

网络程序设计导论

主讲: 孟宁

电话: 0512-68839303

E-mail: mengning@ustc.edu.cn

主页: http://staff.ustc.edu.cn/~mengning

网络程序设计导论

- 计算机网络的发展
- OSI模型与TCP/IP协议族
- IPv4 and IPv6
- ARP协议
- 网络程序设计中的几种不同视角
- 电信/通信行业软件开发主要涉及的领域

ARPANET (1970s)

NSFNET (1980s)

Growth of NSFNET

The Internet: a Network of Networks

Internet Properties

- All hosts on the Internet communicate using common network protocols
 - TCP/IP, first developed for ARPANET
- Different parts of the Internet are operated by different entities
 - governments, telephone companies, universities etc.
- No single organization controls or owns the Internet

OSI Abstraction Layers

- 7: Application layer

 E.g., terminal emulation, file transfer
- 6: Presentation layer
 - Handles encryption, compression, other translation of messages
- 5: Session layer
 - Establishes and terminates connections between applications
- 4: Transport layer
 - Divides messages into packets; assembles packets into messages
- 3: Network layer
 - Finds routes for packets; transmits them to next node
- 2: Link layer
 - Breaks packets into frames; sends frames between nodes
- 1: Physical layerSends bits over wires

Information Exchange Process through OSI Layers

TCP/IP vs OSI Model

Figure 1.14. Layers in OSI model and Internet protocol suite.

Byte Ordering

- Different computer architectures use different byte ordering to represent multibyte values.
- 16 bit integer:

Byte Order and Networking

 Suppose a Big Endian machine sends a 16 bit integer with the value 2:

 A Little Endian machine will think it got the number 512:

000001000000000

Byte Order and Networking

- Big Endian PowerPC, Sparc64,etc
- Little Endian X86
- 网络字节顺序是Big Endian还是Little Endian?

TCP/IP Layer

Format of the IPv4 header

Figure A.1. Format of the IPv4 header.

Format of the IPv6 header

IPv4 Addresses

Usage	Class	Range
Unicast	A, B, C	0.0.0.0 to 223.255.255.255
Multicast	D	224.0.0.0 to 239.255.255.255
Experimental	E	240.0.0.0 to 255.255.255.255

Subnet	Prefix
0	192.168.42.0/27 †
1	192.168.42.32/27
2	192.168.42.64/27
3	192.168.42.96/27
4	192.168.42.128/27
5	192.168.42.160/27
6	192.168.42.192/27
7	192.168.42.224/27 †

		ddress 5,777,2 1,048,5 65,5	16 76		72.1 2.16	10/ 6/1	2	172	.16.	0.0	10. to	172.3	255.: 31.25	255 5.255 255.2			boundary determin from prefix length of assigned addre						h	boundary determine								
	24 bits																															
	address: network address = 192.168.42.0/24												St	ıbn ID		host ID																
su	subnet mask: 1 1 1 1 1 1 1 1 1								1111 1111								1111 1111						1	1 1 1		0	0 bits	of 0	0	1		
	bits of 1 cover network address and subnet ID cover hose public site											host	ΙĎ																			
	topology											-	ope	_	1	hos	t ID	•														

IP地址的分配与管理

- 192.168.10.0/24地址段需要分配给5个不同的部门来使用:
 - 部门1-4均需要30个IP
 - 部门5需要100个IP
- 您作为管理员该如何划分子网?

IPv6 Addresses

Figure A.7. Meaning of high-order bits of IPv6 addresses.

Allocation	Interface ID size	Format prefix	Reference
Unspecified	n/a	0000 0000 0000 0000 (128 bits)	RFC 3513
Loopback	n/a	0000 0000 0000 0001 (128 bits)	RFC 3513
Global unicast address	any	000	RFC 3513
Global NSAP-based address	any	0000001	RFC 1888
Aggregatable global unicast address	64-bit	001	RFC 3587
Global unicast address	64-bit	(anything not otherwise mentioned)	RFC 3513
Link-local unicast address	64-bit	1111 1110 10	RFC 3513
Site-local unicast address	64-bit	1111 1110 11	RFC 3513
Multicast address	n/a	1111 1111	RFC 3513

图4-2 当用户输入命令 "ftp 主机名" 时ARP的操作

IP包是如何从A送到B?

Application

Figure 1.1. Network application: client and server.

Layering Protocols

Figure 1.3. Client and server on the same Ethernet communicating using TCP.

Inter-Net/Internet

Figure 1.4. Client and server on different LANs connected through a WAN.

Performance/Control

Figure 1.2. Server handling multiple clients at the same time.

电信/通信行业软件开发 主要涉及的领域

- 局端管理系统
 - SNMP Manager网管系统
 - OSS/BOSS运营支撑系统
 - SDN Controller
- 电信设备开发与设备管理
 - 协议栈的实现
 - CLI
 - SNMP Agent
 - web管理

课后作业

- 请计算最多有多少个A类、B类和C类网络 号。
- 获取一份RFC 1000的拷贝,了解R F C这个 术语从何而来。
- 什么叫CIDR?
- · 一个IP包是如何到达它的目的地IP主机的?

谢谢大家!

参考资料:

MIT Open Courseware - http://ocw.mit.edu UNIX® Network Programming Volume 1, Third Edition TCP/IP Illustrated Volume 1:The Protocols 庖丁解牛Linux内核分析https://j.youzan.com/pfzVI9