CSC 212: Data Structures and Abstractions

16: Binary Search Trees II

Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island

Fall 2017

Remove

- Case 1: node is a leaf
 - √ trivial, delete node and set parent's pointer to NULL
- Case 2: node has 1 child
 - ✓ trivial, set parent's pointer to the only child and delete node
- Case 3: node has 2 children
 - √ find successor

can also use predecessor

- √ copy successor's data to node
- ✓ delete successor

2

20 40 60 80 25 75 21 27 27? 40? 80? 20? 30? 50?

Traversals

- · Preorder traversal
- [,] Inorder traversal

0(n)

Postorder traversal

How to destroy a binary tree?

How to print all elements in increasing order?

Analysis

Average-case analysis

- If **n distinct keys** are inserted into a BST in random order, expected number of compares for basic operations is ~2 ln n ~= 1.39 log n
 - ✓ **proof**: 1-1 correspondence with quick-sort partitioning

 $= 0(\log n)$

The Height of a Random Binary Search Tree

Expected height: ~4.311 ln n ~= 2.99 log n

BRUCE REED

McGill University, Montreal Quebec, Canada and CNRS, Paris, France

Abstract. Let H_n be the height of a random binary search tree on n nodes. We show that there exist constants $\alpha = 4.311 \cdots$ and $\beta = 1.953 \cdots$ such that $\mathbb{E}(H_n) = \alpha \ln n - \beta \ln \ln n + O(1)$. We also show that $Var(H_n) = O(1)$.

Categories and Subject Descriptors: E.1 [Data Structures]: trees; G.2 [Discrete Mathematics]; G.3 [Probability and Statistics]

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Binary search tree, height, probabilistic analysis, random tree, asymptotics, second moment method

N = 255max = 16avg = 9.1opt = 7.0https://algs4.cs.princeton.edu/lectures/32BinarySearchTrees.pdf

Collections/Dictionaries as arrays

	What?	Sequential (unordered)	Binary Search (ordered)	BST
search	search for a key	0(n)	O(log n)	0(h)
insert	insert a key	0(n)	0(n)	0(h)
delete	delete a key	0(n)	0(n)	0(h)
min/max	smallest/largest key	0(n)	0(1)	0(h)
floor/ ceiling	predecessor/ successor	0(n)	O(log n)	0(h)
rank	number of keys less than key	0(n)	O(log n)	0(h)**

(**) requires the use of 'size' at every node

Can we create a sorting algorithm using BSTs?

Worst-case?

Best-case?

Average-case?

7