0.1 GeoGebra

0.1.1 CAS

Definere variabler

Hvis vi ønsker å definere variabler som vi skal bruke i andre celler, må vi skrive := . I figuren under er forskjellen mellom = og := demonstrert med et forsøk på å finne f'(x) til funksjonen $f(x) = x^2$:

→ CAS	S ×
1	f(x)=x^2
0	$\rightarrow f(x) = x^2$
2	f'(x)
3	f(x):=x^2
0	$\rightarrow f(x) := x^2$
4	f'(x)
0	→ 2 x

Av figuren legger vi også merke til at celle 3 og celle 4 er markert med en hvit runding. Dette indikerer at størrelsen vil vises i *Grafikkfelt* eller *Grafikkfelt 3D* hvis man trykker på markøren (den skal da bli blå).

Celle-referanser

Ofte kommer vi ut for situasjoner der vi ønsker å bruke uttrykket vi har funnet i tidligere celler. Som eksempel har vi i celle 1 skrevet inn volumet v av en kule med radius r, mens i celle 2 har vi volumet V av en kule med radius R. Ønsker vi å finne forholdet mellom disse, kan vi bruke cellereferanser som hjelpemiddel. For å referere til celle 1 skriver vi \$1 og for celle 2 skriver vi \$2. Forholdet $\frac{v}{V}$ kan vi da skriver som \$1/\$2:

→ CAS	S ×
1	$v = 4/3 \pi r^3$ $\Rightarrow \mathbf{v} = \frac{4}{3} r^3 \pi$
2	\forall = 4/3 π R^3 π ∇ = $\frac{4}{3}$ R ³ π
3	\$1 / \$2 $\Rightarrow \frac{\mathbf{v}}{\mathbf{V}} = \frac{\mathbf{r}^3}{\mathbf{R}^3}$

Lister

Når et uttrykk står inni sløyfeparanteser {}, betyr det at det er laget en liste. En liste inneholder flere elementer som vi kan hente ut. Dette gjør vi ved å skrive paranteser bak listen, hvor vi angir nummeret til elementet i listen.

▶ CAS	S ×	
1	{a, b,c}	
0	\rightarrow {a,b,c}	
2	\$1(1)	
	→ a	
	\$1(2)	
3	→ b	
4	\$1(3)	
4	→ C	

Lister bruker vi også når vi skal løse liginger med flere ukjente:

▶ CAS	\boxtimes
1	x+y+z=6
0	$\rightarrow x + y + z = 6$
2	x+y=3
0	$\rightarrow x + y = 3$
3	y+z=5
0	$\rightarrow y + z = 5$
4	Løs[{\$1, \$2, \$3}]
0	$\rightarrow \{\{x=1,y=2,z=3\}\}$

Høyre- og venstresiden

De fleste uttrykkene vi jobber med i CAS inneholder et = tegn. Disse uttrykkene er en ligning med en venstre- og høyreside. Ofte ønsker vi å bruke uttrykket på bare én av disse sidene, og oftest høyresiden. Som eksempel har vi løst ligningen (a+b)x=c og definert funksjonen $f(x)=dx^2$. Vi ønsker så å sette løsningen av ligningen inn i funksjonen. Dette gjør vi ved hjelp av HøyreSide-kommandoen (resulatet uten bruken av denne er vist i celle 4).

→ CAS	
	Løs[(a+b)x=c]
0	$\rightarrow \left\{ \mathbf{x} = \frac{\mathbf{c}}{\mathbf{a} + \mathbf{b}} \right\}$
	$f(x) := d x^2$
2	$\rightarrow f(x) := dx^2$
	f(HøyreSide[\$1])
0	$\rightarrow \ \left\{ d \ \left(\frac{c}{a+b} \right)^2 \right\}$
	f(\$1)
0	$\rightarrow \left\{ d x^2 = d \left(\frac{c}{a+b} \right)^2 \right\}$

ByttUt

Noen ganger ønsker vi å endre en variabel i et utrykk. For å gjøre dette kan vi anvende ByzttUt<Uttrykk>, <Liste med forandringer>. La oss se på uttrykket

$$\frac{a+b}{c}$$

Vi ønsker nå å sette $a=d,\,b=2$ og c=f. Dette kan vi gjør ved å skrive følgende:

0.1.2 Knapper og kommandoer

Grafikkfelt

Knappene velges fra rullemenyer på verktøylinjen. Nummereringen av menyene er fra venstre.

Lager et nytt punkt. (Meny nr. 1)
Lager linje mellom to punkt. (Meny nr. 2)
Finner topp- og bunnpunkt til en funksjon. (Meny nr. 2)
Finner nullpunktene til en funksjon. (Meny nr. 2)

$\left \begin{array}{c} \\ \\ \end{array} \right $	Finner	skjæringspunkt	mellom	to objekt.	(Meny n	ır. 3)

	~ ~ ~	Lager	vektoren	mellom	to	punkt	(Meny	nr.	3)
1									

Lager en tekstboks. (Meny nr. 10)

Flytter grafikkfeltet. Endrer verdiavstanden hvis man peker på aksene. (Meny nr. 10)

CAS

=	Gjengir uttrykket som er inntastet, ofte i forkortet form
	Gjengir uttrykket som er inntastet.
~	Gir tilnærmet verdi av et uttrykk (som desimaltall).
x=	Gir eksaktløsningen av en ligning.
x≈	Gir tilnærmet løsning av en ligning som desimaltall.

Hurtigtaster

	Beskrivelse	\mathbf{PC}	\mathbf{Mac}
	kvadratrot	alt+r	alt+r
π	pi	alt+p	alt+p
∞	uendelig	alt+u	alt+,
\otimes	kryssprodukt	alt+shift+8	ctrl+shift+8
\overline{e}	eulers tall	alt+e	alt+e
0	gradtegnet $(\frac{\pi}{180})$	alt+o	alt+o

Kommandoliste

- abs(<x>)
 Finner lengden til et objekt x.
- acos (<x>)
 I algebrafelt: Gir vinkelen på intervallet [0°, 180°] som har cosinusverdi x.

I CAS: Gir vinkelen på intervallet $[0, \pi]$ som har cosinus-verdi x.

asin(<x>)
 I algebrafelt: Gir vinkelen på intervallet [-90°, 90°] som har sinus-verdi x.

I CAS: Gir vinkelen på intervallet $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ som har sinus-verdi x.

• atan($\langle x \rangle$) I algebrafelt: Gir vinkelen på intervallet $[-90^{\circ}, 90^{\circ}]$ som har tangens-verdi x.

I CAS: Gir vinkelen på intervallet $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ som har sinus-verdi x.

- Asymptote(<Funksjon>)
 Finner asymptotene til en funksjon.
- Avstand(<Punkt>, <Objekt>)
 Gir avstanden fra et punkt til et objekt.
- ByttUt(<Uttrykk>, <Liste med forandringer>)
 Viser et gitt uttrykk etter endring av variabler, gitt i en liste.
- Deriverte(<Funksjon>)
 Gir den deriverte av en funksjon.
 Merk: For en definert funksjon f(x), kan man like gjerne skrive f'(x).
- Ekstremalpunkt (<Funksjon>, <Start>, <Slutt>)
 Finner lokale ekstremalpunkt og ekstremalverdier for en funksjon
 f på et gitt intervall.
- Ekstremalpunkt(<Polynom>)
 Finner lokale ekstremalpunkt og ekstremalverdier til et polynom.
- Funksjon (<Funksjon>, <Start>, <Slutt>)
 Tegner en funksjon på et gitt intervall.

• Høyde(<Objekt>)

Gir avstanden fra toppunkt til grunnflate i et objekt.

Merk: Avstanden har retning, og derfor kan den noen ganger være negativ. Tallverdien er den geometriske høvden.

- HøyreSide (<Likning>)
 Gir høyresiden til en likning.
- HøyreSide (<Liste med likninger>)
 Gir en liste med høyresidene i en liste med ligninger.

• Integral (<Funksjon>)

Gir uttrykket til det ubestemte integralet av en funksjon.

 $\mathit{Merk} :$ Hvis kommandoen skrives i inntastingsfeltet, blir konstantleddet utelatt

- Integral (<Funksjon>, <Start>, <Slutt>)
 Gir det bestemte integralet av en funksjon på et intervall.
- Integral (<Variabel >)
 Gir uttrykket til det ubestemte integralet til en funksjon av gitt
 variabel. (Brukes dersom man ønsker å integrere funksjoner avhengig
 av en annen variabel enn x).
- Kule(<Punkt>, <Radius>)
 Viser en kule i Grafikkfelt 3D med sentrum i et gitt punkt og
 med en gitt radius.
- Kurve(<Uttrykk>, <Uttrykk>, <Parametervariabel>,
 <Start>, <Slutt>)

Viser parameteriseringen av en kurve i Grafikkfelt 3D på et gitt intervall. Uttrykkene er henholdsvis uttrykkene for x,y og z-koordinatene, bestemt av en gitt parametervariabel.

Merk: Med mindre et bestemt intervall av kurven er ønsket, er det bedre å skrive parameteriseringen direkte inn i inntastingsfeltet som $\mathtt{A+t*u}$, hvor A er et punkt på linja og u er en retningsvektor.

• Linje (<Punkt>, <Punkt>)

Gir uttrykket til en linje mellom to punkt. Hvis punktene har tre koordinater besår uttrykket av et punkt på linja og en fri variabel }lambda mulitplisert med en retningsvektor.

• Løs (<Likning med x>)
Løser en likning med x som ukjent.

- Løs(<Liste med likninger>, <Liste med variabler>)
 Finner alle løsninger av en liste med ligninger med gitte variabel
 som ukjente.
- Løs(<Likning>, <Variabel>)
 Finner alle løsninger av en gitt likning med en gitt variabel som ukjent.
- Maks(<Funksjon>, <Start x-verdi>, <Slutt x-verdi>)
 Finner absolutt maksimum og maskimalpunkt for en funksjon f
 på et gitt intervall.
- Min (<Funksjon>, <Start x-verdi>, <Slutt x-verdi>) Finner absolutt minimum og minimumspunkt for en funksjon f på et gitt
- Nullpunkt(<Polynom>)
 Finner alle nullpunkter til et polynom.

intervall.

- NullpunktIntervall(<Funksjon>, <Start>, <Slutt>)
 Finner alle nullpunkter på et gitt intervall til en hvilken som
 helst funksion.
- Plan(<Punkt>, <Punkt>, <Punkt>)
 Viser et plan i Grafikkfelt 3D, utspent av to av vektorene mellom tre gitte punkt.
- Prisme(<Punkt>, <Punkt>, ...)
 Framstiller en prisme i Grafikkfelt 3D. Prisme[A,B,C,D] lager
 en prisme med grunnflate ABC og tak DEF, Prisme[A,B,C,D,E]
 har grunnflate ABCD og tak EFG. F,G og eventelt E blir konstruert av GeoGebra slik at hver sideflate er et parallellogram.
 Under kategorien Prisme i algebrafaltet finner man en konstant
 som oppgir volumet til pyramiden.
- Punkt (<Liste>)
 Lager et punkt med koordinater gitt som liste.
 Merk: For å lage punktet (x, y), kan man liksågodt skrive (x,y) i inntastingsfeltet. Skriver man (x,y) i CAS lager man vektoren [x, y].
- Pyramide (<Punkt>, <Punkt>, ...)
 Framstiller en pyramide i Grafikkfelt 3D. Pyramide [A,B,C,D]
 lager en pyramide med grunnflate A, B, C og toppunkt D, mens
 Pyramide [A,B,C,D, E] har grunnflate A, B, C, D og toppunkt

E. Under kategorien Pyramide i algebrafaltet finner man en konstant som oppgir volumet til pyramiden.

• RegLin(<Liste>)

Bruker regresjon med en rett linje for å tilpasse punkt gitt i en liste.

• RegEksp(<Liste>)

Bruker regresjon med en eksponentialfunksjon for å tilpasse punkt gitt i en liste.

• RegPoly(<Liste>, <Grad>)

Bruker regresjon med et polynom av gitt grad for å tilpasse punkt gitt i en liste.

• RegPot(<Liste>)

Bruker regresjon med en potensfunksjon for å tilpasse punkt gitt i en liste.

• RegSin(<Liste>)

Bruker regresjon med en sinusfunksjon for å tilpasse punkt gitt i en liste.

• Skalarprodukt(<Vektor>, <Vektor>)

Finner skalarproduktet av to vektorer.

Merk: For to vektorer u og v kan man like gjerne skrive u*v.

Skjæring(<0bjekt>, <0bjekt>)

Finner skjæringspunktene mellom to objekter.

- Skjæring(<Funksjon>, <Funksjon>, <Start>, <Slutt>) Finner skjæringspunktene mellom to funksjoner på et gitt intervall.
- Sum(<Uttrykk>, <Variabel>, <Start>, <Slutt>) Finner summen av en rekke med en løpende variabel på et intervall.
- TrigKombiner(<Funksjon>) Skriver om et uttrykk på formen $a\sin(kx) + b\cos(kx)$ til et kombinert uttrykk på formen $r\cos(kx-c)$.
- TrigKombiner(<Funksjon>, sin(x)) Skriver om en funksjon på formen $a\sin(kx) + b\cos(kx)$ til et kombinert uttrykk på formen $r \sin(kx + c)$.

• Vektor(<Punkt>)

Lager vektoren fra origo til et gitt punkt.

Merk: I CAS kan man lage vektoren [x,y] ved å skrive (x,y), dette anbefales.

• Vektorprodukt(<Vektor>, <Vektor>)

Finner vektorproduktet av to vektorer.

Merk: For to vektorer u og v kan man like gjerne skrive $u \otimes v$.

• Vendepunkt(<Polynom>)

Finner vendepunktene til et polynom.

• VenstreSide(<Likning>)

Gir venstresiden til en likning.

• VenstreSide(<Liste med likninger>)

Gir en liste med venstresidene i en liste med ligninger.

• Vinkel(<Vektor>, <Vektor>)

Gir vinkelen mellom to vektorer. Kan også brukes for vinkel mellom plan/linjer, plan/plan og linje/linje