

Virtualization

Maruthi S. Inukonda

Agenda

- Virtual machines
- Containers
- Bare metal vs Virtual machines vs Containers

Virtualization

What is a Virtualization? (1/5)

 A system software that provides multi-tenancy for sharing of hardware resources. It also provides isolation.

Civil engineering example

- Dormitory complex with shared resources.
 Viz., lifts, generator, security staff, water pumps, television, restrooms, hall, bedroom.
- Hostel complex having multiple rooms with shared resources.
 Viz., all the above but not study/bedroom.
- Apartment complex having multiple flats with shared resources.
 Viz., all the above but not hall, restroom, study/bedroom, television.

Types of Virtualization (1/4)

Computing hardware resources

- CPU, RAM, Disk, NIC.
- Accelerators (GPU)

Terminology

- Hypervisor: A software that emulates hardware/run-time environment.
- Guest: OS running in virtual hardware (aka VM).
- Host: OS running on physical hardware.

Types of Virtualization (2/4)

Types

- Full Virtualization:
 - Emulates entire computer system on bare metal without any host OS.
 - Runs unmodified guest OS (kernel and userspace).
 - Eg. XenServer, VMWare ESX, Hyper-V, Oracle VM Server, etc
- Hosted Virtualization:
 - Emulates entire computer system on existing host OS.
 - Runs unmodified guest OS (kernel and userspace).

Eg. VirtualBox, VMWare Workstation/Fusion, Microsoft Virtual PC, etc

Types of Virtualization (3/4)

- Para Virtualization:
 - Emulates entire computer system in existing host OS.
 - Runs modified guest OS kernel, and unmodified guest OS userspace.
 - Eg. Qemu-KVM
- Process Virtualization :
 - Emulates one programming language run-time environment.
 - Runs an application written in single programming language.

Eg. Java/Python VM

Types of Virtualization (4/4)

- Operating System Virtualization :
 - Does not emulate any hardware. Directly uses host hardware.
 - Runs an user-space (application and libraries) of OS.
 - Eg. Containers/Dockers

Virtual Machines

What is a Virtual Machine?

- Virtual Machine (VM) is an emulation of entire computer system, as result of full virtualization.
- Each VM runs its own operating system instance.
- Civil Engineering example :
 - Apartment complex having multiple flats.
 - Each flat has living, study, bed, kitchen, rest rooms as exclusive resources and generator, lift, security guard, water pump, etc. as shared resources.

Containers

What is a Container? (1/2)

- Linux Containers (LXC), Docker use operating-system-level virtualization method.
- For running multiple isolated Linux systems (containers) on a control host using a single Linux kernel.
- Directly runs on hardware. (No separate quest kernel)
- Civil Engineering example:
 - Hostel complex having multiple rooms with generator, lift, security guard, water pump, rest rooms, kitchen, etc as shared but study/bedroom as exclusive.

What is a Container? (2/2)

It is implemented using following features in Linux

- Advanced Multi-layer Union File System (AUFS) (aka Overlays)
- Kernel namespaces
- Cgroups
- Capabilities
- Netfilter, Netlink
- Bind mount
- Role-Based Access Control (RBAC)
 - o Eg. SELinux, AppArmor

Physical Machine vs Virtual Machine vs Container

Physical Machine vs Virtual Machine vs Container

Protection Rings

Rings of execution in processors

Physical Machine vs Hosted vs Full virtualization

Para virtualization vs Container

Para

Storage

Virtual Disks

- Virtual Disks are files with special structure to map virtual blocks to file-system or logical volume blocks.
- Types
 - Fixed (aka thick provisioned): space is allocated apriori.
 - Dynamic (aka thin provisioned): allocated on demand. Helps faster cloning.
- Formats
 - o VDI
 - Used in VirtualBox
 - VMDK
 - Used in VMWare's ESX, Player
 - VHD
 - Used in Microsoft's HyperV
 - QCOW, QED
 - Used in QEMU-KVM

Networking

Virtual Networks (1/2)

- Virtual Network adapters are software defined network interface controllers
- Types
 - Bridge :
 - Guest joins the physical network.
 - Guest gets an IP address from physical network (static/dhcp).
 - Guest can be reached from other guests, the host and physical network (L1/L2).
 - o Internal :
 - All/some guests will be in a separate internal private network.
 - Guests need to be assigned static IPs or a DHCP server need to be available in the internal network as a VM.
 - Guest cannot be reached from Host or physical network (L1/L2).
 - Guest can be reached from other guests in the same internal network.

Virtual Networks (2/2)

Types

- O NAT:
 - Each guest will be in a separate private network.
 - Guest gets a private IP address from DHCP server in hypervisor.
 - Guest cannot be reached from other guests, the host and physical network (L1/L2).
 - Hypervisor does source NATing from guest's IP to host's IP.
- NAT network :
 - All/Some guests will be in a separate private network.
 - Guests get private IP address from DHCP server in hypervisor.
 - Guest cannot be reached from the host and physical network (L1/L2).
 - Guest can be reached from other guests in the same NAT network.
 - Hypervisor does source NATing from guests' IP to host's IP.

Q & A

