УДК 591.111.05 : 576.895.122 : 594.38

ВЛИЯНИЕ ТРЕМАТОДНОЙ ИНВАЗИИ НА НАКОПЛЕНИЕ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ПРЕСНОВОДНЫМИ МОЛЛЮСКАМИ (GASTROPODA: PULMONATA: PECTINIBRANCHIA)

© А. П. Стадниченко, Л. Д. Иваненко, Л. Н. Куркчи, О. В. Витковская, Н. Н. Калинина, Д. А. Выскушенко, А. В. Шевчук

В речной воде, содержащей Cu^{2+} , Zn^{2+} , Pb^{2+} в количестве 5, 20, 1 мкг/л соответственно, у *Lymnaea stagnalis* и *Viviparus viviparus*, зараженных партеногенетическими поколениями эхиностоматидных трематод, усиливается материальная кумуляция Cu^{2+} и Zn^{2+} , а у *L. stagnalis* — функциональная кумуляция Pb^{2+} . Накопление этих микроэлементов в избыточных количествах обусловливает сбои в функционировании различных систем органов у зараженных моллюсков, ведущее в конечном итоге к их гибели.

В настоящее время одной из ведущих форм загрязнения окружающей среды являются высокотоксичные и долгосохраняющиеся в воде ионы тяжелых металлов. Источниками этого вида загрязнения являются промышленные предприятия (рудничные, сталеплавильные, металлообрабатывающие, машиностроительные, химические, гальванические и др.), а также автотранспорт. Ионы тяжелых металлов с выхлопными газами автотранспортных средств и с недостаточно очищенными (нередко вовсе не очищенными) заводскими и шахтными стоками попадают в природные водные экосистемы, включаясь в них в круговорот веществ и энергии. Весомую роль в этом играют пресноводные брюхоногие моллюски — обычные компоненты донной фауны пресных континентальных водоемов. Они способны накапливать и задерживать в своем теле различные микроэлементы, в том числе и ионы тяжелых металлов. Влияние трематодной инвазии на эти процессы до настоящего времени оставалось неизученным.

материал и методы исследований

Материал: прудовик озерный *Lymnaea stagnalis* (Linné, 1758) и живородка речная *Viviparus viviparus duboisianus* Mousson, 1863, собранные в сентябре—октябре 1996 г. в р. Тетерев в городской черте Житомира (Украина).

Ионы тяжелых металлов (Cu^{2+} , Zn^{2+} , Pb^{2+}) в гемолимфе, тканях ноги, гепатопанкреаса и висцеральной массы моллюсков определяли с помощью атомно-абсорбционного спектрофотометра С—115 М с пламенным анализатором (стандарт СЭВ 5340). Использованы стандартные методы определения количества микроэлементов в животных тканях (Cu^{2+} — ГОСТ 269—31—86, Pb^{2+} — ГОСТ 269—32—86, Zn^{2+} — ГОСТ 269—34—86). Всего выполнено 1440 анализов. Цифровые результаты обработаны вариационно-статистическими методами по Лакину (1973).

Токсикологические опыты поставлены по методике Алексеева (1981).

¹ Висцеральный мешок со всеми внутренними органами, кроме гепатопанкреаса.

Коэффициенты накопления определены как соотношение концентрации вышеперечисленных ионов в том или ином органе моллюска и количества их в водной среде. В р. Тетерев содержание их составляет (мкг/л): $Zn^{2+} = 20$, $Cu^{2+} = 5$, $Pb^{2+} = 1$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Оказалось, что Cu^{2+} , Zn^{2+} , Pb^{2+} улавливаются из водной среды и накапливаются как легочными (*L. stagnalis*), так и переднежаберными моллюсками (*V. viviparus*) по-разному, о чем мы судим по значениям коэффициентов накопления. В наибольшей мере кумулируется животными Pb^{2+} , в наименьшей — Zn^{2+} , а Cu^{2+} занимает промежуточное положение.

Накопление ионов тяжелых металлов в организме пресноводных моллюсков осуществляется за счет адсорбции, диффузии и метаболизма (Шахмаев, 1975). В различных их органах и тканях оно протекает неодинаково интенсивно. Например, Cu²⁺, поступающий в организм этих животных в основном через перитентакулярную область и воспринимаемый амебоцитами (Rondelaud, 1976), как оказалось, в наибольших количествах задерживается гепатопанкреасом, гемолимфой меньше в 1.5—1.7, а висцеральной массой — почти в 2 раза. Наименьшие значения коэффициента накопления Cu²⁺ получены для ноги (L. stagnalis — 5780, V. viviparus — 6640).

Характер депонирования Zn^{2+} несколько иной. Наибольшие количества его зарегистрированы также в гепатопанкреасе. Однако на втором месте за ним у обоих исследованных видов находится нога. Коэффициент накопления ее тканями Zn^{2+} меньше такового гапатопанкреаса на 10-20 %. Наименьшие количества Zn^{2+} обнаружены у L. stagnalis в гемолимфе, а у V. viviparus — в висцеральной массе (коэффициент накопления 105 и 390 соответственно). Депонируется Zn^{2+} и в раковине этих животных. Например, он выявлен у L. stagnalis (Пирогов и др., 1980).

Накопление Pb²⁺ у L. stagnalis наиболее интенсивно происходит в ноге и гепатопанкреасе, у V. viviparus — в гемолимфе и гепатопанкреасе. Наименьшие его количества (в мягком теле) задерживаются висцеральной массой (коэффициент накопления 44 900 и 42 800 соответственно). В раковине L. stagnalis Pb²⁺ установлен (Пирогов и др., 1980) в следовых количествах.

Абсолютные количества Cu^{2+} , Zn^{2+} , Pb^{2+} в организме L. stagnalis и V. viviparus исчесляются тысячными (нередко и меньшими) долями процента. Общеизвестно, что микроэлементы входят в состав органических соединений преимущественно белковой природы, отличающихся высокой биологической активностью (ферменты, гормоны, дыхательные пигменты) и заметно влияющих вследствие этого на основные функции организма. Так, Cu²⁺ входит в состав сложного белка гемоцианина, осуществляющего транспортирование кислорода из легкого (L. stagnalis) и жабр (V. viviparus) к тканям и углекислого газа — в обратном направлении. Неотъемлемой составной частью ряда ферментов и гормонов, регулирующих углеводный обмен, является Zn2+. Кроме того, он усиливает активность половых гормонов, влияя тем самым на функционирование половых желез. РНК некоторых форменных элементов гемолимфы связана с небольшим, но постоянным количеством Cu²⁺ и Zn²⁺. Различные нарушения жизнедеятельности, обусловленные изменениями содержания в организме моллюсков микроэлементов, наблюдаются как при их недостатке, так и при избыточном накоплении. В последнем случае ионы тяжелых металлов, попав в организм этих животных, образуют прочные соединения с веществами, отличающимися высокой биологической активностью, которые утрачивают способность выполнять присущие им функции, что сопровождается нарушениями функционирования жизненно важных органов и тканей. Избыток Си²⁺, например, приводит к разрушению пигментных клеток соединительной ткани, в которых синтезируется дыхательный пигмент (Cheng, 1975). Ионы Cu²⁺ и Pb²⁺ вызывают сложные изменения проницаемости мембран нейронов, обусловливая, во-первых, ток ионов, направленный внутрь их, а во-вторых, подавляя ток К⁺. Кроме того, Pb²⁺ блокирует поступление в нейроны Ва²⁺ через кальциевый канал

Таблица 1
Влияние трематодиой инвазии на накопление Cu²⁺ (мг/кг) пресноводными брюхоногими моллюсками
Тable 1. The influence of the trematode infection on the accumulation of Cu²⁺ (mg/kg) by the freshwater gastropod molluscs

	7 4	Незараженные	3 1 3 8 5			Зараженны	e	
Материал	lim	$\bar{x} \pm m_{\bar{x}}$	σ	V	lim	$\overline{x} \pm m_{\overline{x}}$	σ	V
	2 2 8 9 9	L	ymnaea stagr	alis				
Нога	2.54—3.15	2.89 ± 0.09	0.23	7.93	3.23—3.4	3.32 ± 0.03	0.07	2.1
Гепатопанкреас	7.14—7.56	7.32 ± 0.06	0.14	1.91	7.5—8.46	8.02 ± 0.16	0.4	4.99
Гемолимфа	4.174.94	4.42 ± 0.13	0.32	7.24	4.78—5.61	5.24 ± 0.19	0.48	9.16
Висцеральный мешок	3.484.07	3.72 ± 0.1	0.24	6.45	3.96—4.71	4.26 ± 0.1	0.25	5.86
		V	iviparus vivip	arus				
Нога	2.4—2.84	2.53 ± 0.07	0.17	6.72	2.4—3.33	2.69 ± 0.14	0.34	12.64
Гепатопанкреас	5.047	5.72 ± 0.42	1.04	18.18	6.8—7.5	7.15 ± 0.1	0.24	3.36
Гемолимфа	4.73—5	4.86 ± 0.04	0.09	1.85	4.72—5.02	4.85 ± 0.05	0.13	2.68
Висцеральный мешок	2.90—3.1	2.97 ± 0.03	0.08	2.69	3.02—3.4	3.17 ± 0.05	0.13	4.1

Tаблица 2 Влияние трематодной инвазии на накопление Zn^{2+} (мг/кг) пресноводными брюхоногими моллюсками Table 2. The influence of the trematode infection on the accumulation of Zn^{2+} (mg/kg) by the freshwater gastropod molluscs

		Незараженные	1. ((5) (4)			Зараженные		
Материал	lim	$\bar{x} \pm m_{\bar{x}}$	σ	v	lim	$\overline{x} \pm m_{\overline{x}}$	σ	V
1,92			Lymnaea sta	gnalis	1			
Нога	1.02—1.23	1.12 ± 0.03	0.08	7.14	1.15—1.4	1.29 ± 0.04	0.09	6.98
Гепатопанкреас	1.09—1.44	1.29 ± 0.05	0.12	9.3	1.23—4.28	1.84 ± 0.49	1.2	65.22
Гемолимфа	0.12—0.32	0.21 ± 0.03	0.07	33.33	0.11-0.31	0.19 ± 0.03	0.08	42.1
Висцеральный мешок	0.82—1.11	0.92 ± 0.04	0.1	10.87	0.02-1.2	1.06 ± 0.05	0.11	10.37
		· Kanaa nata	Viviparus vivi	iparus	1	The state of the s		
Нога	0.89—1	0.93 ± 0.18	0.17	18.28	0.98—1.02	0.84 ± 0.07	0.18	21.43
Гепатопанкреас	1—1.8	1.05 ± 0.02	0.05	4.76	1.08—1.24	1.16 ± 0.03	0.08	6.89
Гемолимфа	0.7—0.82	0.81 ± 0.03	0.08	9.87	0.7—0.11	0.44 ± 0.15	0.36	81.82
Висцеральный мешок	0.7—0.82	0.78 ± 0.09	0.23	8.9	0.78—0.9	0.83 ± 0.02	0.05	6.02

		Потововод						
Moreone		пезараженные				зараженные		
Maichnai	lim	$x \pm m_{\bar{x}}$	ь	>	lim	$x \pm m_{\bar{x}}$	ь	>
	_	Lym	Lymnaea stagnalis	is				-
Hora	9.32—9.73	9.55 ± 0.06	0.14	1.47	8.92—11.56	10.19 ± 0.4	0.97	9.52
Гепатопанкреас	6.74—8.73	7.81 ± 0.3	0.71	9.47	5.53—20.91	16.59 ± 3.42	8.38	50.49
Гемолимфа	6.59—8.91	7.73 ± 0.3	0.75	9.65	7.19—18.31	11.29 ± 1.88	4.59	40.7
Висцеральный мешок	4.17—4.91	4.49 ± 0.12	0.3	89.9	4.51—6.15	5.07 ± 0.23	0.57	11.24
		Vivip	Viviparus viviparus	us		OF REAL PROPERTY.		
Hora	7.03—7.3	7.2 ± 0.04	0.1	1.38	7.13—7.3	7.19 ± 0.04	0.1	1.39
Гепатопанкреас	5.52—11.3	7.77 ± 0.95	2.33	29.98	5.52—11.13	7.73 ± 0.95	2.33	30.14
Гемолимфа	7.05—10.05	8.3 ± 0.33	8.0	9.64	7.05—10	7.29 ± 0.48	1.19	16.32
Висцеральный мешок	4.15—4.32	4.28 ± 0.04	0.09	9.6	4.15—4.32	4.28 ± 0.03	0.08	1.87

(Salanki e. a., 1991). При высокой концентрации Cu²⁺ и Zn²⁺ замедляется рост моллюсков, отодвигаются сроки наступления половозрелости и наблюдаются разного рода аномалии в формирующихся кладках.

Токсикологическими опытами установлено, что ядовитость для L. stagnalis и V. viviparus вышеперечисленных ионов тяжелых металлов в порядке ее убывания такова: Cu^{2+} , Zn^{2+} , Pb^{2+} . А чувствительность этих моллюсков к Cu^{2+} , Zn^{2+} , Pb^{2+} в 100-150 раз больше, чем пресноводных рыб.

Исследованные нами животные были инвазированы «птичьими» эхиностоматидными трематодами. У L. stagnalis обнаружены редии Echinoparyphium aconiatum Dietz, 1909, у V. viviparus — локализованные в гепатопанкреасе редии Есhinoparyphium sp. с церкариями разной степени зрелости. Интенсивность инвазии невысокая. Очаги паразитарного поражения пищеварительной железы каждый площадью не более $1-1.7 \times 1.3-2$ мм зарегистрированы в количестве 4-7 на одну особь (преимущественно в проксимальной части органа). Случаи тотального поражения трематодами гостального биотопа были крайне редкими.

При инвазии у L. stagnalis во всех обследованных органах и тканях, а у V. viviparus во всех, за исключением ноги и висцеральной массы, отмечено избыточное накопление Cu^{2+} (табл. 1). У первого вида превышение нормы по этому показателю составляет 15, а у второго — 20 % (Р > 99.9 %). Следует отметить, что у L. stagnalis материальная кумуляции Cu2+ осуществляется в одинаковой мере во всех исследованных органах, в то время как у V. viviparus при инвазии она резко усиливается (на 30 %) в гепатопанкреасе (Р > 99.9 %) и в 3-5 раз менее этого — в висцеральной массе. И это при том, что накопление Си2+ их организмом это интегральный процесс (Капков, 1971): наряду с поглощением этих ионов происходит активное выведение их токсического избытка из организма. Увеличение концентрации Cu^{2+} в отдельных тканях и органах, инвазированных трематодами моллюсков, обусловлено, скорее всего, расстройством тех механизмов, которые обеспечивают выведение из их организма вредных его излишков. Депонирование Cu^{2+} до определенного предела сопровождается развитием у этих животных патологического процесса, вызванного отравлением их этим чрезвычайно токсичным для них элементом, завершающегося гибелью. Показано, например, что гибель *Unio tumidus* наступает тогда, когда содержание Cu^{2+} в их жабрах составляет 300 мкг на 1 г сухой массы их тела (Капков, 1971). Брюхоногие моллюски более чувствительны и менее устойчивы к его избытку. Следовательно, летальный исход должен наблюдаться у них при меньшей концентрации Cu^{2+} в организме.

Содержание Zn^{2+} у инвазированных L. stagnalis возрастает в среднем в 1.3 раза (табл. 2). При этом накопление этого микроэлемента в его гемолимфе остается на уровне нормы. У V. viviparus в гепатопанкреасе и висцеральной массе количество Zn^{2+} увеличивается в среднем на 10% (P>98.8%), в ноге не изменяется, а в гемолимфе сокращается почти вдвое (P>99.9%), что свидетельствует об ярко выраженном функциональном напряжении. В данном случае, как и в случае с Cu^{2+} , имеет место материальная кумуляция элементов (Метелев и др., 1971), при которой накопление Zn^{2+} осуществляется вследствие многократного его поступления в организм моллюсков при нарушении выведения его избыточных количеств.

Наибольшие различия между L. stagnalis и V. viviparus обнаружены по характеру концентрации Pb^{2+} (табл. 3). У первого из упомянутых моллюсков при наличии трематодной инвазии резко возрастает накопление Pb^{2+} . Его содержание увеличивается в гемолимфе в 1.5, а в гепатопанкреасе — в 2 раза ($P > 99.9\,$ %). Наименее страдает в этом случае висцеральная масса, содержание Pb^{2+} в которой повышается всего лишь на 13 %. Концентрация Pb^{2+} инвазированными трематодами животными — следствие функциональной кумуляции, вызывающей сенсибилизацию их организма к повторным воздействиям на него этим реагентом. У зараженных V. viviparus уровень содержания Pb^{2+} в организме не изменяется, причины чего для нас пока остаются неясными.

Следовательно, при трематодной инвазии как у легочных, так и у переднежаберных моллюсков нарушаются физиологические барьеры, препятствующие чрезмерному накоплению микроэлементов в их организме. Это сопровождается сдвигами регуляции их минерального обмена, приводящими в преобладающем большинстве случаев к концентрации Cu^{2+} , Zn^{2+} , Pb^{2+} в различных органах и тканях. Оно влечет за собой нарушения их функционирования, что снижает жизнеспособность особей и в тяжелых случаях ведет к летальному исходу.

Список литературы

- Алексеев В. А. Основные принципы сравнительно-токсикологического эксперимента // Гидробиол. журн. 1981. Т. 17, № 3. С. 92—100.
- Капков В. И. Токсичность комплексных соединений меди для пресноводных моллюсков // Вест. МГУ. 1971. № 2. С. 34—37.
- Лакин Г. Ф. Биометрия. М.: Высш. шк., 1973. 343 с.
- Метелев В. В., Канаев А. И., Дзасохова Н. Г. Водная токсикология. М.: Колос, 1971. 247 с.
- Пирогов В. В., Зайнутдинова Р. А., Заленухин В. В., Андрианов В. А., Соколов Л. Г., Воробьев В. Б., Кириллов В. Н., Воробьев В. И. Микроэлементы у моллюсков Нижней Волги // Роль микроэлементов в жизни водоемов. М.: Наука, 1980. С. 112—121.
- Шахмаев Н. К. Пресноводные униониды как биоиндикаторы и концентраторы марганца, кобальта, меди и железа: Автореф. дис. ... канд. биол. наук. Томск, 1975. 22 с.

- Cheng T. Does copper cause anemia in Biomphalaria glabrata? // J. Invertebr. Pathol. 1975. Vol. 26, N 3. P. 421—422.
- Rondelaud D. Chaisemarmiques sur le transfert de deux metaux (Fe³⁺, Cu²⁺) chez Lymnaea (Galba) truncatula Müller (Mollusques Gasteropodes Pulmones) // Ann. Limnol. 1976. T. 12, N 3. P. 269—281.
- Salanki G., Osipenko O. N., Kiss T., Gyori G. Molluscan Neurobiol. # Proc. 3rd Symp. (Amsterdam, Aug. 20—21, 1990). Amsterdam, 1991. P. 214—220.

Житомирский пединститут, 262000 Поступила 13.05.1997

INFLUENCE OF THE TREMATODE INFECTION ON ACCUMULATION OF METAL IONS BY FRESHWATER MOLLUSCS (GASTROPODA: PULMONATA: PECTINIBRANCHIA)

A. P. Stadnichenko, L. D. Ivanenko, L. N. Kurkchi, O. V. Vitkovskaya, N. N. Kalinina, D. A. Vyskushenko, A. V. Shevchuk

Key words: Lymnaea stagnalis, Viviparus viviparus, Cu²⁺, Zn²⁺, Pb²⁺, trematode infection.

SUMMARY

Freshwater molluscs Lymnaea stagnalis and Viviparus viviparus, infected with parthenogenetic generations of echinostomatid trematodes and reared in a fresh water containing metal ions Cu²⁺, Zn²⁺, Pb²⁺ (concentrations 5, 20, 1 mkg/l respectively), demonstrate an increasing of material accumulation of Cu²⁺ and Zn²⁺ in both species. A functional accumulation of Pb is observed in L. stagnalis only. The accumulation of these elements in excessive amount causes a damage of different systems in the infected molluscs and finally leads to their death.