Equazioni del piano: piano per l'origine I

Consideriamo un sistema di riferimento cartesiano ortonormale Oxyz nello spazio V.

Si è visto che ogni punto P dello spazio V può essere rappresentato con una terna ordinata di numeri reali $(x,y,z) \in \mathbb{R}^3$ (e viceversa), scrivendo P(x,y,z).

Piano passante per l'origine

Un piano passante per l'origine può essere visto come un sottospazio di dimensione ${\bf 2}$ di V.

Pertanto dati due vettori $v_1 = (x_1, y_1, z_1)$ e $v_2 = (x_2, y_2, z_2)$ linearmente indipendenti, il piano π generato dai due vettori passante per l'origine è individuato dalle equazioni:

$$x = x_1t + x_2s$$

$$y = y_1t + y_2s$$

$$z = z_1t + z_2s$$

dette equazioni parametriche.

Infatti ogni punto v del piano è combinazione lineare dei due vettori (vettori direttori) che lo generano:

$$v = tv_1 + sv_2$$

Equazioni del piano: piano per l'origine II

Ricavando dalle equazioni parametriche i parametri s e t, si ottiene la corrispondente equazione cartesiana del piano passante per l'origine, espressa in forma implicita:

$$ax + by + cz = 0$$

dove i coefficienti *a*, *b*, *c* sono legati alle coordinate dei vettori di base (a meno di una costante moltiplicativa):

$$a = y_1 z_2 - y_2 z_1$$
 $b = z_1 x_2 - x_1 z_2$ $c = x_1 y_2 - y_1 x_2$

Esempio I

Dati $v_1=(2,0,2)$ e $v_2=(1,-1,0)$, il piano π passante per l'origine è individuato dalle equazioni parametriche:

$$x = 2t +s$$

$$y = -s$$

$$z = 2t$$

Ricavando s e t, si ottiene l'equazione cartesiana:

$$x + y - z = 0$$

che è definita a meno di una costante moltiplicativa.

Esempio II

L'equazione del piano ax + by + cz = 0 si può anche esprimere come

$$(a,b,c)\begin{pmatrix} x\\y\\z\end{pmatrix}=0$$

 $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ individua un vettore ortogonale al piano.

Nel caso dell'esempio, $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ è il vettore ortogonale al piano.

Equazioni del piano: caso generale

Se π è un piano non passante per l'origine, fissato un punto $P(x_0, y_0, z_0)$ del piano e due vettori linearmente indipendenti che generano il piano parallelo a π passante per l'origine (vettori direttori $v_1 = (x_1, y_1, z_1)$ e $v_2 = (x_2, y_2, z_2)$), le equazioni parametriche del piano sono date da:

$$x = x_0 + x_1t + x_2s$$

$$y = y_0 + y_1t + y_2s$$

$$z = z_0 + z_1t + z_2s$$

(Ogni punto del piano si ottiene come la somma di P e di un elemento del piano parallelo passante per l'origine).

Ricavando $s \in t$, si ottiene la corrispondente equazione cartesiana, detta equazione affine del piano:

$$ax + bv + cz + d = 0$$

dove i coefficienti a, b, c, d sono legati alle coordinate dei vettori di base e di P.

Esempio

Trovare l'equazione del piano passante passante per i punti $P_1(1,0,0)$, $P_2(0,1,0)$, $P_3(0,0,1)$.

I vettori $P_1P_2\equiv (-1,1,0)$ e $P_1P_3\equiv (-1,0,1)$ sono vettori direttori (linearmente indipendenti) e il piano passa per P_1 . Pertanto si ha

$$x = 1 -t - s$$

$$y = t$$

$$z = s$$

Da cui si ricava l'equazione affine:

$$x + y + z - 1 = 0$$

Equazioni del piano

Equazione affine del piano

Un piano π è rappresentato da una equazione lineare in x,y,z (e viceversa), ossia da una equazione del tipo

$$ax + by + cz + d = 0$$

con a, b, c, d reali non tutti nulli:

$$P(x_0, y_0, z_0) \in \pi \Leftrightarrow ax_0 + by_0 + cz_0 + d = 0$$

 $\Leftrightarrow (x_0, y_0, z_0)$ è soluzione dell'equazione $ax + by + cz + d = 0$

I coefficienti a, b, c, d sono individuati a meno di una costante moltiplicativa.

Le equazioni 2x - 3y + 5z + 7 = 0 e 4x - 6y + 10z + 14 = 0 rappresentano lo stesso piano.

L'equazione del piano si può anche esprimere come

$$(a,b,c)\begin{pmatrix} x\\y\\z\end{pmatrix}+d=0$$

individua un vettore ortogonale al piano.

Esempio

Trovare l'equazione del piano passante passante per i punti $P_1(1,0,0)$, $P_2(0,1,0)$, $P_3(0,0,1)$.

Oltre a come si è fatto precedentemente, si può anche ragionare in modo diverso. Si impone il passaggio per P_1 , P_2 , P_3 di ax + by + cz + d = 0:

$$a+d=0$$
 passaggio per P_1
 $b+d=0$ passaggio per P_2
 $c+d=0$ passaggio per P_3

Da cui
$$a=-d$$
; $b=-d$; $c=-d$, con $d\neq 0$ e quindi, π è dato da
$$-d(x+y+z-1)=0 \Leftrightarrow x+y+z-1=0$$

Stella di piani

Si determinino le equazioni dei piani passanti per $P_0(x_0, y_0, z_0)$ (stella dei piani per P_0).

Sia π : ax + by + cz + d = 0. Imponendo il passaggio per P_0 si ha:

$$ax_0 + by_0 + cz_0 + d = 0$$
 passaggio per P_0
 $d = -ax_0 - by_0 - cz_0$

Sostituendo tale espressione al posto di *d* nell'equazione iniziale si ottiene:

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

Esempio.

Se $P_0(1,2,-3)$, la stella di piani per P_0 è data da:

$$a(x-1) + b(y-2) + c(z+3) = 0$$

Al variare di a, b, c si ottengono tutti i piani passanti per P_0 (sono infiniti).

Proprietà di piani I

Teorema

Se $\pi \equiv ax + by + cz + d = 0$, allora

- $d = 0 \Leftrightarrow \pi$ passa per l'origine
- il coefficiente di una incognita è nulla

 il piano è parallelo all'asse che porta il nome di quella incognita.

Esempio.

- $\pi \equiv 2x + y 5 = 0$ è parallelo all'asse z perchè c = 0 (qualunque valore assunto da z soddisfa l'equazione)
- $\pi \equiv 2x 5 = 0$ è parallelo all'asse y perchè b = 0 ed è parallelo all'asse z perchè c = 0; quindi è parallelo al piano yz
- π ≡ 3x z = 0 è parallelo all'asse y perchè b = 0 e passa per l'origine perchè d = 0; quindi π contiene l'asse y
- $\pi \equiv z = 0$ è parallelo agli assi x e y (perchè a = b = 0) e passa per l'origine perchè d = 0; quindi π è il piano xy
- Analogamente $\pi \equiv y = 0$ è il piano xz e $\pi \equiv x = 0$ è il piano yz.

Proprietà di piani II

Osservazione.

Se $\pi \equiv ax+by+cz+d=0$ e $c\neq 0$ (ossia π non è parallelo all'asse z), allora l'equazione di π si può scrivere nella forma

$$z = -\frac{a}{c}x - \frac{b}{c}y - \frac{d}{c} \Leftrightarrow z = px + qy + r$$

con $p=-\frac{a}{c}$; $q=-\frac{b}{c}$; $r=-\frac{d}{c}$, detta equazione esplicita del piano π ; π interseca l'asse z nel punto P(0,0,r).

Intersezione tra piani

Dati due piani

$$\pi_1 \equiv a_1 x + b_1 y + c_1 z + d_1 = 0$$
 $\pi_2 \equiv a_2 x + b_2 y + c_2 z + d_2 = 0$

le soluzioni del seguente sistema rappresentano i punti di intersezione tra i piani:

$$a_1x + b_1y + c_1z = -d_1$$

 $a_2x + b_2y + c_2z = -d_2$

La matrice associata è $A=\left(\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array}\right)$ e il termine noto è $d=\left(\begin{array}{ccc} -d_1 \\ -d_2 \end{array}\right)$.

Il rango della matrice A è al più 2; quindi i casi possibili sono:

- Se r(A) = r(A|d) = 2 il sistema ha un numero infinito di soluzioni ∞^{3-2} , ossia i due piani si intersecano in una retta
- Se r(A) = 1 e r(A|d) = 2, allora il sistema non ha soluzione e i piani sono **paralleli distinti**. In questo caso si ha che i vettori (a_1, b_1, c_1) e (a_2, b_2, c_2) sono proporzionali
- Se r(A) = r(A|d) = 1 allora i due piani **coincidono**, perchè si hanno $\infty^{3-1} = \infty^2$ soluzioni

Parallelismo e perpendicolarità tra piani

Teorema

Dati i piani

$$\pi \equiv ax + by + cz + d = 0$$

$$\pi_1 \equiv a_1x + b_1y + c_1z + d_1 = 0$$

allora

$$\bullet \ \pi \| \pi_1 \Leftrightarrow \tfrac{a}{a_1} = \tfrac{b}{b_1} = \tfrac{c}{c_1}$$

 $\bullet \ \pi \bot \pi_1 \Leftrightarrow aa_1 + bb_1 + cc_1 = 0$

Il piano passante per $P_0(x_0,y_0,z_0)$ e parallelo a $\pi \equiv ax+by+cz+d=0$ è univocamente determinato e ha equazione

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

Esistono invece infiniti piani passanti per $P_0(x_0, y_0, z_0)$ e perpendicolari a $\pi \equiv ax + by + cz + d = 0$.

Esempi I

- I piani $\pi \equiv x 3y + 5z + 1 = 0$ e $\pi_1 \equiv 2x 6y + 10z 3 = 0$ sono paralleli distinti: $(1, -3, 5) = \frac{1}{2}(2, -6, 10)$.
- I piani $\pi \equiv x 3y + 5 = 0$ e $\pi_1 \equiv 2x 6y + 7 = 0$ sono paralleli distinti: $(1, -3, 0) = \frac{1}{2}(2, -6, 0)$.
- I piani $\pi \equiv x 2y + 3z + 5 = 0$ e $\pi_1 \equiv x y z + 8 = 0$ sono perpendicolari:

$$(1,-2,3)$$
 $\begin{pmatrix} 1\\-1\\-1 \end{pmatrix} = 1.1 + (-2)(-1) + 3.(-1) = 0.$

• I piani $\pi \equiv x - z = 0$ e $\pi_1 \equiv x + z = 0$ sono perpendicolari:

$$(1,0,-1)$$
 $\begin{pmatrix} 1\\0\\1 \end{pmatrix} = 1.1 + 0.0 + (-1).1 = 0.$

• I piani $\pi \equiv x - 5 = 0$ e $\pi_1 \equiv z + 3 = 0$ sono perpendicolari:

$$(1,0,0)$$
 $\begin{pmatrix} 0\\0\\1 \end{pmatrix} = 1.0 + 0.0 + 0.1 = 0.$

• I piani $\pi \equiv x + 3y - z = 0$ e $\pi_1 \equiv 3x + y + 4 = 0$ non sono nè paralleli, nè perpendicolari, ma hanno una retta in comune (r(A) = r(A|d) = 2):

$$\begin{pmatrix} 1 & 3 & -1 & | & 0 \\ 3 & 1 & 0 & | & -4 \end{pmatrix} \quad \mathsf{retta} \to (x, y, z) = (-3/2, 1/2, 0) + (-1/8, 3/8, 1)t$$

Esempi II

- Determinare l'equazione del piano (o dei piani) passante per $P_0(1,2,-1)$ e
 - parallelo a $\pi_1 \equiv 3x 5y + z 8 = 0$

#

$$\pi \equiv 3(x-1) - 5(y-2) + (z+1) = 0$$
 $\rightarrow 3x - 5y + z + 8 = 0$

• perpendicolare a $\pi_2 \equiv x - y + 3z + 7 = 0$

#

Occorre che a-b+3c=0; dunque posto a=b-3c, ci sono ∞ piani dati da

$$\pi \equiv (b - 3c)(x - 1) + b(y - 2) + c(z + 1) = 0$$

• perpendicolare a $\pi_3 \equiv x-y+4z+1=0$ e $\pi_4 \equiv 2x+y-z+8=0$

⇓

Occorre che a-b+4c=0 e 2a+b-c=0; da cui a=-c,b=3c; pertanto posto c=-1, si ha

$$\pi \equiv (x-1) - 3(y-2) - (z+1) = 0$$
 $\rightarrow x - 3y - z + 4 = 0$

Esempi III

- Determinare l'equazione del piano (o dei piani) passante per $P_0(1,2,-1)$ (a(x-1)+b(y-2)+c(z+1)=0)
 - parallelo al piano xy

poichè
$$a = b = 0$$
 e $c = 1$,

$$\pi \equiv z + 1 = 0$$

parallelo al piano xz

$$\pi \equiv y - 2 = 0$$

parallelo al piano yz

$$\pi \equiv x - 1 = 0$$

Problema dei quattro punti

Nello spazio, è possibile chiedersi se quattro punti stiano sullo stesso piano.

Ciò è equivalente a chiedersi se il quarto punto appartiene o meno al piano passante per i primi tre.

Dati quindi i punti $P(x_1, y_1, z_1)$, $Q(x_2, y_2, z_2)$, $S(x_3, y_3, z_3)$ e $T(x_4, y_4, z_4)$ si ha che i due vettori che generano il piano cercato sono, ad esempio,

$$PQ \equiv (x_2 - x_1, y_2 - y_1, z_2 - z_1) \text{ e } PS \equiv (x_3 - x_1, y_3 - y_1, z_3 - z_1).$$

L'appartenenza di ${\it T}$ a tale piano equivale a dire che il vettore

 $PT \equiv (x_4 - x_1, y_4 - y_1, z_4 - z_1)$ è combinazione lineare dei due precedenti, ossia al fatto che:

$$A = \begin{pmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 \end{pmatrix}$$

abbia determinante nullo.

Sfruttando le proprietà del determinante, operando sulle righe della matrice A' (II riga - I riga; III riga - I riga; IV riga - I riga), si ha che:

$$\det(A') = \det\begin{pmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{pmatrix} = \det\begin{pmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 & 0 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 & 0 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 & 0 \end{pmatrix} = -\det(A)$$

Quindi dato un punto di generiche coordinate (x_4, y_4, z_4) , la condizione di complanarità con altri tre punti P, Q ed S, è equivalente ad avere det(A') = 0.

Equazioni della retta nello spazio

Una retta dello spazio V passante per l'origine è un sottospazio di dimensione uno. Quindi corrisponde a tutti i multipli di un vettore dato, ossia, una retta r con generatore dato dal vettore $v=(v_1,v_2,v_3)$ può essere espressa da:

$$r \equiv (x, y, z) = t(v_1, v_2, v_3)$$
 $t \in \mathbb{R}$

che si traduce in tre equazioni lineari, dette equazioni parametriche della retta:

$$\begin{cases} x = v_1 t \\ y = v_2 t \\ z = v_3 t \end{cases}$$

Si dicono parametri direttori della retta le coordinate del vettore v e di ogni vettore non nullo parallelo alla retta.

Osservazione. I parametri direttori di una retta sono definiti a meno di un fattore di proporzionalità non nullo (se v è parallelo a r, αv lo è pure, per ogni $\alpha \neq 0$).

Dalle equazioni parametriche della retta, esplicitando il parametro t si hanno

$$\frac{x}{v_1} = \frac{y}{v_2} = \frac{z}{v_3}$$

che sono invece dette equazioni cartesiane di una retta.

Equazioni della retta nello spazio I

Per descrivere una retta dello spazio **non passante per l'origine**, è sufficiente specificare un vettore direttore $v=(v_1,v_2,v_3)$ e un punto $P=(x_0,y_0,z_0)$ appartenente alla retta. Si ottengono così le **equazioni parametriche**:

$$\begin{cases} x = x_0 + v_1 t \\ y = y_0 + v_2 t \\ z = z_0 + v_3 t \end{cases}$$

e, ricavando t, le equazioni cartesiane:

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3}$$

Qui v_1, v_2, v_3 sono i parametri direttori della retta.

Equivalentemente, dati due punti $P = (x_1, y_1, z_1)$ e $Q = (x_2, y_2, z_2)$, per essi passa una e una sola retta con vettore direttore $v = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$ passante per P. Le **equazioni parametriche** si possono scrivere come:

$$\begin{cases} x = x_1 + (x_2 - x_1)t \\ y = y_1 + (y_2 - y_1)t \\ z = z_1 + (z_2 - z_1)t \end{cases}$$

Equazioni della retta nello spazio II

e le equazioni cartesiane come:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

dette anche equazioni frazionarie della retta PQ.

Dalle equazioni cartesiane o frazionarie, ponendo $v_1 = x_2 - x_1$, $v_2 = y_2 - y_1$, $v_3 = z_2 - z_1$, si possono dedurre le **equazioni ridotte** della retta, dove due incognite sono espresse in funzione della terza; per esempio:

$$x = gz + p$$
$$y = hz + q$$

Si vedano gli esempi.

• La retta passante per $P_1(1,2,3)$ e $P_2(2,3,4)$ è data da

$$r \equiv \frac{x-1}{2-1} = \frac{y-2}{3-2} = \frac{z-3}{4-3}$$

$$r \equiv \frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{1}$$

da cui si ha

$$r \equiv \left\{ \begin{array}{l} x - 1 = z - 3 \\ y - 2 = z - 3 \end{array} \right.$$

Queste (x = z - 2; y = z - 1) sono dette **equazioni ridotte** di r, perchè due incognite sono espresse in funzione della terza (sono due piani, uno parallelo all'asse y e l'altro parallelo all'asse x che contengono r).

Da queste si ottengono anche le equazioni parametriche date da

$$r \equiv \begin{cases} x = t - 2 \\ y = t - 1 \\ z = t \end{cases}$$

Al variare di t, si ottengono tutti i punti della retta P(t-2, t-1, t).

• La retta passante per $P_1(1,2,3)$ e $P_2(1,3,4)$ è data da

$$r \equiv \frac{x-1}{1-1} = \frac{y-2}{3-2} = \frac{z-3}{4-3}$$

Convenendo di annullare il numeratore quando il denominatore si annulla, si ottiene che la retta è l'intersezione di (equazioni ridotte)

$$x = 1, y - 2 = z - 3$$

La retta appartiene al piano parallelo a yz dato da x - 1 = 0.

• La retta passante per $P_1(1,2,3)$ e $P_2(1,2,4)$ è data da

$$\frac{x-1}{1-1} = \frac{y-2}{2-2}$$

ossia da due piani che hanno equazione x=1,y=2; queste sono le equazioni ridotte. In questo caso r è parallela all'asse z, in quanto tutti i punti sono del tipo $P(1,2,\alpha),\ \alpha\in\mathbb{R}$.

Esempi III

• La retta passante per $P_1(1,2,-1)$ e parallela a v=(2,-1,1) è data dalle seguenti equazioni parametriche:

$$r \equiv \begin{cases} x = 1 + 2t \\ y = 2 - t \\ z = -1 + t \end{cases}$$

Le equazioni frazionarie sono

$$\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z+1}{1}$$

Le equazioni ridotte sono: x = 2z + 3, y = -z + 1.

• La retta passante per $P_1(1,2,3)$ e parallela a v=(1,2,0) ha equazioni:

$$r \equiv \begin{cases} x = 1 + t \\ y = 2 + 2t \\ z = 3 \end{cases}$$

Poichè il terzo parametro direttore è nullo, la retta ha valore di quota costante e uguale a 3 ossia è parallela al piano xy (vedi punto P_1). Le equazioni ridotte sono y = 2x; z = 3.

Esempi IV

- La retta passante per $P_1(1,2,-4)$ e parallela a v=(0,2,0) ha equazioni x=1; z=-4 (parallela all'asse y).
- Le equazioni della retta r passante per $P_0(x_0, y_0, z_0)$ sono date da

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3}$$

(stella di rette di centro P_0). Al variare di v_1, v_2, v_3 si ottengono le equazioni di tutte le rette per P_0 .

Equazioni della retta nello spazio I

Dati due piani non paralleli

$$\pi_1 \equiv a_1 x + b_1 y + c_1 z = d_1$$

 $\pi_2 \equiv a_2 x + b_2 y + c_2 z = d_2$

una retta r intersezione dei due piani si può descrivere anche come la soluzione del sistema (di rango 2):

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$

Esempi

- L'asse z è rappresentato da x = 0; y = 0, ma anche ad esempio da x 3y = 0; 2x 5y = 0; infatti queste ultime sono equazioni di due piani che contengono l'asse z in quanto $c_1 = d_1 = 0$; $c_2 = d_2 = 0$.
- L'asse y è rappresentato da x=0; z=0, ma anche ad esempio da x-3z=0; 2x+6z=0; infatti queste ultime sono equazioni di due piani che contengono l'asse y in quanto $b_1=d_1=0$; $b_2=d_2=0$.
- L'asse x è rappresentato da y = 0; z = 0, ma anche ad esempio da 2y + z = 0; y + 6z = 0; infatti queste ultime sono equazioni di due piani che contengono l'asse x in quanto $a_1 = d_1 = 0$; $a_2 = d_2 = 0$.

Equazioni della retta nello spazio II

Si dimostra che i parametri direttori della retta si ottengono prendendo ordinatamente i determinanti di minori di ordine 2 della matrice, con segno alterno

$$\left(\begin{array}{ccc}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2
\end{array}\right)$$

ossia

$$v_1 = \left| \begin{array}{cc|c} b_1 & c_1 \\ b_2 & c_2 \end{array} \right| \quad v_2 = - \left| \begin{array}{cc|c} a_1 & c_1 \\ a_2 & c_2 \end{array} \right| \quad v_3 = \left| \begin{array}{cc|c} a_1 & b_1 \\ a_2 & b_2 \end{array} \right|$$

Infatti, posto $A_1 = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$, si ha

$$x = \frac{1}{A_1} \begin{vmatrix} d_1 - c_1 z & b_1 \\ d_2 - c_2 z & b_2 \end{vmatrix} = \frac{1}{A_1} \begin{vmatrix} d_1 & b_1 \\ d_2 & b_2 \end{vmatrix} + \frac{z}{A_1} \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}$$

$$y = \frac{1}{A_1} \begin{vmatrix} a_1 & d_1 - c_1 z \\ a_2 & d_2 - c_2 z \end{vmatrix} = \frac{1}{A_1} \begin{vmatrix} a_1 & d_1 \\ a_2 & d_2 \end{vmatrix} - \frac{z}{A_1} \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$$

Dalle equazioni parametriche con $z = A_1 t$, posto $v_3 = A_1$, si ottengono v_1 e v_2 .

Equazioni della retta nello spazio III

Esempio

Trovare i parametri direttori della retta

$$2x - 3y + z - 1 = 0$$
$$x - 4y + 7z - 8 = 0$$

Si ottiene

$$v_1 = \begin{vmatrix} -3 & 1 \\ -4 & 7 \end{vmatrix} = -17; v_2 = -\begin{vmatrix} 2 & 1 \\ 1 & 7 \end{vmatrix} = -13; v_3 = \begin{vmatrix} 2 & -3 \\ 1 & -4 \end{vmatrix} = -5$$

Incidenza tra rette l

In generale il problema dell'incidenza tra due rette r ed s, può essere tradotto nel seguente sistema lineare:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$
 $a_4x + b_4y + c_4z = d_4$

o anche $A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = d$, le cui soluzioni sono determinate dalla relazione tra il r(A) e il

r(A|d). Chiaramente il rango massimo di $A \ge 3$. Discutendo i vari casi si ha:

- r(A) è almeno 2, in quanto le equazioni che specificano le rette r ed s sono entrambi associate ad una matrice 2×3 di rango 2.
- r(A) = 2; r(A|d) = 3: il sistema non ha soluzione e quindi le rette non sono incidenti;
- r(A) = r(A|d) = 2: si hanno un numero ∞^1 di soluzioni, il che implica che le due rette coincidono;
- r(A) = 3; r(A|d) = 4: non ci sono soluzioni, ossia le due rette **non** sono incidenti;
- r(A) = 3; r(A|d) = 3: il sistema ha una e una sola soluzione, ossia le rette sono incidenti

Incidenza tra rette II

Dire che due rette sono incidenti significa che esiste un punto in comune, che corrispone alla soluzione del sistema associato.

Chiaramente quando due rette sono parallele o coincidono oppure non hanno punti in comune.

Non è vero il viceversa. **Esistono rette senza punti in comune ma non parallele,** ad esempio:

$$r \equiv x = 0$$
; $y = 0$ $s \equiv z = 1$; $y = 1$

r è l'asse z, mentre s è una retta parallela all'asse x data dai punti $P(\alpha,1,1)$ che non interseca z.

Parallelismo e perpendicolarità tra rette

Il problema della perpendicolarità e parallelismo tra rette è del tutto analogo a quello nel piano.

Due rette con vettori direttori v e u sono parallele quando hanno lo stesso vettore direttore a meno di proporzionalità, ossia:

$$v = (v_1, v_2, v_3) = \alpha(u_1, u_2, u_3) = \alpha u$$

Se si tratta di due rette passanti per uno stesso punto queste coincidono.

Teorema

Date due rette r e s con parametri direttori v e u rispettivamente, si ha che:

- $r||s \Leftrightarrow \frac{v_1}{v_1} = \frac{v_2}{v_2} = \frac{v_3}{v_2}$
- \bullet $r \perp s \Leftrightarrow v_1 u_1 + v_2 u_2 + v_3 u_3 = 0$

Segue che la retta passante per $P_0(x_0, y_0, z_0)$ e parallela alla retta r di vettore direttore v è unica e ha equazione:

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3}$$

Esistono invece **infinite** rette passanti per P_0 e perpendicolari alla retta r.

Esempi I

Trovare le equazioni della retta (o delle rette) r tali che:

• passante per P(1, -1, 4) e parallela alla retta

$$r_1 \equiv \left\{ \begin{array}{l} x = 2z - 1; \\ y = 3z - 4 \end{array} \right.$$

Le equazioni frazionarie di r_1 sono $r_1 \equiv \frac{x+1}{2} = \frac{y+4}{3} = \frac{z}{1}$ Dunque si ha

$$r\equiv\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-4}{1}$$

• passante per P(1,2,3) e parallela alla retta

$$r_1 \equiv \left\{ \begin{array}{l} x - y + 2z - 1 = 0; \\ 2x - y + 3z + 2 = 0 \end{array} \right.$$

I parametri direttori di r_1 sono

$$v_1 = \begin{vmatrix} -1 & 2 \\ -1 & 3 \end{vmatrix} = -1, v_2 = -\begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = 1; v_3 = \begin{vmatrix} 1 & -1 \\ 2 & -1 \end{vmatrix} = 1;$$
 dunque si ha
$$r \equiv \frac{x-1}{-1} = \frac{y-2}{1} = \frac{z-3}{1}$$

o anche x = -z + 4; y = z - 1;

Esempi II

• passante per P(1,2,-4) e perpendicolare alla retta

$$r_1 \equiv \left\{ \begin{array}{l} x = -3z + 5; \\ y = 2z + 1 \end{array} \right.$$

r ha equazioni cartesiane date da

$$r \equiv \frac{x-1}{v_1} = \frac{y-2}{v_2} = \frac{z+4}{v_3}$$

ove $v=(v_1,v_2,v_3)$ deve essere ortogonale al vettore direttore di r_1 , dati da -3,2,1; quindi risulta

$$-3v_1 + 2v_2 + v_3 = 0 \Leftrightarrow v_3 = 3v_1 - 2v_2$$

e perciò

$$r \equiv \frac{x-1}{v_1} = \frac{y-2}{v_2} = \frac{z+4}{3v_1 - 2v_2}$$

ottenendo così infinite rette:

Esempi III

• passante per P(1,2,-4) e perpendicolare alle rette

$$r_1 \equiv \begin{cases} x = -3z + 5; \\ y = 2z + 1 \end{cases}$$

$$r_2 \equiv \begin{cases} x = z + 2; \\ y = 4z + 7 \end{cases}$$

r ha equazioni cartesiane date da

$$r \equiv \frac{x-1}{v_1} = \frac{y-2}{v_2} = \frac{z+4}{v_3}$$

In questo caso oltre a $-3v_1 + 2v_2 + v_3 = 0$, poichè i parametri direttori di r_2 sono 1, 4, 1 si ha $v_1 + 4v_2 + v_3 = 0$, ottenendo $v_3 = 7v_1$, $v_2 = -2v_1$; pertanto si ha

$$r \equiv \frac{x-1}{1} = \frac{y-2}{-2} = \frac{z+4}{7}$$

che si esprime anche con y = -2x + 4; z = 7x - 11.