA 4• 4870 (1950)	400539 400539 400539 400539
ALMKVIST, G LAGERQVIST, A INFRARED BANDS ØF STRØNTIUM ØXIDE ARKIV FYSIK 1, 477 (1949) CA 44, 3791 (1950)	600922 600922 600922 600922
ALSTAD, J CØLVIN, R LEGVØLD, S SPEDDING, F (IØWA STATE UNIV AMÉS 10WA) ELECTRICAL RESISTIVITY ØF LANTHANUM, PRASEØDYMIUM, NEØDYMIUM AND SAMARIUM PHYS REV 121, 1677 (1961) CA 55, 18228 (1961) NSA 15, 14886 (1961)	201099 201099 201099 201099 201099 201099 201099
ALTMAN R VAPØRIZATIØN ØF MAGNESUIM ØXIDE AND ITS REACTIØN WITH ALUMINA J PHYS CHEM 67, 366 (1963)	300844 300844 300844 300844
ALTUNIN. V (NATL CHEM LAB TEDDINGTØN ENGLAND) METHØD ØF ØBTAINING THE EQUATIØN ØF STATES ØF A REAL GAS FRØM A LIMITED AMØUNT ØF EXPERIMENTAL DATA TEPLØENERGETIKA 9, NØ 3. 72 (1962) CA 58. 8418 (1963)	301395 301395 301395 301395 301395 301395
ALYAMØVSKII, S GELD, P MATVEENKØ, I (CHEM INST SVERPLØVSK RUSSIA) THE CUBIC PHASES ØF VANADIUM CARBIDES ZHUR STRUKT KHIM 2, 445 (1961) CA 56, 8095 (1962)	201374 201374 201374 201374 201374
ALYAMØVSKII, S GELD, P MATVEENKØ, I PHASE CØMPØNENTS ØF THE SYSTEM NB-SI TR URALSK PØLITEKHN INST SB 1961, NØ 114, 149 CA 57, 533 (1962)	201586 201586 201586 201586
ALYAMOVSKII, S. SHVEIKIN, G. GELD, P. LOWER OXIDES OF NIOBIUM ZHUR NEORGAN KHIM 3, 11, 2436 (1958) RUSSIAN PERIODICAL, ZHUR NEORGAN KHIM 3, 11, 2436 (1958)	400597 400597 400597 400597
AMONENKO, V IVANOV, V TIKHINSKII, G FINKEL, V SHPAGIN, I HIGH TEMPERATURE POLYMORPHISM OF BE FIZ METAL I METALLOVED 12, NO 6, 865 (1961)	300535 300535 300535

BHT NØ 2, 33 (1962) CA56, 9844 (1962)	300535 300535
AMØNENKØ, V KRUGLYKH, A TIKHINISKII, G THE VACUUM DISTILLATIØN ØF CHRØMIUM UKRAIN FIZ ZHUR 6, 390 (1961) BHTG NØ 4, 8 (1962) PA 65, 12936 (1962)	300466 300466 300466 300466 300466
STUDY OF WHISKER CRYSTALS OF BERYLLIUM. PRODUCTION OF WHISKER CRYSTALS AND DETERMINATION OF THEIR ORIENTATION FIZ METAL I METALLOVED 13. NO 6. 928 (1962)	300585 300585 300585 300585 300585
X-RAY STUDY OF THE SOLUBILITY OF IMPURITIES IN BERYLLIUM JPRS 17681	301124 301124 301124 301124
FINKEL+ V A TANTALUM STRUCTURE AT HIGH TEMPERATURES FIZ METAL I METALLØVED 15+ 444 (1963)	301170 301170 301170 301170 301170
PRØDUCTIØN ØF PLASTIC NB FRØM ELECTRØLYTIC PØWDERS IZV VYSSKIKH UCHEBN ZAVEDENII TSVETN MET 5. 122 (1962)	301125 301125 301125 301125
MASS SPECTROMETRIC INVESTIGATION OF GAS EVOLUTION PROCESSES ACCOMPANYING THE SINTERING OF TANTALUM AND NIOBIUM ZHUR PRIK KHIM 34+ NO 1 84 (1961)	300175 300175 300175 300175 300175
THE STRUCTURE OF U308 DETERMINED BY NEUTRON DIFFRACTION ACTA CRYST 11, 612 (1958)	601693 601693 601693 601693
(UNIV ØF ØXFØRD ØXFØRD ENGLAND) A DETERMINATION ØF THE MELTING PØINT ØF ELEMENT 43 (TECHNETIUM) NATURE 188, 48 (1960) CA 55, 4077 (1961)	700975 700975 700975 700975 700975 700975
(UNIV MUSEUM ØXFØRD ENGLAND) THE EQUILIBRIUM DIAGRAM ØF THE SYSTEM MØLYBDENUM-RHØDIUM J LESS CØMMØN METALS 2, 19 (1960)	200969 200969 200969 200969 200969
THE EQUILIBRIUM DIAGRAM OF THE SYSTEM MOLYBDENUM-RUTHENIUM J LESS COMMON METALS 2, 443 (1960)	201071 201071 201071 201071
(NATL CHEM LAB TEDDINGTON ENGL)	301396 301396 301396

ADVAN CHEM SER 39. 1 (1963)	301396
CA 58. 13150 (1963)	301396
ANDERSØN» J SAWYER» J WØRNER» H WILLIS» G BANISTER» M	601172
DECØMPØSITIØN ØF U DIØXIDE AT ITS MELTING PØINT	601172
NÅTURE 185» 915 (1960)	601172
CA 54» 19076 (1960)	601172
ANDERSSON S (UNIV STOCKHOLM SWEDEN) THE CRYSTAL STRUCTURE OF TI509 ACTA CHEM SCAND 14, 1161 (1960) CA 56. 8105 (1962)	201381 201381 201381 201381 201381
ANDES, G HECKEL, R (E I DUPONT DE NEMOURS AND CO WILMINGTON DEL) OXIDATION BEHAVIOUR OF TUNGSTEN BASE ALLOYS AM SOC METALS, TRANS GUART 55, 193 (1962) CA 56, 12639 (1962)	201498 201498 201498 201498 201498
ANDFRSSØN S (UNIV ØF STØCKHØLM STØCKHØLM SWEDEN) HØMØLØGØUS SERIES ØF MIXED TITANIUM CHRØMIUM ØXIDES -TI(N-2)CR2Ø(2N-1) ISØMØRPHØUS WITH THE SERIES TI(N)Ø(2N-1) AND V(N)Ø(2N-1) ACTA CHEM SCAND 13. 989 (1959) CA 55. 23150 (1961)	201178 201178 201178 201178 201178 201178 201178
ANDERSSON: S STRUCTURAL AND GEOMETRIC RELATIONS BETWEEN ALPHA- AND BETA- TITANIUM: THE W-ALLOY PHASE: DELTA-TITANIUM ØXIDE: AND TITANIUM MONOXIDE ARKIEV KEMI 15: 247 (1960) CA 55: 4094 (1961)	200845 200845 200845 200845 200845 200845
ANDREFVA. V ALEKSEEVA. E	201814
ØXIDATIØN ØF TITANIUM. ZIRCØNIUM. MØLYBDENUM. AND SØME	201814
ALLØYS	201814
ZH PRIKLAD KHIM 35, NØ 6. 1175 (1962)	201814
CA 57. 9557 (1962)	201814
ANDRES. K (SWISS FEDERAL INSTITECH ZURICH SWITZ) GIANT THERMAL EXPANSION COEFFCIENTS IN RARE EARTH METALS AT LOW TEMPERATURES PHYS REV LETTERS 10. 223 (1963) CA 59. 2188 (1963)	301172 301172 301172 301172 301172 301172
ANIKEEV. V LYUBAN. A MANCHINSKII. V	201035
DISSØCIATIØN AND REDUCTIØN ØF HIGHER ØXIDES ØF MANGANESES	201035
TRUDY LENINGRAD PØLITEKH INST IM MI KALININA 212. 52 (1960)	201035
ČA 55. 14216 (1961)	201035
ANITOV. I GORBUNOV. 5	700603
RATE OF OXIDATION OF TITANIUM AND ITS ALLOYS IN AIR AT HIGH	700603
TEMPERATURES	700603
ZHUR PRIKLAD KHIM 34. 725 (1961)	700603
ANIKINÀ: L	301173
THE CRYSTAL STRUCTURE ØF CØESITE	301173
KHIM AKAD NAUK SSSR 1960 216: (1962)	301173
CA 57: 14521 (1962)	301173

ANON (UNITED KINGDOM AT ENERGY HARWELL ENGLAND) THE PREPARATION AND PROPERTIES OF THE CARBIDES OF SCANDIUM, YTTRIUM, THE ACTINIDES AND THE LANTHANIDES AERE-INF/BIB-115 (1958) NSA 13, 531 (1959)	601561 601561 601561 601561 601561
ANØN (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEX) CRYSTALLØGRAPHIC DATA NØ 177• UN ANAL CHEM 31• 156 (1959) NSA 13• 4470 (1959)	601550 601550 601550 601550
ANØN (ARGØNNE NATL LAB LEMØNT ILL) METALLURGY DIV QUARTERLY REPT FØR JAN, FEB, MAR 1957 ANL-5717 (1957) NSA 12, 4824 (1958)	601507 601507 601507 601507
ANØN (ARGØNNE NATL LAB LEMØNT ILL) PHYSICS DIV SUMMARY REPT FØR APR THRØUGH JUNE 1957 ANL-5754 (1957) NSA 12 • 1580 (1958)	601514 601514 601514 601514
ANON (ARGONNE NATL LAB LEMONT ILL) METALLURGY DIV QUARTERLY REPT FOR APR, MAY AND JUN 1957 ANL-5790 (1958) NSA 13, 1349 (1959)	601559 601559 601559 601559 601559
ANON (ARGONNE NATL LAB LEMONT ILL) METALLURGY DIV QUARTERLY REPT FOR JULY, AUG AND SEPT 1957 ANL-5797 (1958) NSA 13, 2967 (1959)	601555 601555 601555 601555 601555
ANON THERMODYNAMIC AND KINETIC STUDIES FOR A REFRACTORY MATERIALS PROGRAM ASD-TDR-62-204 PT 1 NSA 16, 25747 (1962)	601597 601597 601597 601597 601597
ANØN (BRØØKHAVEN NATL LAB LØNG ISLAND NY) NUCLEAR ENGINEERING DEPT, PRØGRESS REPØRT, SEPT-DEC 31, 1960 BNL 659 NSA 15, 30331 (1961)	601458 601458 601458 601458 601458
ANON (AMES LAB AMES IOWA) TECHNOLOGICAL RESEARCH-METALLURGY PART II OF REPORT FOR MONTH ENDING OCT 2, 1943 CJ-954 (1957) NSA 12, 897 (1958)	601516 601516 601516 601516 601516
ANON (OFFICE OF TECH SERVICES WASH DC) URANIUM-PART I URANIUM GENERAL 1942-1958 CTR-365 NSA 13 • 10120 (1959)	601539 601539 601539 601539 601539
ANØN	601538

(OFFICE OF TECH SERVICES WASH DC) URANIUM-PART II ALLOYS AND COMPOUNDS 1936-1958 CTR-366 NSA 13 • 10121 (1959)	601538 601538 601538 601538
ANON (AMES LAB QUARTERLY SUMMARY RESEARCH REPT IN CHEMISTRY FOR JULY, AUG AND SEPT 1953 ISC-421 (1957) NSA 12, 706 (1958)	601502 601502 601502 601502 601502
ANON (AMES LAB AMES IOWA) SEMI-ANNUAL SUMMARY RESEARCH REPT IN CHEM FOR JAN-JUNE 1957 ISC-902 (1957) NSA 12+ 6438 (1958)	601501 601501 601501 601501 601501
ANON (AMES LAB AMES IOWA) SEMI ANNUAL SUMMARY RESEARCH REPT IN PHYSICS FOR JULY-DEC 1958 ISC-1115 NSA 13 • 18224 (1959)	601524 601524 601524 601524
ANØN (NATL BUR STANDARDS WASH DC) QUARTERLY PRØGRESS REPT FØR APR, MAY AND JUNE 1953 NBS-D-124 (1957) NSA 12, 2022 (1958)	601513 601513 601513 601513
ANØN (UNIV CAL BERKFLEY CAL) CHEMISTRY DIVISIØN SEMIANNUAL REPT FØR DEC 1957-MAY 1958 UCRL-8369 (1958) NSA 13 • 4525 (1959)	601549 601549 601549 601549
ANØN (US BUR MINES ALBANY ØREGØN) QUARTERLY METALLURGICAL PRØG REPT NØ 13 ØCT 1. 19f. TØ DEC 31. 1961 USBM-U-887 NSA 16. 17967 (1962)	601599 601599 601599 601599 601599
ANØN (BUREAU ØF MINES ALBANY ØREGØN) METALLURGICAL PRØG REPØRT NØ 14 FØR THE PERIØD ØF JANUARY 1, 1962 TØ MARCH 31, 1962 USBM-U-921 NSA 16, 19374 (1962)	601629 301629 601629 601629 601629
ANON {POLYTECH INST BROOKLYN BROOKLYN NEW YORK} COMPOUNDS WITH DEFECT LATTICES QUARTERLY NO 11 (1960) CONTRACT DA36-039 SC 74958 PROJ 3-99-15-110 AD 247864	300229 300229 300229 300229 300229
ANON STANDARD FREE ENTHALPIES OF FORMATION AT 25 DEGREES CEBELCOR (CENTRE BELGE ETUDE CORROSION) RAPP TECH NO 87 57 (1960) CA 55. 13031 (1961)	300226 300226 300226 300226 300226

ANON (SCI AND TECH SEC AIR INFO WASHINGTON THERMODYNAMIC CONSTANTS OF BORON COMBUSTION ZHUR NEORG KHIM 5 • 2141 (1960) AD 248413 (1961)	DC)	300228 300228 300228 300228 300228
ANON (HIGH TEMP MATS INC BOSTON PYROLYTIC CARBIDE DEVELOPMENT PROGRAM MONTHLY PROG REPT NO 10 (1961) CONTRACT 60-0292 AD 251504 (1961)	MASSI	300237 300237 300237 300237 300237
ANON (RAYTHEON MFG CO WALTHAM HIGH TEMPERATURE MATERIALS DEVELOPMENT PROG REPT FOR (1961) REPT NO S-252 CONTRACT 1913 CONFIDENTIAL RPT AD-322236 (1961)	MASS) 35	300239 300239 300239 300239 300239
ANON DIAGRAMS OF FREE ENERGY OF CARBIDES VERSUS TEMPI HUTNICKE LISTY 9, 272 (1954)	ERATURE	400618 400618 400618
ANON (OAK RIDGE NATE LAR OAK RIDGE PROCFEDINGS OF THE URANIUM CARBIDE MEETING HELD AT OAK RIDGE NATIONAL LAB (1960) TID-7603 NSA 15+ 19861 (1961)	TENNI	601414 601414 601414 601414 601414
ANON AN INVESTIGATION OF SOME RARE EARTH BORON, CARBON, NITROGEN AND RELATED SYSTEMS AT ELEVATED TEMPERATURES TID 692C NSA 15, 9431 (1961)		601376 601376 601376 601376 601376
ANON (OFFICE OF TECH SERVICES WASH URANIUM-PART I. URANIUM GENERAL: 1942-1958 CTR-365 NSA 14: 1751 (1960)	DC)	601368 601368 601368 601368 601368
ANØN (AMES LAB CHEMISTRY SEMI ANNUAL SUMMARY RESEARCH REPØRT FØR JANUARY-JUNE 1959 IS-15 (1959) NSA 14 • 11488 (1960)	(AWOI	601352 601352 601352 601352 601352 601352
ANON (NAVAL RES LAB NRL QUARTERLY ON NUCLEAR SCIENCE AND TECHNOLOGY NSA 14. 11374 (1960)	DC) ØCT-NØV 1959	601349 601349 601349 601349
ANON (PENN UNIV PHIL THERMODYNAMIC PROPERTIES OF METAL CARBIDES AT H TEMPERATURES NYO-9625 (1960) NS 15. 5374 (1961)	PA) IGH	600666 600666 600666 600666 600666
ANON		701015

PRØGRESS REPØRT ØN WØRK UNDERTAKEN ØN PRØJECT NØ UNIVERSITY ØF KANSAS AND THE AEC TID-6919 (1960) NSA 15• 11599 (1961)	1 BETWEEN THE	701015 701015 701015 701015
ARAI. Z HAYASHI. H NAKAMURA. S AZUMA. N FØRMATIØN ØF SØLID SØLUTIØN BETWEEN TITANIUM NITR CARRIDE YØGYØ KYØKAI SHI 68, 83 (1960) CA 55. 6982 (1961)	RIDE AND	200773 200773 200773 200773 200773
ANON NUCLEAR ENG DEPT PROG REPT FOR MAY 1-AUG 1, 1959 B N L -583 NSA 14, 17642 (1960)	(BNL)	601337 601337 601337 601337
ANON A NOTE ON THE URANIUM-BORON ALLOY SYSTEM - CORRECT JINST MET 88, 467 (1960) NSA 14, 23331 (1960)	TIØN	601328 601328 601328 601328
ANØN LAMES LAB SEMI-ANNUAL SUMMARY RESEARCH REPT IN PHYSICS FØR JAN THRØUGH JUNE 1956 ISC-758 (1956) NSA 11 • 4632 (1957)	(OWA)	601319 601319 601319 601319 601319
ANØN (BATTFILE MEMØRIAL INST CØLUMBUS Ø METALLURGY ØF TUBALLØY (URANIUM) CT-2700 (1957) NSA 11+7662 (1957)	3HIØ)	601313 601313 601313 601313
ANØN (AMES LAB AMES I QUARTERLY SUMMARY RESEARCH ØCT. NØV. DEC JULY 14. 1955 ISC-575 NSA 11. 7676 (1957)	I ØWA)	601312 601312 601312 601312 601312
ANON (NATE BUR STANDARDS WASH COUNTERLY REPT FOR JAN• FEB AND MARCH 1953 DECL FEB 28• 1957 NBS-D-123 NSA 11• 7694 (1957)	OC)	601311 601311 601311 601311 601311
ANON (AMES LAB AMES I SEMI ANNUAL SUMMARY RESEARCH REPT IN PHYSICS FOR JUL THROUGH DEC 1956 ISC-833 (1957) NSA 11 • 8117 (1957)	I ØWA)	601308 601308 601308 601308 601308 601308
ANON CURRENT BERYLLIUM LITERATURE U S AT ENERGY COMM UCRL 5705, 350 (1963) CA 58, 13531 (1963)		301397 301397 301397 301397
ANON (MASS INST OF TECH CAMBRIDGE N TECHNICAL PROGRESS REPT FOR THE PERIOD OCT 1951	MASS)	601305 601305 601305

THRØUGH MARCH 1952 DECL FEB 28, 1957 MIT-1086 NSA 11, 8517 (1957)		601305 601305 601305 601305
ANØN (AMES LAB AMES HANFØRD SLUG PRØGRAM SEMI-ANNUAL SUMMARY RESEARCH REPT FØR JULY-DEC 1956 ISC-837 NSA 11, 9325 (1957)	I ØWA)	601302 601302 601302 601302 601302
ANØN (BUR ØF MINES ALBANY PRØGRESS REPT FØR THE PERIØD ØF JULY 15- AUG 15 NSA 11• 10887 (1957)	ØREG) • 1952	601298 601298 601298 601298
ANØN (AMES LAB QUARTERLY SUMMARY RESEARCH REPT IN METALLURGY FØR APR MAY AND JUNE 1953 DECL FEB 26. 1957 ISC-396 (DEL) NSA 11. 11703 (1957)	I ØWA)	601297 601297 601297 601297 601297 601297 601297
ANØN (AMES LAB QUARTERLY SUMMARY RESEARCH REPT IN CHEM FØR JAN• FEB• AND MAR• 1955 ISC-606 NSA 10• 4125 (1956)	I ØWA)	601265 601265 601265 601265 601265
ANON (AMES LAB AMES SEMI-ANN JAL SUMMARY RESEARCH REPT IN METALLURGY FOR JULY-DEC 1956 1SC-835 (1957) NSA 12• 3680 (1958)	10WA)	601419 601419 601419 601419 601419
ANØN MØLYBDENUM AND TUNGSTEN SB-415 (1960) NSA 15. 13253 (1961)		700922 700922 700922 700922
ANON NUCLEAR FUELS AND MATERIALS DEVELOPMENT TID-11295 (1961) NSA 15, 12475 (1961)		700932 700932 700932 700932
ANON COLUMBIUM AND TANTALUM SB-414 (1960) NSA 15 • 13252 (1961)		701022 701022 701022 701022
ANON PLATINUM AND ALLIED METALS SB-420 (1960) NSA 15. 13254 (1961)		701024 701024 701024 701024
ANON (RES CHEM DIV NUCLEAR CORP PHOENIX PROPERTIES OF YTTRIUM AND THE RARE EARTH METALS QUARTERLY REPORT APRIL 30 • (1961)	ARIZØNA)	500131 500131 500131 500131

REPORT NO RC 182. (CONTRACT AF 33 (616) 6829)	500131
ANON ZIRCONIUM SB-464 (SUPPLEMENT TO CTR 344) (1961) NSA 15. 23859 (1961)	701047 701047 701047 701047
ANON (ILLINOIS INST OF TECH CHICAGO ILL) THERMAL AND MECHANICAL PROPERTIES OF BERYLLIA CERAMICS GA-1906 (1961) NSA 15 • 13342 (1961)	700715 700715 700715 700715 700715
ANØN BERYLLIUM (1945-1960) SB-413 (1960) NSA 15: 13251 (1961)	700716 700716 700716 700716
ANSELIN, F. PASCARD, R. VØLATILITY ØF PUC AND PUN CØMPT REND 225, 698 (1962) BHT NØ 7, 3 (1963)	301126 301126 301126 301126
ANTHONY R HIMMELBLAU D (UNIV OF TEXAS AUSTIN EXAS) CALCULATION OF COMPLEX CHEMICAL EQUILIBRIUMS BY SEARCH TECHNIQUES J PHYS CHEM 67 1080 (1963) CA 58 13198 (1963)	301398 301398 301398 301398 301398 301398
ANTILL. J (ATOMIC ENERGY RES ESTAB HARWELL ENGLAND) OXIDATION OF URANIUM PROPERTIES REACTOR MATER. EFFECTS RADIATION DAMAGE PROC INTERN CONF., BERKELEY CASTLE. ENGL. 1961. 379 (1962) CA 58. 1208 (1963)	201973 201973 201973 201973 201973 201973
ANTILL, J PEAKALL, K KINETICS OF THE OXIDATION OF URANIUM BY CARBON DIOXIDE J LESS COMMON METALS 1, 227 (1959) CA 55, 6111 (1961)	200883 200883 200883 200883 200883
APPEN. A KAIALOVA. S SURFACE TENSION OF ALKALI-SILICATE MELTS DOKLADY AKAD NAUK SSSR 145. NO 3. 592 (1962)	300589 300589 300589
ARADI•A VITANYI• P (RES INST METAL IND BUDAPEST HUNGARY) MANUFACTURE ØF VANADIUM METAL BY HALØGEN METALLURGY FEMIP KUT INT KØZLEMEN 5• 283 (1961) CA 57• 12210 (1962)	201862 201862 201862 201862 201862
ARAI. T (CARNEGIE INST ØF TECH PITTSBURGH PA) AUTØMATIC CØMPUTATIØN ØF ELECTRØNIC ENERGIES ØF DIATØMIC MØLECULES US DEPT CØMM ØTS PB REPT 148533 (1960) (A 57. 4048 (1962)	300842 300842 300842 300842 300842
ARAJS, S CØLVIN, R (US STEEL CØRP MØNRØEVILLE PA) ANALYSIS ØF THE SPECIFIC HEATS ØF CERIUM, NEØDYMIUM,	300751 300751 300751

AND SAMARIUM AT HIGH TEMPERATURES J LESS CØMMØN METALS 4. 159 (1962) CA 57. 4111 (1962) NSA 16. 16745 (1962)	300751 300751 300751 300751
ARDELL. A (STANFØRD UNIV STANFØRD CALIF) CALCULATIØN ØF MELTING TEMPERATURES FØR LØW-TEMPERATURE PHASES ØF PØLYMØRPHIC METALS ACTA MET 11. 591 (1963) CA 59. 1334 (1963)	301174 301174 301174 301174 301174
ARGENT, B MILNE, G (UNIV SHEFFIELD SHEFFIELD ENGLAND) THE PHYSICAL PROPERTIES OF NIOBIUM, TANTALUM, MOLYBDENUM, AND TUNGSTEN J LESS COMMON METALS 2, 154 (1960) CA 55, 14236 (1961)	201039 201039 201039 201039 201039 201039
ARGENT B PHELPS B THE ØXIDATIØN ØF NIØBIUM J INST NETALS 88 PROFICE (1960) NS 14 PROFICE (1960)	600611 600611 600611
ARAMAKI S RØY R (PENN STATE UNIV UNIVERSITY PARK PA) REVISED PHASE DIAGRAM FØR THE SYSTEM AL203-SI02 J AM CERAM SØC 45 * 229 (1962) CA 57 * 4340 (1962)	201695 201695 201695 201695 201695
ARIYA, S MOROZOVA, M EQUILIBRIA BETWEEN VANADIUM ØXIDE AND CO2/CO MIXTURES ZHUR ØBSHCH KHIM 32, NØ 7, 2081 (1962)	300600 300600 300600 300600
ARIYA. S MOROZOVA. M REIKHARDT. A (LENINGRAD STATE U LENINGRAD RUSSIA) THE SYSTEM PLATINUM ØXYGEN II ENTHALPY ØF PT304 ZHUR ØBSCHEI KHIM 23. 1455 (1953) CA 48. 4303 (1954)	600970 600970 600970 600970 600970
ARIYA, S. PØPØV, Y. LATTICE STRUCTURE ØF THE LØWER ØXIDES ØF TITANIUM AND VANADIUM ZHUR ØBSHCHEI KHIM 32, NØ 7, 2077 (1962)	300599 300599 300599 300599
ARIYA, S SØBØLEVA, M (ZHDANØV LENINGRAD STATE U LENINGRAD RUSSIA) THE LATTICE ENERGIES ØF ØXIDES FIZ TVERDØGØ TELA 3, 3157 (1961) SØVIFT PHYSICS SØLID STATE 3, NØ 10, 2293 (1962) PA 65, 8147 (1962)	300787 300787 300787 300787 300787 300787
ARKHAROV. V GFRASIMOV. A NTCHKOVA. T THE ØXIDATION OF NB AT HIGH TEMPERATURES FIZ METAL I METALLOVED 12. NO 5. 761 (196)) BHT NO 2. 47 (1962) CA 56. 8427 (1962)	300550 300550 300550 300550 300550
ARNØLD. H (MAX PLANCK INST WURZBURG GERMANY) CRYSTAL STRUCTURE ØF QUARTZ HIGH TEMPERATURE FØRM Z KRIST 117, 467 (1962)	301175 301175 301175 301175

BHT NØ 2. 11 (1962)	301175
ARØNSØN, S (WESTINGHØUSE ELEC CØRP PITTSBURGH PA) ØXIDATIØN AND EQUILIBRIUM IN-NØNSTØICHIØMETRIC ZIRCØNIUM DIØXIDE PØWDER J ELECTRØCHEM SØC 108, 312 (1961) CA 55, 13011 (1961)	200998 200998 200998 200998 200998 200998
ARONSON. S (WESTINGHOUSE ELECT CORP PITTSBURGH PA) A CALCULATION OF THE HEAT OF SOLUTION OF INTERSTITIAL OXYGEN IN UOZ US AT ENERGY COMM WAPD-BT-23.31 (1961) CA 56. 5461 (1962)	201318 201318 201318 201318 201318 201318
ARONSON. S BELLE. J NONSTOICHIOMETRY IN URANIUM DIOXIDE J CHEM PHYS 29. 151 (1958) CA 52. 17934 (1958)	601077 601077 601077 601077
ARØNSØN. S CLAYTØN. J THERMØDYNAMIC PRØPERTIES ØF NØNSTØICHIØMETRIC URANIA-ZIRCØNIA SØLID SØLUTIØNS J CHEM PHYS 35. 1055 (1961) CT 20. 73 (1961) CA 56. 5464 (1962)	300258 300258 300258 300258 300258 300258
ARONSON: 5 ROOF: R BELLE: J (WESTINGHOUSE FLEC CORP PITTSBURG PA) KINETIC STUDY OF THE OXIDATION OF URANIUM DIOXIDE J CHEM PHYS 27: 137 (1957) CA 51: 17365 (1957)	601068 601068 601068 601068 601068
ARONSSON. B BORIDES AND SILICIDES OF THE TRANSITION METALS ARKIV FOR KEMI 16. 379 (1961) BT 10. 489 (1961) CA 56. 8276 (1962)	700585 700585 700585 700585 700585
ARØNSSØN. B (UNIV UPPSALA UPPSALA SWEDEN) THE CØMPØSITIØNS AND CRYSTAL STRUCTURES ØF MNB2. MN3SI. MN5SI3. AND FESI2 ACTA CHEM SCAND 14. 1414 (1960) CA 56. 8105 (1962)	201380 201380 201380 201380 201380 201380
ARØNSSØN» B. ASELIUS» J. STENBERG» E BØRIDES AND SILICIDES ØF THE PLATINIUM METALS NATURE 183» 1318 (1959) CA.54» 21920 (1960)	601166 601166 601166 601166
ARØNSSØN: B BAECKMAN: M RUNDQVIST: S (UNIV UPPSALA UPPSALA SWEDEN) CRYSTAL STRUCTURE ØF RE3B US DEPT CØM ØFFICE TECH SERV PB REPT 145:859 (1960) CA 56: 12396 (1962)	201482 201482 201482 201482 201482
ARØNSSØN: B BAFCKMAN: M RUNDOVIST: S (UNIV UPPSALA UPPSALA SWEDEN) THE CRYSTAL STRUCTURE ØF RE3R ACTA CHEM SCAND 14: 1001 (1960) CA 56: 8106 (1962)	201382 201382 201382 201382 201382

```
ARØNSSØN, B ENGSTRØM, I
                                                                  201348
(UNIV OF UPPSALA
                              UPPSALA
                                                                  201348
                                                  SWEDENI
 X-RAY INVESTIGATION ON M-SI-B SYSTEM (M EQUALS MN. FE, CO).
                                                                  201348
 II. SOME FEATURES OF THE FE-SI-B AND MN-SI-B SYSTEMS
                                                                  201348
 ACTA CHEM SCAND 14, 1403 (1960)
                                                                  201348
 CA 56, 6733 (1962)
                                                                  201348
ARONSSON, B STENBERG, E ASELIUS, J
                                                                  201388
(UNIV UPPSALA
                              UPPSALA
                                                  SWEDEN)
                                                                  201388
 BORIDES OF RHENIUM AND THE PLATINUM METALS. THE CRYSTAL
                                                                  201388
 STRUCTUTES OF RE7B3, REB, RH7B3, RHB 1.1, IRB 1.1, AND PTB
                                                                  201388
 US DEPT COMM OFFICE TECH SERV PB REPT 145.866, (1959)
                                                                  201388
 CA 56, 8275 (1962)
                                                                  201388
ARONSSON. B STENBERG. E ASELIUS.J
                                                                  201349
(UNIV OF UPPSALA
                             UPPSALA
                                                  SWEDEN)
                                                                  201349
 BORIDES OF RHENIUM AND THE PLATINUM METALS. THE CRYSTAL
                                                                  201349
 STRUCTURE OF RE783, REB3, RH783, RHB 1.1, IRB 1.1, AND PTB
                                                                  201349
 ACTA CHEM SCAND 14, 733 (1960)
                                                                  201349
 CA 56, 6733 (1962)
                                                                  201349
ARONSSON, B RUNDQVIST, S
                                                                  300504
 BORIDES. SILICIDES. AND PHOSPHIDES OF THE PLATINUM METALS
                                                                  300504
 PLATINUM METALS REV 5. NO 3. 93 (1961)
                                                                  300504
 BHT NØ 3 . 28 (1961)
                                                                  300504
ARONSSON, B STENBERG, E ASELIUS, J
                                                                  300757
 BORIDES OF RUTHENIUM. OSMIUM. AND IRIDIUM
                                                                  300757
NATURE 195+ 377 (1962)
                                                                  300757
CT NØ 16, 102 (1962)
                                                                  300757
ARMSTRØNG, G KRIEGER, L
                                                                  201512
INATL BUR STANDARDS
                             WASHINGTØN
                                                  DC 1
                                                                  201512
HEATS OF FORMATION OF INORGANIC F COMPOUNDS. A SURVEY
                                                                  201512
PRØGR INTERN RES THERMØDYN TRANSPØRT PRØPERTIES 1962. 8
                                                                  201512
CA 56, 13628 (1962)
                                                                  201512
ARRØE . H
                                                                  600959
IU OF WISCONSIN
                             MADISON
                                                 WISCONSONI
                                                                  600959
 ISOTOPE SHIFT IN THE CE II SPECTRUM
                                                                  600959
 PHYS REV 93, 94 (1954)
                                                                  600959
CA 48, 6245 (1954)
                                                                  600959
ARTYM. R
                                                                  300773
(ELECTROCHEMICAL INST
                             MØSCØW
                                                  RUSSIA
                                                                  300773
CALCULATION OF THE THERMODYNAMIC FUNCTIONS OF
                                                                  300773
MULTIATOMIC MOLECULES
                                                                  300773
 ZHUR FIZ KHIM 36, NØ 6, 1129 (1962)
                                                                  300773
                                                                  200822
ARZHANYI P
 PHASE COMPOSITION OF THE DIFFUSION LAYER
                                                                  200822
                                                                  200822
 (OF BE IN MO)
 ISSLEDØVANIYA PØ ZHARØPRØCH SPLAVAM. AKAD
                                                                  200822
 NAUK SSSR, INST MET IM H H BAIKØVA 5, 119 (1959)
                                                                  200822
                                                                  200822
 CA 55, 2406 (1961)
                                                                  201975
ARZHANYI, P VOLKOVA, R PROKOSHKIN, D
 ØXIDATION KINETICS AND STRUCTURE OF CERTAIN ØXIDES OF
                                                                  201975
                                                                  201975
 REFRACTORY METALS
                                                                  201975
 ISSLED PØ ZHARØPRØCH SPLAVAM AKAD NAUK SSSR
                                                                  201975
 INST MET 9, 172 (1962)
 CA 58, 1208 (1963)
                                                                  201975
```

ARZHANYI P VOLKOVA, R PROKOSHKIN D ØXIDATION KINETICS OF NIØBIUM AND ITS COMPOUNDS ISSLEDOVANIYA PO ZHAROPROCH SPLAVAM, AKAD NAUK SSSR INST MET IM AA BAIKOVA 7, 214 (1961) CA 56. 8428 (1962)	201401 201401 201401 201401 201401
ASARO, F PERLMAN, I FIRST EXCITED STATES OF EVEN-EVEN NUCLIDES IN THE HEAVY ELEMENT REGION PHYS REV 87, 393 (1952) CA 46, 9443 (1952)	400572 400572 400572 400572 400572
ASBRINK, S FRIBERG, S MAGNELI, A ANDERSSØN, G CRYSTAL STRUCTURE ØF TRIVANADIUM PENTØXIDE ACAT CHEM SCAND 13, 603 (1959) CA 55, 3149 (1961)	200825 200825 200825 200825
ASBRINK S MAGNELI A CRYSTAL STRUCTURE STUDIES ØN TRITITANIUM PENTØXIDE • T13Ø5 ACTA CRYST 12 • 575 (1959) CF 44 • 102 (1961)	700522 700522 700522 700522
ASHBEF, K. EELFS, W. EPITAXIAL GRØWTH ØF RUTILE ØN ØXIDATIØN ØF TITANIUM CARBIDE ACTA CRYST 15, 1312 (1962) CA 59, 7031 (1963)	201994 201994 201994 201994
ASLANIAN, J CAILLAT, R (UNIV GRENØBLE GRENØBLE FRANCE) LØW-TEMP SPECIFIC HEATS ØF IRRADIATED BEØ CØNTAINING HE CØMPT REND 253, 1032 (1961) CA 56, 74 (1962)	201193 201193 201193 201193 201193 201193
ASTOIN, N. GRANIER, J. ABSØRPTIØN SPECTRUM ØF NITRØGEN IN THE EXTREME ULTRAVIØLET CØMPT REND 244, 1350 (1957) CA 51, 11063 (1957)	600569 600569 600569 600569
ASTRAKHANTSEV. S MICRØPØRØSITY ØF BERYLLIUM ØXIDE PØWDER NAUCHNYYE DØKLADY VYSSHEY SHKØLY. METALLURGIIA NØ 3. 226 (1958	900225 900225 1900225
ATHERTON: N BOVEY: L THE OPTICAL SPECTRA OF SOME RARE EARTH AND ACTINIDE ELEMENTS IN THE 1-2.5 MICRON REGION PART IV THE SPECTRUM OF URANIUM AERE-R-3226: (1960) NSA 14: 24649 (1960)	601327 601327 601327 601327 601327
ATÓDA, T HIGASHI, I TAKAHASHI, Y SASA, Y KŒBAYASHI, M (INST PHYS CHEM RES TOKYO JAPAN) URÁNIUM CARBIDES-X RAY ANALYSIS SCI PAPERS INST PHYS CHEM RES 55, 217 (961) CA 58 4147 (1963)	301399 301399 301399 301399 301399
ATOJI. M (ANL NEUTRON DIFFRACTION STUDIES OF HIGHER CARBIDES OF HEAVY METALS TID-14175 NSA 17. 3488 (1963)	701070 701070 701070 701070 701070

ATØJI: M (ARGØNNE NATL LAB ARGØNNE ILL) NEUTRØN DIFFRACTIØN STUDIES ØF HIGHER CARBIDES ØF HEAVY METALS J PHYS SØC JAPAN 17. SUPPL B-11. 395 (1962) CA 58. 1978 (1963)	201983 201983 201983 201983 201983
ATOJI: M (ARGONNE NATL LAB NEUTRON DIFFRACTION STUDIES OF CAC2: YC2 ETC J CHEM PHYS 35: 1950 (1961) NSA 16: 10563 (1962) CA 56: 11020 (1962)	700810 700810 700810 700810 700810 700810
ATØJI, M GSCHNEIDNER, K DAANE, A RUNDLE, R SPEDDING, F THE STRUCTURES ØF LANTHANUM DICARBIDE AND SESQUICARBIDE BY X-RAY AND NEUTRØN DIFFRACTIØN J AM CHEM SØC 80, 1804 (1958) CA 52, 13355 (1958)	700868 700868 700868 700868 700868
ATØJI: M MEDRUD: R STRUCTURES ØF CALCIUM DICARBIDE AND URANIUM DICARBIDE BY NEUTRØN DIFFRACTIØN J CHEM PHYS 31: 332 (1959) CA 54: 1968 (1960)	700867 700867 700867 700867 700867
ATØJI• M WILLIAMS• D NEUTRØN DIFFRACTIØN STUDIES ØF LA2C3 ET AL J CHEM PHYS 35• 1960 (1961) CA 56• 11016 (1962)	700861 700861 700861 700861
AUBERT: H (UNIV PARIS PARIS FRANCE) BETA TØ ALPHA TRANSFØRMATIØN IN URANIUM AND ITS ALLØYS CØMM ENERGIE AT (FRANCE) RAPPT NØ 2186; (1962) CA 58: 8729 (1963)	201995 201995 201995 201995 201995
AUKRUST, E FØERLAND, T HAGERMARK, K EQUILIBRIUM MEASUREMENTS AND INTERPRETATION ØF NØNSTØICHIØMETRY IN UØ2+X IAEA SYMPØSIUM ØN THE THERMØDYNAMICS ØF NUCLEAR MATERIALS, PRØC, VIENNA (1962) NSA 16, 25373 (1962)	601605 601605 601605 601605 601605
AUST, R DRICKAMER, H (UNIV ØF ILLINØIS URBANA ILLINØIS) CARBØN A NEW CRYSTALLINE PHASE SCIFNCE 140, 817 (1963) CA 59, 2239 (1963)	301176 301176 301176 301176 301176
AUSTERMAN, S (N AM AVIATION INC CANOGA PARK CALIF) ROLE OF SI, AL, AND OTHER IMPURTIES IN BE-O CRYSTAL GROWTH U S AT ENERGY COMM NAA-SR-8235, 19 (1963) CA 59, 8195 (1963)	201996 201996 201996 201996 201996 201996
AUSTERMAN, S (N AM AVIATION CANOGA PARK CALIF) GROWTH OF BERYLLIA SINGLE CRYSTALS J AM CERAM SOC 46, 6 (1963) CA 58, 10797 (1963)	301400 301400 301400 301400 301400
AUSTERMAN. S	701072

LATOMICS INTERNATIONAL . CANOGA PARK CAL) SUB-CRYSTAL FORMATION IN BEO CRYSTALS AT HIGH TEMPERATURE J NUCL MATER 6+ 332 (1962) NSA 17+ 3518 (1963)	701072 701072 701072 701072
AUSTERMAN+ S DECREPITATION OF BERYLLIUM OXIDE AT HIGH-TEMPERATURE US AT ENERGY COMM NAA-SR-6428 (1961) CA 56. 5463 (1962)	201320 201320 201320 201320
AUSTERMAN, S BELINCOURT, D KRUEGER, H POLAR PROPERTIES OF BEO SINGLE CRYSTALS JAPPL PHYS 34, 339 (1963) BHT NO 1, 12 (1963)	301127 301127 301127 301127
AUSTIN A (BATTELLE MEM INST COLUMBUS OHIO) CARBON POSITIONS IN URANIUM CARBIDES ACTA CRYST 12 + 159 (1959) CA 53 + 7711 (1959)	601120 601120 601120 601120 601120
AUSTIN. A GERDS. A (BATTELLE MEM INST COLUMBUS OHIO) THE URANIUM-NITROGEN-CARBON SYSTEM US ATOMIC ENERGY COMM BMI 1272, 18 (1958) CA 53. 1908 (1959)	601117 601117 601117 601117
AUSTIN • I (PENN STATE UNIV UNIVERSITY PARK PA) REDUCING W ØXIDE IND FNG CHEM 53 • 659 (1961) CA 56 • 8273 (1962)	201387 201387 201387 201387 201387
AVARDE R AVGUSTINIK A VILK Y KØNDRASHØV Y NIKØLSKI S ØMELCHENKØ Y ØRDANYAN S CØMPØSITIØN DIAGRAM ØF THE SYSTEM HF-HFC 7H PRIKL KHIM 35 , 1976 (1962) CA 58 + 1954 (1963)	300850 300850 300850 300850 300850
AVER-WFLSBACH, H NØWØTNY, H (UNIV VIENNA VIENNA AL'STRIA) THE QUESTION ØF SCC MØNATSH CHEM 92, 189 (1961) CA 55, 23145 (1961)	201175 201175 201175 201175 201175
AVGUSTINIK, A USE OF RARE AND RARE EARTH METALS AND THEIR COMPOUNDS IN SILICATE TECHNOLOGY ZH VSES KHIM OBSH MEND 8(2), 135 (1963) CA 59, 3615 (1963)	301401 301401 301401 301401 301401
BABB. S PARAMETERS IN THE SIMON EQUATION RELATING PRESSURE AND MELTING TEMPERATURE REV MOD PHYSICS 35. 400 (1963)	301177 301177 301177 301177
BABELIOWSKY, T MASS SPECTROMETRIC DETERMINATION OF THE HEAT OF VAPORIZATION OF SOME SOLID FLEMENTS PHYSICA 28, 1160 (1962)	300858 300858 300858 300858
BABELIØWSKY. T	301403

(LAB MASSASCHEIDING AMSTERDAM) MEASUREMENT OF CHEMICAL EQUILIBRIUM WITH THE MASS SPECTROMETER AND THE INFLUENCE OF RESIDUAL GASES PHYSICA 28. 1150 (1962) CA 58. 971 (1963)	301403 301403 301403 301403 301403
BABELIOWSKY, T (LAB MASSASCHEIDING AMSTERDAM HØLLAND) HEAT ØF SUBLIMATION ØF CAØ J CHEM PHYS 38, 2035 (1963) CA 59, 4598C (1963)	301178 301178 301178 301178 301178
BABELIOWSKY. T (FOM LAB VOOR MASSASCHEIDING AMSTERDAM HOLLAND) INFLUENCE OF RESIDUAL GASES ON THE MEASUREMENT OF CHEMICAL EQUILIBRIA AT HIGH TEMPERATURES WITH THE KNUDSEN METHOD J CHEM PHYS 38. 2036 (1963) BHT NO 2. P2. (1963)	301180 301180 301180 301180 301180 301180
BABELIOWSKY, T BOERBOOM, A (F O M LAB MASSASCHEIDING AMSTERDAM HOLLAND) MASS-SPECTROMETRIC.STUDY OF CAO AND TA ADVAN MASS SPECTROMETRY PROC CONF 2ND 0XFORD 1961 2,135 (1963) CA 59, 2229A (1963)	301179 301179 301179 301179 301179
BABELIOWSKY, T BØERBØØM, A KRISTEMAKER, J (LAB MASSASCHEIDING AMSTERDAM) MASS SPECTRØMETRIC DETERMINATION OF THE HEAT OF VAPORIZATION OF CAO PHYSICA 28, 1155 (1962) BHT NØ 7, 8 (1963)	301128 301128 301128 301128 301128 301128
BABITZKE, H ASAÎ, G KATØ, H (US BUR ØF MINES ALBANY ØREG) NIØBIUM-HAFNIUM BINARY ALLØYS FØR ELEVATED TEMPERATURE SERVICE U S BUR ØF MINES REPT INVEST NØ 6101, 17 (1962) CA 58, 2229 (1963)	201988 201988 201988 201988 201988
BACHMANN» H THE CRYSTAL STRUCTURE ØF VANADIUM PENTØXIDE FØRTSCHR MINERAL 38° 194 (1960) CA 55° 1133 (1961)	200795 200795 200795 200795
BACHMANN H (NATL RESEARCH COUNCIL OTTAWA CANADA) THE CRYSTAL STRUCTURE OF VANADIUM PENTOXIDE Z KRIST 115 , 110 (1961) CA 55 , 21742 (1961)	201154 201154 201154 201154 201154
BADAEVA, T KUZNETSØVA, R FØRMATIØN ØF THE ALLØYS THBE13-UBE13 TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM) 1961, 423 (1961) CA 57, 10884 (1962)	201833 201833 201833 201833 201833
BADAEVA: T PHASE DIAGRAMS ØF THØRIUM ALLØYS TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM) 1961: 339 (1961) CA 57: 13502 (1962)	201890 201890 201890 201890 201890
BADAEVA, T KUZNETSØVA, R PHASE DIAGRAM ØF THE THØRIUM-BERYLLIUM SYSTEM	201891 201891

TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM) 1961+ 358 (1961) CA 57• 13502 (1962)	201891 201891 201891
BADAEVA, T ALEKSEENKO, G PHASE DIAGRAM OF THE THORIUM-ZIRCONIUM SYSTEM TR INST MET IM A A BAIKOVA (STROENIE SPLAVOV NEKOTORYKH SISTEM S URANOM I TORIEM) 1961, 369 (4961) CA 57, 13502 (1962)	201892 201892 201892 201892 201892
BADAEVA, T ALEKSEENKØ, G STRUCTURE ØF ALLØYS ØF THE THØRIUM-ZIRCØNIUM-URANIUM SYSTEM TRI INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM) 1961, 395 (1961) CA 57, 13503 (1962)	201893 201893 201893 201893 201893
BADAEVA, T KUZNETSØVA, R STRUCTURE ØF ALLØYS ØF THE THØRIUM-CERIUM SYSTEM TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM) 1961, 381 (1961) CA 57, 13504 (1962)	201897 201897 201897 201897 201897
BADAEVA: T KUZNETSØVA: R PHASE DIAGRAM ØF THE URANIUM-MØLYBDENUM-CHRØMIUM SYSTEM TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKÐTØRYKH SISTEM S URANØM I TØRIEM) 1961: 325 (1961) CA 57: 13504 (1962)	201899 201899 201899 201899 201899
BADER R (UNIV ØF ØTTAWA OTTAWA CANADA) THE ELECTRØNIC SPECTRA ØF MØCL5 AND NBCL5 CAN J CHEM 39 • 2306 (1961) CA 56 • 2089 (1962)	201260 201260 201260 201260 201260
BADIALI, M KIRSHENBAUM, N BAKISH, R (ALLØYD ELECTRØNICS CØRP CAMBRIDGE MASS) PREPARATIØN ØF ULTRAPURE MØLYBDENUM CA 58, 7670 (1963)	301404 301404 301404 301404
BADYLKES, I CRITERIONAL EQUATION FOR CALCULATING LATENT HEATS DE PHASE TRANSITIONS AND VAPOR PRESSURE KHOLODIL NAYA TEKH 38, 32 (1961)	700593 700593 700593 700593
BAENZIGER, N EICK, H SCHULDT, H EYRING, L (UNIVERSITY OF 10WA 10WA CITY 10WA) TERBIUM ØXIDES III X-RAY DIFFRACTION STUDIES OF SEVERAL STABLE PHASES JACS 83, 2219 (1961) CA 55, 21742 (1961)	300184 300184 300184 300184 300184 300184
BAER. P MIESCHER. E NEW BAND SYSTEM OF THE NO MOLECULE HELV PHYS ACTA 24, 331 (1951) CA 46. 2396 (1952)	600728 600728 600728 600728
BAER, P MIESCHER, E BAND SPECTRA IN THE SCHUMANN REGION OF NO AND N2+ WITH ENRICHED N15 NATURE 169, 581 (1952) CA 46, 6932 (1952)	600729 600729 600729 600729 600729
BAER P MIESCHER E	600730

NØ: NØ: AND N2: EMISSIØN SPECTRA IN THE SCHUMANN REGIØN HELV PHYS ACTA 26: 91 (1953) CA 47: 9145 (1953)	600730 600730 600730
BAERNIGHAUSEN, H BRAUER, G (UNIV FREIBURG BREISGAU GERMANY) A NEW EURØPIUM ØXIDE EU304 AND THE ISØTØPE CØMPØUND EUZSRØ4 ACTA CRYST 15, 1059 (1962) NSA 17, 1428 (1963)	701088 701088 701088 701088 701088
BAEV. A NØVIKØV. G THERMØDYNAMIC INVESTIGATIØNS ØF BINARY SYSTEMS ØF CERTAIN CHLØRIDES ØF ALKALI AND RARE EARTH ELEMENTS ZHUR NEØRG KHIM 6. 2610 (1961) CA 56. 9503 (1962)	201410 201410 201410 201410 201410
BAGLEY, K ØLIVER, D THE SYSTEM URANIUM-ØXYGEN-CRITICAL REVIEW ØF THE LITERATURE UK AT ENERGY AUTHØRITY IND GRØUP HDG R+DB(C) TN-41,17 (1959) CA 53 ,16672 (1959)	601141 601141 601141 601141
BAIBUZ. V CALCULATION OF EQUILIBRIUM GAS COMPOSITIONS FOR HIGH TEMPERATURES ZHUR FIZ KHIM 36. 1401 (1962)	300601 300601 300601 300601
BAIBUZ, V MEDVEDEV, V INFLUENCE ØF PRESSURE ØN THERMØDYNAMIC FUNCTIØNS ØF REAL (NØNIDEAL) GASES TRUDY INST GØRYUCH ISKØPAEM AKAD NAUK SSSR 12, 190 (1961) CA 56, 5459 (1962)	300644 300644 300644 300644
BAILEY, D SMITH, J (10WA STATE UNIV AMES 10WA) A NOTE ON THE STRUCTURE OF ZR2CO ACTA CRYST 14, 1084 (1961) CA 56, 15012 (1962)	201546 201546 201546 201546 201546
BAKAKIN• V BELØV• N CRYSTALLØCHEMISTRY ØF BERYLLIUM GEØKHIMIYA 1962• 420 CA 57• 5390 (1962)	201714 201714 201714 201714
BAKER, C KELLY, A ENERGY TO FORM AND TO MOVE VACANT LATTICE SITES IN GRAPHITE NATURE 193, NO 4812, 235 (1962) BHT NO 2, 14 (1962)	300524 300524 300524 300524 300524
BAKER, E BUTLER, J (IMPERIAL COL SCI TECH LONDON ENGLAND) A PHASE DIAGRAM FOR THE CALCIUM OXIDE-CARBON DIOXIDE SYSTEM IN THE EUTECTIC REGION NATURE 195, 173 (1962) CA 57, 9272 (1962)	201794 201794 201794 201794 201794 201794
BAKER• T (AT ENERGY AUTHORITY HARWELL ENGLAND) INTERATOMIC DISTANCES IN THE INTERMETALLIC COMPOUNDS MGBE13 AND CABE13 ACTA CRYST 15• 175 (1962) CA 56• 13640 (1962)	201513 201513 201513 201513 201513 201513

BAKER T BALDØCK P HIGH TEMPERATURE PHASE TRANSFØRMATIØN IN BERYLLIA NATURE 193 NØ 4821 + 1172 (1962) BHT NØ 2 + 39 (1962)	300541 300541 300541 300541
BAKER+ W (UNIV OF TEXAS LOWER OXIDATION STATES OF ZIRCONIUM UNIV MICROFILMS (ANN ARBOR MICH) LC CARD NO MIC 60-6646 DISSERTATION ABSTR 21+ 2465 (1961) CA 55+ 16239 (1961)	201057 201057 201057 201057 201057 201057
BAKULINA, I I0N0V, N (PHYS-TECH INST ACAD SCI LENINGRAD USSR) DETERMINATION OF THE I0NIZATION POTENTIAL OF URANIUM ATOMS BY THE METHOD OF SURFACE I0NIZATION ZHUR EKSPTL I TEORET FIZ 36, 1001 (1959) CA 53, 14714 (1959)	601135 601135 601135 601135 601135
BALE+ E STRUCTURE ØF RHØDIUM PLATINUM METALS REV 2+ 61 (1958) CA 52+ 14473 (1958)	601083 601083 601083 601083
ZHUR EKSPTL I TEORET FIZ 36, 1001 (1959) CA 53, 14714 (1959) BALE, E STRUCTURE OF RHODIUM PLATINUM METALS REV 2, 61 (1958) CA 52, 14473 (1958) BAUGHAN, E THE REPULSION ENERGIES IN IONIC COMPOUNDS II. LATTICE ENERGIES OF SOME METALLIC NITRIDES TRANS FAR SOC 55, PT 12 2025 (1959) CA 54, 16166 (1960)	300866 300866 300866 300866 300866
CA 54. 16166 (1960) BANISTER. J LEGVØLD. S SPEDDING. F STRUCTURE ØF THE RARE EARTH METALS AT LØW TEMP US AT ENERGY CØMM ISC-342 (1953) CA 50. 3032 (1956) NSA 7. 5321 (1953)	600674 600674 600674 600674 600674
BANISTER, J LEGVØLD, S SPEDDING, F STRUCTURE ØF GADØLINIUM, DYSPRØSIUM AND ERBIUM AT LØW TEMPERATURES PHYS REV 94, 1140 (1954)	600953 600953 600953 600953
BARANØVSKY, V MICRØMETHØD ØF MEASURING THE HEAT ØF EVAPØRATIØN UKRAINSKII CHEMICAL JØURNAL 28, NØ 3 326 (1962)	300366 300366 300366
BARBER• M LINNETT• J TAYLØR• N (UNIV ØXFØRD ØXFØRD ENGLAND) HALIDES ØF THE TRANSITIØN ELEMENTS ØF THE FIRST LØNG PERIØD J CHEM SØC 1961• 3323 (1961) (A 56• 5460 (1962)	300702 300702 300702 300702 300702
BARBER. S. MARTIN. B. A HEAT CAPACITY FUNCTION WITH VELOCITY DISPERSION FOR ISOTROPIC SOLIDS PHYS AND CHEM SOLIDS 9. 198 (1959) CA 55. 9025 (1961)	600650 600650 600650 600650
BARD, R BØWERSØX, D (UNIV CAL BERKELEY CALIF) THE PREPARATION OF URANIUM DIØXIDE CRYSTALS US ATOMIC ENERGY COMM LA-2076 (1957) CA 51, 12725 (1957)	601060 601060 601060 601060 601060

BARE D CARLSON O (10WA STATE UNIV AMES 10WA) PHASE EQUILIBRIUMS AND PROPERTIES OF YTTRIUM-TITANIUM ALLOYS TRANS AM SOC METALS 53 1 (1961) CA 55 20853 (1961)	201145 201145 201145 201145 201145 201145
BARINSKII, R NADZHAKØV. ESTIMATIØN ØF CHARGE AND TYPE ØF CHEMICAL BØND ØF ØSMIUM IN CØMPØUNDS BY L111 ABSØRPTIØN SPECTRA CØMPT REND ACAD BULGARE SCI 13, 31 (1960) CA 55, 7030 (1961)	200910 200910 200910 200910 200910
BARNER, J Ø (UNIV ØF CALIFØRNIA BERKELEY CALIF) DESIGN ØF A DIFFERENTIAL CALØRIMETER SUITABLE FØR MEASUREMENT ØF HIGH-TEMPERATURE HEATS ØF SØLID-STATE REACTIØNS BØAS, AUSTRALIAN J SCI 16, 122 (1954) CA 59, 4595A (1963)	301181 301181 301181 301181 301181
BARNES, E MUNRO, W THACKRAY, R WILLIAMS, J MURRAY, P (ATOMIC ENERGY RES ESTAB HARWELL ENGLAND) CERAMICS-PREPARATION FABRICATION AND PROPERTIES OF URANIUM CARBIDE AND URANIUM-URANIUM CARBIDE CERMETS CA 51, 3303 (1957)	601035 601035 601035 601035 601035
BARØN. J HIGH VACUUM HIGH TEMPERATURE X-RAY CAMERA CEA-2076 (1961) NSA 16. 14904 (1962)	601433 601433 601433 601433
BARON, V IVANOVA, K SAVITSKII, E THE PHASE DIAGRAM OF THE NIOBIUM-MOLYBDENUM-VANA- DIUM, SYSTEM AND CERTAIN PROPERTIES OF ITS ALLOYS IZVEST AKAD NAUK SSSR OTDEL TEKH NAUK, MET I TOPLIVO 1960, NO 4, 143 (1960) CA 55, 7247 (1961)	200918 200918 200918 200918 200918 200918
BARRIAULT, R DREIKØRN, R FEBER, R GRIFFEL, M HANST, P LEIGH, C PANISH, M SCHICK, H WARD, C THERMØDYNAMICS ØF CERTAIN REFRACTØRY CØMPØUNDS FIRST QUARTERLY PRØGRESS REPØRT SEPT 15, 1962 AVCØ RAD-SR-62-186 (1962), 151 p. AD 287412	300865 300865 300865 300865 300865
BARROW. R TRIPLET BANDS OF CARBON MONOXIDE NATURE 189. 480 (1961) CA 55. 13045 (1961)	600777 600777 600777 600777
BARROW. R GRATZER. W MALHERBE. J INTENSITIES OF BANDS IN THE SYSTEM OF CARBON MONOXIDE PROC PHYS SOC(LONDON) 69. 574 (1956)	600704 600704 600704
BARROW, R MIESCHER, E FINE STRUCTURE ANALYSIS OF NITRIC OXIDE ABSORPTION BANDS IN THE SCHUMANN REGION PROC PHYS SOC (LONDON) 70A, 219 (1957) CA 51, 17440 (1957)	600733 600733 600733 600733
BARROW, R ROWLINSON, H THE ABSORPTION SPECTRA OF THE GASEOUS MONOXIDES OF SILICON, GERMANIUM AND TIN IN THE SCHUMAN REGION PROC ROY SOC 224, 374 (1954)	600896 600896 600896 600896

CA 49, 54 (1955)	600896
BARSON, F (AMES LAB AMES THERMAL EXPANSION OF RARE EARTH METALS ISC-831 (1956) NSA 12, 8348 (1958)	601499 601499 601499 601499
BARSON• F (10WA STATE COLL AMES 10WA) THERMAL EXPANSION OF RARE EARTH METALS PHYS REV 105• 418 (1957) NSA 11• 4750 (1957)	601318 601318 601318 601318
BARSON, F LEGVOLD, S SPEDDING, F (10WA STATE COLL AMES 10WA) A LOW-TEMPERATURE DILATOMETRIC STUDY OF SOME RARE EARTH METALS US AT ENERGY COMM ISC-424, 64 (1953) CA 50, 5387 (1956)	601006 601006 601006 601006 601006
BARSON, F LEGVOLD, S SPEDDING, F (10WA STATE COLLEGE AMES 10WA) THERMAL-EXPANSION OF RARE EARTH METALS PHYS REV 105, 418 (1957) CA 51, 8603 (1957)	601052 601052 601052 601052 601052
BARSON. F LEGVOLD. S SPEDDING. F THERMAL EXPANSION OF RARE EARTH METALS ISC-831 USAEC (1956) CA 52. 14311 (1958)	700902 700902 700902 700902
BARTA, C PETRU, F HAJEK, B PREPARATION OF SINGLE CRYSTALS OF SCANDIUM OXIDE NATURWISSENSCHAFTEN 45, 36 (1958) CA 52, 9702 (1958)	700725 700725 700725 700725
BARTA, J BRIGGS, G WHITE, J (UNIV SHEFFIELD SHEFFIELD ENGLAND) PHASE DIAGRAMS OF URANIUM MONOCARBIDE-TRANSITION MC AL SYSTEMS J NUCL MATERIALS 4, 322 (1961) CA 57, 121 (1962)	201561 201561 201561 201561 201561
BARTH, C KAPLAN, J THE ULTRAVIØLET SPECTRUM ØF THE ØXYGEN AFTERGLØW AND THE NIGHT AIRGLØW J MØL SPECTRØSCØPY 3, 583 (1959)	600541 600541 600541 600541
BARTLETT. E THERMAL PRØTECTIØN ØF RØCKET-MØTØR STRUCTURE AERØSPACE ENG 22. 86 (1963) CA 58. 8747 (1963)	201997 201997 201997 201997
BARTLETT, E SCHMIDT, F (BATTELLE MEM INST COLUMBUS OHIO) REVIFW OF RECENT DEVELOPMENTS IN TECHNOLOGY OF COLUMBIUM AND TANTALUM DMIC-115 (1961) NSA 15, 25215 (1961)	701052 701052 701052 701052 701052 701052
BARTLETT, N LØHMANN, D (UNIV BRIT CØLUMBIA VANCØUVER CANADA) Twø new fluørides øf platinum	201810 201810 201810

PRØC CHEM SØC 1960, 14 (1960)	201810
CA 57, 9452 (1962)	201810
BARTLETT R W WADSWORTH ME CUTLER I B (UNIV OF UTAH) OXIDATION KINETICS OF ZIRCONIUM CARBIDE TRANS AIME 227, 467 (1963) BHT NO 2 (1963)	301183 301183 301183 301183 301183
BARTON, J PURDY, G TAGGART, R PARR, J	300210
STRUCTURE AND PROPERTIES OF TITANIUM-RICH TITANIUM-NICKEL	300210
ALLOYS	300210
TRANS AIME 218, 844 (1960)	300210
BATTLES, J ST PIERRE, G SPEISER, R (ØHIØ STATE RES FØUND CØLUMBUS ØHIØ) RESEARCH ØN THE ØXIDATIØN BEHAVIØR ØF TUNGSTEN PRØG REPT 11, REPT 831-11 (1961) AD 252602 DIV 17,4 CØN AF 33(616) 5721	300310 300310 300310 300310 300310 300310
BASCHE, M SHETKY, L (ALLØYD CØRP CAMBRIDGE MASS) TECHNIQUES FØR THE PRØDUCTIØN ØF ULTRA-PURE BERYLLIUM US DEPT CØMM ØFFICE TFCH SERV PB REPT 161877 (1960) CA 55, 19668 (1961)	201132 201132 201132 201132 201132
BASKIN, M TRETYAKOV, V CHAPOROVA, I DIFFUSION OF TUNGSTEN IN TUNGSTEN, TANTALUM, AND TITANIUM MONOCARBIDES AND IN THE TIC-WC AND TIC-WC-TAC SOLID SOLUTIONS FIZ METAL I METALLOVED 14, 422 (1962) CA 57, 16274 (1962)	
BASKIN. M TRETYAKØV. V CHAPØRØVA. I	300856
DIFFUSIØN ØF NB IN TIC AND IN THE EQUI-MØLAR TIC-NBC	300856
SØLID SØLUTIØN	300856
FIZ METAL I METALLØVED 12. (6) 860 (1961)	300856
BATES. L BARNARD. R (UNIV NØTTINGHAM NØTTINGHAM ENGLAND) THE FLECTRICAL AND MAGNETIC PRØPERTIES ØF THE URANIUM NIØBIUM SYSTEM PRØC PHYS SØC (LØNDØN) 78, 361 (1961) CA 56, 100 (1962)	201202 201202 201202 201202 201202 201202
BATSANOVA, L GRIGOREVA, G THE OPTICAL PROPERTIES OF FLOURIDES OF THE RARE EARTH METALS OF THE CERIUM GROUP 1ZV SIBIRSK OTD AKAD NAUK SSSR 1962, NO 2, 115 (1962) CA 57, 6739 (1962)	201752 201752 201752 201752 201752
BATTLES, J EBIHARA, W	300853
(ØHIØ STATE UNIV COLUMBUS ØHIØ)	300853
RESEARCH ØN THE ØXIDATIØN BEHAVIØR ØF TUNGSTEN	300853
AD 278295	300853
BAUER, J FIALA, J HRICHØVA, R	201998
NATURAL ALPHA SILICØN CARBIDE	201998
AM MINERALØGIST 48, 620 (1963)	201998
BAUGHAN. E	700809
THE HEATS OF VAPORIZATION OF THE ELEMENTS	700809
TRANS FARADAY SOC 50. 322 (1954)	700809

BAUGHAN. E REPULSION ENERGIES IN IONIC COMPOUNDS - II LATTICE ENERGIES OF SOME METALLIC NITRIDES TRANS FARADAY SOC 55. 2025 (1959) CA 54. 16166 (1960)	700876 700876 700876 700676 700876
BAUMRUCKER, J. CHISWIK, H. METALLURGY DIVISION QUARTERLY REPORT OCT-DEC, 1953 USAEC REPORT ANL-5234	601651 601651
BAUN• W (WRIGHT-PATTERSON A F B DAYTON OHIO) TRANSFORMATION AT HIGH TEMPERATURES OF HAFNIA AND ZIRCONIA SCIENCE 140• 1330 (1963) CA 59• 7226 (1963)	201999 201999 201999 201999 201999
BAUN: W HØDGSØN: N DESJARDINS: M (WRIGHT AIR FØRCE BASE DAYTØN ØHIØ) MASS SPECTRØGRAPHIC STUDY ØF MØLECULAR CARBØN IØNS FØRMED IN A SPARK SØURCE J CHFM PHYS 38: 2787 (1963) CA 59: 8239 (1963)	202000 202000 202000 202000 202000 202000
BAUR, W UBER DIE VERFEINERUNG DER KRISTALLSTRUKTURBESTIMMUNG EINIGER VERTRETER DES RUTILTYPS TIØ2, SNØ2, GEØ2 UND MGF2 ACTA CRYST 9, 515 (1956)	300181 300181 300181 300181
BAUR. W (UNIV GØTTINGEN GERMANY) REFINEMENT ØF THE CRYSTAL-STRUCTURE DFTERMINATIØN ØF SØME CØM- PØUNDS ØF THE RUTILE TYPE. III. LATTICE THEØRY ØF THE RUTILE TYPE ACTA CRYST 14, 209 (1961) CA 55, 11019 (1961)	200955 200955 200955 200955 200955 200955 200955
BAUR, W	700554
ATØMIC DISTANCES AND BØNDING ANGLE IN BRØØKITE, TIØ2	700554
ACTA CRYST 14, 214 (1961)	700554
BAZARØV• 1	300389
THERMØDYNAMICS	300389
MØSCØW GØS IZD FIZ MAT LÎT 292 (1961)	300389
BAZARØV• I P	301185
THERMØDYNAMICS	301185
VØP FILØS 16 NØ 12 175-176 62	301185
RUSS ACC VØL 15• NØ 12• MARCH 1963	301185
BEAUDRY. B DAANE. A	300573
SC-TI SYSTEM AND THE ALLØTRØPY ØF SC	300573
TRANS AIME 224. 770 (1962)	300573
BEAUMONT, R CHIHARA, H MORRISON, J	200959
(NATL RESEARCH COUNCIL OTTAWA CANADA)	200959
ANOMALY IN THE HEAT CAPACITY OF CHROMIUM AT 38.5 DEGREES	200959
PHII MAG (8) 5, 188 (1960)	200959
CA 55, 11055 (1961)	200959
BEAVER. W ØRØURKE. R HURD. J	700933
(BRUSH BERYLLIUM CØ CLEVELAND ØHIØ)	700933
EFFECT ØF PURITY AND MANUFACTURING VARIABLES ØN ELEVATED	700933

TEMPERATURE PROPERTIES OF BERYLLIUM ASTM-272 (1960) NSA 15. 704 (1961)	700933 700933 700933
BEAVIS. L (SANDIA CORP ALBUQUERQUE N MEX) VAPOR PRESSURES OF RARE EARTHS SCTM-256A-60(14) (1960) NSA 15. 10931 (1961) CA 55. 7953 (1961)	701016 701016 701016 701016 701016 701016
BECART M THE CHANGE IN AL-0 BONDLENGTH FOR THE TRANSITION A-X2EE CALCULATED USING APPROXIMATE OVERLAP INTEGRALS COMPT REND ACAD SCI 254, NO 5 831 (1962) PA 65, 8122 (1962)	202001 202001 202001 202001 202001
BECHER: H (TECH HØCHSCHULE STUTTGART GERMANY) BERYLLIUM BØRIDE BEB12 WITH TETRAGØNAL BØRØN STRUCTURE Z ANØRG U ALLGEM CHEM 306: 266 (1960) CA 55: 19570 (1961)	201128 201128 201128 201128 201128
BECHER: H (TECH HØCHSCHULE STUTTGART GERMANY) PREPARATION AND STRUCTURE ØF AN ALUMINUM-BERYLLIUM BØRIDE Z ANORG ALLGEM CHEM 317: 346 (1962) CA 57: 15924 (1962)	201932 201932 201932 201932 201932
BECHER. H ØN THE MØDIFICATIØN ØF BØRØN Z FUER ANØRGAN UND ALLGEM CHEM CCCVI, 261 (1960) CØTS 46. 105 (1961)	300343 300343 300343 300343
BECHER. H SCHAEFER. A (TECH HOCHSCHULE STUTTGART GERMANY) PREPARATION AND STRUCTURE OF BERYLLIUM BORIDE. BE4B Z ANORG ALLGEM CHEM 318. 304 (1962) CA 58. 4142 (1963)	301405 301405 301405 301405 301405
BECHER, H SCHAFER, A ØN THE MØDIFICATIØNS ØF BØRØN. EXPERIMENTS ØN THE INCØRPØRATIØN ØF BERYLLIUM IN THE BØRØN LATTICE Z FUER ANØRGAN UND ALLGEM CHEM 306, 260 (1960)	400617 400617 400617 400617
BECK P (UNIV ILL URBANA ILL) ALLØYS ØF TRANSITIØN ELEMENTS U S DEPT CØM ØFFICE TECH SERV PB REPT 171,113 (1960) CA 57, 16272 (1963)	201948 201948 201948 201948 201948
BECK. W ELECTRODE POTENTIAL AND CORROSION BEHAVIOR OF SOME BORIDES OF MOLYBDENUM AND ZIRCONIUM PLAN PUL 9. 96 (1961) BHT NO 3. 5 (1961)	300977 300977 300977 300977 300977
BECKER, J BECKER, E BRANDES, R (BELL TELEPHONE LABS INC MURRAY HILL NEW JERSEY) REACTIONS OF OXYGEN WITH PURE TUNGSTEN AND TUNGSTEN CONTAIN— ING CARBON J APPL PHYS 32, 411 (1961) CA 55, 17421 (1961)	201091 201091 201091 201091 201091 201091

BECKMAN, G KIESSLING, R (UNIV UPPSALA UPPSALA SWEDEN) THERMAL EXPANSION COEFFICIENTS FOR URANIUM BORIDE AND BETA-URANIUM SILICIDF NATURE 178, 1341 (1956) CA 51, 7097 (1957)	601049 601049 601049 601049 601049
BEDARD• F GALLAGHER• J JØHNSØN• C MICRØWAVE MEASUREMENT ØF DO FØR CØ PHYS REV 92• 1440 (1953) CA 48• 4978 (1954)	600705 600705 600705 600705
BEDREAG. C ISØTØPE EFFECT IN THE URANIUM SPECTRUM STUDII CERCETARI STIINT 5. 87 (1954) CA 50. 11813 (1956)	601013 601013 601013 601013
BEDREAG. C THE ENERGY LEVEL OF THE ELEMENTS 90-100 STUDII CERCETARI STIINT 5. 87 (1954) CA 50. 11813 (1956)	601014 601014 601014 601014
BEECROFT R SWENSON C (AMES LAB AMES IOWA) ON THE EXISTENCE OF A CRITICAL POINT FOR THE PHASE TRANSITION IN CERIUM PHYS AND CHEM SOLIDS 15, 734 (1960) NS 15, 5406 (1961)	600669 600669 600669 600669 600669
BELBEOCH: B PIEKARSKI: C PERIO: P (CENTRE ETUDES NUC SACLAY FRANCE) STRUCTURE OF U409 BULL SOC FRANC MINERALET CRYST 83: 206 (1960) NSA 15: 13385 (1961)	601425 601425 601425 601425 601425
BELETSKII: M GALPERIN: E (ALL-UNION SCI-RES INST LENINGRAD RUSSIA) CRYSTAL STRUCTURE OF SOME PHASES OF ALLOYS OF MG WITH CE AND FIZ METAL I METALLOVED: AKAD NAUK: SSSR 11: 689 (1961) CA 55: 19706 (1961)	
BELIKØV, A X-RAY DETERMINATIØN ØF THE CØEFFICIENT ØF THERMAL EXPANSIØN SBØRNIK NAUCH-TEKH TRUDØV, NAUCH-ISSLEDØVATEL INST MET CHELYABINSK SØVNARKHØZA 1960, NØ 1, 139 (1960) CA 55, 16323 (1961)	201066 201066 201066 201066 201066
BELIKØV+ A SAVINSKAYA+ A CARBIDES ØF VANADIUM AND NIØBIUM IN STEEL IZV AN SSSR ØTN MET I TØP NØ 6+ 67 (1962)	300863 300863 300863
BELL, W TAGAMI, M MERTEN, V (GEN. DYNAMICS CORP SAN DIEGO CAL) THE RHODIUM-CHLORINE SYSTEM AT HIGH TE, 'ERATURE J PHYS CHEM 66, 490 (1962) CA 56, 12372 (1962)	201476 201476 201476 201476 201476
BELLAMY, B BAKER, T LIVEY, D (ATOMIC ENERGY RES ESTAB HARWELL ENGLAND) THE LATTICE PARAMETER AND DENSITY OF BERYLLIUM ØXIDE DETERMINED BY PRECISE X-RAY METHODS J NUCL MATER 6, 1 (1962)	201930 201930 201930 201930 201930

CA 57. 15921 (1962)	***
	201930
BELLE, J PROPERTIES OF URANIUM DIOXIDE PROC UN INTER CONF PEACEFUL USES AT ENERGY 2ND GENEVA 6, 569 (1958) CA 54, 4182 (1960) NSA 15, 26602 (1961)	601202 601202 601202 601202 601202
BËLLE• V (WESTINGHØUSE ELECT CØRP PITTSBURGH PA) RËSUME ØF UØ2 DATA WAPD-PWR-PMM-429 (1957) NSA 12• 1920 (1958)	601511 601511 601511 601511 601511
BELLØT• J DØSIER• P HENRY• J URANIUM-MØLYBDENUM ALLØYS METAUX 33• 343 (1958) CA 57• 3145 (1962)	201627 201627 201627 201627
BELØV. N THE CRYSTAL STRUCTURE ØF BADDELEYITE (MØNØCLINIC ZRØ2) SØVIET PHYS CRYST 5. 436 (1960) NS 15. 6436 (1961)	600676 600676 600676 600676
BELYAEV» S PRØBLEM ØF CALCULATING THE MØMENTS ØF INERTIA ØF NUCLEI ZHUR EKSPTL I TEØRET FIZ 40» 672 (1961)	700550 700550 700550
BELYKH, L NESMEYANOV, A MEASUREMENT OF PRESSURE OF BERYLLIUM OXIDE VAPOR IN EQUILIBRIUM WITH SOLID OXIDE DOKLADY AKAD NAUK SSSR 128, 979 (1959) NSA 15, 4012 (1961)	700918 M700918 700918 700918 700918
BELYKH+ A NESMEYANOV+ A DETERMINATION OF THE VAPOR PRESSURE OF OXIDES OF LITHIUM+ BORON+ SILICON+ AND LEAD FIZ-KHIM OSNOVY PROIZV STALI AKAD NAUK SSSR INST MET FIFTH KONF 1959+ 342 (1961) CA 58+ 5052 (1963)	301045 301045 301045 301045 301045 301045
BENDER+ D ØN THE ELECTRIC PRØP ØF THØRIUM 2 METALLKUNDE 40+ 257 (1949) NSÅ 4+ 3974 (1950)	601404 601404 601404 601404
BENESØVSKY, F RUDY, E STUDIES ØF THE URANIUM-THØRIUM-CARBØN SYSTEM MØNATSHEFT FUER CHEMIE 92, 1176 (1961) AEC-TR-5175	900203 900203 900203 900203
BENESØVSKY, F RUDY, E INFØRMATIØN ØN THE SYSTEMS URANIUM-ZIRCØNIUM (HAFNIUM, NIØBIUM, TANTALUM) CARBØN PLANSEEBERICHTE FUER PULVER METALLURGIE 9, 65 (1961) CØTS 48, 272 (1961)	100181 100181 100181 100181 100181
BENESØVSKY, F RUDY, E INVESTIGATIØNS ØN THE SYSTEM U-TH-C MØNATSH CHEM 92, 1176 (1961) BHT NØ 2, 39 (1962)	300542 300542 300542 300542

BENFSØVSKY, F RUDY, E CØNTRIBUTIØN ØN THE STRUCTURE ØF ZIRCØNIUM-CARBØN AND HAFNIUM-CARBØN SYSTEMS PLANSEEBER PULVERMET 8, 66 (1960) CA 55, 1381 (1961) NSA 15, 684 (1961)	700974 700974 700974 700974 700974 700974
BENØIT R PARAMAGNETIC STUDY ØF BINARY CØMPØUNDS J CHIM PHVS 52 + 119 (1955) CA 49 + 10688 (1955)	700820 700820 700820 700820
BENSON. S CHEMICAL KINETICS AND THERMODYNAMIC CONSISTENCY J CHEM EDUC 39. 321 (1962)	300365 300365 300365
BENESØVSKY» F RUDY» E INVESTIGATIØN ØF THE SYSTEMS U-ZR (HF» NB» TA) AERE» HARWELL» TR NØ 1483 (CØNS TRAN SUM SEPT 1961 P 219)	301406 301406 301406 301406
BENTLE • G (ATOMICS INTERN CANOGA PARK CAL) SOME ELASTIC PROPERTIES OF BEO AT ROOM TEMPERATURE J NUCL MATER 6 • (3) 336 (1962) BHT NO 1 • 13 (1963)	301130 301130 301130 301130 301130
BENZ, R WAGNER, C THERMØDYNAMICS OF THE SOLID SYSTEM CAO-SIOZ FROM ELECTROMOTIVE FORCE DATA J PHYS CHEM 65, 1308 (1961)	700640 700640 700640 700640
BEREZHNØ1, A ADVANCES IN BINARY SYSTEMS ØF SILICØN ZHUR VSESØYUZ KHIM ØBSHCHESTVA IM DI MENDELEEVA 6, 618 (1961) CA 56, 11245 (1962)	201469 201469 201469 201469
BFRFZHNØ1. A THERMØDYNAMIC PRØPERTIES ØF ZIRCØNIUM ØXIDES. ZIRCØNIUM. ALUMINUM AND MAGNESIUM TITANATES DØPØVIDI AKAD NAUK UKR RSR 1962. NØ 1. 65 CA 56. 15000 (1962)	201541 201541 201541 201541 201541
BEREZHNØI, A KØRDYUK, R THE SYSTEM LIME-MAGNESIA-ZIRCØNIA-SILICA AND ITS SIGNIFICANCE IN THE TECHNØLØGY ØF REFRACTØRIES ØGNEUPØRY 27, NØ 2, 85 (1962) CA 56, 15169 (1962)	201553 201553 201553 201553 201553
BEREZHNØIS. A GULKØ. N SUB-SØLIDUS STRUCTURE ØF THE SYSTEM CAØ-MGØ-AL2Ø3-T1Ø2-S1Ø2 SBØR NAUCH TRUD UNIIØ NØ 5 65. (1961) RUSS.ACC 1615. 3298 (1963)	202002 202002 202002 202002
BERG. J HIGH TEMPERATURE THERMODYNAMIC PROPERTIES OF SOME RARE EARTHS DISS ABST 22. 2599 (1962) CCP NO 5. 369 (1962)	300390 300390 300390 300390
BERG. J (10WA STATE UNIV HIGH-TEMPERATURE THERMØDYNAMIC PRØPERTIES ØF SØME ØF THE RARE EARTH ELEMENTS	201562 201562 201562 201562

UNIV MICROFILMS (ANN ARBOR MICH) ORDER NO 61-6177. CA 57. 141 (1962)	201562 201562
BERG. J (IOWA STATE UNIV AMES IOWA) HEAT CAPACITY OF LANTHANUM DOCTORAL THESIS	700760 700760 700760 700760
BERG: K (AB ATOMENERGI STOCKHOLM SWEDEN) THERMAL CONDUCTIVITY OF U02 A/CONF 15/P/141 NSA 13: 7044 (1959)	601544 601544 601544 601544
BERG. K FLINTA. J SELTRØP. L (AB ATØMENERGI STØCKHØLM SWEDEN) THERMAL CØNDUCTIVITY ØF UØ2 PRØC U N INTERN CØNF PEACEFUL USES AT ENERGY 2ND GENEVA 1958 7. 691 CA 56. 14952 (1962)	201533 201533 201533 201533 201533 201533
BERG.R SINANØGLU. Ø LIGAND-FIELD THEØRY ØF LINEAR GASEØUS MØLECULES INVØLVING THE FIRST TRANSITIØN SERIES ELEMENTS J CHEM PHYS 32. 1082 (1960) NSA 14. 13726 (1960)	300177 300177 300177 300177 300177
BERGER, I I SEVASTYANØV, N G. PUTILINA, L K THE ØXIDES ØF TUNGSTEN ZHURNAL NEØRGANICHESKØI KHIMII VØL 1- NØ 8, 1956 CØTS, APRIL, (1963)	301186 301186 301186 301186
BERGMAN. G MEDVEDEV. V INVESTIGATION OF THE THERMODYNAMIC PROPERTIES OF SILICON OXIDE VAPORS AND THEIR CONDENSATION BY A METHOD INVOLVING EXPLOSION IN A SPHERICAL BOMB SBORNIK TRUDOV GOSUDARST. INST. PRIKLAD. KHIM 1959. NO 42. 158 CA 55. 26632 (1961)	300674 300674 300674 300674 300674
BERGVALL, P HAGSTRØM, S (UNIV ØF UPPSALA UPPSALA SWEDEN) ATØMIC LEVEL ENERGIES IN RARE EARTH ELEMENTS	601341 601341 601341
ARKIV FYSIK 17• 61 (1960) NSA 14• 16100 (1960)	601341
	601341
NSA 14. 16100 (1960) BERINGER. R RAWSØN. E HENRY. A MICRØWAVE RESØNANCE IN NITRIC ØXIDE LAMBDA DØUBLING AND HYPERFINE STRUCTURE PHYS REV 94. 343 (1954)	601341 601341 600734 600734 600734
NSA 14. 16100 (1960) BERINGER. R RAWSØN. E HENRY. A MICRØWAVE RESØNANCE IN NITRIC ØXIDE LAMBDA DØUBLING AND HYPERFINE STRUCTURE PHYS REV 94. 343 (1954) CA 48. 7436 (1954) BERKØWITZ. J HEAT FØRMATIØN ØF THE CN RADICAL	601341 601341 600734 600734 600734 600734 301407 301407

TI AND NB	601655
PHYS REV 114, 969 (1959)	601655
BERMAN, A ZEMANSKY, M BØØRSE, H	700886
NØRMAL AND SUPERCØNDUCTING HEAT CAPACITIES ØF LANTHANUM	700886
PHYS REV 109, 70 (1958)	700886
CA 52, 9691 (1958)	700886
BERNSTEIN. B SMITH. J A CALCULATION OF THE ELASTIC CONSTANTS OF YTTRIUM AND THE RARE EARTH METALS IS 118. (1959) CA 56. 9848 (1962)	700807 700807 700807 700807 700807
BERTAUT, F BLUM, P HEXABORIDES AND ALKALINE SUBSTITUTIONS COMPT REND 234, 2621 (1952) CA 46, 8926 (1952)	700813 700813 700813 700813
BESSERER C (JØHNS HØPKINS UNIV SILVER SPRING MD) RAMJET TECHNØLØGY-MATERIALS FØR RAMJET ENGINES AND CØMPØNENTS IG-370-14 (1958) NSA 15 · 14727 (1961)	700929 700929 700929 700929 700929
BESSØNØV• A VLASØV• V	201942
REACTIØN ØF URANIUM WITH NITRØGEN	201942
FIZ METAL I META'!ØVED 14• 478 (1962)	201942
CA 57• 16264 (1962)	201942
BESSØNØV. A VLASØV. V	201954
KINETICS ØF URANIUM ØXIDATIØN WITH AIR, ØXYGEN. AND CARBØN	201954
DIØXIDE	201954
IZV VYSSHIKH UCHEBN ZAVEDENII. TSVETN MLT 5. NØ 4. 137 (1962)	201954
CA 58. 52 (1963)	201954
BESSØNØV» A VASLØV» V	201390
REACTIØN ØF METALLIC URANIUM WITH CARBØN DIØXIDE	201390
FIZ METAL I METALLØVED AKAD NAUK SSSR 12, 775 (1961)	201390
CA 56, 8404 (1962)	201390
BESSØNØV• A VÅSLØV• V	201468
PHASE TRANSFØRMATIØNS DURING ØXIDATIØN ØF METALLIC URANIUM	201468
FIZ METAL I METALLØVED AKAD NAUK SSSR 11• 957 (1961)	201468
CA 56• 11199 (1962)	201468
BESSØNØV. A F. VLASØV. V G	301188
KINETICS ØF URANIUM ØXIDATIØN WITH AIR ØXYGEN AND CARBØN	301188
DIØXIDE	301188
IZV VYSSHIKH UCHEBN ZAVEDENII ISVETN MET 5 137 (1962)	301188
CA 58. 52C (1963)	301188
BETHE: H THE PASSAGE OF ELECTRONS THROUGH THE EL CTRIC FIELD OF A LATTICE VOL LIV: 703 (1929) Z FUER PHYSIK *AEC UCRL TR 917 (L) COTS 63: 198 (1963)	301131 301131 301131 301131 301131 301131
BETHOUX. Ø THOMAS. P WEIL. L (UNIV GRENØBLE LØW-TEMPERATURE THERMAL CONDUCTIVITY OF UØ2	201534 201534 201534

CØMPT REND 253, 2043 (1961) CA 56, 14952 (1962)	201534 201534
BETTERIDGE W RHYS D (MØND NICKEL CØ LØNDØN ENGLAND) THE HIGH-TEMPERATURE ØXIDATIØN ØF THE PLATINUM METALS AND THEIR ALLØYS CA 59, 8440 (1963)	202003 202003 202003 202003 202003
BITTNER, H. GØRETZKI, H. MAGNETIC STUDY ØF THE CARBIDES ØF TITANIUM, ZIRCØNIUM, HAFNIUM, VANADIUM, NIØBIUM, AND TANTALUM MØNATSH CHEM 93, 1000 (1962)	202004 202004 202004 202004
BHIDE, V DAMLE, R (INST SCI BØMBAY INDIA) PHASE TRANSITIØN AND SPECIFIC HEAT ANØMALY IN MANGANESE DIØXIDE J SCI IND RES (INDIA) 20B, 405 (1961) CA 57, 1641 (1962)	201596 201596 201596 201596 201596 201596
BHIDE, V DANI, R (INST SCI BØMBAY INDIA) ELECTRICAL CØNDUCTIVITY IN THE ØXIDES ØF MANGANESE AND RELATED CØMPØUNDS PHYSICA 27, 821 (1961) CA 56, 5481 (1962)	201324 201324 201324 201324 201324 201324
BIBB. A BEARD. A DØUGLAS. D (GEN ELEC CØ SCHENECTADY NY) INVESTIGATION OF BINARY ZIRCONIUM ALLOYS US AT ENERGY COMM KAPL-2162. (1961) CA 56. 5743 (1962)	201344 201344 201344 201344 201344
BICKERDIKE, R HUGHES, G AN EXAMINATION OF PART OF THE TITANIUM-CARBON SYSTEM JOUR OF THE LESS-COMMON METALS 1, 42 (1959)	300156 300156 300156
BIDELMAN. W LINES OF THE RARE EARTH ELEMENTS IN THE SPECTRUM OF R ANDROMEDAE ASTROPHYSICS J 117. 377 (1953) CA 47. 7314 (1953)	100193 100193 100193 100193 100193
BIEGANSKI, Z STALINSKI, B HEAT CAPACITIES AND THERMØDYNAMIC FUNCTIONS OF VANADIUM AND VANADIUM HYDRIDE WITHIN THE RANGE 24 TO 340 DEGREES K HYDROGEN CONTRIBUTION TO THE HEAT CAPACITY OF TRANSITION METAL HYDRIDES BULL ACAD POLON SCI SER SCI CHIM 9, 367 (1961) CCP NO 8, 679 (1961)	700660 700660 700660 700660 700660 700660
BIGELEISEN. J VAPOR PRESSURES AND RELATED THERMODYNAMIC PROPERTIES OF THE ISOTOPIC NITRIC OXIDE MOLECULES J CHEM PHYS 33. 1775 (1960) CA 55. 16048 (1961)	600799 600799 600799 600799
BILTZ, W THE TEMPERATURE DEPENDENCY OF THE VALENCE IN METALS AND ØXYGEN NACH GES WISS GOTTINGEN MATH-PHYSIK KLASSE 1908, 293 (1908)	900126 900126 900126
BINDER. I	700816

NEW BORIDES OF YTTRIUM POWDER MET BULL 7. 74 (1956) CA 51. 1804 (1957)	700816 700816 700816
BINDER: I (UNION CARBIDE TARRYTOWN NY) STRUCTURE AND PROPERTIES OF RARE EARTH AND YTTRIUM HARD METALS J AM CERAM SOC 43: 287 (1960) CA 54: 16776 (1960) NSA 14: 17018 (1960)	700830 700830 700830 700830 700830 700830
BINDER, I LAPLACA, S PØST, B (FIRTH STERLING INC YØNKERS NY) SØME NEW RARE EARTH BØRIDES PRØC CØNF BØRØN SYNTHESIS, STRUCTURE, PRØPERTIES ASBURY PARK NJ (1959) CA 55, 10186 (1961) NSA 15, 17834 (1961)	700818 700818 700818 700818 700818 700818 700818
BINDER. I PØST. B MANGANESE DIBØRIDE ACTA CRYST 13. 356 (1960) CA 55. 51 (1961)	200779 200779 200779 200779
BINDERS L (SCHØRZKØPF DEVELØPMENT CØRP YØNKERS NY) NEW BØRIDES ØF YTTRIUM PØWDER MET BUL! :. 74 (1956) NSA 10 • 8429 (1956)	601259 601259 601259 601259 601259
BIRCHENALL , C IØNIC DISØRDER IN MANGANESE ØXIDE TRANS AIME 218, 1134 (1960) CA 55, 6978 (1961)	200775 200775 200775 200775
BIRYUKOVA, L SAKSONOV, Y PRODUCTS OF THE REACTION OF METALLIC TITANIUM WITH TITANIUM TETRACHLORIDE ZHUR NEORG KHIM 5, 993 (1960) CA 55, 4218 (1961)	200851 200851 200851 200851 200851
BITTNER: H GØRETZKI: H MAGNETIC INVESTIGATIØNS ØF THE CARBIDES TIC: ZRC: HFC: VC: NBC: AND TAC GERMAN PER MØNATSHEFTE FUER CHEMIE: VØL XCIII: NØ 5: 1962: 1000 (1962) *SLA CØTS 63: 113 (1963)	301132 301132 301132 301132 301132
BLACKBURN, P (WESTINGHOUSE ELEC CORP PITTSBURGH PA) THE MECHANISM OF THE NIOBIUM REACTION WITH WATER VAPOR AND WITH OXYGEN J ELECTROCHEM SOC 109, 1142 (1962) CA 58, 315 (1963)	201961 201961 201961 201961 201961 201961
BLACKBURN, P VAPØR PRESSURE ØF TUNGSTEN ØXIDES ANGEW CHEM 74, 83 (1962) BHT NØ 2, 40 (1962)	300543 300543 300543 300543
BLACKBURN. P (WESTINGHOUSE ELEC. CO. PITTSBURGH PA) ØXYGEN DISSØCIATIØN PRESSURES ØVER URANIUM ØXIDES	601113 601113 601113

J PHYS CHEM 62. 897 (1958) CA 53. 40 (1959)	601113 601113
BLACKBURN. P E THE MECHANISM ØF THE NIØBUIM REACTION WITH WATER VAPOR AND WITH ØXYGEN J ELECTROCHEM SOC 109, 1142 (1962) NSA 17 NO 2 1441 (1963)	301189 301189 301189 301189 301189
BLACKBURN, P ANDREW, K GULBRANSEN, E BRASSART, F (WESTINGHOUSE ELECTRIC CORP PITTSBURGH PA OXIDATION OF TUNGSTEN AND TUNGSTEN BASED ALLOYS WADC-TR-59-575 (1960) NSA 16, 5672 (1962)	601582 601582 601582 601582
BLACKBURN P WEISSBART J GULBRANSEN E (WESTINGHOUSE ELEC. CO. PITTSBURG PA) ØXIDATION OF URANIUM DIOXIDE J PHYS CHEM 62, 902 (1958) CA 53, 406 (1959)	601114 601114 601114 601114
BLAIR. L BEACHAM. H NELSON. W TITANIUM COMPOUNDS ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY 14, 219 (1953)	300150 300150 300150
BLAISE. J ISOTOPIC SHIFT IN ATOMIC SPECTRA OF HEAVY ELEMENTS ANN PHYS 3. 1019 (1958) CA 53. 8802 (1959)	601123 601123 601123 601123
BLAISE. J VETTER. R (C N R S BELLEVUE FRANCE) DETERMINATION OF THE IONIZATION POTENTIAL OF THULIUM FROM ARC SPECTRA COMPT REND 256. 630 (1963) CA 58. 8482 (1963)	202005 202005 202005 202005 202005 202005
BLANC. B VACUUM THERMODYNAMICS AND KINETICS VIDE 16. 257 (1961) CA 56. 6722 (1962)	201346 201346 201346 201346
BLANPAIN, R SPECIFIC HEAT ØF RHENIUM BULL CLASSE SCI ACAD RØY BELG 57, 750 (1961) CCP NØ. 2, 118 (1962) CA 56, 11001 (1962)	300349 300349 300349 300349 300349
BLAUER, J A GREENBAUM, M A FARBER, M THE THERMODYNAMICS OF SEVERAL LIGHT METAL OXIDES HALIDES AND OXYHALIDES QUARTERLY REPT 3 NOV 1962 FEB 1963 AD 401 379 TAB 63-3-2, 150 (1963)	301190 301190 301190 301190 301190
BLATT. F (CLARENDON LAB OXFORD ENGLAND) METASTABLE GAMMA PHASE URANIUM-MOLYBDENUM ALLOYS PHYS AND CHEM SOLIDS 17, 177 (1961) CA 55, 14258 (1961)	201043 201043 201043 201043 201043
BLØCK. F FERRANTE. M (US BUR ØF MINES ALBANY ØRE) VANADIUM BY METALLIC REDUCTIØN ØF A VANADIUM TRICHLØRIDE	201013 201013 201013

J ELECTROCHEM SOC 108, 464 (1961) CA 55, 13239 (1961)	201013 201013
BLØK, N GLAZØVA, A LASHKØ, N KURAEVA, V MØLCHANØVA, E PHASE ANALYSIS ØF ALLØYS BASED ØN TITANIUM ZAVØDSK LAB 27, 1470 (1961) CA 56, 12621 (1962)	201490 201490 201490 201490
BLØMEKE, J ZIEGLER, W THE HEAT CØNTENT, SPECIFIC HEAT, AND ENTRØPY ØF LA203, PR6011 AND ND203 BETWEEN 30 AND 900 DEGREES J AM CHEM SØC 73, 5099 (1951) CA 46, 1857 (1952)	400562 400562 400562 400562 400562
BLITON, J RECHTER, H HARADA, Y (ARMOUR RES FOUNDATION CHICAGO ILL) FLAME SPRAYED ZIRCONIA FILMS FOR FUEL CELL COMPONENTS AM CERAM SOC BULL 42. (1) 6 (1963) BHT NO 1, 33 (1963)	301133 301133 301133 301133 301133
BLØKHIN• M SHUVAEV• A (STATE UNIV RØSTØV RUSSIA) EFFECT ØF CHEMICAL BINDING ØN THE EMISSIØN X-RAY SPECTRUM ØF TITANIUM IZV AKAD NAUK SSSR SER FIZ 26• 429 (1962) CA 57• 8069 (1962)	201778 201778 201778 201778 201778 201778
BLUE, G D. GREEN, J.W. EHLERT, T.C. MARGRAVE, J.L. DISSØCIATIØN FNERGIES ØF THE ALKALINE EARTH MØNØFLUØRIDES NATURE 199 804 (1963)	301191 301191 301191
BLUM, A WIELICZKØ, J A NEW TEST FØR DETERMINING THE RESISTANCF TØ THERMAL SHØCK ØF TIB2-BASE CØMPØSITIØNS PLANSEEBER PULVERMET 9, 77 (1961) BHT NØ 3, 18 (1961)	300491 300491 300491 300491 300491
BLUM, P BERTAUT, F STUDY ØF BØRIDES HAVING HIGH BØRØN CØNTENT ACTA CRYST 7, 81 (1954)	700848 700848 700848
BLUMENTHAL, B (ARGØNNE NAT LAB A PRELIMINARY REPØRT ØN THE URANIUM CARBØN SYSTEM U S ATØMIC ENERGY CØMM TID 7523, 65 (1956) CA 51, 5524 (1957)	601044 601044 601044 601044
BLUMENTHAL. B (ARGONNE NAT LAB CONSTITUTION OF LOW-CARBON U-C ALLOYS US AT ENERGY COMM ANL-5958. 36 (1959) CA 54. 9697 (1960)	601692 601692 601692 601692 601692
BLUMENTHAL, B (ARGONNE NATL LAB THE TRANSFORMATION TEMPERATURES OF HIGH PURITY URANIUM J NUCLEAR MATERIALS 2, 23 (1960) NSA 14, 14092 (1960)	601342 601342 601342 601342 601342
BLUMENTHAL. R WHITMØRE. D ELECTRØCHEMICAL BEHAVIØR ØF ELEVATED TEMPERATURE Thermødynamic prøperties øf certain irøn and	600829 600829 600829

MANGANESE ØXIDE MIXTURES J AM CERAM SØC 44. 508 (1961)	600829 600829
BLUMENTHAL R WHITMORE D (NORTHWESTERN UNIV EVANSTON ILL) THERMODYNAMIC STUDY OF PHASE EQUILBRIA IN THE TI-O SYSTEM WITHIN THE TIO1.95-TIO2 REGION J ELECTROCHEM SOC 110, 92 (1962) BHT NO 4 (1962)	601666 601666 601666 601666 601666
BODAEVA: T KUZNETSOVA; R CONSTITUTION OF THE ALLOY TH-ZRC STROENIE I SVOISTVA SPLAVOV URANA TORIYA I TSIRKONIYA SB STATE 1963; 223 (1963) CA 59: 8432 (1963)	202006 202006 202006 202006 202006
BODMER: A (ADE FORT HALSTEAD KENT ENGLAND) SPECTROSCOPIC ISOTOPE SHIFT AND NUCLEAR DEFORMATIONS PROC ROY SOC 67: 622 (1954) CA 49: 716 (1955)	600936 600936 600936 600936 600936
BØESCHØTEN, F (REACTØR CENTRUM HAGUF NETHERLANDS) HALL EFFECT ØF THØRIUM PHYSICA 25, 398 (1959) NSA 13, 15529 (1959)	601528 601528 601528 601528 601528
BØETTCHER, A SCHNEIDER, G PRØPERTIES ØF URANIUM MØNØCARBIDE PRØC U N INTERN CØNF PEACEFUL USES AT ENERGY 2ND GENEVA 6, 561 (1958) CA 54, 4182 (1960)	601201 601201 601201 601201
BØGDANØVA, N. LØGINØV, G. MAGNETIC SUSCEPTIBILITY ØF VANADIUM ØXIDE AT 80 DEGREES TØ 370 DEGREES K. FIZ TVERD TELA 4, NØ 1, 236 (1962) SØVIET PHYSICS-SØLID STATE 4, NØ 1, 167 (1962)	300640 300640 300640 300640
BØHMVITENSE, E (NEUE UNIV. KIEL GERMANY) THE SPECTRA ØF SØME METALLIC LINE STARS Z ASTRØPHYS 49, 243 (1960) CA 54, 19152 (1960)	601169 601169 601169 601169
BØKSHTEIN» S GUBAREVA» M KISHKIN» S MØRØZ» L DIFFUSIØN» RECRYSTALLIZATIØN» AND PHASE TRANSFØRMATIØNS CA 58° 1198 (1963)	301408 301408 301408
BØLEF, D (WESTINGHØUSE RESEARCH LABS PITTSBURGH PA) ELASTIC CØNSTANTS ØF SINGLE CRYSTALS ØF THE BØDY-CENTRED CUBIC TRANSITIØN ELEMENTS V, NB, AND TA J APPL PHYS 32, 100 (1961) CA 55, 10006 (1961)	200936 200936 200936 200936 200936 200936
BØLES, S (US BUR MINES COLLEGE PARK MD) RARE EARTH COMPOUNDS AS HIGH TEMPERATURE REFRACTORIES A BIBLIOGRAPHY US BUR MINES INFORM CIRC 8082, (1962) CA 57, 12118 (1962)	201859 201859 201859 201859 201859 201859

BØLGAR, A VERKHØGLYADØVA, T SAMSØNØV, G VAPØR PRESSURE AND EVAPØRATIØN RATE ØF SØME HIGH-MELTING CØMPØUNDS IN VACUUM AT ELEVATED TEMPERATURES IZVEST AKAD NAUK SSSR ØTDEL TEKH NAUK MET I TØPLIVØ NØ 1, 142 (1961) NSA 15, 17344 (1961) CA 55, 19660 (1961) BHT NØ 3, 21 (1961)	700938 700938 700938 700938 700938 700938 700938 700938
BOLOTIN. G VOLOSHINKII. A KIRILLOVA. M NOSKOV. M SOKOLOV. A CHARIKOV. B OPTICAL PROPERTIES OF TI AND V IN THE INFRARED SPECTRAL REGION FIZ METAL I METALLOVED 13. 823 (1962) CA 57. 10673 (1962)	201830 201830 201830 201830 201830
BOMBERGER + H TITANIUM IND ENG CHEM 54 + NO 1 73 (1962) CA 56 + 3225 (1962)	300369 300369 300369 300369
BØNDAR: I PHASE DIAGRAMS ØF SYSTEMS CØNTAINING RARE EARTH ØXIDES KHIM PRAKT PRIMENENIE SILIKATØV, INST KHIM SILIKATØV, AKAD NAUK SSSR 1960: 5 (1960) CA 55: 10036 (1961)	200937 200937 200937 200937 200937
BONDARENKO, B ERMAKOV, S THERMIONIC PROPFFTIES OF MFTAL CARBIDES OF IV AND V GROUPS RADIOTEKH I ELEKTRON 7 NO 12. 2099 (1962) RUSS ACC 15. NO 11. 2861 FEBRUARY (1963)	202007 202007 202007 202007
BONDARENKO. B. ERMAKOV. S. THERMOELECTRIC PROPERTIES OF GROUPS IV AND V METAL CARBIDES CA 58. 7460 (1963)	301409 301409 301409
BØNNELLE. C (LAB CHIM PHYS PARIS FRANCE) EMISSIØN SPECTRUM ØF METALLIC CHRØMIUM IN THE L REGIØN CØMPT REND 254. 2313 (1962) CA 57. 6750 (1962)	201754 201754 201754 201754 201754
BOONE, D WERT, C (UNIVERSITY OF ILLINOIS URBANA ILLINOIS) INTERSTITIAL-DISLOCATION INTERACTION IN NIOBIUM J PHYS SOC (JAPAN) 18. SUPPL 1. 141 (1963) CA 59. 6088 (1963)	301410 301410 301410 301410 301410
BOORSE, H BERMAN, A WORLEY, R ZEMANSKY, M HEAT CAPACITIES OF VANADIUM, TANTALUM, AND LANTHANUM IN THE SUPERCONDUCTING AND NORMAL PHASES BULL INST INTERN FROID ANNEXE 499, 1955 CA 53, 17656 (1959)	700887 700887 700887 700887 700887
BOORSE, H HIRSHFELD, A LEUPOLD, H DIFFERENCE IN LATTICE SPECIFIC HEATS IN THE NORMAL AND SUPER- CONDUCTING PHASES PHYS REV LETTERS 5, 246 (1960) CA 55, 9025 (1961)	600651 600651 600651 600651 600651
BORCHARDT, H. THOMPSON. B REACTIONS OF ALKALINE EA. TH OXIDES III A REFYAMINATION OF THE HEDVALL EFFECT	200887 200887 200887

J AM CHEM SOC 82. 5630 (1960)	200887
CA 55. 6230 (1961)	200887
BØRELIUS, G (RØY. INST TECH. STØCKHØLM SWEDEN) ØRIGIN ØF THE INTERNAL PRESSURE IN METALS ARKIV FYSIK 16, 413 (1960) CA 54, 19172 (1960)	601168 601168 601168 601168 601168
BØRGEN, Ø SEIP, H (NØRGES TEKN HØEGSKØLE TRØNDHEIM NØRWAY) CRYSTAL STRUCTURE ØF BETA-SI3N4 ACTA CHEM SCAND 15, 1789 (1961) CA 56, 13643 (1962)	201514 201514 201514 201514 201514
BØRISENKØ, A PRØTECTIØN ØF NIØBIUM FRØM HIGH TEMPERATURE GAS CØRRØSIØN ZASHCHITA NIØBIYA ØT VYSØHØTEMPERATURNØY GAZØVØY KØRRØZII, INSTITUT KHIMII SILIKATØV AKAD NAUK SSSR 1 (1961) FTD-TT-62-1251	900208 900208 900208 900208 900208
BØRISENKØ• L	300447
SCANDIUM	300447
RUSSIAN BØØK (1961)	300447
CØTS NØ 53• 115 (1962)	300447
BØRØS: J	301192
RESEARCH ØN VANADIUM PENTØXIDE	301192
EPITØIPAN ES KØZLEK EGYET TUD KØZL 7: NØ 1 45 (1961)	301192
AD 299934	301192
TAB 63: 240 (1963)	301192
BØRØVSKII: I BARINSKII: R	400551
FINE STRUCTURE ØF ABSØRBTIØN SPECTRA	400551
DØKLADY AKAD NAUK SSSR 72: 31 (1950)	400551
CA 45: 2309 (1951)	400551
BØRØVSKII, I MARCHUKØVA, I	201014
A METHØD ØF CØNSTRUCTING PHASE-CØMPØSITIØN DIAGRAMS	201014
TRUDY INST MET IM AA BAIKØVA 1960, NØ 6, 73 (1960)	201014
CA 55, 13252 (1961)	201014
BØSCH. F (UNIV GHENT BELGIUM) SYNTHESES ØF BØRØN CARBIDE AND NITPIDF SILICATES IND 27. 587 (1962) CA 58. 8676 (1963)	202008 202008 202008 202008 202008
BØŚCH: G (PHILLIPS RES LABS EINDHØVEN NETH) THERMAL CØNDUCTIVITY ØF SILICØN CARBIDE PHILIPS RES REPTS 16: 455 (1961) CA 56: 13568 (1962)	201505 201505 201505 201505 201505
BOULLE, A JARY, R DOMINE-BERGES, M	400537
AN X-RAY STUDY OF THE APPEARANCE OF GRAIN IN URANIUM OXIDES	400537
COMPT REND 229, 214 (1949)	400537
CA 44, 7698 (1950)	400537
BOVEY, L	700825
(AT ENERGY RESEARCH EST BERKS ENGLAND)	700825
AN EXTENSION OF THE ANALYSIS OF THE YTTRIUM SPECTRUM	700825
PROC PHYS SOC (LONDON) 68A, 79 (1955)	700825

CA 49 5961 (1955) NSA 9 2988 (1955)	700825 700825
BØVEY, L ATHERTØN, N STEERS, E (A.E.R.E. HARWELL ENGLAND) THE ØPTICAL SPECTRUM ØF URANIUM IN THE 1-2.5MU REGIØN SPECTRØCHIM ACTA 17, 259 (1961) NSA 15, 14280 (1961)	601422 601422 601422 601422 601422 601422
BOVEY, L STEERS, E ATHERTON, N THE OPTICAL SPECTRA OF SOME RARE EARTH AND TRANSURANIC ELEMENTS IN THE 1-3MU REGION II WAVE LENGTH MEASUREMENT AND THE SPECTRUM OF PLUTONIUM AT ENERGY RESEARCH ESTAB R2977, 13 (1959) CA 54, 10502 (1960)	601190 601190 601190 601190 601190
BOVEY, L WISE, H THE EMISSION AND ABSORPTION SPECTRA OF URANIUM EXCITED IN A KING FURNACE AT ENERGY RESEARCH ESTAB C/R2766, 199 (1959) CA 53, 21139 (1959)	601154 601154 601154 601154 601154
BOWMAN. A (LASL LØS ALAMØS NEW MEXICØ) THE VARIATION ØF LATTICE PARAMETER WITH CARBON CONTENT ØF TANTALUM CARBIDE J PHYS CHEM 65. 1596 (1961) NSA 15. 31238 (1961) PA 65. 2388 (1962)	600836 600836 600836 600836 600836 600836
BOWMAN. F NUCLEAR FUEL RESEARCH. FUEL CYCLE DEVELOPMENT PROGRAM-THE CARBIDES OF URANIUM AN ANNOTATED BIBLIOGRAPHY NYO 2686. (1960) NSA 14. 12839 (1960)	601345 601345 601345 601345 601345
BOYD. F ENGLAND. J (CARNEGIE INST WASHINGTON DC) THE QUARTZ- COESITE TRANSITION J GEOPHYS RES 65. 749 (1960) CA 57. 4359 (1962)	301193 301193 301193 301193 301193
BRABERS. M ELFCTRICAL CONDUCTIVITY OF URANIUM OXIDES PROC U N INTERN CONF PEACEFUL USES AT ENERGY 2ND GENEVA 6. 122 (1958) CA 54. 994 (1960)	601212 601212 601212 601212 601212
BRACKETT. T DISSOCIATION ENERGY OF CARBON MONOXIDE J CHEM'PHYS 24. 1103 (1956) CA 50. 10507 (1956)	600706 600706 600706 600706
BRADLEY, J (OHIO STATE UNIV COLUMBUS OHIO) CRYSTAL GROWTH NEWS ENG 35 NO 2, 7 (1963) CA 59, 3373 (1963)	301411 301411 301411 301411 301411
BRADFØRD. S THE EFFECT OF OXYGEN ON PHYSICAL AND CHEMICAL PROPERTIES OF	300368 300368

VANADIUM Dissertation abst 22. no 7 2348 (1961-62)	300368 300368
BRADY: P THEORETICAL STUDY OF HIGH-TEMPERATURE COMPOUNDS BOND DISSOCIATION ENERGIES U S DEPT COM OTS P B REPT 161546 (1960) CA 56: 14931 (1962)	301412 301412 301412 301412 301412
BRANSCOMB L THE INFRARED SPECTRUM OF ACTIVE NITROGEN PHYS REV 82 · 83 (1951) CA 45 · 5022 (1951)	600570 600570 600570 600570
BRAUER. G INVESTIGATIONS OF THE CESIUM-OXYGEN SYSTEM Z ANORG U CHEM 225. 101 (1947) CA 43. 2884 (1949)	400601 400601 400601 400601
BRAUER, G ESSELBØRN, R (UNIV FREIBURG BREISGAU GERMANY) NIØBIUM ØXYNITRIDES Z ANØRG U ALLGEM CHEM 308, 52 (1961) CA 55, 18408 (1961)	201114 201114 201114 201114 201114
BRAUER G (UNIV FRIEBURG I BR FRIEBURG GERMANY) NITRIDE PHASES ØF NIØBLUM Z ANØRG U ALLGEM CHEM 309, 151 (1961) CA 55, 20742 (1961)	201142 201142 201142 201142 201142
BRAUER. G (ALBERT-LUDWIGS UNIV FREIBURG GERMANY) NITRIDES. CARBONITRIDES. AND ØXYNITRIDES ØF NIØBIUM J LESS 10MMØN METALS 2. 131 (1960) CA 55. 14236 (1961)	201037 201037 201037 201037 201037
BRAUER • G ESSELBØRN • R NITRIDE PHASES IN NIØBIUM Z ANØRG U ALLGEM CHEM 309 • 151 (1961)	700575 700575 700575
BRAUER • G GINGERICH • K THE CERIUM ØXIDE SYSTEM AEC-TR-4368 ANGEW CHEM 69 • 480 (1957) NSA 15 • 5383 (1961) NS 15 • 5383 (1961)	600668 600668 600668 600668 600668
BRAUER: G GINGERICH: K HØLTSCHMIDT: U 3XIDES ØF CERIUM IV ØXYGEN DISSØCATIØN PRESSURE IN THE SYSTEM ØF CERIUM ØXIDES J INØRG AND NUCLEAR CHEM 16: 77 (1960) CA 55: 5101 (1961)	300415 300415 300415 300415 300415
BRAUER G GINGERICH K CERIUM ØXIDES V HIGH-TEMPERATURE X-RAY EXAMINATIONS ØF CERIUM ØXIDES JØUR INØRGANIC AND NUC CHEM 16 87 (1960) CØTS 55 90 (1962) CA 55 5101 (1961)	300559 300559 300559 300559 300559 300559
BRAUER • G GRADINGER • H HETERØTYPE MIXED PHASES AMØNG RARE EARTH ØXIDES	600978 600978

Z ANØRG U ALLGEM CHEM 276, 209 (1954) CA 49, 2923 (1955)	600978 600978
BRAUER, G LITTKE, W MELTING PØINT AND THERMAL DISSØCIATIØN ØF TITANIUM DIØXIDE INØRG AND NUCLEAR CHEM 16, 67 (1960) CA 55, 5099 (1961)	201990 201990 201990 201990
BRAUER • G MØRAWIETZ • H (UNIV FREIBURG BREISGAU GERMANY) ØN THE CRYSTAL STRUCTURE ØF NBØ Z ANØRG ALLGEM CHEM 317 • 13 (1962) BHT NØ 4 (1962)	301106 301106 301106 301106 301106
BRAUER + G MUELLER + H KUHNER + G SUB-ØXIDE ØF LØW TEMPERATURE ØXIDATIØN ØF NIØBIUM AND TANTALUM CHEMISCHES LAB DER UNIVERSITAT FREIBURG IM BREISGAU CØTS 55 + 102 (1962)	301105 301105 301105 301105 301105
BRAUER • G MØRAWIETZ • H STRUCTURE ØF NIØBIUM MØNØXIDE Z ANØRG ALLGEM CHEM 137 • 13 (1962)	301414 301414 301414
BRAUFR: G MUELLER: H (UNIV FREIBURG BREISGAU GERMANY) UNSTABLE SUBØXIDES AND HYDRIDES ØF NIØBIUM AND TANTALUM PLANSEE PRØC 3RD SEMINAR RENTLE 1 TYRØL 257 (1958)	301197 301197 301197 301197
BRAUER, G MUELLER, H KUEHNER, G (UNIVERSITY FREIBURG BREISGAU GERMANY) ØXIDES ØF NIØBIUM AND TANTALUM FØRMED ØN LØW-TEMPERATURE ØXIDATIØN J LESS-CØMMØN METALS 4. 533 (1962) CA 58. 7692 (1963)	301413 301413 301413 301413 301413
BRAUER • G MUELLER • H ØXIDES ØF THE LØW TEMPERATURE ØXIDATIØN ØF NIØBLUM AND TANTALUM GERMAN RPT 24 AEC-TR-5298 CØTS 168 • (1963)	301196 301196 301196 301196 301196 301196
BRAUN. H. SEDLATSCHEK. K. KIEFFER. B ALLØYS ØF NIØBIUM WITH MØLYBDENUM AND TUNGSTEN PLANSEEBER PULVERMET 8. 58 (1960) CA 55. 1377 (1961)	200806 200806 200806 200806
BRCIC+ B GØLIC+ L JERNEJCIC+ J SIFTAR+ J VÆLØVSEK+ B (UNIV LJUBLJANA YUGØSLAVIA) THE SYSTEM CAØ PLUS SIØ2 III. THE REASON ØF THE INCREASED REACTIVITY ØF THE CAØ CØMPØNENTS MØNTASH CHEM 93+ 550 (1962) CA 57+4091 (1962)	201636 201636 201636 201636 201636
BREDIG: M THE HIGH TEMPERATURE CUBIC PHASES OF URANIUM AND LANTHANUM DICARBIDES J AM CERAM SOC 43: 493 (1960) CA 54: 23582 (1960)	700852 700852 700852 700852 700852
BREDIG• M (ØAK RIDGE NATL LAB ØAK RIDGE TENN)	201323 201323

X-RAY STUDIES OF CALCIUM CARBIDE Z ANORG U ALLGEM CHEM 310. 338 (1961) CA 56. 5474 (1962)	201323 201323 201323
BRESKER, R VØRØNIN, N LATYSHEVA, Z INFRARED RADIATIØN SØURCES BASED ØN SILICØN CARBIDE PRIBØRY I TEKH EKSPER (USSR) 1959, NØ 4, 149 (1959) ENG TRANS INSTRUM EXPEN TECH NØ 4, 670 (1960) PA 65, 5172 (1962)	300799 300799 300799 300799 300799
BREWER. L PREDICTION OF HIGH TEMPERATURE METALLIC PHASE DIAGRAMS UCRL-10701 JULY (1963)	202009 202009 202009
BREWER, L SØMAYAJULU, G BRACKETT, E (UNIV ØF CALIF) THERMØDYNAMIC PRØPERTIES ØF GASEØUS METAL DIHALIDES CHEM REV 63, 111 (1963)	202010 202010 202010 202010
BREWER, L (RADIATION LAB U. CALIF BERKELEY CALIF) THERMODYNAMICS OF BARE EARTH ØXIDES UCRL-1931 (1952) NSA 7, 108 (1953)	700906 700906 700906 700906 700906
BREWER: L THE THERMODYNAMIC PROPERTIES OF THE OXIDES AND THEIR VAPORIZATION PROCESSES CHEM REV 52, 1 (1953)	700921 700921 700921 700921
BREWER, L BROMLEY, L GILLES, P LOFGREN, N THERMODYNAMIC PROPERTIES AND EQUILIBRIA AT HIGH TEMPERATURES OF URANIUM HALIDES, OXIDES, NITRIDES AND CARBIDES USAEC REPT MDDC 1543, (1947) CA 46, 2895 (1952)	400581 400581 400581 400581 400581
BREWER. L BROMLEY. L GILLES. P LOFGREN. N (U. OF CALIFORNIA) THERMODYNAMIC PROPERTIES AND EQUILIBRIUMS OF URANIUM HALIDES OXIDES. NITRIDES AND CARBIDES AT HIGH TEMPERATURE US AT ENERGY COMM TID-5290 1. 219 (1958) CA 53. 16676 (1959)	
BREWER, L CHANDRASEKHARIAH, M FREE ENERGY FUNCTIONS FOR GASEOUS MONOXIDES UCRL 8713 (1959) CA 53, 16626 (1959)	700721 700721 700721 700721
BREWER, L ENGELKE, J SPECTRUM OF C3 J CHEM PHYS 36, NO 4, 992 (1962) PA 65, 6166 (1962)	300797 300797 300797 300797
BREWER, L HARALDSEN, H (U ØF CALIFØRNIA BERKELEY CALIFØRNIA) THE THERMØDYNAMIC STABILITY ØF REFRACTØRY BØRIDES J ELECTRØCHEM SØC 102, 399 (1955) CA 50, 2254 (1956)	600987 600987 600987 600987 600987
BREWER, L HICKS, W KRIKØRIAN, Ø HEAT ØF SUBLIMATIØN AND DISSØCIATIØN ENERGY ØF GASEØUS C2 J CHFM PHYS 36, 182 (1962) PA 65, 2028 (1962)	300813 300813 300813 300813

	THE STABILITY OF GASEOUS MANGANOUS OXIDE	601633 601633 601633
	THE STABILITY OF GASEOUS SNO, ZNO, CLO, CUO, PBO, GEO, SIO AND TIO	601634 601634 601634 601634
(UNIV ØF CALIFØRNIA BERKELFY CALIFØRNIA) DISSØCIATIØN ENERGIES ØF GASEØUS METAL DIØXIDES CHEM REVS 61 • 257 (1961)	201111 201111 201111 201111 201111
	THERMODYNAMICS OF SUBOXIDE VAPORIZATION TRANS MET SOC AIME 224, NO 6, 1268 (1962)	300855 300855 300855
	THE BORIDES OF URANIUM AND THORIUM AECD-2823 FEB 14. (1950)	601400 601400 601400 601400
		300788 300788 300788 300788
(301415 301415 301415 301415 301415
	REWER, L TRAJMAR, S BERG, R (UNIV CAL BERKELEY CAL) ANALYSIS ØF THE ULTRAVIØLET SYSTEM ØF MAGNESIUM ØXIDE ASTRØPHYS J 135, 955 (1962) CA 57, 8073 (1962)	201780 201780 201780 201780 201780
	BRIDGE+ J SCHWARTZ+ C VAUGHAN+ D X-RAY DIFFRACTION DETERMINATION OF THE COEFFICIENTS OF EXPANSION OF ALPHA-URANIUM J MET 8+ 1282 (1956)	601656 601656 601656 601656
	BRIDGMAN+ P (HARVARD UNIV CAMBRIDGE MASS) THE ELECTRIC RESISTANCE TØ 30000 KGM/CM2 ØF TWENTY NINE METALS AND INTERMETALLIC CØMPØUNDS PRØC AM ACAD ARTS AND SCI 79+ 149 (1951) CA 45+ 9398 (1951)	400533 400533 400533 400533 400533
į	BRIDGMAN, P COMPRESSION OF 39 SUBSTANCES TO 100000 KG/CM2 PROC AM ACAD ARTS SCI 76, 55 (1948) CA 42, 6194 (1948)	700883 700883 700883 700883
(BRIDGMAN. P ROUGH COMPRESSIONS OF 177 SUBSTANCES TO 40000 KG/CM2 PROC AM ACAD ARTS SCI 76, 71 (1948) CA 42. 8043 (1948)	700884 700884 700884 700884

BRIGGS. G GUHA. J BARTA. J WHITE. J (UNIV SHEFFIELD SHEFFIELD ENGLAND) SYSTEMS OF UC. UC2 AND UN WITH TRANSITION METALS BRIT CERAM SOC 62. NO 3. 221 (1963) CA 59. 3624 (1963)	301416 301416 301416 301416 301416
BRIGHT. N (CANADA DEPT ØF MINES THE DETERMINATION ØF THE U-Ø ATØMIC RATIØ IN NØN-STØICHIØMETRIOURANIUM DIØXIDE AND ØTHER ØXIDES ØF URANIUM JUL 5. 1956 MD-207 NSA 11. 105 (1957)	601288 601288 601288 601288 601288
BRIGHT N (DEPT MINES TECH SURVEY ØTTAWA CANADA) X-RAY STUDIES IN THE TI-Ø SYSTEM ADVAN ADVAN X-RAY ANAL 4 + 175 (1961) CA 57 1650 (1962)	300661 300661 300661 300661 300661
BRILLIANTOV. N STAROSTINA. L FEDEROV. O PREPARING MONOCRYSTALS OF MOLYBDENUM AND TUNGSTEN BY CRUCIBLESS ZONE MELTING KRISTALLOGRAFIYA 6. 261 (1961) PA 65. 2364 (1962)	300807 300807 300807 300807 300807
BRISI, C ABBATTISTA, F (PØLYTECHN TURIN ITALY) SØLID STATE EQUILIBRIUMS IN THE SYSTEMS U-BE-C AND TH-BE-C ANN CHIM (RØME) 51, 1404 (1961) CA 56, 13604 (1962)	201507 201507 201567 201507 201507
BRIX. P ISØTØPE DISPLACEMENT AND TERM SCHEME ØF THE SAMARIUM ATØM. SMI Z PHYSIK 126. 431 (1949) CA 44. 1329 (1950)	400527 400527 400527 400527
BRIX. P ISOTOPE DISPLACEMENT EFFECT IN THE ATOMIC SPECTRA OF THE RARE EARTHS (ISOTOPE DISPLACEMENTS CONSTANTS OF EUROPIUM. GADOLINIUM. AND YTTERBIUM) Z PHYSIK 132. 579 (1952) CA 46. 10878 (1952)	400566 400566 400566 400566 400566 400566
BRIX, P ENGLER, H ISOTOPIC DISPLACEMENT IN THE GDI SPECTRUM Z PHYSIK 133, 362 (1952) CA 47, 7315 (1953)	100192 100192 100192 100192
BRIX. P ENGLER. H ISOTOPE SHIFT IN THE GD I SPECTRUM NATURWISSENSCHAFTEN 38.214 (1951) CA 46. 1865 (1952)	400563 400563 400563 400563
BRIX, P FRANK, H ISOTOPE DISPLACEMENT IN THE SPECTRUM OF CE Z PHYSIK 127, 289 (1950) CA 44, 5703 (1950)	400526 400526 400526 400526
BRIX, P HERZBERG, G THE DISSOCIATION ENERGY OF OXYGEN J CHEM PHYS 21, 2240 (1953) CA 48, 4270 (1954)	600544 600544 600544 600544

CONVERGENCE LIMIT AND THE DISSOCIATION ENERGY OF THE OXYGEN MOLECULE	600548 600548 600548 600548 600548
BRIX, P KØPFERMANN, H	400543
ISØTØPE DISPLACEMENTS IN THE SPECTRUM ØF SAMARIUM	400543
Z PHYSIK 126, 344 (1949)	400543
CA 44, 454 (1950)	400543
BRIX, P KØPFERMANN, H MAGIC NUMBERS AND THE ISØTØPE SHIFT IN ATØMIC SPECTRA ØF HEAVY ELEMENTS PHYS REV 85, 1050 (1952) CA 46, 5979 (1952)	400574 400574 400574 400574 400574
BRØIDA, H GAYDØN, Å THE HERZBERG BANDS ØF ØXYGEN IN AN ØXYGEN AFTERGLØW AND IN THE NIGHT SKY SPECTRUM PRØC RØY SØC LØNDØN 222, 181 (1954) CA 48, 6250 (1954)	600547 600547 600547 600547 600547
BRØNSØN• H CHISHØLM• H DØCKERTY• S	700561
ØN THE SPECIFIC HEATS ØF TUNGSTEN• MØLYBDENUM AND CØPPER	700561
CAN J RES 8• 282 (1933)	700561
CA 27• 2618 (1933)	700561
BROOKS M KAPLAN J	600571
DISSOCIATION ENERGY OF NO AND N2	600571
PHYS REV 96, 1540 (1954)	600571
CA 49. 3658 (1955)	600571
BRØPHY• J KAMDAR• M WULFF• J (MIT CAMBRIDGE MASS) THE TA-W-RE SYSTEM TRANS AIME 221• 1137 (1961) CA 56• 5738 (1962)	201340 201340 201340 201340 201340
BROPHY. J KREIDER. K WULFF. J	202011
NICKEL-ACTIVATED SINTERING OF PLASMA-SPRAYED TUNSTEN	202011
DEPOSITS	202011
TRANS AIME 227. 598 (1963)	202011
BRØPHY• J SCHWARZKØPF• P WULFF• JJ	200803
TANTALUM-RHENIUM SYSTEM	200803
TRANS MET SØC AIME 218• 910 (1960)	200803
CA 55• 324 (1961)	200803
BRØSSET. C MAGNUSSØN. B	200932
(CHALMERS UNIV GØTEBØRG SWEDEN)	200932
THE SILICØN-BØRØN SYSTEM	200932
NATURE 187 .54 (1960)	200932
(A 55. 9133 (1961)	200932
BROUNSHTEIN. B DETERMINATION OF THE OPTIMUM NUMBER OF TERMS IN THE ASYMPTOTIC EXPRESSION FOR THE STATISTICAL SUMMATION OVER VIBRATIONAL ENERGY LEVELS OF DIATOMIC MOLECULES ZHUR FIZ KHIM 35. 1558 (1961)	300187 300187 300187 300187 300187

BRØUNSHTEIN. B. YURKØV. G. EVALUATIØN ØF THE ERRØRS IN THE CALCULATIØNS ØF THERMØDYNAMIC FUNCTIØNS BY APPRØXIMATE METHØDS ZH FIZ KHIM 36. 2303 (1962) CA 58. 3961 (1963)	301417 301417 301417 301417 301417
BRØUNSHTEIN• B YURKØV• G CRITICAL REMARKS TØ THE PAPER BY RI ARTYM ØN THE CALCULATIØN ØF THERMØDYNAMIC FUNCTIØNS ØF IDEAL GASES FRØM SPECTRØSCØPIC DATA ZHUR FIZ KHIM 36• 5 1110 (1962)	300364 300364 300364 300364 300364
BROUNSHTEIN. B YURKOV. G (LENINGRAD INST APPLIED CHEM LENINGRAD RUSSIA) APPROXIMATE METHOD FOR THE CALCULATION OF THE THERMODYNAMIC FUNCTIONS OF DIATOMIC IDEAL GASES AT HIGH TEMPERATURE WITH ACCOUNT OF THE HIGHER ANHARMONICITY CONSTANTS ZHUR FIZ KHIM 36. NO 6. 1191 (1962)	300774 300774 300774 300774 300774
BRØWN. A (GT BRIT RØYAL AIRCRAFT EST HAMPSHIRE ENGLAND) SILICØN CARBIDE A REVIEW RAE-TN-MET-PHYS-325 (1960) AD-249685 NSA 15. 21155 (1961)	701044 701044 701044 701044 701044
BROWN, D STOBO; J (C A PARSONS + CO N C UPON TYNE ENGLAND) PROPERTIES OF URNAIUM MONOCARBIDE TRANS BRIT CERAM SOC 62, 2 (1963) BHT NO 2 12, (1963)	301198 301198 301198 301198 301198
BROWN, W KIRCHNER, H (CORNELL AERONAUTICAL LAB BUFFALO NEW YORK) AN INVESTIGATION OF THE THEORETICAL AND PRACTICAL ASPECTS OF THE THERMAL EXPANSION OF CERAMIC MATERIALS, QUART PROG REPT (1961) CAL-PI-1273-M-10 NSA 16, 16715 (1962)	601430 601430 601430 601430 601430 601430
BRUBERS. M (JØINT EST FØR NUCL EN RES KJELLER NØRWAY) ELECTRICAL CØNDUCTIVITY ØF U-Ø SYST A/CØNF 15/P/1474 NSA 13. 6876 (1959)	601545 601545 601545 601545 601545
BRUNO: M ANOMALOUS SOLID SOLUTIONS OF CERIUM SESQUIOXIDE IN CERIUM DIOXIDE RICERA SCI 20: 645 (1950) NSA 5: 154 (1951)	601385 601385 601385 601385 601385
BRYAN. R HOLT. R ØLKENBERG. Ø RECOMBINATION AND AFTERGLOW IN NITRØGEN AND ØXYGEN PHYS REV 106. 83 (1957) CA 51. 16090 (1957)	600549 600549 600549 600549
BRYANT. C KEESØM. P LØW TEMPERATURE SPECIFIC HEAT ØF MØLYBDENUM J CHEM PHYS 35. 1149 (1961)	600831 600831 600831
BRYNESTAD. J ON THE PHASE RULE	301199 301199

Z PHYSIK CHEMIA 36. 356 (1963)	301199
BRYUKHANØV, A GØLUB, V MASS-SPECTRØMETER RUSSIAN, PATENT NØ 139 478 CA 56, 5801 (1962)	400614 400614 400614 400614
BUCHLER. A (ARTHUR D LITTLE INC CAMBRIDGE MASS) INFRARED SPECTRA ØF GASEØUS GRØUP IV HALIDES ZIRCØNIUM-FLUØRINE, ZIRCØNIUM CHLØRIDE, AND HAFNIUM CHLØRIDE US DEPT CØM ØFFICE TECH SERV PB REPT 148,429, (1960) CA 56, 11086 (1962)	201465 201465 201465 201465 201465 201465
BUCHLER, A BERKØWITZ-MATTUCK, J DUGRE, C INFRARED SPECTRA ØF GASEØUS GRØUP IV HALIDES ZIRCØNIUM, HAFNIUM, AND THØRIUM FLUØRIDES AND CHLØRIDES INTERIM TECH REPT NØ 4 ØN STUDY ØF HIGH TEMP THERMØ ØF LIGHT METAL CØMPØUNDS FEB 22, 1961 DA 19-020-ØRD-4829 OOR REPT NØ 006.4 AD-252 510 DIV 25 (1961)	300183 300183 300183 300183 300183 300183
BUCKLEY. J (LANGLEY RES CENTER HAMPTØN VA) DETERIØRATIØN ØF CALCIA-STABILIZED ZRØ2 NASA TECH NØTE D-1595 (1962) CA 58. 7604 (1963)	301418 301418 301418 301418 301418
BUDDERY+ J WELCH+ ; (IMPERIAL COL. SCI. TECH. LONDON ENGLAND) BORIDES AND SILICIDES OF THE PLATINUM METALS NATURE 167, 362 (1951) CA 45+ 5553 (1951)	600940 600940 600940 600940 600940
BUDNIKØV, P. BELYAEV, R. BERYLLIUM ØXIDE AND ITS PRØPERTIES ZHUR PRIKLAD KHIM 33, 1921 (1960) CA 55, 2228 (1961) NSA 15, 4326 (1961)	701043 701043 701043 701043 701043
BUDNIKØV+ P BEREZHNØY+ A TECHNØLØGY ØF CERAMICS AND REFRACTØRIES FTD-TT-63-104	900219 900219 900219
BUDNIKØV» P CHEREPANØV» A ZIRCØNIUM CØMPØUNDS AND THEIR USE ZH VSES KHIM ØBSHCESTVA IM D I MENDELEEVA 8» NØ 2» 141 (1963) CA 59» 3521 (1963)	301419 301419 301419 301419 301419
BUDNIKØV. P. GINSTLING. A REACTIONS IN MIXTURES OF SOLIDS MOSCOW GOSUDARST IZDATEL LIT PO STROITEL ARKHITEKT I STROITL MATERIALAM 423 (1961) CA 55: 21779 (1961)	300315 300315 300315 300315 300315
BUDNIKØV» P SHISHKØV» N CRYSTALLIZATIØN ØF BERYLLIUM ØXIDE FRØM A GASEØUS PHASE DØKLADY AKAD NAUK SSSR 138, 1093 (1961) BHTG NØ 4% 12 (1962)	300470 300470 300470 300470
BUDNIKØV» P TRESVYATSKII» S KUSHAKØVSKIÍ» V Phase transførmatiøns øf uranium øxides in air	201395 201395

DØKLADY AKAD NÅUK SSSR 128• 85 (1959) CA 56• 8417 (1962)	201395 201395
BUDWORTH, D HØARE, F PRESTØN, J THE THERMAL AND MAGNETIC PRØPERTIES ØF SØME TRANSITIØN ELEMENT ALLØYS PRØC RØY SØC (LØNDØN) A257, 250 (1960) CA 55, 323 (1961)	200802 200802 200802 200802 200802
BULEWICZ. F STABILITIES OF THE GASEOUS DIATOMIC HALIDES OF CERTAIN METALS (LI. NA. K. RB. CS. GA. IN. TL. NI. MN. CR) TRANS FARADAY SOC 57. 921 (1961) CA 56. 73 (1962)	201190 201190 201190 201190 201190
BUNDY, F MELTING ØF GRAPHITE AT VERY HIGH PRESSURE J CHEM PHYS 38, 618 (1963)	300859 300859 300859
BUNDY. F (G E RES LAB SCHENF(TADY NY) MELTING PØINT ØF GRAPHITE AT HIGH PRESSURE. HEAT ØF FUSIØN SCIENCE 137, 1055 (1962)	300854 300854 300854 300854
BUNDY. F STRØNG. H (G E RES LAB SCHENECTADY NY) BEHAVIØR ØF METALS AT HIGH TEMPERATURES AND PRESSURES SØLID STATE PHYSICS F SEITZ AND D TURNBULL EDITØRS ACADEMIC PRESS CA 57. 5444 (1962)	201719 201719 201719 201719 201719 201719
BURBRIDGE. E BURBRIDGE. G (CAVENDISH LAB CAMBRIDGE ENGLAND) RELATIVE ABUNDANCES AND ATMØSPHERIC CØNDITIØNS IN THE MAGNETIC STAR HD 133029 ASTRØPHYS J 122. 396 (1955) CA 50. 3076 (1956)	601003 601003 601003 601003 601003
BURBRIDGE, E BURBRIDGE, G CHEMICAL COMPOSITION OF THE BARIUM 2 STAR HD 46407 AND ITS BEARING ON ELEMENT SYNTHESIS IN STARS ASTROPHYS J 126, 357 (1957) CA 52, 868 (1958)	601103 601103 601103 601103
BURBRIDGE, G BURBRIDGE, E AN ANALYSIS OF THE MAGNETIC VARIABLE ALPHA SQUARED CANUM VENATICORUM ASTROPHYS J SUPPL SER 1, 431 (1955) CA 49, 9381 (1955)	600929 600929 600929 600929
BURBRIDGE + G BURBRIDGE + E SPECTROPHOTOMETRIC STUDY OF ALPHA SQUARED-CANUM VENATICORUM ASTRON J 59 + 318 (1954) CA 49 + 714 (1955)	600937 600937 600937 600937
BURDESE A HEAT OF OXIDATION OF URANIUM OXIDES RICERCA SCI 28 163 (1958) NSA 13 1199 (1959)	601560 601560 601560 601560
BURDESE, A BØRLERA, M THE SYSTEM ZRØ2-V2Ø5 ANN CHIM (RØME) 50, 1570 (1960)	200945 200945 200945

CA 55. 10172 (1961)	200945
BURG. A BØNDING IN BØRØN CØMPØUNDS AND IN INØRGANIC PØLYMERS J CHFM EDUC 37, 482 (1960) CA 55. 4074 (1961)	300418 300418 300418 300418
BURGER. J TAYLOR. M ANOMALIES IN THE MAGNETIC SUSCEPTIBILITY AND ELECTRICAL RESISTIVITY OF VANADIUM PHYS REV LETTERS 6. 185 (1961)	600853 600853 600853
BURK D ESTERMANN I FRIEDBURG S (CARNEGIE INST OF TECHNOL PITTSBURGH PA) THE LOW TEMPERATURE SPECIFIC HEATS OF TI ZR AND HF Z PHYSIK CHEM (FRANKFURT) 16, 183 (1958) CA 55, 8023 (1961)	200926 200926 200926 200926 200926
BURKE+ J PRØGRESS IN CERAMIC SCIENCE+ VØL I+ NEW YØRK+ PERGAMØN PRESS+ (1961) NSA 15+ 26061 (1961)	601403 601403 601403 601403
PURE URANIUM J NUCL MATER 7. 38 (1962) CA 58. 13550 (1963)	301420 301420 301420 301420 301420 301420
BURKHALTER, J ANDERSØN, R SMITH, W GØRDY, W A PRELIMINARY REPØRT ØN THE FINE STRUCTURE ØF THE MICRØWAVE ABSØRPTIØN SPECTRUM ØF ØXYGEN PHYS REV 77, 152 (1950) CA 44, 2851 (1950)	600550 600550 600550 600550
BURKHALTER: J ANDERSON: R SMITH: W GØRDY: W THE FINE STRUCTURE OF THE MICROWAVE ABSORPTION SPECTRUM OF OXYGEN PHYS REV 79: 651 (1950) (A 44: 9803 (1950)	600551 600551 600551 600551 600551
BURKHART. L STUKENBRØEKER. G ADAMS. S ISØTØPE SHIFTS IN URANIUM SPECTRA PHYS REV 75, 83 (1949) NSA 2. 891 (1949)	601373 601373 601373 601373
BURNS. J ØSBØRNE. D WESTURN. E HEAT CAPACITY ØF URANIUM TETRAFLUØRIDE FRØM 1.3 TØ 20 DEGREES K AND THE THERMØDYNAMIC FUNCTIØN TØ 300 DEGREES K CALØRIMFTER FØR THE RANGE 0.8 TØ 20 DEGREES K J PHYS CHEM 64. 387 (1960) CA 55. 4135 (1961)	200848 200848 200848 200848 200848 200848
BURRUS, C STARK EFFECT FROM 1.1 TO 2.6 MM WAVE LENGTH PH3, PD3, DI AND CO J CHEM PHYS 28, 427 (1958) CA 52, 9771 (1958)	600707 600707 600707 600707 600707
BURRUS, C. GØRDY, W. ØNE TØ TWØ MILLEMETER WAVE SPECTRØSCØPY III NØ AND DI PHYS REV. 92, 1437 (1953)	600735 600735 600735

	CA 48. 4978 (1954)	600735
8	BURRUS, C GRAYBEAL, J STARK EFFECT AT 2.0 AND 1.2 MILLIMETERS NITRIC ØXIDE PHYS REV 109, 1553 (1957) CA 52, 14326 (1958)	600736 600736 600736 600736
Ε	BURTSEV, V SAMARIN, A PRESSURE ØF SATURATED VAPØRS ØF LIQUID METALS AND THEIR IMPURITIES INVESTIGATED BY THE CARRYING GAS METHØD ZAV LAB 28, NØ 10, 11- 99 (1962) RUSS ACC 15, NØ 10, 2774 ' JARY (1963)	202012 202012 202012 202012 202012
ε	BURYLEV+ B SØLUBILITY ØF CARBØN IN LIQUID METALS ØF THE FØURTH PERIØD IZV VUZ CHERNAYA MET (1961) REV MET LIT 19+ (1962)	301071 301071 301071 301071
(BUSCH: R (U BUENØS AIRES BUENØS AIRES ARGENTINA) X RAY PRØØF ØF THE DIRECT ØXIDATIØN ØF PLATINUM Z NATURFØRSCH 5B: 130 (1950) CA 44: 8187 (1950)	600939 600939 600939 600939
8	BUSCH: R THE ØXIDES ØF PLATINUM CIENCIA INVEST (BUENØS AIRES) 7. 243 (1951) CA 46: 369 (1952)	600945 600945 600945 600945
E	BUSCOMBE: W MERRILL: P INTENSITIES OF ATOMIC ABSORBTION LINES IN THE SPECTRA OF LONG PERIOD VARIABLE STARS ASTROPHYS J 116: 525 (1952) CA 47: 3690 (1953)	100199 100199 100199 100199
8	BUSLAYEV, Y GØRBUNØVA, Y ZIRCØNIUM AND HAFNIUM ØXYFLUØRIDES IZ AK NAUK SSSR, ØTDEL KHIM NAUK NØ 2, 195 (1962) CØTS 56, 153 (1962)	300830 300830 300830 300830 300830
(BUTCHER, B (ATOMIC ENERGY RES ESTAB THE BETA PHASE CHANGE IN PURE URANIUM ATOMIC ENERGY RESEARCH ESTAB M/R 1944, 16 (1956) CA 51, 1711 (1957)	601031 601031 601031 601031 601031
В	BUTLÉR, G. HAUSNER, H. DATA BOOK ON URANIUM DIOXIDE LOS ANGELES, GLADDING MCBEAN + CO (1960)	200915 200915 200915
8	BUTLER, J MCCABE, C PAXTON, H THERMODYNAMIC ACTIVITIES IN THE FE-MN-C SYSTEM TRANS MET SOC OF AIME 221, 479 (1961)	700629 700629 700629
	BUTØRINA. L (GØRKI STATE UNIVERSITY GØRKI USSR) AN ELECTRØN DIFFRACTIØN STUDY ØF THE TUNGSTEN CARBIDE WC SØVIET PHYS CRYST 5, 216 (1960) NSA 15, 3137 (1961)	700986 700986 700986 700986 700986
E	BUZZARD R LISS R FICKLE P TITANIUM-URANIUM SYSTEM IN THE REGION O TO 30	601649 601649

ATOMIC PERCENT TITANIUM J RES NAT BUR STDS 50. 209 (1953)	601649 601649
BYKØV. V KAZARNÍKØV. V STRUCTURE ØF INTERMETALLIC CØMPØUNDS ØF ZIRCØNIUM KRISTALLØGRAFÍYA 4. 924 (1959) CA 57. 4126 (1962)	201649 201649 201649 201649
CABBAGE. A WELCH. F TRICE. J THE HEAT CAPACITY OF URANIUM DIOXIDE AS A FUNCTION OF TEMPERATURE NEPA-935 (JULY 21. 1949- DECL JULY 18. 1961) NSA 16. 5305 (1962)	601443 601443 601443 601443
CABANNES. F FORMATION OF CARBON PARTICLES IN FLAMES AND OBSERVATION OF THE C3 MOLECULE JOUR DE PHYSIQUE ET LA RADIUM 17. 492 (1956) COTS 54. 121 (1962)	301121 301121 301121 301121 301121
CADEVILLE, M. MEYER, A. CURIE POINTS AND MOMENTS OF FERROMAGNETIC BORIDES OF THE IRON GROUP OF TYPE M2B M-B (M1, M2) 2B AND (M1, M2) B COMPT REND 255, 3391 (1962 CA 58, 8508 (1963)	202013 202013 202013 202013 202013
CADY: G HARGREAVES: G (UNIV ØF WASHINGTØN) THE VAPØR PRESSURE ØF SØME HEAVY TRANSITIØN METAL HEXAFLUØRIDE J CHEM SØC: 1563 (1961) CA 55: 16048 (1961)	201046 201046 5201046 201046 201046
CADY, G HARGREAVES, G (UNIV ØF WASHINGTØN SEATTLF WASHINGTØN) VAPØR PRESSURES ØF SØME FLUØRIDES AND ØXYFLUØRIDES ØF MØLYBDENUM, TUNGSTEN, RHENIUM, AND ØSMIUM J CHEM SØC, 1568 (1961) CA 55, 16048 (1961)	201047 201047 201047 201047 201047 201047
CALVERT. E KIRK. M BEALL. R CHEMICAL REACTIONS IN THE FLECTRIC ARC. REACTIVE METAL CARBIDES BUR MINES REPT 5951. (1962)	301421 301421 301421 301421
CAMAC. M. VAUGHAN. A. ØXYGEN VIBRATIØN AND DISSOCIATIØN RATES IN ØXYGEN ARGØN MIXTURES AFBMD-TR-60-22. (1959) NS 14. 13043 (1960)	600613 600613 600613 600613
(AMERØN: A WICHERS: E (NATL RES COUNCIL WASHINGTON DC) REPORT OF THE INTERNATIONAL COMMISSION OF ATOMIC WEIGHTS J AM CHEM SOC 84: 4175 (1962) CA 58: 1915 (1963)	301422 301422 301422 301422 301422
CAMPBELL. T BLØCK, F MUSSLER. R RØBIDART. G (US BUR ØF MINES ALBANY ØRE) PREPARATION AND METALLIC REDUCTION ØF RARE EARTH HALIDES AND ØXIDES US BUR MINES REPT INVEST NØ 5882 (1961) (A 56. 5613 (1962)	201328 201328 201328 201328 201328 201328

CAMPBELL. I RØSENBAUM. D GØNSER. B THE AVAILABILITY. RECØVERY. AND PRØPERTIES ØF RHENIUM METAL J LESS-CØMMØN METALS 1. 185 (1959) CA 55. 5268 (1961)	200867 200867 200867 200867
CANO. G RATE OF VOLATILIZATION OF METALS IN A VACUUM BY GRAVIMETRIC DETERMINATION AT ELEVATED TEMPERATURES MEM SCI REV MET 59. 878 (1962) CA 58. 11051 (1963)	301423 301423 301423 301423 301423
CAPLAN» D CØHEN» M THE VØLATILIZATIØN ØF CHRØMIUM ØXIDE J ELECTRØCHEM SØC 108» 438 (1961)	700529 700529 700529
CARIO, G REINECKE, L ENERGY OF DISSOCIATION OF NITROGEN MOLECULES AND LUMINOSITY OF ACTIVE NITROGEN ANGEW CHEM 62, 48 (1950) CA 47, 5747 (1953)	600573 600573 600573 600573 600573
CARLSON. G (UNIV PITTSBURGH PITTSBURGH PA) THE VIBRATIONAL SPECTRA AND MOLECULAR STRUCTURES OF INORGANIC COMPOUNDS RE03CL. RE03BR. SI(NCO)4 AND GE(NCO)4 UNIV MICROFILMS (ANN ARBOR MICH) ORDER NO 61-3255 DISSERTATION ABSTR 22. 749 (1961) CA 56. 1122 (1962)	201229 201229 201229 201229 201229 201229 201229 201229
CARPENTER, R KATO, H X-RAY CRYSTALLØGRAPHY ØF BØRØN BMRI 5636, (1958) NS 14, 23392 (1960)	600626 600626 600626 600626
CARROLL. K BERYLLIUM A SURVEY OF THE LITERATURE AD-253284 (DEC 1960) GR 36. NO 3. 5 (1961)	700662 700662 700662 700662
CARROLL. P PREDISSOCIATION IN THE SCHUMANN RUNGE BANDS OF OXYGEN ASTROPHYS J 129. 794 (1959) CA 53. 17665 (1959)	600552 600552 600552 600552
CARROLL D (GEN ELEC CO RICHLAND WASH) SYSTEM PU02-ZR02 J AM CERAM SOC 46 194 (1963) CA 59 7226 (1963)	202014 202014 202014 202014 202014
CARROLL, P A NEW TRANSITION IN MOLECULAR NITROGEN CAN J PHYSICS 36, 1585 (1958) CA 53, 1914 (1959)	600574 600574 600574 600574
CARROLL P (UNIV CHICAGO ILL) THE STRUCTURE OF THE GOLDSTEIN-KAPLAN BANDS OF N2 PROC ROY SOC (LONDON) SER A 272 • 270 (1963) CA 58 • 7505 (1963)	301424 301424 301424 301424 301424

THE SPECTRUM OF CN IN THE VACUUM ULTRAVIOLET CAN J PHYSICS 34+ 83 (1956)	600677 600677 600677 600677
NEAR INFRARED SYSTEM OF NITROGEN	600572 600572 600572
ROTATIONAL ANALYSIS OF THE 5-1 BAND OF THE B PRIME-B	600693 600693 600693 600693
	600545 600545 600545 600545 600545
CARTER. J DAANE. A FØRMING URANIUM CARBIDES US PATENT 2526805 (1950) CA 45. 107 (1951)	400560 400560 400560 400560
CARTER: J DAANE: A URANIUM CARBIDE US PATENT 2569225 /1951) CA 46: 405 (1952)	400561 400561 400561 400561
CARTER+ W (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEXICØ) THERMØDYNAMIC PRØPERTIES ØF SEVEN METALS AT ZERØ PRESSURE USAEC LAMS-2640-62 (1962) CA 57+ 4111 (1962)	300749 300749 300749 300749 300749
CASH. A HUGHES. E MURDØCK. C (CØRNFEL UNIV ITHACA NY) DTRUCTURE ØF CRYSTALLINE URANIUM ACTA CRYST 14. 313 (1961) CA 56. 6738 (1962)	201352 201352 201352 201352 201352
CASSEDANNE J FURESTIER H EQUILIBRIUM DIAGRAM OF THE SYSTEM - LANTHANIUM OXIDE - YTTRIUM OXIDE COMPT REND 253+ 2953 (1961) CA 56+ 10981 (1962)	700801 700801 700801 700801 700801
CATALAN. M. RICØ, F. SERIES AND IØNIZATIØN PØTENTIALS IN THE MIII SPECTRA ØF THE ELEMENTS ØF THE PD GRØUP ANALES REAL SØC ESPAN FIZ Y QUIM 53A, 85 (1957) CA 54. 2929 (1960)	601206 601206 601206 601206 601206
CATALAN, M RICO, F SERIFS AND IONIZATION POTENTIALS IN THE FIRST AND SECOND SPECTRA OF THE PALLADIUM GROUP ELEMENTS ANNALES REAL SOC ESPAN FIS Y QUIM 48A, 328 (1952) CA 48, 6830 (1954)	700800 700800 700800 700800 700800
CAUCHØIS. Y Energy Levels of Heavy Atoms	100210 100210

J PHYS RADIUM 13, 113 (1952) CA 47, 400 (1953)	100210 100210
CAUCHOIS, Y ENERGY LEVELS OF THE ATOMS WITH Z BELOW 70 J PHYS RADIUM 16, 253 (1955) CA 49, 12107 (1955)	301102 301102 301102 301102
CAVALLERØ, U A NEW METHØD ØF DETERMINING THE HEAT ØF FUSIØN FRØM CØØLING CURVES I CØØLING CURVES ØF LA, CE, PR, AND AL ATTI ACCAD ITALIA, REND NØ 7, 4, 520 (1943) CA 41, 7223 (1943)	700895 700895 700895 700895 700895
CAVELL+ R CLARK+ H (UNIV BRITISH COLUMBIA VANCOUVER CANADA) PREPARATION AND PROPERTIES OF VANADIUM TETRAFLUORIDE J CHEM SOC 1962+ 2692 CA 57+ 5556 (1962)	201725 201725 201725 201725 201725
CERVONE E FURLANI C (UNIV ROME ROME ITALY) ANN CHIM (ROME) 51 · 838 (1961) SOME OBSERVATIONS ON THE LOWEST VALENCIES OF TITANIUM CA 56 · 13746 (1962)	201521 201521 201521 201521 201521
CHADWICK. U BIBLIØGRAPHY ØN THE PRØDUCTIØN AND PRØPERTIES ØF SILICØN CARBIDE UK AT ENERGY AUTHØRITY TRG INFØRM SER 295. 37 (1963) CA 59. 8348 (1963)	202015 202015 202015 202015 202015
CHAKLADER + A (UNIV BRIT COLUMBIA VANCOUVER CAN) X-RAY STUDY QUARTZ-CRISTOBALITE TRANSFORMATION J AM CERAM SOC 46 + 66 (1963) CA 58 + 11075 (1963)	301426 301426 301426 301426 301426
CHAKLADER A (UNIV BRIT COLUMBIA VANCOUVER CAN) GEOMETRIC METHODS FOR QUARTZ-CRISTOBALITE TRANSFORMATION J AM CERAM SOC 46, 192 (1963) CA 59, 5868 (1963)	301425 301425 301425 301425 301425
CHAKLADER: A X-RAY STUDY OF QUARTZ-CRISTOBALITE TRANSFORMATION J AM CERAMIC SOC 46: 66 (1963)	301201 301201 301201
CHAMBERLAIN, J THE BLUE AIRGLØW SPECTRUM ASTRØPHYSICS J 128, 713 (1958) CA 52, 5860 (1959)	600542 600542 600542 600542
CHAMBERS, R THE INVERSION OF SPECIFIC HEAT CURVES PROC PHYS SOC (6B) 79, 941 (1961) PA 65, 570 (1962)	300819 300819 300819 300819
CHANDRASEKHAR, B THE ANOMALOUS THERMAL EXPANSION OF SOME RARE EARTH METAL, ACTA MET 6, 212 (1958) CA 52, 7798 (1958)	601098 601098 601098 601098

CHANEY. W (NASA LANGLEY RES CENTER LANGLEY FIELD VA) A METHØD FØR THE CALCULATIØN ØF LATTICE ENERGIES ØF CØMPLEX CRYSTALS WITH APPLICATIØN TØ THE ØXIDES ØF MØLYBDENUM NASA-TR-R-112 (1961) NSA 15. 27598 (1961)	701068 701068 701068 701068 701068 701068
CHAPMAN. A INVESTIGATION OF THE SI-O-C SYSTEM. INCLUDING COMPATIBILITY RELATIONS. KINETICS OF REACTIONS. AND EQUILIBRIUM INFORMATION UNIV MICROFILMS (ANN ARBOR. MICH). L C CARD NO MICH 60-2113. DISSERTATION ABSTR 21. 141 (1960) CA 55. 2248 (1961)	200810 200810 200810 200810 200810 200810
CHAPMAN. A T VØLATILITY ØF VØ2 PLUS X AND PHASE RELATIØNS IN THE URANIUM-ØXYGEN SYSTEM PAPER 1-25-63 ØF 65TH ANNUAL MEETING ØF AM CERAM SØC PITTSBURGH PA APRIL 29. (1963) CERAMIC BULLETIN 42. 263 (1963)	202016 202016 202016 202016 202016 202016
CHAPMAN. A ST PIERRE. G FØSTER. W SHEVLIN. T (ØHIØ STATE UNIV CØLUMBUS ØHIØ) THE STABLE PHASE ØF SILICØN MØNØXIDE U S DEPT CØM ØFFICE TECH SERV P B REPT 154415 (1961) CA 58. 7586 (1963)	301427 301427 301427 301427 301427
CHAPMAN» M (ATOMICS INTERNATION'L CANOGA PARK CAL) TIN ØXIDES AND TITANIUM ØXIDES» UNCLASSIFIED BIBLIOGRAPHY NAA-SR-5729 (1960) NSA 15. 9332 (1961)	701005 701005 701005 701005 701005
CHARLES, G A COMPILATION OF DATA ON SOME SPECTRA OF THORIUM US ATOMIC ENERGY COMM ORNL-2319, 162 (1958) CA 52, 14322 (1958)	601084 601084 601084 601084
CHARLTON» M DAVIS» G ALLOTROPES OF TUNGSTEN NATURE 175» 131 (1955) CA 49» 4482 (1955)	700513 700513 700513 700513
CHASE, G (GEN ELEC CØ CINCINNATI ØHIØ) ØN THE EXISTENCE ØF A CØMPØUND IN THE SYSTEM YTTRIUM-URANIUM- ØXYGFN ACTA CRYST 15, 91 (1962) CA 57, 10613 (1962)	201826 201826 201826 201826 201826 201826
CHASTON. J TEMPERATURE COEFFICIENT OF ELECTRICAL RESISTANCE OF HIGH-PURITY RHODIUM NATURE 195. 793 (1962)	300577 300577 300577 300577
CHASTON. J PROGRESS IN PRECIOUS METALS METALLURGIA 42. 310 (1950) CA 45. 1480 (1951)	900941 900941 900941 900941
CHAUDRON. G NEW CHEMICAL AND PHYSICAL PROPERTIES OF METALS OF VERY HIGH PURITY OBTAINED BY ZONE-MELTING	700557 700557 700557

BULL SØC CHIM FRANCE . 18 (1961)	700557
CHAUVENET, E THE STUDY OF HALOGENATED AND OXYHALOGENATED DERIVATIVES OF THORIUM ANN CHIM PHYS 23, 425 (1911) CA 6, 45 (1912)	900109 900109 900109 900109 900109
CHEKHØVSKØI, V HEAT CAPACITY AND ENTHALPY ØF MØLYBDENUM IN THE TEMPERATURE INTERVAL 0-2500 DEGREES C INZH FIZ ZH AKAD NAUK BELØRUSSK SSR 5, NØ 6, 43 (1962)	600633 600633 600633
CHEKHØVSKØI, V (MØSCØW ELECT INST MØSCØW RUSSIA) HEAT CAPACITY AND ENTHALPY ØF CØRUNDUM IN THE TEMPERATURE INTERVAL FRØM 500 TØ 2000 DEGREES C INZH-FIZ ZH AKAD NAUK BELØRUSSK SSR 5, 62 (1962) NSA 17, 2980 (1963)	701074 701074 701074 701074 701074 701074
CHEKHØVSKØY, V SHUMYATSKY, B YAKIMØVICH, K TUNGSTEN ENTHALPY IN THE TEMPERATURE RANGE FRØM 350 TØ 2000 DEGREES C INZH FIZ ZH AKAD NAUK BELØRUSCH SSR 5. NØ 10. 13 (1962)	300868 300868 300868 300868
CHEN, M CHIANG, S SYNTHESIS OF ARTIFICAL DIAMONDS HUA HSUEL TUNG PAO 487 (1962) CA 58, 4195 (1963)	301428 301428 301428 301428
CHENG, C GUPTA, K RENTH, E VANBECK, P LØW TEMPERATURE SPECIFIC HEAT ØF BØDY-CENTERED CUBIC TITANIUM-VANADIUM ALLØYS PHYS REV 126, NØ 6, 2030 (1962)	300760 300760 300760 300760
CHERON, T BERYLLIUM ØXIDE A LITERATURE SURVEY AD 269729 (1961)	301429 301/29 301429
CHIANG. T (UNIV WISCONSIN MADISON WISCONSIN) THE REDUCED STATES OF THE GROUP IV TRANSITIONAL ELEMENTS UNIV MICROFILMS (ANN ARBOR MICH) OPDER NO 62-1957. DISSERACTION ABSTR 22. 3381 (1962) CA 57. 4267 (1962)	201680 201680 201680 201680 201680 201680
CHIKALLA, T MELTING BEHAVIØR IN THE SYSTEM VØ2-PUØ2 J AM CERAM SØC 46, 323 (1963)	301203 301203 301203
CHERKASHIN, Y GLADISHEVSKIY, I KRIPYAKEVICH, P COMPOUNDS OF TRANSITION METALS AND BERYLLIUM SILICON GERMANIUM AND TIN DOP LVIV DERZHAV, UNIV IMENI I FRANKA ,, NØ 3, 180 (1957) COTS 54, 238 (1962)	301107 301107 301107 301107 301107
CHIOTTI, P THORIUM-CARBON SYSTEM IOWA STATE COLL J SCI 26, 185 (1952) AECD-3072 ISC-103 (1950) CA 47, 2026 (1953) NSA 5, 3141 (1951)	100204 100204 100204 100204 100204

CHIØTTI. P SUMMARY ØF RESEARCH ØN EXPERIMENTAL REFRACTØRIES BØDIFS ØF THE HIGH MELTING NITRIDES CARBIDES AND URANIUM DIØXIDF AFCD-3204 ISC-44 (1949) NSA 5. 4416 (1951)	601416 601416 601416 601416 601416 601416
CHIØTTI P (IØWA STATE CØLL AMES IØWA) HIGH-TEMPERATURE CRYSTAL STRUCTURE ØF THØRIUM J FLFCTRØCHEM SØC 101 • 567 (1954) CA 50 • 20 (1956)	601198 601198 601198 601198
CHIØTTI+ P HIGH TEMP CRYSTAL STRUCTURF ØF THØRIUM (ØNTRACT W-7405-ENG-82 (ISC-481) (1954) NSA 8+ 4338 (1954)	601227 601227 601227 601227
CHIØTTI. P EXPERIMENTAL REFRACTØRY BØDIES ØF HIGH-MELTING NITRIDES CARBIDES AND URANIUM DIØXIDE J AM CERAM SØC 35. 123 (1952) NSA 6. 3566 (1952)	601237 601237 601237 601237
CHIØTTI. P (AMES LAB AMES IØWA) HANFØRD SLUG SEMI-ANNUAL REPT JAN 1-JUN 30. 1956. ISC-761 NSA 11. 1877 (1957)	601324 601324 601324 601324
CHIDITI P GILL & PHASE DIAGRAM AND THERMODYNAMIC PROPERTIES OF THE THORIUM- ZINC SYSTEM TRAN MET SOC AIME 215 + 573 (1961) CT NO 13 + (1961)	700624 700624 700624 700624 700624
CHIØTTI» P KLEPFER» H WHITE» R LATTICE PAPAMETERS ØF URANIUM FRØM 25 TØ 1132C TRANS AM SØC METALS PREPRINT NØ 83» 12 (1958) CA 52° 19807 (1958)	601074 601074 601074 601074
CHIPMAN. J (MASS INGT OF TECHNOL CAMBRIDGE MASS) THE FREE ENERGY OF SILICA J AM CHEM SOC 83. 1762 (1961) CA 55. 16114 (1961)	201050 201050 201050 201050 201050
(HISWICK+ H. DWIGHT+ A. LLØYD+ L. NEVITT+ M. ZEGLER+ S. ADVANCES IN THE PHYSICAL METALLURGY DE URANIUM AND ITS ALLØYS. PRØC U. N. INTERN CØNE PEACEFUL USES AT ENERGY 2ND GENEVA. 6+ 394 (1958). CA. 54+ 1225 (1960).	601207 601207 601207 601207 601207 601207
CHODURA. B. MALY. J. A. CONTRIBUTION OF THE STRUCTURE OF U308 A/CONF 15/P/2099 NSA 13. 6406 (1959)	601546 601546 601546 601546
CHRETIEN, A DUHART, P THE MAGNESIUM BØRIDES, THEIR THERMAL RELATIØNSHIP COMPT REND 254, NØ 8, 1439 (1962) BHT NØ 2, 33 (1962)	300536 300536 300536 300536

CHRETIEN, A HELGØRSKY, J (UNIV SØRBØNNE PARIS FRANCE) BØRIDES ØF MØLYBDENUM AND TUNGSTEN, MØB4 AND WB4, NEW CØMPØUNDS CØMPT REND 252, 742 (1961) CA 55, 17330 (1961)	201084 201084 3201084 201084 201084
CHRISTIAN. J (UNITED KINGDØM AT ENERGY HARWELL ENGLAND) THE GAMMA TØ ALPHA TRANSFØRMATIØN IN URANIUM ALLØYS AERE-M/R-1811 NSA 13. 19210 (1959)	601521 601521 601521 601521 601521
CHRISTIAN. R DUFF. R YARGER. F EQUATION OF STATE OF GASES BY SHOCK WAVE MEASUREMENTS II THE DISSOCIATION ENERGY OF NITROGEN J CHEM PHYS 23. 2045 (1955) CA 50. 3027 (1956)	600575 600575 600575 600575 600575
CHUBB, W DICKERSØN, R (BM1 CØLUMBUS ØHIØ) PRØPERTIES ØF URANIUM CARBIDES AM CERAM SØC BULL 41, 564 (1962)	601481 601481 601481 601481
CHUBB. W PHILLIPS. W (BATTELLE MEM INST COLUMBUS 0HIO) CONSTITUTION OF THE PARTIAL SYSTEM. URANIUM MONOCARBIDE-URANIUM DICARBIDE TRANS AM SOC METALS 53. 465 (1961) NSA 16. 2255 (1962)	601442 601442 601442 601442 601442
CHUBB. W TOWNLEY. C GETZ. R (BATTELLE MEM INST COLUMBUS ØHIØ) DIFFUSION COEFFICIENTS OF URANIUM AND CARBON IN URANIUM MONOCARBIDE US AT ENERGY COMM BMI-1551 (1961) CA 56. 414 (1962)	201311 201311 201311 201311 201311 201311
CHUPKA. W BERKOWITZ. J GIESE. C INGHRAM. M THERMODYNAMIC STUDIES OF SOME GASEOUS METALLIC CARBIDES J PHYS CHEM 62. 611 (1958) CA 52. 13394 (1958)	700866 700866 700866 700866
CHUPKA. W BERKOWITZ. J MESCHI. D (ANL LEMONT ILL) THERMODYNAMIC PROPERTIES OF THE WATER- BORIC OXIDE AND WATER- LITHIUM OXIDE SYSTEMS BY MASS SPECTROMETRIC METHODS PROCEEDINGS OF PROPELLANT THERMODYNAMICS AND HANDLING CONF (1959) OHIO STATE UNIV NSA 15. 1421 (1961)	700892 700892 700892 700892 700892 700892
CHUPKA, W INGHRAM, M PØRTER, R DISSØCIATIØN ENERGY ØF GASEØUS LAØ J CHEM PHYS 24, 792 (1956) CA 50, 11101 (1956)	700925 700925 700925 700925
CLAASSEN. H SELIG. H MALM, J (ARGONNE NATL LAB LEMONT ILL) VIBRATIONAL SPECTRA OF MOF6 AND TCF6 J CHEM PHYS 36, 2888 (1962) CA 57, 11983 (1962)	201854 201854 201854 201854 201854
CLAASSEN. H MALM. J SELIG. H	201855

(ARGONNE NATL LAB VIBRATIONAL SPECTRA OF RE J CHFM PHYS 36, 2890 (196 CA 57, 11986 (1962)		ILLI	201855 201855 201855 201855
CLARK, A STRAKNA, R THE LØW-TEMPERATURE EXCES DIØXIDE GLASS PHYS CHEM GLASSES 3, NØ 4 CT NØ 17, 93 (1962)	S SPECIFIC HEAT • 121 (1962)	ØF SILICØN	300580 300580 300580 300580 300580
CLARK C (SØUTHERN METHØDIST UNIV CALCULATED LATTICE SPECIF CUBIC ELEMENTS PHYS REV 125 • 1898 (1962)		TEXAS) EN BØDY-CENTERED	601563 601563 601563 601563
CLAUS. H ULMER. K STUDY OF THE ENERGY BAND TUNGSTEN AND MOLYBDENUM W AND MOLYBDENUM WITH ISO C 2 PHYSIK 173. 462 (1963)	HROMATE MEASUREM	MEASUREMENTS JENTS	202017 202017 202017 202017 202017
CLAYTON: J ARONSON: S (WESTINGHOUSE ELEC: CO: DENSITIES OF URANIUM OXID US AT ENERGY COMM WAPD-BT CA 53: 8788 (1959)	PITTSBURG E IN THE REGIØN -10. 96 (1958)	PA) UØ2-U409	601122 601122 601122 601122 601122
CLEMENTI+ F ELECTRONIC STATE IN THE C J AM CHEM SOC 83+ 4501 (1 PÅ 65+ 2005 (1962)			300815 300815 300815 300815
CLEMENTI • E (IBM SAN JØSE RES LAB DISSØCIATIØN ENERGY CØMPU AN EXAMPLE J CHEM PHYS 38 • 2780 (19	TATIONS IN DIATO		301204 301204 301204 301204 301204
CLEMENTI» E MCLEAN» A SCF-LCAØ-MØ WAVE FUNCTIØN J CHFM PHYS 36, NØ 1. 45 PA 65. 2014 (1962)	FØR THE GRØUND (1962)	STATE Ør C3	300814 300814 300814 300814
CLIFTON. D MACWOOD. G THERMODYNAMICS OF THE TIT I HEAT OF FORMATION OF TI J PHY CHEM 60. 309 (1956)	CL3		300292 300292 300292 300292
CLOUD, W SCHREIBER, D BA (E I DUPONT DE NEMOURS AND X-RAY AND MAGNETIC STUDIE J APPL PHYS 33, 1193 (196 CA 57, 15923 (1962)	CØ WILMINGTØN S ØF CRØZ SINGLE		201931 201931 201931 201931 201931
CLOUGHERTY, E 3THROP, K A NEW PHASE FORMED BY HIG CUBIC MOLYBE "UM MONOCARB NATURE 191, 1194 (1961)	H-PRESSURE TREAT	MENT. FACE-CENTERED	600843 600843 600843 600843
CLUSIUS. K FRANZØSINI. P (UNIV ZURICH	ZURICH	SWITZERLAND	200927 200927

LOW-TEMPERATURE RESEARCH XIX ATOMIC AND ELECTRONIC HEAT CAPACITIES OF TITANIUM BETWEEN 13 AND 273 DEGREES K Z PHYSIK CHEM (FRANKFURT) 16, 194 (1958) CA 55, 8024 (1961)	200927 200927 200927 200927
CLUSIUS, K FRANZØSINI, P (UNIV ZURICH SWITZ) THE ATØMIC AND ELECRØNIC HEATS ØF THØRIUM Z NATURFØRSCH 11A, 957 (1956) CA 51, 4117 (1957)	601038 601038 601038 601038
CLUSIUS, K FRANZØSINI, P (UNIV ØF ZURICH) LØW TEMPERATURE RESEARCH THE ATØMIC AND ELECTRØNIC HEAT ØF CR BETWEEN 24K AND 273K Z NATURFØRSCH 17, 522 (1962) CA 57, 10592 (1962)	301051 301051 301051 301051 301051 301051,
CLUSIUS, K FRANZØSINI, P PIESBERGEN, U (UNIVERSITAT ZURICH SWITZ) RESULTS ØF LØW TEMPERATURE RESEARCH, XXXII, THE ATØMIC AND ELECTRØN HEAT ØF V AND NB BETWEEN 10 DEGREES AND 273 DEGREES K Z NATURFØRSCH 15A, 728 (1960) NSA 15, 3280 (1961)	700987 700987 700987 700987 700987 700987
CLUSIUS. K LØSA. C LØW TEMPERATURE RESEARCH XIV ATØMIC AND ELECTRØNIC HEATS ØF RHØDIUM AND IRIDIUM BETWEEN 10 DEG AND 273 DEG K Z NATURFØRSCH 10A. 545 (1957) CA 51. 4118 (1957)	601039 601039 601039 601039
CLUSIUS. K LØSA. C FRANZØSINI. P LØW TEMPERATURE RESEARCH 18 ATØMIC AND ELECTRØNIC HEAT ØF PLATINUM BETWEEN 10 AND 273 K Z NATURFØRSCH 12A. 34 (1957) CA 51. 10215 (1957)	601101 601101 601101 601101
CLUSIUS. K PIESBERGEN. U ATOMIC AND ELECTRONIC HEAT CAPACITY OF URANIUM BETWEEN 10 DEG K AND ROOM TEMPERATURE HELV PHYS ACTA 31. 302 (1958) CA 53. 4881 (1959)	601119 601119 601119 601119
COCCO. A COMPOSITION LIMITS AT HIGH TEMPERATURES OF THE CUBIC PHASE COMPOSED OF ZRO2 AND CAO CHIM E IND 41. 882 (1959) CA 55. 22960 (1961)	201168 201168 201168 201168 201168
COCCO, A BARBARIOL, I (UNIV TRIESTE TRIESTE ITALY) THE ELECTRICAL CONDUCTIVITY OF OXIDES AT ELEVATED TEMPERATURES RIC SCI REND SEZ A 2, NO 3, 296 (1962) CA 58, 7462 (1963)	301430 301430 301430 301430 301430 301430
COCCO. A SCHROMEK. N (UNIV TRIESTE ITALY) SUBSOLIDES PHASE RELATIONS IN THE SYSTEM MGO-ZRO2-TIO2 ANN CHIM (ROME) 51, 1194 (1961) CA 57. 4094 (1962)	201637 201637 201637 201637 201637
COCCO. A SCHROMEK. N	201188

(UNIV TRIESTE TRIESTE ITALY) THE ZR02-T102-S102 SYSTEM CHIM E IND (MILAN) 42. 480 (1960) CA 56. 58 (1962)	201188 201188 201188 201188
COCCO, A SCHROMEK, N (UNIV TRIESTE TRIESTE ITALY) CUBIC-STRUCTURE SOLID SOLUTIONS OF MGO AND ZRO2 RADEX RUNDSCHAU 1961, 590 (1961) CA 56, 986 (1962)	201211 201211 201211 201211 201211
COCCO, A VIRDIS, P PHASE RELATIONS IN THE SOLID STATE IN THE SYSTEM CAO-ZRO2-T102 CHIM E IND (MILAN) 43, 1115 (1961) CA 56, 5447 (1962)	201316 201316 201316 201316
COCHRAN. J (MIT CAMBRIDGE MASS) SPECIFIC HEAT OF TANTALUM AND TIN NEAR THE SUPERCONDUCTING CRITICAL TEMPERATURE ANN PHYS (N.Y.) 19. 186(1962) CA 57. 13234 (1962)	201877 201877 201877 201877 201877 201877
COCHRAN. C FOSTER. L THE STABILITY OF SILICA J PHYS CHEM 66. 380 (1962)	300395 300395 300395
CODLING. K ULTRAVIOLET EYTERSTONS OF THE ARC SPECTRA OF THE ALKALINE EARTHS. THE ABSORBTION SPECTRUM OF MAGNESIUM VAPOR PROC PHYS SOC (LONDON) 77. 797 (1961) CA 55. 13043 (1961)	600775 600775 600775 600775
COEFFIER. G TRAORE. K BRENET. J TRANSFORMATIONS OF THE STRUCTURE OF ANHYDROUS AND HYDRATED RHENIUM DIOXIDE COMPT REND 253. 103 (1961) CT NO 16. (1961)	700648 700648 700648 700648 700648
COFFMAN. J. COULSON. K. KIBLER. G. (GE FLIGHT PROPULSION LAB CINCINNATI UF 10) CARBONIZATION OF PLASTICS AND REFRACTORY MATERIAL. RESEARCH PROGRAM NP-9791 (1960) NSA 15. 9419 (1961)	701006 701006 701006 701006 701006 701006
COFFMAN. J. COULSON. K. KIBLER. G. (GE FLIGHT PROPULSION LAB. CINCINNATI OHIO) CARBONIZATION OF PLASTICS AND REFRACTORY MATERIAL' RESEARCH PROGRAM NP-10151 (1961) NSA 15. 19844 (1961)	701040 701040 701040 701040 701040 701040
COFFMAN. J KIBLER. G RIFTHOF. T WATT A (GE FLIGHT PROPULSION LAB CINCINNATI ØHIØ) CARBONIZATION OF PLASTICS AND REFRACTORY MATERIALS RESEARCH PROGRAM WADD TR-60-646. (1960) AD-236160 (1960) NSA 15. 5381 (1961) NSA 15. 3070 (1961)	700985 700985 700985 700985 700985 700985 700985
COFFMAN. J KIBLER. G RIETHOF. T WATTS. A	700993

(GE FLIGHT PROPULSION LAB CINCINNATI OHIO) CARBONIZATION OF PLASTICS AND REFRACTORY MATERIALS RESEARCH WADD-TR-60-646 (1960) NSA 15. 5381 (1961)	700991 700993 700993 700993
COHAN: N PUGH: D TREDGOLD: R (UNIV COLL N WALES BANGOR ENGLAND) BAND STRUCTURE OF DIAMOND PROC PHYS SOC (LONDON) 82 (525): PT 1: 65 (1963) CA 59: 3434 (1963)	301431 301431 301431 301431 301431
COHEN: I SCHANER: B (BETTIS AT POWER LAB PITTSBURGH PA) A METALLOGRAPHIC AND X-RAY STUDY OF THE U02-ZROZ SYSTEM J NUCL MATER N09: 18 (1963) CA 59: 8173 (1963)	202018 202018 202018 202018 202018
CØHEN, I SCHANER, B (BETTIS AT PØWER LAB PITTSBURGH PA) A METALLØGRAPHIC AND X-RAY STUDY ØF THE UØ2-ZRØ2 SYSTEM US AT ENERGY CØMM WAPD-253, (1962) CA 57, 11910 (1962)	201845 201845 201845 201845 201845
COLES. B (IMPERIAL COLL LONDON ENGLAND) SPIN-DISORDER EFFECTS IN THE ELECTRICAL RESISTIVITIES OF METALS AND ALLOYS ADVANCES IN PHYS 7, 40 (1958) NSA 12, 8497 (1958)	601498 601498 601498 601498 601498
COLLIGAN: G GALASSO: F STRUCTURE OF VAPOUR-DEPOSITED CARBON NATURE 190: 621 (1961) PA 64: 11564 (1961)	600860 600860 600860
COLLINS, M LATTICE DYNAMICS OF MAGNESIUM PROC PHYS SOC (LONDON) 80, PT 2 362 (1962)	300870 300870 300870
CØLLØNGUES. R PHASE DIAGRAMS ØF ZIRCØNIA-RARE EARTH ØXIDE SYSTEMS BULL SØC CHIM FRANCE 1961, 70 (1961) CA 56. 986 (1962)	201212 201212 201212 201212
COLLONGUES. R GILLES. J LEJUS. A ACTION OF AMMONIA ON SOME SUPER-REFACTORY OXIDES BULL SOC CHIM FRANCE 2113 (1962) BHT NO 2 42 (1963)	301205 301205 301205 301205
COLTON: E BORON-SILICON REACTION INORG AND NUCLEAR CHEM 17: 108 (1961)	700609 700609 700609
COLTON: R (AT ENERGY RES ESTAB HARWELL ENGLAND) RHENIUM HEXACHLORIDE NATURE 194: 374 (1962) CA 57: 4269 (1962)	201684 201684 201684 201684 201684
COLTON, R (AT ENERGY RES ESTAB HARWELL ENGLAND) THE BROMIDES AND ØXIDE BROMIDES OF RHENIUM J CHEM SOC 1962, 2078	201683 201683 201683 201683

CA 57+ 4268 (1962)	201683
COLVINOR ARAJSO S (U.S. STEEL CORP RES CENTER MONROEVILLE PA) ELECTRICAL RESISTIVITY OF SCANDIUM J. APPL PHYS 34. 286 (1963) CA 58. 5121 (1963)	301035 301035 301035 301035 301035
COLVIN+ R ARAJS+ S PECK+ J PARAMAGNETIC BEHAVIOR OF METALLIC CERIUM AND EUROPIUM PHYS REV 122+ 14 (1961)	600875 600875 600875
PI PAPOTALI OPATALITU OM BUM J	601389 601389 601389 601389
COMBARIEN. A D COSTA. P MICHEL. J C SPECIFIC HEAT OF URANIUM MONOCARBIDE AT LOW TEMPERATURES COMPT REND 256. 5518 (1963)	301206 301206 301206
COMSA. G GELBERG. A 10SIFESCU. B (INST OF ATOMIC PHYSICS BUCHAREST ROMANIA) TEMPERATURE DEPENDENCE OF THE WORK FUNCTION OF FETALS PHYS REV 122. 1091 (1961) NSA 15. 18546 (1961)	700940 700940 700940 700940 700940
NSA 15. 18546 (1961) COMSTOCK. M PROPERTIES OF REFRACTORY NUCLEAR MATERIALS TID 3906. (1960) NS 14. 22034 (1960)	600623 600623 600623 600623
CONLON. D DOYLE. W (UNIV COLL DUBLIN IRE) ABSORPTION SPECTRA OF VANADIUM. NIOBIUM. AND TANTALUM PENTOXIDES J CHEM PHYS 35. 752 (1961) CA 56. 5538 (1962)	201325 201325 201325 201325 201325 201325
CONNICK. R OXIDATION STATES OF THE RARE EARTH AND ACTINIDE ELEMENTS J CHEM SOC 1949. 2. 235 (1949) CA 44. 8274 (1950)	400528 400528 400528 400528
CONNOLLY. A MENDELSSOHN. K (UNIV ØXFØRD ØXFØRD ENGLAND) THERMAL CONDUCTIVITY OF TANTALUM AND NIØBIUM BELØW 1 DEGREES K PROC ROY SOC (LØNDØN) 266. 429 (1962) CA 56. 14953 (1962)	201535 201535 201535 201535 201535
CONNOLLY. D \(\frac{1}{U}\cdot K\cdot \text{AT ENERGY} \text{LANCS} \text{England}\) \(A\text{ NEW INTERPRETATION OF THE X-RAY} \\ \text{DIFFRACTION PATTERN OF MALLINCKRODT U03} \\ \text{ACTA CRYST 12. 949 (1959)} \\ \text{NSA 14. 2744 (1960)}	601365 601365 601365 601365 601365
COOPER. A (BELL LABS MURRAY HILL N JERSEY) PRECISE LATTICE CONSTANTS OF GERMANIUM. ALUMINUM. GALLIUM. ARSENIDE. URANIUM. SULPHUR. QUARTZ AND SAPPHIRE ACTA CRYST 15. 578 (1962)	601464 601464 601464 601464 601464

NSA 16. 20380 (1962)	601464
COOPER. J R HANSLER. R L (G E CLEVELAND OHIO) VARIATION OF ELECTRICAL RESISTIVITY OF CUBIC TANTALUM CARBIDE WITH COMPOSITION J CHEM PHYS 39. 248 (1963)	301207 301207 301207 301207 301207
COOPER. T SRP, 0 (WRIGHT-PATTERSON AFB DAYTON OHIO) REFRACTORY METALS AND THEIR PROTECTION AEROSPACE ENG 22, 46 (1963) CA 58. 8747 (1963)	202019 202019 202019 202019 202019
CORDFUNKE, E (REACTOR CENTER ALPHA U03 PREPARATION AND THERMAL STABILITY J INORG NUCL CHEM 23, 285 (1961) CA 57, 8161 (1962)	201785 201785 201785 201785 201785
CORDFUNKE, E MEYER, G (LAB GEN INORG CHEM DELFT NETH) THE SYSTEM IRIDIUM OXYGEN I MEASUREMENTS ON THE VOLATILE OXIDE OF IRIDIUM REC TRAV CHIM 81, 495 (1962) CA 57, 11915 (1962)	301054 301054 301054 301054 301054 301054
CORDFUNKE, E MEYER. G THE SYSTEM IRIDIUM-OXYGEN II THE DISSOCIATION PRESSURE OF IR02 REC. DE TRAVAUX CHIM. DES PAYS. BAS 81, 670 (1962)	300572 300572 300572
CØRNMAN. W (E I DU PØNT DE NEMØURS + CØ AIKEN S CAR) PØLYMØRPHS ØF UØ3. CØNVERSIØN TØ UF4 U S AT ENERGY CØMM DP-750 (1962) CA 58. 5240 (1963)	301030 301030 301030 301030 301030
CØRNWELL. J (IMPERIAL COLL LØNDØN ENGLAND) ELECTRØNIC ENERGY BANDS ØF THE ALKALI MFTALS AND METALLIC BERYLLIUM PRØC RØY SØC (LØNDØN) 261A. 551 (1961) CT NØ 15. (1961) NSA 15. 21307 (1961)	700667 700667 700667 700667 700667 700667
CORTER. W (LOS ALAMOS SCI LAB LOS ALAMOS NEW MEXICO) THERMODYNAMIC PROPERTIES OF SEVEN METALS AT ZERO PRESSURE LAMS-2640 (1961) NSA 16. 19354 (1962)	601631 601631 601631 601631
COST. J (UNIV ILL URBANA ILL) EMISSIVITIES OF NIOBIUM AND NIOBIUM-N: TROGEN SOLID SOLUTIONS TRANS AIME 224. 634 (1962) CA 57. 8075 (1962)	201781 201781 201781 201781 201781
CØST, J WERT, C (UNIV ØF ILLINØIS URBANA ILLINØIS) METAL-GAS EQUILIBRIUM IN THE NIØBIUM-NITRØGEN TERMINAL SØLID SØLUTIØN ACTA MET 11, 231 (1963) CA 58, 13207 (1963)	301432 301432 301432 301432 301432 301432

```
COST. J WERT. C
                                                                 300681
METAL-GAS EQUILIBRIUM AND THE NIØBIUM-NITRØGEN
                                                                 300681
 SOLID SOLUTION
                                                                 300681
 CONTRACT AF49(638)672 (1962)
                                                                 300681
 AF ØSR-2067
                                                                 300681
COUGHLIN. J
                                                                 700914
(BUR OF MINES
                             BERKELEY
                                                  CALIFI
                                                                 700914
CONTRIBUTIONS TO THE DATA OF THEORETICAL METALLURGY XII HEATS 700914
 AND FREE ENERGIES OF FORMATION OF INORGANIC EXIDES
                                                                 700914
 BUR MINES BUL 542 (1954)
                                                                 700914
 NSA 9, 529 (1955)
                                                                 700914
COURTEL + R LORIERS + J
                                                                 400519
 FORMATION OF CUBIC CE203 IN THE OXIDATION OF CERIUM AS
                                                                 400519
 EVIDENCED BY ELECTRON DIFFRACTION
                                                                 400519
 COMPT REND 230, 735 (1950)
                                                                 400519
 CA 44, 6326 (1950)
                                                                 400519
COWGILL M STRINGER J
                                                                 500122
(UNIV LIVERPOOL
                             LIVERPOOL
                                                  ENGLANDI
                                                                 500122
EFFECT OF OXYGEN PRESSURE ON THE HIGH-TEMPERATURE OXIDATION
                                                                 500122
 OF TANTALUM
                                                                 500122
 J LESS-COMMON METALS 2, 233 (1960)
                                                                 500122
 CA 55, 14261 (1961)
                                                                 500122
COX. B CHADD, P SHORT, J
                                                                 201963
IAT ENERGY RES ESTAB
                             HARWELL
                                                  ENGLANDI
                                                                 201963
 OXIDATION AND COMPOSION OF ZIRCONIUM AND ITS ALLOYS. XV.
                                                                 201963
 FURTHER STUDIES OF ZIRCONIUM-NIOBIUM ALLOYS
                                                                 201963
 U K AT ENERGY AUTHORITY AERE-R 4134, (1962)
                                                                 201963
 CA 58 316 (1963)
                                                                 201963
CRANF . L
                                                                 300811
 EFFECT OF OXYGEN UPON THE HEAT CAPACITY OF GADOLINIUM
                                                                 300811
 BETWEEN 1.3 AND 5 DEGREES K
                                                                 300811
 J CHEM PHYS 36 . 10 (1962)
                                                                 300811
 PA 65. NØ 2053. (1962)
                                                                 300811
CRANGLE . J SMITH . T
                                                                 300869
 SPECIFIC HEAT OF METALLIC PALLADIUM BETWEEN 65 AN"
                                                                  300869
 105 DEGREES K
                                                                  300869
 PHYS REV LETTERS 9. NO. 3. 86 (1962)
                                                                  300869
CREMER + E FAESSLER + A KRAMER + H
                                                                  201034
(UNIV INNSBRUCK
                             INNSBRUCK
                                                  AUSTRIAL
                                                                  201034
 PROOF OF THE EXISTENCE OF DISILICON TRIGXIDE (S1203)
                                                                  201034
 NATURWISSENSCHAFTEN 46, 377 (1959)
                                                                  201034
 CA 55 • 14151 (1961)
                                                                  201034
CRISP, R WILLIAMS, S
                                                                  201000
(UNIV WESTERN
                                                  AUSTRALIA)
                              PERTH
                                                                  201000
 THE SOFT X-RAY SPECTRA OF LITHIUM, MAGNESIUM, AND ALUMINUM,
                                                                  201000
 AND THEIR ALLOYS
                                                                  201000
 PHIL MAG 5. 1205 (1960)
                                                                  201000
CROENI, J ARMANTROUT, C KATO, H
                                                                  201972
IUS BUR MINES
                              ALBANY
                                                 ØREGØN)
                                                                  201972
 TITANIUM-IRIDIUM PHASE DIAGRAM
                                                                  201972
 US BUR MINES REPT INVEST NO 6079, (1962)
                                                                  201972
 CA 58, 1191 (1963)
                                                                  201972
```

CROMER D (LOS ALAMOS NEW MEXICO) THE CRYSTAL STRUCTURE OF MONOCLINIC SM203 J PHYS CHEM 61 • 753 (1957) CA 51 • 14363 (1957) NSA 11 • 8863 (1957)	601062 601062 601062 601062 601062
J PHYS CHEM 61. 753 (1957) CA 51. 14363 (1957) NSA 11. 8863 (1957) CROWELL: A POTENTIAL ENERGY FUNCTIONS FOR GRAPHITE J CHEM PHYS 29. 446 (1962)	300701 300701 300701
CRØXTØN: F (UNIØN CARBIDE CCC ØAK RIDGE TENN) URANIUM AND ITS CØMPØUNDS BIBLIØGRAPHY ØF UNCLASSIFIED LITERATURE USAEC K-295(PT 2): 708 (1951) CA 48: 7443 (1954) NSA 5: 7056 (1951)	900955 600955 600955 600955 600955 600955
CUBICCIÓTTI. D THE REACTION BETWEEN U AND Ø J AM CHEM SOC 74. 1079 (1952) CA 47. 4175 (1953)	100194 100194 100194 100194
CUNNINGHAM; B THERMODYNAMICS OF THE HEAVY ELEMENTS PROC INTERN CONF PEACEFUL USES ATOMIC ENERGY; GENEVA 7. 225 (1956) CA 50, 15202 (1956)	601026 601026 601026 601026 601026
CUNNINGHAM, G W WARD, JJ ALEXANDER, C A (BATTELLE MEMØRIAL INST CØLUMBUS ØHIØ) THERMØDYNAMICS FØR CØMPATIBILITY STUDIES ØF METAL CLAD URANIUM CARBIDE PAPER 14-2S-63 ØF 65TH ANNUAL MEETING ØF AM CERAMIC SØC PITTSBUKG, PA APRIL 30, 1963 CERAMIC BULLETIN 42, 267 (1963)	301208 301208 301208 301208 301208 301208
CURTIS. C BIBLIØGRAPHY ØF HAFNIUM ØXIDE. HAFNIUM SILICATE AND HAFNIUM CARBIDE ØRNL-1321 (1952)	600903 600903 600903 600903
CURTIS. C PROPERTIES OF YTTRIUM OXIDE CERAMICS J AM CERAM SOC 40. 274 (1957) CA 51. 17126 (1957)	700835 700835 700835 700835
CURTIS, C DØNEY, L JØHNSØN, J SØME PRØPERTIES ØF HAFNIUM ØXIDE, HAFNIUM SILICATE, CALCIUM HAFNATE, AND HAFNIUM CARBIDE J AM CERAMIC SØC 37, 458 (1954)	300867 300867 300867 300867
CURTIS, C THARP, Å CERAMIC PRØPERTIES ØF EURØPIUM ØXIDE J AM CERAM SØC 42, 151 (1959) CA 53, 10690 (1959)	700804 700804 700804 700804
CZARNY, Z (ZAKLADY CHEMICZNE OSWIECIM POLAND) STUDIES ON AMORPHOUS FORMS OF TAZO5 CA 59, 2362E (1963)	301209 301209 301209 301209

DAANE, A RUNDLE, R SMITH, H SPEDDING, F THE-CRYSTAL STRUCTURE OF SAMARIUM 1SC-404 (1953) NSA 7, 6113 (1953)	601215 601215 601215 601215
DAANE, A RUNDLE, R SMITH, H SPEDDING, F THE CRYSTAL STRUCTURE OF SAMARIUM ACTA CRYST 7, 532 (1954) NSA 8, 6777 (1954)	601230 601230 601230 601230
DACHILLE. F RØY. R A NEW HIGH-PRESSURE FØRM ØF TITANIUM ØXIDE ABSTRACT FØR 64TH ANNUAL AM CERAMIC SØCIETY MEETING MÅY 1. 1962 NEW YØRK	202022 202022 202022 202022
DACHILLE. F. RØY. R. HIGH PRESSURE REGIØN ØF THE SILICA ISØTYPES Z. KRIST 111. 451 (1959) CA 54. 12709B (1960)	301210 301210 301210 301210
DACHILLE, F RØY, R HIGH PRESSURE REGIØN ØF THE SILICA ISØTYPES Z KRIST 111, 451 (1959) CA 54, 12709B (1960) DADAPF, V MARGRAVE, J PRØØF ØF THE EXISTENCE ØF S1203 ANGEW CHEM 74, 83 (1962) BHT NØ 2, 48 (1962)	300551 300551 300551 300551
DAGERHAMN. T X-RAY STUDY ON SOLID SOLUTIONS OF OXYGEN IN HAFNIUM ACTA CHEM SCAND 15. 214 (1961) BHT NO 3. 6 (1961)	300478 300478 300478 300478
DAHL. A CLEAVES. H THE FREEZING POINT OF URANIUM J.RFS NAT BUREAU STDS 43. 513 (1949) CA 44. 3861 (1950)	400580 400580 400580 400580
DAHL. A VANDUSEN. M RESISTANCE-TEMPERATURE RELATION AND THERMOELECTRIC PROPERTIES OF URANIUM J RES NAT BUR STDS 39. 53 (1947)	601644 601644 601644
DANCY, E EVERETT, L MCCABE, C STANDARD FREE ENERGY OF FORMATION OF CERIUM AND PRASEODYMIUM MONOCARBIDES TRANS MET SOC AIME 224, NO 6, 1095 (1962)	300876 300876 300876 300876
DANFØRTH+ W (BARTØL RES FØUNDATIØN SWARTHMØRE PA) ELECTRICAL PRØPERTIES ØF THØRIUM ØXIDE AND SIMILAR MATERIALS AT HIGH TEMP NP-6206 (1957) NSA 11+ 4854 (1957)	601317 601317 601317 601317 601317
DANFØRTH, W MØRGAN, F ELECTRICAL RESISTANCE ØF THØRIA PHYS REV 79, 142 (1950) CA 44, 8188 (1950)	400535 400535 400535 400535
DANILØVA. G. KAMENSKAYA. Y. MALTSEV. M. MØDIFICATIØNS ØF CARBIDE PHASES IN TITANIUM ALLØYS IZVEST AKAD NAUK SSSR. ØTDEL TEKH. NAUK. 150 (1957)	300206 300206 300206
DAOU. J	600615

STUDY OF THE RESISTIVITY OF THE NITRIDES OF CERIUM AND PRASEODYMIUM COMPT REND 250. 3635 (1960) NS 14. 19596 (1960)	600615 600615 600615 600615
DARNELL. A MCCØLLUM. W MILNE. T (ATØMICS INTERNATIØNAL CANØGA PARK CAL) VAPØR PRESSURE ØF THØRIUM J PHY CHEM 64, 341 (1960) NSA 14. 12568 (1960)	700567 700567 700567 700567 700567
DARNELL A MCCOLLUM, W (ATOMICS INTERN CANOGA PARK CAL) HIGH TEMPERATURE REACTIONS OF THORIUM AND THORIA AND THE VAPOR PRESSURE OF THORIA US AT ENERGY COMM NAA-SR-6498 (1961) CA 56. 32 (1962)	201182 201182 201182 201182 201182 201182
DARNELL F MØØRE E (E I DU PØNT DE NEMØURS + CØ WILMINGTØN DELAWARE) CRYSTAL STRUCTURE ØF DYSPRØSIUM AT LØW TEMPERATURES J APPL PHYS 34, 1337 (1963) CA 58, 9697 (1963)	202023 202023 202023 202023 202023
DARRAS, R COMPATIBILITY OF BERYLLIUM WITH CARBON DIOXIDE AT HIGH TEMPERATURES BULL INFORM SCI TECH (PARIS) NO 62, 43 (1962) CA 58, 7669 (1963)	301433 301433 301433 301433 301433
DARRAS, R PAIDASSI, J LERØY, F KINETICS ØF ØXIDATIØN ØF MAGNESIUM IN ØXYGEN, NITRØGEN, AND SYNTHETIC AIR AT ELEVATED TEMPERATURES CØMPT REND 255, 903 (1962) CA 57, 15857 (1962)	201918 201918 201918 201918 201918
DAS, C SAHOO, B PATNAIK, D (UTKAL UNIV CUTTACK INDIA) PREPARATION OF URANIUM DIOXIDE J SCI IND RESEARCH (INDIA) 20B, 505 (1961,) CA 56, 11165 (1962)	201466 201466 201466 201466 201466
DASHKØVSKII, A SAVITSKII, E TEMPERATURE DEPENDENCE ØF INTERNAL FRICTIØN, SHEAR, MØDULUS, AND LINEAR EXPANSIØN ØF LANTHANUM AND CËRIUM MET I METALLØVED CHRISTYKH METAL SB NAUCHN RABØT 1961, NØ 3, 196 (1961) CA 57, 12225 (1962)	201865 201865 201865 201865 201865 201865
DAVIS, S ANTHROP, D SEARCY, A (UNIV OF CALIFORNIA BERKELEY CAL) VAPOR PRESSURE OF SI AND DISSOCIATION PRESSURE OF SIC J CHEM PHYS 34, 659 (1961) NSA 15, 9468 (1961)	701009 701009 701009 701009 701009
DAUNT. J ØLSEN. J (ØHIØ STATE UNIV CØLUMBUS ØHIØ) CØMPRESSIBILITY. ZERØ-PØINT ENERGY. AND SPECIFIC HEAT IN SUPERCONDUCTORS PHYS REV LETTERS 6. 267 (1961) NSA 15. 14784 (1961)	701027 701027 701027 701027 701027 701027
DAVID. L	600957

THORIUM A BIBLIOGRAPHY OF UNCLASSIFIED LITERATURE USAEC-TID-3044, 124 (1953) CA 48, 6843 (1954)	600957 600957 600957
DAVIS. A HEAT OF SUBLIMATION AND VAPOR PRESSURE OF CARBON J ANOMALIES 1. 1 (1960) NS 15. 9461 (1961)	600880 600880 600880 600880
DAVISON. A GIACCHETTI. A STANLEY. R (PURDUE UNIV LAFAYETTE IND) INTERFEROMETRIC WAVELENGTHS OF THORIUM LINES BETWEEN 2650 AND 3400 ANGSTROMS J OPT SOC AM 52. 447 (1962)	300823 300823 300823 300823 300823
DAWSON. J ELECTRONIC STRUCTURE OF THE HEAVIEST ELEMENTS NUCLFONICS 10, 9, 39 (1952) CA 47, 7887 (1953)	100187 100187 100187 100187
DAWSON. R BRACKETT. E BRACKETT. T (WILLIAM MARSH RICE UNIV HOUSTON TEXAS) A HIGH-TEMPERATURE CALORIMETER- THE ENTHALPIES OF ALPHA-ALUMINIUM OXIDE AND SODIUM CHLORIDE J PHYS CHEM 67 (8). 1669 (1963) CA 59. 7030 (1963)	202024 202024 202024 202024 202024 202024
DAY: A SØSMAN: R NITRØGEN THERMØMFTER FRØM ZINC TØ PALLADIUM AM J SCI 29: 93 (1910) CA 4: 851 (1910)	900137 900137 900137 900137
DAY. J. FREYMANN: M. FREYMANN: R. ANOMALIES IN THE DIELE(TRIC PROPERTIES OF THE 0XIDE U02 COMPT REND 229: 1013 (1949) CA 44: 2301 (1950)	400517 400517 400517 400517
DAYAL. B DERIVATION OF POTENTIAL FNERGY OF CRYSTALS FROM THERMODYNAMIC DATA PROC NATL INST SCI INDIA PT A 25. NO 4 296 (1959) CA 55. 13032 (1961)	300223 300223 300223 300223
DAYTON. R (BATTFLLE MEM INST COLUMBUS OHIO) PROGRESS RELATING TO CIVILIAN APPLICATIONS DURING MAR 1956 BMI-1080 (1957) NSA 12. 890 (1958)	601509 601509 601509 601509
DAYTON• R (BATTELLE MEM INST COLUMBUS OHIO) PROGRESS RELATING TO CIVILIAN APPLICATIONS DURING OCT 1958 BMI-1301 (1958) NSA-13• 15343 (U959)	601529 601529 601529 601529 601529
DAYTON, R (BATTELLE MEM INST COLUMBUS OHIO) PROGRESS RELATING TO CIVILIAN APPLICATIONS DURING MAY 1958 BMI-1267 (1958) NSA 13, 2176 (1959)	601557 601557 601557 601557 601557
DAYTON. R (BATTELLE MEM INST COLUMBUS OHIO)	601556 601556

PRØGRESS RELATING TØ CIVILIAN APPLICATIONS FØR SEPT 1958 BMI-1294 (1958) NSA 13. 2177 (1959)	601556 601556 601556
DAYTON R (BATTELLE MEM INST COLUMBUS OHIO) PROGRESS RELATING TO CIVILIAN APPLICATIONS DURING DEC 1958 BMI-1307 NSA 13 · 16196 (1959)	601527 601527 601527 601527 601527
DAYTON, R (BATTELLE MEM INST COLUMBUS OHIO) PROGRESS RELATING TO CIVILIAN APPLICATIONS DURING JAN 1958 BMI-1315 NSA 13, 16970 (1959)	601526 601526 601526 601526 601526
DEAR. P (BULL VA PØLYTECH INST) SØLID STATE EQUILIBRIUMS FØR THE TERNARY SYSTEM STRØNTIA- MAGNESIA-SILICA ENG EXPT STA SER NØ 142. (1960) CA 56. 15017 (1962)	201548 201548 201548 201548 201548 201548
DEBUIGNE. J LEHR. P (C N R S VITRY-SUR-SEINE FRANCE) DETERMINATION OF THE DIFFUSION COEFFICIENTS OF OXYGEN IN THE SYSTEM ZIRCONIUM-OXYGEN COMPT REND 256. 1113 (1963) CA 58. 9930 (1963)	202025 202025 202025 202025 202025 202025
DEBUIGNE: J LEHR: P THE ØXIDATIØN ØF ZIRCØNIUM CØMPT REND 254: 3710 (1962) CA 57: 13396 (1962)	201885 201885 201885 201885
DE COMBARIEU, A COSTA, P MICHEL, J (CENTRES ETUDES NUCL GENOBLE FRANCE) THE SPECIFIC HEAT OF URANIUM MONOCARBIDE AT LOW TEMPERATURE COMPT REND 256 (26), 5518 (1963) CA 59, 8190 (1963)	202021 202021 2 02021 202021 202021 202021
DEDUIT, J REDUCTION OF DIVANADIUM PENTOXIDE ANN CHIM (FRANCE) 6, 163 (1961)	700611 700611 700611
DEEV, V SMIRNØV, V SATURATED VAPØR PRESSURE ØF RHENIUM DISULFIDE DIØXIDE AND TRIØXIDE DØK AKAD NAUK SSSR 140, NØ 4 822 (1961) CØTS 55, 259 (1962)	301108 301108 301108 301108 301108
DEEZSI, I THE GAMMA, EPSILØN, AND DELTA (SPECTRØSCØPIC) BANDS ØF THE NITRØGEN ØXIDE MØLECULE MAG TUD AKAD KØZ FIZ KUT INT KØZ 4, 5 (1956) CA 53, 2773 (1959)	600737 600737 600737 600737 600737
DEEZSI: I A RECENT ROTATIONAL ANALYSIS OF THE ALPHA-BANDS OF THE NO MOLECULE ACTA PHYS ACAD SCI HUNG 9: 125 (1958) CA 53: 10945 (1959)	600738 600738 600738 600738 600738

DEEZSI: I MATRAI: T NEW BANDS OF THE NITROGEN MONOXIDE MOLECULE IN THE GAMMA: EPSILON: RHO BAND REGION M FIZ FOLYOIRAT 5: 201 (1957) CA 53: 5864 (1959)	600739 600739 600739 600739 600739
DEGTEVA: T THERMAL DEGRADATION OF FLUORINATED ELASTOMERS OF THE KEL-F AND PEP/VF TYPES VYSOK SOED 3: (1961)	400594 400594 400594 400594
DEISS, W VACUUM VAPØRIZATIØN ØF URANIUM CØMPT REND 256, 671 (1962)	300877 300877 300877
DEKHTYAR. I DETERMINATION OF THE EQUILIBRIUM CONCENTRATION OF VACANCIES AND THE ENERGY OF THEIR FORMATION IN METALS IZVEST VYSSHIKH UCHEB ZAVEDENII FIZ NO 1. 3 (1959) CA 55. 14041 (1961)	300411 300411 300411 300411 300411
DELBOVE. F DETERMINATION OF THE HEAT OF FUSION AND THE ENTROPY OF FUSION OF CALCIUM FLUORIDE BY THE CRYOMETRIC METHOD. AT HIGH TEMP- ERATURES (GREATER THAN 1400 DEGREES) COMPT REND 252. 2192 (1961) CA 55. 18276 (1961)	201107 201107 201107 201107 201107 201107
DELIMARSKY, Y BUDERASKAYA, G SØLUBILITY ØF THE DIØXIDES ØF TITANIUM, ZIRCØNIUM, AND HAFNIUM IN FUSED FLUØRIDES ØF ALKALI METALS UKRAIN KHIM ZHUR 28, 565 (1962)	300880 300880 300880 300880
DEMARIA» G GUIDO» M MALASPINA ENTHALPY ØF VAPØRIZATIØN ØF HØLMIUM ANN CHIM (RØME) 53. 1044 (1963)	202097 202097 202097
DEMARIA. G BURNS. R DRØWART. J INGHRAM. M (U ØF CHICAGØ CHICAGØ ILL) MASS-SPECTRØMETRIC STUDY ØF GASEØUS MØLYBDENUM. TUNGSTEN. AND URANIUM ØXIDE J CHEM PHYS 32. 1373 (1960) CA 54. 23541 (1960) NSA 14. 16645 (1960)	601163 601163 601163 601163 601163 601163
DEMPSEY. E (UNION CARBIDE RES INST TARRYTOWN NY) BONDING IN THE REFRACTORY HARD-METALS PHIL MAG 8. (86) 285 (1963) BHT NO 1. 15 (1963)	301134 301134 301134 301134
DENCH: W A (NAT PHYS LAB TEDDINGTON MIDDLESEX ENGLAND) ADIABATIC HIGH-TEMPERATURE CALORIMETER FOR THE MEASUREMENT OF HEATS OF ALLOYING TRANS FARADAY SOC 59: (6): 1279 (1963) BHT NO 2 (1963)	301211 301211 301211 301211 301211 301211
DENTREMONT: J CHIPMAN: J THE FREE ENERGY OF SILICON CARBIDE FROM ITS SOLUBILITY IN MOLTEN SILVER J PHYSICAL CHEMISTRY 67: 499 (1963)	300841 300841 300841 300841

DEØDHAR: G PADALIA FØRBIDDEN TRANSITIO NATURWISSENSCHAFTEN) B DNS IN THE L-SPECTRUM @ I 49, NO 16, 373 (1962)	F IRIDIUM	300576 300576 300576
DERGE G MARTIN A (UNIV OF CHICAGO BOMB REDUCTION OF U US AT ENERGY COMM C CA 56 13907 (1962)	RANIUM AND URANIUM ALL T-2276 (1944)	ILL) ØYS	201526 201526 201526 201526 201526
DERGUNOVA, V KOLONI CERMET ALLOYS OF TH CARBIDE TSVETN MET 36, 58 (CT NØ 17, 124 AUG 1	E SYSTEM ZIRCØNIUM CAR 1963)	BIDE-TANTALUM	202026 202026 202026 202026 202026
DESCHANVRES, A THE RELATION IN THE COMPOUNDS OF RHENIU ANN CHIM (PARIS) 4, CA 55, 20562 (1961)	SØLID STATE ØF SEVERA M 1217 (1959)		600848 600848 600848 600848 600848
DEUTSCH: A (MT WILSØN ØBSERVATØ THE SPECTRUM VARIAB PUBL ASTRØN SØC PAC CA 50: 9862 (1956)	RY PASADENA LES ØF TYPE A IFIC 68• 92 (1956)	CALI	600982 600982 600982 600982
PØWDER METALLURGY M VEHICLES	ADMIN WASHINGTØN ATERIALS FØR RØCKETS M MINAR REUTTE/TYRØL 196:	ISSILES AND SPACE	301434 301434 301434 301434 301434
DEUTSCH. J MERRILL. GRØSS DIFFERENCES BI SUCCESSIVE MAXIMA ASTRØPHYS J 130, 570 CA 54. 1065 (1960)	TWEEN THE R CYGNI SPEC	CTRA AT TWØ	202027 202027 202027 202027 202027
DEUTSCH+ N ERVIN+ G ELECTRØLYTIC PREPAR/ TANTALUM+ VANADIUM+ GER PATENT 1078776 CA 55+ 18398 (1961)	TION OF THORIUM. URANI TUNGSTEN: MOLYBDENUM A	UM, NIØBIUM, ND CHRØMIUM	500123 500123 500123 500123 500123
DE VRIES + K BAKER + (A SURVEY OF HIGH PRE WADC-TR-59-341 (1960 NS 15 + 4388 (1961)	SSURE EFFECTS OF SOLID	9 S	600665 600665 600665
NITRØGEN AND HYDRØGE	S BETWEEN THE BØILING N• 1• THE MEAN ATØMIC ØF THE ELEMENTS AS A P 58 (1913)	SPECIFIC HEATS AT	700511 700511 700511 700511 700511 700511 700511
DEWING. E (ALUMINUM LABS LTD	ARVIDA	CANADA	201204 201204

THE THERMODYNAMICS OF THE CONVERSION OF MAGNESIUM AND MANGANESE OXIDES TO SULFIDES J IRON STEEL INST (LONDON) 195. 56 (1960) CA 56. 245 (1962)	201204 201204 201204 201204
DEWOLFF+ P (TECH HOGESCHOOL DELFT NETHERLANDS) ON THE UNIT CELL OF MALLINCRODTS U03 ACTA CRYST 14+ 322 (1961) NSA 15+ 13381 (1961) CA 56+ 6741 (1962)	601424 601424 601424 601424 601424
DEYE; R PEPARATION OF PURE THORIUM ATOMIC ENERGY RES EST REPT NO AERE-C/R 425 (1949) NSA 4. 2627 (1950)	601156 601156 601156 601156
DE ZOUBOV, N POURBAIX. M ELECTROCHEMICAL BEHAVIOR OF RUTHENIUM POTENTIAL-PH DIAGRAMS FOR THE RUTHENIUM WATER SYSTEM AT 25 DEGREES CEBELCOR(CENTRE BELGE ETUDE CORROSION) RAPPT TECH NO 58, 1 (1958) CA 52, 18012 (1958)	601076 601076 601076 601076 601076 601076
DIAMOND, J SCHNEIDER, S (NBS WASHINGTON D C) APPARENT TEMPERATURE MEASURED AT MELTING POINTS OF SOME METAL OXIDES IN A SOLAR FURNACE J AM CERAM SOC (2, 1 (1960) CA 54, 6240 (1960)	202028 202028 202028 202028 202028 202028
DIDCHENKØ R GØRTSEMA F (UNIØN CARBIDE CØRP PARMA ØHIØ) ELECTRIC AND MAGNETIC PRØPERTIES ØF RAPE EARTH MØNØSULFIDES AND NITRIDES J PHYS CHEM SØLIDS 24 (7), 863 (1963) CA 58, 5918 (1963)	301435 301435 301435 301435 301435 301435
DIDENKØ. V YARYSHEV. N METHØD FØR THE DETERMINATIØN ØF HEAT CAPACITY AT HIGH TEMPERATURES ZAVØDSK LAB 28. NØ 7. 825 (1962)	300878 300878 300878 300878
DIDENKØ, V YARYSHEV, N A TECHNIQUE ØF THERMAL CAPACITY DETERMINATION AT HIGH TEMPERATURES IND LAB (USSR) 28, (7) 874 (1963) BHT NØ 1, 3 (1963)	301135 301135 301135 301135 301135
DIEKE, G CRØSSWHITE, H DUNN. B (JØHN HØPKINS UNIV SILVER SPRINGS MD) EMISSIØN SPECTRA ØF THE DØUBLY AND TRIPLY IØNIZED RARE EARTHS J ØPT SØC AM 51. 820 (1961) NSA:15. 24872 (1961)	601406 601406 601406 601406 601406
DIEKE: G HEATH: D STRUCTURE OF THE INFRARED Y BANDS OF N2 J CHEM PHYS 33: 432 (1960) NS 14: 21446 (1960)	600618 600618 600618
DIEKE, G SARUP, R (JOHNS HOPKINS UNIV BALTIMORE MD) FLUORESCENCE SPECTRUM AND THE ENERGY LEVELS OF THE SM++ 10N	201718 201718 201718

J CHEM PHYS 36, 371 (1962) CA 57, 5426 (1962)	201718 201718
DIETZE, H BALTHESEN, E DIFFUSION OF VACANCIES IN FE-SI UNDER IRRADIATION WITH FAST NEUTRONS NUKLEONIK 3, 93 (1961) CA 55, 21826 (1961)	300242 300242 300242 300242 300242
DIETZEL + A JAGØDZINSKI + H SCHØLZE + H THERMØDYNAMIC + X-RAY + INFRARED SPECTRØSCØPIC + AND CHEMICAL INVESTIGATIØN ØF TECHNICAL SILICØN CARBIDE BER DEUT KERAM GES 37 + 524 (1960) CERAM A 44 + 166 (1961)	700676 700676 700676 700676 700677
DIRINGER. M (CNRS BELLEVUE FRANCE) ISØTØPIC DISPLACEMENTS IN THE SPECTRUM ØF URANIUM CØMPT REND 250. 828 (1960) NSA 14. 9857 (1960)	601353 601353 601353 601353 601353
DIXON. J LAGRANGE. L MERTEN. U MILLER. C PORTER II. J (GENERAL DYNAMICS CORP SAN DIEGO CALIF) ELECTRICAL RESISTIVITY OF STABILIZED ZIRCONIA AT ELEVATED TEMPERATURES J ELECTROCHEM SOC 110, 276 (1963) CA .58. 10818 (1963)	301436 301436 301436 301436 301436 301436
DØBRØLEZH. S A ZUBKØVA. S M KRAVETS. V A (GØS TEKHN IZD KIEV SSSR) SILICØN CARBIDE KIEV GØS TEKHN IZD UKR SSR (1963) CA 59. 6110D (1963)	301437 301437 301437 301437 301437
DØERNENPURG, E HINTENBERGER, H FRANZEN, J STRUCTURE ØF PØLYATØMIC CARBØN MØLECULE FØRMED IN HIGH- FREQUENCY SPARKS Z NATURFØRSCH 16A, 532 (1961) CT NØ 15, (1961)	700664 700664 700664 700664 700664
DØLLØFF, R RESEARCH STUDY TØ DETERMINE THE PHASE EQUILIBRIUM RELATIØNS ØF SELECTED METAL CARBIDES AT HIGH TEMPERATURES WADD-TR-60-143 (1960) NSA 15, 4304 (1961)	700989 700989 700989 700989 700989
DOMAGALA: R A STUDY OF THE TI-ZROZ SYSTEM AD 249532 DIV 17 10 PAGES	300302 300302 300302
DØNØHUE. J (UNIV S CALIF LØS ANGELES CALIF) STRUCTURE ØF URANIUM IN THIN FILM ACTA CRYST 14. 327 (1961) CA 56. 6737 (1962)	201351 201351 201351 201351 201351
DØNTSØV: Y ISØTØPIC SHIFT IN THE SPECTRUM ØF DYSPRØSIUM ØPTIKA I SPEKTRØSKØPIYA 1: 612 (1956) CA 51: 11059 (1957)	601055 601055 601055 601055
DØRNENBURG. E HINTERBERGER. H FRANZEN. J STRUCTURE ØF PØLYATØMIC CARBØN MØLECULES IN HIGH-FREQUENCY	300467 300467

DISCHARGES	300467
Z NATURFØRSCH 16. 532 (1961)	300467
BHTG NØ 4. 10 (1962)	300467
DØUGLAS, A THE NEAR ULTRAVIØLET BANDS ØF N2+AND THE DISSØCIATIØN ENERGIES ØF THE N2+AND N2 MØLECULES CAN J PHYS 30, 302 (1952) CA 46, 9980 (1952)	600576 600576 600576 600576
DØUGLAS. A RECENT SPECTRØSCØPIC STUDIES ØF SIMPLE MØLECULES J PHYS CHEM 59. 109 (1955) CA 49. 5103 (1955)	600678 600678 600678 600678
DØUGLAS• A HERZBERG• G	600577
PREDISSØCIATIØN AND DISSØCIATIØN ØF THE NITRØGEN MØLECULE	600577
CAN J PHYS 29• 294 (1951)	600577
CA 45• 8884 (1951)	600577
DØUGLAS. A MØLLER. C	600708
PREDISSØCIATIØN ØF THE C120 AND C130 MØLECULES	600708
CAN J PHYSICS 33. 125 (1955)	600708
CA 49. 6725 (1955)	600708
DØUGLAS, A RØUTLY, P	600679
SPECTRUM ØF THE CN MØLECULE	600679
ASTRØPHYS J 1, 295 (1955)	600679
CA 49, 7379 (1955)	600679
DØUGLAS. A RØUTLY. P	600682
THE SPECTRA ØF CN+ AND CN MØLECULES	600682
ASTRØPHYS J 117. 461 (1953)	600682
CA 47. 7317 (1953)	600682
DØUGLAS• D KUNZ• F	300419
CØLUMBIUM METALLURGY	300419
VØL 10 ØF METALLURGICAL SØCIETY CØNFERENCES INTERSCIENCE (1961	1300419
DØUGLAS: T	202029
HIGH TEMPERATURE THERMØDYNAMIC FUNCTIØNS FØR ZIRCØNIUM AND	202029
UNSATURATED ZIRCØNIUM HYDRIDES	202029
J RES NATL BUR STD 67A: 403 (1963)	202029
DØUGLASS• R	601010
(U ØF CALIFØRNIA LØ5 ALAMØS NM)	601010
NEØDYMIUM SESQUIØXIDE• ND2Ø3• FØRM A	601010
ANAL CHEM 28• 551 (1956)	601010
CA 50• 7538 (1956)	601010
DOUGLASS, R ADKINS, E (BATTELLE MEMORIAL INST COLUMBUS OHIO) A STUDY OF THE SPECTRAL EMISSIVITIES AND MELTING TEMPERATURES OF OSMIUM AND RUTHENIUM TRANS MET SOC OF AIME 221, 248 (1961) NSA 15, 17358 (1961)	700614 700614 700614 700614 700614
DØUGLASS. D ST PIERRE. G SPEISER. R (ØHIØ STATE UNIV CØLUMBUS ØHIØ) THE KINETICS AND MECHANISM ØF THE CØNVERSIØN ØF TITANIUM ØXIDES TØ TITANIUM NITRIDE MET SØC CØNF 8, 705 (1961) CA 56, 5738 (1962)	201341 201341 201341 201341 201341 201341

DØUGLASS» R HØLDEN» F JAFFEE» R HIGH TEMPERATURE PRØPERTIES AND ALLØYING BEHAVIØR ØF THE REFRACTØRY PLATINUM-GRØUP METALS PR 161823 (1959) BAT TECH REV 9, 12, 18 (1960)	700375 700375 700375 700375 700375
DØUGLASS, R STARITZKY, E SAMARIUM SESQUIØXIDE, SM203, FØRM B ANAL CHEM 28, 552 (1956) CA 50, 7538 (1956)	601011 601011 601011 601011
DRAGSDØRE, R FØRGENG, W (KANSAS STATF UNIV MANHATTAN KANSAS) THE INTERMETALLIC PHASES IN THE CØBALT-TANTALUM SYSTEM ACTA CRYST 15, 531 (1962) CA 57, 5389 (1962)	201712 201712 201712 201712 201712
DRAPER, A MILLIGAN, W (RICE INST HØUSTØN TEXAS) STRUCTURE AND SURFACE CHEMISTRY ØF THØRIUM ØXIDE US AT ENERGY CØMM AECU-4395 (1959) CA 55, 18248 (1961)	201104 201104 201104 201104 201104
DREGER: L VAPOR-PRESSURE MEASUREMENTS WITH A MAGNETICALLY CONTROLLED BALANCE PART I. BOAT AND CHAIR LACTONES PART 2. ALN. BN. AND TIN. PART 3. PT. PD. RH. AND IR. DISS ABS 22. 3423 (1962)	300720 300720 300720 300720 300720
DREGER, L VAPOR PRESSURE MEASUREMENTS WITH A MAGNETICALLY-CONTROLLED BALANCE II ALN.BN, AND TIN III PT, PD, RH AND IR DISS ABSTR 22, NO 10, 3423 (1961) BHT NO 2, 25 (1962)	300528 300528 300528 300528 300528
DREGER. L DADAPE. V MARGRAVE. J SUBLIMATION AND DECOMPOSITION STUDIES ON BORON NITRIDE AND ALUMINUM NITRIDE J PHYS CHEM 66. 1556 (1962)	300604 300604 300604 300604
DREGER, L DADAPE, V MARGRAVE, J PROPERTIES OF MATERIALS AT HIGH TEMPERATURES. SUBLIMATION AND DECOMPOSITION STUDIES ON BORON NITRIDE AND ALUMINUM NITRIDE TID-6512 (1960) NS 15, 3092 (1961)	600642 600642 600642 600642 600642
DREGER, L MARGRAVE, J (UNIV OF WISCONSIN) THE HIGH-TEMPERATURE DECOMPOSITION OF TIN TID-6512 (1960) NSA 15, 3093 (1961)	700991 700991 700991 700991 700991
DREGER: L MARGRAVE: J (UNIV ØF WISCØNSIN) VAPØR PRESSURE ØF PLATINUM METALS I PALLADIUM AND PLATINUM J PHYS CHEM 64: 1323 (1960) CA 55: 7953 (1961)	200922 200922 200922 200922 200922
DREGER: L MARGRAVE: J (UNIV WISCONSIN MADISON WISCONSIN) VAPOR PRESSURE OF PLATINUM METALS: II. RHODIUM	201500 201500 201500

J PHYS CHEM 65. 2106 (1961) CA 56. 13560 (1962)	201500 201500
DREGER: L MARGRAVE: J PRØPERTIES ØF MATERIALS AT HIGH TEMPERATURES. VAPØR PRESSURES ØF PLATINUM METALS. II. RHØDIUM AND IRIDIUM TID-6512 (1960) NS 15: 3091 (1961)	600643 600643 600643 600643
DREISBACH R (DØW CHEMICAL CØ MIDLAND MICH) PHYSICAL PRØPERTIES ØF CHEMICAL CØMPØUNDS ADVANCES IN CHEM SER NØ 29 489 (1961)	300263 300263 300263 300263
DRESSLER+ K ABSØRPTIØN SPECTRUM ØF VIBRATIØNALLY EXCITED N2 IN ACTIVE NITRØGEN J CHEM PHYS 30+ 1621 (1959) CA 53+ 19562 (1959)	600578 600578 600578 600578 600578
DREYFUS. B (UNIV GRENØBLE GRENØBLE FRANCE) THE SPECIFIC HEAT ØF DYSPRØSIUM FRØM 0.5 TØ 4 DEGREES K CØMPT REND 253, 1085 (1961) CÅ 56. 1009 (1962)	201220 201220 201220 201220 201220
DREYFUS, B GØØDMAN, B LACAZE, A TRØLLIET, G THE SPECIFIC HEATS ØF SØME RARE EARTH METALS BETWEEN 0.5 AND 4 DEGREES V CØMPT REND 253, 1764 (1961) CA 56, 4166 (1962) PÅ 65, 2051 (1962)	300646 300646 300646 300646 300646
DREYFUS, B GØØDMAN, B TRØLLIËT, G WEIL, L THE SPECIFIC HEAT ØF THE HYPERFINE STRUCTURE ØF SAMARIUM CØMPT REND 251, 1743 (1961) NSA 15, 16215 (1961)	601417 601417 601417 601417
DRØEGF; J (BATTELLE MEM INST CØLUMBUS ØHIØ) METHØD FØR MEASUREMENT ØF THE HEAT ØF FØRMATIØN ØF SILICØN CARBIDE US DEPT CØMM ØFFICE TECH SERV PB REPT 148094 (1960) CA 55, 21775 (1961)	201160 201160 201160 201160 201160 201160
DRØWART. J DEMARIA. G THERMØDYNAMIC STUDY ØF THE BINARY SYSTEM CARBØN-SILIÇØN. USING THE MASS SPECTRØMETER SILICØN CARBIDE. PRØC CØNF. BØSTØN 1959. 16 (1961; CA 55. 7015 (1961)	200770 200770 200770 200770 200770
DRØWART, J DE MARIA, G BØERBØØM, J H INGHRAM, M G MASS SPECTRØMETRIC STUDY ØF INTER-GRØUP IV B MØLECULES J CHEM PHYS 30, 308 (1959)	301212 301212 301212
DROWART, J GOLDFINGER, P (UNIV LIBRE BRUSSELS BELGIUM) HIGH TEMPERATURE CHEMISTRY ANN REV PHYS CHEM 13, 459 (1962) CA 57, 15811 (1962)	201917 201917 201917 201917 201917
DRØZIN. N CALCULATION OF HIGH TEMPERATURE ENTROPIES OF CRYSTALLINE	300534 300534

COMPOUNDS ZH FIZ KHIM 35, 2472 (1961) BHT NO 2, 29 (1962) CCP NO 4, 290 (1962) CA 56, 9512 (1962)	300534 300534 300534 300534 300534
DR02IN+ N (RES INST FUNDAMENTAL CHEM KHARKØV PØLAND) APPLICATIØN ØF BERTHELØTS PRINCIPLE IN CALCULATING STANDARD ENTRØPIES ØF INØRGANIC SØLIDS ZHUR FIZ KHIM 35+ 1789 (1961) CA 56+ 76 (1962)	300668 300668 300668 300668 300668
DRUDING, L (IOWA ST UNIV SCI AND TECH AMES IOWA) INTERACTIONS OF PRASEODYMIUM AND NEODYMIUM METALS WITH THEIR MOLTEN CHLORIDES AND IODIDES UNIV MICROFILMS (ANN ARBOR MICH) LC CARD NO MIC 60-4892 DISSERTATION ABSTR 21, 1751 (1961) CA 55, 11157 (1961)	200962 200962 200962 200962 200962 200962
DRUDING, L CORBETT, J (IOWA STATE UNIV AMES IOWA) LOWER OXIDATION STATES OF THE LANTHANIDES, NEODYMIUM (II) CHLORIDE AND IODIDE J AM CHEM SOC 83, 2462 (1961) CA 55, 21943 (1961)	201166 201166 201166 201166 201166 201166
DUAN, F NAY-BEN, M CHI, L TIAN-NAN, L EXPERMINTAL EVIDENCE FOR THE EXISTENCE OF DISLOCATIONS WITH BURGERS VECTOR (100) IN MOLYBDENUM CRYSTALS SCIENTIA SINICA 12, 979 (1963)	301213 301213 301213 301213
DUHART. P THE BORIDES OF MAGNESIUM AND ALUMINUM ANN CHIM (PARIS) 7. 339 (1962) CA 58. 213 (1963)	300875 300875 300875 300875
DUNN: H (ØAK RIDGE NAT LAB	601024 601024 601024 601024 601024
DUPOUY. J AVERBACH. B (M I T CAMBRIDGE MASS) ATOMIC ARRANGEMENTS IN TI-MO SOLID SOLUTIONS ACTA MET 9, 765 (1961) CA 55. 23276 (1961)	201180 201180 201180 201180 201180
DURAKOV, V BATSANOV, S DETERMINATION OF THE IONIC PARTS OF BONDS IN MOLECULES AND RADICALS II ZH STRUKT KHIM 2, 456 (1961) CA 57, 4051 (1962)	300753 300753 300753 300753 300753
DURIG, J LØRD, R GARDNER, W JØHNSTØN, L (MIT CAMBRIDGE MASS) INFRARED TRANSMITTANCE AND REFLECTANCE ØF BERYLLIUM ØXIDE J ØPT SØC AM 52, 1078 (1962) CA 58, 1068 (1963)	201969 201969 201969 201969 201969
DWIGHT + Å	201200

(ARGONNE NATL LAB SOME AB3 COMPOUNDS OF THE TRANSITION METALS ACTA CRYST 14, 75 (1961) CA 56, 87 (1962)	ILLI	201200 201200 201200 201200
EAKINS. J D HUMPHRIES. D G (AT ENERGY RES ESTAB HARWELL PREPARATION OF TECHNETIUM METAL J INORG NUCL CHEM 25. 737 (1963) CA 59. 1335C (1963)	ENGLAND)	301214 301214 301214 301214 301214
ECKSTEIN. B FORMAN, R PREPARATION AND SOME PROPERTIES OF TANTALUM CAR J APPL PHYS 33. 82 (1962) PA 65. 2448 (1962)	BIDE	300805 300805 300805 300805
EDING. H CARR. E HIGH-PURITY URANIUM COMPOUNDS US AT ENERGY COMM ANL 6339 (1961) CA 55. 16243 (1961)		201061 201061 201061 201061
EDELEANU, C LITTLEWOOD, R (HINXTON HALL CAMBRIDGE THERMODYNAMICS OF CORROSION IN FUSED CHLORIDES ELECTROCHIM ACTA 3, 195 (1960) CA 55, 3184 (1961)	INGLAND)	200838 200838 200838 200838 200838
EDWARDS. A (AUSTRALIAN DEFENSE SCI SERV MELBØURNE PRØPØSED TRANSFØRMATIØNS IN PURE CHRØMIUM J AUSTRALIAN INST METALS 5. 182 (1960) CA 55. 10249 (1961)	AUSTRALIA)	200948 200948 200948 200948 200948
EDWARDS. J KINGTØN. G LØW TEMPERATURE ADIABATIC CALØRIMETER AND THE H ØF ALPHA-ALUMINA TRANS. FAR. SØC. 58. 1313 (1962)	EAT CAPACITY	300623 300623 300623 300623
EDWARDS. P HAPPEL. R (US NAVAL ØRDNANCE LAB SILVER SPRINGS BERYLLIUM ØXIDE WHISKERS AND PLATELETS J APPL PHYS 33. 943 (1962) BHT NØ 7. 3 (1963)	MDı	301136 301136 301136 301136 301136
EDWARDS. J SPEISER. R JØHNSTØN. H HIGH TEMPERATURE STRUCTURE AND THERMAL EXPANSION METALS AS DETERMINED BY X-RAY DIFFRACTION DATA TANTALUM. NIØBIUM AND MOLYBDENUM J APPL PHYS 22. 424 (1951) NSA 5. 3431 (1951)		601179 601179 601179 601179 601179 601179
EDWARÒS. R STUDIES ØF MATERIALS AT HIGH TEMPERATURE AECD-3394 UCRL-1639 (1952) NSA 6. 4074 (1952)		601235 601235 601235 601235
EDWARDS, R RAINE, T THE SOLID SOLUBILITIES OF SOME STABLE CARBIDES NICKEL AND IRON AT 1250 DFG C PLANSEE PROCEEDING 232 (1952)	IN CØBALT	300288 300288 300288 300288
EDWARDS. S		301438

(UNIV OF MANCHESTER MANCHESTER ENGLAND) THE ELECTRONIC STRUCTURE OF LIQUID METALS PROC ROY SOC (LONDON) SER A 267, 518 (1962) CA 58, 3907 (1963)	301438 301438 301438 301438
EFREMOV. N A NEW METHOD OF CALCULATION OF EFFECTIVF IONIC RADII OF LANTHANIDES PHYS REV 93. 934 (1954) CA 49. 10042 (1955)	600932 600932 600932 600932 600932
EGYED. L COMPRESSIBILITY OF THE ELEMENTS ACTA GEOL ACAD SCI HUNG 2. 205 (1954) CA 48. 13294 (1954)	700739 700739 700739 700739
EHL; R (UNIV ØF WISCONSIN MADISON WISCONSIN) BINARY NITRØGEN COMPOUNDS ØF THE ELEMENTS; A LITERATURE SURVEY US DEPT COM ØFFICE TECH SERV PB REPT 161315 (1959) CA 55; 20741 (1961)	201141 201141 201141 201141 201141
EHRENSTEIN, D HEIDELBERG, G KØPFERMANN, H PENSELIN, S INVESTIGATIØN ØF THE HYPERFINE STRUCTURE SPLITTING ØF THE TWØ GRØUND STATES 2D3/2 AND 2D5/2 ØF YTTRIUM-89 BY USING ATØMIC BEAM RESØNANCE METHØDS NATURWISSENSCHAFTEN 44, 255 (1957) CA 51, 15265 (1957)	601100 601100 601100 601100 601100
EHRLICH P GUTSCHE W SEIFERT H (UNIV GISSEN PREPARATION AND CRYSTAL STRUCTURE OF TITANIUM DIBROMIDE Z ANORG U ALLGEM CHEM 312 + 80 (1961) CA 56+ 5617 (1962)	201331 201331 201331 201331 201331
EICHELBERGER J (MOUND LAB MIAMISBURG 0HIO) MOUND LABORATORY MONTHLY PROGRESS REPORTS FOR FEB AND MARCH 1961 . MLM-1112 AND MLM 1113 NSA 15, 17880, 17881 (1961)	601420 601420 601420 601420 601420
EICK: H (MICHIGAN STATE UNIV EAST LANSING MICHIGAN) RARE EARTH BØRIDES AND NITRIDES RARE EARTH RES SEMINAR LAKE ARRØWHEAD CALIF 1960: 297 (1961) CA 58: 12275 (1963)	301439 301439 301439 301439 301439 301439
EICK: H (KANSAS UNIV LAWRENCE KANSAS) PRECISE LATTICE PARAMETERS OF SELECTED RARE EARTH TETRA AND HEXABORIDES AECU-4087 (1958) NSA 13: 10826 (1959)	601537 601537 601537 601537 601537 601537
EICK, H (STATE UNIV OF IOWA IOWA CITY IOWA) NITRIDES AND LOWER OXIDES OF SAMARIUM, EUROPIUM, AND YTTERBIUM UNIV MICROFILMS (ANN ARBOR MICH) PUBL NO 17470 CA 51, 9247 (1957)	601053 601053 601053 601053 601053
EICK. H	601289

(STATE UNIV OF 10WA 10WA CITY 10WA) LOWER OXIDES OF SM AND EU THE PREPARATION AND CRYSTAL STRUCTURE OF SMOO.4-0.6. SMO. FUO J AM CHEM SOC 78. 5147 (1956) NSA 11. 130 (1957)	601247 601289 601289 601289 601289
EICK+ H BAENZIGER+ N EYRING+ L (STATE UNIV 10WA 10WA CITY 10WA) THE PREPARATION+ CRYSTAL STRUCTURE+ AND SOME PROPERTIES OF SMN+ EUN+ YBN J AM CHEM SOC 78+ 5987 (1956) CA 51+ 5611 (1957)	601046 601046 601046 601046 601046
EICK+ H GILLES+ P (UNIV ØF KANSAS LAWRENCE KANSAS) PRECISE LATTICE PARAMETERS ØF SELECTED RARE EARTH TETRA AND HEXARØRIDES J AM CHEM SØC 81+ 5030 (1959) CA 54+ 12713 (1960)	601184 601184 601184 601184 601184
EICK: H. RAUH: E. THØRN: R. VAPØRIZATIØN STUDIES ØF THE URANIUM DICARBIDE PHASE IAFA SYMPØSIUM ØN THE THERMØDYNAMICS DE NUCLEAR MATERIALS. PRØC: VIENNA: MAY 1962. NSA 16: 25393 (1962)	601614 601614 601614 601614
EISENBERG. Y THE EVEN CONFIGURATIONS D3 +D25 + D52 JE TH II PHYSICA 18. 177 .;352) CA 46. 4359 (1952)	400577 400577 400577 400577
FISENSTEIN+ J (NATL BUR ØF STANDARDS WASHINGTØN D.C) SPECTRUM ØF REF6 J CHEM PHYS 33+ 1530 (1960) CA 55+ 14058 (1961)	201030 201030 201030 201030 201030
EISENSTEIN J (NATE BUR STANDARDS WASH DC) ABSØRPTIØN SPECTRUM AND MAGNETIC PRØPERTIES ØF ØSMIUM HEXAFLUØRIDE J CHEM PHYS 34 * 310 (1961) CA 55 * 19470 (1961)	201126 201126 201126 201126 201126 201126
ELFSTRØM• M THE CRYSTAL STRUCTURE ØF CR384 ACTA CHEM SCAND 15• 1178 (1961) CA 56• 8106 (1962)	300367 300367 300367 300367
ELIASHBERG. G LOW TEMPERATURE HEAT CAPACITY OF METALS ZHUR TEKHN EKSPERIM FIZ 43. 1105 (1962)	300881 300881 300881
ELLE, M CHIPMAN, J THE COLUMBIUM-OXYGEN EQUILIBRIUM IN LIQUID IRON TRANS AIME 221, 701 (1961)	300281 300281 300281
ELLINGER: F (U. OF CALIFORNIA LOS ALAMOS N.M.) CRYSTAL STRUCTURE OF NEODYMIUM METAL J MET 7 AIME TRANS 203. 411 (1955) CA 49. 5239 (1955)	600977 600977 600977 600977 600977

ELLINGER F THE CRYSTAL STRUCTURE OF NEODYMIUM METAL AND NEODYMIUM MONOXIDE AECU-2593 LADC 1460 (1953) NSA 7, 4968 (1953)	601253 601253 601253 601253 601253
ELLINGER, F ZACHARIASEN, W (LØS ALAMØS SCI LAB LØS ALAMØS N.M.) CRYSTAL STRUCTURES ØF SAMARIUM METAL AND ØF SAMARIUM MØNØXIDE J AM CHEM SØC 75, 5650 (1953) CA 48, 13332 (1954)	600947 600947 600947 600947 600947
ELLIØTT. G LEMØNS. J (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEXICØ) NØNSTØICHIØMETRY IN INTERMETALLIC CØMPØUNDS ADVAN CHEM SER 39. 144 (1963) CA 58. 13225 (1963)	301440 301440 301440 301440 301440
ELLIØTT. R (ILLINØIS INST ØF TECHNØL CHICAGØ ILLINØIS) THE METALLØGRAPHY ØF NIØBIUM-ØXYGEN AND NIØBIUM CARBØN ALLØYS US AT ENERGY CØMM TID-7625. 8 (1962) CA 58. 12246 (1963)	301441 301441 301441 301441 301441
ELLIOTT. R (ILL INST OF TECH CHICAGO ILL) NIOBIUM-CARBON SYSTEM TRANS AM SOC METALS 53. 13 (1961) CA 55. 20874 (1961) NSA 15. 3142 (1961)	300262 300262 300262 300262 300262
ELLIOTT. R COLUMEIUM OXYGEN SYSTEM TRANS AM SOC METALS 52. 990 (1960) NS 14. 22079 (1960)	600625 600625 600625 000625
ELLIOTT R (ILLINOIS INST OF TECH CHICAGO ILL) THE BORON-CARBON SYSTEM ARF-2200-9 (1961) NSA 15, 11572 (1961)	700718 700718 700718 700718 700718
ELLIOTT, R KØMJATHY, S (ILLINØIS INST ØF TECH CHICAGØ ILL) CØLUMBIUM-NITRØGEN SYSTEM CØLUMBIUM METALLURGY P 367 INTERSCIENCE PUBLISHERS NY (1961) NSA 15, 32464 (1961)	701063 701063 701063 701063 701063
ELLIOTT, R KOMJATHY, S NIOBIUM PHASE DIAGRAMS ARF 2120 (1960) NS 14, 22003 (1960)	600621 600621 600621 600621
ELLÎOTT, R VAN THYNE, R The Børøn Carbøn System ARF 2200-3 (1960) NS 14, 22004 (1960)	600622 600622 600622 600622
ELLIØTT, R VAN THYNE, R (ILLINØIS INST ØF TECH CHICAGØ ILLINØIS) THE BØRØN - CARBØN SYSTEM	701069 701069 701069

```
QUARTERLY REPORT NO 2 FOR AUG 1. 1960- OCT 31. 1960 APF-2200-6 701069
NSA 15, 6373 (1961)
                                                                      701069
ELLIS. R
                                                                     200980
(RAYTHEON CO
                               WALTHAM
                                                     MASSI
                                                                     200980
VARIOUS PREPARATIONS OF ELEMENTAL BORON
                                                                      200980
 BORON SYNTHESIS STRUCTURE PROPERTIES PROC CONF ASBURY PARK
                                                                      200980
N.J. 1959. 42 (1960)
                                                                     200980
CA 55, 12125 (1961)
                                                                     200980
ELYASHEVICH . M
                                                                     601413
SPECTRA OF THE RARE EARTHS
                                                                     601413
 AEC-TR-4403
                                                                     601413
 SPEKTRY REDKIKI ZEMEL, STATE PUB HOUSE OF
                                                                     601413
 TECH LIT, MOSCOW, (1953)
                                                                     601413
NSA 15, 19889 (1961)
                                                                     601413
ELYASHEVICH. M NIKITINA. Ø
                                                                     301090
 TRIPLET QUINTET TRANSITIONS IN THE ATOMIC SPECTUM
                                                                      301090
 OF SILICON
                                                                      301090
 SØVIET PHYSICS DØKLADY 1. (1956)
                                                                      301090
 DOKLADY AKAD NAUK SSSR 111 . 325 (1956)
                                                                      301090
 CA 52, 7847 (1958)
                                                                     301090
EMELYANOV, V EVSTYUKHIN, A LEONTEV, G
IODIDE NIOBIUM AND SOME OF ITS PROPERTIES
                                                                      201088
                                                                      201088
 MET I METALLØVED CHISTYKH METAL SBØRNIK NAUCH-RABØT 1960.
                                                                      201088
 NØ 2. 27 (1960)
                                                                      201088
 CA 55, 17419 (1961)
                                                                      201088
                                                                      100209
 THE FREE ENERGIES OF FORMATION OF THE FLUORIDES. CHLORIDES AND 100209 OXIDES OF ALKALI. ALKALINE EARTH. AND RARE EARTH METALS. AND 100209
 THE OCCURENCE IN FUSED SALT MIXTURES OF DOUBLE-DECOMPOSITION
                                                                      100209
 REACTIONS INVOLVING THESE SUBSTANCES
                                                                      100209
 CHEM ENG SCI 1. 131 (1952)
                                                                      100209
 CA 47. 1481 (1953)
                                                                      100209
                                                                      300562
EMØNS. H BØENICKE. H
 PREPARATION OF SILICON MONOXIDE FROM SILICON AND
                                                                      300562
 DIFFERENT MODIFICATIONS OF SILICON DIOXIDE
                                                                      300562
 J PRAKT CHEM 18, NØ 1, 11 (1962)
                                                                      300562
                                                                      301182
EMRICH. B R
(A S D WPAB
                                                     ØHIØ)
                                                                      301182
 LITERATURE SURVEY OF SYNTHESIS PROPERTIES AND APPLICATIONS OF
                                                                      301182
 SELECTED BORIDE COMPOUNDS
                                                                      301182
                                                                      301182
 ASD TDR 62-873 AD295 467
                                                                      301182
 TAB 63-2-3 10 (1963)
                                                                      200919
ENCE, E MARGOLIN, H
INEW YORK UNIV
                                                     NY )
                                                                      200919
                                NY
                                                                      200919
 TI-ZR SYSTEM
 TRANS AIME 221, 205 (1961)
                                                                      200919
 CA 55+ 7248 (1961)
                                                                      200919
ENCE . E MARGOLIN . H
                                                                      300162
                                                                      300162
 TITANIUM-ZIRCONIUM SYSTEM
                                                                      300162
 TRANS MET SOC AIME 215, 205 (1961)
ENIG. J
                                                                      202030
 A COMPLETE E.P.V.T.S. THERMODYNAMIC DESCRIPTION OF
                                                                      202030
 METALS BASED ON THE P M MIRROR-IMAGE APPROXIATION
                                                                      202030
```

J APPLIED PHYS 34. 746 APRIL (1963)	202030
ENGELKE, J HALDEN, F FARLEY, E SYNTHESIS OF NEW HIGH TEMPERATURE MATERIALS U S DEPT COM OFFICE TECH SERV P B REPT 161, (1960) CA 56, 13909 (1962)	201529 201529 201529 201529
ENGLE. G GØEDDEL. W LUBY. C (GEN DYNAMICS CØRP SAN DIEGØ CAL) REACTIØN RATE STUDIES ØF THØRIUM-URANIUM DICARBIDES IN MØIST AIR J AM CERAM \$0C 45. 136 (1962) CA 56. 13826 (1962)	201525 201525 201525 201525 201525 201525
EPELBAUM, V SEVASTYANOV, N GUREVICH, M ØRMØNT, B ZHDANOV, G PHASES FØRMED IN THE CHRØMIUM-BØRØN SYSTEM ZHUR NEØRG KHIM 2, 1848 (1957) AEC-TR-4058 NSA 15, 14753 (1961)	700931 700931 700931 700931 700931
EPELBAUM, V SEVASTYANØV, N GURÉVICH, M ZHDANØV, G PHASES FØRMED IN THE BØRØN-RICH REGIØN ØF THE CR-BØRØN SYSTEM ZHUR STRUKT KHIM 1, NØ 1, 64 (1960) CA 55, 16066 (1961) NS 15, 11690 (1961)	600800 600800 600800 600800
EPELBAUM, V SEVASTYANØV, N ØRMØNT, B GUREVICH, M PØSSIBILITY ØF EXISTENCE ØF BØDY-CENTERED PHASES ØF BØRØN CARBIDE AND SILICØN ØXYCARBIDE ZHUR STRUKT KHIM 2, 65 (1961) CHEM TITLE NØ 13 107 (1961)	300202 300202 300202 300202 300202
EPELBAUM, V STARØSTÍNA, M THERMØCHEMICAL INVESTIGATIONS OF BORON AND CERTAIN BORIDES BOR, TRUDY KONF KHIM BORA I EGO SOEDINII, 97 (1955) CA 54, 23701 (1960)	300194 300194 300194 300194
EPPRECHT, W CRYSTAL CHEMISTRY OF METAL CARBIDES AND THEIR IMPORTANCE IN METALLURGY CHIMIA 5, 49 (1959) COTS 54, 123 (1962)	301109 301109 301109 301109 301109
EPREMIEN E (DIV RESEARCH AEC ØAK RIDGE TENN) URANIUM ALLØY NEWSLETTER NØ 14 WÅSH-296 (1957) NSÅ 12, 7209 (1958)	601515 601515 601515 601515 601515
ERBEN• E LESSER• R TANTALUM METALL 15• 679 (1961)	300323 300323 300323
EREMENKØ: V TITANIUM AND ITS ALLØYS IZDATEL AKAD NAUK UKR SSR 1960: 500 (1960) CA 54: 17220 (1960)	300286 300286 300286 300286
EREMENKO, V KØSØLAPØVA, T THE INTERACTIØN ØF TIC WITH NI VØPRØSY PØRØSHKØVØI MET I PRØCHNØST! MATERIALØV AKAD NAUK UKR SSR NØ 7, 3 (1959) CA 55, 18498 (1961)	300212 300212 300212 300212 300212

EREMENKØ, V LESNIK, N THE REACTION OF TIC WITH COBALT VOPROSY POROSHKOVOI MET I PROCHNOSTI MATERIALØV AKAD NAUK UKR SSR 3, 73 (1956) CÅ 51, 7273 (1957)	300285 300285 300285 300285 300285
EREMENKØ, V NAIDICH, Y SURFACE TENSIØN ØF MØLTEN RH AND PD IZV AKAD NAUK SSSR ØTD TEKH NAUK MET I TØPLIVØ, NØ 6, 100 (1962) BHT NØ 2, 26 (1962)	300529 300529 300529 300529 300529
EREMENKØ, V NIZHENKØ, V NAIDICH, V SURFACE TENSIØN ØF SØME MØLTEN METALS IZV AKAD NAUK SSSR ØTD TEKH NAUK MET I TØPLIVØ NØ 3, 150 (1961) BHT NØ 2, 34 (1962) CA 56, 7020 (1962)	300537 300537 300537 300537 300537
EREMENKO, V VELIKANOVÁ, T	201279
PREPARATION OF ALLOYS OF TITANIUM CARBIDE AND MOLYBDENUM	201279
METALLOKERAM MATERIALLY I METODY IKH ISSLEDOVANIYA, AKAD,	201279
NAUK, UKR, SSR, INFORM MATERIALY 1959, 25	201279
CA 56, 3227 (1962)	201279
EREMENKØ, V NIZHENKØ, V TAÍ, S	200821
SURFACE TENSIØN ØF LIQUID BERYLLIUM	200821
IZVEST AKAD NAUK SSSR, ØTDEL TEKH NÅUK,	200821
MET I TØPLIVØ 1510, NØ 3, 116 (1960)	200821
CA 55, 2406 (1961)	200821
EREMENKØ, V TRETYACHENKØ, L GØLUBENKØ, Z	201711
THE ALPHA PHASE EXISTENCE LIMITS IN THE TANTALUM VANADIUM	201711
SYSTEMS	201711
PØPØVIDI AKAD NAUK UKR RSR 1962, 192	201711
CA 57, 5384 (1962)	201711
EREMENKØ, V TRETYACHENKØ, L YAKHIMØVICH, R	201492
FUSIØN DIAGRAM ØF THE TANTALUM VANADIUM SYSTEM	201492
ZH NEØRGAN KHIM 5, 2290 (1960)	201492
CA 56, 12624 (1962)	201492
EREMENKO, V VELIKANOVA, T	201278
Triangulation of the titanium-carbon-molybdenum system	201278
Poroshkovaya met, akad nauk ukr SSR 1, No 3, 20 (1961)	201278
CA 56, 3226 (1962)	201278
ERIKSEN, V HALG, W (BROWN BOVERI CO LTD BADEN SWITZERLAND) THERMAL CONDUCTIVITY AND ELECTPICAL RESISTIVITY OF URANIUM J NUCLEAR ENERGY 1, 232 (1955) CA 49, 12944 (1955)	600934 600934 600934 600934 600934
ERMANIS, F FARRER, P (NEW YORK UNIV NEW YORK NY) A REINVESTIGATION OF THE SYSTEMS TI-CR AND TI-V TRANS AIME 221, 904 (1961) CA 56, 1260 (1962)	201240 201240 201240 201240 201240
ERØFEEVA, M. LUKINYKH, N. ARIYA, S	700602
Heat contents of some titanium oxides at high temperatures	700602

ZHUR FIZ KHIM 35. 772 (1961)	700602
ESIN. Ø SRYVALIN. I THERMØDYNAMIC PRØPERTIES ØF METALLIC ALLØYS AND THE PHASE DIAGRAMS IZVEST AKAD NAUK SSSR ØTDEL TEKH NAUK NET I TØPLIVØ NØ 6. 116 (1960) CA 55. 12019 (1961)	300276 300276 300276 300276 300276 300276
ESTULIN, G BURØVA, N THE ØXIDATION OF NB ALLOYS FIZ METAL I METALLOVED 12, 703 (1961) BHT NØ 2, 48 (1961)	300552 300552 300552 300552
ESTULIN, G EGØRSHINA, T BURØVA, N PHASE CØMPØSITIØN ØF THE ØXIDES ØF ALLØYS ØN THE BASES ØF NIØBIUM FIZ METAL I METALLØV 13, NØ 4, 550 (1962) FTD-TT-62-1297	900207 900207 900207 900207 900207
EULER. R WESTRUM. E (UNIV ØF MICH ANN ARBØR MICH) HEAT CAPACITY AND THERMØDYNAMIC PRØPERTIES ØF TITANIUM TETRAFLUØRIDE FRØM 6 TØ 304 DEGREES K J PHYS CHEM 65. 132 (1961) CA 55. 21775 (1961)	201157 201157 201157 201157 201157 201157
EVANS. D (UNIV BIRMINGHAM BIRMINGHAM ENGLAND) THE SØLUBILITY ØF ZR IN ALPHA-THØRIUM J NUCLEAR MATERIALS 4. 66 (1961) CA 56. 2054 (1962)	201254 201254 201254 201254 201254
EVANS. D RAYNØR. G LATTIC SPACINGS IN THØRIUM-YTTRIUM ALLØYS J NUCLEAR MATERIALS 2. 209 (1960) CA 55. 5302 (1961)	200874 200874 200874 200874
EVANS. P THE STRUCTURE ØF U2N3 J AM CERAM SØC 45. 305 (1962) NSA 16. 20396 (1962)	601463 601463 601463 601463
EVANS, P (UNIV MANCHESTER ENGLAND) SYSTEM U02-ZR02 J AM CERAM 50C 44, 631 (1961) CA 56, 6919 (1962)	201362 201362 201362 201362 201362
EVANS. D RAYNØR. G (UNIV BIRMINGTØN BIRMINGTØN ENGLAND) LATTICE-SPACING RELATIØNSHIPS IN THE SYSTEM THØRIUM-CERIUM- LANTHANUM J NUCL MATER 5. 308 (1962) CA 57. 9545 (1962)	201812 201812 201812 201812 201812 201812
EVANS. P WILDSMITH. G EVIDENCE OF PHASE CHANGES IN ZIRCONIA FROM THERMAL ETCHING NATURE 189. 569 (1961) CA 55. 11991 (1961)	600768 600768 600768 600768
EVDØKIMØVA+ V VERESHCHAGIN+ L DETERMINATION OF THE DISTANCE BETWEEN ATOMS IN SUUSTANCE UNDER	201072 201072

PRESSURE. I. COMPRESSIBILITY OF BARIUM AND STRONTIUM FIZ TVERDOGO TELA 2. 1701 (1960) CA 55. 17132 (1961)	201072 201072 201072
CA 55, 17132 (1961) EVERHART, J LINDLIEF, W KANEGES, J MECHANICAL PROPERTIES OF METALS AND ALLOYS NBS-C-447, 481 (1943)	600907 600907 600907
EVSTYUKHIN, A THERMAL REDUCTION OF BEF2 BY MAGNESIUM MET I METALLOVED CHISTYKH METAL, SBORNIK NAUCH RABOT 1959, NO 1, 91 (1959) CA 55, 4292 (1961)	200852 200852 200852 200852 200852
EVSTYUKHIN, A BARINÓV, I APPARATUS FØR MEASURING VAPØR PRESSURES ØF ZIRCØNIUM AND HAFNIUM CHLØRIDES AND IØDIDES MET I METALLØVED CHISTYKH METAL MØSKØV INZHENER FIZ INST SBØRNIK NAUD RABØT 1960, NØ 2, 49 (1960) BHTG NØ 2, 8 (1961) EVSTYUKHIN, A NIKISHANØV, V MILØV, I	300882 300882 300882
EVSTYUKHIN, A NÎKISHANOV, V MÎLOV, Î ZONE REFINING OF NIOBIUM BY ELECTRIC ARC METHOD ISSLED PO ZHAROPROCH SPLAVAM AKAD NĂUK SSSR INST MET 9, 218 (1962) CA 58, 7671B (1963)	301442 301442 301442 301442 301442
EVSTYUKHIN. A NIKISHANOV. V MILOV. I DISTRIBUTION OF CARBON AND TUNGSTEN IN COLUMBIUM DURING ITS ZONE REFINING IZV A N SSSR OTN MET I TOP NO 3, 98 (1962) ENG TRANS RUSS MET AND FUELS NO 3, 82 (1962)	300883 300883 300883 300883 300883
EWING, C WALKER JR, B SPANN, J STEINKULLER, E MILLER, R (U S NAVAL RES LAB WASHINGTØN D C) THERMAL CØNDUCTIVITY ØF REFRACTØRY METALS J CHEM ENG DATA 7, 251 (1962) CA 57, 7922 (1962)	201768 201768 201768 201768 201768
(U S NAVAL RES LAB WASHINGTON D C) THERMAL CONDUCTIVITY OF REFRACTORY METALS J CHEM ENG DATA 7, 251 (1962) CA 57, 7922 (1962) EWING. R (GEN FLEC CO RICHLAND WASH) ABSORPTION SPECTRA OF SOLID UCL4, UOCL2 J INORG AND NUCLEAR CHEM 17, 177 (1961) CA 55, 19470 (1961)	201127 201127 201127 201127 201127
EYRING, L BAENZIGER, N ØN THE STRUCTURE AND RELATED PRØPERTIES ØF THE ØXIDES ØF PRASEØDYMIUM J APPL PHYS 33, 428 (1962) PA 65, 4418 (1962)	300825 300825 300825 300825 300825
EYRING. L SCHULDT. H VØRRES. K PHASE EQUILIBRIA KINETIC AND THERMØDYNAMIC STUDIES ØF SØME RARE EARTH AND ØTHER METAL ØXIDE AND N'TRIDE SYSTEMS TID~5914 (1959) NS 14. 15629 (1960)	600634 600634 600634 600634 600634
EYRING, L HØLMBERG, B HYDE, B KAKØRØPØLØUS, P FELMLEE, T THE SØLID STATE CHEMISTRY ØF RARE EARTH ØXIDES TID-16350 (1962) NSA 16, 25323 (1962)	601590 601590 601590 601590
EYRING. L VØRRES. K SCHULDT. H	700748

PHASE EQUILIBRIA: KINETIC AND THERMODYNAMIC STUDIES OF SOME RARE EARTH METAL OXIDE AND NITRIDE SYSTEMS TECH PROGREP: TID-5956 (1960) NUCL SCI ABST 14: 15997 (1960)	700748 700748 700748 700748
FAETH. P A (PURDUE UNIV LAFAYETTE IND) HYSTERESIS EFFECTS AND THE STOICHIOMETRY OF PRASEODYMIUM OXIDE (1961) THESIS DISS ABST 22. NO 7 (1962) NSA 17. 177 (1963)	701076 701076 701076 701076 701076 701076
FAIRBROTHER, F COWLEY, A SCOTT, N THE OXYTRICHLORIDES AND OXYTRIBROMIDES OF NIOBIUM (COLUMBIUM) (V) AND TANTALUM (V) J LESS COMMON METALS 1, 206 (1959) CA 55, 6228 (1961)	200886 200886 200886 200886 200886
FANG. F KUZNETSØV. A KELER. E PHASE RELATIØNS IN Y203-ZRØ2 SYSTEM IZV AKAD NAUK SSR. ØTD KHIM NAUK 1141 (1962) CA 58. 2889B (1963)	301443 301443 301443 301443
FARBER: M (ROCKET POWER PASADENA CALIF) HEAT OF FORMATION AND ENTROPY OF THE TRIMER OF BORON OXYFLUORIDE J CHEM PHYS 36: 661 (1962) CA 56: 13627 (1962)	201510 201510 201510 201510 201510 201510
FARBER. M DARNELL. A DISSOCIATION OF HYDROGEN AND NITROGEN ON TUNGSTEN FILAMENTS J CHEM PHYS 21. 172 (1953) CA 47. 8440 (1953)	600579 600579 600579 600579
FARIS. F (NØRTH AM AVIATION INC DØWNEY CAL) RADIATION EFFECTS QUARTERLY PROGRESS REPT FOR ØCT-DEC 1954 DECL MAR 1. 1957 NAA-SR-1286 NSA 11. 7889 (1957)	601310 601310 601310 601310 601310
FARR, J HUBER, E HEAD, E HØLLEY, C THE PREPARATION OF URANIUM MØNOCARBIDE AND ITS HEAT OF FORMATION J PHYS CHEM 63, 1455 (1959) CA 54, 5312 (1960)	601200 601200 601200 601200 601200
FASØLINØ: L G (NAT RESEARCH CØRP CAMBRIDGE MASS) THERMØDYNAMIC PRØPERTIES ØF BIMETALLIC CØMPØUNDS QUARTERLY LETTER REPØRT JAN-MARCH (1963) AD: 335650	301215 301215 301215 301215 301215
FAUSTOVA: D IPPOLITOVA: E SPITSYN: V TRUE HEAT CAPACITY OF URANATES OF ALKALI ELEMENTS AND OF CALCIUM ISSLED V OBL KHIM URANA SB STATEI 1961: 148 CA 57: 2929 (1962)	201613 201613 201613 201613 201613
FEAST, M THE SCHUMANN RUNGE ØXYGEN BANDS EMITTED AT ATMØSPHERIC	600553 600553

PRESSURE PROC PHYS SOC (LONDON) 6 CA 44+ 429 (1950)	2A• 114 (1949)		600553 600553 600553
FEAST: M THE SCHUMANN RUNGE ØXYGE 3100-2500A PRØC PHYS SØC LØNDØN 63: CA 45: 444 (1951)		N THE REGIØN	600554 600554 600554 600554
FEATHERSTON. F NEIGHBOUR (US NAVAL POST-GRADUATE ELASTIC CONSTANTS OF TAN PHYS REV 130. 1324 (1963) CA 58. 13154 (1963)	MØNTEREY ITALUM: TUNGSTEN: AN	CALIF) ND MØLYBEDENUM	301444 301444 301444 301444
FEAST. M ROTATIONAL ANALYSIS OF T POSITIVE SYSTEM PROC PHYS SOC (LONDON) 6 CA 45. 444 (1951)		HE NITRØGEN FIRST	600580 600580 600580 600580
FEAST • M TWO NEW 2SIGMA-2SIGMA SY CAN J RES 28A • 488 (1950 CA 45 • 2774 (1951)		DLECULE NO	600740 600740 600740 600740
FEBER• R US ATÓMIC ENERGY CÓMM LA HEATS OF DISSOCIATION OF CA 59• 5859 (1963)		•	301445 301445 301445 301445
FEDØRØV• G DETFRMINATIØN ØF HEAT ØF ZIRCØNIUM BY THE METHØD MET I METALL CHISTYKH ME RABØT NØ 2• 141 (1960) CA 55• 18491 (1961)	OF RADIOACTIVE INDI		600823 600823 600823 600823 600823
FEDØRØV» G SMIRNØV» E THERMØDYNAMIC PRØPERTIES IAEA SYMPØSIUM ØN THE TH PRØC» VIENNA» MAY 1962 NSA 16» 25406 (1962)			601620 601620 601620 601620 601620
FEDERØV. G SMIRNØV. E MEASUREMENT ØF PARTIAL F IN ITS ALLØYS WITH TIN. ØF ZIRCØNIUM AND ITS ALL MET I METALLØVED CHISTYK BHT (GASES) NØ 6 (1962)	THERMOLYNAMIC CHAP OYS	RACTERISTICS	601659 601659 601659 601659 601659
FEDØRØV» T SHAMRAI» F M PREPARATION ØF ELEMENTAL ZHUR NEØRG KHIM 5° 226 (BORON	EVICH• İ	300197 300197 300197
FEDØSEEV» I NEMKØVA» Ø ØXIDATIØN ØF TITANIUM NI ZH NEØRGAN KHIM 7° 980 (CA 57° 6849 (1962)	ITRIDE IN DRY AND MI (1962)	ØIST AIR	201757 201757 201757 201757
FEIGELSEN, R (WATERTØWN ARSENAL	WATERTOWN	MASSI	301446 301446

SOME PHYSICAL PROPERTIES OF POLYCRYSTALINE SI AD277686 MAY 1962	ILICØN BØRIDE	301446 301446
FELDMAN M (DUPONT AIKEN X-RAY DIFFRACTION STUDIES ON ZR AND ZIRCALOY- SEARCH - DP-551 (1961) NSA 15 • 23939 (1961)	SC) -2. A LITERATURE	701045 701045 701045 701045 701045 701045
FELTEN E AITKEN E (GEN ELEC CØ CINCINNATI MECHANISM AND KINETICS ØF THE FØRMATIØN ØF VØ J INØRG NUCL CHEM 24 + 35 (1962) CA 57 • 4286 (1962)		201690 201690 201690 201690 201690
FELTEN. E BENDER. I PØST. B EURØPIUM HEXABØRIDE AND LANTHANUM TETRABØRIDE J AM CHEM SØC 80. 3479 (1958) CA 53. 2912 (1959)	Ξ	700857 700857 700857 700857
FENGO C (RAYTHEON CO ANGLE BETWEEN SOME LOW INDEX PLANES IN RHENIL J LESS COMMON METALS 4. 103 (1962) CA 57. 2946 (1962)	MASS) JM LATTICE	201618 201618 201618 201618 201618
FENG. C LEVESQUE. P THE FORMATION OF SIGMA PHASES AND ITS EFFECT WORKABILITY OF MO-RE ALLOYS TRANS AIME 221. NO 6. 1278 (1961) BHT NO 2. 26 (1962)	ØN THE	300530 300530 300530 300530 300530
FEØFILØV, P KAPLYANSKII. A SPECTRA ØF BIVALENT RARE EARTH IØNS IN THE CR ALKALINE EARTH FLUØRIDES. I SAMARIUM ØPTIKA I SPEKTRØSKØPIYA 12. 493 (1962) CA 57. 6753 (1962)	RYSTALS ØF	201755 201755 201755 201755 201755
FERGUSSON, J ROBINSON, B ROPER, W (UNIV CANTERBURY IODIDES OF OSMIUM AND RHENIUM J CHEM SOC 1962, 2113 CA 57, 4774 (1962)	NZ)	201686 201686 201686 201686 201686
FERRARØ: J INØRGANIC INFRARED SPECTRØSCØPY J CHEM EDUC 38: 201 (1961)		700571 700571 700571
FERRIER A CALCULATION OF THE HEAT OF FUSION OF IRON FRO DIAGRAMS OF VARIOUS BINARY SYSTEMS C.R. ACAD SCI (FRANCE) 254, NO 1. 104 (1962) PÅ 65. 7479 (1962)	M THE PHASE	300791 300791 300791 300791 300791
FERRISS. D ROSE. R WULFF. J (MASS INST TECH CAMBRIDGE DEFORMATION OF TA SINGLE CRYSTALS TRANS AIME 224. 5 975 (1962) BHT NO 1. P 8. (1963)	MASSI	301137 301137 301137 301137 301137
FERRØ» R RAMBALDI» G (Univ genøa	ITALY)	201696 201696

PHASE DI02 TYPE IN THE TH-RH ALLØY SYSTEM ACTA CRYST 14, 1094 (1961) CA 57, 4431 (1962)	201696 201696
FERRO, R RAMBALDI, G CAPELLI, R (UNIV GENØA THE ALLØYS ØF NØBLE METALS WITH THE MØRE ELECTRØPØSITIVE ELEMENTS V MICRØGRAPHIC AND X-RAY EXAMINATION ØF SØME MAGNFSIUM IRIDIUM ALLØYS J LESS CØMMØN METALS 4, 16 (1962) CA 57, 3145 (1962)	201696 201626 201626 201626 201626 201626 201626
FERT, A (CENTRE ETUDES NOCL SACLAY FRANCE) STRUCTURE OF SOME RARE EARTHS BULL SOC FRANC MINERAL CRIST 85, NO 3, 267 (1962) CA58, 3973 (1963)	301447 301447 301447 301447 301447
FESENKØ+ V THERMØDYNAMIC PRØPERTIES AND CHARACTERISTICS ØF BØRØN NITRIDE AT HIGH TEMPERATURES PØRØSHKØVØYA MET• AKAD NAUK UKR SSR 1+ NØ 4+ 80 (1961) CA 56+ 10997 (1962)	300711 300711 300711 300711 300711
FESENKØ, V V BØLGAR, A S EVAPØRATIØN RATE AND VAPØR PRESSURE ØF CARBIDES SILICIDES NITRIDES AND BØRIDES PØRØSHKØVAY1 MET AKAD NAUK UKR SSR 3, NØ 1, 17 (1963) CA 59, 4560H (1963)	301216 301216 301216 301216 301216
FEILD, A AMMON, R LEWIS, A RICHARDSON, L (WESTINGHOUSE RES LAB PITTSBURGH PA) TANTALUM AND TUNGSTEN BASE ÁLLOYS U S DEPT COM ØFFICE TECH SERV AD 259,116, (1961) CA 57, 16273 (1962)	201950 201950 201950 201950 201950
FEUER P (PURDUE UNIV LAFAYETTE INDIANA) THE THERMAL ACCOMMODATION COEFFICIENTS OF A CLATOMIC GAS J CHFM PHYS 39 (5) + 1311 (1963) CA 59 + 7007 (1963)	202031 202031 202031 202031 202031
FIELDHOUSE I LANG J (ILLINOIS INST OF TECH CHICAGO ILL) MEASUREMENT OF THERMAL PROPERTIES WADD-TR-60-904 (1960) NSA 16 • 4551 (1962)	601583 601583 601583 601583
FINCH R (ATOMICS INTERNATIONAL CANOGA PARK CAL) MEASUREMENT OF RESISTIVITY AND HEAT CAPACITY OF METALLIC CONDUCTORS NAA-SR-MEMO 5819 NSA 15 9019 (1961)	700547 700547 700547 700547 700547
FIRSOVA. L DETERMINATION OF THE CONDENSATION COEFFICIENT FROM THE RATE OF SATURATION OF A CONFINED SPACE OR THE SPACE OF AN EFFUSION CHAMGER ZHUR FIZ KHIM 36. NO 6. 1332 (1962)	300697 300697 300697 300697 300697
FIRSOVA. L ON THE KINETICS OF EQUILIBRIUM OF VAPOR PRESSURE IN	301448 301448

CONFINED SPACES AND IN THE SPACE OF EFFUSION CHAMBERS ZHUR FIZ KHIM 36+ 2224 (1962)	301448 301448
FIRSØVA: L. NESMEYANØV: A DEGREE ØF DISSØCIATIØN AND PARTIAL VAPØR PRESSURE ØF THE ØXIDES ØF LITHIUM: BERYLLIUM: BØRØN: SILICØN AND LEAD ZHUR FIZ KHIM 34: 2615 (1960) CA 55: 6086 (1961)	200761 200761 200761 200761 200761
FIRSØVA+ L NESMEYANØV+ A (M V LØMØNØSØV STATE UNIV MØSCØW RUSSIA) DETERMINATIØN ØF THE CØNDENSATIØN CØEFFICIENTS ØF LITHIUM+ BERYLLIUM+ BØRØN+ SILICØN+ AND LEAD ØXIDES ZHUR FIZ KHIM 34+ 2719 (1960) CA 55+ 13968 (1961)	201020 201020 201020 201020 201020 201020
FISCHER, W BRUNGER, K GRIENEISEN, H ØN METALLIC SCANDIUM Z ANØRG CHEM 231, 54 (1937)	700765 700765 700765
FISCHER-HJALMARS, I FLØDMARK, CØVALENT BØRØN-BØRØN BØNDS IN CRYSTALS ØF CERTAIN METAL BØRIDES J CHEM PHYS 22, 1950 (1954) CA 49, 2239 (1955)	700821 700821 700821 700821 700821
FISHBURN JR. H DILL. W IDENTIFICATIONS OF MIXED PHASES OF MNO2 PROC ANN POWER SOURCES CONF 15. 98 (1961) CA 56. 6870 (1962)	201360 201360 201360 201360
FISHER+ E MCSKIMIN+ H (ARGONNE NATL LAB LEMONT ILL) LOW TEMPERATURE PHASE TRANSITION IN ALPHA-URANIUM PHYS PEV 124+ 67 (1961) NSA 15+ 32578 (1961)	601455 601455 601455 601455
FISHER. F CØNSTRUCTIØN AND ØPERATIØN ØF A HIGH-TEMPERATURE SØLAR FURNACE. STUDIES ØF ELEMENTAL BØRØN UNIV MICRØFILMS (ANN ARBØR. MICH) L C CARD NØ MIC 60-3336. DISSERTATIØN ABSTR 21. 826 (1960) CA 55. 6064 (1961)	200877 200877 200877 200877 200877 200877
FISHER+ E (ARGONNE NATL LAB LEMONT LOW TEMPERATURE PHASE TRANSITION IN ALPHA-URANIUM PHYS REV 124+ 67 (1961) CA 56+ 2962 (1962)	201270 201270 201270 201270 201270
FISHTINE. S RELIABLE LATENT HEATS OF VAPORIZATION IND ENG CHEM 55. 20 (1963)	202032 202032 202032
FITZGERALD. L M HARDNESS AT HIGH TEMPERATURES OF SOME REFRACTORY CARBIDES AND BORIDES J LESS-COMMON METALS 5, 356 (1963)	301217 301217 301217 301217
FIZZØTTI, C SARACERØ, F METALLURGICAL EXAMINATIØN ØF URANIUM-RICH TERNARY ALLØYS CØNTAINING MØLYBDENUM AND CARBØN CØMIT NAZL ENERGIA NUCL CHEN-113, (1962)	201697 201697 201697 201697

CA 57+ 4431 (1962)	201/07
FLAHAUT, J DØMÅNGE, L KAMSUKØM, J A NEW TYPE ØF CHEMICAL CØMPØUND THE METALLIC SULFØBØRIDES CØMPT REND 254, 299 (1962) BHT NØ 2, 5 (1962)	201697 300512 300512 300512 300512
FLETCHER. G ANHARMONICITY AND THE THERMAL EXPANSION OF SOLIDS AUSTRALIAN J PHYS 14. 420 (1961) BHT 4. 8 (1961)	300325 300325 300325 300325
FLETCHER. W BEGUN. G FUNDAMENTAL ØF N150 J CHEM PHYS 27. 579 (1957) CA 52. 878 (1958)	600763 600763 600763
FLINN, P.A. MARADUDIN, A.A. ANHARMONIC CONTRIBUTIONS TO VIBRATIONAL THERMODYNAMIC PROPERTIES OF SOLIDS. THE LOW TEMPERATURE LIMIT ANN PHYS (N Y) 22, NO 2, 223 (1963)	301218 301218 301218 301218
FLINTA, J (A B ATOMENERGI STOCKHOLM SWEDEN) THERMAL CONDUCTIVITY OF URANIUM DIOXIDE US ATOMIC ENERGY COMM TID-7546, 516 (1958) CA 52, 9905 (1958)	601095 601095 601095 601095
FLØDMARK. S (UNIV STØCKHØLM STØCKHØLM SWEDEN) THEØRETICAL INVESTIGATIØN ØF THE FLECTRØNIC ENERGY BANDS FØR THE ZIRCØNIUM-ØXYGEN CRYSTAL U S DEPT CØM ØFFICE TECH SERV AD 257 435. (1961) CA 58. 5128 (1963)	301033 301033 301033 301033 301033
FLØDMARK • S RØØS • B (UNIV STØCKHØLM STØCKHØLM SWEDEN) A LIGAND-FIELD INVESTIGATIØN ØF ZR-Ø SYSTEM ACTA CHEM SCAND 17 (3) • 859 (1963) CA 59 • 4773F (1963)	301219 301219 301219 301219 301219
FLØERKE DO (TECHN EIDGEN HØCHSCH ZURICH SWITZERLAND) AMØRPHØUS AND MICRØCRYSTALLINE SIØ2 CHEM ERDE 22 PO (1962) CA58 12031B (1963)	301449 301449 301449 301449
FLØERKE Ø W A DISCUSSION ØF THE TRIDYMITE CRISTØBALITE PRJELEM SILICATES INDS 26, 415 (1961) CA 56, 6732 E (1962)	301220 301220 301220 301220
FLOTOW. H LOHR. H (ARGONNE NATL LAB THE HEAT CAPACITY AND THERMODYNAMIC FUNCTIONS OF URANIUM FROM 5 TO 350 DEGREES J PHYS CHEM 64. 904 (1960) NSA 14. 18932 (1960)	601334 601334 601334 601334 601334
FLUBACHER. P. LEADBETTER. A. MORRISON, J. THE HEAT CAPACITY OF PURE SILICON AND GERMANIUM AND PROPERTIES OF THEIR VIBRATIONAL FREQUENCY SPECTRA PHIL MAG 4. NO 8 273 (1959)	300391 300391 300391 300391

CA 56. 13628 (1962)	300391
FOEX: M (SOLAR ENERGY LAB MONTLOUIS FRANCE THE PROPERTIES OF SOME SOLUTIONS AND COMPOUNDS WITH LANTHANUM OXIDE BASE BULL SOC CHIM: FRANCE 1961: 109 (1961) CA 55: 21737 (1961)	201153 201153 201153 201153 201153 201153
FØGARASSY B NEMETH G A NEW PØTENTIAL FUNCTIØN FØR DIATØMIC MØLECULES ACTA PHYS ACAD SCI HUNG 11 + 265 (1960) CA 55 + 6072 (1961)	200879 200879 200879 200879
FOMENKO, V THERMOEMISSIVE PROPERTIES OF HAFNIUM AND NIOBIUM CARBIDES AND SCANDIUM AND THULIUM BORIDES RADIOTEKH I ELEKTRON 6, 1406 (1961) CA 56, 9560 (1962)	201420 201420 201420 201420 201420
FOMICHEV. E KANDYBA. V KANTOR. P CALORIMETRIC INSTALLATION FOR THE DETERMINATION OF THE ENTHALPY AND HEAT CAPACITY OF MATERIALS IZMERITELN TEKHN 1962. NO 5. 15 (1962) CA 57. 15889 (1962)	300885 300885 300885 300885 300885
FORELIK, C YELUTIN, V ROENTGENOGRAPHIC INVESTIGATION OF THE RECRYSTALLIZATION PROCESS OF THE BORIDES OF TITANIUM, ZIRCONIUM AND MOLYBDENUM, AND THE CARBIDES OF TITANIUM AND TUNGSTEN IZ VYSSHIKH UCHEB ZAVED, TSVET METAL NO 4, 143 (1962) JPRS-16059 COTS NO 59, 157 (1962)	300884 300884 300884 300884 300884 300884
FOREMAN. A ANHARMONIC SPECIFIC HEAT OF SOLIDS PROC PHYS SOC 79. 1624 (1962)	301083 301083 301083
FØRNEY, G MARSHAL, J (ELECTRØTHERMAL INDUST INC PEARL RIVER NEW YØRK) INVESTIGATION OF TITANIUM BORONITRIDE AND TANTALUM BOROCARBIDE MATERIAL SYSTEMS QUARTERLY REPT NØ 2 (1961) CONTRACT DA30-069-0RD-3126 ORD PRØJ TB4-004 DA PRØJ 5893-32-004 REPT WAL TR 371.9/2 AD 253669 (1961)	300238 300238 300238 300238 300238 300238 300238
FØRSYTH: J DALTE DA VEIGA: L (CAVENDISH LAB CAMBRIDGE ENGLAND) THE STRUCTURE ØF THE U-PHASE CØ7 MØ6 ACTA CRYST 15: 543 (1962) CA 57: 5390 (1962)	201713 201713 201713 201713 201713
FØRSYTHE. W WØRTHING. A THE PRØPERTIES ØF TUNGSTEN AND THE CHARACTERISTICS ØF TUNGSTEN LAMPS ASTRØPHYS JØURNAL 61. 146 (1925) CA 19. 2170 (1925)	700507 700507 700507 700507 700507
FRAGA. S RANSIL. B STUDIES IN MOLECULAR STRUCTURE. V COMPUTED STRECTROSCOPIC CONSTANTS FOR SELECTED DIATOMIC MOLECULES OF THE FIRST ROW J CHEM PHYS 35. 669 (1961)	700644 700644 700644 700644

FRANCIS. A METALS OF THE PLATINUM GROUP AND RHODIUM METALLURGY ET LA CONSTUCTION MECANIQUE 94, (1962) REV MET LIT 19, (1962)	301076 301076 301076 301076
FRANCIS. E THØRIUM DATA MANUAL UK AT ENERGY ANTHØRITY IND GRØUP IGR-R/R-303. 20 (1958) CA 53. 11005 (1959)	601127 601127 601127 601127
FRANCIS. E (UNITED KINGDØM AT ENERGY HARWELL ENGLAND) THØRIUM DATA MANUAL IGR-R/R-303 (1958) NSA 13. 11171 (1959)	601536 601536 601536 601536 601536
FRANK R (GEN ELEC CØ CINCINNATI ØHIØ) THE PRESENT AND FUTURE ØF NIØBIUM ALLØYS MET SØC CØNF 11, 237 (1960) CA 56. 3240 (1962)	201284 201284 201284 201284 201284
FRANTSEVICH, I LAVRENKØ, V HIGH TEMPERATURE ØXIDATIØN ØF TUNGSTEN, MØLYBDENUM TANTALUM, AND RHENIUM IN RECRYSTALLIZED AND COLD- HARDENED STATES ISSLEDØVANIYA PØ ZHARØPRØCH SPLAVAN, AKAD NAUK SSSR INST MET IM AA BAIKØVA 4, 329 (1959) CA 55, 5279 (1961)	200869 200869 200869 200869 200869 200869
FRANTSEVICH, I SHIANOVSKAIA, I THE FINE CRYSTAL STRUCTURE OF STRAINED RHENIUM DOKLADY AKAD NAUK SSSR 142. NO 6. 1291 (1962) BHT NO 2. 5 (1962)	300513 300513 300513 300513
FRANZEN: H (UNIV OF KANSAS LAWRENCE KANSAS) THE HIGH TEMPERATURE VAPORIZATION OF SOME OXIDES AND SULFIDES OF TITANIUM DISS ABST 23: 2713 (1963) CA 58: 13149 (1963)	202033 202033 202033 202033 202033 202033
FRANZEN. J HINTENBERGER. H MULTI-ATOMIC MOLECULAR IONS IN HIGH FREQUENCY SPARKS BETWEEN ELECTRODES FROM THE ELEMENTS BE. C. MG. AL. TI. FE. CU Z NATURFORSCH 16A. 535 (1961) NSA 15. 31438 (1961) CA 56. 6749 (1962)	700970 700970 700970 700970 700970
FRASER P JARMAIN W NICHOLLS R VIBRATIONAL TRANSITION PROBABILITIES OF DIATOMIC MOLECULES COLLECTED RESULTS II, N2+, CN+ C2+ 02+ T10 ASTROPHY J 119+ 286 (1954) CA 48+ 5644 (1954)	300145 300145 300145 300145 300145
FRERICHS. R (NØRTHWESTERN UNIV EVANSTØN ILL) SUPERCØNDUCTIVE FILMS MADE BY PRØTECTED SPUTTERING ØF TA ØR NB J ÅPPL PHYS 33, 1898 (1962) CA58, 2955D (1963)	301450 301450 301450 301450 301450 301450
FRIED. S	601021

(ARGONNE NAT LAB THE CHEMISTRY AND CRYSTAL CHEMISTRY OF HEAVY ELEMENT COMPOUNDS PROC INTERN CONF PLACEFUL USES ATOMIC ENERGY, GENEVA 1955 7, 235 (1956) CA 50, 14419 (1956)	601021 601021 601021 601021 601021
FRIEDERICH. E SITTIG. L PREPARATION AND PROPERTIES OF NITRIDES Z ANORG CHEMIE 143. 293 (1925) CA 19. 1669 (1925)	700766 700766 700766 700766
FRIES. R (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEX) VAPØRIZATIØN BEHAVIØR ØF NIØBIUM CARBIDE J CHEM PHYSICS 37. NØ 2, 320 (1962)	300591 300591 300591 300591
FRIÉS. R (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEXICØ) VAPØRIZATIØN BEHAVIØR ØF NIØBIUM CARBIDE J CHEM PHYS 37. 320 (1962) BHT NØ 3. 26 (1962)	601478 601478 601478 601478 601478
FRIES, R KEMPTÉR, C (LASL LØS ALAMØS NEW MEX) DIMØLYBDENUM CARBIDE ANAL CHEM 32, 1898 (1960) CA 55, 4093 (1961) NSA 15, 4317 (1961)	701000 701000 701000 701000 701000 701000
FRØST. B (AT ENERGY RES ESTAB HARWELL ENGLAND) ADVANCES IN LIQUID METAL TECHNØLØGY J NUCL MATER 7. 109 (1962) CA58. 13533D (1963)	301451 301451 301451 301451 301451
FRØUNFELKER R SEITZ M HIRTHE W (MARQUETTE UNIV MILWAUKEE WISC) CRYSTALLØGRAPHIC DATA FØR THE HEXAGØNAL CRYSTAL SYSTEM NUCL SCI ENG 14, 192 (1962) NSA 17, 2095 (1963)	701089 701089 701089 701089 701089
FRUCHART, R MICHEL, A A NEW BØRIDE ØF MANGANESE, MNB4 CØMPT REND 251, 2953 (1960) CA 55, 21940 (1961)	300241 300241 300241 300241
FRYBURG. G PETRUS. H KINETICS OF THE OXIDATION OF PLATINUM J ELECTROCHEM SOC 108. 496 (1961)	700596 700596 700596
FUGET. C MASI. J THERMODYNAMIC FUNCTIONS FOR SELECTED COMPOUNDS REPT ON PROJ ZIP (1957) REPT NO CCC-1024-TR-263 CONTRACT NO (S)52-1024-C AD 234271 (1960) CA 55. 24215 (1961)	300243 300243 300243 300243 300243 300243
FUJISHIRO. S DISSOCIATION PRESSURE AND THERMODYNAMIC PROPERTIES OF VC AT HIGH TEMPERATURE TRANS JAPAN INST METALS 1. 125 (1960) BHTG NO 4. 6 (1962)	300463 300463 300463 300463 300463

CA 56. 4166 (1962)	300463
	601440 601440 601440 601440
FUJISHIRO, S GØKCEN, N (UNIV ØF PENNSYLVANIA PHILADELPHIA PA) THE THERMØDYANAMIC PRØPERTIES ØF CR3C2 AT HIGH TEMPERATURES, TRANS AIME 221, 275 (1961) CA 55, 13254 (1961)	201015 201015 201015 201015 201015
FUJISHIRO, S GØKCEN, N (UNIV ØF PA THERMØDYNAMIC PRØPFRTIES ØF TIC AT HIGH TEMPERATURES J PHYS CHEM 65, 161 (1961) NSA 15, 9475 (1961)	701012 701012 701012 701012 701012
THERMODYNAMIC PROPERTIES OF VC AT HIGH TEMPERATURES	601477 601477 601477 601477
FUNAKI• K UCHIMURA• K KUNIYA• Y (TØKYØ INST TECHNØL TØKYØ JAPAN) THERMØDYNAMIC STUDY ØF THE TI-BR SYSTEM KØGYØ KAGAKU ZASSHI 64• 1914 (1961) CA 57• 2923 (1962)	201609 201609 201609 201609 201609
FUNAKI• K UCHIMURA• K MATSUNAGA• H (TØKYØ INST TECHNØL TØKYØ JAPAN) THE TITANIUM-IØDINE SYSTEM KØGYØ KAGAKU ZASSHI 64• 129 (1961) CA 57• 4279 (1962)	201688 201688 201688 201688 201688
FUNKE, V YUDKØVSKII, S ØXIDATIØN ØF TITANIUM BØRIDE IRØN GRØUP METAL ALLØYS AT HIGH TEMPFRATURES ZH FIZ KHIM 37, 1557 (1963)	202034 202034 202034 202034
FUNKE. V F IUDKØVSKII. S 1 STRUCTURE AND PRØPERTIES ØF THE ALLØYS ØF ZIRCØNIUM DIBØRIDE WITH IRØN.CØBALT AND NICKEL (ABRIDGEMENT) IZVESTIYA AKADEMII NAUK ØTDELENIYE TEKHNICHESKIKH NAUK METALLURGIYA I TØPLIVØ NØ 4. 1962 ØRIG 126. TRANS 103 CØTS 63. 230 (1963)	301138 301138 301138 301138 301138
FUNKE, V SURSKAKØV, A YUDKØVSKII, S KUZNETSØV, K SHULEPØV, V YURKEVICH, T ELECTRICAL RESISTIVITY AND STRUCTURE OF THE COBALT-TUNGSTEN CARBIDE ALLØY FIZ METALLØV I METALLØVEDENIE (USSR) 10 NC 2 207 AUG 1960 PÅ 9144 JULY 1961	301453 301453 301453 301453 301453
FUNKE, V NOVIKOVA, T TUMANOV, VV STRUCTURE AND PROPERTIES OF ALLOYS OF THE TUNGSTEN-CARBON- COBALT-MOLYBDENUM SYSTEM 1ZV AKAD NAUK SSSR OTD TEKHN NAUK MET 1 TOPLIVO 1962, NO 2 113 CA 57, 4440 (1962)	201704 201704 201704 201704 201704 201704

FUNKE. V PANØV. V STRUCTUAL AND PHYSICØMECHANICAL PRØPERTIES ØF TI-WC-CØ ALLØYS FIZ METAL I METALLØVED AKAD NAUK SSSR 12. 382 (1961) CA 56. 1253 (1962)	201236 201236 201236 201236
FULKERSON. S APPARATUS FOR DETERMINING LINEAR THERMAL EXPANSIONS OF MATERIALS IN VACUUM OR CONTROLLED ATMOSPHERE ORNL 2856. (1960) NSA 14. 4511 (1960)	601361 601361 601361 601361 601361
FUNAKI, K TADAHARU. Ø (TØKYØ INST TECHNØL TØKYØ JAPAN) STUDIES ØN THE METALLURGY ØF MØLYBDENUM. II THE REDUCTIØN ØF MØLYBDENUM TRIØXIDE WITH HYDRØGEN J ELECTRØCHEM SØC (JAPAN) 18. 198 (1950) CA 45. 2837 (1951)	500117 500117 500117 500117 500117
FUNAKI. K UCHIMURA. K THE SYSTEM TI-TICL4 BULL TØKYØ INST TECHNØL SER B NØ 3. 191 (1960) CA 55. 13152 (1961) GAIDUKØV. G GAIDUKØV. M	201006 201006 201006 201006
GAIDUKØV. G GAIDUKØV. M MAKING PLASTIC VANADIUM IZV SIBIRSK ØTD AKAD NAUK SSSR 7, 29 (1962) BHT NØ 1. P 8, (1963)	301139 301139 301139 301139
GALCHENKØ• G KØRNILØV• A SKURATØV• S (M V LØMØNØSØV STATE UNIV MØSCØW RUSSIA) DETERMINATIØN ØF THE ENTHALPY ØF FØRMATIØN ØF BØRØN NITRIDE ZHUR NEØRG KHIM 5• 2651 (1960) CA 56• 15003 (1962)	201545 201545 201545 201545 201545
GALCHENKØ• G KØRNILØV• A SKURATØV• S (MØSCØW STATE UNIV MØSCØW RUSSIA) HEAT ØF CØMBUSTIØN ØF BØRØN ZHUR NEØRG KHIM 5• 2141 (1960) NSA 15• 10953 (1961) CA 56• 10999 (1962)	700916 700916 700916 700916 700916 700916
GALCHENKO, G KØRNILØV, A TIMØFEEV, B SHURATØV, S STANDARD HEAT ØF FØRMATIØN ØF BØRØN ØXIDE DØKLADY AKAD NAUK SSSR 127, 1016 (1959) CA 55, 26637 (1961)	300673 300673 300673 300673
GALCHENKØ, G TIMØFEEV, B SKURATØV, S (M V LØMØNØSØV STATE UNIV MØSCØW RUSSIA) THE ENTHALPY ØF FØRMATIØN ØF ALUMINUM FLUØRIDE ZH NEØRGAN KHIM 5, 2645 (1960) CA 56, 15002 (1962)	201544 201544 201544 201544 201544
GALKIN. N THERMODYNAMICS OF THE REDUCTION OF URANIUM TETRAFLUORIDE BY CA AT ENERGY (USSR) 11. 257 (1961) CA 56. 2045 (1962)	201248 201248 201248 201248 201248
GALLAGHER, J BEDARD, F JØHNSØN, C MICRØWAVE SPECTRUM ØF N14016 PHYS REV 93, 729 (1954)	600741 600741 600741

CÅ 48. 6835 (1954)	600741
GALLAGHER, J JOHNSON, C UNCOUPLING EFFECTS IN THE MICROWAVE SPECTRUM OF NITRIC OXIDE PHYS REV 103, 1727 (1956) CA 50, 16393 (1956)	600742 600742 600742 600742
GALLAGHER, J KING, W JØHNSØN, C THE MICRØWAVE SPECTRUM ØF N15016 PHYS REV 98, 1551 (1955) CA 50, 10514 (1956)	600743 600743 600743 600743
GALLOWAY, G (MICHIGAN STATE UNIV EAST LANSING MICH) INVESTIGATIONS INTO THE PREPARATION AND DECOMPOSITION OF SM B4 AND SM B6 THESIS, DISS ABST 23, NO3 (1962) NSA 17, 1509 (1963)	701078 701078 701078 701078 701078 701078
GANDERNA. A HØNIG. J INTERACTION OF ØXYGEN WITH TITANIUM DIØXIDE J PHYS CHEM 63. 620 (1959)	300224 300224 300224
GANESAN. S (INDIAN INST SCI BANGALØRE INDIA) TEMPERATURE VARIATIØN ØF THE GRUENEISEN PARAMETER IN MAGNESIUM ØXIDE CA 57, 78 (1962)	201559 201559 201559 201559 201559
GARBER R GINDIN 1 PHYSICAL PROPERTIES OF THE HIGH PURITY METALS USPEKHI FIZ NAUK 74 31 (1961) CT NØ 14 (1961)	700673 700673 700673 700673
GARSTANG. R THE SPECTRUM ØF ZETA CAPRICØRNI PUB ASTRØN SØC PACIFIC 64. 227 (1952) CÅ 47. 964 (1953)	100207 100207 100207 100207
GATES D THADOS G (NORTHWESTERN UNIV EVANSTON :LL) THE CRITICAL CONSTANTS OF THE ELEMENTS A. I. CH. E. JOURNAL 6. 50 (1960) CA 56. 8024 (1962)	201372 201372 201372 201372 201372
GATTOW. G DEFINITIONS AND CHARACTERISTICS OF MANGANESE-OXIDES AND HYDROXIDES BATTERIEN 16. 322 (1962) CA 57. 6848 (1962)	201756 201756 201756 201756 201756
GATTOW. G GLEMSER. Ø PREPARATION AND PROPERTIES OF MANGANESE DIOXIDE EPSILON BETA AND ALPHA-MANGANESE DIOXIDES. RAMSDELLITE. AND TRANSFORMATION OF MANGANESE DIOXIDE. Z ANORG U ALLGEM CHEM 309. 121 (1961)	700576 700576 700576 700576 700576
GATTOW. G. GLEMSER, Ø MANGANESE ØXIDES. PREPARATIØN AND PRØPERTIES ØF PYRØLUSITE GAMMA AND ETA GRØUPS ØF PYRØLUSITE Z ANØRG U ALLGEM CHEM 309. 20 (1961)	700577 700577 700577 700577
GAUME-MAHN. F	601048

REFRACTORY COMPOUNDS OF RARE EARTH METALS-BORIDES, CARBIDES, NITRIDES, SULFIDES BULL SOC CHIM FRANCE 1956, 1862 (1956) CA 51, 6968 (1957)	601048 601048 601048 601048
GAUME-MAHN, F BLANCHARD, M REACTION BETWEEN MOLYBDENUM AND LIQUID CERIUM CA 56, 13745 (1962) COMPT. REND 254, 1082 (1962)	201520 201520 201520 201520
GAYDON, A GREEN AND ØRANGE BAND SPECTRA ØF CAØH, CAØD AND CALCIUM ØXIDE PRØC RØY SØC 231, 437 (1955) CA 50, 674 (1956)	600900 600900 600900 600900
GEBHARDT, E ELSSNER, G (MAX-PLANCK-INST STUTTGART GERMANY) THE SYSTEM U02-ZR02 PLANSEE PR0C 1961, 133 (1962) CA 58, 5085 (1963)	301049 301049 301049 301049
GEBHARDT. E SEGHEZZI. H FRØMM. E EQUILIBRIUM STUDY ØF THE SYSTEM TANTALUM-NITRØGEN Z METALLK 52, 464 (1961) CT NØ 16. (1961)	700645 700645 700645 700645
GEBHARDT, J HERRINGTØN, K REDUCTIØN ØF CØNTAMINATED RUTILE SURFACES BY DEGASSING J PHYS CHEM 62, 120 (1958)	300217 300217 300217
GEBHARDT, E SEGHEZZI, H DURRSCHNABEL, W RESEARCH IN THE ZR-O SYSTEM I THE ELECTRICAL RESISTANCE OF ØXYGEN CONTAINING ZIRCONIUM J NUCLEAR MATERIALS 4, 241 (1961) BHT 4, 21 (1961)	300330 300330 300330 300330 300330
GEBHARDT, E RØTHENBASHER, R SYSTEM NIØBIUM-ØXYGEN Z METALLK 54, 443 (1963)	202035 *202035 202035
GEBHARDT, E SEGHEZZI, H KEIL, H (MAX-PLANCK INST DUSSELDØRF GERMANY) THE VAPØRIZATIØN ØF TA IN VACUUM Z METALLK 53, 524 (1962) BHT NØ 4 (1962)	601676 601676 601676 601676 601676
GEISELMAN. D (UNION CARBIDE METALS CO NIAGRA FALLS N Y) THE METALLURGY OF SCANDIUM J LESS-COMMON METALS 4. 362 (1962) CA 57. 16262 (1962)	201941 201941 201941 201941 201941
GELD. P MATVEENKO, I ALYAMOVSKII. S (URAL BRANCH AKAD SCI USSR SVERDLOVSK) INTERMEDIATE PRODUCTS IN THE REDUCTION OF VANADIUM OXIDES WITH CARBON IZV SIBIRSK OTD AKAD NAUK SSSR 1962. NO 5. 59-69 CA 57. 14697 (1962)	201913 201913 201913 201913 201913 201913
GELD, P ALYAMOSKII, S MATVEENKO, I BETA, DELTA, AND ZETA PHASES OF THE VANADIUM-OXYGEN SYSTEM ZHUR STRUKT KHIM 2, NO 3 301 (1961)	300200 300200 300200

CA 56. 8096 (1962)	300200
GELD. P GERTMAN. Y HEATS OF SOLUTION OF LIQUID TRANSITION METALS (4TH PERIOD) IN LIQUID SILICON FIZ METAL I METALLOVED AKAD NAUK SSSR 10, 299 (1960) CA 55, 4074 (1961)	300417
GELD. P KRENTSIS. R SØME THERMØPHYSICAL CHARACTERISTICS ØF IRØN SILICIDES FIZ METAL I METALLØVED 15. 63 (1963) CA 58. 9914 (1963)	202037 202037 202037 202037
GELD. P KUSENKØ. F THE HEAT CØNTENT AND SPECIFIC HEAT ØF ØXIDE AND CARBIDES ØF NIØBIUM AT HIGH TEMPERATURES IZVEST AKAD NAUK SSSR. ØTDEL TEKH NAUK MET I TØPLIVØ NØ 2 79 (1960) CA 55. 16114 (1961)	600803 600803 600803 600803 600803
GELD, P LIUBIMØV, V NIØBIUM AND CARBØN DIFFUSIØN IN NIØBIUM AND ITS CARBIDES IZV A N SSSR ØTD TEKH NAUK MET I TØPL NØ 6 119 (1961) RUSS ACC 14, NØ 12 3317 (1962) CA 56, 7021 (1962)	300380 300380 300380 300380 300380
GELD P V LYUBÌMØV V D KINETIC CHARACTERISTICS ØF THE REDUCTIØN ØF NIØBIUM PENTØX1DE BY HYDRØGEN ZHUR PRIKLAD KHIM 35. 1472 (1962) CØTS 65. 320 (1963)	301223 301223 301223 301223 301223
GELD P V MATVEYENKØ I I ALYAMØVŠKIY S I INTERMEDIATE PRØDUCTS IN THE PRØCESS ØF REDUCTIØN ØF VANADIUM ØXIDES BY CARBØN IZV AKAD NAUK SSSR SIBIRSK ØTD 5, 59-69 (1962) AD 400762	301224 301224 301224 301224 301224
GELD. P SHVEIKIN. G KINETICS ØF NIØBIUM PENTØXIDF REDUCTIØN BY MEANS ØF CARBØN IN VACUØ PRIMFNEN VAKUUMA V MET AKAD-NAUK SSSR INST MET .M AA BAYKØVA 1960. 101 (1960) CA 55. 13010 (1961)	200996 200996 200996 200996 200996
GELD. P TSKHAI. V AVERAGE DENSITIES ØF VALENCE ELECTRØNS IN IRØN-ØXYGEN VANADIUM ØXYGEN AND TITANIUM ØXYGEN ZH STRUKT KHIM 4. NØ 2 235. (1963)	202036 202036 202036 202036
GELD P V TSKHAY V A MEAN DENSITIES OF VALENCE ELECTRONS IN FEOX, VOX, AND TIOX ZHUR STRUKTURNOY KHIM 4, 235 (1963) COTS 67, 100 (1963)	301225 301225 301225 301225
GELLES. S PICKETT. J STABILITY OF THE HIGH TEMPERATURE BETA PHASE IN BERYLLIUM AND BERYLLIUM ALLOYS NS 15. 9415 (1961)	600867 600867 600867 600867
GERASIMOV, A KONEV, V TIMOFEEVA, N STUDY OF DIFFUSION IN METAL-GAS SYSTEMS VI THE SYSTEM W-C-N	300511 300511 300511

FIZ METAL I METALLØVED 11. 596 (1961) BHT NØ 3. 38 (1961)	300511 300511
GERASIMOV V GROMOVA A SHAPOVALOV E DEVELOPMENTAL ELECTROCHEMICAL MEASUREMENT METHODS FOR TEMPERATURES UP TO 300 DEG C AND PRESSURES UP TO 100 KG/CM2 RAZRABOTKA METODIKI ELIK IZ PRI TEMP DO 300 DEG C I DAVLENII DO 100 KG/CM2 (1961) COTS NO 50, 131 (1962)	300445 300445 300445 300445 300445
GERASIMOV, V KRESTOVNIKOV, A SHAKHOV, A CHEMICAL THERMODYNAMICS IN NONFERROUS METALLURGY MOSCOW GOSUDARST NAUCH TEKH IZDOTEL LIT PO CHERNOI I ISVETNOI MET, 23 (1960)	300207 300207 300207 300207
GERASIMOV, Y VASILEVA, I CHUSOVA, T GEIDERIKH, V TIMOFEEVA, M STUDY OF THERMODYNAMIC PROPERTIES OF OXIDES BY ELECTROMOTIVE-FORCE MEASUREMENTS ZH FIZ KHIM 36, 358 (1962) CA 57, 4449 (1962)	300755 300755 300755 300755 300755 300755
GERASIMOV, Y VASILEVA, I CHUSOVA, T GEIDERIKH, V TIMOFEEVA, M (MOSCOW STATE UNIV MOSCOW RUSSIA) THE USE OF THE EMF METHOD IN STUDYING THE THERMODYNAMICS OF LOWER TUNGSTEN OXIDES AT HIGH TEMPERATURES DOKLADY AKAD NAUK SSSR 134, 1350 (1960) CA 55, 8023 (1961) NSA 15, 6407 (1961)	700999 700999 700999 700999 700999 700999 700999
GERDANIAN, P DØDE, M PRESSURE ØF Ø2 IN EQUILIBRIUM WITH URANIUM ØXIDES, UØ2+X CØMPT REND 255, 665 (1962) CA 57, 13404 (1962)	201886 201886 201886 201886
GERDANIAN P DØDE M SUR LA NØN-STØICHIØMETRIE DES ØXYDES D URANIUM CØMPTES REND 254 1005 (1962) NSA 16 16738 (1962)	300355 -300355 300355 300355
GERDS. A MALLETT. M REACTION OF NITROGEN WITH. AND THE DIFFUSION OF NITROGEN IN. THORIUM J ELECTROCHEM SOC 101. 175 (1954) CA 50. 40 (1956)	600985 600985 600985 600985 600985
GÉRSH. S THERMØDYNAMIC PRØPERTIES ØF NITRØGEN AT LØW TEMPERATURES AND PRESSURES UP TØ 200 ATMØSPHERES KIZLØRØD 1947. NØ 5. 21 (1947) DEPT ØF INTERIØR TN7 ES7 NØ 555	900215 900215 900215 900215 900215
GERTSRIKEN. S DIFFUSION OF THERMAL VACANCIES AKAD NAUK UKR (SSR) NO 14. 26 (1962) CA 58. 1185E (1963)	301454 301454 301454 301454
GETTE, E FØØTE. F PRECISIØN DETERMINATIØN ØF LATTICE CØNSTANTS J CHFM PHYS 3, 605 (1935) CA 29. 77305 (1935)	700510 700510 700510 700510

GIELISSE, P (0HIØ STATE UNIV COLUMBUS OHIØ) PHASE EQUILIBRIUMS IN THE SYSTEM ALUMINA-BORON ØXIDE-SILICA UNIV MICROFILMS (ANN ARBOR, MICH) ØRDER NØ 62-2136. DISSERTATION ABSTR 22, 4034 (1962) CA 57, 6671 (1962)	201740 201740 201740 201740 201740 201740
GIELISSE P RØCKETT T SHEVLIN T FØSTER W (ØHIØ STATE UNIV CØLUMBUS ØHIØ) RESEARCH ØN THE PHASE EQUILIBRIUM BETWEEN BØRØN ØXIDES AND REFRACTØRY ØXIDES INCLUDING SILICØN AND ALUMINUM ØXIDE'S NP-11234 (1960) NSA 16 9203 (1962)	601573 601573 601573 601573 601573
GIESSEN. B RUMP. I GRANT. N THE CONSTITUTION DIAGRAM OF TUNGSTEN-HAFNIUM AIME 227. 264 (1963) CA 58. 7677 (1963)	301455 301455 301455 301455
GIFSSEN B C GRANT N J (MASS INST TECH CAMBRIDGE MASS) AN X-RAY METHOD TO DETERMINE THE LIQUID IN HIGH-TEMPERATURE BINARY PHASE DIAGRAMS TRANS AIME 227. (2) 535 (1963) BHT NO 2. 39 (1963)	301226 301226 301226 301226 301226 301226
GIESSEN, B RUMP, I GRANT, N (MIT CAMBRIDGE MASS) THE CONSTITUTION DIAGRAM TUNGSTEN-HAFNIUM TRANS AIME 224, 60 (1962) CA 56, 9839 (1962)	201433 201433 201433 201433 201433
GIESSEN+ W NØRDHIEM+ R (M I T CAMBRIDGE MASS) THE CØNSTITUTIØN DIAGRAM NIØBIUM-RHEN'UM TRANS AIME 221+ 1009 (1961) CA 56+ 1250 (1962)	201233 201233 201233 201233 201233
GILBREATH. J (ARGONNE NATL LAB LEMONT ILL) SUMMARY REPT FOR JAN. FEB AND MAR 1952 CHEM DIVISION SECT C-11 ANL-4833 (1952) NSA 11. 7455 (1957)	601314 601314 601314 601314 601314
GILBREATH. J (ARGØNNE NATL LAB LEMØNT ILL) CHEM DIVISIØN SEC C-11 SUMMARY REPT FØR JULY. AUG AND SEPT 1952 DECL FEB 12. 1957 ANL-5000 (DEL) NSA 11. 9579 (1957)	601300 601300 601300 601300 601300 601300
GILBREATH. J IARGONNE NATL LAB CHEMISTRY DIVISION SUMMARY REPT (FOR) JAN-JUN 53 CONTRACT W-3 1-104-ENG-38 ANL-5421 NSA 9. 6868 (1955)	601274 601274 601274 601274 601274 601274
GILBREATH, J SIMPSØN, Ø (ARGØNNE NATL LAB LEMØNT ILL) CHEMISTRY DIVISIØN, SECTION C-II SUMMARY REPØRT FØR	601333 601333 601333

JULY, AUGUST AND SEPTEMBER 1952 ANL-5000 DECL (1960) NSA 14. 18708 (1960)	601333 601333 601333
GILLAM+ E (GE CFNTRAL RES LAB WEMBLEY ENGLAND) A GEOMETRICAL RELATIONSHIP BETWEEN UC2 (TETRAGONAL) AND U2C3 (CUBIC) ACTA CRYST 15+ 1183 (1962) BHT NØ 4 (1962)	601680 601680 601680 601680 601680
GILLES. P (UNIV ØF KANSAS LAWRENCE KANSAS) TERNARY SPECIES AT HIGH TEMPERATURES PURE APPL CHEM 5. 543 (1962) BHT NØ 7. P 6. (1963)	301142 301142 301142 301142 301142
GILLES. P HIGH TEMPERATURE CHEMISTRY ANN REV PHYS CHEM 12. 355 (1961) BHTG NØ 4. 1 (1962)	300450 300450 300450 300450
GILLES. P (UNIV ØF KANSAS LAWRENCE KANSAS) HIGH TEMP CHEMISTRY ØF THE BINARY CØMPØUNDS ØF BØRØN ADVANCES IN CHEM SER NØ 32. 53 (1961) CA 56. 5618 (1962)	201334 201334 201334 201334 201334
GILLIAN. Ø JØHNSØN. C GØRDY. W MICRØWAVE SPECTRØSCØPY IN THE REGIØN FRØM TWØ TØ THREE MILLIMETERS PHYS REV 78. 140 (1950) CA 44. 6724 (1950)	600709 600709 600709 600709
GILMAN, J RØBERTS, B ELASTIC CØNSTANTS ØF TITANUM CARBIDE AND TITANUM BØRIDE J APP PHYS 32, 1405(1961) CT 16, 92 (1961)	300300 300300 300300 300300
GINNINGS, D CØRRUCCINI, R HEAT CAPACITIES AT HIGH TEMPERATURE ØF URANIUM, URANIUM TRICHLØRIDE, AND URANIUM TETRACHLØRIDE J RES NAT BUR STDS 39, 309 (1947)	601647 601647 601647 601647
GIØRGI. A SZKLARZ, E STØRMS, E BØWMAN, A INVESTIGATIØN ØF TANTALUM CARBIDE NIØBIUM CARBIDE AND VANADIUM CARBIDE FØR SUPERCØNDUCTIVITY PHYS REV 129, 1524 (1963)	202039 202039 202039 202039
GIVORD. J THE METALLURGY OF ZR REV MET 59. 23 (1962) CA 56. 15255 (1962)	201554 201554 201554 201554
GLADISHEVSKII, E KRIPYAKEVICH, P TESLYUK, M ZARECHNYUK, Ø KUZMÅ, Y (I FRANKØ STATE UNIV LVØV) CRYSTAL STRUCTURE ØF SØME INTERMETALLIC CØMPØUNDS KRISTALLØGRAFIYA 6, 267 (1961) CA 57, 13249 (1962)	201880 201880 201880 201880 201880 201880
GLADYSHEVSKII, E KUZMÅ, U KRIPYAKEVICH, P CRYSTAL STRUCTURE OF THE COMPOUNDS TRI MANGANESE DI NICKEL	202040 202040

SILICAN TRI VANADIUM DI NICKEL SILICAN TRI NABIUM DI NICKEL SILICAN AND CHRAMIUM AND TANTALUM CAMPAUNDS RELATED TA THEM ZHUR STRUKT KHIM 4, 372 (1963)	202040 202040 202040 202040
GLADYSHEUSKII+ E TYLKINA+ M SAVITSKII+ E (A N BYKØV STATE UNIV LVØV PØLAND) KRISTALLØGRAFIYA 5+ B77 (1960) AN X-RAY AND MICRØSCØPIC STUDY ØF ALLØYS ØF HF AND RE CA 57+ 162 (1962)	201564 201564 201564 201564 201564
GLASNER • A STEINBURG • M (HEBREW UNIV JERUSALEM ISRAEL) THERMAL DECOMPOSITION OF LANTHANUM OXALATE J INORG AND NUCLEAR CHEM 16 • 279 (1961) CA 55 • 13146 (1961)	201003 201003 201003 201003 201003
GLASSER+ F (PENN STATE UNIV UNIV PARY PA) THE TERNARY SYSTEM CAØ-MNØ-SIØ? J AM CERAM SØC 45+ 242 (1962) CA 57+ 6672 (1962)	201741 201741 201741 201741 201741
GLEISER. M FREE ENERGIES ØF FØRMATIØN ØF GASEØUS METAL ØXIDES TRANS MET SØC ØF AIME 221. 300 (1961) CA 56. 11001 (1962)	700616 700616 700616 700616
GLEISER+ M. CHIPMAN+ J. FREE ENERGY OF FARMATION OF MOLYBDENUM OXIDE AND CARBIDE J. PHYS. CHEM. 66+ 1539 (1962). CA. 57+ 11928 (1962).	300607 300607 300607 300607
GLFISFR M CHIPMAN J FREE ENERGY ØF FØRMATIØN ØF TUNGSTEN CARBIDE TRANS MET SØC AIME 224 NØ 6 1278 (1962)	300886 300886 300886
GLEMSER • Ø HAESFLER • R (UNIV GØETTINGEN GERMANY) GASEØUS HYDRØXIDES IV GASEØUS HYDRØXIDES ØF MØLYBDENUM AND TUNGSTEN Z ANØRG ALLGEM CHEM 316 • 168 (1962) CA 57 • 15897 (1962)	201927 201927 201927 201927 201927 201927
GLEMSER, Ø MUELLER, A VØLATILIZATIØN ØF CR2Ø3 IN THE PRESENCE ØF WATER VAPØR NATURWISSENSCHAFTEN 49, NØ 12-14, 279 (1962) CT NØ 16, 103 (1962)	300759 300759 300759 300759
GLEMSER, Ø WEIZENKØRN, H PØLYNUCLEAR GASEØUS IRØN AND MANGANESE ØXIDES NATURWISSENSCHAFTEN 48, 715 (1961) CÅ 56, 10924 (1962)	201441 201441 201441 201441
GLØCKLER+ G (DUKE UNIV HEAT ØF DISSØCIATIØN ØF NITRØGEN PURE APPL CHEM 2+ 49 (1961) CA 56+ 6724 (1962)	300616 300616 300616 300616
GLØØR, M WIELAND, K (UNIV BASEL BASEL SWITZ) THERMAL AND ØPTICAL INVESTIGATION ØF VAPØRS ØF NIØBIUM	201245 201245 201245

&XYCHL &RIDE (NBØCL3) HELV CHIM ACTA 44+ 1098 (1961) CA 56+ 2011 (1962)	201245 201245 201245
GLUSHKØ V P THERMØDYNAMIC PRØPERTIES ØF INDIVIDUAL SUBSTANCES VØL 1 CALCULATIØN ØF THERMØDYNAMIC PRØPERTIES (1962) VØL 2 TABLES ØF THERMØDYNAMIC PRØPERTIES (1962) MØSKVA IZD-VØ AKAD NAUK SSSR RUSS ACC 15, NØ 10, 2761 (1963)	301221 301221 301221 301221 301221
GØCHE+ Ø (U. LIBRE BRUSSELS BELGIUM) CRYSTAL STRUCTURE ØF PLATINUM DIØXIDE BULL CLASSE SCI ACØD RØY BELG 37+ 393 (1951) CA 46+ 2868 (1952)	600943 600943 600943 600943 600943
GØDFREY• L BELL• P STEARNS• H BIBLIØGRAPHY ØN TUNGSTEN• ITS ALLØYS AND CØMPØUNDS LAMS 2• 2401 (1959) NS 14• 18113 (1960)	600607 600607 600607 600607
GØDINA, N KELER, E THE STABILITY ØF SØLID SØLUTIØNS IN THE SYSTEMS ZRØ2- MGØ, ZRØ2- CAØ, HFØ2- MGØ, AND HFØ2- CAØ, ØGNEUPØRY 26, 426 (1961) CA 56, 5647 (1962)	201336 201336 201336 201336 201336
GØDINA» N KELER» E RUDENKØ» V INTERACTIØN ØF HAFNIUM DIØXIDE WITH TITANIUM DIØXIDE ZH NFØRGAN KHIM 5» 2795 (1960) CA 56» 13747 (1962)	201522 201522 201522 201522
GØDNEV. 1 CALCU: ATIØN ØF THERMØDYNAMIC FUNCTIØNS FRØM MØLECULAR DATA VYCHISLENIE TERMØDINAMICHESKIKH FUNKTSFII PØ MØLECULYARNYM DANNYM (1956) CØTS 56. 295 (1962)	300832 300832 300832 300832 300832 300832
GØDNEV. I ALEKASANDRØVSKAYA. A SVERDLIN, A CØRRESPØNDENCE ØF THE FØRCE CØNSTANTS ØF THE MØLECULES XY4 AND XY1, WHERE X IS A IV SUBGRØUP ELEMENT AND Y A HALØGEN ZHUR FIZ KHIM 36, 2609 (1962)	300893 300893 300893 300893
GØKCEN+ N FUJISHIRØ+ S (UNIV ØF PENNSYLVANIA PHILADELPHIA PENN) THERMØDYNAMIC PRØPERTIES ØF MN7C3 AIME 227+ 542 (1963) CA 58+ 13554 (1963)	301456 301456 301456 301456 301456
GØLDANSKIY, V KAGAN, Y THERMØCHEMICAL EFFECTS ØF IØNIZING RADIATIØN RUSSIAN REPØRT, CHEMICAL EFFECTS ØF NUCLEAR TRANSFØRMATIØNS, PRØCEEDINGS ØF A SYMPØSIUM 1, 47 (1960) CA 55, 25532 (1961)	400589 400589 400589 400589 400589
GØLDBERG, L MULLER, E CARBØN MØNØXIDE IN THE SUN ASTRØPHYS J 118, 397 (1953) CA 48, 1803 (1954)	600710 600710 600710 600710
GØLDSCHMIDT. H	200765

X-RAY INVESTIGATIONS OF SYSTEMS BETWEEN NIOBIUM PENTOXIDE AND CERTAIN ADDITIONAL OXIDES METALLURGIA 62. 211 (1960) CA 55. 6981 (1961)	200765 200765 200765 200765
GØLDSCHMIDT, H BRAND, J (BSA GRØUP CENTER BIRMINGHAM ENGLAND) THE TUNGSTEN-RICH REGIØN ØF THE SYSTEM TUNGSTEN-CARBØN J LESS-CØMMØN METALS 5, NØ 2, 181 (1963) CA 58, 13551 (1963)	301457 301457 301457 301457 301457
GØLDSCHMIDT, H BRAND, J (BSA GRØUP RESEARCH CENTER BIRMINGHAM ENGLAND) THE CØNSTITUTIØN ØF THE CHRØMIUM-NIØBIUM-SILICØN SYSTEM J LESS CØMMØN METALS 3, 34 (1961) CA 55, 16356 (1961)	201070 201070 201070 201070 201070
GØLDSCHMIDT, H BRAND, J (B S A GRØUP RESEARCH CENTER BIRMINGHAM ENGLAND) THE CØNSTITUTIØN ØF THE CHRØMIUM-NIØBIUM-MØLYBDENUM SYSTEM J LESS CØMMØN METALS 3, 44 (1961) CA 55, 16356 (1961)	201069 201069 201069 201069 201069
GØLDSCHMIDT, H BRAND, J (BIRMINGHAM SMALL ARMS LTD BIRMINGHAM ENGLAND) INVESTIGATIØN INTØ THE TUNGSTEN RICH REGIØNS ØF THE BINARY SYSTEMS TUNGSTEN-CARBØN, TUNGSTEN-BØRØN, AND TUNGSTEN BERYLLIUM PART I, TUNGSTEN-CARBØN EQUILIBRIUM SYSTEM ASD-TDR-62-25 CT 1 NSA 16, 21022 (1962)	601626 601626 601626 601626 601626 601626 601626
GOLDSMITH A HIRSCHHORN, H WATERMAN, T (ILL INST OF TECH CHICAGO ILL) THERMOPHYSICAL PROPERTIES OF SOLID MATERIALS II ALLOYS (MELTING TEMPERATURE ABOVE 1000 DEG F) WADC-TR-58-476 (1960) NSA 15, 14740 (1961)	700930 700930 700930 700930 700930 700930
GOLDSTEIN. H (OHIO STATE UNIVERSITY COLUMBUS OHIO) VAPORIZATION OF LANTHANUM OXIDE (LA203) AND NEG(YMIUM OXIDE (ND203) AT ELEVATED TEMPERATURES UNIV MICROFILMS (ANN ARBOR MICH) LC CARD NO MIC 60-6369 DISSERTATION ABSTR 21. 2126 (1961) CA 55. 13961 (1961)	201018 201018 201018 201018 201018 201018 201018
GOLDSTEIN» H RARE EARTH ØXIDES» THE VAPORIZATION OF ND203 AFSOR-TN-58-291 (1957) NSA 12. 11293 (1958)	601489 601489 601489 601489
GOLDSTEIN. H (OHIO STATE UNIV COLUMBUS OHIN) VÀPORIZATION OF LA203 AND ND203. DIS "CIATION ENERGIES OF GASEOUS LAO AND NDO J PHYS CHEM 65. 1400 (1961) CA 56. 1006 (1962)	201216 201216 201216 201216 201216 201216
GOLDSTEIN: H (OHIO STATE UNIV COLUMBUS OHIO) RARE EARTH OXIDES III. THE HEAT CAPACITIES OF Y203. LA203 ND203 FROM 16-3000 DEGREES K	601551 601551 601551 601551

AFØSR-TR-58-1095 (1958) NSA 13. 3942 (1959)	601551 601551
GØLDSTEIN» H WALSH» P WHITE» D RARE EARTHS 1. VAPØRIZATIØN ØF LA2Ø3 AND ND2Ø3 DISSØCIATIØN ENERGIES ØF GASEØUS LAØ AND NDØ J. PHYS CHEM 65» 1400 (1961)	700889 700889 700889 700889
GOLDSTEIN, H WALSH, P WHITE, D USE OF TANTALUM KNUDSEN CELLS IN HIGH TEMPERATURE THERMODYNAMIC STUDIES OF OXIDES J PHYS CHEM 64, 1087 (1960) CA 55, 3181 (1961)	700896 700896 700896 700896 700896
GOLDSTEIN, H NEILSON, E WALSH, P WHITE, D HEAT CAPACITY OF YTTRIUM OXIDE, LANTHANUM OXIDE AND NEODYMIUM OXIDE FROM 16 TO 300 DEG K J. PHYS CHEM 63, 1445 (1959) C.A. 54, 6287 (1960)	700836 700836 700836 700836 700836
GOLDSTEIN, H WALSH, P WHITE, D (OHIO STATE UNIV COLUMBUS OHIO) RARE EARTH OXIDES. I. THE VAPORIZATION OF NEODYMIUM SESQUIOXIDE, ND203. DISSOCIATION ENERGY OF NDO AND TAO US ATOMIC ENERGY COMM AFOSR TN 58-291 (1958) CA 55, 18227 (1961)	201098 201098 201098 201098 201098 201098
GØLDWATER. D DANFØRTH. W THE EVAPØRATIØN ØF THØRIUM METAL J FRANKLIN INST 270. 317 (1960) PA 64. 1851 (1961)	600691 600691 600691 600691
GØLUBTSØV, I LAPITSKII. A SHIRYAYEV. V (MØSCØW STATE UNIV MØSCØW RUSSIA) THE PRØBLEM ØF THE VØLATILITY ØF NIØBIUM ØXIDES IZVES: VYSSHYKH UCHEB. ZAVEDENII. KHIM I KHIM. TEKHNØL 3. 571 (1960) CA 55. 1116 (1961) NSA 15. 14769 (1961)	701029 701029 701029 701029 701029 701029 701029
GØLUBTSØVA, R CØMPØSITIØN AND STRUCTURE ØF TI-CR CØMPØUND DØKLADY AKAD NAUK SSSR 137, 593 (1961) CA 55, 20876 (1961)	201150 201150 201150 201150
GOLUBTSOVA. R NATURE OF A CHEMICAL COMPOUND IN THE TITANIUM SILICON SYSTEM DOKLADY AKAD NAUK SSSR 137. 859 (1961) CH TITLES NØ 11 69 (1961) CA 56. 3235 (1962)	300174 300174 300174 300174 300174
GOLUTVIN, Y HEAT OF FORMATION AND THE NATURE OF THE CHEMICAL BOND OF TRANSITION-METAL SILICIDE ZHUR FIZ KHIM 36, 1315 (1962)	300567 300567 300567 300567
GØLUTVIN, Y THE HEATS ØF FØRMATIØN ØF TITANIUM SILICIDES ZHUR FIZ KHIM 30, 10, 2251 (1956)	400599 400599 400599
GÖLUTVIN YU M HEATS OF FORMATION AND THE NATURE OF THE BONDS IN THE SILICIDES OF TRANSITION METALS	301229 301229 301229

RUSS J PHYS CHEM 36. 696 (1962)	301229
GOLUTVIN. Y KOZLOVSKAYA. T ENTHALPY AND HEAT CAPACITY IN THE SYSTEM VANADIUM-SILICON ZHUR FIZ KHIM 36. 362 (1962)	300568 300568 300568
GØLUTVIN, Y KØZLØVSKAYA, T VARIATIØN ØF ENTHALPY AND HEAT CAPACITY IN THE VANADIUM-SILICØN SYSTEM RUS J. PHYS CHEM 36 183 (1962)	301458 301458 301458 301458
GØLUTVIN. Y KØZLØVSKAYA. T MASLENNIKØVA. E HEATS ØF FØRMATIØN AND HEAT CAPACITIES ØF THE SYSTEM MANGANESE-SILICØN ZH FIZ KHIM 37. 1362 (1963)	301228 301228 301228 301228
GOLUTVIN, Y LYAN, T HEATS OF FORMATION, HEAT CONTENTS AND HEAT CAPACITIES OF CHROMIUM SILICIDES ZHUR FIZ KHIM 35, 129 (1961)	700540 700540 700540 700540
GOLUTVIN, Y KOZLOVSKAYA, T (INST OF METALLURGY USSR) ENTHALPY AND HEAT CAPACITY IN THE SYSTEM VANADIUM SILICON ZHUR FIZ KHIM 36, 2362 (1962)	301093 301093 301093 301093
GØNIKBERG• M SHAKHØVSHAI• G BUTUZØV• V (INST CRYST ACAD SCI MØSCØW USSR) DETERMINATIØN ØF THE HEAT ØF TRANSFØRMATIØN ØF THE CERIUM PHASI ZHUR FIZ KHIM 31• 350 (1957) CA 51• 15242 (1957)	601064 601064 601064 601064 601064
	801004
GØNSER B RHENIUM (ELSEVIER PUBLISHING CO AMSTERDAM 1962)	301459 301459 301459
GØNSER + B RHENIUM	301459 301459
GØNSER B RHENIUM (ELSEVIER PUBLISHING CO AMSTERDAM 1962) GØØD W SCØTT D LACINA J MCCULLØUGH J THE HEAT ØF FØRMATIØN ØF SILICA	301459 301459 301459 300394 300394 300394 100208 100208
GØNSER B RHENIUM (ELSEVIER PUBLISHING CO AMSTERDAM 1962) GØØD. W SCØTT. D LACINA. J MCCULLØUGH. J THE HEAT ØF FØRMATIØN ØF SILICA J PHYS CHEM 66. 380 (1962) GØØDMAN. B ØCCURRENCE ØF SUPERCØNDUCTIVITY BELØW 1 DEGREE K PRØC MBS SEMICENTENNIAL SYMPØSIUM. LØW TEMP PHYSICS. NATL BUR STDS 519. 71 (1952)	301459 301459 301459 301459 300394 300394 300394 100208 100208 100208
GØNSER B RHENIUM (ELSEVIER PUBLISHING CO AMSTERDAM 1962) GØØD W SCØTT D LACINA J MCCULLØUGH, J THE HEAT ØF FØRMATIØN ØF SILICA J PHYS CHEM 66 380 (1962) GØØDMAN B ØCCURRENCE ØF SUPERCØNDUCTIVITY BELØW 1 DEGREE K PRØC MBS SEMICENTENNIAL SYMPØSIUM. LØW TEMP PHYSICS. NATL BUR STDS 519, 71 (1952) CA 47, 2562 (1953) GØØDMAN, B HILLAIRET, J VEYSSIE, J WEIL L (INST FØURIER GRENØBLE FRANCE) PRØC INTERN CØNF LØW TEMP PHYS 7TH TØRØNTØ.0NT.1960. 350-6 BAND STRUCTURE AND SUPERCØNDUCTING PRØPERTIES ØF SEVERAL GAMMA-U ALLØYS FRØM MEASUREMENTS ØF THEIR SPFCIFIC HEATS BETWEEN 1 AND 4 DEGREES K	301459 301459 301459 301459 300394 300394 300394 100208 100208 100208 100208 201518 201518 201518 201518 201518

MEANS OF BONDED WIRE RESISTANCE STRAIN GAGES ORNL-518 (1949) DECL FEB 4. (1960) NSA 14. 22031 (1960)	601331 601331 601331 601331
GOODMAN. P HOMONOFF. H STUDY OF MATERIALS FOR THERMIONIC CONVERTERS AD 273533 80P. 31 DEC 1961	301460 301460 301460
GØØDWIN, T (LIBRARY ØF CØNGRESS WASH DC) THERMAL PRØPERTIES ØF CERTAIN METALS PART II, IRØN, BE, IR, PD, PT AND W WADC-TR-56-423 NSA 13, 4722 (1959)	601547 601547 601547 601547 601547
GOPAL. R HUSAIN. M (UNIV LUCKNOW INDIA) RELATION BETWEEN LATTICE ENERGY AND MELTING POINT OF SOME CRYSTALLINE SUBSTANCES OF SOME TRANSITION METALS J INDIAN CHEM SOC 39. 827 (1962) CA 58. 10806 (1963)	301461 301461 301461 301461 301461
GØPIENKØ• V PREPARATIØN ØF DI-AND TRICHLØRIDES ØF TITANIUM ZHUR PRIKLAD KHIM 33• 2600 (1960) CA 55• 7124 (1961)	200913 200913 200913 200913
GØRBUNØV. N ET AL NEUTRØN DIFFRACTIØN STUDY ØF TITANIUM CARBIDE AND NITRIDE IZV A N SSSR ØTD KHIM NAUK NØ 11 2093 (1961) RUSS ACC 14. NØ 11 3077 (1962)	300382 300382 300382 300382
GØRDØN. G SCHEVBRMANN. C SPEISER. R (ØHIØ STATE UNIV CØLUMBUS ØHIØ) THE ØKIDATIØN CHARACTERISTICS ØF NIØBLUM ALLØYS U S DEPT CØM ØFFICE TECH SERV PB REPT 145 (1960) CA 56. 12639 (1962)	201499 201499 201499 201499 201499 201499
GØRDØN. J (THIØKØL CHEM CØRP DENVILLE NJ) THERMØDYNAMIC FUNCTIØNS FØR EIGHTEEN FLEMENTS TAKEN AS IDEAL GASES J CHEM PHYS 35. 2252 (1961) AM DØC INST DØC 6930 (PHØTØPRINT 3.75) CA 56. 12375 (1962)	300639 300639 300639 300639 300639 300639
GØRDØN R (YALE UNIV NEW HAVEN CØNN) STRUCTURE ØF LIQUID METALS USAFC TID-11882 (1961) CA 59 8428 (1963)	202041 202041 202041 202041 202041
GØRELIK C C ELYUTIN V P RØENTGENØGRAPHIC INVESTIGATIØN ØF THE RECRYSTALLIZATIØN PRØCFSSES ØF THE BØRIDES ØF TITANIUM ZIRCØNIUM AND MØLYBDENUM AMD THE CARBIDES ØF TITANIUM AND TUNGSTËN IZV VUZ TSVET MET 5. NØ 4. 143 (1962) AD 299169 ØTS 62-33685 TAB 63-2-6. 135 (1963)	301230 301230 301230 301230 301230 301230 301230 301230

GØRELIK. S ELYUTIN. V MØZZHUKHIN, E URAZALIEV, U FUNKS. V (STEEL INST MØSCØW RUSSIA) X RAY STUDY ØF CRYSTALLIZATIØN ØF TITANIUM.ZIRCØNIUM AND MØLYBDENUM BØRIDES.AND ØF TITANIUM AND TUNGSTEN CARBIDES IZV VYSSHIKH UCHEBN ZAVEDENII TSVETN MET 5. NØ 4. 143 (1962) CA 57. 16272 (1962)	201947 201947 201947 201947 201947 201947
GOROKHOV. L (M V LOMONOSOV STATE UNIV MOSCOW RUSSIA) NEW CALCULATIONAL METHODS IN MASS-SPECTROMETRIC STUDIES WITH A DOUBLE EFFUSION CHAMBER. AND THE THERMODYNAMIC PROPERTIES OF LII DANSSSR 142. NO 1. 113 (1962)	300895 300895 300895 300895 300895 300895
GOUPIL R POTENTIAL ENERGY OF THE TRIATOMIC MOLECULE C3 AND THE ORIGIN OF THE GROUP AT 4050A OF COMET NUCLEI COMPT REND 236, 1542 (1953) CA 47. 7318 (1953)	600684 600684 600684 600684
GOUTER. E STRUCTURAL RELATIONSHIPS OF TERNARY TRANSITION METAL OXIDES XVII INTERNAT CONGRESS PURE AND APPL CHEM 1. 303 (1959)	700608 700608 700608
GOWARD. G. HERSHENSON. H. COMMENT IN EVIDENCE OF METALLIC BONDING IN TI N. ACTA MET 11. 637 (1963)	202042 202042 202042
GRAHAM. J LATTICE SPACINGS AND COLOR IN THE SYSTEM ALUMINA-CHROMIC OXIDE PHYS AND CHEM SOLIDS 17. 18 (1960) CA 55. 18237 (1961)	600818 600818 600818 600818
GRAHAM» J WADSLEY» A (CSIRØ CHEM RESEARCH LAB MELBØURNE AUSTRALIA) A CRYSTALLØGRAPHIC EXAMINATIØN ØF TUNGSTEN TRIØXIDE WHISKERS ACTA CRYST 14» 379 (1961) CA 55» 14004 (1961)	201026 201026 201026 201026 201026
GRANT • F (NATL BUR ØF STANDARDS WASHINGTØN :C) PRØPERTIES ØF RUTILE REV MØD PHYS 31 • 646 (1959)	300890 300890 300890 300890
GRAIN. C CAMPBELL. W BUREAU MINES ALBANY ØREGØN THERMAL EXPANSION AND PHASE INVERSION OF SIX REFRACTORY ØXIDES BM-RI-5982 (1961) NSA 16. 19338 (1962)	601471 601471 601471 601471 601471
GRATION. L THE SPECTRA OF K GIANTS. I. A TABLE OF WAVE LENGTHS AND IDENTIFICATION OF SPECTRAL LINES IN T.F. REGION 4000-5000 ANGSTROMS ASTRO PHYS J 115. 346 (1952) CA 46. 9975 (1952)	400567 400567 400567 400567 400567 400567
GRAVEN. W (AERØNUTRØNIC NEWPØRT BEACH CALIF) J CHEM PHYS 35. 1526 (1961) ABSØRBTIØN SPECTRA ØF ANØDIC TANTALUM ØXIDE FILMS CA 56. 13667 (1962)	201519 201519 201519 201519 201519

A	AVEN» W SALØMØN» R AD/ BSØRPTIØN SPECTRA ØF ANG CHEM PHYS 33» 954 (1960 A 55» 7035 (1961)	ODIC NIØBIUM ØXIDE FILM	1 S	200911 200911 200911 200911
AI KI Ak	EBENSHCHIKØV» R NALØGY ØF THE PHYSICØCHE HIM I PRAKT PRIMENENIE S (AD NAUK SSSR 1960» 18 (N 55» 11986 (1961)	ILIKATØV INST KHIM SIL	F2 AND SIØ2 IKATØV	200973 200973 200973 200973 200973
J	EN, J PØLAND, D MARGR ERMØDYNAMIC PRØPERTIES (EMFNTAL IØNS CHEM PHYS 33, 35 (1960) 55, 88 (1961)	AVE. J ØF UNIPØSITIVE GASEØUS		200782 200782 200782 200782 200782
ER	EN, J PØLAND, D MARGRÆ Ratum-Thermødynamic prøf Emental Iøns Chem Physics 36, nø 4 10	PERTIES OF UNIPOSITIVE	GASEØUS	300353 300353 300353 300353
THI	EN. J PØLAND. D MARGRÆ ERMØDYNAMIC PRØPERTIES Ø CHEM PHYS 33. 35 (1960) 55. 88 (1961)		ELEMENTAL [UNS	700882 700882 700882 700882
GREE THE AD	EN» J PØLAND» D MARGRA ERMØDYNAMIC PRØPERTIES 0 275 542 DEC 1961	NVE+ J OF IONS AT HIGH TEMPERA	ATURES	301462 301462 301462
GREE TRI VAL J (EN: M ATØMIC MØLECULES AND 10 ENCY ELECTRØNS HFM SØC 2819 (1962)	INS CONTAINING NINETEEN	N	300636 300636 300636 300636
(RØC STU QUA AD	ENBAUM M A YATES R E CKET PØWER INC JDY ØF RØCKET ENGINE EXH ARTERLY REPT NØ 6 SEPT-N 296321 3 63+ 31 (1963)	AUST PRØDUCTS	_	301231 301231 301231 301231 301231 301231
FLU ZIF JF	ENBERG, E SETTLE, J FE JØRINE BØMB CALØRIMETRY RCØNIUM TETRAFLUØRIDE PHYS CHEM 65, 1168 (1961 55, 23023 (1961)		TIØN ØF	300199 300199 300199 300199 300199
FLU	ENBERG, E SETTLE, J HU JØRINE BØMB CALØRIMETRY FANIUM AND HAFNIUM TETRA PHYS CHEM 66, 1345 (1962	IV. THE HEATS OF FORMA FLUORIDES	ATION OF	300739 300739 300739 300739
(UN SPI UN	ENE » F IV WISCØNSIN ECTRA AND THERMØDYNAMICS IV MICRØFILMS (AN ARBØR ; 56 » 6797 (1962)			201357 201357 201357 201357 201357
	ENER E H FEHR G A HIRT RQUETTE UNIV	HE W M MILWAUKEE	WIS)	301232 301232

THE TEMPERATURE RANGE 900 TO 1400 DEGREES J CHEM PHYS 38, 133-6 (1963)	301232 301232 301232 301232
NONOHMIC BEHAVIOR IN NEAR-STOICHIOMETRIC RUTILE(TIO2) JAPPL PHYS 32, NO 7, 1320 (1961)	300487 300487 300487 300487 300487
GREENER. E WHITMØRE. D FINE. M THE FLECTRICAL CONDUCTIVITY OF NEAR STOICHIOMETRIC ALPHA-NB205 NP 9135 (1960) NS 14. 25943 (1930)	600631 600631 600631
GREENER, E WHITMORE, D FINE, M ELECTRICAL CONDUCTIVITY OF NEAR STOICHIOMETRIC ALPHA-NB205 J CHEM PHYS 34, 1017 (1961)	700527 700527 700527
GREENWOOD N OSBORN A (UNIV NOTTINGHAM NOTTINGHAM ENGLAND) CHEMICAL AND MAGNETIC PROPERTIES OF LANTHANUM DICARBIDE AND SESQUICARBIDE J CHEM SOC 1961 • 1775 (1961) CA 55 • 17145 (1961)	201075 201075 201075 201075 201075 201075
GREGG. S. HUSSEY. R. JEPSØN. W. HIGH TEMP ØXIDATIØN ØF BERYLLIUM II THE REACTIØN WITH CARBØN DIØXIDE AND WITH CARBØN MØNØXIDE J. NUCLEAR MATERIALS 2. 225 (1960) CA 55. 5282 (1961)	200870 200870 200870 200870 200870
GREGG. S JEPSØN. W (UNIV EXETER ENGLAND) THE ØXIDATIØN ØF CALCIUM IN MØIST ØXYGEN J CHEM SØC 1961. 884 (1961) CA 55. 16247 (1961)	201062 201062 201062 201062 201062
GREGG. S (UNIV EXETER EXETER ENGLAND) THE HIGH TEMPERATURE ØXIDATIØN ØF BERYLLIUM III IN CØ2. CØ. AND CØ-CØ2 MIXTURES J NUCLEAR MATERIALS 3. 175 (1961) CA 55. 19668 (1961)	201133 201133 201133 201133 201133 201133
GREGG. S (UNIV EXETER ENGLAND) THE HIGH-TEMPERATURE ØXIDATION ØF BERYLLIUM V IN MØIST CARBØN DIØXIDE AND MØIST CARBØN MØNÆXIDE J NUCLEAR MATERIALS 4. 46 (1961) CA 56. 1268 (1962)	201244 201244 201244 201244 201244 201244
GREGØIRE P COMPT REND 254 • 125 (1962) REACTION BETWEEN POWERED U AND C INFLUENCE OF THE PREFERENTIAL ORIENTATION OF GRAPHITE CA 56 • 12537 (1962)	201488 201488 201488 201488 201488
GREGORY: N CONDENSATION COEFFICIENT AND THE VAPORIZATION PROCESS J PHYS CHEM 67: 618 (1963)	300892 300892 300892

GREGOREVA. V SEREDA. N	300398
REACTION OF TIC WITH CR AND MO	300398
POROSHKOVAYA MET AKAD NAUK UKR SSSR 1. NO 2 48 (1961)	300398
CA 55. 2566 (1961)	300398
GRIBOV. L	900220
METHODS OF CALCULATION IN MOLECULAR SPECTROSCOPY	900220
IZ AK NAUK SSSR. XXVI. NO 10. 1226 (1962)	200220
JPRS 17176	900220
GRIDNEV» V TREFILØV» V MINAKØV» V	201093
MARTENSITE TRANSFØRMATIØNS IN THE TI-ZR SYSTEM	201093
DØKLÅDY AKAD NAUK SSSR 134» 1334 (1960)	201093
CA 55» 17444 (1961)	201093
GRIEVESØN» P ALEØCK» C	301060
THE THERMØDYNAMICS ØF METAL SILICIDES AND SILICØN CARBIDE	301060
SPEC ARANS PRØC SYMPØSIUM BRITISH ARAN RES ASSØ STØKE ØN TRENT	301060
CA 55, 25190 (1960)	301060
GRIFFEL: M (IOWA STATE COLL AMES IOWA) HEAT CAPACITY OF DYSPROSIUM FROM 15 TO 300 DEGREES K J CHEM PHYS 25: 75 (1956) NSA 10: 6585 (1956)	601263 601263 601263 601263 601263
GRIFFEL: M SKOCHDOPOLE: R (IOWA STATE COLL: AMES IOWA) HEAT CAPACITY AND ENTROPY OF THORIUM FROM 18 TO 300 DEG K J AM CHEM SOC 75: 5250 (1953) CA 48: 2462 (1954) NSA 8: 478 (1954)	600966 600966 600966 600966 600966
GRIFFEL: M SKØCHDØPØLE: R SPEDDING: F (IØWA JTATE CØLLEGE AMES IØWA) HEAT LAPACITY ØF DYSPRØSIUM FRØM 15 TØ 300 DEG K J CHEM PHYS 25: 75 (1956) CA 50: 14339 (1956)	601019 601019 601019 601019
GRIFFITHS, L (ATOMIC ENERGY RES ESTAB HARWELL ENGLAND) NATURE 193, 362 (1962) EFFECT OF OXYGEN ON THE TEMPERATURE COEFFICIENT OF RESISTIVITY OF URANIUM MONOCARBIDE CA 57, 189 (1962)	201569 201569 201569 201569 201569 201569
GRIGOREV. A SØKØLVSKAYA. E	201437
(VESTNIK MØSKØV UNIV KHIM MØSCØW RUSSIA)	201437
SØLID-STATE TRANSFØRMATIØNS IN CHRØMIUM AND ITS ALLØYS	201437
SER II 16. NØ 6. 3 (1961)	201437
CA 56. 9847 (1962)	201437
GRIGOREV. A SOKOLOVSKAYA, E MAKSIMOVA, M SOKOLOVA. I NEDUMOV. N (MOSCOW STATE UNIV MOSCOW RUSSIA) POLYMORPHIC TRANSFORMATIONS OF CHROMIUM IN ALLOYS WITH TANTALUM ZH NEORGAN KHIM 5, 2640 (1960) CA 57, 4120 (1962)	201646 201646 201646 201646 201646 201646 201646
GRIGOREV, A SOKOLOVSKAYA, E NEDUMOV, N MAKSIMOVA, M	700620
SOKOLOVA, I YUI-PU, E	700620
POLYMORPHIC TRANSFORMATIONS OF CHROMIUM AND THE PHASE DIAGRAM	700620

OF THE CHROMIUM-NICKEL SYSTEM IN THE REGION RICH IN CHROMIUM ZHUR NEORG KHIM 6. 1248 (1961) CT NO 12. (1961)	700620 700620 700620
GRIGOREV. A SØKØLØVSKAYA. E SIMANØV. Y SØKØLØVA. I MARKSIMØVA. M PYATIGØRSKAYA. L CØNCERING THE HIGH TEMPERATURE MØDIFICATIØN ØF CHRØMIUM AND THE PHASE DIAGRAM ØF CR-FE AT HIGH TEMPERATURES IN THE CHRØMIUM-RICH CØMPØSITIØN RANGE ZHUR NEØRG KHIM 5. 2136 (1960) CA 55. 12712 (1961)	600912 600912 600912 600912 600912 600912
GRIGOREV. A SØKØLØVSKAYA, E SIMANØV, Y SØKØLØVA, I PAVLØV. V MAKSIMØVA, M HIGH TEMPERATURE MØDIFICATIØNS ØF CHRØMIUM AND CØNSTITUTIØNAL DIAGRAM ØF THE SYSTEM CHRØMIUM-MØLYBDENUM IN THE CHRØMIUM RICH RANGE VESTNIK MØSKØV UNIV SER II. 15. NØ 4. 23 (1960) CA 55. 8233 (1961)	600653 600653 600653 600653 600653 600653
GRIGOREV, A YEH, Y SØKØLØVSKAYA, E (STATE UNIV MØSCØW RUSSIA) PHASE DIAGRAM ØF THE SYSTEM CHRØMIUM-CØBALT IN THE CHRØMIUM-RICH REGIØN ZH NEØRGAN KHIM 5. 2642 (1960) CA 57. 8154 (1962) GRIGØREVA, N SELEZNEVA, K DUGANØVA, V NIØBIUM PERØXIDE CØMPØUNDS	201782 201782 201782 201782 201782 201782
GRIGOREVA: N. SELEZNEVA: K. DUGANOVA: V. NIOBIUM PEROXIDE COMPOUNDS. IZV AKAD NAUK USSR OTD KHIM NAUK 1962: NO 6: 937 (1962)	300888 300888 300888
GRIGØRØVICH V K (U S AT ENERGY CØMM USA STRUCTURE ØF LIQUID METALS / IR ELECTRØNIC STRUCTURE AEC-TR-4879, 75-92 (1960) CA 58+ 31 (1963)	301233 301233 301233 301233 301233
GRIGORYAN. L SIMANOV. Y USELOVA. A (M V LOMONOSOV STATE UNIV MOSCOW RUSSIA) ALPHA. BETA AND GAMMA PHASES OF THE SYSTEM NIOBIUM-TELLURIUM DOKLADY AKAD NAUK SSSR 135. 1133 (1960) CA 55. 12986 (1961)	200992 200992 200992 200992 200992
GRIGØRYEV, A T SØKØLØVSKAYA, E M SØLID STATE TRANSFØRMATIØNS IN CHRØMIUM AND ITS ALLØYS VEST MØSK UNIV SER KHIM, VØL XVI NØ 6, 3 (1961) DSIR RTS 2171 CØTS, APRIL, 141 (1963)	301234 301234 301234 301234 301234
GRIMLEY. R BURNS. R INGHRAM. M MASS-SPECTROMETRIC STUDY OF THE OSMIUM-OXYGEN SYSTEM J CHEM PHYS 33. 308 (1960) CA 55. 2268 (1961)	200817 200817 200817 200817
GRJØTHEIM. K HERSTAD. Ø TØGURI. J (TECH UNIV TRØNDHEIM NØRWAY) THE ALUMINUM REDUCTIØN ØF MAGNESIUM ØXIDE. I. THE VAPØR PRESSURE ØF MAGNESIUM ØVER THE SYSTEM AL-MGØ CAN J CHEM 39, 442 (1961) CA 55, 12971 (1961)	200990 200990 200990 200990 200990 200990
GRØNVØLD. F THE CRYSTAL STRUCTURE ØF URANIUM ØXIDE U3Ø8	601379 601379

NATURE 162. 70 (1948) NSA 1. 1075 (1948)	601379 601379
GRØNVØLD. F (U ØF ØSLØ 0SLØ NØRWAY) HIGH-TEMPERATURE X-RAY STUDY ØF URANIUM ØXIDES IN THE U02-U308 REGIØN J INØRG NUCLEAR CHEM 1, 357 (1955) CA 50, 3881 (1956)	601001 601001 601001 601001 601001
GRØSS, P HAYMAN, C CLAYTØN, H (FULMER INST STØKE PØGES ENGLAND) HEATS ØF FØRMATIØN ØF URANIUM SILICIDES AND NITRIDES IAEA SYMPØSIUM ØN THE THERMØDYNAMICS ØF NUCLEAR MATERIALS, PRØC, VIENNA, MAY 1962 NSA 16, 25832 (1962)	601621 601621 601621 601621 601621
GRØSS, P HAYMAN, C LEVI, D WILSØN. G HEATS OF FORMATION OF METAL HALIDES-PENTABROMIDES OF NIØBIUM AND TANTALUM TRANS FAR SOC 58, 890 (1962)	300706 300706 300706 300706
GRØSSE+ A (TEMPLE UNIV PHILADELPHIA PA) THE EMPIRICAL RELATION BETWEEN THE ACTIVATION ENERGY OF VISCOSITY OF LIQUID METALS AND THEIR MELTING POINTS J INORG NUCL CHEM 25+ 317 (1963) CA 59+ 2183 (1963)	202043 202043 202043 202043 202043 202043
GRØSSE. A TEMPLE. U TEMPERATURE RANGE ØF LIQUID METALS AND AN ESTIMATE ØF THEIR CRITICAL CONSTANTS J. INØRG. NUCL CHEM 22, 23 (1961) CA 56. 14999 (1962)	301463 301463 301463 301463 301463
GRØSSE+ Å V (RES INST TEMPLE UNIV PHILADELPHIA PA) HIGH TEMPERATURE RESEARCH SCIENCE 140, (3568) 781 (1963) BHT NØ 2, 1 (1963)	301236 301236 301236 301236 301236
GRØSSE+ A V KIRSHENBAUM+ A D (TEMPLE UNIV PHILADELPHIA PA) THE DENSITIES ØF LIQUID IRØN AND NICKEL AND AN ESTIMATE ØF THEIR CRITICAL TEMPERATURE J INØRG-NUCL CHEM 25+ (4) 331 (1963) BHT NØ 2+ 34 (1963)	301235 301235 301235 301235 301235 301235
GRØSSE, A LENTNER, H MURPHY, W STØKES, C THE HIGH TEMPERATURE CONTAINMENT OF SUBSTANCES ABOVE THE MELTING POINT OF THE CONTAINER J. AM. CHEM SOC 84, 3209 (1962)	300578 300578 300578 300578
GRØSSE» A KIRSHENBAUM» A (TEMPLE UNIV RES INST PHILA PA) THE TEMPERATURE RANGE ØF LIQUID PB AND AG AND AN ESTIMATE ØF THEIR CRITICAL CONSTANTS J INØRG NUCL CHEM 24, 739 (1962) BHT NØ 1, P 40, (1963)	301143 301143 301143 301143 301143
GRØSSMÅN» L QUESTIØN ØF A PHASE CHANGE IN ZIRCØNIUM MØNØCARBIDE J AM CERAM SØC 46. 457 (1963)	202044 202044 202044

GRØSSMÅN. L N (G E VALLECITØS ATØMIC LAB PLEASANTØN CALIF) HIGH TEMPERATURE THERMØPHYSICAL PRØPERTIES ØF UC J AM CERAM SØC 46. (6) 264 (1963) BHT NØ 2. 28 (1963)	301237 301237 301237 301237 301237
GRØZIER+ J (BETTIS ATOMIC POWER LAB PITTSBURG PA) THE EFFECT OF N2 ON THE LATTICE CONSTANTS AND HARDNESS OF ZIRCONIUM WAPD-ZH-26 NSA 15+ 11467 (1961)	701018 701018 701018 701018 701018 701018
GRUEN. D KØEHLER. W KATZ. J HIGHER ØXIDES ØF THE LANTHANIDE ELEMENTS. TERBIUM DIØXIDE J AM CHEM SØC 73. 1475 (1951) CA 45. 6885 (1951)	400545 400545 400545 400545
GRUN, A THE GAYDON BANDS OF N? Z NATURFORSCH 9, 1017 (1954) CA 49, 6724 (1955)	600581 600581 600581
GSCHNFIDER + K RARE EARTH CARBON SYSTEMS UNIV MICROFILMS (ANN ARBOR MICH) L C CARD NO MIC 58-1040 + 150 CA 52 + 10787 (1958)	601093 601093 601093 601093
GSCHNFIDNER+ K ELLIØTT+R MCDØNALD+R (LØS ALAMØS SCI LAR LØS ALAMØS NEW MEXICØ) EFFECTS ØF ALLØYING ADDITIØNS ØN THE ALPHA TØ GAMMA AND GAMMA TØ ALPHA TRANSFØRMATIØN ØF CERIUM III EFFECTS ØF YTTRIUM AND RARE EARTH ADDITIØNS PHYS CHEM SØLIDS 23+ 201 (1962) CA 58+ 2946 (1963)	301464 301464 301464 301464 301464 301464
GSCHNEIDER K (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEXICØ) SØME CØMMENTS ØN THE YTTERBIUM-THØRIUM SYSTEM J LESS CØMMØN METALS 4 NØ 1 107 (1962) CA 57 4435 (1962)	201700 201700 201700 201700 201700
GSCHNEIDER, K ELLIØTT, R MCDØNALD, R (LØS ALAMØS SCI LAB LØS ALAMØS N MEXICØ) EFFECTS ØF ALLØYING ADDITIØNS ØF SC, Y, RARE EARTHS, TH, AND PU, ØN THE GAMMA TØ ALPHA TRANSFØRMATIØN ØF CERIUM RARE EARTH RES SEMIN, LAKE ARRØWHEAD 1960, 278 (1961) CA 58, 9930 (1963)	202045 202045 202045 202045 202045 202045 202045
GUILL. J WORONCOW. J (GE CINCINNATI OHIO) BERYLLIUM RESEARCH IN THE USSR DC-59-3-188 (1959) NSA 16. 7882 (1962)	601580 601580 601580 601580 601580
GULBRANSEN. E (WESTINGHOUSE RES LABS PITTSBURGH PA) HIGH-TEMPERATURE ØXIDATIØN ØF W. MØ. AND NATURE 198. 82 (1963) CA 58. 13563 (1963)	301465 301465 301465 301465 301465

GULBRANSEN. E ANDREW. K (WESTINGHOUSE ELEC CORP PITTSBURGH PA) KINETICS OF THE OXIDATION OF PURE TUNGSTEN FROM 500 DEGREES TO 1300 DEGREES J ELECTROCHEM SOC 107. 619 (1962) CA 57. 7963 (1962)	201770 201770 201770 201770 201770 201770
GULBRANSEN. E ANDREW. K VAPOR PRESSURE STUDIES ON IRON AND CHRONIUM AND SEVERAL ALLOYS OF IRON CHROMIUM AND ALUMINUM TRANS AIME 221, 1247 (1961) REV MET LIT 19, (1962) BHTG NO 4, 7 (1962)	300465 300465 300465 300465 300465
GULBRANSEN: E ANDREW: K BLACKBURN: P COPAN: T MERLIN: OXIDATION OF TUNGSTEN AND TUNGSTEN BASED ALLOYS WADC-TR-59-575 (1959) CA 56: 8427 (1962)	600638 600638 600638 600638
GULBRANSEN. E ANDREW. K BRASSART. F VAPØR PRESSURE ØF MØLYBDENUM TRIØXIDE J ELECTRØCHEM SØC 110. 242 (1963)	300891 300891 300891
GUMENYUK, V LEBEDEV, V HEAT AND ELECTRICAL CONDUCTIVITY OF TUNGSTEN AND GRAPHITE AT HIGH TEMPERATURES FIZ METAL I METALLOVED AKAD NAUK SSSR 11, 29 (1961)	700553 700553 700553 700553
GUNN, S GREEN, L (LAWRENCE RADIATION LAB HEATS OF FORMATION OF SOME UNSTABLE GASEOUS HYDRIDES J PHYS CHEM 65, 779 (1961) CA 55, 23023 (1961)	201172 201172 201172 201172 201172
GURLEN. T ØXIDATIØN ØF NIØBIUM 26-ØI (DVADTSAT SHESTØI) MEZHDUNAR KØNGRESS LITEISHCHIKØV (MØSCØW. GØS IZD MASHINØSTR LIT) SB 1959. 286 (1961) CA 57. 8315 (1962)	201792 201792 201792 201792 201792
GURVICH. L DETERMINATION OF HEAT OF SUBLIMATION OF METALS BY THE ANOMALOUS DISPERSION OF LIGHT CALCULATED WITH THE AID OF ROZHDENSTVENSKIIS PROBABILITY METHOD. THERMODYNAMIC PROPERTIES AND HEATS OF SUBLIMATION OF GALLIUM, INDIUM AND TH'LLIUM ZHUR FIZ KHIM 34, 1691 (1960) CA 55, 9023 (1961)	600652 600652 600652 600652 600652 600652
GURVICH: L KVLIVIDZE: V THERMØDYNAMIC FUNCTIØNS ØF MØNØATØMIC AND DIATØMIC GASES ØVER A WIDE RANGE ØF TEMPERATURES I METHØD ØF CALCULATING THE THERMØDYNAMIC FUNCTIØNS ØF IDEAL MØNØATØMIC GASES ZHUR FIZ KHIM 35: 1672 (1961) BHTG NØ 4: 2 (1962)	300457 300457 300457 300457 300457 300457
GURVICH, I KVLÍVIDZE, V RTISHCHEVA, N THERMØDYNAMIC FUNCTIØNS ØF MØNØ-AND DI-ATØMIC METALS IN THE STATE ØF IDEAL GASES UP TØ 10,000K ZHUR FIZ KHIM 36, 1, 219 (1962)	400602 400602 400602 400602
GURVICH: L YUNGMAN: V Thermødynamic functiøns øf mønø and diatømic gases øver a Brøad Range øf temperatures II	300248 300248 300248

ZHUR FIZ KHIM 35. NØ 9 1927 (1961) CA 56. 6721 (1962)	300248 300248
GURVICH, L YUNGMAN, V PRØZØRØVSKII. E VØRØBEV. B CALCULATIØN ØF THERMØDYNAMIC FUNCTIØNS ØF DIATØMIC GASES AT HIGH TEMPERATURES BY THE METHØD ØF DIRECT SUMMATIØN ØN AN ELECTRØNIC MACHINE TRUDY INST GØRYUCH ISKØPØEM AKAD NAUK SSSR 12, 196 (1961) CA 56, 2951 (1962)	300354 300354 300354 300354 300354 300354
GUZMAN, I PØLYBØYARINØV. D (MENDELEEV CHEM TECH INST MØSCØW RUSSIA) SØME PRØPERTIES ØF PØRØUS CERAMICS DERIVED FRØM BERYLLIUM ØXIDE ØGNEUPØRY 27. 457 (1962) CA 58. 1215 (1963) BHT NØ 1. 35. (1963)	300894 300894 300894 300894 300894 300894
HABFRMANN C DAANE A (IOWA STATE UNIV AMES IOWA) THE PREPARATION AND PROPERTIES OF DISTILLED YTTRIUM J LESS COMMON METALS 5 • NO 2 • 134 (1963) CA 58 • 13536G (1963)	301466 301466 301466 301466 301466
HACK: M THE SPECTRUM OF EPSILON AURIGAE ASTROPHYS J 129: 291 (1959) CA 53: 14676 (1959)	601134 601134 601134 601134
HADDAD. R. GØLDWATER. D. MØRGAN. F THERMIØNIC EMITTING PRØPERTIES ØF TWØ REFRACTØRIES J. APPLIED PHYS 20. 1130 (1949)	300160 300160 300160
HADDAD R GOLDWATER D MORGAN F ZIRCONIUM CARBIDE AS A THERMIONIC EMITTER J APPLIED PHYS 20 886 (1949)	300159 300159 300159
HAGENMULLER, P LESAICHERRE, A (FAC SCI BØRDEAUX FRANCE) REDUCTIØN ØF V205 BY LIH. CØMPT REND 256, 170 (1963) CA 58, 7603F (1963)	301467 301467 301467 301467 301467
HAHN, H CONCERNING THE VANADIUM-NITROGEN SYSTEM, METAL AMIDES AND METAL NITRIDES, XVIII. Z ANORG U ALLGEM CHEM 258, 58 (1949) AEC-TR-4657 NSA 15, 23993 (1961)	701046 701046 701046 701046 701046
HAHN, W THERMODYNAMIC PROPERTIES OF OXIDE SOLID SOLUTIONS UNIV MICROFILMS (ANN ARBOR, MICH.), L C CARD NO MIC 60-2157, DISSERTATION ABSTR 21, 163 (1960) CA 55, 2260 (1961)	200812 200812 200812 200812 200812
HAKE, R (NØRTH AM AVIATIØN INC CANØGA PARK CAL) LØW-TEMPERATURE HEAT CAPACITIES ØF SUPERCØNDUCTING BØDYCENTERED CUBIC TI-MØ ALLØYS PRØC INTERN CØNF LØW TEMP PHYSICS., 7TH, TØRØNTØ CAN. 1960, 359 (1961)	201456 201456 201456 201456 201456 201456

	201456
CA 56. 11001 (1962) HALDEN, F KINGERY, W METAL-CERAMIC INTERACTIONS V NOTE ON REACTIONS OF METALS WITH TITANIUM CARBIDE AND TITANIUM NITRIDE AM CERAM SOC BULL 34. NO 4 117 (1955)	300161 300161 300161 300161
HALDEN, F WOHLERS, H REINHART, R (STANFORD RES INST MENLO PARK CALIF) THERMAL EXPANSION OF URANIUM DIOXIDE U S AT ENERGY COMM TID-5722 (1959) CA 57, 11875 (1962)	201836 201836 201836 201836 201836
HALL. P LEGVØLD. S SPEDDING. F (10WA STATE CØLL AMES 10WA) ELECTRICAL RESISTIVITY ØF YTTRIUM SINGLE CRYSTALS PHYS REV 116. 1446 (1959) CA 54. 23514 (1960)	601164 601164 601164 601164 601164
HAMAGUCHI, Y KUNITOMI, N KOMURA, S SAKAMOTO, M J PHYS SOC JAPAN 17, 398 (1962) ELECTRICAL RESISTIVITY OF UFE2 AND UMN2 CA 57, 183 (1962)	201568 201568 201568 201568
HAMAMURA, T (UNIV KYØTØ REACTIØN ØF WATER VAPØR WITH TUNGSTEN. I. RATE ØF THE REACTIØN MEM FAC IND ARTS KYØTØ TECH UNIV SCI TECHNØL NØ 9, 1 (1960) CA 56, 8271 (1962)	201386 201386 201386 201386 201386
HAMPEL: C LESS COMMON ELEMENTS REFRACTORY METALS TANTALUM, NIOBIUM, MOLYBDENUM, RHENIUM AND TUNGSTEN IND ENG CHEM 53, 90 (1961) CA 55+ 6318 (1961)	200889 200889 200889 200889 200889
HAMPEL C THE RARE METALS HANDBOOK REINHOLD • N.Y • (1954) CA 48 • 12003 (1954)	600951 600951 600951 600951
HAMPSON: R DOOLING: J (CATHOLIC UNIV OF AM WASHINGTON D C) L C A O STUDY OF BE2 U S DEPT COMM OFFICE TECH SERV P B REPT 154.987. (1960) CA 57: 6747 (1962)	201753 201753 201753 201753 201753
HAMPSØN, R WALKER, R VAPØR PRESSURES ØF PLATINUM, IRIDIUM, AND RHØDIUM J RES (NBS) 65A, 289 (1961) NSA 15, 29211 (1961)	700681 700681 700681 700681
HANAK. J DAANF. A (10WA STATE UNIV AMES 10WA) HIGH-TEMPERATURE X-RAY DIFFRACTION FECHNIQUES FOR ACTIVE METALS REV SCI INSTR 32, 712 (1961) CA 56, 8102 (1962)	201378 201378 201378 201378 201378 201378
HANLINO H (ATOMICS INTERNATIONAL CANOGA PARK CAL) EVAPORATION RATE STUDIES NAA-SR-5785 (1960)	700951 700951 700951 700951

NSA 15 · 19834 (1961)	700951
PREPARTION AND PROPERTIES OF METALLIC URANIUM KOHASZATI LAPOK 91, 27 (1958)	601075 601075 601075 601075
(NATL RESEARCH COUNCIL WASH DC) CRITICAL COMPARISON OF NIOBIUM WITH OTHER MATERIALS FOR MISSILF, AIRCRAFT AND NUCLEAR APPLICATIONS	201239 201239 201239 201239 201239 201239
EL ECTRONIC CTRUCTURE AND HOS HELD HOLDS	301468 301468 301468 301468 301468
HARTLEY, C BAUN, W FISHER, D RAPPERPØRT, E (WRIGHT AIR DEVL CENTER W PATTERSON A F B ØHIØ) PHASE RELATIØNSHIPS IN TANTALUM-RICH TANTALUM-RUTHENIUM ALLØYS AT 1500 DEGREES U S DEPT CØM ØFFICE TECH SERV P B REPT 176,823 (1961) CA 57, 9547 (1962)	201813 201813 201813 201813 201813 201813
HARTMANN, W (ØAK RIDGE NAT' LAB ØAK RIDGE TENN) ELECTRICAL INVESTIGATION WITH ØXIDE SEMICONDUCTORS Z PHYSIK 102, 709 (1936) AEC-TR-3784 NSA 13, 21348 (1959)	601519 601519 601519 601519 601519
HARVEY, W THE THERMODYNAMIC ACTIVITY OF THE SEMICONDUCTOR PHYS CHEM SOLIDS 24, NO 5, 701 (1963)	202047 202047 202047
HARVEY, J. KAUFMAN, L. KULIN, S. LEYENAAR, A. UDIN, H. RESFARCH AND DEVELOPMENT ON THE EFFECTS OF HIGH PRESSURE AND TEMPERATURE ON VARIOUS ELEMENTS AND BINARY ALLOYS WADC-TR-59-655 (1959) AD-240794 NSA 15, 3099 (1961)	600640 600640 600640 600640 600640
HASAPIS, A PANISH, M RØSEN, C (AVCØ RAD WILMINGTØN MASS) THE VAPØRIZATIØN AND PHYSICAL PRØPERTIES ØF CERTAIN REFRACTØRIES. PART 1 TECHNIQUES AND PRELIMINARY STUDIES WADD-TR-60-463, PT 1 (1960) NSA 15, 5380 (1961)	700994 700994 700994 700994 700994 700994
HASAPIS, A PANISH, M RØSEN, C (AVCØ CØRP WILMINGTØN MAGE) THE VAPØRIZATIØN AND PHYSICAL PRØPEK IES ØF CERTAIN REFRACTØRY I.TECHNIQUE AND PRELIMINARY STUDIES U S DEPT CØM ØFFICE TECH SERV P B REPT 171,413, (1960) CA 57, 16161 (1962)	201939 201939 201939 201939 201939 201939
HASAPIS» A MELVEGER» A PANISH» M REIF» L RØSEN» C (AVCØ RAD WILMINGTØN MASS) THE VAPØRIZATIØN AND «HYSICAL PRØPERTIES ØF CERTAIN REFRACTØRIES	701017 701017 701017 701017

RAD-SR-16-61-1 NSA 15: 1159/ (1961)	701017 701017
HASAPIS, A MELVEGER, A PANISH, M REIF, L RØSEN, C (AVCØ RAD WILMINGTØN MASS) THE VAPØRIZATIØN AND PHYSICAL PRØPERTIES ØF CERTAIN REFRACTØRIES RAD-SR-61-54 (1961) NSA 15, 19856 (1961)	701039 701039 701039 701039 701039 701039
HASHIGUCHI, R MATSUURA, E ISHINO, S MINAMI, K ELECTRICAL RESISTIVITES AND LATTICE CONSTANTS OF URANIUM DIOXIDE TRANS NATL RESEARCH INST METALS 2, NO 1, 1 (1960) CA 55, 5067 (1961)	200856 200856 200856 200856 200856
HATT, B (FULMER RESEARCH INST LTD STOKES POGES ENGLAND) THE CRYSTAL STRUCTURES OF URE2 ACTA CRYSTAL 14, 119 (1961) CA 55, 8989 (1961)	200929 200929 200929 200929 200929
HAUCK. J E GUIDE TØ REFRACTØRY CERAMICS MATER DESIGN ENG 58 (1). 85 (1963) CA 59. 8454 (1963)	202048 202048 202048 202048
HAUFFE K THE ELECTRICAL CONDUCTIVITY OF U-O SYST 2 PHYSIK CHEM 46B. 124 (1941) NSA 12. 17933 (1958)	601483 601483 601483 601483
HAUSNER: H (GLADDING MCBEAN + CØ INC LØS ANGELES CAL) BIBLIØGRAPHY ØN UØ2 AECU142 (1959) NSA 13: 14499 (1959)	601530 601530 601530 601530
HAUTECLER. S. RØSEN. B. ELECTRØNIC SPECTRA ØF SØME DIATØMIC ØXIDES. BULL CLASSE SCI. ACAD RØY BELG 45. 790 (1959). CA 54. 14929 (1960)	700759 700759 700759 700759
HAVELL, R BASKIN, Y (ILL INST TECH CHICAGØ ILL) RE-W-C INTERACTIONS J ELECTROCHEM SOC 108, 1068 (1961) CA 56, 1253 (1962)	201235 201235 201235 201235 201235
HAWØRTH. C (UNIV SHEFFIELD SHEFFIELD ENGLAND) THE FØRMATIØN ØF INTERMEDIATE PHASE IN ALLØYS ØF NB. TA. MØ. AND W WITH ØTHER TRANSITIØN METALS J LESS CØMMØN METALS 2. 125 (1960) CA 55, 13262 (1961)	201017 201017 201017 201017 201017 201017
HEARD. J SPECTROSCOPIC OBSERVATIONS OF NOVA SCUTI ASTRONOMICAL JOURNAL 55. 73 (1950) CA 44. 6263 (1950)	400586 400586 400586 400586
HECKINGBØTTØM+ R LINNETT+ J STRUCTURE ØF VANADIUM DIØXIDE	300704 704

NATURE 194. 678 (1962)	300704
HEDGE: J FIELDHOUSE: I (ILL INST OF TECH CHICAGO ILL) MEASUREMENT OF THERMAL CONDUCTIVITY OF U02 AECU-3381 NSA 11: 1709 (1957)	601294 601294 601294 601294 601294
HEGEDUS, A SASVARI, K NEUGEBAUER, J (TUNGSRAMS FACT INCAND LAMP BUDAPEST HUNGARY) THE INVESTIGATION OF THE REACTION BETWEEN TUNGSTEN TRIOXIDE AND CARBON MONOXIDE BY THERMAL AND X-RAY ANALYSIS ACTA CHIM ACAD SCI HUNGARY 26, 113 (1961) CA 55, 20747 (1961)	201144 201144 201144 201144 201144 201144
HEGEDUS. A GADO. P MECHANISM OF THE REACTION OF TUNGSTEN TRIDXIDE WITH CARBON Z ANORG U ALLGEM CHEM 305. 227 (1960) CA 55. 195 (1961)	200788 200788 200788 200788
HEGEDUS A NEUGEBAUER J THE MECHANISM OF THE REACTION OF MOLYBDENUM TRIOXIDE WITH CARBON Z ANORG U ALLGEM CHEM 305 + 216 (1960) CA 55 + 195 (1961)	200789 200789 200789 200789 200789
HELGORSKY. J (UNIV PARIS PARIS FRANCE) SOLID REACTIONS IN THE SYSTEM ZIRCONIUM-TUNGSTEN-BORON ANN CHIM (PARIS) 6. 1339 (1961) CA 57. 13405 (1962)	201887 201887 201887 201887 201887
HELTEMES, F. SWENSON, C. (IOWA STATE UNIV AMES IOWA) NUCLEAR CONTRIBUTION TO THE HEAT CAPACITY OF TERBIUM METAL J. CHFM PHYS 35, 1264 (1961) CA 56, 9509 (1962)	201411 201411 201411 201411 201411
HELVENSTØN• E LØWER ØXIDATIØN STATES ØF IRIDIUM UNIV MICRØFILMS MIC 59-4766 DISSERTATIØN ABSTR 20•2007 (1959) CA 54• 6377 (1960)	601195 601195 601195 601195 601195
HENDERSØN: U (TEXACØ EXPT INC RICHMØND VA) AD 273 733 QUALITY REPT NØV 61-JAN 62	301469 301469 301469
HENDRICKS: J B RISER: H N CLARK: C B CALCULATED VIBRATIONAL SPECTOR AND SPECIFIC HEATS OF LITHIUM AND VANADIUM PHYS REV 130: 1377 (1963)	301239 301239 301239 301239
HENDRIE J DISSOCIATION ENERGY OF N2 J CHEM PHYS 22, 1503 (1954) CA 49, 20 (1955)	600582 600582 600582 600582
HENGGE + E (UNIV MARBURG GERMANY) THE PREPARATION OF NEW SILICON SUBNITRIDE Z ANORG ALLGEM CHEM 315 + 298 (1962) CA 57 + 6851 (1962)	201759 201759 201759 201759 201759

HENNING, F WENSEL, H THE FREEZING POINT OF IRIDIUM ANN PHYSIK 17, 620 (1933) CA 27, 4459 (1933)	900128 900128 900128 900128
HEPNER+ G HERMÁN+ L SPECTRUM ØF NITRØGEN BETWEEN 0.9 AND 2.6 MU ANN GEØPHYS 13+ 242 (1957) CA 52+ 3507 (1958)	600583 600583 600583 600583
HERIC: E (UNIV GEORGIA CONVERSION GRIDS FOR TERNARY SYSTEMS J CHEM EDUC 40 (6): 325 (1963) CA 59: 2213 (1963)	202049 202049 202049 202049 202049
EQUILIBRIA OF URANIUM OXIDES BETWEEN UO2 AND U308	601236 601236 601236 601236
HERMAN R NEW FØRBIDDEN TRANSITIØN ØF NITRØGEN CØMPT REND 233 * 738 (1951) CA 46 * 2396 (1952)	600586 600586 600586 600586
HERMAN, R HERMAN, L EMISSION OF THE ATMOSPHERIC BANDS OF THE OXYGEN MOLECULE COMPT REND 229, 931 (1949) CA 44, 7652 (1950)	600555 600555 600555 600555
HERMAN R HERMAN, L EMISSION FROM OXYGEN DILUTED IN AN ATMOSPHERE OF XENON J PHYS RADIUM 11, 69 (1950) CA 44, 5703 (1950)	600557 600557 600557 600557
HERMAN. L HERMAN. R SPECTRUM ØF THE NITRØGEN MØLECULE IN THE PHØTØGRAPHIC INFRARED MEM SØC RØY SCI LIEGE 12. 303 (1952) CA 46. 9978 (1952)	600584 600584 600584 600584 600584
HERMAN. R. WENIGER. C. EMISSION OF ATMOSPHERIC OXYGEN BANDS IN PURE OXYGEN COMPT REND 230. 940 (1950) CA 44. 5211 (1950)	600556 600556 600556
HERMAN. R WENIGER. C THE EMISSION OF THE PROHIBITED RADIATION BY MOLECULAR DECOMPOSITION COMPT REND 230. 1594 (1950) CA 44. 10496 (1950)	600558 600558 600558 600558
HERMAN. R. WENIGER. C. EXCITATION OF THE HIGH ROTATIONAL LEVELS OF THE FIRST POSITIVE SYSTEM OF NITROGEN COMPT REND 234. 928 (1952) CA 46. 5964 (1952)	600585 600585 600585 600585
HERRMANN, K. DAANE, A. SPEDDING, F. PHYSICAL-METALLURGICAL PROPERTIES OF SCANDIUM, YTTRIUM AND THE RARE EARTH METALS	700905 700905 700905

ISC 702: USAEC (1955) CA 51: 2352 (1957)	700905 700905
HERTZRICKEN. S SLYUSAR. B DETERMINATION OF THE ALLOTROPIC TRANSFORMATION HEAT IN TITANIUM. ZIRCONIUM. AND THE ALLOY TITANIUM PLUS 6.5 PCT CHROMIUM UKR FIZ ZH 7. NO 4. 439 (1962)	300708 300708 300708 300708 300708
HERZBERG. G FØRBIDDEN TRANSITIØNS IN THE SPECTRA ØF DIATOMIC MOLECULES TRANS RØY SØC CANADA 46. III. 1 (1952) CA 47. 4185 (1953)	600536 600536 600536
HERZBERG. G FØRBIDDEN TRANSITIØNS IN DIATØMIC MØLECULES III. NEW ABSØRPTIØN BANDS ØF THE ØXYGEN MØLECULE CAN J PHYS 31. 657 (1953) CA 48. 7428 (1954)	600537 600537 600537 600537 600537
HERZBERG, G FØRBIDDEN TRANSITIØNS IN DIATØMIC MØLECULES II NEW ABSØRPTIØN BANDS ØF THE ØXYGEN MØLECULE CAN J PHYSICS 30, 185 (1952) CA 46, 9418 (1952) HERZBERG, G	600538 600538 600538 600538
HERZBERG. G SPECTRA ØF FREE RADICALS ANALES REA! SUC FSPAN FIS Y QUIM 55A. 179 (1959) CA 55. 93 (1961)	200785 200785 200785 200785
HERZBFRG. G HUGO. T FØRBIDDEN TRANSITIØNS IN DIATØMIC MØLECULES IV THE ABSØRPTIØN BANDS ØF CARBØN MØNØXIDE CAN J PHYSICS 33. 757 (1955) CA 50. 2287 (1956)	600711 600711 600711 600711
HERZBERG. G LAGERQVIST. A MIESCHER. E FINE STRUCTURE ANALYSIS AND MUTUAL PERTURBATION OF THE SAND DELTA AND BETA BANDS OF THE NO MOLFCULE CAN J PHYS 34. 622 (1956) CA 50. 11108 (1956)	600744 600744 600744 600744
HESLOP: R ROBINSON: P INORGANIC CHEMISTRY A GUIDE TO ADVANCED STUDY 2ND BD NEW YORK: ELSEVIER PUB CO (1962) CA 58: 5252 (1963)	301028 301028 301028 301028 301028
HEXTER. R M EXCITATION-MODULATION SPECTROSCOPY A TECHNIQUE OF OBTAINING VIBRATIONAL SPECTRA OF EXCITED ELECTRONIC STATES J OPT SOC AN 53. NO 6. 703 (1963)	301240 301240 301240 301240
HICKS. W (DUPONT WILMINGTON DEL) OXIDATION OF NIOBIUM MONOXIDE TRANS AIME 221. 352 (1961) CA 55. 13236 (1961)	201011 201011 201011 201011 201011
HIGGINS, J ANTILL, J (ATOMIC ENERGY RES ESTAB HARWFLL ENGLAND) ØXIDATIØN ØF BERYLLIUM IN CARBØN DIØXIDF AND ØXYGEN	201606 201606 201606

J NUCL MATTER 5, 67 (1962) CA 57, 1952 (1962)	201606 201606
HILDENBRAND, D. THEARD, L. AN EXPERIMENTAL PROGRAM FOR OBTAINING THE THERMODYNAMIC PROPERTIES OF PROPELLANT COMBUSTION PRODUCTS TAB 6124, AD 253233 (1961)	300219 300219 300219 300219
HILDENBRAND D HALL, W THE VAPORIZATION BEHAVIOR OF BORON NITRIDE AND ALUMINUM NITRIDE J PHYS CHEM 67, 888 (1963)	202050 202050 202050 202050
HILDENBRAND. D L HALL. W F (FØRD MØTØR CØ NEWPØRT BEACH CALIF) THE VAPØRIZATIØN BEHAVIØR ØF BN AND ALN J PHYS CHEM 67. (4) 888 (1963) BHT NØ 2. 29 (1963)	301241 301241 301241 301241 301241
HILDENBRAND D HALL W POTTER N (FORD MOTOR CO NEWPORT BEACH CALIF) THERMODYNAMICS OF VAPORIZATION OF LITHIUM OXIDE, BORIC OXIDE, AND LITHIUM METABORATE J CHEM PHYS 39, NO 2, 296 (1963) CA 59, 3372 (1963)	301470 301470 301470 301470 301470 301470
HILL. D (ARGONNE NATL LAB ARGONNE ILL) PHASE RELATIONS AND CRYSTAL CHEMISTRY IN THE SYSIEM URANIUM OXIDE-LANTHANUM OXIDE J AM CERAM SOC 45. 258 (1962) CA 57. 13217 (1962)	201873 201873 201873 201873 201873 201873
HILLER. M (IOWA STATE COLLEGE AMES IOWA) PHYSICAL AND CHEMICAL PROPERTIES OF SCANDIUM AND THE RARE EARTHS THESIS CA 54. 6377 (1960)	700738 700738 700738 700738 700738 700738
HILL: H C REED: R I VOLATILIZATION OF HIGH MELTING SOLIDS IN A MASS SPECTROMETER J SCI INSTR 40: NO 5: 259 (1963)	301243 301243 301243
HILSENRATH. J KLEIN, M WOOLLEY, H TABLES OF THERMODYNAMIC PROPERTIES OF AIR INCLUDING DISSOCIATION AND IONIZATION FROM 1500 TO 15000 DEG K US DEPT COM OTS PB 161.311 (1959) CA 55. 21713 (1961)	300312 300312 300312 300312 300312
HILSENRATH, J ZIEGLER, G TABLES ØF EINSTEIN FUNCTIONS NBS MØNØGRAPH 49. (1962) J RES NBS 65A. 139 (1961)	301471 301471 301471 301471
HINES. A ROSS. J ISOTOPE SHIFT IN THE SPECTRUM OF OSMIUM PHYS REV 125. 2105 (1962) NSA 16. 26317 (1962)	601592 601592 601592 601592
HINZ, I DIETZEL, A (MAX-PLANCK INST WUERZBURG GERMANY) PHASE BOUNDARIES OF SOLID SOLUTIONS OF ZRO2 AND MGO FROM	301472 301472 301472

1800 DEGREES TO THE MELTING POINT	301472
BER DEUT KERAM GES 39, 530 (1962)	301472
CA 58+ 8446 (1963)	301472
HINZ: I DIETZEL: A (MAX-PLANCK INST WUERZBURG GERMANY) PHASE INVERSION OF VARIOUS ZRO2 SAMPLES BER DEUT KERAM GES 39: 489 (1962) CA 58: 2915 (1963)	301473 301473 301473 301473 301473
HIRSCH. A THE PREPARATION AND PROPERTIES OF METALLIC CERIUM TRANS ELECTROCHEM SOC 20, 57 (1911) CA 6. 48 (1912)	900097 900097 900097 900097
HIRSHFELD. A LEUPØLD. H BØØRSE. H (CØLUMBIA UNIV NEW YØRK CITY NEW YØRK) SUPERCØNDUCTING AND NØRMAL SPECIFIC HEA: ØF NIØBIUM PHYS REV 127. 1501 (1962) CA 57. 15951 (1962)	201933 201933 201933 201933 201933
HIRSCHFELDER: J (UNIV OF WISCONSIN MADISON WISCONSIN) MATHEMATICAL BOTTLENECKS IN THEORETICAL HEMISTRY US DEPT COM OFFICE TECH SERV PB REPT 158815: 117 (1959) CA 58: 938 (1963)	301474 301474 301474 301474 301474
HIRSCHFELDER: J	202052
Søme Remarks øn the Theory of Flame prøpagation	202052
Ninth Symposium on combustion academic press n y (1963)	202052
HIRSCHFELDER. J CURTIS. C BIRD. R	202051
MØLECULAR THEØRY ØF GASES AND LIQUIDS	202051
JØHN WILEY + SØNS INC N Y (1954)	202051
HISATUNE • I	600807
THE SPECTRA ØF NITRØGEN ØXIDES I THE SPECTRUM ØF N2Ø4	600807
US DEPT CØM ØFFICE TECH SEV P B REPT 143667 (1959)	600807
CA 55 • 16141 (1961)	600807
HOARD, J	700998
(CØRNELL UNIV ITHACA NY)	700998
REMARKS ØN STRUCTURE AND PØLYMØRPHISM IN BØRØN	700998
NSA 15. 7823 (1961)	700998
HOARD, J	300901
STRUCTURE ØF BETA-RHØMBØHEDRAL BØRØN	300901
J AM CHEM SØC 85• 361 (1963)	300901
HOCH: M	202053
ORDER-DISORDER REACTIONS IN ALPHA-TI(0) AND TI O	202053
J PHYS CHEM SOLIDS 24: 157 (1963)	202053
HOCH: M THERMODYNAMIC INVESTIGATION OF CERAM.: MATERIALS AT ELEVATED TEMPERATURES AD 266459	301475 301475 301475 301475
HOCH: M VARDI: J (UNIV OF CINCINNATI CINCINNATI OHIO) THERMAL CONDUCTIVITY OF TIC J AM CERAM SOC 446: 245 (1963) CA 59: 5800 (1963)	301476 301476 301476 301476 301476

HOCH: M (UNIV OF CINCINNATI CINCINNATI OHIO) VACANCY INTERACTION ENERGIES IN TRANSITION METAL OXIDES J PHYS SOC JAPAN 18: 147 (1963) CA 59: 5890 (1963)	301477 301477 301477 301477 301477
HØCH. M (UNIV ØF CINCINNATI CINCINNATI ØHIØ) THE SYSTEM TI-ZR-Ø US DEPT CØM ØFFICE TECH SERV PB REPT 161435 (1959) CA 55. 19711 (1961)	201136 201136 201136 201136 201136
HOCH, M THERMODYNAMIC INVESTIGATION OF CERAMIC MATERIALS AT ELEVATED TEMPERATURE AD 250752 CON AF 33(616)6299 PROJ 7021 (1961)	300311 300311 300311 300311 300311
HØCH, M (CIN UNIV RES FØUND CINCINNATI ØHIØ) THERMØDYNAMIC INVESTIGATIØN ØF CERAMIC MATERIALS AT ELEVATED TEMPERATURES AD-255085 (8 MAY 1961) GR 36, NØ 1, 105 (1961) NSA 15, 32530 (1961)	700661 700661 700661 700661 700661 700661
HØCH; M THERMØDYNAMICS ØF TRANSITIØN METAL ALLØYS GRØUP IV,V, AND VI ELEMENTS TRANS AIME 224, NØ 2, 379 (1962) BHT NØ 2, 41 (1962)	300544 300544 300544 300544
HØCH, M DEAN, R HWU, C WØLØSIN, S THE SYSTEM TI-ZR-Ø TRANS AIME 221, NØ 6, 1162 (1961) BHT Nº 2, 41 (1962)	300545 300545 300545 300545
HØCH. M DEAN. R HWU. C WØLØSIN. S THE SYSTEM TITANIUM-ZIRCØNIUM. ØXYGEN US DEPT CØMM ØTS PB 161435 PAGE 74 (1959) CA 55. 19711 (1961)	300214 300214 300214 300214
HØCH: M DESJARDINS: M SYSTEM MØLYBDENUM-TITANIUM-ZIRCØNIUM-ØXYGEN AT 1500 DEGREES C TRANS MET SØC AIME 224: NØ 4: 821 (1962)	300899 300899 300899
HOCH: M JOHNSTON: H A HIGH TEMPERATURE DROP CALORIMETER. THE HEAT CAPACITIES OF TANTALUM AND TUNGSTEN BETWEEN 1000 DEGREES AND 3000 DEGREES K J PHYS CHEM 65: 855 (1961)	700613 700613 700613 700613
HØCH: M MATHUR: M (UNIV ØF CINCINNATI CINCINNATI ØHIØ) FØRMATIØN ØF CUBIC ZRØ2 WITH TRANSITIØN METALS ØF GRØUPS V AND VI AND THEIR ØXIDES J AM CERAMIC SØC 45: NØ 8: 373 (1962)	300587 300587 300587 300587 300587
HØCH: M JØHNSTØN: H (ØHIØ STATE U CØLUMBUS ØHIØ) THE REACTION ØCCURRING ØN THØRIATED CATHØDES J AM CHEM SØC 76: 4833 (1954) CA 49: 1464 (1955)	600972 600972 600972 600972 600972

A CALL AL CALLES CALL	
HØCH: M JØHNSTØN: H (ØHIØ STATE UNIV CØLUMBUS ØHIØ)	201167 201167
HIGH TEMPERATURE DROP CALORIMETER, THE HEAT CARACITIES	201167
OF TA AND W BETWEEN 1000 DEGREES AND 3000 DEGREES K J PHYS CHEM 65 + 855 (1961)	201167 201167
CA 55. 22946 (1961)	201167
HOCH. M JOHNSTON, H	201171
(0HI0 STATE UNIV (0LUMBUS 0HI0) THE HEAT CAPACITIES OF ALUMINUM 0XIDE FROM 1000 TO 2000 DEGREE	201171
AND OF THORIUM DIOXIDE FROM 1000 TO 2500 DEGREES	201171
J PHYS CHEM 65, 1184 (1961)	201171
CA 55. 23022 (1961)	201171
HOCH M IYER A NELKEN J	300897
INTERACTION ENERGIES OF VACANCIES IN TRANSITION METAL OXIDES WITH LARGE CONCENTRATION OF VACANCIES	300897
PHYS CHEM SOLIDS 23. 1463 (1962)	300897 300897
CA 58. 74 (1963)	300897
HOCH. M VARDI. J	301245
(UNIV OF CINCINNATI CINCINNATI OHID) THERMAL CONDUCTIVITY OF TIC	301245
J AM CERAM SOC 46, (5) 245 (1963)	301245 301245
BHT NØ 2, 29 (1963)	301245
HØCHSTIM. A	300898
THEORETICAL CALCULATION OF THERMODYNAMIC PROPERTIES OF AIR	300898
AD 283497 (1962)	300898
HØDGE • W	700659
REVIEW ØF RECENT DEVELØPMENTS IN THE METALLURGY ØF BERYLLIUM AD-256206 (17 MAY 1961)	700659 700659
GR 36. NØ 2. 91 (1961)	700659
HØEKSTRA. H	201177
(ARGONNE NATL LAB LEMONT ILL)	201177
LØW TEMPERATURE ØXIDATIØN ØF UØ2 AND U409 J INØRG AND NUCLEAR CHEM 18: 166 (1961)	201177 201177
CA 55 · 23147 (1961)	201177
HØEKSTRA. H	601280
(ARGONNE NATL LAB LEMONT ILL)	601280
THE URANIUM SYST U02.5 T0 U308 J PHYS CHEM 59. 136 (1955)	601280 601280
NSA 9. 2685 (1955)	601280
HOEKSTRA. H KATZ. J	601188
STUDIES ON THE URANIUM-OXYGEN SYSTEM	601188
AECD 2954 PC-1240 (1950) NSA 5, 591 (1951)	601188 601188
HØEKSTRA, H. SIEGEL, S THE URANIUM-ØXYGEN SYSTEM U308 TØ UC^	601209 601209
PROC U N INTERN CONF PEACEFUL USES AT ENERGY 2ND GENEVA	601209
28. 231 (1958)	601209
CA 54, 1054 (1960)	601209
HOEKSTRA, H SIEGEL, S (ARGONNE NATI IAR LEMONT ILL)	601022
(ARGONNE NATL LAB LEMONT ILL) RECENT DEVELOPMENTS IN THE CHEMISTRY OF THE	601022 601022
URANIUM-ØXYGEN SYSTEM	601022

PRØC INTERN CØNF PEACEFUL USES ATØMIC ENERGY. GENEVA. 1955 7. 394 (1956) CA 50. 14423 (1956)	601022 601022 601022
HØLDEN. A PHYSICAL METALLURGY ØF URANIUM (ADDISØN-WESLEY PUB CØ (1958) NSA 13. 243 (1959)	601562 601562 601562 601562
HØLLAND) L (BRYN MAWR CØLL BRYN MAWR PA) PHYSICAL PRØPERTIES ØF TITANIUM III THE SPECIFIC HEAT J APPL PHYS 34 (8), 2350 (1963) CA 59, 7029 (1963)	202054 202054 202054 202054 202054
HØLLAND, M (RAYTHEØN CØ WALTHAM MASS) LØW TEMPERATURE THERMAL CØNDUCITIVITY ØF SILICØN PRØC INTERN CØNF SEMICØNDUCTØR PHYS, PRAGUE 1960, 633 (1961) CA 56, 4114 (1962)	201289 201289 201289 201289 201289
HØLLANDER: L ELECTRICAL CØNDUCTIVITY AND THERMØELECTRIC EFFECT IN SINGLE- CRYSTAL TIC J APP PHYS 32: 996 (1961) PÅ 64: 11260 (1961)	700528 700528 700528 700528 700528
HOLLEY, C (LOS ALAMOS SCI LAB LOS ALAMOS NEW MEXICO) THE THERMODYNAMIC PROPERTIES OF THE URANIUM AND PLUTONIUM CARBIDES LADC-5487 NSA 17, 149 (1963)	601690 601690 601690 601690
HØLLEY, C HUBER, E MEIERKØRD, E THE HEAT ØF CØMBUSTIØN ØF THØRIUM AND URANIUM AECU-1294 LADC-960 NSA 5, 3925 (1951)	601178 601178 601178 601178
HOLLIDAY. A TAYLOR. F (LIVERPOOL UNIV LIVERPOOL ENGLAND) DIBORON TETRAFLUORIDE ITS DECOMPOSITION AND ITS REACTIONS WITH OXYGEN AND NITRIC ØXIDE J CHEM SOC 1962, 2767 (1962) CA 57. 5555 (1962)	201724 201724 201724 201724 201724 201724
HØLLIDAY. J (US STEEL CØRP MØNRØEVILLE PA) SØFT X-RAY EMISSIØN SPECTRUM ØF NIØBIUM PHIL MAG 6. 801 (1961) CA 56. 1052 (1962)	201225 201225 201225 201225 201225
HØLLØWAY. H ENTHALPY ØF FØRMATIØN ØF ØXYGEN VACANCIES IN BAØ J CHEM PHYS 36. NØ 11. 2820 (1962) BHT NØ 2. 17 (1962)	300525 300525 300525 300525
HØLMBERG. B DISØRDER AND ØRDER IN SØLID SØLUTIØNS ØF ØXYGEN IN ALPHA-TITANIUM ACTA CHEMICA SCANDINAVICA 16. NØ 5. 1245 (1962)	300595 300595 300595 300595
HØLMBERG. B	300594

STRUCTURAL STUDIES ON THE TITANIUM-NITROGEN SYSTEM ACTA CHEMICA SCANDINAVICA 16. NO 5. 1255 (1962)	300594 300594
HØLMBERG, B DAGERHAMN, T	300326
X-RAY STUDIES ØN SØLID SØLNS ØF ØXYGEN IN ALPHA-ZIRCØNIUM	300326
ACTA CHEM SCAND 15, 919 (1961)	300326
BHT 4, 8 (1961)	300326
HOLMES. J HOOVER. M (UNIV OF SOUTHERN CAL LOS ANGELES CAL) ISOTOPE SHIFT IN THE FIRST SPECTRUM OF SILICON (SI I) J OPT SOCIETY OF AMERICA 52. 247 (1962)	300822 300822 300822 300822
HØLMQUIST. S	700517
CØNVERSIØN ØF QUARTZ TØ TRIDYMITE	700517
J AM CERAMIC SØC 44. 82 (1961)	700517
HØNIG+ J (PURDUE UNIV LAFAYETTE IND) LITERATURE REVIEW ØN PRØPERTIES ØF PR AND CE ØXIDES AFØSR-TN-58-57 (1958) PB-135200 (1958) CERAM ABST 44+ 224 (1961) NSA 13+ 14218 (1959)	601531 601531 601531 601531 601531 601531
HØNIG. R (RADIØ CØRP ØF AM LABS PRINCETØN N J) THE SPUTTERING ØF SILICØN CARBIDE BY PØSITIVE-IØN BØMBARDMENT PRØC INTERN CØNF IØNIZATIØN PHENØMENA GASES 5TH MUNICH 1961. 106 (1962) CA 59. 7046 (1963)	202055 202055 202055 202055 202055 202055 202055
HØNIG• R	301144
(RADIØ CØRP ØF AM LABS PRINCETØN N J)	301144
VAPØR PRESSURE DATA FØR THE SØLID AND LIQUID ELEMENTS	301144
R C A REV 23• 81 (1962)	301144
BHT 7• 7 (1963)	301144
HØNIG. R HØØK. H	300424
VAPØR PRESSURE DATA FØR SØME CØMMØN CASES	300424
RCA REV 21 360 (1960)	300424
CA 55. 5066 (1961)	300424
HØØD. C. THURSTØN. M	601694
FLØATING ZØNE REFINING ØF BØRØN USING ELECTRØN BEAM MELTING	601694
J ELECTRØCHEM SØC 109. 66 (1962)	601694
HØØPER, E KEEN, N	200947
THE PURIFICATION OF BE METAL BY A DISTILLATION PROCESS	200947
AT ENERGY RESEARCH ESTABL (GT BRIT) R-3321, (1960)	200947
-CA 55, 10248 (1961)	200947
HOPKINS, B WORK FUNCTION OF URANIUM CARBIDE NATURE 193,NO 4816, 668 (1962) REV METAL LIT 19, 28 (1962) BHT NO 2, 7 (1962) PA 65, 11685 (1962)	300516 300516 300516 300516 300516
HOPKINS, B. ROSS, K	300515
The work function of Zirconium Carbide	300515
Proc Phys Socilondon) 79, no 508, 447 (1962)	300515

BHT NØ 2, 7 (1962) PA 65, 7637 (1962)	300515 300515
HOPKINS. M (UNIV COLL. SWANSEA ENGLAND) THERMAL AND ELECTRICAL CONDUCTIVITIES OF METALS AT HIGH TEMPERATURES Z PHYSIK 147. NO 2. 148 (1957) CA 54. 19141 (1960)	601171 601171 601171 601171 601171
HØRI. J (ELEC CØMMUN LAB TØKYØ JAPAN) ELECTRØLUMINESCENCE IN SIC SINGLE CRYSTALS JAPAN J APPL PHYS 1, 262 (1962) CA 58. 2951 (1963)	301478 301478 301478 301478 301478
HØRN: F (GE RESEARCH LAB SCHENECTADY NY) SIMPLE RHØMBØHEDRAL BØRØN-PREPARATIØN AND PRØPERTIES NSA 15: 7837 (1961)	700969 700969 700969 700969
HØRN, F THE CRYSTALLIZATION ØF SIMPLE RHOMBOHEDRAL BØRØN FRØM PLATINUM J ELECTRØCHEM SØC 106, 905 (1959) CA 54, 204 (1960)	601213 601213 601213 601213
HØRTØN• J THØMAS• J WARREN• V (UNIØN CARBIDE NUCL CØ ØAK RIDGF TENN) MASS-SPECTRØMETER DETERMINATIØN ØF THE MØYBDENUM-URANIUM RATIØS IN THE MIXTURES ØF THE HEXAFLUØRIDES US AT ENERGY CØMM K1433• (1962) CA 57• 11956 (1962)	201851 201851 201851 201851 201851 201851
HOUCK: J (BATTE_LE MEM INST COLUMBUS OHIO) PHYSICAL AND MECHANICAL PROPERTIES OF COMMERCIAL MOLYBDENUM-BASE ALLOYS DEFENSE METALS INFORMATION CENTER COLUMBUS: OHIO DMIC-140 NSA 15: 9405 (1961)	701003 701003 701003 701003 701003 701003
HOUGEN. J (NATL RES COUNCIL OTTAWA CANADA) CLASSIFICIATION OF ROTATION ENERGY LEVELS FOR SYMMETRIC-TOP MOLECULES J CHEM PHYS 37. 1433 (1962) CA 58. 929 (1963)	301479 301479 301479 301479 301479
HØUGEN: J VIBRØNIC AND RØTATIØNAL ENERGY LEVELS ØF A LINEAR TRIATØMIC MØLECULE IN A 3-PI ELECTRØNIC STATE J CHFM PHYS 36: 1874 (1962) PA 65: 12319 (1962)	300781 300781 300781 300781 300781
HOUGEN. J THE ROTATIONAL ENERGY LEVELS OF DIATOMIC MOLECULES IN 4-SIGMA ELECTRONIC STATES CANAD J PHYS 40. 598 (1962) PA 65. 12317 (1962)	300784 300784 300784 300784 300784
HØVE. J (ATØMICS INTERNATIONAL CANOGA PARK CAL) SOLID STATE PHYSICS SEMI ANNUAL PROGRESS	601303 601303 601303

REPT FØR JULY-DEC 1956 NAA-SR-1895 NSA 11, 8942 (1957)		601303 601303 601303
HOVIS. W (THE JOHN HOPKINS UNIV BALTIMORE TIME RESOLVED SPECTRA OF RARE-EARTH IONS J OPT SOC AM 52. 649 (1962)	MD)	300824 300824 300824 300824
HOWELL. H DISSOCIATION ENERGY OF CARBON MONOXIDE NATURE 163. 773 (1949) PA 52. 5602 (1949)		600712 600712 600712 600712
HØWLETT, B (MIT A NØTE ØN THE URANIUM-BØRØN ALLØY SYSTEMS J INST MET 88, 91 (1959) NSA 14, 6701 (1960)	MASSI	601357 601357 601357 601357
HØYT. E CHØRNE. J CUMMINGS. W (VALLECITØS ATØMIC LAB GE PLEASANTØWN CØRRØSIØN BEHAVIØR ØF SØME METAL BØRIDES TECH REPT. 17 (1960) 11786 GEAP-3548 US GØVT PUB (1961)	CALIFØRNIA)	300246 300246 300246 300246 300246
HUBER • É (LØS ALAMØS SCI LAB THE HEAT ØF COMMUNITION OF Y J PHYS CHEM 61 • 497 (1957) NSA 11 • 6757 (1957)	N MEXICØ)	601316 601316 601316 601316 601316
HUBER: E (LØS ALAMØS SCI LAB THE HEATS ØF CØMBUSTIØN ØF DY AND YB J PHYS CHEM 60: 1457 (1956) NSA 11: 973 (1957)	N MEXICU)	601291 601291 601291 601291 601291
HUBER: E FITZGIBBØN: G HEAD: E HØLLEY: C THE HEAT ØF FØRMATIØN ØF SCANDIUM ØXIDE J PHYS CHEM 67 (8): 1731 (1963) CA 59: 8189 (1963)		202057 202057 202057 202057
HUBER, E HEAD, E HØLLEY, C (LØS ALAMØS SCI LAB LØS ALAMØS THE HEAT ØF CØMBUSTIØN ØF SAMARIUM J AM CHEM SØC 77, 6493 (1955) NSA 10, 2657 (1956)	NEW MEXICS)	601272 601272 601272 601272 601272
HUBER, E HEAD, E HØLLEY, C (LØS ALAMØS SCI LAB LØS ALAMØS THE HEATS ØF CØMBUSTIØN ØF DYSPRØSIUM AND YTTE J PHYS CHEM 60, 1457 (1956) CA 51, 4120 (1957)	NEW MEXICO) RBIUM	601041 601041 601041 601041 601041
HUBER. E HEAD. E HOLLEY. C THE HEAT OF COMBUSTION OF YTTRIUM J PHYS CHEM 61. 497 (1957) CA 51. 11836 (1957)		700842 700842 700842 700842
HUBER. E HEAD. E HOLLEY. C (LOS ALAMOS SCI LAB LOS ALAMOS THE HEAT OF FORMATION OF UARNIUM DICARBIDE	NEW MEXICO)	202056 202056 202056

J PHYS CHEM 67 (8), 1730 (1963) CA 59, 8189 (1963)	202056 202056
HUBER JR. E J HEAD. E L HOLLEY JR. C E HOWMAN. A L THE HEATS OF FORMATION OF TANTALUM CARBIDES J PHYS CHEM 67. 793 (1963) CA 58. 10794F (1963)	301248 301248 301248 301248
HUBER. E HEAD. E HØLLEY. C STØRMS. E KRIKØRIAN. N (LØS ALAMØS SCI LAB LØS ALAMØS N MEX) HEATS ØF CØMBUSTIØN ØF NIØBIUM CARBIDES J PHYS CHEM 65. 1846 (1961) CA 56. 74 (1962) NSA 15. 16068 (1961)	201192 201192 201192 201192 201192 201192
HUBER: E HØLLEY: C (U. OF CALIFORNIA LØS ALAMØS N.M.) THE HEAT OF COMBUSTION OF NEODYMIUM J AM CHEM SOC 74: 5530 (1952) CA 47: 10986 (1953)	100213 100213 100213 100213
HUBER: E HØLLEY: C (U. OF CALIFORNIA LØS ALAMØS N.M.) THE HEAT OF COMBUSTION OF GADØLINIUM J AM CHEM SØC 77: 1444 (1955) CA 49: 9376 (1955)	600930 600930 600930 600930
HUBER. E HØLLEY. C (U. ØF CALIFØRNIA LØS ALAMØS N.M.) THE HEAT ØF CØMBUSTIØN ØF LANTHANUM J AM CHEM SØC 75. 3594 (1953) CA 48. 1131 (1954)	700900 700900 700900 700900 700900
HUBER: E HØLLEY: C (U. ØF CALIFØRNIA LØS ALAMØS N.M.) HEAT ØF CØMBUSTIØN ØF CERIUM J AM CHEM SØC 75: 5645 (1953) CA 48: 3134 (1954) NSA 8: 773 (1954)	600963 600963 600963 600963 600963
HUBER JR. E J FITZGIBBØN. J C HEAD. E L HØLLEY JR. C L THE HEAT ØF FØRMATIØN ØF SCANDIUM ØXIDE J PHYS CHEM 67. 1731 (1963)	301246 301246 301246
HUBER JR. E J. HEAD. E L. HØLLEY JR. C E. THE HEAT FØRMATIØN ØF URANIUM DICARBID. J. PHYS CHEM 67. 1730 (1963)	301247 301247 301247
HUBER. E HØLLEY. C MEIERKØRD. E THE HEATS ØF CØMBUSTIØN ØF THØRIUM AND GRANIUM J AM CHEM SØC 74. 3406 (1952) CA 46. 10841 (1952)	400565 400565 400565 400565
HUBER, E HØLLEY, C ED BY SKINNER, H EXPERIMENTAL THERMØCHEMISTRY VØL II INTERSCIENCE NY (1962)	700704 700704 700704
HUBER: E MATTHEWS: C HØLLEY: C (LØS ALAMØS SCI LAB LØS ALAMØS NM) HEAT ØF CØMBUSTIØN ØF SAMARIUM J AM CHEM SØC 77: 6493 (1955) CA 50: 6172 (1956)	601008 601008 601008 601008

HUGHES, R KENNARD, C SULLENGER, D WEAKHEIM, H SANDS, D HØARD, J STRUCTURE ØF BETA-RHØMBØHEDRAL BØRØN J AM CHEM SØC 85, 361 (1963)	300901 300901 300901 300901
HULDT, L LAGERQVIST, A TERM SCHEMES ØF CAØ, SRØ AND BAØ ARK FYS 9, 227 (1955) PA 58, 3567 (1955)	600893 600893 600893
HULDT, L LAGERQVIST, Å THE ØRIGIN ØF THE BAND SPECTRA ØF CALCIUM AND STRØNTIUM ARKIV FYSIK 11, 347 (1956) CA 51, 7850 (1957)	600894 600894 600894 600894
HULDT. L LAGERQVIST. A DETERMINATION OF DISSOCIATION ENERGIES OF DIATOMIC MOLECULES FROM SPECTROSCOPIC INTENSITY MEASUREMENTS THE DISSOCIATION ENERGIES OF CHROMIUM OXIDE AND MANGANESE OXIDE ARKIV FYSIK 3. 525 (1952) CA 47. 931 (1953)	600764 600764 600764 600764 600764 600764
HULM. J BLAUGHER. R GEBALLE. T MATTHIAS. B (WESTINGHOUSE RES LABS PITTSBURGH PA) SUPERCONDUCTIVITY OF NIOBIUM-MOLYBDENUM ALLOYS BELOW 1 DEGREES K PHYS REV LETTERS 7. 302 (1961) CA 56. 9562 (1962)	201421 201421 201421 201421 201421 201421
HUME-RØTHERY: W ATOMIC THEORY FOR STUDENTS OF METALLURGY INSTITUTE OF METALS (1962)	202059 202059 202059
HULTIN M LAGERQVIST A AN INFRARED BAND SYSTEM ØF CALCIUM ØXIDE ARKIV FYSIK 2 + 471 (1951) CA 45 + 6928 (1951)	600898 600898 600898 600898
HUME-RØTHERY. W NØTE ØN A STATISTICAL APPRØACH TØ EQUILIBRIUM DIFGRAMS TRANS MET SØC AIME 227. 7914 (1963)	301249 301249 301249
HUNT, E RUNDLE, R THE STRUCTURE ØF THØRIUM DICARBIDE BY X-RAY AND NEUTRØN DIFFRACTIØN J AM CHEM SØC 73, 4777 (1951) AECD 3021 (1950) CA 46, 4311 (1952) NSA 5, 1807 (1951)	400573 400573 400573 400573 400573 400573 400573
HURLEN,T ØXIDATIØN ØF NIØBIUM INST HIERRØ Y ACERØ 13, 714 (1960) CA 55, 3263H (1961)	301250 301250 301250 301250
HURLEN, T OXIDATION OF NIOBIUM J INST METALS 89, 273 (1960) NSA 15, 19786 (1961)	700542 700542 700542 700542
HURLEN. T ØXIDATIØN ØF TITANIUM	200890 200890

J INST METALS 89. 128 (1960) CA 55. 6318 (1961)	200890 200890
HURLEN, T KJØELLESDAL, H MARKALI, J NØRMAN, N (CENTRAL INST IND RESEARCH ØSLØ NØRWAY) ØXIDATIØN ØF NIØBIUM U S DEPT CØM ØFFICE TECH SERV, PB REPT 145-171, (1959) CA 56, 4357 (1962)	201306 201306 201306 201306 201306
IANDELLI. A ON THE CRYSTALLINE STRUCTURE OF COMPOUNDS OF RARE AND METALLOIDS OF GROUP V ND COMPDS ATTI ACCAD LINCEI CLASSE SCI FIS MAT NAT 25. 638 (1938) AEC-TR-2170 NSA 9. 5294 (1955)	601275 601275 601275 601275 601275 601275
IANDELLI: A ON THE CRYSTALLINE STRUCTURE OF COMPOUNDS OF RARE EARTHS AND METALLOIDS OF GROUP V NITRIDES OF LA: CE AND PR ATTI ACCAD LINCEI CLASSE SCI FIS MAT NAT 25: 129 (1937) AEC-TR-2168 NSA 9: 5292 (1955)	601276 601276 601276 601276 601276 601276
IANDELLI. A MØDIFICATIØNS ØF SESQUIØXIDES ØF THE RARE EARTHS GAZZ CHIM ITAL 77. 312 (1947) CA 42. 2833 (1948)	700897 700897 700897 700897
IANNIELLØ. L (R P I TRØY NY) EFFECT ØF RARE EARTH ELEMENTS ØN THE ALPHA-BETA TRANSFØRMATIØN ØF ZR UNIV MICRØFILM (ANN ARBØR MICH) L C CARD NØ MIC 61-982 DISSERTATIØN ABSTR 22. 217 (1961) CA 55. 20853 (1961)	201146 201146 201146 201146 201146 201146 201146
IBRAHIM, M BRIGHT, N (DEPT MINES AND TECH SURVEYS ØTTAWA CANADA) THE BINARY SYSTEM, NB2 Ø5 -SIØ2 , J AM CERAM SØC 45, 221 (1962) CA 57, 4094 (1962)	201638 201638 201638 201638 201638
IBRAHIM, M BRIGHT, N RØWLAND, J (DEPT ØF MINES AND TECH SURV ØTTAWA CANADA) BINARY SYSTEMS CAØ-NB2Ø5 J AM CERAM SØC 45, 329 (1962) CA 57, 13219 (1962)	201876 201876 201876 201876 201876
ICZKOWSKI, R MARGRAVE, J ROBINSON, S EFFUSION OF GASES THROUGH CONICAL ORIFICES J PHYS CHEM 67, 229 (1963)	300905 300905 300905
IGNATOV. D LEBEDEV. Y UNIVERSAL APPARATUS FOR DETERMINING EVAPORATION AND DECOMPOSITION RATES OF VARIOUS SUBSTANCES IN A VACUUM FIZ-KHIM OSNOVY PROIZV STALL AKAD NAUK-SSSR INST MET FIFTH KONF 1959, 305 (1961) CA 5052 (1963)	301041 301041 301041 301041 301041 301041
IIDA, Y ØZAKI, S GRAIN GRØWTH AND PHASE TRANSFØRMATIØN ØF TITANIUM ØXIDE DURING CALCINATIØN	700519 700519 700519

J AM CERAM SOC 44. 120 (1961)	744510
	700519
INGHRAM) M THERMODYNAMICS OF REFRACTORY MATERIALS AS DETERMINED WITH	300303 300303
A MASS SPECTRØMETER	300303
AD 248619 FINAL REPT (1960)	300303
INGHRAM• M CHUPKA• W BERKØWITZ• J (UNIV CHICAGØ TILL)	601067
DISSOCIATION ENERGIES FROM THERMODYNAMIC EQUILIBRIA	601067
STUDIED WITH A MASS SPECTROMETER	601067
INGHRAM. M CHUPKA. W BERKØWITZ. J (UNIV CHICAGØ CHICAGØ ILL) DISSØCIATIØN ENERGIES FRØM THERMØDYNAMIC EQUILIBRIA STUDIED WITH A MASS SPECTRØMETER MEM SØC RØY SCI LIEGE 18. 513 (1957) CA 51. 16085 (1957)	601067
INGOLD: J H	301251
INGOLD J H (GEN ELEC CO PLEASANTON CALIF) THERMIONIC PROPERTIES OF SOME REFRACTORY METAL CARBIDES LAPPL PHYS 34. (7). 2033 (1963)	301251
J APPL PHYS 34. (7). 2033 (1963)	301251 301251
CA 59, 2254F (1963)	301251
IØFFE V BAGAEVA V PEDYASH L	200837
IØFFE. V BAGAEVA: V PEDYASH: L PRØDUCTIØN ØF ALLØYS ØF AL-CE: AL-LA: MG-CE: MG-LA: AND MG-ND BY ELECTRØLYSIS	200837 200837
REDKIE METALLY I SPLAVY, TRUDY PERVØGØ VSESØYUZ SØVE-	200837
SHCHANIYA PØ SPLAVAM REDKIKH METAL, AKAD NAUK SSSR INST MET IM AA BAIKØVA, MØSCØW 1957, 180 (1960)	200837 200837
CA 55+ 3387 (1961)	200837
IONOV. N MITTSEV. M	601180
(PHYS-TECH INST ACAD SCI LENINGRAD USSR)	601180
	601180 601180
ZHUR EKSPTL I TEØRET FIZ 38+ 1350 (1960)	601180
CA 54. 14954 (1960)	601180
IONOV. N MITTSEV. M (LENINGRAD INST OF PHYSICS LENINGRAD PUSSIA)	601411 601411
DETERMINATION OF THE FIRST IONIZATION POTENTIALS	601411
OF ATOMS BY THE SURFACE IONIZATION TECHNIQUE ZHUR FKSPTL I TEORET FIZ 40 • 741 (1961)	601411 601411
IONOV. N MITTSEV. M (LENINGRAD INST OF PHYSICS LENINGRAD RUSSIA) DETERMINATION OF THE FIRST IONIZATION POTENTIALS OF ATOMS BY THE SURFACE IONIZATION TECHNIQUE ZHUR EKSPTL I TEORET FIZ 40. 741 (1961) NSA 15. 20025 (1961)	601411
IONOV, N MITTSEV, M	601332
(LENINGRAD INST ØF PHYS AND TECH) DETERMINATIØN ØF THE INITIAL 10NIZATIØN PØTENTIALS	601332 601332
ØF NEØDYMIUM AND PRASEØDYMIUM ATØMS	601332
ZHUR EKSPTL I TEØRET FIZ 38• 1350 (1960) NSA 14• 21479 (1960)	601332 601332
	201572
ISUPOVA, E KELER, E REACTIONS IN THE SYSTEM BEO-SIO2	201573 201573
ZH NEORGAN KHIM 5. 1126 (1960)	201573 201573
CA 57: 369 (1962)	
IVANØV. V KRUGLYKH. A PAVLØV. V KØV.UN. G AMØNENKØ. V Determination of vapor pressure of uranium compounds	601604 601604
IAEA SYMPOSIUM ON THE THERMODYNAMICS OF NUCLEAR	601604
MATERIALS, PRØCEEDINGS, VIENNA (1962) CØT5 55, 204 (1962)	601604 601604
NSA 16, 25371 (1962)	601604
IVANOV. Ø TEREHKOV. G	201832
ISOTHERMAL SECTIONS AT 500 AND 560 DEGREES AND PHASE DIAGRAM	201832

ØF THE URANIUM-NIØBIUM-MØLYBDENUM TERNARY SYSTEM TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØREIM) 1961, 214 (1961) CA 57, 10882 (1962)	201832 201832 201832 201832
IVANOV, Ø TEREKHØV, G ISØTHERMAL SECTIØNS AT 550, 575, AND 600 DEGREES, PØLYTHERMAL SECTIØNS, AND CØNSTITUTIØNAL DIAGRAM ØF ØF THE TERNARY URANIUM-MØLYBDENUM-ZIRCØNIUM SYSTEM TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM) 1961, 166 (1961) CA 57, 11907 (1962)	201840 201840 201840 201840 201840 201840 201840
IVANOV. Ø TEREKHØV. G PØLYTHERMAL CRØSS-SECTIØN ØF THE CØNSTITUTIØNAL DIAGRAM ØF THE URANIUM-NIØBIUM-MØLYBDENUM SYSTEM TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM) 1961. 199 (1961) CA 57. 11908 (1962)	201841 201841 201841 201841 201841 201841
IVANOV. Ø TEREKHØV. G ISØTHERMAL SECTIØNS AT 575-1200 DEGREES AND CØNSTITUTIØNAL DIAGRAM ØF THE URANIUM-NIØBIUM-MØLYBDENUM SYSTEM TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM) 1961. 228 (1961) CA 57. 11908 (1962)	201842 201842 201842 201842 201842 201842
IVANØV. Ø BADAEVA. T SEMENCHENKØV. A KUZNETSØVA. R THE URANIUM-MØLYBDENUM SYSTEM AT 600-1200 DEGREES AND PRØPERTIES ØF ITS ALLØYS TR INST MET IM A A BAIKØVA (STRØFNIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM) 1961. 48 (1961) CA 57. 12230 (1962)	201868 201868 201868 201868 201868 201868
IVANOV + Ø ALEKSEEVA + Z THE SYSTEM THORIUM-URANIUM MØNØCARBIDE TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM) 1961 • 428 (1961) CA 57 • 13219 (1962)	201875 201875 201875 201875 201875
IVANOV. 0 GOMOZOV. L PHASE DIAGRAM OF URANIUM-ZIRCONIUM-NIOBIUM SECTIONS WITH A CONSTANT URANIUM CONTENT AND THE POLYTHERMAL DIAGRAM OF THE SYSTEM TR INST MET IM A A BAIKOVA (STROENIE SPLAVOV NEKOTORYKH SISTEM S URANOM I TORIEM) 1961, 107 (1961) CA 57. 13503 (1962)	201895 201895 201895 201895 201895 201895 201895
IVANOV. Ø SEMENCHENKØV. A KØZLØVA. N STRUCTURE ØF THE ALLØYS ØF THE URANIUM-MØLYBDENUM SYSTEM BELØW 600 DEGREES AND THE PHASE DIAGRAM ØF THIS SYSTEM TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM) 1961. 68 (1961) CA 57. 13504 (1962)	201896 201896 201896 201896 201896 201896
IVANOV. 0 BAGROV. G ISØTHERMAL SECTIONS OF THE URANIUM-MOLYBDENUM-ZIRCONIUM SYSTEM AT 625-1000 DEGREES TR INST MET IM A A BAIKOVA (STRONIE SPLAVOV NEKOTORYKH SISTEM S URANOM I TORIEM) 1961. 141 (1961) CA 57. 13504 (1962)	201898 201898 201898 201898 201898 201898
IVANOV. 0 TEREKHOV. G	201945

STRUCTURAL DIAGRAM AND CONSTITUTION OF THE ALLOYS IN THE SYSTEM URANIUM-NIOBIUM TR INST MET IM A A BAIKOVA (STROENIE SPLAVOV NEKOTORYKH SISTEM S URANOM I TORIEM) 1961. 20 (1961) CA 57. 16270 (1962)	201945 201945 201945 201945 201945
IVANØVA: L CALCULATIØN ØF THE HIGH TEMPERATURE HEAT CAPACTIES ØF SØLID SUBSTANCES IZVEST VYSSHIKH UCHEB ZAVEDENII: TSVETNAYA MET 4, 45 (1961) CA 56: 6726 (1962)	201347 201347 201347 201347 201347
IVERONOVA, V ZOYAGINA, A (MØSCØW STATE UNIV MØSCØW RUSSIA) PHØNØN SPECTRUM AND SØME THERMØDYNAMIC CHARACTERISTICS ØF CS CL TYPE LATTICES UKR FIZ ZH 8, 238 (1963) CA 59, 1147 (1963)	202061 202061 202061 202061 202061 202061
IWAI, S YASUNAGA, A THERMAL EXPANSION OF SILICON NITRIDE, SI3N4 NATURWISSENSCHAFTEN 46, 473 (1959) CE 44, 199 (1961)	700684 700684 700684 700684
JACOB. C. WARREN. B. THE CRYSTAL STRUCTURE OF URANIUM J AM CHEM SOC 59. 2588 (1937)	601653 601653 601653
JACOB, J INFRARED SPECTROSCOPIC DETERMINATION OF THE EQUILIBRIUM CONSTANTS BETWEEN MONOMERIC AND DIMERIC FORMS OF GASEOUS NITROGEN PEROXIDE AND RANGE OF VALIDITY OF THE METHOD J CHIM PHYS 56, 296 (1959) CA 55, 16142 (1961)	600808 600808 600808 600808 600808
JACØBSØN, R CRYSTAL AND MØLECULAR STRUCTURE ØF B8C8 DISSERTATIØN ABS. 20. 114 (1959) MIC 59-2356, 653 (1959) CA 53. 18586 (1959)	601148 601148 601148 601148 601148
JAEGER• F ADDITIVITY LAW FØR SPECIFIC HEATS ØF HETERØPØLAR CØMPØUNDS CHEM WEEKBLAD 31• 60 (1934)	900127 900127 900127
JAEGER. F THE DEPENDENCE OF SPECIFIC HEAT ON TEMPERATURE IN THE ELEMENTS OF THE EIGHTH GROUP OF THE PERIODIC SYSTEM Z ANORG ALLGEM CHEM 203, 97 (1931) CA 26. 1486 (1932)	900139 900139 900139 900139 900139
JAEGER F BOTTEMA J ROSENBOHM E THE EXACT MEASUREMENT OF THE SPECIFI HEATS OF METALS AT HIGH TEMPERATURES • XXVI • THE SPECIFIC HEATS AND ELECTRICAL RESISTANCE OF CERIUM WETENSCHAP 39 • 912 (1936) CA 31 • 938 (1937)	900102 900102 900102 900102 900102 900102
JAEGER. F. RØSENBØHM. E THE EXACT MEASUREMENT OF: THE SPECIFIC HEATS ØF SØLID SUBSTANCES AT HIGH TEMPERATURES. III. THE SPECIFIC HEATS ØF PALLADIUM AND ØF TUNGSTEN	700505 700505 700505 700505

PRØC ACAD SCI AMSTERDAM 33, 457 (1930) CA 24, 4678 (1930)	700505 700505
JAEGER, F RØSENBØHM, E ØN THE ACCURATE MEASUREMENT ØF THE SPECIFIC HEAT ØF SØLID SUBSTANCES BETWEEN Ø DEGREES AND 1625 DEGREES C. II. THE SPECIFIC HEAT ØF PLATINUM AND TUNGSTEN PRØC ACAD SCI AMSTERDAM 30, 1069 (1927) CA 22, 1087 (1928)	700506 700506 700506 700506 700506 700506
JAFFEE H ZUNG V IMPRØVED METHØDS FØR CALCULATIØN ØF BØND ENERGIES AD 271472	301480 301480 301480
JAFFEE R MAYKUTH D DUGLASS R (BATTELLE MEM INST COLUMBUS ØHIØ) RHENIUM AND THE REFRACTØRY PLATINUM-GRØUP METALS MET SØC CØNF 11 + 357 (1960) CA 56 + 3246 (1962)	201285 201285 201285 201285 201285
JAFFRAY. J THE INVESTIGATION OF HIGHER ORDER TRANSFORMATIONS BY THERMAL ANALYSIS JUR DES RECHERCHES DU CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 153 (1947) GR 36 NO 1. 111 (1961)	700655 700655 700655 700655 700655 700655
JAGØDZINSKI, H ARNØLD, H ANØMALØUS SILICØN CARBIDE STRUCTURES SILICØN CARBIDE, PRØC CØNF, BØSTØN 1959, 136 (1960) CA 55, 6977 (1961)	200898 200898 200898 200898
JAMES. T C (GEN DYNAMICS ASTRONAUTICS SAN DIEGO CALIF) INTENSITY DISTRUBUTION IN THE FORBIDDEN 1E-3112 TRANSITION OF SIO J CHEM PHYS 38. 1094 (1963) CA 58. 7497 (1963)	301481 301481 301481 301481 301481 301481
JAMES, T C INTENSITY DISTRIBUTION IN THE FORBIDDEN 1E-3TT2 TRANSITION J CHEM PHYS 38, 1094 (1963) CA 58, 7497 (1963)	301252 301252 301252 301252
JAMES. N LEGVØLD. S SPEDDING. F THE RESISTIVITY ØF LA. CF. PR AND ND AT LØW TEMPERATURES PHYS REV 88. 1092 (1952) US ATØMIC ENERGY CØMM I S C 229. 54 (1952) CA 47. 3071 (1953) CA 50. 3022 (1956)	100206 100206 100206 100206 100206
JAMES, W (UNIV OF MISSOURI ROLLA MISSOURI) LATTICE PARAMETER AND COEFFICIENT OF THERMAL EXPANSION OF VANADIUM Z PHYSIK, CHEM 29, 134 (1961) CA 56, 84 (1962)	201196 201196 201196 201196 201196 201196
JANIN: J CERTAIN SINGLET SYSTEMS OF THE NITROGEN MOLECULE J RECHERCHES CENTRE NATL RECHERCHE SCI NO 12: 156 (1950) CA 44: 10509 (1950)	600587 600587 600587 600587

```
JAMIESON: J
LUNIV OF CHICAGO
                                                                   202062
                              CHICAGO
                                                   ILLI
CRYSTAL STRUCTURES AT HIGH PRESSURES OF METALLIC
                                                                   202062
MODIFICATIONS OF SILICON AND GERMANIUM
                                                                   202062
 SCIENCE 139. 762 (1963)
                                                                   202062
 CA 58, 9928 (1963)
                                                                   202062
JAMIESON. J C
                                                                   301253
(UNIV OF CHICAGO
                              CHICAGO
                                                    ILL)
                                                                    301253
CRYSTAL STRUCTURES OF TITANIUM. ZIRCONIUM AND HAFNIUM AT HIGH
                                                                    301253
 PRESSURES
                                                                    301253
 SCIENCE 140, 72 (1963)
                                                                    301253
 CA 59 2238H (1963)
                                                                    301253
JANNINCK + F
                                                                    301255
(NØRTHWESTERN UNIV
                              EVANSTON
                                                   ILLI
                                                                    301255
 THE ELECTRICAL CONDUCTIVITY OF A-NB205 AND NB204
                                                                    301255
 UNIV MICROFILMS ORDER NO 63-1304, 114
                                                                    301255
 DISSERTATION ABSTR 23, 3304 (1963)
CA 59, 2248E (1963)
                                                                    301255
                                                                    301255
JAYARAMAN, A. KLEMENT JR, W.
                              KENNEDY. G
                                                                    301482
(UNIV OF CALIFORNIA
                              LØS ANGELES
                                                   CALIFI
                                                                    301482
 SOLID-SOLID TRANSITIONS IN TITANIUM AND ZIRCONIUM AT HIGH
                                                                    301482
 PRESSURES
                                                                    301482
 PHYS REV 131 (2), 644 (1963)
                                                                    301482
 CA 59, 3410 (3411) (1963)
                                                                    301482
JEANNIN+ Y MANNERSKANTZ+ C
                               RICHARDSØN. F
                                                                    301483
(IMP COLL SCI TECHNOL
                               LENDON
                                                    ENGLAND)
                                                                    301483
 ACTIVITIES IN IRON-CHROMIUM ALLOYS
                                                                    301483
 TRANS AIME 227, 300 (1963)
                                                                    301483
 CA 58, 13516 (1963)
                                                                    301483
JEITSCHKØ, W
              NOWOTNY . H
                           BENESØVSKY, F
                                                                    301486
(UNIV VIENNA
                               VIENNA
                                                    AUSTRIA
                                                                    301486
 THE TERNARY SYSTEM MOLYBDENUM-ALUMINUM-CARBON
                                                                    301486
 THE PHASE MOJAL2C
                                                                    301486
 MØNATSH 94 + 247 (1963)
                                                                    301486
 CA 58. 12248 (1963)
                                                                    301486
JFITSCHKØ, W
              NOWOTNY, H
                           BENESØVSKY, F
                                                                    301485
(UNIV VIENNA
                               VIENNA
                                                    AUSTRIA)
                                                                    301485
                                                                    301485
 CARBON-CONTAINING TERNARY PHASES
 MONATSH 94, 332 (1963)
                                                                    301485
 CA 58, 12248 (1963)
                                                                    301485
JEITSCHKØ, W
              NOWOTNY, H
                                                                    301484
(UNIV VIENNA
                               VIENNA
                                                   AUSTRIA)
                                                                    301484
                                                                    301484
 THE STRUCTURE OF HEP
                                                                    301484
 MONATSH 93. 1107 (1962)
 CA 58, 2918 (1963)
                                                                    301484
                                                                    300322
JENCKELI L
 USE OF THE MASS SPECTROMETER TO MEASURE THE PARTIAL
                                                                    300322
                                                                    300322
 PRESSURES OF SYSTEMS UNDER VACUUM
 VIDE 16, 176 (1961)
                                                                    300322
                                                                    300322
 BHT 4, 5 (1961)
JENNINGS, L HILL, E
                                                                    601197
                       SPEDDING, F
                                                    I ØWA)
                               AMES
                                                                    601197
(IOWA STATE COLL
 HEAT CAPACITY OF SAMARIUM FROM 13 TO 350 DEG K
                                                                    601197
                                                                    601197
 J CHEM PHYS 31, 1240 (1959)
```

CA 54, 6287 (1960) NSA 14, 3812 (1960)	601197 601197
JENNINGS, L MILLER, R SPEDDING, F (10WA STATE UNIV AMES 10WA) LATTICE HEAT CAPACITY OF THE RARE EARTHS, HEAT CAPACITIES OF YTTRIUM AND LUTETIUM FROM 15 TO 350 DEGREES K J CHEM PHYS 33, 1849 (1960) CA 55, 16113 (1961) NSA 15, 9466 (1961)	201049 201049 201049 201049 201049 201049
JERE• G PATEL• C (INDIAN INST SCI BANGALØRE INDIA) THERMØDYNAMICS ØF CHLØRINATIØN ØF TITANIUM MINERALS J MINES• METALS AND FUELS 8• NØ 7• 133 (1960) CA 55• 14223 (1961)	201036 201036 201036 201036 201036
JENSEN. A V GØSHGARIAN. B B DANE. N E (AIR FØRCE SYSTEMS CØMMAND INGLEWØØD CALIF) MASS SPECTRAL ANALYSIS ØF RØ KET ENGINE CØMBUSTIØN PRØDUCTS CØNTAINING BØRØN NITRIDE AD 295656 TÅB 63-2-3. 74 (1963)	301256 301256 301256 301256 301256 301256
JENSØVSKY: L (INST ARBEITSHG BERUFSKRANKHEITEN PRAGUE) BADGERS RULE Z CHEM 2: 334 (1962) CA 58: 7386 (1963)	301487 301487 301487 301487 301487
JERE. G PATEL. C STANDARD FREE ENERGY OF FORMATION OF NBCL5(G) AND TACL5(G) J SCI AND IND RESEARCH 198. 315 (1960) CA 55. 4136 (1961)	200850 200850 200850 200850 200850
JØHANSEN. H CLEARY. J (WESTINGHØUSE CØRP PITTSBURGH PA) HIGH TEMPERATURE ELECTRICAL CONDUCTION IN THE SYSTEM UØ2-ZRØ2 J ELECTRØCHEM SØC 109. 1076 (1962) CA 57. 13258 (1962)	201882 201882 201882 201882 201882 201882
JOHANSSON: L (UNIV LUND THE SPECTRUM OF IONIZED BERYLLIUM ARKIV FYSIK 20: 489 (1962) NSA 16: 24292 (1962) CA 56: 11078 (1962)	601624 601624 601624 601624 601624
JOHNS, I TUCKER, W FIGARD, P THE SYSTEM URANIUM-NITRØGEN AECD 2247, ND (1948) NSÅ 1, 1224 (1948)	601375 601375 601375 601375
JØHNS. J THE ABSØRPTIØN SPECTRUM ØF BØ2 CANAD J PHYS 39. NØ 12. 1738 (1961) PA 65. NØ 2004. (1962)	300816 300816 300816 300816
JØHNSØN, Q TEMPLETØN, D (UNIV ØF CALIFØRNIA BERKELEY CAL) MADELUNG CØNSTANTS FØR SEVERAL STRUCTURES	700881 700881 700881

J CHEM PHYS 34. 2004 (1961) NSA 15. 22771 (1961)	700881 700881
JØHNSØN• R (UNIV SHEFFIELD SHEFFIELD ENGLAND) THE SØLID SØLUBILITY ØF ZIRCØNIUM IN ALPHA-THØRIUM J NUCLEAR MATERIALS 4• 59 (1961) CA 56• 2054 (1962)	201253 201253 201253 201253 201253
JØHNSØN• R DAANE• A (IØWA STATE UNIV AMES IØWA) THE LANTHANUM-BØRØN SYSTEM J PHYS CHEM 65• 909 (1961) CA 55• 18273 (1961)	201106 201106 201106 201106 201106
JØHNSØN» R HUDSØN» D MASS SPECTRØMETRIC DETERMINATION ØF LATENT HEATS ØF METALS CØNTRACT W-7405-ENG-82 ISC-293 (1952) NSA 8» 2848 (1954)	601224 601224 601224 601224
JØHNSØN• R (GENERAL DYNAMICS FØRT WØRTH TEXAS) CURRENT INFØRMATIØN ØN THE REFRACTØRY METALS REPT NØ ERR-FW-049 CØNTRACT AF 33• (657) 7248 AD 273624-NØT AVAILABLE FØR REPRØDUCTIØN	301488 301488 301488 301488 301488 301488
JOHNSON: R DAANE: A (10WA STATE LINTY AMES 10WA) ELECTRON REQUIREMENTS OF BONDS IN METAL BORIDES J CHEM PHYS 38: 425 (1963) CA 58: 3895 (1963)	301489 301489 301489 301489 301489
JØHNSØN: R HUDSØN: D CALDWELL: W SPEDDING: F SAVAGE: W (IØWA STATE CØLLEGE AMES IØWA) MASS SPECTRØMETRIC STUDY ØF PHASE CHANGES IN AL: PR AND ND J CHEM PHYS 25: 917 (1956) NSA 11: 1471 (1957) CA 51: 4119 (1957)	601040 601040 601040 601040 601040
JOHNSON: V PROPERTIES OF MATERIALS AT LOW TEMPERATURES(PHASE I) PERGAMON PRESS NY (1961)	300908 300908 300908
JØHNSØN» W GILLILAND» A HEAT ØF FØRMATIØN ØF BERYLLILM CHLØRIDE J RESEARCH NATL BUR STANDARDS 65A, 59 (1961) CA 55. 12020 (1961)	200976 200976 200976 200976
JONES: G (CLARKSON COLL TECH POISDAM NY) UNIFIED QUANTITATIVE INTERPRETATION OF TWO-COMPONENT PHASE DIAGRAMS J CHEM EDUC 40: 38 (1963) CA 58: 5081 (1963)	301490 301490 301490 301490 301490 301490
JØNES. M. MARSH. R. PREPARATION AND STRUCTURE OF MGB2 JACS 76. 1434 (1954) CA 48. 7378 (1954)	300909 300909 300909 300909
JONES. P OXIDES OF EUROPIUM. GADOLINIUM. PRASECDYMIUM. AND SAMARIUM	200984 200984

AT ENERGY RESEARCH ESTAB (GT BRIT) BIBLIØGRAPHIES BIB 130 (1960) CA 55 12129 (1961)	200984 200984 200984
JONES. P (U.K.A.E.A. HARWELL ENGLAND) URANIUM CARBIDES- A BIBLIOGRAPHY OF REFERENCES UP TO THE END OF 1959 AT ENERGY RESEARCH ESTAB (GT BRIT) AERE-BIB 129. (1960) CA 55: 13147 (1961) NSA 15: 17239 (1961)	201004 201004 201004 201004 201004 201004
JONES, W GORDON: J LONG: E THE HEAT CAPACITIES OF URANIUM: URANIUM TRIOXIDE AND URANIUM DIOXIDE FROM 15 DEGREES K TO 300 DEGREES K J CHEM PHYS 20: 695 (1952) NSA 6: 4298 (1952) CA 46: 10842 (1952)	400555 400555 400555 400555 400555
JØRGENSEN+ C (TECH U+ DENMARK (ØPENHAGEN DENMARK) STUĎIES ØF ABSØRBTIØN ŠPECTRA VII SYSTEMS WITH THREE ØR MØRË ELECTRØNS MAT FYS MEDD 29+ NØ 11 29 (1955) CA 49+ 10724 (1955)	600928 600928 600928 600928 600928
JØRGENSEN. P (UNIV ØF UTAH SALT LAKE CITY UTAH) KINETICS ØF ØXIDATIØN ØF SILICØN CARBIDE UNIV MICRØFILMS (ANN ARBØR. MICH) L C CARD NØ MIC 60-3375. DISSERTATIØN ABSTR 21, 775 (1960) CA 55. 8000 (1961)	200924 200924 200924 200924 200924 200924
JØRGENSEN. P WADSWØRTH, M CUTLER, I KINETICS ØF THE ØXIDATION ØF SILICØN CARBIDE SILICØN CARBIDE. PRØC CONF, BØSTØN 1959, 241 (1960) CA 55, 6996 (1961)	200772 200772 200772 200772
JØSHI• K (UNIV ALLAHABAD FLAME SPECTRUM ØF MNØ MØLECULE IN THE VISIBLE REGIØN SPECTRØCHIM ACTA 18• 625 (1962) CA 58• 2026 (1963)	201984 201984 201984 201984 201984
JØSHI, S MITRA, S (UNIV ALLAHABAD ALLAHABAD INDIA) DEBYE TEMPERATURE THETA ØF SØME CRYSTALS INDIAN J PHYS 34, 537 (1960) CA 55, 13031 (1961)	200999 200999 200999 200999 200999
JØSHI. S MITRA. S DEBYE CHARACTERISTIC TEMPERATURE ØF SØLIDS PRØC PHYS SØC (LØNDØN) 76. 295 (1960) CA 55. 7019 (1961)	200767 200767 200767 200767
JUDD, B LØW LYING LEVELS IN CERTAIN ACTINIDE ATOM'S PHYS REV 125, 613 (1962) PA 65, 3685 (1962)	300804 300804 300804 300804
JUDD. B (U. OF OXFORD OXFORD ENGLAND) OPERATOR EQUIVALENTS AND MATRIX ELEMENTS FOR THE FXCITED	600927 600927 600927

STATES OF RARE EARTH 10NS PROC ROY SOC A227. 552 (1955) CA 49. 7359 (1955)	600927 600927 600927
JUDD: B (CLARENDON LAB OXFORD ENGLAND) THE STRUCTURES OF THE GROUND MULTIPLETS OF CERTAIN RAPE EARTH IONS PROC PHYS SOC 69: 157 (1956) CA 50: 16371 (1956)	601027 601027 601027 601027 601027 601027
JUDD. B MARQUET. L (UNIV ØF CAL BERKELFY (AL) FNERGY LEVELS ØF ER II J ØPTICAL SØC AM 52. 504 (1962)	300801 300801 300801 300801
JUNGMAN: V CØRRECTIØN FØR THE CENTRIFUGAL STRETCHING ØF SYMMETRICAL RØTATØR TYPF MØLECULES IN CALCULATIØN ØF THERMØFYNAMICAL FUNCTIØNS ZHUR FIZ KHIM 35: 319 (1961)	700548 700548 700548 700548 700548
JUSTICE • B THERMODYNAMIC PROPERTIES AND ELECTRONIC ENERGY LEVELS OF EIGHT RARE FARTH SESQUICXIDES (THESIS) TIT-12722 (1961) NSA 15 • 17989 (1961)	601421 601421 601421 601421 601421
JUSTICE: B. W. TOUM: E. THE LANTHANIOL ØXIDES: I: HEAT CAPACITIES: THERMODYNAMIC PROPERTIES OF THE LANTHANIOL ØXIDES: I: HEAT CAPACITIES: THERMODYNAMIC PROPERTIES: AND SOME ENERGY LEVELS OF LANTHANUM(III) AND NEGOTYMIUM PXIDES FROM 5 TO 350 DESREES K. J. PHYS. CHEM. 67: 339 (1963)	300906 300906 300906 300906 300906
JUSTICE: B. WESTRUM: E. THERMOPHYSICAL PROPERTIES OF THE LANTHANIDE ØXIGES: II. HEAT CAPACIFIES: THERMOPHYNAMIC PROPERTIES: AND SOME ENERGY LEVELS OF SAMARIUM(III): GADOLINIUM(III) AND YTTLRPIUM(III) ØXIDES FROM 10 DEGREES TO 350 DEGREES K. J. PHYS. CHEM. 67: 345 (1963)	300907 300907 300907 300907 300907
JUZA, R. SCHUSTER. H. THE CØMPØSITION DIAGRAM CALCIUM CARBIDE-CALCIUM ØXICE. ZEIT ANØRG U ALLGEM CHEM 311. 62 (1961).	600840 600840 600840
KAKUCHADZE: T ELECTRON HEAT CAPACITY IN TRANSITION METALS AND ALLOYS ANN PHYS (GEPMANY) E: NO 7-8: 360 (1961) PA 65: 581: (1962)	300818 300818 300818 300818
KALININA, A A SHAMRAI, F I PHYSICO-CHEMICAL INVESTIGATIONS OF THE SIC-B4C SECTION OF THE SI-B-C SYSTEM TRANS AKAD NAUK SSSR INST METALLURG: TRUDY 1960, NO 5, 151 AD 299155 ØTS 63-13363 TAR 63-2-6 (1963)	301257 301257 301257 301257 301257 301257 301257
KAMAMURA: T HAYASHI: K (NIPPØN ELEC CØ KAWASAKI JAPAN) PREPARATION ØF SILICAN CARBIDE SINGLE CRYSTALS J PHYS SØC (JAPAN) 17: 1517 (1962)	301492 301492 301492 301492

CA 58. 984 (1963)	301492
KANAZAWA: E PACKER: C SPECIFIC HEATS OF BERYLLIUM AND AN ALLOY AT ROOM AND ELEVATED TEMPERATURES LMSD 2: 288140 (1958) NSA 14: 24553 (1960)	600628 600628 600628 600628 600628
KANDYBA, V KANTØR, P ET AL DETERMINATIØN ØF ENTHALPY AND THERMAL CAPACITY ØF BERYLLIUM ØXIDE IN THE TEMPERATURE RANGE FRØM 1200 TØ 2820 DEG K AEC TR. 4310 DØKLADY AKAD NAUK SSSR 131, NØ 3 566 (1960) NSA 15, 3108 (1961) TT 5, 299 (1961)	700533 700533 700533 700533 700533 700533 700533
KANTOR: P KISIL: Ø FØMICHEV: E ENTHALPY AND HEAT CAPACITY MEASUREMENTS OF SILICON FROM 1200 TØ 1900 DEG K UKRAINE FIZ ZHUR 5: 358 (1960) CA 55: 3180 (1961)	300274 300274 300274 300274 300274
KANTOR+ P KRASOVITSKAYA+ R KISEL+ A USTATE INST MEASURING INSTR KHARKOV JSSR) DETERMINING THE ENTHALPY AND SPECIFIC HEAT LAPACITY OF BERYLLIUM IN THE INTERVAL 600+2200 DEGREED # FIZ METAL I METALLOVED 10+ 835 (1960) NP+TR-705 CA 55+ 10037 (1961) NSA 15+ 24864 (1961)	700955 700955 700955 700955 700955 700955 700955
KANTOR, P. LAZAREVA, L. KANDYBA, V. FOMICHLV, E. (STATE INSTISTEDS KHARKEV 1958) EXPERIMENTAL MEASUREMENTS OF ENTHALPY, TEMPERATURE, AND FEAT OF MELTING OF ALPHA-AL203 AT 1200-2500 DEGREES & UKR FIZ ZH 7, 205 (1962) CA 57, 1632 (1962)	300683 300683 300683 300683 300683
KAPUSTINSKII. A THERMØCHEMISTRY ØF ALLØYS RØCZNIKI CHEM 34. 683 (1960) CA 55. 6326 (1961)	200893 200893 200893 200893
KAPUSTINSKII. A THERMOCHEMISTRY AND THE STRUCTURE OF ATOMS II THE THERMOCHEMICAL LOGARITHMIC RULE AND THE HEATS OF FORMATION OF OXIDES AND HYDRIDES NP-TR-472 NS 14. 24126 (1960)	600627 600627 600627 600627 600627
KARAREVA: L KANTOR: P KANDYBA: V ENTHALPY AND HEAT CAPACITY OF MOLYBDENUM IN THE 1200-2500 TEMPERATURE RANGE DEG K FIZ METAL I METALLOV XI: 628 (1961) COTS 46:181 (1961)	300344 300344 300344 300344
KARELIN. V NESMEYANOV. A PRISELKOV. Y MORE ACCURATE VALUE OF VAPOR PRESSURE OF METALLIC YTTRIUM IZV A N Ø T N MET I TOPLIVØ 1962. NØ 5. 117 (1962)	300914 300914 300914
KARELIN, V NESMEYANOV, A PRISELKOV, Y (MOSCOW UNIV MOSCOW RUSSIA)	601594 601594

THE VAPOR PRESSURE OF SCA DOKLADY AKAD NAUK SSSR 14- NSA 16, 25778 (1962)	4, 352 (1962)		601594 601594 601594
KARELIN. V NESMEYANOV, A MEASUREMENT OF VAPOR PRES VESTN MOSK UNIV SER II KH BHT NO 4 (1962) CA 57. 6633 (1962)	PRISELKØV, Y CHØ SURE ØF METALLIC Y IM 17, 40 (1962)	U• K TTRIUM	700701 700701 700701 700701 700701
KAREV, V KLYUCHAREV, Ø N RESHETØVA, L (PHYS TECH INST FØILS ØBTAINED BY THERMAL UKR FIZ ZH 8 (6), 628 (19 CA 59, 7205 (1963)	KHARKØV DISSØCIATIØN 1634	RUSSIA)	202064 202064 202064 202064
KAROPETYÄNTS, M METHØD ØF CALCULATING PHY KHIM PRØM 33 (1961) RUSS ACC 15, NØ 4, 1202 (SICOCHEMICAL CONST	ANTS	700617 700617 700617 700617
KARPÁCHEV. S KARASIK. É ØN THE LATENT HEAT ØF FUS ZHUR FIZ KHIM 34. 1072 (1 BHT. ØCTØBER . 24 (1960)	510N OF SOME INORGA 1960)	ANIC SALTS	300138 300138 300138 300138
KASKAN• W MACKENZIE• J M ØRIGIN ØF THL GREEN BANDS J CHEM PHYS 34• 570 (1961 PÅ 64• 4937 (1961)	5 IN THE BORON-OXYO	GEN SYSTEM	600700 600700 600700 600700
KATHAVATE, Y RIHANI, G (INDIAN AGR RES INST VØLATILIZATIØN ØF BØRØN I CURRENT SCI (INDIA) 32, N CA 59, 5896 (1963)	NEW DELLI IN THE DIRECT-CURRE NO 4, 158 (1963)	INDIA) ENT ARC	301493 301493 301493 301493 301493
KATZ+ J (ARGØNNE NATL LAB CHEMISTRY ØF URANIUM TID-5290 (1958) NSA 13+ 13235 (1959)	LEMØNT	ILL)	601533 601533 601533 601533 601533
KATZ, J ØXIDE SYSTEMS ØF THE ACT: RECØRD CHEM PRØGRESS 12, CA 45, 7906 (1951)	INIDE ELEMENTS 43 (1951)		400534 400534 400534 400534
KATZ. J RABINOWITCH. E THE CHEMISTRY OF URANIUM MCGRAW HILL BOOK CO (195) CA 46. 3894 (1952)			400578 400578 400578 400578
KATZ. S (GEN MOTORS CORP HIGH-TEMP REACTIONS BETWO METALS J NUCL MATER 6, 172 (196) CA 58, 1188 (1963)		MICH) NIUM CØMPØUNDS AND	201971 201971 201971 201971 201971 201971
KATZ, T MARGRAVE, J (U. WISCONSIN	MADISØN	WISCONSIN)	600933 600933

FREE ENERGY FUNCTIONS FOR GASEOUS ATOMS FROM HYDROGEN (Z=1) TO NIOBIUM(Z=41) J CHEM PHYS 23, 983 (1955) CA 49, 10720 (1955)	600933 600933 600933 600933
KATZIN, L (ARGØNNE NAT LAB RECENT DEVELØPEMENTS IN THE CHEMISTRY ØF THØRIUM PRØC INTERN CØNF PEACEFUL USES ATØMIC ENERGY, GENEVA 1955 7, 407 (1956) CA 50, 14420 (1956)	601020 601020 601020 601020 601020 601020
KAUFMAN LABS INC CAMBRIDGE MASS) ESTIMATION OF THE ENTROPY OF NACL-TYPE COMPOUNDS TRANS AIME 224, 1006 (1962) CA 57, 15898 (1962)	300910 300910 300910 300910 300910
KAUFMAN L BERNSTEIN H (MFG LABS INC CAMBRIDGE MASS) THERMØDYNAMICS ØF INTERSTITIAL SØLID SØLUTIØNS ASD-TR 61-445 PT 2 (1962) AD 285984	300932 300932 300932 300932 300932
KAUFMANN, A NUCLEAR REACTOR FUEL ELEMENTS, METALLURGY AND FABRICATION INTERSCIENCE PUBLISHERS, N.Y. (1962) NSA 16, 16654 (1962)	601429 601429 601429 601429
KAUFMANN, A GØRDØN, P LILLIE. D (MIT CAMBRIDGE MASS) THE METALLURGY ØF BERYLLIUM TRANS AM SØC METALS 42. 785 (1950) CA 44. 5775 (1950)	500129 500129 500129 500129 500129
KAUFMANN, A RAPPERPØRT, E REFRACTØRY METALS CØNSTITUTIØN DIAGRAMS AD 249190 (1961)	300218 200218 300218
KAUFMANN, A RAPPERPØRT, E SMITH, M WÜLFF, J BRØPHY, J GRANT, N GRESSIN, B TAYLØR, A DØYLE, N (NUCLEAR METALS INC CØNCØRD MASS) REFRACTØRY METAL CØNSTITUTIØN DIAGRAMS US DEPT CØMM ØFFICE TECH SERVICE P#171391 (1960) CA 57, 13507D (1962)	202065 202065 202065 202065 202065 202065
KAUFMAN, L CLØUGHERTY, E WEISS, R (MANUFACTURING LABS CAMBRIDGE MASS) THE LATTICE STABILITY ØF METALS ACTA MET 11, 323 (1963) CA 58, 13229 (1963)	301495 301495 301495 301495 301495
KAWAI, K MURATA, H NØRMAL VIBRATIØNS AND THERMØDYNAMIC PRØPERTIES ØF CR AND MØ HEXACARBØNYLS BULL CHEM SØC JAPAN 33, 1008 (1960) CA 55, 1183 (1961)	200805 200805 200805 200805 200805
KAWASAKI: M. NAGASAKI: R. ITAGAKI: M. TAKEMURA: T. U.S. AT ENERGY COMM AEC-TR-4468 (1960) Uranijm molybdenum alloys CA 56: 12623 (1962)	201491 201491 201491 201491

KAY. D TAYLOR. J ACTIVITIES OF SILICA IN THE LIME AND ALUMINA AND SILICA SYSTEM TRANS FAR SOC 56. 1372 (1960) BHT. OCTOBER. 11 (1960)	300131 300131 300131 300131
KAY. DAR TAYLOR. J (ROY COLL SCI TECHNOL GLASGOW SCOTLAND) THE SILICA REDUCTION REACTION IN THE BLAST FURNACE J IRON STEEL INST (LONDON) 201, 67 (1963) CA 58. 9903G (1963)	202066 202066 202066 202066 202066
KAYF. G (MØRGANITE RES DEV LTD LØNDØN ENGLAND) FACE-CENTERED CUBIC MØLYBDENUM MØNØCARBIDE NÅTURE 195. 1195 (1962) CA 57. 14520 (1962)	201909 201909 201909 201909 201909
KEENAN, P SCHRØEDER, L AN INFRARED SYSTEM ØF BANDS ØF VØ IN M-TYPE STARS ASTRØPHYS J 115, 82 (1952) CA 46, 4358 (1952)	600911 600911 600911
KEESØM. P. PEARLMAN. N. ATØMIC HEAT ØF SILICØN AND GERMANIUM AT VERY LØW TEMPERATURES. PHYS REV 85. NØ 4 730 (1952)	300170 300170 300170
KELER. E ANDREEVA. A SØLID SØLUTIØNS ØF THE SYSTEM ZRØ2-SIØ2 ØGNEUPØRY 27, 377 (1962) CA 57. 13421 (1962)	201888 201888 201888 201888
KELER. E GODINA. N CONDITIONS OF FORMATION OF SOLID SOLUTIONS IN THE SYSTEM CEO2-SRO AEC-TR-4051 PGS-319-24 ZHUR NEORG KHIM 2, 209 (1957) NSA 15, 8791 (1961)	600866 600866 600866 600866 600866
KELER. E ANDREEVA. A THE FØRMATIØN AND PRØPERTIES ØF SØLID SØLUTIØN ØF ZIRCØNIUM DIØXIDE WITH RARE EARTH ØXIDES ØGNEUPØRY 28. 224 (1963) CA 59. 3623 (1963)	301496 301496 301496 301496 301496
KELER. E GØDINA. N DEGEN. M ELECTRØN MICRØSCØPIC AND THERMØGRAPHIC STUDY ØF SØLID-PHASE REACTIØNS IN BINARY SYSTEMS ØF HFØ2 WITH BAØ. SRØ. CAØ ZHUR PRIKLAD KHIM 34. 1769 (1961) CT NØ 20. 92 (1961) CA 56. 987 (1962)	300264 300264 300264 300264 300264
KELER: E GØDINA: N SAVCHENKØ: E REACTIØNS BETWEEN SILICA AND RARE EARTH ØXIDES (LA203: ND223: GD203) IN SØLID PHASES IZV AN SSSR ØTD KHIM NAUK NØ 10 1728 (1961) RUSS ACC 14: 2795 (1962)	300387 300387 300387 300387 300387
KELLER D (BATTELLE MEM INST COLUMBUS CHI?) DEVELOPMENT OF URANIUM MONONITRIDE + QUART PROG REPT (1961) BMI X-178 NSA 16 * 3450 (1962)	601445 601445 601445 601445 601445

KELLER. D (BATTELLE MEM INST DEVELOPMENT OF URANIUM MON QUART PROG REP (1961) BMI-X-186 NSA 16. 15118 (1962)	CØLUMBUS ØNITRIDE•	ØHI 2)	601432 601432 601432 601432 601432
KELLER, E ANDREEVA, A EFFECT ØF SILICA ADMIXTURE ØF ZIRCØNIUM DIØXIDE ØGNEUPØRY 26, NØ 6 276 (196 CT 16, 99 (1961)		TABILIZATIØ	300222 300222 300222 300222 300222
KELLER, J WALLACE, D ANHARMONIC CONTRIBUTION TO PHYS REV 126, 1275 (1962)	SPECIFIC HEAT		301092 301092 301092
KELLEY K CONTRIBUTIONS TO THE DATA OF THERMODYNAMIC PROPERTIES OF BUR MINES BULL 407 (1937) CA 32 2821 (1938)	ON THEORETICAL METALL F METAL CARBIDES AND	URGY VIII NITRIDES	700865 700865 700865 700865 700865
KELLEY K CONTRIBUTIONS TO THE DATA OF HIGH TEMPERATURE HEAT CONTE DATA FOR THE ELEMENTS AND I BUR MINES BULL 594 100 (15	ENT. HEAT CAPACITY AN INØRGANIC CØMPØUNDS		700891 700891 700891 700891 700891
KELLEY, K KING, E CONTRIBUTIONS TO THE DATA OF ENTROPIES OF THE ELEMENTS A BUR MINES BULL 592,56 (1961	AND INORGANIC COMPOUN	URGY XIV DS	700915 700915 700915 700915
KEMP. W KLEMENS. P TAINISH (NATL STANDARDS LAB THERMAL AND ELECTRIC CONDUC ANN PHYSIK 5. 35 (1959) CA 54. 4085 (1960)	SYDNEY	AUSTRALIA) AND IRØN	601205 601205 601205 601205 601205
KEMPTER C (LØS ALAMØS SCI LAB THE CRYSTAL STRUCTURE ØF YT J PHYS CHEM 61 . 1237 (1957) NSA 11 . 13286 (1957)	TRIUM NITRIDE	N MEXICO)	601295 601295 601295 601295
KEMPTER, C ELLIØTT, R (LØS ALAMØS SCI LAB THERMAL EXPANSION OF (UN), (J CHEM PHYS 30, 1524 (1959) CA 53, 19552 (1959)	(U02) + (U02-TH02) + AND		601150 601150 601150 601150 601150
KEMPTER. C FRIES. R (LØS ALAMØS SCI LAB CRYSTALLØGRAPHY ØF THE RU-E J CHEM PHYS 34. 1994 (1961) CA 55. 18236 (1961)		N MEX)	201103 201103 201103 201103 201103
KEMPTER, C KRIKORIAN, N SOME PROPERTIES OF THORIUM J LESS-COMMON METALS 4, 244 BHT NO 2, 8 (1962)	MØNØCARBIDE AND DICA (1962)	RBIDE	300517 300517 300517 300517

KEMPTER. C KRIKORIAN. N MCGUIRE. J THE CRYSTAL STRUCTURE OF YTTRIUM NITRIDE J PHYS CHEM 61. 1237 (1957) CA 52. 11511 (1958)	700837 700837 700837 700837
KEMPTER: C NADLER: M (LØS ALAMØS SCI LAB LØS ALAMØS N MEX) PREPARATIØN AND CRYSTAL STRUCTURES ØF RUC AND ØSC J CHEM PHYS 33: 1580 (1960) CA 55: 14003 (1961)	201024 201024 201024 201024 201024
KEMPTER: C STØRMS: E FRIES: R (LØS ALAMØS SCI LAB LØS ALAMØS N MEX) LATTICE DIMENSIØNS ØF NBC AS A FUNCTION ØF STØICHIØMETRY J CHEM PHYS 33: 1873 (1960) CA 55: 16167 (1961)	201053 201053 201053 201053 201053
KENDALL & HAYS & C. SWIFT & R. (UNIV ØF KENTUCKY LEXINGTON KENTUCKY) THE ZIRCONIUM-PLATINUM ALLOY SYSTEM TRANS AIME 221 & 445 (1961) CA 55 & 17447 (1961)	201095 201095 201095 201095 201095
KENDALL. W THERMODYNAMIC PROPERTIES OF URANIUM GA! J CHEM ENG DATA 7. NO 4. 540 (1962)	601684 601684 601684
KENDALL. W ØRR. R HULTGREN. R (UNIV ØF CAL) HEAT CØNTENT ØF PLATINUM J CHEM ENG DATA 1. 516 (1962) BHT NØ 4 (1962)	601674 601674 601674 601674
KENNEDY D RITCHIE M MACKENZIE J THE PHOTOSORPTION OF CXYGEN AND NITRIC CXIDE ON TITANIUM CXIDE TRANS FAR SOC 54 + 119 (1958)	300225 300225 300225
KERRO W (ATOMICS INTERNATIONAL CANOGA PARK CAL) LITERATURE SURVEY-URANIUM MONONITRIDE NAA-SR-MEMO 7208 (1962) NSA 16. 22533 (1962)	601461 601461 601461 601461
KESSLER. D THE CONFIGURATION FDS PLUS FS2 OF TH II PHYSICA 17. 913 (1951) CA 46. 3852 (1952)	400576 400576 400576 400576
KESSLER, K MEGGERS, W MØØRE, C (NAT BUR STDS WASHINGTON D.C.) EXTENTION OF THE ARC SPECTRA OF PALLADIUM AND PLATINUM (6500-12000 ANGSTROMS) J NAT BUR STANDARDS 53, 225 (1954) CA 49, 5119 (1955)	600976 600976 600976 600976 600976
KEVANE. C (ARIZONA STATE UNIV ELECTRICAL PROPERTIES OF OXIDES OF SOME LANTHANIDE RARE EARTH ELEMENTS AFOSR-2230 (1962) NSA 16. 18020 (1962)	601467 601467 601467 601467 601467

KHACHATURYAN: A (INST METALLØG + PHY METALS MØSCØW RUSSIA) APPLICATION ØF THE GREEN FUNCTION METHØD TØ THE THERMØDYNAMICS ØF INTERSTITIAL SØLUTIØNS FIZ TVERD TELA 5: 15 (1963)	202067 202067 202067 202067 202067
KHACHKURUZØV. G MILEVSKAYA. I CALCULATION OF THERMODYNAMIC FUNCTIONS OF POLYATOMIC GASES WITH NON-RIGID MOLECULES. PART 2. NON-LINEAR SYMMETRICAL MOLECULES XY2 ZHUR FIZ KHIM 35. 142 (1961) CCP NO 6. 492 (1961)	700677 700677 700677 700677 700677
KHITRØVÅ, V PINSKER CHEMICAL CRYSTALLØGRAPHY ØF TUNGSTEN NITRIDES AND ØF SØME ØTHER INTERSTITIAL PHASES KRISTALLØGRAFIYA 6. NØ 6 882 (1961) CØTS 54. 321 (1962) CA 57. 2950 (1962)	301110 301110 301110 301110 301110
KHITROVA. V PINSKER. Z ELECTRON DIFFRACTION INVESTIGATION OF CUBIC TUNGSTEN NITRIDE KRISTALLOGRAFIYA 4. 545 (1959) CA 57. 2951 (1962)	201620 201620 201620 201620
KHITRØVA: V PINSKER: Z STRUCTURE II ØF HEXAGØNAL TUNGSTEN NITRIDE KRISTALLØGRAFIYA 5: 711 (1960) CA 57: 2950 (1962)	201619 201619 201619 201619
KHLAPØVA: A X-RAY DATA ØN THE ALPHA TØ BETA QUARTZ PHASE TRANSITIØN SØVIET PHYSICS CRYSTALLØGRAPHY VØL 7: NØ 4: 403 (1963) CØTS 63: 236 (1963)	301146 301146 301146 301146
KHLAPØVA. A X-RAY DATA ØN THE PHASE TRANSITIØN ALPHA (QUARTZ) BETA-QUARTZ KRISTALLØGRAFIYA 7. 568 (1962) CA 57. 11937 (1962)	201848 201848 201848 201848 201848
KHLERNIKØV. G SIMANØV. Y NEMKØVA. Ø SØLID PHASE REACTIØNS BETWEEN CA. V2Ø5 AND U3Ø8 ISSLED V ØBL KHIM URANA. SB STATE1 1961, 292 CA 57. 3069 (1962)	201625 201625 201625 201625
KHOMYAKOV. K SPITSYN. V ZHVANKO. S TRUE HEAT CAPACITY OF U308 ISSLED V OBL KHIM URANA SB STATE! 1961. 141 (1961) CA 57. 2929 (1962)	300729 300729 300729 300729
KHRIPUN: M K ARIYA: S M MØRØZØVA: M P ENTHALPY ØF FØRMATIØN ØF TITANIUM CARBIDES AND ØXYCARBIDES ZHUR ØBSHCHEI KHIM 32: 2072 (1962) CØTS 65: 310 (1963)	301258 301258 301258 301258
KIBLER. G LYON. T DESANTIS. V (GE CO CINCINNATI OHIO) CARBONIZATION OF PLASTICS AND REFRACTORY MATERIALS RESEARCH VOL II REFRACTORY MATERIAL SEVENTH QUARTERLY REPORT 31 MAR 1962 CONTRACT AF33(616)-6841	300427 300427 300427 300427 300427
KIBLER. G LYON. T	601575

(GE CØ CINCINNATI ØHIØ) CARBØNIZATIØN ØF PLASTICS AND REFRACTØRY MATERIALS RESEARCH - 6TH QUART PRØG REPT ØCT 1. 1961- DEC 31. 1961 CØNTRACT NØ AF33(616)-6841 ARPA ØRDER 24-61 TASK 6 NP-11264 (1961) NSA 16. 9142 (1962)	601575 601575 601575 601575 601575 601575
KIBLER. G M LYØN. T F REFRACTØRY MATERIALS RESEARCH QUARTERLY PRØG REPT NØ 9. ØCT-DEC (1962) AD 295855 TAB 63-2-3. 155 (1963)	301260 301260 301260 301260
KIBLER, G M LYØN, T F LINEVSKY, M J DESANTIS, V J REFRACTØRY MATERIALS RESEARCH QUARTERLY PRØCESS REPT NØ 10, JAN-MARCH (1963) AD 403529 TÅB 63-3-4, 175	301259 301259 301259 301259 301259
KIEFFER, R BENESØVSKY, F (METTALWERK PLANSEE AG TIRØL AUSTRIA) DEVELØPMENTS IN THE DØMAIN ØF HARD METALS RADEX RUNDSHAU (1), 351 (1963) BHT NØ 2, 26 (1963)	301261 301261 301261 301261 301261
KIEFFER R BENESØVSKY F RECENT DEVELØPMENTS IN THE FIELD ØF SILICIDES AND BØRIDES ØF THE HIGH MELTING PØINT TRANSITIØN METALS PØWDER MET NØ 1. 145 (1958) NSA 14, 21902 (1960)	600619 600619 600619 600619
KIFSS. C RED AND INFRARED BANDS OF TITANIUM AND ZIRCONIUM OXIDES PUB ASTRON SOC PACIFIC 60. 252 (1948) CA 43. 940 (1949)	600685 600685 600685 600685
KIESS C (NATL BUR STANDARDS WASHINGTON D C) DESCRIPTION AND ANALYSIS OF THE SECOND SPECTRUM OF TANTALUM TA II J RES NATL BUR STDS A66 • 111 (1962) CA 57 • 4188 (1962)	201678 201678 201678 201678 201678 201678
KIESS. C WAVE LENGTHS ØF THE (0.0) BAND HEADS IN THE INFRARED SYSTEM ØF CN ASTRØPHYS J 109. 531 (1949) CA 43. 7338 (1949)	600686 600686 600686 600686 600686
KIEFFER, R BENESØVSKY, F NEW DEVELØPMENTS IN THE FIELD ØF HARD MATERIALS AND HARD ALLØYS CA 58, 12239 (1963)	301497 301497 301497 301497
KIHLBORG. L (UNIV UPPSALA UPPSALA SWEDEN) MOLYBDENUM ØXIDE ACTA CHEM SCAND 13. 954 (1959) CA 55. 23144 (1961)	201174 201174 201174 201174 201174
KIHLBORG. L (UNIV OF UPPSALA UPPSALA SWEDEN) THE EXISTENCE OF THE SUBOXIDES CR38 AND M&30	202068 202068 202068

ACTA CHEM SCAND 16. 2465 (116 CA 58. 8611F (1965)	202068 202068
KIMO W (EWHA WOMANS UNIV A PARTITION FUNCTION OF LI (D.METAL) J.KOREAN CHEM SOC 60 36 (90) CA 580 13150 (1963)	301499 301499 301499 301499 301499
KIMURA: H. SASAKI: Y. THE VACUUM REDUCTION OF NICHTUM PERTOXIDE WITH NICHTUM CARBIDE NIPPON KINZOKU GAKKAI HI 26: 635 X1762) BHT NO 2: 44 (1963)	301262 301262 301262 301262 301262
KIMURA: H. SASAKI: Y (NAT RES INST MET: SCI: TECH TÜKYÖ	601578 601578 601578 601578 601578
KING, E CHRISTENSEN. A (BUREAU ØF MINES BERKFLEY CAL) HIGH TEMPERATURE HEAT CONTENTS AND ENTROPIES ØF CERTUM DIØXIDE AND NIØBIUM DIØXIDE US BUR MINES REPT INVEST NO. 5789 (1961) CA 55. 19450 (1961) NSA 15. 23930 (1961)	600826 600826 600826 600826 600826 600826
KING. E KØEHLER: M ADAMI: L HEATS AND FREE ENERGIES ØF FØRMATIØN ØF CALCIUM AND MAGNESIUM VANADATES BUR MINES REPT 6049: (1962)	301500 301500 301500 301500
KING, E WELLER, W CHRISTENSEN, A (BUREAU OF MINES BERKELFY (AL) THERMODYNAMICS OF SOME OXIDES OF MO AND W BM-RI-5664 (1960) CA 55, 4135 (1961) NSA 15, 614 (1961)	700973 100973 700973 700973 700973
KING. E WELLER. W CHRISTENSEN. A KELLEY. K SØME THERMØDYNAMIC VALUES FØR FØUR TITANIUM HALIDE? US BUR MINES DEPT. INVEST 5799 20 (1961) CA 56. 4164 (1962)	300735 300735 300735 300735
KING. E WELLER. W PANKRATZ. L THERMODYNAMIC DATA FOR LANTHANUM SESQUIOXIDE US BUR MINES REPT INVEST NO 5857. 6 (1961) CA 56. 10995 (1962)	300712 300712 300712 300712
KING. J THERMOCHEMISTRY OF RHENIUM COMPOUNDS UNIV MICROFILMS (ANN ARBOR. MICH.) L C CARD NO MIC 60-2217. DISSERTATION ABSTR 21. 69 (1960) CA 55. 2264 (1961)	200813 200813 200813 200813 200813
KINGERY. W INTRODUCTION OF CERAMICS JOHN WILEY NY (1960)	301263 301263 301263
KINGERY, W FRANCL, J COBLE, R VASILOS, T	600971

THERMAL CONDUCTIVITY X DATA FOR SEVERAL PURE ØXIDE MATERIALS CONNECTED TO ZERO POROSITY J AM CERAM SOC 37, 107 (1954) CA 48, 4789 (1954)	600971 600971 600971
KINNE, G VISHKAREV. A THERMØDYNAMICS ØF THE DEØXIDATIØN ØF STEEL BY MEANS ØF LANTHANUM, CERIUM, PRASEØDYMIUM AND NEØDYMIUM IZ VYSSHIKH UCHEB ZAVED CHERN MET, NØ 2. 1962, 92 (1962) HB 5754 CØTS 187. MARCH. (1963)	301147 301147 301147 301147 301147
KIRCHNER+ H P KNØLL+ P SILICØN CARBIDE WHISKERS J AM CERAM SØC 46+ 299 (1963)	202069 202069
KIREEV. V EFFECT OF TEMPERATURE ON THE ATOMIC ENTROPY OF FORMATION OF INORGANIC SUBSTANCES ZH FIZ KHIM 37. NO 1. 211 (1963)	300913 300913 300913 300913
KIRILLIN, V SHEINDLIN, A CHEKHØVSKØI, V ENTHALPY AND SPECIFIC HEAT ØF TUNGSTEN IN THE 0-2400 DES C TEMPFRATURE RANGE DØKL AKAD NAUK SSSR 142, NØ 6, 1323 (1962) BHT NØ 2, 27 (1962) CA 57, 1632 (1962)	300531 300531 300531 300531 300531
KIRILLIN, V SHFINDLIN, A CHEKHØVSKØI, V (HIGH TEMP LAB ACAD SCI MØSCØW USSR) EXPERIMENTAL DETERMINATION OF THE ENTHALPY AND HEAT CAPACITY OF MOLYPDENUM UP TO 2337 DEGREES C INTERN J HEAT AND MASS TRANSFER 5, 1 (1962) NSA 16, 15212 (1962) CA 57, 2933 (1962)	601564 601564 601564 601564 601564 601564
KIRILLIN, V SHEINDLIN, A CHEKHØVSKØI, V (HIGH TEMP LAB ACAD SCI EXPERIMENTAL DETERMINATION OF THE ENTHALPY OF MOLYBDENUM AT 700-2337 DEGREES C DØKLADY AKAD NAUK SSSR 139, 641 (1961) BHT 4, 21 (1961) CA 56, 11002 (1962)	300921 300921 300921 300921 300921 300921
KIRILLIN, V SHEINDLIN, A CHEKHØVSKØI, V THERMØDYNAMIC PRØPERTIES ØF TUNGSTEN IN THE TEMPERATURE RANGE O TØ 2400 DEGREES C TEPLØENERGETIKA 9, NØ 2, 63 (1962) CA 57, 1632 (1962)	300689 300689 300689 300689 300689
KIRILLIN. V SHEINDLIN. A CHEKØVSKØI. V PETRØV. V AN EXPERIMENTAL STUDY ØF THE ENTHALPY ØF TUNGSTEN IN THE 2400-2820 DEG C TEMPERATURE RANGE DØKL ÅKAD NAUK SSSR 144. 390 (1962)	300360 300360 300360 300360
KIRILLIN, V VUKALØVICH, M FUTURE DEVELØPMENTS IN PØWER ENGINEERING AND NEW PRØBLEMS IN THE PHYSICS ØF HEAT TEPLØENERGETIKA 8, NØ 6 3 (1961) RUSS ACC 14, NØ 10 2813 (1962)	300378 300378 300378 300378 300378
KIRILLØVA. G MEERSØN. G ZELIKMAN. A Kinetics of Chlorination of Titanium and Niobium Carbides	200759 200759

IZVEST VYSSHIKH UCHEB ZAVEDENII TSVETNAYA MET 3.90 (1960) CA 55. 5096 (1961)	200759 200759
KIRKWOOD, D. CHIPMAN, J. THE FREE ENERGY OF SILICON CARBIDE FROM ITS SOLUBILITY IN MOLTFN LEAD. J. PHYS. CHEM. 65, 1082 (1961)	700634 700634 700634 700634
KIRSHENBAUM. A (TEMPLE UNIV PHILADELPHIA PA) DENSITY ØF MØLTEN THØRIUM AND URANIUM TETRAFLUØRIDES J INØRG AND NUCLEAR CHEM 19. 65 (1961) CA 56. 33 (1962)	201183 201183 201183 201183 201183
KIRSHENBAUM, A CAHILL, J STØKES, C DENSITY ØF MØLTEN METAL FLUØRIDES IN THE RANGE 1600- 2500 DEGREES K J INØRG + NUCLEAR CHEM 15, 297 (1960) CA 55, 6968 (1961)	200897 200897 200897 200897 200897
KISER, R TABLE ØF IØNIZATIØN PØTENTIALS US AT ENERGY CØMM TID-6142, (1960) CA 55, 93 (1961)	200784 200784 200784 200784
KISHKØ, S EXCITATION FUNCTIONS OF CERTAIN CO AND CO PLUS BANDS IN THE VISIBLE REGION OF THE SPECTRUM UKRAIN FIZ ZH 5, 375 (1960) PA 65, 6174 (1962)	300796 300796 300796 300796 300796
KISLY» P SAMSØNØV» G DIFFUSIØN ØF BØRØN IN CARBØN FIZ TVERD TELA 2, 1729 (1960)	300137 300137 300137
KISLY, P SAMSØNØV, G HIGH TEMPERATURE THERMØELEMENTS FRØM SEMICØNDUCTØRS PLANSEEBER PULVERMET 8, 200 (1961) BHT NØ 3, 19 (1961)	300496 300496 300496 300496
KISTIAKØWSKY, G WARNECK, P LEWIS RAYLEIGH NITRØGEN AFTERGLØW J CHEM PHYS 27, 1417 (1957) CA 52, 5120 (1958)	600588 600588 600588
KIUKKOLA: K (INST TECH OTANIEMI FINLAND) HIGH TEMPERATURE ELECTROCHEMICAL STUDY OF URANIUM OXIDES IN THE U02-U308 REGION ACTA CHEM SCAND 16: 327 (1962) NSA 16: 18860 (1962)	601469 601469 601469 601469 601469
KIVEL. B MAYER. H OPACITY OF AIR AT HIGH ALTITUDES AN' HIGH TEMPERATURES LA 1738. (1954) NSA 14. 18233 (1960)	600609 600609 600609 600609
KLAUS. K SELECTED WORKS ON CHEMISTRY OF PLATINUM METALS IZDATELSTVO AKAD NAUK SSSR 24. NO 8. 130 (1954) CA 49. 2246 (1955)	600973 600973 600973 600973
KLEBER. E	601450

RARE EARTH RESEARCH THE MACMILLAN CO. NY (1960) NSA 16. 1668 TO 1697 (1962)	601450 601450 601450
KLEIN. C (RES DIV RAYTHEON COMPANY WALTHAM MASS) ELECTRICAL PROPERTIES OF PYROLYTIC GRAPHITES REV MODERN PHYSICS 34. 56 (1962)	300915 300915 300915 300915
KLEIN• R LEDER• L (NATL BUR ØF STDS WASHINGTØN DC) FIELD-EMISSIØN ØBSERVATIØNS ØF CARBØN ØN TANTALUM J CHEM PHYS 38• 1863 (1963) CA 58• 10778 (1963)	301501 301501 301501 301501 301501
KLEMENT JR. W JAYARAMAN. A KENNEDY. G (UNIV ØF CALIFØRNIA LØS ANGELES CALIF) PHASE TRANSFØRMATIØNS IN URANIUM AT HIGH PRESSURES PHYS REV 129. 1971 (1963) CA 58. 7444 (1963)	301502 301502 301502 301502 301502
KLEMM, W WINKELMANN, G. NITRIDES ØF THE RARE EARTH METALS Z ANØRG U ALLGEM CHEM 288, 87 (1956) AEC-TR-4654, CA 51, 4791 (1957) NSA 15, 22226 (1961)	700874 700874 700874 700874 700874 700874
KLEPFER + H (AMES LAB AMES 10WA) CHARACTERISTICS ØF THE SØLID STATE TRANSFØRMATIONS IN URANIUM 1SC-893 (1957) NSA 12 • 6965 (1958)	601506 601506 601506 601506
KLEPPA+ Ø (UNIV ØF CHICAGØ ILL) ASPECTS ØF THE THERMØDYNAMICS ØF METALLIC SØLUTIØNS J PHYS RADIUM 23+ 763 (1962) CA 58+ 8460 (1963)	301503 301503 301503 301503 301503
KLIMØV• V INFRARED SPECTRØMETRY OF INØRGANIC CØMPÐUNDS ZAVØDSKAYA LAB 27• 292 (1961) CCP NØ 7• 560	700670 700670 700670 700670
KLINGSBERG. C. RØY. R SØLID-SØLID AND SØLID-VAPØR REACTIØNS AND A NEW PHASE IN THE SYSTEM MN-Ø J AM CERAM SØC 43. 620 (1960)	700518 700518 700518 700518
KLINKENBERG, P ANALYSIS OF THE SPECTRUM OF DOUBLY 12NIZED THURIUM, TH 11I PHYSICA 16, 618 (1950) CA: 45, 10050 (1951) NSA 5, 733 (1951)	400531 400531 400531 400531 400531
KLINKENBERG. P. LANG. R THE SPECTRUM OF TREBLY IONIZED THORIUM (TH IV) PHYSICA 15. 774 (1949) CA 44. 3790 (1950) NSA 4. 1067 (1950)	400522 400522 400522 400522 400522
KLINKENBERG. P. VAN KLEEF. T. NØÐRMAN. P.	300776

(UNIVERSITEIT AMSTERDAM HØLLAND) SPECTRAL STRUCTURE OF DOUBLY AND TREBLY IØNIZED HAFNIUM PHYSICA 27. 1177 (1961) CA 56. 12437 (1962)	300776 300776 300776 300776
KLINKENBERG, P. VAN KLEEF, T. NØØRMAN, P. (UNIVERSITEIT AMSTERDAM HØLLAND) THE STRUCTURE AND IÐNIZATIÐN PÐTENTIAL ØF HF(III) AND HF(IV) PHYSICA 27, 151 (1961) NSA 15, 12946 (1961)	701019 701019 701019 701019 701019
KLIUCHNIKOV, N DETERMINATION OF THERMODYNAMIC CONSTANTS OF SUBSTANCES ON THE BASIS OF THEIR ORDER NUMBER IN DI MENDELEEVS PERIODIC SYSTEM UCH ZAP MGPI NO 146, 228 (1960) RUSS ACC 15, 1109 (1962)	300747 300747 300747 300747 300747
KLØPP, W (BATTELLE. MEM INST CØLUMBUS ØHIØ) ØXIDATIØN AND CØNTAMINATION REA TIØNS ØF NIØBIUM AND NIØBIUM. ALLØYS BMI-1317 NSA 13, 8909 (1959)	601542 601542 601542 601542 601542
KLYACHKIN. V THE THEORY OF PHASE TRANSITIONS IN MOLECULAR CRYSTALS FIZ TVERDOGO TELA 2. 929 (1960) CA 55. 11016 (1961)	200954 200954 200954 200954
KLYUCHNIKOV. N DETERMINATION OF THERMODYNAMIC CONSTANTS OF SUBSTANCE ON THE BASIS OF ATOMIC NUMBER 1. HEAT OF FORMATION OF OXIDES UCH Z.P MOSK GOS PED INST 1960, NO 146, 228 (1960) CA 56, 13623 (1962)	300659 300659 300659 300659 300659
KNAPTØN• A (ASSØC ELEC INDS ALDERMASTØN ENGLAND) NIØBIUM AND TANTALUM ALLØYS J LESS CØMMØN METALS 2• 113 (1960) CA 55• 13261 (1961)	201016 201016 201016 201016 201016
KNAPTON: A SAVILL: J SIDDALL: R (ASSOCD ELEC INDS ALDERMASTON ENGLAND) THE MELTING OF OSMIUM J LESS-COMMON METAL J 2: 357 (1960) CA 55: 16329 (1961) NSA 15: 4320 (1961)	201068 201068 201068 201068 201068 201068
KNIEF. G BETTERTØN. J SCARBROUGH, J (ØAK RIDGE NATE LAB ØAK RIDGE TENN) LØW TEMPERATURE SPECIFIC HEATS ØF TI. ZR AND HF PHY REV 130, 1687 (1963) BHT NØ 2. 6 (1963)	301264 301264 301264 301264 301264
KNEIP, G BETTERTØN, J (ZAK RIDGE NATE LAB ZAK RIDGE TENN) SPECIFIC HEATS OF SOME ZR ALLØYS PROG TYTERN CONF LOW TEMP PHYS 7TH TORONTO CAN 1960, 357 (1961) CA 56, 9509 (1962)	201412 201412 201412 201412 201412 201412

KNIPE R GORDON A SPECTRUM OF CARBON MONOXIDE - OXYGEN EXPLOSION I THE VISIBLE SPECTRUM J CHEM PHYS 23 · 2097 (1955) CA 50 · 2288 (1956)	600713 600713 600713 600713
KNIPPENBERG, W HASNSTRA, H DEKKERS, J (PHILIPS RES LAB EINDHØVEN NETHERLANDS) CRYSTAL GRØWTH ØF SILICØN CARBIDE PHILIPS TECH REV 24, 181 (1962) BHT NØ 2, 29 (1963)	301265 301265 301265 301265 301265
KNISELEY, R FASSEL, V LENTZ, C MISIDENTIFICATIONS IN THE ARC SPECTRA OF THE RARE EARTHS U S AT ENERGY COMM IS-50, (1959) CA 54, 10502 (1960) NSA 14, 6195 (1960)	601191 601191 601191 601191
KNØLL» H UMWANDLUNG VØN ANATAS IN BRØØKIT NATURWISSENSCHAFTEN 50» 546 (1963)	301266 301266 301266
KOCHEROV. P GELD. P CA VAPOR PRESSURE OVER ITS ALLOYS WITH AL. TRUDY URAL POLYTECH INST IM SM KIROVA, NO 93. 141 (1959) BHTG NO 4. 6 (1962)	300462 300462 300462 300462
KØEHLER» W WØLLAN» E NEUTRØN DIFFRAC: IØN STUDY ØF THE STRUCTURE ØF THE A-FØRM ØF THE RARE EARTH SESQUIØXIDES ACTA CRYST 6, 741 (1953) CA 48, 422 (1954)	700754 700754 700754 700754 700754
KØENIG+ N (ATØMICS INTERNATIØNAL CANØGA PARK CAL) MATERIAL PRØPERTY DATA FØR UØ2 NAA-SR-MEMØ 2529 (1958) NSA 14+ 1842 (1960)	601366 601366 601366 601366
KØENIGSBERG» E KELLER» J (IØWA STATE CØLLEGE AMES ISWA) EFFECT ØF ELECTRØNIC QUADRUPØLE-QUADRUPØLE INTERACTIØNS ØN THE SPECIFIC HEAT ØF CERIUM METAL U S ATØMIC ENERGY CØMM I S C 429 * 119 (1953) CA 50 * 4622 (1956)	601002 601002 601002 601002 601002
KØERNER: W DANIELS: F THE HEAT ØF FØRMATIØN ØF NITRIC ØXIDE AND PHØSPHØRUS TRIØXIDE J CHEM PHYSICS 20: 113 (1952) CA 46: 6479 (1952)	600745 600745 600745 600745 600745
KOFSTAD. P (CENTRAL INST IND RES OSLO NORWAY) ELECTRICAL CONDUCTIVITY OF NB205 AS A FUNCTION OF EXYGEN PRESSURE AT 600-1200DEGREES PHYS CHEM SOLIDS 23. 1571 (1962) CA 58. 2930 (1963)	301267 301267 301267 301267 301267 301267
KØFSTAD. P (CENTRAL INST IND RES BLINDERN NØRWAY) THE ØXIDATIØN BEHAVIØR ØF TANTALUM AT 700-1000 DEGREES J ELECTRØCHEM SØC 110. 491-501 (1963)	301505 301505 301505 301505

CA 58+ 13564 (1963)	301501
KØFSTAD. P (CENTRAL INST IND RES ØSLØ NØRWAY! THE ØXIDATIØN ØF TANTALUM AT 1000-1300 DEGREES J LESS CØMMØN METALS 5. NØ 2. 158-70 (1963) CA 58. 13562 (1963)	301506 301506 301506 301506 301506
KØFSTAD. P (CENTRAL INST IND RES ØSLØ NØRWAY) THERMØGRAVIMETRIC STUDIES ØF THE DEFECT STRUCTURE ØF RUTILE (TIØ2) PHYS CHEM SØLIDS 23. 1579 (1962) CA 58. 3976 (1963)	301507 301507 301507 301507 301507 301507
KØFSTAD, P (CENTRAL INST FØR IND RES ØSLØ NØRWAY) DEFECT STRUCTURE ØF TANTALUM ØXIDE J ELECTRØCHEM 109, NØ 9, 776 (1962)	300586 300586 300586 300586
KØFSTAD• P ØXIDATIØN ØF TANTALUM AT 500-700 DEGREES TIDSSKER KJEMI BERGVESEN MET 21• 196 (1961) CA 56• 8427 (1962)	201400 201400 201400 201400
KØFSTAD. P (CENTRAL INST IND RES ØSLØ NØRWAY) ØXIDATIØN ØF TANTALUM IN ØXYGEN AT 300-550 DEGREES J INST METALS 91. 209 (1963) CA 58. 9933A (1963)	202072 202072 202072 202072 202072
KØFSTAD. P (CENTRAL INST IND RES ØSLØ NØRWAY) THE RØLE ØF ØXIDE NUCLEATIØN AND GRØWTH ØF ØXIDE NUCLEI IN ØXIDAT ØN ØF NIØBIUM INTERN CØGR METALLIC CØRRØSIØN 1ST LØNDØN ENGL 1961. 181 (1962) CA 59. 8441B (1963)	202074 202074 202074 202074 202074 202074 202074
KØFSTAD, P ANDERSØN, P (CENTRAL INST IND RES ØSLØ NØRWAY) GRAVIMETRIC STUDIES ØF THE DEFECT STRUCTURE ØF ALPHA NB205 PHYS CHEM SØLIDS 21, 280 (1961) CA 56, 15014 (1962)	301268 301268 301268 301268 301268
KØFSTAD, P ANDERSØN, P KRUDTAA, Ø (CENTRAL INST IND RESEARCH ØSLØ NØRWAY) ØXIDATIØN ØF TITANIUM IN THE TEMPERATURE RANGE 800-1200 DEGREE J LESS CØMMØN METALS 3, 89 (1961) CA 55, 17450 (1961)	201096 201096 \$201096 201096 201096
KØFSTAD: P RUZICKA: D J (CENTRAL INST IND RES ØSLØ NØRWAY) DEFECT STRUCTURE ØF ZRØ2 AND HFØ2 J ELECTRØCHEM SØC 110: 181 (1963) CA 58: 8494G (1963)	202073 202073 202073 202073 202073
KØFSTAD,P KJØLLESDAL,H MARKAL, J NØRMÅN,N (CENTRAL INST IND RES ØSLØW NØRWAY) HIGH TEMPERATIØN ØXIDATIØN ØF NIØBIUM US DEPT CØM ØFFICE TECH SERV P B REPT 158,139 (1960) CA 57, 16296 (1962)	201952 201952 201952 201952 201952

KØFSTAD, P KJØLLESDAL, H (CENTRAL INST IND RESEARCH BLINDERN-ØSLØ NØRWAY) ØXIDATIØN ØF NIØBIUM IN THE TEMPERATURE RANGE 500 TØ 1200 DEGREES TRANS AIME 221, 285 (1961) CA 55, 13235 (1961)	201010 201010 201010 201010 201010 201010
KØHN, J NYE, W GAULE, G BØRØN, SYNTHESIS STRUCTURE AND PRØPERTIES PRØCELDINGS ØF THE CØNFERENCE ØN BØRØN HELD AT ASBURY PARK, NJ (1757) NEW YØRK, PLENUM PRESS (1960) NSA 15, 7822 (1961)	600881 600881 600881 600881
KØJIMA, T. KIKUCHI, K. METALLURGICAL RESEARCH ØN CERIUM METAL. VIII. J. ELECTRØCHEM SØC JAPAN 21, 177 (1953) CA 47, 12174 (1953)	100183 100183 100183 100183
KØJIMÅ, Y SANØ, K THE SØLUBILITY ØF GRAPHITE IN NICKEL AND COBALT AND EFFECTS OF ALLØYING ELEMENTS TETSM-TØ-HAGANE(IRØN AND STEEL INST ØF JAPAN, JØURNAL) 47, 897 (1961) REV MET LIT, 37 (1961)	300189 300189 300189 300189 300189 300189
KØLAKØWSKI• B (PØLISH ACAD SCI WARSAW PULAND) STRUCTURE ØF RHØMBØHEDRAL CØMPLICATED MØDIFICATIØN ØF BØRØN ACTA PHYS PØLON 22• 439 (1962) CA 59• 3381 (1963)	301508 301508 301508 301508 301508
KOLCHIN. Ø SUMARØKØVA. N MELTING PØINTS AND ØTHER PARAMETERS ØF THE LØWER ØXIDES ØF NIØBIUM ATØMNAYA ENERG 10. 168 (1961) NSA 15. 14763 (1961)	600873 600873 600873 600873
KØLFSØV+ V ZENKØV+ I ALEKHIN+ S SKURATØV+ S (MØSCØW STATE UNIV MØSCØW RUSSIA) HERMETIC CALØRIMETER WITH MAGNETIC STIRRER ZHUR FIZ KHIM 36+ 910 (1962)	300766 300766 300766 300766
KØLLAR: G PRØSZT: J CALCULATIØN ØF THE HEAT ØF VAPØRIZATIØN ØF ELEMENTS AND CØVALENT CØMPØUNDS BY MEANS ØF THE ANTOINE CONSTANTS MAGY KEM FØLYØIRAT 69: 278 (1963)	202075 202075 202075 202075
KØLØMØETS: N NESHPØR: V SAMSØNOV: G SEMENKØVITCH: S THERMØELECTRIC PRØPERTIES ØF CERTAIN METAL-LIKE COMPØUNDS ZH TEKHN FIZ 28: 2382 (1958) CA 56: 12409 (1962)	201484 201484 201484 201484
KOLOMYTSEV. P REACTION OF BORON AND CHROMIUM IN NICKTUBASE TERNARY ALLOYS ISSLEDOVANIYA PO ZHAROPROCHNYM SPLAVAM 6,(1960) FTD MCL-10201 COTS 47, 201 (1961)	300347 300347 300347 300347 300347
KØLSKY, H. GILMER, R. GILLES, P. FREE ENERGY FUNCTIONS FOR 54 GASEOUS ELEMENTS J. CHEM. PHYS. 27, 494 (1957) LOS ALAMOS REPT LA 2110 CA 52, 16 (1958)	700838 700838 700838 700838 700838

KØLSKI. T (E I DU PØNT DE NEMØURS AND CØ WILMINGTØN DEL) REACTIØN ØF NIØBIUM WITH ØXYGEN IN THE TEMPERATURE RANGE: 400 TØ 1325 DEGREES C (752 TØ 2417 DEGREES F) AM SØC METALS, TRANS QUART 55, 119 (1962)	201497 201497 201497 201497 201497
CA 56. 12638(1962) KØMAR. A SHREDNIK. V THE ATØMIC STRUCTURE ØF SINGLE TUNGSTEN CRYSTALS UP TØ 60 ANGSTRØMS IN DIMENSIØN	201497 300695 300695 300695
DØKLADY AKAD NAUK 144, NØ 3, 541 (1962) KØMAR, A TALANIN, G (ACADEMY ØF SCIENCE LENINGRAD USSR) THE FØRMATIØN ØF CARBIDES ØN THE SURFACE ØF MØLYBDENUM AND TUNGSTEN SINGLE CRYSTALS VERHANDL 1, 817 (1960) CA 55, 4089 (1961)	200843 200843 200843 200843 200843
KØMAREK, K CØUCØULAS, A KLINGER, N (NEW YØRK UNIV NEW YØRK NEW YØRK) REACTIONS BETWEEN REFRACTORY ØXIDES AND GRAPHITE J ELECTROCHEM SØC 110, 783 (1963) CA 59, 4776 (1963)	301269 301269 301269 301269 301269
CA 57. 8295H (1962)	202077 202077 202077 202077
KØMISSARØVA: L N SPITSYN: V I WANG; K (MØSCØW UNIV MØSCØW RUSSIA) HAFNATES ØF LANTHANUM AND NEØDYMIUM DØKL ÅKAD NAUK SSSR 150 (4): 816 (1963) CA 59: 7039E (1963)	202078 202078 202078 202078 202078
KØMISSARØVA, L PLYUSHCHEV, V KREMENSKAYA, I (LØMØNØSØV INST CHEM-TECNØL MØSCØW USSR) SØLUBILITY AND THERMAL STABILITY ØF ZIRCØNIUM ØXYCHLØRIDE ZHUR NEØRG KHIM 5, 586 (1960) CA 55, 2258 (1961)	200811 200811 200811 200811 200811
KØMISSARØVA: L SIMANØV: Y VLADIMIRØVA: Z SØME PRØPERTIES ØF CRYSTALLINE MØDIFICATIØNS ØF ZRO2 Zhur neørg khim 5: 1413 (1960) CA 55: 2332 (1961)	200819 200819 200819 200819
KØMJATHY, S (ARMØUR RES FØUNDATIØN CHICAGØ ILL) THE CØNSTITUTIØN ØF SØME VANADIUM-BASE BINARY AND TERNARY SYSTEMS AND THE AGING CHARACTERISTICS ØF SELECTED TERNARY ÅLLØYS J LESS CØMMØN METALS 3, 468 (1961) CÅ 56, 9840 (1962)	201434 201434 201434 201434 201434 201434
KØMJATHY, S READ, R RØSTØKER, W (ILLINØIS INST ØF TECHNØL CHICAGØ ILL) PHASE RELATIØNS IN SELECTED BINARY AND TERNARY VANADIUM-BASE ALLØYS SYSTËMS US DEPT CØMM ØFFICE TECH SERV PB REPT 162,816, 69 (1960) CA 56. 8415 (1962)	201394 201394 201394 201394 201394 201394

KOMKOV. Å (GEOL INST X-RAY STUDY OF RARE EARTH COMPOUNDS OF THE (Y.R) (NB.TA)04 TYPE MATERIALY VSESØYVZ NAUCH ISSLEDØVATEL GEOL INST (1959) NØ 26. 73 (1959) CÅ 56. 9541 (1962)	201418 201418 201418 201418 201418 201418 201418
KØMLEV. G VETRENKØ. E	300421
RELATIØN BETWEEN THE KINETICS ØF EVAPØRATIØN ØF SØLIDS AND	300421
SATURATED VAPØR PRESSURE	300421
TRUDY INST MET AKAD NAUK SSSR URAL FIBIL NØ 4. 19 (1958)	300421
BIB CHEM REV 3. 25F (1960)	300421
KONDRASHEV. Y INTER-TRANSITION OF VARIETIES OF MANGANESE DIOXIDE ZHUR NEORG KHIM 2. NO 12 2694 (1957) AEC-TR-4062 NSA 15. 19233 (1961)	700942 700942 700942 700942 700942
KØNIG• H (UNIV GØTTINGEN GERMANY) PLATINUM CARBIDE NATURWISSENSCHAFTFN 3B• 154 (1951) CA 46• 1837 (1952)	600944 600944 600944 600944
KØNSTANTINØV» V AMØSØV» V	301148
PRØDUCTIØN ØF ELECTRØLYTIC TA»NB AND THEIR ALLØYS	301148
TSVETN MET 35» (&) 72 (1962)	301148
BHT NØ 1.9 (1963)	301148
KØPETSKIY, C ØBTAINMENT AND PRØPERTIES ØF MØNØCRYSTALS ØF THE HIGH- MELTING METALS, TUNGSTEN, RHENIUM, TANTALUM, MØLYBDENUM AND NIØBIUM TRUDY AK NAUK SSSR INST METALL ISSLEDØVANIYA PØ ZHARPØCHNYM SPLAVAM MØSCØW 9, 192 (1962) CØTS 67, 124 (1963)	301270 301270 301270 301270 301270 301270 301270
KØPYLØVÅ. V CHEMICAL STABILITY ØF CARBIDES ØF TRANSITIØN ELEMENTS ØF GRØUPS IV. V. AND VI ZHUR PRIKLAD, KHIM 34. 1936 (1961) CA 56. 4344 (1962)	201305 201305 201305 201305 201305
KØRNILØV. I I GLAZØVA. V V	202081
FØRMATIØN ØF TI6Ø AND TI3Ø CØMPØUNDS IN THE TITANIUM	202081
Øxygen system	202081
Døkl akad nauk SSSR 150 (2). 313 (1963)	202081
Ca 59. 8428D (1963)	202081
KORNÍLOV. I I MÍKHEEV. V S KONSTANTÍNOV. K M	202079
SPECIFIC ELECTRICAL RESISTANCE OF ALLOYS OF TITANIUM	202079
ALUMÍNUM SYSTEM FROM ROOM TEMPERATURE L' TO 1200 DEGRESS C	202079
FIZ MÉTÁL I METALLOVED 16. 57 (1963)	202079
KORNÍLOV, I 1 POLYAKOVA, R S	202080
NEW METALLIC MATERIALS FOR CHEMICAL EQUIPMENT CONSTRUCTION	202080
ZH VSÉS KHIM ØBSHCHESTVA IM D I MENDELEEVA 8, 305 (1963)	202080
CA 59, 7205Å (1963)	202080
KORNILOV, A LEONIDOV, V SKURATOV, S	300923
Standard heat of formation of the Higher Carbides of Niobium	300923

AND TANTALUM	300923
VEST MØSKØV UNIV SER II KHIM 17+ NØ 6+ 48 (1962)	300923
KØRNILØV• A LEØNIDØV• V SKURÅTØV• S (MØSCØW UNIV MØSCØW RUSSIA) THE STANDARD HEATS ØF FØRMATIØN ØF NIØBIUM PENTØXIDE AND TANTALUM PENTØXIDE DØKLADY AKAD NAUK SSSR 144• 355 (1962) NSÅ 16• 25334 (1962)	601591 601591 601591 601591 601591
KØRNÍLØV. I	200951
METALLØCHEMICAL PRØPERTIES ØF NIØBIUM	200951
DØKLADY AKAD NAUK SSSR 135. 1399 (1960)	200951
CA 55. 10251 (1961)	200951
KØRNILØV. I	900205
METALLØCHEMISTRY AND SØME ØF ITS PRØBLEMS	900205
AEC-TR-5182	900205
KØRNILØV. I PHASE-EQUILIBRIUM DIAGRAMS FØR SYSTEMS CØNSISTING ØF GRØUP IV ELEMENTS AND ØXYGEN TRUDY KØMISSII ANAL KHIM AKAD NAUK SSSR. INST GEØKHIM I ANAL KHIM 10, 17 (1960) CA 55. 7017 (1961)	200769 200769 200769 200769
KØRNILØV•I MATVEEVA•N	201946
METALLØCHEMISTRY ØF VANADIUM	201946
USPE KHIM 31• 1076 (1962)	201946
CA 57• 16271 (1962)	201946
KØRNILØV•I MATVEEVA•N METALLØCHEMISTRY ØF VANADIUM USPE KHIM 31 • 1076 (1962) CA 57• 16271 (1962) KØRNILØV• I MATVEEVA• N METALLØCHEMISTRY ØF VANADIUM TRUDY INST METAL IMENI A A BAYKØVA• METAL• METALLØV• FIZ• KHIM METØDY ISSLEDØV• 82 (1961) CA 56• 1247 (1962)	400588 400588 400588 400588 400588
KØRNILØV. I PØLYAKØVÅ. R	201681
METALLØCHEMISTRY III METALLØCHEMICAL PRØPERTIES ØF NIØBIUM	201681
IZV AKAD NAUK SSR. ØTD KHIM NAUK. 1962. 565	201681
CA 57. 4267 (1962)	201681
KØRNILØV. I PØLYAKØVA, R	201242
PRØPERTIES ØF ALLØYS ØF THE TITANIUM-VANADIUM-MØLYBDENUM	201242
SYSTEM	201242
IZVEST AKAD NAUK SSSR ØTDEL TEKH NAUK MET I TØPLIVØ	201242
1961. NØ 4. 76 (1961)	201242
CA 56. 1261 (1962)	201242
KØRNILØV. I VLASØV. V	500126
FUSIØN DIAGRAM ØF THE TITANIUM-VANADIUM-NIØBIUM SYSTEM	500126
ZHUR NEØRG KHIM 2. 2762 (1957)	500126
CA 52. 14497 (1958)	500126
KØRNILØV, N PYLAEVA, E	300508
INVESTIGATION OF EQUILIBRIUM IN THE TERNARY SYSTEM FØRMED BY	300508
NI3NB-NI3TI-NI3TA INTERMETALLICS	300508
IZVFST AKAD NAUK SSSR 25, 197 (1961)	300508
BHT NØ 3, 34 (1961)	300508
KØRNILØV• N PRYAKHINA• L ØZHEMKØVA• Ø SNETKØV• A	300209
INTERACTIØN ØF TITANIUM CARBIDE WITH A SIX-CØMPØNENT NICKEL	300209
SØLID SØLUTIØN	300209

NP-TR-286 NSA 14: 559 (1960)	300209 300209
MELTING PØINT. TRANSITIØN PØINTS AND DENSITY ØF METALLIC URANIUM DENKI SHAKENSKØ IHØ 22. 509 (1958)	601326 601326 601326 601326 601326
(PØLYTECH INST CHELYABINSK USSR)	301273 301273 301273 301273 301273
KØRØLEV» L MØRØZØV» A EQUILIBRIUM ØF NITRØGEN AND VANADIUM IN GAMMA-IRØN IZV VYS UCHEB ZAV CHERN MET 5 NØ 9. 39 (1962) RUSS ACC 15. NØ 10. 2774 (1963)	301272 301272 301272 301272
	601321 601321 601321 601321 601321 601321
KOROLKOV» A IGUMNOVA» A SURFACE TENSION OF INTERMETALLIC COMPOUNDS IZV AKAD NAUK SSSR OTD TEFF NAUK MET I TOPLIVO NO 6° 95 (1961) BHT NO 2° 34 (1962)	300538 300538 300538 300538 300538
KØRØSTYLEVA: L ISØTØPIC SHIFT IN THE SPECTRUM ØF CERIUM ØPTIKA I SPEKTRØSEØPIYA 3: 536 (1957) CA 52: 8723 (1958)	601096 601096 601096 601096
KØRSUNSKII• M GENKIN• Y (PØLYTECH INST KHARKØV FUSSIA) X-RAY SPECTRA ØF MIØBIUM IN THE NIØBIUM-NITRØGEN YSTEM IN THE REGIØN ØF THE ALPHA PHASE IZV AKAD SSSR SER FIZ 27• 362 (1963) CA 59• 4694 (1963)	301274 301274 301274 301274 301274 301274
KØRSUNSKII; M. GENKIN; Y. THE X-RAY L. SPECTRA OF PURE NIØBIUM AND ITS DIBØRIDE; NITRIDE AND CARBIDE; THE TYPE JE BONDING IN THESE COMPOUNDS ISSLEDØVANIYA PØ ZHARØPROCH SPLAVAM; AKAD NAUK SSSR INST MET IM AA BAIKOVA 6; 169 (1960) CA 56; 3028 (1962)	201274 201274 201274 201274 201274 201274 201274
KØRSUNSKII. M. GENKIN. Y. VERKHØGLYADØN. T. (VI LENIN PØLYTECH INST	300912 300912 300912 300912 300912 300912
KØSENKØ• V IGNATKØV• V (PHYS INST KIEV RUSSIA) EVAPØRATIØN ØF GERMANIUM IN TELLURIUM VAPØR	201209 201209 201209

FIZ TVERDAGØ TELA 3. 89 (1961) CA 56. 951 (1962)	201209 201209
KØSENKØ• V NESTERENKØ• B EVAPØRATIØN ØF SI IN TE VAPØRS FIZ TVERDØGØ TELA 3• 660 (1961) CA 55• 20550 (1961)	600847 600847 600847 600847
KØSØLAPØVA, T SAMSØNØV, G CHEMICAL PRØPERTIES AND METHØDS ØF ANALYSIS ØF CHRØMIUM CARBIDES FTD-TT-62-1825 TRUDY INSTITUT METALL I SPET SPLAVØV SEMINAR PØ ZHAR MATERIALAM NØ 6, 38 (1960) CØTS NØ 60, 84 (1962)	300918 300918 300918 300918 300918 300918 300918
KØSØLAPØVA• T KUGAY• L CHEMICAL PRØPERTIES AND METHØDS ØF ANALYZING SØME SILICIDES FTD-TT-62-1825 TRUDY INSTITUT METALL I SPET SPLAVØV SEMINAR PØ ZHAP MATERIALAM NØ 6• 69 (1960) CØTS NØ 60• 84 (1962)	300917 300917 300917 300917 300917 300917
KØSØLAPØVA+ T SAMSØNØV+ G (INST METAALLØCERAM AND SPEC ALLØYS KIEV) KINETICS ØF THE ØXIDATIØN ØF CHRØMIUM CARBIDES ZHUR FIZ KHIM 35+ 363 (1961) CA 55+ 11036 (1961)	200957 200957 200957 200957 200957
KØSØLAPØVA: T SAMSØNØV: G CHEMICAL PRØPERTIES AND METHØDS ØF ANALYZING CHRØMIUM CARBIDES TRUDY AK NAUK UKRAYIN RSR INST METALL I SPETSIALNYKH CPLAVØV SEMINAR PØ ZHARØSTØYKIM MATERIALAM CØTS 66: 131 (U963)	301275 301275 301275 301275 301275
KØSØLAPØVA: T. SAMSØNØV: G. ØN THE CHEMICAL STABILITY ØF CHRØMIUM CARBIDES UKR KHIM ZH 28: 931 (1962)	300925 300925 300925
KØSUGE, K TAKADA, T KACHI, S (KYØTØ UNIV PHASE EQUILIBRIA THE PHASE DIAGRAM OF THE V203-V205 SYSTEM AND ITS MAGNETISM NIPPØN KAGAKU ZASSHI 83, 1243 (1962) BHT NØ 2, 39 (1963)	301276 301276 301276 301276 301276 301276
KØSØV, N RIVIN, Ø NEW TYPE ØF CALØRIMETER FØR DETERMINING THERMAL CØNSTANTS TEZISY DØKLADØV I SØØBSHCHENIY NA SØVESHCHANII PØ TEPLØ-I MASSØØBMENU MINSK, AK NAUK BELØRUSSKØY SSR (1961) FTD-TT-62-59	400590 400590 400590 400590 400590 400590
KØTSCH: H (WISS Z TECH UNIV DRESDEN GERMANY) CHRØMIUM BØRIDE-BASE SINTERED ALLØYS CA 58: 11041 (1963)	301509 301509 301509 301509
KØVALCHENKØ, M NESHPØR, V SAMSØNØV, G PREPARATIØN ØF LANTHANUM CARBIDE ZHUR PRIKLAD KHIM 31, 1427 (1958) CA 53, 953 (1959)	700869 700869 700869 700869

KØVALCHENKØ, M. SAMSØNØV, G. ALLØYS ØF ZIRCØNIUM BØRIDE WITH MØLYBDENUM VØPRØSY PØRØSHKØVØI MET I PRØCHNØSTI MATERIALØV AKAD NAUK UKR SSR NØ 7 18 (1959) CA 55, 19713 (1961)	300193 300193 300193 300193 300193
A A A A	201472 201472 201472 201472
KØVALCHENKØ, M. SAMSØNØV, G. VISCØUS FLØW DURING HØT PRESS SINTERING ØF PØWDERS ISSLED PØ ZHARØPRØACH SPLAVAM, AKAD. NAUK SSSR INST MET 8, 116 (1962) CA 58, 328 (1963)	300920 300920 300920 300920 300920
CARBIDES WITH CUBIC CRYSTAL LATTICE (X-RAY ANALYSIS) SBØRNIK TRUDØV VSESØYUZ NAUCH-ISSLEDØVATEL INST	201131 201131 201131 201131 201131 201131
TVERD SPLAVØV 1. 305 (1959) CA 55. 19660 (1961) KØVALSKII. A SEMENØVSKAYA. S (ALL-UNIØN SCI-RES INST SØLID ALLØYS) STRUCTURE ØF MØLYBDENUM MØNØCARBIDE KRISTALLØGRAFIYA 4. 923 (1959) CA 57. 4128 (1962) KØVBA. L M TRUNØV. V K NIØBIUM ØXIDE DØKL AN SSSR 147 3. 622 62 RUSS ACC VØL 15. 12 3268 MARCH 1963	201671 201671 201671 201671 201671
KØVBA: L.M. TRUNØV: V.K. NIØBIUM ØXIDE DØKL AN SSSR 147-3: 622-62 RUSS ACC VØL 15: 12-3268 MARCH 1963	301278 301278 301278 301278
KØVTUN» G KRUGLUKH» A PØVLØV» V (PHYS TECH INST KHARKØV - KHARKØV - RUSSIA) DETERMINATIØN ØF THE VAPØR PRESSURE ØF METALS FRØM THE RATE ØF VAPØRIZATIØN UKRAIN FIZ ZHUR 6. 386 (1961) CA 57. 2871 (1962)	300733 300733 300733 300733 300733
KØVALCHENKØ: M. SAMSØNØV: G. YASINSKAYA: G. MELTS ØF BØRIDES ØF TRANSITIØN METALS WITH ØTHER METALS IZVEST AKAD NAUK SSSR ØTDEL TEKH NAUK MET I TØPLIVØ 1960: NØ 2 115 (1960) CA 55: 14259 (1961)	201044 201044 201044 201044 201044
KØZLØVSKAYA. V MASS SPECTRØMETER DETERMINATION ØF THE AMØUNT AND COMPOSITION ØF GASES ADSØRDED ØN THE SURFACE ØF GERMANIUM AND SILICON MØNØCRYSTALS RUSSIAN BØØK ØPREDELENIF KØLICHESTVA I SØSTAVA GAZØV ADSØRBIRØVANNYKH NA PØVERKHNOSTI MONØETISTALLØV GERMANIYA I KREMNIYA MASS SPEKTRØMETRICHESKIM METØDØM CØTS 54. 249 (1962)	301103 301103 301103 301103 301103 301103 301103 301103
KOZAKFVITCH, P. URBAIN, G. SURFÄCE TENSION OF MOLTEN ALLOYS. 111. ELEMENTS OF GROUPS V (N. P. AS, SB, V), IV (C. SI, SN, ZR), AND III (B, AL, LA, CE) MEM SCI REV MET 58, 931 (1961) CA 56, 15265 (1962)	201557 201557 201557 201557 201557 201557

KØZAKFVITCH, P. URBAIN, G (INST RECH SIDERURGIE SFINF-FT-ØISE FRANCE) THE SURFACE TENSIØN ØF LIQUID PLATINUM AT 1800 DEGREES CØMPT REND 253, 2229 (1961) CA 57, 76 (1962)	201558 201558 201558 201558 201558
KØZHEVNIKØV» G REDUCTIØN ØF ØXIDES ØF BARIUM AND STRØNTIUM WITH ALUMINUM TSVETN METAL 36(2), 53 (1963) CA 59, 3602 (1963)	301510 301510 301510 301510
KØZMANØV. Y SØLID-STATE REACTIØN BETWEEN IRØN ØXIDE AND THE DIØXIDES ØF MØLYBDENUM AND TUNGSTEN ZHUR NEØRG KHIM 5, 2048 (1960) CA 55, 13148 (1961)	201005 201005 201005 201005 201005
KØZMANØV» Y FESHCHUKØVA» T HIGH TEMPERATURE ØXIDATIØN ØF ALLØYS ØF TUNGSTEN AND RHENIUM TR URAL SK PØLITEKHN INST SB 114. 120 (1961) CA 57. 557 (1962)	201589 201589 201589 201589
KRAEV, M ANALYTICAL WAVE FUNCTION AND ENERGY VALUE OF THE GROUND STATE BORON ATOM IZV FIZ INST ANEB (BULGARIA) AKAD NAUK 9, NC 1, 137 (1961) PA 65, 6080 (1962) CA 56, 8167 (1962)	300798 300798 300798 300798 300798 300798
KRAFTMAKHER• Y A VACANCY FØRMATIØN IN NB FIZ TVERD TELA 5• 950 (1963) BHT 2• 7 (1963)	301279 301279 301279 301279
KRAFTMAKHER: I A STRELKØV; P G CRYSTAL LATTICES FIZ TVER TELA 4 8: 2271 62 RUSS ACC 15: 11 2880 (1963)	301280 301280 301280 301280
KRAFTMAKHER, I A THE MØDULATIØN METHØD FØR HEAT CAPACITY PMTF 5, 176 (1962) RUSS ACC VØL 16, 1, 151 (1963)	301281 301281 301281 301281
KRAFTMAKHER. I A HEAT CAPACITY OF TANTALUM AT 1200-2900 DEGREES F ZH PRIKL MEKHAN I TEKHN FIZ 1963 2. 158 (1963) CA 59. 3370H (1963)	301282 301282 301282 301282
KRAMER. D RHØDES. C (N AM AVIATION INC CANOGA PARK CALIF) GAMMA TØ GAMMA-PRIME TRANSFØRMATION IN THE URANIUM-MØLYBDENUM SYSTEM U S AT ENERGY CØMM NAA-SR-6617. (1961) CA 56. 7018 (1962)	201367 201367 201367 201367 201367 201367
KRASØVITSKAYA, R KANTØR, P KAN, I KANDYBA, V KUTSINA, L FØMITCHEV, E DETERMINATIØN ØF THE ENTHALPY AND HEAT CAPACITY ØF BØRØN ØXICE 5203 FRØM 1000 TØ 2200 DEG K DØKLADY AKAD NAUK SSSR 139, 1499 (1961) EHT 4, 25 (1961)	300336 300336 300336 300336 300336 300336

FØMITCHEV: E (INST ØF STANDARDS AND MEASURING INSTRUMENTS USSR) DETERMINATION ØF ENTHALPY AND HEAT CAPACITY ØF 8203 FRØM 1000 TØ 2200 DEGREES K	700968 700968 700968 700968 700968 700968 700968
THE MEASUREMENT OF SPECIFIC HEAT OF METAL'S AT HIGH TEMPERATURES Z METALLK 49. 386 (1958)	700647 700647 700647 700647 700647 700647
KREBS. K RENØRMALIZATIØN EFFECT IN THE ELECTRØNIC SPECIFIC HEAT ØF VANADIUM PHYS LETTERS 6. 31 (1963)	202082 202082 202082 202082
KREBS+ K NELKØWSKI+ H (TECH UNIV BERLIN GERMANY) ISØTRØPIC DISPLACEMENT IN THE REGONANCE LINES ØF YB11 AND IN THE SINGLET SYSTEM ØF YB1 Z PHYSIK 145+ 543 (1956) CA 50+ 16371 (1956)	601029 601029 601029 601029 601029
KREIMER: G VAKHØVSKAYA: M VARIATIØN ØF THE SIZE AND SHAPE ØF GRAINS ØF TIC-WC CØLID SØLUTIØNS DURING HEATING IN THE PRESENCE ØF FREE WC WITH AND WITHOUT CØBALT SBØRNIK TRUDØV VSESØYUZ NAUK-ISSLEDØVATIL INST TVERD SPLAVØV 1: 205 (1959) CA 55: 19660 (1961)	300213 300213 300213 300213 300213 300213 300213
KRENTSIS+ R. GELD+ P. SEREBRENNIKØV+ N. FNTHALPY ØF CHRØMIUM-BEARING IRÐN ALLØYS AT HIGH TEMPERATURES IZV VUZ CHERNAYA MET+ 5 (1960) ASM REVIEW ØF MET LIT 18+ NØ 9 35 (1961)	300195 300195 300195 300195
KRESTØV» G A Cøncerning partial mølal guantities Zh fiz khim 37, 1406 (1963)	301283 301283 301283
KRESTØVNIKØV. A VIGDØRØVICH. V RELATIØN BETWEEN THE MELTING PØINT OF ELEMENTS AND THE SHØRTEST INTERATØMIC DISTANCE IN THEIR CRYSTAL LATTICES SB NAUCHN TR INST TSVETN MET IM M I KATININA 33. 421 (1960) CA 58. 13158 (1963)	301512 301512 301512 301512 301512
KRESTØVNIKØV• A APPRØXIMATE METHØDS ØF CALCULATING ENTHALPY &F METALLURGICAL REACTIØNS ØF RARE METALS RAZDFLENIE BLIZKIKH PØ SVØISTAM REDK. H METAL 1962• 255 (1962) CA 58• 980 (1963)	300930 300930 300930 300930 300930
KRESTØVNIKØV. A LØMØV. A THERMØDYNAMICS ØF REDUCTIØN ØF TITANIUM ØXIDES SB NAUCH TR INST TSVETN METAL 1960, NØ 33, B (1960) CA 57, 14497 (1962)	300927 300927 300927 300927
KRESTOVNIKOV. A VENDRIKH. M	200783

THERMODYNAMICS OF TITANIUM CHLORIDE IZVEST VYSSHIKH UCHEB ZAVEDENII. TSVETNAYA MET 2. NO 2 54 (1959) CA 55. 91 (1961)	200783 200783 200783 200783
KRESTØVNIKØV. A VENDRIKH. M (INST NØN-FERRØUS MTLS. GØLD MØSCØW USSR) HEAT CAPACITY ØF CHRØMIUM BØRIDE CHISTYE METAL I PØLUPRØVØD. TRUDY 1-ØI (PERVØI) MEZHVUZ KØNF. MØSCØW 1957. 165 (1959) CA 55. 1168 (1961)	200797 200797 200797 200797 200797 200797
CA 55. 1168 (1961) KRESTØVNIKØV. A VENDRIKH, M THERMØDYNAMICS ØF MAKING TITANIUM AND CHRØMIUM DIBØRIDES BY THE BØRØN CARBIDE METHØD SBØR NAUCH TRUD GINTSVETMET NØ 33. 3 (1960) RUSS ACC 15. NØ 3. 708 (1962)	300672 300672 300672 300672 300672
KRIEGER: F (RAND CORP SANTA MONICA CAL) THE THERMODYNAMICS OF THE GRAPHITE-CARBON VAPOR SYSTEM AD 285973 TAB 63: 1: 2: 107 (1963)	300931 300931 300931 300931 300931
KRIEVE, W MASON, D MEASUREMENT OF EQUILIBRIUM OF THE REACTION TICL3(S)+HCL(G) = TICL4(G)+1/2 H2(G) J CHEM PHYS 25, 524 (1956)	300290 300290 300290 300290
KRIKORIAN. N WITTEMAN. W BOWMAN. M (LØS ALAMØS SCI LAB LØS ALAMØS N MEXICO) THE PREPARATION. CRYSTAL STRUCTURES. AND SOME PROPERTIES OF ZIRCONIUM AND HAFNIUM DIRHENIDE J PHYS CHEM 64. 1517 (1960) CA 55. 11020 (1961)	200956 200956 200956 200956 200956 200956
KRIKØRIAN» N H WALLACE» T C ANDERSØN» J L (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEXICØ) LØW TEMPERATURE THERMAL EXPANSIØN ØF THE GRØUP 4A CARBIDES J ELECTRØCHEM SØC 110, 587 (1963)	202083 202083 202083 202083 202083
KRIKØRIAN: N H WALLACE: T C ANDERSØN: J L LØW-TEMPERATURE THERMAL EXPANSIØN ØF THE GRØUP IV A CARBIDES J ELECTRØCHEM SØC 110: 587 (1963) CA 59: 2188F (1963)	301285 301285 301285 301285
KRIKØRIAN: N WITTEMAN: W BØWMAN: M (LØS ALAMØS SCI LAB LØS ALAMØS N MEXICØ) THE MUTUAL SØLID SØLUBILITY ØF HAFNIUM CARBIDE AND URANIUM MØNØCARBIDE J ELECTRØCHEM SØC 110: 560 (1963) CA 58: 13191 (1963)	301513 301513 301513 301513 301513
KRIKØRIAN: Ø H THE VAPØR PRESSURE ØF SCANDIUM METAL J PHYS CHEM 67: 1586 (1963)	301284 301284 301284
KRIKOPIAN. 0 ESTIMATION OF HIGH-TEMPERATURE HEAT CAPACITIES OF CARBIDES US AT ENERGY COMM UCRL-6785 (1962) CA 57. 5367 (1962)	301111 301111 301111 301111

KRİKORIAN: Ø (UNİV LIVERMORE LAWRENCE RADIATION LAB THERMAL EXPANSION OF HIGH TEMPERATURE MATERIALS USAEC - UCRL - 6132 (1960) CA 55: 4078 (1961) NSA 15: 1832 (1961)	700847 700847 700847 700847 700847 700847
KRIPYAKEVICH: P THE ALPHA-MN AND BETA-MN STRUCTURES KRISTALLØGRAFIYA 5: 273 (1960) SØVIFT PHYSICS CRYSTALLØGRAPHY 5: 253 (1960) PÅ 64: 4040 (1961)	600698 600698 600698 600698 600698
KRIPYAKEVICH, P. EVDØKIMENKØ, V (I FRANKØ STATE UNIV LVØV) CRYSTAL STRUCTURE ØF BA2 MG17 AND SR2 MG17 KRISTALLØGRAFIYA 7, 31 (1962) CA 57, 4127 (1962)	201670 201670 201670 201670 201670
KRIPYAKEVICH. P. GLADYSHEVSKII. E (I FRANKØ STATE UNIV LVØV PØLAND) CRYSTAL STRUCTURE ØF CØMPØUNDS IN THE SYSTEMS ND-AL, Y-AL, AND GD-FF KRISTALLØGRAFIYA 6, 118 (1961) CA 57, 10606 (1962)	201822 201822 201822 201822 201822 201822
KRIPYAKEVICH. P. TYLKINA. M. SAVITSKII. E (STATE UNIV LVØV PØLAND) THE CRYSTAL STRUCTURES AND SØME PRØPERTIES ØF CØMPØUNDS ØF HAFNIUM WITH BERYLLIUM ZHUR STRUKT KHIM 2. 424 (1961) CA 56. 8102 (1962)	201377 201377 201377 201377 201377 201377
KRISHMAN+ K JAIN+ S (NATL PHYSICAL LAB DETERMINATION OF THERMAL CONDUCTIVITY AT HIGH TEMP BRIT J APPL PHYS 5+ 426 (1954) NSA 9+ 1564 (1955)	601281 601281 601281 601281 601281
KRISHNA, P. VERMA, A.R. (BANARAS HINDU UNIV	301287 301287 301287 301287 301287
KRISHNA: P VERMA: A R (BANARAS HINDU UNIV VARANASI INDIA) ANØMALIES IN SILICØN CARBIDE PØLYTYPES PRØC RØY SØC (LØNDØN) SER A 272+ 490 (1963) CA 58: 9696F (1963)	202084 202084 202084 202084 202084
KRISHNA, P. VERMA, A (BANARAS HINDU UNIV VARANASI INDIA) A NEW PØLY-TYPE ØF CILICØN CARHIDE-57E IIS STRUCTURE AND GRØWTH NP-10247 ACTA CRYST 15, 383 (1962) NSA 15, 26698 (1961)	701058 701058 701058 701058 701058 701058 701058
KRIVSKY, W. SCHUHMANN, R. DERIVATION OF PHASE DIAGRAM FOR THE SILICON-DXYGEN-CARBON SYSTEM TRANS AIME 221, 898 (1961)	300459 300459 300459 300459

BHTG NØ 4. 4 (1962)	300459
KRØGH-MØE • J (SVENSKA SILIKATFØRSKNINGSIN GØTEBØRG SWEDEN) ENERGY AND LENGTH ØF THE BØRØN-ØXYGEN BØND ACTA CHEM SCAND 17 • 843 (1963) CA 59 • 4556A (1963)	301288 301288 301288 301288 301288
KRUPKA: M (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEXIC®) HIGH TEMPERATURE VAPØRIZATIØN BEHAVIØR AND THERMØDYNAMIC PRØPERTIES ØF HAFNIUM DIBØRIDE LA-2611 (1962) NSA 16: 16722 (1962)	601598 601598 601598 601598 601598
KRUPNIKØV• K BAKANØVA• A BRAZHNIK• M TRUNIN• R AN INVESTIGATIØN ØF THE IMPACT CØMPRESSIBILITY ØF TI• MØ• TA AND FE DØKL AKAD NAUK SSSR 148• (6) 1302 (1963) BHT NØ 1• 9 (1963)	301149 301149 301149 301149 301149
KSENØFØNTØVA: R VASILEVÅ: I GERASIMØV: Y (MØSCØW UNIV MØSCØW USSR) THERMØDYNAMICS ØF TUNGSTEN ØXIDES ØF VARIABLE CØMPØTITIAN DØKLADY AKAD NAUK SSSR 143: 1105 (1962) NSA 16: 21055(1962)	301388 301388 301388 301388 301388
KUBASCHEWSKI: Ø APPLICATION OF CHEMICAL THERMODYNAMICS TO PRACTICAL PROBLEMS TRANS BRIT CERAM SOC 60: 67 (1961) CA 55: 14042 (1961)	600792 600792 600792 600792
KUBASCHEWSKI. Ø (GT BRIT NAT PHYS LAB TEDDINGTØN ENGLAND) THE THERMØCHEMISTRY AND KINETICS ØF ØXIDATIØN ØF GRØUPS IVA AND VA TRANSITIØN METALS NP-11056 NSA 16. 4495 /1962)	601577 601577 601577 601577 531577
KUBASCHEWSKI. Ø CATTERALL. I THERMØCHEMICAL DATA ØF ALLØYS PERGAMØN PRESS (1956)	601642 601642 601642
KUBASCHËWSKI. Ø DENCH. W HEYMER. G THERMØDYNAMICS ØF THE SYSTEM CHRØMIUM-NICKEL ZEITSCHRIFT FUR ELEKTRØCHEMIE 64, 801 (1960) ASM REV 18. NØ 2.30 (1961)	300211 300211 300211 300211
KUBASCHEWSKI. Ø EVANS. E METALLURGICAL THERMOCHEMISTRY BUTTERWØRTH-SPRINGER. LØNDØN (1956)	700829 700829 700829
KUBASCHEWSKI, Ø HEYMER, G THE THERMØDYNAMICS ØF THE CHRØMIUM-IRØN SYSTEM ACTA METAL 8, 416 (1960) PA 64, 2539 (1961)	600696 600696 600696 600696
KUBASCHEWSKI, Ø HØPKINS, B (NATL PHYS LAB ØXIDATIØN MECHANISMS ØF NIØBIUM, TANTALUM, MØLYBDENUM, AND TUNGSTEN J LESS CØMMØN METALS 2, 172 (1960) CA 55, 14236 (1961)	201038 201038 201038 201038 201038 201038

KUBØ• K SHINRIKI• K (TØKYØ INST TECHNØL TØKYØ JAPAN) THE REACTION MECHANISM ØF FØRMATION ØF TITANIUM CARBIDE UNDER VACUUM KØGYØ KAGAKU ZASSHI 63• 64 (1960) CA 56• 983 (1962)	201210 201210 201210 201210 201210 201210
KUBO. T HANAZAWA. T (TOKYO INST TECHNOL TOKYO JAPAN) PREPARATION OF TITANIUM BORIDE KOGYO KAGAKU ZASSHI 63. 1144 (1960) CA 56. 9685 (1962)	201428 201428 201428 201428 201428
KUBO, T SHINRIKI, K HANAZAWA, T (TØKYØ INST TECHNØL) REACTIØN ØF TITANIUM SUBØXIDE WITH CARBØN BLACK KØGYØ KAGAKU ZASSHI 64, 619 (1961) CA 57, 4291 (1962)	201691 201691 201691 201691 201691
KUBOTA, B DECOMPOSITION OF HIGHER OXIDES OF CHROMIUM UNDER VARIOUS PRESSURES OF OXYGEN J AM CERAM SOC 44, 239 (1961)	700586 700586 700586 700586
KURØTÅ, T PREPARATIØN ØF FERRØMAQNETIC CHRØMIUM DIØXIDE J PHYS SØC 15, 1706 (1960) CA 55, 12129 (1961)	600910 600910 600910
KUCHERØV. R. RIKENGLAZ. L. THE CONDENSATION COEFFICIENT DØKLADY AKAD NAUK SSSR PHYS CHEM SECT 133, 1130 (1960)	300154 300154 300154
KUDINSTEVA: G EPELBAUM: V TSAREV: B LYNTHESIS OF HEXABORIDES OF SOME RARE EARTH METALS AND THEIR ELECTRON-EMISSION PROPERTIES BOR TRUDY KONE: HIM BORA I FOO SOFTINENTI 1955: 112 (1956) CA 54: 12780 (1960)	601182 601182 601182 601182
KUDINTSEVA: G. NESHPØR: V. SAMSENØV: G. TSAREV: D. PADERNØ: Y. THERMØ-EMITTING PRØPERTIES ØF THE BØRIDES ØF SCANJIUM AND GADØLINIUM VYSØKØTEMPERATURNYE METALLØKERAM MATERIALY: AKAD NAUK UKR SSR: INST METALLØFERAM I SPETS OPLAVOV 109 (1960) CA 58: 7468 (1963)	301514 301514 301514 301514 301514 301514
KUDINTSEVA;G A. POPOV; V.K. PRØCESSING LANTHANUM PØRIDE WITH A PLACMA JET PØRØSHKØVAYA MET AKAD NAUK UKR SGR 2; 4; 56 (1962) ČA 58; 267H (1963)	301289 301289 301289 301289
*UDINTSEVA: G TSAREV: B THE PORIDES OF THE TRANSITION METALS: D THEIR ELECTRON-EMISSION PROPERTIES TRUDY KONF PO KHIM BORA I YEGO SOYEDINENIY 1958: 106 (1958) FTD-TT-62-1506	900214 900214 900214 900214 900214
KUDINTSEVA: G. PØLYAKØVA: M. SAMSØNOV: G. TSAREV: B. PREPARATION AND SØME PROPERTIES ØF THE HEXABØRIDE ØF YTTRIUM FIZ METAL I METALLØVED 6: 272 (1956) CA 53: 9871 (1959)	700737 700737 700737 700737

KUDRYAVTSEV. B CALCULATION OF THE CONFIGURATIONAL HEAT CAPACITY OF LIQUIDS ZHUR FIZ KHIM 36. 1117 (1962)	300363 300363 300363
KUDRYAVTSEVA. V SØFRØNØV. G PRECISIØN LATTICE-PARAMETER DETERMINATIØN ØF BØRØN CARBIDE ØF CØMPØSITIØNS B2.75C TØ B6.75C BY X-RAY EXPØSURES ØBTAINED IN THE REGIØN ØF LARGE-ANGLE SCATTERING (0-90 DEG) TRUDY SEMINARA PØ ZHARØSTØIKIM MATERIALAM AKAD NAUK UKR SSR- INST METALLØKERAM I SPETSIAL SPLAVØV KIEV 1958. NØ. 5 52 (1960) CA 55. 14003 (1961)	600789 600789 600789 600789 600789 600789 600789
KUHLBØRG. L (UNIV ØF UPPSALA UPPSALA SWEDEN) THE CRYSTAL CHEMISTRY ØF MØLYBDENUM ØXIDES ADVAN CHEM SER 39. 37 (1963) CA 58. 13236 (1963)	301498 301498 301498 301498 301498
KUHLMAN, C (MALLINCKRØDT CHEM WØRKS ST LØUIS MØ) REDUCTIØN ØF URANIUM TRIØXIDE TØ URANIUM DIØXIDE WITH HYDRØGEN REACTIØN RATES AT VARIØUS TEMPERATURES US AT ENERGY CØMM MCW-142, (1948) CA 57, 14470 (1962)	201904 201904 201904 201904 201904 201904
KUHLMAN C (MALLINCKRØDT CHEM WØRKS ST LØUIS MØ) FLUØRINATIØN ØF URANIUM DIØXIDE WITH HYDRØGEN FLUØRIDE WATER MIXTURES US AT ENERGY CØMM MCW-138 (1948) CA 55 18409 (1961)	201115 201115 201115 201115 201115 201115
KUHLMAN. C (MALLINCKRØDT CHEM WØRKS ST LØUIS MØ) FLUØRINATIØN ØF URANIUM TRIØXIDE, RATE AND APPARENT EQUILIBRIUM STUDIES US AT ENERGY CØMM MCW 144 (1948) CA 55. 18257 (1961)	201105 201105 4201105 201105 201105 201105
KULESHØV. I SADIKØV. G SØKØLØVA. Z NEUTRØNØGRAPHIC STUDY ØF HIGH TEMPERATURE BERYLLIUM ØXIDE ZHUR FIZ KHIM 36. 1369 (1962) CA 57. 8012 (1962)	300770 300770 300770 300770
KULVARSKAYA. B MASLØVSKAYA. R THERMIØNIC EMISSIØN AND VAPØR PRESSURE ØF RARE EARTH METAL ØXÎDES RADIØTEKH I ELEKTRØN 5. 1254 (1960) CA 55. 25475 (1961)	300399 300399 300399 300399 300399
KUHN. W FØRMATIØN ØF SILICØN CARBIDE IN THE ELECTRIC ARC J ELECTRØCHEM SØC 110. NØ 4. 298 (1963)	300919 300919 300919
KUPRØVSKII. B GELD. P THERMAL CONDUCTIVITY OF ALPHA-TITANIUM TR URALSK POLITEKHN INST SB NO 114. 153-4 (1961) CA 57. 12229 (1962)	201867 201867 201867 201867
KURNAKØV» N TRØNEVA» M EQUILIBRIUM DIAGRAM ØF THE BINARY SYSTEM	601588 601588

ØF TI-C WITH UP TØ 5 PERCENT CARBØN	601588
Zhur Neørg Khim 6, 1347 (1961)	601588
NSA 16, 557 (1962)	601588
KUMAR. S THERMAL EXPANSION OF OXIDES CENTRAL GLASS AND CERAM RESEARCH INST BULL (INDIA) 7. 58 (1960) CERAM ABS 44. 199 (1961)	700685 700685 700685 700685 700685
KURNAKØV, N TRØNEVA, M	201338
THE TERNARY SYSTEM CR-NB-MØ	201338
ZHUR NEØRG KHIM 5, 2403 (1960)	201338
CA 56, 5737 (1962)	201338
KURYLENKØ, C	201565
TITANIUM II TITANIUM ØXIDES	201565
CAHIERS PHYS NØ 92, 163 (1958)	201565
CA 57, 163 (1962)	201565
KUSAMICHI, H YAGI, Y YUKAWA, T	201494
(KØBE STEEL WØRKS LTD)	201494
CØMMERCIAL HIGH PURITY TITANIUM AND TITANIUM ALLØYS	201494
NIPPØN KINZØKU GAKKAISHI 21, (1957)	201494
CA 56, 12624 (1962)	201494
KUSFNKØ» F GELD» P	300252
HEAT ØF FØRMATIØN ØF NIØBIUM PENTØXIDE	300252
ZHUR ØBSHCHE KHIM 30° NØ 11 3847 (1960)	300252
J GEN CHEM 30° 3806 (1960)	300252
CA 55° 18278 (1961)	300252
KUSENKØ, F GELD. P	200823
PRØPERTIES ØF NIØBIUM DIØXIDE	200823
IZVEST VYSSHIKH UCHEB ZAVEDENII, TSVEINAYA MET 3, NØ 4, 102	200823
(1960)	200823
CA 55, 3141 (1961)	200823
KUSENKØ, F. GELD, P. SPECIFIC HEAT AND VARIATION OF ISOTHERMAL-ISOBARIC POTENTIAL (FREE ENERGY) IN THE FORMATION OF NBO? TRUDY URALSK POLITEKHN INST IM SM KIROVA 1959, N. 92, 121 (1959) CA 57, 2930 (1962)	300727 300727 300727 300727 300727
KUSENKØ, F. GELD. P. THERMØCHEMISTRY ØF NIØBIUM ØXIDES AND CARBIDES FIZ KHIM ØSNØVY PRØIZV STALI AKAD NAUK SSSR INST MET TR FIFTH KØNF 1959. 41 (1961) CA 58. 1955 (1963)	300929 300929 300929 300929 300929
KUSENKØ, F. GELD, P. NIØBIUM-CARBØN-ØXYGEN SYSTEM EQUILIBRIUMS IZVEST VYSSHIKH UCHEB ZAVEDENII TSVETNAYA MET 4, 43 (1961) CT NØ 12, (1961) CA 55, 18486 (1961)	700619 700619 700619 700619 700619
KUSENKØ, F. GELD, P. HEATS ØF FØRMATIØN ØF NIØBIUM ØXIDES AND CARBIDES IZVEST AKAD NAUK SSSR SIBIR ØTDEL 1960, NØ 2, 46 (1960) AEC-TR-4362 NSA 15, 9440 (1961)	701007 701007 701007 701007 701007

KUTSEV. V METHODS OF CALCULATING THE ACTIVITY OF CARBON IN AUSTENITES ZHUR FIZ KHIM 36. 849 (1962)	300358 300358 300358
KUTSEV, V ØRMØNT, B EQUILIBRIUM INVESTIGATIØN IN THE REDUCTIØN REACTIØN ØF TITANIUM DIØXIDE WITH CARBØN AT HIGH TEMPERATURES ZHUR FIZ KHIM 29, 597 (1955)	300153
ZHUR FIZ KHIM 29, 597 (1955) KUTSEV, V SMAGINA, E MØRZHEEDØVA, R THE B-FØRM ØF THE ØXIDE SM203 ZH NEØRGAN KHIM 8, 1049 (1963) CF CA 51, 14447C CA 59, 3513 (1963)	301515 301515 301515 301515
KUTYRKIN. V PEIZULAEV. S TUNITSKII. L BERYLLIUM FLUØRIDE SPECTRUM FIZ SBØRNIK LVØV UNIV 1957. NØ 3. 486 (1957) CA 56. 109 (1962)	201203 201203 201203 201203
KUZMIN» A PALATNIK» L VAPØR PRESSURE ØF TITANIUM ØVER TITANIUM-MØLYBDENUM ALLØYS FIZ METAL I METALLØVED 14. NØ 5. 795 (1962)	300922 300922 300922
KUZNETSØV» F BELYI» V REZUKHINA» T GERASIMØV» Y THERMØDYNAMIC PRØPERTIES ØF CERIUM ØXIDES DØKL AKAD NAUK SSSR 139» 1405 (1961) NSA 15» 30564(1961)	300665 300665 300665 300665
KUZNETSØV» F REZUKHINA» T THERMØDYNAMIC PRØPERTIES ØF PRASEØDYMIUM ØXIDES ZHUR FIZ KHIM 36, 1364 (1962)	300627 300627 300627
KUZNETZØV. F REZUKHINA. T (MØSCØW STATE UNIV MØSCØW RUSSIA) HEAT CAPACITY ØF CERIUM DIØXIDE AT HIGH TEMPERATURE ZHUR FIZ KHIM 34. 2467 (1960) BT 10. 377 (1961) CA 55. 7019 (1961) NSA 15. 7352 (1961)	700537 700537 700537 700537 700537 700537
KUZNETSØV, F REZUKHINA, T (MØSCØW STATE UNIV MØSCØW RUSSIA) HEAT CAPACITY ØF CERIUM III ØXIDE AT HIGH TEMPERATURES ZHUR FIZ KHIM 35, 956 (1961)	700600 700600 700600 700600
KUZNETSØV, F REZUKHINA, T GØLUBENKØ, A (M.V. LØMØNØSØV STATE UNIV MØSCØW RUSSIA) DETERMINATION ØF THE HEAT ØF FØRMATIØN ØF CE203 BY BØMB CALØRIMETRY ZHUR FIZ KHIM 34, 2129 (1960) CA 55. 10039 (1961)	600390 600390 600390 600390 600390
KUZYAKOV• Y TATEVSKII• V TUNITSKII• L ROTATIONAL ANALYSIS OF BORON MONOXIDE BANDS LYING IN THE VACUUM ULTRAVIOLET REGION OPTIKA I SPEKTROSKOPIYA 9• 156 (1960) CA 55• 25461 (1961) PA 64• 2329 (1961)	301065 301065 301065 301065 301065
LACROIX. R ØXIDATION AND EVAPORATION OF PLATINUM AT HIGH TEMPERATURES REV MET 53. 809 (1956)	601037 601037 601037

CA 51. 3404 (1957)	601037
LADD: M LEE: W (BATTERSEA COLL TECHNOL LONDON ENGLAND) THE LATTICE ENERGIES OF THE ALKALINE EARTH OXIDES AND THE AFFINITY OF OXYGEN FOR TWO ELECTRONS ACTA CRYST 13: 959 (1960) CA 56: 5472 (1962)	201322 201322 201322 201322 201322 201322
LADD. M LEE. W LATTICE ENERGIES AND CRYSTAL-FIELD STABILIZATION ENERGIES OF TRANSITION-TYPE METAL COMPOUNDS J CHEM SOC 2837 (1962)	300575 300575 300575 300575
LADD: M LEE: W (BATTERSEA COLL OF TECH LONDON ENGLAND) LATTICE ENERGIES OF COMPOUNDS OF THE TRANSITION TYPE METALS J INORG NUCLEAR CHEM 23: 199 (1961) NSA 16: 18892 (1962)	601470 601470 601470 601470
LAFFERTY• J BØRIDE CATHØDES PHYS REV 79• 1012 (1950) CA 44• 10485 (1950)	400541 400541 400541 400541
LAFFERTY: J (GENERAL ELEC RESEARCH LAB SCHENECTADY NEW YØRK) BØRIDE CATHØDES J APPL PHYS 22: 299 (1951) CA 45: 4550 (1951)	400549 400549 400549 400549
LAFFITIE: M KUBASCHEWSKI: Ø ACTIVITIES ØF CHRØMIUM IN CHRØMIUM-MØLYBDENUM SØLID SØLJTIØNS TRANS FARADAY SØC 57: 932 (1961) CT NØ 13: (1961)	700626 700626 700626 700626
LAGEROVIST. A THE BAND SPECTRUM OF CALCIUM OXIDE IN VIOLET AND ULTRAVIOLET RANGE (UNIV STOCKHOLM) NATURWISSENSCHAFTEN 40, 268 (1953) CA 48, 443 (1954)	600925 600925 600925 600925 600925
LAGERQVIST. A THE SPECTRA ØF ALØ AND VØ MEN SØC REG SCI LIEGE 18. 550 (1957) CA 51. 16093D (1957)	301290 301390 301290 301290
LAGERQVIST. A (UNIV STØCKHØLM) ULTRAVIØLET AND BLUE BANDS ØF CALCIUM ƏXIDE ARK FYSIK 8, 83 (1954) CA 48. 11922 (1954)	600884 600884 600884 600884 600884
LAGERQVIST. A ALMKVIST. G (UNIV STØCKHØLM) THE ULTRAVIØLET BAND SYSTEM ØF STRØNTIUM EXIDE ARKIV FYSIK 8. 481 (1954) CA 49. 7380 (1955)	600680 600680 600680 600680
LAGERQVIST. A HULDT. L THE HEIGHT OF THE EXCITED ELECTRON STATES OF CALCIUM. (UNIV STOCKHOLM)	600681 600681 600681

STRØNTIUM AND BARIUM ØXIDES ARKIV FYSIK 8. 427 (1954) CA 49. 7380 (1955)	600681 600681 600681
LAGERQVIST, A HULDT, L (UNIV STOCKHOLM) THE DISSOCIATION ENERGY OF THE GASEOUS OXIDES CRO AND FEO Z NATURFORSCH 8, 493 (1953) CA 48, 5636 (1954)	600765 600765 600765 600765 600765
LAGERQVIST. A MIESCHER. E (UNIV BASEL ABSØRPTIØN SPECTRUM ØF THE NITRIC ØXIDE MØLECULE FINE-STRUCTURE ANALYSIS ØF THE DELTA- AND BETA-BANDS AND HØMØGENEØUS PERTURBATIØN C2PI.B2PI HELV PHYS ACTA 31. 221 (1958) CA 52. 19440 (1958)	600746 600746 600746 600746 600746 600746
LAGERQVIST, A NILSSØN, N WIGARTZ, K (UNIV STØCKHØLM) RØTATIØNAL ANALYSIS ØF THE BETA-SYSTEM ØF BØ ARKIV FYSIK 13, 379 (1958) CA 52, 17948 (1958)	600702 600702 600702 600702 600702
LAGFRQVIST. A SELIN. L RØTATIÐNAL ANALYSIS ØF THE VISIBLE VANADIUM ØXIDE BANDS ARKIV FYSIK 12. 553 (1957) CA 52. 6923	300166 300166 300166 300166
LAGERQVIST, A SELIN, L (UNIV STØCKHØLM) SØME INFRARED BANDS ØF VANADIUM ØXIDE ARK FYSIK 11, 429 (1957) CA 51, 8533 (1957)	600885 600885 600885 600885
LAGERQVIST, A UHLER, U (UNIV STØCKHØLM) RED BANDS ØF MAGNESIA NATURE 164, 665 (1949) CA 44, 3791 (1950)	600923 600923 600923 600923 600923
LAGERQVIST, A UHLER, U (UNIV STØCKHØLM) RED AND GREEN BANDS ØF MAGNESIA ARKIV FYSIK 1, 459 (1949) CA 44, 3791 (1950)	600924 600924 600924 600924 600924
LAINER, D TSYPIN, M ØXIDATIØN ØF TITANIUM AT 300-600 DEGREES IZVEST AKAD NAUK SSSR ØTDEL TEKH NAUK MET I TØPLIVØ 1961, NØ 1, 146 (1961) CA 55, 19675 (1961)	201134 201134 201134 201134
LAKHIANI, D SHREIR, L (BATTERSEA COLL OF TECH LONDON ENGLAND) CRYSTALLIZATION OF AMORPHOUS NIOBIUM OXIDE DURING ANODIC OXIDATION NATURE 188, 49 (1960) NSA 15, 679 (1961)	700978 700978 700978 700978 700978 700978
LAM. D DARBY. J DØWNEY. J NØRTØN. L (ARGØNNE NATL LAB LEMØNT ILL) ALPHA MANGANESE PHASES CØNTAINING TECHNETIUM-99	601586 601586 601586

NATURE 192 • 744 (1961) NSA 16 • 3504 (1962)	601586 601586
(ARGØNNE NATL LAB LEMØNT ILL) THE FABRICATION AND PHYSICAL PROPERTIES OF URANIA BODIES ANL-5053 1956.	601323 601323 601323 601323 601323
NSA 11. 2221 (1957) LAMBERTSØN. W GUNZEL. F REFRACTØRY ØXIDE MELTING PØINTS USAEC PUBL AFCD 3465 (1952) NSA 7. 564 (1953)	700762 700762 700762 700762
LANDIYA: N. TSAGAREISHVILI: D. SIMPLIFIED EQUATIONS FOR CALCULATING THE SPECIFIC HEAT. ENTROPY: AND THE CHARACTERISTIC TEMPERATURE OF SOLID. SURSTANCES TR. INST. MET. AKAD. NAUK. GRUZ. SSR. 12: 45: (1962) CA. 58: 8462 (1963)	301516 301516 301516 301516 301516 301516
LANDIIA. N A CØMPUTATIØN ØF HIGH-TEMPERATURE HEAT CAPACITIES ØF SØLID INØRGANIC SUBSTANCES BY STANDARD ENTRØPY TBILISI 1ZD-VØ AKAD NAUK GRUZINSKØI SSR (1962) RUSS ACC VØL 16. NØ 1. 151 APRIL (1963)	301291 301291 301291 301291 301291
LANE. 2 TUNIS: M ØLMSTED. E KENNEDY: J MAYNARD: G PHYSICAL PRØFER: LES AND PHASE DIAGRAMS ØF TEN REFRACTØRY ØXIDFS II: JØURNAL LITERATURE: SFLECTED BIBLIØGRAPHY US AT ENERGY CØMM UCRL 6262: (1962) CA 57: 16161 (1962)	201940 201940 201940 201940 201940
LANG. S AN ANNØTATED BIBLIØGRAPHY ØF SELECTED REFERENCES ØN THE SØLID- STATE REACTIØNS ØF THE URANIUM ØXIDES NATE BUR STOS (US) (IRC NØ 535 (1953) CA 47. 4235 (1953)	100195 100195 100195 100195 100195
LANGE • F (GEN ATUM DIV GEN DYN CURP SAN DIEGU • ALIF) INVESTIGATION OF SPECIFIC HEATS AT LOW TEMPERATURES Z PHYSIK CHEM 110 • 343 (1924) CA 18 • 2993 (1924)	700563 700939 700563 700563 700563
LANGER S (GEN ATOM DIV GEN DYNAMICS SAN DIEGO CAL) MELTING POINTS AND THERMODYNAMIC PROPERTIES OF SOME REACTOR CORE MATERIALS GAMD-2101 NSA 15 • 18490 (1961)	700939 700939 700939 700939 700939
LANGMUIR. I THE.VAPOR PRESSURE OF METALLIC TUNGS: N PHYS REV 2. 450 (1913) CA 8. 870 (1914)	700504 700504 700504 700504
LANIESSE*J FNGLANDER*M MERIEL*P (SENTRE ETUDES NUCL SACLAY FRANCE) JTUDIES ØN THE EVØLUTIØN ØF THE CRYSTALLINE STRUCTURES ØF URANIUM BY NEUTRØN CRYSTALLØGRAPHY PRØC INTERN SYMP REACTIVITY SØLIDS 4TH AMSTERDAM 1960* 700 (1960)	201980 201980 201980 201980 201980 201980

	201980
CA 58, 1962 (1963)	
LAPITSKIY. A SIMANOV. Y SØMF PRØPERTIES OF TANTALUM PENTØXIDE 1 VEST MØSKØV UNIV SER FIZ MATEMAT I YESTEST NAUK 9. NØ. 3 85 (1954) CØTS 55. 219 (1962)	301112 301112 301112 301112 301112
LAPLACA, S BINDER, I PØST, B (PØLYTECH INST BRØJKLYN NY) BINARY DØDECABØRIDES J INØRG AND NUCL CHEM 18, 113 (1961) NSA 15, 26031 (1961)	700803 700803 700803 700803 700803
LAPLACA: S. PØRT: B. THE CRYSTAL STRUCTURE ØF RHENIUM DIBØRIDE ACTA CRYST 15: 97 (1962) BHT NØ 2: 9 (1962)	300518 300518 300518 300518
LARRABEE: R (MIT CAMBRIDGE MASS) THE SPECTRAL EMISSIVITY AND UPTICAL PROPERTIES OF TUNGSTEN US DEPT COMM OFFICE TECH SERV PB REPT 144927 (1797) CA 56: 1046 (1962)	201223 201223 201223 201223 201223
LASHKAREV+ G SAMSONOV+ G CHARACTERISTICS OF SOME REFRACTORY COMPOUNDS OF TRANSITIONAL METALS AS MATERIALS FOR THERMOSLECTRIC CONVERTERS AT. ENERG. (USSR) 13+ NO 2+ 187 (1962)	300565 300565 300565 300565
LATIMER» W RECENT REFERENCES TW THERM2DYNAMIC DATA UCRL-2680 (1954)	601635 601635 601635
LAUBE. E NØWJTNY. H (UNIV VIENNA VIENNA AUSTRIA) THE PHASE SCHE13 MØNTASH 93. 681 (1962) CA 57. 6717 (1962)	201750 201750 201750 201750 201750
LAVALLE D (DAK RIDGE NATH EARS DAK RIDGE TENN) PREPARATIONS OF NITSISE AND PHOSPHIDE OF RARE EARTH METALS J INORG NUCL CHEM 24 + 930 (1962) CA 59 + 3520 (1963)	301517 301517 301517 301517 301517
LAVENDEL» H (LØCKHEED MISS SPIDIV PALW ALTD CALIF) ALLØYS ØF TANTALUM DIBDRIDE WITH IRØN, CUBALT, AND NICKLL PLANSEEBER PULVERMET 9, 80 (1961) BHT NØ 3, 8 (1961)	300482 300482 300482 300482 300482
LAVRENTEV. V GERASIMØV. Y REZUKHINA. T THERMØDYNAMIC PRØPERTIES ØF NIØBIUM ØXIDLS (EQUILIBRIUM WITH CARBØN AND ELECTROCHEMICAL MEASUREMENTS) DØKLADY AKAD NAUK 555R 136. 1372 (1961) NSA 15. 15601 (1961)	701030 701030 701030 701030 701030
LAVRØV» N FILIPPØVA» V KØRØBØV» V CHERNENKØV» I THERMØDYNAMICS ØF GASIFICATIØN REACTIØNS TRUDY INST GØRYUCHIKH ISKØPAEMYKH XI. 24 (1959)	300341 300341 300341

COTS 46. 96 (1961)	300341
LAWLEY, A (UNIV ØF PENNSYLVANIA PHILADELPHIA PENNA) CRYSTALLØGRAPHIC ANGLES FØR MAGNESIUM, RUTHENIUM, RHENIUM, ZINC, AND CADMIUM TRANS MET SØC AIME 218, 956 (1960) CA 55, 295 (1961)	200801 200801 200801 200801 200801 200801
LAZAREVA. L KANTØR. P KANDYBA. V ENTHALPY AND HEAT CAPACITY ØF MØLYBDENUM IN THE 1200 TØ 2500 DEGREE K RANGE FIZ METAL I METALLØVED AKAD NAUK SSSR 11. 628 (1961) CT NØ 12. (1961)	700631 700631 700631 700631 700631
LAZARUS. D (UNIVERSITY ØF ILLINØIS URBANA ILLINØIS) DIFFUSIØN STUDIES ØF VACANCIES AND IMPURITIES J PHYS RADIUM 23. 772 (1962) CA 58. 7685 (1963)	301518 301518 301518 301518 301518
LEBEDEV K THE CHEMISTRY ØF RHENIUM METALLURGIZDAT (1960) CØTS 56 • 149 (1962)	300828 300828 300828 300828
LEBEDEV. V ATOMIC HEAT CAPACITY OF ELEMENTS DOKLADY AKAD NAUK SSSR 63. 645 (1948) CA 43. 3671 (1949)	700702 700702 700702 700702
LEBEDEV. V DETERMINATION OF HEAT CONDUCTIVITY OF METALS AT HIGH TEMPERATURES FIZ METAL I METTALLOVED. AKAD NAUK SSSR 10. 187 (1960) CA 55. 4078 (1961)	200842 200842 200842 200842 200842
LEBEDEV. V (PHYS TECH INST KHARKOV RUSSIA) THERMAL-CONDUCTIVITY MEASUREMENTS OF METALS AT 11 GH TEMPERATURE UKRAIN FIZ ZHUR 6. 522 (1961) CA 56. 5417 (1962)	201312 201312 201312 201312 201312 201312
LEBLANC. F. TANAKA. Y. JURSA. A. (AIR FØRCE CAMBRIDGE REW CTR BEDFØRD	600589 600589 600589 600589
LECERF. A CHEMICAL PROPERTIES OF TITANIUM MONOXIDE AND TITANIUM SESQUIOXIDE. PREPARATION AND STUDY OF NEW TERNARY COMPOUNES OF TRIVALENT TITANIUM CONTAINING OXYG V ANN CHIM (PARIS) 7. 513 (1962)	300939 300939 300939 300939 300939
LECIFJEWICZ: J (INST NUCLEAR RESEARCH WARDAW POLAND) A NOTE ON THE STRUCTURE OF TUNGUTEN CARDIDE ACTA CRYST 14: 200 (1961) (A 56: 86 (1962)	201199 201199 201199 201199 201199

LECIEJEWICZ, J (PØLISH ACA ØF SCI INST ØF NUCLEAR RESFARCH WARSAW) A NØTE ØN THE STRUCTURE ØF TUNGSTEN CARBIDE NP-9682 (1960) NS 15+ 6387 (1961)	600865 600865 600865 600865
LEFEVRE, J (ETUDES CHIM MET VITRY FRANCE) SØME STRUCTURAL MØDIFICATIØNS ØF FLUØRITE-TYPE PHASES IN SYSTEMS BASED ØN ZIRCØNIA ØR HAFNIUM ØXIDE ANN CHIM (PARIS) 8 NØS 1-2, 117 (1963) CA 48, 3378 (1963)	301519 301519 301519 301519 301519
LEFEVRE. J COLLONGUES. R JORBA. M THE EXISTANCE OF A CONTINOUS TRANSITION FROM THE TETRAGONAL STRUCTURE TO THE CUBIC STRUCTURE IN THE SYSTEM ZIRCONIA-RARE EARTH OXIDES COMPT REND 249. 2329 (1959) CA 55. 14001 (1961)	201021 201021 201021 201021 201021 201021
LEGVØLD, S SPEDDING, F BARSØN, F ELLIØT, J (IØWA STATE CØLL AMES IØWA) MAGNETIC AND ELECTRIC PRØPERTIES ØF GADØLINIUM, DYSPRØSIUM AND ERBIUM METALS REVS MØD PHYS 25, 129 (1953) CA 47, 9078 (1953)	100189 100189 100189 100189 100189
LEHMAN. G (ATØMICS INT DIV N A AV INC CANØGA PARK CALIF) THERMAL PRØPS ØF REFRACTØRY MATERIALS WADD-TR-60-581 (1960) AD 247411 DIV 25 (1960) NSA 15. 14743 (1961)	300304 300304 300304 300304 300304 300304
LEHR, P LANGERON, J DILATOMETRIC STUDY OF ALPHA-PHASE URANIUM REV MET 54, 257 (1957) CA 51, 11800 (1957)	601058 601058 601058 601058
LEHR. P LANGERØN. J EXPANSIØN BEHAVIØR ØF SINGLE CRYSTALS ØF URANIUM CØMPT REND 241. 1130 (1955) CA 50. 5353 (1956)	601005 601005 601005 601005
LEHRLE. R RØBB. J THØMAS. D MØDIFIED TIME ØF FLIGHT MASS SPECTRØMETER FØR STUDYING IØN-MØLECULE ØR NEUTRAL PARTICLE-MØLECULE INTERACTIØN J SCI INST. 39 (1962)	301520 301520 301520 301520
LEIBØWITZ. L SCHNIZLEIN. J BINGLE. J VØGEL. R (ARGØNNE NATL LABS ARGØNNE ILL) THE KINETICS ØF ØXIDATIØN ØF URANIUM BETWEEN 125 AND 250 DEGREES CA 56. 5434 (1962) J. ELECTRØCHEM SØC. 108. 1155 (1961)	201314 201314 201314 201314 201314 201314
LEITNAKER. J BØWMAN. M GILLES. P (LASL LØS ALAMØS NEW MEX) HIGH TEMPERATURE PHASE STUDIES IN THE TANTALUM-BØRØN SYSTEM BETWEEN TA AND TAB J ELECTRØCHEM SØC 108. 568 (1961) NSA 15. 19906 (1961)	700595 700595 700595 700595 700595 700595

LEITNAKER, J. BØWMAN, M. GILLES, P. HIGH TEMPERATURE EVAPØRATIØN AND THERMØDYNAMIC PRØPERTIES ØF ZIRCØNIUM DIBØRIDE JCP 36, 350 (1962) CA 57, 4060 (1962)	300392 300392 300392 300392 300392
LEITNAKER, J BØWMAN, M GILLES, P THERMØDYNAMIC PRØPERTIES ØF THE TANTALUM AND TUNGSTEN BØRIDES J ELECTRØCHEM SØC 109, NØ 5, 441 (1962) BHT NØ 2, 50 (1962) CA 57, 4111 (1962)	300553 300553 300553 300553 300553
LEITNAKER• J KRIKØRIAN• N KRUPKA• M UNUSUAL TERNARY BEHAVIØR ØF TRANSITIØN METAL BØRIDES J ELECTRØCHEM SØC 109• NØ 1 66 (1962)	300408 300408 300408
LEITNAKER+ J WITTEMAN+ W DISSØCIATIØN PRESSURE ØF URANIUM DICARBIDE JCP 36+ 1445 (1962)	300393 300393 300393
LEMMON. A WARD. J FISCHER. S GEANKOPLIS. C CLEGG. J (BATTFLLE MEM INST COLUMBUS OHIO) THE THERMODYNAMICS OF THE REDUCTION OF URANIUM COMPOUNDS TO URANIUM METAL U S ATOMIC ENERGY COMM B M I 550. 42 (1952) CA 50. 8311 (1956)	601012 601012 601012 601012 601012 601012
LENZI D PELLEGRINI P SINTERED BÖRÖN CARBIDE GAZZ CHIM ITAL 89. 1725 (1959) CA 55. 5210 (1961)	200865 200865 200865 200865
LEØNØV+ A RUDENKØ+ V KELER+ E RELATIØNS BETWEEN CE203 AND SIO2 AT HIGH TEMPERATURE IZV AN SSSR ØTD KHIM NAUK NØ 11+ 1925 (1961) RUSS ACC 14 FEB 1962	301521 301521 301521 301521
LEONOV. A CATALYTIC ACTION OF WATER ON THE CHEMICAL REACTION BETWEEN ØXIDES AT HIGH TEMPERATURES IZV. AKAD. NAUK 555R. OTD. KHIM NAUK 1961. 1411-16 CA 58. 962 (1963)	301522 301522 301522 301522 301522
LEPINSKIKH+ B ESIN+ Ø TETERIN+ G SURFACE TENSIØN AND DENSITY ØF MELTS CONTAINING ØXIDES ØF LEAD+ VANADIUM AND SILICØN ZHUR NEØRG KHIM 5+ 642 (1960) CA 56+ 996 (1962)	201215 201215 201215 201215 201215
LEVESQUE P BEKEBREDE W BRØWN H (RAYTHEØN MANUF CØ WALTHAM MASS) THE CØNSTITUTIØN ØF RHENIUM-NIØBIUM KLLDYS TRANS AM SØC METALS 53 P 215 (1961) CA 55 * 20874 (1961)	201149 201149 201149 201149 201149
LEVINSON: L S (LØS ALAMØS SCI EAB LØS ALAMØS NEW MEXICØ) HEAT CONTENT ØF URANIHM DICARBIDE FROM 1484 DEGREES TØ 2581 DEGREES K J CHEM PHYS 38: (9) 2105 (1963)	301292 301292 301292 301292 301292

BHT NØ 2, 30 (1963)	301292
LEVINSØN. L HIGH TEMPERATURE DRØP CALØRIMETER REV SCI INST 33. 639 (1962)	300935 300935 300935
LEVINSON» M KOVROV» B MECHANISM OF OXIDATION BY ULTRASOUND 12 SIBIRSKOGO OT AKAD NAUK SSSR NO 12 67 (1960) COTS 54. 254 (1962)	301100 301100 301100 301100
LEWIS. C (CHRYSLER CORP OF DETROIT DETROIT MICHIGAN) RESEARCH PROGRAM ON SEMICONDUCTING COMPOUNDS FOR THERMO- ELECTRIC POWER GENERATION AT HIGH TEMPERATURE BIMONTHLY PROG REPT NO 5 (1961) CONTRACT 78664 AD 259104	300234
LEWIS. J FURTHER EVALUATION OF BERYLLIDES (NORTH AMERICAN AVIATION CO CANOGA PARK CALIF) J METALS 13. 829 (1961) CA 56. 2255 (1962)	201262 201262 201262 201262 201262
LIBBY• W F (UNIV ØF CALIFØRNIA LØS ANGELES CALIF) HIGH PRESSURE CHEMISTRY NATL ACAD SCI US 48• 1475 (1962) CA 58• 5047H (1963)	202086 202086 202086 202086 202086
LICHTER, B (AIR FØRCE CAMBRIDGE RES BEDFØRD MASS) PRECISIØN LATTICE-PARAMETER DETERMINATIØN ØF ZIRCØNIUM- ØXYGEN SØLID SØLUTIØNS TRANS MET SØC AIME 218, 1015 (1960) NSA 15, 5408 (1961) CA 55, 6981 (1961)	200774 200774 200774 200774 200774 200774
LIDMAN, W HAMJIAN, H REACTIONS DURING SINTERING OF A ZIRCONIUM CARBIDE-NIOBIUM CERMET J AM CERAM SOC 35, NO 9 (1952)	300158 300158 300158 300158
LIEN. W (US AT ENERGY COMM) HEAT CAPACITY STUDIES AT LIQUID-HE TEMPERATURES AND BELOW. I. ALKALI METALS. II. SMALL PARTICLES OF MGO UCRL-9880. (1962) CA 56. 11000 (1962)	201454 201454 201454 201454 201454 201454
LIHL, F ETTMAYER, P KUTZELNIGG, A (TECH HØCHSCHULE VIENNA) THE SYSTEM MANGANESE-NITRØGEN Z METALLK 53, 715 (1962) CA 58, 5338 (1963)	301025 301025 301025 301025 301025
LIKHTER. A THE PHASE DIAGRAM OF CERIUM ZHUR EKSPTL I TEORET FIZ 33. 610 (1957) AEC-TR-3249 NSA 12. 10192 (1958)	601492 601492 601492 601492 601492
LIKHTER. A RYABININ. Y VERESHCHAGIN. L	601072

CERIUM PHASE DIAGRAM SØVIFT PHYS JETP.6, 469 (1958) CA 52, 14307 (1958)	601072 601072 601072
LIKHTER, A RYABININ, Y VERESHCHAGEN, L THE CERIUM PHASE DIAGRAM LINCOLN, R ASAI, G KATO, H SOME PROPERTIES OF VANADIUM BUR MINES REPORT 5975 (1962) GOVT PUB 12397	601108 601108 301525 301525 301525
LINBIMOV. V GELD. P EQUILIBRIUM IN THE REDUCTION OF NIOBIUM PENTOXIDE BY HYDROGEN IZV VYS UCHEB ZAV TSVFT MET 4. NO 5 1JK (1961) RUSS ACC 14. 2749 (1962)	300388 300388 300388 300388
LINDHØLM. F IØNIZATIØN AND FRAGMENTATIØN ØF N2 BY BØMBARDMENT WITH ATØMIC IØNS. DISSØCIATIØN ENERGY ØF N2 ARK FYS 8. 257 (1954) PA 58. 2826 (1955)	600590 600590 600590 600590
LINDHØLM. E IØNIZATIØN AND FRAGMENTATIØN ØF CØ BY BØMBARDMENT WITH ATØMIC IØNS. DISSØCIATIØN ENERGY ØF CØ. HEAT ØF SUBLIMATIØN ØF CARBØN ARK FYS 8. 433 (1954) PA 58. 1010 (1955)	600714 600714 600714 600714 600714
LIPMAN R APPARATUS FØR THE MEASUREMENT AND RECORDING ØF THE VISCØSITY ØF SILICATE MELTS STEKLØ I KERAMIKA 16 • 2 • 18 (1959)	400596 400596 400596 400596
LIPPINCOTT: E SCHROEDER: R STEELE: D UNIV OF MARYLAND: COLLEGE PARK MARYLAND: DISSOCIATION ENERGIES OF DIATOMIC MOLECULES J CHEM PHYS 34: 1448 (1961)	300402 300402 300402 300402
LIPPINCOTT, E STEELE, D CALDWELL, P (UNIV ØF MARYLAND) CØLLEGE PARK MARYLAND) GENERAL RELATIØN BETWEEN PØTENTIAL ENERGY AND INTERNUCLEAR DISTANCE FØR DIATØMIC MØLECULES. III. EXCITED STATES J CHEM PHYS 35, 123 (1961)	700683 700683 700683 700683 700683
LITTLE A D COMPANY INC (AD LITTLE CO CAMBRIDGE MASS) THERMODYNAMIC AND KINETIC STUDIES FOR A REFRACTORY MATERIALS PROGRAM AD 277500 APR (1962)	301526 301526 301526 301526 301526
LIU+ S (10WA STATE UNIV AMES 10WA) MAGNETIC PROPERTIES OF RARE FARTH METALS UNIV MICROFILMS (ANN ARBOR MICH) LC CARD MIC 60-5687 DISSERTATION ABSTR 21+ 2341 (1961) CA 55+ 11981 (1961)	200972 200972 200972 200972 200972 200972
Flutaia. M.D. BUKHANEVICH. V.F. CHEMICAL AND THERMAL STABILITY OF NITRIDES OF ELEMENTS OF THE THIRD GROUP ZHUR NEORG KHIM 7 NO 11- 2487 (1962) RUSS ACC VOL 15. NO 12. 3268 (MARCH 1963)	202088 202088 202088 202088 202088

LIVANOV. V BUKHANOVA. A KOLACHEV. B EFFECT OF OXYGEN AND HYDROGEN ON THE STRUCTURE AND PROPERTIES OF TITANIUM TRUDY MATI NO 50 82 (1961)	300386 300386 300386 300386
LIVSHITS, L GENSHAFT, Y MARKØV, V (INST CHEM PHYS ACAD SCI MØSCØW RUSSIA) PHASE DIAGRAM ØF CERIUM IN THE RANGE ØF TEMPERATURES FRØM 20 TØ 350 DEGREES UNDER A PRESSURE UP TØ 80000 KG/SQ CM ZH EKSPERIUM I TEØR FIZ 43, 1262 (1962) CA 58, 7419 (1963)	301524 301524 301524 301524 301524 301524 301524
CA 54+ 4132 (1960) PA 65+ 2057 (1962)	601203 601203 601203 601203 601203
LØCH: L GAMBINØ: J DUCKWØRTH: W (BATTELLE MEMØRIAL INSTITUTE CØLUMBUS ØHIØ) DIFFUSIØN ØF URANIUM THRØUGH GRAPHITE A I CH E JØURNAL 2: 195 (1956) CA 50: 12584 (1956)	601015 601015 601015 601015 601015
LØNGUET-HIGGENS. H RØBERTS. M (KINGS CØLLEGE LØNDØN ENGLAND) THE ELECTRØNIC STRUCTURE ØF THE BØRIDES MB6 PRØC RØY SØC A224. 336 (1954) CA 49. 50 (1955)	600935 600935 600935 600935 600935
LØSEV. S GENERALØV. N A STUDY ØF THE EXCITATION ØF VIBRATIONS AND DISSOCIATION ØF ØXYGEN MØLECULES AT HIGH TEMPERATURES DØK AKAD NAUK SSSR 141. 1072 (1961) CØTS 54. 295 (1962)	301113
LØFTHUS. A A NEW PREDISSOCIATION IN NITROGEN NATURE 186. 302 (1960)	600568 600568 600568
LØFTHUS, A EMISSIØN BAND SPECTRA ØF NITRØGEN. THE FIFTH PØSITIVE SYSTEM J CHFM PHYS 25, 494 (1956) CA 51, 849 (1957)	600591 600591 600591 600591
LØFTHUS: A (UNIV ØSLØ ØSLØ NØRWÅY EMISSIØN BAND SPECTRA ØF NITRØGEN: A STUDY ØF SØME SINGLET SYSTEMS CAN J PHYSICS 35: 216 (1957) CA 51: 5548 (1957)	600592 600592 600592 600592 600592
LØFTHUS. A MULLIKEN. R EMISSIØN BAND SPECTRA ØF NITRØGEN. KAPLANS FIRST AND SECØND SYSTEMS J CHEM PHYS 26, 1010 (1957) CA 51: 13568 (1957)	600593 600593 600593 600593
LOH. E NEWMAN. R Infrared properties of flame-fused mno crystals	700526 700526

J APP PHYS 32, 470 (1961)	700526
LØRIERS, J THE ØXIDATIØN ØF CERIUM AND LANTHANUM CØMPT REND 229, 547 (1949) CA 44, 473 (1950)	400542 400542 400542 400542
LØUNASMAA. Ø (ARGØNNE NATL LAB ARGØNNE ILL) SPECIFIC HEAT ØF GADØLINIUM AND YTTERBIUM METALS BETWEEN 0.4 AND 4 DEGREES K PHYS. REV. 129. 2460 (1963) CA 58. 8463 (1963)	301527 301527 301527 301527 301527 301527
LØUNASMAA, Ø RØACH, P (ARGØNNE NATL LAB LEMØNT ILL SPECIFIC HEAT ØF TERBIUM METAL BETWEEN 0.37 AND 4.2 DEGREES K PHYS REV 128, 622 (1962) TID-16630 NSA 17, 570 (1963)	701082 701082 701082 701082 701082 701082 701082
LØUNASMAA, Ø (ARGØNNE NATL LAB LEMØNT ILL) SPECIFIC HEAT ØF HØLMIUM METAL BETWEEN 0.38 AND 4.2 DEGRFES K PHYS REV 128. 1136 (1962) NSÅ 17. 577 (1963)	701077 701077 701077 701077 701077 701077
LØUNASMAA. Ø SPECIFIC HEAT ØF SAMARIUM METAL BETWEEN 0.4 AND 4 DEGREES K PHYS REV 126. 1352 (1962) PA 65. 12387 (1962)	300780 300780 300780 300780
LØUNASMAA, Ø GUENTHER, R SPECIFIC HEAT ØF DYSPRØSIUM METAL BETWEEN 0.4 AND 4 DEGREES K PHYS REV 126, 1357 (1962) PA 65, 12388 (1962)	300779 300779 300779 300779
LØVE. B (NUCLEAR CØRP ØF AMERICA PHØENIX ARIZ) THE PREPARATIØN ØF HIGH-PURITY RARE EARTH METALS U S DEPT CØM ØFFICE TECH SERV A D 267.102 (1961) CA 58. 304 (1963)	201960 201960 201960 201960 201960
LOVE. B (RES CHEMS INC BURBANK CALIF) THE METALLURGY OF YTTRIUM AND THE RARE EARTH METALS I PHASE RELATIONS. U. S. DEPT. COM. OFFICE TECH SERV. PB REPT. 171. 085. (1960) CA. 57. 4433 (1962)	201699 201699 201699 201699 201699 201699
LØVE. B (RES CHEM DIV NUCLEAR CØRP ØAK RISSE TENN) TECHNØLØGY ØF SCANDIUM. YTTRIUM. AND THE RARE EARTH METALS WADD-TR-60-864 (1960) NUC SCI ABST 16. 12116 (1962)	700735 700735 700735 700735 700735
LOVE, B KLEBER, E (NUCLEAR CORP OF AMERICA BURBANK CALIF) PURIFICATION OF RARE EARTH METALS ULTRAPURIF SEMICOND MATER, PROC CONF, BOSTON, MASS 1961, 145 (1962)	201733 201733 201733 201733 201733

CA 57. 5757 (1962)	201733
LOVEJOY, D R SOME BOILING AND TRIPLE POINTS BELOW O DEGREES C NATURE 197, 353 (1963) CA 59, 43 (1963)	202087 202087 202087 202087
LØWELL. C. WILLIAMS. W. HIGH TEMPERATURE CALØRIMFTER FØR THE DETERMINATION ØF HEATS ØF FORMATION ØF REFRACTØRY CØMPØUNDS REV SCI INST 32. 1120 (1961)	300410 300410 300410 300410
LØWENSTEIN, V INTERFERØMETRIC SPECTRA ØF AMMØNIA AND CARBØN MØNØXIDE IN THE FAR INFRARED J ØPT SØC AM 50, NØ 12, 1163 (1960) PA 64, 841 (1961)	600919 600919 600919 600919
LØWENTHAL. G SPECIFIC HEAT ØF METALS BETWEFN 1200 DEGREES K AND 2400 DEGREES K AUSTRALIAN J PHYS 16. 47 (1963)	300938 300938 300938 300938
LØWRIE• R (UNIØN CARBIDE RES INST TARRYTØWN NY) RESEARCH ØN CHEMICAL AND PHYSICAL PRINCIPLES AFFECTING HIGH TEMPERATURE MATERIALS FØR RØCKET NØZZLES NP-12130 NSA 17• 416 (1963)	701081 701081 701081 701081 701081
LØWRIE R (UNIØN CARBIDE NUCLEAR CØ TUXEDØ NY) RESEARCH IN PHYSICAL AND CHEMICAL PRINCIPLES AFFECTING HIGH TEMPFRATURE MATERIALS FØR RØCKET NØZZLES AD-239305 NSA 15 • 21067 (1961)	700943 700943 700943 700943 700943
LØWRIE• R (UNIØN CARBIDE CØRP TARRYTØWN NY) RESEARCH IN PHYSICAL AND CHEMICAL PRINCIPLES AFFECTING HIGH TEMPERATURE MATERIALS FØR RØCKET NØZZLES NP-10401 NSA 15• 25130 (1961)	700956 700956 700956 700956 700956 700956
LØWRIF. R RESEARCH ØN PHYSICAL AND CHEMICAL PRINCIPLES AFFECTING HIGH TEMPERATURE MATERIALS FØR PØCKET NØZZLES NP 11311 NSA 16. 16726 (1962)	601596 601596 601596 601596 601596
LØWRIE• R (UNIØN CAR NUC CØ RES CENTER TUXEDØ NY) RESFARCH IN PHYSICAL AND CHEMICAL PRINCIPLES AFFECTING HIGH TEMPERATURE MATERIALS FØR RØCKET NØZZLES NP-9843 (1960) NSA 15• 11592 (1961)	701014 701014 701014 701014 701014 701014
LØWRIF+ R GRIST+ R SCHØMAKER+ V RESEARCH ØN PHYSICAL AND CHEMICAL PRINCIPLES AFFECTING HIGH TEMPERATURE MATERIALS FØR RØCKET NØZZLES UNIØN CAPBIDE CØRP SEMI ANNUAL PRØG REPT DEC 31 1961 CØNTRACT DA-30-069-ØRD-2787	300412 300412 300412 300412 300412

LØWRIF, R SCHØMCHER, V KEBLER, R CRIST, R (LAB ØF UNIØN CARBIDE CØRP TARRYTØWN NY) RESEARCH ØN PHYSICAL AND CHEMICAL PRINCIPLES AFFECTING HIGH TEMPERATURE MATERIALS FØR RØCKET NØZZLES QUARTERLY PRØGRESS REPØRT DEC 31, 1962	300940 300940 300940 300940 300940
LU, 5 CHANG, Y THE ACCURATE EVALUATION OF LATTICE SPACINGS FROM BACK REFLECTION POWDER PHOTOGRAPHS PROC PHYS SOC (LONDON) 53, 517 (1941) CA 36, 358 (1942)	700512 700512 700512 700512 700512
LUCKS» C DEEM» H WØØD» W (BATTELLE MEMØRIAL INST CØLUMBUS ØHIØ) THERMAL PRØPERTIES ØF SIX GLASSES AND TWØ GRAPHITES AM CERAM SØC BULL 39, 313 (1960) NS 14, 17012 (1960)	601691 601691 601691 601691
LUKESH, J NØTE ØN THE STRUCTURE ØF URANIUM ACTA CRYST 2, 420 (1949)	601652 601652 601652
LUNDIN C (UNIV ØF DENVER DENVER CØLØ) THE DETERMINATIØN ØF THE EQUILIBRIUM PHASE DIAGRAM, ZIRCØNIUM- NIØBIUM US AT ENERGY CØMM AECU-4402 (1959) CA 55 • 18523 (1961)	201119 201119 201119 201119 201119 201119
LUNDIN > C (UNIV OF DENVER DENVER COLORADO) THE DETERMINATION OF THE EQUILIBRIUM PHASE DIAGRAM ZIRCONIUM-NIOBIUM US AT ENERGY COMM AECU-44448 (1959) CA 55 • 18524 (1961)	201120 201120 201120 201120 201120 201120
LUNDIN C E (UNIV DENVER DENVER COLØ) A STRUCTURAL SURVEY ØF THE HEAVY RARE EARTH SILICIDES RARE EARTH RES SEMINAR LAKE ARRØWHEAD CALIF 1960+ 306 (1961) CA 58+ 9927C (1963)	202089 202089 202089 202089 202089
LUNDIN. C. COX. R THE DETERMINATION OF THE EQUILIBRIUM PHASE DIAGRAM ZIRCONIUM— NIORIUM USAEC TID-11919. 52 (1960) CA 55. 21772 (1961)	300240 300240 300240 300240 300240
LUNDIN. C KLØDT. D (UNIV DENVER DENVER COLD) THE ALLØY SYSTEMS ØF THE GROUP VA METALS WITH YTTRIUM J INST METALS 90. 341 (1962) ÇA 57. 3159 (1962)	201630 201630 201630 201630 201630
LUNDIN. C KLØDT. D FUNDAMENTAL ALLØY DEVELØPMENT STUDIES QUARTERLY PRØG REPT NØ 8. FØR AUG 1. 1957-ØCT 31. 1957 APEX-349 (DEL) NSÅ 14. 12919 (1960)	601346 601346 601346 601346 601346
LUNDIN. C KLØDT. D (UNIV ØF DENVER PHASE EQUILIBRIA ØF THE GRØUP IVA METALS WITH YTTRIUM	201582 201582 201582

TRANS AIME 224+ 376 (1962) CA 57+ 523 (1962)	201582 201582
LUNGU, S THERMØDYNAMIC PRØPERTIES ØF ZIRCØNIUM AND HAFNIUM HALIDES ACAD REP PØPULARE RØMINE STUDII CERECETARI FIZ 13, 29 (1962)	300736 300736 300736 300736 300736
LUNSFØRD. J FRIES. R KEMPTER. C (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEXICØ) CRYSTALLØGRAPHIC DATA. URANIUM DIBØRIDE CRYSTAL FRØNT 2. 13. (1961) NSA 16. 18052 (1962)	601466
LUX. H EBERLE. L SALTS AND ØXIDES ØF BIVALENT CHRØMIUM CHEM BER 94. 1562 (1961) CT NØ 13. (1961)	700628 700628 700628 700628
LVØV. S THERMAL CONDUCTIVITY OF HIGH-MELTING BORIDES. CARBIDES. AND NITRIDES PORØSHKOV METALLURGIYA NØ 6. 70 (1961) COTS NØ 60. 82 (1962)	300937 300937 300937 300937 300937
LVØV, S N NEMCHENKØ, V F PADERNØ, U B HEAT CØNDUCTIVITY ØF THE HEXABØRIDES ØF ALKALI METALS AND RARE EARTH METALS DØKL AKAD NAUK SSSR 146, 1371 (1963) CHEM TITLES NØ 12, 79 JUNE 10 1963	202090 202090 202090 202090 202090
LVØV. S NEMCHENKØ, V KISLYI. P VERKHØGLYADØVA. T KØSØLAPØVA. T (N K KRUPSKII ST PEDAGØG KHERSØN USSR) ELECTRICAL PRØPERTIES ØF BØRIDES. CARBIDES. AND NITRIDES ØF CHRØMIUM PØRØSHKØVAYA MET AKAD NAUK UKR SSR 2. NØ 4.20 (1962) CA 58. 1975 (1963)	201981 201981 201981 201981 201981 201981 201981
LVØV» S NEMCHENKØ» V KØSØLAPØVA» T SAMSØNØV» G ELECTRICAL PRØPERTIES ØF CHRØMIUM CARBIDES FIZ MFTAL I METALLØVFD AKAD NAUK SSSR 11° NØ 1° 143 (1961) CA 55° 11231 (1961)	200968 200968 200968 200968
LVØV, S NEMCHENKØ, V SAMSØNØV, G (INST ØF METAL CER, AKAD SCI UKR SSR, KIEV RUSSIA) ELECTRIC PRØPERTIES ØF TITANIUM CARBIDE-TITANIUM NITRIDE ALLØYS UKR FIZ ZH 7, 331 (1962) CA 57, 4139 (1962)	201673 201673 201673 201673 201673
LYNCH. C VAHLDIEK. F RØBINSØN. L MØNØCLINIC-TETRAGØNAL TRANSITIØN ØF ZIRCØNIA J AM CERAM SØC 44. 147 (1961)	700520 700520 700520
LYNDS: L (AT INTERN CANOGA PARK CALIF) PREPARATION OF STOICHIOMETRIC UOZ BY THERMAL DECOMPOSITION OF U0212 U S AT ENERGY COMM NAA-SR 6643: (1962) CA 57: 4268 (1962)	201682 201682 201682 201682 201682 201682
LYURIMØV. V D GELD. P	301294

EQUILIBRIUM FOR HYDROGEN REDUCTION OF NIOBIUM PENTOXIDE IZVEST VUZ TSVET MET 4. NO 5. 145 (1961) CA 56. 9783B (1962)	301294 301294 301294
LYUBITOV» Y N DETERMINATION OF VAPOR PRESSURE OF METALS AND ALLOYS BY MEANS OF THE MASS SPECTROMETER DOKL AKAD NAUK SSSR 125, 135 (1959) BHTG NO 8, 1 (1963)	301295 301295 301295 301295 301295
LYUTAYA, M D BUKHANEVICH, V F (INST CERMETS MØSCØW RUSSIA) CHEMICAL AND THERMAL STABILITY ØF NITRIDES ØF GRØUP III ELEMENTS ZH NEØRGAN KHIM 7, 2487 (1962) CA 58, 4143B (1963)	301528 301528 301528 301528 301528 301528
LYUTAYA, M D SAMSØNØV, G V PREPARATIØN AND PRØPERTIES ØF LANTHANUM NITRIDE UKR KHIM ZH 29 (3), 251 (1963) CA 59, 3519D (1963)	301529 301529 301529 301529
LYUTAYA, M D SAMSØNØV, G V PREPARATIØN AND PRØPERTIES ØF LANTHANUM NITRIDE UKR KHIM ZH 29 (3), 251 (1963) CA 59, 3519D (1963) LYUTAYA, M NAZARCHUK, T MØDILEVSKAYA, K SIMILAR EFFECTS ØF BØRØN CARBIDE AND A METALLIC BØRIDE ØN THE SINTERING ØF CAØ AND BACØ3 ZH NFØRG KHIM 6, NØ 12, 2738 (1961) BHT NØ 2, 19 (1962)	300526 300526 300526 300526 300526
MACKENZIE, J FUSIØN ØF QUARTZ AND CRISTØBALITE J AM CERAM SØC 43, 615 (1960) BHT, (1960)	300139 300139 300139 300139
MACKENZIE, J (GE RESEARCH LAB SCHENECTADY NY) THE STRUCTURE ØF BØRØN ØXIDE AND SIMPLE BØRATES ARL-TN-60-130 (1960) NA 15, 12893 (1961)	600882 600882 600882 600882 600882
MACKENZIE, J. CLAUSSEN, W. CRYSTALLIZATION AND PHASE RELATIONS OF BORON TRIOXIDE AT HIGH PRESSURES J. AM. CERAMIC SOC 44, 79 (1961)	700516 700516 700516 700516
MACW00D. G (UNIV 0F CALIF LIVERMORE CALIF) THERMODYNAMIC PROPERTIES OF URANIUM COMPOUNDS US ATOMIC ENERGY COMM TID-5290 2. 543 (1958) CA 53. 17655 (1959)	601143 601143 601143 601143
MAGEE & E (ESSØ RESEARCH + ENG CØ LINDEN N J) J INØRG NUCL CHEM 22 • 155 (1961) PRØDUCT ØF REACTIØN ØF BF3 WITH B2Ø3 CÅ 56 • 13627 (1962)	201511 201511 201511 201511 201511
MAGNELI. A (STOCKHOLM UNIV) STUDIES ON THE CRYSTAL CHEMISTRY OF TITANIUM VANADIUM AND MOLYBDENUM OXIDES AND OF ALKALI WOLFRAM BRONZES AT ELEVATED TEMPERATURES NP 8879. (1960)	600617 600617 600617 600617 600617

NS 14. 20616 (1960)	600617
MAGNELI. A ANDERSSØN. S ASBRINK. S WESTMAN. S HØLMBERG. B (UNIV STØCKHØLM STØCKHØLM SWEDEN) CRYSTAL CHEMISTRY ØF TITANIUM. VANADIUM. AND ZIRCØNIUM ØXIDES AT ELEVATED TEMPERATURES U S DEPT CØMM. ØFFICE TECH SERV. P B REPT 145, 923 (1961) CA 57, 164 (1962)	201566
MAGNUS, A DANZ, H THE SPECIFIC HEAT OF TUNGSTEN, BORON, BORON NITRIDE AND BERYLLIUM OXIDE ANN PHYS 81, 407 (1926) CA 21, 3534 (1927)	700560 700560 700560 700560 700560
MAGNUS, A HØLZMANN, H INVESTIGATIØN ØN THE SPECIFIC HEATS ØF TANTALUM, TUNGSTEN AND BERYLLIUM BETWEEN 100 AND 900 DEGREES C ANN PHYS 3, 585 (1929) CA 24, 1018 (1930)	700562 700562 700562 700562 700562
MAH. A HEATS ØF FØRMATIØN ØF CERIUM SESQUIØXIDE AND BISMUTH SESQUIØXIDE BY CØMBUSTIØN CALØRIMETRY US BUR MINES REPT INVEST NØ 5676 (1961) CA 55. 10039 (1961)	600689 600689 600689 600689
MAH. A HEATS AND FREE ENERGIES OF FORMATION OF GALLIUM SESQUIZXIDE AND SCANDIUM SESQUIOXIDE US BUR MINES REPT INVEST 5965 (1962)	700705 700705 700705 700705
MAH. A D (US BUR OF MINES BERKELEY CALIF) HEAT: AND FREE ENERGIES OF FORMATION OF BAPIUM OXIDE AND STRONTIUM OXIDE US BUR MINES REPT INVEST NO 6171, 8 (1963) CA 58. 96790 (1963)	202093 202093 202093 202093 202093 202093
MAH. A D BØYLE. B J HEATS ØF FØRMATIØN ØF NIØBIUM CARBIDE AND ZIRCØNIUM CARBIDE FRØM CØMBUSTIØN CALØRIMETRY J A C S 77. 6512 (1955)	301297 301297 301297 301297
MAH. A KELLEY. K HEATS AND FREE ENERGIES OF FORMATION OF EXIDES OF VANADIUM B OF MINES REPORT 5858 (1961) CA 56. 4163 (1962)	300406 300406 300406 300406
MAH. A ET AL THERMODYNAMIC PROPERTIES OF ALUMINUM NITRIDE BUR MINES REPORT 5716 (1961) 8 PAGES ITEM 637A US GOVT PUB 7927. 70 (1961)	300413 300413 300413 300413
MAJUMDAR. K VARSHNI. Y SPECTRØSCØPIC CØNSTANTS ØF MØLECULES. I. GRØUND STATE FREQUENCIES ØF DIATØMS ØF TYPE XX INDIAN J PHYS 28. 103 (1954) CA 51. 7832 (1957)	600886 600886 600886 600886
MAJUMDAR. K VARSHNI. Y SPECTROSCOPIC CONSTANTS OF MOLECULES. II. THE VIBRATION FREQUENCIES OF DIATOMS OF THE TYPE XY	600887 600887 600887

INDIAN J PHYS 28 209 (1954) CA 51 7832 (1957)	600887 600887
MAJUMDAR: K. VARSHNI: Y SPECTROSCOPIC CONSTANTS OF MOLECULES. HIL: PECHLAPITIES IN VIBRATION FREQUENCIES IN A MOLECULAR GROUP INDIAN J PHYS 28: 38 (1955) CA 51: 7832 (1957)	600888 600888 600888 600888
MAJUMDAR & VARSHNI Y SPECTROSCOPIC CONSTANTS OF MOLECULES. IV. SIMILARITIES IN GROUND STATE VIBRATION FREQUENCIES OF ISOELECTRONIC DIATOMS INDIAN J PHYS 28 + 285 (1954) CA 51 • 7832 (1957)	600889 600889 600889 600889 600889
MAKAROV. E CRYSTAL CHEMISTRY OF SIMPLE COMPOUNDS OF URANIUM. THORIUM. PLUTONIUM. AND NEPTUNIUM NEW YORK CONSULTANTS BUREAU INC (1959) NSA 14. 1486 (1960) (TRANSLATION) ORIGINAL REF-NSA 13. 4551 (1959)	601370 601370 601370 601370 601370
MAKAROV. E THE HOMOLOGOUS SERIES OF URANIUM OXIDES UNDEN+2 DOK AKAD NAUK SSSR 139. 612 (1961) COTS 54. 288 (1962)	301114 301114 301114 301114
MAKAROV» E KUZHFTSOV» L CRYSTAL STRUCTURE AND CHEMICAL NATURE OF THE LOWER ØXIDES OF TITANIUM TIOO-0.48. ZHUR STRUKT KHIM 1. NO 2. 170 (1960) CA 55. 12987 (1961)	600772 600772 600772 600772 600772
MARKØVSKII+ L Y (INST APPLIED CHEM LENINGRAD RUSSIA) CHEMICAL STABILITY AND STRUCTURE ØF BØRIDES PØRØSHKØVAYA MET AKAD NAUK UKR SSR 2+ NØ 4+ 39 (1962) CA 51 (16167D CA 58+ 1149C (1963)	301530 301530 301530 301530 301530
MAKIN: B BELL: I (CULCHETH LABS RES + DEV ENGLAND) FAST REACTØR-PHYSICAL PRØPERTIES ØF MATERIALS ØF CØNSTRUCTIØN REV ØF PRØGRESS FRØM SEPT 1: 1953-APR 1: 1954 RDB (C)/TN-70 (1954) NSA 9: 1266 (1955)	601286 601286 601286 601286 601286
MAKKAY. R W FINE. M E (NØRTHWESTERN UNIV EVANSTØN ILL) VACUUM REDUCTIØN ØF ALPHA-NP2Ø5 AT LØW TEMPERATURES J APPL PHYS 33. 745 (1962) JACS 79. 2039 (1957) CA 58. 2963E (1963)	301298 301298 301298 301298 301298 301298
MAKSIMOVA I N (LFNSØVET TECHNØL INST LENINGRAD RUSSIA) IØNIZATIØN PØTENTIALS AND HEATS ØF FØRMATIØN ØF CØMPØUNDS ZH STRUKT KHIM 3 (2) • 208 (1962) CA 59 • 8135C (1963)	202094 202094 202094 202094 202094
MALINCHKØV• Ø PØVITSKII• V Investigation of transition metal børides and pure børøn by	300947 300947

NUCLEAR MAGNE POROSH MET 2	TIC RESONANCE NO 4, 26 (196	52)		300947 300947
INVESTIGATING NUCLEAR MAGNE	ETIC RESONANCE	O CRYSTALLINE BØRØN E Ø 6• 933 (1962)	BY THE METHØD ØF	300948 300948 300948 300948
REACTION OF N	BRIAL INST NITRØGEN WITH U 1 SØC 102. 292		ØH1Ø)	600986 600986 600986 600986 600986
THE URANIUM-C	1 500 99 197 (100188 100188 100188 100188
URANIUM SESQL	SØC 98. 505 (-T-19 (1950) 1953			100203 100203 100203 100203 100203
MALM, J SELIG (ARGONNE NATL J INORG NUCLE VAPOR PRESSUR CA 56, 13561	LAB AR CHEM 20. 18 ES AND ØTHER P	LEMØNT 19 (1961) RØPERTIES ØF REF6 AN		201502 201502 201502 201502 201502
HEAT OF FORMA	IM 5 228 (196	M TETRAFLUØRIDE		201161 201161 201161 201161
(MØSCØW STATE THE NATURE ØF	TVEEV. V TATE UNIV THE FLUCTUATI NØ 1. 123 (196	MØSCØW NG BANDS ØF BØRIC AC	RUSSIA) ID	300949 300949 300949 300949
AN INVESTIGAT AND THE ISOTO III GAMMA BAN	PIC SHIFT OF C DS OF THE BO M TROSK 9. 713 (CTRØNIC SPECTRA ØMPØUNDS ØF BØRØN AN IØLECULE	D ØXYGEN	600701 600701 600701 600701 600701 600701
STUDY OF THE OXYGEN COMPOU	NDS OF BORON. VOV U 3, 475 (RA AND THE ISØTØPE E I. B-BANDS ØF THE BØ		300316 300316 300316 300316 300316
BORON TRISULF	N OF THE INFRA IDE MOLECULES TROSKOPIYA 10,	RED SPECTRA ØF BØRØN	TRIØXIDE AND	700604 700604 700604 700604 700604
MALYUCHKOV. 0 (MOSCOW STEEL	T PØVITSKII. INST	V'A MØSCØW	RUSSIA)	202095 202095

INVESTIGATION OF BORIDES OF TRANSITION METALS AND PURE BORON BY THE METHOD OF NUCLEAR MAGNETIC RESONANCE POROSHKOVAYA MET AKAD NAUK UKR SSR NØ 4, 26 (1962 NSA 17, 8081 (1963) FIZ METAL METALLOVED 13, 676 (1962)	202095 202095 202095 202095 202095
MALYUCHKØV, Ø PØVITSKII. V STUDY ØF CHRØMIUM BØRIDE, LANTHANUM BØRIDE AND CRYSTALLINE BØRØN BY NUCLEAR MAGNETIC RESØNANCE FIZ METAL I METALLØVED 13, NØ 6, 933 (1962) CT NØ 17, 78 (1962)	300584 300584 300584 300584 300584
MANAKØV• A I ESIN• Ø A LEPINSKIKH• B M THERMØELECTRØMØTIVE FØRCE AND ELECTRICAL CØNDUCTANCE ØF VANADIUM AND NIØBIUM PENTØXIDES ZH FIZ KHIM 36• 2734 (1962) CA 58• 8485H (1963)	202096 202096 202096 202096 202096
MANDELBERG, C DAVIS, D (AT ENERGY RES ESTAB HARWELL ENGLAND) REACTION OF UF4 WITH OXYGEN CA 56, 5622 (1962) J INORG AND NUCLEAR CHEM 20, 58 (1961)	201335 201335 201335 201335 201335
MANDIL I SCØTT R (US AT ENERGY CØMM WASHINGTØN DC) URANIUM DIØXIDE AND ITS APPLICATION TO NUCLEAR POWER REACTORS CA 56 4343 (1962)	201303 201303 201303 201303
MANNAS, D SMITH, J (GEN ELEC CØ CINCINNATI ØHIØ) BERYLLIUM INTERMETALLIC CØMPØUNDS, THEIR PREPARATIØN AND FABRICATIØN J METALS 14, 575 (1962) CA 57, 8291 (1962)	201786 201786 201786 201786 201786 201786
MARADUDIN, A FLINN, P HØRSFALL, R ANHARMØNIC CØNTRIBUTIØNS TØ VIBRATIØNAL THERMØDYNAMIC PRØPERTIES ØF SØLIDS. I. GENERAL FØRMULATIØN AND APPLICATIØN TØ THE LINEAR CHAIN ANN PHYS (USA) 15, 337 (1961) PA 65, 568 (1962)	301085 301085 301085 301085 301085 301085
MARADUDIN: A FLINN: P COLDWELL-HORSFALL: R ANHARMONIC CONTRIBUTIONS TO VIBRATIONAL THERMODYNAMIC PROPERTIES OF SOLIDS: II: THE HIGH TEMPERATURE LIMIT ANN PHYS 15: 360 (1961) PA 65: 569 (1962)	301084 301084 301084 301084 301084
MARCHAL • M TRØUVE • J STUDY ØF THE SYSTEM CARBØN-URANIUM-THØRIUM CEA-3677 AEC-TR-5174	900202 900202 900202 900202
MARCINKOWSKI, M. LIPSITT, H. ELECTRICAL RESISTIVITY OF CHROMIUM IN THE VICINITY OF THE NEFL TEMPERATURE J. APPL PHYS 32, NO. 7 1238 (1961) PA 64, 10024 (1961)	600861 600861 600861 600861 600861
MARCUS: R ISTANFØRD RESEARCH INST MENLØ PARK CALIF) GRAPHIC ESTIMATIØN ØF ENERGIES ØF VAPØRIZATIØN	200863 200863 200863

IND ENG CHEM 52, 938 (1960) CA 55, 5108 (1961)	200863 200863
MARDEN+ J RENTSCHLER+ H METALLIC THORIUM IND ENG CHEM 19+ 97 (1927) CA 21+ 841 (1927)	900119 900119 900119 900119
MARDON P NICHOLS J PEARCE J POOLE D (AT ENERGY RESEARCH ESTAB HARWELL ENGLAN SOME PROPERTIES OF SCANDIUM METAL NATURE 189 566 (1961) CA 55 12215 (1961)	200987 200987 200987 200987 200987
MARGOTIN, P DURAND, R (ESTAB KUHLMANN LEVALLØIS-PERRET FRANCE DETERMINATION OF METAL PURITY BY MEASURING THE RESISTI LOW TEMPERATURES MEM SCI REV MET 59, 255 (1962) CA 57, 12217 (1962)	201863 VITY AT 201863 201863 201863 201863 201863
MARGOTIN, P STUCKENS, W DURAND, R (LAB CENTRAL RESEARCHES LEVALLØIS FRANCE REGIONS OF THERMAL STABILITY OF DIFFERENT ØXIDES OF UR. IN THE PRESENCE OF ØXYGEN AND HYDRØGEN COMPT REND 252, 4005 (1961) CA 57, 372 (1962)	201574) 201574 ANIUM 201574 201574 201574
MARGRAVE J (UNIV ØF WISCØNSØN MADISØN WISC) CHEMISTRY AT HIGH TEMPERATURES SCIENCE 135, 345 (1962) BHTG NØ 4, 13 (1962)	300472 300472 300472 300472 300472
MARGRAVE, J STUDIES OF HIGH TEMPERATURE SYSTEMS AD 275, 797 (1961)	301531 301531 301531
MARGRAVE, J (UNIV ØF WISCONSØN MADISØN WISC) PRØPERTIES ØF MATERIALS AT HIGH TEMPERATURES TID-13678 (1961) NSA 15+ 32549 (1961)	700967 700967 700967 700967 700967
MARÎN, J (CIT PASADENA CAL) TRANSITIONS IN CHROMIUM TID-14740 NSA 16, 10542 (1962)	601571 601571 601571 601571 601571
MARINCHUK, A E MØSKALENKØ, V A (INST PHYS AND MATH ACAD SCI KISHINEV SSR) THE THERMØDYNAMICS ØF CRYSTAL LATTICE FIZ TVERD TELA 5 (2), 575 (1963) CA 59, 8204G (1963)	202092 202092 202092 202092 202092
MARINDER B STOCKHOLM STOCKHOLM SWEDEN: NOTE ON THE CRYSTAL STRUCTURE OF NIOBIUM DIOXIDE ACTA CHEM SCAND 15. 707 (1961) NSA 15. 27514 (1961)	700649 700649 700649 700649 700649
MARINDER. 8	601678

(UNIV STOCKHOLM CRYSTAL STRUCTURE OF NB205 ARKIV KEMI 19, 435 (1962) BHT NO 4, (1962)	STØCKHØLM	SWEDEN)	601678 601678 601678 601678
MARKEVICH, G KØNDRASHEV, Y (STATE INST ØF APPLIED CHEMI: ØN THE NEW BØRIDE PHASE IN (ZHUR NEØRG KHIM 5, 1783 (196 NS 14, 25489 (1960)	STRY BERYLLIUM BØRØN SYSTE	USSR) EMS	600630 600630 600630 600630
MARKEVICH. G MARKØVSKII, L CHEMICAL STABILITY ØF BERYL AND C AT HIGH TEMPERATURES UCRL-TRANS-628 NSA 15, 10944 (1961)	LIUM BØRIDES WITH RE:	, SPECT TØ Ø2. N2	700917 700917 700917 700917 700917
MARKEVICH. G MARKØVSKII, L CHEMICAL STABILITY ØF BERYL AND CARBØN AT HIGH TEMPERAT ZHUR PRIKLAD KHIM 33, 1008 AEC-TR-4595 NSA 15, 17258 (1961)	URES	EN• NITRØGEN•	700937 700937 700937 700937 700937
MARKEVICH. G MARKØVSKII. L PHASE CØMPØSITIØN ØF THE SY TRUDY GØSUDARST INST PRIKLA CA 56. 5443 (1962)		39	201315 201315 201315 201315
MARKIN T BONES R (ATOMIC ENERGY RES ESTAB A DETERMINATION OF CHANGES USING A HIGH TEMPERATURE GA REPT AFRE-R 4042 (1962) CA 57, 10592 (1962)	IN FREE ENERGY FOR U	ENGLANDI RANIUM ØXIDES	201819 201819 201819 201819 201819 201819
MARKIN, T ROBERTS, L WALTE THERMODYNAMIC DATA FOR THE BETWEEN UO2 AND U308 IAEA SYMPOSIUM ON THE THERM VIENNA, MAY (1962) NSA 16, 25377 (1962)	URANIUM ØXIDES	MATERIALS.	601608 601608 601608 601608 601608
MARKIN» E SØBØLEV» N INFRARED REFLECTIØN SPECTRU QUARTZ AT HIGH TEMPERATURES ØPTIKA I SPECKTRØSKØPIYA 9» CA 55» 12050 (1961)	•	AND FUSED	200979 200979 200979 200979 200979
MARKOVSKII, L Y (LENINGRAD STATE INST APP CH CHEMICAL STABILITY AND STRU POROSHKOVAYA MET AKAD NAUK NSA 17, 8083 (1963)	CTURE OF BORIDES	RUSSIA)	202098 202098 202098 202098 202098
MARKOVSKII. L KAPUTOVSKAYA. CHEMICAL PROPERTIES OF MAGN THE PREPARATION OF BORON BY ZH PRIKL KHIM 35. 723 (1962 CA57. 5553 (1962)	IESIUM BØRIDES AND TH 7 THE MAGNESIUM-THERM	EIR RØLE IN AL METHØD	201722 201722 201722 201722 201722
MARKOVSKII. L VEKSHINA. N FØRMATION ØF BØRØCARBIDES I	PRØN• G IN THE REDUCTION ØF M	IXTURES OF	201986 201986

ØXIDES ØF RARE EARTH METALS AND ØF BØRØN WITH CARBØN Zh prikl khim 35• 2090 (1962) CA 58• 2122 (1963)	201986 201986 201986
MARKØVSKII, L KØNDRASHEV, Y CØMPØSITIØN AND THE PRØPERTIES ØF THE BØRIDES ØF GRØUPS I AND II ØF THE PERIØDIC SYSTEM ZHUR NEØRG KHIM 2, 34 (1957) CA 51, 16167 (1957)	300941 300941 300941 300941 300941
MARKØVSKII, L KØNDRASHEV, Y KAPUTØVSKAYA, G THE CØMPØSITIØN AND STRUCTURE ØF MAGNESIUM BØRIDES DØKLADY AKAD NAUK SSSR 100, 1095 (1955) CA 50, 3937 (1956)	300942 300942 300942 300942
MARKØVSKII, L KØNDRASHEV, Y KAPUTØVSKAYA, G THE CØMPØSITIØN AND THE CHEMICAL PRØPERTIES ØF THE MAGNESIUM BØRIDES ZHUR ØBSCH KHIM 25, 433 (1955) CA 50, 7644 (1956)	300943 300943 300943 300943 300943
MARKØVSKII. L VEKSHINA. N DIBØRIDES ØF ALKALINE EARTH METALS ZHUR PRIKLAD KHIM 34. 16 (1961) CA 55. 16239 (1961)	201060 201060 201060 201060
MARKSTEM. G (CØRNELL AERØN LAB BUFFALØ NY) CØMBUSTIØN ØF METALS AIAA J 1. 550 (1963) CA 58. 12261 (1963)	301532 301532 301532 301532 301532
MARMO. F (AIR FORCE CAMB RES CTR CAMBRIDGE MASS) ABSORPTION COEFFICIENTS OF NITROGEN OXIDE IN THE VACUUM ULTRAVIOLET J OPT SOC AMER 43. 1186 (1953) CA 48. 2475 (1954)	600747 600747 600747 600747 600747
MARTIN. A BUNCE. J TILBURY. P A STUDY OF THE ELECTRICAL CONDUCTIVITY OF BERYLLIUM AND THE EFFECT OF PURITY J LESS COMMON METALS 4. (1962) REV MET LIT 19. 335 (1962)	301079 301079 301079 301079 301079
MARTIN. D (NATIONAL RESEARCH COUNCIL OTTAWA CAN) THE SPECIFIC HEAT OF HEXAGONAL METALS AT VERY LOW TEMPERATURES PROC PHYS SOC 78. 1482 (1961) CA 56. 12378 (1962)	300666 300666 300666 300666 300666
MARTIN. R SEAGLE. S BERTEA. Ø A STUDY ØF THE EFFECT ØF ELECTRØN BEAM MELTING ØN CØMPØUNDS AND METALS REPT FØR APR 58. (1960) AD 258588 DIV 17 WADD TR 60-404 CØN AF 33(616) 5603 PRØJ 7317	300308 300308 300308 300308 300308 300308
MARTYNKEVICH. G MASS SPECTRØMETRIC DETERMINATION OF THE HEAT OF VAPORIZATION OF MONOMERS AND THE BOND ENERGY OF DIMERS IZV A N SSSR OTD TEKH NAUK MET I TOPL NOT 127 (1962)	300357 300357 300357 300357

RUSS ACC 15. 444 (1962)			300357
MARTYNKEVICH, G MECHANISM ØF VAPØRIZATI IZV AKAD NAUK SSSR ØTD NØ 3, 142 (1961) BHT NØ 2, 51 (1962)	ØN AND CØNDENSATIØN TEKH NAUK MET I TØPL	1v0	300554 300554 300554 300554 300554
MARYØTT A KRYDER S (NATL BUREAU ØF STDS NØNRESØNANT MICRØWAVE A ØF NØ IN THE GASEØUS ST J CHEM PHYS 31 617 (19 CA 54 10502 (1960)	BSØRPTIØN AND ELECTR	D C) IC DIPOLE MOMENT	600748 600748 600748 600748 600748
MASLAN: F NUCLEAR ENG DEPT PRØG R BNL-571 NSA 14: 8325 (1960)	REPT FØR JAN 1- APRIL	30. 1959	601354 601354 601354 601354
MASLOV» P DETERMINATION OF THE HE 0XYGEN-CONTAINING ORGAN KHIM PROM NO 3 185 (19	IIC COMPOUNDS	NITRØGEN AND	300745 300745 300745 300745
MASLOV» P MASLOV» Y A NEW STATISTICAL METHO PROPERTIES KHIM I PRAKT PRIMENENIE TR KONF LENINGRAD 1956 CA 56, 13624 (1962)	KREMNEØRGAN SØEDIN	ERM&DYNAMIC	300658 300658 300658 300658 300658
MASLØV+ P MASLØV+ Y (MECH INST THERMØDYNAMIC PRØPERTIE IZVEST VYSSHIKH UCHEB 2 2+ 516 (1959) CA 54+ 6290 (1960)		INING LANTHANIDES	601196 601196 601196 601196 601196
MASLØV» P G HEATS ØF FØRMATIØN ØF C CØMPØUNDS IN THE LIQUIC ZH ØBSHCK KHIM 33° 1054	D PHASE	NINC	202099 202099 202099 202099
MASLØV» P MASLØV» Y METHØD ØF CALCULATING KNØWLEDGE ØF ELECTRØNIG ZHUR FIZ KHIM 35» 164	C AND VIBRATION SPECT	TIES WITHØUT IRA	700538 700538 700538 700538
MASON S (UNIV EXETER MOLECULAR ELECTRONIC A QUART REVS (LONDON) 15 CA 56 • 1046 (1962)		ENGLAND)	201224 201224 201224 201224 201224
MASSAZZA: F (UNIV CAGLIARI THE TERNARY SYSTEM BEØ ANN CHIM (RØME) 51: 78 CA56: 4147 (1962)		I TALY)	201293 201293 201293 201293 201293
MASSONNE, J (KALI-CHEM A-G	HANØVER	GERMANY I	201425 201425

METHODS FOR THE PRODUCTION OF PURE SCANDIUM OXIDE J PRAKT CHEM 14. 305 (1961) CA 56. 9682 (1962)	201425 201425 201425
MATLOW. S THREE DIMENSIONAL FE-MO MODEL. I. DELTA H OF DISSOCIATION OF HOMONUCLEAR DIATOMIC MOLECULES J CHEM PHYS 34. NO 4 1187 (1961) PA 64. 6035 (1961)	300401 300401 300401 300401 300401
MATOSSI, F (UNIV FREIBURG BREISGAU GERMANY) THE VIBRATION SPECTRUM OF RUTILE Z PHYSIK 173, 1 (1963) CA 59, 2292H (1963)	301299 301299 301299 301299 301299
MATSKEVICH. T KAZANTSEV, A KRACHINØ, T THERMØ ELECTRØN EMISSIØN ØF HAFNIUM BØRIDES. HAFNIUM CARBIDE. HAFNIUM ØXIDE. VANADIUM CARBIDE. AND SØLID SØLUTIØN URANIUM CARBIDE (1)-ZIRCØNIUM CARBIDE (4) ZH TEKHN FIZ 32. NØ 10. 1266 (1962)	300952 300952 300952 300952 300952
MATSKEVICH. T KRACHINO. T KAZANTSEV. A TAB2 FIELD EMISSION RADIOTEKHN I ELEKTRON 7. NO 11. 1972 (1962) CA 58. 7467 (1963)	301533 301533 301533 301533
MATSUURA, R (MITSUBISHI CHEM IND CØ LTD KAWASSKI JAPAN) VANADIUM PENTØXIDE CATALYST. I. REDUCTIØN ØF VANADIUM PENTØXIDE BY A STATIC METHØD NIPPØN KAGAKU ZASSHI 82, 276 (1961) CA 55, 14024 (1961)	201028 201028 201028 201028 201028 201028
MATTERSON, K JONES, H A STUDY OF THE TETRA-BORIDES OF URANIUM AND THORIUM TRANS BRIT CERAM SOC 60. 475 (1961) BHT 4. 9 (1961)	300324 300324 300324 300324
MATTHIAS. B (BELL TELEPHONE LABS MURRAY HILL NJ) CONCLUSIONS FROM SUPERCONDUCTIONG MOLYBDENUM TECHNETIUM ALLOYS REV MODERN PHYSICS 33. 499 (1961)	300945 300945 300945 300945
MATVEEV. V MALTSEV. A TATEVSKII. V INTENSITY DEPENDENCE OF THE FLUCTUATION BANDS OF BORIC ACID ON THE OXYGEN PRESSURE VESTN MOSK UNIV KHIM SER II 16. NO 1. 51 (1961) CA 56. 12438 (1962)	300775 300775 300775 300775 300775
MATVEEVA, M IVANØV, L BYSTRØV, L RELATIØN BETWEEN THERMØDYNAMIC CØNSTANTS AND THE STRENGTH ØF ALLØYS AT HIGH TEMPERATURES ISSLEDØVANIYA PØ ZHARØPRØCH SPLAVAM, AKAD NAUK SSSR INST MET IM AA BAIKØVA 3, 50 (1958) CA 55, 6325 (1961)	200892 200892 200892 200892 200892 200892
MATYUSHENKØ: N VERKHØRØBIN: V PUGACHEV: N SIVØKØN: N (PHYS TECH INST ACAD SCI UKR SSR) CRYSTAL STRUCTURE ØF HIGHER BERYLLIDES ØF MØ: W AND RE KRISTALLØGRAFIYA 7: (6) 862 (1962) BHT NØ 1: 9 (1963)	301150 301150 301150 301150 301150

MAY, C HØEKSTRÅ, P STABILITY ØF REFRACTØRY CØMPØUNDS IN HYRDRØGEN BETWEEN 4500 AND 5000 DEGREES F, AND THEIR CØMPATIBILITY WITH TUNGSTEN AD-257063 (MAY 1961) GR 36. NØ 3, 47 (1961)	700663 700663 700663 700663 700663
MAY, C KØNEVAL, D FRYBURG, G STABILITY ØF CERAMICS IN HYDRØGEN BETWEEN 4000 AND 4500 DEGREES F NASA MEMØ 3-5-59E (1959) CFRAM ABS 44, 197 (1961)	700686 700686 700686 700686 700686
MAYER. J HEAT CAPACITY AND OPEN AND CLOSED ENSEMBLE AVERAGES J PHYS CHEM 66. 591 (1962)	300397 300397 300397
MAYKUTH D ØGDEN H JAFFEE R (BATTELLE MEM INST COLUMBUS 0HIO) THE EFFECTS ØF ALLØYING ELEMENTS IN TI DMIC-136A (1960) NSA 15 + 4281 (1961)	700983 700983 700983 700983 700983
MAZØ• R M (UNIV ØF ØREGØN EUGENE ØREGØN) FREE ENERGY ØF A SYSTEM WITH RANDØM ELEMENTS J CHEM PHYS 39 (5)• 1224 (1963) CA 59• 7007G (1963)	202100 202100 202100 202100 202100
MCBRIDE. B. GØRDØN. S. THERMØDYNAMIC FUNCTIØNS ØF SEVERAL TRIATØMIC MØLECULES IN THE IDEAL GAS STATE J. CHEM. PHYS 35. 2198 (1961) BHTG NØ 4. 13 (1962)	300473 300473 300473 300473 300473
MCCABE • C THE STANDARD FREE ENERGY OF FORMATION OF CERTAIN RARE EARTH CARBIDES NYO 7432 (1960) US GOV REPORTS 35 • 649 (1961)	700599 700599 700599 700599 700599
MCCALDIN• J DUWEZ• P (CAL INST TECH ALLØTRØP1C TRANSFØRMATIØNS AT HIGH TEMPERATURE J TRANS MET AIME 200• 619 (1954) CA 48• 6797 (1954) NSA 8• 4070 (1954)	600956 600956 600956 600956 600956
MCCARLEY R BRØWN T (IØWA STATE UNIV AMES IØWA) TUNGSTEN TRIBRØMIDE AND TUNGSTEN TETRABRØMIDE J AM CHEM SØC 84 · 3216 (1962) CA 57 · 12082 (1962)	201856 201856 201856 201856 201856
MCCLAINE+ L THERMODYNAMIC AND KINETIC STUDIES FOR A REFRACTORY MATERIALS PROGRAM FIRST SEMIANNUAL PROGRESS REPORT 5 JULY TO 31 DECEMBER 1960 CONTRACT AF33(161) 7472 TASK 73500	300278 300278 300278 300278 300278
MCCLØSKEY: A BØØNE: J BRØTHERTØN: R (U S BØRAX ANAHEIM CALIF) THE PREPARATION OF DIBØRØN TETRACHLORIEF FROM BØRØN MØNDXIDE J AM CHEM SØC 83: 1766 (1961)	201033 201033 201033 201033

CA 55+ 14144 (1961)	201033
MCCULLEHO K GLOCKLERO G (STATE UNIV OF 10WA IOWA CITY 10WA) THE ELECTRONIC EMISSION SPECTRUM OF C13016 PHYS REV 89. 145 (1953) CA 47. 4733 (1953)	600727 600727 600727 600727 600727
MCCULLØUGH R (LINDE DEVEL LAB NEWARK N J) PLASMARC FURNACE A NEW CØNCEPT IN MELTING METALS J METALS 14 • (12) 907 (1962) BHT NØ 1 • 1 (1963)	301151 301151 301151 301151 301151
MCDØNALD. J THERMØDYNAMIC STUDIES ØN CØMPØUNDS ØF RHENIUM DISS ABST 22. 2183 (1962)	300664 300664 300664
MCDØNALD, R SINKE, G STULL, D (DØW CHEM CØ MIDLAND MICH) HIGH TEMPERATURE ENTHALPY, HEAT CAPACITY, HEAT ØF FUSIØN, AND MELTING PØINT ØF ZIRCØNIUM TETRAFLUØRIDE J CHEM ENG DATA 7, NØ 1, 83 (1962) CA 57, 1632 (1962)	300662 300662 300662 300662 300662
MCDØNALD, R STULL, D THE HEAT CONTENT AND HEAT CAPACITY OF BORON NITRIDE FROM 298 TO 1689 DEG K J PHYS CHEM 65, 1918 (1961) BHT 4, 22 (1961)	300333 300333 300333 300333 300333
MCDØNALD. R STULL. D (DØW CHEM CØ MIDLAND MICH) HEAT CØNTENT AND HEAT CAPACITY ØF CRYSTALLINE BØRØN FRØM 298 *0 1700 DEGREES K J CHEM ENG DATA 7. 84 (1962) CA 57. 2931 (1962)	300726 300726 300726 300726 300726 300726
MCDØWELL C (UNIV BRIT CØLUMBIA VANCØUVER CANADA) MASS SPECTRØMETRY METHØDS EXPTL PHYS (D WILLIAMS ED. ACADEMIC PRESS) 3. 525 (1962) CA 56. 8015 (1962)	201370 201370 201370 201370 201370 201370
MCDØWELL R S (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEXICØ) CENTRIFUGAL DISTØRTIØN CØRRECTIØNS TØ CALCULATED THERMØDYNAMIC FUNCTIØNS J CHEM PHYS 39. (3) 526 (1963) CA 59. 4595C (1963)	301300 301300 301300 301300 301300 301300
MCGØNIGAL, P KIRSHENBAUM, A GRØSSE, A (TEMPLE UNIV PHILADLIPHIA PA) THE LIQUID TEMPERATURE RANGE DENSITY AND CRITICAL CONSTANTS OF MAGNESIUM J PHYS CHEM 66, 737 (1962) CA56, 14946 (1962)	201532 201532 201532 201532 201532 201532
MCGREGØR: A NICHØLLS: R JARMAIN: W FRANCK-CØNDØN FACTØRS AND R CENTRØIDS FØR SØME BANDS ØF THE SIØ BAND SYSTEM CAN J PHYS 39: 1215 (1961)	300475 300475 300475 300475

BHTG NØ 4. 16 (1962)	300475
MCHARGUE C YAKEL H PHASE TRANSFØRMATIØNS IN CERIUM ACTA MET 8, 637 (1960) CA 55, 3368 (1961) NS 15, 1863 (1961)	600646 600646 600646 600646
MCKENZIE D JENKINSON W VØLATILIZATION OF PLUTONIUM FROM NEUTRON IRRADIATED URANIUM ATOMIC ENERGY CANADA LTD CHALK RIVER, ONT AECL-788 (1960) CA 54, 23908 (1960)	700805 700805 700805 700805
MCKEOWN. J (STATE UNIV OF IOWA 10WA CITY 10WA) HIGH-TEMPERATURE HEAT CAPACITY AND RELATED THERMODYNAMIC FUNCTIONS OF RARE EARTH METALS UNIV. MICROFILMS. LC CARD NO. MIC 58-2194. DISSERTATION ABSTR 19. 57 (1958) CA 52. 16855 (1958)	601080 601080 601080 601080 601080 601080
MCKINSEY. C MINCHER. A SHEELY. W WILSON, J (UNION CARBIDE CORP NIAGARA FALLS N Y) TUNGSTEN-TANTALUM-NIOBIUM BASE ALLOYS US DEPT COM OFFICE TECH SERV AD 267, 386, (151) CA 57. 16272 (1962)	201949 201949 201949 201949 201949
MCLAREN M (RUTGERS UNIV EFFECTS OF DIFFERENT PREPARATION METHODS OF TITANIUM MONOXIDE ON ITS ELECTRICAL PROPERTIES CA 58 • 7457 (1963)	301534 301534 301534 301534 301534
MCMASTERS, Ø PALMER, P LARSEN, W (IØWA STATE UNIV AMES IØWA) THØRIUM-MØLYBDENUM PHASE DIAGRAM J NUCL MATER 7, 151 (1962) CA 58, 13547 (1963)	301535 301535 301535 301535 301535
MCMASTERS. Ø LARSEN. W PHASE EQUILIBRIA IN THE THORIUM TANTALUM SYSTEM J LEM COMMON METALS 3. 312 (1961)	600834 600834 600834
MCNALLY, J (ØAK RIDGE NATL LAB ØAK RIDGE TENN) ATOMIC SPECTRØSCØPY ØF SEPARATED ISØTØPES AM J PHYS 20, 152 (1952) CA 47, 38 (1953)	100211 100211 100211 100211 100211
MCNALLY. J THE CLASSIFICATION OF THE SPECTRUM OF SINGLY IDNIZED URANIUM PHYS REV 77, 417 (1950) J OPTICAL SOC AM 39. 636A (1949) Y-494. OCT 12. (1949) CA 44. 3350 (1950) NSA 4. 1419 (1950)	400523 400523 400523 400523 400523 400523
MCNALLY, R PETERS, F RIBBE, P LABORATORY FURNACE FOR STUDIES IN CONTROLLED ATMOSPHERES MELTING POINTS OF MGO IN N2 ATMOSPHERE AND OF CR203 IN N2 AND IN AIR ATMOSPHERE; J AM CERAM SOC 44, 491 (1961)	600828 600828 600828 600828 600828

MCQUEEN, R MARSH, S (LØS ALAMØS SCI LAB LØS ALAMØS N MEX) EQUATION ØF STATE FØR 19 METALLIC ELEMENTS FRØM SHØCK-WAVE MEASUREMENTS TØ TWØ MEGABARS J APPL PHYS 31, 1253 (1960) CA 55, 42 (1961)	200777 200777 200777 200777 200777 200777
MCTAGGART, F K NEW PRØTØNCØNTAINING ØXIDES ØF TITANIUM ZIRCØNIUM AND HAFNIUM NATURE 199, 339 (1963) CT NØ 17, 113 (1963)	202101 202101 202101 202101 202101
MCTAGGART, F REDUCTION OF ZIRCONIUM AND HAFNIUM OXIDES NATURE 191, 1192 (1961) BHT 4, 43 (1961)	300338 300338 300338 300338
MEDVEDEV. V DISSOCIATION ENERGIES AND HEATS OF SUBLIMATION OF THE ALKALINE EARTH OXIDES DOKLADY AKAD NAUK SSSR 139. 1481 (1961) BHT 4. 25 (1961)	300335 300335 300335 300335 300335
MEDVEDEV. V (INST FUEL RAW MATERIALS MØSCØW RUSSIA) DISSØCIATION ENERGIES AND HEATS ØF SUBLIMATION ØF THE ØXIDES ØF ALKALINE EARTH METALS ZHUR FIZ KHIM 35, 1481 (1961) CA 56. 2044 (1962)	300253 300253 300253 300253 300253
MEERSON, G REDUCTION BY HEATING ØXIDES OF REFRACTORY METALS WITH CARBON IN VACUO PRIMENEN VAKUUMA V MET AKAD NAUK SSSR INST MET IM AA BAIKOVA 115 (1960) CA 55 16315 (1961)	300298 300298 300298 300298 300298 300298
MEERSØN• G (MØSCØW STATE UNIV MØSCØW RUSSIA) THEØRY ØF TITANIUM DIØXIDE REDUCTIØN WITH CARBØN RUSS MET AND FUELS NØ 3• 27 (1962) IZV ANSSSR ØTN MET I TØP NØ 3• 33 (1962)	300950 300950 300950 300950 300950
MEERSØN, G DERGUNØVA, V EPELBAUM, V GUREVITCH, M STUDY ØF SØME HARD ALLØYS ØF THE B-SI-C SYSTEM IZVEST AKAD NAUK SSSR 4, 90 (1961) BHT NØ 1, 9 (1962)	300373 300373 300373 300373
MEERSØN» G KREIN» Ø PREPARATIØN ØF HAFNIUM CARBIDE ZHUR NEØRG KHIM 5» 1164 (1960) CA 55» 3257 (1961)	200831 200831 200831 200831
MEERSON. G SEGORCHEANU. T AFFINITY OF NIOBIUM WITH OXYGEN AT ENERGY (USSR) 13. NO 6. 597 (1962)	300946 300946 300946
MEERSON» G ZELIKMAN» A BELYAEVSKAYA» L TSEITINA» N KIRILLOVA» G THE CHLORINATION PROCESSES OF THE CARBIDES OF TITANIUM AND NIOBIUM» OF COMPLEX TITANIUM-NIOBIUM CARBIDE AND OF SOME OTHER COMPOUNDS	201912 201912 201912 201912 201912

TITAL I FCC CDI ANY AND AND	
TITAN 1 EGØ SPLAVY AKAD NAUK SSSR INST MET 1961, NØ 5, 167 (1961) CA 57, 14692 (1962)	201912 201912 201912
MEERSON, G ZELIKMAN, A BELYAEVSKAYA, L TSEITINA, N KIRILLOVA, G (INST NON-FERROUS MEIALS KRASNOYARSK RUSSIA) CHLORINATION OF TITANIUM-NIOBIUM CARBIDES IZVEST VYSSHIKH UCHEB ZAVEDENII TSVETNAYA MET 3, NO 5, 108 (1960) CA 55, 13219 (1961)	201007 201007 201007 201007 201007 201007
MEIJERING. J THERMØDYNAMICS ØF SILVER-PLATINUM SYSTEM PHYS AND CHEM SØLIDS 18. 267 (1961)	700606 700606 700606
MEINHARDT, D KRISEMENT, Ø (MAX-PLANCK INST DUSSELDØRF GERMANY) STRUCTURE INVESTIGATIØN ØF THE CHRØMIUM CARBIDE CR3C2 WITH THERMAL NEUTRØNS Z NATURFØRSCH 15A, 880 (1960) CA 55, 7978 (1961) NSA 15, 7818 (1961)	700912 700912 700912 700912 700912 700912 700912
MEIXNER, J (TECH HOCH SCHULE AACHEN GERMANY) RELAXATION PHENOMENA AND THEIR THERMODYNAMIC INTERPRETATION NED TIJDS(H?NATUURK 26, 259 (1960) CA 55, 3144 (1961)	200824 200824 200824 200824 200824 200824
MELENTEV. B CONDITIONS FOR THE PRODUCTION OF TITANIUM DIOXIDE IZVFST AKAD NAUK SSSR OTDEL TEKH NAUK, MET I TOPLIVO 1960. NO 4. 69 (1960) CA 55. 11163 (1961)	200964 200964 200964 200964 200964
MEN. A ØRLØV. A THE BØND ENERGY ØF ØXIDES ØF TRANSITIØN METALS ISSLEDØVAN PØ ZHARØPRØCH SPLAVAM. AKAD NAUK SSR. INST MET IM A A BAIKØVA 3. 364 (1958) CA 55. 1127 (1961)	200794 200794 200794 200794 200794
MENDELSSØHN, K RØSENBERG, H (CLARENDØN LAB ØXFØRD ENGLAND) THERMAL CØNDUCTIVITY ØF METALS AT LØW-TEMPERATURES SØLID STATE PHYSICS 12, 223 (1961) CA 56, 9431 (1962)	201403 201403 201403 201403 201403
MENDENHALL > C INGERSALL > L THE MELTING PØINT ØF RHØDIUM AND IRIDIUM AND THE USE ØF THE NERNST GLØWER IN HIGH TEMPERATURE MEASUREMENTS PHYS REV 25 + 1 (1907) CA 2 + 7 (1908)	900143 900143 900143 900143 900143
MERRILL, P. GREENSTEIN, J. REVISED LIST OF ABSORPTION LINES IN THE SPECTRUM OF R. ANDROMEDAE. ASTROPHYS J. SUPPL. SEV. 2, 225 (1956). CA. 50, 6183 (1956).	601007 601007 601007 601007 601007
MERRILL, P GREENSTEIN, J (MT WILSON ØRSERVATØRY PASADENA CALIF)	601097 601097

DOUBLE ABSØRPTIØN LINE PUBLS ASTRØN SØC PACIF CA 52• 8721 (1958)	ES IN THE SPECTRUM OF R AN FIC 70. 98 (1958)	IDRØMEDAE	601097 601097 601097
MERTSLINOR V NIKURASH PRØPERTIES ØF THE HETE INCØRPØRATING A DØMINA RUSS J PHYS CHEM 36 • 1		A ARY SYSTEMS	202102 202102 202102 202102
MERZ. K ADAMSKY. R SYSTHESIS OF THE WURTZ (JACS) J AM CHEM SOC 8	ZITE FØRM ØF SILICØN CARBI Bl 250 (1959)	DE	202103 202103 202103
CHROMIUM BORIDE MATERI	DRESDEN IALS 5 BERLIN KL MATH PHYSIK TE		301301 301301 301301 301301 301301 301301
MESNARD. G UZAN. R (UNIV LYØN CØNDUCTIVITY AND ØTHER LE VIDE 6. 1052 (1951) LE VIDE 6. 1091 (1951) CA 46. 2365 (1952) CA 46. 800 (1952)		FRANCE) HØRIA	400558 400558 400558 400558 400558 400558
THE CONDUCTIVITY OF 0)	RATION OF MATRIX STABILITY		301536 301536 301536 301536 301536 301536
MEYER. G ØØSTERØM. J (LAB GEN INØRG CHEM THE SYSTEM NBCL5-NB205 REC TRAV CHIM 80, 502 CA 56. 987 (1962)		NETHERLANDS) →	201213 201213 201213 201213 201213
MEYERHOFF. R SMITH. J ANISOTROPIC THERMAL EX THALLIUM, YTTRIUM, BEF J APPL PHYS 33, 219 (1) PA 65, 2056 (1962)	KPANSIØN ØF SINGLE CRYSTAL RYLLIUM• AND ZINC AT LØW 1 1962)	S ØF EMPERATURES	300809 300809 300809 300809 300809
AND THE INVESTIGATION	TIØN ØF BØRIDES ØF REFRACT ØF SØME BØRIDE SYSTEMS S INST TSVET METAL I ZØLØT		301122 301122 301122 301122 301122 301122
AND ZRB2-CRB2 SYSTEMS	E ALLØYS ØF THE TIB2-CRB2 NAUCH TEKH ØBS TSVETNØI ME		301115 301115 301115 301115 301115 301115
MEZAKI• R TILLEUX• E (UNIV ØF WISCONSON	BARNES D MARGRAVE J MADISIØN	WISCONSON)	601617 601617

HIGH TEMPERATURE HEAT CONTENTS OF FIFTEEN REFRACTORY BORIDES IAEA SYMPOSIUM ON THE THERMODYNAMICS OF NUCLEAR MATERIALS. VIENNA. MAY (1962) NSA 16. 25401 (1962)	601617 601617 601617 601617
MICHAELSON, H (SYLVANIA ELEC PRODUCTS INC KEW GARDENS NEW YORK) WORK FUNCTIONS OF THE ELEMENTS J APPL PHYS 21, 536 (1950) CA 44, 8761 (1950)	400529 400529 400529 400529 400529
MICKELSØN, R PETERSØN, D (10WA STATE CØLLEGE AMES 10WA) SØLUBILITY ØF CARBØN IN THØRIUM TRANS AM SØC METALS, PREPRINT NØ 7 (1957) CA 51, 11798 (1957)	601057 601057 601057 601057 601057
MIESCHER. E (NATIONAL RESEARCH COUNCIL OTTAWA CANADA) FINE STRUCTURE OF NO+ AND NO EMISSION SPECTRA IN THE SCHUMANN REGION CAN J PHYSICS 33. 355 (1955) CA 49. 10054 (1955)	600749 600749 600749 600749 600749
MIESCHER. E RØTATIØNAL ANALYSIS/ØF THE BETA PRIME BANDS ØF THE NITRIC ØXIDE MØLECULE HELV PHYS ACTA 29. 401 (1956) CA 51. 17437 (1957)	600750 600750 600750 600750 600750
MIGEOTTE P (UNIV LIEGE BELG) THE ULTRAVIOLET EMISSION SPECTRUM OF NO BULL SOC ROY SCI LIEGE 14. 40 (1945) CA 42, 6654 (1948)	600751 600751 600751 600751 600751
MIGEOTTE P RØSEN B (UNIV LIEGE PERTURBATIONS AND PREDISSOCIATION IN THE NO SPECTRUM BULL SOC RAY SCI LIEGE 14, 49 (1945) CA 42, 6654 (1948)	600752 600752 600752 600752 600752
MIGEOTTE P ROSEN B (UNIV LIEGE THE SPECTROSCOPIC STUDY OF THE NO MOLECULE BULL SOC ROY SCI LIEGE 19, 343 (1950) CA 45, 1868 (1951)	600753 600753 600753 600753 600753
MIKHAILØV. G PRØNINA. I AKIMØVICH. Ø PRESNYAKØVA. G EXHAUSTING EFFECT AND EVAPØRATIØN PRØPERTIES ØF METALLIC CR UNDER ELECTRØN BØMRARDMENT UKRAIN FIZ ZHUR 6. 412 (1961) BHTG NØ 4. 11 (1962)	300468 300468 300468 300468 300468
MIKHAILØVSKII, B I MARCHENKØ, R I (STATE UNIV KIEV GERMANY) RATE AND PRØDUCTS ØF EVAPØRATIØN ØF THØRIUM CARBIDE THERMØCATHØDE RADIØTEKHN I ELEKTRØN 8, 680 (1963) CA 59, 4630B (1963)	301302 301302 301302 301302 301302 301302
MIKHALØB. B. SHCHEGØLEVA. T ØRGANØBØRØN CØMPØUNDS. CØMMUNICATIØN 92. REFRACTIØNS ØF THE	900213 900213

BONDS OF BORON WITH SOME ELEMENTS IZ AK NAUK SSSR• OTDEL KHIM NAUK 1962• NO 3• 413 (1962) FTD-TT-62-1461	900213 900213 900213
MIKHEEV. V BELØUSØV. Ø FUSIØN DIAGRAM ØF THE NIØBIUM-TITANIUM-ZIRCØNIUM SYSTEM ZHURNØL NEØRG KHIM NØ 8. 972 (1961) CØTS 56. 416 (1962)	300834 300834 300834 300834
MIKSIC+ M G (PØLYTECH INST ØF BRØØKLYN BRØØKLYN N Y) ATØMIC THERMAL VIBRATIØNS AND BØNDING EFFECTS IN GRAPHITE DIAMØND AND TITANIUM DIBØRIDE DISSFRTATIØN ABSTR 23. 3429 (1963) CA 59. 2177F (1963)	301303 301303 301303 301303 301303
MILLER. C MERTEN. U PØRTER. J (GEN ATØMIC DIV GEN DYN CØRP SAN DIEGØ CALIF) CHEMISTRY ØF URANIUM-ØXYGEN SYSTEMS GA-1896. (1961) NSA 15. 24775 (1961)	601407 601407 601407 601407 601407
MILLER, F CARLSON, G (MELLON INST PITTSBURGH PA) VIBRATIONAL SPECTRA OF REO3CL AND REO3BR SPECTROCHIM ACTA 16, 1148 (1960) CA 55, 13054 (1961)	201002 201002 201002 201002 201002
MILLER. G PURIFICATION OF TANTALUM AND NIOBIUM IND CHEMIST 38. 406. 455 (1962) CA 57. 16265 (1962)	201943 201943 201943 201943
MILLER. G PRØDLCTIØN ØF TANTALUM AND NIØBIUM IND LHEMIST 36. 386 (1960) CA 55. 3362 (1961)	200834 200834 200834 200834
MILLER: K (ATOMICS INTERNATIONAL CANOGA PARK CAL) HIGH TEMPERATURE X-RAY DIFFRACTION INVESTIGATION OF BEOMAA-SR-5934 (1960) NSA 15: 19836 (1961)	700952 700952 700952 700952 700952
MILLER, S THE MICROWAVE ABSORPTION SPECTRUM OF OXYGEN UNIV MICRO. PUB NO. 4585 DISSFRTATION ABS. 13. 108 (1953)	600560 600560 600560 600560
MILLER. S TOWNES. C (COLUMBIA UNIV NEW YORK NEW YORK) THE MICROWAVE ABSORPTION SPECTRUM OF (016)2 AND 016017 PHYS REV 90. 537 (1953) CA 47. 9778 (1953)	600559 600559 600559 600559
MILLIGAN, W VERNØN, L LEVY, H PETERSØN, S (RICE INST HØUSTØN TEXAS) NEUTRØN DIFFRACTIØN STUDIES ØN SCANDIUM ØRTHØVANADATE AND	700756 700756 700756
SCANDIUM ØXIDE J PHYS CHEM 57, 535 (1953) CA 47, 7886 (1953)	700756 700756 700756

(ØXFØRD UNIV OXFØRD ENGLAND) FUNDAMENTAL VIBRATION ROTATION BANDS OF C13016 AND C12 018 TRANS FARADAY SOC 49, 224 (1953) CA 47, 9770 (1953)	600715 600715 600715 600715
MILTER S TOWNES C KOTANI M (COLUMBIA UNIV NEW YORK NEW YORK) THE FLECTRONIC STRUCTURE OF OXYGEN PHYS REV 90, 542 (1953) CA 47, 9749 (1953)	600561 600561 600561 600561
MING. N FAN. T LI, C HSU. Y FØNG. D (UNIV NANKING PRDUCTIØN ØF MØYLBDENUM SINGLE CRYSTALS WITH ELECTRØN-BEAM FLØATING ZØNE MELT WU LI HSUEH PAØ 19 (3). 160 (1963) CA 59, 2231D (1963)	301304 301304 301304 301304 301304
MISENCIK. J (MIT CAMBRIDGE MASS) THE CHRØMIUM-NIØBIUM BINARY SYSTEM US DEPT CØM ØFFICE TECH SERV PB REPT 147.279. (1960) CA 56. 9833 (1962)	201432 201432 201432 201432 201432
MITKINA E EXPERIMENTAL DETERMINATION OF TRUE SPECIFIC HEATS OF URANIUM. THORIUM. AND OTHER METALS AT ENERG USSR 7. 163 (1959) AEC-TR-3961 CA 55. 14040 (1961) NSA 14. 6689 (1960)	201029 201029 201029 201029 201029 201029 201029
MITKINA. E A DETERMINATION OF HEAT CAPACITY USING AN ELECTRONIC CALORIMETER TEPLO-I MASSOPER 1 146-151 (1962) RUSS ACC VOL 16. NO 1. 151. APRIL (1963) CA 58. 13211 (1963)	301305 301305 301305 301305 301305
MITKINA» E A ELECTRONIC CALORIMETER ZAV LAB 26° 226 (1960) CA 56° 2298H (1962)	301306 301306 301306 301306
MÎTOFF. S (GEN FLEC CO SCHENECTARY N Y) ELECTRONIC AND IONIC CONDUCTIVITY IN CINGLE CRYSTALS OF MGD J CHEM PHYS 36. 1383 (1962) CA57. 4141 (1962)	201674 201674 201674 201674 201674
MITRA, S. JØSHI, S. DERYE THETA AND COMPRESSIBILITY. CUBIC METALS PHYSICA 27, 376 (1961) CT NØ 13, (1961)	700630 700630 700630 700630
MITROFANOV, 0 GROWING TUNGSTEN CRYSTAL FROM VAPORS KRISTALLOGRAFIYA 7, 780 (1962)	301097 301097 301097
MIYAMOTO, O NAKASHIMA, R ISHIGURO, Y OKUMURA, K (GOVT IND RES INST NAGOYA) DETERMINATION OF OXYGEN IN METALLIC ZIRCONIUM BY A MICROBROMINATION METHOD NAGOYA KOGYO GIJUTSU SH I KENSHO HOKOKU 7, 322 (1958)	500118 500118 500118 500118 500118

CA 58. 16 (1963)	500118
MØFFÍTT. W (BRIT RUBBER PRØD RES ASSØC WELWYN GARDEN CITY ENGLAND) THE ELECTRØNIC STRUCTURE ØF THE ØXYGEN MØLECULE PRØC RØY SØC LØNDØN A210. 224 (1951) CA 46. 10846 (1952)	600539 600539 600539 600539
MØNMA, K SUTØ, H (TØHØKU UNIV SENDAI JAPAN) EXPERIMENTAL STUDIES ØN THE SURFACE TENSIØN ØF MØLTEN METALS AND ALLØYS TRANS JAPAN INST METALS 1, 69 (1960) CA 56, 9854 (1962)	201440 201440 201440 201440 201440 201440
MØNNIER, R GRANDJEAN, P (UNIV GENEVA GENEVA SWITZ) PREPARATION, SEPARATION, AND PURIFICATION OF TANTALUM AND NIO- BIUM, ESPECIALLY BY AN ELECTROLYTIC METHOD. II. A METHOD FOR DETERMINING EFFECTIVE ELECTROLYTIC POTENTIALS AND PRACTICAL DECOMPOSITION POTENTIALS. APPLICATION OF THIS METHOD TO SOLUTIONS OF OXIDES IN CRYOLITE HELV CHIM ACTA 43, 2163 (1960) CA 55, 10147 (1961)	200949 200949 200949 200949 200949 200949 200949 200949
THE LØW TEMPERATURE SPECIFIC HEAT ØF SCANDIUM AND YTTRIUM PRØC PHYS SØC (LØNDØN) 78, 622 (1961) NSA 16, 1797 (1962)	601447 601447 601447 601447
MØNTGØMERY. R THERMØDYNAMICS ØF RARE EARTH CØMPØUNDS US BUR MINES REPT INVEST NØ 5468. 23 (1959) CA 53. 12815 (1959)	601130 601130 601130 601130
MØNTGØMERY: R HUBERT: T (U S BUR ØF MINES RENØ NEV) HEAT ØF FØRMATIØN ØF YTTRIUM CHLØRIDE CA 55: 2264 (1961)	700833 700833 700833 700833
MØØRE. C (NATL BUR ØF STDS WASHINGTØN DC) ATØMIC SPECTRA ØF THE RARE EARTHS. THEIR PRESENCE IN THE SUN APPL ØPT 2. 665 (1963) CA 59, 5933 (1963)	301538 301538 301538 301538 301538
MØØRE. C ATØMIC-ENERGY LEVELS AS DERIVED FRØM ANALYSIS ØF ØPTICAL SPECTRA NATL BUR STDS (US) CIRC 467. AT ENERGY LEVELS II. (1952) CA 47. 1491 (1953)	100200 100200 100200 100200 100200
MØØRE, C AN ULTRAVIØLET MULTIPLET TABLE US DEPT CØMMERCE, NBS CIRCULAR 488, SECT 2 (1952) CA 47, 965 (1953)	100201 100201 100201 100201
MØØRE. C ATØMIC ENERGY LEVELS AS DERIVED FRØM THE ANALYSIS ØF ØPTICAL SPECTRA NATL BUR STDS CIRC 467 ATØMIC ENERGY LEVELS 3 (1958) CA 52. 11558 (1958)	601088 601088 601088 601088

MØØRE, C BRØIDA, H (NATL BUR ØF STANDARDS WASHINGTØN D C) RØTATIØNAL LINES ØF CH.OH AND CN IN THE SØLAR SPECTRUM MEM SØC RØY SCI LIEGE 18. 252 (1957) CA 51. 15263 (1957)	600687 600687 600687 600687
MOORE. G KELLEY. K HIGH TEMPERATURE HEAT CONTENTS OF U, UO2 AND UO3 J AM CHEM SOC 69. 2105 (1947)	601646 601646 601646
MØRDIKE; B THE FRICTIONAL PROPERTIES OF CARBIDES AND BORIDES AT HIGH TEMPERATURES WEAR 3, 374 (1960) BHT NØ 3, 25 (1961)	300503 300503 300503 300503
MØREAU•C PHILIPPØT• J (CENTRE ETUDES NUCLEAIRES GRENØBLE FRANCE) THE NITRIDATIØN ØF PØWDERED URANIUM BY NITRØGEN CØMPT REND 253• 1100 (1961) CA56• 5434 (1962)	201313 201313 201313 201313 201313
MØRIARTY• J (STATE UNIV ØF IØWA IØWA CITY IØWA) RARE EARTH METAL-ALLØY SYSTEMS UNIV MICRØFILMS• L C CARD NØ MIC 60-4395 DISSERTATIØN ABSTR 21• 1391 (1960) CA 55• 5294 (1961)	200873 200873 200873 200873 200873 200873
MORIN: F ØXIDES ØF THE 3D TRANSITIØN METALS 3ELL SYST TECH JØUR 37. 1047 (1958) CA 52. 17971 (1958)	700710 700710 700710 700710
MØRIN• F (BELL TELEPHØNE LAB INC MURRAY HILL NJ) HALIDES• ØXIDES AND SULFIDES ØF THE TRANSITIØN METALS J APPL PHYS 32• 2195 (1961) CA 56• 2971 (1962)	201273 201273 201273 201273 201273
MØRIN• F MAITA• J (BELL TELEPHØNE LABS MURRAY HILL NJ) SPECIFIC HEATS ØF TRANSITIØN METAL JUPERCØNDUCTØRS PHYS REV 129• 1115 (1963) CA 58• 5055 (1963)	301043 301043 301043 301043 301043
MØRIYA, Y (TØKYØ SHIBAURA ELEC CØ LTD TØKØYØ JAPAN) VACUUM SINTERING ØF QUARTZ PØWDER AND PHASE TRANSFØRMATIØN ØF QUARTZ VACUUM 11, 158 (1961) CA56, 6921 (1962)	201363 201363 201363 201363 201363 201363
MOROZOV. I KORSHUNOV. B THERMODYNAMICS OF CHLORINATION OF EXIDES OF RARE EARTH METALS BY GASEOUS CHLORINE DOKLADY AKAD NAUK SSSR 119. 523 (1958) NUCL SCI ABSTR 13. 15977 (1959)	700753 700753 700753 700753 700753
MOROZOV. I STEFANYUK. S KINETICS OF THE CHLORINATION OF TIO2 AND NB205 Zhur neorg khim 3. 2366 (1958)	200796 200796 200796

CA 55. 1153 (1961)	20796
MØRØZØVA; M EGFR; G (STATE UNIV LENINGRAD LENINGRAD USCR THE ENTHALPIES ØF FØRMATIØN AND GRAM FØRMULA VØLUMES ØF 14F LØWER ØXIDES ØF VANADIUM ZHUR ØBSHCHEI KHIM 30; NØ 11 3514 (1960) J GEN CHEM 30; 3483 (1960) CA 55; 17189 (1961)	300247 300247 300247 300247 300247 300247
MØRØZØVA: M. KHRIPUN: M. ARIYA: S. ENTHALPY ØF FØRMATIØN ØF THE CARBIDES AND ØXYCARBIDE' ØF TITANIUM. ZHUR ØBSHCHFI KHIM 32. NØ 7. 2072 (1962)	300597 300597 300597 300597
MOROZOVA: M STOLYAROVA: T THE REASON FOR THE HEAT OF FORMATION OF NIOBILM PENTOXIDE ZHUR OB KHIM 30: NO 11 3848 (1960) J GEN CHEM 30: 3808 (1960)	300186 300186 300186 300186
MØRØZØVA: N STARTSEV: G SPECTRUM ØF IØNIZED URANIUM ØPTIKA I SPEKTRØSKØPIYA 2: 282 (1957) NSA 15: 18521 (1961)	601415 601415 601415 601415
MØRI, T AKETA, D ØNØ, H SLGITA H (UNIVERSITY ØF KYØTØ EFFECTS ØF MØ, W, AND CU ØN SØLUBILITY ØF SPAPHITE IN LIG ID IRØN AND METHØD ØF CALCULATIØN FØR ACTIVITY ØF CARBON IN A MULTICØMPØNENT SØLUTIØN TETSU TØ HAGANE 46, 1429 (1960) CA 55, 19679 (1961)	300205 300205 300205 300205 300205 300205
MØRTIMER. C T REACTION HEATS AND BOND STRENGTHS READING MASS ADDISON WESLEY PUB CO 1 33 230 (1963) CA 59. 4598G (1963)	301307 301307 301307 301307
MØTT: N (UNIV CAMBRIDGE ENGLAND) COMESIVE FØRCES IN METALS AND ALLØYS REPT. PRØGR. PHYS. 25. 218 (1962) CA58. 9931E (1963)	202104 202104 202104 202104 202104
MØTT. W RELATIVE VØLATILITIES ØF REFRACTØRY MATERIALS TRANS ELECTRØCHEM SØC 34. 255 (1918)	700827 700827 700827
MØURFT: P RIGAUD: A (CØMM ENERGI AT PARIS) BERYLLIUM US AT ENERGY CØMM CEA 1090: (1958) CA56: 13907 (1962)	201527 201527 201527 201527 201527
MØZZI, R GUENTERT, Ø X-RAY STUDY ØF PHASE TRANSFØRMATIØNS IN SØME RAPE EARTH ØXIDE SYSTEMS J CHEM PHYS 36, 298 (1962) PÅ 65, 4356 (1962)	300803 300803 300803 300803 300803
MRKHEEV. V BELØUSØV. Ø MELTING DIAGRAM ØF THE TI-ZR-NB SYSTEM ZHUR NEØRG KHIM 6. 1905 (1961)	300280 300280 300280

CT 17. 82 (1961)	300280
MUELLER, M HITTERMAN, R KNØTT, H (ARGØNNE NATL LAB LEMØNT ILL) THE ATOMIC PØSITIØN PARAMETER IN ALPHA URANIUM-RØØM TEMPERATURE AND ABØVE ACTA CRYST 15, 421 (1962) NSA 16, 15206 (1962)	601431 601431 601431 601431 601431
(ARGONNE NATL • LAB LEMONT ILL •) THE CRYSTAL STRUCTURE OF URANIUM NITRIDE BY NEUTRON	601136 601136 601136 601136 601136
	601609 601609 601609 601609 601609
MUKAIBØ, T NAITØ, K SATØ, K UCHIJIMA, T (JAPAN AT EN RES INST TØKYØ JAPAN) THE MEASUREMENT ØF THE SPECIFIC HEAT ØF URANIUM CARBIDES ABØVE RØØM TEMPERATURE IAEA SYMPØSIUM ØN THE THERMØDYNAMICS ØF NUCLEAR MATERIALS, VIENNA, M/Y (1762) NSA 16, 25379 (1962)	601610 601610 601610 601610 601610 601610
MULLER, J LEIDG TECH HØCHSCHULE ZURICH SWITZ) MEASUREMENT ØF SMALL HEAT CAPACITIES IN THE TEMPERATURE REGIØN 1-100 DEGREES K HELV PHYS ACTA 33, 514 (1960) CA 55, 12946 (1961)	200989 200989 200989 200989 200989 200989
MUNSTER. A RINCK. G RUPPERT. W (LAB METALLGES A G FRANKFURT/MAIN GERMANY) THE EQUILIBRIUM OF TITANIUM NITRIDE FORMATION NO THE ENTROPY OF TITANIUM TETRACHLORIDE Z PHYSIK CHEM (NF) FRANKFURT 9, 228 (1956) CA 51, 2364 (1957)	300320 300320 300320 300320 300320 300320
MURAKAWA. K (INST ØF SCI AND TECH TOKYO JAPAN) HYPERFINE STRUCTURE OF THE SPECTRA OF ND AND GD PHYS REV 96. 1543 (1954) NSA 9. 1686 (1955)	601284 601284 601284 601284 601284
MURAKAWA, K QUADRUPLE COUPLING IN THE HYPERFINE STRUCTURE OF THE SPECTRUM OF LA I J PHYS SOC JAPAN 16, 2533 (1961) PA 65, 3701 (1962)	300826 300826 300826 300826 300826
MURAKAWA: K (INST SCI TECH HYPERFINE STRUCTURE IN THE SPECTRA OF ANTIMONY: SAMARIUM: MERCURY AND CADMIUM PHYS REV 93: 1232 (1954) CA 48: 6821 (1954)	600958 600958 600958 600958 600958

MURAKAWA, K KAMEI, T HYPERFINE STRUCTURE OF THE SPECTRA OF DYSPROSIUM, COBALT, VANADIUM, MANGANESE, AND LANTHANUM PHYS REV 92, 325 (1953) NSA 8, 654 (1954)	601218 601218 601218 601218 601218
MURAKAWA, K RØSS, J (UNIV ØF WISCONSØN MÅDISØN WISC) ISØTØPE SHIFT IN THE CERIUM II SPECTRUM AND THE MAGIC NUMBER EIGHTY-TWØ PHYS REV 83, 1272 (1951) CA 46, 339 (1952)	400556 400556 400556 400556 400556 400556
MURAKAWA, K SUWA, S (INST SCI TECH TOKYO JAPAN) HYPERFINE STRUCTURE IN THE SPECTRA OF IRIDIUM AND OSMIUM PHYS REV 87, 1048 (1952) CA 46, 10899 (1952) NSA 6, 6158 (1952)	900942 900942 900942 900942 900942 900942
MURAT, M EYRAUD, C THERMAL DECOMPOSITION OF U03 IN A VACUUM. ELECTRICAL CONDUCTIVITY COMPT REND 254, 3084 (1962) CA 57, 4291 (1962)	201692 201692 201692 201692 201692
MURATOV. F NOVOSELOVA. A V (M V LOMONOSOV STATE UNIV MOSCOW RUSSIA) REDUCTION OF BERYLLIUM EXIDE WITH CARBON IN THE PRESENCE OF NICKEL ZH NEORGAN KHIM 8. 1084 (1963) CA 59. 2464E (1963)	301309 301309 301309 301309 301309 301309
MURATOV. F NOVOSELOVA, A A STUDY OF EQUILIBRIUM IN THE REDUCTION OF BERYLLIUM OXIDE WITH CARBON AT HIGH TEMPERATURE DOKL AKAD NAUK SSSR 129, 334 (1959) NP-TR-568	300182 300182 300182 300182 300182
MURATOV. F NOVOSELOVA. A (MOSCOW STATE UNIV MOSCOW RUSSIA) EQUILIBRIUM IN THE REDUCTION OF BERYLLIUM OXIDE WITH CARBON DOKLADY AKAD NAUK SSSR 143. 599 (1962) NSA 16. 19253 (1962)	601602 601602 601602 601602
MURATOV. F NOVOSELOVA. A (LØMØNØSØV MØSCØW STATE UNIV MØSCØW RUSSIA) DETERMINATION ØF THE SØLUBILITY ØF BERYLLIUM CARBIDE IN MØLTEN CØPPER-BERYLLIUM ALLØY RUSS J NEØRG CHEM 6. NØ 8. 1009 (1961)	300771 300771 300771 300771 300771
MURBACH, E TURNER, W (AT. INTERN. CANOGA PARK CALIF) ØXIDATION OF URANIUM CARBIDE BY CARBON DIOXIDE. US AT ENERGY COMM NAA-SR-7482, (1962) CA 58, 8628B (1963)	202105 202105 202105 202105 202105
MURBACH. E (NØRTH AMERICAN AVIATIØN CØ CANØGA PARK CALIF) AN ESTIMATE ØF THE VAPØR PRESSURES ØF THØRIUM AND PRØTACTINIUM U S ATØMIC ENERGY CØMM NAASR-1988 (1957) CA 52. 4277 (1958)	601105 601105 601105 601105 601105

TECHNETION'S ELEMENT 43	700574 700574 700574
MURK. K LECTURES IN APPLIED MATHEMATICS VOL 1. PROBABILITY AND RELATED TOPICS IN PHYSICAL SCIENCE INTERSCIENCE PUBLISHERS (1959) NSA 13. 18349 (1959)	601523 601523 601523 601523 601523
MURPHY, A KENNEDY, A (COL OF AERONAUTICS BERKS ENGLAND) TEMPERATURE EFFECTS ON MATERIAL CHARACTERISTICS NP-10063 (1960) NSA 15, 19840 (1961)	701041 701041 701041 701041 701041
MURPHY: R EXTENSION OF THE FIRST SPECTRUM OF RHODIUM J RES NAT BUR STANDARDS 49: 371 (1952) CA 47: 10345 (1953)	600946 600946 600946 600946
MURRÂY. J PREPARATION. PROPERTIES. AND ALLOYING BEHAVIOR OF THORIUM ATOMIC ENERGY RESEARCH ESTAB (GT BRIT) M/R 2242. (1958) CA 52. 9908 (1958)	601094 601094 601094 601094
MURTHY: N (KARNATAK UNIV DHARWAR INDIA) ØN THE VALIDITY ØF THE REVISED RØTATIØNAL CØNSTANTS ØF ALPHA (C TØ X) BAND SYSTEM ØF ZRØ INDIAN J PHYS 36: 101 (1962) NSÅ 16: 24303 (1962)	601623 601623 601623 601623 601623
MURTHY: N (KARNATAK UNIV DHARWAR INDIA) INTENSITY ASPECTS AS THE DETERMINANT IN THE BANDS ØF THE LAØ (B-X) SYSTEM NATURE 190: 430 (1961) CA 55: 19468 (1961)	301087 301087 301087 301087 301087
MUMPTON: F.A. ROY: R LOW TEMPERATURE EQUILIBRIA AMONG ZROZ: THOZ: ANL UOZ J.AM CERAMIC SOC 43: 234 (1960)	301308 301308 301308
MUSCHLITZ. E GØØDMAN. L (CØRNELL UNIV ITHACA NEW YØRK) LIFETIME ØF THE STATE ØF NITRØGENS J CHFM PHYS 21. 2213 (1953) CA 48. 4313 (1954)	600594 600594 600594 600594
MUTHMANN. W WEISS. L METALS OF THE CERIUM GROUP ANN 331.1 (1904) BA 86. 2. 406 (1904)	800144 800144 800144 800144
MYERS, A (THE UNIVERSITY LEEDS ENGLAND) SØME ELASTIC AND THERMAL PRØPERTIES OF ZR AND W PHIL MAG 5, 927 (1960) NSA 15, 1887 (1961)	700981 700981 700981 700981 700981
MYERS. R	500130

(ATOMIC ENERGY RES ESTAB HARWE SOME PROPERTIES OF TANTALUM METALLURGIA 41, 301 (1950) CA 44, 5776 (1950)	LL ENGLAND)	500130 500130 500130 500130
MYKLEBUST, R DAANE, A (U S AT ENERGY COMM AMES THE YTTRIUM MANGANESE SYSTEM TRANS AIME 224, 354 (1962) CA57, 521 (1962)	I ØWA)	201580 201580 201580 201580 201580
NACHMAN. J LUNDIN. C RARE EARTH RESEARCH GØRDØN + BREACH. SCIENCE PUBLISHE	RS. NEW YØRK (1962)	301539 301539 301539
NADLER, M KEMPTER, C (LØS ALAMØS SCIENTIFIC LAB SØME SØLIDUS TEMPERATURES IN SEVE J PHYS CHEM 64, 1468 (1961) CA 55, 13026 (1961) NSA 15, 1877 (1961)	N MEX) RAL METAL-CARBØN SYSTEMS	300301 300301 300301 300301 300301 300301
NADØR• B (RESEARCH INST VESZP PHASE DIAGRAM ØF THE SYSTEM VANAD NATURE 188• 139 (1960) CA:55• 10036 (1961)		200938 200938 200938 200938 200938
NAGARJAN, G MEAN AMPLITUDES ØF VIBRATIØN FØR ZIRCØNIUM, TITANIUM, SILICØN AND INDIAN J. PURE APPL. PHYS. 1 322	DIØXIDES ØF BØRØN (1963)	202106 202106 202106 202106
NAGARAJAN: G (ANNAMALAI UNIV ANNAM. PØTENTIAL CØNSTANTS AND THERMØDYN SILYL HALIDES BULL SØC CHIM BELGES 71: 226 (196. CA 57: 7984 (1962)		201772 201772 201772 201772 201772 201772
NAGARAJAN: G (ANNAMALAI UNIV ANNAM THERMØDYNAMIC PRØPERTIES ØF SØME PØTENTIAL CØNSTANTS AND THERMØDYN XY4 TYPE MØLECULES IBID 119 BULL SØC CHIM BELGES 71: NØ 1: 65 CA 57: 7988 (1962)	AMIC PRØPERTIES ØF SØME	201774 201774 201774 201774 201774 201774 201774
NAGARAJAN: G (UNIV ANNAMALAI ANNAM PØTENTIAL CØNSTANTS AND THERMØDYN VANADIUM ØXYTRICHLØRIDE SCI CULT (CALCUTTA) 28: 140 (1962 CA 57: 10589 (1962)		201816 201816 201816 201816 201816 201816
NAGASAKI, S TAKAGI, Y METHODS OF MEASURING SPECIFIC HEA JOURNAL OF APPLIED PHYSICS OF JAP	T AT HIGH TEMPERATURES AN 17. 104 (1948)	400598 400598 400598
NAGASAWA. S (ØSKAKA IND RES INST DIELECTRIC PRØPERTIES ØF ØXIDES Ø	JAPAN) F RARE METALS	400530 400530 400530

J ELECTROCHEM SOC JAPAN 18. 158 (1950) CA 45. 8309 (1951)	400530 400530
NAKATA: M (NØRTH AMERICAN AVIATION CØ CANØGA PARK CALIF) THERMØGRAVIMETRIC BALANCE FØR THE INVESTIGATION ØF HIGH-TEMPERATURE REACTION KINETICS AND THE RESULTS ØF A BERYLLIUM ØXIDATION STUDY US AT ENERGY COMM NAA-4737: (1960) CA 55: 5060 (1961)	200855 200855 200855 200855 200855 200855 200855
NAKATA: M MCKISSON: R POLLOCK: B (ATOMIC: INTERNATIONAL CANDGA PARK CAL) VAPORIZATION OF ZIRCONIUM UXIDE US AT ENERGY COMM NAA-SR-6095 (1961) CA 55: 21710 (1961) NSA 15: 16048 (1961)	300313 300313 300313 300313 300313
NAMRA. S. IMOTA. S. SANO. T. THE FORMATION OF UCI-X OX NIHON GENSHI-RYOKU GAKKAI SHI 6. 457 (1961)	400611 400611 400611
NARBUTT & K. LAPUTINA & I. DETERMINATION OF THE OXIDATION STATE OF URANIUM BY MEANS OF EMISSION X-RAY SPECTRA IZV AKAD NAUK SSSR SEP FIZ 26, 405 (1962) CA 57 & 8069 (1962)	201779 201779 201779 201779 201779
NACYAN, K. CHERRY, L. WALLACE, W. RENTY OF PITTSHURG	201041 201041 201041 201041 201041 201041 201041
NAZARCHIE : T BIRON CARBIDE (BAC) CHEMICAE PROPERTIES AND METHODS OF ANALYCIC TR CEMINARA PO ZHARZSTOIKIM MATERIALAM AKAD NAUK UKR SSR INST METALLO KREAM I SPETS SPLAVOV KIEV 1200 6; 20 1.761) CAST: 392 (1462)	201578 201578 201578 201578 201578 201578
NAZIMOVA: N NATURE OF THE ELECTRON CICILLATION SPECTRUM OF MGO MOLECULES DOLLADY MEZHVUZ NAUCH: KONF PO SPEKTROSKOPII I SPEKTR ANALIZU: TOMSK UNIV 1960: 48 (1960) CA 56: 1058 (1962)	201227 201227 201227 201227 201227
NAZIMOVA: N. SOFELOV: V. FLECTRONIC-VIPRATIONAL STRUCTURE IN THE UXIDATION SPECTRUM OF MAGNESIUM. 1/VEST VYSSHIKH UCHEB ZAVEDENII FIZ 143 (1961) CT NO 14: (1961)	700671 700671 700671 700671 700671
NECKEL • A CALCULATION OF THE FREE ENTHALPY OF MIXING AND THE ACTIVITY CREEFICIENTS OF SYSTEMS OF LIMITED MISCIBILITY FROM THE SOLUPILITY CURVE MONATSH CHEM 92 • 468 (1961)	300509 300509 300509 300509 300509 300509
BHT NO 3. 34 (1961) NEFL. D. PEARS. C	3001,46

(SØUTHERN RES INST BIRMINGHAM ALABAMA) THE THERMOPHYSICAL PROPERTIES OF REFRACTORY MATERIALS FROM 2000 DEGREES F TO THEIR DESTRUCTION TEMPERATURE QUARTERLY REPORT NO 4 FEB 15 TO MAY 15, 1961	300146 300146 300146 300146
NELSON» L KUEBLER» N (BELL TELEPHONE LABS MURRAY HILL NJ) VAPORIZATION OF TUNGSTEN STUDIED BY FLASH HEATING AND KINETIC SPECTROSCOPY J CHEM PHYS 39» NO 4» 1055 (1963) CA 59» 5941 (1963)	301540 301540 301540 301540 301540 301540
NEMNØNØV» S MENSHIKØV» A K-ABSØRPTIØN SPECTRŮM ØF CHRØMIUM IN BØRIDES» CARBIDES» NITRIDES» AND ØTHER CØMPØUNDS TRUDY SEMINARA PØ ZHARØSTØIKIM MATERIALAM AKAD NAUK UKR SSR INST METALLØKERAM I SPETSIAL SPLAVØV KIEV 1958» NØ 5» 21 (1960 CA 55» 12025 (1961)	200977 200977 200977 200977 200977 200977
NESHPØR. V CRYSTAL STRUCTURES ØF THE MØNØSILICIDES ØF THE TRANSITIØN METALS KRISTALLØGRAFIYA 6. 466 (1961) PA 65. 6809 (1962)	300792 300792 300792 300792 300792
NESHPØR. V PHYSICAL PRØPERTIES ØF METAL-LIKE CØMPØUNDS TRUDY SEMINARA PØ ZHARØSTØIKIM MATERIALAM, AKAD NAUK UKR SSSR INST METALLØKERAM I SPETSIAL SPLAVØV. KIEV 1958. NØ 5. 5 (1960) CA 55. 6967 (1961)	200896 200896 200896 200896 200896 200896
NESHPØR: V KISLYI: P HØT PRESSING ØF PØWDERED CHRØMIUM BØRIDE AND SØME PRØPERTIES ØF .HE SINTERED MATERIAL ØGNEUPØRY 24: 231 (1959) CE 44: 616 (1961)	700521 700521 700521 700521 700521
NESHPØR. V SAMSØNØV. G NEW BØRIDES ØF THE RARE EARTH ELEMENTS DØPØVIDI AKAD NAUK UKR R S R 478 (1957) CA 52. 4370 (1958)	601107 601107 601107 601107
NESHPØR: V SAMSØNØV: G (INST METAL ACAD SCI UKRAINE USSR) NEW BØRIDES ØF RARE EARTH METALS ZHUR FIZ KHIM 32: 1328 (1958) CA 53: 953 (1959)	601116 601116 601116 601116 601116
NESHPØR: V SAMSØNØV: G ELECTRØN STRUCTURE AND THE CØNDITIØNS FØR THE FØRMATIØN ØF BØRIDES ØF THE TYPE MB6 ZHUR NEØRG KHIM 4: 1967 (1959) CA 54: 11605 (1960)	700859 700859 700859 700859 700859
NESHPØR, V SAMSØNØV, G THE FLECTRØNIC STRUCTURE ØF SILICIDES, PØRØSHKØVAYA MET AKAD NAUK UKR SSR 2, NØ 6, 14 (1962) CA 58, 9641H (1963)	202108 202108 202108 202108
NESHPOR: V SAMSONOV: G ELECTRICAL PROPERTIES MOLYBDENUM SILICIDE VYSOKOTEMPERATURNYF METALLOKFRAM MATERIALY AKAD NAUK UKR	301037 301037 301037

SSR INST METALLØKERAM I SPETS SPLAVØV (1962) 113 CA 58+ 5120 (1963)	301637 301037
NESMEYANØV• A VAPØR PRESSURE ØF CHEMICAL ELEMENTS IZD-VØ AKAD NAUK SSSR 395 (1961) RUSS ACC ACT 2044 (1961)	300422 300422 300422 300422
NESMEYANOV. A FIRSØVA. L VAPØR PRESSURE ØF LITHIUM. BERYLLIUM. BØRØN. SILICØN. AND LEAF ØXIDES IZVEST AKAD NAUK SSSR ØTDEL TEKH NAUK MET I TØPLIVØ 1959. NØ : 150 (1959) CA 55. 13968 (1961)	201019
NESMEYANØV• A FIRSØVA• L (M V LØMØNØSØV STATE UNIV MØSCØW USSR) DETERMINATIØN ØF VAPØR PRESSURE IN EQUILIBRIUM WITH SØLID SILICØN DIØXIDE ZHUR FIZ KHIM 34• 1907 (1960) (A 55• 11007 (1961)	200953 200953 200953 200953 200953 200953
NESMEYANØV+ A FIRSØVA+ L MEASUREMENT ØF THE SATURATED VAPØR PRESSURE ØF BØRIC ANHYDRID ZHUR FIZ KHIM 34+ 1032 (1960) NS 14+ 17856 (1960)	600632 E 600632 600632
NESMEYANØV» A KHANDAMIRØVA» N (UNIV MØSCØW MØSCØW USSR) THE RELATIØN BETWEEN HEATS ØF SUBLIMATIØN ØF ELEMENTS AND THEIR PØSITIØNS IN THE PERIØDIC SYSTEM VESTNIK MØSKØV UNIV SER II» 15» NØ 4» 28 (1960) CA 55» 7950 (1961)	600660 600660 600660 600660 600660
NESMEYANOV» A KHANDAMIROVA» N VILENJKII» V BIRIN» E BORISOV» A (M V LOMBNOSOV STATE UNIV MOSCOW RUSSIA) EFFECT OF OXIDE FILMS ON THE RATE OF EVAPORATION ZHUR FIZ KHIM 34» 1425 (1960) BHTG NO 2» 1 (1961)	300955 300955 300955 300955 300955 300955
NESMEYANØV: A PRISELKØV: YU A VAPØR PRESSURE ØF METALLIC YTTRIUM GERMAN RPT PAPER NØ SM-26/56 PRESENTED AT THE SYMPØSIUM ØN THERMØDYNAMICS ØF NUCLEAR MATERIALS VIENNA; MAY 21-25 (1962) AEC-TR-5359 CØTS: P 100: APRIL (1963)	301310 301310 301310 301310 301310 301310
NEUGEBAUER: J (HUNG ACAD SCI BUDAPEST HUNGARY) THE INCREASE IN VØLATILITY ØF ØXIDES BY WATER VAPØR ACTA CHIM ACAD SCI HUNG 37, 247 (1963) CA 59: 4764G (1963)	301311 301311 301311 301311 301311
NEUMANN, B KRØGER, C HAEBLER, H THE HEATS ØF FØRMATIØN ØF THE NITRIDES, IV. URANIUM, THØRIUM AND LANTHANUM NITRIDES Z ANØRG CHEM 207, 145 (1932) CA 26, 5823 (1932)	900113 900113 900113 900113 900113
NEUMANN, K. VØLKER, E A TØRSIØN METHØD FØR MEASURING VERY LOW VAPØR PRESSURES 7 FUER PHYSIK CHEMIE 71, 33 (1932)	900212 900212 900212

NEVITT M DOWNEY J (ARGONNE NATL LAB ARGONNE ILL) THE ZIRCONIUM RICH CORNERS OF THE TERNARY SYSTEMS ZR-CO-O AND ZR-NI-O TRANS AIME 221 1014 (1961) CA 56 2933 (1962)	201267 201267 201267 201267 201267 201267
NEVITT, M DØWNEY, J MØRRIS, R (ARGØNNE NATL LAB LEMØNT ILL) TI2NI-TYPE PHASES CØNTAINING TITANIUM, ZIRCØNIUM, ØR HAFNIUM TRANS AIME 218, 1019 (1960) CA 55, 5303 (1961)	200875 200875 200875 200875 200875 200875
NEWKIRK. H BATES. J THE MELTING PØINTS ØF URANIUM DIØXIDE. URANIUM MØNØCARBIDE AND URANIUM MØNØNITRIDE US AT ENERGY CØMM HW-59468. (1959) CA 54. 22127 (1960)	601165 601165 601165 601165 601165
NEWTØN• A JØHNSØN• Ø URANIUM NITRIDE US PATENT 2544277 (1951) CA 45• 6358 (1951)	400559 400559 400559 400559
NGHI: N INTERMEDIATE FLUORIDES OF URANIUM COMM ENERGIE AT (FRANCE) RAPPT 1976 (1961) CA57: 4276 (1962)	201687 201687 201687 201687
NICHOLLS, R REEVES, E BROMLEY, D EXCITATION OF N2 AND 02 BY ONE HALF MEV PROTONS PROC PHYS SOC LONDON 74, 87 (1959)	600562 600562 600562
NICHULS: N HAUSE: C NØBLE: R (MICHIGAN STATE CØLLEGE EAST LANSING MICH) NEAR INFRARED SPECTRUM &F NITRIC ØXIDE J CHEM PHYS 23: 57 (1955) CA 49: 5126 (1955)	600754 600754 600754 600754 600754
NICHOLLS. R FRANCK-CONDON FACTORS TO HIGH VIBRATIONAL QUANTUM NUMBERS II. SIO. MGO. SRO. ALO. VO. NO J RES NAT BUR STDS 66A. NO 3. 227 (1962)	300698 300698 300698 300698
NICHØLS» R URANIUM AND ITS ALLØYS NUCLEAR ENG 2° 355 (1957) CA 52° 101 (1958)	601102 601102 601102 601102
NIKIFØRØV. I SACHENKØ. V ENERGY BANDS ØF TITANIUM IN A CUBIC LATTICE IZV AN SSSR SER FIZ 27 NØ 3. 310 (1963)	202109 202109 202109
NIEDERKORN: 1 THERMODYNAMICS OF THE REDUCTION OF TICL4 REV CHIM (BUCHAREST) 11: 249 (1960) CA 57: 7983 (1962)	201771 201771 201771 201771
NIEMYSKI: I ØLEMPSKA: Z PREPARATIØN ØF PURE BØRØN FØR SEMICØNDUCTØR INVESTIGATIØNS	300705 300705

J LESS COMMON METALS 4, 1	NØ 3, 235 (1962)		300705
NIGHTINGALE R (GENERAL ELECTRIC STRUCTURE NUCLEAR GRAPHITE ACADEMIC NSA 17, 3403 (1963)			701071 701071 701071 701071 701071
NIKITIN, E E NØTE ØN VIBRATIØN-RØTATI RELAXATIØN ØF DIATØMIC M RUSSIAN, KINETIKA I KATA ENGLISH PAGE 282 CØTS 204, APRIL (1963)	ØLECULES		301312 301312 301312 301312 301312 301312
NIKITIN, Ø AKISHIN, P DETERMINATIØN ØF THE EVA BY MASS SPECTRØMETRY DØKL AKAD NAUK SSSR 145,		ØN ØXIDE	300954 300954 300954 300954
NIKITIN, Ø GØRØKHØV, L (MØSCØW STATE UNIV CØMPØSITIØN ØF BERYLLIUM ZHUR NEØRG KHIM 6, 224 (CCP NØ 6, (1961)	MØSCØW VAPØR 1961)	RUSSIA)	700692 700692 700692 700692 700692
COMPOSITION OF BERYLLIUM ZHUR NEORG KHIM 6, 224 (CCP NO 6, (1961) NIKITINA, V SPECTRAL LINES AT 3006.7 FIZ SBORNIK LVOV UNIV 19 CA 55, 2270 (1961)	2 AND 3020.00 A 58. NØ 4. 463 (1958)		200818 200818 200818 200818
NIKOLAEV» N IPPOLITOV» E THE REACTION OF REF6 WIT DOKL AKAD NAUK SSSR 140. CA57, 379 (1962)	H METAL FLUØRIDES 129 (1961)		201575 201575 201575 201575
NIKØLAISKI DE (UNIVERSITY ØF FRANKFURT ØN THE ØXIDATIØN ØF TITA Z PHYSIK CHEM (FRANKFURT BHT DE 30 (1960)			300130 300130 300130 300130 300130
NIKØLAYEV• B THERMØDYNAMIC CALCULATIØ TERMINØDINAMICHESKIY RAS DVIGATELEY (1960)			400615 400615 400615 400615
NIKOLSKII• A (STATE UNIV EXISTENCE OF TWO MODIFIC ZH NEORGAN KHIM 8• 1289 CA 59• 3512 (1963)			301541 301541 301541 301541 301541
NIKONOV. B. OTMAKHOVA, N. VAPORIZATION OF THE CHALZHUR FIZ KHIM 35. 1494 (NE EARIH METALS	300254 300254 300254
NILSON, F PETTERSON, 0 SUR LA CHALEUR ET LE VOL LEURS SULFATES COMPT REND ACAD SCI (PAN		TERRE RARES ET DE	700819 700819 700819 700819
NISELSØN. L			201551

MELTING DIAGRAMS OF THE BINARY SYSTEMS FORMED BY ZIRCONIUM AND HAFNIUM HALIDES ZH NEORGAN KHIM 7. 693 (1962) CA56. 15123 (1962)	201551 201551
NISHIHARA, M ZIRCØNIUM ALLØYS FØR REACTØRS GENSHIRYØKU KØGYØ 6, NØ 9, 11 (1960) CA56, 12624 (1962)	201493 201493 201493 201493
NISHIMURA. H. HIRAMATSU. T. RESISTANCE TO CORROSION OF TITANIUM ALLOYS. I. THE RELATION BETWEEN RESISTANCE TO CORROSION AND THE ELECTRODE POTENTIALS OF TITANIUM ALLOYS NIPPON KINZOKU GAKKAISHI 21. 465 (1957) CA 56. 8426 (1962)	201397 201397 201397 201397 201397 201397
NISHIMURA, H KIMURA, H THE TITANIUM-ØXYGEN-CARBØN SYSTEM BULL ENG RES INST KYØTØ U 6, 19 (1954) CA 49, 4949 (1955)	300169 300169 300169 300169
BULL ENG RES INST KY0T0 U 6, 19 (1954) CA 49, 4949 (1955) NØDDACK, W WALCH, H SØME PRØPERTIES ØF THE ØXIDES ØF THE RARE EARTHS Z PHYSIK CHEM (LEIPZIG) 11, 194 (1959) NSA 13, 22771 (1959)	601518 601518 601518 601518
NØDDACK W WALCH H (STAATL FØRSCHUNGSINST GEØ BAMBERG GERMANY) THE ELECTRICAL CØNDUCTIVITY ØF ØXIDES Z ELECTRØCHEM 63 * 269 (1959) SEE ALSØ AEC-TR-4369 CA 53 * 8820 (1959) NSA 15 * 5045 (1961)	601124 601124 601124 601124 601124 601124
NØDDACK: W WALCH: H DØBNER: W (STAATL FØRSCH INST GEØCHEM BAMBURG GERMANY) CØNDUCTIVITY MEASUREMENTS ØN RARE EARTH METAL ØXIDES Z PHYSIK CHEM (LEIPZIG) 211: 180 (1959) SEE ALSØ AEC-TR-4371 CA 53: 20966 (1959) NSA 15: 5046 (1961)	601152 601152 601152 601152 601152 601152
NØETH» H HØELLERER» G Cømpøunds with Silicøn-Børøn Bønding Angew Chem 74» nø 18 718 (1962)	301542 301542 301542
NØGA; K ØN THE EVAPØRATIØN FRØM ØXIDE CATHØDES ØYØ BUTURI 31; (12) 1041 (1962) BHT NØ 2 (1963)	301313 301313 301313 301313
NØGUCHI S SATE T (TØKYØ METRØPØLITAN UNIV TØKY' JAPAN) THERMØELECTRIC PØWER ØF TI AND V CARSIDES J PHYS SØC JAPAN 15 + 2359 (1960) CA 55 • 13987 (1961)	300227 300227 300227 300227 300227
NØLDEKE: G (UNIV HEIDELBERG GERMANY) ISØTØPIC DISPLACEMENT IN THE NDII SPECTRUM Z PHYSIK 143. 274 (1955) CA 50: 15227 (1956)	601028 601028 601028 601028 601028

NØLDEKE: G STEUDEL: A (U. ØF HEIDELBERG HEIDELBERG ISØTØPE SHIFT IN THE NDII SPECTRUM NATURWISSENSCHAFTEN 41: 332 (1954) CA 49: 8699 (1955)	GERMANY)	600931 600931 600931 600931 600931
NØLDEKE, G STEUDEL, A (U HEIDELBERG HEIDELBERG ISØTØPIC DISPLACEMENT IN THE SPECTRUM ØF NDI Z PHYSIK 137, 632 (1954) CA 48, 11186 (1954)	GERMANY)	600952 600952 600952 600952 600952
NØLTING, H SIMMØNS, C KLINGENBERG, J (G E CØ CINC, XAVIER UNIV CINCINNATI PREPARATIØN AND PRØPERTIES ØF HIGH PURITY YTT J INØRG NUCL CHEM 14, 208 (1960) NUCL SCI ABSTR 14, 24609 (1960)	ØHIØ) RIUM. METAL	700841 700841 700841 700841 700841
NOMURA. S KAWAKUBO, T YANAGI, T SPECIFIC HEAT OF TITANIUM OXIDE J PHYS SOC JAPAN 16. 706 (1961) CT NO 12. (1961)		700638 700638 700638 700638
NØRIN• R CRYSTAL STRUCTURE ØF NIØBIUM (12) ØXIDE (29) (ØRTHØRHØMBIC) ACTA CHEM SCAND 17• 1391 (1963)		202110 202110 202110 202110
NØRIN» R MAGNELI» A TUNIV ØF STØCKHØLM NEW DISCRETE NIØBIUM ØXIDE PHASE NATURWISSENSCHAFTEN 47» 354 (1960) CA 55» 51 (1961)	SWEDEN)	200781 200781 200781 200781 200781
NØRMAN» J (UNIV ØF NEW SØUTH WALES CALCIUM PRØDUCTIØN UNDER HIGH VACUUM AUSTRALIAN J CHEM ENGRS 1» NØ 2» 9 (1960) CA 55» 5275 (1961)	AUSTRALIA)	200868 200868 200868 200868 200868
NØRMAN: N METALLIC ØXIDE PHASES ØF NIØBIUM AND TANTALUM J LESS CØMMØN METALS 4. NØ 1 52 (1962) AD273216 (1961) BHT 1. 9 (1962)		300374 300374 300374 300374 300374
NORMAN: N KOFSTAD, P KRUDTAA: 0 METALLIC ØXIDE PHASES ØF NIØBIUM AND TANTALUM METALLØGRAPHIC STUDIES J LESS-COMMØN METALS 4: 124 (1962) BHT: NØ 2: 19 (1962)	11	300527 300527 300527 300527 300527
NØRRIS, J WAVE LENGTH TABLE ØF RARE-EARTH ELE 'NTS AND ELEMENTS INCLUDING ZIRCØNIUM, THØRIUM, HAFNIU AND TELLURIUM US AT ENERGY CØMM ØRNL-2774, 739 (1960) CA 54, 7332 (1960) NSA 14, 8833 (1960)	ASSØCIATED M. RHENIUM	601194 601194 601194 601194 601194 601194
NORTH, J (ATOMIC ENERGY RES ESTAB	GT BRIT)	600984 600984

A HIGH-TEMPERATURE ADIABATI	000984 600984
M/R 1016 (1956) CA 50 10506 (1956)	600984 600984
NØRTHCØTT. L Søme features of the refractory metal: J LESS Common metals 3. 125 (1961)	700582 700582 700582
NØRTØN» F KINGERY» W (MIT CAMBRIDGE MASS) STUDY ØF METAL-CERAMIC INTERACTIONS AT L'EVATED TEMPERATURE TECHNICAL PROGRESS REPORT NYD-3137 (1952) NSA 6, 1449 (1952)	601240 601240 601240 601240 601240
NORTON: J (MIT CAMBRIDGE MAJS) FINAL REPORT ON CERAMICS NP-9664 (1960) NSA 15: 6385 (1961)	701001 701001 701001 701001 701001
NORTON: J. MOWRY: A SOLUBILITY RELATIONSHIPS OF THE REFRACTORY MUNUCARDIDES JOURNAL OF METALS 1: 133 (1949)	300157 300157 300157
NORTON: J OGILVIE: R (MASS INST TECH CAMBRIDGE MASS) PHYSICAL METALLURGY OF UNCOMMON METALS U S AT ENERGY COMM AECU 4549: (1959) CA 57: 9539 (1962)	201811 201811 201811 201811 201811
NØRTØN• J ØGIEVIE• R KAUFMANN• A (MASS INST ØF TECHNØL CAMBRIDGE MASS) PHYSICAL METALLURGY ØF UNCØMMØN METALS US AT ENERGY CØMM AECU 3556 (1957) CA 55• 17411 (1961)	201086 201086 201086 201086 201086
NØVIKØV. A TYSPIN. M THE TEMPERATURE CØEFFICIENT ØF ELECTRIC RESISTIVITY ØF MN ALLØYS TR INST YADERN FIZ AKAD NAUK KAZ SSR 2, 119 (1959) CA 57. 3169 (1962)	201632 201632 201632 201632 201632
NØVIKØV. G BAEV. A SATURATED VAPØR PRESSURE ØF TRIVALENT LANTHANUM. CERIUM PRASEØDYMIUM AND NEØDYMIUM CHLØRIDES ZH NEØRG KHIM 7. 1349 (1962)	300686 300686 300686 300686
NOWOTNY: H SEVERAL RECENT STUDIES ON REFRACTORY ALLOYS BULL SOC CHIM FRANCE 1960: 1881 (1960) CA 55: 7239 (1961)	200917 200917 200917 200917
NØWØTNY• H RUDY• E BENESØVSKY• F (UNIV VIENNA VIENNA AUSTRIA) THE SYSTEMS HF-B-C• ZR-B-C MØNATSH 92• 393 (1961) CA 55• 20871 (1961)	201147 201147 201147 201147 201147
NØWØTNY: H BENESØVSKY: F BRUKL: C SCHØB: Ø (UNIV VIENNA AUSTRIA) THE SYSTEMS TI-B-C AND TI-B-N MØNATSH 92: 403 (1961)	201170 201170 201170 201170

CA 55. 22984 (1961)	201170
NOWOTNY, H AVER-WELSBACH, H SCANDIUM CARBIDE MONATSH CHEM 92, 789 (1961) CT NO 16, (1961)	700651 700651 700651 700651
NØWØTNY• H BENESØVSKY• F KIEFFER• R (UNIV VIENNA VIENNA AUSTRIA) THE SYSTEMS NB-B AND TA-B Z METALLKUNDE 50• 417 (1959) CA56• 5737 (1962)	201339 201339 201339 201339 201339
NOWOTNY, H BRAUN, H BENESOVSKY, F SOME BINARY SYSTEMS OF HAFNIUM RADEX RUNDSCHAU 1960, 367 CA 56, 4486 (1962)	201309 201309 201309 201309
NOWOTNY: H KIEFFER: R BENESOVSKY; F PREPARATION OF URANIUM MONOCARBIDE AND ITS RELATION TO THE CARBIDES OF REFRACTORY TRANSITION METALS REV MET 55: 453 (1958) CA 52: 19785 (1958)	601079 601079 601079 601079
NOWOTNY: H LAUBE: E (UNIV VIENNA VIENNA AUSTRIA) THERMAL EXPANSION OF HIGH-MELTING PHASES PLANSEEBER PULVERMET 9: 54 (1961) CA 55: 19659 (1961)	600844 600844 600844 600844
NOWOTNY: H RUDY: E BENESOVSKY: F (UNIV VIENNA VIENNA AUSTRIA) STUDIES OF THE SYSTEM ZIRCONIUM-BORON-CARBON AND ZIRCONIUM-BORON-NITROGEN MONATSH CHEM 91: 963 (1960) CA 57: 9279 (1962)	201799 201799 201799 201799 201799 201799
NOWOTNY: H BENESOVSKY: F RUDY: E WITTMANN: A (UNIV VIENNA VIENNA AUSTRIA) THE STRUCTURE AND COMBUSTIVE PROPERTIES OF NIORIUM-BORON- SILICON ALLOY MONATSH CHEM 91: 975 (1960) CA 57: 6980 (1962)	201765 201765 201765 201765 201765 201765
NYQUIST. Ø LANGE. K CHIPMAN. J INFLUENCE ØF SILICØN ØN THE ACTIVITY ØF CARBØN IN LIQUID IRØN TRANS ØF MET SØC ØF AIME 224. 714 (1962)	300953 300953 300953
ØATES, W TØDD, D (NEWCASTLE UNIV CØLL NS W) KINETICS ØF THE REDUCTION ØF ØXIDES J AUSTRALIAN INST METALS 7, 109 (1962) CA 57, 14470 (1962)	201903 201903 201903 201903 201903
ØBRØWSKI: W (LAB DEGUSSA HANAU GERMANY) ALLØYS ØF RUTHENIUM WITH BØRØN; BERYLLIUM; AND ALUMINUM METALL 17; 108 (1963) CA 58: 76698 (1963)	301545 301545 301545 301545 301545
BUKHOV-DENISOV. V SIDOROV. T FAIZULLOV. F CHEREMISINOV. V VIBRATION SPECTRUM OF VITREOUS BERYLLIUM FLUORIDE	200912 200912

ZHUR FIZ KHIM 34, 1622 CA 55, 7054 (1961)	(1960)		200912 200912
OELSEN, W THERMODYNAMIC ANALYSIS. CONTENT CURVES OF METAL ARCH EISENHUTTENW 26. 5 CA 49, 15434 (1955)	S AND ALLØYS	DING OF HEAT	600980 600980 600980 600980 600980
ØESTHAGER, K KØFSTAD, P THE REACTION BETWEEN TA DEGREES C J LESS-COMMON METAL 5.	NTALUM AND NITRØGEN AT	T 800-1300	300957 300957 300957 300957
OGAWA: M THE BAND SPECTRUM OF NI SCI OF LIGHT (TOKYO) 3: PA 58: 1690 (1955)		R INFRARED REGIØN	600755 600755 600755 600755
OGAWA: M ON THE EMISSION OF THE I SYSTEMS OF NITRIC OXIDE SCI OF LIGHT (TOKYO) 3. PA 58. 6891 (1955)	BETA+, GAMMA-, AND EPS	SILØN-•	600757 600757 600757 600757 600757
OGAWA• M BAND SPECTRA OF NITRIC REGIONS SCI OF LIGHT (TOKYO) 2• PA 57• 10942 (1954)		AND NEAR INFRARED	600758 600758 600758 600758 600758
ØGAWA• M TANAKA• Y (AIR FØRCE CAMB RES CTR NEW EMISSIØN BANDS ØF N REGIØN J CHEM PHYS 30• 1354 (1 CA 53• 17665 (1959)	ITROGEN IN THE VACUUM	MASS) ULTRAVIØLET	600595 600595 600595 600595 600595
ØGAWA: M TANAKA: Y NEW EMISSIØN BANDS ØF F VACUUM ULTRAVIØLET REGI J CHEM PHYS 32: 754 (19	ØN	ITRØGEN IN THE	600596 600596 600596 600596
ØGAWA• K BANDØ• Y (UNIV KYØTØ FØRMATIØN ØF TIC FRØM T FUNTAI ØYØBI FUNMATSUYA CA 56• 5617 (1962)		JAPAN,	201332 201332 201332 201332 201332
OGAWA. S (HOKKAIDO UNIV MAGNETIC TRANSITION IN J PHYS SOC JAPAN 15. 19 CA 55. 6981 (1961)		JAPAN)	200764 200764 200764 200764 200764
OGURTSOV. S METALLOTHERMAL PRODUCTI IZVEST AKAD NAUK SSSR O NO 4. 39 (1960) CA 55. 11223 (1961)	ØN ØF METALLIC TITANIU TDEL TEKH NAUK MET I	JM TØPLIVØ 1960,	200967 200967 200967 200967 200967
OLCESE:	GENØA	[TALY]	201602 201602

1101 SEMIMETALLIC COMPOUNDS OF DYSPROSIUM ATTI ACCAD NAZL LINCEI REND CLASSE SCI FIS MAT NAT 31, 256 (1961) CA57, 1831 (1962)	201602 201602 201602 201602
OLIVER, R C BAIER, R (AERONUTRONIC NEWPORT BEACH CALIF) CHEMICAL CORROSION OF ROCKET LINER MATERIALS AND PROPELLANT PERFORMANCE STUDIES QUARTERLY TECHNICAL SUMMARY REPT NO 3 15 MARCH (1963) AD 299130	301314 301314 301314 301314 301314 301314
OLSEN. C (LØS ALAMØS SCI LAB LØS ALAMØS N MEXICØ) THE ELECTRICAL RESISTIVITIES ØF SM AND EU BETWEEN 1.4 DEGREES K AND 300 DEGREES K L A 2406 (1960) NSA 14. 18234 (U960)	601336 601336 601336 601336 601336
OLSON: W MULFORD: R (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEXICØ) THE DECOMPOSITION PRESSURE AND MELTING PØINT ØF UN J PHYS CHEM 67: 952 (1963) CA 58: 13158 (1963)	301546 301546 301546 301546 301546
ONAKA. R (MIT CAMBRIDGE MASS) PERTURBATION AT V=6 OF THE A PRIME PI STATE OF CARBON MONOXIDE J CHEM PHIS 25. 1713 (1957) CA 51. 17437 (1957)	600716 600716 600716 600716 600716
ØNG. J (FØRD MØTØR CØ NEWPØRT BEACH CALIF) ØXIDATIØN ØF REFRACTØRY METALS AS A FUNCTIØN ØF PRESSURE. TEMPERATURE AND TIME. TUNGSTEN IN ØXYGEN J ELECTRØCHEM SØC 109. 284 (1962) CA56. 14971 (1962)	201536 201536 201536 201536 201536 201536
ONG. J FASSELL. W (FORD MOTOR CO DETROIT MICH) KINETICS OF OXIDATION OF NB AND OTHER REFRACTORY METALS CORROSION 18. 382 (1962) BHT NO 4. (1962)	601683 601683 601683 601683
ONG, J (FORD MOTOR CO NEWPORT BEACH CALIF) OXIDATION OF REFRACTORY METALS AS A FUNCTION OF PRESSURE TEMPERATURE AND TIME, TANTALUM IN OXYGEN TRANS AIME 224, 991 (1962) CA 57, 14855 (1962)	201916 201916 201916 201916 201916 201916
DPPENHEIM I HAFEMANN** D **CMASSACHUSETTS INST ØF TECH CAMBRIDGE MASS) **THERMØDYNAMIC PRØPERTIES &F A MÅNA ** ØMIC HYDRJGEN GAS AT HIGH **TEMPERATURES** **J CHEM PHYS 39 (1) 101 (1963) **CA 59** 2226D (1963)	301316 301316 301316 301316 301316 301316
ØRANSKAYA• N LEBEDEV• Y PERFILØVA• I (STATE UNIV LENINGRAD USSR) THE DISPRØPØRTIØNATIØN ØF VANADIUM TRICHLØRIDE ZHUR NEØRG KHIM 6• 259 (1961)	300456 300456 300456 300456

BHTG NO 4. 2 (1962)	300456
ORBACH+ H (M H D RES INC LOS ANGELES CALIF) HOW CERAMICS USE PLASMA JET CERAM INC 79+ NO 5+ 72 (1962) CA 58+ 4278 (1963)	301547 301547 301547 301547 301547
OREHOTSKY. J STEINITZ. R EFFECT OF ZONE PURIFICATION ON THE TRANSITION TEMPERATURE OF POLYCRYSTALLINE W TRANS AIME 224. NO 3. 556 (1962) BHT NO 2. 11 (1962)	300519 300519 300519 300519 300519
ØREILLY, D ELECTRONIC CONFIGURATION OF METAL OXIDES J CHEM EDUC 38, 312 (1961) CT NO 12, (1961)	700633 700633 700633 700633
ORIANI R JONES T (G.E. CO. SCHENECTADY N.Y.) APPARATUS FOR THE DETERMINATION OF THE SOLIDUS TEMPERATURES OF HIGH MELTING ALLOYS REV SCI INSTR 25 · 248 (1954) CA 48 · 7939 (1954)	600954 600954 600954 600954 600954
ORIANI, R MURPHY, W (U S STEEL CORP MONROEVILLE PA) THERMODYNAMICS OF ORDERING ALLOYS. IV. HEATS OF FORMATION OF SOME ALLOYS OF TRANSITION METALS ACTA MET 10, NO 9, 879 (1962) CA 57, 12223 (1962)	201864 201864 201864 201864 201864 201864
ORMONT. B (PHYSICAL-CHEMICAL INST KARPOV RUSSIA) THE VALENCY OF ELEMENTS IN COMPOUNDS AND THE ENERGY OF ATOMIZATION OF SIMPLE SUBSTANCES ZHUR FIZ KHIM 36. 836 (1962)	300765 300765 300765 300765 300765
ORMONT. B F SOLID PHASES AND COMPOUNDS OF VARIABLE COMPOSITION IN MODERN PHYSICAL CHEMISTRY AND CRYSTAL CHEMISTRY PROBL FIZ KHIM NO 1 39-155 (1958) RUSS ACC 15. NO 11 2880 FEBRUARY (1963)	301317 301317 301317 301317 301317
ORTENBERG, F THE DEPENDENCE OF THE ELECTRONIC MOMENT OF THE TRANSITION ON THE INTERNUCLEAR DISTANCE FOR MOLECULES OF BAO, CAO, MGO UKRAINE FIZ ZH 6, 145 (1961) PA 65, 6192 (1962)	300795 300795 300795 300795 300795 300795
ORTENBERG. F DISTRIBUTION OF INTENSITIES OF THE ALPHA-SYSTEM BANDS OF THE TIO MOLECULE OPTIKA SPEK 9. 147 (1960) PA 64. 3550 (1960)	900917 900917 900917 900917 900917
ORTENBERG. F ON THE RELATIVE VIBRATIONAL TRANSITION PROBABILITIES IN THE 2 DELTA-2 DELTA BAND SYSTEM OF THE VO MOLECULF OPTICA AND SPECTROSCOPY 11. 417 (1961)	300821 300821 300821 300821

ORTNER. M ANDERSON, C CAMPBELL, P (VITRO LABS WEST ORANGE NJ) RESEARCH AND DEVELOPMENT ON WASTE STORAGE PROCESS TID-13426 (1959) NSA 15. 30328 (1961)	701066 701066 701066 701066 701066
ORTON. G PHASE EQUILIBRIA OF THE W-C SYSTEM DISSERTATION ABST. 22. NO 2. 527 (1961)	300510 300510 300510
ØSBØRNE, D (ARGØNNE NATL LAB LEMØNT ILL) THE HEAT CAPACITY AND THERMØDYNAMIC FUNCTIØNS ØF TETRAURANIUM MØNØXIDE FRØM 5 TØ 310 DEGREES K (1956) ANL-5603 NSA 10, 10120 (1956)	601254 601254 601254 601254 601254
ØSBØRNE, D STEIN, L (ARGØNNE NATL LAB ARGØNNE ILL) THERMØCHEMISTRY AND THERMØDYNAMIC PRØPERTIES ØF SUBSTANCES ANN REV PHYS CHEM 13, 127 (1962) CA 57, 15889 (1962)	201923 201923 201923 201923 201923
ØSBØRNE, D WESTRUM, E (ARGØNNE NATL LAB LEMØNT ILL) THE HEAT CAPACITIES ØF THØRIUM DIØXIDE FRØM 10 DEGREES TØ 305 DEGREES K, THE HEAT CAPACITY ANØMALIES IN URANIUM DIØXIDE AND NEPTUNIUM DIØXIDE J CHEM PHYS 21, 1884 (1953) CA 48, 1130 (1954)	600968 600968 600968 600968 600968 600968
CA 48. 113C (.754) ØSMININ. Y THERMØPHYSICAL PRØPERTIES ØF MØLTEN METALS BELØRUSSIAN PER INZHENERNØ-FIZ ZHUR AK NAUK BELØRUSSKØY SSR VØL V NØ 2 108. (1962) ACE-TR-5454 CØTS 63. (1963)	301152 301152 301152 301152 301152 301152
ØSTBERG• G (AB ATØMENERGI STØCKHØLM SWEDEN) THE METALLURGY AND METALLØGRAPHY ØF ZIRCØNIUM TEK TIDSKR 91• 1039 (1961) CA 56• 7005 (1962)	201364 201364 201364 201364 201364
ØSTHAGEN, K KØFSTAD, P (CENTRAL INST IND RES ØSLØ NØRWAY) THE REACTIØN BETWEEN TANTALUM AND NITRØGEN AT 800-1300 DEGREES J LESS-CØMMØN METALS 5, NØ 1, 7 (1963) CA 58, 12250 (1963)	301548 301548 301548 301548 301548 301548
OVCHARENKO, I TUNITSKII, L YAKUTÎN, V BAND ANALYSIS OF THE SIC MOLECULE OPTIKA Î SPEKTROSKOPIYA 8, 746 (1960) CA 55, 13045 (1961)	600778 600778 600778 600778
ØVCHARENKØ• Ø TØ DETERMINE THE ENERGY ØF FØRMATIØN ØF VACANCIES IN SILVER UKRAIN FIZ ZHUR 6• NØ 1• 139 (1961) FTD-TT-63-124	900229 900229 900229 900229
OVERTON. W HANCOCK. J TABLES OF EINSTEIN ENERGY. SPECIFIC HEAT. AND DERIVATIVE	300244 300244

SPECIFIC HEAT FUNCTIONS	300244
NRL REPORT 5502 (1960)	300244
US GOVT PUB 1397 PB 146403	300244
OZEROV. R CRYSTAL CHEMISTRY OF THE OXYGEN COMPOUNDS OF VANADIUM. TUNGSTEN AND MOLYBDENUM USPEKHI KHIM 24. 951 (1955) AEC-TR-4839 NSA 15. 32079 (1961)	701064 701064 701064 701064 701064 701064
0ZIMOV. B REFLECTION SPECTRA OF CERTAIN INORGANIC COMPOUNDS IN ORGANIC LIQUID MEDIUM IZVEST VYSSHIKK UCHEB ZAVEDENII KHIM I KHIM TEKHNOL 4. 28 (1961)	700591 700591 700591 700591 700591
PADERNØ. V CERTAIN PHYSICAL PRØPERTIES ØF SPECIMENS ØF HAFNIUM CARBIDE CERAMIC METAL IZV AN SSR ØTD TEKH NAUK MET I TØP NØ 6. 176 (1962) RUSS ACC 16. NØ 1. 149 (1963)	202112 202112 202112 202112 202112
	201276 201276 201276 201276
PADERNØ• Y FØMENKO• V SAMSØNØV• G	200933
NEØDYMIUM HEXABØRIDE	200933
UKRAIN KHIM ZHUR 26• 409 (1960)	200933
CA 55• 9136 (1961)	200933
PADERNO, Y SAMSONOV, G	300134
ON THE PROBLEM OF THE BORIDES OF THE RARE EARTH METAL,	300134
ZHUR NEORG KHIM 5, 1914 (1960)	300134
BHT, 7 (1960)	300134
PADERNØ, Y SAMSØNØV, G ELECTRICAL PRØPERTIES ØF THE HEXABØRIDES ØF ALKALINE EARTH AND RARE EARTH METALS.AND THØRIUM DØKLADY AKAD NAUK SSSR 137, 646 (1961) NSA 15, 18542 (1961)	700587 700587 700587 700587 700587
PADERNØ• Y SAMSØNØV• G FØMENKØ• V	200971
ELECTRIAL PRØPERTIES ØF LANTHANUM BØRIDE	200971
FIZ METAL I METALLØVED AKAD NAUK SSSR 10• 633 (1960)	200971
CA 55• 11979 (1961)	200971
PADERNØ, Y SEREBRYAKØVA, T SAMSØNØV, G	700534
PREPARATIØN AND SØME PRØPERTIES ØF HAFNIUM BØRIDE	700534
TSVETNYYE METALLY (USSR) 11, 48 (1959)	700534
TT 5, 318 (1961)	700534
PAINE, R CARRABINE, J	201197
SØME NEW INTERMETALLIC CØMPØUNDS ØF BE	201197
ACTA CRYST 13, 680 (1960)	201197
CA 56, 84 (1962)	201197
PAINE R STØNEHØUSE A BEAVER W (BRUSH BERYLLIUM CØ CLEVELAND ØHIØ) INTERMETALLIC CØMPØUNDS FØR VERY HIGH TEMPERATURE APPLICATIONS	201391 201391 201391

US DEPT COMM OFFICE TECH SERV PB REPT 161,683, (1960)	201391 201391
PAINE R STONEHOUSE A BEAVER W IBRUSH BERYLLIUM CO CLEVELAND ØHIØ) INTERMETALLIC COMPOUNDS FOR VERY HIGH TEMPERATURE APPLICATIONS US DEPT COM OFFICE TECH SERV PB REPT 171,081 (1960) CA 57. 3167 (1962)	201631 201631 201631 201631 201631
PAK, T KØGAN, V TREATMENT ØF EQUILIBRIUM IN TERNARY SYSTEMS BY REDUCTION TØ BINARY SYSTEMS RUSS J PHYS CHEM 36, 877 (1962)	202113 202113 202113 202113
PALENIK • C WARF • J HYDROLYSIS OF LANTHANUM AND CERIUM CARBIDES INORG CHEM 1 • 345 (1962)	700850 700850 700850
PALENIK, G (UNIV ØF S CALIF LØS ANGELES CALIF) RARE EARTH CARBIDES-STRUCTURAL AND HYDRØLYTIC STUDIES UNIV MICRØFILMS (ANN ARBØR, MICH), L C CARD NØ MIC 60-6215, DISSERTATIØN ABSTR 21, 1367 (1960) CA 55, 7125 (1961)	200914 200914 200914 200914 200914 200914
PALGUEV. S NECEIMIN. A (INST ELECTROCHEM SVERDLØVSK USSR) THE NATURE ØF ELECTRICAL CØNDUCTIVITY ØF BE.MG.CA. AND SR ØXIDES AT HIGH TEMPERATURES FIZ TVERD TELA 4. 855 (1962) CAST. 5412 (1962)	201717 201717 201717 201717 201717 201717
PALGUEV. S VØLCHENKØVA, Z (INST ELECTRØCHEM SVERDLØVSK RUSSIA) CØNDUCTIVITY AND TRANSFERENCE NUMBERS FØR THE CERIUM ØXIDE- ZIRCØNIUM ØXIDE SYSTEM ZHUR FIZ KHIM 34. 452 (1960) CA 55. 17143 (1961)	201074 201074 201074 201074 201074 201074
PALIK, E RAØ, K (ØHIØ STATE UNIV CØLUMBUS ØHIØ) PURE RØTATIØNAL SPECTRA ØF CARBØN MØNØXIDE, NIT? C ØXIDE AND NITRØUS ØXIDE BETWEEN 100 AND 600 MICRØNS J CHFM PHYS 25, 1174 (1956) CA 51, 5553 (1957)	600717 600717 600717 600717 600717
PALMER• P MC MASTERS• Ø LARSEN• W (IØWA STATE UNIV AMES IØWA) THØRIUM-VANADIUM PHASE DIAGRAM AM SØC METALS TRANS QUART 55• 301 (1962) CA 57• 8307 (1962)	201791 201791 201791 201791 201791
PÁN. V DÉFINITION OF EQUILIBRIUM DIAGRAMS FOR CR-NB AND NBCR2-NI3NB SYSTEMS DOPOVIDI AKAD NAUK UKR 332 (1961) CA57. 4091 (1962)	201635 201635 201635 201635 201635
PANISH. M (AVCO/RAD WILMINGTON MASS) VAPORIZATION OF SEVERAL RARE EARTH OXIDES J CHEM PHYS 34. 1079 (1961) NSA 15. 12934 (1961)	601372 601372 601372 601372 601372

PANISH M (AVCO/RAD WILMINGTON MASS) VAPORIZATION OF THE RARE EARTH OXIDES J CHEM PHYS 34, 2197 (1961) NSA 15, 22293 (1961)	601409 601409 601409 601409
PANISH M REIF L (AVCØ/RAD WILMINGTØN MASS) VAPØRIZATIØN ØF RUTHENIUM AND ØSMIUM J CHEM PHYS 37. 128 (1962)	300721 300721 300721 300721
PANISH M REIF L (AVCO/RAD WILMINGTON MASS) VAPORIZATION OF IRIDIUM AND RHODIUM J CHEM PHYS 34, 1915 (1961)	700639 700639 700639 700639
PANISH, M REIF, L (AVCO RAD WILMINGTON THERMODYNAMICS OF THE VAPORIZATION OF HF AND HF02 DISSOCIATION ENERGY OF HF0 J CHEM PHYS 38, 253 (1963)	300959 300959 300959 300959
PANKRATZ, L KELLEY, K (US BUR OF MINES BERKELEY CALIF) HIGH-TEMPERATURE HEAT CONTENTS AND ENTROPIES OF SESQUIOXIDES OF LUTETIUM, DYSPROSIUM, AND CERIUM US BUR MINES REPT INVES NO 6248, 8 (1963) CA 59, 5860 (1963)	301549 301549 301549 301549 301549
PANKRATZ, L B KELLEY, K K (US BUR ØF MINES BERKELEY CALIF) HIGH-TEMPERATURE HEAT-CONTENT AND ENTROPY DATA FOR VANADIUM SILICIDE US BUR MINES REPT INVEST NØ 6241, 5 (1963) CA 59, 4597D (1963)	301319 301319 301319 301319 301319
PANKRATZ, L KING, E (US BUR ØF MINES BERKELEY CALIF HIGH-TEMPERATURE HEAT CONTENTS AND ENTROPIES ØF THE SESQUIØXIDES ØF ERBIUM, HØLMIUM, THULIUM, AND YTTERBIUM, US BUR MINES REPT INVEST NØ 6175, (1963) CA 58, 968H (1963)	202114 202114 202114 202114 202114 202114
PANKRATZ, L KING, E KELLEY, K HIGH TEMPERATURE HEAT CONTENTS AND ENTROPIES OF SESQUIOXIDES OF EUROPIUM, GADOLINIUM, NEODYMIUM, SAMARIUM AND YTTRIUM US BUR MINES REPT 6033 (1962) CA 56, 15896 (1962)	300958 300958 300958 300958 300958
PANNETIER. G MARSIGNY. L DESCHAMPS. P ETUDE SPECTRØSCØPIQUE DE LA REACTIØN DES HYDRØCARBURES CHLØRES AVEC DES ATOMES LIBRES DAZØTE ØBSERVATIØN DE NØUVELLE BANDES DE QUEUE DU SYSTEME VIØLET. DE CN J CHIM PHYS 58. 857 (1961)	600851 600851 600851 600851 600851
PANNETIER, G MARSIGNY, L GUENEBAUT, H ØBSERVATIØN DE LA TRANSITIØN DE LA MØLECULE N2 DANS LA REACTIØN DE QUELQUES CØMPØSE ØRGANIQUE AVEC DES ATØMES LIBRES DAZATE ATTRIBUTIØN DUNE NØUVELLE BAND IDENTIFEE AU NIVFAU 5,5 DE CETTE TRANSITIØN J CHIM PHYS 58, 725 (1961)	600850 600850 600850 600850 600850

PAPOUSEK: D CERMAN: Ø TRAVNICKOVA: G KUCIREK: J THERMODYNAMIC FUNCTIONS ØF AN ANHARMONIC ØSCILLATOR AND A VIBRATING ROTATOR SPISY PRIRODOVEDECKE FAK UNIV BRNE NØ 429: 19 (1962) CA 58: 8461 (1963)	301550 301550 301550 301550 301550
PAPOUSEK. D ROTATIONAL PARTITION FUNCTIONS OF DIATOMIC MOLECULES IN 3PI ELECTRONIC STATES TRANS FARADAY SOC 57. 884 (1961)	700675 700675 700675 700675
PARK. J WYMAN. L (NATL BUR ØF STANDARDS WASHINGTØN D C) PHASE RELATIØNS IN MAGNESIUM ALLØYS US AT ENERGY CØMM WADC TR 57-504 (1957) CA 55. 17439 (1961)	201092 201092 201092 201092 201092
PARKINSON, W REEVES, E (HARVARD COLL.OBS. CAMBRIDGE MASS) THE SPECTRUM TITANIUM NITRIDE CAN J PHYS 41 (4) 702 (1963) CA 58, 2297 (1963)	202115 202115 202115 202115 202115
PARKINSON: D ROBERTS: L (RADAR RES ESTAB. MALVERN ENGLAND) THE ATOMIC HEAT OF CERIUM BETWEEN 1.5 AND 20 DEG K PROC PHYS SOC 70: 471 (1957) CA 53: 19552 (1959)	601151 601151 601151 601151 601151
PARKINSON. D SIMON. F SPEDDING. F (ØXFØRD UNIV ØXFØRD ENGLAND) THE ATOMIC HEATS ØF THE RARE EARTH ELEMENTS PRØC RØY SØC LØNDØN A207. 137 (1951) CA 46. 303 (1952)	400557 400557 400557 400557 400557
PARKINSON, W NICHOLLS, R SHOCK TUBE SPECTROSCOPY, I. THE SHOCK EXCITATION OF POWDERED SOLIDS AFCRC-TN-59-620 (1959) AD-228877	600612 600612 600612 600612 600612
PARKS. B BURTØN. D THERMØDYNAMIC PRØPERTIES ØF GASEØUS URANIUM HEXAFLUØRIDE US AT ENERGY CØMM K-1458. (1960) CA 55. 6126 (1961)	200884 200884 200884 200884
PARTHE, E NØRTØN, J (MIT CAMBRIDGE MASS) THE TERNARY SYSTEM ZIRCØNIUM, SILICØN, BØRØN MØNATSH 91, 1127 (1960) CA 56, 9471 (1962)	201404 201404 201404 201404 201404
PARTHE E SADAGOPAN. V STUDIES ON TUNGSTEN CARBIDE WC BY FANS OF NEUTRON AND X-RAY DIFFRACTION COMPARED WITH PREVIOUS ELECTRON DIFFRACTION DATA MONATSH CHEM 93. 263 (1962) BHT NO 2. 11 (1962)	300520 300520 300520 300520 300520 300520
PARTHE, E SADAGOPAN, V (PENN STATE UNIV PHILADELPHIA PENNA) (MIT CAMBRIDGE MASS) THE STRUCTURE OF DIMOLYBDENUM CARBIDE BY NEUTRON DIFFRACTION	601630 601630 601630 601630

TECHNIQUE NP-11699 NSA 16: 19364 (1962)	601630 601630 601630
PASCAL P (PARIS MASSON ET CIE PARIS FRANCE) NOUVEAU TRAITE DE CHIMIE MINERALE TOME XV. URANIUM ET TRANSURANIENS PREMIER FASCICULE URANIUM NSA 16 199 (1962)	601453 601453 601453 601453 601453
PASCAL. P (PARIS. MASSON ET CIE PARIS FRANCE) NOUVEAU TRAITE DE CHIMIE MINERALE IRIDIUM TOME XIX. RUTHENIUM-OSMIUM-RHODIUM-IRIDIUM-PALLADIUM- PLATINE NSA 16. 200 (1962)	601452 601452 601452 601452 601452 601452
PAULE, R (UNIV WISCONSIN MADISON WISCONSIN) STUDIES AT HIGH TEMPERATURES I. THEORETICAL ANALYSIS OF KNUDSEN AND LANGMUIR JECHNIQUES FOR VAPOR PRESSURE MEASUREMENTS. II VAPOR PRESSURES OF IR, RU, AND B DISSERTATION ABSTR 22, 4200 (1961) BHT NØ 3, 24 (1962)	601479 601479 601479 601479 601479 601479
PAULE, R C MARGRAVE. J L A LANGMIUR DETERMINATION OF THE SUBLIMATION PRESSURE OF BORON J PHYS CHEM 67, 1368 (1963) J ELECTROCHEM SOC 102, 399 (1963)	301320 301320 301320 301320
PCHELKIN. I SPECIFIC HEAT OF MOLTEN METALS VOPROSY TEPLOOBMENA AKAD NAUK SSSR, ENERGET INST IM GM KRZHIZHANOVSKOGO 1959, 46 (1959) CA 35. 24211 (1961)	300649 300649 300649 300649
PEAKALL K ANTILL J (AERE HARWELL ENGLAND) ØXIDATIØN ØF URANIUM MØNØCARBIDE . J LESS CØMMØN METALS 4. 426 (1962) BHT NØ 4. (1962)	601682 601682 601682 601682
PEARLMAN. N KEESOM. P THE ATOMIC HEAT OF SILICON BELOW 100 DEGREES K PHYS REV 88. 398 (1952)	300171 300171 300171
PÉARSON. W (NATL RES COUNCIL OTTAWA CANADA) COMMENTS ON EVIDENCE OF METALLIC BONDING IN TIN ACTA MET 10. 1123 (1962) CA 58. 5247 (1963)	301029 301029 301029 301029 301029
PECKNER. D REFRACTORY METALS ROUNDUP MATER DESIGN ENG 55. NO 4. 131 (1962) CA 57. 16265 (1962)	201944 201944 201944 201944
PECKNER. D NIØBIUM MATERIALS IN DESIGN ENG 54. NØ 7. 107 (1961) CA 56. 4482 (1962)	201307 201307 201307 201307

```
PEMSLER.
                                                                     700650
INUCLEAR METALS.INC
                               CONCORD
                                                                     700650
 THERMODYNAMICS OF THE INTERACTION OF NIOSI M AND TAN ... JM WITH 700650
 OXYGEN AND NITROGEN AT TEMPERATURES NEAR THE MELTING COINT
                                                                     700650
 J ELECTROCHEM SOC 108, 744 (1961)
                                                                     700650
 CT NO 16. (1961)
                                                                     700650
 NSA 15, 26028 (1961)
                                                                     700650
PENG. R CHOU, Y
                                                                     300269
 SOLUBILITY OF TITANIUM AND CARBON IN THE FE-TI-C SYSTEM
                                                                     300269
 KO HSNEH TUNG PAO 499, (1958)
                                                                     300269
 CA 53. 8988E (1959)
                                                                     300269
PENNER, S
                                                                     202117
(GØRDØN AND BREACH
                               NEW YORK
                                                     NY 1
                                                                     202117
 CHEMICAL ROCKET PROPULSION AND COMBUSTION RESEARCH
                                                                     202117
 CA 58, 5447 (1963)
                                                                     202117
PENKIN N SHABANOVA L
                                                                     601601
 OSCILLATOR STRENGTHS OF SPECTRAL LINES OF MAGNESIUM. STRONTIUM.601601
 AND BARIUM
                                                                     601601
 OPTICS AND SPECTROSCOPY (USSR) 12, 1 (1962)
                                                                     601601
 NSA 16, 18224 (1962)
                                                                     601601
PEREZ Y JØRBA, M
(CENTRE ETUDES CHIM VITRY-
ZIRCØNIA-RARE EARTH ØXIDES SYSTEM
                                                                     301491
                               VITRY-SUR-SEINE
                                                     FRANCE)
                                                                     301491
                                                                     301491
 ANN CHIM 7, 479 (1962)
                                                                     301491
 CA 58. 13577 (1963)
                                                                     301491
PERFILOVA. I ET AL
                                                                     201221
 ENTHALPY OF FORMATION OF VANADIUM OXYCHLORIDE
                                                                     201221
 VESTNIK LENINGRAD UNIV 16, NØ 16, SER FIZ I KHIM NØ 3,
                                                                     201221
 130 (1961)
                                                                     201221
 CA 56. 1010 (1962)
                                                                     201221
PERIØ. P
                                                                     600967
 CRYSTALLINE VARIETIES OF U03
                                                                     600967
 BULL SØC CHIM FRANCE 776 (1953)
                                                                     600967
 CA 48, 1102 (1954)
                                                                     600967
PERIØ. P
                                                                     601283
 CONSIDERATIONS OF THE URANIUM OXIDES BETWEEN U02 AND U308
                                                                     601283
 BULL SØC CHIM FRANCE 840 (1953)
                                                                     601283
 AEC-TR-2061
                                                                     601283
 NSA 9, 1794 (1955)
                                                                     601283
                                                                     601033
PERIO. P
 CRYSTALLØGRAPHIC STUDY OF THE URANIUM-ØXYGEN SYSTEM
                                                                     601033
 COMM ENERGIE ATOMIQUE RAPP 363, 107 (1955)
                                                                     601033
                                                                     601033
 CA 51, 35 (1957)
 NSA 10, 8328 (1956)
                                                                     601033
                                                                     601216
PERIO. P
 CONSIDERATION OF THE URANIUM OXIDE BETWEEN U02 AND U308 BULL SOC CHIM FRANCE 9. 840 (1953)
                                                                     601216
                                                                     601216
                                                                     601216
 NSA 7. 6436 (1953)
                                                                     201090
PERKINS, R CROOKS, D
                               PALØ ALTØ
                                                     CALIFI
                                                                     201090
LOCKHEED
 LOW-PRESSURE, HIGH TEMPERATURE OXIDATION OF TUNGSTEN
                                                                     201090
                                                                     201090
 J METALS 13, 490 (1961)
                                                                     201090
 CA 55, 17420 (1961)
```

PESIC. D (INST OF NUCLEAR SCI BELGRADE YUGOSLAVIA) ISOTOPE EFFECT IN BAND SPECTRA OF MAGNESIUM ØXIDE PROC PHYS SOC (LONDON) 76. 844 (1960) NSA 15. 7347 (1961) CA 55. 8035 (1961)	701002 701002 701002 701002 701002 701002
PETER. A PREPARATION OF TITANIUM DIOXIDE CHEM TECH (BERLIN) 14, 103 (1962) CA56. 13747 (1962)	201523 201523 201523 201523
PETERSØN. D (IØWA STATE UNIV AMES IØWA) THERMØDYNAMICS AND KINETICS ØF DEØXIDATIØN ØF THØRIUM BY CA TRANS AIME 221. 924 (1961) CA 56. 2043 (1962)	201246 201246 201246 201246 201246
PETIT. G DELBOVE. F DETERMINATION OF THE HEAT AND ENTROPY OF FUSION OF ALKALINE-EARTH FLUORIDES BY THE CRYOMETRIC METHOD AT HIGH TEMPERATURE C R ACAD SCI (FRANCE) 254. NO 8. 1388 (1962) PA 65. 9463 (1962)	300785 300785 300785 300785 300785 300785
PETTERSØN, A LINDGREN, B (UNIV STØCKHØLM SWEDEN) THE B PI-D-SIGMA TRANSITION ØF TIØ ARKIV FYSIK 22, 491 (1962) BHT NØ 7, 14 (1963)	301162 301162 301162 301162 301162
PETTERSSON. A LINDGEN. B TITANIUM MONOXIDE BAND AT 10025A NATURWISS 48. 128 (1961)	700544 700544 700544
PHILIPP W EVIDENCE OF METALLIC BONDING OF TIN ACTA MET 10. NO 5. 584 (1962) BHT NO 2. 11 (1962)	300521 300521 300521 300521
PHILLIPS. J (UNIVERSITY OF CALIFORNIA BERKELEY CALIFORNIA) THE LABORATORY DETERMINATION OF RELATIVE TRANSITION PROBABILITIES OF DIATOMIC MOLECULES I. THE ALPHA-SYSTEM OF TIO ASTROPHYS J 119. 274 (1954) CA 48. 5644 (1954)	300165 300165 300165 300165 300165 300165
PHILLIPS. J A ROTATIONAL ANALYSIS OF THE GAMMA-SYSTEM OF THE TIO MOLECULE BERKELEY ASTRONOMICAL DEPT UNIV OF CALIF ASTROPHYS J 114. 152 (1951)	600891 600891 600891 600891
PHILLIPS. J SINGLET ELECTRONIC STATES OF THE TIO MOLECULE ASTROPHYS J 111. 314 (1950)	600890 600890 600890
PHILLIPS, T WHITE, D JOHNSTON, H KINETICS, THERMODYNAMICS, PHYSICAL, CHEMICAL PROPERTIES AND MANUFACTURE OF AMMONIA AD-8216 (1952)	600892 600892 600892 600892

```
PICKETT, J LEVINE, E (NUCLEAR METALS INC
                        NOWAK, W
CONCORD
                                                                    601587
601587
 FUNDAMENTAL AND APPLIED RESEARCH AND DEVELOPMENT IN METALLURGY 601587
 STABILITY OF THE HIGH TEMPERATURE BETA PHASE IN BERYLLIUM
                                                                    601587
                                                                    601587
 NMI-1252
                                                                    601587
 NSA 16, 2180 (1962)
                                                                    601587
PICON. M. DOMANGE, L. FLAHAUT, J. GUITTARD, M. PATRIE, M.
 THE SULFIDES M2S3 AND M3S4 OF THE RARE EARTH ELEMENTS
                                                                    200790
 BULL SOC CHIM FRANCE 2, 221 (1960)
                                                                    200790
                                                                    200790
 CA 55, 196 (1961)
                                                                    200790
PIJANOWSKI + S DELUCAS + L
                                                                    600767
(KAPL
                               SCHENECTADY
 MELTING POINTS IN THE SYSTEM PUOZ - UOZ
                                                    NEW YORK)
                                                                    600767
                                                                    600767
 U S AT ENERGY COMM
                                                                    600767
 KAPL 1937 + 1(1960)
                                                                    600767
 CA 55, 11973 (1961)
                                                                    600767
PILCHER + G SKINNER + H
                                                                    301044
(UNIV MANCHESTER
                                                    ENGLAND)
 VALENCE-STATE OF BORON , CARBON , NITROGEN , AND DXYGEN
                                                                    301044
                                                                    301044
 J INØRG NUCL CHEM 24, 937 (1962)
                                                                    301044
 CA 58, 5050 (1963)
                                                                    301044
PILØYAN. G EVSEEV. A GERASIMØV. Y
                                                                    300178
(M V LOMONOSOV STATE UNIV
                             MØSCØW
 THERMODYNAMIC PROPERTIES OF CHROMIUM-TANTALUM ALLOYS
                                                    USSRI
                                                                    300178
                                                                    300178
 ZHUR FIZ KHIM 34, 1768 (1960)
                                                                    300178
 CA 55 • 10037 (1961)
                                                                    300178
PINAEV . G
 CONSTRUCTION OF PHASE DIAGRAMS OF MUTUAL SYSTEMS WITH
                                                                    202118
                                                                    202118
 USE OF WEIGHT PERCENTAGES
                                                                    202118
 ZH NEØRG KHIM 8, 751 (1963)
                                                                    202118
 CA 59, 1139 (1963)
                                                                    202118
PIPPIG. E
                                                                   201599
(PHYS TECH
                               ZENTRALINST
                                                    BERLIN)
                                                                   201599
 PRESSURE AND TEMPERATURE COEFFICIENTS OF THE 2 ECTRICAL
                                                                   201599
 RESISTANCE OF RHENIUM ALLOYS
                                                                   201599
 ANN PHYSIK 8, 318 (1961)
                                                                   201599
 CA57. 1671 (1962)
                                                                   201599
PIROGOV, A
                                                                   300625
 LIGHT WEIGHT FØAM REFRACTØRIES MADE FRØM ZRØ2 FØR HIGH
                                                                   300625
 TEMPERATURE THERMAL INSULATION
                                                                   300625
 ØGNEUPØRY 27, 275 (1962)
                                                                   300625
PISTORIUS . C
                                                                   200864
TUNIV OF CALIF
                              LØS ANGELES
                                                  CALIF
                                                                   200864
 INFRARED SPECTRUM OF THIGH 14
                                                                   200864
'J INORG + NUCLEAR CHEM 15, 187 (1960)
                                                                   200864
CA 55, 5124 (1961)
                                                                   200864
PLANTE, E
                                                                   300141
 STRUCTURES AND PHASE RELATIONSHIPS IN THE MOLYBDENUM-OXYGEN
                                                                   300141
 SYSTEM AND THE HIGH TEMPERATURE VAPORIZATION BEHAVIOR OF
                                                                   300141
MALYADENUM DIØXIDE
                                                                   300141
DISSERTATION ABST 21. NO 5 1081 (1960)
                                                                   300141
BHT, (1960)
                                                                   300141
```

PLØETZ. G KRYSTYNIAK. C DUMES. H (KNØLLS AT PØWER LAB SCHENECTADY 7.7 THERMAL EXPANSION OF FOUR RARE EARTH ØXIDES KAPL-M-GLP-1 (1957) NSA 11. 7964 (1957)	50 09 601 00 013 0
PLYLER+ E ALLEN+ H TIDWELL+ E EMISSION SPECTRUM OF CARBON MONOXIDE FROM 2.1 FO .5 MICRONS J RES NATL BUR STANDS 61+ 53 (1958) PA 62+ 2202 (1959)	610718 610718 600718
PLYLER, E BENEDICT, W SILVERMAN, S PRECISE MEASUREMENTS IN THE INFRARED SPECTRUM OF CARBON MONOXIDE J CHEM PHYS 20, 175 (1952) CA 46, 6487 (1952)	600719 500719 600719 600719
PLYLER, E BLAINE, L CONNOR, W (NATL BUREAU OF STDS WASHINGTON D C) VELOCITY OF LIGHT FROM THE MOLECULAR CONSTANTS OF CARBON MONOXIDE J OPT SOC AMER 45, 102 (1955) CA 49, 5123 (1955)	600720 600720 600720 600720 600720 600720
PLYLER, E BLAINE, L TIDWELL, E (NATL BUREAU ØF STDS WASHINGTØN D C) INFRARED ABSØRPTIØN AND EMISSIØN SPECTRA ØF CARBØN MØNØXIDE IN THE REGIØN FRØM 4 TØ 6 MICRØNS J RESEARCH NATL BUR STANDS 55, 183 (1955) CA 50, 16385 (1956)	600721 600721 600721 600721 600721 600721
POCH, W DIETZEL, A (MAX-PLANCK-INST WUERZBURG GERMANY) THE FORMATION OF SILICON CARBIDE FROM SILICON DIOXIDE AND CARBON BER DEUT KERAM GES 39, 413 (1962) CA 58, 9855 (1963)	202119 202119 202119 202119 202119 202119
PØE A (NØRTHWESTERN UNIV EVANSTØN ' ILL) A SIMPLE CØMPUTATIØN ØF EQUILIBRIUM CØNSTANTS J PHYS CHEM 67 • 1070 (1963) CA 58 • 13197 (1963)	301551 301551 301551 301551 301551
PØLAND, D GREEN, J MARGRAVE, J IDEAL GAS THERMØDYNAMIC FUNCTIONS OF SOME SELECTED ELEMENTS J CHEM ENG DATA 7, NO 3, 389 (1962) CT NO 16, 94 (1962)	300758 300758 300758 300758
PØLKØVNIKØV, B BALANDIN, A TABER, A CATALYTIC PRØPERTIES ØF THE BØRIDES ØF PLATINUM-GRØUP BØRIDES DANSSSR 145, 809 (1962)	300964 300964 300964
POLLOCK, B (ATOMICS INTERNATIONAL CANOGA PARK CAL) THE VAPORIZATION BEHAVIOR AND THERMODYNAMIC STABILITY OF ZIRCONIUM CARBIDE AT HIGH TEMPERATURE NAA-SR-5439 (1961) J PHYS CHEM 65, 731 (1961) GR 35, 485 (1961)	700536 700536 700536 700536 700536 700536 700536
POLUBOYARINOV. D GUZMAN. I NISHANOVA. I STRUCTURE AND CERTAIN PROPERTIES OF A POUROUS CERAMIC	301552 301552

AN A ZROZ BASE	
TR MOSK KHIM-TEKHNOL INST 37, 166 (1962)	301552 301552 301552
POLUNINA, G KOVBA, L IPPOLITOVA, E PRODUCTS OF REACTION BETWEEN ZNO AND U308 ISSLED V OBL KHIM URANA SB STATE I 1961, (1961) CA 57. 3067 (1962)	201624 201624 201624 201624
POOLE, D HUME-ROTHERY, W THE EQUILIBRIUM DIAGRAM OF THE SYSTEM NICKEL-TITANIUM JOURNAL INST OF METALS 83, 473 (1955)	300208 300208 300208
PØPØV, M GALCHENKØ, G SENIN, M TRUE HEAT CAPACITY ØF UØ2, U3Ø8, AND UØ3 AT HIGH TEMPERATURES ZHUR NEØRG KHIM 3, 1734 (1958) CA 53, 21119 (1959)	601153 601153 601153 601153
PØPØV. A GLØCKER. G (STATE UNIV ØF IØWA IØWA CITY IØWA) THE EXISTENCE ØF THE HIGHER ØXIDES ØF NØ J AM CHEM SØC 71. 4114 (1949) CA 44. 2880 (1950)	400524 400524 400524 400524 400524
POPOV. M IVANOV. M HEATS OF FORMATION OF PUO2 AND U308 SOVIET J ATOMIC ENERGY 2. 439 (1957) CA 52. 12540 (1958)	601086 601086 601086 601086
PØPØV• Y G LATTICE STRUCTURE ØF TITANIUM AND VANADIUM MØNØXIDES ZHUR ØBSHCHEI KHIM 32• 2077 (1962) CØTS 65• 310 (1963)	301321 301321 301321 301321
P0P0VA, 0 KABANNIK, G CHFMICAL PR0PERTIES AND ANALYSIS 0F S0ME NITRIDES FTD-TT-62-1825 TRUDY INSTITUT METALL I SPET SPLAVOV SEMINAR P0 ZHAR MATERIALAM N0 6, 64 (1960) C0TS N0 60, 84 (1962)	300960 300960 300960 300960 300960
POPOVA. O CHROMIUM NITRIDES UKRAIN KHIM ZHUR 27. 22 (1961) CA 55. 17328 (1961)	201082 201082 201082 201082
POPPER P SPECIAL CERAMICS PROCEEDINGS OF A SYMPOSIUM HELD AT THE BRITISH CERAMIC RESEARCH ASSOCIATION ACADEMIC PRESS NEW YORK (1960) NSA 16 P19266 (1962)	601632 601632 601632 601632 601632
PORT, J (CHOSE BRASS AND COPPER CO WATERBURY CONN) RHENIUM-A PROMISING REFRACTORY MET.' MATERIALS IN DESIGN ENG 51, 140 (1960) NSA 15, 1880 (1961)	700976 700976 700976 700976 700976
PØRTNØI, K LEVINSKII, Y FADEEVA, V REACTIØN WITH CARBØN ØF SØME REFRACTØRY CARBIDES AND THEIR SØLID SØLUTIØNS IZVEST AKAD NAUK SSSR ØTD TEKH NAUK MET I TØPLØVA NØ 2 147 (1961)	300215 300215 300215 300215 300215

CA 55+ 19696 (1961) NȘA 15+ 25248 (1961)	300215 300215
PORTNOY: K SAMSONOV: G SOLONNIKOVA: L ALLOYS IN THE SYSTEM B-SI-C Zhur Neorg Khim 5: 2032 (1960) CA 55: 6329 (1961)	300144 300144 300144 300144
PORTNOY, K PROPERTIES OF BORIDE-BASE MATERIALS AND OTHER HIGH MELTING COMPOUNDS (ISSLEDOVANIE SPLAVOV TSVETNYKH METAL) AKAD NAUK SSR INST MET IM AA BAIKOVA NO 2, 197 (1960) NP-TR-510 NSA 15, 21161 (1961)	700944 700944 700944 700944 700944 700944
PORTNOY, K SAMSONOV, G FROLOVA, K SOME PROPERTIES OF THE ALLOYS OF TITANIUM BORIDE AND CHROMIUM TITANIUM BORIDE WITH BORON CARBIDE PLANSEEBER PULVERMET 8, 195 /1961) BHT NO 3, 9 (1961)	300485 300485 300485 300485 300485
PØST, B MØSKØWITZ. D GLASER, F (PØLYTECH INST BRØØKLYN NEW YØRK) BØRIDES ØF RARE EARTH AND RELATED METALS PLANSEE PRØC 1955, 173 (1956) CA 50, 13637 (1956)	601017 601017 601017 601017 601017
POWELL. R BLANPIED. W THERMAL CONDUCTIVITIES OF METALS AND ALLOYS AT LOW TEMPERATURES. A REVIEW OF THE LITERATURE NBS-C-556. (1954)	600906 600906 600906 600906
POWELL, R TYE, R (NATL PHYSICS LAB TEDDINGTON ENGLAND) THERMAL CONDUCTIVITY MEASUREMENTS DOWN TO -190 DEGREES IRIDIUM AND RHODIUM CONGR INTERN FROID 9 PARIS 1955 COMPT REND TRAV COMM 1 ET 2, 2083 CA 52, 15223 (1958)	601082 601082 601082 601082 601082 601082
POWELL, R TYE, R THE THERMAL AND ELECTRICAL CONDUCTIVITY OF TITANIUM AND ITS ALLOYS J LESS COMMON METALS 3, 226 (1961)	700652 700652 700652 700652
POWELL. R TYE. R THE THERMAL AND ELECTRICAL CONDUCTIVITIES OF ZIRCONIUM AND OF SOME ZIRCONIUM ALLOYS J LESS COMMON METALS 3. 202 (1961)	700653 700653 700653 700653
POWERS. H WELCH. F TRICE. J (FAIRCHILD ENG AIR PL CO OAK RIDGE TENN) THE HEAT CAPACITY OF U308 AS A FUNCTION OF TEMPERATURE (400-1800 DEGREES F) NEPA-934 (APR 26. 1949- DECL JULY 18. 1961) NSA 16. 5304 (1962)	601444 601444 601444 601444 601444
POWERS R (SYLVANIA-CORNING NUC CORP NEW YORK NY) THE EFFECT OF SOLID-SOLUTION ADDITIONS ON THE THERMAL CONDUCTIVITY OF UO2 US AT ENERGY COMM SCNC-317 (1960)	201184 201184 201184 201184 201184

CA 56. 35 (1962)	201184
THE ABSORBTION SPECTRA OF THE RARE EARTHS AND THEIR SIGNIFICANCE FOR THE INVESTIGATION OF THE EMISSION SPECTRA IN GENERAL NATURW RUNDSCHAU 2, 57 (1949)	601408 601408 601408 601408 601408 601408
(L S CØLLEGE MUZAFFAPUR INDIA) FRANCK-CØNDØN FACTØRS AND R-CENTRØIDS FØR THE 2 DELTA- 2 DELTA SYSTEM ØF VØ AND A SYSTEM ØF TIØ PRØC PHYS SØC 82+ 527 (1963)	202120 202120 202120 202120 202120 202120
TUNIV BIHAR BIHAR INDIA) FRANCK-CONDON FACTORS AND R-CENTROIDS FOR THE ALPHA- SYSTEM OF TIO	301553 301553 301553 301553 301553 301553
PRATHER, J (BELØIT CØLL BELØIT WISCØNSIN) ATØMIC ENERGY LEVELS IN CRYSTALS NATL BUR STANDARDS US MØNØGRAPH 19, (1961) CA 55, 14070 (1961)	201032 201032 201032 201032 201032
PREDVØDITELEV. A THE AERØDYNAMICS ØF RAREFIED GASES. AND HEAT TRANSFER PRØBLEMS TEZISY DØKLADØV I SØØBSHCHENIY NA SØVESHØHANII PØ TEPLØ I MASSØØBMENU. MINSK. AN BELØRUSSKØY SSR (1961)	400605 400605 400605 400605
PREDVØDITELEV, A S CRITICAL PHENØMENA ØF LIQUIDS AND GASES INZH FIZ ZH AKAD MAUK BELØRUSSK SSR 6, NØ 4, 123 (1963) CT NØ 12, 85 JUNE 10 (1963)	301322 301322 301322 301322
PREISINGER. A STRUCTURE ØF STISHØVITE. HIGH-PRESSURE SILICA NATURWISS 49. 345 (1962)	300963 300963 300963
PREMASWARUP, D VIBRATIONAL ANALYSIS OF THE TANTALUM OXIDE BANDS IND J PHYSIC 29, 109 (1955) CA 51, 7850F (1957)	301323 301323 301323 301323
PREMASWARUP, D BARRØW, R (ØXFØRD UNIV ØXFØRD ENGLAND) RØTATIØNAL ANALYSIS ØF THE TANTALUM ØXIDE BANDS NÅTURE 180, 602 (1957) CA 52, 2538 (1958)	600918 600918 600918 600918 600918
PRÉSCOTT, C HINCKE, W THE HIGH-TEMPERATURE EQUILIBRIUM BETWEEN THORIUM OXIDE AND CARBON J AM CHEM SOC 49, 2744 (1927) CA 22, 346 (1928)	900116 900116 900116 900116 900116
PRICE: E TAYLOR: B (INT NICKEL CO LONDON ENGLAND) TEMPERATURE COEFFICIENT OF ELECTRICAL RESISTANCE OF HIGH	601473 601473 601473

PURITY RHØDIUM NATURE 195• 272 (1962) BHT NØ 3• 9 (1962)	601473 601473 601473
PRIEST. H PRIEST. G (COLUMBIA UNIV NEW YORK NEW YORK) DETERMINATION OF DENSITIES OF SEVERAL URANIUM COMPOUNDS US AT ENERGY COMM TID-5290 2. 734 (1958) CA 53. 18579 (1959)	601147 601147 601147 601147
PRIGENT. J PREPARATION, PROPERTIES. AND SPECTRAL STUDY OF URANIUM BROMIDES AND OXYBROMIDES ANN CHIM 5. 65 (1960) CA 55. 9137 (1961)	200934 200934 200934 200934 200934
PRILEZHAEVA, N KØKHANENKØ, V ESTABLISHMENT ØF THERMØDYNAMIC EQUILIBRIUM IN DISCHARGES NEKØTØRYE VØPR EMISSIØN I MØLEKUL SPEKTRØSKØPII KRASNØYARSK SB (1960) BHT NØ 7, 17 (1963)	301153 301153 301153 301153 301153
PRISELKØV, Y SAPØZHNÍKØV, Y TSÉPLYAEVA, A MEASUREMENT ØF THE SATURATED VAPØR PRESSURE ØF BØRØN IZVEST AKAD NAUK SSSR ØTDEL TEKH NAUK MET I TØPLIVA 1. 134 (1960) CA 55, 6086 (1961)	300142 300142 300142 300142 300142
PRISELKØV» Y SAPØZHNIKØV» Y TSEPLYAEVA» A KAFELIN» V A FEW PRØBLEMS ØN ACCURACY ØF EFFUSIØN METHØD CA 54, 21908 (1960)	300423 300423 300423
PRITCHARD, H (UNIV MANCHESTER MANCHESTER ENGLAND) THE DISSOCIATION OF DIATOMIC MOLECULES AND THE RECOMBINATION OF ATOMS J PHYS CHEM 66, 2111 (1962) CA 58, 8415 (1963)	301554 301554 301554 301554 301554
PRØKØSHKIN. D VASILEVA. E THE ØXIDATIØN ØF CERTAIN BINARY ALLØYS BASED ØN NIØBIUM ISSLED PØ ZHARØPRØCH SPLAVAM AKAD NAUK SSSR INST MET 9. 164 (1962) CA 58.1208 (1963)	201974 201974 201974 201974 201974
PROPHET. H STULL. D HEAT CAPACITIES OF BORON NITRIDE AND ALUMINUM OXIDE USING AN ARC-IMAGE FURNACE J CHEM ENG DATA 8. 78 (1963)	300961 300961 300961 300961
PROPINOR CALCULATION OF THE PROBABILITY OF AUTOIONIZATION IN THE IONS HE- AND BE+ OPTIKA I SPEKTROSKOPIYA 10. 308 (1961) CA 55. 14062 (1961)	201031 201031 201031 201031 201031
PRØSHINA, Z REZUKHINA, T DETERMINATION OF THE HEAT OF FORMATION OF MN AND NI TUNGSTATES ZHUR NEORG KHIM 5, 1016 (1960) CA 56, 2046 (1962)	201249 201249 201249 201249 201249

PROTOPOPOV. N KULGAVCHUK, V THE PULSE METHOD OF DETERMINING ENERGY OF SUBLIMATION OF METALS AND ALLOYS INZHEN FIZ ZH (USSR) 4, NO 7, 84 (1961)	300718 300718 300718 300718
PRZYBYLSKA, M REDDØCH, A RITTER, G PREPARATIØN AND STRUCTURE ØF LUTETIUM DIBØRIDE, SCANDIUM DØDECABØRIDE, AND LUTETJUM ANTIMØNIDE J AM CHEM SØC 85, 407 (1963)	300962 300962 300962 300962
PUGACHEVICH, P LAZAREV, V APPARATUS FOR MEASURING THE SURFACE TENSION OF METALS AT HIGH TEMPERATURES ZHUR FIZ KHIM 34, 2607 (1960) CA 55, 6066 (1961)	200878 200878 200878 200878 200878
PUGH. H LEES. J BLAND. J SYNTHESIS AND X-RAY ANALYSIS OF DIAMOND NATURE 191. 865 (1961)	600842 600842 600842
PURDY. G PARR. J TITANUM-NICKEL SYSTEM BETWEEN DITITANIUM NITRIDE AND TITANIUM NITRIDE TRANS MET SØC AIME 215. 636 (1961)	300279 300279 300279 300279
PURT G (LAB CERBERUS A G MAENNEDØRG SWITZERLAND) THE BINARY SYSTEM BAØ-WØ3 Z PHYSIK CHEM (FRANKFURT) 35 • 133 (1962) CA 58 • 8447 (1963)	301555 301555 301555 301555 301555
PUTILØV• K MELNICHENKØ• N NEW FØRMULA FØR SATURATED VAPØR PRESSURE ZHUR FIZ KHIM 36• 1611 (1962)	300602 300602 300602
QUILL. L (MICHIGAN STATE COLL EAST LANCING MICH) RESEARCHES IN RARE EARTH CHEMISTRY RECORD CHEM PROG 11. 151 (1950) CA 45. 1827 (1951)	400553 400553 400553 400553 400553
RABENAU. A (PHILIPS ZENTRALLAB SILICÓN NITRIDE A REFRACTÓRY MATERIAL BER DEUT KERAM GES 43. 6 (1963) BHT NØ 2. 31 (1963)	301324 301324 301324 301324 301324
RABINOVICH. I ISOTOPE EFFECT IN VAPOR PRESSURE USP KHIM 31, 101 (1962)	300975 300975 300975
RACAH. G ØN THE SPECTRUM ØF TH III PHYSICA 16, 651 (1950) CA 45, 5020 (1951) NSA 5, 734 (1951)	400547 400547 400547 400547 400547
RAKØVSKII. V S SØME PRØPERTIES ØF REFRACTØRY METAL-CERAMIC ALLØYS ABHADL DEUT AKAD WISS BERLIN KL MATH PHYSIK TECH 1962 NO 1. 381 (1962)	301325 301325 301325 301325

CA 59. 2467B (1963)	301325
RALEIGH D (ATS INTERN CANØGA PARK CALIF) EQUILIBRIUM STUDIES IN THE REDUCTION OF THORIUM ØXIDE BY ALUMINUM	201698 201698 201698 201698
J ELECTROEHEM SOC 109, 521 (1962) CA57, 4432 (1962) RAMAN, S RAMACHANDRAN, G STRUCTURE OF A NEW CARBIDE OF TITANIUM CURRENT SCI (INDIA) 31, NO 8, 321 (1962)	300561 300561 300561
ATOMIC HEATS OF GOLD, PLATINUM, AND ANTIMONY AT LIQUID-HELIUM TEMPERATURES PROC INDIAN ACAD SCI 49A, 55 (1959) CA 53, 13761 (1959)	601132 601132 601132
RAMBIDI, N SPIRIDØNØV, V ALEKSEEV, N PRESENT STATE ØF GAS ELECTRØN-DIFFRACTIØN EFFECT ØF MØVEMENTS ØF NUCLEI ØN THE SCATTERING ØF ELECTRØNS BY MØLECULES ZHUR STRUKT KHIM 3, 347 (1962)	301389 301389 301389 301389 301389
RAMBIDI, N AKISHIN, P ZASØRIN, E (MØSCØW STATE UNIV MØSCØW RUSSIA) ELECTRØN DIFFRACTIØN STUDY ØF THE STRUCTURE ØF UF4 AND UBR4 IN THE VAPØR PHASE ZHUR FIZ KHIM 35, 1171 (1961)	300763 300763 300763 300763 300763
RAMKE, W LATVA, J (WRIGHT-PATTERSØN A F B DAYTØN ØH1Ø) REFR/CTØRY CERAMICS AND INTERMETALLIC CØMPØUNDS AERØSPACE ENG 22, 76 (1963) CA 58, 8747 (1963)	202121 202121 202121 202121 202121
RAMSTAD. H RICHARDSON. F APPENDIX BY BOWLES. P THERMODYNAMICS OF SIO TRANS MET SOC AIME 221. 924 (1961) BHT 4. 44 (1961)	300339 300339 300339 300339
RAMSTAD. H RICHARDSØN. F BØWLES. P THERMØDYNAMICS ØF SILICØN MØNØXIDE TRANS AIME 221. 1021 (1961) BHTG NØ 4. 3 (1962)	300458 300458 300458 300458
RANK. D EASTMAN. D RAØ. B WIGGINS. T HIGHLY PRECISE WAVFLENGTHS IN THE INFRARED II HON N2Ø AND CØ J ØPT SØC AM 51. 929 (1961)	600835 600835 600835
RANK, D GUENTHER, A SAKSENA, G SHEARER, J WIGGINS, T (PENN STATE UNIV UNIVERSITY PARK PENNA) TERTIARY INTERFERÔMETRIC WAVE LENGTH STANDARDS FRÔM MEASUREMENTS ØN LINES ØF THE 2-0 BAND ØF CARBØN MØNØXIDE AND DERIVED WAVE LENGTH STANDARDS FØR SØME LINES ØF THE 1-0 BAND ØF CARBØN MØNØXIDE. THE VELØCITY ØF LIGHT DERIVED FRÔM A BAND SPECTRUM METHØD IV J ØPT SØC AMER 47, 686 (1957) CA 51, 14415 (1957)	600722 600722 600722 600722 600722 600722 600722 600722
R∧Ø• C	700549

KINETICS AND THERMODYNAMICS OF THE CRYSTAL STRUCTURE TRANSFORMATION OF SPECTROSCOPICALLY PURE ANATASE TO RUTILE CAN J CHEM 39. 498 (1961)	700549 700549 700549
RAØ, C. YØGANARASMHAN, S. FAETH, P. STUDIES ØN THE BRØØKITE-RUTILE TRANSFØRMATIØN TRANS FARADAY SØC 57, 504 (1961)	700535 700535 700535
RAPP+ R A (AERØ RES LAB PAFB FREE ENERGY ØF FØRMATIØN ØF MØLYBDENUM DIØXIDE TRANS AIME 227+ (2) 371 (1963) BHT NØ 2+ 36 (1933)	301326 301326 301326 301326 301326
RASE. D (N Y ST UNIV COL OF CERAMICS ALFRED NEW YORK) PHASE EQUILIBRIA BETWEEN B203 AND REFRACTORY OXIDES THE SYSTEMS BEO-B203 AND THO2-B203 NP-9424 (1960) NS 15. 14715 (1961)	600872 600872 600872 600872 600872
RASØR, N MCCLELLAND, J (ATØMIC INTERN CANØGØ PARK CAL) THERMAL PRØPERTIES ØF GRAPHITE, MØLYBDENUM, AND TANTALUM TØ THEIR DESTRUCTIØN TEMPERATURES PHYS AND CHEM SØLIDS 15, 17 (1960) CA 55, 11055 (1961) NSA 15, 3133 (1961)	200960 200960 200960 200960 200960 200960 200960
RAU• R (GEN ELEC CØ CINCINNATI ØHIØ) CRYSTALLØGRAPHIC DATA CRYSTAL FRØNT 2• NØ 1• 10 (1961) CA 56• 85 (1962)	201198 201198 201198 201198 201198
RAUB• E BEFSKØW• H MENZEL• D (INST EDELMETALLE GMUEND GERMANY) PALLADIUM-RHØDIUM ALLØYS AND ALLØTRØPHY ØF RHØDIUM Z METALLK 50• 428 (1959) CA56• 11329 (1962)	201473 201473 201473 201473 201473
RAUH, E THØRN, R VAPØR PRESSURE ØF URANIUM CØNTRACT W-31-109 ENG-38 (ANL-5203) (1954) NSA 8, 2160 (1954) J CHEM PHYS 22, 1414 (1954) CA 48, 13315 (1954)	601223 601223 601223 601223 601223
REDFIELD: D BAUM: R (UNION CARBIDE CORP PARMA OHIO) INFRARED CHRISTIANSEN FILTER EFFECT WITH BORON NITRIDE J OPT SOC AM 51: 184 (1961) CA 55: 12041 (1961)	200976 200978 200978 200978 200978
REID, A WILMHURST, R WYLIE, A (COMMONWEALTH SCI IND RES MELBOURNE AUSTRALIA) HIGH-TEMPERATURE PHYSICAL PROPERTIES OF CARBIDE-IODIDE THORIUM J ELECTROCHEM SOC 110, 429 (1963) CA 58, 11055 (1963)	301556 301556 301556 301556 301556 301556
REIMANN . C NEW METHOD FOR THE DETERMINATION OF ACCOMODATION COEFFICIENTS	300469 300469

DISSERTATION ABSTR 22. 2214 (1962) BHTG NO 4. 11 (1962)	300469 300469
REIN, R H CHIPMAN, J (MASS INST TECH CAMBRIDGE MASS) THE FREE ENERGY ØF SIC FRØM ITS SØLUBILITY IN FE AND FRØM GA SØLID EQUILIBRIA WITH SIØ2, GRAPHITE, AND CØ J PHYS CHEM 67, (4) 839 (1963) BHT NØ 2, 31 (1963)	301327 301327 301327 301327 301327 301327
REISMAN. A HØLTZBERG. F (IBM NY NY) THE HIGH TEMPERATURE METASABLE PHASE E J AM CHEM SØC 81. 31.82 (1959) CA 53. 19544F (1959)	301328 301328 301328 301328 301328
REISMAN. A MINEO. J (INTERN BUSINESS MACHINES YORKTOWN HEIGHTS NEW YORK) COMPOUND REPETITION IN OXIDE-OXIDE INTERACTIONS. THE SYSTEM CS20-NB205 J PHYS CHEM 65, 996 (1961) CA 55. 17185 (1961)	201080 201080 201080 201080 201080 201080
REISWIG R (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEXICØ) THERMAL CØNDUCTIVITY ØF UØ2 TØ 2100 DEGREES C J AM CERAM SØC 44. 48 (1961) NSA 15. 7800 (1961)	601378 601378 601378 601378 601378
RENTZEPIS. P WHITE. D (ØHIØ STATE UNIV CØLUMBUS ØHIØ) THE REACTION ØF LIQUID B203 AND CARBON AT ELEVATED TEMPERATU US DEPT COM ØFFICE TECH SERV PB REPT 154959 (1959) CA 57. 4108 (1962)	
RENUCCI: L LANGERON: J LEHR: P CENTRE ETUDES CHIM MET VITRY SUR SEINE FRANCE) ELECTRIC RESISTIVITY OF ZR APPLICATION TO THE STUDY OF THE RECRYSTALLIZATION OF THE METAL AFTER COLD WORKING INFLUENCE OF PURITY MEM SCI REV MET 58: 699 (1961) CA56: 13653 (1962)	201517 201517 201517 201517 201517 201517 201517
REPENKØ: K N NITRIDES AND THEIR PRØPERTIES SB NAUCHN TR UKR NAUCHN-ISSLED INST ØGNEUPØRØV 1962 (6) 100 (1962) CA 59: 2172A (1963)	301329 301329 301329 301329 301329
RESHETNIKØV, F GURVICH, M MECHANISM ØF NEGATIVE EFFECT ØF ØXYGEN-CØNTAINING URANIUM CØMPØUNDS ØN THE CØURSE AND RESULTS ØF METALLØTHERMIC REDUCTIØN ØF URANIUM TETRAFLUØRIDE AT ENERGY (USSR) 13, NØ 1, 54 (1962)	300972 300972 300972 300972 300972
REVYAKIN. A DIFFUSIØN ØF ØXYGEN IN ALPHA-TITANIUM IZVEST AKAD NAUK SSSR ØTDEL TEKH NAUK MET I TØPLIVØ 1961. NØ 5. 113 CA 56. 3247 (1962)	201286 201286 201286 201286 201286
REZNITSKII. L APPRØXIMATE CALCULATIØN ØF HEATS ØF FØRMATIØN ØF INØRGANIC	300348 300348

COMPOUNDS ZHUR FIZ KHIM 35 • 1853 (1961) CCP NO • 2 • 118 (1962)	300348 300348 300348
RICE. Ø (UNIV ØF NØRTH CARØLINA CHAPEL HILL N CARØLINA) NØNEQUILIBRIUM EFFECTS IN THE DISSOCIATION ØF DIATOMIC MØLECULES BY A THIRD BØDY J PHYS CHEM 67. 6 (1962) CA 58. 2871 (1963)	301557 301557 301557 301557 301557
RICHARDS. T JACKSØN: F THE SPECIFIC HEATS ØF THE ELEMENTS AT LØW TEMPERATURES Z PHYS CHEM 70: 414 (1910) CA 4: 1405 (1910)	700565 700565 700565 700565
RICHARDSON DO NO BOILING POINT DETERMINATIONS BY SPECTROSCOPIC METHODS PROC FIFTH SUMMER CONF SPECTROSCOPY AND APPLICATIONS 64	700817 700817 700817 700817
RICHERT > E BECKETT > C JØHNSTØN > H THERMAL > STRUCTURAL > ELECTRICAL > MAGNETIC AND ØTHER PHYSICAL PRØPERTIES ØF THE GRØUP V ELEMENTS TANTALUM > NIØBIUM AND VANADIUM ATI-81819 > TECHN REPT NØ 102 > AC49/11-100 (1749)	601638 601638 601638 601638
RICHERT. E BECKETT. C JØHNSTØN, H THERMAL, STRUCTURAL. ELECTRICAL. MAGNETIC AND ØTHER PHYSICAL PRØPERTIES ØF GRØUP VI ELEMENTS TUNGSTEN (WØLFRAM), MØLYBDENUM AND CHRØMIUM ARMED SERVICES TECHNICAL INFØRMATIØN AGENCY REPØRT ATI-111799 (1949)	700564 700564 700564 700564 700564
RICHTER, H WINCIERZ, P ANDERKØ, K ZWICKER, U IMETALL LAB FRANKFURT/MAIN GERMANY) THE CONSTITUTION OF ZIRCONIUM NIOBIUM ALLOYS J LESS COMMON METALS 4, 252 (1962) CA 57, 6981 (1962)	201766 201766 201766 201766 201766
RILEY, W MCCLELLAND, J BERYLLIUM COMPOUNDS SPACE I AERONAUTICS 37, (1962) REV MET LIT 19, (1962)	301080 301080 301080 301080
RIVIERE J (ATOMIC ENERGY RES ESTAB HARWELL ENGLAND) THE WORK FUNCTION OF URANIUM PROC PHYS SOC (LONDON) 80 + 116 (1962) CA 57 + 9330 (1962)	201805 201805 201805 201805 201805
RIVIERE. J (ATOMIC ENERGY RES ESTAB HARWELL ENGLAND) THE WORK FUNCTION OF THORIUM PROC PHYS SOC (LONDON) 80. 124 (1962) CA 57. 9330 (1962)	201806 201806 201806 201806 201806
RIZZO. H SIMMONS. W BIELSTEIN. H THE EXISTENCE AND FORMATION OF SOLID B60 J ELECTROCHEM SOC 109. 1079 (1962) BHT NO 4. (1962)	601671 601671 601671 601671
RØBERTS. L	601089

(RADAR RES ESTAB MALVERN ENGLAND) THE ATOMIC HEAT OF SAMARIUM FROM 2 TO 20 DEGREES K PROC PHYS SOC (LONDON) 70B, 434 (1957) CA 52, 12478 (1958)	601089 601089 601089 601089
RØBERTS. L WALTER. A (A.E.R.E. HARWELL ENGLAND) EQUILIBRIUM PRESSURES AND PHASE RELATIONS IN THE URANIUM ØXIDE SYSTEM J INORG AND NUCLEAR CHEM 22. 213 (1961) NSA 16. 13047 (1962)	601434 601434 601434 601434 601434
RØBINS. D (G E CØ LTD WEMBLY. MIDDX ENGLAND) BØNDING IN CARBIDES SILICIDES AND BØRIDES PØWDER MET NØ. 1. 172 (1958) NS 14. 22074 (1960)	600624 600624 600624 600624
RØBINS, R WILKS, R BRADBURY, B (ATOMIC ENERGY RES ESTAB HARWELL ENGLAND) THE CRYSTAL HABIT OF URANIUM DIOXIDE J NUCL MATER 5, 262 (1962) CA 57, 10596 (1962)	201821 201821 201821 201821 201821
RØBIJN• P MEASUREMENTS ØF AVERAGE SPECIFIC HEAT ØF REFRACTØRIES SILICATES IND 28• 247 (1963) CA 59• 5859 (1963)	301558 301558 301558 301558
RØBSØN• H (U• ØF KANSAS LAWRENCE KANSAS) VAPØR PRESSURE AND THERMØDYNAMIC PRØPERTIES ØF BØRØN CARBIDE THESIS• U ØF KANSAS (1958)	300275 300275 300275 300275
RØDE. E LYSANØVA. G SYNTHESIS AND PHYSICO-CHEMICAL STUDY ØF THE ØXYGEN CØMPØUNDS IN THE SYSTEM MØØ3-MØØ2 DØKL AKAD NAUK SSSR 145. 351 (1962) CA 57. 11908 (1962)	201843 201843 201843 201843 201843
RØDIGINA, E GØMELSKII, K (INST ØF METRØLØGY ENTHALPY ØF BERYLLIUM AND LITHIUM ØXIDES AT HIGH TEMPERATURES ZHUR FIZ KHIM 35, 1828 (1961) NSA 15, 30690 (1961) CA 56, 76 (1962)	700966 700966 700966 700966 700966 700966
RØDIGINA, E GØMELSKII, K LUGININA, V (RES INST METRØL SVERDLØVSK RUSSIA) ENTHALPY AND SPECIFIC HEAT ØF YELLØW LEAD MØNØXIDE AT HIGH-TEMPERATURES ZHUR KHIM FIZ 35, 1799 (1961) CA 56, 76 (1962)	201194 201194 201194 201194 201194 201194
RAUH. E (ARGONNE NATL LAB LEMONT WORK FUNCTION. IONIZATION POTENTIAL AND EMISSIVITY OF URANIUM ANL 5534 (1956) NSA 10. 5025 (1956)	601261 601261 601261 601261 601261
RØCHER• Y A (UNIV PARIS PARIS FRANCE) ELECTRØNIC STRUCTURE ØF RARE EARTH METALS	301559 301559 301559

ADVAN PHYS 11 • 233 (1962) CA 58 • 10739G (1963)	301559 301559
RØESER• W CALDWELL• F WENSEL• H THE FREEZING PØINT ØF PLATINUM J RESEARCH NATL BUR STANDARDS 6• 1119 (1931) CA 25• 4757 (1931)	900135 900135 900135 900135
RØESER• W WENSEL• H METHØDS ØF TESTING THERMØCØUPLES AND THERMØCØUPLE MATERIALS J RESEARCH NATL BUR STANDARDS 14• 247 (1935) CA 29• 4214 (1935)	900134 900134 900134 900134
RØESER: W WENSEL: H' WICHERS; E THE FREEZING PØINT ØF RHØDIUM J RESEARCH NATL BUR STANDARDS 12, 519 (1934) CA 28: 4645 (1934)	900141 900141 900141 900141
RØGERS. B PRØGRESS REPØRT IN METALLURGY FØR APR 1, 1950 TØ SEPT 30, 1950 ISC-128 NSA 10, 4307 (1956)	601266 601266 601266 601266 601266
RØGØSA. G SCHWARZ. G (FLØRIDA STATE UNIV TALLAHASSEE FLØRIDA) MØLYBDENUM K AND URANIUM L X-RAY TRANSITIØNS FRØM SEPARATED ISØTØPES PHY REV 92. 1434 (1953) CA 48. 4964 (1954)	500124 500124 500124 500124 500124
RØKHLIN, L SØLUBILITY ØF NEØDYMIUM AND CERIUM IN MAGNESIUM IN THE SØLID STATE IZV AKAD NAUK SSSR ØTD TEKHN YAUK MET I TØPLIVØ 2, 126 (1962) CA57, 4439 (1962)	201703 201703 201703 201703 201703
RØLIN• M BERNARD• M (INST NATL SCI APPL VILLEURBANNE FRANCE) IØNIC STRUCTURE ØF FUSED PURE CRYØLITE• V• CRYØMETRIC MEASUREMENT ØF THE MØLECULAR HEAT ØF FUSIØN ذ CRYØLITE BULL SØC CHIM FRÄNCE 1962• 423 (1962) CA 57• 2927 (1962)	300730 300730 300730 300730 300730 300730
RØLLA. L IANDELLI. A CANNERI. G VØGEL. R STUDY ØF RARE EARTH METALS AND ALLØYS Z METALLKUNDE 35. 29 (1943) CA 38. 47 (1944)	900103 900103 900103 900103
RØLLEFSØN» G HAGEMANN» F CHEMISTRY ØF THØRIUM U S ATØMIC ENERGY CØMM TID-5222» 144 (1951) CA 52. 4372 (1958)	601106 601106 601106 601106
RØLSTEN, R (E I DU PØNT DE NEMØURS, CØ GIBBSTØWN N J) THE PREPARATIØN ØF VERY PURE METALS FRØM THEIR IØDIDES Z.ANØRG U ALLGEM CHEM 305, 25 (1960) CA 55, 195 (1961)	200786 200786 200786 200786 200786
RØMANØVSKII. V HEAT CAPACITY ØF VITREØUS CRYSTALS AT LUW TEMPERATURES ZH FIZ KHIM 36. NØ 11. 2550 (1962)	300978 300978 300978

ROOF, R KEMPTER, C (LOS ALAMOS SCI LAB LOS ALAMOS N MEX) NEW ORTHORHOMBIC PHASE IN THE RUTHENIUM-BORON AND OSMIUM-BORON SYSTEMS J CHEM PHYS 37, 1473 (1962)	300966 300966 300966 300966 300966
RØSE, A BLANDIN, J J RECH CTR NAT RECH SCI LAB PARIS NØ 53, 309 (1960) X-RAY EMISSIØN SPECTRØSCØPY I.A CURVED CRYSTAL SPECTRØGRAPH III.SPECTRA ØF THE RARE EARTHS ØBTAINED BY A CURVED CRYSTAL SPECTRØGRAPH CA 57, 9357 (1962)	201807 201807 201807 201807 201807 201807 201807
RØSE• R (U K AT EN AUT IND GR HQ RISLEY ENGLAND) A NØTE ØN THE THERMAL CØNDUCTIVITY ØF UØ2 IGR-TM/R-0175• (1958) NSA 15• 619 (1961)	601392 601392 601392 601392 601392
RØSEN• B (UNIV LIEGE LIEGE BELGIUM) NEW BAND SYSTEMS ØF THØ TIØ AND ZRØ PRØC INTERN MEETING MØL SPECTRY 4TH• BØLØGNA 1959 2• 533 (1962) CA 59• 3436B (1963)	301560 301560 301560 301560 301560
RØSEN. B DØNNEES SPECTRØSCØPIQUES CØNCERNANT LES MØLECULES DIATØMIQUES HERMANN AND CIE (PARIS) (1951)	700890 700890 700890
RØSEN, B WENIGER, S (UNIV LIEGE BELGIUM) THE FLECTRONIC SPECTRA ATTRIBUTED TO THE ØXIDES OF CALCIUM PROC INTERN MEETING MOL SPECTRY 4TH, BØLØGNA, 1959 2, 535 (1962) CA 59, 3442B (1963)	301561 301561 301561 301561 301561 301561
RØSENBERY. J (UNIV ØF DAYTØN DAYTØN ØHIØ) EFFECTS ØF MØLTEN BØRØN ØXIDE ØN HIGH-TEMPERATURE MATERIALS US DEPT CØMM ØFFICE TECH SERV PB REPT 161,703, (1960) CA 56, 8408 (1962)	201392 201392 201392 201392 201392
RØSENBLATT, G M (UNIV ØF CALIFØRNIA BERKELEY CALIF) INTERPRETATIØN ØF KNUDSEN VAPØR-PRESSURE MEASUREMENTS ØN PØRØUS SØLIDS J ELECTRØCHEM SØC 110, 563 (1963) CA 58, 13157A (1963)	301562 301562 301562 301562 301562 301562
RØSENBLUM. B NETHERCØT. A (CØLUMBIA UNIV NY NEW YØRK) QUADRUPLE CØUPLING CØNSTANT AND MØLECULAR STRUCTURE ØF CARBØN MØNØXIDE-Ø17 J CHEM PHYS 27. 828 (1957) CA 52. 1754 (1958)	600723 600723 600723 600723 600723
RØSENBLUM. B NETHERCØT. A TØWNES. C (CØLUMBIA UNIV N Y NEW YØRK) ISØTØPIC MASS RATIØS. MAGNETIC MØMENTS. AND THE SIGN ØF THE ELECTRIC DIPØLE MØMENT IN CARBØN MØNØXIDE	600724 600724 600724 600724

PHYS REV 109 400 (1958) CA 52 9758 (1958)	600724 600724
RØSENSTØCK+ H (U S NAVAL RES LAB WASHINGTØN D C) ATØMIC FØRCES AND THERMAL EFFECTS IN SØLIDS J CHEM PHYS 35+ 420 (1961)	700643 700643 700643 700643
RØSENSTØCK+ H B (US NAVAL RES LAB WASHINGTØN D C) VIBRATIØNAL CØNTRIBUTIØNS TØ SPECIFIC HEAT NEAR PHASE CHANGES US DEPT CØM ØFFICE TECH SERV AD 257465 (1961) CA 58+ 7390D (1963)	301563 301563 301563 301563 301563
RØSENZWEIG• N PØRTER• C (ANL REPULSIØN ØF ENERGY LEVELS IN CØMPLEX ATØMIC SPECTRA PHYS REV 120• 1698 (1960) NSA 15• 5541 (1961)	700996 700996 700996 700996 700996
RØSS. A (AT ENG ØF CAN LTD CH RI PRØ CHALK RIVER ØNT) A LITERATURE SURVEY ØN THE MEASUREMENT ØF THERMAL CØNDUCTIVITY ØF SEVERAL SØLIDS INCLUDING UØ2 CRFD-762 (1958) NSA 12. 10679 (1958)	601493 601493 601493 601493 601493
RØSTØKER• W (ILLINØIS INST ØF TECHNØL CHICAGØ ILL) TERNARY PHASE DIAGRAMS ØF TUNGSTEN AND TANTALUM US DEPT CØMM ØFFICE TECH SERV PB REPT 161•709• (1960) CA 56• 8420 (1962)	201396 201396 201396 201396 201396
RØTH, E MARGERUM, E AMICK, J EVAPØRATIØN ØF SILICØN AND GERMANIUM BY RF LEVITATIØN REV SCI INST 33, 686 (1962)	300970 300970 300970
RØTH. R WARING, J PHASE EQUILIBRIUM RELATIONS IN THE BINARY SYSTEM BARIUM-ØXIDE NIØBIUM PENTØXIDE J RESEARCH NATL BUR STANDARDS 65A, 337 (1961) CA 56, 9480 (1962)	201406 201406 201406 201406 201406
ROTHMAN. A (UNIV CALIFORNIA BERKELEY CALIFORNIA) PROPERTIES OF BEO CERAMICS AND THEIR APPLICATION IN A NUCLEAR PROPULSION SYSTEM (PLUTO) U S AT ENERGY COMM UCRL-6743 (1962) CA 58, 8746 (1963)	202122 202122 202122 202122 202122 202122
RØTHWELL. E (AERE HIGH TEMPERATURE SUBSTØICHIØMETRY IN URANIUM DIØXIDE J NUCL MATR 6. 229 (1962) BHT NØ 3. 28 (1962)	601476 601476 601476 601476 601476
ROTT. L A ON THE THEORY OF MELTING FIZIKA TVERDOGO TELA 4. 577 (1962) COTS 66. 234 (1963)	301331 301331 301331 301331
RØUGH• F CHUBB• W	700568

AN EVALUATION OF DATA ON NUCLEAR CARBIDES US ATOMIC FNERGY COMMISSION BMI 1441. MAY 31. 1960. 100	700568 700568
RØWLINSØN, H BARRØW, R (ØXFØRD UNIV ØXFØRD ENGLAND) ABSØRPTIØN BAND SYSTEMS ØF SILICØN ØXIDE AND GERMANIUM ØXIDE IN THE SCHUMANN REGIØN J CHEM PHYS 21, 378 (1953) CA 47, 9145 (1953)	600916 600916 600916 600916 600916
RUBESKA, I (CENTRAL GEØL SURV PRAGUE CZECH SPECTRØCHEMICAL DETERMINATIØN ØF ZIRCØNIUM AND LANTHANUM IN RIVER SANDS CHEM ANAL (WARSAW) 7, 405 (1962) CA 58, 15 (1963)	500119 500119 500119 500119 500119 500119
RUDKIN•R (US NAVAL RAD DEF LAB SAN FRANCISCØ CALIFØRNIA) THERMAL PRØPERTIES ØF MØLYBDENUM BETWEEN 2700 AND 4000 DEGREES R US DEPT CØM. ØFFICE TECH. SERV. P B REPT 155.829 16 PP (1962) CA 57.13511 (1962)	201901 201901 201901 201901 201901 201901 201901
RUDKINOR PARKEROW WESTØVEROR (NAVEL RADIØLØGICAL DEF LAB SAN FRANCISCØ CALIF) MEASUREMENTS ØF THE THERMAL PRØPERTIES ØF METALS AT ELEVATED TEMPERATURES USNRDL TR 4190 (1960) NS 140 20621 (1960)	600614 600614 600614 600614 600614
RUDNEVA: A V MØDEL: M S PHASE TRANSFØRMATIØNS DURING REDUCTIØN ØF TITANIUM DIØXIDE IN SLAG SYSTEMS IZV AKAD NAUK SSSR ØTD TEKHN NAUK MET I GØRN DELØ 1963: NØ 1: 59 (1963) CA 58: 11011B (1963)	301564 301564 301564 301564 301564
RUDY, E THERMODYNAMICS OF PHASE REACTIONS IN TERNARY SYSTEMS Z METALLK 54, 112 (1963) CA 58, 12239 (1963)	301565 301565 301565 301565
RUDY. E BENESØVSKY. F (METALLWERK PLANSEE A G REUTTE AUSTRIA) THE SYSTEMS THØRIUM-MØLYBDENUM-CARBØN AND URANIUM-MØLYBDENUM- CARBØN MØNATSH 94: 85 (1963) CA 58: 12248 (1963)	301566 301566 301566 301566 301566 301566
RUDY, E BENESØVSKY, F NØWØTNY, H TØTH, L (UNIV VIENNA VIENNA AUSTRIA) CRYSTAL STRUCTURE ØF HFBE2, HFBE13 AND HFBESI PARTIAL SYSTEMS MBE2-MB2-MS12 (M EQUALS ZR, HF) MØNATSH CHEM 92, 692 (1961) CA 56, 2063 (1962)	201255 201255 201255 201255 201255 201255
RUDY. E THE THERMODYNAMICS OF PHASE CHANGES IN TERNARY SYSTEMS PLANSEEBERICHTE FUR PULVERMETALLURGIE 10. 32 (1962)	900228 900228 900228
RUDY, E BENESØVSKY, F	200808

THE FLECTRICAL CONDUCTIVITY OF HIGH-MELTING HARD CARBIDES AND CARBIDE MIXED CRYSTALS PLANSEEBER PULVERMET B. 72 (1960) CA 55. 2221 (1961)	200808 200808 200808 200808
RUDY: E BENESOVSKY: F INVESTIGATION IN THE NIOBIUM-MOLYBDENUM CARBON SYSTEM MONATSH CHEM 92: 841 (1961) COTS NO 53: 130 (1962)	300449 300449 300449 300449
RUDY. E BENESØVSKY. F	300486
INVESTIGATIØNS IN THE SYSTEMS HF-B-N AND ZR-B-N	300486
MØNATSH CHEM 92. 415 (1961)	300486
BHT NØ 3. 10 (1961)	300486
RUDY, E BENESØVSKY, F RUDY, E (METALWERK PLANSEE A-G REUTTE AUSTRIA) THE SYSTEMS, THØRIUM-TUNGSTEN-CARBØN AND URANIUM-TUNGSTEN CARBØN MØNATSH 93, 522 (1962) CA57, 3150 (1962)	201628 201628 201628 201628 201628 201628
RUDY, E BENESØVSKY, F	300969
SYSTEM THØRIUM-ZIRCØNIUM-CARBØN	300969
MØNATSH CHEM 93, NØ 6, 1279 (1962)	300969
RUDY, E BENESØVSKY, F	300630
SYSTEM VANADIUM-TUNGSTEN-CARBØN	300630
MØNATSH CHEM ,3, 693 (1962)	300630
RUDY, E KIEFFER, B FRØEHLICH, H	201556
THE SYSTEM RUTHENIUM-RHENIUM	201556
Z METALLK 53, 90 (1962)	201556
CA 56, 15259 (1962)	201556
RUDY, E RUDY, E	900222
STUDIES ØN THE VANADIUM-MØLYBDENUM-CARBØN SYSTEM	900222
PLANSEEBERICHTE FUER PULVERMETALLURGIE 10, 42 (1962)	900222
AEC-TR-5459	900222
RUDY, E RUDY, E BENESØVSKY, F	300967
SYSTEM TANTALUM-TUNGSTEN-CARBØN	300967
MØNATSCH CHEM 93, 1176 (1962)	300967
RUDY, E NØWØTNY, H	301165
HAFNIUM-TANTALUM-CARBØN SYSTEM	301165
MØNATSH 94, 507 (1963)	301165
CA 59, 7209 (1963)	301165
RUDY, E BENESØVSKY, F (METALLWERK PLANSEE AG REUTTE TIRØL AUSTRIA) INVESTIGATIØNS ØF THE SYSTEMS TH-MØ-C AND U-MØ-C MØNATSH CHEM 94, (1), 85 (1963) CHEM 94, (1), 85 (1963) BHT NØ 2, 40 (1963)	301332 301332 301332 301332 301332
RUDY. E BENESØVSKY. F (METALLWERK PLANSEE AG REUTTE TIRØL AUSTRIA) STABILITY ØF UC? AND THE C-STABLE REGIONS IN THE SYSTEMS ØF U WITH ZRC. HFC. NBC AND TAC MØNATSH CHEM 94. (1) 204 (1963) BHT NØ 2 (1963)	301333 301333 301333 301333 301333

RUDY. E STECHER. P The system hafnium-øxygen J Less Cømmøn metals 5. nø 1. 78 (1963)	300974 300974 300974
RUE R (IOWA STATE UNIV AMES IOWA) THEORETICAL ANALYSIS OF CHEMICAL BINDING IN HOMONUCLEAR DI-ATOMIC MOLECULES UNIV MICROFILMS (ANN ARBOR MICH), ORDER NO 63-2996, 118 DISSERTATION ABSTR 23, 3652 (1963) CA 59, 2177F (1963)	301335 301335 301335 301335 301335 301335
RUEDENBERG+ K (IOWA STATE UNIV AMES IOWA) THE PHYSICAL NATURE OF THE CHEMICAL BOND REV MODERN PHYSICS 34+ 326 (1962)	300973 300973 300973 300973
RUEDØRFF: W KEMMLER: S LEUTNER: H (UNIV TUEBINGEN GERMANY) TERNARY URANIUM (V) ØXIDES CA 57:7999 (1962)	201775 201775 201775 201775
RUFF, Ø EBERT, F WØITINEK, H CØNTRIBUTIØNS TØ THE CERAMICS ØF HIGHLY REFRACTØRY MATERIALS III. THE SYSTEM ZIRCØNIA-THØRIA Z ANØRG CHEM 180, 252 (1929) CA 23, 5020 (1929)	900120 900120 900120 900120 900120
RUH. R REACTIONS OF ZIRCONIA AND TITANIUM AT ELEVATED TEMPERATURES J AM CERAM SOC 46. 301 (1963)	202124 202124 202124
RUNDLE, R BAENZIGER, N NEWTON, A DAANE, A BUTLER, T JOHNS, I TUCKER, W FIGARD, P (IOWA STATE COLL, AMES IOWA) URANIUM-NITROGEN SYSTEM US AT ENERGY COMM TID-5290, 1, 131 (1958) CA 53, 15846 (1959)	601140 601140 601140 601140 601140
RUNDLE: R BAENZIGER: N WILSON: A (IOWA STATE COLL: AMES IOWA) X-RAY STUDY OF THE URANIUM OXYGEN SYSTEM US AT ENERGY COMM TID-5290: 1: 131 (1958) CA 53: 16672 (1959)	601142 601142 601142 601142 601142
RUNDLF: R BAENZIGFR: N TEVEBAUGH: A (10WA STATE COLL AMES 10WA) X-RAY ANALYSIS OF THE URANIUM-CARBON SYSTEM CA 53: 16672 (1959)	601112 601112 601112 601112
RUNDQUIST. S X-RAY INVESTIGATIONS OF THE TERNARY FE-P-B SOME FEATURES OF THE SYSTEMS CI-P-B. MN-P-B. CO-P-B. AND NI-P-B ACTA CHEM SCAND 16, 1 (1962) BHT NO 2. 44 (1962)	300546 300546 300546 300546 300546 300546
RUNNALLS, Ø (ATØMIC ENERGY ØF CANADA LTD CANADA) THØRIUM-URANIUM ALLØYS CAN 610, 322 (1960) CA 55, 11274 (1961)	200970 200970 200970 200970 200970

RUSIN, A TATEVSKII, V (M V LØMØNØSØV STATF UNIV MØSCØW RUSSIA) HFAT ØF FØRMATIØN ØF THE BØ2 RADICAL ZH FIZ KHIM 37, 716 (1963) CA 59, 7027 (1963)	202125 202125 202125 202125 202125 202125
RUSIN. A TATEVSKII. V THE NATURE OF THE GREEN LIGHT AND THE COMPOSITION OF THE PRODUCTS IN THE COMBUSTION OF BORON AT A TEMPERATURE OF 3100K DOK AKAD NAUK SSSR 139. 630 (1961) COTS 54. 288 (1962)	301117 301117 301117 301117 301117
RUSSELL, V HIRST, R KANDA, F KING, A (SYRACUSE UNIV SYRACUSE NEW YØRK) AN X-RAY STUDY ØF THE MAGNESIUM BØRIDES ACTA CRYST 6, 870 (1953) CA 48, 1800 (1954)	300968 300968 300968 300968 300968
RUSSELL, H (PRINCETØN UNIV PRINCETØN N J) THE ARC AND SPARK SPECTRA ØF GADØLINIUM J ØPTICAL SØC AM 40, 550 (1950) CA 44, 10497 (1950)	400540 400540 400540 400540 400540
RUZINØV, L BELØV, S THERMØDYNAMICS ØF ZIRCØNIUM + HAFNIUM CHLØRIDES AD 267737	301568 301568 301568
RYABCHIKØV. D. GØLBRAYKH. Y THØRIUM AND ITS CØMPØUNDS USPEKHI KHIM 28. 408 (1959) GR 36. NØ 1. 17 (1961)	700656 700656 700656 700656
RYABCHIKØV. I V MIKULINSKII. A S THE THERMØDYNAMICS ØF REDUCTIØN ØF CALCIUM AND MAGNESIUM ØXIDES BY SILICØN ZHUR. PRIKLAD KHIMII 35. 1656 (1962) CØTS 66. 322 (1963)	301336 301336 301336 301336 301336
RYABCHIKØV• I V MIKULINSKII• A S REDUCTIØN ØF MAGNESIUM ØXIDE WITH SILICØN DURING SMELTING ØF MAGNESIUM ALLØYS IZV AKAD NAUK SSSR• ØTD TEKHN NAUK MET I GØRN DELØ 1963• NØ 2• 9 (1963) CA 59• 1337B (1963)	301337 301337 301337 301337 301337
RYABCHIKØV. D SKLYARENKØ, Y RARE EARTH ELEMENTS AND THE PØSSIBILITY ØF THEIR PRØDUCTIØN REDKIE METALLY I SPLAVY, TRUDY PERVØGØ VSESØYUZ SØVESH- CHANYYA PØ SPLAVAM REDKIKH METAL AKAR NAUK SSSR INST MET IM A A BAIKØVA. MØSCØW 2957. 171 (1960) CA 55. 195 (1961)	200787 200787 200787 200787 200787 200787
RYABCHIKOV. L TIKHINSKII. G MASS-SPECTROMETRIC STUDY OF BERYLLIUM CHLORIDE SUBLIMATION FIZ METAL I METALLOVED AKAD NAUK SSSR 10. 635 (1960) CA 55. 11928 (1961)	200974 200974 200974 200974
RYBALCHENKØ, R TRETYAKØV, V CHAPØRØVA, I EFFECT ØF TANTALUM CARBIDE ØN THE CØMPØSITIØN AND PRØPERTIES ØF CØBALT PHASE IN TITANIUM CARBIDE-TUNGSTEN CARBIDE-CØBALT ÅLLØYS IZ AK NAUK SSSR ØTDEL TEKH NAUK, METAL I TØPLIVØ 4,83 (1961)	300346 300346 300346 300346 300346

COTS 47,103 (1961)	300346
RYSHKEWITCH. E NEW FRA OF CERAMICS TRANS NEW YORK ACADEMY OF SCIENCES 25, 827 (1963)	301338 301338 301338
SABA, W WALLACE, W (UNIV OF PITTSBURGH PITTSBURGH PENNA) HEAT CAPACITIES OF DYCO5 IN RELATION TO ITS MAGNETIC ANOMALY, THIRD-LAW ENTROPIES, AND RELATED THERMO-CHEMICAL DATA J CHEM PHYS 35, 689 (1961) CA 56, 2955 (1962)	201268 201268 201268
SABA, W WALLACE, W SANDMO, H CRAIG, R (UNIV OF PITTSBURGH PITTSBURGH PA) HEAT CAPACITIES AND THE RESIDUAL ENTROPY OF TA2H J CHEM PHYS 35, 2148 (1961) PA 65, 2054 (1962)	300810 300810 300810 300810 300810
SACHS, F RARE EARTH AND MONAZITE SANDS-LIST OF SELECTED REFERENCES TO TECHNICAL REPORTS, BOOKS, AND JOURNALS US AT ENERGY COMM TID-4900 (1961) CA 55, 16239 (1961)	201059 201059 201059 201059 201059
SADØVSKII, V BØGACHEVA, G SMIRNØV, L SØRØKIN, I KØMPANEITSEV, N AN INVESTIGATIØN ØF RECRYSTALLIZATIØN IN TITANIUM FIZ MET I METALLØVED 10, 397 (1960) PA 64, 10227 (1961)	600863 600863 600863 600863
SAEKI, Y ØMØRI, G CHLØFINATIØN ØF TANTALUM CARBIDE AND NIØBIUM CARBIDE DENK. KAGAKN 31, 410 (1963)	301339 301339 301339
SAKELLARIDIS, P ENERGY LEVELS AND WEAK EMISSIONS OF THE ELEMENTS THALIUM, HOLMIUM, TERBIUM, GADOLINIUM, AND EUROPIUM COMPT REND 236, 1.767 (1953) CA 47, 10994 (1953)	100184 100184 100184 100184 100184
SAKELLARIDIS, P CHARACTERISTIC MULTIPLETS ØF RARE EARTHS IN THEIR X-EMISSIØN SPECTRA J PHYS RADIUM 16, 442 (1955) CA 49, 1212 (1955)	600926 600926 600926 600926 600926
SAKELLARIDIS, P EMISSIONS IN THE NEIGHBORHOOD OF ABSORBTION DISCONTINUITIES IN THE L REGION OF THE X-RAY SPECTRA OF THE RARE EARTHS J PHYS RADIUM 16. 271 (1955) CA 49, 12123 (1955)	600979 600979 600979 600979
SALTER: L VAPØR PRESSURE ØF A MØNATØMIC CRYSTAL TRANS FAR SØC 59: 657 (1963)	300986 300986 300986
SAMARIN, A STRUCTURE AND PROPERTIES OF LIQUID METALS STRUKTURA I SVOYSTVA ZHIDKAY METALLOV, AK NAUK SSSR, INST METALLURGII IMENI A A BAIKOVA (1960)	400595 400595 400595 400595

i.i

SAMOILOV. O STRUCTURE OF LIQUID METALS IZV AKAD NAUK SSSR. OTD TEKH NAUK MET I TOPLIVO NO 3. 116 (1961) BHT NO 2. 34 (1962)	300539 300539 300539 300539 300539
SAMOKHVALOV. A RUSTAMOV. A ELECTRIC AND MAGNETIC PROPERTIES OF TIO FIZ TVERD TELA 5. 1202 (1963) CA 59. 3391 (1963)	301567 301567 301567 301567
SAMSONOV. G THE CHEMISTRY OF SILICIDES OF RARE-EARTH ELEMENTS USPKEHI KHIM 31. NO 12. 1478 (1962)	300989 300989 300989
SAMSØNØV. G MELTING CØMPØUNDS HANDBØØK ØN PRØPERTIES AND USES MØSCØW GØS NAUCHN TEKHN IZD LIT PØ CHERN I TSVETN MET 1963 398 (1963) CA 59, 1306 C (1963)	301342 301342 301342 301342 301342
SAMSONOV. G THE PHYSICOCHEMICAL AND MECHANICAL PROPERTIES OF CARBIDES AND NITRIDES OF BORON AND SILICON METALLOKERAM MATERIALY I METODY IKH ISSLEDOVANIYA AKAD NAUK UKR SSR INFORM MATERIALY (1959) 36 CA 56. 5743 (1962)	201343 201343 201343 201343 201343 201343
SAMSØNØV. G REACTIØNS ØF TI.ZR. AND W BØRIDES WITH THEIR CARBIDES VØPRØSY PØRØSHKØVØI MET I PRØCHNØSTI-MATERIALØV AKAD NAUK UKR SSSR NØ 7. 72 (1959) NSA 14. NØ 16. 16031 (1960)	300273 300273 300273 300273 300273
SAMSØNØV. G SILICIDES AND THEIR USES IN ENGINEERING SILITSIDY I IKH ISPØLIZØVANIYE V TEKHNIKE (1959) SAMSØNØV. G	400619 400619 400619
SAMSONOV. G (INST OF METAL CER.+ SPEC AL KIEV RUSSIA) ELECTRON STRUCTURE AND PROPERTIES OF HIGH-MELTING METAL NITRIDES ZHUR STRUKT KHIM 1. 447 (1960) NSA 15. 22781 (1961)	700947 700947 700947 700947 700947 700947
SAMSØNØV, G V LYUTAYA, M D PREPARATIØN ØF CERIUM NITRIDE ZHUR PRIK KHIM 35, 2359(1962) JPRS 18919 CØTS 65, 147 (1963)	301340 301340 301340 301340
SAMSONOV. G INTERMEDIATE STAGES OF REACTIONS FORMING CARBIDES OF TITANIUM ZIRCONIUM VANADIUM NIOBIUM + TANTALIUM TRANS FROM OLS NEORG I FIG KHIM 287 AD 265797	301571 301571 301571 301571 301571
SAMSØNØV. G KØNSTANTINØV. V TANTALUM + NIØBIUM CØNSØLD TRANS SURVEY P208 SEPT (1961) TRANSL BY FTD MCL-656 LI	301570 301570 301570 301570
SAMSONOV. G LYUTAYA. M	301572

PREPARATIONS OF CERIUM NITRIDE ZH PRIKL KHIM 35+ 2359 (1962) CA 58+ 7595 (1963)	301572 301572 301572
SAMSØNØV. G THE SILICIDES AND THEIR USES IN TECHNØLØGY IZD AKAD NAUK UKRAIN SSR KIEV (1959) CITED BY GØLUTVIN RJPC 36. 698 (1962)	202126 202126 202126 202126
SAMSØNØV» G PADÉRNØ» Y ELECTRICAL PRØPERTIES ØF SØME RARE EARTH HEXABØRIDES CA 58° 8483 (1963)	202127 202127 202127
SAMSONOV. G FOMENKO. V PADERNO. Y (INST POWER MET + SPEC AL KIEV RUSSIA) THERMOEMISSIVE PROPERTIES OF SOME REFRACTORY COMPOUNDS UPR FIZ ZH 8. (6) 700 (1963) CA 59. 8228 (1963)	202128 202128 202128 202128 202128
UPR FIZ ZH 8, (6) 700 (1963) CA 59, 8228 (1963) SAMSONOV, G VERKHOGLYADOVA, T THE HARDNESS OF SOME METAL NITRIDES ZH STRUKT KHIM 2, 617 (1961) CA 58, 5335 (1963)	301573 301573 301573 301573
SAMSØNØV. G VERKHØGLYÅDØVA. T (ACAD SCI UKRAINIA SSR) NITRIDING ØF NIØBIUM PØWDER AND SØME PRØPERTIES ØF THE PHASES FØRMED RUSS J INØRG CHEM 6. 1381 (1961)	301569 301569 301569 301569 301569
SAMSONOV. G PENKOVSKII. V STUDY OF THE EMISSIVE POWER OF CERTAIN HIGH MELTING COMPOUNDS IN THE INFRARED REGION OPTICS AND SPECTROSCOPY 11. 219 (1961) PA 65. 7453 (1962)	300800 300800 300800 300800 300800
SAMSONOV. G SLEPTSOV. V PRELIMINARY VARIATION OF THE DIAGRAM OF THE BORON-SILICON SYSTEM DOPOVIDI AKAD NAUK UKR RSR 1962. 1066 (1962) CA 58. 60E (1963).	301341 301341 301341 301341 301341
SAMSØNØV» G VERKHØGLYADØVÅ» T THE PHYSICAL PRØPERTIES ØF TRANSITIØN METAL NITRIDES DØKL AKAD NAUK SSSR 142° 608 (1962) CA 56° 15267 (1962)	300997 300997 300997 300997
SAMSØNØV, G VERKHØGLYÅDØVÅ, T THE PHYSICAL PRØPERTIES ØF TITANIUM NITRIDE IN THE Hømøgeneøus regiøn Døklady akad nauk SSSR 138, 342 (1961) CA 56, 2898 (1962)	201264 201264 201264 201264 201264
SAMSONOV, G STRASHINSKAYA, L SHILLER, E CONTACT REACTION BETWEEN METALLIC CARBIDES, NITRIDES, AND BORIDES WITH REFRACTORY METALS AT ELEVATED TEMPERATURES IZV AKAD NAUK SSSR OTD TEKHN NAUK MET I TOP 1962, NO 5, 167 (1962) CA 58, 1188 (1963)	300990 300990 300990 300990 300990
SAMSONOV. G CARBIDES. SILICIDES. BORIDES. NITRIDES AND SULFIDES OF RARE METALS AND THEIR USE IN NEW TECHNOLOGY	300996 300996 300996

VISNIK AKAD NAUK UKR RSR 30, NØ 6, 27 (1959) CA 54, 22243 (1960)	300996 300996
SAMSØNØV. G VERKHØGLYADØVÅ. T (INST MET ACAD SCI UKRANIAN SSR) NITRIDATIØN ØF PØWDERED NIØBIUM ZHUR NEØRG KHIM 6. 2732 (1961) NSÅ 16. 8749 (1962)	601576 601576 601576 601576 601576
SAMSONOV, G VERKHOGLYADOVA, T LVOV, S NEMCHENKO, V (N K KRUPSKAYA PEDAGOG INST KHERSON) THE INFLUENCE OF OXYGEN ON THE ELECTRIC PROPERTIES OF TITANIUM NITRIDE DOKL AKAD NAUK SSSR 142, 862 (1962) CA 57, 2957 (1962)	300731 300731 300731 300731 300731 300731
	601585 601585 601585 601585 601585 601585 601585
SAMSØNØV» G PREPARATIØN AND PRØPERTIES ØF SCANDIUM DIBØR.DE DØKLADY AKAD NAUK SSSR 133» 1344 (1960) CA 55» 12127 (1961)	700728 700728 700728 700728
SAMSONOV. G (KALININ INST LENINGRAD USSR) ELECTRIC CONDUCTIVITY OF SOME COMPOUNDS OF THE TRANSITION METALS WITH BORON. CARBON. NITROGEN. AND THEIR MELTS ZHUR TEKH FIZ 26. 716 (1956) CA 50. 14282 (1956)	700730 700730 700730 700730 700730 700730
SAMSØNØV» G BØRIDES ØF THE RARE EARTH METALS USPEKHI KHIM 28. 189 (1959) AND AERE-TRANS-849 CA 53. 11074 (1959) NSA 13. 10103 (1959) NSA 14. 16001 (1960) (TRANSLATIØN)	700845 700845 700845 700845 700845 700845
SAMSØNØV. G GRØDSHTEIN. A (KALININ INST LENINGRAD USSR) SØME PRØPERTIES ØF HEXABØRIDES ØF ALKALI AND RARE EARTH METALS ZHUR FIZ KHIM 30. 379 (1956) NSA 10. 9210 (1956)	601255 601255 601255 601255 601255
SAMSONOV. G ANALYSIS OF REFRACTORY COMPOUNDS FTD-TT-62-1618 METALL. MOSCOW. 1-256 (1962) COTS NO 59. 154 (1962)	300981 300981 300981 300981 300981
SAMSONOV. G INTERACTION OF TITANIUM. ZIRCONIUM AND TUNGSTEN BORIDES WITH THEIR CARBIDES VOPROSY POROSHKOVOI MET I PROCHNOSTI MATERIALOV. AKAD NAUK UKR SSR 7, 72 (1959) CA 55. 14238 (1961)	500120 500120 500120 500120 500120 500120

SAMSØNØV• G GRØDSHTEIN• A (KALININ INST MØSCØW USSR) SØME ØF THE PRØPERTIES ØF THE HEXABØRIDES ØF THE ALKALINE EARTH AND RARE EARTH METALS ZHUR FIZ KHIM 30• 379 (1956) CA 51• 3335 (1957)	700733 700733 700733 700733 700733 700733
SAMSØNØV. G IASINSKIIA. G CHILLER. E	300340
REACTIØN BETWEEN SØME ØXIDES AND CARBIDES ØF REFRACTØRY	300340
METALS AT HIGH TEMPERATURE	300340
ØGNEUPØRY (7) 335 (1961)	300340
BHT 4. 44 (1961)	300340
SAMSØNØV, G KISLYY, P	900200
BØRIDE ZIRCØNIUM TIPS FØR IMMERSIØN THERMØCØUPLES	900200
ØGNEUPØRY 1961, NØ 2, 72 (1961)	900200
FTD-TT-62-732	900200
SAMSONOV, G KOVALCHENKO, M	300985
SOME FEATURES OF THE SINTERING OF POWDERS OF REFRACTORY	300985
COMPOUNDS	300985
POROSHKOVAYA METALL NO 1, 20 (1961)	300985
COTS NO 60, 82 (1962)	300985
SAMSONOV. G KOSOLAPOVA. T	300555
REACTION OF CHROMIUM OXIDE AND CARBIDE WITH THE	300555
FORMATION OF METALLIC CR	300555
ZH PRIKL KHIM 34. NO 12. 2780 (1961)	300555
BHT NO 2. 52 (1962)	300555
SAMSØNØV» G KØSØLAPØVA» T MAKARENKØ» G	700743
PREPARATIØN AND SØME PHYSICØCHEMICAL PRØPERTIES ØF YTTRIUM	700743
CARBIDES	700743
ZH NEØRG KHIM 7» 975 (1962)	700743
SAMSONOV. G KOSOLAPOVA. T PADERNO. V	700376
PREPARATION OF THORIUM CARBIDES	700376
ZHUR PRIKL KHIM 33, 1661 (1960)	700376
SST 4. 7. 3 (1960)	700376
SAMSØNØV, G. KØVALCHENKØ, M	900221
A METHØD ØF ØBTAINING BØRØN NITRIDE	900221
FTD-TT-63-65	900221
SAMSØNØV. G PADERNØ. V	201143
PREPARATIØN AND SØME PRØPERTIES ØF HAFNIUM CARBIDE	201143
ZHUR PRIKLAD KHIM 34. 963 (1961)	201143
CA 55. 20744 (1961)	201143
SAMSØNØV. G MAKARENKØ. G KØSØLAPØVA. T	700811
PREPARATIØN AND PRØPERTIES ØF YTTRIUM MØNØCARBIDE	700811
ZHUR PRIKLAD KHIM 34. 1444 (1961)	700811
NUCL SCI ABST 15.,27985 (1961)	700811
SAMSONOV. G MAKARENKO, G KOSOLAPOVÁ, T	700744
SCANDIUM CARBIDES AND COMPOUND SC-TI CARBIDES	700744
DOKLADY AKAD NAUK SSSR 144, 1062 (1962)	700744
NSA 16, 29 400 (1962)	700744
SAMSØNØV. G MARKØVSKIY. L ZHIGACH. Å	301118
BØRØN ITS CØMPØUNDS AND ALLØYS	301118
UKRANIANIAN BK BØRØN YEGØ SØEDINENIYA I SPLAVY (1960)	301118

SAMSONOV. G NESHPOR. V SOME PHYSICAL PROPERTIES OF CERMETS VOPROSY POROSHKOVOI MET I PROCHNOSTI MATERIALOV. AKAD NAUK UKR SSSR. NO 5 3 (1958) CA 50. 9259 (1956) CA 51. 17403 (1957) CA 53. 6950 (1959)	700734 700734 700734 700734 700734 700734 700734
SAMSONOV, G NESHPOR, V THERMO-EMISSION OF THE TRANSITION METALS IN THEIR COMPOUNDS WITH BORON, CARBON, NITROGEN, AND SILICON VOPROSY POROSHKOVOI MET I PROCHNOSTI MATERIALOV AKAD NAUK UKR SSR 1959, NO 7, 99 (1959) CA 55, 16154 (1961)	201052 201052 201052 201052 201052 201052
SAMSØNØV» G PADERNØ» Y BØRIDES ØF RARE EARTH METALS KIEV IZDATL AKAD NAUK UKR SSR (1961)	300317 300317 300317
SAMSØNØV, G PADERNØ, Y ELECTRIC PRØPERTIES ØF BØRIDES ØF RARE-EARTH METALS DØPØVIDI AKAD NAUK UKR-RSR 1215 (1959) CA 55. 6329 (1961)	300143 300143 300143 300143
ELECTRIC PROPERTIES OF BORIDES OF RARE-EARTH METALS DOPOVIDI AKAD NAUK UKR-RSR 1215 (1959) CA 55. 6329 (1961) SAMSONOV. G PADERNO. Y FOMENKO. V PREPARATION AND PROPERTIES OF NEODYMIUM BORICES VOPROSY POROSHKOVOI MET I PROCHNOSTI MATERIALOV. AKAD NAUK UKR SSR NO 8 66 (1960) NSA 15. 5063 (1961)	601382 601382 601382 601382
MATERIALOV. AKAD NAUK UKR SSR NØ 8 66 (1960) NSA 15. 5063 (1961) SAMSØNØV. G PADERNØ, Y KREINGØLD. S (ACADEMY ØF SCIENCES MØSCØW USSR) PREPARATIØN ØF LANTHANUM HEXABØRIDE ZHUR PRIKLAD KHIM 34. 10 (1961) NUC SCI ABSTR 15. 14289 (1961) SAMSØNØV. G PADERNØ, Y SEREBRYAKØVA. T BØRIDES ØF PRASEØDYNIUM. ERBIUM. AND TERBIUM KRISTALLØGRAFIYA 4. 542 (1959) CA 57. 2952 (1962) SAMSØNØV. G PØRTNØY. K ALLØYS BASED ØN HIGH-MELTING CØMPØUNDS SPLAVY NA ØSNØVE TUGØPLAVKIKH SØEDINENIY (1961)	700862 700862 700862 700862 700862
SAMSØNØV» G PADERNØ» Y SEREBRYAKØVA» T BØRIDES ØF PRASEØDYNIUM» ERBIUM» AND TERBIUM KRISTALLØGRAFIYA 4. 542 (1959) CA 57. 2952 (1962)	201621 201621 201621 201621
SAMSONOV. G PORTNOY. K ALLOYS BASED ON HIGH-MELTING COMPOUNDS SPLAVY NA OSNOVE TUGOPLAVKIKH SOEDINENIY (1961) FTD-TT-62-430	900206 900206 900206 900206
SAMSONOV. G SEMENOV. U BORODULIN. P BORON NITRIDE REFRACTORY MATERIAL OGNEUPORY 27, NO 7, 332 (1962) CT NO 17, 93 (1962)	300582 300582 300582 300582
SAMSONOV. G SEREBRYAKOVA. T BOLGAR. A (INST MET ACAD SCI. UKRANIAN SSR) PREPARATION AND PHYSICO-CHEMICAL PROPERTIES OF STRONTIUM HFXABORIDE ZHUR NEORG KHIM 6. 2243 (1961) NSA 16. 6758 (1962)	601581 601581 601581 601581 601581 601581
SAMSONOV. G SHULISHOVA. O CALCULATION OF ENERGY OF CRYSTAL LATTICES OF METALLIC COMPOUNDS IZV AKAD NAUK SSSR. OTD TEKHN NAUK MET I TOPLIVO 1962. NO 3. 51 (1962)	300756 300756 300756 300756 300756

CT NØ 16. 89 (1962)	300756
SAMSONOV, G SOLNNIKOVA, L PORTNOI, K	200894
ALLOYS IN THE SYSTEM B-SI-C	200894
ZHUR NEORG KHIM 5, 2032 (1960)	200894
CA 55, 6329 (1961)	200894
SAMSONOV. G SYNELNYKOVA, V	300385
WIDTH OF THE FORBIDDEN ZONE IN BORON CARBIDE	300385
UKR FIZ ZHUR 6. NO 5 687 (1961)	300385
RUSS ACC 14. NO 11 2914 (1962)	300385
SAMSØNØV. G UMANSKII. Y	201726
(NATL AERØN. SPACE ADMIN)	201726
HARD CØMPØUNDS ØF REFRACTØRY METALS	201726
TECH TRANSL F102. (1962)	201726
CA 57. 5599 (1962)	201726
SAMSONOV, G VAINSHTEIN, E PADERNO, U RESULTS ON ELECTROPHYSICAL AND X-RAY DIFFRACTION STUDIES OF THE HEXABORIDES OF RARE EARTH ELEMENTS FIZ METAL I METALLOVED 13, 744 (1962)	300628 300628 300628 300628
SAMSØNØV, G VERKHØGLYADØVA, T ANTØNØVA, M DUBØVIK, T	201280
PREPARATIØN ØF NITRIDES ØF REFRACTØRY METALS	201280
METALLØKERAM MATERIALY I METØDY IKH ISSLEDØVANIYA AKAD NAUK	201280
UKR SSR INFØRM MATERIÅLY 1959, 53	201280
CA 56, 3230 (1962)	201280
SAMSONOV, G YASINSKAYA, G SHILLER, E THE REACTION OF CERTAIN OXIDES AND CARBIDES WITH REFRACTORY METALS AT HIGH TEMPERATURES OGNEUPORY 7, 335 (1961) COTS 48, 269 (1961)	100180 100180 100180 100180 100180
SAMSONOV, G ZHURAVLEV, N STRUCTURE AND PROPERTIES OF RARE EARTH METAL BORIDES TRUDY SEMINARA PO ZHAROSTOIKIM MATERIALAM AKAD NAUK UKR. SSR- INST METALLOKERAM I SPETSIAL SPLAVOV, KIEV 1958, NO 5 43 (1960) CA 55, 14003 (1961)	600788 600788 600788 600788 600788
SAMSØNØV» G ZØRINA» Ø (MI KALININ INST MØSCØW RUSSIA) PREPARATIØN AND PRØPERTIES ØF THØRIUM HEXABØRIDE ZHUR NEØRG KHIM 1, 2260 (1956) CA 51, 8565 (1957)	601051 601051 601051 601051 601051
SAMSONOV, G ZHURAVLEV, N PADERNO, Y MELIK-ADAMYAN, V	201758
SYNTHESIS AND STRUCTURE OF SAMARIUM HEXABORIDE	201758
KRISTALLOGRAFIYA 44,538 (1959)	201758
CA 57,6849 (1962)	201758
SAMSØNØV. G SLEPTSØV.V	201815
KINETIC PARAMETERS ØF BØRØN NITRIDATIØN	201815
KINETIKA I KATALIZ AKAD NAUK SSSR SB STATAI 3129 (1960)	201815
CA 57.10562 (1962)	201815
SAMSONOV. G SINELNIKOVA. V ELECTRICAL RESISTANCE OF REFRACTORY COMPOUNDS AT HIGH TEMPERATURES POROSHKOVAYA MET AKAD NUAK UKR SSR 2 NØ 4 59 (1962) CA 58. 1000 (1963)	201968 201968 201968 201968 201968

SAMSONOV. G KOVALCHENKO. M HOT PRESSING TECHNOLOGY IN THE SOVIET MACHINE BUILDING AND METALLURGICAL INDUSTRIES RUSSIAN BK GORYACHEYE PRESSOVANIYE KIEV 1962 COTS 63. 132 (1963)	301154 301154 301154 301154 301154
SANCHØ, F (UNIV MADRID MADRID SPAIN) STRUCTURE ØF THE SPECTRUM ØF RHØDIUM 11 ANALFS REAL SØC ESPAN FIS Y QUIM (MADRID) SER A, 54A, 41 (1958) CA 52, 10711 (1958)	601091 601091 601091 601091 601091
SANCHØ• F (UNIV MADRID MADRID SPAIN) DESCRIPTIØN ØF THE SECØND SPECTRUM ØF RHØDIUM (RH11) ANALES REAL SØC ESPAN FIS Y QUIM (MADRID) SER• A 54A• 65 (1958) CA 52• 10711 (1958)	601092 601092 601092 601092 601092 601092
SAND, T IMØTØ, S TAKADA, Y (UNIV ØSAKA ØSAKA JAPAN) PRØDUCTIØN ØF URANIUM CARBIDE. II. REACTIØN BETWEEN URANIUM PØWDER AND SØME HYDRØCARBØNS NIPPØN GENSHIRYØKU GAKKAISHI 2, 285 (1960) CA 55, 11161 (1961)	200963 200963 200963 200963 200963
SANDERSØN. B MACWØØD. G [ØHIØ STATE UNIV COLØMBUS ØHIØ) THERMØDYNAMICS ØF THE TITANIUM CHLØRIDES. III. THE SUBLIMA- TIØN PRESSURE ØF TITANIUM TRICHLØRIDE J PHY CHEM 60. 314 (1956)	300291 300291 300291 300291 300291
SANDERSØN, L THØRIUM CAN MINING J 82, NØ 6 84 (1961) BHT NØ 1, 9 (1962)	300375 300375 300375 300375
SANDERSØN, L SCANDIUM CAN MINING J 82, NØ 7 60 (1961) BHT NØ 1, 9 (1962)	300376 300376 300376 300376
SANDERSØN. L RHØDIUM CAN MINING J 82. NØ 11 65 (1961) BHT NØ 1. 9 (1962)	300377 300377 300377 300377
SANDS, D CLINE, C ZALKIN, A HØENIG, C (UNIV ØF CALIF) BERYLLIUM-BØRØN SYSTEM ACTA CRYST 14, 309 (1961) UCRL-6035-T 'NS 15, 13379 (1961)	700556 700556 700556 700556 700556 700556
SANDS, D JØHNSØN, Q ZALKIN, A KRIKØRIAN, Ø KRØMHØLTZ, K THE CRYSTAL STRUCTURE ØF REBF22 ACTA CRYST 15.832 (1962) CA 57.13248 (1962)	201879 201879 201879 201879
CANO. K DISSOCIATION EQUILIBRIA OF CHROMIUM NITRIDES	300983 300983

	AEC TR-5388 JOURNAL OF THE CHEMICAL SOC OF JAPAN 58, NO 10, 981 (1955) COTS NO 60, 91 (1962)	300983 300983 300983
	SARA, R DØLLØFF, R {NAT CARBON CO PARMA ØHIØ} RESEARCH STUDY TO DETERMINE THE PHASE EQUILIBRIUM RELATIONS ØF SELECTED METAL CARBIDES AT HIGH TEMPERATURE WADD-TR-60-143 (PT III) (1962) NSA 16, 24798 (1962)	601622 601622 601622 601622 601622 601622
	SARØ, T. IMØTØ, S. TAKADA, Y. RESEARCH ØN THE PRØDUCTIØN ØF URANIUM MØNØCARBIDE NIPPØN GENSHIRYØKU GAKKAISHI 1. 425 (1959)	400591 400591 400591
	SATO, S ATOMIC HEAT OF NITROGEN IN VARIOUS NITRIDES. II. SCI PAPERS INST PHYS CHEM RESEARCH (TOKYO) 35, 385 (1939) CA 33, 7163 (1939)	900114 900114 900114 900114
	SATO, T KACHI, S IWASE, K (TOHOKU UNIV SENDAI JAPAN) THERMODYNAMIC ACTIVITIÈS IN IRON-COBALT ALLOYS NIPPON KINZOKU GAKKAISHI 20, 584 (1956) CA 54, 17208 (1960)	300268 300268 300268 300268 300268
	SATOMA• K (TOKYO INST TECHNOL TOKYO JAPAN) OXYGEN POSITIONAL PARAMETERS OF TETRAGONAL MN304 J PHYS SOC JAPAN 16• 258 (1961) CA 55• 14004 (1961)	201025 201025 201025 201025 201025
	SAVAGE. W HUDSON. D SPEDDING. F (IOWA STATE COLL. AMES IOWA) MASS SPECTROMETRIC STUDY OF HEATS OF SUBLIMATION OF DYSPROSIUM. SAMARIUM. THULIUM. AND YTTERBIUM J CHEM PHYS 30. 221 (1959) CA 53. 10935 (1959)	601126 601126 601126 601126 601126 601126
•	SAVITSKII: E RARE EARTH METALS METALLØVED I TERMICHESK: ØBRABØTKA METAL 1961: NØ 9: 19 (1961) CA 56: 245 (1962)	201205 201205 201205 201205 201205
;	SAVITSKII, E BARØN, V EFIMØV, Y CØMPØSITIØN DIAGRAM ØF THE VANADIUM-CERIUM SYSTEM ZH NEØRGAN, KHIM 7, 701 (1962) CA 56, 15127 (1962)	201552 201552 201552 201552
;	SAVITSKII. E BARØN. W EFIMØV. Y VANADIUM CRYSTALLIZATIØN DIAGRAM DØKLADY AKAD NAUK 145. NØ 3. 612 (1962)	300609 300609 300609
:	SAVITSKII, E BARØN, V IVANØVÅ, K FUSABILITY CURVE AND SØME PRØPERTIES ØF ALLØYS ØF THE NIØBIUM- MØLYBDENUM-TUNGSTEN SYSTEM IZV AKAD NAUK SSR, ØTD TEKHN NAUK, MET I TØPLIVØ 1962, NØ 2, 113 (1962) CA 57, 4440 (1962)	201705 201705 201705 201705 201705 201705
	SAVITSKII. E BARØN, V IVANØVA. K THE RECRYSTALLIZATIØN ØF NIØBIUM AND ITS ALLØYS	201345 201345

INZHENER-FIZ ZHUR AKAD NAUK BELØRUS SSR 1958, NØ 1:, 38	201345
CA 56, 5744 (1962)	201345
SAVITSKII, E BARØN, V EFIMØV, Y GLADYSHEVSKII, E (A A BAIKØV INST MET LVØV PØLAND) SYSTEM VANADIUM-MØLYBDENUM-SILICØN ZH NEØRGAN KHIM 7, 1117 (1962) CA 57, 9278 (1962)	201798 201798 201798 201798 201798
SAVITSKII, E LIVANØV, V NUSS, P BURKHANØV, K MUSATØV, M	201889
SIMANCHUK, A	201889
ALLØYS ØF TITANIUM WITH RARE EARTH METALS	201889
TITAN V PRØM SB STATEI 85, (1961)	201889
CA 57, 13501 (1962)	201889
SAVITSKII• E TYLKINA• M (ACAD SCIENCE MØSCØW RUSSIA) PHASE DIAGRAMS ØF RF WITH TRANSITIØN METALS CA 58• 12246 (1963)	301574 301574 301574 301574
SAVITSKII, E TYLKINA, M PØLYAKØVA, V	301575
CØMPØSITIØN DIAGRAM ØF THE RUTHENIUM-RHENIUM-ØSMIUM SYSTEM	301575
ZH NFØRGAN KHIM 8, 146 (1963)	301575
CA 58, 10779 (1963)	301575
SAVITSKII, E TYLKINA, M TSYGANØVA, I GLAD SHEVSKII, E	201795
MULYAVA, M	201795
(A A BAIKØV INST MET LVØV PØLAND)	201795
CØMPØSITIØN DIAGRAM ØF THE HAFNIUM RHENIUM SYSTEM	201795
ZH NEØRGAN KHIM 7, 1608 (1962)	201795
CA 57, 9277 (1962)	201795
SAVITSKII• E BARØN• V KHØTINSKAYA• A	201429
CØMPØSITIØN DIAGRAM ØF THE SYSTEM NB-PD	201429
ZHUR NEØRG KHIM 6• 2603 (1961)	201429
CA 56• 9698 (1962)	201429
SAVITSKII: F BURKHANØV; G	700622
PHASE DIAGRAM ØF THE TITANIUM-SCANDIUM SYSTEM	700622
ZHUR NEØRG KHIM 6: 1253 (1961)	700622
CT NØ 12: (1961)	700622
SAVITSKII, E KØPETSKII, C	201261
THE PHASE DIAGRAMS ØF THE SYSTEMS MN-ZR AND MN-TI	201261
ZHUR NEØRG KHIM 5, 2422 (1960)	201261
CA 56, 2250 (1962)	201261
SAVITSKII. E KØPETSKII. C	201701
STRUCTURAL DIAGRAM ØF THE SYSTEM MANGANESE-TANTALUM	201701
ZH NEØRGAN KHIM 5. 2638 (1960)	201701
CA 57. 4436 (1962)	201701
SAVITSKII, E TEREKHØVA, V	201067
'MICRØSTRUCTURE, PHYSICAL, AND MECHANICAL PRØPERTILS ØF RARE	201067
EARTH METALS AND THEIR ALLØYS	201067
REDKØZEMEL ELEMENTRY AKAD-NAUK SSSR INST GEØKHIM I ANAL KHIM	201067
1959, 299 (1959)	201067
CA 55, 16325 (1961)	201067
SAVITSKII, E TEREKHØVA. V BIRUN, N	300836
EQUILIBRIUM DIAGRAM ØF THE CHRØMIUM-RUTHENIUM SYSTEM	300836
ZHUR NEØRG KHIM NØ 8. 1002 (1961)	300836
CØTS 56. 416 (1962)	300836

SAVITSKIY, Y TYLKINA, N THE PHYSIOCHEMICAL PROPERTIES AND FIELDS OF APPLICATION OF RHENIUM AND ITS ALLOYS RENIY TRUDY VSESOSGUZNOVO SOVESHCHANIY PO PROBLEM! RENIYA 26, 108 (1958)	900230 900230 900230 900230 900230
SAVITSKII. E TYLKINA. M KIRILENKO. R NOPETSKII. C PHASF DIAGRAM OF THE MANGANESE-RHENIUM SYSTEM ZHUR NEORG KHIM 6. 1474 (1961) CT NO 13. (1961)	700625 700625 700625 700625
SAVITSKII» E TYLKINĄ» M POLYAKOVA» V COMPOSITION DIAGRAM OF THE SYSTEM RUTHENIUM-RHENIUM ZH NEORGAN» KHIM» 7 439 (1962) CA 56. 13920 (1962)	201531 201531 201531 201531
SAVITSKII, E TYLKINA, M PØVARØVA, K EQUILBRIUM DIAGRAM ØF THE ALUMINUM-RHENIUM SYSTEM ZHUR NEØRG KHIM NØ 8, 1003 (1961) CØTS 56, 416 (1962)	300835 300835 300835 300835
SAVITSKII. E TYLKINA. M SHISHKINA. L CØNSTITUTIØN DIAGRAM ØF THE TUNGSTEN-RHENIUM SYSTEM AND PRØPERTIES ØF THESE ALLØYS IZVEST AKAD NAUK SSSR ØTDEL TEKH NAUK MET I TØPLIVØ 1959. NØ 3. 99 CA 56. 3234 (1962)	201281 201281 201281 201281 201281 201281
SAVITSKII. E M TYLKINA. M A ZHDANOVA, L L ZUBKOVA, L A STARKOV. V N FOKIN. A G PETROVA, L S ARKUSHA. T J THE PROPERTIES OF RHENIUM AND ITS ALLOYS WITH TUNGSTEN AND MOLYBDENUM ISSLED PO ZHAROPROCHN SPLAVAM AKAD NAUK SSSR. INST MET 9. 194 (1962) CA 58. 31 OH (1963)	301344 301344 301344 301344 301344 301344
SAVITSLIN, E TEREKHØVA, V BURØV, I MARKØVA, I NAUMKIN, Ø SPLØVY REDHØZEMEL NGKH METALLØV (RARE EARTH ALLØYS) IZDATIL STVØ AKAD NAUK SSSR (1962)	202129 202129 202129 202129
SAVØSTIANØVA: N SHVARTSMAN: L SØLUBILITY ØF VANADIUM CARBIDE IN GAMMA IRØN FIZ MET I METALLØVED 9: NØ 4 515 (1960)	300204 300204 300204
SAXER. R (ØHIØ STATE UNIV CØLUMBUS ØHIØ) THE CHEMICAL ACTIVITIES ØF IRØN AND VANADIUM IN BINARY IRØN-VANADIUM ALLØYS AND THE VAPØR PRESSURES ØF PURE CØBALT. IRØN, AND VANADIUM DISS ABST 23. (8). 2859 (1962-1963) CA 58. 13515 (1963)	301576 301576 301576 301576 301576 301576
SAYASOV. Y IVANOV. G THEORY OF MOLECULAR DISSOCIATION BY NEUTRONS. DIATOMIC MOLECULES RUSSIAN REPORT. CHEMICAL EFFECTS OF NUCLEAR TRANSFORMATIONS. PROCEEDINGS OF A SYMPOSIUM. 1. 25 (1960)	400593 400593 400593 400593 400593
SAYERS. D. CARROLL. P. P. PROC. PHYS. SOC. LONDON. 66A. 577 (1953) THE WAVE LENGTHS OF NITROGEN FIRST POSITIVE BANDS	600597 600597 600597

QUEENS UNIV	(1953)	BELFAST	1RELAND)	600597
SAZHIN• N KOI NIOBIUM OXIDI IZV A N SSSR	LCHIN+ Ø SUMARI	CESSES BY CARBON	961)	300381 300381 300381 300381
TEMPERATURE (AND IND RES ØRG ØF THØRIUM CARB DECØNTAMINATIØN	MELBØURNE IDE AND SØME ASPECTS ØF IRRADIATED REACT MPØSIUM PAGE 172• (1 60)	OF THE HIGH	700863 700863 700863 700863 700863
SCACE. R SLAC (G E RES LAB SI-C AND GE-C SILICØN CARB CA 55. 7018	C PHASE DIAGRAM IDE• PRØC CØNF•	SCHENECTADY BØSTØN 1959. 24 (19		200768 200768 200768 200768 200768
REACTIONS • 8 • 1 TRANSPORT IN	NIØBIUM AND TAI THE PREPARATIØN TEMPERATURE GRI EM CHEM 317•321	NTALUM• XXX• CHEMICA ØF NIØBIUM ØXIDCS A ADIENTS	GERMANY) L TRANSPØRT ND THEIR	201959 201959 201959 201959 201959 201959 201959
GASEØUS IRID	MEASUREMENTS IN IUM TRIØXIDE LGEM CHEM 304•	THE IRIDIUM-ØXYGEN 249 (1960)	GERMANY) System	601160 601160 601160 601160 601160
THERMOCHEMIS	NIØBIUM AND TAI TRY ØF THE NIØB LGEM CHEM 305 • 3		GERMANY)	200820 200820 200820 200820 200820 200820
CHEMISTRY OF	THE PLATINUM MI EM CHEM 319, 32	MUENSTER ETALS	GERMANY)	301577 301577 301577 301577 301577
HCL IN SMALL	R NSPØRT REACTIØN MØLYBDENUM TUBI EM CHEM 319, 52		GERMANY) F TIN WITH	301578 301578 301578 301578 301578 301578
(UNIV MUNSTER CHEMISTRY OF NB307CL+ NB00	LL2. AND TAOCL2 GEM CHEM 307.	MUNSTER NTALUM. XXVI. THE ØX	GERMANY) Y-CHLØRIDES	201085 201085 201085 201085 201085 201085

SCHAEFER H TEBBEN A (UNIV MUNSTER EQUILIBRIUM MEASUREMENTS IN THE PLATINUM-ØXYGEN SYSTEM GASEØUS PLATINUM DIØXIDE Z ANØRG U ALLGEM CHEM 304, 317 (1960) CA 54, 24079 (1960)	601159 601159 601159 601159 601159
SCHAFER & K (UNIVERSITY ØF HEIDELBERG HEIDELBERG GERMANY) THE PRØPERTIES ØF SØLIDS AND INTERMØLECULAR FØRCES ANGEW CHEM 72, 503 (1960) BHT, 8 (1960)	300133 300133 300133 300133
SCHANER, B METALLØGRAPHIC DETERMINATIØN ØF THE UØ2-U4Ø9 PHASE DIAGRAM J NUCLEAR MET 2, 110 (1960)	601686 601686 601686
SCHENK P THE CLASSIFICATION OF THE LANTHANIDES AND TRANSURANIUM ELEMENTS IN THE PERIODIC SYS'EM OF THE ELEMENTS OSTERR CHEM ZTG 50. 52 (1949) CA 44. 12 (1950)	400579 400579 400579 400579 400579
SCHICK. H A THERMODYNAMIC ANALYSIS OF THE HIGH TEMPERATURE VAPORIZATION PROPERTIES OF SILICA CHEM REV 60. 331 (1960) CA 54. 20454 (1960)	202130 202130 202130 202130 202130
SCHICK, H ANTHROP, D DREIKORN, R HANST, P PANISH, M (AVCO RAD WILMINGTON MASS) THERMODYNAMICS OF CERTAIN REFRACTORY COMPOUNDS THIRD QUARTERLY PROGRESS REPORT RAD-SR-63-52 (1963), 200 p. AD 400329	300994 300994 300994 300994 300994
SCHICK, H ANTHRØP, D DREIKØRN, R FEBER, R HANST, P PANISH, M WARD, C THERMØDYNAMICS ØF CERTAIN REFRACTØRY-CØMPØUNDS SECØND QUARTERLY PRØGRESS REPØRT (1962), 143 p. AD 292318 AVCØ RAD-SR-62-251	300995 300995 300995 300995 300995
SCHICK, H ANTHRØP, D DREIKØRN, R HANST, P PANISH, M (AVCØ RAD WILMINGTØN MASS) THERMØDYNAMICS ØF CERTAIN REFRACTØRY CØMPØUNDS RAD-SR-63 -105 (1963), 217 p. AD409592	301579 301579 301579 301579
SCHICK, H ANTHRØP, D DREIKØRN, R HANST, P PANISH, M (AVCØ RAD WILMINGTØN MASS) THERMØDYNAMICS ØF CERTAIN REFRACTØRY CØMPØUNDS RAD-SR-63 -183 (1963), 252 p. AD 418437	301580 301580 301580 301580
SCHISSEL P TRULSØN Ø (UNIØN CARBIDE CØRP' CLEVELAND ØHIØ) MASS SPECTRØMETRIC STUDY ØF THE VAPØRIZATIØN ØF THE TITANIUM-BØRØN SYSTEM J PHYS CHEM 66 • 1492 (1962)	300606 300606 300606 300606
SCHMIDT, E EINFUHRUNG IN DIE TECHNISCHE THERMØDYNAMIK ETC 8 ED BERLIN SPRINGER-VERLAG (1960) CA 55, 2266 (1961)	200814 200814 200814 200814

SCHNEIDER. S J DISCREPANCY IN CONVERSION OF EARLY MELTING-POINT TEMPERATURES J AM CERAM SOC 46. 354 (1963)	301348 301348 301348
SCHNEIDER P BUK F (TESLA-VRSØVICE PRAGUE CZECH THE PREPARATION ØF RARE EARTH BØRIDES AS EMISSIVE MATERIAL SLABØPRØUDY ØBZØR 14 + 137 (1953) CA 50 + 2275 (1956)	600988 600988 600988 600988 600988
SCHNEIDER S (NATL BUR STANDARDS WASHINGTON DC) PHASE EQUILIBRIUMS IN SYSTEMS INVOLVING THE RARE EARTH OXIDES OF THE PROPERTY	201537 201537 201537 201537 201537 201537
SCHNEIDER S J (NATL BUREAU ØF STANDARDS WASHINGTØN D C) CØMPILATIØN ØF MELTING PØINTS ØF METAL ØXIDES CERAMIC BULLETIN 42 237 (1963)	202131 202131 202131 202131
SCHNEIDER, S. RØTH, R. PHASE EQUILIBRIA IN SYSTEMS INVØLVING THE RARE EARTH ØXIDES PT 1 PØLYMØRPHISM ØF THE ØXIDES ØF THE TRIVALENT RARE EARTH IØNS J RES NAT BUR STDS 64A, 309 (1960) NUCL SCI ABSTR 14, 21465 (1960)	700747 700747 700747 700747 700747 700747
SCHNEIDER S RØTH R WARING J SØLID STATE REACTIØNS INVØLVING ØXIDES ØF TRIVALENT ACTIØNS J RESEARCH NATL BUR STANDARDS 65A 345 (1961) CA 56, 9480 (1962)	201407 201407 201407 201407 201407
SCHNEIDEREITTR• G ØXIDES ØF IRIDIUM AND RUTHENIUM NEW VALUES FØR ØXYGEN PRESSURES ØF FØRMATIØN PLATINIUMMETALS REVIEW 6• NØ 4 137 (1962)	301582 301582 301582 301582
SCHOB. Ø NØWØTNY. H BENESØVSKY. F (UNIV VIENNA VIENNA AUSTRIA) STRUCTURE DETERMINATIØNS ØF SØME ØF THE PHASES IN THE SYSTEMS ZR-AL-SI AND HF-AL-SI (ZRAL3(SI), ZRSI(AL). HF(SI.AL). ZR3SI2. HF3SI2) MØNATSH CHEM 6, 1218 (1961) CA 56. 15013 (1962)	201547 201547 201547 201547 201547 201547 201547
SCHRAM: A (CØMPAGN GEN RADIØLØGIE PARIS FRANCE) VAPØRIZATIØN ØF TITANIUM CA 58: 13536 (1963)	301583 301583 301583 301583
SCHUCH+ A LAQUER+ H (SCI LAB LØS ALAMØS N MEX) LØW TEMPERATURE THERMAL EXPANSION ØF URANIUM PHYS REV 86, 803 (1952) CA 46. 8503 (1952)	400568 400568 400568 400568 400568
SCHUCH. A STURDIVANT. J (CALIF INST ØF TECHNØL PASADENA CALIF) THE STRUCTURE ØF CE AT LIQUID AIR TEMPERATURE J CHEM PHYS 18. 145 (1950)	400518 400518 400518 400518

CA 44+ 4744 (1950)	400518
SCHULZE. A TRANSFØRMATIØN PØINTS IN METALS Z METALLKUNDE 22. 308 (1930) CA 25. 1194 (1931)	900117 900117 900117 900117
SCHUURMANS. P ØN THE ANALYSIS ØF SØME CØMPLEX SPECTRA (TH AND U) PHYSICA 12, 589 (1946) AERE-LIB/TRANS 513 NSA 11. 205 (1957)	601290 601290 601290 601290 601290
SCHWARZSCHILD, M SCHWARZSCHILD, B SEARLE, L MELTZER, A (PRINCETØN UNIV ØBSERV PRINCETØN NJ) A SPECTRØSCØPIC CØMPARISØ: BETWEEN HIGH AND LØW VELØCITY K GIANTS ASTRØPHYS J 125, 123 (1957) CA 51, 6350 (1957)	601047 601047 601047
CA 51. 6350 (1957) SCLAR. C CARRISON. L SCHWARTZ. C (BATTELLE MEMØRIAL INST COLUMBUS ØHIØ) OPTICAL CRYSTALLØGRAPHY ØF CØESITE AM MINERALØGIST 47. 1292 (1962) CA 58. 5116 (1963)	301584 301584 301584 301584 301584
SCLAR, C CARRISON, L SCHWARTZ, C (BATTELLE MEMØRIAL INST COLUMBUS ØHIØ) RELATION OF INFRARED SPECTRA TO COORDINATION IN QUARTZ AND TWO HIGH-PRESSURE POLYMORPHS OF SIO2 SCIENCE 138, 525 (1962) CA 58, 2029 (1963)	301585 301585 301585 301585 301585 301585
SCLAR. N (NUCLEAR CORP OF AMERICA DENVILLE NJ) UNIJUNCTION DEVICES MADE FROM RARE EARTH SEMICONDUCTORS AD 274 744 (1961)	300682 300682 300682 300682
(ATOMIC ENERGY RES. ESTAB. HARWELL ENGLAND)	601115 601115 601115 601115 601115
SDAR, N (NUCLEAR CORP OF AMERICA DENVILLE NEW JERSEY) UNIJUNCTION DEVICES MADE FROM RARE EARTH SEMICONDUCTORS AD 257796 QUART REPT NO 1 (1961) CONTRACT DA36-039-SC-87392 PROJ 3A99021-001	300233 300233 300233 300233 300233
SEABAUGH. P (10WA STATE UNIV AMES 10WA) PHYSICAL PROPERTIES OF NIOBIUM IODIDES UNIV MICROFILMS (ANN ARBOR MICH) ORDER NO 61-3049 DISSERTATION ABSTR 22. 731 (1961) CA 56. 1122 (1962)	201228 201228 201228 201228 201228 201228
SEARCY: A FINNIE: L (UNIV ØF CALIF BERKELEY CAL) STABILITY ØF SØLID PHASES IN THE TERNARY SYSTEMS ØF SILICØN AND CARBØN WITH RHENIUM AND THE SIX PLATINUM METALS J AM CERAM SØC 45: 268 (1962)	201874 201874 201874 201874 201874

CA 57, 13219 (1962)	201874
SEARCY, A SCHULZ, D (UNIV OF CALIF DEMONSTRATION OF SOME UNRECOGNIZED CHARACTERISTICS OF GAS FLOW THROUGH ORIFICES J CHEM PHYS 38, 772 (1963)	300980 300980 300980 300980 300980
SEARCY: A WILLIAMS: W SCHISSEL: P USE OF CONSTANT BOILING SYSTEMS IN CALIBRATION OF MASS SPECTROMETERS AND OTHER MOLECULAR BEAM INSTRUMENTS J CHEM PHYS 32: 957 (1960)	300590 300590 300590 300590
SEDDON. B URANIUM CERAMICS DATA MANUAL, PROPERTIES OF INTEREST IN REACTOR DESIGN DEG REPORT 120. (1960) NSA 15. 4280 (1961)	601380 601380 601380 601380 601380
SEEBØLD, R BIRKS, L (U S NAVEL RES LAB WASHINGTØN D C) ELEVATED TEMPERATURE DIFFUSIØN IN THE SYSTEMS NB-PT, NB-SE, NB-ZN, NB-CØ, NI-TA, AND FE-MØ J NUCLEAR MATLS 3, 260 (1961) CA 55, 19684 (1961)	300295 300295 300295 300295 300295 300295
SEEGER A (MAX-PLANCK-INST STUTTGART GERMANY) RECENT ADVANICS IN THE THEORY OF DEFECTS IN CRYSTALS PHYS STATUS SOLIDI 1 669 (1961) CA 58 7442 (1963)	301586 301586 301586 301586 301586
SELL. H KEITH. G KØØ, R SCHNITZEL. R CØRTH. R PHYSICAL METALLURGY ØF TUNGSTEN AND TUNGSTEN PASE ALLØYS U S DEPT CØM ØFFICE TECH SERV A D RLPT 266. 330. 143 (1961) CA 57. 12210 (1962)	201860 201860 201860 201860
SEMENCHENKØ• V K CERTAIN FOUILIBRIUM AND NØNEQUILIBRIUM PRØPERTIES ØF QUARTZ NEAR THE ALPHA TØ BETA TRANSITIØN PRIMENENIE UL TRAAKUSTIKI K ISSLED VESCHESTV* (15)• 11 (1961) CA 59• 2236E (1963)	301349 301349 301349 301349 301349
SEMENCHENKØV, A IVANØV. Ø STRUCTURE ØF URANIUM ZIRCØNIUM TITANIUM ALLØYS TR INST MET IM A A BAIKØVA (STRØENIE SPLAVØV NEKØTØRYKH SISTEM S URANØM I TØRIEM)312. (1961) CA 57. 13503 (1962)	201894 201894 201894 201894 201894
SEMENENKO, K KURDYUMOV, G GØRDEEV, I HEATS ØF SUBLIMATIØN ØF BERYLLIUM ØXIDE SALTS ZHUR NEØRG KHIM NØ 9, 1036 (1961) CØTS 56, 417 (1962)	300838 300838 300838 300838
SEMENØV. I KØLBIN. N ANHYDRØUS ØSMIUM TETRABRØMIDE ZH NEØRGAN. KHIM 7. 219 (1962) CA 56. 12522 (1962)	201486 201486 201486 201486
SEMIKIN, I KØSTØGRYZØV, V A HEAT RADIATIØN CALØRIMETER AVTØMATIZATSIYA I PRIBØRØSTRØYENIYE INSTITUT AVTØMATIKI, UKSSR NØ 2, 153 (1961)	900223 900223 900223 900223

FTD-TT-63-64	200223
SENATEUR. J FRUCHART, R MICHEL, A (FAC SCI ØRSAY FRANCE). FØRMULA AND CRYSTALLINE STRUCTURE ØF HAEGGS CARBIDE CØMPT REND 225, 1615 (1962) CA 58, 92 (1963)	201957 201957 201957 201957 201957
SENDEROFF, S MELLORS, G BRETZ, R (UNION CARBIDE CORP PARMA 0HIO) THERMODYNAMIC PROPERTIES OF MOLTEN MIXTURES OF CERIUM CHLORIDE AND CALCIUM CHLORIDE J ELECTROCHEM SOC 108, 93 (1961) CA 55, 9026 (1961)	200930 200930 200930 200930 200930 200930
SENSE • K (NØRTH AM AVIATIØN INC CANØGA PARK CALIF) ØXIDATIØN ØF ZIRCØNIUM J ELECTRØCHEM SØC 109 • 377 (1962) CA 57 • 557 (1962)	201588 201588 201588 201588 201588
SEREBRENIKØV, N GELD. P HEAT CØNTENT AND HEAT CAPACITY ØF TITANIUM AT HIGH TEMPERATURE IZVEST VYSSHIKH UCHEB ZAVEDENII TSVETNAYA MET 4, NØ 4 80 (1961) CT 20, 109	300192 300192 300192 300192 300192
SEREBRENNIKØV• V SEREBRENNIKØV• I (UCHENYE ZAPISKI TØMSK UNIV) THERMØCHEMICAL CHARACTERISTICS ØF ACTINIDES REFERAT ZHUR KHIM 14629• (1957) CA 53• 12818 (1957)	601131 601131 601131 601131
SEREBRYAKOVA, T PADERNO, Y SAMSONOV, G EMISSION COFFFICIENTS OF SOME POWDERED HIGH-MELTING COMPOUNDS OPTIKA I SPEKTOSKOPIYA 8, 410 (1960) BHT, 3 (1960)	300136 300136 300136 300136
SEREBRYANSKII, V EPELBAUM, V PHASE DIAGRAM OF THE ALUMINUM-BORON SYSTEM ZHUR STRUK KHIM 2, NO 6, 748 (1961) COTS 56, 428 (1962)	300840 300840 300840 300840
SERGEEV. V THE CALCULATION OF THERMODYNAMIC FUNCTIONS OF A HIGH-TEMPERATURE AIR/CARBON MIXTURE INZHENERNO-FIZ ZHUR 4. 16 (1961)	400604 400604 400604 400604
SERGEEV. V THERMODYNAMICS OF REACTIONS OF TITANIUM TETRACHLORIDE WITH SEVERAL METALS TSVETNYE METAL 29, NO 11, 63 (1956) CA 51, 17674 (1957)	500125 500125 500125 500125 500125
SETTLE. J FEDER. H HUBBARD. W (ARGONNE NATL LAB ARGONNE ILL) FLUORINE BOMB CALORIMETRY II. THE HEAT OF FORMATION OF MOLYBDENUM HEXAFLUORIDE J PHYS CHEM 65. 1337 (1961) CA 55. 25448 (1961)	300740 300740 300740 300740 300740 300740
SEYBOLT. A (KNOLLS AT POWER LAB SCHENECTADY NY)	601484 601484

VANADIUM AS A PØSSIBLE STRUCTURAL MATERIAL IN NUCLEAR REACTØRS TID-2501, 441 (1948) NSA 12, 17303 (1958)	601484 601484 601484
SEYBOLT A V (GE RESEARCH LAB SCHENECTADY N Y) ØXIDATIØN ØF METALS ADVANCES IN PHYSICS 11 NØ 45 1 JAN (1963)	301350 301350 301350 301350
SHADMI, Y (HEBREW UNIV JERUSALUM ISRAEL) THE CONFIGURATIONS (4D+5S) TO THE NTH POWER IN THE SECOND SPECTRA OF THE PALLADIUM GROUP BULL RESEARCH COUNCIL ISRAEL SECT F, 9F, 141 (1961) NSA 15, 24123 (1961)	700954 700954 700954 700954 700954 700954
SHAFFER P (CARBØRUNDUM CØ NIAGARA FALLS NY) DEVELØPMENT ØF ULTRA REFRACTØRY MATERIALS NP-10137 NSA 15 • 18261 (1961)	700941 700941 700941 700941 700941
SHAFFER P (CABØRUNDUM CØRP NIAGARA FALLS NY) DEVELØPMENT ØF ULTRA REFRACTØRY MATERIALS NP-10526 (1961) NSA 15 + 28042 (1961)	701057 701057 701057 701057 701057
SHAFFER, P T B (CARBORUNDUM CØ NIAGARA FALLS N Y) HIGH TEMPERATURE FORMS OF ZIRCONIUM AND TANTALUM MONOCARBIDES J AM CERAM SOC 46, 177 (1963) CA 59, 7223 (1963)	202132 202132 202132 202132 202132
SHAFFER P T B (CARBØRUNDUM CØ NIAGARA FALLS N Y) AN ØXIDATIØN RESISTANT BØRIDE CØMPØSITIØN AM CERAMIC SØC BULLETIN 41 P6 (1962)	202133 202133 202133 202133
SHAKHOVA, K BUDBERG, P ALLØYS ØF THE TITANIUM-NIØBIUM SYSTEM IZVEST AKAD NAUK SSSR ØTDEL TEKH, NAUK MET I .3PLIVØ 1961, NØ 4, 56 (1961) CA 56, 1251 (1962)	201234 201234 201234 201234 201234
SHAKHOVA: K BUDBERG: P PHASE DIAGRAM OF THE TITANIUM-NIOBIUM-CHROMIUM SYSTEM IZV A N SSSR O T N MET I TOP 1962: NO 6: 137 (1962)	300993 300993 300993
SHAPIRO, E VAPOR PRESSURE OF THORIUM OXIDE FROM 2050 TO 2250 DEGREES K J AM CHEM SOC 74, 5233 (1952) CA 47, 10935 (1953) NSA 7, 69 (1953)	100186 100186 100186 100186 100186
SHAPIRO, Z (WESTINGHOUSE ELEC CORP PITTSBURGH PA) RESUME OF URANIUM OXIDE DATA III WAPD-PMM-197 DECL 1957 NSA 11, 12437 (1957)	601296 601296 601296 601296 601296
SHAPIRO, I WILSON, C DITTER, J LEHMANN, W MASS SPECTROMETRY IN BORON CHEMISTRY	201356 201356

ADVANCES IN CHEM SER 32, 127 (1961) CA 56, 6775 (1962)		201356 201356
SHAPIRØ, Z (WESTINGHØUSE ELEC CØRP PITTSBURGH P RESUME ØF URANIUM ØXIDE-III WAPD-PMM-167 (1957) NSA 12, 1919 (1958)	A)	601512 601512 601512 601512 601512
SHARMA, B (UNIV SØUTHERN CALIF LØS ANGELES C/ INTERATØMIC DISTANCES IN URANIUM CARBIDE ACTA CRYST 16, 322 (1963) BHT NØ 20, (1963)	ALIF)	301194 301194 301194 301194 301194
SHARAN. B EVALUATION OF VIBRATION SPECTRUM AND HEAT CAPACITY TUNGSTEN AND MOLYBDENUM BY DE LAUNAYS ELECTRON GAS PHYSICS STATUS SOLIDI 1. (1961) REV MET LIT 19. (1962)	S MØDEL	301070 301070 301070 301070 301070
SHARAN, B SINGH, S LATTICE FREQUENCIES AND SPECIFIC HEATS ØF GERMANIU SILICØN J SCI RESEARCH BANARAS HINDU UNIV 10, 60 (1959) CA 55, 8059 (1961)	UM AND	600654 600654 600654 600654 600654
SHARP. D (CHEM SØC LØNDØN EI TRANSITIØN ELEMENTS ANN REPTS PRØG CHEM 56. 130 (1959) CA 55. 9131 (1961)		200931 200931 200931 200931 200931
SHARPE A SHARP D (CHEM SOC LØNDØN EI INØRGANIC CHEMISTRY INTRØDUCTIØN ANN REPT PRØGR CHEM 58 79 (1961) CA 57 10747 (1962)		201831 201831 201831 201831 201831
SHARUPIN. B VASILKOVA. I RULES IN ENTHALPIES OF FORMATION OF ØXIDES AND ØX ZHUR ØBSCHCHEI KHIM 31. 2077 (1961) CT NØ 15. (1961)		700665 700665 700665 700665
SHAW. C SOFT X-RAY SPECTRA OF METALS AND ALLOYS AECU-3578. (1956)		600908 600908 600908
SHAW. J (OHIO STATE UNIV COLUMBUS OF NITRIC OXIDE FUNDAMENTAL J CHEM PHYS 24, 399 (1956) CA 50. 8326 (1956)	HIØ)	600759 600759 600759 600759 600759
SHCHEGRØV. L THE REACTION BETWEEN TITANIUM TETRACHLØRIDE AND Ø: TRUDY URAL POLITEKH INST IM S M KIRØVA NØ 96. 82 CA 55. 19424 (1961)	(1960)	600825 600825 600825 600825
SHCHEPOCHKINA N (ACA) SCI MOSCOW RU PHYSICAL-CHEMICAL INVESTIGATION OF THE SYSTEMS BEG FF0-T102	USSIA)	200958 200958 200958 200958

TRUDY 5-GØ (PYATØGØ) SØVESHCHAN FKSPTL I TEKH MINERAL I PETRØG AKAD NAUK SSSR INST KHIM SILIKATØV LENINGRAD 1956. 493 (1958) CA 55. 11054 (1961)	200918 200918 200918 200958
SHCHERBAKØV. V VEYTSMAN. R STEGENDØ. Z ANALYSIS ØF TITANIUM. CHRØMIUM AND ZIRCØNIUM BØRIDES FTD-TT-62-1825 TRUDY INSTITUT METALL I SPET SPLAVØV SEMINAR PØ ZHAR MATERIALAN NØ 6. 52 (1960) CØTS NØ 60. 84 (1962)	300954 300984 300984 4300984 300984 300984
SHCHUKAREV, S ØRANSKAYA. M TØLMACHEVA, T ILINSKII, Y THERMAL DISSØCIATIØN ØF VANADIUM DICHLØRIDE ZHUR NEØRG KHIM 5, 8 (1960) CA 55, 21778 (1961)	201162 201162 201162 201162
SHCHUKAREV, S. KØKØVIN, G. DETERMINATIØN ØF THE HEAT ØF FØRMATIØN ØF TUNGSTEN HEXABRØMIDE ZHUR NEØRG KHIM 5, 507 (1960) CA 55, 21775 (1961)	201159 201159 201159 201159 201159
SHCHUKAREV S KØLBIN N PREPARATIØN ØF ØSMIUM TRIBRØMIDE ZHUR NEØRG KHIM 6, 1246 (1961) CA 56, 1128 (1962)	201231 201231 201231 201231
SHCHUKAREV. MOROZOVA. M. PRON. G. ENTHALPY OF FORMATION OF COMPOUNDS OF CALCIUM WITH ELEMENTS OF THE MAIN SUBGROUP OF THE IV TH GROUP ZHUR OBSHCHFI KHIM 32. NO 7. 2069 (1962)	300598 300598 300598 300598
SHCHUKAREV. S MOROZOVA. M STØLYAROVA. T FNTHALPY ØF FØRMATIØN ØF MANGANESE CØMPØUNDS WITH THE ELEMENTS ØF THE MAIN SUBGRØUP ØF GRØUP V ZHUR ØBSCHCHEI KHIM 31. 1773 (1961) CT NØ 15. (1961)	700666 700666 700666 700666
SHCHUKAREV, S NØVIKØV, G SUVØRØV, A BAEV, A (STATE UNIV LENINGRAD LENINGRAD USSR) THERMØDYNAMIC BASES ØF CHLØRINATIØN PRØCESS Ø. NATURAL TUNGSTEN CØMPØUNDS CHISTYE METAL I PØLUPRØVØD, TRUDY 1-ØI (PERYØI) MEZHVUZ KØNF, MØSCØW 1957, 150 (1959) CA 55, 1169 (1961)	200800 200800 200800 200800 200800 200800 200800
SHCHUKAREV, S. ØRANSKAYA. M. SHEMYAKINA, T. ENTHALPY ØF FØRMATIØN ØF NIØBIUM PENTACHLØRIDF. ZHUR NEØRG KHIM 5. 2135 (1960) CA 55. 10040 (1961)	200944 200944 200944 200944
SHCHUKAREV. S SEMENØV. G A MASS-SPECTRØMETRIC STUDY ØF THE 'APØR COMPOSITION ØF THE ØVER RARE-EARTH ØXIDES DØKLADY AKAD NAUK SSSR 141, 652 (1961) NSA 16. 7533 (1962)	300653 300653 300653 300653 300653
SHCHUKAREV, S.A. SEMENØV, G.A. EVAPØRATIØN ØF HAFNIUM DIØXIDE 12V VYS UCHEB ZAV KHIM I KHIM TEKH NØ 5 5845 (1963) RUSS ACC VØL 16, NØ 1, 149 APRIL (1963)	301352 301352 301352 301352

SHUCHUKAREV. S A SEMENØV. G A FRANTSEVA. K E	301353
MASS SPECTRØMETRIC STUDY ØF THE SUBLIMATION ØF SØME VANADIUM	301353
AND NIØBIUM ØXIDES	301353
ZHUR NEØRG KHIM 4. 2638 (1959)	301353
CA 54. 14848E (1960)	301353
CA 54. 14848E (1960) SHUCHUKAREV. S A SEMENØV. G A FRANTSEVA. K E MASS SPECTRØMETRIC STUDY ØF NBØ EVAPØRATIØN IZV VYS UCHEB ZAV KHIM I KHIM TEKH NØ 5 5691 (1962) RUSS ACC VØL 16. NØ 1. 186 APRIL (1963)	301354 301354 301354 301354
SHCHUKAREV, S SEMENØV, G FRANTSEVÅ, K	300744
DETERMINATION ØF SATURATED VAPØR PRESSURE ØF NIØBIUM-DIØXIDE	300744
DØKLADY AKAD NAUK SSSR 145, NØ 1, 119 (1962)	300744
NSA 16, 30386 (1962)	300744
DETERMINATION OF SATURATED VAPOR PRESSURE OF NIOBIUM-DIOXIDE DOKLADY AKAD NAUK SSSR 145. NO 1, 119 (1962) NSA 16. 30386 (1962) SHCHUKAREV. S SEMENOV. G RATKOVSKII. I DETERMINATION OF THE SATURATED VAPOR PRESSURE OF GALLIUM OXIDE ZHUR NEORG KHIM NO 8. 1009 (1961) COTS 56. 416 (1962)	300837 300837 300837 300837 300837
SHCHUKAREV. S SMIRNØVA, E VASILKØVA. I BØRØVSKAYA, N	201748
ENTHALPIES ØF FØRMATIØN ØF NIØBIUM PENTA BRØMIDE AND	201748
ØXYTRIBRØMIDE	201748
ZH NEØRGAN, KHIM 7, 1213 (1962)	201748
CA 57. 6698 (1962)	201748
SHCHUKAREV. S SMIRNØVA. E VASILKØVA. I LAPPØ. L ENTHALPY ØF FØRMATIØN ØF TANTALUM PENTACHLØRIDE AND PENTABRØMIDE VESTNIK LENNINGRAD UNIV 15. NØ 16 SER FIZ I KHIM NØ 3. 113 (1960) CA 55. 1169 (1961)	200799 200799 200799 200799 200799 200799
SHCHUKAREV. S SUVØRØV. A THERMØDYNAMIC INVESTIGATIØN ØF SØME CHLØRINE DERIVATIVES ØF MØLYBDENUM AND TUNGSTEN VESTNIK LENINGRAD UNIV 16. NØ 4. SER, FIZ I KHIM NØ 1. 87 (1961) CA 55. 16117 (1961)	201051 201051 201051
SHCHUKAREV. S TØLMACHEVA. T TSINTSIUS. V	201809
DISPRØPØRTIØNATIØN ØF VANADIUM TRIBRØMIDE AT HIGH TEMPERATURES	201809
ZH NEØRGAN KHIM 7. 1505 (1962)	201809
CA 57. 9445 (1962)	201809
SHCHUKAREV. S TØLMACHEVA. T TSINTSIUS. V	201540
THERMØDYNAMIC CHARACTERISTICS ØF VANADIUM BRØMIDES	201540
ZH NEØRGAN. KHIM 7. 679 (1962)	201540
CA 56. 14999 (1962)	201540
SHCHUKAREV, S VASILKØVA, I DRØZDØVÅ, V	200847
HEAT ØF FØRMATIØN ØF URANYL BRØMIDE AND URANIUM	200847
MØNØXYTRIBRØMIDE	200847
ZHUR NEØRG KHIM 3, 2651 (1958)	200847
CA 55, 4134 (1961)	200847
SHCHUKAREV. S VASILKØVA. I MARTYNØVA. N MALTSEV. Y	200798
HEAT ØF FØRMATIØN ØF URANYL CHLØRIDE AND URANIUM	200798
ØXYTRICHLØRIDE	200798
ZHUR NEØRG KHIM 3. 2647 (1958)	200798
CA 55. 1169 (1961)	200798

MØLYBDENUM HALIDES V THERMØDYNAMICS ØF MØØ2CL2 AND MØ-Ø2CL2 VESTNIK LENINGRAD UNIV 16, NØ 22, SE FIZ I KHIM NØ 4, 130 (1961)	201459 201459 201459 201459 201459 201459 201459
(VESTNIK LENINGRAD UNIV LENINGRAD RUSSIA) MØLYBDENUM HALIDES. DETERMINATION ØF THE ENTHALPY ØF FØRMATION ØF MØLYBDENUM TETRABØRIDE VESTNIK LENINGRAD UNIV 16. NØ 22. SER FIZ I KHIM NØ 4. 127	201413 201413 201413 201413 201413 201413 201413
SHENSTONE, A SECOND SPECTRUM OF SILICON PROC ROY SOC (LONDON) 261A, 153 (1961) CT NO 12, (1961)	700636 700636 700636 700636
SHEWCHUCK + S SUMMARY ØF RESEARCH PRØGRESS MEETING ØF NØV. 6. 1952 UCRL-2068 (1952) NSA 7. 2588 (1953)	601252 601252 601252 601252
SHIFFMAN. C THE HEAT CAPACITIES OF THE ELEMENTS BELOW ROOM TEMPERATURE NP-4945 (1952)	601636 601636 601636
SHIMAZAKI, E NIWA, K (HØKKAIDØ UNIV SAPPØRØ JAPAN) VAPØR-PRESSURE MEASUREMENTS ØN RARE EARTH HALIDES Z ANØRG ALLGEM CHEM 314, 21 (1962) CA 56, 13561 (1962)	201503 201503 201503 201503 201503
SHIMIZU, M TAKAHASHI, T KATSUKI, A (UNIV NAGØYA NAGØYA JAPAN) MAGNFTIC SUSCEPTIBILITY AND ELECTRØNIC SPECIFIC HEAT ØF TRANSITIØN METALS AND ALLØYS J PHYS SØC JAPAN 18 (8), 1192 (1963) CA 59, 70478 (1963)	202135 202135 202135 202135 202135 202135
SHIRO, JUJINO MORIHIRO, OKADA (GOVT IND RES INST NAGOYA JAPAN) MELTING OF ALUMINUM-MAGNESIUM ALLOYS UNDER LOW PRESSURE EVAPORATION OF MAGNESIUM FROM A MOLTEN ALLOY UNDER LOW PRESSURE NAGOYA KUGYO GIJUTSU SHIKENSHO HOKOKU 11, 675 (1962) CA58, 12240E (1963)	301452 301452 301452 301452 301452 301452 301452
SHISHAKOV. N . STRUCTURE OF THE OXIDE PTO2 KRISTALLOGRAFIYA 2. 689 (1957) CA 53. 7712 (1959)	601121 601121 601121 601121
SHKHAREVSKII. B. VISHNEVSKII. I. GARVISH. A DECØMPØSITIØN ØF SØLID SØLUTIØNS IN THE 'RØ2-CAØ SYSTEM DØKL AKAD NAUK SSSR 140.884 (1961) CA 57. 5344 (1962)	201707 201707 201707 201707
SHKLYARFVSKII: I YARØVAYA: R ØPTICAL PRØPERTIES ØF BERYLLIUM IN THE INFARED SPECTRAL REGIØN	201326 201326

ØPTIKA I SPEKTRASKIPIYA 11. 661 (1961) CA56. 5544 (1962)	201326 201326
SHØLETTE: W PØRTER: R MASS SPECTRØMETRIC STUDY ØF THE HIGH TEMPERATURE REACTIONS IN THE BØRØN-HYDRØGEN-ØXYGEN SYSTEM J PHYS CHEM 67: 177 (1963)	300988 300988 300988 300988
SHMIDT. N SØKØLØV. V ADIABATIC CALØRIMETER FØR DETERMINATIØN ØF SPECIFIC HEATS BETWEEN 30 AND 750 DEGREES ØF SUBSTANCES WITH LØW THERMAL CØNDUCTIVITY, SUCH AS. CØRUNDUM ZH NEØRGAN KHIM 5. 1641 (1960) CA 57. 603 (1962)	201590 201590 201590 201590 201590 201590
SHPILRAYN, E ASINØVSKIY, E LATENT HEAT ØF VAPØRIZATIØN FØR ALKALI METALS INZHENERNØ-FIZ ZHUR 5, NØ 4, 35 (1962) CØTS 55, 211 (1962)	301099 301099 301099 301099
SHUBERT. J BERYLLIUM MCGRAW-HILL ENCYCLØPEDIA ØF SCIENCE AND TECHNØLØGY MCGRAW-HILL BØØK CØ (1960) NSA 15. 9493 (1961)	701036 701036 701036 701036 701036
SHUKURØV, A NIKØLSKAYA, T VASILKØVA, I SHCHUKAREV, S DETERMINATIØN ØF THE HEATS ØF FØRMATIØN ØF MØLYBDENUM DI-AND TRIBRØMIDES IZV AKAD NAUK TADZH SSR ØTD GEØL-KHIM I TEKHN NAUK NØ 4, 23 (1961) CA 57, 14498 (1962)	201907 201907 201907 201907 201907 201907
SHULISHOVA. 0 (INS: METALLOKERAM SPLAVOV SSSR) CALCULATION OF THE CRYSTAL LATTICE ENERGY OF INORGANIC COMPOUNDS AKAD NAUK UKR (SSR) (1962) CA 58. 4027 (1963)	301587 301587 301587 301587 301587 301587
SHVARTS, G L SHEVELKIN, B N TOROPOV, V A TITANIUM, A NEW MATERIAL FOR CHEMICAL EQUIPMENT ZH VSES KHIM ØBSHCHESTVA IM D I MENDELEEVA 8, 317 (1963) CA 59, 7205H (1963)	202136 202136 202136 202136
SHVEIKIN, G REACTION OF TUNGSTEN CARBIDE WITH OXIDES OF REFRACTORY METALS IN VACUO POROSHKOVAYA, MET, AKAD, NAUK UKR (SSR) 2 NO 6, 67 (1962) CA 58, 7671 (1963)	301588 301588 301588 301588 301588
SHVEIKIN, G INTERMEDIATE NIØBIUM CØMPØUNDS IN THE REDUCTIØN ØF NIØBIUM PENTØXIDE WITH CARBØN TRUDY INST KHIM, AKAD NAUK SSSR URAL FIL NØ 2, 51 (1958) AEC-TR-4304 NSA 15, 5989	300151 300151 300151 300151 300151 300151
SHVEIKIN. G THERMODYNAMIC ANALYSIS OF EQUILIBRIUM IN THE NIOBIUM-OXYGEN CARBON SYSTEM TRANSLATED FROM TRUDY INST KHIM AKAD NAUK SSSR URAL FILIAL NO 2. 45 (1958)	600671 600671 600671 600671

AEC-TR-4303	
NS 15. 5988 (1961) SHVEIKIN. G P	600671 600671
(INST CHEM ACAD SEI SVERDLØVSH USSR) KINETICS ØF THE REDUCTIØN ØF NIØBIUM PENTØXIDE WITH CARBØN IN VACUØ TRUDY INST KHIM AKAD NAUK SSSR URAL FILIAL NØ 2, 57 (1958) CA 54, 19125D (1960)	301355 301355 301355 301355 301355 301355
SHVEIKIN. G P GELD. P V THE LOWER ØXIDES ØF NIØBIUM ZH NEØG KHIM 3. 2437 (1958) AEC TR 4459 NSÅ 16. 17631	301356 301356 301356 301356 301356
SHVEIKIN, G P GELD, P V ALYAMOVSKII, S I CONDITIONS OF THE FORMATION OF NIOBIUM OXYCARBIDES ZH NEORGAN KHIM 8, NO 3, 689 (1963)	301357 301357 301357
SHVEIKIN, G GELD, P LYUBIMOV, V EFFECT OF RECRYSTALLIZATION OF NIOBIUM PENTOXIDE ON ITS REDUCTION RATE IZVEST VYSSHIKH UCHEB ZAVEDENII TSVETNAYA MET 3, 3, 120 (1960) CA 55, 6087 (1961)	200762 200762 200762 200762 200762
SIDEBOTTOM, B. WHITE, J. (UNIV SHEFFIFIC SHEFFIELD ENGLAND) PHASE RELATIONS IN NONCONDENSED OXIDE (TERNARY) SYSTEMS TRANS BRIT CERAM SOC 60, 96 (1961) CA 55, 16110 (1961)	201048 201048 201048 201048 201048
SIDELES. P DANIELSON. G THERMAL CONDUCTIVITY OF METALS AT HIGH TEMPERATURES ISC-198 (1951) NSA 6. 2680 (1952)	601238 601238 601238 601238
SIDOROV, T (P N LEBEDEV PHYS INST MOSCOW RUSSIA) INFRARED SPECTRA AND THE STRUCTURE OF SOME GLASS-FORMING OXIDES TRUDY FIZ INST IM.P N LFBEDEVA AKAD NAUK SSSR 12, 225 (1960) CA 55, 16168 (1961)	201055 201055 201055 201055 201055
SIEGEL B (AERØSPACE CØRP EL SEGUNDØ CALIF) RELATION OF EXOTHERMICITIES OF COMPOUNDS TO CHEMICAL BONDING J CHEM EDUC 40 * 308 (1963) CA 59 * 2177E (1963)	301360 301360 301360 301360 301360
SIEGEL B (AERØSPACE CØRP FL SEGUNDØ CALIF) STABLE GASEØUS SPECIES AT HIGH TEMPERATURES J CHFM EDUC 43(6) 1 304 (1963) CA 59 2170F (1963)	301359 301359 301359 301359 301359
SIEGEL. B SIEGEL. S CALCULATION OF VALENCE STATE ENERGIES FROM THERMOCHEMICAL DATA NATURE 199. 591 (1963)	301361 301361 301361
(ARGONNE NATL LAB LEMONT ILL) THE CRYSTAL STRUCTURE OF TRIGONAL U308	601267 601267 601267 601267

NSA 10. 113 (1956)	601267
SIEGEL. S SIEGEL. B IAERØSPACE CØRP EL SEGUNDØ CALIF) INTRINSIC BØND ENERGIES J CHEM EDUC 43 (3). 143 (1963) CA 59. 2178A (1963)	301358 301358 301358 301358 301358
SIEMENS. W (UNIV GOTTINGEN HYPERFINE STRUCTURE IN THE IRIDIUM I SPECTRUM AND THE NUCLEAR MOMENT OF THE STABLE IRIDIUM ISOTOPE ANN PHYS 13. 136 (1953) CA 48. 11919 (1954)	600949 600949 600949 600949 600949
SIEMS. P L (CØLØRADØ SCHØØL ØF MINES RE CØLØRADØ) BERYLLIUM CØLØ SCHØØL MINES MINERAL IND BULL 6. 15 (1963) CA 59, 1333C (1963)	301362 301362 301362 301362 301362
SILCOX, N DILLON, G ARMINGTON, A (A F CAMB RES LABS BEDFORD MASS) PREPARATION OF HIGH-PURITY CHROMIUM ULTRAPURIF SEMICOND MATER PROC CONF BOSTON MASS 1961, 164-72 (1962) CA 57, 5757 (1962)	201734 201734 201734 201734 201734 201734
SILVER, M D FARRAR, P A KØMAREK, K L THERMØDYNAMIC PRØPERTIES AND LATTICE PARAMETERS ØF HAFNIUM ØXYGEN ALLØYS TRANS AIME 227, 876 (1963)	202137 202137 202137 202137
SILVFR. A KUSHIDA. T (SCI LAB FØMØCØ DEARBØRN MICH) NUCLEAR MAGNETIC RESØNANCE IN TRANSITIØN-METAL DIBØRIDES J CHEM PHYS 38. NØ 4. 865 (1963)	300987 300987 300987 300987
SILVERMAN. L (ATOMICS INTERNATIONAL CANOGA PARK CAL) THE HIGH TEMPERATURE CHEMICAL REACTIVITIES OF THE URANIUM CARBIDES NAA-SR-MEMO 4269 NSA 14. 2731 (1960)	601364 601364 601364 601364 601364
SIMANOV, Y LAPITSKIY, A ET ÅL SØME PRØPERTIES ØF TANTALUM PENTØXIDE VEST MØSKØV UNIV SER FIZ MATEMAT I YESTEST NAUK 9, NØ. 9, 109 (1954) CØTS 55, 219 (1962)	301119 301119 301119 301119 301119
SIMMONS, C FUNSTON, E MAGEE, C MCGURTY, J CALKINS, V (G E CO CINCINATI OHIO) CHEMISTRY AND METALLURGY OF YTTRIUM APEX-475 (DEL) NUCL SCI ABSTR 15, 23929 (1961)	700808 700808 700808 700808 700808
SINGH. N A NEW BAND SYSTEM OF BORON MONOXIDE PROC INDIAN ACAD SCI 29A. 424 (1949)	600703 600703 600703
SINGLETON, E CARPENTER, L LUNDQUIST, R (U.S. BUREAU OF MINES BOULDER CITY NEV)	201560 201560

STUDIES OF THE MNO-SIO2 BINARY SYSTEM US BUR MINES DEPT INVEST NO 5938. (1962) CA 57. 120 (1962)	201560 201560 201560
SKIDMØRE. I MØRRIS. E (AT WPNS RES EST ALDERMASTØN ENGLAND) EXPERIMENTAL EQUATIØN ØF STATE DATA FØR URANIUM AND ITS INTERPRETATIØN IN THE CRITICAL REGIØN IAEA SYMP PRØC VIENNA. (1962) NSA 16. 25376 (1962)	601607 601607 601607 601607 601607
SKINNER, B (HARVARD UNIV CAMBRIDGE MASS) THE THERMAL EXPANSIONS OF THORIA, PERICLASE, AND DIAMOND AM MINERALOGIST 42, 39 (1957) CA 51, 15916 (1957) NSA 11, 3827 (1957)	601065 601065 601065 601065 601065
SKINNER, G BECKETT, C JØHNSTØN, H THERMAL, STRUCTURAL, ELECTRICAL, MAGNETIC, AND ØTHER PHYSICAL PRØPERTIES ØF TI,ZR, HF AND TH AND SØME ØF THEIR SIMPLE CØMPØUNDS. TH AND ITS HYDRIDES, ØXIDES, HALIDES, NITRIDE CARBIDES AND THE ALKALINE EARTH THØRATES CØNTRACT W-33-03BAC-17721 TECH REPT 102-AC49/2-100-4 NSA 8, 4046 (1954)	601225 601225 601225 601225 601225 601225
SKINNER: H (UNIV MANCHESTER MANCHESTEP ENGLAND) VALENCE STATES OF SOME ELEMENTS FROM GROUPS 2: 3: AND 4 CONFIGURATIONS CONTAINING D-ORBITALS TRANS FARADAY SOC 51: 1036 (1955) CA 50: 3813 (1956)	700761 700761 700761 700761 700761 700761
SKINNER» H WADDINGTØN» G WESTRUM» E BULLETIN ØF THERMØDYNAMICS AND THERMØCHEMISTRY» NØ 6 CA 59. 5862 (1963)	301589 301589 301589
SKURATØV» S KØLESØV» V FIRST ALL-UNIØN CØNFERENCE ØN CALØRIMETRY ZHUR FIZ KHIM 35» NØ 8 1896 (1961)	300251 300251 300251
SLACK. G (GEN ELECT RES LAB THERMAL CONDUCTIVITY OF CAF2. MNF2. COF2 AND ZNF CRYSTALS PHYS REV 122. 1451 (1961) CA 55. 19450 (1961)	201125 201125 201125 201125 201125
SLATER. J ELECTRONIC STRUCTURE OF ATOMS AND MOLECULES NP-4541. (1953) TECHNICAL REPORT 3 (1953)	600905 600905 600905
SLEPTSOV. V SAMSONOV. G KINETIC PARAMETERS OF THE NITRIDATION OF BORON DOPOVIDI AKAD NAUK UKR R S R 1959. [16 (1959) CA 55. 7001 (1961)	200766 200766 200766 200766
SMAGINA, E KUTSEV, V ØRMØNT, B INVESTIGATIØN ØF THE EQUILIBRIUM IN THE SYSTEM ZIRCØNIUM NITRØGEN AT HIGH TEMPERATURES AND ØF THE FREE ENERGY ØF FØRMATIØN ØF ZRN AS A FUNCTIØN ØF ITS CØMPØSITIØN AND STRUCTURE PRØRLEMY FIZ KHIM 2, 118 (1959) JPRS-10232	300345 300345 300345 300345 300345 300345

COTS 46.198 (1961) NSA 15. 32554 (1961)	300345 300345
SMALLMAN-TEW+ R (NAT RES COUNCIL OTTAWA CANADA) A REVIEW OF THE REFRACTORY METALS CAN AERO SPACE J.9, (1) 15 (1963) BHT NO 1+ 11 (1963)	301157 301157 301157 301157 301157
SMILTENS, J (A F CAMB RES CTR BEDFØRD MASS) THE STANDARD FREE ENERGY ØF FØRMATIØN ØF SILICØN CARBIDE J PHYS CHEM 64, 368 (1960)	301059 301059 301059 301059
SMILTENS, J (A F CAMB RES CTR BEDFØRD MASS) THEØRY ØF GASEØUS EQUILIBRIUMS IN THE SILICØN-CARBIDE BINAR SYSTEM SILICØN CARBIDE, PRØC CØNF, BØSTØN 1959, 3 (1960) CA 55, 7014 (1961)	200771 200771 200771 200771 200771 200771
SMIRNOV, M NICHKOV, I RASPOPIN, S PERFILEV, M THERMODYNAMIC STUDY OF THE REACTION U02(S) PLUS 1/2C(G) PLUS CL2(G) EQUALS U0CL2(S) PLUS 1/2C02(G) BY THE EMF METHO DOKLADY AKAD NAUK SSSR 130, 581 (1960) CA 56, 73 (1962)	201191 201191 201191 201191 201191
SMIRNØV. M KØMARØV. V BARABØSHKÍN. A EQUILIBRIUM PØTENTIALS ØF ZIRCØNIUM IN MØLTEN FLUØRIDE-CHLØ MIXTURES DØKLADY AKAD NAUK SSSR 133. 409 (1960) CA 55. 16219 (1961)	201056 RIDE201056 201056 201056 201056
SMIPNØV: M CHUKREEV: N IN ESTIGATION OF THE THERMODYNAMICS OF THE REDUCTION OF BERYLLIUM ØXIDE BY CARBON ZHUR NEORG KHIM 3: 2445 (1958) CE 44: 102 (1961) NSA 15: 11473 (1961)	700523 700523 700523 700523 700523 700523
SMIRNOV» M PALGUEV» S BEHAVIOR OF ANODES MADE OF AN INTIMATE MIXTURE OF TITANIUM DIOXIDE WITH CARBON DURING AN ELECTROLYSIS OF FUSED SALT TRUDY INST ELEKTROKHIM AKAD NAUK SSSR URAL FIL 1960» NØ 1 29 (1960) CA 55. 19551 (1961)	300297
SMIRNOV. M SKIBA. 0 0XIDATION-REDUCTION POTENTIAL OF THE SYSTEM U3+/U4+ IN A NACL-KCL MELT DANSSSR 141. NO 4. 904 (1961)	300992 300992 300992 300992
SMIRNOVA, V ØRMØNT, B (L YA KARPØV PHYS-CHEM INST MØSC.W USSR) SURFACE TENSIØN DETERMINATION AT HIGH TEMPERATURES BY THE HANGING DRØP AND THE DRØP FØRMATIØN METHØDS ZHUR FIZ KHIM 33, 771 (1959) CA 54, 8196 (1960)	300267 300267 300267 300267 300267 300267
SMITH. D ISOTOPE SPECTRUM SHIFT DATA ON URANIUM SPECTRUM LINES AFCD-3481 ORNL-1412 (1952) NSA 7: 1094 (1953)	601249 601249 601249 601249

- 1 - 1464 (1069)	
NSA 7. 1654 (1953)	601249
SMITH, D CLINE, C (UNIV OF CALIFORNIA LIVERMORE ENGLAND) VERIFICATION OF EXISTANCE OF CUBIC ZIRCONIA AT HIGH TEMPERATURE J AM CERAM SOC 45, 249 (1962) CA 57, 4130 (1962)	201672 201672 201672 201672 201672 201672
(UNIV OF CALIFORNIA BERKELEY CALIF)	201483 201483 201483 201483 201483
SMITH, D CLINE, C FRECHETTE, V (UNIV. CALIF LIVERMORE) A HIGH TEMPERATURE CRYSTALLOGRAPHIC PHASE INVERSION IN BEO J NUCL MATER 6, 265 (1962) NSA 17, 3517 (1963)	701073 701073 701073 701073 701073
(U S BUR MINES UNIV ALA)	201542 201542 201542 201542 201542 201542
HIGH TEMPERATURE HEAT CONTENTS AND ENTROPIES OF ZIRCONIUM FLUORIDE AND ZIRCONIUM SULFATE U S BUR MINES REPT INVEST NO 5964 (1962) CA 56. 15002 (1962) SMITH. D MCNALLY. J ISOTOPE SHIFTS IN ENHANCED SAMARIUM ISOTOPES J OPT SOC AMER 40. 878 (1950) CA 47. 5793 (1953)	100197 100197 100197 100197
SMITH, D STUKENBRØEKER, G MCNALLY, J (ØAK RIDGE NATL LAB ØAK RIDGE TENN) NEW DATA ØN ISØTØPE SHIFTS IN URANIUM SPECTRA, URANIUM (236) AND URANIUM (234) PHYS REV 84, 383 (1951) CA 46, 1865 (1952)	400564 400564 400564 400564 400564
SMITH, F (STANFØRD RES INST MENLØ PARK CALIFØRNIA) CØLLISIØN LIFETIMES AND THE THERMØDYNAMICS ØF REAL GASES J CHEM PHYS 38, 1304 (1963) CA 58, 8413 (1963)	301590 301590 301590 301590 301590
SMITH. J DETERMINATION OF THERMODYNAMIC FUNCTIONS FOR THE FORMATION OF BINARY INTERMETALLIC PHASES FROM VAPOR-PRESSURF MEASUREMENTS US AT ENERGY COMM 15-440. (1962) CA 57. 6694 (1962)	201743 201743 201743 201743 201743
MITH. J UNST FO AT RES AMES 10wA) PHYSICAL CONSTANTS CRYSTAL STRUCTURE AND THERMODYNAMIC PROPERTIES PROC CONF METAL THOECUM CLEVELAND 1956 (HARLEY A WILHELM EDITOR AMER SOC FOR METALS) 133. 47 (1958) CA 52. 19858 (1958)	601073 601073 601073 601073 601073 601073
SMITH, J CARLSON, C SPEDDING, F ELASTIC PROPERTIES OF YITRIUM AND ELEVEN OF THE RARE EARTH ELEMENTS	700746 700746 700746

J METALS 9, 1212 (1957) CA 52, 1019 (1958)		700746 700746
SMITH. J GJFVRE. J (10WA STATE UNIV AMES ELASTIC CONSTANTS OF YTTRIUM SINGLE CRYSTALS IN TEMPERATURE RANGE 4.2 TO 400 DEGREES K J APP PHYS 31. 645 (1960)	I ØWA) THE	700812 700812 700812 700812 700812
SMITH, G S ALEXANDER, L E (MELLON INST PITTSBURGH REFINEMENT OF ATOMIC PARAMETERS OF ALPHA-QUARTZ ACTA CRYST 16, 462 (1963) CA 59, 7041E (1963)	PAI	202139 202139 202139 202139 202139
SMITH, G S (MELLØN INST PITTSBURGH THE REGULARITY ØF TETRAHEDRA IN QUARTZ ACTA CRYST 16, 542 (1963) CA 59, 7041G (1963)	PA)	202140 202140 202140 202140 202140
SMITH, K (ARGØNNE NATL LAB LEMØNT THERMAL CØNDUCTIVITY ØF URANIUM US ATØMIC ENERGY CØMM ANL-5700 (1957) CA 51. 14401 (1957) NSA 11. 8246 (1957)	ILL)	601063 601063 601063 601063 601063
SMITH. K SPALDING. I THE ATOMIC G VALUES OF SOME RARE-EARTH ATOMS PROC ROY SOC (LONDON) 265A. 133-40 (1961) CA 56. 12436 (1962)		300777 300777 300777 300777
SMITH, P WØLCØTT, N THE SPECIFIC HEAT ØF THØRIUM AND URANIUM BULL INST INTERN-FRØID, ANNEXE 283, (1955) CA 53, 15743 (1959)		601137 601137 601137 601137
SMITHELLS. C TUNGSTEN CHEMICAL PUBLISHING CØ INC NEW YØRK (1953)		700509 700509 700509
SØDA, R (NATL INST IND HEALTH KAWASAKI-SHI DEFØRMATIØN VIBRATIØN ØF SIØH BULL CHEM SØC (JAPAN) 35, 1897 (1962) CA 58, 5166 (1963)	JAPAN)	301591 301591 301591 301591 301591
SØDA. R (NATL INST IND HEALTH KANAGAWA-KEN INFRARED ABSØRPTIØN SPECTRA ØF QUARTZ AND SØME MØDIFICATIONS BULL CHEM SØC JAPAN 34. 1491 (1961) CA 56. 4262 (1962)	JAPAN) ØTHER SILICA	201302 201302 201302 201302 201302 201302
SØFFER. B (MIT ØPTICAL AND INFARED ABSØRPTIØN SPECTRA ØF RUTIL CRYSTÅLS J CHEM PHYS 35. 940 (1961) CA 56. 5546 (1962)	MASS) E SINGLE	201327 201327 201327 201327 201327 201327
SØKØLØV. V NAZIMØVA. N		201622

STRUCTURE AND NATURE OF EXCITATION OF THE MAGNESIUM OXIDE SPECTRUM OPTIKA I SPEKTROSKOPIYA 8, 573 (1960) CA 57, 2988 (1962)	201622 201622 201622 201622
SOLACOLU. S THERMAL EQUILIBRIUM OF THE SYSTEM MGO-MGO.AL203(MGO.FE203)- 2MGO.SI02-2CAO.SI02 WITH APPLICATIONS TO THE MECHANISM OF THE REACTIONS OF THE MAGNESITE REFRACTORIES ACAD REP POPULARE ROMINE STUDII CERCETARI MET 6. 425 (1961) CA 57. 4335 (1962)	201694 201694 201694 201694 201694
SØLTYK. V HIGH-PRECISIØN MEASUREMENT ØF THE TEMPERATURE ØF LIQUID METALS IND LAB (USSR) 28. (5) 625 (1962) BHT NØ 1. 3 (1963)	301158 301158 301158 301158
SØMMER. A WHITE. D LINEVSKY, M J MANN. D E INFRARED ABSØRPTIØN SPECTRA ØF B203. B202. AND B02 IN SØLID ARGØN MATRICES J CHFM PHYS 38. 87 (1963) PA 66. 8272 (1963)	202141 202141 202141 202141 202141
SØREL» M CRYSTALLØGRAPHY ØF A PHASE TRANSFØRMATIØN WITH THE AID ØF THE KIKUCHI LINES CØMPT REND 248, 2106 (1959) CA 55, 14001 (1961)	600787 600787 600787 600787
SPACEK V (USTAV VYZKUM RUD PRAGUE CZECH) ZIRCØNIUM CHEM LISTY 55 • 16 (1961) CA 55 • 6308 (1961)	200888 200888 200888 200888 200888
SPACU. P GHEØRGHIU. C ZUBØV. L THE CHEMISTRY ØF ØSMIUM REV CHIM AKAD REP PØPULAIRE RØUMAINE 6. 323 (1961) CA 57. 4294 (1962)	201693 201693 201693 201693
SPENDING, F RARE EARTHS INTERNATIONAL SCIENCE AND TECHNOLOGY 4, (1962) REV MET LIT 19, (1962)	301077 301077 301077 301077
SPEDDING, F DAANE, A (IOWA STATE UNIV AMES IOWA) THE RARE-EARTH METALS MET REVS 5, 297 (1960) CA 55, 4299 (1961)	200853 200853 200853 200853 200853
SPEDDING. F. DAANF. A (EDITØRS) THE RARE EARTHS . JOHN WILEY AND SONS NEW YORK (1961)	700907 700907 700907
SPEDDING. F DAANE. A HERRMANN. K CRYSTAL STRUCTURES AND LATTICE PARAMETERS ØF HIGH PURITY SCANDIUM. YTTRIUM. AND THE RARE EARTH METALS ACTA CRYST 9. 559 (1956) CA 50. 15165 (1956)	700703 700703 700703 700703 700703
SPEDDING. F. DAANE. A. HERRMANN. K. ELECTRICAL RESISTIVITIES AND PHASE TRANSFORMATIONS OF	700872 700872

LANTHANUM, CERIUM, PRASEØDYMIUM AND NEØDYMIUM J METALS 9, AIME TRANS 209, 895 (1957) CA 51, 16238 (1957)	700872 700872 700872
SPENDING, F DAANE, A WAKEFIELD, G DENNISØN, D (IØWA STATE UNIV AMES IØWA) PREPARATIØN AND PRØPERTIES ØF HIGH PURITY SCANDIUM METAL TRANS AIME 218, 608 (1960) CA 54, 19387 (1960)	700713 700713 700713 700713 700713
SPEDDING, F EBERTS, R NAUMANN, A (IOWA STATE UNIV AMES IOWA) HEATS OF COMBUSTION OF SOME RARE EARTH METALS US AT ENERGY COMM FSC-934, (1955) CA 53, 17657 (1959)	601146 601146 601146 601146 601146
SPEDDING, F FLYNN, J (IOWA STATE COLL AMES IOWA) INTEGRAL HEATS OF SOLUTION OF RARE EARTH TRICHLORIDES J AM CHEM SOC 76, 1477 (1954) CA 48, 6805 (1954)	700822 700822 700822 700822 700822
SPEDDING, F FLYNN, J THERMOCHEMISTRY OF THE RARE EARTHSII. LANTHANUM, PRASE- ØDYMIUM, SAMARIUM, GADØLINIUM, ERBIUM, YTTERBIUM, AND YTTRIUM J AM CHEM SØC 76, 1474 (1954) CA 48, 9175 (1954)	700824 700824 700824 700824 700824 700824
SPEDDING, F GSCHNEIDNER, K DAANE, A LANTHANUM-CARBØN SYSTEM TRANS MET SØC AIME 215, 192 (1959) CERAM A 44, 192 (1961)	700687 700687 700687 700687
SPEDDING, F GSCHNEIDNER, K DAANE, A (IOWA STATE COLL AMES IOWA) CRISTAL STRUCTURES OF SOME OF THE RARE EARTH CARBIDES JOUR AM CHEM SOC 80, 4499 (1958) CA 53, 2729 (1959)	700834 700834 700834 700834 700834
SPEDDING, F HANAK, J DAANE, A (IOWA STATE UNIV AMES IOWA) HIGH-TEMPERATURE ALLOTROPY AND THERMAL EXPANSION OF THE RARE-EARTH METALS J LESS-COMMON METALS 3, 110 (1961) CA 55, 17411 (1961)	201087 201087 201087 201087 201087 201087
SPEDDING, F MCKEØWN, J DAANE, A (AMES LAB AMES 966 8 THE HIGH TEMPERATURE THERMØDYNAMIC FUNCTIØNS ØF CERIUM, NEØDYMIUM, AND SAMARIUM J PHY CHEM 64, 289 (1960) NSA 14, 12564 (1960)	700570 700570 700570 700570 700570 700570
SPEDDING, F MILLER, C SØME CALØRIMETRIC STUDIES ØF THE METALS AND CHLØRIDES ØF CE AND ND ISC-167 (1951) NSA 6, 560 (1952)	601241 601241 601241 601241 601241
SPEDDING, F PØWELL, J DAANE, A HILLER, M ADAMS, W LIØWA STATE CØLL AMES 10WA) PREPARING PUPE SCANDIUM ØXIDE	700757 700757 700757

J ELECTROCHEM SOC 105, 683 (1958) CA 53, 2910 (1959)	700757 700757
SPEISER R RESEARCH ON THE OXIDATION BEHAVIOR OF TUNGSTEN AD-238301 (1960) NS 15. 4271 (1961)	600661 600661 600661
SPERNER. F ZIRCØNIUM AND ITS APPLICATIONS METALL 15. 892 (1961) BHT NØ 1. 9 (1962)	300371 300371 300371 300371
SPERNER. F VANADIUM. METAL FOR THE FUTURE METALL 15. 988 (1961) BHT NO 1. 9 (1962)	300372 300372 300372 300372
SPERNER» H HAFNIUM METALL 16» 679 (1962) CA 57» 8292 (1962)	201787 201787 201787 201787
SPINK, D (CARBORUNDUM METALS CO AKRON NEW YORK) LESS COMMON ELEMENTS, REACTIVE METALS, ZIRCONIUM, HAFNIUM, AND TITANIUM IND ENG CHEM 53, 97 (1961) CA 55, 6319 (1961)	200891 200891 200891 200891 200891 200891
SPIRIDONOV, V TATEVSKI. V (LØMØNØSØV STATE UNIV MØSCØW RUSSIA) REGULARITY IN THE INTERNUCLEAR DISTANCES ØF DIATØMIC MØLECULES ZH FIZ KHIM 36. 2024 (1962) DØKL AKAD NAUK SSSR 138. 621 (1961) CA 58. 1915 (1963)	301592 301592 301592 301592 301592 301592
SPITSYN, V AFØNSKII, N TSVIELNIKØV, V THERMAL DECØMPØSITIØN ØF ISØPØLYCHRØMATES ØF PØTASSIUM ZHUR NEØRG KHIM 5, 1505 (1960) CA 57, 1848 (1962)	300619 300619 300619 300619
SPITSYN, V KØMISSARØVA, L MENKØV, A THE PRØDUCTIØN AND SØME PRØPERTIES ØF METALLIC SCANDIUM DØKLADY AKAD NAUK SSSR 139, 903 (1961) BHT NØ 1, 9 (1962)	300370 300370 300370 300370
SPITSYN. V ZIMAKØV. I THE FFFECT ØF RADIØACTIVITY ØF MØLYBDENUM TRIØXIDE ØN THE VELØCITY ØF ITS EVAPØRATIØN DØKL AKAD SCI 139. 3. 654(1961) TRANSL P566	301593 301593 301593 301593
SRB. V (VYSØKA SKØLA CHEM TECHNØL PRAGUE CZECH) PRØPERTIES AND EVALUATIØN ØF ELECTRØLYTICALLY PREPARED SAM ØF MNØ2 CØLLECTIØN CZECHØSLØV CHEM CØMMUNS 26, 1231 (1961) CA 55, 17329 (1961)	201083 201083 PLES 201083 201083 201083 201083
STADELMAIER. H (N C STATE COLLEGE RALEIGH N C) TERNARY COMPOUNDS OF TRANSITION METALS. B-METALS AND	201365 201365 201365

METALLØIDS Z MCTALLK 52, 758 (1961) CA 56, 7014 (1962)			201365 201365 201365
STADELMAIER H YUN T (NØ CARØLINA STATE CØLL TERNARY BØRIDES HAVING THE C CR23C6 STRUCTURE Z METALLK 53 + 754 (1962) CA 58 + 7444 (1963)	RALEIGH CHRØMIUM CARBIDE	NØ CARØLINA)	301594 301594 301594 301594 301594 301594
STALINSKI. B BIEGANSKI. Z (PØLITECH ADIABATIC SEMIMICRØ CALØRIME 23 TØ 370 DEGREES K. HEAT CA DEGREES K RØCZNIKI CHEM 35. 273 (1961) CA 55. 16033 (1961)	APACITY OF TITANIUM	TURE RANGE	201045 201045 201045 201045 201045 201045 201045
STARITZKY» E WALKER» D (LØS ALAMØS SCI LAB CRYSTALLØGRAPHIC DATA» PØTAS CØPPER DICYANIDE» KCU(CN)2 ANAL CHEM 28» 419 (1956) NSA 10» 9185 (1956)		NEW MEXICØ)	601257 601257 601257 601257 601257 601257
STARITZKY, E (LØS ALAMØS SCI LAB CRYSTALLØGRAPHIC DATA THØRIU PENTAHYDRATE TH(NØ3)4-5H2Ø ANAL CHEM 28, 2021 (1956) NSA 11, 1451 (1957)		N MEXICØ)	601292 601292 601292 601292 601292 601292
STARITZKY, E (LØS ALAMØS SCI LAB CRYSTALLØGRAPHIC DATA YTTRIU DYSPRØSIUM SESQUIØXIDE DY203 YTTRIUM SESQUIØXIDE, YB203 ANAL CHEM 28, 2022 (1956) CA 51, 1685 (1957)	UM SESQUIØXIDE Y203 B ERBIUM SESQUIØXIDE		601030 601030 601030 601030 601030 601030 601030
STARKE, E CHENG, C BECK, P (UNIV ILL LOW-TEMPERATURE SPECIFIC HEA ORDERED STRUCTURE PHYS REV 126, 1746 (1962) CA 57, 5686 (1962)	URBANA IT ØF TI ALLØYS WITH	ILL) CSCL TYPE	201730 201730 201730 201730 201730 201730
STECURA: S CAMPBELL: W (U S BUR ØF MINES THERMAL EXPANSION AND PHASE ØXIDES US BUR MINES REPT INVEST NO CA 56: 2965 (1962)		MD) ARTH	201271 201271 201271 201271 201271 201271
STEEB S (MAX-PLANCK-INS METALLFØRSCH SUPERSTRUCTURE PHASE IN THE NATURWISSENSCHAFTEN 47 . 465 CA 55 . 6096 (1961)	SYSTEM URANIUM-ØXYGE		200882 200882 200882 200882 200882
STEELE, D (UNIV COLL	SWANSEA	ENGLAND)	301595 301595

DISSOCIATION PRODUCTS OF C2 SPECTROCHIM ACTA 19, 411 (1963) CA 58, 13296 (1963)	301595 301595 301595
STEELE W NICHOLS , L STONE , F (HARVARD UNIV CAMBRIDGE MASS) THE DETERMINATION OF SILICON-CARBON AND SILICON-HYDROGEN BOND DISSOCIATION ENERGIES BY ELECTRON IMPACT J AM CHEM SOC 84 , 4441 (1962) CA 58 · 10743 (1963)	301596 301596 301596 301596 301596 301596
STEPANOVA. A UMANSKII. M PARAMETERS OF UNIT CELLS OF HEXABORIDES OF METALS BOR TRUDY KONF KHIM BORA I EGO SOEDINENII 1955. 102 (1956) CA 54. 4101 (1960)	601204 601204 601204 601204
STFPANOVA, A ZHURAVLEV, N ((M V LOMONOSOV STATE UNIV MOS COW USSR X-RAY STUDY OF YBB6, UB4, HOB4, AND GDB4 KRISTALLOGRAFIYA 3, 94 (1958) CA 52, 9706 (1958)	601111 601111 601111 601111
STEPANOVA, G ROZEN, A THE THERMAL DISSOCIATION OF MOLYBDENUM HEXACARBONYL FIZ METAL I METALLOVED AKAD NAUK SSSR 10, 650 (1960) CA 55, 11169 (1961)	200966 200966 200966 200966
STEPIN. B D BLYUM. G Z SHVARTS. M M MEANS OF PURIFYING SILICON DIOXIDE FROM TRACE IMPURITIES KHIM PROM 1963. 138 (1963)	202142 202142 202142
STEPIN» B CHERNYAK» A THE CHLØRINATIØN ØF IRIDIUM ZH NEØRGAN KHIM 5» 2157 (1960) CA 57» 380 (1962)	201576 201576 201576 201576
STERN, D MCKENNA, Q METAL BØRIDES AND SILICIDES US 2, 936, 268, (1960) CA 55, 3247 (1961)	200830 200830 200830 200830
STERN. K HIGH TEMPERATURE ELECTRØCHEMISTRY AD 248496	300305 300305 300305
STEVENS, A E FERGUSØN, H I S PHØTØELECTRIC INTENSITY MEASUREMENTS UPØN BANDS ØF THE SIN (B2E PLUS-X2E PLUS) SPECTRUM CANAD J PHYS 41, 240 (1963) PA 66, 8269 (1963)	202143 202143 202143 202143 202143
STEVENS. E WILHELM. A (10WA STATE UNIV . AMES 13WA) REDUCTION OF NIOBIUM PENTOXIDE BY 'RBON AEC-IS-339 FEB 1961 GOVT PUB 2053 (1962)	301597 301597 301597 301597 301597
STEVENSON. J RUEHLE. A (MALLINCKRODT CHEM WORKS ST LOUIS MO) URANIUM METAL BY BOMB REDUCTION. VI. IGNITION TEMPERATURES OF MAGNESIUM METAL WITH UF4. U02F2. U02. U308. AND U03 US AT ENERGY COMM NY0-1339. (1953) CA 57. 5677 (1962)	201727 201727 201727 201727 201727 201727

STEWARD, R JØHNSØN, V A CØMPENDIUM ØF THE PRØPERTIES ØF MATERIALS AT LØW TEMPERATURE (PHASE 11 WADD TR 60-56 AD-272769	301598 301598 301598 301598 301598
STISHOV. S M BELOV. N V CRYSTALLINE STRUCTURE OF THE NEW CLOSE-GRAINED MODIFICATION OF SILICA SIO2 DOKL AKAD NAUK SSSR 143. 951 (1962) TAB 63-3-2. 57 (1963)	301363 301363 301363 301363
STISHOV, S POPOVA, S (STATE UNIV MOSCOW RUSSIA) NEW DENSE MODIFICATIONS OF SILICA GEOKHIMIYA 837, 1961 CA 57, 5393 (1962)	201716 201716 201716 201716 201716
STOCKER. J THE STABILIZATION OF CUBIC SOLID SOLUTIONS OF ZRO2 BULL SOC CHIM FRANCE 1961. 78 (1961) CA 55. 18236 (1961)	201102 201102 201102 201102
STØICHEFF B (NATL RES LABS ØTTAWA CAN) HIGH RESØLUTIØN RAMAN SPEÇTRØSCØPY ØF GASES I.II RAMAN SPECTRUM ØF NITRØGEN CAN J PHYS 32 630 (1954) CA 49 718 (1955)	600598 600598 600598 600598 600598
STØRMS. E (LØS ALAMØS SCI LAB LØS ALAMØS NEW MEXICØ) REVIEW ØF REFRACTØRIES U S AT ENERGY CØMM LAMS-2674. (1962) ÇA 58. 5358 (1963)	301023 301023 301023 301023 301023
STØRMS. E KRIKØRIAN. N (LASL LØS ALAMØS NEW MEXICØ) THE NIØBIUM-NIØBIUM CARBIDE SYSTEM J PHYS CHEM 64. 1471 (1960) CA 55. 10036 (1961) NSA 15. 1878 (1961)	700980 700980 700980 700980 700980 700980
STØRMS. E KRIKØRIAN. N KEMPTER. C (LASL LØS ALAMØS NEW MEXICØ) CRYSTALLØGRAPHIC DATA ØN NIØBIUM MØNØCARBIDE ANAL CHEM 32, 1722 (1960) CA 55, 51 (1961) NSA 15. 1865 (1961)	700979 700979 700979 700979 700979
STØRMS. E MCNEAL. R (LØS ALAMØS SCI LAB LØS ALAMØS N MEX) THE VANADIUM-VANADIUM CARBIDE SYSTEM J PHYS CHEM 66. 1401 (1962)	300608 300608 300608 300608
STØRØNKIN. A SHULTS. M THERMØDYNAMICS ØF MULTICØMPØNENT HETERØGENEØUS SYSTEMS PART 2 NECESSARY CØNDITIØNS FØR THE STABILITY ØF HETERØGENEØUS SYSTEMS ZHUR FIZ KHIM 34. 1928 (1960)	300296 300296 300296 300296 300296
STORONKIN. A V MORACHEVSKII. A G SMIRNOVA. N A	202144

CERTAIN ASPECTS OF THE THERMODYNAMICS OF MULIT-COMPONENT SYSTEMS ZH FIZ KHIM 37. 1213 (1963)	202144 202144 202144
STORONKIN. A V SMIRNØVA. N A THE THERMODYNAMICS OF MULTICOMPONENT HETERORGENEOUS SYSTEMS IV CONDITIONS OF EQUILIBRIUM AND STABILITY OF MULTICOMPONENT MULTIPHASE SYSTEMS RUSS J PHYS CHEM 36. 1058 (1962)	202145 202145 202145 202145 202145 202145
STØUT. J HADLEY. W BRANDT. C (UNIV ØF CHICAGØ CHICAGØ ILLINØIS) THERMAL AND MAGNETIC PRØPERTIES ØF MNBR2 AT LØW TEMPERATURES US DEPT CØM. ØFFICE TECH SER PB REPT 143420 (1958) CA 55. 19406 (1961)	201122 201122 201122 201122 201122 201122
STØVER, E WULFF, J (MIT CAMBRIDGE MASS) NICKEL-TITANIUM-CARBØN SYSTEM TRANS AIME 215, 127 (1959) CA 53, 6969 (1959)	300282 300282 300282 300282 300282
ST PIERRE, G EBIHARA, W POOL, M SPEISER, R THE W-O SYSTEM TRANS AIME 224. NO 2. 259 (1962) BHT NO 2. 46 (1962)	300547 300547 300547 300547
STRASHINSKAYA, L SAMSØNØV, G SHILLER, E CØNTACT REACTIØN BETWEEN METALLIC CARBIDES NITRIDES AND BØRIDES WITH REFRACTØRY METALS AT ELEVATED TEMPERATURES IZV AKAD NAUK SSSR ØTD TEKHN NAUK MET I TØPLIVØ 5, 167 (1962) CA 58, 1188 (1963)	201970 201970 201970 201970 201970
STRAUMANIS, M EJIMA, T JAMES, W (UNIV ØF MISSØURI RØLLA MISSØURI) THE TIØ2 PHASE EXPLØRED BY THE LATTICE CØNSTANT AND DENSITY METHØD ACTA CRYST 14, 493 (1961) CA 55, 17152 (1961) PA 65, 6811 (1962)	201078 201078 201078 201078 201078 201078 201076
STRAUMANIS, M LI, H (UNIV OF MISSOURI ROLLA MISSOURI) LATTICE CONSTANTS, LINEAR COEFFICIENTS OF EXPANSION, DENSITIES, CAVITY ARRANGEMENT, AND STRUCTURE OF THE TITANIUM II OXIDE PHASE ANORG U ALLGEM CHEM 305, 143 (1960) CA 55, 51 (1961)	200780 200780 200780 200780 200780 200780 200780
STRAUMANIS. M EJIMA. T IMPERFECTIONS WITHIN THE PHASE TI203 AND ITS STRUCTURE FOUND BY THE LATTICE PARAMETER AND DENSITY METHOD ACTA CRYST 15. 404 (1962)	300692 300692 300692 300692
STRAUSS, S (U S NAVAL RESEARCH LAB WASHINGTON DC) THE SURFACE TENSIONS OF LIQUID METALS AT THEIR MELTING POINTS NUCLEAR SCI AND ENG 8, 362 (1960) CA 55, 16323 (1961)	201065 201065 201065 201065 201065
STREKALOVSKIY. V BESSONOV. A	400613

PHASE TRANSFØRMATIONS DURING REDUCTION AND OXIDATION OF URANIUM OXIDES FIZ METAL I METALLOV 11. 3. 400 (1961)	400613 400613 400613
STREKALØVSKII, V VLASØV, V KINETICS ØF REDUCTIØN ØF URANIUM TRIØXIDE WITH HYDRØGEN ZHUR PRIKLAD KHIM 34, 32 (1961) CA 55, 17166 (1961)	201079 201079 201079 201079
STRELETS, V PITAK, N KULIK, A LØGACHEV, M LABØRATØRY STUDIES ØF THE TECHNØLØGY ØF ZIRCØNIUM ARTICLES ØGNEUPØRY 27, NØ 6, 283 (1962)	300624 300624 300624
STRIGANOV, A KATULIN, V ELISEEV, V PECULIARITIES OF THE ISOTOPIC SHIFT IN THE SAMARIUM SPECTRUM OPTICS AND SPECTROSCOPY (USSR) 12, 91 (1962) NSA 16, 19513 (1962)	601468 601468 601468 601468
STRIGANOV, A KOROSTYLEVA, L ISOTOPE EFFECT IN THE URANIUM SPECTRUM ZHUR EKSPTL I TEORET FIZ 29, 393 (1955) CA 50, 3077 (1956)	600989 600989 600989 600989
STRINGER. J ØXIDATIØN ØF TITANIUM IN ØXYGEN AT HIGH TEMPERATURES ACTA METALLURGICA 8. 758 (1960)	700559 700559 700559
STRØNG, H (GE RESEARCH LAB SCHENECTADY N Y) MELTING AND ØTHER PHASE TRANSFØRMATIØNS AT HIGH PRESSURE PRØC INTERN CØNF (NEW YØRK) 189 (1961) CA 58, 7685 (1963)	301599 301599 301599 301599 301599
STRUAT, K WEIK, H (WRIGHT AIR DEVELOP DIV DAYTON OHIO) YTTRIUM, SCANDIUM AND THE RARE EARTHS SURVEY OVER THE STATE OF THEIR INVESTIGATION METALL 14, 713 (1960) CA 54, 20754 (1960)	601167 601167 601167 601167 601167
STUDIER. M (ARGONNE NATL LABS ARGONNE ILL) GASEOUS ØXIDES ØF RHENIUM J PHYS CHEM 66. 189 (1962) CA 57. 2861 (1962)	201608 201608 201608 201608 201608
STUKENBRØEKER, G MCNALLY, J ISØTØPE SHIFTS IN THØRIUM-TH230 AND TH232 AECD-2939, (1950) NSA 4, 6588 (1950)	601383 601383 601383 601383
STURCKEN, E POST, B (EI DU PONT DE NEMOURS ET CO AIKEN N C) THE ATOMIC POSITION PARAMETER IN ALPHA-URANIUM ACTA CRYST 13, 852 (1960) CA 55, 5078 (1961)	200857 200857 200857 200857 200857
SUDO, K KIGOSHI. A (TOHOKU UNIV SENDAI JAPAN) FUNDAMENTAL STUDIES ON URANIUM DIOXIDES II. EQUILIBRIA AMONG UO2. U409. AND U308 AT 500 TO 1200 DEGREES SCI PEPT RES INST TOHOKU UNIV SER A13. 448 (1961) CA 56. 13912 (1962)	201530 201530 201530 201530 201530 201530

SUGIYAMA, M SUZUKI, H SØME PRØPERTIES ØF TIC-NI CERMET AFFECTED BY FREE CARBØN CØNTENTS IN TIC PØWDERS NIPPØN KINZØKU GAKKAI SHI 25, 321 (1961) BHT 4, 21 (1961)	300331 300331 300331 300331 300331
SUITER. J PROPERTIES OF TITANIUM-NIOBIUM ALLOYS BULL INST METALS 4, 104 (1958) CA 55, 14258 (1961)	201042 201042 201042 201042
SUKHAREVSKII. B VISHNEVSKII. I (UKR REFR MATER SCI RES INST SSSR) PØLYMØRPHIC TRANSFØRMATIØN KINETICS ØF ZRØ2 DØKL AKAD NAUK SSSR 147. (4) 882 (1962) BHT NØ 1. 37 (1963)	301159 301159 301159 301159 301159
SULLIVAN, R SEIBEL, R LUNDIN, C (DENVER UNIV DEN RES INST DENVER COLØ) LITERATURE SURVEY ØF SELECTED SEMICØNDUCTØR PRØPERTIES AFCRL-4 SCIENTIFIC REPT NØ 1 (1960) NSA 15, 18478 (1961)	701038 701038 701038 701038 701038
SUN, H WEISSLER, G (UNIV ØF S CALIF) ABSØRPTIØN CRØSS SECTIØNS ØF CARBØN DIØXIDT AND CARBØN MØNØXIDE IN THE VACUUM ULTRAVIØLET J CHEM PHYS 23, 1625 (1955) CA 50, 674 (1956)	600725 600725 600725 600725 600725
SUNDARAM. S THERMODYNAMIC FUNCTIONS OF SOME PROPELLANTS Z PHYSIK CHEMIE 36. 376 (1963)	301365 301365 301365
ABSØRPTIØN CRØSS SECTIØNS ØF CARBØN DIØXICT AND CARBØN MØNØXIDE IN THE VACUUM ULTRAVIØLET J CHEM PHYS 23, 1625 (1955) CA 50, 674 (1956) SUNDARAM, S THERMØDYNAMIC FUNCTIØNS ØF SØME PRØPELLANTS Z PHYSIK CHEMIE 36, 376 (1963) SUSHKØV, V TEKHNICHESKAYA TERMØDINAMIKA MØSCØW GØSUDARST ENERGET IZDATEL (1960) CA 55, 2266 (1961)	200815 200815 200815 200815
SUTCLIFFE L WALSH A (UNIV LEEDS ENGLAND) THE ULTRAVIOLET ABSORPTION SPECTRUM OF NITRIC OXIDE PROC PHYS SOC 66 209 (1953) CA 47 9145 (1953)	600732 600732 600732 600732 600732
SUTTON, A EELES, W PRICE, A (ATOMIC ENERGY RES ESTAB HARWELL ENGLAND) INTERATOMIC DISTANCE IN ALPHA-U AT 20 DEGREES AND 630 DEGREES REPT R 3818, 45 (1962) CA 58, 7448 (1963)	301600 301600 301600 301600 301600
SUWÀ, S (INST OF SCIENCE TECH TOKYO JAPAN) HYPERFINE STRUCTURE OF THE SPECTREM OF GADOLINIUM J PHYS SOC JAPAN 8, 377 (1953) CA 47, 10345 (1953)	100190 100190 100190 100190 100190
SUWA. S (INST OF SCIENCE TECH TOKYO JAPAN) HYPERFINE STRUCTURES OF THE SPECTRA OF GD AND ZR PHYS REV 86. 247 (1952)	400575 400575 400575 400575

CA 46. 5963 (1952)	400575
SUZUKI, A KØTERA, Y (GØVT CHEM IND RES INST TØKYØ JAPAN) KINETICS ØF THE TRANSITIØN ØF TITANIUM DIØXIDE BULL CHEM SØC JAPAN 35, 1353 (1962) CA 57, 11901 (1962)	201838 201838 201838 201838 201838
SVECHNIKØV, V CHRØMIUM PØLYMØRPHISM FIZ MET I METALLØVED 15, NØ 4, 616 (1963) CA 59, 6087 (1963)	301601 301601 301601 301601
SVECHNIKØV• V KØBZENKØ• G THE TERNARY SYSTEM CHRØMIUM-NIØBIUM-MØLYBDENUM SB NAUCHN RABØT INST METALLØFIZ AKAD NAUK UKR SSR 1961• NØ 13• 115 CA 56• 12632 (1962)	201496 201496 201496 201496 201496
SVECHNIKØV• V PAN• V PHASE DIAGRAM ØF CR-NI-NB DØPØVIDI AKAD NAUK UKR•RSR 1961• 1290 CA 56• 12628 (1962)	201495 201495 201495 201495
SWABODA, PARTHUR, P. COX, N. INGHRAM, J. ØPPERGARD, A SADLER, M SYNTHESIS AND PROPERTIES OF FERROMAGNETIC CHROMIUM OXIDE J. APP. PHYS 32, 374 (1961)	700524 700524 700524 700524
SWALIN. R THERMODYNAMICS OF SOLIDS JOHN WILEY 343 (1962)	300703 300703 300703
SWEENEY, W SEAL, R BIRKS, L (US NAVAL RESEARCH LAB WASHINGTON DC) X-PAY MASS ABSORBTION COEFFICIENTS FOR MO, NB, ZR, AND TI REPT NRL PROGR MARCH 1961, 17 (1961) CA 55, 18287 (1961)	201112 201112 201112 201112 201112
SWVARTS • E (KNØLLS AT PØWER LAB SCHENECTADY NEW YØRK) ACTION ØF MØLTEN URANIUM ØN GRAPHITE U S ATØMIC ENERGY CØMM KAPL-1765 • 23 (1957) CA 52 • 1829 (1958)	601109 601109 601109 601109 601109
SYRE. R NIØBIUM, MØLYBDENUM. TANTALUM, AND TUNGSTEN. A SUMMARY ØF THEIR PRØPERTIES WITH RECØMMENDATIØNS FØR RESEARCH AND DEVELØPMENT AGARDØGRAPH 50. (1961) CA 57. 520 (1962)	201579 201579 201579 201579 201579 201579
SZABØ, Z LAKATØS, B (UNIV SZEGED REMARKS ØN THE MELTING PØINT ØF TECHNETIUM AND THE PERIODICITY ØF THE MELTING PØINTS ØF THE TRANSITIØN METALS J INST METALS 91, 117 (1962) BHT NØ 4, (1962)	601673 601673 601673 601673 601673
TABACHENKØ + A CALCULATIØN ØF THERMØDYNAMIC PRØPERTIES ØF REAL GASES AT HIGH TEMPERATURES	900227 900227 900227

INZHENERNØ FIZ ZHUR 5, NØ 9, 25 (1962) FTD-TT-63-85	900227 900227
TAGAWA, H FUJIMØRI, K (NIPPØN CARBIDE UØZU JAPAN) CRYSTALLINE STATE ØF CALCIUM CARBIDE KØGYØ KAGAKU ZASSHI 63, 1154 (1960) CA 56, 8104 (1962)	201379 201379 201379 201379 201379
TAGAWA, H ITOUJI, 0 (NIPPON CARBIDE IND CO INC TOYAMA JAPAN) FORMATION AND CRYSTALLINE NATURE OF BORON NITRIDE IN THE REACTION OF BORON OXIDE WITH SODIUM AMIDE BULL CHEM SOC JAPAN 35, 1536 (1962) CA 57, 16113 (1962)	201935 201935 201935 201935 201935 201935
TAGAWA: H SUGAWARA: H (NIPPØN CARBIDE INDUST CØ UØZU JAPAN) THE KINETICS ØF THE FØRMATIØN ØF CALCIUM CARBIDE IN A SØLID- SØLID REACTIØN BULL CHEM SØC JAPAN 35: 1276 (1962) CA 57: 11901 (1962)	201839 201839 201839 201839 201839
TAI, S YASINSKA, G SAMSØNØV, G (ACAD SCIENCE UKRAINE USSR) INTERACTIØN ØF CHRØMIUM BØRIDE WITH MØLYBD NUM DØPØVIDI AKAD NAUK UKR RSR NØ 1, 48 (1960) NSA 14, 19452 (1960)	300272 300272 300272 300272 300272
TAKADA, Y IMETO, S SANO, T (UNIV OSAKA OSAKA JAPAN) PRODUCTION OF URANIUM CARBIDE III SYNTHESIS OF URANIUM DICARBIDE NIPPON GENSHIRYOKU GAKKAISHI 3, 513 (1961) CA 57, 16116 (1962)	201937 201937 201937 201937 201937 201937
TAKEHIKØ, I SHIN-YA, Ø STRUCTURE ØF THE FN ELECTRØN CØNFIGURATIØNS. I. CØEFFICIENTS ØF FRACTIØNAL PERCENTAGE ØF F3. II. SPIN-ØRBIT INTERACTIØN ØF THE CØNFIGURATIØN F3 J PHYS SØC JAPAN 5, 145 (1950) CA 45, 1863 (1951)	
TAKEKAZU+ B HIROTA+ E (MATSUSHITA ELEC IND CØ ØSAKA JAPAN) THE PREPARATIØN AND PRØPERTIES ØF CHRØMIUM ØXIDES NATL TECH REPT 7+ 372 (1961) CA 56+ 15113 (1962)	201549 201549 201549 201549 201549
TALLEY, C PØST, B LAPLACA, S (EXPT INC RICHMOND VA) A NEW MØDIFICATION ØF ELEMENTAL BØRØN BØRØN SYNTHESIS STRUCTURE PRØPERTIES PRØC CØNF ASBURY PARK N.J. 1959, 83 (1960) CA 55, 12987 (1961)	200993 200993 200993 200993 200993 200993
TALRØZE, V REACTIONS OF POSITIVE IONS WITH MOLECULES IN GAS PHASE IN THE RANGE 3X10 TO THE (MINUS 2) POWER -10 TO THE (PLUS 2) POWER EV RUSSIAN REPORT, CHEMICAL EFFECTS OF A NUCLEAR TRANSFORMATION, PROCEEDINGS OF A SYMPOSIUM 1, 103 (1960) CA 57, 206 (1962)	601643 601643 601643 601643 601643 601643

TANAKA. Y (TOKYO UNIV TOKYO JAPAN) THE NEW ABSORPTION BANDS OF THE OXYGEN MOLECULE IN THE FAR ULTRAVIOLET REGION J CHEM PHYS 20. 1728 (1952) CA 47. 4733 (1953)	600563 600563 600563 600563 600563
TANAKA, Y (AIR RES AND DEV COMMAND CAMBRIDGE MASS) ABSØRPTIØN SPECTRUM ØF NITRØGEN IN THE REGIØN 1075 TØ 1650A J ØPT SØC AMER 45, 663 (1955) CA 49, 15476 (1955)	600599 600599 600599 600599
TANAKA, Y (UNIV ØF CHICAGØ CHICAGØ ILL) MIESCHER-BAER EMISSIØN BANDS IN THE FAR-ULTRAVIØLET REGIØN J CHEM PHYS 21, 562 (1953) CA 47, 9145 (1953)	600731 600731 600731 600731
TANAKA, Y EMISSION BANDS OF NO IN THE VACUUM ULTRAVIOLET REGION EXCITED IN THE NO AFTERGLOW J CHEM PHYS 22, NO 12 2045 (1954) PA 58, 1691 (1955)	600756 600756 600756 600756 600756
TANAKA. Y (UNIV ØF CHICAGØ CHICAGØ ILL) THE EMISSIØN BANDS ØF THE NITRØGEN ØXIDE MØLECULE IN THE VACUUM ULTRAVIØLET REGIØN J CHEM PHYS 21. 788 (1953) CA 47. 7317 (1953)	600683 600683 600683 600683 600683
TANAKA. Y JURSA. A LEBLANC. F (AIR FORCE CAMB RES CTR BEDFORD MASS) HOPF'ELDS EMISSION BANDS OF OXYGEN IN THE REGION 1900-2350A J CHEM PHYS 24. 915 (1956) CA 50. 98692 (1956)	600564 600564 600564 600564
TANAKA, Y JURSA, A LEBLANC, F ABSØRPTIØN SPECTRYM ØF CARBØN MØNØXIDE IN THE VACUUM ULTRAVIØLET REGIØN J CHEM PHYS 26, 862 (1957) CA 51, 11850 (1957)	600726 600726 600726 600726 600726
TANAKA• Y SEYA• M MØRI• K (TØKYØ UNIV EDUCATIØN TØKYØ JAPAN) NEW ABSØRPTIØN BANDS ØF THE NITRIC ØXIDE MØLECULE IN THE EXTREME ULTRAVIØLET REGIØN J CHFM PHYS 19• 979 (1951) CA 45• 8351 (1951)	600760 600760 600760 600760 600760
TANGRI K WILLIAMS G (FULMER RES INST STOKE POGES ENGLAND) METASTABLE PHASES IN THE URANIUM-MOLYBDENUM SYSTEM AND THEIR ORIGIN J NUCLEAR MATERIALS 4, 226 (1961) CA 56, 4485 (1962)	201308 201308 201308 201308 201308 201308
TANISAKI. S (UNIV YAMAGUCHI JAPAN) THE PHASE TRANSITION OF TUNGSTEN TRIOXIDE BELOW ROOM TEMP- ERATURE	201076 201076 201076 201076

J PHYS SUC JAPAN 15, 566 (1960) CA 55, 17151 (1961)	201076 201076
TANISAKI, S (UNIV YAMAGUCHI CRYSTAL STRUCTURE OF MONOCLINIC TUNGSTEN TRIOXIDE AT ROOM TEMPERATURE J PHYS SOC JAPAN 15, 573 (1960) CA 55, 17152 (1961)	201077 201077 201077 201077 201077 201077
TATEVSKII. V KOPTEV. G MALTSEV. A VIBRATION SPECTRA OF 8203 AND 8283 MOLECULES OPT I SPEKTR 11. NO 6 724 (1961) RUSS ACC 14. NO 11 2914 (1962)	300384 300384 300384 300384
TAWDE, N MURTHY, N (UNIV KARNATAK DHARWAR INDIA) VALIDITY ØF THE REVISED RØTATIØNAL STRUCTURE CØNSTANTS ØF GREEN-YELLØW SYSTEM ØF VO BANDS INDIAN J PHYS 31, 391 (1957) CA 52, 3513 (1958)	600913 600913 600913 600913 600913
TAWDE. N MURTHY. N HEGDE. S EFFICACY OF THE PARABOLIC INTERPOLATION TECHNIQUE IN THE DERIVATION OF MOLECULAR CONSTANTS INDIAN J PHYSICS 36. NO 1. 25 (1962) PA 65. 12323 (1962)	300782 300782 300782 300782 300782
TAYLOR. A DOYLE. N KAGLE. B (WESTINGHOUSE RES LABS PITTSBURGH PA) THE CONSTITUTION DIAGRAM OF THE MOLYBDENUM-HAFNIUM BINARY SYSTEM J LESS-COMMON METALS 3. 265 (1961) CA 56. 248 (1962)	201207 201207 201207 201207 201207 201207
TAYLOR, A DOYLE, N KAGLE, B (WESTINGHOUSE RES LABS PITTSBURGH PA) THE CONSTITUTION DIAGRAM OF THE TUNGSTEN-OSMIUM BINARY SYSTEM J LESS-COMMON METALS 3, 333 (1961) CA 56, 247 (1962)	201206 201206 201206 201206 201206 201206
TAYLØR: R (NØRTH AM AVIATIØN CANØGA PARK CALIFØRNIA) THERMAL CONDUCTIVITY ØF TITANIUM CARBIDE AT HIGH TEMPERATURES J AM CERAM SØC 44: 525 (1961) CA 56: 4114 (1962)	201288 201288 201288 201288 201288
TAYLØR, A DØYLE, N KAGLE, B The constitution diagram of the molybdenum hafnium binary System J Less-Common metals 3, 265 (1961)	600833 600833 600833 600833
TAYLOR. A KAGLE. B DOYLE. N The constitution diagram of the RH! Nium-Hafnium System J Less Common metal 5. No 1. 41 (1963)	301000 301000 301000
TAYLOR. A DOYLE. N KAGLE. B (WESTINGHOUSE RES LABS PITTSBURGH PA) THE CONSTITUTION DIAGRAM OF THE SYSTEM MOLYBDENUM-OSMIUM J LESS-COMMON METALS 4. 436 (1962) CA 58. 5333 (1963)	301026 301026 301026 301026 301026

TAYLOR. A JONES. R (WEST HOUSE RES LABS CRYSTAL STRUCTURE AND THERM HEXAGONAL SILICON CARBIDE SILICON CARBIDE. PROC CONF. (A 55. 6977 (1961)	MAL EXPANSION OF CUBI	C AND	200776 200776 200776 200776 200776 200776
TAYLOR. A RYDEN. H (WESTINGHOUSE RES LABS A TUNGSTEN TUBE MELTING POI J LESS COMMON METALS 4. 451 CA 58. 5329 (1963)	INT AND SPECIMEN ANNE	PA) EALING FURNACE	301027 301027 301027 301027 301027
TAYLOR: M SMITH: C (AT ENERGY RES ESTAB THE ELECTRICAL RESISTIVITY SOLID SOLUTIONS PHYSICA 28: 453 (1962) CA 57: 4144 (1962)			201675 201675 201675 201675 201675 201675
TAYLOR. R (ATOMICS INTERN THERMAL CONDUCTIVITY AND TH AT ELEVATED TEMPERATURES US ATOMIC ENERGY COMM NAA-S CA 55. 1117 (1961)	IERMAL EXPANSIÓN ÓF B	CALIF) EØ	200793 200793 200793 200793 200793 200793
TAYLOR. R FINCH. R THE SPECIFIC HEATS AND RESI FROM LOW TO VERY HIGH TEMPE US AT ENERGY COMM NAA-SR-60 CA 56. 2046 (1962)		AND RE	201250 201250 201250 201250 201250
TAYLOR R THERMAL CONDUCTIVITY OF ZIR TEMPERATURES J AM CERAM SOC 45 • NO 7 • 35		Gн	300694 300694 300694 300694
TAYLOR, W ET AL (OHIO STATE UNIV RES FOUND ELECTRICAL PROPERTIES OF HI REPORT RF 829 AFOSR-1177 AD 265266	GH-PURITY BØRØN	2HI2)	301602 301602 301602 301602 301602 301602
TCHENG. M RARE EARTH AND OTHER ELEMEN STAR X CYGNI COMPT REND 229. 1301 (1949) CA 44. 3989 (1950)	TS FRØM ASTRØNØMICAL	28SERVATION CF	400584 400584 400584 400584 400584
TCHENG. M THE SPECTRUM OF X.CYGNI SHO ANN ASTROPHYSICS 13. 57 (19 CA 44. 9797 (1950)		MUMIXAM	400585 400585 400585 400585
TELLER. E UNIV ØF CAL ØN THE STABILITY ØF MØLECUL REV MØDERN PHYSICS 34. 627		CAL) MI THEØRY	300999 300999 300999 300999
TEUFER. G (DUPONT	WILMINGTØN	DEL)	301604 301604

THE CRYSTAL STRUCTURE OF TETRAGONAL ZRO2 ACTA CRYST 15: NO 11: 1187 (1962) CA 59: 5879 (1963)	301604 301604 301604
TEMPLETON, D DAWKEN, C (UNIV OF CALIF LATTICE PARAMETERS OF SOME RARE EARTH COMPOUNDS AND A SET OF CRYSTAL RADII J AM CHEM SOC 76, 5273 (1954) CA 49, 1399 (1953)	600938 600938 600938 600938 600938
TENNERY. J (ØAK RIDGE NATL LAB ØAK RIDGE TENN) REVIEW ØF THERMAL CONDUCTIVITY AND HEAT TRANSFER IN UØ2 ØRNL-2656 (1959) NSA 13. 11870 (1959)	601535 601535 601535 601535
TERAØ• N (UNIØN CARBIDE EURØP RES BRUXELLES BELGIUM) STRUCTURES ØF NIØBIUM ØXIDES J APPL PHYS (JAPAN) 2• 156 (1963) CA 58• 12031 (1963)	301603 301603 301603 301603
TEREKHOVA, V SAVITSKII. E INTERACTION OF RARE-EARTH METALS WITH MG. FE. CR. AND TI. REDKIE METALLY I SPLAVY, TRUDY PERVOGO VSESOYUZ SOVESHCHANIYA PO SPLAVAM REDKIKH METAL AKAD NAUK SSSR INST MET IM AA BAIKOVA, MOSCOW 1957, 189 (1960) CA 55. 3357 (1961)	200833 200833 200833 200833 200833 200833
TESKE. R (PERKINS ØBSERVATØRY DELEWARE ØHIØ) THE RED SPECTRUM ØF FU MØNØCERØTIS PUBLSASTRØN SØC PACIFIC 68. 520 (1956) CA 51. 4815 (1957)	601043 601043 601043 601043
TETEREVKØV» A VILNYANSKII» Y CHLØRINATIØN ØF MAGNESIUM ØXIDE IN MØLTEN CARNALLITE TRUDY URAL PØLITEKH INST IM SM KIRØVA 1959» NØ 81» 144 (1959) CA 55» 13222 (1961)	201008 201008 201008 201008
THEWLIS. J X-RAY POWDER STUDY OF BETA-URANIUM ACTA CRYST 5. 790 (1952) CA 47. 3077 (1953) NSA 7. 783 (1953)	100202 100202 100202 100202 100202
THEWLIS, J STRUCTURE OF URANIUM NATURE 168, 198 (1951) CA 46, 7423 (1952) NSA 6, 121 (1952)	400569 400569 400569 400569 400569
THEWLIS. J STEEPLE. H THE BETA URANIUM STRUCTURE ACTA CRYST 7. 323 (1954)	601650 601650 601650
THIELEMANN. R (SIERRA METALS CORP HIGH-TEMPERATURE TANTALUM-NIØBIUM ÅLLØYS US PATENT 2907654 (1959) CA 54. 1241 (1960)	500127 500127 500127 500127 500127

THOMAS. J WESTON: N OCONNOR: T (E I DU PONT DE NEMOURS + CO WILMINGTON DEL) TURBOSTRATIC BORON NITRIDE: THERMAL TRANSFORMATION TO LAYER-LATTICE BORON NITRIDE J AM CHEM SOC 84, 4619 (1962) CA 58: 5111 (1963)	301039 301039 ØRDERED- 301039 301039 301039
THOMPSON, A HOLTON, W KREMERS, H PREPARATION AND SOME PROPERTIES OF METALLIC YTTRIUM TRANS ELECTROCHEM SOC 49, 277 (1926)	700828 700828 700828
THØMPSØN, C SINKE, G STULL, D (DØW CHEM CØ MIDLAND MICH) HEAT ØF FØRMATIØN ØF BERYLLIUM CHLØRIDE J CHEM ENG DATA 7, 380 (1962) CA 57, 10591 (1962)	201817 201817 201817 201817 201817
THØMPSØN» H GREEN» B (PHYS CHEM LAB FUNDAMENTAL VIBRATIØN BAND ØF NITRIC ØXIDE SPECTRØCHIM ACTA 8. 129 (1956) CA 51» 78 (1957)	600761 600761 600761 600761 600761
THØMPSØN* R (UNIV ØF TEXAS AUSTIN TEXAS) LØWER ØXIDATIØN STATE STUDIES-CØBALT AND RHENIUM UNIV MICRØFILMS (ANN ARBØR MICH) LC CARD NØ MIC 60-665 DISSERTATIØN ABSTR 21* 2468 (1961) CA 55* 16239 (1961)	201058 201058 201058 201058 201058 201058
THØMPSØN. R REFRACTØRY BØRIDES TRANS INST CHEM ENGRS (LØNDØN) 41. 51 (1963)	202146 202146 202146
THOMSON. J (IMP COLL SCI TECHNOL LONDON ENGLAND CRYSTAL STRUCTURES OF THRH2. THRU. AND THIR NATURE 194. 465 (1962) CA 57. 4125 (1962)	201648 201648 201648 201648 201648
THRUSH, B (DEPT ØF PHYSICAL CHEM CAMBRIDGE ENGLANTHE GRØUND STATE ØF BERYLLIUM ØXIDE PRØC CHEM SØC 1960, 339 CA 55, 11070 (1961)	200961 200961 200961 200961 200961
TIDWELL. E PLYLER. E BENEDICT. W VIBRATION-ROTATION BANDS OF N2O J OPT SOC AM 50. NO 12 1243 (1960) PA 64. 832 (1961)	600921 600921 600921 600921
TIMOFEEVICHEVA, Ø LAZAREV, V THE SURFACE TENSION AND STRUCTURE OF LIQUID METALS IZV AKAD NAUK SSSR OTD TEKH NAUK MET I TOPLIVO NO 3, 1 (1961) BHT NO 2, 36 (1962)	300540 300540 300540 300540 300540
TISZA. L THERMØDYNAMICS ØF PHASE EQUILIBRIUM ANN PHYS NY 13. 1 (1961)	700592 700592 700592
TITOVA. V FUTERGENDLER. S	301040

ORIENTATION OF THE GRAPHITE WHICH IS FORMED ON THE DIAMOND SURFACE AS A RESULT OF ITS ALLOTROPIC TRANSFORMATION ON HEATING KRISTALLOGRAPHIA 7, 926 (1962) CA 58, 5110 (1963).	301040 301040 301040 301040
TKACHENKØ, E V VLASØV, V G PHASE TRANSFØRMATIØNS DURING REDUCTIØN ØF URANIUM ØXIDES WITH SØLID CARBØN FIZ METAL I METALLØVED 15, NØ2, 239 (1963) CA 58, 12253H (1963)	301605 301605 301605 301605 301605
TØBIAS. I FALLØN. R VANDERSLICE, J PØTENIAL ENERGY CURVES FØR CØ J CHFM PHYS 33, NØ 6. 1638 (1960) PÅ 64. 2333 (1961)	600695 600695 600695
TØENNIES. J GREENE. E (BRØWN UNIV PRØVIDENCE R I) DISSØCIATIØN ENERGIES ØF CARBØN MØNØXIDE AND NITRØGEN FRØM REFLECTED SHØCK WAVE STUDIES J CHEM PHYS 26. 655 (1957) CA 51. 10987 (1957)	600600 600600 600600 600600 600600
TØGURÍ: J THE THERMAL REDUCTIØN ØF MAGNESIUM ØXIDE TIDSSKR KJEMI BERGVESEN MET 20: 211 (1960) CA 55: 13223 (1961)	201009 201009 201009 201009
TOMITA: T (SAITAMA UNIV URAWA) CRYSTAL STRUCTURE OF SILICON CARBIDE OF 174 LAYERS J CHEM SOC JAPAN 15: 99 (1960) CA 55: 16066 (1961)	600801 600801 600801 600801
TOPCHIASHVILI» L 50LUBILITY OF ELEMENTS IN MN TRUDY INST PRIKLAD KHIM I ELECTROCHEM AKAD NAUK GRUZIN SSR 1, 51 (1960) CA 56, 1255 (1962)	201238 201238 201238 201238 201238
TØRESSØN• Y (UNIV LUND SWEDEN) SPECTRUM AND TERM SYSTEM ØF TREBLY IØNIZED SILICØN• SI IV ARKIV FYSIK 17• 179 (1960) CA 55• 1178 (1961)	200804 200804 200804 200804 200804
TOROPOV. N BONDAR. I SILICATES OF RARE EARTH ELEMENTS. I. PHASE DIAGRAM FOR THE LANTHANUM OXIDE-SILICA SYSTEM IZV AKAD NAUK SSSR OTD KHIM NAUK 1960, 153 CA 56, 13603 (1962)	201506 201506 201506 201506 201506
TOROPOV. N. GALAKHOV. F. KONOVALOVA. S. SILICATES OF THE RARE EARTH ELEMENTS II PHASE DIAGRAM FOR THE BINARY SYSTEM GADOLINIUM ØXIDE-SILICA IZV AKAD NAUK SSSR OTD KHIM NAUK 1961. 539 (1961) CA 58. 967 (1963)	201965 201965 201965 201965 201965
TOSIM. S MILNE. T BASIC CHEMISTRY OF HIGH TEMPERATURE INORGANIC SYSTEMS NAA-SR-2124 (1957) NSA 12. 4073 (1958)	601505 601505 601505 601505

TOTH. L BENESOVSKY. F NOWOTNY. H RUDY. E (UNIV VIENNA VIENNA AUSTRIA) THE TERNARY SYSTEM THORIUM-BORON-CARBON MONTASH CHEM 92, 956 (1961) CA 56, 10979 (1962)	201446 201446 201446 201446 201446
TOTH, L NOWOTNY, H BENESOVSKY, F RUDY, E (UNIV VIENNA VIENNA AUSTRIA) THE SYSTEM U-B-C MONATSH 92, 794 (1961) CA 56, 2064 (1962)	201256 201256 201256 201256 201256
TØTH» L NØWØTNY» H BENESØVSKY» F RUDY» E (UNIV VIENNA VIENNA AUSTRIA) THE SYSTEM THØRIUM-URANIUM-BØRØN MØNTASH CHEM 92, 945 (1961) CA 56, 9478 (1962)	201405 201405 201405 201405 201405
TRAJMAR, S (UCLRL BERKELEY CAL) STUDY ØF THE NEAR-ULTRA-VIØLET SPECTRUM ØF MAGNESIUM ØXIDE UCR[-9773 (1961) NSA 15, 27512 (1961)	700962 700962 700962 700962 700962
TREES. R (NBS WASHINGTON DC) LOW EVEN CONFIGURATIONS IN THE FIRST SPECTRUM OF THORIUM PHYSICA (NETHERLANDS) 26. NO 5 353 (1960) NSA 16. 18302 (1960) PA 64. 5977 (1961)	600852 600852 600852 600852 600852 600852
TREES. R (NBS WASHINGTON DC) REPU_SION OF ENERGY LEVELS IN COMPLEX ATOMIC SPECTRA PHYS REV 123. 1293 (1961) NSA 15. 28207 (1961)	701067 701067 701067 701067 701067
TRETYACHENKO, G KRAVCHUK, L A METHOD FOR DETERMINING THE THERMOPHYSICAL CHARACTERISTICS OF MATERIALS AT HIGH TEMPERATURES TEZISY DOKLADOV I' SOOBSHCHENIY NA SOVESHCHANII PO TEPLO-I MASSOOBMENU, MINSK, AK NAUK BELORUSSKOY SSR (1961)	400610 400610 400610 400610 400610
TRESVYATSKIY, S CHEREPANOV, Å HIGH HEAT-RESISTANT SYSTEMS WITH ØXIDES ØF LANTHANUM AND ACTINIUM ZHUR VSES KHIM ØBSHCH IMENI D I MENDELEYEV 6, NØ6, 612 (1961) CØTS NØ 52, 169 (1962)	300440 300440 300440 300440 300440
TRIBALAT. S JUNGFLEISCH. M COLLET. V PREPARATION OF OXIDES AND SULFIDES OF RE AND THEIR X-RAY ABSORPTION SPECTRA COMPT REND 251. 718 (1960) CA 55. 3257 (1961)	200829 200829 200829 200829 200829
TROMBE, F FOEX, M SEPARATION OF NEODYMIUM AND PRASEODYMIUM BY DISTILLATION OF THEIR OXIDES AT HIGH TEMPERATURE IN A SOLAR FURNACE COMPT REND 255, 1516 (1962) CA 58, 263E (1963)	301367 301367 301367 301367 301367

TRØITSKAYA, N PINSKER, Z CUBIC MØLYBDENUM NITRIDE KRISTALLØGRAFIYA 4, 38 (1959) CA 55, 5078 (1961)	200858 200858 200858 200858
TRØITSKAYA, N PINSKER, Z ELECTRØN DIFFRACTIØN STUDY ØF THE SUPERSTRUCTURE ØF MØLYBDENUM NITRIDE KRISTALLØGRAFIYA 8 548 (1963)	202147 202147 202147 202147
TRØITSKAYA, N PINSKER, Z THE HEXAGØNAL NITRIDES ØF MØLYBDENUM KRISTALLØGRAFIYA 6, 43 (1961) PÅ 65, 4416 (1962)	700601 700601 700601 700601
TRØJER. F CRYSTAL PHASES TI203 AND T1305 RADEX RUNDSCHAU 1962, 212 (1962) CA 57. 15909 (1962)	201929 201929 201929 201929
TROMBE. F THE VAPOR PRESSURES OF THE RARE EARTH METALS. THEIR SEPARATION AND PURIFICATION BULL SOC CHEM (FRANCE) 1010 (1953) CA 48. 5011 (1954) NSA 8. 6122 (1954)	600960 600960 600960 600960 600960
TRØMBE. F FØEX. M (INST CHIMIE PARIS FRANCE) RANGE ØF EXISTENCE AND PRØPERTIES ØF THE ALLØTRØPIC STATES ØF METALLIC CERÎUM ANN CHIM 19. 417 (1944) CA 40. 3955 (1946)	900118 900118 900118 900118 900118 900118
TRØMBE• F FØEX• M DILATØMETRIC STUDY ØF METALLIC NEØDYMIUM CØMPT REND 232• 63 (1951) CA 45• 5988 (1951) NSA 5• 2967 (1951)	400546 400546 400546 400546 400546
TROMEL. G KRISEMENT. Ø ALPHA-BETA INVERSION OF CRISTOBALITE TONIND-ZTG U KERAM RUNDSCHAU 83. NO 6. 118 (1959) CERAM Å 44. 183H (1961)	700690 700690 700690 700690
TRØNEVA, N MARCHUKØVA, I BØRØVSKII, I (MØSCØW STATE U MØSCØW USSR) X-RAY L-SPECTRA ØF CERIUM IN CEB6 AND CEØ2 FIZ METAL I METALLØVED 6. 141 (1958) CA 53. 12821 (1959)	601157 601157 601157 601157 601157
TRULSON. 0 (10WA STATE UNIV AMES 10WA) COHESIVE ENERGIES OF SOME RARE EARTH METALS UNIV MICROFILMS MIC 59-3392. DISSERTATION ABSTR 20. 1049 (1959) CA 54. 1960 (1960)	601211 601211 601211 601211 601211
TRULSON, Ø HUDSON, D SPEDDING, F COHESIVE ENERGIES OF GADOLINIUM, HOLMIUM, ERBIUM J CHEM PHYS 35, 1018 (1961)	600832 600832 600832
TRUNOV. V KOVBA. L SPITSYN. I	201485

(MV LØMØNØSØV STATE UNIV MØSCØW RUSSIA) DØURLE ØXIDES ØF THE URANIUM-TUNGSTEN-ØXYGEN SYSTEM DØKL AKAD NAUK SSSR 141+ 114 (1961) CA 56+ 12519 (1962)	201485 201485 201485 201485
TRZEBIATÓWSKI. W RUDZINSKI. J (INST CHEM TECH HØCHSCHULE WRØCLAW PØLAND) TECHNETIUM CARBIDE Z CHEM 2. 158 (1962) CA 57. 12095 (1962)	201857 201857 201857 201857 201857
TSAREV. B M ILLARIØNØV. S V ØPTICAL CØNSTANTS ØF LAB6 AND CEB6 CØTS 66. 251 (1963)	301369 301369 301369
TSAREV. B KUDINTSEVA. G BØRIDES ØF TRANSITIØN METALS AND THEIR ELECTRØN-EMISSIØN PRØPERTIES KØNFERENTSIY PØ KHIMII BØRA I YEGØ SØYEDINENIY. MØSKØW 106 (1958) CØTS. 105. MARCH 1963	301161 301161 301161 301161 301161 301161
TSENG-CHI, H PØLYAKØV, A SAMARIN, A THERMØDYNAMICS ØF CARBØN IN MØLTEN IRØN FIZ KHIM ØSNØVY PRØIZV STALI, AKAD NAUK SSSR INST MET TR FIFTH KØNF 1959, 112 (1961) CA 58, 1161 (1963)	301003 301003 301003 301003 301003
TSEPLYAEVA: A PRISELKØV: Y KARELIN: V THE MEASUREMENT OF THE SATURATED VAPOR PRESSURE OF SILICON VESTNIK MOSKOV U SER 11 15: NO 5 36 (1960) CA 55: 25400 (1961)	300400 300400 300400 300400
TSERTSVADZE: A TCHKHARTISHVILI: U KATCHLISHVILI: Z CALCULATION OF IONIC AND ATOMIC CONTRIBUTION IN BONDING IN SILICON CARBIDE CRYSTALS FIZ TVERD TELA 4: NO 7: 1743 (1962) CT NO 17: 79 (1962)	300583 300583 300583 300583 300583
TSIRELNIKØV, V KØMISSARØVA, L SPITSYN, V THE THERMAL CØNDUCTIVITY AND VISCØSITY ØF ZIRCØNIUM AND HAFNIUM TETRACHLØRIDE VAPØRS ØVER THE TEMPERATURE INTERVAL 300-700 C DØK AKAD NAUK SSSR 139, 1389 (1961) CØTS 54, 290 (1962)	301101 301101 301101 301101 301101
TSUBØI: M TERADA: M SHIMANØUCHI: T (UNIV TØKYØ TØKYØ JAPAN) ØPTICALLY ACTIVE LATTICE VIBRATIØNS ØF ALPHA-URANIUM TRIØXIDE CA 57: 5482 (1962) J CHEM PHYS .36: 1301 (1962)	201721 201721 201721 201721
TSUJIMURA. S (AT ENERGY RES INST TOKAI JAPAN) FORMATION AND REDUCTION OF URANIUM HEXAFLUORIDE KOGYO KAGAKU ZASSHI 65, 1146 (1962) CA 58. 2114 (1963)	201985 201985 201985 201985 201985
TSVETAEV. A GLAZUNØV. M KISELEV. V ALEKSEEV. L CHUZHKØ. R DETERMINAIØN ØF THE ACTIVATIØN ENERGY ØF VAPØRIZATIØN FRØM THE VARIØUS FACES ØF A ZINC MØNØCRYSTAL ZHUR FIZ KHIM 35. 2800 (1961)	300768 300768 300768 300768
TUCKER. C	601371

THE CRYSTAL STRUCTURES OF METALLIC URANIUM AECD 2716 (1949) NSA 3. 2158 (1949)	601371 601371 601371
TUCKER, C (KNOLLS AT POWER LAB SCHNECTADY NEW YORK) A CORRECTION AND NOTE ON THE RELATION OF THE BETA URANIUM AND SIGMA PHASE STRUCTURES ACTA CRYST 5, 389 (1952) CA 46, 7390 (1952)	400570 400570 400570 400570 400570
TUCKER. C (KNØLLS AT PØWER LAB SCHNECTADY NEW YØRK) A SUPPLEMENTRY NØTE ØN THE CRYSTAL STRUCTURES ØF BETA URANIUM ACTA CRYST 5, 395 (1952) CA 46. 7390 (1952)	400571 400571 400571 400571 400571
TUCKER. C A SUPPLEMENTARY NOTE ON THE CRYSTAL STRUCTURE OF BETA URANIUM AECU-1807 NSA 6. 1183 (1952)	600673 600673 600673
TUCKER. C AN APPRØXIMATE CRYSTAL STRUCTURE FØR THE BETA PHASE ØF URANIUM AECD-2957 KAPL-388 (1950) ACTA CRYST 4, 425 (1951) NSA 5. 1806 (1951) NSA 5. 6800 (1951)	601176 601176 601176 601176 601176 601176
TUCKER. C SENIO. P THEWLIS. J (KNOLLS AT POWER LAB SCHENECTADY NY) THE STATUS OF THE BETA-URANIUM STRUCTURE ACTA CRYST 7. 752 (1954) NSA 9. 1209 (1955)	601285 601285 601285 601285 601285
TUCKER. C SENIØ. P (G.E. CØ SCHENECTADY N.Y.) (KNØLLS AT PØWER LAB SCHENECTADY NEW YØRK) AN IMPRØVED DETERMINATIØN ØF THE CRYSTAL STRUCTURE ØF BETA-URANIUM ACTA CRYST 6. 753 (1953) CA 48. 1766 (1954) NSA 8. 1605 (1954)	600964 600964 600964 600964 600964 600964
TUCKER. C SENIØ, P THEWLIS. J STEEPLE, H (GENERAL ELECTRIC SCHENECTADY NEW YØRK) JØINT NØTE ØN THE BETA-URANIUM STRUCTURE ACTA CRYST 9. 472 (1956) CA 50.12587 (1956)	601016 601016 601016 601016 601016
TUCKER. C SENIO. P THE REFINED CRYSTAL STRUCTURE OF BETA-URANIUM KAPL-844 (1952) NSA 7. 1856 (1953)	601251 601251 601251 601251
TURNBULL. A THERMOCHEMISTRY OF ZIRCONIUM HALIDES J PHYS CHEM 65. NO 9. 1652 (1961) CA 56. 4164 (1962)	300259 300259 300259 300259
TUXWORTH, R AN ORIENTATION STUDY OF U02 SINGLE CRYSTALS	600849 600849

	AFCL 1170 (1960) CA 55, 12987 (1961)	600849 600849
	TVØRØGØV• N (INST ØF RAD• ELEC ACAD ØF SCI USSR) HEXABØRIDES ØF THE RARE EARTH ELEMENTS AND YTTRIUM ZHUR NEØRG KHIM 4• 1961 (1959) CA 54• 11788 (1960) NSA 14• 1479 (1960)	700831 700831 700831 700831 700831 700831
(TYE R (NATL PHYS LAB PRELIMINARY MEASUREMENTS ØN THE THERMAL AND ELECTRICAL CØND TIVITIES ØF MØLYBDENUM NIØBIUM TANTALUM AND TUNGSTEN J LESS-CØMMØN METALS 3 · 13 (1961) CA 55 · 18497 (1961)	201117 201117 201117 201117 201117 201117
(TYLER, W WILSON, A WOLGA, G (KNOLLS AT POWER LAB SCHENECTADY NEW YORK) THERMAL CONDUCTIVITY, ELECTRICAL RESISTIVITY, AND THERMOELECTRIC POWER OF URANIUM J MET 5, AIME TRANS 197, 1238 (1953) CA 47, 10937 (1953)	100185 100185 100185 100185 100185
	TYLKINA, M. PØVARØVA, K. STRUCTURAL DIAGRAMS ØF RHENIUM RENII TR VSES SØVESHCH PØ PRØBL RENIYA AKAD NAUK SSSR INST MET 1958, 127 (1961) CA 57, 14839 (1962)	201915 201915 201915 201915 201915
	TYLKINA, M. PØLYAKØVA, V. SAVÍTSKÍI, E Cømpøsitiøn diagram øf alløys in the system øsmium-rutheniu Zh neørgan khim 7, 1467 (1962) Ca 57, 5683 (1962)	201729
	TYLKINA, M POLYAKOVA, V SAVITSKII, E COMPOSITION DIAGRAM OF OSMIUM-RHENIUM ZH NFORGAN KHIM 7, 1469 (1962) CA 57, 5683 (1962)	201728 201728 201728 201728
T	TYLKINA: M PØVARØVA: K SAVITSKII: E EQUILIBRIUM DIAGRÅM ØF THE SYSTEM VANADIUM-RHENIUM Zhur Neørg khim 5: 1907 (1960) CA 56: 4144 (1962)	201291 201291 201291 201291
	TYLKINA: M PØLYAKØVA: V SAVITSKII: E Phase Diagram øf the Palladium-Tungsten System Zhur Neørg Khim 6: 1471 (1961) CT Nø 13: (1961)	700623 700623 700623 700623
	TYLKINA» M PØVARØVA» K SAVITSKII»E Phase in the Rhenium-vanadium system Døklady akad nauk SSSR 131» 332 (1960) CA 55» 9232 (1961)	200935 200935 200935 200935
	TYLKINA, M PØVARØVA, K SAVITSKII, E TERNARY SØLID SØLUTIØNS IN THE SYSTEM TUNGSTEN-MØLYBDENUM- RHENIUM ZHUR NEØRG KHIM 5, 2458 (1960) CA 56, 4144 (1962)	201292 201292 201292 201292 201292
	TYRRELL. M HØUCK. C (U S BUR ØF MINES NØRRIS TENN)	202148 202148

METALLIC BINDERS FOR ZIRCONIUM DIBORIDE- IRON. COBALT. AND NICKEL US BUR MINES REPT INVEST NO 6262. (1963) CA 59. 7206 (1963)	202148 202148 202148 202148
UEDA. M THE ABSØRPTION SPECTRUM OF NITRIC ØXIDE IN THE FAR ULTRAVIOLET REGION SCI OF LIGHT (TOKYO) 3. NO 2. 143 (1955) PA 58. 6912 (1955)	600762 600762 600762 600762 600762
UHLER. U RØTATIØN ANALYSIS ØF THE BLUE BAND SYSTEM ØF CØLUMBIAM ØXIDE NATURWESSENSCHAFTEN 41. 137 (1954) CA 49. 2866B (1955)	301370 301370 301370 301370
UHLER. U (UNIV ØF STØCKHØLM STØCKHØLM SWEDEN) THE BLUE BAND-SYSTEM ØF NIØBIUM ØXIDE ARKIV FYSIK 8. 265 (1954) CA 49. 2188 (1955)	600915 600915 600915 600915 600915
UHLER. U AKERLIND. L (UNIV STØCKHØLM STØCKHØLM SWEDEN) RØTATIØNAL ANALYSIS ØF THE BLUE-GREEN AND ØRANGE SYSTEMS ØF YTTRIUM ØXIDE ARKIV PHYSIK 19. 1 (1961) CA 56. 8174 /1962) BHTG NØ 4. 18 (1962)	300476 300476 300476 300476 300476 300476
UHLER. U AKERLIND. L (UNIV ØF STØCKHØLM SWEDEN) RØTATIØN ANALYSIS ØF THE BAND SYSTEMS ØF YTTRIUM ØXIDE NATURWISSENSCHAFTEN 46. 488 (1959) CA 54. 4144 (1960)	700844 700844 700844 700844 700844
UKAJI, R MINAMI, F (ØSAKA METAL INDS LTD ØSAKA JAPAN) REACTIVITY ØF URANIUM ØXIDE. VI. HYDRATIØN AND DEHYDRATIØN ØF URANIUM TRIØXIDE NIPPØN GENSHIRYØKU GAKKAISHI 3, 260 (1961) CA 57, 3061 (1962)	201623 201623 201623 201623 201623 201623
ULY, C LAM, D IANNIELLØ, L PRØEBSTLE, R LEE, A LØH, B BURR, A (RENSSELAER PØLYTECH INST TRØY N Y) THE EFFECT ØF RARE EARTH ELEMENTS ØN THE ALLØTRØPIC TRANSFØRMATIØN ØF ZIRCØNIUM US AT ENERGY CØMM TID-12638, (1961) NUCL SCI ABSTR 15 (15) ABSTR NØ 19878(1961) CA 59, 8433 (1963)	202149 202149 202149 202149 202149 202149 202149 202149
UMANSKII. M ZUBENKO. V ZOLINA. Z THE QUESTION OF THE PRECISION MEASUREMENTS OF LATTICE PARAMETERS (DETERMINATION OF THE TUNGSTEN PARAMETER) KRISTALLOGRAFIYA 5. NO 1. 51 (1960) PÅ 64. 11554 (1961)	600859 600859 600859 600859 600859
UNSWORTH, W ALLOYING OF THORIUM WITH MAGNESIUM MAGNESIUM ELEKTRON LTD BRIT 844, 546, (1960) CA 55, 5318 (1961)	200876 200876 200876 200876

UNY, C (UNIV ALGER ELECTRICAL PROPERTIES AND SCINTILLATION EFFECT OF SOME METALLIC AND SEMICONDUCTOR THIN LAYERS ANN PHYS (PARIS) 6, 1275 (1961) CA 58, 5120 (1963)	301036 301036 301036 301036 301036 301036
VAHLDIEK, F LYNCH, C RØBINSØN, L (WRIGHT AIR DEVELØPMENT DIV DAYTØN ØHIØ) THE INFLUENCE ØF PRESSURE AND TEMPERATURE ØN ZIRCØNIUM ØXIDE WADD-TR-60-705 (1960) NS 15, 13364 (1961)	600870 600870 600870 600870 600870
VAHLDIEK. F MERSØL. S (METALS + CERAMICS LAB DAYTØN ØHIØ) PRØPERTIES AND STRUCTURE ØF BØRIDES (SELECTED ARTICLES) AD 273601	301607 301607 301607 301607
VAHLDIEK, F. W. RØBINSØN, L. B. LYNCH, C. T. (WRIGHT PATTERSØN AIR FØRCE DAYTØN ØHIØ) PHASE TRANSFØRMATIØN ØF ZIRCØNIUM ØXIDE INFLUENCE ØF PRESSURE AND TEMPERATURE J. CHFM. ENG. DATA. 7, PT. 1, 479 (1962) CA. 58, 4281 (1963)	301606 301606 301606 301606 301606
VAINSHTEIN. E ZHURAKØVSKII. E STARYI. I X-RAY SPECTRAL STUDY ØF TI BERYLLIDES DØKLADY AKAD NAUK SSSR 135. 642 (1960) CA 55. 21785 (1961)	201163 201163 201163 201163
VAINSHTEIN, E BLØKHIN, S KRIPYAKEVICH, P X-RAY SPECTRØSCØPIC STUDY ØF TITANIUM BERYLLIDES HIGH IN BERYLLIUM DØ; L AKAD NAUK SSSR 142, 85 (1962) CA 57, 532 (1962)	201585 201585 201585 201585 201585
VAN ARKEL • A (CARNEGIE INST ØF TECH PITTSBURGH PENN) CRYSTAL STRUCTURE AND PHYSICAL PRØPERTIES PHYSICA 4 • 286 (1924) AEC-TR-4800 NSA 15 • 29727 (1961)	701056 701056 701056 701056 701056 701056
VAN ARKEL A (RIJKSUNIV LEIDEN NETHERLANDS) PREPARATION OF LESS COMMON METALS PURF APPL CHEM 5 + 701 (1962) CA 58 + 2223 (1963)	201987 201987 201987 201987 201987
VAN ARKEL, A FLØØD, E BRIGHT, N (NTL RES CØUNSIL ØTTAWA CANADA) THE ELECTRICAL CØNDUCTIVITY ØF MØLTEN ØXIDES CAN J CHEM 31, 1009 (1953) CA 48, 11140 (1954)	600950 600950 600950 600950 600950
VAN DEN BØSCH. J (ZEEMAN LAB AMSTERDAM NETHERLANDS) NEW LEVELS IN THE URANIUM SPARK SPECTRUM (U2) PHYSICA 15, 503 (1949) CA 44. 2846 (1950)	400525 400525 400525 400525 400525

VAN DEN BØSCH. (ZEEMAN LAB REMARKS ØN THE ANALYSIS ØF THE FIRST URANIUM SPARK SPECTRUM PHYS REV 80. 100 (1950) CA 45. 443 (1951)	400554 400554 400554 400554 400554
VANDERSLICE J MASON F (UNIV OF MARYLAND) RELATIONS AMONG POTENTIAL ENERGY CURVES OF DIATOMIC MOLECULES PROC INTERN MEETING MOL SPECTRY, 4TH, BOLOGNA, 1959 1, 323 (1962) CA 59, 8249 (1963)	202150 202150 202150 202150 202150 202150 202150
VANDERSLICE, J MASON, E LIPPINCOTT, E (UNIV ØF MARYLAND CØLLEGE PARK MARYLAND) INTERACTIONS BETWEEN GROUND STATE NITRØGEN ATØMS AND MØLECULES THE N-N, N-N2, AND N2-N2 INTERACTIONS J CHEM PHYS 30, 129 (1959) CA 53, 10939 (1959)	600601 600601 600601 600601 600601
VAN DIJKE BEATTY: S (WESTINGHOUSE RESEARCH LABS EAST PITTSBURGH PA) THE WEAKER LINES IN THE PHOTOGRAPHIC REGION OF SOME LATE-TYPE STARS ASTROPHYS J 113: 93 (1951) CA 45: 4133 (1951)	400548 400548 400548 400548 400548 400548
VAN KLEEF, A STRUCTURE AND ZEEMAN EFFECT IN THE SPECTRA ØF THE ØSMIUM ATØM ØSI AND ØSII.IV-VI PRØC K NED AKAD WETENSCH B (NFTHERLANDS) 63, NØ 5, 549, 565, 581 (1961) PA 64, 2293 (1961)	600692 600692 600692 600692 600692
VAN KLEEF. A KLINKENBERG. P (UNIV ØF AMSTERDAM AMSTERDAM HØLLAND) SPECTRAL STRUCTURE ØF NEUTRAL AND IØNIZED ØSMIUM PHYSICA 27. 83 (1961) CA 55. 18290 (1961)	201113 201113 201113 201113 201113
VANNÉRBERG. N THE CRYSTAL STRUCTURE ØF CALCIUM CARBIDE II AND IV ACTA CHEMICA SCANDINAVICA 16. NØ 5. 1212 (1962)	300596 300596 300596
VANNERBERG: N (CHALMERS TEK HØGSKØLA GØTTENBØRG SWEDEN) THE CRYSTAL STRUCTURE ØF CALCIUM CARBIDE III ACTA CHEM SCAND 15: 769 (1961) CA 56: 4184 (1962)	201300 201300 201300 201300 201300
VARSANYI+ F DIEKE+ G (JØHNS HØPKINS UNIV BALTIMØRE MD) INFRARED ABSØRPTIØN SPECTRUM ØF NC "L3 J CHEM PHYS 33+ 1616 (1960) CA 55+ 16168 (1961)	201054 201054 201054 201054 201054
VARSHNI, Y MAJUMDAR, K SPECTRØSCØPIC CØNSTANTS ØF MØLECULES V SIMILARITIES IN CØNSTANTS ØF DIFFERENT GRØUPS INDIAN J PHYS 30, 303 (1956) CA 51, 7307 (1957)	600895 600895 600895 600895 600895

VARSHNI. Y SHUKLA. R EVALUATION OF WEXE FROM THREE CONSTANT POTENTIAL ENERGY FUNCTIONS TRANS FARADAY SOC 57, 537 (1961)	700598 700598 700598 700598
VASILEV, K STOICHKOVA, T SPEED OF REDUCTION OF MOOS IN A FLUIDIZED BED GODISHNIK KHIM TEKHNOL INST 5, NO 1, 111 (1958) CA 55, 13009 (1961)	200995 200995 200995 200995
VASILEV, V KHRYCHEVA, D D ARIYA, S M (STATE UNIV LENINGRAD RUSSIA) MAGNETIC SUSCEPTIBILITY OF LOWER TITANIUM OXIDES ZH NEORGAN KHIM 8, 788 (1963) CA 59, 3425E (1963)	301608 301608 301608 301608 301608
VASILEV, V ZØLSTAREV, E YATSIMIRSKII, K (CHEM TECHNØLØGICAL INST IVANØVØ RUSSIA) ENTRØPY ØF GASEØUS MØNATØMIC IØNS ZHUR FIZ KHIM 33, 328 (1959) CA 53, 21120 (1959)	700823 700823 700823 700823 700823
VASILEV, Y SØBØLEVA, M (LENINGRAD STATE UNIV LENINGRAD RUSSIA) CALØRIMETER FØR DETERMINING THE HEATS ØF HIGH- TEMPERATURE PRØCESSES ZHUR FIZ KHIM 36, 907 (1962)	300767 300767 300767 300767 300767
VASILEVA, I GERASIMOV, V SIMANOV, Y (M V LOMONOSOV STATE UNIV MOSCOW RUSSIA) THERMODYNAMIC INVESTIGATION OF THE REDUCTION OF TUNGSTEN TRI- OXIDE (ALPHA-W03) BY HYDROGEN ZHUR FIZ KHIM 34, 1811 (1960) CA 55, 11167 (1961)	200965 200965 200965 200965 200965 200965
VASILKØVA, I SHCHUKAREV, S ØRANSKAYA, M TSINTSIUS, V SUBBØTINA, N DETERMINATION ØF THE ENTHALPY ØF FØRMATION ØF VANADIUM TRIBRØMIDE VESTNIK LENINGRAD UNIV 16, NØ 16, SÉR FIZI KHIM NØ 3, 125 (1961) CA 56, 1010 (1962)	201222 201222 201222 201222 201222 201222 201222
VASYUTINSKII, B KARTMAZØV, G FINKEL, V (PHYS TECH INST KHARKØV PØLAND) DETERMINATIØN ØF THE STRUCTURE ØF TANTALUM UP TØ 2700 DEGREES BY X-RAY DIFFRACTIØN UKR F12 ZH 7, 661 (1962) CA 57, 8010 (1962)	201776 201776 201776 201776 201776 201776
VASYUTINSKII, B KARTMAZØV, G FINKEL, V STRUCTURE ØF CHRØMIUM AT 700-1700 DEGREES FIZ METAL I METALLØVED AKAD NAUK SSSR 12, 771 (1961) CA 56, 9536 (1962)	201416 201416 201416 201416
VATØLIN. N KISLING. R X-RAY DIFFRACTIØN STUDY ØF PSEUDØ TERNARY TUNGSTEN CARBIDE-TITANIUM CARBIDE-TANTALUM CARBIDE AND PSEUDØ QUATERNARY TUNGSTEN CARBIDE-TITANIUM CARBIDE- TANTALUM-NIØBIUM CARBIDE IZV AKAD NAUK SSSR ØTD TEKHN NAUK MET I TØPLIVØ 1962. NØ 3. 102 (1962)	301008 301008 301008 301008 301008 301008

```
VAUGHAN D
(BATTELLE MEM INST
                                                                  601004
                             COLUMBUS
                                                  112
                                                                  601004
X-RAY DIFFRACTION STUDY OF THE NITRIDES OF URANIO.
                                                                  601004
J METALS 8. AIME TRANS 206. 78 (1956)
                                                                  601004
CA 50, 4746 (1956)
                                                                  601004
VAUGHAN, D STEWART, Ø SCHWARTZ, C
                                                                  700990
(BATTELLE MEM INST
                             COLUMBUS
                                                  2H12)
                                                                  700990
DETERMINATION OF INTERSTITIAL SOLID-SOLUBILITY LIMIT IN
                                                                  700990
 TANTALUM AND IDENTIFICATION OF THE PRECIPITATE PHASES
                                                                  700990
BM1-1472 (1960)
                                                                  700990
NSA 15 + 4278 (1961)
                                                                  700990
VDØVENKØ, V SUGLØBØVA, I
                                                                  601155
DETERMINATION OF THE HEATS OF SOLUTION OF THE HYDRATES OF
                                                                  601155
URANYL NITRATE IN DIETHYL AND DIBUTYL ETHERS
                                                                  601155
ZHUR NEØRG KHIM 3, 1573 (1958)
                                                                  601155
CA 53. 21120 (1959)
                                                                  601155
VECHER+ A GERASIMOV+ Y
                                                                  202151
 EMF STUDIES OF THE THERMODYNAMIC PROPERTIES
                                                                  202151
 ØF BINARY METALLIC SYSTEMS VIII
                                                                  202151
 ZHUR FIZ KHIM 37, 490 (1963)
                                                                  202151
VEDAM. K
                                                                  700961
(ATOMIC ENERGY EST
                              BØMBAY
                                                  INDIAL
                                                                  700961
 CRYSTAL SYMMETRY AND FERRØELECTRIC BEHAVIØR ØF PYRØLUSITE
                                                                  700961
 (BETA-MN02)
                                                                  700961
 PROCEEDINGS OF THE SYMPOSIUM ON LOW ENERGY NUCLEAR
                                                                  700961
 PHYSICS. BOMBAY (1961)
                                                                  700961
NP-10247
                                                                  700961
NSA 15 + 26692 (1961)
                                                                  700961
VEINBACHS + A KOMAREK + K
                           SILVER . M
                                                                  601611
INEW YORK UNIV
                              NEW YORK
                                                  NEW YORK)
                                                                  601611
 THERMODYNAMIC PROPERTIES OF ZIRCONIUM-OXYGEN, TITANIUM-OXYGEN, 601611
 AND HAFNIUM-ØXYGEN ALLØYS
                                                                  601611
 IAEA SYMPOSIUM ON THE THERMODYNAMICS OF NUCLEAR MATERIALS.
                                                                  601611
 VIENNA. MAY (1962)
                                                                  601611
 NSA 16, 25384 (1962)
                                                                  601611
                                                                  600899
VEITS. I GURVICH. L
 GROUND ELECTRONIC STATES IN ØXIDES OF GROUP II ELEMENTS
                                                                  600899
                                                                  600899
 OPTIKA I SPEKTROSKOPIYA 2. 145 (1957)
                                                                  600899
 UCRL-TR-707
 CA 51, 7141 (1957)
                                                                  600899
                                                                  600899
 NSA 15, 32082 (1961)
                                                                  700964
VEITS, I GURVICH, L
 DISSOCIATION ENERGIES OF OXIDES OF MG. CA. SR AND BA
                                                                  700964
 OPTIKA I SPEKTROSKOPIYA 1. 22 (1956)
                                                                  700964
                                                                  700964
 UCRL-TR-706
                                                                  700964
. NSA 15. 29108 (1961)
                                                                  700965
VEITS. I
         GURVICH. L
                             BERKELEY
                                                  CALIF)
                                                                  700965
(UNIV OF CALIFORNIA
 ON THE DISSOCIATION ENERGIES OF MOLECULES OF THE OXIDES OF THE 700965
                                                                  700955
 ALKALINE EARTH ELEMENTS
                                                                  700965
 ZHUR FIZ KHIM 31, 2306 (1957)
                                                                  700965
 UCRL-TR-708
                                                                  700965
 NSA 15, 29109 (1961)
                                                                  201423
VEKSHINA. N MARKØVSKII. L
```

CHEMICAL PROPERTIES OF HEXABORIDES OF ALKALINE EARTH METALS ZHUR PRIKLAD KHIM 34, 2171 (1961) CA 56, 9680 (1962)	201423 201423 201423
VEKSHINA. N. MARKØVSKII. L. REACTIONS IN THE PRODUCTION OF ALKALINE EARTH METAL HEXABORIDES BY THE REDUCTION WITH CARBON ZH PRIKL KHIM 35. NO 1. 30 (1962) CA 56. 12536 (1962)	201487 201487 201487 201487 201487
VELISEK. J THE MEASUREMENT OF THERMODYNAMIC PROPERTIES OF METALS AND ALLOYS WITH A MASS-SPECTROMETER CHEM LISTY 57. 698-710 (1963) CA 59. 8187 (1963)	202152 202152 202152 202152 202152
VERESHCHAGIN, L SEMERCHAN, A PØPØVA, S INVESTIGATIØN ØF THE ELECTRICAL RESISTANCE ØF CERIUM, LANTHANUM, AND NEØDYMIUM AT PRESSURES UP TØ 250,000 KG/SQ CM DØKL AKAD NAUK SSSR 138, 1059 (1961) CA 57, 191 (1962)	201570 201570 201570 201570 201570
VERHAEGEN, G MEASURE ØF THERMØDYNAMIC VALUES BY SPECTRØMETRY STUDY ØF SILVER AND CØPPER AD 258475	300235 300235 300235 300235
VERHAEGEN. G DRØWART. J (UNIV LIBRE BRUSSELS BELGIUM) MASS SPECTRØMETRIC DETERMINATION OF THE HEAT OF SUBLIMATION OF BORON AND THE DISSOCIATION ENERGY OF B2 J CHEM PHYS 37. 1367 (1962) BHT (GASES) NØ 6. (1962)	601658 601658 601658 601658 601658
VERHÆEGEN» G. STAFFØRD» F. E. VAPØRIZATIØN ØF CØMPØUNDS AND ALLØYS AT HIGH TEMPERATURE AD 277796 APR (1962)	301609 301609 301609
VERHAEGEN. G STAFFØRD. F VAPØRIZATIØN ØF CØMPØUNDS AND ALLØYS AT HIGH TEMPERATURES PART IX. CØRRELATIØN ØF DISSØCIATIØN ENERGIES ØF GASEÐUS MØLECULES AND ØF HEATS ØF VAPØRIZATIØN ØF SØLIDS. HØMØNUCLEAR DIATØMIC MØLECULES AD 278830 (1962)	301010 301010 301010 301010 301010
VERHAEGAN, G STAFFØRD. F ACKERMAN. M (UNIV LIBRE BRUSSELS BELGIUM) VAPØRIZATIØN ØF CØMPØUNDS AND ALLØYS AT HIGH TEMPERATURE PART III. MASS SPECTRØMETRIC STUDIES ØF THE MØLECULES BC? IN THE VAPØR ABØVE THE SYSTEM BØRØN-CARBØN WADD-TR-60-782 (PT III) NSA 16. 9144 (1962)	601574 601574 601574 601574 601574 601574
VERHAEGEN. G STAFFØRD. F ACKERMAI. M DRUWART. J (UNIV LIBRE BRUSSELS BELGIUM) MASS SPECTROMETRIC INVESTIGATION OF GASEOUS SPECIES IN THE SYSTEM B-C NATURE 193. 1280 (1962) BHT (GASES) NO 6. (1962)	601660 601660 601660 601660 601660
VERHAEGEN. G. STAFFØRD. F. GØLDFINGER. P. ACKERMAN. M. CØRRELATIØN ØF DISSØCIATIØN ENERGIES ØF GASEJUS MØLECULES AND ØF HEATS ØF VAPØRIZATIØN ØF SØLIDS	301050 301050 301050

HØMØNUCLEAR DIATØMIC MØLECULES	301050
Trans far søc 58, 1926 (1962)	301050
VERKHØGLYADØVA, T LVØV, S NEMCHEMKØ, V SAMSØNØV, G ELECTRIC AND GALVANØMAGNETIC PRØPERTIES ØF CHRØMIUM NITRIDES FIZ METAL I METALLØVED, AKAD NAUK SSSR 12, 622 (1961) CA 56, 6755 (1962)	201355 201355 201355 201355
VERMA» R MULLIKEN» R	700637
A(1) SIGMA-3 PI(GAMMA) SPECTRUM ØF SILICØN MØNØXIDE	700637
CAN J PHYS 39, 908 (1961)	700637
CT NØ 12. (1961)	700637
VERMA. R WARSOP. P (NATL RES COUNCIL OTTAWA CANADA) THE ABSORPTION SPECTRUM OF THE SI2 MOLECULE CAN J PHYS 41. 152 (1963) CA 58. 5151 (1963)	301032 301032 301032 301032 301032
VERNYL. E EGØRØV. V	601189
ISØTØPIC SHIFT IN THE SPECTRUM ØF TH232 TH229	601189
ØPTIKA I SPEKTRØSKØPIYA 6. 262 (1959)	601189
CA 54. 10502 (1960)	601189
VERØT, J. FØRESTIER, H. PURIFICATIØN ØF MØLYBDENUM BY FUSIØN UNDER ELECTRØN BØMBARDMENT CØMPT REND 253, 662 (1961) CA 56, 13907 (1962)	201528 201528 201528 201528 201528
VETEJSKA• K	200950
(USTAV PRØ VYZKUM RUD PRAGUE CZECH)	200950
HAFNIUM	200950
CHEM LISTY 54• 1123 (1960)	200950
CA 55• 10169 (1961)	200950
VETFJSKA+ K	601187
(USTAV PRØ VYZKUM RUD PRAGUE CZECH)	601187
THØRIUM	601187
CHEM LISTY 54+ 114 (1960)	601187
CA 54+ 10617 (1960)	601187
VÉTEJSKA+ K	601199
(USTAV PRØ VYZKUM RUD PRAGUE CZECH)	601199
URANIUM	601199
CHEM LISTY 54+ 1 (1960)	601199
CA 54+ 5309 (1960)	601199
VETRENKØ• E MIKULINSKII• A FRESHBERG• I	300603
CALCULATIØN ØF THE EQUILIBRIUM VAPØR PRESSURE AS	300603
MEASURED BY THE KNUDSEN EFFUSIØN METHØD	300603
ZHUR FIZ KHIM 36• 1585 (1962)	300603
VICKERY. R THE CHEMISTRY OF YITRIUM AND SCANDIUM PERGAMON PRESS 123. (1960) CA 54. 18054 (1960)	601173 601173 601173 601173
VICKERY, R SEDLACEK, R RUBEN, A (HØRIZØNS INC CLEVELAND ØHIØ) STUDIES ØN RARE EARTH CARBIDES AFØSR-TN-58-38 (1958) NSA 13, 14217 (1959)	601532 601532 601532 601532

VICKERY, R MUIR, H (RESEARCH CHEMICALS INC BURBANK CALIFØRNIA) REFRACTØRY GADØLINIUM AND HAFNIUM CØMPØUNDS FINAL REPT (1960) CØNTRACT NØ 77145 ARPA ØRDER NØ 81-59 NP-9752 (1960) AD 258218 NSA 15, 7772 (1961)	300232 300232 300232 300232 300232 300232
VICKERY, R SEDLACEK, R RUBEN, A (HØRIZØNS INC CLEVELAND ØHIØ) RARE EARTH CARBIDES I J CHEM SØC, 498 (1959) CA 53, 11074 (1959)	700707 700707 700707 700707 700707
VICTOR, A HEAT CAPACITY OF DIAMOND AT HIGH TEMPS J CHEM PHYS 36, NO 7, 1903 (1962) BHT NO 2, 23 (1962)	301386 301386 301386 301386
VICTOR. A C DOUGLAS. T B THERMODYNAMIC PROPERTIES OF MAGNESIUM OXIDE AND BERYLLIUM OXIDE FORM 298 TO 1200 DEGREES K J RES NAT BUR STDS 67A. 325 (1963)	301372 301372 301372 301372
VICTOR, A DOUGLAS, T (NATL BUR OF STDS WASHINGTON D C) PHYSICAL PROPERTIES OF HIGH-TEMPERATURE MATERIALS US DEPT COM OFFICE TECH SERV AD258, 383, (4960) CA 58, 4749 (1963)	202153 202153 202153 202153 202153
VICTOR. A DOUGLAS. T THERMODYNAMIC PROPERTIES OF THORIUM DIOXIDE FROM 298 TO 1200 DEGREES K J RESEARCH NATL BUR STANDARDS 65A. 105 (1961) CA 55. 18276 (1961)	201108 201108 201108 201108 201108
VICTOR. A DOUGLAS. T (NBS WASHINGTON DC) PHYSICAL PROPERTIES OF HIGH TEMPERATURE MATERIALS. VI. ENTHALPY AND HEAT CAPACITY OF MAGNESIUM OXIDE. ZIRCONIUM OXIDE AND ZIRCONIUM SILICATE FROM O DEGREES TO 900 DEGREES C WADC-TR-57-374 (1960) NSA 15. 22747 (1961)	700949 700949 700949 700949 700949 700949
VIDALE • G (GE COMP PHILADELPHIA PA) MEASUREMENTS OF THE VAPOR PRESSURE OF ATOMIC SPECIES FROM SPECTROPHOTOMETRIC MEASUREMENTS OF THE ABSORBTION OF RESONANCE LINES • IV • STANDARD ENTHALPY OF FORMATION OF SILICON CARBIDE • AND OSCILLATOR STRENGTH OF THE SILICON 2516 A • LINE US DEPT COM OFFICE TECH SERV PB REPT 148 • 878 • (1960) CA 57 • 2932 (1962)	201616 201616 201616 201616 201616 201616 201616 201616
VIDALE. G L (GENERAL ELEC KING ØF PRUSSIA PENNA) MEASUREMENT ØF THE VAPØR PRESSURE ØF ATØMIC SPECIES FRØM SPECTRØPHØTØMETRIC MEASUREMENTS ØF THE ABSØRPTIØN ØF RESØNANCE LINES THE FREE ENERGY ØF FØRMATIØN TIC AND ZRC U S DEPT CØM ØFFICE TECH SERV A D 263 336 (1961) C A 58. 7435F (1963)	301610 301610 301610 301610 301610 301610 301610

VIDALE. G L (GEN ELEC CO SCHENECTADY NEW YORK) THE VAPORIZATION OF GRAPHITE TIC. ZRC. AND HFC US DEPT COM OFFICE TECH SERV AD 259, 469 (1961) CA 58. 7387D (1963)	301611 301611 301611 301611 301611
VINTAIKIN+ E	202155
FREE ENERGY OF FORMATION OF CHROMIUM CARBIDE	202155
FIZ METAL I METALLOVED 16 NO 1 144 (1963)	202155
VINTAIKIN+ E FREE ENERGY OF FORMATION OF CHROMIUM CARBIDE FIZ METAL I METALLOVED 16 NO 1 144 (1963) VINTAIKIN+ E TOMASH+ Y VAPOR PRESSURE OF PURE COBALT ZHUR FIZ KHIM 35+ 2121 (1961) BHTG NO 4+ 1 (1962)	300452 300452 300452 300452
VISHNEVSKII» I I GAVRISH» A M SUKHAREVSKII» B Y	301373
PØSSIBLE MECHANISM ØF STABILIZATIØN ØF CUBIC ZRØ2	301373
SB NAUCHN TR UKR NAUCHN-ISSLED INST ØGNEUPØRØV (1962) 6, 74	301373
CA 59, 4605A (1963)	301373
VISHNEVSKII, I GAVRISH, A SUKHAREVSKII, B INVESTIGATION OF STABILIZATION AND DESTABILIZATION PROCESSES IN CUBIC ZIRCONIUM DIOXIDE RENT GENOGR, MINERALN SYRYA MINGEOL I OKHRANY NEDR SSSR VSES NAUCH-ISSLED INST MINERALN SYRYA AKAD NAUK SSSR 1962(2)5 CA 58, 8184 (1963)	202154 202154 202154 202154 202154 202154 202154
VITTALACHAR, V KRISHNÅMURTY, S (PRESIDENCY CØLLEGE MADRAS INDIA) BAND SPECTRUM ØF TUNGSTEN ØXIDE CURRENT SCI INDIA 23, 357 (1954) CA 49, 6725 (1955)	600897 600897 600897 600897
VLASØV» V KØZLØV» V	201591
LØW-TEMPERATURE CARBØN-THERMAL REDUCTIØN ØF U3Ø8	201591
ZH PRIKL KHIM 35° 660 (1962)	201591
CA 57° 1600 (1962)	201591
VLASØV, V LEBEDEV, A	201185
KINETICS ØF DISSØCIATIØN ØF URANIUM ØXIDES	201185
ZHUR PRIKLAD KHIM 34, 1739 (1961)	201185
CA 56, 51 (1962)	201185
VLASØV» V SHALAGINØV» V	201027
REDUCTIØN ØF URANIUM TRIØXIDE WITH CARBØN MØNØXIDE	201027
ZHUR PRIKLAD KHIM 34» 20 (1961)	201027
CA 55» 14023 (1961)	201027
VLASØV» V STREKALØVSKII» V	200985
INTERACTIØN ØF HYDRØGEN WITH UØ3	200985
DØKLADY AKAD NAUK SSSR 134» 1384 (1960)	200985
CA 55» 12129 (1961)	200985
VLASØV. V G ZHURKØVSKII. V M	301612
EFFECT ØF THE ADDITIØN ØF SØME ØXIDES ØN THE KINETICS ØF	301612
REDUCTIØN ØF URANIUM TRIØXIDE BY DECØMPØSED AMMØNIA	301612
7H PRIKL KHIM 35, 1888 (1962)	301612
ĆA 58, 1941B (1963)	301612
VØGEL. R	900105
CERIUM-IRØN ALLØYS	900105
Z ANØRG CHEM 99. 25 (1917)	900105

CA 11, 3229 (1917)	000105
VØGEL, R KEMPTER, C (LØS ALAMØS N.M.) MATHEMATICAL TECHNIQUE FØR THE PRECISIØN DETERMINATION ØF LATTICE CØNSTANTS US ATØMIC ENERGY CØMM LA2317 (1959) CA 54, 16087 (1960)	900105 601177 601177 601177 601177 601177
VØITØVICH+ R HIGH TEMPERATURE ØXIDATIØN ØF REFRACTØRY ALLØYS IV+ TANTALUM- TITANIUM AND TANTALUM-TUNGSTEN ALLØYS FIZ METAL I METALLØVED+ AKAD NAUK S S S R 12+ 376 (1961) CA 56+ 4497 (1962)	201310 201310 201310 201310 201310
VØITØVICH. R HIGH-TEMPERATURE ØXIDATIØN ØF REFRACTØRY ALLØYS V NIØBIUM- ZIRCØNIUM AND NIØBIUM-TITANIUM ALLØYS FIZ METAL I METALLØVED AKAD NAUK S S S R 12. 576 (1961) CA 56. 3248 (1962)	201287 201287 201287 201287 201287
VØLPE. M MIHAILØVICH. S (ARGØNNE NATL LAB ARGØNNE ILL) KINETICS ØF THE REDUCTIØN ØF URANIUM ØXIDES BY CARBØN MØNØXIDF AND BY HYDRØGEN U S ATØMIC ENERGY CØMM ANL 6475 (1962) CA 57. 15858 (1962)	201919 201919 201919 201919 201919 201919
VØN BØLTØN. W THØRIUM Z ELEKTRØCHEM 14. 768 (1908) CA 3. 404 (1909)	800117 800117 800117 800117
VØN WARTENBERG. H THØRIUM Z ELEKTRØCHEM 15. 866 (1909) CA 4. 873 (1910)	900108 900108 900108 900108
VØRDAHL. M HEAT TREATMENT ØF TITANIUM ALLØYS HAVING A DUPLEX ALPHA-BETA MICRØSTRUCTURE US 2974076 (1961) CA 55. 14277 (1961)	500121 500121 500121 500121 500121
VØRØBEV: A NAKHØDNØVA: A ELECTRICAL CØNDUCTIVITY ØF ØXIDES AND HALIDES ØF GRØUP II ELEMENTS IZV TØMSKØGØ PØLITEKHN INST 95: 325 (1958) CA 57: 1673 (1962)	201600 201600 201600 201600 201600
VØRØBEV. A PRIVALØVA. N SKURATØV. S CALØRIMETER FØR MEASURING THE ENTHALPY ØF DECØMPØSITIØN ØF SØLIDS ZHUR FIZ KHIM 34. 1142 (1960) BHT. 4 (1960)	300135 300135 300135 300135 300135
VØRØBEV. A SAVINTSEV. P THE IØNIZATIØN PØTENTIAL ØF ATØMS AND THE MUTUAL SØLUBILITY ØF METALS 12 VYSSHIKH UCHEB ZAVED FIZ NØ 3. 233 (1960) AEC-TR-5177	900210 900210 900210 900210 900210
VORONIN. N	301007

TRIAL BATCH OF PRODUCTION A SILICON NITRIDE BINDER OGNEUPORY 26. NO 4. 157 COTS NO 59. 107 (1962)		IES WITH	301007 301007 301007 301007
VØRØNKØV• M NATURE ØF SI-Ø BØNDS IN LATVIJAS PSR ZINATNU AKA CA 57• 6853 (1962)	SILICATES AD VESTIS KIM SER 1961. 1	NØ 2• 283 (1961)	301004 301004 301004 301004
VØRØNØV• N DANILIN• A INVESTIGATIØN ØF EVAPØRA HEATED BY ELECTRIC CURRE SYMPØSIUM ØN THERMØDYNAN AEC-TR-5416	ENT		301120 301120 301120 301120 301120
VØRØNØV, N VØITEKHØVA, E PHASE DIAGRAM ØF THE SYS TR INST MET IM A A BAIKE SISTEM S URANØM I TØRIEN CA 57, 15869 (1962)	STEM U <mark>02-ZRØ2</mark> BVA (STRØFNIF SPLAVØV NFI	(ØTØRYKH	201920 201920 201920 201920 201920
VØTINØV• M P DEMIDENKØ• (M I KALININ PØLYTECH INS TEMPERATURE VARIATIØN Ø! PARAMAGNETIC RESØNANCE FIZ TVERD TELA 4• 3277 CA 58• 4063F (1963)	ST LENINGRAD F THE WIDTH ØF THE ELECT (E P R) SPECTRUM IN TI-0	RUSSIA) RØN Ø SYSTEM	301613 301613 301613 301613 301613
VØZZELLA» P MILLER» A ((PRATT + WHITNEY AIRCRAF) THERMAL DECOMPOSITION OF US AT ENERGY COMM PWAC-	T MIDDLETØWN F URANIUM MØNØCARBIDE	CØNN)	202156 202156 202156 202156
VRATNY, F DILLING, M GI (PURDUE UNIV INFRARED SPECTRA ØF MET J SCI IND RESEARCH (IND CA 56, 8181 (1962)	LAYFAYETTE ALLIC ØXIDES, PHØSPHATES	INDIANA) AND CHROMATES	201385 201385 201385 201385 201385
VUKALØVICH, M. ARTYM, R CALCULATIØN ØF THERMØDY TEPLØENERGETIKA 9, NØ 6 CA 57, 15891 (1962)	NAMIC FUNCTIONS OF POL'A • 63 (1962)	TOMIC GASES	301005 301005 301005 301005
VUILLARD, G LUQUE, A (UNIV ALGER PREPARATION OF BORON CA COMPT REND 253, 1056 (1 CA 56, 11166 (1962)	RBIDE IN THE SØLAR FURNA 961)	FRANCE) CE	201467 201467 201467 201467 201467
VULF. B K ROMADIN. K P AVIATION PHYSICAL METAL GOS IZD OBORONNOI PROM CA 58. 5348B (1963)			301614 301614 301614 301614
WABER J T GSCHNEIDER K PREDICTION OF SOLID SOL TRANS MET SOC AIME 227.	UBILITY IN METALLIC ALLO	Y	301374 301374 301374
WACHTMAN. J SCUDERI. T	CLEEK+ G WASHINGTØN	DC)	601472 601472

LINEAR THERMAL EXPANSION OF AL203 AND THO2 FROM 100 DEGREES TO 1100 DEGREES K J AM CERAM SOC 45. 319 (1962) NSA 16. 24190 (1962)	601472 601472 601472 601472
WADA. H KAWAI. Y SAITO, T THERMODYNAMICS OF THE IRON-CHROMIUM SYSTEM JAPAN INST OF METALS JOURNAL 24. 684 (1960) ASM REV 18. NO 2. 64 (1961)	300289 300289 300289 300289
WADA: H KAWAI: Y SAITO: T ACTIVITY ØF CHRØMIUM IN LIQUID IRØN-CHRØMIUM SYSTEM SCI REPTS RESEARCH INSTS TØHØKU UNIV SER A 13: 96 (1961) CT NØ 13: (1961)	700627 700627 700627 700627
WADSLEY. A (CSIRØ CHEM RESEARCH LAB MELBØURNE AUSTRALIA) MIXED ØXIDES ØF TITANIUM AND NIØBIUM ACTA CRYST 14. 660 (1961) CA 55. 18236 (1961)	201100 201100 201100 201100 201100
WADSLEY A D (CØMMØNWEALTH SCI IND RES MELBØURNE AUSTRALIA) NØNSTØICHIØMETRIC METAL ØXIDES ORDER AND DISØRDER J AM CERAM SØC 45 614 (1962) ADVAN CHEM 39 23 (1963) CA 58 13236D (1963)	301615 301615 301615 301616 301615
WADSLEY: A (CSIRØ CHEM RESEARCH LAB MELBØURNE AUSTRALIA) THE CRYSTAL STRUCTURES ØF THE DIMØRPHIC FØRMS ØF TI2NB10029 ACTA CRYST 14: 664 (1961) CA 55: 18236 (1961)	201101 201101 201101 201101 201101
WAGNER C (MI: CAMBRIDGE MASS) THERMODYNAMICS OF THE SYSTEM URANIUM-OXYGEN US ATOMIC ENERGY COMM WAPD-144 (1955) CA 50 • 15193 (1956)	601025 601025 601025 601025 601025
WAHLBECK P EDWARDS R (ILLINØIS INST ØF TECH CHICAGØ ILL) CHEMICAL THERMØDYNAMICS ØF MATERIALS AT HIGH TEMPERATURES U S DEPT ØF CØMM ØFFICE TECH SERV AD 259 044 (1961) BHT NØ 7 4 (1963)	301163 301163 301163 301163 301163
WAHLL, M (BAT MEM INST COLUMBUS OHIO) DEFENSE METALS INFORMATION CENTER SELECTED ACCESSIONS ND-9606 NSA 15, 5313 (1961)	701053 701053 701053 701053 701053
WAHLL: M (BATTELLE MEM INST COLUMBUS ØHIØ) DEFENSE METALS INFØRMATIØN CENTER SELECTED ACCESSIØNS NP-9861 (1960) NSA 15: 13350 (1961)	700723 700723 700723 700723 700723
WAIT. E (ATOMIC ENERGY RES EST HARWELL ENGLAND) A CUBIC FORM OF URANIUM TRIOXIDE J INORG AND NUCLEAR CHEM 1. 309 (1955) NSA 10. 501 (1956)	601268 601268 601268 601268 601268

WAKEFIELD, G VAPOR PRESSURE OF HOLMIUM METAL AND DECOMPOSITION PRESSURES OF HOLMIUM CARBIDES DISS ABS 22, 3433 (1962)	300724 300724 300724 300724
WALDEN. G SMITH. D (UNIV ALABAMA MØNTGØMERY ALA) HIGH-TEMPERATURE HEAT CØNTENTS AND ENTRØPIES ØF BISMUTH CHLØRIDE AND CERØUS CHLØRIDE US BUR MINES REPT INVEST NØ 5859, (1961) CA 56. 9511 (1962)	201414 201414 201414 201414 201414 201414
WALKER, B EWING, C MILLER, R SPECIFIC HEAT OF SOME HIGH TEMPERATURE MATERIALS J CHEM ENG DATA 7, 595 (1962)	301098 301098 301098
WALKER R EFIMENKO J LØFGREN N RATE ØF VAPØRIZATIØN ØF REFRACTØRY SUBSTANCES PLANETARY AND SPACE SCIENCE 3 24 (1961)	700579 700579 700579
WALLACE D (AMES LAB AMES 10WA) SPECIFIC HEAT OF THORIUM AT HIGH TEMPERATURES PHYS REV 120 * 84 (1960) CA 55 * 3180 (1960) NSA 15 * 681 (1961)	700569 700569 700569 700569 700569 700569
WALLACE. W (UNIV PITTSBURG PA) APPLICATION OF CHEMICAL THERMODYNAMICS AND RELATED PHENOMENA TO THE STUDY OF ALLOY FORMATION. THERMAL AND STRUCTURAL STUDIES OF TA2H. TA2D. MGN12. DYC05 SYSTEM STUDIES OF THE DY-H. TB-H. HO-H SYSTEM STUDIES OF THE KCL-KBR SYSTEM US AT ENERGY COMM TID-6038 (1960) CA 57. 5686 (1962)	201731 201731 201731 201731 201731 201731 201731 201731 201731
WALLACE I BEARDSLEY R THE SPECTRUM ØF RHØ CASSIØPEIAE ASTRØPHYS J. SUPPL SER.S 381 (1961) CA 55 23035 (1961)	202157 202157 202157 202157
WALLACE T C GUTIERREZ C P STONE P L (LOS ALAMOS SCI LAB LOS ALAMOS NEW MEXICO THE MO-ZR-C SYSTEM J PHYS CHEM 67. 796 (1963)	301375 301375 301375 301375
WALSH. P DEVER. D WHITE. D [OHIO STATE UNIV COLUMBUS OHIO] RARE EARTHS [II. A MASS SPECTROMETRIC INVESTIGATION OF THE ISOMOLECULAR OXYGEN-EXCHANGE REACTIONS OF LANTHANUM. CERIUM. PRASEODYMIUM. AND NEODYMIUM WITH THEIR MONOXIDES J PHYS CHEM 65. 1410 (1961) NSA 15. 29205 (1961)	700642 700642 700642 700642 700642 700642
WALSH. P GØLDSTEIN, H WHITE. D (OHIO STATE UNIV CØLUMBUS OHIO) VAPØRIZATIØN ØF RARE-EARTH ØXIDES J AM CERAMIC SØC 43. 229 (1960) NSA 14. 13722 (1960)	700566 700566 700566 700566 700566

```
WALSH. P WHITE. D
                                                                   700806
 RARE EARTH @XIDES PT II VAPORIZATION OF LA203 AND Y203
                                                                   700806
 DISSOCIATION ENERGIES OF LAO, YO AND TAO
                                                                   700806
 AFØSR-TN-58-382 TECH NØTE NØ 2+ (1958)
                                                                   700806
 NUCL SCI ABSTR 12, 9737 (1598)
                                                                   700806
WANG. C
                                                                   301376
(COLORADO STATE UNIV
                                                   COLORADO
                                                                   301376
 STUDIES ON AL AND B PHOSPHIDES AND CUBIC BN
                                                                   301376
 DISSERTATION ABSTR 23. 3154 (1962-63)
                                                                   301376
 BHT NØ 2 P (1963)
                                                                   301376
WANG, K DREGER, V DADAPE, V MARGRAVE, J
                                                                   300140
(UNIVERSITY OF WISCONSIN MADISON
                                                   WISCI
                                                                   300140
 SUBLIMATION OF CR203 AT HIGH TEMPERATURES
                                                                   300140
 J AM CERAM SØC 43, NØ 10 509 (1960)
                                                                   300140
 BHT, 20 (1960)
                                                                   300140
 CA 55, 1116 (1961)
                                                                   300140
 NSA 15, 1391 (1961)
                                                                   300140
WANG + C GRANT + N
                                                                   202158
(MASS INST OF TECHNOL
                             CAMBRIDGE
                                                 MASS)
                                                                   202158
 TRANSFORMATION OF THE TI3 PHASE
                                                                   202158
 TRANS AIME 206+184 (1956)
                                                                   202158
WARD. J ALEXANDER. C LEMMON. A FILBERT. R
                                                                   701055
IBATTELLE MEM INST
                              COLUMBUS
                                                   OH10)
                                                                   701055
 THERMODYNAMICS OF BORON LOSS IN UO2- STAINLESS STEEL
                                                                   701055
 DISPERSION FUEL ELEMENTS
                                                                   701055
 BMI-1531 (1961)
                                                                   701055
NSA 15, 25576 (1961)
                                                                   701055
WARF. J PALENIK. G
                                                                   700849
(UNIV OF SOUTHERN CALIF
                            LØS ANGELES
                                                  CALIFI
                                                                   700849
CARBIDES AND NITRIDES OF THE RARE EARTH METALS PARTS I AND II
                                                                   700849
 FINAL REPORT - PROJ 683 CONTRACT DA-04-495-0RD-421
                                                                   700849
NP 8585 (1960)
                                                                   700849
NUCL SCI ABST 14, 14063 (1960)
                                                                   700849
WARSHAW. I
                                                                   201155
IPENN STATE UNIV
                             UNIV PARK
                                                                   201155
                                                   PAI
PHASE EQUILIBRIUM AND CRYSTAL CHEMICAL RELATIONS IN
                                                                   201155
RARE EARTH SYSTEMS
                                                                   201155
UNIV MICROFILMS (ANN ARBOR MICH) L C CARD NO MIC 61-2406
                                                                   201155
DISSERTATION ABSTR 22. 279 (1961)
                                                                   201155
CA 55 + 21771 (1961)
                                                                   201155
                                                                  201358
WARSHAW. I ROY. R
(PENN STATE UNIV
                                                                   201358
                              UNIV PARK
                                                   PA)
POLYMORPHISM OF THE RARE EARTH SESQUIOXIDES
J PHYS CHEM 65, 2048 (1961)
                                                                   201358
                                                                  201358
CA 56, 6869 (1962)
                                                                  201358
                                                                   201808
WARSHAW, I RØY, R
IPENN STATE UNIV
                                                   PA)
                                                                  201808
                              UNIV PARK
                                                                  201808
 A NEW FAMILY OF RARE EARTH COMPOUNDS
                                                                  201808
 INORG CHEM 1, 719 (1962)
                                                                  201808
CA 57, 9438 (1962)
                                                                   700923
WARTENBERG. H
(UNIV GOTTINGEN
                              GØTTINGEN
                                                   GERMANY )
                                                                  700923
                                                                   700923
 HEATS OF FORMATION OF LAZOS AND LA(OH)3
                                                                   700923
 Z ANORG U ALLGEM CHEM 299. 227 (1959)
```

CA 53. 16677 (1959)	700923
WASILEWSKI R (DU PØNT WILMINGTØN DELAWARE) THE EXISTENCE ØF LØWER TANTALUM ØXIDES TRANS AIME 221 • 647 (1961) CA 55 • 17420 (1961)	201089 201089 201089 201089 201089
WASILEWSKI R (E I DUPØNT DE NEMØURS AND CØ WILMINGTØN DEL) ELECTRICAL RESISTIVITY ØF TITANIUM TRANS AIME 224 • 5 (1962) CA 56 • 13652 (1962)	201515 201515 201515 201515 201515
TE I DOPANT DE NEMBURS AND CO WILMINGTON DEL)	201516 201516 201516 201516 201516 201516
WASILEWSKI. R (E 1 DU PØNT DE NEMØURS AND CØ WILMINGTØN DEL) THERMAL EXPANSIØN ØF TITANIUM AND SØME TI-Ø ALLØYS TRANS AIME 221. 1231 (1961) CA 56. 5742 (1962)	201342 201342 201342 201342 201342
WATANABE, K MARMO, F PHOTOIONIZATION AND TOTAL ABSORPTION CROSS SECTION OF GASES II OXYGEN AND NITROGEN IN THE REGION 850-1500A J CHEM PHYS 25, 965 (1956) CA 51, 4137 (1957)	600567 600567 600567 600567 600567
WATANABE K INN E ZELIKØFF, M (AIR FØRCE RESEARCH CENTER CAMBRIDGE MASS) ABSØRPTIØN CØEFFICIENTS ØF GASES IN VACUUM ULTRAVIØLET J CHEM PHYS 20 1969 (1952) CA 47, 47365 (1953)	600565 600565 600565 600565
WATANABE, K INN, E ZELIKOFF, M (AIR FØRCE RESEARCH CENTER CAMBRIDGE MASS) ABSØRPTIØN CØEFFICIENTS ØF ØXYGEN IN THE VACUUM ULTRAVIØLET J CHEM PHYS 21, 1026 (1953) CA 47, 9144 (1953)	600566 600566 600566 600566
WATERSTRAT R (UNIV ØF ILLINØIS URBANA ILL) INVESTIGATION ØF THE VANADIUM-MANGANESE ALLØY SYSTEM TRANS AIME 224. 240 (1962) CA 57. 523 (1962)	201584 201584 201584 201584 201584
WATERSTRAT. R DAS. B BECK. P (UNIV ILLINGIS URBANA I) PHASE RELATIONSHIPS IN THE TITANIUM-MANGANESE SYSTEM TRANS AIME 224. 512 (1962) CA 57. 4437 (1962)	201702 201702 201702 201702 201702
WATSON. J. WILDER. D. ROLES OF NIOBIUM PENTOXIDE AND TITANIUM—DIOXIDE IN THE GRAIN GROWTH AND SINTERING OF URANIUM DIOXIDE US ATOMIC FNERGY COMM IS-221 (1960) CA 56. 5469 (1962)	201321 201321 201321 201321 201321

WATSON. R (MIT CAMBRIDGE MASS) IRON SERIES HARTREE~FOCK CALCULATIONS II PHYS REV 119. 1934 (1960) CA 55. 2267 (1961)	200816 200816 200816 200816 200816
WATT. G RELATIVE STABILITIES OF OXIDATION STATES OF TRANSITIONAL METALS J ELECTROCHEM SOC 108, 423 (1961)	700590 700590 700590 700590
WEBER. A MCGINNIS. E THE RAMAN SPECTRUM OF GASEOUS OXYGEN J MOL SPECTROSC 4. 195 (1960)	600540 600540 600540
WEBER. B (WRIGHT PATTERSON AIR FORCE DAYTON OHIO) INCONSISTENCIES IN ZIRCONIA LITERATURE J AM CERAM SOC 45 614 (1962) CA 58. 7702 (1963)	301616 301616 301616 301616 301616
WEBER, B RIZZØ, H (WRIGHT PATTERSØN AIR FØRCE DAYTØN ØHIØ) CØMPACTED SILICØN-BØRØN PØWDER MIXTURES ØXIDIZED IN SINTERING TØ REFRACTØRY BØDIES US 3096, 187 106 (1963) APPL (1959) CA 59, 7228 (1963)	202159 202159 202159 202159 202159 202159
WEBSTER: A BRIGHT: N THE SYSTEM IRON-TITANIUM-OXYGEN AT 1200 DEGREES C AND OXYGEN PARTIAL PRESSURES BETWEEN 1 ATM AND 2X10-14 ATM J AM CERAM SOC 44 (3), 110 (1961)	300164 300164 300164 300164
WEEKS J (ARGONNE NATE LAB LEMONT ILL) THORMAL CONDUCTIVITY OF URANIUM AND SEVERAL URANIUM ALLOYS J METALS 7. 192 (1955) NSA 9. 1879 (1955)	601282 601282 601282 601282 601282
WEINER R RAYNOR G (UNIV EDGBASTON BIRMINGHAM ENGLAND) TRANSFORMATION IN METALLIC CERIUM J LESS COMMON METALS 1 • 309 (1959) CA 55 • 5282 (1961)	200871 200871 200871 200871 200871
WELLER+ W KELLEY+ K LØW TEMPERATURE HEAT CAPACITY AND ENTRØPY AT 298.15 DEGREES K ØF SCANDIUM US BUREAU ØF MINES REP INVEST 5984 (1962) CA 57+ 2930 (1962)	700709 700709 700709 700709 700709
WELLER. W W KING. E G (U S BUR OF MINES BERKELEY CALIF) LOW TEMPERATURE HEAT CAPACITIES AND ENTROPIES AT 298.15 DEGREES K OF THE SESQUIOXIDES OF SCANDIUM AND CERIUM U S BUR MINES REPT INVEST NO 6245 (1963) CA 59. 5859H (1963)	301617 301617 301617 301617 301617 301617
WELLS. P (UNIV QUEENSLAND BRISBANE AUSTRALIA) LINEAR FREE-ENERGY RELATIONS CHEM REV 63. 171 (1963) CA 58, 12016H (1963)	301618 301618 301618 301618 301618

WELTNER: W WARN: J (UNION CARBIDE RESEARCH INST TARRYTOWN NEW YORK) MATRIX ISOLATION OF HIGH-TEMPERATURE VAPORS BORIC OXIDE J CHEM PHYS 37: NO 2: 292 (1962)	300588 300588 300588 300588 300588
WELTY. J R WICKS. C E ICE CALØRIMETER FØR THE PRECISE MEASUREMENT ØF HEAT CØNTENT FRØM O DEGREES TØ 1500 DEGREES K BUR MINE REPT 6028 (1962)	301619 301619 301619 301619
WENDLANDT. W GEØRGE. T (TEXAS TECHNØL CØLL LUBBØCK TEXAS) THE THERMAL DECØMPØSITIØN ØF INØRGANIC CØMPØUNDS IV RARE EARTH CARBØNATES TEXAS J SCI 13. 316 (1961) CA 56. 3100 (1962)	201275 201275 201275 201275 201275 201275
MENSEL. H. RØESER. W. BARBRØW. L. CALDWELL. F. DERIVATION OF PHOTOMETRIC STANDARDS FOR TUNGSTEN-FILAMENT LAMPS J. RESEARCH NATL BUR STANDARDS 13, 161 (1934)	900133 900133 900133 900133
WENSRICH: C (LAWRENCE RAD LAB LIVERMØRE CALIF) MØ: NB: TA: W: U02: IN THE JØURNAL LITERATURES ØF THE USSR UCRL-6110 (1960) NSA 15: 542 (1961)	700972 700972 700972 700972 700972
WENTØRF. R (GE RESEARCH LAB SCHENECTADY NY) SYNTHESIS ØF THE CUBIC FØRM ØF BØRØN NITRIDE J CHFM PHYS 34. 809 (1961) NSA 15. 12928 (1961)	700935 700935 700935 700935 700935
WENTORF JR. R H KASPER. J S IGEN ELEC RES LAB SCHENECTADY N Y) TWO NEW FORMS OF SILICON SCIENCE 139. 338 (1963) CA 58. 7585D (1963)	301620 301620 301620 301620 301620
WERIER R RAYNØR G (UNIV BIRMINGHAM BIRMINGHAM ENGLAND) A NØTE ØN TRANSFØRMATIØNS IN METALLIC CERIUM J LESS CØMMØN METALS 1 • 309 (1959) NSÅ 14 • 6705 (1960)	601359 601359 601359 601359
WESTBROOK, J CARTER, R DEVRIES, R (GE RESEARCH LAB SCHENECTADY NY) A SURVEY OF OXYGEN BINARY SYSTEMS I. RARE EARTH METAL-OXYGEN SYSTEMS 61-RL-2634M (1961) NSA 16, 1646 (1962)	601449 601449 601449 601449 601449
WESTMAN. S (UNIV KANSAS THW LØWER ØXIDES ØF VANADIUM ACTA CHEM SCAND 17. (3). 749 (1963) CA 59. 5880B (1963)	301621 301621 301621 301621 301621
WESTMAN, S (UNIV ØF STØCKHØLM STØCKHØLM SWEDEN) NØTE ØN A PHASE TRANSITIØN IN VØ2	700545 700545 700545

ACTA CHEM SCAND 15. 217 (1961) NSA 15. 18532 (1961)	700545 700545
WESTMAN. S NØRDMARK. C (UNIV STØCKHØLM STØCKHØLM SWEDEN) PHASF ANALYSIS STUDIES ØN THE VANADIUM-ØXYGEN SYSTEM WITHIN THE VØ 0.25 - VØ 1.5 REGIØN AT 800 DEGREES ACTA CHEM SCAND 14. 465 (1960) CA 56. 5614 (1962)	201329 201329 201329 201329 201329 201329
WESTPHAL. R (WESTINGHOUSE ELEC CO PITTSBURGH PA) THERMAL CONDUCTIVITY OF REACTOR FUEL ELEMENT MATERIALS DECL DEC 6. 1955 AECD-3864, NSA 10, 3616 (1956)	601270 601270 601270 601270 601270
WESTRUM. E GRØNVØLD. F (MICH UNIV ANN ARBØR MICH) (ØSLØ UNIV ØSLØ SWEDEN) LØW TEMPERATURE HEAT CAPACITY AND THERMØDYNAMIC FUNCTIØNS ØF U308 AECU-3924 (1958) NSA 13. 3556 (1959)	601553 601553 601553 601553 601553 601553
WESTRUM. E (MICHIGAN UNIV ANN ARBØR MICHIGAN) THERMAL AND ELECTRONIC PROPERTIES OF THE RARE EARTH ØXIDES TID-11300 (1960) NS 15. 6390 (1961)	600675 600675 600675 600675 600675
WESTRUM. E (UNIV MICH ANN ARBØR MICH) THEMØDYNAMIC PRØPERTIES ØF ACTINIDE CARBIDES WITH SPECIAL REFERENCE TØ THE ENTRØPIES ØF URANIUM MØNØ-AND DI-CARBIDE TID 16987 NSA 17: 151 (1963)	601689 601689 601689 601689 601689
WESTRUM, E (PURDUE UNIV LAFAYETTE IND) LØW TEMPERATURE CHEMICAL THERMØDYNAMICS PRØJECT TID-11188 (1960) NSÅ 15, 12795 (1961)	701021 701021 701021 701021 701021
WESTRUM. E BEALE. A HEAT CAPACITIES AND CHEMICAL THERMODYNAMICS OF CERIUM III FLUORIDE AND OF CERIUM IV OXIDE FROM 5 TO 300 DEG K J PHYS CHEM 65. 353 (1961) T 1 D 6515 CA 56. 1008 (1962) NSA 14. 25455 (1960)	300350 300350 300350 300350 300350 300350
WESTRUM. E F JR FEICK. G (U ØF MICHIGAN ANN ARBØR MICH) (A D LITTLE CØ CAMBRIDGE MASS) ZRC HEAT CAPACITY AND THERMØDYNAMIC PRØPERTIES FRØM 5 DEGREES TØ 350 DEGREES K J CHFM ENG DATA 8. (2) 176 (1963) BHT NØ 2 P 22 (1963)	301379 301379 301379 301379 301379 301379
WESTRUM, E F JR FEICK, G {U ØF MICHIGAN ANN ARBØR MICH) {A D LITTLE CØ CAMBRIDGE MASS) ZRB2 HEAT CAPACITY AND THERMØDYNAMIC PRØFERTIES FRØM	301378 301378 301378 301378

5DEGREES TØ 350 DEGREES K J CHFM ENG DATE 8• (2) 193 (1963) BHT NØ 2 P ?2 (1963)	301378 301378 301378
WESTRUM, E GRØNVØLD. F (MICHIGAN UNIV ANN ARBØR MICHIGAN) TRIURANIUM HEPTAØXIDES HEAT CAPACITIES AND THERMØDYNAMIC PRØPERTIES ØF ALPHA- AND BETA-U307 FRØM 5 TØ 350 DEGREES K PHYS CHEM SØLIDS 23, 39 (1962) CA 57, 4112 (1962)	300752 300752 300752 300752 300752 300752 300752
WESTRUM. E GRØNVØLD. F (U. ØF MICHIGAN ANN ARBØR MICH) LØW-TEMPERATURF HEAT CAPACITY AND THERMØDYNAMIC FUNCTIONS ØF TRIURANIUM ØCTØXIDE J.AM CHEM SØC 81. 1777 (1959) CA 53. 14669 (1959)	601133 601133 601133 601133 601133
WESTRUM. E GRØNVØLD. F (MICHIGAN UNIV ANN ARBØR MICHIGAN) CHEMICAL THERMØDYNAMICS ØF THE ACTINIDE ELEMENT CHALCØGENIDES IAEA SYMPØSIUM ØN THE THERMØDYNAMICS ØF NUCLEAR MATERIALS. VIFNNA. MAY (1962) NSA 16. 25388 (1962)	601613 601613 601613 601613 601613
WESTRUM, E JUSTICE, B (UNIV ØF MICH ANN ARBØR MICH) LØW TEMPERATURE CHEMICAL THERMØDYNAMICS ØF THE LANTHANIDE SESQUIØXIDES TID-14101 NSA 16, 96 (1962)	601454 601454 601454 601454 601454
WESTRUM, E JUSTICE, B THERMOPHYSICAL PROPERTIES OF THE LANTHANIDE ØXIDES HEAT CAPACITIES, THERMODYNAMIC PROPERTIES, AND SOME ENERGY LEVELS OF DYSPROSIUM(III), HØLMIUM(III) AND ERBIUM(III) ØXIDES J PHYS CHEM 67, NØ 3, 659 (1963)	301012 301012 301012 301012 301012 301012
WHATLEY, L (UNIV ØF WISCØNSIN MADISØN WISCØNSIN) EXPERIMENTAL STUDIES ØN THE NATURE ØF SILICØN-ØXYGEN BØND UNIV MICRØFILMS (ANN ARBØR, MICH) ØRDER NØ (2-1979, (1961) DISSERTATIØN ABSTR 22, 3388 (1962) CA 57, 4267 (1962)	201679 201679 201679 201679 201679 201679
WHITE, D. WALSH, P. GOLDSTEIN, H. DEVER, D. A MASS SPECTROMETRIC DETERMINATION OF THE HEATS OF SUBLIMATION OR VAPORIZATION OF NEODYMIUM, PRASEODYMIUM, GADOLINIUM, TERBIUM, DYSPROLIUM, HOLMIUM, ERBIUM AND LUTETIUM J. PHYS. CHEM. 65, 1404 (1961) CA. 56, 1006 (1962)	201217 201217 201217 201217 201217 201217
WHITE. D (OHIO STATE UNIV COLUMBUS OHIO) STUDY OF SOLID VAPOR EQUILIBRIA IN THE RARE EARTH-RARE EARTH METAL SYSTEMS AFOSR-60-177 (1960) NSA 15. 8771 (1961)	601377 601377 601377 601377 601377
WHITE. D STUDY OF SOLID VAPOR EQUILILRIA IN THE RARE EARTH-RARE EARTH	300307 300307

METAL SYSTEMS AD 249224 DIV 25 FINAL REPT (1960)	300307 300307
WHITE, D WALSH, P AMES, L GOLDSTEIN, H (OHIO STATE UNIVERSITY COLUMBUS OHIO) THERMODYNAMICS OF VAPORIZATION OF THE RARE EARTH OXIDES AT ELEVATED TEMPERATURES, DISSOCIATION ENERGIES OF THE GASCOUS MONOXIDES IAEA SYMPOSIUM ON THE THERMODYNAMICS OF NUCLEAR MATERIALS, VIENNA, MAY (1962) NSA 16, 25386 (1962)	601612 601612 601612 601612 601612 601612 601612
WHITE, D WALSH, P N GØLDSTEIN, H W DEVER, D F (ØHIØ STATE UNIV CØLUMBUS ØHIØ) MASS SPECTRØMETIC DETERMINATIØN ØF THF HEATS ØF SUBLIMATIØN (ØR VAPØRIZATIØN) ØF NEØDYMIUM, PRASLØDYMIUM, GADØLINIUM, TERBIUM, DYSPRØSIUM, HØLMIUM, ERBIUM AND LUTETIUM US DEPT CØM ØFFICE TECH SERV PB REPT 157243 (1960) CA 58, 7439 (1963)	301622 301622 301622 301622 301622 301622 301622 301622
WHITE: D WALSH: P MANN: D SØMMER: A [ØHIØ STATE UNIV	300685 300685 300685 300685 300685 300685
WHITE. G (COMM SCI IND RES ORGAN SYDNEY AUSTRALIA) THERMAL EXPANSION AT LOW TEMPERATURES. II. ELECTRONIC COMPONENTS IN METALS PHIL MAG 6. 815 (1961) CA 57. 6644 (1962)	201739 201739 201739 201739 201739 201739
WHITE. G WOODS. S (NATL RESEARCH COUNCIL OTTAWA CANADA) THERMAL AND ELECTRICAL CONDUCTIVITY OF RHODIUM. IRIDIUM AND PLATINUM CAN J PHYS 35. 248 (1957) CA 51. 7781 (1957)	601050 601050 601050 601050 601050
WHITE, G WOODS, S (NATIONAL RES COUN OTTAWA CANADA) ELECTRICAL AND THERMAL RESISTIVITY OF THE TRANSITION ELEMENTS AT LOW TEMPERATURES PHIL TRANS ROY SOC 251, 273 (1959) CA 54, 23559 (1960)	601162 601162 601162 601162 601162 601162
#HITE. J THERMODYNAMIC ANALYSIS OF SOLUBILITY IN LIQUID METAL SYSTEMS NRL REPORT 5555 (1960) US GOV PUB 8091 (1961) PB 161968	300318 300318 300318 300318 300318
WHITE. P (INTERN BUSINESS MACHINES NEW YORK NEW YORK) GAS PHASE OXIDATION OF SILICON MONOXIDE DURING FORMATION OF EVAPORATED FILMS VACUUM 12. 15 (1962) CA 57. 2910 (1962)	300732 300732 300732 300732 300732

WHITMORE, D H (NORTHWESTERN UNIV EVANSTON ILL) THERMOELECTRIC POWER IN NONSTOICHIOMETRIC ALPHA-NB205 C CHEM PHYS 39 (1), 179 (1963) CA 59, 2247F (1963)	301254 301254 301254 301254 301254
WHITNEY. E EFFECT ØF PRESSURE ØN MØNØCLINIC-TETRAGØNAL TRANSITIØN ØF ZIRCØNIA. THERMØDYNAMICS J AM CERAM SØC 45. NØ 12. 612 (1962)	301017 301017 301017 301017
WHITNEY. E (CARBØRUNDUM CØ NIAGRA FALLS N Y) PØLYMØRPHISM IN SIC NATURE 199 (4890) 278 (1963) CA 59. 8204 (1963)	202160 202160 202160 202160 202160
WICHERS. E NEW SCALE OF NUCLIDIC MASSES AND ATOMIC WEIGHTS NATURE 194. 621 (1962)	300359 300359 300359
WICKERSHEIM. K LEFEVER. R (HUGHES RES LABS MALIBU CALIF) INFARED TRANSMITTANCE ØF CRYSTALLINE YTTRIUM ØXIDE AND RELATED CØMPØUNDS J ØPT SØC AM 51. 1147 (1961) CA 56. 4262 (1962)	201301 201301 201301 201301 201301 201301
WIEDERKEHR R (DØW CHEMICAL CØ MIDLAND MICH) MATRIX REPRESENTATIØN ØF THERMØDYNAMIC PRØPERTIES ØF MULTICØMPØNENT SYSTEMS J CHEM PHYS 37, 1192 (1962)	301056 301056 301056 301056 301056
WILCOX D (LAWRENCE RAD LAB BERKELEY CAL) METHOD FOR ESTIMATING THE HEAT OF FORMATION AND FREE ENERGY OF FORMATION OF INORGANIC COMPOUNDS USAEC-UCRL 10397 (1962) CA 58, 979 (1963).	301011 301011 301011 301011 301011
WILHELM. E DAANE. A CARTER. J SNØW. A (IOWA STATE COLL AMES IOWA) THE URANIUM-CARBON SYSTEM NSA 10. 5283 (1956)	601264 601264 601264 601264
WILHELM. H CHIOTTI, P (IOWA STATE COLLEGE AMES IOWA) TH-C SYSTEM TRANS AM SOC MET 42. 1295 (1950) CA 44. 5777 (1950)	400521 400521 400521 400521 400521
WILHELM. H CHIØTTI. P SNØW. A DAANE. A (10WA STATE CØLLEGE AMES 10WA) THE CARBIDES ØF URANIUM AND THØRIUM J CHEM SØC 1949. 2. 318 (1949) CA 44. 8808 (1950)	400536 400536 400536 400536 400536
WILHELM. H DAANE. A URANIUM CARBIDES BRIT 740.001. (1955) CA 50. 6970 (1956)	601009 601009 601009

WILKINSON, M CHILD, H MCHARGUE, C KOHLER, W (OAK RIDGE NATL LAB OAK RIDGE NEUTRON DIFFRACTION INVESTIGATIONS OF METALLIC CERIUM AT LOW TEMPERATURES PHYS REV 122, 1409 (1961) NSA 15, 19918 (1961)	WØLLAN, E Tenn)	601412 601412 601412 601412 601412 601412
WILKINSON P (UNIVERSITY OF CHICAGO CHICAGO HIGH RESOLUTION ABSORPTION SPECTRA OF NITROGEN I VACUUM ULTRAVIOLET ASTROPHYS J 126 1 (1957) CA 51 17437 (1957)	ILL) IN THE	600602 600602 600602 600602 600602
WILKINSØN• P (UNIVERSITY ØF CHICAGØ CHICAGØ FØRBIDDEN BAND SYSTEMS IN NITRØGEN III J CHEM PHYS 32• 1061 (1960)	ILL)	600604 600604 600604 600604
WILKINSON P (UNIVERSITY OF CHICAGO CHICAGO FORBIDDEN BAND SYSTEMS IN NITROGEN I THE VEGARD- SYSTEM IN ABSORPTION J CHEM PHYS 30 • 773 (1959) CA 53 • 15754 (1959)	ILL) -KAPLAN	600605 600605 600605 600605 600605
WILKINSON. P MULLIKEN, R (UNIVERSITY OF CHICAGO CHICAGO DISSOCIATION PROCESSES IN OXYGEN ABOVE 1750A ASTROPHYSICS J 125, 594 (1957) CA 51, 12648 (1957)	ILL)	600543 600543 600543 600543
WILKINSON, P MULLIKEN, R (UNIVERSITY OF CHICAGO CHICAGO ELFCTRIC QUADRUPLE ELECTRONIC BAND SYSTEM IN MOUNI:ROGEN ASTROPHYS J 126, 10 (1957) CA 51, 17437 (1957)	ILL) LECULAR	600603 600603 600603 600603 600603
WILLARDSON: R MOODY: J GOERING: H. (BATTELLE MEM INST. COLUMBUS ELECTRICAL PROPERTIES OF URANIUM OXIDES J INORG AND NUCLEAR CHEM 6: 19 (1958) CA 52: 8745 (1958)	0HIØ)	601104 601104 601104 601104 601104
WILLIAMS. D (BATTELLE MEM INST COLUMBUS PROPERTIES OF BORON US DEPT COM OFFICE OF TECH SERV PB REPT 262292. CA 56. 4343 (1962)	ØHIØ) (1960)	201304 201304 201304 201304 201304
WILLIAMS. D (BATTELLE MEM INST COLUMBUS THERMAL EXPANSION OF BETA-TITANIUM TRANS AIME 221. 411 (1961) CA 55. 13238 (1961)	ØH1Ø)	600782 600782 600782 600782 600782
WILLIAMS, D JACKSØN, R LARSEN, W THE TANTALUM-ZIRCØNIUM ALLØY SYSTEM TRANS MET SØC AIME 224, 751 (1962)		301016 301016 301016
WILLIAMS. E Boron Diffusion in Silicon		300505 300505

J ELECTROCHEM SOC 108. NO 8. 795 (1961)	
וְבַארנו טכ וכ שא וחם	300505 300505
WILLIAMS, G BAKER, E ZIRCØNIUM AND HAFNIUM A BIBLIØGRAPHY NYØ-1008, 236 (1950)	600904 600904 600904
WILLIAMS. J SAMBELL. R (ATOMIC ENERGY RES ESTAB HARWELL ENGLAND! THE URANIUM MONOCARBIDE-URANIUM MONONITRIDE SYSTEM J LESS COMMON METALS 1, 217 (1959) CA 55, 5285 (1961)	200872 200872 200872 200872 200872 200872
WILLIAMS, J SAMBELL, R WILKENSON, D (U K ATOMIC ENERGY AUTHORITY HARWELL ENGLAND) THE VARIATION OF UNIT-CELL EDGE OF URANIUM MONOCARBIDE IN ARC MELTED URANIUM-CARBON ALLOYS J LESS COMMON METALS 2, 352 (1960) NSA 15, 4319 (1961)	601388 601329 601388 601388 601388 601388
WILLIAMS. M HIGH TEMPERATURE HEAT CAPACITY EQUATIONS AND THERMODYNAMIC PROPERTIES OF COMBUSTION GASES AD 255963 (15 MAY 1961) GR 36. NO 1. 117 (1961)	700654 700654 700654 700654 700654
WILLIAMS. W THE HEAT OF FORMATION OF TIB2 EXPERIMENTAL AND ANALYTICAL RESOLUTION OF LITERATURE CONFLICT J PHYS CHEM 65. NO 12. 2213 (1961) BHT NO 2. 14 (1962)	300523 300523 300523 300523 300523
WILLIS B (AT ENERGY RES ESTAB HARTWELL ENGLAND) POSITIONS OF THE OXYGEN ATOMS IN UO2 NATURE 197 • 755 (1963) CA 58 • 10810E (1963)	301623 301623 301623 301623 301623
WILSON, A RUNDLE, R THE STRUCTURES OF URANIUM METAL ACTA CRYST 2, 126 (1949) NSA 4, 145 (1950)	601360 601360 601360 601360
WILSON: B PRODUCTION OF PURE REACTIVE METALS FROM THEIR CARBIDES UNION CARBIDE CORP US PAT 2:965:475 (1960) CA 55: 6349 (1961)	200895 200895 200895 200895 200895
WILSON, C THEKAEKARA, M GEORGETOWN UNIV ULTRAVIOLET SPECTRUM OF TI J OPT SOC AM 51, 289 (1961) CA 55, 13043 (1961)	201001 201001 201001 201001 201001
WILSON. F EMPIRICAL BOND ENERGIES REPT NO AFFTC-TR61-27 (1961) AD-257383	300309 300309 300309 300309
AILSON. J MCKINSEY. C	201094

```
TUNION CARBIDE METALS CO NIAGARA FALLS NEW YORK TUNGSTEN-NIOBIUM-TANTALUM ALLOYS. THEIR HIGH-TEMPERATURE
                                                     NEW YORK)
                                                                     201094
                                                                     201094
 PROPERTIES
                                                                     201094
 J METALS 13, 494 (1961)
                                                                     201094
 CA 55, 17444 (1961)
                                                                     201094
WILSON. W
                                                                     601183
IGEN ELEC CO.
                               CINCINNATI
                                                     ØHIØ)
                                                                     601183
 U308 SINGLE CRYSTALS
                                                                     601183
 US ATOMIC ENERGY COMM APEX-187, (1960)
                                                                     601183
 CA 54 + 12713 (1960)
                                                                     601183
WILSON, W
                                                                     601193
(BATTELLE MEM INST
                               COLUMBUS
                                                     ØHIØ)
                                                                     601193
 HIGH-TEMPERATURE X-RAY DIFFRACTION INVESTIGATION OF THE
                                                                     601193
 URANIUM-CARBON SYSTEM
                                                                     601193
 J AM CERAM SØC 43. 77 (1960)
                                                                     601193
 CA 54, 7317 (1960)
                                                                     601193
WILSON. W
                                                                     601448
(BATTELLE MEMORIAL INST
                               CØLUMBUS
                                                     aniai
                                                                     601448
 HIGH PRESSURE ,-HIGH TEMPERATURE INVESTIGATION OF THE
                                                                     601448
 URANIUM-ØXYGEN SYSTEM
                                                                     601448
 J INØRG NUCLEAR CHEM 19, 212 (1961)
                                                                     601448
 NSA 16. 1780 (1962)
                                                                     601448
WILSON W AUSTIN A SCHWARTZ C
                                                                     601071
IBATTELLE MEMORIAL INST
                           COLUMBUS
                                                     2H [ Ø )
                                                                     601071
 SOLID SOLUBILITY OF URANIUM IN THORIUM AND THE ALLOTROPIC
                                                                     601071
 TRANFORMATION OF THORIUM-URANIUM ALLOYS US ATOMIC ENERGY COMM BMI-1111 (1956)
                                                                     601071
                                                                     601071
 CA 51, 1007 (1957)
                                                                     601071
WILSON . A RUNDLE . R
                                                                     601657
 THE STRUCTURES OF URANIUM METAL
                                                                     601657
 ACTA CRYS 2, 126 (1949)
                                                                     601657
WINTERBOTTOM. W HIRTH. J
                                                                     300560
10H10 STATE UNIVERSITY
                               COLUMBUS
                                                     OHIO)
                                                                     300560
 DIFFUSIONAL CONTRIBUTION TO THE TOTAL FLOW FROM
                                                                     300560
                                                                     300560
 A KNUDSEN CELL
 J CHEM PHYS 37. NO 4. 784 (1962)
                                                                     300560
                                                                     300741
WISE. S
IARGONNE NATL LAB
                                                                     300741
                               ARGØNNE
                                                     ILL
                                                                     300741
 HEATS OF FORMATION OF SOME INORGANIC COMPOUNDS BY
 FLUORINE BOMB CALORIMETRY
                                                                     300741
                                                                     300741
 US ATOMIC ENERGY COMM ANL-6472 (1962)
                                                                      300741
 CA 56, 10998 (1962)
                                                                     301381
WISE S S MARGRAVE J L
                                                                      301381
 FEDER H M HUBBARD W N
                                                                      301381
LUNIV OF WISCONSIN
                                                     WISCONSINI
                               MADISON
                                                                      301381
LARGONNE NAT LAB
                               ARGONNE
                                                     ILLI
                                                                      301381
 FLUORINE BOMB CALORIMETRY. V. THE HEATS OF FORMATION
                                                                     301381
 OF SILICON TETRAFLUORIDE AND SILICA
                                                                      301381
 J PHYS CHEM. 67. (4) 815 (1963)
                                                                      301381
 BHT NØ 2 P 23 (1963)
                                                                      300396
         MARGRAVE . J FEDER . H HUBBARD . W
WISE, S
                                                                      300396
 THE HEAT OF FORMATION OF SILICA AND SIF4
                                                                      300396
 J PHYS CHEM 66 # 381 (1962)
```

```
PIJANOWSKI, S
WISNYI. L
                                                                 601056
IGEN ELEC COMPANY
                              SCHENECTADY
                                                  NYI
                                                                 601056
DETERMINATION OF THE MELTING POINTS OF UOZ AND OTHER
                                                                 601056
 REACTOR REFRACTORIES
                                                                 601056
US ATOMIC ENERGY COMM TID-7530 (1957)
                                                                 601056
 TID-7530 (1957)
                                                                 601056
 CA 51, 11684 (1957)
                                                                 601056
WISNYI + L PIJANOWSKI + S
                                                                 601081
(GENERAL ELECTRIC CO
                             SCHENECTADY
                                                 NEW YØRK)
                                                                 601081
 THERMAL STABILITY OF URANIUM DIOXIDE
                                                                 601081
US ATOMIC ENERGY COMM KAPL-1702 (1957)
                                                                 601081
CA 52. 16015 (1958)
                                                                 601081
WITTIG. F E
                                                                 301624
(UNIV MUNICH
                             MUNICH
                                                  GERMANY)
                                                                 301624
 CALORIMETRIC DETERMINATIONS AT HIGHER TEMPERATURES
                                                                 301624
 PURE APPL CHEM 2 . 183 (1961)
                                                                 301624
CA 56+ 69 (1962)
                                                                  301624
           JOCHUM . N
WOHLER. L
                                                                 900124
THERMAL CHEMICAL MEASUREMENTS OF THE OXIDES OF COPPER, RHODIUM 900124
 PALLADIUM AND INDIUM
                                                                 900124
 Z PHYSIK CHEM A167, 169 (1933)
                                                                  900124
 CA 28, 2604 (1934)
                                                                  900124
WOHLER. L MULLER. W
                                                                 900140
 THE CHLORIDES AND OXIDES OF RHODIUM
                                                                 900140
 Z ANORG CHEM 149. 125 (1925)
                                                                 900140
 CA 20. 344 (1926)
                                                                  900140
           WITZMANN, W
WØHLER. L
                                                                  900125
 THE FORMATION OF SOLID SOLUTIONS DURING THE DISSOCIATION OF
                                                                  900125
 IRIDIUM ØXIDE
                                                                  900125
 Z ELEKTRØCHEM 14, 97 (1908)
                                                                  900125
 CA 2, 1523 (1908)
                                                                  900125
WOLF, L SCHWAB, H
                                                                  201408
(KARL-MARX UNIVERSITY
                             LIPZIG
                                                  GERMANY)
                                                                  201408
 SEPARATION OF RARE EARTHS. VIII. X-RAY INVESTIGATION OF THE
                                                                  201408
 LA-YR ØXIDE SYSTEM
                                                                  201408
 J PRAKT CHEM 13. 337 (1961)
                                                                  201408
 CA 56. 9481 (1962)
                                                                 201408
WOLFSBERG . M
                                                                 600546
(BROOKHAVEN NATL LAB
                             UPTØN
                                                 NEW YORK)
                                                                  600546
 A NITROGEN MOLECULE CALCULATION
                                                                  600546
                                                                  600546
 J CHEM PHYS 21 + 2166 (1953)
                                                                  600546
 CA 48, 4270 (1954)
                                                                  301504
WOLLAN, E WILKINSON, M CABLE, J
OAK RIDGE NATE LAB
                              OAK RIDGE
                                                  TENN)
                                                                  301504
 MAGNETIC STRUCTURE PROPERTIES OF RARE EARTH METAL?
                                                                  301504
 RARE EARTH RES. SEMINAR, LAKE ARRE HEAD, CALIF 1900, 149 (1961)301504
                                                                  301504
 CA 58, 7487 (1963)
                                                                  202161
WOLTEN. G
 DIFFUSIONLESS PHASE TRANSFORMATIONS IN ZIRCONIA AND HAFNIA
                                                                  202161
                                                                  202161
 J AM CERAMICS SOC '6. 418 (1963)
                                                                  201956
W000. R
                                                  ENGLANDI
                                                                  201956
(IMP METAL IND LTD
                              BIRMINGHAM
                                                                  201956
 THE LATTICE CONSTANT OF HIGH PURITY ALPHA TITANIUM
```

PROC PHY 50C 80+ 783 (1962) CA 58+ 91 (1963)	201956 201956
WØØDWARD, L CREIGHTØN, J TAYLØR, K (ØXFØRD UNIVERSITY ØXFØRD ENGLAND) RAMAN SPECTRUM ØF THE ØSMIAMATE IØN TRANS FARADAY SØC 56, 1267 (1960) CA 55, 5124 (1961)	200760 200760 200760 200760 200760
WØØLF, A {ASSØC ELEC IND ALDERMASTØN ENGLAND} AN ØUTLINE ØF RHENIUM CHEMISTRY QUART REV (LØNDØN) 15, 372 (1961) CA 56, 1247 (1962)	201232 201232 201232 201232 201232
WORLEY. R A THIRD RYDBERG SERIES OF NITROGEN PHYS REV 89. 863 (1953) CA 47. 7889 (1953)	600606 600606 600606 600606
WØRNER, H (UNIV MELBØURNE MELBØURNE AUSTRALIA) ALLØTRØPIC TRANSFØRMATIØNS IN DILUTE ALLØYS BASED ØN IRØN, TITANIUM, AND ZIRCØNIUM J AUSTRALIAN INST METALS 5, 154 (1960) CA 55, 12972 (1961)	200991 200991 200991 200991 200991 200991
WØJTØWICZ. P KIRKWØØD. J (YALE UNIV NEW HAVEN CØNN) CØNTRIBUTIØN ØF LATTICE VIBRATIØNS TØ THE ØRDER-DISØRDER TRANSFØRMATIØN IN ALLØYS J CHEM PHYS 33. 1299 (1960)	700641 700641 700641 700641 700641
WRAY. K CONNOLLY. T (AVCO-EVERETT RES LAB EVERETT MASS) THERMAL CONDUCTIVITY OF CLEAR FUSED SILICA AT HIGH TEMPERATURES AD 211724 (1959) NS 14. 21999 (1960)	600620 600620 600620 600620 600620
WRIGHT K LINE INTENSITIES IN THE SPECTRA OF FOUR SOLAR-TYPE STARS PUB DOMINION ASTROPHYS OBS, VICTORIA, BC 8, 1 (1948) CA 45, 3710 (1951)	100212 100212 100212 100212
WUENSCH, B VASILØS, T (AVCØ WILMINGTØN MASS) DIFFUSIØN ØF TRANSITIØN METAL IØNS IN SINGLE-CRYSTAL MGØ J CHEM PHYS 36, 2917 (1962) CA 57, 11873 (1962)	201835 201835 201835 201835 201835
WUENSCH. B VASILØS. T (AVCØ WILMINGTØN MASS) DIFFUSIØN IN REFRACTØRY ØXIDES PRØC INTERN SYMP REACTIVITY SØLID 4TH AMSTERDAM 1960. 57 (1961 CA 58. 1218 (1963)	301018 301018 301018 301018 301018
WYDER W C HOCH M {UNIV OF CINCINNATI CINCINNATI &4.5 THE POLYMORPHIC FORMS OF CHROMIUM CA 59, 4866G (1963)	301383 301383 301383 301383
WYDER. W HOCH. M	300548

(UNIV OF CINCINNATI CINCINNATI OHID) THE SYSTEM NB-TI-ZR-0 AT 1500 DEG C TRANS AIME 224. 373 (1962) BHT NO 2. 47 (1962) CA 57. 523 (1962) WYLIE. A	300548 300548 300548 300548 300548
THE RARE EARTHS ØR LANTHANØNS RØYAL AUSTRALIAN CHEM INST J PRØC 17, 377 (1950) CA 45, 3210 (1951) NSA 5, 1237 (1950)	400550 400550 400550 400550 400550
YAHIA. J FREDERIKSE. H ELECTRICAL CONDUCTION IN P-TYPE TITANIUM SESQUIOXIDE PHYS REV 123. NO 4. 1257 (1961) BHT NO 3. 17 (1961)	300490 300490 300490 300490
YAKØVLEVA: M. KRASILØVA: Z HEAT CAPACITY ØF A FEW VANADIUM ØXIDES VESTNIK LENINGRAD UNIV 16: NØ 16 SER FIZ I KHIM NØ 3 136 (1961) CA 56: 1008 (1962)	300351 300351 300351 300351 300351
YAMAMOTO. A LUNDIN. C NACHMAN. J (DENVER RES INST DENVER COLORADO) A FUNDAMENTAL INVESTIGATION OF THE ALLOYING BEHAVIOR OF THE RARE EARTHS AND RELATED METALS SEMI ANNUAL PROG REPT NO 3 (1960-1961) AD 256786	300230 300230 300230 300230 300230
YAMASHITA, J (UNIV TØKYØ JAPAN) ELECTRØNIC STRUCTURE ØF TIØ AND NIC J PHYS SØC (JAPAN) 18 (7), 1010 (1963) CA 54, 23507D CA 59, 3389G (1963)	301625 301625 301625 301625 301625 301625
YARYM-AGAEV, N. KOGAN, E. SOLDATOVA, E. CALCULATION OF THE SATURATED VAPOR PRESSURE IN BINARY SYSTEMS IN WHICH CHEMICAL REACTION OCCURS IN THE VAPOR PHASE ZHUR FIZ KHIM 36, NO 6, 1173 (1962)	300700 300700 300700 300700 300700
YASUDA: S THE TRANSITION OF SILICON CARBIDE FROM ITS BETA TO ALPHA FORM DENKI KAGAKU 30: NO 8: 587 (1962) CT NO 17: 77 (1962)	300581 300581 300581 300581
YATSIMIRSKII. K LATTICE ENERGY OF METAL SALTS AND OXIDES ZHUR NEORG KHIM 6. NO 3. 518 (1961) RUSS A. 635 (1961)	300180 300180 300180 300180
YATSIMIRSKII. K ENERGETICS ØF LANTHANIDE IØNS IZVEST AKAD NAUK SSSR ØTDEL KHIM NAUK 648 (1949) CA 44. 3345 (1950)	400583 400583 400583 400583
YATSIMIRSKII. K CALCULATION OF THE JONIZATION POTENTIALS OF SOME LANTHANIDES WITH THE AID OF THE KAPUSTINSKII EQUATION IZVEST AKAD NAUK SSSR. OTDEL KHIM NAUK, 554 (1948)	700751 700751 700751 700751

CA 43. 1254 (1949)	700751
YAVORSKY. P (ZIRCONIUM CORP AMERICA SOLON OHIO) PROPERTIES AND HIGH TEMPERATURE APPLICATIONS OF ZIRCONIUM OXIDE CERAM AGE 78. NO 6. 64968 (1962) CA 57. 6893 (1962)	201763 201763 201763 201763 201763 201763
YELYNTIN, V BERNSTEYN, M PAVLØV, Y THE STUDY ØF THE STRUCTURE ØF TITANIUM-NIØBIUM-CARBØN ALLØYS WITH AN ULTRAVIØLET MICRØSCØPE DØKL AKAD NAUK SSSR 104, 546 (1955)	300283 300283 300283 300283
YEMELYANOV, V S YEVSTYUKHIN, A I (MOSCOW INST OF ENG PHYSICS MOSCOW RUSSIA) METALLURGY AND METALLOGRAPHY OF PURE METALS GORDON + BREACH N Y (1962)	301626 301626 301626 301626
YEREMENKØ, V NAYDICH, Y AN INVESTIGATIØN ØF THE WEITING BY LIQUID METALS ØF SURFACES ØF CERTAIN REFRACTØRY METALS TRUDY SEMINARA PØ ZHARØSTØYKIM MATERIALAM NØ 4, 38 (1959) FTD-TT-62-1252	900211 900211 900211 900211 900211
Y0DA, E ANOMALOUS GROWTH OF M003 CRYSTALS J PHYS SOC JAPAN 15, NO 5, 821 (1960) PA 64, 9110 (1961)	600855 600855 600855 600855
YØGANARASIMHAN, S RAD, C CRYSTALLØGRAPHIC DATA-TITANIUM DIØXIDE (BRØØKITE) T1Ø2 ANAL CHEM 33, 155 (1961) CA 55, 6096 (1961)	200881 200881 200881 200881
YORK. D PROPERTIES OF EVAPORATED THIN FILMS OF SILICON OXIDE J ELECTROCHEM SOC 110. 271 (1963)	301019 301019 301019
YOUNG, R ZIEGLER, W (GEORGIA INST OF TECHNOLOGY ATLANTA GEORGIA) CRYSTAL STRUCTURE OF LANTHANUM NITRIDE J AM CHEM SOC 74, 5251 (1952) CA 47, 1456 (1953)	100205 100205 100205 100205 100205
YOUNG. W LYNDS. L MOHL. J LIBOWITZ. G X-RAY AND DENSITY STUDY OF NONSTOICHIOMETRY IN U OXIDES US AT ENERGY COMM NAA-SR-6765. (1962) CA 57. 164 (1962)	201567 201567 201567 201567
ZADUMKIN, S AN ESTIMATION OF THE SURFACE ENERGY OF SOME CARBIDES AND NITRIDES HAVING CRYSTAL LATTICES OF THE NACL TYPE POVERKHN YAVLENIYA V METAL I SPLAVAKH I IKH ROL V PROTSESSAKH POROSHKOVAYA MET AKAD NAUK UKR SSSR INST METALLOKERAM I SPETS SPLAVOV 1961, 51 (1961) CA 57, 11937 (1962)	201849 201849 201849 201849 201849 201849
ZADUMKIN» S (KABARDINO-BALKARSK UNIV SSSR) SURFACE TENSION AND HEAT OF SUBLIMATION OF SILICON, GERMANIUM AND TIN	300284 300284 300284 300284

SOVET PHYSICS SOLID STATE 1. 516 (1959)	300284
ZADUMKIN, S TAMBIEV, B SURFACE ENERGY AND HEAT ØF SUBLIMATION ØF RARE EARTH ELEMENTS UCH ZAP KABARDINO-BALKARSK UNIV 1961, NØ 13, 46 (1961) CA 57, 15898 (1962)	301020 301020 301020 301020
ZAIDEL, A PRØKØFEV, V RAISKII, S TABLES ØF SPECTRUM LINES LØNDØN PERGAMØN PRESS (1961) CA 57, 1776 (1962)	300615 300615 300615 300615
ZAJIC+ V (INST NUCLEAR RES CZECH SCI PRAGUE CZECH) SPECIFIC HEAT AND THERMAL CONDUCTIVITY OF POWDERED URANIUM ØXIDE U308 JADERNA ENERGIE 6+ 200 (1960) CA 54+ 19141 (1960)	601170 601170 601170 601170 601170 601170
ZAKHAROVA, G MISHINA, D NIOBIUM AND ITS ALLOYS FTD-TT-62-1256 TSVETNYE METALLY NO 11, 55 (1959) COTS NO 59, 158 (1962)	301022 301022 301022 301022 301022
ZAKHAROVA, G POPOV, I NIOBIUM AND ITS ALLOY-USE OF POWDER METALLURGY IN THE USSR METALLURGY IN THE USSR JPRS-15978 NIOBIY I YEGO SPLAVY, MOSCOW (1961) COTS NO 59, 154 (1962)	301021 301021 301021 301021 301021 301021
ZAKHAROVA: M PROKOSHKIN: D THE NI-MO-CR SYSTEM IZVEST AKAD NAUK SSSR OTDEL TEKH NAUK MET I TOPLIVO 1961; NO 4: 59 (1961) CA 56: 1260 (1962)	201241 201241 201241 201241 201241
ZALABAK, C (LEWIS RESEARCH CENTER CLEVELAND ØHIØ) THE MELTING PØINT ØF TANTALUM CARBIDE AND SE TUNGSTEN TECH NØTE D-761 (1961) CA 55. 12217 (1961)	200988 200988 200988 200988 200988
ZALKIN. A (UNIV ØF CALIF THE BERYLLIDES ØF TI. V. CR. ZR. NB. MØ. HF AND TA ACTA CRYST 14. 63 (1961) CA 56. 2066 (1962)	201258 201258 201258 201258 201258
ZALKIN• A BEDFØRD• R SANDS• D (UNIV ØF CALIFØRNIA LIVERMØRE CALIFØRNIA) CRYSTAL STRUCTURES ØF ZRBE5 AND ZRBE17 ACTA CRYST 12• 700 (1959) CA 55• 18522 (1961)	201118 201118 201118 201118 201118
ZALKIN, A TEMPÉLTON, D THE CRYSTAL STRUCTURES OF CEB4, THB4 AND UB4 ACTA CRYST 6, 269 (1953) AECD 3080 UCRL-522 (1950) CA 47, 6729 (1953) NSA 5, 3083 (1951)	100198 100198 100198 100198 100198 100198

ZALKIN. A TEMPLETON, D THE CRYSTAL STRUCTURES OF CEB4 THB4 AND UB4 AECD 2762 NOV 22. (1949) JAN 4. (1950) NSA 4. 1415 (1950)	601410 601410 601410 601410
ZALUBAS. R (NBS WASH DC) PRELIMINARY LIST OF LEVELS AND G-VALUES FOR THE FIRST SPECTRUM OF TH(THI) J RESEARCH NATL BUR STANDARDS 63A, 275 (1959) CA 54. 8274 (1960) NSA 14. 3997 (1960)	601192 601192 601192 601192 601192 601192
ZAMYATINA, V BEKASOVA, N (INST HETEROORG COMPDS MOSCOW RUSSIA) POLYMERIC COMPOUNDS OF BORON USPEKHI KHIM 30, 48 (1961) CA 55, 12130 (1961)	200986 200986 200986 200986 200986
ZAREMBØ, Y (AT ENERGY USSR) THERMØDYNAMICS ØF THE REDUCTIØN ØF THØRIUM DIØXIDE BY CALCIUN AT ENERGY (USSR) 11, 185 (1961) CA 56, 10997 (1962)	201449 201449 201449 201449 201449
ZEGLER S (ARGØNNE NATL LABS ARGØNNE ILL) THE URANIUM-RICH END ØF THE URANIUM-ZIRCØNIUM SYSTEM US AT ENERGY CØMM ANL-6055 (1962) CA 57 4121 (1962)	201647 201647 201647 201647 201647
ZEIDLER. E KRAUT. D SCHLAUBITZ. K MUELLER. D (INST APPLIED PHYS MATLS DRESDEN GERMANY) SEVERAL PROPERTIES OF RHENIUM AND ITS MOLYBDENUM ALLOYS J LESS-COMMON METALS 4. 547 (1962) CA 58. 7672A (1963)	301627 301627 301627 301627 301627
ZELDES N (HEBREW UNIV JERUSALEM ISRAEL) THE SPECTRUM OF GADOLINIUM II PHYS REV 90 · 413 (1953) CA 47 · 9142 (1953)	100191 100191 100191 100191 100191
ZELDES, H LIVINGSTØN, R IØAK RIDGE NATL LAB ØAK RIDGE TENN) CHEMICAL PHYSICS ØRNL-3176 NSA 15, 32075 (1961)	700971 700971 700971 700971 700971
ZELIKMAN, A KISLYAKOV, I RARE METALS AND THEIR ALLOYS NP-TR-564 NSA 15, 18525 (1961)	701037 701037 701037 701037
ZELIKMAN, A KREIN, Ø NISELSØN, L IVANØVA, Z SEPARATIØN ØF TUNGSTEN AND MØLYBDENUM BY RECTIFICATIØN ØF THEIR CHLØRIDES ZH PRIKL KHIM 35, 1467 (1962) CA 57, 12210 (1962)	201861 201861 201861 201861 201861
ZHDANØV. G ZHURAVLEV. N STEPANØVA. A UMANSKII. M (STATE UNIV MØSCØW MØSCØW USSR) CRYSTAL CHEMISTRY ØF METAL HEXABØRIDES	700731 700731 700731

KRISTALLØGRAFIYA 2, 289 (1957) CA 51, 14361 (1957)	700731 700731
ZHDANOV. G ZHURAVLEV. N STEPANOVA, A UMANSKI. M X-RAY INVESTIGATIONS OF BORON COMPOUNDS WITH RARE CARTH ME REDKIE METALLY I SPLAVY. TRUDY PERVOGO VSESOYUZ SOVESHCHAN PO SPLAVAM REDKIKH METAL. AKAD NAUK SSSR. INST.MET IM AA BAIKOVA MOSCOW 1957. 366 (1960) CA 55. 3366 (1961)	200835 TALS 200835 IYA 200835 200835 200835 200835
ZVINCHUK R A X-RAY STUDY OF THE POLYMORPHISM OF NIOBIUM PENTOXIDE KRISTALLOGRAFIYA 3, 744 (1958) CA 53, 12785C (1959)	301385 301385 301365 301385
ZHELANKIN. V KUTSEV, V ØRMØNT. B FØRMATIØN ØF HAFNIUM CARBIDE IN THE REDUCTIØN ØF HFØ2 WITH CARBØN ZH NEØRGAN KHIM 7. 1762 (1962) CA 57. 14689 (1962)	201911 201911 201911 201911 201911
ZHELANKIN, V KUTSEV, V ØRMØNT, B EQUILIBRIUM STUDY ØF THE REDUCTION ØF HFØ2 BY CARBØN AT HIGH TEMPERATURE ZH FIZ KHIM 35, 2608 (1961) BHT NØ 2, 53 (1962)	300557 300557 300557 300557 300557
ZHUKOVSKII, V VLIASOV, V LFREDEV, A ELECTRICAL PROPERTIES OF THE URANIUM-OXYGEN SYSTEM IN THE U308-U02 COMPOSITION INTERVAL FIZ METAL I METALLOVED 14, 319 (1962) CA 58, 1975 (1963)	201982 201982 201982
ZHUKOVSKII. V M TKACHENKO, E V VLASOV. V G PHASE TRANSFORMATIONS DURING REDUCTION OF U409 FIZ METAL I METALLOVED 15. 210 (1963) CA 58. 10967A (1963)	301628 301628 301628 301628
ZHURAKØVSKII. E VAINSHTEIN, E (K D USHINSKII PEDAGØG INST ØDESSA RUSSIA) CØMPARATIVE STUDY ØF THE FINE STRUCTURE ØF THE X-RAY EMISSIØN BANDS FØR THE K BETA GRØUP ØF METALLIC TITANIUM AND FØR ITS CØMPØUNDS WITH SØME LIGHT ELEMENTS DØKLADY AKAD NAUK SSSR 129, 1269 (1959) CA 56, 1053 (1962)	201226 201226 201226 201226 201226 201226
ZHURAVLEV, N ET AL X-RAY DIFFRACTION DETERMINATION OF THE THERMAL EXPANSION COEFFICIENTS OF HEXABORIDES KRISTALLOGRAFIA 6. NO 5 791 (1961) RUSS ACC 14. NO 10 2643 (1962)	300379 300379 300379 300379 300379
ZHURAVLEV, N MAKØRENKØ, G SAMSØNØV, G SINELNIKØVÅ, V TSEBULYA, G PRØPERTIES AND CØNSTITUTIØN ØF PHASES IN B-C ALLØYS IZV AKAD NAUK SSSR ØIÐ TECH NAUK MET I TØPLIVØ NØ 1, 133 (1961) BHT NØ 2, 47 (1962) CA 55, 19698 (1961) NS 15, 17343 (1961)	300549 300549 300549 300549 300549 300549 300549
ZHURAVLEV N STEPANOVA A (M V LOMONOSOV STATE UNIV MOSCOW USSR)	700727 700727

STRUCTURE ØF SCB2 KRISTALLØGRAFIYA 3, 83 (1958) CA 52, 9705 (1958)	700727 700727 700727
ZHURAVLEV» N SIEPANOVA» A PADERNO» Y SAMSONOV» G (M V LOMONOSOV STATE UNIV MOSCOW RUSSIA) DETERMINATION OF THE COEFFICIENT OF THERMAL EXPANSION OF HEXABORIDES BY X-RAY ANALYSIS KRISTALLOGRAFIYA 6. 791 (1961) CA 56, 2965 (1962)	201272 201272 201272 201272 201272 201272
ZIEGLER. W YOUNG, R FLOYD. A (GEORGIA INST OF TECHNOLOGY ATLANTA GEORGIA) THE CRYSTAL STRUCTURE AND SUPERCONDUCTIVITY OF LANTHANUM J AM CHEM SOC 75, 1215 (1953) CA 47, 5207 (1953)	100196 100196 100196 100196 100196
ZIMAKØV. I SPITSYN. V THE EFFECT ØF THE ENERGY ØF A RADIØ-ACTIVE EMITTER ØN THE EVAPØRATIØN RATE ØF A SØLID DØKL AKAD NAUK SSSR 141. NØ 6. 1400 (1961) NSA 16. 9452 (1962)	300684 300684 300684 300684 300684
ZIMMERER. R MIZUSHIMA. M PRECISE MEASUREMENT OF THE MICROWAVE ABSORPTION FREQUENCIES OF THE OXYGEN MOLECULE AND THE VELOCITY OF LIGHT PHYS REV 121. NO 1, 152 (1961) PA 64. 837 (1961)	600920 600920 600920 600920
ZINTL, E MØRAWIETZ, W GASTINGER, E BØRØN MØNØXIDE Z ANØRG U ALLGEM CHEM 245, 8 (1940) AEC-TR-4355 FØR ØAK RIDGE BY TECH LIB RES SERVICE NSA 15, 8795 (1961)	300149 300149 300149 300149 300149
ZUBENKØ• Y SØKØLSKAYA• I TUNGSTEN CARBIDE WØRK FUNCTIØN ZH TEKHN FIZ 32• 378 (1962) CA 57• 4157 (1962)	201676 201676 201676 201676
ZWIKKER+ C PHYSICAL PROPERTIES OF TUNGSTEN AT HIGH TEMPERATURES PHYSICA 5+ 249 (1925) CA 20+ 1156 (1926)	700508 700508 700508 700508
ZWIKKER, C SCHMIDT, G THE SPECIFIC HEAT OF TUNGSTEN BETWEEN 90 DEGREES AND 2600 DEGREES K Z PHYSIK 52, 668 (1928) CA 23, 2080 (1929)	700515 700515 700515 700515 700515

IX PROPERTY FILE

PROPERTY FILE CODE

ACT ACTIVITY

BETA COMPRESSIBILITY COEFFICIENT (BETA = 1/V*(DV/DP) T

BIB BIBLIOGRAPHY

BOOK BOOK

CEMP CONDENSED PHASE, ELEC OR MAGNETIC PROP, EG WORK FUNC

COPT CONDENSED PHASE, OPTICAL PROP.

CPH HIGH TEMPERATURE HEAT CAPACITY

LOW TEMPERATURE HEAT CAPACITY

CRYSTAL STRUCTURE

CTEX COEFF OF THERMAL EXPANSION

DF FREE ENERGY OF FORMATION, REACTION, ETC.

DH HEAT OF FORMATION, REACTION, ETC

DHD DISSOCIATION ENERGYDHT HEAT OF TRANSFORMATION

E INTERNAL ENERGY
ELCH ELECTROCHEMICAL
EMF ELECTROMOTIVE FORCE

ENG ENERGY LEVELS

ERES ELECTRICAL RESISTIVITY
EXAPP EXPERIMENTAL APPARATUS
EXPRO EXPERIMENTAL PROBLEM

EXPTL EXPERIMENTAL

EXTEC EXPERIMENTAL TECHNIQUE FREE ENERGY FUNCTION

H HEAT CONTENT

KIN KINETICS

MISC MISCELLANEOUS

MPP MISCELLANEOUS PHYSICAL PROPERTIES

MSP MASS SPECTROMETRIC DATA

PHAS PHASE DATA, MELTING, TRANSITION, BOILING TEMPS

PMCH MECHANICAL PROPERTIES
PREP PREPARATION OF MATERIAL

REAC CHEMICAL REACTIONS

REV REVIEW DENSITY
S ENTROPY

SPK SPECTROSCOPIC DATA
SURF SURFACE PROPERTIES
TCON THERMAL CONDUCTIVITY

THEO THEORY

THER THERMODYNAMIC DATA

TRANSFORMATION TEMPERATURES

VAP VAPORIZATION DATA

ZKP EQ CONST

A			VAP AL		
			JOHNSON, R CRYS AL BE B SYST	66	601293
			BECHER, H	62	201932
SPK ACTINIDES CONNICK, R	40	400535	MSP AL N		701014
SPK ACTINIDES	49	400528	LOWRIE, R Ther al N	60	701014
BEDREAG, O	64	601014	MAH, A ET AL	61	300413
THEO ACTINIDES SCHENK, P	49	400679	VAP AL N LOWRIE, R	60	701014
THER ACTINIDES		4000.5	VAP AL N	•••	701014
ACKERMANN, R THORN CPL AG	62	601615	DREGER, L	62	300720
BORELIUS, G	60	601168	VAP AL N DREGER, L DADAPE,	62	300604
OVCHARENKO O			SPK AL O		
OVCHARENKO, O DH AG	61	900229	BECART, M SPK AL O	62	202001
VERHAEGEN, G		300235	NICHOLLS, R	62	300698
YAMAMOTO, A S LUND	61	300230	CPH AL2O 3 CHEKHOVSKOI, V	62	701074
VAP AG	•	500250	CPH AL2O 3	02	701074
KOVTUN, G KRUGLUKH THER AIR	61	300733	KANTOR, P LAZAREVA	62	300683
HOCHSTIM, A	62	300898	CPL AL2O 3 EDWARDS, J KINGTON	62	300623
THER AIR			DHT AL2O 3		
HILSENRATH, J KLEI THER AIR	69	300312	KANTOR, P LAZAREVA Rev Al2O 3	62	300683
KIVEL, B MAYER, H	54	600609	ALFRED, F	62	201993
THER AIR CARBON SYS SERGEYEV. V	61	400604	CPH AL2O 3 DAWSON, R BRACKETT		202004
THER ALK EARTHS	•	400004	PHAS AL2O 3	63	202024
EMLEY, E	62	100209	DIAMOND, J SCHNEID	60	202028
ERES ALK EARTH BOR SAMSONOV, V	61	700587	PHAS AL2O 3 GIELISSE, P	62	201740
DHT ALK FLUORIDES			PHAS AL2O 3	-	201140
PETIT, G DELBOVE DHD ALK FLUORIDES	62	300786	ARAMAKI, S ROY, R CPH APPARATUS	62	201695
BLUE, G GREEN, J	63	301191	KRAFTMACHER, IA	62	301281
DHT ALK FLUORIDES		20220	REV ATOMIC WEIGHTS		
PETIT, G DELBOVE. THER ALK METALS	62	300786	CAMERON, A WICHERS SPK ATOMS	61	301422
EMLEY, E	52	100209	ZAIDEL, A PROKOFEV	61	300615
MEDVEDEV, V	DES 61	300336	THEO ATOMS Slater, J	ba	600905
DHD ALK EARTH OXII	-		ENG ATOMS	-	00000
VEITS, I GURVICH, OHD ALK EARTH OXII	57	700965	CAUCHOIS, Y	66	301102
MEDVEDEV, V	6 1	300335	•		
THER ALK EARTH OXI	_		В		
VEITS, I GURVICH, DH ALK EARTH OXII	67 Des	700965	В		
MEDVEDEV, V	61	300283			
DHT ALLOYS BECK, P	60	201948	BIB B SULLIVAN, R SEIBEL	60	701038
MISC ALLOYS	•	2015-6	CEMP B	•0	701036
NOWOTNY, H	60	200917	NIEMYSKI, I OLEMPS	62	300705
PHAS ALLOYS WALLACE, W	60	201731	GEMP B HOOD, C THURSTON,	62	601694
REAC ALLOYS	41.1		CEMP B		
ANDREEVA, V ALEKSE REAC ALLOYS	62	201814	SAMSONOV, G NESHPO CPH B	59	201052
IOFFE, V BAGAEVA,	60	200637	MCDONALD, R STULL,	62	300726
REAC ALLOYS PIELD, A AMMON, R	61	26950	CPH B Williams, N N		700669
REAC ALLOYS	•	201950	CPH B	61	700659
MCKINSEY, C MINCHE	61	201949	MAGNUS, A DANZ, H	26	700560
SURF ALLOYS KOZAKEVITCH, P URB	61	201557	CRYS B Horn, F	61	700969
TCON ALLOYS			CRYS B		
BUDWORTH, D HOARE, THER ALLOYS	60	200802	HOARD, J CRYS B	6 1	700998
KAPUSTINSKII, A	60	200893	crys B Becher, H Schafer,	80	400617
THER ALLOYS		200000	CRYS B	••	200001
MATSEEVA, M IVANOV OH AL	58	200892	HUGHES, R KENNARD CRYO B	63	300901
Johnson, R	56	601293	MALINCHKOV, O POVI	8 2	300946
Phas al Johnson, R	54	601293	CRYS B MALYUCHKOV, O POVI	82	300584
~~34A7WVA7, 4 5		-	maliuchauv, u ruvi	44	20000

CRYS B					
KOLAKOWSKI	62	301508	тят в		
CAPPENTED D VADO			DOLLOFF, R VAP B	60	600662
CARPENTER, R KATO, CRYS B	60	600626	KATHAYATE, Y RIHAN	63	301493
KOHN, J NYE, W GA	60	600881	VAP B PAULE, R		
DH B ROBSON, H	-		VAP B	61	601479
OH B	68	300276	PRISELKOV, YU A SA	60	300142
AKISHIN, P NIKITIN ERES B	69	300352	VAP B MARGRAVE, J	61	700967
HOOD, C THURSTON,	62	601694	VAP B		
ERES B SAMSONOV, G			KIBLER, G LYON, T VAP B	62	300427
ERES B	61	700587	PAULE, R MARGRAVE	63	301320
TAYLOR, W ET AL KIN B	61	301602	VAP B PRISELKOV, Y SAPOZ	60	600637
KIN B SLEPTSOV, V SAMSON	60	200766	PHAS B SYST	•	000007
MISC B		200700	STEPANOVA, A UMANS SPK B SYST	56	601204
SAMSONOV, G MSP B	60	200916	STEPANOVA, A UMANS	56	601204
SHAPIRO, I WILSON,	61	201356	PHAS B AL SYST SEREBRYANSKII, V	61	300840
PHAS B HOOD, C THURSTON,	62	601694	CRYS BC	•	300040
PHAS B	-	001094	KUDRYAVTSEVA, V SO PHAS B C	60	600789
MARTIN, R SEAGLE, PHAS B	61	300308	MARTIN, R SEAGLE,	61	300308
DOLLOFF, R	60	700989	REAC B C LENZI, D PELLEGRIN	59	200865
PHAS B BECHER, H	61	200242	REAC BC		200866
PHAS B	0,	300343	NAZARCHUK, T TRT B C	61	201578
TALLEY, C POST, B	60	200993	MARTIN, R SEAGLE,	61	300308
ELLIS, R	60	200980	CEMP B 4C SAMSONOV, G SYNELN	61	300385
REAC B ROSENBERY, J	••	201000	REAC B 4C	• •	300386
REAC B	60	201392	BOSCH, F MPP B 4C	62	202008
GILLES, P REAC B	61	201334	PORTNOY, K SAMSONO	61	300485
VEKSHINA, N MARKOV	62	201487	REAC B 4C LYUTAYA, M NAZARCH	61	300526
PHAS B KOHN, J NYE, W GA			CRYS B 4C	• •	300626
REAC B	60	600881	EPELBAUM, V A SEVA REAC B 4C	61	300202
FISHER, F REAC B	60	200877	VUILLARD, G LUQUE	61	201487
FEDEROV, T F SHAMA	60	300197	PHAS B 4C SYST DOLLOFF, R	60	700969
REAC B SAMSONOV, G MARKOV	60	200575	CRYS . C SYST		
REAC B	80	300575	ELLIOTT : VAN THY ERES	60	701069
RUSIN, A TATEVSKII REAC B	61	301117	SAMSONOV, G	61	601585
HENDERSON, U	62	301469	MPP B C SYST KISLEY, P S SAMSON	60	300137
REV B WOHLL, M		744070	MPP B C SYST		
REV B	60	701053	ZHURAVLEV, N MAKAR MSP B C SYST	61	300549
KOHN, JNYE, W GA	60	600881	VERHAEGEN, G STAFF	62	601660
WILLIAMS, D	60	201304	PHAS B C SYST SAMSONOV, G	61	601585
RRAEV, M			PHAS B C SYST		
SPK B	61	300798	ELLIOTT, R VANTHYN PHAS R C SYST	60	600622
PILCHER, G SKINNER	62	301044	ELLIOTT, R	61	700718
RUSIN, A TATEVSKII	61	300580	PHAS BCSYST DOLLOFF, R	60	700989
SPK B			PHAS B C SYST		
MALTSEV, A KATAEV,	60	600701	ZHURAVLEV, N MAKAR PHAS B C SYST	61	300549
KRAEV, M	61	301068	DOLLOFF, R	60	600662
THER B SCHICK, H ANT'HROP	63	300994	THER B C SYST SAMSONOV, G	59	201343
THER B			REV B C SYST		
SULLIVAN, R SEIBEL THER B	60	701038	ELLIOTT, R THYNE VAP B C SYST	60	600673
SAMSONOV, G MARKOV	60	301118	VERHAEGEN, G STAFF	62	301609
WILLIAMS, N N	61	700659	THER B C SYST VERHAEGEN, G STAFF	62	601660
TRY P	_		THER BC SYST		
MARTIN, R SEAGLE.	61	300308	VERHAEGEN, G STAFF	60	601574

MAR BOOVER					
VAP B C SYST VERHAEGEN, G STAFF	60	601574	PHAS B N SYST SAMSONOV, G	61	401505
DH BF3			SPK BO	•	601585
GALCHENKO, G TIMOF REAC B 2F 4	60	201644	KUZYAKOV, Y TATEVS	60	301066
HOLLIDAY, A TAYLOR	62	201724	E BO LAGERQVIST, A NILS	58	600702
CPH B N WALKER, B EWING, C	62	301098	REAC BO		
CPH B N	92	301088	ZINTH, E MORAWIETZ SPK B O	40	300149
PROPHET, H STULL CPH B N	63	300961	KUZYAKOV, Y TATEVS	60	600694
MCDONALD, R STULL,	61	300333	SPK BO SINGH, N	49	600703
DH BN			SPK BO		
GALCHENKO, G KORMI KIN B N	60	201545	WELTNER, W WARN, J SPK B O	62	300588
SAMSONOV, G SLEPTS	60	201815	MALTSEV, A KUZYAKO	67	300316
CPH B N MAGNUS, A DANZ, H	26	700560	SPK BO KASHAR, WETAL	61	300403
CRYS B N			DH BO2	٠.	300403
THOMAS, J WESTON CRYS B N	62	301039	RUSIN, A TATEVSKII	63	202125
WENTORF, R	61	700935	SPK BO2 JOHNS, J	62	300816
DH BN WISE, S	62	300741	DH B 20		
DH BN	04	300741	GALCHENKO, G KORNI SPK B 20 2	60	700916
HILDENBRAND, D L H B N	61	300219	SOMMER, A WHITE, D	63	202141
H B N MEZAKI, R TILLEUX	62	801817	SOMMER, A WHITE, D	63	202141
KIN B N			SPK B 20 3		101.41
SLEPTSOV, V SAMSON PHAS B N	69	200766	AKISHIN, P VILKOV SPK B 20 3	62	301167
WENTORF, R	61	700936	SOMMER, A WHITE, D	63	202141
PHAS BN WANG, C	62	301376	COPT B 20 3 MARKIN, E SOBOLEV,	61	700688
VAP B N			CPH B 20 3	•	/00000
HILDENBRAND, D HAL VAP B N	63	301241	KRASOVITSKAYA, R K CPH B 2O 3	61	700968
FESENKO, V BOLGAR	63	301216	CPH B 20 3 KRASOVITCHAYA, R M	61	300196
PREP B N TAGAWA, H ITOUJI	62	201935	CPH B 20 3		
PEAC B N	02	201335	KRASOVITSKAYA, R K CRYS B 20 3	61	300336
SAMSONOV, G KOVALC REV B N	63	900221	MACKENZIE, J	61	600882
SAMSONOV, G SEMENO	62	300582	CRYS B 20 3 MACKENZIE, J CLAUS	61	700516
8 B N MEZAKI, R TILLEUX	62	601617	DH B 2O 3		
SPK B N	62	601617	, BERKOWITZ, J CHUPK DH B 20 3	69	700893
REDFIELD, D BAUM	61	200978	GALCHENKO, G KORNI	59	300673
SAMSONOV, G KOVALC	63	900221	DH B 2O 3 ANON	61	300228
VAP BN			н В 2О 3		
HILDENBRAND, D HAL REAC B N	63	202050	KRASOVITSKAYA, R K MSP B 20 3	61	700968
BOSCH, F	62	202008	BERKOWITZ, J CHUPK	59	700893
THER B N HILDENBRAND, D L	61	300219	PHAS B 20 3 GIELLISSE, P ROCKE	60	601573
THER BN			PHAS B 20 3	•	
FUGET, CR MASI, J TRT BN	67	300243	MACKENZIE, J CLAUS SPK B 20 3	61	700516
THOMAS, J WESTON	62	301039	LOWRIE, R	61	700956
AKISHIN, P KHODEEV	62	300592	SPK B 20 3	61	300384
VAP B N			TATEVSKII, V KOPTE SPK B 20 3	• 1	300364
FESENKO, V VAP B N	62	300711	MALTSEV, A MATVEEV	61	300949
DREGER, L DADAPE,	62	300604	SPK B 20 3 MALTSEV, A A TETEV	61	700604
VAP BN		300720	THER B 20 3		700000
DREGER, L VAP B N	62	300720	BERKOWITZ, J CHUPK VAP B 20 3	89	700893
DREGER, L	81	300528	HILDENBRAND, D HAL	63	301470
VAP B N DREGER, L MARGRAVE	60	600642	VAP B 20 3 FIRSOVA, L NESEMEY	80	200761
VAP B N			VAP B 20 3		
JENSEN, A GOSHGART THER B N SYST	62	301286	NESMEYANOV, A FIRS VAP B 20 3	80	600632
SAMSONOV, G	59	201343	LOWRIE, R	61	700943
ERES B N SYST SAMSONOV, G	61	601585	VAP B 20 3 FIRSOVA, L NESMEYA	60	701004
	-	30,000	THOUTH, LINEONEIA		

VAP B 20 3					
NIKITIN, O AKISHIN	62	300954	PHAS BAWOSYST		
VAP B 20 3			PURT, G BIB BE	• ?	30:555
GIELLISSE, PROCKE	60	601673	WOHLL, M	60	700723
RIZZO, H SIMMONS	62	601671	BIB BE ANON	60	700718
THEO BOSYST KROGH-MOE, J	63	201200	REV BE	•	700710
THER BOSYST	03	301288	SIEMS, P BIB BE	63	301362
MARGRAVE, J SPK B O SYST	61	301631	GUILL, J WORONCOW	59	601580
GREENE, F	61	201357	BIB BE CARROLL, K		
VAP BOSYST			CEMP BE	60	700662
FIRSOVA, L NESMEYA VAP B O SYST	60	201020	CORNWELL, J	61	700667
NESMEYANOV, A FIRS	69	201019	CPH BE Joshi, S Mitra, S	60	200767
PHAS BOSYST NADOR, B	60	200938	CPH BE		
SPK B O SYST	00	200938	BEAVER, W OROURKE CPH BE	69	700933
MATVEEV, V MALTSEV SPK B O SYST	61	300775	KANTOR, P KRASOVIT	60	700955
KASKAN, W MACKENZI	61	600700	CPH BE WALKER, B EWING, C		
VAP BOSYST			CPH BE	62	301098
SCHICK, H ANTHROP VAP B O SYST	63	300994	KANAZARVA, E PACKE	58	600626
SCHICK, HANTHROP	62	300995	CPH BE WILLIAMS, N N	61	700659
REAC BOCSYST			CPL BE	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
RENTZEPIS, P WHITE DH B O F SYST	59	300971	JOSHI, S MITRA, S CRYS BE	60	200767
FARBER, M	62	201516	ANON	61	700932
THER BOFSYST MAGEE, E	61	201511	CRYS BE		
MSP BOHSYST	•	201011	BAKAKIN, V BELOV CRYS BE	62	201714
SHOLETTE, W PORTER PHAS B O H SYST	63	300988	FOUNFELKER, R SIET	62	701089
ABRIKGSOV, N LIANG	60	300848	CTEX BE BEAVER, W OROURKE	59	700933
VAP BOHSYST			CTEX BE	•	,0000
WHITE, D WALSH, P VAP B O H SYST	59	300685	MEYERHOFF, R SMITH OH BE	62	300809
ABRIKOSOV, N LIANG	60	300848	GOLDSMITH, A HIRSC	60	700930
MISC B SI SYST COLTON, E	61	700609	ELCH BE		
MPP B SI SYST	•	700005	PROPIN, R ERES BE	61	201031
WILLIAMS, E	61	300505	MARTIN, A BUNCE, J	62	301079
COLTON, E	61	700609	ERES BE BRIDGMAN, P	61	400533
CRYS B SI C SYST			H BE		
PORTNOI, K SAMSONO ERES B SI C SYST	60	300144	KANTOR, P KRASOVIT KIN BE	60	700955
PORTNOI, K SAMSONO	60	300144	GREGG. •	61	201244
PHAS B SI C SYST PORTNOI, K I SAMSO	60	300144	MPP BE KAUFMANN, A GORDON	50	500129
PHAS B SI C SYST	•	300144	PHAS BE	50	500125
MEERSON, G DERGUNO REAC B SI C SYST	61	300373	GOLDSMITH, A HIRSC	60	700930
REAC B SI C SYST SAMSONOV, G SOLONN	60	200894	PHAS BE PICKETT, J LEVINE	62	601587
SPK BA			PHAS BE		
PENKIN, N SHABANOV CEMP BA B 6	62	601601	PAINE, R CARRABINE PHAS BE	60	201197
LAFFERTY, J	50	400541	AMONENKO, V IVANOV	62	301124
DH BAO HOLLOWAY, H	62	300525	PHAS BE AMONENKO, V IVANOV	61	300535
DH BA O	02	300020	PHAS BE	٠.	300030
MAH, A	63	202093	MANNAS, D SMITH, J	62	201786
E BA O LAGERQVIST, A HULD	84	600681	PMCH BE AMONENKO, V PAPIRO	62	300665
PHAS BA O			REAC BE		
ROTH, R WARING, J REAC BA O	61	201406	HOOPER, E KEEN, N REAC BE	60	200947
LEONOV	61	301522	BASCHE, M SHETKY	60	201132
VAP BA O		200224	REAC BE GREGG, S	61	201244
NIKONOV, B P OTMAK VAP BA O	61	300264	REAC BE	31	20.277
METSON, G	63	301836	GREGG, S	61	201133
OHD BA OXIDES VEITS, I GURVICH	56	700964	REAC BE DARRAS, R	62	301433
THER BAOXIDES	-		REAC BE		
VEITS, I GURVICH.	56	700964	HIGGINS, J ANTILL	62	201606

REV BE			SPK BE F 2		
ANON	63	301397	KUTYRKIN, V PEIZUL	67	201203
REV BE			CRYS BE MG BAKER, T		
WOHLL, M Rev BE	60	701053	PHAS BE MO SYST	62	201513
HODGE, W	61	700659	ARZHANYI, P	69	200822
REV BE MOURET, PRIGAUD	58	201527	THER BE3N 2 SCHICK, HANTHROP	63	301560
SPK BE	-	101017	VAP BE3N 2		50.000
CODLING, K SPK BE	61	600775	GREENBAUM, M YATES BIB BE O	62	301231
JOHANSSON, L	62	601624	ANON	61	700925
SPK BE			CPH BE O		
SHKLVAREVSKII, I SURF BE	61	201326	VICTOR, A DOUGLAS REAC BE O	63	301372
EREMENKO, V NIZHEN	60	200821	MURATOV, F NOVOSEL	63	301309
TCON BE BEAVER, W OROURKE	59	700933	REAC BE O KOMAREK, K COUCOUL	63	301269
THER BE		700233	CPH BE O		551252
WILLIAMS, N N THER BE	61	700659	GREENBAUM, M YATES THER BE O	62	301231
THER BE BARRIAULT, R DREIK	62	300865	BLAUER, J GREENBAU	63	301190
THER BE			CPH BE O		
CHERKASKIN, Y GLAD	57	301107	KANDYBA, V KANTOR CPH BE O	60	700893
GELLES, S PICKETT	60	600867	WALKER, B EWING, C	62	301098
VAP BE	••		CRYS BE O AUSTERMAN, S	63	201000
FRANZEN, J HINTENB	61	700970	MPP BE O	63	201996
GOLDSMITH, A HIRSC	60	700930	ROTHMANN, A	62	202122
VAP BE HANLIN, H	60	700951	CPH BE O KANDYBA, V V KANTO	60	700533
VAP BE		, 4444	CPH BE O		, 00000
NIKITIN, O GOROKHO PHAS BE B	61	700692	MAGNUS, A DANZ, H CPL BE O	26	700560
PHAS BE B MARKEVICH, G MARKO	60	201315	ASLANIAN, J CAILLA	61	201193
REAC BE B 2			CRYS BE O		
MARKOVSKII, L REAC BE B 2	62	301530	BUDNIKOV, P DELYAE CRYS BE O	60	701043
MARKEVICH, G MARKO	60	700937	MILLER, K	60	700952
CRYS BE B 12			CRYS BE O		
BECHER, H SPK BE2	60	201128	KULESHOV, I SADIKO CRYS BE O	62	300770
HAMPSON, R DOOLING	60	201753	BUDNIKOV, P SHISHK	61	300470
REAC BE4B BECHER, H SCHAEFER	62	301405	CRYS BE O SMITH, D CLINE, C	62	701073
CRYS BESB	42	301400	CRYS BE O	-	,0,0,3
MARKEVICH, G KONDR	60	600630	AUSTERMAN, S	62	701072
CRYS BE B SYST SANDS, D E CLINE	61	700556	CRYS BE O AUSTERMAN, S BELIN	63	301127
PHAS BE B SYST			CAYS BE O		
HOENING, C CLINE,	61	700691	BELLAMY, B BAKER CTEX BE O	62	201930
MEAC BE B SYST MARKEVICH, G MARKO	61	700917	MILLER, K	60	700952
PHAS BE B O SYST			OF BEO		
RASE, D REAC BE2C	60	600872	BUDNIKOV, P DELYAE DH BE O	60	701043
MARKOVSKII, L	62	301530	BUDNIKOV, P DELYAE	60	701043
THER BE2C SCHICK, HANTHROP	42	301579	DH BE O SMIRNOV, M CHUKREE	58	700523
THER BE2C	63	3010/9	ERES BE O	96	700923
MURATOV, F NOVOSEL	62	601602	BUDNIKOV, P DELYAE	60	701043
ZKP BE2C MURATOV, FS NOVOS	59	300162	H BE O BUDNIKOV, P DELYAE	60	701043
CRYS BE CA		300102	н ВЕО		
BAKER, T	62	201513	RODIGINA, E GOMELS	61	700966
DH BE CL2 THOMPSON, C SINKE	62	201817	H BE O KANDYBA, V KANTOR	60	700893
MPP BE COMPOUNDS			KIN BE O		
SHUBERT, J REAC BE COMPOUNDS	60	701036	NAKATA, M Misc BE O	60	200855
REAC BE COMPOUNDS SHUBERT, J	60	701036	BENTLE, G	62	301130
PHAS BE C SYST			MPP BE O		201020
MURATOV, F NOVOSEL REAC BE F 2	61	300771	RILEY, W MCCLELLAN MPP BE O	62	301080
EVSTYUKHIN, A	69	200852	BUDNIKOV, P DELYAE	60	701043
SPK BE F 2 OBUKHOV-DENISOV, V		200012	MPP BE O	61	700715
OBURNUY-DENISUY, Y	60	200912	AHUP		, 45,

P. C.					
MPP BE O GUZMAN, I POLYBOYA	62	300804	THEO BOILING TEMP RICHARDSON, D		
MPP BE O	02	300894	THEO BOND ENERGY	38	700817
AUSTERMAN, S	61	201320	JAFFEE, H ZUNG, V	61	301480
PHAS BE O			THER BONDING		
ANON PHAS BE O	61	700715	SEIGEL, B	63	301360
PHAS BE O BAKER, T BALDOCK,	62	200544	THEO BONDS		
PHAS BE O	02	300541	SEIGEL, S SEIGEL BOOK BONDS	63	301358
BUDNIKOV, P DELYAE	60	701043	MORTIMER, C	63	301307
PHAS BE ()			THEO BONDS		
MASSAZZA, F	61	201293	DURAKOV, V BATSANO	61	300753
PHAS BE O SMITH, D CLINE, C			REV BOOK		
PHAS BE O	6?	701073	BUNDY, F STRONG, H THER BOOK	62	201719
AUSTERMAN, S	62	701072	SCHMIDT, E	60	200814
REAC BE O			THER BOOK	-	200014
AUSTERMAN, S	63	301400	SUSHKOV, V	50	200815
REAC BE O EDWARDS, P HAPPEL	_		THER BOOK		
SPR BE O	43	301136	GERASIMOV, YA KRES	60	300207
DURIG, J LORD, C	62	201969	CRYS BORIDES ARONSSON, B STENBE		
REV BE O		101303	REAC BORIDES	59	201388
CHERON, T	61	301429	KOVALCHENKO, M SAM	60	201044
REV BE O			REAC BORIDES		
BUDNIKOV, P DELYAE	60	701043	MEYERSON, G	66	300571
SPK BE O THRUSH. B	60	200004	REV BORIDES		
SPK BE O	60	200961	ARONSSON, B TCOM BORIDES	61	700585
PARKINSON, W NICHO	59	600612	LVOV S	61	300937
SPK BE O			THEO BORIDES	•	
VEITS, I GURVICH	57	600899	BURG, A	60	300418
TCON BE O			THEO BORIDES		
BUDNIKOV, P DELYAE TCON BE O	60	701043	ROBINS, D THER BORIDES	60	600624
ADAMS, M	54	600961	MEYERSON, G	65	301122
THER BE O			DH BORIDES		
KANDYBA, V V KANTO	60	700633	WILSON, F		300309
THER BE O			CEMP BORIDES		
BUDNIKOV, P DELYAE THER BE O	60	701043	GOODMAN, P HOMONOF	61	301460
BELYKH, L NESMEYAN	59	700918	CEMP BORIDES SCLAR,N	61	300682
THER BE O	0.5	700310	DH BORIDES	٠.	300002
ANON	61	700715	MASLOV, P	63	202099
THER BE O			CEMP BORIDES		
BARRIAULT, R DREIK	62	300865	SILVER, A KUSHIDA CRYS BORIDES	63	300987
VAP BE O BUDNIKOV, P DELYAE	60	701043	CRYS BORIDES STER D MCKENNA	60	200830
VAP BE O	60	701043	CRYS BORIDES	•	200030
BELYKH, L NESMEYAN	69	700916	MELINCHKOV, O POVI	62	300947
VAP BE O			CRYS BORIDES		
SEMENENKO, K KURDY	61	300838	SAMSONOV, G VAINSH	62	300628
VAP BE O		701004	CTEX BORIDES ZHURAVLEV, N STEPA		201272
FIRSOVA, L NESMEYA VAP BE O	60	701004	DHD BORIDES	61	201272
FIRSOVA, L NESEMEY	60	200761	SHULISHOVA, O	62	301587
PHAS BE203			MPP BORIDES		
GIELISSE, P	62	201740	VAHLDIEK, F MERSOL		301607
CEMP BE OXIDES			MPP BORIDES MARKOVSKII, L KOND	= -	2000
PALGUEV, S NECEIMI	62	201717	MARKUVSKII, L KUND MPP BORIDES	67	300941
VAP BE OXIDES	59	201019	MORDIKE, 3	60	300503
NESMEYANOV, A FIRS VAP BE OXIDES	0.	201013	PHAS BURIDES		55555
FIRSOVA, L NESMEYA	60	201020	STADELMAIER, H YUN	62	301594
REAC BE O SYST			PHAS BORIDES		
GREGG, S HUSSEY, R	60	200870	PORTNGY, K	60	700944
REAC BE O SI SYST		201572	REAC BORIDES LYUTAYA, M NAZARCH	61	300626
SUPOVA, E KELER, E	60	201573	REAC BORIDES	٠.	30000
PHAS BE TI O SYST SHCHEPOCHKINA, N	56	200958	LAFFERTY, J	51	400549
THER BIMETALLICS	7-		REV BORIDES		
FASOLINO, L	63	301215	EICK, H	61	301439
THEO BINARY			MPP BORIDES		2000
GIESSEN, B GRANT	63	301226	THOMPSON, R ERES BORIDES	63	202146
THER BINARY SYST		202151	SAMSONOV, G PADERN	62	202127
VECHER, A GERASIMO VAP BINARY SYST	63	404 101	REAC BORIDES		
YARYM-AGAEV, N KOG	62	300700	MARKOVSKII, L	63	202098
•					

MPP BORIDES					
MPP BORIDES LVOV, S NEMCHENKO	63	202090	PHAS C STRONG, H	61	301599
REAC BORIDES			REAC C	•	301003
HOYT, E W CHORNE	60	300246	ENGELKE, J HALDEN	60	201529
MISC BORIDES STRASHINSKAYA, L	62	201790	SPK C COLLIGAN, G GALASS	61	400940
MPP BORIDES		201700	SPK C	• •	600860
FITZGERALD, L	63	301217	PUGH, H LEES, J B	61	600842
REY BORIDES EMRICH, B	62	301182	SPK C		
THER BORIDES	02	301132	LOWRIE, R SPK C	62	601596
OLIVER, R BAIER, R	63	301314	PILCHER, G SKINNER	62	301044
PHAS BORIDES			TCON C		
GORELIK, S ELYVTIN REAC BORIDES	62	201947	RASOR, N MCCLELLAN	60	700984
MARKOVSKII, L VEKS	62	201986	TON C RASOR, N MCCLELLAN	60	700896
SPK BORIDES			TCON C		
MIKHALOB, B SHCHEG CRYS BORIDES-PT ME	62 TAIS	900213	GUMENYUK, V LEBEDE	61	700553
ARONSSON, B RUNDQV	s:	300504	THEO C Crowell, A	62	300701
			THER C		
			RASOR, N MCCLELLAN	60	200960
С			THER C WILLIAMS, N N	61	700659
•			THER C	٠.	,00005
			BARRIAULT, R DREIK	62	300865
VAP C BAUN, W HODGSON, F	63	202000	VAP C COLLIGAN, G GALASS	61	600860
CRYS C	03	202000	VAP C	61	800880
AUST, R DRICKAMER	63	301176	DAVIS, A	60	600880
THER C ACKERMANN, R THORN	58	601208	DOEDNENBURG E HIN		70000
SIB C	90	001208	DOERNENBURG, E HIN VAP C	61	700664
NIGHTINGALE, R	62	701071	KRIEGER, F	62	300931
BIB C			VAP C	0.	
CHEN, M CEMP C	62	301428	LOWRIE, R DHD C 2	62	601596
SAMSONOV, G NESHPO	59	201052	BREWER, L HICKS, W	62	300813
CEMP C	0		DHD C 2		
GUMENYUK, V LEBEDE CPH C	61	700553	BREWER, L HICKS, W SPK C 2	62	300813
RASOR, N MCCLELLAN	60	700984	STEELE, D	63	301595
CPH C		44.000	SPK C 2		
VICTOR, A CPH C	62	300558	LOWRIE, R	62	601596
RASOR, N MCCLELLAN	60	700896	BREWER, L'HICKS, W	62	300813
CPH C			VAP C 2		
LUCKS, C DEEM, H	60	601691	BREWER, L HICKS, W	62	300813
WILLIAMS, N N	61	700559	VAP C 2 LOWRIE, R	62	601596
CRYS C	•		E C 3	-	
NIGHTINGALE, R	62	701071	GOUPIL, R	53	600684
CTEX C RASOR, N MCCLELLAN	60	700984	REAC C 3 CABANNES, F	56	300827
DH C	•	, , , , , , , , , , , , , , , , , , , ,	SPK C 3	-	
BAKER, C KELLY, A	62	300524	CABANNES, F	56	301121
DH C DAVIS, A	60	800880	BREWER, L ENGELKE	62	300797
БИО C			SPK C 3		
Lindholn, E	54	600714	CLEMENTI, E MCLEAN	62	300814
DHT C BUNDY, F	63	300859	8PK C 3 BREWER, L ENGELKE	62	300797
DHT C	43	300003	SPK C 3	62	300/9/
TITOVA, V FUTERG	62	301040	DORNENBURG, E HINT	61	300467
ERES C		201421	VAP C 3		200747
COHAN, N PUGH, D	63	301431	SHPILRAYN, E ASINO BPK C 4	62	300567
GUMENYUK, V LEBEDE	61	700563	CLEMENTI, E	61	300615
MPP C		700704	DH CN		204407
RASOR, N MCCLELLAN MPP C	60	700896	BERKOWITZ, J SPK C N	62	301407
KLEIN, C	62	300915	MOURE, C BROIDA, H	67	600687
PHAS C			SPK CN		*****
BUNDY, F PHAS C	62	300854	KIESS, C SPK C N	49	600686
FUNKE, V NOVIKOVA	62	201704	SPK C N DOUGLAS, A ROUTLEY	64	600682
PHAS C		MA4AM -	SPK CN		****
NIGHTINGALE, R	62	701071	DOUGLAS, A	66	600679

SPK CN					
CARROLL, P	56	600677	VAP CA		
SPK CN			KOCHEROV, P GELD CEMP CA B 6	69	300462
PANNETIER, G MARSI	61	600851	LAFFERTY, J	50	400541
BRACKETT, T	56	600706	CEMP CAB6		
DOUGLAS, A MOLLER			JOHNSON, R DAANE CTEX CARBIDES	63	301489
DOUGLAS, A MOLLER	55	600708	KRIKORIAN, N WALLA	63	202083
HOWELL, H	49	600712	CEMP CARBIDES BONDARENKO, B ERMA	62	202007
DHD CO TOENNIES, J GREENE	57	600600	CEMP CARBIDES	42	202007
SPK CO	6,	800800	GOODMAN, P HOMONOF	61	301460
LOEWENSTEIN, E	60	600919	CEMP CARBIDES KUBASCHENSKI, O	56	601642
DHD CO LINDHOLN, E	54	600714	THER CARBIDES	-	00.042
E CO		3307.14	OLIVER, R BAIER, R MPP CARBIDES	63	301314
TOBIAS, I FALLON E C O	60	600695	FITZGERALD, L	63	301217
ROSENBLUM, B NETHE	57	600723	CPH CARBIDES		
MPP CO			KRIKORIAN, O CRYS CARBIDES	62	301111
ROSENBLUM, B NETHE BPK C O	58	600724	EPPRECHT, W	51	301109
HERZBERG, HUGO, T	56	600711	CRYS CARBIDES ATOJI, M	61	701070
SPK CO			CRYS CARBIDES	61	701070
GOLDBERG, L MULLER SPK C O	63	600710	ATOJI, M	62	201983
BURRUS, C	68	600707	CRYS CARBIDES KOVALSKII, A	69	201131
SPK CO BEDARD, FGALLAGHE			CTEX CARBIDES		
SPK CO	63	600706	BELIKOV, A OF CARBIDES	60	201066
BARROW, R GRATZER	56	600704	ANON	54	400618
SPK CO RANK, DEASTMAN, D	61	600835	MISC CARBIDES		
SPK (° ()	٠.	00000	STRASHINSKAYA, L MPP CARBIDES	62	201790
BARROW, R	61	600777	MORDIKE, B	60	300503
SPK C O MILLS, I THOMPSON	53	600715	PHAS CARBIDES KOVALSKII, A	59	201131
SPK CO			PHAS CARBIDES	0.9	201131
KISHKO, S SPK C O	60	300796	GORELIK, S ELYVTIN	62	201947
ONAKA, R	67	600716	REAC CARBIDES SAMSONOV, G YASINK	61	100180
SPK (' () PALIK, E RAO, K	56	600717	REAC CARBIDES		
SPK CO	30	000717	SAMSONOV, G IASINS REAC CARBIDES	61	300340
PLYLER, E ALLEN, N	58	600718	KOPYLOVA, V	61	201305
PLYLER, E BENEDICT	52	600719	SPK CARBIDES BELIKOV, A	60	201066
SPK CO		3337.13	SURF 'RBIDES	80	201000
PLYLER, E BLAINE SPK C O	66	600721	ZADUMK'N, S	61	201849
RANK, D GUENTHER	67	600722	TCON CARBIDES RUDY, E BENESOVSKY	60	200808
SPK ('O			TCON CARBIDES		
SUN, N WEISSLER, E SPK C O	55	600725	LVOV, S THEO CARBIDES	61	300937
TANAKA, Y JURAA, A	57	600726	ROBINS, D	60	600624
8PK CO MCCULLOH, K GLOCKL	53	600727	THER CARBIDES KUBASCHENSKI, O	56	601642
SPK CO2	93	600727	THER CARBIDES	00	601642
SUN, N WEISSLER, E	55	600725	KUTSEV, V	62	300358
BPK C O SYST KNIPE, R GORDON, A	66	600713	CRYS CAC 2 ZELDES, H LIVINGST	61	700971
KIN C O SYST			CRYS CAC 2		
GULBRANSEN, E	63	301465	VANNERBERG, N CRYS CAC -	61	201300
MPP C NI CO SYST YASUSHI KOJIMA SAN	61	300189	VANNERBERG, N	62	300596
CPH CA			CRYS CAC2		
FAVSTOVA, D IPPOLI PHAS CA	61	201613	ATOJI, M MEDRUD, R CRYS CA C 2	59	601210
BEREZHNOI, A KORDY	62	201553	ATOJI, M	61	700864
REAC CA		201082	CRYS CA C 2 TAGAWA, H FUJIMORI	60	201379
GREGG, S JEPSON, W REAC CA	61	201002	CRYS CAC 2		
NORMAN, J	60	200888	BREDIG, M	61	201323
REAG CA KHLEBNIKOV, G SIMA	61	201625	KIN CA C 2 TAGAWA, H SUGAWARA	62	201839
SPK CA			TRT CAC 2		
CODLING, K	61	600775	JUZA, R SCHUSTER	61	600840

04 P.0					
CPH CAF2 JOSHI, S MITRA, S	60	200767	THEO CALORIMETRY DENCE, W	63	301211
CPL CAF 2	•	200707	CPH CALORIMETRY	03	301211
Joshi, S Mitra, S	60	200767	MITKINA, E	62	301306
TCON CAF2 SLACK, G		201125	THER CALORIMETRY		
PHAS CA MN SI O SYST	61	201125	SKURATOV, S M DH CA COMPOUNDS	61	300251
GLASSER, F	62	201741	SHCHUKAREV, S MORO	62	300598
EMF CA O			CEMP CA O SYST		
BENZ, R WAGNER, C	61	700640	PALGUEV, S NECEIMI	62	201717
COCCO, A	59	201168	DHD CA O SYST VEITS, I GURVICH	56	700964
THER CA O			THER CA O SYST		, 00304
SCHICK, H ANTHROP	62	300995	VEITS, I GURVICH,	56	700964
TRT CA O SCHNEIDER, S	63	301348	PHAS CA O NB SYST		
REAC CA O	0.3	301348	IBRAHIM, M NORMAN EMF CA SI O SYST	62	201876
RYABCHIKOV, I MIKU	62	301336	BENZ, R WAGNER, C	61	700640
VAP CAO			MPP CB C		
BABELIOWSKY, T BOE VAP CA O	63	301179	NORTON, J MOWRY, A CRYS CD	49	300157
BABELIOWSKY, T	63	301178	LAWLEY, A	60	200801
VAP CAO			CPH CE		
BABELIOWSKY, T BOE E CA O	62	301128	ARAJS, S COLVIN, R	62	300751
LAGERQVIST, A HULD	54	600681	CPH CE ARAJS, S COLVIN, R	62	301078
ERES CAO			CPH CE	02	301078
COCCO, A BARBARIOL	62	301430	KOENIGSBERG, E KEL	63	601002
MISC CA O LADD, M LEE, W	60	201322	CPH CE		
MSP CA O	60	201322	SPEDDING, F MILLER CPH CE	51	601241
BABELIOWSKY, T	62	301403	JAEGER, F BOTTEMA	36	900102
MSP CAO			CPL CE		
BABELIOWSKY, T BOE PHAS CA O	62	301128	WILKINSON, M CHILD CPL CE	61	601412
COCCO, A VIRDIS, P	61	201316	GOODMAN, B	52	100208
PHAS CA O			CPL CE		
JUZA, R SCHUSTER	61	600840	PARKINSON, D H SIM	51	400557
PHAS CA O BRCIC, B GOLIC, L	62	201636	CTEX CE ANDRES, K	63	301172
PHAS CA O	02	201030	CPL CE	63	301172
BAKER, E BUTLER, J	62	201794	PARKINSON, D ROBER	57	601151
REAC CA O		204500	CRYS CE		440740
LEONOV, A SPK CA O	61	301522	SCHUCH, A STURDNAN CRYS CE	60	400518
ORTENBERG, F	61	300795	WEINER, R RAYNOR	59	200871
SPK CAO			CRYS CE		
ROSEN, B WENIGER	62	301561	MCHARGUE, C YAKEL CTEX CE	60	600546
SPK CA O LAGERQVIST, A	54	600883	DASHKOVSKII, A SAV	61	201866
SPK CA O	-		DHT CE	-	
HULDT, L LAGERQVIS	55	600893	CAVALLERO, U	43	700895
BPK CA O HULDT, L LAGERQVIS	56	600894	OHT CE KOVIMA, T KIKUCHI	63	100183
SPK CA O	30	000034	ERES CE	03	100103
HULTIN, M LAGERQVI	61	600898	JAEGER, F BOTTEMA	36	900102
SPK CAO		*****	ERES CE		100000
VEITS, I GURVICH SPK CA O	67	600899	JAMES, N LEGNOLD ERES CE	52	100206
GAYDON, A	55	600900	BRIDGMAN, P	51	400533
SPK CAO			ERES CE		
LAGERQVIST, A	63	600925	SPEDDING, F DAANE ERES CE	67	601066
METSON, G	63	301536	GOODMAN, B	62	100208
CPH CALORIMETRY			H CÉ		
WELTY, J WICKS, C	62	301619	SPEDDING, F MILLER	51	601241
CPH CALORIMETRY WITTIG. F	61	301624	MPP CE IONOV, N MITTSEV	61	601411
DH CALORIMETRY	••		PHAS CE	• •	30.711
KOLESOV, V ZENKOV	62	300766	WERNER, R RAYNOR	59	601359
DH CALORIMETRY		*****	PHAS CE		****
VASILEV, Y SOBOLEV DH CALORIMETRY	62	300767	WILKINSON, M CHILD PHAS CE	61	601412
KOSOV, N RIVIN, O	61	400590	KOVIMA, T KIKUCHI	53	100183
THEO CALORIMETRY			PHAS CE		
SEMIKIN, I KOSTOGR THEO CALORIMETRY	61	900223	SPEDDING, F DAANE	67	601066
THEO CALORIMETRY BARNER, J	63	301181	PHAS CE LIVSHITS, L GENSHA	62	301524
			at total of a delibiting		

DHAS CE					
LIKHTER, A	67	601492	CRYS CEB6		
PHAS CE		33.452	ZHDANOV, G ZHURAVL ERES CE B 6	67	601061
LIKHTER,A RYUBININ PHAS CE	68	601072	PADERNO, Y SAMSONO	61	301072
PHAS CE BEECROFT, R SWENSO	60	600669	SPK CEB6		
PHAS CE	•	900668	TRONEVA, N MARCHUK DF CE C	58	601167
GONIKBERG, M SHAKH	67	601064	DANCY, E EVERETT	82	300876
PHAS CE COLVIN, R ARAJS, S	61	600875	THER CE CL2		
PHAS CE	•	000878	SENDEROFF, S MELLO Ther CE CL3	61	200930
SPEDDING, F DAANE PHAS CE	57	700872	WALDEN, G SMITH, D	61	201414
VOGEL, R	17	900105	VAP CE CL3 NOVIKOV, G BAEV, A	62	300686
PHAS CE			SPK CE2		300000
CUBICIOTTI, D Phas CE	49	900104	BURBRIDGE, G BURBR	54	600937
TROMBE, F FOEX, M	44	900118	OPK CE2 ARROE, H	64	600959
PHAS CE ROLLA, L IANDELLI	43		DF CE C SYST		
REAC CE	43	900103	· MCCABE, C Phas CE C SYST	60	600635
LORIERS, J	49	400542	WARF, J PALENIK, G	60	600636
RHO CE EICHELBERGER, J	61	601420	THER CE F 3 WESTRUM, E BEALE	59	600629
SPK CE	-	33.123	REAC CE N	-	500525
GARSTANG, R SPK CE	52	100207	SAMSONOV, G LYUTAY	63	301340
BRIX, P FRANK, H	50	400526	ERES CE N DIDCHENKO, R GORTS	£ 3	301435
SPK CE SMITH, K SPALDING		200777	MPP CE N		
SPK CE	62	300777	SAMSONOV, G LYUTAY CRYS CE N SYST	82	301672
SCHWARZSCHILD, M	67	601047	ANON	61	601376
SPK CE BURBRIDGE, E BURBR	66	601003	CRYS CE N SYST IANDELLI, A	37	601276
SPK UE			ERES CENSYST		
MURAKAWA, K ROSS SPK CE	61	400556	DAOU, J	60	600615
GRATTON, L	52	400567	PHAS CE N SYST EYRING, L SCHULDT	69	600634
THER CE PARKINSON, D H SIM	51	400557	VAP CE O		
THER CE	٠.	400007	KULVARSHAYA, B MAS PHAS CE O	60	301064
SPEDDING, F H MCKE	60	700570	EYRING, L HOLWBERG	62	601590
THER CE SCHICK, HANTHROP	62	300995	THER CE O SCHICK, H ANTHROP	62	300995
TRT CE			CPH CEO2		55555
TROMBE, F FOEX, M TRT CE	44	900118	KUZNETZOV, FAREZ CPL CE O 2	60	700537
ROCHER, Y	62	301559	WESTRUM, E BEALE	61	300350
TRT CE JAEGER, F BOTTEMA	36	900102	CPL ("E O 2 WESTRUM, E BEALE		
TAT CE		000.02	DH CE O 2	69	600629
GSCHNEIDER, K ELLI	61	202045	MUTHMANN, W WEISS	04	800144
TRT CE ROLLA, L'IANDELLI	43	900103	DH CE O 2 HIRSCH, A	11	900097
TRT CE		000171	ERES CEO2		
CUBICIOTTI, D	49	900104	KEVANE, C H CE O 2	62	601467
GSCHNEIDNER, K ELL	62	301464	KING, E CHRISTENSE	61	600826
TRT CE KOVIMA, T KIKUCHI	63	100183	PHAS CE O 2 BRUNO, M	50	601385
TRT CE			S CEO2	30	001300
VOGEL, R VAP CE	17	900105	KING. E CHRISTENSE	61	600826
BEAVIS, L	60	600659	SPK CE O 2 TRONEVA, N MARCHUK	58	601157
REV CERAMICS		202121	THER CE 0 2		
RAMKE, W LATVA, J REV CERAMICS	63	202121	WESTRUM, E BEALE CPH CE2O 3	59	600629
RYSHKEWITCH, E	63	301338	PANKRATZ, L KELLEY	63	301549
OOK CERAMICS KINGIRY, W	60	301263	CPH CE2O 3 KUZNETSOVA, F A RE	61	700600
CRYS CE B 4			CPL CE2O 3	•	, 00000
ZALKIN, A TEMPELTO CEMP CE B 6	63	100198	WELLER, W KING, E CPL CE2O 3	63	301617
SAMSONOV, G PADERN	59	300143	CPL CE2O 3 WESTRUM, E BEALE	61	300350
CEMP CEB6		400241	DH CÉ2O 3		
LAFFERTY, J COPT CE B 6	50	400541	HUBER, E HOLLEY, C DH CE2O 3	63	800963
TSAREV, B ILLARION	63	301369	MAH, A	61	600689

OH CE2O 3 KUZNETSOV, F REZUK	60	600690	BIB CR WOHLL, M	60	700723
CRYS CE2O 3	80	600690	CPH CR	-	700723
COURTEL, R LORIERS	50	400519	KRENTSIS, R P	61	300195
CRYS CE2O 3			CPH CR		
HONIG, J ERES CE2O 3	58	601631	KRAUSS, F CPH CR	58	700647
HONIG, J	58	601531	JOHNSON, R	60	301488
PHAS CE2O 3			CPL CR		
BRUNO, M PHAS CE2O 3	50	601385	BEAUMONT, R CHIHAR TRT CR	60	200959
HONIG, J	58	601531	ALLEN, B MAKKUTH	63	301169
REAC CE2O 3			PHAS CR		
LEONOV, A RUDENKO	62	301521	GRIGORYEV, A SOKOL	61	301234
REV CE2O 3 HONIG, J	58	601531	TRT CR WYDER, W HOCH, M	63	301383
SPK CE OXIDES	-	00.05.	CPL CR		55.555
BRAUER, G GINGERIC	60	300559	DEWAR, J	13	700511
REV CE OXIDES HONIG, J		600827	CPL CR CLUSUIS, K FRANYOS	62	301051
THER CE O SYST	58	600827	CPL CR	62	301061
KUZNETSOV, F BELYI	61	300665	RICHARDS, T JACKSO	10	700565
MISC CE O SYST			CRYS CR		
LORIERS, J OH CE O SYST	49	400542	GRIGOREV, A SOKOLO CTEX CR	61	600653
BRAUER, K GINGERIC	60	300415	VASYUTINSKII, B KA	61	201416
DH CE O SYST			ERES CR		
WALSH, PN DEVER,	61	700642	BRIDGMAN, P ERES CR	51	400533
PHAS CE O SYST EYRING, L SCHULDT	59	600634	MARCINKOWSKI, M LI	61	600861
PHAS CE O SYST			PHAS CR		
BRAVER, G GINGERLI	57	600668	EDWARDS, A	60	200948
VAP CB O SYST BRAUER, K GINGERIC	60	300415	PHAS CR GRIGOREV, A SOKOLO	61	700620
REAC CE SR O SYST	•	3004.0	PHAS CR	•	,,,,,,
KELER, E GODINA, N	57	600866	MORIN, J	62	601571
PALGUEV, S VOLCHEN	40	201074	REAC CR DEUTSCH, N ERVIN	60	500123
BIB CHEMISTRY	60	201074	REAC CR	80	800123
HESLOP, R ROBINSON	62	301028	SILCOX, N DILLON	61	201734
REV CHEMISTRY			REV CR		704070
MARGRAVE, J REV CHEMISTRY	62	300472	WOHLL, M SPK ('R	60	701053
DROWART, J GOLDFIN	62	201917	ROSENZWEIG, N PORT	40	700996
THEO CHEMISTRY			SPK CR		
HIRSCHFELDER, J DHD CHLORIDES	59	301474	BONNELLE, C SPK CR	62	201764
FEBER, R	63	301445	NEMNONOV, S MENSHI	60	200977
PHAS CO			THEO CR		
FUNKE, V NOVIKOVA	62	201704	ROSENZWEIG, N PORT	60	700996
VAP CO SAXER, R	63	301576	THEO CR ROSENZWEIG, N PORT	60	700901
VAP CO	••	301070	TRT CR	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
VINTAIKIN, E TOMAS	61	300452	SVECHNIKOV, V	83	301601
SLACK, G		201126	GRIGOREV, A SOKDOV	61	201437
PHAS CO MO	61	201126	VAP CR	• •	201437
FORSYTH, J DALTE	62	201713	CANO, G	62	301423
CEMP COMPOUNDS			CHI DDANGEN E ANIND		201024
SAMSONOV, G SINELN CRYS COMPOUNDS	62	201968	GULBRANSEN, E ANDR VAP CR	61	301074
GLADISHEVSKII, E	61	201880	GULLBRANSEN, E AND	61	300465
REAC COMPOUNDS			VAP CR		
NESPHOR, V	58	200896	HANLIN, H VAP CR	60	700951
DK COMPOUNDS MAKSIMOVA, I	62	202094	VAP CR AMONENKO, V KRUGLY	61	300466
REAC COMPOUNDS	-		VAP CR		
PAINE, R STONEHOUS	60	201631	IGNATOV, D LEBEDEV	61	301041
DHD COMPOUNDS BRADY, P	60	301412	VAP CR MIKHAILOV, G PRONI	61	300468
THEO COMPOUNDS	90	301712	CRYS CR B		555-00
DROZIN, N	61	300534	MALINCHKOV, O POVI	62	300948
THER CO P+ ORIANI, R MURPHY		201551	H CRB		601617
PHAS CO TA	62	201864	MEZAKI, R TILLEUX REAG CR B	62	90.017
DRAGSDORE, R FORGE	62	201712	MARKOVSKII, L	62	301530
ERES COWC SYST			S CR B		401417
FUNKE, V SHURSHAKO	61	301453	MEZAKI, R TILLEUX	62	601617

MPP CR B 2					
MPP CR B 2 MALYUCHKOV, O POVI	62	202095	VAP CR3C 2 ANON		700004
CPH CR B 2 KRESTOVNIKOV, A VE	60	2000	VAP CR3C 2	60	700904
DF CRB2	•0	300672	BOLGAR, A VAP CR3C 2	61	700938
KRESTOVNIKOV, A VE H CR B 2	60	300672	ANON	60	700992
MEZAKI, R TILLEUX	62	601617	VAP CR3C 2 ANON	••	*****
MPP CR B 2 SHCHERBAKOV, V VEY	60	20004	CEMP CR CARBIDES	60	600666
PHAS CR B 2	80	300964	LVOV, S NEMCHENKO CEMP CR CARBIDES	62	201981
NESHPOR, V KISLYI REAC CR B 2	59	700521	LVOV, S NEMCHENKO	61	200968
MARKOVSKII, L	62	301530	KIN CR CARBIDES KOSOLAPOVA, T SAMS	61	200957
REAC CR B 2 KOTSCH, H	60	301509	THER CR CARBONYLS	٠.	200507
S CRB2	•	301009	KAWAI, K MURATA, H DF CR C SYST	60	200806
MEZAKI, R TILLEUX THER CR B 2	62	601617	ALEKSEEVA, V	61	300201
BOLGAR, A	61	700938	REAC CR C SYST KOSOPLAPOVA, T SAM	63	301275
TRT CR B 2 NESHPOR, V KISLYI	69	700521	DF CR C SYST		551275
VAP CR B 2	-	700821	VINTAIKIN, E DF CR C SYST	63	202155
BOLGAR, A CRYS CR B 6	61	700938	ALEKSEEVA, V SHVAR	61	700632
EPELBAUM, V SEVAST	60	600800	MPP CR C SYST BURYLEV, B	61	301071
PHAS CR B 6 EPELBAUM, V SEVAST	60	600800	PHAS CR CO SYST		
REAC CR2B	00	00000	GRIGOREV, A YEH, Y PHAS CR FE SYST	60	201782
MARKOVSKII, L PHAS CR3B 4	62	301530	GRIGOREV, A SOKOLO	60	600912
ELFSTROM, M	61	300367	THER CR FE SYST Kubaschewski, o	60	600696
CEMP CR BORIDES LVOV, S NEMCHENKO	62	201981	THER CR FE SYST		
CEMP CR P SYST	01	201361	WADA, H KAWAI, Y THER CR MO SYST	61	700627
CADEVILLE, M MEYER CPH CR B SYST	62	202013	LAFFITTE, M KUBASC	61	700626
KRESTOUNIKOV, A VE	69	200797	MPP CR N SAMSONOV, G VERKHO	61	301573
CRYS CR B SYST MALYUCHKOV, O POVI	62	300584	VAP CR N		
CRYS CR B SYST	0.	300564	SANO, K MPP CR N	66	300983
EPELBAUM, V SEVAST MPP CR B SYST	67	700931	SAMSONOV, G VERKHO	62	300997
MERZ, A KOTSCH, H	62	301301	PHAS CR NB SYST MISENCIK, J	60	201432
PHAS CR B SYST EPELBAUM, V SEVAST	67	700931	PHAS CR NB SYST		221425
REAC CR B SYST			PAN, V PHAS CR NB MO SYST	61	201635
KOLOMYTSEV, P REAC CR B MO SYST	58	300347	GOLDSCHMIDT, H BRA PHAS 'R NB MO SYST	61	201069
TAI, S YOSINSKA, G	60	300272	KURNANOV, N TRONEV	60	201338
PHAS CR B P SYST RUNDQVIST, S	62	300546	PHAS UR NB MO SYST SVECHNIKOV, V KOBZ	61	201496
PHAS CR B2 MO SYST			PHAS CR NB SI SYST		
FHAS CR B2 MO SYST	60	300216	GOLDSCHMIDT, H BRA THER CR NI SYST	61	201070
KOVALCHENKO, M SAM	60	300216	KUBASCHEWSHI, O DE	60	300211
CTEX CR BE WHITE, G	61	201739	PHAS CR NI NB SYST SVECHNIKOV, V PAN	61	201495
MPP CRC			CEMP CR NITRIDES		
KOSOLAPOVA, T SAMS	62	300918	LVOV, S NEMCHENKO CEMP CR NITRIDES	62	201981
KOSOLAPOVA, T SAMS	62	300925	SAMSONOV, G	60	700947
REAC CR C SAMSONOV, G KOSOLA	61	300555	DH CR NITRIDES SAMSONOV, G	60	700947
VAP CR3C 2	٠.		MISC CR NITRIDES		
FESENKO, V BOLGAR CRYS CR3C 2	63	301216	POPOVA, U MPP CR NITRIDES	6 1	201082
MEINHARDT, D KRISE	80	700912	VERKHOGLYADOVA, T	61	201355
THER CR3C 2 BOLGAR, A	61	700938	REV CR NITRIDES SAMSONOV, G	60	700947
THER CR3C 2	91	, , , , , , ,	DHD CRO		
ANON THER CR3C 2	60	700992	HULDT, L LAGERQVIS	52	600764
ANON	60	700904	LAGERQVIST, A HULD	53	600765
THER CR3C 2 FUJISHIRA, S GOKCE	61	700615	REAC CR O TAKEKAZU, B HIROTA	61	201549
	5 1	/ / / 4 / 5			
THER CR3C 2 FUJISHIRO, S GOKCE	•		SPK CRO BERG, R SIMANOGLN	60	301089

THER CRO			REV CU	
BARRIAULT, R DREIK	62	300865	RICHERT, E BECKETT 49	700564
CRYS CR O 2 CLOUD, W SCHREIBER	62	201931		
MPP CR O 2	04	201931		
SWABODA, T ARTHUR CR O 2	61	700524	D	
KUBATA, B	61	700586		
REAC CR O 2 KUBATA, B	61	700586	THEO DIATOMIC GASES GUNGMAN, V 61	700548
THER CRO2			THEO DIATOMIC GASES	
KUBATA, B Ther CR O 2	61	700566	ARAI, T 60 THER DIATOMIC GASES	300842
BARRIAULT, R DREIK	62	300865	BROUNSHTEIN, B YUR 62	300774
S CR O 3 SPITSYN, V AFONSKI	60	300619	THEN DIATOMIC GASES GURVICH, L YUNGMAN 60	300460
THER CROS			DHD DIATOMIC MOLECULE	400000
BARRIAULT, R DREIK erzs CR2O 3	62	300865 h	SAYASOV, Y IVANOV 60 Rev Diatomic Molecule	400593
GRAHAM, J DF CR2O 3	60	600818	HERZBERG, G 62	600536
JEANNIN, Y MANNERS	63	301483	8PK DIATOMIC MOLECULE HOUGEN, J 62	300784
PHAS CR2O 3 JAFFRAY, J		700655	SPK DIATOMIC MOLECULE FOGARASSY, B NEMET 60	200879
REAC CR20 3	61	700000	SPK DIATOMIC MOLECULE	200679
SAMSONOV, G KOSOLA TRT CR20 3	61	300555	HERZBERG, G 52 THEO DIATOMIC MOLECULE	600536
MCNALLY, R PETERS	61	600826	BROUNSHTEIN, BI 61	300187
VAP CR2O 3 WANG, K DREGER, L	80	700897	THEO DIATOMIC MOLECULE PAPOUSEK, D 61	700676
VAP CR2O 3	•••	,00457	THEO DIATOMIC MOLECULE	,000,0
CAPLAN, D COHEN, M VAP CR2O 3	61	700529	LIPPINCOTT, E STEE 61 SPK DIATOMIC, IST ROW	700683
KE CHING WONG DREG	60	300140	FROGA, S RANAIL, B 61	700644
VAP CR2O 5 NEUGENAUER, J	63	301311	THEO DIATOMICS VANDERSLICE, J 62	202150
REAC CR30			SPK DIATOMICS	
KIHLBORG, L MISC CR OXIDES	62	202068	NIKITIN, E 62 DHD DIATOMICS	301312
LUX, H EBERLE, L	61	700828	PRITCHARD, H 62	301554
PHAS CR OXIDES ANDERSSON, S	59	201178	DHD DIATOMICS CLEMENTI, E 63	301204
PHAS CR O SYST			SPK DIATOMICS	
KUBOTA, T VAP CR O SYST	61	600910	JENSOVSKY, L 62 THEO DIATOMICS	301487
GLEMSER, O MUELLER	62	300759	RUE, R 63	301335
PHAS CR RU SYST SAVITSKII, E TEREK	61	300836	THEO DIATOMICS RICE, O 62	301557
MISC CR SALTS LUX, H EBERLE, L	61	700828	THEO DIATOMICS SPIRIDONOV, V TATE 61	301592
CPH CR SI SYST	•	700028	THER DIATOMICS	301092
GOLUTVIN, U LYAN DH CR SI SYST	61	700540	PAPOUSEK, D CERMAN 62 MISC DIBORIDES	301550
GOLUTVIN, V LYAN	61	700540	MARKOVSKII, L VEKS 61	201060
DH CR SI SYST GOLUTVIN, Y	62	301229	THEO DIFFRACTION RAMBIDI, N SPIRIDO 62	301389
H CR SI SYST			CEMP DY	
GOLUTVIN, U LYAN THER CR SI SYST	61	700540	LEGVOLD, S SPEDDIN 53 CPL DY	100189
GOLUTVIN, U LYAN	61	700540	DREYFUS, B 61	201220
THEO CRYSTAL DOYAL, B	61	300223	CPL DY GRIFFEL, M 56	601263
PHAS CR TA SYST			CPL DY	
GRIGOREV, A SOKDOU THER CR TA SYST	60	201646	LOUNASMAA, O GUENT 62 CPL DY	300779
PILOYAN, G O EVSEE	60	300178	GRIFFEL, M SKOCHDO 66	601018
THER CR TA SYST PILOYAN, G EVSEEV	60	600688	CRYS DY KOEHLER, W WOLLAN' 61	301504
PHAS CRUOSYST	••	204422	CRYS DY	701048
Smith, D Clein, C Phas CS NB O SYST	61	201483	FOUNFELKER, R SIET 62 DH DY	701069
REISMAN, A MINEO	61	201080	HUBER, E 56	601291
RICHERT, E BECKETT	49	700564	DH DY SAVAGE, W HUDSON 59	601126
DH CU VERHAEGEN, G		300235	DH DY WHITE, D 61	201217
MPP CU			ERES DY	
RICHERT, E BECKETT	48	700564	COLVIN, R LEGVOLD 60	601389

ERES DY			MAD BY BARRING		
LEGUOLD, S SPEDDIN	53	100189	VAP ELEMENTS HONIG, R	62	301144
COLES, B			ERES ELEMENTS, GROU		
SPK DY	40	601498	•	58 D. 4	201600
DONTSOV, Y	56	601055	CHIANG, T	62	201680
REAC DY			THEO ENTROPY	-	
OLCESE, G SPK DY	61	201602		61	300668
AKIMOV, A	67	601099	THEO EQUILIBRIUM POE, A	63	301551
SPK DY			CEMP ER	-	
MERRILL, P GREENST SPK DY	66	601007	,	53	100189
SMITH, K SPALDING	62	300777	CRYS ER KOEHLER, W WOLLAN	61	301504
CRYS DY			DH ER	•	001004
DARNELL, F MOORE,E SPK DY	63	202023		61	600832
BURBRIDGE, E BURBR	55	601003	OH ER White, D	61	201217
SPK DY	ν,		ERES BR	•	
MURAKAWA, K KAMEI VAP DY	63	601218		60	601389
WHITE, DWALSH, P	.60	301622	ERES ER LEGUOLD, S SPEDDIN	53	100189
VAP DY			ERES ER		
WHITE, D WALSH. P	61	300455	·	58	601498
SAVAGE, W HUDSON	69	601126	MPP ER IONOV, N MITTSEV	61	601411
CEMP DY B 6			SPK ER	•	
SAMSONOV, G PADERN VAP DY O	59	300143		62	300777
VAP DY O KULVARSHAYA, B MAS	60	301064	SPK ER JUDD, B MARQUET, L	62	300801
SPK DY2			SPK ER	-	
BURBRIDGE, G BURBR	54	600937	AKIMOV, A	57	601099
CPL DY2O 3 WESTRUM E JUSTICE	63	301012	VAP ER WHITE, D WALSH, P	60	301622
CPH DY 20 3			VAP ER	-	••••
PANKRATZ, L KELLEY	63	301549	WHITE, D WALSH, P	61	300465
CAYS DY20 3 STARITZKY, E	56	601292	CEMP ER B 6 SAMSONOV, G PADERN	52	300143
CTEX DY2O 3			VAP ER O	T. T.	400145
PLOETZ, G	67	601309	KULVARSHAYA, B MAS	60	301064
DH DY2O 3 HUBER, E	6 6	601291	CPL ER2O 3 WESTRUM, E JUSTICE	63	301012
PHAS DY20 3			CPH ER2O 3		
STARITZKY, E	56	601030	PANKRATZ, L KING	63	202114
			PHAS ER2O 3 STARITZKY, E	56	601030
-			DH EU		
E			TRULSON; O HUDSON ERES 'BU'	61	600832
		•	OLSEN C	60	601336
THEO EFFUSION	6(300423	PHAS' EU		
PRISELKOV, Y SAPOZ	***	1 30042.1	OOLVIN, R ARAJS, S PHA EU IN O SYST	61.	600875
THEO EFFUSION FIRSOVA, L	62	301448	PHA EU IN O SYST SCHNEIDER, S	61	201537
THEO EFFUSION	-		SPK EU		
SEARCY, A SCHULZ	63	300980	SAKELLARIDIS, P SPK EU	53	100164
CPL EINSTEIN FUNC OVERTON, W.C. HANCO	60	300244	VAN DIJKE BEATTY, S	51	400548
BETA ELEMENTS			SPH EU		
EGYED	54	700739	BRIX, P SPK EU	62	400566
CPL ELEMENTS SKIFFMAN, C	62	601636	BURBRIDGE, E BURBR	55	601003
DH ELEMENTS			SPK EU		
NESMEYANOV, A KHAN	60	600660	MBRRILL, P GREENST	56	601007
REAC ELEMENTS RYABCHIKOV, D SKLY	60	200787	BRIX, P KOPPERMAN	52	400574
REAC ELEMENTS	30	, 0,500	SPK EU		
ROLSTEN, R	60	200786	BOHM VITENSE, E	60	601169
REV ELEMENTS	61	201631	CEMP BU B 6 SAMSONOV, G PADERN	59	300143
SHARPE, A SHARP, D SPK ELEMENTS	01	201031	CRYS EU B 6		
WATSON, R	60	200816	FELTEN, E BENDER	58	700867
THER ELEMENTS	60	0 /) 201372	CRYS ÉU N EICK, H BAENZIGER	56	601046
GATES, D THODOS, G VAP ELEMENTS		201372	PHAS EU N		
ORMONT, B	62	300765	EICK, H BAENZIGER	56	601046
VAP ÉLEMENTS	٠,	300422	REAC EU N EICK, H BAENZIGER	56	601046
NESMEYANOV, A	61	300722	Divis, at District Cont		

			0.00.0000.000.00		
REAC BU NITRIDES			SPK GAS METAL DIO		
EICK, H VAP EU O	57	601063	BREWER, L ROSENBLA F GASEOUS ATOMS	61	700957
KULVARSHAYA, B MAS	60	301064	F GASEOUS ATOMS KATZ, T MARGRAVE	66	600933
SPK EU2		331331	THER GASEOUS IONS	-	00000
BURBRIDGE, G BURBR	54	600937	GREEN, J POLAND, D	60	200782
CTEX EU2O 3			REV GASES		
PLOETZ, G	67	601309	GLUSHKO, V	62	301221
MPP EU2O 3			THEO GASES		
CURTIS, C THARP, A	69	700804	HIRSCHFELDER, J CU	64	202061
MSP EU2O 3			THEO GASES		
PANISH, M	61	601372	HIRSCHFELDER, J	63	202052
TRT EU2O 3			BOOK GASES		
WISNYI, L PIJANOWS	67	601056	PENNER, S	62	202117
VAP EU2O 3			THER GASES		
PANISH, M	61	601372	MCDOWELL, R	63	301300
CRYS EU30 4			TH EÒ GASES		
BAERNIGHAUSEN, H	62	701088	PREDVODITELEV, A	63	301322
SPK EUII			THER GASES		
DEUTSCH, A	56	600982	SEIGEL, B	63	301359
BIB EU OXIDES			DHD GASES		
JONES, P	60	200984	MATLOW, S	61	300401
PHAS EU OXIDES			DHD GASES		
EICK, H BAENZIGER	56	601070	LIPPINCOTT, E ET A	61	300402
REAC EU OXIDES			SPK GASES		
EICK, H	67	601053	OPPENHEIM, I HAFEM	63	JC:316
REAC EU OXIDES			MSP GASES		
EICK, H BAENZIGER	56	601070	MARTYNKEVICH, G	62	307357
MSP EXPERIMENTAL			SPK GASES		
LEHRLE, R	62	301520	HOUGEN, J	62	301479
MSP EXPERIMENTAL			SPK GASES		
MCDOWELL, C	62	201370	WATANABE, K INN, E	52	600565
SPK EXPERIMENTAL			THEO GASES		
HEXTES, R	63	301240	GURVICH, L YUNGMAN	61	300354
			THEO GASES		
			BROUNSHTEIN, B YUR	52	300364
F			THEO GASES		
•			WATANABE, K INN, E	52	600565
			THEO GASES		
BETA FE			GODNEV, I ALEKASAN	62	300893
	63	301149	THEO GASES		
KRUPNIKOU, K BAKAN	63	301149	VUKALOVICH, M ARTY	62	301005
KRUPNIKOU, K BAKAN THER FE			VUKALOVICH, M ARTY THEO GASES		
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV	63 62	301149 301147	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V	62 62***	301005 301395
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE	62	301147	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES	62"	301395
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV			VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F		
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST	62	301147	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES	62** 63	301395 301590
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB	62 61	301147 700970	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR	62"	301395
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D	62 61	301147 700970	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES	62** 63 62	301395 301590 301417
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST	62 61 60	301147 700970 300205	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM	62** 63	301395 301590
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV	62 61 60	301147 700970 300206	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES	62" 63 62 61	301395 301590 301417 300248
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST	62 61 60 61	301147 700970 300205 301003	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV	62** 63 62	301395 301590 301417
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S	62 61 60 61	301147 700970 300205 301003	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES	62*** 63 62 61 61	301395 301590 301417 300248 300644
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAB FE CR SYST WADA, H KAWAI, Y DHD FE O	62 61 60 61 56	301147 700970 300205 301003 300268 300289	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES	62" 63 62 61	301395 301590 301417 300248
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD	62 61 60 61 56	301147 700970 300205 301003 300268	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES	62*** 63 62 61 61	301395 301590 301417 300248 300644
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST	62 61 60 61 56 60	301147 700970 300205 301003 300268 300289	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV	62*** 63 62 61 61	301395 301590 301417 300248 300644 300341
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR	62 61 60 61 56	301147 700970 300205 301003 300268 300289	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER,	62*** 63 62 61 61	301395 301590 301417 300248 300644 300341
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST	62 61 60 61 56 60 53	301147 700970 300205 301003 300268 300289 600765 201348	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A	62*** 63 62 61 61 59	301395 301590 301417 300248 300644 300341 700838
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE	62 61 60 61 56 60	301147 700970 300205 301003 300268 300289	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A	62*** 63 62 61 61 59	301395 301590 301417 300248 300644 300341 700838
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAB FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAB FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAB FE TI C SYST	62 61 60 61 56 60 53 60	301147 700970 300205 301003 300268 300289 600765 201348 300242	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A	62*** 63 62 61 61 65 67 62	301395 301590 301417 300248 300644 300341 700838 900227
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN. J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAB FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAB FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAB FE TI C SYST PENG, R CHOV, Y	62 61 60 61 56 60 53	301147 700970 300205 301003 300268 300289 600765 201348	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H	62*** 63 62 61 61 65 67 62	301395 301590 301417 300248 300644 300341 700838 900227
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION	62 61 60 61 56 60 53 60 61	301147 700970 300205 301003 300268 300289 600765 201348 300242 300269	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O	62*** 63 62 61 61 59 67 62	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A	62 61 60 61 56 60 53 60	301147 700970 300205 301003 300268 300289 600765 201348 300242	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H	62*** 63 62 61 61 59 67 62	301395 301590 301417 300248 300644 300341 700838 900227 301142
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION	62 61 60 61 56 60 53 60 61 58	301147 700970 300205 301003 300268 300289 600765 201348 300242 300289 300791	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O	62*** 63 62 61 61 59 67 62 62	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A	62 61 60 61 56 60 53 60 61	301147 700970 300205 301003 300268 300289 600765 201348 300242 300269	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME	62*** 63 62 61 61 59 67 62 62	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION	62 61 60 61 56 60 53 60 61 58	301147 700970 300205 301003 300268 300289 600765 201348 300242 300289 300791	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD	62*** 63 62 61 61 59 57 62 60 60 61	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 301064 300837
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION	62 61 60 61 56 60 53 60 61 58	301147 700970 300205 301003 300268 300289 600765 201348 300242 300289 300791	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD LEGVOLD, S SPEDDIN	62*** 63 62 61 61 65 67 62 60 60	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 301064
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION GROSSE, A LENTNER	62 61 60 61 56 60 53 60 61 58	301147 700970 300205 301003 300268 300289 600765 201348 300242 300289 300791	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD LEGVOLD, S SPEDDIN CPL GD	62*** 63 62 61 61 69 67 62 60 60 61	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 301064 300837 100189
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION	62 61 60 61 56 60 53 60 61 58	301147 700970 300205 301003 300268 300289 600765 201348 300242 300289 300791	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD LEGVOLD, S SPEDDIN CPL GD LOUNASMAA,	62*** 63 62 61 61 59 57 62 60 60 61	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 301064 300837
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION GROSSE, A LENTNER	62 61 60 61 56 60 53 60 61 58	301147 700970 300205 301003 300268 300289 600765 201348 300242 300289 300791	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD LEGVOLD, S SPEDDIN CPL GD LOUNASMAA, CPL GD	62*** 63 62 61 61 69 67 62 60 60 61 63	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 301084 300837 100189 301627
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAB FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAB FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAB FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION GROSSE, A LENTNER	62 61 60 61 56 60 53 60 61 58	301147 700970 300205 301003 300268 300289 600765 201348 300242 300289 300791	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD LEGVOLD, S SPEDDIN CPL GD LOUNASMAA, CPL GD CRANE, L	62*** 63 62 61 61 69 67 62 60 60 61	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 301064 300837 100189
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAB FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAB FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAB FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION GROSSE, A LENTNER G	62 61 60 61 56 60 53 60 61 58 62 62	301147 700970 300205 301003 300268 300289 600765 201348 300242 300269 300791 300678	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES LAVROV, N FILIPPOV THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD LEGVOLD, S SPEDDIN CPL GD LOUNASMAA, CPL GD CRANE, L CRYS GD	62*** 63 62 61 61 59 67 62 60 61 63 63	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 300837 100189 301627 300811
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION GROSSE, A LENTNER G DH GA GURVICH, L	62 61 60 61 56 60 53 60 61 58 62 62	301147 700970 300205 301003 300268 300289 600765 201348 300242 300289 300791	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER. THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD LEGVOLD, S SPEDDIN CPL GD LOUNASMAA, CPL GD CRANE, L CRYS GD FOUNFELKER, R SIET	62*** 63 62 61 61 69 67 62 60 60 61 63	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 301084 300837 100189 301627
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION GROSSE, A LENTNER G DH GA GURVICH, L DHD GAS METAL DIOX	62 61 60 61 56 60 53 60 61 58 62 62	301147 700970 300205 301003 300268 300289 600765 201348 300242 300269 300791 300678	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD LEGVOLD, S SPEDDIN CPL GD LOUNASMAA, CPL GD CRANE, L CRYS GD FOUNFELKER, R SIET DH GD	62*** 63 62 61 61 69 67 62 60 61 63 63 62 62	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 300837 100189 301527 300811 701089
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION GROSSE, A LENTNER G DH GA GURVICH, L DHD GAS METAL DIOX BREWER, L ROSENBLA	62 61 60 61 56 60 53 60 61 58 62 62	301147 700970 300205 301003 300268 300289 600765 201348 300242 300269 300791 300678	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD LEGVOLD, S SPEDDIN CPL GD LOUNASMAA, CPL GD CRANE, L CRYS GD FOUNFELKER, R SIET DH GD TRULSON, O HUDSON	62*** 63 62 61 61 59 67 62 60 61 63 63	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 300837 100189 301627 300811
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAB FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAB FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAB FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION GROSSE, A LENTNER G DH GA GURVICH, L DHD GAS METAL DIOX BREWER, L ROSENBLA F GAS METAL DIOX	62 61 60 61 56 60 53 60 61 58 62 62	301147 700970 300205 301003 300268 300289 600765 201348 300242 300289 300791 300678	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD LEGVOLD, S SPEDDIN CPL GD LOUNASMAA, CPL GD CRANE, L CRYS GD TRULSON, O HUDSON CTEX GD	62*** 63 62 61 61 69 67 62 60 60 61 63 62 62 62 61	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 301084 300837 100189 301627 300811 701089 600832
ARUPNIKOU, K BAKAN THER FE KINNE, G VISHKAREV VAP FE FRANZEN, J HINTENB MPP FE C SYST MORI, T AKETA, D THER FE C SYST TSENG, C POLYAKOV THER FE CO SYST SATO, T KACHI, S PHAS FE CR SYST WADA, H KAWAI, Y DHD FE O LAGERQVIST, A HULD PHAS FE SI B SYST ARONSSON, B ENGSTR MPP FE SI SYST DRETZE, H D BALTHE PHAS FE TI C SYST PENG, R CHOV, Y THEO FUSION FERRIER, A THEO FUSION GROSSE, A LENTNER G DH GA GURVICH, L DHD GAS METAL DIOX BREWER, L ROSENBLA	62 61 60 61 56 60 53 60 61 58 62 62	301147 700970 300205 301003 300268 300289 600765 201348 300242 300269 300791 300678	VUKALOVICH, M ARTY THEO GASES ALTUNIN, V THER GASES SMITH, F THER GASES BROUNSHTEIN, B YUR THER GASES GURVICH, L V YUNGM THER GASES BAIBUZ, V MEDVEDEV THER GASES LAVROV, N FILIPPOV THER GASES KOLSKY, H GILMER, THER GASES TABACHENKO, A VAP GASES GILLES, P VAP GASES HONIG, R HOOK, H VAP GA O KULVARSHAYA, B MAS VAP GA O SHCHUKAREV, S SEME CEMP GD LEGVOLD, S SPEDDIN CPL GD LOUNASMAA, CPL GD CRANE, L CRYS GD FOUNFELKER, R SIET DH GD TRULSON, O HUDSON	62*** 63 62 61 61 69 67 62 60 61 63 63 62 62	301395 301590 301417 300248 300644 300341 700838 900227 301142 300424 300837 100189 301527 300811 701089

DH GD			Maa		
WHITE, D	61	201217	MSP GROUP III-IV-V AHEARN, A THURMOND	62	300471
ERES GD COLVIN, R LEGVOLD, ERES GD	60	601369	THER GROUP IV-V-VI		
LEGVOLD, S SPEDDIN	63	100169			
COLES, B SPK GD	68	601498	н		
MURAKAWA, K SPK GD	54	601284	носн, м	62	300544
SMITH, K SPALDING,	62	300777	DEMPSEY, E	63	301134
AKIMOV, A	67	601099	REAC HAFNATES KOMMISSAROVA, L SP	63	202078
BUX, P ENGLER, H	62	100192	THER HALIDES BREWER, L SOMAYAJU	63	202010
ZELDES, N SPK GD	63	100191	DH HALIDES BARBER, M LINNETT	62	300702
BURBRIDGE, E BURBR	66	601003	BREWER, L SOMAYAJU	63	301416
MERRILL, P GREENST	56	601007	KIRSCHENBAUM, A CA	60	200897
SUWA, S SPK GD	63	100190	THEO HEAT CAPACITY HILSENRATH, J ZIEG THEO HEAT CAPACITY	62	301471
SAKELLARIDIS, P	63	100184	FLINN, P MARADUDIN	63	301218
RUSSELL, H SPK GD	60	400540	THEO HEAT CAPACITY LANDIIA, N	62	301291
BRIX, P ENGLER, D	61	400563	CTEX HEXABORIDES ZHURAVLEV, N ET AL	61	300379
BRIX, P SPK GD	62	400566	PHAS HF BABITZKE, H ASAI	62	201986
GRATTON, L	52	400567	KIN HF KUBASCHEWSKI, O	62	601577
SUWA, S VAP GD	62	400575	THER HF KUBASCHEWSKI, O	62	601677
WHITE, D WALSH, P	60	301622	BIB HF ABSHIRE, E NOTESTI	60	600649
WHITE, D WALSH, P	61	300455	BIB HF CURTIS, C	52	600903
CRYS GD B 4 STEPANOVA, A ZHURA	58	601111	WILLIAMS, G BAKER	52	600904
CTEX GD B 4 STEPANOVA, A ZHURA CEMP GD B 6	58	601111	CPH HF FIELDHOUSE, I LANG	60	601583
SAMSONOV, G PADERN	59	300143	CRYS HF GLADYSHEVSKII, E TY	60	201564
BURBRIDGE, G BURBR CPH GD2O 3	54	600937	CRYS HF FOUNFELKER, R SIET CTEX HF	62	701089
PANKRATZ, L KING	62	300958	FIELDHOLSE, I LANG	60	601683
CPL GD2O 3 JUSTICE, B WESTRUM CTEX GD2O 3	63	300907	NOWOTNY, H LAUBE	61	600844
PLOETZ, G DH GD2O 3	67	601309	KAREV, V KLYUCHARE MISC HF	63	202064
HUBER, E HOLLEY, C	66	600930	SPINK, D MPP HF	61	200891
KELER, E GODINA, N	61	300387	SKINNER, G BECKETT	50	601225
WISNYI, L PIJANOWS	67	601056	KORNILOV, I	60	200907
DEUTSCH, A	66	600982	MARTIN, R SEAGLE	61	300308
JONES, P	60	200984	NOWOTNY, H BRAUN REAC HF	60	201309
CEMP GE UNY, C	61	301036	ENGELKE, J HALDEN CRYS HF	60	201529
MSP GE KOYLOVSKAYA, V		301103	JAMIESON, J GPL HF	63	301253
THER GE CHERKASKIN, Y GLAD	67	301107	KNIEF, G BETTERTON VAP HF	63	301264
VAP GE VINTAIKIN, E	61	201208	KRIKORIAN, O	63	301284
SCACE, R SLACK, G	60	200768	SPERNER, H	62	201787
PHAS GE C SYST SCACE, R SLACK, G	60	200768	KLINKENBERG, P	61	300776
Phas Ge O Brewer, L Mastik	49	601634	SPK HF MOORE, C	58	601088

eny UP			ava UEC		
SPK HF NORRIS, J	60	601194	DHD HF C BITTNER, H GORETZK	62	301132
SPK HF			MPP HF C		
ROSENZWEIG, N PORT SPK HF	60	700901	ANON - MPP HF C	61	300237
ROSENZWEIG, N PORT SPK HF	60	700996	SAMSONOV, G	69	300996
SHAW, C	55	600908	MPP HF C SAMSONOV, G PADERN	61	201143
TCON HF FIELDHOUSE, I LANG	60	601683	PHAS HF C ANON	61	601599
THEO HF	•••	601663	PHAS HF C	01	001033
ROSENZWEIG, N PORT	60	700996	BENESOVSKY, FRUDY MPP HFC	60	700974
ROSENZWEIG, N PORT	60	700901	PADERNO, V	62	202112
THER HF MARGRAVE, J	61	700967	CEMP HF C SAMSONOV, G FOMENK	63	202128
THER HF			CEMP HF C		
SCHICK, H ANTHROP TRT HF	63	300994	BITTNER, H GORETZK CEMP HF C	62	202004
TAYLOR, A DOYLE, N	61	600833	INGOLD, J	63	301251
TRT HF GIESSEN, B RUMP, I	63	301455	CTEX HF C KRIHORIAM, WALLA	63	301285
TRT HF MARTIN, R SEAGLE	61	300308	PHAS HF C COFFMAN, J COULSON	61	701040
TRY HF	•	300306	PHAS HF C	• •	701040
GRESSEN, B RUMP, I VAP HF	62	300887	BENESOVSKY, E RUDY PHAS HF C	61	100181
PANISH, M REIF, L	63	300959	CURTIS, C DONEY, L	54	300867
SPK HF3 KLINKENBERG, P VAN	61	701019	REAC HF C MEERSON, G KREIN	60	200831
SPK HF4			REAC HF C		
KLINKENBERG, P VAN CEMP HF B 2	61	701019	CALVERT, E KIRK, M REAC HF C	62	301421
MATSKEVICH, T KAZA	62	300952	SAMSONOV, G PADERN	61	201143
CRYS HFB2 RUDY, E	61	201255	REAC HF C ZHELANKIN, V KUTSE	62	201911
H HFB2			TCON HF C		701014
MEZAKI, R TILLEUX KIN HF B 2	62	601617	LOWRIE, R THER HF C	60	701014
ANON MPP HFB2	62	601597	BOLGAR, A THER HF C	61	700938
PADERNO, Y B SEREL	59	700534	SCHICK, HANTHROP	63	301579
REAC HF B 2 PADERNO, Y B SEREL	59	700534	THER HF C LITTLE, A	62	301526
8 HFB2	••		VAP HF C	Mille	
MEZAKI, R TILLEUX THER HF B 2	62	601617	VIDALE, G VAP HF C	61	301611
LITTLE, A	62	301626	BOLGAR, A	61	700938
VAP HF B 2 KRUPKA, M	62	601598	VAP HF C COFFMAN, J COULSON	61	701040
PHAS HF B C SYST			VAP HF C		
NOWOTNY, H PHAS HF B C SYST	61	201147	COFFMAN, J COULSON VAP HF C	61	300293
NOWOTNY, H RUDY, E	61	300190	SCHICK, HANTHROP	63	300994
PHAS HF B N SYST RUDY, E BENESOVSKY	61	300486	PHAS HF C SYST BENESOVSKY, F RUDY	60	600648
PHAS HF BA O SYST KELER, E GODINA, N	61	201214	PHAS HF C SYST AVARDE, R AUGUSTIN	62	300850
PHAS HF BE SYST	• •		REAC HF C O SYST		
KRIPYAKEVICH, P TY	61	201377	ZHELANKIN, V KUTSE PHAS HF CA OXIDES	61	300557
VICKERY, R C MUIR	60	300232	GODINA, N KELER, E	61	201336
VICKERY, R MIUR, H	60	300232	SURF HF CARBIDES FOMENKO, V	61	201420
CEMP HF C			PHAS HF CA O SYST		
MATSKEVICH, T KAZA CEMP HF C	62	300952	KELER, E GODINA, N VAP HF CL 4	61	201214
BONDARENKO, B ERMA	62	301409	TOIRELNIKOV, V KOM	61	301101
COPT HP C COFFMAN, J COULSON	61	701040	VAP HF CL 4 EVSTYUKHIN, A BARI	60	300882
СРИ НГС			THER HF CL SYST		301568
LOWRIE, R CRYS HF C	60	701014	RUZINOV, L BELOV CEMP HF COMPOUNDS		-
COFFMAN, J COULSON	61	701040	LEWIS, CR	61	300234
CRYS HF C BENESOVSKY, F RUDY	60	700974	GREENBERG, E SETTL	62	300739
DF HF C COFFMAN, J COULSON	61	701040	spk HF HALIDES BUCHLER, A	60	201465
COFFMAN, 9 COULSON	• 1	701040	DUCKLER, A		

THER HF HALIDES					
LUNGU, S	62	300736	CRYS HF P JEITSCHKO, W NOWOT	42	201404
PHAS HF MG O SYST			PHAS HF RE SYST	62	301484
GODINA, N KELER, E PHAS HF MO SYST	61	201336	SAVITSKII, E TYLKI	62	201796
KAUFMANN, A RAPPER	60	202065	PHAS HF RE SYST KAUFMANN A R RAPPR	61	300218
PHAS HF MO SYST KAUFMANN A R RAPPR	61	300310	PHAS HF SR O SYST		
THEO HF N	01	300218	KELER, E GODINA, N PHAS HF TA C SYST	61	201214
BAUGHAN, E MPP HF N	59	300866	NOWOTNY, H	63	301165
SAMSONOV, G VERKHO	62	300997	PHAS HF TI O SYST GODINA, N KELER, E	60	201522
MPP HF N SAMSONOV, G			PHAS HF U C SYST	00	201022
CEMP HF NITRIDES	59	300996	KRIKORIAN, N WITTE PHAS HF U C SYST	63	301513
SAMSONOV, G	60	700947	BENESOVSKY, F RUDY	61	301406
DH HF NITRIDES SAMSONOV, G	60	700947	PHAS HF W KAUFMANN A R RAPPR		000040
rev HF NITRIDES		, , , ,	THER HF X 4	61	300218
SAMSONOV, G PHAS HF O	60	700947	ALEKSANDROVSKAYA, A	63	301393
KORNILOY, I	60	200769	SPK HG MCNALLY, J	52	100211
THER HF O SCHICK, H ANTHROP	63	004.534	REV HIGH TEMP CHE	M	
VAP HF O	63	301679	GILLES, P CRYS HO	61	300450
PANISH, M REIF, L	63	300959	KOEHLER, W WOLLAN	61	301504
CEMP HF O 2 MATSKEVICH, T KAZA	62	300952	CPL HO LOUNASMAA, O	62	701077
CRYS HF O 2			он но	02	701077
ADAM, J ROGERS, M CTEX HF O 2	59	300852	WHITE, D ERES HO	61	201217
GRAIN, C CAMPBELL	61	601471	ERES HO COLVIN, R LEGVOLD	60	601389
PHAS HF O 2 DELIMARSKY, Y BUDE	62	200000	SPK HO		
VAP HF 1) "	62	300880	SAKELLARIDIS, P VAP HO	53	100184
SHCHUKAREV, S SEME	63	301352	WHITE, D WALSH, P	60	301622
PHAS HF O 2 KELER, E GODINA, N	61	300264	VAP HO DEMARIA, G GUIDO	63	202097
PHAS HF O 2	•		VAP HO	•	202007
CURTIS, C DONEY, L PHAS HF O 2	54	300867	WHITE, D WALSH, P VAP HO	61	301014
GRAIN, C CAMPBELL	61	601471	WAKEFIELD, G	62	300724
REAC HF O 2 MCTAGGART, F	61	300338	VAP HO O KULVARSHAYA, B MAS	60	301064
TRT HF O 2	•	300330	CRYS HOB4	•	301004
WOLTEN, G CRYS HF O 2	63	202161	STEPANOVA, A ZHURA CTEX HO B 4	58	601111
KOFSTAD, PRUZICKA	63	202073	STEPANOVA, A ZHURA	58	601111
MPP HF O 2			CEMP HO B 6		
MCTAGGART, F THER HF O 2	63	202101	SAMSONOV G PADERN CPH E-020 3	59	300143
SCHICK, H ANTHROP	63	301680	PANKRATZ, L KING	63	202114
PHAS HF O 2 LEFEVRE, J	63	301519	CPL HO2O 3 WESTRUM, E JUSTICE	63	301012
THER HFO2	-		REV H. T RESEARCH		
SCHICK, HANTHROP TRT HF O 2	63	301579	GROSSE, A	63	301236
BAUN, W	63	201999			
THER HF O 2	••	700275			
MCCLAINE, L TRY HF O 2	60	300278	1		
CURTIS, C DONEY, L	54	300867			
VAP HF O 2 HASAPIS, A MELVEGE	61	701017	CPH IN CARTER, W	61	601631
VAP HF O 2			CTEX IN		
HASAPIS, A MELVEGE PHAS HF O SYST	61	701039	CARTER, W Ther In	61	601631
RUDY, E STECHER, P	63	300974	CARTER, W	61	601631
PHAS HF O SYST		464577	DH INORGANIC COM REZNITSKII, L A	PDS 61	300250
KUBASCHEWSKI, O THER HF O SYST	62	601577	SPK INORGANIC COM	-	3302 BU
SILVER, M FARRAR	63	202137	OZIMOV, B VOLNOV DH INORGANIC SALT	_61 	700591
CRYS HF O SYST DAGERHAMN, T	61	300478	DH INORGANIC SALT KARPACHEV, S V KAR	60	300138
THER HF O SYST			THER INORGANIC SALT		300100
VEINBACHS, A KOMAR	62	601611	KARPACHEV, S V KAR INORGANIC SUBS	60 TAN	300138
MPP HF O F SYST BUSLAYEV, Y GORBUN	62	300830	ACKERMANN, R J THO	58	300255

MPP INTERMETALLI	ce				
KOROLKOV, A IGUMNO	61	300536	VAP IR DREGER, L MARGRAVE	60	600643
REV INTERMETALLI	CS		VAP IR	-	000043
PAINE, R STONEHOUS REAC IONS	60	201391	PANISH, M REIF, L	61	700639
TALROZE, V	60	601643	VAP IR HAMPSON, R WALKER	61	700681
THER IONS	•		VAP IR	••	700001
GREEN, J POLAND, D	62	300353	PAULE, R	61	601479
THER IONS GREEN, J POLAND, D	61	301462	CRYS IR B SYST	••	200757
SIS IR	91	301402	ARONSON, B STENBER CRYS IR B SYST	62	300767
GOODWIN, T	56	601547	ARONSON, B ASELIUS	59	601166
CEMP IR WHITE, G WOODS, S		****	PHAS IR C		
CPH IR	67	601050	NADLER, M KEMPTER REAC IR CL	60	300301
DOUGLASS, R HOLDEN	69	700375	STEPIN, B CHERNYAK	60	201576
CPL IR			THER IRO		
JOHNSON, R HUDSON CRYS IR	56	601039	BARRIAULT, R DREIK CPH IR O 2	62	300865
MCCALDIN, J DUWEZ	54	600956	JAEGER, F	34	900127
CRYS IR			CPH IR O 2		
THOMPSON J OH IR	62	201648	WOHLER, L JOCHUM CPH IR O 2	33	900124
PANISH, M REIF, L	61	700639	WOHLER, L JOCHUM	33	900124
DH IR			DH IR O 2		
HAMPSON, R WALKER ERES IR	61	700661	SCHNEIDEREITTI, G DH IR O 2	62	301582
BRIDGMAN, P	51	400533	WOHLER, L WITZMANN	08	900125
MPP 1R			DH IR O 2		
FRANCIS, A REV IR	62	301076	BILTZ, W DH IR O 2	34	900127
BETTERIDGE, W RHYS	62	202003	WOHLER, L JOCHUM	33	900124
PHAS IR			DH IR O 2		
MENDENHALL, C INGE PHAS IR	07	900143	WOHLER, L JOCHUM	33	900124
HENNING, F WENSEL	33	900128	VAP IR O 2 CORDFUNKE, E MEYER	62	300572
SPK IR			THER 1R20 3		
DEODHAR, G PADALIA	62	300576	ALCOCK, C HOOPER	60	601161
SPK IR MOORE, C	58	601088	VAP IR O SYST CORDFUNKE, E MEYER	62	301054
SPK IR			MISC IR O SYST	02	301084
ROSENZWEIG, N PORT	60	700901	HELVENSTON, E	60	601195
SPK IR ROSENZWEIG, N PORT	60	700996	THER IR O SYST SCHAFER, H JOACHIM	60	601160
SPK IR				-	001100
MURAKAWA, K SUWA	62	600942			
SPK IR ALBERTSON, W	38	900122	к		
SPK IR		000122	K		
SEIMENS, W	63	600949			
TCON IR WHITE, G WOODS, S	57	601050	VAP KNUDSEN WINTERBOTTOM, W HI	43	200560
TCON IR	٠,	001000	VAP KNUDSEN	62	300560
POWELL, R TYE, R	55	601082	VETRENKO, E MIKULI	62	300603
THEO IR ROSENZWEIG, N PORT	60	700996			
THEO IR		. 30000			
ROSENZWEIG, N PORT	60	700901	L		
THER IR	**	700375			
DOUGLASS, R HOLDEN THER IR	69	700375	CTEX LA		
BARRIAULT, R DREIK	62	300865	ANDRES, K	63	301172
THER IR		****	THER LA Maslov, P Maslov	50	601196
GOODWIN, T	66	601547	BETA LA	59	001190
MCCALDIN, J DUWEZ	64	600956	BRIDGMAN, P	48	700883
TRT IR			BETA LA	44	700004
MENDENHALL, C INGE TRT IR	07	900143	BRIDGMAN, P CPL LA	48	700884
HENNING, F WENSEL	33	900128	PARKINSON, D H SIM	51	400557
VAP IR			CPL LA		700750
MARGRAVE, J VAP IR	61	700967	BERG, J CPL LA		700760
HASAPIS, A PANISH	60	700994	PARKINSON, D	51	700885
VAP IR			CPL LA		
DREGER, L VAP IR	62	300720	BERMAN, A ZEMANSKY	68	700886
			CPL LA		
DREGER, L	61	300528	BOORSE, H BERMAN	55	700887

CPL LA MONTGOMERY, H PELL	61	700910	CRYS LA B 6 ZHDANOV, G ZHURAVL	67	601061
CRYS LA	•	700910	CRYS LAB6	67	601061
ZIEGLER, W YOUNG CRYS LA	63	100196	MALINCHKOV, O POVI	62	300948
HERRMANN, K DAANE	56	700905	CRYS LA B 6 SAMSONOV, G GRODSH	66	700733
CTEX LA		, 00000	CRYS LAB6	•••	700733
DASHKOVSKII, A SAV CTEX LA	61	201865	TVOROGOV, N CRYS LAB6	59	700860
BARSON, F LEGVOLD	56	700902	CRYS LA B 6 BERTAUT, F BLUM, P	52	700870
DHT LA			CTEX LA B 6		
CAVALLERO, U ERES LA	43	700895	ZHDANOV, G ZHURAVL CTEX LA B 6	67	700731
ZIEGLER, W YOUNG	53	100196	KRIKORIAN, O	60	700847
ERES LA		d20. d(0	DH LAB6		
COLVIN, R LEGVOLD ERES LA	60	601389	SAMSONOV, G PADERN MPP LA B 6	61	700862
ALSTAD, J COLVIN	61	201099	SAMSONOV, G	59	700846
ERES LA BRIDGMAN, P			MPP LA B 6		
ERES LA	61	400533	SAMSONOV, G NESHPO VAP LA B 6	59	700734
JAMES, N LEGNOLD	52	100206	FESENKO, V BOLGAR	63	301216
H LA KELLEY, K	••	70000	MPP LAB6		
MPP LA	60	700891	KUDINTSEVA, G POPO COPT LA B 6	62	301289
SPEDDING, F DAANE	61	700907	TSAREV, BILLARION	63	301369
PHAS LA SPEDDING, F DAANE		700070	MPP LA B 6 BLUM, P BERTAUT, F		700040
PMCH LA	57	700872	CEMP LA BORIDE	54	700848
SMITH, J CARLSON	57	700746	PADERNO, Y SAMSONO	60	200971
REAC LA LORIERS, J	40	100510	CRYS LA B SYST MALYUCHKOV, O POVI	62	300584
s LA	49	400542	PHAS LA B SYST	62	300004
KELLEY, K	60	700891	JOHNSON, R DAANE	61	201106
SPK LA MURAKAWA, K	61	300826	REAC LA C SCAIFE, D WYLIE, A	58	700863
SPK LA		300826	CEMP LAC 2	30	,00003
GARSTANG, R	52	100207	GREENWOOD, N OSBOR	61	201076
SPK LA VAN DIJKE BEATTY, S	61	400548	CRYS LA C 2 WARF, J PALENIK, G	60	700849
SPK LA	٠.	400048	CRYS LAC 2		
GRATTON, L	52	400567	PALENIK, C WARF, J CRYS LA C 2	62	700850
SPK LA MOORE, C	58	601088	BREDIG, M	60	700852
SPK LA			CRYS LAC 2		
YATSMIRSKII, K	48	700751	SPEDDING, F GSCHNE CRYS LA C 2	58	700858
SPK LA BURBRIDGE E BURBR	55	601003	ATOJI M	61	700864
SPK LA			CRYS LAC 2		
RUBESKA, I SPK LA	62	500119	ATOJI, MEDRUD, R CRYS LA C 2	69	700867
MURAKAWA, K KAMEI	63	601218	ATOJI, M GSCHNEIDE	58	700868
SPK LA			CTEX LA C 2		700047
SCHWARZSCHILD, M 8PK LA	67	601047	KRIKORIAN, O REAC LA C 2	60	700847
MOORE, C	58	700913	KOVALCHENKO, M NES	58	700869
THER LA			SPK LAC2 LOWRIE, R	60	701014
PARKINSON, D H SIM VAP LA	51	400557	SPK LAC 2	80	701014
ACKERMANN, R RAUH	62	700840	LOWRIE, R	61	700956
VAP LA			SPK LAC2 LOWRIE, R	61	700736
BEAVIS, L VAP LA	60	700878	THER LAC 2	•	700730
ACKERMANN, J RAUH	62	700909	CHUPKA, W BERKOWIT	58	700866
THER LA+			CRYS LA C 3 ATOJI, M WILLIAMS	60	700861
GREEN, J POLAND, D MPP LA B	60	700882	VAP LA CL3	-	. 50001
SAMSONOV, G	56	700730	NOVIKOV, G BAEV, A	62	300686
CRYS LAB4		700057	CEMP LA2C 3 GREENWOOD, N OSBOR	61	201075
FELTEN, E BENDER CEMP LA B 6	58	700857	PHAS LA C SYST		
SAMSONOV, G PADERN	69	300143	ANON	55	601265
CEMP LAB6		400000	PHAS LA C SYST WARF, J PALENIK, G	60	600636
LAFFERTY, J CPH LA B 6	50	400541	PHAS LA C SYST		
SAMSONOV, G PADERN	61	700862	SPEDDING, F GSCHNE PHAS LA C SYST	61	700687
CRYS LAB6		700050	PHAS LA C SYST SPEDDING, F GSCANE	69	700863
NESPHOR, V SAMSONO	69	700859	•		

CRYS LA N			MPP LA2O 3		
YOUNG, R ZIEGLER	62	100205	TRESVYATSKIY, S CH	61	300440
CRYS LA N YOUNG, R ZIEGLER	62	700855	MPP LA2O 3 NAGASAWA, S	50	400530
CRYS LA N KLEMM, W WINKELMAN	56	700874	PHAS LA2O 3 SCHNEIDER, S ROTH	60	700747
MPP LA N LYUTAYA, M SAMSONO	63	301529	PHAS LAZO 3 EYRING, L VORRES	60	700748
THER LAN KELLEY, K	37	700865	PHAS LA2O 3 LAMBERTSON, W GUNZ	62	700762
THER LAN			PHAS LA20 3		
BAUGHAN, E CRYS LA N SYST	69	700876	WOLF, L SCHWAB, H REAC LA2O 3	61	201408
IANDELLI, A DHD LA O	37	601276	KELER, E GODINA, N REAC LA2O 3	61	300387
CHUPKA, W INGHRAM DHD LA O	56	700925	MOROZOV, I KORSHUN TRT LA2O 3	68	700763
GOLDSTEIN, H DHD LA O	61	201216	LAMBERTSON, W GUNZ 8 LA2O 3	62	700762
WALSH, P WHITE, D	58	700808	BLOMEKE, J O ZIEGL	61	400562
WALSH, P GOLDSTEIN	60	700924	s LA2O 3 KELLEY, K KING, E	61	700915
F LA O BREWER, L CHANDRAS	59	700892	THER LA2O 3 KING, E WELLER, W	61	300712
H LA O KELLEY, K	60	700891	THER LA2O 3 INGHRAM, M CHUPKA	67	601067
PHAS LA O FOEX, M			THER LA2O 3 BLOMEKE, J O ZIEGI.	61	400562
s LA O	61	201153	THER LA2O 3		
KELLEY, K SPK LA O	60	700891	BREWER, L VAP LA2O 3	63	700906
AKERLIND, L SPK LA O	62	300610	TOSIM, S VAP LA2O 3	67	601505
MURTHY, N SPK LA O	61	301087	GOLDSTEIN, H VAP LA2O 3	61	201216
HATUECLER, S ROSEN	59	700759	WALSH, P WHITE, D	58	700806
ROSEN, B	61	700890	VAP LAZO 3 WALSH, P GOLUSTEIN	60	700888
SPK LA O AKERLIND, L	62	700894	VAP LA2O 3 GOLDSTEIN, H WALSH	61	700889
THER LA O BREWER, L	63	700921	VAP LA2O 3 ACKERMAN, J THORN	61	700908
VAP LA O GOLDSTEIN, H WALSH	61	700889	VAP LA2O 3 GOLDSTEIN, H	60	201018
VAP LA O GOLDSTEIN, H WALSH	60	700896	VAP LA2O 3		
VAP LA O			WALSH, P GOLDSTEIN DH LA O SYST	60	700924
KULVARSHAYA, B MAS VAP LA O	60	301064	WALSH, P N DEVER MISC LA O SYST	61	700642
WALSH, P GOLDSTEIN CPH LA2O 3	60	700924	LORIERS, J PHAS LA SI O SYST	49	400542
GOLDSTEIN, H NGILS CPH LA2O 3	59	601198	TOROPOV, N BONDAR OH LANTHANIDE IO	60	201506
BLOMEKE, J O ZIEGL	61	400562	YATSIMIRSKII, K B	49	400583
JUSTICE, B WESTRUM	63	300906	THER LANTHANIDE 101 YATSIMIRSKII, K B	49	400583
CPL LA2O 3 GOLDSTEIN, H	68	601551	THEO LANTHANIDES SCHENK, P	49	400579
CPL LA2O 3 GOLDSTEIN, H NEILS	59	700836	VAP LANTHANIDES ZADUMKIN, S TAMBIE	61	301020
CRYS LA2O 3 KOEHLER, W WOLLAN			ELCH LATTICE STRUCT	URE	
CRYS LA2O 3	63	700764	BETHE, H PHAS LA U O SYST	63	301131
JOHNSON, Q TEMPLET CRYS LA2O 3	61	700881	HILL, D Mpp Light	62	201873
IANDELLI, A DF LA2O 3	56	700897	PLYLER, E BLAIÑE DH LI2O	65	600720
COUGHLIN, J DH LA2O 3	64	700914	BERKOWITZ, J CHUPK	69	700892
HUBER, E HOLLEY, C	53	700900	MSP LI20 BERKOWITZ, J CHUPK	69	700892
DH LA2O 3 COUGHLIN, J	54	700914	THER LI2O BERKOWITZ, J CHUPK	69	700892
DH LA2O 3 WARTENBERG, H	59	700923	VAP LI2Ó FIRSOVA, L NESEMEY	60	200761
DHD LA2O 3 WALSH, P GOLDSTEIN	60	700924	MPP LIQUID METALS	60	400595
H LA2O 3			SAMARIN, A CPH LIQUIDS		
BLOMEKE, J O ZIEGL	61	400562	AFENKOV, Ň	62	301392

MPP LIQUIDS					
MPP LIQUIDS GROSSE, A	61	301463	CEMP METAL OXIDES		
THEO LIQUIDS			OREILLY, D DF METAL OXIDES	61	700633
EDWARDS, S THEO LIQUIDS	62	301438	GLEISER, M	61	700616
GROSSE, A KIRSHENB	62	301143	REV METAL OXIDES		
THEO LIQUIDS		001143	GLEISER, M METALLIC COMPO	61	700616
GORDON, R THEO LIQUIDS	61	202041	METALLIC COMPO	62	300756
GROSSE, A	63	202043	BOOK METALLURGY		
THEO LIQUIDS		101043	VULF, B ROMADIN BOOK METALLURGY	62	301614
HIRSCHFELDER, J CU THEO LIQUIDS	54	202051	HUME-ROTHERY, W	62	202059
THEO LIQUIDS GRIGOROVICH, V	80	301233	VAP METALS		
THEO LIQUIDS		33.233	LYUBITOV, YU BETA METALS	69	301295
GROSSE, A KIRSHENB THEO LIQUIDS	63	301235	MITRA, S JOSHI, S	61	700630
PREDVODITELEV, A	63	301322	CPH METALS		
CPH LIQUIDS			LOWENTHAL, G CPH METALS	63	300938
KUDRYAYTSEV, B	62	300363	PCHELKIN, I	61	300649
JENNINGS, L MILLER	60	201049	CPL METALS		
DH LÜ		201010	ELIASHBERG, G CPL METALS	62	300881
WHITE, D	61	201217	NITRA, S JOSHI, S	61	700630
WHITE, D WALSH, P	61	301014	CRYS METALS		
VAP LU			SMALLMAN, R CTEX METALS	63	301157
WHITE, D WALSH, P PHAS LU B 2	80	301622	HANAK, J DAANE, A	61	201378
PRZYLYLSKA, M REDD	63	300962	DHD METALS		
CEMP LU B 6			SHULISHOVA, O DHT METALS	62	301587
SAMSONOV, G PADERN VAP LU O	59	300143	MORIN, F MAITA, J	63	301043
KULVARSHAYA, B MAS	60	301064	E METALS LADD, M-LEE, W	62	200575
			MISC METALS	92	300575
			MCCULLOUGH, R	62	301 f61
M			MPP METALS OSMININ, Y	62	301152
•••			MPP METALS		
CRYS M ()			EREMENKO, V NIZHEN	61	300537
CRYS M O DUAN, F NAY BEN, M	63	301213		61 61	300537 300540
DUAN, F NAY BEN, M VAP MASS SPEC			EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS	61	300640
DUAN, F NAY BEN, M	63 63	301213 301243	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O		
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON			EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G	61	300640
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS	63 61	301243 301598	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS	61 80 61	300540 200777 700557
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON	63	301243	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G	61 60	300640 200777
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAB MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK	63 61	301243 301598	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J	61 80 61	300540 200777 700557
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS	63 61 63 63	301243 301598 202087 202080	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS	61 60 61 61 63	300640 200777 700557 700873 202152
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J REV MATERIALS	63 61 63	301243 301598 202087	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBER, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS	61 60 61	300540 200777 700557 700673
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J REV MATERIALS BARTLETT, E	63 61 63 63	301243 301598 202087 202080	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O	61 60 61 61 63	300640 200777 700557 700873 202152
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J REV MATERIALS	63 61 63 63	301243 301598 202087 202080 202048	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBER, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS	61 60 61 61 63	300540 200777 700557 700673 202152 202086
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J BEV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING	63 61 63 63 63 63	301243 301698 202087 202080 202048 201997 301174	EREMENKO, V NIZHEN MPP METALS TIMOFEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS	61 60 61 61 63 62 63 63	300540 200777 700557 700873 202152 202086 202018 202030
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J BEV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING BABB, S	63 61 63 63 63	301243 301598 202087 202080 202048 201997	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARRIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS ENIG, J THEO METALS ENIG, J THEO METALS ENIG, J THEO METALS BREWER, L	61 60 61 61 63 62 63	300640 200777 700687 700873 202152 202086 202019
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J BEV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING	63 61 63 63 63 63	301243 301698 202087 202080 202048 201997 301174	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN	61 60 61 61 63 62 63 63	300540 200777 700557 700873 202152 202086 202018 202030
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAB MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J BEV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING BABB, S THEO MELTING ROTT, L DF METAL BORIDES	63 61 63 63 63 63 63 63	301243 301698 202087 202080 202048 201997 301174 301177 301331	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BURTSEV, V SAMARIN PHAS METALS	61 60 61 61 63 62 63 63 63	300640 200777 700857 700873 202152 202086 202019 202030 202008
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J BEV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING BABB, S THEO MELTING ROTT, L DF METAL BORIDES LANGER, S	63 61 63 63 63 63 63	301243 301598 202087 202080 202048 201997 301174	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN	61 60 61 61 63 62 63 63	300540 200777 700557 700673 202152 202086 202019 202030 202009
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAB MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J BEV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING BABB, S THEO MELTING ROTT, L DF METAL BORIDES	63 61 63 63 63 63 63 63	301243 301698 202087 202080 202048 201997 301174 301177 301331	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBER, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN PHAS METALS TSAREV, B KUDINTSE PHAS METALS NORTON, J OGILVIE	61 60 61 61 63 62 63 63 63	300640 200777 700857 700873 202152 202086 202019 202030 202008
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J REV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING BABB, S THEO MELTING ROTT, L DF METAL BORIDES LANGER, S THER METAL BORIDES	63 61 63 63 63 63 63 63 64 61	301243 301598 202087 202080 202048 201997 301174 301177 301331 700939	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN PHAS METALS TSAREV, B KUDINTSE PHAS METALS NORTON, J OGILVIE REAC METALS	61 60 61 61 63 62 63 63 63 62 58	300640 200777 700687 700873 202152 202086 202019 202030 202009 202012 301161 201086
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAB MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J BEV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO MELTING BABB, S THEO METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S	63 61 63 63 63 63 63 63 62 61	301243 301598 202087 202080 202048 201997 301174 301177 301331 700839	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBER, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN PHAS METALS TSAREV, B KUDINTSE PHAS METALS NORTON, J OGILVIE	61 60 61 61 63 62 63 63 63 62 58	300640 200777 700687 700873 202162 202086 202019 202030 202009 202012 301161
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J REV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING BABB, S THEO MELTING ROTT, L DF METAL BORIDES LANGER, S PHAS METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S	63 61 63 63 63 63 63 62 61 61 61	301243 301598 202087 202080 202048 201997 301174 301177 301331 700939	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARRIR, R GINDIN MSP METALS VELISE* J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN PHAS METALS TSAREV, B KUDINTSE PHAS METALS NORTON, J OGILVIE REAC METALS MARKSTEM, H REAC METALS WILSON, B	61 60 61 61 63 62 63 63 63 62 58	300640 200777 700687 700873 202152 202086 202019 202030 202009 202012 301161 201086
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J REV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING BABB, S THEO MELTING ROTT, L DF METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL CARBIDE	63 61 63 63 63 63 63 63 61 61 61 61	301243 301598 202087 202080 202048 201997 301174 301177 301331 700939 700939 700939	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN PHAS METALS TSAREV, B KUDINTSE PHAS METALS NORTON, J OGILVIE REAC METALS MARKSTEM, H REAC METALS WILSON, B REV METALS	61 60 61 61 63 62 63 63 63 62 58	300640 200777 700857 700873 202152 202086 202019 202030 202009 202012 301161 201086 301632
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J BEV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING BABB, S THEO MELTING ROTT, L DF METAL BORIDES LANGER, S PHAS METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S DF METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S PHAS METAL CARBIDE	63 61 63 63 63 63 63 63 61 61 61 61 81	301243 301698 202087 202080 202048 201997 301174 301177 301331 700939 700939	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN PHAS METALS TSAREV, B KUDINTSE PHAS METALS NORTON, J OGILVIE REAC METALS MARKSTEM, H REAC METALS WILSON, B REV METALS SPEDDING, F DAANE REV METALS	61 60 61 61 63 62 63 63 63 62 58 67 63 60 60	300640 200777 700857 700873 202152 202086 202019 202030 202008 202012 301161 201086 301532 200895 200863
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J BEV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING BABB, S THEO MELTING ROTT, L DF METAL BORIDES LANGER, S PHAS METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S VAP METAL BORIDES LANGER, S DF METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S	63 61 63 63 63 63 63 63 61 61 61 81 81 81 81	301243 301598 202087 202080 202048 201997 301174 301177 301331 700939 700939 700939	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN PHAS METALS TSAREV, B KUDINTSE PHAS METALS NORTON, J OGILVIE REAC METALS MARKSTEM, H REAC METALS SPEDDING, F DAANE REV METALS STADELMAIER, H	61 60 61 61 63 62 63 63 63 65 58 67 63 60	300640 200777 700667 700873 202152 202086 202019 202030 202009 202012 301161 201086 301632 200896
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J REV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING BABB, S THEO MELTING ROTT, L DF METAL BORIDES LANGER, S PHAS METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S DF METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S PHAS METAL CARBIDE	63 61 63 63 63 63 63 63 61 61 61 81 81 81 81 81	301243 301598 202087 202080 202048 201997 301174 301177 301331 700939 700939 700939 700939 700939	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN PHAS METALS TSAREV, B KUDINTSE PHAS METALS NORTON, J OGILVIE REAC METALS MARKSTEM, H REAC METALS WILSON, B REV METALS SPEDDING, F DAANE REV METALS	61 60 61 61 63 62 63 63 63 62 58 67 63 60 60	300640 200777 700857 700873 202152 202086 202019 202030 202008 202012 301161 201086 301532 200895 200863
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J REV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING ROTT, L DF METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S THER METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE	63 61 63 63 63 63 63 63 61 61 61 81 81 81 81 81 81 81 81 81 81 81 81 81	301243 301698 202087 202080 202048 201997 301174 301177 301331 700939 700939 700939 700939 700939 700939	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN PHAS METALS TSAREV, B KUDINTSE PHAS METALS NORTON, J OGILVIE REAC METALS MARKSTEM, H REAC METALS WILSON, B REV METALS SPEDDING, F DAANE REV METALS PECKNER, D REV METALS	61 60 61 61 63 62 63 63 63 65 57 63 60 60 61 62	300640 200777 700657 700673 202152 202086 202019 202030 202009 202012 301161 201086 301532 200895 200853 201366 201944
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J REV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING ROTT, L DF METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S THER METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S VAP METAL CARBIDE LANGER, S VAP METAL CARBIDE LANGER, S	63 61 63 63 63 63 63 63 61 61 81 81 81 81 81 81 81 81 81 81 81 81 81	301243 301598 202087 202080 202048 201997 301174 301177 301331 700939 700939 700939 700939 700939	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN PHAS METALS TSAREV, B KUDINTSE PHAS METALS NORTON, J OGILVIE REAC METALS MARKSTEM, H REAC METALS WILSON, B REV METALS SPEDDING, F DAANE REV METALS STADELMAIER, H REV METALS PECKNER, D REV METALS VAN ARKEL, A	61 60 61 61 63 62 63 63 63 62 58 67 63 60 60	300640 200777 700857 700873 202152 202086 202019 202030 202009 202012 301161 201086 301632 200895 200863 201365
DUAN, F NAY BEN, M VAP MASS SPEC HILL, H REED, R MPP MATERIALS STEWARD, R JOHNSON PHAS MATERIALS LOVEJOY, D REV MATERIALS KORNILOV, I POLYAK REV MATERIALS HAUCK, J REV MATERIALS BARTLETT, E THEO MELTING ARDELL, A THEO MELTING ROTT, L DF METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S THER METAL BORIDES LANGER, S THER METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S PHAS METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE LANGER, S THER METAL CARBIDE	63 61 63 63 63 63 63 63 61 61 81 81 81 81 81 81 81 81 81 81 81 81 81	301243 301698 202087 202080 202048 201997 301174 301177 301331 700939 700939 700939 700939 700939 700939	EREMENKO, V NIZHEN MPP METALS TIMOFEEVICHEVA, O MPP METALS MCQUEEN, R MARSH MPP METALS CHAUDRON, G MPP METALS GARBIR, R GINDIN MSP METALS VELISE J THEO METALS LIBBY, W REV METALS COOPER, T SRP, O THEO METALS ENIG, J THEO METALS BREWER, L VAP METALS BURTSEV, V SAMARIN PHAS METALS TSAREV, B KUDINTSE PHAS METALS NORTON, J OGILVIE REAC METALS MARKSTEM, H REAC METALS WILSON, B REV METALS SPEDDING, F DAANE REV METALS PECKNER, D REV METALS	61 60 61 61 63 62 63 63 63 65 57 63 60 60 61 62	300640 200777 700657 700673 202152 202086 202019 202030 202009 202012 301161 201086 301532 200895 200853 201366 201944

METALC			340		
SURF METALS STRAUSS, S	60	201065	VAP MG GOLDSMITH, A HIRSC	80	700930
SURF METALS			VAP MG		
MONMA, K TCON METALS	60	201440	HANLIN, H	60	700961
POWELL, R BLANPIED	54	600906	VAP MG FRANZEN, J HINTENB	61	700970
TCON METALS			VAP MG		
LEBEDEV, V TCON METALS	60	200842	GRJOTHEIM, K HERST REAC MG B	61	200990
MENDELSSOHN, K ROS	61	201403	MARKOUSKII, L KAPU	62	201722
TCON METALS			CRYS MG B 2		
EWING, C WALKER, B theo METALS	62	201768 h	JONES, M MARSH, R CRYS MG B 2	54	300909
KAUFMAN, L CLOUGHE	63	301495	RUSSELL, V HIRST	53	300968
THEO METALS			REAC MG B 6		
HARRISON, W THEO METALS	63	301468	MARKOVSKII, L REAC MG B12	62	301530
SAMOILOV, O	61	300539	MARKOVSKII, L	62	301530
THER METALS ESIN, O SRYVALIN	60	300276	PHAS MG BORIDES CHRETIEN, A DUHART	62	300536
THER METALS	60	300276	PHAS MG B SYST	62	300036
WHITE, J	60	300318	DUHART, P	62	300875
THER METALS EDELEANU, C LITTLE	60	200838	PHAS MG B SYST MARKOVSKII, L KOND	55	300942
TRT METALS	00	200030	PHAS MG B SYST		300042
STRAUSS, S	60	201065	MARKOVSKII, L KOND	55	300943
TRT METALS GOPAL, R MOHD	62	301461	CRYS MG CE SYST BELETSKII, M GALPE	61	200827
VAP METALS, ALKALI	-		CRYS MG IR SYST		
SHPILRAYN, E ASINO	62	301099	FERRO, R RAMBALDI VAP MG N	62	201626
CPH METALS, LIQUID SOLTYK, V	62	301158	SMITH, J	62	201743
METALS, LIQUID			KIN MG3N 2		
FROST, B THER METALS, LIQUID	62	301451	DERRAS, R PAIBASSI THER MG3N 2	62	201918
KIM, W	62	301499	SCHICK, HANTHROP	63	301579
CPH MG			CRYS MG ND SYST		
WILLIAMS, N N CPL MG	61	700659	BELETSKII, M GALPE CPH MG O	61	200827
COLLINS, M	62	300870	VICTOR, A DOUGLAS	60	700949
CPL MG			CPH MG O		
MARTIN, D MG	61	300666	FIELDHOUSE, I LANG CPL MG O	60	601583
LAWLEY, A	60	200801	VICTOR, A DOUGLAS,	60	700949
CRYS MG		700540	REAC MG O KOMAREK, K COUCOUL	.,	201240
GETTE, E FOOTE, F	36	700610	REAC MG O	63	301269
BESSERER, C	58	700929	RYABCHIKOV, I MIKU	62	301336
DH MG		700030	REAC MG O RYABCHIKOV, I MIKU	63	301337
GOLDSMITH, A HIRSC ERES MG	60	700930	TRT MG O	63	301337
BRIDGMAN, P	51	400533	SCHNEIDER, S	63	301348
MPP MG BESSERER, C	68	700929	CPH MG O VICTOR, A DOUGLAS	63	301372
PHAS MG	00	700323	CPL MG O	•	
GOLDSMITH, A HIRSC	60	700930	LIEN, W	62	201454
PHAS MG BEREZHNOI, A KORDY	62	201553	CRYS MG O COCCO, A SCHROMEK	61	201211
REAC MG			CTEX MG O		
EVSTYUKHIN, A	59	200852	FIELDHOUSE, I LANG ERES MG O	60	601583
MCGONIGAL, P KIRSH	62	201532	ERES MGO MITOFF	62	201874
SPK MG			н MG O		
CRISP, R WILLIAMS	60	201000	VICTOR, A DOUGLAS MISC MG O	60	700949
PENKIN, N SHABANOV	62	601601	LADD, M LEE, W	60	201322
SPK MG			MPP MG O		20122
CODLING, K TCON MG	61	600776	WUENSCH, B VASILOS MPP MG O	62	201835
BESSERER, C	58	700929	WUENSCH, B VASILOS	61	301018
THER MG			MPP MG O		201559
BARRIAULT, R DREIK THER MG	62	300865	GANESAN, S PHAS MG O	62	201009
DEWING, E	60	201204	HINZ, I DIETZEL, A	62	301472
THER MG		700050	PHAS MG O		201293
WILLIAMS, N N VAP MG	61	700659	MASSAZZA, F REAC MG O	61	241440
FUJINO, S OKADA, M	62	301452	LEONOV, A	61	301622

REAC MG O					
REAC MG O TOGURI, J	60	201009	MPP MISC		
REAC MG O	-	201009	WICHERS, E MPP MISC	62	300369
GRJOTHEIM, K HERST	61	200990	KIRILLIN, V VUKALO	61	300378
REAC MG () POLUNINA, G KOVBA	61	201824	MPP MISC		
REAC MG O	01	201624	GOLDANSKIY, V KAGA MPP MISC	60	400589
SOLACOLU, S	61	201694	MPP MISC TRETYACHENKO, G KR	61	400610
SPK MG O NICHOLLS, R		*****	MSP MISC		
SPK MG O	62	601625	JENCKLE, L MSP MISC	61	300322
NAZIMOVA, N	60	201227	MSP MISC BRYUKAHNOV, A GOLU	62	400614
SPK MG O ORTENBERG, F		20000	MSP MISC		
SPK MG O	61	300821	ALEKSEYEVSKIY, N PHAS MISC	68	400600
PESIC, D	60	701002	PHAS MISC TISZA, L	61	700592
SPK MG O ORTENBERG, F		2222	PMCH MISC		
SPK MG O	61	300795	EVERHART, J LINDLI SPK MISC	43	600907
BREWER, L TRAJMA	62	201780	HERTZBERG, G	69	200785
SPK MG O BREWER, L TROJMAR		******	SPK MISC		
SPK MG O	62	300788	MAJUMDAR, K VARSHN SPK MISC	54	600886
PESIC, D	60	600655	MAJUMDAR, K VARSHN	54	600887
SPK MG O VEITS, I GURVICH		*****	SPK MISC		
SPK MG O	67	600899	MAJUMDAR, K VARSHN SPK MISC	54	600888
LAGERQVIST, A UHLE	49	600923	MAJUMDAR, K VARSHN	54	600889
SPK MG O LAGERQVIST, A UHLE	49	600924	SPK MISC		
SPK MG O	49	600924	VARSHNI, Y MAJUMDA SPK MISC	56	600895
TRAJMAR, S	61	700962	FERRARO, J R	61	700571
SPK MG O NAZIMOVA, N SOKOLO	61	700671	THEO MISC		
SPK MG O	٠.	700071	MASLOV, P MASLOV THEO MISC	61	700538
SOLOKOV, V NEZIMOV	60	201622	KLIUCHNIKOV, N	60	300747
TCON MG O FIELDHOUSE, I LANG	60	601583	THEO MISC AFANASYEV, A	61	400603
TCON MG O			THEO MISC	0.	400003
ADAMS, M THEO MG O	64	600961	BADYLKES, I	61	700593
TAWDE, N SREEDHARA	62	300782	THEO MISC KAROPETYANTS, M	61	700617
THER MG O			THER MISC		
SCHICK, HANTHROP TRT MG O	62	300995	ANON THER MISC	60	300226
MCNALLY, R PETERS	61	600828	несит, с	62	300365
VAP MG O			THER MISC		
METSON, G VAP MG O	63	301536	TISZA L VAP MISC	61	700592
ALTMAN, R	63	300844	KOML N. G VETRENKO	68	300421
VAP MG O GILBREATH, J		601274	ZKP MISC BAIBUZ, V	62	200804
CPH MG O	55	601274	CRYS MN	62	300601
VICTOR, A DOUGLAS	60	202163	KRYISYAKEVICH, P	60	600698
PALGUEV, S NECEIMI	62	201717	DH MN GOLDSMITH, A HIRSC	50	700930
DHD MG OXIDES	72		ERES MN	50	
VEITS, I GURVICH	56	700964	NOVIKOV, A TYSPIN	59	201632
THER MG OXIDES DEWING, E	60	201204	PHAS MN TOPCHIASHVILI, L	60	201238
THER MG OXIDES			PHAS MN		
VEITS, I GURVICH	56	700964	GOLDSMITH, A HIRSC	60	700930
CEMP MISC KISER, R	60	200784	SPK MN GOODMAN, NOLDEKE	62	300789
CPH MISC			SPK MN		
NAGASAKI, S TAKAGI CPL MISC	48	400598	ROSENZWEIG, N PORT SPK MN	60	700901
BARBER, S MARTIN	59	600650	ROSENZWEIG, N PORT	60	700996
DH MISC		200055	SPK MN		
BARANOVSKY, V DF MISC	62	300366	MURAKAWA, K KAMEI Theo MN	53	601218
ANON	60	300226	ROSENZWEIG, N PORT	60	700996
ELCH MISC		202205	THEO MN	20	700901
STERN, K EMF MISC		300305	ROSENZWEIG, N PORT	60	, 40801
GERASIMOV, V GROMO	61	300445	SCHICK, HANTHROP	62	300995
MPP MISC	=-	300267	THER MN BUTLER, J F MCCABE	61	700629
SMIRNOVA, V ORMONT	59	300267	DC 1 DDIO, o 1 MC CADD		

MAT MAI					
GOLDSMITH, A HIRSC	60	700930	CRYS MN O 2 KONDRASHEV, Y	61	700942
VAP MN			MPP MN O 2	•	,00542
HANLIN, H	60	700951	SRB, V	61	201083
VAP MN			MPP MN O 2		
BUTLER, J F MCCABE REAC MN B	61	700629	GATTOW, G GLEMSER PHAS MN O 2	61	700676
MARKOVSKII, L	62	301530	KONDRASHEV, Y	61	700942
CRYS MN B 2			PHAS MN O 2	•	,,,,,,
ARONSSON, B	60	201380	GATTOW, G GLEMSER	61	700576
CRYS MN B 2			PHAS MN O 2		
BINDER, I POST, B	60	200779	FISHBURN, H PILL	61	201360
MARKOVSKII, L	62	301530	PHAS MN O 2 BHIDE, V DAMLE, R	61	201596
MPP MNB4			REAC MN O 2	•	20.000
FRUCHART, R MICHEL	60	300241	GATTOW, G GLEMSER,	61	700576
PHAS MN B P SYST			TRT MNO2		
RUNDQVIST, S CPL MN BR2	62	300546	GATTOW, G GLEMSER	61	700576
STOUT, J	58	201122	CRYS MN3O 4 SATOMA, K	61	201025
REAC MN2B	-		REAC MN OXIDES	•	20.020
MARKOVSKII, L	62	301630	ANIKEEV, V LYUBAN	60	201036
REAC MN3B 4			DHD MN OXIDES		
MARKOVSKII, L ELCH MN BORIDES	62	301530	ANIKEEV, V LYUBAN	60	201035
ALENARD, S	61	201402	VAP MN OXIDES GLEMSER, O WEIZENK	61	201441
CEMP MN B SYST	•	201402	THER MN OXIDES	• •	201441
CADEVILLE, M MEYER	62	202013	BLUMENTHAL, R WHIT	61	600829
CRYS MN5C 2			ELCH MN OXIDES		
SENATEUR, J FRUCHA	62	201957	BLUMENTHAL, R WHIT	61	600829
THER MN7C 3		201456	ERES MN O SYST		224224
GOKCEN, N FUJISHIR THER MN7C 3	63	301456	BHIDE, V DANI, R MPP MN O SYST	61	201324
ANON	60	700992	GATTOW, G GLEMSER	61	700577
THER MN7C 3			PHAS MN O SYST		
BUTLER, J F MCCABE	61	700629	KLINGSBERG, C RUST	60	700518
THER MN7C 3			REAC MN O SYST		
ANON VAP MN7C 3	60	700904	GATTOW, G GLEMSER PHAS MN RE SYST	61	700577
ANON	60	700904	SAVITSKII, E TYLKI	61	700625
VAP MN7C 3	-		THER MN SI SYST	•	,00020
ANON	60	700992	GOLUTVIN, KOZLON	63	301228
VAP MN7C 3			PHAS MN SI B SYST		
ANON VAP MN7C 3	60	600666	ARONSSON, B ENGSTR PHAS MN SI O SYST	60	201348
WAP MN7C 3 BUTLER, J F MCCABE	61	700629	PHAS MN SI O SYST SINGLETON, E CARPE	62	201560
DF MN23C6	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PHAS MN TA SYST	-	20.000
ALEXEEV, V SCHWARZ	61	300405	SAVITSKII, E KAPET	60	201701
TCON MN F 2			PHAS MN TI SYST		
SLACK, G	61	201125	SAVITSKII, E KOPET	60	201261
DH MN N SYST SHCHUKAREV, S MORO	61	700666	PHAS MN TI ZR O SYST WYDER, W HOCH, M		300548
PHAS MN N SYST	91	700868	DH MN W O SYST	62	300046
LIHL, F ETTMAYER	62	301025	PROSHINA, Z	60	201249
THER MN N SYST			PHAS MN ZR SYST		
AGLADZE, R I MANPO	61	700551	SAVITSKII, E KOPET	60	201261
REAC MN N SYST AGLADZE, R I MANP		70055	BETA MO		201110
CRYS MN O	61	700551	KRUPNIKOU, K BAKAN BIB MO	63	301149
HOCH, M	63	301477	WENSRICH, C	60	700972
CRYS MN O			BIB MO		
BIRCHENALL, C	60	200775	WOHLL, M	60	700723
DHD MN O			BIB MO		
HULDT, L LAGERQVIS	52	600764	RICHERT, E BECKETT	49	700564
PHAS MN O BREWER, L	49	601633	CEMP MO COMSA, G GELBERG	61	700940
PHAS MN O	70		COMSA, G GELBERG	J.	
GATTOW, G	62	201756	COFFMAN, J COULSON	61	701040
SPK MN O			СРН МО		
LOH, E NEWMAN, R	61	700526	JOHNSON, R	60	301488
SPK MN O JOSHI, K	60	201224	CPH MO		700984
THER MN O	62	201984	RASOR, N MCCLELLAN CPH MO	60	/00387
SCHICK, H ANTHROP	62	300995	KIRILLIN, V SHEIND	61	300921
CEMP MN O 2			CPH MO		
SRB, V	61	201088	RUDKIN, R	60	700896
CRYS MN O 2		70000-	CPH MO		700547
VEDAM, K	61	700961	FINCH, R	61	700547

сри МО					
KIRILLIN, V SHEIND	62	300734	MPP MO Houck, J	61	701003
CPH MO			MPP MO	• •	701003
RASOR, N MCCLELLAN CPH MO	60	700896	RASOR, N MCCLELLAN MPP MO	60	700896
CHEKHOVSKOI, V	62	300633	MPP MO KOPETSKIY, CH.	62	301270
CPH MO LEHMAN, G	60	200004	MPP MO		
CPH MO	60	300304	MING, N FAN, T LI MPP MO	63	301304
KIRILLIN, V SHEIND GPH MO	61	300332	BESSERER, C	58	700929
CPH MO KARAREYA, L	61	300344	MPP MO ARGENT, B MILNE, G	60	201039
CPH MO			MPP MO	•••	201038
KIRILLIN, V SHEIND CPH MO	61	300425	RICHERT, E BECKETT MPP MO	49	700564
KIRILLIN, V SHEIND	62	601564	BADIALI, M KIRSHEN	63	301404
CPH MO TAYLOR, R	61	201250	PHAS MO		
CPH MO	•	201280	COFFMAN, J COULSON PHAS MO	61	701040
BRONSON, H CHISHOL CPH MO	33	700661	SHAFFER, P	61	700941
LAZAREVA, L KANTOR	61	700631	PHAS MO BRILLIANTOV, N STA	61	300807
CPL MO			PHAS MO	•	300007
FINCH, R CPL MO	61	700547	BRILLIANTOV, N STA PHAS MO	61	300807
CHEKHOVSKOI, V	62	300633	HAWORTH, C	60	201017
CPL MO BORELIUS, G	60	401149	PHAS MO		
CPL MO	80	601168	FUNKE, V NOVIKOVA REAC MO	62	201704
TAYLOR, R	61	201250	FRANTSEVICH, I LAV	59	200869
CPL MO CLARK, C	62	601563	REAC MO KOMAR, A TALANIN	60	200843
CPL MO			REAC M()	•	200045
FEATHERSTON, F NEI	63	301444	DEUTSCH, N ERVIN REAC MO	60	500123
BRYANT, C KEESOM	61	600831	KUBASCHEWSKI, O HO	60	201038
CPL MO SHARAN, B	61	301070	REAC MO EREMENKO, V VELIKA	59	201270
CRYS MO	01	301070	REAC MO	98	201279
COFFMAN, J COULSON	61	701040	ENGELKE, J HALDEN	60	201529
CRYS MO EDWARDS, J SPEISER	51	601179	REAC MO VEROT, J FORESTIER	61	201528
CRYS MO			REAC MO		
GETTE, E FOOTE, F	35	700510	ZELIKMAN, A KREIN REAC MO	62	201861
LU, S CHANG, Y	41	700512	ANDREEVA, V ALEKSE	62	201814
CRYS MO AGGARWAL, P GOSWAM	67	700514	REV MO SYRE, R	61	201579
CRYS MO	0,	700314	REV MO	•	201075
MATYUSHENKO, N CTEX MO	62	301150	WOHLI M REV VO	60	701053
RASOR, N MCCLELLAN	60	700984	RICHERT, E BECKETT	49	700564
CTEX MO	_0		SPK MO ALLEN, R GLASIER	••	200025
EDWARDS, J SPEISER CTEX MO	51	601179	SPK MO	60	200828
BESSERER, C	68	700929	ROGOSA, G SCHWARZ	53	500124
CTEX MO NOWOTNY, H LAUBE	61	600844	SPK MO SHADMI, Y	61	700954
рн мо	•		SPK MO		
KIRILLIN, V SHEIND	62	601564	CLAUS, B ULMER, K SPK MO	63	202017
DF MO COFFMAN, J COULSON	61	701040	TREES, R	61	701067
ERES MO			SPK MO ROSENZWEIG N PORT	60	700996
TAYLOR, R ERES MO	61	201250	SPK MO	1.0	700336
TYE, R	61	201117	SWEENEY, W SEAL, R	61	201112
ERES MO RUDKIN, R	60	700898	SURF MO RUDKIN, R	60	700898
ERES MO	30		TCON MO		204004
FINCH, R	61	700547	RUDKIN, R TCON MO	60	201901
ERES MO Bridgman, P	51	400533	BESSERER, C	58	700929
ERES MO			TCON MO RASOR, N MCCLELLAN	60	700896
MARGOTIN, P DURAND MO	62	201863	TCON MO		
KIRILLIN, V SHEIND	81	300921	RASOR, N MCCLELLAN	60	700984
MISC MO HAMPEL, C	61	200889	TCON MO TYE, R	61	201117
AWFELL, U	91				

TCON MO Lebedev, V	61	201312	THER MÖ CARBONYLS KAWAI, K MURATA, H	60	200805
THEO MO			REAC MO CE		
ROSENZWEIG, N PORT THER MO	60	700996	GAVMEMAHN, F BLANC SPK MO CL5	62	201520
RASOR, N MCCLELLAN VAP MO	60	200960	BADER, R	61	201260
BABELIOWSKY, T	62	300858	DH MO F 6 SETTLE, J FEDER, H	61	300740
VAP MO CANO, G	62	301423	SPK MOF6		204224
VAP MO	02		CLAASSEN, H SELIG PHAS MO HF SYST	62	201854
COFFMAN, J COULSON VAP MO	61	701040	TAYLOR, A THER MO HALIDES	61	201207
GLEMSER, O HAESELE	62	201927	SHCHUKAREV, S VASI	61	201459
PHAS MO AL C JEITSCHKO, W NOWOT	63	301486	THER MOLECULES SEIGEL, B SEIGEL	63	301361
н мов			SPK MONATOMIC GAS	SES	
MEZAKI, R TILLEUX S MO B	62	601617	JUDD, B THER MONATOMIC GAS	62 SES	300804
MEZAKI, R TILLEUX	62	601617	GORDON, J	61	300639
H MOB2 MEZAKI, R TILLEUX	62	601617	THER MONATOMIC GAS POLAND, D GREEN, J	62	300758
PHAS MOB2 FORELIK, CYELYUTI		300884	THER MONATOMIC GAS		
s MOB2	62	300884	GURVICH, L KVLIVDZ THER MONATOMIC GAS	61 SES	300457
MEZAKI, R TILLEUX CRYS MO B 2	62	601617	GURVICH, I KVLIVID	62	400602
GORELIK, C ELYUTIN	62	301230	s MONATOMIC ION VDOVENKO, U SUGLOB	58	601155
DH MO B 4 SHCHUKAREV, S VASI	61	201413	CRYS MO N TROITSKAMA, N PINS	63	202147
PHAS MOB4	•	201413	CRYS MO N	63	202147
CHRETIEN, A HELGOR H MO2B	61	201084	TROITSKAYA, N PINS MPP MO N	59	200858
MEZAKI, R TILLEUX	62	601617	SAMSONOV, G VERKHO	62	300997
S MO2B MEZAKI, R TILLEUX	62	601617	CEMP MO NITRIDES SAMSONOV, G	60	700947
MPP MO2B 5			DH MO NITRIDES		
MALYUCHKOV, O POVI EMF MO BORIDES	62	202095	SAMSONOV, G REV MO NITRIDES	60	700947
BECK, W	61	300477	SAMSONOV, G	60	700947
REAC MO B SYST SAMSONOV, G STRASH	62	300990	PHAS MO N SYST TROITSKAYA, N V PI	61	700601
CEMP MO C INGOLD, J	63	301251	CRYS MO O MAGNELI, A	60	200217
CRYS MO C	03	301201	MAGNELI, A MSP MO O		600617 ,
CLOUGHERTY, E LOTH CRYS MO C	61	600843	DEMAUA, G BURNS, R CRYS MO O 2	80	601163
KOVALSKII, A SEMEN	69	201671	CHANEY, W	61	701068
CRYS MOC KAYE, G	62	201909	THER MOO2 RAPP, R	63	301326
PHAS MO C			DF MOO2		
CLOUGHERTY, E LOTH PHAS MO C	61	600843	GLEISER, M CHIPMAN DH MO O 2	62	301053
NADLER, M KEMPTER CPH MO2C	60	300301	KRESTOVNIKOV, A	62	300930
NEEL, D PEARS, C	61	300146	MSP MO O 2 DEMAUA, G BURNS, R	60	601163
CRYS MO2C FRIES, R KEMPTER	60	701000	REAC MO O 2 KOZMANOV, Y	60	201005
CRYS MO2C			VAP MOO2	80	201005
PARTHE, E DF MO2C	62	601630	PLANTE, E R CRYS MO O 3	60	300141
GLEISER, M CHIPMAN	62	301053	CHANEY, W	61	701068
PHAS MO2C NADLER, M KEMPTER	60	700903	CRYS MOO3 YODA. E	60	600855
THER MO2C			DF MOO3		
SCHICK, HANTHROP THER MO3C 2	63	301580	GLEISER, M CHIPMAN DF MO O 3	62	300607
SCHICK, H ANTHROP	63	301580	ACKERMANN, A THORN	60	601174
DF MO C SYST GLEISER, M CHIPMAN	62	300607	DH MO O 3 KRESTOVNIKOV, A	62	300930
THER MOCSYST CUNNINGHAM, G WARD	63	301208	KIN MO O 3 VASILEV, K STOICHK	58	200995
DF MO C SYST	93	301200	MSP MOO3	40	200330
ALEKSEEV, V SHVART REAC MO C SYST	62	300846	DEMAUA, G BURNS, R REAC MO 0 3	60	601163
SAMSONOV, G STRASH	62	300990	FUNAKI, K TADAHARU	50	500117
THER . MO C SYST ALEKSEEV, V SHVART	62	300846	REAC MO O 3 Vasilev k stoichk	58	200995
			THE STORY		

VAP MOO3			SPK N		
HOERBE, R KNACKE	61	300451	PILCHER, G SKINNER	62	301044
VAP MO O 3 GULBRANSEN, E	63	300891	THER N GERSH, S	47	900215
VAP MO O 3			CPH N 2	~/	900216
SPITSYN, V ZIMAKOV REAC MO3O	61	301593	WILLIAMS, N N DH N 2	61	700659
KIHLBORG, L	62	202068	GLOEKLER	61	300636
PHAS MO OXIDE KIHLBORG, L	59	201174	DHD N 2 LOFTHUS, A	60	600568
CPH MO OXIDES			DHD N 2	00	000000
KING, E WELLER, W CPL MO OXIDES	60	700973	BROOK, M KAPLAN, J DHD N 2	54	800571
KING, E WELLER, W	60	700973	CARIO, G REINECKE,	50	600573
CRYS MO OXIDES OZEROV, R	55	701064	DHD N 2 DOUGLAS, A HERZBER	51	600577
DHT MO OXIDES KING, E WELLER, W	**	700973	DHD N 2		
PHAS MO OXIDES	60	700973	FARBER, M DARNELL DHD N 2	63	600579
KING, E WELLER, W MO OXIDES	60	700973	HENDRIE, J DHD N 2	55	600582
KING, E WELLER, W	60	700973	LINDHOLM, E	54	600590
THER MO OXIDES KING, E WELLER, W	60	700973	DHD N 2 TOENNIES, J GREENE	57	600600
PHAS MO O SYST			H N 2	•	000000
RODE, E LYSANOVA CRYS MO O SYST	62	201843	BOND, W PHAS N 2	60	600664
KIHLBORG, L	63	301498	PANNETIER, G MARSI	61	600850
KIN MO O SYST GULBRANSEN, E	63	301465	SPK N 2 PANNETIER, G MARSI	61	600850
PHAS MO O SYST ANON		701015	SPK N 2		
VAP MO O SYST	60	701018	CARROLL, P SPK N 2	63	301424
ANON REAC MOOCSYST	60	701015	CARROLL, B SAYERS SPK N 2	63	600545
HEGEDUS, A NEUGEBR	60	200789	SPK N 2 WOLFSBERG, M	63	600546
PHAS MO OS TAYLOR, A DOYLE, N	62	301026	SPK N 2 BRYAH, R HOLT, R	57	600549
PHAS MO RE SYST			SPK N 2		
FENG, C LEVESQUE PHAS MO RH SYST	61	300530	NICHOLLS, R REEVES SPK N 2	59	600562
ANDERSON, E HUME-R PHAS MO RU SYST	60	200969	WATANABE, K MARMO	56	600567
ANDERSON, E HUME R	60	201071	SPK N 2 LOFTHUS, A	60	600568
NESHPOR, V SAMSONO	62	301037	SPK N 2 ASTOIN, N GRANIER	67	600569
THER MO SI2			SPK N 2		
BOLGAR, A VAP MO SI2	61	700938	BRANSCOMB, L SPK N 2	51	600570
BOLGAR, A	61	700938	CARROLL, P RUBALCA	59	600572
NESHPOR, V SAMSONO	62	301037	SPK N 2 CARIO, G REINECKE	50	600573
ERES MO5SI3 NESHPOR, V SAMSONO	62	301037	SPK N 2		600574
VAP MO SI SYST			CARROLL, B DHD N 2	58	600874
HASAPIS, A MELVEGE PHAS MO TI ZR SYST	61	701039	CHRISTIAN, R DUFF SPK N 2	55	600575
HOCH, M DESJARDIN	62	300899	CARROLL, B ROBALEA	60	600693
PHAS MO V SYST KORNILOV, I POLYAK	61	201242	SPK N 2 BAER, F MIESCHER	52	600729
PHAS MOVCSYST			SPK N 2		
RUDY, E RUDY, E DHT MO X2	62	900222	DOUGLAS, A SPK N 2	52	600576
SHUKUROV, T NIKOLS OHT MO X3	61	201907	DRESSLER, K	69	600578
SHUKUROV, T NIKOLS	61	201907	SPK N 2 FEAST, M	51	600580
PHAS MO ZR C SYST WALLACE, T GUTIERR	63	301375	SPK N 2		600581
WARRING, I WARRING		55.575	GRIIN, A SPK N 2	55	
			HENDRIE, J SPK N 2	55	600582
N			HEPNER, G HERMAN	57	600583
			SPK N 2 HERMAN, L HERMAN	52	600584
CEMP N		201052	SPK N 2		
SAMSONOV, G NESHPO SPK N	59	201052	HERMAN, R WENIGER SPK N 2	52	600585
BAER, P MIESCHER	52	600729	HERMAN, R	52	600586

204 N 0					
SPK N 2 Janin, J	50	600587	SPK N O MIGEOTTE, P ROSEN	45	600752
SPK N 2 KISTIAKOWSKY, G WA	58	600588	SPK N O MIGEOTTE, P ROSEN	50	600753
SPK N 2 LEBLANC, F TANAKA	58	600589	SPK NO. MIGEOTTE, P	45	600751
SPK N 2 LOFTHUS, A	56	600591	SPK NO NICHOLLS, R	62	601625
SPK N 2 LOFTHUS, A			SPK NO MIESCHER, E		
SPK N 2	67	600592	SPK NO	56	600750
LOFTHUS, A MULLIKE SPK N 2	67	600593	MIESCHER, E SPK NO	55	600749
MUSCHLITZ, E GOODM SPK N 2	63	600594	MARYOTT, A KRYDER SPK N O	59	600748
OGAWA, M TANAKA, Y SPK N 2	59	600595	MARMO, F SPK NO	53	600747
OGAWA, M TANAKA, Y	60	600596	LAGERQVIST, A MIES	58	600746
SPK N 2 SAYERS, D CARROLL	53	600597	SPK N O HERZBERG, G LAGERQ	56	600744
SPK N 2 STOICHEFF, B	54	600598	SPK NO GALLAGHER, J KING	55	600743
SPK N 2 TANAKA, Y	55	600599	SPK NO GALLAGHER, J JOHNS	56	600742
SPK N 2 VANDERSLICE, J MAS		600601	SPK NO	54	
SPK N 2	59		GALLAGHER, J BEDAR SPK N O		600741
WILKINSON, P SPK N 2	67	600602	FEAST, M SPK NO	50	600740
WILKINSON, P MULLI SPK N 2	67	600603	DEEZSI, I MATRIN SPK N O	67	600739
WILKINSON, P SPK N 2	60	600604	DEEZSI, I SPK NO	58	600738
WILKINSON, P	59	600605	DEEZSI, I	56	600737
SPK N 2 WORLEY, R	53	600606	BURRUS, C GRAYBEAL	58	600736
SPK N 2 DIELSE, G HEATH, D	60	600618	SPK NO BURRUS, C GORDY, W	53	600735
THER N 2 WILLIAMS, N N	61	700669	SPK NO BERINGER, R RAUSON	54	600734
BAER, P MIESCHER	63	600730	8PK NO BARROW, R MIESCHER	57	600733
THER N H 3 PHILLIPS, J WHITE	52	600892	SPK NO SUTCLIFFE, L WALSH	63	600732
DH NO			THER NO		
KOERNER, W DANIELS DHD N O	52	600745	BIGELEISEN, J VAP NO	60~	600799
BROOK, M KAPLAN, J SPK N O	64	600571	BIGELEISEN, J SPK NO	60	600799
BAER, P MIESCHER SPK N O	52	600729	BAER, P MIESCHER SPK N 20	53	600730
BAER, P MIESCHER	53	600730	PALIK, E RAO, K SPK N 20	56	600717
BAER, P MIESCHER	51	600728	RANK, D EASTMAN, D	61	600835
SPK NO PALIK, E RAO, K	56	600717	SPK N 20 TIDWELL, E	60	600921
SPK NO Tanaka, Y	54	600683	CPH N 2O 4 HISATSUME, J	59	600807
SPK NO FLETCHER, W BEGUN	67	600763	8 N 2O 4 HISATSUME, J	59	600807
SPK NO			SPK N 20 4		
UEDA, M SPK NO	55	600762	JACAB, J SPK N 20 4	59	600808
THOMPSON, H GREEN SPK N O	56	600761	HISATSUME, J ZKP N 20 4	69	600807
TANAKA, Y SEYA, M SPK N O	61	600760	JACOB, J BIB NITRIDES	59	600808
SHAW, J SPK NO	56	600759	EHL, R CEMP NITRIDES	59	201141
OGAWA, M	63	600758	KUBASCHENSKI, O	56	601642
SPK NO OGAWA, M	55	600757	GOODMAN, P HOMONOF	61	301460
SPK NO Tanaka, Y	54	600756	CEMP NITRIDES SCLAR,N	61	300682
SPK NO OGAWA, M	56	600755	MISC NITRIDES STRASHINSKAYA, L	62	201790
SPK NO NICHOLS, N HAUSE			MPP NITRIDES POPOVA, O KABANNIK		300960
MICHULS, N NAUSE	65	600754	FUFUYA, U KABANNIK	62	300200

THE NUMBER OF			011		
PHAS NITRIDES PORTNOY, K	••	700044	ERES NB		
REAC NITRIDES	60	700944	BERLINCOURT, T SPK NB	59	601655
SAMSONOV, G VERKHO	69	201280	CLAUS, H ULMER, K	63	202017
REV NITRIDES			REAC NB		
REPENKO, K	62	301329	KOFSTAD, P	62	202074
REV NITRIDES EICK, H	61	301439	ERES NB Tye, r	61	201117
REV NITRIDES	٠,	301438	н NB	٠.	201117
EHL, R	59	201141	GELD, P KUSENKO, F	60	600803
SURF NITRIDES			KIN NB		
ZADUMKIN, S TCON NITRIDES	61	201849	ARZHANYI, P VOLKOV KIN NB	62	201975
LVOV, S	61	300937	ARZHANYI, R VOLKOV	61	201401
THER NITRIDES			MISC NB		
OLIVER, R BAIER, R	63	301314	HAMPEL, C	61	200889
THER NITRIDES LIUTAIA, M BUKHANE	62	202088	MISC NB Wadsley, A	61	201100
THER NITRIDES	02	202068	MPP NB	٠.	201100
KUBASCHENSKI, O	56	601642	ZAKHAROVA, G POPOV	61	301021
REAC N TH SYST			MPP NB		
GERDS, A MALLETT REAC N U SYST	54	600985	HARRIS, W MPP NB	61	201239
MALLETT, M GERDS	55	600986	ZAKHAROVA, G MISHI	59	301022
CEMP NA C		00000	MPP NB		
BONDARENKO, B ERMA	62	301409	RICKERT, E BECKETT	49	60163B
BOOK NB SAMSONOV, G KONSTA			MPP NB RILEY, W MCCLELLAN	62	301080
CPH NB	61	301570	MPP NB	62	301080
JOHNSON, R	60	301488	ARGENT, B MILNE, G	60	201039
CRYS NB			PHAS NB		
BOONE, D WERT, C MPP NB	63	301410	STORMS, E KRIKORIA PHAS NB	60	700980
FRERICHS, R	62	301450	SHAFFER, P	61	700941
MPP NB			PHAS NB		
EVSTYUKHIN, A NIKI	62	301442	HAWORTH, C	60	201017
PHAS NB BABITZKE, H ASAI	62	201988	PHAS NB SAVITSKII, E BARON		201245
BIB NB	62	201988	PHAS NB	68	201345
ANON	60	701022	WYDER, W HOCH, M	62	201581
BIB NB			PMCH NB		
WENSRICH, C BIB NB	60	700972	BOLEF, D PREP NB	61	200936
WOHLL, M	60	700723	MILLER, G	62	201943
CEMP NB			REAC NB		
RICKERT, E BECKETT	49	601638	MILLER, G	60	200834
MPP NB KOPETSKIY, CH	62	301270	REAC NB FAIRBROTHER, F COW	59	200886
THER NB	02	301270	REAC NB	05	200880
KRAFTMAKHER, YA	63	301279	ONG, J FASSELL, W	62	601683
CPH NB			REAC NB		
CARTER, W CPH NB	61	60163h	DEUTSCH, N ERVIN REAC NB	60	500123
GELD, P KUSENKO, F	60	600803	KOFSTAD, D KJOLLES	60	201952
CPL NB	-		REAC NB		
CLUSIUS, K FRANZOS	60	700987	KOFSTAD, P KJOLLES	61	201010
CPL NB DAUNT, J OLSEN, J	61	701027	REAC NB KUBASCHEWSKI, O HO	60	201038
CPL NB	01	701027	REAC NB		20.000
BOORSE, H HIRSHFEL	60	600651	SCHAFER, H SIBBING	60	201085
CPL NB			REAC NB		
BORELIUS, G	60	601168	ARKHAROV, V GERASI REAC NB	61	300549
CPL NB HIRSHFELD, A LEUPO	62	201933	ESTULIN, G BUROVA	61	300552
CRYS NB		20.000	REAC NB		
STORMS, E KRIKORIA	60	700980	HURLEN, T	61	700542
CRYS NB		404474	REAC NB ENGELKE, J HALDEN	60	201529
EDWARDS, J SPEISER CTEX NB	51	601179	REAC NB	90	201023
CARTER, W	61	601631	KORNILOV, I POLYAK	62	201681
CTEX NB			REAC NB		
EDWARDS, J SPEISER	51	601179	BLACKBURN, P REAC NB	62	201961
MOROZOVA, M STOLYA	60	300186	REAC NB KONSTANTINOV, V	62	301148
ELCH NB		300100	REAC NB		
MONNIER, R GRANDJE	60	200949	AMOSOV, V	62	301126
ERES NB			REAC NB		20107-
BRIDGMAN, P	61	400533	RROKOSHKIN, D VASI	62	201974

new NB					
REV NB BARTLETT, E SCHMID	61	701052	CPH NB C GELD, P KUSENKO, F	60	600803
REV NB			CRYS NBC		
WOHLL, M REV NB	60	701053	STORMS, E KRIKORIA CRYS NB C	60	700980
HARRIS, W REV NB	61	201239	STORMS, E KRIKORIA	60	700979
DOUGLAS, D KUNZ, F	61	300419	VAP NB C FESENKO, V BOLGAR	63	301216
REV NB PECKNER, D	61	201307	DH NB C MAH, A BOYLE, B	55	301297
REV NB			REAC NBC		
SYRE, R s NB	61	201579	SAEKI, Y OMORI, G CRYS NB C	63	301339
CLUSIUS, K FRANZOS SPK NB	60	700987	KEMPTER, C STORMS CRYS NB C	60	701008
KORSUNSKII, M GENK	60	201274	ELLIOT, R KOMJATH	60	600621
SPK NB HOLLIDAY, J	61	201225	CRYS NB C KEMPTER, C STORMS	63	201053
SPK NB SHADMI, Y	61	700954	CRYS NBC		
SPK NB	• •	700984	STORMS, E KRIKORIA DH NB C	60	600645
ROSENZWEIG, N PORT SPK NB	60	700996	KORNILOV, A LEONID DHD NB C	62	300923
SWEENEY, W SEAL, R	61	201112	BITTNER, H GORETZK	62	301132
SPK NB KORSUNSKIY, M GENK	60	400816	H NB C GELD, P KUSENKO, F	60	600803
SURF NB COST, J	62	201781	CEMP NB C BITTNER, H GORETZK	62	202004
TCON NB			MPP NBC	62	202004
CONNOLY, A MENDELS TCON NB	62	201535	GIORGI, A SZKLARZ KIN NB C	63	202039
TYE, R	61	201117	KIRILLOVA, G MEERS	60	200759
THEO NB ROSENZWEIG, N PORT	60	700996	PHAS NB C NADLER, M KEMPTER	60	700903
THEO NB FRANK, R	60	201284	PHAS NB C STORMS, E KRIKORIA	60	700980
THER NB			PHAS NB C		
SCHICK, H ANTHROP THER NB	63	300994	SHAFFER, P PHAS NB C	61	700941
CARTER, W THER NB	61	601631	NORTON, J Phas NB C	60	701001
CARTER, W	62	300749	BENESOVSKY E RUDY	61	100181
VAP NB BEAVIS, L	60	600659	PHAS NB C NADLER, M KEMPTER	60	300301
PHAS NB AL C			REAC NB C		
JEITSCHKO, W NOWOT PHAS NB ALLOYS	63	301485	SAMSONOV, G S NB C	***	301571
RICHER, H WINCIERZ THER NB B	62	201766	KAUFMAN, L • SPK NB C	62	300910
MEERSON, G	60	300298	KORSUNSKII, M GENK	60	201274
H NB B 2 MEZAKI, R TILLEUX	62	601617	THER NB C SCHICK, H ANTHROP	63	301579
MPP NB B 2 MALYUCHKOV, O POVI	62	202095	THER NB C BOLGAR, A	61	700938
s NBB2			TRT NB C		
MEZAKI, R TILLEUX SPK NB B 2	62	601617	MATTHIAS, B VAP NB C	61	300945
KORSUNSKII, M GENK	60	201274	FRIES, R	62	601478
THER NB B 2 SCHICK, H ANTHROP	63	301580	CEMP NB C SAMSONOV, G FOMENK	63	202128
CRYS NB3B 2 KIEFFER, B BENESOV	58	600619	VAP NB C BOLGAR, A	61	700938
PHAS NB B SYST			CRYS NB2C		
NOWOTNY, H BENESOV REAC NB B SYST	69	201339	ELLIOT, R KOMJATH THER NB2C	60	600621
SAMSONOV, G STRASH	62	300990	SCHICK, H ANTHROP DH NB CARBIDES	63	301579
PHAS NB B SI ALLOYS NOWOTNY, H BENESOV	60	201765	HUBER, E	61	201192
OH NB BR5 GROSS, P HAYMAN, C	62	300706	DH NB CARBIDES KUSENKO, F GELD, P	60	701007
DH NB BR5			REAC NB CARBIDES		
SHCHUKAREV, S SIMI OH NB BR O SYST	62	201748	MEERSON, G ZELIKMA surf nb carbides	61	201912
SHCHUKAREV, S SIMI CEMP NB C	62	201748	FOMENKO, V Phas NB C SYST	61	201420
BONDARENKO, B ERMA	62	301409	ELLIOTT, R	82	301441
CPH NB C KUSENKO, F GELD, P	59	300929	THER NB C SYST CUNNINGHAM, G WARD	63	301208
•			·		

ND 0 01100					
PHAS NB C SYST ELLIOTT, R			CEMP NB NITRIDES		
PHAS NB C SYST	61	300262	SAMSONOV, G	60	700947
ELLIOT, R KOMJATHY	60	301065	DH NB NITRIDES SAMSONOV, G	60	700947
PHAS NB C SYST	•	501000	REV NB NITRIDES	60	700947
GELD, P LIUBIMOV	61	300380	SAMSONOV, G	60	700947
PHAS NB C SYST			CTEX NB N SYST		
KIMURA, H SASAKI	61	601578	SAMSONOV, G VERKHO	61	601576
PHAS NB C SYST KOVALCHENKO, M SAM			PHAS NB N SYST		
REAC NB C SYST	61	201472	BRAUER, G ESSELBOR	61	700575
SAMSONOV, G STRASH	62	300990	VAP NB N SYST COST, J WERT, C	40	300681
REAC NB C SYST	-	300330	PHAS NB N SYST	62	300681
PORTNOI, K LEVINSK	61	300215	ELLIOT, R KOMJATHY	60	301055
VAP NB C SYST			PHAS NB N SYST		
FRIES, R REAC NB C O SYST	62	300591	ELLIOTT, R KOMJATH	60	600621
STEVENS, E WILHELM	61	201507	ERES NB N SYST		
REAC NB C O SYST	01	301697	SAMSONOV, G VERKHO	61	601576
SHVEIKIN, G GELD	63	301357	VAP NB N SYST COST, J WERT, C	63	301432
KIN NB C O SYST			VAP NB N SYST	03	301432
SHVEIKIN, G	58	301366	SAMSONOV, G VERKHO	61	601576
PHAS NB C FE SYST			CRYS NB N 2 SYST		
BELIKOV, A SAVINSK REAC NB C W SYST	62	300863	ELLIOTT, R KOMJATH	61	701063
EVSTYUKHIN, A NIKI	62	300883	PHAS NB N 2 SYST		
THER NB CL	02	300883	ELLIOTT, R KOMJATH CRYS NB O	61	701063
SCHAFER, H KAHLENB	60	200820	BRAUER G MORAWIET	62	301106
DF NB CL5			CRYS NB O	02	301100
JERE, G PATEL, C	60	200850	носн, м	63	301477
DH NB CL5			CRYS NB O		
SHCHUKAREV, S ORAN SPK NB CL5	60	200944	BRAUER, G MORAWIET	62	301414
BADER, R	61	201260	CRYS NBO		200704
PHAS NB CL O SYST	٠.	201200	NORIN, R MAGNELI DF NB O	60	200781
MEYER, G COSTERÓM	61	201213	носн, м	60	300311
PHAS NB H SYST			EMF NB O		
ELLIOTT, R KOMJATH	60	600621	LAVRENTEV V GERAS	61	701030
MISC NB MO SYST			REAC NB O		
BRAUN, H SEDLATSCH ERES NB MO SYST	60	200806	LAVRENTEV, V GERAS	61	701030
HULM, J BLAUGHER	61	201421	REAC NB O HICKS, W	61	201011
PHAS NB MO C SYST			REAC NB O	0,	201011
RUDY, E BENESOVSKY	61	300449	SAZHIN, N KOLCHIN	61	300381
PHAS NB MO V			REAC NB O		
BARON, VIVANOVA	60	200918	GORDON, G SCHEVERM	60	201499
PHAS NB MO W SAVITSKII, E BARON	62	201705	REAC NB O		
CEMP NB N	02	201705	KOLSKI, T REAC NB O	62	201497
SAMSONOV, G FOMENK	63	202128	GURIFN T	61	201792
CRYS NB N			CPH NB O	٠.	2002
KORSUNSKII, M GENK	63	301274	KUSENKO, F GELD, P	59	300929
MPP NB N			CRYS NBO		
SAMSONOV, G VERKHO THER NB N	61	301573	BAAUER, G MORAWIET	62	601681
BOLGAR, A	61	700938	MSP NB O SHCHUKAREV, S SEME	62	301354
VAP NB N	•		SPK NB O	UZ	301354
SAMSONOV, G VERKHO	61	301569	UHLER, U	55	301370
VAP NB N			s NBO		
BOLGAR, A	61	700938	KAUFMAN, L	62	300910
S NB N		200010	SPK NBO		
KAUFMAN, L CEMP NB N	62	300910	UHLER, U SPK NB O	54	600915
KORSUNSKII, M GENK	62	300912	GRAVEN, W SALOMON	60	200911
TRT NB N			THER NB O		200011
MATTHIAS, B	61	300945	носн, м	61	301475
MPP NB N			THER NBO		
SAMSONOV, G VERKHO	62	300997	SCHICK, HANTHROP	63	301680
CRYS NB2N ELLIOT, R KOMJATH	60	600621	THER NB O LAVRENTEV, V GERAS	61	701030
CRYS NB4N 3	90	000021	THER NB O	91	701030
ELLIOT, R KOMJATH	60	600621	PEMSLER, J P	61	700850
PHAS NB NITRIDES			TRT NB O		
BRAUER, G	61	201142	KOLCHIN, O SUMAROK	61	600873
SPK NB NITRIDES			TRT NB O		
KORSUNSKII, M GENK	60	201274	ELLIOT, R KOMJATH TRT NB O	60	600621
PHAS NB NITRIDES BRAUER, G	60	201037	ELLIOT, R	60	600625

WD 0					
VAP NB O LAVRENTEV, V GERAS	61	701030	GELD, P KUSENKO, F	••	****
CPH NBO2	91	701030	CPH NB2O 5	60	600803
KUSENKO, F GELD, P	62	300727	KUSENKO, F GELD, P	59	300929
CPH NBO2			CPH NB2O 5		
KUSENKO, F GELD, P	59	300929	KUSENKO, F GELD, P	62	300727
CPH NB O 2 GELD, P KUSENKO, F	60	600803	CRYS NB2O 5		701074
CRYS NB O 2	80	600603	KOFSTAD, P KJOLLES CRYS NB2O 5	61	701034
MARINDER, BO	61	700649	MARINDER, B	62	601678
DH NBO2			CRYS NB2O 5		
KUSENKO, F GELD, P	62	300727	LAKHIANI, D SHREIR	60	700978
OH NB O 2 MOROZOVA, M STOLYA	60	300186	DH NB2O 5 KORNILOV, A LEONID	62	601591
EMF NBO2	00	300180	DH NB2O 5	62	001091
LAVRENTEV, V GERAS	61	701030	KUSENKO, F GELD, P	62	300727
H NBO2			DH NB2O 5		
GELD, P KUSENKO, F H NB O 2	60	600803	MOROZOVA, M P STOL	60	300186
KING, E CHRISTENSE	61	600826	DH NB2O 5 KUSENKO, F G GELD	60	300252
REAC NBO2	•	555525	EMF NB2O 5	00	300202
KUSENKO, F GELD, P	60	200823	LAVRENTEV, V GERAS	61	701030
REAC NBO 2			ERES NB2O 5		
LAVRENTEV, V GERAS S NB O 2	61	701030	GREENER, E WHITMOR ERES NB2O 5	60	600631
KING, E CHRISTENSE	61	600826	GRUNER, E WHITMORE	61	700527
THER NBO 2			н NB2O 5	•	
LAVRENTEV, V GERAS	61	701030	GELD, P KUSENKO, F	60	600803
TRT NBO 2		200070	KIN NB2O 5		
KOLCHIN, O SUMAROK TRT NB O 2	61	600873	MOROZOV, I STEFANY KIN NB2O 5	58	200796
ELLIOT, R KOMJATH	60	600621	GELD, P SHVEIKIN	60	200996
TRT NBO2			PHAS NB2O 5		
ELLIOT, R	60	600625	GOLDSCHMIDT, H	60	200765
VAP NB O 2 LAVRENTEV, V GERAS	61	701030	PHAS NB20 5 ROTH, R WARING, J	61	201406
VAP NB O 2	٠.	701030	REAC NB2O 5	01	201406
GOLUBTSOV, I LAPIT	60	701029	SHVEIKIN, G P	58	300151
VAP NBO2			REAC NB2O 5		
SHCHUKAREV, S SEME	62	300744	LAVRENTEV, V GERAS	61	701030
THER NB O 2 SCHICK, H ANTHROP	63	301580	REAC NB2O 5 LINBIMOV, V GELD	61	300388
SPK NB O 5	-	301000	THER NB2O 5	٠.	300368
CONLON, D DOYLE, W	61	201325	KORNILOV, A LEONID	62	601591
PHAS NB2O			THER NB2O 5		
BRAUER, G MUELLER KIN NB2O 3	68	301197	SCHICK, HANTHROP THER NB2O 5	63~	301580
SHVEIKIN, G GELD	60	200762	LAVRENTEV, V GERAS	61	701030
PHAS NB2O 5			VAP NB2O 5	•	
DIAMOND, J SCHNEID	60	202028	LAVRENTEV, V GERAS	61	701030
ERES NB2O 5		*****	VAP NB2O 5		
MANALOV, P ESIN, O CRYS NB2O 5	62	202096	GOLUBTSOV, I LAPIT DH NB OXIDES	60	701029
NORIN, R	63	202110	KUSENKO, F GELD, P	60	701007
REAC NB2O 5			REAC NB OXIDE		,
GELD, P LYUBIMOV	62	301223	BRAUER, G MULLER		300561
GREENER, E FEAR, G	63	301232	THER NB OXIDES ORTNER, N ANDERSON	5.0	701022
CEMP NB2O 5	93	301232	VAP NB OXIDES	59	701066
JANNINCK, R WHITMO	63	301254	ORTNER, N ANDERSON	69	701066
ERES NB2O 5			KIN NB O SYST		
JANNINCK, R	63	301255	HURLEN, T KJOELLES	59	201306
REAC NB20 5 KIMURA, H SASAKI	62	301262	MPP NB O SYST ALYAMOVSKIY, G SHV	58	400597
ERES NB2O 5	94	JV 1202	PHAS NB O SYST	95	40009/
KOFSTAD, P	62	301267	KUSENKO, F GELD, P	81	201116
PHAS NB2O 5	Δ		MPP NB O SYST		
KOFSTAD, P ZKP NB2O 5	61	301268	GEBHARDT, E ROTHEN	63	202035
LYUBINOV, V GELD	61	301294	KIN NB O SYST HURLEN, T	6 0	301250
ERES NB2O 5	٠.		VAP NB O SYST	20	
MAKKAY, R FINE, M	62	301298	SHCHUKAREV, S SEME	69	301353
ERES NB2O 5		001005	PHAS NB O SYST		
REISMAN, A HOLTZBE PHAS NB2O 5	59	301328	SHVEIKIN, G GELD PHAS NB O SYST	68	301356
ZVINCHUK, R	58	301385	BRAUER, G MUELLER	63	301196
CEMP NB2O 5			PHAS NB O SYST		
GRUNER, E WHITMORE	61	700527	BRAUER, G MUELLER	62	301413

Bulan ND C ONOM			2002		
PHAS NB O SYST ELLIOTT, R	62	301441	CRYS ND ELLINGER, F	63	601253
PHAS NB O SYST	02	301441	CRYS ND	0.5	00.120
BRAUER, G MUELLER	62	301413	ELLINGER, F	55	600977
PHAS NB O SYST TERAO, N			DH ND JOHNSON, R		
PHAS NB O SYST	63	301603	DH ND	56	601293
KOUBA, L TRUNOV, V	62	301278	WHITE, D	61	201217
PHAS NB O SYST			CTEX ND		
GRIGOREVA, N SELEZ PHAS NB O SYST	62	300888	ANDRES, K DH ND	63	301172
ELLIOT, R	60	600625	JOHNSON, R HUDSON	62	601224
PHAS NB O SYST ELLIOT, R KOMJATHY			DH ND		
PHAS NB O SYST	60	301055	AMES LABORATORY OH ND	52	601247
NORMAN, N	62	300374	HUBER, J	52	100213
PHAS NB O SYST BRAUER, G ESSELBOR			ERES ND		
PHAS NB O SYST	61	201114	ALSTAD, J COLVIN ERES ND	61	201099
ELLE, M CHIPMAN, J	61	300281	SPEDDING, F DAANE	67	601066
PHAS NB O SYST			ERES ND		
NORMAN, N KOFSTAD REAC NB O SYST	62	300527	BRIDGMAN, P ERES ND	61	400533
ARGENT, B PHELPS	60	600611	GOODMAN, B	52	100208
THER NB O SYST			ERES ND		
MEERSON, G ZKP NB O SYST	62	300946	JAMES, N LEGNOLD H ND	52	100206
KUSENKO, F GELD, P	61	201116	SPEDDING, F MILLER	51	601241
REAC NB O C SYST			MPP ND		
SHVEYKIN,G THER NBOCSYST	68	600672	IOWOV, W MITTSEV MSP ND	60	601332
SHVEYKIN,G	58	600671	JOHNSON, R HUDSON	56	601040
ZKP NB O C SYST			MSP ND		
KUSENKO, F GELD, P zkp NB O C SYST	61	700619	JOHNSON, R HUDSON PHAS ND	52	601224
SHVEYKIN.G	68	600671	SPEDDING, F DAANE	57	601066
KIN NOHSYST			PHAS ND		
BLACKBURN, P ZKP NB O H SYST	62	301189	JOHNSON, R HUDSON PHAS ND	66	601040
LINBIMOV, V GELD	61	300388	SPEDDING, F DAANE	57	700872
PHAS NBONSYST			PHAS ND JOHNSON, R		
ELLIOTT, R KOMJATH PHAS NB PD SYST	60	600621	PHAS ND	56	601293
SAVITSKII, E BARON	61	201429	TROMBE, F FOEY, M	51	400546
PHAS NB RE SYST KAUFMANN A R RAPPR	61	300218	SPK ND NOLDEKE, G	55	601028
PHAS NB RE SYST	01	300218	SPK ND	90	601028
GIESSEN, W NORDHEI	61	201233	BURBRIDGE, E BURBR	66	601003
PHAS NB SI ALYAMOUSKII, P GEL	61	201586	SPK ND KOROLEV, F	58	601321
PHAS NB SI O SYST	٠.	201000	SPK ND	50	00.321
IBRAHIM, M BRIGHT	62	201638	MURAICAWA, K	54	601284
REAC NB TA SCHAEFER, H HUEESK	62	201959	SPK ND SCHWARZSCHILD, M	57	601047
PHAS NB TE SYST	-	20.000	SPK ND		
GRIGORYAN, L SIMAN	60	200992	SMITH, K SPALDING	62	300777
VOITOVICH, R	61	201287	SPK ND HOVIS, W	62	300824
PHAS NB TI TA SYST			SPK ND		
KORNILOV, M PYLAEV	61	300508	GARSTANG, R SPK ND	52	100207
PHAS NB TI ZR SYST MIKHEEV, V BELOUSO	61	300834	VAN DIJKE BEATTY, S	61	400548
PHAS NB U C SYST			SPK ND		
BENESOVSKY, F RUDY MISC NB W SYST	61	301406	TAKEHIKO, I SHIN Y SPK ND	50	400552
MISC NB W SYST BRAUN, H SEDLATSCH	60	200806	GRATTON, I	52	400567
KIN NB ZR SYST			SPK ND		
VOITOVICH, R PHAS NB ZR SYST	61	201287	BLAISE, J SPK ND	58	601123
LUNDIN, C	61	201120	IONOV, N MITKEV, M	60	601180
CPH ND			THER ND		400
ARAJS, S COLVIN, R CPH ND	62	300751	PARKINSON, D H SIM THER ND	51	400557
SPEDDING, F MILLER	51	601241	SPEDDING, F H MCKE	60	700570
CPL ND			TRT ND JOHNSON, R HUDSON		201046
GOODMAN, B	52	100208	TRT ND	56	601040
PARKINSON, D H SIM	61	400557	TROMBE, F FOEX, M	51	400546

VAP ND			VAP ND2O 3		
YAMAMOTO, A S LUND	61	300230	GOLDSTEIN, H	60	201018
VAP ND JOHNSON, R		601202	VAP ND2O 3 GOLDSTEIN, H		
VAP ND	56	601293	DH ND O SYST	61	201216
WHITE, D WALSH, P	61	301014	WALSH, PN DEVER	61	700642
VAP ND JOHNSON, R HUDSON	52	601224	PHAS ND O SYST POPOV, A GLOCKER	49	400524
VAP ND			PHAS NI MO CR SYST		
WHITE, D WALSH, P	60	301622	ZAKHAROVA, M PROKO MPP NONSTOICHIOME	61 TRY	201241
AMES LABORATORY	52	601247	LAZARUS, D	62	301518
VAP ND WHITE, D WALSH, P	61	300455	REV NONSTOICHIOME SEEGER, A	CTRY 61	301586
SPK ND+	•		REV NONSTOICHIOMI		30.000
JUDD, B SPK ND+	55	600927	ANDERSON, J THEO NONSTOICHIOME	63	301396
NOLDEKE, G STEUDEL	54	600931	WADSLEY, A	63	301615
SPK NDI NOLDEKE, G STEUDEL	54	400053	ZKP NONSTOICHIOMI ELLIOTT, G LEMONS		201440
SPK ND2	04	600952	SPK NUCLEI	63	301440
BURBRIDGE, G BURBR CEMP ND B 6	54	600937	BELYAEV, S	61	700550
SAMSONOV, G PADERN	69	300143			
CRYS ND B 6 SAMSONOV, G PADERN	**	601382	0		
PHAS ND C SYST	60	601362	O		
WARF, J PALENIK, G PHAS ND CE MG SYST	60	600636	Bu 6 0		
PHAS ND CE MG SYST ROKHLIN, L	62	201703	PHAS () BEREZHNOI, A KORDY	62	201553
VAP ND CL3	••	300686	PHAS () WYDER, W HOCH, M		201581
NOVIKOV, G BAEV, A CRYS ND N SYST	62	300000	SPK ()	62	201001
IANDELLI, A CRYS ND O	38	601276	MALTSEV, A KATAEV SPK O	60	600701
CRYS ND O ELLINGER, F	53	601253	PILCHER, G SKINNER	62	301044
VAP ND O TROMBE, F FOEX, M	63	301367	THER O ACKERMANN, R THORN	58	601208
DHD ND O	03	301307	MISC ()	56	001200
GOLDSTEIN, H WALSH DHD ND O	58	201098	LADD, M LEE, W	60	201322
COLDSTEIN, H	61	201216	REVYAKIN, A	61	201286
VAP ND O KULVARSHAYA, B MAS	60	301064	CPH O 2 WILLIAMS, N N	61	700659
VAP ND O			DHD () 2		
GOLDSTEIN, H WALSH CPH ND2O 3	61	700889	BRIX, B HERZBERG OHD 0 2	53 🐃	600544
PANKRATZ, L KING	62	300958	LOSEV, S GENERALOV	61	300583
CPH ND2O 3 GOLDSTEIN, H NGILS	59	601198	DHD O 2 BRIX, B HERZBERG	54	600548
CPH ND2O 3			DHD O 2		
BLOMEKE, J O ZIEGL CPL ND2O 3	61	400562	CAMAC, M VAUGHAN REV O 2	59	600613
GOLDSTEIN, H	58	601551	HERZBERG, G	52	600536
GOLDSTEIN, H NEILSO	60	700836	SPK O 2 HERZBERG, G	52	600536
CPL ND2O 3			SPK () 2		
JUSTICE, B WESTRUM CRYS ND2O 3	63	300906	HERZBERG, G SPK O 2	53	600537
DOUGLASS, R	56	601010	MOFFITT, W	51	600539
H ND2O 3 BLOMEKE, J O ZIEGL	51	400562	SPK 02 WEBER, A MCGINNIS	60	600540
MSP ND2O 3		****	SPK 02		
PANISH, M REAC ND2O 3	61	601372	BARTH, C KAPLAN, J SPK O 2	59	600541
KELER, E GODINA, N	61	300387 4	CHAMBERLAIN, J	58	600542
s ND2O 3 BLOMEKE, J O ZIEGL	51	400562	SPK O 2 WILKINSON, B MULLI	57	600543
THER ND2O 3		400563	SPK O 2 BRIX, P HERZBERG	5 3	600544
BLOMEKE, J O ZIEGL VAP ND2O 3	61	400562	SPK 02	9 3	
GOLDSTEIN, H WALSH VAP ND2O 3	60	700889	BROIDA, H GAYDON 8PK O 2	64	600547
GOLDSTEIN, H WALSH	68	201098	BRIX, B HERZBERG	54	600548
VAP ND2O 3 PANISH, M	61	601372	SPK O 2 BRYAH, R HOLT, R	67	600549
VAP ND2O 3	01		SPK O 2		
GOLDSTEIN, H	67	601489	BURKHALTER, J ANDE	60	600550

SPK () 2			_		
BURKHALTER, JANDE	50	600551	SPK OS Moore, C	58	601088
SPK 0.2 CARROLL, P			SPK OS		
SPK () 2	59	600552	VAN KLEEF, T KLINK SPK OS	61	201113
FEAST, M SPK O 2	49	600553	BLAISE, J	68	601123
FEAST, M	50	600564	THEO OS ROSENZWEIG, N PORT	60	700996
8PK O 2 HERMAN, R HERMAN	49	600555	THEO OS ROSENZWEIG, N PORT	60	700901
SPK O 2 HERMAN, R WENIGER			THER OS		
SPK O 2	50	600556	BARRIAULT, R DREIK TRT OS	62	300865
HERMAN, R HERMAN SPK O 2	50	600557	KNAPTON, A SAVILL TRT OS	60	201068
HERMAN, R WENIGER SPK 0 2	50	600558	KNAPTON, A SAVILL	60	600663
MILLER, S TOWNES	53	600569	TRT OS MCCALDIN, J DUWEZ	54	600966
SPK 0 2 MILLER, S TOWNES			VAP OS		
SPK O 2	6 3	600560	HASAPIS, A PANISH VAP OS	60	700994
MILLER, S TOWNES SPK O 2	53	600561	PANISH, M REIF, L REAC OS BR3	62	300721
NICHOLLS, R REEVES SPK 0 2	59	600562	SHCHUKAREV, S KOLB	61	201231
TANAKA, Y	52	600563	CRYS OS B SYST KEMPTER, C P FRIES	61	700621
SPK 02 TANAKA, Y JURSA, A	56	600564	CRYS OS B SYST KEMPTER, C P FRIES	61	700621
SPK O 2			CRYS OS B SYST		
WATANABE, KINN, E SPK 02	63	600566	KEMPTER, C FRIES CRYS OS B SYST	61	701050
WATANABE, K MARMO SPK O 2	56	600567	ARONSON, B STENBER	62	300757
CAMAC, M VAUGHAN	59	600613	CRYS OS B SYST KEMPTER, C FRIES	61	201103
SPK () 2 ZIMMERER R MIZUSH	61	600920	MPP OS B SYST BUDDERY, J WELCH	51	600940
SPK G 2 LOSEV, S GENERALOV			PHAS OS B SYST		
THER () 2	61	301113	ROOF, R KEMPTER, C CRYS OS C	62	300966
WILLIAMS, N N MPP ORGANICS	61	700659	KEMPTER, C NADLER PHAS OS C	60	701010
DREISBACH, R BIB OS	61	300263	NADLER, M KEMPTER	60	300301
ANON	60	701024	REAC OS C KEMPTER, C NADLER	60	201024
COPT OS DOUGLAS, R.W. ADKIN	61	700614	REAC OS C KEMPTER, C NADLER	60	201024
MPP OS			CEMP OS F 6		
FRANCIS, A CRYS OS	62	301076	EISENSTEIN, J SPK OS F 6	61	201126
MCCALDIN, J DUWEZ PHAS OS	54	600956	EISENSTEIN, J REAC 'S I	61	201126
KNAPTON, A SAVILL	60	600663	FERGUSS ON, J ROBIN	62	201686
PHAS OS SAVITSKII, E TYLKI	63	301575	SPK OS O WOODWARD, L CREIGH	60	200760
PHAS OS KNAPTON, A SAVILL	60		THER OS O BARRIAULT, R DREIK	63	
PHAS OS	80	700995	THER OS O 2	62	300866
DOUGLAS, R W ADKIN REAC OS	61	700614	BARRIAULT, R DREIK T her OS O 3	62	300865
SPACU, P GHEORGHIV	61	201693	BARRIAULT, R DREIK	62	300865
REAC OS SEMENOV, I KOLBIN	62	201486	THER US 0-4 BARRIAULT, R DREIK	62	300865
SPK OS Barinski, r nadzha	60	200910	PHAS OS RE TYLKINA, M POLYAKO	62	201728
SPK OS			PHAS OS RU		
ROSENZWEIG, N PORT SPK OS	60	700901	TYLKINA, M POLYAKO PHAS OS TA SYST	62	201729
VAN KLEEF, T	61	600656	KAUFMANN, A R RAPPR	61	300218
SPK OS MURAKAWA, K SUWA	52	600942	KAUFMANN A R RAPPR	61	300218
SPK OS ROSENZWEIG, N PORT	60	700996	THEO OXIDATION LEVINSON, M KOVROV	60	301100
SPK OS			THEO OXIDATION		
VANKLEEF, T KLINK SPK OS	61	701033	SEYBOLT, A CEMP OXIDES	63	301350
HINES, A ROSS, J SPK OS	62	601592	KUBASCHENSKI, O DHD OXIDES	56	601642
VAN KLEEF, T	60	600692	BERKOWITZ, J	59	301187

REAC OXIDES			TRT OXIDES		
COLLONGUES, R GILL	63	301205	SCHNEIDER, S	63	202131
VAP OXIDES NOGA, K	52	301313			
CEMP OXIDES VORONOV, N DANILIN		201120	P ·		
CRYS OXIDES	62	301120	•		
BAUR CRYS OXIDES	61	200955	THEO PARTIAL MOLAR		
SIDOROV, T	60	201055	KRESTOV, G	63	301283
CRYS OXIDES WADSLEY, A	61	201101	THER PB MARGRAVE, J	61	700967
CTEX OXIDES			VAP PB O FIRSOVA, L NESEMEY	60	200764
TAYLOR, R CTEX OXIDES	60	200793	CPL PD	60	200761
KUMAR, S DH OXIDES	60	700685	CRANGLE, J SMITH CPL PD	62	300869
KAPUSTINSKII, A	48	600627	BORELIUS, G	60	601168
DH OXIDES KLYUCHNIKOV, N	60	300659	dh PD GOLDSMITH, A HIRSC	60	700930
DH OXIDES			DHT PD		
SHARUPIN, B VASILK DHD OXIDES	61	700665	LOWRIE, R MPP PD	61	700943
BREWER, L ROSENBLA	61	201111	EREMENKO, V NAIDIC MPP PD	61	300529
E OXIDES MEN, A ORLOV, A	58	200794	FRANCIS, A	62	301076
KIN OXIDES		201903	PHAS PD GOLDSMITH, A HIRSC	60	700930
OATS, TODD, D MSP OXIDES	62	201903	PHAS PI)		
GRIMLEY, R BURNS PHAS OXIDES	60	200817	MENDENHALL, C INGE SPK PD	07	900143
SIDEBOTTOM, B WHIT	61	201048	SHADMI, Y	61	700954
PHAS OXIDES ESTULIN, G EGORSHI	62	900207	SPK PD KESSLER, K MEGGERS	54	600976
PHAS OXIDES			TRT PD Mendenhall, cinge		
GOUTER, E W PHAS OXIDES	59	700608	VAP PD	07	900143
SCHNEIDER, S ROTH PHAS OXIDES	61	201407	DREGER, L MARGRAVE VAP PD	60	200922
COCCO, A SCHROMEK	61	201637	GOLDSMITH, A HIRSC	60	700930
REAC OXIDES MORIN, F	61	201273	VAP PD DREGER, L	61	300528
REAC OOXIDES			VAP PD		
SAMSONOV, G YASINK REAC OXIDES	61	100180	WALKER, R F EFIMEN CRYS PD B SYST	61	700579
BORCHARDT, H THOMP REAC OXIDES	60	200887	ARONSON, B ASELIUS THEO PHASE DIAGRAM	59 ~	601166
SAMSONOV, G IASINS	61	300340	BREWER, L	63	202009
REAC OXIDES TRIBALAT, S JUNGFL	60	200829	THEO PHASE DIAGRAM HUME, W ROTHERY	63	301249
REV OXIDES	80	200823	THEO PHASE RULE		
BURKE, J REV OXIDES	61	601403	BRYNESTAD, J THEO PHASES	63	301199
LANE, Z TUNIS, M	62	201940	HERIC, E	63	202049
SPK OXIDES SIDOROV, T	60	201055	THEO PHASES MERTSLIN, R NIKURA	63	202102
SPK ÖXIDES VRATNY, F DILLING		224225	THEO PHASES PAK, T KOGAN, V	62	202113
TCON OXIDES	61	201385	THEO PHASES		
TAYLOR, R THEO OXIDES	60	200793	PINAEV, G THER PHASES	63	202118
YATSIMIRSKII, K B	61	300180	STORONKIN, A MORAC	63	202144
THER OXIDES ACKERMANN, R J THO	61	700580	THER PHASES STORONKIN, A SMIRN	62	202145
THER OXIDES			MPP POLYATOMIC GAS	3	
HAHN, W THER OXIDES	60	200812	GREEN, M SPK POLYATOMIC GAS	62	300636
KUBASCHENSKI, O	56	601642	HOUGEN, J	62	300781
THER OXIDES BREWER, L	62	300855	KHACKKURUZOV, G MI	61	700547
THER OXIDES BREWER, L	63	700843	THEO POLYATOMIC GAS KHACHKURUZOV, G MI	6 1	700677
VAP OXIDES	33		THER POLYATOMIC GAS	3	
VORONOV, N DANILIN VAP OXIDES	62	300563	GODNEV, I THER POLYATOMIC GAS	56	300832
ACKERMANN, R J THO	61	700580	ARTYM, R	82	300773
VAP OXIDES BURKE, J	61	601403	THER POLYATOMIC GAS MCBRIDE, B GORDON	61	300473
			·		

THER POLYATOMIC GA KHACHKURUZOV, G MI	S 61	700677	CRYS PR N SYST IANDELLI, A	37	601276
CPL PR GOODMAN, B	52	100208	ERES PRIN SYST Daou, J	60	600615
CPL PR PARKINSON, D H S1M	51	400557	THER PROPELLANTS SUNDARAM, S		
DH PR			PHAS PRO	63	301365
JOHNSON, R DH PR	56	601293	EYRING, L HOLWBERG VAP PR O	62	601590
WHITE, D DH PR	61	201217	KULVARSHAYA, B MAS CRYS PR O 2	60	301064
JOHNSON, R HUDSON DHT PR	52	601224	GRUEN, D KOEHLER ERES PR O 2	61	400545
CAVALLERO, U ERES PR	43	700896	KEVANE, C	62	601467
SPEDDING, F DAANE	67	601066	PHAS PR () 2 FAETH, P	61	701076
ERES PR BRIDGMAN, P	51	400533	CRYS PR2O 3 HONIG, J	58	601531
ERES PR JAMES, N LEGNOLD	52	100206	CRYS PR2O 3 GRUEN, D KOEHLER	51	400545
ERES PR ALSTAD, J COLVIN	61		MSP PR2O 3 PANISH, M		
ERES PR		201099	PHAS PR2O 3	61	601372
GOODMAN, B MPP PR	62	100208	HONIG, J ERES PR2O 3	58	601531
IOWOV, W MITTSEV MSP PR	60	601332	HONIG, J REV PR2O 3	58	601531
JOHNSON, R HUDSON MSP PR	62	601224	HONIG, J VAP PR2O 3	58	601531
JOHNSON, R HUDSON	56	601040	PANISH, M	61	601372
PHAS PR JOHNSON, R	56	601293	CPH PR6O 11 BLOM"KE, J O ZIEGL	51	400562
PHAS PR SPEDDING, F DAANE	57	601066	H PR6O 11 BLOMEKE, J O ZIEGL	51	400562
PR JOHNSON R PUDSON	56	601040	S PR6O 11 BLOMEKE, J O ZIEGL	51	400562
PHAS PR			THER PR60 11		
SPEDDING, F DAANE SPK PR	57	700872	BLOMEKE, J O ZIEGL BIB PR OXIDES	51	400562
GARSTANG, R SPK PR	52	100207	JONES, P CRYS PROSYST	60	200984
HOVIS, W SPK PR	62	300824	EYRING, L BAENZIGE DH PR O SYST	62	300825
GRATTON, L.	52	400567	WALSH, PN DEVER THER PROSYST	61	700642
BURBRIDGE, E BURBR	55	601003	KUZNETSOV, F REZUK	62	300627
spk PR IONOV, N MITKEV, M	60	601180	BIB PT WOHLL, M	60	700723
THER PR PARKINSON, D H SIM	61	400557	BIB PT GOODY IN, T	56	601547
TRT PR JOHNSON, R HUDSON	56	601040	CEMP T WHITE, G WOODS, S	67	601050
VAP PR YAMAMOTO, A S LUND			CEMP PT CLUSIUS, K LOSA, C		
VAP PR	61	300230	срн РТ	57	601101
JOHNSON, R VAP PR	56	601293	CARTER, W CPH PT	61	601631
WHITE, D WALSH, P VAP PR	60	301622	KENDALL, W ORR, R CPH PT	62	601674
WHITE, D WALSH, P VAP PR	61	300455	DOUGLASS, R HOLDEN CPL PT	59	700375
WHITE, D WALSH, P	61	301014	RAMANATHAN, K SRIN	59	601132
VAP PR JOHNSON, R HUDSON	52	601224	BORELI'S, G	60	601168
SPK PR JUDD, B	55	600927	CRYS PT EDWARDS, J SPEISER	51	601179
SPK PR2 BURBRIDGE, G BURBR	54	600937	CTEX PT CARTER, W	61	601631
CEMP PR B 6			CTEX PT		
SAMSONOV, G PADERN DF PR C	69	300143	EDWARDS, J SPEISER DH PT	51	601179
DANCY, E EVERETT REV PR C	62	300876	GOLDSMITH, A HIRSC DH PT	60	700930
ROUGH, F CHUBB, W VAP PR CL3	60	600610	HAMPSON, R WALKER ERES PT	61	700681
NOVIKOV, G BAEV, A	62	300686	BRIDGMAN, P ERES PT	61	400533
PHAS PR C SYST WARF, J PALENIK, G	60	600636	HOPKINS, M	67	601171

H PT			VAP PT		
KENDALL, WORR, R	62	601674	DREGER, L	62	300720
H PT RAMANATHAN, K SIRI	60	600697	VAP PT DREGER, L	61	300528
KIN PT	•••	800857	VAP PT .	٠.	300020
FRYBURG, G C PETRU MPP PT	61	700596	DREGER, L MARGRAVE VAP PT	60	600644
FRANCIS, A	62	301076	HAMPSON, R WALKER	61	700681
PHAS PT ORIANI, R JONES, T	54	600954	MPP PT BORIDES POLKOVNIKOV, B BAL	62	300964
PHAS PT GOLDSMITH, A HIRSC		700020	CRYS PT BORIDES	60	201349
PHAS PT	60	700930	ARONSSON, B STENBE CRYS PT B SYST	80	201349
HENNING, F WENSEL PHAS PT	33	900128	ARONSON, B ASELIUS PHAS PT B SYST	59	601166
ROESER, W CALDWELL	31	900135	HUBBARD, F	59	601213
PHAS PT ROESER, W WENSEL	35	900134	CRYS PT C SYST KONIG, H	51	600944
PHAS PT WENSEL, H ROESER	34	900133	THER PT O SCHICK, HANTHROP	62	300995
PHAS PT	34		CRYS PT O 2		
DAY, A SOSMAN, R PHAS PT	10	900137	GOCHE, O CRYS PT O 2	61	600943
MENDENHALL, C INGE	07	900143	SHISHAKOV, N	67	601121
PHAS PT JAFFEE, R MAYKUTH	60	201285	THER PT 0-2 ALCOCK, C-HOOPER	60	601161
REAC PT LACROIX, R	56	601037	DH PT3O 4 ARIYA, S MOROZOVA	53	600970
REAC PT	50	601037	THER PT OXIDES		
FRYBURG, G C PETRU REAC PT	61	700596	SHEWCHUCK, S CRYS PT O SYST	52	601252
BARTLETT, N LOHMAN	60	201810	BUSCH, R	50	600939
REV PT CHASTON, J	50	600941	REV PT O SYST BUSCH, R	51	600945
REV PT KLAUS, K	54	600973	THER PT O SYST SCHAFER, H TEBBEN	60	601159
SPK PT			DH PU AL SYST		
MOORE, C SPK PT	68	601088	AKHACHINSKIY, V KO VAP PU C	62	301104
KESSLER, K MEGGERS	54	600976	ANSELIN, F PASCARD	62	301126
SURF PT EOZAKEVITCH, P URB	61	201558	DH PU FE SYST AKHACHINSKIY, V KO	62	301104
TON PT KRISHMAN, K	54	601281	VAP PU N ANSELIN, F PASCARD	62	301126
REV PT			PHAS PUOUSYST		
BETTERIDGE, W RHYS	62	202003	PIJONOWSHI, D DELU VAP PULSE METHOD	60 [~]	600767
GERTSRIKEN, S TCON PT	62	301454	PROTOPOPOV, N KULG	61	300718
WHITE, G WOODS, S	67	601050			
THER PT SCHICK, HANTHROP	62	300995	R		
THER PT			••		
CARTER, W THER PT	61	601631	VAP RADIATION		
GOODWIN, T Ther PT	56	601547	ZIMAKOV, I SPITSYN Rev RARE EARTHS	61	300684
CARTER, W	62	300749	SPEDDING, F	62	301077
THER PT DOUGLASS, R HOLDEN	59	700375	CEMP RARE EARTHS SDAR, N	61	300233
TRT PT			CPL RARE EARTHS		
HENNING, F WENSEL TRT PT	33	900128	DREYFUS, B GOODMAN CRYS RARE EARTHS	61	300646
ROESER, W CALDWELL	31	900135	KOMKOV, A DH RARE EARTHS	59	201418
TRT PT ROESER, W WENSEL	36	900134	SEREBRENNIKOV, V	67	601131
TRT PT WENSEL, H ROESER	34	900133	MPP RARE EARTHS EFREMOV, N	54	600932
TRT PT			PHAS RARE EARTHS		
DAY, A SOSMAN, R TRT PT	10	900137	SAVITSKII, E LIVAN PREP RARE EARTHS	61	201889
MENDENHALL, C INGE	07	900143	LOVE, B	61	201690
DREGER, L MARGRAVE	60	200922	VEKSHINA, N MARKOV	61	201423
VAP PT HANLIN, H	60	700951	REAC RARE EARTHS CAMPBELL, T BLOCK	61	201328
VAP PT			REAC RARE EARTHS		
GOLDSMITH, A HIRSC	60	700930	PICON, M DOMANGE	60	200790

REAC RARE EARTHS			ERES R.E. BORIDES		
TEREKHOVA, V SAVIT REAC RARE EARTHS	60	200833	KLEBER, E	60	601450
REAC RARE EARTHS WARSHAW, I ROY, R		201000	MISC R.E. BORIDES		
REV RARE EARTHS	62	201808	PADERNO, Y FOMENKO	60	200933
WYLIE, A	50	400550	MISC R.E BORIDES SAMSONOV, G PADERN	61	300317
REV RARE EARTHS	•	400000	MPP R.E BORIDES	61	300317
QUILL, L L	50	400553	SAMSONOV, G	56	601255
8PK RARE EARTHS			MPP RE BORIDES		001200
BERGVALL, P HAGSTR	60	601341	NACHMAN, J LUNDIN	62	301539
SPK RARE EARTHS			MPP R E. BORIDES		
MOORE, C	63	301538	GAUME MAHN, F	56	601048
THER RARE EARTHS			PHAS R.E. BORIDES		
BERG, J	62	201562	KLEBER, E	60	601450
SPK RARE EARTHS			REAC R.E. BORIDES		
BIDELMAN, W	53	100193	KUDINSTEVA, G EPLB	55	601182
SPK RARE EARTHS			REAC RE BORIDES		
CONNICK, R SPK RARE EARTHS	49	400528	KLEBER, E REV R.E BORIDES	60	601450
TCHENG, MAO LIN	40		REV R.E BORIDES KLEBER, E	••	201450
SPK RARE EARTHS	49	400584	REV R.E BORIDES	60	601450
TCHENG, MAO LIN	50	400585	GAUME MAHN, F	56	601048
SPK RARE EARTHS	00	400088	BIB R.E CARBIDES	30	00.040
KNISELEY, R FASSEL	59	601191	KLEBER, E	60	601450
SPK RARE EARTHS			BIB RE CARBIDES		
HEORD, J F	50	400586	ANON	58	601561
SPK RARE EARTHS			DH RE CARBIDES		
SAKELLARDIS, P	55	600926	WENDLANDT, W GEORG	61	201275
SPK RARE EARTHS			CPH RE CARBIDES		
JORGENSEN, C	55	600928	ANON	57	601501
SPK RARE EARTHS			CRYS RE CARBIDES		
BURBRIDGE, G BURBR	55	600929	ANON	57	601501
SPK RARE EARTHS			CRYS RE CARBIDES		
SAKELLARIDIS, P	55	600979	VICKERY R	58	601532
BOOK RARE EARTHS			CRYS R E CARBIDES KLEBER, E		201450
SAVITSKII, E TEREK SPK RARE EARTHS	62	202129	CRYS R E. CARBIDES	60	601450
BOVEY, L STEERS, E	59	601100	PALENIK, G	60	200914
SPK RARE EARTHS	99	601190	CRYS RE CARBIDES	00	200914
ROSE, A BLANDIN, J	60	201807	SAMSONOV, G ZHURAV	60	600788
THER RARE EARTHS	•	201007	DF R E. CARBIDES		
EMLEY, E	52	100209	MCCABE, C L	60	700599
THER RARE EARTHS			ERES RE CARBIDES		
$\mathbf{BERG}_{+}\mathbf{J}$	62	300390	KLEBER, E	60	601450
THER RARE EARTHS			MPP R E. CARBIDES		
BAEV, A NOVIKOV, G	61	201410	GAUME MAHN, F	56	601048
VAP RARE EARTHS			MPP R.E CARBIDES		
WHITE, D	60	300307	SAMSONOV, G ZHURAV	60	600788
VAP RARE EARTHS			PHAS RE CARBIDES		
BEAVIS, L	60	701016	KLEBFH E REAC	60	601450
VAP RARE EARTHS			KLEBEK E	60	601450
TROMBE, F ERES RARE EARTHS	53	600960	REV RE CARBIDES	80	001450
VERESHCHAGIN, L	61	201570	KLEBER, E	60	601450
REV RARE METALS		201570	REV RE CARBIDES		001400
HAMPEL, C	54	600951	GAUME MAHN, F	56	601048
BIB RE BORIDES			SPK RE ELEMENTS		
KLEBER, E	60	601450	DIEKE, G CROSSWHIT	61	601406
CRYS RE BORIDES			SPK RE ELEMENTS		
KLEBER, E	60	601450	ELYASHEVICH, M	53	601413
CRYS R.E BORIDES			SPK RE IONS		
ZHDANOV, G ZHURALE	60	200835	JUDD, B	56	601027
REAC R.E. BORIDES			CRYS REIONS JUDD, B		
PADERNO, Y B SAMS	60	300134	BIB RE METALS	56	601027
REV R.E BORIDES			KLEBER, E	60	601450
PADERNO, Y B SAMSO	60	300134	BIB RE. METALS	80	001480
CRYS R.E. BORIDES	E 7	601107	SACHS, F	61	201059
NESHPOR, V SAMSONO CRYS R.E. BORIDES	57	601107	CEMP RE METALS		
NESHPOR, V SAMSONO	58	601116	HSIPEH-LIN, S	61	200972
CRYS R.E. BORIDES	00		CPH R.E METALS		
LAFFERTY, J	51	400549	MCKEOWN, J	58	601080
CRYS R.E. BORIDES			CRYS R.E. METALS		
EICK, H GILLES, P	69	601184	KLEBER, E	60	601460
CRYS R.E. BORIDES			CRYS R.E METALS		
EICK, H	58	601537	LADD, M LEE, W	61	601470
ERES R.E. BORIDES			CRYS R.E METALS		2010
SAMSONOV, V	61	700587	SAVITSKII, E TEREK	59	201067

CRYS R.E. METALS			ERES R.E. OXIDES		
BANISTER, J LEGVOL	53	600674	KLEBER, E	60	601450
CTEX R.E. METALS			ERES R.E. OXIDES		
BARSON, F	67	601318	NODDACK, I WALCH,H	59	601152
CTEX R.E. METALS		601057	MISC R.E. OXIDES		
BARSON, F LEGVOLD	67	601052	WESTRUM, E	60	600675
CTEX R.E. METALS		****	MSP R.E. OXIDES		
CHANDRASEKHAR, B	68	601098	PANISH, M	61	601409
CTEX R.E. METALS BARSON, F	56	601499	PHAS R.E. OXIDES		
1000110	96	001755	COLLONGUES, R	61	201212
SPEDDING, F HANAK	61	201087	PHAS R.E. OXIDES		
CTEX R.E. METALS	٠.	201007	WESTBROOK, J CARTE PHAS R.E. OXIDES	61	601449
BARSON, F LEGVOLD	53	601006	BONDAR, I		200007
DH R.E. METALS	-	• • • • • • • • • • • • • • • • • • • •	PHAS R.E. OXIDES	60	200937
SPEDDING, F EBERTS	59	601146	KLEBER, E	60	601450
ERES R.E. METALS			PHAS R.E OXIDES	00	001400
KLEBER, E	60	601460	BRAUER, G GRADINGE	54	600978
MPP R.E. METALS			REAC R.E. OXIDES		
SAVITSKII, E TEREK	59	201067	KLEBER, E	60	601450
PHAS R.E. METALS			REV R.E. OXIDES		
LADD, M LEE, W	61	601470	KLEBER, E	60	601460
PHAS R.E. METALS			THER R.E. OXIDES		
KLEBER, E	60	601450	JUSTICE, B	61	601421
REAC RE. METALS			THER R.E. OXIDES	2.	
KLEBER, E	60	601450	WHITE, D WALSH, P	62	601612
REV R.E METALS SAVITSKII, E		201205	THER REOXIDES WESTRUM, E JUSTICE		201151
REV R.E. METALS	61	201206	THER R.E. OXIDES	62	601454
KLEBER, E	60	601460	WHITE, D	60	601377
REV R.E. METALS	-	001400	THER RE OXIDES	•	001377
AVGUSTINIK. A	63	301401	WESTRUM, E	60	600675
REV R.E METALS			THER REOXIDES		
SACHS, F	61	201059	BREWER, L	52	601244
SPK R.E METALS			TRT RE OXIDES		
PRANDTL, W	49	601408	WARSHAW, I ROY, R	61	201358
SPK R.E. METALS			VAP RE OXIDES		
ANON	59	601352	WHITE, D WALSH, P	62	601612
SPK R E. METALS			VAP REOXIDES		
BURBRIDGE, E THER R.E. METALS	57	601103	HASAPIS, A MELVEGE VAP R E OXIDES	61	701039
MCKEOWN, J	58	601080	KULVARSKAYA, B MAS	60	300399
VAP R.E. METALS		001080	VAP RE OXIDES	00	300399
ANON	58	601524	SHCHUKAREV, S SEME	61	300653
VAP R.E METALS			VAP RE OXIDES	-	
ANON	57	601308	WHITE, D	60 :==	601377
CRYS RE METALS			VAP RE OXIDES		
WARSHAW, I	61	201155	PANISH, M	61	601409
PHAS R.E. METALS			VAP R.E OXIDES		
WARSHAW, I	61	201156	WALSH, P N GOLDSTE	60	700566
MPP RE. NITRIDES	4.		MPP RE		
GAUME-MAHN, F	56	601048	ZEIDLER, E KRAUT	62	301627
MPP R.E. NITRIDES LAVALLE, D		201517	MPP RE		
MPP R.E. NITRIDES	62	301517	KOPETSKIY, CH MPP RE	62	301270
NACHMAN, J LUNDIN	62	301539	SAVITSKII, E	62	301344
REV R.E NITRIDES		JU. 0JJ	ERES RE	54	301344
GAUME-MAHN, F	56	601048	PIPPIĠ, E	61	201599
BIB R.E OXIDES			BIB RE	•	
KLEBER, E	60	601450	WOHLL, M	60	700723
CPL R.E. OXIDES			COPT RE		
WESTRUM, E JUSTICE	62	601454	BATSANOUA, L GRIGO	62	201752
CPL R.E. OXIDES			CPH RE		
JUSTICE, B	61	601421	FINCH, R	61	700547
CRYS R.E OXIDES			CPH RE		
KLEBER, E CRYS R.E. OXIDES	60	601450	BLANPAIN, R	61	300349
JUSTICE, B	61	601421	CPH RE TAYLOR, R		201250
CRYS R.E. OXIDES	91	001421	CPL RE	61	201250
MOZZI, R GUENTERT	62	300803	FINCH, R	81	700547
CTEX R.E. OXIDES		30000	CPL RE		
STECURA, S CAMPBEL	61	201271	BLANPAIN, R	61	300652
CTEX R.E. OXIDES			CPL RE	- •	
BROWN, W KIRCHNER	61	601430	TAYLOR, R	61	201250
ERES R.E. OXIDES			CRYS RE		
HARTMANN, W	36	601519	LAWLEY, A	60	200801
ERES • R.E. OXIDES			CRYS RE		
NODDACK, W WALCH	59	601124	FRANTSEVICH, I SHI	62	300613

CRYS RE					
FENG, C	62	201618	THER RE COMPOUNDS		
CRYS RE		201018	MCDONALD, J Phas RE C	62	300664
GLADYSHEVSKII, E TY	60	201564	NADLER, M KEMPTER	60	300301
CRYS RE MATYUSHENKO, N			REAC RE CL6		
ERES RE	62	301150	COLTON, R SPK RE F 6	62	201684
FINCH, R	61	700547	CLAASSEN, H MALM	62	201855
ERES RE			REAC REF6		
TAYLOR, R Misc RE	61	201250	NIKOLAEV, N IPPOLI REAC RE I	61	201575
HAMPEL, C	61	200889	FERGUSSON, J ROBIN	62	201686
MPP RE			PHAS RE HF SYST		
PORT, J Phas RE	60	700976	TAYLOR, A KAGLE, B	63	301000
SAVITSKII, E TYLKI	62	301574	LEVESQUE, P	61	201149
PHAS RE			THER RE O		
SAVITSKII, E TYLKI PHAS RE	63	301575	SCHICK, H ANTHROP CRYS RE O 2	62	300995
JAFFEE, R MAYKUTH	60	201285	DESCHANVRES, A	59	600848
PMCH RE		20.200	PHAS RE O 2		
PORT, J	60	700976	COEFFIR, G TRHORE TRY RE O 2	61	700648
REAC RE CAMPBELL, I ROSENB	59	200867	COEFFIER, G TRAORE	61	700648
REAC RE		20007	VAP RE O 2		
FRANTSEVICH, I LAV	59	200869	DEEV, V SMIRNOV, V CRYS RE O 3	61	301108
REAC RE THOMPSON, R	61	201058	CRYS RE O 3 DESCHANVRES, A	59	600848
REAC RE	٠.	201055	VAP RE O 3		
LOVE, B KLEBER, E	61	201733	DEEV, V SMIRNOV, V CRYS RE2O 7	61	301108
REV RE GONSER, B	62	301459	CRYS RE20 7 DESC'IANVRES, A	59	600848
REV RE	02	301489	THER RE2O 7		
WOHLL, M	60	701053	SCHICK, HANTHROP REAC RE OXIDE	63	301579
REV RE WOOLF, A	61	201232	COLTON, R	62	201683
REV RE	٠.	20.232	CEMP REFRACTORIES		
LEBEDEV, K	60	300828	LASHKAREV, G SAMSO CEMP REFRACTORIES	62	300565
REV RE BOLES, S	62	201859	KISLY, P SAMSONOV	61	300496
REV RE			COPT REFRACTORIES		
TYLKINA, M POVAROV SPK RE	61	201915	SEREBRYAKOVA, TIP CPH REFRACTORIES	60	300136
TREES, R	61	701067	WALKER, B EWING, C	62	301015
SPK RE			MPP REFRACTORIES		200000
ROSENZWEIG, N PORT SPK RE	60	700996	SAMSONOV, G KOVALC REAC REFRACTORIES	61	300985
ROSENZWEIG, N PORT	60	700901	MAY, C KONEVAL, D	61	700686
SPK RE			REAC REFRACTORIES SAMSONOV, G UMANSK	62	201726
MOORE, C SPK RE	68	601088	REV REFRACTORIES	02	201726
STUDIER, M	62	201608	KIEFFER, R BENESOV	63	301497
THEO RE			REV REFRACTORIES DEWTSCH, G AULT, G	62	301434
ROSENZWEIG, N PORT	60	700996	REV REFRACTORIES	-	301434
ROSENZWEIG, N PORT	60	700901	SAMSONOV, G	62	300981
THER RE		2000	REV REFRACTORIES KIEFFER, R BENESOV	63	301261
SCHICK, HANTHROP THER RE	62	300995	BOOK REFRACTORIES		
WOOLF, A	61	201232	SAMSONOV, G	63	301342
THER RE		200012	REV REFRACTORIES STORMS, E	62	301023
KING, J MPP RE ALLOYS	60	200813	THEO REFRACTORIES		
SAVITSKY, Y TYLKINA	58	900230	BUDNIKOV, P BEREZH THER REFRACTORIES	63	900219
PHAS RE AL SYST		200825	HOCH, M	61	700661
SAVITSKII, E TYLIN CRYS RE3B	61	300835	VAP REFRACTORIES		
ARONSSON, B BAECKM	60	201482	HASAPIS, A PANISH THER REFRACTORY BO	60 30130	201939
CRYS RE3B	60	201382	BREWER, L HARALDSE	55	600987
ARONSSON, B BECKMA CRYS RE B 2	80	201302	MSP REFRACTORY M.	ATS	
LAPLACA, S PORT, S	62	300518	INGHRAM, M spk REFRACTORY M.	00 2TA	300303
CAYS RE BE22	62	201879	INGHRAM, M	60	300303
SANDS, D JOHNSON CRYS RE BORIDES	UZ		THER REFRACTORY M.		
ARONSSON, B STENBE	60	201349	INGHRAM, M CTEX REFRACTORY M	60 Etals	300303
CRYS RE BORIDES SAMSONOV, G PADERN	69	201621	BESSERER, C	68	700929
DAMBONOT, O LADDINA	30				

MPP REFRACTORY M	PTAIS		TCON RH		
BESSERER. C	58	700929	POWELL, R TYE, R	56	601000
PHAS REFRACTORY M			THER RH	00	601082
MURPHY, A KENNEDY	60	701041	SCHICK, H ANTHROP	62	300995
PMCH REFRACTORY M			THER RH	V 2	300996
MURPHY, A KENNEDY	60	701041	KEMP, W KLEMENS, P	59	601205
REV REFRACTORY M			REV RH	-	00.205
MURPHY, A KENNEDY	60	701041	BETTERIDGE, W RHYS	62	202003
REV REFRACTORY M			THER RH	-	101003
NORTHCOTT, L	61	700582	DOUGLASS, R HOLDEN	69	700375
TCON REFRACTORY M			TRT RH	-	,00376
BESSERER, C	58	700929	ORIANI, R JONES, T	54	600954
PHAS RE TA SYST			TRT RH	-	000984
KAUFMANN, A R RAPPR	61	3002 (8	MCCALDIN, J DUWEZ	54	600956
PHAS RE V SYST			TRT RH	-	000306
TYLKINA, M POVAROV	60	200935	ROESER, W WENSEL	34	900141
PHAS REWCSYST			TRT RH		555.41
HAVELL, R BASKIN	61	201235	MENDENHALL, C INGE	07	900143
VAP REX			VAP RH		
SHIMAZAKI, E NIWA	62	201603	DREGER, L	62	300720
VAP RE X			VAP RH		
MALM, J SELIG, H	61	201502	DREGER, L MARGRAVE	61	201500
CEMP RH			VAP RH		
WHITE, G WOODS, S	57	601060	HASAPIS, A PANISH	60	700994
СРН RH			VAP RH		
DOUGLASS, R HOLDEN	69	700375	BABELIOWSKY, T	62	300858
CPH RH			VAP RH		
JAEGER, F	31	900139	DREGER, L	61	300528
CPL RH			VAP RH		
JOHNSON, R HUDSON	56	601039	DREGER, L MARGRAVE	60	600643
CPL RH			VAP RH		
BORELIUS, G	60	601168	PANISH, M REIF, L	61	700639
CRYS RH			VAP RH		
BALE, E	58	601083	HAMPSON, R WALKER	61	700681
CRYS RH			CRYS RH B SYST		
MCCALDIN, J DUWEZ	54	600956	ARONSON, B ASELIUS	59	601166
CRYS RH			VAP RH CL SYST		
THOMPSON, J	62	201648	BELL, W TAGAMI, M	62	201476
DH RH			СРН КНО		
PANISH, M REIF, L	61	700639	WOHLER, L JOCHUM	33	900124
DH RH			DH RHO		
HAMPSON, R WALKER	61	700681	WOHLER, L JOCHUM	33	900124
ERES RH			DH RHO		
CHASTON, J	62	300577	WOHLER, L MULLER	25	900140
ERES RH			THER RH O	. ***	
PRICE, E TAYLOR, B	62	601473	SCHICK, HANTHROP	62	300995
ERES RH BRIDGMAN, P			THER RH O 2		
	51	400533	ALCOCK, C HOOPER	60	601161
ERES RH KEMP, W KLEMENS, P		801005	CPH RH2O		
MPP RH	59	601205	WOHLER, L JOCHUM	33	900124
EREMENKO, V NAIDIC		200520	DH RH2O		
MPP RH	61	300529	WOHLER, L JOCHUM	33	900124
FRANCIS, A		201076	WOHLER, L MULLER	25	000140
PHAS RH	62	301076	CPH RH2O 3	25	900140
MENDENHALL, C INGE	07	900143	WOHLER, L JOCHUM	33	900124
PHAS RH	• ,	300173	DH RH2O 3	33	JUU 124
ROESER, W WENSEL	34	900141	WOHLER, L JOCHUM	33	900124
PHAS RH	•		DH RH2O 3	••	300.24
RAUB, E BEESKOW, H	59	201473	WOHLER, L MULLER	25	900140
REV RH	•••	201470	THER ROCKET ENGINES		300.40
SANDERSON, L	61	300377	NIKOLAYEV, B	60	400615
SPK RH			COPT RU	•	
MURPHY, R	52	600946	DOUGLAS, R W ADKIN	61	700614
SPK RH			CRYS RU		
SANCHO, F	58	601092	LAWLEY, A	60	200801
SPK RH			CRYS RU		•
SHADMI, Y	61	700954	MCCALDIN, J DUWEZ	54	600956
SPK RH		-	CRYS RU		
SANCHO, F	58	601091	THOMPSON, J	62	201648
SPK RH			MPP RU		
MOORE, C	58	601088	FRANCIS, A	62	301076
SPK RH			PHAS RU		
NORRIS, J	60	601194	DOUGLAS, R W ADKIN	61	700614
SPK RH			SPK RU		
CATALAN, M RICO, F	57	601206	TREE3, R	61	701067
TCON RH			SPK RU		
WHITE, G WOODS, S	57	601050	SHADMI, Y	61	700954

SPK RU			CPL SC		
MOORE, C	58	601088	WELLER, W KELLEY	62	700704
MARGRAVE, J	61	700967	CRYS SC MARDON, P NICHOLS		
THER RU ZOUBOV, N POURE	BAIX 58	601076	CRYS SC	61	701025
TRT RU MCCALDIN, J DUV			SPEDDING, F DAANE CRYS SC	56	700703
VAP RU	WEZ 54	600956	HERRMANN, K DAANE	55	700905
PAULE, R VAP RU	61	601479	ERES SC COLVIN, R ARAJS, S	63	301035
HASAPIS, A MEL	VEGE 61	701039	ERES SC MARDON, P NICHOLS	61	701025
VAP RU MARGRAVE, J	61	700967	MPP SC		
VAP RU PANISH, M REIF	, I. 62	300721	MARDON, P NICHOLS MPP SC	61	200987
CRYS RUBS	YST		SPITSYN, V KOMISSA MPP SC	61	300370
KEMPTER, CFR CRYS RUBS		701050	BORISENKO, L MPP SC	61	300447
ARONSON, B ST		300757	SPEDDING, F DAANE	60	700713
KEMPTER, C FR	HES 61	201103	HILLER, M	60	700738
MPP RUBS BUDDERY, JWE	ELCH 51	600940	PHAS SC BEAUDRY, B DAANE	62	300573
PHAS RUBS ROOF, R KEMPT		300988	PHAS SC FISCHER, W BRIINGE	37	700765
PHAS RUBS OBROWSKI, W		301545	REAC SC		
CRYS RUC			SPITSYN, V KOMISSA REV SC	61	300370
KEMPTER, C NA		701010	SANDERSON, L Rev SC	61	300376
KEMPTER, C NA	ADLER 60	201024	STRUAT K WEIK, H	60	601167
KEMPTER, C NA	ADLER 60	201024	VICKERY, R REV SC	60	601173
NADLER, M KFI	MPTER 60	300301	LOVE, B	60	700735
ALCOCK, C HOO DH RU 0 2	PER 60	601161	GEISELMAN, D SPK SC	62	201941
SCHNEIDEREIT DH RU O 2	TI, G 62	301582	ROSENZWEIG, N PORT	60	700996
SCHAEFER, H SC SPK RU O 4	CHNEI 63	301677	MERRILL, P GREENST SPK SC	56	601007
ORTNER, NANI	DERSON 59	701066	GARSTANG, R SPK SC	52	100207
ORTNER, N ANI	DERSON 69	701066	WRIGHT, K	48	100212
THER RU 0 4 ZOUBOV, N POU	RBAIX 68	601076	SPK SC SKINNER, H	55	700761
TRT RUO4 NIKOLSKII	63	301541	SPK SC ROSENZWFIG, N PORT	60	700901
THER RU OXI		701066	THEO ST ROSENZWEIG, N. PORT	60	700996
VAP RU OXI ORTNER, N ANI		701066	THEO SC ROSENZWEIG, N PORT	60	700901
PHAS RU RE RUDY, E KIEFFI			TRT SC BEAUDRY, B DAANE	62	
PHAS RURE			1RT SC		
SAVITSKII, E TY PHAS RUTA		201531	FISCHER, W BRIINGE VAP SC	37	700765
KAUFMANN A F		300218	KARELIN, V NESMEYA VAP SC	62	300362
KAUFMANN A F	R RAPPR 61	300218	BEAVIS, L VAP SC	60	600659
			ACKFRMANN, R RAUH VAP SC	62	700840
	S		KARELIN, V NESMEYA	62	601594
			BEAVIS, L	60	701016
VAP SC KRIKORIAN, O	63	301284	VAP SC ACKERMANN, J RAUH	62	700909
CEMP SC MICHAELSON, F	i 50	400529	THER SC VASILEV, V ZOLOTAR	69	700823
CPH SC MARDON, P NIC	HOLS 61	701025	CEMP SC B 2 KUDINTSEVA, G NESH	62	301514
CPL SC MONTGOMERY,	H PELL 61	601447	CEMP SC B 2 SAMSONOV, G FOMENT	K 63	202128
CPL SC LEBEDEV, V	48	700702	CRYS SC B 2 ZHURAVLEV, N STEPA	58	
	40				

MPP SC B 2					
SAMSONOV, G	61	700728	CPL SI KEESOM, P H PEARLM	52	300170
TRT SC B 2 SAMSONOV, G	61	700728	CPL SI		
PHAS SC B 6		700728	PEARLMAN, N KEESOM CPL SI	52	300171
PRZYLYLSKA, M REDD PHAS SC BE13	63	300962	FLUBACHER, P LEADB	59	300391
LAUBE, E NOWOTNY	62	201760	CPL SI SHARAN, B SINGH, S	60	600654
SURF SC BORIDES FOMENKO, V	61	201420	CRYS SI GETTE, E FOOTE, F	35	700510
MISC SC C			DHT SI		
NOWOTNY, H ABER-WE	61	700651	DAVIS, S ANTHROP ERES SI	61	701009
SAMSONOV, G MAKAVE PHAS SC C	62	700744	GOLDSMITH, A HIRSC	60	700930
AVER-WELSBACH, H	61	201175	H SI GOLDSMITH, A HIRSC	60	700930
CRYS SC F 3 AKISHIN, P NAURMOV	61	201201	KIN SI CHAPMAN, A	60	200810
SPK SCF3			MSP SI	80	200810
AKISHIN, P NAURMOV THER SC ION	61	201201	KOYLOVSKAYA, V MSP SI		301103
VASILEV, V ZOLOTAR	69	700823	LOWRIE, R	60	701014
MPP SC N FRIEDERICH, E SITT	25	700766	PHAS SI BEREZHNOI, A KORDY	62	201553
REAC SC N LYUTAYA, M BUKHANE	62	301528	PHAS SI		200447
CRYS SC O	02		GELD, P GERTMAN, Y REV SI	60	300417
VICKERY, R SEDALEK F SC O	59	700707	BEREZHNOI, A SPK SI	61	201469
BREWER, L CHARDRAS	59	700721	ELYASHEVICH, M NIK	56	301090
REAC SC O MASSONNE, J	61	201425	SPK SI SHENSTONE, A	61	700636
SPK SC O		200611	SPK SI		
AKERLIND, L SPK SC O	62	300611	NIKITINA, O SPK SI	61	200818
AKERLIND, L SPK SC O	61	700635	HOLMES, J HOOVER	62	300822
BERG, R SIMANOGLN	60	301089	TCON SI GOLDSMITH, A HIRSC	60	700930
DH SC2O 3 HUBER, E FITZG1BBO	63	301246	TCON SI HOLLAND, M	61	201289
DH SC2O 3			THER SI	٥.	
HUBER, E FITZGIBBO CEMP SC2O 3	63	202057	CHERKASKIN, Y GLAD THER SI	57	301107
MORIN, F CPL SC2O 3	68	700710	SCHICK, H ANTHROP	63	300994
WELLER, W KING, E	63	301617	THER SI SULLIVAN, R SEIBEL	60~~	701038
CRYS SC2O 3 MILLIGAN, W VERNON	63	700756	THER SI WILLIAMS, N.N.	61	700659
DH SC2O 3			TRT SI	٠.	
HUBER, E HOLLEY, C DH SC2O 3	62	700704	WENTORF, R KASPER TRT SI	63	301620
MAH, A PHAS SC2O 3	62	700705	KANTOR, P KISIL, O	60	300274
PHAS SC2O 3 BARTA, C PETRU, F	58	700725	VAP SI KOSENKO, V NESTERE	61	600847
REAC SC2O 3 SPEDDING, F POVELL	58	700757	VAP SÍ ROTH, E MARGERUM		200070
THER SC2O 3			VAP SI	62	300970
KUBASHEVSKI, O EVA TRT SC2O 3	56	700829	POPPER, P VAP SI	60	601632
BARTA, C PETRU, F	58	700725	LOWRIE, R	60	701014
THEO SEMICONDUCTOR HARVEY, W	63	202047	VAP SI DAVIS, S ANTHROP	61	701 009
SII IVAN DEEDEL	40	704000	VAP SI		
SULLIVAN, R SEIBEL CEMP SI	60	701038	HANLIN, H CRYS SI	60	700951
SAMSONOV, G NESHPO COPT SI	69	201052	JAMIESON, J	63	202062
GOLDSMITH, A HIRSC	60	700930	VAP SI ZADUMKIN, S	59	300284
CPH SI GOLDSMITH, A HIRSC	60	700930	VAP SI TSEPLYAEVA, A PRIS	60	300400
CPH SI			8PK Si+++		
KANTOR, P KISIL, O VAP SI	60	300274	TORESSON, Y SPK SI2	60	200804
DROWART, J DEMARIA	59	301212	VERMA, R WARSOP, P	63	301032
SHARAN, B SINGH, S	60	600654	FEIGELSEN	62	301446
CPH SI WILLIAMS, N N	61	700659	REAC SI B 6 FEIGELSEN	62	301446
	٥.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a Davidianilla	-2	301740

MPP SI B SYST WEBER, B RIZZO, H	63	202159	VAP SI C DROWART, J DEMARIA	60	200770
PHAS SI B SYST * SAMSONOV, G SLEPTS	62	301341	THER SIC GRIEVESON, PALEOC	60	301060
PHAS SI B SYST			CRYS SI C		
ANON VAP SIBSYST	60	701015	JAGODZINSKI, H ARN KIN SI C	60	200898
ANON REAC SIBSYST	60	701015	JORGENSEN, P KIN SI C	60	200924
BROSSET, C MAGNUSS MPP SI B SYST	60	200932	JORGENSON, P WADSW	60	200772
NOETH, H HOELLERER	62	301542	DF SI C KIRKWOOD, D K CHIP	61	700634
BIB SI B SYST SULLIVAN, R SEIBEL	60	701038	CRYS SI C KRISHNA, P VERMA	61	701058
THER SI B SYST SULLIVAN, R SEIBEL	60	701038	SPK SI C OVCHARENKO, I TUNI	60	600778
KIN SI B SYST WILLIAMS, E	61		THER SIC POPPER, P	60	
PHAS SI B C SYST		300260	COPT SI C	ьо	601632
KALINIAN, A SHAMRA VAP SI C	60	301267	SAMSONOV, G PENKOV CPL SI C	61	300800
DROWART, J DEMARIA	59	301212	SHMIDT, N SOKOLOV	60	201590
VAP SI C FESENKO, V BOLGAR	63	301216	DF SLC SMILTENS, J	60	301059
CEMP SI C HORI, J	62	301478	DH SI C SMILTENS, J	60	200771
CRYS SI C			THER SIC		
KNIPPENBERG, W HAS CRYS SI C	62	301265	SMILTENS, J VAP SI C	60	200771
KRISHNA, PVERMA	63	301287	SMILTENS, J	60	200771
REIN, R CHIPMAN, J	63	301327	ZKP SLC SMILTINS, J	60	200771
DHD SLC STEELE, W NICHOLS	62	301596	BIB SI C SULLIVAN R SEIBEL	60	701038
MPP SIC KAMAMURA THAYASH	62	301492	THER SIC SULLIVAN, R SEIBEL	60	701038
REV SI C DOBROLEZH, S ZUBKO	63	301437	CRYS SI C TAYLOR, A JONES, R	60	200776
TCON SI C			CTEX SI C		
BOSCH, G COPT SI C	61	201505	TAYLOR, A JONES, R CRYS SI C	60	200776
BRESKER, R VORONIN CRYS SI C	69	300799	TOMITA, T Theo SI C	60	600801
TOMITA, T REV SI C	60	600801	TSERTSVADZE, A TCH SPK SI C	62	300583
BROWN, A	60	701044	VIDALE, G	60	201616
TRT SIC WHITNEY, E	63	202160	VAP SI C VIDALE, G	60	201616
CRYS SIC MERZ, K ADAMSKY, R	60	202103	MPP SIC VORONIN N	61	301007
VAP SIC			срн 5 С		
HONIG, R Mpp SI C	62	202055	WALKER 'S EWING, C PHAS SI C	62	301098
KIRCHNER, H KNOLL CRYS SI C	63	202069	YASUDA, S THER SI CARBIDES	62	300581
KRISHNA, P VERMA	63	202084	SAMSONOV, G DH SI CARBIDES	59	201343
BAUER, J FIALA, J	63	201998	DROEGE, J	60	201160
REV SIC CHADWICK, U	63	202015	PHAS SI C SYST SEARCY, A FINNE, L	62	201874
DH SLC DAVIS, S ANTHROP	61	701009	PHAS SIC SYST DOLLOFF, R	60	700989
DHT SI C	61	701009	PHAS SIC SYST DOLLOFF, R	60	600662
DAVIS, S ANTHROP VAP SI C			REAC SI C SYST		300919
DAVIS, S ANTHROP DH SI C	61	701009	KUHN, W DH SIC SYST	63	
DENTREMONT, J CHIP REAC SI C	63	300841	SCACE, R SLACK, G PHAS SI C SYST	60	200768
POCH, W DIETZEL, A	62	202119	SCACE, R SLACK, G PHAS SI C O SYST	60	200768
REAC SI C DIETZEL, H JAGODZI	60	700676	KRIVSKY, W SCHUMAN	61	300459
THER SI C DIETZEL, H JAGODZI	60	700676	MPP SILICATES LIPMAN, R	59	400596
DH SI C DROWART, J DEMARIA	60	200770	MPP SILICIDES SAMSONOV, G	59	202126
THER SIC			CRYS SILICIDES NESHPOR, V SAMSONO		
DROWART, J DEMARIA	60	200770	MESHFUR, V SAMSUNU	62	202108

CRYS SILICIDES			CD1		
LUNDIN, C	61	202089	CPL SI O 2 WESTRUM, E	60	701021
CPH SILICIDES			CRYS SI O 2	•	,01021
GELD, P KRENTSIS CRYS SILICIDES	63	202037	SCLAR, C CARRISON CRYS SI O 2	62	301584
GLADYSHEVSKII, E	63	202040	CRYS SI O 2 FLOERKE, O	62	301449
CRYS SILICIDES			CRYS SI O 2		
NESHPOR, V DH SILICIDES	61	300792	ANIKINA, I. CRYS SI O 2	62	301173
GOLUTVIN, Y	62	300567	ARNOLD, H	62	301175
MPP SILICIDES			MPP SI O 2		
SAMSONOV, G PHAS SILICIDES	59	400619	NAGARJAN, G REAC SI O 2	63	202106
PORTNOY, K	60	700944	LEONOV	61	301522
REV SILICIDES			SPK SIO2		
SAMSONOV, G CRYS SILICIDES-PT M	62 ET	300989	SODA, R THER SIO 2	62	301591
ARONSSON, B RUNDQV	61	300504	SCHICK, HANTHROP	63	301580
CRYS SI N BORGEN, O SEIP, H	61	201514	THER SIO2 SCHICK, H		202420
SPK SI N	0.	201014	CRYS SIO 2	60	202130
STEVENS, A FERGUSO	63	202143	SMITH, G ALEXANDER	63	202139
REAC SIN HENGGE, E	62	201759	CRYS SIO2 SMITH, G	63	202140
VAP SI3N 4			MPP S1 O 2	0.5	202140
FESENKO, V BOLGAR REV SI3N 4	63	301216	STEPIN, B	63	202142
RABENAU, A	63	301324	REAC SI O 2 KAY, D TAYLOR, J	63	202066
CTEX SI3N 4			REAC SI O 2		
IWAI, S YASUNAGA THER SI NITRIDES	59	700684	KOMATSU, N GRANT PHAS SI O 2	62	202077
SAMSONOV, G	59	201343	BEREZNOL A GULKO	61	202002
ERES SIN SYST			TRT SIO2	-00	
SAMSONOV, G PHAS SIN SYST	61	601585	SCLAR, C CARRISON TRT SI O 2	62	301585
SAMSONOV, G	61	601585	CHAKLADER, A	63	301425
DF SIO WHATLEY, L	62	201679	TRT SI O 2 CHAKLADER, A		
DH SIO	62	2010/5	TRT SIO2	63	301426
BERGMAN, G MEDVEDE	59	300674	CHAKLADER, A	63	301201
DH SI O BERGMAN, G MEDVEDE	59	300674	PHAS SI O 2 DACHILLE, F ROY, R	59	301210
Map SIO			CPH SI O 2		
fORK, D PHAS SIO	63	301019	MITKINA, E TRT SIO 2	60	301306
BREWER, L MASTIK	49	601634	SEMENCHENKO, V	6 104	301349
PHAS SI O BRCIC, B GOLIC, L	62	201636	CRYS SIO 2		
PHAS SI O	62	201636	STISHOV, S BELOV DH SI O 2	62	301363
CHAPMAN, A ST PIER	60	301427	WISE, S MARGRAVE	63	301381
REAC SI O EMONS, H BOENICKE	62	300562	CPL SI O 2 CLARK, A STRAKNA	62	300580
REAC SI O	U.	300302	CRYS SI O 2	62	300560
WHITE, P	62	300732	EMONS, H BOENICKE	62	300562
SPK SI O NICHOLLS, R	62	601625	CRYS SI O 2 HOLMQUIST, S B	61	700517
SPK SI O			CRYS SI O 2		
NICHOLLS, R SPK SI O	62	300698	PREISINGER, A CRYS SI O 2	62	300963
MCGREGOR, A NICHOL	61	300475	TROMEL, G KRISEMEN	59	700690
SPK SIO		201401	CRYS SIO 2		
JAMES, T SPK SI O	63	301481	STISHOV, S POPOVA DH SI O 2	61	201716
JAMES, T	63	301252	WISE, S	62	300741
SPK SIO	5.4	600896	OOD W	• 2	200204
BARROW, R ROWLINSO SPK SI O	54		GOOD, W DH SIO2	62	300394
ROWLINSON, N	53	600916	COCHRAN, C FOSTER	62	300395
SPK SI O VERMA, R MULLIKEN	61	700637	DH SI O 2 WISE, S MARGRASE	62	300396
THER SI O			DHT SIO2		
RAMSTAD, H F RICHA THER SI O	61	300188	MACKENZIE, J D EMF SI O 2	60	300139
THER SLO RAMSTAD, H RICHARD	61	300339	EMF SI O 2 BENZ, R WAGNER, C	61	700640
THER SI O		204570	F SI O 2		201252
SCHICK, H ANTHROP THER SI O	63	301579	CHIPMAN, J KIN SI O 2	61	201050
RAMSTAD, H RICHARD	61	300458	AINSLIE, N MACKENZ	61	600837

MPP SI O 2 GREBENSHCHIKOV, R	60	200973	DH SM SAVAGE, W HUDSON	59	601126
PHAS SIO 2	•		ERES SM		
GIELISSE, P PHAS SI O 2	62	201740	OLSEN, C ERES SM	60	601336
ARAMAKI, S ROY, R	62	201695	ALSTAD, J COLVIN	61	201099
PHAS SI O 2 TROMEL, G KRISEMEN		70000	SPK SM DREYFUS, B GOODMAN	61	601417
PHAS SI O 2	59	700690	SPK SM	٠.	001417
MORIYA, Y		201363	SCHWARZSCHILD, M	57	601047
PHAS SIO 2 KHLAPOVA, A	62	301146	SPK SM BURBRIDGE, E BURBR	55	601003
PHAS SIO 2			SPK SM	62	300777
KHLAPOVA, A PHAS SI O 2	61	201848	SMITH, K SPALDING SPK SM	62	300777
TOROPOV, N GALAKHO	61	201965	GARSTANG, R	52	100207
REAC SI O 2 KAY, D TAYLOR, J	60	300131	SPK SM MCNALLY, J	52	100211
SPK SI O 2			SPK SM		400407
MARKIN, E SOBOLEV SPK SI O 2	60	200979	SMITH, D MCNALLY SPK SM	50	100197
SODA, R	61	201302	BRIX, P	49	400527
TCON SLO 2 WRAY, K CONNOLLY	59	600620	SPK SM BRIX, P KOPFERMANN	49	400543
THER SLO 2	03	000020	SPK SM		
KAY, D TAYLER, J	60	300131	GRATTON, L SPK SM	52	400567
TRT SLO 2 BOYD, F ENGLABD, J	63	301193	BRIX, P KOPPERMAN	52	400574
THER SIO 2			SPK 5M BODMER, A	54	600936
MACKENZIE, J D THER SI O 2	60	300139	SPK SM	54	000336
RAMSTAD, H RICHARD	61	300339	STRIGANOV, A KATUL	62	601468
VAP SI O 2 NESMEYANOV, A FIRS	60	200953	SPK SM MURAKAWA, K	54	600958
VAP SIO 2			SPK SM		
FIRSOVA, L NESMEYA	60	701004	DIEKE, G SARUP, R SPK SM	62	201718
FIRSOVA L NESEMEY	60	200761	FEDOFILOY, P KAPLY	62	201755
PHAS SI2O 3 DADAPE, V MARGRAVE	62	300551	THER SM SPEDDING, FH MCKE	60	700570
PHAS SI2O 3	02	300301	TRT SM		
CREMER, E FAESSLER SURF SLOXIDES	69	201034	ANON VAP SM	63	601502
SURF SLOXIDES LEPINSKIKH, B	60	201215	ANON	56	601319
VAP SLOXIDES	60	201020	VAP SM SAVAGE, W HUDSON	59	601126
FIRSOVA, L NESMEYA VAP SI OXIDES	80	201020	PHAS SM B 4		
NESMEYANOV, A FIRS	59	201019	GALLOWAY, G REAC SM B 4	62	701078
PHAS SLO SYST FLOERKE, O	61	301220	GALLOWAY, G	62	701078
MPP SLO SYST		200500	CEMP SM B 6 SAMSONOV, G PADERN	59	300143
APPEN, A KAIALOVA THEO SI O SYST	62	300589	ERESM B 6	03	
VORONKOV, M	61	301004	PADERNO, Y SAMSONO PHAS SM B 6	61	301072
CPH SLV SYST GOLUTVIN, Y KOZLOV	62	300568	GALLOWAY, G	62	701078
SPK SIMPLE MOLEC			REAC SM B 6 SAMSONOV, G ZHURAV	59	201758
DOUGLAS, A	55	600678	CRYS SM B SYST	33	201700
ARAJS, S COLVIN, R	62	300751	ANON CRYS SM N	61	601376
CPH SM JENNINGS, L HILL	59	601197	CRYS SM N EICK, H BAENZIGER	56	601046
CPL SM			ERES SM N DIDCHENKO, R GORTS		201425
DREYFUS, B GOODMAN CPL SM	61	601417	PHAS SM N	63	301435
CPL SM ROBERTS, L	57	601089	EICK, H BAEN ZIGER	56	601046
CPL SM	62	300780	REAC SM N EICK, H BAENZIGER	56	601046
LOUNASMAA, O CRYS SM	02	550750	REAC SM NITRIDES		
DAANE, A RUNDLE, R	63	601215	EICK, H CRYS SM O	67	601053
CRYS SM DAANE, A RUNDLE, R	54	601230	ELLINGER, F ZACHAR	53	600947
CRYS SM		400047	VAP SM O KULVARSHAYA, B MAS	60	301064
ELLINGER, F ZACHAR DH SM	53	600947	SPK SM2		
HUBER, E	66	601272	BURBRIDGE, G BURBR CPH SM2O 3	54	600937
DH SM HUBER, E MATTHEWS	55	601008	PANKRATZ, L KING	62	300958
HODEN, D MALLIDAO					

224.2					
CPL SM2O 3 JUSTICE, B WESTRUM	63	300907	THEO SPECIFIC HEAT		
CRYS SM2O 3	63	300907	ROSENSTOCK, H B THEO SPECTRA	61	700643
STARITZKY, E	56	601257	MASON, S	61	201224
CRYS SM2O 3			THEO SPECTROSCOPY	٠.	
KUTSEV ₄ V SMAGINA CRYS SM2O 3	63	301515	GRIBOV, L	62	900220
CROMER, D	57	601304	THEO SPECTROSCOPY VARSHNI, V P SHUKL		700500
CRYS SM2O 3			BETA SR	61	700598
CROMER, D	57	601062	EVDOKIMOVA, V VERE	60	201072
CRYS SM2O 3 DOUGLASS, R STARIT	56	601011	SPK SR		
CTEX SM2O 3	00	001011	PENKIN, N SHABANOV SPK SR	62	601601
PLOETZ, G	57	601309	CODLING, K	61	600775
MSP SM2O 3			SPK SR		
PANISH, M TRT SM203	61	601372	SHADMI, Y	61	700954
WISNYI, L PIJANOWS	57	601056	VAP SR KOZHEVNIKOV, G	63	301510
VAP SM2O 3	٠.	00.000	CEMP SR B 6	03	301810
PANISH, M	61	601372	JOHNSON, R DAANE	63	301489
PHAS SM OXIDES EICK, H BAENZIGER	56	601070	DH SR B 6		
REAC SM OXIDES	56	601070	SAMSONOV, G SEREBR ERES SR B 6	61	601581
EICK, H BAENZIGER	56	601070	SAMSONOV, G SEREBR	61	601581
REAC SM OXIDES			THER SR B 6		
EICK, H BIB SN OXIDES	57	601053	BOLGAR, A	61	700938
JONES, P	60	200984	VAP SR B 6 SAMSONOV, G SEREBR	61	601581
CRYS SM O SYST			VAP SR B 6	٠.	001001
EICK, H	56	601289	BOLGAR, A	61	700938
PHAS SM O SYST EICK, H	56	601289	CRYS SR2MG17 KRIPYAKEVICH, P		201072
MPP SOLAR FURNACE	56	601269	PHAS SR MG SI SYST		201670
MANVELYAN, M MELIK	61	400606	DEAR, P	60	201548
THEO SOLID STATE			DH SR O		
DEKHTYAR, I CEMP SOLIDS	59	300411	MAH, A	63	202093
KUCHEROV, R YA RIK	60	300154	E SR O LAGERQVIST, A HULD	54	600681
CPH SOLIDS			ERES SR O	-	000001
IVANOVA, L 1	61	300249	ADAMS, M JACOB, L	60	200763
THER SOLIDS GLUSHKO, V	62	301221	SPK SR O		
THEO SOLIDS	02	301221	LAGERQVIST, A ALMK SPK SR O	54	600680
IVERONOVA, V ZOYAG	63	202061	NICHOLLS, R	62	300698
THER SOLIDS			SPK SR O		
MARINCHUK, A MOSKA CPH SOLIDS	63	202092	HULDT, L LAGERQVIS	55	600893
LANDIYA, N TSAGARE	62	301516	SPK SR O HULDT, L LAGERQVIS	56	600894
CPH SOLIDS			SPK SR O	50	000054
ROSENSTOCK, H	61	301563	VEITS, I GURVICH	57	600899
CRYS SOLIDS BRADLEY, J	63	301411	SPK SR O		
DH SOLIDS	03	301411	ALMQVIST, G LAGERQ THER SR O	49	600922
VOROBEV, A PRIVA	60	300135	SCHICK, HANTHROP	62	300995
PHAS SOLIDS			VAP SR O		
SCHAFER, K PHAS SOLIDS	60	300133	METSON, G CEMP SR OXIDES	63	301536
IVANOVA, L I	61	300249	CEMP SR OXIDES PALGUEV, S NECEIMI	62	201717
PHAS SOLIDS			DHD SR OXIDES		
DEVRIES, K BAKER	60	600665	VEITS, I GURVICH	56	700964
REAC SOLIDS BUDNIKOV, P GINSTL	61	300315	THER SR OXIDES VEITS, I GURVICH		700964
REV SOLIDS	0.	300318	THER SR OXIDES	56	/00904
SWALIN, R	62	300703	ORTNER, N ANDERSON	59	701066
THEO SOLIDS		20042-	VAP SR OXIDES		
SCHAFER, K THEO SOLIDS	60	300133	ORTNER, N ANDERSON	59	701066
ORMONT, B	63	301317	CPH SUBSTANCES IVANOVA, L	61	201347
THEO SOLIDS			THER SUBSTANCES	٠,	
KRESTOVNIKOV, A VI	60	301612	OSBORN, D STEIN, L	62	201923
THEO SOLUBILITY WABER, J GSCHNEIDE	63	301374	REV SUBSTANCES OSBORN, D STEIN, L	42	201923
THEO SOLUTIONS	-	301374	REAC SULFABORIDES	62	201923
KHACHATURYAN, A	63	202067	FLAHAUT, J DOMANGE	62	300512
THER SOLUTIONS			SPK SUN		
KLEPPA, O THEO SPECIFIC HEAT	62	301503	GOLDBERG, L MULLER	63	600710
WAJTOWICZ, PJ KIR	60	700641	VAP SURFACES TSVETAEV, A GLAZUN	61	300768
				-•	

THEO SYSTEMS			ERES TA		
NECKEL, A	61	300509	FINCH, R	61	700547
			ERES TA Bridgman, P	61	400533
т			ERES TA		
•			TYE,R eres ta	61	201117
BOOK TA			TAYLOR, R Kin ta	61	201250
SAMSONOV, G KONSTA CPH TA	61	301570	KOFSTAD, P Misc ta	61	201400
JOHNSON, R CPL TP	60	301488	HAMPEL, C MISC TA	61	200889
FEATHERSTON, F NEI MPP TA	63	301444	BASKIN, M TRETYAKO	62	201951
FRERICHS, R	62	301450	MPP TA RICKERT, E BECKETT	49	601638
KOPETSKIY, CH.	62	301270	MPP TA RASOR, N MCCLELLAN MPP TA	60	700896
KRAFTMACHER, IA	62	301282	ARGENT, B MILNE, G	60	201039
VAP TA CANO, G BETA TA	62	301423	MPP TA RILEY, W_MCCLELLAN	62	301080
KRUPNIKOU, K BAKAN	63	301149	MPP TA MYERS, R	50	500130
BIB TA WENSRICH, C	60	700972	PHAS TA HAWORTH, C	60	201017
BIB TA ANON	60	701022	PHAS TA		
BIB TA			SHAFFER, P Phas TA	61	700941
WOHLL, M BIB TA	60	700723	ERBEN, E LESSER, R PHAB TA	61	300323
WENSRICH, O	60	700890	ROSTOKER, W	60	201396
RICKERT, E BECKETT CPH TA	49	601638	PHAS TA Vasyutinskii, b Pmch ta	62	201776
FINCH, R	61	700547	BOLEF, D	61	200936
CPH TA RASOR, N MCCLELLAN CPH TA	60	700896	PREP TA MILLER, G	62	201943
LEHMAN, G	60	300304	REAC TA MILLER, G	60	200834
CPH TA CARTER, W	61	601631	REAC TA DEUTSCH, N ERVIN	60	500123
CPH TA HOCH, M	61	201167	REAC TA COWGILL, M STRINGE	60	500122
CPH TA RASOR, N MCCLELLAN	60	700984	REAC TA FRANTSFVICH, I LAV	59	200869
CPH TA Taylor, R	61	201250	REAC FA FAIRBROTHER, F COW	59	200886
CPL TA FINCH, R	61	700547	REAC TA KUBASCHEWSKI, O HO	60	201036
CPH TA			REAC TA		
HOCH, M JOHNSTON CPL TA	61	700613	SCHAFER, H SIBBING REAC TA	60	201085
TAYLOR, R CPL TA	61	201250	ENGELKE, J HALDEN REAG TA	60	201529
BORELIUS, G	60	601168	KONSTANTINOV, V rev ta	62	301146
BOORSE, H BERMAN CPL TA	56	700887	BARTLETT, E SCHMID REV TA	61	701052
COCHRAN, J CRYS TA	62	201877	WOHLL, M REV TA	60	701053
VASUTINSKY, B KART CRYS TA	62	301009	ERBEN, E LESSER, R	61	300323
EDWARDS, J SPEISER CRYS TA	61	601179	SYRE, R SPK TA	61	201579
FERRISS, D ROSE, R	62	301137	ALLEN, R GLASIER	60	200828
CTEX TA EDWARDS, J SPEISER	61	601179	ROSENZWEIG, N PORT	60	700996
CARTER, W	61	601631	SPK TA TREES, R	61	701067
RASOR, N MCCLELLAN	60	700984	ROSENZWEIG, N PORT	60	700901
SPK TA CLAUS, H ULMER, K	63	202017	SPK TA MOORE, C SPK TA	58	601088
CTEX TA NOWOTNY, H LAUBE	61	600844	KIESS, C	62	201678
ELCH TA MONNIER, R GRANDJE	60	200949	TCON TA RASOR, N MCCLELLAN	60	700984
OINTER, RURANUJE	-	20000	**********		

TA RASOR, N MCCLELLAN	60	700896	MPP TA C DERGUNOVA, V KOLON	63	202026
TCON TA			CRYS TAC		
TCON TA	61	201117	BOWMAN, A Eres ta C	61	600836
CONNOLY, A MENDELS THEO TA	62	201535	COOPER, J HANSLER VAP TA C	63	301207
ROSENZWEIG, N PORT	60	700996	FESENKO, V BOLGAR	63	301216
THEO TA ROSENZWEIG, N PORT	60	700901	DH TA C HUBER, E HEAD, E	63	301248
THER TA SCHICK, HANTHROP			CEMP TA C		
THER TA	63	300994	INGOLD, J REAC TAC	63	301251
CARTER, W Then ta	62	300749	SAMSONOV, G REAC TA C		301571
CARTER, W	61	601631	SAEKI, Y OMORI, G	63	301339
THER TA RASOR, N MCCLELLAN	60	200960	THER TAC SCHICK, HANTHROP	63	301580
TRT TA WILLIAMS, D JACKSO	62	301016	DH TA C KORNILOV, A LEONID	62	300923
TRT TA			DHD TA C		
MCMASTERS, O LARSE VAP TA	61	600834	BITTNER, H GORETZK MPP TA C	62	301132
GEBHARDT, E SEGHEZ	62	601676	NORTON, J MOWRY, A	49	300167
BABELIOWSKY, T	62	300858	BENESOVSKY, E RUDY	61	100181
KIN TA SYST KUBASCHEWSKI. O	62	601577	PHAS TA C NADLER, M KEMPTER	60	300301
THER TA SYST		601577	PHAS TA C		700044
KUBASCHEWSKI, O PHAS TA AL C	62	601877	SHAFFER, P PHAS TA C	61	700941
JEITSCHKO, W NOWOT THER TAB	63	301485	SHAFFER, P PHAS TA C	61	701057
LEITNAKER, J BOWMA	62	300553	NORTON, J	60	701001
THER TAB MEERSON, G	60	300298	PHAS TA C ZALABAK, C	61	701026
CEMP TA B 2 MATSKEVICH, T KRAC	62	301533	PHAS TA C MARTIN, R SEAGLE	61	300308
H TAB2			PHAS TA C		
MEZAKI, R TILLEUX MPP TA B 2	62	601617	RYBALCHENKO, R TRE SPK TA C	61	300346
MALYUCHKOV, O POVI S TAB 2	62	202095	COFFMAN, J KIBLER THER TA C	60	700993
MEZAKI, R TILLEUX	62	601617	COFFMAN, J KIBLER	60	700993
CRYS TA3B 2 KIEFFER, B BENESOV	58	600619	TRT TAC ZALABAK,C	61	200988
DH TA BR5 SHCHUKAREV, S SMIR	60	200799	TWE TA C MARTIN, R SEAGLE	61	300308
DH TA BR5			VAP TA C		
GROSS, P HAYMAN, C PHAS TA2B SYST	62	300706	COFFMAN, J KIBLER VAP TA C	60	700985
LEITNAKER, J BOWMA PHAS TA B SYST	61	700595	COFFMAN, J KIBLER THER TA2C	60	700993
NOWOTNY, H BENESOV	59	201339	SCHICK, H ANTHROP	63	301580
PHAS TA B SYST LEITNAKER, J BOWMA	61	700595	PHAS TA2C KLEIN, R LEDER, L	63	301501
REAC TA B SYST		200000	OF TA CL5 JERE, G PATEL, C	••	200850
SAMSONOV, G STRASH VAP TA B SYST	62	300990	DH TA CL5	60	
HASAPIS, A MELVEGE MISC TA B C SYST	61	701039	SHCHUKAREV, S SMIR THER TA C SYST	60	200799
FORNEY, G J MARSHA	61	300238	CUNNINGHAM, G WARD	63	301208
COPT TA C COFFMAN, J KIBLER	60	700985	PHAS TA C SYST VAUGHAN, D STEWAR	60	700990
COPT TA C HODDAD, R E GOLDWA	49	300160	PHAS TA C SYST NADLER, M KEMPTER	60	700903
COPT TA C			REAC TA C SYST		
ECKSTEIN, B FORMAN CRYS TA C	62	300805	SAMSONOV, G STRASH REAC TA C SYST	62	300990
VAN ARKEL, A CRYS TA C	24	701056	PORTNOI, K LEVINSK CPL TA2H	61	300215
BOWMAN, A	61	300806	SABA, W WALLACE, W	61	300810
TRT TA C SHAFFER, P	63	202132	THEN TAHFC RUDY, E	63	301165
MPP TA C GIORGI, A SZKLARZ	63	202039	MPP TA N SAMSONOV, G VERKHO	61	301573
CEMP TA C			REAC TAN SYST		
BITTNER, H GORETZK	62	202004	OSTHAGEN, K KOFSTA	63	301548

CPH TAN					
NEEL, D PEARS, C	61	300146	THER TA20 5		
MPP TAN	•	300148	SCHICK, H ANTHROP VAP TA2O 5	63	301580
SAMSONOV, G VERKHO	62	300997	KOFSTAD, P	62	300586
CRYS TAN VAN ARKEL, A			REAC TA OXIDE		55555
THER TA2N	24	701056	BRAUER, G MULLER		301105
BOLGAR, A	61	700938	PHAS TA OXIDES		
VAP TA2N			WASILEWSKI, R KIN TA O SYST	61	201089
BOLGAR, A	61	700938	KOFSTAD, P	63	301506
PHAS TA NI SEEBOLD, R BIRKS			KIN TA O SYST		
PHAS TA NI2	61	300295	KOFSTAD, P	63	301505
SEEBOLD, R BIRKS	61	300295	PHAS TA O SYST BRAUER, G MUELLER	63	301196
PHAS TA3N12			PHAS TA O SYST	03	301190
SEEBOLD, R BIRKS CEMP TA NITRIDES	61	300295	KOUBA, L TRUNOV, V	62	301278
SAMSONOV, G	60	700947	PHAS TA O SYST		
OH TA NITRIDES	-	700547	VAUGHAN, D STEWAR PHAS TA O SYST	60	700990
SAMSONOV, G	60	700947	ANON	60	701015
REV TA NITRIDES			PHAS TA O SYST		
SAMSONOV, G ZKP TA N SYST	60	700947	KUBASCHEWSKI, O	62	601577
GEBHARDT, E SEGHEZ	61	700645	PHAS TA O SYST NORMAN, N	• •	300374
REAC TA N SYST			PHAS TA O SYST	62	300374
OESTHAGER, K KOFST	63	300957	NORMAN, N KOFSTAD	62	300527
PHAS TA N SYST VAUGHAN, D STEWAR	60	700990	VAP TA O SYST		
MSP TA NB SYST	•	700990	ANON zkp ta o syst	60	701015
AMOSOV, V M LANIS	61	300175	HOCH, M MATHUR, M	62	300587
VAP TA NB SYST			PHAS TA RE SYST		
AMOSOV, V M LANIS VAP TA O	61	300176	BROPHY, J SCHWARZK	60	200803
BABELIOWSKY, T BOE	63	301179	KIN TA TI SYST VOITOVICH, R	61	201310
SPK TA O			PHAS TAUCSYST	-	20.0.0
PREMASWARUP, D	55	301323	BENESOVSKY, F RUDY	61	301406
ACKERMANN, R THORN	58	601510	PHAS TA V SYST EREMENKO, V TRETYA	60	201492
O AT OHO			PHAS TAV SYST	80	201482
GOLDSTEIN, H WALSH	68	201098	EREMENKO, V TRETYA	62	201711
DHD TA O WALSH, P WHITE D	58	700806	KIN TAW SYST VOITOVICH, R		201310
KIN TA O			PHAS TAWCSYST	61	201310
ONG, T	62	201916	RUDY, E RUDY, E	62	300967
PREMASWARUP, D BAR	67	600918	VAP TAWOSYST		
SPK TA O	0,	000310	ANON PHAS TAWRESYST	60	300229
GRAVEN, W	61	201619	BROPHY, J KAMDAR	61	201340
THER TAO			PHAS TA ZR SYST		
SCHICK, HANTHROP THER TA O	63	301580	WILLIAMS, D JACKSO CPL TB	62	301016
ACKERMANN, R THORN	68	601087	CPL TB HELTEMES, E SWENSON	61	201411
THER TAO			CPL TB		
PEMSLER, J P VAP TA O	61	700650	LOUNASMAA, O ROACH	62	701082
ACKERMANN, R THORN	68	601510	CRYS TB KOEHLER, W WOLLAN	61	301504
DF TAO 2			ERES TB		
ACKERMANN, R THORN	58	601510	COLVIN, R LEGVOLD	60	601389
THER TA O 2 SCHICK, H ANTHROP	63	301580	MPP TB IONOV, N MITTSEV	61	601411
THER TAO 2			SPK TB	01	001411
ACKERMANN, R THORN	58	601087	BURBRIDGE, E BURBR	65	601003
VAP TA O 2		*****	VAP TB		
ACKERMANN, R THORN MPP TA O 5	58	601610	WHITE, D WALSH, P VAP TB	60	301622
SIMANOV, Y LAPITSK	54	301119	WHITE, DWALSH, P	61	301014
MPP TAO5			VAP TB		
LAPITSKIY, A SIMAN SPK TA O 5	54	301112	WHITE, D WALSH, P	61	300455
CONLON, D DOYLE, W	61	201325	CEMP TB B 6 SAMSONOV, G PADERN	59	300143
CRYS TA2O 5			PHAS TB O		223
CZARNY, Z	63	301209	EYRING, L HOLWBERG	62	601590
REAC TA2O 5 KOFSTAD, P	63	202072	CRYS TB 0 2 - GRUEN, D KOEHLER	51	400545
DH TA2O 5	33	202072	CRYS TB20 3	3.	700070
KORNILOV, A LEONID	62	601591	GRUEN, D KOEHLER	61	400545
THER TA2O 5 KORNILOV, A LEONID		601591	CRYS TB O SYST		300151
MORNILOV, A LEUNID	62	901051	BAENZIGER, N EICK	61	300184

TTD O SVOT			rare TU		
PHAS TB O SYST BAENZIGER, N C EIC	61	300184	ERES TH BENDER, D	49	601404
CRYS TC LAM, D DARBY, J	61	601586	ERES TH Murk, K	69	601523
MISC TC MURIN, A N NEFEDOV	61	700574	ERES TH BOESCHOTEN, F	59	601528
PHAS TC			ERES TH		
SZABO, Z LAKATOS MPP TC	62	601673	BERLINCOURT, T ERES TH	59	601655
EAKINS, J HUMPHRIE PHAS TC	63	301214	DANFORTH, W MORGAN H TH	60	400535
ANDERSON, E BUCKLE REV TC	60	700975	OELSEN, W	55	600980
MURIN, A N NEFEDAV	61	700574	PETERSON, D	61	201246
SPK TC SHADMI, Y	61	700954	MPP TH FRANCIS, E	58	601536
THER TC SCHICK, H ANTHROP	62	300995	MPP TH MURRAY, J	68	601094
THER TC MARGRAVE, J	61	700967	MPP TH SMITH, J	58	601073
TRY TC			MPP TH		
SZABO, Z LAKATOS SPK TC F 6	62	601673	SKINNER, G BECKETT PHAS TH	50	601225
CLAASSEN, H SELIG THER TC O	62	201854	ANON Phas TH	62	601629
SCHICK, H ANTHROP	62	300995	ANON Phas TH	57	601305
OH TE WHITE, D	61	201217	WILSON, W AUSTIN	56	601071
SPK TE NORRIS, J	60	601194	PHAS TH VON BOLTON, W	08	800117
REAC TE C TRZEBIATOWSKI, W	62	201857	PHAS TH MARDEN, J RENTSCHL	27	900119
BIB TH			PHAS TH SCHULTZE, A	30	900117
DAVID, L CRYS TH	63	600957	PHAS TH		
AMONENKO, V VASYUT CEMP TH	63	301170	BADAEVA, T REAC TH	61	201890
FRANCIS, E CEMP TH	58	601536	DEYE, R REAC TH	60	601156
MESMARD, G UYAN, R	61	400558	DEUTSCH, N ERVIN	60	500123
CEMP TH RIVIERE, J	62	201806	MURRAY, J	58	601094
COH TH MITKINA, E	59	201029	KAUFMANN, A	62	601429
CPH TH WALLACE, D C	60	300132	REV TH ROLLEFSON, G HAGFM	51	601106
CPH TH WALLACE, D C	60	700569	REV TH MURRAY, J	58	601094
CPL TH			REV TH KATZIN, L	56	601020
CLUSIUS, K FRANZOS CPL TH	56	601038	REV TH		
GRIFFEL, M SKOCHDO CPL TH	53	600966	SANDERSON, L REV TH	61	300376
SMITH, P WOLCOTT CPL TH	55	601137	FRANCIS, E REV TH	58	601536
BORELIUS, G	60	601168	FRANCIS, E REV TH	68	601127
CRYS TH SMITH, J	58	601073	VETEJSKA, K	60	601187
CRYS TH DAWSON, J	62	100187	REV TH RYABCHIKOV, D GOL	61	700656
CHIOTTI, P	64	601198	SPK TH CHARLES	58	601084
CRYS TH			SPK TH KLINKENBERG, P LANG	50	400522
ANON CRYS TH	67	601297	SPK TH		
THOMPSON, J CRYS TH	62	201648	DAVISON, A GIACCHE SPK TH	62	300823
CHIOTTI, P CRYS TH	54	01227	STUKENBROEKER, G M 8PK TH	50	601383
MCCALDIN, J DUWEZ CTEX TH	54	600956	NORRIS, J SPK TH	60	601194
WILSON, W AUSTIN	56	601071	ZABULAS, R SPK TH	59	601192
DH TH HOLLEY, C HUBER, E	50	601178	KLINKENBERG, P	50	400531
DH TH HUBER, E V HOLLEY	52	400565	ANON TH	*58	601649
ERES TH ANON	56	601312	SPK TH RACAH, G	60	400547
			·		

SPK TH					
OSARO, F PERLMAN	52	400572	PHAS TH B O SYST		
SPK TH			RASE, D PHAS TH BE C SYST	60	600872
KESSLER, D SPK TH	51	400576	BRISI, C ABBATTIST	61	201507
EISENBERG, Y	52	400577	PHAS TH BE BADAEVA, T KUZNETS	61	201833
SPK TH TREES, R			PHAS TH BE	•	201033
SPK TH	60	600852	BADAEVA, T KUZNETS PHAS TH C	61	201891
VERNYL, E EGOROV	69	601189	KEMPTER, C KRIKORI	62	300517
ELYASHEVICH, M	63	601413	REAC TH C		
SPK TH			SAMSONOV, G KASALA Rev TH C	60	700376
PISTORIUS, C SPK TH	60	200864	ROUGH, F CHUBB, W	60	600610
SCHUURMANS, P	46	601290	CRYS TH C 2 HUNT, G B RUNDLE	61	400573
TCON TH SIDELES, P DANIELS	51	601238	DF TH C 2		
THER TH	٠.	001236	ANON VAP TH C 2	60	601337
SCHICK, H ANTHROP THER TH	62	300995	MIKHAILOVSKII, B	63	301302
СНІОТТІ, Р	56	601324	DF TH C 2 MASLAN, F	59	601354
THER TH ACKERMANN, R THORN	62	401414	DF THC 2		
THER TH	92	601616	ANON DH TH C 2	59	600608
PETERSON, D THER TH	61	201246	PRESCOTT, C HINCKE	27	900116
MARGRAVE, J	61	700967	PHAS TH C 2 ANON	60	601414
THER TH			PHAS TH C 2	•0	001414
SMITH, J Ther th	58	601073	KEMPTER, C KRIKORI PHAS TH C 2	62	300517
DARNELL, A J MCCOL	60	700567	PRESCOTT, C HINCKE	27	900116
TRT TH MCCALDIN, J DUWEZ	54	600956	THER TH C 2 ANON	••	801458
TRT TH			THER PHC 2	60	601458
REID, A WILMHURST	63	301566	ANON	60	601414
DEYE, K	60	601156	TRT TH C 2 PRESCOTT, C HINCKE	27	900116
TRT TH SCHULTZE, A	30	900117	MPP TH CARBIDES		
TRT TH	30	300117	SKINNER, G BECKETT REAC TH CARBIDES	50	601225
MCMASTERS, O LARSE	61	600834	WILHELM, H CHIOTTI	49	400536
MARDEN, J RENTSCHL	27	900119	PHAS TH C SYST ROGERS, B	50	601266
VAP TH DARNELL, A	••	201102	PHAS TH C SYST	Δ	
VAP TH	61	201182	MICKELSON, R PETER PHAS TH C SYST	57	601057
ACKERMANN, R THORN	62	601616	CHIOTTI, P	52	100204
VAP TH TOSIM, S	57	601505	PHAS TH C SYST WILHEM, H CHIOTTI	50	400521
VAP TH			TRY TH C SYST		
DARNELL, A J MCCOL	60	700567	WILHEM, H CHIOTTI TRY H C SYST	50	400521
MURBACH, E	67	601105	CHIOTTI, P	52	100204
VAP TH GOLDWATER, D DANFO	60	600691	BIB TH C SYST COMSTOCK, M	60	600623
VAP TH			PHAS TH CE		
VON BOLTON, W MPP TH	80	800117	BADAEVA, T KUZNETS PHAS TH CE LA SYST	61	201897
ROUGH, F A CHUBB	50	700568	EVANS, D RAYNOR, G	62	201812
CRYS TH B 4 ZALKIN, A TEMPELTO	53	100198	SPK TH I ZABULAS, R	59	601192
CRYS THB4	03		PHAS TH F 4		
ZALKIN, A TEMPLETO CRYS TH B 4	50	601410	KIRSHENBAUM, A PHAS TH MMSYST	61	201183
ZALKIN, A TEMPLETO	50	400520	MCMASTERS, O PALME	62	301535
REV TH B 4	•-	200224	PHAS TH MO C RUDY, E BENESOVSKY	63	301566
MATTERSON, K JONES CEMP TH B 6	61	300324	PHAS TH MO C SYST	43	201900
LAFFERTY, J	50	400541	RUDY, E BENESOVSKY	63	301332
MPP TH B 6 SAMSONOV, V ZOUNA	56	601051	REAC TH MG SYST UNSWORTH, W	60	200876
REAC TH B 6			CRYS TH N		40100-
SAMSONOV, V ZOUNA PHAS TH BORIDES	56	601051	CHIOTTI, P Th eo th N	52	601237
BREWER, L SAWYER	60	601400	BAUGHAN, E	59	300866
PHAS TH B C SYST TOTH, L BENESOVSKY	61	201446	TRT TH N CHIOTTL P	62	601237
, a balledo ton i	J .				

BIB TH N			THER TH M 2		
COMSTOCK, M	60	600623	THER TH M2 VICTOR, A DOUGLAS	61	201108
CPH TH3N 4		555525	THER TH O 2		
SATO, S	39	900114	INGHRAM, M CHUPKA	57	601067
DH TH3N 4			THER THO 2		
NEUMANN, B KROGER MPP TH NITRIDES	32	900113	KUBASCHEWSKI, O THER TH O 2	61	600792
SKINNER, G BECKETT	50	601225	ZAREMBO, Y	61	201449
DF TH O			TRT THO2		
ACKERMANN, R THORN	58	601510	RUFF, O EBERT, F	29	900120
PHAS TH O KORNILOV, I	60	200769	VAP TH O 2 SHAPIRO, E	52	100186
SPK TH O	00	200703	VAP TH O 2	02	100180
ROSEN, B	62	301560	COFFMAN, J KIBLER	60	700993
THER THO			VAP TH O 2		
SCHICK, H ANTHROP	62	300995	ACKERMANN, R THORN	56	600983
THER TH O ACKERMANN, R THORN	68	601087	VAP TH O 2 DARNELL, A	61	201182
VAP TH O	00	001007	VAP TH O 2	٠.	201102
ACKERMANN, R THORN	68	601510	ACKERMANN, R THORN	58	601510
THER THO 2			VAP TH O 2		
ACKERMAN, E. RAUH CPH TH O 2	63	301164	ACKERMANN, R	56	601267
HOCH, M JOHNSTON	61	201171	VAP TH O 2		
СРН СНО2	10-4		HASAPIS, A PANISH VAP TH O 2	60	600667
HOCH, M JOHNSTON,	61	700658	HOCH, M JOHNSTON	54	600972
REAC TH O 2 KOMAREK, K COUCOUL		204040	CRYS TH OXIDES		
TRT THO2	63	301269	FRIED, S	56	601021
MUMPTON, F ROY, R	60	301308	BIB TH O SYST COMSTOCK, M	60	600623
CPL THO2			PHAS TH O SYST	80	000023
OSBORNE, D WESTRUM	53	600968	WESTRUM, E GRONVOL	62	601613
CRYS TH 0 2 DRAPER, A MILLIGAN	69	201104	THER THO SYST		
CRYS TH O 2	0.5	201704	WESTRUM, E GRONVOL THER TH O SYST	62	601613
VAN ARKEL, A	24	701056	ACKERMANN, R THORN	62	601616
CRYS TH O 2			VAP THO SYST	-	00.010
VOGEL, R KEMPTER CTEX TH O 2	59	601177	WESTRUM, E GRONVOL	62	601613
SKINNER, B	57	601065	VAP TH O SYST ACKERMANN, R THORN		
CTEX TH O 2			REAC THOAL SYST	62	601616
GRAIN, C CAMPBELL	61	601471	RALEIGH, D	62	201698
CTEX TH O 2 KEMPTER, C ELLIOTT	59	601160	PHAS TH RH		
DF THO2	99	801180	FERRO, R RAMBALDI REAC TH U	61	201696
ACKERMANN, R THORN	68	601510	REAC THU ENGLE, G GOEDDEL	62	201525
DH THO2			PHAS THUB SYST	-	20.020
VON WARTENBERG, H	09	900108	TOTH, L NOWOTHNY	61	201405
OH TH O 2 CHAUVENET, E	11	900109	PHAS THUCSYST	4.0	
ELCH TH O 2	•		IVANOV, O ALEKSEEV THEO TH U C SYST	61	201875
DANFORTH, W	57	601317	BENESOVSKY, F RUDY	61	900203
ERES THO2			PHAS TH V		
VAN ARKEL, A FLOOD MSP TH O 2	53	600950	PALMER, P MCMASTER	62	201791
HASAPIS, A MELVEGE	61	701017	PHAS TH W.C. RUDY, E BENESOVSKY	62	201628
MPP TH O 2			CRYS TH Y SYST	92	201020
NAGASAWA, S	50	400530	EVANS, D RAYNOR, G	60	200874
PHAS TH O 2 GRAIN, C CAMPBELL	61	601471	PHAS TH ZN SYST		
PHAS TH O 2	0,	001471	CHIOTTI, P GILL, K THER TH ZN SYST	61	700624
RUFF, O EBERT, F	29	900120	CHIOTTI, P GILL, K	61	700624
SPK TH O 2			PHAS TH ZR	-	
COFFMAN, J KIBLER	60	700993	BADAEVA, T ALEKSE	61	201892
SURF TH O 2 DRAPER, A MILLIGAN	59	201104	PHAS TH ZR C SYST BODAEVA, T KUZNETS		202004
TCON TH O 2			PHAS TH ZR C SYST	63	202006
ADAMS, M	54	600961	RUDY, E BENESOVSKY	62	300969
TCON THO2		401010	PHAS TH ZR V SYST		
NORTON, H KINGERY	52	601240	BADAEVA, T ALEKSEE	61	201893
WOCHMAN, J	62	601472	CPH THEORY FOMICHEV, E KANDYB	62	300885
TCON THO2			DF THEORY	- 4	200000
KINGERY, W FRANCL	54	600971	MAZO, R	63	202100
THER TH O 2 COFFMAN, J KIBLER	60	700993	CPH THEORY		
THER THO 2			LIDENKO, V YARYSHE CPH THEORY	63	301135
ACKERMANN, R THORN	58	601087	D.DENKO, V YARYSHE	62	300878

CPH THEORY					
CHAMBERS, R	62	300819	CPL TI STARKE, E CHENG, C	62	201730
CPL THEORY			CRYS TI	-	
FOREMAN, A CPL THEORY	62	301083	ANDERSON, S	60	200845
RELLER, J WALLACE	62	301092	CRYS TI SADOVSKII, V BOGAC	60	600863
CPL THEORY			CRYS TI		
MARADNDIN, A FLINN CPL THEORY	61	301085	SOREL, M CRYS TI		600787
MARADNDIN, A FLINN	61	301084	JAMIESON, J	63	301263
CRYS THEORY RAU, R			CPL TI		
DH THEORY	61	201198	KNIEF, G BETTERTON CRYS TI	63	301264
WILCOX, D	62	301011	WOOD, R	62	201956
OH THEORY REZNITSKILL	61	300348	CTEX TI FIELDHOUSE, I LANG	60	601583
DHD THEORY	٠.	300348	CTEX TI	•••	001003
VERHAEGEN, G STAFFO	62	301060	BESSERER, C	58	700929
H THEORY FOMICHEV, E KANDYB	62	300885	CTEX TI NOWOTNY, H LAUBE	61	600844
MISC THEORY			CTEX TI		
SAMSONOV, G KOVALC MSP THEORY	62	301164	WILLIAMS, D CTEX TI	61	600782
GOROKHOV, L	62	300895	WASILEWSKI, R	61	201342
PHAS THEORY JONES, G			OH TI		
PHAS THEORY	63	301490	GOLDSMITH, A HIRSC	60	700930
BOROVSKII, I MARCH	60	201014	HERTZRICKEN, S SLY	62	300708
VAP THEORY ICZKOWSKI, R MARGR	63	300905	ERES TI BRIDGMAN, P	51	400533
VAP THEORY			ERES TI	Ā	
GREGORY, N VAP THEORY	63	300892	BERLINCOURT, T ERES TI	59	601655
MARTYNKEVICH, G	61	300554	POWELL R W TYE, R	61	700652
ZKP THEORY WREDERKEHR, R	62	301056	ERES UI Wasilfwski, r	62	201515
BIB TPERMODYNAM		301086	KIN TI	02	201515
LATIMER, W	54	601635	KONSTAD, PANDERSO KIN TI	61	700531
PHAS THERMODYNAM RUDY, E	62	900228	ARZHANYI, P VOLKOV	62	201975
REAC THERMODYNAM WAHLBECK, P EDWARD	ICS 61	301163	MISC TI SPINK, D	61	200891
REV THERMODYNAM	_	301163	CPH TI	٠.	20005.
BAZAROV, I REV THERMODYNAM	62 ICS	301185	HOLLAND, M MPP TI	63	202054
WELLS, P	63	301618	KAREV, V KLYUCHARE	63	202064
REV THERMODYNAM SKINNER, H WADDING	1CS 63	301589	ERES TI KORNILOV, I MIKHEE	63	202079
THEO THERMODYNAM		301969	CRYS TI		202070
RUDY, E	63	301565	NIKIFOROV, I SACHE CPL TI	63	202109
THEO THERMODYNAM ANTHONY, R HIMMELB	63	301398	SHIMI: M TAKAHAS	63	202135
THEO THERMODYNAM			REV II		
MASLOV, P MASLOV THEO THERMODYNAM	61 ICS	300658	SHVARTS, G SAVEIKI MISC GI	63	202136
STORONKIN A SHULT	60	300296	WADSLEY, A	61	201100
THEO THERMODYNAM BAZAROV, I	61	300389	MISC TI BASKIN, M TRETYAKO	62	201951
THEO THERMODYNAM		300303	MPP TI		
MAYER, J	62	300397	BESSERER, C MPP TI	58	700929
THEO THERMODYNAM PRILEZHAEVA, N	60	301153	SKINNER, G BECKETT	50	601225
THER THERMODYNAM			PHAS TI KORNILOV, I	60	200907
MEIXNER, J VAP THERMODYNAM	60 UCS	200824	PHAS TI		
BLANC, B	61	201346	GOLDSMITH, A HIRSC PHAS TI	60	700930
BETA TI KRUPNIKOU, K BAKAN	63	301149	WORNER, H	60	200991
81B Tl			PHAS TI SOREL, M		600787
WOHLL, M CPH TI	60	700723	PHAS TI		500/8/
FIELDHOUSE, I LANG	60	601583	NISHIMURA, H HIRAM PHAS TI	57	201397
CPH TI SEREBRENNIKOV, N N	61	300192	BLOK, N GLAZOVA, N	61	201490
CPL TI			PHAS TI KUSAMICHI, H KUSAM	67	201494
CLUSIUS, K FRANZOS CPL TI	58	200927	PHAS TI		
STALINSKI, B BIEGA	61	201045	WYDER, W HOCH, M	62	201581

	0.		KIN TIB 2		
SAVITSKII, E LIVAN PHAS TI	61	201889	RAKOVSKII, V REAC TI B 2	62	30132
SEMENCHENKOV, A	61	201894	FUNKE, V YUDKOVSKI	63	202034
REAC TI BIRYUKOVA, L SAKSO	60	200851	MPP TI B 2 MALYUCHKOV, O POVI	62	202095
REAC TI		201134	CRYS TIB 2 EHRLICH, P GUTSCHE		
LAINER, D TSYPIN	61	201134	CTEX TIB2	61	201331
KOFSTAD, PANDERSO	61	201096	GILMAN, J ROBERTS OF TI B 2	61	300300
REAC TI OGURTSOV, S	60	200967	KRESTOVNIKOV, A VE	60	300672
REAC TI STRINGER, J	60	700559	DH TIB2 LOWRIE.R		
REAC TI	80	700555	DH TIB2	61	700966
ANITOVA, I S GARBA REAC TI	61	700603	LOWELL, C WILLIAMS DH TI B 2	61	300410
CERVONE, E FURLANI	61	201521	EPELBAUM, V A STAR	56	300194
REAC TI ANDREEVA, V ALEKSE	62	201814	DH TIB2 WILLIAMS, W	61	300523
REV TI			DHT T1 B 2		
WOHLL, M REV TI	60	701053	LOWRIE, R H TIB2	61	700956
EREMENKO, U REV TI	60	300286	MEZAKI, R TILLEUX	62	801617
BOMBERGER, H	62	300369	MPP TI B 2 PORTNOY, K SAMSONO	61	300485
SPK TI ZHURAKOVSKII, E VA	59	201226	MPP TIB2 SHCHERBAKOV, V VEY	60	200054
SPK TI			MPP TIB2	80	300984
ROSENZWEIG, N PORT	60	700996	BLUM, A WIELCZKO MSP TI B 2	61	300491
ROSENZWEIG, N PORT	60	700901	LOWRIE, R	61	700956
SPK TI SWEENEY, W SEAL, R	61	201112	MSP TIB2 LOWRIE, R	60	701014
SPK TI WILSON, C THEKAEKA	61	201001	PHAS TIB 2		
SPK TI	01	201001	FORELIK, C YELYUTI PHAS TI B 2	62	300884
SHAW, C SPK TI	66	600908	LEITNAKER, J KRIKO REAC TI B 2	62	300408
BLOKHIN, M SHUVAEV	62	201778	LEITNAKER, J KRIKO	62	300408
BOLOTIN, G VOLOSHI	62	201830	REAC TIB 2 LAVENDEL, H	61	300482
TCON TI			REAC TIB2		
FIELDHOUSE, I LANG TCON TI	60	601583	KUBO, T HANAZAWA s TI B 2	60	201428
LOWRIE, R	61	700943	MEZAKI, R TILLEUX	62	601617
TCON TI BESSERER, C	58	700929	THER TIB2 Bolgar, A	61	700938
TCON TI		700650	THER TIB 2 MEERSON, G	60	300298
POWELL, R W TYE, R TCON TI	61	700652	VAP TIB 2	00	300286
KUPROVSKII, B GELD THEO TI	61	201867	BOLGAR, A VAP TIB2	61	700938
ROSENZWEIG, N PORT	60	700996	LOWRIE, R	61	700956
TAT TI BOKSHTEIN, S GUBAR	62	301408	VAP TIB 2 LOWRIE, R	60	701014
TRT TI			VAP TI B 2 SCHICK, H ANTHROP	63	300994
JAYARAMAN, A KLEME VAP TI	63	301482	VAP TIB 2	63	
SCHRAM, A	60	301583	KIBLER, G LYON, T REAC TI BORIDES	61	300409
FRANZEN, J HINTENB	61	700970	SAMSONOV, G	69	500120
VAP TI HANLIN, H	60	700951	MSP TI B SYST SEARCY, A WILLIAMS	60	300590
VAP TI			VAP TI B SYST		
GOLDSMITH, A HIRSC KIN TI SYST	60	700930	SCHISSEL, P TRULSO PHAS TI B C SYST	62	300606
KUBASCHEWSKI, O	62	601577	NOWOTNY, H REAC TIBC SYST	61	201170
THER TI SYST KUBASCHEWSKI, O	62	601577	SAMSONOV, G	60	300273
CPH TI B 2 KRESTOVNIKOV, A VE	60	300672	MISC TI B N FORNEY, G J MARSHA	61	300238
VAP TIB 2			PHAS TIBN SYST		
FESENKO, V BOLGAR CRYS TI B 2	63	301216	NOWOTNY, H SPK TI BE	61	201170
GORELIK, C ELYUTIN	62	301230	VAINSHTEIN, E BLOK	62	201585
THER TIB2 MIKSIC, M	63	301303	PHAS TI BE SYST VAINSHTEIN, E	61	201163
-					

THER TIBR					
FUNAKI, K UCHIMURA	61	201609	* TI C		
CEMP TIC			KAUFMAN, L Kin TI C	62	300910
BONDARENKO, B ERMA	62	301409	KIRILLOVA, G MEERS	60	200759
OF TI C VIDALE, G	61	301610	KIN TI C		
DHD TIC	•	55.515	KUBO, K SHINRIKI DH TI C	60	201210
BITTNER, H GORETZK	62	301132	LOWELL, C WILLIAMS	61	300410
CRYS TI C GORELIK, C ELYUTIN	62	301330	PHAS TIC		
TON TIC	02	301230	MARTIN, R SEAGLE TRT TI C	61	300308
HOCH, M VARDI, J	63	301245	MARTIN, R SEAGLE	61	300308
CEMP TI C INGOLD, J	63	201254	DH TI C	٠.	
DH TI C	03	301251	MOROZOVA, M KHRIPU CPH TI C	62	300597
KHRIPUN, M ARIYA	62	301258	CPH TI C NEEL, D PEARS, C	61	300146
CTEX TIC KRIKORIAN, WALLA			REAC TIC	•	300.40
CRYS TIO	63	301285	NIKOLAISKI, E	60	300130
носн, м	63	202053	CEMP TI C NOGUCHI, S SATE, T	60	300227
CRYS TIC			MPP TIC	60	300227
ASHBEE, K EELES, W	62	201994	NORTON, J MOWRY, A	49	300157
BITTNER, H GORETZK	62	202004	PHAS TIC NORTON, J	60	701001
MPP TIC			REAC TIC	80	701001
AGTE, C BLUM, G	61	300342	OGAWA, K BRANDO, Y	69	201332
SAMSONOV, G		301571	CRYS TI (RAMAN, S RAMACHAND		
TCON TIC			MPP TI C	62	300561
HOCH, M VARDI, J	63	301476	SUGIYAMA, M SUZUKI	61	300331
VIDALE, G	61	301611	TON TIC Taylor R	61	201288
VAP TIC			CRYS TI C	٠.	201286
ANON Phas T1 C	60	600666	VAN ARKEL, A	24	701056
ARAI ZENZABURO HA	60	200773	THER TIC 2 MEERSON, G	60	300298
THER TI.			REAC TI CARBIDES	80	300296
BOLGAR, A VAP TIC	61	700938	MEERSON, G ZELIKMA	61	201912
BOLGAR, A	61	700938	MPP TI C SYST BASKIN, M TRETYAKO	61	300856
COPT TIC			PHAS TIC SYST	•	
BRESKER, R VORONIN COPT TI C	59	300799	BICKERDIKE, R L HU MPP TI C SYST	59	300156
COFFMAN, J COULSON	61	701040	MPP TI C SYST BURYLEV, B	61	301071
CRYS TIC			THER TIC SYST		
COFFMAN, J COULSON OF TI C	61	701040	CUNNINGHAM, G WARD PHAS TI C SYST	63	301208
COFFMAN J COULSON	61	701040	EDWARDS, R RAINE	52	300288
PHAS TI C COFFMAN, J COULSON		201010	PHAS TIC SYST	1	
VAP TI C	61	701040	KURMAKOV, N TRONEV PHAS TI C SYST	61	601588
COFFMAN, J COULSON	61	701040	MAYRUTH, DOGDEN	60	700983
COFFMAN, J COULSON		200000	REAC TIC SYST		
REAC TIC	61	300293	PORTNOI, K LEVINSK PHAS TI C CO SYST	61	300215
EREMENKO, V VELIKA	69	201279	EREMENKO, U LESNIK	56	300285
PHAS TIC		300884	PHAS TI C MO SYST EREMENKO, V VELIKA	61	201278
FORELIK, C YELYUTI DH TI C	62	300884	PHAS TIC NB SYST	61	201278
FUJISHIRO, S GOKCE	61	701012	YELYNTIN, V BERNST	55	300283
THER TIC		701012	MPP TI C NI SYST KORNILOV, N PRYAKH	60	300209
FUJISHIRO, S GOKCE VAP TI C	61	701012	PHAS TIC NI SYST	80	300209
FUJISHIRO, S GOKCE	61	701012	EREMENKO, V N KOSO	59	300212
CHAN IDODEDTS		300300	CEMP TICN SYST LVOV, S NEMCHENKO	62	201673
GILMAN, J ROBERTS PHAS TI C	61	300300	PHAS TIC W SYST	32	20.073
GORBUNOV, N ET AL	61	300382	KREIMER, G VAKHOVS	59	300213
REAC TIC	61	300398	REAC TI CL GOPIENKO, V	60	200913
GRIGOREVA, V SERED	01	300380	THER TI CL3	30	
HODDAD, R E GOLDWA	49	300160	CLIFTON, D MACWOOD	56	300292
REAC TIC HOLDEN, FAKINGER	55	300161	TRT T1 CL3 OGAWA, S	60	200764
CEMP TIC	30	300101	VAP TI CL3		
HOLLANDER, L E JR	61	700528	SANDERSON, B MACWO	56	300291
ERES TIC HOLLANDER, LEJR	61	700528	REAC TI CL4 KRIEVE, W MASON, D	56	300290
Chrumber, Fear	٠.		· · · · · · · · · · · · · · · · · · ·	-	_

S TI CL4			CRYS TI N		
MUNSTER, A RICH, G	56	300320	PEARSON, W	62	301029
THER TI CL4 KRESTOVNIKOV, A VE	59	200783	SPK TI N PHILIPP, W	62	300521
THER TI CL4	09	200783	CEMP TI N		
NIEDERKORN, I	60	201771	SAMSONOV, G VERKHO MPP TI N	62	300731
ZKP TI CL4 MUNSTER, A RICH, G	56	300320	SAMSONOV, G VERKHO	61	300203
MPP TI CR B SYST MEYERSON, G		201115	MPP TI N SAMSONOV, G VERKHO	61	201264
PHAS TI CR SYST	69	301115	MPP TIN	٠.	101104
GOLUBTSOVA, R PHAS TI CR SYST	61	201150	SAMSONOV, G VERKHO REAC TI N	62	300997
ERMANIS, F FARRER	61	201240	FEDOSEEV, V NEMKOV	62	201757
CPL TIF4 EULER, R WESTRUM	61	201157	CEMP TIN SAMSONOV, G FOMENK	63	202128
DH TIF4	01	201157	TRT TIN		
GREENBERG, E SETTL VAP TI FE O SYST	62	300739	SAMSONOV, G FOMENK SPK TIN	63	202128
WEBSTER, A H BRIGH	61	300164	PARKINSON, W	63	202115
THER TI HALIDES KING, E WELLER, W	61	300735	CRYS TIN VAN ARKEL, A	24	701056
PHAS TIH SYST	•	300733	CEMP TI NITRIDES		, 0, 000
LIVANOV, V BUKHANO REAC TI 1	61	300386	SAMSONOV, G OH TI NITRIDES	60	700947
FUNAKI, K UCHIMURE	61	201688	SAMSONOV, G	60	700947
PHAS TI IR CROENI, JARMANTRO	62	201972	REV TI NITRIDES SAMSONOV, G	60	700947
PHAS TI MN	02	201372	CRYS TI N SYST		700347
WATERSTRAT, R DAS CPL TI MO SYST	62	201702	HOLMBERG, B PHAS TI N SYST	62	300594
HAKE, R	61	201456	MAYRUTH, D OGDEN,	60	700983
DUPOUY, JAVERBACH	61	201180	MPP TI N SYST HARVEY, J KAUFMANN	59	600640
PHAS TI MO SYST	•	201100	ERES TIN SYST		000040
KORNILOV, I POLYAK VAP TI MO SYST	61	201242	WASHLEWSKI, R PHAS TI NB SYST	62	301076
KUZMIN, A PALATNIK	62	300922	SHAKHOVA, K BUDBER	61	201234
MPP TI N SAMSONOV, G VERKHO	61	301573	PHAS TI NB CR SYST SHAKHOVA, K BUDBER	62	300993
REAC TIN	01	3018/3	PHAS TINB V SYST	02	300333
SCHAEFER, H FUHR REAC TIN	62	301578	KORNILOV, I VLASOV PHAS TI NB ZR SYST	57	500126
ORBACH, H	62	301547	MIKHEEV, V BELOUSO	61	300834
THEO TIN GOWARD, G HERSHENS	63	202042	CRYS TI NI SYST BARTON, J PURDY, G	60	300210
VAP TIN	03	202042	PHAS TINISYST	00	300210
FESENKO, V BOLGAR VAP TI N	63	301216	POOLE, D.M. HUME, W. PHAS TI NI SYST	55	300208
VAP TI N AKISHIN, P KHODEEV	62	300592	BARTON, J PURDY, G	60	300210
PHAS TI N ARAI ZENZABURO HA	••	200773	PHAS TI NI SYST		
THEO TI N	60	200773	PURDY, G PARR, J CRYS TI O	61	300279
BAUGHAN, E THER TIN	59	300866	HOCH, M	63	301477
BOLGAR, A	61	700938	CRYS TIO POPOV, YU	62	301321
VAP TIN BOLGAR, A	61	700938	CRYS TIO		200045
KIN TI N	01	700936	ANDERSON, S SPK TI O	60	200845
DOUGLASS, D ST PIE	61	201341	BERG, R A SINANOGL	60	300177
VAP TI N DREGER, L MARGRAVE	60	700991	ERES TIO Samokhvalov, a Rus	63	301567
VAP TI N			ERES TIO		
DREGER, L VAP TI N	62	300720	MCLAREN, G ERES TIO	62	301534
DREGER, L	61	300628	YAMASHITA, J	63	301625
VAP TI N DREGER, L MARGRAVE	60	600641	ROSEN, B	62	301560
s TIN			THER TIO		
KAUFMAN, L CRYS TI N	62	300910	HOCH, M Misc Tio	61	301475
LOWRIE, R	60	701014	BLAIR, L R BEACHAM	63	300150
S TI N MUNSTER, A RICH, G	58	300320	SPK TI O PRASAD, S	63	202120
ZKP TIN			SPK TI O		
MUNSTER, A RICH, G PHAS TI N	56	300320	WALLACE, I BEARDSL TRT TI O	61	202167
NEVITT, M DOWNEY,	80	200875	WANG, C GRANT, N	56	202158

PHAS TIO					
BREWER, L MASTIK	49	601634	CRYS TIO 2		
PHAS TI O		33.334	RAO, C CRYS TIO 2	61	700549
TROJER, F	62	201929	BAUR, WH	61	700555
PETTERSON, A LINDG	62	301162	CTEX TIO2		
CRYS TIO		551102	GRAIN, C CAMPBELL ELCH TI O 2	61	601471
CODLING, K SPK TIO	61	600776	SMIRNOV, M PALGNEV	60	300297
FRASER, PA JERMAI	54	300145	ERES TI O 2 GREENER, E WHITMOR		200407
DF TIO HOCH, M			KIN TI O 2	61	300487
8 TI O	60	300311	MOROZOV, 1 STEFANY KIN TI O 2	68	200796
HOCH, MIYER, A S TIO	62	300897	KENNEDY, D R RITCH	58	300225
S TIO KAUFMAN, L	62	300910	KIN TI O 2		
SPK TIO	5.6		SUZUKI, A KOTENA Phas TI O 2	62	201838
KIESS, C PHAS TI O	48	600685	BRAUER, J LITTKE	60	201990
KORNILOV, I	60	200769	PHAS TIO 2 DELIMARSKY, Y BUDE	62	300880
DH TIO KRESTOVNIKOV, A	62	300930	PHAS TIO 2		
TCON TI O	••	300930	KNOLL, H REAC TIO 2	63	301266
KURYLENKO, C MPP TIO	58	201565	KOMAREK, K COUCOUL	63	301269
LECERF, A	62	300939	CPL TI () 2 MATOSSI, F	63	301299
REAC TI()			MPP T1 O 2	03	301299
MAKAROV, E KUZNETS SPK TI O	60	600772	BAUR, W.H	61	700554
ORTENBURG, F	60	600917	PHAS TI O 2 GRAIN, C CAMPBELL	61	601471
SPK TIO ORTENBERG, F	61	300821	PHAS TIO2		
SPK TIO	0.	300821	STRAL MANIS, M EJIM PHAS TUO 2	61	201078
PAPOUSEK D THER TIO	61	700675	IIDA Y OZAKI, S	61	700519
PAPOUSER	61	700675	PHAS TI O 2 RAO, C YOGANARASMH	61	700535
SPK TIO			PHAS 11 0 2		
PARKINSON W NICHO SPK TI O	59	600612	COCCO, A VIRDIS, P PHAS TI O 2	61	201316
PETTERSSON A LIND	61	700544	MASSAZZA, F	61	201293
SPK TIO PETTERSSON AVEL	61	700605	REAC T1 O 2 MELENTEV, B	60	200964
SPK TIO			REAC TIO2		
PHILLIPS, J G SPK TI O	54	300165	KUTSEV, V S ORMONT REAC TI O 2	56	300153
PHILLIPS J	50	600890	GEBHARDT, J HERRIN	58	300217
SPK UTO PHILLIPS, J	51	600891	REAC TI O 2 MEERSON, G	62	300950
ERES 110	5.	000031	REV TIO 2	02	300300
WASILEWSKI, R CRYS TI O	62	201516	PETEL A	62	201523
CRYS TIO STRAUMANIS, M LI	60	200780	REAC FO2 CZANDE NS, A W HOM	59	300224
CEMP TIO2			MPP 11 0 2		
GREENER, E WHITMOR CRYS TI O 2	61	600862	MCTAGGART F MPP TI O 2	63	202101
KOFSTAD P	62	301507	NAGARJAN, G	63	202106
CRYS TIO2 ASHBEE, K EELES, W	62	201994	REV TI O 2 GRANT, F	59	300890
PHAS TI O 2			SPK TIO2		
DACHILLE, FROY, R PHAS TI O 2	62	202022	PRASAD, S SPK +1 0 2	62	301553
DIAMOND, J SCHNEID	60	202028	SOFFER, B	61	201327
CEMP TIO2 ACKET, G VOLGAR, J		201165	THER TI O 2 KUBASCHEWSKI, O	61	600792
CPH TIO2	63	301165	THER TIO 9	•	000732
JOSHI, S MITRA, S	60	200767	SCHICK, HAN THROP	63	301579
CPL TI O 2 JOSHI, S MITRA, S	60	200767	THER TI O 2 SCHICK, H ANTHROP	63	301580
CRYS TIO 2			TRT T1 O 2		201564
YOGANARASIMHAN, S CRYS TI O 2	61	200881	RUDNEVA, A MODEL TRT TIO 2	63	301564
ANDERSON, S	60	200845	BRAUER, J LITTKE	60	201990
CRYS TI O 2 STRAUMANIS, M EJIM	61	201078	TRT TI O 2 RAO, C YOGANARASMH	61	700535
CRYS TIO2	91	20.070	TRT T1 O 2		
VON WERNER, H BAUR CRYS TI O 2	56	300181	RAO, C zkp TIO 2	61	700549
CRYS TIO2 RAO, C YOGANARASMH	61	700535	KUTSEV, V S ORMONT	55	300153

PHAS TI2O 3 BRAUER, J LITTKE,R TRT TI2O 3	60	200777	REAC TI O C SYST NISHIMURA, H KIMUR PHAS TI RE	54	300169
BRAUER, J LITTKE,R MPP TI2O 3	60	200777	AGEEV, N KARPINSKI	61	201762
LECERF, A CRYS TI2O 3	62	300939	PHAB TI SC SYST SAVITSKII, E BURKH DH TI SI SYST	61	700622
STRAUMANIS, M EJIM ERES TI2O 3	62	300692	GOLUTVIN, Y	56	400599
YAHIA, J FREDERIKS CRYS TI2O 3	61	300490	GOLUTVIN, Y	62	301229
ABRAHAMS, S E T120 3	63	201991	GOLUBTSOVA, R B	61	300174
ARIYA, S SOBOLEVA PHAS TI30	61	300787	PHAS TI SI O SYST COCCO, A SCHROMEK	60	201188
KORNILOV, I GLAZOV CRYS TI3O 5	63	202081	CPL TI V SYST CHENG, C GUPTA, K PHAS TI V SYST	62	300760
ASBRINK, S MAGNELI CRYS TI50 9	59	700522	PHAS TI V SYST ERMANIS, F FARRER PHAS TI V SYST	61	201240
ANDERSSON, S PHAS TIGO	60	201381	KORNILOV, I POLYAK MPP TI W B SYST	61	201242
KORNILOV, I GLAZOV BIS TI OXIDES	63	202081	MEYERSON, G CRYS TIWC SYST	59	301116
CHAPMAN, M CRYS TI OXIDES	60	701005	FUNKE, V PANOV, V MPP TI W C SYST	61	201236
MAGNELI, A ANDERSO KIN TI OXIDES	61	201566	FUNKE, V PANOV, V PHAS TI W C SYST	61	201236
DOUGLASS, D ST PIE PHAS TI OXIDES	61	201341	FUNKE, V PANOV, V	61	201236
ANDERSSON, S VAP TI O SYST	59	201178	BARE, D	61	201146
FRANZEN, H THEO TI O SYST	63	202033	PHAS TI ZR SYST ENCE, E MARGOLIN	61	200919
GELD, P TSKHAI, V THER TI O SYST	63	202036	PHAS TI ZR SYST ENCE, E MARGOLIN	61	300162
VEINBACHS, A KOMAR ERES TI O SYST	62	601611	PHAS TI ZR SYST GRIDNEV, V TREFILO	60	201093
WASILEWSKI, R PHAS TI O SYST	62	301075	PHAS TI ZR O SYST HOCH, M	59	201136
MAYRUTH, D OGDEN CEMP TI O SYST	60	700983	REAC TI ZR O SYST RUH, R	63	202124
VASILEV, Y KHRYCH PH TI O SYST	63	301608	PHAS TI ZR O SYST HOCH, M DEAN, R	61	300645
NOMURA, S KAWAKUBO PHAS TI O SYST	61	700638	THER TI ZR O SYST HOCH, M DEAN, R L	69	300214
LIVANOV, V BUKHANO CRYS TI O SYST	61	300386	THER TI ZR O SYST HOCH, M DEAN, R	61	300545
MAGNELI, A PHAS TI O SYST	60	600617	PHAS TI ZR O SYST DOMAGALA, R		300302
KUBASCHEWSKI, O THER TI O SYST	62	601577	CRYS TM KOEHLER, W WOLLAN	61	301504
KRESTOVNIKOV, A LO	60	300927	SAVAGE, W HUDSON	69	601126
HOLMBERG, B REAC TI O SYST	62	300596	COLVIN, R LEGVOLD	60	601389
HURLEN, T	60	200890	SPK TM SAKELLARIDIS, P	53	100184
EROFEEVA, M LUKINY	61	700602	SPK TM AKIMOV, A	67	601099
BRIGHT, N CRYS TI O SYST	61	300661	SPK TM MERRILL, P GREENST	56	601007
BRIGHT, N PHAS TI O SYST	61	300661	VAP TM ANON	56	601319
BLUMENTHAL, R WHIT THER TI O SYST	62	601666	SPK TM BLAISE, J VETTER	63	202005
BLUMENTHAL, R WHIT	62	601666	VAP TM SAVAGE, W HUDSON	59	601126
ARIYA, S POPOV, Y	62	300599	CEMP TM B 6 SAMSONOV, G PADERN	59	300143
ANON	60	701015	CPH TM2O 3 PANKRATZ, L K1NG	63	202114
PHAS TIOSYST ANON	60	701015	CPL TRANSITION MET KAKUSHADZE, T	61	300818
VOTINOV, M DEMIDEN	62	301613	CPL TRANSITION MET WOLCOTT, N	55	601137
REAC TIOC KUBO, T SHINRIKI	61	201691	CRYS TRANSITION MET DWIGHT, A	FALS 61	201200
PHAS TI O C SYST NISHIMURA, H KIMUR	64	300169	MISC TRANSITION MET WATT, G W	FALS 61	700590
			•		

REAC TRANSITION MET			CRYS U		
AGEEV, N KOPETSKII	59	201230	TUCKER, C W	62	400570
			CRYS U TUCKER, C W		
u			CRYS (;	52	400571
U			BRIDGE, J	56	601656
			CRYS U CASH, A HUGHES, E		201252
CRYS U			CRYS U	61	201362
SUTTON, A EELES, W	62	301600	DONOHUE, J	61	201351
KLEMENT, W JAYARAM	63	301502	CRYS U LANIESSE, J ENGLAN	60	201980
REAC U			CTEX U	•	20.000
BESSONOV, A VLASOV BIB U	62	301188	GOODMAN, M CTEX U	60	601331
ANON	58	601368	SCHUCH, A F LAQUER	52	400568
BIB U CROXTON, F	51	4000	CTEX [!		
BIB U	31	600955	LEHV, P LANGERON CTEX U	55	601005
ALLEN, R	53	600966	LLOYD, L	59	601203
CEMP U RAUCH, E	56	601261	DH U HOLLEY, C HUBER, E	50	601178
CEMP U			CTEX U	•	001170
HOLDEN, A	58	601562	BRIDGE, J DH t'	56	601656
KATZ, J	58	601533	HUBER, E V HOLLEY	52	400565
CEMP U RIVIERE, J	••		DH U		
CPH U	62	201805	MOORE, G KELLEY, K elch U	47	601646
MITKINA, E	59	201029	SMIRNOV, M SKIBA	61	300992
CPH U MOORE, G KELLEY, K	47	601646	ERES U HOVL, J	56	601303
CPH (٠,	00.040	ERES		601303
GINNINGS, D CORRUC	47	601647	TYLER, W WILSON, A ERES U	53	100185
MORTH, J	56	600984	BERLINCOURT, T	59	601655
CPL U			ERES U		
FLOTOW, H LOHR, H CPL U	60	601334	MURK, K eres U	59	601523
JONES, W. M. GORDON	52	400555	DAHL, A VAN DUSEN	47	601644
CPL U SMITH, P WOLCOTT	55	601137	MISC U KATZ, J J RABINOW I	51	400578
CPL U	55	001137	MPP L	•	400075
GOODMAN, B HILLAIR	60	201518	HOLDEN, A MPP U	58	601562
CRYS U LUKESH, J	49	601652	KATZ, J	58	601533
CRYS U		3. 4.	MPP U		
THEWLIS, J STEEPLE U	54	601650	WATSON, J WILDER PHAS U	60	201321
WILSON, A RUNDLE	49	601657	THEWIV', J	52	100202
CRYS U COOPER, A	62	601464	PHAS BUTCHER, B	56	601031
CRYS U	02	001404	PHAS U	•	00.00.
JACOB, C. WARREN, B	37	601653	ANO PHAS U	58	601302
CRYS U TUCKER, C	49	601371	KURODA, T SUZUKI	58	601326
CRYS U			PHAS U BLUMENTHAL, B	••	
WILSON, A RUNDLE CRYS U	49	601360	PHAS U	60	601342
STURCKEN, E POST	60	200857	MUELIUR, M HITHERM	62	601431
CRYS U		100197	PHAS U ALLENDORFER, A	50	400539
DAWSON, J CRYS U	52	100187	PHAS U	-	40000
CHIOTTI, P KLEPFER	58	601074	TUCKER, C W Phas U	52	400570
CRYS U TUCKER, C	50	601176	LEHR, P LANGERON	57	601058
CRYS U		••••	PHAS U		
THEWLIS, J	52	100202	DAHL, A I CLEAVES PHAS U	49	400580
CRYS U THEWLIS, J	61	400569	FISHER, E	61	201270
CRYS U			PHAS U JOHNSON, R	61	201253
TUCKER, WSENIO, P CRYS U	56	601016	PHAS U		
TUCKER, C SENIO, P	53	600964	ANON PHAS U	56	601419
TUCKER, C SENIO, P	52	601251	PHAS U ANON	67	601507
CRYS U	04	001201	PHAS U		
TUCKER, T	52	600673	BAUMRUCKER, J CHIS	53	601651

PHAS U BUZZARD, R LISS, R	53	601649	TCON U WESTPHAL, R	55	601270
PHAS U			TCON U		
CHRISTIAN, J PHAS U	59	601621	ANON TCON U	67	601313
FISHER, E Phas U	61	601455	FARIS, F	67	601310
KLEPFER, H	67	601506	TCON U TYLER, W WILSON,A	53	100185
PHAS U SEMENCHENKOV, A	61	201894	TRT U AUBERT, H	62	201995
REAC U KATZ, J J RABINOWI	51	400578	TCON Ü SMITH, K	57	601063
REAC U	_		TCON U		
DEUTSCH, N ERVIN REAC U	60	500123	ERIKSEN, V HALG, W TCON U	55	600934
BESSONOV, A VASLOV REAC U	61	201390	DAYTON, R Ther U	68	601525
DERGE, G MARTIN, A	44	201526	FLOTOW, H LOHR, H THER U	60	601334
KAUFMANN, A	62	601429	LEMMON, A WARD, J	52	601012
REV U NICHOLS, R	57	601102	THER U BREWER, L BROMLEY	47	400581
REV U HANTOS, R	58	601075	THER U SCHICK, HANTHROP	63	301579
REV U			THER U		
ANON REV U	58	601539	MACWOOD, G Ther U	58	601143
ANON REV U	58	601538	ACKERMANN, R THORN THER U	62	601616
VETEJSKA, K Rev u	60	601199	MOORE, G KELLEY, K Ther U	47	601646
CHISWICK, H DWIGHT SPK U	58	601207	SKIDMORE, I MORRIS	62	601607
ELYASHEVICH, M	63	601413	KENDALL, W	62	601684
MOROZOVA, N STARTS	67	601416	TRT U ALLENDORFER, A	50	400539
SPK U BOVEY, LATHERTON	61	601422	TRT U DAHL, A I CLEAVES	49	400580
SPK U DIRINGER, M	60	601353	TRT U FISHER, E	61	201270
SPK U ATHERTON, N BOVEY	60	601327	TRT U	57	601507
SPK U SCHUURMANS, P	46	601290	TRT U BURKE, J. DIXON, P	62	301420
SPK U			TRT U DAHL, A VAN DUSEN	47	
MCNALLY, J SPK U	62	100211	VAP (601644
MCNALLY, J SPK U	60	400523	RAUH, E THORN, R VAP U	54	600948
VAN DER BOSCH, J SPK U	49	400525	GILBREATH, J VAP l	62	601314
VANDEN BOSCH, J C SPK U	50	400554	GILBREATH, J	60	601333
SMITH, D D STOKENB	51	400564	GILBREATH, J	57	601300
SPK U STRIGANOV, A KOROA	55	600989	VAP GILBREATH, J	55	601274
SPK U BEDREAG, O	54	601013	VAP () HANLIN, H	60	700951
SPK U OSARO, F PERLMAN	62	400572	VAP U DEISS, W	62	300877
SPK U SMITH, D	62	601249	VAP U RAUH, E THORN, R	54	601223
SPK U BURKHART, L STUKEN		601373	VAP		601685
SPK U	49		ACKERMANN, R RAUH VAP U	62	
BAKULINCE, I IONOV SPK U	69	601135	ACKERMANN, R THORN CEMP U B 2	62	601616
BOVEY, L WISE, H SPK U	59	601164	KLOPP, W CRYS UB 2	59	601542
ANON SPK U	58	601549	LUNSFORD, J FRIES CTEX U B 2	61	601466
ROGOSA, G SCHWARZ	63	500124	KLOPP, W CTEX UB 2	59	601542
NARBUTT, K LAPUTIN TCON U	62	201779	BECKMAN, G KIESSLI PHAS U B 2	56	601049
MAKIN, B	64	601286	FOWLETT, B	51	601357
TCON U WEEKS, J	66	601282	THEN UB2 KLOPP, W	59	601542

Cave U.D.					
CRYS U B 4 STEPANOVA, A ZHURA	58	601111	PHAS U C FERGUSON, I STREET	61	601418
CRYS U B 4 ZALKIN, A TEMPELTO			PHAS UC		
CTEX UB4	53	100198	NEWKIEK, H BATES REAC U C	59	601165
STEPANOVA, A ZHURA REV U B 4	58	601111	FARR, J HUBER, E	59	601200
MATTERSON, K JONES	61	300324	REAC U C CARTER, J H DAANE	51	400561
CRYS U H 12 BERAUT, F BLUM, P	49	601262	REAC UC		*****
REAC U B 12	75	601363	PEAKALL, K ANTILL REAC U C	62	601682
PADERNO, Y PHAS U BORIDES	61	201276	GREGOIRE, P Rev U C	62	201488
BREWER, L SAWYER DF U B SYST	50	601400	SEDDON, J	60	601380
ALCOCK, C GRIEVESO	62	601606	REV U C ROUGH, F CHUBB, W	60	600610
DH U B SYST ALCOCK, C GRIEVESO	62	601606	MPP U C BROWN, D STOBO, J	62	301198
PHAS UBSYST			CPL UC		
HOWLETT, B PHAS UBSYST	51	601357	COMBARIEN, A COSTA THER U'C	63	301206
ANON PHAS UBSYST	60	601328	GROSSMAN, L TCON U C	63	301237
ALCOCK, C GRIEVESO	62	601606	EDWARDS, R	52	601235
THER U.B.SYST ALCOCK, C. GRIEVESO	62	601606	THER UC FARR, J HUBER, E	59	601200
PHAS UBCSYST			THER UC		
TOTH, L PHAQ UBE	61	201256	WESTRUM, E Ther U C	62	601689
BADAEVA, T.KUZNETS PHAS UBE C.SYST	61	201833	KLOPP, W TRT ! C	59	601542
BRISL C ABBATTIST	61	201507	CHIOLICE	52	601237
OH UBR SHCHUKAREV S VASI	58	200847	TRT (C NEWKIEK, H BATES	59	601165
SPK U BP SYST			CRYS UCC 2 ATODA FHIGASHI	61	301399
PREGENT, a BIB U C	60	200934	PHAS UC2		
SEDDON, J	60	601380	BRIGGS G GUHA J	62	301416
CEMP U.C. HOPKINN B	62	300516	HUBER E HEAD, E	63	202056
CEMP V C KLOPP W	59	601542	KLOPP, W	59	601542
CPH U C WESTRUM E	62	601689	CPH U.C.2 WESTRUM, E	62	601689
CRYS L' L'			CRYS UC 2 ATOJI, M MEDRUD, R	59	700867
WILLIAMS JSAMBEL CRYS U.C.	60	601388	CRYS (C.)		
ATODA, I HIGASHI	61	301399	FERGUSON ISTREET CRYS U.C.2	61	601418
CRYS U.C. FERGUSON, I STREET	61	601418	BRED', M CRYS CC2	60	700852
CRYS UC CHIOTTI, P	52	601237	GILLAM, I	62	601680
CRYS (C			CTEX U.C. 2 KLOPP, W	59	601542
NOWOTNY, H	58	601079	DF U.C.2 FUJISHIRO, S		601440
CARTER, JH DAANE CRYS U C	51	400561	PHAS T (* 2	61	
CRYS U.C. VOGEL, R.KEMPTER	59	601177	FERGUSON, 1 PREP U.C. 2	61	201139
CTEX U.C. Klopp, W.	59	601542	ΤΑΚΑΒΑ, Υ ΙΜΟΤΓΟ	61	201937
DH (, C,		601200	THER U.C.2 FUJISHIRO, S	61	601440
IARR, JHUBER, E Eres VC	69		THER UC2 WF-TRVM,E	62	601689
GRIFFITHS, L PHAS U C	62	201569	THER UC2		
BRIGGS, G GUHA, J	62	301416	KLOPP, W VAP U C 2	69	601542
REAC U.C. Murbach, eturner	62	202105	FUJISHIRO, S VAP U C 2	61	601440
VAP U C VOZZELLA, P MILLER	62	202156	LEITNAKER, J WITTE	62	300393
CPL UC			VAP U C 2 EICK, H RAUH, E	62	601614
COMBARIEU, A COSTA KIN U C	63	202021	DH UC2 HUBER, E HEAD, E	63	301247
ANTILL, J PEAKALL	59	200883	CPH LC2		
KIN U C CHUBB, W TOWNLEY	61	201311	LEVINSON, L CRYS U 2C 3	62	301292
MPP U C BOETTCHER, A SCHNI	60	601201	GILLAM, E	62	601680

			.400		
MPP U 2C 3 MALLETT, M GERDS	51	100203	PHAS U C SYST BLUMENTHAL, B		
BIB U CARBIDES	٠.	100203	PHAS U C SYST	59	601692
JONES, P	60	201004	EPREMIUM, E	67	601516
CRYS U CARBIDES CHIOTTI, P			REAC U.C. SYST		
MPP U CARBIDES	49	601416	SIVARTS, E REAC U C SYST	57	601109
BARNES, E MUNRO, W	57	601035	LOCK, L GAMBINO, J	56	601015
REAC U CARBIDES			REAC UCSYST		
BARNES, E MUNRO, W REAC U CARBIDES	67	601035	CARTER, J H DAANE THER U C SYST	50	400560
WILHELM, H CHIOTTI	49	400536	ANON	60	601414
THER U CARBIDES			THER U C SYST		00.4.4
BREWER, L BROMLEY	47	400581	BREWER, L BROMLEY	68	601145
TRT U CARBIDES CHIOTTI, P	49	601416	THER U C SYST ALCOCK, C GRIEVESO	62	601606
SPK U COMPOUNDS			THER UCSYST	-	00.000
DUNN, H	56	601024	HULLEY, C	63	601690
REAC U COMPOUNDS KATZ, S	62	201971	MPP U C O SYST NAMBA, S IMOTA, S	61	400611
SPK U COMPOUNDS		20.0	REAC U.C.O.SYST	• • •	400611
EDING, H CARR, E	61	201061	TRACHENKO, E VLASO	63	301605
BIB U C SYST BOWMAN, F	60	601346	PHAS U CE SYST SAVITSKII, E BARON	62	204550
BIB U C SYST		001040	SPK U CL4	02	201552
COMSTOCK, M	60	600623	WING, R	61	201127
CRYS U C SYST AUSTIN, A	69	601120	SPK U CL20 SYST WING, R		
CPH U C SYST	••	001120	REAC UF	61	201127
MUKAIBO, T NAITO	62	601610	NGHI, N	61	201687
CRYS U C SYST RUNDLE, R WILSON	58	601112	REAC UF		
DF U C SYST	00	001112	STEVENSON, J RUEHL CPL U F 4	53	201727
ALCOCK, C GRIEVESO	62	601606	BURNS, JOSBORNE	60	200848
OH U C SYST ALCOCK, C GRIEVESO	62	601606	DH UF4		
MPP U C SYST	62	601606	MALTSEV, V PHAS U F 4	60	201161
CHUBB, W DICKERSON	62	601481	KIRSHENBAUM, A	61	201183
PHAS UCSYST			REAC UF4		
ANON PHAS UCSYST	57	601298	CAVELL, R CLARK, H SPK U F 4	62	201725
ANON	53	601311	RAMBIDI, N AKISHIN	61	300763
RYS U.C. SYST			THER UF4		
SHARMA, B THER U C SYST	63	301194	GALKIN, N VAP UF 4	61	201248
CUNNINGHAM, G WARD	63	301208	AKISHIN, P KHODEEV	01	300453
PHAS U C SYST			THER UF6		
ANON PHAS U C SYST	67	601507	PARKS, B BARTON, D REV U F 6	60	200884
ANON	53	601513	TSUJIMURA, S	62	201986
PHAS U C SYST			REAC UF SYST		
ANON PHAS UCSYST	67	601516	RESHETNIKOV, F GUR DH U FE SYST	62	300972
ANON	57	601555	AKHACHINSKIY, V KO	62	301104
PHAS U.C. SYST			THER U HALIDES		
ANON PHAS U C SYST	57	601559	BREWER, L BROMLEY	47	400581
PHAS U C SYST CHUBB, W PHILLIPS	61	601442	THER U HALIDES MACWOOD, G	58	601143
PHAS U C SYST			PHAS U HF C SYST		
WILLIAMS, J SAMBEL	59	200872	RUDY, E BENESOVSKY	63	301333
PHAS U C SYST	59	601349	ERES U MN Hamaguchi, y kunit	62	201568
PHAS U C SYST			PHAS U MO		20.555
SILVERMAN, L	50	601364	KAWASAKI, M NAGASA	60	201491
PHAS U C SYST	60	601414	REAC U MO BELLOT, J DOSIER	58	201627
PHAS U C SYST		- 	PHAS U MO SYST	56	20.02/
WILHELM, E	56	601264	TANGRI, K WILLIAMS	51	201308
PHAS U C SYST RUNDLE, R WILSON	58	601112	PHAS U MO SYST KRAMER, D RHODES	٠,	201367
PHAS U C SYST		991115	PHAS U MO SYST	61	241307
WILSON, W	60	601193	IVANOV, O BADAEVA	61	201868
PHAS U C SYST MALLETT, M GERDS	52	100188	PHAS U MO SYST		201896
PHAS U C SYST	72		IVANOV, O SEMENCHE PHAS U MO C	61	201050
BLUMENTHAL, B	56	601044	RUDY, E BENESOVSKY	63	301566
PHAS U C SYST ALCOCK, C GRIEVESO	62	601606	PHAS U MO C SYST		301332
ALCOCK, C GRIEVESU	04	JU 1 JU	RUDY, E BENESOVSKY	63	JU JJ2

THE RESERVE					
PHAS U MO C SYST FIZZOTTI, C SARAC			PHAS UN SYST		
PHAS U MO CR SYST	62	201697	VAUGHAN, D PHAS UN SYST	56	601004
BADAEVA, T KUZNETS	61	201899	PHAS UN SYST DAYTON, R	57	601509
SPK U MO X6			REAC UN SYST		00.505
HORTON, J THOMAS	62	201851	RUNDLE, R BAENZIGE	59	601140
PHAS U MO ZR SYST IVANOV, O BAGROV			SPK UN SYST		
PHAS U MO ZR SYST	61	201840	VAUGHAN, D	56	601004
IVANOV, O BAGROV	61	201898	THER UN SYST BREWER, L BROMLEY	58	601145
BIB UN		10.030	PHAS UNC SYST	0.6	601145
COMSTOCK, M	60	600623	AUSTIN, A GERDS, A	58	601117
BIB UN KERR, W			PHAS UNB		
CEMP UN	62	601461	NORTON, J OGILVIE	59	201811
KLOPP, W	69	601542	PHAS U NB SYST IVANOV, O TEREKHOV	61	201945
CRYS UN		001042	CEMP UNB SYST	•	201540
KELLER, D	61	601445	BATES, L BARNARD	61	201202
CHYS UN CHIOTTI, P			PHAS UNBCSYST		
CRYS UN	52	601237	*RUDY, E BENESOVSKY	63	301333
MUELLER, H KNOTT	68	601138	PHAS U NB MO SYST IVANOV, O TEREHKON	61	201832
CRYS UN		501130	PHAS UNB MO SYST	0.	201632
ANON	69	601650	IVANOV, O TEREHKOV	61	201841
CTEX UN			PHAS UNB MO SYST		
KELLER, D CTEX U N	61	601445	IVANOV, O TEREHKOV	61	201842
KEMPTER, C ELLIOTT	59	601150	CEMP U O ZHUKOVSKII, V VASL	62	201982
CTEX UN	33	001190	CRYS U O	62	201982
KLOPP, W	69	601542	YOUNG, W LYNDS, L	62	201567
DH UN			DF UO		
GROSS, PHAYMAN, C	62	601621	MARKIN, T BONES, R	62	201819
ERES UN KELLER, D	61		KIN U O BESSONOV, A ALASOV		
PHAS UN	61	601432	KIN U O	62	201964
NEWKIFK, T BATES	59	601166	VOLPE, M. MIHAILOVI	62	201919
PHAS U.N.			MSP UO		
BRIGGS, G GUHA J	62	301416	DEMAUA, G BURNS, R	60	601163
REAC U N NEWTON, A S JOHNSO	51	400559	PHAS U O SUDO, K KIGOSHI, A	61	201530
REV U.N	91	400559	PHAS U O	01	201630
KERR, W	62	601461	ALEXANDER, C	62	201921
TCON UN			PHAS U O		
KELLER, D	61	601432	RUEDORFF, N KEMMLE	62	201775
TCON UN EDWARDS, R	52	601235	REAC U () POLUNINA, G KOVBA	61	201624
THER UN	62	601236	REAC UO	0.	201024
KLOPP, W	59	601542	SAND, TIMOTO, S	60	200963
TRT UN			REAC UO		
OLSON, M MULFORD	63	301546	UKAU R MINAMI, F	61	201623
TRY U.N			REAC UO ANTII, J	62	201973
CHIOTTI, P	52	601237	THER UO	•2	2019/3
TRT UN NEWKIEK, H BATES	59	601165	SCHICK, H ANTHROP	63	301579
VAP UN	•	••••	CRZS U O 2		
OLSON, M MULFORD	63	301546	WILLIS, B	63	301623
REAC UN2			REAC U O 2 ORBACH, H	62	301547
BESSONOV, A VLASOV	62	201942	THER U O 2	4	30104/
CRYS U 2N 3 EVANS, P	62	601463	SCHICK, HANTHROP	63	301579
DH U 2N 3	V2	22.400	TRT UO2		
GROSS, PHAYMAN, C	62	601621	CHIKALLA, T	63	301203
CRYS U NITRIDES			TRT U O 2 MUMPTON, F ROY, R	60	301308
CHIOTTI, P	49	601177	REAC U O 2	50	301308
THER U NITRIDES BREWER, L BROMLEY	47	400581	CORDFUNE E, E	61	201785
TRT U NITRIDES	~,		VAP U 0 2		
CHIOTTI, P	49	601177	GERDANIAN, P DODE	62	201886
CRYS UN SYST			BIB U O 2 REISWIG, R	61	601378
DAYTON, R	67	601509	BIB U O 2	91	9013/6
DH UN SYST	61	201313	WENSRICH, C	60	700972
MOREAU, C PHILIPPO MPP U N SYST	• •	201313	B1B U O 2		
RUNDLE, R BAENZIGE	59	601140	BELLE, V	57	601611
PHAS UN SYST	-		BIB U O 2 SHAPIRO, Z	67	601512
WILLIAMS, J SAMBEL	59	200872	BIB UO2	9,	90 1 B 1 Z
PHAS UN SYST		601375	HAUSNER, H	69	601630
RUNDLE, R BAENZIGE	48	901370			

			11 () ()		
CPH U O 2 KOENIG, N	58	601366	REAC U O 2 ANDERSON, J SAWYER	60	601172
CPH U O 2	30		REAC U O 2		
CABBAGE, A WELCH CPH U O 2	61	601443	HOEKSTRA, H REAC U O 2	61	201177
POPOV, M GALCHENKO	58	601153	DAS, C SAHOO, B	61	201466
CPL U O 2 JONES, W M GORDON			REAC U O 2 LYNDS, L	62	201682
CPL U O 2	52	400555	REV UO2	02	201002
OSBORNE, D WESTRUM	53	600968	KAUFMANN, A REV U O 2	62	601429
CRYS U O 2 HASHIGUCHI, R MATS	60	200866	SEDDON, J	60	601380
CRYS U O 2			REV U O 2 SHAPIRO, E	57	601296
TUXWORTH, R	60	600849	REV U O 2	3,	001290
CHIOTTI, P	49	601416	BELLE, J Rev U O 2	58	601202
CRYS U O 2 VAN ARKEL, A	24	701056	TENNERY, J	69	601535
CRYS U O 2			RHO U O 2 KOENIG, N	58	801288
CHIOTTI, P CRYS U O 2	52	601237	s U 0 2	00	601366
ROBINS, R WILKS, R	62	201821	ACKERMANN, R TOON U O 2	56	601322
CTEX U O 2 LAMBERTSON, W	56	601323	ROSE, R	58	601392
CTEX U O 2			TCON U O 2 DAYTON, R	58	801537
FUIKERSON, S CTEX U O 2	60	60136+	TCON U 0 2	56	801527
KOENIG, N	68	601366	DAYFON, R TCON V O 2	58	601526
CTEX U O 2 KEMPTER, C ELLIOTT	59	601150	DAYTON, R	58	601529
CTEX U O 2			TCON U O 2 DAYFON, R	58	801557
HALDEN, FWOHLERS OH U O 2	59	201836	TCON U 0 2	56	801557
ACKERMANN, R DH U O 2	56	601322	DAYTON, R TCON U O 2	58	601556
ARONSON, S	61	201318	REISWIG, R	61	601378
DF U 0 2		444544	TCON U O 2 KOENIG, N	58	601386
ACKERMANN, R FHORN- ELCH U O 2	58	601510	TCON U O 2	.,,	001300
LAMBERTSON, W KIN U O 2	56	601323	HEDGE, J TCON U O 2	57	601294
AFONSON, S ROOF, R	57	601068	MAKIN, B	64	601286
KIN U O 2 KUHLMAN, C	48	201904	GILBREATH J	55	601274
KIN UO2	10	20.004	TCON 1 O 2		
KUHLMAN, C Misc U O 2	48	201115	FLINTA, J TCON U O 2	58	601095
BUTLER G HAUSNER	60	200915 .	BETHOUX, O THOMAS TOON U O 2	61	201534
MPP U O 2 KOENIG, N	58	601366	BERG, K FLINTA, L	58	201533
MPP UO2			TCON U O 2 SCOTT, R	- 0	501115
PRIEST, H PRIEST MSP U O 2	58	601147	TON UO2	58	601115
DEMAUA, G BURNS, R	60	601163	POWERS, R TCON U O 2	60	201184
PHAS U O 2 KOENIG, N	58	601366	BERG, K	58	801544
PHAS U O 2			TCON U O 2 ROSS, A	58	601493
LAMBERTSON, W PHAS U O 2	56	601323	TCON U O 2	50	
HERING, H PERIO, P PHAS U O 2	52	601236	TENNERY, I Ther U O 2	59	601535
PHAS U () 2 PERIO, P	53	601216	ACKERMANN, R	5 6	601273
PHAS U O 2 BARD, R BOWERSOX	e 7	601060	THER U O 2 ACKERMANN, R THORN	58	601087
PHAS U 0 2	57	601060	THER U O 2		
NEWKIEK, H BATES PHAS U O 2	59	601165	ACKERMANN, R GILLE THER U O 2	58	601233
ROTHWELL, E	62	601476	ARONSON, S BELLE	58	601077
PHAS UO2 EVANS, P	61	201362	THER U O 2 ACKERMANN, R GILLE	5 6	601045
PHAS UO2			THER U O 2		
COHEN, I SCHANER REAC U O 2	62	201845	SMIRNOV, M THER UO2	60	201191
BARD, R BOWERSOX	67	601060	IVANOV, V KRUGLYKH TRT U O 2	62	601604
REAC U O 2 ARONSON, S ROOF, R	57	601068	TRT U O 2 Chiotti, P	52	601237
REAC UO2			TRT U O 2	49	601416
BLACKBURN, P WEISS	58	601114	СНІОТТІ, Р	~*	001710

TRT U O 2					
WISNYI, L	67	601500	CRYS U 30 8		
VAP U O 2		001000	CHODURA, B MALY, J CRYS U 30 8	68	601546
ACKERMANN, R VAP U O 2	56	601322	GRONVOLD, F	48	601379
ACKERMANN, R	55	601273	CRYS U 30 8		
VAP U O 2		001273	ANDERSON, A CRYS U 30 8	58	601078
ACKERMANN, R THORN VAP U O 2	58	601510	WILSON, W	60	601183
ANON	67	601514	CPL U 30 8		
VAP U O 2			WESTRUM, E GRONVOL DH U 30 8	59	601133
IVANOV, V KRUGLYKH TRT U O 2	62	601604	POPOV, M IVANOV, M	67	601086
WISNYI, L PIJANOWS	67	601081	DHT U 30 8		
TRT U O 2			KHOMYAKOV, K SPITS Eres U 30 8	61	300729
ANDERSON, J SAWYER TRT U O 2	60	601172	BRIDGMAN, P	51	400533
NEWKIEK, H BATES	59	601165	PHAS U 30 8 PERIO, P	53	601216
ZKP U O 2 SMIRNOV, M	60	201101	PHAS U 3O 8	03	001210
CPH UO3	-	201191	HERING, H PERIO, P REAC U 30 8	52	601236
POPOV, M GALCHENKO	58	601153	REAC U 30 8 KHLEBNIKOV, G SIMA	61	201625
CPL U O 3 JONES, W M GORDON	62	400555	REAC U 30 8		
CRYS U O 3	02	400888	VLASOV, V KOZLOV THER U 30-8	62	201591
CORNMAN, W	62	301030	WESTRUM, E	58	601653
DEWOLFF, P	61	601424	CPL U 40 9		
CRYS U O 3			OSBORNE, D CRYS U 40 9	56	601254
CONNOLLY D	59	601365	BELBEOCH, B PIEKAR	60	601426
WAIT, E	56	601268	REAC U 40 9 HOEKSTRA, H		201177
DF UO3			THER 1 40 9	61	201177
ACKERMANN, A THORN -	60	601174	OSBORNE, D	56	601254
STREKALOVSKII, V V	61	201079	TRT U 40 9 ZHUKOVSKII, E TKAC	63	301628
KIN UOB			CEMP U OXIDES	03	301020
KUHIMAN, C KIN U O 3	48	201106	WHILARDSON R MOOD CRYS U OXIDES	58	601104
KUHLMAN, C	48	201904	MAKAROV, E	61	301114
MPP UOS PRIEST, H PRIEST	58	601147	CRYS U OXIDES		
REAC (U)	50	601147	FRIED, S DHD UOXIDES	56	601021
VLASOV G ZHUKOVSK	62	301612	VLASOV, V LEBEDEV	61	201185
SPK U O 3 TSUBOL M TERADA	62	201721	KIN U OXIDES		
MSP LOS	-		VLASOV, V LEBEDEV KIN U OXIDES	61	201185
DEMAUA, G BURNS R	60	601163	BESSONOV, A VASLOV	61	201468
NEAC U O S NLASON, N SHALAGIN	61	201027	PHAS U OXIDES BUD' (GOV, T TRESVY	59	201395
REAC (O)			THER UNIDES	33	201333
STREKALOVSKIL V V	61	201079	BREWER I BROMLEY	47	400581
MURAL, M EYRAUD, C	62	201692	REAC U ONIDES MANDELBERG, C	61	201335
SPK [() }			BIB U O SYST		
BOROVSKI, I BARINO	50	400551	LANG, S BIB U O SYST	53	100195
WISNYI, L PIJANOWS	57	601056	COMSTOCK, M	60	600623
REAC U 20.5 KHLEBNIKOV, G SIMA	61	201625	CRYS U O SYST BOULER, A JARY, R	40	400537
CRYS USO 5	01	201020	CRYS U O SYST	49	400537
SIEGEL, S	55	601267	BAINZIGER, N WILSO	58	601142
CPL U 30-7 WESTRUM, E GRONVOL	62	300752	DF U O SYST BLACKBURN, P	58	601113
DH U 30.7	UZ	 -	ERES UCSYST		
MUKAIBO, T NAITO	62	601609	BRABERS, M	58	601212
THER U 30 7 MUKAIBO, T NAITO	62	601609	MPP U O SYST CLAZTON, J ARONSON	58	601122
CPH U 30 8			PHAS U O SYST		
KHOMYAKOV, K SPIIS	61	300729	GERDANIAN, P DODE PHAS U O SYST	62	300355
POPOV, M GALCHENKO	68	601153	GRONVOLD, F	55	601001
CPH U 3O 8			PHAS U O SYST		
ZAJIC, V CPH U 3O 8	60	601170	HOEKSTRA, H SIEGEL PHAS U O SYST	58	601209
POWERS, H WELCH, F	61	601444	КАГZ, Ј	61	400534
CPL U 3O 8		404553	PHAS U O SYST	F.4	601022
WESTRUM, E	58	601653	HOEKSTRA, R SIEGEL	56	601022

TIO SYST			DH U O CL SYST		
PHAS U O SYST Hoekstra, H	55	601280	DH U O CL SYST SHCHUKAREV, S VASI	58	200798
	-	001200	KIN U Y O SYST	00	200756
MANDIL, I SCOTT, R	61	201303	FELTEN, E AITKEN	62	201690
ERES U O SYST	•		CRYS U RE2		
HAUFFE, K	41	601483	натт, в	61	200929
DH U O SYST	71	001403	DH U SI		
BURDESE, A	58	601560	GROSS, P HAYMAN, C	62	601621
KIN U O SYST			DH U SI2 GROSS, P HAYMAN, C	62	601621
LEIBOWITZ, L	61	201314	DH U SI3	62	601621
PHAS U O SYST			GROSS, PHAYMAN, C	62	601621
AUKRUST, E FOERLAN PHAS U O SYST	62	601605	DH U 3S12		
PHAS U O SYST MARKIN, T ROBERTS	62	601608	GROSS, PHAYMAN, C	62	601621
PHAS U O SYST	02	601608	PHAS U TA C SYST		
WESTRUM, E GRONVOL	62	601613	RUDY, E BENESOVSKY	63	301333
PHAS U O SYST			PHAS UTH C SYST		
SCHANER, B	60	601686	BENESOVSKY, F RUDY PHAS U W C	61	300542
PHAS U O SYST			RUDY, E BENESOVSKY	62	201628
WILSON, W PHAS U O SYST	61	601448	REAC UWO	-	20.020
HOEKSTRA, H	58	601487	TRUNOV, V LOVBA, L	61	201485
PHAS U O SYST	50	001407	PHAS U ZR SYST		
KIUKKOLA, K	62	601469	BENESOVSKY, E RUDY	61	100181
TCON U O SYST			PHAS U ZR SYST		
BRUBERS, M	58	601546	BOROVSKII, I MARCH	60	201014
TCON U O SYST			PHAS U ZR ZEGLER, S	62	201647
ROSS, A Ther U O SYST	58	601493	PHAS U ZR C SYST	02	201647
ACKERMANG, R THORN	62	601616	RUDY, E BENESOVSKY	63	301333
THER U O SYST	02	001010	PHAS U ZR NB SYST		
MARKIN, T ROBERTS	62	601608	IVANOV, O GOMOZOV	61	201895
THER U O SYST			PHAS U ZR O SYST		
WESTRUM, E GRONVOL	62	601613	GEBHARDT, E ELSSNE	61	301049
THER U O SYST					
KIUKKOLA, K	62	601469			
ACKERMANN, R THORN	62	601616	V		
VAP U O SYST	62	601616	_		
WESTRUM, E GRUNVUL	62	601613			
WESTRUM, E GRONVOL VAP U O SYST	62	601613	срн V		
VAP U O SYST CHAPMAN, A	63	202016	СРН V JOHNSON, R	60	301488
VAP U O SYST CHAPMAN, A PHAS U O SYST	63	202016	JOHNSON, R CPH V		
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P			JOHNSON, R CPH V GOLUTOIN, Y KOZLOV	60 62	301488 301458
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST	63 53	202016 601283	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V	62	301458
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN	63	202016	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER		
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST	63 53 61	202016 601283 601407	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V	62 63	301458 301239
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN	63 53	202016 601283	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G	62	301458
VAP U O SYST CHAPMAN, A PHAB U O SYST PERIO, P PHAB U O SYST MILLER, C MERTEN PHAB U O SYST BARON, J	63 53 61	202016 601283 601407	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G	62 63	301458 301239
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST	63 53 61 61	202016 601283 601407 601433	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V	62 63 62	301458 301239 301525
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N	63 53 61 61	202016 601283 601407 601433	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O	62 63 62	301458 301239 301525
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST	63 53 61 61 61	202016 601283 601407 601433 601434	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V	62 63 62 63 62	301458 301239 301525 301576 601577
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S	63 53 61 61	202016 601283 601407 601433	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK	62 63 62 63	301458 301239 301525 301576
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST	63 53 61 61 61 66	202016 601283 601407 601433 601434 601288 200882	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V	62 63 62 63 62 62	301458 301239 301525 301576 601577 301139
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S	63 53 61 61 61	202016 601283 601407 601433 601434	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK	62 63 62 63 62	301458 301239 301525 301576 601577
VAP U O SYST CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R	63 53 61 61 61 66	202016 601283 601407 601433 601434 601288 200882	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M	62 63 62 63 62 62	301458 301239 301525 301576 601577 301139
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST	63 53 61 61 61 66 60	202016 601283 601407 601433 601434 601288 200882 400537	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V	62 63 62 63 62 62 60	301458 301239 301525 301576 601577 301139 700723
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STEKALOVSKIY, V B	63 53 61 61 61 66 60	202016 601283 601407 601433 601434 601288 200882 400537	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR	62 63 62 63 62 62 60	301458 301239 301525 301576 601577 301139 700723
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST	63 53 61 61 61 66 60 49 49	202016 601283 601407 601433 601434 601288 200882 400537 400538	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V	62 63 62 63 62 62 60 49 61	301458 301239 301525 301576 601577 301139 700723 601638 600853
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P	63 63 61 61 61 66 60 49	202016 601283 601407 601433 601434 601288 200882 400537	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K	62 63 62 63 62 62 60 49	301458 301239 301525 301576 601577 301139 700723 601638
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST	63 53 61 61 61 66 60 49 49 61	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K CPL V	62 63 62 63 62 62 60 49 61	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST PERIO, P	63 53 61 61 61 66 60 49 49	202016 601283 601407 601433 601434 601288 200882 400537 400538	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K	62 63 62 63 62 62 60 49 61	301458 301239 301525 301576 601577 301139 700723 601638 600853
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST PERIO, P PHAS U O SYST	63 53 61 61 61 66 60 49 49 61	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K CPL V SHIMIZU, M TAKAHAS	62 63 62 63 62 62 60 49 61	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST PERIO, P PHAS U O SYST BAINZIGER, N WILSO REV U O SYST	63 63 61 61 61 66 60 49 49 61 58	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V SHIMIZU, M TAKAHAS COPT V GOLDSMITH, A HIRSC CPH V	62 63 62 63 62 62 60 49 61 63 63	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082 202135 700930
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST PERIO, P PHAS U O SYST BAINZIGER, N WILSO REV U O SYST BAGLEY, K OLIVER	63 63 61 61 61 66 60 49 49 61 58	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V SHIMIZU, M TAKAHAS COPT V GOLDSMITH, A HIRSC CPH V FIELDHOUSE, I LANG	62 63 62 63 62 62 60 49 61 63	301458 301239 301525 301576 601577 301139 700723 601638 600863 202082 202135
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST PERIO, P PHAS U O SYST BAINZIGER, N WILSO REV U O SYST BAGLEY, K OLIVER SPK U O SYST	63 63 61 61 61 66 60 49 49 61 58 55	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113 601033 601142	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K CPL V SHIMIZU, M TAKAHAS COPT V GOLDSMITH, A HIRSC CPH V FIELDHOUSE, I LANG KIN V	62 63 62 63 62 62 60 49 61 63 63 60	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082 202135 700930 601583
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST BLACKBURN, P PHAS U O SYST BAINZIGER, N WILSO REV U O SYST BAGLEY, K OLIVER SPK U O SYST GRONVOLD, F	63 53 61 61 61 66 60 49 61 58 65	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113 601033	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MIBC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K CPL V SHIMIZU, M TAKAHAS COPT V GOLDSMITH, A HIRSC CPH V FIELDHOUSE, I LANG KIN V KUBASCHEWSKI, O	62 63 62 63 62 62 60 49 61 63 63	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082 202135 700930
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST BOBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST BLACKBURN, P PHAS U O SYST PERIO, P PHAS U O SYST BAINZIGER, N WILSO REV U O SYST BAGLEY, K OLIVER SPK U O SYST GRONVOLD, F THER U O SYST	63 63 61 61 61 66 60 49 49 61 58 65 58	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113 601033 601142 601141	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K CPL V SHIMIZU, M TAKAHAS COPT V GOLDSMITH, A HIRSC CPH V FIELDHOUSE, I LANG KIN V KUBASCHEWSKI, O CPH V	62 63 62 63 62 62 60 49 61 63 63 60 60	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082 202135 700930 601583 601577
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST BLACKBURN, P PHAS U O SYST BLACKBURN, P PHAS U O SYST BAGLEY, K OLIVER SPK U O SYST GRONVOLD, F THER U O SYST HOEKSTRA, R SIEGEL	63 63 61 61 61 66 60 49 49 61 58 55	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113 601033 601142	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MIBC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K CPL V SHIMIZU, M TAKAHAS COPT V GOLDSMITH, A HIRSC CPH V FIELDHOUSE, I LANG KIN V KUBASCHEWSKI, O	62 63 62 63 62 62 60 49 61 63 63 60	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082 202135 700930 601583
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST PERIO, P PHAS U O SYST BAGLEY, K OLIVER SPK U O SYST GRONVOLD, F THER U O SYST HOEKSTRA, R SIEGEL THER U O SYST	63 53 61 61 61 66 60 49 61 58 65 58	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113 601033 601142 601141 601001 601022	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K CPL V SHIMIZU, M TAKAHAS COPT V GOLDSMITH, A HIRSC CPH V FIELDHOUSE, I LANG KIN V KUBASCHEWSKI, O CPH V GOLDSMITH, A HIRSC	62 63 62 63 62 62 60 49 61 63 63 60 60	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082 202135 700930 601583 601577
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST ROBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST BLACKBURN, P PHAS U O SYST BLACKBURN, P PHAS U O SYST BAGLEY, K OLIVER SPK U O SYST GRONVOLD, F THER U O SYST HOEKSTRA, R SIEGEL	63 63 61 61 61 66 60 49 49 61 58 65 58	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113 601033 601142 601141	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K CPL V SHIMIZU, M TAKAHAS COPT V GOLDSMITH, A HIRSC CPH V FIELDHOUSE, I LANG KIN V KUBASCHEWSKI, O CPH V GOLDSMITH, A HIRSC CPH V GOLDSMITH, A HIRSC CPH V GOLDSMITH, A HIRSC CPH V JOSHI, S MITRA, S CPH V	62 63 62 63 62 62 60 49 61 63 63 60 60 62	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082 202135 700930 601583 601577 700938
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST BOBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST PERIO, P PHAS U O SYST BAINZIGER, N WILSO REV U O SYST BAGLEY, K OLIVER SPK U O SYST GRONVOLD, F THER U O SYST HOEKSTRA, R SIEGEL THER U O SYST WAGNER, C	63 53 61 61 61 66 60 49 61 58 65 58	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113 601033 601142 601141 601001 601022	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K CPL V SHIMIZU, M TAKAHAS COPT V GOLDSMITH, A HIRSC CPH V FIELDHOUSE, I LANG KIN V KUBASCHEWSKI, O CPH V GOLDSMITH, A HIRSC CPH V JOSHI, S MITRA, S CPH V GOLUTVIN, Y KOZLOV	62 63 62 63 62 62 60 49 61 63 63 60 60 62	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082 202135 700930 601583 601577 700936
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST BOBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST BLACKBURN, P PHAS U O SYST BAGLEY, K OLIVER SPK U O SYST GRONVOLD, F THER U O SYST HOEKSTRA, R SIEGEL THER U O SYST WAGNER, C THER U O SYST BREWER, L BROMLEY VAP U O SYST	63 53 61 61 61 66 60 49 49 61 58 55 58 59 56 56	202016 601283 601407 601433 601434 601288 200882 400537 400538 400613 601113 601033 601142 601141 601001 601022 601025 601146	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V SHIMIZU, M TAKAHAS COPT V GOLDSMITH, A HIRSC CPH V FIELDHOUSE, I LANG KIN V KUBASCHEWSKI, O CPH V GOLDSMITH, A HIRSC CPH V GOLDSMITH, A HIRSC CPH V GOLDSMITH, A HIRSC CPH V GOLDSMITH, A HIRSC CPH V GOLDSMITH, A HIRSC CPH V GOLDSMITH, A HIRSC CPH V GOLDSMITH, A HIRSC CPH V GOLDSMITH, A HIRSC CPH V GOLDSMITH, S MITRA, S CPH V GOLUTVIN, Y KOZLOV CPL	62 63 62 63 62 62 60 49 61 83 60 60 62 60 60 62	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082 202135 700930 601583 601577 700939 200767 301093
CHAPMAN, A PHAS U O SYST PERIO, P PHAS U O SYST MILLER, C MERTEN PHAS U O SYST BARON, J PHAS U O SYST BOBERTS, L PHAS U O SYST BRIGHT, N PHAS U O SYST STEEB, S PHAS U O SYST BOULLE, A JARY, R PHAS U O SYST ALBERMAN, K ANDERS PHAS U O SYST STREKALOVSKIY, V B PHAS U O SYST BLACKBURN, P PHAS U O SYST BLACKBURN, P PHAS U O SYST BLACKBURN, P PHAS U O SYST BAINZIGER, N WILSO REV U O SYST BAINZIGER, N WILSO REV U O SYST BAGLEY, K OLIVER SPK U O SYST GRONVOLD, F THER U O SYST HOEKSTRA, R SIEGEL THER U O SYST WAGNER, C THER U O SYST BREWER, L BROMLEY	63 63 61 61 66 60 49 61 58 55 58 59 56 56	202016 601283 601407 601433 601434 601288 200882 400537 400538 400813 601113 601033 601142 601141 601001 601022 601025	JOHNSON, R CPH V GOLUTOIN, Y KOZLOV CPL V HENDRICKS, J RISER MPP V LINCOLN, R ASAI, G VAP V SAXER, R THER V KUBASCHEWSKI, O MISC V GAIDUKOV, G GAIDUK BIB V WOHLL, M CEMP V RICKERT, E BECKETT CEMP V BURGER, J TAYLOR CPL V KREBS, K CPL V SHIMIZU, M TAKAHAS COPT V GOLDSMITH, A HIRSC CPH V FIELDHOUSE, I LANG KIN V KUBASCHEWSKI, O CPH V GOLDSMITH, A HIRSC CPH V JOSHI, S MITRA, S CPH V GOLUTVIN, Y KOZLOV	62 63 62 63 62 62 60 49 61 83 60 60 60 62	301458 301239 301525 301576 601577 301139 700723 601638 600853 202082 202135 700930 601583 601577 700938

- V					
CLUSIUS, K FRANZOS	60	700987	THEO VAPORIZATION		
CPL V	00	700987	SALTER, L THEO VAPORIZATION	63	300986
JOSHI, S MITRA, S	60	200767	VERHAEGEN, G STAFF	62	301010
CPL V BIEGANSKI. Z STALI	6	1 700000	THEO VAPORIZATION		
CPL V	٠	1 700660	NEUMANN, K VOLKER Theo Vaporization	32	900212
BOORSE, H BERMAN	65	700887	ROSENBLATT, G	63	301562
CRYS V JAMES, W	61	204400	THEO VAPORIZATION		
CTEX V	• •	201196	ACKERMANN, R THORN THEO VAPORIZATION	62	301391
JAMES, W	61	201196	FEUER, P	63	202031
CTEX V FIELDHOUSE, I LANG	60	40.500	REV VAPORIZATION FISHTINE, Q		
ERES V	•••	601683	THEO VAPORIZATION	63	202032
TAYLOR, M LLEWELL	62	201675	KOLLAR, G PROSZT	63	202076
GOLDSMITH, A HIRSC	60	700930	THEO VAPORIZATION		
H V	•	700930	PUTILOV, K MELMICH THEO VAPORIZATION	62	300602
GOLDSMITH, A HIRSC	60	700930	FIRSOVA, L	62	300697
MPP V			THEO VAPORIZATION		
RICKERT, E BECKETT MPP V	49	601638	REIMANN, C Ther VB	62	300469
BRADFORD, S	61	300368	MEERSON, G	60	300298
PMCH V			CRYS V 3B 2		
BOLEF, D PHAS V	61	200936	KIEFFER, B BENESOV DH V BR3	58	600619
SEYBOLT, A	4P	601484	VASILKOVA, I	61	201222
PHAS V		701007	REAC V BR3 SHCHUKAREV, S TOLM		224222
ZELIKMAN, A KISLYA PHAS V	61	701037	CEMP V C	62	201809
SAVITSKII, E BARON	62	300609	MA3~KEVICH, T KAZA	62	300952
PHAS V BRADFORD, S	61	300368	CEMP V C NOGUCHI, S SATE, T	60	300227
PHAS V		300300	CPH V C		300117
KOMJA'THY, S	61	201434	NEEL, D PEARS, C OF V C	61	300146
PHAS V KOMJATHY, S READ	60	201394	ALEKSEEVA VI	61	300201
REAC V			DHD VC		
DEUTSCH, N ERVIN REAC V	60	600123	BITTNER, H GORETZK MPP V C	62	301132
BLOCK, F FERRANTE	61	201013	NORTON, J MOWRY, A	49	300157
REAC V		400599	PHAS V C NORTON, J	60	701001
KORNILOV, I MATVEY REV V	61	400588	s V C	00	701001
ZELIKMAN, A KISLYA	61	701037	KAUFMAN, L Spk V C	62	300910
SPERNER, X	61	300372	PARKINSON, W NICHO	59	00612
REV	•		THER VC		
KORNILOV, I MATVEE	62	201946	FUJISHIRO, S Ther "C	62	6 11477
S V CLUSIUS, K FRANZOS	60	700987	ANON	60	700992
SPK V			THER V C		
ROSENZWEIG, N PORT	60	700996	ANON VAP V C	60	700904
SPK V MURAKAWA, K KAMEI	53	601218	ANON	60	700992
SPK V			VAP V C ANON	60	700904
ROSENZWEIG, N PORT SPK V	60	700901	VAP V C		
BOLOTIN, G VOLOSHI	62	201830	FUJISHIRO, S VAP V C	60	300463
TCON V		601583	ANON	60	600666
FIELDHOUSE, I LANG TCON V	60	001003	CEMP V C		
GOLDSMITH, A HIRSC	60	700930	BIITNER, H GORETZK MPP V C	62	202004
THEO V ROSENZWEIG, N PORT	60	700901	GIORGI, A SZELARZ	63	202039
THEO V	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	REAC V C		201574
ROSENZWEIG, N PORT	60	700996	SAMSONOV, G DH V 2C		301571
THER V SCHICK, HANTHROP	63	300994	ALEKSEEV, V SHVART	60	600909
THER V			PHAS V CARBIDES ALYAMOVSKII, S GEL	61	201374
BIEGANSKI, Z STALI	61	700660	MPP V C SYST	٠.	
VAP V HANLIN, H	60	700951	SAVOSTIANOVA, N A	60	300204
REV VAPOR PRESSUR	E		DF V C SYST ALEKSEEVA, V SHVAR	61	700632
RABINOVICH, I THEO VAPORIZATION	62	300975	MPP V C SYST		
ŞEARCY, A SCHULZ	63	300980	BURYLEV, B	61	301071
·					

PHAS V C SYST			REAC V 2O 5		
STORMS, E MCNEAL	62	300608	MATSOURA, R	61	201028
PHAS V C SYST SAVOSTIANOVA, N	60	300204	REAC V 2O 5 DEDUIT, J	61	700611
ERES V CR TAYLOR, M LLEWELL			DH V 2O 5 KING,E KOEHLER		
PHAS V C FE SYST	62	201675	ERES V 2O 5	62	301500
BELIKOV, A SAVINSK PHAS V MN	62	300863	BQROS, J REAC V 2O 5	61	301192
WATERSTRAT, R PHAS V MO SI SYST	62	201584	HAGENMULLER, P LES VAP V 20 5	63	301467
SAVITSKII, E BARON MPP V N	62	201798	NEUGENAUER, J	63	301311
SAMSONOV, G VERKHO	62	300997	ERES V 20 5 MANAKOV, P ESIN, O	62	202096
MPP V N SAMSONOV, G VERKHO	61	301573	CRYS V 20 5 BACHMANN, H	61	201154
S V N KAUFMAN, L	62	300910	CRYS V 30 5 ASBRINK, S FRIBERG	59	200825
ZKP V N			SURF V OXIDES		
KOROLEV, L MOROZOV THER V N	62	301272	LEPINSKIKH, B PHAS V OXIDES	60	201215
KOROLEV, L MOROZOV	63	301273	ANDERSSON, S CRYS VOXIDES	59	201178
BAUGHAN, E	59	300866	MAGNELI, A ANDERSO PHAS V O SYST	61	201566
CRYS V N 2 HAHN, H	61	701046	WESTMAN, S	63	301621
PHAS V N 2 HAHN, H	61	701046	THEO V O SYST GELD, P TSKHAI, V	63	202036
DH V NITRIDES SAMSONOV, G	-0	700947	CPH V O SYST YAKOVLEVA, M KRASI	61	300351
CEMP V NITRIDES	60		CRYS V O SYST		
SAMSONOV, G REV V NITRIDES	60	700947	ARIYA, S POPOV, Y DF V O SYST	62	300599
SAMSONOV, G CRYS V O	60	700947	MAH, A KELLEY, K DH V O SYST	61	300407
MAGNELI, A THER VO	60	600617	MOROZOVA, M P EGER DH V O SYST	60	300247
носн, м	61	301475	MAH, A KELLEY, K KIN V O SYST	61	300407
SPK V O ORTENBERG, F	61	300821	CUBICCIOTTI, D	52	100194
SPK V O NICHOLLS, R	62	300698	MPP V O SYST BOGDANOVA, N LOGIN	62	300640
SPK V O LAGERQVIST, A SELI	57	300166	PHAS V O SYST KUBASCHEWSKI, O	62	601577
SPK V O NICHOLLS, R	62	601625	PHAS V O SYST BURDESE, A BORLERA	60	200945
SPK VO			PHAS V O SYST NADOR, B	60	200938
BERG, R A SINANOGL REAC V O	60	300177	VAP V O SYST		
MARGOTIN, PSTUCKE SPK VO	61	201574	SHCHUKAREV, S SEME PHAS V O SYST	59	301353
PRASAD, S	63	202120	KOSUGE, K TAKADALI CRYS V O SYST	62	301276
LAGERQVIST, A	57	301290	GELD, PTSKHAY, V PHAS V O SYST	63	301225
CRYS V O POPOV, YU	62	301321	ANON	60	701015
SPK V O LAGERQVIST, A	67	600885	PHAS V O SYST GELD, P V ALYAMOSK	61	300200
SPK V O KEENAN, P SCHROEDE	52	600911	PHAS V O SYST WESTMAN,S NORDMAR	60	201329
SPK VO			VAP V O SYST ANON	60	701015
TAWDE, N MURTHY, N THER V O 2	57	600913	ZKP V O SYST		
SCHICK, HANTHROP CRYS VO 2	63	301580	ARIYA, S MOROZOVA REAC V O C SYST	62	300600
HECKINGBOTTOM, R L	62	300704	GELD, P MATVEYENKOL PHAS V RE SYST	62	301224
DAY, J FREYMANN, M	49	400517	TYLKINA, M POVAROV OH V SI SYST	●0	201291
WESTMAN, S	61	700545	GOLUTVIN, Y CPH V SI SYST	62	301229
SPK V O 5 CONLON, D DOYLE, W	61	201325	GOLUTVIN, Y KOZLOV	\$ 2	300568
REAC V 20 3 GELD, P MATVEENKO	62	201913	PHAS V W SYST RUDY, E BENESOVSKY	€2	300630
REAC V 20 3 MATSOURA, R	61	201028	THER V X SHCHUKAREV, S TOLM	62	201540
CRYS V 20 5			THER V CL O NAGARAJAN, G	62	201816
BACHMAN, H	60	200795			

THER V CL O SYST			ODVO W		
NAGARAJAN, G CPH V 3SI	62	201772	CRYS W ANDERSON, S	60	200845
PANKRATZ, L KELLEY	63	301319	CRYS W		
REAC V X SYST ARADI, A VITANYI	84		KOMAR, A SHREDNIK CRYS W	62	300895
	61	201862	GETTE, E FOOTE, F CRYS W	35	700510
• • •			LUS CHANG, Y	41	700512
W			CRYS W CHAULTON, M DAVIS	55	700513
			CRYS W		
REAC W			MATYUSHENKO, N CTEX W	62	301160
BROPHY, J KREIDER SPK W	63	202011	NOWOTNY, H LAUBE	61	600844
CLAUS, H ULMER, K MPP W	63	202017	COFFMAN, J COULSON	61	701040
KOPETSKIY, CH	62	301270	ERES W BRIDGMAN, P	61	400533
THER W KRAFTMAKHER, YA	62	301280	ERES W Tye, R	61	201117
BIB W			ERES W	61	201117
GOODWIN, T Bib W	56	601647	GUMENYUK, V LEBEDE KIN W	61	700663
WOHLL, M BIB W	60	700723	ONG, J	62	201536
WENSRICH, C	60	700972	KIN W ARZHANYI, P VOLKOV	62	201975
BIB W RICHERT, E BECKETT	49	700564	KIN W GULBRANSEN, E ANDR	62	201770
CEMP W			MISC W		201770
GUMENYUK, V LEBEDE COPT W	61	700553	HAMPEL, C MISC W	61	200889
COFFMAN, J COULSON CPH W	61	701040	BASKIN, M TRETYAKO	62	201951
носн, м	61	201167	MPP W ARGENT, B MILNE, G	60	201039
CHEKHOVSKOY, V SHU	62	300868	PHAS W ZALABAK, C	61	701026
CPH W			PHAS W		
JOHNSON, R CPH W	60	301488	SHAFFER, P Phas W	61	700941
KIRILLIN V SHEIND	62	300638	COFFMAN, J COULSON PHAS W	61	701040
KIRILLIN V SHEIND	62	300687	BRILLIANTOV, N STA	61	300807
CPH W KIRILLIN, V SHFIND	62	300360	PHAS W HAWORTH, C	60	201017
CPH \\			PHAS W		
KIRILLIN V SHEIND CPH W	62	300531	OREHOTSKY, J STEIN PHAS W	62	300519
RUDKIN, R PARKER CPH W	60	600614	CHAULTON, M DAVIS PHAS W	55	700513
JAEGER F ROSENBOH	27	700506	ROS' GREER, W	60	201396
JAEGER, F ROSENBOH	30	700505	PHAS W FUNKE, V NOVIKOVA	62	201704
CPH W FORSYTHE, W WORTHI	25	700507	REAC W KUBASCHEWSKI, O HO	60	201038
CPH W	25	700507	REAC W		
ZWIKKER, C SCHMIDT CPH W	28	700515	BECKER, J BECKER REAC W	61	201091
MAGNUS, A DANZ, H	26	700560	GULBRONSEN, E ANDR	59	600638
CPH W BRONSON, H CHISHOL	33	700561	REAC W DEU 18CH, N ERVIN	60	500123
CPH W MAGNUS, A HOLZMANN	29	700562	REAC W FRANTSEVICH, I LAV	59	200869
CPH W	29		REAL W		
HOCH, M JOHNSTON	61	700613	KOMAR, A TALANIN REAC W	60	200843
CLARK, C	62	601563	MITROFANOV, O	62	301097
CPL W FEATHERSTON, F NEI	63	301444	REAC W ZELIKMAN, A KREIN	62	201861
CPL W	60	700981	REV W WOHLL, M	60	701053
MYERS, A CPL W	90	100301	REV W		
LANGE, F	24	700563	SMITHELLS, C Rev W	63	700509
CPL W Sharan, B	61	301070	RICHERT, E BECKETT REV W	49	700564
CRYS W COFFMAN, J COULSON	61	701040	SYRE, R	61	201579
CRYS W			SPK W ALLEN, R GLASIER	60	200828
UMANSKII, M ZUBENK	60	600859	TABLEST AND ALL AND THE PARTY OF THE PARTY O	-	

			1.77		
SPK W Larrabee, a	67	201223	CRYS W C BUTORINA, L	60	700986
SPK W	•	201220	CRYS W C	00	,00380
ROSENZWEIG, N PORT SPK W	60	700996	PARTHE, E SADAGOPA	62	300520
ROSENZWEIG, N PORT	60	700901	DF W C COFFMAN, J COULSON	61	701040
SPK W		****	DF WC		
MOORE, C SPK W	58	601088	GLEISER, M CHIPMAN MPP W C	62	300886
BODMER, A	54	600936	KOVALCHENKO, M SAM	62	300920
TCON W Tye, r	61	201117	PHAS W C COFFMAN, J COULSON	61	701040
TCON W			PHAS W (•	
GUMENYUK, V LEBEDE THEO W	61	700563	GOLDSCHMIDT, II BRA PHAS W C	63	301467
ROSENZWEIG, N PORT	60	700996	NADLER, M KEMPTER	60	300301
THEO W ROSENZWEIG, N PORT	60	700901	PHAS W C FORELIK, C YELYUTI	62	300884
TKER W		, , , , , , , , , , , , , , , , , , , ,	REAC W C	02	300864
GOODWIN, T Ther W	56	601547	SHVEIKIN, G	62	301588
RUDKIN, R PARKER	60	600614	REV W C Leciejwicz, j	61	201199
TRT W ZALABAK, C	61	200988	THER W.C.		
TRT W	01	200988	SCHICK, HANTHROP THER W.C.	63	301579
OREHOTSKY, J STEIN THE W	62	300519	COFFMAN, J COULSON	60	701006
TRT W TAYLOR, A RYDEN, H	62	301027	VAP W C COFFMAN, J COULSON	61	701040
VAP W			VAP W C		
NELSON, L KUEBLER VAP W	63	301540	COFFMAN, J COULSON THER W 2C	60	701006
CANO, G	62	301423	SCHICK, HANTHROP	63	301579
VAP W LANGMUIR, I	13	700504	GODFREY, L BELL, P	59	600607
VAP W			THER W C SYST	33	000007
COFFMAN, J COULSON VAP W	61	701040	CUNNINGHAM, G WARD PHAS W C SYST	63	301208
ZWIKKER, C	26	700508	PHAS W C SYST ORTON, G	61	300510
H W B MEZAKI, R TILLEUX	62	601617	PHAS W C SYST	4.5	
s W B	02	001017	SARA, R DOLLOFF, R PHAS W C SYST	62	601622
MEZAKI, R TILLEUX THER W B	62	601617	GOLDSCHMIDT, H BRA	62	601626
THER W B LEITNAKER, J BOWMA	62	300553	REAC W C SYST SAMSONOV, G STRASH	62	300990
PHAS W B 4		201001	THER W CL		
CHRETIEN, A HELGOR H W 2B	61	201084	SHCHUKAREV, S NOVI MPP W C N SYST	59	200800
MEZAKI, R TILLEUX	62	601617	GERASIMOV, A KONEV	61	300511
S W 2B MEZAKI, R TILLEUX	62	601617	PHAS W HF SYST GIESSEN, B RUMP, I	62	201433
H W 2B 5			PHAS W HF		
MEZAKI, R TILLEUX s W 2B 5	62	601617	SELL, H KEITH, G PHAS W MO RE SYST	61	201860
MEZAKI, R TILLEUX	62	601617	TYLKINA, M POVAROV	60	201292
REAC W BORIDES SAMSONOV, G	59	500120	CRYS W N KHITROVA, V PINSKE	59	201620
REAC W B SYST			CRYS W N	33	
SAMSONOV, G STRASH REAC W BR3	62	300990	KHITROVA, V PINSKE CEMP W NITRIDES	60	201619
MCCARLEY, R BROWN	62	201856	SAMSONOV, G	60	700947
DH W BROMIDES SHCHUKAREV, S KOKO	60	201159	CRYS W NITRIDES KHITROVA, V PIN		301110
CEMP W C	•	201103	DH W NITRIDES		301110
ZUBENKO, Y SOKOLSK COPT W.C	62	201676	SAMSONOV, G	60	700947
COFFMAN, J COULSON	61	701040	REV W NITRIDES SAMSONOV, G	60	700947
THER W C ALKESEEV, V SHARTS		301168	EMF WO		
VAP W C	63	301100	GERASIMOV, Y VASIL MSP W O	60	200925
FESENKO, V BOLGAR	63	301216	DEMAUA, G BURNS, R	60	601163
CRYS W C GORELIK, C ELYUTIN	62	301230	VAP W O GLEMSER, O HAESELE	62	201927
CPH W C			REAC WO	-4	
NEEL, D PEARS, C CRYS W C	61	300146	ANDES, G HECKEL, R REAC W O	62	201498
LECIEJWICZ, J	61	201199	AUSTIN, L	61	201387
CRYS W C COFFMAN, J COULSON	61	701040	SPK WO VITTALACHAR, UKRI		600897
January Coolson			VII IALACHAR, U KRI	64	90009/

DH W M 2				
GERASIMOV, Y VASIL	60	600657	THER WOSYST	
GERASIMOV, Y VASIL	••		BATTLES, JEBIHARA THER WOSYST	300853
VAP W O 2	60	600657	GERASIMOV, I VASIL 62	300755
NEUGENAUER, J EMF W O 2	63	301311	THER WOSYST	
EMF W 0 2 GERASIMOV, Y VASIL	60	700999	VAP WOSYST	2 301388
MSP W O 2		, , , , , , , , , , , , , , , , , , , ,	ANON 6 VAP W O SYST	0 701015
DEMAUA, G BURNS, R REAC W O 2	60	601163	DI ACK DIEDA	2 300543
KOZMANOV, Y S W O 2	60	201006	KIN W O SYST GULBRANSEN, E 6	3 301465
GERASIMOV, Y VASIL	60	700999	REAC WOCSYST	3 301465
THER W O 2 GERASIMOV, Y VASIL			HEGEDUS, A GADO, P PHAS W OS SYST	0 200788
CRYS W O 3	60	700999	TAYLOR, A	1 201206
GRAHAM, J WADSLEY CRYS W O 3	61	201026	PHAS W PD SYST TYLKINA, M POLYAKO 6	1 700623
TANISAKI, S	60	201077	PHAS W RE SYST	
DF W O 3 ACKERMANN, R THORN			SAVITSKII, E TYLKI 6 REAC W RE	9 201281
DF WO3	58	601510		1 201589
ACKERMANN, A THORN MSP W O 3	60	601174	MAN GUODUGMILL	1 700663
DEMAUA, G BURNS, R	60	601163	PHAS W TI C SYST	
PHAS W O 3 TANISAKI, S			PHAS W V	2 301008
SPK W O 3	60	201076	RUDY, E BENESOVSKY	300630
HEGEDUS, A THER W O 3	61	201144		
HEGEDUS, A	61	201144	V	
THER W O 3 VASILEVA, I GERASI	60	200965	Y	
THER W O 3	00	200566	VAP Y	
ACKERMAN , R THORN TRT W 0 3	6 8	601087	NESMEYANOV, AN PRI	301310
TANISAKI, S	60	201076	CEMP Y MICHAELSON, H	0 400529
ACKERMANN, R THORN	58	601510	CPL Y	
CPH W OXIDES			MONTGOMERY, H PELL 6 CPL Y	601447
KING, E WELLER, W CPL W OXIDES	60	700973	and the second s	100208
KING, E WELLER, W	60	700973	CPL Y JENNINGS, L MILLER	201049
CRYS W OXIDES OZEROV, R	55	701064	CPL Y	
DHT WOXIDES			CRYS Y	18 700702
KING, E WELLER, W KIN W OXIDES	60	700973	LUNDIN, C KLODT, D CRYS Y	601346
BLACKBURN, PANDRE	60	601582	APA15	6 700703
PHAS W OXIDES KING, E WELLER, W	60	700973	CRYS HERRMANN, K DAANE	56 700905
REAC WOXIDES			CRYS Y	
PERKINS, R CROOKS REAC W OXIDES	61	201090	FOUTFELKER, R SIET CTEX Y	701089
HAMAMURA, T	60	201386	MEYERHOFF, R SMITH	300809
8 W OXIDES KING, E WELLER, W	60	700973	DG Y HUBER, E	601316
THER WOXIDES	40	601582	DH ì	
BLACKBURN, PANDRE THER WOXIDES	60	001002	HUBER, E HEAD, E	601059
KING, E WELLER, W	60	700973	ANON	601524
VAP W OXIDES BATTLES, J STPIERR	61	300310	ERES Y GOODMAN, B	100208
EMF W O SYST	62	300755	. ERES Y	
GERASIMOV, I VASIL PHAS W O SYST	62	300788	HALL, P LECT OLD, S H Y	601164
ANON	60	701015	KELLEY, K	700891
PHAS W O SYST BATTLES, J EBIHARA		300853	-	500131
PHAS W O SYST	62	300547	MPP Y REPOSTEIN REMITH	59 700807
ST PIERRE, G EBIHA REAC W O SYST	62		MPP Y	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SPEISER, R PHAS W O SYST	60	600861	HABERMANN, C DAANE (301466
KOUBA, L TRUNOV, V	62	301278	SMITH, J CARLSON	700746
PHAS WOSYST	58	301186	PMCH Y SMITH, J GJEVRE, J	80 700812
BERGER, I SEVASTY	56	301100	SMITH, JUSEVRE, J	,- ,00812

			anya V D C		
REAC Y SIMMONS C FUNSTON	61	700808	CRYS Y B 6 BERTAUT, F BLUM, P	52	700813
REAC Y NOLTING, H SIMMONS	60	700841	CRYS Y B 6 FISCHER HJALMARS, I	54	700821
REAC Y THOMPSON, A HOTTON	26	700828	CRYS Y B 6 KUDINTSEVA, G POLY	58	700737
REV Y LOVE, B	60	700735	CRYS Y B 6 BINDER, I	60	700830
s Y KELLEY, K			PHAS Y B 6 KUDINTSEVA, G POLY	58	700737
SPK Y	60	700891	PHAS Y B 6 TVOROGOV, N	59	700831
SCHWARZSCHILD, M SPK Y	67	601047	PHAS Y B 12		
ROSENZWEIG, N PORT SPK Y	60	700996	BINDER, I LAPLACA CRYS Y B 12	59	700818
SHADMI, Y SPK Y	61	700954	LAPLACA, S BINDER CRYS Y B SYST	61	700802
GARSTANG, R SPK Y	52	100207	BINDERS, L. PHAS Y B SYST	56	601269
CATALAN, M RICO, F	67	601206	BINDER, I CTEX Y C	56	700816
MOORE, C	52	100201	SAMSONOV, G MAKARE	61	700811
MOORE, C	62	100200	SAMSONOV, G KOSOLA	62	700743
BUSCOMBE, W MERRIL	52	100199	PHAS Y C SAMSONOV, G MAKARE	61	700811
REV Y STRUAT, K WEIK, H	60	601167	CRYS Y C 2 ATOJI, M	61	700810
REV Y VICKERY, R	60	601173	CRYS Y C 2 ATOJI, M	61	700864
SPK Y			CRYS Y 2C 3 SPEDDING, F GSCHNE	58	700834
BOHM VITENSE, E SPK Y	60	601169	DH Y CL3 SPEDDING, F FLYNN	54	700822
DIETER, V EHRENSTE SPK Y	67	601100	DH Y CL3		
MERRILL, P GREENST SPK Y	58	601097	MONTGOMERY, R HUBE PHAS Y GROUP 5A	60	700833
TESKE, R SPK Y	56	601043	LUNDIN, C KLODT, D PHAS Y GROUP IVA	62	201630
SKINNER, H SPK Y	55	700761	LUNDIN, C KLODT, D Ther Y 105	62	201582
CATALAN, M RICO, F	52	601250	VASILEV, V ZOLOTAR PHAS Y LA O SYST	59	700823
SPK Y CATALAN, M RICO, F	52	700800	CASSEDANNE, J FORE	61	700801
SPK Y BOVEY, F	56	700825	PHAS Y MG MYKLEBUST, R DAANE	62	201580
THEO Y ROSENZWEIG, N PORT	60	700998	CRYS Y N KEMPTER, C KRIKORI	67	700837
THER Y SCHICK, HANTHROP	63	300994	CRYS Y N KEMPTER, C	57	601295
THER Y SPEDDING, F FLYNN	64	700824	CRYS Y N LUNDIN, C KLODT, D	60	601346
TRT Y			THER Y N KUBASHEVSKI, O EVA	56	700829
VAP Y	63	301466	DHD Y O	58	700806
BEAVIS, L VAP Y	60	701016	WALSH, P WHITE, D		
KARELIN, V NESMEYA	62	700701	BREWER, L CHARDRAS H Y O	69	700721
MCKENZIE, D JENKIN VAP Y	60	700805	KELLEY, K s Y O	60	700891
KARELIN, R NESMEYA	62	300914	KELLEY, K spk y O	60	700891
BAUGHAN, E	54	700809	ORTENBERG, F SPK Y O	61	300821
VAP Y ACKERMANN, R RAUH	62	700840	MERRILL, P GREENST	56	601007
VAP Y ACKERMANN, J RAUH	62	700909	SPK Y O TESKE, R	56	601043
THER Y + VASILEV, V ZOLOTAR	59	700823	SPK Y O UHLER, U AKERLIND	61	300476
CEMP Y B 2 JOHNSON, R DAANE	63	301489	VAP Y O SCHICK, H ANTHROP	63	300994
CRYS Y B 4			CPH Y 20 3 PANKRATZ, L KING	62	300958
BINDER, I PHAS Y B 4	60	700830	CPH Y 2O 3		601198
BINDER, I CEMP Y B 6	56	700816	GOLDSTEIN, H NGILS CPH Y 20 3	69	
BENOIT, R	55	700820	NILSON, F PETTERSO	60	700819

CPH Y 20 3					
CURTIS, C	67	700835	PHAS YB N		
CPL Y 20 3	•	,00838	EICK, H BAENZIGER REAC YB N	56	601046
GOLDSTEIN, H CPL Y 2O 3	68	601551	EICK, H BAENZIGER	56	601046
GOLDSTEIN, H NEILS CRYS Y 20 3	69	700836	REAC YB NITRIDES EICK, H	57	601053
CRYS Y 2O 3 STARITZKY, E	56	601292	CPH YB2O 3		
CRYS Y 20 3 FERT, A			PANKRATZ, L KING CPL YB2O 3	63	202114
CRYS Y 20 3	62	301447	JUSTICE, B WESTRUM DH YB2O 3	63	300907
CURTIS, C DH Y 2O 3	67	700835	HUBER, E	56	601291
MONTGOMERY, R HUBE	60	700833	REAC YB OXIDES EICK, H	57	601053
OH Y 20 3 HUBER, E HEAD, E H Y 20 3	57	700842	PHAS YB TH GSCHNEIDER, K	62	201700
KELLEY, K	60	700891			
MPP Y 20-3 CURTIS, C THARP, A	59	700804	Z		
MPP Y 20 3 CURTIS, C			_		
PHAS Y 20 3	57	700836	ERES ZN		
FANG, F KUZNETSOV PHAS Y 20 3	62	301443	RENUCCI, L LANGERO REV ZN	61	201517
TOROPOV, N GALAKHO PHAS Y 20 3	61	201966	GIUORD, J Bib ZR	62	201554
STARITZKY, E S Y 20 3	56	601030	ANON	61	701047
s Y 20 3 KELLEY, K	60	700891	BIB ZR FELDMAN, M	61	701045
SPK Y 20 3 UHLER, U AKERLIND	59	700844	BIB ZR WIL JAMS, G BAKER	52	600904
SPK Y 20 3 WICKERSHEIM, K LEF			CPH ZR		
THER Y 20 3	61	201301	CARTER, W CPH ZR	61	601631
KUBASREVUKI, O EVA VAP Y 20 3	5 6	700829	FIELDHOUSE, I LANG CPL ZR	60	601583
WALSH, PWHITE, D VAP Y 20 3	58	700806	MYERS, A CPL ZR	60	700981
WALSH, P GOLDSTEIN	60	700814	BORELIUS, G	60	601168
VAP Y 20 3 MOTT, W PHAS Y RE	18	700827	CPL ZR KNEIP, G BETTERTON CRYS ZR	61	201412
LOVE, B	60	201699	BYKOV, V KAZARNIKO	59	201649
PHAS Y U O SYST CHASE, G	62	201826	CRYS ZR LAWLEY, A	60	200801
CPL YB		201527	CRYS ZR FELDMAN M	61	701045
LOUNASMAAO DH YB	63	301527	PHAS ZR		
SAVAGE, W. HUDSON DH Y.B	59	601126	RICTUR, H WINCIERZ THER ZR	62	201766
HUBER, E	56	601291	KUBAS (HEWSKI, O CRYS ZR	62	601577
DH YB HUBER, E HEAD, E	56	601041	FOUNFELKER, R SIET	62	701089
SPK YB KREBS, K NELKOWSKI	56	601029	CTEX ZR CARTER, W	61	601631
SPK YB			CTEX ZR NOWOTNY, H LAUBE	61	600844
BURBRIDGE, E BURBR SPK YB	55	601003	CTEX ZR		
MERRILL, P GREENST SPK YB	56	601007	FIELDHOUSE, I LANG ph ZR	60	601583
BODMER, A	54	600936	FEDOROV, G DHT ZR	60	600823
SPK YB BRIX, P	52	400566	HERTZRICKEN, S SLY	62	300708
VAP YB ANON	56	601319	ERES ZR BERLINCO+ RT, T	59	601655
VAP YB			eres ZR		
SAVAGE, W HUDSON CEMP YB B 6	59	601126	BRIDGMAN, P eres ZR	51	400533
SAMSONOV, G PADERN	59	300143	POWELL, R H TYE, R MISC ZR	61	700653
CRYS YBB6 STEPANOVA, A ZHURA	68	601111	SPACEK, V	61	200888
CTEX YB B 6 STEPANOVA, A ZHURA	68	601111	MISC ZR SPINK, D	61	200891
CRYS YB N			MPP ZR	50	601225
EICK, H BAENZIGER Eres YB N	56	601046	SKINNER, G BECKETT CRYS ZR .		
DIDCHENKO, R GORTS	63	301435	JAMIESON, J	63	301253

CPL ZR			CPH ZR		
KNIEF, G BETTERTON	6	3 301264	DOUGLAS, T	63	202029
MPP ZR RILEY, W MCCLELLAN	62	301080	MPP ZR KAREV, V KLYUCHÁRE	63	202064
PHAS ZR KORNILOV, I	60	200907	TRT ZR		
PHAS ZR	•0	200507	ULY, J LAM, D IAN ZKP ZR	61	202149
FELDMAN, M Phas ZR	61	701045	SMIRNOV, M KOMAROV	60	201056
IANNIELLO, L	61	201146	CRYS ZR B 2 RUDY, E	61	201255
PHAS ZR WORNER, H	60	200991	DF ZR B 2 WARD, J ALEXANDER	61	701055
PHAS ZR			DH ZRB2		
BIBB, A BEARD, A Phas ZR	61	201344	LOWRIE, R GRIST, R CRYS ZR B 2	61	300412
BEREZHNOI, A KORDY FHAS ZR	62	201553	GORELIK, C ELYUTIN VAP ZR B 2	62	301230
NISHIHARA, M	60	201493	KIBLER, G LYON, T	63	301269
PHAS , ZR WYDER, W HOCH, M	62	201581	THER ZR B 2 LITTLE, A	62	301526
PHAS ZR MANNAS, D SMITH, J	62	201786	DH ZR B 2 EPELBAUM, V A STAR		
PHAS ZR	62	201786	H ZR B 2	55	300194
SEMENCHENKOV, A REAC ZR	61	201894	MEZAKI, R TILLEUX MPP ZR B 2	62	601617
MIYAMOTO, O NAKASH	58	500118	SHCHERBAKOV, V VEY	60	300984
REAC ZR BAKER, W	61	201057	PHAS ZR B 2 FORELIK, C YELYUTI	62	300884
REAC ZR ANDREEVA, V ALEKSE	62	201814	PHAS ZR B 2 MARTIN, R SEAGLE	61	300308
REV ZR			PHAS ZR B 2		
SPERNER, F REV ZR	61	300371	FUNKE, V IUDKOVSKI S ZR B 2	63	301138
OSTBERG, G SPK ZR	61	201364	MEZAKI, R TILLEUX SPK ZR B 2	62	601617
RUBESKA, I	62	500119	LOWRIE, R	82	601596
SPK ZR ROSENZWEIG, N PORT	60	700996	THER ZR B 2 MEERSON, G	60	300298
SPK ZR			THER ZR B 2		
SHADMI, Y SPK ZR	61	700954	BOLGAR, A THER ZR B 2	61	700938
SWEENEY, W SEAL, R	61	201112	LEITNAKER, J BOWMA TAT ZR B 2	62	300392
SUWA, S	62	400575	MARTIN, R SEAGLE	61	300308
SPK ZR NORRIS, J	60	601194	VAP ZR B 2 BOLGAR, A	61	700938
SPK ZR SHAW, C	66	600908	VAP ZR B 2 LEITNAKER, J BOWMA	62	300392
SURF ZR			VAP ZR B 2		
BLITON, J RECHTER TCON ZR	63	301133	KIBLER, G LYON, T MPP ZR B 2	61	300409
TOIRELIKOV, V KOM TCMN ZR	61	301101	MALYUCHKOV, O POVI MPP ZR B 2	62	202095
FIELDHOUSE, I LANG	60	601583	SHAFFER, P	62	202133
TCON ZR LOWRIE, R	61	700943	MPP ZR B 2 TYRRELL, M HOUCK	63	202148
TCON ZR			VAP ZR B 2 LOWRIE, R		
POWELL, R H TYE, R THEO ZK	61	700653	VAP ZR B 2	62	701081
ROSENZWEIG, N PORT THER ZR	60	700996	LOWRIE, R SCHOMCHE VAP ZR B 2	62	300940
SCHICK, H ANTHROP	63	300994	SCHICK, HANTHROP	63	300994
THER ZR FEDEROV, G SMIRNOV	61	601659	VAP ZR B 2 ANON	62	601597
THER ZR CARTER, W	61	601631	VAP ZR B 2 LOWRIE, R	62	601596
THER ZR			YAP ZR B 2		
CARTER, W	62	300749	LOWRIE, R GRIST, R PHAS ZR B SYST	61	300412
JAYARAMAN, A KLEME TRT ZR	63	301482	ANON VAP ZR B SYST	60	701015
WILLIAMS, D JACKSO	62	301016	ANON	60	701015
VAP ZR TOIRELNIKOV, V KOM	61	301101	PHAS ZR B C SYST NOWOTNY, H	61	201147
VAP ZR			PHAS ZR B C SYST		
YEMELYANOV, V VAP ZR	62	301626	NOWOTNY, H RUDY, E PHAS ZR B CR SYST	60	201799
FEDEROV, G SMIRNOV	62	601620	KOVALCHENKO, M SAM	60	300216

PHAS ZR B2 MO SYST					
KOVALCHENKO, M S	61	300100	S ZR C		
PHAS ZR B2 MO SYST		300193	KAUFMAN, L Spk ZR C	62	300910
KOVALCHENKO, M SAM PHAS ZR B N SYST	60	300216	COFFMAN, J KIBLER SURF ZR C	60	700993
NOWOTNY, H RUDY, E PHAS ZR B N SYST	60	201799	HODDAD, R E GOLDWA	49	300169
RUDY, E BENESOVSKY CEMP ZR BORIDES	61	300486	TCON ZR C Taylor, R	62	300694
SAMSONOV, G KISLYY	61	900200	THER ZR C COFFMAN, J COULSON	' 60	701006
EMF ZR BORIDES BECK, W	61	300477	THER ZR C COFFMAN, J KIBLER	60	700993
REAC ZR BORIDES SAMSONOV, G	59	600120	THER ZR C BOLGAR, A	_	
DH ZR BR4 TURNBULL, A	61		THER ZR C	61	700936
CEMP ZR C		300259	ANON THER ZR C	60	700992
HODDAD, R GOLDWATE	49	300159	POLLOCK, B Ther ZR C	61	600674
HOPKINS, B ROSS, K REAC ZR C	62	300515	ANON Ther ZR,C	62	601597
BARTLETT, R WADSWO VAP ZR C	63	301183	ANON	60	700904
FESENKO, V BOLGAR CEMP ZR C	63	301216	VIDALE, G	61	301611
INGOLD, J	63	301251	VAP ZR C SCHICK, H ANTHROP	63	300994
CTEX ZR C KRIKORIAN, WALLA	63	301285	VAP ZR C ANON	60	700904
DH ZR C MAH, A BOYLE, B	55	301297	VAP ZR C ANON	60	700992
CEMP ZR C BONDARENKO, B ERMA	62	301409	VAP ZR C BOLGAR, A		
COPT ZR C COFFMAN, J COULSON			VAP ZR C	61	700938
COPT ZR C	61	701040	COFFMAN, J COULSON VAP ZR C.	60	701006
HODDAD, R E GOLDWA CPH ZR C	49	300159	COFFMAN, J KIBLER VAP ZR C	60	700993
FINCH, R CPL ZR C	61	700647	COFFMAN, J COULSON VAP ZR C	61	701040
FINCH, R CRYS ZR C	61	700547	POLLOCK, B VAP ZR C	61	600674
VAN ARKEL, A	24	701066	COFFMAN, J COULSON VAP ZR C	61	300293
CRYS ZR C COFFMAN, J COULSON	61	701040	ANON	60	600666
DF ZR C VIDALE, G	61	301610	THER ZR C SYST CUNNINGHAM, G WARD	63	301206
REAC ZR C SAMSONOV, G		301571	PHAS ZR C SYST BENESOVSKY, F RUDY	60	600648
THER ZR (• • •	201526	PHAS ZR C SYST SARA, R DULLOFF, R	62	301057
LITTLE, A TRT ZR C	62	301526	REAC LP C SYST	61	
SHAFFER, P CEMP ZR C	63	202132	PORTNOI, K LEVINSK PHAS ZR C SYST		300216
BITTNER, H GORETZK MPP ZR C	62	202004	SARA, 11 DOLLOFF, R VAP ZR C SYST	62	601622
DERGUNOVA, V KOLON TRT ZR C	63	202026	POLLOCK, B D PHAS ZR CA O SYST	61	700536
GROSSMAN, L	63	202044	GODINA, N KELER, E SPK ZR CL4	61	201336
CRYS ZR C BENESOVSKY, F RUDY	60	700974	BUCHLER, A BERKOWI	61	300183
DF ZR C COFFMAN, J COULSON	61	701040	VAP ZR CL4 EVSTYUKHIN, A BARI	60	300882
DHD ZR C BITTNER, H GORETZK	62	301132	THER ZR CL SYST RUZINOV, L BELOV		301568
ERES ZR C FINCH, R		700547	PHAS ZR CO BAILEY, D SM1 i H, J	61	201546
MPP ZR C	61		PHAS ZR CO O SYST NEVITT, M DOWNEY	61	201267
NORTON, J MOWRY, A PHAS ZR C	49	300157	MPP ZR CR B SYST		301116
SHAFFER, P PHAS ZR C	61	701057	MEYERSON, G VAP ZR COMPOUNDS	59	
NORTON, J	60	701001	ANON REV ZR COMPOUNDS	61	300239
PKAS ZR C SHAFFER, P	61	700941	BUDNIKOV, P CHEREP MPP ZR COMPOUNDS	63	301419
PHAS ZR C BENESOVSKY, F RUDY	60	700974	STRELETS, V PITAK	62	300624
PHAS ZR C COFFMAN, J COULSON	61	701040	CPH ZR F 4 MCDONALD, R SINKE,	62	300662
		· · · · ·			

2D F 4			75 C		
DH ZR F 4 GREENBERG, E SETTL	61	300199	REAC ZR O SENSE	62	201588
DH ZR F 4 SMITH, D MILLER, W	62	201542	SPK ZR O Murthy, N	62	601623
DHT ZRF4			SPK ZR O		
MCDONALD, R SINKE SPK ZR F 4	62	300662	ROSEN, B spk ZR O	62	301560
BUCHLER, A BERKOWI SPK ZR HALIDES	61	300183	ORTENBERG, F SPK ZR O	61	300821
BUCHLER, A	60	201465	K1ESS, C	48	600685
THER ZR HALIDES LUNGU, S	62	300736	SPK ZR () Afaf, m	50	600914
PHAS ZR HF SI SYST SCHOB, O NOWOTNY	61	201547	THEO ZR O FLODMARK, S	61	301033
PHAS ZR HF X NISELSON, L	62	201551	THER ZRO SCHICK, HANTHROP	63	301579
DH ZR 14			THER ZR O		
TURNBULL, A Ther ZR I 4	61	300259	ACKERMANN, R THORN THER ZR O	68	601087
ALEKSANDROVSKAYA, A PHAS ZR MG O SYST	62	201610	BEREZHNOI, A VAP ZR O	62	201541
GODINA, N KELER, E VAP ZR N	61	201336	ACKERMANN, R THORN CPH ZR O 2	58	601510
FESENKO, V BOLGAR	63	301216	ROBIJN, P	63	301558
CRYS ZR N VAN ARKEL, A	24	701056	CPH ZR O 2 VICTOR, A DOUGLAS	60	700949
MPP ZR N SAMSONOV, G VERKHO	61	301573	CRYS ZR O 2 TEUFER, G	62	301604
VAP ZR N		301073	ERES ZR O 2	02	301604
AKISHIN, P KHODEEV CEMP ZR N	62	300592	COCCO, A BARBARIOL ERES ZR O 2	62	301430
SAMSONOV, G FOMENK THEO ZR N	63	202128	DIXON, J LAGRANGE MPP ZR O 2	63	301436
BAUGHAN, E	69	300866	POLUBOYARINOV, D.G.	62	301552
S ZR N KAUFMAN, L	62	300910	CPH ZR U 2 VICTOR, A DOUGLAS	60	202153
VAP ZR N KIBLER, G LYON, T	61	601579	TRT ZR O 2 Vishnevskii, i	62	202154
VAP ZR N KIBLER, G LYON, T	61	601575	TRT ZR O 2 WOLTEN, G	63	202161
VAP ZR N			PHAS ZR O 2 FANG, F KUZNETSOV		
KIBLER, G LYON, T CRYS ZR N	62	300427	PHAS ZR O 2	62	301443
LOWRIE, R MPP ZR N	60	701014	HINZ, I DIETZEL, A PHAS ZR O 2	62	301472
SAMSONOV, G VERKHO DF ZR N	62	300997	PEREZ Y JORBA, M PHAS ZR O 2	62	301491
SMAGINA, Y KUTSEV	69	300345	* KELER, E ANDREEVA PHAS ZR O 2	63	301496
SAMSONOV, G	60	700947	LEFEVRE, J	63	301519
DH ZR NITRIDES SAMSONOV, G	60	700947	THER ZR O 2 SCHICK, H ANTHROP	63	301580
REV ZR NITRIDES		700947	TRT ZR O 2 WEBER, B	62	301616
SAMSONOV, G CRYS ZR N SYST	60	700947	TRT ZRO2		
GROZIER, J KIN ZR NB	61	701018	BUCKLEY, J TRT ZR O 2	62	301418
COX, B CHADD, P PHAS ZR NB SYST	62	201963	VAHLDIEK, F ROBINS TRT ZR O 2	62	301806
LUNDEN, U E COX, R	61	300240	HINZ, I DIETZEL, A	62	301473
PHAS ZR NB SYST LUNDIN, C	59	201119	TRT ZR O 2 BAUN, W	63	201999
PHAS ZR NI O SYST NEVITT, M DOWNEY	61	201267	PHAS ZR O 2 .CARROLL, D	63	202014
SPK ZR O			PHAS ZR O 2		
DEUTSCH, A MERRILL CRYS ZR O	59	202027	COHEN, I SCHANER CRYS ZR O 2	63	202018
FLODMARK, S DF ZR O	61	301033	KOFSTAD, P RUZICKA MPP ZR O 2	63	202073
ACKERMANN, R THORN DHD ZR O	58	601510	MCTAGGART, F MPP ZR O 2	63	202101
NAZIMOVA, N	60	201227	NAGARJAN, G	63	202106
KIN ZR O AKRAM, K SMELTZER	62	201872	VAP ZR O 2 FIBLER, G LYON, T	63	301259
KIN ZR O DEBUIGNE, J LEHR	62	201885	TRT ZR O 2 MUMPTON, F ROY, R	60	301308
PHAS ZR O KORNILOV, I	60	200769	TRI ZRO2 VISHNEVSKII, I GAV	62	301373
POMPILOY, I	40	400/07	VIGILIA PORTI, I UNV		

CPL ZR O 2		
VICTOR, A DOUGLAS,	60	700949
CRYS ZR O 2 ADAM, J ROGERS, M	59	300852
COCCO, A SCHROMEK	61	201211
CRYS ZR O 2 VAN ARKEL, A	24	701056
CRYS ZR O 2 KOMISSAROVA, L SIM		
CRYS ZR O 2	60	200819
STOCKER, J CRYS ZR O 2	61	201102
BELOV, N CRYS ZR O 2	60	600676
KELLER, E K ANDREE CTEX ZR O 2	61	300222
GRAIN, C CAMPBELL H ZR O 2	61	601471
VICTOR, A DOUGLAS MPP ZR O 2	60	700949
PIROGOV, A MPP ZR O 2	62	300625
YAVORSKY, P PEAS ZR O 2	62	201763
GRAIN, C CAMPBELL PHAS ZR O 2	61	601471
COLLONGUES R	61	201212
PHAS ZR O 2 COCCO, A	59	201168
PHAS ZR O 2 COCCO, A VIRDIS, P	61	201316
PHAS ZR O 2 WHITNEY, E	62	301017
		300880
PHAS ZR O 2 EVANS, P	61	201362
PHAS ZR O 2 EVANS, P WILDSMITH	61	600768
PHAS ZR O 2 VAHLDIEK, F LYNCH	60	600870
PHAS ZR O 2 LYNCH, C VAHLDIEK	61	700520
PHAS ZR O 2 SMITH, D CLEIN, C		201672
PHAS ZR O 2 COHEN, I SCHANER		201845
REAC ZR O 2		
ARONSON, S REAC ZR O 2	61	
MCTAGGART, F REAC ZR O 2		300338
RUFF, O EBERT, F TCON ZR O 2	29	900120
ADAMS, M Ther ZRO2	64	600961
ACKERMANN, R THORN THER ZR O 2	58	601087
MCCLAINE, L TRT ZRO2	60	300278
VAHLDIEK, F LYNCH TRT ZR O 2	60	600870
EVANS, P WILDSMITH VAP ZR O 2	61	600768
NAKATA, M MCKISSON	61	300313
ARONSON, S	61	200998
CRVS ZR OXIDES MAGNELI, A ANDERSO	61	201666
THER ZR OXIDES ORTNER, N ANDERSON	i 69	
ORTNER, N ANDERSON	4 69	
CRYS ZR O SYST LICHTER, B	6	0 200774
THEO ZR O SYST FLODMARK, S ROOS	6	3 301219

CRYS ZR O SYST		
LICHTER, B Eres ZR O SYST	60	600670
WASILEWSKI, R	62	301075
ERES ZR O SYST		
GEBHART, E SAGHEZZ KIN ZR O SYST	61	300330
KUBASCHEWSKI, O	62	601577
PHAS ZR O SYST		
KUBASCHEWSKI, O MPP ZR O SYST	62	601577
DEBUIGNE, J LEHR	63	202025
PHAS ZR O SYST		200045
BURDESE, A BORLERA PHAS ZR O SYST	60	200945
HÖLMBERG, B DAGERH	61	300326
THER ZROSYST		
VEINBACHS, A KOMAR PHAS ZR O CA SYST	62	601611
SHKHAREVSKII, B	61	201707
THER ZROCL SYST KOMISSAROVA, L PLY	60	200811
MPP ZR O F SYST	60	200811
BUSLAYEV, Y GORBUN	62	300830
PHAS ZR PT SYST KENDALL, E HAYS, C	61	201095
PHAS ZR SI B SYST	01	201030
PARTHE, E NORTON	60	201404
PHAS ZR SI O SYST KELER, E ANDREEVA		
PHAS ZR SI O SYST	62	201888
COCCO, A SCHROMEK	60	201188
PHAS ZR TH SYST		
EVANS, D PHAS ZR TI NB SYST	61	201254
MIKHEEV, V BELOUSO	61	300834
PHAS ZR TI O SYST		
COCCO, A SCHROMEK PHAS ZR U C SYST	60	201188
BENESOVSKY, F RUDY	61	301406
PHAS ZR U O SYST		
ARONSON, S CLAYTON CEMP ZR U O SYST	61	300258
JOHANSEN, H CLEARY	62	201882
PHAS ZR U O SYST		
VORONOV, N VOITEKH THER ZR U O SYST	61	201920
ARONSON'S CLAYTON	61	300258
REAC AR WB SYST		
HELGOR SAY, J	61	201887
THER Z' X 4 NAGARAJAN, G	62	201774
