National University of Computer and Emerging Sciences, Lahore Campus

Course Name:	Theory of Automata	Course Code:	CS 301
Program:	BS CS	Semester:	Fall 2019
Duration:	60 Minutes	Total Marks:	30
Paper Date:	September 24, 2019.	Weight	15
Section:	N/A	Page(s):	2
Exam Type:	Midterm Exam 1		

Student: Name: Roll No.

Instruction/Notes:

- 1. Attempt on the question paper in the provided space. Extra sheets will NOT be marked.
- 2. One A4 hand written help sheet is allowed in the exam

QUESTION 1

Marks: 20

- i. Tick all regular expressions which express
- L = $\{w \mid w \in \{0,1\}^* \text{ and } w \text{ has no consecutive } 0 \text{ and no consecutive } 1\}$
- a. (10)*+(01)*
- b. (10 + 01)*
- c. $(0(10)^* + 1(01)^*)^*$
- d. ((01)*0 + (10)*1)*
- ii. Tick all regular expressions which express
- L = $\{w \mid w \in \{0,1\}^* \text{ and length of } w \text{ is at least 2 and } w \text{ does not end with } 10\}$
- a. (0+1)*(00 + 11 + 01)
- b. (0+1)*((00)* + (11)* + (01)*)
- c. 0*(00 + 11 + 01) + 1*(00 + 11 + 01)
- d. (0+1)*((0+1)1) + (0+1)*00
- iii. Write down all strings of the language given by the regular expression: $(1+010+\epsilon)(0+\epsilon)$
- iv. Write down the first three shortest strings that belong to: L = $\{(a^kb^k)^k \mid k > 1\}$
- v. Is it possible that for any language (denoted by L) L*=L? If so what is L?

vi. Suppose $L_1 = \phi L_2 = \{a,b,c\}$ then $L_1L_2 =$ _____

For parts vii-x consider the NFA machine M of Figure 1.

vii. What is $\delta^*(q_1,1)$ for M? _____

viii. What is $\delta^*(q_0,11)$ for M? ______

ix. What is the null closure $\epsilon\{q_0,q_1\}$?

Figure 1: NFA-ε Machine M

x. When ϵ transitions are removed from M to make an NFA without any null transitions, then what is the set of final states?

Roll Number:	
Non Number.	

QUESTION 2 Marks: 5

Construct a DFA using the method of subset construction from the following NFA machine N. Only fill out the given **state transition table** of the resulting DFA. No additional working is required.

Figure 2: NFA Machine N

State	0	1

QUESTION 3 Marks: 5

Make a state transition diagram for a DFA for:

 $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ has at least one } 0 \text{ and at least one } 1\}$