面向草原生态修复的多无人机协同路径规划与面积 分配方法研究 本科毕业论文答辩

王贤义

兰州大学信息科学与工程学院

2025年5月17日

研究背景与意义

- 草原生态系统的重要性
 - 占全球陆地总面积 26% 至 40%
 - 防风固沙、涵养水源、调节气候、维持生物多样性
- 草原退化问题
 - 植被覆盖率下降、土壤沙化、水土流失加剧
 - 人类活动与气候变化的双重影响
- 传统修复方法的局限性
 - 人工植被恢复、机械作业效率低
 - 大范围复杂地形下施工困难、成本高
- 无人机技术带来的新机遇
 - 机动性强、操作远程、成本低
 - 多无人机协同作业模式展现良好前景

国内外研究现状与研究内容

无人机生态监测与修复应用

- 国际:无人机在三维地图绘制和环境监测的应用
- 国内:播种、喷洒和生态监测等应用场景
- 路径规划方法: 传统 TSP/OP 问题建模、智能优化算法
- 局限性:静态环境假设、单机 能力限制、缺乏能量约束

主要研究内容

- 建立多无人机协同草原修复面 积最大化数学模型
- 开发基于深度强化学习的路径 规划与面积分配方法
- 设计多无人机协同调度架构与 决策执行流程
- 进行仿真实验验证与性能对比 分析
- 技术思路:结合 Transformer 编码器与指针网络解码器, Actor-Critic 方法训练

草原修复问题建模

- 将草原建模为无向图 G = (V, E)
 - V = {v₀, v₁, ..., v_N} 表示待 修复区域
 - v₀ 为地面信息融合中心
 - 每个区域具有位置、退化度、 面积等属性
- 无人机特性
 - 初始能量: E_{max}
 - 携带草种重量: Q
 - 退化程度范围: [0.3, 0.8]

图 1: 多无人机协同草原退化区域示意

冬

无人机能量消耗模型

无人机在飞行过程中功率消耗:

$$P(\bar{q}_{ij}) = (M + \bar{q}_{ij})^{\frac{3}{2}} \sqrt{\frac{g^3}{2\rho\varsigma h}}$$

三种能量消耗:

$$E_f = \sum_{i=0}^{N} \sum_{j \neq i}^{N} e^f_{ij} d_{ij} x_{ij}$$
 (飞行能耗)

$$E_s = \sum_{i=1}^{N} \sum_{j \neq i}^{N} \sigma_i e_i x_{ij}$$
 (播种能耗)

- M = W + m: 无人机自重
- *q_{ij}*: 当前草种重量
- σ_i : 修复的单位圆数量
- x_{ij}: 路径选择变量
- $e_i = \eta q_i$: 单位面积播种能 耗
- q_i = (1 + l_i)γ: 单位面积草 种重量
- *e_{ap}*: 信息采集能耗系数

优化目标与约束条件

优化目标: 加权修复面积最大化

$$\max_{x_{ij},\sigma_i} \sum_{i=1}^{N} (l_i + 0.7) \cdot \sigma_i$$

核心约束条件:

• 能量约束: $E_s + E_{ap} + E_f \le E_{max}$

载荷约束:草种重量平衡与不 超限

路径约束:每个区域最多访问 一次

面积约束: 1 ≤ σ_i ≤ c_i

马尔可夫决策过程建模:

- 状态 s(< i): 部分修复解
- 动作 π_i = s(i): 下一步修复决策
- 策略函数: $p(\pi|s) = \prod_{i=1}^{n} p(s(i)|s(< i))$
- 奖励函数:

$$R(\pi|V) = \alpha_p * Pel + \alpha_r * \sum_{i=1}^n (l_i + 0.$$

模型特点:多变量组合优化问题、NP-hard 难度、非线性约束

多无人机协同框架:

$$P(\bar{q}_{ij}) = (M + \bar{q}_{ij})^{\frac{3}{2}} \sqrt{\frac{g^3}{2\rho ch}}$$
 (功率方

$$E_f = \sum_{i=0}^{N} \sum_{i \neq i}^{N} e_{ij}^f d_{ij} x_{ij} \quad (飞行能耗)$$

$$E_s = \sum_{i=1}^{N} \sum_{i \neq i}^{N} \sigma_i e_i x_{ij} \quad (播种能耗)$$

$$E_{ap} = e_{ap} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{ij} \sigma_i$$
 (信息采集能

编码器-解码器架构:

- 编码器:基于 Transformer 架构,提取静态环境特征和动态 无人机状态特征
- 解码器:指针网络自回归解码, 动态构建修复方案

编码器数学表示:

$$h^{l=0} = h^{in} W^{in} \in \mathbb{R}^{n \times d_e}$$

$$h_{rc}^{l+1} = BN(MHA^{l+1}(h^l) + h^l)$$

王贤义

|**言与背景** ○

多无人机协同调度算法

算法1多无人机协同调度算法

参数序列 Parms, 无人机修复地图集合 M_u , 无人机状态集 合 S_u 无人机访问的节点序列 O_p , 修复面积 O_a , 剩余能量 O_e $M_u^i \leftarrow$ 初始化 (M_u) 根据初始化方法(如 K-means)分配初始地 图 $P_u^i \leftarrow$ 初始化 (P_u) 初始化无人机信号量以决定优先级 $M_u \neq \emptyset$ $E_u^{\text{rel}} \leftarrow$ 路径规划 (M_u, P_u^{self}) 第一次路径规划 上报中心 $(S_u, M_u, E_u^{\text{rel}})$ 第 一次上报中心 M_u^{tmp} ← 更新地图 $(M_u^{\text{global}}, P_u^{\text{self}})$ 下发新地图 $(M_u^{P_u^{\text{tmp}}})$ 下 发新地图 E_u^{r2} \leftarrow 使用算法训练的模型进行第二次路径规划 (M_u^{tmp}, P_u^{self}) 上报中心 $(E_u^{r2}, Area_u^{r2})$ 第二次上报中心 $\sum_{u=1}^U Area_u^{r2} \ge \sum_{u=1}^U Area_u^{r1} M_u \leftarrow$ M_u^{tmp} 选择修复面积更多的地图 $\sigma_u^{\text{max}_p} \leftarrow$ 决策修复面积(E_u , M_u) 信号量最优先的无人机决策修复面积 执行修复与采集($\sigma_u^{\text{max}_p}$, C_{max_p}) 无人机执行修复和信息采集 从地图移除(M_u , $P_u^{\text{max}_p}$) $P_u^{\text{max}_p}$ \leftarrow 更新信号量 $(P_n^{\max_p})$ 更新无人机信号量 返回起点 (P_n^0) 无人机返回起

王贤义

|大学信息科学与工程学隊