# Approximate General Bayesian Inference via Semiparametric Variational Bayes

Cristian Castiglione Mauro Bernardi

- University of Padova, Department of Statistical Sciences



June 29, 2022

# Overview

- Background
- Model specification
- S Variational inference
- Simulations
- Conclusions
- 6 References

# Some background

### Risk-based parameter definition

Data distribution :  $y \sim (\mathcal{Y}, \mathcal{F}, \mathbb{P})$ 

Parameter of interest :  $\theta = \operatorname{argmin} R(\cdot; \mathbb{P})$ 

Theoretical risk function :  $R({m heta}; \mathbb{P}) = \mathbb{E}\{L(y, {m heta})\}$ 

# General belief updating (Bissiri et al., 2016)

Subjective prior belief :  $\theta \sim p(\theta)$ 

Empirical risk function :  $R(\theta; \mathbf{y}) = \sum_{i=1}^{n} L(y_i, \theta)/n$ 

Bayesian belief updating :  $p(\theta|\mathbf{y}) \propto p(\theta) \exp\{-nR(\theta;\mathbf{y})\}$ 

# Some background

# Risk-based parameter definition

Data distribution :  $y \sim (\mathcal{Y}, \mathcal{F}, \mathbb{P})$ 

Parameter of interest :  $\theta = \operatorname{argmin} R(\cdot; \mathbb{P})$ 

Theoretical risk function :  $R(\theta; \mathbb{P}) = \mathbb{E}\{L(y, \theta)\}$ 

# General belief updating (Bissiri et al., 2016)

Subjective prior belief :  $\theta \sim p(\theta)$ 

Empirical risk function :  $R(\theta; \mathbf{y}) = \sum_{i=1}^{n} L(y_i, \theta)/n$ 

Bayesian belief updating :  $p(\theta|\mathbf{y}) \propto p(\theta) \exp\{-nR(\theta;\mathbf{y})\}$ 

### Overview

- Background
- Model specification
- S Variational inference
- 4 Simulations
- 6 Conclusions
- 6 References

# Empirical risk function

$$-nR(\boldsymbol{\theta}; \mathbf{y}) = -\frac{n}{\alpha} \log \sigma_{\varepsilon}^{2} - \frac{1}{\alpha \sigma_{\varepsilon}^{2}} \sum_{i=1}^{n} \psi(\mathbf{y}_{i}, \eta_{i}),$$

- $\{y_i, \mathbf{x}_i, \mathbf{z}_i\} \in \mathcal{Y} \times \mathbb{R}^p \times \mathbb{R}^d$
- $\bullet \ \eta_i = \mathbf{x}_i^{\top} \boldsymbol{\beta} + \mathbf{z}_i^{\top} \boldsymbol{u}$
- $\psi(y,\eta)$ : loss function
- $\sigma_{\varepsilon}^2$ : dispersion parameter
- $\alpha$ : calibrating parameter

5/25

# Empirical risk function

$$-nR(\boldsymbol{\theta}; \mathbf{y}) = -\frac{n}{\alpha} \log \sigma_{\varepsilon}^{2} - \frac{1}{\alpha \sigma_{\varepsilon}^{2}} \sum_{i=1}^{n} \psi(\mathbf{y}_{i}, \eta_{i}),$$

- $\{y_i, \mathbf{x}_i, \mathbf{z}_i\} \in \mathcal{Y} \times \mathbb{R}^p \times \mathbb{R}^d$
- $\bullet \ \eta_i = \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{u}$
- $\psi(y,\eta)$ : loss function
- $\sigma_{\varepsilon}^2$ : dispersion parameter
- $\alpha$ : calibrating parameter

# Empirical risk function

$$-nR(\boldsymbol{\theta}; \mathbf{y}) = -\frac{n}{\alpha} \log \sigma_{\varepsilon}^{2} - \frac{1}{\alpha \sigma_{\varepsilon}^{2}} \sum_{i=1}^{n} \psi(\mathbf{y}_{i}, \eta_{i}),$$

- $\{y_i, \mathbf{x}_i, \mathbf{z}_i\} \in \mathcal{Y} \times \mathbb{R}^p \times \mathbb{R}^d$
- $\bullet \ \eta_i = \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{u}$
- $\psi(y,\eta)$ : loss function
- $\sigma_{\varepsilon}^2$ : dispersion parameter
- $\alpha$ : calibrating parameter

5/25

# Empirical risk function

$$-nR(\boldsymbol{\theta}; \mathbf{y}) = -\frac{n}{\alpha} \log \sigma_{\varepsilon}^{2} - \frac{1}{\alpha \sigma_{\varepsilon}^{2}} \sum_{i=1}^{n} \psi(\mathbf{y}_{i}, \eta_{i}),$$

- $\{y_i, \mathbf{x}_i, \mathbf{z}_i\} \in \mathcal{Y} \times \mathbb{R}^p \times \mathbb{R}^d$
- $\bullet \ \eta_i = \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{u}$
- $\psi(y,\eta)$ : loss function
- $\sigma_{arepsilon}^2$ : dispersion parameter
- ullet lpha: calibrating parameter

#### Prior distributions

Castiglione, Bernardi (Unind)

$$\begin{split} \boldsymbol{u}|\sigma_u^2 \sim \mathsf{N}_d(\mathbf{0}_d, \sigma_u^2 \mathbf{Q}^{-1}), & & \sigma_u^2 \sim \mathsf{IG}(A_u, B_u), \\ \boldsymbol{\beta} \sim \mathsf{N}_p(\mathbf{0}_p, \sigma_\beta^2 \mathbf{I}_p), & & & \sigma_\varepsilon^2 \sim \mathsf{IG}(A_\varepsilon, B_\varepsilon), \end{split}$$

Here,  $\sigma_{\beta}^2, A_{\varepsilon}, B_{\varepsilon}, A_u, B_u > 0$  and  $\mathbf{Q} \succeq 0$  are fixed prior parameters.



5/25

riational general Bayesian inference June 29, 2022

# Generalized posterior distribution

$$\underbrace{p(\boldsymbol{\beta}, \boldsymbol{u}, \sigma_u^2, \sigma_\varepsilon^2 \mid \mathbf{y})}_{\text{Generalized posterior}} \propto \underbrace{p(\sigma_\varepsilon^2) \, p(\boldsymbol{\beta}) \, p(\sigma_u^2) \, p(\boldsymbol{u} | \sigma_u^2)}_{\text{Prior beliefs}} \underbrace{\exp\{-nR(\mathbf{y}, \boldsymbol{\theta})\}}_{\text{Pseudo-likelihood}}$$



Figure: Direct acyclic graph representing the Bayesian model.

# Overview

- Background
- Model specification
- Variational inference
- Simulations
- Conclusions
- **6** References

- Variational approximation:  $p(\theta|\mathbf{y}) \approx q(\theta; \boldsymbol{\xi}) = q_1(\theta_1) \cdots q_K(\theta_K) q_{\phi}(\phi; \boldsymbol{\xi})$
- Variational problem:  $(q_1^*,\dots,q_K^*,q_\phi^*)= \mathrm{argmin} \ \mathsf{KL}(q(\pmb{\theta};\pmb{\xi}) \parallel p(\pmb{\theta}|\mathbf{y}))$

# Mean field variational Bayes

$$q_k^*(\boldsymbol{\theta}_k) \propto \exp\left[\mathbb{E}_{-k}\{\log p(\boldsymbol{\theta}_k \mid \mathsf{rest})\}\right]$$

#### Knowles-Minka-Wand recursion

- $q_{\phi}(\phi; \mu, \Sigma) \sim N(\mu, \Sigma)$
- $\hat{\mu} \leftarrow \hat{\mu} \rho \mathbf{H}^{-1} \mathbf{g}$
- $\hat{\Sigma} \leftarrow -\mathbf{H}^{-1}$

- $f(\mu, \Sigma) = \mathbb{E}_q\{\log p(\mathbf{y}, \boldsymbol{\theta})\}$
- $g(\mu, \Sigma) = \nabla_{\mu} f(\mu, \Sigma)$
- $\mathbf{H}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \nabla_{\boldsymbol{\mu}} f(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

See Ormerod and Wand (2010), Blei et al. (2017) for MFVB.



- Variational approximation:  $p(\theta|\mathbf{y}) \approx q(\theta; \boldsymbol{\xi}) = q_1(\theta_1) \cdots q_K(\theta_K) q_{\phi}(\phi; \boldsymbol{\xi})$
- Variational problem:  $(q_1^*,\dots,q_K^*,q_\phi^*)= \mathrm{argmin} \ \mathsf{KL}(q(\pmb{\theta};\pmb{\xi}) \parallel p(\pmb{\theta}|\mathbf{y}))$

# Mean field variational Bayes

$$q_k^*(\boldsymbol{\theta}_k) \propto \exp\left[\mathbb{E}_{-k}\{\log p(\boldsymbol{\theta}_k \mid \mathsf{rest})\}\right]$$

#### Knowles-Minka-Wand recursion

- $q_{\phi}(\phi; \mu, \Sigma) \sim N(\mu, \Sigma)$
- $\hat{\mu} \leftarrow \hat{\mu} \rho \mathbf{H}^{-1} \mathbf{g}$
- $\hat{\Sigma} \leftarrow -\mathbf{H}^{-1}$

- $f(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathbb{E}_q\{\log p(\mathbf{y}, \boldsymbol{\theta})\}\$
- $\mathbf{g}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \nabla_{\boldsymbol{\mu}} f(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- $\mathbf{H}(\mu, \Sigma) = \nabla_{\mu} f(\mu, \Sigma)$

See Ormerod and Wand (2010), Blei et al. (2017) for MFVB.



- Variational approximation:  $p(\theta|\mathbf{y}) \approx q(\theta; \boldsymbol{\xi}) = q_1(\theta_1) \cdots q_K(\theta_K) q_{\phi}(\phi; \boldsymbol{\xi})$
- Variational problem:  $(q_1^*,\dots,q_K^*,q_\phi^*)= \mathrm{argmin} \ \mathsf{KL}(q(\pmb{\theta};\pmb{\xi}) \parallel p(\pmb{\theta}|\mathbf{y}))$

### Mean field variational Bayes

$$q_k^*(\boldsymbol{\theta}_k) \propto \exp\left[\mathbb{E}_{-k}\{\log p(\boldsymbol{\theta}_k \mid \mathsf{rest})\}\right]$$

#### Knowles-Minka-Wand recursion

- $q_{\phi}(oldsymbol{\phi};oldsymbol{\mu},oldsymbol{\Sigma})\sim \mathsf{N}(oldsymbol{\mu},oldsymbol{\Sigma})$
- $\hat{\boldsymbol{\mu}} \leftarrow \hat{\boldsymbol{\mu}} \rho \mathbf{H}^{-1} \mathbf{g}$
- $\hat{\Sigma} \leftarrow -\mathbf{H}^{-1}$

- $f(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathbb{E}_q\{\log p(\mathbf{y}, \boldsymbol{\theta})\}$
- $g(\mu, \Sigma) = \nabla_{\mu} f(\mu, \Sigma)$
- $\mathbf{H}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \nabla_{\boldsymbol{\mu}} f(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

See Ormerod and Wand (2010), Blei et al. (2017) for MFVB.



- Variational approximation:  $p(\theta|\mathbf{y}) \approx q(\theta; \boldsymbol{\xi}) = q_1(\theta_1) \cdots q_K(\theta_K) q_{\phi}(\phi; \boldsymbol{\xi})$
- Variational problem:  $(q_1^*,\dots,q_K^*,q_\phi^*)= \mathrm{argmin} \ \mathsf{KL}(q(\pmb{\theta};\pmb{\xi}) \parallel p(\pmb{\theta}|\mathbf{y}))$

### Mean field variational Bayes

$$q_k^*(\boldsymbol{\theta}_k) \propto \exp\left[\mathbb{E}_{-k}\{\log p(\boldsymbol{\theta}_k \mid \mathsf{rest})\}\right]$$

#### Knowles-Minka-Wand recursion

- $q_{\phi}(\boldsymbol{\phi}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \sim \mathsf{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- $\hat{\boldsymbol{\mu}} \leftarrow \hat{\boldsymbol{\mu}} \rho \mathbf{H}^{-1} \mathbf{g}$
- $\hat{\Sigma} \leftarrow -\mathbf{H}^{-1}$

- $f(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathbb{E}_q \{ \log p(\mathbf{y}, \boldsymbol{\theta}) \}$
- $\mathbf{g}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \nabla_{\boldsymbol{\mu}} f(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- $\mathbf{H}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \nabla_{\boldsymbol{\mu}} f(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

See Ormerod and Wand (2010), Blei et al. (2017) for MFVB



- Variational approximation:  $p(\theta|\mathbf{y}) \approx q(\theta; \boldsymbol{\xi}) = q_1(\theta_1) \cdots q_K(\theta_K) q_{\phi}(\phi; \boldsymbol{\xi})$
- Variational problem:  $(q_1^*,\dots,q_K^*,q_\phi^*)= \mathrm{argmin} \ \mathsf{KL}(q(\pmb{\theta};\pmb{\xi}) \parallel p(\pmb{\theta}|\mathbf{y}))$

### Mean field variational Bayes

$$q_k^*(\boldsymbol{\theta}_k) \propto \exp\left[\mathbb{E}_{-k}\{\log p(\boldsymbol{\theta}_k \mid \mathsf{rest})\}\right]$$

#### Knowles-Minka-Wand recursion

- $q_{\phi}(\phi; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \sim \mathsf{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- $\hat{\boldsymbol{\mu}} \leftarrow \hat{\boldsymbol{\mu}} \rho \, \mathbf{H}^{-1} \mathbf{g}$
- $\hat{\Sigma} \leftarrow -\mathbf{H}^{-1}$

- $f(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathbb{E}_q \{ \log p(\mathbf{y}, \boldsymbol{\theta}) \}$
- $\mathbf{g}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \nabla_{\boldsymbol{\mu}} f(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- $\mathbf{H}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \nabla_{\boldsymbol{\mu}} f(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

See Ormerod and Wand (2010), Blei et al. (2017) for MFVB.



# Optimal variational distributions

### **Assumptions:**

- mean field factorization:  $q(\boldsymbol{\beta}, \boldsymbol{u}, \sigma_u^2, \sigma_\varepsilon^2) = q(\sigma_\varepsilon^2) \, q(\sigma_u^2) \, q(\boldsymbol{\beta}, \boldsymbol{u})$
- parametric restriction:  $q(\boldsymbol{\beta}, \boldsymbol{u}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \sim \mathsf{N}\left( \begin{bmatrix} \boldsymbol{\mu}_{\beta} \\ \boldsymbol{\mu}_{u} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\beta\beta} & \boldsymbol{\Sigma}_{\beta u} \\ \boldsymbol{\Sigma}_{u\beta} & \boldsymbol{\Sigma}_{uu} \end{bmatrix} \right)$

#### Closed form solutions

- $q^*(\sigma_{\varepsilon}^2) \sim \mathsf{IG}(\hat{A}_{\varepsilon}, \hat{B}_{\varepsilon})$  where  $\hat{A}_{\varepsilon} \leftarrow A_{\varepsilon} + n/\alpha$  and  $\hat{B}_{\varepsilon} \leftarrow B_{\varepsilon} + \mathbf{1}_n^{\top} \Psi^{(0)}/\alpha$
- $q^*(\sigma_u^2) \sim \mathsf{IG}(\hat{A}_u, \hat{B}_u)$  where  $\hat{A}_u \leftarrow A_u + d/2$  and  $\hat{B}_u \leftarrow B_u + \frac{1}{2}\hat{\mu}_u^{\top}\mathbf{Q}\,\hat{\mu}_u + \frac{1}{2}\mathrm{trace}\big[\mathbf{Q}\hat{\Sigma}_{uu}\big]$

# Optimal variational distributions

#### **Assumptions:**

- mean field factorization:  $q(\pmb{\beta}, \pmb{u}, \sigma_u^2, \sigma_\varepsilon^2) = q(\sigma_\varepsilon^2) \, q(\sigma_u^2) \, q(\pmb{\beta}, \pmb{u})$
- parametric restriction:  $q(\boldsymbol{\beta}, \boldsymbol{u}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \sim \mathsf{N}\left( \begin{bmatrix} \boldsymbol{\mu}_{\beta} \\ \boldsymbol{\mu}_{u} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\beta\beta} & \boldsymbol{\Sigma}_{\beta u} \\ \boldsymbol{\Sigma}_{u\beta} & \boldsymbol{\Sigma}_{uu} \end{bmatrix} \right)$

#### Closed form solutions:

- $q^*(\sigma_{\varepsilon}^2) \sim \mathsf{IG}(\hat{A}_{\varepsilon}, \hat{B}_{\varepsilon})$  where  $\hat{A}_{\varepsilon} \leftarrow A_{\varepsilon} + n/\alpha$  and  $\hat{B}_{\varepsilon} \leftarrow B_{\varepsilon} + \mathbf{1}_n^{\top} \mathbf{\Psi}^{(0)}/\alpha$
- $q^*(\sigma_u^2) \sim \mathsf{IG}(\hat{A}_u, \hat{B}_u)$  where  $\hat{A}_u \leftarrow A_u + d/2$  and  $\hat{B}_u \leftarrow B_u + \frac{1}{2}\hat{\boldsymbol{\mu}}_u^{\top}\mathbf{Q}\,\hat{\boldsymbol{\mu}}_u + \frac{1}{2}\mathrm{trace}\big[\mathbf{Q}\hat{\boldsymbol{\Sigma}}_{uu}\big]$

# Knowles-Minka-Wand recursion

#### Parametric solution:

(update)

$$\begin{aligned} & \text{(gradient)} \qquad \mathbf{g}(\pmb{\mu}, \pmb{\Sigma}) &= - \left[ \begin{array}{c} \sigma_{\beta}^{-2} \pmb{\mu}_{\beta} \\ \mu_{q(1/\sigma_{u}^{2})} \mathbf{Q} \, \pmb{\mu}_{u} \end{array} \right] - \mu_{q(1/\sigma_{\varepsilon}^{2})} \mathbf{C}^{\top} \pmb{\Psi}^{(1)} / \alpha, \\ & \text{(Hessian)} \qquad \mathbf{H}(\pmb{\mu}, \pmb{\Sigma}) &= - \left[ \begin{array}{c} \sigma_{\beta}^{-2} \mathbf{I}_{p} & \mathbf{O} \\ \mathbf{O} & \mu_{q(1/\sigma_{u}^{2})} \mathbf{Q} \end{array} \right] - \mu_{q(1/\sigma_{\varepsilon}^{2})} \mathbf{C}^{\top} \mathrm{diag} \left[ \pmb{\Psi}^{(2)} \right] \mathbf{C} / \alpha, \\ & \text{where } \mathbf{C} = \left[ \mathbf{X}, \, \mathbf{Z} \right], \, \mu_{q(1/\sigma_{u}^{2})} = \mathbb{E}_{q} (1/\sigma_{u}^{2}), \, \mu_{q(1/\sigma_{\varepsilon}^{2})} = \mathbb{E}_{q} (1/\sigma_{\varepsilon}^{2}) \text{ and} \\ & \Psi_{i}^{(r)} = \Psi^{(r)}(y_{i}, \mathbf{c}_{i}^{\top} \pmb{\mu}, \mathbf{c}_{i}^{\top} \mathbf{\Sigma} \, \mathbf{c}_{i}) = \mathbb{E}_{q} \left\{ \frac{\partial^{r}}{\partial \eta^{r}} \psi(y_{i}, \eta_{i}) \right\}, \qquad r = 0, 1, 2. \end{aligned}$$

 $\boldsymbol{\mu} \leftarrow \boldsymbol{\mu} - \rho \mathbf{H}^{-1} \mathbf{g}, \quad \boldsymbol{\Sigma} \leftarrow -\mathbf{H}^{-1}.$ 

Castiglione, Bernardi (Unipd)

# Knowles-Minka-Wand recursion

#### Parametric solution:

$$\begin{array}{ll} \text{(update)} & \boldsymbol{\mu} & \leftarrow \boldsymbol{\mu} - \rho \, \mathbf{H}^{-1} \mathbf{g}, \quad \boldsymbol{\Sigma} \leftarrow -\mathbf{H}^{-1}, \\ \\ \text{(gradient)} & \mathbf{g}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) & = - \left[ \begin{array}{c} \sigma_{\beta}^{-2} \boldsymbol{\mu}_{\beta} \\ \mu_{q(1/\sigma_{u}^{2})} \mathbf{Q} \, \boldsymbol{\mu}_{u} \end{array} \right] - \mu_{q(1/\sigma_{\varepsilon}^{2})} \mathbf{C}^{\top} \boldsymbol{\Psi}^{(1)} / \alpha, \\ \\ \text{(Hessian)} & \mathbf{H}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) & = - \left[ \begin{array}{c} \sigma_{\beta}^{-2} \mathbf{I}_{p} & \mathbf{O} \\ \mathbf{O} & \mu_{q(1/\sigma_{u}^{2})} \mathbf{Q} \end{array} \right] - \mu_{q(1/\sigma_{\varepsilon}^{2})} \mathbf{C}^{\top} \mathrm{diag} \left[ \boldsymbol{\Psi}^{(2)} \right] \mathbf{C} / \alpha, \\ \\ \text{where } \mathbf{C} = \left[ \mathbf{X}, \, \mathbf{Z} \right], \, \mu_{q(1/\sigma_{u}^{2})} = \mathbb{E}_{q} (1/\sigma_{u}^{2}), \, \mu_{q(1/\sigma_{\varepsilon}^{2})} = \mathbb{E}_{q} (1/\sigma_{\varepsilon}^{2}) \, \text{and} \\ \\ \boldsymbol{\Psi}_{i}^{(r)} = \boldsymbol{\Psi}^{(r)} (y_{i}, \mathbf{c}_{i}^{\top} \boldsymbol{\mu}, \mathbf{c}_{i}^{\top} \boldsymbol{\Sigma} \, \mathbf{c}_{i}) = \mathbb{E}_{q} \left\{ \frac{\partial^{r}}{\partial \eta^{r}} \boldsymbol{\psi}(y_{i}, \eta_{i}) \right\}, \qquad r = 0, 1, 2. \end{array}$$

Castiglione, Bernardi (Unipd)

### $\Psi$ -functions

# Proposition

Let  $\psi(y,\eta)$  be a **convex**, 2-times **weakly differentiable** function wrt to  $\eta$ , then:

- $\bullet \ \Psi^{(r)}(y, \mathbf{c}^{\top} \boldsymbol{\mu}, \mathbf{c}^{\top} \boldsymbol{\Sigma} \, \mathbf{c}) \text{ has infinitely many derivatives wrt } \boldsymbol{\mu} \text{ and } \boldsymbol{\Sigma};$
- $\mathbf{2} \ \Psi^{(0)}(y, \mathbf{c}^{\top} \boldsymbol{\mu}, \mathbf{c}^{\top} \boldsymbol{\Sigma} \mathbf{c})$  is jointly convex wrt  $\boldsymbol{\mu}$  and  $\boldsymbol{\Sigma}$ ;

#### Then

- the optimum of the KL-divergence is unique
- the KMW recursion converges to the optimum

# Models



# Algorithm

### Semiparametric variational Bayes algorithm for approximate Bayesian inference

Initialize  $\hat{A}_{\varepsilon}$ ,  $\hat{B}_{\varepsilon}$ ,  $\hat{A}_{u}$ ,  $\hat{B}_{u}$ ,  $\hat{\mu}$ ,  $\hat{\Sigma}$ ;

While convergence is not reached do:

Evaluate 
$$\Psi^{(0)}$$
,  $\Psi^{(1)}$ ,  $\Psi^{(2)}$ ;  
 $\hat{A}_{u} \leftarrow A_{u} + d/2$ ;  $\hat{B}_{u} \leftarrow B_{u} + \frac{1}{2}\hat{\boldsymbol{\mu}}_{u}^{\top}\mathbf{Q}\,\hat{\boldsymbol{\mu}}_{u} + \frac{1}{2}\mathrm{trace}\big[\mathbf{Q}\,\hat{\boldsymbol{\Sigma}}_{uu}\big]$ ;  
 $\hat{A}_{\varepsilon} \leftarrow A_{\varepsilon} + n/\alpha$ ;  $\hat{B}_{\varepsilon} \leftarrow B_{\varepsilon} + \mathbf{1}_{n}^{\top}\boldsymbol{\Psi}^{(0)}/\alpha$ ;  
 $\mu_{q(1/\sigma_{u}^{2})} \leftarrow \hat{A}_{u}/\hat{B}_{u}$ ;  $\mu_{q(1/\sigma_{\varepsilon}^{2})} \leftarrow \hat{A}_{\varepsilon}/\hat{B}_{\varepsilon}$ ;  
 $\mathbf{g} \leftarrow -\mathrm{stack}\big[\sigma_{\beta}^{-2}\hat{\boldsymbol{\mu}}_{\beta}, \mu_{q(1/\sigma_{u}^{2})}\mathbf{Q}\,\hat{\boldsymbol{\mu}}_{u}\big] - \mu_{q(1/\sigma_{\varepsilon}^{2})}\mathbf{C}^{\top}\boldsymbol{\Psi}^{(1)}/\alpha$ ;  
 $\mathbf{H} \leftarrow -\mathrm{blockdiag}\big[\sigma_{\beta}^{-2}\mathbf{I}_{p}, \mu_{q(1/\sigma_{u}^{2})}\mathbf{Q}\big] - \mu_{q(1/\sigma_{\varepsilon}^{2})}\mathbf{C}^{\top}\mathrm{diag}\big[\boldsymbol{\Psi}^{(2)}\big]\mathbf{C}/\alpha$ ;  
 $\rho \leftarrow \mathrm{LineSearch}(f, \mathbf{g}, \mathbf{H})$ ;  $\hat{\boldsymbol{\Sigma}} \leftarrow -\mathbf{H}^{-1}$ ;  $\hat{\boldsymbol{\mu}} \leftarrow \hat{\boldsymbol{\mu}} - \rho\,\mathbf{H}^{-1}\mathbf{g}$ ;

#### End of while



# Overview

- Background
- Model specification
- S Variational inference
- 4 Simulations
- Conclusions
- 6 References

# Simulation setup

#### ① Data generating process:

- $y_i|x_i \sim^{\text{ind.}} \begin{cases} \mathsf{N}(f(x_i), \{g(x_i)\}^2) & \text{for regression} \\ \mathsf{Be}(\text{expit}\{f(x_i)\}) & \text{for classification} \end{cases}$
- mean function:  $f(x) = 1.6 \sin(3\pi x^2)$
- variance function:  $g(x) = \exp\{-0.6 + 0.5\cos(4\pi x)\}$
- Linear predictor:
  - Bayesian penalized semiparametric regression
- Coss functions:
  - quantile regression (MCMC: Kozumi and Kobayashi, 2011; MFVB: Wand et al., 2011)
  - expectile regression (MCMC: Waldmann et al., 2017; Laplace approximation)
  - support vector regression (MCMC: Polson and Scott, 2011; MFVB: Luts and Ormerod, 2014)
  - support vector classification (MCMC: Polson and Scott, 2011; MFVB: Luts and Ormerod, 2014)

# Simulation setup

#### ① Data generating process:

- $y_i|x_i \sim^{\text{ind.}} \begin{cases} \mathsf{N}(f(x_i), \{g(x_i)\}^2) & \text{for regression} \\ \mathsf{Be}(\text{expit}\{f(x_i)\}) & \text{for classification} \end{cases}$
- mean function:  $f(x) = 1.6\sin(3\pi x^2)$
- variance function:  $g(x) = \exp\{-0.6 + 0.5\cos(4\pi x)\}$

#### 2 Linear predictor:

Bayesian penalized semiparametric regression

#### Section Loss functions

- quantile regression (MCMC: Kozumi and Kobayashi, 2011; MFVB: Wand et al., 2011)
- expectile regression (MCMC: Waldmann et al., 2017; Laplace approximation)
- support vector regression (MCMC: Polson and Scott, 2011; MFVB: Luts and Ormerod, 2014)
- support vector classification (MCMC: Polson and Scott, 2011; MFVB: Luts and Ormerod, 2014)

# Simulation setup

#### **1** Data generating process:

- $y_i|x_i \sim^{\mathrm{ind.}} \begin{cases} \mathsf{N}(f(x_i),\{g(x_i)\}^2) & \text{for regression} \\ \mathsf{Be}(\mathrm{expit}\{f(x_i)\}) & \text{for classification} \end{cases}$
- mean function:  $f(x) = 1.6 \sin(3\pi x^2)$
- variance function:  $g(x) = \exp\{-0.6 + 0.5\cos(4\pi x)\}$

#### 2 Linear predictor:

Bayesian penalized semiparametric regression

#### Suppose the state of the sta

- quantile regression (MCMC: Kozumi and Kobayashi, 2011; MFVB: Wand et al., 2011)
- expectile regression (MCMC: Waldmann et al., 2017; Laplace approximation)
- support vector regression (MCMC: Polson and Scott, 2011; MFVB: Luts and Ormerod, 2014)
- support vector classification (MCMC: Polson and Scott, 2011; MFVB: Luts and Ormerod, 2014)

### Predictive distributions

#### Quantile regression ( $\tau = 0.9$ )



### Support vector regression ( $\epsilon = 0.01$ )



#### Expectile regression ( $\tau = 0.9$ )



#### Support vector classification



# Marginal approximations



Figure: Marginal posterior density functions for the quantile regression model.

| Model | Method  | ELBO      | Accuracy | Iter.Count | Exe.Time (S.E.)      |
|-------|---------|-----------|----------|------------|----------------------|
| QReg  | MCMC    | _         | _        | 10000      | 4170.000 (32.482) ms |
|       | MFVB    | -713.9727 | 0.8613   | 47         | 81.697 (3.463) ms    |
|       | SVB     | -710.1009 | 0.9196   | 27         | 80.252 (3.761) ms    |
| EReg  | MCMC    | _         | _        | 10000      | 3710.000 (33.565) ms |
|       | Laplace | _         | 0.9669   | 26         | 46.734 (3.014) ms    |
|       | SVB     | 153.8963  | 0.9687   | 35         | 62.979 (3.113) ms    |
| SVR   | МСМС    | _         | _        | 10000      | 4867.000 (30.114) ms |
|       | MFVB    | -637.3713 | 0.9090   | 33         | 61.805 (3.477) ms    |
|       | SVB     | -634.9547 | 0.9521   | 20         | 75.474 (3.256) ms    |
| SVC   | МСМС    | _         | _        | 10000      | 4396.000 (35.974) ms |
|       | MFVB    | -537.9229 | 0.8579   | 69         | 118.710 (2.885) ms   |
|       | SVB     | -536.1095 | 0.9070   | 37         | 129.785 (4.563) ms   |

| Model | Method  | ELBO      | Accuracy | Iter.Count | Exe.Time (S.E.)      |
|-------|---------|-----------|----------|------------|----------------------|
| QReg  | МСМС    | _         | _        | 10000      | 4170.000 (32.482) ms |
|       | MFVB    | -713.9727 | 0.8613   | 47         | 81.697 (3.463) ms    |
|       | SVB     | -710.1009 | 0.9196   | 27         | 80.252 (3.761) ms    |
| EReg  | МСМС    | _         | _        | 10000      | 3710.000 (33.565) ms |
|       | Laplace | _         | 0.9669   | 26         | 46.734 (3.014) ms    |
|       | SVB     | 153.8963  | 0.9687   | 35         | 62.979 (3.113) ms    |
| SVR   | MCMC    | _         | _        | 10000      | 4867.000 (30.114) ms |
|       | MFVB    | -637.3713 | 0.9090   | 33         | 61.805 (3.477) ms    |
|       | SVB     | -634.9547 | 0.9521   | 20         | 75.474 (3.256) ms    |
| SVC   | МСМС    | _         | _        | 10000      | 4396.000 (35.974) ms |
|       | MFVB    | -537.9229 | 0.8579   | 69         | 118.710 (2.885) ms   |
|       | SVB     | -536.1095 | 0.9070   | 37         | 129.785 (4.563) ms   |

| Model | Method  | ELBO      | Accuracy | Iter.Count | Exe.Time (S.E.)      |
|-------|---------|-----------|----------|------------|----------------------|
| QReg  | MCMC    | _         | _        | 10000      | 4170.000 (32.482) ms |
|       | MFVB    | -713.9727 | 0.8613   | 47         | 81.697 (3.463) ms    |
|       | SVB     | -710.1009 | 0.9196   | 27         | 80.252 (3.761) ms    |
| EReg  | МСМС    | _         | _        | 10000      | 3710.000 (33.565) ms |
|       | Laplace | _         | 0.9669   | 26         | 46.734 (3.014) ms    |
|       | SVB     | 153.8963  | 0.9687   | 35         | 62.979 (3.113) ms    |
| SVR   | МСМС    | _         | _        | 10000      | 4867.000 (30.114) ms |
|       | MFVB    | -637.3713 | 0.9090   | 33         | 61.805 (3.477) ms    |
|       | SVB     | -634.9547 | 0.9521   | 20         | 75.474 (3.256) ms    |
| SVC   | МСМС    | _         | _        | 10000      | 4396.000 (35.974) ms |
|       | MFVB    | -537.9229 | 0.8579   | 69         | 118.710 (2.885) ms   |
|       | SVB     | -536.1095 | 0.9070   | 37         | 129.785 (4.563) ms   |

| Model | Method  | ELBO      | Accuracy | Iter.Count | Exe.Time (S.E.)      |
|-------|---------|-----------|----------|------------|----------------------|
| QReg  | MCMC    | _         | _        | 10000      | 4170.000 (32.482) ms |
|       | MFVB    | -713.9727 | 0.8613   | 47         | 81.697 (3.463) ms    |
|       | SVB     | -710.1009 | 0.9196   | 27         | 80.252 (3.761) ms    |
| EReg  | МСМС    | _         | _        | 10000      | 3710.000 (33.565) ms |
|       | Laplace | _         | 0.9669   | 26         | 46.734 (3.014) ms    |
|       | SVB     | 153.8963  | 0.9687   | 35         | 62.979 (3.113) ms    |
| SVR   | МСМС    | _         | _        | 10000      | 4867.000 (30.114) ms |
|       | MFVB    | -637.3713 | 0.9090   | 33         | 61.805 (3.477) ms    |
|       | SVB     | -634.9547 | 0.9521   | 20         | 75.474 (3.256) ms    |
| SVC   | МСМС    | _         | _        | 10000      | 4396.000 (35.974) ms |
|       | MFVB    | -537.9229 | 0.8579   | 69         | 118.710 (2.885) ms   |
|       | SVB     | -536.1095 | 0.9070   | 37         | 129.785 (4.563) ms   |

# Overview

- Background
- Model specification
- S Variational inference
- Simulations
- **6** Conclusions
- 6 References

#### Methodological innovations:

- we introduced a simplified general algorithm for the estimating risk—based mixed models
- existing algorithms are included into our framework (GLMs
- new algorithms for Quantile, Expectile and SVM models

#### Empirical evidences:

- improvement over existing data—augmented MFVB approximations
- good-to-excellent performance in posterior approximation

- streamlined algorithms for structured prior distributions (cross-random effects, GMRF)
- hierarchical prior for inducing sparsity and shrinkage on the estimates
- application to frequentist mixed models with non-regular likelihood



#### Methodological innovations:

- we introduced a simplified general algorithm for the estimating risk-based mixed models
- existing algorithms are included into our framework (GLMs)
- new algorithms for Quantile, Expectile and SVM models

#### **Empirical evidences**

- improvement over existing data—augmented MFVB approximations
- good-to-excellent performance in posterior approximation

- streamlined algorithms for structured prior distributions (cross-random effects, GMRF)
- hierarchical prior for inducing sparsity and shrinkage on the estimates
- application to frequentist mixed models with non-regular likelihood

#### Methodological innovations:

- we introduced a simplified general algorithm for the estimating risk-based mixed models
- existing algorithms are included into our framework (GLMs)
- new algorithms for Quantile, Expectile and SVM models

#### **Empirical evidences:**

- improvement over existing data-augmented MFVB approximations
- good-to-excellent performance in posterior approximation

- streamlined algorithms for structured prior distributions (cross-random effects, GMRF)
- hierarchical prior for inducing sparsity and shrinkage on the estimates
- application to frequentist mixed models with non-regular likelihood



#### Methodological innovations:

- we introduced a simplified general algorithm for the estimating risk-based mixed models
- existing algorithms are included into our framework (GLMs)
- new algorithms for Quantile, Expectile and SVM models

#### **Empirical evidences:**

- improvement over existing data-augmented MFVB approximations
- good-to-excellent performance in posterior approximation

- streamlined algorithms for structured prior distributions (cross-random effects, GMRF)
- hierarchical prior for inducing sparsity and shrinkage on the estimates
- application to frequentist mixed models with non-regular likelihood

# Overview

- Background
- Model specification
- S Variational inference
- Simulations
- Conclusions
- **6** References

### Reference



Castiglione, C., Bernardi, M. (2022) Bayesian non-conjugate regression via variational belief updating *arXiv preprint*, arXiv:2206.09444.

### References I



Bissiri, P.G., Holmes, C.C., and Walker, S.G. (2016)

A general framework for updating belief distributions

Journal of the Royal Statistical Society. Series B. Statistical Methodology, 78(5), 1103-1130.



Blei, D.M., Kucukelbir, A., McAuliffe, J.D. (2017)

Variational inference: A review for statisticians

Journal of the American Statistical Association, 112(518), 859–877.



Knowles, D., Minka, T. (2011)

Non-conjugate variational message passing for multinomial and binary regression

Advances in Neural Information Processing Systems, 24, 1701–1709.



Kozumi, H., Kobayashi, G. (2011)

Gibbs sampling methods for Bayesian quantile regression

Journal of statistical computation and simulation, 81(11), 1565–1578.



Luts, J., Ormerod, J.T. (2014)

Mean field variational Bayesian inference for support vector machine classification Computational Statistics and Data Analysis. 73, 163–176.



McLean, M.W., Wand, M.P. (2019)

Variational message passing for elaborate response regression models *Bayesian Analysis*, 14(2), 371–398.

### References II



Ormerod, J.T., Wand, M.P. (2010)

Explaining variational approximations *The American Statistician*, 64(2), 140–153.



Polson, N. G., Scott, S. L. (2011)

Data augmentation for support vector machines Bayesian Analysis, 6(1), 1–23.



Rohde, David and Wand, Matt P. (2016)

Semiparametric mean field variational Bayes: general principles and numerical issues *Journal of Machine Learning Research*, 17(1), 5975–6021.



Wand, M.P., Ormerod, J.T., Padoan, S.A., Frührwirth, R. (2011)

Mean field variational Bayes for elaborate distributions Bayesian Analysis, 6(4), 847–900.



Wand, M.P. (2014)

Fully simplified multivariate normal updates in non-conjugate variational message passing *Journal of Machine Learning Research*, 15, 1351–1369.



Waldmann, E., Sobotka, F., and Kneib, T. (2017)

Bayesian regularisation in geoadditive expectile regression *Statistics and Computing*, 268(6), 1539–1553.

# Thank you for your attention!