# UNIVERSIDAD MAYOR, REAL Y PONTIFICIA DE SAN FRANCISCO XAVIER DE CHUQUISACA FACULTAD DE TECNOLOGÍA



**SIS-420** 

Carrera: Ingeniería en Ciencias de la Computación

Universitaria: Lujan Renteria David Fernando

Sucre – Bolivia 2023

### Conceptos Básicos de Regresión Lineal

La **regresión lineal** es una técnica estadística utilizada para modelar la relación entre una variable dependiente (objetivo) y una o más variables independientes (predictoras). El objetivo es encontrar la mejor línea (o hiperplano en el caso de más de una variable) que minimice la distancia entre los datos reales y la línea ajustada.

La **fórmula general** para una regresión lineal simple es:



- y es la variable dependiente (peso en nuestro caso),
- x es la variable independiente (estatura en nuestro caso),
- m es la pendiente de la línea,
- b es el intercepto con el eje y.

Para este ejemplo usaremos datos generados aleatoriamente de altura y peso con el siguiente código:

```
# Generamos 100 estaturas aleatorias entre 1.4m y 2.0m
estaturas = np.random.uniform(1.4, 2.0, 100)

pesos = [] # Lista para almacenar los pesos generados

# Bucle para generar pesos aleatorios controlados según la estatura
for estatura in estaturas:
# Calcular el peso mínimo y máximo usando el IMC saludable (18.5 a 24.9)
peso_min = 18.5 * (estatura ** 2) # Peso mínimo según IMC de 18.5

peso_max = 24.9 * (estatura ** 2) # Peso máximo según IMC de 24.9
# Generar un peso aleatorio entre el peso mínimo y máximo calculado
peso = np.random.uniform(peso_min, peso_max)
pesos.append(peso) # Añadir el peso a la lista de pesos

# Crear un DataFrame con los datos de estatura y peso
datos = pd.DataFrame({
    'Estatura (m)': estaturas,
    'Peso (kg)': pesos
})
```

#### Métodos Utilizados

## 1. Búsqueda Exhaustiva

Utilizamos el método de búsqueda exhaustiva para encontrar los mejores parámetros de la recta de ajuste (mmm y bbb). Este método prueba todas las combinaciones posibles de pendiente e intercepto dentro de un rango definido para minimizar el error cuadrático medio (MSE). Este enfoque es exhaustivo pero puede ser lento debido al gran número de combinaciones probadas.

#### Cálculo del MSE:

MSE = 
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

```
3 def busqueda_exhaustiva(x, y):
       min_error = float('inf')
       best_m = None
        best b = None
        m_range = np.arange(50, 90, 0.1) # Pendiente variando de 50 a 90
        b_range = np.arange(-70, -60, 0.1) # Intercepto variando de -70 a -60
        for m_float in m_range:
            for b_float in b_range:
                error = np.sum((y - (m_float * x + b_float)) ** 2)
                if error < min_error:</pre>
                    min error = error
                    best_m = m_float
                    best_b = b_float
        return best_m, best_b
   x = datos['Estatura (m)']
20 y = datos['Peso (kg)']
22 best_m, best_b = busqueda_exhaustiva(x, y)
```

# Estatura vs Peso - Búsqueda Exhaustiva



## 2. Regresión Lineal con Fórmulas Directas

Calculamos la pendiente (mmm) y el intercepto (bbb) usando fórmulas directas derivadas de la teoría de regresión lineal. Estas fórmulas se basan en los momentos estadísticos de los datos:

$$r = \frac{\sum ((X - \bar{X})(Y - \bar{Y}))}{\sqrt{\sum (X - \bar{X})^2 \cdot \sum (Y - \bar{Y})^2}}$$

```
# Método 2: Regresión Lineal con Fórmulas Directas
m_directo = np.sum((x - np.mean(x)) * (y - np.mean(y))) / np.sum((x - np.mean(x)) ** 2)
b_directo = np.mean(y) - m_directo * np.mean(x)
4
```

# Estatura vs Peso - Regresión Directa



## 3. Regresión Lineal Usando scikit-learn

Utilizamos la biblioteca scikit-learn para realizar la regresión lineal. Esta biblioteca proporciona herramientas robustas para ajustar modelos y realizar predicciones.

```
# Método 3: Regresión Lineal Usando `scikit-learn`
modelo = LinearRegression()
x_reshaped = x.values.reshape(-1, 1) # `scikit-learn` requiere que x sea una matriz 2D
modelo.fit(x_reshaped, y)
m_sklearn = modelo.coef_[0]
b_sklearn = modelo.intercept_
```

# Estatura vs Peso - Regresión `scikit-learn`



## Visualización y Evaluación

• **Gráficas de Ajuste**: Creamos gráficos para visualizar los ajustes de los modelos:



- Búsqueda Exhaustiva: Muestra la línea ajustada utilizando la mejor combinación de m y b encontrados.
- o **Regresión Directa**: Muestra el ajuste basado en fórmulas directas.
- o Regresión scikit-learn: Muestra el ajuste usando la biblioteca scikit-learn.
- Regresión Polinómica: Muestra el ajuste de una curva cuadrática para comparar con el ajuste lineal.
- Error Cuadrático Medio (MSE): Calculamos el MSE para cada modelo para evaluar su precisión. El MSE nos da una idea de qué tan bien el modelo se ajusta a los datos reales.
- Resultados Detallados: Mostramos una tabla con una muestra de 20 datos que incluye las predicciones del modelo y los errores absolutos.

|    | Muestr      | ra de Datos y | Errores:   |          |
|----|-------------|---------------|------------|----------|
|    | Estatura (m | ) Peso (kg)   | Predicción | Error    |
| 83 | 1.438135    | 49.875364     | 44.308602  | 5.566762 |
| 53 | 1.936896    | 81.155780     | 80.518679  | 0.637100 |
| 70 | 1.863347    | 79.289427     | 75.178982  | 4.110445 |
| 45 | 1.797513    | 60.537281     | 70.399471  | 9.862190 |
| 44 | 1.555268    | 49.158411     | 52.812456  | 3.654045 |
| 39 | 1.664091    | 68.452990     | 60.713043  | 7.739947 |
| 22 | 1.575287    | 50.958739     | 54.265821  | 3.307082 |
| 80 | 1.917862    | 76.075459     | 79.136785  | 3.061326 |
| 10 | 1.412351    | 40.601642     | 42.436661  | 1.835018 |
| 0  | 1.624724    | 49.365947     | 57.854968  | 8.489021 |
| 18 | 1.659167    | 66.652685     | 60.355525  | 6.297160 |