Lesson 19. The Cobweb Model

0 Warm up

٠	vuin up		
	Example 1. Solve the difference equation $y_{t+1} + 3y_t = 4$. Is y_t oscillatory or nonoscillatory? Is y_t convergent or divergent?		
1	Overview		
	Market with single product		
	• Supply in period t is decided in period $t-1$ and so is based on the price in period $t-1$		
	 e.g. agricultural production: planting must occur a long time before harvesting and selling 		
	 How does the price of the product change over time? 		
2	The model		
	• Variables:		
	P_t = unit price at period t		
	Q_{dt} = quantity demanded at period t		
	Q_{st} = quantity supplied at period t		
	• Parameters: $\alpha, \beta, \gamma, \delta > 0$		
	• Equations:		
	$Q_{dt} = Q_{st}$		
	Zui Zsi		
	$Q_{dt} = \alpha - \beta P_t$		
	$Q_{st} = -\gamma + \delta P_{t-1}$		

3 Solving and analyzing the model

Substituting the last two equations into the first, we can reduce the model to:	
Let's rewrite this difference equation by shifting the time subscripts:	
Note that in this case:	
We can solve for P_t , where P_0 represents the initial price:	
We can interpret $\bar{P} = \frac{\alpha + \gamma}{\beta + \delta}$ as the intertemporal equilbrium price of the model, and write P_{ij}	_t as:
$\beta + \delta$	
P_t is convergent when	
r _t is convergent when	
P_t is oscillatory when	

4 An alternative analysis: drawing cobwebs

- Sequence of events:
 - \circ Given an initial price P_0 , producers determine the supply in period 1
 - Market-clearing condition: supply in period 1 = demand in period 1
 - o Given demand in period 1, determine price in period 1 that clears the market
 - Repeat!

Case 1: $\delta < \beta$

(supply curve flatter than demand curve)

Case 2: $\delta > \beta$ (supply curve steeper than demand curve)

- $\delta > \beta$: oscillation
- $\delta = \beta$: oscillation
- $\delta < \beta$: oscillation

5 Economic insights

- Depending on the relationship between the slopes of the demand and supply curves, prices converge or diverge
- Prices can be subject to periodic fluctuations in these kinds of markets