EXPERIMENT – 7

NAME: JVN GANESH

Roll No: 21BDS0085

```
Code
#21BDS0085
#Experiment-7
library(ggplot2)
library(dplyr)
data("iris")
# Display basic summary statistics
summary(iris)
# Z-score method to detect outliers
z_scores <- as.data.frame(scale(iris[, 1:4])) # Scaling numeric columns
# Set Z-score threshold
threshold <- 3
outliers_zscore <- rowSums(abs(z_scores) > threshold) > 0
outliers_data <- iris[outliers_zscore, ]
print("Detected outliers based on Z-score:")
print(outliers_data)
# Visualization 1: Boxplot to visualize outliers
boxplot(iris[, 1:4], main = "Boxplot to Visualize Outliers", col = "lightblue")
# Visualization 2: Sepal Length distribution with outliers highlighted
```

```
ggplot(iris, aes(x = Sepal.Length)) +
geom_histogram(aes(y = after_stat(density)), bins = 30, fill = "lightblue", color = "black") +
geom_density(color = "red") +
geom_vline(aes(xintercept = mean(Sepal.Length)), color = "green", linetype = "dashed",
linewidth = 1) +
ggtitle("Distribution of Sepal Length with Outliers") +
theme_minimal()
# IQR (Interquartile Range) method to detect outliers
Q1 <- apply(iris[, 1:4], 2, quantile, 0.25)
Q3 <- apply(iris[, 1:4], 2, quantile, 0.75)
IQR <- Q3 - Q1
# Define outlier condition using IQR
outliers_iqr <- iris %>%
filter(if_any(everything(), \sim . < (Q1 - 1.5 * IQR) | . > (Q3 + 1.5 * IQR)))
print("Outliers detected using the IQR method:")
print(outliers_iqr)
# Visualization 3: Scatter plot for Petal Length vs Petal Width highlighting outliers
ggplot(iris, aes(x = Petal.Length, y = Petal.Width, color = outliers_zscore)) +
geom_point() +
ggtitle("Scatter Plot of Petal Length vs Petal Width with Outliers Highlighted") +
theme_minimal() +
scale_color_manual(values = c("black", "red"))
```

OUTPUT SCREENHOTS

Boxplot to Visualize Outliers

OUTPUT

- >#21BDS0085
- > #Experiment-7
- > library(ggplot2)
- > library(dplyr)
- >
- > data("iris")
- >

```
> # Display basic summary statistics
> summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                          Species
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50
Median: 5.800 Median: 3.000 Median: 4.350 Median: 1.300 virginica: 50
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
> # Z-score method to detect outliers
> z_scores <- as.data.frame(scale(iris[, 1:4])) # Scaling numeric columns
> # Set Z-score threshold
> threshold <- 3
> outliers_zscore <- rowSums(abs(z_scores) > threshold) > 0
> outliers_data <- iris[outliers_zscore, ]
> print("Detected outliers based on Z-score:")
[1] "Detected outliers based on Z-score:"
> print(outliers_data)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
      5.7
16
             4.4
                     1.5
                            0.4 setosa
> # Visualization 1: Boxplot to visualize outliers
```

```
> boxplot(iris[, 1:4], main = "Boxplot to Visualize Outliers", col = "lightblue")
> # Visualization 2: Sepal Length distribution with outliers highlighted
> ggplot(iris, aes(x = Sepal.Length)) +
+ geom_histogram(aes(y = after_stat(density)), bins = 30, fill = "lightblue", color = "black") +
+ geom_density(color = "red") +
+ geom_vline(aes(xintercept = mean(Sepal.Length)), color = "green", linetype = "dashed", linewidth = 1) +
+ ggtitle("Distribution of Sepal Length with Outliers") +
+ theme_minimal()
>
> # IQR (Interquartile Range) method to detect outliers
> Q1 <- apply(iris[, 1:4], 2, quantile, 0.25)
> Q3 <- apply(iris[, 1:4], 2, quantile, 0.75)
> IQR <- Q3 - Q1
>
> # Define outlier condition using IQR
> outliers igr <- iris %>%
+ filter(if_any(everything(), ~ . < (Q1 - 1.5 * IQR) | . > (Q3 + 1.5 * IQR)))
Warning message:
There were 10 warnings in `filter()`.
The first warning was:
i In argument: `|...`.
Caused by warning in `Sepal.Length < (Q1 - 1.5 * IQR)`:
! longer object length is not a multiple of shorter object length
i Run dplyr::last_dplyr_warnings() to see the 9 remaining warnings.
```

>

- > print("Outliers detected using the IQR method:")
- [1] "Outliers detected using the IQR method:"
- > print(outliers_iqr)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	5.0	3.4	1.5	0.2	setosa
7	4.4	2.9	1.4	0.2	setosa
8	4.9	3.1	1.5	0.1	setosa
9	4.8	3.4	1.6	0.2	setosa
10	4.8	3.0	1.4	0.1	setosa
11	4.3	3.0	1.1	0.1	setosa
12	5.7	4.4	1.5	0.4	setosa
13	5.4	3.9	1.3	0.4	setosa
14	5.1	3.5	1.4	0.3	setosa
15	5.1	3.8	1.5	0.3	setosa
16	5.4	3.4	1.7	0.2	setosa
17	5.1	3.7	1.5	0.4	setosa
18	5.1	3.3	1.7	0.5	setosa
19	4.8	3.4	1.9	0.2	setosa
20	5.0	3.0	1.6	0.2	setosa

21	5.2	3.5	1.5	0.2 setosa	
22	5.2	3.4	1.4	0.2 setosa	
23	4.7	3.2	1.6	0.2 setosa	
24	5.4	3.4	1.5	0.4 setosa	
25	5.2	4.1	1.5	0.1 setosa	
26	5.5	4.2	1.4	0.2 setosa	
27	5.0	3.2	1.2	0.2 setosa	
28	5.5	3.5	1.3	0.2 setosa	
29	4.9	3.6	1.4	0.1 setosa	
30	5.1	3.4	1.5	0.2 setosa	
31	5.0	3.5	1.3	0.3 setosa	
32	4.5	2.3	1.3	0.3 setosa	
33	5.0	3.5	1.6	0.6 setosa	
34	5.1	3.8	1.9	0.4 setosa	
35	4.8	3.0	1.4	0.3 setosa	
36	4.6	3.2	1.4	0.2 setosa	
37	5.3	3.7	1.5	0.2 setosa	
38	5.0	3.3	1.4	0.2 setosa	
39	6.4	3.2	4.5	1.5 versicolor	
40	6.9	3.1	4.9	1.5 versicolor	
41	5.5	2.3	4.0	1.3 versicolor	
42	5.7	2.8	4.5	1.3 versicolor	
43	6.3	3.3	4.7	1.6 versicolor	
44	4.9	2.4	3.3	1.0 versicolor	
45	5.2	2.7	3.9	1.4 versicolor	

46	5.0	2.0	3.5	1.0 versicolor
47	5.9	3.0	4.2	1.5 versicolor
48	6.1	2.9	4.7	1.4 versicolor
49	5.6	2.9	3.6	1.3 versicolor
50	6.7	3.1	4.4	1.4 versicolor
51	5.8	2.7	4.1	1.0 versicolor
52	6.2	2.2	4.5	1.5 versicolor
53	5.6	2.5	3.9	1.1 versicolor
54	6.1	2.8	4.0	1.3 versicolor
55	6.3	2.5	4.9	1.5 versicolor
56	6.1	2.8	4.7	1.2 versicolor
57	6.6	3.0	4.4	1.4 versicolor
58	6.8	2.8	4.8	1.4 versicolor
59	6.7	3.0	5.0	1.7 versicolor
60	5.7	2.6	3.5	1.0 versicolor
61	5.5	2.4	3.8	1.1 versicolor
62	5.5	2.4	3.7	1.0 versicolor
63	6.0	2.7	5.1	1.6 versicolor
64	5.4	3.0	4.5	1.5 versicolor
65	6.0	3.4	4.5	1.6 versicolor
66	6.3	2.3	4.4	1.3 versicolor
67	5.6	3.0	4.1	1.3 versicolor
68	5.5	2.5	4.0	1.3 versicolor
69	6.1	3.0	4.6	1.4 versicolor
70	5.8	2.6	4.0	1.2 versicolor

71	5.0	2.3	3.3	1.0 versicolor
72	5.7	3.0	4.2	1.2 versicolor
73	5.7	2.9	4.2	1.3 versicolor
74	6.2	2.9	4.3	1.3 versicolor
75	5.7	2.8	4.1	1.3 versicolor
76	6.3	3.3	6.0	2.5 virginica
77	5.8	2.7	5.1	1.9 virginica
78	6.3	2.9	5.6	1.8 virginica
79	6.5	3.0	5.8	2.2 virginica
80	7.6	3.0	6.6	2.1 virginica
81	7.3	2.9	6.3	1.8 virginica
82	6.7	2.5	5.8	1.8 virginica
83	7.2	3.6	6.1	2.5 virginica
84	6.4	2.7	5.3	1.9 virginica
85	6.8	3.0	5.5	2.1 virginica
86	5.7	2.5	5.0	2.0 virginica
87	6.4	3.2	5.3	2.3 virginica
88	6.5	3.0	5.5	1.8 virginica
89	7.7	3.8	6.7	2.2 virginica
90	6.0	2.2	5.0	1.5 virginica
91	6.9	3.2	5.7	2.3 virginica
92	5.6	2.8	4.9	2.0 virginica
93	6.3	2.7	4.9	1.8 virginica
94	6.7	3.3	5.7	2.1 virginica
95	7.2	3.2	6.0	1.8 virginica

96	6.1	3.0	4.9	1.8 virginica
97	6.4	2.8	5.6	2.1 virginica
98	7.2	3.0	5.8	1.6 virginica
99	7.9	3.8	6.4	2.0 virginica
100	6.4	2.8	5.6	2.2 virginica
101	6.3	2.8	5.1	1.5 virginica
102	7.7	3.0	6.1	2.3 virginica
103	6.3	3.4	5.6	2.4 virginica
104	6.4	3.1	5.5	1.8 virginica
105	6.9	3.1	5.4	2.1 virginica
106	6.7	3.1	5.6	2.4 virginica
107	6.9	3.1	5.1	2.3 virginica
108	6.8	3.2	5.9	2.3 virginica
109	6.7	3.3	5.7	2.5 virginica
110	6.7	3.0	5.2	2.3 virginica
111	6.5	3.0	5.2	2.0 virginica
112	6.2	3.4	5.4	2.3 virginica
113	5.9	3.0	5.1	1.8 virginica

> # Visualization 3: Scatter plot for Petal Length vs Petal Width highlighting outliers

+ geom_point() +

>

- + ggtitle("Scatter Plot of Petal Length vs Petal Width with Outliers Highlighted") +
- + theme_minimal() +
- + scale_color_manual(values = c("black", "red"))

> ggplot(iris, aes(x = Petal.Length, y = Petal.Width, color = outliers_zscore)) +

