딥러닝 기반 한국어 띄어쓰기 모델 Korean Word-Spacing

신재영 연구원

INDEX

- 1. Introduction
- 2. Word-Spacing Method
- 3. Korean Word-Spacing Model
- 4. Conclusion

1. Introduction

- 한국어는 띄어쓰기에 따라 문장의 의미와 뜻이 달라질 수 있어 띄어쓰기 교정이 매우 중요 ex) 아버지가방에들어가신다
- AI 챗봇 학습 데이터 구축 과정에서 띄어쓰기가 중요 ex) 대우조선해양 PINBOT 프로젝트
- 최근 자연어처리에서 딥러닝 모델 및 라이브러리에 대한 연구가 활발히 진행 중
 ex) 한글 및 한국어 정보처리 학술대회 논문집
- 딥러닝 기반의 한국어 띄어쓰기 주요 모델을 소개하고 비교 분석하여 자연어처리 관련 프로젝트에 적용하고자 함

1. Introduction

■ 음절 vs 어절

- 음절: 한 번에 소리 낼 수 있는 소리마디이며 의미와 전혀 관계가 없는 음성학적 문법 단위

- 어절: 한 단어 및 그 이상의 이어진 단어들에 의하여 이루어진 문법단위. 문장단위

아버지가 방에 들어가신다 → 3어절

아버지가방에들어가신다 11음절

음절 vs 어절

2. Word-Spacing Method

띄어쓰기 방법론

- 규칙 기반 방법
- 언어학적 자원을 요구하며 어휘 지식, 사전정보를 이용한 휴리스틱을 적용하는 방식
- 미등록어에 취약하고, 규칙의 작성 및 유지가 힘들다는 한계
- ex) 형태소 분석

아버지	가	늉	에	들어가신다
Noun	Josa	Noun	Josa	Verb

형태소 분석 예시

2. Word-Spacing Method

띄어쓰기 방법론

- 통계 기반 방법
- 대규모 말뭉치로부터 확률 및 통계 정보를 이용하여 어절의 경계에 공백을 삽입하는 형태
- 미등록어 문제에 대해 어느 정도 해결 가능하나 대량의 데이터가 필요
- ex) CRF
- CRF(Conditional Random Field)
- 주어진 입력 데이터 열에 대하여 레이블 열의 확률을 이용하는 조건부 확률 모델
- 입력 데이터 열에 레이블 열을 부여하는 문제에 적합 -> Sequence Labeling Task ex) 순차적 레이블링(Sequence Labeling) : 입력 $X=[x_1,\ x_2,\ x_3,...\ ,\ x_n]$ 에 대하여 레이블 $y=[y_1,\ y_2,\ y_3,...\ ,\ y_n]$ 부여
- BIO 태그를 적용 -> B(Begin), I(Inside), O(Outside)

$$P(y|x) = rac{exp(\sum_{j=1}^{m}\sum_{i=1}^{n}\lambda_{j}f_{j}(x,i,y_{i},y_{i-1}))}{\sum_{y^{`}}exp(\sum_{j^{`}=1}^{m}\sum_{i=1}^{n}\lambda_{j}f_{j}(x,i,y^{`}_{i},y^{`}_{i-1}))}$$

나	니니	바	보	다
В	Ι	В	Ι	I

 $\frac{1}{2^{5}}$

2. Word-Spacing Method

띄어쓰기 방법론

■ 딥러닝 기반 방법

- 통계 기반 방법에 이어 딥러닝 기반의 띄어쓰기 모델 또한 순차적 레이블링 Task로 접근
- 순차적 레이블링에 효과적인 CRF 활용하여 RNN, LSTM, GRU, CNN 등의 다양한 딥러닝 기반 모델 연구 중
- 기존 연구에서 발전된 딥러닝 기반의 한국어 띄어쓰기 모델들을 살펴 보고 분석하고자 함

(1) Bidirectional LSTM-CRF 이현영, 강승식, "음절 임베딩과 양방향 LSTM-CRF를 이용한 한국어 문장 자동 띄어쓰기", 제30회 한글 및 한국어 정보처리 학술대회 논문집, 2018 Model Architecture

음절 Unigram과 Bigram을 이용한 양방향 LSTM-CRF

띄어쓰기가 전혀 적용되지 않은 문장을 입력으로 입력문장의
 각 음절에 해당하는 띄어쓰기 태그 클래스(B 또는 I)로 분류

■ 양방향 LSTM-CRF 모델을 한국어 자동 띄어쓰기 문제 적용

(1) Bidirectional LSTM-CRF 이현영, 강승식, "음절 임베딩과 양방향 LSTM-CRF를 이용한 한국어 문장 자동 띄어쓰기", 제30회 한글 및 한국어 정보처리 학술대회 논문집, 2018 Model Architecture

(1) Bidirectional LSTM-CRF 이현영, 강승식, "음절 임베딩과 양방향 LSTM-CRF를 이용한 한국어 문장 자동 띄어쓰기", 제30회 한글 및 한국어 정보처리 학술대회 논문집, 2018 Experiments

	Train	Test	Total
문장 수	13,500	1,500	15,000
단어 (중복 단어 포함)	277,718	31,107	308,825
음절 (중복 음절 포함)	882,134	98,774	980,908

차세정 언어처리 경진대회 말뭉치 데이터

Model	Syllable Embedding	Bi-LSTM's Output Operation	Embedding and LSTM cell unit size
1	Unigrom	Add	250
2	Unigram	Add	300
3	Unigram +	Add	250
4	Bigram	Add	300

음절 임베딩 종류와 셀 유닛 크기에 따른 모델

(1) Bidirectional LSTM-CRF 이현영, 강승식, "음절 임베딩과 양방향 LSTM-CRF를 이용한 한국어 문장 자동 띄어쓰기", 제30회 한글 및 한국어 정보처리 학술대회 논문집, 2018 Experiments

Mod el	Spacing Recall	Syllable Accuracy	Word Recall	Word Precision	Word F1 Score
1	93.80	96.346	86.356	86.518	86.437
2	92.77	96.178	84.906	86.319	85.607
3	<u>95.25</u>	97.332	<u>89.526</u>	90.032	<u>89.779</u>
4	95.19	<u>97.337</u>	89.410	90.030	89.719

성능 평가 표 (단위 : &)

■ 평가 척도

- Spacing Recall : 공백 재현율

Syllable Accuracy : 띄어쓰기 태그 정확도

- Word Recall : 어절 재현율

- Word Precision : 어절 정확도

- F1 score

(2) Bidirectional GRU-CRFs 최기현, 김시형, 김학수, "심층신경망 기반 2단계 한국어 자동 띄어쓰기 모델", 제30회 한글 및 한국어 정보처리 학술대회 논문집, 2018 Model Architecture

- 기존의 연구들은 주로 문장의 공백을 모두 제거한 문장을 입력으로 사용하는 것에 집중
- 입력 문장의 띄어쓰기 정보를 모두 생략한다면 사용자가 올바르게 입력한 띄어쓰기 정보까지 삭제될 수 있음
- BiGRU-CRFs를 기반으로 띄어쓰기가 안된 문장을 자동으로 띄어쓰기 해주고, 사용자의 띄어쓰기 정보를 이용하여 오류를 교정해줌으로써 성능을 향상 시키는 모델 제안

(2) Bidirectional GRU-CRFs 최기현, 김시형, 김학수, "심층신경망 기반 2단계 한국어 자동 띄어쓰기 모델", 제30회 한글 및 한국어 정보처리 학술대회 논문집, 2018 Model Architecture

(2) Bidirectional GRU-CRFs 최기현, 김시형, 김학수, "심층신경망 기반 2단계 한국어 자동 띄어쓰기 모델", 제30회 한글 및 한국어 정보처리 학술대회 논문집, 2018 Model Architecture

Spacing-error Correction Model

5. CRF를 통해 최종적으로 각 음절에 태그(B, I) 부착

4. 삽입 모델의 출력 문장과 오류교정 모델 입력 문장을 연결

3. 띄어쓰기가 된 문장에 임의로 오류를 발생시킨 정보를 입력으로 사용

(2) Bidirectional GRU-CRFs 최기현, 김시형, 김학수, "심층신경망 기반 2단계 한국어 자동 띄어쓰기 모델", 제30회 한글 및 한국어 정보처리 학술대회 논문집, 2018 Experiments

	뉴스 말뭉치	세종 말뭉치	ETRI 품사 태그 말뭉치
Train	253,138 문장	257,071 문장	1
Test	-	-	27,854 문장

X	나	는	한	국	인	입	니	다	
Y	В	Ι	В	Ι	I	Ι	Ι	Ι	Ι
v	ıl	ᆜ	하	국	6)	6]	1]	rl.	
Λ	4	L	긴	-7	ι'	日	9	4	•

훈련 및 평가 데이터

에러율 30% 예시

(2) Bidirectional GRU-CRFs 최기현, 김시형, 김학수, "심층신경망 기반 2단계 한국어 자동 띄어쓰기 모델", 제30회 한글 및 한국어 정보처리 학술대회 논문집, 2018 Experiments

	정확률	재현율	F1-score
에러율 10%	98.66	98.51	98.58
에러율 30%	97.42	97.54	97.48
에러율 50%	96.61	97.06	96.83
에러율 70%	96.08	96.73	96.41
에러율 100%	95.69	96.5	96.1

에러율에 따른 모델 성능 평가 표 (단위 : &)

에러율에 따른 모델 성능 변화 그래프

(3) Pretrained BERT-CRF 황태욱, 정상근, "BERT를 이용한 한국어 자동 띄어쓰기", 한국소프트웨어종합학술대회 논문집, 2019

Model Architecture

■ 자연어처리 분야에서 사전학습 된 BERT와 XLNet 등을 활용한 모델들이 높은 성능을 보여주고 있음

■ BERT 모델은 적은 양의 최적 학습만으로도 큰 성능 향상이 검증됨

■ 사전학습 된 BERT 모델이 한국어 띄어쓰기에 강인함을 보이고자 함

(3) Pretrained BERT-CRF 황태욱, 정상근, "BERT를 이용한 한국어 자동 띄어쓰기", 한국소프트웨어종합학술대회 논문집, 2019

Model Architecture

- 사용 모델
- 비교 모델 : 단방향 LSTM-CRF
- BERT 모델: 사전학습 되지 않은 BERT-CRF 모델
- Pretrained BERT 모델 : 사전학습 된 BERT-CRF 모델
- CRF를 통해 최종적으로 각 음절에 태그(B, I)를 부착하는 방식
- 사전학습 된 BERT 모델과 사전학습 되지 않은 모델의 성능 차이 확인하고 기존의 LSTM-CRF와 비교

(3) Pretrained BERT-CRF 황태욱, 정상근, "BERT를 이용한 한국어 자동 띄어쓰기", 한국소프트웨어종합학술대회 논문집, 2019

Experiments

	세종 말뭉치
Train	805,112 문장
Test	50,000 문장

실험군 1

실험군 2

(3) Pretrained BERT-CRF 황태욱, 정상근, "BERT를 이용한 한국어 자동 띄어쓰기", 한국소프트웨어종합학술대회 논문집, 2019

Experiments

	음절 단위 정확도	
CRFs [8]		97.99%
BiLSTM-CRF	' + 자질 정보 [2]	97.04%
GRU-CRF +	자질 정보 [1]	98.32%
비교 모델	LSTM-CRF	95.53%
실험 모델 1	BERT-CRF	95.13%
실험 모델 2	Pretrained BERT-CRF	98.14%
실험 모델 3	BERT-LSTM-CRF	96.75%
실험 모델 4	Pretrained BERT-LSTM-CRF	97.99%

실험 모델 성능 평가 표

Epoch에 따른 성능 변화 그래프

4. Conclusion

(1) 결과 비교

	Bidirectional LSTM-CRF	Bidirectional GRU-CRFs	Pretrained BERT-CRF
학습 및 평가데이터	차세정 언어처리 경진대회 말뭉치	뉴스 말뭉치, 세종 말뭉치, ETRI	세종 말뭉치
데이터 총 개수	1,500 문장	538,063 문장	855,112 문장
입력 정보	Unigram + Bigram	명사 사전	X
모델 성능	89.78%	96.1%	98.14%

4. Conclusion

(2) 최종 결론

- 각 모델 비교 결과 Pretrained BERT-CRF 모델은 입력 정보 없이도 가장 우수한 성능을 보임
- Pretrained BERT 모델은 1~2회의 epoch 만으로 높은 성능을 보여줌
- Pretrained BERT-CRF 모델에 입력 정보를 적용하면 성능이 더 높을 것으로 예상
- 차후 자연어처리 관련 프로젝트에 Pretrained BERT-CRF 모델을 구현해보고 적용하고자 함

Q&A

