8-1 Additional Practice

savvasrealize.com

Solving Trigonometric Equations Using Inverses

1. How would you restrict the domain of the sine function to define the inverse sine function?

$$-\frac{\pi}{2} \le t \le \frac{\pi}{2}$$

2. Evaluate the inverse trigonometric function at the given value.

a.
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \frac{\pi}{3}$$

b.
$$\tan^{-1} \left(\frac{\sqrt{3}}{3} \right) \frac{\pi}{6}$$

3. What are all of the angles in radians that have a sine value of 0.85?

$$1.02 + 2k\pi$$
 or $2.12 + 2k\pi$

4. What is the value for θ in radians when 0.15 $\cos \theta + 1 = 1.30 \cos \theta$ for values between 0 and 2π ?

5. What is the value for θ in radians when 4 tan θ – 5 = tan θ for values between 0 and π ?

1.03

6. The total monthly sales of a retail store is modeled by the function $S = 29 \sin(0.18x - 4.8) + 56$, where S is the sales in thousands, x is the month, and x = 1 corresponds to January. Use this function to determine the month in which the total sales was approximately \$54,000.

September

- 7. Can you find the radian measures of the angles θ whose cosine is -1.75? Explain. No; $\cos \theta$ cannot be less than -1.
- **8.** A simple harmonic motion of a hanging spring is defined by $d = 3 \cos \left(\frac{\pi}{2}t\right) + 9$, where d is the displacement of the end of the spring in inches, and t is the time in seconds.
 - a. Solve the equation for t.

$$t = \frac{2\cos^{-1}\left(\frac{d-9}{3}\right)}{\pi}$$

b. Find the first time at which the spring is displaced 6 in.

2 s

9. Solve the equation $8 \sin^2 \theta - 2 = 0$. Write your answer in radians.

$$\theta = \frac{5\pi}{6} + 2\pi k$$
, and $\frac{\pi}{6} + 2\pi k$