Regresión Lineal

Universidad Tecnológica Nacional Facultad Regional Paraná

Regresión Lineal

Objetivos

- Ajustar una RL a un par de variables numéricas.
- ☐ Valorar el ajuste global del modelo mediante ANOVA.
- ☐ Realizar inferencia sobre los parámetros del modelo.
- Evaluar el modelo mediante técnicas diagnósticas.
- ☐ Interpretar los valores de los parámetros de la recta y sus intervalos de confianza.
- ☐ Realizar predicciones y sus intervalos de confianza.
- ☐ Graficar los datos y la recta de RL ajustada.
- Validación cruzada.

Regresión Lineal Simple

El modelo de regresión lineal simple describe la relación entre dos variables X e Y de la siguiente manera:

$$Y = \beta_0 + \beta_1 * X_1 + \epsilon$$

- \square Coeficientes β_i (e.g. β_0 es el intercepto)
- ☐ Errores o residuos.
- ✓ Estimación de la RLS
- ✓ Coeficiente de determinación
- ✓ Prueba de significación para RLS
- ✓ Intervalos de confianza y de predicción para RLS
- ✓ Diagnóstico para RLS

Prestigio y otras características de 45 tipos de trabajos en U.S. en 1950. 45 filas (casos) y 4 columnas (variables):

- ✓ "type" (tipo de ocupación: prof -profesionales y directivos-, wc -de cuello blanco-, bc -de cuello azul-).
- ✓ "income" (% de los varones que ganan \$3500 ó más en 1950).
- ✓ "education" (% de los varones graduados de secundaria).
- ✓ "prestige" (% de los evaluadores en NORC que calificaron la ocupación como excelente o bueno en prestigio).

```
library(car)
data(Duncan)
```

Vamos a intentar explicar el nivel de ingresos Y="income" (variable dependiente, VD) a partir del nivel educativo X="education" (variable independiente, VI).

head(Duncan)

##		type	income	${\tt education}$	prestige
##	${\tt accountant}$	prof	62	86	82
##	pilot	prof	72	76	83
##	architect	prof	75	92	90
##	author	prof	55	90	76
##	chemist	prof	64	86	90
##	minister	prof	21	84	87

```
fitLS <- lm(income ~ education, data = Duncan)
summary(fitLS)
```

```
Call:
lm(formula = income \sim education, data = Duncan)
```

Fórmula

```
Residuals:
   Min 1Q Median 3Q Max
-39.572 -11.346 -1.501 9.669 53.740
```

Diagnóstico

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.6035 5.1983 2.040 0.0475 *
education 0.5949 0.0863 6.893 1.84e-08 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Coeficientes

Residual standard error: 17.04 on 43 degrees of freedom Multiple R-squared: 0.5249, Adjusted R-squared: 0.5139 F-statistic: 47.51 on 1 and 43 DF, p-value: 1.84e-08

Bondad de ajuste

Representación gráfica con la recta ajustada y los datos.

```
plot(income~education, data=Duncan, pch=20)
abline(fitLS)
```


Ajuste global del modelo (ANOVA).

Partición de varianza: qué parte de la variabilidad de la respuesta es explicada por su relación con las variables predictoras y qué parte no es explicada por dicha relación (residual).

Esto permitirá contrastar si el modelo es significativo o no. En nuestro ejemplo:

$$F(1,43)=47.51, p<0.001$$

Parámetros del modelo.

Estimaciones de los parámetros β del modelo.

Contrastes de hipótesis sobre cada parámetro (H_0 : $\beta_i = 0$).

Prueba t de Student en cada parámetro.

En nuestro ejemplo:

- intercepto $\beta_0=10.6035$, «casi» no significativo (p=0.0475)
- pendiente $\beta_1 = 0.5949$, significativo (p < 0.001)

Bondad de ajuste R^2 .

Medida de la eficacia del modelo de regresión: coeficiente de determinación \mathbb{R}^2 .

- ✓ Toma valores en el intervalo 0-1.
- ✓ Mide el porcentaje de variabilidad en los datos que viene explicada por el modelo, por lo que un valor cercano a 1 significa que el modelo es bastante efectivo.

NOTA: Al agregar más variables al modelo el R^2 aumenta, por lo cual en modelos de regresión múltiple se aconseja utilizar el R^2 ajustado, que ajusta su valor para dar cuenta del número de variables incluidas en el modelo.

En nuestro ejemplo es bajo $R^2 = 0.525$.

Supuestos del modelo:

- 1. Linealidad. La relación es constante. Gráfico de dispersión.
- 2. **Independencia de los residuos**. Los valores y_i y el término de error i son independientes entre sí. Prueba de Durbin-Watson.
- 3. **Normalidad de los residuos**. Implica que los valores y_i y el término de error i tienen distribución normal para cada valor de x_i . Prueba de Kolmogorff-Smirnov o Shapiro-Wilks; métodos gráficos (gráficos de normalidad de tipo QQ cuantiles o PP proporciones, e histograma).
- 4. **Homogeneidad de varianza**. Los valores y_i y el término de error i tienen la misma varianza para cada x_i .

Observaciones atípicas, extrañas o influyentes. -outliers -

- \checkmark Atípicas con respecto al eje de abscisas X.
- \checkmark Atípicas en relación de eje de ordenadas Y.
- ✓ Atípicas respecto tanto a las abscisas como a las ordenadas.

Para detectarlos evaluamos los residuos respecto al: apalancamiento (*leverage*), distancia de Cook, DFFITS o DFBETAS.

Diagnóstico:

```
par(mfrow=c(2,2))
plot(fitLS)
```

Residual vs Fitted

Media cero, no hay heterocesdasticidad y ni problemas de linealidad. Residuos no correlacionados.

No hay evidencias claras de heterocesdasticidad. Muestra la existencia de 3 datos atípicos.

Muestra la existencia de 3 datos atípicos.

Predicciones:

```
## fit lwr upr
## 1 16.55209 7.547121 25.55706
## 2 40.34647 35.205386 45.48755
## 3 64.14085 55.852073 72.42962
```

Predicciones:

```
## fit lwr upr
## 1 16.55209 -18.96651 52.07069
## 2 40.34647 5.60583 75.08711
## 3 64.14085 28.79703 99.48466
```

Representación del modelo:

```
# aumentamos los límites del gráfico
plot(income~education, data=Duncan, xlim=c(0,100),
    ylim=c(0,100), pch=20)
abline(fitLS,col="blue")

lines(c(10, 50, 90), res.pred1[, 2], lty = 2)
lines(c(10, 50, 90), res.pred1[, 3], lty = 2)
lines(c(10, 50, 90), res.pred2[, 2], lty = 2, col = "red")
lines(c(10, 50, 90), res.pred2[, 3], lty = 2, col = "red")
```

Representación del modelo:

Validación cruzada:

```
library(caret)
train(income~education, data=Duncan, method="lm")
Linear Regression
45 samples
 1 predictor
No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 45, 45, 45, 45, 45, 45, ...
Resampling results:
 RMSE Rsquared MAE
 17.59711 0.5129526 13.86149
Tuning parameter 'intercept' was held constant at a value of TRUE
```

Obtenemos que el ajuste es bueno.

Resumen:

- ✓ Explicamos un bajo porcentaje de variabilidad (52.5%), por lo que parece necesario un modelo de regresión múltiple.
- ✓ Existen *outliers* que influyen en la recta, por lo que los modelos robustos parecen ser más adecuados en este caso.