notes

1 Foundations

1.1 The Role of Algorithms in Computing

- 1.1.1 Algorithms
- 1.1.2 Algorithms as a technology
- 1.1.3 Problems

1.2 Getting Started

1.2.1 Insertion sort

Input:A sequence of n numbers (a_1, a_2, \dots, a_n) .

Output:A permutation $(a'_1, a'_2, \dots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$.

loop invariant: We use loop invariants to help us understand why an algorithm is correct. We must show three things about a loop invariant:

Initialization:It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.

Termination:When the loop terminates, the invariant gives a useful property that helps show the algorithm is correct.

Pseudocode conventions

1.2.2 Analyzing algorithms

1.2.3 Designing algorithms

The divide-and-conquer approach:

Divide: the problem into a number of subproblems that are smaller in instances of the same problem.

Conquer: the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.

combine: the solutions to the subproblems into the solution for the original problem. **merge sort**:

1.2.4 Problems