Planche TD 4.

Exercice 1. Montrer que dans un espace normé non réduit à 0 une sphère n'est jamais vide.

Exercice 2. Soit B la boule unité ouverte d'un espace normé E. Montrer que B est homéomorphe à E (indice: on pourra considérer l'application $h: x \mapsto \frac{x}{1+||x||}$). En déduire que E est homéomorphe à n'importe quelle boule ouverte de E de rayon > 0.

Exercice 3. Soient I = [-1, 1] et E l'espace normé $(C^0(I), \|\cdot\|_{\infty})$, \mathcal{P} le sous-espace des fonctions paires et \mathcal{I} celui des fonctions impaires. Montrer que la décomposition $E = \mathcal{P} \oplus \mathcal{I}$ est une somme directe topologique. (Indice : utiliser l'opérateur $\mathbf{s} : E \to E : f \mapsto f \circ \sigma$ où $\sigma(t) = -t$.)

Exercice 4. Soit $u: \mathbb{R}^n \to \mathbb{R}^n$ un endomorphisme symétrique¹. Calculer ||u||. (Indice: penser "valeurs propres".) Question subsidiaire: si u n'est que \mathbb{R} -diagonalisable, obtient-on encore le même résultat?

Exercice 5. Soit X et Y deux espaces normés, a un point de Y et $\mu \in X'$. Vérifier que $a \otimes \mu : X \to Y$ est linéaire et continu puis montrer que sa norme est $= \|a\| \|\mu\|$.

Exercice 6. Soit $u: \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire associée à la matrice $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 2 & 4 \end{bmatrix}$. Calculer la norme d'opérateur de u dans chacun des deux cas suivants:

- 1. Si \mathbb{R}^3 et \mathbb{R}^2 sont équipés de $\|\cdot\|_{\infty}$.
- 2. Si \mathbb{R}^3 est équipé de $\|\cdot\|_1$ et \mathbb{R}^2 de $\|\cdot\|_{\infty}$.

Exercice 7. Soit $u: \mathbb{R}^n \to \mathbb{R}^n$ un endomorphisme, de matrice A. On place sur \mathbb{R}^n la norme $\|\cdot\|_1$. Montrer que

$$||u|| = \left\| \begin{pmatrix} ||A_1||_1 \\ \vdots \\ ||A_n||_1 \end{pmatrix} \right\|_{\infty}$$

(où A_j désigne le jème vecteur-colonne de A).

Question facultative : que devient ||u|| si on place sur \mathbb{R}^n la norme $||\cdot||_{\infty}$ à la place de $||\cdot||_1$?

Exercice 8. Soit E l'espace vectoriel des polynômes à coefficients réels. On considère sur E les deux normes usuelles $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$.

- 1. Pour quelle(s) norme(s) la forme linéaire $\mu: E \to \mathbb{R}: P \mapsto P(1)$ sera-t-elle continue?
- 2. Que peut-on dire, dans chaque cas, de l'espace H des polynômes admettant 1 comme racine?
- 3. Expliciter, quand cela est possible, un supplémentaire topologique de H.

Exercice 9. Soit E un espace normé. Soient $B = \{a_1, \ldots, a_n\}$ une famille de n vecteurs de E et $B' = \{\mu_1, \ldots, \mu_n\}$ une famille de n formes linéaires continues sur E vérifiant la condition $\mu_i(a_j) = \delta_{ij}$. On notera F le sous-espace engendré par B et H_i le noyau de μ_i .

- 1. Vérifier que B est libre.
- 2. Rappeler pourquoi F est fermé.
- 3. Montrer que $p := \sum_{i=1}^{n} a_i \otimes \mu_i$ est un projecteur continu de E et que $1 \leq ||p|| \leq \sum_{i=1}^{n} ||a_i|| ||\mu_i||$.
- 4. Montrer que E/F est isomorphe à $\bigcap_{i=1}^n H_i$.

 $^{^1\}mathbb{R}^n$ étant muni de son produit scalaire usuel.

Exercice 10. Montrer qu'il n'existe aucune norme sur l'espace vectoriel des matrices carrées $n \times n$ qui soit invariante par conjugaison (indice: trouver une matrice A semblable à 2A).

Exercice 11. Soit A une matrice carrée telle que la suite (A^n) converge. Montrer que la limite de cette suite est une matrice idempotente (autrement dit, c'est la matrice d'un projecteur).

Exercice 12. Soit a un point d'un espace normé E et μ une forme linéaire continue non-nulle sur E de noyau H. Montrer que $d(a,H) = \frac{|\mu(a)|}{\|\mu\|}$. (Indices: D'une part on utilisera l'inégalité $|\mu(a-x)| \leq \|\mu\| \|a-x\|$ en prenant x dans H. D'autre part on remarquera que le vecteur $h_x := \mu(a)x - \mu(x)a$ est constamment dans H et on particularisera au cas où x est sur la sphère-unité.)

Exercice 13. Soit I = [0, 1], E l'espace normé $(C^0(I), \|\cdot\|_{\infty})$ et F l'espace normé $(C^0(I), \|\cdot\|_1)$.

- 1. Une forme linéaire est dite positive sur E si elle prend des valeurs positives sur les fonctions positives. Montrer que toute forme linéaire μ positive sur E est continue et que sa norme est égale à $\mu(1)$.
- 2. Si g est un point fixé de E, on définit

$$\mu_g: E \to \mathbb{R}: f \mapsto \int_0^1 f(t)g(t) \ dt.$$

Montrer que μ_g est dans E' et que $\|\mu_g\| = \|g\|_1$ (indice : on pourra utiliser la suite (f_n) de E définie par $f_n(t) = \frac{g(t)}{|g(t)| + \frac{1}{n}}$). Montrer que l'application $\mathcal{I} : F \to E' : g \mapsto \mu_g$ est linéaire et préserve les normes. En déduire que $\mathcal{J} : E \to E' : g \mapsto \mu_g$ est linéaire, continue, injective et de norme ≤ 1 .

Exercice 14. Soient E et F deux espaces normés. Montrer que si $u: E \to F$ et $v: F \to E$ sont deux applications linéaires continues de norme ≤ 1 et vérifiant $v \circ u = \operatorname{Id}_E$ et $u \circ v = \operatorname{Id}_F$, alors u est un isomorphisme isométrique.

Exercice 15. On se propose de montrer que le dual topologique de l^1 est naturellement isomorphe et isométrique à l^{∞} . Pour tout entier naturel n, on pose : $e_n(k) = \delta_{nk}$ (symbole de Kronecker) et $B := \{e_n\}_{n \in \mathbb{N}}$.

- 1. Vérifier que B est dans la sphère-unité de l^1 .
- 2. (a) Vérifier que si $\mu \in (l^1)'$, la suite $\overline{\mu}$ définie par $\overline{\mu}(n) = \mu(e_n)$ est dans l^{∞} .
 - (b) Montrer que $\Phi:(l^1)'\longrightarrow l^\infty:\mu\longmapsto\overline{\mu}$ définit une application linéaire continue vérifiant $\|\Phi\|\leq 1$.
- 3. (a) Vérifier que si $\alpha \in l^{\infty}$ et si $x \in l^{1}$ la série $\sum \alpha(n)x(n)$ est absolument convergente. On notera

$$\hat{\alpha}(x) = \sum_{n=0}^{\infty} \alpha(n)x(n).$$

- (b) Montrer que $\Psi: l^{\infty} \longrightarrow (l^{1})': \alpha \longmapsto \hat{\alpha}$ définit une application linéaire continue vérifiant $\|\Psi\| \leq 1$.
- 4. Déduire de ce qui précède que Φ est une isométrie linéaire d'inverse Ψ .

Exercice 16. Soit $\mu: F \to \mathbb{R}$ une forme linéaire continue définie sur un sous-espace de l'espace normé E. Soit $a \in E \backslash F$ et $D = \operatorname{Vect}(a)$. Montrer que μ admet un prolongement linéaire et continu $\hat{\mu}: F \oplus D \to \mathbb{R}$ tel que $\|\hat{\mu}\| = \|\mu\|$.

Exercice 17. On se place ici dans l^{∞} muni de la norme $\|\cdot\|_{\infty}$. On notera c_0 le sous-espace des suites convergeant vers 0 et c_{00} celui des suites nulles à partir d'un certain rang. On a donc : $c_{00} \subset c_0 \subset l^{\infty}$.

- 1. Montrer que c_0 est fermé. En déduire que c'est un espace de Banach.
- 2. Montrer que c_{00} est dense dans c_0 . Est-il aussi dense dans l^∞ ?

Exercice 18. [facultatif] transféré dans le cours à la fin de la section 2.9

Exercice 19. Montrer que le dual topologique de c_0 est naturellement isomorphe et isométrique à l^1 . (Indice : on pourra s'inspirer de l'exercice 15.)