Mrs Choong Mr Keanan-Brown Mrs Leslie Mrs Stock Mrs Williams

Name :	_
Teacher's Name:	

Pymble Ladies' College

Year 12

Extension I Mathematics Trial

11th August 2003

Time allowed: 2 hours plus 5 minutes reading time

Marking guidelines: The marks for each part are indicated beside the question

Instructions:

- All questions should be attempted
- · All necessary working must be shown
- · Start each question on a new page
- * Put your name and your teacher's name on each page
- Marks may be deducted for careless or untidy work
- Only approved calculators may be used
- · All questions are of equal value
- . Diagrams are not drawn to scale
- · A standard integral sheet is attached
- . DO NOT staple different questions together
- . All rough working paper must be attached to the end of the last question
- · Staple a coloured sheet of paper to the back of each question
- . Hand in this question paper with your answers
- There are seven (7) questions and eight (8) pages in this paper

Question 1

a)	of the point R which divides the interval PQ externally in the ratio of 3:2.			2
b)				
c)	Solve $\frac{x}{x+3} \ge 1$.	÷	,	3
d)	Find the general solution of $\sin \theta = \cos \theta$.	**	·	2
c)	Find the exact value of $\int_0^{\frac{\pi}{6}} 2 \sin^2 x \ dx$.			3

2

2

3

Question 2 (Start a new page)

- a) i) Show that $x^2 + 4x + 13 = (x+2)^2 + 9$.
- ii) Hence find $\int \frac{1}{x^2+4x+13} dx$.

- b) A stone is projected from the ground with a velocity of $20 ms^{-1}$ at an angle of 30°. Assume that $\ddot{x} = 0$ and $\ddot{y} = -10$.
 - i) Prove that :
 - (1) $x = 10\sqrt{3}t$
 - $(2) y = -5t^2 + 10t$
 - ii) Hence find the :
 - (1) time of flight
 - (2) horizontal range
 - (3) greatest height reached
 - (4) velocity of the particle after $1\frac{1}{2}$ seconds

Question 3 (Start a new page)

- Evaluate $\int_0^{\sqrt{3}} x \sqrt{x^2 + 1} dx$ using the substitution that $u = x^2 + 1$.
- b) i) Express $\cos \theta + \sqrt{3} \sin \theta$ in the form $r \cos (\theta \alpha)$ where r > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - ii) Hence solve $\cos \theta + \sqrt{3} \sin \theta = 1$ for $-2\pi \le \theta \le 2\pi$.
- Given $f(x) = \frac{x-1}{x+2}$.
 - Write an expression for the inverse function $f^{-1}(x)$.
 - Write down the domain and range of $f^{-1}(x)$.

d) Two circles meet at P and Q. A line APB is drawn through P 3 and the tangents at A and B meet at C. Prove that ACBQ is a cyclic quadrilateral.

3

Question 4 (Start a new page)

- Assume that the rate at which a body warms in air is proportional to the difference between its temperature T and the constant temperature A of the surrounding air. This rate can be expressed by the differential equation \[\frac{dT}{dt} = -k(T+A) \] where t is the time in minutes and k is a constant.
 - i) Show that $T = A Ce^{-kt}$ is a solution of the differential equation where C is a constant.
 - ii) A body warms from 3°C to 10°C in 15 minutes. The air temperature around the body is 30°C. Find the temperature of this body after a further 15 minutes have elapsed. Answer correct to the nearest °C.
 - iii) With the aid of the graph of T against t, explain the behaviour of T as t becomes large.

- b) The acceleration of a particle moving in a straight line is given by $\ddot{x} = -4x + 8$ where x is the displacement, in metres, from the origin O and t is the time in seconds.
 - i) Show that the particle is moving in simple harmonic motion.
 - ii) Write down the centre of motion.
 - iii) Show that $v^2 = 20 + 16x 4x^2$ given, that the particle is initially at rest at x = 5.
 - iv) Write down the amplitude of the motion.
 - v) Find the maximum speed of the particle.

Question 5 (Start a new page)

- a) Consider the curve $f(x) = \ln(x+1)$. Find the gradient(s) of the possible tangent(s) to f(x) which makes an angle of 45° with the tangent to f(x) at the point where x=1.
- b) i) Use the table of standard integrals given to find $\frac{d}{dx} \left[\ln \left(x + \sqrt{x^2 + 9} \right) \right]$.
- ii) Hence use Newton's method to find a second approximation to the root of $x = \ln\left(x + \sqrt{x^2 + 9}\right)$. Take the first approximation as x = -4.5.

- Water is running out of a filled conical funnel at the rate of $5 cm^3 s^{-3}$. The radius of the funnel is 10 cm and the height is 20 cm.
 - i) How fast is the water level dropping when the water is 10 cm deep? 4
 - ii) How long does it take for the water to drop to 10 cm deep?

Ouestion 6 (Start a new page)

- a) Given θ is acute.
 - i) Write $\sin \frac{\theta}{2}$ in terms of $\cos \theta$.
 - Prove that $\tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta}$.

1

2

iii) If $\sin \theta = \frac{4}{5}$, find the value of $\tan \frac{\theta}{2}$.

b) Find $\frac{d}{dx} \cos^{-1}(\sin x)$.

c) Suppose the roots of the equation $x^3 + px^2 + qx + r = 0$ are real.

Show that the roots are in a geometric progression if $q^2 = p^3 r$.

Hint: let the roots be $\frac{a}{b}$, a and ab.

Question 7 (Start a new page)

a)i) Prove by mathematical induction that

$$\frac{12}{1\cdot 3\cdot 4} + \frac{18}{2\cdot 4\cdot 5} + \frac{24}{3\cdot 5\cdot 6} + \dots + \frac{6(n+1)}{n(n+2)(n+3)} = \frac{17}{6} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{4}{n+3}$$

ii) Hence find
$$\lim_{n\to\infty} \sum_{r=1}^{n} \frac{6(r+1)}{r(r+2)(r+3)}$$
.

- b) Consider the variable point P(x, y) on the parabola $x^2 = 2yx$. The x value of P is given by x = t:
 - i) write its y value in terms of t
 - ii) write an expression, in terms of t, for the square of the distance, m, from P to the point (6,0)
 -) hence find the coordinates of P such that P is the closest to the point 5 (6, 0).