

CBM2096P

USB 2.0 Flash Disk Controller Datasheet

Rev 1.0

Shenzhen Chipsbank Technologies Co.,Ltd.

7/F,Building No.12,Keji Central Road 2, Software Park, High-Tech Industrial Park, Shenzhen, P.R.China 518057

Tel: 0755-86169650-808 Fax: 0755-86169690 Email: info@chipsbank.com URL: http://www.chipsbank.com

Contained herein

Copyright by Shenzhen Chipsbank Technologies Co.,Ltd. all rights reserved.

Revision History

Date	Rev No	Description
2011-02-24	1.0	Initial release

Contents

7	DE	SCRIPTION	4
2	FEA	ATURES	4
3	BLO	OCK DIAGRAM	6
4	PIN	N ASSIGNMENT	7
	4.1	TQFP48 (Top Side)	7
5	PIN	N DESCRIPTION	8
6	ELE	ECTRICAL CHARACTERISTICS	11
	6.1	ABSOLUTE MAXIMUM RATINGS	11
	6.2	RECOMMENDED OPERATING CONDITIONS	11
	6.3	STATIC CHARACTERISTICS	12
	6.4	DYNAMIC CHARACTERISTICS	12
	6.4	1 Normal NAND FLASH Dynamic characteristics	
	6.4.2		
	6.4	· · · · · · · · · · · · · · · · · · ·	19
7	ME(CHANICAL DIMENSIONS	
	7.1	48-PIN CBM2096P PACKAGE OUTLINE DIMENSION	24
8	CO	PYRIGHT NOTICE	25

1 Description

Fastest & Securest USB 2.0 Flash Disk Controller with dedicated 32-bit microprocessor

The CBM2096P is the USB 2.0 Flash Disk controller with the fastest transfer speed on the market. CBM2096P can reach theoretical flash access speed limit of over 32MByte/s for read and 20MByte/s for write.

The on-the-fly ECC engine is capable of correcting up to 16/25/29/30bits per 1024 bytes page . For data security, CBM2096P is designed with both hardware and software data protection technology to prevent data corruption even if it is powered off or unplugged during data transfer.

The CBM2096P supports all 8 /16 bit BUS wide async NAND flash memory available in the market. New flash can be supported by software re-configuration.

The CBM2096P supports all 8 bit BUS wide ONFI/TOGGLE NAND flash memory available in the market. New flash can be supported by software re-configuration.

The CBM2096P has both a) 5V to 3.3V LDO and b) power on reset circuits integrated. Thus greatly reduced BOM cost and eased layout burden.

The CBM2096P runs smoothly with all available hosts and PC platforms. Complied with USB specification rev. 2.0, the CBM2096P can be supported without additional driver under Win XP, Win 2000, Windows Me, Mac OS and Linux OS. With device driver installed, it can support Win 98/98SE as well. Comprehensive applications, such as PC boot up, disk partitions, password check for security disk, are available as part of our standard mass production software package.

The CBM2096P is available in 48-pin TQFP and 64-pin LQFP package, which are thinnest and smallest on the market. The 48-pin CBM2096P and the 64-pin CBM2096P all support up to 8 flash chips. Customers can choose different packages to meet their design requirement.

2 Features

■ USB Interface

High-speed USB 2.0 interface;

■ Fastest data transfer rate on the market

Single-channel mode(16bit): 32MB/s for Read, 20MB/s for Write Single-channel mode(8bit): 26MB/s for Read, 20MB/s for Write Fastest file copy rate on the market.

On-the-fly ECC built-in Hardware enhances reliability

ECC for NAND flash: 16/25/29/30 bit per page (1 page = 1024 bytes)

- Special wear leveling algorithm to improve the flash life-time
- Hardware & Software Data Protection Technology

Prevent data corruption even if it is powered off or unplugged during data transfer.

■ SLC & MLC & TLC NAND Flash Interface

Support 8-bit and 16-bit Samsung SLC&MLC&TLC NAND flash.

Support 8-bit and 16-bit Toshiba SLC&MLC&TLC NAND flash.

Support 8-bit and 16-bit Hynix SLC&MLC&TLC NAND flash.

Support 8-bit and 16-bit Sandisk SLC&MLC&TLC NAND flash.

Support 8-bit and 16-bit Micron/Intel SLC&MLC&TLC NAND flash.

Support 8-bit and 16-bit ST/Numony SLC&MLC NAND flash.

Support 8-bit and 16-bit Infineon SLC&MLC NAND flash.

Support PowerChip SLC&MLC Nand flash

Support Spansion 3.3V MirrorBit-Quad flash

Support Actrans Nand Flash

Support ONFI2.0 DDR mode flash

Support Samsung Toggle mode flash

Software configuration to support various new flash memories

Supports up to 8 flash chips

■ Proprietary 32-bit CISC microprocessor feature

Proprietary 32-bit CISC processor for USB protocol processing and flash access.

Single cycle instruction period

- Integrated 5v to 3.3v voltage regulator
- Disk partitions and password check for security disk available
- PC boot up as USB Zip Disk, USB Hard Disk or USB CDROM
- Auto run function
- Low power dissipation

Operating current 60mA (Bus power compatible)

■ Build-in LDO

Output maximum current up to 300mA

- Leading 0.16um CMOS technology
- 48-pin TQFP /64-pin LQFP package

48-pin CBM2096P supports up to 8 Flash Chips

Windows, Mac and Linux compatible

3 Block Diagram

4 Pin Assignment

4.1 TQFP48 (Top Side)

5 Pin Description

Brief CBM2096P pin functions are shown in the following tables.

I: Input signal

O: Output signal

I/O: Bi-direction signal

PWR: Power signal

GND: Ground signal

PU: pull upPD: pull down

CBM2096P TQFP48 Pin Description

TQFP48 Pin No.	Pin Name	Туре	Description
1	VDD50	PWR	Regulator 5V Power Input
2	VDD33	PWR	Regulator 3.3V Power OUT
3	VDD18	PWR	Regulator 1.8V Out
4	VPP	PWR	CORE 1.8V in
5	REXT	I	Connect External Resister for current reference
6	VDD33	PWR	Padring 3.3V Power
7	DP	I/O	USB Data D+
8	DM	I/O	USB Data D-
9	VSS	GND	Padring 3.3V / Logic 1.8V Ground
10	XI	I	Crystal Input (12 MHz)
11	хо	0	Crystal Output
12	VSSU	GND	Analog 1.8V Ground
13	VDDU	PWR	Analog 1.8V Power
14	TEST_MODE	I PD	Test Mode Enable Pin When high , test mode When low , normal mode

15	FDATA0_15 GPIO15	I/O PU	Group 0 Flash Data Bus - bit 15 General I/O port 15 When select spi mode ,as spi chip select . (configure as GPIO and clear pin_64(detail in spi_ctl[13] .when select master mode , configure output , otherwise, configure as input.).
16	FDATA0_14 GPIO14	I/O PU	Group 0 Flash Data Bus - bit 14 General I/O port 14 When select spi mode, as clock out support ligh-tun sensor (configure as GPIO and clear pin_64(detail in spi_ctl[13] .when select ligh-tun mode , configure output).
17	VSS	GND	Padring 3.3V / Logic 1.8V Ground
18	FDATA0_13 GPIO13	I/O PU	Group 0 Flash Data Bus - bit 13 General I/O port 13
19	FDATA0_12 GPIO12	I/O PU	Group 0 Flash Data Bus - bit 12 General I/O port 12
20	FDATA0_11 GPIO11	I/O PU	Group 0 Flash Data Bus - bit 11 General I/O port 11
21	FDATA0_10 GPIO10	I/O PU	Group 0 Flash Data Bus - bit 10 General I/O port 10
22	FDATA0_9 GPIO9	I/O PU	Group 0 Flash Data Bus - bit 9 General I/O port 9
23	FDATA0_8 GPIO8	I/O PU	Group 0 Flash Data Bus - bit 8 General I/O port 8
24	X_LED	I/O	When TEST_MODE =1, as scan clock input. When TEST_MODE =0, as LED Indication
25	FWRN	0	Group Flash Write Enable (active low)
26	FALE	0	Group Flash Address Latch Enable
27	WP	I	Write Protect Switch Input
28	FCLE	0	Group Flash Command Latch Enable
29	VDD33	PWR	Padring 3.3V Power
30	DQS	I/O PD	DQS, only for onfi/toggle nand flash
31	FCEN0	0	Flash Chip Enable - Chip 0 (active low)
32	FRDN	0	Group Flash Read Enable (active low)
33	FRB1 /INTR	I	Group Flash Ready_Busy 1, when select flash_rb1 mode, as Group Flash Ready_Busy1 signal input(detail in soft_flag [25]). 2, when select intr mode, as external interrupt input signal(detail in soft_flag [25]).
34	/SCK(I2c) FCEN3	0	1, When select test-mode, as scan-chain output 2, When select i2c , as sck 3, When select chip select2/3 mode, as CE3 output
35	FCEN2	I/O PU	1, When select test_mode, As scan-chain input 2, when select chip select2/3 mode, as CE2 output .(active

			when disable test_mode)
36	X_CLK_OUT /FCEN1	I/O PU	1, When select clock input mode (1), X_CLK_OFF=1, as external input test clock. 2, When select chip select1 mode or spi master mode, as output. (only active when X_CLK_OFF =0 or de-slect spi slve mode) (1), select chip select1 mode (detail in soft_flag [28]/[25]), as CE1 output (2), otherwise, as normal clock_out ,which defined at config_r[20].
37	FRB0	I	Group Flash Ready_Busy0
38	FDATA0_0	I/O	Group 0 Flash Data Bus - bit 0
	GPIO0	PU	General I/O port 0
39	FDATA0_1	I/O	Group 0 Flash Data Bus - bit 1
	GPIO1	PU	General I/O port 1
40	FDATA0_2	I/O	Group 0 Flash Data Bus - bit 2
	GPIO2	PU	General I/O port 2
41	FDATA0_3	I/O	Group 0 Flash Data Bus - bit 3
	GPIO3	PU	General I/O port 3
42	FDATA0_4	I/O	Group 0 Flash Data Bus - bit 4
	GPIO4	PU	General I/O port 4
43	FDATA0_5	I/O	Group 0 Flash Data Bus - bit 5
	GPIO5	PU	General I/O port 5
44	FDATA0_6	I/O	Group 0 Flash Data Bus - bit 6
	GPIO6	PU	General I/O port 6
45	FDATA0_7	I/O	Group 0 Flash Data Bus - bit 7
	GPIO7	PU	General I/O port 7
46	TOGGLE_SEL	I PU	Toggle nand flash select (active low)
47	RESET	I	Reset Sign (active low)
48	VSS33A	GND	Analog 3.3V Ground

6 Electrical Characteristics

6.1 Absolute maximum ratings

In accordance with the Absolute Maximum Rating System (IEC 60134).

symbol	parameter	ď	conditions	min	max	unit
VDD33	analog supply voltage			-0.5	5.5	٧
VDD18	digital supply voltage			-0.5	4.5	٧
VDD50	input voltage			-0.5	5.5	V
Vosd	electrostatic discharge voltage[1]	ILI <	DP, DM and GND pins	-4000	+4000	
Vesd		1 A	other pins	-2000	+2000	V
Tstg	storage temperature			-40	+125	$^{\circ}$

^[1] Equivalent to discharging a 100 pF capacitor via a 1.5 k resistor (Human Body Model).

6.2 Recommended operating conditions

symbol	Parameter	conditions	min	Тур	max	Unit
VDD33	analog supply voltage		3.0	3.3	3.6	V
VDD18	digital supply voltage		1.62	1.8	1.98	V
VDD50	input voltage		4.5	5	5.5	V
VIVALION	input voltage on analog I/O pins DP DM	Low/Full speed	0	3.3	3.6	V
VI(AI/O)		High speed	0	400	-	mV
Tamb	ambient temperature		0	-	+70	$^{\circ}$

6.3 Static characteristics

All parameters are measured at VCCA = VCCD = 3.0 to 3.6 V; VAGND = VDGND = 0 V; Tamb = 40 to 85 $^{\circ}$ C;

symbol	Parameter	Conditions	min	Тур	max	Unit
ICC	operating supply current	Full-speed transmitting and receiving;	ı	29.5	ı	mA
		high-speed transmitting and receiving	ı	60		IIIA
ICC(susp)	suspend supply current	in suspend mode	ı	500		uA

6.4 Dynamic characteristics

6.4.1 Normal NAND FLASH Dynamic characteristics

All parameters are measured at VCCA = VCCD = 3.0 to 3.6 V; VAGND = VDGND = 0 V; Tamb = -40 to 85 $^{\circ}$ C ;

symbol	Parameter	conditions	min	Тур	max	Unit
Ts(FDATA*)	FDATA* setup time relative to rising FWRN* edge	Configured by firmware	8	33	75	ns
Th(FDATA*)	FDATA* hold time relative to falling FWRN* edge	Configured by firmware	8	33	75	ns
Ts (FCLE*)	FCLE* setup time relative to falling FWRN* edge	Configured by firmware	8	16	25	ns
Th (FCLE*)	FCLE* hold time relative to rising FWRN* edge	Configured by firmware	10	16	75	ns
Ts (FALE*)	FALE* setup time relative to falling FWRN* edge	Configured by firmware	8	16	25	ns
Th (FALE*)	FALE* hold time relative to rising FWRN* edge	Configured by firmware	10	16	75	ns
Ts (FCEN*)	FCEN* setup time relative to falling FWRN* edge	Configured by firmware	ı	99		ns
Tpw (FWRN*)	FWRN* Pulse Width	Configured by firmware	8	33	75	ns
Thh (FWRN*)	FWRN* high hold time	Configured by firmware	8	33	75	ns
Ta(FDATA*)	FDATA* access time relative to falling FRDN* edge		-5	0	5	ns
Tpw (FRDN*)	FWRN* Pulse Width	Configured by firmware	8	33	75	ns
Thh (FRDN*)	FWRN* high hold time	Configured by firmware	8	33	75	ns

Timing diagram for Writing of Data

Timing diagram for Reading of Data

6.4.2 ONFI NAND FLASH Dynamic characteristics

CBM2096P only support Mode0/Mode1/Mode2.

		Mod	de 0	Mo	de 1	Mod	de 2	Мо	de 3	Мо	de 4		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Clock Period		5	0	3	0	2	0	1	5	1	2	ns	_
Frequency		≈2	20	≈.	33	≈:	50	≈	67	≈	83	MHz	_
Access window of	^t AC	-	20	-	20	-	20	-	20	-	20	ns	-
DQ[7:0] from CLK													
ALE to data loading	^t ADL	100	-	100	-	70	-	70	-	70	-	ns	-
time	t _{CAD}	25	_	25		25		25		25			1
Cmd, Addr, Data delay	CAD	25	_	25	-	25	-	25	-	25	-	ns	'
ALE, CLE,	^t CALH	10	_	5	-	4	_	3	-	2.5	-	ns	_
W/R# hold													
ALE, CLE,	t _{CALS}	10	-	5	-	4	-	3	-	2.5	-	ns	-
W/R# setup	tonu	40		_				_		0.5			
DQ hold - Cmd, Addr	^t CAH	10	-	5	-	4	-	3	-	2.5	-	ns	-
DQ setup -	t _{CAS}	10	_	5	-	4	_	3	-	2.5	-	ns	-
Cmd, Addr													
Change column	tccs	200	-	200	-	200	-	200	-	200	-	ns	2
setup to data in/out or next command													
CE# hold	^t CH	10	_	5	_	4	_	3	_	2.5	2	ns	
Average CLK cycle	tCK (avg)	50	100	30	50	20	30	15	20	12	15	ns	3
time	on (avg)	- 50	100	00			- 50			'-	"	113	
Absolute CLK cycle	tCK (abs)				bs) MIN					-	•	ns	-
time, from rising				tCK(ab	s) MAX	= tCK	(avg) +	tJIT(pe	r) MAX				
edge to rising edge	tora	0.43	0.57	0.40	0.57	0.43	0.57	0.40	0.57	0.43	0.57	t _{CK}	4
CLK cycle HIGH	^t CKH (abs)	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	CK	4
CLK cycle LOW	tCKL	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	0.43	0.57	t _{CK}	4
	(abs)												
Data output end to	t _{CKWR}		t _{CKV}	VR(MIN) = Rou	ndUp[^t	DQSCK	(MAX)	+ tCK)	tCK]	•	t _{CK}	-
W/R# HIGH	t												
CE# setup	t _{CS}	35	-	25	-	15	-	15	-	15	-	ns	-
Data in hold	tDOSOK	5	20	2.5	- 20	1.7	- 20	1.3	20	1.1	20	ns ns	-
Access window of DQS from CLK	^t DQSCK	_	20	_	20	_	20	_	20	_	20	LIS	_
DQS, DQ[7:0] Driven	^t DQSD	0	20	0	20	0	20	0	20	0	20	ns	-
by NAND													
DQS, DQ[7:0] to	^t DQSHZ	-	20	-	20	-	20	-	20	-	20	ns	5
tri-state	tnosu	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	t _{CK}	_
DQS input high pulse width	^t DQSH	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	CK	_
DQS input low pulse	^t DQ\$L	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6	t _{CK}	-
width													
DQS-DQ skew	^t DQ\$Q	-	5	-	2.5	-	1.7	-	1.3	-	1.1	ns	-
Data input	^t DQSS	0.75	1.25	0.75	1.25	0.75	1.25	0.75	1.25	0.75	1.25	t _{CK}	-
Data In setup	^t DS	5	-	3	-	2	-	1.5	-	1.1	_	ns	-

		Мо	de 0	Мо	de 1	Mo	de 2	Мо	de 3	Мо	de 4		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
DQS falling edge from CLK rising - hold	^t DSH	0.2	-	0.2	-	0.2	-	0.2	-	0.2	-	^t CK	-
DQS falling to CLK rising - setup	^t DSS	0.2	-	0.2	-	0.2	-	0.2	-	0.2	-	^t CK	-
Data Valid Window	^t DVW				tD√	/W = tC	H - ^t DC	QSQ				ns	-
Half Clock Period	^t HP				^t HP	= Min(CKH, t	CKL)				ns	-
The deviation of a given ^t CK(abs) from ^t CK (avg)	^t JIT(per)	-0.7	0.7	-0.7	0.7	-0.7	0.7	-0.6	0.6	-0.6	0.6	ns	-
DQ-DQS hold, DQS to first DQ to go non- valid, per access	^t QH		^t QH = ^t HP - ^t QHS									ns	-
Data Hold Skew Factor	^t QHS	-	6	-	3	-	2	-	1.5	-	1.2	ns	-
Data output to command, address, or data input	^t RHW	100	-	100	-	100	-	100	-	100	-	ns	-
Ready to data output	^t RR	20	-	20	-	20	-	20	-	20	-	ns	-
Device reset time (Read/Program/Erase)	^t RST	-	5/10/ 500	-	5/10/ 500	-	5/10/ 500	-	5/10/ 500	-	5/10/ 500	μs	6
CLK high to R/B# low	tWB	-	100	-	100	-	100	-	100	-	100	ns	-
Command cycle to data output	tWHR	80	-	60	-	60	-	60	-	60	-	ns	-
DQS write preamble	^t WPRE	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	t _{CK}	-
DQS write postamble	^t WPST	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	t _{CK}	-
W/R# LOW to data output cycle	^t WRCK	20	-	20	-	20	-	20	-	20	-	ns	-
WP# transition to command cycle	tww	100	-	100	-	100	-	100	-	100	-	ns	-

Notes:

- Delay is from start of command to next command, address, or data cycle; start of address to next command, address, or data cycle; and end of data to start of next command, address, or data cycle.
- 2. This value is specified in the parameter page.
- 3. tCK(avg) is the average clock period over any consecutive 200-cycle window.
- 4. ^tCKH(abs) and ^tCKL(abs) include static offset and duty cycle jitter.
- ^tDQSHZ begins when W/R# is latched HIGH by CLK. This parameter is not referenced to a specific voltage level; it specifies when the device outputs are no longer driving.
- 6. If RESET (FFh) is issued when the target is idle, the target goes busy for a maximum of $5\mu s$.

Notes: 1. When CE# remains LOW, ^tCAD begins at the rising edge of the clock from which the command cycle is latched for subsequent command, address, data input, or data output cycle(s).

Notes: 1. When CE# remains LOW, ^tCAD begins at the rising edge of the clock from which the command cycle is latched for subsequent command, address, data input, or data output cycle(s).

Notes: 1. When CE# remains LOW, ^tCAD begins at the first rising edge of the clock after ^tWPST completes.

- 2. ^tDSH (MIN) generally occurs during ^tDQSS (MIN).
- 3. tDSS (MIN) generally occurs during tDQSS (MAX).

Notes:

- When CE# remains LOW, ^tCAD begins at the rising edge of the clock after ^tCKWR for subsequent command or data output cycle(s).
- 2. See Figure 25 on page 33 for details of W/R# behavior.
- 3. ^{t}AC is the DQ output window relative to CLK and is the long-term component of DQ skew.
- 4. For W/R# transitioning HIGH: DQ[7:0] and DQS go to tri-state.
- 5. For W/R# transitioning LOW: DQ[7:0] drives current state and DQS goes LOW.
- 6. After final data output, DQ[7:0] is driven until W/R# goes HIGH, but is not valid.

6.4.3 TOGGLE NAND FLASH Dynamic characteristics

CBM2096P only support 66Mbps/80Mbps.

	Sym-	66Mbps		80Mbps		133Mbps		
Parameter	bol	Min	Max	Min	Max	Min	Max	Unit
CLE/ALE Setup Time	tcals	15	-	15	-	15	-	ns
CLE/ALE Hold Time	tcalh	5	-	5	-	5	-	ns
DQS Setup Time for data input start	topass	100	-	100	-	100	-	ns
DQS Hold Time for data input finish	tcpqsн	100	-	100	-	100	-	ns
Command Write cycle to Address Write cycle Time for Random data input	tcwaw	300	-	300	-	300	-	ns
CE Setup Time	tcs	20	-	20	-	20	-	ns
CE Hold Time	tсн	5	-	5	-	5	-	ns
Command/Address Setup Time	tcas	5	-	5	-	5	-	ns
Command/Address Hold Time	tcan	5	-	5	-	5	-	ns
Data Setup Time	tos	4	-	3.3	-	2.0	-	ns
Data Hold Time	tон	3.6	-	3	-	1.8	-	ns
Write Cycle Time	twc	25	-	25	-	25	-	ns
WE High pulse width	twн	11	-	11	-	11	-	ns
WE Low pulse Width	twp	11	-	11	-	11	-	ns
Address to Data Loading Time	tadl	300	-	300	-	300	-	ns
Data Transfer from Cell to Register	tR	-	100	-	100	-	100	μS
Ready to RE High	trr	20	-	20	-	20	-	ns
CE Low to RE Low	tcr	10	-	10	-	10	-	ns
ALE Low to RE Low	tar	10	-	10	-	10	-	ns
CLE to RE Low	tclr	10	-	10	1	10	-	ns
WE High to Busy	twв	-	100	-	100	-	100	ns
Read Cycle Time	trc	30	-	25	-	15	-	ns
RE High pulse width	tren	13	-	11	-	6.5	-	ns
RE Low pulse width	trp	13	-	11	-	6.5		ns
CE High to Output Hi-Z	tcHZ	-	30	-	30	-	30	ns
CLE High to Output Hi-Z	tclHZ	-	30	-	30	-	30	ns
Data Strobe Cycle Time	tosc	30	-	25	-	15	-	ns
DQS Input Low Pulse Width	toqsL	13	-	11	-	6.5	-	ns
DQS Input High Pulse Width	tраsн	13	-	11	-	6.5	-	ns
WE High to RE Low	twnr	120	-	120	-	120	-	ns
WE High to RE Low for Random data out	twhr2	300	-	300	-	300	-	ns

RE to DQS and DQ delay	tDQSRE	-	25	-	25	-	25	ns
Read Preamble	trpre	15	-	15	-	15	-	ns
Read Postamble	tRPST	tDQSRE+0.5xtRC	-	tDQSRE+0.5xtRC	-	tDQSRE+0.5xtRC	-	ns
Read Postamble Hold Time	tRPSTH	5		5		5	-	ns
Write Preamble	twpre	15		15		15	-	ns
Write Postamble	twpst	6.5		6.5		6.5	-	ns
Write Postamble Hold Time	twpsth	5		5		5	-	ns
Output skew among data output and corresponding DQS	toqsq	-	2.5	-	2	-	1.4	ns
DQS hold skew factor	tанз	-	2.5	-	2	-	1.4	ns
Output hold time from DQS	tqн	tan = tren/rp - tans						ns
Output data valid window	tovw	tovw = taн - toasa						ns
Device Resetting Time (Read/Program/Erase)	trst(1)	10/30/100						μS

NOTE:

- NOTE:

 1. Command information is lached by WE going high, when CE is Low, CLE is High, and ALE is Low.

 2. DQS should be set to 'Low' when these commands(85h, 10h, 11h) is input.

Row address consists of page address and block address.

NOTE:

- NOTE:

 1) Data-input condition should be satisfied before DQS toggling for data input; data-input condition is that CE & CLE & ALE are low and RE & WE are high
 2) DQS should be either high or low before data-input condition is set.
 3) Data-input condition should be kept during DQS toggling for data input including pre-amble and post-amble time.
 4) Becase using toggle DDR interface, an even number of bytes should be always transferred when both data input and data output

NOTE:

- NOTE:

 1) Data-output condition should be satisfied before RE toggling for data output; data-output condition is that CE & CLE & ALE are low and WE is high 2) RE should be either high or low before data-output condition is set.

 3) Data-output condition should be kept during RE toggling for data output including pre-amble and post-amble time.

 4) DQS and Data out buffers are turned on when RE is low for pre-amble operation under data-out condition

 5) DQS and Data out buffers turn from valid value to high-z if either CE or CLE goes High.

 6) an even number of bytes should be always transferred when both data input and data output

7 Mechanical Dimensions

7.1 48-Pin CBM2096P Package Outline Dimension

8 Copyright Notice

Copyright by Shenzhen Chipsbank Technologies Co., Ltd. All Rights Reserved.

Right to make changes —Shenzhen Chipsbank Technologies Co.,Ltd. reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. The information contained in this manual is provided for the general use by our customers. Our customers should be aware that the personal computer field is the subject of many patents. Our customers should ensure that they take appropriate action so that their use of our products does not infringe upon any patents. It is the policy of Shenzhen Chipsbank Technologies Co.,Ltd. to respect the valid patent rights of third parties and not to infringe upon or assist others to infringe upon such rights.

This manual is copyrighted by Shenzhen Chipsbank Technologies Co.,Ltd. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of this publication without the expressly written permission from Shenzhen Chipsbank Technologies Co.,Ltd.