Assignment # 3

Yu-Sheng Lo YL25288

Problem 1

 $A \in \mathbb{R}^{m \times n}$ and full rank, $P_j = q_j q_j^*$

$$A = \begin{bmatrix} | & | & | & | \\ a_1 & a_2 & a_3 & \dots & a_n \\ | & | & | & | & | \end{bmatrix}, \quad \{a_i\}_{i=1}^n \in \mathbb{R}^m$$

Classical Gram-Schmidt

$$v_{1} = a_{1} \rightarrow q_{1} = \frac{v_{1}}{\|v_{1}\|_{2}}$$

$$v_{2} = a_{2} - q_{1}q_{1}^{*}a_{2} \rightarrow q_{2} = \frac{v_{2}}{\|v_{2}\|_{2}}$$

$$\vdots$$

$$\vdots$$

$$v_{i} = a_{i} - \sum_{j=1}^{i-1} q_{j}q_{j}^{*}a_{i} \rightarrow q_{i} = \frac{v_{i}}{\|v_{i}\|_{2}}$$

$$v_{i} = (I - \sum_{j=1}^{i-1} P_{j})A(:, i) \quad (1)$$

Modified Gram-Schmidt

$$w_{i} = [\prod_{j=1}^{i-1} (I - P_{j})] A(:, i) \quad (2)$$

$$q_{i} = \frac{w_{i}}{\|w_{i}\|_{2}}$$

From equations (1) and (2), in order to show these two algorithm are identical, we need to show

$$v_i = w_i$$

$$\prod_{j=1}^{i-1} (I - P_j) = (I - \sum_{j=1}^{i-1} P_j) , i = 1 \sim n$$

Claim:
$$\prod_{j=1}^{i-1}(I-P_j)=(I-\sum_{j=1}^{i-1}P_j)\quad,i=1\dots n$$
 where $P_j=q_jq_j^*$,and $\{q_j\}_{j=1}^n$ are orthonormal

for i=1 and 2, the claim is obviously true. for i=3

$$\prod_{j=1}^{2} (I - P_j) = (I - P_1)(I - P_2)$$

$$= I - P_2 - P_1 + P_1 P_2$$

$$= I - (P_1 + P_2) + q_1 q_1^* q_2 q_2^*$$

$$(q_i^* q_j = 0, \forall i \neq j) \rightarrow = I - (P_1 + P_2)$$

$$= I - \sum_{i=1}^{2} P_j$$

The claim is true for i=3
Assume the claim is true for i=n-1, we have

$$\prod_{j=1}^{n-2} (I - P_j) = I - (\sum_{i=1}^{n-2} P_j) \quad (3)$$

for i=n

$$\prod_{j=1}^{n-1} (I - P_j) = \left[\prod_{j=1}^{n-2} (I - P_j) \right] (I - P_{n-1})$$

$$(3) \to = \left[I - \sum_{j=1}^{n-2} P_j \right] (I - P_{n-1})$$

$$= I - P_{n-1} - \left(\sum_{j=1}^{n-2} P_j \right) + \left[\left(\sum_{j=1}^{n-2} P_j \right) P_{n-1} \right]$$

since
$$(\prod_{j=1}^{n-2} P_j) P_{n-1} = 0$$

$$\prod_{j=1}^{n-1} (I - P_j) = I - \sum_{j=1}^{n-1} P_j$$

The claim is true for i=n, and by mathematical induction the claim is true.

The modified Gram-Schmidt algorithm is mathematically equivalent to the classical Gram-Schmidt algorithm #

Problem 2

The MATLAB code begins from page 6, function gramschmidt generates Q and R matrix.

Problem 3

A is constructed by MATLAB intrinsic function gallery A=gallery('randsvd',100,kappa) creates matrix $A \in \mathbb{R}^{100 \times 100}$ with cond(A)=kappa A function test is created to test the following

- \bullet The orthogonality of Q by $e = \frac{\|Q^*Q I\|_2}{\|I\|_2} = \left\|Q^*Q I\right\|_2$
- \bullet The accuracy of QR factorization by $e = \frac{\|QR A\|_2}{\|A\|_2}$
- Up-triangular of R by MATLAB intrinsic function *istriu*

The following is the summary. In Table.2, for each kappa, the error e is normalized with respect to $Classical\ Gram\text{-}Schmidt$

		Orthogonality			Accuracy			Up-triangular		
	Classical	Modified	qr	Classical	Modified	qr	Classical	Modified	qr	
1	1.14E-15	1.08E-15	2.23E-15	5.87E-16	5.85E-16	1.8E-15				
100	0 1.08E-11	1.1E-13	2.31E-15	2.39E-16	2.1E-16	9.39E-16	TRUE			
1E	6 4.03E-5	5.88E-11	2.25E-15	1.7E-15	1.87E-16	8.36E-16				
1E	9 $1.05E+1$	5.23E-8	2.48E-15	1.67E-16	1.93E-16	6.07E-16				

Table 1: non-Normalized

	Orthogonality			Accuracy			Up-triangular		
	Classical	Modified	qr	Classical	Modified	qr	Classical	Modified	qr
1	1	0.953	1.97	1	0.997	3.07			
1000	1	0.0102	2.14E-4	1	0.877	3.92		TRUE	
1E6	1	1.46E-6	5.58E-11	1	0.11	0.493			
1E9	1	4.97E-9	2.36E-16	1	1.16	4.01			

Table 2: Normalized

Discussion

- As the matrix becomes more ill-conditioned(as kappa increases), both Classical Gram-Schmidt and Modified Gram-Schmidt begins to lose orthogonality of Q, but qr remains stable.
- Classical Gram-Schmidt loses orthogonality by the order of $O(10^4)$, and modified Gram-Schmidt by the order of $O(10^2)$.
- Although all three algorithm gives good accuracy for each kappa, but once Q loses orthogonality, error is introduced when solving Ax = b. This is because we take advantage that $Ax = b \to QRx = b \to Rx = Q^*b$, but once Q begins to lose orthogonality, Q is no longer unitary, and so $Q^*Q \neq I$.

gramschmidt.m Page 1

```
%%%% Numerical Linear Algebra
%%%% Homework #3
function [Q,R]=gramschmidt(A,flag)
% check input argument
if (nargin < 2)</pre>
    flag = false;
end
[m,n]=size(A);
% Classical G-S
if (flag == true)
    Q(:,1)=A(:,1);
    for j=1:n
         v(:,j)=A(:,j);
         for i=1:j-1
    R(i,j)=dot(Q(:,i)',A(:,j));
    v(:,j)=v(:,j)-R(i,j)*Q(:,i);
         end
         R(j,j)=norm(v(:,j));
         Q(:,j)=v(:,j)/R(j,j);
    end
% Modified G-S
else
    Q(:,1)=A(:,1);
    for i=1:n
         v(:,i)=A(:,i);
    end
    for i=1:n
         R(i,i)=norm(v(:,i));
         Q(:,i)=v(:,i)/R(i,i);
for j=i+1:n
              R(i,j) = dot(Q(:,i)',v(:,j));
              v(:,j)=v(:,j)-R(i,j)*Q(:,i);
         end
    end
end
return
end
```

test.m Page 1

```
% Test
function [orth,up,accu]=test(A,Q,R)
up=istriu(R); % is R up-triangular
accu=norm(A-Q*R)/norm(A); % the accuracy of QR factorization
orth=norm(Q'*Q-eye(size(A,2))); % the orthogonality
return
end
```