DETEÇÃO DA FORMAÇÃO E FUSÃO DE MEMBRANAS UTILIZANDO O PIRENO COMO SONDA FLUORESCENTE

- Preparação de vesículos e incorporação de uma sonda fluorescente.
- Verificação da influência da concentração local no processo de formação de excímero.
- Deteção do processo de fusão de membranas através da formação do excímero do pireno.
- Análise qualitativa da variação da difusão de luz no processo de fusão.

2. INTRODUÇÃO

Os fosfolípidos são os constituintes mais abundantes das membranas biológicas. Estes compostos, tal como os surfactantes, são moléculas anfifílicas, sendo constituídos por uma parte polar e outra apolar.

Os fosfolípidos constituintes das membranas biológicas contêm duas cadeias hidrocarbonadas por cabeça polar. O efeito principal desta característica estrutural é duplicar o volume das cadeias hidrocarbonadas, o que faz com que as estruturas mais prováveis sejam as bicamadas. Nas células biológicas, a composição de fosfolípidos é tal que a forma de agregação adotada espontaneamente é a de um vesículo monolamelar (fig. 1).

Figura 1 – Representação esquemática de um vesículo.

Cada monocamada apresenta uma curvatura espontânea. Esta advém da competição entre as áreas de empacotamento das cabeças polares e das cadeias hidrocarbonadas. As duas monocamadas que constituem o vesículo possuem orientações opostas, pelo que uma tem curvatura côncava e a outra convexa. Assim, mesmo que uma das monocamadas seja energeticamente favorecida, a outra introduz uma desestabilização energética.

As membranas biológicas são estáveis porque envolvem vários fosfolípidos diferentes. Estes distribuem-se assimetricamente pelas duas monocamadas, de modo a que as

Biofísica – 2021/2022

curvaturas intrínsecas de cada monocamada originem, sem custo energético, o encurvamento da bicamada fosfolipídica.

Neste trabalho, utilizam-se vesículos de lecitina de soja, cujo componente principal é a fosfatidilcolina (fig. 2). Outros componentes são a fosfatidiletanolamina, o fosfatidilinositol, fitoglicolípidos e carbohidratos.

Figura 2 – Estrutura das fosfatidilcolinas e sua divisão em grupos.

3. FUSÃO DE MEMBRANAS

A fusão de membranas é um processo largamente envolvido na função celular. O mecanismo de fusão que ocorre em vesículos é semelhante ao que se verifica em muitos processos biológicos, como a exocitose (processo natural de libertação de substâncias dos organelos celulares). No decurso da exocitose, ocorre a fusão de um pequeno vesículo com a membrana citoplasmática, sendo o conteúdo do vesículo libertado para o exterior. Em muitos sistemas biológicos, verificou-se que a presença do ião Ca²+ é indispensável para que este processo ocorra.

A fusão de vesículos (fig. 3) pode ser detetada através da incorporação nas membranas de uma sonda fluorescente sensível à concentração local. Ao dar-se a fusão, a concentração local da sonda diminui, como se infere pela figura 3.

Figura 3 – Mecanismo geral da fusão de vesículos. Os três passos representam a agregação, o rompimento da membrana e a fusão, respetivamente.

Como sonda, utiliza-se o pireno, que vai incorporar-se nas membranas devido ao seu caráter hidrofóbico. Se a concentração (local) desta sonda for elevada, ocorre a formação de um dímero no estado excitado, entre uma molécula de pireno excitada e outra no estado fundamental (fig. 4). Este dímero excitado é designado excímero e possui uma banda de emissão não estruturada, que ocorre a menores energias que o espetro de fluorescência do monómero (fig. 5).

Figura 4 – Esquema da formação do excímero do pireno.

A fusão entre um vesículo marcado com pireno e um vesículo sem sonda conduz a uma diminuição da concentração local do pireno. O processo de fusão pode então ser detetado pelo decréscimo da formação de excímero.

Biofísica - 2021/2022

Figura 5 – Espetro de fluorescência do pireno, exibindo a banda de emissão do excímero.

4. DIFUSÃO DE LUZ

Uma molécula individual num feixe de radiação sofre uma oscilação periódica dos seus eletrões provocada pelo campo elétrico oscilante da radiação incidente (fig. 6).

Figura 6 – Difusão de luz plano-polarizada por uma partícula pontual.

Esta oscilação de cargas faz com que a molécula se comporte como uma pequena antena, difundindo a radiação em várias direções (e não apenas na direção de propagação da radiação).

Para uma solução homogénea com moléculas muito mais pequenas que o comprimento de onda da radiação incidente, a intensidade da luz difundida pelas partículas tem a forma

$$\frac{i_{\theta}}{I_0} = R_{\theta} \frac{V[1 + \cos(2\theta)]}{r^2} \tag{1}$$

em que i_{θ} é a intensidade da radiação difundida segundo o ângulo θ , I_{0} é a intensidade da radiação incidente, V é o volume observado, r a distância entre o detetor e a amostra, e R_{θ} é

dado por
$$R_{\theta} = \frac{2\pi^2 n_0^2}{N_{\text{Av}} \lambda^4} \left(\frac{\partial n}{\partial C}\right)^2 MC \tag{2}$$

sendo n o índice de refração da solução (o subscrito 0 refere-se ao solvente puro), M a massa da partícula difusora, C a concentração de partículas difusoras, N_{AV} o número de Avogadro e λ o comprimento de onda da radiação.

A equação (1), a que se pode dar a forma
$$I_{\rm D} \propto \frac{1}{\lambda^4}$$
 , (3)

em que $I_{\rm D}$ é a intensidade total da radiação difundida, é a conhecida relação de difusão de Rayleigh. Esta expressão só é válida se a influência da luz difundida por moléculas próximas for desprezável (soluções diluídas), e se as dimensões moleculares forem desprezáveis em relação a λ . Quando as dimensões das partículas difusoras são comparáveis ao comprimento de onda da radiação, a quantidade de luz difundida tem uma expressão mais complexa, passando a depender da forma e tamanho da partícula difusora.

Neste trabalho não se mede directamente a luz difundida, mas sim a absorvância, que se relaciona com a transmitância pela relação

$$A = -\log_{10} T \tag{4}$$

À medida que as partículas em solução aumentam de tamanho, a transmitância diminui. Este facto não significa um aumento da quantidade de luz absorvida. A diminuição da transmitância da amostra é devida à radiação que, ao ser difundida em todas as direções, parte dela $(\theta \neq 0)$ não atinge o detetor.

5. TÉCNICA EXPERIMENTAL

5.1. Preparação de soluções

- A partir de uma solução-mãe 2.5×10⁻³ M de pireno em etanol, preparar 5 ml de solução de pireno 2.5×10⁻⁵ M em etanol.
- Vesículos de lecitina de soja (Solução A): Num tubo de ensaio, contendo 5 ml de solução de NaCl 10⁻³ M (já preparada), injetar com micropipeta e sob vortex, 100 μL de solução de lecitina de soja 5×10⁻² M em tetrahidrofurano (também já preparada).
- Vesículos de lecitina de soja com pireno (Solução B): Pipetar 2.5 ml da solução A para um tubo de ensaio. Adicionar, sob vortex, 50 μL da solução 2.5×10⁻³ M de pireno em etanol.
- Calcular as concentrações finais de lecitina e de pireno nas soluções A e B.

5.2. Espetros de absorção e fluorescência

Registe os espetros de absorção na gama 250 a 360 nm. Utilize referências adequadas para cada caso. Registe os espetros de fluorescência na gama 360 a 600 nm, com λ_{exc} =337nm.

- Traçar o espetro de absorção da solução de pireno 2.5×10⁻⁵ M em etanol.
- Traçar os espetros de fluorescência das soluções de pireno 2.5×10⁻⁵ M e 2.5×10⁻³ M em etanol.
- Para uma célula de fluorescência pipetar 1.5 ml de solução A e 1.5 ml de solução B.
 Traçar os espetros de absorção e de fluorescência.
- Juntar à célula anterior 40 μL de solução aquosa de cloreto de cálcio 1 M (já preparada).
 Traçar os espetros de absorção e fluorescência.

5.3. Análise de resultados

- 1. Explique a diferença nos espetros de fluorescência de ambas as soluções de pireno em etanol.
- 2. Interprete o espetro de fluorescência da solução A+B.
- 3. Compare os espetros de absorção da solução 2.5×10⁻⁵ M de pireno em etanol e da solução de vesículos *A+B*. Sendo a concentração de pireno igual nas duas soluções, a que são devidas as diferenças e como variam com o comprimento de onda?
- 4. Quando se adiciona cálcio, o espetro de fluorescência da solução *A+B* varia. Que conclusão se pode tirar desta variação? Porquê?
- 5. O espetro de absorção da solução A+B+cálcio confirma a conclusão do ponto 4? Porquê?

BIBLIOGRAFIA

- [1] P.J. G. Coutinho, Tese de Doutoramento, IST-UTL, Lisboa, 1998.
- [2] J. H. Prestegard, M. P. O'Brien, Ann. Rev. Phys. Chem. 38, 383 (1987).
- [3] D. Papahadjopoulos, W. J. Vail, K. Jacobson, G. Poste, *Biochim. Biophys. Acta* (1975).
- [4] K. van Holde, W. Johnson, P. Shing Ho, *Principles of Physical Biochemistry*, Prentice Hall, 1998.