Dynamics of Particles

Beyond FBD=IRD What else can we learn from Newton's 2nd and 3rd laws?

- Linear momentum and Linear impulse
- Angular momentum and Angular impulse
- Application
 - > Impacts between particles

[TS, Chapter 3]

Linear Momentum

■ Newton's 2nd Law

$$\mathbf{F} = \frac{d\mathbf{L}}{dt} \qquad \mathbf{L} = m \mathbf{v}$$

□ Linear Impulse

$$\int_{t_1}^{t_2} \mathbf{F} dt = \int_{t_1}^{t_2} m\mathbf{a} dt$$

$$LI_{1-2} = \int_{t_1}^{t_2} m\mathbf{a}dt = \mathbf{L}_2 - \mathbf{L}_1$$

Angular Momentum

■ Newton's 2nd Law

Moment of the force (about O)

$$\mathbf{M}_O = \mathbf{r} \times \mathbf{F}$$

Note really $\mathbf{r}_{P/O}$

DEFINE

angular momentum

$$\mathbf{H}_O = \mathbf{r} \times m \mathbf{v}$$

$$\mathbf{M}_O = \frac{d\mathbf{H}_O}{dt}$$

Angular Impulse

$$LI_{1-2} = \int_{t_1}^{t_2} m\mathbf{a}dt = \mathbf{L}_2 - \mathbf{L}_1$$

$$AI_{O_{1-2}} = \int_{t_1}^{t_2} \mathbf{M}_O dt = \mathbf{H}_O(t_2) - \mathbf{H}_O(t_1)$$

Principles of Conservation of Momentum

□ Conservation of Linear Momentum

$$LI_{1-2} = \int_{t_1}^{t_2} m\mathbf{a}dt = \mathbf{L}_2 - \mathbf{L}_1$$

If
$$LI = 0$$
, $L_2 = L_1$

Conservation of Angular Momentum

$$AI_{O_{1-2}} = \int_{t_1}^{t_2} \mathbf{M}_O dt = \mathbf{H}_O(t_2) - \mathbf{H}_O(t_1)$$

$$\begin{aligned} \text{If } \boldsymbol{A}\boldsymbol{I}_O &= 0, \\ \mathbf{H}_{O2} &= \mathbf{H}_{O1} \end{aligned}$$

Example 1: Force/impulse associated with a swing

Golf club swing

Velocity ~ 150 ft/second (46 meters/second)

- Duration ~ 1 millisecond
- Mass = 1.62 oz. (0.046 kg.)
- Total linear impulse ~ 2.1 kg meters/second
- average force ~ 2100 Newtons (210 kg.)

Example 2: Force/Impulse

- \square mass of the ball = 0.145kg.
- \square mass of the bat = 0.9 kg.
- □ velocity of swing = 30 m/sec
- □ contact time < 1 msec
- □ fastball velocity ~ 100 mph (44.4 m/s)
- □ calculate average force, impulse

Impact

- Linear impulse = Change in Linear momentum
- Angular impulse = Change in Angular momentum
- Impact deals with finite impulses in very, very small time

Linear Impulse with Small Time Intervals

■ Large force, small time interval

$$LI_{t_1-t_1+\Delta t} = \int_{t_1}^{t_1+\Delta t} \mathbf{F} dt = \mathbf{L}_{t_1+\Delta t} - \mathbf{L}_{t_1+\Delta t}$$

■ Impulse = area under the curve

Linear Impulse with Infinitesimal time

- Large force, infinitesimal time interval
 - $\lim \Delta t$ tends to zero
- □ Impulse = area under the curve

3 key attributes

- Time interval is (almost)
 zero
- Force is (almost) infinitely large
- But,...impulse is finite

When is the "zero time" impulse model appropriate?

Not always...!

Are these impacts?

No for some calculations

What if you have to predict/analyze the shape of the balloon?

Yes for some calculations

What if you have to estimate the maximum height of a bouncing basketball over successive bounces?

Reality

Collisions have three stages or states

Deformation (compression)

Deformation increases

State of maximum deformation

> Rate of change of deformation is zero

Restitution (expansion)

Deformation decreases

δ

Collisions in 1 dimension

- □ Change in momentum
 - Let *LI* denote the linear impulse acting on 2

$$-LI = m_1 v_1^+ - m_1 v_1^-$$

$$LI = m_2 v_2^+ - m_2 v_2^-$$

Note all quantities positive

Adding

Reality

Collisions have three stages or states

Deformation (compression)

Deformation increases

State of maximum deformation

> Rate of change of deformation is zero

Restitution (expansion)

Deformation decreases

δ

How can we model impacts?

- □ Newton's laws
 - Accelerations are infinite if forces are infinite
- Conservation of energy
 - Only conserved for "elastic" collisions
 - Inelastic?
- Conservation of momentum
 - For each particle?
 - For the system of particles?
- Need an impact model
 - Poisson's model of restitution and compression (deformation) impulses
 - Newton's model of approach and separation velocities

