End Semester Examination

EE2104: Semiconductor Device Fundamentals

Time Allotted: 55 minutes

Total Marks: 48

Bonus Question: 18-2 marks [So you can score 50/48]

SECTION 1: NUMERICAL QUESTIONS (3 MARKS EACH)

- 1. If a semiconductor is transparent to light with a wavelength longer than 0.87um, what is its band-gap energy?
- 2. Calculate the diffusion coefficient of an electron at room temperature if its mobility in a given material is $1900 \mathrm{cm}^2/\mathrm{Vs}$
- 3. A transistor in CE mode is connected with a resistance of $5k\Omega$ and a power supply of 5V in the collector circuit. If $\alpha = 0.998$ and the voltage drop across the $5k\Omega$ resistor is 5V, find the base current.
- 4. Find the hole concentration in a doped semiconductor with intrinsic carrier concentration 2.5×10^{13} where the doping is Arsenic with a concentration of 10^{17}
- 5. In a common base connection, the emitter current is 1mA. If the emitter circuit is open, the collector current is 50uA. Find the total collector current if $\alpha = 0.92$
- 6. Find the current in a bridge rectifier circuit with forward resistances of all the silicon-based diodes used equal to 1Ω and an external resistance of 10Ω connected across a 3V supply.

SECTION 2: FILL IN THE BLANKS (1 MARK EACH)

- 7. In _____ type MOSFET, there is no inbuilt channel present.
- 8. Once pinch-off occurs in a JFET, the device acts as a _____ source.

- 9. For p-JFET, the channel is _____ type, and the gates are ____ type.
- 10. JFET is a ____ controlled three terminal device.
- 11. A Zener diode is a _____ doped pn junction diode, due to which the depletion region is _____ and the electric field is ____.
- 12. A special purpose diode formed by a metal and a semiconductor is called a _____ diode.
- 13. ____recombination involves three charge carriers.

SECTION 3: NUMERICAL QUESTIONS (5 MARKS EACH)

14. If, $V_c = 9V$ and $\beta = 75$, find the ratio of R_B and R_C for the following network:

15. Find the values of R_C and R_E , if $R1 = R2 = 90k\Omega$, $V_o = 0$ V, $V_{CE} = 3$ V, $\beta = 200$ for the following network:

16. Find the operating point for the following nmos-based circuit if $R_g = 1k\Omega$, $R_d = 2.2k\Omega$, $V_{dd} = 10$ V, $V_{gg} = -5$ V, and $I_{dss} = 16$ mA:

17. Determine the Q point and find the maximum peak value of the base current for linear operation. Assume $\beta_{dc} = 200$

18. [Bonus, 2 Marks] In a certain transistor, 99.6% of the charge carriers injected into the base cross the collector-base junction. If the leakage current is 5μ A, and the collector current is 20mA, find the value of α_{dc} and emitter current.