Data Structures

Course Overview

Instructor

Dr. Yasser Abdelhamid

Course Objectives

- To identify the different data structures including lists, linked lists, stacks, queues, trees, graphs and hash tables.
- To learn how the choice of data structure affects program performance.
- To study the relevant algorithms needed to handle different types of data structures.
- To learn how to estimate the complexity of different algorithms.
- To specify and implement various useful abstract data types (ADTs).

Grading

- 50 marks for final exam
- 20 marks for midterm exam
- 30 for coursework (quizzes)

Textbooks

http://people.cs.vt.edu/~shaffer/Book/

Data Structures Algorithm Analysis in Clifford A. Shaffer

The most recent version is Edition 3.2.0.10, dated March 28, 2013.

What is an algorithm?

- Definition (from Wikipedia)
- " ...a finite set of operations for accomplishing some task, given an initial state, will terminate in a corresponding recognizable end-state"

What is an algorithm?

- With reference to Computer programs, an algorithm is a sequence of instructions that solves a given problem
 - Operates on data
 - Receives input values
 - Generates output values
 - Terminate after finite number of steps

What is an algorithm?

The term "algorithm" comes from Al-Khwarizmi, a Persian mathematician of the IX century.

Why algorithms are important?

Practical Reasons

We need efficient algorithms for solving most practical problems.

Technological Reasons

Algorithms can be implemented as programs on computers

Example of Algorithms

Sorting a set of objects...

Example of Algorithms

Finding an item in a set of objects...

Example of Algorithms

Finding the shortest path between two destinations ...

Data Structures

Programs = Algorithms + Data structures

Data Structure is mainly concerned with finding the best representation or organization of data. In the memory that leads to efficient processing

Data Structures

Programs = Algorithms + Data structures

Choice of data structure can affect the efficiency of an algorithm

e.g., accessing an element in a list.

Analysis of an Algorithm

Analysis of an algorithm

- It is extremely important to determine the expected resources required by an algorithm.
 - Execution Time
 - Amount of Memory
 - Other resources (disk usage, communication ports, software resources, etc.)

Analysis of an algorithm

- Parameters affecting the analysis are:
 - The size of the input.
 - Input values
 - Other (execution model.....)

Algorithm performance

- Of primary consideration when estimating an algorithm's performance is the number of basic operations required by the algorithm to process an input of a certain size.
- Size is often the number of inputs processed.
- A basic operation must have the property that its time to complete does not depend on the particular values of its operands.
- Adding or comparing two integer variables are examples of basic operations in most programming languages.

Example 1

- The size of the problem is A.length
- The basic operation is to compare an integer's value to that of the largest value seen so far.
- It is reasonable to assume that it takes a fixed amount of time to do one such comparison, regardless of the value of the two integers or their positions in the array.

```
/** @return Position of largest value in array A */
static int largest(int[] A) {
  int currlarge = 0; // Holds largest element position
  for (int i=1; i<A.length; i++) // For each element
    if (A[currlarge] < A[i]) // if A[i] is larger
        currlarge = i; // remember its position
  return currlarge; // Return largest position
}</pre>
```

Example 1

- Let n be the number of elements of the array.
- Let c be a constant time that is required to make a comparison operation which is our basic operation in this algorithm.
- Let T be the time required to run the algorithm, and we refer to this time by the function T(n).
- We will always assume T(n) is a non-negative value.
- The total time to run the algorithm is therefore approximately c*n, i.e. cn.

$$T(n) = cn$$

Example 2

- The running time of a statement that assigns
 the first value of an integer array to a variable
 is simply the time required to copy the value of
 the first array value.
- Let this constant time be c1.
- then T(n) = c1

Example3: Comparing Algorithm Efficiency

 Consider the following three Algorithms for computing 1+2+...+n, n > 0

Algorithm A	
sum = 0	
for i = 1 to n	
sum = sum +i	

Example: Comparing Algorithm Efficiency

 Consider the following three Algorithms for computing 1+2+...+n, n > 0

Algorithm A	Algorithm B	
sum = 0	sum = 0	
for i =1 to n	for i = 1 to n	
sum = sum +i	{for j =n to i	
	sum = sum +1 }	

Example: Comparing Algorithm Efficiency

 Consider the following three Algorithms for computing 1+2+...+n, n > 0

Algorithm A	Algorithm B	Algorithm C
sum = 0	sum = 0	sum = n * (n + 1)/2
for i =1 to n	for i = 1 to n	
sum = sum +i	{for j =n to i	
	sum = sum +1 }	

Example: Comparing Algorithm Efficiency

 Consider the following three Algorithms for computing 1+2+...+n, n > 0

Algorithm A	Algorithm B	Algorithm C
sum = 0	sum = 0	sum = n * (n +1)/ 2
for i =1 to n	for i = 1 to n	
sum = sum +i	{for j =n to i	
	sum = sum +1 }	

The number of operations required in each algorithm is

	Alg. A	Alg. B	Alg. C
Assignments	n +1	1 + n (n +1)/2	1
Additions	n	n (n+1)/2	1
Multiplications			1
Divisions			1
Total	2 n +1	n^2 + n +1	4

Complexity analysis: Definitions

Complexity = cost in terms of

- Execution time T(n) "Time Complexity" refers to the amount of time needed to solve a problem instance
- Required Storage S(n) "Space Complexity" refers to the amount of memory needed to solve a problem instance

n is the size of the input

Example: For a sorting

algorithm

n is the number of elements in the set

Complexity analysis: Assumptions

 Complexity analysis Must be independent of the type of computer.

Asymptotic complexity

We are interested in values of $n \rightarrow \infty$

Rate of Growth

Time Complexity	Name	Example
1	Constant	Adding an element to the front of a linked list
log n	Logarithmic	Finding an element in a sorted array
n	Linear	Finding an element in a unsorted array
nlog n	Linear Logarithmic	Sorting n items by 'Divide and Conquer'
n ²	Quadratic	Shortest path between 2 nodes in a graph
n ³	Cubic	Matrix Multiplication
2 ⁿ	Exponential	The Towers of Hanoi problem

Rate of Growth

	constant	logarithmic	linear	N-log-N	quadratic	cubic	exponential
n	O(1)	O(log n)	O(n)	O(n log n)	$O(n^2)$	O(n ³)	O(2 ⁿ)
1	1	1	1	1	1	1	2
2	1	1	2	2	4	8	4
4	1	2	4	8	16	64	16
8	1	3	8	24	64	512	256
16	1	4	16	64	256	4,096	65536
32	1	5	32	160	1,024	32,768	4,294,967,296
64	1	6	64	384	4,069	262,144	1.84 x 10 ¹⁹

Seven functions used in analysis of algorithms

Complexity analysis and algorithms

Evaluation of the efficiency of algorithms is essential!

Not Just algorithms ...

But efficient algorithms ...

Asymptotic notation

Asymptotic notation

- Three standard notations: \mathbf{O} , Ω , θ
- \mathbf{O} , Ω provides a loose bound (upper and lower respectively)
- θ Provides a tight bound.

•O, Ω , θ identify classes of functions

Notation: T(n)=f(n)=O(g(n))

O Notation ("Big-O")

Definition

$$f(n)=O(g(n))$$
 if $c>0$ and $n_0\geq 0$ such that $f(n)\leq c.g(n) \ \forall \ n\geq n_0$

O Notation ("Big-O")

 The O notation does not always provide a tight bound

Example: $f(n)=O(n^2)$

After some value of n, f(n) is bounded by n^2 but f(n) is bounded also by $O(n^3)$.

Objective: is to find the tightest upper bound

Ω Notation ("Big-omega")

Definition

 $f(n)=\Omega(g(n))$ if c>0 and $n_0\geq 0$ such that $f(n)\geq c.g(n) \ \forall \ n\geq n_0$

Otation ("Big-Theta")

Definition

 $f(n)=\theta(g(n))$ if c_1 , $c_2>0$ and $n_0\geq 0$ such that $c_1.g(n)\leq f(n)\leq c_2.g(n)$ \forall $n\geq n_0$

⊕ Notation ("Big-Theta")

• $f(n) = \theta(g(n))$ then it must hold that

$$f(n)=O(g(n))$$

And

$$f(n)=\Omega(g(n))$$

Asymptotic notation: summary

O provides a loose upper bound

Ω provides a loose lower bound

θ provides a tight bound

• <u>Example 1</u>:

Prove that T(n)=3n+2 is an element of O(n)

<u>solution</u>

To get T(n) = O(n), we need to verify that $T(n) \le c.n$ At c=4 and n_0 = 2. T(n)=3n+2 $\le 4.n$ for $n_0 \ge 2$

• Example 2:

Prove that T(n)=3n+2 is an element of $\Omega(n)$

<u>solution</u>

To get $T(n) = \Omega(n)$, we need to verify that $T(n) \ge c.n$ At c=3 and n_0 = 1. T(n)=3n+2 \ge 3.n for n_0 .

• Example 3:

Prove that T(n)=3n+2 is an element of $\theta(n)$

<u>solution</u>

To get $T(n) = \theta(n)$, we need to verify that $c_1.n \le T(n) \le c_2.n$

At $c_1=3$, $c_2=4$, $n_0 \ge 2$, $3n \le 3n+2 \le 4n \text{ for } \forall \ n_0 \ge 2.$

• Example 4: $T(n) = 10n^2 + 4n + 2$, $T(n) = O(n^2)$?

Solution, YES

To get $T(n) = O(n^2)$, we need to verify that $T(n) \le c.n^2$

At c=11 and n_0 = 5. **T(n)= 10n²+4n +2** \leq **11n** for $n_0 \geq 5$

• Example 5: $T(n) = 10n^2 + 4n + 2$, $T(n) = \Omega(n^2)$?

Solution, YES

To get $T(n) = \Omega(n^2)$, we need to verify that

$$T(n) \ge c.n^2$$

At c=1 and n_0 = 1. **T(n)= 10n²+4n +2** \geq **1n** for \forall n_0

• Example 6: $T(n) = 10n^2 + 4n + 2$, $T(n) = \theta(n^2)$?

Solution, YES

To get $T(n) = \theta(n^2)$, we need to verify that $c_1.n^2 \le T(n) \le c_2.n^2$

At $c_1=5$, $c_2=12$, $n_0=2$,

 $5n^2 \le 10n^2 + 4n + 2 \le 12n^2 \text{ for } \forall n_0 \ge 2.$

Example 7:

- Show that f(n)=3n²+20
 has O(n²)
 - We need to find two real numbers n₀>0 and c>0 where the inequality 0≤ 3n²+20 ≤cn² is fulfilled
 - Let $n_0=5$ and c=4
 - → 0≤ 3n²+20 ≤4n²
 - → $3n^2+20 \in O(n^2)$

$$T(n)=1+(n+1)+n+1$$

=2n+3

Example 8:

• What is the Big-Oh of multiplying two arrays of size n? =O(n)

```
Algorithm multiply (x[], y[], n)
sum ← 0;
for (i=0; i<n; i++)
sum ← sum +x[i]*y[i];
return sum;</pre>
```

• <u>Transitivity</u>

$$f(n)=\theta(g(n))$$
 and $g(n)=\theta(h(n))$

Then

$$f(n) = \theta(h(n))$$

• <u>Transitivity</u>

$$f(n)=O(g(n))$$
 and $g(n)=O(h(n))$

Then

$$f(n) = O(h(n))$$

• <u>Transitivity</u>

$$f(n)=\Omega(g(n))$$
 and $g(n)=\Omega(h(n))$

Then

$$f(n) = \Omega(h(n))$$

Symmetry

$$f(n) = \theta(g(n)) \iff g(n) = \theta(f(n))$$

Transpose Symmetry

$$f(n)=O(g(n)) \Rightarrow g(n)=\Omega(f(n))$$

Reflexivity

$$f(n) = \frac{\theta}{\theta}(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

Sum and Maximum

$$f_1(n)+f_2(n)+...+f_m(n)$$

$$\downarrow \downarrow$$

$$\Theta(\max(f_1(n)+f_2(n)+...+f_m(n)))$$

Example:

$$3n^2+n+7 = \theta(3n^2) = \theta(n^2)$$

Example

- Assume the actual time complexity of an algorithm is T(n) = 3n²+8n+10, what is the approximate time complexity of that algorithm?
 - Since T(n) is getting bigger (i.e. monotonically increasing) by increasing the problem size n, we can study the contribution of each term; 3n², 8n, and 10, on the increase of T(n)

As problem size n increases, the contribution of 3n² term increases and other terms decrease!

n	3*n^2	8*n	10	T(n)	C(3n^2)	C(8n)	C(10)
1	3	8	10	21	14.29%	38.10%	47.62%
5	75	40	10	126	59.52%	31.75%	8.73%
10	300	80	10	392	76.53%	20.41%	3.06%
15	675	120	10	808	83.54%	14.85%	1.61%
20	1200	160	10	1374	87.34%	11.64%	1.02%
25	1875	200	10	2090	89.71%	9.57%	0.72%
30	2700	240	10	2956	91.34%	8.12%	0.54%
35	3675	280	10	3972	92.52%	7.05%	0.43%
40	4800	320	10	5138	93.42%	6.23%	0.35%
45	6075	360	10	6454	94.13%	5.58%	0.29%
50	7500	400	10	7920	94.70%	5.05%	0.25%
55	9075	440	10	9536	95.17%	4.61%	0.22%
60	10800	480	10	11302	95.56%	4.25%	0.19%
65	12675	520	10	13218	95.89%	3.93%	0.17%
70	14700	560	10	15284	96.18%	3.66%	0.16%
75	16875	600	10	17500	96.43%	3.43%	0.14%
80	19200	640	10	19866	96.65%	3.22%	0.13%
85	21675	680	10	22382	96.84%	3.04%	0.12%
90	24300	720	10	25048	97.01%	2.87%	0.11%
95	27075	760	10	27864	97.17%	2.73%	0.10%
100	30000	800	10	30830	97.31%	2.59%	0.10%

Observation:

As n→∞ the term 3n² dominates (i.e. approaches 100%) while the other terms decease (i.e. approaches 0%)

Conclusion:

- We can ignore the lower degree terms from the complexity function as n→∞
- This leads to the first approximation of the previous complexity function to T(n)≈3n²
- Now how about the coefficient 3?

If we ignore the coefficient of the highest degree term, it still dominates the other two terms as **n** is getting bigger

n	C(n^2)	C(8n)	C(10)
1	5.26%	42.11%	52.63%
5	32.89%	52.63%	14.47%
10	52.08%	41.67%	6.25%
15	62.85%	33.52%	3.63%
20	69.69%	27.87%	2.44%
25	74.40%	23.81%	1.79%
30	77.85%	20.76%	1.38%
35	80.49%	18.40%	1.12%
40	82.56%	16.51%	0.93%
45	84.23%	14.98%	0.79%
50	85.62%	13.70%	0.68%
55	86.78%	12.62%	0.60%
60	87.76%	11.70%	0.54%
65	88.61%	10.91%	0.48%
70	89.35%	10.21%	0.44%
75	90.00%	9.60%	0.40%
80	90.57%	9.06%	0.37%
85	91.09%	8.57%	0.34%
90	91.55%	8.14%	0.32%
95	91.96%	7.74%	0.30%
100	92.34%	7.39%	0.28%

Observation:

– Ignoring the coefficient of the highest degree term does not affect the contribution of that term on the growth of the complexity function T(n), i.e. it still dominates the other two terms as long as $n \rightarrow \infty$

Conclusion:

As n→∞ we can simply drop the coefficient of the highest degree term since it is still dominating the other terms in the complexity function and therefore T(n)≈n²

Example

• It is required to run **3** independent algorithms A1, A2, and A3 simultaneously in a parallel system with 3 processors, what is the overall complexity when A1 has $O(9n^3 + 4)$, A2 has $O(10n^2 + 3n + 2)$, and A3 has $O(2n^4 + n - 1)$?

Solution

 The overall complexity will biased to the algorithm A3 which has largest complexity.

i.e.,
$$T(n) = O(2n^4 + n - 1) = O(n^4)$$

Example - Find the time complexity?

```
Sum=0; \longrightarrow 1

for (i = 1; i < n; i++) \longrightarrow n-1+1=n

{

sum = sum +i;
}

System.out.println(sum); \longrightarrow 1
```

Then,
$$T(n)=1 + n + n - 1 + 1 = 2n + 1 = O(n)$$

Example - Find the time complexity?

```
for (i = 1; i < n; i++)
 P = i;
  Min = A[P];
 for (j = i+1; j <= n; j++)
         if (A[j] < Min)
            P = j;
           Min = A[P];
         A[P] = A[i];
         A[i] = Min;
```

Example - Find the time complexity?

```
n - 1 + 1 = n
for (i = 1; i < n; i++)_
                                  n-1
 P = i; ———
 Min = A[P]; _____
                                  n-1
                                       n-1
 for (j = i+1; j <n+1; j++)
                                      \sum n+1-(i+1)+1=A
       if (A[j] < Min)
                                         A-1
         P = j;
                                         A-1
          Min = A[P];
                                         A-1
```

•
$$A = \sum_{i=1}^{n-1} n + 1 - (i+1) + 1$$

•
$$A = \sum_{i=1}^{n-1} n - i + 1 = n + (n-1) + \cdots + 3 + 2$$

•
$$A = n + (n-1) + \dots + 3 + 2 = \frac{(n-1)}{2} [2 * 2 - (n-1-1) * 1] = \frac{(n-1)(n+2)}{2}$$

•
$$A = \frac{(n-1)(n+2)}{2} = \frac{n^2-4n-2}{2}$$

The Overall Complexity = T(n)

•
$$T(n) = n + (n-1) + (n-1) + A + (A-1) + (A-1) + (A-1) + (A-1)$$

•
$$T(n) = 3n - 2 + 4A - 3 = 3n + 4A - 5$$

•
$$T(n) = 3n + 4 * \frac{(n^2 - 4n - 2)}{2} - 5$$

•
$$T(n) = 3n + 2n^2 - 8n - 4 - 5$$

•
$$T(n) = 2n^2 - 5n - 9 \longrightarrow T(n) = O(n^2)$$

Series & Summations

Some useful series

Arithmetic series

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Geometric series

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + ... + x^{n} = \frac{x^{n+1} - 1}{x - 1} \quad (x \neq 1)$$

Special case (at x < 1)

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

Some useful series

Harmonic series

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$$

Other useful series

$$\sum_{k=1}^{n} k^{p} = 1^{p} + 2^{p} + ... + n^{p} \approx \frac{1}{p+1} n^{p+1}$$