CSE330 Assignment 02 Solution

- 1. Let $f(x) = \tan(x)$. In the following we would like to calculate the truncation errors.
 - (a) (3 marks) First write down the approximate polynomial, p₃(x), for the function f(x) and identify the Taylor coefficients, a₀, · · · , a₃.
 - (b) (2 marks) Compute the percentage relative error at $x = \pi/4$ if f(x) is approximated by $p_3(x)$ polynomial.
 - (c) (5 marks) Use the Lagrange reminder form to evaluate the upper bound of truncation error at x = π/4 for some ε ∈ [0, π/4].

(a)
$$f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^{2} + \frac{f'''(x_0)}{3!} (x - x_0)^{3} + \frac{f'''(x_0)}{3!} (x - x_0)^{4} + \frac{f'''(x_0)}{4!} (x - x_0$$

$$f(x) = 0 + 1 + \frac{0}{3!} x^3 + \dots$$

$$= x + \frac{1}{3} x^3 + \dots \quad \text{[Taylor expansion of tan x]}$$

$$a_0 = 0$$
 , $a_1 = 1$, $a_2 = 0$, $a_3 = \frac{1}{3}$

(b)

Relative errors =
$$\frac{|f(x) - P_3(x)|}{f(x)}$$

$$p_{3}(x) = x + \frac{1}{3} x^{3}$$

(c)
$$f(x) = P_3(x) + \frac{f^4 + \frac{\pi}{4!}}{4!} (x - x_0)^4$$
 $f''''(x) = -8 \sec^7 x \tan x + 24 \sec^4 x \tan x$

Lagrenge form of treminder = $\frac{f^4 + \frac{\pi}{4!}}{4!} (\pi/4 - 0)^4$
 $\frac{\pi}{4!} + [0, \pi/4]$
 $\Rightarrow f^4 (\frac{\pi}{4!} \cdot 0) = 0$
 $\Rightarrow f^4 (\frac{\pi}{4!} \cdot \pi/4) = 80$

- Consider the function f(x) = e^x e^{-x} and the nodes are at -1, 0, and 1. Now answer the following questions using 3 significant figures:
 - (a) (1 mark) Write down the matrices b and V used in Vandermonde method.
 - (b) (2 marks) Compute the determinant of the Vandermonde matrix V .
 - (c) (3 marks) Using The results of the previous two parts, calculate the Taylor coefficients a₀, a₁ and a₂; and finally find the interpolating polynomial.
 - (d) (4 marks) Evaluate the upper bound of interpolation error for the given function for the interval $\xi \in [-2.1, 2.1]$.

(c)
$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -2.35 \\ 0 \\ 2.35 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \\ 1/2 & -1 & 1/2 \end{bmatrix} \begin{bmatrix} -2.35 \\ 0 \\ 2.35 \end{bmatrix}$$

$$F_{1}(x) = a_{0} + a_{1}x + a_{2}x^{2}$$

$$= 0 + 2 \cdot 35x + 0$$

$$= 2 \cdot 35x$$

$$|f(x) - P_2(x)| = \frac{f^3(\xi)}{3!} (x+1) z (x-1)$$

$$= x^3 - x$$

$$\Rightarrow w'(x) = 3x^2 - 1 = 0$$

$$\Rightarrow f^2(x) = e^x - e^{-x}$$

$$\Rightarrow f^2(x) = e^x - e^{-x}$$

$$\Rightarrow f^3(x) = e^x - e^x + e^x - e^x$$

$$\Rightarrow f^3(x) = e^x - e^x + e^x +$$

= 9.89

- 3. Consider the function $f(x) = e^x + e^{-x}$ and the nodes are at -1, 0, and 1. Now answer the following questions using 3 significant figures:
 - (a) (4 marks) Evaluate the Lagrange bases for the given function and nodes.
 - (b) (3 marks) Compute the Lagrange interpolation polynomial for the given function, and express the result in the natural basis. Also use this polynomial to find an approximate value of f(6).
 - (c) (3 marks) Evaluate the relative error in percentage form at x=1.5.

3. (a)
$$l_{0}(x) = \frac{(x-0)(x-1)}{(-1-0)(-1-1)} = \frac{x(x-1)}{2}$$

$$l_{1}(x) = \frac{(x+1)(x-1)}{(0+1)(0-1)} = -x^{2} + 1$$

$$l_{2}(x) = \frac{(x+1)(x-0)}{(1+1)(1-0)} = \frac{x(x+1)}{2}$$

(b)
$$P_2(x) = f(x_0) I_0(x) + f(x_1) I_1(x) + f(x_2) I_2(x)$$

= 3.09 $\frac{x(x-1)}{2} + 2(-x^2+1) + 3.09 \frac{x(x+1)}{2}$
= 1.545 $x(x-1) + 2(-x^2+1) + 1.545x(x+1)$
= 1.545 $x^2 - 1.545x - 2x^2 + 2 + 1.545x^2 + 1.545x$
= 1.09 $x^2 + 2$
= 2 + 1.09 x^2

(c) Relative enrow =
$$\left| \frac{f(x) - P_2(x)}{f(x)} \right| \times 100 \, 9_0$$

 $f(x) = e^x + e^{-x}$ = $\left| \frac{4 \cdot 70 - 4 \cdot 45}{4 \cdot 70} \right| \times 100 \, 9_0$
 $\Rightarrow f(1.5) = 4 \cdot 70$ = 5 · 32 9_0
 $P_2(x) = 2 + 1 \cdot 0.9 \, x^2$
 $\Rightarrow P_2(1.5) = 4 \cdot 4.5$

- Consider the function f(x) = e^x e^{-x} and the nodes are at -2, 0, and 2. Now answer the following questions using 3 significant figures:
 - (a) (4 marks) Evaluate the Newton coefficients a_k = f[x₀, · · · , x_k] using Newton's divided-difference method for the given function and nodes.
 - (b) (3 marks) Compute the Newton interpolation polynomial for the given function, and express the result in the natural basis. Also use this polynomial to find an approximate value of f(6).
 - (c) (3 marks) Evaluate the relative error in percentage form at x = 1.5.

3. (a)

$$x_0 = -2$$
 $f[x_0] = -7.25$
 $x_1 = 0$ $f[x_1] = 0$ $f[x_0, x_1] = 3.63$
 $x_2 = 2$ $f[x_2] = 7.25$
 $a_0 = -7.25$, $a_1 = 3.63$, $a_2 = 0$

(b) $P_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$
 $= -7.25 + 3.63(x + 2) + 0$
 $= -7.25 + 3.63(x + 2) + 0$
 $= -7.25 + 3.63x + 7.26$
 $= 3.63x + 0.01$

(c) $f(x) = e^x - e^{-x}$
 $f(x) = e^x - e^x - e^{-x}$
 $f(x) = e^x - e^x - e^x - e^x$
 $f(x) = e^x - e^x - e^x - e^x$
 $f(x) = e^x - e^x - e^x - e^x$
 $f(x) = e^x - e^x - e^x - e^x$
 $f(x) = e^x - e^x - e^x - e^x$
 $f(x) = e^x - e^x$