	Statistical Learning and Lincar Regression
Almost	ony attempt to clearly define a difference
	ony attempt to clearly define a difference theen statistics and machine learning—it wrong
Classica	elly: Statistics (statistical inference)
	formulating probabilistic models about,
	elly: Statistics (statistical inference) formulating probabilistic models about variousles in order to infer properties/pavans
M	achine learning: using algos to predict output given input
	el (machine) learning (SML)
bui'	d/understand ML approaches using prob. models
Broadly	y three are two categories of SML problems
(I	Supervised Learning
Super	viried meaning me have some examples to train
	want to predict of from X, and we have example pairs (Y, X)
	supervised problems two types of problems:
with in	1) "recression" = predictivi a continuo outcome
	1) "regression" = predictry a continue outcome 2) "classification" = predictry a categorical atterm
1	

regression problems. Ye R £43 - predicting stack market perfemence from economic indicators - predicting adult height from childhood height classification problems: - predict if individual will default on a toass
given credit score x

classifier - defaut

classifier - defaut - predict racial identity from genomic data

math-dass

math-dass

white

black

green Unsupervisted Learning begs question about what ML is

Deal 1 Dant have a clear prediction problem. We unt to learn/summarize important trends/info/rels about the vars. In this class: first half = supervised problems Second half introduce insuperised problems.

Mathe	maticul Setup for superviked Learning
	rave some var. Y called: autome, predicted var dependent var
	the thing we want to product
Were	foir to try to predict I given some offer vall $X = (X^{(1)}, X^{(2)}, \dots, X^{(P)})$ $P = \# \text{ val}$
	$\frac{1}{2} = \frac{1}{2} \sqrt{2}$
	called: predictors, features, covariates, independent vars
	they are the things we use to predict,
Predic	
Want	to come up w/ a fu f so that
	$Y \sim f(X) = f(X^{(1)}, X^{(P)}) = Y$
Course	coals: (i) Methods: Now do we construct f?
	2) Evaluation! how do we determine if is good.

For	supervised problems
	Λ
We	assume me have training data to construct f of the form (yn, 2n) for n=1,, N
(of the form
	(y_n, χ_n) for $n=1,\ldots,N$
	(3h) /// / / / / / / / / / / / / / / / / /
when	e yn e S = space of possible yns c = 12 for recression
001	
	$S = \{C_1, C_2, \dots, C_k\}$ $S = \{C_1, \dots, C_k\} \text{ is for }$
	description
	$\chi_{n} = (\chi_{n}^{(1)}, \dots, \chi_{n}^{(p)})$
Assu	e that there trains data one sampled from some joint dist $p(\chi, y) - typically i.i.d.$
•	joint dist p(x,y) - typically i.i.d.
	·
What	is a general way of constructing a f?
We c	ellis to low some putation I have said
1	an construct a measure L (1015 for) that ells is, for some putative f, how good f does at predictive Y from X.
	Siren (X, Y) come from p(X, y)
	$L(Y,f(x)) = \begin{cases} large & f & f(x) \\ large & f & f(x) \end{cases}$
Idea!	$\left(\left(\left$
	$Small if Y \approx f(x)$
	(· · · · · · · · · · · · · · · · · · ·

Examples: regretorn contex $L(y, f(x)) = (y - f(x))^2$ Squared low L(y, f(x)) = |y - f(x)| abs. was classification conject $L(y, f(x)) = \begin{cases} 1 & y \neq f(x) \\ 1 & y \neq f(x) \end{cases}$ Loss either context: L(y, f(x)) = - log p(x, y) hes. los-like loss How do we use a loss to build a f? We'l like to choose of so that it incurs q small loss. In particular minimize expected loss! idual: $f = argmin \quad E[L(Y, f(X))]$ Pisk ation

Fish appeted loss

Minimization F = My pothesis spaceb/c we don't know p(x,y) to cate [E[...]
we instead approx. Using a sample of training data.

Aside: $E[2] \approx \frac{v}{3} = \sqrt{\sum_{n=1}^{N} 3i}$ when $3i \cdot iid$. $f = \underset{f \in J}{\text{arguin}} \frac{1}{J} \underbrace{\sum_{i=1}^{N} (y_n, f(x_n))}_{\text{N}}$ Empirical Right -> E[L(Y, f(x))]

as N -> 0. : empirical risk minimization Have a caple choices: L and F One big problem: over-fitting Consider L= Sq. err.

y2

F = all possible

functions

too large this want generalize well. way to avoid this: related (1) Restrict & (linear, quad, smooth, diffable) (2) change L (pendization to avaid silly f) 3) get a beller estimate of Risk. (test/validation, cross-validation

Linea	ir Regression
	look of LR?
Ü	(i) classic method - very well studied
	2) Simple (good)
	3 can be very powerful
	(4) LR is the basis for more complex methods
	> OLS: ordinary lives
Proper	ly! linear least-squares regression (regression)
	$F = lin.$ $L(y, f(x)) = (y - f(x))^2$ continuous y
ر طولولا	
Notatio	
Notatio	
Notation	
Notation Sample Setup'.	n! χ generic/RVs $\chi = (\chi^{(1)}, \dots, \chi^{(p)})$ $\chi = (\chi^{(1)}, \dots, \chi^{(p)})$
Notation Sample Setup!	n! χ generic/RVs $\chi = (\chi^{(1)}, \dots, \chi^{(p)})$ $\chi = (\chi^{(1)}, \dots, \chi^{(p)})$
Notation Sample Setup!	$ \begin{array}{ccc} & X & \text{generic}(RVs) \\ & X & = (X^{(1)}, \dots, X^{(P)}) $
Notation Sample Setup!	
Sample Sample Satup!.	$ \begin{array}{ccc} & X & \text{generic}(RVs) \\ & X & = (X^{(1)}, \dots, X^{(P)}) $
Sarph Schup's If Jesish design matrix	n! Y , X generic/ RVs $X = (X^{(1)},, X^{(P)})$ $Y = f(X^{(1)},, X^{(P)}) = \beta + \sum_{j=1}^{N} \beta_j X^{(j)}$ (linear) $X = (1, X^{(1)}, X^{(2)},, X^{(P)}) \in \mathbb{R}^{P+1}$ and $\beta = (\beta^{(0)}, \beta^{(1)},, \beta^{(P)}) \in \mathbb{R}^{P+1}$
Sarph Schup's If Jesish design matrix	

