GPU vs CPU Inference Comparison

This document compares inference performance between running a quantized model on GPU and a full-precision model on CPU using Hugging Face Transformers.

Feature	GPU (Quantized 4-bit FP16)	CPU (Full Precision FP32)
Code Snippet	model =	model =
	AutoModelForCausalLM.from_pretr	AutoModelForCausalLM.from_pretr
	ained(ained(
	model_path,	merged_model_path,
	load_in_4bit=True,	device_map="cpu",
	device_map="auto",	torch_dtype=torch.float32,
	torch_dtype=torch.float16,)
)	inputs = tokenizer(prompt,
	inputs = tokenizer(prompt,	return_tensors="pt")
	return_tensors="pt").to("cuda")	outputs = model.generate(**inputs,
	outputs = model.generate(**inputs,	max_new_tokens=50)
	max_new_tokens=50)	
Hardware	NVIDIA GPU with CUDA support	CPU-only (no CUDA)
Quantization	Yes (4-bit)	No (Full FP32 precision)
Torch Data	torch.float16	torch.float32
Туре		
Device Map	auto (GPU)	cpu
Model Size	~1/4 of full size	Full size
Startup Time	~2-4 seconds	~6–10 seconds
Inference	~6-7 seconds	~ 22-55 minutes
Time		
RAM Usage	Lower	Higher
VRAM Usage	~3-4 GB	N/A
(GPU)		
Response	Good morning to you! Absolutely.	Let's take a look at our menu.
Output	Here's our menu	Appetizers: Loaded Fries
Accuracy/Qual	Slightly lower	Higher
ity		
Best For	Fast inference, real-time	High-accuracy, local CPU use
Dependencies	bitsandbytes, cuda, transformers	transformers, torch

Summary

Metric	GPU (4-bit)	CPU (FP32)
Load Time	Faster (~2s)	Slower (~6s)
Inference Speed	Faster (~1s)	Slower (~5s)
Accuracy	Slightly lower	Higher
Memory Usage	Lower (~3GB)	Higher (~6-8GB)
Model Size	Smaller	Larger

COMAPARISON OF RESULTS IN CPU AND GPU

Time to run 7sec on GPU

```
from transformers import AutoTokenizer, AutoModelForCausalLM
  model_path = '/content/gemma-3-4b-finetunned'
  model = AutoModelForCausalLM.from_pretrained(model_path,
                                              load_in_4bit=True,
                                              device_map='cuda',
                                             torch_dtype=torch.bfloat16,
                                             # low cpu mem usage=True
  tokenizer = AutoTokenizer.from_pretrained(model_path)
  prompt1 = "hello good morning may i see the menu"
  prompt = "ok i want two chicken birvani with couple of drinks"
                                                              prompt1 = "hello good morning may i see the menu"
   prompt = "ok i want two chicken biryani with couple of drinks"
   inputs = tokenizer(prompt1, return_tensors="pt").to("cuda")
   with torch.no grad():
       outputs = model.generate(**inputs, max_new_tokens=50)
       print(tokenizer.decode(outputs[0], skip_special_tokens=True))
hello good morning may i see the menu, please.
Good morning to you! Absolutely. Here's our menu. (Hands over the menu)
We have a wide selection of items, from sandwiches and salads to hot entrees and desserts. Are
```

About 22minutes on CPU

