

Микропроцессорные устройства обработки сигналов

Лекция L02 «Методы обработки сигналов»

http://vykhovanets.ru/course67/

Обработка сигналов

Сигналы

- Сигнал физический процесс, протекающий во времени и отражающий состояние некоторого объекта наблюдения
- **Аналоговый сигнал** непрерывная функция времени:

$$\chi(t) \in [\chi_{\min}, \chi_{\max}]; t \in [t_{\min}, t_{\max}].$$

• Дискретный сигнал — последовательность отсчетов аналогового сигнала в дискретные моменты времени с дискретными значениями: $x(\tau) \in \overline{0, L-1} \ (\tau = \overline{0, N-1}).$

Дискретизация

• Квантование по времени

$$\chi(t) \in [\chi_{\min}, \chi_{\max}], t \in [t_{\min}, t_{\max}]$$

$$\Rightarrow \chi(\tau) \in [\chi_{\min}, \chi_{\max}] (\tau = 0, N-1)$$

• Квантование по уровню

$$\chi(\tau) \in [\chi_{\min}, \chi_{\max}] \Rightarrow x(\tau) \in \overline{0, L-1}$$

• Дискретный сигнал

$$x(\tau) \in 0, L-1 \quad (\tau = 0, N-1)$$

$$t = t_{\min} + \tau T, \quad T = \frac{t_{\max} - t_{\min}}{N}$$

$$\chi = \chi_{\min} + x D, \quad D = \frac{\chi_{\max} - \chi_{\min}}{L}$$

Цифровая обработка

$$x(0), x(1), ..., x(N-1) \Rightarrow y(0), y(1), ..., y(M-1)$$

- Передискретизация изменении частоты дискретизации (многоскоростная обработка)
- Преобразование функциональное преобразование сигнала по одному отсчету
- **Корреляция** проверка степени линейной зависимость сигналов
- Фильтрация (не)рекурсивная нелинейная (линейная) обработка сигнала
- Фильтрация адаптивная фильтрация с изменением характеристик фильтра
- Спектральная обработка обработка сигнала в спектральной области

Передискретизация

$$x(0), x(1), ..., x(N-1) \Rightarrow y(0), y(1), ..., y(M-1)$$

• Интерполяция — увеличение частоты дискретизации,

$$N < M$$
.

 Децимация – уменьшение частоты дискретизации,

$$N > M$$
.

Преобразования

• Нелинейное преобразование

$$y(\tau) = f(x(\tau)) \ (\tau = \overline{0, N-1})$$

$$y(\tau) = f(x(\tau), m(\tau)) \ (\tau = \overline{0, N-1})$$

• Манипуляция

$$y(\tau) = f(x(\tau), b(\tau)) \quad (\tau = \overline{0, N-1})$$

Корреляция

$$r(\tau) = \frac{1}{N} \sum_{k=0}^{K-\tau-1} x(\tau+k) \times y(k)$$

$$(\tau = \overline{0, K - 1})$$

$$K = N + M - 1$$

$$x(i \pm N) = x(i) \quad (i = \overline{0, N-1})$$

$$y(j \pm M) = y(j)(j = 0, M - 1)$$

Нерекурсивная фильтрация

КИХ – конечная импульсная характеристика

Рекурсивная фильтрация

БИХ – бесконечная импульсная характеристика

Цифровой фильтр

Адаптивная фильтрация

Спектральная метод Фазовая область Временная Частотная область область -20 -30 -40 -50 -60 -70 -80 -90 6.0 7.5 9.0 10.5 12.0 13.5 15

Спектральные преобразования

$$c(i) = \sum_{ au=0}^{N-1} r_i(au) imes x(au)$$
 $C = R imes X$ прямое $C = R imes X$ прямое $C = R imes X$ прямое $C = R imes X$ обратное $C = R imes X$

Спектральные функции

 $\mathbf{r}_i(\tau) = \sin(2\pi\tau i/N) + j\cos(2\pi\tau i/N)$

Чебышева

$$egin{aligned} T_0(x) &= 1 & T_1(x) = x \ T_{n+1}(x) &= 2x\,T_n(x) - T_{n-1}(x) \end{aligned}$$

Уолша

Xaapa

Спектральная обработка

Восстановление

• $|\chi'(t)|_{\max}$ – максимальное значение модуля первой производной аналогового сигнала

Теорема Котельникова

Сигма-дельта АЦП

U _{BX} =0,6 B				
N такта	U _Σ , B	U _и , В	U _к , бит	U _{ЦАП} , В
1	0,6	0,6	1	1
2	-0,4	0,2	1	1
3	-0,4	-0,2	0	-1
4	1,6	1,4	1	1
5	-0,4	1,0	1	1
6	-0,4	0,6	1	1
7	-0,4	0,2	1	1
8	-0,4	-0,2	0	-1
9	1,6	1,4	1	1
10	-0,4	1,0	1	1
11	-0,4	0,6	1	1
12	-0,4	0,2	1	1
13	-0,4	-0,2	0	-1
14	1,6	1,4	1	1
15	-0,4	1,0	1	1
16	-0,4	0,6	1	1