WHAT IS CLAIMED IS:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

1. In an integrated circuit wireless communication device, a method for controlling wireless communications with at least two wireless transceiver circuits, comprising:

generating a first antenna control signal at a first pin set of said wireless communication device, said first antenna control signal to be used for controlling receiving or transmitting operations for a first communication packet;

routing said first antenna control signal to a first wireless transceiver circuit upon detecting that the first communication packet is to be received or transmitted using the first wireless transceiver circuit;

generating a second antenna control signal at the first pin set of said wireless communication device, said second antenna control signal to be used for controlling receiving or transmitting operations for a second communication packet; and

routing said second antenna control signal to a second wireless transceiver circuit upon detecting that the second communication packet is to be received or transmitted using the second wireless transceiver circuit.

- 2. The method of claim 1, wherein the first wireless transceiver circuit comprises an 802.11g radio transceiver circuit and the second wireless transceiver circuit comprises an 802.11a radio transceiver circuit.
- 1 3. The method of claim 1, wherein a multiplexer circuit is used for generating the first and second antenna control signals.
- 1 4. The method of claim 1, wherein a plurality of antennas are coupled to the 2 first wireless transceiver circuit, and wherein the first antenna control signal specifies that 3 one of the plurality of antennas is to be used for receiving a wireless communication 4 signal.

- 5. The method of claim 1, wherein a plurality of antennas are coupled to the first wireless transceiver circuit through a diversity switch, and wherein the first antenna control signal controls the diversity switch to connect one of the plurality of antennas to the wireless communication device.
- 1 6. The method of claim 1, wherein a PHY module in the wireless
 2 communication device generates the first and second antenna control signals that are
 3 selectively coupled on a common signal line to the first or second transceiver circuits by
 4 a first selection circuit.
- 7. The method of claim 6, wherein the PHY module and the first wireless transceiver circuit are integrated on a single integrated circuit.
- 1 8. The method of claim 1, wherein the second wireless transceiver circuit is 2 integrated on a single integrated circuit.
- 9. The method of claim 1, wherein the second wireless transceiver circuit comprises a plurality of antennas, and wherein the second antenna control signal specifies that one of the plurality of antennas is to be used for transmitting a wireless communication signal.
 - 10. The method of claim 1, wherein the second wireless transceiver circuit comprises a plurality of antennas, and wherein the second antenna control signal specifies that one of the plurality of antennas is to be used for receiving a wireless communication signal.

1

2

3

4

2	an integrated circuit processing module for processing receive or transmit
3	baseband signals in accordance with first and second wireless communication protocols,
4	said processing module generating first and second antenna switch control signals, said
5	processing module comprising a selection circuit for routing one of said first and second
6	antenna switch control signals to a single output port on the integrated circuit processing
7	module;
8	a first radio transceiver coupled to the processing module for converting baseband
9	and RF signals in accordance with the first wireless communication protocol;
10	a first antenna module coupled to the first radio transceiver for receiving and
11	transmitting RF signals in accordance with the first wireless communication protocol;
12	a second radio transceiver coupled to the processing module for converting
13	baseband and RF signals in accordance with the second wireless communication
14	protocol;
15	a second antenna module coupled to the second radio transceiver for receiving
16	and transmitting RF signals in accordance with the second wireless communication
17	protocol;
18	where the first and second antenna modules are each coupled in parallel to the
19	single output port on the integrated circuit processing module to receive a shared antenna
20	switch control signal.

1

1

2

3

1

2

12.

802.11a.

11.

An apparatus, comprising:

13. The apparatus of claim 11, wherein the integrated circuit processing module comprises a MAC layer module and a IEEE 802.11a/g PHY module.

protocol is IEEE 802.11g and the second wireless communication protocol is IEEE

The apparatus of claim 11, wherein the first wireless communication

1	14. The apparatus of claim 11, wherein the first antenna module comprises
2	first and second antennas and a diversity switch that couples one of the first and second
3	antennas to the first radio transceiver in response to an antenna switch control signal
4	provided by the single output port.

1

2

3

1

2

1

2

3

- 15. The apparatus of claim 11, wherein the selection circuit comprises a multiplexer circuit that selects between first and second antenna switch control signals to output a shared antenna switch control signal in response to a selection signal.
- 1 16. The apparatus of claim 11, wherein the single output port comprises a 2 single set of conductor wires coupled in parallel to the first and second antenna modules.
 - 17. The apparatus of claim 11, wherein the first and second antenna modules each use different antenna switching configurations.
 - 18. The apparatus of claim 11, wherein the first antenna module comprises a transmit/receive switch module for coupling a first antenna to a receive or transmit signal path in response to the shared antenna switch control signal.
- 4 shared antenna each use different antenna switching configurations.
- second single output port comprises a single set of conductor wires coupled in parallel to the first and second antenna modules.

l	19. An apparatus for providing dual band wireless communications,
2	comprising:
3	a baseband processing module for processing receive or transmit baseband signals
4	in accordance with 802.11a and 802.11g wireless communication protocols, said
5	baseband processing module generating first and second antenna switch control signals,
6	said baseband processing module comprising a multiplexing circuit for routing one of
7	said first and second antenna switch control signals to a single set of output pins for the
8	baseband processing module;
9	a first front end modulator comprising one or more antennas for sending or
10	receiving a first wireless signal in accordance with the 802.11g wireless communication
11	protocol under control of the first antenna switch control signal;
12	a second front end modulator comprising one or more antennas for sending or
13	receiving a second wireless signal in accordance with the 802.11a wireless
14	communication protocol under control of the second antenna switch control signal;
15	where each of said first and second front end modulators are coupled in parallel to
16	the single set of output pins.
1	20. The apparatus of claim 19, wherein the baseband processing module, first
2	front end modulator and second front end modulator are each implemented as separate
3	integrated circuits.