Math 158 HW4

Question 5.9.2. Let $k \ge 1$. Prove that an *n*-vertex bipartite graph containing no matching of size k has at most (k-1)(n-k+1) edges for $n \ge 2k$. For each $k \ge 1$ and $n \ge 2k$, give an example of a graph with exactly (k-1)(n-k+1) edges and no matching of size k.

Proof. Let G be a n-vertex bipartite graph. For $n \geq 2k$, we prove by induction on n that if G has no matching of size k and has at least (k-1)(n-k+1) edges, then $G = K_{k-1,n-k+1}$. For n=2k, G has at least k^2-1 edges. Suppose G has parts with sizes $k+\gamma$ and $k-\gamma$, then $e(G) \leq (k+\gamma)(k-\gamma) = k^2-\gamma^2$. Since $k^2-\gamma^2 \geq e(G) \geq k^2-1$, γ can only be 0 or 1. Suppose $\gamma = 0$. $G \neq K_{k,k}$ because it has no matching of size k. Suppose $G = K_{k,k} - \{u,v\}$, for some $u,v \in V(K_{k,k})$. Since G has a $K_{k-1,k-1}$ subgraph that does not have v and some vertex $v \neq u$, G has a matching M of size k-1 such that $\{u,w\} \notin M$. Since u,w forms an edge in G, $M \cup \{u,w\}$ is a matching of G with size k. Thus, for n=2k, G must be $K_{k-1,k+1}$ to have at least k^2+1 edges.

For $n \geq 2k+1$, let G be an n-vertex graph with no matching of size k and $e(G) \geq (k-1)(n-k+1)$. Let H be a subgraph with (k-1)(n-k+1) edges. Suppose for the sake of contradiction that $\delta(H) \geq k$. Let P be the longest path in H, say $v_1v_2\ldots v_m$. We know $N(v_1)\subseteq V(P)$. Since H is bipartite, H does not contain any triangles, so there exists $v_i\in N(v_1)$ for some $2k\leq i\leq m$. Thus, $v_1v_2\cdots v_iv_1$ is a cycle of length at least 2k in H, and the cycle contains a matching of size k, contradiction. Thus, $\delta(H)\leq k-1=\delta(K_{k-1,n-k+1})$. If v is a vertex of minimum degree in H, then

$$e(H - \{v\}) \ge e(K_{k-1, n-k+1}) - \delta(K_{k-1, n-k+1}) \tag{1}$$

$$= (k-1)(n-k+1) - (k-1) = e(K_{k-1,n-k}).$$
(2)

Question 5.9.3. Determine for all $n \ge 1$ the value of $ex(n, P_3)$.

Proof. By the Erdös-Gallai Theorem, we know $\operatorname{ex}(n,P_3) \leq n$, with equality if and only if 3|n and every component of the graph is K_3 . Thus, if 3|n, a graph that consists of a union of K_3 has n edges and is a maximal graph that does not contain any P_3 , so $\operatorname{ex}(n,P_3) \geq n$. If $3 \nmid n$, we have $\operatorname{ex}(n,P_3) \leq n-1$. Since $K_{n-1,1}$ is a maximal graph that has no P_3 and $e(K_{n-1,1}) = n-1$, $\operatorname{ex}(n,P_3) \geq n-1$. Therefore,

$$ex(n, P_3) = \begin{cases} n, & \text{if } n | 3\\ n-1, & \text{otherwise.} \end{cases}$$

Question 5.9.8. Let G be a graph. Prove that there exists a partition (A, B) of V(G) such that $e(A, B) \ge \frac{1}{2}e(G)$ and $|A| \le |B| \le |A| + 1$.

Proof. We will first prove by induction on n to show that there exists a partition (A,B) of V(G) such that $e(A,B) \geq \frac{1}{2}e(G)$ and |A| = |B|, for n = |V(G)| is even. The case n = 2 is true since e(A,B) = e(G). For n > 2, if G is a complete graph, then we are done. Thus, we can assume there exist non-adjacent vertices $u,v \in G$. We obtain G' by removing u,v. By induction, there exists a partition (A',B') of V(G') such that $e(A',B') \geq \frac{1}{2}(e(G)-d(u)-d(v))$ and |A'|=|B'|. Since d(u)+d(v)=e(u,A')+e(u,B')+e(v,A')+e(v,B'), we know $\max(e(u,A')+e(v,B'),e(u,B')+e(v,A')) \geq \frac{1}{2}(d(u)+d(v))$. Suppose without loss of generality that $e(u,A')+e(v,B') \geq \frac{1}{2}(d(u)+d(v))$. Let $A=A'\cup\{v\}$, $B=B'\cup\{u\}$. Then (A,B) is a partition of V(G) such that $e(A,B) \geq \frac{1}{2}e(G)$.

Suppose that n is odd. Let $v \in G$. We know there exists a partition (A', B') of $V(G) \setminus \{v\}$ such that $e(A', B') \ge \frac{1}{2}(e(G) - d(v))$ and |A'| = |B'|. Since d(v) = e(v, A') + e(v, B'), $\max(e(v, A'), e(v, B')) \ge \frac{1}{2}d(v)$. Suppose, without loss of generality, that $e(v, A') \ge \frac{1}{2}d(v)$. Let A = A', $B = B' \cup \{v\}$. Then (A, B) is a partition of V(G) such that $e(A, B) \ge \frac{1}{2}e(G)$.

Question 5.9.12. Let G be a bipartite graph with parts of sizes m and n, not containing a 4-cycle. Prove that

$$|E(G)| \le m\sqrt{n} + m + n$$

Proof. Let M, N be parts of G such that |M| = m, |N| = n. We count the number of $K_{1,2}$. Since no set of 2 vertices have more than 1 common neighbor, we get

$$\sum_{v \in N} \binom{d(v)}{2} \le \binom{m}{2} \le \frac{m^2}{2}.$$

Let d be the average degree of the vertices in N. Since $|E(G)| = nd \le n$ for $d \le 1$, we can assume $d \ge 2$. Define $f: \mathbb{R} \to \mathbb{R}$ to be $f(x) = \begin{cases} \binom{x}{2} & , x \ge 2 \\ 0 & , x < 2 \end{cases}$. Since f is convex, Jensen's inequality gives

$$\sum_{v \in N} \binom{d(v)}{2} \ge n \binom{d}{2} \ge \frac{n(d-1)^2}{2}.$$

Thus, we get

$$n(d-1)^2 \le m^2 \tag{3}$$

$$d \le \frac{m}{\sqrt{n}} + 1 \tag{4}$$

Therefore, $|E(G)| = nd \le m\sqrt{n} + n \le m\sqrt{n} + m + n$.

Question 6.3.9. Prove that for $n > 2^k$, every k-coloring of $E(K_n)$ gives a monochromatic odd cycle

Proof. Suppose for sake of contradiction that G is a k-edge-colored K_n with no monochromatic odd cycle, for $n \geq 2^k + 1$. G contains a subgraph k-colored K_{2^k+1} with no monochromatic odd cycle, we name it G_k . We obtain $H \subseteq G_k$ by picking a color from G_k and removing all edges that are not that color. Since G_k contains no monochromatic odd cycles, H is bipartite, say with parts A, B. Assume, without loss of generality, that $|A| \geq 2^{k-1} + 1$. Let H' = G[A]. Then H' contains a (k-1)-edge-coloring of a $K_{2^{k-1}+1}$ with no monochromatic odd cycle, we name it G_{k-1} . By recursively finding a complete subgraph G_r with fewer colors, we can find G_3 , a 1-edge-colored K_3 with no monochromatic odd cycle, contradiction. Therefore, G contains a monochromatic odd cycle.