I-Compitino LOGICA 25 novembre 2017

nome: cognome:

- Scrivete in modo CHIARO. Elaborati illegibili non saranno considerati.
- NON si considerano le BRUTTE copie.
- Ricordatevi di ESPLICITARE l'uso della regola dello scambio sia a destra che a sinistra del sequente (se non lo fate perdete punti!).
- Ricordatevi di ETICHETTARE LE DERIVAZIONI CON LE REGOLE USATE (se non lo fate perdete punti!)
- La risoluzione degli esercizi tramite la costruzione di tabelle di verità non verrà considerata.
- Se il punteggio x ottenuto in questo I compitino è superiore o uguale a 18 allora tale punteggio sarà SOMMATO al punteggio del primo appello di logica dell'anno 2017/2018 di cui il candidato consegnerà l'elaborato SOLO nel caso in cui il candidato riporterà nell'elaborato dell'appello un punteggio superiore o uguale a 18 e sulla somma di tale punteggio sarà conteggiato il voto finale di superamento dell'esame di logica.
- Se il punteggio **x** ottenuto in questo I compitino è inferiore strettamente a **18** allora il candidato potrà superare *uno dei primi due appelli invernali* SOLO SE negli esercizi sulla logica proposizionale (ovvero sugli argomenti di questo I compitino) avrà riportato un punteggio superiore a

$$(18 - x)/6$$

• Mostrare se i sequenti elencati qui sotto sono tautologie o opinioni o paradossi in logica classica. Nel caso il sequente sia un'opinione esibire una riga della tabella di verità in cui il sequente è falso e una riga in cui il sequente è vero.

Nel caso di paradossi o opinioni i punti vengono raddoppiati.

(3 punti)
$$B \vdash \neg \neg (B \& M)$$

(3 punti)
$$\vdash \neg (\ \ (\ (A \ \rightarrow \ \neg A\) \ \rightarrow \ A\) \ \rightarrow \ A\)$$

• Formalizzare in sequente le argomentazioni di seguito. Si provi se il sequente ottenuto è tautologia, opinione o paradosso motivando la risposta. Nel caso il sequente sia un'opinione esibire una riga della tabella di verità in cui il sequente è falso e una riga in cui il sequente è vero (nel caso di opinioni o paradossi i punti vengono raddoppiati):

- (4 punti)

Mario non corre velocemente ma neanche lentamente.

Non si dà il caso che solo se corre velocemente Mario corra lentamente.

si consiglia di usare:

V="Mario corre velocemente"

L="Mario corre lentamente"

- (4 punti)

Non si dà il caso che, se non è notte si veda Giove.

Non si vede Giove ma il sole.

si consiglia di usare:

G ="si vede Giove"

N ="è notte"

S="si vede il sole"

• Esercizio teoria

Sia T_{lez} la teoria ottenuta estendendo LC_p con la formalizzazione dei seguenti assiomi: (la formalizzazione di ogni assioma conta 1 punto)

- Solo se non studia Eva è in vacanza.
- Non si dà il caso che Eva sia in aula studio e non studi.
- Eva è in aula studio se e solo se non è a lezione.
- Eva è in vacanza e studia se non è in aula studio.

Si consiglia di usare:

S="Eva studia"

A="Eva è in aula studio"

V="Eva è in vacanza"

L="Eva è a lezione"

Derivare poi in T_{lez} i teoremi corrispondenti alla formalizzazione delle seguenti affermazioni (ciascuna vale 4 punti quando non indicato altrimenti):

- Eva studia o non è in aula in studio.
- Se è in aula studio Eva non è a lezione.
- Se non è in aula studio Eva non è in vacanza.
- (6 punti) Eva è in aula studio.
- Eva studia e non è a lezione.

- Negli esercizi che seguono il punteggio è riferito all'analisi della validità di ciascuna regola. Si consiglia di affrontare questi esercizi dopo aver svolto almeno un esercizio dei primi due gruppi o di un teorema della teoria.
 - (6 punti) la regola $\frac{G \vdash D_1, B, D_2}{G \vdash D_1, E, D_2} \xrightarrow{B \vdash E} comp_{dx}$

è valida? Sono valide le sue inverse? È regola sicura?

- (6 punti) la regola

$$\frac{A,B \vdash Q \quad A, \neg N \vdash Q}{A,N \ \rightarrow \ B, \neg Q \vdash C} \ 1$$

è valida? Sono valide le sue inverse? È regola sicura?

- (6 punti) Formalizzare la regola seguente

 $\frac{\text{Il programma non è corretto} \vdash \text{Il programma non termina.}}{\text{Il programma non termina} \vdash \text{Il programma termina solo se è corretto.}} \ 2$

ove

T="il programma termina"

C="il programma è corretto"

La regola ottenuta è valida? È valida la sua inversa? È regola sicura?

Logica classica- LC_p

TAUTOLOGIE CLASSICHE

associatività \vee	$(A \lor B) \lor C$	\leftrightarrow	$A \lor (B \lor C)$
associatività &	(A&B)&C	\leftrightarrow	A&(B&C)
commutatività \vee	$A \vee B$	\leftrightarrow	$B \vee A$
commutatività &	A&B	\leftrightarrow	B&A
distributività \vee su &	$A \lor (B\&C)$	\leftrightarrow	$(\ A \vee B\)\&(\ A \vee C\)$
distributività & su \vee	$A\&(\ B\lor C\)$	\leftrightarrow	$(\ A\&B\)\lor(\ A\&C\)$
idempotenza \vee	$A \vee A$	\leftrightarrow	A
idempotenza &	A&A	\leftrightarrow	A
leggi di De Morgan	$\neg (\ B \lor C\)$	\leftrightarrow	$\neg B \& \neg C$
	$\neg (B\&C)$	\leftrightarrow	$\neg B \vee \neg C$
legge della doppia negazione	$\neg \neg A$	\leftrightarrow	A
implicazione classica	$(A \rightarrow C)$	\leftrightarrow	$\neg A \lor C$
disgiunzione come antecendente	$(A \vee B \rightarrow C)$	\leftrightarrow	$(A \rightarrow C) \& (B \rightarrow C)$
congiunzione come antecendente	$(A\&B \rightarrow C)$	\leftrightarrow	$(A \rightarrow (B \rightarrow C))$
legge della contrapposizione	$(A \rightarrow C)$	\leftrightarrow	$(\neg C \rightarrow \neg A)$
legge del modus ponens	$A \& (A \rightarrow C)$	\rightarrow	C
legge della NON contraddizione	$\neg (A\& \neg A)$		
legge del terzo escluso	$A \vee \neg A$		

Regola di composizione della teoria proposizionale

$$\frac{\vdash \mathtt{fr} \qquad \qquad \Gamma, \mathtt{fr}, \Gamma' \vdash \nabla}{\Gamma, \Gamma' \vdash \nabla} \ \mathrm{comp}$$