# Genome-wide association study using GAPIT



**Genomic Association and Prediction Integrated Tool** 

(Version 3)

Ruijuan Tan
Thompson Lab
Department of Plant, Soil, and Microbial Sciences

# Genome-Wide Association Study (GWAS)



An observational study of a genome-wide set of genetic variants (SNPs) in different individuals to see if any variant is associated with a trait.

#### Pros and Cons of GWAS



Zhu et al., 2008. The Plant Genome

#### Pros

- No need to create population
- Take advantage of historical recombination
- Higher resolution
- Wider application

#### **Cons**

- Low power for rare alleles
- Cannot account for epistasis

#### **GAPIT** introduction

- ❖GAPIT: developed by Zhiwu Zhang lab at Washington State University
- Operated in R environment, rely on several R libraries
- Uses a minimal amount of code

Several statistical methods included



(Version 3)

# GAPIT input file - Genotype

|             |         |       |         |        |          |        |          |           |          |        | 1     |       |      |      |      |       |      |      |        |
|-------------|---------|-------|---------|--------|----------|--------|----------|-----------|----------|--------|-------|-------|------|------|------|-------|------|------|--------|
| rs          | alleles | chrom | pos     | strand | assembly | center | protLSID | assayLSID | panel    | QCcode | 33-16 | 38-11 | 4226 | 4722 | A188 | A214N | A239 | A272 | A441-5 |
| PZB00859.1  | A/C     | 1     | 157104  | +      | AGPv1    | Panzea | NA       | NA        | maize282 | NA     | CC    | CC    | CC   | CC   | AA   | CC    | AA   | AA   | CC     |
| PZA01271.1  | C/G     | 1     | 1947984 | +      | AGPv1    | Panzea | NA       | NA        | maize282 | NA     | CC    | GG    | CC   | GG   | cc   | CC    | CC   | cc   | CC     |
| PZA03613.2  | G/T     | 1     | 2914066 | +      | AGPv1    | Panzea | NA       | NA        | maize282 | NA     | GG    | GG    | GG   | GG   | GG   | TT    | TT   | TT   | GG     |
| PZA03613.1  | A/T     | 1     | 2914171 | +      | AGPv1    | Panzea | NA       | NA        | maize282 | NA     | TT    | TT    | TT   | TT   | TT   | AA    | TT   | TT   | TT     |
| PZA03614.2  | A/G     | 1     | 2915078 | +      | AGPv1    | Panzea | NA       | NA        | maize282 | NA     | GG    | GG    | GG   | GG   | GG   | GG    | AA   | AA   | GG     |
| PZA03614.1  | A/T     | 1     | 2915242 | +      | AGPv1    | Panzea | NA       | NA        | maize282 | NA     | TT    | TT    | TT   | TT   | TT   | AA    | AA   | AA   | TT     |
| PZA00258.3  | C/G     | 1     | 2973508 | +      | AGPv1    | Panzea | NA       | NA        | maize282 | NA     | GG    | CC    | CC   | CG   | CC   | CC    | CC   | GG   | CC     |
| PZA02962.13 | A/T     | 1     | 3205252 | +      | AGPv1    | Panzea | NA       | NA        | maize282 | NA     | TT    | TT    | TT   | TT   | TT   | TT    | TT   | TT   | TT     |
| PZA02962.14 | C/G     | 1     | 3205262 | +      | AGPv1    | Panzea | NA       | NA        | maize282 | NA     | CC    | CC    | CC   | CC   | CC   | CC    | CC   | CC   | CC     |

required

SNP attributes

| Genotype | AA | CC | GG | П | AG | СТ | CG | AT | GT | AC |
|----------|----|----|----|---|----|----|----|----|----|----|
| Code     | Α  | С  | G  | Т | R  | Υ  | S  | W  | K  | M  |

# GAPIT input file - Phenotype

| Taxa ‡ | EarHT ‡ | dpoll ‡ | EarDia ÷ |
|--------|---------|---------|----------|
| 811    | 59.50   | NaN     | NaN      |
| 4226   | 65.50   | 59.5    | 32.21933 |
| 4722   | 81.13   | 71.5    | 32,42100 |
| 33-16  | 64.75   | 64.5    | NaN      |
| 38-11  | 92.25   | 68.5    | 37.89700 |
| A188   | 27.50   | 62.0    | 31.41900 |
| A214N  | 65.00   | 69.0    | 32.00600 |
| A239   | 47.88   | 61.0    | 36.06400 |
| A272   | 35.63   | 70.0    | NaN      |
| A441-5 | 53.50   | 67.5    | 35.00800 |
| A554   | 38.50   | 66.0    | 33.41775 |
| A556   | 28.00   | 65.0    | 31.92900 |
| A6     | 109.50  | 80.5    | 31.51750 |
| A619   | 36.00   | 61.0    | 40.63000 |
| A632   | 60.00   | 61.0    | 35.95300 |

#### GAPIT – Statistical methods

GLM (General Linear Model)

test marker-trait association individually

MLM (Mixed Linear Model)

include individual as random effects, population structure and kinship as fixed effects.

MLMM (Multiple Locus Mixed linear Model)

forward-backward stepwise linear mixed-model regression significant SNP is added into model as co-factor to detect other S

• FarmCPU (Fixed and random model circulating probability uni designed for GWAS on large data address confounding problem between covariates and test marke can control both false positive and false negative.



#### Get started

- 1. Create a new folder named "R-GAPIT" on your desktop
- 2. Save "mdp\_genotype\_test.hmp.txt" and "mdp\_traits.txt" to "R-GAPIT" folder
- 3. Open R studio go to session set working directory –choose directory navigate to "R-GAPIT"
- 4. Run R code (see next page)

#### Install and load required libraries

```
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("multtest")
install.packages("gplots")
install.packages("LDheatmap")
install.packages("genetics")
install.packages("ape")
install.packages("EMMREML")
install.packages("scatterplot3d")
library(multtest)
library(gplots)
library(LDheatmap)
library(genetics)
library(ape)
library(EMMREML)
library(compiler) #this library is already installed in R
library("scatterplot3d")
source("http://zzlab.net/GAPIT/gapit functions.txt")
source("http://zzlab.net/GAPIT/emma.txt")
```

#### Load in data and run analysis

```
geno_demo <- read.delim("mdp_genotype_test.hmp.txt",header = FALSE)
dim(geno_demo)
View(geno_demo[1:10,1:20])
pheno_demo <- read.delim("mdp_traits.txt",header = TRUE)
dim(pheno_demo)
View(pheno_demo[1:15,])

#run GAPIT
myGAPIT <- GAPIT(
    Y=pheno_demo,
    G=geno_demo,
    PCA.total = 3,
    model = c(""GLM,"MLM","MLMM","FarmCPU")
)</pre>
```

#### GAPIT.MLM.EarDia.GWAS.Results.csv

| SNP         | Chromosome | Position  | P.value  | maf      | nobs | Rsquare. of. Model. without. SNP | Rsquare.of.Model.with.SNP | FDR_Adjusted_P-values | effect   |
|-------------|------------|-----------|----------|----------|------|----------------------------------|---------------------------|-----------------------|----------|
| PZA00453.7  | 4          | 166281276 | 0.000185 | 0.104418 | 249  | 0.249775477                      | 0.293916878               | 0.537324968           | 1.636501 |
| PZB01915.1  | 1          | 9029842   | 0.000347 | 0.212851 | 249  | 0.249775477                      | 0.290087127               | 0.537324968           | 1.184324 |
| PZB00237.2  | 1          | 240501065 | 0.000832 | 0.080321 | 249  | 0.249775477                      | 0.284839401               | 0.545540086           | 1.681858 |
| PZA03379.2  | 4          | 167650309 | 0.000935 | 0.028112 | 249  | 0.249775477                      | 0.284147776               | 0.545540086           | 3.377588 |
| PZA03186.1  | 5          | 5476347   | 0.001156 | 0.086345 | 249  | 0.249775477                      | 0.282890765               | 0.545540086           | -1.47772 |
| PZA00396.10 | 2          | 4679610   | 0.001672 | 0.375502 | 249  | 0.249775477                      | 0.280709757               | 0.545540086           | 1.031925 |
| PZA00280.14 | 2          | 62870552  | 0.001675 | 0.024096 | 249  | 0.249775477                      | 0.280700103               | 0.545540086           | 3.04718  |
| PZB00063.2  | 1          | 268373269 | 0.001922 | 0.13253  | 249  | 0.249775477                      | 0.279892492               | 0.545540086           | 1.29007  |
| PZA00186.2  | 3          | 165800369 | 0.002123 | 0.353414 | 249  | 0.249775477                      | 0.27931134                | 0.545540086           | 0.923693 |
| PZA02808.12 | 2          | 44606596  | 0.002267 | 0.064257 | 249  | 0.249775477                      | 0.278925792               | 0.545540086           | -1.52639 |
| PZA00210.6  | 3          | 29693448  | 0.002309 | 0.022088 | 249  | 0.249775477                      | 0.278818933               | 0.545540086           | 2.79886  |
| PZD00098.2  | 1          | 23267835  | 0.002311 | 0.11245  | 249  | 0.249775477                      | 0.27881422                | 0.545540086           | -1.31213 |
| PZB02516.2  | 3          | 193566873 | 0.002464 | 0.184739 | 249  | 0.249775477                      | 0.278440517               | 0.545540086           | 1.106617 |

#### GAPIT.FarmCPU.EarDia.GWAS.Results.csv

| SNP        | Chromosome | Position  | P.value    | maf       | nobs | Rsquare.of.Model.without.SNP | Rsquare.of.Model.with.SNP | FDR_Adjusted_P-values | effect   |
|------------|------------|-----------|------------|-----------|------|------------------------------|---------------------------|-----------------------|----------|
| PZB00237.2 | 1          | 240501065 | 8.89E-07   | 0.078853  | 279  | NA                           | NA                        | 0.002749854           | 1.828343 |
| PZB01230.5 | 2          | 39040780  | 1.05E-05   | 0.1541219 | 279  | NA                           | NA                        | 0.01403432            | 1.025081 |
| PZA00714.6 | 1          | 74580051  | 1.77E-05   | 0.1666667 | 279  | NA                           | NA                        | 0.01403432            | 1.064631 |
| PZA00942.2 | 6          | 102566000 | 1.81E-05   | 0.2867384 | 279  | NA                           | NA                        | 0.01403432            | 0.952351 |
| PZA00793.2 | 8          | 64421988  | 2.65E-05   | 0.437276  | 279  | NA                           | NA                        | 0.014538246           | 0.729054 |
| PZA00442.3 | 2          | 63547199  | 2.82E-05   | 0.3602151 | 279  | NA                           | NA                        | 0.014538246           | -0.75982 |
| PZB02035.3 | 2          | 27403594  | 3.32E-05   | 0.2598566 | 279  | NA                           | NA                        | 0.014684549           | -0.79974 |
| PZB00093.2 | 4          | 122796082 | 4.56E-05   | 0.2401434 | 279  | NA                           | NA                        | 0.017612683           | 0.863066 |
| PZB02516.2 | 3          | 193566873 | 0.00015972 | 0.1756272 | 279  | NA                           | NA                        | 0.05453162            | 0.83783  |
| PZA00339.3 | 1          | 260297200 | 0.00017631 | 0.3476703 | 279  | NA                           | NA                        | 0.05453162            | 0.709649 |
| PZA03559.1 | 2          | 15810363  | 0.00025675 | 0.4265233 | 279  | NA                           | NA                        | 0.072193836           | 0.615314 |





















#phenotype histogram
MVP.Hist(phe=pheno\_demo,file.type = "jpg",breakNum = 10,dpi = 300)





```
#SNP density geno_mvp <- read.delim("mdp_genotype_test.hmp.txt",header = TRUE) MVP.Report(geno_mvp[, c(1,3,4)], plot.type="d", col=c("darkgreen", "yellow", "red"), file.type="jpg", dpi=300)
```





Dia\_MLMM <- read.csv("GAPIT.MLMM.EarDia.GWAS.Results.csv",header = TRUE) colnames(Dia MLMM)[4] <- c("Dia MLM")

Dia\_FarmCPU <- read.csv("GAPIT.FarmCPU.EarDia.GWAS.Results.csv",header = TRUE) colnames(Dia FarmCPU)[4] <- c("Dia FarmCPU")

Dia <- merge(Dia\_MLMM[,1:4], Dia\_FarmCPU[,c(1,4)], by="SNP")%>%arrange(Chromosome)

MVP.Report(Dia, plot.type="m", multracks=TRUE, threshold=c(1e-6,1e-4),threshold.lty=c(1,2),

threshold.lwd=c(1,1), threshold.col=c("black","grey"), amplify=TRUE,bin.size=1e6,

chr.den.col=c("darkgreen", "yellow", "red"), signal.col=c("red","green"),signal.cex=c(1,1),

file.type="jpg",memo="",dpi=300)







MVP.Report(Dia,plot.type="q",col=c("dodgerblue1", "olivedrab3", "darkgoldenrod1"),threshold=1e6, signal.pch=19,signal.cex=1.5,signal.col="red",box=FALSE,multracks=
TRUE,file.type="jpg",memo="",dpi=300)