Machine Learning Research task (task 1)

Hai Le, Ivan Gerasimov, Rustam Guseynzade, Vladimir Chernyy, Prateek Rajput

Description In this part of the project you are supposed to develop the algorithm that can use trained denoising models for the other image restoration problem: image deblurring. Non-blind image deblurring is the task of restoration clean image x given blurred observation y, degradation operator H that represents convolution with known kernel k and standard deviation of the noise level σ . So, we consider the following linear degradation process:

$$y = Hx + \sigma \cdot n$$
, $n \sim \mathcal{N}(0, I)$,

where $y \in \mathbb{R}^n$ and $x \in \mathbb{R}^m$ are vector representations of blurred and clean images respectively. $H \in \mathbb{R}^{nm}$ matrix represents valid convolution of clean image x with known kernel k. Read the paper https://www.ceremade.dauphinelier/FISTA about ISTA and FISTA optimization algorithms. Suppose we can solve denoising problem with the given level of noise σ :

$$T_{\sigma^2} \stackrel{\text{def}}{=} arg_u \min \left\{ g(u) + \frac{1}{2\sigma^2} ||u - u||_2^2 \right\}.$$

Derive formulas based on ISTA and FISTA algorithms that solve the deblurring problem

$$T_{H,\sigma^2} \stackrel{\text{def}}{=} arg_u \min \left\{ g(u) + \frac{1}{2\sigma^2} ||Hu - y||_2^2 \right\}$$

Solution:

Firstly, let's recognise that linear degradation process resembles us the basic linear inverse problem for the deblurring task:

$$Ax = b + w$$

, where $A \in \mathbb{R}^{mn}$ and $b \in \mathbb{R}^m$ are known and rpresents blur operator and the blurred picture respectively, w is an unknown noise (or perturbation) vector, and x is the "true" and unknown signal/image to be estimated. and the T_{H,σ^2} formula resembles us the regularised least squares approached to solve this problem:

$$arg_x \min\{F(x) \equiv ||Ax - b||^2 + \lambda ||x||_1\},$$

but in our case $A = H \cdot \frac{1}{\sqrt{2}\sigma}$, $b = \frac{\sigma \cdot n}{\sqrt{2}\sigma}$ and the u is such a parameter, that $g(u) = \lambda ||x||_1$

And the problem described can be derived by the Iterative shrinkage thresholding algorithm (ISTA), which is set by the formula:

 $x_{k+1} = \mathcal{T}_{\lambda t}(x_k - 2tA^T(Ax_k - b))$, where t is an appropriate stepsize, which turns out to be $\frac{2}{\sigma_{\max} + \sigma_{\min}}$ and it can be approximated through the Gershgorin theorem to save some computational power, because A matrix is too big to find all the eigenvalues. $\mathcal{T}_{\alpha} : \mathbb{R} \to \mathbb{R}^n$ is the shrinkage operator defined by: $\mathcal{T}_{\alpha}(x)_i = (|x_i| - \alpha)_+ \operatorname{sgn}(x_i)$. and initial step just at some $x_0 \in \mathbb{R}^n$

This method is proven to be converging.

Also the problem could be solve via Fast iterative shrinkage thresholding algorithm (FISTA), which in this way will be set by formula of k-th step:

$$x_k = p_L(y_k), t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}, y_{k+1} = x_k + \left(\frac{t_k-1}{t_{k+1}}\right)(x_k - x_{k-1})$$

and starting at $y_1 = x_0 \in \mathbb{R}^n$, $t_1 = 1$

where $p_L(\cdot)$ is the iterative shrinkage operator

And this method is also proven to be converging even faster.