Intro to Algebra 2 W4-2

fat

March 15, 2024

Definition 1. If K/F is an algebraic extension such that K is the splitting field for a collection of polynomials in F[x], then we say K is a **normal extension**. (Equivalently, given an irreducible $f(x) \in F[x]$, if f(x) has a root α in K, then f(x) splits completely in K[x].)

We next show that any 2 splitting fields for $f(x) \in F[x]$ are isomorphic, so it makes sense to speak of "the" splitting field for f(x). We first prove a lemma.

Theorem 1 (Theorem 8). Assume that $F \stackrel{\phi}{\simeq} F'$. Let p(x) be a irreducible polynomial in F[x] and p'(x) = $\phi(p(x))$. (Here $\phi(a_nx^n + \cdots + a_0) := \phi(a_n)x^n + \cdots + \phi(a_0)$) Let α be a root of p(x) in some extension field of F, same for α' for p'(x) in some F'. Then $\exists \tilde{\phi} : F(\alpha) \to F'(\alpha)$ an isomorphism such that $\tilde{\phi}|_F = \phi$ (i.e. $\tilde{\phi}(a) = \phi(a) \ \forall a \in F$). (That is, ϕ can be extended to an isomorphism $\tilde{\phi}$ from $F(\alpha)$ to $F'(\alpha)$ such that $\tilde{\phi}(\alpha) = \alpha'$.)

Proof.

It's clear that ϕ induces an isomorphism from F[x]/(p(x)) to F'[x]/(p'(x)). (Consider the ring homomorphism $F[x] \to F'[x]/(p'(x))$ defined by $f(x) \mapsto \phi(f(x)) + (p'(x))$. Check it's surjective with ker = (p(x)).) On the other hand, theorem 4+6 says $F(\alpha) \simeq F[x]/(m_{\alpha,F}(x)) = F[x]/(p(x))$. Similarly $F'(\alpha') \simeq F'[x]/(p'(x))$. Combining every isomorphism, we see that \exists an isomorphism $\tilde{\phi}: F(\alpha) \to F'(\alpha')$. Tracing the images of F and α under $\tilde{\phi}$, we see that $\tilde{\phi}|_F = \phi$ and $\tilde{\phi}(\alpha) = \alpha'$. e.g.

$$F(\alpha) \to F[x]/(p(x)) \to F'[x]/(p(x)) \to F'[x]/(p'(x)) \to F'(\alpha')$$
$$a \in F \to a + (p(x)) \mapsto \phi(a) + (p'(x)) \to \phi(a)$$
$$\alpha \to x + (p(x)) \mapsto \phi(x) + (p'(x)) = x + (p'(x))$$

Theorem 2 (Theorem 27). Assume that $F \stackrel{\phi}{\simeq} F'$. Let $f(x) \in F[x]$ and $f'(x) = \phi(f(x))$. Let E be a splitting field for f(x), E' be a splitting field for f'(x). Then \exists an isomorphism $\tilde{\phi}: E \to E'$ such that $\tilde{\phi}|_F = \phi$.

Proof.

We'll prove by induction on $n = \deg f(x)$. The case n = 1 is clear. Assume that the statement holds up to $\deg = n - 1$. Let F(x) be a polynomial of $\deg n$ in F[x]. Let g(x) be an irreducible factor of f(x) in F[x]. Let

 α be a root of g(x) in E, α' be a root of $g'(x) = \phi(g(x))$ in E'. Let $E_1 = F(\alpha), E'_1 = F'(\alpha')$. By theorem 8, ϕ can be extended to an isomorphism $\phi_1 : E_1 \to E'_1$ such that $\phi_1|_F = \phi, \phi_1(\alpha) = \alpha'$. Now we have

$$f(x) = (x - \alpha)h(x)$$

for some $h(x) \in E_1[x]$ ($\alpha \in E_1$).

$$f'(x) = (x - \alpha')h'(x) \cdots (1)$$

for some $h'(x) \in E'_1[x]$ ($\alpha' \in E'_1$). Now consider $\phi_1(f(x))$. We have $\phi_1(f(x)) = \phi(f(x)) = f'(x) \cdots (2)$ since $f(x) \in F[x]$ and $\phi_1|_F = \phi$. On the other hand

$$\phi_1(f(x)) = \phi_1(x - \alpha)\phi_1(h(x)) = (x - \alpha')\phi_1(h(x))\cdots(3)$$

Comparing (1), (2), (3), we see that

$$h'(x) = \phi_1(h(x))$$

Now deg $h(x) = n - 1 = \deg h'(x)$ and E is a splitting field for h(x), E' is a splitting field for h'(x). By the induction hypothesis, ϕ_1 can be extended to an isomorphism $\tilde{\phi}: E \to E'$ such that $\tilde{\phi}_{E_1} = \phi_1$. Then $\tilde{\phi}_F = \phi_1|_F = \phi$.

Corollary 1 (Corollary 28). If E, E' are 2 splitting fields for $f(x) \in F[x]$, then \exists an isomorphism $\phi : E \to E'$ such that $\phi(a) = a \ \forall a \in F$.