SMART TALK

GROUP 1

- Joheon CP, 4
- Nitha Backer, 17
- Parvathy Venugopalan, 18
- Paul Sabu, 19

INTRODUCTION

- Smart Talk for Sign language Translation is a work that aims to present an easy way of communication for speech-impaired and hearing-impaired people.
- Work consists of a glove equipped with sensors that sense different sign language gestures.
- This data is fed to ESP32 which is then transferred to a smartphone/laptop via Wi-Fi, and the data is further processed.

BLOCK DIAGRAM

CIRCUIT DIAGRAM

Vin For ESP32

Flex Sensor Act as Variable Resistor

EXPLANATION

- SmartTalk Gloves consist of 3 flex sensor (Analog Sensors) that
 is used to measure the bending of fingers, it is connected to the
 microcontroller unit as a voltage divider circuit with 10k
 resistor.
- The output of the three voltage divider circuit with the 10k resistor and flex sensor is connected to GPIO-32, GPIO-33, and GPIO-34 of microcontroller unit ESP32 to read analog values from flex sensors.

EXPLANATION

 ESP 32 is programmed in VS Code to work as an access point (maximum 4 devices can be connected) and wifi client, the sensor values are converted into webpage data and they are pushed to the webpage.

EXPLANATION

- An Android app is designed in MIT app inventor and implemented to read data from the webpage, displayed as text and text is converted to speech in the interactive app.
- User can connect to SmartTalk gloves via wifi in mobile phone and can see text in any web-browser with web Url (http://192.168.4.1) or Android users can use the SmartTalk app to view text and hear text content.

REQUIREMENTS

HARDWARE

- ESP32
- Flex sensor
- Power bank module
- Battery
- Wires
- Gloves
- Zero pcb
- Berg pin male, female
- Jumper Cap
- Resistor -10k

SOFTWARE

- VS Code
- MIT App Inventor

ESP32

- ESP32 is a series of a low-cost, low-power systems on a chip microcontroller with integrated Wi-Fi and dual-mode Bluetooth.
- The ESP32 series employs a Tensilica Xtensa LX6
 microprocessor in both dual-core and single-core variations
 and includes built-in antenna switches, RF balun, power
 amplifier, low-noise receive amplifier, filters, and power
 management modules.

ESP32

Tensilica Xtensa 32-bit LX6 microprocessor with 2 cores

Power supply: 2.3V – 3.6V

Operating temperature range: -40°C - 125°C

External flash memory: up to 16 MB is supported

Interfaces

UART/SDIO/SPI/I2C/I2S/IR Remote Control

36 programmable I/O pins max 20mA

2 analog input 0V to 1V with 12 bit resolution

All inputs tolerate maximum 3.6V

FLEX SENSORS

- A flex sensor or bend sensor is a sensor that measures the amount of deflection or bending. Usually, the sensor is stuck to the surface, and the resistance of the sensor element is varied by bending the surface.
- Since the resistance is directly proportional to the amount of bend it is used as a goniometer, and often called a flexible potentiometer.
- Flex sensors are usually available in two sizes. One is 2.2 inches and another is 4.5 inches.

POWERBANK MODULE

- The power bank module comes with a protection function: overcharge protection, over-discharge protection, overcurrent protection.
- These intelligent output devices after charging full, automatically stop charging, to prevent overcharge.
- They also have temperature control and over-temperature protection.USB Output: 5V/1A.

MIT APP INVENTOR

- MIT App Inventor is a web application integrated development environment originally provided by Google and now maintained by the Massachusetts Institute of Technology (MIT). It consists of:-
- App inventor designer where we design the App's User Interface by arranging both on and off screen components.
- App inventor Blocks Editor Where we assemble the program blocks that specify how the components you select should behave.

VS CODE

- Visual Studio Code is a free source-code editor made by Microsoft for Windows, Linux, and macOS. Features include support for debugging, syntax highlighting, intelligent code completion, snippets, code refactoring, and embedded Git.
- Users can change the theme, keyboard shortcuts, preferences, and install extensions that add additional functionality.

PICTURES

RESULT

 Through ESP32 hand gestures were recognized and output is obtained. The project is successfully completed.

CONCLUSION

- Smart talk is a system for speech impaired and hearing impaired people using glove technology and enables normal people to communicate with them.
- This can also help in bridging the communication gap between a blind and a mute person. The project can be enhanced further by including more words and different standard sign language.

REFERENCES

- K. Gunasekaran and R Manikandan, "Sign Language to Speech Translation System Using PIC Microcontroller" International Journal of Engineering and Technology, Vol. 5, pp. 1024-1028, May 2013.
- P. Verma, S.L. Shimi and S. Chatterji, "Design of Smart Gloves", International Journal of Engineering Research & Technology, Vol. 3, pp. 210-214, November 2014.

