מבחן בחישוביות, סמסטר ב', מועד א', תשס"ד

תאריך הבחינה: 28.6.04

ז כלליות:	הנחיוו
-----------	--------

1. כיתבו כאן ______ את מספר תעודת הזהות שלכם.

2. בבחינה 6 שאלות, ענו על 5 מתוכן. ערך כל שאלה 20 נקודות. הקיפו בעיגול את 5 השאלות שבחרתם:

סה"כ	6	5	4	3	2	1	שאלה
							ציון

- 3. ענו בגוף הבחינה, בשטח המוקצה לכל שאלה. מחברת הבחינה לא תילקח ולא תיבדק. במידה והשטח המוקצה אינו מספיק, ודאו שאינכם כותבים דברים מיותרים, ורק אז השתמשו בדפים הריקים בסוף.
- בשאלות בהן הנכם מתבקשים לנמק בקצרה, ניתן ורצוי להשתמש בעובדות שנלמדו בהרצאות, תרגולים, ותרגילי הבית. שימו לב שגם נימוק קצר צריך להתי-יחס לכל הכיוונים הדרושים.
 - 6. משך הבחינה שעתיים וחצי.

בהצלחהי

חלק א. (10 נקודות)

- $abab \in L(A)$ האם.1
- $abbaab \in L(A)$ ב. האם.2
- L(A) נמקו בקצרה.

חלק ב. (10 נקודות)

 $L=\{w\in(a+b+c)^*:\#a(w)+\#b(w)=\#c(w)~\}$ נתבונן בשפה σ ואות $\sigma\in\Sigma$ ואות $\sigma\in\Sigma$ את מספר המופעים של האות במילה $w\in\Sigma^*$ במילה $w\in\Sigma^*$

- 1. כתבו דקדוק חסר הקשר עם משתנה יחיד עבור L. מלוא הנקודות ינתנו לדקדוק בעל מספר מינימלי של חוקי גזירה. אין צורך להוכיח את נכונות הדקדוק.
 - 2. האם הדקדוד שהצעתם רב-משמעי (ambiguous)! נמקו בקצרה.

עבור שפות L_2 ו- L_1 נגדיר את השפה $glue(L_1,L_2)=\{y_1\cdot y_2\ :\ |y_1|=|y_2|,\ y_1\in L_1,\ y_2\in L_2\}$

. בקצרה (מקו בקצרה: בקצרה: בקצרה בקצרה: בקצרה: נמקו בקצרה: נמקו בקצרה: נמקו בקצרה: נמקו בקצרה.

ב, נמקו הקשר? ומקו חסרת קוור אם פוער. האם הקשר. האם L_2 ו- ב- נמקו בקצרה. ב- כ, נקודות בתון ש- L_1 ו- ב- נמקו בקצרה.

ג. core נמקו בקצרה. core נמקו בקצרה. core נמקו בקצרה. נתון ש- L_1 יור בקצרה. ג. (7 נקודות)

חלק א. (12 נקודות)

נגדיר מחלקת סיבוכיות חדשה EXAM: עבור Σ^* עבור אם קיימת מכונת טיורינג ונדיר מחלקת סיבוכיות חדשה יעבור יעבור יעבור יעבור $w\in \Sigma^*$ אם קיימת מכונת דטרמיניסטית אור מכונת טיורינג

- עוצרת. אז אז M מגיעה למצב מקבל או אז $w \in L$ -
 - אז M דוחה. $w \notin L$ אם -

סמנו מי מהטענות הבאות נכונה. נמקו בקצרה. שימו לב, יש לנמק גם אי נכונות.

- $EXAM \subseteq RE$.1
- $RE \subseteq EXAM$.2
- $EXAM \subseteq coRE$.3
- $coRE \subseteq EXAM$.4
 - $EXAM \subseteq R$.5

חלק ב. (8 נקודות)

הוכיחו או תנו דוגמא נגדית:

. ההקשר ההפות חסרות הוא אוסף כל השפות הסרות ההקשר, $NL \subseteq CFL$

שאלה מס' 4

עבור כל אחת מהשפות הבאות ציינו באיזו מחלקה היא נמצאת מתוך: $coRE\setminus R$, $RE\setminus R$, ממקו באיזו מחלקה היא נמצאת ברכל או ברכל בקצרה.

 L_{1} = $\{< M_{1}, M_{2}>: \;\;L\left(M_{1}
ight)\subseteq L\left(M_{2}
ight)$ א. M_{2} -ו $M_{1}\}$ וי M_{2} וי M_{1}

I (/M>	באורך גדול מ-100:		·L.···	M] (- 10) -
$L_2=\{ \langle M \rangle$	באורך גדוק מ-100:	ז מקבלת מיקים	טר מיניסטית שקא	ו הותו ל מים לי	ב,(10 נק

בתאור רדוקציות, נמקו את נכונותן בקצרה.

חלק א. (10 נקודות)

הוכיחו שהשפה הבאה היא ארוביהו הוכיחו

 $2PATH = \{ < G, s, t > : \ t$ ל מכוון, ויש בו לפחות שני מסלולים שונים מ-s ל-ל לפחות שני מסלולים שני מ

חלק ב. (10 נקודות)

הוכיחו שהשפה הבאה היא NP- שלמה: $\frac{|V|}{2}$ -CLIQUE = $\{< G>$: לפחות לפחות בגודל קליקה בעל קליקה מכוון בעל הרף לא מכוון בעל הא

נתבונן בהשערות הבאות:

- .P = NP .1
- $.P \neq NP$.2
- .NP = PSPACE .3
- $.NP \neq PSPACE$.4
 - .NP = coNP .5
 - $.NL \neq P$.6
- $.NP \neq EXPTIME$.7

עבור כל אחת מהטענות הבאות ציינו את כל ההשערות לעיל שינבעו מהוספת הטענה לתמונת העולם המוכרת לנו היום. נמקו בקצרה את הגרירות. אין צורך לנמק אי גרירות.

אט, $SAT \leq_p UNARY ext{-}SUBSETSUM$ (כאשר 5).

UNARY-SUBSETSUM= $\{a_1,...,a_k,1^t:\sum_{i\in S}a_i=t$ כך ש- $S\subseteq\{1,..,k\}$ קיימת תת קבוצה $S\subseteq\{1,...,k\}$ כל המספרים שלמים ואי-שליליים)

ב. כאשר: שלמה, באשר איא PSPACE היא בTQBF (5) ב.

הכמת \exists (כלומר, הכמת $\exists QBF$ הוא אוסף נוסחאות ה-QBF שבהן כל המשתנים מכומתים על ידי הכמת שבהן כלומר, הכמת $\exists TQBF=\{<\psi>\mid true$ אמת ערך אמת שבהן בעלת נוסחת $\psi\}$ וי

ג. (5 נקודות) $\overline{SAT} \leq_{np} SAT$ כאשר:

 $\overline{SAT} = \{<\psi>: אין ל- \psi$ השמה מספקת

:כך מוגדר כך מעל א"ב Σ , היחס היחס בהינתן שפות L_1 ו- L_1 מעל א"ב ב Σ , היחס היחס בהינתן שפות L_1 ובהינתן שפות אי-דטרמיניסטי מ- L_1 ל- L_2 היא L_2 היא ל- Σ^* כך שלכל E_1 כן שלכל פונקציה ניתנת לחישוב אי-דטרמיניסטי מ- E_1 מתקיים ש- $w' \in L_2$ אמ"מ קיים $w' \in f(w)$ כך אמ"מ $w \in L_1$ במידה וקיימת פונקציה כאו $L_1 \leq_{np} L_2$

 $PATH \leq_p TQBF$ (ד. 3) ד.