

Primitives À rendre le 30 septembre

■ Exercice 1.

1. a) Par définition (reportez-vous à votre cours de TS), si ω et un nombre réel, le nombre complexe noté $e^{i\omega}$ est défini par :

$$e^{i\omega} = \cos \omega + i \sin \omega$$
.

b) Soit z et z' deux nombres complexes et mettons-les sous forme algébrique :

$$z = r + i\omega$$
 et $z = r' + i\omega'$

où les nombres r, r', ω, ω sont **réels**.

On a alors la chaîne d'égalités suivantes :

$$e^z \times e^{z'}$$
 $\stackrel{\text{def.1}}{=}$ $e^r \times e^{i\omega} \times e^{r'}e^{i\omega'}$
 $=$ $e^r e^{r'} \times e^{i\omega}e^{i\omega'}$ car le produit dans **C** est commutatif
 $=$ $e^{r+r'}e^{i\omega}e^{i\omega'}$ propriété de e^x pour x réel
 $=$ $e^{r+r'} \times e^{i(\omega+\omega')}$ propriété de $e^{i\theta}$ pour θ réel
 $=$ e^Z avec la définition 1 utilisée en sens inverse où $Z = (r+r') + i(\omega+\omega')$.

En effet, puisque les nombres r, r', ω, ω sont **réels**, $(r + r') + i(\omega + \omega')$ est bien la forme algébrique de Z. Comme Z = z + z', on a bien la formule demandée.

c) Partant encore de la définition 1 :

$$e^z = e^r e^{i\omega} = e^r (\cos \omega + i \sin \omega) = e^r \cos \omega + i e^r \sin \omega.$$

Comme r et ω sont réels, les nombres $X = e^r \cos \omega$ et $Y = e^r \sin \omega$ le sont aussi, et on a bien la forme algébrique de e^z .

d) En mettant u et $e^{r+i\omega}$ sous forme algébrique (utiliser 1.c)) et en développant bêtement le produit, il vient :

$$Q = \underbrace{e^r(a\cos\omega - b\sin\omega)}_{X} + i \times \underbrace{e^r(a\sin\omega) + b\cos\omega}_{Y}.$$

Comme *X* et *Y* sont des sommes de produits de nombres réels, ce sont des réels, et on a bien la forme algébrique de *Q*.

2. La fonction $a = \Re \mathfrak{e}(f)$ est définie sur \mathbf{R}_+^* par $a(x) = x \ln x + \cos 3x$ et la fonction $b = \Im \mathfrak{m}(f)$ est définie sur \mathbf{R}_+^* par $b(x) = \sin 3x$. Clairement, les fonction a et b sont des sommes de produit de fonctions dérivables sur \mathbf{R}_+^* , donc par définition 3, f est dérivable sur \mathbf{R}_+^* et encore par définition 3 :

$$f' = a' + ib'$$
.

En appliquant les règles de calcul sur la dérivation :

$$\forall x \in \mathbf{R}_{\perp}^{\star} \quad f'(x) = 1 + \ln x - 3\sin x + i \times 3\cos 3x.$$

En arrangeant les termes :

$$\forall x \in \mathbf{R}_+^{\star} \quad f'(x) = \ln x + 3ie^{3ix}$$

Primitives À rendre le 30 septembre

- **3.** a) La fonction q est continue sur \mathbf{R} , donc il existe au moins une primitive de q sur cet ensemble (c'est le cours, et au passage, je rappelle que pour l'existence, la condition «être sur un intervalle» n'intervient pas).
 - **b)** On constate que si on pose $q_{\rm C}(x)=e^{-x}e^{2ix}$, alors $q_{\rm C}(x)=e^{-x}\cos 2x+ie^{-x}\sin 2x$. Commme les termes de part et d'autre du nombre i sont des réels, la fonction $q_{\rm C}$ définie sur **R** par la relation ci-dessus convient.
 - **c)** On remarque que $q_{\mathbf{C}}(x) = e^{-x}e^{2ix} = e^{mx}$ si on pose $m = -1 + 2i \in \mathbf{C}^{\star}$. Par primitivation à vue :

$$\mathbf{Q}(x) = \int_{-\infty}^{\infty} q_{\mathbf{C}}(t) dt = \frac{1}{m} e^{mx}.$$

d) Il suffit maintenant de calculer la partie réelle de $q_{\rm C}$. Pour cela, on remarque que

$$\mathbf{Q}(x) = u \times e^z$$

où $u = 1/m = -\frac{1+2i}{5}$ et z = (-1+2i)x. On applique alors le résultat de 1.d) avec les réels suivants :

$$a = -1/5, b = -2/5, r = -x, \omega = 2x$$

et qui nous donne :

$$Q(x) = \Re e(\mathbf{Q}(x)) = \frac{e^{-x}}{5} (2\sin(2x) - \cos(2x)).$$

La fonction Q définie sur \mathbf{R} par la relation ci-dessus est une primitive sur cet intervalle de la fonction q.

■ Exercice 2.

Voici le script et le résultat obtenu dans la console :

```
1 """Script du DM2.
2 On y construit la fonction
3 q : x |-> exp(-x)cos(2x)
4 
5 """
6 from math import cos, exp
7 def q(x):
8    return exp(-x)*cos(2*x)
9 # fin du script
```

```
In[1]: q(2)
Out[1]: -0.0884610445654
```