Leiterplattendesign Für Schnelle Signale

Andy Kiser

Fachstelle Elektronik
Hochschule Technik+Architektur Luzern
Technikumstrasse 21
6048 Horw

Aspekte

- Spektrum digitaler Signale
- Einzelnes Signal
 - Laufzeit
 - Reflexion
 - Leitungsimpedanz
 - Leitungsabschluss
- Mehrere Signale
 - Abgestimmte Laufzeiten
 - □ Ü bersprechen
 - Bedeutung von Powerplanes
- Umsetzung in PCB Designtools
 - Designregeln
 - Konstruktion impedanzkontrollierter Leiterbahnen

Spektrum digitaler Signale

- Kritisch sind Signalflanken
- Eigentliche Signalfrequenz ist unwichtig
- Faustformel

$$f_{\text{max}} \approx \frac{1}{2 \cdot t_{\text{r}}}$$

Beispiel: Logikfamilie 74hcxxx

$$- t_r = 7ns \qquad ==> f_{max} = 71 MHz$$

Bedeutung des Frequenzpektrums

Spektrum eines digitalen Zufalls-Signals, t_{clk} =1Hz, t_r =0.01s

- Unverzerrte Signalübertragung
 - Eine Leitung mit flacher
 bertragungscharakteristik bis zur Frequenz f_{max} leitet ein digitales Signal praktisch unverzerrt.
- Grenze der Verarbeitung
 - Das Verhalten einer Schaltung oberhalb der Frequenz f_{max} muss nicht berücksichtigt werden.

$$f_{\text{max}} \approx \frac{1}{2 \cdot t_{\text{r}}}$$

Einzelne schnelle Signale

Signallaufzeit

- Konstanten
 - Elektrische Feldkonstante
 - Magnetische Feldkonstante

$$\varepsilon_0 = 8.854 \cdot 10^{-12} \text{ F/m}$$

 $\mu_0 = 4 \cdot \pi \cdot 10^{-7} \text{ H/m}$

- Ausbreitungsgeschwindigkeit im Vakuum
 - Lichtgeschwindigkeit

$$c_0 = \frac{1}{\sqrt{\varepsilon_0 \cdot \mu_0}} = 30 \frac{\text{cm}}{\text{ns}}$$

$$30\frac{\text{cm}}{\text{ns}}$$

Ausbreitung in beliebigem Medium

$$c = \frac{1}{\sqrt{\epsilon_0 \cdot \epsilon_r \cdot \mu_0 \cdot \mu_r}}$$

$$c = \frac{c_0}{\sqrt{\epsilon_r \cdot \mu_r}}$$

Signallaufzeit auf Leiterplatten (1)

- Materialeigenschaften
 - Magnetisch: für Leiterplatten werden keine ferromagnetischen Materialien verwendet.

$$\mu_r = 1$$

 Elektrisch: als Dielektrikum (Isolation) werden in der Regel Kunstharze oder andere Kunststoffe verwendet

$$\varepsilon_{\rm r} \approx 4.5$$

□ Auf den Aussenlagen einer Leiterplatte verläuft ein teil der elektrischen Feldlinien durch die Luft (\mathbf{e}_r =1). Effektiv wirkt dadurch

$$\varepsilon_{\text{r(aussen)}} \approx 3.3$$

Signallaufzeit auf Leiterplatten (2)

Ausbreitungsgeschwindigkeit auf Leiterplatten

$$c = \frac{c_0}{\sqrt{\varepsilon_r}} \quad (c_0 : Lichtgeschwindigkeit)$$

Auf Innenlagen

$$c = \frac{c_0}{\sqrt{4.5}} = 14 \frac{cm}{ns}$$

Auf Aussenlagen

$$c = \frac{c_0}{\sqrt{3.3}} = 16.5 \frac{cm}{ns}$$

 Signale werden auf Aussenlagen schneller übertragen als auf Innenlagen

Reflexion: grundlegendes Modell

$$Z_0 = \sqrt{\frac{L}{C}}$$

Zeitlicher Ablauf der Reflexionen

Mögliche Signalform bei Reflexionen

- Reflexionen führen zu Ü ber- oder Unterschwingen des Signals
- Reflexionen sind vernachlässigbar, wenn die Anstiegszeit des Signals grösser ist als die 5-fache Verzögerung der Leiterbahn.

Reflexion in der Praxis

Reflektierter Puls mit korrektem Abschluss quellenseitig

Anstieg des Ausgangssignals in zwei Stufen

Kritische Leitungslänge

 Bei kurzen Leitungen geht der Anteil der reflektierten wellen in der ansteigenden Flanke unter

$$I_{krit} = \frac{t_r}{5} \cdot c = \frac{t_r}{5} \cdot 15 \frac{cm}{ns} = t_r \cdot 3 \frac{cm}{ns}$$

Bei Leiterbahnen, die länger sind als t_r· 3cm/ns, muss mit Reflexionen gerechnet werden.

- □ Beispiel: Logikfamilie 74hcxxx
- $= t_r = 7ns$ $==> I_{krit} = 21 cm$

Reflexionsgrad

An der Last

$$r_2 = \frac{U_{2r}}{U_{2h}} = \frac{R_L - Z_0}{R_L + Z_0}$$

An der Quelle

$$r_1 = \frac{U_{1r}}{U_{1h}} = \frac{R_S - Z_0}{R_S + Z_0}$$

- Keine Last (R_L=∞)
 - $R_2 = 1$
 - □ rücklaufende Welle ist gleich gross wie hinlaufende Welle
- Kurzschluss (R_L= 0)
 - $R_2 = -1$
 - rücklaufende Welle ist negativ zur hinlaufenden Welle
- Korrekter Abschluss (R_L= Z₀)
 - $R_2 = 0$
 - Es gibt keine rücklaufende Welle

Verhindern von Reflexionen

- Abstimmen der Impedanzen
 - Quelle
 - □ Last
 - □ Ü bertragungsleitung
- Ü bliche Impedanzniveaus
 - □ 50W weit verbreitet
 - □ 75W Radio/Fernsehen
 - □ 20**W** sehr schnelle Digitalsysteme (z.B. RAMBUS)

- Quellenwiderstände im Bereich 10W
- Eingänge sehr hochohmig

Abschluss (1)

Quelle

- Quelle ist üblicherweise zu niederohmig
- Abschluss durch Hinzufügen eines Seriewiderstandes
- Keine elektrischen Nachteile
- $\bullet \quad Z_0 = R_S + R_{S1}$

Abschluss (2)

Last

- Last ist üblicherweise zu hochohmig
- Abschluss durch hinzufügen eines Parallelwiderstandes nach Masse oder VCC
- Nachteil: dauernder Stromfluss durch den Abschlusswiderstand
- Es existieren Schaltungen, die diesen Nachteil teilweise aufheben
- $Z_0 = R_L \parallel R_{L1}$

Abschluss (3)

Leitungsimpedanz

 Die Leitungsimpedanz wird nur durch die Geometrie der Leitung und das umgebende Dielektrikum bestimmt

- Folgende Parameter beeinflussen die Impedanz:
 - Breite und Höhe der Signalleiterbahn
 - Abstand des Leiters zu den nächstgelegenen Poweroder Groundplanes
 - \mathbf{e}_r des Materials, das den Leiter umgibt.

Abschlüsse in der Praxis

- Oft wird nur die Quelle abgeschlossen
 - Das Signal wird an der Last reflektiert
 - Die rücklaufende Welle wird an der Quelle ausgelöscht
 - Funktioniert gut bei Punkt-zu-Punkt Verbindungen
 - Schaltungen, die das Signal vor dem Leitungsende abgreifen, sehen die Signalflanke aufgeteilt in zwei Schritte

Microstrip

- Signalleitung über einer Groundoder Powerplane
- Für 0.1 < w/h < 2.0, $1 < \varepsilon_r < 15$ und oberhalb der Leiterbahn Luft

$$Z_0 \approx \frac{87\Omega}{\sqrt{\epsilon_r + 1.41}} \cdot \ln \frac{5.98 \text{ h}}{0.8 \text{ w} + \text{t}}$$

- Beispiel:
 - □ h=0.4mm, w=0.7mm, t=0.035mm, $e_r=4.5$
 - $\Box Z_0 = 50W$

Stripline

- Signalleitung zwischen zwei Ground- oder Powerplanes
- Für w/b < 0.35 und t/b < 0.25

$$Z_0 \approx \frac{60\Omega}{\sqrt{\epsilon_r}} \cdot \ln \frac{1.9 \text{ b}}{0.8 \text{ w} + \text{t}}$$

- Beispiel:
 - □ b=0.8mm, w=0.28mm, t=0.035mm, $e_r=4.5$
 - $\Box Z_0 = 50\Omega$

Lagenaufbau mit Microstrip

- x- und y-Verbindungen in der Nähe derselben Plane führen
- Falls dies nicht möglich ist, müssen in der Nähe von Vias Bypass-Kondensatoren zwischen den Planes gesetzt werden

Routen von schnellen Netzen

- Verzweigungen in impedanzkontrollierten Leitungen
 - Abzweigungen führen durch die andere Gesamtimpedanz zu Reflexionen
- Kurze Abzweigungen (Stubs)
 - Erzeugen auch Reflexionen.
 - Durch die kurzen Laufzeiten können sich die Auswirkungen mit der Signalflanke vermischen
 - Bauteilanschlüsse sind ebenfalls Stubs
 - Einzelne Stubs bis 10mm Länge können meist toleriert werden

Schnelle Signale sollten ohne Abzweigungen geroutet werden

Verknüpfte schnelle Signale

Abgestimmte Laufzeiten

- Allgemein
 - Setup- und Holdzeiten sind in schnellen Systemen knapp bemessen
 - Routing-Verzögerungen wirken genauso wie die Laufzeiten der Logikgatter
- Clock-Leitungen
 - Clocksignale müssen so verteilt werden, dass sie an verschiedenen
 Punkten zur selben zeit eintreffen
 - Jeder Signalpfad muss gleich viele (und identische) Gatter beinhalten
 - Die Signalverzögerung jedes Pfades muss gleich sein
 - Jede Differenz in der Signallaufzeit verringert im gleichen Mass den zulässigen Clock-Jitter

Übersprechen

- Ü bersprechen entsteht durch Kopplung von zwei Signalleitungen
- Es werden drei Kopplungsarten unterschieden
 - □ 1) galvanische Kopplung (durch ohmschen Widerstand)
 - 2) kapazitive Kopplung
 - □ 3) induktive Kopplung
- Galvanische und kapazitive Kopplung werden meist beachtet
- Induktive Kopplung wird oft vernachlässigt
- Bei schnellen digitalen Signalen stellt die induktive Kopplung das grösste Problem dar.

1) Galvanische Kopplung

- Galvanische Kopplung entsteht durch Strom in einem gemeinsamen Leiter
- Kann vermindert werden durch Aufteilen der gemeinsamen Leitung

2) Kapazitive Kopplung

- Kapazitive Kopplung entsteht dadurch, dass zwei parallele Leiter immer auch einen Plattenkondensator darstellen
- Kann vermindert werden durch grösseren Leiterabstand, und nur kurze parallele Leiterführung

3) Induktive Kopplung

- Induktive Kopplung entsteht durch überlappende Stromschleifen
- Stromschleifen müssen möglichst klein gehalten werden
 - Im Gegensatz zur Regel "Signalleitungen müssen kurz sein"

Strompfad

Strom fliesst nur in einem geschlossenen Stromkreis Dies gilt auch für digitale Signale!

- Ü bliche Regel: Signalpfad möglichst kurz halten
- Für schnelle Signale reicht dies nicht

Bypass-Kondensator

- Speisestrom für die schnelle Flanke wird aus dem Bypass-Kondensator bezogen, nicht aus der Spannungsquelle
- Bypass-Kondensator verkleinert die Stromschleife

Strompfad ohne Groundplane

- Die beiden Stromschleifen sind magnetisch stark gekoppelt
- Dadurch entsteht starkes induktives \(\begin{aligned} \text{bersprechen, wie bei einem} \)

 Transformator
- Bessere Lösung: GND-Leiter entlang der Signalleitung zurückführen

Strompfad mit Groundplane

- DC-Rückstrom folgt dem Weg des geringsten ohmschen Widerstandes
- Hochfrequenter Rückstrom folgt dem Weg der geringsten Induktivität

Strompfad mit Groundplane: Beispiel

Der Rückstrom folgt dem Pfad der kleinsten Induktivität

• Rückstrom auf direktem Weg

$$Arr R_{trace}$$
 = 250 mΩ
 $Arr R_{plane}$ = 0.9 mΩ
 $Arr L$ = 180 nH
 $Arr 1100$ mΩ @1MHz

 Rückstrom unter dem Leiter auf 1mm Breite

$$□ R_{trace}$$
 = 250 mΩ
 $□ R_{plane}$ = 50 mΩ
 $□ L$ = 60 nH
 $≈ 400$ mΩ @1MHz

Schlitz in der Groundplane

- Schlitz zwingt den Rückstrom, eine grössere Schleife zu bilden
- Das induktive I bersprechen wird dadurch stark erhöht
- Schlitze können durch zu grosse Pins / Vias gebildet werden

Bedeutung der Groundplane

- Erst eine Plane ermöglicht Leiterbahnen mit kontrollierter Impedanz
- Galvanische Kopplung über die Speisung wird stark reduziert
 - (Geringer ohmscher Widerstand)
- Kapazitive Kopplung wird reduziert
- Induktive Kopplung wird sehr stark reduziert
 - (Kleinere Sromschleifen)

Eine Groundplane bringt eine Verbesserung der Signalqualität um Faktoren

Literatur

- Prentice Hall
- ISBN: 0-133 957 24-1
- Mehr Infos
 - http://www.sigcon.com/books.htm

