Prof. Dr. Andreas Wipf Dr. Luca Zambelli

Problems in Advanced Quantum Mechanics

Blatt 4

Problem 9: Virial theorem for TF atoms

2+1+4 = 7 points

We consider a atom in the Thomas-Fermi (TF) approximation. The electron density is denoted by n(x). The universal function $\chi(s)$ of the dimensionless radial variable s has the properties

$$J \equiv \int_0^\infty \mathrm{d}s \left(\frac{\mathrm{d}\chi}{\mathrm{d}s}\right)^2 = -\frac{2}{7}\chi'(0) \approx 0.454$$
 and $\chi(0) = 1$.

From the information given in the lecture one obtains

$$\gamma n^{2/3} = Ze^2 \frac{\chi(r)}{r}, \quad n = \frac{Z}{4\pi} \frac{\chi''(r)}{r}.$$
 (1)

- 1. Derive the Virial theorem relating the kinetic and potential energies in the TF approximation.
 - Hint: Compute the kinetic, potential and total energies of the TF atom, first for the generic density n(x), and then for the rescaled density $n_{\lambda}(x) = \lambda^3 n(\lambda x)$. Then compare the two. Assuming that n(x) is a physical solution, according to the variational principle it must correspond to n_{λ} at the value of λ_* that minimizes the total TF energy. What is λ_* ? Write this stationarity condition at λ_* .
- 2. Use the definition of the screening function χ given in the lecture, as well as the Poisson equation fulfilled by the TF potential ϕ , to prove the second equation in (1).
- 3. Show that the kinetic energy T, interaction energy between nucleus and electrons V_{ne} and the interaction energy between the electrons are given by

$$T = \alpha J$$
, $V_{en} = -\frac{7}{3}T$, $V_{ee} = \frac{1}{3}T$

Express the constant α in terms the constant length b in r = bs, the charge Ze of the nucleus and the integral J. Assume that the atom is neutral such that the constant ϕ_0 in the treatment of the TF-atom vanishes.

Hint: observe that $n^{5/3} = n^{2/3} \cdot n$ and use Eq. (1). For the computation of V_{ee} start from the formula

$$V_{ee} = rac{e^2}{2} \int \mathrm{d}^3 x \mathrm{d}^3 y \, rac{n(x)n(y)}{|x-y|} = -rac{e}{2} \int \mathrm{d}^3 x \, n(x) \phi(x) + rac{Ze^2}{2} \int \mathrm{d}^3 x \, rac{n(x)}{|x|} \, ,$$

which follows from

$$\phi(x) = \frac{Ze}{|x|} - e \int d^3y \, \frac{n(y)}{|x - y|}.$$

Problem 10: Two particles with total angular momentum zero 2+

2+2=4 points

Given two particles, each with angular momentum j. Prove, that the wave function of the total two-particle system with vanishing total angular momentum (the singlet) can be written as

$$|\Psi_0^0\rangle = \frac{1}{2j+1} \sum_{m=-j}^j (-1)^{m+1/2} |\psi_j^m\rangle \otimes |\psi_j^{-m}\rangle, \quad j \in \mathbb{N}_0 + \frac{1}{2},$$

$$|\Psi_0^0\rangle = \frac{1}{2j+1} \sum_{m=-j}^j (-1)^m |\psi_j^m\rangle \otimes |\psi_j^{-m}\rangle, \qquad j \in \mathbb{N}_0.$$

Hint: Recall how the step operators $J_{\pm} = J_x \pm i J_y$ and the component J_z of the total angular momentum $J = J^{(1)} + J^{(2)}$ act on a product state $|\psi_j^m\rangle \otimes |\psi_j^{m'}\rangle$ and use that, for example, $c_{jm}^+ = c_{jm'}^+$ for certain m, m'. It is sufficient to prove the result for an integer (or a half-integer) value of j.

Submission date: Thursday, 16. November 2017, before the lecture begins