Lattices in non-positive curvature

Sam Hughes

March 2021

Presentations

- ▶ Let $X = \{a_1, \ldots, a_n\}$ be a finite set and let F_X denote the free group on X.
- ▶ The free group F_X is the set of all words in $X \cup X^{-1}$ with composition given by concatenation and cancellation.
- ▶ A group G is *finitely generated* if there exists a surjection $F_X \to G$.
- ► A finitely generated group *G* is *finitely presented* if the kernel of the surjection is finitely normally generated.
- ▶ In the later case we may write $G \cong \langle X \mid R \rangle$ where R is a normal generating set for the kernel.
- ightharpoonup E.g. $\mathbb{Z}_n = \langle a \mid a^n \rangle$.
- **Boone-Novikov:** The question "does $\langle X \mid R \rangle$ present the trivial group?" is undecidable.

Geometric group theory

- ▶ Let $G = \langle X \rangle$ be finitely generated and let $\mathrm{Cay}(G,X)$ be the Cayley graph of G with respect to X.
- ▶ This is a metric space by assigning edges length 1.
- ► **Problem:** Different finite generating sets give different graphs.
- ► **Solution:** Quasi-isometries.

Definition (Quasi-isometry)

Let (X,d_X) and (Y,d_Y) be metric spaces. Let $f:X\to Y$ be a function, we say f is a *quasi-isometry* if there exist constants $L\ge 1$ and $C\ge 0$ such that

1.
$$\forall x, y \in X$$
:
 $L^{-1}d_X(x, y) - C \le d_Y(f(x), f(y)) \le Ld_X(x, y) + C$.

2. Let $z \in Y$, then $\exists x \in X$ such that $d_Y(z, f(x)) \leq C$.

Examples

 $\operatorname{Cay}(\mathbb{Z}^n,X)$ is quasi-isometric to \mathbb{E}^n .

 $Cay(F_X, X)$ is quasi-isometric to a tree.

In both cases X is the "obvious" symmetric generating set.

Geometric Group Theory

Proposition

Let X and Y be two finite generating sets for a group G, then $\mathrm{Cay}(G,X)$ and $\mathrm{Cay}(G,Y)$ are quasi-isometric.

Let G act on a metric space X, the action is:

- ▶ cocompact if there exists a compact set K such that $\bigcup_{g \in G} gK = X$.
- ▶ properly discontinuous if for every compact set $K \subseteq X$ the set $\{g \in G : gK \cap K \neq \emptyset\}$ is finite.

Milnor-Švarc Lemma

Lemma (Milnor-Švarc)

Suppose a finitely generated group G acts properly discontinuously cocompactly by isometries on a metric space X, then G is quasi-isometric to X.

Slogan: Study finitely generated groups by their geometric actions on nice metric spaces.

What if we turn the question on its head and start with a nice space?

CAT(0) spaces

A geodesic metric space X is $\mathrm{CAT}(0)$ if for every geodesic triangle $P=\Delta(p,q,r)\subseteq X$ there exists a comparison triangle in \mathbb{E}^2 with the same side lengths as P such that for each pair of points $x,y\in\partial P$ we have

Properties and examples

CAT(0) spaces are contractible and have unique geodesics.

Examples

- ightharpoonup \mathbb{E}^n
- ▶ Trees
- Non-compact symmetric spaces (e.g. $\mathbb{R}\mathbf{H}^2$)
- Infinite buildings

Lattices in locally compact groups

Let $H = \mathrm{Isom}(X)$ be a locally compact group with Haar measure μ . A discrete subgroup $\Gamma \leq H$ is:

- ightharpoonup a *lattice* if X/Γ has finite covolume;
- ▶ a *uniform lattice* if X/Γ is compact.

For a lattice Γ in a product $\prod_{i=1}^{n} H_i$ we say Γ is:

- ▶ irreducible if the projection to each subproduct of the H_i is non-discrete;
- reducible otherwise.

Key point

Uniform lattices in the isometry group of a CAT(0) space are CAT(0) groups.

Idea: Study lattices in $\mathrm{Isom}(X)$ where X is a $\mathrm{CAT}(0)$ space.

Questions about lattices

Let X be a metric space and H = Isom(X) with Haar measure μ .

- 1. Does H have lattices?
- 2. What are properties of a generic lattice in H?
- 3. Do the properties of lattices in H reflect properties of H?
- 4. Can we classify lattices in H up to isomorphism, commensurability, or quasi-isometry?

Crystallographic groups

- Let \mathbb{E}^n denote Euclidean n-space, then $\operatorname{Isom}(\mathbb{E}^n) = \mathbb{R}^n \rtimes \operatorname{O}(n)$.
- ▶ A lattice $\Gamma < \mathrm{Isom}(\mathbb{E}^n)$ admits a short exact sequence $\{1\} \to \mathbb{Z}^n \to \Gamma \to \pi_{\mathrm{O}(n)}(\Gamma) \to \{1\}.$
- ▶ A virtually abelian group Γ admits a short exact sequence $\{1\} \to \mathbb{Z}^n \to \Gamma \to P \to \{1\}.$
- ▶ **Zassenhaus:** If G is a finitely generated virtually abelian group, then G acts properly discontinuously cocompactly on \mathbb{E}^n and so is $\mathrm{CAT}(0)$. Moreover, Γ is an $\mathrm{Isom}(\mathbb{E}^n)$ -lattice if and only if $P \rightarrowtail \mathrm{GL}_n(\mathbb{R})$.

Lattices in Lie groups

Let $G(\mathbb{R})$ be a non-compact semisimple real Lie group with finite centre.

e.g.
$$G(\mathbb{R}) = \mathrm{SL}_2(\mathbb{R})^2$$
.

Let K be a finite extension of $\mathbb Q$ with ring of integers $\mathcal O_K$ and let $\Gamma = G(\mathcal O_K)$

e.g.
$$\Gamma = \mathrm{SL}_2(\mathbb{Z}[\sqrt{2}])$$
 or $\Lambda = \mathrm{SL}_2(\mathbb{Z})^2$.

For each place s_i of K we have an embedding $\sigma_i: K \rightarrowtail \mathbb{R}$ or \mathbb{C}

e.g.
$$\sqrt{2}\mapsto \pm\sqrt{2}\in\mathbb{R}$$
.

This induces a diagonal map $G(\mathcal{O}_K) \to G(\mathbb{R})^m \times G(\mathbb{C})^n$. e.g. $\mathrm{SL}_2(\mathbb{Z}[\sqrt{2}]) \rightarrowtail \mathrm{SL}_2(\mathbb{R})^2$.

Lattices in Lie groups (cont.)

Both
$$\Gamma=\mathrm{SL}_2(\mathbb{Z}[\sqrt{2}])$$
 and $\Lambda=\mathrm{SL}_2(\mathbb{Z})^2$ are lattices in $\mathrm{SL}_2(\mathbb{R})^2.$

 Γ is irreducible and Λ is reducible.

Both of them are arithmetic groups.

Questions about lattices

Let X be a metric space and $H = \mathrm{Isom}(X)$ with Haar measure μ .

- 1. Does H have lattices?
- 2. What are properties of a generic lattice in H?
- 3. Do the properties of lattices in H reflect properties of H?
- 4. Can we classify lattices in H up to isomorphism, commensurability, or isometry?

Answers for Lie Groups

Let H be a real semisimple Lie group with trivial centre.

- 1. H has lattices.
- 2. In higher rank the lattices are just-infinite [Margulis 1979]. They are finitely presented, linear, residually finite and Hopfian.
- 3. They have property (T) if H does. Homomorphisms of higher rank lattices induce homomorphisms of H. [Margulis Super Rigidity]
- 4. In theory in higher rank yes. All lattices are arithmetic [Margulis 1984] so possible using number theoretic techniques.

Tree lattices

Let \mathcal{T} be a regular or biregular infinite tree e.g.

Let $T=\operatorname{Aut}(\mathcal{T})$. We want to study uniform lattices in T, i.e. groups which act cocompactly with finite stabilisers on \mathcal{T} .

Graphs of groups

Let $\mathcal{A}=(V\mathcal{A},E\mathcal{A},\iota,\tau)$ be a graph equipped with the following data:

- ▶ For each vertex v and edge e a group A_v or A_e ;
- ▶ For each edge e, monomorphisms $\psi_e:A_e\to A_{\iota(e)}$ and $\psi_{\overline{e}}:A_e\to A_{\tau(e)}$

We denote this by A and call it a graph of groups over A.

Graphs of groups (cont.)

From a graph of groups A we obtain the fundamental group. Let \mathcal{X} be a spanning tree of \mathcal{A} then $\pi_1(A)$ has generators

$$A_v, t_e \text{ for } v \in VA, e \in EA,$$

and relations

- $ightharpoonup t_e = 1 \text{ if } e \in E\mathcal{X};$
- ightharpoonup the relations in the groups A_v ;
- $\blacktriangleright t_e \psi_e(g) t_e^{-1} = \psi_{\overline{e}}(g) \text{ for all } g \in A_e.$

We also obtain a tree by taking the graph with vertices $\coprod_{v \in V\mathcal{A}} \pi_1(A)/A_v$ and edges $\coprod_{e \in E\mathcal{A}} \pi_1(A)/A_e$.

Bass-Serre Theory

From a group action on a tree we can also construct a graph of groups from the vertex and edge stabilisers in a fundamental domain.

Theorem (Bass-Serre)

The processes of constructing of the Bass-Serre tree from a graph of groups and constructing a graph of groups from a group action on a tree are mutually inverse.

A quick example

- lacktriangle Let \mathcal{A} be a single edge e with two vertices v and w.
- ightharpoonup Let $A_v=A_w=C_3$ and $A_e=\{1\}$;

- \blacksquare $\pi_1(A) = \langle a, b | a^3, b^3 \rangle = C_3 * C_3;$
- ► The Bass-Serre tree is the 3-regular tree.
- ▶ Every vertex is stabilised by a conjugate of $\langle a \rangle$ or $\langle b \rangle$.

Tree lattices (revisited)

Theorem (Bass-Kulkarni 1990)

Every tree lattice splits as a faithful graph of finite groups, and conversely every faithful graph of finite groups is a tree lattice.

Corollary

Uniform tree lattices are virtually free.

Caprace–Monod's Decomposition Theorem (2009)

Let Y be proper $\mathrm{CAT}(0)$ space and assume $\mathrm{Isom}(Y)$ acts cocompactly and minimally. There exists a $\mathrm{Isom}(Y)$ -stable subset X and $H \leq_{\mathrm{f.i}} \mathrm{Isom}(X)$ such that:

$$X = \mathbb{R}^n \times M_1 \times \cdots \times M_p \times X_1 \times \cdots \times X_q,$$

and

$$H \cong \text{Isom}(\mathbb{E}^n) \times L_1 \times \cdots \times L_p \times D_1 \times \cdots \times D_q,$$

where each M_i is a symmetric space of non-compact type with associated Lie group L_i and X_j is an irreducible CAT(0) space with totally disconnected isometry group D_j . Moreover, $AR(H) = Isom(\mathbb{E}^n)$.

On $(\operatorname{Isom}(\mathbb{E}^n) \times T)$ -lattices

- ▶ It was thought every $(\operatorname{Isom}(\mathbb{E}^n) \times T)$ -lattice was reducible i.e. virtually $\mathbb{Z}^n \times F_m$.
- ▶ Leary-Minasyan 2019: Constructed groups LM(A) using a graph with a single vertex and edge which are irreducible $(Isom(\mathbb{E}^n) \times T)$ -lattices.
- ► These groups are not linear, residually finite, or biautomatic answering a 25 year old question about whether every CAT(0) group is biautomatic.

Leary-Minasyan Groups

Let $A \in O(2)$ and L_1 be a finite index subgroup of \mathbb{Z}^2 and $L_2 = A(L_1)$.

$$LM(A) = \langle a, b, t \mid [a, b], tL_1t^{-1} = L_2 \rangle$$

$$\phi: \mathrm{LM}(A) \to \mathrm{Isom}(\mathbb{E}^n)$$
 by
$$\begin{cases} a \mapsto [1,0]^T \\ b \mapsto [0,1]^T \\ t \mapsto A. \end{cases}$$

Leary-Minasyan Groups (cont.)

$$A = \begin{bmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{bmatrix}, L_1 = \left\langle \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\rangle \text{ and } L_2 = \left\langle \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\rangle$$

$$G:=\mathrm{LM}(A)=\langle a,b,t\:|\:[a,b],\:ta^2bt^{-1}=a^2b^{-1},\:tab^2t^{-1}=a^{-1}b^2\rangle$$

Irreducibility

Theorem (Leary-Minasyan)

G is an irreducible $(\mathrm{Isom}(\mathbb{E}^n) \times T_{10})$ -lattice.

Here $T_{10} := \operatorname{Aut}(\mathcal{T}_{10})$ the Bass-Serre tree of G.

The Flat Torus Theorem

Theorem

Let L be a free abelian group acting properly by semisimple isometries on CAT(0) space X. If a group Γ of isometries of X normalizes L, then a finite-index subgroup of Γ centralizes L. If Γ is finitely generated, then ΓL has a finite-index subgroup containing L as a direct factor.

Irreducibility

- ▶ Γ acts cocompactly and freely on $\mathbb{E}^n \times \mathcal{T}_{10}$;
- ▶ It follows Γ is a lattice in $\mathrm{Isom}(\mathbb{E}^n) \times T_{10}$, where $T_{10} = \mathrm{Aut}(\mathcal{T}_{10})$;
- ► The element A is an infinite order orthogonal matrix so LM(A) has a non-discrete projection to $Isom(\mathbb{E}^n)$;
- Let C denote the intersection of all conjugates of $L = \langle a, b \rangle$;
- Now $C \leq LM(A)$ so by the flat torus theorem there exists some k > 0 such that t^k centralises L;
- ▶ Thus, t^k acts trivially on $C \otimes \mathbb{R}$. Which is nonsensical unless C = 0.
- ▶ It follows L acts faithfully on \mathcal{T}_{10} as a vertex stabiliser. Hence the projection is non-discrete.

Generic properties?

Theorem (H. 2021)

Let \mathcal{T} be a locally finite unimodular leafless tree not quasi-isometric to \mathbb{E} and let $T=\operatorname{Aut}(\mathcal{T})$. Let Γ be a uniform $(\operatorname{Isom}(\mathbb{E}^n)\times T)$ -lattice. The following are equivalent:

- 1. Γ is an irreducible $(\operatorname{Isom}(\mathbb{E}^n) \times T)$ -lattice;
- 2. Γ is irreducible as an abstract group;
- 3. Γ acts on \mathcal{T} faithfully;
- 4. Γ does not virtually fibre;
- 5. Γ is C^* -simple;
- 6. and if n=2, Γ is non-residually finite and not virtually biautomatic.

Thanks for listening!