Scilab Textbook Companion for Turbomachinery Design and Theory by R. S. R. Gorla And A. A. Khan¹

Created by
Nitin Sharma
B.Tech
Mechanical Engineering
NIT Hamirpur
College Teacher
Dr. Rajesh Sharma
Cross-Checked by
Lavitha Pereira

December 17, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Turbomachinery Design and Theory

Author: R. S. R. Gorla And A. A. Khan

Publisher: CRC Press

Edition: 1

Year: 2003

ISBN: 0824709802

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lı	st of Scilab Codes	4
1	Introduction Dimensional Analysis Basic Thermodynamics and Fluid Mechanics	9
2	Hyraulic Pumps	16
3	Hydraulic Turbines	38
4	Centrifugal Compressors and Fans	67
5	Axial Flow Compressors and Fans	90
6	Steam Turbines	112
7	Axial Flow and Radial Flow Gas Turbines	133
8	Cavitation in Hydraulic Machinery	148

List of Scilab Codes

Exa 1.1	Radial Flow Hydraulic	9
Exa 1.2	Centrifugal Pump Head	10
Exa 1.3		10
Exa 1.4		11
Exa 1.5		11
Exa 1.6		12
Exa 1.7		13
Exa 1.8	Wind Tunnel	13
Exa 1.9	Kinetic Energy	14
Exa 1.10	Radial Inward Flow	15
Exa 2.1	Centrifugal Pump Torque	16
Exa 2.2	Head Imparted	17
Exa 2.3	Centrifugal Pump Impeller	18
Exa 2.4	Efficiency Lift Discharge	19
Exa 2.5	±	20
Exa 2.6	Impeller Vanes Angled	20
Exa 2.7	Vanes At 45 Degrees	22
Exa 2.8	Vanes Radially Exit	23
Exa 2.9	Radial Component Water	25
Exa 2.10	Centrifugal Pump Running	25
Exa 2.11	Ideal Height Hydraulic Efficiency	26
Exa 2.12	Actual Work Absolute Velocity	27
Exa 2.13	Theoritical Head	28
Exa 2.14	Vanes 30 Degrees	29
Exa 2.15	Power Hub dia Angles	30
Exa 2.16	Mechanical Efficiency	31
Exa 2.17		33
Exa 2.18	Diameter of Impeller	33

Exa 2.19	Two Multistage Pumps	34
Exa 2.20	Pumps to be Connected	35
Exa 2.21	Specific speed 1150	36
Exa 3.1	Generator Pelton Wheel	38
Exa 3.2	Pelton Wheel 725	39
Exa 3.3	Pelton Speed 14	40
Exa 3.4	Pelton Wheel 12900kW	41
Exa 3.5	Double Overhung Pelton	42
Exa 3.6	Power Station	43
Exa 3.7	Pelton Head 90	44
Exa 3.8	Single Jet Pelton Wheel	45
Exa 3.9	Inward Flow Reaction Turbine	47
Exa 3.10	Runner Axial Flow	48
Exa 3.11	Kaplan runner	49
Exa 3.12	Turbine 12000 HP	50
Exa 3.13	Speed angle reaction turbine	51
Exa 3.14	Discharge 500	52
Exa 3.15	Rotation 290rpm	53
Exa 3.16	Head 30	54
Exa 3.17	Power 12400	54
Exa 3.18	Francis Turbine 1250rpm	55
Exa 3.19	Turbine 130kW	56
Exa 3.20	Blade tip hub dia	58
Exa 3.21	Overall Efficiency 75	59
Exa 3.22	Kaplan 10000kW	60
Exa 3.23	Vanes 12 degrees	61
Exa 3.24	Inward Flow 70kW	62
Exa 3.25	Francis Turbine 500kW	64
Exa 3.26	35MW Generator	65
Exa 4.1	Air leaving impeller	67
Exa 4.2	Speed Centrifugal Compressor270	68
Exa 4.3	Centrifugal Compressor 16000rpm	69
Exa 4.4	Adiabatic Efficiency	70
Exa 4.5	Centrifugal Compressor 9000rpm	71
Exa 4.6	Centrifugal Compressor No prewhirl	72
Exa 4.7	Centrifugal Compressor 10000rpm	73
Exa 4.8	Centrifugal Compressor 19 vanes	74
Exa 4.9	Problem 8 repeat	75

Exa 4.10	Compressor 15000rpm	76
Exa 4.11		77
Exa 4.12		78
Exa 4.13		7 9
Exa 4.14		81
Exa 4.15		83
Exa 4.16	Double sided compressor 15500	85
Exa 4.17		86
Exa 5.1		90
Exa 5.2		91
Exa 5.3		92
Exa 5.4		93
Exa 5.5		95
Exa 5.6		96
Exa 5.7		97
Exa 5.8		99
Exa 5.9		00
Exa 5.10		01
Exa 5.11		02
Exa 5.12		04
Exa 5.13		06
Exa 5.14		07
Exa 5.15		09
Exa 6.1		12
Exa 6.2		13
Exa 6.3		14
Exa 6.4		15
Exa 6.5		16
Exa 6.6		17
Exa 6.7		19
Exa 6.8		20
Exa 6.9		21
Exa 6.10		22
Exa 6.11	· · · · · · · · · · · · · · · · · · ·	24
Exa 6.12		25
Exa 6.13		 26
Exa 6.14		$\frac{1}{27}$
Exa 6 15		 28

Exa 6.16	Reaction stage turbine	130
Exa 6.17	Series of stages	131
Exa 7.1		133
Exa 7.2		134
Exa 7.3		135
Exa 7.4	Throat area for 73	136
Exa 7.5		137
Exa 7.6	Inlet stagnation temperature is 1150 K	138
Exa 7.7	Rotation 14500rpm	140
Exa 7.8	Equal stage inlet and outlet velocities	141
Exa 7.9	Turbine inlet temperature 900C	142
Exa 7.10		143
Exa 7.11		144
Exa 7.12		146
Exa 8.0		148

List of Figures

2.1	Vanes Radially Exit	24
3.1	Inward Flow Reaction Turbine	47
5.1	Stage air angles for vortex	94

Chapter 1

Introduction Dimensional Analysis Basic Thermodynamics and Fluid Mechanics

Scilab code Exa 1.1 Radial Flow Hydraulic

Scilab code Exa 1.2 Centrifugal Pump Head

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 1, Example 2")
  // While equating flow coefficients Q1 / (N1 * D1^3)
      = Q2 / (N2 * D2^30)
9 // Also the head equation we follow is g*H1/(N1^2*D1
      ^{2} = g*H2/(N2^{2}*D2^{2})
10 disp("Volume flow rate in cubic meters per second
     and Head in meters are:")
11 Q2 = 2.5*2210*(0.104)^3/(2010*(0.125)^3)
12 \text{ H2} = 9.81 * 14 * (2210*104)^2 /(((2010*125)^2))
      *(9.81))
```

Scilab code Exa 1.3 Air Compressor Speed

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
```

Scilab code Exa 1.4 Pumping Power

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 1, Example 4")
8 disp ("Theoritical Question")
9 //liquid discharge rate Q; head H; specific weight of the liquid is w.
10 disp("Expression for Pumping power is P = kwQH")
```

Scilab code Exa 1.5 Drag Force F

```
1 // Display mode
2 mode(0);
```

Scilab code Exa 1.6 Axial Pump Power

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
     Gorla and Aijaz A. Khan, Chapter 1, Example 6")
  // Geometric and Dynamic similarity equations Q1 / (
     N1 * D1^2 = Q2 / (N2 * D2^2)
  // Head coefficient W2 = W1 * N2^2 * D2^2 / (N1^2 * D2^2)
     D1 ^2)
10 // Also Pressure Delta P = W2 * eta tt * rho
11 disp("Flow rate in cubic meters per minute, Head
      coefficient in J/kg, Change in Total Pressure in
     bar, Input Power P in kilowatt are: ")
12 Q2 = 2.5 * 2900 * 0.22^2 / (1450 * 0.32^2)
13 \text{ W2} = 120 * 2900 ^ 2 * 0.22 ^ 2 / ((1450)^2 * 0.32^2)
14 Pressure = 226.88 * 0.78 * 1000 /100000
```

Scilab code Exa 1.7 Axial Gas Turbine

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 1, Example 7")
  // Using isentropic P-T Relation T02' = T01 * (P02/
      P01) \hat{} (gamm - 1 / 2)
9 //Total to total Efficiency etta tt implies T01 -
      T02 = (T01 - T02") * ettatt
10 //Power input W1 = cp * delta To
11 //Power output W2 = W1 * N2 ^ 2 * D2 ^ 2 / (N1 * D2)
12 ettatt = 0.85;
13 \text{ T01} = 1050;
14 \text{ gamm} = 1.4;
15 \text{ T02} = \text{T01} * (1/4)^{((1.4-1)/2)};
16 disp ("Power input in KJ/Kg and Power output in KJ/Kg
       are :")
17 \text{ W1} = 1.005 * 292.13
18 \text{ W2} = 293.59 * 1000 * 12500 ^ 2 * .2 ^ 2 / (15500^2 * )
19 disp("Therefore power output = ")
20 \text{ Power} = W2/1000
```

Scilab code Exa 1.8 Wind Tunnel

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 1, Example 8")
8 //Let us suppose
9 // Velocity of the model, Vm
10 //Length of the model, Lm = 160mm
11 //Length of the prototype Lp = 1000mm
12 // Velocity of the prototype Vp = 40.5m/s
13 / According to (Re)m = (Re)p
14 //Also Vm*Lm/vm = Vp*Lp/vp
15 disp("Velocity of wind(m/s)) in the tunnel implies =
     ")
16 \text{ Vm} = 40.5 * 1000 / 160
```

Scilab code Exa 1.9 Kinetic Energy

```
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Turbomachinery Design and Theory, Rama S. R. Gorla and Aijaz A. Khan, Chapter 1, Example 9")
// Theoritical Question
// Kinetic Energy Equation
disp("The Kinetic Energy => k V^2 m")
disp("Where k is a constant")
```

Scilab code Exa 1.10 Radial Inward Flow

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 1, Example 10")
8 // Given conditions
9 / r1 = 0.14m
10 / \text{Cw1} = 340 \text{m/s}
11 / r2 = 0.07 m
12 / \text{Cw2} = 50 \text{m/s}
13 // Torque = r1*Cw1 - r2*Cw2
14 disp("Torque in Nm kg/s implies => ")
15 \quad T = 0.14*340-0.07*50
```

Chapter 2

Hyraulic Pumps

Scilab code Exa 2.1 Centrifugal Pump Torque

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
     Gorla and Aijaz A. Khan, Chapter 2, Example 1")
  //Reference to the Fig 2.2 for zero slip beta2
     beta2'. Using Euler's pump equation, E=W/m=(U2*
     Cw2-U1*Cw1)
9 \text{ Cw1} = 0;
10 disp ("Euler head = H in meters, Power in Kilowatts
       Torque in Newton meters are :")
11 //H=U2*Cw2/g = (U2/g)*(U2 - 1.5/tan(28))
12 H = (12/9.81)*(12 - 1.5 / tan(28*%pi/180))
13 //Power delivered = pho * g * Q * H joules/s
14 Power = 1000 * 9.81 * 3.8 * 11.23 / (60 * 1000) / /
     Power will be in kilowatts
```

```
15 //Torque = power/angular velocity
16 Torque = Power* 1000 * 0.6/12
```

Scilab code Exa 2.2 Head Imparted

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 2")
8 //Fluid is entering in radial direction
9 \text{ Cw1} = 0;
10 alpha1 = 90; //angle is in degrees
11 beta2 = 22; //angle in degress
12 Ca1 = 3.5; // velocity of flow in m/s
13 D = 0.22;
14 N = 1250;
15 //Ca1 = Ca2
16 \text{ Ca2} = 3.5;
17 //Head developed H = Cw2*U2/g
18 / Impeller tip Speed U2 = pi*D*N/60
19 disp ("Impeller tip speed in m/s is : ")
20 \text{ U2} = \%\text{pi} * D * N / 60
21 disp("Whirl velocity at impeller outlet, in m/s is:
22 \text{ Cw2} = (U2 - Ca2/tan(22*\%pi/180))
23 disp("Head Imparted is H in meters: ")
24 \text{ H} = \text{Cw2} * \text{U2} / 9.81
```

Scilab code Exa 2.3 Centrifugal Pump Impeller

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 3")
8 D2 = 0.4;
9 N = 1400;
10 \operatorname{\mathtt{disp}} ("Impeller tip speed given by \operatorname{piDN}/60 in \operatorname{m/s} is
       : ")
11 \ U2 = \%pi * D2 * N /60
12 disp("whirl velocity at tip in m/s is: ")
13 \text{ Cr2} = 2.6;
14 Cw2 = (U2 - Cr2 / tan(25*\%pi/180))
15 //From velocity Triangle 2.3 tangent alpha2 = Cr2/
      Cw2 = 2.6/23.75 = 0.1095
16 disp("Alpha2 is in degrees")
17 alpha2 = atan(0.1095) *180/(%pi)
18 disp("Impeller velocity at inlet in m/s is: ")
19 D1 = 0.2;
20 \text{ U1} = \%\text{pi} * \text{D1*N} / 60
21 //From velocity Triangle 2.3 tangent beta 1 = Cr1/U1
      = 2.6/14.67 = 0.177
22 disp("Beta1 is in degrees")
23 beta1 = atan(0.177) * 180 /(%pi)
24 disp("Work done per kg of water in Joules is: ")
25 W = Cw2 * U2
```

Scilab code Exa 2.4 Efficiency Lift Discharge

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 4")
  //Q is discharge rate, beta2 is angle of vane at
      outlet, H is head, Diaratio is diameter ratio of
      external by internal dia, N is rpm, A is area of
      outer periphery
9 Q = 1550;
10 \text{ beta2} = 25;
11 H = 6.2;
12 Diaratio = 2;
13 D2 = 1.2;
14 N = 210;
15 A = 0.65;
16 disp("Velocity of flow at impeller tip in m/s is :")
17 \text{ Cr2} = Q/(A*1000)
18 disp("Impeller tip speed in m/s is :")
19 U2 = \%pi * D2 * N / 60
20 \text{ Cw2} = \text{U2} - \text{Cr2} / \frac{\tan(\%\text{pi}*25/180)}
21 disp ("TheoH is theoritical head in m")
22 \text{ TheoH} = Cw2 * U2/9.81
23
    //Assuming slip factor sigma = 1, efficiency is
24
    disp("efficiency is ")
    etah = H * 100 / TheoH
25
26
    //Power is denoted by P
```

```
disp("Power in kilowatts is : ")
27
28
    P = Q * TheoH * 9.81 / 1000
29
    disp("Centrifugal head is minimum head. Thus we get
30
    //U2^2-U1^2/2g = 6.2
31
    //U1 = U2/2
32
    U2 = (2 * 9.81 * 6.2 / (1-0.25))^(1/2)
    disp("minimum speed in rpm is :")
33
34
    minN = U2 * 60 / (\%pi * D2)
```

Scilab code Exa 2.5 Horse Power Pump

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 5")
  //H is head in m, Q is discharge m3/s, eta is
      efficiency, P is power
9 disp("Power P in Horse power is :")
10 H = 35;
11 \ Q = 0.045;
12 \text{ eta} = 0.6;
13 / P = \text{rho gQ/eta in joules per second}
14 P = 9.81 * Q * H / (0.6 * 0.746)
```

Scilab code Exa 2.6 Impeller Vanes Angled

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 6")
  // Velocity of flow through impeller is constant so
      Cr1 = Cr2 = 3.5 \text{ m/s}
9 disp("Tangential Velocity of impeller at inlet in m/
      s is :")
10 //Din and D2 are diameters in meters, N is in rpm,
      Cr2 in m/s
11 Din = 0.3;
12 D2 = 0.6;
13 N = 950;
14 \text{ Cr2} = 3.5;
15 \text{ U1} = \% \text{pi} * \text{Din} * \text{N} / 60
16 // \tanh = Cr1/U1 \ 3.5/14.93 = 0.234
17 disp("vane inlet angle of pump alpha1:")
18 \text{ alpha1} = \frac{1}{2} (0.234) * 180 / \% pi
19 disp ("Tangential velocity of impeller at outlet in m
      /s:")
20 \text{ U2} = \%\text{pi} * \text{D2} * \text{N} / 60
21 disp("Now For velocity of whirl at impeller outlet,
      using velocity triangle.in m/s is :")
22 \text{ Cw2} = \text{U2} - \text{Cr2} / \frac{\tan(46 * \% \text{pi}/180)}{2}
23 //As c2^2 = Cw2^2 + Cw2^2, Therefore
24 disp(" Velocity of water at outlet C2 in m/s is :")
25 \text{ C2} = (\text{Cr2}^2 + \text{Cw2}^2)^{(1/2)}
26 disp ("alpha2 be the direction of water outlet, Thus
      we have :")
27 alpha2 = atan(Cr2/Cw2)*(180/\%pi)
28 disp("Work Done in Newton meters is given by :")
29 \quad W = Cw2*U2
```

Scilab code Exa 2.7 Vanes At 45 Degrees

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 7")
8 //From Figure Ex26
9 // Finding Manometric Efficiency
10 //D2 is dia in meters, N in rpm, Head H in meters,
      Cr2 and Cw2 in m/s
11 D2 = 0.5;
12 D1 = 0.25;
13 N = 500;
14 H = 10;
15 \text{ Cr2} = 2;
16 \text{ beta2} = \% \text{pi}/4;
17 \text{ Cr1} = 2;
18 / \text{etaman} = H/(Cw2*U2/g)
19 disp("Outlet Velocity be U2 in m/s :")
20 \text{ U2} = \%\text{pi} * \text{D2} * \text{N} / 60
21 //To Find Cw2
22 \text{ Cw2} = 13-2/(tan(\%pi/4))
23 disp ("Manometric Efficiency be etaman in \%:")
24 \text{ etaman} = \text{H*9.81/(Cw2*U2)} *100
25 disp("Vane Angle at inlet beta 1 in degrees is :")
26 / U1 = U2/2
27 beta1 = atan(Cr1/(U2/2))*(180/\%pi)
28 disp("Minimum Starting speed N in rpm is :")
```

```
29 //(U2^2-U1^2/2g = H \text{ implies}
30 Nmin = ((2*9.81*10)/((\%pi*D2/60)^2 - (\%pi*D1/60)^2))
^(1/2)
```

Scilab code Exa 2.8 Vanes Radially Exit

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 8")
8 //D2 is siameter in meter, N is rpm, Cr2 in m/s and
     Cw2=U2 in m/s , V velocity of flow in m/s
9 D2 = 0.6;
10 N = 550;
11 \text{ Cr2} = 3.5;
12 \ U2 = \%pi*D2*N/60
13 \text{ Cw2} = \text{U2}
14 g = 9.81;
15 \quad V = 2.5;
16 disp("Head in meters from where water is being
      lifted is :")
17 H = Cw2 * U2/g - (V^2)/(2*g)
18 //b2 is width
19 //Qis discharge Q=piD2b2Cr2 in m3/s
20 b2 = 0.082;
21 disp("Discharge Q is in m3/s:")
22 Q = \%pi * D2 * b2 * Cr2
23 disp("Power P in Kilowatts is given as:")
24 rho = 1000; //density of water 1000 kg/m3
```


Figure 2.23 Velocity triangle for Example 2.8.

Figure 2.1: Vanes Radially Exit

Scilab code Exa 2.9 Radial Component Water

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 9")
8 disp("The Given Data")
9 disp ("The Following Data D2 is diameter in m, U2 and
       Cr2 in m/s, alpha1 and beta2 in degrees, Q is
      i9n m3/s")
10 D2 = 1
11 \ U2 = 11
12 \text{ alpha1} = 90
13 \text{ Cr2} = 2.5
14 \text{ beta2} = 32
15 \ Q = 5.5
16 \text{ rho} = 1000;
17 disp("Outlet Velocity Cw2 in m/s is :")
18 Cw2 = U2 - (Cr2/tan(32*%pi/180))
19 disp("Power in pump in kilowatts is :")
20 P = rho*Q*Cw2*U2/(1000*60)
21 / H.P. = 2*pi*N*T/60
22 disp ("Rpm and Torque T in Nm/s are :")
23 N = 60*U2/(\%pi * D2)
24 \text{ T= } P*1000*60/(2*\%pi*N)
```

Scilab code Exa 2.10 Centrifugal Pump Running

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 10")
  disp ("Given Data N in rpm, H in m, Q - discharge in
      litres/s:")
9 N1 = 590
10 \ Q1 = 1.83
11 \text{ H1} = 16
12 N2 = 390
13 //As H^1/2 / N = constant
14 \text{ H2} = \text{N2}^2 + \text{H1}/(\text{N1}^2)
15 disp("Head developed by the pump at 390 rpm = 6.98 \text{ m}
      . In order to find discharge through the pump at
      390 rpm, We use Ns = N* Q^{(1/2)}/(H^3/4).
      Therefore Discharge through pump in litres/s Q2
      is :")
16 \times = N1*Q1^{(1/2)}/H1^{(3/4)};
17 Q2 = (x*H2^(3/4)/N2)^2
```

Scilab code Exa 2.11 Ideal Height Hydraulic Efficiency

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 2, Example 11")
8 D2= 0.37; //in meters
```

```
9 N = 800; //in rpm
10 Q = 0.03;
11 Hgiven = 14;
12 disp("Impeller tip Speed U2 in m/s is :")
13 \text{ U2} = \%\text{pi} * \text{D2}*\text{N}/60
14 disp("Radial velocity at the impeller exit Cr2 = 2.5
       m/s ")
15 \text{ Cr2} = 2.5;
16 disp("Therefore")
17 \text{ Cw2} = \text{U2} - \text{Cr2/tan}(\%\text{pi/4})
18 disp("When there is no slip, the head H developed
      will be")
19 g = 9.81;
20 H = Cw2*U2/g
21 disp("If there are no hydraulic internal losses, the
       power utilized by the pump will be: P")
22 P = 0.96*8 //given efficiency = 0.96 and Power = 8
23 disp("Theoretical flow rate Qtheo in m3/s :")
24 Qtheo = Q/0.97
25 disp("Ideal Height Hi:")
26 \text{ Hi} = P * 0.746 / (g*Qtheo)
27 disp("The hydraulic efficiency is etah:")
28 etah =Hgiven/Hi *100
```

Scilab code Exa 2.12 Actual Work Absolute Velocity

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 2, Example 12")
```

```
8 disp("Exit blade angle beta2 = 20 degres")
9 beta2 = 20;
10 U2 = 56; //U2 in m/s
11 Cr2 = 7.5; //in m/s
12 CW2 = U2 - Cr2/tan(20*%pi/180)
13 disp("Using slip factor :")
14 sigma = 0.88
15 disp("The velocity whirl at exit is :")
16 Cw2 = sigma*CW2
17 disp("Work input per kg of water flow in KJ/kg")
18 W = Cw2*U2/1000
19 disp("Absolute velocity at impeller tip C2 in m/s is :")
20 C2 = (Cr2^2 + Cw2^2)^(1/2)
```

Scilab code Exa 2.13 Theoritical Head

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 13")
8 disp("Assuming the blades are of infinitesimal
      thickness, the flow area is given by A in m2 =
      impeller periphery * blade depth")
9 D2 = 0.26 //in m
10 d = 0.02 // in m
11 N = 1400 // in rpm
12 g = 9.81;
13 Q= 0.03 / \frac{m3}{s}
14 disp("Area A in m2")
15 A = D2*\%pi*d
```

```
16 disp("Flow velocity Cr2 is given by")
17 \text{ Cr2} = Q/A
18 disp("Impeller tip speed, U2 in m/s is")
19 \ U2 = \%pi*D2*N/60
20 disp ("Absolute whirl component, Cw2 in m/s is given
      by")
         U2 - Cr2/tan(30*\%pi/180)
21 \text{ Cw2} =
22 disp("Using Euler s equation, and assuming Cw1 = 0
       (i.e., no whirl at inlet) Head H in m")
23 H = U2*Cw2/g
24 disp("Theoretical head with slip is Htheo in m")
25 \text{ Htheo} = 0.78*H
26 disp("To find numbers of impeller blades, using
      Stanitz formula sigma = 1 - 0.63 \,\mathrm{pi/n}")
27 disp("Slip factor, sigma = 0.78")
28 \text{ sigma} = 0.78;
29 disp("Number of blades required")
30 n = (0.63*\%pi)/(1-sigma)
31 disp("Therefore n = 9")
```

Scilab code Exa 2.14 Vanes 30 Degrees

```
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 2, Example 14")
disp("Given data D1 and D2 in meters, N in rpm, Cr2 in m/s and beta2 in degrees")

D1 = 0.2
D2 = 0.4
N = 1500
```

Scilab code Exa 2.15 Power Hub dia Angles

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 15")
8 rho = 1000; // density in kg/m3
9 g = 9.81; //force of gravity in m/s2
10 H = 10; //\text{head} in m
11 Q = 1.3; // Discharge in m3/s
12 eta = 0.83; // efficiency
13 U2 = 22; // blade velocity
14 Ca = 4.5; //Flow velocity
15 N = 550; //\text{rpm}
16 disp("Power delivered to the water P in kW:")
```

Scilab code Exa 2.16 Mechanical Efficiency

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 16")
8 disp("Given Data:")
9 Qdel = 72//Discharge in 1/s
10 \text{ rho} = 1000
11 Di = 0.09//Inner Dia in m
12 Do = 0.28//Outer Dia in m
13 N = 1650//\text{Revolution} in min
14 \text{ H} = 25 // \text{Head}
15 bi = 0.02//Width at inlet in m
16 bo = 0.018//Width at outlet in m
```

```
17 Qleak = 2//in l/s
18 etap = 0.56//Efficiency of the pump
19 cf = 0.85//Contraction factor
20 g = 9.81//\text{gravity in m/s}2
21 \text{ Ploss} = 1.41
22 disp ("Total quantity of the water to be handled by
      the pump Qt in 1/s")
23 Qt = Qdel + Qleak
24 disp("Total quantity of water per side Qw")
25 \text{ Qw} = \text{Qt/2}
26 disp("Impeller speed at inlet U1 in m/s")
27 \text{ U1} = \%pi*Di*N/60
28 disp("Flow area at inlet Af")
29 \text{ Af} = \%pi*Di*bi*cf
30 disp("Therefore, the velocity of flow at inlet Crl
      in m/s")
31 \text{ Crl} = Qw/(Af*1000)
32 disp("From inlet velocity triangle beta1")
33 beta1 = \frac{\text{atan}}{\text{Crl/U1}} *180/\% \text{pi}//\text{Crl/U1} = 7.708/7.78
34 disp("Area of flow at outlet Ao")
35 \text{ bo1} = \text{bo} / 2
36 \text{ Ao} = \%pi * Do * bo1* cf
37 disp("Therefore, the velocity of flow at outlet Cr2"
      )
38 \text{ Cr2} = Qw/(Ao*1000)
39 disp("The impeller speed at outlet U2")
40 \text{ U2} = \text{\%pi*Do*N/60}
41 disp ("Now using velocity triangle at outlet Cw2 in m
      /s")
42 \text{ Cw2} = \text{U2} - \text{Cr2/tan}(35*\%\text{pi}/180)
43 alpha2 = atan(Cr2/Cw2)*180/\%pi
44 disp("The absolute velocity of water leaving the
       impeller C2 in m/s")
45 \quad C2 = Cw2/\cos(alpha2*\%pi/180)
46 disp ("The manometric efficiency etaman")
47 \text{ etaman} = g*H/(U2*Cw2)
48 disp("The volumetric efficiency etav")
49 \text{ etav} = Qdel/Qt}
```

```
50 disp("Water power Pw in kW")
51 Pw = rho*g*Qdel*H/1000000
52 disp("Shaft power Ps in kW")
53 Ps = Pw/etap
54 disp("Mechanical efficiency is etam")
55 etam = (Ps - Ploss)/Ps
```

Scilab code Exa 2.17 Single Stage Pump

Scilab code Exa 2.18 Diameter of Impeller

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
```

```
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 18")
8 disp("Specific speed N in rpm")
9 \text{ Ns} = 38;
10 \text{ He} = 70;
11 H = He/2;
12 Q = 55/1000; //in m3/s
13 \text{ rho} = 1000;
14 g = 9.81;
15 N = Ns * (H)^{(3/4)} / Q^{(1/2)}
16 disp ("Power Required P in kW")
17 P = rho*g*Q*He/(0.76*1000)
18 Hmano = 0.65*H;
19 \text{ beta2} = 28;
20 / Cr2 = 0.14 * U2
21 disp("From velocity triangle at outlet")
22 disp("tan(beta2) = Cr2/(U2 - Cw2) or tan(28) = 0.14
      U_2/(U_2 - C_{w_2})")
23 \operatorname{disp}("U2/(U2 - Cw2)) = 0.5317/0.14 = 3.798----(A)")
24 disp("As the flow at entrance is radial and alpha1 =
       90, the fundamental equation of pump would be")
25 disp("Hmano/etamano = U2*Cw2/g")
26 disp ("Where etamano manometric efficiency of pump
      which is 65\%.")
27 disp("Therefore, 35/0.65 = U2*Cw2/g")
28 disp("U2*Cw2 = 35 * 9.81/ 0.65")
29 disp("Cw2 = 528.23/U2———(B)")
30 disp ("Substituting for Cw2 in Eq. (A) and solving U2
      ")
31 \quad U2 = 26.78
32 D2 = U2 * 60 /(\%pi *N)
33 disp("Where D2 is in meters")
```

Scilab code Exa 2.19 Two Multistage Pumps

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 19")
8 N = 1445 / rpm
9 Q = 0.0352 / m3/s
10 Ns = 14//\text{rpm}
11 g=9.81;
12 disp("Head developed in each stage is H in m: ")
13 H = (N * (Q^(1/2))/Ns)^(4/3)
14 disp("Total head required = 845m")
15 disp("Number of stages needed = 845/52 = 16")
16 disp("Number of stages in each pump = 8")
17 disp("Impeller speed at tip is U2 in m/s")
18 U2 = 0.96*(2*g*H)^0.5
19 disp ("Impeller Diameter at tip D2")
20 / D2 = \% pi * 60 * 30.6 * 1445
21 disp("But U2 = pi*D2*N/60 Therefore D2 real in m")
22 	ext{ D2real} = 	ext{U2} *60/(%pi*1445)
```

Scilab code Exa 2.20 Pumps to be Connected

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 2, Example 20")
8 disp("Specific speed for a single impeller is given
```

```
by")

9 disp("Ns = N*Q^0.5/H^0.75")

10 Ns = 700

11 H = 105

12 N = 900

13 Q = 5500/60//1/s

14 H = (N*Q^0.5/Ns)^(4/3)

15 disp("Hence total number of stages:")

16 Ht = 105;

17 Stages = Ht/H

18 disp("Stages in series are 4")
```

Scilab code Exa 2.21 Specific speed 1150

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 2, Example 21")
8 disp("Given data")
9 D2 = 0.9/m
10 D1 = 0.45 / m
11 Ns = 1150//\text{rpm}
12 Cr = 2.5 //m/s
13 \text{ H} = 5.5 / \text{m}
14 disp("H,D2 and D1 are in meters, Ns in rpm, Cr in m/
      s")
15 \ Q = (\%pi*(D2^2-D1^2)/4)*Cr*1000
16 disp("Q in 1/s")
17 N = Ns*H^0.75/Q^0.5
18 disp("Therefore N = 120")
19 disp("In order to find vane angle at entry, using
```

```
velocity triangle at inlet,U1 in m/s is:")
20 U1 = %pi*D1*N/60
21 alpha = atan(Cr/U1)*180/%pi
```

Chapter 3

Hydraulic Turbines

Scilab code Exa 3.1 Generator Pelton Wheel

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 1")
  disp("Given data: Discharge rate Q = 145 l/s, Head
     H = 220m, U1 = U2 = 14m/s, beta2 = 180-160 = 20
     degrees")
9 Q = 145;
10 H = 220;
11 U2 = 14;
12 \ U1 = U2;
13 \text{ beta2} = 20;
14 g = 9.81;
15 disp("Refering figure")
16 disp("Using Using Euler's equation, work done per
```

```
weight mass of water per sec. = (Cw1U1 - Cw2U2).
      But for Pelton wheel Cw2 is negative")
17 disp("Therefore Work done / s = (Cw1U1 + Cw2U2) Nm /
       s. From inlet velocity triangle Cw1 = C1 and C1
       ^2/2g = H")
18 C1 = (2*g*H)^0.5
19 disp("Relative velocity at inlet V1")
20 V1 = C1 - U1
21 disp("From outlet velocity triangle")
22 \ V2 = V1
23 \text{ Cw2} = \cos(20*\%\text{pi}/180)*\text{V2} -14
24 disp("Hence, work done per unit mass of water per
      sec.")
25 \text{ W} = \text{C1} * \text{U1} + \text{Cw2} * \text{U2}
26 disp("Power in kw")
27 P = W*Q/1000
```

Scilab code Exa 3.2 Pelton Wheel 725

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 2")
8 disp("Overall efficiency etao = Power developed/
      Power available")
9 \text{ rho} = 1000;
10 g = 9.81;
11 Q = 0.035;
12 H = 92;
13 \text{ etao} = 0.82;
14 \text{ Cv} = 0.95;
```

```
15 N = 725;
16 disp("Power in kw")
17 P = rho*g*Q*H*etao/1000
18 disp("Velocity coefficient Cv = C1/(2gH) \hat{0}.5")
19 \text{ C1} = \text{Cv} * (2*g*H)^0.5
20 disp("Speed of the wheel is given by U")
21 \ U = 0.45 * C1
22 disp("If D is the wheel diameter, then")
23 D = 2*U*60/(N*2*\%pi)
24 disp("Jet area A")
25 A = Q/C1
26 disp("Jet diameter, d, is given by")
27 d = (4*A/\%pi)^0.5
28 disp("Diameter ratio D/d =")
29 R = D/d
30 disp("Dimensionless specific speed is given by Nsp =
      NP^0.5/rho^0.5*(gH)^1.25 in radians")
31 Nsp = (N/60)*(((P/rho)*1000)^0.5) * ((1/(g*H))^1.25)
       *2*%pi
```

Scilab code Exa 3.3 Pelton Speed 14

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 3, Example 3")
8 disp("Refering Figure")
9 disp("Given Data")
10 U2= 14//m/s
```

```
11 U1=U2
12 Q = 0.82 //m3/s
13 \text{ H} = 45 / \text{/m}
14 \text{ beta2} = 180-160
15 \text{ Cv} = 0.98
16 g = 9.81
17 disp("Velocity of jet C1")
18 \text{ C1} = \text{Cv}*(2*g*H)^0.5
19 disp("Assuming beta1 = 180")
20 \text{ beta1} = 180;
21 \text{ Cw1} = \text{C1}
22 V1 = C1 - U1
23 disp("From outlet velocity triangle, U1 = U2(
       neglecting losses on buckets)")
24 \ V2 = V1
25 \text{ Cw2} = \text{V2}*\cos(\text{beta2}*\%\text{pi}/180) - \text{U2}
26 disp("Work done per weight mass of water per sec")
27 \quad W = (Cw1 + Cw2) * U1
28 disp("Power developed P in kw and horse power are
       Pkw, Php")
29 \quad Pkw = W*Q
30 Php = Pkw*1000/746//in horse power
31 disp ("Efficiency et a1")
32 \text{ eta1} = 1000*Pkw/(1000*g*Q*H)
```

Scilab code Exa 3.4 Pelton Wheel 12900kW

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 3, Example 4")
```

```
8 disp("Given Data")
9 \text{ H} = 505//\text{Head in m}
10 P = 12900 / / Power in kW
11 N = 425//\text{Speed} in rpm
12 etao = 0.84//Efficiency
13 g = 9.81/m/s2
14 disp("Let Q be the discharge of the turbine")
15 Q = P/(etao*g*H)
16 disp("Velocity of jet C")
17 \text{ Cv} = 0.98;
18 \ C = Cv * (2*g*H)^0.5
19 disp ("Tangential velocity of the wheel is given by "
20 \ U = 0.46 * C
21 disp ("Diameter D")
22 D = 60*U/(\%pi*N)
23 disp("Let d be the diameter of the nozzle. The
      discharge through the nozzle must be equal to the
       discharge of the turbine. Therefore")
24 d = (Q*4/(\%pi*C))^0.5
```

Scilab code Exa 3.5 Double Overhung Pelton

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 3, Example 5")
8 disp("Output Power")
9 Po = 12000
10 eta = 0.95
11 disp("Power generated Pin")
```

Scilab code Exa 3.6 Power Station

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 6")
8 disp("Referring Figure")
9 disp("Hydraulic Efficiency etah = Power output/
      Energy available in the jet = P/(0.5mC1^2)")
10 disp("At entry to nozzle")
11 H = 610-46//in m
12 \text{ Cv} = 0.98;
13 g = 9.81;
14 disp("Using nozzle velocity coefficient C1")
15 \text{ C1} = \text{Cv} * (2*g*H)^0.5
16 disp("Now W/m = U1Cw1 - U2Cw2 = U \{(U + V1) - [U-V2cos + V1]\}
      (180 - alpha)] = U[(C1 - U)(1 - k cos (alpha))]
      where V2 = kV1")
17 disp("Therefore W/m")
18 Wm = 0.46*C1*(C1-0.46*C1)*(1-0.99*\cos(165*\%pi/180))
19 etah = Wm/(0.5*103*103)
20 disp ("Actual hydraulic efficiency")
21 etaha = 0.91*etah
22 disp("Wheel bucket speed")
```

```
23 s = 0.46*C1
24 disp("Wheel rotational speed N")
25 N = s*60/(0.445*2*\%pi)
26 disp ("Actual hydraulic efficiency")
27 disp("
             Actual power/energy in the jet = (1260 *
      10^3 / (0.5 \text{mC1}^2)")
28 disp("Therefore")
29 \quad m = 1260*1000/(0.882*0.5*103*103)
30 disp("For one nozzle,m")
31 \text{ mone} = m/2
32 disp("For nozzle diameter, using continuity equation
      , m")
33 disp("m = rho*C1*A = rho*C1*pi*d^2/4")
34 disp("Hence, d in mm")
35 d = (mone*4/(%pi*103*1000))^0.5 *1000
```

Scilab code Exa 3.7 Pelton Head 90

```
15 g = 9.81;
16 H = 60;
17 \text{ C1} = \text{Cv} * (2*g*H)^0.5
18 U1 =12;
19 disp("Therefore")
20 \text{ V1} = \text{C1-U1}
21 disp("From outlet velocity triangle")
22 \ V2 = V1
23 \text{ alpha} = 15;
24 disp("neglecting losses in m/s")
25 \text{ U2} = \text{U1};
26 \text{ Cw2} = \text{V2}*\cos(\text{alpha}*\%\text{pi}/180) - \text{U2}
27 \text{ Cr2} = V2*\sin(\text{alpha}*\%\text{pi}/180)
28 C2 = (Cw2^2+Cr2^2)^0.5
29 disp("Work done in kJ/kg")
30 W = (C1^2-C2^2)/2
31 disp("Note Work done can also be found by using
       Euler s equation (Cw1U1 + Cw2U2)")
32 \text{ Power} = W / kW
33 disp("Hydraulic Efficiency")
34 Efficiency = W*2/C1^2
```

Scilab code Exa 3.8 Single Jet Pelton Wheel

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 3, Example 8")
8 // Answers here are given by direct calculations and
```

```
none of them are rounded, the answers are
       dependent on each other.
9 disp ("Referring Figure and the scientific
       calculations")
10 disp("Velocity of jet, C1")
11 \text{ Cv} = 0.98;
12 g=9.81;
13 H = 515;
14 \text{ C1} = \text{Cv}*(2*g*H)^0.5
15 disp("Discharge, Q is given by")
16 d=0.2;
17 Q = \%pi*C1*d^2 /4
18 disp("Water power is given by in kW")
19 \text{ rho} = 1000;
20 P = rho*g*Q*H/1000
21 disp("Bucket velocity, U1, is given by")
22 \text{ Cv1} = 0.46;
23 \text{ U1} = \text{Cv1}*(2*g*H)^0.5
24 disp("Relative velocity, V1, at inlet is given by")
25 \text{ V1} = \text{C1} - \text{U1}
26 \ V2 = 0.88*V1
27 disp("From the velocity diagram")
28 \ U2 = U1
29 \text{ Cw2} = \text{U2} - \text{V2} \cdot \cos(\%\text{pi} \cdot 15/180)
30 disp("Therefore force on the bucket F in N")
31 \text{ Cw1} = \text{C1}
32 	ext{ F} = rho*Q*(Cw1-Cw2)
33 disp("Power produced by the Pelton wheel Pp in kW")
34 \text{ Pp} = F*U2/1000
35 disp ("Taking mechanical loss")
36 \; loss = 0.04
37 disp("Therefore, shaft power produced")
38 \text{ Pshaft} = Pp*(1-loss)
39 disp("Overall efficiency etao")
40 etao = Pshaft/P *100
```


Figure 3.13 velocity triangles for inward flow reaction turbine.

Figure 3.1: Inward Flow Reaction Turbine

Scilab code Exa 3.9 Inward Flow Reaction Turbine

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
```

```
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 9")
8 disp("Referring Figure")
9 disp("From inlet velocity triangle")
10 Cr1 = 3.8; //m/s
11 alpha1 = 16; // degree
12 Cw1 = Cr1/tan(alpha1*\%pi/180)
13 disp("Absolute velocity of water at inlet, C1, is")
14 C1 = Cr1/sin(alpha1*\%pi/180)
15 D1 = 1; //m
16 N = 240; //rpm
17 \text{ U1} = \%pi*D1*N/60
18 \quad x = Cr1/(Cw1-U1)
19 beta1 = atan(x) * 180/\%pi
20 disp("Relative velocity of water at entrance")
21 V1 = Cr1/sin(beta1*\%pi/180)
```

Scilab code Exa 3.10 Runner Axial Flow

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 3, Example 10")
8 disp("Refering Figures")
9 disp("Since this is an impulse turbine, assume coefficient of velocity = 0.98")
10 disp("Therefore the absolute velocity at inlet is")
11 Cv = 0.98;
```

```
12 g = 9.81;
13 H = 35;
14 \text{ C1} = \text{Cv}*(2*g*H)^0.5
15 disp("The velocity of whirl at inlet")
16 \text{ alpha1} = 30;
17 \text{ Cw1} = \text{C1}*\cos(\text{alpha1}*\%\text{pi}/180)
18 disp("Since U1 = U2 = U")
19 disp("Using outlet velocity triangle")
20 disp("C2 = U2tan(beta2) = U tan(beta2) = U tan(22)")
21 disp("Hydraulic efficiency of turbine (neglecting
       losses)")
22 / \text{etah} = \text{Cw} 1 \text{U} 1 / \text{gH} = (\text{H} - \text{C} 2^2 / 2 \text{g}) / \text{H}
23 / 22.24U + 0.082U^2 - 9.81H = 0
24 disp("As U is positive,")
25 U = (-22.24 + ((22.4)^2 + 4*0.082*g*H)^0.5)
      /(2*0.082) - 0.9
26 disp("Now using relation")
27 disp("U = \%pi*D*N/60")
28 D = 1.5;
29 N = 60*U/(%pi*D)
30 disp("Hydraulic efficiency")
31 etah = Cw1*U/(g*H)
```

Scilab code Exa 3.11 Kaplan runner

```
10  H = 5.5;
11  Cv1 = 0.68;
12  U1 = Cv*(2*g*H)^0.5
13  Cr1 = Cv1*(2*g*H)^0.5
14  N = 65;
15  disp("Now power is given by")
16  P = 9000;
17  eta = 0.85;
18  Q = P / (g * H * eta)
19  disp("If D is the runner diameter and, d, the hub diameter")
20  D = (Q*4*9/(%pi*Cr1*8))^0.5
21  disp("Solving")
22  Ns = N * P^0.5 / H^1.25
```

Scilab code Exa 3.12 Turbine 12000 HP

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 12")
8 disp("Mean diameter D")
9 D = (4+1.75)/2
10 N = 145;
11 \ U1 = \%pi*D*N/60
12 g = 9.81;
13 \text{ H} = 20;
14 disp("Using hydraulic efficiency, etah")
15 \text{ etah} = 0.93
16 \text{ Cw1} = \text{etah*g*H/U1}
17 \text{ Power} = 12000*0.746
```

```
18 disp("Power = rho*g*Q*H*etao")
19 etao = 0.85
20 disp("Discharge, Q")
21 Q = Power/(g*H*etao)
22 Cr1 = Q*4/(%pi*(4^2-1.75^2))
23 beta1 = atan(Cr1/(U1-Cw1))*180/%pi
24 U2 =U1
25 Cr2 = Cr1
26 beta2 = atan(Cr2/U2)*180/%pi
```

Scilab code Exa 3.13 Speed angle reaction turbine

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 13")
8 disp("Outer diameter, D2 = 1.4m")
9 disp("Inner diameter, D1 = 0.7m")
10 disp("Angle at which the water enters the vanes,
      alpha1 = 12 degrees")
11 disp("Velocity of flow at inlet,")
12 \text{ Cr2} = 2.8
13 \text{ Cr1} = \text{Cr2}
14 disp("As the vanes are radial at inlet and outlet
      end, the velocity of whirl at inlet and outlet
      will be zero, as shown in Fig. 3.21.")
15 disp("Tangential velocity of wheel at inlet,")
16 \text{ alpha1} = 12
17 U1 = Cr1/tan(alpha1*\%pi/180)
18 D2 = 1.4
19 N = 60*U1/(\%pi*D2)
```

```
20 disp("Let beta2 is the vane angle at outlet")
21 D1 = 0.7
22 U2 = %pi*D1*N/60
23 disp("From Outlet triangle,")
24 beta2 = atan(Cr2/U2)*180/%pi
```

Scilab code Exa 3.14 Discharge 500

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 14")
8 disp("Discharge, Q")
9 Q = 0.5 / m3/s
10 disp("Velocity of flow at inlet, Cr1")
11 Cr1 = 1.5//m/s
12 disp("Velocity of periphery at inlet, U1")
13 \text{ U1} = 20
14 disp("Velocity of whirl at inlet, Cw1")
15 \text{ Cw1} = 15
16 disp("As the velocity of flow is constant, Cr1 = Cr2
      ")
17 \text{ Cr2} = \text{Cr1}
18 disp("Let beta1 = vane angle at inlet")
19 disp("From inlet velocity triangle")
20 beta1 = 180 - \frac{\text{atan}(Cr1/(U1-Cw1))}{\text{*}180/\%pi}
21 g = 9.81;
22 disp("Since the discharge is radial at outlet, and
      so the velocity of whirl at outlet is zero.
      Therefore,")
23 H = Cw1*U1/g + Cr1^2/(2*g)/m
```

Scilab code Exa 3.15 Rotation 290rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 15")
8 disp("Inner diameter of wheel,")
9 D1 = 1
10 disp("Outer diameter of wheel,")
11 D2 = 2
12 disp("Velocity of flow is constant")
13 Cr1 = 12//m/s
14 \text{ Cr2} = \text{Cr1}
15 disp("Speed of wheel,")
16 N = 290 / rpm
17 disp("Vane angle at inlet = beta1")
18 disp("U1 is the velocity of periphery at inlet.")
19 \ U1 = \%pi*D1*N/60
20 disp ("From inlet triangle, velocity of whirl is
      given by")
21 \text{ Cw1} = \text{Cr1/tan}(20*\%\text{pi}/180)
22 beta1 = \frac{\text{atan}}{\text{(Cr1/(Cw1-U1))}} *180/\%pi
23 disp("Let beta2 = vane angle at outlet")
24 disp("U2 = velocity of periphery at outlet")
25 \ U2 = \%pi*D2*N/60
26 disp("From the outlet triangle")
27 beta2 = atan(Cr2/U2)*180/\%pi
```

Scilab code Exa 3.16 Head 30

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 16")
8 disp("If D1 is the diameter of pipe, then discharge
      is Q = pi*D1^2*C2/4")
9 Q = 0.245
10 D1 = 0.28
11 C2 = 4*0.245/(\%pi*0.28^2)
12 disp("But C2 = Cr1 = Cr2")
13 \text{ g} = 9.81;
14 H = 30;
15 disp("Neglecting losses, we have")
16 / x = Cw1*U1
17 x = g*H - C2^2 /2;
18 disp("Power developed")
19 Power = x*Q//kW
20 \text{ U1} = 16
21 \text{ Cw1} = \text{x/U1}
22 \text{ Cr1} = \text{C2}
23 alpha1 = atan(C2/Cw1)*180/\%pi
24 beta1 = atan(Cr1/(Cw1-U1)) *180/%pi
```

Scilab code Exa 3.17 Power 12400

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
```

```
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 17")
8 disp("Velocity in casing at inlet to turbine")
9 Q = 7.8;
10 disp("Cc = Discharge/(Cross - sectional area of
      casing)")
11 Cc = Q/(\%pi*1^2/4)
12 disp("The net head on turbine")
13 disp(" = Pressure head + Head due to turbine
      position + (Cc^2 - C1^2)/2g")
14 \text{ PrHead} = 164
15 TurbHead = 5.4
16 \text{ C1} = 1.6
17 g = 9.81;
18 Hnet = PrHead + TurbHead + (Cc^2-C1^2)/(2*g)
19 disp("Waterpower supplied to turbine = QgH kW")
20 P = Q * g * Hnet
21 disp("Hence overall efficiency, etao = Shaft Power/
      Water Power")
22 \text{ etao} = 12400/P * 100
```

Scilab code Exa 3.18 Francis Turbine 1250rpm

```
10 disp("As the flow is radial at outlet, Cw2 = 0 and
      therefore")
11 \text{ Cw2} = 0;
12 \text{ disp}("T = -mCw1r1")
13 disp(" - rQCw1r1")
14 disp("T = -225Cw1 Nm")
15 disp("If h1 is the inlet runner height, then inlet
      area, A, is")
16 \text{ h1} = 0.035;
17 \text{ r1} = 0.5;
18 A = 2*\%pi*r1*h1
19 \ Q = 0.45;
20 \text{ Cr1} = Q/A
21 g = 9.81;
22 H = 125;
23 \text{ rho} = 1000;
24 disp("From velocity triangle, velocity of whirl")
25 alpha = 70;
26 disp("Substituting Cw1, torque is given by")
27 \text{ Cw1} = \text{Cr1} * \text{tan}(\text{alpha} *\%\text{pi}/180)
28 T = -1 * 225 * Cw1
29 disp("Negative sign indicates that torque is exerted
       on the fluid. The torque exerted by the fluid is
       +2534Nm")
30 \text{ Ta} = -1*T;
31 disp("Power exerted")
32 N = 1250;
33 omega = 2*\%pi*N/(60*1000)
34 P = Ta * omega
35 disp("Hydraulic efficiency is given by")
36 disp("etah = Power exerted/Power available")
37 \text{ etah} = P * 1000/ (\text{rho} * \text{g} * \text{H} * \text{Q}) * 100
```

Scilab code Exa 3.19 Turbine 130kW

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
       Gorla and Aijaz A. Khan, Chapter 3, Example 19")
8 disp("Hydraulic efficiency is")
9 disp("etah = Power deleloped/Power available")
10 \operatorname{disp}(" = \operatorname{m}(\operatorname{Cw1U1} - \operatorname{Cw2U})/\operatorname{rhog}\operatorname{QH}")
11 disp("Since flow is radial at outlet, then Cw2 = 0
      and m = rhoQ, therefore")
12 \operatorname{disp}("\operatorname{etah} = \operatorname{Cw1U1/gH"})
13 g = 9.81;
14 \text{ H= 5};
15 \text{ U1} = 9.6;
16 etah = 80; //\%
17 Cw1 = etah *g*H/(9.6*100)
18 disp("Radial velocity Cr1 = 4m/s")
19 \text{ Cr1} = 4;
20 disp("tan(alpha1) = Cr1/Cw1 (from velocity triangle)
21 alpha1 = atan(Cr1/Cw1)*180/\%pi
22 disp("i.e., inlet guide vane angle alpha1 = 44.38")
23 disp("tan(beta1) = Cr1/(Cw1 - U1)")
24 beta1 = 180 + \frac{\text{atan}}{\text{(Cr1/(Cw1-U1))}} * 180/\%pi
25 disp("Runner speed is")
26 N = 230;
27 D1 = 60*U1/(\%pi*N)
28 disp("Overall efficiency")
29 disp("etao = Power output/Power available")
30 \text{ rho} = 1000;
31 Q = 130*1000/(0.72*rho*g*H)
32 disp("But Q = pi*D1h1Cr1 (where h1 is the height of
      runner)")
33 \text{ h1} = Q/(\%pi*D1*Cr1)
```

Scilab code Exa 3.20 Blade tip hub dia

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 20")
8 disp("Mean diameter, Dm, is given by")
9 \text{ disp}("Dm = (Dh + Dt)/2")
10 \text{ Dh} = 2;
11 Dt = 4.5;
12 \text{ Dm} = (Dh + Dt)/2
13 disp("Overall efficiency, etao, is given by")
14 disp("etao = Power develpoed/Power available")
15 disp("Power available = 22/0.84 = 26.2 \text{ MW}")
16 P = 26.2*10^6;
17 disp("Also, available power = rho *gHQ")
18 disp("Hence flow rate, Q, is given by")
19 \text{ rho} = 1000;
20 g = 9.81;
21 H = 22;
22 \ Q = P / (rho * g * H)
23 disp("Now rotor speed at mean diameter")
24 N = 150;
25 \quad Um = \%pi*Dm*N/60
26 disp("Power given to runner = Power available * etah
       in MW')
27 \text{ etah} = 0.92;
28 Prun = P *etah / (10^6) // in MW
29 disp("Theoretical power given to runner can be found
       by using")
```

```
30  disp("P = rho*QUmCwl (Cw2 = 0)")
31  Cw1 = Prun * 10^6 / (rho * Q * Um)
32  disp("Axial velocity is given by")
33  disp("Cr = Q * 4/(%pi *(Dt^2 - Dh^2)")
34  Cr = Q*4/(%pi*(Dt^2 - Dh^2))
35  disp("Using velocity triangle")
36  disp("tan (180 -betal) = C/(Um - Cw1)")
37  disp("Inlet angle,")
38  betal = 180 - atan(Cr/(Um-Cw1))*180/%pi
39  disp("At outlet")
40  disp("But Vcw2 equals to Um since Cw2 is zero. Hence
")
41  Vcw2 = Um
42  beta2 = atan(Cr/Vcw2) * 180/%pi
```

Scilab code Exa 3.21 Overall Efficiency 75

```
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Turbomachinery Design and Theory,Rama S. R.
        Gorla and Aijaz A. Khan, Chapter 3, Example 21")
disp("Hydraulic efficiency, etah, is given by")
disp("etah = Power given to runner/Water Power available")
disp(" = m (U1Cw1 - U2Cw2)/rho*gQH")
disp("Since flow is radial at exit, Cw2 = 0 and m = rho*Q. Therefore")
```

```
12 \text{ Cw2} = 0;
13 \text{ etah} = 0.82;
14 \text{ U1} = 10.6;
15 g = 9.81;
16 H = 6;
17 \text{ Cw1} = \text{etah*g*H/U1}
18 \text{ Cr1} = 4;
19 alpha1 = atan(Cr1/Cw1)*180/\%pi
20 disp("From Figures")
21 disp("Blade angle, beta1, is given by")
22 beta1 = 180 - \frac{\text{atan}}{\text{(Cr1/(U1-Cw1))}} * 180/\%pi
23 disp("Runner speed at inlet")
24 N = 235;
25 D1 = U1*60/(\%pi*N)
26 disp("Overall efficiency")
27 disp("etao = Power output/Power available")
28 \text{ etao} = 0.75
29 \text{ rho} = 1000;
30 P = 128000
31 disp ("From which flow rate")
32 \ Q = P/(0.75*rho*g*H)
33 disp("Also, Q = rho*D1hCr1")
34 disp("where h1 is the height of runner. Therefore,")
35 \text{ h1} = Q/(\%pi*D1*Cr1)
```

Scilab code Exa 3.22 Kaplan 10000kW

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 3, Example 22")
```

```
8 disp("Head, H = 8 \text{ m}, Power, P = 10,000 \text{kW}")
9 disp("Overall efficiency, etao = 0.86")
10 P = 10000;
11 g = 9.81;
12 \text{ H} = 8;
13 \text{ rho} = 1000;
14 \text{ U1} = 2*(2*g*H)^0.5
15 disp("Flow ratio Cr1/(2gH)^0.5")
16 \text{ Cr1} = 0.6*(2*g*H)^0.5
17 disp("Hub diameter, D1 = 0.35 D2")
18 disp("Overall efficiency, etao = P/rho*gQH")
19 \text{ etao} = 0.86;
20 Q = P/(rho*g*H*etao) * 1000
21 disp("Now using the relation")
22 disp("Q = Cr1 * pi * (D1^2 - D2^2)/4")
23 D1 = (Q*4/(Cr1*\%pi*(1-0.35^2)))^0.5
24 disp("The peripheral velocity of the turbine at
      inlet")
25 N = U1*60/(%pi*D1)
```

Scilab code Exa 3.23 Vanes 12 degrees

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory,Rama S. R.
Gorla and Aijaz A. Khan, Chapter 3, Example 23")
8 disp("Inner Diameter,")
9 D2 = 0.45
10 disp("Outer Diameter,")
```

```
11 D1 = 0.9
12 disp("Radial Discharge")
13 alpha2 = 90
14 Cr2 = 2.8
15 Cr1 = Cr2
16 disp("From velocity triangle at inlet, The peripheral velocity of the wheel at inlet")
17 alpha1 = 12
18 U1 = Cr1/tan(alpha1*%pi/180)
19 N = 60*U1/(%pi*D1)
20 disp("Considering velocity triangle at outlet peripheral velocity at outlet")
21 U2 = %pi*D2*N/60
22 beta2 = atan(Cr2/U2)*180/%pi
```

Scilab code Exa 3.24 Inward Flow 70kW

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 24")
8 Q = 0.545 / m3/s
9 D1 = 0.8/m
10 D2 = 0.4/m
11 H = 14 / m
12 alpha2 = 90//degrees
13 N = 370
14 / beta1 = beta2
15 disp("Peripheral velocity of the wheel at inlet")
16 \text{ U1} = \%pi*D1*N/60
17 disp("Velocity of flow at the exit,")
```

```
18 \text{ Cr2} = 2.8 / \text{/m/s}
19 \text{ alpha2} = 90
20 C2 = Cr2
21 g = 9.81;
22 disp("Work done/s by the turbine per kg of water =
      Cw*U1/g")
23 disp ("But this is equal to the head utilized by the
      turbine, i.e.")
24 disp("Cw1U1/g = H - C2/2g")
25 disp("(Assuming there is no loss of pressure at
       outlet)")
26 \text{ Cw1} = (H - C2/(2*g))*g/U1
27 disp("Work done per second by turbine")
28 \text{ rho} = 1000;
29 W = rho*Q*Cw1*U1/(1000)/kW
30 disp("Available power or water power")
31 Pav = rho*g*Q*H /1000 / kW
32 disp("Actual available power")
33 Pac = 70 / \text{kW}
34 disp("Overall turbine efficiency is")
35 etat = Pac/Pav
                      * 100
36 disp ("This is the actual hydraulic efficiency as
      required in the problem. Hydraulic Efficiency is"
      )
37 \text{ etah} = W/Pav
                  * 100
38 disp("This is the theoretical efficiency")
39 \operatorname{disp}("Q = \operatorname{pi}*D1b1Cr1 = \operatorname{pi}*D2b2Cr2")
40 disp("(Neglecting blade thickness)")
41 \text{ Cr1} = \text{Cr2} * \text{D2/D1}
42 disp("Drawing inlet velocity triangle")
43 / \text{Cr} 1 / \text{(U1-Cw1)} = 0.203
44 beta1 = atan(0.203)* 180/\%pi
45 \text{ C1} = (Cw1^2+Cr1^2)^0.5
46 / \text{Cw1/C1} = 0.995
47 \text{ aplha1} = \frac{a\cos(0.995)*180}{\%pi}
```

Scilab code Exa 3.25 Francis Turbine 500kW

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
       Gorla and Aijaz A. Khan, Chapter 3, Example 25")
8 P = 5000 / kW
9 alpha1 = 30//degrees
10 \text{ H} = 30 / \text{/m}
11 g = 9.81;
12 \text{ Ns} = 270
13 \text{ etah} = 0.9
14 \text{ etao} = 0.86
15 disp("Specific speed of the turbine is")
16 N = Ns* H^1.25 / (P^0.5)
17 disp("Velocity of Flow:")
18 \text{ Cr1} = 0.28* (2*g*H)^0.5
19 disp("From inlet velocity triangle Cr1 = C1sin(
       alpha1)")
20 \text{ C1} = \text{Cr1} / \frac{\sin(\text{alpha1}*\%\text{pi}/180)}
21 \text{ Cw1} = \text{C1} * \text{cos}(\text{alpha1}*\%\text{pi}/180)
22 disp("Work done per (sec) (kg) of water")
23 /W = Cw1*U1/g
24 W = etah*H
25 disp("Peripheral Velocity,")
26 \text{ U1} = \text{W*g/Cw1}
27 disp("But U1 = pi*D1N/60")
28 D1 = 60*U1/(%pi*N)
29 disp("Power, P = rho*gQH*etao")
30 \text{ rho} = 1000;
```

Scilab code Exa 3.26 35MW Generator

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 3, Example 26")
8 disp("In this case, the generator is fed by two
      Pelton turbines.")
9 disp("Power developed by each turbine,")
10 \text{ PT} = 35000/2
11 disp ("Using Pelton wheel efficiency in order to find
       available power of each turbine")
12 P = PT / 0.84
13 disp("But, P = rho*gQH")
14 \text{ rho} = 1000;
15 g = 9.81;
16 \text{ H} = 350
17 \ Q = P/(rho*g*H) * 1000
18 disp("Velocity of jet, Cj")
19 \text{ Cv} = 0.96;
20 \text{ Cj} = \text{Cv}*(2*g*H)^0.5
21 disp("Area of jet, A")
```

```
22 A = Q/Cj
23 disp("Diameter of jet , d")
24 d = (4*A/%pi)^0.5
25 disp("Diameter of wheel D = d * jet ratio")
26 r = 12;
27 D= d*12
28 disp("Peripheral velocity of the wheel")
29 U = 0.45*(2*g*H)^0.5
30 disp("But U = pi*DN/60 or")
31 N = 60*U/(%pi*D)
32 disp("Specific speed,")
33 Ns = N*PT^0.5 / H^1.25
```

Chapter 4

Centrifugal Compressors and Fans

Scilab code Exa 4.1 Air leaving impeller

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 4, Example 1")
8 disp("From the velocity triangle")
9 disp("Referring Figure")
10 beta2 = 25.5//\text{degrees}
11 Cr2 = 110//m/s
12 U2 = 475/m/s
13 Cw2 = U2 - tan(25.5*\%pi/180) * Cr2 //m/s
14 \text{ sigma} = Cw2/U2
15 disp("The overall pressure ratio of the compressor:"
```

```
16  //r = P03/P04
17  etac = 0.8
18  psi = 1
19  Cp = 1005
20  T01 = 298
21  gamma = 1.4
22  r = (1 + etac * sigma * psi * U2^2 /(Cp*T01))^(gamma /(gamma-1))
23  disp("The theoretical power required to drive the compressor:")
24  m = 3
25  P = (m*sigma*psi*U2^2 /1000)
26  disp("Using mechanical efficiency, the actual power required to drive thecompressor is:")
27  Power = P / 0.96
```

Scilab code Exa 4.2 Speed Centrifugal Compressor270

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 4, Example 2")
8 disp("Slip factor: sigma = Cw2/U2")
9 U2 = 370;
10 \text{ sigma} = 0.9;
11 \text{ Cw2} = \text{sigma} * \text{U2}
12 disp("The absolute velocity at the impeller exit:")
13 Cr2 = 35; //m/s
14 C2 = (Cr2^2+Cw2^2)^0.5
15 disp("The mass flow rate of air: m = rho2 *A2*Cr2")
16 rho2 = 1.57; // kg/m3
```

```
17 \text{ A2} = 0.18; //m2
18 m = rho2*A2*Cr2
19 disp("The temperature equivalent of work done (
       neglecting c):")
20 disp("Therefore, T02 - T01 = sigma*U2^2/Cp")
21 \quad T01 = 290;
22 \text{ Cp} = 1005;
23 \text{ TO2} = \text{TO1} + \text{sigma*U2^2/Cp}
24 disp("The static temperature at the impeller exit,"
25 	ext{ T2} = 	ext{T02} - 	ext{C2}^2/(2*Cp)
26 disp("The Mach number at the impeller tip:")
27 \text{ gamma} = 1.4;
28 R = 287; //
29 \text{ M2} = \text{C2} / (gamma *R*T2)^0.5
30 disp("The overall pressure ratio of the compressor (
       neglecting psi): P03/P01")
31 etac = 0.88; // efficiency
32 psi = 1; // \text{neglected}
33 ratio = (1+etac*sigma*psi*U2^2 /(Cp*T01))^3.5
```

Scilab code Exa 4.3 Centrifugal Compressor 16000rpm

```
10 N = 16000 / rpm
11 U2 = \%pi* D* N/60
12 disp ("Assuming isentropic flow between impeller
      inlet and outlet, then T02a")
13 T01 = 293; //K
14 stagratio = 4.2
15 T02a = T01*(stagratio)^0.286
16 disp("Using compressor efficiency, the actual
      temperature rise T02a-T01")
17 \text{ etac} = 0.82
18 \text{ rise} = (T02a-T01)/\text{etac}
19 disp("Since the flow at the inlet is axial, Cw1 = 0"
20 disp("W = U2Cw2 = Cp (T02 - T01)")
21 Cp = 1005
22 W = Cp*(rise)
23 \text{ Cw2} = \text{W/U2}
24 Slip = U2-Cw2
25 disp("Slip factor:")
26 \text{ sigma} = \text{Cw}2/\text{U}2
```

Scilab code Exa 4.4 Adiabatic Efficiency

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory,Rama S. R.
Gorla and Aijaz A. Khan, Chapter 4, Example 4")
8 //Impeller tip diameter = 1m
9 //Speed = 5945 rpm
10 //Mass flow rate of air = 28 kg/s
11 //Static pressure ratio p3/p1 = 2.2
```

```
12 //Atmospheric pressure = 1 bar
13 //Atmospheric temperature = 25 degree Celcius
14 / Slip factor = 0.90
15 disp("Neglect the power input factor.")
16 disp("The impeller tip speed is given by:")
17 D = 1;
18 N = 5945;
19 U2 = \%pi*D*N/60
20 disp("The work input:")
21 \text{ sigma} = 0.9;
22 W = sigma * U2^2 / 1000
23 disp("Using the isentropic P T relation and
      denoting isentropic temperature by T3a, we get:")
24 \text{ T1} = 298;
25 r = 2.2;
26 \text{ T3a} = \text{T1} * (r)^{0.286}
27 disp ("Hence the isentropic temperature rise: T3a -
      T1")
28 rise = T3a -T1
29 disp ("The temperature equivalent of work done: T3 -
      T1")
30 \text{ Cp} = 1.005
31 \text{ Weq} = \text{W/Cp}
32 disp("The compressor adiabatic efficiency is given
      by:")
33 etac = rise/Weq
                     * 100
34 disp("The air temperature at the impeller exit is:")
35 \quad T3 = T1 + Weq
36 disp("Power input:")
37 m = 28;
38 P = m * W
```

Scilab code Exa 4.5 Centrifugal Compressor 9000rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 4, Example 5")
8 disp("Impeller tip speed is given by")
9 D = 0.914;
10 N = 9000;
11 U2 = \%pi*D*N/60
12 disp("Since the exit is radial and no slip, Cw2 = U2
       = 431 \text{ m/s}")
13 disp("From the velocity triangle,")
14 \text{ alpha2} = 20;
15 \text{ Cw2} = \text{U2};
16 Cr2 = U2*tan(alpha2 *%pi/180)
17 disp("For radial exit, relative velocity is exactly
      perpendicular to rotational velocity U2. Thus the
       angle beta2 is 90 degrees for radial exit.")
18 disp ("Using the velocity triangle")
19 \text{ C2} = (U2^2 + Cr2^2)^0.5
```

Scilab code Exa 4.6 Centrifugal Compressor No prewhirl

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 4, Example 6")
8 disp("The pressure ratio is given by r = P03/P01")
```

```
9 etac = 0.88;
10 sigma = 0.95;
11 U2 = 457;
12 Cp = 1005;
13 T01 = 288;
14 r = (1+etac*sigma*U2^2/(Cp*T01))^3.5
15 disp("The work per kg of air")
16 Cw2 = 0.95*U2;
17 W = U2*Cw2 / 1000//kJ/kg
18 disp("The power for 29kg/s of air")
19 m = 29;
20 P = W * m //kW
```

Scilab code Exa 4.7 Centrifugal Compressor 10000rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 4, Example 7")
8 disp("Temperature equivalent of work done:")
9 \text{ disp}("Weq = T02 - T01")
10 T02 = 440; // kelvin
11 T01 = 290; // \text{kelvin}
12 \text{ sigma} = 0.88;
13 \text{ psi} = 1.04;
14 \text{ Cp} = 1005;
15 N = 10000; //rpm
16 U2 = ((T02-T01)*Cp/(sigma*psi))^0.5//m/s
17 D = 60*U2/(\%pi*N)/m
18 disp("The overall pressure ratio is given by: P03/
      P01")
```

```
19 etac = 0.85;
20 ratio = (1+etac*sigma*psi*U2^2 /(Cp*T01))^3.5
21 disp("Power required to drive the compressor per unit mass flow:")
22 m = 1;
23 P = m*psi*sigma*U2^2 / 1000//kW
```

Scilab code Exa 4.8 Centrifugal Compressor 19 vanes

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 4, Example 8")
8 disp("Since the vanes are radial, using the Stanitz
      formula to find the slip factor:")
9 n = 19;
10 \text{ sigma} = 1-0.63*\%\text{pi/n}
11 disp("The overall pressure ratio r = P03/P01")
12 \text{ etac} = 0.84;
13 \text{ psi} = 1.04;
14 r = 4.5;
15 \text{ Cp} = 1005;
16 \text{ T01} = 293;
17 U2 = ((r^{(1/3.5)} - 1) *Cp*T01 / (etac*sigma*psi))
      ^0.5
18 disp("The impeller diameter")
19 N = 17000;
20 D = 60*U2/(\%pi*N)
21 disp("The work done on the air")
22 W = psi*sigma*U2^2 /1000
23 disp("Power required to drive the compressor:")
```

```
24 	 m = 2.5;

25 	 P = m*W
```

Scilab code Exa 4.9 Problem 8 repeat

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 4, Example 9")
8 \text{ sigma} = 0.8958;
9 U2 = 449.9;
10 \text{ Cw2} = \text{sigma*U2}
11 disp("Using the continuity equation,")
12 disp("m=rho2*A2Cr2 = rho2*2*pi*r2b2Cr2")
13 disp("where: b2 = axial width, r2 = radius. Therefore
      :")
14 m = 2.5;
15 \text{ rho2} = 1.8;
16 \text{ r2} = 0.25;
17 b2 = 0.012;
18 Cr2 = m / (rho2*2*\%pi*b2*r2)
19 disp("Absolute velocity at the impeller exit")
20 \text{ C2} = (\text{Cr2}^2+\text{Cw2}^2)^0.5
21 disp("The temperature equivalent of work done: Weq =
      T02 - T01")
22 \text{ Cp} = 1.005;
23 \text{ Weq} = 188.57/Cp
24 \text{ T02} = 293 + \text{Weq}
25 disp ("Hence the static temperature at the impeller
      exit is:")
26 	ext{ T2} = 	ext{T02} - 	ext{C2}^2 / (2*Cp*1000)
```

```
27 disp("Now, the Mach number at the impeller exit is:"
       )
28 gamma = 1.4;
29 R = 287;
30 M2 = C2 / (gamma*R*T2)^0.5
```

Scilab code Exa 4.10 Compressor 15000rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 4, Example 10")
8 disp("Inlet stagnation temperature:")
9 R = 287;
10 \text{ Ta} = 298;
11 C1 = 145;
12 \text{ Cp} = 1005;
13 T01 = Ta + C1^2 /(2*Cp)
14 disp("Using the isentropic P T relation for the
      compression process,")
15 disp("x = P03/P01")
16 x = 4;
17 \text{ T03a} = \text{T01} * (4)^{0.286}
18 disp("Using the compressor efficiency,")
19 disp("T02-T01 = y")
20 \text{ T02a} = \text{T03a};
21 \text{ etac} = 0.89;
22 y = (T02a - T01)/etac
23 disp("Hence, work done on the air is given by: in kJ
```

```
/kg")
24 W = Cp * y / 1000
25 \text{ U2} = (W*1000/0.89)^0.5 //m/s
26 disp("Hence, the impeller tip diameter")
27 N = 15000; //rpm
28 D = 60*U2/(\%pi*N)/m
29 disp("The air density at the impeller eye is given
      bv:")
30 P1 = 1*100;
31 \text{ rho1} = P1/(R*Ta)* 1000
32 disp("Using the continuity equation in order to find
       the area at the impeller eye,")
33 m = 8; // \text{kg/m}
34 \text{ A1} = m/(\text{rho1}*\text{C1}) //\text{m2}
35 disp("The power input is: in kW")
36 P = m*W
```

Scilab code Exa 4.11 Double sided compressor

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 4, Example 11")
8 disp("Let Uer be the impeller speed at the eye root.
       Then the vane angle at the eye root is:")
9 disp("alphaer = atan(Ca/Uer)")
10 Der = 0.14; //m
11 N = 15000; //\text{rpm}
12 Uer = \%pi*Der*N/60
13 disp("Hence, the vane angle at the impeller eye root
      : ")
```

```
14 Ca = 145; //m/s
15 alphaer = atan(Ca/Uer)*180/%pi
16 disp("Impeller velocity at the eye tip")
17 \text{ Det} = 0.28;
18 Uet = \%pi*Det*N/60
19 disp("Therefore vane angle at the eye tip:")
20 alphaet = atan(Ca/Uet)*180/%pi
21 disp("Work input:")
22 m = 10;
23 \text{ psi} = 0.89;
24 \text{ sigma} = 1.03;
25 D2 = 0.48;
26 \ U2 = \%pi*D2*N/60
27 W = m*psi*sigma*U2^2 /1000
28 disp("The relative velocity at the eye tip:")
29 \text{ V1} = (\text{Uet^2+Ca^2}) \cdot 0.5
30 disp("Hence, the maximum relative Mach number at the
       eye tip:")
31 disp("M1 = V1/(gamma*R*T1)")
32 disp("where T1 is the static temperature at the
      inlet")
33 \text{ T01} = 290;
34 \text{ C1} = 145;
35 \text{ Cp} = 1005;
36 \text{ T1} = \text{T01} - \text{C1}^2 / (2*\text{Cp})
37 disp("The Mach number at the inlet then is:")
38 \text{ gamma} = 1.4;
39 R = 287;
40 \text{ M1} = (V1)/(gamma*R*T1)^0.5
```

Scilab code Exa 4.12 Recalculating 412

```
1 // Display mode
```

```
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 4, Example 12")
8 disp ("Figure shows the velocity triangle with the
      prewhirl angle. From the velocity triangle:")
9 Ca = 145; //m/s
10 C1 = Ca/cos(20*\%pi/180)//m/s
11 disp("Equivalent dynamic temperature: Eq = C1^2/2Cp"
12 \text{ Cp} = 1005;
13 Eq = C1^2 / (2*Cp)
14 \text{ Cw1} = \text{Ca*tan}(20*\%\text{pi}/180)
15 disp("Relative velocity at the inlet:")
16 Ue = 220; //m/s
17 \text{ V1} = (\text{Ca}^2 + (\text{Ue} - \text{Cw1})^2)^0.5
18 disp("Therefore the static temperature at the inlet:
19 T01 = 290; //K
20 \quad T1 = T01 - Eq
21 \text{ gamma} = 1.4;
22 R = 287;
23 \text{ M1} = V1/(gamma*R*T1)^0.5
24 disp("Note the reduction in Mach number due to
      prewhirl.")
```

Scilab code Exa 4.13 Centrifugal Compressor 16500rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
```

```
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 4, Example 13")
8 disp("Let: rh = hub radius")
9 disp(" rt = tip radius")
10 disp("The flow area of the impeller inlet annulus is
      : ")
11 \text{ rh} = 0.0625;
12 \text{ rt} = 0.125;
13 A = \pi^*(rt^2-rh^2);
14 \quad A1 = A + 0.0012
15 disp("Axial velocity can be determined from the
      continuity equation but since the inlet density (
      rho1) is unknown a trial and error method must be
       followed.")
16 disp ("Assuming a density based on the inlet
      stagnation condition,")
17 P01 = 1; //in \ bars
18 R = 287;
19 T01 = 288; //K
20 \text{ rho1} = P01*10^5 / (R*T01)
21 disp ("Using the continuity equation,")
22 m = 5.5;
23 Ca = m/(rho1*A1)
24 disp("Since the whirl component at the inlet is zero
      , the absolute velocity at the inlet is C1 = Ca."
25 C1 = Ca;
26 disp ("The temperature equivalent of the velocity is:
       Eq")
27 \text{ Cp} = 1005;
28 \text{ Eq} = C1^2 / (2*Cp)
29 \text{ T1} = \text{T01} - \text{Eq}
30 disp("Using isentropic P T relationship,")
31 P1 = P01*10^5 * (T1/T01)^3.5 /1000//kPa
32 \text{ rho1a} = P1*1000/(R*T1) * 1.004
33 Caa = m/(rho1a * A1)
```

```
34 \text{ Eqa} = \text{Caa}^2 / (2*\text{Cp}) * 1.003
35 T1a = T01 - Eqa
36 \text{ P1a} = \text{P01}*10^5 *(\text{T1a}/\text{T01})^3.5 /1000 //\text{kPa}
37 \text{ rho1b} = P1a*1000/(R*T1a)
38 disp("Further iterations are not required and the
      value of rho1b = 1.13 \text{kg/m}3 may be taken as the
      inlet density and Ca = C1 as the inlet velocity.
      At the eye tip:")
39 N = 16500; //rpm
40 Uet = 2*\%pi*rt*N/60//m/s
41 disp("The blade angle at the eye tip:")
42 betat = atan(Uet/Caa)*180/\%pi
43 disp("At the hub,")
44 Ueh = 2*\%pi*rh*N/60//m/s
45 disp("The blade angle at the hub:")
46 betah = atan(Ueh/Caa)*180/%pi
47 disp("The Mach number based on the relative velocity
       at the eye tip using the inlet velocity triangle
       is:")
48 \text{ U1} = 216;
49 \text{ V1} = (Caa^2+U1^2)^0.5
50 disp("The relative Mach number")
51 \text{ gamma} = 1.4;
52 \text{ M1} = V1/(gamma*R*T1a)^0.5
53 disp("A very small factor is multiplied to make
      approximity")
```

Scilab code Exa 4.14 ToT Efficiency 88

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
```

```
7 disp ("Turbomachinery Design and Theory, Rama S. R.
       Gorla and Aijaz A. Khan, Chapter 4, Example 14")
8 disp("The absolute Mach number of the air at the
       impeller tip is:")
9 disp("M2 = C2/(gamma*R*T2)^0.5")
10 disp("where T2 is the static temperature at the
       impeller tip. Let us first calculate C2 and T2.")
11 U2 = 364;
12 \text{ sigma} = 0.89;
13 \text{ Cw2} = \text{sigma*U2}
14 disp("From the velocity triangle,")
15 \text{ Cr2} = 28;
16 \text{ C2} = (\text{Cr2}^2+\text{Cw2}^2)^0.5
17 disp("With zero whirl at the inlet")
18 disp("W/m = sigam*U2^2 = Cp (T02 - T01)")
19 \text{ T01} = 288;
20 \text{ Cp} = 1005;
21 \text{ TO2} = \text{TO1} + \text{sigma*U2^2} / \text{Cp}
22 disp("Static Temperature")
23 	ext{ T2} = 	ext{T02} - 	ext{C2}^2 / (2*Cp)
24 \text{ gamma} = 1.4;
25 R = 287;
26 \text{ M2} = (C2^2/(gamma*R*T2))^0.5
27 disp("Using the isentropic P T relation:")
28 disp("Ratioa = P02/P01")
29 \text{ etac} = 0.88;
30 Ratioa = (1+etac * (T02/T01 - 1))^3.5
31 disp("Ratiob = P2/P02")
32 \text{ Ratiob} = (T2/T02)^3.5
33 \text{ PO1} = 1*100;
34 disp ("Static Pressure in kPa")
35 P2 = Ratiob*Ratioa*P01
36 \text{ rho2} = P2*1000/(R*T2)
37 disp("Mass flow: in kg/s")
38 A = 0.085; //m2
39 \text{ m} = \text{rho2}*\text{Cr2}*\text{A}
```

Scilab code Exa 4.15 Centrifugal Compressor 15500rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 4, Example 15")
8 disp("Impeller tip speed")
9 D2 = 0.56; //m
10 N = 15500; //rpm
11 U2 = \%pi*D2*N/60 + 0.188
12 R = 287;
13 disp("Overall stagnation temperature rise Stagr =
      T03-T01")
14 \text{ psi} = 1.04;
15 \text{ sigma} = 0.9;
16 \text{ Cp} = 1005;
17 Stagr = psi*sigma*U2^2 /Cp
18 disp("Since T03 = T02")
19 \text{ T01} = 290;
20 \text{ TO2} = \text{Stagr} + \text{TO1}
21 disp("Now pressure ratio for impeller rat = P02/P01"
22 \text{ rat} = (T02/T01)^3.5
23 \text{ PO1} = 101 //\text{kPa}
24 \text{ PO2} = \text{rat} * \text{PO1}
25 \text{ Cw2} = \text{sigma*U2}
26 disp("Let Cr2 = 105 \text{ m/s}")
27 \text{ Cr2} = 105;
28 disp("Outlet area normal to periphery")
29 disp("A2 = pi*D2 * impeller depth")
```

```
30 \quad A2 = \%pi*D2*0.038
31 disp("From outlet velocity triangle")
32 C2 = (Cr2^2 + Cw2^2)^0.5
33 T2 = T02 - C2^2 / (2*Cp)
34 disp("Using isentropic P T relations")
35 P2 = P02*(T2/T02)^3.5
36 disp ("From equation of state")
37 \text{ rho2} = P2/(R*T2) * 1000
38 disp("The equation of continuity gives")
39 m = 16;
40 \text{ Cr2a} = m/(A2*P2) * 100
41 disp("Thus, impeller outlet radial velocity = 81.63
42 disp("Impeller outlet Mach number")
43 \text{ gamma} = 1.4;
44 \text{ M2} = C2/(gamma*R*T2)^0.5
45 disp("From outlet velocity triangle")
46 \quad alpha2 = acos(Cr2/C2)*180/\%pi
47 disp ("Assuming free vortex flow in the vaneless
      space and for convenience denoting conditions at
      the diffuser vane without a subscript (r = 0.28 +
       0.043 = 0.323)")
48 r = 0.323;
49 	 r2 = 0.28;
50 \text{ Cw} = \text{Cw}2*\text{r}2/\text{r}
51 disp("The radial component of velocity can be found
      by trial and error. Choose as a first try, Cr =
      105 \text{ m/s}")
52 \text{ Cr} = 105;
53 C = (Cw^2+Cr^2)^0.5
54 x = C^2 / (2*Cp)
55 disp("T = 482.53 - 68 (since T = T02 in vaneless
      space)")
56 T = T02-x
57 P = P02*(T/T02)^3.5
58 \text{ rho} = \text{rho2/(R*T2)} * 10^5 * 1.132
59 disp("The equation of continuity gives")
60 A = 2*\%pi*r*0.038
```

```
61 \text{ Cra} = m/(\text{rho}*A)
62 disp("Next try Cra = 79.41 \text{ m/s}")
63 \text{ Cra} = 79.41;
64 \times 1 = (Cra^2 + Cw^2)/(2*Cp)
65 \text{ Ta} = \text{TO2} - \text{x1}
66 \text{ Px} = \text{P02*(Ta/T02)^3.5//Pa}
67 \text{ rhox} = P/(Ta*R) * 1000 + 0.1
68 \text{ Crb} = \text{m/(rhox*A)}
69 disp("Try Crb = 68.1m/s")
70 	ext{ x2} = (Crb^2 + Cw^2)/(2*Cp)
71 \text{ Tb} = T02 - x2
72 \text{ Py} = \text{P02}*(\text{Tb/T02})^3.5
73 \text{ rhoy} = Py/(Tb*R)* 1000
74 Crc = m/(rhoy*A)
75 disp ("Taking Crc as 68.63 m/s, the vane angle")
76 alpha = atan(Cw/Crc)*180/\%pi
77 disp("Mach number at vane")
78 M = (2*Cp*x1/(gamma*R*Tb))^0.5
79 //I have gone through all the answer there is a
       printing mistake in book with two answers
```

Scilab code Exa 4.16 Double sided compressor 15500

```
10 C1 = Ca / \cos(20*\%pi/180)
11 Cw1 = Ca*tan(20*\%pi/180)
12 disp("Impeller speed at eye root")
13 Der = 0.18;
14 N = 15500; //rpm
15 Uer = \%pi*Der*N/60//m/s
16 disp("From velocity triangle")
17 betaer = atan(Ca/(Uer-Cw1))*180/\%pi
18 disp("At eye tip from Figure")
19 Det = 0.3175;
20 Uet = \%pi*Det*N/60
21 alphaet = atan(Ca/(Uet-Cw1))*180/%pi
22 disp("Mach number will be maximum at the point where
       relative velocity is maximum.")
23 disp("Relative velocity at eye root is:")
24 Ver = Ca/sin(betaer*\%pi/180)
25 disp("Relative velocity at eye tip is:")
26 Vet = Ca/sin(alphaet*\%pi/180)
27 disp ("Relative velocity at the tip is maximum.")
28 disp("Static temperature at inlet:")
29 T01 =288;
30 \text{ Cp} = 1005;
31 T1 = T01 - Vet^2 / (2*Cp)
32 \text{ gamma} = 1.4;
33 R = 287;
34 \text{ Mmax} = \text{Vet/(gamma*R*T1)^0.5}
```

Scilab code Exa 4.17 Vanes 17 stagnation T and P

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
```

```
7 disp ("Turbomachinery Design and Theory, Rama S. R.
       Gorla and Aijaz A. Khan, Chapter 4, Example 17")
8 disp("Pressure is in bar and temperature in Kelvin")
9 disp("Mechanical efficiency is")
10 disp("etam = Work transferred to air/Work supplied
       to shaft")
11 disp("or shaft power = W/etam")
12 disp("for vaned impeller, slip factor, by Stanitz
       formula is")
13 disp("sigma = 1 - 0.63*pi/n")
14 n = 17;
15 R = 287;
16 \text{ sigma} = 1-0.63*\%\text{pi/n};
17 disp("Work input per unit mass flow")
18 \operatorname{disp}("W = psi * \operatorname{sigma} * U2Cw2")
19 \text{ psi} = 1.04;
20 \text{ U2} = 475; //\text{m/s}
21 W = psi*sigma*U2^2 /1000
22 disp("Work input for 2.5 \text{ kg/s}")
23 \text{ Wi} = \text{W}*2.5
24 disp("Shaft Power")
25 \text{ etam} = 0.96;
26 Pshaft = Wi/etam
27 disp("The overall pressure ratio is pRatio = P03/P01
28 \text{ PO1} = 1.01;
29 \text{ etac} = 0.84;
30 \text{ Cp} = 1005;
31 \quad T01 = 288;
32 pRatio = (1+etac*psi*sigma*U2^2 / (Cp*T01))^3.5
33 disp("Stagnation pressure at diffuser exit")
34 P03 = P01*pRatio
35 m = 2.5;
36 \text{ T03} = \text{Wi}*1000/(\text{m}*\text{Cp}) + \text{T01}
37 \text{ T02} = \text{T03};
38 disp("Static temperature at diffuser exit")
39 \quad C3 = 90;
40 \text{ T3} = \text{T03} - \text{C3}^2 / (2*\text{Cp})
```

```
41 disp("Static pressure at diffuser exit")
42 P3 = P03*(T3/T03)^3.5
43 disp("The reaction is 0.5 = (T2 - T1)/(T3 - T1)")
44 disp("x = T3 - T1")
45 \text{ C1} = 150;
46 \times = Wi*1000/(m*Cp) + (C1^2 - C3^2)/(2*Cp)
47 disp("y = T2-T1")
48 \quad y = 0.5 * x
49 disp ("Substituting T2 - T1")
50 \text{ T2} = \text{T01} - \text{C1}^2 / (2*\text{Cp}) + \text{y}
51 disp("At the impeller exit")
52 \text{ disp}("T02 = T2 + C2^2/2Cp")
53 disp("T03 = T2 + C2^2/2Cp (Since T02 = T03)")
54 C2 = (2*Cp*((T03-T01)+(T01-T2)))^0.5
55 disp("Mach number at impeller outlet")
56 \text{ M2} = \text{C2}/(1.4*R*T2)^0.5
57 disp("Radial velocity at impeller outlet")
58 \text{ Cw2} = \text{sigma*U2};
59 \text{ Cr2} = (C2^2 - Cw2^2)^0.5
60 disp ("Diffuser efficiency is given by")
61 disp("etaD = (h3a - h2)/(h3 - h2)")
62 disp (" = isentropic enthalpy increase / actual
      enthalpy increase")
63 disp(" = (T3a - T2)/(T3 - T2)")
64 \operatorname{disp}("z = P3/P2 \text{ implies"})
65 \text{ etaD} = 0.821;
66 z = (1+etaD *(T3-T2)/T2)^3.5
67 P2 = P3/z
68 disp("From isentropic P T relations in bars")
69 \text{ PO2} = \text{P2}*(\text{T02}/\text{T2})^3.5
70 disp("Impeller efficiency is")
71 etai = T01*((P02/P01)^0.286 -1)/(T03-T01) * 100
72 rho2 = P2/(R*T2) * 10^5/in kg/m3
73 disp("m = rho2A2Cr2")
74 disp(" = 2pi*r2*rho2*b2")
75 m = 2.5;
76 \text{ b2} = 0.0065;
77 N = U2*2.27*246.58*b2*60/m
```

Chapter 5

Axial Flow Compressors and Fans

Scilab code Exa 5.1 Work of compression

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 5, Example 1")
8 \text{ T01} = 292; //K
9 P01 = 1; // bar
10 \text{ etac} = 0.85;
11 disp("Using the isentropic P T relation for
      compression processes,")
12 disp("Ratio = P02/P01 = (T02a/T01)^(gamma/(gamma-1))
      ")
13 disp("where T02a is the isentropic temperature at
      the outlet. Therefore,")
```

Scilab code Exa 5.2 One stage compressor

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 5, Example 2")
8 disp("The stage pressure ratio is given by:")
9 disp("Rs = (1+etas*deltaT0s/T01)^(gamma/(gamma-1))")
10 \text{ Rs} = 1.22;
11 DeltaT0s = 21;
12 \text{ T01} = 288; // \text{Kelvin}
13 etas = (Rs^(1/3.5) - 1)*T01/DeltaT0s *100
14 disp("The rotor speed is given by:")
15 U = 200; //m/s
16 N = 4500; //rpm
17 D = 60*U/(%pi*N)
```

Scilab code Exa 5.3 Compressor 5000rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
       Gorla and Aijaz A. Khan, Chapter 5, Example 3")
8 disp("Rotor speed is given by:")
9 D = 0.95; //m
10 N = 5000; //\text{rpm}
11 \ U = \%pi*D*N/60
12 disp("Blade speed at the hub:")
13 \text{ Dh} = 0.85;
14 Uh = \%pi*Dh*N/60
15 disp("From the inlet velocity triangle (Figure)")
16 disp("tanalpha1 = Cw1/Ca and tanbeta1 = (U - Cw1)/Ca
       ")
17 disp("Adding the above two equations:")
18 disp("U/Ca = tanalpha1 + tanbeta1")
19 \text{ alpha1} = 28;
20 \text{ beta1} = 56;
21 Ca = U/(tan(alpha1*\%pi/180) + tan(beta1*\%pi/180))
22 disp("Therefore, Ca = 123.47 m/s (constant at all
       radii)")
23 disp("The mass flow rate: in kg/s")
24 \operatorname{disp}("m = \operatorname{pi}*(\operatorname{rt}^2 - \operatorname{rh}^2)\operatorname{rho}*\operatorname{Ca}")
25 \text{ rt} = 0.475;
26 \text{ rh} = 0.425;
27 \text{ rho} = 1.2;
28 m = \%pi*rho*Ca*(rt^2 -rh^2)
29 disp("The power required per unit kg for compression
30 \operatorname{disp}("Wc = \operatorname{lambda} *U*\operatorname{Ca}*(\operatorname{tan}(\operatorname{beta1}) - \operatorname{tan}(\operatorname{beta2})) in
       kJ/kg")
31 \quad lambda = 1;
```

```
32 beta2 = alpha1;
33 Wc = lambda*U*Ca*(tan(beta1*%pi/180) - tan(beta2*%pi
      /180)) /1000
34 disp("The total power required to drive the
      compressor is: in kW")
35 P = m*Wc
36 disp("At the inlet to the rotor tip:")
37 Cw1t = Ca*tan(alpha1*%pi/180) //m/s
38 disp("Using free vortex condition, i.e., Cwr =
      constant, and using h as the subscript for the
      hub , ")
39 Cw1h = Cw1t*rt/rh//m/s
40 disp("At the outlet to the rotor tip,")
41 alpha2 = beta1;
42 \quad Cw2t = Ca * tan(alpha2*\%pi/180)
43 \text{ Cw2h} = \text{Cw2t*rt/rh}
44 disp("Hence the flow angles at the hub:")
45 \text{ alpha1a} = \frac{\text{atan}(\text{Cw1h/Ca})*180/\%\text{pi}}
46 beta1a = atan((Uh/Ca) - tan(alpha1a*%pi/180))*180/
      %pi
47 \text{ alpha2a} = \frac{\text{atan}}{\text{Cw2h/Ca}} * 180/\% \text{pi}
48 beta2a = atan((Uh/Ca) - tan(alpha2a*%pi/180)) *180/
      %pi
49 disp("The degree of reaction at the hub is given by:
50 A = Ca*(tan(beta1a*\%pi/180)+tan(beta2a*\%pi/180))/(2*
      Uh) * 100
```

Scilab code Exa 5.4 Stage air angles for vortex

```
1 // Display mode
```


3

Figure 5.15 Velocity triangles at tip.

Figure 5.1: Stage air angles for vortex

```
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 5, Example 4")
8 disp("Calculation at mean radius:")
9 disp("Wc = U(Cw2 - Cw1) = U*DeltaCw")
10 disp("or")
11 \operatorname{disp}("\operatorname{Cp}(\operatorname{T02} - \operatorname{T01}) = \operatorname{CpDeltaT0s} = \operatorname{lambda*U*DeltaCw}
12 \text{ Cp} = 1005;
13 \text{ DeltaTOs} = 15;
14 \text{ lambda} = 0.85;
15 \text{ Um} = 185;
16 DeltaCw = Cp*DeltaTOs/(lambda*Um)
17 disp("Since the degree of reaction (Fig. 5.14) at
      the mean radius is 50\%, alpha1 = beta2, and
      alpha2 = beta1. From the velocity triangle at the
       mean,")
18 disp("Um = DeltaCw + 2Cw1")
19 disp("Cw1 in m/s alpha1 in degrees")
```

```
20 Cw1 = (Um - DeltaCw)/2//m/s
21 \text{ Ca} = 140;
22 alpha1 = atan(Cw1/Ca)*180/\%pi
23 beta2 = alpha1
24 beta1 = atan((DeltaCw + Cw1)/Ca)*180/\%pi
25 alpha2 = beta1
26 disp ("Calculation at the blade tip: Using the free
       vortex diagram (Fig. 5.15), Velocity in m/s")
27 disp("(DeltaCw * U)t = (DeltaCw * U)m")
28 Ut = 240;
29 DeltaCwt =DeltaCw*Um/Ut
30 \text{ Cwt} = \text{Cw1*Um/Ut}
31 \text{ alpha1t} = \frac{\text{atan}(\text{Cwt/Ca})*180/\%pi}
32 disp("From the velocity triangle at the tip, x^2 +
       DeltaCwt + Cwt = Ut")
33 	ext{ x2} = Ut-DeltaCwt - Cwt
34 beta1t = \frac{\text{atan}}{(\text{DeltaCwt}+x2)/\text{Ca})*180/\%\text{pi}
35 alpha2t = atan((Cwt+DeltaCwt)/Ca)*180/%pi
36 \text{ beta2t} = \frac{\text{atan}(x2/Ca)*180/\%pi}
37 disp("Calculation at the blade root: (DeltaCwr * U)r
        = (DetaCw * U)m")
38 \text{ Ur} = \text{Ca};
39 DeltaCwr = DeltaCw*Um/Ur
40 \text{ Cwr} = \text{Cw1*Um/Ur}
41 Cw2tip = Ca*tan(alpha2t*%pi/180)
42 \text{ Cw2root} = \text{Cw2tip*Ut/Ur}
43 alpha1r = atan(Cwr/Ca)*180/\%pi
44 \times 3 = Cw2root-Ur
45 beta1r = \frac{\text{atan}}{((Ur-Cwr)/Ca)*180/\%pi}
46 \text{ alpha2r} = \frac{\text{atan}}{\text{Cw2root/Ca}} * 180/\% \text{pi}
47 \text{ beta2r} = -\frac{\text{atan}}{(x3/Ca)*180/\%pi}
```

Scilab code Exa 5.5 Degree of reaction for Ex54

```
1 // Display mode
```

```
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 5, Example 5")
8 disp("DOF -> Degree of Freedom")
9 disp("Reaction at the blade root:")
10 \text{ Ca} = 140;
11 \text{ beta1r} = 30.08;
12 \text{ beta2r} = -18;
13 \text{ Ur} = 140;
14 DOFroot =Ca*(tan(beta1r*\%pi/180)+tan(beta2r*\%pi/180)
      )/(2*Ur) *100
15 disp("Reaction at the blade tip:")
16 \text{ Ut} = 240;
17 beta1t= 55.75;
18 \text{ beta2t} = 43.26;
19 DOFtip = Ca*(tan(beta1t*\%pi/180)+tan(beta2t*\%pi/180))
      /(2*Ut)*100
```

Scilab code Exa 5.6 Temperature rise in first stage

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 5, Example 6")
8 disp("Since the degree of reaction is 50%, the
```

```
velocity triangle is symmetric as shown in Figure
        Ex56")
9 disp("Using the degree of reaction equation")
10 disp("DOF = Ca(tanbeta1 + tanbeta2)/2U")
11 \operatorname{disp}("\operatorname{phi} = \operatorname{Ca}/\operatorname{U}")
12 disp("Now, for the relative Mach number at the inlet
13 \text{ DOF} = 0.5;
14 \text{ phi} = 0.56;
15 beta1 = atan(2*DOF/phi - tan(32*%pi/180))*180/%pi
16 disp("Mr1 = V1/(gamma*RT1)^0.5")
17 disp("V1^2 = gamma*R*Mr1^2*(T01 - C1^2/2Cp)")
18 disp ("From the velocity triangle,")
19 \operatorname{disp}("V1 = \operatorname{Ca/cosbeta1}; \text{ and } \operatorname{C1} = \operatorname{Ca/cosalpha1"})
20 \operatorname{disp}("alpha1 = \operatorname{beta2}(\operatorname{since} \operatorname{DOF} = 0.5)")
21 disp("C1 = Ca/cos32 = Ca/0.848")
22 disp("V1 = Ca/cos 49.24 = Ca/0.653")
23 disp("Hence: C1^2/ = Ca^2/0.719; and V1^2 = Ca
       ^2/0.426")
24 disp("Substituting for V1 and C1,")
25 \text{ Ca} = ((104.41*295*1445)/(1445+104.41))^0.5
26 disp ("The stagnation temperature rise may be
       calculated as: Rise in Kelvin = T02-T01")
27 \text{ Cp} = 1005;
28 Rise = Ca^2*(tan(beta1*\%pi/180) - tan(32*\%pi/180))/(
       Cp*phi)
```

Scilab code Exa 5.7 Rpm 152 rps

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
```

```
7 disp ("Turbomachinery Design and Theory, Rama S. R.
       Gorla and Aijaz A. Khan, Chapter 5, Example 7")
8 disp("The following equation provides the
       relationship between the temperature rise and the
        desired angles:")
9 \operatorname{disp}("T02 - T01 = \operatorname{lambda} *U*\operatorname{Ca}*(\operatorname{tan}(\operatorname{beta1}) - \operatorname{tan}(
       beta2))/Cp")
10 \ disp("T02-T01 = Rise")
11 Rise = 24;
12 \ lambda = 0.93;
13 \ U = 205;
14 \text{ Ca} = 155.5;
15 \text{ Cp} = 1005;
16 \operatorname{disp}("\operatorname{Dif} = \tan(\operatorname{beta1}) - \tan(\operatorname{beta2})")
17 Dif = Rise*Cp/(U*lambda*Ca)
18 disp("Using the degree of reaction equation:")
19 disp("DOF = Ca*(tan(beta1) + tan(beta2))/(2*U)")
20 \operatorname{disp}("\tan(beta1) + \tan(beta2) = \operatorname{Add}")
21 DOF = 0.5;
22 Add = DOF * 2*U/Ca
23 beta1 = \frac{\text{atan}}{((\text{Add+Dif})/2)*180/\%pi}
24 alpha2 = beta1
25 beta2 = atan(Add - tan(beta1*\%pi/180))*180/\%pi
26 alpha1 = beta2
27 disp("The mean radius, rm, is given by: in m")
28 N = 152; //rpm
29 \text{ rm} = U/(2*\%pi*N)
30 disp("The blade height, h in m, is given by: m = rho
       *ACa, where A is the annular area of the flow.")
31 C1 = Ca/cos(alpha1*\%pi/180)
32 \text{ T01} = 290;
33 disp("Static temperature in kelvin")
34 \text{ T1} = \text{T01} - \text{C1}^2 / (2*\text{Cp})
35 disp("Using the isentropic P T relation:")
36 disp("Static pressure: P1 in bars")
37 \text{ PO1} = 1;
38 P1 = P01*(T1/T01)^3.5
39 R = 287/1000;
```

```
40 disp("Density rho1 in kg/m3")
41 rho1 = P1/(R*T1) * 100
42 disp("From the continuity equation:")
43 m = 22;
44 A = m/(rho1*Ca)
45 disp("and the blade height:")
46 rm = 0.215;
47 h =A/(2*%pi*rm)
```

Scilab code Exa 5.8 polytropic efficiency 87

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 5, Example 8")
8 disp("Since the degree of reaction at the mean
      radius is 50\%, alpha1 = beta2 and alpha2 = beta1.
      From the velocity triangles, the relative outlet
       velocity component in the x-direction is given
     by:")
9 \text{ Ca} = 158;
10 \text{ beta2} = 30;
11 Vx2 = Ca*tan(beta2*\%pi/180)
12 disp("V1 = C2 = (U - Vx2)^2 + Ca^2)^1/2")
13 \ U = 245;
14 \ Vx2 = 91.22;
15 Ca = 158;
16 C2 = ((U - Vx2)^2 + Ca^2)^0.5
17 V1 = C2
18 beta1 = acos(Ca/V1)*180/\%pi
19 disp("Stagnation temperature rise in the stage, in
```

```
Kelvin")
20 disp("DeltaT0s = UCa(tanbeta1 - tanbeta2)/Cp")
21 Cp = 1005;
22 DeltaT0s = U*Ca*(tan(beta1*%pi/180) - tan(beta2*%pi/180))/Cp
23 disp("n /(n-1) = inf * gamma/(gamm-1 = 3.05)")
24 disp("Number of stages")
25 N = (4.5^(1/3.05) -1)*290/DeltaT0s
26 disp("implies N = 12 stages")
```

Scilab code Exa 5.9 Rotor speed 200

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 5, Example 9")
8 disp ("For 50% degree of reaction at the mean radius
      (Fig. Ex59), alpha1 = beta2 and alpha2 = beta1.")
9 disp("From the inlet velocity triangle,")
10 \text{ Ca} = 180;
11 C1 = 185;
12 \text{ Cp} = 1005;
13 alpha1 = acos(Ca/C1)*180/\%pi
14 \text{ beta2} = \text{alpha1}
15 disp("From the same velocity triangle,")
16 \text{ Cw1} = (\text{C1}^2 - \text{Ca}^2)^0.5
17 U = 200;
18 beta1 = \frac{\text{atan}}{((U-Cw1)/Ca)*180/\%pi}
19 alpha2 = beta1
```

Scilab code Exa 5.10 Isentropic Efficiency

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 5, Example 10")
8 disp("Using the isentropic P T relation for the
      compression process,")
9 \operatorname{disp}("P02/P01 = r, T02a \text{ in Kelvin is"})
10 r = 6
11 \quad T01 = 285;
12 \text{ gam} = 1.4;
13 \times = (gam - 1)/gam;
14 \text{ T02a} = \text{T01*r^x}
15 disp("Using the polytropic P T relation for the
      compression process:")
```

```
16 etainf = 0.85;
17 disp("(n-1)/n = R")
18 R = (gam-1)/(gam*etainf)
19 disp("Actual temperature rise:")
20 T02 = T01*r^R
21 disp("The compressor isentropic efficiency is given by:")
22 etac = (T02a-T01)/(T02-T01) *100
```

Scilab code Exa 5.11 Rotation 5500rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 5, Example 11")
8 disp("As no inlet guide vanes alpha1 = 0; Cw1 = 0")
9 disp ("Stagnation temperature, T01 in Kelvins, is
      given by")
10 \text{ T01} = 290;
11 C1 = 145;
12 \text{ Cp} = 1005;
13 Ca = C1;
14 \text{ T1} = \text{T01} - (\text{C1}/(2*\text{Cp})) - 1
15 disp("The Mach number relative to tip is")
16 M = 0.96;
17 \text{ gam} = 1.4;
18 R = 287;
19 V1 = M*(gam*R*T1)^0.5 *1.04
20 disp("i.e., relative velocity at tip = 340.7 \text{ m/s}.
```

```
From velocity triangle at inlet Fig 511")
21 \text{ Ut} = (V1^2 - C1^2)^0.5
22 disp("Radius in m")
23 N = 5500;
24 \text{ rt} = \text{Ut}*60/(2*\%\text{pi}*\text{N})
25 beta1 = atan(Ut/Ca)*180/\%pi
26 DeltaTOs = 22;
27 \text{ Tau} = 0.92;
28 disp("tan(beta1) - tan(beta2) = Dif")
29 Dif = DeltaTOs*Cp/(Tau*Ut*Ca)
30 beta2 = atan(1.588)*180/\%pi
31 h = 0.268;
32 \text{ rm} = 0.402;
33 A = 2*\%pi*rm*h//m2
34 \text{ PO1} = 1; //bar
35 P1 = P01*(T1/T01)^3.5
36 R = 287;
37 \text{ rho1} = P1/(R*T1) * 10^5
38 m = rho1*A*Ca
39 disp("Stage pressure ratio is")
40 \text{ etas} = 0.9;
41 Rs = (1+etas*DeltaT0s/T01)^3.5
42 \text{ W} = \text{Cp*DeltaT0s}//\text{kJ/kg}
43 disp("Power required by the compressor in kW")
44 P = m*W/1000
45 disp("In order to find out rotor air angles at the
       root section, radius at the root can be found as
       given below.")
46 \text{ rr} = \text{rm} - \text{h/2}
47 disp("Impeller speed at root is")
48 \text{ Ur} = 2*\%pi*rr*N/60
49 disp("Therefore, from velocity triangle at root
       section")
50 beta1 = \frac{\text{atan}}{\text{Ur/Ca}} *180/\%pi
51 disp("tanbeta1 - tanbeta2 = R")
52 R = DeltaTOs*Cp/(Tau*Ur*Ca)
53 beta2 = \frac{\text{atan}(\tan(46.695*\%\text{pi}/180)-1.078)*180}{\text{pi}}
```

Scilab code Exa 5.12 Number of stages

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 5, Example 12")
8 disp("If N is the number of stages, then overall
      pressure rise is:")
9 disp("R = (1+(N*DeltaT0s)/T01)^((n-1)/n)")
10 disp("Exp=(n-1)/n = etaac *gam/(gam-1)")
11 disp("(where hac is the polytropic efficiency)
      substituting values")
12 \text{ etaac} = 0.87;
13 \text{ gam} = 1.4;
14 Exp = etaac *gam/(gam-1)
15 R=4.5;
16 \text{ Cp} = 1005;
17 \text{ DeltaTs} = 22;
18 \text{ T01} = 290;
19 N = ((R^{(1/3.05)}) -1)*T01/DeltaTs
20 disp("Hence number of stages = 8")
21 disp ("Stagnation temperature rise, DeltaTs, per
      stage = 22K, as we took 8 stages, therefore")
22 DeltaTOs = DeltaTs*N/8
23 disp("From velocity triangle \cos(a8) = Ca8/C8")
24 alpha8 = 20;
25 \text{ C8} = 160;
26 \text{ Ca8} = \text{C8}*\cos(\text{alpha8}*\%\text{pi}/180)
```

```
27 disp("Using degree of reaction, DOF = 0.5")
28 disp("0.5 = Ca8(tanbeta8 + tanbeta9)/(2U)")
29 disp("0.5 = 150.35(tanbeta8 + tanbeta9)/2U -----(A)
      )")
30 \operatorname{disp}("\operatorname{DelTaT0s} = \operatorname{TauUCa8}*(\operatorname{tanbeta8} - \operatorname{tanbeta9})/\operatorname{Cp"})
31 disp("23.1 = 0.85*U*150.35(tanbeta8 - tan20)/1005
      ----(B)")
32 \text{ Tau} = 0.85;
33 \text{ beta9} = \text{alpha8};
34 disp("From Eq. (A) U = 150.35(tanbeta8 - 0.364)
      ----(C)")
35 disp("From Eq. (B) U = 181.66/(tanbeta8 - 0.364)
      ----(D)")
36 disp("Comparing Eqs. (C) and (D), we have")
37 disp("150.35(tanbeta8 + 0.364) = 181.66/(tanbeta8 - tanbeta8)
       0.364)")
38 disp("(tan(beta8))^2 = p")
39 p = 181.66/150.35 + 0.364^2
40 beta8 = \frac{\text{atan}}{\text{p^0.5}} *180/\%pi
41 disp("Substituting in Eq. (C)")
42 \ U = Ca8*(tan(beta8*\%pi/180) + tan(beta9*\%pi/180))
43 disp("The rotational speed is given by N in rps")
44 N = U/(2*\%pi*0.0925)
45 disp ("In order to find the length of the last stage
       rotor blade at inlet to the stage, it is
       necessary to calculate stagnation temperature and
        pressure ratio of the last stage.")
46 disp ("Stagnation temperature of last stage: Fig.
      Ex512")
47 \text{ T08} = \text{T01} + 7*\text{DeltaT0s}
   disp("Pressure ratio of the first stage is: Rat =
      P09/P08")
49 \text{ Rat} = 1.1643
50 \text{ disp}("Rat1 = P09/P01")
51 \text{ Rat1} = 4
52 \text{ PO1} = 1; //\text{in bars}
53 \text{ PO9} = \text{Rat1*PO1} / \text{bars}
54 \text{ P08} = \text{P09/Rat}
```

```
55  T8 = T08 - C8^2 /(2*Cp)
56  disp("Using stagnation and static isentropic
        temperature relationship for the last stage, we
        have pressure in bars")
57  P8 = P08*(T8/T08)^(3.5)
58  R = 287;
59  rho8 = P8/(R*T8)*100000//in kg/m3
60  disp("Using mass flow rate m = rho8*A8*Ca8")
61  m = 3.5;
62  A8 = m/(rho8*Ca8)
63  r = 0.0925;
64  h = A8/(2*%pi*r)
65  disp("i.e., length of the last stage rotor blade at inlet to the stage, h = 16.17 mm.")
```

Scilab code Exa 5.13 10 stage axial

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 5, Example 13")
8 disp("No. of stages = 10")
9 disp("The overall stagnation temperature rise is:")
10 \text{ T01} = 290;
11 R = 4.5;
12 \text{ etac} = 0.88;
13 \text{ T1} = (290*(4.5^{\circ}0.286 - 1))
14 disp("The stagnation temperature rise of a stage")
15 \text{ TOs} = \text{T1}/10
16 disp ("The stagnation temperature rise in terms of
      air angles is:")
```

```
17 disp("T0s = TauUCa(tanalpha2 - tanalpha1)/Cp")
18 disp("(tanalpha2 - tanalpha1) = T0s * Cp/(TauUCa)")
19 disp("(tanalpha2 - tanalpha1) = Dif -----(A)")
20 \text{ Tau} = 0.87;
21 Cp = 1005;
22 U = 218;
23 Ca = 165;
24 Dif = T0s*Cp/(Tau*U*Ca)
25 disp ("From degree of reaction DOF")
26 disp("DOF = (1 - Ca*(tanalpha2 + tanalpha1)/2U)")
27 disp("0.76 = (1 - 165(tanalpha2 + tanalpha1)/(2*218)
      )")
28 \operatorname{disp}("(\operatorname{tanalpha2} + \operatorname{tanalpha1}) = \operatorname{Add} -----(B)")
29 Add = (1-0.76)*(2*U)/Ca
30 disp("Adding (A) and (B), we get")
31 alpha2 = atan((Add+Dif)/2)*180/\%pi
32 \text{ alpha1} = \frac{\text{atan}}{((Add-Dif)/2)*180/\%pi}
33 disp("Similarly, for beta1 and beta2, degree of
      reaction")
34 disp("Add1 = tanbeta1 + tanbeta2 = 2.01")
35 \text{ Add1} = 2.01;
36 disp("and Dif1 = tanbeta1 - tanbeta2 = 0.501")
37 \text{ Dif1} = 0.501;
38 beta1 = \frac{\text{atan}}{((Add1+Dif1)/2)*180/\%pi}
39 beta2 = atan((Add1-Dif1)/2)*180/\%pi
```

Scilab code Exa 5.14 Rotation 5400rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
```

```
Gorla and Aijaz A. Khan, Chapter 5, Example 14")
8 disp("Impeller speed is U in m/s")
9 \text{ rt} = 0.45; //m
10 N = 5400; //\text{rpm}
11 U = 2*\%pi*rt*N/60
12 disp("From velocity triangle")
13 disp("U = Ca*(tanalpha1 + tanbeta1)")
14 \text{ alpha1} = 28;
15 \text{ beta1} = 58;
16 Ca = U/(tan(alpha1*\%pi/180)+tan(beta1*\%pi/180))
17 disp("Flow area is A in m2")
18 rtip=rt;//m
19 rroot = 0.42; //m
20 A = \%pi*(0.45^2 - 0.42^2)
21 disp("Mass flow rate is m in kg/s")
22 rho = 1.5; //kg/m3
23 \text{ m} = \text{rho}*A*Ca
24 disp("Power absorbed by the compressor P in kW")
25 \operatorname{disp}(" = \operatorname{Tau}*U(\operatorname{Cw2} - \operatorname{Cw1})")
26 disp(" = Tau*U*Ca*(tanalpha2-tanalpha1)")
27 alpha2 = beta1;
28 \text{ Tau} = 0.93;
29 P = Tau*U*Ca*(tan(alpha2*%pi/180)-tan(alpha1*%pi
      /180))*1.001
30 disp("Total Power in kW")
31 \text{ Pt} = m*P/1000*1.017
32 disp("and whirl velocity at impeller tip Cwt in m/s"
33 Cwt = Ca*tan(alpha1*\%pi/180)
34 disp("Now using free vortex condition")
35 disp("r Cw = constant")
36 disp(" [ rhCw1h = rtCw1t (where subscripts h for hub
      and t for tip)")
37 \text{ rh} = 0.4;
38 \text{ Cw1h} = \text{rt*Cwt/rh}
39 Cw2t = Ca*tan(alpha2*%pi/180)
40 \text{ Cw2h} = \text{Cw2t*rt/rh}
41 disp("Therefore, the flow angles at the hub are")
```

Scilab code Exa 5.15 Rotation 8000rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 5, Example 15")
8 disp("Angles are in degrees, lengths in meters,
      velocities in m/s, temperatures are in Kelvins")
9 disp("Using Equation at the mean radius")
10 disp("Wc = Cp(DeltaTA + DeltaTB) = DeltaTS")
11 disp("Dif = T02-T01")
12 \text{ Dif} = 20;
13 \text{ tau} = 0.94;
14 U = 200;
15 Ca = 155;
16 \text{ Cp} = 1005;
17 N = 8000;
```

```
18 disp("tan(beta1)-tan(beta2) = Dift -----(A)")
19 Dift = Dif*Cp/(tau*U*Ca)
20 disp("Using Equation, the degree of reaction (DOF)
      is")
21 \operatorname{disp}("DOF = \operatorname{Ca}*(\tan(\operatorname{beta1}) + \tan(\operatorname{beta2}))/(2\operatorname{U})")
22 disp("tan(beta1)+tan(beta2) = Add -----(B)")
23 \text{ DOF} = 0.5;
24 Add = DOF*2*U/Ca
25 disp ("Solving (A) and (B) equations simultaneously")
26 beta1 = atan((Add+Dift)/2)*180/\%pi
27 alpha2 = beta1;
28 beta2 = atan(1.29-tan(beta1*\%pi/180))*180/\%pi
29 alpha1 = beta2;
30 disp("Let rm be the mean radius")
31 \text{ rm} = U/(2*\%pi*N)/m
32 disp("Using continuity equation in order to find the
       annulus area of flow")
33 C1 = Ca/cos(alpha1*\%pi/180)//m/s
34 \text{ T01} = 290;
35 \text{ T1} = \text{T01-C1^2} / (2*Cp)
36 disp("Using isentropic relationship at inlet: p1/p01
       = (T1/T01) (gamma/(gamma-1))
37 disp("Static pressure is P1 in bars")
38 \text{ PO1} = 1;
39 P1 = P01*(T1/T01)^3.5
40 disp ("Density in kg/m3")
41 R = 287;
42 \text{ rho1} = P1/(R*T1) *10^5
43 disp("From the continuity equation,")
44 \text{ m} = 22; //\text{kg}
45 A = m/(rho1*Ca)
46 disp("blade height in m is")
47 h = A/(2*\%pi*rm)
48 disp("At mean radius, and noting that blades beta,
      an equivalent to cascade, alpha, nominal air
      deflection is Epsilon")
49 Epsilon = beta1-beta2
50 disp ("Using Fig. Ex515 for cascade nominal
```

```
deflection vs. air outlet angle, the solidity,")  
51 disp("s/c = 0.5")  
52 disp("Blade aspect ratio = span/chord")  
53 disp("Blade chord = C")  
54 C = 0.089/3  
55 disp("Blade pitch = s")  
56 s = 0.5*C  
57 disp("Both the Chord and pitch/span are in meters")
```

Chapter 6

Steam Turbines

Scilab code Exa 6.1 Isentropic expansion

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 6, Example 1")
8 disp("From saturated steam tables, enthalpy of
      saturated vapor at 2 MPa:")
9 disp("Enthalpy in kJ/kg")
10 \text{ h1} = 2799.5
11 \text{ hg} = \text{h1}
12 disp("Entropy in kJ/kgK")
13 \text{ s1} = 6.3409
14 \text{ sg} = \text{s1}
15 disp("Since the expansion is isentropic, s1 = s2: i.
      e., s1 = s2 = 6.3409 = sf2 + x2sfg2, where x2 is
      the dryness fraction after isentropic expansion,
      sf2 is the entropy of saturated liquid at 0.2MPa,
       sfg2 is the entropy of vaporization at 0.2 MPa.
```

```
Using tables:")

16 x2 = (sg - 1.5301)/5.5970

17 disp("h2")

18 hf2 = 504.7;

19 hfg2 = 2201.9;

20 disp("h2 in kJ/kg")

21 h2 = hf2+x2*hfg2

22 disp("Using the energy equation:C2 in m/s")

23 C2 = (2*(h1-h2)*1000)^0.5
```

Scilab code Exa 6.2 Mass of steam discharged

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear:
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 6, Example 2")
8 disp("Enthalpy of dry saturated steam at 1.3MPa,
      using steam tables,")
9 \text{ h1} = 2787.6
10 \text{ s1} = 6.4953
11 disp("Since the expansion process is isentropic, s1
      = s2 = sf2 + x2sfg2, hence dryness fraction after
       expansion:")
12 \times 2 = (s1-1.3026)/6.0568
13 disp("Now, the enthalpy at the exit:")
14 hf2=417.46;
15 \text{ hfg2} = 2258;
16 \text{ h2} = \text{hf2} + \text{x2} + \text{hfg2}
17 disp("Therefore enthalpy drop from 1.3 MPa to 0.1
      MPa in kJ/kg")
18 \text{ drop} = h1-h2
```

```
19 disp("Actual enthalpy drop due to friction loss in
      the nozzle droping in kJ/kg")
20 Droping = 0.9*drop
21 disp("Hence, the velocity of steam at the nozzle
      exit:")
22 C2 = (2*1000*Droping)^0.5
23 disp("Specific volume of steam at 0.1 MPa: in m3/kg"
24 \text{ vg2} = 1.694;
25 Specificv = x2*vg2
26 disp("(since the volume of the liquid is usually
      negligible compared to the volume of dry
      saturated vapor, hence for most practical
      problems, v = xvg)")
27 disp ("Mass flow rate of steam at the nozzle exit: in
       kg/h")
28 \text{ m} = (0.01^2) *\% \text{pi} *C2/(4 * x2 * vg2) *3600
```

Scilab code Exa 6.3 Exit area required

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory,Rama S. R.
Gorla and Aijaz A. Khan, Chapter 6, Example 3")
8 P1 = 7.5; //MPa
9 h1 = 3404.3; //kJ/kg
10 s1 = 6.7598; //kJ/kg K
11 disp("(h1 and s1 from superheated steam tables)")
12 disp("At the exit state, P2 > Pc = 0.545*7.5 =
4.0875 MPa; and therefore the nozzle is
convergent. State 2 is fixed by P2 = 5MPa, s1 =
```

```
s2 = 6.7598 kJ/kgK")

13 disp("T2 = 4358K, v2 = 0.06152m3/kg, h2 = 3277.9 kJ/
    kg (from the superheated steam tables or the
        Mollier Chart).")

14 disp("The exit velocity:")
15 h2 = 3277.9; //kJ/kg
16 C2 = (2*1000*(h1-h2))^0.5
17 disp("Using the continuity equation, the exit area
        is")

18 m = 2.8;
19 v2 = 0.06152;
20 A2 = m*v2/C2
```

Scilab code Exa 6.4 Ratio of cross sectional area

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 6, Example 4")
8 disp("Critical pressure for maximum mass flow is
      given by Fig. Ex64")
9 disp("Pc is critical pressure in MPa")
10 P1 = 0.8; //MPa
11 n = 1.135; //index
12 Pc = P1*(2/(n+1))^(n/(n-1))
13 P2 = Pc;
14 disp("From the Mollier chart:")
15 disp("h1 = 2769 kJ/kg")
16 disp("h2 = 2659 \text{ kJ/kg}")
```

```
17 disp("h3 = 2452 \text{ kJ/kg}")
18 \text{ h1} = 2769;
19 h2 = 2659;
20 \text{ h3} = 2452;
21 disp("Enthalpy drop from 0.8 MPa to 0.15 MPa:")
22 Deltah13 = h1-h3
23 disp("Enthalpy drop from 0.8 MPa to 0.462 MPa:")
24 Deltah12 = h1-h2
25 disp ("Dryness fraction:")
26 \times 2 = 0.954
27 \times 3 = 0.902
28 disp("The velocity at the exit in m/s")
29 \text{ C3} = (2*1000*Deltah13)^0.5
30 disp("The velocity at the throat in m/s")
31 C2 = (2*1000*Deltah12)^0.5
32 disp("Mass discharged at the throat")
33 disp("m2 = A2C2/x2vg2")
34 disp("Mass discharged at the exit")
35 \text{ disp}("m3 = A3C3/x3vg3")
36 \text{ disp}("A3C3/x3vg3 = A2C2/x2vg2")
37 disp("A3/A2 = (C2/C3) * (x3vg3/x2vg2)")
38 disp("Area Ratio A3/A2 = Ar")
39 \text{ vg3} = 1.1593;
40 \text{ vg2} = 0.4038;
41 Ar = C2*x3*vg3/(C3*x2*vg2)
```

Scilab code Exa 6.5 Convergent Divergent Nozzle

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
```

```
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 6, Example 5")
8 disp ("At the state point 2, the dryness fraction is
      0.85 and the pressure is 0.1 MPa.")
9 disp("This problem can be solved easily by the
      Mollier chart or by calculations.")
10 disp("Enthalpy and entropy may be determined using
      the following equations:")
11 disp("h2 = hf2 + x2hfg2 \text{ and } s2 = sf2 + x2sfg2;")
12 \text{ hf2} = 417.46
13 \times 2 = 0.85
14 \text{ hfg2} = 2258
15 \text{ h1} = \text{hf2} + \text{x2} + \text{hfg2}
16 \text{ sf2} = 1.3026
17 \text{ sfg2} = 6.0568
18 	ext{ s2} = 	ext{sfg2}
19 disp("Since s1 = s2, the state 1 is fixed by s1 =
      6.451 kJ/kg K, and point 1 is at the dry
      saturated line.")
20 disp("Therefore pressure P1 may be determined by the
       Mollier chart or by calculations: i.e.: P1 =
      1.474 MPa.")
21 disp("Elthalpies are in kJ/kg, entropy in kJ/kgK and
       Pressure in MPa")
```

Scilab code Exa 6.6 Steam leaving nozzle at 925

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
```

```
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 6, Example 6")
8 disp ("From the data given, the velocity diagram can
      be constructed as shown in Fig. Ex66. The problem
       can be solved either graphically or by
      calculation.")
9 disp ("Applying the cosine rule to the triangle ABC,
      V1 and V2 in m/s implies")
10 U = 250;
11 C1 = 925;
12 \quad alpha1 = 20;
13 V1 = (U^2 + C1^2 -2*U*C1*\cos(alpha1*\%pi/180))^0.5
14 k = 0.7;
15 \ V2 = k*V1
16 disp("Velocity of whirl at inlet:")
17 \text{ Cw1} = \text{C1}*\cos(\text{alpha1}*\%\text{pi}/180)
18 disp("Axial component at inlet:")
19 Ca1 = C1*sin(alpha1*%pi/180)
20 disp("Blade angle at inlet")
21 beta1 = \frac{\text{atan}}{\text{(Ca1/(Cw1-U))}} *180/\%pi
22 disp("beta2 = beta1 = outlet blade angle")
23 beta2 = beta1
24 \text{ Cw2} = \cos(\text{beta2*\%pi/180})*\text{V2} - \text{U}
25 \text{ disp}(\text{"Ca2} = \text{FE"})
26 \text{ Ca2} = (U+Cw2)*tan(beta2*%pi/180)
27 disp("Velocity of whirl at inlet, Cw1 = 869.22 m/s;"
  disp("Velocity of whirl at outlet, Cw2 = 183.69 m/s"
28
29 disp("Tangential force on blades in N")
30 \text{ m} = 0.182; //\text{kg/s}
31 \quad \text{Ft} = (Cw1 + Cw2) * m
32 disp("Axial force on blades in N")
33 \quad Fa = m*(Ca1-Ca2)
34 disp("Work done on blades in kW")
35 disp("= tangential force on blades * blade velocity"
      )
```

Scilab code Exa 6.7 Steam leaving nozzle at 590

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
       Gorla and Aijaz A. Khan, Chapter 6, Example 7")
8 disp("Blade speed U is given by: in m/s")
9 D = 1050;
10 N = 2800;
11 U1 = \%pi*D*N/(60*1000)
12 disp ("The velocity diagram is shown in Fig. Ex67.
       Applying the cosine rule to the triangle ABC,")
13 \text{ C1} = 590;
14 \text{ alpha1} = 20;
15 V1 = (U1^2+C1^2-2*U1*C1*\cos(alpha1*\%pi/180))^0.5
16 disp("Applying the sine rule to the triangle ABC,
       C1sin (ACB) = V1/sin (alpha1)")
17 \operatorname{disp}("\operatorname{but} \sin(\operatorname{ACB}) = \sin(180 - \operatorname{beta1}) = \sin(\operatorname{beta1})")
18 beta1 = asin(C1*sin(alpha1*%pi/180)/V1)*180/%pi
19 \text{ beta2} = \text{beta1};
20 disp("From Triangle ABD")
21 \text{ Cw1} = \text{C1}*\cos(\text{alpha1}*\%\text{pi}/180)
```

Scilab code Exa 6.8 1 stage impulse turbine

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 6, Example 8")
8 disp("From triangle ABC Figure Ex68")
9 \text{ C1} = 460;
10 a = 22; // degrees
11 Cw1 = C1 * cos(a*\%pi/180)
12 Ca1 = C1*sin(a*\%pi/180)
13 disp("Now from triangle BCD")
14 BD = Ca1/tan(33*\%pi/180)
15 disp("Hence, blade speed is given by: in m/s")
```

```
16 \quad U = Cw1 - BD
17 disp("From Triangle BCD, relative velocity at blade
      inlet is given by: in m/s")
18 V1 = Ca1/sin(33*\%pi/180)
19 disp ("Velocity coefficient")
20 k = 0.75
21 \ V2 = V1*k
22 disp("From triangle BEF")
23 BF = V2*cos(33*\%pi/180)
24 \text{ Cw2} = \text{BF-U}
25 \text{ AF} = \text{Cw2};
26 \text{ Ca2} = V2*sin(33*%pi/180)
27 disp("The change in velocity of whirl:")
28 DeltaCw = Cw1+Cw2
29 disp("Diagram efficiency")
30 \text{ etad} = 2*DeltaCw*U/C1^2 * 100
31 disp("End thrust on the shaft per unit mass flow: in
       N")
32 F = Ca1-Ca2
```

Scilab code Exa 6.9 Parson Turbine

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 6, Example 9")
8 disp("The blade speed, in m/s")
9 D = 1.3;
10 N = 3000;
```

```
11 \ U = \%pi*D*N/60
12 disp("Velocity of flow, in m/s")
13 \text{ Ca} = 0.5*U
14 C2 = 102;
15 disp("Draw lines AB and CD parallel to each other
      Fig. Ex69 at the distance of 102 m/s, i.e.,
      velocity of flow, Ca1 = 102 \text{ m/s.}")
16 disp("At any point B, construct an angle alpha2 = 20
       degrees to intersect line CD at point C. Thus,
      the velocity triangle at the outlet is completed.
       For Parson s turbine,")
17 disp("alpha1 = beta2 , beta1 = alpha2 , C1 = V2 and
      V1 = C2")
18 disp("By measurement")
19 \text{ Cw1} = 280.26;
20 \text{ Cw2} = 76.23;
21 DeltaCw = Cw1+Cw2
22 disp("The inlet angles are 53.22 degrees. Specific
      volume of vapor at 0.5 MPa, from the steam tables
      , is in m3/kg")
23 \text{ vg} = 0.3749
24 disp("Therefore the mass flow is given by:")
25 \times 2 = 1;
26 A = \%pi*1.3*6;
27 \text{ m} = A*C2/(x2*vg)/100
28 disp("Power developed in kW")
29 P = m*C2*DeltaCw/1000
```

Scilab code Exa 6.10 Steam leaving nozzle at 950

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
```

```
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 6, Example 10")
8 disp("With the help of alpha1, U and C1, the
      velocity triangle at the blade inlet can be
      constructed easily as shown in Fig. Ex610")
9 disp("Applying the cosine rule to the triangle ABC,"
10 \text{ C1} = 950;
11 U = 380;
12 \text{ alpha1} = 20;
13 V1 = (U^2+C1^2-2*U*C1*\cos(alpha1*\%pi/180))^0.5
14 disp("Now, applying the sine rule to the triangle
      ABC, ")
15 disp("V1/sin(alpha1) = C1/sin(180-beta1) = C1/sin(
      beta1)")
16 beta1 = asin(C1*sin(alpha1*\%pi/180)/V1)*180/\%pi
17 disp ("From triangle ACD")
18 Cw1 = C1*cos(alpha1*%pi/180)
19 disp("As beta1 = beta2, using triangle BEF and
      neglecting friction loss, i.e. V1 = V2")
20 \text{ beta2} = \text{beta1};
21 \ V2 = V1;
22 BF = V2 * cos(beta2*\%pi/180)
23 \text{ Cw2} = \text{BF-U}
24 disp ("Change in velocity of whirl:")
25 DeltaCw = Cw1+Cw2
26 disp ("Tangential force on blades: in N")
27 \text{ m} = 12;
28 F = m*DeltaCw/60
29 disp("Horse Power")
30 P = m*U*DeltaCw/(60*1000*0.746)
```

Scilab code Exa 6.11 Steam leaving nozzle at 700

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
       Gorla and Aijaz A. Khan, Chapter 6, Example 11")
8 disp("Velocity triangles for this problem are shown
       in Fig. Ex611")
9 disp("From the triangle ACD,")
10 \text{ C1} = 700;
11 \text{ alpha1} = 22;
12 Ca1 = C1*sin(alpha1*%pi/180)//in m/s
13 \text{ beta1} = 34;
14 V1 = Ca1/sin(beta1*\%pi/180)//in m/s
15 disp("Whirl component of C1 is given by in m/s")
16 \text{ Cw1} = \text{C1}*\cos(\text{alpha1}*\%\text{pi}/180)
17 \operatorname{disp}("BD = \operatorname{Cw1} - \operatorname{U} = \operatorname{V1cosbeta1"})
18 BD = V1*\cos(beta1*\%pi/180)
19 disp("Hence, blade speed in m/s")
20 \quad U = Cw1 - BD
21 disp("Using the velocity coefficient to find V2:")
22 k = .9;
23 \quad V2 = k*V1
24 disp ("From velocity triangle BEF,")
25 beta2 = beta1;
26 \text{ Ca2} = V2*sin(beta2*%pi/180)
27 \text{ Cw2} = \text{V2}*\cos(\text{beta2}*\%\text{pi}/180) - \text{U}
28 DeltaCw = Cw1+Cw2
```

```
disp("mass flow rate is given by m. in kg/s")
R = 1600;
m = P*1000/(DeltaCw*U)
disp("Thrust on the shaft in N")
Ft = m*(Ca1-Ca2)
disp("Diagram efficiency")
etad = 2*U*DeltaCw/C1^2 * 100
```

Scilab code Exa 6.12 Axial velocity constant

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 6, Example 12")
8 disp("For 50\% reaction turbine Fig. Ex612, alpha1 =
      beta2, and alpha2 = beta1. From the velocity
      triangle ACD, angles in degrees")
9 disp("All velocities in m/s")
10 C1 = 105; //m/s
11 \text{ alpha1} = 20;
12 Cw1 = C1*cos(alpha1*%pi/180)
13 disp("Applying cosine rule to the Triangle ABC:")
14 U = 40; //m/s
15 V1 = (C1^2+U^2-C1*2*U*\cos(alpha1*\%pi/180))^0.5
16 \quad BD = Cw1 - U / / ms /
17 beta1 = acos(BD/V1)*180/\%pi//degrees
18 disp("Change in the velocity of whirl is:")
19 \text{ Cw2} = BD;
20 DeltaCw = Cw1+Cw2
```

```
21 disp("Horse Power generated")
22 m = 2;
23 P = m*U*DeltaCw/(0.746*1000)
```

Scilab code Exa 6.13 Blade height and power developed

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 6, Example 13")
8 disp("Figure Ex613 shows the velocity triangles.")
9 \text{ alpha1} = 18;
10 \text{ beta2} = \text{alpha1};
11 \text{ alpha2} = 25;
12 beta1 = alpha2;
13 disp("From the velocity triangle, velocities in m/s"
      )
14 C1 = 90; //m/s
15 Cw1 = C1*cos(alpha1*%pi/180)//m/s
16 \text{ Ca1} = \text{C1*sin}(\text{alpha1*\%pi/180})
17 \text{ CD} = \text{Ca1};
18 disp("From triangle BDC")
19 BD = Ca1/sin(beta1*\%pi/180)
20 disp("Hence blade velocity is given by:")
21 \quad U = Cw1-BD
22 disp("Applying the cosine rule,")
23 V1 = (C1^2+U^2-2*U*C1*\cos(alpha1*\%pi/180))^0.5
24 disp("From triangle AEF")
25 C2 = V1;
```

```
26 \quad Cw2 = C2*\cos(alpha2*\%pi/180)
27 disp("Change in the velocity of whirl: m/s")
28 \text{ DeltaCw} = \text{Cw1} + \text{Cw2}
29 disp("Power developed by the rotor: in kW")
30 \text{ m} = 10;
31 P = m*U*DeltaCw/1000
32 disp("From superheated steam tables at 5 bar, 250
      degree Celcius, the specific volume of steam is:
      in m3/kg")
33 \quad v = 0.4744
34 disp("Blade height is given by the volume of flow
      equation: in m")
35 \text{ disp}("v = pi*D*h*Ca")
36 disp("where Ca is the velocity of flow and h is the
      blade height. Therefore,")
37 D=0.72;
38 Ca = Ca1;
39 h = v/(\%pi*Ca*D)
```

Scilab code Exa 6.14 RPM 440

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory,Rama S. R.
Gorla and Aijaz A. Khan, Chapter 6, Example 14")
8 disp("Figure Ex613 shows the velocity triangles.")
9 disp("From the velocity diagram,")
10 disp("V2 = 1.2U")
11 disp("Ca2 = V2 cos(beta2)")
```

```
12 \text{ disp}(" = 1.2 \text{ U}\cos 70")
13 \text{ disp}(" = 0.41 \text{U m/s"})
14 disp("At mean diameter,")
15 disp("U = piDN/60 = 2piN(Dh + h)/(60*2)")
16 disp("where Dh is the rotor diameter at the hub and
      h is the blade height.")
17 disp("Substituting the value of U in the above
      equation,")
18 N = 440; //\text{rpm}
19 \operatorname{disp}(\text{"Ca2} = 0.41*2*\%\text{pi*N*}(14.5\text{h+h})/(2*60) = 146.45\text{h}
      m/s")
20 disp("Annular area of flow is given by:")
21 disp("A = pih(Dh + h) = pih(14.5h + h)")
22 disp("A = 15.5 pih^2")
23 disp("Specific volume of saturated steam at 0.90 bar
      vg = 1.869 \text{ m} 3/\text{kg}.")
24 disp("Then the specific volume of steam v = (1.869)
      * (0.95) = 1.776 \text{ m} 3/\text{kg}."
25 \quad v = 1.776;
26 disp("The mass flow rate is given by:kg/s")
27 mrate = 6.8; //kg/kW h
28 P = 5.5; / MW
29 m = P*1000*mrate/3600//kg/s
30 h = (m*v/(146.45*15.5*\%pi))^(1/3)
```

Scilab code Exa 6.15 Two row velocity compounded impulse turbine

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
```

```
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 6, Example 15")
8 disp("Figure Ex615 shows velocity triangles")
9 disp("Graphical solutions")
10 U = 115; //m/s
11 C1 = 590; //m/s
12 alpha1 = 18; // degrees;
13 beta2 = 20; // degrees
14 disp("The velocity diagrams are drawn to scale, as
      shown in Fig. Ex615a, and the relative velocity:"
15 \text{ V1} = 482 / \text{/m/s}
16 k = 0.9;
17 \ V2 = k*V1
18 disp("The absolute velocity at the inlet to the
      second row of moving blades, C3, is equal to the
      velocity of steam leaving the fixed row of blades
      . ")
19 C2 = 316.4;
20 \quad C3 = k*C2
21 disp ("Driving Force in N")
22 m = 1;
23 \text{ DeltaCw1} = 854;
24 \text{ DeltaCw2} = 281.46;
25 disp("For the first row of moving blades, in N")
26 	ext{ F1} = m*DeltaCw1
27 disp("For the second row of moving blades, in N")
28 \text{ F2} = \text{m*DeltaCw2}
29 disp("where DeltaCw1 and DeltaCw2 are scaled from
      the velocity diagram.")
30 disp("Total driving force")
31 	ext{ F} = F1 + F2
32 disp("Power = driving force *blade velocity in kW
      per kg/s")
33 \text{ s} = 115;
34 P = F*s/1000
```

```
35 disp("Energy supplied to the wheel")
36 E = m*C1^2 /(2*1000)
37 disp("Therefore, the diagram efficiency is:")
38 \text{ etad} = P*1000*2/C1^2 *100
39 disp("Maximum diagram efficiency:")
40 etadm = (\cos(alpha1*\%pi/180))^2*100
41 Ca1 = 182.32;
42 \text{ Ca2} = 148.4;
43 \text{ Ca3} = 111.3;
44 \text{ Ca4} = 97.57;
45 disp("Axial thrust on the first row of moving blades
       (per kg/s): in N")
46 \quad F1 = m*(Ca1-Ca2)
47 disp("Axial thrust on the second row of moving
      blades (per kg/s): in N")
48 	ext{ F2} = m*(Ca3-Ca4)
49 disp("Total axial thrust: in N")
50 \quad F = F1+F2
```

Scilab code Exa 6.16 Reaction stage turbine

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory,Rama S. R.
Gorla and Aijaz A. Khan, Chapter 6, Example 16")
8 disp("Figure Ex616 shows velocity triangles")
9 disp("The velocity triangles can easily be constructed as the blade velocity and blade angles are given. From velocity triangles, work
```

```
output per kg is given by:")
10 U = 300; //m/s
11 \text{ alpha1} = 25;
12 \text{ beta1} = 60;
13 \text{ alpha2} = 71.1;
14 \text{ beta2} = 32;
15 disp("Wt = U*(Cw1+Cw2)")
16 Wt = U*(450*\cos(alpha1*\%pi/180)+247*\cos(alpha2*\%pi)
      /180))
17 disp("Power output i kW")
18 m = 5;
19 P = m*Wt/1000
20 disp("Degree of reaction is given by: DOR")
21 \text{ V1} = 220; //m/s
22 \text{ V2} = 443; //m/s
23 DOR = (V2^2 - V1^2)/(2*Wt) * 100
24 disp("Axial thrust: in N")
25 \text{ Ca1} = 190.5; //m/s
26 \text{ Ca2} = 234; //m/s
27 F = m*(Ca1-Ca2)
28 disp("The thrust is negative because its direction
      is the opposite to the fluid flow.")
```

Scilab code Exa 6.17 Series of stages

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 6, Example 17")
```

```
8 disp ("Using the given data, the velocity triangles
      for the inlet and outlet are shown in Fig Ex617")
9 \text{ C2} = 225; //m/s
10 V2 = 375; //m/s
11 C1 = 400; //m/s
12 V1 = 200; //m/s
13 disp("Work done per unit mass flow: in J/kg")
14 U = 250;
15 Wt = U*(C1*cos(25*\%pi/180)+C2*cos(70.2*\%pi/180))
16 disp ("Degree of reaction DOR")
17 DOR = (V2^2 - V1^2)/(2*Wt) *100
18 disp("Power output: in kW")
19 m = 5.2;
20 P = m*Wt/1000
21 disp("Isentropic static enthalpy drop in the stator:
       in kJ/kg")
22 \text{ etas} = 0.93;
23 Deltahs = (C1^2 - 0.89*C2^2)/etas /1000
24 disp("Isentropic static enthalpy drops in the rotor:
       in kJ/kg")
25 \text{ etaf} = 0.94;
26 Deltahr = Wt/(etas*etaf) /1000
27 disp ("Since the state of the steam at the stage
      entry is given as 10 bar, 300 degree Celsicus,")
28 disp("Enthalpy at nozzle exit: in kJ/kg")
29 \text{ Hn} = 3051.5 - \text{Deltahs}
30 disp("Enthalpy at rotor exit: in kJ/kg")
31 \text{ Hr} = 3051.5 - Deltahr
32 disp("The rotor inlet and outlet conditions can be
      found by using the Mollier Chart.")
33 disp("Rotor inlet conditions: P1 = 7 bar, T1 = 235
      Degree Celsius")
34 disp("Rotor outlet conditions: P2 = 5 bar, T2 = 2208
       Degree Celsius")
```

Chapter 7

Axial Flow and Radial Flow Gas Turbines

Scilab code Exa 7.1 Impulse gas turbine

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 7, Example 1")
8 disp("From isentropic p T relation for expansion
      process")
9 disp("T02a/T01 = (P02/P01)^{(gam-1)/gam}")
10 \text{ PO2} = 1.03;
11 \quad P01 = 5.2;
12 \text{ T01} = 1000;
13 \text{ gam} = 1.33;
14 \text{ T02a} = \text{T01*(P02/P01)^((gam-1)/gam)}
15 disp("Using isentropic efficiency of turbine")
```

```
16  etat = 0.88;
17  T02 = T01 - etat*(T01-T02a) //K
18  disp("Using steady-flow energy equation")
19  disp("1/2 * (C2^2 - C1^2) = Cp(T01 - T02)")
20  Cpg = 1147;
21  C1 = 140;
22  C2 = (2*Cpg*(T01-T02) + C1^2)^0.5 //m/s
23  disp("From velocity triangle, velocity of whirl at rotor inlet in m/s")
24  Cw2 = C2*sin(57*%pi/180)
25  disp("Turbine work output is given by in kW")
26  m = 28;
27  Wt = m*Cpg*(T01-T02)/1000
```

Scilab code Exa 7.2 Nozzle efflux angle 68

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 7, Example 2")
8 disp("The specific work output in kJ/kg")
9 \text{ etats} = 0.85;
10 \text{ Cpg} = 1.147;
11 \quad T01 = 800 + 273;
12 \text{ gam} = 1.33;
13 W = etats*Cpg*T01*(1-(1/4)^((gam-1)/gam))
14 disp("Since alpha1 = 0, alpha3 = 0, Cw1 = 0 and
      specific work output is given by")
15 U = 480;
16 \text{ Cw2} = \text{W}*1000/\text{U}//\text{m/s}
17 disp("From velocity triangle")
```

```
18 \text{ alpha2} = 68;
19 C2 = Cw2/\sin(alpha2*\%pi/180)//m/s
20 disp("Axial velocity is given by in m/s")
21 Ca2 = C2*cos(alpha2*\%pi/180)//m/s
22 disp("Total-to-total efficiency, etatt, is")
23 disp("etatt = (T01-T03)/(T01-T03a)")
                  = W/(T01-(T3+C3^2/(2Cpg)))")
24 disp("
                   = W/((W/etats) - (C3^2/(2Cpg)))")
25 disp("
26 \text{ C3} = \text{Ca2}; //\text{m/s}
27 \text{ etatt} = W/((W/\text{etats}) - (C3^2 / (2*Cpg*1000))) *100 //
       in %
28 disp ("The degree of reaction DOR")
29 \operatorname{disp}("DOR = \operatorname{Ca}*(\tan(\operatorname{beta3}) - \tan(\operatorname{beta2}))/(2\operatorname{U})")
30 DOR = (1 - \text{Ca2}*\tan(\text{alpha2}*\%\text{pi}/180) / (2*U))*100 / /\%
```

Scilab code Exa 7.3 Stagnation temperature of 1100K

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 7, Example 3")
8 disp("From Figure Ex73")
9 Ca = 250 / m/s
10 Ca3 = Ca; //m/s
11 Ca2 = Ca3; //m/s
12 Ca1 = Ca2; //m/s
13 U = 350; //m/s
14 disp("From velocity triangle (b)")
15 \text{ alpha2} = 63;
```

Scilab code Exa 7.4 Throat area for 73

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 7, Example 4")
8 disp("Nozzle Throat area in m2, A = m/(rho2*Ca2)")
9 disp("rho2 = P2/(RT2)")
10 disp("T2 = T02 - C2^2 /(2Cp)")
11 T02 = 1100; // Kelvin
12 C2 = 550.67; //m/s
13 \text{ Cp} = 1.147;
14 T2 = T02 - C2^2 / (2*Cp*1000)
15 disp("From nozzle loss coefficient")
```

```
16 \quad lambdaN = 0.05;
17 T2a = T2 - lambdaN *C2^2 /(2*Cp*1000)
18 disp("Using isentropic p T relation for nozzle
      expansion")
19 P01 = 5; //bars
20 \text{ gam} = 1.33;
21 \text{ T01} = \text{T02};
22 P2 = P01/((T01/T2a)^(gam/(gam-1)))
23 disp("Critical Pressure ratio = r = P01/Pc")
24 r = ((gam+1)/2)^(gam/(gam-1))
25 \text{ disp}("P01/P2 = r1")
26 \text{ r1} = P01/P2
27 disp("Since r1<r, and therefore nozzle is unchoked."
      )
28 \text{ C2} = (2*\text{Cp}*1000*(\text{T01-T2}))^0.5//\text{m/s}
29 disp("Therefore, nozzle throat area in m2")
30 R = 0.287;
31 rho2 = P2*100/(R*T2)//kg/m3
32 \text{ m} = 15; //\text{ks}
33 A = m/(rho2*C2)/m2
```

Scilab code Exa 7.5 Inlet stagnation temperature is 1000 K

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 7, Example 5")
8 disp("Velocities are in m/s, temperature in Kelvin,
Angles in degrees.")
9 disp("Degree of reaction DOR = 0")
10 disp("DOR = (T2-T3)/(T1-T3)")
```

```
11 disp("Therefore T2 = T3")
12 disp("From isentropic p T relation for expansion")
13 \quad T01 = 1000;
14 disp("P01/P03 = r")
15 r = 1.8
16 \text{ T03a} = \text{T01/(r^0.249)}
17 disp("Using turbine efficiency")
18 disp("T03 = T01-etat*(T01-T03a)")
19 \text{ etat} = 0.85;
20 \text{ T03} = \text{T01} - \text{etat}*(\text{T01-T03a})
21 disp("In order to find static temperature at turbine
        outlet, using static and stagnation temperature
      relation")
22 \quad C3 = 270;
23 \text{ Cpg} = 1.147;
24 T3 = T03 - C3^2 / (2*Cpg*1000)
25 	ext{ T2} = 	ext{ T3};
26 disp ("Dynamic Temperature in K is C^2 / 2Cpg = Td")
27 \text{ Td} = 1000 - T2
28 \text{ C2} = (2*\text{Cpg}*1000*\text{Td})^0.5//\text{m/s}
29 disp("Since Cpg*DeltaTos = U*(Cw3+Cw2) = U*Cw2 (Cw3+Cw2)
      =0)")
30 U = 290;
31 Cw2 = Cpg*1000*(1000-884)/U//m/s
32 disp("From velocity triangle")
33 alpha2 = asin(Cw2/C2)*180/\%pi
34 \text{ Ca2} = \text{C2};
35 beta2 = atan((Cw2-U)/(Ca2*cos(alpha2*%pi/180)))*180/
      %pi
```

Scilab code Exa 7.6 Inlet stagnation temperature is 1150 K

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
```

```
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 7, Example 6")
8 disp("Annulus area A is given by")
9 disp("A = 2 pi*rm*h")
10 disp("where h = blade height")
11 disp("rm = mean radius")
12 disp("As we have to find the blade height from the
      outlet conditions, in this case annulus area is
      A3.")
13 disp("h = A3/2pi*rm")
14 disp("Um = pi*Dm*N")
15 Um = 300; //m/s
16 N = 240; //rps
17 Dm = Um/(%pi*N)
18 \text{ rm} = Dm/2
19 disp("Temperature drop in the stage is given by Drop
       = T01-T03")
20 Drop = 145//\text{Kelvins}
21 \quad T01 = 1150;
22 \quad T03 = T01-Drop
23 \quad C3 = 390;
24 \text{ Cpg} = 1.147;
25 	ext{ T3} = 	ext{T03-C3^2} / (2*Cpg*1000)
26 disp ("Using turbine efficiency to find isentropic
      temperature drop")
27 \text{ eta} = 0.88;
28 \quad T03a = T01-Drop/eta
29 disp ("Using isentropic p T relation for expansion
      process")
30 \text{ PO1} = 8;
31 \text{ PO3} = \text{PO1/(T01/T03a)}^{(4)}
32 disp("Also from isentropic relation")
33 P3 = P03/(T03a/T3)^4
34 disp("where P01, P3; P03 are in bars")
35 R = 0.287;
```

```
36 rho3 = P3/(R*T3) *100//kg/m3

37 m = 34;//kg/s

38 Ca3 = C3;

39 A3 = m/(rho3*Ca3)

40 h = A3/(2*%pi*rm)

41 disp("where h is in m")
```

Scilab code Exa 7.7 Rotation 14500rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
       Gorla and Aijaz A. Khan, Chapter 7, Example 7")
8 \text{ Cpg} = 1147;
9 disp("Temperature Drop = T01 - T03")
10 \text{ Drop} = 145;
11 U = 345;
12 psi = Cpg*(Drop)/U^2
13 disp("Using velocity diagram")
14 \operatorname{disp}("U/\operatorname{Ca} = \tan(\operatorname{beta3}) - \tan(\operatorname{alpha3})")
15 \operatorname{disp}("\tan(beta3) = 1/\operatorname{phi} + \tan(\operatorname{alpha3})")
16 \text{ alpha3} = 12;
17 \text{ phi} = 0.75;
18 beta3 = atan(1/phi + tan(alpha3*%pi/180))*180/%pi
19 \operatorname{disp}("Psi = phi*(tan(beta2) + tan(beta3))")
20 \operatorname{disp}("DOR = \operatorname{phi}/2 *(\tan(\operatorname{beta3}) - \tan(\operatorname{beta2}))")
21 disp("tan(beta3) = (psi + 2*DOR)/(2*phi)")
22 DOR = (tan(beta3*\%pi/180) *2*phi - psi)/2 *100
23 disp("tan(beta2) = (psi-2*DOR)/(2*phi)")
24 beta2 = atan((psi-2*DOR/100)/(2*phi))*180/%pi
25 \text{ alpha2} = \frac{\text{atan}(\text{tan}(\text{beta2*\%pi/180}) + (1/\text{phi})) * 180/\%\text{pi}}
```

```
26 Ca1 = U*phi//m/s
27 \text{ C2} = \text{Ca1/cos}(\text{alpha2*\%pi/180}) / / \text{m/s}
28 disp("R2 = T02-T2 = C2^2 / 2Cp")
29 R2 = C2^2 / (2*Cpg)
30 disp("R3 = T2-T2s = Tn*C2^2/(2Cpg)")
31 \text{ Tn} = 0.05;
32 R3 = Tn*C2^2 /(2*Cpg)
33 \text{ T2} = 1100 - \text{R2} / / \text{K}
34 \text{ T2s} = \text{T2} - \text{R3}/\text{K}
35 \text{ PO1} = 4; // \text{bars}
36 \text{ T01} = 1100;
37 P2 = P01*(T2s/T01)^4
38 R = 0.287;
39 rho2 = P2*100/(R*T2)//kg/m3
40 disp("Nozzle Throat area in A in m2")
41 C1 = C2; //m/s
42 rho1 = 0.907; //kg/m3
43 \text{ m} = 24;
44 \quad A = m/(rho1*C1)
45 \text{ A1} = \text{m/(rho1*Ca1)}
```

Scilab code Exa 7.8 Equal stage inlet and outlet velocities

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 7, Example 8")
8 disp("From Velocity tiangles")
9 disp("C is velocity in m/s, angles are in degrees")
10 Ca = 255; //m/s
11 alpha2 = 60;
```

```
12 Cw2 = Ca * tan(alpha2*%pi/180)
13 \text{ alpha3} = 12;
14 \text{ Cw3} = \text{Ca} * \text{tan}(\text{alpha3*\%pi/180})
15 U = 345; //m/s
16 \quad Vw2 = Cw2 - U / /m/s
17 beta2 = atan(Vw2/Ca)*180/\%pi
18 \quad Vw3 = Cw3 + U / /m / s
19 beta3 = atan(Vw3/Ca)*180/\%pi
20 disp ("Degree of Reaction DOR")
21 phi = Ca/U;
22 DOR = phi*(tan(beta3*\%pi/180) - tan(beta2*\%pi/180))
       /2 *100
23 psi = Ca*(tan(beta2*\%pi/180) + tan(beta3*\%pi/180))/U
24 \text{ m} = 20;
25 disp("W in kW")
26 \quad W = m*U*(Cw2+Cw3)
27 disp("lambdaN = 2Cp(T2-T2a)/C2^2")
28 \quad lambdaN = Ca*sec(alpha2*%pi/180)
29 C2 = lambdaN;
30 \text{ disp}("T2-T2a = R")
31 \text{ Cp} = 1147;
32 \text{ Ra} = 0.05*0.5*lambdaN^2 / Cp
33 \text{ T02} = 1150; //K
34 \text{ T01} = \text{T02}; //\text{K}
35 \text{ T2} = \text{T02} - \text{C2}^2 / (2*\text{Cp}) / \text{K}
36 \text{ T2a} = \text{T02-C2^2} / (2*\text{Cp}) - \text{Ra}
37 \text{ PO1} = 4//\text{bars}
38 P2 = P01/(T01/T2)^4
39 R = 0.287;
40 disp("rho2 is density in kg/m3")
41 \text{ rho2} = P2/(R*T2) *100
42 disp("Area in m2")
43 \text{ m} = 20;
44 \quad A2 = m/(rho2*C2)
```

Scilab code Exa 7.9 Turbine inlet temperature 900C

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
       Gorla and Aijaz A. Khan, Chapter 7, Example 9")
8 \operatorname{disp}(\text{"At } 50\%. \text{ alpha2} = \operatorname{beta3}; \text{ alpha3} = \operatorname{beta2"})
9 U = 340;
10 \operatorname{disp}(\text{"C2 in m/s"})
11 C2 = U/\cos(15*\%pi/180)
12 disp("Heat drop in blade moving row in Hdrop K")
13 C3 = 105; //m/s
14 \text{ Cp} = 1147;
15 Hdrop = (C2^2 - C3^2)/(2*Cp)
16 disp("Therefore heat drop in a stage")
17 Hdropstage = Hdrop *2
18 disp("Number of stages n = ")
19 n = (1173-943)/Hdropstage
20 disp("Therefore No. of stages = 2")
```

Scilab code Exa 7.10 Gas leaving stage in axial direction

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory, Rama S. R.
Gorla and Aijaz A. Khan, Chapter 7, Example 10")
8 disp("For no loss up to throat Ps in bars")
```

```
9 P01 = 4; //bar
10 \text{ gam} = 1.33;
11 Ps = P01*(2/(gam+1))^(gam/(gam-1))
12 \text{ T01} = 1100; //K
13 Ts = 944; //K
14 \text{ Cpg} = 1147;
15 U = 300; //m/s
16 C = (2*Cpg*(T01-Ts))^0.5//m/s
17 R = 0.287;
18 rhos = Ps*100/(R*Ts) / kg/m3
19 disp("Throat area in m2")
20 \text{ m} = 20; //\text{kg/s}
21 A = m/(rhos*C)
22 disp("Angle alpha1, at any radius r and alpha1m at
       the design radius rm are related by the equation"
23 disp("tan(alpha1) = rm*tan(alpha1m)/r")
24 disp("Given")
25 disp("Tip radius/Root radius = rt/rr = 1.4")
26 disp ("Therefore mean radius/root radius = 1.2")
27 \text{ alpha1m} = 25
28 alpha1r = atan(1.2*tan(alpha1m*\%pi/180))*180/\%pi
29 alpha1t = atan(tan(alpha1r*%pi/180)/1.4)*180/%pi
30 disp("Velocity in m/s")
31 \operatorname{disp}(\text{"Cw2} = \text{rm}*\text{x}*\text{Cw2m/rr} = \text{rm}*\text{Ca2/(rr}*\text{tan(alpha2m))"}
32 \text{ Cw2} = 1.2*250/\text{tan}(\text{alpha1m*\%pi}/180)
33 disp("Power developed in kW")
34 \text{ W} = \text{m}*\text{U}*\text{Cw}2/1000
```

Scilab code Exa 7.11 Inward radial flow gas turbine

```
1 // Display mode
```

```
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 7, Example 11")
8 disp("The overall efficiency of turbine from nozzle
      inlet to diffuser outlet is given by")
9 disp("etatt = (T01 - T03)/(T01 - T03ss)")
10 disp("Turbine work per unit mass flow")
11 \operatorname{disp}(\text{"W} = \text{U2}^2 = \operatorname{Cp}(\text{T01} - \text{T03}); (\text{Cw3} = 0)\text{"})
12 disp("Now using isentropic p T relation")
13 disp("T01 (1 - T03ss/T01) = T01(1 - (P03/P01))((gamma))
      -1)/gamma)")
14 disp ("Therefore")
15 disp("U2^2 = etatt*Cp*T01(1 - (P03/P01)^((gamma-1)/
      gamma)")
16 \text{ etatt} = 0.9;
17 \text{ Cp} = 1147;
18 \text{ T01} = 1145;
19 \text{ PO3} = 100;
20 \text{ PO1} = 310;
21 U2 = (etatt*Cp*T01*(1 - (P03/P01)^0.2498))^0.5
22 disp("Impeller tip speed, U2 = 539.45 \text{ m/s}")
23 disp("The Mach number of the absolute flow velocity
      at nozzle exit is given by")
24 \operatorname{disp}("M = C1/a1 = U1/alpha1 * \sin(alpha1)")
25 disp ("Since the flow is adiabatic across the nozzle,
       we have")
   disp("T01 = T02 = T2 + C2^2/2Cp = T2 + U2^2/2Cp(sin(
      alpha2))^2")
  disp(" or T2/T01 = 1 - U2^2/2CpT01(sin(alpha2))^2;
      but Cp = gamma*R/(gamma - 1)")
   disp("Therefore; T2/T01 = 1 - U2^2*(gamma - 1)/(2
      \operatorname{gammaRT01}(\sin(\operatorname{alpha2}))^2")
29 disp(" = 1 - U2^2*(gammaa-1)/(2*a01^2 * (sin(alpha2)))
      ))^2)")
```

Scilab code Exa 7.12 Rotation 30500rpm

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp ("Turbomachinery Design and Theory, Rama S. R.
      Gorla and Aijaz A. Khan, Chapter 7, Example 12")
8 disp("Dimensionless specific speed is")
9 disp("Ns = 0.336*(C3/C0)^0.5*(A3/Ad)^0.5
                                               in rev")
10 disp("A3 and Ad are in m2")
11 D3t = 0.064; //m
12 D3h = 0.026; //m
13 \text{ A3} = \%pi*(D3t^2 - D3h^2)/4
14 D2 = 0.092; //m
15 \text{ Ad} = \text{\%pi*D2^2/4}
16 disp ("Dimensionless specific speed Ns in rev and Nsa
       in rad")
17 Ns = 0.336*(0.447*A3/Ad)^0.5/rev
18 \text{ Nsa} = 0.904
19 disp ("The flow rate at outlet for the ideal turbine
      is given by Q3 in m3/s")
```

```
20 disp("Ns = 0.18*(Q3/(N*D2^3))^0.5")
21 N = 30500;
22 Q = (Ns/0.18)^2*N*D2^3/60
23 disp("The power developed by the turbine is given by in kW")
24 disp("W = m*U3^2")
25 disp(" = rho3*Q3*U3^2")
26 rho3 = 1.75; //kg/m3
27 Wt = rho3*Q*(%pi*N*D2/60)^2 /1000
```

Chapter 8

Cavitation in Hydraulic Machinery

Scilab code Exa 8.0 Theory

```
1 // Display mode
2 mode(0);
3 // Display warning for floating point exception
4 ieee(1);
5 clear;
6 clc;
7 disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 8")
8 disp("Cavitation in Hydraulic Machinery")
9 disp("Just Theory No Solved/Unsolved Examples")
```