CS 771A: Intro to Machine Learning, IIT Kanpur			Quiz II	Quiz II (01 Apr 2025)	
Name					20 marks
Roll No	С	Dept.			Page 1 of 2

Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in block letters neatly with ink.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ such cases may get straight 0 marks.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

Q1. (Tracing stuff) Let $\mathbf{u}_1, ..., \mathbf{u}_{100} \in \mathbb{R}^{100}$ be the left singular vectors of a full-rank matrix $B \in \mathbb{R}^{100 \times 100}$. Let \mathbf{p}, \mathbf{q} be random vectors with support $\{\mathbf{u}_1, ..., \mathbf{u}_{100}\}$. Find the following quantities (no derivations). *Hint 1*: linearity of expectation. *Hint 2*: trace is linear but rank is not.(1 x 5 = 5 marks)

2.1	$\mathbb{E}[\operatorname{trace}(\mathbf{pq}^{T})]$ if \mathbf{p} , \mathbf{q} are chosen uniformly but without replacement i.e. \mathbf{p} is chosen uniformly randomly from $\{\mathbf{u}_1,, \mathbf{u}_{100}\}$ and then \mathbf{q} is chosen uniformly randomly from $\{\mathbf{u}_1,, \mathbf{u}_{100}\}\setminus\{\mathbf{p}\}$.	
2.2	trace($\mathbb{E}[\mathbf{pq}^{T}]$) if \mathbf{p} , \mathbf{q} are chosen uniformly but without replacement i.e. \mathbf{p} is chosen uniformly randomly from $\{\mathbf{u}_1,, \mathbf{u}_{100}\}$ and then \mathbf{q} is chosen uniformly randomly from $\{\mathbf{u}_1,, \mathbf{u}_{100}\}\setminus\{\mathbf{p}\}$.	
2.3	${\sf trace}(\mathbb{E}[{\sf pq}^{\sf T}])$ if ${\sf p}, {\sf q}$ are chosen uniformly but with replacement i.e. ${\sf p}$ is chosen uniformly randomly from $\{{\sf u}_1,, {\sf u}_{100}\}$ and then ${\sf q}$ is chosen uniformly randomly from $\{{\sf u}_1,, {\sf u}_{100}\}$ independently of ${\sf p}$.	
2.4	$\mathrm{rank}(\mathbb{E}[pp^{T}])$ if p is chosen uniformly randomly from $\{u_1,,u_{100}\}$	
2.5	$\mathbb{E}[\mathrm{rank}(\mathbf{p}\mathbf{p}^{T})]$ if \mathbf{p} is chosen uniformly randomly from $\{\mathbf{u}_1,,\mathbf{u}_{100}\}$	

Q2. (Kernel Smash) $K_1, K_2: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are Mercer kernels i.e., for any $x, y \in \mathbb{R}$, we have $K_i(x,y) = \langle \phi_i(x), \phi_i(y) \rangle$ with the feature maps given below. Design a map $\phi_3: \mathbb{R} \to \mathbb{R}^9$ for kernel K_3 s.t. $K_3(x,y) = \left(K_1(x,y) + K_2(x,y)\right)^2$ for all $x,y \in \mathbb{R}$. No derivation needed. Note that ϕ_3 must not use more than 9 dimensions. If your solution does not require 9 dimensions then fill the rest of the dimensions with zero. (9 marks)

$$\phi_{1}(x) = \left(\frac{1}{x}, x\right), \phi_{2}(x) = \left(\frac{1}{x^{2}}, x^{2}\right)$$

$$\phi_{3}(x) = \left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right), \left[\begin{array}{c} \\ \\ \\ \end{array}\right], \left[\begin{array}{c} \\ \\ \\ \end{array}\right]$$

Q3. (True-False) Write T or F for True/False in the box on the right and a bri	ef justification in the
space below (brief proof if T , counterexample if F). A square matrix is termed	d <i>diagonal</i> if all of its
off-diagonal entries are zero (its diagonal entries can be zero/-ve/+ve).	(3 x (1+1) = 6 marks)

J., U	and gondre critics are zero (its and gondre critics can be zero, ve, ve).	,
1	A diagonal matrix $A \in \mathbb{R}^{3 \times 3}$ with all diagonal entries being non-zero must always have rank exactly equal to 3.	
2	It is possible for a diagonal matrix $B \in \mathbb{R}^{3\times3}$ to be positive semi-definite if it has two strictly positive diagonal entries and one strictly negative diagonal entry.	
3	For any Mercer kernel $K: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ and any vectors $\mathbf{x}_1,, \mathbf{x}_n \in \mathbb{R}^2$, the matrix $G = [g_{ij}] \in \mathbb{R}^{n \times n}$ defined as $g_{ij} \stackrel{\text{def}}{=} K(\mathbf{x}_i, \mathbf{x}_j)$ is always positive semi-definite.	
	$G = [g_{ij}] \in \mathbb{R}^{n \times n}$ defined as $g_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$ is always positive semi-definite.	