Моделирование параметров работы центробежного компрессора агрегата наддува ДВС при испарительном охлаждении воздуха

O. К. Безюков¹, М. П. Афанасьев² Государственный университет морского и речного флота имени адмирала С.О. Макарова ¹okb-nayka@yandex.ru, ²mikhailafanasev@yandex.ru

П. М. Афанасьев Санкт-Петербургский политехнический университет Петра Великого paulafanasiev@gmail.com

Ю. Н. Сердитов

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) ura-nikolaevic@yandex.ru

Аннотация. В статье приводятся результаты анализа проблем теплонапряженности деталей, вызванных форсированием двигателей внутреннего сгорания, высоким и сверхвысоким наддувом. Рассмотрена поэтапная методика расчёта центробежного компрессора, с целью оценки влияния испарительного и охлаждения и влажности воздуха на температуру за центробежным компрессором. Описанная методика была реализована в виде программы для ЭВМ. В результате расчётов были установлены зоны эффективного отвода влаги.

Ключевые слова: двигатель внутреннего сгорания; центробежный компрессор; форсирование по наддуву; испарительное охлаждение; влажность воздушного заряда

І. Введение

Форсирование дизельных двигателей по среднему эффективному давлению и по номинальной частоте вращения коленчатого вала приводит к существенному уменьшению их массогабаритных показателей ДВС при одновременном росте температуры воздуха, абсолютных и особенно относительных габаритов его охладителей [1].

Для снижения теплонапряженности в двигателях с высоким и сверхвысоким наддувом применяют сочетание рекуперативного охлаждения воздуха со способом Миллера, заключающегося в расширении воздуха в цилиндре в конце хода впуска за счет раннего закрывания (до Н.М.Т.) впускного клапана [2].

ІІ. АЛГОРИТМ РАСЧЁТА

При использовании двухступенчатого наддува, существенно усложняющего конструкцию системы воздухоснабжения, одним из эффективных способов снижения температуры наддувочного воздуха может быть испарительное охлаждение, при котором впрыск 1% воды температура воздуха снижается на 25°С [2, 3, 4]. Однако выигрыш в мощности и экономичности ДВС уменьшается

из-за необходимости сжатия образовавшихся водяных паров и дополнительных потерь вследствие нарушения кинематики потока воздуха, необходимости транспортировки капель и пленок воды по поверхностям проточной части центробежного компрессора.

Поэтому в данной работе рассмотрено влияние испарительного охлаждения наддувочного воздуха и изменения влажности воздуха на работу одноступенчатого компрессора агрегата наддува и сделана оценка возможности сепарации неиспарившейся или сконденсированной влаги в проточной части компрессора и за его пределами.

Параметры работы компрессора вычисляются в 6-ти сечениях (рис. 1): 0 (начальное) — вход в рабочее колесо, 1— вход на лопаточную решётку, 2— выход из рабочего колеса, 3— вход в безлопаточный диффузор, 4— вход в улитку, 5 (конечное)— выход из улитки.

Для учёта влияния влажности воздуха и испарительного охлаждения наддувочного воздуха в каждом сечении анализировалось изменение рассчитываемых параметров от характеристик сжимаемого газа. Изменяются такие характеристики сжимаемого тела как: влагосодержание, газовая постоянная, показатель изоэнтропы и коэффициент сжимаемости влажного воздуха.

Расчёт турбокомпрессора производился в несколько этапов по шести сечениям [5, 6] (рис. 1).

- 1. На первом этапе вычислялись параметры сжимаемого газа, а именно газовая постоянная (R), влагосодержание (x), показатель изоэнтропы сжимаемого газа (k) и коэффициент сжимаемости (z).
- 2. На втором этапе (при расчёте параметров проточной части ступени) вычислялись:
 - степень сжатия газа по сечениям;

 угол выхода потока газа в абсолютном движении из рабочего колеса (α2);

Рис. 1. Схема расчёта проточной части центробежного компррессора

- числа Маха по окружной скорости и фактические;
- температура газа на выходе из рабочего колеса (T_2) ;
- абсолютная скорость на выходе из рабочего колеса;
- и др.
- 3. На третьем этапе рассчитываются параметры рабочего колеса по сечениям: скорость газа (c_0) ; плотность газа при входе в компрессор (ρ_n) ; температура газа (ΔT_{n-0}) ; степень сжатия газа (ε_0) , (ε_I) , (ε_2) ; плотность и давление газа $(\rho_0$ и ρ_0), $(\rho_I$ и ρ_I), $(\rho_2$ и ρ_2); абсолютная скорость газа (c_I) ; угол входа потока газа в относительном движении на лопатки колеса (β_1) ; относительная скорость газа (w_I) ; температура газа (T_I) ; число Маха по относительной скорости (M_{wI}) ; температура газа на выходе из рабочего колеса (ΔT_{n-2}) ;
- 4. Далее рассчитывались параметры безлопаточного диффузора. Вычислялись следующие характеристики: угол входа потока газа (α_3 = α_2); скорость газа (C_3), (C_4); температура газа (T_3), (T_4); степень сжатия газа (ε_3), (ε_4); плотность и давление газа (ρ_3 и ρ_3); плотность и давление газа (ρ_4 и ρ_4); среднее значение угла α на пути движения газа в диффузоре (α_{cp}).
- 5. На пятом этапе рассчитываются параметры внутренней улитки: закрутка потока на выходе из диффузора (C_{4u}); радиус внутренней поверхности улитки R_{BH} .

6. На шестом этапе рассчитываются параметры газа в конечном (выходном) сечении К-К: температура газа в конечном сечении К-К (T_{κ}); степень сжатия газа в конечном сечении (ε_{κ}); плотность и давление газа в конечном сечении (ρ_{κ} и p_{κ}).

Для оценки эффективности производился расчёт следующих характеристик: мощность сжатия газа при политропном процессе в компрессоре (внутренняя мощность компрессора) (N_{BH}) ; мощность сжатия газа при изоэнтропном процессе (N_{u39}) ; мощность сжатия газа при изотермическом процессе (N_{u39}) ; изоэнтропный внутренний коэффициент полезного действия (η_{u39}) ; изотермический внутренний коэффициент полезного действия (η_{u39}) ;

Расчёт турбокомпрессора производился при помощи компьютерной программы, написанной на языке C++, предназначенной для расчёта основных параметров геометрии проточной части центробежного компрессора [7].

На рис. 2 приведен фрагмент ввода исходных (первичных) данных, необходимых для расчёта проточной части центробежного компрессора.

асчет				
№ n/n	Первичные характеристики	Принятое обогначение		
1.	Начальное давление	р _ж = _{0,1} , Па		
2.	Начальная температура	$T_{\text{MZN}} = 293$, K		
3.	Массовый расход газа	m= 2 xr/c		
4.	Родгаза	(k=1.4 и R= 187), Дж/кг·К		
5.	Степень повышения давления	$\pi_{\kappa} = 2$		
6.	Тип колеса	радиальное с покрывным диском		
7.	Отношение диаметров	k ₀ = 0.95		
8.	Угол лопатки на входе в колесо	β _{Le} = 35 , град		
9.	Угол лопатки на выходе	β _{2.6} = 90 , град		
10.	Коэффициент закрупки потока на входе в колесо	$\varphi_{\mathbf{i}} = 0$		
11.	Втулочное отношение	$\xi_{em} = 0.42$		
12.	Приведенный диаметр колеса	d = 0.5		
13.	Относительная толщина лопатки колеса на выходе	$\overline{\delta}_2 = 0.01$		
14.	Число сторон колеса	n _{non} = 1		
15.	Поправочный коэффициент в зависимости от свойств диска у колеса	k _{m d} = 1.5		
16.	Параметр шероховатости поверхности дисков	$R_Z = 6.3$ 10^{-6}		
17.	Коэффициент внутренних перетечек	cz _{ym} = 0,02		
18.	Отношение числа лопаток колеса на входе к их числу на выходе	$z_1/z_{\text{MAM}} = 1$		
10				

Рис. 2. Фрагмент ввода исходных (первичных) данных, необходимых для расчёта проточной части центробежного компрессора

После нажатия кнопки «Рассчитать», производится расчёт промежуточных характеристик и вывод их на экран, как формул, так и результаты расчёта. При этом нажатие кнопки «Открыть изображения» (рис. 3) позволяет увидеть сечения компрессора. На рис. 4 представлен фрагмент результата работы программы.

Рис. 3. Расчёт промежуточных характеристик

Расчет				
76.	Отношение давлений	$\frac{\rho_3}{\rho_{02}} = \left[1 - \frac{k-1}{k+1} \lambda_2^2 \left(1 + \frac{\Omega \overline{\delta} y_3}{\overline{c}_3^2}\right)\right]^{k/(k-1)} = 0.7398996$		
77.	Отношение плотностей	$\frac{P_3}{\rho_{02}} = \frac{P_3}{\rho_{02}} : \frac{T_3}{T_{02}} = 0.8038807$ $\frac{P_3}{\rho_{02}} = \frac{P_3}{T_{02}} : \frac{P_3}{\rho_{02}} = 0.9707445$ $\frac{P_3}{\rho_{02}} = \frac{P_3}{\rho_{02}} : \frac{P_2}{\rho_{02}} = 0.9707445$		
78.	Приведенная скорость на входе в лопаточный диффу- зор (уточнение)	$\bar{c}_3 = \frac{1}{d_3} \sqrt{\frac{\bar{c}_{2r}^2}{K_{\theta}^2(\rho_3/\rho_2)^2} + \bar{c}_{2u}^2} = 0.8117932$		

№ v/n	Искомые характеристики	Принятое обогначение
1.	Коэффициент скорости на входе в лопаточный диффу- зор	$\lambda_3 = \lambda_2 \bar{c}_3 / \bar{c}_2 = 0.8177720$
2.	Отношение температур	$\frac{T_3}{T_{02}} = 1 - \frac{k-1}{k+1} \mathcal{L}_3^2 = 0.9204097$
3.	Плотность воздука на входе в лопаточный диффузор	$\rho_3 = (\rho_3/\rho_2)\rho_2 = 1.5148006$ kT/M ³
4.	Угол потока на выходе из лопаточного диффузора	$\alpha_4 = \arcsin\left(\frac{d_3}{d_4}k_0\sin\alpha_3\right) = 19.782395$
5.	Число логаток в диффузоре	$z_{\delta} = \frac{l}{t_{\delta}} \frac{2\pi \sin\left(\frac{\alpha_{3} + \alpha_{4}}{2}\right)}{\ln(d_{4}/d_{3})} = 14.426778$
6.	Коэффициент стеснения ло- папсами на входе в лопаточ- ный диффузор	$\tau_3 = 1 - z_{\bar{\partial}} \bar{\delta}_3 / (\pi \sin \alpha_3) = 0.9308295$
7.	Высота лопаточного диффу- зора на входе	$a_3 = \pi d_3 \sin \alpha_3 / z_0 = 0.0164438 \text{ M}$
8.	Высоты лопаточного диффу- зора на выходе	$a_4 = \pi d_4 \sin \alpha_4 / z_b = 0.0366565 \text{ M}$
9.	Эквивалентные диаметры сечения лопаточного диффу- зора на входе	$d_{y3} = \frac{2a_3b_3}{(a_3 + b_3)} = 0.0186921 \text{m}$
10.	Эквивалентные диаметры сечения лопаточного диффу-	$d_{y4} = \frac{2a_4b_4}{(a_4+b_4)} = 0.0272241$ M

Рис. 4. Фрагмент результата работы программы

III. Выводы

Для оценки влияния влажности на работу турбокомпрессора, была проведена серия расчётов параметров центробежного компрессора при следующих значениях влажности: 0, 20, 60, 100%, а так же при мелкодисперсном распылении воды перед компрессором, что позволило поддерживать влажность воздуха на уровне 100% при изменении температуры и давления в процессе сжатия.

Анализ полученных результатов показал зоны, в которых целесообразно организовывать сепарацию и отвод излишней влаги.

Список литературы

- [1] Murano R., Nakano K., Hirata Y. Development of high-pressure ratio type turbocharger. CIMAC Congress 2010, Bergen Paper № 135. 9 p.
- [2] Чистяков Ф.М., Игнатенко В.В., Романенко Н.Т., Фролов Е.С. Центробежный компрессорные машины. М.: Машиностроение, 1969. 328 с.
- [3] Гольтраф И.С. Охлаждение воздуха в судовых дизелях. Л.: Судостроение, 1966. 199 с.
- [4] Филиппов Г.А., Поваров О.А. Сепарация влаги в турбинах АЭС. М.: Энергия, 1980. 320 с.
- [5] Лямцев Б.Ф., Микеров Л.Б. Турбокомпрессоры для наддува двигателей внутреннего сгорания. Теория, конструкция и расчет. Ярославль: АООТ «Автодизель», Ярославский государственный технический университет, 1995. 121 с.
- [6] Галеркин Ю.Б., Козаченко Л.И. Турбокомпрессоры. СПб.: Изд-во Политехн. ун-та, 2008. 374 с.
- [7] Свидетельство о гос. регистрации программы для ЭВМ № 2016611761 / Безюков О.К., Афанасьев М.П. Термогазодинамический расчёт проточной части центробежного компрессора. Регистрация 10.02.2016.