PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-038985

(43)Date of publication of application: 07.02.1995

(51)Int.Cl.

H04R 3/04

(21)Application number : 05-198977

(22)Date of filing:

16.07.1993

(71)Applicant : YAMAHA CORP

(72)Inventor: ITO TSUGIO

EMOTO NAOHIRO

(54) ACOUSTIC CHARACTERISTIC CORRECTION DEVICE

(57)Abstract:

PURPOSE: To prevent production of a sense of incongruity on a listening sense with extreme correction in a device correcting a response characteristic of a reproduction system so that the response characteristic of the reproduction system is made coincident with a desired characteristic.

CONSTITUTION: A band power average arithmetic operation means 124 obtains an average power for each divided band. A band data memory 126 stores the result of measurement of a reply characteristic for plural number of times. A selection weight means 128 selects an excellent measurement result among them and applies weighting as required. An integrated average means 130 obtains an average power for each divided band of plural selected measurement results. An interpolation means 132 selects the power average for each obtained division band as the value at the center frequency of each divided band to obtain the characteristic interpolating the center frequency and outputs it as the measured characteristic.

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-38985

(43)公開日 平成7年(1995)2月7日

(51) Int.Cl.⁶

識別記号 庁内整理番号 FΙ

技術表示箇所

H04R 3/04

審査請求 未請求 請求項の数7 FD (全 22 頁)

(21)出願番号

特顏平5-198977

(22)出願日

平成5年(1993)7月16日

(71)出額人 000004075

ヤマハ株式会社

静岡県浜松市中沢町10番1号

(72)発明者 伊藤 次男

静岡県浜松市中沢町10番1号 ヤマハ株式

会社内

(72)発明者 江本 直博

静岡県浜松市中沢町10番1号 ヤマハ株式

会社内

(74)代理人 弁理士 加藤 邦彦 (外1名)

(54) 【発明の名称】 音響特性補正装置

(57)【要約】

【目的】 再生系の応答特性が希望特性に一致するよう に再生系の応答特性を補正する装置において、極端な補 正により聴感上の違和感が生じるのを防止する。

【構成】 バンドパワー平均演算手段124は応答特性 の測定結果について、分割した帯域ごとのパワー平均値 を求める。バンドデータメモリ126には複数回の応答 特性の測定結果が記憶される。選択、重み付け手段12 8 はその中から良好な測定結果を取捨選択し、必要に応 じて重み付けを行なう。集合平均手段130は選択され た複数の測定結果の分割帯域ごとのパワー平均を求め る。補間手段132は求められた分割帯域ごとのパワー 平均値をそれぞれの分割帯域の中心周波数における値と して、各中心周波数間を補間した特性を求め、これを測 定特性として出力する。

【特許請求の範囲】

【請求項1】測定用信号を出力する測定用信号発生手段と、この出力された測定用信号をスピーカで再生してマイクで収音した信号を入力して音場を含めた再生系の応答特性を測定して測定特性情報を得る応答特性測定手段と、音場を含めた再生系の応答特性の希望特性を操作者の操作に基づいて設定する希望特性設定手段と、前記希望特性と前記測定特性に基づいて当該希望特性を実現するための応答特性の補正特性を演算する補正特性演算手段と、再生しようとする音響信号に対して前記演算され 10 た補正特性を付与する補正特性付与手段とを具備してなる音響特性補正装置であって、

前記応答特性測定手段が、同一の測定用信号について測定した多点複数回の測定結果を記憶する測定結果記憶手段と、これら記憶された測定結果の平均値を算出して前記測定特性情報を得る平均特性算出手段とを具備してなる音響特性補正装置。

【請求項2】前記測定結果記憶手段に記憶された多点複数回の測定結果のうち予め定められた条件に適合するものまたは操作者の操作により選択されたものを前記平均値算出用に選択する測定結果選択手段をさらに具備してなる請求項1記載の音響特性補正装置。

【請求項3】前記多点複数回の測定結果に対し、予め設定されまたは操作者の操作により設定された重みを付して前記平均値算出用に出力する重み付け手段をさらに具備してなる請求項1または2記載の音響特性補正装置。

【請求項4】測定用信号を出力する測定用信号発生手段と、この出力された測定用信号をスピーカで再生してマイクで収音した信号を入力して音場を含めた再生系の応答特性を測定して測定特性情報を得る応答特性測定手段 30と、音場を含めた再生系の応答特性の希望特性を操作者の操作に基づいて設定する希望特性設定手段と、前記希望特性と前記測定特性に基づいて当該希望特性を実現するための応答特性の補正特性を演算する補正特性演算手段と、再生しようとする音響信号に対して前記演算された補正特性を付与する補正特性付与手段とを具備してなる音響特性補正装置であって、

前記応答特性測定手段が、周波数分割した帯域ごとの測定結果の平均値を算出する帯域平均値算出手段と、これら各分割帯域ごとに算出された平均値を個々の帯域の略 40々中心周波数における値としてそれらの間の値を補間により算出して前記測定特性情報を得る補間手段とを具備してなる音響特性補正装置。

【請求項5】前記各帯域が当該帯域の端部を相互に重複 させて分割されていることを特徴とする請求項4記載の 音響特性補正装置。

【請求項6】前記帯域分割が、帯域分割された測定用信号を時間軸上でずらして発生することにより、または測定用信号として時間引き伸しパルス信号を発生してマイクにより収音されるインパルス応答を周波数分析して分50

析結果を帯域分割することによりなされていることを特 徴とする請求項4または5記載の音響特性補正装置。

【請求項7】測定用信号を出力する測定用信号発生手段と、この出力された測定用信号をスピーカで再生してマイクで収音した信号を入力して音場を含めた再成系の応答特性を測定して測定特性情報を得る応答特性測定手段と、音場を含めた再成系の応答特性の希望特性を操作者の操作に基づいて設定する希望特性設定手段と、前記希望特性と前期測定特性に基づいて当該希望特性を実現するための応答特性の補正特性を演算する補正特性演算手段と、再生しようとする音響信号に対して前記演算された補正特性を付与する補正特性付与手段とを具備してなる音響特性補正装置であって、

前記補正特性付与手段が、周波数分割した帯域ごとに算出された測定特性と周波数分割した帯域ごとに設定された希望特性に基づいて当該希望特性を実現するための応答特性の補正情報を周波数分割した帯域ごとの補正値として算出する帯域補正値算出手段と、各帯域ごとに算出された帯域補正値を個々の帯域の略々中心周波数における値としてそれらの間の値を補間により算出して前記補正特性を得る補間手段とを具備してなる音響特性補正装置、

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、リスニングルーム等の音場を含めた再生系の応答特性(周波数応答等)を所望の特性に補正するための音響特性補正装置に関し、極端な補正により聴感上の違和感が生じるのを防止したものである。

[0002]

【従来の技術】部屋やスピーカなどを含む再生系全体の 応答特性を補正する装置として、従来はグラフィックイ コライザが一般的であった。これは、音声周波数帯域を いくつかの帯域に分割して、分割した帯域ごとにゲイン を調整するものであった。しかし、これではどのように 調整すれば再生音が希望する応答特性になるのか知るこ とができなかった。

【0003】そこで、従来のグラフィックイコライザの 欠点を解決して再生系全体の応答特性を希望特性に自動 設定できるようにしたものとして、例えば特公昭61-59004号公報に記載のものがあった。これは、使用 者が希望特性を設定するとともに、再生しようとする音 場においてホワイトノイズやインパルス等の測定用信号 を再生系のスピーカで再生し、これをマイクで収音して その応答特性を測定し、これが希望特性に一致するよう に補正特性を求めて、この補正特性に合致するイコライ ザのフィルタ特性を設定し、音楽信号をこのイコライザ を通して再生することにより、希望特性に調整された状態で音楽再生を楽しめるようにしたものである。

[0004]

【発明が解決しようとする課題】室内で応答特性を測定 すると、場所によってかなり特性に差異を生じる。これ は、室内の天井、床、壁などからの反射波が相互に位相 干渉し、周波数特性を乱すためである。また、この現象 は、波長の短い高い周波数ほどわずかな場所の違いでも 顕著である。したがって、1か所の測定ポイントのデー タに基づいて補正特性を求めてイコライザのフィルタ係 数を求めると、そのポイントでは最良の結果を与える が、その周辺まで含めたエリア(リスナの頭が動く範囲 等)としては極端なピーク・デップが生じたりして最良 10 の結果が得られないことがある。このため、リスナが少 し頭を動かしただけでもピーク・ディップが強調された 音となり聴感上違和感を与えることになる。

【0005】また、周波数ごとに細かく求められた測定 特性をそのまま用いて補正特性を求めて補正を行なう と、ピーク・ディップが強調されて聴感上違和感を与え ることがあった。

【0006】この発明は、上述の点に鑑みてなされたも ので、極端な補正により聴感上の違和感が生じるのを防 止した音響特性補正装置を提供しようとするものであ る。

[0007]

【課題を解決するための手段】請求項1記載の発明は、 多点複数回の測定結果を記憶してその平均値を算出して 測定特性を求めるようにしたものである。請求項2記載 の発明は、前記記憶された多点複数回の測定結果のうち 予め定められた条件に適合するものまたは操作者の操作 により選択されたものを用いて平均値を算出して測定特 性を求めるようにしたものである。請求項3記載の発明 は、前記記憶された多点複数回の測定結果に対し予め設 30 定されまたは操作者の操作により設定された重みを付し て平均値を算出して測定特性を求めるようにしたもので ある。

【0008】請求項4記載の発明は、応答特性の測定結 果をいくつかの周波数帯域に分割して、帯域ごとの平均 値を求め、各平均値を個々の帯域の中心周波数における 値として扱い、中心周波数相互間の値を補間により求め てこれを測定特性としたものである。請求項5記載の発 明は、前記帯域分割を相互にオーバーラップさせて行な うようにしたものである。

【0009】請求項6記載の発明は、前記帯域分割を、 測定用信号自体を帯域分割して時間軸上でずらして発生 することにより行なうか、あるいは測定用信号として時 間引き伸しパルス信号を用いる場合はその収音信号であ るインパルス応答を周波数分析して分析結果を帯域分割 して行なうようにしたものである。

【0010】請求項7記載の発明は、補正特性の演算に おいて、各帯域ごとに補正値を算出し、各補正値を個々 の帯域の中心周波数における値として扱い、中心周波数 のである。

[0011]

【作用】請求項1記載の発明によれば、多点複数回の測 定結果を記憶してその周波数ごとの平均値を算出して測 定特性を求めるようにしたので、例えばリスナの頭が動 く範囲の多数ポイントについて測定を行なってその周波 数ごとの平均値を求めて、これを測定特性として補正特 性を求めることにより、ピーク・ディップの強調されな い違和感のない補正を行なうことができる。請求項2記 載の発明によれば、複数の測定結果のうち良好な測定結 果を選択して平均値を求めることができるので、極端な 測定結果を排除して、良好な補正特性を求めることがで きる。請求項3記載の発明によれば、多点複数回の測定 結果に対して重み付けできるようにしたので、測定ポイ ントの影響度等に応じて必要な重み付けをすることによ り(例えば影響度が大きい測定ポイントのデータについ て大きい重みを付す等)、適正な補正特性を得ることが できる。

【0012】請求項4記載の発明によれば、応答特性の 測定結果をいくつかの周波数帯域に分割して、帯域ごと の平均値を求め、各平均値を個々の帯域の中心周波数に おける値として扱い、中心周波数相互間の値を補間によ り求めてこれを測定特性としたので、測定特性に位相干 渉による大きなピーク・ディップが生じるのが防止さ れ、測定特性をそのまま用いて補正特性を求めて特性補 正に用いた場合の極端な補正による聴感上の違和感が防 止される。請求項5記載の発明によれば、前記帯域分割 を相互にオーバーラップさせて行なうようにしたので、 測定特性におけるバンド間のつながりが良好となり、良 好な補正特性が得られる。請求項6記載の発明によれ ば、測定用信号自体を帯域分割して時間軸上でずらして 発生することにより、あるいは測定用信号として時間引 き伸しパルス信号を用いる場合はその収音信号であるイ ンパルス応答を周波数分析して分析結果を帯域分割する ことにより、前記帯域分割を実現することができる。

【0013】請求項7記載の発明は、補正特性の演算に おいて、各帯域ごとに補正値を算出し、各補正値を個々 の帯域の中心周波数における値として扱い、中心周波数 相互間の値を補間により求めてこれを補正特性としたの で、補正特性に大きなピーク・ディップが生じるのが防 止され、極端な補正による聴感上の違和感が防止でき、 また測定特性および希望特性は帯域ごとのデータで済む ので前段階における演算量が低減でき、しかも最終的に 求められる補正特性としてはそれほど大きな精度劣化も 生じないようにしたものである。

[0014]

40

【実施例】この発明の一実施例を以下説明する。図2は この装置全体のハードウェア構成の概要を示したもので ある。この音響特性補正装置10は本体部12とリモコ 相互間の値を補間により求めてこれを補正特性としたも 50 ン部14で構成され、両者間は着脱可能な信号ケーブル

16で接続されている。

【0015】本体部12は、応答特性の測定時は、測定用信号の発生、マイク収音信号に基づく周波数特性演算、補正特性の演算、補正特性に対応するFIRフィルタ係数の演算等を行ない、応答特性測定後のイコライザとしての使用時は、再生しようとする音響信号に対して、設定されたFIRフィルタ特性を付与することにより応答特性の補正を行なう。リモコン部14は、本体部12に対して測定時や希望特性設定時の各種動作の指示や各種応答特性(測定特性、希望特性、補正特性等)等10の表示を行なう。

【0016】本体部12において、マイク入力端子18には、応答特性の測定時に測定用マイクが接続されて、マイク収音信号が入力される。また、ソース入力端子20にはCDプレーヤ等のソース機器が接続されて、イコライザとしての使用時にソース機器から再生されるソース信号が入力される。入力部22はマイク入力やソース入力のA/D変換を行なう。出力部24はイコライザ処理されたソース信号や測定用信号(テストトーン信号)をD/A変換して出力端子26から出力する。パッチベイ部28は、測定時とイコライザ時とで、入出力その他各種信号の結線をそれぞれつなぎ変える。波形メモリ出力部30は、ROMに記憶されている測定用信号波形(バンド信号波形、TSP(Time Stretched Pulse:時間引き伸ばしパルス)信号波形)およびTSP逆フィルタ波形を読み出して出力する。

【0017】入力波形メモリ部32は、A/D変換され たマイク入力をRAMに記憶する。畳み込み演算器34 は実時間畳み込み回路(例えば、ヤマハ株式会社製LS IYM7309を多数段縦列接続して数千段の畳み込み 器を構成した回路)で構成されており、イコライザ時に はイコライザのフィルタ係数をここに転送することによ ってFIRフィルタによるイコライザを構成する。ま た、TSP信号を測定用信号として使う場合の測定時に は、TSP逆フィルタ係数を畳み込み演算部34に転送 することによりTSP逆フィルタを構成する。データ処 理計算その他制御部36はCPUで構成され、測定デー タの処理(測定特性、希望特性、補正特性の演算、補正 特性に対応するイコライザフィルタ係数の演算(フーリ エ逆変換)等)やパッチベイ部28の接続切換え、その 40 他本体部12で必要な制御およびリモコン部14のCP U42との信号のやり取り等を行なう。

【0018】リモコン部14において、操作部38は測定時や希望特性設定時、補正特性設定時に本体部12に対して必要なすべての指示を行なう。表示部40は各種応答特性の表示や操作のための表示を行なう。CPU42は本体部12のCPU36との間でデータのやり取りを行なう。

【0019】リモコン部14のパネル構成例を図3に示す。表示部40はLCD表示器等で構成され、各種応答50

6

特性がグラフ表示される。すなわち、上段のグラフ表示 部には共通のグラフ軸(横軸が周波数、縦軸がレベル) 上に測定特性が棒グラフ44で、希望特性(フラット特性の例を示す。)が線グラフ46で重ねて表示される。 また、周波数範囲を指示するカーソル62,64が縦線で表示される。また、下段には、希望特性と測定特性の差として演算される補正特性が線グラフ48で表示される。また、上段と下段の間には、操作者の操作により設定された補正周波数範囲が横棒グラフ50で表示される。この場合、補正周波数範囲外は補正特性表示48がされなくなる(あるいは0個ラインにフラットに表示される。)。グラフ表示部の上部、下部には操作者の操作を手助けするために現在の設定項目や設定内容等を表示する表示部分52,54が設けられている。

【0020】操作部38には、カーソルキー56、シャ トルキー (ロータリエンコーダ) 58、各種キースイッ チ60等が配設されている。カーソルキー56はアップ キー56a、ダウンキー56b、左カーソル選択キー5 6 c、右カーソル選択キー56 dで構成されている。左 右カーソル選択キー56c, 56dは、例えば希望特性 を修正するときや補正周波数範囲を設定するときに、表 示部40の左右カーソル62、64のいずれか一方を選 択するのに用いられる。左カーソル選択キー56cを押 してシャトル58を回すと、回した方向に左カーソル6 2が動いて周波数範囲の下限値が設定される。右カーソ ル選択キー56 dを押してシャトル58を回すと、回し た方向に右カーソル64が動いて周波数範囲の上限値が 設定される。カーソル62,64のうち選択されている ほうの位置には例えば▽マーク65が表示され、これに よりいずれが選択されているかがわかる。アップ、ダウ ンキー56a, 56bは例えば希望特性を修正するとき に用いられるもので、指定した周波数範囲についてアッ プキー56aを押すと希望特性のレベルが曲線で滑らか に徐々にアップされ、ダウンキー56bを押すと希望特 性のレベルが曲線で滑らかに徐々にダウンされる。キー スイッチ60は、設定項目の選択、測定データの選択、 実行指示その他各種の指示に用いられる。

【0021】図2の音響特性補正装置10を用いて周波数特性の測定からイコライザとして使用するまでの手順の概要を図4に示す。各工程は操作者によるモード進行操作により順次進められていく(例えば1つのキースイッチを押すごとに次の工程に進む)。各工程について概要を説明する。

【0022】② テスト

図5 (a) に示すように、音楽再生を行なう部屋70で 受聴位置71にマイク72を配置して、本機10から測定用信号を出力してパワーアンプ74を介して再生に用いるスピーカ76,78から再生し、これをマイク72で収音して収音波形を本機10内のメモリに取り込む。この測定は、必要に応じて図5(a)の右に示すように

受取位置71を中心とした複数点(例えば5点)にマイク72を移動して各位置で行なう。

【0023】② 測定特性の演算

メモリに取り込まれた収音信号に基づいて応答特性を演算する。求められた応答特性(測定特性)は、リモコン部14の表示部40に例えば図6(a)に示すようにバーグラフで表示される。

【0024】3 希望特性の設定

リモコン部14にて、表示部40を見ながら操作部38で操作して希望特性を設定する。選択されあるいは設定 10された希望特性は表示部40で図6(b)に示すように 測定特性の表示44と同一グラフ軸上に重ねて線グラフ46で表示される。希望特性として例えばこの図6

(b) に示すように、測定特性44をならしてフラットにしたような特性に設定する場合は、両特性表示が同一グラフ軸上に重ねて表示されているので、どういう希望特性にすればフラットになるか一目でわかり、設定が容易である。

【0025】 ④ 補正特性の演算

希望特性を設定すると、補正特性が希望特性と測定特性 20 との差として自動的に演算されて、表示部40に図6 (c)に示すように線グラフ50で表示される。希望特性の修正を行なっている時も、補正特性が随時演算されて表示される。

【0026】 6 補正特性の修正

補正特性のピークが大きいと聴感上違和感を生じるので、必要に応じて補正特性のレベルについて上下限値を規制する。また、使用するスピーカの再生周波数特性の限界から補正範囲に制限がある場合等は、必要に応じて補正周波数範囲を規制する(つまり、補正周波数範囲外の補正量を0dBにする)。

【0027】 ② イコライザフィルタ係数の演算 補正特性が決まったら、これをフーリエ逆変換して対応 するインパルス応答を求める。この場合、使用する状況 等に応じて、直線位相処理フーリエ逆変換、最小位相処 理フーリエ逆変換あるいはその他のアルゴリズムのフー リエ逆変換の中から任意に選択して用いる。この結果、 図6(d)や(e)に示すようなインパルス応答が求ま る。イコライザ(FIR)フィルタ係数は、このインパルス応答の時間軸上各位置におけるレベル値として与え 40 られる。このようにして、全周波帯域にわたるイコライザ特性が設定される。

【0028】 ⑦ 補正効果の確認

必要に応じて補正効果の確認を行なう。これは、求められたイコライザフィルタ係数を畳み込み演算部34にセットしてイコライザを構成し、測定用信号に対しこのイコライザで補正特性を付与してスピーカから再生して再度応答特性を測定し、表示部40上にこの測定特性と希望特性を重ねて表示して補正効果を確認する。両特性が一致するほど希望特性どおりの補正が行なわれたことに 50

なる。スピーカ特性の限界等から期待どおりの補正状態 が得られなかった場合は、必要に応じて希望特性の再修 正を行なう。

【0029】 8 音楽再生

イコライザフィルタ特性が最終的に決定されたら、図5 (b) に示すように、CDプレーヤ等のソース機器80 を接続して本機10の本体部12をイコライザとして用いて最終目的である音楽再生を行なう。

【0030】以上の手順の各工程を実現するための音響 特性補正装置10内の制御プロック構成を図1に示す。 図1では測定時の接続状態を示している。マイク入力端 子18、ソース入力端子20には、測定用マイク72、 ソース機器80がそれぞれ接続される。マイク入力端子 18から入力された測定信号はマイクアンプ82で増幅 される。スイッチ84は測定および演算時(前記①~⑦ の工程)と再生時(前記8の工程)とで切り換えられ る。A/D変換器86はマイク入力またはアナログソー ス入力をディジタル信号に変換する。スイッチ88は、 ディジタルソース入力をバイパス路90に通すためのも ので、ディジタルソース入力再生時とそれ以外のモード 時(アナログ入力再生時、測定時)とで切り換えられ る。スイッチ92は、測定時と再生時で切り換えられ る。波形メモリ32はテスト時にマイク入力を取り込む ものである。測定用信号発生器30は、測定用信号の波 形を記憶するROMで構成されている。この実施例で は、測定用信号としてバンド信号法(後述する)のバン ド信号およびTSP法(後述する)のTSP信号を記憶 しており、そのうちいずれかを操作者の選択操作に応じ て読み出せるようにされている。

【0031】スイッチ94は、再生時と、応答特性演算 時と、テスト時で切り換えられる。スイッチ96は畳み 込み演算器34を通るルートとこれをバイパスするルー ト98を切換えるもので、テスト時およびバンド信号法 における応答特性演算時はバイパス路98を選択し、T SP法における応答特性演算時、補正効果の確認時およ び音楽再生時は畳み込み演算器34を通るルートを選択 する。畳み込み演算器34は、スイッチ102の切換え により、用途が切り換えられる。すなわち、TSP法に おける応答特性演算時には、TSP逆フィルタ波形メモ リ100から読み出されるTSP逆フィルタ波形がフィ ルタ係数としてセットされて、TSP逆フィルタとし て、収音したTSP信号の時間圧縮を行ない、インパル ス応答を求める。また、補正効果の確認時および音楽再 生時には、演算で求められた補正特性に対応するイコラ イザフィルタ係数がフィルタ係数としてセットされてイ コライザとして動作する。これにより、畳み込み演算器 34が応答特性演算時のTSP法における逆フィルタと 補正効果確認時および音楽再生時のイコライザに兼用さ れるので、ハードウェア構成が簡略化される。このよう に兼用しても、応答特性演算と、補正効果確認および音

【0032】畳み込み演算器34の出力またはバイパス路98を通った出力は、加算点104を通ってスイッチ106に入力される。スイッチ106は、テスト時、補正効果確認時、音楽再生時と応答特性演算時とで切換えられる。テスト時、補正効果確認時、音楽再生時は、スイッチ106を通った測定用信号または音楽信号は、D/A変換器108およびローパスフィルタ110でアナログ信号に直されて出力端子26から出力され、パワーアンプ74を介して部屋70内のスピーカ76,78で10再生される。

【0033】応答特性演算時にスイッチ106からライ ン112に導かれた信号は、スイッチ114で測定法に 応じて振り分けられる。すなわち、TSP法の場合は、 周波数変換手段116でインパルス応答信号をフーリエ 変換して周波数情報に変換した後、バンド分割手段11 8で所定の周波数帯域(例えば1/3オクターブバンド ごと) に分割する。また、バンド信号法の場合、もとも と周波数帯域 (例えば1/3オクタープバンドごと) に 分割した状態で測定データが得られているので、そのま まバイパス路120に通される。両経路の信号は加算点 122を経てバンドパワー平均演算回路124で分割バ ンドごとのパワー平均が求められる。求められた全周波 数帯域のバンドパワーデータはバンドデータメモリ12 6に記憶される。バンドデータメモリ126は多点複数 回(例えば8回分)の測定データを記憶することができ る。各回の測定データは操作者の表示選択操作に応じて 棒グラフで表示される(図3の測定特性表示44)。

【0034】選択、重み付け手段128は、バンドデータメモリ126に記憶された多点複数回の測定データの30 うち操作者の取捨選択操作によって選択指示されたものあるいは予め定められた条件に適合したもの(例えば極端なピーク・ディップが生じてないもの等)を選択出力する。また必要に応じて受聴位置71に対する測定ポイントP1~P5の位置(図5(a))等に応じて測定データに重み付けをする。集合平均手段130は、選択、重み付けされた複数の測定データの集合平均を演算する。補間手段132は、集合平均された各バンドごとの値を各バンドの中心周波数における値として扱って、各バンドの中心周波数間を補間して全周波数帯域を連続的40で滑らかな曲線データでつないだ特性を求める。このようにして求められた補間データはRAM134に最終的な測定特性として記憶される。

【0035】ROM136には、希望特性として平均特性その他いくつかの特性が記憶されており、キースイッチ60で選択されたものが読み出される。選択された希望特性は操作者によるカーソルキー56、シャトルキー58等の操作に基づいて演算手段140にて所望の特性に修正される。修正された希望特性はバックアップ電源付RAM138に記憶されて、ROM136の特性と同50

様に随時読み出して使用することができる。

10

【0036】演算手段142は、設定された希望特性と測定特性から補正特性を演算する。補正特性は必要に応じて操作者の操作に基づいて補正レベルの上下限値規制、補正周波数範囲の規制等の修正が加えられる。イコライザフィルタ係数演算手段144は設定された補正特性に対応するイコライザフィルタ係数を算出する。算出されたフィルタ係数は、畳み込み演算器34にセットされて、音楽再生時、補正効果確認時のイコライザ特性が設定される。また、算出されたフィルタ係数はバックアップ電源付RAM146に記憶されて、随時読み出して使用することができる。また、RAMカード148にも記憶されて、他の音楽特性補正装置にこのRAMカード148を差し込むことによりこのフィルタ係数を共用できるようにされている。

【0037】表示制御手段150は演算された測定特性、希望特性、補正特性等をリモコン部14の表示部40に表示するための制御を行なう。なお、図1の各スイッチの切換え制御や畳み込み演算器34以外での各種演算は本体部12のCPU36(図2)にて実行される。【0038】次に、以上説明した図1の制御プロックによる前記図4の手順の各工程の制御について詳しく説明

【0039】① テスト

する。

室内で応答特性を測定すると、前述のように場所によってかなり特性に差異を生じる。これは、室内の天井、床、壁などからの反射波が相互に干渉し、周波数特性を乱すためである。また、この現象は、波長の短い高い周波数ほどわずかな場所の違いでも顕著である。したがって、1か所の測定ポイントのデータに基づいて補正特性を求めてイコライザのフィルタ係数を求めると、そのポイントでは最良の結果を与えるが、その周辺まで含めたエリア(リスナの頭が動く範囲等)としては極端なピーク・デップが生じたりして最良の結果が得られないことがある。

【0040】そこで、この実施例では、前記図5 (a) の右に示すように、部屋70内の受聴位置71を中心としてある測定領域73を設定して、この領域73の中に受聴位置71を含む複数の測定ポイントP1~P5を設定して、各ポイントP1~P5にマイク72を移動して測定を行ない、それらの空間平均から補正特性を求める。これにより、その領域内のいずれの位置においても平均的に良好な補正特性が得られ、補正の有効なエリアを拡大することができる。

【0041】また、この実施例では、テスト法として、前述のようにバンド信号法とTSP法のいずれか一方を操作者の選択操作に応じて選択できるようにされている。TSP法は、測定時間が短くてすみ、また分割帯域ごとの離散的な測定データでなく、連続的な測定データを得ることができる利点がある。ただし、この実施例で

は、前述のように、TSP法に用いるTSP逆フィルタとしてイコライザ用の畳み込み演算器34を兼用しているので、測定用TSP信号の長さに限界があり、この結果測定用TSP信号全体のパワーに限界があり、ノイズの多い環境下で測定に用いると、測定結果のSN比が悪くなる可能性がある。

【0042】したがって、ノイズが多い環境下や測定時間に制約を受けない場合にはバンド信号法を使用し、ノイズが少ない環境下や測定時間が限られている場合(例えば、ホール等において再生系統(スピーカ系統)が多 10数あり、バンド信号法では測定に時間を要する場合等)にはTSP法を用いるようにして、両方法を使い分けるようにする。

【0043】バンド信号法、TSP法を使用したテスト 方法についてそれぞれ説明する。

(a) バンド信号法

バンド信号法は、周波数帯域を複数分割したバンド信号 を時間をずらして順次発して、各バンドごとの応答を測 定するものである。ここでは、各バンドの帯域幅は、比 較的聴感特性に近いといわれている1/3オクターブバ 20 ンド法(つまり、各バンドが1/3オクタープバンド幅 を有する分割法)を用いている。この場合、分割ピッチ を細かく取れば分割能の高い連続データを得ることも可 能であるが、全帯域のバンド信号を発するのに膨大な時 間を要することになる。そこで、ここでは、操作者の選 択操作により分割ピッチを、図7 (a) の1/3オクタ ーブごとまたは同(b)の1/6オクターブごとのいず れかに設定して測定し、測定データを補間して連続的な データを求めている。分割ピッチを1/3オクターブピ ッチとすれば、バンド幅はオーバーラップなしとなり、 1/6オクターブピッチとすれば、バンド幅は1/3オ クターブずつオーバーラップしながら推移していく。オ ーバーラップさせれば測定データにおけるバンド間のつ ながりが良好となる。

【0044】図8に1/3オクターブバンドで1/3オクターブピッチに分割した場合の例を示す。(a)がバンド信号波形中心周波数、(b)がバンド信号波形(中心周波数が100Hzの場合)、(c)がバンド信号波形は図1の測定用信号発生器30(ROM)に記憶されており、この読み出し速度を変えることにより、各バンドの測定用信号が発生される。時間をずらして順次スピーカ76,78から発せられたバンド信号は、バンドごとにマイク72で収音されてその収音波形が図1の波形メモリ32に記憶される。

【0045】(b) TSP法

一般にホールなどのインパルス応答を測定するのに単一 パルスを用いるが、信号のパワーが小さいため、同期加 算などの手法を併用しても、SN比が充分とれないこと が多い。これに対して、TSP信号を用いると、信号パ 50 ワーが大きく、SN比をとり易い。また、逆フィルタが 容易に求まり、TSP信号の応答をインパルス応答に変 換するには、この逆フィルタとの畳み込み演算を行なえ ばよいので、畳み込み器が使える場合は、変換が容易で ある。従って、TSP信号は計測用として都合の良い特 性を持っている。

12

【0046】TSP法に用いるTSP信号は図9(a)に示すような波形をしている。このTSP波形は図1の測定用信号発生器30に記憶されており、1回の測定で1度読み出されてスピーカ76,78から再生される。再生されたTSP信号はマイク72で収音されて、その収音波形が波形メモリ32に記憶される。

【0047】② 測定特性の演算

波形メモリ30に記憶された収音波形に基づく応答特性 の演算は、テスト法に応じて次のように行なわれる。

(a) バンド信号法

バンド信号法において図1の波形メモリ30に記憶された各分割バンドごとの収音波形は、即座にスイッチ94,96、バイパス路98、加算点104、スイッチ106,114、バイパス路120、加算点122を経て、バンドパワー平均演算手段124にて分割バンドごとのバンドパワー平均が算出されて、バンドデータメモリ126に記憶される。バンドデータメモリ126には複数回分の測定データが記憶可能であり、例えば図5

(a)の右に示す5ポイントP1~P5の測定データを記憶する。選択重み付け手段128は、操作者が表示部40で個々の測定特性を見てそのうち他と極端に異なるデータを除外するなどして、データを取捨選択する。また、残されたデータについて必要に応じて重み付けをする。重み付けは、具体的には、測定ポイントが例えば図5(a)右に示す5ポイントP1~P5である場合には、中心位置(主に頭がある位置)のポイントP1を1として他のポイントP2~P5をそれぞれ0.5としたり、中心位置のポイントP1を1として他のポイントP2~P5を合計して1とする等がある。

【0048】取捨選択および重み付けされた測定データは、集合平均手段130にて集合平均がとられる。これにより、測定を行なった領域の平均的な測定データが得られる。集合平均された測定データは、分割バンドごとの離散的なデータであるので、これを補間手段132で補間して、連続的な滑らかな曲線データに直す。補間は、としては、短時間での補間が可能なスプライン補間法が適している。補間は、図10に示すように分割バンドごとにパワー平均として求められたデータを、それぞれのバンドの中心周波数における値として扱って、前後の数点の値をもとに各点間をスプライン補間して例えば4096点の補間データを求め、これを測定特性として用いる。

【0049】このように、分割バンドごとのパワー平均を求めてこれを中心周波数における値として、各点間を

スプライン補間することにより、得られる測定特性結果に有益かつ実際的な平均化が図られ、従来のように測定特性に位相干渉による大きなピーク・ディップが生じるのが防止されるので、測定特性をそのまま用いて補正特性を求めて特性補正に用いた場合の極端な補正による聴感上の違和感が防止される。このように求められた測定特性のデータは、図1のRAM134に記憶されて表示部40にて棒グラフ表示(図3の測定特性表示44)される。

【0050】(b) TSP法

TSP法において図1の波形メモリ32に記憶された収音波形は、即座にスイッチ94,96を経て畳み込み演算器34にてTSP逆フィルタ係数メモリ100に記憶された逆TSP波形(図9(b))と畳み込み演算(時間圧縮)されて、インパルス応答(図9(c))が得られる。逆TSP波形は、TSP波形(図9(a))を時間的に反転させた波形である。なお、TSP信号の時間圧縮フィルタとして畳み込み演算器34の段数が不足する場合は、時間圧縮を分割して行なうことができる。

【0051】畳み込み演算器34から出力されるインパ 20 ルス応答は、加算点104、スイッチ106, 114を 経て周波数変換手段116でフーリエ変換されて、周波 数応答特性(図9(d))が求められる。求められた周 波数応答特性は、バンド分割手段18でバンド信号法と 同様の状態(1/3オクターブバンド幅で、1/3また は1/6オクターブピッチ) にバンド分割される。バン ド分割された測定データはバンド信号法の場合と同一の 処理を受ける。すなわち、バンド分割手段118で分割 されたバンドごとの測定データは、加算点122を経 て、バンドパワー平均演算手段124にて分割バンドご とのバンドパワー平均が算出されて、バンドデータメモ リ126に記憶される。バンドデータメモリ126には 多点複数回分の測定データが記憶される。選択重み付け 手段128は、操作者が表示部40で個々の測定特性を 見てそのうち他と極端に異なるデータを除外するなどし て、データを取捨選択する。また、残されたデータにつ いて必要に応じて重み付けをする。取捨選択および重み 付けされた測定データは、集合平均手段130にて集合 平均がとられる。これにより、測定を行なった領域の平 均的な測定データが得られる。集合平均された測定デー タは、分割バンドごとの離散的なデータであるので、こ れを補間手段132でスプライン補間して、連続的な滑 らかな曲線データに直す。補間された測定データは、測 定特性としてRAM34に記憶されて、表示部40にて 棒グラフ表示される。

【0052】このように、TSP法においても測定データを一旦帯域分割してバンドごとのパワー平均をとって、補間して連続的なデータを得るようにしているので、測定特性に位相干渉による大きなピーク・ディップが生じるのが防止されるので、測定特性をそのまま用い 50

て補正特性を求めて特性補正に用いた場合の極端な補正 による聴感上の違和感が防止される。

14

【0053】以上説明した②テストおよび②測定特性の 演算における操作手順の一例を図11に示す。 はじめ に、マイク位置を設定して(S1)、テスト法としてバ ンド信号法、TSP法のいずれかを選択する(S2)。 さらに、バンド分割のピッチとして1/3オクターブバ ンドピッチ、1/6オクターブバンドピッチのいずれか を選択する(S3)。その後テスト開始ボタンを投入す 10 ると(S4)、テスト音がスピーカ76,78から再生 され、マイク72で収音されて波形メモリ32に記憶さ れる(S5)。測定結果はすぐに表示部40にて棒グラ フ表示され(S6)、操作者はこれを見て確認すること ができる。測定結果が異常(例えば大きなノイズが入っ た等) 思われる場合はそのポイントで再テストを行なう (S7, S8)。測定結果が良好なものであれば、マイ ク位置を別のポイントに移動してテストを繰り返す (S 9) 。

【0054】全てのポイントについてテストが終了したち(S10)、表示部40に収集データを順次表示して必要に応じてデータの取捨選択を行なう(S11)。選択されたデータについては必要に応じて自動または手動設定で測定ポイントごとに重み付けがなされる(S12)。そして、重み付けがされた各ポイントのデータについて集合平均値さらには補間値が自動演算されて、RAM134に最終的な1つの測定特性データとして記憶されて(S13)測定を終了する。

【0055】3 希望特性の設定

希望特性の設定フローの一例を図12に示す。リモコン部14(図3)にて希望特性設定モードを選択操作すると、表示部40にグラフスケールが表示され(S22)、RAM134に記憶されている測定特性が棒グラフ44で表示される(S23)。次いで、希望特性の選択操作をすると(S24)、対応する希望特性がROM136またはRAM138から読み出されて、表示部40に折れ線グラフ46で表示される(S25)。

【0056】ところで、リスニングルームまたはホールなどでのスピーカの伝送特性は、スピーカの指向性や部屋の残響特性により変化すると共に、聴感上の望ましい特性も、測定特性を平坦化することとは必ずしも一致しない。したがって、その部屋での望ましい特性が容易に設定できれば、便利である。例えば、大型スピーカシステムで、ホールでのPA(Public Address)用の特性として望ましい希望特性とか、家庭のリスニングルームで小型スピーカで聴く時の望ましい希望特性などを予め用意しておくことにより、簡単にその特性への補正が可能となる。

【0057】そこで、ROM136には、希望特性の一般的パターンとして例えば図13に示すように全帯域にわたり平坦な特性C1のほか、平坦特性の低域、高域を

減衰させた特性C2、低音重視特性C3、中音重視特性 C4、低高音重視特性C5などを予め用意しておけば便 利である。この場合、表示部40に特性パターン名を表 示することにより、操作者はこれを参照して所望の特性 パターンにカーソルを移動して選択操作して、対応する 特性データをROM136から読み出して希望特性とし て用いることができる。また、各種スピーカ (ホール内 PA用、野外PA用、スタジオモニター用、小型スピー カ等)や各種部屋(和室リスニングルーム、洋室リスニ ングルーム等) で分類した特性データをROM136に 10 記憶しておき、表示部40にスピーカ種類名や部屋種類 名を表示することにより、操作者はこれを参照して、使 用するスピーカ種類や部屋に応じてカーソルを移動して スピーカ種類や部屋種類を選択操作することにより、対 応する特性データをROM136から読み出して希望特 性として用いることができる。希望特性が設定された ら、演算手段142にて〔測定特性〕- [希望特性] の 演算が自動的に行われて、補正特性が求められ、表示部 40に折れ線グラフ48にて表示される(S27)。R OM136から読み出された特性データは希望特性とし 20 てそのまま使用することができるが、さらに部分的に修 正して用いることもできる。

【0058】従来のグラフィックイコライザやパラトリックイコライザの場合の特性調整法としては、図14に示すように、中心周波数F、ゲインGおよび尖鋭度Qの値を変化させて調整するのが一般的であった。この場合、調整の順序としては、中心周波数Fをまず決めて、次いでQの値を設定して、最後にゲインGを上下することになるが、3つのパラメータをそれぞれ独立に設定しながら目標の特性に合わせ込む必要があり、調整操作は30簡単ではなかった。また、Qを変化させるとその影響が全周波数範囲に及んでしまうので、Qを変化させたときに実際に特性がどのように変化するのか把握しずらく、調整しずらかった。

【0059】そこで、ここでは中心周波数を決めるのではなく、どこからどこまでという周波数範囲を設定し、その両端での特性の滑らかなつながりを保ちつつ指定範囲内の特性を上下させることで、滑らかでかつ人間の感覚に近い希望特性の特性曲線を簡単に設定できるようにしている。この設定手順を示す図12のステップS28以下の工程について説明する。

【0060】希望特性が設定された当初は、表示部40上のカーソル62,64で指示されている周波数範囲下限値または上限値のうち一方が選択されて修正可能になっている(選択されているほうに▽マーク65が表示される。)。この状態でシャトルキー58を操作すると(S28)、周波数範囲上限値、下限値のうち選択されているほうの値がシャトルキー58を回した方向に変化し(S29,S30,S31)、これにつれて表示部40上の▽マーク65が付いているほうのカーソル62ま50

たは64も同方向に移動する(S32)。

【0061】左右カーソルキー56cまたは56dを押して他方のカーソルに切り換える操作をすると(S34)、周波数範囲下限値または上限値のうち切り換えられたほうの値が修正可能となり、表示部40上のマーク65の位置も他方のカーソル側に移動する。この状態でシャトルキー58を操作すると(S28)、該当するほうの値がシャトルキー58を回した方向に変化し(S29,S30,S31)、これにつれて表示部40上のマーク65も同方向に移動する(S32)。

【0062】このようにして、周波数範囲を設定したうえでアップキー56aまたはダウンキー56bを押すと(S39)、図15(a)に示すように、設定された周波数範囲について、希望特性のレベルが押した回数または押している時間に応じて、設定された周波数範囲の中央位置をピークとして曲線で増大または減少していき(S40,S41)、表示部40における希望特性の表示もこれにつれて変化していく。このような修正方法によれば、周波数範囲の指定とレベルの増減量の指定だけですむので操作が簡単である。また、指定した周波数範囲外にはり実際に特性がどのように変化するのか把握しやすく、希望もりの特性に修正するのが容易である。なお、希望特性を修正する演算は図1の演算手段10で行なわれる。

【0063】演算手段10での具体的な修正処理のアルゴリズムとしては、例えば周波数範囲に応じてどのような修正曲線で増減すれば操作感覚と実際の特性の変化が一致するかを検討して周波数範囲に応じた修正曲線を予めテーブルに設定しておき、設定された周波数範囲に応じて対応する修正曲線をテーブルから読み出して増減指示量に応じたゲインを付与して用いるようにすることができる。このようにすることにより、レベルの増減操作の感覚と実際の特性の変化状態が一致し、所望の希望特性への修正操作が容易となる。

【0064】なお、周波数範囲下限値を全周波数帯域の最低周波数に設定した状態でアップキー56aまたはダウンキー56bを押すと、希望特性は図15(b)に示すように、低域側が片上りまたは片下りの状態に変化していく。同様に、周波数範囲上限値を全周波数帯域の最高周波数に設定した状態でアップキー56aまたはダウンキー56bを押すと、希望特性は図15(c)に示すように、高域側が片上りまたは片下りの状態に変化していく。これらの場合も、例えば周波数範囲および増減量に応じた片上りまたは片下りの修正曲線を予めテーブルに設定しておき、設定された周波数範囲に応じて対応する修正曲線をテーブルから読み出して増減指示量(アップ、ダウンキー56a,56bを押した回数)に応じたゲインを付与して用いるようにすることができる。

【0065】以上のようにして希望特性を修正したら、

キースイッチ60を押す(S42)ことにより特性設定ルーチンから抜け、この時、特性決定および設定完了となる(S43)。なお、決定した特性は必要に応じて記憶指示することにより、これを修正希望特性情報としてバックアップ電源付RAM138の指示領域に記憶して、いつでも読み出して用いることができる。したがって、希望特性を切り換えるたびに調整し直す必要はない。

【0066】希望特性を修正する別の修正方法を説明す る。希望特性を設定したときに、このまま補正特性を求 10 めてイコライジングをすると補正し過ぎると感じる場合 がある。そこで、図16に示すように、当初設定した希 望特性(前記図15のように修正された希望特性でもよ い)と測定特性との間の中間的な特性を演算手段140 で自動演算してこれを修正希望特性として新たに設定し て用いることができる。具体的には、例えば当初設定し た希望特性と測定特性との各周波数における差(すなわ ち各周波数の補正値)を20等分し、このステップに従 い、アップキー56aまたはダウンキー56bを押すご とに希望特性を測定特性に徐々に近づけたり、またはそ の逆に元の希望特性へ徐々に戻していくような特性変化 を算出表示して、所望の特性になったとき、これを新た な希望特性として設定する。図17はこの時の演算過程 を示したものである。まず、測定特性Nbと当初設定さ れた希望特性Dbとの差を求め(S51)、この差Eb に〔アップキー56aまたはダウンキー56bを押した 回数〕÷20を掛けて希望特性の修正量 ΔEbを求め (S52)、この修正量△Ebを希望特性Dbに加算し てDb+ΔEbを求め(S53)、これを新たな希望特 性として用いる(S54)。このようにすることによ り、当初の希望特性Dbほどは補正しない中間的な補正 値を全周波数帯域において簡単な操作でバランスよく設 定することができる。このようにして作られた中間的な 特性もRAM136で記憶することができる。

【0067】 ④ 補正特性の演算

補正特性は、希望特性を設定することにより演算手段142にて測定特性との差として自動的に演算されて表示部40に表示される。

【0068】 5 補正特性の修正

例えば図18(a)に示す測定特性に対して0dBフラッ 40トの希望特性を設定したとすると、補正特性は同(b)に示すように大きなピーク・ディップが生じたものとなる。このピーク・ディップは測定環境下における僅かな変化に起因するものであることが多く、このような補正特性をそのまま用いてイコライジングすると、大きく補正した部分(同(b)中に〇で示した部分)では、環境の僅かな変化(例えば空気の温度・湿度の影響による周波数特性の僅かなずれ)で、その補正がもはや真の補正となり得ず、逆に通常は生じ得ないような、同(c)に示すごとく補正誤差が大きくなり、かえってくせのある 50

特性になってしまう。そこで、操作者の操作により補正 特性のレベルの上下限値を任意の値(例えば±10dB) に設定する。これにより、図1の補正特性演算手段14 2は図18(d)に示すように補正特性の上下限値をこ の設定された値に規制して必要以上の補正を行なわない ようにして補正誤差の増大を防止する。また、これによ り、補正特性の+側の最大値が制限されるので、最大入 力を押え、パワーアンプ、スピーカなど系全体の歪をお

18

【0069】また、使用するスピーカの再生周波数特性の限界から補正範囲に制限を受ける場合は、演算された補正特性に基づいてそのままスピーカを駆動すると、スピーカに過負荷がかかる場合もあるので、操作者の操作により周波数範囲を設定して、その範囲内だけ補正特性を生かし、範囲外は0dBフラットとすることにより補正が行なわれないようにする。補正を行なう周波数範囲は、図3の表示部40に補正周波数範囲表示50として横棒グラフで表示される。

さえることができる。

【0070】以上のようにして、測定データが得られて から最終的な補正特性が決まるまでの各段階での具体的 な演算過程の一例を図19に示す。図1のバンドデータメモリ126に記憶されている複数回の測定データの中から取捨選択して測定特性の算出に用いるデータを選び出し(S61)、重み付けする。選び出されたデータを が M らとする。但し、iは測定番号で、i=1~Nとする。bは全周波数帯域を分割したバンド番号でb=1~Bとする。Bはこの実施例では31または61である。

【0071】複数のデータが選び出されたら、集合平均 手段130にてそれらのバンドごとの集合平均として

$$M = - \sum_{b}^{1} M$$

を求める(S62)。そして、この集合平均の全バンドの平均値として

$$M = -\sum_{B \ b=1}^{1} M$$

を求める(S63)。さらに、正規化した平均測定データとして

$$N_b = M_b - M$$

を求め(S64)、これを測定特性として表示部40に表示する。この測定特性Nbはスプライン補間されて連続データとされる。正規化により、測定特性Nbの平均値は常に0dBになるように調整され、収音レベルが小さくても表示部40上での測定特性表示は常に略々同一レベル上に来るようになり、希望特性表示との対比がしやすくなる。

【0072】操作者の操作により希望特性Dbが設定さ

れると(S65)、演算手段142において補正特性と して

 $E_b = N_b - D_b$

が求められる(S66)。ここでの測定特性Nbはスプ ライン補間された後のデータである。そして、この補正 特性の全バンドの平均値として

$$E = - \sum_{B = 1-1}^{1} E$$

を求める(S67)。さらに、演算手段142は正規化 10 した補正特性として

$$F_b = E_b - E$$

を求める(S68)。正規化により、補正特性Fbの平 均値は常にOdBになるように調整され、これにより全体 として補正前、補正後の音は音質が変わるだけで音量は 変わらなくなる。

【0073】求められた補正特性Fbに対しては、前記 図18(d)のレベルの上限値および下限値を規制する 処理を行なう(S69)。また、ステップS66~S6*20

*9の工程は、前記図18 (e) の指定された周波数範囲 内についてのみ行なう。指定された周波数範囲外につい ては、補正特性をOdBフラットにする処理が別途行なわ れる(S70)。このようにして最終的に定められた補 正特性は畳み込み用(イコライザ用)フィルタ係数算出 のためのルーチンへ行く(S71)。

20

【0074】⑥ イコライザフィルタ係数の演算 音響特性補正用のFIRフィルタのアルゴリズムには、 それぞれ長所、短所があり、使用目的によっては使えな い場合がある。そこで、ここではFIRフィルタとし て、直線位相フィルタ(Linear Phase Filter)、最小 位相フィルタ (Minimum Phase Filter) のいずれか一方 を操作者の選択操作に応じて選択できるようにしてい る。直線位相フィルタおよび最小位相フィルタのインパ ルス応答は例えば前記図6 (d), (e) に示したとお りであり、両者の長所、短所はそれぞれ次のとおりであ

[0075]

<u> 伝送特性</u> 遅延量 フィルタ係数算出の容易さ

× (大)

直線位相フィルタ

0 最小位相フィルタ

Δ

0

◎ (小) Δ

これによれば、直線位相フィルタは伝送特性が良く、フ 均を求める。

イルタ係数算出も容易であるが、遅延が大きすぎて (図 6 (d) 参照)、PAやミックスダウンなどリアルタイ ム性が必要な場合は使えない(生の音とイコライジング した音が時間的にずれてしまうため)。また、最小位相 フィルタは伝送特性やフィルタ係数算出の容易さという 点では直線位相フィルタより劣るが、遅延はほとんどな 30 いので(図6 (e) 参照)、リアルタイム性が必要な場 合に向いている。したがって、使用目的に応じて操作者 がいずれかのアルゴリスムを選択できるようにして、1 つの機器を様々な場面で使用できるようにしている。

【0076】いずれにせよ、補正特性付与はディジタル 畳み込み演算を用いたFIRフィルタを利用しているの・ で、アルゴリズムを切り換えるだけで直線位相フィル タ、最小位相フィルタ、あるいはその他の特別な特性を 付与でき、使用目的にあった仕様変更は極めて容易であ り、また、必要に応じて任意に演算精度を高めれば、補 40 正精度も任意に設定でき、この種音響特性補正装置にお いてFIR補正手段を用いた実用上の効果は大きい。

【0077】イコライザフィルタ係数演算手段144に おいて補正特性からフーリエ逆変換等を利用して直線位 相フィルタのインパルス応答および最小位相フィルタの インパルス応答を算出する手順の一例を説明する。

【0078】(A) 直線位相フィルタのインパルス応 答の算出

補正特性を一旦帯域分割して(例えば1/3~1 /12オクターブピッチごと)、各帯域ごとのパワー平 50 iv) iii)で得られた複素形式データをフーリエ逆変換

- 求められたパワー平均値をそれぞれの帯域の中心 周波数における値として用いてスプライン補間等によ り、フーリエ変換が可能なような4096点のデータに 補間する。
- iii) ii) で求められたデータを実部(振幅項に相 当)とし、虚部(位相項に相当)はすべて0にした複素 形式データに対してフーリエ逆変換をする。
- その結果得られる複素形式データの実部はそのま ま直線位相インパルス応答となるので、これらをFIR フィルタ(畳み込み演算器34)の係数としてセットす

【0079】(B) 最小位相フィルタのインパルス応 答の算出

- 補正特性を一旦帯域分割して(例えば1/3~1 /12オクターブピッチごと)、各帯域ごとのパワー平 均を求める。
- 求められたパワー平均値をそれぞれの帯域の中心 周波数における値として用いてスプライン補間等によ り、フーリエ変換が可能なような4096点のデータに 補間する。
- iii) で求められたデータを実部とし、虚部はす べて0にした複素形式データに対してヒルベルト変換を 施し、補正特性曲線に合致しかつ最小位相推移系となる 複素形式データを算出する。この複素形式データは、虚 部上に必要な位相成分が付加されている。

する。

v) その結果得られる複素形式データの実部は最小位相インパルス応答となるので、これらをFIRフィルタ(畳み込み演算器34)の係数としてセットする。

【0080】なお、直線位相フィルタ、最小位相フィルタのほかにその中間的な特性のフィルタなどを用意して、その中から任意のものを選択することもできる。

【0081】⑦ 補正特性の確認

以上のような手順でFIRフィルタ34の係数を設定して補正効果の確認を行なった結果と図20に示す。

(a) は各測定ポイントP1~P5(図5参照)における当初の(すなわちイコライジングなしの)測定結果である。(b) は各ポイントP1~P5の測定データを同じ重み漬けで集合平均した測定特性および操作者により任意に設定された希望特性である。(c) は(b)の希望特性との差として求められた補正特性である。この補正特性に基づいて算出したFIRフィルタ係数を畳み込み演算器 34にセットしてイコライザを構成し、測定用信号(バンド信号またはTSP信号)をこのイコライザを通して再生して再度測定を行なう。各測定ポイントP1~P5にて測定した結果を図20(d)に示す。これによれば(a)の補正前とし比べて、どの測定ポイントにおいても相応の特性補正がなされており、これらのポイントを含むエリアについて最適な補正がなされたことが確認できた。

【0082】 8 音楽再生

測定用信号に代えて音楽ソースを入力してイコライザ (畳み込み演算器34)に通して再生することにより、 希望特性どおりの再生特性で音楽鑑賞を楽しむことがで きる。

[0083]

【変更例】なお、上述した実施例では、測定特性の演算にあたり、バンド信号法およびTSP法のいずれの場合でも分割バンドごとに求めた平均値に対して例えばスプライン補間等を施して測定特性を求めるとともに、補正特性を実現するFIRフィルタ係数を演算する際に再びバンド分割するようにしたが、特にこれに限られるものではない。

【0084】すなわち、得られた測定特性を高精度で表示したり、あるいは測定特性を別途利用しようとする場 40 合には、分割バントデータのままでは些か利用しにくいが、それ以外であれば、補正特性を演算する際にスプライン補間を行うようにして、それ以前の測定特性の演算の際の補間処理を省略または簡略化することができる。図21に測定特性の演算の際の補間処理を簡略化した場合を示す。ここでは、測定特性演算時の補間は、1/3 オクターブバンドまたは1/6オクターブバンドのデータを1/12オクターブバンドデータとなるようにスプライン補間するにとどめ、その後1/12オクターブバンドデータのまま集合平均化を行ない、希望特性も1/50

12オクターブバンドデータの形で設定供給している。 そして、補正特性演算も最初は1/12オクターブバン ドデータのままで算出し、その後この1/12オクター ブバンドデータの補正特性にスプライン補間を施し40 96点からなる補正特性を算出し、これをフーリエ逆変 換して補正用FIRフィルタ係数を求めている。すなわ ち、周波数分割した帯域ごとに算出された測定特性と周 波数分割した帯域ごとに設定された希望特性に基づいて 補正情報を周波数分割した帯域ごとの補正値として算出 し、各帯域ごとに算出された補正値を個々の帯域の略々 中心周波数における値としてそれらの間の値を補間によ り算出して、補正特性を得るようにしたので、補正特性 に大きなピーク・ディップが生じるのが防止され、極端 な補正による聴感上の違和感が防止できることは当然と して、4096点補間した測定特性に基づいてそのまま 補正特性を演算する場合等に比べて演算量が格段に低減 でき、しかも最終的に求められる補正特性としてはそれ

ほど大きな精度劣化も生じないので、効果的である。

【0085】なお、ホール等において多数のスピーカ系 統が存在する場合にはスピーカ系統ごとに補正装置が必 要であるが、図1、2に示す応答特性測定機能付き音楽 特性補正装置10を各系統ごとに用いたのでは設備コス トが高くつく可能性がある。そこでそのような場合に は、図21に示すように、応答特性測定機能付き音響特 性補正装置10を1系統分だけ用意し、他は応答特性測 定機能の付いてない音響特性補正機能だけ有する拡張ユ ニット11を用いることができる。この場合、各系統5 Y1~SYnについて応答特性の測定を行なうときは、 応答特性測定機能付き音響特性補正装置10を用いて、 これに各系統SY1~SYnを順次つなぎ換えて測定を 行ない、測定結果を補正装置10の本体部12に蓄え て、補正装置10にて各系統の希望特性の設定、補正特 性の演算およびFIRフィルタ(イコライザ)係数の演 算を行なって、FIRフィルタ係数の演算結果を通信ケ ーブル13またはRAMカード148を使って対応する 系統の拡張ユニット11に転送する。そして、各拡張ユ ニット11は転送されたFIRフィルタ係数を畳み込み 演算器34にセットすることにより、希望特性どおりの イコライジングを行なうことができる。これによれば、 拡張ユニット11には特性測定および希望特性の設定、 補正特性の演算、修正、FIRフィルタ係数の演算のた めの構成は不要なので、簡易に構成でき、設備コストを 下げることができる。

【0086】また、上記実施例では、測定用マイクの周波数特性が平坦であるものとして説明したが、特性が平坦でない場合は、測定データに対しマイクの特性と逆の特性を付与することにより見かけ上特性が平坦なマイクを使ったのと同等の測定を行なうことができ、これにより安価なマイクを用いて測定することができる。

[0087]

観図である。・

【発明の効果】以上説明したように、請求項1記載の発 明によれば、多点複数回の測定結果を記憶してその周波 数ごとの平均値を算出して測定特性を求めるようにした ので、例えばリスナの頭が動く範囲の複数ポイントにつ いて測定を行なってその周波数ごとの平均値を求めて、 これを測定特性として補正特性を求めることにより、ピ ーク・ディップの強調されない違和感のない補正を行な うことができる。請求項2記載の発明によれば、多点複 数回の測定結果のうち良好な測定結果を選択して平均値 を求めることができるので、極端な測定結果を排除し て、良好な補正特性を求めることができる。請求項3記 載の発明によれば、多点複数回の測定結果に対して重み 付けできるようにしたので、測定ポイントの影響度等に 応じて必要な重み付けをすることにより(例えば影響度 が大きい測定ポイントのデータについて大きい重みを付 す等)、適正な補正特性を得ることができる。

【0088】請求項4記載の発明によれば、応答特性の 測定結果をいくつかの周波数帯域に分割して、帯域ごと の平均値を求め、各平均値を個々の帯域の中心周波数に おける値として扱い、中心周波数相互間の値を補間によ 20 り求めてこれを測定特性としたので、測定特性に位相干 渉による大きなピーク・ディップが生じるのが防止さ れ、測定特性をそのまま用いて補正特性を求めて特性補 正に用いた場合の極端な補正による聴感上の違和感が防 止される。請求項5記載の発明によれば、前記帯域分割 の相互にオーバーラップさせて行なうようにしたので、 測定特性におけるバンド間のつながりが良好となり、良 好な補正特性が得られる。請求項6記載の発明によれ ば、測定用信号自体を帯域分割して時間軸上でずらして 発生することにより、あるいは測定用信号として時間引 30 き伸しパルス信号を用いる場合はその収音信号であるイ ンパルス応答を周波数分析して分析結果を帯域分割する ことにより、前記帯域分割を実現することができる。

【0089】請求項7記載の発明は、補正特性の演算に おいて、各帯域ごとに補正値を算出し、各補正値を個々 の帯域の中心周波数における値として扱い、中心周波数 相互間の値を補間により求めてこれを補正特性としたの で、補正特性に大きなピーク・ディップが生じるのが防 止され、極端な補正による聴感上の違和感が防止でき、 また測定特性および希望特性は帯域ごとのデータで済む ので前段階における演算量が低減でき、しかも最終的に 求められる補正特性としてはそれほど大きな精度劣化も 生じないようにしたものである。

【図面の簡単な説明】

【図1】 この発明の一実施例を示すブロック図で、図 2の音響特性補正装置10の制御構成を示すものであ

【図2】 この発明が適用された音響特性補正装置10 内のハードウエア構成を示すブロック図である。

【図3】 図2のリモコン部14のパネル構成を示す外 50 72 マイク

【図4】 図1の音楽特性補正装置による特性測定から イコライザとして使用するまでの手順の概要を示すフロ ーチャートである。

24

【図5】 図2の音響特性補正装置を用いて音響特性の 測定を行なうときの機器の接続状態およびマイク配置 と、イコライザとして音楽再生に用いる時の機器の接続 状態を示す図である。

【図6】 図4の工程における各種特性を示す図であ 10 る。

【図7】 測定時の帯域の分割状態を示す図である。

【図8】 バンド信号法で用いられるバンド信号を示す 図である。

【図9】 TSP法の概要を示す図である。

【図10】 分割された帯域ごとのデータに基づいて帯 域間を補間して連続した測定特性を得る手法を説明する 図である。

【図11】 テストおよび測定特性の演算における操作 手順の一例を示すフローチャートである。

【図12】 希望特性の設定手順を示すフローチャート である。

【図13】 ROMに用意されている希望特性の各種パ ターンを示す図である。

【図14】 従来のグラフィックイコライザやパラメト リックイコライザにおける特性調整手法を示す図であ る。

【図15】 希望特性の修正手法を示す図である。

希望特性を修正する別の手法を示す図であ 【図16】 る。

【図17】 図16の手法を実現するための演算過程を 示すフローチャートである。

【図18】 補正特性の修正手法を示す図である。

【図19】 測定データが得られてから補正特性が決ま るまでの各段階での演算過程の一例を示すフローチャー トである。

【図20】 測定特性、補正特性および補正効果の実測 値を示す図である。

【図21】 補正特性を得る別の手法を示す図である。

【図22】 多数のスピーカ系統が存在する場合のこの 発明の一実施例を示すブロック図である。

【符号の説明】

10 音響特性補正装置

30 測定用信号発生器 (測定用信号発生手段)

32, 118, 124, 128, 130, 132 応答 特性測定手段

34 畳み込み演算器 (補正特性付与手段)

38 操作部(希望特性設定手段)

70, 76, 78 部屋、スピーカ (音場を含めた再生 系)

76,78 スピーカ

118 バンド分割手段

124 バンドパワー平均演算回路 (帯域平均値算出手

段)

126 バンドデータメモリ (測定結果記憶手段)

*128 選択、重み付け手段(測定結果選択手段、重み付け手段)

130 集合平均手段(平均特性算出手段)

132 補間手段

142 補正特性演算手段

【図1】

【図2】

【図16】

【図11】

【図12】

【図17】

[図18]

【図22】

