atp=

ALM i praksis - Dag 2

1. og 2. november 2016

Indhold – Blok C

- Modellering af aktiver
 - Aktier og aktielignende investeringer
 - Obligationsporteføljer. Omlægning.
- Modellering af passiver
 - Repræsentation og aggregering af passiver
- Ledelseshandlinger
 - Afdækningsstrategi,
 - Risikostyring
 - Depotrente/bonus

Overordnet modelstruktur

Overordnet beregningsflow

ALM i praksis - Dag 2 1. og 2. november 2016 3

atp=

Modellering af aktiver

Modellering af aktiver

- Aktiver modelleres som porteføljer
 - Hvis vi investerede direkte i f.eks. obligationer, så udløber de undervejs i simulationen
 - Nogle aktiver udløber ikke
 - F.eks. Aktier og valuta
 - For aktiver som udløber, skal der specificeres en omlægningsregel
- Aktiver producerer likviditet
 - Aktier betaler udbytte (dividende) til ejerne
 - Obligationer giver løbende kuponbetalinger
- Værdien af en investering ultimo perioden er summen af markedsværdi og likviditet

Aktier – og aktielignende - investeringer

- Aktieafkast f
 ølger afkastet p
 å ét af aktieindeksene, S, i kapitalmarkedsmodellen
 - Vi modellerer udbytte, som en fast procentdel af markedsværiden

$$V_{i+1} = V_i(S_{i+1}/S_i - D)$$

$$L_{i+1} = V_i \cdot D$$

- hvor V er kursen hhv. primo og ultimo perioden
- D er en fast, løbende dividende
- S værdien af det underliggende aktieindeks

Bemærk:

$$\frac{(V_{i+1} + L_{i+1})}{V_i} = \frac{S_{i+1}}{S_i}$$

Obligationer (1)

- Obligationsporteføljer omlægges automatisk til en fast varighed
 - hvis det kan lade sig gøre
 - Ved at optimere "carry" under hensyn til handelsomkostninger ved omlægning
- Omlægning forudsætter et marked for obligationer
 - Vi antager typisk, at der udstedes en ny 11-årig obligation hvert år (Danske statsobligationer)
 - Kuponen på den nye obligation fastsættes i skridt af 0,25 pct.-point, så kursen bliver tæt på 100
 - Der vil til enhver tid være 11 forskellige obligationer at investere i
 - (Et andet typisk valg er en ny 30-årig obligation hver 2./5. år (tyske Bunds))

Recap: Bullet bond (stående lån)

- En 'bullet' obligation består af
 - en række faste, årlig kuponbetalinger
 - tilbagebetaling af hovedstol ved udløb

$$PV(t, R_t(\cdot)) = \sum_{i=1}^{n} cf_{T_i} \cdot \left(1 + R_t(T_i)\right)^{-(T_i - t)}$$

• (Relativ) varighed er givet ved

$$D = -\frac{\partial PV(t, R_t(\cdot) + k)}{\partial k} \bigg|_{k=0} /PV(t, R_t(\cdot))$$

- En typisk værdi for varighed er 6 år (=6 pct. af PV)
- Det er ikke givet, at varighedsmålet kan nås for høje renteniveauer

Obligationer (2)

Teknisk set, så løser vi

$$\pi = \max_{\pi} U(M, \pi^0; \pi)$$

Obligationsmarked

Startportefølje

Målportefølje

hvor

$$U(M,\pi^0;\pi) = \sum_{i \in M} [\pi_i C_i - \gamma | \pi_0 - \pi_i |]$$
 Handelsomkostning Handelsomkostning

• Under de lineære begrænsninger

$$\sum_{i \in M} \pi_i \cdot D_i = \widetilde{D} (PV_0 + c) \quad \text{(Varighed target)}$$

$$\sum_{i \in M} \pi_i \cdot P_i = PV_0 + c \qquad \text{(Fuldt investeret)}$$

Swaps – til afdækning

- Vi anvender typisk 3-8 swapporteføljer til afdækning
 - Hver portefølje handler i én swap med en fast løbetid, f.eks. 10 år
 - Ved start har porteføljen en markedsværdi på nul.
 - I hvert skridt lukkes den gamle swap ...
 - ... og en ny etableres med target løbetid og samme markedsværdi, som den gamle
 - Hvis markedsværdien overskrider en fastsat grænse, typisk 10 pct., så nulstilles markedsværdien til nul (som ved start).

atp=

Modellering af passiver

Fremskrivning af ATP's medlemsbestand

Fremskrivning af ATP's ind- og udbetalinger

Policer: Hver alderscelle repræsenterer en gennemsnitlig forsikringsret i ATP indenfor fire policer.

Bidrag: Alle medlemmer under pensionsalderen indbetaler et aldersafhængigt bidrag til ATP. Bidraget anvendes til successivt først til risikodækningerne – derefter ATP Livslang Pension. Der beregnes ny, aldersafhængig tarif for hvert skridt i simulationen.

Der er en karensperiode svarende til to årsbidrag for risikodækningerne.

Udbetalinger: Alle medlemmer over pensionsalderen modtager pension.

Der udbetales hhv. ægtefælle- og børnedækning til (unge) afdøde efter kohortespecifik model for hhv. ægtefælle og børnefrekvens.

atp=

Ledelseshandlinger

Ledelseshandlinger

- Der anvendes tre ledelseshandlinger i hvert tidsskridt
 - 1. Renteafdækning af passiverne
 - 2. Køb/salg af aktiver indenfor det fastsatte risikobudget
 - 3. Tilskrivning af depotrente/bonus

Renteafdækning

- I modellen afdækkes passiverne alene med renteswaps
 - I praksis består ATP's afdækningsportefølje af 50/50 af obligationer og swaps
- Der er én swapportefølje per nøglerente i modellen
- Afdækningsalgoritme
 - 1. Beregn rentefølsomheden af passiverne for n nøglerenter, $\{L_1, \dots, L_n\}$
 - 2. Beregn rentefølsomheden af *hver* swapportefølje for n nøglerenter, $\{D^m_1, \dots, D^m_n\}$
 - 3. Beregn vægtene for hver af swapporteføljerne, så nøglerenteprofilen for passiverne bliver lig nøglerenteprofilen af passiverne efter skat.

Renteafdækning

- Hedging er nu et simpelt lineært problem
 - Fastsæt antallet af nøglerenter, f.eks. 10, 20 og 30 år
 - Løs 'hedge-ligningen'

$$(1 - PAL) \begin{cases} D^{1}_{10Y} & D^{2}_{10Y} & D^{3}_{10Y} \\ D^{1}_{20Y} & D^{2}_{20Y} & D^{3}_{20Y} \\ D^{1}_{30Y} & D^{2}_{30Y} & D^{3}_{30Y} \end{cases} \begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} = \begin{cases} L_{10Y} \\ L_{20Y} \\ L_{30Y} \end{cases}$$

- hvor D^i_T er den T-årige nøglevarighed af den ite swap
- L_T er den T-årige nøglevarighed af passiverne
- Hedget er 'gratis' at etablere, da nutidsværdien af swaps er nul ved indgåelse
 - men ikke risikofrit!

Opdeling i investerings- og afdækningsaktiviteter

- Det er muligt at lave en (næsten) eksakt opdeling af investerings- og afdækningsaktiviteterne
- ATP aflægger separat (del-)regnskab for hver af disse aktiviteter
- Investeringsvirksomheden har meget mere likviditet til rådighed end bonuspotentialet

Investment Activities

Hedging Activities

	Reserve	
Investment portfolio	Funding Account	
Swap/Repo	Swap/Repo	
Long Leg	Short Leg	

Investeringsstrategi

• Investeringstrategien har to komponenter

1. Risikomåling

- En beslutning om hvordan man *måler* risiko
- Måling af markedsmæssige, forsikringsmæssige og øvrige risici

2. Risikobudget

- En beslutning om hvor stor risikoen må være
- Tilpasset til selskabets økonomiske situation
- Langsigtsdynamik og bonusevne kan tilsige begrænsninger i risikobudgettet

Risikomåling

Risikomål

- Bør omfatte hele balancen. For eksempel
 - VaR_{99.5%,1Y} på bonuspotentialet, egenkapital, ...
 - Sandsynligheden for tab af bonuspotentiale, egenkapital, ... på given horisont
- Kvantificerer risikoen med den nuværende balancesammensætning

Risikomodel

- Stokastisk eller baseret på stress tests
- I kurset anvender vi en simpel model for aktier og obligationer
 - Sandsynlighedsfordelingen beregnes på et 61 x 61 gitter af hhv. aktie- og renteudfald

Risiko model (Intern Model)

$$\Delta BP = (1 - PAL)(E\Delta e - D_B\Delta r + 0.5 \cdot (0.06 \cdot D_B)\Delta r^2) \\ + (1 - PAL)(-D_H\Delta r + 0.5 \cdot (0.18 \cdot D_H)\Delta r^2) \\ - (-D_L\Delta r + 0.5 \cdot (0.2 \cdot D_L)\Delta r^2)$$
 Kvadratisk approksimation af konveksitet af renteændring

$$P = \frac{\Delta e}{\sqrt{2\pi\sigma_e^{\,2}}} e^{-\frac{(e-\mu_e)^2}{2\sigma_e^{\,2}}} \cdot \frac{\Delta r}{\sqrt{2\pi\sigma_r^{\,2}}} e^{-\frac{r^2}{2\sigma_r^{\,2}}}$$

$$n = 61$$
 $\mu_e = 5\%$
 $\sigma_e = 20\%$
 $e \in (-0.6,0.6)$
 $\sigma_r = 1.2\%$
 $r \in (-0.025,0.025)$

Risikobudget

- Styring: Risiko ≤ Risikobudget
 - Risikoen og risikobudgettet opgøres dagligt (hyppigt)
- Fastsættelse af risikobudgettet
 - I forhold til at forhindre insolvens er selve størrelsen af risikobudgettet af mindre betydning, det vigtige er at det reduceres i takt med størrelsen af selskabets frie midler ("bonuspotentiale"). Dette sikrer den rigtige risikoreducerende adfærd.
 - Vi har god erfaring med affine risikobudgetter, dvs.
 - $RB = \max(0, \beta \cdot (BP \alpha))$
 - Begrænsning af risikobudgettet
 - Af hensyn til langsigtsdynamikken kan det være nødvendigt at have et loft, *L*, på risikoen/risikobudgettet for at undgå for stor volatilitet på balancen.
 - L angiver, hvor mange gange balancen må være gearet: Markedsværdi af investeringsporteføljen ≤ L· (GY+BP)

Omlægning af investeringsporteføljen

- Investeringsporteføljen deles i delporteføljer
 - En delportefølje består typisk af 1-3 basisporteføljer (obligationer, aktier, mv)
- 1. Hver delportefølje omlægges, så hver basisportefølje bidrager med 1/n af den samlede risiko

$$Risk(pf_i)/\sum Risk(pf_j) = 1/n$$

- 2. Delporteføljerne omlægges, så hver delportefølje bidrager med en fastsat andel af den samlede risiko
 - Eksempel: Aktierisiko 30 pct. Renterisiko 60 pct. Råvarer 10 pct.

$$Risk(factor_{eq})/\sum Risk(factor_j) = 0.30$$

3. Investeringsporteføljen skaleres, den samlede balancerisiko svarer til risikobudgettet

$$Risk(balance) \leq RB \quad \land \quad \sum MV(pf_i) \leq L$$

Investeringsporteføljen – De enkelte porteføljer

PFTAG	PFGROUP	PFNAME	META1	RISIKOFAKTOR
BondDNK	ВЕТА	Inspection15 DKK GovtBond	BB RATE	Dansk statskurve / 6 år varighed
BondHY	ВЕТА	Inspection15 EUR HighYieldBond	BB ARP	High-Yield kurve / 6 år varighed
BondINFL	ВЕТА	Inspection15 EUR InflLinkedBond	BB ARP	HICP Break-Even Inflation / 6 år varighed
BondUS	ВЕТА	Inspection15 EUR GovtBond	BB RATE	Tysk statskurve / 6 år varighed
ComGOLD	ВЕТА	GOLD USD	BB INFL	Guld
ComOIL	ВЕТА	OIL USD	BB INFL	Olie
EqDNKC20	ВЕТА	DNKC20	BB EQEU	OMX C20
EqEUSTOXX	ВЕТА	EUROSTOXX	BB EQEU	EuroStoxx50
EqPRIV	BETA	private equity	BB ARP	Bloomberg PRIVEX
EqSP500	ВЕТА	SP500 USD	BB EQUS	SP500

"Vores" selskab

- Selskabet har hidtil ført en langsigtet investeringsstrategi
 - andelen af aktier og obligationer udgør en fast andel af balancen
- Der er ikke nogen sammenhæng mellem selskabets investeringspolitik og risikoen for at blive insolvent
 - Det har heller ikke været klart, hvordan fordelingen mellem risiko fra hhv. afdækning og investering skulle fordeles

Øvelse: Risikostyring

Opgave

 Diskutér hvordan selskabets risikokapacitet (IB+KB) bør fordeles mellem afdækning og investering mhp. at minimere selskabets risiko for at blive insolvent

• Fastsæt derfor (igen) jeres afdækningsstrategi

- Vælg hvilke løbetider, jeres selskab afdækker
 - vælg 2-5 løbetider
- Hvilken afdækningsgrad, jeres selskab skal anvende

• Fastsæt jeres investeringsstrategi

- Hvor stor en del af investeringsrisikoen skal være aktier (i pct.)
- Hvad er jeres risikobudget: $RB = \max(0, \beta \cdot (BP \alpha))$.
 - Angiv jeres α i mia. kr. og et $\beta \in (0,5)$.
- Hvad er den maksimale gearing: $L \in (0,3)$

Bonus i ATP

- Udgangspunktet er, at ATP giver bonus, når bonusgraden overstiger 20 pct
 - Bonusgrad = Bonuspotentiale / Garanterede Ydelser
 - Målsætningen er, at give inflationen i bonus
- Der kan ikke gives mere i bonus, end at bonusgraden efter bonus er mindst 20 pct.

Bonusprocent
$$\frac{BP-GY\cdot b}{GY\cdot (1+b)}\geq g \qquad \Rightarrow \qquad b\leq b_{max}=\max\left(0,\frac{BP}{GY}-g\right)$$

ATP's bonuspolitik (i ALM-modellen)

1. Inflationsbonus

- ATP's vejledende bonuspolitik
- $b_{infl} = \min(b_{max}, infl)$

2. "Speed-bonus"

- Der vil være scenarier, hvor afkastet overstiger inflationen
- $b_{speed} = 0.5 \cdot \max(0, b_{max} b_{infl})$

3. Samlet bonus

- $b = b_{infl} + b_{speed}$
- Bonus gives ved at forhøje de optjente pensionsrettigheder med den samlede bonusprocent

Kontorente i øvelserne (bonus)

- I øvelserne vil vi anvende én regel for bonus
- "Speed-kontorente"
 - $b_{speed} = s \cdot \max(0, b_{max})$
 - Hvor "bonusgraden" måles som KB/RH dvs. KB som andel af den retrospektive reserve.

$$b_{max} = \max\left(0, \frac{KB}{RH} - g\right)$$

- Bonus gives ved at forhøje depoterne med kontorenten
 - Pensionsret opskrives automatisk, når RH overstiger værdien af pensionsretten på 1. ordens grundlaget

Øvelse: Direktørprøven

Opgave

Fastsæt jeres afdækningsstrategi

- Vælg hvilke løbetider, jeres selskab afdækker
 - vælg 2-5 løbetider
- Hvilken afdækningsgrad, jeres selskab skal anvende

• Fastsæt jeres investeringsstrategi

- Hvor stor en del af investeringsrisikoen skal være aktier (i pct.)
- Hvad er jeres risikobudget: $RB = \max(0, \beta \cdot (BP \alpha))$.
 - Angiv et jeres α i mia. kr. og et $\beta \in (0,5)$.
- Angiv jeres maksimale gearing $L \in (0,3)$

Fastsæt jeres strategi for at give depotrente

- Fastsæt grænsen, g, for, hvornår der tilskrives kontorente
- Fastsæt, hastigheden, s, for, hvor hurtigt, der tilskrives kontorente

Nye udfordringer

- Lavrente scenario
 - Aktieafkast: 3.5 pct. i gns, 18.4 pct. std.afv.
 - Obligationsafkast: 0.6 pct. i gns, 2.4 pct. std.afv.
 - Korrelation: 7 pct.
- Grundlagsrente: 0,5 pct
- Solvens (KB/RH): 10 pct.