WYKŁAD 5

WYZNACZNIK MACIERZY

Definicja.

Wyznacznikiem macierzy kwadratowej ${\bf A}$ nazywamy funkcję, która przyporządkowuje tej macierzy liczbę oznaczaną symbolem $\det({\bf A})$ lub |A|.

Twierdzenie.

1. Jeżeli $A = [a_{11}]$ to $\det A = a_{11}$.

gdzie M_{ij} to wyznacznik macierzy, która powstaje z macierzy A poprzez skreślenie i-tego wiersza oraz j-tej kolumny.

Tw. Laplace'a.

Wyznacznik macierzy można rozwijać według elementów dowolnego wiersza (lub dowolnej kolumny) i wszystkie te rozwinięcia są sobie równe.

Niektóre własności wyznaczników:

- 1) $\det A = \det(A^T)$.
- 2) Jeżeli w wyznaczniku przestawimy dwa dowolne wiersze (lub dwie dowolne kolumny), to wyznacznik zmieni znak.
- 3) Wartość wyznacznika jest równa zeru, jeżeli wyznacznik zawiera:
 - wiersz (lub kolumnę), którego wszystkie elementy są zerami;
 - dwa wiersze (kolumny) o jednakowych elementach;
 - dwa wiersze (kolumny), których elementy są proporcjonalne.

Definicja.

Macierz kwadratową, której wyznacznik jest różny od zera, nazywamy *macierzą nieosobliwą*. Macierz kwadratową, której wyznacznik jest równy zeru, nazywamy *macierzą osobliwą*.

MACIERZ ODWROTNA.

Definicja 5.

Macierzą odwrotną do macierzy kwadratowej A nazywamy taką macierz A^{-1} , że spełniony jest warunek: $A \cdot A^{-1} = A^{-1} \cdot A = I$

(gdzie macierz I jest macierzą jednostkową tego samego stopnia co A).

Macierz A nazywamy wtedy macierzą odwracalną.

Twierdzenie.

Macierz kwadratowa jest macierzą odwracalną wtedy i tylko wtedy, gdy jest nieosobliwa.

Twierdzenie.

Jeżeli macierz A jest nieosobliwa, to istnieje macierz odwrotna A^{-1} dana wzorem:

$$A^{-1} = \frac{1}{\det A} \cdot \left(A^{D}\right)^{T}$$

gdzie A^D oznacza tzw. macierz dopełnień, której elementami są liczby $D_{ij} = (-1)^{i+j} \cdot M_{ij}$