

Axioms of Probability

For any event A,

$$P(A) \geq 0$$

• If A_1 , A_2 , A_3 ,, A_n are disjoint events (i.e., $A_i \cap A_j = \varphi \quad \forall i \neq j$) then

$$P(UA) = \sum_{i}^{\Sigma} P(A)$$

• If Ω is the universal set containing all events then

$$P(\Omega) = 1$$

Random Variable (intuition)

- Suppose a student can get one of 3 possible grades in a course: A, B, C
- One way of interpreting this is that there are 3 possible events here
- Another way of looking at this is there is a random variable G which each student to one of the 3 possible values
- And we are interested in P(G = g) where $g \in \{A, B, C\}$
- Of course, both interpretations are conceptually equivalent

Random Variable (intuition)

- But the second one (using random variables) is more compact
- Specially, when there are multiple attributes associated with a student (outcome) - grade, height, age, etc.
- We could have one random variable corresponding to each attribute
- And then ask for outcomes (or students) where Grade = g, Height = h,
 Age = a and so on

Random Variable (formal)

- ullet A random variable is a **function** which maps each outcome in Ω to a value
- In the previous example, G (or f_{grade}) maps each student in Ω to a value: A, B or C
- The event Grade = A is a shorthand for the event $\{\omega \in \Omega : f_{Grade} = A\}$

Random Variable (continuous v/s discrete)

- A random variable can either take continuous values (for example,
- weight, height)Or discrete values (for example,
- grade, nationality)
 For this discussion we will mainly focus on discrete random variables

G	P(G =
	g)
Α	0.1
В	0.2
С	0.7

Marginal Distribution

- What do we mean by marginal distribution over a random variable?
- Consider our random variable G for grades
- Specifying the marginal distribution over *G* means specifying

$$P(G=g) \quad \forall g \in A, B, C$$

 We denote this marginal distribution compactly by P (G)

Joint Distribution

G	I	P(G=g, I=i)
Α	High	0.3
Α	Low	0.1
В	High	0.15
В	Low	0.15
С	High	0.1
С	Low	0.2

- Consider two random variable G (grade) and
 I (intellegence ∈ {High, Low})
- The joint distribution over these two random variables assigns probabilities to all events in- volving these two random variables

$$P(G = g, I = i) \quad \forall (g, i) \in \{A, B, C\} \times \{H, L\}$$

We denote this joint distribution compactly by P(G, I)

G	P(G I=H)
Α	0.6
В	0.3
C	0.1
G	P(G I=L)
Α	0.3
В	0.4
С	0.3

Conditional Distribution

- Consider two random variable G (grade) and I (intellegence)
- Suppose we are given the value of I (say, I = H) then the conditional distribution P(G|I) is defined as

$$P\left(G=g\mid I=H\right)=\frac{P\left(G=g,I=H\right)}{\sqrt[3]{q}I^{\frac{2}{2}}\sqrt[3]{R}},B,C\}$$

 More compactly defined as

$$P(G|I) = \frac{P(G, I)}{P(I)}$$
or
$$P(G, I) = P(G|I) * P(I)$$

$$jo \cdot i, nt \times co nd \cdot it \cdot ion \times al$$

Joint Distribution (n random variables)

The join	t distribution	of	n r	random	variables
assigns	probabilities	to	all	events	involving
the n ran	ndom variable	es,			

- In other words it assigns

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

 $\Sigma = 1$ for all possible values that variable X_i can take

If each random variable X_i can take two values then the joint distribution will assign probab- ilities to the 2^n possible events

Joint Distribution (n random variables)

• The joint distribution over two random variables X_1 and X_2 can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

Similarly for n random variables

$$\begin{split} &P\left(X_{1},X_{2},...,X_{n}\right)\\ &=P\left(X_{2},...,X_{n}|X_{1}\right)P\left(X_{1}\right)\\ &=P\left(X_{3},...,X_{n}|X_{1},X_{2}\right)P\left(X_{2}|X_{1}\right)P\left(X_{1}\right)\\ &=P\left(X_{4},...,X_{n}|X_{1},X_{2},X_{3}\right)P\left(X_{3}|X_{2},X_{1}\right)\\ &P\left(X_{2}|X_{1}\right)P\left(X_{1}\right)\\ &=P\left(X\right) \qquad \qquad iP\left(X\mid_{1}^{i}X^{1}\right)\\ &\left(\textit{chain rule}\right) \end{split}$$

A	В	P (A	= a, B = b)
High	High	0.3	
High	Low	0.25	
Low	High	0.35	
Low	Low	0.1	
A	P(A = 0)	<u>a)</u>	
High	0.55		
Low	0.45		
В	P(B = 0)	<u>a)</u>	
High	0.65		
Low	0.35		

From Joint Distributions to Marginal Distributions

- Suppose we are given a joint distribtion over two random variables A, B
- The marginal distributions of A and B can be computed as

$$P(A = a) = \sum_{\forall} P(A = a, B = b)$$

$$P(B = b) = \sum_{\forall} P(A = a, B = b)$$

$$\forall a$$

More compactly written as

$$P(A) = \frac{\sum}{B} P(A, B)$$

A	B	P(A)	A = a, B = b)
High	High	0.3	
High	Low	0.2	5
Low	High	0.3	5
Low	Low	0.1	
A	P(A =	a)	
High	0.55		
Low	0.45		

P(B=a)

0.65

0.35

В

High

Low

What if there are n random variables ?

- Suppose we are given a joint distribtion over n random variables X₁, X₂, ..., X_n
- $\bullet \ \, \text{The marginal distributions over} \, X_{\mathrm{1}} \, \mathrm{can} \, \, \mathrm{be} \, \\ \mathrm{computed} \, \, \mathrm{as} \, \\$

$$P(X_{1} = x_{1})$$

$$= P(X_{1} = x_{1}, X_{2} = x_{2}, ..., X_{n} = x_{n})$$

$$\forall x_{2}, x_{3}, ..., x_{n}$$

More compactly written as

$$P(X) = \sum_{X_2, X_3, ..., X_n} P(X_1, X_2, ..., X_n)$$

 Recall that by Chain Rule of Probability

$$P(X, Y) = P(X)P(Y|X)$$

 However, if X and Y are independent, then

$$P(X, Y) = P(X)P(Y)$$

Conditional Independence

 Two random variables X and Y are said to be independent if

$$P\left(X|Y\right) = P\left(X\right)$$

- We denote this as $X \perp \perp \perp Y$
- In other words, knowing the value of Y does not change our belief about X
- We would expect Grade to be dependent on Intelligence but independent of Weight

Okay, we are now ready to move on to Bayesian Networks or Directed Graphical Models

 $P(Y, X_1, X_2, X_3, X_4, X_5, X_6)$

- In many real world applications, we have to deal with a large number of random variables
- For example, an oil company may be interested in computing the probabil- ity of finding oil at a particular loca- tion
- This may depend on various (random) variables
- The company is interested in knowing the joint distribution

- Let us return to the case of n random variables
- For simplicity assume each of these variables can take binary values
- To specify the joint distribution, we need to specify 2ⁿ - 1 values. Why not (2ⁿ)?
- If we specify these $2^n 1$ values, we have an explicit representation for the joint distribution

X_{1}	X_2	X_3	X_{4}	 X_n	P
0	0	0	0	 0	0.01
1	0	0	0	 0	0.03
0	1	0	0	 0	0.05
1	1	0	0	 0	0.1
1	1	1	1	 1	0.002

(Once the first $2^n - 1$ values are specified the last value is deterministic as the values need to sum to 1)

Challenges with explicit representation

- Computational: Expensive to manipulate and too large to to store
- Cognitive: Impossible to acquire so many numbers from a human
- Statistical: Need huge amounts of data to learn the parameters

Module 17.4: Can we use a graph to represent a joint distribution?

- This is called the Naive Bayes
- model It makes the Naive assumption that
 - ${}^{n}C_{2}$ pairs are independent given C

Suppose we have *n* random

- •variables, all of which are independent given an- other random variable *C*
- The joint distribution factorizes as,

$$\begin{split} P\left(C,X_{1},...,X_{n}\right) &= P\left(C\right)P\left(X_{1} \mid C\right) \\ &= P\left(X_{2} \mid X_{1},C\right) \\ &= P\left(X_{3} \mid X_{2},X_{1},C\right)... \\ &= P\left(C\right)P\left(X \mid C\right)_{i} \end{split}$$

since
$$X_i \perp X_j | C$$

- Bayesian networks build on the intuitions that we developed for the Naive Bayes model
- But they are not restricted to strong (naive) independence assumptions
- We use graphs to represent the joint distribution
- Nodes: Random Variables
- Edges: Indicate dependence

- Let's revisit the student example
- We will introduce a few more random variables and independence assump- tions
- The grade now depends on student's Intelligence & exam's
 Difficulty level
- The SAT score depends on Intelligence
 - The recommendation Letter from the course instructor depends on the Grade

- The Bayesian network contains a node for each random variable
- The edges denote the dependencies between the random variables
- Each variable depends directly on its parents in the network

- The Bayesian network can be viewed as a data structure
- It provides a skeleton for representing a joint distribution compactly by factorization
- Let us see what this means

- Each node is associated with a local probability model
- Local, because it represents the dependencies of each variable on its par- ents
- There are 5 such local probability models associated with the graph
- Each variable (in general) is associated with a conditional probability distribution (conditional on its parents)

- The graph gives us a natural factorization for the joint distribution
- In this case, $P\left(I,D,G,S,L\right)=P\left(I\right)P\left(D\right)$ $P\left(G|I,D\right)P\left(S|I\right)P\left(L|G\right)$
- For example, P(I=1, D=0, G=B, S=1, L=0) = 0.3 × 0.6 × 0.08 × 0.8 × 0.4
- The graph structure (nodes, edges) along with the conditional probability distribution is called a Bayesian Network

Module 17.5: Different types of reasoning in a Bayesian network

New Notations

- We will denote P(I = 0) by $P(i^0)$
- In general, we will denote P(I = 0, D = 1, G = B, S = 1, L = 0) by $P(i^0, d^1, g^b, s^1, l^0)$

Causal Reasoning

- Here, we try to predict downstream effects of various factors
- Let us consider an example
- What is the probability that a student will get a good recommendation letter, P (l¹)?

$$\Sigma$$
 Σ Σ Σ $P(I, D, G, S, l^1)$

Ie(0,1) De(0,1) Se(0,1) te(A,B,C)

$$\begin{split} P\left(l^{1}\right) &= \sum_{\substack{Ie(0,1) \ De(0,1) \ Se(0,1) \ te(A,B,C) \\ Ie(0,1) \ De(0,1) \ Se(0,1) \ te(A,B,C) \\ }} \sum_{\substack{Ie(0,1) \ De(0,1) \ Se(0,1) \ Se(0,1) \\ Ie(0,1) \ Se(0,1) \ S$$

$$P(I^{1}) = \sum_{I \in (0,1)} \sum_{D \in (0,1)} \sum_{P \in (0,1)} P(D) \sum_{S \in (0,1)} \sum_{P \in (0,1)} P(S|I) P(G|I, D) P(I^{1}|G)$$

$$= \sum_{I \in (0,1)} P(D) \sum_{S \in (0,1)} P(S|I) 0.9 (P(g^{1}|I, D)) + 0.6 (P(g^{2}|I, D)) + 0.01 (P(g^{3}|I, D))$$

$$= \sum_{I \in (0,1)} P(I) \sum_{D \in (0,1)} P(D) \sum_{S \in (0,1)} P(S|I) 0.9 (P(g^{1}|I, D)) + 0.6 (P(g^{2}|I, D)) + 0.01 (P(g^{3}|I, D))$$

Similarly using the other tables, we can evaluate this equation

$$P(l^1) = 0.502$$

	l^0	l^1
a^1	0.1	0.9
a^2	0.4	0.6
a^3	0.99	0.01

	a^1	a^2	a^3
i^0,d^0	Ŏ.3	Ŏ.4	Ŏ.3
i^0,d^1	0.05	0.25	0.7
i^1,d^0	0.9	0.08	0.02
i^1,d^1	0.5	0.3	0.2

Causal Reasoning

- Now what if we start adding information about the factors that could influence l¹
- What if someone reveals that the stu- dent is not intelligent?
- Intelligence will affect the score and hence the grade

$$\begin{split} P\left(l^{\dagger}l^{\dagger}\right) &= & \frac{P\left(l^{1}, i^{0}\right)}{P\left(i^{0}\right)} \\ P\left(l^{1}, i^{0}\right) &= & \sum \sum \sum P\left(i^{0}, D, G, S, l^{1}\right) \\ &= & \sum_{D \in \{0,1\}} \sum_{S \in \{0,1\}} \sum_{G \in \{A,B,C\}} \sum_{S \in \{0,1\}} P\left(S|i^{0}\right) \\ &= & P\left(D\right) P\left(S|i^{0}\right) P\left(G|D, i^{0}\right)P\left(l^{1}|G\right) \\ &= & P\left(D\right) P\left(S|i^{0}\right) P\left(S|i^{0}\right) \\ &= & P\left(D\right) P\left(S|i^{0}\right) P\left(S|i^{0}\right) P\left(S|i^{0}\right) P\left(S|i^{0}\right) P\left(S|i^{0}\right) P\left(S|i^{0}\right) \\ &= & P\left(S|i^{0}\right) P\left(S|i^$$

	<i>I</i> ⁰	l^1
a^1	0.1	0.9
a^2	0.4	0.6
a^3	0.99	0.01

	a^1	a^2	a^3
i^0,d^0	Ŏ.3	Ŏ.4	Ŏ.3
i^0,d^1	0.05	0.25	0.7
i^1,d^0	0.9	0.08	0.02
$i^1.d^1$	0.5	0.3	0.2

Causal Reasoning

- What if the course was easy?
- A not so intelligent student may still be able to get a good grade and hence a good letter

	l ⁰	l ¹
a^1	0.1	0.9
a^2	0.4	0.6
a^3	0.99	0.01

Evidential Reasoning

- Here, we reason about causes by look- ing at their effects
- What is the probability of the student being intelligent?
- What is the probability of the course being difficult?
- Now let us see what happens if we observe some effects

$$P(i^{1}) = ?$$

 $P(i^{1}) = 0.3$
 $P(d^{1}) = ?$
 $P(d^{1}) = 0.4$

$$P(i^{1}) = 0.3$$

 $P(d^{1}) = 0.4$
 $P(i^{1}|g^{3}) = 0.079(drops)$ $P(d^{1}|g^{3}) = 0.629(increases)$ $P(i^{1}|l^{0}) = 0.14(drops)$
 $P(l^{1}|l^{0}, g^{3}) = 0.079$
(same as $P(i^{1}|g^{3})$)
Intelligence

D

Grade

G

S

SAT

Evidential Reasoning

- What if someone tells us that the stu-dent secured C grade?
- What if instead of getting to know the grade, we get to know that the student got a poor recommendation letter?
- What if we know about the grade as well as the recommendation letter?
- The last case is interesting! (We will return to it later)

$$P(i^{1}) = 0.3$$

 $P(i^{1}|g^{3}) = 0.079(drops)$
 $P(i^{1}|g^{3}, d^{1}) = 0.11(improves)$

Explaining Away

- Here, we see how different causes of the same effect can interact
- We already saw how knowing the grade influences our estimate of intelligence
- What if we were told the course was difficult?
- Our belief in the student's intelligence improves
- Why? Let us see

$$P(i^{1}) = 0.3$$
 P
 $(i^{1}|g^{3}) = 0.079$ P
 $(i^{1}|g^{3}, d^{1}) = 0.11$
 $P(i^{1}|g^{2}) = 0.175$
 $P(i^{1}|g^{2}, d^{1}) = 0.34$
Intelligence O
Grade O
SAT

Explaining Away

- Knowing that the course was difficult explains away the bad grade
- "Oh! Maybe the course was just too difficult and the student might have received a bad grade despite being in- telligent!"
- The explaining away effect could be even more dramatic
- Let us consider the case when the grade was B

Explaining Away

- Suppose we know that the student had a high SAT Score, what happens to our belief about the difficulty of the course?
- Knowing that the SAT score was high tells us that the student seems intel-ligent and perhaps the reason why he scored a poor grade is that the course was difficult

Module 17.6: Independencies encoded by a Bayesian network (Case 1: Node and its parents)

Why do we care about independencies encoded in a Bayesian network?

- We saw that if two variables are independent then the chain rule gets simplified, resulting in simpler factors which in turn reduces the number of parameters.
- In the extreme case, we say that in the Bayesian network model, each factor was very simple (just $P\left(X_{i}|Y\right)$ and as a result each factor just added 3 parameters
- The more the number of independencies, the fewer the parameters and the lesser is the inference time
- For example, if we want to the compute the marginal *P* (*S*) then we just need to sum over the values of *I* and not on any other variables
- Hence we are interested in finding the independencies encoded in a Bayesian network

In general, given n random variables, we are interested in knowing if

- $\bullet X_i \perp X_j$
- $\bullet \ X_i \perp X_j | Z \text{, where } Z \subseteq X_1, X_2, ..., X_n \! / \! X_i, X_j$
- Let us answer some of the questions for our student Bayesian Network

- To understand this let us return to our student example
- First, let us see some independencies which clearly do not exist in the graph
- Is $L \perp G$? (No, by construction)
- \blacksquare Is $G \perp D$? (No, by construction)
- Is $G \perp I$? (No, by construction)
- Is $S \perp I$? (No, by construction)
- _ Rule?
- Rule: A node is not independent of its parents

- No, the instructor is not going to look at the SAT score but the grade
- Rule?
- Rule: A node is not independent of its parents even when we are given the values of other variables

- Let us focus on G and L.
- We already know that $G/\perp L$.
- What if we know the value of *I*? Does
- G become independent of L? No (intuitively, the student may be intelligent or not but ultimately, the

letter depends on the performance

- in the course.)
 - If we know the value of D, does G
- $_{ullet}$ become independent of L.
 - No (intuitively, the course may be easy or hard but the letter would depend on the performance in the course)
 - Whetofree the pendent value of S?

- Rule?
- Rule: A node is not independent of its parents even when we are given the values of other variables

- The same argument can be made about the following pairs
- $G/\perp D$ (even when other variables are given)
- $G/\bot I$ (even when other variables are given)
- $S/\perp I$ (even when other variables are given)

Module 17.7: Independencies encoded by a Bayesian network (Case 2: Node and its non-parents)

- Now let's look at the relation. between a node and its non-parent nodes
- \blacksquare Is $L \perp S$?

No, knowing the SAT score tells us about I which in turn tells us something about G and hence LHence we expect $P(l^1|s^1) > P(l^1|s^0)$

- Similarly we can argue $L/\perp D$ and $L/\perp I$

- But what if we know the value of *G*?
- \blacksquare Is $(L \perp S) | G?$
- Yes, the grade completely determines the recommendation
- letter
 - Once we know the grade, other vari-
- ables do not add any information
- Hence $(L \perp S)|G$ Similarly we can argue $(L \perp I)|G$ and $(L \perp D) \mid G$

- But, wait a minute!
- The instructor may also want to look at the SAT score in addition to the grade
- Well, we "assumed" that the instructor only relies on the grade.
- That was our "belief" of how the world works
- And hence we drew the network accordingly

- Of course we are free to change our assumptions
- We may want to assume that the instructor also looks at the SAT score
- But if that is the case we have to change the network to reflect this de-pendence
- Why just SAT score? The instructor may even consult one of his colleagues and seek his/her opinion

- Remember: The graph is a reflection of our assumptions about how the world works
- Our assumptions about dependencies are encoded in the graph
- Once we build the graph we freeze it and do all the reasoning and analysis (independence) on this graph
- It is not fair to ask "what if" questions involving other factors (For example, what if the professor was in a bad mood?)

- If we believe Graph (a) is how the world works then $(L \perp S)|G$
- If we believe Graph(b) is how the world works then $(L/\bot S)|G$
- We will stick to Graph(a) for the discussion

- Let's return back to our discussion of finding independence relations in the graph
- So far we have seen three cases as summarized in the next module

Module 17.8: Independencies encoded by a Bayesian network (Case 3: Node and its descendants)

- $(G/\bot D)(G/\bot I)(S/\bot I)(L/\bot G)$ A node is not independent of its par-
- (Pt) ⊥ D, I) | S, L
 (S/⊥ I) | D, G, L
 (L/⊥ G) | D, I, S
 A node is not independent of its parents even when other variables are given
- $(S \perp G)|I?$ $(L \perp D, I, S)|G?$ $(G \perp L)|D, I?$

A node **seems to be** independent of other variables given its parents

- Let us inspect this last rule
- Is $(G \perp L)|D,I$?
- If you know that d = 0 and i = 1 then you would expect the student to get a good grade
- But now if someone tells you that the student got a poor letter, your belief will change
- So $(G/\perp L)|D,I$
- The effect (letter) actually gives us in- formation about the cause (grade)

- $(G/\bot D)(G/\bot I)(S/\bot I)(L/\bot G)$
- A node is not independent of its parents
 - (\$//_⊥ ID)|D)|\$, L (L/⊥ G)|D, I, S

A node is not independent of its parents even when other variables are given

 $(S \perp G)|I$ $(L \perp D, I, S)|G$ $(G/\perp L)|D, I$

Given its parents, a node is independent of all variables except its descendants

Module 17.9: Bayesian Networks: Formal Semantics

We are now ready to formally define the semantics of a Bayesian

Network Bayesian Network Semantics:

 We will see some more formal definitions and then return to the question of independencies.

Module 17.10: I Maps

- Let P be a joint distribution over $X = X_1, X_2, ..., X_n$
- We define I(P) as the set of independence assumptions that hold in P.
- For Example: $I(P) = \{(G \perp S|I, D), \dots\}$
- Each element of this set is of the form $X_i \perp X_j | Z, Z \subseteq X | X_i$,
- \bullet Let I(G) be the set of independence assumptions associated with a graph G.

- We say that G is an I-map for P if $I(G) \subseteq I(P)$
- G does not mislead us about independencies in P
- Any independence that G states must hold in P
- But P can have additional independencies.

X	Υ	P(X,Y)
0	0	0.08
0	1	0.32
1	0	0.12
1	1	0.48

- Consider this joint distribution over X, Y
- We need to find a G which is an I-map for this P
- How do we find such a *G*?

X	Υ	P(X,Y)
0	0	0.08
0	1	0.32
1	0	0.12
1	1	0.48

 Well since there are only 2 variables here the only possibilities are

$$I(P) = \{(X \perp Y)\} \text{ or } I(P) = \Phi$$

From the table we can easily check P(X, Y) = P(X).P(Y)

$$I(P) = \{(X \perp Y)\}$$

Now can you come up with a G which satisfies $I(G) \subseteq I(P)$?

 $I(G) = \Phi$

- Since we have only two variables there are only 3 possibilities for G Which of these is an I-Map for P?
 - Well all three are I-Maps for ${\it P}$
- They all satisfy the condition
- $I(G) \subseteq I(P)$

 $I(G_2) = \Phi$ $I(G_2) = \{(X \perp Y)\}$

X	Υ	P(X,Y)
0	0	0.08
0	1	0.32
1	0	0.12
1	1	0.48

- Of course, this was just a toy example
- In practice, we do not know P and hence can't compute I(P)
- We just make some assumptions about I(P) and then construct a G such that $I(G) \subseteq I(P)$

- So why do we care about I-Map?
- If G is an I-Map for a joint distribution P then P factorizes over G
- What does that mean?
- Well, it just means that P can be written as a product of factors where each factor is a c.p.d associated with the nodes of G

Theore

Let G be a BN structure over a set of random variables X and let P be a joint distribution over these variables. If G is an I-Map for P, then P factorizes according to G

Proof:Exercise

Theore

Let G be a BN structure over a set of random variables X and let P be a joint distribution over these variables. If P factorizes according to G, then G is an I-Map of P

Proof:Exercise

- Answer: A complete graph
- The factorization entailed by the above graph is $P(X_3)P$ $(X_5|X_3)P(X_1|X_3,X_5)$ $P(X_2|X_1,X_3,X_5)P(X_4|X_1,X_2,X_3,X_5)$
- which is just chain rule of probability which holds for any distribution

- Consider a set of random variables
- X, X, X, X, X, X There are many joint distributions possible
- Each may entail different independence relations
- For example, in some cases L could be independent of S; in some not.
- Can you think of a G which will be an I-Map for any distribution over P?