

Suites et séries de fonctions

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice 1

Etudier les suites de fonctions suivantes (convergence simple, convergence uniforme, convergence localement uniforme)

1) (**)
$$f_n(x) = \frac{nx}{1+n^2x^2}$$
 2) (**) $f_n(x) = e^{-x} \sum_{k=0}^n \frac{x^k}{k!}$ 3) (**) $f_n(x) = n(1-x)^n \sin\left(\frac{\pi x}{2}\right)$.

Correction ▼ [005726]

Exercice 2 *** I

Pour $n \in \mathbb{N}^*$, on pose $f_n(x) = \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0, n] \\ 0 & \text{si } x \geqslant n \end{cases}$.

- 1. Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur \mathbb{R}^+ vers la fonction $f:x\mapsto e^{-x}$.
- 2. A l'aide de la suite $(f_n)_{n\in\mathbb{N}^*}$, calculer l'intégrale de GAUSS $\int_0^{+\infty} e^{-x^2} dx$.

Correction ▼ [005727]

Exercice 3 *** I Polynômes de BERNSTEIN. Théorème de WEIERSTRASS

Soit f une application continue sur [0,1] à valeurs dans \mathbb{R} . Pour n entier naturel non nul, on définit le n-ème polynôme de BERNSTEIN associé à f par

$$B_n(f) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) X^k (1-X)^{n-k}.$$

- 1. (a) Calculer $B_n(f)$ quand f est la fonction $x \mapsto 1$, quand f est la fonction $x \mapsto x$, quand f est la fonction $x \mapsto x(x-1)$.
 - (b) En déduire que $\sum_{k=0}^n \binom{n}{k} (k-nX)^2 X^k (1-X)^{n-k} = nX(1-X)$.
- 2. En séparant les entiers k tels que $\left|x-\frac{k}{n}\right|>\alpha$ et les entiers k tels que $\left|x-\frac{k}{n}\right|\leqslant\alpha$ ($\alpha>0$ donné), montrer que la suite de polynômes $(B_n(f))_{n\in\mathbb{N}^*}$ converge uniformément vers f sur [0,1].
- 3. Montrer le théorème de WEIERSTRASS : soit f une application continue sur [a,b] à valeurs dans \mathbb{R} . Montrer que f est limite uniforme sur [a,b] d'une suite de polynômes.

Correction ▼ [005728]

Exercice 4 ** I

Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes convergeant uniformément sur \mathbb{R} vers une fonction f. Montrer que f est un polynôme.

Correction ▼ [005729]

Exercice 5 **

Soit $f(x) = \sum_{n=1}^{+\infty} \frac{x^n \sin(nx)}{n}$.

- 1. Montrer que f est de classe C^1 sur]-1,1[.
- 2. Calculer f'(x) et en déduire que $f(x) = \arctan\left(\frac{x \sin x}{1 x \cos x}\right)$.

Correction ▼ [005730]

Exercice 6 **

Soit $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{\ln(nx)}$.

- 1. Domaine de définition de f. On étudie ensuite f sur $]1, +\infty[$.
- 2. Continuité de f et limites de f en 1 et $+\infty$.
- 3. Montrer que f est de classe C^1 sur $]1, +\infty[$ et dresser son tableau de variation.

Correction ▼ [005731]

Exercice 7 **

Etudier (convergence simple, convergence absolue, convergence uniforme, convergence normale) les séries de fonctions de termes généraux :

1.
$$f_n(x) = nx^2 e^{-x\sqrt{n}} \text{ sur } \mathbb{R}^+$$

2.
$$f_n(x) = \frac{1}{n+n^3x^2} \text{ sur } \mathbb{R}_+^*$$

3.
$$f_n(x) = (-1)^n \frac{x}{(1+x^2)^n}$$
.

Correction ▼ [005732]

Exercice 8 ** I

Montrer que pour tout réel a > 0, $\int_0^1 \frac{1}{1+x^a} dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{1+na}$.

Correction ▼ [005733]

Exercice 9 **

Pour $n \in \mathbb{N}^*$, soit $f_n(t) = (-1)^n \ln \left(1 + \frac{t^2}{n(1+t^2)}\right)$.

- 1. Etudier la convergence simple et uniforme de la série de terme général f_n puis la continuité de la somme f.
- 2. Montrer que $\lim_{t\to +\infty} f(t) = \ln\left(\frac{2}{\pi}\right)$ à l'aide de la formule de STIRLING.

Correction ▼ [005734]

Exercice 10 **

Pour $n \in \mathbb{N}^*$ et $t \in \mathbb{R}$, soit $f_n(t) = \frac{\arctan(nt)}{n^2}$.

Etude complète de $f = \sum_{n=1}^{+\infty} f_n$: domaine de définition, parité, limites, continuité, dérivabilité (vérifier que f n'est pas dérivable en 0), allure du graphe.

Correction ▼ [005735]

Exercice 11 **

Pour x > 0, on pose $f(x) = \sum_{n=0}^{+\infty} e^{-x\sqrt{n}}$. Trouver un équivalent simple de f en 0 à droite.

Correction ▼ [005736]

Exercice 12 ***

Pour $x \in]-1,1[$, on pose $f(x) = \sum_{n=1}^{+\infty} x^{n^2}$. Trouver un équivalent simple de f en 1.

Correction ▼ [005737]

1. Pour tout entier naturel n, f_n est définie sur \mathbb{R} et impaire.

Convergence simple sur \mathbb{R} . Soit $x \in \mathbb{R}$.

- Si x = 0, pour tout entier naturel n, $f_n(x) = 0$ et donc $\lim_{n \to +\infty} f_n(x) = 0$.
- Si $x \neq 0$, $f_n(x) \underset{n \to +\infty}{\sim} \frac{1}{nx}$ et de nouveau $\lim_{n \to +\infty} f_n(x) = 0$.

La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R} vers la fonction nulle.

Convergence uniforme sur \mathbb{R} . On peut noter tout de suite que pour tout $n \in \mathbb{N}^*$, $f_n\left(\frac{1}{n}\right) = \frac{1}{2}$ et donc $||f_n||_{\infty} \ge \frac{1}{2}$. On en déduit que $||f_n||_{\infty}$ ne tend pas vers 0 quand n tend vers $+\infty$.

La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur \mathbb{R} vers la fonction nulle.

Si on n'a pas remarqué ce qui précède, on étudie la fonction f_n sur \mathbb{R}^+ (f_n étant impaire) dans le but de déterminer $\sup_{x \in \mathbb{R}^n} |f_n(x) - 0|$.

Soit $n \in \mathbb{N}^*$. La fonction f_n est dérivable sur \mathbb{R}^+ et pour tout réel positif x, $f_n'(x) = n \frac{(1+n^2x^2)-x(n^2x)}{(1+n^2x)^2} = \frac{n(1-n^2x^2)}{(1+n^2x)^2}$. Par suite, la fonction f_n est croissante sur $\left[0, \frac{1}{n}\right]$ et décroissante sur $\left[\frac{1}{n}, +\infty\right[$.

Puisque la fonction f_n est positive sur \mathbb{R}^+ , $\sup_{x \in \mathbb{R}} |f_n(x) - 0| = f_n\left(\frac{1}{n}\right) = \frac{1}{2}$ qui ne tend pas vers 0 quand n tend vers l'infini.

Convergence uniforme et localement uniforme sur $]0, +\infty[$. La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ ne converge toujours pas uniformément vers la fonction nulle sur $]0, +\infty[$ car pour $n \ge 1$, $\sup_{x \in \mathbb{R}} |f_n(x) - 0| = \frac{1}{2}$.

Soit a un réel strictement positif fixé. Soit $n > \frac{1}{a}$. On a $0 < \frac{1}{n} < a$ et donc la fonction f_n est décroissante sur $[a, +\infty[$. Par suite, pour tout réel x de $[a, +\infty[$, $0 \le f_n(x) \le f_n(a)$.

 $\text{Donc } \sup_{x \in [a,+\infty[} |f_n(x)-0| = fn(a) \text{ pour } n > \frac{1}{a}. \text{ On en d\'eduit que } \lim_{n \to +\infty} \sup_{x \in [a,+\infty[} |f_n(x)-0| = 0. \text{ Donc la } n = 0.$

suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction nulle sur tout intervalle de la forme $[a,+\infty[$ où a>0 et en particulier converge localement uniformément vers la fonction nulle sur $]0,+\infty[$ mais ne converge pas uniformément vers la fonction nulle sur $]0,+\infty[$.

2. Convergence simple sur \mathbb{R} . Soit $x \in \mathbb{R}$. On sait que $e^x = \lim_{n \to +\infty} \sum_{k=0}^n \frac{x^k}{k!}$ et donc la suite $(f_n)_{n \in \mathbb{N}}$ converge simplement sur \mathbb{R} vers la fonction constante $f: x \mapsto 1$.

Convergence uniforme sur \mathbb{R} et \mathbb{R}^+ . $\lim_{x\to-\infty} |f_n(x)-f(x)|=+\infty$. Par suite, pour tout entier naturel n, la fonction $|f_n-f|$ n'est pas bornée sur \mathbb{R} . La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ ne converge donc pas uniformément vers f sur \mathbb{R} .

 $\lim_{x \to +\infty} |f_n(x) - f(x)| = 1$ et donc $\sup_{x \in [0, +\infty[} |f_n(x) - f(x)| \geqslant 1$. La suite de fonctions $(f_n)_{n \in \mathbb{N}}$ ne converge

donc pas uniformément vers f sur \mathbb{R}^+ .

Convergence localement uniforme sur \mathbb{R} **.** Soit [a,b] un segment de \mathbb{R} .

Pour $n \in \mathbb{N}^*$, posons $g_n = f_n - f$. La fonction g_n est dérivable sur \mathbb{R} et pour $x \in \mathbb{R}$

$$g'_n(x) = e^{-x} \left(-\sum_{k=0}^n \frac{x^k}{k!} + \sum_{k=0}^{n-1} \frac{x^k}{k!} \right) = -\frac{e^{-x}x^n}{n!}.$$

Si n est pair, la fonction g_n est décroissante sur \mathbb{R} et s'annule en 0.

Si *n* est impair, la fonction g_n est croissante sur \mathbb{R}^- , décroissante sur \mathbb{R}^+ et s'annule en 0.

Dans les deux cas, si $x \in [a,b]$, $|g_n(x)| \le \text{Max}\{|g_n(a)|, |g_n(b)|\}$ avec égalité effectivement obtenue pour x = a ou x = b. Donc

$$\sup_{x \in [a,b]} |g_n(x)| = \operatorname{Max}\{|g_n(a)|, |g_n(b)|\} = \frac{g_n(a) + g_n(b) + |g_n(a) - g_n(b)|}{2}.$$

Cette dernière expression tend vers 0 quand n tend vers $+\infty$. On en déduit que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur tout segment [a,b] contenu dans \mathbb{R} ou encore

la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge localement uniformément vers la fonction $f: x\mapsto 1$ sur \mathbb{R} .

3. Pour *x* réel et *n* entier naturel, on pose $f_n(x) = n(1-x)^n \sin\left(\frac{\pi}{2}x\right)$.

Convergence simple. Soit x réel fixé. $\sin\left(\frac{\pi}{2}x\right) = 0 \Leftrightarrow x \in 2\mathbb{Z}$. Dans ce cas, $\lim_{n \to +\infty} f_n(x) = 0$. Si $x \notin 2\mathbb{Z}$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge \Leftrightarrow la suite $(n(1-x)^n)_{n \in \mathbb{N}}$ converge $\Leftrightarrow |1-x| < 1 \Leftrightarrow 0 < x < 2$. Dans ce cas, $\lim_{n \to +\infty} f_n(x) = 0$.

La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction nulle sur $[0,2]\cup 2\mathbb{Z}$.

Convergence uniforme sur [0,2]. Soit n un entier naturel non nul fixé.

$$\sup_{x \in [0,2]} |f_n(x) - 0| \geqslant \left| f_n\left(\frac{1}{n}\right) \right| = n\left(1 - \frac{1}{n}\right)^n \sin\left(\frac{\pi}{2n}\right).$$

Cette dernière expression est équivalente à $\frac{\pi}{2e}$ en $+\infty$ et en particulier ne tend pas vers 0 quand n tend vers $+\infty$.

La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément vers la fonction nulle sur [0,2].

La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément vers la fonction nulle sur [0,2].

Correction de l'exercice 2

Convergence simple sur \mathbb{R}^+ . Soit x un réel positif fixé. Pour n>x, $f_n(x)=\left(1-\frac{x}{n}\right)^n$ et donc

$$f_n(x) \underset{n \to +\infty}{=} \left(1 - \frac{x}{n}\right)^n \underset{n \to +\infty}{=} \exp\left(n\ln\left(1 - \frac{x}{n}\right)\right) \underset{n \to +\infty}{=} \exp(-x + o(1).$$

Donc la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}^+ vers la fonction $f:x\mapsto e^{-x}$.

Convergence uniforme sur \mathbb{R}^+ . Pour x réel positif et n entier naturel non nul, posons $g_n(x) = f(x) - f_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0, n] \\ e^{-x} & \text{si } x > n \end{cases}$. Déterminons la borne supérieure de la fonction $|g_n| & \text{sur } [0, +\infty[$.

La fonction g_n est définie et continue sur R^+ . Pour $x \ge n$, $0 < g_n(x) \le e^{-n} = g_n(n)$.

Etudions la fonction g_n sur [0,n]. Pour $x \in [0,n]$, $g'_n(x) = -e^{-x} + \left(1 - \frac{x}{n}\right)^{n-1} \cdot (g'_n(n))$ est la dérivée à gauche de la fonction g_n en n, mais on peut montrer qu'en fait la fonction g_n est dérivable en n pour n > 1).

La fonction g_n est continue sur le segment [0,n] et admet donc sur [0,n] un minimum et un maximum.

- La fonction g_n a un minimum égal à 0 atteint en 0. En effet, on sait que pour tout réel u, $e^u \ge 1 + u$ (inégalité de convexité) et donc pour tout réel x de [0,n], $e^{-x/n} \ge 1 \frac{x}{n} \ge 0$. Après élévation des deux membres de cette inégalité, par croissance de $t \mapsto t^n$ sur \mathbb{R}^+ , on obtient $e^{-x} \ge \left(1 \frac{x}{n}\right)^n$ ou encore $g_n(x) \ge 0 = g_n(0)$.
- Pour $0 < x \le n$, les inégalités précédentes sont strictes et la fonction $g_{n/[0,n]}$ admet son maximum dans]0,n]. De plus, $g'_n(n) = -e^{-n} < 0$ et puisque la fonction g_n est de classe C^1 sur [0,n], sa dérivée g'_n est strictement négative sur un voisinage à gauche de n. La fonction g_n est alors strictement décroissante sur ce voisinage et la fonction g_n admet nécessairement son maximum sur \mathbb{R}^+ en un certain point x_n de]0,n[. En un tel point, puisque l'intervalle]0,n[est ouvert, on sait que la dérivée de la fonction g_n s'annule. L'égalité $g'_n(x_n) = 0$ fournit $(1-\frac{x_n}{n})^{n-1} = e^{-x_n}$ et donc

$$g_n(x_n) = e^{-x_n} - \left(1 - \frac{x_n}{n}\right)^n = \left(1 - \left(1 - \frac{x_n}{n}\right)\right)e^{-x_n} = \frac{x_n e^{-x_n}}{n}.$$

En résumé, pour tout réel positif x, $0 \le g_n(x) \le \frac{x_n e^{-x_n}}{n}$ où x_n est un certain réel de]0,n[. Pour u réel positif, posons $h(u) = ue^{-u}$. La fonction h est dérivable sur $/mbr^+$ et pour $u \ge 0$, $h'(u) = (1-u)e^{-u}$. Par suite, la fonction h admet un maximum en 1 égal à $\frac{1}{a}$. On a montré que

$$\forall x \in [0, +\infty[, \forall n \in \mathbb{N}^*, 0 \leq g_n(x) \leq \frac{1}{ne}]$$

ou encore $\forall n \in \mathbb{N}^*$, $\sup\{|g_n(x)|, x \geqslant 0\} \leqslant \frac{1}{ne}$. Ainsi, $\lim_{n \to +\infty} \sup\{|g_n(x)|, x \geqslant 0\} = 0$ et on a montré que

la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur \mathbb{R}^+ vers la fonction $x\mapsto e^{-x}$.

Existence de $I = \int_0^{+\infty} e^{-x^2} dx$. La fonction $x \mapsto e^{-x^2}$ est continue sur $[0, +\infty[$ et négligeable devant $\frac{1}{x^2}$ en $+\infty$. Donc la fonction $x \mapsto e^{-x^2}$ est intégrable sur $[0, +\infty[$. Par suite, I existe dans \mathbb{R} .

On est alors en droit d'espérer que $I = \lim_{n \to +\infty} \int_0^{+\infty} f_n(x^2) dx$.

La fonction $x \mapsto f_n(x^2)$ est continue sur $[0, +\infty[$ et nulle sur $[\sqrt{n}, +\infty[$. Donc la fonction $x \mapsto f_n(x^2)$ est intégrable sur $[0, +\infty[$. Pour $n \in \mathbb{N}^*$, posons $I_n = \int_0^{+\infty} f_n(x^2) dx = \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n dx$.

Montrons que I_n tend vers I quand n tend vers $+\infty$.

$$|I - I_n| \leqslant \int_0^{\sqrt{n}} |f(x^2) - f_n(x^2)| \ dx + \int_{\sqrt{n}}^{+\infty} e^{-x^2} \ dx \leqslant \sqrt{n} \times \frac{1}{ne} + \int_{\sqrt{n}}^{+\infty} e^{-x^2} \ dx = \frac{1}{e\sqrt{n}} + \int_{\sqrt{n}}^{+\infty} e^{-x^2} \ dx.$$

Puisque la fonction $x \mapsto e^{-x^2}$ est intégrable sur $[0, +\infty[$, cette dernière expression tend vers 0 quand n tend vers $+\infty$ et donc $\lim_{n\to+\infty} I_n = I$.

Calcul de la limite de I_n . Soit $n \in \mathbb{N}^*$. Les changements de variables $x = u\sqrt{n}$ puis $u = \cos v$ fournissent

$$I_n = \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n} \right)^n dx = \sqrt{n} \int_0^1 (1 - u^2)^n du = \sqrt{n} \int_0^{\pi/2} \sin^{2n+1} v dv = \sqrt{n} W_{2n+1}$$

où W_n est la n-ème intégrale de WALLIS. On a déjà vu (exercice classique, voir fiches de Maths Sup) que $W_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$ et donc

$$I_n \underset{n \to +\infty}{\sim} \sqrt{n} \times \sqrt{\frac{\pi}{2(2n+1)}} \underset{n \to +\infty}{\sim} \frac{\sqrt{\pi}}{2}.$$

Finalement, I_n tend vers $\frac{\sqrt{\pi}}{2}$ quand n tend vers $+\infty$ et donc

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Vous pouvez voir différents calculs de l'intégrale de GAUSS dans « Grands classiques de concours : intégration ».

Correction de l'exercice 3 A

1. (a) Soit $n \in \mathbb{N}^*$.

• Si
$$\forall x \in [0,1], f(x) = 1,$$

$$B_n(f) = \sum_{k=0}^n \binom{n}{k} X^k (1-X)^{n-k} = (X+(1-X))^n = 1.$$

• Si $\forall x \in [0, 1], f(x) = x$,

$$\begin{split} B_n(f) &= \sum_{k=0}^n \frac{k}{n} \binom{n}{k} X^k (1-X)^{n-k} = \sum_{k=1}^n \binom{n-1}{k-1} X^k (1-X)^{n-k} = X \sum_{k=1}^n \binom{n-1}{k-1} X^{k-1} (1-X)^{(n-1)-(k-1)} \\ &= X \sum_{k=0}^{n-1} \binom{n-1}{k} X^k (1-X)^{n-1-k} = X. \end{split}$$

• Si $\forall x \in [0, 1], f(x) = x(x - 1), \text{ alors } B_n(f) = \sum_{k=0}^n \binom{n}{k} \frac{k}{n} \left(\frac{k}{n} - 1 \right) X^k (1 - X)^{n-k} \text{ et donc } B_1(f) = 0.$ Pour $n \ge 2$ et $k \in [1, n - 1]$

$$\frac{k}{n} \left(\frac{k}{n} - 1 \right) \binom{n}{k} = -\frac{1}{n^2} k(n-k) \frac{n!}{k!(n-k)!} = -\frac{n-1}{n} \frac{(n-2)!}{(k-1)(n-k-1)!} = -\frac{n-1}{n} \binom{n-2}{k-1}.$$

Par suite,

$$B_n(f) = -\frac{n-1}{n} \sum_{k=1}^{n-1} {n-2 \choose k-1} X^k (1-X)^{n-k} = -\frac{n-1}{n} X (1-X) \sum_{k=1}^{n-1} X^{k-1} (1-X)^{(n-2)-(k-1)}$$

$$= -\frac{n-1}{n} X (1-X) \sum_{k=0}^{n-2} {n-2 \choose k} X^k (1-X)^{n-2-k} = -\frac{n-1}{n} X (1-X).$$

ce qui reste vrai pour n = 1.

(b) D'après la question précédente

$$\begin{split} \sum_{k=0}^{n} \binom{n}{k} (k-nX)^2 X^k (1-X)^{n-k} &= \sum_{k=0}^{n} \binom{n}{k} k^2 X^k (1-X)^{n-k} - 2nX \sum_{k=0}^{n} \binom{n}{k} k X^k (1-X)^{n-k} + n^2 X^2 \sum_{k=0}^{n} \binom{n}{k} X^k (1-X)^{n-k} \\ &= \sum_{k=0}^{n} \binom{n}{k} k (k-n) X^k (1-X)^{n-k} - n (2X-1) \sum_{k=0}^{n} \binom{n}{k} k X^k (1-X)^{n-k} \\ &+ n^2 X^2 \sum_{k=0}^{n} \binom{n}{k} X^k (1-X)^{n-k} \\ &= n^2 \sum_{k=0}^{n} \frac{k}{n} \left(\frac{k}{n} - 1 \right) \binom{n}{k} X^k (1-X)^{n-k} - n^2 (2X-1) \sum_{k=0}^{n} \binom{n}{k} \frac{k}{n} X^k (1-X)^{n-k} + n^2 (2X-1) X^k (1-X)^{n-k} \\ &= -n(n-1) X(1-X) - n^2 (2X-1) X + n^2 X^2 = -n X^2 + n X = n X(1-X). \end{split}$$

2. Soit $\varepsilon > 0$. Soient *n* un entier naturel non nul et α un réel strictement positif donné. Soit *x* un réel de [0,1].

Notons *A* (resp. *B*) l'ensemble des entiers $k \in [0, n]$ tels que $\left|x - \frac{k}{n}\right| < \alpha$ (resp. $\left|x - \frac{k}{n}\right| \geqslant \alpha$). (Si *A* ou *B* sont vides, les sommes ci-dessous correspondantes sont nulles).

$$|f(x) - B_n(f)(x)| = \left| \sum_{k=0}^n \binom{n}{k} \left(f(x) - f\left(\frac{k}{n}\right) \right) x^k (1-x)^{n-k} \right|$$

$$\leq \sum_{k \in A} \binom{n}{k} \left| f(x) - f\left(\frac{k}{n}\right) \right| x^k (1-x)^{n-k} + \sum_{k \in B} \binom{n}{k} \left| f(x) - f\left(\frac{k}{n}\right) \right| x^k (1-x)^{n-k}$$

f est continue sur le segment [0,1] et donc est uniformément continue sur ce segment d'après le théorème de HEINE. Par suite, il existe $\alpha>0$ tel que si x et y sont deux réels de [0,1] tels que $|x-y|<\alpha$ alors $|f(x)-f(y)|<\frac{\varepsilon}{2}$. α est ainsi dorénavant fixé. Pour ce choix de α ,

$$\textstyle \sum_{k \in A} \binom{n}{k} \left| f(x) - f\left(\frac{k}{n}\right) \right| x^k (1-x)^{n-k} \leqslant \frac{\varepsilon}{2} \sum_{k \in A} \binom{n}{k} x^k (1-x)^{n-k} \leqslant \frac{\varepsilon}{2} \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} = \frac{\varepsilon}{2}.$$

Ensuite, la fonction f est continue sur le segment [0,1] et donc est bornée sur ce segment. Soit M un majorant de la fonction |f| sur [0,1].

$$\sum_{k \in B} \binom{n}{k} \left| f(x) - f\left(\frac{k}{n}\right) \right| x^k (1 - x)^{n - k} \leqslant 2M \sum_{k \in B} \binom{n}{k} x^k (1 - x)^{n - k}$$

Mais si $k \in B$, l'inégalité $\left| x - \frac{k}{n} \right| \geqslant \alpha$ fournit $1 \leqslant \frac{1}{\alpha^2 n^2} (k - nx)^2$ et donc

$$\begin{split} \sum_{k \in B} \binom{n}{k} x^k (1-x)^{n-k} & \leqslant 1 \leqslant \frac{1}{\alpha^2 n^2} \sum_{k \in B} \binom{n}{k} (k-nx)^2 x^k (1-x)^{n-k} \leqslant \frac{1}{\alpha^2 n^2} \sum_{k=0}^n \binom{n}{k} (k-nx)^2 x^k (1-x)^{n-k} \\ & = \frac{1}{\alpha^2 n^2} \times nx (1-x) = \frac{1}{\alpha^2 n} \left(\frac{1}{4} - \left(x - \frac{1}{2} \right)^2 \right) \leqslant \frac{1}{4\alpha^2 n}. \end{split}$$

En résumé, pour tout réel $x \in [0, 1]$

$$|f(x) - B_n(f)(x)| \le \frac{\varepsilon}{2} + 2M \times \frac{1}{4\alpha^2 n} = \frac{\varepsilon}{2} + \frac{M}{2\alpha^2 n}.$$

Maintenant, puisque $\lim_{n\to +\infty} \frac{M}{2\alpha^2 n} = 0$, il existe un entier naturel non nul N tel que pour $n\geqslant N$, $\frac{M}{2\alpha^2 n}<\frac{\varepsilon}{2}$. Pour $n\geqslant N$, on a $|f(x)-B_n(f)(x)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. On a montré que

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}^* / \forall n \in \mathbb{N}^*, \forall x \in [0,1], (n \geqslant N \Rightarrow |f(x) - (B_n(f))(x)| < \varepsilon,$$

et donc que

la suite de polynômes $(B_n(f))_{n\in\mathbb{N}^*}$ converge uniformément sur [0,1] vers f.

3. La question 2) montre le théorème de WEIERSTRASS dans le cas du segment [0,1]. Soient [a,b] un segment quelconque et f un application continue sur [a,b].

Pour $x \in [0,1]$, posons g(x) = f(a + (b-a)x). La fonction g est continue sur [0,1] et donc il existe une suite de polynômes (P_n) convergeant uniformément vers g sur [0,1]. Pour $n \in \mathbb{N}$, posons $Q_n = P_n\left(\frac{X-a}{b-a}\right)$. Soit $\varepsilon > 0$. $\exists N \geqslant 1$ tel que $\forall n \geqslant N, \forall y \in [0,1], |g(y) - P_n(y)| < \varepsilon$.

Soient $x \in [a,b]$ et $n \ge N$. Le réel $y = \frac{x-a}{b-a}$ est dans [0,1] et

$$|f(x) - Q_n(x)| = |f(a + (b - a)y) - Q_n(a + (b - a)y)| = |g(y) - P_n(y)| < \varepsilon.$$

Ceci démontre que la suite de polynômes $(Q_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction f sur [a,b].

Correction de l'exercice 4 A

Posons $f = \lim_{n \to +\infty} P_n$.

Le critère de CAUCHY de convergence uniforme (appliqué à $\varepsilon = 1$) permet d'écrire

$$\exists N \in \mathbb{N} / \forall n \geqslant N, \ \forall m \geqslant N, \ \forall x \in \mathbb{R}, \ |P_n(x) - P_m(x)| \leqslant 1.$$

Pour $n \ge N$, les polynômes $P_N - P_n$ sont bornés sur \mathbb{R} et donc constants. Par suite, pour chaque $n \ge N$, il existe $a_n \in \mathbb{R}$ tel que $P_N - P_n = a_n$ (*). Puisque la suite (P_n) converge simplement sur \mathbb{R} , La suite $(a_n) = (P_N(0) - P_n(0))$ converge vers un réel que l'on note a. On fait alors tendre n tend vers $+\infty$ dans l'égalité (*) et on obtient

$$f = P_N - a$$

On a montré que f est un polynôme.

Correction de l'exercice 5

1. Pour $x \in]-1,1[$ et n entier naturel non nul, posons $f_n(x) = \frac{x^n \sin(nx)}{n}$.

Soit $x \in]-1,1[$. Pour n entier naturel non nul, $|f_n(x)| \le |x|^n$. Or, la série géométrique de terme général $|x|^n$, $n \ge 1$, est convergente et donc la série numérique de terme général $f_n(x)$ est absolument convergente et en particulier convergente. On en déduit que f(x) existe.

f est définie sur
$$]-1,1[$$
.

Soit $a \in]0,1[$. Chaque $f_n, n \ge 1$, est de classe C^1 sur [-a,a] et pour $x \in [-a,a]$,

$$f'_n(x) = x^{n-1}\sin(nx) + x^n\cos(nx).$$

Pour $x \in [-a, a]$ et $n \in \mathbb{N}^*$,

$$|f'_n(x)| \le a^{n-1} + a^n \le 2a^{n-1}$$
.

Puisque la série numérique de terme général $2a^{n-1}$, $n \ge 1$, converge, la série de fonctions de terme général f'_n , $n \ge 1$, est normalement et donc uniformément sur [-a,a]. En résumé,

- la série de fonctions de terme général f_n , $n \ge 1$, converge simplement vers f sur [-a, a],
- chaque fonction f_n , $n \ge 1$, est de classe C^1 sur [-a, a],
- la série de fonctions de terme général f'_n converge uniformément sur [-a,a].

D'après un corollaire du théorème de dérivation terme à terme, f est de classe C^1 sur [-a,a] pour tout réel a de [0,1[et donc sur]-1,1[et sa dérivée s'obtient par dérivation terme à terme.

$$f$$
 est de classe C^1 sur $]-1,1[$ et $\forall x \in]-1,1[$, $f'(x)=\sum_{n=1}^{+\infty}(x^{n-1}\sin(nx)+x^n\cos(nx)).$

2. Ainsi, pour $x \in]-1,1[$

$$f'(x) = \sum_{n=1}^{+\infty} (x^{n-1}\sin(nx) + x^n\cos(nx)) = \operatorname{Im}\left(\sum_{n=1}^{+\infty} x^{n-1}e^{inx}\right) + \operatorname{Re}\left(\sum_{n=1}^{+\infty} x^ne^{inx}\right)$$

$$= \operatorname{Im}\left(\frac{e^{ix}}{1 - xe^{ix}}\right) + \operatorname{Re}\left(\frac{xe^{ix}}{1 - xe^{ix}}\right) = \operatorname{Im}\left(\frac{e^{ix}(1 - xe^{-ix})}{x^2 - 2x\cos x + 1}\right) + \operatorname{Re}\left(\frac{xe^{ix}(1 - xe^{-ix})}{x^2 - 2x\cos x + 1}\right)$$

$$= \frac{\sin x + x\cos x - x^2}{x^2 - 2x\cos x + 1}.$$

Mais, pour $x \in]-1,1[$,

$$\left(\frac{x\sin x}{1-x\cos x}\right)' = \frac{(\sin x + x\cos x)(1-x\cos x) - x\sin x(-\cos x + x\sin x)}{(1-x\cos x)^2} = \frac{\sin x + x\cos x - x^2}{(1-x\cos x)^2}.$$

et donc

$$\left(\arctan\left(\frac{x\sin x}{1 - x\cos x}\right)\right)' = \frac{\sin x + x\cos x - x^2}{(1 - x\cos x)^2} \times \frac{1}{1 + \left(\frac{x\sin x}{1 - x\cos x}\right)^2} = \frac{\sin x + x\cos x - x^2}{(1 - x\cos x)^2 + x^2\sin^2 x}$$
$$= \frac{\sin x + x\cos x - x^2}{x^2 - 2x\cos x + 1} = f'(x).$$

Finalement, pour $x \in]-1,1[$,

$$f(x) = f(0) + \int_0^x f'(t) dt = 0 + \arctan\left(\frac{x \sin x}{1 - x \cos x}\right) - \arctan(0) = \arctan\left(\frac{x \sin x}{1 - x \cos x}\right).$$

$$\forall x \in]-1, 1[, \sum_{n=1}^{+\infty} \frac{x^n \sin(nx)}{n} = \arctan\left(\frac{x \sin x}{1 - x \cos x}\right).$$

Correction de l'exercice 6

1. Pour n entier naturel non nul, on note f_n la fonction $x \mapsto \frac{(-1)^n}{\ln(nx)}$. Pour tout réel x, f(x) existe si et seulement si chaque $f_n(x)$, $n \in \mathbb{N}^*$, existe et la série numérique de terme général $f_n(x)$, $n \in \mathbb{N}^*$, converge. Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, $f_n(x)$ existe si et seulement si x > 0 et $x \ne \frac{1}{n}$.

Soit donc
$$x \in D =]0, +\infty[\setminus \left\{\frac{1}{p}, \ p \in \mathbb{N}^*\right\}.$$

Pour $n > \frac{1}{x}$, on a $\ln(nx) > 0$. On en déduit que la suite $\left(\frac{1}{\ln(nx)}\right)_{n \in \mathbb{N}^*}$ est positive et décroissante à partir d'un certain et tend vers 0 quand n tend vers $+\infty$. Ainsi, la série numérique de terme général $f_n(x)$ converge en vertu du critère spécial aux séries alternées et donc f(x) existe.

Le domaine de définition de
$$f$$
 est $D =]0, +\infty[\setminus \left\{\frac{1}{n}, n \in \mathbb{N}^*\right\}.$

2. **Limite de** f **en** $+\infty$. Soit x > 1. Donc f(x) existe. Pour tout entier naturel non nul n, $\ln(nx) > 0$. On en déduit que la suite $\left(\frac{1}{\ln(nx)}\right)_{n \in \mathbb{N}^*}$ est décroissante. On sait alors que la valeur absolue de f(x) est majorée par la valeur absolue du premier terme de la série. Ainsi

$$\forall x > 1, |f(x)| \leqslant \left| \frac{(-1)^0}{\ln(x)} \right| = \frac{1}{\ln x},$$

et en particulier

$$\lim_{x\to +\infty} f(x)=0.$$

On peut noter de plus que pour x > 1, f(x) est du signe du premier terme de la série à savoir $\frac{1}{\ln(x)}$ et donc $\forall x \in]1, +\infty[$, f(x) > 0.

Convergence uniforme sur $]1, +\infty[$. D'après une majoration classique du reste à l'ordre n alternée d'une série alternée, pour x > 1 et n naturel non nul,

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} \frac{(-1)^{k-1}}{\ln(kx)} \right| \le \left| \frac{(-1)^n}{\ln((n+1)x)} \right| = \frac{1}{\ln((n+1)x)} \le \frac{1}{n+1}.$$

Donc, pour tout entier naturel non nul, $\sup_{x\in]1,+\infty[}|R_n(x)|\leqslant \frac{1}{\ln(n+1)}$ et donc $\lim_{n\to+\infty}\sup_{x\in]1,+\infty[}|R_n(x)|=0$. La série de fonctions de terme général f_n converge uniformément vers sa somme sur $]1,+\infty[$.

Continuité sur $]1, +\infty[$. Chaque fonction $f_n, n \in \mathbb{N}^*$ est continue sur $]1, +\infty[$ et donc f est donc continue sur $]1, +\infty[$ en tant que limite uniforme sur $]1, +\infty[$ d'une suite de fonctions continues sur $]1, +\infty[$.

$$f$$
 est continue sur $]1, +\infty[$.

Limite en 1 à **droite.** Soit $n \ge 2$. Quand x tend vers 1 par valeurs supérieures, $f_n(x)$ tend vers $\ell_n = \frac{(-1)^{n-1}}{\ln(n)}$. Puisque la série de fonctions de terme général f_n , $n \ge 2$, converge uniformément vers sa somme sur $]1, +\infty[$, le théorème d'interversion des limites permet d'affirmer que la série numérique de terme général ℓ_n , $n \ge 2$ converge et que la fonction $x \mapsto f(x) - \frac{1}{\ln(x)} = \sum_{n=2}^{+\infty} f_n(x)$ tend vers le réel $\sum_{n=2}^{+\infty} \frac{(-1)^{n-1}}{\ln(n)}$ quand x tend vers 1 par valeurs supérieures ou encore

$$f(x) = \frac{1}{x \to 1^+} \frac{1}{\ln x} + O(1) \text{ et en particulier, } \lim_{\substack{x \to 1 \\ x > 1}} f(x) = +\infty.$$

3. La série de fonctions de terme général f_n , $n \ge 1$, converge simplement vers la fonction f sur $]1, +\infty[$. De plus chaque fonction f_n est de classe C^1 sur $]1, +\infty[$ et pour $n \in \mathbb{N}^*$ et x > 1,

$$f'_n(x) = \frac{(-1)^n}{x \ln^2(nx)}$$
.

Il reste à vérifier la convergence uniforme de la série de fonctions de terme général f'_n sur $]1,+\infty[$.

Soit x > 1. La série de terme général $f'_n(x)$ est alternée car son terme général est alterné en signe et sa valeur absolue à savoir $\frac{1}{x \ln^2(nx)}$ tend vers zéro quand n tend vers $+\infty$ en décroissant. Donc, d'après une majoration classique du reste à l'ordre n d'une série alternée,

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{x \ln^2(kx)} \right| \leqslant \left| \frac{(-1)^{n+1}}{x \ln^2((n+1)x)} \right| = \frac{1}{x \ln^2((n+1)x)} \leqslant \frac{1}{\ln^2(n+1)}.$$

Par suite, $\sup_{x\in]1,+\infty[}|R_n(x)|\leqslant \frac{1}{\ln^2(n+1)}$ et donc $\lim_{n\to +\infty}\sup_{x\in]1,+\infty[}|R_n(x)|=0$. Ainsi, la série de fonctions de terme général $f_n',\,n\geqslant 1$, converge uniformément sur $]1,+\infty[$.

En résumé,

- la série de fonctions de terme général f_n , $n \ge 1$, converge simplement vers f sur $]1, +\infty[$,
- chaque fonction f_n , $n \ge 1$, est de classe C^1 sur $]1, +\infty[$,
- la série de fonctions de terme général f'_n converge uniformément sur $]1,+\infty[$.

D'après un corollaire du théorème de dérivation terme à terme, f est de classe C^1 sur $]1,+\infty[$ et sa dérivée s'obtient par dérivation terme à terme.

f est de classe
$$C^1$$
 sur $]1, +\infty[$ et $\forall x > 1, f'(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{x \ln^2(nx)}.$

Pour x > 1, puisque la série de somme f'(x) est alternée, f'(x) est du signe du premier terme de la somme à savoir $-\frac{1}{x \ln^2 x}$. Par suite, $\forall x \in]-1,1[, f'(x) \le 0$ et f est donc strictement décroissante sur

La fonction
$$f$$
 est décroissante sur $]1,+\infty[$.

Correction de l'exercice 7

- 1. Convergence simple. Chaque fonction f_n , $n \in \mathbb{N}$, est définie sur \mathbb{R} . Soit $x \in \mathbb{R}$.
 - Si x < 0, $f_n(x) \underset{n \to +\infty}{\to} +\infty$ et la série de terme général $f_n(x)$, $n \in \mathbb{N}$, diverge grossièrement.

 - Si x=0, puisque $\forall n\in\mathbb{N}, f_n(x)=f_n(0)=0$, la série de terme général $f_n(x), n\in\mathbb{N}$, converge. Si $x>0, n^2f_n(x)=x^2e^{-x\sqrt{n}+3\ln n}\underset{n\to+\infty}{\to}0$ et donc $f_n(x)\underset{n\to+\infty}{=}o\left(\frac{1}{n^2}\right)$. Dans ce cas aussi, la série de terme général $f_n(x)$, $n \in \mathbb{N}$, converge.

La série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge simplement sur \mathbb{R}^+ .

Convergence normale. La fonction f_0 est la fonction nulle. Soit $n \in \mathbb{N}^*$. La fonction f_n est dérivable sur \mathbb{R}^+ et pour tout réel positif x,

$$f'_n(x) = n(2x - x^2\sqrt{n})e^{-x\sqrt{n}} = nx(2 - x\sqrt{n})e^{-x\sqrt{n}}.$$

La fonction f_n est positive sur $\left[0,+\infty\right[$, croissante sur $\left[0,\frac{2}{\sqrt{n}}\right]$ et décroissante sur $\left[\frac{2}{\sqrt{n}},+\infty\right[$. On en déduit que

$$||f_n||_{\infty} = \sup_{x \in [0, +\infty[} |f_n(t)| = f_n\left(\frac{2}{\sqrt{n}}\right) = 4e^{-2}.$$

Par suite, la série numérique de terme général $||f_n||_{\infty}$, $n \in \mathbb{N}$, diverge grossièrement et donc

La série de fonctions de terme général f_n , $n \in \mathbb{N}$, ne converge pas normalement sur \mathbb{R}^+ .

Soit a > 0. Pour $n \ge \frac{4}{a^2}$, on a $\frac{2}{\sqrt{n}} \le a$ et donc la fonction f_n est décroissante sur $[a, +\infty[$. Soit donc n un entier supérieur ou égal à $\frac{4}{a^2}$. Pour tout réel t supérieur ou égal à a, on a $|f_n(t)| = f_n(t) \leqslant f_n(a)$ et donc $\sup |f_n(t)| = f_n(a).$ $x \in [a, +\infty[$

Comme la série numérique de terme général $f_n(a)$, $n \in \mathbb{N}$, converge, la série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge normalement et donc uniformément sur $[a, +\infty[$.

Pour tout a > 0, la série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge normalement et uniformément sur [a, +

Convergence uniforme sur $[0, +\infty[$. Pour $n \in \mathbb{N}$ et $t \in \mathbb{R}^+$,

$$|R_n(t)| = \sum_{k=n+1}^{+\infty} f_k(t) \geqslant f_{n+1}(t),$$

et donc $\sup_{t\in[0,+\infty[}|R_n(t)|\geqslant \sup_{t\in[0,+\infty[}|f_{n+1}(t)|4e^{-2}$. Par suite, $\sup_{t\in[0,+\infty[}|R_n(t)|$ ne tend pas vers 0 quand n tend vers $+\infty$ et donc

la série de fonctions de terme général f_n , $n \in \mathbb{N}$, ne converge pas uniformément sur \mathbb{R}^+ .

2. Convergence simple. Chaque fonction f_n , $n \in \mathbb{N}^*$, est définie sur $]0, +\infty[$. Soit $x \in]0, +\infty[$. Puisque $f_n(x) \sim \frac{1}{n^3x^2} > 0$, la série numérique de terme général $f_n(x)$ converge. Donc

la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge simplement sur $]0, +\infty[$.

Convergence normale. Soit $n \in \mathbb{N}^*$. La fonction f_n est décroissante et positive sur $]0,+\infty[$. Donc $\sup_{x \in]0,+\infty} |f_n(x)| = f_n(0) = \frac{1}{n}$. Puisque la série numérique de terme général $\frac{1}{n}$, $n \in \mathbb{N}^*$, diverge

la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, ne converge pas normalement sur \mathbb{R}^+ .

Soit a > 0. Pour $n \in \mathbb{N}^*$, la fonction f_n est décroissante et positive sur $5a, +\infty[$ et donc $\sup_{x \in [a, +\infty]} |f_n(x)| = f_n(a)$.

Comme la série numérique de terme général $f_n(a)$, $n \in \mathbb{N}^*$, converge, la série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge normalement et donc uniformément sur $[a, +\infty[$.

Pour tout a > 0, la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge normalement et uniformément sur [a, d]

- 3. Convergence simple. Chaque fonction f_n , $n \in \mathbb{N}$, est définie sur \mathbb{R} et impaire. Soit $x \in \mathbb{R}^+$.
 - Si x = 0, pour tout entier naturel n, $f_n(x) = f_n(0) = 0$. Dans ce cas, la série numérique de terme général $f_n(x)$ converge.
 - Si x > 0, la suite $\left(\frac{x}{(x^2+1)^n}\right)_{n \in \mathbb{N}}$ est une suite géométrique de premier x > 0 et de raison $\frac{1}{x^2+1} \in]0,1[$. On en déduit que la suite $\left(\frac{x}{(x^2+1)^n}\right)_{n \in \mathbb{N}}$ est positive décroissante de limite nulle. Par suite, la série numérique de terme général $f_n(x)$ converge en vertu du critère spécial aux séries alternées.
 - Si x < 0, puisque pour tout entier naturel n, $f_n(x) = -f_n(-x)$, la série numérique de terme général $f_n(x)$ converge.

Finalement

la série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge simplement sur \mathbb{R} .

Convergence normale. La fonction f_0 n'est pas bornée sur \mathbb{R} et donc la série de fonctions de terme général f_n , $n \in \mathbb{N}$, n'est pas normalement convergente sur \mathbb{R} .

Analysons la convergence normale de la série de fonctions de terme général f_n , $n \ge 1$, sur \mathbb{R} .

Soit $n \in \mathbb{N}^*$. La fonction $g_n = (-1)^n f_n$ est dérivable sur \mathbb{R} et pour tout réel x,

$$g'_n(x) = \frac{1}{(1+x^2)^n} + x \times \frac{-2nx}{(1+x^2)^{n+1}} = \frac{1-(2n-1)x^2}{(1+x^2)^{n+1}}.$$

La fonction g_n est positive sur \mathbb{R}^+ , croissante sur $\left[0, \frac{1}{\sqrt{2n-1}}\right]$ et décroissante sur $\left[\frac{1}{\sqrt{2n-1}}, +\infty\right[$. Puisque la fonction g_n est impaire, on en déduit que

$$\|f_n\|_{\infty} = \sup_{x \in \mathbb{R}} |f_n(x)| = g_n \left(\frac{1}{\sqrt{2n-1}}\right) = \frac{1}{\sqrt{2n-1}} \times \frac{1}{\left(1 + \frac{1}{2n-1}\right)^{n+1}} = \frac{1}{\sqrt{2n-1}} \left(1 - \frac{1}{2n}\right)^{-(n+1)}.$$

$$\text{Mais } \left(1 - \frac{1}{2n}\right)^{-(n+1)} = \exp\left(-(n+1)\ln\left(1 - \frac{1}{2n}\right)\right) \underset{n \to +\infty}{=} \exp\left(\frac{1}{2} + o(1)\right) \text{ et donc}$$

$$\|f_n\|_{\infty} = \frac{1}{\sqrt{2n-1}} \left(1 - \frac{1}{2n}\right)^{-(n+1)} \underset{n \to +\infty}{\sim} \frac{1}{e\sqrt{2} \times \sqrt{n}} > 0.$$

Par suite, la série numérique de terme général $||f_n||_{\infty}$, $n \in \mathbb{N}^*$, diverge et donc

la série de fonctions de terme général $f_n, n \in \mathbb{N}^*$, ne converge pas normalement sur \mathbb{R} .

Convergence uniforme sur \mathbb{R} . Soit $n \in \mathbb{N}$. Pour $x \in \mathbb{R}^+$, puisque la suite $\left(\frac{x}{(1+x^2)^n}\right)_{n \in \mathbb{N}}$ est positive décroissante et de limite nulle, d'après une majoration classique du reste à l'ordre n d'une série alternée,

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} (-1)^k \frac{x}{(1+x^2)^k} \right| \leq \left| (-1)^{n+1} \frac{x}{(1+x^2)^{n+1}} \right| = \frac{x}{(1+x^2)^{n+1}} = g_{n+1}(x) \leq g_{n+1}\left(\frac{1}{\sqrt{2n+1}}\right),$$

cette inégalité restant valable pour x < 0 par parité. Donc $\sup_{x \in \mathbb{R}} |R_n(x)| \le g_{n+1}\left(\frac{1}{\sqrt{2n+1}}\right)$. D'après ci-dessus,

 $g_{n+1}\left(\frac{1}{\sqrt{2n+1}}\right)$ tend vers 0 quand n tend vers $+\infty$ et il en est de même de $\sup_{x\in\mathbb{R}}|R_n(x)|$. On a montré que

la série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge uniformément sur \mathbb{R} .

Correction de l'exercice 8

Soit $n \in \mathbb{N}$.

$$\textstyle \sum_{k=0}^{n} \frac{(-1)^k}{1+ka} = \sum_{k=0}^{n} (-1)^k \int_0^1 t^{ka} \ dt = \int_0^1 \left(\sum_{k=0}^{n} (-t^a)^k \right) \ dt = \int_0^1 \frac{1}{1+t^a} \ dt + (-1)^n \int_0^1 \frac{t^{(n+1)a}}{1+t^a} \ dt,$$

avec $\left|(-1)^n \int_0^1 \frac{t^{(n+1)a}}{1+t^a} dt\right| \leqslant \int_0^1 t^{(n+1)a} dt = \frac{1}{1+(n+1)a}$. Par suite, $\lim_{n\to+\infty} (-1)^n \int_0^1 \frac{t^{(n+1)a}}{1+t^a} dt = 0$. On en déduit que la série de terme général $\frac{(-1)^k}{1+ka}$, $k\geqslant 0$, converge et que

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{1+ka} = \int_0^1 \frac{1}{1+t^a} dt.$$

Correction de l'exercice 9 A

1. Convergence simple. Soit $t \in \mathbb{R}$. Pour tout entier naturel non nul n, $1 + \frac{t^2}{n(1+t^2)} \geqslant 1 > 0$ et donc $f_n(t)$ existe. Ensuite, $\ln\left(1 + \frac{t^2}{n(1+t^2)}\right) > 0$ et donc la suite numérique $(f_n(t))_{n \in \mathbb{N}^*}$ est alternée en signe. De plus, $|f_n(t)| = \ln\left(1 + \frac{t^2}{n(1+t^2)}\right)$ et la suite $(|f_n(t)|)_{n \in \mathbb{N}^*}$ tend vers 0 en décroissant. On en déduit que la série de terme général $f_n(t)$, $n \geqslant 1$, converge en vertu du critère spécial aux séries

On en déduit que la série de terme général $f_n(t)$, $n \ge 1$, converge en vertu du critère spécial aux séries alternées.

La série de fonctions de terme général $f_n, n \ge 1$, converge simplement sur \mathbb{R} .

On pose alors $f = \sum_{n=1}^{+\infty} f_n$.

Convergence uniforme. Soit $n \in \mathbb{N}^*$. D'après une majoration classique du reste à l'ordre n d'une série alternée, pour tout réel t on a

$$|R_n(t)| = \left| \sum_{k=n+1}^{+\infty} f_k(t) \right| \le |f_{n+1}(t)| = \ln\left(1 + \frac{t^2}{(n+1)(1+t^2)}\right) = \ln\left(1 + \frac{t^2+1-1}{(n+1)(1+t^2)}\right) = \ln\left(1 + \frac{1}{n+1} - \frac{1}{(n+1)(1+t^2)}\right)$$

$$\le \ln\left(1 + \frac{1}{n+1}\right),$$

et donc, $\forall n \in \mathbb{N}^*$, $\sup_{t \in \mathbb{R}} |R_n(t)| \le \ln\left(1 + \frac{1}{n+1}\right)$. Comme $\lim_{n \to +\infty} \ln\left(1 + \frac{1}{n+1}\right) = 0$, on a encore $\lim_{n \to +\infty} \sup_{t \in \mathbb{R}} |R_n(t)| = 0$ et on a montré que

La série de fonctions de terme général f_n , $n \ge 1$, converge uniformément vers f sur \mathbb{R} .

Continuité. Puisque chaque fonction f_n , $n \ge 1$, est continue sur \mathbb{R} , la fonction f est continue sur \mathbb{R} en tant que limite uniforme sur \mathbb{R} d'une suite de fonctions continues sur \mathbb{R} .

$$f$$
 est continue sur \mathbb{R} .

2. D'après le théorème d'interversion des limites, f a une limite réelle en $+\infty$ et

$$\lim_{t\to+\infty} f(t) = \sum_{n=1}^{+\infty} \lim_{t\to+\infty} f_n(t) = \sum_{n=1}^{+\infty} (-1)^n \ln\left(1+\frac{1}{n}\right) = \ln\left(\frac{2}{\pi}\right) \text{ (voir l'exercice ??, 5)}.$$

$$\lim_{t\to+\infty}f_n(t)=\ln\left(\frac{2}{\pi}\right).$$

Correction de l'exercice 10 ▲

Domaine de définition. Soit $t \in \mathbb{R}$. Pour chaque $n \in \mathbb{N}^*$, $f_n(t)$ existe et de plus $f_n(t) = \frac{\arctan(nt)}{n^2} = O\left(\frac{1}{n^2}\right)$. Donc la série numérique de terme général $f_n(t)$, $n \ge 1$, converge absolument et en particulier converge. On a montré que

$$f$$
 est définie sur \mathbb{R} .

Parité. Pour tout réel t,

$$f(-t) = \sum_{n=1}^{+\infty} \frac{\arctan(-nt)}{n^2} = -\sum_{n=1}^{+\infty} \frac{\arctan(nt)}{n^2} = -f(t).$$

Convergence normale. Pour tout réel t et tout entier naturel non nul n, $|f_n(t)| \le \frac{\pi}{2n^2}$ et donc pour tout entier naturel non nul n,

$$\sup_{t\in\mathbb{R}}|f_n(t)|\leqslant \frac{\pi}{2n^2}.$$

Comme la série numérique de terme général $\frac{\pi}{2n^2}$, $n \ge 1$, converge, la série de fonctions de terme général f_n converge normalement et donc uniformément vers f sur \mathbb{R} .

Limite de f **en** $+\infty$. Puisque la série de fonctions de terme général f_n , $n \ge 1$, converge uniformément vers f sur \mathbb{R} et que chaque fonction f_n a une limite réelle quand t tend vers $+\infty$ à savoir $\ell_n = \frac{\pi}{2n^2}$, le théorème d'interversion des limites permet d'affirmer que f a une limite réelle en $+\infty$ et que

$$\lim_{t \to +\infty} f(t) = \sum_{n=1}^{+\infty} \ell_n = \frac{\pi}{2} \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^3}{12}.$$

$$\lim_{t\to+\infty} f(t) = \frac{\pi^3}{12} \text{ et } \lim_{t\to-\infty} f(t) = -\frac{\pi^3}{12}.$$

Continuité. Puisque chaque fonction f_n , $n \in \mathbb{N}^*$, est continue sur \mathbb{R} et que la série de fonctions de terme général f_n converge uniformément vers f sur \mathbb{R} , la fonction f est continue sur \mathbb{R} en tant que limite uniforme sur \mathbb{R} d'une suite de fonctions continues sur \mathbb{R} .

$$f$$
 est continue sur \mathbb{R} .

Dérivation. Soit a > 0. Chaque fonction f_n , $n \ge 1$, est de classe C^1 sur $[a, +\infty[$ et pour $n \in \mathbb{N}^*$ et $t \ge a$,

$$f'_n(t) = \frac{n}{n^2(1+n^2t^2)} = \frac{1}{n(1+n^2t^2)}.$$

Pour $n \in \mathbb{N}^*$, on a alors $\sup_{t \in [a,+\infty[} |f_n'(t)| = f_n'(a) = \frac{1}{n(1+n^2a^2)}$. Puisque $\frac{1}{n(1+n^2a^2)} \underset{n \to +\infty}{\sim} \frac{1}{a^2n^3} > 0$, la série de terme

général $\frac{1}{n(1+n^2a^2)}$ converge et par suite, la série de fonctions de terme général f'_n , $n \ge 1$, converge normalement et donc uniformément sur $[a, +\infty[$.

En résumé,

- la série de fonctions de terme général f_n , $n \ge 1$, converge simplement vers f sur $[a, +\infty[$,
- chaque fonction f_n est de classe C^1 sur $[a, +\infty[$,
- la série de fonctions de terme général f'_n converge uniformément sur $[a, +\infty[$.

D'après un corollaire du théorème de dérivation terme à terme, f est de classe C^1 sur $[a, +\infty[$ et sa dérivée s'obtient par dérivation terme à terme. Ceci étant vrai pour tout a > 0, f est de classe C^1 sur $]0, +\infty[$ et puisque f est impaire

$$f$$
 est de classe C^1 sur \mathbb{R}^* et $\forall t \in \mathbb{R}^*$, $f'(t) = \sum_{n=1}^{+\infty} \frac{1}{n(1+n^2t^2)}$.

Dérivabilité en 0. La fonction f' est décroissante sur $]0,+\infty[$. Donc la fonction f' admet une limite en 0^+ élément de $]-\infty,+\infty[$. Pour t>0 et $N\in\mathbb{N}^*$, on a $f'(t)\geqslant \sum_{n=1}^N\frac{1}{n(1+n^2t^2)}$ et quand t tend vers 0, on obtient

$$\lim_{\substack{t \to 0 \\ t > 0}} f'(t) \geqslant \sum_{n=1}^{N} \frac{1}{n}.$$

Cette inégalité étant vraie pour tout entier naturel non nul N, quand N tend vers $+\infty$ on obtient

$$\lim_{\substack{t\to 0\\t>0}} f'(t)\geqslant \sum_{n=1}^{+\infty}\frac{1}{n}=+\infty.$$

On a montré que $\lim_{\substack{t\to 0\\t>0}} f'(t) = +\infty$.

En résumé, f est de classe C^0 sur $[0, +\infty[$, de classe C^1 sur $]0, +\infty[$ et f'(t) tend vers $+\infty$ quand t tend vers 0 par valeurs supérieures. D'après un corollaire du théorème des accroissements finis, on sait que f n'est pas dérivable en 0 à droite et que sa courbe représentative admet [Oy) pour demi-tangente en (0,0). Puisque f est impaire, f n'est pas dérivable en 0 et sa courbe représentative admet (Oy) pour tangente en (0,0).

Allure du graphe.

Correction de l'exercice 11 ▲

Soit x > 0. Pour $n \in \mathbb{N}^*$, $n^2 e^{-x\sqrt{n}} = e^{-x\sqrt{n}+2\ln n} = o(1)$ d'après un théorème de croissances comparées. On en déduit que $e^{-x\sqrt{n}} = o\left(\frac{1}{n^2}\right)$ et donc que la série de terme général $e^{-x\sqrt{n}}$ converge. Ainsi, f est bien définie sur $]0, +\infty[$.

Soit $x \in]0, +\infty[$. La fonction $t \mapsto e^{-x\sqrt{t}}$ est décroissante sur $[0, +\infty[$. Donc, $\forall k \in \mathbb{N}, \int_k^{k+1} e^{-x\sqrt{t}} dt \leqslant e^{-x\sqrt{k}}$ et $\forall k \in \mathbb{N}^*, e^{-x\sqrt{k}} \leqslant \int_{k-1}^k e^{-x\sqrt{t}} dt$. En sommant ces inégalités, on obtient

$$\forall x \in]0, +\infty[, \int_0^{+\infty} e^{-x\sqrt{t}} dt \le f(x) \le 1 + \int_0^{+\infty} e^{-x\sqrt{t}} dt \quad (*).$$

Soit $x \in]0, +\infty[$. En posant $u = x\sqrt{t}$ et donc $t = \frac{u^2}{x^2}$ puis $dt = \frac{2u}{x^2}$ du, on obtient

$$\int_0^{+\infty} e^{-x\sqrt{t}} dt = \frac{2}{x^2} \int_0^{+\infty} u e^{-u} du = \frac{2}{x^2} \times \Gamma(2) = \frac{2}{x^2}.$$

L'encadrement (*) s'écrit alors

$$\forall x \in]0, +\infty[, \frac{2}{r^2} \le f(x) \le 1 + \frac{2}{r^2}.$$

Comme $\lim_{\substack{x\to 0 \ x>0}} \frac{2}{x^2} = +\infty$, on a montré que

$$\sum_{n=0}^{+\infty} e^{-x\sqrt{n}} \underset{x\to 0,\, x>0}{\sim} \frac{2}{x^2}.$$

Correction de l'exercice 12 ▲

Soit $x \in]-1,1[$. Pour $n \in \mathbb{N}^*$, $\left|x^{n^2}\right| = |x|^{n^2} \leqslant |x|^n$. Puisque la série numérique de terme général $|x|^n$ converge, on en déduit que la série de terme général x^{n^2} est absolument convergente et en particulier convergente. Donc, f est bien définie sur]-1,1[.

Soit $x \in]0,1[$. La fonction $t \mapsto x^{t^2} = e^{t^2 \ln x}$ est décroissante sur $[0,+\infty[$. Donc, $\forall k \in \mathbb{N}^*$, $\int_k^{k+1} x^{t^2} dt \leqslant x^{k^2} \leqslant \int_{k-1}^k x^{t^2} dt$. En sommant ces inégalités, on obtient

$$\forall x \in]0,1[, \int_1^{+\infty} x^{t^2} dt \le f(x) \le \int_0^{+\infty} x^{t^2} dt \quad (*).$$

Soit $x \in]0,1[$. En posant $u = t\sqrt{-\ln x}$, on obtient

$$\int_0^{+\infty} x^{t^2} dt = \int_0^{+\infty} e^{t^2 \ln x} dt = \int_0^{+\infty} e^{-(t\sqrt{-\ln x})^2} dt = \frac{1}{\sqrt{-\ln x}} \int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}.$$

L'encadrement (*) s'écrit alors

$$\forall x \in]0,1[, \frac{\sqrt{\pi}}{2\sqrt{-\ln x}} - \int_0^1 x^{t^2} dt \le f(x) \le \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}.$$

Comme $\lim_{\substack{x \to 1 \\ x < 1}} \frac{\sqrt{\pi}}{2\sqrt{-\ln x}} = +\infty$, on a montré que

$$\sum_{n=1}^{+\infty} x^{n^2} \underset{x \to 1, \, x < 1}{\sim} \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}.$$