Definiciones de Lógica 2017

Agustín Curto

Part I

Estructuras algebráicas ordenadas

1 Posets

ORDEN PARCIAL: Sea $P \neq \emptyset$ cualquiera, una relación binaria \leq sobre P será llamada un **orden parcial** sobre P si se cumplen las siguientes condiciones:

- 1. \leq es **reflexiva**, i.e $a \leq a \ \forall a \in P$.
- 2. \leq es **antisimétrica**, i.e si $a \leq b$ y $b \leq a \Rightarrow a = b \ \forall a, b \in P$.
- 3. \leq es **transitiva**, i.e si $a \leq b$ y $b \leq c \Rightarrow a \leq c \ \forall a, b, c \in P$.

POSET: Un conjunto parcialmente ordenado o **poset** será un par (P, \leq) donde:

- $P \neq \emptyset$ cualquiera
- \leq es un orden parcial sobre P

RELACIONES BINARIAS <, \prec : Dado un poset (P, \leq) definimos , \prec sobre P de la siguiente manera:

$$\begin{array}{ll} a < b & \Leftrightarrow & a \leq b \ y \ a \neq b \\ a \prec b & \Leftrightarrow & a < b \ y \ \nexists z \ a < z < b \end{array}$$

DEFINICIONES: Sea (P, \leq) un poset, entonces:

- Maximal: $a \in P$ es un elemento maximal de (P, \leq) si $a \nleq b, \forall b \in P$.
- Minimal: $a \in P$ es un elemento minimal de (P, \leq) si $b \nleq a, \forall b \in P$.
- Máximo: $a \in P$ es el elemento máximo de (P, \leq) si $b \leq a, \forall b \in P$.
- Mínimo: $a \in P$ es el elemento mínimo de (P, \leq) si $a \leq b$, $\forall b \in P$.

Dado $S \subseteq P$:

- Cota superior: $a \in P$ es cota superior de S en (P, \leq) cuando $b \leq a, \forall b \in S$.
- Cota inferior: $a \in P$ es cota inferior de S en (P, \leq) cuando $a \leq b, \forall b \in S$
- Supremo: $a \in P$ será llamado supremo de S en (P, \leq) cuando se den las siguientes condiciones:
 - 1. a es a cota superior de S en (P, \leq)
 - 2. Para cada $b \in P$, si b es una cota superior de S en $(P, \leq) \Rightarrow a \leq b$.

- Ínfimo: $a \in P$ será llamado ínfimo de S en (P, \leq) cuando se den las siguientes condiciones:
 - 1. a es a cota inferior de S en (P, \leq)
 - 2. Para cada $b \in P$, si b es una cota inferior de S en $(P, \leq) \Rightarrow b \leq a$.

HOMOMORFISMO E ISOMORFISMO DE POSETS: Sean (P, \leq) y (P', \leq') posets

- Una función $F: P \to P'$ será llamada un **homomorfismo** de (P, \leq) en (P', \leq') si $\forall x, y \in P$ se cumple que $x \leq y \Rightarrow F(x) \leq' F(y)$.
- Una función $F: P \to P'$ será llamada un **isomorfismo** de (P, \leq) en (P', \leq') si F es **biyectiva** y tanto F como F^{-1} son **homomorfismos**.

2 Reticulados

RETICULADO:

1. Un conjunto parcialmente ordenado (L, \leq) es un **reticulado** si $\forall a, b \in L$, existen $\sup(\{a, b\})$ e $\inf(\{a, b\})$. Se definen:

$$a ext{ s } b = \sup(\{a, b\})$$

 $a ext{ i } b = \inf(\{a, b\})$

2. Una terna (L, s, i), donde $L \neq \emptyset$ cualquiera, $x, y, z \in L$ cualquieras y s e i son dos operaciones binarias sobre L será llamada **reticulado** cuando cumpla las siguientes identidades:

- (I1) $x \circ x = x i x = x$
- (I2) $x \circ y = y \circ x$
- (I3) x i y = y i x
- (I4) $(x \circ y) \circ z = x \circ (y \circ z)$
- (I5) (x i y) i z = x i (y i z)
- (I6) $x \circ (x \mid y) = x$
- (I7) x i (x s y) = x

SUBRETICULADO: Dado (L, s, i) reticulado, diremos que (L', s', i') es subreticulado de (L, s, i) si:

- $L \subset L'$
- $\bullet \ \mathsf{s} = \mathsf{s}'|_{L \times L} \ \mathsf{y} \ \mathsf{i} = \mathsf{i}'|_{L \times L}$

Un conjunto $\emptyset \neq S \subseteq L$ será llamado **subuniverso** de $(L, \mathsf{s}, \mathsf{i})$ si es cerrado bajo las operaciones s e i , es decir, $x \mathsf{s} y, x \mathsf{i} y \in S$. Es fácil notar si S es subuniverso de $(L, \mathsf{s}, \mathsf{i})$ entonces $(S, \mathsf{s}|_{S \times S}, \mathsf{i}|_{S \times S})$ es **subreticulado** de $(L, \mathsf{s}, \mathsf{i})$.

HOMOMORFISMO E ISOMORFISMO DE RETICULADOS: Sean (L, s, i) y (L', s', i') reticulados.

• Una función $F:L\to L'$ será llamada un **homomorfismo** de $(L,\mathsf{s},\mathsf{i})$ en $(L',\mathsf{s}',\mathsf{i}')$ si $\forall x,y\in L$ se cumple que:

$$F(x s y) = F(x) s' F(y)$$

 $F(x i y) = F(x) i' F(y)$

• Una función $F: L \to L'$ será llamada un **isomorfismo** de (L, s, i) en (L', s', i') si F es **biyectiva** y tanto F como F^{-1} son **homomorfismos**.

CONGRUENCIAS DE RETICULADOS: Sea (L, s, i) un reticulado, una congruencia sobre (L, s, i) será una relación de equivalencia θ la cual cumpla:

$$x\theta x' y y\theta y' \Rightarrow (x s y)\theta(x' s y') y (x i y)\theta(x' i y')$$

Definimos, sobre L/θ , \tilde{s} e \tilde{i} , de la siguiente manera:

$$x/\theta \tilde{s} y/\theta = (x s y)/\theta$$

 $x/\theta \tilde{i} y/\theta = (x i y)/\theta$

KERNEL: Dada una función $F:A\to B$, llamaremos núcleo de F a la relación de equivalencia binaria:

$$\ker F = \{(a, b) \in A^2 : F(a) = F(b)\}\$$

PROYECCIÓN CANÓNICA: Si R es una relación de equivalencia sobre un conjunto A, definimos la función:

$$\pi_R: A \to A/R$$
 $a \to a/R$

3 Reticulados Acotados

RETICULADO ACOTADO: Sea (L, s, i, 0, 1), donde $L \neq \emptyset$, s e i operaciones binarias sobre L y $0, 1 \in L$, será llamada un **reticulado acotado** si (L, s, i) es un reticulado y además se cumplen las siguientes identidades:

- (I8) 0 s x = x, para cada $x \in L$
- (I9) $x ext{ s } 1 = 1$, para cada $x \in L$

SUBRETICULADO ACOTADO: Dado (L, s, i, 0, 1) reticulado acotado, diremos que (L', s', i'), 0', 1' es subreticulado acotado de (L, s, i, 0, 1) si:

- $L \subset L'$
- 0 = 0' y 1 = 1'
- $\mathbf{s} = \mathbf{s}'|_{L \times L} \ \mathbf{y} \ \mathbf{i} = \mathbf{i}'|_{L \times L}$

Un conjunto $\emptyset \neq S \subseteq L$ será llamado **subuniverso** de (L, s, i, 0, 1) si es cerrado bajo las operaciones s e i, es decir, x s y, x i $y \in S$. Es fácil notar si S es subuniverso de (L, s, i, 0, 1) entonces $(S, s|_{S \times S}, i|_{S \times S}, 0, 1)$ es **subreticulado** de (L, s, i, 0, 1).

HOMOMORFISMO E ISOMORFISMO DE RETICULADOS ACOTADOS: Sean (L, s, i, 0, 1) y (L', s', i', 0', 1') reticulados acotados.

• Una función $F: L \to L'$ será llamada un **homomorfismo** de (L, s, i, 0, 1) en (L', s', i', 0', 1') si $\forall x, y \in L$ se cumple que:

$$F(x s y) = F(x) s' F(y)$$

$$F(x i y) = F(x) i' F(y)$$

$$F(0) = 0'$$

$$F(1) = 1'$$

• Una función $F: L \to L'$ será llamada un **isomorfismo** de (L, s, i, 0, 1) en (L', s', i', 0', 1') si F es **biyectiva** y tanto F como F^{-1} son **homomorfismos**.

CONGRUENCIAS DE RETICULADOS ACOTADOS: Sea (L, s, i, 0, 1) un reticulado, una congruencia sobre (L, s, i, 0, 1) será una relación de equivalencia θ la cual cumpla:

$$x\theta x' y y\theta y' \Rightarrow (x s y)\theta(x' s y') y (x i y)\theta(x' i y')$$

Definimos, sobre L/θ , \tilde{s} e \tilde{i} , de la siguiente manera:

$$x/\theta \ \tilde{s} \ y/\theta = (x \ s \ y)/\theta$$

 $x/\theta \ \tilde{i} \ y/\theta = (x \ i \ y)/\theta$

4 Reticulados Complementados

COMPLEMENTO: Sea (L, s, i, 0, 1) un reticulado acotado. Dado $a \in L$, diremos que a es **complementado**, si $\exists b \in L$ tal que:

$$a ext{ s } b = 1$$

 $a ext{ i } b = 0$

RETICULADO COMPLEMENTADO: $(L, s, i, {}^c, 0, 1)$, donde $L \neq \emptyset$, s e i son operaciones binarias sobre L, c es una operación unaria sobre L y $0, 1 \in L$, será llamada un **reticulado complementado** si (L, s, i, 0, 1) es un reticulado acotado y además:

- (I10) $x \mathbf{s} x^c = 1$, para cada $x \in L$
- (I11) $x i x^c = 0$, para cada $x \in L$

SUBRETICULADO COMPLEMENTADO: Dado $(L, s, i,^c, 0, 1)$ reticulado complementado, diremos que $(L', s', i'),^{c'}, 0', 1'$ es subreticulado complementado de $(L, s, i,^c, 0, 1)$ si:

- $L \subseteq L'$
- 0 = 0' y 1 = 1'
- $\bullet \ \mathbf{s} = \mathbf{s'}|_{L \times L}, \ \mathbf{i} = \mathbf{i'}|_{L \times L} \ \mathbf{y}^{\ c} = ^{c'}|_{L}$

Un conjunto $\emptyset \neq S \subseteq L$ será llamado **subuniverso** de $(L, \mathsf{s}, \mathsf{i}, {}^c, 0, 1)$ si es cerrado bajo las operaciones s , i y c , es decir, $x \mathsf{s} y, x \mathsf{i} y, x^c \in S$. Es fácil notar si S es subuniverso de $(L, \mathsf{s}, \mathsf{i}, {}^c, 0, 1)$ entonces $(S, \mathsf{s}|_{S \times S}, \mathsf{i}|_{S \times S}, {}^c|_S, 0, 1)$ es **subreticulado** de $(L, \mathsf{s}, \mathsf{i}, {}^c, 0, 1)$.

HOMOMORFISMO E ISOMORFISMO DE RETICULADOS COMPLEMENTA-DOS: Sean (L, s, i, c, 0, 1) y (L', s', i', c', 0', 1') reticulados complementados.

• Una función $F: L \to L'$ será llamada un **homomorfismo** de (L, s, i, 0, 1) en (L', s', i', 0', 1') si $\forall x, y \in L$ se cumple que:

$$F(x s y) = F(x) s' F(y)$$

$$F(x i y) = F(x) i' F(y)$$

$$F(x^{c}) = F(x)^{c'}$$

$$F(0) = 0'$$

$$F(1) = 1'$$

• Una función $F: L \to L'$ será llamada un **isomorfismo** de (L, s, i, c, 0, 1) en (L', s', i', c', 0', 1') si F es **biyectiva** y tanto F como F^{-1} son **homomorfismos**.

CONGRUENCIAS DE RETICULADOS COMPLEMENTADO: Sea (L, s, i, c, 0, 1) un reticulado, una congruencia sobre (L, s, i, c, 0, 1) será una relación de equivalencia θ la cual cumpla:

1.
$$x\theta x' y y\theta y' \Rightarrow (x s y)\theta(x' s y') y (x i y)\theta(x' i y')$$

2.
$$x/\theta = y/\theta \Rightarrow x^c/\theta = y^c/\theta$$

Definimos, sobre L/θ , \tilde{s} , \tilde{i} y \tilde{c} , de la siguiente manera:

5 Reticulados Distributivos

RETICULADO DISTRIBUTIVO: Un reticulado (L, s, i), se llamará **distributivo** cuando cumpla alguna de las siguiente propiedades, para $x, y, z \in L$ cualquieras:

1.
$$x i (y s z) = (x i y) s (x i z)$$

2.
$$x s (y i z) = (x s y) i (x s z)$$

FILTRO: Un filtro de un reticulado (L, s, i) será un subconjunto $F \subseteq L$ tal que:

- 1. $F \neq \emptyset$
- 2. $x, y \in F \Rightarrow x \mid y \in F$
- 3. $x \in F \lor x \le y \Rightarrow y \in F$.

FILTRO GENERADO: Dado reticulado (L, s, i), un conjunto $S \subseteq L$, el filtro generado por S será el siguiente conjunto:

$$[S] = \{ y \in L : y \ge s_1 \text{ i... i } s_n, \text{ para algunos } s_1, \dots, s_n \in S, n \ge 1 \}$$

CADENA: Sea (P, \leq) un poset. Un subconjunto $C \subseteq P$ será llamando una **cadena**, si para cada $x, y \in C$, se tiene que $x \leq y$ ó $y \leq x$.

FILTRO PRIMO: Un filtro F de un reticulado (L, s, i) será llamado **primo** cuando se cumplan:

- 1. $F \neq L$
- 2. $x \circ y \in F \Rightarrow x \in F \circ y \in F$.

ÁLGEBRA DE BOOLE: Un Álgebra de Boole será un reticulado complementado y distributivo.

Part II

Términos y fórmulas

6 Términos

TIPO: Por un **tipo** (de primer orden), entenderemos una 4-upla $\tau = (\mathcal{C}, \mathcal{F}, \mathcal{R}, a)$, donde a los elementos de $\mathcal{C}, \mathcal{F}, \mathcal{R}$ les llamaremos nombres de constante, nombres de función y nombres de relación respectivamente, tal que:

- (1) Hay alfabetos finitos Σ_1, Σ_2 y Σ_3 tales:
 - (a) $\mathcal{C} \subseteq \Sigma_1^+, \mathcal{F} \subseteq \Sigma_2^+ \text{ y } \mathcal{R} \subseteq \Sigma_3^+$
 - (b) Σ_1, Σ_2 y Σ_3 son disjuntos de a pares.
 - (c) $\Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ no contiene ningún símbolo de la lista

$$\forall \exists \neg \lor \land \rightarrow \leftrightarrow (), \equiv X \ \theta \ 1 \ \dots \ 9 \ 0 \ 1 \ \dots$$

(2) $a: \mathcal{F} \cup \mathcal{R} \to \mathbb{N}$ es una función que a cada $p \in \mathcal{F} \cup \mathcal{R}$ le asocia un número natural a(p), llamado la aridad de p. Dado $n \geq 1$, definimos:

$$\mathcal{F}_n = \{ f \in \mathcal{F} : a(f) = n \}$$
$$\mathcal{R}_n = \{ r \in \mathcal{R} : a(r) = n \}$$

(3) Ninguna palabra de \mathcal{C} (resp. \mathcal{F} , \mathcal{R}) es subpalabra propia de otra palabra de \mathcal{C} (resp. \mathcal{F} , \mathcal{R}).

TÉRMINOS DE TIPO τ :

$$T_0^{\tau} = Var \cup \mathcal{C}$$

$$T_{k+1}^{\tau} = T_k^{\tau} \cup \{f(t_1, \dots, t_n) : f \in \mathcal{F}_n, n \ge 1, t_1, \dots, t_n \in T_k^{\tau}\}$$

$$T^{\tau} = \bigcup_{k>0} T_k^{\tau}$$

SUBTERMINOS:

Sean $s, t \in T^{\tau}$, diremos que s es **subtérmino** (propio) de t, si no es igual a t y y es subpalabra de t.

7 Fórmulas

FÓRMULAS DE TIPO τ :

$$F_0^{\tau} = \{(t \equiv s) : t, s \in T^{\tau}\} \cup \{r(t_1, \dots, t_n) : r \in \mathcal{R}_n, n \geq 1, t_1, \dots, t_n \in T^{\tau}\}$$

$$F_{k+1}^{\tau} = F_k^{\tau} \cup \{\neg \varphi : \varphi \in F_k^{\tau}\} \cup \{(\varphi \vee \psi) : \varphi, \psi \in F_k^{\tau}\} \cup \{(\varphi \wedge \psi) : \varphi, \psi \in F_k^{\tau}\} \cup \{(\varphi \wedge \psi) : \varphi, \psi \in F_k^{\tau}\} \cup \{\forall v \varphi : \varphi \in F_k^{\tau}, v \in Var\} \cup \{\exists v \varphi : \varphi \in F_k^{\tau}, v \in Var\}$$

$$F^{\tau} = \bigcup_{k \ge 0} F_k^{\tau}$$

SUBFORMULAS:

Una fórmula φ será llamada **subfórmula** (propia) de una fórmula ψ , cuando φ sea no igual a ψ y tenga alguna ocurrencia en ψ .

Part III
Estructuras

Part IV Teorias de primer orden

Part V Aritmética de Peano