COT 5615 Math for Intelligent Systems, Fall 2021

Midterm 2

1. (a) Formulate the following problem as a set of linear equations. Find a point $x \in \mathbb{R}^n$ at equal distance to n+1 given points $y_1, y_2, \dots, y_{n+1} \in \mathbb{R}^n$:

$$\|x - y_1\| = \|x - y_2\| = \cdots = \|x - y_{n+1}\|.$$

Write the equations in matrix form Ax = b.

(b) Show that the solution in part (a) is unique if the $(n+1) \times (n+1)$ matrix

$$\begin{bmatrix} \boldsymbol{y}_1 & \boldsymbol{y}_2 & \cdots & \boldsymbol{y}_{n+1} \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$

is invertible

2. Formulate the following problems as least squares problems. For each problem, give a matrix A and a vector b such that the problem can be expressed as

$$\underset{\boldsymbol{x}}{\text{minimize}} \quad \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|^2$$

- (a) Minimize $x_1^2 + 2x_2^2 + 3x_3^2 + (x_1 x_2 + x_3 + 1)^2 + (-x_1 4x_2 + 2)^2$
- (b) Minimize $(-6x_2+4)^2 + (-4x_1+3x_2-1)^2 + (x_1+8x_2-3)^2$
- (c) Minimize $2(-6x_1+4)^2+3(-4x_1+3x_2-1)^2+4(x_1+8x_2-3)^2$
- (d) Minimize $\mathbf{x}^{\mathsf{T}}\mathbf{x} + \|\mathbf{B}\mathbf{x} \mathbf{d}\|^2$ where the $p \times n$ matrix \mathbf{B} and p-vector \mathbf{d} are given.
- (e) Minimize $\|\boldsymbol{B}\boldsymbol{x} \boldsymbol{d}\|^2 + 2\|\boldsymbol{F}\boldsymbol{x} \boldsymbol{g}\|^2$. The $p \times n$ matrix \boldsymbol{B} , $l \times n$ matrix \boldsymbol{F} , the p-vector \boldsymbol{d} and the l-vector \boldsymbol{g} are given.
- (f) Minimize $\mathbf{x}^{\mathsf{T}}\mathbf{D}\mathbf{x} + \|\mathbf{B}\mathbf{x} \mathbf{d}\|^2$. \mathbf{D} is a $n \times n$ diagonal matrix with positive diagonal elements, \mathbf{B} is $p \times n$, and \mathbf{d} is a p-vector. \mathbf{D} , \mathbf{B} , and \mathbf{d} are given.
- 3. A co-worker develops a classifier of the form $\hat{y} = \text{sign}(\boldsymbol{x}^{\top}\boldsymbol{w} + v)$, with v < 0, where the *n*-vector \boldsymbol{x} is the feature vector, and the *n*-vector \boldsymbol{w} and scalar v are the classifier parameters. The classifier is evaluated on a given test data set. The false positive rate is the fraction of the test data points with y = -1 for which $\hat{y} = +1$. (We will assume there is at least one data point with y = -1.)

Are each of the following statements true of false? True means it always holds, with no other assumptions on the data set or model; false means that it need not hold.

- (a) Replacing v with zero with reduce, or not increase, the false positive rate.
- (b) Replacing \boldsymbol{w} with zero with reduce, or not increase, the false positive rate.

- (c) Halving v (i.e., replacing v with v/2) with reduce, or not increase, the false positive rate.
- (d) Halving \boldsymbol{w} (i.e., replacing \boldsymbol{w} with $\boldsymbol{w}/2$) with reduce, or not increase, the false positive rate.
- 4. Formulate the following problem as a least squares problem. Find a polynomial

$$p(t) = x_1 + x_2t + x_3t^2 + x_4t^3$$

that satisfies the following conditions.

• The values $p(t_i)$ at 4 given points t_1, t_2, t_3, t_4 in the interval [0, 1] is approximately equal to given values y_i :

$$p(t_i) \approx y_i, \quad i = 1, 2, 3, 4.$$

The points t_i are given and distinct $(t_i \neq t_j \text{ for } i \neq j)$. The values y_i are also given.

• The derivatives of p at t = 0 and t = 1 are small:

$$p'(0) \approx 0$$
, $p'(1) \approx 0$.

• The average value of p over the interval [0,1] is approximately equal to the value at t=1/2:

$$\int_0^1 p(t)dt \approx p(1/2).$$

To determine coefficients x_i that satisfy these conditions, we minimize

$$E(\mathbf{x}) = \frac{1}{4} \sum_{i=1}^{4} (p(t_i) - y_i)^2 + p'(0)^2 + p'(1)^2 + \left(\int_0^1 p(t)dt - p(1/2) \right)^2.$$

Given matrix \mathbf{A} and vector \mathbf{b} such that $E(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$. Clearly state the dimensions of \mathbf{A} and \mathbf{b} , and what their elements are.

5. Inverse of a block matrix. Consider the $(n+1) \times (n+1)$ matrix

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{a} \\ \boldsymbol{a}^{\top} & 0 \end{bmatrix},$$

where \boldsymbol{a} is a n-vector.

- (a) When is A invertible? Give your answer in terms of a. Justify your answer.
- (b) Assuming the condition you found in part (a) holds, give an expression for the inverse matrix A^{-1} .