

PYTHON PROGRAMMING AND MACHINE LEARNING

INTRODUCTION TO TEXT PROCESSING

Yunghans Irawan (yirawan@nus.edu.sg)

National University of Singapore

Objectives

- Understand the basic tasks of text processing in Python
- Able to implement a simple text processing using machine learning

Text Processing

- Structured vs. Unstructured Data
- Text Data Preparation
 - Tokenization
 - Stemming / Lemmatization
 - Stop words
- Text Featurization
 - Count Vectorization
 - TF-IDF
 - Word Embeddings

Why Text Processing?

Text data is string with varying lengths

Machine Learning applies mathematical models

Therefore, need to **convert text to numbers** via

- Text Processing
- Text Featurization

Structured vs. Unstructured Date National University of Singapore

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
0	18.0	8	307.0	130.0	3504.0	12.0	70	1
1	15.0	8	350.0	165.0	3693.0	11.5	70	1
2	18.0	8	318.0	150.0	3436.0	11.0	70	1
3	16.0	8	304.0	150.0	3433.0	12.0	70	1
4	17.0	8	302.0	140.0	3449.0	10.5	70	1

"zero, one, two, three"

Structured vs. Unstructured Data

Structured	Semi-structured	Unstructured
Fixed format / size	Data with semantic tags	No format
Tabular data	XML, JSON	Text, Audio, Video, Speech

Objective: Convert unstructured data into structured vectors

- Document
 - Contains a collection of words / bag of words
 - Article, email, SMS, word document, sentence, ...
- Corpus
 - Collection of documents
- Term / word / token
 - Text entity
- N-gram
 - Terms consisting of N consecutive, overlapping sequences of words
- Vocabulary
 - **Set** of unique terms
 - Feature dimensions = vocabulary size

Vocabulary (list of 3 bigrams):

- hello this
- this is
- is nlp

Text Processing Example

Text Processing Libraries

NLP libraries

- Natural Language Toolkit (NLTK)
- SpaCy
- Gensim

More complete, linguistic features

ML libraries

- Scikit-Learn
- Keras
- PyTorch

Simple but more limited

TEXT DATA PREPARATION

Text Data Preparation

- Cleaning
- Tokenization
- Stemming / Lemmatization
- Stop words

Cleaning

- Remove punctuation
- Convert all to lowercase
- Remove non-ASCII characters

•

Note: choose the appropriate cleaning for your task

Note: language specific rules

Tokenization

- Split document into terms
- Use libraries or write custom regex

```
from nltk import word_tokenize

text = 'Hello this is a test.'

word_tokenize(text)

['Hello', 'this', 'is', 'a', 'test', '.']
```

Lemmatization vs Stemming


```
from nltk.stem import WordNetLemmatizer
text = 'he liked cats and dogs, and teaching machines to learn'
                                                                I ooks at word form
lm = WordNetLemmatizer()
                                                                (yerb, noun, ...)
print([lm.lemmatize(token) for token in word_tokenize(text)])
                                                                                          Usually
  ['he', 'liked', 'cat', 'and', 'dog', ',', 'and', 'teaching', 'machine', 'to', 'learn']
                                                                                          either is ok
                                                                                          (depends
from nltk.stem import SnowballStemmer
                                                                                          on your
text = 'he liked cats and dogs, and teaching machines to learn'
                                                                                          task)
stem = SnowballStemmer(language='english')
print([stem.stem(token) for token in word tokenize(text)])
  ['he', 'like', 'cat', 'and', 'dog', ',', 'and', 'teach', 'machin', 'to', 'learn']
                                                                   Blunt knife chops off
                                                                   affixes for any word
```


Stop words

Stop words are words that are very commonly in use in any sentence

Usually can be removed without changing meaning

English stop words

```
{'very', 'itself', 'does', 'nor', 'as', 'had', 'not', 'ours', "shan't", 'out', 'yourself', "hadn't", "hasn't", 'him', 'ma', 'o
ver', 'each', 'is', "that'll", 'she', 'to', "she's", 'but', 'should', 'shouldn', 'needn', 'when', 'those', "weren't", 'don',
'didn', 's', 'if', 'did', 'into', 'more', 'no', 'it', 'doing', "didn't", 'these', 'just', 'then', 'what', 'a', 'ain', 'now',
've', "mightn't", 'his', 'them', 'up', 'he', 'was', 'won', "won't", 'such', 'wasn', 'were', 'theirs', 'or', 'from', 'yours',
"needn't", 'few', 'once', 'd', 'can', 'during', 'they', 'own', 'will', "haven't", "isn't", 'there', 'some', 'y', 'at', 'on',
"don't", 'we', "you'd", 'against', 'both', 'aren', 'shan', 're', 'himself', 'be', 'have', 'being', 'hadn', 'any', "wouldn't",
'of', 'under', 'why', 'which', 'after', 'has', 'between', 'again', 'further', 'me', 'do', 'all', 'you', 'and', 'same', 'so',
'than', "you've", 'down', 'weren', 'an', 'most', 'couldn', 'o', 'are', "wasn't", 'who', 'because', 'her', 'before', 'wouldn',
'mightn', 'its', 'this', 'for', "you're", 'i', 'with', 'here', 'above', "should've", "couldn't", 'ourselves', 'where', 'm', 'o
ther', 'in', 'by', 'yourselves', 'themselves', 'hasn', "mustn't", "it's", 'off', "aren't", 'the', 'doesn', 'through', 't', 'yo
ur', "you'll", 'herself', 'whom', 'mustn', 'that', 'am', 'until', 'isn', 'having', 'how', 'about', 'll', 'haven', 'myself', 'h
ers', 'my', 'while', "doesn't", 'our', 'only', "shouldn't", 'their', 'below', 'too', 'been'}
```

Chinese stop words

Stop words

```
from nltk.corpus import stopwords
stop = set(stopwords.words('english'))

text = 'he liked cats and dogs, and teaching machines to learn'

print([token for token in word_tokenize(text) if token not in stop])

['liked', 'cats', 'dogs', ',', 'teaching', 'machines', 'learn']
```

Note: customize stop words depending on your task

Note: alternative is to apply a maximum threshold on word frequency

TEXT FEATURIZATION

Common Featurization Methods

- Word Count
- TF-IDF
- Word Embeddings

Objective: Convert a word to a **meaningful number** or a **vector of numbers**

Word Count Vectorization

- 1. Create vocabulary from the unique words
- Count how often each word appears in a document
- 3. Create a feature vector with the word count as the entry

```
corpus = [
   'This is the first document.',
   'This document is the second document.',
   'And this is the third one.',
   'Is this the first document?',
]
```



```
vocabulary = [
'and', 'document', 'first', 'is',
'one', 'second', 'the', 'third', 'this'
]
```

Word Count Vectorization

- 1. Create vocabulary from the unique words
- 2. Count how often each word appears in a document
- 3. Create a feature vector with the word count as the entry

and	document	first	is	one	second	the	third	this	text
0	1	1	1	0	0	1	0	1	This is the first document.
0	2	0	1	0	1	1	0	1	This document is the second document.
1	0	0	1	1	0	1	1	1	And this is the third one.
0	1	1	1	0	0	1	0	1	Is this the first document?
Feature ved	eature vector Assume more frequent = more important								portant

TF-IDF

Address shortcoming of Word Count Vectorization

- Penalize words that occur in lots of documents
- If a word appears all the time, it does not contain much information

Combines two measures

- Term Frequency = Word Count (as before)
- Inverse Document Frequency = Count of documents containing word

TF-IDF (textbook definition)

Word count (number of times term t appears in document d)

tf-idf(t,d) = tf(t,d) × idf(t)
idf(t) =
$$log \frac{n_d}{1+df(d,t)}$$

Document count (number of documents that contain term t)

TF-IDF vs. Word Count

Word Count

text	this	third	the	second	one	is	first	document	and
This is the first document.	1	0	1	0	0	1	1	1	0
This document is the second document.	1	0	1	1	0	1	0	2	0
And this is the third one.	1	1	1	0	1	1	0	0	1
Is this the first document?	1	0	1	0	0	1	1	1	0

TF-IDF

and	document	first	is	one	second	the	third	this	text
0.000000	0.469791	0.580286	0.384085	0.000000	0.000000	0.384085	0.000000	0.384085	This is the first document.
0.000000	0.687624	0.000000	0.281089	0.000000	0.538648	0.281089	0.000000	0.281089	This document is the second document.
0.511849	0.000000	0.000000	0.267104	0.511849	0.000000	0.267104	0.511849	0.267104	And this is the third one.
0.000000	0.469791	0.580286	0.384085	0.000000	0.000000	0.384085	0.000000	0.384085	Is this the first document?

More weight to rare words like "first, third"

Word Embeddings

Word count and TF-IDF are statistical models

Word Embeddings is a **neural probabilistic model**

Objectives:

- 1. Infer meaning of a word in terms of its neighbours
- Compress sparse, high-dimensional data into lower dimensions

Sparsity and high-dimension

Each word is a column

 E.g. 1000 word vocabulary => 1000 columns => 1000 dimensions

Columns are sparse: contain a lot of zeros

Most words don't appear frequently

and	document	first	is	one	second	the	third	this	text
0.000000	0.469791	0.580286	0.384085	0.000000	0.000000	0.384085	0.000000	0.384085	This is the first document.
0.000000	0.687624	0.000000	0.281089	0.000000	0.538648	0.281089	0.000000	0.281089	This document is the second document.
0.511849	0.000000	0.000000	0.267104	0.511849	0.000000	0.267104	0.511849	0.267104	And this is the third one.
0.000000	0.469791	0.580286	0.384085	0.000000	0.000000	0.384085	0.000000	0.384085	Is this the first document?

Word Meaning in Vector Space NUS National University of Singapore

Google News Embeddings


```
model['man']
array([ 0.32617188, 0.13085938, 0.03466797, -0.08300781, 0.08984375,
       -0.04125977, -0.19824219, 0.00689697, 0.14355469, 0.0019455,
       0.02880859, -0.25
                              , -0.08398438, -0.15136719, -0.10205078,
       0.04077148, -0.09765625, 0.05932617, 0.02978516, -0.10058594
       -0.13085938, 0.001297 , 0.02612305, -0.27148438,
       -0.19140625, -0.078125 , 0.25976562, 0.375
                                                         -0.04541016,
       0.16210938, 0.13671875, -0.06396484, -0.02062988, -0.09667969
       0.25390625, 0.24804688, -0.12695312, 0.07177734, 0.3203125
       0.03149414, -0.03857422, 0.21191406, -0.00811768, 0.22265625
       -0.13476562, -0.07617188, 0.01049805, -0.05175781, 0.03808594,
                             , 0.0559082 , -0.18261719, 0.08154297,
       -0.08447266, -0.07763672, -0.04345703, 0.08105469, -0.01092529,
       0.17480469, 0.30664062, -0.04321289, -0.01416016, 0.09082031,
model.distance('man', 'woman')
0.23359877690046482
model.most similar("man")
[('woman', 0.7664012312889099),
  ('boy', 0.6824870109558105),
  ('teenager', 0.6586930751800537),
  ('teenage girl', 0.6147903203964233),
  ('girl', 0.5921714305877686),
  ('suspected_purse_snatcher', 0.571636438369751),
  ('robber', 0.5585119128227234),
  ('Robbery_suspect', 0.5584409236907959),
  ('teen_ager', 0.5549196004867554),
  ('men', 0.5489763021469116)]
```

Word Distance

$$similarity(A,B) = cos(heta) = rac{AB^ op}{\|A\|\|B\|}$$
 $euclidean(A,B) = \|A-B\| = \sqrt{\|A\|^2 + \|B\|^2 - 2A.B}$

$$\|A\| = \sqrt{\sum_{i=1}^n A_i^2}$$

More common: cosine similarity

- Has direction
- Range [-1, 1]

Pre-trained Word Embeddings

 GloVe - trained using global cooccurrence statistics

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

Word2Vec - trained using negative
 sampling

Noise classifier

Hidden layer

Projection layer

Pre-trained Word Embeddings

 <u>fastText</u> - each word is a bag of character-level n-grams. Available in 157 languages

- Custom corpus
 - Train your own word-embeddings using gensim.Word2Vec
 - Alternatively, you can try <u>updating</u> an <u>existing</u> <u>word embedding</u>

Embedding Layer

50

Input Sequence

Integerized Representation Sequence Vector

When to use...

Word Counts	Small corpus and vocabulary
	When you need a quick baseline
TF-IDF	Documents cover similar vocabulary e.g. movie reviews
Pre-trained Word Embedding	Documents cover large, diverse vocabulary e.g. wikipedia articles
Custom Word Embedding	Domain-specific vocabulary Want to encode word
	meanings

Where are we?

Applications of Text Processing

Retail: <u>Suggest product pricing based on item</u> <u>description, etc</u>

Finance: <u>Predict stock price movements from market news, etc</u>

Social: <u>Classifying Wikipedia comments for toxicity</u>

Education: <u>Predict acceptance of teacher</u> <u>project proposals</u>

Business: <u>Predict if a Kickstarter project gets</u> <u>funding</u>

Further study

<u>Latent Semantic Analysis</u> - TF-IDF + SVD dimensionality reduction

King - man + woman is queen, but why?

Gensim Tutorials

Stanford CS224n

How to use Word Embedding Layers in Keras

Practitioner's Guide