Cockoba: EAM April 23, 2010

1.3.4 СҮК-алгоритъм

 Проблемът за принадлежност на дума за контекстно-свободни гарматики

Дадено: Една гарматика $G = (V, \Sigma, P, S),$

и дума $x = x_1 \cdots x_n \in \Sigma^*$.

Въпрос: $x \in L(G)$?

Алгоритъм на Cocke, Younger и Kasami

Нека G е в нормална форма на Чомски:

Специалният случай $x = \varepsilon$ е лесен,

тъй като предварително е превирната в нормална форма на Чомски.

Cockoba: EAИ April 23, 2010

СҮК алгоритъм

Ние решаваме по-общ проблем:

За всяка поддума $x_i \cdots x_{i+j-1}$ на x с дължина j, от кои променливи е изводима $x_i \cdots x_{i+j-1}$?

$$T[i,j] := \left\{ A \in V : A \stackrel{*}{\Rightarrow} x_i \cdots x_{i+j-1} \right\}$$

Случай
$$j=1$$
: $T[i,1]=\{A\in V:A\to x_i\in P\}$

В противен случай:

$$T[i,j] := \{A \in V : \exists A \rightarrow BC \in P : \exists k \in \{1,\ldots,j-1\} : B \in T[i,k] \land C \in T[i+k,j-k]\}$$

Накрая: $S \in T[1,n]$?

Соскова: ЕАИ Аргіl 23, 2010

Упражнение

x= a a a b b c c

$G = (\{S,A,B,C,D,E,F\},\$
$\{a,b,c\},P,S),$
$P = \{$
$S \longrightarrow AB$,
A ightarrow CD,
$A \rightarrow CF$,
$B \rightarrow c$,
B o EB,
$C \rightarrow a$,
D o b,
E ightarrow c,
$F o AD \}$

Cockoba: EAM April 23, 2010

Приложение на

динамичното програмиране

```
for i:=1 to n do T[i,1]:=\{A \in V: A \to x_i \in P\}
for j:=2 to n do
for i:=1 to n-j+1 do
T[i,j]:=\emptyset
for k:=1 to j-1 do
T[i,j] \longleftrightarrow \{A: \exists A \to BC \in P: B \in T[i,k] \land C \in T[i+k,j-1]\}
return S \in T[1,n]
```

Лема След j-1 изпълнения на цикъла по $j, j \ge 1,$ за всяко $i=1,\ldots,n-j+1$:

$$T[i,j]:=\left\{A\in V:A\stackrel{*}{\Rightarrow}x_i\cdots x_{i+j-1}\right\}.$$

Cockoba: EAM April 23, 2010

Анализ

```
Нека V = 1..|V|
for i := 1 to n do T[i,1] := \{A \in V : A \to x_i \in P\} // "евтино"
for j := 2 to n do
                                                     // \leq n пъти
                                                     // \leq n пъти
     for i := 1 to n - j + 1 do
          T[i,j] := \emptyset / / Двоичен вектор с големина |V| \leq |P|
          for k := 1 to j-1 do
                                                    // \leq n пъти
               foreach A \to BC \in P do // \leq |P| пъти
                    if B \in T[i,k] \land C \in T[i+k,j-k] then //\mathscr{O}(1)
                         добавяме A към T[i,j] // \mathscr{O}(1)
return S \in T[1, n]
```

Bpeme: $\mathcal{O}(\mathbf{n} \times \mathbf{n} \times (|V| + \mathbf{n} \times |P|)) = \mathcal{O}(\mathbf{n}^3 |P|)$