

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

Dynamic programming

- ➤ Definitions and principles
- **≻**Examples

Introduction

- We have done dynamic programming before calling it dynamic programming...
 - ➤ It is a technique, not an algorithm
- Dynamic programming (DP)
 - Solving problems by **combining** the solution to sub-problems
- Remark
 - > Divide & Conquer: partition the problem into disjoint sub-problems
 - > Dynamic programming: the sub-problems overlap
 - Solves each sub-sub-problem one time and then saves its answer in a table
 - \circ Avoiding the work of recomputing the answer every time it solves each sub-sub-problem!
- Typical application
 - ➤ Optimization problem
 - Minimize/maximize a cost function

Dynamic programming

Definitions

- > DP solves problems by combining solutions to sub-problems.
- ➤ Principle:
 - Sub-problems are **not** independent.
 - Sub-problems may share sub-sub-problems,
 - Yet, a solution to one sub-problem may not affect the solutions to other sub-problems of the **same** problem.
- > DP reduces computation by:
 - Solving sub-problems in a bottom-up fashion.
 - Storing solution to a sub-problem the first time it is solved.
 - Looking up the solution when sub-problem is encountered again.
 - \rightarrow Table

Dynamic programming

Steps

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution
 - Bottom-up with a table
 - Top-down with caching
- 4. Construct an optimal solution from computed information.

Memoization

Definition

≻ Memoization

- An optimization technique used primarily to speed up computer programs
 - By storing the results of **expensive** function calls
 - By returning the cached result when the same inputs occur again
- It ensures that: a method doesn't run for the same inputs more than once by keeping a record of the results for the given inputs
- Common strategy for dynamic programming problems

Example

- Remember the factorial function (recursive definition)
 - If it is computed already for a particular n, you don't have to call it again and go deep until 0

Memoization

- Example with Fibonacci sequence
 - ➤ What will happen in the default case:
 - Recursive calls:
 - \triangleright int result = fib(n 1) + fib(n 2);
 - Compute fib(n-1) then fib(n-2) ...
 - Oheck if it has been computed already!
 - For each new result, put it in a table, so when you dig in fib(n-2)
 - We just pick the result from the table

Goal:

- > Algorithm that solves the problem of matrix-chain multiplication
 - o Input: a sequence (chain) $\langle A_1, A_2, ..., A_n \rangle$ of n matrices to be multiplied
 - Output: product A₁A₂...A_n

Remark

- > Using the standard algorithm for multiplying pairs of matrices
 - (subroutine once we have parenthesized it to resolve all ambiguities in how the matrices are multiplied together).
 - Matrix multiplication: associative → all parenthesizations give the same output
 - A product of matrices is fully parenthesized if
 - it is a single matrix or the product of 2 fully parenthesized matrix products surrounded by parentheses
- Example,
 - \circ if $\langle A_1 A_2 A_3 A_4 \rangle$ as input then 5 possibilities
 - 1. $(A_1(A_2(A_3A_4)))$
 - 2. $(A_1((A_2A_3)A_4))$
 - 3. $((A_1A_2)(A_3A_4))$
 - 4. $((A_1(A_2A_3))A_4))$
 - 5. $(((A_1A_2)A_3)A_4)$

- Pseudo-code: Matrix Multiplication
 - \rightarrow Input: A (p x q), B (q x r) \rightarrow Output: C (p x r)
 - ➤ Computation: related to p*q*r
- Example:
 - \triangleright We want to do $A_1A_2A_3 \rightarrow 2$ possibilities
 - $\circ (A_1A_2)A_3 \text{ or } A_1(A_2A_3)$
 - \circ A₁ = 10 x 100
 - \circ A₂ = 100 x 5
 - \circ A₃ = 5 x 50
 - \triangleright Case 1: $(A_1A_2)A_3$
 - 10*100*5 = 5000 operations, output 10 x 5
 - \circ 10*5*50 = 2500 operations, output 10 x 50
 - Total = 7500 operations
 - \triangleright Case 2: $A_1(A_2A_3)$
 - 100*5*50= 25000 operations, output 100 x 50
 - \circ 10*100*50 = 50000 operations, output 10 x 50
 - Total = 75000 operations
- → Computing the product in Case 1: 10x faster!

MATRIX-MULTIPLY(A, B)

```
1 if A.columns \neq B.rows

2 error "incompatible dimensions"

3 else let C be a new A.rows \times B.columns matrix

4 for i = 1 to A.rows

5 for j = 1 to B.columns

6 c_{ij} = 0

7 for k = 1 to A.columns

8 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

9 return C
```

- Problem definition
 - > < $A_1, A_2, A_i ... A_n >$ sequence of n matrices $1 \le i \le n$ and A_i of size $p_{i-1} \times p_i$
- Goal
 - > Only to find an order for multiplying matrices at the lowest cost
 - > Remarks:
 - Time invested to find the order << time saved when performing the matrix multiplications
 - Exhaustively search finding all possible parenthesizations:
 - Not an efficient algorithm
 - > Number of alternative parenthesizations of a sequence of n matrices:
 - o P(n) such that:

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text{if } n \ge 2. \end{cases}$$

- Part 1: Structure of an optimal parenthesization
 - Find the optimal substructure and then use it to construct an optimal solution to the problem from optimal solutions to subproblems
 - \triangleright We consider: $A_{i..i}=A_i * ... * A_i$, $i \le j$
 - \triangleright Cost of $A_{i...j}$ = Cost of $A_{i...k}$ + Cost of $A_{k...j}$ + Cost multiplication $A_{i...k} * A_{k...j}$
- Now, suppose that to optimally parenthesize $A_{i..i}$ split the product between A_k and A_{k+1}
- Then
 - \triangleright how we parenthesize the "prefix" subchain $A_{i..k}$ within this optimal parenthesization of $A_{i..j}$ must be an **optimal** parenthesization of $A_{i..k}$

Because:

- \triangleright If there were a less costly way to parenthesize $A_{i..k}$
- \triangleright Then we can substitute that parenthesization in the optimal parenthesization of $A_{i..j}$ to produce another way to parenthesize $A_{i..j}$ whose cost was **lower** than the optimum: **a contradiction**!!
- \triangleright Same observation is true for how we parenthesize the subchain $A_{k+1...j}$ in the optimal parenthesization of $A_{i...i}$:
- \rightarrow must be an optimal parenthesization of $A_{k+1..i}$

■ Task:

- 1. Split the problem into 2 sub-problems (optimally parenthesizing $A_{i..k}$ and $A_{k+1..j}$)
- 2. Finding optimal solutions to sub-problem instances
- 3. Combining these optimal sub-problem solutions.

Part 2: Recursive solution

- > Cost of an optimal solution recursively in terms of the optimal solutions to subproblems
- ➤ Our sub-problems:
 - The problems of determining the minimum cost of parenthesizing A_{i..j}
 - o Let m[i,j]: the minimum number of scalar multiplications needed to compute A_{i..j}
 - For the full problem, we have the lowest cost way to compute $A_{i..j}$ is m[1,n]
 - Definition
 - m[i,i]=0 for 1≤i≤n
 - $m[i,j]=m[i,k]+m[k+1,j] + p_{i-1}*p_k*p_j$
 - What we need: s[i,j] to be a value of k at which we split
- > Minimum cost definition

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$

- Part 3: Computing the optimal costs
 - >Instead of computing the solution to recurrence recursively
 - > > we compute the optimal cost by using a tabular, bottom-up approach
 - The procedure uses an auxiliary table m[1..n,1..n]
 - for storing the m[i,j] costs and
 - Another auxiliary table s[1..n-1,2..n] that records which index of k achieved the optimal cost in computing m[i,j]
 - \circ \rightarrow use the table s to construct an optimal solution

Algorithm

> Computes the rows from bottom to top and from left to right within each row

MATRIX-CHAIN-ORDER (p) $1 \quad n = p.length - 1$ 2 let m[1...n, 1...n] and s[1...n-1, 2...n] be new tables for i = 1 to nm[i,i] = 0for l = 2 to n// l is the chain length for i = 1 to n - l + 1j = i + l - 1 $m[i,j] = \infty$ for k = i to j - 1 $q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$ if q < m[i, j]m[i,j] = q13 s[i, j] = kreturn m and s

- Part 4: Constructing an optimal solution
 - ➤ Table s[1..n-1,2..n] gives us the solution

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Conclusion

- Dynamic programming
 - > Key concept in programming
 - For optimization problems
 - Very useful for a large number of problems
- Famous dynamic programming algorithms.
 - ➤ Viterbi algorithm for hidden Markov models
 - → generative model in machine learning
 - ➤ Unix diff for comparing 2 files.
 - ➤ Smith-Waterman for sequence alignment.
 - ➤ Bellman-Ford for shortest path routing in networks
 - ➤ Cocke-Kasami-Younger for parsing context free grammars.

Questions?

Reading

- Canvas: Csci 115 book Section 9.5 + Section 10.3
- ➤ Recommended book chapter:
 - o Introduction to Algorithms 3th Edition, Chapter 15.

