Problem Sheet 1

Q1. The \bar{E} coordinate system is obtained from the E system by a counter-clockwise rotation of 90° about the x_3 axis. The E* coordinate system is obtained by a reflection of the x_3 axis about the x_1 - x_2 plane.

- a) Sketch the E, \bar{E} and the E* coordinate systems.
- b) Write \bar{e}_i and e_i^* in terms of e_i .
- c) Determine the direction cosines, $\bar{a_{ij}} \ (\equiv e_i.\bar{e_j})$ and $a_{ij}^* \ (\equiv e_i.e_j^*)$.
- d) Verfiy that $\bar{a_{ik}}$ $\bar{a_{jk}} = \delta_{ij}$ and a_{ik}^* $a_{jk}^* = \delta_{ij}$
- e) Determine the determinants of $\bar{a_{ij}}$ and a_{ij}^* .

Q2. With ϕ being a scalar, \mathbf{u} a vector, and $\boldsymbol{\omega} \equiv \nabla \times \mathbf{u}$, show using the cartesian tensor notation (no other method accepted).

- a) $\nabla \cdot \boldsymbol{\omega} = 0$.
- b) $\nabla \times (\nabla \phi) = 0$.
- c) $\nabla \times (\nabla \times \mathbf{u}) = \nabla(\nabla \cdot \mathbf{u}) \nabla^2 \mathbf{u}$.
- d) $\mathbf{u} \times \boldsymbol{\omega} = 1/2 \nabla (\mathbf{u}.\mathbf{u}) (\mathbf{u}.\nabla)\mathbf{u}$.

Q3. Let $\mathbf{r} = (\mathbf{x}_k \mathbf{x}_k)^{1/2}$ denote the distance of a point x from the origin. Using the cartesian tensor notation find:

- a) $\nabla r = \partial r / \partial x_i$.
- b) $\nabla(1/r) = \partial(1/r)/\partial x_i$.
- c) $\nabla^2(1/\mathbf{r}) = \partial^2(1/r)/\partial x_i \partial x_i$.

Q4. Show that δ_{ij} is an isotropic tensor. What is its order?