Курсовая работа по предмету "Планирование эксперимента и обработка данных" **Генерация второй гармоники в нелинейном кристалле**

Дерека С.А., группа 642 2018-04-21

Аннотация

В работе использовалась установка с кристаллом йодата лития. С помощью осциллографа измерили интенсивность излучения второй гармоники, сгенерированной на данном кристалле, а с помощью гониометра - угол между входным лучом и направлением синхронизма. С помощью полученных данных проверили соотношения, полученные теоретически. Также была исследована зависимость интенсивности второй гармоники от интенсивности излучения, подаваемого на кристалл, и оценён коэффициент преобразования во вторую гармонику для рассматриваемой установки.

I Теоретическое введение. Генерация второй гармоники как нелинейно-оптический процесс.

К настоящему времени созданы лазеры, позволяющие получать напряжённости электрического поля порядка $10^8 \frac{\rm B}{\rm cm}$. При распространении столь мощного светового пучка в среде оптические параметры среды становятся зависимыми от напряжённости поля волны. Материальное уравнение, связывающее поляризацию среды \vec{P} с напряжённостью световой волны \vec{E} , становится нелинейным. Вынужденные колебания электрона под действием поля такой волны описываются уравнением:

$$x(t) = \frac{\frac{e}{m}E_0}{\omega_0^2 - \omega^2}\cos\omega t + \frac{F''(0)}{4m\omega_0^2} \left[\frac{\frac{e}{m}E_0}{\omega_0^2 - \omega^2}\right]^2 + \frac{F''(0)}{4m} \left[\frac{\frac{e}{m}E_0}{\omega_0^2 - \omega^2}\right]^2 \frac{\cos 2\omega t}{\omega_0^2 - (2\omega)^2}$$
(1)

Колеблющийся электрон является источником вторичных волн. Колебания диполей с удвоенной частотой 2ω описываются соотношением:

$$X^{2\omega} = A^2 \cos 2\omega \left[t - \frac{n(\omega)}{c} z' \right] \tag{2}$$

Такой диполь излучает вторичную волну частотой 2ω . Фаза колебаний в некоторой точке z в нелинейной среде

$$\phi(z) = 2\omega(t - \frac{n(2\omega)}{c}z + [n(2\omega) - n(\omega)]\frac{z'}{c}),\tag{3}$$

где $n(2\omega)$ - показатель преломления для частоты 2ω . В случае, когда

$$\Delta n = n(2\omega) - n(\omega) = 0,\tag{4}$$

фаза не зависит от расположения излучающего диполя. Тогда все вторичные волны в точке z синфазны и амплитуда напряжённости $E_0^{(2\omega)}$ второй гармоники пропорциональна расстоянию z от входной плоскости. Равенство 4 называется условием пространственной синфазности и соответствует наибольшей интенсивности второй гармоники.

В общем случае амплитуда $A^{(2\omega)}$ второй гармоники определяется соотношением:

$$A^{(2\omega)} = gA^2 z \frac{\sin k_0(\omega) \Delta nz}{k_0(\omega) \Delta nz},$$
 (5)

т. е. амплитуда, а вместе с ней и интенсивность второй гармоники пропорциональна квадрату амплитуды и интенсивности основной волны.

На рисунке 1 приведена зависимость амплитуды второй гармоники от координаты z, d - точка выхода из нелинейной среды. Максимальные значения амплитуды достигаются при условии $k_0(\omega)\Delta nz_m = \frac{\pi}{2} + \pi m$, т. е. при $z_m = l_{\text{res}}(1 + 2m)$, m = 0, 1, 2, ... Злесь $l_{\text{res}} = \frac{\lambda}{2}$

Рис. 1: Зависимость амплитуды второй гармоники $|A^{2\omega}|$ от расстояния z.

при условии $k_0(\omega)\Delta nz_m=\frac{\pi}{2}+\pi m$, т. е. при $z_m=l_{\text{ког}}(1+2m), m=0,1,2,...$ Здесь $l_{\text{ког}}=\frac{\lambda}{4\Delta n}$ - длина когерентности. Если выполнено условие синфазности, то она становится бесконечно большой.

Для изотропной среды условие фазового синхронизма можно выполнить только, если частота попадает в область аномальной дисперсии. Но тогда она будет сильно поглощаться средой, и эффективной генерации второй гармоники не будет.

Можно добиться выполнения условия синхронизма, если применить в качестве нелинейной среды анизотропный одноосный кристалл. При определённом угле Θ_0 между направлением распространения волны и оптической осью кристалла, выполнится условие синхронизма и основная волна является обыкновенной, а волна второй гармоники - необыкновенной. Этот угол называется углом синхронизма. Его легко рассчитать, используя зависимость показателей преломления от угла распространения луча:

$$n_o(\Theta) = const \tag{6}$$

$$n_e(\Theta) = n_o \left[1 + \left(\frac{n_o^2}{n_e^2} - 1 \right) \sin^2 \Theta \right]^{-\frac{1}{2}} \tag{7}$$

Для исследуемого кристалла йодата лития интенсивность второй гармоники зависит от интенсивности основной волны следующим образом:

$$I^{(2\omega)} = k \cos^2(\Theta - \Theta_0)(I^{(\omega)})^2, \tag{8}$$

где k - коэффициент пропорциональности.

II Экспериментальная установка для изучения второй гармоники.

Схема установки представлена на рисунке 2. Здесь излучение лазера 1, пройдя ослабитель О. и линзу-корректор Л., попадает в нелинейный кристалл Н.К., где частота его удва-ивается. Излучение удвоенной частоты далее попадает в фотоприёмник Ф.П. и регистрируется осциллографом 4. 2 и 3 - блоки питания.

1. Лазер. Используется твердотельный лазер ЛКС-ДЛТ-112ОТ, который работает в режиме модуляции добротности на двух длинах волн одновременно: $\lambda_1=1064$ нм, $\lambda_2=532$ нм. Ослабитель служет для изменения интенсивности излучения, падающего на нелинейный кристалл. Он имеет четыре окна, обеспечивающие различное ослабление интенсивно-

Рис. 2: Схема установки для изучения второй гармоники.

сти. Линза-корректор уменьшает расходимость пучка, выходящего из лазера.

- **2.Нелинейный кристалл.** Кристалл $LiIO_3$ крепится к столику гониометра при помощи магнитов. Излучение лазера попадает в центр входного окна кристалла и отражается в обратном направлении. Кристалл выпилен таким образом, что угол $\Theta_0 = 32^\circ$ между нормалью к поверхности и оптической осью есть угол синхронизма.
- **3.Гониометр.** Используется модель Γ 5М. Его ошибка измерения угла составляет $\pm 5''$. С помощью гониометра определяется ориентация кристалла относительно направления распространения излучения лазера.

4. Фотоприёмник. Интенсивность излучения, выходящего из кристалла, регистрируется фотоприёмником, подключённым к осциллографу. Для измерения отдельных интенсивностей основной волны и второй гармоники используются светофильтры, которые размещаются на фотоприёмнике.

III Программное обеспечение для обработки и визуализации данных.

В ходе данной работы были использованы следующие инструменты анализа данных:

- LibreOffice Calc внесение данных в таблицы и их предобработка.
- Pandas работа с данными в формате .csv.
- Matplotlib для визуализации данных на графиках.
- Scipy статистические методы (например, вычисление корреляции).
- Statsmodels статистические методы (например, МНК).

IV Исследование зависимости интенсивности линии второй гармоники $\lambda=532$ нм от интенсивности возбуждющей линии $\lambda=1064$ нм.

В данном опыте исследуемый кристалл при помощи гониометра располагается так, чтобы интенсивность второй гармоники была максимальна (достигается синхронизм). При помощи осциллографа измеряются интенсивности возбуждающей линии и второй гармоники. Согласно соотношению 5, связь между этими величинами выражается следующим образом:

$$I^{(532)} = \alpha I^{(1064)^2},\tag{9}$$

где α - коэффициент пропорциональности. Цель эксперимента состоит в проверке этого соотношения.

Таблица 1: Показания осциллографа для интенсивностей основной волны и второй гармоники

$I^{(1064)}, 2B$	$I^{532}, 50$ мВ	$I^{(1064)^2}, (2B)^2$	$\sigma_I, 2\mathrm{B}/50\mathrm{mB}$	$\sigma_{I^{(1064)^2}}, (2\mathrm{B})^2$
4.5	4.0	20.3	0.1	0.8
3.6	2.6	13.0	0.1	0.5
2.9	1.4	8.4	0.1	0.3
2.6	1.0	6.8	0.1	0.2

В таблице 1 приведены результаты измерения интенсивностей $I^{(532)}$ и $I^{(1064)}$ при помощи осциллографа. Согласно предположению 9, между величинами $I^{(532)}$ и $I^{(1064)^2}$ должна существовать

линейная связь. Вычислим для них коэффициент корреляции Пирсона:

$$r_{I(532)I(1064)^2} = 0.996 (10)$$

Полученное значение близко к единице, что позволяет говорить о том, что данные величины линейно коррелированы.

Применим метод наименьших квадратов для определения коэффициента α . Приняв свободный член модели равным нулю, получим:

$$\alpha = 0.192 \pm 0.009 \tag{11}$$

На рисунке 3 представлен график зависимости интенсивности линии второй гармоники от квадрата интенсивности возбуждющей линии. Как можно видеть, данная зависимость является линейной. Таким образом, в данном эксперименте установлена справедливость соотношения 9.

Рис. 3: Зависимость интенсивности второй гармоники от квадрата интенсивности возбуждющей волны

V Исследование зависимости интенсивности второй гармоники $I^{(532)}$ от угла $\Delta\Theta=\Theta-\Theta_0$ между направлением распространения основной волны $\lambda=1064$ нм и направлением синхронизма.

В данном эксперименте при помощи гониометра изменяется угол $\Delta\Theta = \Theta - \Theta_0$, а на осциллографе регистрируется интенсивность второй гармоники. Согласно соотношению 8, при фиксированной интенсивности лазерного излучения связь между интенсивностью второй гармоники и отклонением от направления синхронизма представима следующим образом:

$$I^{(532)} = \beta \cos^2(\Delta\Theta), \tag{12}$$

где β - коэффициент пропорциональности. Задачей данного эксперимента является проверка справедливости соотношения 12.

В таблице 2 приведены показания осциллографа и гониометра.

Таблица 2: Исследование зависимости интенсивности второй гармоники $I^{(532)}$ от угла $\Delta\Theta$

Ө, рад	$\Delta\Theta$, рад	$\Delta\Theta^2, 10^{-7} \mathrm{pag}^2$	$\sigma_{\Delta\Theta^2}, 10^{-7} \mathrm{pag}^2$	$\sigma_{\Delta\Theta},$ рад	$I^{(532)}, 50$ mB	$\sigma_{I^{(532)}}, 50 \mathrm{mB}$
2.87001	$0 \cdot 10^0$	$0 \cdot 10^{0}$	$0 \cdot 10^{0}$	$2\cdot 10^{-5}$	3.6	0.1
2.86920	$8.1 \cdot 10^{-4}$	$6.6339 \cdot 10^{0}$	$3 \cdot 10^{-4}$	$2 \cdot 10^{-5}$	3.4	0.1
2.86888	$1.13 \cdot 10^{-3}$	$1.287 \cdot 10^{1}$	$5 \cdot 10^{-4}$	$2 \cdot 10^{-5}$	3.0	0.1
2.86909	$9.2 \cdot 10^{-4}$	$8.396 \cdot 10^{0}$	$3 \cdot 10^{-4}$	$2 \cdot 10^{-5}$	3.2	0.1
2.86868	$1.33 \cdot 10^{-3}$	$1.7646 \cdot 10^{1}$	$7 \cdot 10^{-4}$	$2\cdot 10^{-5}$	2.8	0.1
2.86858	$1.43 \cdot 10^{-3}$	$2.0316 \cdot 10^{1}$	$8 \cdot 10^{-4}$	$2 \cdot 10^{-5}$	2.6	0.1
2.86836	$1.65 \cdot 10^{-3}$	$2.7331 \cdot 10^{1}$	$1 \cdot 10^{-3}$	$2 \cdot 10^{-5}$	2.4	0.1
2.86826	$1.75 \cdot 10^{-3}$	$3.0462 \cdot 10^{1}$	$1 \cdot 10^{-3}$	$2 \cdot 10^{-5}$	2.2	0.1
2.86805	$1.96 \cdot 10^{-3}$	$3.8363 \cdot 10^{1}$	$2 \cdot 10^{-3}$	$2 \cdot 10^{-5}$	1.8	0.1
2.86793	$2.08 \cdot 10^{-3}$	$4.346 \cdot 10^{1}$	$2 \cdot 10^{-3}$	$2 \cdot 10^{-5}$	1.6	0.1
2.86775	$2.26 \cdot 10^{-3}$	$5.1261 \cdot 10^{1}$	$2 \cdot 10^{-3}$	$2 \cdot 10^{-5}$	1.4	0.1
2.86758	$2.43 \cdot 10^{-3}$	$5.9232 \cdot 10^{1}$	$2 \cdot 10^{-3}$	$2 \cdot 10^{-5}$	1.2	0.1
2.86745	$2.56 \cdot 10^{-3}$	$6.5775 \cdot 10^{1}$	$3\cdot 10^{-3}$	$2\cdot 10^{-5}$	1.0	0.1

С учётом малости угла $\Delta\Theta$ соотношение 12 принимает вид:

$$I^{(532)} = A + B\Delta\Theta^2,\tag{13}$$

т. е. между величинами $I^{(532)}$ и $\Delta\Theta^2$ должна существовать линейная связь.

Рассчитаем коэффициент корреляции Пирсона для этих величин:

$$r_{I(532)\Lambda\Theta^2} = -0.993\tag{14}$$

Полученное значение близко по модулю к единице. Исследуемые величины линейно коррелированы. Определим коэффициенты в соотношении 13 методом наименьших квадратов:

$$A = 3.53 \pm 0.05, \ B = -0.041 \pm 0.001$$
 (15)

Рис. 4: Зависимость интенсивности второй гармоники от квадрата отклонения от направления синхронизма

На рисунке 4 изображена зависимость $I^{(532)} = f(\Delta \Theta^2)$. Можно видеть, что данная зависимость близка к линейной. Итак, найденная экспериментально связь между исследуемыми величинами находится в соответствии с теоретически обнаруженной зависимостью.

VI Оценка коэффициента преобразования во вторую гармонику для исследуемой установки.

Пусть $\Delta I(\omega)$ - разница интенсивностей возбуждающей линии при отсутствии второй гармоники и когда её интенсивность максимальна. Тогда коэффициент преобразования во вторую гармонику установки определяется следующим образом:

$$K = \frac{\Delta I(\omega)}{I(\omega)},\tag{16}$$

где $I(\omega)$ - интенсивность возбуждающей линии при отсутствии второй гармоники.

Оценим эту величину: $\Delta I^{(1064)}=(0.20\pm0.01)\mathrm{B},\ I^{(1064)}=(9.0\pm0.2)\mathrm{B}.$ Тогда для искомой величины имеем:

$$K = 0.020 \pm 0.001 \tag{17}$$

Можно видеть, что лишь незначительная часть энергии возбуждающей линии преобразуется во вторую гармонику.

VII Результаты работы.

В ходе работы было установлено следующее:

- Интенсивность второй гармоники зависит квадатично от интенсивности основной волны и при малых отклонениях от направления синхронизма пропорциональна квадрату отклонения.
- Определён коэффициент преобразования во вторую гармонику данной установки.