BAYES-OPTIMAL SCORES FOR BIPARTITE RANKING

Aditya Krishna Menon & Robert C. Williamson

Problem: Characterise the Bayes-optimal scorers for the bipartite ranking risk with a surrogate loss ℓ .

Approach: Exploit the reduction of bipartite ranking to classification over pairs, and the machinery of proper composite losses.

Results: Under a condition on the link function for ℓ , we obtain the Bayes-optimal scorer, and surrogate regret bounds. Bayes-optimal scorers can also be established more generally, including for the p-norm push risk.

Bipartite ranking

Class-conditional densities and base rate

IID samples from $D = (P, Q, \pi)$ over $\mathfrak{X} \times \{\pm 1\}$ Input

Scorer $s: \mathfrak{X} \to \mathbb{R}$ Output

Performance AUC^D(s) = $\mathbb{E}_{X \sim P, X' \sim Q} \left[[s(X) > s(X')] + \frac{1}{2} [s(X) = s(X')] \right]$

AUC maximisation is challenging due to the non-convex indicator function. Typically, for a surrogate loss $\ell: \{\pm 1\} \times \mathbb{R} \to \mathbb{R}_+$, one minimises

$$\mathbb{L}^{D}_{\mathrm{Bipart},\ell}(s) := \frac{1}{2} \cdot \mathbb{E}_{\mathsf{X} \sim P, \mathsf{X}' \sim Q} \left[\ell_1(s(\mathsf{X}) - s(\mathsf{X}')) + \ell_{-1}(s(\mathsf{X}') - s(\mathsf{X})) \right].$$

This is intuitive, but is it consistent for AUC maximisation?

Bayes-optimal scorers

For a loss ℓ , the Bayes-optimal scorers are minimisers of the bipartite risk:

$$\mathcal{S}^{D,*}_{\operatorname{Bipart},\ell} := \operatorname*{argmin}_{s \colon \Upsilon \to \mathbb{R}} \mathbb{L}^{D}_{\operatorname{Bipart},\ell}(s).$$

For consistency, we minimally need $S_{\text{Bipart},\ell}^{D,*} \cap S_{\text{Bipart},01}^{D,*} \neq \emptyset$. The Neyman-Pearson lemma implies that $S_{\mathrm{Bipart},01}^{D,*}$ comprises all monotone transformations of $\eta: x \mapsto \Pr[Y = 1 | X = x]$. What is $S_{\text{Bipart},\ell}^{D,*}$?

We answer this for proper composite ℓ with invertible link $\Psi : [0,1] \to \mathbb{R}$. These are the fundamental losses of class-probability estimation, since

$$S_{\text{Class }\ell}^{D,*} = \Psi \circ \eta$$
.

Reduction to classification

For the pair-classification distribution Bipart(D) = ($P \times Q, Q \times P, 1/2$),

$$\mathbb{L}^{D}_{\mathrm{Bipart},\ell}(s) = \mathbb{L}^{\mathrm{Bipart}(D)}_{\mathrm{Class},\ell}(\mathrm{Diff}(s)) = \mathbb{E}_{((\mathsf{X},\mathsf{X}'),\mathsf{Y})\sim\mathrm{Bipart}(D)}\left[\ell(\mathsf{Y},(\mathrm{Diff}(s))(\mathsf{X},\mathsf{X}'))\right],$$
 where $\mathrm{Diff}(s):(x,x')\mapsto s(x)-s(x').$

It now seems we can simply compute $S_{\ell}^{Bipart(D),*}$. However, the risk only considers a restricted function class of decomposable scorers, $S_{Decomp} =$ $\{\mathrm{Diff}(s):s\colon \mathfrak{X}\to\mathbb{R}\}.$ Thus, computing $\mathcal{S}^{\mathrm{Bipart}(D),*}_{\ell}$ via the conditional risk requires $S_{\ell}^{\operatorname{Bipart}(D),*} \subseteq S_{\operatorname{Decomp}}$. When does this happen?

Decomposable solutions

An innocuous lemma will prove important. Let $\sigma(\cdot)$ denote the sigmoid.

Lemma. The observation-conditional density for Bipart(D) is

$$\eta_{\mathrm{Pair}} = \sigma \circ \mathrm{Diff}(\sigma^{-1} \circ \eta).$$

Consequently, for a proper composite ℓ , the optimal pair-scorer must be

$$\mathcal{S}^{\operatorname{Bipart}(D),*}_{\ell} = \Psi \circ \sigma \circ \operatorname{Diff}(\sigma^{-1} \circ \eta).$$

Thus, under a condition on the link function, we can seamlessly import results from classification.

Proposition. Given any strictly proper composite loss ℓ with a differentiable, invertible link function Ψ such that $(\exists a \in \mathbb{R}_+) \Psi^{-1} : v \mapsto \frac{1}{1+e^{-av}}$,

(A)
$$S_{\operatorname{Bipart},\ell}^{D,*} = \{\Psi \circ \eta + b : b \in \mathbb{R}\} \subseteq S_{\operatorname{Bipart},01}^{D,*}$$
.

(B)
$$\exists \ convex \ F_{\ell} : [0,1] \to \mathbb{R}_+ \ such \ that$$

$$(\forall D, s \colon \mathcal{X} \to \mathbb{R}) F_{\ell} \left(\operatorname{regret}_{\operatorname{Bipart.01}}^{D}(s) \right) \leq \operatorname{regret}_{\operatorname{Bipart.}\ell}^{D}(s).$$

Non-decomposable solutions

When $S_{\ell}^{\text{Bipart}(D),*} \cap S_{\text{Decomp}} = \emptyset$, the Bayes-optimal scorers may still be computed by explicitly differentiating the risk.

Proposition. Given any D and strictly proper composite loss $\ell(y,v) =$ $\phi(yv)$ with $\phi: \mathbb{R} \to \mathbb{R}_+$ convex, if ϕ' is bounded, or D has finite support,

$$\mathcal{S}^{D,*}_{\mathrm{Bipart},\ell} = \{s^* \colon \mathfrak{X} o \mathbb{R} : oldsymbol{\eta} = f^D_{s^*} \circ s^*\},$$

$$f_{s^*}^D: v \mapsto \frac{\pi \mathbb{E}_{\mathsf{X} \sim P} \left[\ell'_{-1} (v - s^*(\mathsf{X})) \right]}{\pi \mathbb{E}_{\mathsf{X} \sim P} \left[\ell'_{-1} (v - s^*(\mathsf{X})) \right] - (1 - \pi) \mathbb{E}_{\mathsf{X}' \sim O} \left[\ell'_{1} (v - s^*(\mathsf{X}')) \right]}.$$

Further, $f_{s^*}^D$ is invertible if $(\forall v \in \mathcal{V}) \phi'(v) = 0 \iff \phi'(-v) \neq 0$.

Here, the optimal scorer is a monotone transform of η , albeit with a distribution dependent link function.

The p-norm push risk

The *p*-norm push risk aims to focus effort on highly ranked instances:

$$\mathbb{L}^{D}_{\mathrm{push},\ell,g}(s) = \mathbb{E}_{\mathsf{X}'\sim Q}\left[\left(\mathbb{E}_{\mathsf{X}\sim P}\left[\ell_{1}(s(\mathsf{X})-s(\mathsf{X}'))\right]\right)^{p}\right], p\in[1,\infty).$$

Under exponential loss, the optimal scorer is a scaling of $\sigma^{-1} \circ \eta$.

Proposition. For any D with finite support, with $\ell^{\exp}(y,v) = e^{-yv}$,

$$\mathbb{S}^{D,*}_{\mathrm{push},\ell^{\mathrm{exp}},g^p} = \left\{ \frac{1}{p+1} (\sigma^{-1} \circ \eta) + b : b \in \mathbb{R} \right\}.$$

This is identical to the optimal scorer for the p-classification loss, $\ell(v) =$ $(e^{vp}/p, e^{-v})$, which has asymmetric weight function over misclassification costs $w: c \mapsto \left((p+1) \cdot c^{1+\frac{1}{p+1}} (1-c)^{2-\frac{1}{p+1}} \right)^{-1}$. Thus, the loss is seen to focus on instances with high η .

Risk equivalences

Our results imply that the following risk minimisers are equivalent, being the same monotone transform of η . This highlights the close connections between class-probability estimation and bipartite ranking.

(1) Diff
$$\left(\underset{s: \ X \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E} \left[e^{-\mathsf{Y}s(\mathsf{X})} \right] \right)$$
 (2) Diff $\left(\underset{s: \ X \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E} \left[e^{-(s(\mathsf{X}) - s(\mathsf{X}'))} \right] \right)$ (3) $\underset{s_{\operatorname{Pair}}: \ X \times X \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E} \left[e^{-(s_{\operatorname{N}} - s(\mathsf{X}'))} \right]$ (4) Diff $\left(\underset{s: \ X \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E} \left[\left(\mathbb{E}_{\mathsf{X} \sim P} \left[e^{-(s(\mathsf{X}) - s(\mathsf{X}'))} \right] \right)^{p} \right] \right)$

(3)
$$\underset{s \to \infty}{\operatorname{argmin}} \mathbb{E}_{X \sim PX' \sim Q} \left[e^{-s_{\operatorname{Pair}}(X, X')} \right]$$
 (4) $\underset{s \to \infty}{\operatorname{Diff}} \left(\underset{s \to \infty}{\operatorname{argmin}} \mathbb{E}_{X' \sim Q} \left[\left(\mathbb{E}_{X \sim P} \left[e^{-(s(X) - s(X'))} \right] \right)^{p} \right] \right)$