New characterizations of partial sums of the Möbius function

Maxie Dion Schmidt Georgia Institute of Technology

School of Mathematics

Saturday 18th December, 2021

Abstract

The Mertens function, $M(x) \coloneqq \sum_{n \le x} \mu(n)$, is defined as the summatory function of the classical Möbius function for $x \ge 1$. The inverse function $g^{-1}(n) \coloneqq (\omega + 1)^{-1}(n)$ taken with respect to Dirichlet convolution is defined in terms of the strongly additive function $\omega(n)$ that counts the number of distinct prime factors of the integers $n \ge 2$ without multiplicity. For large x and $n \le x$, we associate a natural combinatorial significance to the magnitude of the distinct values of $|g^{-1}(n)|$ that depends directly on the exponent patterns in the prime factorizations of the integers $2 \le n \le x$ viewed as multisets. We have conjectured a deterministic Erdős-Kac theorem analog for the distribution of the unsigned sequences $C_{\Omega}(n) \coloneqq (\Omega(n))! \times \prod_{p^{\alpha}||n}(\alpha!)^{-1}$ and $|g^{-1}(n)|$ over $n \le x$ as $x \to \infty$. Discrete convolutions of the summatory function $G^{-1}(x) \coloneqq \sum_{n \le x} \lambda(n)|g^{-1}(n)|$ with the prime counting function $\pi(x)$ determine exact formulas and new characterizations of the asymptotic behavior of M(x). In this way, we prove another characteristic link of the Mertens function to the distribution of the partial sums $L(x) \coloneqq \sum_{n \le x} \lambda(n)$ and connect these two classical summatory functions with an explicit probability distribution at large x.

Keywords and Phrases: Möbius function; Mertens function; Dirichlet inverse; Liouville lambda function; prime omega function; prime counting function; Dirichlet generating function; prime zeta function; Erdős-Kac theorem; strongly additive function.

Math Subject Classifications (MSC 2010): 11N37; 11A25; 11N60; 11N64; and 11-04.

Article Index

N	otati	on and conventions	2
1	Intr	roduction	6
	1.1	Motivation	6
	1.2	Preliminaries on the Mertens function	7
	1.3	A concrete new approach to characterizing $M(x)$	8
2	Init	ial elementary proofs of new results	11
	2.1	Establishing the summatory function properties and inversion identities	11
	2.2	Proving the characteristic signedness property of $g^{-1}(n)$	13
	2.3	The distributions of $\omega(n)$ and $\Omega(n)$	14
3	Aux	xiliary sequences related to the inverse function $g^{-1}(n)$	15
	3.1	Definitions and properties of triangular component function sequences	16
	3.2	Formulas relating the unsigned $C_{\Omega}(n)$ to $g^{-1}(n)$	16
	3.3	Combinatorial connections to the distribution of the primes	18
4	The	e distributions of $C_{\Omega}(n)$ and $ g^{-1}(n) $ and their partial sums	19
	4.1	Analytic proofs extending bivariate DGF methods for additive functions	19
	4.2	Average orders of the unsigned sequences	25
	4.3	Erdős-Kac theorem analogs for the distributions of the unsigned functions	27
5	Nev	w formulas and limiting relations characterizing $M(x)$	28
	5.1	Formulas relating $M(x)$ to the summatory function $G^{-1}(x)$	28
	5.2	Asymptotics of the partial sums of the unsigned inverse sequence	29
	5.3	Local cancellation of $G^{-1}(x)$ in the new formulas for $M(x)$	30
6	Cor	nclusions	32
A	ckno	wledgments	32
\mathbf{R}	efere	nces	32
\mathbf{A}	App	pendix: Asymptotic formulas for partial sums	35
В	Tab	ble: Computations involving $g^{-1}(n)$ and $G^{-1}(n)$ for $1 \le n \le 500$	38

Notation and conventions

The next listing provides a glossary of common notation, conventions and abbreviations employed throughout the article.

Symbols	Definition
≫,≪,≍	For functions A, B , the notation $A \ll B$ implies that $A = O(B)$. Similarly, for $B \ge 0$ the notation $A \gg B$ implies that $B = O(A)$. When we have that $A, B \ge 0$, $A \ll B$ and $B \ll A$, we write $A \times B$.
≈, ~	We write that $f(x) \approx g(x)$ if $ f(x) - g(x) \ll 1$ as $x \to \infty$. Two arithmetic functions $A(x), B(x)$ satisfy the relation $A \sim B$ if $\lim_{x \to \infty} \frac{A(x)}{B(x)} = 1$.
$\chi_{\mathbb{P}}(n), P(s)$	The indicator function of the primes equals one if and only if $n \in \mathbb{Z}^+$ is prime, and is zero-valued otherwise. For any $s \in \mathbb{C}$ such that $\text{Re}(s) > 1$, we define the prime zeta function to be the Dirichlet generating function (DGF) defined by $P(s) = \sum_{n \geq 1} \frac{\chi_{\mathbb{P}}(n)}{n^s}$. The function $P(s)$ has an
	analytic continuation to the half-plane $\operatorname{Re}(s) > 0$ through the formula $P(s) = \sum_{k>1} \frac{\mu(k)}{k} \log \zeta(ks)$ with poles at the reciprocal of each positive in-
	teger and a natural boundary at the line $Re(s) = 0$.
$C_k(n), C_{\Omega}(n)$	The sequence is defined recursively for integers $n \ge 1$ and $k \ge 0$ as follows:
	$C_k(n) := \begin{cases} \delta_{n,1}, & \text{if } k = 0; \\ \sum_{d n} \omega(d) C_{k-1} \left(\frac{n}{d}\right), & \text{if } k \ge 1. \end{cases}$
	It represents the multiple $(k\text{-fold})$ convolution of the function $\omega(n)$ with itself. The function $C_{\Omega}(n) := C_{\Omega(n)}(n)$ has the DGF $(1 - P(s))^{-1}$ for $\text{Re}(s) > 1$.
$[q^n]F(q)$	The coefficient of q^n in the power series expansion of $F(q)$ about zero when $F(q)$ is treated as the ordinary generating function (OGF) of some sequence, $\{f_n\}_{n\geq 0}$. Namely, for integers $n\geq 0$ we define $[q^n]F(q)=f_n$ whenever $F(q):=\sum_{n\geq 0}f_nq^n$.
arepsilon(n)	The multiplicative identity with respect to Dirichlet convolution, $\varepsilon(n) := \delta_{n,1}$, defined such that for any arithmetic function f we have that $f * \varepsilon = \varepsilon * f = f$ where the operation $*$ denotes Dirichlet convolution (see definition below).
$\operatorname{erf}(z), \operatorname{erfi}(z)$	The function $\operatorname{erf}(z)$ denotes the (ordinary) error function. It is related to the CDF, $\Phi(z)$, of the standard normal distribution for any $z \in (-\infty, +\infty)$ through the relation $\Phi(z) = \frac{1}{2} \left(1 + \operatorname{erf} \left(\frac{z}{\sqrt{2}} \right) \right)$. The imaginary error function is defined as $\operatorname{erfi}(z) = \operatorname{erf}(iz) := \frac{1}{i\sqrt{\pi}} \times \int_0^{iz} e^{t^2} dt$ for $z \in (-\infty, +\infty)$.
f * g	The Dirichlet convolution of any two arithmetic functions f and g is denoted by the divisor sum $(f * g)(n) := \sum_{d n} f(d)g\left(\frac{n}{d}\right)$ for $n \ge 1$.

Symbols Definition $f^{-1}(n)$ The Dirichlet inverse f^{-1} of an arithmetic function f exists if and only if $f(1) \neq 0$. The Dirichlet inverse of any f such that $f(1) \neq 0$ is defined recursively by $f^{-1}(n) = -\frac{1}{f(1)} \times \sum_{d|n} f(d) f^{-1}\left(\frac{n}{d}\right)$ for $n \ge 2$ with $f^{-1}(1) =$ $f(1)^{-1}$. When it exists, this inverse function is unique and satisfies $f^{-1} * f =$ $f * f^{-1} = \varepsilon$. The incomplete gamma function is defined as $\Gamma(a,z) := \int_{z}^{\infty} t^{a-1}e^{-t}dt$ for $\Gamma(a,z)$ $\operatorname{Re}(a) > -1$ or by continuation when $a \in \mathbb{R}$ and $|\arg(z)| < \pi$. Asymptotics of this function as both $a, z \to \infty$ independently are discussed for reference in Appendix A after the conclusion of the article. $\mathcal{G}(z), \widetilde{\mathcal{G}}(z); \widehat{F}(s,z), \widehat{\mathcal{G}}(z)$ The functions $\mathcal{G}(z)$ and $\widetilde{\mathcal{G}}(z)$ are defined for $0 \le |z| \le R < 2$ on page 14 of Section 2.3. The related constructions used to motivate the definitions of $\widehat{F}(s,z)$ and $\widehat{\mathcal{G}}(z)$ are provided precisely by the infinite products over the primes given on pages 19 and 21 of Section 4.1, respectively. The Dirichlet inverse function, $g^{-1}(n) = (\omega + 1)^{-1}(n)$ with corresponding summatory function $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$ for $x \geq 1$. We define the partial $g^{-1}(n), G^{-1}(x), |G^{-1}|(x)$ sums of the unsigned inverse function to be $|G^{-1}|(x) := \sum_{n \le x} |g^{-1}(n)|$ for The symbol $[n = k]_{\delta}$ is a synonym for $\delta_{n,k}$ which is one if and only if n = k, $[n=k]_{\delta},[cond]_{\delta}$ and is zero otherwise. For boolean-valued conditions, cond, the symbol $[cond]_{\delta}$ evaluates to one precisely when cond is true, and to zero otherwise. The Liouville lambda function is the completely multiplicative function $\lambda(n), L(x)$ defined by $\lambda(n) := (-1)^{\Omega(n)}$. Its summatory function is defined by the partial sums $L(x) := \sum_{n \le x} \lambda(n)$ for $x \ge 1$. The Möbius function defined such that $\mu^2(n)$ is the indicator function of the $\mu(n), M(x)$ squarefree integers $n \ge 1$ where $\mu(n) = (-1)^{\omega(n)}$ whenever n is squarefree. The Mertens function is the summatory function defined for all integers $x \ge 1$ by $M(x) := \sum_{n \le x} \mu(n)$. For $z \in \mathbb{R}$, we take the cumulative density function of the standard normal $\Phi(z), \mathcal{N}(0,1)$ distribution to be denoted by $\Phi(z) := \frac{1}{\sqrt{2\pi}} \times \int_{-\infty}^{z} e^{-\frac{t^{2}}{2}} dt$. A random variable whose values are distributed according to the CDF $\Phi(z)$ has distribution denoted by $\mathcal{N}(0,1)$. The valuation function that extracts the maximal exponent of p in the $\nu_p(n)$ prime factorization of n, e.g., $\nu_p(n) = 0$ if $p \nmid n$ and $\nu_p(n) = \alpha$ if $p^{\alpha}||n|$ for $p \ge 2$ prime, $\alpha \ge 1$ and $n \ge 2$. $\omega(n),\Omega(n)$ We define the strongly additive function $\omega(n) := \sum_{p|n} 1$ and the completely

additive function $\Omega(n) := \sum_{p^{\alpha}||n} \alpha$. This means that if the prime factorization of $n \ge 2$ is given by $n := p_1^{f_1} \times \cdots \times p_r^{\alpha_r}$ with $p_i \ne p_j$ for all $i \ne j$, then $\omega(n) = r$ and $\Omega(n) = \alpha_1 + \cdots + \alpha_r$. We set $\omega(1) = \Omega(1) = 0$ by convention. For integers $k \geq 1$, the function $\pi_k(x)$ denotes the number of $2 \leq n \leq x$ $\pi_k(x), \widehat{\pi}_k(x)$ with exactly k distinct prime factors: $\pi_k(x) := \#\{2 \le n \le x : \omega(n) = k\}$. Similarly, the function $\widehat{\pi}_k(x) := \#\{2 \le n \le x : \Omega(n) = k\}$ for $x \ge 2$ and fixed $k \ge 1$.

Symbols	Definition
Q(x)	For $x \ge 1$, we define $Q(x)$ to be the summatory function indicating the number of squarefree integers $n \le x$. That is, $Q(x) := \sum_{n \le x} \mu^2(n)$ where
	$Q(x) = \frac{6x}{\pi^2} + O(\sqrt{x}).$
W(x)	For $x, y \in \mathbb{R}_{\geq 0}$, we write that $x = W(y)$ if and only if $xe^x = y$. This function denotes the principal branch of the multi-valued Lambert W function defined on the non-negative reals.
$\zeta(s)$	The Riemann zeta function is defined by $\zeta(s) := \sum_{n \geq 1} \frac{1}{n^s}$ when $\text{Re}(s) > 1$,
	and by analytic continuation to any $s \in \mathbb{C}$ with the exception of a simple
	pole at $s = 1$ of residue one.

1 Introduction

The Mertens function, or the summatory function of $\mu(n)$, is defined for any positive integer $x \ge 1$ by the partial sum

$$M(x) = \sum_{n \le x} \mu(n), x \ge 1.$$

The first several values of this summatory function are calculated as follows [26, A008683; A002321]:

$$\{M(x)\}_{x>1} = \{1, 0, -1, -1, -2, -1, -2, -2, -1, -2, -2, -3, -2, -1, -1, -2, -2, -3, -3, -2, -1, -2, \ldots\}.$$

The Mertens function is related to the partial sums of the Liouville lambda function, denoted by $L(x) := \sum_{n \le x} \lambda(n)$, via the relation [9, 15] [26, A008836; A002819]

$$L(x) = \sum_{d \le \sqrt{x}} M\left(\left\lfloor \frac{x}{d^2} \right\rfloor\right), x \ge 1.$$

The main interpretation to take away from the article is the new characterization of M(x) through two primary auxiliary unsigned sequences and their summatory functions, namely, the functions $C_{\Omega}(n)$, $|g^{-1}(n)|$ and their partial sums. This characterization is formed by constructing the combinatorially motivated sequences related to the distribution of the primes by convolutions of the strongly additive function $\omega(n)$. The methods in this article initially stem from a curiosity about an elementary identity from the list of exercises in [1, §2; cf. §11]. In particular, the indicator function of the primes is given by Möbius inversion as the Dirichlet convolution $\chi_{\mathbb{P}} + \varepsilon = (\omega + 1) * \mu$. We form partial sums of $(\omega + 1) * \mu(n)$ over $n \le x$ for any $x \ge 1$ and then apply classical inversion theorems to relate M(x) to the partial sums of $g^{-1}(n) := (\omega + 1)^{-1}(n)$ (cf. Theorem 1.2; Corollary 1.3; and Corollary 1.4).

1.1 Motivation

There is a natural relationship of $g^{-1}(n)$ with the auxiliary function $C_{\Omega}(n)$, or the $\Omega(n)$ -fold Dirichlet convolution of $\omega(n)$ with itself evaluated at n, which we prove by elementary methods in Section 3. These identities inspire the deep connection between the unsigned inverse function, $|g^{-1}(n)|$, and the resulting additive prime counting combinatorics we find in Section 3.3. In this sense, the new results stated within this article diverge from the proofs typified by previous analytic and combinatorial methods to bound M(x) cited in the references. The function $C_{\Omega}(n)$ is considered under alternate notation by Fröberg (circa 1968) in his work on the series expansions of the prime zeta function, P(s), e.g., the prime sums defined as the Dirichlet generating function (DGF) of $\chi_{\mathbb{P}}(n)$. The clear interpretation of the function $C_{\Omega}(n)$ in connection with M(x) is unique to our work to establish the properties of this auxiliary sequence. References to uniform asymptotics for restricted partial sums of $C_{\Omega}(n)$ and the features of the limiting distribution of this function are missing in surrounding literature (cf. Corollary 4.4; Proposition 4.5; and Theorem ??).

The signed inverse sequence $g^{-1}(n)$ and its partial sums defined by $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$ are linked to canonical examples of strongly and completely additive functions, i.e., in relation to $\omega(n)$ and $\Omega(n)$, respectively. The definitions of the sequences we formulate, and the proof methods given in the spirit of Montgomery and Vaughan's work, allow us to reconcile the property of strong additivity with the signed partial sums of a multiplicative function. We leverage the connection of $C_{\Omega}(n)$ and $|g^{-1}(n)|$ with the canonically additive number theoretic functions to obtain the results proved in Section 4. We utilize the results in [16, §7.4; §2.4] that apply traditional analytic methods to formulate limiting asymptotics and to prove an Erdős-Kac theorem analog characterizing key properties of the distribution of the completely additive function $\Omega(n)$. Adaptations of the key ideas from the exposition in the reference provide a

foundation for analytic proofs of several limiting properties of, asymptotic formulae for restricted partial sums involving, and in part the conjectured deterministic Erdős-Kac type theorems for both $C_{\Omega}(n)$ and $|g^{-1}(n)|$.

We also formalize a probabilistic perspective from which to express our intuition about features of the distribution of $G^{-1}(x)$ via the properties of its $\lambda(n)$ -sign-weighted summands. That is, since we prove that $\operatorname{sgn}(g^{-1}(n)) = \lambda(n)$ for all $n \ge 1$ in Proposition 2.1, the partial sums defined by $G^{-1}(x)$ are precisely related to the properties of $|g^{-1}(n)|$ and asymptotics for L(x). Our new results then relate the distribution of L(x), an explicitly identified probability distribution, and M(x) as $x \to \infty$. Stating tight bounds on the properties of the distribution of L(x) is still viewed as a problem that is equally as difficult as understanding the properties of M(x) well at large x or along infinite subsequences.

Our characterizations of M(x) by the summatory function of the signed inverse sequence, $G^{-1}(x)$, is suggestive of new approaches to bounding the Mertens function. These results motivate future work to state upper (and possibly lower) bounds on M(x) in terms of the additive combinatorial properties of the repeated distinct values of the sign weighted summands of $G^{-1}(x)$. We also expect that an outline of the method behind the collective proofs we provide with respect to the Mertens function case can be generalized to identify associated additive functions with the same role of $\omega(n)$ in this paper to express asymptotics for partial sums of other signed multiplicative functions and Dirichlet inverse functions.

1.2 Preliminaries on the Mertens function

An approach to evaluating the limiting asymptotic behavior of M(x) for large $x \to \infty$ considers an inverse Mellin transform of the reciprocal of the Riemann zeta function given by

$$\frac{1}{\zeta(s)} = \prod_{p} \left(1 - \frac{1}{p^s} \right) = s \times \int_1^\infty \frac{M(x)}{x^{s+1}} dx, \text{ for } \operatorname{Re}(s) > 1.$$

In particular, we obtain that

$$M(x) = \lim_{T \to \infty} \frac{1}{2\pi i} \times \int_{T-i\infty}^{T+i\infty} \frac{x^s}{s\zeta(s)} ds.$$

The previous formulas lead to the exact expression of M(x) for any x > 0 given by the next theorem.

Theorem 1.1 (Titchmarsh). Assuming the Riemann Hypothesis (RH), there exists an infinite sequence $\{T_k\}_{k\geq 1}$ satisfying $k\leq T_k\leq k+1$ for each integer $k\geq 1$ such that for any real x>0

$$M(x) = \lim_{k \to \infty} \sum_{\substack{\rho: \zeta(\rho) = 0 \\ 0 \le |\operatorname{Im}(\rho)| \le T_k}} \frac{x^{\rho}}{\rho \zeta'(\rho)} - 2 + \sum_{n \ge 1} \frac{(-1)^{n-1}}{n(2n)! \zeta(2n+1)} \left(\frac{2\pi}{x}\right)^{2n} + \frac{\mu(x)}{2} \left[x \in \mathbb{Z}^+\right]_{\delta}.$$

An unconditional bound on the Mertens function due to Walfisz (circa 1963) states that there is an absolute constant $C_1 > 0$ such that

 $M(x) \ll x \times \exp\left(-C_1 \log^{\frac{3}{5}}(x) (\log\log x)^{-\frac{1}{5}}\right).$

Under the assumption of the RH, Soundararajan and Humphries, respectively, improved estimates bounding M(x) from above for large x in the following forms [27, 9]:

$$M(x) \ll \sqrt{x} \times \exp\left(\sqrt{\log x}(\log\log x)^{14}\right),$$

 $M(x) \ll \sqrt{x} \times \exp\left(\sqrt{\log x}(\log\log x)^{\frac{5}{2}+\epsilon}\right), \text{ for all } \epsilon > 0.$

The RH is equivalent to showing that $M(x) = O\left(x^{\frac{1}{2}+\epsilon}\right)$ for any $0 < \epsilon < \frac{1}{2}$. There is a rich history to the original statement of the *Mertens conjecture* which asserts that $|M(x)| < C_2\sqrt{x}$ for some absolute constant

 $C_2 > 0$. The conjecture was first verified by F. Mertens himself for $C_2 = 1$ and all $x < 10^4$ without the benefit of modern computation. Since its beginnings in 1897, the Mertens conjecture was disproved by computational methods involving non-trivial simple zeta function zeros with comparatively small imaginary parts in the famous paper from the mid 1980's by Odlyzko and te Riele [21].

More recent attempts at bounding M(x) naturally consider determining the rates at which the function $M(x)x^{-\frac{1}{2}}$ grows with or without bound along infinite subsequences, i.e., considering the asymptotics of the function in the limit supremum and limit infimum senses. It is verified by computation that [24, cf. §4.1] [26, cf. A051400; A051401]

$$\limsup_{x \to \infty} \frac{M(x)}{\sqrt{x}} > 1.060 \qquad \text{(more recently } \ge 1.826054),$$

and

$$\liminf_{x \to \infty} \frac{M(x)}{\sqrt{x}} < -1.009 \qquad \text{(more recently } \le -1.837625\text{)}.$$

Based on the work by Odlyzko and te Riele, it is likely that each of these limiting bounds evaluates to $\pm \infty$, respectively [21, 13, 14, 10]. A conjecture due to Gonek asserts that in fact M(x) satisfies [20]

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x}(\log \log \log x)^{\frac{5}{4}}} = C_3,$$

for C_3 an absolute constant.

1.3 A concrete new approach to characterizing M(x)

1.3.1 Summatory functions of Dirichlet convolutions of arithmetic functions

We prove the formulas in the next inversion theorem by matrix methods in Section 2.1.

Theorem 1.2 (Partial sums of Dirichlet convolutions and their inversions). Let $r, h : \mathbb{Z}^+ \to \mathbb{C}$ be any arithmetic functions such that $r(1) \neq 0$. Suppose that $R(x) := \sum_{n \leq x} r(n)$ and $H(x) := \sum_{n \leq x} h(n)$ denote the summatory functions of r and h, respectively, and that $R^{-1}(x) := \sum_{n \leq x} r^{-1}(n)$ denotes the summatory function of the Dirichlet inverse of r for any $x \geq 1$. We have the following exact expressions that hold for all integers $x \geq 1$:

$$\pi_{r*h}(x) \coloneqq \sum_{n \le x} \sum_{d \mid n} r(d) h\left(\frac{n}{d}\right)$$

$$= \sum_{d \le x} r(d) H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$

$$= \sum_{k=1}^{x} H(k) \left(R\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - R\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right).$$

Moreover, for any $x \ge 1$ we have

$$H(x) = \sum_{j=1}^{x} \pi_{r*h}(j) \left(R^{-1} \left(\left\lfloor \frac{x}{j} \right\rfloor \right) - R^{-1} \left(\left\lfloor \frac{x}{j+1} \right\rfloor \right) \right)$$
$$= \sum_{k=1}^{x} r^{-1}(k) \pi_{r*h} \left(\left\lfloor \frac{x}{k} \right\rfloor \right).$$

Key consequences of Theorem 1.2 as it applies to M(x) in the special case where $h(n) := \mu(n)$ for all $n \ge 1$ are stated in the next two corollaries.

Corollary 1.3 (Applications of Möbius inversion). Suppose that r is an arithmetic function such that $r(1) \neq 0$. Define the summatory function of the convolution of r with μ by $\widetilde{R}(x) := \sum_{n \leq x} (r * \mu)(n)$. Then the Mertens function is expressed by the partial sums

$$M(x) = \sum_{k=1}^{x} \left(\sum_{\substack{j=\left\lfloor \frac{x}{k+1} \right\rfloor + 1}}^{\left\lfloor \frac{x}{k} \right\rfloor} r^{-1}(j) \right) \widetilde{R}(k), \forall x \ge 1.$$

Corollary 1.4 (Key Identity). We have that for all $x \ge 1$

$$M(x) = \sum_{k=1}^{x} (\omega + 1)^{-1}(k) \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right). \tag{1}$$

1.3.2 An exact expression for M(x) via strongly additive functions

We fix the notation for the Dirichlet invertible function $g(n) := \omega(n) + 1$ and define its inverse with respect to Dirichlet convolution by $g^{-1}(n)$ [26, A341444]. We compute the first several values of this sequence as follows:

$$\{g^{-1}(n)\}_{n\geq 1} = \{1, -2, -2, 2, -2, 5, -2, -2, 2, 5, -2, -7, -2, 5, 5, 2, -2, -7, -2, -7, 5, 5, -2, 9, \ldots\}.$$

There is not a simple direct recursion between the distinct values of $g^{-1}(n)$ that holds for all $n \ge 1$. However, the next observation is suggestive of the quasi-periodicity of the distribution of distinct values of this inverse function over $n \ge 2$.

Observation 1.5 (Additive symmetry in $g^{-1}(n)$ from the prime factorizations of $n \leq x$). Suppose that $n_1, n_2 \geq 2$ are such that their factorizations into distinct primes are given by $n_1 = p_1^{\alpha_1} \times \cdots \times p_r^{\alpha_r}$ and $n_2 = q_1^{\beta_1} \times \cdots \times q_s^{\beta_s}$. If r = s and $\{\alpha_1, \ldots, \alpha_r\} \equiv \{\beta_1, \ldots, \beta_r\}$ as multisets of the prime exponents, then $g^{-1}(n_1) = g^{-1}(n_2)$. For example, g^{-1} has the same values on the squarefree integers with exactly one, two, three (and so on) prime factors. Thus, there is an essentially additive structure underneath the sequence $\{g^{-1}(n)\}_{n\geq 2}$.

Proposition 1.6. We have the following properties of the Dirichlet inverse function $g^{-1}(n)$:

- (A) For all $n \ge 1$, $\operatorname{sgn}(g^{-1}(n)) = \lambda(n)$;
- (B) For all squarefree integers $n \ge 1$, we have that

$$|g^{-1}(n)| = \sum_{m=0}^{\omega(n)} {\omega(n) \choose m} \times m!;$$

(C) If $n \ge 2$ and $\Omega(n) = k$ for some $k \ge 1$, then

$$2 \le |g^{-1}(n)| \le \sum_{j=0}^{k} {k \choose j} \times j!.$$

The signedness property in (A) is proved precisely in Proposition 2.1. A proof of (B) follows from Lemma 3.2. The realization that the beautiful and remarkably simple combinatorial form of property (B) in Proposition 1.6 holds for all squarefree integers motivates our pursuit of simpler formulas for the inverse function $g^{-1}(n)$ through the sums of auxiliary subsequences $C_k(n)$ when $k := \Omega(n)$, also denoted by $C_{\Omega}(n)$, that are defined in Section 3. That is, we observe a familiar formula for $g^{-1}(n)$ on an asymptotically dense infinite subset of integers (with density $\frac{6}{\pi^2}$) that holds for all squarefree $n \ge 2$, and then seek to extrapolate

by proving there are in fact regular properties of the distribution of this sequence when viewed more generally over the positive integers.

An exact expression for $g^{-1}(n)$ is given by

$$g^{-1}(n) = \lambda(n) \times \sum_{d|n} \mu^2\left(\frac{n}{d}\right) C_{\Omega}(d), n \ge 1,$$

where the sequence $\lambda(n)C_{\Omega}(n)$ has the DGF $(1+P(s))^{-1}$ and $C_{\Omega}(n)$ has DGF $(1-P(s))^{-1}$ for Re(s) > 1 (see Proposition 2.1). The function $C_{\Omega}(n)$ was considered in [7] with an exact formula given by [11, cf. §3]

$$C_{\Omega}(n) = \begin{cases} 1, & \text{if } n = 1; \\ (\Omega(n))! \times \prod_{p^{\alpha} || n} \frac{1}{\alpha!}, & \text{if } n \ge 2. \end{cases}$$

In Corollary 4.4, we use the result proved in Theorem 4.2 to show that uniformly for $1 \le k \le \frac{3}{2} \log \log x$ there is an absolute constant $A_0 > 0$ such that

$$\sum_{\substack{n \leq x \\ \Omega(n) = k}} C_{\Omega}(n) = \frac{A_0 \sqrt{2\pi}x}{\log x} \times \widehat{G}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-\frac{1}{2}}}{(k-1)!} \left(1 + O\left(\frac{1}{\log\log x}\right)\right), \text{ as } x \to \infty,$$

where
$$\widehat{G}(z) := \frac{\zeta(2)^{-z}}{\Gamma(1+z)(1+P(2)z)}$$
 for $0 \le |z| < P(2)^{-1}$.

In Proposition 4.5, we use an adaptation of the asymptotic formulas for the summations proved in the appendix section of this article combined with the form of Rankin's method from [16, Thm. 7.20] to show that there is an absolute constant $B_0 > 0$ such that

$$\frac{1}{n} \times \sum_{k \le n} C_{\Omega}(k) = B_0(\log n) \sqrt{\log \log n} \left(1 + O\left(\frac{1}{\log \log n}\right) \right), \text{ as } n \to \infty.$$

In Corollary 4.6, we prove that the average order of $|g^{-1}(n)|$ is

$$\frac{1}{n} \times \sum_{k \le n} |g^{-1}(k)| = \frac{6B_0(\log n)^2 \sqrt{\log \log n}}{\pi^2} \left(1 + O\left(\frac{1}{\log \log n}\right) \right), \text{ as } n \to \infty.$$

In Section 4.3, we conjecture the form of a variant of the Erdős-Kac theorem that characterizes the distribution of $C_{\Omega}(n)$. The proposed deterministic form of the theorem stated in Conjecture 4.7 leads the conclusion of the following statement for any fixed Y > 0, with $\mu_x(C) := \log \log x - \log \left(\frac{\sqrt{2\pi}A_0}{\zeta(2)(1+P(2))} \right)$ and $\sigma_x(C) := \sqrt{\log \log x}$, which holds uniformly for all $-Y \le y \le Y$ (see Corollary 4.8):

$$\frac{1}{x} \times \# \left\{ 3 \le n \le x : \frac{|g^{-1}(n)|}{(\log n)\sqrt{\log \log n}} - \frac{6}{\pi^2 n(\log n)\sqrt{\log \log n}} \times \sum_{k \le n} |g^{-1}(k)| \le y \right\}$$

$$= \Phi\left(\frac{\frac{\pi^2 y}{6} - \mu_x(C)}{\sigma_x(C)}\right) + o(1), \text{ as } x \to \infty.$$

The regularity and quasi-periodicity we alluded to in the previous few remarks are then quantifiable insomuch as $|g^{-1}(n)|$ tends to a scaled multiple of its average order with a non-centrally normal tendency (provided that Conjecture 4.7 holds).

1.3.3 Formulas illustrating the new characterizations of M(x)

Let the partial sums $G^{-1}(x) := \sum_{n \le x} g^{-1}(n)$ for integers $x \ge 1$ [26, A341472]. We prove that (see Proposition 5.1)

$$M(x) = G^{-1}(x) + \sum_{k=1}^{\frac{x}{2}} G^{-1}(k) \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k+1} \right\rfloor \right) \right), x \ge 1,$$
 (2)

and that (cf. Section 3.2)

$$M(x) = G^{-1}(x) + \sum_{p \le x} G^{-1}\left(\left\lfloor \frac{x}{p} \right\rfloor\right), x \ge 1.$$

These formulas imply that we can establish asymptotic bounds on M(x) along infinite subsequences by sharply bounding the summatory function $G^{-1}(x)$ along those points. Suppose that the partial sums

$$|G^{-1}|(x) := \sum_{n \le x} |g^{-1}(n)|, x \ge 1.$$

Then we also have an identification of $G^{-1}(x)$ with L(x) given by

$$G^{-1}(x) = L(x)|g^{-1}(x)| - \sum_{n < x} L(n) \left(\left| g^{-1}(n+1) \right| - \left| g^{-1}(n) \right| \right),$$

$$\sim \sum_{n < x} \lambda(n) \left(\int_{n-1}^{n} \frac{d}{dt} |G^{-1}|(t) dt \right),$$

where the distribution of $|g^{-1}(n)|$ is characterized by Corollary 4.8. In Section 5.2, we use the analytic methods due to H. Davenport and H. Heilbronn suggested by R. C. Vaughan to prove that for $\sigma_1 \approx 1.39943$, the unique solution to $P(\sigma) = 1$ on $(1, \infty)$, we have

$$\limsup_{x \to \infty} \frac{\log \left| G^{-1} \right| (x)}{\log x} \ge \sigma_1.$$

Hence, for any $\epsilon > 0$, Corollary 5.3 proves that there are arbitrarily large x such that

$$|G^{-1}|(x) > x^{\sigma_1 - \epsilon}.$$

These bounds on the partial sums with unsigned inverse function summands provide some local information on $G^{-1}(x)$ through its connection with $|G^{-1}|(x)$ expanded in the equation above (see Remark 5.4). Nonetheless, we still expect substantial local cancellation in the terms involving $G^{-1}(x)$ in our new formulas for M(x) at almost every large x (see Section 5.3).

2 Initial elementary proofs of new results

2.1 Establishing the summatory function properties and inversion identities

We give a proof of the inversion type results in Theorem 1.2 by matrix methods in this subsection. Related results on summations of Dirichlet convolutions and their inversion appear in [1, §2.14; §3.10; §3.12; cf. §4.9, p. 95]. It is similarly not difficult to establish the identity

$$\sum_{n \le x} h(n)(q * r)(n) = \sum_{n \le x} q(n) \times \sum_{k \le \left\lfloor \frac{x}{n} \right\rfloor} r(k)h(kn).$$

Proof of Theorem 1.2. Let h, r be arithmetic functions such that $r(1) \neq 0$. Denote the summatory functions of h, r and r^{-1} , respectively, by $H(x) = \sum_{n \leq x} h(n)$, $R(x) = \sum_{n \leq x} r(n)$, and $R^{-1}(x) = \sum_{n \leq x} r^{-1}(n)$. We define $\pi_{r*h}(x)$ to be the summatory function of the Dirichlet convolution of r with h. We have that the following formulas hold for all x > 1:

$$\pi_{r*h}(x) := \sum_{n=1}^{x} \sum_{d|n} r(n)h\left(\frac{n}{d}\right) = \sum_{d=1}^{x} r(d)H\left(\left\lfloor \frac{x}{d}\right\rfloor\right)$$
$$= \sum_{i=1}^{x} \left(R\left(\left\lfloor \frac{x}{i}\right\rfloor\right) - R\left(\left\lfloor \frac{x}{i+1}\right\rfloor\right)\right)H(i). \tag{3}$$

The first formula above is well known from the references cited above. The second formula is justified directly using summation by parts as [22, §2.10(ii)]

$$\pi_{r*h}(x) = \sum_{d=1}^{x} h(d) R\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i \le x} \left(\sum_{j \le i} h(j)\right) \times \left(R\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - R\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right)\right).$$

We form the invertible matrix of coefficients, denoted by \hat{R} , associated with the linear system defining H(j) for all $1 \le j \le x$ in (3) by setting

$$r_{x,j} \coloneqq R\left(\left\lfloor \frac{x}{j} \right\rfloor\right) - R\left(\left\lfloor \frac{x}{j+1} \right\rfloor\right) \equiv R_{x,j} - R_{x,j+1},$$

where

$$R_{x,j} := R\left(\left|\frac{x}{j}\right|\right), \text{ for } 1 \le j \le x.$$

Since $r_{x,x} = R(1) = r(1) \neq 0$ for all $x \geq 1$ and $r_{x,j} = 0$ for all j > x, the matrix we have defined in this problem is lower triangular with a non-zero constant on its diagonals, and is hence invertible. If we let $\hat{R} := (R_{x,j})$, then the next matrix is expressed by applying an invertible shift operation as

$$(r_{x,j}) = \hat{R}(I - U^T).$$

Note that the square matrix U of sufficiently large finite dimensions $N \times N$ has $(i, j)^{th}$ entries for all $1 \le i, j \le N$ that are defined by $(U)_{i,j} = \delta_{i+1,j}$ so that

$$\left[(I - U^T)^{-1} \right]_{i,j} = \left[j \le i \right]_{\delta}.$$

We also observe that

$$\left\lfloor \frac{x}{j} \right\rfloor - \left\lfloor \frac{x-1}{j} \right\rfloor = \begin{cases} 1, & \text{if } j | x; \\ 0, & \text{otherwise.} \end{cases}$$

The previous equation implies that

$$R\left(\left\lfloor \frac{x}{j}\right\rfloor\right) - R\left(\left\lfloor \frac{x-1}{j}\right\rfloor\right) = \begin{cases} r\left(\frac{x}{j}\right), & \text{if } j|x; \\ 0, & \text{otherwise.} \end{cases}$$
 (4)

We use the property in (4) to shift the matrix \hat{R} , and then invert the result to obtain a matrix involving the Dirichlet inverse of r as

$$\left(\left(I - U^T\right)\hat{R}\right)^{-1} = \left(r\left(\frac{x}{j}\right)[j|x]_{\delta}\right)^{-1} = \left(r^{-1}\left(\frac{x}{j}\right)[j|x]_{\delta}\right).$$

Our target matrix in the inversion problem is defined by

$$(r_{x,j}) = (I - U^T) \left(r \left(\frac{x}{i} \right) [j|x]_{\delta} \right) (I - U^T)^{-1}.$$

We can express its inverse by a similarity transformation conjugated by shift operators in the form of

$$(r_{x,j})^{-1} = \left(I - U^T\right)^{-1} \left(r^{-1} \left(\frac{x}{j}\right) [j|x]_{\delta}\right) \left(I - U^T\right)$$
$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} r^{-1}(k)\right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j}\right\rfloor} r^{-1}(k) - \sum_{k=1}^{\left\lfloor \frac{x}{j+1}\right\rfloor} r^{-1}(k)\right).$$

Hence, the summatory function H(x) is given exactly for any integers $x \ge 1$ by a vector product with the inverse matrix from the previous equation by

$$H(x) = \sum_{k=1}^{x} \left(\sum_{j=\left\lfloor \frac{x}{k+1} \right\rfloor + 1}^{\left\lfloor \frac{x}{k} \right\rfloor} r^{-1}(j) \right) \times \pi_{r*h}(k).$$

We can prove a second inversion formula providing the coefficients of the summatory function $R^{-1}(j)$ for $1 \le j \le x$ from the last equation by adapting our argument to prove (3) above. This leads to the following alternate identity expressing H(x):

$$H(x) = \sum_{k=1}^{x} r^{-1}(k) \times \pi_{r*h}\left(\left\lfloor \frac{x}{k} \right\rfloor\right).$$

2.2 Proving the characteristic signedness property of $q^{-1}(n)$

Let $\chi_{\mathbb{P}}(n)$ denote the characteristic function of the primes, let $\varepsilon(n) = \delta_{n,1}$ be the multiplicative identity with respect to Dirichlet convolution, and denote by $\omega(n)$ the strongly additive function that counts the number of distinct prime factors of n (without multiplicity). We can see using elementary methods that

$$\chi_{\mathbb{P}} + \varepsilon = (\omega + 1) * \mu. \tag{5}$$

Namely, since $\mu * 1 = \varepsilon$ and

$$\omega(n) = \sum_{p|n} 1 = \sum_{d|n} \chi_{\mathbb{P}}(d), \text{ for } n \ge 1,$$

the result in (5) follows by Möbius inversion. When combined with Corollary 1.3, this convolution identity yields the key exact formula for M(x) stated in (1) of Corollary 1.4. Notice that the shift by one in the form of $(\omega+1)*\mu$ in the right-hand-side convolution in (5) above is utilized so that the resulting arithmetic function we convolve with $\mu(n)$ in constructing these summatory functions is Dirichlet invertible, i.e., so that $(\omega+1)(1) \neq 0$ where $\omega(1) := 0$ itself (by convention).

Proposition 2.1 (The signedness of $g^{-1}(n)$). For any arithmetic function r(n), let the operator $\operatorname{sgn}(r(n)) = \frac{r(n)}{|r(n)| + [r(n) = 0]_{\delta}} \in \{0, \pm 1\}$ denote the signedness of the arithmetic function h at any $n \ge 1$, or the mapping of r(n) onto ± 1 to indicate its positivity (negativity) or otherwise onto zero if the function vanishes at n. For the Dirichlet invertible function $g(n) := \omega(n) + 1$, we have that $\operatorname{sgn}(g^{-1}(n)) = \lambda(n)$ for all $n \ge 1$.

Proof. The function $D_f(s) := \sum_{n\geq 1} f(n) n^{-s}$ defines the Dirichlet generating function (DGF) of any arithmetic function f which is convergent for all $s \in \mathbb{C}$ satisfying $\text{Re}(s) > \sigma_f$ where σ_f is the abscissa of convergence of the series. Recall that $D_1(s) = \zeta(s)$, $D_{\mu}(s) = \zeta(s)^{-1}$ and $D_{\omega}(s) = P(s)\zeta(s)$ for Re(s) > 1, where $P(s) := \sum_{n\geq 1} \chi_{\mathbb{P}}(n) n^{-s}$ denotes the prime zeta function defined in the glossary of notation on page 3 (cf. [7]). Then by (5) and the fact that whenever $f(1) \neq 0$, the DGF of $f^{-1}(n)$ is $D_f(s)^{-1}$, we have that

$$D_{(\omega+1)^{-1}}(s) = \frac{1}{\zeta(s)(1+P(s))}, \operatorname{Re}(s) > 1.$$
(6)

It follows that $(\omega + 1)^{-1}(n) = (h^{-1} * \mu)(n)$ when we take $h := \chi_{\mathbb{P}} + \varepsilon$. We first show that $\operatorname{sgn}(h^{-1}) = \lambda$. We see that this observation implies $\operatorname{sgn}(h^{-1} * \mu) = \lambda$ using the next arguments.

First, by a combinatorial argument related to multinomial coefficient expansions of these sums, we recover exactly that $[7, cf. \S 2]^1$

$$h^{-1}(n) = \begin{cases} 1, & n = 1; \\ \lambda(n)(\Omega(n))! \times \prod_{p^{\alpha}||n|} \frac{1}{\alpha!}, & n \ge 2. \end{cases}$$
 (7)

In particular, by expanding the DGF of h^{-1} in powers of P(s), where |P(s)| < 1 whenever Re(s) > 1, we count by an enumerative argument that

$$\frac{1}{1+P(s)} = \sum_{n\geq 1} \frac{h^{-1}(n)}{n^s} = \sum_{k\geq 0} (-1)^k P(s)^k
= \sum_{\substack{n\geq 1\\ n=p_1^{\alpha_1} p_2^{\alpha_2} \times \dots \times p_k^{\alpha_k}}} \frac{(-1)^{\alpha_1+\alpha_2+\dots+\alpha_k}}{n^s} \times {\alpha_1+\alpha_2+\dots+\alpha_k \choose \alpha_1,\alpha_2,\dots,\alpha_k} = \sum_{\substack{n\geq 1\\ n=p_1^{\alpha_1} p_2^{\alpha_2} \times \dots \times p_k^{\alpha_k}}} \frac{\lambda(n)}{n^s} \times {\alpha(n) \choose \alpha_1,\alpha_2,\dots,\alpha_k}.$$

Since λ is completely multiplicative we have that $\lambda\left(\frac{n}{d}\right)\lambda(d) = \lambda(n)$ for all divisors d|n when $n \ge 1$. We also know that $\mu(n) = \lambda(n)$ whenever n is squarefree, so that we obtain the following results:

$$g^{-1}(n) = (h^{-1} * \mu)(n) = \lambda(n) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) |h^{-1}(n)|, n \ge 1.$$

The conclusion of the proof of Proposition 2.1 implies the stronger result that

$$g^{-1}(n) = \lambda(n) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega}(d).$$

We have adopted the notation that for $n \ge 2$, $C_{\Omega}(n) = |h^{-1}(n)| = (\Omega(n))! \times \prod_{p^{\alpha}||n} (\alpha!)^{-1}$, where the same function, $C_0(n)$, is taken to be one for n := 1 (see Section 3). We see that the scaled functions $f_1(n) := \frac{C_{\Omega}(n)}{(\Omega(n))!}$ and $f_2(n) := \frac{\lambda(n)C_{\Omega}(n)}{(\Omega(n))!}$ are both multiplicative.

2.3 The distributions of $\omega(n)$ and $\Omega(n)$

The next theorems reproduced from [16, §7.4] characterize the relative scarcity of the distributions of $\omega(n)$ and $\Omega(n)$ for $n \leq x$ such that $\omega(n), \Omega(n) > \log \log x$. Since $\frac{1}{n} \times \sum_{k \leq n} \omega(k) = \log \log n + B_1$ and $\frac{1}{n} \times \sum_{k \leq n} \Omega(k) = \log \log n + B_2$ for $B_1 \approx 0.261497$ and $B_2 \approx 1.03465$ absolute constants in each case, these results imply a distinctively regular tendency of these strongly additive arithmetic functions towards their respective average orders.

Theorem 2.2 (Upper bounds on exceptional values of $\Omega(n)$ for large n). For $x \ge 2$ and r > 0, let

$$A(x,r) := \# \{ n \le x : \Omega(n) \le r \log \log x \},$$

 $B(x,r) := \# \{ n \le x : \Omega(n) \ge r \log \log x \}.$

If $0 < r \le 1$ and $x \ge 2$, then

$$A(x,r) \ll x(\log x)^{r-1-r\log r}, as x \to \infty.$$

If $1 \le r \le R < 2$ and $x \ge 2$, then

$$B(x,r) \ll_R x(\log x)^{r-1-r\log r}$$
, as $x \to \infty$.

¹Beginning in Section 3, we adopt the alternate notation for the Dirichlet inverse function $h^{-1}(n)$ employed in this proof given by $C_{\Omega}(n)$. See also the remarks following the conclusion of this proof on the function $C_k(n)$.

Theorem 2.3 is a special case analog to the Erdős-Kac theorem stated for the normally distributed values of $\frac{\omega(n)-\log\log n}{\sqrt{\log\log n}}$ over $n \le x$ as $x \to \infty$ [16, cf. Thm. 7.21] [12, cf. §1.7].

Theorem 2.3. We have that as $x \to \infty$

$$\# \{3 \le n \le x : \Omega(n) \le \log \log n\} = \frac{x}{2} + O\left(\frac{x}{\sqrt{\log \log x}}\right).$$

Theorem 2.4 (Montgomery and Vaughan). Recall that for integers $k \ge 1$ and $x \ge 2$ we have defined

$$\widehat{\pi}_k(x) \coloneqq \#\{2 \le n \le x : \Omega(n) = k\}.$$

For 0 < R < 2 we have uniformly for all $1 \le k \le R \log \log x$ that

$$\widehat{\pi}_k(x) = \frac{x}{\log x} \times \mathcal{G}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right),$$

where we define

$$\mathcal{G}(z) \coloneqq \frac{1}{\Gamma(1+z)} \times \prod_{p} \left(1 - \frac{z}{p}\right)^{-1} \left(1 - \frac{1}{p}\right)^{z}, 0 \le |z| < R.$$

Remark 2.5. We can extend the work in [16] on the distribution of $\Omega(n)$ to obtain corresponding analogs for the distribution of $\omega(n)$. For 0 < R < 2 we have that as $x \to \infty$

$$\pi_k(x) = \frac{x}{\log x} \times \widetilde{\mathcal{G}}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right),\tag{8}$$

uniformly for any $1 \le k \le R \log \log x$. The analogous function to express these bounds for $\omega(n)$ is defined by $\widetilde{\mathcal{G}}(z) := \widetilde{F}(1,z) \times \Gamma(1+z)^{-1}$ where we define

$$\widetilde{F}(s,z) \coloneqq \prod_{p} \left(1 + \frac{z}{p^s - 1}\right) \left(1 - \frac{1}{p^s}\right)^z, \operatorname{Re}(s) > \frac{1}{2}, |z| \le R < 2.$$

Let the functions

$$C(x,r) \coloneqq \#\{n \le x : \omega(n) \le r \log \log x\},$$

$$D(x,r) \coloneqq \#\{n \le x : \omega(n) \ge r \log \log x\}.$$

Then we have upper bounds given by the following asymptotics as $x \to \infty$:

$$C(x,r) \ll x(\log x)^{r-1-r\log r}$$
, uniformly for $0 < r \le 1$,
 $D(x,r) \ll_R x(\log x)^{r-1-r\log r}$, uniformly for $1 \le r \le R < 2$.

3 Auxiliary sequences related to the inverse function $g^{-1}(n)$

The computational data given as Table B in the second appendix section is intended to provide clear insight into the significance of the few characteristic formulas for $g^{-1}(n)$ proved in this section. The table provides illustrative numerical data by examining the first cases of $1 \le n \le 500$ with *Mathematica* and *SageMath* [25].

3.1 Definitions and properties of triangular component function sequences

We define the following bivariate sequence for integers $n \ge 1$ and $k \ge 0$:

$$C_k(n) := \begin{cases} \varepsilon(n), & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1} \left(\frac{n}{d}\right), & \text{if } k \ge 1. \end{cases}$$

$$(9)$$

Using the more standardized definitions in [2, §2], we can alternately identify the k-fold convolution of ω with itself in the following notation: $C_0(n) \equiv \omega^{0*}(n)$ and $C_k(n) \equiv \omega^{k*}(n)$ for integers $k \geq 1$ and $n \geq 1$. The special case of (9) where $k \coloneqq \Omega(n)$ occurs frequently in the next sections of the article. To avoid cumbersome notation when referring to this common function variant, we suppress the double appearance of the index n by writing $C_{\Omega}(n) \coloneqq C_{\Omega(n)}(n)$ instead.

By recursively expanding the definition of $C_k(n)$ at any fixed $n \ge 2$, we see that we can form a chain of at most $\Omega(n)$ iterated (or nested) divisor sums by unfolding the definition of (9) inductively. By the same argument, we see that at fixed n, the function $C_k(n)$ is non-zero only possibly when $1 \le k \le \Omega(n)$ whenever $n \ge 2$. A sequence of signed semi-diagonals of the functions $C_k(n)$ begins as follows [26, A008480]:

$$\{\lambda(n)C_{\Omega}(n)\}_{n\geq 1} = \{1, -1, -1, 1, -1, 2, -1, -1, 1, 2, -1, -3, -1, 2, 2, 1, -1, -3, -1, -3, 2, 2, -1, 4, 1, 2, \ldots\}.$$

We see by (7) that $C_{\Omega}(n) \leq (\Omega(n))!$ for all $n \geq 1$ with equality precisely at the squarefree integers so that $(\Omega(n))! = (\omega(n))!$.

The Dirichlet inverse $f^{-1}(n)$ of any arithmetic function f such that $f(1) \neq 0$ is computed exactly by an $\Omega(n)$ -fold convolution of f with itself. The motivation for considering the auxiliary sequence representing the k-fold Dirichlet convolution of $\omega(n)$ with itself follows from our definition of $g^{-1}(n) := (\omega + 1)^{-1}(n)$. We prove a few precise relations of the function $C_{\Omega}(n)$ to the inverse sequence $g^{-1}(n)$ that result in the next subsections. Indeed, $h^{-1}(n) \equiv \lambda(n)C_{\Omega}(n)$ is the same function given by (7) from Proposition 2.1.

3.2 Formulas relating the unsigned $C_{\Omega}(n)$ to $g^{-1}(n)$

Remark 3.1 (Motivation for considering the next few pivotal elementary results). The formula exactly expanding $C_{\Omega}(n)$ by finite products in (7) (using the prior alternate notation of $h^{-1}(n)$ for this function) shows that its values are determined completely by the *exponents* in the prime factorization of any $n \geq 2$. We use the next lemma to write the inverse function $g^{-1}(n)$ we are interested in studying as a Dirichlet convolution of the auxiliary function, $C_{\Omega}(n)$, with the square of the Möbius function, $\mu^2(n) = |\mu(n)|$. This result then allows us to see that up to the leading sign weight by $\lambda(n)$ on the values of this key function, there is an essentially additive structure beneath its distinct values $g^{-1}(n)$ for $n \leq x$ that depends upon only the exponents in the prime factorizations of the divisors d|n (see Section 3.3 below). The formula that connects $g^{-1}(n)$ to the convolutions defined by $C_k(n)$ in the previous subsection is not trivial to identify without the Möbius inversion procedure we outline in the next proof.

Lemma 3.2. For all $n \ge 1$, we have that

$$g^{-1}(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega}(d).$$

Proof. We first expand the recurrence relation for the Dirichlet inverse when $g^{-1}(1) = g(1)^{-1} = 1$ as

$$g^{-1}(n) = -\sum_{\substack{d|n\\d>1}} (\omega(d) + 1)g^{-1}\left(\frac{n}{d}\right) \implies (g^{-1} * 1)(n) = -(\omega * g^{-1})(n). \tag{10}$$

We argue that for $1 \le m \le \Omega(n)$, we can inductively expand the implication on the right-hand-side of (10) in the form of $(g^{-1} * 1)(n) = F_m(n)$ where $F_m(n) := (-1)^m (C_m(-) * g^{-1})(n)$, so that

$$F_m(n) = -\begin{cases} (\omega * g^{-1})(n), & m = 1; \\ \sum\limits_{\substack{d \mid n \\ d > 1}} F_{m-1}(d) \times \sum\limits_{\substack{r \mid \frac{n}{d} \\ r > 1}} \omega(r) g^{-1}\left(\frac{n}{dr}\right), & 2 \le m \le \Omega(n); \\ 0, & \text{otherwise.} \end{cases}$$

When $m := \Omega(n)$, i.e., with the expansions in the previous equation taken to a maximal depth, we obtain the relation

$$(g^{-1} * 1)(n) = (-1)^{\Omega(n)} C_{\Omega}(n) = \lambda(n) C_{\Omega}(n).$$
(11)

The stated formula for $g^{-1}(n)$ then follows from (11) by Möbius inversion.

Corollary 3.3. For all positive integers $n \ge 1$, we have that

$$|g^{-1}(n)| = \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega}(d). \tag{12}$$

Proof. By applying Lemma 3.2, Proposition 2.1 and the complete multiplicativity of $\lambda(n)$, we easily obtain the stated result. In particular, since $\mu(n)$ is non-zero only at squarefree integers and since at any squarefree $d \ge 1$ we have $\mu(d) = (-1)^{\omega(d)} = \lambda(d)$, Lemma 3.2 and Proposition 2.1 imply that

$$|g^{-1}(n)| = \lambda(n) \times \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega}(d)$$
$$= \lambda(n^{2}) \times \sum_{d|n} \mu^{2}\left(\frac{n}{d}\right) C_{\Omega}(d).$$

We see that that $\lambda(n^2) = +1$ for all $n \ge 1$ since the number of distinct prime factors (counting multiplicity) of any square integer is even.

Remark 3.4. The identification of an exact formula for $g^{-1}(n)$ using Lemma 3.2 implies both of the results in the next discussion when n is squarefree. It also is suggestive of more regularity beneath the distribution of $|g^{-1}(n)|$ which we quantify with precise statements in the results given in Section 4.3. In particular, since $C_{\Omega}(n) = |h^{-1}(n)|$ using the original notation from the proof of Proposition 2.1, we can see that $C_{\Omega}(n) = (\omega(n))!$ for all squarefree $n \ge 1$. We also have that whenever $n \ge 1$ is squarefree

$$|g^{-1}(n)| = \sum_{d|n} C_{\Omega}(d).$$

Since all divisors of a squarefree integer are squarefree, a proof of part (B) of Proposition 1.6 follows by an elementary counting argument as an immediate consequence of the previous equation.

Remark 3.5. Lemma 3.2 shows that the summatory function of this sequence satisfies

$$G^{-1}(x) = \sum_{d \le x} \lambda(d) C_{\Omega}(d) M\left(\left\lfloor \frac{x}{d} \right\rfloor\right).$$

Equation (5) implies that

$$\lambda(d)C_{\Omega}(d) = (g^{-1} * 1)(d) = (\chi_{\mathbb{P}} + \varepsilon)^{-1}(d).$$

We recover by inversion that

$$M(x) = G^{-1}(x) + \sum_{p \le x} G^{-1}\left(\left\lfloor \frac{x}{p} \right\rfloor\right), x \ge 1.$$
 (13)

The proof of Corollary 4.6 shows that

$$\sum_{n \le x} |g^{-1}(n)| = \sum_{d \le x} C_{\Omega}(d) Q\left(\left\lfloor \frac{x}{d} \right\rfloor\right), x \ge 1,$$

where $Q(x) := \sum_{n \le x} \mu^2(n)$ counts the number of squarefree $n \le x$.

3.3 Combinatorial connections to the distribution of the primes

The combinatorial properties of $g^{-1}(n)$ are deeply tied to the distribution of the primes $p \leq n$ as $n \to \infty$. The magnitudes of and spacings between the primes $p \leq n$ certainly restricts the repeating of these distinct sequence values. We can see that the following is still clear about the relation of the weight functions $|g^{-1}(n)|$ to the distribution of the primes: The value of $|g^{-1}(n)|$ is entirely dependent only on the pattern of the exponents (viewed as multisets) of the distinct prime factors of $n \geq 2$, rather than on the prime factor weights themselves (cf. Observation 1.5). This property implies that $|g^{-1}(n)|$ has an inherently additive, rather than multiplicative, structure underneath the distribution of its distinct values over $n \leq x$.

Example 3.6. There is a natural extremal behavior of $|g^{-1}(n)|$ with respect to the distinct values of $\Omega(n)$ at squarefree integers and prime powers. For integers $k \geq 1$ we define the infinite sets \overline{M}_k and \underline{m}_k to correspond to the maximal (minimal) sets of positive integers such that

$$\overline{M}_{k} := \left\{ n \geq 2 : |g^{-1}(n)| = \sup_{\substack{j \geq 2 \\ \Omega(j) = k}} |g^{-1}(j)| \right\} \subseteq \mathbb{Z}^{+},
\underline{m}_{k} := \left\{ n \geq 2 : |g^{-1}(n)| = \inf_{\substack{j \geq 2 \\ \Omega(j) = k}} |g^{-1}(j)| \right\} \subseteq \mathbb{Z}^{+}.$$

Any element of \overline{M}_k is squarefree and any element of \underline{m}_k is a prime power. Moreover, for any fixed $k \ge 1$ we have that for any $N_k \in \overline{M}_k$ and $n_k \in \underline{m}_k$

$$(-1)^k g^{-1}(N_k) = \sum_{j=0}^k {k \choose j} \times j!$$
, and $(-1)^k g^{-1}(n_k) = 2.$,

where $\lambda(N_k) = \lambda(n_k) = (-1)^k$.

Remark 3.7. The formula for the function $h^{-1}(n) = (g^{-1} * 1)(n)$ defined in the proof of Proposition 2.1 shows that we can express $g^{-1}(n)$ in terms of symmetric polynomials in the exponents of the prime factorization of n. For $n \ge 2$ and $0 \le k \le \omega(n)$ let

$$\widehat{e}_k(n) \coloneqq [z^k] \prod_{p|n} (1 + z\nu_p(n)) = [z^k] \prod_{p^{\alpha}||n} (1 + \alpha z).$$

Then we can prove using (7) and (12) that the following formula holds:

$$g^{-1}(n) = h^{-1}(n) \times \sum_{k=0}^{\omega(n)} {\Omega(n) \choose k}^{-1} \frac{\widehat{e}_k(n)}{k!}, n \ge 2.$$

The key combinatorial formula for $h^{-1}(n) = \lambda(n)(\Omega(n))! \times \prod_{p^{\alpha}||n} (\alpha!)^{-1}$ suggests additional patterns and regularity in the contributions of the distinct sign weighted terms in the summands of $G^{-1}(x)^2$. Sections 5.2 and 5.3 discuss limiting asymptotic properties and local cancellation in the formula for M(x) from (13) that is expanded exactly through the auxiliary sums $G^{-1}(x)$ as above.

²This sequence is also considered using a different motivation based on the DGFs $(1 \pm P(s))^{-1}$ in [7, §2].

4 The distributions of $C_{\Omega}(n)$ and $|g^{-1}(n)|$ and their partial sums

We observed an intuition in the introduction that the relation of the unsigned auxiliary functions, $g^{-1}(n)$ and $C_{\Omega}(n)$, to the canonically additive functions $\omega(n)$ and $\Omega(n)$ leads to the regular properties illustrated in Table B. Each of $\omega(n)$ and $\Omega(n)$ satisfies an Erdős-Kac theorem that provides a central limiting distribution for each of these functions over $n \leq x$ as $x \to \infty$ [6, 3, 23] (cf. [11]). In the remainder of this section, we use analytic methods primarily in the spirit of [16, §7.4] to conjecture and prove new properties that characterize the distributions of the auxiliary functions in analogous ways.

4.1 Analytic proofs extending bivariate DGF methods for additive functions

Theorem 4.1 proves a core bound on the partial sums of certain sign weighted arithmetic functions which are parameterized in the powers $z^{\Omega(n)}$ of a complex-valued indeterminate z. We use this bound to prove uniform asymptotics for the partial sums, $\sum_{n\leq x}(-1)^{\omega(n)}C_{\Omega}(n)$, along only those values of $n\leq x$ with $\Omega(n)=k$ for $1\leq k\leq \frac{3}{2}\log\log x$ when x is large in Theorem 4.2. Finally, at the conclusion of this subsection of the article, we use an argument involving Abel summation with the partial sums of $\lambda_*(n):=(-1)^{\omega(n)}$ to turn the uniform asymptotics for the signed sums into core bounds we will need on the corresponding unsigned sums of the same functions along $n\leq x$ such that $\Omega(n)=k$ for k within our standard uniform ranges bounded by a small constant multiple of $\log\log x$ (see Lemma 4.3 and the conclusion in Corollary 4.4). The arguments given in the next few proofs are technical while mimicking as closely as possible the spirit of the proofs we cite inline from the references [16, 28].

Theorem 4.1. Let the bivariate DGF $\widehat{F}(s,z)$ be defined in terms of the prime zeta function, P(s), for $\operatorname{Re}(s) > 1$ and $|z| < |P(s)|^{-1}$ by

$$\widehat{F}(s,z) \coloneqq \frac{1}{1 + P(s)z} \times \prod_{p} \left(1 - \frac{1}{p^s}\right)^z.$$

The partial sums of the coefficients of $\widehat{F}(s,z)\zeta(s)^z$ are given by

$$\widehat{A}_z(x) \coloneqq \sum_{n \le x} (-1)^{\omega(n)} C_{\Omega}(n) z^{\Omega(n)}.$$

We have for all sufficiently large x and any $|z| < P(2)^{-1} \approx 2.21118$ that

$$\widehat{A}_z(x) = \frac{x\widehat{F}(2,z)}{\Gamma(z)} (\log x)^{z-1} + O_z \left(x(\log x)^{\operatorname{Re}(z)-2} \right).$$

Proof. It follows from (7) that we can generate exponentially scaled forms of the function $C_{\Omega}(n)$ by product identity of the following form:

$$\sum_{n\geq 1} \frac{C_{\Omega}(n)}{(\Omega(n))!} \cdot \frac{(-1)^{\omega(n)} z^{\Omega(n)}}{n^s} = \prod_{p} \left(1 + \sum_{r\geq 1} \frac{z^{\Omega(p^r)}}{r! p^{rs}} \right)^{-1} = \exp\left(-zP(s)\right), \text{ for } \operatorname{Re}(s) > 1 \wedge \operatorname{Re}(P(s)z) > -1.$$

This Euler type product expansion is similar in construction to the parameterized bivariate DGFs in [16, §7.4] [28, cf. §II.6.1]. By computing a termwise Laplace transform applied to the right-hand-side of the above equation, we obtain that

$$\sum_{n\geq 1} \frac{C_{\Omega}(n)(-1)^{\omega(n)}z^{\Omega(n)}}{n^s} = \int_0^{\infty} e^{-t} \exp\left(-tzP(s)\right) dt = \frac{1}{1 + P(s)z}, \text{ for } \operatorname{Re}(s) > 1 \wedge \operatorname{Re}(P(s)z) > -1.$$

It follows from the Euler product representation of $\zeta(s)$, which is convergent for any Re(s) > 1, that

$$\sum_{n>1} \frac{(-1)^{\omega(n)} C_{\Omega}(n) z^{\Omega(n)}}{n^s} = \widehat{F}(s, z) \zeta(s)^z, \text{ for } \operatorname{Re}(s) > 1 \land |z| < |P(s)|^{-1}.$$

The bivariate DGF $\widehat{F}(s,z)$ is an analytic function of s for all Re(s) > 1 whenever the parameter $|z| < |P(s)|^{-1}$. If the sequence $\{b_z(n)\}_{n\geq 1}$ indexes the coefficients in the DGF expansion of $\widehat{F}(s,z)\zeta(s)^z$, then the series

$$\left| \sum_{n>1} \frac{b_z(n)(\log n)^{2R+1}}{n^s} \right| < +\infty.$$

Moreover, the series in the last equation is uniformly bounded for all $\text{Re}(s) \ge 2$ and $|z| \le R < |P(s)|^{-1}$. This fact follows by repeated termwise differentiation of the series for the original function $\lceil 2R+1 \rceil$ times with respect to s.

For fixed 0 < |z| < 2, let the sequence $\{d_z(n)\}_{n \ge 1}$ be generated as the coefficients of the DGF

$$\zeta(s)^z = \sum_{n>1} \frac{d_z(n)}{n^s}$$
, for Re(s) > 1.

The corresponding summatory function of $d_z(n)$ is defined by $D_z(x) := \sum_{n \le x} d_z(n)$. The theorem proved in [16, Thm. 7.17; §7.4] shows that for any 0 < |z| < 2 and all integers $x \ge 2$ we have

$$D_z(x) = \frac{x(\log x)^{z-1}}{\Gamma(z)} + O_z\left(x(\log x)^{\operatorname{Re}(z)-2}\right).$$

Set $b_z(n) \coloneqq (-1)^{\omega(n)} C_{\Omega}(n) z^{\Omega(n)}$, define the convolution $a_z(n) \coloneqq \sum_{d|n} b_z(d) d_z\left(\frac{n}{d}\right)$, and take its partial sums to be $A_z(x) \coloneqq \sum_{n \le x} a_z(n)$. Then we have that

$$A_{z}(x) = \sum_{m \leq \frac{x}{2}} b_{z}(m) D_{z}\left(\frac{x}{m}\right) + \sum_{\frac{x}{2} < m \leq x} b_{z}(m)$$

$$= \frac{x}{\Gamma(z)} \times \sum_{m \leq \frac{x}{2}} \frac{b_{z}(m)}{m} \log\left(\frac{x}{m}\right)^{z-1} + O\left(\sum_{m \leq x} \frac{x|b_{z}(m)|}{m} \times \log\left(\frac{2x}{m}\right)^{\operatorname{Re}(z)-2}\right). \tag{14}$$

We can sum the coefficients $\frac{b_z(m)}{m}$ for integers $m \le u$ when u is taken sufficiently large as

$$\sum_{m \le u} \frac{b_z(m)}{m^2} \times m = (\widehat{F}(2, z) + O_z(u^{-2})) u - \int_1^u (\widehat{F}(2, z) + O_z(t^{-2})) dt = \widehat{F}(2, z) + O_z(u^{-1}).$$

Suppose that $0 < |z| \le R < P(2)^{-1}$. Then for large x, the error term in (14) satisfies

$$\sum_{m \le x} \frac{x|b_z(m)|}{m} \log \left(\frac{2x}{m}\right)^{\text{Re}(z)-2} \ll x(\log x)^{\text{Re}(z)-2} \times \sum_{m \le \sqrt{x}} \frac{|b_z(m)|}{m} + x(\log x)^{-(R+2)} \times \sum_{m > \sqrt{x}} \frac{|b_z(m)|}{m} (\log m)^{2R}$$

$$= O_z \left(x(\log x)^{\text{Re}(z)-2}\right),$$

whenever $0 < |z| \le R$. When $m \le \sqrt{x}$ we have

$$\log\left(\frac{x}{m}\right)^{z-1} = (\log x)^{z-1} + O\left((\log m)(\log x)^{\operatorname{Re}(z)-2}\right).$$

A related upper bound is obtained for the left-hand-side of the previous equation when $\sqrt{x} < m < x$ and 0 < |z| < R. The combined sum over the interval $m \le \frac{x}{2}$ corresponds to bounding the sum components when we take $0 < |z| \le R$ by

$$\sum_{m \le \frac{x}{2}} b_z(m) D_z\left(\frac{x}{m}\right) = \frac{x}{\Gamma(z)} (\log x)^{z-1} \times \sum_{m \le \frac{x}{2}} \frac{b_z(m)}{m}$$

$$+ O_{R} \left(x (\log x)^{\operatorname{Re}(z)-2} \times \sum_{m \leq \sqrt{x}} \frac{|b_{z}(m)| \log m}{m} + x (\log x)^{R-1} \times \sum_{m > \sqrt{x}} \frac{|b_{z}(m)|}{m} \right)$$

$$= \frac{x\widehat{F}(2,z)}{\Gamma(z)} (\log x)^{z-1} + O_{R} \left(x (\log x)^{\operatorname{Re}(z)-2} \times \sum_{m \geq 1} \frac{b_{z}(m) (\log m)^{2R+1}}{m^{2}} \right)$$

$$= \frac{x\widehat{F}(2,z)}{\Gamma(z)} (\log x)^{z-1} + O_{R} \left(x (\log x)^{\operatorname{Re}(z)-2} \right).$$

Theorem 4.2. For all large $x \ge 3$ and integers $k \ge 1$, let

$$\widehat{C}_{k,*}(x) \coloneqq \sum_{\substack{n \le x \\ \Omega(n) = k}} (-1)^{\omega(n)} C_k(n)$$

Let $\widehat{G}(z) := \widehat{F}(2,z) \times \Gamma(1+z)^{-1}$ when $0 \le |z| < P(2)^{-1}$ where $\widehat{F}(s,z)$ is defined as in Theorem 4.1. As $x \to \infty$, we have uniformly for any $1 \le k \le 2\log\log x$ that

$$\widehat{C}_{k,*}(x) = -\widehat{G}\left(\frac{k-1}{\log\log x}\right) \frac{x}{\log x} \cdot \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O\left(\frac{k}{(\log\log x)^2}\right)\right).$$

Proof. When k = 1, we have that $\Omega(n) = \omega(n)$ for all $n \le x$ such that $\Omega(n) = k$. The positive integers n that satisfy this requirement are precisely the primes $p \le x$. Hence, the formula is satisfied as

$$\sum_{p \le x} (-1)^{\omega(p)} C_1(p) = -\sum_{p \le x} 1 = -\frac{x}{\log x} \left(1 + O\left(\frac{1}{\log x}\right) \right).$$

Since $O((\log x)^{-1}) = O((\log \log x)^{-2})$ as $x \to \infty$, we obtain the required error term bound at k = 1.

For $2 \le k \le 2 \log \log x$, we will apply the error estimate from Theorem 4.1 with $r := \frac{k-1}{\log \log x}$ in the formula

$$\widehat{C}_{k,*}(x) = \frac{(-1)^{k+1}}{2\pi i} \times \int_{|v|=r} \frac{\widehat{A}_{-v}(x)}{v^{k+1}} dv.$$

Since $(\log x)^{\frac{1}{\log\log x}} = e$, the error in the formula contributes terms that are bounded by

$$\left| x(\log x)^{-(\operatorname{Re}(v)+2)} v^{-(k+1)} \right| \ll \left| x(\log x)^{-(r+2)} r^{-(k+1)} \right| \ll \frac{x}{(\log x)^{2-\frac{k-1}{\log\log x}}} \cdot \frac{(\log\log x)^k}{(k-1)^k} \\
\ll \frac{x}{(\log x)^2} \cdot \frac{(\log\log x)^k}{(k-1)^{\frac{1}{2}} (k-1)!} \ll \frac{x}{\log x} \cdot \frac{k(\log\log x)^{k-5}}{(k-1)!}, \text{ as } x \to \infty.$$

We next find the main term for the coefficients of the following contour integral when $r \in [0, z_{\text{max}}] \subseteq [0, P(2)^{-1})$:

$$\widehat{C}_{k,*}(x) \sim \frac{(-1)^k x}{\log x} \times \int_{|v|=r} \frac{(\log x)^{-v} \zeta(2)^v}{\Gamma(1-v)v^k (1-P(2)v)} dv.$$
(15)

The main term of $\widehat{C}_{k,*}(x)$ is given by $-\frac{x}{\log x} \times I_k(r,x)$, where we define

$$I_{k}(r,x) = \frac{1}{2\pi i} \times \int_{|v|=r} \frac{\widehat{G}(v)(\log x)^{v}}{v^{k}} dv$$

=: $I_{1,k}(r,x) + I_{2,k}(r,x)$.

Taking $r = \frac{k-1}{\log \log x}$, the first of the component integrals is defined to be

$$I_{1,k}(r,x) := \frac{\widehat{G}(r)}{2\pi i} \times \int_{|v|=r} \frac{(\log x)^v}{v^k} dv = \widehat{G}(r) \times \frac{(\log \log x)^{k-1}}{(k-1)!}.$$

The second integral, $I_{2,k}(r,x)$, corresponds to an error term in our approximation. This component function is defined by

$$I_{2,k}(r,x) \coloneqq \frac{1}{2\pi i} \times \int_{|v|=r} \left(\widehat{G}(v) - \widehat{G}(r)\right) \frac{(\log x)^v}{v^k} dv.$$

Integrating by parts shows that [16, cf. Thm. 7.19; §7.4]

$$\frac{(r-v)}{2\pi i} \times \int_{|v|=r} (\log x)^v v^{-k} dv = 0,$$

so that integrating by parts once again we have

$$I_{2,k}(r,x) \coloneqq \frac{1}{2\pi i} \times \int_{|v|=r} \left(\widehat{G}(v) - \widehat{G}(r) - \widehat{G}'(r)(v-r) \right) (\log x)^v v^{-k} dv.$$

We find that

$$\widehat{G}(v) - \widehat{G}(r) - \widehat{G}'(r)(v - r) = \int_{r}^{v} (v - w)\widehat{G}''(w)dw \ll |v - r|^{2}.$$

With the parameterization $v = re^{2\pi i\theta}$ for $\theta \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ (selecting $r \coloneqq \frac{k-1}{\log\log x}$), we obtain

$$|I_{2,k}(r,x)| \ll r^{3-k} \times \int_{-\frac{1}{2}}^{\frac{1}{2}} (\sin \pi \theta)^2 e^{(k-1)\cos(2\pi\theta)} d\theta.$$

Since $|\sin x| \le |x|$ for all |x| < 1 and $\cos(2\pi\theta) \le 1 - 8\theta^2$ if $-\frac{1}{2} \le \theta \le \frac{1}{2}$, we arrive at the next bounds by again taking $r = \frac{k-1}{\log\log x}$ at any $1 \le k \le 2\log\log x$.

$$|I_{2,k}(r,x)| \ll r^{3-k}e^{k-1} \times \int_0^\infty \theta^2 e^{-8(k-1)\theta^2} d\theta$$

$$\ll \frac{r^{3-k}e^{k-1}}{(k-1)^{\frac{3}{2}}} = \frac{(\log\log x)^{k-3}e^{k-1}}{(k-1)^{k-\frac{3}{2}}} \ll \frac{k(\log\log x)^{k-3}}{(k-1)!}.$$

Finally, whenever $1 \le k \le 2 \log \log x$ we have

$$1 = \widehat{G}(0) \ge \widehat{G}\left(\frac{k-1}{\log\log x}\right) = \frac{1}{\Gamma\left(1 + \frac{k-1}{\log\log x}\right)} \times \frac{\zeta(2)^{\frac{1-k}{\log\log x}}}{\left(1 + \frac{P(2)(k-1)}{\log\log x}\right)} \ge \widehat{G}(2) \approx 0.097027.$$

In particular, the function $\widehat{G}\left(\frac{k-1}{\log\log x}\right) \gg 1$ for all $1 \leq k \leq 2\log\log x$. This implies the result of the theorem.

Lemma 4.3. As $x \to \infty$, there is an absolute constant $A_0 > 0$ such that

$$L_{\omega}(x) := \sum_{n \le x} (-1)^{\omega(n)} = \frac{(-1)^{\lfloor \log \log x \rfloor} x}{A_0 \sqrt{2\pi \log \log x}} + O\left(\frac{x}{\log \log x}\right).$$

Proof. An adaptation of the proof of Lemma A.3 from the appendix provides that for any $a \in (1, 1.76322)$

$$S_a(x) := \frac{x}{\log x} \times \left| \sum_{k=1}^{\lfloor a \log \log x \rfloor} \frac{(-1)^k (\log \log x)^{k-1}}{(k-1)!} \right|$$

$$= \frac{\sqrt{ax}}{\sqrt{2\pi}(a+1)a^{a\log\log x}} \times \frac{(\log x)^{a-1-a\log a}}{\sqrt{\log\log x}} \left(1 + O\left(\frac{1}{\log\log x}\right)\right). \tag{16}$$

Here, we define $\{x\} = x - \lfloor x \rfloor \in [0,1)$ to be the *fractional part* of x. Suppose that we take $a := \frac{3}{2}$ so that $a - 1 - a \log a \approx -0.108198$. We define and expand the next partial sums as

$$L_{\omega}(x) := \sum_{n \le x} (-1)^{\omega(n)} = \sum_{k \le \log \log x} 2(-1)^k \pi_k(x) + O\left(S_{\frac{3}{2}}(x) + \#\left\{n \le x : \omega(n) \ge \frac{3}{2} \log \log x\right\}\right).$$

The justification for the error term including $S_{\frac{3}{2}}(x)$ is that for $1 \le k < \frac{3}{2}\log\log x$, we can show that $\widetilde{\mathcal{G}}\left(\frac{k-1}{\log\log x}\right) \times 1$ where the function $\widetilde{\mathcal{G}}\left(\frac{k-1}{\log\log x}\right)$ is monotone for k within each of the disjoint intervals $[1,\log\log x] \cup \left(\log\log x, \frac{3}{2}\log\log x\right]$. Moreover, we can show that for any $1 < k \le \log\log x$, the function $\widetilde{\mathcal{G}}\left(\frac{k-1}{\log\log x}\right)$ from Remark 2.5 is decreasing in k for $1 \le k \le \log\log x$ with $\widetilde{\mathcal{G}}(0) = 1$. It also satisfies the following inequalities for k taken within the same range:

$$\widetilde{\mathcal{G}}\left(\frac{k-1}{\log\log x}\right) \ge \widetilde{\mathcal{G}}\left(1 - \frac{1}{\log\log x}\right) \ge \widetilde{\mathcal{G}}(1) = 1.$$

We apply the uniform asymptotics for $\pi_k(x)$ that hold as $x \to \infty$ when $1 \le k \le R \log \log x$ for $1 \le R < 2$. We then see by Lemma A.3 and (16) that for all sufficiently large x there is some absolute constant $A_0 > 0$ such that

$$L_{\omega}(x) = \frac{(-1)^{\lfloor \log \log x \rfloor} x}{A_0 \sqrt{2\pi \log \log x}} + O\left(E_{\omega}(x) + \frac{x}{(\log x)^{0.108198} \sqrt{\log \log x}} + \#\left\{n \le x : \omega(x) \ge \frac{3}{2} \log \log x\right\}\right).$$

The error term in the previous equation is bounded by the next sum as $x \to \infty$. In particular, the following estimate is obtained from Stirling's formula, (26a) and (26c) from the appendix:

$$E_{\omega}(x) \ll \frac{x}{\log x} \times \sum_{1 \le k \le \log \log x} \frac{(\log \log x)^{k-2}}{(k-1)!}$$
$$= \frac{x\Gamma(\log \log x, \log \log x)}{\Gamma(\log \log x + 1)} \sim \frac{x}{2 \log \log x} \left(1 + O\left(\frac{1}{\sqrt{\log \log x}}\right)\right).$$

By an application of the second set of results in Remark 2.5, we finally see that

$$\#\left\{n \le x : \omega(x) \ge \frac{3}{2}\log\log x\right\} \ll \frac{x}{(\log x)^{0.108198}}.$$

Hence, we have obtained a correct main and error term on the partial sums $L_{\omega}(x)$.

Corollary 4.4. We have at all sufficiently large x uniformly for $1 \le k \le \frac{3}{2} \log \log x$ that

$$\widehat{C}_k(x) \coloneqq \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n) = A_0 \sqrt{2\pi} x \widehat{G}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-\frac{1}{2}}}{(k-1)!} \left(1 + O\left(\frac{1}{\log\log x}\right)\right).$$

Proof. Suppose that $\hat{h}(t)$ and $\sum_{n \leq t} \lambda_*(n)$ are piecewise smooth and differentiable functions of t on \mathbb{R}^+ . The next integral formulas result by Abel summation and integration by parts.

$$\sum_{n \le x} \lambda_*(n) \hat{h}(n) = \left(\sum_{n \le x} \lambda_*(n)\right) \hat{h}(x) - \int_1^x \left(\sum_{n \le t} \lambda_*(n)\right) \hat{h}'(t) dt$$
 (17a)

$$\sim \int_{1}^{x} \frac{d}{dt} \left[\sum_{n \le t} \lambda_{*}(n) \right] \hat{h}(t) dt \tag{17b}$$

We transform our previous results for the partial sums of $(-1)^{\omega(n)}C_{\Omega}(n)$ such that $\Omega(n)=k$ to approximate the corresponding partial sums of only $C_{\Omega}(n)$. In particular, since $1 \le k \le \frac{3}{2} \log \log x$, we have that

$$\widehat{C}_{k,*}(x) = \sum_{\substack{n \leq x \\ \Omega(n) = k}} (-1)^{\omega(n)} C_{\Omega}(n) = \sum_{n \leq x} (-1)^{\omega(n)} \left[\omega(n) \leq \frac{3}{2} \log \log x \right]_{\delta} \times C_{\Omega}(n) \left[\Omega(n) = k \right]_{\delta}.$$

We have by the proof of Lemma 4.3 that as $t \to \infty$

$$L_*(t) := \sum_{\substack{n \le t \\ \omega(n) \le \frac{3}{2} \log \log t}} (-1)^{\omega(n)} = \frac{(-1)^{\lfloor \log \log t \rfloor} t}{A_0 \sqrt{2\pi \log \log t}} \left(1 + O\left(\frac{1}{\sqrt{\log \log t}}\right) \right). \tag{18}$$

Except for t within a subset of $(0, \infty)$ of measure zero on which $L_*(t)$ changes sign, the main term of the derivative of this summatory function is given almost everywhere by

$$L'_*(t) \sim \frac{(-1)^{\lfloor \log \log t \rfloor}}{A_0 \sqrt{2\pi \log \log t}}.$$

We apply the formula from (17b), to deduce that as $x \to \infty$ whenever $1 \le k \le \frac{3}{2} \log \log x$

$$\begin{split} \widehat{C}_{k,*}(x) &\sim \sum_{j=1}^{\log\log x - 1} \frac{2\cdot (-1)^{j+1}}{A_0\sqrt{2\pi}} \times \int_{e^{e^j}}^{e^{e^{j+1}}} \frac{C_{\Omega(t)}(t) \left[\Omega(t) = k\right]_{\delta}}{\sqrt{\log\log t}} dt \\ &\sim -\int_{1}^{\frac{\log\log x}{2}} \int_{e^{e^{2s-1}}}^{e^{e^{2s}}} \frac{2C_{\Omega(t)}(t) \left[\Omega(t) = k\right]_{\delta}}{A_0\sqrt{2\pi\log\log t}} dt ds + \frac{1}{A_0\sqrt{2\pi}} \times \int_{e^e}^{x} \frac{C_{\Omega(t)}(t) \left[\Omega(t) = k\right]_{\delta}}{\sqrt{\log\log t}} dt. \end{split}$$

For large x, $(\log \log t)^{-\frac{1}{2}}$ is continuous and monotone decreasing on $x^{e^{-1}}$ with

$$\frac{1}{\sqrt{\log\log x}} - \frac{1}{\sqrt{\log\log\left(x^{e^{-1}}\right)}} = O\left(\frac{1}{(\log x)\sqrt{\log\log x}}\right),$$

Hence, we have that

$$-A_0\sqrt{2\pi}x(\log x)\sqrt{\log\log x}\widehat{C}'_{k,*}(x) = \left(\widehat{C}_k(x) - \widehat{C}_k\left(x^{e^{-1}}\right)\right)(1 + o(1)) - x(\log x)\widehat{C}'_k(x). \tag{19}$$

For $1 \le k < \frac{3}{2} \log \log x$, we expect contributions from the squarefree integers $n \le x$ such that $\omega(n) = \Omega(n) = k$ to be on the order of

$$\widehat{C}'_k(x) \approx \widehat{\pi}_k(x) \sim \frac{x}{\log x} \times \frac{(\log \log x)^{k-1}}{(k-1)!}.$$

The argument used to justify the last equation is that

$$\widehat{C}'_k(x) \sim \sum_{n \leq x} \left[\Omega(n) = k \right]_{\delta} \times \int_{n-1}^n \frac{d}{dt} \widehat{C}_k(t) dt \sim \sum_{n \leq x} \left[\Omega(n) = k \right]_{\delta}.$$

We conclude that $\widehat{C}_k(x^{e^{-1}}) = o(\widehat{C}_k(x))$. Then equation (19) becomes an ordinary differential equation for $\widehat{C}_k(x)$ after this observation. Its solution has the form

$$\widehat{C}_k(x) = A_0 \sqrt{2\pi} (\log x) \times \int_3^x \frac{\sqrt{\log \log t}}{\log t} \widehat{C}'_{k,*}(t) dt + O(\log x).$$

When we integrate by parts and apply the result from Theorem 4.2, we find that

$$\widehat{C}_k(x) = \frac{\sqrt{\log \log x}}{\log x} \widehat{C}_{k,*}(x) + O\left(x \times \int_3^x \frac{\sqrt{\log \log t} \widehat{C}_{k,*}(t)}{t^2 (\log t)^2} dt\right)$$

$$= \frac{\sqrt{\log \log x}}{\log x} \widehat{C}_{k,*}(x) + O\left(\frac{x}{2^k} \times \Gamma\left(k + \frac{1}{2}, 2\log \log x\right)\right).$$

Finally, whenever we assume that $1 \le k \le \frac{3}{2} \log \log x$ such that $\lambda > 1$ in Proposition A.2 (cf. Facts A.1 for k of substantially lesser order in x than this upper bound), Theorem 4.2 implies the conclusion of our corollary.

4.2 Average orders of the unsigned sequences

In the next subsection (see Section 4.3), we conjecture that there are clearly defined probability measures that underlie the distributions of the distinct values of the functions $C_{\Omega}(n)$ and $|g^{-1}(n)|$ for $n \le x$ as $x \to \infty$. These results rely on asymptotics for the first moments, e.g., the respective average orders, of these two functions. We prove asymptotic formulae for the main and error terms of the average order of these two key unsigned sequences within this subsection. Namely, we state and prove the results in Proposition 4.5 and Corollary 4.6 below. The proof of the former proposition requires the uniform asymptotics we proved in Section 4.1 along with an adaptation of Rankin's method from [16, §7.4] to bound error terms for partial sums taken in the ranges of $n \le x$ for $\Omega(n) = k$ outside of the uniform ranges for k.

Proposition 4.5. There is an absolute constant $B_0 > 0$ such that as $n \to \infty$

$$\frac{1}{n} \times \sum_{k \le n} C_{\Omega}(k) = B_0(\log n) \sqrt{\log \log n} \left(1 + O\left(\frac{1}{\log \log n}\right) \right).$$

Proof. By Corollary 4.4 and Proposition A.2 with $\lambda = \frac{2}{3}$, we have that

$$\sum_{k=1}^{\frac{3}{2}\log\log x} \sum_{\substack{n \leq x \\ \Omega(n) = k}} C_{\Omega}(n) \approx \sum_{k=1}^{\frac{3}{2}\log\log x} \frac{x(\log\log x)^{k-\frac{1}{2}}}{(k-1)!} \left(1 + O\left(\frac{1}{\log\log x}\right)\right)$$

$$= \frac{x(\log x)\sqrt{\log\log x}\Gamma\left(\frac{3}{2}\log\log x, \log\log x\right)}{\Gamma\left(\frac{3}{2}\log\log x\right)} \left(1 + O\left(\frac{1}{\log\log x}\right)\right)$$

$$= x(\log x)\sqrt{\log\log x} \left(1 + O\left(\frac{1}{\log\log x}\right)\right).$$

For real $0 \le z \le 2$, the function $\widehat{G}(z)$ is monotone in z with $\widehat{G}(0) = 1$ and $\widehat{G}(2) \approx 0.303964$. Then we see that there is an absolute constant $B_0 > 0$ such that

$$\frac{1}{x} \times \sum_{k=1}^{\frac{3}{2} \log \log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n) = B_0(\log x) \sqrt{\log \log x} \left(1 + O\left(\frac{1}{\log \log x}\right) \right).$$

We claim that

$$\frac{1}{x} \times \sum_{n \le x} C_{\Omega}(n) = \frac{1}{x} \times \sum_{k \ge 1} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n)$$

$$= \frac{1}{x} \times \sum_{k=1}^{\frac{3}{2} \log \log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n)(1 + o(1)), \text{ as } x \to \infty.$$

To prove the claim it suffices to show that

$$\frac{1}{x} \times \sum_{\substack{n \le x \\ \Omega(n) \ge \frac{3}{6} \log \log x}} C_{\Omega}(n) = o\left(\frac{\log x}{\log \log x}\right). \tag{20}$$

We proved in Theorem 4.1 that for all sufficiently large x and $|z| < P(2)^{-1}$

$$\sum_{n \le x} (-1)^{\omega(n)} C_{\Omega}(n) z^{\Omega(n)} = \frac{x \widehat{F}(2, z)}{\Gamma(z)} (\log x)^{z-1} + O\left(x (\log x)^{\text{Re}(z)-2}\right).$$

By Lemma 4.3, we have that the summatory function

$$\sum_{n \le x} (-1)^{\omega(n)} = \frac{(-1)^{\lfloor \log \log x \rfloor} x}{A_0 \sqrt{2\pi \log \log x}} \left(1 + O\left(\frac{1}{\sqrt{\log \log x}}\right) \right),$$

where $\frac{d}{dx} \left[\frac{x}{\sqrt{\log \log x}} \right] = \frac{1}{\sqrt{\log \log x}} + o(1)$. We can argue as in the proof of Corollary 4.4 that whenever $0 < |z| < P(2)^{-1}$ and x is sufficiently large we have

$$\sum_{n \le x} C_{\Omega}(n) z^{\Omega(n)} \ll \frac{\widehat{F}(2, z) x (\log x) \sqrt{\log \log x}}{\Gamma(z)} \times \frac{\partial}{\partial x} \left[x (\log x)^{z-1} \right]
\ll \frac{\widehat{F}(2, z) x \sqrt{\log \log x}}{\Gamma(z)} (\log x)^{z}.$$
(21)

For large x and any fixed $0 < r < P(2)^{-1}$, we define

$$\widehat{B}(x,r)\coloneqq \sum_{\substack{n\leq x\\\Omega(n)\geq r\log\log x}} C_{\Omega}(n).$$

We adapt the proof from the reference [16, cf. Thm. 7.20; §7.4] by applying (21) when $1 \le r < P(2)^{-1}$. Since $r\widehat{F}(2,r) = \frac{r\zeta(2)^{-r}}{1+P(2)r} \ll 1$ for $r \in [1,P(2)^{-1})$, and similarly since we have that $\frac{1}{\Gamma(1+r)} \gg 1$ for r within the same range, we find that

$$x\sqrt{\log\log x}(\log x)^r \gg \sum_{\substack{n \le x \\ \Omega(n) \ge r \log\log x}} C_{\Omega}(n)r^{\Omega(n)} \gg \sum_{\substack{n \le x \\ \Omega(n) \ge r \log\log x}} C_{\Omega}(n)r^{r\log\log x}.$$

This implies that for $r := \frac{3}{2}$ we have

$$\widehat{B}(x,r) \ll x(\log x)^{r-r\log r} \sqrt{\log\log x} = O\left(x(\log x)^{0.891802} \sqrt{\log\log x}\right)$$
(22)

We evaluate the limiting asymptotics of the sums

$$S_2(x) \coloneqq \frac{1}{x} \times \sum_{k \ge \frac{3}{2} \log \log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega}(n) \ll \frac{1}{x} \times \widehat{B}\left(x, \frac{3}{2}\right) = O\left((\log x)^{0.891802} \sqrt{\log \log x}\right), \text{ as } x \to \infty.$$

This implies that (20) holds.

Corollary 4.6. We have that as $n \to \infty$

$$\frac{1}{n} \times \sum_{k \le n} |g^{-1}(k)| = \frac{6B_0(\log n)^2 \sqrt{\log \log n}}{\pi^2} \left(1 + O\left(\frac{1}{\log \log n}\right)\right).$$

Proof. As $|z| \to \infty$, the imaginary error function, erfi(z), has the following asymptotic expansion [22, §7.12]:

$$\operatorname{erfi}(z) := \frac{2}{\sqrt{\pi i}} \times \int_0^{iz} e^{t^2} dt = \frac{e^{z^2}}{\sqrt{\pi}} \left(\frac{1}{z} + \frac{1}{2z^3} + \frac{3}{4z^5} + \frac{15}{8z^7} + O\left(\frac{1}{z^9}\right) \right). \tag{23}$$

We use the formula from Proposition 4.5 to sum the average order of $C_{\Omega}(n)$. The proposition and error terms obtained from (23) imply that for all sufficiently large $t \to \infty$

$$\int \frac{\sum_{n \le t} C_{\Omega}(n)}{t^2} dt = B_0 (\log t)^2 \sqrt{\log \log t} - \frac{1}{4} \sqrt{\frac{\pi}{2}} \operatorname{erfi}\left(\sqrt{2 \log \log t}\right)$$
$$= B_0 (\log t)^2 \sqrt{\log \log t} \left(1 + O\left(\frac{1}{\log \log t}\right)\right).$$

A classical formula for the summatory function that counts the number of squarefree integers $n \le x$ shows that this function satisfies [8, §18.6] [26, A013928]

$$Q(x) = \sum_{n \le x} \mu^2(n) = \frac{6x}{\pi^2} + O\left(\sqrt{x}\right), \text{ as } x \to \infty.$$

Therefore, summing over the formula from (12) in Section 3.2, we find that

$$\frac{1}{n} \times \sum_{k \le n} |g^{-1}(k)| = \frac{1}{n} \times \sum_{d \le n} C_{\Omega}(d) Q\left(\left\lfloor \frac{n}{d} \right\rfloor\right)$$

$$\sim \sum_{d \le n} C_{\Omega}(d) \left[\frac{6}{d \cdot \pi^2} + O\left(\frac{1}{\sqrt{dn}}\right)\right]$$

$$= \frac{6}{\pi^2} \left[\frac{1}{n} \times \sum_{k \le n} C_{\Omega}(k) + \sum_{d \le n} \sum_{k \le d} \frac{C_{\Omega}(k)}{d^2}\right] + O(1).$$

The latter sum in the previous equation forms the main term.

4.3 Erdős-Kac theorem analogs for the distributions of the unsigned functions

It is not difficult to prove that

$$\sum_{\substack{n \le x \\ \Omega(n) = k}} \frac{C_{\Omega}(n)}{(\log n)\sqrt{\log\log n}} = \frac{A_0\sqrt{2\pi}x}{\log x} \times \widehat{G}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O\left(\frac{1}{\log\log x}\right)\right), \text{ as } x \to \infty$$
 (24)

A modified set of proof mechanics that draw upon the methods in [16, Thm. 7.21; §7.4] suggest that the next conjecture should hold. On the other hand, proving that the scaled distribution of $C_{\Omega}(n)$ matches the analogous result for $\Omega(n)$ from the reference when the average order asymptotics in (24) match leads to a challenging problem that is outside of the scope of this manuscript.

Conjecture 4.7 (Deterministic form of the Erdős-Kac theorem analog for $C_{\Omega}(n)$). For sufficiently large x, let the mean and variance parameter analogs be defined by

$$\mu_x(C) := \log \log x - \log \left(\sqrt{2\pi} A_0 \widehat{G}(1) \right), \quad \text{and} \quad \sigma_x(C) := \sqrt{\log \log x}.$$

We have for any fixed $z \in (-\infty, +\infty)$ that

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : \frac{\frac{C_{\Omega}(n)}{(\log n)\sqrt{\log\log n}} - \mu_x(C)}{\sigma_x(C)} \le z \right\} = \Phi(z) + o(1), \text{ as } x \to \infty.$$

Corollary 4.8. Suppose that Conjecture 4.7 is true and that $\mu_x(C)$ and $\sigma_x(C)$ are defined as in the conjecture for sufficiently large x. Let Y > 0. We have uniformly for all $-Y \le y \le Y$ that as $x \to \infty$

$$\frac{1}{x} \cdot \# \left\{ 2 \le n \le x : \frac{|g^{-1}(n)|}{(\log n)\sqrt{\log \log n}} - \frac{6}{\pi^2 n(\log n)\sqrt{\log \log n}} \times \sum_{k \le n} |g^{-1}(k)| \le y \right\} = \Phi\left(\frac{\frac{\pi^2 y}{6} - \mu_x(C)}{\sigma_x(C)}\right) + o(1).$$

Proof. We claim that

$$|g^{-1}(n)| - \frac{6}{\pi^2 n} \times \sum_{k \le n} |g^{-1}(k)| \sim \frac{6}{\pi^2} C_{\Omega}(n), \text{ as } n \to \infty.$$

As in the proof of Corollary 4.6, we obtain that

$$\frac{1}{x} \times \sum_{n \le x} |g^{-1}(n)| = \frac{6}{\pi^2} \left(\frac{1}{x} \times \sum_{n \le x} C_{\Omega}(n) + \sum_{d < x} \sum_{k \le d} \frac{C_{\Omega}(k)}{d^2} \right) + O(1).$$

Let the backwards difference operator with respect to x be defined for $x \ge 2$ and any arithmetic function f as $\Delta_x(f(x)) := f(x) - f(x-1)$. We see that for large n

$$|g^{-1}(n)| = \Delta_n \left(\sum_{k \le n} g^{-1}(k) \right) \sim \frac{6}{\pi^2} \times \Delta_n \left(\sum_{d \le n} C_{\Omega}(d) \cdot \frac{n}{d} \right)$$

$$= \frac{6}{\pi^2} \left(C_{\Omega}(n) + \sum_{d < n} C_{\Omega}(d) \frac{n}{d} - \sum_{d < n} C_{\Omega}(d) \frac{(n-1)}{d} \right)$$

$$\sim \frac{6}{\pi^2} \left(C_{\Omega}(n) + \frac{1}{n-1} \times \sum_{k \le n} |g^{-1}(k)| \right), \text{ as } n \to \infty.$$

Since $\frac{1}{n-1} \times \sum_{k \le n} |g^{-1}(k)| \sim \frac{1}{n} \times \sum_{k \le n} |g^{-1}(k)|$ for all sufficiently large n, the result follows by a re-normalization of Conjecture 4.7.

5 New formulas and limiting relations characterizing M(x)

5.1 Formulas relating M(x) to the summatory function $G^{-1}(x)$

Proposition 5.1. For all sufficiently large x, we have that

$$M(x) = G^{-1}(x) + \sum_{k=1}^{\frac{x}{2}} G^{-1}(k) \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k+1} \right\rfloor \right) \right). \tag{25}$$

Proof. We know by applying Corollary 1.4 that

$$M(x) = \sum_{k=1}^{x} g^{-1}(k) \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right)$$

$$= G^{-1}(x) + \sum_{k=1}^{\frac{x}{2}} g^{-1}(k) \pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right)$$

$$= G^{-1}(x) + G^{-1} \left(\left\lfloor \frac{x}{2} \right\rfloor \right) + \sum_{k=1}^{\frac{x}{2} - 1} G^{-1}(k) \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k + 1} \right\rfloor \right) \right).$$

The upper bound on the sum is truncated to $k \in [1, \frac{x}{2}]$ in the second equation above due to the fact that $\pi(1) = 0$. The third formula above follows directly by (ordinary) summation by parts.

By the result from (13) proved in Section 3.2, we recall that

$$M(x) = G^{-1}(x) + \sum_{p \le x} G^{-1}\left(\left\lfloor \frac{x}{p}\right\rfloor\right), \text{ for } x \ge 1.$$

Summation by parts implies that we can also express $G^{-1}(x)$ in terms of the summatory function L(x) and differences of the unsigned sequence whose distribution is given by Corollary 4.8. That is, we have

$$G^{-1}(x) = \sum_{n \le x} \lambda(n) |g^{-1}(n)| = L(x) |g^{-1}(x)| - \sum_{n \le x} L(n) \left(|g^{-1}(n+1)| - |g^{-1}(n)| \right), \text{ for } x \ge 1.$$

5.2 Asymptotics of the partial sums of the unsigned inverse sequence

The following proofs are credited to correspondence with Professor R. C. Vaughan and his suggestions about approaches to upper bounds on $|G^{-1}|(x)$ that are attained along infinite subsequences as $x \to \infty$. The ideas at the crux of the proof of the next theorem are found in the references by Davenport and Heilbronn [4, 5]. They are known to date back to the work of Harald Bohr [29, cf. §11].

Theorem 5.2. Let σ_1 denote the unique solution to the equation $P(\sigma) = 1$ for $\sigma > 1$. There are complex s with Re(s) arbitrarily close to σ_1 such that 1 - P(s) = 0.

Proof. The function $P(\sigma)$ is decreasing on $(1, \infty)$, tends to $+\infty$ as $\sigma \to 1^+$, and tends to zero as $\sigma \to \infty$. Thus we find that the equation $P(\sigma) = 1$ has a unique solution for $\sigma > 1$, which we denote by $\sigma = \sigma_1 \approx 1.39943$. Let $\delta > 0$ be chosen small enough that |1 - P(z)| > 0 for all z such that $|z - \sigma_1| = \delta$. Set

$$\eta = \min_{\substack{z \in \mathbb{C} \\ |z - \sigma_1| = \delta}} |1 - P(z)|.$$

Since P(z) is continuous whenever Re(z) > 1, we have that $\eta > 0$. Let $X \ge 2$ be a sufficiently large integer so that

$$\sum_{n>X} p^{\delta-\sigma_1} < \frac{\eta}{4}.$$

Kronecker's theorem provides a fixed t such that the following inequality holds [8, §XXIII]:

$$\max_{2$$

Thus we have that

$$\sum_{n>2} p^{\delta-\sigma_1} \left| p^{it} + 1 \right| < \frac{\eta}{2}.$$

Hence, for all z such that $|z - \sigma_1| = \delta$, we have

$$|P(z+it)+P(z)|<\frac{\eta}{2}.$$

We apply Rouche's theorem to see that the functions 1 - P(z) and 1 - P(z) + P(z + it) + P(z) have the same number of zeros in the disk $\mathcal{D}_{\delta} = \{z \in \mathbb{C} : |z - \sigma_1| < \delta\}$. Since 1 - P(z) has at least one zero within \mathcal{D}_{δ} , we must have that 1 + P(w) has at least one zero with $|w - \sigma_1 - it| < \delta$. Since we can take δ as small as necessary, there are zeros of the function 1 + P(s) that are arbitrarily close to the line $s = \sigma_1$.

Corollary 5.3. Suppose that the partial sums of the unsigned inverse sequence are defined as follows:

$$|G^{-1}|(x) \coloneqq \sum_{n \le x} |g^{-1}(n)|, x \ge 1.$$

Let $\sigma_1 > 1$ be defined as in Theorem 5.2. For any $\epsilon > 0$, there are arbitrarily large x such that

$$|G^{-1}|(x) > x^{\sigma_1 - \epsilon}.$$

Proof. Since the DGF of the function $C_{\Omega}(n)$ is given by $(1 - P(s))^{-1}$ for Re(s) > 1, we have that

$$D_{|g^{-1}|}(s) \coloneqq \sum_{n>1} \frac{|g^{-1}(n)|}{n^s} = \frac{1}{\zeta(s)(1 - P(s))}, \text{ for } \operatorname{Re}(s) > 1.$$

Theorem 5.2 implies that $D_{g^{-1}}(s)$ has singularities $s \in \mathbb{C}$ such that the Re(s) are arbitrarily close to σ_1 . By applying [16, Cor. 1.2; §1.2], we have that any Dirichlet series is locally uniformly convergent in its

half-plane of convergence, e.g., for $\text{Re}(s) > \sigma_c$, and is hence analytic in this half-plane. It follows that the abscissa of convergence of $D_{g^{-1}}(s)$ is given by $\sigma_c \ge \sigma_1 > 1$. In particular, the abscissa of convergence of this DGF cannot be smaller than σ_1 . The result proved in [16, Thm. 1.3; §1.2] then shows that

$$\limsup_{x \to \infty} \frac{\log |G^{-1}|(x)}{\log x} = \sigma_c \ge \sigma_1.$$

Remark 5.4 (Implications for new bounds on M(x)). Notice that for any $x \ge 1$ we can for the signed partial sums of $g^{-1}(n)$ as

$$G^{-1}(x) = \sum_{n \le x} \lambda(n) |g^{-1}(n)| \sim \sum_{n \le x} \lambda(n) \left(\int_{n-1}^{n} \frac{d}{dt} |G^{-1}|(t) dt \right).$$

Hence, we note that it is worthwhile to attempt to extract more precise information about the asymptotics of this summatory function, and its characterization of M(x) in (13), based on limit-supremum type bounds of the type in Corollary 5.3 along infinite subsequences of positive integers. In particular, an important motivating open problem is to resolve whether it is the case that

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x}} = +\infty,$$

and if so, to determine the rate with which the square-root scaled Mertens function becomes unbounded. Extensions of the bounds we have proved in this subsection then formulate one concrete new approach to this problem.

5.3 Local cancellation of $G^{-1}(x)$ in the new formulas for M(x)

Lemma 5.5. Suppose that p_n denotes the n^{th} prime for $n \ge 1$ [26, A000040]. Let $\mathcal{P}_{\#}$ denote the set of positive primorial integers given by [26, A002110]

$$\mathcal{P}_{\#} = \{n\#\}_{n\geq 1} = \left\{\prod_{k=1}^{n} p_k : n \geq 1\right\} = \{2, 6, 30, 210, 2310, 30030, \ldots\}.$$

 $As m \rightarrow \infty we have$

$$-G^{-1}((4m+1)\#) = (4m+1)!\left(1+o\left(\frac{1}{m^2}\right)\right),\tag{(A)}$$

$$G^{-1}\left(\frac{(4m+1)\#}{p_k}\right) = (4m)!\left(1+o\left(\frac{1}{m^2}\right)\right), \text{ for all } 1 \le k \le 4m+1.$$
 ((B))

Proof. We have by part (B) of Proposition 1.6 that for all squarefree integers $n \ge 1$

$$|g^{-1}(n)| = \sum_{j=0}^{\omega(n)} {\omega(n) \choose j} \times j! = (\omega(n))! \times \sum_{j=0}^{\omega(n)} \frac{1}{j!}$$
$$= (\omega(n))! \times \left(e + O\left(\frac{1}{(\omega(n) + 1)!}\right) \right).$$

Let m be a large positive integer. We obtain main terms of the form

$$G_U^{-1}((4m+1)\#) := \sum_{\substack{n \le (4m+1)\#\\\omega(n) = \Omega(n)}} \lambda(n)|g^{-1}(n)|$$

$$= \sum_{\substack{0 \le k \le 4m+1}} {4m+1 \choose k} (-1)^k k! \left(e + O\left(\frac{1}{(k+1)!}\right)\right)$$

$$= -(4m+1)! + O(1).$$

We argue that the analogous sums over the non-squarefree $n \leq (4m+1)\#$, denoted below by $G_L^{-1}((4m+1)\#)$, contribute strictly less than the order of $G_U^{-1}((4m+1)\#)$ to the main term of $G^{-1}((4m+1)\#)$. Suppose that $2 \leq n \leq (4m+1)\#$ is not squarefree. We have the next largest order of growth of the sequence along those n with $|g^{-1}(n)| \leq |g^{-1}(p_s^2t)|$ for some $1 \leq s \leq 4m+1$ when t is squarefree. If s=1, so that $p_s=2$, we have that the largest possible squarefree part t satisfies $t \leq p_3 p_4 \times \cdots \times p_{4m+1}$. A corresponding t with $\omega(t) = 4m-1$ that attains the same bound on $|g^{-1}(n)|$ corresponds to taking any (unordered) rearrangement of the distinct prime factors bounding t from above by the previous product. By Corollary 3.3, we have that

$$\left| g^{-1}(p_1^k t) \right| = \sum_{\substack{d = p_1^k d_0, p_1^{k-1} d_0 \\ d_0 \mid t}} C_{\Omega}(d) \le \sum_{\substack{d_0 \mid t}} \left(\binom{k+1+\omega(d_0)}{k+1} + \binom{k+\omega(d_0)}{k} \right) \times (\omega(d_0))!.$$

Then we see that

$$\begin{vmatrix} \log_2((4m+1)\#) & \sum_{1 \le t \le \frac{(4m+1)\#}{p_1^k}} g^{-1}(p_1^k t) \end{vmatrix} \ll \sum_{2 \le k \le 4m-1} \sum_{i=0}^{4m-1} {4m-1 \choose i} \left({k+1+i \choose k+1} + {k+i \choose k} \right) i!$$

$$\ll \sum_{2 \le k \le 4m-1} \frac{k^{4m-1} (4m-1)^{4m-1}}{(8m-3)!!} \ll \frac{(4m-1)!}{\sqrt{4m-1}} \cdot \frac{(8m-2)^{4m} e^{4m}}{(8m-2)!}$$

$$\ll (4m)! \times \frac{e^{8m}}{(8m-2)^{4m-2}} \ll \frac{1}{m^{\frac{3}{2}}} \times \left(\frac{e}{2} \right)^{4m}.$$

In the previous steps, we used Stirling's formula and the fact that for all natural numbers $n \ge 1$, $(2n-1)!! = \frac{(2n)!}{2^n n!}$. We next consider the contributions from subsequent leading powers of the other $p_s \le (4m+1)\#$ when $2 \le s \le 4m+1$. When we have that $|g^{-1}(n)| \le |g^{-1}(p_s^2t)|$ for $p_s \ge 3$ and $t \le p_{r+1}p_{r+2} \times \cdots \times p_{4m+1}$ squarefree, we obtain

$$\left| \sum_{k=2}^{\log_{p_s}((4m+1)\#)} \sum_{\substack{1 \le t \le \frac{(4m+1)\#}{p_1^k} \\ \omega(t) = \Omega(t) = 4m+1-r}} g^{-1}(p_s^k t) \right| \ll \frac{1}{(m+1-r)^{\frac{3}{2}}} \times \left(\frac{e}{2}\right)^{4m-r}.$$

For any fixed p_s with $2 \le s \le 4m + 1$, we bound the lower index r according to $p_s^2(1 + o(1)) \le r \log r$ using the prime number theorem. The inequality requires that

$$r \geq e^{W_0(p_s^2(1+o(1)))} = e^{2\log p_s - \log\log(p_s^2) + o(1)} \sim p_s^2 - 2\log p_s.$$

The lower order term sums $G_L^{-1}((4m+1)\#)$ are then bounded from above by

$$G_L^{-1}((4m+1)\#) := \left| \sum_{\substack{n \le (4m+1)\#\\ \omega(n) < \Omega(n)}} g^{-1}(n) \right|$$

$$\ll \sum_{2 \le r \le 4m} \left(\frac{e}{2} \right)^{4m-r} \ll \left(\frac{e}{2} \right)^{4m} \ll \frac{(4m+1)!}{m^2}, \text{ as } m \to \infty.$$

Hence, we find that $-G^{-1}((4m+1)\#) \sim (4m+1)!$. We can similarly derive for any $1 \le k \le 4m+1$ that

$$G^{-1}\left(\frac{(4m+1)\#}{p_k}\right) \sim \sum_{0 \le k \le 4m} {4m \choose k} (-1)^k k! \left(e + O\left(\frac{1}{(k+1)!}\right)\right) \sim (4m)!.$$

Remark 5.6. Even though we get comparatively large order growth of $|G^{-1}|(x) \ge |G^{-1}(x)|$ infinitely often, we should expect that there is usually (almost always) a large cancellation between the successive values of this summatory function in the form of (13). Lemma 5.5 demonstrates the phenomenon well along the asymptotically large infinite subsequence of x taken along the primorials, or the integers x = (4m + 1) # that each precisely the product of the first 4m + 1 primes when $m \ge 1$. In fact, for all sufficiently large m, we have that the following properties holds:

(i)
$$\operatorname{sgn}\left(G^{-1}((4m+1)\#)\right) = -\operatorname{sgn}\left(\sum_{p \le (4m+1)\#} G^{-1}\left(\frac{(4m+1)\#}{p}\right)\right);$$

(ii)
$$\lim_{m \to \infty} \frac{G^{-1}((4m+1)\#)}{\sum\limits_{p \le (4m+1)\#} G^{-1}\left(\frac{(4m+1)\#}{p}\right)} = -1;$$

(iii)
$$M((4m+1)\#) \gg \sum_{\substack{n \le (4m+1)\#\\ \omega(n) = \Omega(n)}} g^{-1}(n) \left(1 + \pi \left(\frac{(4m+1)\#}{n}\right)\right).$$

In summary, along this primorial subsequence, the contributions of the local maxima for the absolute values of $|g^{-1}(n)|$ at the squarefree integers cancel considerably and do not contribute the main term for the limiting asymptotic expansion of $M(x_m)$ as $m \to \infty$ along $\{x_m\}_{m\geq 1}$ when $x_m := (4m+1)\#$.

6 Conclusions

We have identified a new sequence, $\{g^{-1}(n)\}_{n\geq 1}$, that is the Dirichlet inverse of the shifted strongly additive function $\omega(n)$. Section 3.3, shows that there is a natural combinatorial interpretation to the distribution of distinct values of $|g^{-1}(n)|$ for $n\leq x$ involving the distribution of the primes $p\leq x$ at large x. In particular, the magnitude of $g^{-1}(n)$ depends only on the pattern of the exponents of the prime factorization of n. The sign of $g^{-1}(n)$ is given by $\lambda(n)$ for all $n\geq 1$. This leads to a new relations of the summatory function $G^{-1}(x)$, which characterizes the distribution of M(x), to the distribution of the classical summatory function L(x). We emphasize that our new work on the Mertens function proved within this article is significant in providing a new window through which we can view bounding M(x) through asymptotics of auxiliary sequences and partial sums. The computational data generated in Table B of the appendix section suggests numerically that the distribution of $G^{-1}(x)$ is easier to work with than that of M(x) or L(x). The additively combinatorial relation of the distinct (and repetition of) values of $|g^{-1}(n)|$ for $n \leq x$ are suggestive towards bounding main terms for $G^{-1}(x)$ along infinite subsequences in future work.

Acknowledgments

We thank the following professors that offered discussion, feedback and correspondence while the article was being actively written: Gergő Nemes, Robert Vaughan, Jeffrey Lagarias, Steven J. Miller, Paul Pollack and Bruce Reznick. The work on the article was supported in part by funding made available within the School of Mathematics at the Georgia Institute of Technology in 2020 and 2021. Without this combined support, the article would not have been possible.

References

- [1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1976.
- [2] P. T. Bateman and H. G. Diamond. Analytic Number Theory. World Scientific Publishing, 2004.

- [3] P. Billingsley. On the central limit theorem for the prime divisor function. *Amer. Math. Monthly*, 76(2):132–139, 1969.
- [4] H. Davenport and H. Heilbronn. On the zeros of certain Dirichlet series I. J. London Math. Soc., 11:181–185, 1936.
- [5] H. Davenport and H. Heilbronn. On the zeros of certain Dirichlet series II. J. London Math. Soc., 11:307–312, 1936.
- [6] P. Erdős and M. Kac. The Gaussian errors in the theory of additive arithmetic functions. *American Journal of Mathematics*, 62(1):738–742, 1940.
- [7] C. E. Fröberg. On the prime zeta function. BIT Numerical Mathematics, 8:87–202, 1968.
- [8] G. H. Hardy and E. M. Wright, editors. An Introduction to the Theory of Numbers. Oxford University Press, 2008 (Sixth Edition).
- [9] P. Humphries. The distribution of weighted sums of the Liouville function and Pólya's conjecture. J. Number Theory, 133:545–582, 2013.
- [10] G. Hurst. Computations of the Mertens function and improved bounds on the Mertens conjecture. Math. Comp., 87:1013–1028, 2018.
- [11] H. Hwang and S. Janson. A central limit theorem for random ordered factorizations of integers. *Electron. J. Probab.*, 16(12):347–361, 2011.
- [12] H. Iwaniec and E. Kowalski. *Analytic Number Theory*, volume 53. AMS Colloquium Publications, 2004.
- [13] T. Kotnik and H. te Riele. The Mertens conjecture revisited. *Algorithmic Number Theory*, 7th International Symposium, 2006.
- [14] T. Kotnik and J. van de Lune. On the order of the Mertens function. Exp. Math., 2004.
- [15] R. S. Lehman. On Liouville's function. Math. Comput., 14:311–320, 1960.
- [16] H. L. Montgomery and R. C. Vaughan. *Multiplicative Number Theory: I. Classical Theory*. Cambridge, 2006.
- [17] G. Nemes. The resurgence properties of the incomplete gamma function II. Stud. Appl. Math., 135(1):86–116, 2015.
- [18] G. Nemes. The resurgence properties of the incomplete gamma function I. Anal. Appl. (Singap.), 14(5):631–677, 2016.
- [19] G. Nemes and A. B. Olde Daalhuis. Asymptotic expansions for the incomplete gamma function in the transition regions. *Math. Comp.*, 88(318):1805–1827, 2019.
- [20] N. Ng. The distribution of the summatory function of the Móbius function. *Proc. London Math. Soc.*, 89(3):361–389, 2004.
- [21] A. M. Odlyzko and H. J. J. te Riele. Disproof of the Mertens conjecture. *J. Reine Angew. Math.*, 1985.
- [22] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. *NIST Handbook of Mathematical Functions*. Cambridge University Press, 2010.
- [23] A. Renyi and P. Turan. On a theorem of Erdős-Kac. Acta Arithmetica, 4(1):71–84, 1958.

- [24] P. Ribenboim. The new book of prime number records. Springer, 1996.
- [25] M. D. Schmidt. SageMath and Mathematica software for computations with the Mertens function, 2021. https://github.com/maxieds/MertensFunctionComputations.
- [26] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences, 2021. http://oeis.org.
- [27] K. Soundararajan. Partial sums of the Möbius function. J. Reine Angew. Math., 2009(631):141–152, 2009.
- [28] G. Tenenbaum, editor. Introduction to Analytic and Probabilistic Number Theory. American Mathematical Society, third edition, 2015.
- [29] E. C. Titchmarsh. The theory of the Riemann zeta function. Oxford University Press, second edition, 1986.

A Appendix: Asymptotic formulas for partial sums

We appreciate the kind online correspondence with Gergő Nemes from the Alfréd Rényi Institute of Mathematics and his careful notes on the limiting asymptotics for the sums identified in this section. We have adapted the communication of his proofs to establish the next few lemmas based on his recent work in the references [17, 18, 19].

Facts A.1 (The incomplete gamma function). The (upper) incomplete gamma function is defined by [22, §8.4]

 $\Gamma(a,z) = \int_{z}^{\infty} t^{a-1} e^{-t} dt, a \in \mathbb{R}, |\arg z| < \pi.$

The function $\Gamma(a, z)$ can be continued to an analytic function of z on the universal covering of $\mathbb{C}\setminus\{0\}$. For $a \in \mathbb{Z}^+$, the function $\Gamma(a, z)$ is an entire function of z. The following properties of $\Gamma(a, z)$ hold [22, §8.4; §8.11(i)]:

$$\Gamma(a,z) = (a-1)!e^{-z} \times \sum_{k=0}^{a-1} \frac{z^k}{k!}, \text{ for } a \in \mathbb{Z}^+, z \in \mathbb{C},$$
 (26a)

$$\Gamma(a,z) \sim z^{a-1}e^{-z}$$
, for fixed $a \in \mathbb{C}$, as $z \to +\infty$. (26b)

Moreover, for real z > 0, as $z \to +\infty$ we have that [17]

$$\Gamma(z,z) = \sqrt{\frac{\pi}{2}} z^{z-\frac{1}{2}} e^{-z} + O\left(z^{z-1} e^{-z}\right),\tag{26c}$$

If $z, a \to \infty$ with $z = \lambda a$ for some $\lambda > 1$ such that $(\lambda - 1)^{-1} = o(\sqrt{|a|})$, then [17]

$$\Gamma(a,z) \sim z^a e^{-z} \times \sum_{n>0} \frac{(-a)^n b_n(\lambda)}{(z-a)^{2n+1}}.$$
 (26d)

The sequence $b_n(\lambda)$ satisfies the characteristic recurrence relation that $b_0(\lambda) = 1$ and³

$$b_n(\lambda) = \lambda(1-\lambda)b'_{n-1}(\lambda) + \lambda(2n-1)b_{n-1}(\lambda), n \ge 1.$$

Proposition A.2. Let a, z, λ be positive real parameters such that $z = \lambda a$. If $\lambda \in (0,1)$, then as $z \to \infty$

$$\Gamma(a,z) = \Gamma(a) + O_{\lambda} \left(z^{a-1} e^{-z} \right).$$

If $\lambda > 1$, then as $z \to \infty$

$$\Gamma(a,z) = \frac{z^{a-1}e^{-z}}{1-\lambda^{-1}} + O_{\lambda}(z^{a-2}e^{-z}).$$

If $\lambda > 0.567142 > W(1)$ where W(x) denotes the principal branch of the Lambert W-function for $x \ge 0$, then as $z \to \infty$

$$\Gamma(a, ze^{\pm \pi i}) = -e^{\pm \pi i a} \frac{z^{a-1} e^z}{1 + \lambda^{-1}} + O_{\lambda}(z^{a-2} e^z).$$

$$b_n(\lambda) = \sum_{k=0}^n \left\langle\!\!\left\langle n \right\rangle\!\!\right\rangle \lambda^{k+1}.$$

³An exact formula for $b_n(\lambda)$ is given in terms of the second-order Eulerian number triangle [26, A008517] as follows:

Note that the first two estimates are only useful when λ is bounded away from the transition point at 1. We cannot write the last expansion above as $\Gamma(a, -z)$ directly unless $a \in \mathbb{Z}^+$ as the incomplete gamma function has a branch point at the origin with respect to its second variable. This function becomes a single-valued analytic function of its second input by continuation on the universal covering of $\mathbb{C} \setminus \{0\}$.

Proof. The first asymptotic estimate follows directly from the following asymptotic series expansion that holds as $z \to +\infty$ [19, Eq. (2.1)]:

$$\Gamma(a,z) \sim \Gamma(a) + z^a e^{-z} \times \sum_{k>0} \frac{(-a)^k b_k(\lambda)}{(z-a)^{2k+1}}.$$

Using the notation from (26d) and [18], we have that

$$\Gamma(a,z) = \frac{z^{a-1}e^{-z}}{1-\lambda^{-1}} + z^a e^{-z} R_1(a,\lambda).$$

From the bounds in $[18, \S 3.1]$, we have that

$$|z^a e^{-z} R_1(a,\lambda)| \le z^a e^{-z} \times \frac{a \cdot b_1(\lambda)}{(z-a)^3} = \frac{z^{a-2} e^{-z}}{(1-\lambda^{-1})^3}$$

The main and error terms in the previous equation can also be seen by applying the asymptotic series in (26d) directly.

The proof of the third equation above follows from the following asymptotics [17, Eq. (1.1)]

$$\Gamma(-a,z) \sim z^{-a}e^{-z} \times \sum_{n>0} \frac{a^n b_n(-\lambda)}{(z+a)^{2n+1}},$$

by setting $(a, z) \mapsto (ae^{\pm \pi i}, ze^{\pm \pi i})$ so that $\lambda = \frac{z}{a} > 0.567142 > W(1)$. The restriction on the range of λ over which the third formula holds is made to ensure that the last formula from the reference is valid at negative real a.

Lemma A.3. For $x \to +\infty$, we have that

$$S_1(x) \coloneqq \frac{x}{\log x} \times \left| \sum_{1 \le k \le \lfloor \log \log x \rfloor} \frac{(-1)^k (\log \log x)^{k-1}}{(k-1)!} \right| = \frac{x}{2\sqrt{2\pi \log \log x}} + O\left(\frac{x}{(\log \log x)^{\frac{3}{2}}}\right).$$

Proof. We have for $n \ge 1$ and any t > 0 by (26a) that

$$\sum_{1 \le k \le n} \frac{(-1)^k t^{k-1}}{(k-1)!} = -e^{-t} \times \frac{\Gamma(n, -t)}{(n-1)!}.$$

Suppose that $t = n + \xi$ with $\xi = O(1)$, e.g., so we can formally take the floor of the input n to truncate the last sum. By the third formula in Proposition A.2 with the parameters $(a, z, \lambda) \mapsto (n, t, 1 + \frac{\xi}{n})$, we deduce that as $n, t \to +\infty$.

$$\Gamma(n, -t) = (-1)^{n+1} \times \frac{t^n e^t}{t+n} + O\left(\frac{nt^n e^t}{(t+n)^3}\right) = (-1)^{n+1} \frac{t^n e^t}{2n} + O\left(\frac{t^{n-1} e^t}{n}\right). \tag{27}$$

Accordingly, we see that

$$\sum_{1 \le k \le n} \frac{(-1)^k t^{k-1}}{(k-1)!} = (-1)^n \frac{t^n}{2n!} + O\left(\frac{t^{n-1}}{n!}\right).$$

By the variant of Stirling's formula in [22, cf. Eq. (5.11.8)], we have

$$n! = \Gamma(1+t-\xi) = \sqrt{2\pi}t^{t-\xi+\frac{1}{2}}e^{-t}\left(1+O\left(t^{-1}\right)\right) = \sqrt{2\pi}t^{n+\frac{1}{2}}e^{-t}\left(1+O\left(t^{-1}\right)\right).$$

Hence, as $n \to +\infty$ with $t \coloneqq n + \xi$ and $\xi = O(1)$, we obtain that

$$\sum_{k=1}^{n} \frac{(-1)^k t^{k-1}}{(k-1)!} = (-1)^n \frac{e^t}{2\sqrt{2\pi t}} + O\left(e^t t^{-\frac{3}{2}}\right).$$

The conclusion follows by taking $n\coloneqq \lfloor\log\log x\rfloor$, $t\coloneqq \log\log x$ and applying the triangle inequality to obtain the result.

Table: Computations involving $g^{-1}(n)$ and $G^{-1}(n)$ for $1 \le n \le 500$ \mathbf{B}

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
1	1^1	Y	N	1	0	1.0000000	1.000000	0.000000	1	1	0
2	2^1	Y	Y	-2	0	1.0000000	0.500000	0.500000	-1	1	-2
3	3^1	Y	Y	-2	0	1.0000000	0.333333	0.666667	-3	1	-4
4	2^2	N	Y	2	0	1.5000000	0.500000	0.500000	-1	3	-4
5	5^1	Y	Y	-2	0	1.0000000	0.400000	0.600000	-3	3	-6
6	$2^{1}3^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	2	8	-6
7	7^1	Y	Y	-2	0	1.0000000	0.428571	0.571429	0	8	-8
8	2^3	N	Y	-2	0	2.0000000	0.375000	0.625000	-2	8	-10
9	3^2	N	Y	2	0	1.5000000	0.444444	0.555556	0	10	-10
10	$2^{1}5^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	5	15	-10
11	11^1	Y	Y	-2	0	1.0000000	0.454545	0.545455	3	15	-12
12	$2^{2}3^{1}$	N	N	-7	2	1.2857143	0.416667	0.583333	-4	15	-19
13	13^1	Y	Y	-2	0	1.0000000	0.384615	0.615385	-6	15	-21
14	$2^{1}7^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-1	20	-21
15	$3^{1}5^{1}$	Y	N	5	0	1.0000000	0.466667	0.533333	4	25	-21
16	2^4	N	Y	2	0	2.5000000	0.500000	0.500000	6	27	-21
17	17^1	Y	Y	-2	0	1.0000000	0.470588	0.529412	4	27	-23
18	$2^{1}3^{2}$	N	N	-7	2	1.2857143	0.444444	0.555556	-3	27	-30
19	19^{1}	Y	Y	-2	0	1.0000000	0.421053	0.578947	-5	27	-32
20	$2^{2}5^{1}$	N	N	-7	2	1.2857143	0.400000	0.600000	-12	27	-39
21	$3^{1}7^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-7	32	-39
22	$2^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-2	37	-39
23	23^{1}	Y	Y	-2	0	1.0000000	0.434783	0.565217	-4	37	-41
24	$2^{3}3^{1}$	N	N	9	4	1.5555556	0.458333	0.541667	5	46	-41
25	5^2	N	Y	2	0	1.5000000	0.480000	0.520000	7	48	-41
26	$2^{1}13^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	12	53	-41
27	3^{3}	N	Y	-2	0	2.0000000	0.481481	0.518519	10	53	-43
28	$2^{2}7^{1}$	N	N	-7	2	1.2857143	0.464286	0.535714	3	53	-50
29	29^{1}	Y	Y	-2	0	1.0000000	0.448276	0.551724	1	53	-52
30	$2^{1}3^{1}5^{1}$	Y	N	-16	0	1.0000000	0.433333	0.566667	-15	53	-68
31	31^{1}	Y	Y	-2	0	1.0000000	0.419355	0.580645	-17	53	-70
32	2^{5}	N	Y	-2	0	3.0000000	0.406250	0.593750	-19	53	-72
33	$3^{1}11^{1}$	Y	N	5	0	1.0000000	0.424242	0.575758	-14	58	-72
34	$2^{1}17^{1}$	Y	N	5	0	1.0000000	0.441176	0.558824	-9	63	-72
35	$5^{1}7^{1}$	Y	N	5	0	1.0000000	0.457143	0.542857	-4	68	-72
36	$2^{2}3^{2}$	N	N	14	9	1.3571429	0.472222	0.527778	10	82	-72
37	37^{1}	Y	Y	-2	0	1.0000000	0.459459	0.540541	8	82	-74
38	$2^{1}19^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	13	87	-74
39	$3^{1}13^{1}$	Y	N	5	0	1.0000000	0.487179	0.512821	18	92	-74
40	$2^{3}5^{1}$	N	N	9	4	1.5555556	0.500000	0.500000	27	101	-74
41	41^{1}	Y	Y	-2	0	1.0000000	0.487805	0.512195	25	101	-76
42	$2^{1}3^{1}7^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	9	101	-92
43	43^{1}	Y	Y	-2	0	1.0000000	0.465116	0.534884	7	101	-94
44	2^211^1	N	N	-7	2	1.2857143	0.454545	0.545455	0	101	-101
45	3^25^1	N	N	-7	2	1.2857143	0.444444	0.555556	-7	101	-108
46	$2^{1}23^{1}$	Y	N	5	0	1.0000000	0.456522	0.543478	-2	106	-108
47	47^{1}	Y	Y	-2	0	1.0000000	0.446809	0.553191	-4	106	-110
48	$2^4 3^1$	N	N	-11	6	1.8181818	0.437500	0.562500	-15	106	-121
L		•		•			•		•		

Table B: Computations involving $g^{-1}(n) \equiv (\omega + 1)^{-1}(n)$ and $G^{-1}(x)$ for $1 \le n \le 500$.

- ▶ The column labeled Primes provides the prime factorization of each n so that the values of $\omega(n)$ and $\Omega(n)$ are easily extracted. The columns labeled Sqfree and PPower, respectively, list inclusion of n in the sets of squarefree integers and the prime powers.
- ▶ The next three columns provide the explicit values of the inverse function $g^{-1}(n)$ and compare its explicit value
- The next three columns provide the explicit values of the inverse function g⁻¹(n) and compare its explicit value with other estimates. We define the function f
 ₁(n) := ∑_{k=0}^{ω(n)}(ω(n)) × k!.
 The last columns indicate properties of the summatory function of g⁻¹(n). The notation for the densities of the sign weight of g⁻¹(n) is defined as L_±(x) := 1/n × # {n ≤ x : λ(n) = ±1}. The last three columns then show the explicit components to the signed summatory function, G⁻¹(x) := ∑_{n≤x} g⁻¹(n), decomposed into its respective positive and negative magnitude sum contributions: G⁻¹(x) = G⁻¹(x) + G⁻¹(x) where G⁻¹(x) > 0 and G⁻¹(x) < 0 for all x ≥ 1. That is, the component functions G⁻¹_±(x) displayed in the last two columns of the table correspond to the summatory function G⁻¹(x) with summands that are positive and a vertice and a v to the summatory function $G^{-1}(x)$ with summands that are positive and negative, respectively.

196	n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
Si Si Si Si Si Si Si Si	49		N	Y	2	0		0.448980	0.551020	-13	108	-121
192 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 3 3 3 3 7 Y -2 0 1 1 1 1 1 1 1 1 1	50		N	N	-7	2	1.2857143	0.440000	0.560000	-20	108	-128
58	51		Y	N	5	0	1.0000000	0.450980	0.549020	-15	113	-128
50	52		N	N	-7	2	1.2857143	0.442308	0.557692	-22	113	-135
50	53		Y	Y	-2	0	1.0000000	0.433962	0.566038	-24	113	-137
56 2 ³ 1	54		N	N	9	4	1.5555556	0.444444	0.555556	-15	122	-137
57 3 19	55		Y	N	5	0	1.0000000	0.454545	0.545455	-10	127	-137
Section Sect	56		N	N	9	4	1.5555556	0.464286	0.535714	-1	136	-137
50	57			N	l	0	1.0000000	0.473684	0.526316	4	141	-137
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58		Y		5	0	1.0000000	0.482759	0.517241	9	146	-137
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	59				l	0	1.0000000	0.474576	0.525424	7	146	
$ \begin{bmatrix} 62 & 2^2 3 \\ 31^2 & V & N & 5 & 0 & 1.0000000 \\ 63 & 3^2 7^2 & N & N & 7 & 2 & 0 & 3.5000000 \\ 64 & 2^0 & N & Y & 2 & 0 & 3.5000000 \\ 65 & 5^1 3^3 & V & N & 5 & 0 & 1.0000000 \\ 66 & 2^1 3^1 1^1 & V & N & -16 & 0 & 1.0000000 \\ 67 & 67^1 & Y & Y & -2 & 0 & 1.0000000 \\ 68 & 2^2 3^2 1^2 & N & N & -7 & 2 & 1.2857143 \\ 69 & 2^2 1^2 3^2 & N & N & -7 & 2 & 1.2857143 \\ 69 & 3^2 1^2 3^2 & N & N & -7 & 2 & 1.2857143 \\ 70 & 2^2 5^2 7^2 & N & N & -7 & 2 & 1.2857143 \\ 71 & 2^2 7^2 & N & N & -16 & 0 & 1.0000000 \\ 3 & 3^2 2^3 & V & N & 5 & 0 & 1.0000000 \\ 3 & 3^2 2^3 & V & N & -16 & 0 & 1.0000000 \\ 3 & 3^2 2^3 & V & N & -16 & 0 & 1.0000000 \\ 3 & 3^2 2^3 & V & N & -16 & 0 & 1.0000000 \\ 3 & 3^2 2^3 & V & N & -16 & 0 & 1.0000000 \\ 3 & 3^2 2^3 & V & N & -16 & 0 & 1.0000000 \\ 3 & 3^2 2^3 & V & N & -16 & 0 & 1.0000000 \\ 3 & 3^2 2^3 & V & N & -16 & 0 & 1.0000000 \\ 3 & 3^2 2^3 & V & N & -16 & 0 & 1.0000000 \\ 4 & 400000000 & 4.478261 & 0.525371 \\ 4 & 2^3 2^7 & V & V & -2 & 0 & 1.0000000 \\ 4 & 400000000 & 4.478261 & 0.525371 \\ 7 & 2^3 3^3 & V & N & 5 & 0 & 1.0000000 \\ 7 & 2^3 3^3 & V & N & -7 & 2 & 1.2857143 \\ 8 & 2^3 4^3 1^3 & V & N & 5 & 0 & 1.0000000 \\ 7 & 7^3 1^4 1 & V & N & 5 & 0 & 1.0000000 \\ 7 & 7^3 1^4 1 & V & N & 5 & 0 & 1.0000000 \\ 7 & 7^3 1^4 1 & V & N & 5 & 0 & 1.0000000 \\ 8 & 2^3 4^3 1^3 & V & N & -7 & 2 & 1.2857143 \\ 8 & 2^3 4^3 1^3 & V & N & -7 & 2 & 1.2857143 \\ 8 & 3^4 1 & V & N & 5 & 0 & 1.0000000 \\ 8 & 3^3 4^3 1 & V & N & -7 & 2 & 1.2857143 \\ 8 & 3^4 1 & V & N & 5 & 0 & 1.0000000 \\ 8 & 3^2 4^3 1^3 & V & N & -7 & 2 & 0 & 2.5000000 \\ 8 & 3^2 4^3 1^3 & V & N & -7 & 2 & 0 & 1.0000000 \\ 8 & 3^2 4^3 1^3 & V & N & -7 & 2 & 0 & 0.500000 \\ 8 & 3^2 4^3 1^3 & V & N & -16 & 0 & 1.0000000 \\ 8 & 3^3 4^3 1 & V & N & 1 & 6 & 0 & 1.0000000 \\ 8 & 3^3 4^3 1 & V & N & 1 & 6 & 0 & 1.0000000 \\ 8 & 3^3 4^3 1 & V & N & 5 & 0 & 1.0000000 \\ 9 & 2^3 4^3 1 & N & N & 1 & 1 & 6 & 1.8181818 \\ 8 & 2^3 4^3 1 & N & N & 0 & 0 & 1.0000000 \\ 9 & 2^3 3^2 1 & N & N & 0 & 0 & 0 & 0.000000 \\ 9 & 2^3 3^2 1 & N & N & 0 & 0 & 0.000000 \\ 9 & 2^3 3^2 1 & N & $	60				l				0.516667	37	176	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
64 26					I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					l							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{c} 69 & 3^{1}23^{1} & Y & N & 5 & 0 & 1.000000 & 0.478261 & 0.52173 & 20 & 193 & -173 \\ 70 & 2^{1}2^{1}7^{1} & Y & N & -16 & 0 & 1.000000 & 0.478261 & 0.52173 & 4 & 193 & -193 \\ 71 & 71^{1} & Y & Y & Y & -2 & 0 & 1.000000 & 0.464789 & 0.538511 & 2 & 193 & -191 \\ 72 & 2^{2}3^{2} & N & N & -231 & 18 & 1.478269 & 0.45833 & 0.541667 & -21 & 193 & -216 \\ 74 & 2^{1}37^{1} & Y & N & 5 & 0 & 1.0000000 & 0.45955 & 0.547945 & -23 & 193 & -216 \\ 75 & 3^{1}5^{2} & N & N & -7 & 2 & 1.2857143 & 0.47363 & 0.541667 & -25 & 198 & -223 \\ 76 & 2^{2}19^{1} & N & N & -7 & 2 & 1.2857143 & 0.47363 & 0.55265 & -32 & 198 & -223 \\ 77 & 7^{1}11^{1} & Y & N & 5 & 0 & 1.000000 & 0.454545 & 0.54545 & -27 & 203 & -230 \\ 78 & 2^{1}3^{1}3^{1} & Y & N & -16 & 0 & 1.000000 & 0.454545 & 0.54545 & -27 & 203 & -230 \\ 79 & 79^{1} & Y & Y & -2 & 0 & 1.000000 & 0.44578 & 0.551285 & -43 & 203 & -248 \\ 80 & 2^{1}5^{1} & N & N & -111 & 6 & 1.8181818 & 0.37500 & 0.562500 & -56 & 203 & -228 \\ 81 & 3^{4} & N & Y & 2 & 0 & 2.500000 & 0.444744 & 0.55556 & -54 & 205 & -259 \\ 82 & 2^{2}44^{1} & Y & N & 5 & 0 & 1.000000 & 0.44578 & 0.551285 & -49 & 210 & -259 \\ 83 & 83^{1} & Y & Y & -2 & 0 & 1.000000 & 0.44578 & 0.55265 & -54 & 205 & -259 \\ 84 & 2^{2}4^{1}^{2} & N & N & 30 & 14 & 1.866667 & 0.52381 & 0.54789 & -25 & -25 \\ 85 & 5^{1}17^{3} & Y & N & 5 & 0 & 1.000000 & 0.44578 & 0.55227 & -45 & -25 \\ 85 & 5^{1}17^{3} & Y & N & 5 & 0 & 1.000000 & 0.44578 & 0.55227 & -25 \\ 86 & 2^{1}43^{2} & Y & N & 5 & 0 & 1.000000 & 0.45824 & 0.541176 & -16 & 25 & -261 \\ 87 & 3^{1}29^{1} & N & N & 5 & 0 & 1.000000 & 0.45828 & 0.541176 & -16 & 25 & -261 \\ 88 & 2^{3}11^{1} & N & N & 5 & 0 & 1.000000 & 0.45887 & 0.54227 & -51 & 20 & -261 \\ 89 & 80^{1} & Y & N & 5 & 0 & 1.000000 & 0.45882 & 0.541176 & -16 & 25 & -261 \\ 89 & 82^{1}1^{1} & N & N & 5 & 0 & 1.000000 & 0.45882 & 0.541176 & -16 & 25 & -261 \\ 89 & 82^{1}1^{1} & N & N & 5 & 0 & 1.000000 & 0.45862 & 0.541870 & -25 & -261 \\ 89 & 82^{1}1^{1} & N & N & 5 & 0 & 1.000000 & 0.45882 & 0.541176 & -16 & 25 & -261 \\ 89 & 82^{1}1^{1$					I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					l							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					l							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					l							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{c} 81 & 3^4 \\ 82 & 2^1 41^1 \\ 1 & Y & N \\ 83 & 83^1 \\ 1 & Y & Y \\ 1 & -2 \\ 2 & 0 \\ 1 & 0 $					I							
$ \begin{array}{c} 82 & 2^141^1 & Y & N & 5 & 0 & 1.0000000 & 0.451220 & 0.548780 & -49 & 210 & -259 \\ 84 & 2^23^17^1 & N & N & 30 & 14 & 1.166667 & 0.45238 & 0.547619 & -21 & 240 & -261 \\ 85 & 5^117^1 & Y & N & 5 & 0 & 1.0000000 & 0.45824 & 0.54176 & -16 & 245 & -261 \\ 86 & 2^143^1 & Y & N & 5 & 0 & 1.0000000 & 0.45824 & 0.54176 & -16 & 245 & -261 \\ 87 & 3^129^1 & Y & N & 5 & 0 & 1.0000000 & 0.46516 & 0.54884 & -11 & 250 & -261 \\ 88 & 2^311^1 & N & N & 9 & 4 & 1.555556 & 0.477273 & 0.522727 & 3 & 264 & -261 \\ 89 & 89^1 & Y & Y & -2 & 0 & 1.0000000 & 0.471910 & 0.528090 & 1 & 264 & -263 \\ 90 & 2^13^25^1 & N & N & 30 & 14 & 1.166667 & 0.477273 & 0.522222 & 31 & 294 & -263 \\ 91 & 7^113^1 & Y & N & 5 & 0 & 1.0000000 & 0.48316 & 0.516484 & 36 & 299 & -273 \\ 92 & 2^223^1 & N & N & -7 & 2 & 1.2857143 & 0.478261 & 0.521739 & 29 & 299 & -277 \\ 94 & 2^147^1 & Y & N & 5 & 0 & 1.0000000 & 0.483816 & 0.516484 & 36 & 299 & -270 \\ 95 & 5^19^1 & Y & N & 5 & 0 & 1.0000000 & 0.483816 & 0.516484 & 36 & 299 & -270 \\ 96 & 2^93^1 & N & N & 5 & 0 & 1.0000000 & 0.483810 & 0.516529 & 34 & 304 & -270 \\ 99 & 2^17^2 & Y & N & 5 & 0 & 1.0000000 & 0.483810 & 0.516529 & 34 & 304 & -270 \\ 99 & 2^17^2 & N & N & 13 & 8 & 2.076931 & 0.500000 & 57 & 327 & -270 \\ 99 & 3^211^1 & N & N & -7 & 2 & 1.2857143 & 0.478261 & 0.521739 & 29 & 299 & -270 \\ 99 & 3^211^1 & N & N & -7 & 2 & 1.2857143 & 0.48848 & 0.515152 & 41 & 327 & -286 \\ 101 & 101^1 & Y & Y & -2 & 0 & 1.0000000 & 0.483810 & 0.500005 & 57 & 327 & -270 \\ 99 & 3^211^1 & N & N & -7 & 2 & 1.2857143 & 0.48848 & 0.515152 & 41 & 327 & -286 \\ 101 & 101^1 & Y & Y & -2 & 0 & 1.0000000 & 0.483810 & 0.51000 & 57 & 341 & -286 \\ 101 & 101^1 & Y & Y & -2 & 0 & 1.0000000 & 0.483810 & 0.51000 & 57 & 341 & -286 \\ 101 & 101^1 & Y & Y & -2 & 0 & 1.0000000 & 0.480310 & 0.51000 & 57 & 341 & -286 \\ 101 & 101^1 & Y & Y & -2 & 0 & 1.0000000 & 0.463810 & 0.510805 & 53 & 341 & -386 \\ 102 & 2^27^1 & N & N & -7 & 2 & 1.2857143 & 0.486848 & 0.515152 & 41 & 327 & -286 \\ 101 & 101^1 & Y & Y & -2 & 0 & 1.0000000 & 0.463810 & 0.514851 $					l							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$_{9}^{2}$			I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					l							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					l							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					I							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98	$2^{1}7^{2}$	N	N	-7	2		0.489796		48	327	-279
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	99	3^211^1	N		-7					41		-286
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	$2^{2}5^{2}$			I			0.490000				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$2^1 3^1 17^1$			I		1.0000000		0.519608			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		103^{1}			I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$3^15^17^1$			I							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$2^{1}53^{1}$			I			0.481132				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	107	107^{1}	Y		l		1.0000000	0.476636	0.523364			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$2^{2}3^{3}$			l							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	109		Y	Y	-2		1.0000000	0.467890		6	355	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110		Y	N	-16	0	1.0000000	0.463636	0.536364	-10	355	-365
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111		Y	N	5	0	1.0000000	0.468468	0.531532	-5	360	-365
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	112		N	N	-11	6	1.8181818	0.464286	0.535714	-16	360	-376
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	113		Y	Y	-2	0	1.0000000	0.460177	0.539823	-18	360	-378
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	114		Y	N	-16	0	1.0000000	0.456140	0.543860	-34	360	-394
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115		Y	N	5	0	1.0000000	0.460870	0.539130	-29	365	-394
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	116		N	N	-7	2	1.2857143	0.456897	0.543103	-36	365	-401
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	117		N		-7			0.452991				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	118	$2^{1}59^{1}$	Y		l					-38		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	119	$7^{1}17^{1}$	Y	N	5	0	1.0000000	0.462185	0.537815	-33	375	-408
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	$2^3 3^1 5^1$			I							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	11^{2}			I							
123 3 ¹ 41 ¹ Y N 5 0 1.0000000 0.471545 0.528455 -69 387 -456	122	$2^{1}61^{1}$	Y	N	5	0	1.0000000	0.467213		-74		-456
124 2 ² 31 ¹ N N -7 2 1.2857143 0.467742 0.532258 -76 387 -463	123		Y	N	5	0	1.0000000	0.471545	0.528455	-69	387	
	124	2^231^1	N	N	-7	2	1.2857143	0.467742	0.532258	-76	387	-463

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
125	5 ³	N	Y	-2	0	2.0000000	0.464000	0.536000	-78	387	-465
126	$2^{1}3^{2}7^{1}$	N	N	30	14	1.1666667	0.468254	0.531746	-48	417	-465
127	127^{1}	Y	Y	-2	0	1.0000000	0.464567	0.535433	-50	417	-467
128	2^{7}	N	Y	-2	0	4.0000000	0.460938	0.539062	-52	417	-469
129	$3^{1}43^{1}$	Y	N	5	0	1.0000000	0.465116	0.534884	-47	422	-469
130	$2^{1}5^{1}13^{1}$	Y	N	-16	0	1.0000000	0.461538	0.538462	-63	422	-485
131	131 ¹	Y	Y	-2	0	1.0000000	0.458015	0.541985	-65	422	-487
132	$2^{2}3^{1}11^{1}$	N	N	30	14	1.1666667	0.462121	0.537879	-35	452	-487
133	$7^{1}19^{1}$ $2^{1}67^{1}$	Y	N	5	0	1.0000000	0.466165	0.533835	-30	457	-487
134	$3^{3}5^{1}$	Y	N	5	0	1.0000000	0.470149	0.529851	-25	462	-487
135	$2^{3}17^{1}$	N	N	9	4	1.5555556	0.474074	0.525926	-16	471	-487
136	137^{1}	N	N	9	4	1.5555556	0.477941 0.474453	0.522059 0.525547	-7	480	-487
137 138	$2^{13}^{1}23^{1}$	Y Y	Y N	-2 -16	0 0	1.0000000 1.0000000	0.474453	0.525547 0.528986	-9 -25	480 480	-489 -505
139	2 3 23 139 ¹	Y	Y	-16 -2	0	1.0000000	0.471014	0.532374	-25 -27	480	-505 -507
140	$2^{2}5^{1}7^{1}$	N	N N	30	14	1.1666667	0.467626	0.532574 0.528571	3	510	-507 -507
141	$3^{1}47^{1}$	Y	N	5	0	1.0000007	0.471423	0.524823	8	515	-507
142	$2^{1}71^{1}$	Y	N	5	0	1.0000000	0.478177	0.524623 0.521127	13	520	-507
143	$11^{1}13^{1}$	Y	N	5	0	1.0000000	0.482517	0.517483	18	525	-507
144	$2^{4}3^{2}$	N	N	34	29	1.6176471	0.486111	0.517489	52	559	-507
145	$5^{1}29^{1}$	Y	N	5	0	1.0000000	0.489655	0.510345	57	564	-507
146	$2^{1}73^{1}$	Y	N	5	0	1.0000000	0.493151	0.506849	62	569	-507
147	$3^{1}7^{2}$	N	N	-7	2	1.2857143	0.489796	0.510204	55	569	-514
148	$2^{2}37^{1}$	N	N	-7	2	1.2857143	0.486486	0.513514	48	569	-521
149	149 ¹	Y	Y	-2	0	1.0000000	0.483221	0.516779	46	569	-523
150	$2^{1}3^{1}5^{2}$	N	N	30	14	1.1666667	0.486667	0.513333	76	599	-523
151	151^{1}	Y	Y	-2	0	1.0000000	0.483444	0.516556	74	599	-525
152	$2^{3}19^{1}$	N	N	9	4	1.5555556	0.486842	0.513158	83	608	-525
153	3^217^1	N	N	-7	2	1.2857143	0.483660	0.516340	76	608	-532
154	$2^17^111^1$	Y	N	-16	0	1.0000000	0.480519	0.519481	60	608	-548
155	$5^{1}31^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	65	613	-548
156	$2^23^113^1$	N	N	30	14	1.1666667	0.487179	0.512821	95	643	-548
157	157^{1}	Y	Y	-2	0	1.0000000	0.484076	0.515924	93	643	-550
158	$2^{1}79^{1}$	Y	N	5	0	1.0000000	0.487342	0.512658	98	648	-550
159	$3^{1}53^{1}$	Y	N	5	0	1.0000000	0.490566	0.509434	103	653	-550
160	$2^{5}5^{1}$	N	N	13	8	2.0769231	0.493750	0.506250	116	666	-550
161	$7^{1}23^{1}$	Y	N	5	0	1.0000000	0.496894	0.503106	121	671	-550
162	$2^{1}3^{4}$	N	N	-11	6	1.8181818	0.493827	0.506173	110	671	-561
163	163 ¹	Y	Y	-2	0	1.0000000	0.490798	0.509202	108	671	-563
164	$2^{2}41^{1}$	N	N	-7	2	1.2857143	0.487805	0.512195	101	671	-570
165	$3^{1}5^{1}11^{1}$	Y	N	-16	0	1.0000000	0.484848	0.515152	85	671	-586
166	$2^{1}83^{1}$	Y	N	5	0	1.0000000	0.487952	0.512048	90	676	-586
167	167^{1}	Y	Y	-2	0	1.0000000	0.485030	0.514970	88	676	-588
168	$2^{3}3^{1}7^{1}$ 13^{2}	N	N	-48	32	1.3333333	0.482143	0.517857	40	676	-636
169	$2^{1}5^{1}17^{1}$	N	Y	2	0	1.5000000	0.485207	0.514793	42	678	-636
170	$3^{2}19^{1}$	Y	N	-16	0	1.0000000	0.482353	0.517647	26	678	-652
171 172	$2^{2}43^{1}$	N N	N	-7	2 2	1.2857143	0.479532	0.520468	19 12	678	-659
173	$\frac{2}{173}^{1}$	Y	N Y	-7 -2	0	1.2857143	0.476744 0.473988	0.523256	10	678	-666
	$2^{1}3^{1}29^{1}$					1.0000000		0.526012	_	678	-668
174	$5^{2}7^{1}$	Y N	N N	-16 -7	0	1.0000000 1.2857143	0.471264 0.468571	0.528736 0.531429	-6 -13	678 678	-684 -691
175 176	$2^{4}11^{1}$	N N	N N	-7 -11	2 6	1.2857143	0.468571	0.531429 0.534091	-13 -24	678 678	-691 -702
177	$3^{1}59^{1}$	Y	N	5	0	1.0000000	0.463909	0.531073	-24 -19	683	-702 -702
178	$2^{1}89^{1}$	Y	N	5	0	1.0000000	0.403927	0.528090	-14	688	-702 -702
179	179 ¹	Y	Y	-2	0	1.0000000	0.469274	0.530726	-16	688	-704
180	$2^{2}3^{2}5^{1}$	N	N	-74	58	1.2162162	0.466667	0.533333	-10 -90	688	-704 -778
181	181 ¹	Y	Y	-2	0	1.0000000	0.464088	0.535912	-92	688	-780
182	$2^{1}7^{1}13^{1}$	Y	N	-16	0	1.0000000	0.461538	0.538462	-108	688	-796
183	$3^{1}61^{1}$	Y	N	5	0	1.0000000	0.464481	0.535519	-103	693	-796
184	$2^{3}23^{1}$	N	N	9	4	1.5555556	0.467391	0.532609	-94	702	-796
185	$5^{1}37^{1}$	Y	N	5	0	1.0000000	0.470270	0.529730	-89	707	-796
186	$2^{1}3^{1}31^{1}$	Y	N	-16	0	1.0000000	0.467742	0.532258	-105	707	-812
187	$11^{1}17^{1}$	Y	N	5	0	1.0000000	0.470588	0.529412	-100	712	-812
188	2^247^1	N	N	-7	2	1.2857143	0.468085	0.531915	-107	712	-819
189	$3^{3}7^{1}$	N	N	9	4	1.5555556	0.470899	0.529101	-98	721	-819
190	$2^15^119^1$	Y	N	-16	0	1.0000000	0.468421	0.531579	-114	721	-835
191	191^{1}	Y	Y	-2	0	1.0000000	0.465969	0.534031	-116	721	-837
192	$2^{6}3^{1}$	N	N	-15	10	2.3333333	0.463542	0.536458	-131	721	-852
193	193^{1}	Y	Y	-2	0	1.0000000	0.461140	0.538860	-133	721	-854
194	$2^{1}97^{1}$	Y	N	5	0	1.0000000	0.463918	0.536082	-128	726	-854
195	$3^{1}5^{1}13^{1}$	Y	N	-16	0	1.0000000	0.461538	0.538462	-144	726	-870
196	$2^{2}7^{2}$	N	N	14	9	1.3571429	0.464286	0.535714	-130	740	-870
197	197 ¹	Y	Y	-2	0	1.0000000	0.461929	0.538071	-132	740	-872
198	$2^{1}3^{2}11^{1}$	N	N	30	14	1.1666667	0.464646	0.535354	-102	770	-872
199	199^{1}	Y	Y	-2	0	1.0000000	0.462312	0.537688	-104	770	-874
200	$2^{3}5^{2}$	N	N	-23	18	1.4782609	0.460000	0.540000	-127	770	-897

	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\sum_{d n} C_{\Omega}(d)$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
n						$ g^{-1}(n) $					
201	$3^{1}67^{1}$	Y	N	5	0	1.0000000	0.462687	0.537313	-122	775	-897
202	2 ¹ 101 ¹	Y	N	5	0	1.0000000	0.465347	0.534653	-117	780	-897
203	$7^{1}29^{1}$	Y	N	5	0	1.0000000	0.467980	0.532020	-112	785	-897
204	$2^{2}3^{1}17^{1}$	N	N	30	14	1.1666667	0.470588	0.529412	-82	815	-897
205	$5^{1}41^{1}$	Y	N	5	0	1.0000000	0.473171	0.526829	-77	820	-897
206	$2^{1}103^{1}$	Y	N	5	0	1.0000000	0.475728	0.524272	-72	825	-897
207	$3^{2}23^{1}$	N	N	-7	2	1.2857143	0.473430	0.526570	-79	825	-904
208	$2^4 13^1$	N	N	-11	6	1.8181818	0.471154	0.528846	-90	825	-915
209	$11^{1}19^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	-85	830	-915
210	$2^{1}3^{1}5^{1}7^{1}$	Y	N	65	0	1.0000000	0.476190	0.523810	-20	895	-915
211	211 ¹	Y	Y	-2	0	1.0000000	0.473934	0.526066	-22	895	-917
212	2^253^1 3^171^1	N	N	-7	2	1.2857143	0.471698	0.528302	-29	895	-924
213	$2^{1}107^{1}$	Y	N	5	0	1.0000000	0.474178	0.525822	-24	900	-924
214	$5^{1}43^{1}$	Y	N	5	0	1.0000000	0.476636	0.523364	-19	905	-924
215	$2^{3}3^{3}$	Y	N	5	0	1.0000000	0.479070	0.520930	-14	910	-924
216	$7^{1}31^{1}$	N Y	N	46	41	1.5000000	0.481481	0.518519	32	956	-924
217 218	$2^{1}109^{1}$	Y	N N	5	0	1.0000000	0.483871	0.516129	37 42	961	-924 -924
	$3^{1}73^{1}$	Y	N	5	0	1.0000000	0.486239	0.513761	42	966	
219 220	$2^{2}5^{1}11^{1}$	N N	N N	5 30	14	1.0000000	0.488584 0.490909	0.511416 0.509091		971 1001	-924 -924
220	$13^{1}17^{1}$	Y	N	5	0	1.1666667 1.0000000	0.490909	0.506787	77 82	1001	-924 -924
221	$2^{1}3^{1}3^{1}$	Y	N	-16	0	1.0000000	0.493213	0.509009	66	1006	-924 -940
223	233^{1}	Y	Y	-16 -2	0	1.0000000	0.490991	0.509009	64	1006	-940 -942
223	2^{23} $2^{5}7^{1}$	N N	Y N	13	8	2.0769231	0.488789	0.511211 0.508929	77	1006	-942 -942
224	$3^{2}5^{2}$	N	N	14	9	1.3571429	0.491071	0.506929	91	1019	-942 -942
226	$2^{1}113^{1}$	Y	N	5	0	1.0000000	0.495575	0.504425	96	1033	-942 -942
227	2713 227^{1}	Y	Y	-2	0	1.0000000	0.493373	0.504423	94	1038	-942 -944
228	$2^{2}3^{1}19^{1}$	N N	N	30	14	1.1666667	0.495614	0.504386	124	1068	-944 -944
229	229 ¹	Y	Y	-2	0	1.0000000	0.493450	0.506550	122	1068	-946
230	$2^{1}5^{1}23^{1}$	Y	N	-16	0	1.0000000	0.491304	0.508696	106	1068	-962
231	$3^{1}7^{1}11^{1}$	Y	N	-16	0	1.0000000	0.489177	0.510823	90	1068	-978
232	$2^{3}29^{1}$	N	N	9	4	1.5555556	0.491379	0.508621	99	1077	-978
233	233^{1}	Y	Y	-2	0	1.0000000	0.489270	0.510730	97	1077	-980
234	$2^{1}3^{2}13^{1}$	N	N	30	14	1.1666667	0.491453	0.508547	127	1107	-980
235	$5^{1}47^{1}$	Y	N	5	0	1.0000000	0.493617	0.506383	132	1112	-980
236	2^259^1	N	N	-7	2	1.2857143	0.491525	0.508475	125	1112	-987
237	3^179^1	Y	N	5	0	1.0000000	0.493671	0.506329	130	1117	-987
238	$2^17^117^1$	Y	N	-16	0	1.0000000	0.491597	0.508403	114	1117	-1003
239	239^{1}	Y	Y	-2	0	1.0000000	0.489540	0.510460	112	1117	-1005
240	$2^43^15^1$	N	N	70	54	1.5000000	0.491667	0.508333	182	1187	-1005
241	241^{1}	Y	Y	-2	0	1.0000000	0.489627	0.510373	180	1187	-1007
242	2^111^2	N	N	-7	2	1.2857143	0.487603	0.512397	173	1187	-1014
243	3^{5}	N	Y	-2	0	3.0000000	0.485597	0.514403	171	1187	-1016
244	$2^{2}61^{1}$	N	N	-7	2	1.2857143	0.483607	0.516393	164	1187	-1023
245	$5^{1}7^{2}$	N	N	-7	2	1.2857143	0.481633	0.518367	157	1187	-1030
246	$2^{1}3^{1}41^{1}$	Y	N	-16	0	1.0000000	0.479675	0.520325	141	1187	-1046
247	$13^{1}19^{1}$	Y	N	5	0	1.0000000	0.481781	0.518219	146	1192	-1046
248	$2^{3}31^{1}$	N	N	9	4	1.555556	0.483871	0.516129	155	1201	-1046
249	$3^{1}83^{1}$	Y	N	5	0	1.0000000	0.485944	0.514056	160	1206	-1046
250	$2^{1}5^{3}$	N	N	9	4	1.555556	0.488000	0.512000	169	1215	-1046
251	251^{1}	Y	Y	-2	0	1.0000000	0.486056	0.513944	167	1215	-1048
252	$2^{2}3^{2}7^{1}$	N	N	-74	58	1.2162162	0.484127	0.515873	93	1215	-1122
253	$11^{1}23^{1}$ $2^{1}127^{1}$	Y	N	5	0	1.0000000	0.486166	0.513834	98	1220	-1122
254	$3^{1}5^{1}17^{1}$	Y	N N	5	0	1.0000000	0.488189	0.511811	103	1225	-1122
255	3°5°17° 28	Y	N	-16	0	1.0000000	0.486275	0.513725	87	1225	-1138
256 257	2° 257^{1}	N Y	Y Y	2 -2	0	4.5000000 1.0000000	0.488281 0.486381	0.511719	89	1227	-1138
257	$2^{1}3^{1}43^{1}$	Y	Y N		0	1.0000000		0.513619	87	1227 1227	-1140 -1156
258	$7^{1}37^{1}$	Y	N N	-16 5	0	1.0000000	0.484496 0.486486	0.515504 0.513514	71 76	1232	-1156 -1156
260	$2^{2}5^{1}13^{1}$	N Y	N N	30	14	1.1666667	0.486486	0.513514	106	1232	-1156 -1156
261	$3^{2}29^{1}$	N N	N N	-7	2	1.2857143	0.488462	0.511538	99	1262	-1156 -1163
262	$2^{1}131^{1}$	Y	N	5	0	1.0000000	0.488550	0.513410	104	1267	-1163 -1163
263	263 ¹	Y	Y	-2	0	1.0000000	0.486692	0.511430	104	1267	-1165 -1165
264	$2^{3}3^{1}11^{1}$	N N	N	-48	32	1.3333333	0.484848	0.515308	54	1267	-1103 -1213
265	$5^{1}53^{1}$	Y	N	5	0	1.0000000	0.486792	0.513132	59	1272	-1213
266	$2^{1}7^{1}19^{1}$	Y	N	-16	0	1.0000000	0.484962	0.515038	43	1272	-1229
267	$3^{1}89^{1}$	Y	N	5	0	1.0000000	0.486891	0.513109	48	1277	-1229
268	$2^{2}67^{1}$	N	N	-7	2	1.2857143	0.485075	0.514925	41	1277	-1236
269	269 ¹	Y	Y	-2	0	1.0000000	0.483271	0.516729	39	1277	-1238
270	$2^{1}3^{3}5^{1}$	N	N	-48	32	1.3333333	0.481481	0.518519	-9	1277	-1286
271	271	Y	Y	-2	0	1.0000000	0.479705	0.520295	-11	1277	-1288
272	2^417^1	N	N	-11	6	1.8181818	0.477941	0.522059	-22	1277	-1299
273	$3^{1}7^{1}13^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	-38	1277	-1315
274	$2^{1}137^{1}$	Y	N	5	0	1.0000000	0.478102	0.521898	-33	1282	-1315
275	5^211^1	N	N	-7	2	1.2857143	0.476364	0.523636	-40	1282	-1322
276	$2^23^123^1$	N	N	30	14	1.1666667	0.478261	0.521739	-10	1312	-1322
277	277^{1}	Y	Y	-2	0	1.0000000	0.476534	0.523466	-12	1312	-1324
		•		•			•				

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316	$\begin{array}{c} 2^{1}139^{1} \\ 3^{2}31^{1} \\ 2^{3}5^{1}7^{1} \\ 281^{1} \\ 2^{2}1^{3}^{1}47^{1} \\ 283^{1} \\ 2^{2}71^{1} \\ 3^{1}5^{1}19^{1} \\ 2^{1}11^{1}13^{1} \\ 7^{1}41^{1} \\ 2^{5}3^{2} \\ 17^{2} \\ 2^{1}5^{1}29^{1} \\ 3^{1}97^{1} \\ 2^{2}73^{1} \\ 293^{1} \\ 2^{1}3^{1}7^{2} \\ 5^{1}59^{1} \\ 2^{3}37^{1} \\ 3^{3}11^{1} \\ 2^{1}149^{1} \\ 13^{1}23^{1} \\ 2^{2}3^{1}5^{2} \\ 7^{1}43^{1} \\ 2^{1}151^{1} \\ 3^{1}101^{1} \\ 2^{4}19^{1} \\ \end{array}$	Y N N Y Y Y N Y Y N N Y Y N N Y Y N N Y N Y N N Y N N Y N N N Y N	N N N Y N N N N N N N N N N N N N N N N	5 -7 -48 -2 -16 -2 -7 -16 -16 5 -47 2 -16 5 -2 -7 -2 30 5 9	0 2 32 0 0 0 2 0 0 0 42 0 0 0 2 0 0	$\begin{array}{c} \underline{\Sigma_{d n}C_{\Omega}(d)} \\ g^{-1}(n) \\ \hline 1.0000000 \\ 1.2857143 \\ 1.3333333 \\ 1.0000000 \\ 1.0000000 \\ 1.0000000 \\ 1.2857143 \\ 1.0000000 \\ 1.0000000 \\ 1.0000000 \\ 1.7659574 \\ 1.5000000 \\ 1.0000000 \\ 1.0000000 \\ 1.2857143 \\ 1.0000000 \\ 1.0000000 \\ 1.2857143 \\ 1.0000000 \\ \end{array}$	0.478417 0.476703 0.475000 0.473310 0.471631 0.469965 0.468310 0.466667 0.465035 0.466899 0.465278 0.467128 0.467534 0.467354 0.467354	0.521583 0.523297 0.525000 0.526690 0.528369 0.530035 0.531690 0.533333 0.534965 0.533101 0.534722 0.532872 0.53284483 0.532646	-7 -14 -62 -64 -80 -82 -89 -105 -121 -116 -163 -161 -177 -172 -179	1317 1317 1317 1317 1317 1317 1317 1317	-1324 -1331 -1379 -1381 -1397 -1399 -1406 -1422 -1438 -1485 -1485 -1501 -1501
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{array}{c} 2^3 5^1 7^1 \\ 281^1 \\ 2^1 3^1 47^1 \\ 283^1 \\ 2^2 71^1 \\ 3^1 5^1 19^1 \\ 2^1 11^1 13^1 \\ 7^1 41^1 \\ 2^5 3^2 \\ 17^2 \\ 2^1 5^1 29^1 \\ 3^1 97^1 \\ 2^2 73^1 \\ 293^1 \\ 2^1 3^1 7^2 \\ 5^1 59^1 \\ 2^3 37^1 \\ 3^3 11^1 \\ 2^1 449^1 \\ 13^1 23^1 \\ 2^2 3^1 5^2 \\ 7^1 43^1 \\ 2^1 151^1 \\ 3^1 101^1 \end{array}$	N Y Y Y N Y Y N N N Y Y N N Y Y N Y Y N Y N Y N Y N Y N Y N Y N Y Y	N Y N Y N N N N N N N N N N N N N N N N	-48 -2 -16 -2 -7 -16 -16 -5 -47 2 -16 5 -7 -2 30 5	32 0 0 0 2 0 0 0 42 0 0 0 2 14	1.333333 1.0000000 1.0000000 1.0000000 1.2857143 1.0000000 1.0000000 1.7659574 1.5000000 1.0000000 1.0000000 1.2857143	0.475000 0.473310 0.471631 0.469965 0.468310 0.466667 0.465035 0.466899 0.465278 0.467128 0.465517 0.467354	0.525000 0.526690 0.528369 0.530035 0.531690 0.53333 0.534965 0.533101 0.534722 0.532872 0.532646	-62 -64 -80 -82 -89 -105 -121 -116 -163 -161 -177 -172	1317 1317 1317 1317 1317 1317 1317 1312 1322 132	-1379 -1381 -1397 -1399 -1406 -1422 -1438 -1438 -1485 -1501 -1501
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{array}{c} 281^1 \\ 2^1 3^1 47^1 \\ 283^1 \\ 2^2 71^1 \\ 3^1 5^1 19^1 \\ 2^1 11^1 13^1 \\ 7^1 41^1 \\ 2^5 3^2 \\ 17^2 \\ 2^1 5^1 29^1 \\ 3^1 97^1 \\ 2^2 73^1 \\ 293^1 \\ 2^1 3^1 7^2 \\ 5^1 59^1 \\ 2^3 37^1 \\ 3^3 11^1 \\ 2^1 149^1 \\ 13^1 23^1 \\ 2^2 3^1 5^2 \\ 7^1 43^1 \\ 2^1 151^1 \\ 3^1 101^1 \end{array}$	Y Y Y N Y Y N N Y N N Y N Y N Y N Y N Y	Y N Y N N N N N N Y N N N N N N N N N N	-2 -16 -2 -7 -16 -16 5 -47 2 -16 5 -7 -2 30 5	0 0 0 2 0 0 0 42 0 0 0 2 0	1.0000000 1.0000000 1.0000000 1.2857143 1.0000000 1.0000000 1.7659574 1.5000000 1.0000000 1.0000000	0.473310 0.471631 0.469965 0.468310 0.466667 0.465035 0.466899 0.465278 0.467128 0.465517 0.467354	0.526690 0.528369 0.530035 0.531690 0.533333 0.534965 0.533101 0.534722 0.532872 0.532646	-64 -80 -82 -89 -105 -121 -116 -163 -161 -177 -172	1317 1317 1317 1317 1317 1317 1317 1322 1322	-1381 -1397 -1399 -1406 -1422 -1438 -1438 -1485 -1485 -1501 -1501
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 311 312 313 314 315	$\begin{array}{c} 2^1 3^1 47^1 \\ 283^1 \\ 2^2 71^1 \\ 3^1 5^1 19^1 \\ 2^1 11^1 13^1 \\ 7^1 41^1 \\ 2^5 3^2 \\ 17^2 \\ 2^1 5^1 29^1 \\ 3^1 97^1 \\ 2^2 73^1 \\ 293^1 \\ 2^1 3^1 7^2 \\ 5^1 59^1 \\ 2^3 37^1 \\ 3^3 11^1 \\ 2^1 149^1 \\ 13^1 23^1 \\ 2^2 3^1 5^2 \\ 7^1 43^1 \\ 2^1 151^1 \\ 3^1 101^1 \end{array}$	Y Y N Y Y Y N N Y Y N N Y Y N Y N Y Y N Y Y N Y Y N Y Y Y	N Y N N N N N N Y N N N N N N N N N N N	-16 -2 -7 -16 -16 5 -47 2 -16 5 -7 -2 30 5 9	0 0 2 0 0 0 42 0 0 0 2 0	1.0000000 1.0000000 1.2857143 1.0000000 1.0000000 1.7659574 1.5000000 1.0000000 1.0000000 1.2857143	$\begin{array}{c} 0.471631 \\ 0.469965 \\ 0.468310 \\ 0.466667 \\ 0.465035 \\ 0.466899 \\ 0.465278 \\ 0.467128 \\ 0.465517 \\ 0.467354 \end{array}$	0.528369 0.530035 0.531690 0.533333 0.534965 0.533101 0.534722 0.532872 0.534483 0.532646	-80 -82 -89 -105 -121 -116 -163 -161 -177 -172	1317 1317 1317 1317 1317 1312 1322 1322	-1397 -1399 -1406 -1422 -1438 -1438 -1485 -1485 -1501 -1501
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{array}{c} 283^1 \\ 2^271^1 \\ 3^45^119^1 \\ 2^111^113^1 \\ 7^141^1 \\ 2^53^2 \\ 17^2 \\ 2^15^129^1 \\ 3^197^1 \\ 2^273^1 \\ 293^1 \\ 2^13^17^2 \\ 5^159^1 \\ 2^337^1 \\ 3^311^1 \\ 2^1449^1 \\ 13^123^1 \\ 2^23^15^2 \\ 7^143^1 \\ 2^1151^1 \\ 3^1101^1 \end{array}$	Y N Y Y Y N N Y Y N N Y N Y N Y N Y N Y	Y N N N N N N Y N N N N N N N N N N N N	-2 -7 -16 -16 5 -47 2 -16 5 -7 -2 30 5	0 2 0 0 0 42 0 0 0 2 0	1.0000000 1.2857143 1.0000000 1.0000000 1.7659574 1.5000000 1.0000000 1.0000000	0.469965 0.468310 0.466667 0.465035 0.466899 0.465278 0.467128 0.465517 0.467354	0.530035 0.531690 0.533333 0.534965 0.533101 0.534722 0.532872 0.534483 0.532646	-82 -89 -105 -121 -116 -163 -161 -177 -172	1317 1317 1317 1317 1322 1322 1324 1324 1329	-1399 -1406 -1422 -1438 -1438 -1485 -1485 -1501 -1501
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{array}{c} 2^2 71^1 \\ 3^1 5^1 19^1 \\ 2^1 11^1 13^1 \\ 7^1 41^1 \\ 2^5 3^2 \\ 17^2 \\ 2^1 5^1 29^1 \\ 3^1 97^1 \\ 2^2 73^1 \\ 293^1 \\ 2^1 3^1 7^2 \\ 5^1 59^1 \\ 2^3 37^1 \\ 3^3 11^1 \\ 2^1 149^1 \\ 13^1 23^1 \\ 2^2 3^1 5^2 \\ 7^1 43^1 \\ 2^1 151^1 \\ 3^1 101^1 \end{array}$	N Y Y N N Y Y N Y Y N Y N Y N Y N Y Y N Y N Y N Y N Y N Y N Y N Y N Y Y	N N N N Y N N N N N	-7 -16 -16 -5 -47 2 -16 5 -7 -2 30 5 9	2 0 0 0 42 0 0 0 2 0	1.2857143 1.0000000 1.0000000 1.0000000 1.7659574 1.5000000 1.0000000 1.2857143	0.468310 0.466667 0.465035 0.466899 0.465278 0.467128 0.465517 0.467354	0.531690 0.533333 0.534965 0.533101 0.534722 0.532872 0.534483 0.532646	-89 -105 -121 -116 -163 -161 -177 -172	1317 1317 1317 1322 1322 1324 1324 1329	-1406 -1422 -1438 -1438 -1485 -1485 -1501 -1501
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{array}{c} 3^15^119^1 \\ 2^111^113^1 \\ 7^141^1 \\ 2^53^2 \\ 17^2 \\ 2^15^129^1 \\ 3^197^1 \\ 2^273^1 \\ 293^1 \\ 2^13^17^2 \\ 5^159^1 \\ 2^337^1 \\ 3^311^1 \\ 2^1149^1 \\ 13^123^1 \\ 2^2^315^2 \\ 7^143^1 \\ 2^1151^1 \\ 3^1101^1 \end{array}$	Y Y Y N N Y Y N Y N Y N Y Y N Y Y N Y N	N N N N N N N N N N N	-16 -16 5 -47 2 -16 5 -7 -2 30 5	0 0 0 42 0 0 0 2 0	1.0000000 1.0000000 1.0000000 1.7659574 1.5000000 1.0000000 1.0000000 1.2857143	0.466667 0.465035 0.466899 0.465278 0.467128 0.465517 0.467354	0.533333 0.534965 0.533101 0.534722 0.532872 0.534483 0.532646	-105 -121 -116 -163 -161 -177 -172	1317 1317 1322 1322 1324 1324 1324	-1422 -1438 -1438 -1485 -1485 -1501 -1501
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{array}{c} 2^111^113^1 \\ 7^141^1 \\ 2^53^2 \\ 17^2 \\ 2^15^129^1 \\ 3^197^1 \\ 2^273^1 \\ 293^1 \\ 2^13^17^2 \\ 5^159^1 \\ 2^337^1 \\ 3^311^1 \\ 2^1149^1 \\ 13^123^1 \\ 2^23^15^2 \\ 7^143^1 \\ 2^1151^1 \\ 3^1101^1 \end{array}$	Y Y N N Y Y N Y N Y N Y Y N Y N Y N Y N	N N N Y N N N N N N N N N N N N N N N N	-16 5 -47 2 -16 5 -7 -2 30 5 9	0 0 42 0 0 0 2 0	1.0000000 1.0000000 1.7659574 1.5000000 1.0000000 1.0000000	0.465035 0.466899 0.465278 0.467128 0.465517 0.467354	0.534965 0.533101 0.534722 0.532872 0.534483 0.532646	-121 -116 -163 -161 -177 -172	1317 1322 1322 1324 1324 1329	-1438 -1438 -1485 -1485 -1501 -1501
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{array}{c} 7^141^1 \\ 2^53^2 \\ 17^2 \\ 2^15^129^1 \\ 3^197^1 \\ 2^273^1 \\ 293^1 \\ 2^13^17^2 \\ 5^159^1 \\ 2^337^1 \\ 3^311^1 \\ 2^1449^1 \\ 13^123^1 \\ 2^23^15^2 \\ 7^143^1 \\ 2^1151^1 \\ 3^1101^1 \end{array}$	Y N N Y Y N Y N Y N Y Y N Y Y Y N Y Y Y N Y Y N Y Y Y	N N Y N N N N N N N N N N N N N N N N N	5 -47 2 -16 5 -7 -2 30 5 9	0 42 0 0 0 2 0	1.0000000 1.7659574 1.5000000 1.0000000 1.0000000 1.2857143	0.466899 0.465278 0.467128 0.465517 0.467354	0.533101 0.534722 0.532872 0.534483 0.532646	-116 -163 -161 -177 -172	1322 1322 1324 1324 1329	-1438 -1485 -1485 -1501 -1501
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{array}{c} 2^5 3^2 \\ 17^2 \\ 2^1 5^1 29^1 \\ 3^1 97^1 \\ 2^2 73^1 \\ 293^1 \\ 2^1 3^1 7^2 \\ 5^1 59^1 \\ 2^3 37^1 \\ 3^3 11^1 \\ 2^1 149^1 \\ 13^1 23^1 \\ 2^2 3^1 5^2 \\ 7^1 43^1 \\ 2^1 151^1 \\ 3^1 101^1 \end{array}$	N N Y Y N Y N Y Y	N Y N N N N N N N N N N N N N N N N N	-47 2 -16 5 -7 -2 30 5 9	42 0 0 0 2 0 14	1.7659574 1.5000000 1.0000000 1.0000000 1.2857143	0.465278 0.467128 0.465517 0.467354	0.534722 0.532872 0.534483 0.532646	-163 -161 -177 -172	1322 1324 1324 1329	-1485 -1485 -1501 -1501
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 311 312 313	$\begin{array}{c} 17^2 \\ 2^1 5^1 29^1 \\ 3^1 97^1 \\ 2^2 73^1 \\ 293^1 \\ 2^1 3^1 7^2 \\ 5^1 59^1 \\ 2^3 37^1 \\ 3^3 11^1 \\ 2^1 149^1 \\ 13^1 23^1 \\ 2^2 3^1 5^2 \\ 7^1 43^1 \\ 2^1 151^1 \\ 3^1 101^1 \end{array}$	N Y Y N Y N Y N Y	Y N N N N Y N N N N N N N N N N	2 -16 5 -7 -2 30 5 9	0 0 0 2 0 14	1.5000000 1.0000000 1.0000000 1.2857143	$\begin{array}{c} 0.467128 \\ 0.465517 \\ 0.467354 \end{array}$	$\begin{array}{c} 0.532872 \\ 0.534483 \\ 0.532646 \end{array}$	-161 -177 -172	1324 1324 1329	-1485 -1501 -1501
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{array}{c} 2^15^129^1 \\ 3^197^1 \\ 2^273^1 \\ 293^1 \\ 2^13^17^2 \\ 5^159^1 \\ 2^337^1 \\ 3^311^1 \\ 2^1449^1 \\ 13^123^1 \\ 2^23^15^2 \\ 7^143^1 \\ 2^1151^1 \\ 3^1101^1 \end{array}$	Y Y N Y N Y N Y	N N N Y N N N	-16 5 -7 -2 30 5	0 0 2 0 14	1.0000000 1.0000000 1.2857143	0.465517 0.467354	$0.534483 \\ 0.532646$	-177 -172	1324 1329	-1501 -1501
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{matrix} 3^197^1 \\ 2^273^1 \\ 293^1 \\ 2^13^17^2 \\ 5^159^1 \\ 2^337^1 \\ 3^311^1 \\ 2^1149^1 \\ 13^123^1 \\ 2^23^15^2 \\ 7^143^1 \\ 2^1151^1 \\ 3^1101^1 \end{matrix}$	Y N Y N Y N Y N Y Y Y Y	N N Y N N N	5 -7 -2 30 5 9	0 2 0 14	$1.0000000 \\ 1.2857143$	0.467354	0.532646	-172	1329	-1501
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{array}{c} 2^2 73^1 \\ 293^1 \\ 2^1 3^1 7^2 \\ 5^1 59^1 \\ 2^3 37^1 \\ 3^3 11^1 \\ 2^1 149^1 \\ 13^1 23^1 \\ 2^2 3^1 5^2 \\ 7^1 43^1 \\ 2^1 151^1 \\ 3^1 101^1 \end{array}$	N Y N Y N N Y	N Y N N N N	-7 -2 30 5 9	$\begin{matrix} 2 \\ 0 \\ 14 \end{matrix}$	1.2857143					
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$\begin{array}{c} 293^1 \\ 2^1 3^1 7^2 \\ 5^1 59^1 \\ 2^3 37^1 \\ 3^3 11^1 \\ 2^1 149^1 \\ 13^1 23^1 \\ 2^2 3^1 5^2 \\ 7^1 43^1 \\ 2^1 151^1 \\ 3^1 101^1 \end{array}$	Y N Y N N Y	Y N N N N	-2 30 5 9	0 14		0.465753	0.594045	170	40	
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$2^{1}3^{1}7^{2}$ $5^{1}59^{1}$ $2^{3}37^{1}$ $3^{3}11^{1}$ $2^{1}149^{1}$ $13^{1}23^{1}$ $2^{2}3^{1}5^{2}$ $7^{1}43^{1}$ $2^{1}151^{1}$ $3^{1}101^{1}$	N Y N N Y	N N N N	30 5 9	14	1.0000000		0.534247	-119	1329	-1508
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$5^{1}59^{1}$ $2^{3}37^{1}$ $3^{3}11^{1}$ $2^{1}149^{1}$ $13^{1}23^{1}$ $2^{2}3^{1}5^{2}$ $7^{1}43^{1}$ $2^{1}151^{1}$ $3^{1}101^{1}$	Y N N Y Y	N N N N	5 9			0.464164	0.535836	-181	1329	-1510
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$2^{3}37^{1}$ $3^{3}11^{1}$ $2^{1}149^{1}$ $13^{1}23^{1}$ $2^{2}3^{1}5^{2}$ $7^{1}43^{1}$ $2^{1}151^{1}$ $3^{1}101^{1}$	N N Y Y	N N N	9	0	1.1666667	0.465986	0.534014	-151	1359	-1510
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$3^{3}11^{1}$ $2^{1}149^{1}$ $13^{1}23^{1}$ $2^{2}3^{1}5^{2}$ $7^{1}43^{1}$ $2^{1}151^{1}$ $3^{1}101^{1}$	N Y Y	N N		~	1.0000000	0.467797	0.532203	-146	1364	-1510
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$2^{1}149^{1}$ $13^{1}23^{1}$ $2^{2}3^{1}5^{2}$ $7^{1}43^{1}$ $2^{1}151^{1}$ $3^{1}101^{1}$	Y Y	N	α	4	1.5555556	0.469595	0.530405	-137	1373	-1510
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$ \begin{array}{c} 13^{1}23^{1} \\ 2^{2}3^{1}5^{2} \\ 7^{1}43^{1} \\ 2^{1}151^{1} \\ 3^{1}101^{1} \end{array} $	Y		1 9	4	1.5555556	0.471380	0.528620	-128	1382	-1510
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314	$2^{2}3^{1}5^{2}$ $7^{1}43^{1}$ $2^{1}151^{1}$ $3^{1}101^{1}$		N	5	0	1.0000000	0.473154	0.526846	-123	1387	-1510
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	$7^{1}43^{1}$ $2^{1}151^{1}$ $3^{1}101^{1}$	N	- 1	5	0	1.0000000	0.474916	0.525084	-118	1392	-1510
302 303 304 305 306 307 308 309 310 311 312 313 314 315	$2^{1}151^{1}$ $3^{1}101^{1}$		N	-74	58	1.2162162	0.473333	0.526667	-192	1392	-1584
303 304 305 306 307 308 309 310 311 312 313 314	3^1101^1	Y	N	5	0	1.0000000	0.475083	0.524917	-187	1397	-1584
304 305 306 307 308 309 310 311 312 313 314 315		Y	N	5	0	1.0000000	0.476821	0.523179	-182	1402	-1584
305 306 307 308 309 310 311 312 313 314 315	$2^4 19^1$	Y	N	5	0	1.0000000	0.478548	0.521452	-177	1407	-1584
306 307 308 309 310 311 312 313 314 315		N	N	-11	6	1.8181818	0.476974	0.523026	-188	1407	-1595
307 308 309 310 311 312 313 314 315	$5^{1}61^{1}$	Y	N	5	0	1.0000000	0.478689	0.521311	-183	1412	-1595
308 309 310 311 312 313 314 315	$2^{1}3^{2}17^{1}$	N	N	30	14	1.1666667	0.480392	0.519608	-153	1442	-1595
309 310 311 312 313 314 315	307^{1}	Y	Y	-2	0	1.0000000	0.478827	0.521173	-155	1442	-1597
310 311 312 313 314 315	$2^27^111^1$	N	N	30	14	1.1666667	0.480519	0.519481	-125	1472	-1597
311 312 313 314 315	3^1103^1	Y	N	5	0	1.0000000	0.482201	0.517799	-120	1477	-1597
312 313 314 315	$2^15^131^1$	Y	N	-16	0	1.0000000	0.480645	0.519355	-136	1477	-1613
313 314 315	311^{1}	Y	Y	-2	0	1.0000000	0.479100	0.520900	-138	1477	-1615
314 315	$2^33^113^1$	N	N	-48	32	1.3333333	0.477564	0.522436	-186	1477	-1663
315	313^{1}	Y	Y	-2	0	1.0000000	0.476038	0.523962	-188	1477	-1665
	$2^{1}157^{1}$	Y	N	5	0	1.0000000	0.477707	0.522293	-183	1482	-1665
316	$3^25^17^1$	N	N	30	14	1.1666667	0.479365	0.520635	-153	1512	-1665
210	2^279^1	N	N	-7	2	1.2857143	0.477848	0.522152	-160	1512	-1672
317	317^{1}	Y	Y	-2	0	1.0000000	0.476341	0.523659	-162	1512	-1674
318	$2^{1}3^{1}53^{1}$	Y	N	-16	0	1.0000000	0.474843	0.525157	-178	1512	-1690
319	$11^{1}29^{1}$	Y	N	5	0	1.0000000	0.476489	0.523511	-173	1517	-1690
320	$2^{6}5^{1}$	N	N	-15	10	2.3333333	0.475000	0.525000	-188	1517	-1705
321	3^1107^1	Y	N	5	0	1.0000000	0.476636	0.523364	-183	1522	-1705
322	$2^{1}7^{1}23^{1}$	Y	N	-16	0	1.0000000	0.475155	0.524845	-199	1522	-1721
323	$17^{1}19^{1}$	Y	N	5	0	1.0000000	0.476780	0.523220	-194	1527	-1721
324	$2^{2}3^{4}$	N	N	34	29	1.6176471	0.478395	0.521605	-160	1561	-1721
325	5^213^1	N	N	-7	2	1.2857143	0.476923	0.523077	-167	1561	-1728
326	2^1163^1	Y	N	5	0	1.0000000	0.478528	0.521472	-162	1566	-1728
327	$3^{1}109^{1}$	Y	N	5	0	1.0000000	0.480122	0.519878	-157	1571	-1728
328	2^341^1	N	N	9	4	1.5555556	0.481707	0.518293	-148	1580	-1728
329	7^147^1	Y	N	5	0	1.0000000	0.483283	0.516717	-143	1585	-1728
330 2	$2^{1}3^{1}5^{1}11^{1}$	Y	N	65	0	1.0000000	0.484848	0.515152	-78	1650	-1728
331	3311	Y	Y	-2	0	1.0000000	0.483384	0.516616	-80	1650	-1730
332	2^283^1	N	N	-7	2	1.2857143	0.481928	0.518072	-87	1650	-1737
333	3^237^1	N	N	-7	2	1.2857143	0.480480	0.519520	-94	1650	-1744
334	2^1167^1	Y	N	5	0	1.0000000	0.482036	0.517964	-89	1655	-1744
335	$5^{1}67^{1}$	Y	N	5	0	1.0000000	0.483582	0.516418	-84	1660	-1744
336	$2^4 3^1 7^1$	N	N	70	54	1.5000000	0.485119	0.514881	-14	1730	-1744
337	337^{1}	Y	Y	-2	0	1.0000000	0.483680	0.516320	-16	1730	-1746
338	$2^{1}13^{2}$	N	N	-7	2	1.2857143	0.482249	0.517751	-23	1730	-1753
339	3^1113^1	Y	N	5	0	1.0000000	0.483776	0.516224	-18	1735	-1753
340	$2^25^117^1$	N	N	30	14	1.1666667	0.485294	0.514706	12	1765	-1753
341	$11^{1}31^{1}$	Y	N	5	0	1.0000000	0.486804	0.513196	17	1770	-1753
342	$2^1 3^2 19^1$	N	N	30	14	1.1666667	0.488304	0.511696	47	1800	-1753
343	7^3	N	Y	-2	0	2.0000000	0.486880	0.513120	45	1800	-1755
344	$2^3 43^1$	N	N	9	4	1.5555556	0.488372	0.511628	54	1809	-1755
345	$3^15^123^1$	Y	N	-16	0	1.0000000	0.486957	0.513043	38	1809	-1771
346	$2^{1}173^{1}$	Y	N	5	0	1.0000000	0.488439	0.511561	43	1814	-1771
347	347^{1}	Y	Y	-2	0	1.0000000	0.487032	0.512968	41	1814	-1773
348		N	N	30	14	1.1666667	0.488506	0.511494	71	1844	-1773
349	$2^23^129^1$	Y	Y	-2	0	1.0000000	0.487106	0.512894	69	1844	-1775
350	349^{1}		N	30	14	1.1666667	0.488571	0.511429	99	1874	-1775

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
351	$3^{3}13^{1}$	N	N	9	4	1.5555556	0.490028	0.509972	108	1883	-1775
352	$2^{5}11^{1}$	N	N	13	8	2.0769231	0.491477	0.508523	121	1896	-1775
353	353 ¹	Y	Y	-2	0	1.0000000	0.490085	0.509915	119	1896	-1777
354	$2^{1}3^{1}59^{1}$	Y	N	-16	0	1.0000000	0.488701	0.511299	103	1896	-1793
355	$5^{1}71^{1}$	Y	N	5	0	1.0000000	0.490141	0.509859	108	1901	-1793
356	$2^{2}89^{1}$	N	N	-7	2	1.2857143	0.488764	0.511236	101	1901	-1800
357	$3^{1}7^{1}17^{1}$	Y	N	-16	0	1.0000000	0.487395	0.511250	85	1901	-1816
358	$2^{1}179^{1}$	Y	N	5	0	1.0000000	0.487393	0.511173	90	1906	-1816
359	359^{1}	Y	Y	-2	0	1.0000000	0.487465	0.511173	88	1906	-1818
	$2^{3}3^{2}5^{1}$	N		l							
360	$\frac{2}{19^2}$	1	N Y	145 2	129	1.3034483	0.488889	0.511111	233	2051	-1818
361	$2^{1}181^{1}$	N Y			0	1.5000000	0.490305	0.509695	235	2053	-1818
362	$3^{1}11^{2}$	1	N	5	0	1.0000000	0.491713	0.508287	240	2058	-1818
363	$2^{2}7^{1}13^{1}$	N	N	-7	2	1.2857143	0.490358	0.509642	233	2058	-1825
364		N	N	30	14	1.1666667	0.491758	0.508242	263	2088	-1825
365	$5^{1}73^{1}$	Y	N	5	0	1.0000000	0.493151	0.506849	268	2093	-1825
366	$2^{1}3^{1}61^{1}$	Y	N	-16	0	1.0000000	0.491803	0.508197	252	2093	-1841
367	367^{1}	Y	Y	-2	0	1.0000000	0.490463	0.509537	250	2093	-1843
368	2^423^1	N	N	-11	6	1.8181818	0.489130	0.510870	239	2093	-1854
369	$3^{2}41^{1}$	N	N	-7	2	1.2857143	0.487805	0.512195	232	2093	-1861
370	$2^{1}5^{1}37^{1}$	Y	N	-16	0	1.0000000	0.486486	0.513514	216	2093	-1877
371	$7^{1}53^{1}$	Y	N	5	0	1.0000000	0.487871	0.512129	221	2098	-1877
372	$2^{2}3^{1}31^{1}$	N	N	30	14	1.1666667	0.489247	0.510753	251	2128	-1877
373	373 ¹	Y	Y	-2	0	1.0000000	0.487936	0.512064	249	2128	-1879
374	$2^{1}11^{1}17^{1}$	Y	N	-16	0	1.0000000	0.486631	0.513369	233	2128	-1895
375	$3^{1}5^{3}$	N	N	9	4	1.5555556	0.488000	0.512000	242	2137	-1895
376	$2^{3}47^{1}$	N	N	9	4	1.5555556	0.489362	0.510638	251	2146	-1895
377	$13^{1}29^{1}$	Y	N	5	0	1.0000000	0.490716	0.509284	256	2151	-1895
378	$2^{1}3^{3}7^{1}$	N	N	-48	32	1.3333333	0.489418	0.510582	208	2151	-1943
379	379^{1}	Y	Y	-2	0	1.0000000	0.488127	0.511873	206	2151	-1945
380	$2^25^119^1$	N	N	30	14	1.1666667	0.489474	0.510526	236	2181	-1945
381	$3^{1}127^{1}$	Y	N	5	0	1.0000000	0.490814	0.509186	241	2186	-1945
382	$2^{1}191^{1}$	Y	N	5	0	1.0000000	0.492147	0.507853	246	2191	-1945
383	383^{1}	Y	Y	-2	0	1.0000000	0.490862	0.509138	244	2191	-1947
384	$2^{7}3^{1}$	N	N	17	12	2.5882353	0.492188	0.507812	261	2208	-1947
385	$5^17^111^1$	Y	N	-16	0	1.0000000	0.490909	0.509091	245	2208	-1963
386	$2^{1}193^{1}$	Y	N	5	0	1.0000000	0.492228	0.507772	250	2213	-1963
387	3^243^1	N	N	-7	2	1.2857143	0.490956	0.509044	243	2213	-1970
388	2^297^1	N	N	-7	2	1.2857143	0.489691	0.510309	236	2213	-1977
389	389^{1}	Y	Y	-2	0	1.0000000	0.488432	0.511568	234	2213	-1979
390	$2^{1}3^{1}5^{1}13^{1}$	Y	N	65	0	1.0000000	0.489744	0.510256	299	2278	-1979
391	$17^{1}23^{1}$	Y	N	5	0	1.0000000	0.491049	0.508951	304	2283	-1979
392	$2^{3}7^{2}$	N	N	-23	18	1.4782609	0.489796	0.510204	281	2283	-2002
393	$3^{1}131^{1}$	Y	N	5	0	1.0000000	0.491094	0.508906	286	2288	-2002
394	$2^{1}197^{1}$	Y	N	5	0	1.0000000	0.492386	0.507614	291	2293	-2002
395	$5^{1}79^{1}$	Y	N	5	0	1.0000000	0.493671	0.506329	296	2298	-2002
396	$2^23^211^1$	N	N	-74	58	1.2162162	0.492424	0.507576	222	2298	-2076
397	397^{1}	Y	Y	-2	0	1.0000000	0.491184	0.508816	220	2298	-2078
398	$2^{1}199^{1}$	Y	N	5	0	1.0000000	0.492462	0.507538	225	2303	-2078
399	$3^{1}7^{1}19^{1}$	Y	N	-16	0	1.0000000	0.491228	0.508772	209	2303	-2094
400	2^45^2	N	N	34	29	1.6176471	0.492500	0.507500	243	2337	-2094
401	4011	Y	Y	-2	0	1.0000000	0.491272	0.508728	241	2337	-2096
402	$2^{1}3^{1}67^{1}$	Y	N	-16	0	1.0000000	0.490050	0.509950	225	2337	-2112
403	13 ¹ 31 ¹	Y	N	5	0	1.0000000	0.491315	0.508685	230	2342	-2112
404	$2^{2}101^{1}$	N	N	-7	2	1.2857143	0.490099	0.509901	223	2342	-2119
405	3^45^1	N	N	-11	6	1.8181818	0.488889	0.511111	212	2342	-2130
406	$2^{1}7^{1}29^{1}$	Y	N	-16	0	1.0000000	0.487685	0.512315	196	2342	-2146
407	$11^{1}37^{1}$	Y	N	5	0	1.0000000	0.488943	0.511057	201	2347	-2146
408	$2^33^117^1$	N	N	-48	32	1.3333333	0.487745	0.512255	153	2347	-2194
409	409^{1}	Y	Y	-2	0	1.0000000	0.486553	0.513447	151	2347	-2196
410	$2^{1}5^{1}41^{1}$	Y	N	-16	0	1.0000000	0.485366	0.514634	135	2347	-2212
411	$3^{1}137^{1}$	Y	N	5	0	1.0000000	0.486618	0.513382	140	2352	-2212
412	2^2103^1	N	N	-7	2	1.2857143	0.485437	0.514563	133	2352	-2219
413	$7^{1}59^{1}$	Y	N	5	0	1.0000000	0.486683	0.513317	138	2357	-2219
414	$2^{1}3^{2}23^{1}$	N	N	30	14	1.1666667	0.487923	0.512077	168	2387	-2219
415	$5^{1}83^{1}$	Y	N	5	0	1.0000000	0.489157	0.510843	173	2392	-2219
416	$2^{5}13^{1}$	N	N	13	8	2.0769231	0.490385	0.509615	186	2405	-2219
417	$3^{1}139^{1}$	Y	N	5	0	1.0000000	0.491607	0.508393	191	2410	-2219
418	$2^{1}11^{1}19^{1}$	Y	N	-16	0	1.0000000	0.490431	0.509569	175	2410	-2235
419	419^{1}	Y	Y	-2	0	1.0000000	0.489260	0.510740	173	2410	-2237
420	$2^23^15^17^1$	N	N	-155	90	1.1032258	0.488095	0.511905	18	2410	-2392
421	421^{1}	Y	Y	-2	0	1.0000000	0.486936	0.513064	16	2410	-2394
421	1 1	Y	N	5	0	1.0000000	0.488152	0.511848	21	2415	-2394
422	$2^{1}211^{1}$	1 *									
$422 \\ 423$	3^247^1	N	N	-7	2	1.2857143	0.486998	0.513002	14	2415	-2401
422		I			2 4		0.486998 0.488208 0.487059	0.513002 0.511792 0.512941	14 23	$2415 \\ 2424$	-2401 -2401 -2408

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
426	$2^{1}3^{1}71^{1}$	Y	N	-16	0	1.0000000	0.485915	0.514085	0	2424	-2424
427	$7^{1}61^{1}$	Y	N	5	0	1.0000000	0.487119	0.512881	5	2429	-2424
428	2^2107^1	N	N	-7	2	1.2857143	0.485981	0.514019	-2	2429	-2431
429	$3^111^113^1$	Y	N	-16	0	1.0000000	0.484848	0.515152	-18	2429	-2447
430	$2^{1}5^{1}43^{1}$	Y	N	-16	0	1.0000000	0.483721	0.516279	-34	2429	-2463
431	431^{1}	Y	Y	-2	0	1.0000000	0.482599	0.517401	-36	2429	-2465
432	2^43^3	N	N	-80	75	1.5625000	0.481481	0.518519	-116	2429	-2545
433	433^{1}	Y	Y	-2	0	1.0000000	0.480370	0.519630	-118	2429	-2547
434	$2^{1}7^{1}31^{1}$	Y	N	-16	0	1.0000000	0.479263	0.520737	-134	2429	-2563
435	$3^{1}5^{1}29^{1}$	Y	N	-16	0	1.0000000	0.478161	0.521839	-150	2429	-2579
436	2^2109^1	N	N	-7	2	1.2857143	0.477064	0.522936	-157	2429	-2586
437	$19^{1}23^{1}$	Y	N	5	0	1.0000000	0.478261	0.521739	-152	2434	-2586
438	$2^{1}3^{1}73^{1}$	Y	N	-16	0	1.0000000	0.477169	0.522831	-168	2434	-2602
439	439^{1}	Y	Y	-2	0	1.0000000	0.476082	0.523918	-170	2434	-2604
440	$2^35^111^1$	N	N	-48	32	1.3333333	0.475000	0.525000	-218	2434	-2652
441	3^27^2	N	N	14	9	1.3571429	0.476190	0.523810	-204	2448	-2652
442	$2^{1}13^{1}17^{1}$	Y	N	-16	0	1.0000000	0.475113	0.524887	-220	2448	-2668
443	443^{1}	Y	Y	-2	0	1.0000000	0.474041	0.525959	-222	2448	-2670
444	$2^23^137^1$	N	N	30	14	1.1666667	0.475225	0.524775	-192	2478	-2670
445	$5^{1}89^{1}$	Y	N	5	0	1.0000000	0.476404	0.523596	-187	2483	-2670
446	$2^{1}223^{1}$	Y	N	5	0	1.0000000	0.477578	0.522422	-182	2488	-2670
447	3^1149^1	Y	N	5	0	1.0000000	0.478747	0.521253	-177	2493	-2670
448	$2^{6}7^{1}$	N	N	-15	10	2.3333333	0.477679	0.522321	-192	2493	-2685
449	449^{1}	Y	Y	-2	0	1.0000000	0.476615	0.523385	-194	2493	-2687
450	$2^{1}3^{2}5^{2}$	N	N	-74	58	1.2162162	0.475556	0.524444	-268	2493	-2761
451	$11^{1}41^{1}$	Y	N	5	0	1.0000000	0.476718	0.523282	-263	2498	-2761
452	2^2113^1	N	N	-7	2	1.2857143	0.475664	0.524336	-270	2498	-2768
453	$3^{1}151^{1}$	Y	N	5	0	1.0000000	0.476821	0.523179	-265	2503	-2768
454	$2^{1}227^{1}$	Y	N	5	0	1.0000000	0.477974	0.522026	-260	2508	-2768
455	$5^17^113^1$	Y	N	-16	0	1.0000000	0.476923	0.523077	-276	2508	-2784
456	$2^33^119^1$	N	N	-48	32	1.3333333	0.475877	0.524123	-324	2508	-2832
457	457^{1}	Y	Y	-2	0	1.0000000	0.474836	0.525164	-326	2508	-2834
458	$2^{1}229^{1}$	Y	N	5	0	1.0000000	0.475983	0.524017	-321	2513	-2834
459	3^317^1	N	N	9	4	1.5555556	0.477124	0.522876	-312	2522	-2834
460	$2^25^123^1$	N	N	30	14	1.1666667	0.478261	0.521739	-282	2552	-2834
461	461^{1}	Y	Y	-2	0	1.0000000	0.477223	0.522777	-284	2552	-2836
462	$2^{1}3^{1}7^{1}11^{1}$	Y	N	65	0	1.0000000	0.478355	0.521645	-219	2617	-2836
463	463^{1}	Y	Y	-2	0	1.0000000	0.477322	0.522678	-221	2617	-2838
464	2^429^1	N	N	-11	6	1.8181818	0.476293	0.523707	-232	2617	-2849
465	$3^{1}5^{1}31^{1}$	Y	N	-16	0	1.0000000	0.475269	0.524731	-248	2617	-2865
466	$2^{1}233^{1}$	Y	N	5	0	1.0000000	0.476395	0.523605	-243	2622	-2865
467	467^{1}	Y	Y	-2	0	1.0000000	0.475375	0.524625	-245	2622	-2867
468	$2^23^213^1$	N	N	-74	58	1.2162162	0.474359	0.525641	-319	2622	-2941
469	$7^{1}67^{1}$	Y	N	5	0	1.0000000	0.475480	0.524520	-314	2627	-2941
470	$2^{1}5^{1}47^{1}$	Y	N	-16	0	1.0000000	0.474468	0.525532	-330	2627	-2957
471	3^1157^1	Y	N	5	0	1.0000000	0.475584	0.524416	-325	2632	-2957
472	2^359^1	N	N	9	4	1.5555556	0.476695	0.523305	-316	2641	-2957
473	$11^{1}43^{1}$	Y	N	5	0	1.0000000	0.477801	0.522199	-311	2646	-2957
474	$2^{1}3^{1}79^{1}$	Y	N	-16	0	1.0000000	0.476793	0.523207	-327	2646	-2973
475	5^219^1	N	N	-7	2	1.2857143	0.475789	0.524211	-334	2646	-2980
476	$2^27^117^1$	N	N	30	14	1.1666667	0.476891	0.523109	-304	2676	-2980
477	3^253^1	N	N	-7	2	1.2857143	0.475891	0.524109	-311	2676	-2987
478	$2^{1}239^{1}$	Y	N	5	0	1.0000000	0.476987	0.523013	-306	2681	-2987
479	479^{1}	Y	Y	-2	0	1.0000000	0.475992	0.524008	-308	2681	-2989
480	$2^{5}3^{1}5^{1}$	N	N	-96	80	1.6666667	0.475000	0.525000	-404	2681	-3085
481	$13^{1}37^{1}$	Y	N	5	0	1.0000000	0.476091	0.523909	-399	2686	-3085
482	$2^{1}241^{1}$	Y	N	5	0	1.0000000	0.477178	0.522822	-394	2691	-3085
483	$3^{1}7^{1}23^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	-410	2691	-3101
484	$2^{2}11^{2}$	N	N	14	9	1.3571429	0.477273	0.522727	-396	2705	-3101
485	$5^{1}97^{1}$	Y	N	5	0	1.0000000	0.478351	0.521649	-391	2710	-3101
486	$2^{1}3^{5}$	N	N	13	8	2.0769231	0.479424	0.520576	-378	2723	-3101
487	487^{1}	Y	Y	-2	0	1.0000000	0.478439	0.521561	-380	2723	-3103
488	2 ³ 61 ¹	N	N	9	4	1.5555556	0.479508	0.520492	-371	2732	-3103
489	$3^{1}163^{1}$	Y	N	5	0	1.0000000	0.480573	0.519427	-366	2737	-3103
490	$2^{1}5^{1}7^{2}$	N	N	30	14	1.1666667	0.481633	0.518367	-336	2767	-3103
491	4911	Y	Y	-2	0	1.0000000	0.480652	0.519348	-338	2767	-3105
492	$2^23^141^1$	N	N	30	14	1.1666667	0.481707	0.518293	-308	2797	-3105
493	$17^{1}29^{1}$	Y	N	5	0	1.0000000	0.482759	0.517241	-303	2802	-3105
494	$2^{1}13^{1}19^{1}$	Y	N	-16	0	1.0000000	0.481781	0.518219	-319	2802	-3121
495	$3^{2}5^{1}11^{1}$	N	N	30	14	1.1666667	0.482828	0.517172	-289	2832	-3121
496	$2^{4}31^{1}$	N	N	-11	6	1.8181818	0.481855	0.518145	-300	2832	-3132
407	$7^{1}71^{1}$	Y	N	5	0	1.0000000	0.482897	0.517103	-295	2837	-3132
497		1	3.7	-16	0	1.0000000	0.481928	0.518072	-311	2837	21.40
498	$2^{1}3^{1}83^{1}$	Y	N		0						-3148
	$2^{1}3^{1}83^{1}$ 499^{1} $2^{2}5^{3}$	Y Y N	N Y N	-16 -2 -23	0 0 18	1.0000000 1.0000000 1.4782609	0.481928 0.480962 0.480000	0.519038 0.520000	-313 -336	2837 2837 2837	-3148 -3150 -3173