Bases

Definition: Let β be a set of vectors of a vector space V. We say β is a **basis** of V if

- $\operatorname{span}(\beta) = V$, and (a)
- β is linearly independent, and **(b)**
- the elements of β have a fixed order (c)

a basis is an ordered, linearly independent, spanning set. hence:

Many of the familiar vector spaces have a 'natural' basis called the **standard** basis: e.g.

$$\bullet \quad \mathbb{F}^n: \qquad S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \cdots, \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \right\}$$

- $P_n(\mathbb{F})$: $S = \{t^n, t^{n-1}, \dots, t^2, t, 1\}$ $M_{2\times 2}(\mathbb{F})$: $S = \{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\}$ etc.

Theorem: Let $\beta = \{\vec{b_1}, \vec{b_2}, \vec{b_3}, \dots, \vec{b_n}\}$ be a basis of the vector space V, then every vector \vec{v} in V can be written **uniquely** as a linear combination of \vec{b}_1 , \vec{b}_2 , \vec{b}_3 , \cdots , \vec{b}_n .

Proof: Since β is a spanning set, every vector *can* be written as a linear combination

$$\vec{v} = a_1 \vec{b}_1 + a_2 \vec{b}_2 + a_3 \vec{b}_3 + \cdots + a_n \vec{b}_n.$$

Suppose that also $\vec{v} = c_1 \vec{b_1} + c_2 \vec{b_2} + c_3 \vec{b_3} + \cdots + c_n \vec{b_n}$, then by subtracting we find that

$$\vec{0} = (a_1 - c_1)\vec{b}_1 + (a_2 - c_2)\vec{b}_2 + (a_3 - c_3)\vec{b}_3 + \cdots + (a_n - c_n)\vec{b}_n$$

But since $\beta = \left\{ \vec{b_1}, \vec{b_2}, \vec{b_3}, \cdots, \vec{b_n} \right\}$ is linearly independent, it follows that

$$a_1 - c_1 = a_2 - c_2 = a_3 - c_3 = \dots = a_n - c_n = 0$$

so that

$$a_1 = c_1$$
, $a_2 = c_2$, $a_3 = c_3$, \cdots , $a_n = c_n$

which proves uniqueness.

Coordinates

Since we can write any vector \vec{v} in a vector space V, **uniquely** as a linear combination of a given basis $\beta = \left\{ \vec{b_1}, \vec{b_2}, \vec{b_3}, \cdots, \vec{b_n} \right\}$:

$$\vec{v} = v_1 \vec{b}_1 + v_2 \vec{b}_2 + v_3 \vec{b}_3 + \cdots + v_n \vec{b}_n$$

we will report these unique coefficients v_i , which we call the **coordinates** of \vec{v} with respect to the basis β , as the coordinate vector:

$$\begin{bmatrix} \vec{v} \end{bmatrix}_{\beta} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

Example 1:
$$\beta = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^3 (check!) Let $\vec{v} = \begin{bmatrix} 6 \\ 3 \\ 8 \end{bmatrix}$ then since

$$\vec{v} = \begin{bmatrix} 6 \\ 3 \\ 8 \end{bmatrix} = 5 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + 3 \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - 2 \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \text{ we find that } \begin{bmatrix} \vec{v} \end{bmatrix}_{\beta} = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$$

Of course:
$$\vec{v} = \begin{bmatrix} 6 \\ 3 \\ 8 \end{bmatrix}$$
 with respect to the standard basis, $\vec{S} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is

$$\vec{v} = \begin{bmatrix} 6 \\ 3 \\ 8 \end{bmatrix} = 6 \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 3 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 8 \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ so that } \begin{bmatrix} \vec{v} \end{bmatrix}_{S} = \begin{bmatrix} 6 \\ 3 \\ 8 \end{bmatrix}$$

And
$$\vec{v} = \begin{bmatrix} 6 \\ 3 \\ 8 \end{bmatrix}$$
 with respect to the basis, $\alpha = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ 4 \\ 2 \end{bmatrix} \right\}$ is

$$\vec{v} = \begin{bmatrix} 6 \\ 3 \\ 8 \end{bmatrix} = -11 \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 57 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 8 \cdot \begin{bmatrix} 5 \\ 4 \\ 2 \end{bmatrix} \text{ so that } \begin{bmatrix} \vec{v} \end{bmatrix}_{\alpha} = \begin{bmatrix} -11 \\ 57 \\ -8 \end{bmatrix}$$

Example 2: $\vec{v} = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \in M_{2\times 2}(\mathbb{R})$ can be written with respect to the standard basis

$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ as } \begin{bmatrix} \vec{v} \end{bmatrix}_{S} = \begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \end{bmatrix} \text{ since }$$

$$\vec{v} = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 2 \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - 3 \cdot \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + 4 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

And $\vec{v} = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$ with respect to the basis $\beta = \left\{ \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 5 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 4 & -9 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \right\}$ is

$$\begin{bmatrix} \vec{v} \end{bmatrix}_{\beta} = \begin{bmatrix} -5 \\ -11 \\ -6 \\ 18 \end{bmatrix} \text{ since } \vec{v} = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} = -5 \cdot \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} - 11 \cdot \begin{bmatrix} 0 & 1 \\ 0 & 5 \end{bmatrix} - 6 \cdot \begin{bmatrix} 2 & 0 \\ 4 & -9 \end{bmatrix} + 18 \cdot \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$$

Example 3: $\vec{v} = t^2 + bt + a \in P_2(\mathbb{F}_4)$ can be written with respect to the standard basis

$$S = \{t^2, t, 1\}$$
 as $\begin{bmatrix} \vec{v} \end{bmatrix}_S = \begin{bmatrix} 1 \\ b \\ a \end{bmatrix}$ since $\vec{v} = t^2 + bt + a = 1 \cdot t^2 + b \cdot t + a \cdot 1$.

But $\vec{v} = t^2 + bt + a$ with respect to the basis $\beta = \{bt^2 + t + a, t + b, at^2 + 1\}$ is

$$[\vec{v}]_{\beta} = \begin{bmatrix} 1 \\ a \\ 1 \end{bmatrix}$$
 since $\vec{v} = t^2 + bt + a = 1 \cdot (bt^2 + t + a) + a \cdot (t + b) + 1 \cdot (at^2 + 1).$

Next we will use coordinates and row reduction to examine if a given set is a basis or not, i.e. if the vectors are linear independent and spanning:

Example 4: $\{t^2 + t, t^2 - 1, t^2 + t + 1\}$ in $P_2(\mathbb{R})$ is a basis.

We can check independence and spanning with one row reduction (rref).

(1) First write every vector with respect to the standard basis:

$$\begin{bmatrix} t^2 + t \end{bmatrix}_S = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \begin{bmatrix} t^2 - 1 \end{bmatrix}_S = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \text{ and } \begin{bmatrix} t^2 + t + 1 \end{bmatrix}_S = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- (2) Then row reduce: $\operatorname{rref} \begin{bmatrix} 1 & 1 & 1 & x \\ 1 & 0 & 1 & y \\ 0 & -1 & 1 & z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -x + 2y z \\ 0 & 1 & 0 & x y \\ 0 & 0 & 1 & x y + z \end{bmatrix}$ which tells us that
 - The vectors $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ are linearly independent (see the pivots), and that
 - Every vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \text{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$:

In fact
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = (-x+2y-z) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + (x-y) \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + (x-y+z) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- (3) Consequently
 - The vectors $t^2 + t$, $t^2 1$, $t^2 + t + 1$ are linearly independent, and
 - Every vector $xt^2 + yt + z \in \text{span}\{t^2 + t, t^2 1, t^2 + t + 1\}$; explicitly $xt^2 + yt + z = (-x + 2y z)(t^2 + t) + (x y)(t^2 1) + (x y + z)(t^2 + t + 1)$

[Notice *uniqueness*: this is the only way to write $xt^2 + yt + z$ as a linear combination of the basis vectors $t^2 + t$, $t^2 - 1$, $t^2 + t + 1$]

Example 5:

$$\left\{ \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 6 \end{bmatrix}, \begin{bmatrix} 7 & 1 \\ 0 & 1 \end{bmatrix} \right\}$$
 is **not** a basis of $M_{2\times 2}(\mathbb{R})$. One could simply point out that these

three vectors in a four dimensional vector space cannot possibly be spanning, and therefore could not form a basis. Or we can show that they are linearly independent, **but** are **not** spanning, using just one row reduction (rref):

(1) First write every vector (and one more) with respect to the standard basis:

$$\begin{bmatrix} \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix} \end{bmatrix}_{S} = \begin{bmatrix} 1 \\ 0 \\ 5 \\ 1 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 6 \end{bmatrix} \end{bmatrix}_{S} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 6 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 7 & 1 \\ 1 & 0 \end{bmatrix} \end{bmatrix}_{S} = \begin{bmatrix} 7 \\ 1 \\ 0 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \end{bmatrix}_{S} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

(2) Then row reduce:
$$\operatorname{rref}\begin{bmatrix} 1 & 1 & 7 & 1 \\ 0 & 1 & 1 & 2 \\ 5 & 1 & 0 & 3 \\ 1 & 6 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 which tells us that

• All these vectors are linearly independent (see the pivots)

• So in particular that
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \notin \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 5 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ which means that}$$
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \notin \text{span} \left\{ \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 6 \end{bmatrix}, \begin{bmatrix} 7 & 1 \\ 0 & 1 \end{bmatrix} \right\}.$$

Hence $\left\{\begin{bmatrix}1&0\\5&1\end{bmatrix},\begin{bmatrix}1&1\\1&6\end{bmatrix},\begin{bmatrix}7&1\\0&1\end{bmatrix}\right\}$ is **not** a basis of $M_{2\times 2}(\mathbb{R})$. They do, however, span a three dimensional **sub**space of $M_{2\times 2}(\mathbb{R})$.

Example 6:

Here is another way on looking at "spanning" by a given set. For example let

$$\alpha = \{at^2 + bt + 1, t^2 + t + a, bt + 1\}$$
 and $\beta = \{t^2 + at + b, bt^2 + 1, bt + 1\}$

To determine which of these sets are "spanning", i.e. which of these two sets generate every vector of the vector space $P_2(\mathbb{F}_4)$, we could ask:

do they generate all vectors of the standard basis $S = \{t^2, t, 1\}$?

i.e. in case of the set α we need to solve

1.
$$x(at^2+bt+1) + y(t^2+t+a) + z(bt+1) = t^2$$

2.
$$x(at^2+bt+1) + y(t^2+t+a) + z(bt+1) = t$$

3.
$$x(at^2+bt+1) + y(t^2+t+a) + z(bt+1) = 1$$

which in terms of the standard basis becomes:

1.
$$\begin{bmatrix} a \\ b \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ a \end{bmatrix} + \begin{bmatrix} 0 \\ b \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 i.e. $\begin{bmatrix} a & 1 & 0 \\ b & 1 & b \\ 1 & a & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

2.
$$\begin{bmatrix} a \\ b \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ a \end{bmatrix} + \begin{bmatrix} 0 \\ b \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 i.e. $\begin{bmatrix} a & 1 & 0 \\ b & 1 & b \\ 1 & a & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

3.
$$\begin{bmatrix} a \\ b \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ a \end{bmatrix} + \begin{bmatrix} 0 \\ b \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 i.e. $\begin{bmatrix} a & 1 & 0 \\ b & 1 & b \\ 1 & a & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

When we solve these separately we get:

1.
$$\operatorname{rref} 4 \begin{bmatrix} a & 1 & 0 & 1 \\ b & 1 & b & 0 \\ 1 & a & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & b & 1 \\ 0 & 1 & 1 & b \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies t^2 \in \operatorname{span}(\alpha)$$

2.
$$\operatorname{rref} 4 \begin{bmatrix} a & 1 & 0 & 0 \\ b & 1 & b & 1 \\ 1 & a & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & b & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow t \notin \operatorname{span}(\alpha)$$

3.
$$\operatorname{rref} 4 \begin{bmatrix} a & 1 & 0 & 0 \\ b & 1 & b & 0 \\ 1 & a & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & b & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow 1 \not\in \operatorname{span}(\alpha)$$

So that clearly α doesn't span all of $P_2(\mathbb{F}_4)$.

In case of the set β we need to solve

1.
$$x(t^2 + at + b) + y(bt^2 + 1) + z(bt + 1) = t^2$$

2.
$$x(t^2 + at + b) + y(bt^2 + 1) + z(bt + 1) = t$$

3.
$$x(t^2+at+b) + y(bt^2+1) + z(bt+1) = 1$$

which in terms of the standard basis becomes:

1.
$$\begin{bmatrix} 1 \\ a \\ b \end{bmatrix} + \begin{bmatrix} b \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ b \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 i.e. $\begin{bmatrix} 1 & b & 0 \\ a & 0 & b \\ b & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

2.
$$x \begin{bmatrix} 1 \\ a \\ b \end{bmatrix} + y \begin{bmatrix} b \\ 0 \\ 1 \end{bmatrix} + z \begin{bmatrix} 0 \\ b \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 i.e. $\begin{bmatrix} 1 & b & 0 \\ a & 0 & b \\ b & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

3.
$$\begin{bmatrix} 1 \\ a \\ b \end{bmatrix} + \begin{bmatrix} b \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ b \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 i.e. $\begin{bmatrix} 1 & b & 0 \\ a & 0 & b \\ b & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

When we solve these separately we get:

1.
$$\operatorname{rref} 4 \begin{bmatrix} 1 & b & 0 & 1 \\ a & 0 & b & 0 \\ b & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & b \end{bmatrix} \Rightarrow t^2 \in \operatorname{span}(\beta)$$

2.
$$\operatorname{rref} 4 \begin{bmatrix} 1 & b & 0 & 0 \\ a & 0 & b & 1 \\ b & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & 1 \end{bmatrix} \Rightarrow t \in \operatorname{span}(\beta)$$

3.
$$\operatorname{rref} 4 \begin{bmatrix} 1 & b & 0 & 0 \\ a & 0 & b & 0 \\ b & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & b \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & a \end{bmatrix} \Rightarrow 1 \in \operatorname{span}(\beta)$$

so that β indeed spans the entire space $P_2(\mathbb{F}_4)$. An important observation in this last case is that, when we combine the rrefs into one we get the following:

$$\operatorname{rref} 4 \begin{bmatrix} 1 & b & 0 & 1 & 0 & 0 \\ a & 0 & b & 0 & 1 & 0 \\ b & 1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & b \\ 0 & 1 & 0 & 0 & a & 1 \\ 0 & 0 & 1 & b & 1 & a \end{bmatrix}$$

i.e.
$$\begin{bmatrix} 1 & b & 0 \\ a & 0 & b \\ b & 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 & b \\ 0 & a & 1 \\ b & 1 & a \end{bmatrix} \quad \text{or} \quad \det \begin{bmatrix} 1 & b & 0 \\ a & 0 & b \\ b & 1 & 1 \end{bmatrix} \neq 0$$

This leads to a simple way of checking if a set is a basis (linearly independent and spanning), by looking at one determinant!

In class we will further investigate bases. In particular we will discuss the following facts about finitely generated vector spaces [we call a vector space **finitely generated** if there exists a finite set T such that $V = \operatorname{span}(T)$]:

- (a) Any linearly independent set can be extended to a basis.
- **(b)** Any **spanning** set can be **reduced** (pruned) to a basis.
- (c) The number of elements of a linear independent set is less or equal to the number of elements of a spanning set.
- (d) All bases have the same number of elements, called the **dimension** of the vector space.

Example 7:

(a) As we saw $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$ is linear independent, but does not span \mathbb{R}^3 . We can extend it to a

basis though:
$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

Here is another linearly independent set $\begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\3\\1 \end{bmatrix}$ that doesn't span \mathbb{R}^3 but we can

extend it to a basis as well
$$\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\3\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$$
.

(b) The set
$$\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 7 \end{bmatrix} \right\}$$
 is a spanning set but not a basis, since it is not linearly

independent. To create a basis from it we can just toss out the vectors that are not needed, i.e. prune the set and end up with a linearly independent spanning set, e.g.

$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 3\\5 \end{bmatrix} \right\}$$

Of course we need to be careful not to toss out too many.

(c) The following sets
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\6\\1 \end{bmatrix} \right\}$$
 are three bases

of \mathbb{R}^3 . Each of them has 3 vectors. *Any* other basis of \mathbb{R}^3 will have also three vectors in it. A set with just two vectors in it, even if they are linearly independent, cannot be a basis. A set with four vectors in it, even if it is spanning, cannot be a basis. But we can extend a set with two linearly independent vectors to a basis by adding another vector, and we can prune a spanning set with, say, 5 vectors, i.e. too many vectors, to create a basis.

Definition: The number of elements in a basis of a vector space is called the **dimension** of that vector space.

Notation: $\dim(V)$

This definition makes perfect sense since all bases of a given vector space have the same number of elements. It doesn't make any difference which one we pick.

Example 8:

* dim(
$$\mathbb{R}^3$$
) = 3 since $\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\6\\1 \end{bmatrix} \right\}$ is a basis, and it has 3 elements.

* dim
$$(P_2(\mathbb{R})) = 3$$
 since $\{1, x, x^2\}$ is a basis, and it has 3 elements.

* dim(
$$\mathbb{R}^2$$
) = 2 since $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ is a basis, and it has 2 elements.

Example 9:

(a) The subspace
$$W = \text{span} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 consists of all vectors that are linear combinations of $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$. It spans the plane through those two vectors. Note that the set $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$

is linearly independent, and it (clearly) spans W, hence it is a basis of W, so that $\dim(W) = 2$.

- **(b)** $W = \operatorname{span} \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$ is a one dimensional subspace of \mathbb{R}^3 . **(c)** $W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ is a subspace of \mathbb{R}^3 . It is the smallest subspace. It has only one element, the zero vector. Note that $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ is not a basis of W, since it is linearly **de**pendent.

Here is a non trivial linear combination for $\vec{0}$: $1 \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. As we noted before any set

containing the zero vector is dependent.

Since a vectors space spanned by two linearly independent vectors is two dimensional, and a vector space spanned by one linearly independent vector is 1 dimensional, we would like to say that this zero space, which is spanned by no linearly independent vectors is a zero dimensional vector space. That would mean that we would need a basis with no vectors: the empty set ϕ . We will actually adopt this as a convention:

Convention: ϕ is the basis for $W = \{\vec{0}\}$. Recall we defined $span(\phi) = \{\vec{0}\}$

It may look a bit weird, surreal even, but it is in sync with our the definition of dimensions. It is also in sync with our definition of a basis as an linearly independent spanning set: after all the empty set is linearly independent [there is no way to write the zero vector as a linear combination of vectors from ϕ , since it is empty] and it spans [by definition: $span(\phi) = \left\{ \vec{0} \right\}$]; hence ϕ is a perfect basis for $\left\{ \vec{0} \right\}$.

(d) The subspaces of \mathbb{R}^3 are either 0, 1, 2 or 3 dimensional:

- \mathbb{R}^3 , the space itself, is the only 3 dimensional subspace.
- The span of any two linearly independent vectors of \mathbb{R}^3 , spanning a plane, is a two dimensional subspace of \mathbb{R}^3 .
- The span of any nonzero vector of \mathbb{R}^3 , spanning a line, is a one dimensional subspace of \mathbb{R}^3 .
- $\left\{ \vec{0} \right\}$ is the only zero dimensional subspace of \mathbb{R}^3 .