Learning Features by Contrasting Natural Images with Noise

Michael Gutmann
University of Helsinki

michael.gutmann@helsinki.fi

Aapo Hyvärinen University of Helsinki

aapo.hyvarinen@helsinki.fi

Natural images?

Introduction

Preliminaries

- Nat. image vs. noise
- Classifier

Contrastive feature learning

Simulations

A natural scene

Natural image patches

- Most prob. models are models of natural image patches.
- Difficult enough as the data is high dimensional.
- Can serve as building block for models of entire scenes.

Why model natural images?

Introduction

Preliminaries

- Nat. image vs. noise
- Classifier

Contrastive feature learning

Simulations

Possible motivations for building statistical models of natural images:

- You can use the model as prior in tasks which involve Bayesian inference (not the topic of this presentation).
- You can use the model to generate artificial natural images (not the topic of this presentation).
- There are some connections to visual neuroscience (not the topic of this presentation).
- Finding interesting features of natural images:
 - What kind of features appear in natural images?
 - What kind of structure is characteristic for natural images?
 - How do natural images differ from other, artificial, image data (noise)?

Natural images vs. noise

Introduction

Preliminaries

Nat. image vs. noise

Classifier

Contrastive feature learning

Simulations

In what aspects do the two datasets differ from each other?

natural images

noise images

Learning features by classification

Introduction

- Preliminaries
- Nat. image vs. noise

Classifier

Contrastive feature learning

Simulations

Key idea:

- Train a classifier to discriminate between natural images and some artificial noise.
- To succeed in the discrimination task, the classifier must "discover structure" in the data, i.e. *identify features of natural images.*

Learning features by classification

Introduction

- Preliminaries
- Nat. image vs. noise

Classifier

Contrastive feature learning

Simulations

Key idea:

- Train a classifier to discriminate between natural images and some artificial noise.
- To succeed in the discrimination task, the classifier must "discover structure" in the data, i.e. *identify features of natural images.*

The elements of contrastive feature learning

Introduction

Contrastive feature learning

Elements

- More details
- Nonlinearities

Simulations

- 1. Classifier: Assign C=1 if input \mathbf{x} is a natural image, and C=0 if input is noise.
- 2. Estimation method: Fit the parameters in the classifier to the data (supervised learning!)
- 3. Noise: The reference data that is used for comparison with the natural images.

More on the classifier and its estimation

Introduction

Contrastive feature learning

Elements

More details

Nonlinearities

Simulations

Use a classification approach based on logistic regression

$$P(C = 1|\mathbf{x}) = \frac{1}{1 + \exp(-y(\mathbf{x}))} \qquad y(\mathbf{x}) = \sum_{m=1}^{M} g(\mathbf{w}_{m}^{T}\mathbf{x} + b_{m}) + \gamma$$

- Parameters in the model are the features \mathbf{w}_m , the bias terms b_m , the offset γ , as well as possibly the function g(u).
- The parameters can be estimated by maximum (conditional) likelihood. This is the same as minimization of the cross-entropy error J

$$J = \frac{1}{T} \sum_{t=1}^{T} -C_t \log \left[P(C_t = 1 | \mathbf{x}_t) \right] - (1 - C_t) \log \left[1 - P(C_t = 1 | \mathbf{x}_t) \right]$$

■ Reference data: Use noise with the same covariance structure as natural images.

Choice of the nonlinearity in the discriminant $y(\mathbf{x})$

Introduction

Contrastive feature learning

- Elements
- More details

Nonlinearities

Simulations

Parameterized nonlinearity:

$$g(u) = \alpha_1 [\max(0, u - \beta_1)]^{\eta_1} + \alpha_2 [\max(0, -(u - \beta_2))]^{\eta_2}$$

The questions addressed

Introduction

Contrastive feature learning

Simulations

Questions addressed

- Performance
- Features
- Classification principle

- 1. Which nonlinearity g(u) gives the best performance?
- 2. How do the features \mathbf{w}_m look like?
- 3. Which principle does the classifier use to solve the discrimination task?

Classification performance

The learned features

Classification principle

Introduction

Contrastive feature learning

Simulations

- Questions addressed
- Performance
- Features
- Classification principle

The discriminant $y(\mathbf{x}) = \sum_{m=1}^{M} (g(\mathbf{w}_{m}^{T}\mathbf{x}) + \gamma/M)$ rules: $y(\mathbf{x}) > 0 \Rightarrow \mathbf{x}$ is a natural image. $y(\mathbf{x}) < 0 \Rightarrow \mathbf{x}$ is noise.

Symm. logistic

Thresholding of each feature output

Optimized nonlinearity

Sign consistency across feature outputs

Summary

Introduction

Contrastive feature learning

Simulations

Summary

The minimum to retain:

- 1. The talk was about learning features in data (here: natural images).
- 2. Features are learned by training a classifier to distinguish between the data and some artificial noise.
- 3. We used nonlinear logistic regression to do the classification.
- Some more details:
 - 1. Classification by thresholding outputs of gabor-like feature detectors.
 - 2. Optimizing the nonlinearity gives an asymmetric solution. Classification performance improves.
 - 3. An alternative classification principle: the outputs of some gabor-like feature detectors need to have the same sign for natural images.