표시

Home 〉 제품 설명서 〉 다이나믹셀 〉 MX 시리즈 〉 MX-28

ROBOTIS e-Manual v1.30.00

MX-28T / MX-28R

부품사진

[MX-28T]

[MX-28R]

- ※ Control Table 의 Compliance 설정부분이 PID설정으로 대체 되었습니다.
- ※ 컨트롤테이블에서 PID순서가 0x1E 버젼 이후부터DIP로 변경되었습니다. 사용시 참고해주세요.
- ※ MX-28T(TTL)와 MX-28R(RS485)은 통신방식만 다르며 동일한 성능과 기능을 갖고 있습니다. (TTL은 3핀 커넥터, RS485는 4핀 커넥터를 사용합니다.)

주요 사양 요약

- MCU: ST CORTEX-M3 (STM32F103C8 @ 72MHZ,32BIT)
- 위치 센서: Contactless absolute encoder (12BIT,360도)
- 모터 : Maxon Motor
- 통신속도 : 8000 bps ~ 4.5 Mbps
- 제어 알고리즘 : PID CONTROL
- 최소 제어각: 0.088°
- 동작 모드
 - **◦** 관절 모드 (0° ~ 360°)
 - 바퀴 모드 (무한 회전)
- 무게: 72g
- 크기: 35.6mm x 50.6mm x 35.5mm
- 기어비: 193:1
- Stall Torque
 - o 2.3N.m (at 11.1V, 1.3A),
 - o 2.5N.m (at 12V, 1.4A)
 - o 3.1N.m (at 14.8V, 1.7A)
- No load speed
 - 50rpm (at 11.1V)

- 55rpm (at 12V)
- 67rpm (at 14.8V)
- 동작 온도 : -5℃ ~ +80℃
- 사용 전압: 10 ~ 14.8V (권장 전압 12V)
- Command Signal : Digital Packet
- Protocol Type
 - MX-28T (Half duplex Asynchronous Serial Communication (8bit,1stop, No Parity))
 - MX-28R (RS485 Asynchronous Serial Communication (8bit,1stop, No Parity)
- Link (Physical):
 - MX-28T (TTL Level Multi Drop Bus)
 - o MX-28R (RS485 Multi Drop Bus)
- ID: 254 ID (0~253)

MX-28T/R

Interface

- Feedback: Position, Temperature, Load, Input Voltage, etc.
- Material : Full Metal Gear, Engineering Plastic Body
- Standby current: 100 mA

Data Unit Data V 12 Rated voltage **RPM** 55 No load speed 120 No load current mA Resolution 4096 Step/turn 193 Gear ratio

전원 공급시 주의사항!

-안정적인 전원공급을 위해 로보티즈 제어기 나 SMPS2Dynamixel 통한 전원공급을 권장 드립니다.

RS-485 / TTL

-전원이 꺼진 상태에서 다이나믹셀과 전원을 연결하시고 스위치로 ON/OFF를 해주세요.

Control Table

Control Table은 다이나믹셀 내부에 존재하는 값으로서 다이나믹셀의 현재 상태와 구동에 관한 Data로 구성되어 있습니다. 사용자는 Instruction Packet을 통해 Control Table의 data를 변경하는 방식으로 다이나믹셀을 제어할 수 있습니다.

14 중 2 2015년 06월 06일 02:05

EEPROM and RAM

RAM Area의 Data는 전원이 인가될 때마다 다시 초기값으로 설정됩니다. 그러나 EEPROM Area Data의 경우 값을 설정하면 전원이 Off되어 도 그 값이 보존됩니다.

Address

Address는Data의 위치 입니다. Dynamixel 에 Data를 쓰거나 읽기 위해서는 Packet에 그 Data가 위치해 있는 Address를 지정해 주어야 합니다.

접근

다이나믹셀 Data 에는 읽기 전용(R)과 읽고 쓰기가 가능한 것(RW), 두 가지가 있습니다. 읽기 전용(R)은 주로 센싱용으로 사용되는 data 이며 읽고 쓰기 가능한 것(RW)은 구동을 위한 Data 입니다.

초기값

Control Table에서 우측에 표시된 초기값들은 EEPROM 영역 Data인 경우 공장 출하 값이고, RAM Area Data인 경우는 전원이 인가되었을 때 갖는 초기값입니다.

상위바이트/하위바이트

Control Table 에는 명칭이 같지만 (L) 과 (H) 가 뒤에 붙어서 Address 가 구분되어 있는 것들이 있습니다. 이것은 16bit가 요구되는 Data를 8bit씩 각Address (low, High)에 나누어 표현한 것입니다. 이 두 개의 Address 는 하나의 Instruction Packet으로 동시에 write 되어야 합니다.

Area	주소 (16진 수)	명칭 의미		접근	초기값 (16진수)
	0 (0X00)	Model Number(L)	모델 번호의 하위 바이트	R	29 (0X1D)
	1 (0X01)	Model Number(H)	모델 번호의 상위 바이트	R	0 (0X00)
	2 (0X02)	Version of Firmware	펌웨어 버전 정보	R	-
	3 (0X03)	ID	다이나믹셀 ID	RW	1 (0X01)
	4 (0X04)	Baud Rate	다이나믹셀 통신 속도	RW	34 (0X22)
	5 (0X05)	Return Delay Time	응답 지연 시간	RW	250 (0XFA)
	6 (0X06)	CW Angle Limit(L)	시계 방향 한계 각도 값의 하위 바이트	RW	0 (0X00)
	7 (0X07)	CW Angle Limit(H)	시계 방향 한계 각도 값의 상위 바이트	RW	0 (0X00)
Е	8 (0X08)	CCW Angle Limit(L)	반시계 방향 한계 각도 값의 하위 바이트	RW	255 (OXFF)
E P	9 (0X09)	CCW Angle Limit(H)	반시계 방향 한계 각도 값의 상위 바이트	RW	15 (0X0F)
R O	11 (0X0B)	the Highest Limit Temperature	내부 한계 온도	RW	80 (0X50)
M	12 (0X0C)	the Lowest Limit Voltage	최저 한계 전압	RW	60 (0X3C)
	13 (0X0D)	the Highest Limit Voltage	최고 한계 전압	RW	160 (0XA0)
	14 (0X0E)	Max Torque(L)	토크 한계 값의 하위 바이트	RW	255 (OXFF)
	15 (0X0F)	Max Torque(H)	토크 한계 값의 상위 바이트	RW	3 (0X03)
	16 (0X10)	Status Return Level	응답 레벨	RW	2 (0X02)
	17 (0X11)	Alarm LED	알람용 LED 기능	RW	36 (0X24)
	18 (0X12)	Alarm Shutdown	알람용 셧 다운(Shut down) 기능	RW	36 (0X24)
	20 (0X14)	Multi Turn Offset(L)	다중 회전 오프셋 하위 바이트	RW	0 (0X00)
	21 (0X15)	Multi Turn Offset(H)	다중 회전 오프셋 하위 바이트	RW	0 (0X00)
	22 (0X16)	Resolution Divider	해상도 디바이더	RW	1 (0X01)
R	24 (0X18)	Torque ON/OFF	토크 켜기	RW	0 (0X00)

14 중 3 2015년 06월 06일 02:05

	25 (0X19)	LED	LED On/Off	RW	0 (0X00)
	26 (0X1A)	D Gain	Derivative Gain	RW	0 (0X00)
	27 (0X1B)	l Gain	Integral Gain	RW	0 (0X00)
	28 (0X1C)	P Gain	Proportional Gain	RW	32 (0X20)
	30 (0X1E)	Goal Position(L)	목표 위치 값의 하위 바이트	RW	-
	31 (0X1F)	Goal Position(H)	목표 위치 값의 상위 바이트	RW	-
	32 (0X20)	Moving Speed(L)	목표 속도 값의 하위 바이트	RW	-
	33 (0X21)	Moving Speed(H)	목표 속도 값의 상위 바이트	RW	-
	34 (0X22)	Torque Limit(L)	토크 한계 값의 하위 바이트	RW	ADD14
	35 (0X23)	Torque Limit(H)	토크 한계 값의 상위 바이트	RW	ADD15
٨	36 (0X24)	Present Position(L)	현재 위치 값의 하위 바이트	R	-
A M	37 (0X25)	Present Position(H)	현재 위치 값의 상위 바이트	R	-
IVI	38 (0X26)	Present Speed(L)	현재 속도 값의 하위 바이트	R	-
	39 (0X27)	Present Speed(H)	현재 속도 값의 상위 바이트	R	-
	40 (0X28)	Present Load(L)	현재 하중 값의 하위 바이트	R	-
	41 (0X29)	Present Load(H)	현재 하중 값의 상위 바이트	R	-
	42 (0X2A)	Present Voltage	현재 전압	R	-
	43 (0X2B)	Present Temperature	현재 온도	R	-
	44 (0X2C)	Registered	Instruction의 등록 여부	R	0 (0X00)
	46 (0X2E)	Moving	움직임 유무	R	0 (0X00)
	47 (0X2F)	Lock	EEPROM 잠금	RW	0 (0X00)
	48 (0X30)	Punch(L)	Punch 값의 하위 바이트	RW	0 (0X00)
	49 (0X31)	Punch(H)	Punch 값의 상위 바이트	RW	0 (0X00)
	73 (0X49)	Goal Acceleration	목표 가속도값	RW	0 (0X00)

Address 기능 설명

EEPROM 영역

Model Number

다이나믹셀의 모델 번호입니다.

Firmware Version

다이나믹셀 펌웨어 버전입니다.

ID

다이나믹셀을 식별하기 위한 고유 번호입니다.

0~253 (0xFD) 까지 사용 가능하며, 254(0xFE)는 브로드캐스트(Broadcast) ID로 특수하게 사용됩니다. Instruction packet을 보낼 때, 브로드캐스트 ID를 사용하면 모든 다이나믹셀에 명령을 내릴 수 있습니다.

연결된 다이나믹셀의 ID가 중복되지 않도록 주의해야 합니다.

14 중 4 2015년 06월 06일 02:05

Baud Rate

제어기와 통신하기 위한 통신 속도 입니다. 0~254 (0xFE) 까지 사용 가능합니다.

만약 Value 값이 0 ~ 249 인 경우:

Baudrate(BPS) = 2000000 / (Data + 1)

Value	설정 BPS	목표 BPS	오차
1	1000000.0	1000000.0	0.000 %
3	500000.0	500000.0	0.000 %
4	400000.0	400000.0	0.000 %
7	250000.0	250000.0	0.000 %
9	200000.0	200000.0	0.000 %
16	117647.1	115200.0	-2.124 %
34	57142.9	57600.0	0.794 %
103	19230.8	19200.0	-0.160 %
207	9615.4	9600.0	-0.160 %

Value 값이 250 이상인 경우

Value	설정 BPS	목표 BPS	오차
250	2250000.0	2250000.0	0.000 %
251	2500000.0	2500000.0	0.000 %
252	3000000.0	3000000.0	0.000 %

참고 : UART는 Baudrate오차가 3% 이내이면 통신에 지장이 없습니다.

Return Delay Time

제어기로부터 Instruction Packet을 받은 후, Status Packet을 반환하기까지 걸리는 시간입니다.

0~254 (0xFE) 까지 사용 가능하며 단위는 2usec 입니다.

예를 들어, 값이 10일 경우 20 usec 만큼 시간이 지난 후에 Status Packet을 응답합니다.

CW/CCW Angle Limit

동작이 허용되는 각도를 설정할 수 있습니다.

값의 범위와 단위는 Goal Position(Address 30, 31)과 같습니다.

- CW Angle Limit: Goal Position(Address 30, 31)의 최소 값
- CCW Angle Limit: Goal Position(Address 30, 31)의 최대 값

CW와 CCW의 값에 따라 다음의 3가지 동작 모드를 설정할 수 있습니다.

동작 방식	CW / CCW
바퀴 모드	둘 다 0인 값
관절 모드	둘 다 0이 아닌 값
다중 회전 모드	둘 다 4095 인 값

바퀴 모드는 모터가 무한 회전을 하여 바퀴형 구동 로봇에 쓸 수 있습니다.

관절 모드는 특정 각도로 제어가 가능하여 다관절 로봇에 쓸 수 있습니다.

다중 회전 모드는 관절모드와 같이 특정 각도로 제어가 가능하며 -28672 까지 제어가 가능합니다.

Multi Turn Offset

0점의 위치를 조절 할 수 있습니다. 이 값은 Present position(36)에 더해지게 됩니다.

Present position = 실제 위치 + Multi Turn offset 이 됩니다.

초기값은 0 값의 범위는 -24576 ~ 24576 까지 입니다.

모터의 실제 위치가 2048값에 있을 때 Multi Turn offset = 1024를 적용하면 모터는 회전 하지 않지만 Present position의 값은 3072가 됩니다.

- 1. Real Position = 2048
- 2. Multi Turn Offset = 1024
- 3. Present Position = 3072

참고: 다중 회전 모드(Multi-turn Mode) 일 때 만 이 값이 적용되며, 그 외의 모드에서는 이 값은 무시 됩니다.

Resolution Divider

모터의 해상도를 변경 할 수 있습니다.

초기값은 1이며 1~4까지 사용 가능합니다.

모터의 해상도를 낮추고 CW, CCW 방향으로 회전 횟수를 늘릴 수 있습니다.

각 방향으로 최대 28바퀴까지 회전 가능 합니다.

Present position = 실제 위치 / Resolution Divider

예를 들어, 실제 위치 값이 2048 일 때 Resolution Divider의 값이 2이면 2048/2 = 1024 즉 Present position의 값은 1024가 됩니다. 이렇게 Resolution Divider의 값을 2로 변경하면 모터의 한 바퀴의 해상도는 2048이 됩니다.

Multi Turn offset 과 Resolution Divider를 같이 사용한다면 Present position은 아래와 같은 식을 통해 구할 수 있습니다.

Present position = (실제 위치/ Resolution Divider) + Multi Turn offset

모터의 실제 위치가 2048값에 있을 때 Multi Turn offset = 1024, Resolution Divider = 4 를 적용하면 모터는 회전 하지 않지만 Present position의 값은 1535가 됩니다.

- 1. Real Position = 2048
- 2. Multi Turn Offset = 1024
- 3. Resolution Divider = 4
- CW 4. Present Position = 1535

참고 : 다중 회전 모드(Multi-Turn Mode) 일 때 만 이 값이 적용되며, 그 외의 모드에서는 이 값은 무시 됩니다.

The Highest Limit Temperature

동작 온도의 상한 값입니다.

사용 범위는 10~99 (0x0A~0x63)이며, 단위는 섭씨 온도입니다.

예를 들어, 값이 80이면 80℃ 입니다.

내부 온도가 이 값을 넘으면 Status Packet 중 ERROR의 Over Heating Error Bit (Bit2) 가 '1'로 설정되어 반환되고, Alram LED/Shutdown의 플래그 (flag)중 과열(Overheating)이 설정되어 있다면 기능이 발휘됩니다.

주의 : 온도 상한선을 초기값 보다 높게 설정하지 마십시오.

온도 알람셧다운 발생시 20분이상 휴식하여 다이나믹셀의 온도를 충분히 낮춘후 사용해 주세요. 온도가 높은상 태에서 사용시 제품이 손상될 수 있습니다.

The Lowest (Highest) Limit Voltage

전압 동작 범위의 상한과 하한 값입니다.

상한과 하한 각각 50~250 (0x32~0xFA)까지 사용 가능하며, 단위는 0.1V입니다.

예를 들어, 값이 80이면 8V입니다.

현재 전압 값이 이 범위를 벗어날 경우 Status Packet 중 ERROR의 Voltage Range Error Bit(Bit0)가 '1'로 설정되어 반환되고, Alram LED/Shutdown의 플래그(flag)중 입력 전압 에러(Input Voltage Error)가 설정되어 있다면 기능이 발휘됩니다.

Max Torque

모터의 최대 출력 제한 값입니다.

0~1023 (0x3FF) 까지 사용 가능하며, 단위는 약 0.1%입니다.

예를 들어, 값이 512이면 약 50%이고 최대 출력 대비 50%만 사용하겠다는 의미입니다.

전원이 켜지면 Torque Limit(Address 34, 35)는 이 값을 초기 값으로 사용합니다.

Status Return Level

Status Packet의 반환 방식을 결정합니다.

값	동작 방식	
0	모든 명령에 대해 반환하지 않음. (단, PING 명령 제외)	
1	READ 명령에 대해서만 반환함.	
2	모든 명령에 대해서 반환함.	

참고: Instruction packet 의 ID가 Broadcast ID 인 경우는 이 값에 상관 없이 Status Packet이 반환되지 않습니다.

Alarm LED

Alarm Shutdown

다이나믹셀은 동작 중에 발생하는 위험 상황을 감지하여 스스로를 보호할 수 있습니다.

설정할 수 있는 위험 상황은 아래 표와 같습니다.

Bit	명칭	내 용
Bit 7	0	-
Bit 6	Instrction Error	정의되지 않은 Instruction이 전송된 경우, 또눈 reg_write명령없이 Action명령이 전달된 경우
Bit 5	Overload Error	모터의 최대 출력으로 제어할 수 없는 하중이 지속적으로 적용되는 경우
Bit 4	checkSum Error	전송된 Instruction Packet의 ChecklSum이 맞지 않을 경우
Bit 3	Range Error	해당 Address의 값의 범위를 벗어난 값을 Instruction Packet으로 보내는 경우
Bit 2	OverHeating Errir	내부 온도가 설정된 동작 온도 범위를 벗어난 경우
Bit 1	Angle Linit Error	적용한 Goal Position이 설정한 CW/CCW Angle Limitit 범위를 벗어난 경우

Bit 0	Input Voltage Error	┃인가된 전압이 설정된 동작 전압 범위를 벗어났을 경우
וטונט	iliput voltage Lifoi	■신기전 언급의 글이전 중국 언급 급위를 것이었고 8T

각 Bit의 기능은 'OR'의 논리로 적용되기 때문에 중복 설정이 가능합니다. 즉, 0X05 (2 진수: 00000101)로 설정되었을 경우 Input Voltage Error와 Overheating Error가 발생하는 것을 모두 감지할 수 있습니다.

위험 상황이 발생하면 LED를 깜박이고, Torque Limit의 값을 0 으로 만들어서 모터 출력이 0%가 되도록 합니다.

RAM 영역

Torque Enable

값	의미
0	모터의 전원을 차단하여 Torque가 발생되지 않도록 합니다.
1	모터에 전원을 인가하여 Torque를 발생시킵니다.

LED

값	의미	
0	LED를 OFF시킵니다.	
1	LED를 ON시킵니다.	

PID Gain

MX 시리즈는 대표적 제어기법인 PID Controller를 이용합니다.

P Gain은 Propotional Gain값 입니다.

I Gain은 Integral Gain값 입니다.

D Gain은, Derivative Gain값 입니다.

값의 범위는 0 ~ 254 입니다.

	※ PID 와 컴플라이언스 슬로프와의 관계				
L	Slope	P Gain			
L	8	128			
	16	64			
	32	32			

14 중 8 2015년 06월 06일 02:05

	64	16
I	128	8

P게인이 작을 수록, 유격이 커지고, 목표위치 근처에서의 출력정도가 약해집니다.

즉, 어떻게 보면, margine과 slope를 합친 것 같은 개념입니다.

정확하게 예전 컴플라이언스 개념과 매칭 되지 않습니다. 동작의 차이가 나더라도 당연한 일입니다

※ PID에 대한 설명 요함

일반적인 PID에 대한 간략한 설명은 아래의 사이트를 참고하도록 하겠습니다.

http://en.wikipedia.org/wiki/PID_controller

참고로 PID 제어론은, 단순히 모터제어에만 국한 된 이야기가 아니라, 모든 제어에 적용할수 있는 일반적인 이론입니다.

Goal Position

이동 시키고자 하는 곳의 위치 값입니다.

0~4095 (0xFFF)까지 사용 가능하며 단위는 0.088도 입니다.

CW/CCW Angle Limit의 벗어난 값을 사용하게 되면 Status Packet 중 ERROR의 Angle Limit Error Bit (Bit1) 가 '1'로 설정되어 반환되고, Alram LED/Shutdown의 플래그(flag)중 Angle Limit Error가 설정되어 있다면 기능이 발휘됩니다.

다중 회전 모드일 때 값의 범위는 -28672 ~ 28672로 늘어나게 되며 0에서부터 CW, CCW 각 방향으로 7바퀴씩 회전 할 수 있습니다. 만약 Resolution Divider와 같이 사용한다면 회전 횟수를 더 증가 시킬 수 있습니다.

Moving Speed

• 관절 모드, 다중 회전 모드

Goal Position으로 이동하는 속도입니다.

0~1023 (0X3FF) 까지 사용되며, 단위는 약 0.114rpm입니다.

0으로 설정하면 속도 제어를 하지 않고 모터의 최대 rpm을 사용한다는 의미입니다.

1023의 경우 약 117.07rpm이 됩니다.

예를 들어, 300으로 설정된 경우 약 34.33rpm입니다.

• 바퀴 모드

목표 방향으로 이동하는 속도입니다.

0~2047(0X7FF)까지 사용되며, 단위는 0.114rpm입니다.

0~1023 범위의 값을 사용하면 CCW방향으로 회전하며 0으로 설정하면 정지합니다.

1024~2047 범위의 값을 사용하면 CW방향으로 회전하며 1024으로 설정하면 정지합니다.

즉, 10번째 bit가 방향을 제어하는 direction bit가 됩니다.

참고: 해당 모델의 최대 rpm을 확인하시기 바랍니다. 최대 rpm 이상을 설정해도 모터는 그 이상의 속도를 낼 수 없습니다.

Torque Limit

모터의 최대 출력 제한 값입니다.

0~1023 (0x3FF) 까지 사용 가능하며, 단위는 약 0.1%입니다.

예를 들어, 값이 512이면 약 50%이고 최대 출력 대비 50%만 사용하겠다는 의미입니다.

전원이 켜지면 Max Torque(Address 14, 15)의 값을 초기 값으로 사용합니다.

참고: Alarm Shutdown의 기능이 발휘되면 이 값이 0이 되어 모터의 힘이 없어지게 됩니다. 이때 이 값을 0이 아닌 값으로 바꾸면다시 모터의 출력이 발휘되어 사용할 수 있습니다.

Present Position

다이나믹셀의 현재 위치 값입니다.

값의 범위는 0~4095 (0xFFF)이며 단위는 0.088도 입니다.

다중 회전 모드일 때 값의 범위는 -28672 ~ 28672 이며 단위는 Resolution Divider 값에 따라 (0.088 * Resolution Divider)도로 변화 합니다.

참고: 다중 회전 모드(Multi-turn Mode) 일 때 실제 위치와 Present Position 의 관계는 Resolution Divider와 MulriTurn Offset 의 값에 따라 달라 질 수 있습니다. 더 자세한 내용은 이메뉴얼 Multi Turn offset과 Resolution Divider를 참고 하시기 바랍니다.

Present Speed

현재 이동하는 속도입니다.

이 값은 0~2047 (0X7FF) 까지 사용됩니다.

0~1023 범위의 값이면 CCW방향으로 회전한다는 의미입니다.

1024~2047 범위의 값이면 CW방향으로 회전한다는 의미입니다.

즉, 10번째 bit가 방향을 제어하는 direction bit가 되며 0과 1024는 같습니다.

이 값의 단위는 약 0.114rpm 입니다.

예를 들어, 300으로 설정된 경우 CCW방향 약 34.33rpm으로 이동 중이라는 의미입니다

Present Load

현재 적용되는 하중을 의미합니다.

이 값의 범위는 0~2047이며, 단위는 약 0.1%입니다.

0~1023 범위의 값은 CCW방향으로 하중이 작용한다는 의미입니다.

1024~2047 범위의 값은 CW방향으로 하중이 작용한다는 의미입니다.

즉, 10번째 bit가 방향을 제어하는 direction bit가 되며, 1024는 0과 같습니다.

예를 들어, 값이 512이면 CCW 방향으로 최대 출력 대비 약 50%로 하중이 감지된다는 의미입니다.

14 중 10 2015년 06월 06일 02:05

BIT	15~11	10	9	8	7	6	5	4	3	2	1	0
Value	0	Load Direction				Data	a (Lo	ad R	atio)			

Load Direction = 0 : CCW Load. Load Direction = 1: CW Load

참고: 현재 하중은 Torque센서 등을 이용한 값이 아니라 내부 출력 값을 기반으로 유추한 것입니다.

이로인해 무게나 토크를 측정하는 용도로 사용할 수 없고, 해당 관절의 어느 방향으로 힘이 작용하는 정도를 감지하는 정도로만 사용 해야 합니다.

Present Voltage

현재 공급되고 있는 전압입니다.

이 값의 단위는 0.1V입니다. 예를 들어, 값이 100이면 10V입니다.

Present Temperature

내부의 온도입니다.

이 값의 단위는 섭씨 온도입니다. 예를 들어, 값이 85이면 현재 내부 온도는 85℃ 입니다.

Registered Instruction

값	의미
0	REG_WRITE로 전달된 명령이 없습니다.
1	REG_WRITE로 전달된 명령이 있습니다.

참고: ACTION 명령을 수행하면 이 값이 0으로 바뀝니다.

Moving

	값	의미
Į	0	Goal position 명령 수행을 완료했습니다.
	1	Goal position 명령 수행 중입니다.

Lock

값	의미	
0	EEPROM영역을 수정할 수 있습니다.	
1	EEPROM영역을 수정하지 못합니다.	

주의: Lock이 1로 설정되면 전원을 껐다 켜야 0으로 바꿀 수 있습니다.

Punch

구동시에 모터에 공급되는 최소 전류량 입니다.

초기값은 0x00이며 최고 0x3ff까지 설정할 수 있습니다.

Goal Acceleration

목표 가속도 값입니다.

14 중 11 2015년 06월 06일 02:05

0 ~ 254 (0XFE)까지 사용되며, 단위는 약, 8.583 Degree / sec^2 입니다. 0으로 설정하면, 가속도 제어를 하지 않고 모터의 최대 가속도로 움직인다는 의미입니다. 목표속도가 0일 경우에도, 가속도 제어를 하지 않고, 모터의 최대 가속도로 움직입니다. 254를 설정할 경우, 2180 Degree / sec^2이 됩니다. 예를 들어, 다이나믹셀의 속도가 현재 0이고, GOAL ACCELERATION이 10인 경우, 1초 뒤의 다이나믹셀의 속도는, 14.3 RPM이 됩니다.

Option Frame

MX-28의 옵션 프레임들은 다음과 같은 종류가 있습니다.

FR07-B101

FR07-F101_FR07-X101

FR07-H101

FR07-S101

14 중 12 2015년 06월 06일 02:05

Horn

MX-28의 Horn들은 아래와 같은 종류가 있습니다.

HN07-I101

HN07-N101

기구결합

아래는 옵션 프레임과 혼을 이용한 결합구조의 예입니다.

Dimension

도면 정보 : DOWNLOAD MX28Dimension.pdf

관련동영상

14 중 13 2015년 06월 06일 02:05

MX-시리즈 기어 교체하기

오류 보고

Copyrights (c) 2010 ROBOTIS All rights reserved.