

UNIVERSIDAD FRANCISCO DE VITORIA

ESCUELA POLITÉCNICA SUPERIOR GRADO EN INGENIERÍA INFORMÁTICA

LAB 04:

IMPLEMENTACIÓN DE UN ALGORITMO GENÉTICO

Grupo de trabajo 4

Jorge Martín Pastor

Juan Serrano Vara

Inteligencia Artificial II – 2017 / 2018

Índice de contenidos

1	Resultados de la primera práctica	1
	1.1. Primera cuestión	1
	1.2. Segunda cuestión	6
	1.3. Tercera cuestión	12
2	Resultados de la segunda práctica	13
	2.1. Primera cuestión	13
	2.2. Segunda cuestión	19
3	Bibliografía	20

1 Resultados de la primera práctica

El siguiente documento constituye la memoria de la cuarta práctica de laboratorio realizada en la asignatura de *Inteligencia Artificial II* durante el curso 2017-2018. A continuación, contestamos a las cuestiones de la práctica de laboratorio y explicamos los resultados obtenidos.

1.1. Primera cuestión

Estudiar la relación entre ltar, NPOB y NGEN probando frases de distinta longitud (entre 5 y 25 caracteres), distintos tamaños de población y distinto número de generaciones. Poner como objetivo qué %NTar > 20% al menos dos NRES seguidos. Utilizar gráficos donde se recoja la relación entre estas variables e intentar encontrar alguna relación que garantice para un ltar concreto el mejor resultado.

Para la realización de estas gráficas hemos usamos el factor de calidad (Q = 0.96).

La frase introducida es "Jorge" cuya longitud es 5.

NPOB	NGEN
50	96
100	71
150	46
200	38

La frase introducida es "Jorge Juan" cuya longitud es 10.

NPOB	NGEN
50	178
100	130
150	105
200	89

La frase introducida es "salus sorocorap" cuya longitud es 15.

NPOB	NGEN
50	658
100	145
150	158
200	131

La frase introducida es "palusas morosareinos" cuya longitud es 20.

NPOB	NGEN
50	337
100	534
150	214
200	162

La frase introducida es "Hola algoritmo geneticoAG" cuya longitud es 25.

NPOB	NGEN
50	920
100	497
150	334
200	336

Lo primero que apreciamos al observar todas las gráficas es que según aumentamos la longitud del target, es decir, introducimos una frase o palabra más larga, el número de generaciones que obtenemos al alcanzar la condición de parada va creciendo, por lo cual cuanto más grande sea la frase a buscar más generaciones necesitaremos. Esto se debe a que tenemos que buscar más palabras por lo que tendremos que realizar más mutaciones para alcanzar la condición de parada.

Como podemos observar en todas las gráficas a medida que aumentamos la población, el número de generaciones es menor al alcanzar la condición de parada. Esto se debe a que al tener una mayor población tenemos más probabilidad de tener mejores individuos, es decir, mutaremos a mejores individuos.

Selección del mejor resultado para NPOB:

Tras el estudio de las gráficas anteriores hemos llegado a la conclusión que con las pruebas realizadas con una longitud de palabra entre 5 y 25 caracteres, la que nos ofrece mejores resultados, es decir, que nos consigue dar un menor número de generaciones es un NPOB de 200.

1.2. Segunda cuestión

Para la frase ANIMULA VAGULA BLANDULA, estudia que ocurre con la evolución de %NTar, ncoin_{max} y ncoin_{medio} probando distintos NPOB. Explica las gráficas que obtienes.

Probamos con una población de 100 individuos:

Realizamos los cálculos hasta 600 generaciones porque es el número de generaciones que hemos tardado en obtener la condición de parada.

NGEN	NTAR
50	0
100	0
150	0
200	0
250	0
300	0
350	0
400	1
450	14
500	18
550	24
600	25

NGEN	NCOINMAX
50	11
100	15
150	19
200	20
250	21
300	21
350	22
400	23
450	23
500	23
550	23
600	23

NGEN	NCOINMEAN
50	8,87
100	13,29
150	17,53
200	18,51
250	19,77
300	19,66
350	20,82
400	20,44
450	21,47
500	21,51
550	21,56
600	21,51

Probamos con una población de 200 individuos:

Realizamos los cálculos hasta 400 generaciones porque es el número de generaciones que hemos tardado en obtener la condición de parada.

NGEN	NTAR	
50	0	
100	0	
150	0	
200	0	
250	0	
300	17	
350	22	
400	21	

NGEN	NCOINMAX	
50	14	
100	17	
150	19	
200	20	
250	22	
300	23	
350	23	
400	23	

LAB 04: Algoritmos Genético

NGEN	NCOINMEAN
50	12,5
100	14,8
150	16,9
200	18
250	20,3
300	21,4
350	21,6
400	21,7

Gráficas que calculamos %NTAR en función de NGEN:

Observamos que hasta alcanzar 400 generaciones para un NPOB de 100 individuos y 250 para un NPOB de 200 individuos no obtenemos ninguna coincidencia de ningún individuo de la población con el target. A medida que el número de generaciones aumenta el número de coincidencias va aumentando considerablemente. Esto se debe a que una vez que encontramos una coincidencia, la probabilidad de mejorar los cromosomas aumenta notablemente.

Gráficas que calculamos NCOINMAX Y NCOINMEAN en función de NGEN:

El número de coincidencias máximas observamos que no varía de una gráfica con 200 individuos de población a una de 150, en ambas a medidas que vamos generando más generaciones el número de coincidencias va aumentando hasta alcanzar el número de coincidencias máximo posible que es de 23, el número de caracteres que componen el target. Observamos el mismo comportamiento con las gráficas en las que calculamos *NCOINMEAN*, en la que el número de coincidencias medio aumenta según aumenta el número de generaciones.

1.3. Tercera cuestión

Para la frase ANIMULA VAGULA BLANDULA, estudia que ocurre con el valor final de %NTar para valores crecientes de Q entre 0,8 y 1,0. Explica la gráfica que obtienes.

Probamos con una población de 150 individuos, probamos con factor de calidad de: 0,96 0,97 0,98 0,99. No estudiamos con factores de calidad entre 0.8 y 0.95 ya que no conseguíamos obtener resultados.

Q	Ntar
0,96	20,5
0,97	40
0,98	50,5
0,99	70,5

Observamos que a medida que aumentamos el factor de calidad aumenta notablemente el porcentaje de coincidencias en la población, esto se debe a que al aumentar el factor de calidad estamos restringiendo cada vez más el número de cromosomas que mutaran, solo mutaran los que superen ese factor de calidad. Esto junto con que los que más probabilidades tienen de mutar son los que tiene menos coincidencias, hacen que al final un buen gen mute menos y en cambio un mal gen se comparará más veces con el factor de calidad y al final tendrá más probabilidades de mutar. De esta manera, hay menos probabilidades de perder un buen gen.

2 Resultados de la segunda práctica

2.1. Primera cuestión

Para la frase ANIMULA VAGULA BLANDULA, estudia que ocurre con la evolución de %NTar, ncoin_{max} y ncoin_{medio} probando distintos NPOB. Explica las gráficas que obtienes. Compara los resultados con los obtenidos en la práctica anterior. Encuentra una explicación al distinto comportamiento (si lo hay).

Probamos con una población de 250 individuos:

Realizamos los cálculos hasta 600 generaciones porque es el número de generaciones que hemos tardado en obtener la condición de parada.

NGEN	NTAR
100	0
200	0
300	0
400	0
500	0
600	1

NGEN	NCOINMAX
100	19
200	17
300	19
400	17
500	20
600	22

LAB 04: Algoritmos Genético

NGEN	NCOINMEAN
100	15,35
200	17
300	17,2
400	13,5
500	16,52
600	18,61

Probamos con una población de 350 individuos:

Realizamos los cálculos hasta 80 generaciones porque es el número de generaciones que hemos tardado en obtener la condición de parada.

NGEN	NTAR
20	0
40	0
60	0
80	3

LAB 04: Algoritmos Genético

NGEN	NCOINMAX
100	16
200	19
300	20
400	22

LAB 04: Algoritmos Genético

NGEN	NCOINMEAN
100	13,96
200	18,57
300	16
400	19,32

Observamos que para una población de 250 individuos las gráficas presentan un comportamiento anómalo pero con tendencia creciente esto se debe a que al ser un proceso aleatorio, los resultados obtenidos no son del todo válidos. Para un mejor estudio de los datos hay que realizar numerosas pruebas y calcular la media de todas ellas.

En comparación con la práctica anterior el comportamiento es muy similar por lo cual la explicación de los resultados consideramos que es la misma.

2.2. Segunda cuestión

Para la frase ANIMULA VAGULA BLANDULA, estudia que ocurre con el valor final de %NTar para valores crecientes de Q entre 0,8 y 1,0. Explica la gráfica que obtienes. Compara los resultados con los obtenidos en la práctica anterior. Encuentra una explicación al distinto comportamiento (si lo hay).

Q	Ntar
0,96	3
0,97	1
0,98	53
0,99	70

Los resultandos obtenidos presentan el mismo comportamiento que los datos obtenidos en la práctica anterior, por lo cual la explicación de los resultados es la misma.

3 Bibliografía

- 1. CIFAR 10. [En línea] https://www.cs.toronto.edu/~kriz/cifar.html.
- 2. Datacamp. [En línea] https://www.datacamp.com/courses/intro-to-python-for-data-science.
- 3. Datacamp2. [En línea] https://www.datacamp.com/courses/intermediate-python-for-data-science.
- 4. E-reading. [En línea] http://bibing.us.es/proyectos/abreproy/12166/fichero/Volumen+1+-+Memoria+descriptiva+del+proyecto%252F3+-+Perceptron+multicapa.pdf.
- 5. Towards Data Science. [En línea] https://towardsdatascience.com/deep-learning-with-python-703e26853820.
- 6. Universidad de Málaga. [En línea] http://www.lcc.uma.es/~munozp/documentos/modelos_computacionales/temas/Tema4MC-05.pdf.
- 7. Universidad Francisco de Vitoria. [En línea] https://moodleufv.ufv.e.