2229879 numer albumu

Michał Gebel imię i nazwisko 229908 numer albumu

Antoni Karwowski imię i nazwisko

kierunek Informatyka Stosowana semestr III rok akademicki 2020/21

czwartek
dzień tygodnia
14:00-15:30
godziny zajęć
4
numer zespołu

# Laboratorium elektroniki

**Ćwiczenie E-03 Tranzystory** 

**9.11.2020r.** data wykonania pomiarów

11.11.2020r.

data oddania raportu

ocena \_\_\_\_

## 1. Cel ćwiczenia

Puentą ćwiczenia jest poznanie właściwości statycznych tranzystora bipolarnego oraz unipolarnego (polowego).

## 2. Schematy układów pomiarowych

Podczas przeprowadzanego doświadczenia mamy dwa układy pomiarowe. Jeden dotyczący tranzystora bipolarnego, a drugi unipolarnego. Zostały one przedstawione na poniższych schematach.



**Rys. 1.** Schemat połączeń układu do wyznaczania charakterystyk wyjściowej i wejściowej tranzystora bipolarnego.



**Rys. 2.** Schemat połączeń układu do wyznaczania charakterystyk wyjściowej i wejściowej tranzystora unipolarnego.

## 3. Wykaz aparatury

W doświadczeniu użyto poniżej aparatury:

- 1). Moduł doświadczalny T1-13
- 2). Zespół Źródeł Sterujących ZŹS-09
- 3). Zasilacz napięcia (w obwodzie kolektora): *bez numeru*
- 4). Multimetr UT-804, nr inw. WD051.01-008-203 do pomiaru  $U_{\text{CE}}$  oraz  $U_{\text{DS}}$
- 5). Multimetr UT-804, nr inw. WD054.01-003-203 do pomiaru  $U_{\text{BE}}$  oraz  $U_{\text{GS}}$
- 6). Multimetr Protek 506, nr inw. WD043.01-013-203 do pomiaru  $I_{\text{C}}$
- 7). Multimetr M-3800, nr inw. I3/2.03/2017-M/2 do pomiaru  $I_B$  oraz  $I_D$
- 8). Zasilacz Siglent SPD3303D, nr inw. WD051.02-006-203

# 4. Stabelaryzowane wyniki pomiarów i wzory na niepewności

Dla powyższej aparatury została sporządzona tabela, na podstawie której wyliczane były niepewności pomiarowe dla otrzymanych podczas eksperymentu pomiarów.

| Multimetr  | Wartość mierzona              | Zakres    | Wzór                                    |
|------------|-------------------------------|-----------|-----------------------------------------|
| M-3800     | $I_B$                         | 200 μA DC | $\Delta U = \pm (0.5\%  rdg  + 1 dgs)$  |
|            | $I_D$                         | 20 mA DC  |                                         |
| Protek 506 | $I_C$                         | 400 mA DC | $\Delta I = \pm (1,0\%  rdg  + 2 dgs)$  |
| UT-804     | $U_{{\scriptscriptstyle BE}}$ | 4 V DC    | $\Delta I = \pm (0.05\%  rdg  + 5 dgs)$ |
|            | $U_{\scriptscriptstyle CE}$   | 40 V DC   |                                         |
|            | $U_{\scriptscriptstyle GS}$   |           |                                         |
|            | $U_{\scriptscriptstyle DS}$   |           |                                         |

**Tabela 1.** Wykaz wzorów na niepewność graniczną.

Wyliczone niepewności zostały umieszczone razem z wynikami pomiarów, które zostały wykonane przez dr. inż. Macieja Dłużniewskiego i dr. inż. Piotra Górskiego

| $U_{\it CE}[V]$ | $\Delta U_{CE}[V]$ | $I_{B}[\mu A]$ | $\Delta I_{B}[\mu A]$ | $U_{BE}[V]$ | $\Delta U_{BE}[V]$ | $I_{C}[mA]$ | $\Delta I_{C}[mA]$ |
|-----------------|--------------------|----------------|-----------------------|-------------|--------------------|-------------|--------------------|
| 0,000           | 0,005              | 0,2            | 0,1                   | 0,4589      | 0,0007             | 0,0         | 0,2                |
| 1,006           | 0,006              | 0,2            | 0,1                   | 0,5181      | 0,0008             | 0,0         | 0,2                |
| 2,007           | 0,006              | 0,3            | 0,1                   | 0,5182      | 0,0008             | 0,0         | 0,2                |
| 3,009           | 0,007              | 0,3            | 0,1                   | 0,5183      | 0,0008             | 0,0         | 0,2                |
| 4,003           | 0,007              | 0,3            | 0,1                   | 0,5183      | 0,0008             | 0,0         | 0,2                |
| 5,001           | 0,008              | 0,3            | 0,1                   | 0,5184      | 0,0008             | 0,0         | 0,2                |
| 6,001           | 0,008              | 0,3            | 0,1                   | 0,5185      | 0,0008             | 0,0         | 0,2                |
| 7,005           | 0,009              | 0,3            | 0,1                   | 0,5185      | 0,0008             | 0,0         | 0,2                |
| 8,000           | 0,009              | 0,3            | 0,1                   | 0,5185      | 0,0008             | 0,0         | 0,2                |
| 9,009           | 0,010              | 0,3            | 0,1                   | 0,5186      | 0,0008             | 0,0         | 0,2                |
| 10,002          | 0,010              | 0,3            | 0,1                   | 0,5187      | 0,0008             | 0,0         | 0,2                |
| 0,004           | 0,005              | 60,0           | 0,4                   | 0,5766      | 0,0008             | 0,0         | 0,2                |
| 0,020           | 0,005              | 60,0           | 0,4                   | 0,5918      | 0,0008             | 0,2         | 0,2                |
| 0,040           | 0,005              | 60,0           | 0,4                   | 0,6087      | 0,0008             | 0,6         | 0,2                |
| 0,060           | 0,005              | 60,0           | 0,4                   | 0,6255      | 0,0008             | 1,4         | 0,2                |
| 0,080           | 0,005              | 60,0           | 0,4                   | 0,6358      | 0,0008             | 2,2         | 0,2                |
| 0,100           | 0,005              | 60,0           | 0,4                   | 0,6459      | 0,0008             | 3,4         | 0,2                |
| 0,120           | 0,005              | 60,0           | 0,4                   | 0,6516      | 0,0008             | 4,4         | 0,2                |
| 0,140           | 0,005              | 60,0           | 0,4                   | 0,6563      | 0,0008             | 5,3         | 0,3                |
| 0,160           | 0,005              | 60,0           | 0,4                   | 0,6590      | 0,0008             | 5,9         | 0,3                |

| 0,180  | 0,005 | 60,0  | 0,4 | 0,6601 | 0,0008 | 6,2  | 0,3 |
|--------|-------|-------|-----|--------|--------|------|-----|
| 0,200  | 0,005 | 60,0  | 0,4 | 0,6607 | 0,0008 | 6,4  | 0,3 |
| 1,001  | 0,006 | 60,0  | 0,4 | 0,6605 | 0,0008 | 6,6  | 0,3 |
| 2,008  | 0,006 | 60,0  | 0,4 | 0,6591 | 0,0008 | 6,7  | 0,3 |
| 3,002  | 0,007 | 60,0  | 0,4 | 0,6575 | 0,0008 | 6,8  | 0,3 |
| 4,008  | 0,007 | 60,0  | 0,4 | 0,6560 | 0,0008 | 6,8  | 0,3 |
| 5,000  | 0,008 | 60,0  | 0,4 | 0,6538 | 0,0008 | 6,8  | 0,3 |
| 6,016  | 0,008 | 60,0  | 0,4 | 0,6520 | 0,0008 | 6,9  | 0,3 |
| 7,000  | 0,009 | 60,0  | 0,4 | 0,6502 | 0,0008 | 6,9  | 0,3 |
| 8,001  | 0,009 | 60,0  | 0,4 | 0,6482 | 0,0008 | 7,0  | 0,3 |
| 9,011  | 0,010 | 60,0  | 0,4 | 0,6463 | 0,0008 | 7,0  | 0,3 |
| 10,000 | 0,010 | 60,0  | 0,4 | 0,6446 | 0,0008 | 7,0  | 0,3 |
| 0,002  | 0,005 | 135,0 | 0,8 | 0,6053 | 0,0008 | 0,0  | 0,2 |
| 0,200  | 0,005 | 135,0 | 0,8 | 0,6237 | 0,0008 | 0,5  | 0,2 |
| 0,040  | 0,005 | 135,0 | 0,8 | 0,6395 | 0,0008 | 2,0  | 0,2 |
| 0,060  | 0,005 | 135,0 | 0,8 | 0,6515 | 0,0008 | 3,6  | 0,2 |
| 0,080  | 0,005 | 135,0 | 0,8 | 0,6625 | 0,0008 | 6,1  | 0,3 |
| 0,100  | 0,005 | 135,0 | 0,8 | 0,6705 | 0,0008 | 8,3  | 0,3 |
| 0,120  | 0,005 | 135,0 | 0,8 | 0,6751 | 0,0008 | 10,3 | 0,3 |
| 0,140  | 0,005 | 135,0 | 0,8 | 0,6782 | 0,0008 | 11,6 | 0,3 |
| 0,160  | 0,005 | 135,0 | 0,8 | 0,6811 | 0,0008 | 12,6 | 0,3 |
| 0,180  | 0,005 | 135,0 | 0,8 | 0,6827 | 0,0008 | 12,6 | 0,3 |
| 0,200  | 0,005 | 135,0 | 0,8 | 0,6833 | 0,0008 | 13,5 | 0,3 |
| 1,066  | 0,006 | 135,0 | 0,7 | 0,6815 | 0,0008 | 14,1 | 0,3 |
| 2,012  | 0,006 | 135,0 | 0,8 | 0,6787 | 0,0008 | 15,2 | 0,4 |
| 3,024  | 0,007 | 135,0 | 0,8 | 0,6747 | 0,0008 | 15,4 | 0,4 |
| 4,011  | 0,007 | 135,0 | 0,8 | 0,6711 | 0,0008 | 15,6 | 0,4 |
| 5,000  | 0,008 | 135,0 | 0,8 | 0,6676 | 0,0008 | 15,8 | 0,4 |
| 6,000  | 0,008 | 135,0 | 0,8 | 0,6635 | 0,0008 | 16,0 | 0,4 |
| 7,007  | 0,009 | 135,0 | 0,8 | 0,6596 | 0,0008 | 16,3 | 0,4 |
| 8,006  | 0,009 | 135,0 | 0,8 | 0,6552 | 0,0008 | 16,5 | 0,4 |
| 9,000  | 0,010 | 135,0 | 0,8 | 0,6510 | 0,0008 | 16,8 | 0,4 |
|        |       | 135,0 |     | 0,6464 |        | 17,0 |     |
| 10,000 | 0,010 |       | 0,8 |        | 0,0008 |      | 0,4 |

**Tabela. 2.** Charakterystyka wyjściowa i zwrotna dla tranzystora bipolarnego bez obciążenia wraz z wyliczonymi niepewnościami granicznymi.

| $U_{CE}[V]$ | $\Delta U_{\it CE}[V]$ | $I_{\scriptscriptstyle B}[\mu A]$ | $\Delta I_{B}[\mu A]$ | $U_{BE}[V]$ | $\Delta U_{BE}[V]$ | $I_{C}[mA]$ | $\Delta I_C[mA]$ |
|-------------|------------------------|-----------------------------------|-----------------------|-------------|--------------------|-------------|------------------|
| 3,017       | 0,007                  | 0,2                               | 0,1                   | 0,5186      | 0,0007             | 0,0         | 0,2              |
| 3,018       | 0,007                  | 10,1                              | 0,15                  | 0,6136      | 0,0008             | 1,1         | 0,2              |
| 3,014       | 0,007                  | 20,2                              | 0,2                   | 0,6312      | 0,0008             | 2,2         | 0,2              |
| 3,013       | 0,007                  | 30,3                              | 0,25                  | 0,6414      | 0,0008             | 3,4         | 0,2              |
| 3,012       | 0,007                  | 40,3                              | 0,3                   | 0,6482      | 0,0008             | 4,5         | 0,2              |
| 3,011       | 0,007                  | 50,3                              | 0,35                  | 0,6535      | 0,0008             | 5,6         | 0,2              |
| 3,009       | 0,007                  | 60,5                              | 0,4                   | 0,6577      | 0,0008             | 6,8         | 0,3              |
| 3,008       | 0,007                  | 70,3                              | 0,45                  | 0,6611      | 0,0008             | 7,9         | 0,3              |
| 3,007       | 0,007                  | 80,1                              | 0,5                   | 0,6638      | 0,0008             | 9,1         | 0,3              |

| 3,006 | 0,007 | 90,0  | 0,55 | 0,6664 | 0,0008 | 10,2 | 0,3 |
|-------|-------|-------|------|--------|--------|------|-----|
| 3,006 | 0,007 | 100,0 | 0,6  | 0,6685 | 0,0008 | 11,4 | 0,3 |
| 3,005 | 0,007 | 110,5 | 0,65 | 0,6705 | 0,0008 | 12,6 | 0,3 |
| 3,003 | 0,007 | 120,0 | 0,7  | 0,6723 | 0,0008 | 13,7 | 0,3 |
| 3,003 | 0,007 | 130,0 | 0,75 | 0,6734 | 0,0008 | 15,0 | 0,4 |
| 3,002 | 0,007 | 140,8 | 0,8  | 0,6752 | 0,0008 | 16,2 | 0,4 |
| 3,001 | 0,007 | 150,1 | 0,85 | 0,6764 | 0,0008 | 17,3 | 0,4 |
| 3,000 | 0,007 | 160,0 | 0,9  | 0,6776 | 0,0008 | 18,5 | 0,4 |
| 8,004 | 0,009 | 0,4   | 0,1  | 0,5154 | 0,0007 | 0,0  | 0,2 |
| 8,004 | 0,009 | 9,9   | 0,15 | 0,6077 | 0,0008 | 1,1  | 0,2 |
| 8,004 | 0,009 | 20,5  | 0,20 | 0,6258 | 0,0008 | 2,3  | 0,2 |
| 8,005 | 0,009 | 30,3  | 0,25 | 0,6342 | 0,0008 | 3,4  | 0,2 |
| 8,005 | 0,009 | 40,2  | 0,3  | 0,6387 | 0,0008 | 4,6  | 0,3 |
| 8,005 | 0,009 | 50,5  | 0,35 | 0,6436 | 0,0008 | 5,9  | 0,3 |
| 8,005 | 0,009 | 60,2  | 0,4  | 0,6458 | 0,0008 | 7,1  | 0,3 |
| 7,999 | 0,009 | 69,6  | 0,45 | 0,6480 | 0,0008 | 8,2  | 0,3 |
| 7,999 | 0,009 | 80,4  | 0,5  | 0,6494 | 0,0008 | 9,5  | 0,3 |
| 7,999 | 0,009 | 89,4  | 0,55 | 0,6500 | 0,0008 | 10,7 | 0,3 |
| 7,999 | 0,009 | 100,3 | 0,6  | 0,6511 | 0,0008 | 12,1 | 0,3 |
| 7,998 | 0,009 | 110,7 | 0,65 | 0,6512 | 0,0008 | 13,4 | 0,3 |
| 7,997 | 0,009 | 120,4 | 0,7  | 0,6514 | 0,0008 | 14,7 | 0,3 |
| 7,997 | 0,009 | 129,7 | 0,75 | 0,6521 | 0,0008 | 16,0 | 0,4 |
| 7,996 | 0,009 | 140,5 | 0,8  | 0,6514 | 0,0008 | 17,4 | 0,4 |
| 7,995 | 0,009 | 150,6 | 0,85 | 0,6511 | 0,0008 | 18,8 | 0,4 |
|       |       | 160,5 |      | 0,6507 |        | 20,1 |     |
| 7,995 | 0,009 |       | 0,9  |        | 0,0008 |      | 0,4 |

**Tabela. 3.** Charakterystyka wejściowa i przejściowa (bramkowa) dla tranzystora bipolarnego wraz z wyliczonymi niepewnościami granicznymi.

| $U_{DS}[V]$ | $\Delta U_{DS}[V]$ | $U_{GS}[V]$ | $\Delta U_{GS}[V]$ | $I_D[mA]$ | $\Delta I_D[mA]$ |
|-------------|--------------------|-------------|--------------------|-----------|------------------|
| 4,006       | 0,007              | -13,914     | 0,012              | 0,0       | 0,01             |
| 4,006       | 0,007              | -3,531      | 0,007              | 0,1       | 0,01             |
| 4,006       | 0,007              | -3,099      | 0,007              | 0,7       | 0,01             |
| 4,006       | 0,007              | -2,706      | 0,007              | 1,5       | 0,02             |
| 4,006       | 0,007              | -2,300      | 0,007              | 2,5       | 0,02             |
| 4,006       | 0,007              | -1,901      | 0,006              | 3,7       | 0,02             |
| 4,006       | 0,007              | -1,502      | 0,006              | 5,0       | 0,03             |
| 4,006       | 0,007              | -1,100      | 0,006              | 6,4       | 0,04             |
| 4,006       | 0,007              | -0,711      | 0,005              | 8,0       | 0,05             |
| 4,006       | 0,007              | -0,343      | 0,005              | 9,6       | 0,06             |
| 4,006       | 0,007              | 0,015       | 0,005              | 11,1      | 0,07             |
| 9,003       | 0,01               | -13,914     | 0,012              | 0,0       | 0,01             |
| 9,003       | 0,01               | -3,604      | 0,007              | 0,1       | 0,01             |
| 9,003       | 0,01               | -3,194      | 0,007              | 0,6       | 0,01             |
| 9,003       | 0,01               | -2,804      | 0,006              | 1,3       | 0,02             |
| 9,003       | 0,01               | -2,397      | 0,006              | 2,4       | 0,02             |
| 9,003       | 0,01               | -2,004      | 0,006              | 3,6       | 0,03             |

| 9,003 | 0,01 | -1,602 | 0,006 | 4,9  | 0,04 |
|-------|------|--------|-------|------|------|
| 9,003 | 0,01 | -1,213 | 0,006 | 6,3  | 0,04 |
| 9,003 | 0,01 | -0,803 | 0,005 | 7,9  | 0,05 |
| 9,003 | 0,01 | -0,410 | 0,005 | 9,3  | 0,06 |
| 9,003 | 0,01 | 0,000  | 0,005 | 11,6 | 0,07 |

**Tabela. 4.** Charakterystyka przejściowa (bramkowa) dla tranzystora polowego wraz z wyliczonymi niepewnościami granicznymi.

| $U_{\scriptscriptstyle DS}[V]$ | $\Delta U_{DS}[V]$ | $U_{GS}[V]$ | $\Delta U_{GS}[V]$ | $I_D[mA]$ | $\Delta I_D[mA]$ |
|--------------------------------|--------------------|-------------|--------------------|-----------|------------------|
| 0,000                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 0,402                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 0,804                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 1,206                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 1,601                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 2,004                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 2,398                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 2,804                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 3,205                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 3,602                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 4,050                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 5,005                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 6,080                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 7,004                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 8,000                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 9,066                          | 0,01               | -3,600      | 0,007              | 0,0       | 0,01             |
| 10,015                         | 0,01               | -3,600      | 0,00               | 0,0       | 0,01             |
| 0,000                          | 0,005              | -2,001      | 0,006              | 0,0       | 0,01             |
| 0,404                          | 0,005              | -2,001      | 0,006              | 1,1       | 0,02             |
| 0,811                          | 0,005              | -2,001      | 0,006              | 2,0       | 0,02             |
| 1,209                          | 0,006              | -2,001      | 0,006              | 2,5       | 0,02             |
| 1,610                          | 0,006              | -2,001      | 0,006              | 2,8       | 0,02             |
| 2,007                          | 0,006              | -2,001      | 0,006              | 3,1       | 0,03             |
| 2,404                          | 0,006              | -2,001      | 0,006              | 3,2       | 0,03             |
| 2,795                          | 0,006              | -2,001      | 0,006              | 3,2       | 0,03             |
| 3,205                          | 0,007              | -2,001      | 0,006              | 3,3       | 0,03             |
| 3,611                          | 0,007              | -2,001      | 0,006              | 3,7       | 0,03             |
| 4,001                          | 0,007              | -2,001      | 0,006              | 3,7       | 0,03             |
| 5,007                          | 0,008              | -2,001      | 0,006              | 3,5       | 0,03             |
| 6,000                          | 0,008              | -2,001      | 0,006              | 3,5       | 0,03             |
| 7,031                          | 0,008              | -2,001      | 0,006              | 3,5       | 0,03             |
| 8,037                          | 0,009              | -2,001      | 0,006              | 3,5       | 0,03             |
| 9,027                          | 0,01               | -2,001      | 0,006              | 3,5       | 0,03             |
| 10,020                         | 0,01               | -2,001      | 0,006              | 3,6       | 0,03             |
| 0,000                          | 0,005              | -0,507      | 0,005              | 0,0       | 0,01             |
| 0,405                          | 0,005              | -0,507      | 0,005              | 2,1       | 0,02             |
| 0,808                          | 0,005              | -0,507      | 0,005              | 4,0       | 0,03             |

| 1,198  | 0,006 | -0,507 | 0,005 | 5,4 | 0,04 |
|--------|-------|--------|-------|-----|------|
| 1,609  | 0,006 | -0,507 | 0,005 | 6,5 | 0,04 |
| 2,008  | 0,006 | -0,507 | 0,005 | 7,3 | 0,05 |
| 2,404  | 0,006 | -0,507 | 0,005 | 7,9 | 0,05 |
| 2,804  | 0,006 | -0,507 | 0,005 | 8,3 | 0,05 |
| 3,208  | 0,007 | -0,507 | 0,005 | 8,5 | 0,05 |
| 3,601  | 0,007 | -0,507 | 0,005 | 8,7 | 0,05 |
| 4,006  | 0,007 | -0,507 | 0,005 | 8,9 | 0,05 |
| 5,003  | 0,008 | -0,507 | 0,005 | 9,0 | 0,06 |
| 6,014  | 0,008 | -0,507 | 0,005 | 9,1 | 0,06 |
| 7,016  | 0,009 | -0,507 | 0,005 | 9,1 | 0,06 |
| 8,023  | 0,009 | -0,507 | 0,005 | 9,1 | 0,06 |
| 9,033  | 0,01  | -0,507 | 0,005 | 9,2 | 0,06 |
| 10,019 | 0,01  | -0,507 | 0,005 | 9,2 | 0,06 |

**Tabela. 5.** Charakterystyka wyjściowa (drenowa) dla tranzystora polowego wraz z wyliczonymi niepewnościami granicznymi.

# 5. Wykresy charakterystyk dla obu tranzystorów



**Wykres 1.**  $I_C = f(U_{CE}, I_B)$  przedstawiający charakterystykę wyjściową tranzystora bipolarnego dla stałych  $I_B[\mu A]$  (wartości w legendzie).

Z powyższego wykresu widzimy, że gwałtowny wzrost  $I_C$  przypada dla małych wartości  $U_{CE}$ . Natomiast od pewnej wartości  $U_{CE}$  wzrost  $I_C$  jest stały, a więc charakterystyka prądowo-napięciowa staje się w przybliżeniu liniowa. Ponadto dla bardzo niewielkich natężeń wejściowych prąd wyjściowy jest równy 0.



**Wykres 2.**  $U_{BE}=m(U_{CE},I_B)$  przedstawiający charakterystykę zwrotną tranzystora bipolarnego dla stałych  $I_B[\mu A]$  (wartości w legendzie).

Z powyższego wykresu widzimy, że gwałtowny wzrost  $U_{\it BE}$  przypada dla małych wartości  $U_{\it CE}$ . Natomiast od pewnej wartości  $U_{\it CE}$  obserwujemy niewielki liniowy spadek  $U_{\it BE}$ 



**Wykres 3.**  $U_{BE} = g(I_B, U_{CE})$  przedstawiający charakterystykę wejściową tranzystora bipolarnego dla stałych  $U_{CE}[V]$  (wartości w legendzie).

Z powyższego wykresu widzimy, że stosunek  $U_{\it BE}$  do  $I_{\it B}$  przypomina zależność pierwiastkową, a więc dla małych wartości rośnie znacznie, a w dalszych przyrostach zaczyna przypominać funkcję liniową stałą.



**Wykres 4.**  $I_C$  =  $k(I_B, U_{CE})$  przedstawiający charakterystykę przejściową tranzystora bipolarnego dla stałych  $U_{CE}[V]$  (wartości w legendzie).

Z powyższego wykresu widzimy, że dla całego zakresu pomiarowego stosunek  $I_{\it C}$  do  $I_{\it B}$  jest w przybliżeniu liniowy.



**Wykres 5.** Przedstawiający rodzinę charakterystyk przejściowych tranzystora polowego dla stałych  $U_{\rm DS}[V]$  (wartości w legendzie).

Z powyższego wykresu widzimy, że stosunek  $I_D$  do  $U_{GS}$  przypomina funkcję wykładniczą, a więc dla większych wartości  $U_{GS}$  obserwujemy znacznie większy przyrost  $I_D$ .



**Wykres 6.** Przedstawiający rodzinę charakterystyk wyjściowych tranzystora polowego dla stałych  $U_{GS}[V]$  (wartości w legendzie).

Z powyższego wykresu widzimy, że stosunek  $I_D$  do  $U_{DS}$  przypomina zależność pierwiastkową, a więc dla małych wartości rośnie znacznie, a w dalszych przyrostach zaczyna przypominać funkcję liniową stałą. Ponadto dla dużych wartości stałego parametru  $U_{GS}$  zauważamy, że prąd nie płynie.

6. Współczynniki hybrydowe dla tranzystora





Wykres. 7. Zestawienie charakterystyk prądowo-napięciowych tranzystora

bipolarnego w układzie wspólnego emitera.

| IB [μA] | IC [mA] | UCE [V] | IC [mA] | IB [μA]     | UBE [V] | UCE [V] | UBE [V] |
|---------|---------|---------|---------|-------------|---------|---------|---------|
| 0,4     | 0,0     | 0,2     | 6,2     | 20,5        | 0,63    | 0,16    | 0,66    |
| 9,9     | 1,1     | 0,2     | 6,4     | 30,3        | 0,63    | 0,18    | 0,66    |
| 20,5    | 2,3     | 1,0     | 6,6     | 40,2        | 0,64    | 0,20    | 0,66    |
| 30,3    | 3,4     | 2,0     | 6,7     | <b>50,5</b> | 0,64    | 1,00    | 0,66    |
| 40,2    | 4,6     | 3,0     | 6,8     | 60,2        | 0,65    | 2,01    | 0,66    |
| 50,5    | 5,9     | 4,0     | 6,8     | 69,6        | 0,65    | 3,00    | 0,66    |
| 60,2    | 7,1     | 5,0     | 6,8     | 80,4        | 0,65    | 4,01    | 0,66    |
| 69,6    | 8,2     | 6,0     | 6,9     | 89,4        | 0,65    | 5,00    | 0,65    |
| 80,4    | 9,5     | 7,0     | 6,9     | 100,3       | 0,65    | 6,02    | 0,65    |
| 89,4    | 10,7    | 8,0     | 7,0     | 110,7       | 0,65    | 7,00    | 0,65    |
| 100,3   | 12,1    | 9,0     | 7,0     | 120,4       | 0,65    | 8,00    | 0,65    |
| 110,7   | 13,4    | 10,0    | 7,0     | 129,7       | 0,65    | 9,01    | 0,65    |
| 120,4   | 14,7    |         |         | 140,5       | 0,65    | 10,00   | 0,64    |
| 129,7   | 16,0    |         |         | 150,6       | 0,65    |         |         |
| 140,5   | 17,4    |         |         | 160,5       | 0,65    |         |         |
| 150,6   | 18,8    |         |         |             |         |         |         |
| 160,5   | 20,1    |         |         |             |         |         |         |

Na wykresach zakreślono fragmenty, które na potrzeby zadania zostają uznane za w przybliżeniu liniowe i posłużą do wyznaczenia współczynników hybrydowych tranzystora za pomocą metody najmniejszych kwadratów przy użyciu funkcji REGLINP (funkcjonalność programu LibreOffice Calc).

Wyliczone wartości współczynników hybrydowych:

$$h_{11e} = 141,7 \pm 27,2 \Omega$$

$$h_{12e} = -1,7 * 10^{-3} \pm 0,05 * 10^{-3}$$

$$h_{21e} = 125,8 \pm 0,9$$

$$h_{22e} = 5,29 * 10^{-5} \pm 0,69 * 10^{-5} S$$

Na podstawie powyższych współczynników obliczono parametry tranzystora bipolarnego:

1. Wzmocnienie prądowe = 
$$h_{21e}$$
 = 125,8 ± 0,9

2. Wzmocnienie napięciowe = 
$$\frac{1}{h_{12e}}$$
 = 1700 ±50

3. Rezystancja wejściowa = 
$$h_{11e}$$
 = 141,7 ± 27,2  $\Omega$ 

4. Rezystancja wyjściowa = 
$$\frac{1}{h_{22e}}$$
 = 529000 ± 69000 Ω

## 7. Wnioski

Wykresy otrzymane na podstawie wyników pomiarów zgadzają się z wzorcowymi wykresami opisującymi wybrane charakterystyki prądowo-napięciowe tranzystorów bipolarnego oraz polowego, co pozwala przypuszczać, że eksperyment został przeprowadzony prawidłowo.

Również wyniki obliczeń, a więc wyznaczone współczynniki hybrydowe, a co za tym idzie parametry tranzystora bipolarnego nie tylko zawierają się w żądanych zakresach przedstawionych w instrukcji, ale także charakteryzują się niewielkimi (rzędu 0,01 lub 0,1) niepewnościami wynikającymi ze znacznego podobieństwa wybranych fragmentów wykresów do funkcji liniowych.

### 8. Literatura

- [1] R. Śledziewski, Elektronika dla Fizyków, PWN, Warszawa, 1984.
- [2] K. Bracławski. Antoni Siennicki, Elementy półprzewodnikowe, WSiP, Warszawa, 1986.
- [3] A. Rusek, Podstawy Elektroniki tom I i II, WSiP, Warszawa, 1984.
- [4] A. Sukiennicki, Alfred Zagórski, Fizyka ciała stałego, WNT, Warszawa, 1984.
- [5] J. Rydzewski, Pomiary oscyloskopowe, WNT, Warszawa, 1994.

## 9. Otrzymany dokument z wynikami

#### Ćwiczenie E03IS "Tranzystory" - wyniki pomiarów, zestaw Nr 4

#### Użyta aparatura:

- 1). Moduł doświadczalny T1-13
- 2). Zespół Źródeł Sterujących ZŹS-09
- 3). Zasilacz napięcia (w obwodzie koletora): bez numeru
- 4). Multimetr UT-804, nr inw. WD051.01-008-203 do pomiaru  $U_{\text{CE}}$  oraz  $U_{\text{DS}}$
- 5). Multimetr UT-804, nr inw. WD054.01-003-203 do pomiaru  $U_{BE}$  oraz  $U_{GS}$
- 6). Multimetr Protek 506, nr inw. WD043.01-013-203 do pomiaru  $I_C$
- 7). Multimetr M-3800, nr inw. I3/2.03/2017-M/2 do pomiaru  $I_B$  oraz  $I_D$
- 8). Zasilacz Siglent SPD3303D, nr inw. WD051.02-006-203

#### 5.1. Charakterystyka wyjściowa i zwrotna tranzystora bipolarnego bez obciążenia

|                     | <u> </u>            |                     |                     |                              |
|---------------------|---------------------|---------------------|---------------------|------------------------------|
| U <sub>CE</sub> [V] | I <sub>Β</sub> [μA] | U <sub>BE</sub> [V] | I <sub>c</sub> [mA] |                              |
| 0,000               | 0,2                 | 0,4589              | 0,0                 | Zakresy pomiarowe            |
| 1,006               | 0,2                 | 0,5181              | 0,0                 | - U <sub>CE</sub> : 40 V DC  |
| 2,007               | 0,3                 | 0,5182              | 0,0                 | - I <sub>B</sub> : 200 μA DC |
| 3,009               | 0,3                 | 0,5183              | 0,0                 | - U <sub>BE</sub> : 4 V DC   |
| 4,003               | 0,3                 | 0,5183              | 0,0                 | - I <sub>c</sub> : 200 mA DC |
| 5,001               | 0,3                 | 0,5184              | 0,0                 |                              |
| 6,001               | 0,3                 | 0,5185              | 0,0                 |                              |
| 7,005               | 0,3                 | 0,5185              | 0,0                 |                              |
| 8,000               | 0,3                 | 0,5185              | 0,0                 |                              |
| 9,009               | 0,3                 | 0,5186              | 0,0                 |                              |
| 10,002              | 0,3                 | 0,5187              | 0,0                 |                              |
| 0,004               | 60,0                | 0,5766              | 0,0                 |                              |
| 0,020               | 60,0                | 0,5918              | 0,2                 |                              |
| 0,040               | 60,0                | 0,6087              | 0,6                 |                              |
| 0,060               | 60,0                | 0,6255              | 1,4                 |                              |
| 0,080               | 60,0                | 0,6358              | 2,2                 |                              |
| 0,100               | 60,0                | 0,6459              | 3,4                 |                              |
| 0,120               | 60,0                | 0,6516              | 4,4                 |                              |
| 0,140               | 60,0                | 0,6563              | 5,3                 |                              |
| 0,160               | 60,0                | 0,6590              | 5,9                 |                              |
| 0,180               | 60,0                | 0,6601              | 6,2                 |                              |
| 0,200               | 60,0                | 0,6607              | 6,4                 |                              |
| 1,001               | 60,0                | 0,6605              | 6,6                 |                              |

| 2,008  | 60,0  | 0,6591 | 6,7  |
|--------|-------|--------|------|
| 3,002  | 60,0  | 0,6575 | 6,8  |
| 4,008  | 60,0  | 0,6560 | 6,8  |
| 5,000  | 60,0  | 0,6538 | 6,8  |
| 6,016  | 60,0  | 0,6520 | 6,9  |
| 7,000  | 60,0  | 0,6502 | 6,9  |
| 8,001  | 60,0  | 0,6482 | 7,0  |
| 9,011  | 60,0  | 0,6463 | 7,0  |
| 10,000 | 60,0  | 0,6446 | 7,0  |
| 0,002  | 135,0 | 0,6053 | 0,0  |
| 0,200  | 135,0 | 0,6237 | 0,5  |
| 0,040  | 135,0 | 0,6395 | 2,0  |
| 0,060  | 135,0 | 0,6515 | 3,6  |
| 0,080  | 135,0 | 0,6625 | 6,1  |
| 0,100  | 135,0 | 0,6705 | 8,3  |
| 0,120  | 135,0 | 0,6751 | 10,3 |
| 0,140  | 135,0 | 0,6782 | 11,6 |
| 0,160  | 135,0 | 0,6811 | 12,6 |
| 0,180  | 135,0 | 0,6827 | 12,6 |
| 0,200  | 135,0 | 0,6833 | 13,5 |
| 1,066  | 135,0 | 0,6815 | 14,1 |
| 2,012  | 135,0 | 0,6787 | 15,2 |
| 3,024  | 135,0 | 0,6747 | 15,4 |
| 4,011  | 135,0 | 0,6711 | 15,6 |
| 5,000  | 135,0 | 0,6676 | 15,8 |
| 6,000  | 135,0 | 0,6635 | 16,0 |
| 7,007  | 135,0 | 0,6596 | 16,3 |
| 8,006  | 135,0 | 0,6552 | 16,5 |
| 9,000  | 135,0 | 0,6510 | 16,8 |
| 10,000 | 135,0 | 0,6464 | 17,0 |

### 5.2. Charakterystyka wejściowa i przejściowa tranzystora bipolarnego

(zmiany U<sub>CE</sub> wynikają z niestabilności źródła napięciowego)

|                     | , .                 |                     |                     |
|---------------------|---------------------|---------------------|---------------------|
| U <sub>CE</sub> [V] | I <sub>Β</sub> [μΑ] | U <sub>BE</sub> [V] | I <sub>c</sub> [mA] |
| 3,017               | 0,2                 | 0,5186              | 0,0                 |
| 3,018               | 10,1                | 0,6136              | 1,1                 |
| 3,014               | 20,2                | 0,6312              | 2,2                 |
| 3,013               | 30,3                | 0,6414              | 3,4                 |
| 3,012               | 40,3                | 0,6482              | 4,5                 |
| 3,011               | 50,3                | 0,6535              | 5,6                 |
| 3,009               | 60,5                | 0,6577              | 6,8                 |
| 3,008               | 70,3                | 0,6611              | 7,9                 |
| 3,007               | 80,1                | 0,6638              | 9,1                 |
| 3,006               | 90,0                | 0,6664              | 10,2                |
| 3,006               | 100,0               | 0,6685              | 11,4                |
| 3,005               | 110,5               | 0,6705              | 12,6                |
| 3,003               | 120,0               | 0,6723              | 13,7                |
| 3,003               | 130,0               | 0,6734              | 15,0                |
| 3,002               | 140,8               | 0,6752              | 16,2                |
| 3,001               | 150,1               | 0,6764              | 17,3                |
| 3,000               | 160,0               | 0,6776              | 18,5                |
| 8,004               | 0,4                 | 0,5154              | 0,0                 |

#### Zakresy pomiarowe

- U<sub>CE</sub>: 40 V DC

- I<sub>B</sub>: 200 μA DC

- U<sub>BE</sub>: 4 V DC

- I<sub>c</sub>: 200 mA DC

| 8,004 | 9,9   | 0,6077 | 1,1  |
|-------|-------|--------|------|
| 8,004 | 20,5  | 0,6258 | 2,3  |
| 8,005 | 30,3  | 0,6342 | 3,4  |
| 8,005 | 40,2  | 0,6387 | 4,6  |
| 8,005 | 50,5  | 0,6436 | 5,9  |
| 8,005 | 60,2  | 0,6458 | 7,1  |
| 7,999 | 69,6  | 0,6480 | 8,2  |
| 7,999 | 80,4  | 0,6494 | 9,5  |
| 7,999 | 89,4  | 0,6500 | 10,7 |
| 7,999 | 100,3 | 0,6511 | 12,1 |
| 7,998 | 110,7 | 0,6512 | 13,4 |
| 7,997 | 120,4 | 0,6514 | 14,7 |
| 7,997 | 129,7 | 0,6521 | 16,0 |
| 7,996 | 140,5 | 0,6514 | 17,4 |
| 7,995 | 150,6 | 0,6511 | 18,8 |
| 7,995 | 160,5 | 0,6507 | 20,1 |

#### 5.3. Charakterystyka przejściowa (bramkowa) tranzystora polowego

| U <sub>DS</sub> [V] | U <sub>GS</sub> [V] | I <sub>□</sub> [mA] |
|---------------------|---------------------|---------------------|
|                     |                     |                     |
| 4,006               | -13,914             | 0,0                 |
| 4,006               | -3,531              | 0,1                 |
| 4,006               | -3,099              | 0,7                 |
| 4,006               | -2,706              | 1,5                 |
| 4,006               | -2,300              | 2,5                 |
| 4,006               | -1,901              | 3,7                 |
| 4,006               | -1,502              | 5,0                 |
| 4,006               | -1,100              | 6,4                 |
| 4,006               | -0,711              | 8,0                 |
| 4,006               | -0,343              | 9,6                 |
| 4,006               | 0,015               | 11,1                |
| 9,003               | -13,914             | 0,0                 |
| 9,003               | -3,604              | 0,1                 |
| 9,003               | -3,194              | 0,6                 |
| 9,003               | -2,804              | 1,3                 |
| 9,003               | -2,397              | 2,4                 |
| 9,003               | -2,004              | 3,6                 |
| 9,003               | -1,602              | 4,9                 |
| 9,003               | -1,213              | 6,3                 |
| 9,003               | -0,803              | 7,9                 |
| 9,003               | -0,410              | 9,3                 |
| 9,003               | 0,000               | 11,6                |

#### Zakresy pomiarowe

- U<sub>DS</sub>: 40 V DC - U<sub>GS</sub>: 40 V DC

- I<sub>D</sub>: 200 mA DC

#### 5.4. Charakterystyka wyjściowa (drenowa) tranzystora polowego

| U <sub>DS</sub> [V] | U <sub>GS</sub> [V] | I <sub>D</sub> [mA] |
|---------------------|---------------------|---------------------|
| 0,000               | -3,600              | 0,0                 |
| 0,402               | -3,600              | 0,0                 |
| 0,804               | -3,600              | 0,0                 |

Zakresy pomiarowe

- U<sub>DS</sub>: 40 V DC

- U<sub>GS</sub>: 40 V DC

| 1,206  | -3,600 | 0,0 |
|--------|--------|-----|
| 1,601  | -3,600 | 0,0 |
| 2,004  | -3,600 | 0,0 |
| 2,398  | -3,600 | 0,0 |
| 2,804  | -3,600 | 0,0 |
| 3,205  | -3,600 | 0,0 |
| 3,602  | -3,600 | 0,0 |
| 4,050  | -3,600 | 0,0 |
| 5,005  | -3,600 | 0,0 |
| 6,080  | -3,600 | 0,0 |
| 7,004  | -3,600 | 0,0 |
| 8,000  | -3,600 | 0,0 |
| 9,066  | -3,600 | 0,0 |
| 10,015 | -3,600 | 0,0 |
| 0,000  | -2,001 | 0,0 |
| 0,404  | -2,001 | 1,1 |
| 0,811  | -2,001 | 2,0 |
| 1,209  | -2,001 | 2,5 |
| 1,610  | -2,001 | 2,8 |
| 2,007  | -2,001 | 3,1 |
| 2,404  | -2,001 | 3,2 |
| 2,795  | -2,001 | 3,2 |
| 3,205  | -2,001 | 3,3 |
| 3,611  | -2,001 | 3,7 |
| 4,001  | -2,001 | 3,7 |
| 5,007  | -2,001 | 3,5 |
| 6,000  | -2,001 | 3,5 |
| 7,031  | -2,001 | 3,5 |
| 8,037  | -2,001 | 3,5 |
| 9,027  | -2,001 | 3,5 |
| 10,020 | -2,001 | 3,6 |
| 0,000  | -0,507 | 0,0 |
| 0,405  | -0,507 | 2,1 |
| 0,808  | -0,507 | 4,0 |
| 1,198  | -0,507 | 5,4 |
| 1,609  | -0,507 | 6,5 |
| 2,008  | -0,507 | 7,3 |
| 2,404  | -0,507 | 7,9 |
| 2,804  | -0,507 | 8,3 |
| 3,208  | -0,507 | 8,5 |
| 3,601  | -0,507 | 8,7 |
| 4,006  | -0,507 | 8,9 |
| 5,003  | -0,507 | 9,0 |
| 6,014  | -0,507 | 9,1 |
| 7,016  | -0,507 | 9,1 |
| 8,023  | -0,507 | 9,1 |
| 9,033  | -0,507 | 9,2 |
| 10,019 | -0,507 | 9,2 |