ЛЕКЦИЯ A2. Табличный метод доказательства тождеств и утверждений алгебры множеств. Решение систем уравнений относительно неизвестного множества X

Табличный метод доказательства тождеств. Заметим, что для произвольного $x \in U$ (в каждой строке, следующей за первой, указывается один из возможных случаев для x) выполняется:

$x \in A$	$x \in \overline{A}$
да	нет
нет	да

Табл. 1.1

$x \in A$	$x \in B$	$x \in A \cup B$	$x \in A \cap B$	$x \in A \setminus B$	$x \in B \setminus A$	$x \in A + B =$ $= (A \setminus B) \cup (B \setminus A)$
да	да	да	да	нет	нет	нет
да	нет	да	нет	да	нет	да
нет	да	да	нет	нет	да	да
нет	нет	нет	нет	нет	нет	нет

Табл. 1.2

Используя эти таблицы, докажем табличным методом справедливость уже доказанного тождества (1.1). Действительно, для произвольного $x \in U$ имеем:

				*		**
$x \in A$	$x \in B$	$x \in C$	$x \in B + C$	$x \in A + (B + C)$	$x \in A + B$	$x \in (A+B)+C$
да	да	да	нет	да	нет	да
да	да	нет	да	нет	нет	нет
да	нет	да	да	нет	да	нет
да	нет	нет	нет	да	да	да
нет	да	да	нет	нет	да	нет
нет	да	нет	да	да	да	да
нет	нет	да	да	да	нет	да
нет	нет	нет	нет	нет	нет	нет

Сравнивая столбцы, выделенные символами * и **, получаем, что $x \in A + (B + C) \Leftrightarrow x \in (A + B) + C$.

Заметим теперь, что табл. 1.1 идентична табл. 1.3 (т.е. слову «да» в табл. 1.1 соответствует символ U в табл. 1.3, а слову «нет» в табл. 1.1 – символ \varnothing в табл. 1.3):

A	\overline{A}
U	Ø
Ø	U

Табл. 1.3

Соответственно, табл. 1.2 идентична табл. 1.4 (в том же смысле, что и для таблиц 1.1,1.3).

A	В	$A \cup B$	$A \cap B$	$A \setminus B$	$B \setminus A$	A + B
U	U	U	U	Ø	Ø	Ø
U	Ø	U	Ø	U	Ø	U
Ø	U	U	Ø	Ø	U	U
Ø	Ø	Ø	Ø	Ø	Ø	Ø

Табл.1.4

Из идентичности приведенных таблиц следует, что справедливость любого тождества можно проверить табличным методом, проверяя его лишь при значениях символов множеств, входящих

в него, выбираемых из $\{U,\varnothing\}$. Описанный табличный метод обладает рядом достоинств: (a) описан в виде алгоритма с простыми легко выполняемыми шагами; (б) легко программируется на ЭВМ; (в) если проверяемое тождество неверно, то при использовании табличного метода получаем пример множеств, для которых оно не выполняется.

Пример 1.9. Проверим справедливость тождества $A \setminus (B \setminus C) = = A \setminus (C \setminus B)$. Составим соответствующую таблицу и сравним столбцы в этой таблице, выделенные символами * и **):

				*		**
A	В	C	$B \setminus C$	$A \setminus (B \setminus C)$	$C \setminus B$	$A \setminus (C \setminus B)$
U	U	U	Ø	U	Ø	U
U	U	Ø	U	Ø	Ø	U
U	Ø	U	Ø	U	U	Ø
U	Ø	Ø	Ø	U	Ø	U
Ø	U	U	Ø	Ø	Ø	Ø
Ø	U	Ø	U	Ø	Ø	Ø
Ø	Ø	U	Ø	Ø	U	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø

Из приведенной таблицы следует, что, например, при A=U, B=U, $C=\varnothing$ рассматриваемое равенство не выполняется.

Всюду далее под формулой алгебры множеств будем интуитивно понимать формулу $f(A_1,...,A_n)$ (где $n \ge 1$) с переменными $A_1,...,A_n$, обозначающими произвольные множества (являющиеся подмножествами заданного универсального множества U), в которой эти переменные связаны между собой с помощью скобок, двухместных операций: \cup , \cap , \setminus , +, а также одноместной операции абсолютного дополнения (строгое определение формулы аналогично определению формулы логики высказываний (см., например, [2, стр. 26, 27]).

Пример 1.10. Примерами формул алгебры множеств являются:

$$\overline{A_1}\setminus (A_2+\overline{A_3}), \overline{(A_1+\overline{A_2})}\cap (A_3\setminus (A_4\cup \overline{A_1})).$$

Будем далее формулы алгебры множеств обозначать буквами f,g,h, возможно с индексами.

Для краткости утверждение, заключающееся в том, что для некоторых формул алгебры множеств $f(A_1,...,A_n)$, $g(A_1,...,A_n)$ выполняется равенство $f(A_1,...,A_n) = g(A_1,...,A_n)$ для любых $A_i \in 2^U$, i=1,2,...,n (т.е. выполняется тождество алгебры множеств), будем записывать следующим образом: $f \equiv g$.

Для краткости утверждение, заключающееся в том, что для некоторой формулы алгебры множеств $f(A_1,...,A_n)$ выполняется равенство $f(A_1,...,A_n)=\varnothing$ ($f(A_1,...,A_n)=U$) для любых $A_i\in 2^U$, i=1,2,...,n, будем записывать следующим образом: $f\equiv\varnothing$ ($f\equiv U$). Используя табл. 1.3, 1.4, получаем, что справедливо:

Утверждение 1.2. Пусть $f(A_1,...,A_n)$ – формула алгебры множеств. Тогда для любых $A_i \in \{U,\varnothing\}, \ i=1,2,...,n,$ выполняется $f(A_1,...,A_n) \in \{U,\varnothing\}.$

Сформулируем также в виде утверждения приведенный ранее табличный метод доказательства тождеств.

Утверждение 1.3. Пусть $f(A_1,...,A_n)$, $g(A_1,...,A_n)$ — формулы алгебры множеств. Тождество алгебры множеств $f(A_1,...,A_n) \equiv g(A_1,...,A_n)$ справедливо тогда и только тогда, когда для любых $A_i \in \{U,\varnothing\}$, i=1,2,...,n, выполняется равенство $f(A_1,...,A_n) = g(A_1,...,A_n)$.

Следствие 1.1. Если для некоторых формул алгебры множеств $f(A_1,...,A_n)$, $g(A_1,...,A_n)$ выполняется тождество $f\equiv g$ при некотором универсальном множестве $U\neq\varnothing$, то это тождество будет справедливым и для любого другого универсального множества $U\neq\varnothing$.

Табличный метод доказательства (или опровержения) утверждений алгебры множеств. Будем использовать следующее:

Утверждение 1.4. Пусть $f(A_1,...,A_n)$, $g(A_1,...,A_n)$ – формулы ал-

гебры множеств. Утверждение $f=\varnothing \Leftrightarrow g=\varnothing$ выполняется тогда и только тогда, когда $f\equiv g$. Действительно, если $f\equiv g$, то $f=\varnothing \Leftrightarrow g=\varnothing$. В обратную сторону, пусть $f=\varnothing \Leftrightarrow g=\varnothing$. Тогда, в силу утверждения 1.2 $\forall A_i\in \{U,\varnothing\},\ i=1,2,...,n,\ f=g$, откуда, в силу утверждения 1.3, $f\equiv g$.

Утверждение 1.5. Пусть A, B – произвольные множества. Тогда

$$A \cup B = \emptyset \Leftrightarrow A = \emptyset, B = \emptyset, \tag{1.3}$$

$$A \setminus B = \emptyset \Leftrightarrow A \cap \overline{B} = \emptyset \Leftrightarrow A \subseteq B, \tag{1.4}$$

$$A \cap B = \emptyset \Leftrightarrow A \subset \overline{B},\tag{1.5}$$

$$A + B = \emptyset \Leftrightarrow A = B. \tag{1.6}$$

Доказательство. Утверждение (1.3) очевидно. Докажем справедливость (1.4). Пусть $A \setminus B = \varnothing$. Предположим, что не выполняется включение $A \subseteq B$. Тогда $\exists a \in A : a \notin B$, откуда $a \in A \setminus B$, что противоречит условию $A \setminus B = \varnothing$. Пусть теперь $A \subseteq B$. Предположим, что $A \setminus B \neq \varnothing$. Тогда $\exists a \in A : a \notin B$, а это противоречит условию $A \subseteq B$. Для доказательства (1.5) воспользуемся (1.4), а также тождеством 11: $A \cap B = \varnothing \Leftrightarrow A \cap \overline{B} = \varnothing \Leftrightarrow A \subseteq \overline{B}$. Утверждение (1.6) является следствием утверждений (1.3), (1.4). Действительно, в силу (1.3), (1.4), имеем: $A + B = \varnothing \Leftrightarrow (A \setminus B) \cup (B \setminus A) = \varnothing \Leftrightarrow A \setminus B = \varnothing$, $B \setminus A = \Leftrightarrow A \subseteq B$, $B \subseteq A \Leftrightarrow A = B$.

Покажем теперь, что справедливо:

Утверждение 1.6. Пусть $f_1(A_1,...,A_n), f_2(A_1,...,A_n), g_1(A_1,...,A_n), g_2(A_1,...,A_n)$ – формулы алгебры множеств. Утверждение $f_1 = f_2 \Leftrightarrow \Leftrightarrow g_1 = g_2$ выполняется тогда и только тогда, когда справедливо тождество алгебры множеств $f_1 + f_2 \equiv g_1 + g_2$.

Действительно, используя (1.6), а также утверждение 1.4, получаем:

$$[f_1 = f_2 \Leftrightarrow g_1 = g_2] \Leftrightarrow [f_1 + f_2 = \emptyset \Leftrightarrow g_1 + g_2 = \emptyset] \Leftrightarrow \Leftrightarrow f_1 + f_2 \equiv g_1 + g_2.$$

Кроме того, справедливо

Утверждение 1.7. Пусть $f_1(A_1,...,A_n), f_2(A_1,...,A_n), g_1(A_1,...,A_n), g_2(A_1,...,A_n)$ – формулы алгебры множеств. Тогда

(a)
$$[f_1 \subseteq f_2 \Leftrightarrow g_1 = g_2] \Leftrightarrow f_1 \setminus f_2 \equiv g_1 + g_2;$$

(6)
$$[f_1 = f_2 \Leftrightarrow g_1 \subseteq g_2] \Leftrightarrow f_1 + f_2 \equiv g_1 \setminus g_2;$$

(B)
$$[f_1 \subseteq f_2 \Leftrightarrow g_1 \subseteq g_2] \Leftrightarrow f_1 \setminus f_2 \equiv g_1 \setminus g_2$$
.

Докажем (а) (доказательства (б), (в) аналогичны). Используя утверждения 1.4, (1.4), (1.6), получаем: $[f_1 \subseteq f_2 \Leftrightarrow g_1 = g_2] \Leftrightarrow$

$$\Leftrightarrow$$
 $[f_1 \setminus f_2 = \emptyset \Leftrightarrow g_1 + g_2 = \emptyset] \Leftrightarrow f_1 \setminus f_2 \equiv g_1 + g_2.$

Аналогичную теорию можно развить и для доказательства ряда односторонних утверждений, например вида $f_1 = f_2 \Rightarrow g_1 = g_2$. Для этого воспользуемся следующим следствием утверждения 1.3.

Утверждение 1.8. Пусть $f(A_1,...,A_n)$ – формула алгебры мно- жеств. Тождество $f \equiv \emptyset$ $(f \equiv U)$ справедливо тогда и только тогда, когда для любых $A_i \in \{U,\emptyset\}, \ i=1,2,...,n,$ выполняется равенство $f(A_1,...,A_n)=\emptyset$ $(f(A_1,...,A_n)=U)$.

Для доказательства достаточно в утверждении 1.3 положить $g(A_1,...,A_n)=A_1\cap\overline{A}_1\equiv\varnothing$ ($g(A_1,...,A_n)=A_1\cup\overline{A}_1\equiv U$).

Покажем теперь, что справедливо

Утверждение 1.9. Пусть $f(A_1,...,A_n)$, $g(A_1,...,A_n)$ – формулы алгебры множеств. Утверждение $f=\varnothing\Rightarrow g=\varnothing$ выполняется тогда и только тогда, когда справедливо тождество $g\setminus f\equiv\varnothing$.

Действительно, если справедливо утверждение $f=\varnothing\Rightarrow g=\varnothing$, то при $A_i\in\{U,\varnothing\}$, i=1,2,...,n, в силу утверждения 1.2, выполняется равенство $g(A_1,...,A_n)\setminus f(A_1,...,A_n)=\varnothing$, а следовательно, в силу утверждения 1.8 справедливо тождество $g\setminus f\equiv\varnothing$. Рассуждение в обратную сторону очевидно.

Используя (1.4), (1.6), а также утверждение 1.9, нетрудно показать справедливость следующего утверждения.

Утверждение 1.10. Пусть $f_1(A_1,...,A_n)$, $f_2(A_1,...,A_n)$, $g_1(A_1,...,A_n)$, $g_2(A_1,...,A_n)$ – формулы алгебры множеств. Тогда

(a)
$$[f_1 = f_2 \Rightarrow g_1 = g_2] \Leftrightarrow (g_1 + g_2) \setminus (f_1 + f_2) \equiv \emptyset;$$

(6)
$$[f_1 = f_2 \Rightarrow g_1 \subseteq g_2] \Leftrightarrow (g_1 \setminus g_2) \setminus (f_1 + f_2) \equiv \emptyset;$$

(B)
$$[f_1 \subseteq f_2 \Rightarrow g_1 = g_2] \Leftrightarrow (g_1 + g_2) \setminus (f_1 \setminus f_2) \equiv \emptyset;$$

$$\text{(r) } [f_1 \subseteq f_2 \Rightarrow g_1 \subseteq g_2] \Leftrightarrow (g_1 \setminus g_2) \setminus (f_1 \setminus f_2) \equiv \varnothing.$$

Из утверждений 1.8, 1.10 следует, что для любых формул алгебры множеств f_1, f_2, g_1, g_2 проверка утверждений вида: $f_1 = f_2 \Rightarrow g_1 = g_2$; $f_1 = f_2 \Rightarrow g_1 \subseteq g_2$; $f_1 \subseteq f_2 \Rightarrow g_1 \subseteq g_2$; $f_1 \subseteq f_2 \Rightarrow g_1 \subseteq g_2$ может быть осуществлена описанным выше табличным способом.

Пример 1.11. Доказать или опровергнуть: $A \cup B = A \cup C \Rightarrow \Rightarrow B \setminus C \subseteq A$. В силу утверждения 1.10 проверка этого утверждения сводится к проверке выполнения тождества $f(A,B,C) = = [(B \setminus C) \setminus A] \setminus [(A \cup B) + (A \cup C)] \equiv \emptyset$. Составим таблицу для f:

A	В	С	$B \setminus C$	$(B \setminus C) \setminus A$	$A \cup B$	$A \cup C$	$(A \cup B) + (A \cup C)$	f
U	U	U	Ø	Ø	U	U	Ø	Ø
U	U	Ø	U	Ø	U	U	Ø	Ø
U	Ø	U	Ø	Ø	U	U	Ø	Ø
U	Ø	Ø	Ø	Ø	U	U	Ø	Ø
Ø	U	U	Ø	Ø	U	U	Ø	Ø
Ø	U	Ø	U	U	U	Ø	U	Ø
Ø	Ø	U	Ø	Ø	Ø	U	U	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

Используя утверждение 1.8, получаем, что $f \equiv \emptyset$, а следовате- льно, в силу утверждения 1.10, рассматриваемое утверждение верно.

Решение системы уравнений в алгебре множеств относительно неизвестного множества X. Нам понадобится

Утверждение 1.11. Пусть A, B – множества, являющиеся подмно-

жествами универсального множества $U \neq \emptyset$. Тогда (a) система уравнений

$$\begin{cases} A \cap X = \emptyset, \\ B \cap \overline{X} = \emptyset \end{cases} \tag{1.7}$$

относительно неизвестного множества X имеет решение в том и только в том случае, когда $B\subseteq \overline{A}$; (б) решениями системы (1.7), (1.8) являются любые множества X такие, что $B\subset X\subset \overline{A}$.

Доказательство. (а) Пусть система (1.7), (1.8) имеет решение X. Тогда, используя (1.4), (1.5), имеем: (1.7), (1.8) $\Rightarrow B \subseteq X$, $X \subseteq \overline{A} \Rightarrow \Rightarrow B \subseteq \overline{A}$. Обратно, пусть $B \subseteq \overline{A}$. Тогда, например для X = B (или для $X = \overline{A}$), используя (1.4), (1.5), имеем $B \subseteq X \subseteq \overline{A} \Rightarrow X \subseteq \overline{A}$, $B \subseteq X \Rightarrow A \cap X = \emptyset$, $B \cap \overline{X} = \emptyset$, т.е. X действительно является решением системы (1.7), (1.8). (б) Пусть $B \subseteq \overline{A}$. Тогда, как доказано в (а), существует решение системы (1.7), (1.8). Причем, в силу (1.4), (1.5), имеем: (1.7), (1.8) $\Leftrightarrow X \subseteq \overline{A}$, $B \subseteq X \Leftrightarrow B \subseteq X \subseteq \overline{A}$, т.е. решениями системы (1.7), (1.8) являются все множества X такие, что $B \subseteq X \subseteq \overline{A}$.

Приведем теперь алгоритм решения произвольной системы уравнений в алгебре множеств относительно одного неизвестного множества X. Для сокращения записи будем, как и ранее, писать AB вместо $A \cap B$ и считать \cap самой «сильной» двухместной операцией (т.е. выполняемой в первую очередь).

Пусть $f_i(A_1,...,A_n,X)$, $g_i(A_1,...,A_n,X)$, i=1,2,...,m, — формулы алгебры множеств, где $A_1,...,A_n$ — некоторые множества, являющиеся подмножествами универсального множества U, X — неизвестное множество. Рассмотрим систему уравнений (относительно X)

$$f_i(A_1,...,A_n,X) = g_i(A_1,...,A_n,X), i = 1,2,...,m.$$
 (1.9)

Алгоритм 1.1 решения системы уравнений (1.9)

1) Используя (1.3), (1.6), имеем: (1.9)
$$\Leftrightarrow f_1 + g_1 = \emptyset, ..., f_m + g_m = \emptyset$$

 $=\varnothing\Leftrightarrow (f_1+g_1)\cup...\cup(f_m+g_m)=\varnothing$, т.е. можно считать, что система (1.9) имеет вид: $f(A_1,...,A_n,X)=\varnothing$, где $f=(f_1+g_1)\cup...\cup(f_m+g_m)$.

- 2) «Избавляемся» в $f(A_1,...,A_n,X)$ от операций: \,+ , используя тождества: $A\setminus B=A\overline{B}$, $A+B=A\overline{B}\cup B\overline{A}$.
- 3) Используя законы де Моргана, приводим $f(A_1,...,A_n,X)$ к виду, при котором знак абсолютного дополнения может находиться только над символами множеств: $A_1,...,A_n,X$ (см. замечание 1.1). Пример: $f(A_1,...,A_n,X)=\overline{A}_1(\overline{A}_2\cup\overline{X})X\cup A_3X\cup\overline{A}_4\overline{X}\cup (A_4X\cup A_5)A_5$.
- 4) Используя дистрибутивность \cap относительно \cup , приводим $f(A_1,...,A_n,X)$ к виду «объединение пересечений» (аналогичному алгебраическому многочлену, где роль умножения играет \cap , а роль сложения $-\cup$). Пример (продолжение примера на шаге 3 алгоритма; см. также замечание 1.1):

$$f(A_1,...,A_n,X) = \overline{A_1}\overline{A_2}X \cup A_3X \cup \overline{A_4}\overline{X} \cup A_4A_5X \cup A_5.$$

5) Группируем члены в $f(A_1,...,A_n,X)$, образуя три группы: «без X », «с X »,

«с \overline{X} ». Во второй группе выносим X за скобки, в третьей выносим за скобки \overline{X} :

$$f(A_1,...,A_n,X) = h_1(A_1,...,A_n) \cup h_2(A_1,...,A_n) X \cup h_3(A_1,...,A_n) \overline{X}.$$
 Пример (продолжение примера на шаге 4 алгоритма):

$$f(A_1,...,A_n,X) = A_5 \cup (\overline{A_1}\overline{A_2} \cup A_3 \cup A_4A_5)X \cup \overline{A_4}\overline{X}$$
.

6) Используя (1.3), получаем:
$$f=\varnothing \Leftrightarrow egin{cases} h_1=\varnothing, \\ h_2\cap X=\varnothing, \\ h_3\cap \overline{X}=\varnothing, \end{cases}$$

откуда, в силу утверждения 1.11, необходимым и достаточным условием существования решения системы уравнений (1.9) является

$$h_1 = \emptyset, \ h_3 \subseteq \overline{h}_2, \tag{1.10}$$

и в случае выполнения (1.10) решениями системы уравнений (1.9) являются все множества X, удовлетворяющие условию: $h_3 \subseteq X \subseteq \bar{h}_2$.

Замечание 1.1. На шаге 3 алгоритма используется также тождество $\overline{\overline{A}} = A$, а на шаге 4 — тождества: $A \cap A = A, A \cup A = A, A \cap \overline{A} = \emptyset, A \cap \emptyset = \emptyset, A \cup \emptyset = A$.

Замечание 1.2. Описанный алгоритм может быть применен и к системе уравнений относительно многих неизвестных $X_1,...,X_k$. При этом производится последовательное исключение неизвестных.

Замечание 1.3. Система (1.9) может также иметь иной вид (с включениями вместо равенств): $f_i(A_1,...,A_n,X) \subseteq g_i(A_1,...,A_n,X)$, i=1,2,...,m. (1.11)

В этом случае модифицируется шаг 1 алгоритма, а именно, используя (1.3), (1.4), имеем: (1.11) $\Leftrightarrow f_1 \setminus g_1 = \varnothing, ..., f_m \setminus g_m = \varnothing \Leftrightarrow \Leftrightarrow (f_1 \setminus g_1) \cup ... \cup (f_m \setminus g_m) = \varnothing$, т.е. система (1.11) сводится к единственному уравнению $f(A_1, ..., A_n, X) = \varnothing$, где $f = (f_1 \setminus g_1) \cup ... \cup \cup (f_m \setminus g_m)$.

Используя (1.3), (1.4), (1.6), нетрудно также модифицировать шаг 1 алгоритма и в случае, когда в рассматриваемую систему входит конечное число равенств и конечное число включений.

Пример 1.12. Пусть A, B – заданные множества, являющиеся подмножествами некоторого универсального множества U . Найти необходимое и достаточное условие для X (вида $g(A,B)\subseteq X\subseteq f(A,B)$, где g(A,B),f(A,B) – формулы алгебры множеств), если $X\cup A==X\cup B$. Последовательно применяя шаги 1—6 алгоритма 1.1 и используя (1.4), получаем:

$$X \cup A = X \cup B \Leftrightarrow (X \cup A) + (X \cup B) = \emptyset \Leftrightarrow$$

$$\Leftrightarrow [(X \cup A) \setminus (X \cup B)] \cup [(X \cup B) \setminus (X \cup A)] = \emptyset \Leftrightarrow$$

$$\Leftrightarrow (X \cup A) \overline{(X \cup B)} \cup (X \cup B) \overline{(X \cup A)} = \emptyset \Leftrightarrow$$

$$\Leftrightarrow (X \cup A) \overline{X} \overline{B} \cup (X \cup B) \overline{X} \overline{A} = \emptyset \Leftrightarrow$$

$$\Leftrightarrow X \overline{X} \overline{B} \cup A \overline{X} \overline{B} \cup X \overline{X} \overline{A} \cup B \overline{X} \overline{A} = \emptyset \Leftrightarrow$$

$$\Leftrightarrow A \overline{X} \overline{B} \cup B \overline{X} \overline{A} = \emptyset \Leftrightarrow (A\overline{B} \cup B\overline{A}) \overline{X} = \emptyset \Leftrightarrow$$

$$\Leftrightarrow (A + B) \overline{X} = \emptyset \Leftrightarrow (A + B) \subseteq X.$$

Пример 1.13. Пусть A, B, C – заданные множества, являющиеся подмножествами некоторого универсального множества U . Решить систему уравнений относительно неизвестного множества X :

$$\begin{cases}
A \cap X = B, \\
A \cup X = C.
\end{cases}$$
(1.12)

Последовательно применяя шаги 1–6 алгоритма 1.1, получаем:

$$(1.12) \Leftrightarrow (AX + B) \cup [(A \cup X) + C] = \varnothing \Leftrightarrow \Leftrightarrow (AX \setminus B) \cup (B \setminus AX) \cup [(A \cup X) \setminus C] \cup [C \setminus (A \cup X)] = \varnothing \Leftrightarrow \Leftrightarrow AX\overline{B} \cup B(\overline{A} \cup \overline{X}) \cup (A \cup X)\overline{C} \cup C\overline{A}\overline{X} = \varnothing \Leftrightarrow \Leftrightarrow AX\overline{B} \cup B\overline{A} \cup B\overline{X} \cup A\overline{C} \cup X\overline{C} \cup C\overline{A}\overline{X} = \varnothing \Leftrightarrow \Leftrightarrow (\overline{A}B \cup A\overline{C}) \cup (A\overline{B} \cup \overline{C})X \cup (B \cup \overline{A}C)\overline{X} = \varnothing \Leftrightarrow \Leftrightarrow (\overline{A}B \cup A\overline{C} = \varnothing),$$

$$\Leftrightarrow \begin{cases} \overline{A}B \cup A\overline{C} = \varnothing, \\ (A\overline{B} \cup \overline{C}) \cap X = \varnothing, \\ (B \cup \overline{A}C) \cap \overline{X} = \varnothing. \end{cases}$$

В силу утверждений 1.11, (1.3), (1.4) необходимым и достаточным условием существования решения этой системы, равносильной (1.12), является

$$\overline{A}B \cup A\overline{C} = \varnothing$$
 , $B \cup \overline{A}C \subseteq \overline{A\overline{B} \cup \overline{C}} \Leftrightarrow$ $\Leftrightarrow \overline{A}B = \varnothing$, $A\overline{C} = \varnothing$, $B \cup \overline{A}C \subseteq (\overline{A} \cup B)C \Leftrightarrow$ $\Leftrightarrow B \subseteq A \subseteq C$, $B \cup \overline{A}C \subseteq BC \cup \overline{A}C \Leftrightarrow B \subseteq A \subseteq C$, так как в случае $B \subseteq C$ выполняется $BC = B$, $BC \cup \overline{A}C = B \cup \overline{A}C$.

В силу утверждения 1.11 единственным решением этой системы в случае $B\subseteq A\subseteq C$ является $X=B\cup \overline{A}\, C$.