Baza danych

Baza danych AutoSprzedam.dat. Baza pochodzi z zasobów zgormadzonych na ePortalu.

Zawartość

Baza danych zawiera 41034 rekordów zawierających szczegółowe dane dotyczące sprzedaży samochodów m.in.

	Тур			
Kolumna	danych	Opis		
NrOferty	int	Numer oferty sprzedaży samochodu.		
CenaPLN	string	Cena samochodu wyrażona w polskich złotych (PLN).		
KM	int	Liczba koni mechanicznych samochodu.		
Marka	string	Marka samochodu.		
Model	string	Model samochodu.		
LiczbaDrzwi	string	Liczba drzwi w samochodzie.		
PojemnoscSkokowa int		Pojemność skokowa silnika wyrażona w centymetrach sześciennych (cm³).		
PrzebiegKm	int	Przebieg samochodu wyrażony w kilometrach.		
RodzajPaliwa string		Rodzaj paliwa używanego przez samochód (benzyna, diesel, hybryda,		
		elektryczny itp.).		
RokProdukcji	int	Rok produkcji samochodu.		
Kolor	string	Kolor samochodu.		
KrajPochodzenia	string	Kraj pochodzenia samochodu.		
PojazdUszkodzony	string	Informacja czy pojazd jest uszkodzony (Tak/Nie).		
SkrzyniaBiegow	string	Typ skrzyni biegów w samochodzie (manualna, automatyczna).		

Podstawowe dana dotyczące bazy danych

```
## Liczba rekordów: 41034 , liczba kolumn: 14
## - Przykład 5 pierwszych rekordów.
     NrOferty CenaPLN KM
                                                  Model LiczbaDrzwi PojemnoscSkokowa
##
                                   Marka
## 1
            1
                27900 150
                                    Opel
                                                 Vectra
                                                                 4/5
                                                                                 1900
## 2
            2
                28000 116
                                  Toyota Corolla Verso
                                                                 4/5
                                                                                 2000
## 3
            3
                25500 150
                                                                 4/5
                                                                                 1781
                                   Skoda
                                                 Superb
            4
## 4
                29900 109 Mercedes-Benz
                                                  A 180
                                                                 2/3
                                                                                 1991
## 5
            5
                29800 207
                                 Peugeot
                                                    607
                                                                 4/5
                                                                                 2946
##
     PrzebiegKm
                           RodzajPaliwa RokProdukcji
                                                                    Kolor
## 1
          80840 olej napędowy (diesel)
                                                 2005
                                                         czarny-metallic
## 2
                                                 2004
         166000 olej napędowy (diesel)
                                                                    bialy
## 3
         112000
                            benzyna+LPG
                                                 2002
                                                        bordowy-metallic
## 4
          42000 olej napędowy (diesel)
                                                 2005
                                                                 czerwony
## 5
         169000
                                benzyna
                                                 2004 granatowy-metallic
##
     KrajPochodzenia PojazdUszkodzony SkrzyniaBiegow
## 1
              Niemcy
                                              manualna
                                   Nie
## 2
              Polska
                                   Nie
                                              manualna
## 3
              Polska
                                   Nie
                                              manualna
## 4
              Polska
                                   Nie
                                              manualna
             Francja
                                   Nie
                                              manualna
      Przykład 5 ostatnich rekordów.
         NrOferty CenaPLN KM
                                                  Model LiczbaDrzwi PojemnoscSkokowa
##
                                        Marka
## 41030
            41030 98000.00 220
                                         Opel Insignia
                                                                 4/5
                                                                                 1998
```

##	41031	41031 34924.50 184 M	fercedes-Benz	S 400	4/5	3996
	41032	41032 41175.09 70	Peugeot	308	2/3	1397
	41033	41033 47900.00 115	Ford	C-MAX	4/5	1560
##	41034	41034 14200.00 90	Ford	Mondeo	4/5	1998
##			odzajPaliwa Ro	kProdukcii	Kolor	
##	41030	25500	benzyna	•	rafitowy-metallic	
	41031	162000 olej napędow		2001	srebrny-metallic	
	41032	9289	benzyna	2010	srebrny-metallic	
	41033	45000 olej napędow	•	2010	czarny-metallic	
##	41034	191024 olej napędow	· .	2003	czarny-metallic	
##		KrajPochodzenia PojazdU	•	zvniaBiegow	J	
##	41030	Polska	Nie	manualna		
##	41031	Czechy	Nie a	utomatyczna		
##	41032	Niemcy	Nie	manualna		
##	41033	Belgia	Nie	manualna		
##	41034	Niemcy	Nie	manualna		

Przygotowanie bazy danych

Przed przejściem do dalszej pracy z bazą danych konieczne jest jej przygotowanie.

Pole - SkrzyniaBiegow

W bazie występują 3 rodzaje typów skrzyni biegów: półautomatyczna/sekwencyjna, manualna oraz automatyczna. Udział typu półautomatyczna/sekwencyjna w całej bazie wynosi 1,5%.

W związku z niewielkim udziałem ze skrzynią półautomatyczna/sekwencyjna, typ ten został usunięty z bazy. Dzięki czemu możliwe jest przekształcenie kolumny SkrzyniaBiegow (char), na SkrzyniaBiegowManualna (bool).

Udział pojazdów ze skrzynią biegów typu 'półautomatyczna/sekwencyjna' 0.1535312 %.

Pole PojazdUszkodzony

Domyślnym typem danych dla pola *PojazdUszkodzony* jest (char), gdzie zmienna jest typem logicznym. W związku z powyższym kolumna *PojazdUszkodzony* została przekształcona to typu *bool*.

Baza danych po wprowadzonych modyfikacjach

```
## Baza danych po wprowadzonych modyfikacjach
## Liczba rekordów: 40971 , liczba kolumn: 14
## - Przykład 5 pierwszych rekordów.
     NrOferty CenaPLN KM
                                                 Model LiczbaDrzwi PojemnoscSkokowa
##
                                   Marka
## 1
            1
                27900 150
                                   Opel
                                                Vectra
                                                                4/5
                                                                                1900
## 2
            2
                28000 116
                                  Toyota Corolla Verso
                                                                4/5
                                                                                2000
## 3
            3
               25500 150
                                  Skoda
                                                Superb
                                                                4/5
                                                                                1781
## 4
                29900 109 Mercedes-Benz
                                                 A 180
                                                                2/3
                                                                                1991
```

```
## 5
            5
                29800 207
                                 Peugeot
                                                    607
                                                                 4/5
                                                                                  2946
##
                           RodzajPaliwa RokProdukcji
    PrzebiegKm
                                                                    Kolor
## 1
                                                          czarny-metallic
          80840 olej napędowy (diesel)
                                                 2005
## 2
         166000 olej napędowy (diesel)
                                                 2004
                                                                    bialy
## 3
         112000
                            benzyna+LPG
                                                 2002
                                                        bordowy-metallic
## 4
          42000 olej napędowy (diesel)
                                                 2005
                                                                 czerwony
         169000
                                                 2004 granatowy-metallic
                                benzyna
##
     KrajPochodzenia PojazdUszkodzony SkrzyniaBiegowManualna
## 1
              Niemcy
                                 FALSE
                                                           TRUE
## 2
              Polska
                                 FALSE
                                                           TRUE
## 3
              Polska
                                 FALSE
                                                           TRUE
## 4
                                 FALSE
                                                           TRUE
              Polska
## 5
                                 FALSE
                                                           TRUE
             Francja
## - Przykład 5 ostatnich rekordów.
##
         NrOferty CenaPLN KM
                                         Marka
                                                  Model LiczbaDrzwi PojemnoscSkokowa
## 41030
            41030 98000.00 220
                                                                 4/5
                                          Opel Insignia
                                                                                  1998
## 41031
            41031 34924.50 184 Mercedes-Benz
                                                  S 400
                                                                 4/5
                                                                                  3996
## 41032
            41032 41175.09
                                                    308
                                                                 2/3
                                                                                  1397
                            70
                                      Peugeot
## 41033
            41033 47900.00 115
                                          Ford
                                                  C-MAX
                                                                 4/5
                                                                                  1560
## 41034
            41034 14200.00 90
                                         Ford
                                                 Mondeo
                                                                 4/5
                                                                                  1998
         PrzebiegKm
                               RodzajPaliwa RokProdukcji
                                                                        Kolor
##
## 41030
              25500
                                                     2010 grafitowy-metallic
                                    benzyna
## 41031
             162000 olej napędowy (diesel)
                                                     2001
                                                             srebrny-metallic
## 41032
               9289
                                    benzyna
                                                     2010
                                                             srebrny-metallic
## 41033
              45000 olej napędowy (diesel)
                                                     2010
                                                              czarny-metallic
## 41034
             191024 olej napędowy (diesel)
                                                     2003
                                                              czarny-metallic
         KrajPochodzenia PojazdUszkodzony SkrzyniaBiegowManualna
##
## 41030
                  Polska
                                     FALSE
                                                               TRUE
## 41031
                  Czechy
                                     FALSE
                                                              FALSE
## 41032
                  Niemcy
                                     FALSE
                                                               TRUE
## 41033
                  Belgia
                                     FALSE
                                                               TRUE
## 41034
                  Niemcy
                                     FALSE
                                                               TRUE
```

Wyznaczenie podstawowych statystyk

Pole CenaPLN

Kolumna zawiera informacje o cenie po jakie asmochody zostału sprzedane w PLN.

Dane przed eliminacją danych odstających

```
summarise(database,
    srednia = mean(CenaPLN),
    mediana = median(CenaPLN),
    wariancja = var(CenaPLN),
    odchylenieStd = sd(CenaPLN),
    max = max(CenaPLN),
    min = min(CenaPLN),
)
```

```
## srednia mediana wariancja odchylenieStd max min
## 1 40848.35 26000 2636580628 51347.64 1788000 1000
```

ggplot(data=database) + geom_histogram(aes(x=CenaPLN), bins = 50) + ggtitle("Histogram dla cen sprzedaż

ggplot(data=database) + geom_boxplot(aes(x=CenaPLN)) + ggtitle("Wykres pudełko-wąsy dla cen sprzedaży")

Wykres pudełko-w sy dla cen sprzeda y

ggplot(data=database, aes(sample = CenaPLN)) + stat_qq() + stat_qq_line(colour="red") + ylab("Kwantyl T
ggtitle("Wykres QQ dla cen sprzedaży") + theme(axis.text.x = element_blank(), axis.text.y = element_b

Wykres QQ dla cen sprzeda y

Redukcja danych odstających Redukcja danych zgodnie z regułą 3 sigma.

Identyfikacja danych odstających za pomocą reguły trzech sigm:

- 1. Obliczenie średniej (μ) : Najpierw oblicza się średnią dla danego zbioru danych.
- 2. Obliczenie odchylenia standardowego (σ): Następnie oblicza się odchylenie standardowe, które mierzy, jak bardzo dane rozpraszają się wokół średniej.
- 3. Ustalenie zakresu trzech sigm: Wartości, które znajdują się poza zakresem trzech sigm $(\mu \pm 3\sigma)$, są uznawane za dane odstające.

```
mean_price = mean(database$CenaPLN);
sd_price = sd(database$CenaPLN);
lower_bound <- mean_price - 3 * sd_price;
upper_bound <- mean_price + 3 * sd_price;
cat("Wyznacznowe granice metoda 3 sigma \n")

## Wyznacznowe granice metoda 3 sigma
cat("Dolna granica ", lower_bound, ", górna granica ", upper_bound, "\n");

## Dolna granica -113194.6 , górna granica 194891.3</pre>
```

Dolna granica wykracza poza osiągane wartości kwot sprzedaży (ujemna wartość).

cat("Dolna granica wykracza poza osiągane wartości kwot sprzedaży (ujemna wartość). \n")

```
upper_price_example = database[which(database$CenaPLN >= upper_bound),];
head(upper_price_example[order(upper_price_example$CenaPLN, decreasing = TRUE),])
         NrOferty CenaPLN KM
                                                   Model LiczbaDrzwi
##
## 14353
            14353 1788000 626 Mercedes-Benz
                                                     SLR.
                                                                  4/5
## 36278
            36278 1699000 800 Mercedes-Benz
                                                S 63 AMG
                                                                 4/5
## 14159
            14159 1300000 626 Mercedes-Benz
                                                     SLR
                                                                 2/3
## 27512
            27512 739000 571 Mercedes-Benz SLS 63 AMG
                                                                 2/3
## 28662
            28662 730000 563 Mercedes-Benz SLS 63 AMG
                                                                 2/3
            28663 725000 563 Mercedes-Benz SLS 63 AMG
## 28663
                                                                 2/3
##
         PojemnoscSkokowa PrzebiegKm RodzajPaliwa RokProdukcji
                                                                               Kolor
## 14353
                      5439
                                           benzyna
                                                                     czarny-metallic
## 36278
                      6233
                                 1500
                                                                     czarny-metallic
                                           benzyna
                                                            2011
## 14159
                      5439
                                 2098
                                                            2007 granatowy-metallic
                                           benzyna
                                 5000
## 27512
                      6208
                                                            2010 grafitowy-metallic
                                           benzyna
## 28662
                      6208
                                  380
                                           benzyna
                                                            2011
                                                                    czarny-metallic
## 28663
                      6208
                                  520
                                           benzyna
                                                            2011
                                                                    srebrny-metallic
           KrajPochodzenia PojazdUszkodzony SkrzyniaBiegowManualna
## 14353
                                       FALSE
                                                               FALSE
                    Niemcy
                                                               FALSE
## 36278
                    Niemcy
                                       FALSE
## 14159
                    Niemcy
                                       FALSE
                                                               FALSE
## 27512
                    Polska
                                       FALSE
                                                               FALSE
## 28662 Stany Zjednoczone
                                       FALSE
                                                               FALSE
## 28663 Stany Zjednoczone
                                       FALSE
                                                               FALSE
database = database [database $CenaPLN >= lower_bound & database $CenaPLN <= upper_bound,]
```

Redukcja danych odstających regułą odstępu międzykwartylowgo

Metoda redukcji, polega na wykrywaniu i usuwaniu wartości odstających z zestawu danych. Metoda ta opiera się na kwartylach i rozstępie międzykwartylowym.

- 1. Wyznaczenie Q1 (pierwszy kwartyl) oraz Q3 (trzeci kwartyl)
- 2. Wyznaczenie odstępu międzykwartylowego $IQR = \mathit{Q3}$ $\mathit{Q1}$
- 3. Wyznaczenie dolnej $Q1 1.5 \times IQR$ oraz górnej $Q1 + 1.5 \times IQR$ granicy.

```
Q1 = quantile(database$PrzebiegKm, 0.25);
Q3 = quantile(database$PrzebiegKm, 0.75);
IQR = Q3-Q1;
lower_bound = Q1 - 1.5*IQR #mniejsze niż
upper_bound = Q3 + 1.5*IQR #większe niż
cat("Wyznacznowe granice metodą 3 sigma \n")

## Wyznacznowe granice metodą 3 sigma
cat("Dolna granica ", lower_bound, ", górna granica ", upper_bound, "\n");

## Dolna granica -47281.25 , górna granica 303568.8

cat("Dolna granica wykracza poza osiągane wartości kwot sprzedaży (ujemna wartość). \n")

## Dolna granica wykracza poza osiągane wartości kwot sprzedaży (ujemna wartość).

database = database[database$PrzebiegKm >= lower_bound & database$PrzebiegKm <= upper_bound,]
```

```
database %>% group_by(Marka) %>% summarise(liczbaSprzedanych = n(),
                                                    sredniaCena = mean(CenaPLN),
                                                    medianaCena = median(CenaPLN))
## # A tibble: 11 x 4
                    liczbaSprzedanych sredniaCena medianaCena
##
     Marka
##
      <chr>>
                                <int>
                                            <dbl>
                                                        <dbl>
##
   1 Audi
                                           64178.
                                                       46900
                                 3322
## 2 BMW
                                 2217
                                           61711.
                                                       51500
## 3 Fiat
                                 1923
                                           19118.
                                                       14800
## 4 Ford
                                           27389.
                                 5393
                                                       22900
## 5 Mercedes-Benz
                                 2319
                                           62040.
                                                       46000
## 6 Opel
                                 4991
                                           24201.
                                                       22600
## 7 Peugeot
                                 3199
                                           25212.
                                                       22000
## 8 Renault
                                 4714
                                           21099.
                                                       17810.
## 9 Skoda
                                           29156.
                                 2928
                                                       26450
## 10 Toyota
                                 2669
                                           36048.
                                                       29900
## 11 Volkswagen
                                 6120
                                           35673.
                                                       29900
```

Dane po eliminacją danych odstających

```
summarise(database,
    srednia = mean(CenaPLN),
    mediana = median(CenaPLN),
    wariancja = var(CenaPLN),
    odchylenieStd = sd(CenaPLN),
    max = max(CenaPLN),
    min = min(CenaPLN),
)
## srednia mediana wariancja odchylenieStd max min
## 1 34656.67 25900 870294063 29500.75 194800 1000
```

ggplot(data=database) + geom_histogram(aes(x=CenaPLN), bins = 50) + ggtitle("Histogram dla cen sprzedaż

Histogram dla cen sprzeda y

ggplot(data=database) + geom_boxplot(aes(x=CenaPLN)) + ggtitle("Wykres pudełko-wąsy dla cen sprzedaży")

Wykres pudełko-w sy dla cen sprzeda y

ggplot(data=database, aes(sample = CenaPLN)) + stat_qq() + stat_qq_line(colour="red") + ylab("Kwantyl T
ggtitle("Wykres QQ dla cen sprzedaży") + theme(axis.text.x = element_blank(), axis.text.y = element_b

Wykres QQ dla cen sprzeda y


```
fuelType = database %>% group_by(database$RodzajPaliwa) %>% summarise(liczba = n());
colnames(fuelType) = c("FuelType", "Count");
fuelType = fuelType[order(fuelType$Count, decreasing = TRUE),]
fuelType
```

```
## # A tibble: 6 x 2
##
     FuelType
                            Count
##
     <chr>
                             <int>
## 1 olej napędowy (diesel) 26980
## 2 benzyna
                            11878
## 3 benzyna+LPG
                              883
## 4 benzyna+CNG
                                23
## 5 hybryda
                                21
## 6 napęd elektryczny
                               10
ggplot(fuelType, aes(x="", y=Count, fill=FuelType)) +
  geom_bar(stat="identity", width=1, color="white") +
  coord_polar("y", start=0) + theme_void();
```


Liczba koni mechanicznych samochodu

```
summarise(database,
  srednia = mean(KM),
 mediana = median(KM),
 wariancja = var(KM),
 odchylenieStd = sd(KM),
 max = max(KM),
 min = min(KM),
##
      srednia mediana wariancja odchylenieStd max min
## 1 116.2776
                  106 2567.881
                                     50.67426 1400
upper_price_example = database[which(database$CenaPLN >= upper_bound),];
head(upper_price_example[order(upper_price_example$CenaPLN, decreasing = TRUE),])
  [1] NrOferty
                               CenaPLN
                                                      LiczbaDrzwi
   [4] Marka
                               Model
##
## [7] PojemnoscSkokowa
                               PrzebiegKm
                                                      RodzajPaliwa
## [10] RokProdukcji
                               Kolor
                                                      KrajPochodzenia
## [13] PojazdUszkodzony
                               SkrzyniaBiegowManualna
## <0 wierszy> (lub 'row.names' o zerowej długości)
ggplot(data=database)+ geom_histogram(aes(x=KM), binwidth = 20) + ggtitle("Histogram dla KM")
```


VI - Budowa macierzy z bazy danych

Do zbudowanie macierzy wykorzystano wszystkie dostępne numeryczne dane tj. CenaPLN, KM, PrzebiegKm, RokProdukcji, PojemnoscSkokowa. Dzięki temu możliwe jest wyznaczenie macierzy korelacji pomiędzy danymi.

```
# Select data
vi_database = select(filter(database, PojazdUszkodzony==FALSE & SkrzyniaBiegowManualna == TRUE),
                      c("CenaPLN", "KM", "PrzebiegKm", "RokProdukcji", "PojemnoscSkokowa"))
#Display head
head(vi_database)
     CenaPLN KM PrzebiegKm RokProdukcji PojemnoscSkokowa
##
       27900 150
                       80840
                                     2005
## 1
                                                       1900
## 2
       28000 116
                      166000
                                      2004
                                                       2000
## 3
       25500 150
                      112000
                                     2002
                                                       1781
## 4
       29900 109
                       42000
                                      2005
                                                       1991
## 5
       29800 207
                      169000
                                      2004
                                                       2946
       21400 122
                      160000
                                      2003
                                                       1800
# Dimension
vi_dim <- dim(vi_database);</pre>
cat("Rozmiar macierzy:", vi_dim[1], "x", vi_dim[2]);
```

Rozmiar macierzy: 32646 x 5

```
# Columns mean
vi_means = round(colMeans(vi_database), 3);
cat(paste(names(vi_means), vi_means, sep = " : ", collapse = ",\n"))
## CenaPLN : 29250.103,
## KM : 104.378,
## PrzebiegKm : 127080.842,
## RokProdukcji : 2005.089,
## PojemnoscSkokowa : 1739.627
# Correlation
vi_corr_matrix = cor(vi_database);
print(vi_corr_matrix)
                                      KM PrzebiegKm RokProdukcji PojemnoscSkokowa
##
                       CenaPLN
## CenaPLN
                     1.0000000 0.5096861 -0.3659806
                                                      0.62332163
                                                                        0.38550218
## KM
                     0.5096861 1.0000000
                                         0.1047219
                                                      0.07592120
                                                                        0.73909520
## PrzebiegKm
                    -0.3659806 0.1047219
                                          1.0000000
                                                     -0.57854449
                                                                        0.30351805
## RokProdukcji
                     0.6233216 0.0759212 -0.5785445
                                                       1.0000000
                                                                       -0.09648703
## PojemnoscSkokowa 0.3855022 0.7390952 0.3035180 -0.09648703
                                                                        1.0000000
corrplot(vi_corr_matrix, order = "hclust",
         tl.col = "black", tl.srt = 45)
```


Jak można zaobserwować: - CenaPLN skorelowana jest z RokProdukcji (silnie), KM, PojemnoscSkokowa oraz odwrotnie z PrzebiegKM,

- PojemnoscSkokowa jest silnie skorelowana z ilością KM (większa pojemność -> więcej KM), - PrzebiegKM jest odwrotnie skorelowany z RokProdukcji (starszy samochód -> większy przebieg).

VII - Przedziały ufności

W tej sekcji przedstawione zostaną badania określające przedziały ufności z różnym stopniem 'zaufania'. Oznacza to, że jeśli grupa badana była zgromadzona w sposób losowy to rzeczywisty parametr populacji z z określonym stopniem 'zaufania' znajduje się w tym przedziale.

Zmienna numeryczna

W celu określnenia przedziałów ufności zmiennej numerycznej wybrano cechę *CenaPLN*. Przedział ufności dla średniej:

```
# Meta data
# Confidence level 0.9, 0.95, 0.99
confidence_level = c(0.9, 0.95, 0.99);
# Basic data
vii_price_mean = mean(database$CenaPLN);
vii_price_sd = sd(database$CenaPLN);
n = length(database$CenaPLN);
# Mean confidence function
mean_confidence <- function(mean, sd, n, confidence_level) {</pre>
  alpha = 1 - confidence_level;
 offset = qnorm(1 - alpha / 2) * sd / sqrt(n);
  lower bound = mean - offset;
 upper_bound = mean + offset;
 return(c(lower_bound, upper_bound));
};
# Calculate confidence
mean_confidence_intervals = sapply(confidence_level, function(conf_level) {
  mean_confidence(vii_price_mean, vii_price_sd, n, conf_level)
});
# Create matrix
mean_confidence_intervals = t(mean_confidence_intervals);
rownames(mean_confidence_intervals) = paste0("Poziom ufności: ", confidence_level);
colnames(mean_confidence_intervals) = c("Dolny przedział", "Górny przedział");
# Display
print("Przedziały ufności średniej dla różnych poziomów ufności:");
## [1] "Przedziały ufności średniej dla różnych poziomów ufności:"
print(mean_confidence_intervals);
##
                        Dolny przedział Górny przedział
## Poziom ufności: 0.9
                               34413.42
                                               34899.92
## Poziom ufności: 0.95
                               34366.82
                                               34946.52
## Poziom ufności: 0.99
                               34275.75
                                               35037.59
Przedział ufności dla wariancji:
# Meta data
# Confidence level 0.9, 0.95, 0.99
confidence_level = c(0.9, 0.95, 0.99);
```

```
# SD confidence function
sd_confidence <- function(mean, n, confidence_level) {</pre>
  alpha = 1 - confidence_level;
  offset = qnorm(1 - alpha / 2) / sqrt(2*n);
  lower bound = mean / (1 + offset);
  upper_bound = mean / (1 - offset);
 return(c(lower_bound, upper_bound));
};
# Calculate confidence
sd_confidence_intervals = sapply(confidence_level, function(conf_level) {
  sd_confidence(vii_price_mean, n, conf_level);
});
# Create matrix
sd_confidence_intervals = t(sd_confidence_intervals);
rownames(sd_confidence_intervals) = paste0("Poziom ufności: ", confidence_level);
colnames(sd_confidence_intervals) = c("Dolny przedział", "Górny przedział");
# Display
print("Przedziały ufności odchylenia standardowego dla różnych poziomów ufności:");
## [1] "Przedziały ufności odchylenia standardowego dla różnych poziomów ufności:"
print(sd confidence intervals);
                        Dolny przedział Górny przedział
## Poziom ufności: 0.9
                               34455.78
                                               34859.92
                               34417.56
                                               34899.13
## Poziom ufności: 0.95
## Poziom ufności: 0.99
                                               34976.01
                               34343.11
```

Przedział ufności dla zmiennej jakościowej (frakcyjna)

Do wyznaczenia przedziału ufności dla zmiennej PojazdUszkodzony (rozkład Bernoulliego)

```
# Meta data
# Confidence level 0.9, 0.95, 0.99
confidence_level = c(0.9, 0.95, 0.99);
# Basic data
vii_positive = sum(database$PojazdUszkodzony == TRUE);
          = length(database$PojazdUszkodzony);
vii all
mean_bool_confidence <- function(m, n, confidence_level) {</pre>
  alpha = 1 - confidence_level;
 mn = m / n;
 offset = qnorm(1 - alpha / 2) * sqrt(mn * (1-mn)) / sqrt(n);
 lower_bound = mn - offset;
  upper_bound = mn + offset;
  return(c(lower_bound, upper_bound));
};
# Calculate confidence
confidence_intervals = sapply(confidence_level, function(conf_level) {
 mean_bool_confidence(vii_positive, vii_all, conf_level);
```

```
});
# Create matrix
confidence_intervals = t(confidence_intervals);
rownames(confidence_intervals) = paste0("Poziom ufności: ", confidence_level);
colnames(confidence_intervals) = c("Dolny przedział", "Górny przedział");
print("Przedziały ufności dla frakcji dla różnych poziomów ufności (Udział pojazdów uszkodzonych):");
## [1] "Przedziały ufności dla frakcji dla różnych poziomów ufności (Udział pojazdów uszkodzonych):"
print(confidence_intervals);
                        Dolny przedział Górny przedział
## Poziom ufności: 0.9
                             0.03528564
                                             0.03839196
## Poziom ufności: 0.95
                             0.03498810
                                             0.03868950
## Poziom ufności: 0.99
                                             0.03927103
                             0.03440657
```

IX - Regresja liniowa i inne

Modele dla jednej zmiennej


```
summary(model);
##
## Call:
## lm(formula = CenaPLN ~ ., data = ix_database)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
                                 Max
  -40733 -11549 -3678
                          6986 152257
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.465e+04 2.398e+02 186.17
## PrzebiegKm -1.212e-01 1.706e-03 -71.05
                                               <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 18550 on 32644 degrees of freedom
## Multiple R-squared: 0.1339, Adjusted R-squared: 0.1339
## F-statistic: 5049 on 1 and 32644 DF, p-value: < 2.2e-16
print(model$coefficients);
     (Intercept)
                   PrzebiegKm
## 44651.6424984
                   -0.1211948
ix_database = select(filter(database, PojazdUszkodzony==FALSE & SkrzyniaBiegowManualna == TRUE),
                     c("CenaPLN", "PojemnoscSkokowa"))
```

```
model = lm(CenaPLN ~ . , data = ix_database)
ix_sample = ix_database[sample(nrow(ix_database), size=1000),]
plot(CenaPLN ~ PojemnoscSkokowa, data=ix_sample, col = 'darkcyan')
abline(model, col="red")
```


summary(model);

```
##
## lm(formula = CenaPLN ~ ., data = ix_database)
##
## Residuals:
##
      Min
                1Q
                   Median
                               ЗQ
                                       Max
## -106802 -11243
                                   159245
                     -3490
                              6365
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    -7527.2394
                                 497.7274
                                          -15.12
                                                    <2e-16 ***
## PojemnoscSkokowa
                                   0.2801
                                            75.49
                       21.1409
                                                    <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 18390 on 32644 degrees of freedom
## Multiple R-squared: 0.1486, Adjusted R-squared: 0.1486
## F-statistic: 5698 on 1 and 32644 DF, p-value: < 2.2e-16
```

```
print(model$coefficients);

## (Intercept) PojemnoscSkokowa
## -7527.23942 21.14093
```

Modele dla 2 zmiennych

```
##
## Call:
## lm(formula = CenaPLN ~ ., data = ix_database)
##
```

summary(model);

```
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    -5.437e+02 4.200e+02
                                           -1.294
                    -1.762e-01 1.483e-03 -118.785 <2e-16 ***
## PrzebiegKm
## PojemnoscSkokowa 3.000e+01 2.456e-01 122.129
                                                    <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15370 on 32643 degrees of freedom
## Multiple R-squared: 0.4056, Adjusted R-squared: 0.4055
## F-statistic: 1.114e+04 on 2 and 32643 DF, p-value: < 2.2e-16
print(model$coefficients);
##
        (Intercept)
                          PrzebiegKm PojemnoscSkokowa
       -543.7320918
##
                          -0.1761712
                                           29.9959737
Drzewa decyzyjne
ix_database = select(filter(database, PojazdUszkodzony==FALSE & SkrzyniaBiegowManualna == TRUE),
                     c("CenaPLN", "RokProdukcji", "PojemnoscSkokowa"))
ix_data_split = initial_split(ix_database, prop = 0.75);
ix_train_data <- training(ix_data_split);</pre>
ix_test_data <- testing(ix_data_split);</pre>
tree spec <- decision tree() %>%
set engine("rpart") %>%
 set mode("regression")
tree_fit <- tree_spec %>%
fit(CenaPLN ~ ., data = ix_train_data)
predictions <- tree_fit %>%
predict(ix_test_data) %>%
pull(.pred)
metrics <- metric_set(rmse, rsq)</pre>
model performance <- ix test data %>%
mutate(predictions = predictions) %>%
metrics(truth = CenaPLN, estimate = predictions)
print(model_performance)
## # A tibble: 2 x 3
     .metric .estimator .estimate
##
     <chr> <chr>
                            <dbl>
## 1 rmse
            standard 11333.
## 2 rsq
             standard
```

Residuals:

Min

-156582 -8871 -1542

1Q Median

30

6472 138780

Max

##

rpart.plot(tree_fit\$fit, type = 5, extra = 101, under = TRUE, cex = 0.8, box.palette = "auto")

0.665

Warning: Cannot retrieve the data used to build the model (so cannot determine roundint and is.binary ## To silence this warning:

- ## Call rpart.plot with roundint=FALSE,
- ## or rebuild the rpart model with model=TRUE.

