

WM_WiFi_自由通信接口使用指导 V0.2

北京联盛德微电子有限责任公司 (winner micro)

地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档修改记录

版本	修订时间	修订记录	作者	审核
V0.1	2019/9/25	[C]创建文档	Lilm	
V0.2	2020/7/8	统一字体	Cuiyc	

目录

文档	当修改记录	₹			 	2
目录	₹				 	3
1	引言				 	4
	1.1	编写目的			 	4
	1.2	预期读者				4
	1.3	术语定义				4
						4
2	设置信道	<u>ś</u>				5
3	3 设置监听模式			5		
4	4 设置接收回调函数				6	
5	发送帧					7

- 1 引言
- 1.1 编写目的

指导 W60X/W800 相关的开发人员使用 WiFi 自由通信接口

1.2 预期读者

所有 W60X/W800 相关的开发人员

1.3 术语定义

无

1.4 参考资料

无

2 设置信道

W60X/W800 在通信时,只有处于同一信道的模块才能互相通信。

chanid 取范围为 0-13 代表 1-14 信道。W60X 使用 2.4G 频段,所以理论上支持 1-14 个信道,但是不同的国家规定了具体所能使用的信道,如中国只能使用 1-13 信道。

3 设置监听模式

默认情况下,W60X/W800 只能接收到目的地址是自己、广播地址的包,所以只有设置 W60X/W800 处于监听模式,才能接收到空中所有的包。

编程时,通过调用tls_wifi_set_listen_mode(1)启动监听模式,调用tls_wifi_set_listen_mode(0) 停止监听模式。

4 设置接收回调函数

W60X/W800将所能接收到的报文,都可以上报给用户进行处理。

这两个接口的区别为 tls_wifi_data_ext_recv_cb_register 除了上报报文内容还附加了报文的信号强度,在编程时根据需要选择一个适合自己的接口即可。

根据 802.11 协议,一个 MAC 头的格式为:

接口中u8* data 指针指向一个从MAC帧头开始的完整帧(不包含FCS内容),u32 data_len 指整个帧的长度(不包含FCS长度),FCS错误的帧会被系统丢弃不会上报给用户,编程时需要用户根据协议去解析帧内容。

5 发送帧

当用户需要发送自组帧时,可以使用下面这个接口:


```
struct tls wifi tx rate t {
     enum tls wifi tx rate tx rate;
                                                  /**< Wi-Fi ransport rate */
     u8 tx_gain;
                                                  /**< Wi-Fi ransport gain,
                                                        The caller can get the maximum gain by using the tls_wifi_get_tx_gain_max function. */
};
/**
 * @brief
                        This function is used to send an 802.11 frame
 * @param[in]
                                         mac address, it can be NULL data packet buffer
                         *mac
 * @param[in]
                        *data
 * @param[in]
                         data_len
                                         data packet length
 * @param[in]
                                         rate and gain, it can be NULL
 * @retval
 * @retval
 * @note
                 If the @*mac is NULL, @*data should be an entire 802.11 frame. If the @*mac is not NULL, this function will build an 802.11 frame with @*mac as destination mac address and @*data as the data body.
                 If the @*tx is NULL, the packet will be sent at 11B 1Mbps.
int tls_wifi_send_data(struct tls_wifi_hdr_mac_t *mac, u8 *data, u16 data_len, struct tls_wifi_tx_rate_t *tx);
```

在编程时,struct tls_wifi_hdr_mac_t *mac 填 NULL,u8 *data 指向一个完整的 802.11帧(不包含 FCS 内容),u16 data_len 为这个完整 802.11帧的长度(不包含 FCS 长度),FCS 由硬件自动计算并附加在帧尾。

struct tls_wifi_tx_rate_t *tx 指定了发包的速率大小和发送增益, 速率值根据枚举值填写即可,

增益值取值范围是 0x60-0x78, 推荐用户直接使用 tls_wifi_get_tx_gain_max 获取对应速率的增益值填入。