Neural Models in MT

April 24, 2014

$$\boldsymbol{z} = g(\boldsymbol{y}^{\top} \mathbf{V})$$

$$egin{aligned} oldsymbol{z} &= g(oldsymbol{y}^{ op} \mathbf{V}) \ oldsymbol{z} &= g(h(oldsymbol{x}^{ op} \mathbf{W})^{ op} \mathbf{V}) \end{aligned}$$

$$egin{aligned} oldsymbol{z} &= g(oldsymbol{y}^{ op} \mathbf{V}) \ oldsymbol{z} &= g(h(oldsymbol{x}^{ op} \mathbf{W})^{ op} \mathbf{V}) \ oldsymbol{z} &= g(\mathbf{V}h(\mathbf{W} oldsymbol{x})) \end{aligned}$$

$$egin{aligned} oldsymbol{z} &= g(oldsymbol{y}^{ op} \mathbf{V}) \ oldsymbol{z} &= g(h(oldsymbol{x}^{ op} \mathbf{W})^{ op} \mathbf{V}) \ oldsymbol{z} &= g(\mathbf{V}h(\mathbf{W} oldsymbol{x})) \end{aligned}$$

Note:

if
$$g(\mathbf{x}) = h(\mathbf{x}) = \mathbf{x}$$

$$\mathbf{z} = (\mathbf{V}\mathbf{W})\mathbf{x}$$

"Recurrent"

Design Decisions

- How to represent inputs and outputs?
- Neural architecture?
 - How many layers? (Requires nonlinearities to improve capacity!)
 - How many neurons?
 - Recurrent or not?
- What kind of non-linearities?

Representing Language

- "One-hot" vectors
 - Each position in a vector corresponds to a word type
 - Sequence of words, sequence of vectors
 - Bag of words: multiple vectors
- Distributed representations
 - Vectors encode "features" of input words (character n-grams, morphological features, etc.)

Training Neural Networks

- Neural networks are supervised models you need a set of inputs paired with outputs
- Algorithm
 - Run for a while
 - Give input to the network, see what it predicts
 - Compute loss(y,y*) and (sub)gradient with respect to parameters. Use the chain rule, aka "back propagation"
 - Update parameters (SGD, AdaGrad, LBFGS, etc.)

Bengio et al. (2003)

$$p(\mathbf{e}) = \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-n+1}, \dots, e_{i-1})$$

$$p(e_i \mid e_{i-n+1}, \dots, e_{i-1}) =$$

Bengio et al. (2003)

							_		
	n	С	h	m	direct	mix	train.	valid.	test.
MLP1	5		50	60	yes	no	182	284	268
MLP2	5		50	60	yes	yes		275	257
MLP3	5		0	60	yes	no	201	327	310
MLP4	5		0	60	yes	yes		286	272
MLP5	5		50	30	yes	no	209	296	279
MLP6	5		50	30	yes	yes		273	259
MLP7	3		50	30	yes	no	210	309	293
MLP8	3		50	30	yes	yes		284	270
MLP9	5		100	30	no	no	175	280	276
MLP10	5		100	30	no	yes		265	252
Del. Int.	3						31	352	336
Kneser-Ney back-off	3							334	323
Kneser-Ney back-off	4							332	321
Kneser-Ney back-off	5							332	321

Devlin et al. (2014)

- Turn Bengio et al. (2003) into a translation model
- Conditional model; generate the next English word conditioned on
 - The previous n English words you generated
 - The aligned source word, and its m neighbors

$$p(\mathbf{e} \mid \mathbf{f}, \mathbf{a}) = \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-2}, e_{i-1}, f_{a_i-1}, f_{a_i}, f_{a_i+1})$$

$$p(e_i \mid e_{i-2}, e_{i-1}, f_{a_i-1}, f_{a_i}, f_{a_i+1}) =$$

Devlin et al. (2014)

BOLT Test							
	Ar-En						
:	BLEU	% Gain					
"Simple Hier." Baseline	33.8	-					
S2T/L2R NNJM (Dec)	38.4	100%					
Source Window=7	38.3	98%					
Source Window=5	38.2	96%					
Source Window=3	37.8	87%					
Source Window=0	35.3	33%					
Layers=384x768x768	38.5	102%					
Layers=192x512	38.1	93%					
Layers=128x128	37.1	72%					
Vocab=64,000	38.5	102%					
Vocab=16,000	38.1	93%					
Vocab=8,000	37.3	83%					
Activation=Rectified Lin.	38.5	102%					
Activation=Linear	37.3	76%					

Kalchbrenner & Blunsom (2013)

- Conditional model
 - Represent f as a vector (or matrix)
 - Use recurrent model + vector representation of f to generate translation

Summary

- Two problems in standard statistical models
 - We don't condition on enough stuff
 - We don't know what features to use when we condition on lots of structure
- Punchline: Neural networks let us condition on a lot of stuff without an exponential growth in parameters