Меры. Внешние меры

Хотелось бы понимать, как можно строить меры, какие есть общие способы построения их.

Внешние меры

Опр: 1. Функция $\nu: 2^X \to [0, +\infty]$ называется внешней мерой, если выполняются условия:

- 1) $\nu(\varnothing) = 0;$
- 2) $A \subset B \Rightarrow \nu(A) \leq \nu(B)$;
- 3) $\nu(\cup_m A_m) \leq \sum_m \nu(A_m);$

В чем отличие от обычной меры? Во-первых она определена на всех подмножествах, что для меры не всегда верно. Во-вторых не требуется аддитивность, а требуется суб-аддитивность и монотонность.

Пример: Зададим функцию:

$$\nu(A) = \begin{cases} 1, & A \neq \emptyset \\ 0, & A = \emptyset \end{cases}$$

Попробуем понять, что это внешняя мера:

- 1) Выполнено по построению;
- 2) Рассмотрим несколько случаев:
 - (1) $B \neq \emptyset \Rightarrow \nu(B) = 1 \ge \nu(A), \forall A \in 2^X$;
 - (2) $B = \emptyset$, $A \subset B \Rightarrow A = \emptyset \Rightarrow \nu(B) = 0 \ge 0 = \nu(A)$;
- 3) Рассмотрим несколько случаев:
 - (1) Если хотя бы одно из $A_m \neq \emptyset$, то $\sum_m \nu(A_m) \geq 1 \geq \nu(\cup_m A_m)$;
 - (2) Если все $A_m = \emptyset$, то $\cup_m A_m = \emptyset \Rightarrow \sum_m 0 \ge 0$;

Возникает вопрос, когда эта внешняя мера ν аддитивна? Когда X состоит из не более чем 1 элемента, тогда $2^X = \{\varnothing, X\}$ и будут значения: $\nu(\varnothing) = 0, \ \nu(X) = 1.$ Если X состоит из ≥ 2 элементов, то:

$$\exists\, A\neq\varnothing\colon A\subset X,\, A\neq X\Rightarrow A\cup(X\setminus A)=X,\, A\cap(X\setminus A)=\varnothing$$

$$\nu(A) + \nu(X \setminus A) = 1 + 1 = 2 \neq \nu(X) = 1$$

Хотелось бы всё же понять, где аддитивность есть и описать класс множеств, желательно, чтобы он оказался σ -алгеброй, на котором ν будет аддитивной или даже σ -аддитивной.

Опр: 2. Пусть ν - внешняя мера на X. Обозначим класс множеств:

$$\mathcal{A}_{\nu} = \{ A \subset X \colon \forall E \subset X, \ \nu(E \setminus A) + \nu(E \cap A) = \nu(E) \}$$

Множества из \mathcal{A}_{ν} называют ν -измеримыми или просто измеримыми. А класс множеств \mathcal{A}_{ν} называют набором измеримых множеств.

Таким образом, имеется аддитивность на частях $E \cap A$ и $E \setminus A$. Мы хотим найти множества на которых ν будет аддитивно или σ -аддитивно. Самое простое проявление аддитивности бывает, когда мы разбиваем множество на две части и знаем, что мера целого есть сумма мер.

Рис. 1: Множество A разбивает множество E.

Очевидно, что $\emptyset \in \mathcal{A}_{\nu}$, поскольку:

$$E \cap \varnothing = \varnothing$$
, $E \setminus \varnothing = E$, $\nu(E \cap \varnothing) + \nu(E \setminus \varnothing) = \nu(\varnothing) + \nu(E) = \nu(E)$

Аналогично, что $X \in \mathcal{A}_{\nu}$, поскольку:

$$E \cap X = E, E \setminus X = \emptyset, \nu(E \cap X) + \nu(E \setminus X) = \nu(E) + \nu(\emptyset) = \nu(E)$$

Какие ещё множества будут лежать в \mathcal{A}_{ν} ? Множества меры нуль.

Утв. 1. Если $\nu(A) = 0$, то $A \in \mathcal{A}_{\nu}$.

Возьмем произвольное E, тогда:

$$E \cap A \subset A \Rightarrow \nu(E \cap A) \le \nu(A) = 0 \Rightarrow \nu(E \cap A) = 0$$

$$E \setminus A \subset E \Rightarrow \nu(E \setminus A) \leq \nu(E) \Rightarrow \nu(E \cap A) + \nu(E \setminus A) \leq 0 + \nu(E) \leq \nu(E \cap A) + \nu(E \setminus A)$$

где последнее неравенство следует из субаддитивности (свойство 3 по определению). Тогда:

$$\nu(E) = \nu(E \cap A) + \nu(E \setminus A)$$

Пример: Рассмотрим наш предыдущий пример и попробуем понять из чего состоит A_{ν} там:

$$A \neq \varnothing \land A \neq X \Rightarrow X \setminus A \neq \varnothing \Rightarrow 1 = \nu(X) = \nu(A) + \nu(X \setminus A) = 1 + 1$$

Получили противоречие $\Rightarrow A_{\nu} = \{\emptyset, X\}$. В общем случае, объяснять какие множества относятся к A_{ν} это задача достаточно трудная даже на простых примерах.

Теорема 1. (теорема Каратеодори) \mathcal{A}_{ν} это σ -алгебра и ν это σ -аддитивная мера на \mathcal{A}_{ν} .

Rm: 1. Теорема приводится без доказательства, доказательство можно посмотреть в книге Эванс, Гариеппи: теория меры и тонкие свойства функций (см. английскую версию).

Теорема 2. Пусть X - метрическое пространство и ν - внешняя мера. Предположим, что верно:

$$\forall A, B \subset X : \inf_{a \in A, b \in B} \rho(a, b) > 0 \Rightarrow \nu(A \cup B) = \nu(A) + \nu(B)$$

Тогда борелевские множества лежат в σ -алгебре измеримых множеств: $\mathcal{B}(X) \subset \mathcal{A}_{\nu}$.

Rm: 2. Теорема приводится без доказательства, доказательство можно посмотреть в книге Эванс, Гариеппи: теория меры и тонкие свойства функций.

Мера Лебега

Пусть $X = \mathbb{R}^n$. Вопрос, как определяется внешняя мера? Она будет называться "верхней мерой".

Опр: 3. Верхней мерой Лебега называется функция на X:

$$\lambda^*(E)=\inf\left\{\sum_j|\mathrm{I}_j|\ \bigg|\ \mathrm{I}_j$$
 - замкнутые бруски, $E\subset\bigcup_j\mathrm{I}_j
ight\}$

где $\cup_i I_i$ это не более, чем счетное объединение замкнутых брусов.

Rm: 3. Можно брать открытые брусы: раздуть или сжать.

Рис. 2: Покрытие множества E не более, чем счетным объединением замкнутых брусов.

Мы покрываем множество E брусками (как угодно), но не более чем счетным количеством, затем считаем сумму объемов и берём точную нижнюю грань этих покрытий. Новизна здесь в том, чтобы покрывать счётным количеством брусков, а не каким-то (типа конечного набора). Единственное, что понять было сложно - есть ли аддитивность или σ -аддитивность.

Rm: 4. В действительном анализе внешняя мера определяется слегка по-другому: на произвольном измеримом пространстве, фиксировалась алгебра и верхней мерой объявлялась точная нижняя грань по счетным покрытиям элементами алгебры.

Rm: 5. Заметим, что внешняя мера как раз взялась из определения выше. И мера Хаусдорфа и практически все внешние меры строятся похожим образом: выделяется класс множеств, на них вводятся функции (в данном случае - объем для параллелепипеда), а дальше устраиваете покрытие этими множествами и берёте точную нижнюю грань ⇒ получаем некоторую внешнюю меру.

Rm: 6. Заметим также, что определение внешней меры похоже на определение меры нуль по Лебегу. Отличие в том, что здесь мера не обязательно должна быть равна 0, может получиться $u + \infty$.

Утв. 2. λ^* это внешняя мера и класс измеримых множеств содержит все борелевские множества, то есть: $\mathcal{B}(\mathbb{R}^n) \subset \mathcal{A}_{\lambda^*}$.

- \square Проверим, что λ^* это внешняя мера:
 - 1) $\lambda^*(\emptyset) = 0$, поскольку $\forall \varepsilon > 0$, $\exists I : |I| < \varepsilon, \emptyset \subset I$;
 - 2) Пусть $A \subset B$, где $B \subset \cup_j I_j$, тогда $A \subset \cup_j I_j \Rightarrow \lambda^*(A) \leq \sum_j |I_j|$ по определению λ^* . Следовательно, для любого покрытия B имеем такое же неравенство $\Rightarrow \lambda^*(A)$ это просто какая-то нижняя грань, а $\lambda^*(B)$ это точная нижняя грань для всех таких покрытий \Rightarrow по определению точной нижней грани получаем: $\lambda^*(A) \leq \lambda^*(B)$;
 - 3) Рассмотрим $\cup_m A_m$, тогда:

$$\forall \varepsilon > 0, \ \exists I_j^m \colon A_m \subset \bigcup_j I_j^m \land \sum_j |I_j^m| \le \lambda^*(A_m) + \frac{\varepsilon}{2^m}$$

где последнее верно из определения точной нижней грани. Тогда:

$$\bigcup_{m} A_{m} \subset \bigcup_{j,m} I_{j}^{m} \wedge \sum_{j,m} |I_{j}^{m}| \leq \sum_{m} \lambda^{*}(A_{m}) + \varepsilon \cdot \sum_{m} \frac{1}{2^{m}} \Rightarrow \lambda^{*}(\cup_{m} A_{m}) \leq \sum_{m} \lambda^{*}(A_{m}) + \varepsilon$$

Устремляя ε к нулю, мы получаем требуемое равенство;

Пусть A и B таковы, что:

$$\exists \delta > 0 \colon \forall a \in A, b \in B, \|a - b\| \ge \delta$$

Так как λ^* это внешняя мера, то: $\lambda^*(A \cup B) \leq \lambda^*(A) + \lambda^*(B)$. Мы хотим доказать неравенство в обратную сторону и воспользуемся теоремой 2 (критерий Каратеодори). Заметим, что в определении λ^* можно считать, что все diam $I_j < \frac{\delta}{3}$, поскольку мы можем разбить покрытие не более мелкое:

$$E \subset \bigcup_{j} \mathbf{I}_{j}, \ \mathbf{I}_{j} = \bigcup_{k=1}^{N_{j}} \mathbf{J}_{k}^{j}, \ \operatorname{diam} \mathbf{J}_{k}^{j} < \frac{\delta}{3}, \ \sum_{k} |\mathbf{J}_{k}^{j}| = |\mathbf{I}_{j}| \Rightarrow E \subset \bigcup_{j,k} \mathbf{J}_{k}^{j} \wedge \sum_{k,j} |\mathbf{J}_{k}^{j}| = \sum_{j} |\mathbf{I}_{j}|$$

Тогда взятие точной нижней грани по всем покрытиям параллелепипедами или параллелепипедами диаметра меньше $\frac{\delta}{3}$ совпадают $\Rightarrow \inf_{\mathbf{I}_j} = \inf_{\mathbf{J}_j^j}$. Пусть теперь верно:

$$A \cup B \subset \bigcup_{j} I_{j}$$
, diam $I_{j} < \frac{\delta}{3}$, $\sum_{j} |I_{j}| \le \lambda^{*}(A \cup B) + \varepsilon$

где последнее опять верно в силу того, что λ^* это точная нижняя грань. Если $I_j \cap (A \cup B) = \emptyset$, то такие множества - выбрасываем и далее считаем, что их нет. Не может быть ситуации:

$$I_i \cap A \neq \emptyset \wedge I_i \cap B \neq \emptyset$$

в противном случае, мы получим: $\forall a \in A, b \in B, \ \delta \leq \|a-b\| < \frac{\delta}{3} \Rightarrow$ противоречие. Тогда:

$$\bigcup_{j} \mathbf{I}_{j} = \bigcup_{j: \, \mathbf{I}_{j} \cap A \neq \varnothing} \mathbf{I}_{j} \sqcup \bigcup_{j: \, \mathbf{I}_{j} \cap B \neq \varnothing} \mathbf{I}_{j} \Rightarrow A \subset \bigcup_{j: \, \mathbf{I}_{j} \cap A \neq \varnothing} \mathbf{I}_{j} \wedge B \subset \bigcup_{j: \, \mathbf{I}_{j} \cap B \neq \varnothing} \mathbf{I}_{j} \Rightarrow$$

$$\Rightarrow \sum_{j} |\mathcal{I}_{j}| = \sum_{j: \mathcal{I}_{i} \cap A \neq \emptyset} |\mathcal{I}_{j}| + \sum_{j: \mathcal{I}_{i} \cap B \neq \emptyset} |\mathcal{I}_{j}| \ge \lambda^{*}(A) + \lambda^{*}(B) \Rightarrow \varepsilon + \lambda^{*}(A \cup B) \ge \lambda^{*}(A) + \lambda^{*}(B)$$

Устремляя ε к нулю, мы получаем требуемое неравенство \Rightarrow получаем требуемое равенство \Rightarrow получаем по теореме 2: $\mathcal{B}(\mathbb{R}^n) \subset \mathcal{A}_{\lambda^*}$.

Таким образом, λ^* это σ -аддитивная мера на \mathcal{A}_{λ^*} (измеримое по Лебегу множество), где $\mathcal{B}(\mathbb{R}^n) \subset \mathcal{A}_{\lambda^*}$ и далее λ^* обозначаем просто λ и называем мерой Лебега. Дополнительно, будем писать λ_n , если нам почему-то будет важно, что это на \mathbb{R}^n . Множество измеримых по Лебегу будем писать, как \mathcal{A}_{λ} . Теперь нам хотелось бы понять, как эта мера устроена.

Утв. 3. Пусть I это замкнутый брус, тогда $\lambda(I)$ это объем I: $\lambda(I) = |I|$.

 \square Брус покрыт самим собой $\Rightarrow \lambda(I) \leq |I|$. Возьмем любое покрытие I открытыми брусками, тогда покрытие можно считать конечным (из компактности):

$$I \subset \bigcup_{j} I_{j} \Rightarrow I \subset \bigcup_{m=1}^{M} I_{m} \Rightarrow |I| \leq \sum_{m=1}^{M} |I_{j}|$$

где последнее следует из следствия 2 лекции 1 этого семестра. Тогда, поскольку это верно для произвольного покрытия, то это же будет верно и для точной нижней грани, то есть: $\lambda(I) \geq |I|$.

Rm: 7. Внешние меры, которые строятся с помощью инфинумов, совершенно не обязаны продолжать то, с помощью чего мы считаем меры множеств, участвующих в покрытии.

Утв. 4.

$$E \subset \mathcal{A}_{\lambda} \Leftrightarrow E = \bigcup_{m} K_{m} \cup E_{0} \Leftrightarrow E = B \cup B_{0}$$

где K_m это компакты, E_0 и B_0 это множества меры нуль и B это борелевское множество.

Rm: 8. Заметим, что не требуется, чтобы множества E_0 и B_0 совпадали.

1) Покажем, что всякое борелевское множество B можно представить в виде $B = \bigcup_m K_m \cup B_0$, где K_m это компакты, B_0 это множество меры нуль. Можно считать, что $B \subset I$ - лежит в некотором замкнутом бруске, поскольку:

$$\mathbb{R}^n = \bigcup_k I_k \Rightarrow B = \bigcup_k (I_k \cap B)$$

Следовательно, если каждое множество $I_k \cap B$ представить в виде объединения компактов и множества меры нуль, то можно и всё борелевское так представить. λ это конечная σ -аддитивная мера на борелевских множествах на бруске: $\mathcal{B}(I)$, тогда по теореме с прошлой лекции будет верно:

$$\forall m, \exists F_m \subset B \colon \lambda(B \setminus F_m) < \frac{1}{m}$$

 F_m это замкнутое множество, $F_m \subset B \subset \mathcal{I} \Rightarrow F_m$ это компакт. Возьмем объединение F_m , тогда:

$$\bigcup_{m} F_{m} \subset B, \ B \setminus \bigcup_{m} F_{m} \subset B \setminus F_{m} \Rightarrow \lambda(B \setminus \cup_{m} F_{m}) \leq \lambda(B \setminus F_{m}) < \frac{1}{m} \to 0$$

Следовательно, получаем:

$$B = \bigcup_{m} F_m \cup \left(B \setminus \bigcup_{m} F_m \right)$$

где $B \setminus \cup_m F_m$ это множество меры нуль;

- 2) Заметим, что все стрелочки ← очевидны, поскольку борелевские множества измеримы ⇒ компакты измеримы, мы знаем, что множества меры нуль всегда измеримы (в самом начале обсуждения внешней меры проговорили) и также мы знаем, что множество измеримых это σ-алгебра ⇒ всё что получаем счётным объединением это элемент этой σ-алгебры;
- 3) По первому пункту достаточно доказать, что всякое измеримое множество есть объединение борелевского с множеством меры нуль (сделаем в следующий раз);