Ray Tsai

April 25, 2025

Overview

- Introduction
- 2 Double Turán Problem
- Induced Double Turán Problem
- Main Results
- Proof of Theorem B
- 6 Proof of Theorem C

Ray Tsai

What is the Turán problem?

What is the Turán problem?

Question

Given a graph F, how many edges can an n-vertex graph have while containing no copy of F as a subgraph?

Let F be a graph. We call the following quantity the *Turán number* or extremal number of F:

Definition

$$ex(n, F) := max\{e(G) : |V(G)| = n \text{ and } F \not\subseteq G\}$$

Turán's theorem

The maximum number of edges in an *n*-vertex graph containing no clique of order r + 1 is $e(T_r(n))$, with equality only for $T_r(n)$.

Erdős-Stone Theorem, Simonovits' Theorem

Let F be any graph of chromatic number $r + 1 \ge 3$. Then $ex(n, F) = (1 + o(1))T_r(n) \text{ as } n \to \infty.$

What is the double Turán problem?

What is the double Turán problem?

Let G_1, G_2, \ldots, G_m be graphs on [n] with $E(F) \not\subseteq E(G_i) \cap E(G_j)$ for distinct $i, j \in [m]$.

What is the double Turán problem?

Let G_1, G_2, \ldots, G_m be graphs on [n] with $E(F) \not\subseteq E(G_i) \cap E(G_j)$ for distinct $i, j \in [m]$. (Double F-free)

What is the double Turán problem?

Let G_1, G_2, \ldots, G_m be graphs on [n] with $E(F) \not\subseteq E(G_i) \cap E(G_j)$ for distinct $i, j \in [m]$. (Double F-free)

Question

What is the value of $\phi(m, n, F) = \max \sum_{i=1}^{m} G_i$?

7/31

Double Turán problems are closely related to Turán problems for 3-uniform hypergraphs *H* through *link graphs*.

8/31

Double Turán problems are closely related to Turán problems for 3-uniform hypergraphs H through $link\ graphs$.

Definition

For $i \in V(H)$, define graph H_i with

$$V(H_i) = V(H) \setminus \{i\}$$
 and $E(H_i) = \{\{j, k\} : \{i, j, k\} \in E(H)\}.$

8/31

Example: Octahedron-free 3-uniform hypergraph H

9/31

Example: Octahedron-free 3-uniform hypergraph H

Figure: Octahedron O

Example: Octahedron-free 3-uniform hypergraph *H*

Figure: Octahedron O

H is octahedron-free $\implies H_1, H_2, \dots, H_n$ are double C_4 -free.

Example: Octahedron-free 3-uniform hypergraph H

Figure: Octahedron O

H is octahedron-free $\implies H_1, H_2, \dots, H_n$ are double C_4 -free.

$$ex(n, O) \leq \phi(n, n, C_4)$$

What is the induced double Turán problem?

Ray Tsai Double Turán Problem April 25, 2025 10 / 31

What is the induced double Turán problem?

Definition

We call graphs G_1, G_2, \ldots, G_m induced if each G_i is an induced subgraph of $\bigcup_{i=1}^m G_i$.

10 / 31

What is the *induced* double Turán problem?

Definition

We call graphs G_1, G_2, \ldots, G_m induced if each G_i is an induced subgraph of $\bigcup_{i=1}^m G_i$.

Let graphs G_1, G_2, \ldots, G_m be induced and double F-free.

Question

What is the value of $\phi^*(m, n, F) = \max \sum_{i=1}^m e(G_i)$?

10 / 31

Generalizaed Turán problem

What is the maximum number $ex(n, F, K_3)$ of triangles in a graph H on [n] with no copy of F as a subgraph?

11/31

Generalizaed Turán problem

What is the maximum number $ex(n, F, K_3)$ of triangles in a graph H on [n] with no copy of F as a subgraph?

For $i \in V(G)$, define G_i with

$$V(G_i) = V(G)$$
 and $E(G_i) = \{\{j, k\} : \{i, j\}, \{j, k\}, \{i, k\} \in E(G)\}$

11/31

Ex. Octahedron-free graph G.

Figure: Octahedron

Figure: Octahedron Graph $K_{2,2,2}$

Ex. Octahedron-free graph *G*.

Figure: Octahedron

Figure: Octahedron Graph $K_{2,2,2}$

$$G$$
 is $K_{2,2,2}$ -free $\implies G_1, G_2, \dots, G_n$ are double $K_{2,2}$ -free.

Ex. Octahedron-free graph G.

Figure: Octahedron

Figure: Octahedron Graph $K_{2,2,2}$

$$G$$
 is $K_{2,2,2}$ -free $\implies G_1, G_2, \dots, G_n$ are double $K_{2,2}$ -free.

$$\exp(n, K_{2,2,2}, K_3) \le \phi(n, n, K_{2,2})$$

Theorem A

For $m \ge 3$ and non-bipartite F, if n is large enough, then

$$\phi^*(m,n,F)=m\cdot \mathrm{ex}(n,F),$$

with equality only for identical extremal n-vertex F-free graphs.

13/31

Theorem A

For $m \ge 3$ and non-bipartite F, if n is large enough, then

$$\phi^*(m, n, F) = m \cdot ex(n, F),$$

with equality only for identical extremal *n*-vertex *F*-free graphs.

Theorem B

For $m, n, r \geq 3$,

$$\phi^*(m,n,K_r)=m\cdot e(T_{r-1}(n)),$$

with equality for induced K_r -free graphs G_1, G_2, \ldots, G_m only if $G_1 = G_2 = \cdots = G_m = T_{r-1}(n)$.

13 / 31

We need the idea of (m, n, k)-blowup to state the result for $\phi(m, n, K_r)$.

Ray Tsai Double Turán Problem April 25, 2025 14/31

We need the idea of (m, n, k)-blowup to state the result for $\phi(m, n, K_r)$.

Figure: Example of an (4, n, 5)-blowup not containing a double K_3 .

Ray Tsai Double Turán Problem April 25, 2025 14 / 31

Let f(m, n, r) denote the maximum possible sum of edges in an double K_r -free (m, n, k)-blowup with $k \leq {m \choose 2}$.

Ray Tsai Double Turán Problem April 25, 2025 15 / 31

Let f(m, n, r) denote the maximum possible sum of edges in an double K_r -free (m, n, k)-blowup with $k \leq {m \choose 2}$.

Theorem C

For n > 1,

$$\phi(3, n, K_3) = \binom{n}{2} + \left\lfloor \frac{n^2}{2} \right\rfloor.$$

 \bigcirc if r > 2 and m > 1,

$$\phi(m, n, K_r) = f(m, n, r).$$

In particular,

$$\lim_{n\to\infty}\frac{f(4,n,3)}{\binom{n}{2}+\left\lfloor\frac{n^2}{2}\right\rfloor}>1$$

Conjecture

Let F be any non-empty graph and $m, n \ge 1$. Then

$$\phi^*(m, n, F) = \Theta(m \cdot \operatorname{ex}(n, F) + n^2).$$

16/31

Conjecture

Let F be any non-empty graph and $m, n \ge 1$. Then

$$\phi^*(m, n, F) = \Theta(m \cdot ex(n, F) + n^2).$$

$$\phi^*(m, n, F) \ge \max\left\{\binom{n}{2}, m \cdot \operatorname{ex}(n, F)\right\}.$$

Conjecture

Let F be any non-empty graph and $m, n \ge 1$. Then

$$\phi^*(m,n,F) = \Theta(m \cdot \operatorname{ex}(n,F) + n^2).$$

By Theorem 1, the conjecture is true when F is non-bipartite.

17 / 31

Conjecture

Let F be any non-empty graph and $m, n \ge 1$. Then

$$\phi^*(m, n, F) = \Theta(m \cdot ex(n, F) + n^2).$$

Since

$$ex(n, K_{2,2,2}, K_3) \le \phi^*(n, n, K_{2,2})$$

the conjecture implies

$$ex(n, K_{2,2,2}, K_3) \le O(n^2)$$

Ray Tsai

Theorem D

Let F be a graph. If there exists an extremal F-free n-vertex graph with maximum degree at most \sqrt{n}/m^2 , then

$$\phi(m,n,F) = \binom{n}{2} + \binom{m}{2} \exp(n,F).$$

Ray Tsai Double Turán Problem April 25, 2025 19 / 31

Main Results

Theorem D

Let F be a graph. If there exists an extremal F-free n-vertex graph with maximum degree at most \sqrt{n}/m^2 , then

$$\phi(m,n,F) = \binom{n}{2} + \binom{m}{2} \exp(n,F).$$

If P is a path of length 2 and $m = o(n^{1/4})$,

$$\binom{n}{2}+m-1\leq \phi^*(m,n,P)\leq \phi(m,n,P)=\binom{n}{2}+\binom{m}{2}\left\lfloor\frac{n}{2}\right\rfloor.$$

Ray Tsai Double Turán Problem April 25, 2025 19 / 31

Main Results

Theorem E

Let P be a path with two edges. Then $\phi(n, n, P) = \Omega(n^{5/2})$, whereas $\phi^*(n, n, P) = o(n^{5/2})$, as $n \to \infty$. In particular,

$$\lim_{n\to\infty}\frac{\phi^*(n,n,P)}{\phi(n,n,P)}=0.$$

Main Results

Theorem E

Let P be a path with two edges. Then $\phi(n, n, P) = \Omega(n^{5/2})$, whereas $\phi^*(n, n, P) = o(n^{5/2})$, as $n \to \infty$. In particular,

$$\lim_{n\to\infty}\frac{\phi^*(n,n,P)}{\phi(n,n,P)}=0.$$

This shows that $\phi(n, n, P)$ and $\phi^*(n, n, P)$ are very different problems.

20 / 31

Proof of Theorem B

Theorem B

Let $m, n, r \geq 3$. Then

$$\phi^*(m,n,K_r)=m\cdot e(T_{r-1}(n)),$$

with equality for induced K_r -free graphs G_1, G_2, \ldots, G_m only if $G_1 = G_2 = \cdots = G_m = T_{r-1}(n)$.

Proof Roadmap

- Step 1: Reduce to the case of smaller m
- Step 2: Further reduce to an optimization problem
- Step 3: Solve the optimization problem

Step 1: Reduce to the case of smaller *m*

Proof Roadmap

- **Step 1**: Reduce to the case of smaller *m*
- Step 2: Further reduce to an optimization problem
- Step 3: Solve the optimization problem

22 / 31

Proof Roadmap

- Step 1: Reduce to the case of smaller m
- Step 2: Further reduce to an optimization problem
- Step 3: Solve the optimization problem

23 / 31

24/31

Observation

If G_1 , G_2 intersects in t vertices, Then

$$e(G_1) + e(G_2) \le {n-t \choose 2} + (n-t)t + 2ex(t, F)$$

24 / 31

Observation

If G_1 , G_2 intersects in t vertices, Then

$$e(G_1) + e(G_2) \le {n-t \choose 2} + (n-t)t + 2ex(t, F)$$

 \implies we are done if the unique maximum is at t = n.

Step 3: Solve the optimization problem

Proof Roadmap

- Step 1: Reduce to the case of smaller m
- Step 2: Further reduce to an optimization problem
- **Step 3:** Solve the optimization problem

We need to show

$$\phi(m, n, F) \leq \binom{n}{2} + \exp(n, F) \binom{m}{2}.$$

Ray Tsai Double Turán Problem April 25, 2025 26 / 31

We need to show

$$\phi(m, n, F) \leq \binom{n}{2} + \exp(n, F) \binom{m}{2}.$$

Let E_S be the set of edges in exactly $\{G_i\}_{i\in S}$.

26 / 31

We need to show

$$\phi(m, n, F) \leq {n \choose 2} + \exp(n, F) {m \choose 2}.$$

Let E_S be the set of edges in exactly $\{G_i\}_{i\in S}$.

$$\implies \sum_{i=1}^m e(G_i) = \sum_{S\subseteq [m]} |S||E_S| \leq \binom{n}{2} + \sum_{S\subseteq [m], |S|\geq 2} (|S|-1)|E_S|.$$

26 / 31

$$\sum_{\substack{S\subseteq[m]\\|S|\geq 2}}(|S|-1)|E_S|=\sum_{\substack{S\subseteq[m],\\|S|=2}}\sum_{T\supseteq S}\frac{(|T|-1)|E_T|}{{|T|\choose 2}}\leq \sum_{\substack{S\subseteq[m],\\|S|=2}}\sum_{T\supseteq S}|E_T|,$$

as each $T \in [m]$ with $|T| \ge 2$ is counted $\binom{|T|}{2}$ times.

Ray Tsai Double Turán Problem April 25, 2025 27 / 31

Observation: If $|S| \ge 2$, the edge set $\bigcup_{T \supseteq S} E_T$ is F-free.

Ray Tsai Double Turán Problem April 25, 2025 28 / 31

Observation: If $|S| \ge 2$, the edge set $\bigcup_{T \supseteq S} E_T$ is F-free.

$$\left|\bigcup_{T\supseteq S} E_T\right| = \sum_{T\supseteq S} |E_T| \le \operatorname{ex}(n, F)$$

Ray Tsai Double Turán Problem April 25, 2025 28 / 31

Observation: If $|S| \ge 2$, the edge set $\bigcup_{T \supset S} E_T$ is *F*-free.

$$\left|\bigcup_{T\supseteq S} E_T\right| = \sum_{T\supseteq S} |E_T| \le \operatorname{ex}(n, F)$$

$$\implies \sum_{\substack{S\subseteq[m]\\|S|\geq 2}}(|S|-1)|E_S|\leq \sum_{\substack{S\subseteq[m],\\|S|=2}}\sum_{T\supseteq S}|E_T|\leq \binom{m}{2}\mathrm{ex}(n,F)$$

□ → < □ → < □ → < □ →
□ → < □ →

Let $H_1, \ldots, H_{\binom{m}{2}}$ be extremal F-free graphs on [n] with $\Delta(H_i) \leq \sqrt{n}/m^2$

⟨□⟩ ⟨□⟩ ⟨≡⟩ ⟨≡⟩ ⟨≡⟩ ⟨□⟩ ⟨□⟩

29/31

Let $H_1,\ldots,H_{\binom{m}{2}}$ be extremal F-free graphs on [n] with $\Delta(H_i)\leq \sqrt{n}/m^2$

n.t.s. we can embed each H_i onto [n] s.t. edges are pairwise disjoint.

Ray Tsai Double Turán Problem April 25, 2025 29 / 31

Let $H_1,\ldots,H_{\binom{m}{2}}$ be extremal F-free graphs on [n] with $\Delta(H_i)\leq \sqrt{n}/m^2$

n.t.s. we can embed each H_i onto [n] s.t. edges are pairwise disjoint.

IDEA: start with any embedding and iteratively decrease overlapping edges

Ray Tsai Double Turán Problem April 25, 2025 29 / 31

Define a (u, v, i)-swap by swapping the embedding of vertex u and v of H_i

Ray Tsai Double Turán Problem April 25, 2025 30 / 31

Define a (u, v, i)-swap by swapping the embedding of vertex u and v of H_i

 \implies (u, v, i)-swap perserves graph isomorphism.

Ray Tsai Double Turán Problem April 25, 2025 30 / 31

For vertex
$$v$$
, let $N(v) = N_{H_1}(v) \cup \cdots \cup N_{H_{\binom{m}{2}}}(v)$

Ray Tsai Double Turán Problem April 25, 2025 31 / 31

For vertex
$$v$$
, let $N(v) = N_{H_1}(v) \cup \cdots \cup N_{H_{\binom{m}{2}}}(v)$

Suppose there exists $\{u, w\} \in E(H_i) \cap E(H_j)$

Ray Tsai Double Turán Problem April 25, 2025 31/31

For vertex
$$v$$
, let $N(v) = N_{H_1}(v) \cup \cdots \cup N_{H_{\binom{m}{2}}}(v)$

Suppose there exists $\{u,w\} \in E(H_i) \cap E(H_j)$

$$|N(u)| \leq M \cdot \triangle \leq n^{1/2}/2$$

Ray Tsai Double Turán Problem April 25, 2025 31/31

For vertex
$$v$$
, let $N(v) = N_{H_1}(v) \cup \cdots \cup N_{H_{\binom{m}{2}}}(v)$

Suppose there exists $\{u, w\} \in E(H_i) \cap E(H_j)$

$$|N(u)| \le M \cdot \triangle \le n^{1/2}/2$$

$$\implies |N(u) \cup N(N(u))| \le \triangle + \triangle(\triangle - 1) \le n/4$$

Ray Tsai Double Turán Problem April 25, 2025 31 / 31

For vertex
$$v$$
, let $N(v) = N_{H_1}(v) \cup \cdots \cup N_{H_{\binom{m}{2}}}(v)$

Suppose there exists $\{u, w\} \in E(H_i) \cap E(H_j)$

$$|N(u)| \leq M \cdot \triangle \leq n^{1/2}/2$$

$$\implies |N(u) \cup N(N(u))| \le \triangle + \triangle(\triangle - 1) \le n/4$$

$$\implies \exists v \notin N(u) \cup N(N(u)), \text{ so } N(u) \cap N(v) = \emptyset.$$

Ray Tsai Double Turán Problem April 25, 2025 31/31

For vertex
$$v$$
, let $N(v) = N_{H_1}(v) \cup \cdots \cup N_{H_{\binom{m}{2}}}(v)$

Suppose there exists $\{u, w\} \in E(H_i) \cap E(H_j)$

$$|N(u)| \leq M \cdot \triangle \leq n^{1/2}/2$$

$$\implies |N(u) \cup N(N(u))| \le \triangle + \triangle(\triangle - 1) \le n/4$$

$$\implies \exists v \notin N(u) \cup N(N(u)), \text{ so } N(u) \cap N(v) = \emptyset.$$

$$\implies (u, v, i)$$
-swap makes $\{u, w\}$ not overlapping!

Ray Tsai

For vertex
$$v$$
, let $N(v) = N_{H_1}(v) \cup \cdots \cup N_{H_{\binom{m}{2}}}(v)$

Suppose there exists $\{u, w\} \in E(H_i) \cap E(H_j)$

$$|N(u)| \leq M \cdot \triangle \leq n^{1/2}/2$$

$$\implies |N(u) \cup N(N(u))| \le \triangle + \triangle(\triangle - 1) \le n/4$$

$$\implies \exists v \notin N(u) \cup N(N(u)), \text{ so } N(u) \cap N(v) = \emptyset.$$

$$\implies$$
 (u, v, i) -swap makes $\{u, w\}$ not overlapping!

Keep swapping until no overlapping edges left

31 / 31