Name:	•••••	Maths	Class:	***************
Name:	***************************************	Maths	Class:	**************

SYDNEY TECHNICAL HIGH SCHOOL

Year 12 **Mathematics**

HSC Course

Assessment 2

March, 2017

Time allowed: 90 minutes

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A Reference Sheet is attached to the last page of this booklet. You may detach it.

Section 1 Multiple Choice Questions 1-5

5 Marks

Section II Questions 6-9

57 Marks

· Ċ • (

QUESTION 1

Which curve has f'(2) > 0 and f''(2) < 0?

A.

В.

C.

D.

QUESTION 2

Which does <u>not</u> show f''(x) = 0 at the indicated point?

A.

₿.

C.

D.

QUESTION 3

The graph of a function is shown.

Which is the graph of its derivative?

A.

Ç.

В.

D.

QUESTION 4

In an arithmetic sequence, the sum of the 6th and 12th terms is 250. What is the 9th term?

- A. 100
- B. 125
- C. 150
- D. 175

QUESTION 5

With annual compounding interest, \$1000 doubles in value after 18 years. What is the approximate rate of compound interest?

- A. 3.9%
- B. 0.039%
- C. 5.6%
- D. 0.56%

SECTION II

QUESTION 6 (14 marks) Start a new page.

- a) The general term of a certain sequence is given by $T_n=3n-2$.
 - i) Determine whether 348 belongs in this sequence.

1

ii) Find the sum of the first 100 terms.

1

- b) The sum to n terms of a certain series is given by $S_n=2n+n^2$.
 - i) Find the first and second terms, T_1 and T_2

2

ii) Find T_n , simplifying your answer.

2

iii) How many terms are required for the sum S_n to first exceed 80?

1

c) Evaluate : i) $\sum_{n=1}^{5} (n^2 - n)$

ii)
$$\sum_{n=100}^{200} (80 + n)$$

- d) For the infinite geometric series $1 + (x 1) + (x 1)^2 + \dots$
 - i) find \boldsymbol{x} such that a limiting sum exists.

1

ii) find the limiting sum when $x = \frac{3}{4}$

1

e) If 2, a, b are in arithmetic progression and a, b, 9 are in geometric progression, find the values of a and b.

3

QUESTION 7 (14 marks) Start a new page.

a) For a geometric sequence, $T_3 = 21$ and $T_7 = 336$. Find the common ratio.

2

2

b) Express the series 1+3+5+7+...+101 using sigma notation.

Do <u>not</u> evaluate the sum.

- c) Find the equation of the tangent to the curve $y = x^2 x$ at the point where x = 3. 2 Leave your answer in general form.
- d) Differentiate: i) $y = \frac{3x+2}{2x-1}$
 - ii) $y = x^2(3x+2)^5$
- e) For the curve $f(x) = 2x \sqrt{x}$, find: i) f'(x) 1
 ii) f''(4)
 - iii) the x value for which the curve is stationary. 2

QUESTION 8 (14 marks) Start a new page.

- a) For the curve $y = x^3 x^2$,
 - i) Find stationary points and determine their nature.
 - ii) Find, and prove, that a point of inflexion exists.
 - iii) Sketch the curve for $-1 \le x \le 2$.
 - iv) Find the maximum value of $x^3 x^2$ in the domain $-1 \le x \le 2$.

b)

The diagram shows the graph of y = f'(x), i.e. the derivative function of y = f(x).

- i) At which x value(s) are there stationary points on the original y = f(x) curve?
- ii) For the x value(s) in part i), determine the nature of each stationary point on y = f(x). 2

1

2

3

- iii) For what x value(s) is the curve y = f(x) decreasing?
- iv) Which feature on the curve y = f(x) is indicated by the point A?

QUESTION 9 (15 marks) Start a new page.

- a) A man plans to invest \$200 per month into a superannuation fund. It is assumed that he will do this for 40 years and that the fund earns 0.6% interest per month.
 - i) To what amount will the first \$200 invested grow?
 - ii) Find the predicted total value of his superannuation after 40 years (nearest \$).
 - iii) The man's wife wants him to achieve a total superannuation value of one million 2 dollars after 40 years. Assuming the same interest rate, how much should she tell him to invest every month so that this goal is achieved? (Nearest \$)
 - b) A piece of wire 20 cm long is cut into two sections, each of which is then bent to form a square. Let x cm be the length of one of the sections.
 - i) Show that the combined area of the two squares is given by $A = \frac{x^2 20x + 200}{8}$
 - ii) Find the smallest possible total area enclosed by the two squares.

c) A car loan of \$30,000 is to be repaid over 5 years. Interest is charged at the rate of 10% p.a. and repayments made every 3 months. Immediately after the quarterly interest is charged, a repayment is to be made.

Let A_n be the loan balance remaining after n repayments, and R be the amount of each repayment.

- i) Write an expression for A_1 and derive that $A_2 = 30000 \times 1.025^2 R(1.025 + 1)$
- ii) Find the amount of each quarterly repayment R (nearest \$).
- iii) Find the equivalent rate of annual simple interest for this loan (answer to2 dec. places).

END OF TEST

			٠,
			Ł
		•	
			\subset
•			

2016 HIGHER SCHOOL CERTIFICATE

REFERENCE SHEE

- Mathematics Extension 1
- Mathematics Extension 2

Mathematics

 $a^2 - b^2 = (a+b)(a-b)$ -actorisation

$$a^2 - b^2 = (a+b)(a-b)$$

 $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$

 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Angle sum of a polygon

 $S = (n-2) \times 180^{\circ}$

Equation of a circle

 $(x-h)^2 + (y-k)^2 = r^2$

Trigonometric ratios and identities

 $cosec \theta = \frac{1}{\sin \theta}$ $\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$ $\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$

$$cosec \theta = \frac{1}{\sin \theta}$$

$$sec \theta = \frac{1}{\cos \theta}$$

$$\cos\theta = \frac{\sin\theta}{\cos\theta}$$

 $tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

 $\sin^2\theta + \cos^2\theta = 1$

Exact ratios

Sine rule

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

 $c^2 = a^2 + b^2 - 2ab\cos C$ Cosine rule

Area of a triangle Area $= \frac{1}{2}ab\sin C$

Distance between two points $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Perpendicular distance of a point from a line

 $d = \frac{\left| ax_1 + by_1 + c \right|}{\sqrt{a^2 + b^2}}$

Slope (gradient) of a line $m = \frac{y_2 - y_1}{x_2 - x_1}$

Point-gradient form of the equation of a line

 $y-y_1=m(x-x_1)$

 $S_n = \frac{n}{2} [2a + (n-1)d]$ or $S_n = \frac{n}{2} (a+l)$ Sum to n terms of an arithmetic series

nth term of a geometric series

 $T_n = \alpha r^{n-1}$

Sum to n terms of a geometric series

 $S_n = \frac{a(r^n - 1)}{r - 1}$ or $S_n = \frac{a(1 - r^n)}{1 - r}$

Limiting sum of a geometric series

Compound interest $A_n = P\left(1 + \frac{r}{100}\right)$

Derivatives

If
$$y = x^n$$
, then $\frac{dy}{dx} = nx^{n-1}$

If
$$y = uv$$
, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

If
$$y = \frac{u}{v}$$
, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

If
$$y = F(u)$$
, then $\frac{dy}{dx} = F'(u)\frac{du}{dx}$

If
$$y = e^{f(x)}$$
, then $\frac{dy}{dx} = f'(x)e^{f(x)}$

If
$$y = \log_e f(x) = \ln f(x)$$
, then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

If
$$y = \sin f(x)$$
, then $\frac{dy}{dx} = f'(x)\cos f(x)$

If
$$y = \cos f(x)$$
, then $\frac{dy}{dx} = -f'(x)\sin f(x)$

If
$$y = \tan f(x)$$
, then $\frac{dy}{dx} = f'(x)\sec^2 f(x)$

Solution of a quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum and product of roots of a quadratic equation

$$\alpha + \beta = -\frac{b}{a}$$
 $\alpha \beta = \frac{c}{c}$

Equation of a parabola

$$(x-h)^2 = \pm 4a(y-k)$$

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$

$$e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C$$

$$\frac{f'(x)}{f(x)}dx = \ln|f(x)| + C$$

$$\sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$$

$$\cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C$$

$$\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + C$$

Frapezoidal rule (one application)

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \left[f(a) + f(b) \right]$$

Simpson's rule (one application)

$$\int_{a}^{b} f(x)dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Logarithms - change of base

$$\log_a x = \frac{10 E_b}{\log_b a}$$

Angle measure

 $180^{\circ} = \pi \text{ radians}$

Length of an arc

Area of a sector

Area =
$$\frac{1}{2}r^2\theta$$

Mathematics Extension 1

Angle sum Identities

$$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$$

 $\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$

$$\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}$$

formulae

If
$$t = \tan \frac{\theta}{2}$$
, then

$$\tan \frac{\theta}{2}$$
, then

$$\sin \theta = \frac{2t}{1+t^2}$$

$$\cos \theta = \frac{1-t^2}{1+t^2}$$

$$\tan \theta = \frac{2t}{1-t^2}$$

Seneral solution of trigonometric equations

$$\sin \theta = a$$
, $\theta = n\pi + (-1)^n \sin^{-1} a$
 $\cos \theta = a$, $\theta = 2n\pi \pm \cos^{-1} a$
 $\sin \theta = a$, $\theta = n\pi + \tan^{-1} a$

Division of an interval in a given ratio

$$\frac{mx_2 + nx_1}{m + n} \frac{my_2 + ny_1}{m + n}$$

Parametric representation of a parabola

For
$$x^2 = 4ay$$
, $x = -2at$

At $(2at, at^2)$,

 $10 \text{ Total: } x + ty = at^3 + 2at$ angent: $y = tx - at^2$

At (x_1, y_1) , tangent: $xx_1 = 2a(y + y_1)$ normal: $y - y_1 = -\frac{2a}{x_1}(x - x_1)$

Chord of contact from (x_0, y_0) : $xx_0 = 2a(y + y_0)$

Acceleration

$$\frac{d^2x}{dt^2} = \frac{dy}{dt} = y\frac{dy}{dx} = \frac{d}{dx} \left(\frac{1}{2}y^2\right)$$

Simple harmonic motion $x = b + a\cos(nt + \alpha)$

$$\ddot{x} = -n^2 \left(x - b \right)$$

Further integrals

$$\int_{0}^{1} \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a} + C$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C.$$

Sum and product of roots of a cubic equation

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$

$$\alpha\beta\gamma = -\frac{d}{a}$$

Estimation of roots of a polynomial equation

Newton's method

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

2 UNIT MARCH 2017

2 UNIT MA	RCH 2017
SECTION I	b) $S_n = 2n + n^2$
<u>0</u> D	i. $S_1 = 2x + ^2$
②. B	= 3
<u>3</u> . A	1. Ti = 3
(A) a+5d+a+11d=250	and S2 = 8
2a+16d=250	i. T2 = 8-3 = 5
$T_q = a + 8d$	
= 125 B	ii) Tn = Sn-Sn-1
(5) $2000 = 1000 (1+r)^{18}$	$= 2n + n^{2} - \left[2(n-1) + (n-1)^{2}\right]$
$2 = (1+\gamma)^{18}$ $\gamma = 2 - 1$	= 2n +2 - 2n+2-2+2h-1
$\gamma = 2 - 1$	= 2n+1
$\gamma = 3.9\%$ A	OR
	$T_n = a + (n-1)d$
SECTION II	$= 3+ (n-1)\times 2$
$6a$ $T_n = 3n-2$	$\therefore T_n = 2n+1$
i. 348 = 3n-2	
$\frac{350}{3} = R$	iii. $n^2 + 2n > 80$
no	$n^2 + 2n - 80 > 0$
ii. $T_1 = 3 \times 1 - 2$	(n+10)(n-8)>0
=	< €0 0 > >
$T_2 = 3 \times 2 - 2$	n>'8
= 4	:. 9 terms
$T_{100} = 3 \times 100 - 2$	
= 298	c) i. $\Sigma(n^2-n) = 0+2+6+12+20$
$\frac{S_{100} = 100 (1+298)}{2}$	c) i. $\sum_{n=1}^{5} (n^2 - n) = 0 + 2 + 6 + 12 + 20$ = 40
2	$\frac{11. 200}{5} (80+n) = 180+181+$
= 14 950	n=100 + 280
	$=\frac{101}{2}(180+280)$

= 23 230

d) $1+(x-1)+(x-1)^2+$	b) 1+3+5+7+ + (0)
i. limiting sum -1< r<1	a=1
-1 < x-1 < 1	d=2
0 < x < 2	101 = 1 + 2(n-1)
$\frac{1}{1} \cdot S_{\infty} = \frac{a}{1-r}$	100 = 2n - 2
$= \frac{1}{1-(x-1)}$	N = 51
l− (α−ι)	
$=\frac{1}{2-x}$	$T_n = 1 + 2(n-1)$
$\begin{array}{c} = \overline{2} - \overline{3} \\ = \overline{4} \\ = \overline{5} \end{array}$	= 2n-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	≥ 2n-1
e) $a-2=b-a$ & $\frac{b}{a}=\frac{9}{b}$	<u>N=1</u>
$2a = b+2 \qquad 9a = b^2$	$0 y = x^2 - x$
$a = \frac{b+2}{2} \qquad a = \frac{b^2}{9}$	$\frac{dy}{dx} = 2x - 1$
9	at x= 3, y= 6
$\frac{b+2}{2} = \frac{b^2}{9}$	$m_{tangest} = 2 \times 3 - 1$
2 9	= 5
$9b + 18 = 2b^2$	y-6=5(x-3)
$2b^2 - 9b - 18 = 0$	4-6 = 5x - 15
(b-6)(2b+3) = 0	5x-y-9=0
b = 6, $a = 4$ or	
$b = -\frac{3}{2}, a = \frac{1}{4}$	d) i. $u = 3x + 2 V = 2x - 1$
	$u^1 = 3 \qquad v^1 = 2$
(7) a) $ar^2 = 21 - (1)$	
$ar^6 = 336 - 2$	$\frac{dy}{dx} = \frac{3(2x-1)-2(3x+2)}{(2x-1)^2}$
@÷0	
r ⁴ = 16	$= -7$ $(2x-1)^2$
γ =±2	

.

$y = x^2 (3x + 2)^5$	i. Stat pts: dy = 0
$u = x^2 \qquad v = (3x+2)^5$	$3x^2 - 2x = 0$
$u'=2x$ $v'=15(3x+2)^4$	x(3x-2)=0
$\frac{dy = 2x(3x+2)^5 + 15x^2(3x+2)^4}{dx} = x(3x+2)^4 \left[2(3x+2) + 15x\right]$	when $x = 0$, $y = 0$ $x = \frac{2}{3}$, $y = \frac{4}{27}$
$= \chi (3\chi + 2)^4 (21\chi + 4)$	$\frac{d^2y}{dx^2} < 0 \qquad \frac{d^2y}{dx^2} \neq 0$
	dx^2 dx^2
(not necessary to factorise) e) $f(x) = 2x - x^{\frac{1}{2}}$:. $\max(0,0)$:. $\min(\frac{2}{3}, \frac{-4}{27})$
1. $f'(x) = 2 - \frac{1}{2}x^{-\frac{1}{2}}$	
$=2-\frac{1}{2\sqrt{2}}$	ii. Inflexion: dy = 0 & changes
ii. $f''(x) = \frac{1}{4}x^{-\frac{2}{2}}$	0 = 6x - 2
$=\frac{1}{4\sqrt{x^3}}$	$\chi = \frac{1}{3}, q = -\frac{2}{27}$
$f''(4) = \frac{1}{4\sqrt{4}}$	Verify that concavity changes
= 1	Verify that concavity changes x 3 3 3
32/	d3 - 0 +
III. Stat when $f'(x) = 0$: since concavity changes
$0 = 2 - \frac{1}{2\sqrt{2}}$	$(\frac{1}{3}, \frac{2}{27})$ is inflexion point.
$2 = \frac{1}{2\sqrt{x}}$	ሳ ካ
	111 . 4 (2,4)
$x = \frac{1}{16}$	
(8) a) $y = x^3 - x^2$	1/3 2/3
$\frac{dy}{dx} = 3x^2 - 2x$	-1 -2 ×
$\frac{d^2y}{dx^2} = 6x - 2$	27
dz2	(-1,-2) -2
	iv. 4
•	

		dy e
		₹
		C
		\mathbf{C}

	(in)
b) $f'(x)$ 1. $0c = 3, -2$	$= 200 \left[1.006 + 1.006^{2} + + 1.006 \right]$
1	a=1.006
i) + 3	γ=1-006 n = :480
-2	$= 200 \times 1.006 \left[1.006^{480} - 1\right]$
	1.006-1
A	= \$558,720
f(x)	iii. 1000000 = P ×1-006 [1-006 480 -1]
	1.006 -1
	P = 1000 000 x 0-006
-2. 3	1.006 (1.006 480 -1)
V	P = \$ 358
	b) 20 cm
x=-2 is max to	x 20-x
x=3 is horizontal pt	i. Et = 20-x
of inflexion	× + 4
	$A = (x)^2 + (20 - x)^2$
iii. $x > -2$, $x \neq 3$	(4) (4)
iv. inflexion	$=\frac{x}{16}+\frac{400-40x+x}{16}$
	$= 2x^2 - 40x + 400$
(9) a) i. $A_1 = 200 (1+0.006)^{480}$	16
= \$ 353 <u>2</u>	$A = \frac{x - 20x + 200}{8}$ as required.
ii. $A_2 = 200.(1+0.006)^{479}$	ii. $dA = x - 20$
$A_{12} = 200 (1+ 0.006)$	dsc 4 8
Total = 200 (1.006) + 200 (1.006)	$\frac{d^4A}{dx^2} = \frac{1}{4}$
++ 200 (1.000	

ببرتاؤة

4

		¥
		,
	•	

·	
$\frac{\text{Min A when } dA = 0}{dx}$	iii, Repayments = 20×1924
dx.	= 38 480
$0 = \frac{\alpha}{4} - \frac{20}{8}$	*
$\frac{2}{4} = \frac{20}{8}$	38 480 - 30 000 = 8 480
x = 10	SI for I year = 8480
When $x = lo$, $\frac{d^2A}{dx^2} > 0$. Mi	= 1696
	i. rate of SI = 1696 30000
$A = \left(\frac{10}{4}\right)^2 + \left(\frac{10}{4}\right)^2$	= 0.0565
$A = 12.5 \text{cm}^2$	ir r = 5-65% p
c) 10% p.a = 2.5% p quarter	•
i. A = 30000 × 1.025 - R	
= 30000 (1.025) - R	
A2= A, (1.025) -R	
= [30 000 (1.025) -R	× 1.025 -R
$= 30\ 000\ (1.025)^2$	- 1:025 R - R
= 30 000 (1.025)2-	- R(1+1.025)
ii. $A_{20} = 30\ 000\ (1-025)^{20}$	R (1+1-025++ 1-025 19)
but $A_{20} = 0$	a=1
	r= 1-025. n= 20
SO R= 30 000 (1	· 0 25)20
1 (1.025	-20 -1)
1-025	1
= \$ 1924	
· · · · · · · · · · · · · · · · · · ·	,

وبرائية