Class 3: Groups - 2022/09/14

Motivating Examples

- 1. The set of integers \mathbb{Z} , we have addition defined on it: a+b
 - Associative: (a + b) + c = a + (b + c)
 - Commutative: a + b = b + a
 - $0 \in \mathbb{Z}$. such that a + 0 = 0 + a = a for any $a \in \mathbb{Z}$.
 - ullet $\forall a \in \mathbb{Z}$, it has an "inverse": $-a \in \mathbb{Z}$ such that a + (-a) = (-a) + a = 0
- 2. The set of $n \times n$ invertible matrices with $\mathbb{R}-entries$
 - **Denoted** by $GL_n(\mathbb{R})$
 - On $GL_n(\mathbb{R})$, a matrix multiplication can be defined.
 - $GL_n(\mathbb{R}) imes GL_n(\mathbb{R}) o GL_n(\mathbb{R})$
 - \blacksquare $(A,B) \mapsto AB$

Note that $AB\in GL_n(\mathbb{R})$ since A and B invertible $\Rightarrow AB$ invertible. |A|=0, |B|=0, so |AB|=|A||B|=0

$$|A| = 0, |B| = 0, \text{ so } |AB| = |A||B| = 0$$

- Associative: (AB)C = A(BC)
- Commutative: Holds only when n = 1.
 - In general we know $AB \neq BA$
- Identity Matrix:

$$I = \begin{bmatrix} 1 & \dots & \dots \\ \dots & 1 & \dots \\ \dots & \dots & 1 \end{bmatrix}$$

- ullet $\forall A \in GL_n(\mathbb{R}), IA = AI = A$
- ullet $orall A\in GL_n(\mathbb{R})$, it has inverse matrix A^{-1} , $AA^{-1}=A^{-1}A=I$

Group

Definition

- ullet A Group is a nonempty set G with an operation (also called Law of Composition) on it.
 - ullet G imes G o G (means an operation, not necessarily multiplication)
 - $\circ (g_1,g_2) \mapsto g_1g_2$
- It satisfies the conditions below
 - Associative: $\forall x,y,z \in G, (xy)z = x(yz)$
 - ullet $\exists 1 \in G, \quad orall g \in G, \quad 1 \cdot g = g \cdot 1 = g.$ (1 is called the identity)
 - ullet $\forall g \in G, \quad \exists g^{-1} \in G, \quad gg^{-1} = g^{-1}g = 1.$ $(g^{-1} \text{ is called the inverse of } g)$
- If a groups is also commutative (i.e. $\forall g_1,g_2\in G,g_1h_2=g_2g_1$), then we say it's an <u>abelian group</u> (named after Abel)
- We see the two motivating examples are groups
- · Remarks on notation:
 - $\circ \ \ e$ is also often used to denote identity
 - \circ If G is abelian, we can use 0 for identity and + for composition
 - In general, the composition is usually denoted by $ab, a \cdot b, a * b, ...$

• Example of Groups:

- 1. The trivial group: $G = \{1\}$
 - \circ Composition: $1 \cdot 1 = 1$
- 2. $\mathbb{R}^x = \mathbb{R} \{0\}$ with <u>multiplication</u> is a group.
 - Set: the real number except 0
 - Law of Composition: multiplication
 - Associative: (ab)c = a(bc)
 - ullet identity: $1 \in \mathbb{R}^x: \ orall a \in \mathbb{R}^x, \ a \cdot 1 = 1 \cdot a = a$
 - ullet inverse: $orall a \in \mathbb{R}^x$, $a rac{1}{a} = rac{1}{a} a = 1$

"

We delete 0 because 0 doesn't have an inverse.

- \circ Furthermore, \mathbb{R}^x is an abelian group.
- 3. Let S be a set of n elements. Say $S=\{1,2,\ldots n\}$

Let G be the set of all bijections on S. Each element is a function $S \to S$.

Then G with the function composition forms a group:

$$G imes G o G \ (f_1,f_2)\mapsto f_1\circ f_2$$

66

Note that $f_1\circ f_2$ is also bijective, so it's in G.

- \circ associative: $(f_1 \circ f_2) \circ f_3 = f_1 \circ (f_2 \circ f_3)$
- \circ identity: identity function id_s
 - $lacksquare orall f \in G, \ \ f \circ id_s = id_s \circ f = f$
- inverse: $\forall f \in G$, its invers function f^{-1} is its inverse:
 - $ullet f\circ f^{-1}=f^{-1}\circ f=id_s$

Remarks:

- We will use S_n to denote this group.
- Called the <u>symmetric groups</u> or <u>permutation group</u>.

Theorems

- Theorem: In a group G, the identity is unique Proof:
 - \circ If 1, 1' are both identities of G, then $1=1\cdot 1'=1'$

Inverse of $g \in G$ is also unique

• Theorem (Cancellation Law): If G is a group, $x,y,z\in G$, the $xy=xz\Rightarrow y=z$ Proof:

$$xy = xz$$
 $x^{-1}(xy) = x^{-1}(xz)$
 $(x^{-1}x)y = (x^{-1}x)z$
 $1 \cdot y = 1 \cdot z$
 $y = z$

- NOTE: $\mathbb R$ with multiplication is $\$ NOT a group.

 Because $0\in\mathbb R$ has no inverse, cancellation law is not true on $\mathbb R$ Ex: x(x-1)=2x• On the other hand, $\mathbb R$ with addition is a group, so cancellation law holds.

 $a+b=a+c \quad \Rightarrow \quad b=c$