Recherche Opérationnelle 1A Premier cours Début de la théorie des graphes

Zoltán Szigeti

Ensimag, G-SCOP

Définitions

Graphe G = (V, E)

- sommets : $V(G) = \{v_1, \dots, v_n\}, n \ge 1$.
- arêtes : $E(G) = \{e_1, \dots, e_m\}$, une arête est une paire de sommets.
- extrémités : pour $e_i = v_i v_k$, v_i et v_k sont les extrémités de e_i .
- boucle : une arête dont les extrémités coïncident.
- arête multiple : s'il existe une autre arête avec les mêmes extrémités.
- simple : sans boucle et sans arête multiple.

Définitions

- \bigcirc incident : une arête e est incidente à chacune de ses extrémités.
- 2 sommets adjacents, voisins, connectés : u et v si $uv \in E(G)$.
- degré $d_G(v)$ d'un sommet v: le nombre d'arêtes incidentes à v.

Définitions

Définitions

- 1 incident : une arête e est incidente à chacune des ses extrémités.
- ② sommets adjacents, reliés, connectés : u et v si $uv \in E(G)$.
- \odot arêtes adjacentes : deux arêtes ayant ≥ 1 extrémité en commun.
- degré $d_G(v)$ d'un sommet v: le nombre d'arêtes incidentes à v.
- **3** graphe complet K_n : graphe simple à n sommets ayant toutes les arêtes possibles.

Remarque

Pour tout sommet v d'un graphe simple à n sommets on a

$$0 \le d(v) \le n-1$$
.

Théorème

La somme des degrés des sommets d'un graphe G = (V, E) est égale à deux fois le nombre d'arêtes,

Théorème

La somme des degrés des sommets d'un graphe G = (V, E) est égale à deux fois le nombre d'arêtes, c'est-à-dire

$$\sum_{v\in V} d_G(v) = 2\times |E|.$$

Théorème

La somme des degrés des sommets d'un graphe G = (V, E) est égale à deux fois le nombre d'arêtes, c'est-à-dire

$$\sum_{v\in V} d_G(v) = 2\times |E|.$$

Théorème

La somme des degrés des sommets d'un graphe G = (V, E) est égale à deux fois le nombre d'arêtes, c'est-à-dire

$$\sum_{v\in V} d_G(v) = 2\times |E|.$$

Démonstration

• Calculer la somme des degrés des sommets de *G* revient à compter les arêtes incidentes à chaque sommet et puis à ajouter ces nombres.

Théorème

La somme des degrés des sommets d'un graphe G = (V, E) est égale à deux fois le nombre d'arêtes, c'est-à-dire

$$\sum_{v\in V} d_G(v) = 2\times |E|.$$

- Calculer la somme des degrés des sommets de *G* revient à compter les arêtes incidentes à chaque sommet et puis à ajouter ces nombres.
- ② Chaque arête uv est comptée exactement deux fois dans la somme : une fois dans $d_G(u)$ et une autre fois dans $d_G(v)$.

Définition

Sous-graphe, graphe partiel

Soient G = (V, E) un graphe, $X \subseteq V$ et $F \subseteq E$.

- (a) Sous-graphe de G induit par X: $G[X] = (X, \{uv \in E : u, v \in X\})$.
- (b) Graphe partiel de G induit par F : G(F) = (V, F).
- (c) Sous-graphe partiel de G induit par X et F: G[X](F) = (X, F).

Définitions

Définitions

On colore les sommets d'un graphe par des couleurs.

Une coloration est bonne si

Définitions

- Une coloration est bonne si
 - deux sommets adjacents ne sont pas de la même couleur,

Définitions

- Une coloration est bonne si
 - deux sommets adjacents ne sont pas de la même couleur,
 - les sommets de même couleur forment un stable : pas d'arêtes dedans.

Définitions

- Une coloration est bonne si
 - deux sommets adjacents ne sont pas de la même couleur, ←⇒
 - les sommets de même couleur forment un stable : pas d'arêtes dedans.
- (G) = nombre min. de couleurs dans une bonne coloration de G.

Définitions

- Une coloration est bonne si
 - deux sommets adjacents ne sont pas de la même couleur, ←⇒
 - les sommets de même couleur forment un stable : pas d'arêtes dedans.
- (G) = nombre min. de couleurs dans une bonne coloration de G.
 - $\chi(G)$ existe

Définitions

- Une coloration est bonne si
 - deux sommets adjacents ne sont pas de la même couleur, ←⇒
 - les sommets de même couleur forment un stable : pas d'arêtes dedans.
- $2 \chi(G) =$ nombre min. de couleurs dans une bonne coloration de G.
 - $\chi(G)$ existe et $\leq n = |V(G)|$

Définitions

- 1 Une coloration est bonne si
 - deux sommets adjacents ne sont pas de la même couleur,
 - les sommets de même couleur forment un stable : pas d'arêtes dedans.
- $2 \chi(G) =$ nombre min. de couleurs dans une bonne coloration de G.
 - $\chi(G)$ existe et $\leq n = |V(G)|$ car chaque sommet peut être colorié par une couleur différente.

Définitions

On colore les sommets d'un graphe par des couleurs.

- Une coloration est bonne si
 - deux sommets adjacents ne sont pas de la même couleur, \iff
 - les sommets de même couleur forment un stable : pas d'arêtes dedans.
- $2 \chi(G) =$ nombre min. de couleurs dans une bonne coloration de G.
 - $\chi(G)$ existe et $\leq n = |V(G)|$ car chaque sommet peut être colorié par une couleur différente.

Remarque

Calculer $\chi(G)$ est un problème difficile.

Théorème

Pour tout graphe simple G, de degré maximum $\Delta(G)$, $\chi(G) \leq \Delta(G) + 1$.

Théorème

Pour tout graphe simple G, de degré maximum $\Delta(G)$, $\chi(G) \leq \Delta(G) + 1$.

Théorème

Pour tout graphe simple G, de degré maximum $\Delta(G)$, $\chi(G) \leq \Delta(G) + 1$.

Démonstration

① Récurrence sur n = |V(G)|. Si n = 1, $\chi(G) = 1 \le 0 + 1 = \Delta(G) + 1$.

Théorème

Pour tout graphe simple G, de degré maximum $\Delta(G)$, $\chi(G) \leq \Delta(G) + 1$.

- **Q** Récurrence sur n = |V(G)|. Si n = 1, $\chi(G) = 1 \le 0 + 1 = \Delta(G) + 1$.
- ② Supposons que ce soit vrai pour tout graphe simple ayant n sommets.

Théorème

Pour tout graphe simple G, de degré maximum $\Delta(G)$, $\chi(G) \leq \Delta(G) + 1$.

- Récurrence sur n = |V(G)|. Si n = 1, $\chi(G) = 1 \le 0 + 1 = \Delta(G) + 1$.
- ② Supposons que ce soit vrai pour tout graphe simple ayant *n* sommets.
- 3 Soient G un graphe simple à n+1 sommets et $v \in V(G)$.

Théorème

Pour tout graphe simple G, de degré maximum $\Delta(G)$, $\chi(G) \leq \Delta(G) + 1$.

- Récurrence sur n = |V(G)|. Si n = 1, $\chi(G) = 1 \le 0 + 1 = \Delta(G) + 1$.
- ② Supposons que ce soit vrai pour tout graphe simple ayant n sommets.
- **3** Soient **G** un graphe simple à n+1 sommets et $v \in V(G)$.

Théorème

Pour tout graphe simple G, de degré maximum $\Delta(G)$, $\chi(G) \leq \Delta(G) + 1$.

- Récurrence sur n = |V(G)|. Si n = 1, $\chi(G) = 1 \le 0 + 1 = \Delta(G) + 1$.
- ② Supposons que ce soit vrai pour tout graphe simple ayant n sommets.
- Soient G un graphe simple à n+1 sommets et $v \in V(G)$.
- G v est simple, |V(G v)| = n et $\Delta(G v) \leq \Delta(G)$.
- **5** En vertu de l'hypothèse de récurrence, il existe une bonne coloration de G v avec $\leq \Delta(G v) + 1 \leq \Delta(G) + 1$ couleurs.

Théorème

Pour tout graphe simple G, de degré maximum $\Delta(G)$, $\chi(G) \leq \Delta(G) + 1$.

- Récurrence sur n = |V(G)|. Si n = 1, $\chi(G) = 1 \le 0 + 1 = \Delta(G) + 1$.
- ② Supposons que ce soit vrai pour tout graphe simple ayant n sommets.
- Soient G un graphe simple à n+1 sommets et $v \in V(G)$.
- G v est simple, |V(G v)| = n et $\Delta(G v) \leq \Delta(G)$.
- **5** En vertu de l'hypothèse de récurrence, il existe une bonne coloration de G v avec $\leq \Delta(G v) + 1 \leq \Delta(G) + 1$ couleurs.
- Puisque $d_G(v) \leq \Delta(G)$, cette coloration utilise $\leq \Delta(G)$ couleurs pour les voisins de v, il reste donc au moins une couleur disponible pour v.

Théorème

Pour tout graphe simple G, de degré maximum $\Delta(G)$, $\chi(G) \leq \Delta(G) + 1$.

- Récurrence sur n = |V(G)|. Si n = 1, $\chi(G) = 1 \le 0 + 1 = \Delta(G) + 1$.
- ② Supposons que ce soit vrai pour tout graphe simple ayant n sommets.
- Soient G un graphe simple à n+1 sommets et $v \in V(G)$.
- **5** En vertu de l'hypothèse de récurrence, il existe une bonne coloration de G v avec $\leq \Delta(G v) + 1 \leq \Delta(G) + 1$ couleurs.
- Puisque $d_G(v) \leq \Delta(G)$, cette coloration utilise $\leq \Delta(G)$ couleurs pour les voisins de v, il reste donc au moins une couleur disponible pour v.
- ② En coloriant v avec cette couleur on obtient une bonne coloration de G avec $\leq \Delta(G) + 1$ couleurs.

Définitions

1 Clique: sous-graphe qui est complet.

- Clique : sous-graphe qui est complet.
- $\omega(G)$ = le nombre maximum de sommets dans une clique de G.

- Clique : sous-graphe qui est complet.
- $\omega(G)$ = le nombre maximum de sommets dans une clique de G.
 - $\omega(G)$ existe et ≥ 1 , car un sommet est une clique,

- Clique : sous-graphe qui est complet.
- $\omega(G)$ = le nombre maximum de sommets dans une clique de G.
 - $\omega(G)$ existe et ≥ 1 , car un sommet est une clique,
 - $\omega(G) \ge 2$; s'il existe une arête car elle est une clique.

Définitions

- Clique : sous-graphe qui est complet.
- $\omega(G)$ = le nombre maximum de sommets dans une clique de G.
 - $\omega(G)$ existe et ≥ 1 , car un sommet est une clique,
 - $\omega(G) \ge 2$; s'il existe une arête car elle est une clique.

Remarque

Dans une bonne coloration, chaque sommet d'une clique doit être colorié par une couleur différente, donc on a :

$$\chi(G) \geq \omega(G)$$
.

Définitions

- Clique : sous-graphe qui est complet.
- $\omega(G)$ = le nombre maximum de sommets dans une clique de G.
 - $\omega(G)$ existe et ≥ 1 , car un sommet est une clique,
 - $\omega(G) \ge 2$; s'il existe une arête car elle est une clique.

Remarque

Dans une bonne coloration, chaque sommet d'une clique doit être colorié par une couleur différente, donc on a :

$$\chi(G) \geq \omega(G)$$
.

Exemple

$$\chi(C_5) = 3 > 2 = \omega(C_5).$$

