Assignment 2

Models for Investment Decisions in Lending Club Loans

IDS 572 | CRN 38886 | Fall 2021

Team

Giovanni Alvin Prasetya (gprase2@uic.edu) Karishma Mulchandani (kmulch4@uic.edu) Rajaram Ramesh (rrames8@uic.edu) Q.1(a) Develop boosted tree models (using either gbm or xgBoost) to predict loan_status. Experiment with different parameters using a grid of parameter values. Use cross-validation. Explain the rationale for your experimentation. How does performance vary with parameters, and which parameter setting you use for the 'best' model. Model performance should be evaluated through use of same set of criteria as for the earlier models - confusion matrix based, ROC analyses and AUC, cost-based performance. Provide a table with comparative evaluation of all the best models from each methods; show their ROC curves in a combined plot. Also provide profit-curves and 'best' profit' and associated cutoff. At this cutoff, what are the accuracy values for the different models?

We have used the xgBoost boosted tree model for binary classification. The xgBoost models with manipulating various parameters, is determined wherein eta(learning rate), max_depth(maximum depth of a tree), subsample (subsample ratio of the training instance. Setting it to 0.5 means that xgBoost randomly collected half of the data instances to grow trees and this will prevent overfitting), lambda(regularization term). Each model is trained and by making various changes in its parameters, auc performance is measured and best prediction is estimated and plotted.

Model 1 has the highest accuracy at 86.35% and the best iteration at the 174th sample. Thus, it can be considered as the 'best' model

<u>Model</u>	Accuracy
Model 1	86.35%
Model 2	86.18%
Model 3	86.33%
Model 4	86.28%
Model 5	86.35%
Model 6	86.31%
Model 7	86.31%
Model 8	86.22%
Model 9	86.34%

R Code and Output:

```
lcdf <- read.csv("lcData100K.csv")
dim(lcdf)

#Drop variables with 100% NA values
lcdf <- lcdf %>% select_if(function(x){!all(is.na(x))})
dim(lcdf)
```

```
#Columns where there are missing values
colMeans(is.na(lcdf))[colMeans(is.na(lcdf))>0]
dim(lcdf)
#Remove variables which have more than 60% missing values
colMeans(is.na(lcdf))>0.6
finalnona<-names(lcdf)[colMeans(is.na(lcdf))>0.6]
final lcdf <- lcdf %>% select(-finalnona)
dim(final lcdf)
#Columns with remaining missing values
colMeans(is.na(final lcdf))[colMeans(is.na(final lcdf))>0]
#Summary of data in these columns final lcdf
nm<- names(final lcdf)[colSums(is.na(final lcdf))>0]
summary(final lcdf[, nm])
#Replace missing values with some value
NoNAlcdf <- final lcdf %>% replace na(list(mths since last deling=500,
revol util=median(final lcdf$revol util, na.rm=TRUE),
be open to buy=median(final lcdf$be open to buy, na.rm=TRUE), mo sin old il acct=1000,
mths since recent bc=1000, mths since recent inq=50, num tl 120dpd 2m =
median(lcdf\$num tl 120dpd 2m, na.rm=TRUE), percent bc gt 75 =
median(final lcdf\$percent bc gt 75, na.rm=TRUE), bc util=median(final lcdf\$bc util, na.rm=TRUE),
avg cur bal=median(final lcdf$avg cur bal,na.rm = TRUE),
num rev accts=mean(final lcdf$num rev accts,na.rm = TRUE),
emp length=median(final lcdf$emp length,na.rm = TRUE),
pct tl nvr dlq=mean(final lcdf$pct tl nvr dlq, na.rm = TRUE)))
#To check if we have no more NA values
colMeans(is.na(NoNAlcdf))[colMeans(is.na(NoNAlcdf))>0]
dim(NoNAlcdf)
Dropping variables which cause data leakage
```{r}
varsOmit <- c("issue d","last pymnt d", "zip code", "emp title", "last credit pull d", "pymnt plan",
"addr state", "policy code", "disbursement method", "title", "term", "funded amnt inv", "out prncp",
"out_prncp_inv", "total_pymnt_inv", "total_rec_prncp", "total_rec_int", "debt_settlement_flag", "hardship_flag", "application_type", "last_pymnt_amnt", "last_pymnt_d", "funded_amnt_inv",
"mths since last deling", "last pymnt amnt", "total pymnt", "issue d", "funded amnt", "last pymnt d",
"recoveries", "num tl op past 12m", "collection recovery fee", "total rec late fee",
"num tl 120dpd 2m", "num tl 30dpd", "num tl 90g dpd 24m", "earliest cr line",
"num tl op past 12m", "earliest cr line")
mydata <- NoNAlcdf %>% select(-varsOmit)
#Change chr to factors:
mydata$grade <- factor(mydata$grade, levels=c("A", "B", "C", "D", "E", "F", "G"))
```

```
mydata$sub grade <- factor(mydata$sub grade, levels=c("A1", "A2", "A3", "A4", "A5", "B1", "B2",
"B3", "B4", "B5", "C1", "C2", "C3", "C4", "C5", "D1", "D2", "D3", "D4", "D5", "E1", "E2", "E3", "E4",
"E5", "F1", "F2", "F3", "F4", "F5", "G1", "G2", "G3", "G4", "G5"))
mydata$initial_list_status <- factor(mydata$initial_list_status, levels=c("w", "f"))
mydata$loan status <- factor(mydata$loan status, levels=c("Fully Paid", "Charged Off"))
mydata$emp length <- factor(mydata$emp length, levels=c("n/a", "< 1 year","1 year","2 years", "3
years", "4 years", "5 years", "6 years", "7 years", "8 years", "9 years", "10+ years"))
mydata$purpose <- fct recode(mydata$purpose)</pre>
mydata$home ownership <- as.factor((mydata$home ownership))
mydata$verification status<- as.factor(mydata$verification status)
dim(mydata)
Split Train and Test Data
```{r}
#Split the data into trn, tst subsets
nr=nrow(mydata)
mvdata
trnIndex = sample(1:nr, size = round(0.7*nr), replace=FALSE)
lcdfTrn=mydata[trnIndex,]
lcdfTst = mydata[-trnIndex,]
dim(lcdfTrn)
dim(lcdfTst)
str(lcdfTrn)
```{r}
set.seed(12345)
mvdata2<-mvdata
fdum<-dummyVars(~.,data=mydata2 %>% select(-loan status))
dxlcdf <- predict(fdum, mydata2)</pre>
dylcdf <- class2ind(mydata2$loan status, drop2nd = FALSE)</pre>
and then decide which one to keep
fplcdf <- dylcdf [, 1] # or,
colcdf <- dylcdf [, 2]
#Training subsets
dxlcdfTrn <- dxlcdf[trnIndex,]</pre>
colcdfTrn <- colcdf[trnIndex]</pre>
```

```
dxlcdfTst <- dxlcdf[-trnIndex,]</pre>
colcdfTst <- colcdf[-trnIndex]</pre>
dxTrn <- xgb.DMatrix(dxlcdfTrn, label=colcdfTrn)
dxTst <- xgb.DMatrix(dxlcdfTst, label=colcdfTst)</pre>
\#Model 1(xgb lsm1) with eta = 0.01
#Add watchlist to watch the progress of learning through the performance on these data sets
xgbWatchlist < - list(train = dxTrn,eval = dxTst)
#Training the model and getting predictions
#List of parameters
xgbParam <- list (max_depth = 5, eta = 0.01,
objective = "binary:logistic",
eval_metric="error", eval metric = "auc")
#Iterative predictions
require(xgboost)
xgb lsM1 <- xgb.train (xgbParam, dxTrn, nrounds = 500, xgbWatchlist, early stopping rounds = 10)
xgb lsM1$best iteration
xpredTrg1<-predict(xgb_lsM1, dxTst) # best_iteration is used
head(xpredTrg1)
```

auc:0. Multip	667923 le eval metrics are pres	ent. Will use eval_auc		eval-
Will t	rain until eval_auc hasn	't improved in 10 round	ls.	
	train-error:0.138229 668132	train-auc:0.677213	eval-error:0.136900	eval-
	train-error:0.138300 668712	train-auc:0.678921	eval-error:0.136833	eval-
	train-error:0.138286 668744	train-auc:0.678690	eval-error:0.136767	eval-
	train-error:0.138343 668747	train-auc:0.679281	eval-error:0.136833	eval-
	train-error:0.138243 669357	train-auc:0.680109	eval-error:0.136733	eval-
	train-error:0.138471 670092	train-auc:0.681671	eval-error:0.136467	eval-
	train-error:0.138357 670076	train-auc:0.681719	eval-error:0.136533	eval-

#### [1] 500

[1] 0.13621391 0.11729860 0.14232948 0.08502362 0.14578173 0.10427569

```
#Cross-validation
xgbParam <- list (
max_depth = 3, eta = 0.1,
objective = "binary:logistic",
eval_metric="error", eval_metric = "auc")
xgb lscv <- xgb.cv(xgbParam, dxTrn, nrounds = 500, nfold=5, early_stopping_rounds = 10)</pre>
```

```
#Best iteration
xgb lscv$best iteration
#or for the best iteration based on performance measure (among those specified in xgbParam)
best cvIter <- which.max(xgb lscv\u00a8evaluation log\u00a8test auc mean)
#Learn the best model without xval
xgb lsbest <- xgb.train(xgbParam, dxTrn, nrounds = xgb lscv$best iteration)
#Variable importance
xgb.importance(model = xgb lsbest) %>% view()
...
 error:0.138357+0.003436 test-auc:0.691003+0.005166
 Stopping. Best iteration:
 [174] train-error:0.137586+0.000904 train-auc:0.732310+0.001338
 test-
 error:0.138257+0.003467 test-auc:0.691050+0.005213
 [1] 174
```{r}
#Performance on test data for model 1
require(ROCR)
pred xgb lsM1=prediction(xpredTrg1,lcdfTst$loan status,label.ordering = c("Fully Paid", "Charged
Off"))
aucPerf xgb lsM1=performance(pred xgb lsM1, "tpr", "fpr")
plot(aucPerf xgb lsM1)
```

#Confusion matrix

abline(a=0, b=1)

table(pred=as.numeric(xpredTrg1>0.5), act=colcdfTst)

```
act
pred 0 1
0 25906 4092
1 1 1
```



```
xgbParam <- list (
max depth = 4,
objective = "binary:logistic",
eval_metric="error", eval_metric = "auc")
\#Model 2 with eta = 1
xgb lsM2 <- xgb.train(xgbParam, dxTrn, nrounds = 500,xgbWatchlist, early stopping rounds = 10,
eta=1)
xgb lsM2$best iteration
xpredTrg2<-predict(xgb lsM2, dxTst)</pre>
#Performance on test data for model 2
pred xgb lsM2=prediction(xpredTrg2,lcdfTst$loan status,label.ordering = c("Fully Paid", "Charged
Off"))
aucPerf xgb lsM2=performance(pred xgb lsM2, "tpr", "fpr")
plot(aucPerf xgb lsM2)
abline(a=0, b=1)
#Confusion matrix
table(pred=as.numeric(xpredTrg2>0.5), act=colcdfTst)
       act
```



```
#Model 3 with eta = 0.1
xgb_lsM3 <- xgb.train( xgbParam, dxTrn, nrounds = 500,
xgbWatchlist, early_stopping_rounds = 10, eta=0.1 )
xgb_lsM3$best_iteration
xpredTrg3<-predict(xgb_lsM3, dxTst)

#Performance on test data for model 3
pred_xgb_lsM3=prediction(xpredTrg3,lcdfTst$loan_status,label.ordering = c("Fully Paid", "Charged Off"))
aucPerf_xgb_lsM3=performance(pred_xgb_lsM3, "tpr", "fpr")
plot(aucPerf_xgb_lsM3)
abline(a=0, b= 1)</pre>
```

#Confusion matrix table(pred=as.numeric(xpredTrg3>0.5), act=colcdfTst)

#Model 4 with eta = 0.5 xgb_lsM4 <- xgb.train(xgbParam, dxTrn, nrounds = 500, xgbWatchlist, early_stopping_rounds = 10, eta=0.5) xgb_lsM4\$best_iteration xpredTrg4<-predict(xgb_lsM4, dxTst)

#Performance on test data for model 4
pred_xgb_lsM4=prediction(xpredTrg4,lcdfTst\$loan_status,label.ordering = c("Fully Paid", "Charged Off"))
aucPerf_xgb_lsM4=performance(pred_xgb_lsM4, "tpr", "fpr")
plot(aucPerf_xgb_lsM4)
abline(a=0, b= 1)

#Confusion matrix table(pred=as.numeric(xpredTrg4>0.5), act=colcdfTst)


```
#Model 5 with eta = 0.01
xgb_lsM5 <- xgb.train( xgbParam, dxTrn, nrounds = 500,
xgbWatchlist, early_stopping_rounds = 10, eta=0.01 )
xgb_lsM5$best_iteration
xpredTrg5<-predict(xgb_lsM5, dxTst)

#Performance on test data for model 5
pred_xgb_lsM5=prediction(xpredTrg5,lcdfTst$loan_status,label.ordering = c("Fully Paid", "Charged Off"))
aucPerf_xgb_lsM5=performance(pred_xgb_lsM5, "tpr", "fpr")
plot(aucPerf_xgb_lsM5)
abline(a=0, b= 1)</pre>
```

#Confusion matrix table(pred=as.numeric(xpredTrg5>0.5), act=colcdfTst)


```
\#Model 6 with eta = 0.1, max depth=0.6
xgbParam <- list (
max depth = 6,
objective = "binary:logistic",
eval metric="error", eval metric = "auc")
xgb lsM6 <- xgb.train( xgbParam, dxTrn, nrounds = 500, xgbWatchlist,
early stopping rounds = 10, eta=0.1)
xgb lsM6$best iteration
xpredTrg6<-predict(xgb lsM6, dxTst)</pre>
#Performance on test data for model 6
pred xgb lsM6=prediction(xpredTrg6,lcdfTst$loan status,label.ordering = c("Fully Paid", "Charged
Off"))
aucPerf xgb lsM6=performance(pred xgb lsM6, "tpr", "fpr")
plot(aucPerf xgb lsM6)
abline(a=0, \bar{b}= 1)
#Confusion matrix
table(pred=as.numeric(xpredTrg6>0.5), act=colcdfTst)
```



```
#Model 7 same as 6 but with nrounds = 1000
xgb_lsM7 <- xgb.train( xgbParam, dxTrn, nrounds = 1000, xgbWatchlist,
early_stopping_rounds = 10, eta=0.1)
xgb_lsM7$best_iteration
xpredTrg7<-predict(xgb_lsM7, dxTst)

#Performance on test data for model 7
pred_xgb_lsM7=prediction(xpredTrg7,lcdfTst$loan_status,label.ordering = c("Fully Paid", "Charged Off"))
aucPerf_xgb_lsM7=performance(pred_xgb_lsM7, "tpr", "fpr")
plot(aucPerf_xgb_lsM7)
abline(a=0, b= 1)</pre>
```

#Confusion matrix

table(pred=as.numeric(xpredTrg7>0.5), act=colcdfTst)

#Model 8 same as 7 but with lambda=0.05, subsample=0.7, colsample_bytree=0.5 xgb_lsM8 <- xgb.train(xgbParam, dxTrn, nrounds = 1000, xgbWatchlist, early_stopping_rounds = 10, eta=0.1, lambda=0.05, subsample=0.7, colsample_bytree=0.5) xgb_lsM8\$best_iteration xpredTrg8<-predict(xgb_lsM8, dxTst)

#Performance on test data for model 8
pred_xgb_lsM8=prediction(xpredTrg8,lcdfTst\$loan_status,label.ordering = c("Fully Paid", "Charged Off"))
aucPerf_xgb_lsM8=performance(pred_xgb_lsM8, "tpr", "fpr")
plot(aucPerf_xgb_lsM8)
abline(a=0, b= 1)

#Confusion matrix table(pred=as.numeric(xpredTrg8>0.5), act=colcdfTst)


```
#Model 9 same as 8 but with eta=0.01
xgb_lsM9 <- xgb.train( xgbParam, dxTrn, nrounds = 1000, xgbWatchlist, early_stopping_rounds
= 10, eta=0.01, subsample=0.7, colsample_bytree=0.5)
xgb_lsM9$best_iteration
xpredTrg9<-predict(xgb_lsM9, dxTst)

#Performance on test data for model 9
pred_xgb_lsM9=prediction(xpredTrg9,lcdfTst$loan_status,label.ordering = c("Fully Paid", "Charged Off"))
```

aucPerf_xgb_lsM9=performance(pred_xgb_lsM9, "tpr", "fpr")
plot(aucPerf_xgb_lsM9)
abline(a=0, b= 1)

#Confusion matrix

table(pred=as.numeric(xpredTrg9>0.5), act=colcdfTst)

٠.,

legend("bottomright",

```
Combination of all Plots
```{r}

plot(aucPerf_xgb_lsM9, col="red", main = "Simultaneous Plots", cex = 0.6)

plot(aucPerf_xgb_lsM8, col="green", add=TRUE)

plot(aucPerf_xgb_lsM6, col="blue", add=TRUE)

plot(aucPerf_xgb_lsM5, col="yellow", add=TRUE)

plot(aucPerf_xgb_lsM4, col="orange", add=TRUE)

plot(aucPerf_xgb_lsM3, col="pink", add=TRUE)

plot(aucPerf_xgb_lsM2, col="black", add=TRUE)

plot(aucPerf_xgb_lsM1, col="brown", add=TRUE)
```

 $c("model9","model8","model7","model6","model5","model4","model3","model2","model1"), \\ lty=1, \\ col=c("red","green","blue","yellow","orange","pink","black","brown"), \\ cex=0.8)$ 



- Q.2(a) Develop linear (glm) models to predict loan\_status. Experiment with different parameter values, and identify which gives 'best' performance. Use cross-validation. Describe how you determine 'best' performance. How do you handle variable selection? Experiment with Ridge and Lasso, and show how you vary these parameters, and what performance is observed.
- Q.2(b) For the linear model, what is the loss function, and link function you use? (Write the expression for these, and briefly describe).
- Q.2(c) Compare performance of models with that of random forests (from last assignment) and gradient boosted tree models.
- Q.2(d) Examine which variables are found to be important by the best models from the different methods, and comment on similarities, difference. What do you conclude?
- Q.2(e) In developing models above, do you find larger training samples to give better models? Do you find balancing the training data examples across classes to give better models?

#### R Code and Output:

```
Linear model turning into factor

#Make sure that "fully paid" is 1 in the factor variable
levels(lcdfTrn_AR$loan_status)

[1] "Charged Off" "Fully Paid"

yTrn<-factor(if_else(lcdfTrn_AR$loan_status=="Fully Paid", '1', '0'))

xDTrn<-model.matrix(~ loan_status+ actualTerm + annRet + actualReturn - 1, lcdfTrn_AR)

#the Test set
glmls_cv<- cv.glmnet(data.matrix(xDTrn), yTrn, family="binomial")

Removing variables and running cv

#Remove variables that would not be x variables

xDTrn<-model.matrix(~ loan_status+ actualTerm + annRet + actualReturn - 1, lcdfTrn_AR)

#Running cross validation
glmls_cv<- cv.glmnet(data.matrix(xDTrn), yTrn, family="binomial")

#Plotting the model
plot(glmls cv)
```



Ridge and Lasso

#Experimenting with Ridge
glmls\_Ridge<- cv.glmnet(data.matrix(xDTrn), yTrn, family="binomial", alpha=0)
plot(glmls\_Ridge)

#Experimenting between Ridge and Lasso
glmls\_Mid<- cv.glmnet(data.matrix(xDTrn), yTrn, family="binomial", alpha=.5)
plot(glmls\_Mid)

#Finding the minimum lambda
glmls\_cv\$lambda.min
[1] 0.0005604592

#Finding within 1 standard error glmls\_cv\$lambda.1se
[1] 0.0005604592



Getting lambda values #Values for all coefficients coef(glmls\_cv, s = glmls\_cv\$lambda.min)

```
6 x 1 sparse Matrix of class "dgCMatrix"
 s1
(Intercept)
 8.404607
loan_statusCharged Off -14.967957
loan_statusFully Paid
actualTerm
annRet
actualReturn
#Showing coefficients using tidy getting rid of all zeros
tidy(coef(glmls cv, s = glmls cv$lambda.1se))
Warning: 'tidy.dgCMatrix' is deprecated.
See help("Deprecated")
Warning: 'tidy.dgTMatrix' is deprecated.
See help("Deprecated")
#Values corresponding to graph
glmls_cv$glmnet.fit
Call: glmnet(x = data.matrix(xDTrn), y = yTrn, family = "binomial")
 Df %Dev Lambda
1 0 0.00 0.34390
2 1 18.26 0.31330
3 2 30.68 0.28550
4 2 40.08 0.26010
5 2 47.59 0.23700
6 1 53.78 0.21600
7 2 59.01 0.19680
8 2 63.49 0.17930
9 2 67.36 0.16340
10 1 70.75 0.14890
11 2 73.73 0.13560
12 1 76.36 0.12360
13 2 78.69 0.11260
14 2 80.77 0.10260
15 2 82.63 0.09349
16 1 84.29 0.08518
17 2 85.78 0.07762
18 2 87.12 0.07072
19 2 88.33 0.06444
20 2 89.42 0.05871
21 2 90.40 0.05350
22 2 91.29 0.04875
23 2 92.09 0.04442
```

- 24 2 92.82 0.04047
- 25 2 93.47 0.03687
- 26 2 94.07 0.03360
- 27 2 94.61 0.03061
- 28 2 95.10 0.02789
- 29 2 95.54 0.02542
- 30 1 95.94 0.02316
- 31 2 96.31 0.02110
- 32 2 96.64 0.01923
- 33 2 96.94 0.01752
- 34 2 97.22 0.01596
- 35 2 97.47 0.01454
- 36 1 97.70 0.01325
- 37 1 97.90 0.01207
- 38 1 98.09 0.01100
- 39 2 98.26 0.01002
- 40 1 98.42 0.00913
- 41 1 98.56 0.00832
- 42 2 98.69 0.00758
- 43 1 98.80 0.00691
- 44 2 98.91 0.00630
- 45 2 99.01 0.00574
- 45 2 77.01 0.005/4
- 46 1 99.10 0.00523 47 2 99.18 0.00476
- 40 4 00 2 7 0 00 42 4
- 48 1 99.25 0.00434
- 49 2 99.32 0.00395
- 50 2 99.38 0.00360
- 51 1 99.43 0.00328
- 52 2 99.48 0.00299
- 53 2 99.53 0.00272
- 54 1 99.57 0.00248
- 55 2 99.61 0.00226
- 56 2 99.64 0.00206
- 57 2 99.68 0.00188
- 58 2 99.70 0.00171
- 59 2 99.73 0.00156
- 60 2 99.75 0.00142
- 61 2 99.78 0.00130
- 62 2 99.80 0.00118
- 63 2 99.81 0.00108
- 64 1 99.83 0.00098
- 65 2 99.85 0.00089
- 66 2 99.86 0.00081
- 67 1 99.87 0.00074

68 2 99.88 0.00068 69 1 99.89 0.00062 70 1 99.90 0.00056

#Finding lambda that creates the optimal deviance which(glmls\_cv\$lambda == glmls\_cv\$lambda.1se) [1] 70

#Finding the lambda that has the best auc level glmls\_cv\_auc<- cv.glmnet(data.matrix(xDTrn), yTrn, family="binomial", type.measure = "auc") plot(glmls cv auc)

loan\_statusCharged Off s1 -14.967957

2 rows



Making Predictions

#Making predictions for Lambda min with Training and Test
glmPredls\_Min=predict ( glmls\_cv,data.matrix(xDTrn), s="lambda.min" )
head(glmPredls\_Min)
lambda.min

```
1 8.404607
2 8.404607
3 8.404607
4 8.404607
5 8.404607
6 8.404607
#Making predictions with probability for Lambda min Training
glmPredls pMin=predict(glmls cv,data.matrix(xDTrn), s="lambda.min", type="response")
head(glmPredls pMin)
lambda.min
1 0.9997762
2 0.9997762
3 0.9997762
4 0.9997762
5 0.9997762
6 0.9997762
#Making predictions for Lambda.se
glmPredls SE=predict (glmls cv,data.matrix(xDTrn), s="lambda.1se")
head(glmPredls SE)
lambda.1se
1 8.404607
2 8.404607
3 8.404607
4 8.404607
5 8.404607
6 8.404607
#Making predictions with probability for Lambda.1se
glmPredls pSE=predict(glmls cv,data.matrix(xDTrn), s="lambda.1se", type="response")
head(glmPredls pSE)
lambda.1se
1 0.9997762
2 0.9997762
3 0.9997762
4 0.9997762
5 0.9997762
6 0.9997762
Balancing data
#To consider a more balanced data, we can include example weights
wts=if else(yTrn==0, 1-sum(yTrn==0)/length(yTrn), 1-sum(yTrn==1)/length(yTrn))
glmsw cv<- cv.glmnet(data.matrix(xDTrn), yTrn, family = "binomial", weights= wts)
```





Model for standard error glmls\_1 <- glmnet(data.matrix(xDTrn), yTrn, family="binomial", lambda = glmls\_cv\$lambda.1se) glmls\_1

Call:  $glmnet(x = data.matrix(xDTrn), y = yTrn, family = "binomial", lambda = glmls_cv$lambda.1se)$ 

Df %Dev Lambda 1 1 99.9 0.0005605

tidy(glmls\_1)
glmls\_1b <- glmnet(data.matrix(xDTrn), yTrn, family="binomial",lambda = glmls\_cv\$lambda)
tidy(coef(glmls\_1b, s= glmls\_cv\$lambda.1se))

A tibble: 2 x 5				
term <chr></chr>	step <dbl></dbl>	estimate <dbl></dbl>	lambda <dbl></dbl>	dev.ratio <dbl></dbl>
(Intercept)	1	8.406192	0.0005604592	0.9990345
loan_statusCharged Off	1	-14.971129	0.0005604592	0.9990345

2 rows

Description: df [2 × 3]		
row <chr></chr>	column <chr></chr>	value <dbl></dbl>
(Intercept)	s1	8.404607
loan_statusCharged Off	s1	-14.967957

2 rows

Q.3 Develop models to identify loans which provide the best returns. Explain how you define returns? Does it include Lending Club's service costs? Develop glm, rf, gbm/xgb models for this. Show how you systematically experiment with different parameters to find the best models. Compare model performance – explain what performance criteria do you use, and why.

#### R Code and Output

Building a Random Forest Model to Predict Actual Returns rf\_AR <- ranger(actualReturn ~., data=subset(lcdfTrn\_AR, select=-c(annRet, actualTerm, loan\_status)), num.trees = 200, importance = 'permutation')

## RF Training data rfPredRet\_trn\_AR<- predict(rf\_AR, lcdfTrn\_AR) sqrt(mean((rfPredRet\_trn\_AR\$predictions- lcdfTrn\_AR\$actualReturn)^2)) plot ((predict(rf\_AR, lcdfTrn\_AR))\$predictions, lcdfTrn\_AR\$actualReturn)

#### [1] 3.703739



RF Performance by Deciles for Training Data predRet\_Trn\_AR<-- lcdfTrn\_AR %>% select(grade, loan\_status, actualReturn, actualTerm, int\_rate) %>% mutate(predRet\_ARtrn=(predict(rf\_AR, lcdfTrn\_AR))\$predictions) predRet\_Trn\_AR<-- predRet\_Trn\_AR %>% mutate(tile=ntile(-predRet\_ARtrn, 10)) predRet\_Trn\_AR %>% group\_by(tile) %>% summarise(count=n(), avgpredRet=mean(predRet\_ARtrn), numDefaults=sum(loan\_status=="Charged Off"), avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn), avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))

tile <int></int>	count <int></int>	avgpredRet <dbl></dbl>	numDefaults <int></int>	avgActRet <dbl></dbl>	minRet <dbl></dbl>	maxRet <dbl></dbl>	avgTerm <dbl></dbl>	totA <int></int>	totB <int></int>
1	7000	11.459257	8	14.598976	8.4048767	40.8154152	1.213971	2	268
2	7000	8.919240	15	11.018392	6.9463966	17.7625022	1.690217	7	1597
3	7000	7.765493	35	9.409129	5.2217222	20.2760823	1.996949	21	2520
4	7000	6.900850	42	8.212828	4.3849878	13.6093904	2.218635	195	3254
5	7000	6.165181	68	7.261014	2.3443526	12.4004522	2.335295	701	3890
6	7000	5.483443	106	6.467019	0.5092222	12.1281712	2.299710	1665	4076
7	7000	4.793582	146	5.514302	0.7324874	11.4981818	2.367788	3141	3324
8	7000	4.074396	186	4.528975	-1.4550833	10.7999775	2.573398	4973	1757
9	7000	2.590678	1987	2.088197	-12.4708169	8.3766897	2.769394	4584	1168
10	7000	-6.715925	7000	-16.171140	-33.3333333	-0.9448517	3.000000	600	1949

RF Test data rfPredRet\_Tst\_AR<- predict(rf\_AR, lcdfTst\_AR) sqrt(mean((rfPredRet\_Tst\_AR\$predictions- lcdfTst\_AR\$actualReturn)^2)) plot ((predict(rf\_AR, lcdfTst\_AR))\$predictions, lcdfTst\_AR\$actualReturn) [1] 8.366654



RF Performance by Deciles for Test Data

predRet\_Tst\_AR<- lcdfTst\_AR %>% select(grade, loan\_status, actualReturn, actualTerm, int\_rate) %>% mutate(predRet\_ARtst=(predict(rf\_AR, lcdfTst\_AR))\$predictions)

predRet Tst AR<- predRet Tst AR %>% mutate(tile=ntile(-predRet ARtst, 10))

predRet\_Tst\_AR %>% group\_by(tile) %>% summarise(count=n(), avgpredRet=mean(predRet\_ARtst), numDefaults=sum(loan status=="Charged Off"), avgActRet=mean(actualReturn).

minRet=min(actualReturn), maxRet=max(actualReturn), avgTerm=mean(actualTerm),

totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="F"))

tile <int></int>	count <int></int>	avgpredRet <dbl></dbl>	numDefaults <int></int>	avgActRet <dbl></dbl>	minRet <dbl></dbl>	maxRet <dbl></dbl>	avgTerm <dbl></dbl>	totA <int></int>	totB <int></int>
1	3000	8.222095	511	7.836744	-33.33333	34.84624	2.148854	0	192
2	3000	6.724924	459	6.737833	-31.08100	27.51648	2.150261	0	838
3	3000	6.016469	465	5.940008	-32.19230	34.20363	2.236589	1	1264
4	3000	5.463725	399	5.800514	-32.22487	30.14516	2.225064	109	1488
5	3000	4.989860	403	5.164607	-33.33333	23.65092	2.225301	455	1418
6	3000	4.586126	365	4.674285	-32.18920	26.48408	2.260161	898	1261
7	3000	4.199768	358	4.402199	-33.33333	31.97116	2.283562	1209	1055
8	3000	3.793758	321	4.259976	-31.25387	24.53655	2.275021	1492	861
9	3000	3.286661	374	3.791127	-32.24854	44.35949	2.316634	1493	800
10	3000	2.017287	537	3.436664	-32.31356	27.62635	2.415366	1042	927

Balancing the Training Data with over and under sampling or combination of both

lcdfSplit\_AR <- initial\_split(lcdf\_AR, prop=0.7)</pre>

lcdfTrn Bal <- training(lcdfSplit AR)</pre>

lcdfTst\_Bal <- testing(lcdfSplit\_AR)</pre>

 $us\_lcdfTrn\_AR < -ovun.sample(loan\_status \sim ., data = as.data.frame(lcdfTrn\_Bal), na.action = na.pass, method = "under", p=0.5) \\ \$ data$ 

 $os\_lcdfTrn\_AR <- ovun.sample(loan\_status \sim., \ data = as.data.frame(lcdfTrn\_Bal), \ na.action = na.pass, \\ method = "over", \ p=0.5) \$ data$ 

 $bs\_lcdfTrn\_AR < -ovun.sample(loan\_status \sim .,\ data = as.data.frame(lcdfTrn\_Bal),\ na.action = na.pass,\ method = "both",\ p=0.5) \\ \$ data$ 

bs lcdfTrn AR%>% group by(loan status) %>% count()

loan_status <fctr></fctr>	<b>n</b> <int></int>
Fully Paid	35046
Charged Off	34954

Building A RF w/ balanced data \#Building RF Under Sampling rf\_AR\_us <- ranger(actualReturn  $\sim$ ., data=subset(us\_lcdfTrn\_AR, select=-c(annRet, actualTerm, loan status)), num.trees = 200, importance='permutation')

RF Under Sampling Results

rfPredRet trn us<- predict(rf AR us, us lcdfTrn AR)

sqrt(mean((rfPredRet trn us\$predictions- us lcdfTrn AR\$actualReturn)^2))

plot ((predict(rf AR us, us lcdfTrn AR))\$predictions, us lcdfTrn AR\$actualReturn)

```
predRet Trn us<- us lcdfTrn AR %>% select(grade, loan status, actualReturn, actualTerm, int rate)
%>% mutate(predRet ARtrn us=(predict(rf AR us, us lcdfTrn AR))$predictions)
predRet Trn us<- predRet Trn us %>% mutate(tile=ntile(-predRet ARtrn us, 10))
predRet Trn us %>% group by(tile) %>% summarise(count=n(),
avgpredRet=mean(predRet ARtrn us), numDefaults=sum(loan status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"),
totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))
RF Over Sampling
rf AR os <- ranger(actualReturn ~.., data=subset(os lcdfTrn AR, select=-c(annRet, actualTerm,
loan status)), num.trees = 200, importance='permutation')
RF Train Results for Over Sampling
rfPredRet trn os<- predict(rf AR os, os lcdfTrn AR)
sqrt(mean((rfPredRet trn os$predictions- os lcdfTrn AR$actualReturn)^2))
plot ((predict(rf AR os, os lcdfTrn AR))$predictions, os lcdfTrn AR$actualReturn)
predRet Trn os<- os lcdfTrn AR %>% select(grade, loan status, actualReturn, actualTerm, int rate)
%>% mutate(predRet ARtrn os=(predict(rf AR os, os lcdfTrn AR))$predictions)
predRet Trn os<- predRet Trn os %>% mutate(tile=ntile(-predRet ARtrn os, 10))
predRet Trn os %>% group by(tile) %>% summarise(count=n(),
avgpredRet=mean(predRet ARtrn os), numDefaults=sum(loan status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"),
totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))
RF Over Sampling Test Results
rfPredRet Tst os<- predict(rf AR os, lcdfTst AR)
sqrt(mean((rfPredRet Tst os$predictions-lcdfTst AR$actualReturn)^2))
plot ((predict(rf AR os, lcdfTst AR))$predictions, lcdfTst AR$actualReturn)
predRet Tst os<-lcdfTst AR %>% select(grade, loan status, actualReturn, actualTerm, int rate) %>%
mutate(predRet ARTst os=(predict(rf AR os, lcdfTst AR))$predictions)
predRet Tst os<- predRet Tst os %>% mutate(tile=ntile(-predRet ARTst os, 10))
predRet Tst os %>% group by(tile) %>% summarise(count=n(),
avgpredRet=mean(predRet ARTst os), numDefaults=sum(loan status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"),
totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))
[1] 4.930287
```



Building RF for Both (combination of over and under sampling) rf\_AR\_bs <- ranger(actualReturn ~., data=subset(bs\_lcdfTrn\_AR, select=-c(annRet, actualTerm, loan status)), num.trees = 200, importance='permutation')

RF Both Train results

```
rfPredRet_Trn_bs<- predict(rf_AR_bs, bs_lcdfTrn_AR)
sqrt(mean((rfPredRet_Trn_bs$predictions- bs_lcdfTrn_AR$actualReturn)^2))
plot ((predict(rf_AR_bs, bs_lcdfTrn_AR))$predictions, bs_lcdfTrn_AR$actualReturn)
predRet_Trn_bs<- bs_lcdfTrn_AR %>% select(grade, loan_status, actualReturn, actualTerm, int_rate)
%>% mutate(predRet_ARTrn_bs=(predict(rf_AR_bs, bs_lcdfTrn_AR))$predictions)
predRet_Trn_bs<- predRet_Trn_bs %>% mutate(tile=ntile(-predRet_ARTrn_bs, 10))
predRet_Trn_bs %>% group_by(tile) %>% summarise(count=n(),
avgpredRet=mean(predRet_ARTrn_bs), numDefaults=sum(loan_status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"),
```

# RF Both Test results rfPredRet\_Tst\_bs<- predict(rf\_AR\_bs, lcdfTst\_AR) sqrt(mean((rfPredRet\_Tst\_bs\$predictions- lcdfTst\_AR\$actualReturn)^2)) plot ((predict(rf\_AR\_bs, lcdfTst\_AR))\$predictions, lcdfTst\_AR\$actualReturn) predRet\_Tst\_bs<- lcdfTst\_AR %>% select(grade, loan\_status, actualReturn, actualTerm, int\_rate) %>% mutate(predRet\_ARTst\_bs=(predict(rf\_AR\_bs, lcdfTst\_AR))\$predictions)

totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))

predRet\_Tst\_bs<-- predRet\_Tst\_bs %>% mutate(tile=ntile(-predRet\_ARTst\_bs, 10))
predRet\_Tst\_bs %>% group\_by(tile) %>% summarise(count=n(),
avgpredRet=mean(predRet\_ARTst\_bs), numDefaults=sum(loan\_status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"),
totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))

## Building GLM Model #Creating data set for glm model df4\_glm <-lcdfTrn\_AR %>% select(-loan\_status, -actualTerm, -annRet, -actualReturn) glmRet\_cv <- cv.glmnet(data.matrix(df4\_glm), lcdfTrn\_AR\$actualReturn, family="gaussian") plot(glmRet\_cv)



Some Metrics for GLM model glmRet\_cv\$lambda.min glmRet\_cv\$lambda.1se coef(glmRet\_cv, s="lambda.1se") %>% tidy() coef(glmRet\_cv, s="lambda.min")

row <chr></chr>	column <chr></chr>	value <dbl></dbl>
(Intercept)	s1	3.32584955
int_rate	s1	0.20992071
home_ownership	s1	-0.05295093
dti	s1	-0.02498593

```
Predictions for GLM Model for Training Data
#Performance of GLM model for lambda min
predRet Trn AR glm <- lcdfTrn AR %>% select(grade, loan status, actualReturn, actualTerm, int rate)
%>% mutate(predRet glm= predict(glmRet cv, data.matrix(lcdfTrn AR %>% select(-loan status,
-actualTerm, -annRet, -actualReturn)),s="lambda.min"))
#Splitting into deciles
predRet Trn AR glm<- predRet Trn AR glm%>% mutate(tile=ntile(-predRet glm, 10))
predRet Trn AR glm %>% group by(tile) %>% summarise(count=n(),
avgpredRet=mean(predRet glm), numDefaults=sum(loan status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"),
totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))
Predictions of GLM Model for Test Data
#Performance of glm model for lambda.min
predRet Tst AR glm <- lcdfTst AR %>% select(grade, loan status, actualReturn, actualTerm, int rate)
%>% mutate(predRet glm= predict(glmRet cv, data.matrix(lcdfTst AR %>% select(-loan status,
-actualTerm, -annRet, -actualReturn)),s="lambda.min"))
#Splitting into deciles
predRet Tst AR glm<- predRet Tst AR glm%>% mutate(tile=ntile(-predRet glm, 10))
predRet Tst AR glm %>% group by(tile) %>% summarise(count=n(),
avgpredRet=mean(predRet glm), numDefaults=sum(loan status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"),
totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))
alpha=0 (Ridge Regression) for glm model
glmRet cv a0<- cv.glmnet(data.matrix(df4 glm), lcdfTrn AR$actualReturn, family="gaussian",
alpha=0)
plot(glmRet cv a0)
#1se
glmRet cv a0$lambda.1se
#min
glmRet cv a0$lambda.min
coef(glmRet cv a0, s="lambda.1se")
coef(glmRet cv a0, s="lambda.min")
```



```
Predictions for alpha=0 Model for Training Data
#Performance of glm model for lambda min
predRet Trn AR a0 <- lcdfTrn AR %>% select(grade, loan status, actualReturn, actualTerm, int rate)
%>% mutate(predRet a0= predict(glmRet cv, data.matrix(lcdfTrn AR %>% select(-loan status,
-actualTerm, -annRet, -actualReturn)),s="lambda.min"))
#Splitting into deciles
predRet Trn AR a0<- predRet Trn AR a0 %>% mutate(tile=ntile(-predRet a0, 10))
predRet Trn AR a0 %>% group by(tile) %>% summarise(count=n(), avgpredRet=mean(predRet a0),
numDefaults=sum(loan status=="Charged Off"), avgActRet=mean(actualReturn),
minRet=min(actualReturn), maxRet=max(actualReturn), avgTerm=mean(actualTerm),
tot A = sum(grade == "A"), \ tot B = sum(grade == "B"), \ tot C = sum(grade == "C"), \ tot D = sum(grade == "D"), \ tot D = sum(gr
totE=sum(grade=="E"), totF=sum(grade=="F"))
alpha = x for glm model
glmRet cv a2<- cv.glmnet(data.matrix(df4 glm), lcdfTrn AR$actualReturn, family="gaussian",
alpha=0.2)
plot(glmRet_cv_a2)
#1se
glmRet cv a2$lambda.1se
#min
glmRet cv a2$lambda.min
coef(glmRet cv a2, s="lambda.1se")
coef(glmRet cv a2, s="lambda.min")
```



Predictions for alpha=2 Model for Training Data #Performance of GLM model for lambda min predRet\_Trn\_AR\_a2 <- lcdfTrn\_AR %>% select(grade, loan\_status, actualReturn, actualTerm, int\_rate) %>% mutate(predRet\_a2= predict(glmRet\_cv, data.matrix(lcdfTrn\_AR %>% select(-loan\_status, -actualTerm, -annRet, -actualReturn)),s="lambda.min" )) #Splitting into deciles predRet\_Trn\_AR\_a2
predRet\_Trn\_AR\_a2</pr>
predRet\_Trn\_AR\_a2 %>% group\_by(tile) %>% summarise(count=n(), avgpredRet=mean(predRet\_a2), numDefaults=sum(loan\_status=="Charged Off"), avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn), avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))

Building GLM model with balanced data
Building GLM Model with under sampled data
#Creating data set for GLM model
df4\_glm\_us <-us\_lcdfTrn\_AR %>% select(-loan\_status, -actualTerm, -annRet, -actualReturn)
glmRet\_cv\_us <- cv.glmnet(data.matrix(df4\_glm\_us), us\_lcdfTrn\_AR\$actualReturn, family="gaussian")
plot(glmRet\_cv\_us)

Some Metrics for GLM under sampling glmRet\_cv\_us\$lambda.min glmRet\_cv\_us\$lambda.1se

```
coef(glmRet cv us, s="lambda.1se") %>% tidy()
coef(glmRet cv us, s="lambda.min")
Predictions for GLM under sampling
#Performance of GLM model for lambda min
predRet Trn us glm <- us lcdfTrn AR %>% select(grade, loan status, actualReturn, actualTerm,
int rate) %>% mutate(predRet glm us= predict(glmRet cv us, data.matrix(us lcdfTrn AR %>%
select(-loan status, -actualTerm, -annRet, -actualReturn)),s="lambda.min"))
#Splitting into deciles
predRet Trn us glm<- predRet Trn us glm%>% mutate(tile=ntile(-predRet glm us, 10))
predRet Trn us glm %>% group by(tile) %>% summarise(count=n(),
avgpredRet=mean(predRet glm us), numDefaults=sum(loan status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"),
totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))
Building GLM Model with over sampled data
#Creating data set for glm model
df4 glm os <-os lcdfTrn AR %>% select(-loan status, -actualTerm, -annRet, -actualReturn)
glmRet cv os <- cv.glmnet(data.matrix(df4 glm os), os lcdfTrn AR$actualReturn, family="gaussian")
plot(glmRet cv os)
Some Metrics for GLM over sampling
glmRet cv os$lambda.min
glmRet cv os$lambda.1se
coef(glmRet cv os, s="lambda.1se") %>% tidy()
coef(glmRet cv os, s="lambda.min")
Predictions for GLM over sampling
#Performance of GLM model for lambda min
predRet Trn os glm <- os lcdfTrn AR %>% select(grade, loan status, actualReturn, actualTerm,
int rate) %>% mutate(predRet glm os= predict(glmRet cv os, data.matrix(os lcdfTrn AR %>%
select(-loan status, -actualTerm, -annRet, -actualReturn)),s="lambda.min"))
#Splitting into deciles
predRet Trn os glm<- predRet Trn os glm%>% mutate(tile=ntile(-predRet glm os, 10))
predRet Trn os glm %>% group by(tile) %>% summarise(count=n(),
avgpredRet=mean(predRet glm os), numDefaults=sum(loan status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"),
totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))
Building GLM Model with both sampled data
#Creating data set for GLM model
df4 glm bs <-bs lcdfTrn AR %>% select(-loan status, -actualTerm, -annRet, -actualReturn)
```

```
glmRet cv bs <- cv.glmnet(data.matrix(df4 glm bs), bs lcdfTrn AR$actualReturn, family="gaussian")
plot(glmRet cv bs)
Some Metrics for GLM both sampling
glmRet cv bs$lambda.min
glmRet cv bs$lambda.1se
coef(glmRet cv bs, s="lambda.1se") %>% tidy()
coef(glmRet cv bs, s="lambda.min")
Predictions for GLM both sampling
#Performance of glm model for lambda min
predRet Trn bs glm <- bs lcdfTrn AR %>% select(grade, loan status, actualReturn, actualTerm,
int rate) %>% mutate(predRet glm bs= predict(glmRet cv bs, data.matrix(bs lcdfTrn AR %>%
select(-loan status, -actualTerm, -annRet, -actualReturn)),s="lambda.min"))
#Splitting into deciles
predRet Trn bs glm<- predRet Trn bs glm%>% mutate(tile=ntile(-predRet glm bs, 10))
predRet Trn bs glm %>% group by(tile) %>% summarise(count=n(),
avgpredRet=mean(predRet glm bs), numDefaults=sum(loan status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"),
totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))
XGBOOST Building the model
we are predicting actualReturn a numeric variable
#converting factor variables to dummy-variables
lcdf ARdum2<-dummyVars(~..data=lcdf AR %>% select(-actualReturn))
dxlcdf2 <- predict(lcdf ARdum2, lcdf AR)
#Training, test subsets
dxlcdfTrn2 <- dxlcdf2[indicesTraining,]</pre>
colcdfTrn2 <- lcdf AR$actualReturn[indicesTraining]
dxlcdfTst2 <- dxlcdf2[-indicesTraining,]
colcdfTst2 <- lcdf AR$actualReturn[indicesTest]</pre>
#Creating Training and Test xgb matrices need it to run the model
dxTrn2 <- xgb.DMatrix(subset(dxlcdfTrn2, select=-c(annRet, actualTerm)), label=colcdfTrn2)
dxTst2 <- xgb.DMatrix(subset(dxlcdfTst2,select=-c(annRet, actualTerm)), label=colcdfTst2)
(annRet, actualTerm) These variables are useful for performance assessment, but should not be used in
the model
xgbWatchlist2 <- list(train = dxTrn2, eval = dxTst2)
#we can watch the progress of learning thru performance on these datasets
Including a xgbWatchlist so the early stopping rounds = 10 that we are going to use in the model can
use it as a base to know when to stop
```

```
#Parameter with the grid of options we want to test to find the best for the model
xgbParamGrid2 <- expand.grid(
max depth = c(2, 5),
eta = c(0.001, 0.01, 0.1))
#Parameter list
xgbParam2 <- list (
booster = "gbtree",
objective = "reg:squarederror",
min child weight=1,
colsample bytree=0.6)
for(i in 1:nrow(xgbParamGrid2)) {
xgb_tune<- xgb.train(data=dxTrn2,xgbParam2,
nrounds=1000, early stopping rounds = 10, xgbWatchlist2,
eta=xgbParamGrid2$eta[i], max_depth=xgbParamGrid2$max_depth[i])
xgbParamGrid2$bestTree[i] <- xgb tune$evaluation log[xgb tune$best iteration]$iter
xgbParamGrid2$bestPerf[i] <- xgb tune$evaluation log[xgb tune$best iteration]$eval rmse
Plugin the tune parameters
```{r, output.lenght=32}
xgbParamGrid2
xgbParam3 <- list(
max depth = 5,
eta = 0.100,
booster = "gbtree",
objective = "reg:squarederror",
min child weight=1,
colsample bytree=0.6)
#XGBOOST running the model with the best parameters found with the for loop
xgb lsM2 <- xgb.train(xgbParam3, dxTrn2, nrounds = xgb tune$best iteration)
XGBOOST evaluation of the model
```{r, output.lenght=32}
#Using the predicting function to get the scores in the training dataset
xpredTrn2<-predict(xgb lsM2, dxTrn2)</pre>
head(xpredTrn2)
#Using the predicting function to get the scores in the test data set
xpredTst2<-predict(xgb lsM2, dxTst2)</pre>
sqrt(mean((xpredTst2-colcdfTst2)^2))
```

```
#Performance by deciles
scoreTst_xgb_ls2 <- lcdfTst_AR %>% select(grade, loan_status, actualReturn, actualTerm, int_rate) %>%
mutate(score=xpredTst2)
scoreTst_xgb_ls2 <- scoreTst_xgb_ls2 %>% mutate(tile=ntile(-score, 10))
scoreTst_xgb_ls2 %>% group_by(tile) %>% summarise(count=n(), avgSc=mean(score),
numDefaults=sum(loan_status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTer=mean(actualTerm), totA=sum(grade=="A"),
totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"),
totF=sum(grade=="F"), totG=sum(grade=="G"))
```

Q.4 Considering results from Questions 1 and 2 above – that is, considering the best model for predicting loan-status and that for predicting loan returns — how would you select loans for investment? There can be multiple approaches for combining information from the two models - describe your approach, and show performance. How does performance here compare with use of single models?

R Code and Output:

```
XGBOOST Building the model
#We are predicting actualReturn a numeric variable
#Converting factor variables to dummy-variables
lcdf ARdum2<-dummyVars(~.,data=lcdf AR %>% select(-actualReturn))
dxlcdf2 <- predict(lcdf ARdum2, lcdf AR)
#Training, test subsets
dxlcdfTrn2 <- dxlcdf2[indicesTraining,]
colcdfTrn2 <- lcdf AR$actualReturn[indicesTraining]
dxlcdfTst2 <- dxlcdf2[-indicesTraining,]</pre>
colcdfTst2 <- lcdf AR$actualReturn[indicesTest]</pre>
#Creating Training and Test xgb matrices need it to run the model
dxTrn2 <- xgb.DMatrix(subset(dxlcdfTrn2, select=-c(annRet, actualTerm)), label=colcdfTrn2)
dxTst2 <- xgb.DMatrix(subset(dxlcdfTst2,select=-c(annRet, actualTerm)), label=colcdfTst2)
(annRet, actualTerm) These variables are useful for performance assessment, but should not be used in
the model
xgbWatchlist2 <- list(train = dxTrn2, eval = dxTst2)
#To watch the progress of learning thru performance on these datasets
#Including a xgbWatchlist so the early stopping rounds = 10 that we are going to use in the model can
use it as a base to know when to stop
```

#### **XGBOOST**

#Weight Calculations

#sqrt(sum(dxlcdfTrn==0) / sum(dxlcdfTrn==1)) #7.950299

#Parameter with the grid of options we want to test to find the best for the model

```
xgbParamGrid2 <- expand.grid(
max depth = c(2, 5),
eta = c(0.001, 0.01, 0.1))
#Parameter list
xgbParam2 <- list (
booster = "gbtree",
objective = "reg:squarederror",
\#scale pos weight = 7.950299,
min child weight=1,
colsample bytree=0.6)
for(i in 1:nrow(xgbParamGrid2)) {
xgb_tune<- xgb.train(data=dxTrn2,xgbParam2,
nrounds=1000, early stopping rounds = 10, xgbWatchlist2,
eta=xgbParamGrid2$eta[i], max_depth=xgbParamGrid2$max_depth[i])
xgbParamGrid2$bestTree[i] <- xgb tune$evaluation log[xgb tune$best iteration]$iter
xgbParamGrid2$bestPerf[i] <- xgb tune$evaluation log[xgb tune$best iteration]$eval rmse
 train-rmse:9.582130
 eval-rmse:9.665909
[1]
Multiple eval metrics are present. Will use eval_rmse for early stopping.
Will train until eval rmse hasn't improved in 10 rounds.
[2]
 train-rmse:9.574399
 eval-rmse:9.658188
 train-rmse:9.571939
 eval-rmse:9.655753
[3]
[4]
 train-rmse:9.564423
 eval-rmse:9.648134
[5]
 train-rmse:9.557072
 eval-rmse:9.640767
[6]
 train-rmse:9.549667
 eval-rmse:9.633330
[7]
 train-rmse:9.542109
 eval-rmse:9.625722
[8]
 train-rmse:9.534453
 eval-rmse:9.617990
[9]
 eval-rmse:9.610441
 train-rmse:9.526955
[10]
 train-rmse:9.519296
 eval-rmse:9.602722
[11]
 train-rmse:9.511628
 eval-rmse:9.595071
[12]
 train-rmse:9.504107
 eval-rmse:9.587543
[13]
 train-rmse:9.496489
 eval-rmse:9.579850
[14]
 train-rmse:9.488967
 eval-rmse:9.572345
[15]
 train-rmse:9.481599
 eval-rmse:9.564974
[16]
 train-rmse:9.474005
 eval-rmse:9.557269
[17]
 train-rmse:9.466392
 eval-rmse:9.549668
[18]
 train-rmse:9.458826
 eval-rmse:9.542000
[19]
 train-rmse:9.451247
 eval-rmse:9.534438
[20]
 train-rmse:9.448858
 eval-rmse:9.532122
[21]
 train-rmse:9.441441
 eval-rmse:9.524658
[22]
 train-rmse:9.434045
 eval-rmse:9.517211
[23]
 train-rmse:9.426576
 eval-rmse:9.509744
```

```
[24]
 train-rmse:9.419087
 eval-rmse:9.502189
[25]
 train-rmse:9.411630
 eval-rmse:9.494691
[26]
 train-rmse:9.404066
 eval-rmse:9.487155
[27]
 train-rmse:9.396564
 eval-rmse:9.479609
[28]
 train-rmse:9.389105
 eval-rmse:9.472081
[29]
 train-rmse:9.381597
 eval-rmse:9.464545
[30]
 train-rmse:9.374214
 eval-rmse:9.457141
[31]
 train-rmse:9.366926
 eval-rmse:9.449775
[32]
 train-rmse:9.359511
 eval-rmse:9.442265
[33]
 train-rmse:9.351937
 eval-rmse:9.434759
[34]
 train-rmse:9.344440
 eval-rmse:9.427208
[35]
 train-rmse:9.342107
 eval-rmse:9.424901
[36]
 train-rmse:9.334813
 eval-rmse:9.417576
[37]
 train-rmse:9.327347
 eval-rmse:9.410121
 train-rmse:9.319934
 eval-rmse:9.402643
[38]
[39]
 train-rmse:9.312514
 eval-rmse:9.395209
[40]
 train-rmse:9.305219
 eval-rmse:9.387917
[41]
 train-rmse:9.297903
 eval-rmse:9.380457
 train-rmse:9.290418
[42]
 eval-rmse:9.373019
[43]
 train-rmse:9.283134
 eval-rmse:9.365731
[44]
 train-rmse:9.276119
 eval-rmse:9.358677
[45]
 train-rmse:9.268970
 eval-rmse:9.351387
[46]
 train-rmse:9.261511
 eval-rmse:9.344004
[47]
 train-rmse:9.254226
 eval-rmse:9.336630
[48]
 train-rmse:9.247039
 eval-rmse:9.329401
[49]
 train-rmse:9.239662
 eval-rmse:9.322045
 train-rmse:9.232432
 eval-rmse:9.314692
[50]
. . .
Plugin the tune parameters
xgbParamGrid2
xgbParam3 <- list(
max depth = 5,
eta = 0.100,
booster = "gbtree",
objective = "reg:squarederror",
\#scale pos weight = 7.950299,
min child weight=1,
colsample bytree=0.6)
#XGBOOST running the model with the best parameters found with the for loop
xgb tune <- xgb.train(data=dxTrn2,xgbParam2)</pre>
xgb lsM2 <- xgb.train(xgbParam3, dxTrn2, nrounds = xgb tune$best iteration)
```

max_depth <dbl></dbl>	eta <dbl></dbl>	bestTree <dbl></dbl>	<b>bestPerf</b> <dbl></dbl>
2	0.001	1000	5.509290
5	0.001	1000	5.380741
2	0.010	1000	3.925343
5	0.010	602	3.907755
2	0.100	177	3.919853
5	0.100	69	3.910070

#### XGBOOST evaluation of the model

#Using the predicting function to get the scores in the training data set xpredTrn2<-predict(xgb lsM2, dxTrn2)

head(xpredTrn2)

#Using the predicting function to get the scores in the test data set

xpredTst2<-predict(xgb lsM2, dxTst2)</pre>

#Error

sqrt(mean((xpredTst2-colcdfTst2)^2))

#Performance by deciles

scoreTst\_xgb\_ls2 <- lcdfTst\_AR %>% select(grade, loan\_status, actualReturn, actualTerm, int\_rate) %>% mutate(score=xpredTst2)

scoreTst xgb ls2 <- scoreTst xgb ls2 %>% mutate(tile=ntile(-score, 10))

scoreTst xgb ls2 %>% group by(tile) %>% summarise(count=n(), avgSc=mean(score),

numDefaults=sum(loan status=="Charged Off"),

avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),

avgTer=mean(actualTerm), totA=sum(grade=="A"),

totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="G"))

Creating the RF based on Assignment 1 for all Grade loans

#myweights = ifelse(lcdfTrn AR\$loan status == "Charged Off", 5, 1)

 $RF\_Asst1 < - ranger(loan\_status \sim ., data = subset(lcdfTrn\_AR, select = -c(annRet, actualTerm, lcdfTrn\_AR, s$ 

actual Return)), num.trees = 200, min.node.size = 1, importance = 'impurity', probability = TRUE)

#case.weights= myweights)

Performance of RF for all grades in Deciles M1

ag\_scoreTstRF <- lcdfTst\_AR %>% select(grade, loan\_status, actualReturn, actualTerm, int\_rate) %>% mutate(score=(predict(RF\_Asst1,lcdfTst\_AR))\$predictions[,"Fully Paid"])

ag scoreTstRF <- ag scoreTstRF %>% mutate(tile=ntile(-score, 10))

ag scoreTstRF %>% group by(tile) %>% summarise(count=n(), avgSc=mean(score),

numDefaults=sum(loan status=="Charged Off"), avgActRet=mean(actualReturn),

minRet=min(actualReturn),

maxRet=max(actualReturn), avgTer=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B")

totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))

tile <int></int>	count <int></int>	avgSc <dbl></dbl>	numDefaults <int></int>	avgActRet <dbl></dbl>	minRet <dbl></dbl>	maxRet <dbl></dbl>	avgTer <dbl></dbl>	totA <int></int>	totB <int></int>
1	3000	0.9744600	113	4.226684	-29.14592	13.22594	2.205999	2597	394
2	3000	0.9442667	191	4.492962	-32.31356	16.40321	2.241992	1712	1192
3	3000	0.9192978	258	5.033545	-31.25387	25.79776	2.231890	993	1658
4	3000	0.8946076	256	5.718098	-31.27686	26.09333	2.210089	599	1710
5	3000	0.8697894	368	5.506807	-32.22487	23.33842	2.216427	385	1551
6	3000	0.8445544	398	5.970973	-32.22428	23.41193	2.210336	183	1263
7	3000	0.8176700	489	5.757093	-30.32713	34.84624	2.236097	119	1000
8	3000	0.7872978	561	5.609815	-33.33333	29.36088	2.289612	68	703
9	3000	0.7482450	670	5.261891	-33.33333	30.14516	2.308978	29	441
10	3000	0.6674772	888	4.466090	-32.19230	44.35949	2.385394	14	192

Rf Returns selected by grade M2 - all grades

#Choose the Actual Returns Random forest we want for here

lcdfSplit AR <- initial split(lcdf AR, prop=0.7)</pre>

lcdfTrn Bal <- training(lcdfSplit AR)</pre>

os\_lcdfTrn\_AR<-ovun.sample(loan\_status $\sim$ ., data = as.data.frame(lcdfTrn\_Bal), na.action= na.pass, method="over", p=0.5)\$data

rf\_AR\_os <- ranger(actualReturn ~., data=subset(os\_lcdfTrn\_AR, select=-c(annRet, actualTerm, loan status)), num.trees = 200, importance='permutation')

rfPredRet Tst ag<- predict(rf AR os, lcdfTst AR)

sqrt(mean((rfPredRet Tst ag\$predictions- lcdfTst AR\$actualReturn)^2))

plot ((predict(rf AR os, lcdfTst AR))\$predictions, lcdfTst AR\$actualReturn)

### [1] 4.930287



Rf Performance by Deciles for Test Data - all grades

ag\_predRet\_Tst<- lcdfTst\_AR %>% select(grade, loan\_status, actualReturn, actualTerm, int\_rate) %>% mutate(predRet\_agTst=(predict(rf\_AR\_os, lcdfTst\_AR))\$predictions)
ag\_predRet\_Tst<- ag\_predRet\_Tst %>% mutate(tile=ntile(-predRet\_agTst, 10))
ag\_predRet\_Tst %>% group\_by(tile) %>% summarise(count=n(), avgpredRet=mean(predRet\_agTst),
numDefaults=sum(loan\_status=="Charged Off"), avgActRet=mean(actualReturn),
minRet=min(actualReturn), maxRet=max(actualReturn), avgTerm=mean(actualTerm),
totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"),
totE=sum(grade=="E"), totF=sum(grade=="F"))

tile <int></int>	count <int></int>	avgpredRet <dbl></dbl>	numDefaults <int></int>	avgActRet <dbl></dbl>	minRet <dbl></dbl>	maxRet <dbl></dbl>	avgTerm <dbl></dbl>	totA <int></int>	totB <int></int>
1	3000	10.248020	4	13.736934	8.475877	44.35949	1.312339	2	243
2	3000	7.855640	28	9.948265	-26.691333	20.69885	1.884026	6	926
3	3000	6.749990	61	8.279634	-30.756133	27.51648	2.219319	73	1240
4	3000	5.953158	117	6.997805	-29.802708	24.14531	2.310514	260	1527
5	3000	5.276368	123	6.445048	-33.333333	22.13129	2.282129	538	1693
6	3000	4.672834	150	5.717288	-31.050366	34.84624	2.298853	992	1407
7	3000	4.117090	198	4.783145	-32.224276	29.36088	2.420585	1557	965
8	3000	3.545134	228	4.348729	-30.080300	24.22094	2.437479	1827	648
9	3000	2.501245	542	3.681154	-32.192296	26.48408	2.428589	1179	728
10	3000	-11.797970	2741	-11.894043	-33.333333	22.53423	2.942981	265	727

Consider Top d deciles from Model 2(actualReturn), ranked by M1 scores(loan\_Status) all grades d=1

pRetSc\_RF\_ag <- ag\_predRet\_Tst %>% mutate(poScore=ag\_scoreTstRF\$score)

pRet\_d\_RF\_ag <- pRetSc\_RF\_ag %>% filter(tile<=d)

pRet\_d\_RF\_ag<- pRet\_d\_RF\_ag %>% mutate(tile2=ntile(-poScore, 20))

pRet\_d\_RF\_ag %>% group\_by(tile2) %>% summarise(count=n(), avgPredRet=mean(predRet\_agTst), numDefaults=sum(loan\_status=="Charged Off"), avgActRet=mean(actualReturn), minRet=min(actualReturn),

maxRet=max(actualReturn), avgTer=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"),

totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))

tile2 <int></int>	count <int></int>	avgPredRet <dbl></dbl>	numDefaults <int></int>	avgActRet <dbl></dbl>	minRet <dbl></dbl>	maxRet <dbl></dbl>	avgTer <dbl></dbl>	totA <int></int>	totB <int></int>
1	150	9.585386	0	11.83893	8.475877	25.79776	1.015487	1	67
2	150	9.894872	0	12.40863	8.581450	26.09333	1.027369	0	47
3	150	9.938695	0	12.48361	8.483169	22.30971	1.135204	0	31
4	150	10.070057	0	12.88853	9.402708	23.33842	1.139092	0	20
5	150	9.906231	0	12.68308	9.353654	18.60215	1.194543	0	21
6	150	10.037913	2	13.13574	8.675167	20.28881	1.266156	1	11
7	150	10.049254	0	13.07460	9.410012	20.27814	1.212083	0	12
8	150	10.132540	0	13.26988	9.264268	20.34229	1.358029	0	7
9	150	10.168243	0	13.35644	9.380745	23.35950	1.317563	0	3
10	150	10.251903	0	13.63563	8.822596	21.36442	1.228638	0	4

Boosting - Creating the Boosting Model based on Assignment 1 for all Grade loans # use the dummyVars function in the 'caret' package to convert factor variables to dummy-variables, do not include loan status for this

fdum1<-dummyVars(~.,data=lcdf\_AR %>% select(-loan\_status)) dxlcdf1 <- predict(fdum1, lcdf\_AR)

```
for loan status, check levels and convert to dummy vars and keep the class label of interest
levels(lcdf AR$loan status)
#"Charged Off" "Fully Paid"
#converting to dummy variables
dylcdf1 <- class2ind(lcdf AR$loan status, drop2nd = FALSE)</pre>
we decided we want to keep "Fully Paid"
colcdf1 <- dylcdf1 [,2]
#Training, test subsets
dxlcdfTrn1 <- dxlcdf1[indicesTraining,]
colcdfTrn1 <- colcdf1[indicesTraining]</pre>
dxlcdfTst1 <- dxlcdf1[indicesTest,]</pre>
colcdfTst1 <- colcdf1[indicesTest]</pre>
#Creating of xgb.DMatrix
dxTrn1 <- xgb.DMatrix(subset(dxlcdfTrn1, select=-c(annRet, actualTerm, actualReturn)),
label=colcdfTrn1)
dxTst1 <- xgb.DMatrix(subset(dxlcdfTst1, select=-c(annRet, actualTerm, actualReturn)),
label=colcdfTst1)
#we can watch the progress of learning thru performance on these datasets
xgbWatchlist1 <- list(train = dxTrn1, eval = dxTst1)
#defining weights
sqrt(sum(dxlcdfTrn1==0) / sum(dxlcdfTrn1==1)) #8.536599
#use cross-validation on training dataset to determine best model
xgbParamGrid1 \le expand.grid(max depth = c(2, 5), eta = c(0.001, 0.01, 0.1))
xgbParam1 <- list (booster = "gbtree", objective = "binary:logistic", min_child_weight=1,
colsample_bytree=0.6,eval_metric="error", eval_metric = "auc")
for(i in 1:nrow(xgbParamGrid1)) {
xgb_tune1<- xgb.train(data=dxTrn1,xgbParam1,
nrounds=1000, early stopping rounds = 10, xgbWatchlist1,
eta=xgbParamGrid1$eta[i], max_depth=xgbParamGrid1$max_depth[i])
xgbParamGrid1$bestTree[i] <- xgb tune1$evaluation log[xgb tune1$best iteration]$iter
xgbParamGrid1$bestPerf[i] <- xgb tune1$evaluation log[xgb tune1$best iteration]$eval auc
}
[1] "Charged Off" "Fully Paid"
[1] 8.743602
 train-error:0.137043
 train-auc:0.608211
 eval-error:0.139733
 eval-auc:0.608633
Multiple eval metrics are present. Will use eval auc for early stopping.
Will train until eval auc hasn't improved in 10 rounds.
[2]
 train-error:0.137043
 train-auc:0.648336
 eval-error:0.139733
 eval-auc:0.654023
[3]
 train-error:0.137043
 train-auc:0.648336
 eval-error:0.139733
 eval-auc:0.654023
[4]
 train-error:0.137043
 train-auc:0.648336
 eval-error:0.139733
 eval-auc:0.654023
[5]
 train-error:0.137043
 train-auc:0.648344
 eval-error:0.139733
 eval-auc:0.654029
[6]
 train-error:0.137043
 train-auc:0.648341
 eval-error:0.139733
 eval-auc: 0.654030
```

[7]	train-error:0.137043	train-auc:0.648341	eval-error:0.139733	eval-auc:0.654030
[8]	train-error:0.137043	train-auc:0.652393	eval-error:0.139733	eval-auc:0.659533
[9]	train-error:0.137043	train-auc:0.652418	eval-error:0.139733	eval-auc:0.659590
[10]	train-error:0.137043	train-auc:0.653413	eval-error:0.139733	eval-auc:0.660746
[11]	train-error:0.137043	train-auc:0.653413	eval-error:0.139733	eval-auc:0.660751
[12]	train-error:0.137043	train-auc:0.653416	eval-error:0.139733	eval-auc:0.660725
[13]	train-error:0.137043	train-auc:0.653405	eval-error:0.139733	eval-auc:0.660751
[14]	train-error:0.137043	train-auc:0.653406	eval-error:0.139733	eval-auc:0.660752
[15]	train-error:0.137043	train-auc:0.653406	eval-error:0.139733	eval-auc:0.660752
[16]	train-error:0.137043	train-auc:0.653417	eval-error:0.139733	eval-auc:0.660727
[17]	train-error:0.137043	train-auc:0.657834	eval-error:0.139733	eval-auc:0.665258
[18]	train-error:0.137043	train-auc:0.657828	eval-error:0.139733	eval-auc:0.665271
[19]	train-error:0.137043	train-auc:0.657808	eval-error:0.139733	eval-auc:0.665266
[20]	train-error:0.137043	train-auc:0.657814	eval-error:0.139733	eval-auc:0.665253
[21]	train-error:0.137043	train-auc:0.657812	eval-error:0.139733	eval-auc:0.665251
[22]	train-error:0.137043	train-auc:0.657812	eval-error:0.139733	eval-auc:0.665251
[23]	train-error:0.137043	train-auc:0.657808	eval-error:0.139733	eval-auc:0.665251
[24]	train-error:0.137043	train-auc:0.658478	eval-error:0.139733	eval-auc:0.665760
[25]	train-error:0.137043	train-auc:0.658473	eval-error:0.139733	eval-auc:0.665757
[26]	train-error:0.137043	train-auc:0.658476	eval-error:0.139733	eval-auc:0.665756
[27]	train-error:0.137043	train-auc:0.658477	eval-error:0.139733	eval-auc:0.665738
[28]	train-error:0.137043	train-auc:0.658795	eval-error:0.139733	eval-auc:0.665939
[29]	train-error:0.137043	train-auc:0.659023	eval-error:0.139733	eval-auc:0.666035
[30]	train-error:0.137043	train-auc:0.659027	eval-error:0.139733	eval-auc:0.666002
[31]	train-error:0.137043	train-auc:0.659022	eval-error:0.139733	eval-auc:0.665996
[32]	train-error:0.137043	train-auc:0.660655	eval-error:0.139733	eval-auc:0.668163
[33]	train-error:0.137043	train-auc:0.660653	eval-error:0.139733	eval-auc:0.668167
[34]	train-error:0.137043	train-auc:0.660649	eval-error:0.139733	eval-auc:0.668172
[35]	train-error:0.137043	train-auc:0.660646	eval-error:0.139733	eval-auc:0.668171
[36]	train-error:0.137043	train-auc:0.660689	eval-error:0.139733	eval-auc:0.668261
[37]	train-error:0.137043	train-auc:0.660846	eval-error:0.139733	eval-auc:0.668378
[38]	train-error:0.137043	train-auc:0.660849	eval-error:0.139733	eval-auc:0.668381
[39]	train-error:0.137043	train-auc:0.660848	eval-error:0.139733	eval-auc:0.668382
[40]	train-error:0.137043	train-auc:0.660847	eval-error:0.139733	eval-auc:0.668378
[41]	train-error:0.137043	train-auc:0.660846	eval-error:0.139733	eval-auc:0.668381
[42]	train-error:0.137043	train-auc:0.660958	eval-error:0.139733	eval-auc:0.668572
[43]	train-error:0.137043	train-auc:0.660958	eval-error:0.139733	eval-auc:0.668573
[44]	train-error:0.137043	train-auc:0.660959	eval-error:0.139733	eval-auc:0.668576
[45]	train-error:0.137043	train-auc:0.660961	eval-error:0.139733	eval-auc:0.668578
[46]	train-error:0.137043	train-auc:0.661137	eval-error:0.139733	eval-auc:0.668783
[47]	train-error:0.137043	train-auc:0.661135	eval-error:0.139733	eval-auc:0.668779
[48]	train-error:0.137043	train-auc:0.661136	eval-error:0.139733	eval-auc:0.668782
[49]	train-error:0.137043	train-auc:0.661138	eval-error:0.139733	eval-auc:0.668783
[50]	train-error:0.137043	train-auc:0.661139	eval-error:0.139733	eval-auc:0.668784

```
[51]
 train-error:0.137043
 train-auc:0.661120
 eval-error:0.139733
 eval-auc:0.668704
 train-error:0.137043
[52]
 train-auc:0.661121
 eval-error:0.139733
 eval-auc:0.668707
[53]
 train-error:0.137043
 train-auc:0.661181
 eval-error:0.139733
 eval-auc:0.668880
 train-error:0.137043
 train-auc:0.661181
[54]
 eval-error:0.139733
 eval-auc:0.668880
[55]
 train-error:0.137043
 train-auc:0.661181
 eval-error:0.139733
 eval-auc:0.668880
[56]
 train-error:0.137043
 train-auc:0.661183
 eval-error:0.139733
 eval-auc:0.668878
[57]
 train-error:0.137043
 train-auc:0.661184
 eval-error:0.139733
 eval-auc:0.668873
[58]
 train-error:0.137043
 train-auc:0.661185
 eval-error:0.139733
 eval-auc:0.668871
[59]
 train-error:0.137043
 train-auc:0.661185
 eval-error:0.139733
 eval-auc:0.668871
 eval-error:0.139733
 train-error:0.137043
 train-auc:0.661193
 eval-auc:0.668808
[60]
[61]
 train-error:0.137043
 train-auc:0.660897
 eval-error:0.139733
 eval-auc:0.668465
[62]
 train-error:0.137043
 train-auc:0.661364
 eval-error:0.139733
 eval-auc:0.668802
[63]
 train-error:0.137043
 train-auc:0.661364
 eval-error:0.139733
 eval-auc:0.668802
Stopping. Best iteration:
 train-error:0.137043
[53]
 train-auc:0.661181
 eval-error:0.139733
 eval-auc:0.668880
xgbParamGrid1
xgbParam Best1 <- list (booster = "gbtree", objective = "binary:logistic", min child weight=1,
colsample bytree=0.6, scale pos weight = 8.53, max depth = 2, eta = 0.001)
XGBOOST running the model with the best parameters found with the for loop
xgb lsM1 <- xgb.train(xgbParam Best1, dxTrn1, nrounds = xgb tune1$best iteration)
#XGBOOST evaluation of the model
#Using the predicting function to get the scores in the training data set
xpredTrn1<-predict(xgb lsM1, dxTrn1)</pre>
head(xpredTrn1)
#Using the predicting function to get the scores in the test data set
xpredTst1<-predict(xgb lsM1, dxTst1)</pre>
head(xpredTst1)
#Auc
#ROC, AUC performance
#confusion matrix
table(pred=as.numeric(xpredTst1>0.5), act=colcdfTst1)
#ROC, AUC performance
pred xgb lsM1<-prediction(xpredTst1, lcdfTst AR$loan status,
label.ordering = c("Charged Off", ("Fully Paid")))
aucPerf xgb lsM1<-performance(pred xgb lsM1, "tpr", "fpr")
plot(aucPerf xgb lsM1)
abline(a=0, b=1)
#variable importance
xgb.importance(model = xgb_lsM1) %>% view()
```

max_depth <dbl></dbl>	<b>eta</b> <dbl></dbl>	bestTree <dbl></dbl>	bestPerf <dbl></dbl>
2	0.001	53	0.668880
5	0.001	51	0.684453
2	0.010	130	0.677105
5	0.010	29	0.684844
2	0.100	142	0.693089
5	0.100	70	0.693284

- [1] 0.5332605 0.5321483 0.5324648 0.5321177 0.5321068 0.5326806
- [1] 0.5321483 0.5321483 0.5321372 0.5321177 0.5326617 0.5321563 act

pred 0 1 1 4192 25808



XGBOOST Performance of Boosting A-G in Deciles M1

xpredTstM1<-predict(xgb\_lsM1, dxTst1)</pre>

scoreTst\_xgb\_ls1 <- lcdfTst\_AR %>% select(grade, loan\_status, actualReturn, actualTerm, int\_rate) %>% mutate(score=xpredTst1)

scoreTst xgb ls1 <- scoreTst xgb ls1 %>% mutate(tile=ntile(-score, 10))

scoreTst\_xgb\_ls1 %>% group\_by(tile) %>% summarise(count=n(), avgSc=mean(score),

numDefaults=sum(loan status=="Charged Off"),

avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),

avgTer=mean(actualTerm), totA=sum(grade=="A"),

totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"),

totF=sum(grade=="F"), totE=sum(grade=="G"), )

tile <int></int>	count <int></int>	avgSc <dbl></dbl>	numDefaults <int></int>	avgActRet <dbl></dbl>	minRet <dbl></dbl>	maxRet <dbl></dbl>	avgTer <dbl></dbl>	totA <int></int>	totB <int></int>
1	3000	0.5332605	122	3.953400	-31.27686	14.03120	2.281764	3000	0
2	3000	0.5332436	189	3.718988	-32.31356	15.41828	2.231961	3000	0
3	3000	0.5331005	224	4.334127	-31.25387	14.14902	2.258669	699	2301
4	3000	0.5327499	268	5.712965	-31.20100	18.40389	2.223498	0	2993
5	3000	0.5326900	351	5.409525	-31.10341	21.27937	2.249873	0	3000
6	3000	0.5325824	432	5.129059	-33.33333	23.33842	2.240108	0	1542
7	3000	0.5322713	495	6.093815	-32.22487	34.84624	2.235217	0	268
8	3000	0.5321205	621	5.365459	-32.18920	28.51641	2.248968	0	0
9	3000	0.5318263	676	6.348609	-33.33333	44.35949	2.282271	0	0
10	3000	0.5315362	814	5.978010	-33.33333	34.20363	2.284487	0	0

```
XGBOOST Performance of Boosting A-G in Deciles M2
xpredTstM2<-predict(xgb_lsM2, dxTst2)
scoreTst xgb ls2 <- lcdfTst AR %>% select(grade, loan status, actualReturn, actualTerm, int rate) %>%
mutate(score2=xpredTst2)
scoreTst xgb ls2 <- scoreTst xgb ls2 %>% mutate(tile=ntile(-score2, 10))
scoreTst xgb ls2 %>% group by(tile) %>% summarise(count=n(), avgSc=mean(score2),
numDefaults=sum(loan status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTer=mean(actualTerm), totA=sum(grade=="A"),
totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"),
totF=sum(grade=="F"), totE=sum(grade=="G"),)
```{r, output.lenght=32}
xpredTst2<-predict(xgb lsM2, dxTst2)</pre>
scoreTst xgb ls2 <- lcdfTst AR %>% select(grade, loan status, actualReturn, actualTerm, int rate) %>%
mutate(score=xpredTst2)
pRetSc <- scoreTst xgb ls2 %>% mutate(poScore=scoreTst xgb ls1$score)
pRet d <- pRetSc %>% filter(tile<=d)
pRet d<- pRet d %>% mutate(tile2=ntile(-poScore, 10))
pRet d %>% group by(tile2) %>% summarise(count=n(), avgPredRet=mean(score2),
numDefaults=sum(loan status=="Charged Off"), avgActRet=mean(actualReturn),
minRet=min(actualReturn),
maxRet=max(actualReturn), avgTer=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"
totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="F"))
Performance of glm model for all grade loans in deciles for M1
```{r, output.lenght=32}
xDTrn<-lcdfTrn AR %>% select(-loan status, -actualTerm, -annRet, -actualReturn)
yTrn<-factor(if else(lcdfTrn AR$loan status=="Fully Paid", '1', '0'))
glmls cv<- cv.glmnet(data.matrix(xDTrn), yTrn, family="binomial")
predLS glm <- lcdfTrn AR %>% select(grade, loan status, actualReturn, actualTerm, int rate) %>%
mutate(glmPredls pMin=predict(glmls cv,data.matrix(xDTrn), s="lambda.min", type="response"))
predLS glm<- predLS glm%>% mutate(tile=ntile(-glmPredls pMin, 10))
```

predLS\_glm %>% group\_by(tile) %>% summarise(count=n(), avgpredRet=mean(glmPredls\_pMin), numDefaults=sum(loan\_status=="Charged Off"), avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn), avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="F"))

tile <int></int>	count <int></int>	avgpredRet <dbl></dbl>	numDefaults <int></int>	avgActRet <dbl></dbl>	minRet <dbl></dbl>	maxRet <dbl></dbl>	avgTerm <dbl></dbl>	totA <int></int>	totB <int></int>
1	7000	0.9602597	216	4.232955	-32.30987	17.81924	2.205535	6039	890
2	7000	0.9378507	391	4.676768	-32.22635	18.50286	2.228800	4313	2479
3	7000	0.9217279	542	5.035678	-32.24217	30.85477	2.225452	2682	3848
4	7000	0.9063543	616	5.448636	-32.22634	22.85197	2.215567	1578	4341
5	7000	0.8903458	808	5.421337	-32.25540	24.61920	2.233900	806	4309
6	7000	0.8722539	932	5.812767	-32.24854	26.79731	2.219232	312	3646
7	7000	0.8506081	1097	5.746110	-33.33333	24.85824	2.252177	117	2540
8	7000	0.8226186	1364	5.672011	-33.33333	34.20051	2.259498	36	1270
9	7000	0.7820259	1563	5.645914	-31.25383	29.49576	2.286207	6	426
10	7000	0.6855264	2064	5.235514	-33.33333	40.81542	2.338990	0	54

Actual Returns selected by grade M2 all grades

#Performance of glm model for lambda min

df4\_glm <-lcdfTrn\_AR %>% select(-loan\_status, -actualTerm, -annRet, -actualReturn)

glmRet\_cv <- cv.glmnet(data.matrix(df4\_glm), lcdfTrn\_AR\$actualReturn, family="gaussian")

predRet\_Trn\_glm <- lcdfTrn\_AR %>% select(grade, loan\_status, actualReturn, actualTerm, int\_rate)

%>% mutate(predRet\_glm= predict(glmRet\_cv, data.matrix(lcdfTrn\_AR %>% select(-loan\_status,
-actualTerm, -annRet, -actualReturn)),s="lambda.min" ))

predRet\_Trn\_glm <- predRet\_Trn\_glm%>% mutate(tile=ntile(-predRet\_glm, 10))

predRet\_Trn\_glm %>% group\_by(tile) %>% summarise(count=n(), avgpredRet=mean(predRet\_glm),
numDefaults=sum(loan\_status=="Charged Off"), avgActRet=mean(actualReturn),

$$\label{lem:minRet} \begin{split} & minRet=min(actualReturn), & maxRet=max(actualReturn), & avgTerm=mean(actualTerm), \\ & totA=sum(grade=="A"), & totB=sum(grade=="B"), & totC=sum(grade=="C"), & totD=sum(grade=="D"), \\ & totE=sum(grade=="E"), & totF=sum(grade=="F")) \end{split}$$

tile <int></int>	count <int></int>	avgpredRet <dbl></dbl>	numDefaults <int></int>	avgActRet <dbl></dbl>	minRet <dbl></dbl>	maxRet <dbl></dbl>	avgTerm <dbl></dbl>	totA <int></int>	totB <int></int>
1	7000	8.149745	1153	8.310403	-32.17619	40.24976	2.212328	12	916
2	7000	6.852539	1040	6.952767	-32.22635	40.81542	2.177340	63	2199
3	7000	6.224443	1098	6.178427	-33.33333	38.13311	2.192476	178	2556
4	7000	5.748064	1066	5.591385	-33.33333	36.86044	2.219362	543	2619
5	7000	5.346003	1018	5.200736	-32.30987	28.84105	2.236752	987	2683
6	7000	4.969548	937	4.934296	-32.25500	31.32790	2.236533	1636	2624
7	7000	4.609981	879	4.561291	-33.33333	29.77180	2.255522	2188	2651
8	7000	4.236242	849	4.104033	-32.28293	24.67951	2.279141	2836	2550
9	7000	3.788537	759	3.831002	-31.29376	26.79875	2.293794	3420	2514
10	7000	3.002589	794	3.263351	-32.29490	22.60164	2.362109	4026	2491

GLM - Consider Top d deciles from Model 2(actualReturn), ranked by M1 scores(loan\_Status) all grades d=1

pRetSc\_glm <- predRet\_Trn\_glm %>% mutate(poScore=predLS\_glm\$glmPredls\_pMin)
pRet\_d\_glm <- pRetSc\_glm %>% filter(tile<=d)
pRet\_d\_glm<- pRet\_d\_glm %>% mutate(tile2=ntile(-poScore, 20))
pRet\_d\_glm %>% group by(tile2) %>% summarise(count=n(), avgPredRet=mean(predRet\_glm),

```
numDefaults=sum(loan_status=="Charged Off"), avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn), avgTer=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))
```

tile2 <int></int>	count <int></int>	avgPredRet <dbl></dbl>	numDefaults <int></int>	avgActRet <dbl></dbl>	minRet <dbl></dbl>	maxRet <dbl></dbl>	avgTer <dbl></dbl>	totA <int></int>	totB <int></int>
1	350	8.092517	25	6.863417	-26.86533	17.81924	2.219417	12	255
2	350	7.932308	36	6.778535	-30.35203	16.47523	2.207467	0	222
3	350	7.973038	27	8.102244	-31.04505	16.69297	2.176593	0	181
4	350	7.913367	27	8.239050	-25.09637	17.38997	2.226086	0	126
5	350	7.961018	39	7.890863	-31.01210	18.87776	2.174888	0	74
6	350	7.986183	35	8.558284	-29.93133	24.61920	2.219405	0	46
7	350	8.073536	39	8.891786	-28.03776	22.34097	2.118989	0	12
8	350	8.161267	53	8.367374	-32.17619	26.79731	2.210328	0	0
9	350	8.153369	59	8.086641	-31.41667	19.16581	2.234886	0	0
10	350	8.218660	44	9.398014	-30.70667	24.85824	2.169629	0	0

Q.5 As seen in data summaries and your work in the first assignment, higher grade loans are less likely to default, but also carry lower interest rates; many lower grad loans are fully paid, and these can yield higher returns. One approach may be to focus on lower grade loans (C and below), and try to identify those which are likely to be paid off. Develop models from the data on lower grade loans, and check if this can provide an effective investment approach – for this, you can use one of the methods (glm, rf, or gbm/xgb) which you find to give superior performance from earlier questions. Can this provide a useful approach for investment? Compare performance with that in Question 4.

By using xgboost model, grades from c-lower are shown clearly whether it is fully paid/charged off. The last table below shows that some loans have a higher actual return than predicted return which means it's a good approach for investment. The xgBoost model could picture the results fairly clearly about which class has better returns, and it's shown on the maxRet column.

#### R Code and Output:

```
#Creating a GLM model for grade C-G loans M1
```

```
#Selecting only Grades C-G

lg_lcdfTrn<-Trainingdf %>% filter(grade=='C'| grade=='D'| grade== 'E'| grade== 'F'| grade== 'G')

lg_lcdfTst<-Testdf %>% filter(grade=='C'| grade=='D'| grade== 'E'| grade== 'F'| grade== 'G')

#XGBOOST Creating a data set for grade C and lower

lcdf_AR_LowGrades<-lcdf_AR %>% filter(grade=='C'| grade=='D'| grade== 'E'| grade== 'F'| grade== 'G')

##Start building XGBOOST model by Splitting Data into Training, Validation, and Test Sets set.seed(123)
```

```
fractionTraining <- 0.70 fractionValidation <- 0.00 fractionTest <- 0.30
```

```
Compute sample sizes.
sampleSizeTraining2 <- floor(fractionTraining * nrow(lcdf AR LowGrades))</pre>
sampleSizeValidation2 <- floor(fractionValidation * nrow(lcdf AR LowGrades))</pre>
 <- floor(fractionTest
sampleSizeTest2
 * nrow(lcdf AR LowGrades))
Create the randomly-sampled indices for the dataframe.
indicesTraining2 <- sort(sample(seq_len(nrow(lcdf_AR_LowGrades)), size=sampleSizeTraining2))
indicesNotTraining2 <- setdiff(seq_len(nrow(lcdf_AR_LowGrades)), indicesTraining2)
indicesValidation2 <- sort(sample(indicesNotTraining2, size=sampleSizeValidation2))
 <- setdiff(indicesNotTraining2, indicesValidation2)
indicesTest2
Deploy the dataframes for training, and validation
Trainingdf2 <- lcdf AR LowGrades[indicesTraining2,]
Validationdf2 <- lcdf AR LowGrades[indicesValidation2.]
Testdf2 <- lcdf AR LowGrades[indicesTest2,]
#Building XGBOOST model for grades C and lower
#All data should be numeric, therefore we convert categorial variables using one-hot encoding
we use the dummy Vars function from 'caret' package to convert the data type
#values count <- sapply(lapply(lcdf AR LowGrades, unique), length)
#fdum4<-dummyVars(~,data=lcdf AR LowGrades[, values count > 1] %>% select(-loan status))
#lcdf AR LowGrades <- na.omit(lcdf AR LowGrades)
fdum4<-dummyVars(~.,data=lcdf AR LowGrades %>% select(-loan status))
dxlcdf4 <- predict(fdum4, lcdf AR LowGrades)</pre>
for loan status, check levels and convert to dummy vars and keep the class label of interest
levels(lcdf AR LowGrades$loan status)
dylcdf4 <- class2ind(lcdf AR LowGrades$loan status, drop2nd = FALSE)
colcdf4 <- dylcdf4 [, 1]
#Creating Training and test subsets
dxlcdfTrn4 <- dxlcdf4[indicesTraining2,]
colcdfTrn4 <- colcdf4[indicesTraining2]</pre>
dxlcdfTst4 <- dxlcdf4[indicesTest2,]
colcdfTst4 <- colcdf4[indicesTest2]
dxTrn4 <- xgb.DMatrix(subset(dxlcdfTrn4, select=-c(annRet, actualTerm, actualReturn)),
label=colcdfTrn4)
dxTst4 <- xgb.DMatrix(subset(dxlcdfTst4,select=-c(annRet, actualTerm, actualReturn)), label=colcdfTst4)
#Pick (annRet, actualTerm, actualReturn, total pymnt) for performance assessment,
#but don't used it in the model
#watch the progress of learning through performance on these datasets
xgbWatchlist4 <- list(train = dxTrn4, eval = dxTst4)
#Perform cross-validation on training dataset to determine best model
xgbParamGrid4 \le expand.grid(max depth = c(2, 5), eta = c(0.001, 0.01, 0.1))
```

```
xgbParam4 <- list (booster = "gbtree", objective = "binary:logistic", min child weight=1,
colsample bytree=0.6,eval metric="error", eval metric = "auc",scale pos weight = 8.50)
for(i in 1:nrow(xgbParamGrid4)) {
 xgb_tune4<- xgb.train(data=dxTrn4,xgbParam4,
 nrounds=1000, early stopping rounds = 10, xgbWatchlist4,
 eta=xgbParamGrid4$eta[i], max_depth=xgbParamGrid4$max_depth[i])
 xgbParamGrid4$bestTree[i] <- xgb tune4$evaluation log[xgb tune4$best iteration]$iter
 xgbParamGrid4$bestPerf[i] <- xgb tune4$evaluation log[xgb tune4$best iteration]$eval auc
Note: Results are simplified
train-error:0.795948
 train-auc:0.565014
 eval-error:0.796123
 eval-auc:0.564330
Multiple eval metrics are present. Will use eval auc for early stopping.
Will train until eval auc hasn't improved in 10 rounds.
[2]
 train-error:0.795948
 train-auc:0.582212
 eval-error:0.796123
 eval-auc:0.587073
[3]
 train-error:0.795948
 train-auc:0.583721
 eval-error:0.796123
 eval-auc:0.589682
[4]
 train-error:0.795948
 eval-error:0.796123
 eval-auc:0.587500
 train-auc:0.581070
[5]
 train-error:0.795948
 train-auc:0.582989
 eval-error:0.796123
 eval-auc:0.587396
[6]
 train-error:0.795948
 train-auc:0.584745
 eval-error:0.796123
 eval-auc:0.589055
[7]
 train-error:0.795948
 train-auc:0.585393
 eval-error:0.796123
 eval-auc:0.588914
[8]
 train-error:0.795948
 train-auc:0.589275
 eval-error:0.796123
 eval-auc:0.592610
[9]
 train-error:0.795948
 train-auc:0.588552
 eval-error:0.796123
 eval-auc:0.591767
[10]
 train-error:0.795948
 eval-error:0.796123
 train-auc:0.588995
 eval-auc:0.593936
[11]
 train-error:0.795948
 train-auc:0.588373
 eval-error:0.796123
 eval-auc:0.592722
[12]
 train-error:0.795948
 train-auc:0.588133
 eval-error:0.796123
 eval-auc:0.593109
[13]
 train-error:0.795948
 train-auc:0.587640
 eval-error:0.796123
 eval-auc:0.592248
[14]
 train-error:0.795948
 train-auc:0.587215
 eval-error:0.796123
 eval-auc:0.592542
[15]
 eval-error:0.796123
 train-error:0.795948
 train-auc:0.587921
 eval-auc:0.593246
[16]
 train-error:0.795948
 train-auc:0.587923
 eval-error:0.796123
 eval-auc:0.592981
[17]
 train-error:0.795948
 eval-error:0.796123
 train-auc:0.587779
 eval-auc:0.592720
[18]
 eval-error:0.796123
 train-error:0.795948
 train-auc:0.589170
 eval-auc:0.593464
[19]
 train-error:0.795948
 train-auc:0.588357
 eval-error:0.796123
 eval-auc:0.593937
[20]
 train-error:0.795948
 train-auc:0.588890
 eval-error:0.796123
 eval-auc:0.593684
[21]
 train-error:0.795948
 eval-error:0.796123
 train-auc:0.588778
 eval-auc:0.593746
[22]
 train-error:0.795948
 train-auc:0.590229
 eval-error:0.796123
 eval-auc:0.594573
 train-error:0.795948
 train-auc:0.590700
 eval-error:0.796123
[23]
 eval-auc:0.594698
[24]
 train-error:0.795948
 train-auc:0.590670
 eval-error:0.796123
 eval-auc:0.595102
[25]
 train-error:0.795948
 train-auc:0.590947
 eval-error:0.796123
 eval-auc:0.595005
[26]
 train-error:0.795948
 train-auc:0.590911
 eval-error:0.796123
 eval-auc:0.595252
[27]
 train-error:0.795948
 train-auc:0.592564
 eval-error:0.796123
 eval-auc:0.596635
[28]
 train-error:0.795948
 train-auc:0.593231
 eval-error:0.796123
 eval-auc:0.596578
[29]
 train-error:0.795948
 train-auc:0.592674
 eval-error:0.796123
 eval-auc:0.596579
[30]
 train-error:0.795948
 train-auc:0.592332
 eval-error:0.796123
 eval-auc:0.596438
[31]
 train-error:0.795948
 train-auc:0.592337
 eval-error:0.796123
 eval-auc:0.596493
[32]
 train-error:0.795948
 train-auc:0.592009
 eval-error:0.796123
 eval-auc:0.596178
[33]
 train-error:0.795948
 train-auc:0.592008
 eval-error:0.796123
 eval-auc:0.595701
[34]
 train-error:0.795948
 train-auc:0.592074
 eval-error:0.796123
 eval-auc:0.595888
[35]
 train-error:0.795948
 train-auc:0.592311
 eval-error:0.796123
 eval-auc:0.595841
[36]
 train-error:0.795948
 train-auc:0.593109
 eval-error:0.796123
 eval-auc:0.596286
[37]
 train-error:0.795948
 train-auc:0.592589
 eval-error:0.796123
 eval-auc:0.595965
```

[1] train-error:0.752668 train-auc:0.608876 eval-error:0.760343 eval-auc:0.588570 Multiple eval metrics are present. Will use eval\_auc for early stopping. Will train until eval\_auc hasn't improved in 10 rounds.

[2]	train-error:0.753522	train-auc:0.627714	eval-error:0.763791	eval-auc:0.594017
[3]	train-error:0.758842	train-auc:0.637091	eval-error:0.767315	eval-auc:0.599624
[4]	train-error:0.762881	train-auc:0.639404	eval-error:0.770840	eval-auc:0.604844
[5]	train-error:0.762519	train-auc:0.643398	eval-error:0.770610	eval-auc:0.607324
[6]	train-error:0.760615	train-auc:0.647386	eval-error:0.768158	eval-auc:0.608004
[7]	train-error:0.762322	train-auc:0.650696	eval-error:0.769690	eval-auc:0.609067
[8]	train-error:0.763275	train-auc:0.655009	eval-error:0.770993	eval-auc:0.609810
[9]	train-error:0.761600	train-auc:0.658877	eval-error:0.768235	eval-auc:0.609308
[10]	train-error:0.762289	train-auc:0.661537	eval-error:0.769078	eval-auc:0.609086
[11]	train-error:0.762749	train-auc:0.664374	eval-error:0.768465	eval-auc:0.609543
[12]	train-error:0.761074	train-auc:0.667316	eval-error:0.767545	eval-auc:0.610382
[13]	train-error:0.759301	train-auc:0.668727	eval-error:0.767469	eval-auc:0.610364
[14]	train-error:0.759728	train-auc:0.671235	eval-error:0.767162	eval-auc:0.611536
[15]	train-error:0.759268	train-auc:0.673622	eval-error:0.766319	eval-auc:0.612268
[16]	train-error:0.758382	train-auc:0.675480	eval-error:0.766626	eval-auc:0.613771
[17]	train-error:0.756510	train-auc:0.677283	eval-error:0.764940	eval-auc:0.613730
[18]	train-error:0.754540	train-auc:0.678158	eval-error:0.763638	eval-auc:0.613705
[19]	train-error:0.754244	train-auc:0.680723	eval-error:0.763714	eval-auc:0.613243
[20]	train-error:0.752373	train-auc:0.681861	eval-error:0.762642	eval-auc:0.612508
[21]	train-error:0.750041	train-auc:0.682920	eval-error:0.761569	eval-auc:0.612600
[22]	train-error:0.748235	train-auc:0.684903	eval-error:0.760037	eval-auc:0.613110
[23]	train-error:0.748596	train-auc:0.685772	eval-error:0.760037	eval-auc:0.613620
[24]	train-error:0.747283	train-auc:0.687846	eval-error:0.759041	eval-auc:0.614001
[25]	train-error:0.746429	train-auc:0.689999	eval-error:0.758198	eval-auc:0.613501
[26]	train-error:0.746298	train-auc:0.690768	eval-error:0.758045	eval-auc:0.613702
[27]	train-error:0.744557	train-auc:0.692299	eval-error:0.756589	eval-auc:0.613236
[28]	train-error:0.743375	train-auc:0.694707	eval-error:0.756512	eval-auc:0.613413
[29]	train-error:0.741668	train-auc:0.696180	eval-error:0.755363	eval-auc:0.613984
[30]	train-error:0.739697	train-auc:0.698813	eval-error:0.754061	eval-auc:0.613547
[31]	train-error:0.738581	train-auc:0.700531	eval-error:0.752758	eval-auc:0.613599
[32]	train-error:0.738187	train-auc:0.701174	eval-error:0.752145	eval-auc:0.614208
[33]	train-error:0.736446	train-auc:0.704218	eval-error:0.751226	eval-auc:0.614223
[34]	train-error:0.735494	train-auc:0.704805	eval-error:0.750843	eval-auc:0.614343
[35]	train-error:0.732933	train-auc:0.706459	eval-error:0.748391	eval-auc:0.614569
[36]	train-error:0.731948	train-auc:0.707176	eval-error:0.747778	eval-auc:0.614773
[37]	train-error:0.730995	train-auc:0.708172	eval-error:0.747548	eval-auc:0.614734
[38]	train-error:0.730207	train-auc:0.709030	eval-error:0.746552	eval-auc:0.614707
[39]	train-error:0.728073	train-auc:0.710077	eval-error:0.744254	eval-auc:0.614708
[40]	train-error:0.726332	train-auc:0.710787	eval-error:0.742798	eval-auc:0.614994
[41]	train-error:0.725544	train-auc:0.711676	eval-error:0.742415	eval-auc:0.615146
[42]	train-error:0.724494	train-auc:0.712919	eval-error:0.741112	eval-auc:0.614536
[43]	train-error:0.722425	train-auc:0.714051	eval-error:0.739427	eval-auc:0.614848
[44]	train-error:0.721571	train-auc:0.714560	eval-error:0.738814	eval-auc:0.614943

```
[45]
 train-error:0.720093
 train-auc:0.716536
 eval-error:0.737128
 eval-auc:0.615136
 train-auc:0.717413
 eval-error:0.736745
 eval-auc:0.614991
[46]
 train-error:0.719371
[47]
 train-error:0.717236
 train-auc:0.718648
 eval-error:0.735060
 eval-auc:0.614878
[48]
 train-error:0.716711
 train-auc:0.719053
 eval-error:0.734370
 eval-auc:0.614894
[49]
 train-auc:0.719532
 eval-error:0.733987
 eval-auc:0.614978
 train-error:0.715989
 eval-auc:0.614524
[50]
 train-error:0.714544
 train-auc:0.720760
 eval-error:0.732378
 train-error:0.712836
 train-auc:0.721890
 eval-error:0.732608
 eval-auc:0.614358
[51]
Stopping. Best iteration:
[41]
 train-error:0.725544
 train-auc:0.711676
 eval-error:0.742415
 eval-auc:0.615146
#See the tune variable with parameter grid
xgbParamGrid4
> xgbParamGrid4
 max_depth eta bestTree bestPerf
 2 0.001 27 0.596635
 5 0.001 15 0.609757
2 0.010 14 0.603004
5 0.010 56 0.613993
2 0.100 56 0.621286
5 0.100 41 0.615146
2
3
4
5
xgbParam Best4 <- list (booster = "gbtree", objective = "binary:logistic", min child weight=1,
colsample bytree=0.6, max depth = 2, eta = 0.001, scale pos weight = 8.50)
XGBOOST running the model with the best parameters found with the for loop
xgb lsM4 <- xgb.train(xgbParam Best4, dxTrn4, nrounds = xgb tune4$best iteration)
#XGBOOST evaluation of the model
#Using the predicting function to get the scores in the training data set
xpredTrn4<-predict(xgb lsM4, dxTrn4)</pre>
head(xpredTrn4)
> #XGBOOST evaluation of the model
> #Using the predicting function to get the scores in the training data set
> xpredTrn4<-predict(xqb_lsM4, dxTrn4)</pre>
> head(xpredTrn4)
[1] 0.5065721 0.5053604 0.5067171 0.5070637 0.5070215 0.5051140
#Using the predicting function to get the scores in the test data set
xpredTst4<-predict(xgb lsM4, dxTst4)</pre>
#confusion matrix
table(pred=as.numeric(xpredTst4>0.5), act=colcdfTst4)
#ROC, AUC performance
pred xgb lsM4<-prediction(xpredTst4, Testdf2$loan status,
 label.ordering = c("Fully Paid", ("Charged Off")))
aucPerf xgb lsM4<-performance(pred xgb lsM4, "tpr", "fpr")
#Plot ROC, AUC performance
plot(aucPerf xgb lsM4)
```





**#XGBOOST Deciles for grades C and lower M1** xpredTstM4<-predict(xgb lsM4, dxTst4)</pre>

```
mutate(score4=xpredTstM4)
scoreTst xgb ls4 <- scoreTst xgb ls4 %>% mutate(tile=ntile(-score4, 10))
scoreTst xgb ls4 %>% group by(tile) %>% summarise(count=n(), avgSc=mean(score4),
numDefaults=sum(loan status=="Charged Off"), avgActRet=mean(actualReturn),
minRet=min(actualReturn), maxRet=max(actualReturn),
avgTer=mean(actualTerm),totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"),
totF=sum(grade=="F"), totE=sum(grade=="G"),)
> scoreTst_xgb_ls4 <- scoreTst_xgb_ls4 %>% mutate(tile=ntile(-score4, 10))
 > scoreTst_xgb_ls4 %>% group_by(tile) %>% summarise(count=n(), avgSc=mean(score4), numDefaults=sum(loan_status=="Ch
arged Off"),
 avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=
max(actualReturn), avgTer=mean(actualTerm),totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="E"), totF=sum(grade=="E")
um(grade=="F"), totE=sum(grade=="G"),)
A tibble: 10 x 12
 tile count avgSc numDefaults avgActRet minRet maxRet avgTer
 <u>1</u>306 0.510
 406
 4.66
 -32.2
 36.9
 2.38
 0
 907
 9
 72
 54
```

40.2

37.7

31.3

23.7

27.2

26.1

24.3

34.8

24.2

2.32

2.26

2.23

2.26

2.18

2.25

2.23

2.19

0 968

811

828

60

123

114

0

0

293

228

1238

1131

<u>1</u>305

<u>1</u>305

1305

3

3

40

1

0

0

scoreTst xgb ls4 <- Testdf2 %>% select(grade, loan status, actualReturn, actualTerm, int rate) %>%

#XGBOOST Model 2 Actual returns for lower grades #Finding which parameters work best with this model # we are predicting actualReturn as a numeric variable #converting factor variables to dummy-variables to convert dataset to numerical fdum5<-dummyVars(~.,lcdf AR LowGrades %>% select(-actualReturn))

6.07

6.24

7.29

5.11

5.67

6.25

6.37

6.18

6.67

-33.3

-33.3

-33.3

-32.2

-33.3

-30.0

-33.3

-32.2

-31.1

dxlcdf5 <- predict(fdum5, lcdf AR LowGrades)</pre>

345

315

269

288

244

199

187

157

#Create Training and test subsets dxlcdfTrn5 <- dxlcdf5[indicesTraining2,]

1306 0.509

1305 0.508

1305 0.508

<u>1</u>305 0.507

<u>1</u>305 0.507

<u>1</u>305 0.507

<u>1</u>305 0.506

1305 0.505

1305 0.504

```
colcdfTrn5 <- lcdf AR LowGrades$actualReturn[indicesTraining2]</pre>
dxlcdfTst5 <- dxlcdf5[-indicesTraining2,]
colcdfTst5 <- lcdf AR LowGrades$actualReturn[indicesTest2]</pre>
#Creating Training and Test xgb matrices need it to run the model
dxTrn5 <- xgb.DMatrix(subset(dxlcdfTrn5, select=-c(annRet, actualTerm)), label=colcdfTrn5)
dxTst5 <- xgb.DMatrix(subset(dxlcdfTst5,select=-c(annRet, actualTerm)), label=colcdfTst5)
#watch the progress of learning through performance on these datasets
xgbWatchlist5 <- list(train = dxTrn5, eval = dxTst5)
#Expand the parameter grid to find the best for the model
xgbParamGrid5 <- expand.grid(
 max depth = c(2, 5),
 eta = c(0.001, 0.01, 0.1))
#Parameter list
xgbParam5 <- list (
 booster = "gbtree",
 objective = "reg:squarederror",
 \#scale pos weight = 7.950299,
 min child weight=1,
 colsample bytree=0.6
#Perform xgb training
for(i in 1:nrow(xgbParamGrid5)) {
 xgb_tune5<- xgb.train(data=dxTrn5,xgbParam5,
 nrounds=1000, early stopping rounds = 10, xgbWatchlist5,
 eta=xgbParamGrid5$eta[i], max_depth=xgbParamGrid5$max_depth[i])
 xgbParamGrid5$bestTree[i] <- xgb tune5$evaluation log[xgb tune5$best iteration]$iter
 xgbParamGrid5$bestPerf[i] <- xgb tune5$evaluation log[xgb tune5$best iteration]$eval rmse
Note: Results are simplified
train-rmse:11.700222 eval-rmse:11.747152
Multiple eval metrics are present. Will use eval rmse for early stopping.
Will train until eval rmse hasn't improved in 10 rounds.
[2]
 train-rmse:10.741508
 eval-rmse:10.797511
[3]
 eval-rmse:9.960797
 train-rmse:9.896646
[4]
 train-rmse:9.153386
 eval-rmse:9.226575
[5]
 train-rmse:8.503037
 eval-rmse:8.586250
 train-rmse:7.937613
 eval-rmse:8.031483
[6]
[7]
 train-rmse:7.446745
 eval-rmse:7.551983
[8]
 train-rmse:7.343415
 eval-rmse:7.457603
[9]
 train-rmse:6.931310
 eval-rmse:7.057893
[10]
 train-rmse:6.579497
 eval-rmse:6.716870
[11]
 train-rmse:6.515373
 eval-rmse:6.659767
[12]
 train-rmse:6.221575
 eval-rmse:6.375267
[13]
 train-rmse:5.973438
 eval-rmse:6.138580
 eval-rmse:5.940746
[14]
 train-rmse:5.765673
[15]
 train-rmse:5.590408
 eval-rmse:5.773128
```

F1.63	4	1 5 (22014
[16]	train-rmse:5.440906	eval-rmse:5.632814
[17]	train-rmse:5.417535	eval-rmse:5.612856
[18]	train-rmse:5.295611	eval-rmse:5.500779
[19]	train-rmse:5.194365	eval-rmse:5.408567
[20]	train-rmse:5.110200	eval-rmse:5.333051
[21]	train-rmse:5.037741	eval-rmse:5.268813
[22]	train-rmse:4.978216	eval-rmse:5.215764
[23]	train-rmse:4.929973	eval-rmse:5.172333
[24]	train-rmse:4.889657	eval-rmse:5.138330
[25]	train-rmse:4.855788	eval-rmse:5.110473
[26]	train-rmse:4.827390	eval-rmse:5.087634
[27]	train-rmse:4.804537	eval-rmse:5.068079
[28]	train-rmse:4.782790	eval-rmse:5.051438
[29]	train-rmse:4.762628	eval-rmse:5.036211
[30]	train-rmse:4.743316	eval-rmse:5.024541
[31]	train-rmse:4.737270	eval-rmse:5.023823
	train-rmse:4.725092	eval-rmse:5.016268
[32]	train-rmse:4.712137	eval-rmse:5.008268
[33]		eval-rmse:5.002246
[34]	train-rmse:4.702710	
[35]	train-rmse:4.691658	eval-rmse:4.997258
[36]	train-rmse:4.681256	eval-rmse:4.993438
[37]	train-rmse:4.674147	eval-rmse:4.989196
[38]	train-rmse:4.668905	eval-rmse:4.987413
[39]	train-rmse:4.662926	eval-rmse:4.986079
[40]	train-rmse:4.658926	eval-rmse:4.985519
[41]	train-rmse:4.651308	eval-rmse:4.981722
[42]	train-rmse:4.648942	eval-rmse:4.981273
[43]	train-rmse:4.645028	eval-rmse:4.979413
[44]	train-rmse:4.638552	eval-rmse:4.979047
[45]	train-rmse:4.635851	eval-rmse:4.978304
[46]	train-rmse:4.634536	eval-rmse:4.978135
[47]	train-rmse:4.629727	eval-rmse:4.976712
[48]	train-rmse:4.626838	eval-rmse:4.977036
[49]	train-rmse:4.625494	eval-rmse:4.977039
[50]	train-rmse:4.619664	eval-rmse:4.977470
[51]	train-rmse:4.616091	eval-rmse:4.977742
[52]	train-rmse:4.611224	eval-rmse:4.975496
[53]	train-rmse:4.608206	eval-rmse:4.975776
[54]	train-rmse:4.604103	eval-rmse:4.974890
[55]	train-rmse:4.601810	eval-rmse:4.974590
[56]	train-rmse:4.600368	eval-rmse:4.974729
[57]	train-rmse:4.598578	eval-rmse:4.975019
[58]	train-rmse:4.597795	eval-rmse:4.974772
[59]	train-rmse:4.597065	eval-rmse:4.975035
[60]	train-rmse:4.596221	eval-rmse:4.974833
[61]	train-rmse:4.595340	eval-rmse:4.975124
[62]	train-rmse:4.594477	eval-rmse:4.974759
[63]	train-rmse:4.594092	eval-rmse:4.974795
[64]	train-rmse:4.592149	eval-rmse:4.974081
[65]	train-rmse:4.590569	eval-rmse:4.974404
[66]	train-rmse:4.587722	eval-rmse:4.974605
[20]	111100. 1.00 / / LL	5 (at 111100, 1.) / 1003

```
[67]
 train-rmse:4.584843
 eval-rmse:4.974868
[68]
 train-rmse:4.583748
 eval-rmse:4.975747
[69]
 train-rmse:4.581357
 eval-rmse:4.975651
[70]
 train-rmse:4.576166
 eval-rmse:4.975430
[71]
 train-rmse:4.574084
 eval-rmse:4.975587
[72]
 train-rmse:4.573107
 eval-rmse:4.975377
 train-rmse:4.571788
 eval-rmse:4.974962
[73]
[74]
 train-rmse:4.570568
 eval-rmse:4.974908
Stopping. Best iteration:
 train-rmse:4.592149
[64]
 eval-rmse:4.974081
#Deploy the tune parameters
xgbParamGrid5
 > xgbParamGrid5
 max_depth
 eta bestTree bestPerf
 2 0.001 1000 6.780442
 2
 5 0.001
 1000 6.755215
 2 0.010
 3
 797 4.991000
 4
 5 0.010
 585 4.967330
 5
 2 0.100
 106 4.989126
 5 0.100
 64 4.974081
xgbParam6 <- list(
 \max depth = 2,
 eta = 0.100,
 booster = "gbtree",
 objective = "reg:squarederror",
 \#scale pos weight = 7.950299,
 min child weight=1,
 colsample bytree=0.6
XGBOOST running the model with the best parameters found with the for loop
xgb lsM5 <- xgb.train(xgbParam6, dxTrn5, nrounds = xgb tune5$best iteration)
#XGBOOST evaluation of the model
#Using the predicting function to get the scores in the training data set
xpredTrn5<-predict(xgb lsM5, dxTrn5)</pre>
head(xpredTrn5)
> #Using the predicting function to get the scores in the training data set
> xpredTrn5<-predict(xgb_lsM5, dxTrn5)</pre>
> head(xpredTrn5)
[1] 10.147585 10.166124 10.378598 9.111142 10.147690 8.967637
#Using the predicting function to get the scores in the test data set
xpredTst5<-predict(xgb lsM5, dxTst5)</pre>
#Error
sqrt(mean((xpredTst5-colcdfTst5)^2)) #4.994001
#XGBOOST M2 Actual Returns Performance of grades C and lower (Boosted)
```

```
xpredTstM5<-predict(xgb_lsM5, dxTst5)
scoreTst xgb ls5 <- Testdf2 %>% select(grade, loan status, actualReturn, actualTerm, int rate) %>%
mutate(score5=xpredTstM5)
scoreTst xgb ls5 <- scoreTst xgb ls5 %>% mutate(tile=ntile(-score5, 10))
scoreTst xgb ls5 %>% group by(tile) %>% summarise(count=n(), avgSc=mean(score5),
numDefaults=sum(loan status=="Charged Off"), avgActRet=mean(actualReturn),
minRet=min(actualReturn), maxRet=max(actualReturn),
avgTer=mean(actualTerm),totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"),
totF=sum(grade=="F"), totE=sum(grade=="G"))
 > scoreTst_xqb_ls5 <- scoreTst_xqb_ls5 %>% mutate(tile=ntile(-score5, 10))
 > scoreTst_xgb_ls5 %>% group_by(tile) %>% summarise(count=n(), avgSc=mean(score5), numDefaults=sum(loan_status=="Ch
 arged off"),
 avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn), avgTer=mean(actualTerm),totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="E"), totF
 um(grade=="F"), totE=sum(grade=="G"))
 # A tibble: 10 x 12
 tile count avgSc numDefaults avgActRet minRet maxRet avgTer totC totD totE totF
 <int>
 <db7>
 <db7>
 \langle db 7 \rangle
 <db1> <int>
 <u>1</u>306 13.9
 14.3
 <u>1</u>306
 0
 <u>1</u>305 11.4
 0
 2.07
 214
 1305 10.4
 0
 10.7
 0
 27.8
 2.01
 <u>1</u>209
 10.0
 <u>1</u>305
 9.94
 34.8
 2.08
 <u>1</u>305
 0
 0
 1305
 9.49
 0
 9.46
 24.3
 2.09
 <u>1</u>304
 9.06
 8.99
 <u>1</u>305
 1305
 0
 24.2
 2.05
 0
 51
 7.97
 7.75 -30.7
 <u>1</u>260
 <u>1</u>305
 20.0
 2.18
 12
 23
 <u>1</u>305 -11.6
 <u>1</u>305
 -11.8
 -33.3
 10 1305 -12.6
#XGBOOST -Consider Top d deciles from Model 2(actualReturn), ranked by M1 scores(loan Status) all
grades
#Initiate decile (d) as 1
pRetSc6 <- scoreTst xgb ls5 %>% mutate(poScore=scoreTst xgb ls4$score4)
pRet d6 <- pRetSc6 %>% filter(tile<=d)
pRet d6<- pRet d6 %>% mutate(tile2=ntile(-poScore, 10))
pRet d6 %>% group by(tile2) %>% summarise(count=n(),
avgPredRet=mean(score5),numDefaults=sum(loan status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTer=mean(actualTerm), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"),
totF=sum(grade=="F"), totE=sum(grade=="G"))
```

```
> pRet_d6 %>% group_by(tile2) %>% summarise(count=n(), avgPredRet=mean(score5),
 numDefaults=sum(loan_status=="Charged Off"), avgActRet=mean(actualRetur
n). minRet=min(actualReturn).
maxRet=max(actualReturn), avgTer=mean(actualTerm), totC=sum(grade=
"C"), totD=sum(grade=="D"), totE=sum(grade=="F"), totF=sum(grade=="F"),
 tile2 count avgPredRet numDefaults avgActRet minRet maxRet avgTer totC totD totE totF
 <db7>
 <db1>
 14.0
 10.3
 36.9
 1.99
 19
 131
 15.1
 0
 21
 0
 14.5
 9.37
 23.6
 2.10
 34
 131
 14.0
 0
 18
 14.1
13.9
14.0
13.8
13.9
 131
 14.5
 40.2
 2.05
 36
 16
 23.0
 13.8
 8.22
 2.05
 131
 14.5
 2.70
 37.7
 1.85
 130
 14.5
 25.2
 1.89
 69
 14
 5.24
 130
 14.1
 14.4
13.7
 8
 0
 23.9
 1.90
 14
 10
 2.07
 13.7
 0
 130
 9.83
 20.9
 11
#performance of glm model for low grade loans in deciles for M1
#according to question number 1
#yTrn<-factor(if else(Trainingdf$loan status=="Fully Paid", '1', '0'))</pre>
#xcdftrn<- model.matrix(~ loan status+ actualTerm + annRet + actualReturn - 1, Trainingdf)
glmls cv<- cv.glmnet(data.matrix(xcdftrn), yTrn, family="binomial")
lg xDTrn<-model.matrix(~loan status+ actualTerm + annRet + actualReturn - 1, lg lcdfTrn)
lg predLS glm <- lg lcdfTrn %>% select(grade, loan status, actualReturn, actualTerm, int rate) %>%
 mutate(lg score=predict(glmls cv,data.matrix(lg xDTrn), s="lambda.min", type="response"))
lg predLS glm<- lg predLS glm%>% mutate(tile=ntile(-lg score, 10))
lg predLS glm %>% group by(tile) %>% summarise(count=n(), avgpredRet=mean(lg score),
numDefaults=sum(loan status=="Charged Off"), avgActRet=mean(actualReturn),
minRet=min(actualReturn), maxRet=max(actualReturn), avgTerm=mean(actualTerm),
totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"),
totE=sum(grade=="E"), totF=sum(grade=="F"))
> lg_predLS_glm %>% group_by(tile) %>% summarise(count=n(), avgpredRet=mean(lg_score), numDefaults=sum(loan_status=="Charged Off"), avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn), avgTerm=n ean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="B")) # A tibble: 10 x 14
 numDefaults=sum(loan sta
 maxRet=max(actualReturn), avgTerm=m
 tile count avgpredRet numDefaults avgActRet minRet maxRet avgTerm totA totB totC totD totE totF
 <db1> <db1>
 <db1>
 <db1> <int> <int>
 <u>3</u>052
 0
 1.00
 10.8
 40.8
 2.05
 0
 0
 1968
 826
 218
 35
 2.06
 3052
 1.00
 0
 10.8
 0
 28.8
 0
 0
 1926
 833
 247
 3.8
 3052
 1.00
 0
 10.7
 0
 34.2
 2.08
 0
 1896
 232
 37
 879
 3051
 10.8
 0
 2.05
 1889
 875
 1.00
 235
 3051
 1.00
 <u>1</u>982
 812
 <u>3</u>051
 10.7
 2.08
 <u>1</u>923
 1.00
 857
 3051
 1.00
 0
 10.8
 0
 36.6
 2.04
 0
 1891
 206
 51
 161
 3051
 0.947
 9.54 -27.6
 29.6
 2.14
 0
 <u>1</u>900
 850
 261
 33
 9
 3051
 0.00141
 3051
 -12.0 -33.3
 13.7
 1631
 993
 337
 78
 10 3051
```

#Actual Returns selected by grade M2 low grades

3051

0.00141

```
#Performance of glm model for lambda min
#According to question number 2
df4 glm <-model.matrix(~ loan status+ actualTerm + annRet + actualReturn - 1, Trainingdf)
glmRet cv <- cv.glmnet(data.matrix(df4 glm), Trainingdf$actualReturn, family="gaussian")
```

-33.3

-12.2

12.4

1625

965

lgXDTRN2<- model.matrix( ~ loan status+ actualTerm + annRet + actualReturn - 1, lg lcdfTrn)

```
lg predRet Trn glm <- lg lcdfTrn %>% select(grade, loan status, actualReturn, actualTerm, int rate)
%>%
 mutate(lg predRet glm = predict(glmRet cv, data.matrix(lgXDTRN2),s="lambda.min"))
lg predRet Trn glm<- lg predRet Trn glm%>% mutate(tile=ntile(-lg predRet glm, 10))
lg predRet Trn glm %>% group by(tile) %>% summarise(count=n(),
avgpredRet=mean(lg predRet glm), numDefaults=sum(loan status=="Charged Off"),
avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn),
avgTerm=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"), totC=sum(grade=="C"),
totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))
lReturn),
 maxRet=max(actualReturn), avgTerm=mean(actualTerm), totA=sum(grade=="A"),
 totB=sum(grade=="B"), totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"), to
tF=sum(grade=="F"))
A tibble: 10 x 14
 tile count avgpredRet numDefaults avgActRet minRet maxRet avgTerm totA totB totC totD totE
 totF
 <db7>
 <int>
 <db1>
 <db1>
 <db7>
 <int>
 <int> <int>
 17.0
 44.4
 3052
 16.7
 0
 14.5
 0.835
 Ο
 485
 1604
 740
 187
 13.2
 283
 122
 3052
 13.4
 12.5
 14.5
 1.28
 1459
 1186
 3052
 11.6
 11.8
 12.5
 <u>1</u>853
 397
 11.2
 1.63
 12
 <u>1</u>734
 3051
 2.07
 3051
 13
 9.64
 1687
 10.1
 2.41
 1288
 <u>2</u>182
<u>2</u>990
 <u>3</u>051
 8.58
 20
 8.67
 8.24
 9.14
 2.68
 3051
 7.72
 29
 7.79
 7.36
 8.24
 2.85
 6
 4.92
 <u>2</u>934
 8
 3051
 6.80
 189
 6.84
 7.36
 2.91
 84
 24
 9
 1755
 4.90
 2.91
 322
 3051
 -5.04 -13.1
 901
 -4.74
 2946
 63
 <u>3</u>051
 -20.3 -33.3
 -13.1
 10 3051
 -19.5
 1552
 1035
```

```
#glm - Consider Top d deciles from Model 2(actualReturn), ranked by M1 scores(loan Status) low grades
#Initiate decile (d) as 1
lg pRetSc glm <- lg predRet Trn glm %>% mutate(poScore=lg predLS glm$lg score)
lg pRet d glm <- lg pRetSc glm %>% filter(tile<=d)
lg pRet d glm<- lg pRet d glm %>% mutate(tile2=ntile(-poScore, 20))
```

lg pRet d glm %>% group by(tile2) %>% summarise(count=n(), avgPredRet=mean(lg predRet glm), numDefaults=sum(loan status=="Charged Off"), avgActRet=mean(actualReturn), minRet=min(actualReturn), maxRet=max(actualReturn), avgTer=mean(actualTerm), totA=sum(grade=="A"), totB=sum(grade=="B"),totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"), totF=sum(grade=="F"))

```
> lg_pRet_d_glm %>% group_by(tile2) %>% summarise(count=n(), avgPredRet=mean(lg_predRet_glm),
 numDefaults=sum(loan_status=="Charged Off"), avgActRet=mean(actua
lReturn), minRet=min(actualReturn),
 maxRet=max(actualReturn), avgTer=mean(actualTerm), totA=sum(grade
=="A"), totB=sum(grade=="B"),
 totC=sum(grade=="C"), totD=sum(grade=="D"), totE=sum(grade=="E"),
 totF=sum(grade=="F"))
 A tibble: 20 x 14
 tile2 count avgPredRet numDefaults avgActRet minRet maxRet avgTer
 totB totC totD
 totA
 totE
 TOTE
 <int>
 < dh7 >
 \langle db 1 \rangle
 < dh7 >
 <dh7>
 <dh1> <int>
 <int> <int> <int> <int> <int> <int>
 16.6
 16.9
 14.5
 0.934
 12
 153
 40.8
 0
 0
 26
 42
 0
 95
 8
 153
 0
 16.8
 14.5
 25.2
 0.882
 16
 32
 16.5
 16.7
 17.0
 26.6
 23
 81
 39
 153
 0
 17.2
 14.6
 26.2
 22
 79
 42
 8
 0.824
 153
 16.7
 0
 17.0
 14.5
 28.8
 0
 27
 82
 32
 8
 153
 16.5
 0
 16.9
 14.5
 32.9
 0.847
 0
 0
 25
 79
 40
 8
 0
 0.910
 22
 153
 16.6
 16.9
 14.5
 34.2
 0
 0
 82
 40
 6
 0
 17.1
 14.5
 33.6
 0
 23
 153
 16.8
 0.833
 0
 84
 30
 13
 153
 16.9
 17.2
 14.5
 28.1
 0.834
 83
 31
 16
 17.5
 44.4
 14.5
 0.808
 14.5
 0
 37.7
 0
 22
 89
 29
 11
 153
 16.6
 16.9
 0.804
 11
 12
 153
 16.8
 0
 17.2
 14.5
 26.2
 0.822
 0
 0
 27
 69
 47
 17.0
 0.773
 13
 152
 16.7
 0
 14.5
 24.8
 0
 0
 25
 84
 34
 8
14
 41
 14
 152
 16.9
 0
 17.2
 14.5
 34.8
 0.827
 0
 0
 27
 76
 8
 16.7
 16.3
 14.5
 15
 152
 0
 23.4
 0.892
 30
 78
 32
 11
 17.0
 0.802
 17
 16.9
 14.5
 36.6
 152
 16.6
 30
 80
 33
 18
 152
 0
 16.9
 14.5
 31.3
 0.794
 0
 25
 82
 36
 8
 16.6
 0.797
 19
 152
 17.1
 0
 17.4
 14.5
 29.6
 43
 8
 152
 16.6
 16.9
 14.5
 26.8
 0.914
 9
```

# Q.6 Considering all your results, which approach(s) would you recommend for investing in LC loans? Explain your rationale.

Deciding to invest in LC Loans has its pros and cons. A borrower might receive the full amount they're asking for or only a portion of it. In the case of the latter, the remaining portion of the loan may be funded by one or more investors in the peer lending marketplace. It's quite typical for a loan to have multiple sources, with monthly repayments being made to each of the individual sources.

For lenders, the loans generate income in the form of interest, which can often exceed the rates that can be earned through other vehicles, such as savings accounts and CDs. In addition, the monthly interest payments a lender receives may even earn a higher return than a stock market investment. For borrowers, P2P loans represent an alternative source of financing—especially useful if they are unable to get approval from standard financial intermediaries. They often receive a more favorable interest rate or terms on the loan than from conventional sources too.

Considering the results that we earn, we can start by looking at loan grades data and the actual return data. Many peer-to-peer investors report annual investment returns of greater than 10%, and it is shown multiple times on the data. Investing in LC loans means that we have more control over the specific investments that we want to do. We can select notes based on several criteria such as loan type, credit score, payment ratio, etc. Aside from all these advantages, P2P investments are generally unsecured, so there is no collateral to go after in the event of default. It is conceivable that you could lose 100% of your investment on an early-term default

Therefore, the best approach for investing in LC Loans is to diversify the investment. Spreading, rather than fully investing only in one place, is seen as a good solution to lower the risk of losing your investment. Investing in different grades is one solution of diversification, as grades are not the major factor of your return. By mixing in positions in lower grade loans, you can increase those returns to double digits. The idea is to spread your capital across different loan grades, and to avoid those that are the highest risk.

## Citations (for Q6)

Curtis, G. (2021, October 21). The Best Ways to Borrow Money. Investopedia, from <a href="https://www.investopedia.com/articles/basics/07/financing-options.asp">https://www.investopedia.com/articles/basics/07/financing-options.asp</a>

Moneyunder30.com. (n.d.)., from <a href="https://www.moneyunder30.com/invest-in-peer-to-peer-loans">https://www.moneyunder30.com/invest-in-peer-to-peer-loans</a>