

The Graph-Simplex Correspondence and its Algorithmic Foundations

Candidate No. 1032098 St. Cross College, Oxford

A dissertation presented to the faculty in the department of mathematics in candidacy for the degree of $Master\ of$ Science.

September, 2019

Abstract

Lay Summary

Acknowledgements

Contents

A	bstra	act	i
La	ay Su	ımmary	ii
\mathbf{A}	ckno	wledgements	iii
Li	st of	Figures	vi
N	omer	nclature	vii
1	Inti	roduction	1
	1.1	Think about	1
	1.2	Prior Work	2
	1.3	Contribution	2
2	Bac	kground and Fundamentals	3
	2.1	General Notation	3
	2.2	Linear Algebra	4
		2.2.1 Pseudoinverse	5
	2.3	Spectral Graph Theory	7
		2.3.1 Laplacian Matrices	7
		2.3.2 The Laplacian Spectrum	9
	2.4	Electrical Flows	11
	2.5	Simplices	11
		2.5.1 Dual Simplex	14
		2.5.2 Angles in a Simplex	17
3	The	e Graph-Simplex Correspondence	18
	3.1	Convex Polyhedra of Matrices	18
		3.1.1 The Inverse Polytope	19
	3.2	A Bijection Between Graphs and Simplices	20
		3.2.1 The Simplices of a Graph	20
		3.2.2 The Graph of a Simplex	22
	3.3	Examples & Simplices of Special Graphs	24
		3.3.1 Examples	26
	3.4	Properties of S_G and S_G^+	27
	3.5	Properties of \hat{S}_C and \hat{S}_C^+	35

4	Fur	ther Properties of the Correspondence	41
	4.1	Construction via Extended Menger and Gramian	41
	4.2	Inequalities	46
	4.3	Quadrics	47
	4.4	Random Walks	49
		4.4.1 Discrete Time Random Walks	50
		4.4.2 Continuous Time Random Walks	50
		4.4.3 mixing time	51
_	A 1 cm	rouithroica	
5	Alg	gorithmics	52
9	5.1	Preliminaries	52 52
5			
5	5.1	Preliminaries	52
Э	5.1 5.2	Preliminaries	52 53
ð	5.1 5.2	Preliminaries	52 53 56
6	5.1 5.2 5.3	Preliminaries	52 53 56 57

List of Figures

	Simplices in dimensions one, two, and three.	
3.1	A simplex of a graph and its inverse.	28
5.1	Summary of results for precise mappings. A slash refers to a difference in runtimes when the graph is available versus when it isn't. The quantity before the slash indicates the runtime <i>without</i> the graph, after the slash the runtime <i>with</i> the graph. A question mark indicates that the runtime isn't known	57

$Nomenclature^2$

Simplex Geometry

General simplex
Dual simplex to \mathcal{T}
Vertex matrix of simplex \mathcal{T}
(Normalized) Simplex associated to graph G .
Inverse simplex of \mathcal{S}_G ($\widehat{\mathcal{S}}_G$).
Face of simplex \mathcal{T} restricted to U
Vertex matrix of the simplex $S_G(\widehat{S}_G)$.
Vertex matrix of the simplex \mathcal{S}_{G}^{+} ($\widehat{\mathcal{S}}_{G}^{+}$).
Vertex vectors of (normalized) simplex
Altitude vector from \mathcal{T}_U to \mathcal{T}_{U^c}
Centroid of simplex \mathcal{T}_U

Graph Theory

V(G), E(G)	Vertex set and edge set of graph G
$oldsymbol{A}_G$	Adjacency matrix of graph G
$oldsymbol{W}_G$	Weight matrix of graph G
$w_G(i,j)$	Weight of edge (i, j) in G
$\delta_G(i)$	Neighbours of i in G
$w_G(i)$	Weight of vertex $i \in V(G)$, i.e., $\sum_{j \in \delta_G(i)} w(i,j)$
$\operatorname{vol}_G(U)$	Volume of set U , i.e., $\sum_{i \in U} w(i)$.

Spectral Graph Theory

$oldsymbol{L}_G \ (\widehat{oldsymbol{L}}_G)$	Combinatorial (Normalized) Laplacian Matrix of graph G
$\mathcal{L}_G \; (\widehat{\mathcal{L}}_G)$	Quadratic form associated with $\boldsymbol{L}_{G}\left(\widehat{\boldsymbol{L}}_{G}\right)$
$\{\lambda_i(G)\}\ (\{\lambda_i(G)\})$	Eigenvalues of $L_G(\widehat{L}_G)$. Sorted in decreasing order.
$oldsymbol{\Lambda}_G \; (\widehat{oldsymbol{\Lambda}}_G)$	Diagonal Eigenvalue matrix of $oldsymbol{L}_G$ $(\widehat{oldsymbol{L}}_G)$
$\{\varphi_i(G)\}\ (\{\widehat{oldsymbol{arphi}}_i(G)\})$	Eigenvectors of L_G (\hat{L}_G)
$oldsymbol{\Phi}_G \; (\widehat{oldsymbol{\Phi}}_G)$	Eigenvector matrix of L_G (\hat{L}_G)

²The subsript G and paranthetical (G) is often dropped from relevant symbols.

Miscellaneous

\mathbb{R}	Real numbers
\mathbb{Q}	Rational numbers
\mathbb{C}	Complex numbers
\mathbb{N}	Natural numbers

Introduction

§1.1. Think about

- 1. Been thinking about using the simplex as a means to sparsify the graph. But this is probably backwards. What about leveraging our knowledge vis-a-vis sparsifying graphs to "sparsify" a hyperacute simplex? Given simplex properties which can be expressed as a quadratic product, graph sparsification techniques could yield simplices with more orthogonality relations which maintain approximately the same properties. I suppose the question is whether a simplex with more orthogonality relationships is somehow easier to deal with? That is, why would it be advantageous to store a sparsified simplex?
- 2. Can we use the simplex to bound eigenvalues?
- 3. According to Gharan's notes, can optimize over L_2^2 metrics with SDPs. This should have implications for optimizing over the squared distances between vertices, which corresponds to optimizing over effective resistance.
- 4. In [Fie98], Fielder gives some sort of correspondence involving "ultrametric matrices". Look this up and understand it—could be interesting.
- 5. Looking at the random walk of a graph as a path in the simplex didn't yield anything too interesting. What about the other way around? Beginning at a random point in the simplex, if we take a "random walk" (this would have to be defined appropriately we take a weighted step towards each vertex with some probability), we end up at some point that we know as a result of graph theory. We also know what governs how quickly we converge to this point, and when the path will be "straight". We know it's the sizes of the eigenvalues which govern the convergence; if we're simply given a hyperacute simplex, what do the eigenvalues represent? Can we translate this into a statement about the dynamics of the random walk in terms of the simplex only, and not the graph?
- 6. Can we define the "inverse/dual" graph of G as follows: G yields a simplex S_G which is hyperacute. It is therefore the inverse simplex of graph G^+ . How are G and G^+ related? Tried this in Section ??. Unclear as of yet whether it's interesting.
- 7. The projection matrix $Y(e, f) = b_e^t L_G^+ b_f \sqrt{w(e)w(f)}$ is symmetric with real eigenvalues (see [V⁺13]). It thus yields a simplex. Maybe explore its properties.

- 8. Can use inequalities obtained in the effective resistance literature to obtain inequalities which pertain to all hyperacute simplices. See e.g., [AALG17]
- 9. Do low rank approximations of the gram matrix maintain any of the simplex properties? This yields a smaller representation of the graph ... what properties does this representation have?
- 10. Embedding approximate distance matrix.
- 11. Applications of Schur Complement? try next
- 12. Simplex of the quotient graph? (EEP)
- 13. Dimensionality reduction. Can we reduce the dimensionality in specific ways to maintain interesting properties? Started thinking about this; JL lemma, sparsification, etc
- 14. Graph partitioning via the simplex?
- 15. Similarity measures between graphs. Projection onto different subspaces??
- 16. We could use the correspondence to develop a theory of random simplices. This could be a useful model. Study the random geometry of simplices via this correspondence. The random model could simply be to consider a random graph G(n, p) and look at its simplex. p would roughl correspond to volume of the simplex higher p implies higher connectivity implies larger volume. Meeeeeeh. Not sure if interesting.

§1.2. Prior Work

Steinitz's theorem which investigates the relationship between undirected graphs arising from convex polyhedra in \mathbb{R}^3 [Ste22].

§1.3. Contribution

Background and Fundamentals

This chapter is devoted to introducing the pre-requisite knowledge necessary to grapple with the material in subsequent sections. The subject matter of this dissertation lies at the intersection of several mathematical topics, ensuring that any treatment of the material will give rise to notational challenges. Nevertheless, we have strived—courageously, in the author's unbiased opinion—to use maintain standard notation wherever possible in the hopes that readers familiar with spectral graph theory may skip this background material without losing the plot.

§2.1. General Notation

We use the standard notation for sets of numbers: \mathbb{R} (reals), \mathbb{N} (naturals), \mathbb{Z} (integers), \mathbb{C} (complex). We use the subscript ≥ 0 (resp., > 0) to restrict a relevant set to its nonnegative (resp., positive) elements ($\mathbb{R}_{\geq 0}$, for example). We will often introduce new notation or definitions by using the notation $\stackrel{\text{def}}{=}$. The complement of a set U (with respect to what will be clear from context) is denoted U^c . Given a set of scalars K, we let $K^{n\times m}$ denote the set of $n\times m$ matrices (n rows and m columns) with elements in K. Matrices will typically be denoted by uppercase letters in boldface, e.g., $Q \in K^{n\times m}$. Matrices will also often be referred to as linear transformations and written, for example, as $Q:K^m\to K^n$. We let $Q(i,\cdot)$ (resp., $Q(\cdot,i)$) denote the i-th row (resp., column) of the matrix Q. For a set U,K^U denotes the set of all functions from U to K. Elements of K^U are also called vectors. For any $n\in\mathbb{N}$, set $[n]\stackrel{\text{def}}{=}\{1,2,\ldots,n\}$. As usual, we let $K^n=K^{[n]}$. Might have to distinguish between vectors and points; unsure whether this is needed yet. Vectors will typically be denoted by lowercase boldcase letters. Lowercase greek letters will often be used for scalars.

For $n \in \mathbb{N}$, let $\mathbf{0}_n \in \mathbb{R}^n$ and $\mathbf{1}_n \in \mathbb{R}^n$ be the vectors of all zeroes and all ones, respectively. Let \mathbf{I}_n and \mathbf{J}_n refer to the $n \times n$ identity matrix and all-ones matrix respectively (so $\mathbf{J}_n = \mathbf{1}_n \mathbf{1}_n^t$). When the dimension n is understood from context, will typically omit it as a subscript. We use $\chi(E)$ or χ_E as the indicator of an event E, i.e., $\chi(E) = 1$ if E occurs, and 0 otherwise. For example, $\chi(i \in U) = 1$ if $i \in U$, and 0 if $i \in U^c$. Similarly, for $U \subseteq K$, $\chi_U \in \mathbb{R}^K$ is the indicator vector of the set U, so $\chi_U(i) = \chi(i \in U)$. By $\operatorname{diag}(x_1, x_2, \dots, x_n)$ we mean the $n \times n$ matrix \mathbf{D} entries $\mathbf{D}(i, i) = x_i$ and $\mathbf{D}(i, j) = 0$ for $i \neq j$. Given vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$, we will often denote by $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ the matrix whose i-th column is \mathbf{v}_i . The i-th coordinate of a vector \mathbf{x} will be denoted either by $\mathbf{x}(i)$ or simply x(i). We trust this will not be overly

confusing. For $1 \leq p < \infty$, the *p-norm* of $\boldsymbol{x} \in \mathbb{R}^d$ is

$$\left\|\boldsymbol{x}\right\|_{p} = \left(\sum_{i=1}^{d} x_{i}^{p}\right)^{1/p},$$

while the 0-norm of \boldsymbol{x} is the number of non-zero entries of \boldsymbol{x} , and is denoted by $\|\boldsymbol{x}\|_0$. Given a vector or matrix, we use the superscript t to denote it's transpose, i.e.,, given \boldsymbol{Q} , \boldsymbol{Q}^t is defined as $\boldsymbol{Q}^t(i,j) = \boldsymbol{Q}(j,i)$. The standard inner product on \mathbb{R}^d is denoted as $\langle \cdot, \cdot \rangle$, that is, $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_i x(i)y(i)$. Elementary properties of the inner product will often be used without justification, such as its bilinearity: $\langle \boldsymbol{x}, \alpha \boldsymbol{y}_1 + \boldsymbol{y}_2 \rangle = \langle \boldsymbol{x}, \alpha \boldsymbol{y}_1 \rangle + \langle \boldsymbol{x}, \boldsymbol{y}_2 \rangle$ for $\alpha \in \mathbb{R}$. We will sometimes use the notation \bot to mean "orthogonal to", so $\boldsymbol{x} \bot \boldsymbol{y}$ iff $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$.

We will often use the shorthand "iff" to mean "if and only if". We use δ_{ij} to denote the Kronecker delta function, i.e., $\delta_{ij} = 1$ if i = j and 0 otherwise. We may sometimes include a comma and write $\delta_{i,j}$.

A set $\mathcal{X} \subseteq \mathbb{R}^m$ is *convex* if for all $x, y \in \mathcal{X}$ and $\lambda \in (0,1)$, $\lambda x + (1-\lambda)y \in \mathcal{X}$. The *convex hull* of a finite set of points $X = \{x_1, \dots, x_k\} \subseteq \mathbb{R}^n$ is

$$\operatorname{conv}(X) \stackrel{\text{def}}{=} \bigg\{ \sum_{\ell} \alpha_i \boldsymbol{x}_i : \sum_{\ell} \alpha_i = 1, \ \alpha_i \ge 0 \bigg\},$$

or equivalently, the smallest convex set containing X [GKPS67].

§2.2. Linear Algebra

The results derived in this section can be found in any self-contained reference on spectral graph theory (see e.g., [Spi09, CG97]). What's not graph-theoretic in nature—dimension, kernel, similarity, for example—may be found in a generic reference on linear algebra (e.g., [Axl97]). We begin by stating a well-known but substantial result first proved by Cauchy (see [Haw75] for the relevant history), which initiated the systematic study of the spectrum of matrices and which underpins the results in this dissertation.

THEOREM 2.1 (Spectral Theorem for real matrices). Every real, symmetric $n \times n$ matrix has a set of n orthogonal eigenvectors and real eigenvalues.

LEMMA 2.1. Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be a set of linearly independent vectors in \mathbb{R}^n . There exists a set of vectors, $\mathbf{u}_1, \ldots, \mathbf{u}_k$ such that $\langle \mathbf{v}_i, \mathbf{u}_j \rangle = \delta_{ij}$ for all $i, j \in [k]$. The collections $\{\mathbf{v}_i\}$ and $\{\mathbf{u}_i\}$ are called biorthogonal or dual bases.

Given the set $\{\mathbf{v}_i\}$ of linearly independent vectors, the complementary set $\{\mathbf{u}_i\}$ given by Lemma 2.1 is called the *sister* or *dual set to* $\{\mathbf{v}_i\}$. If $\{v_i\}$ constitutes a basis of the underlying space, then we might call $\{\mathbf{u}_i\}$ the *sister* or *dual basis*. We present a simple observation which will be useful in later sections.

OBSERVATION 2.1. Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subseteq \mathbb{R}^n$ be a set of linearly independent vectors. The sister basis given by Lemma 2.1 is unique.

Proof. Suppose $\{\mathbf{u}_i\}$ and $\{\mathbf{w}_i\}$ are biorthogonal bases. Fix $i \in [n]$. By independence, $\operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \dots, \mathbf{v}_n)$ is a hyperplane—that is, $\dim(\operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \dots, \mathbf{v}_n))^{\perp} = 0$

1. Both \mathbf{u}_i and \mathbf{w}_i are orthogonal to this hyperplane (since they orthogonal to \mathbf{v}_j for all $j \neq i$), thus are either parallel or anti-parallel. Therefore, there exists some $\alpha \in \mathbb{R}$ such that $\mathbf{v}_i = \alpha \mathbf{w}_i$. By definition, $\langle \mathbf{v}_i, \mathbf{u}_i \rangle = \langle \mathbf{v}_i, \mathbf{w}_i \rangle = 1$, hence $\langle \mathbf{v}_i, \alpha \mathbf{w}_i \rangle = \langle \mathbf{v}_i, \mathbf{w}_i \rangle$ implying that $\alpha = 1$. This demonstrates that $\mathbf{u}_i = \mathbf{w}_i$ for all i.

Let $M \in \mathbb{R}^{n \times n}$ matrix. We recall that a vector φ satisfying $M\varphi = \lambda \varphi$ is an eigenvector of M, and call λ the associated eigenvalue. It's clear that if φ is an eigenvector then so it $c\varphi$ for any constant $c \in \mathbb{R}$. If M is Hermitian, then the Spectral theorem dictates that there exists an orthonormal basis consisting of eigenvectors $\{\varphi_1, \varphi_2, \ldots, \varphi_n\}$ of M whose corresponding eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$ are all real. Let $\Phi = (\varphi_1, \varphi_2, \ldots, \varphi_n)$ be the matrix whose i-th column is the i-th eigenvector of M, and set $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Observe that

$$M\Phi = M(\varphi_1, \dots, \varphi_n) = (M\varphi_1, \dots, M\varphi_n) = (\lambda_1\varphi_1, \dots, \lambda_n\varphi_n) = \Phi\Lambda.$$
 (2.1)

Moreover, if $\{\varphi_i\}_i$ are assumed to be orthonormal then $\Lambda\Lambda^{\dagger} = \mathbf{I}$ from which it follows from (2.1) that

$$\mathbf{M} = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^t = \sum_{i \in [n]} \lambda_i \boldsymbol{\varphi}_i \boldsymbol{\varphi}_i^t, \tag{2.2}$$

which is called the *eigendecomposition* of M.

A symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is positive semidefinite (PSD) if $x^t Q x \ge 0$ for all $x \in \mathbb{R}^n$. If Q is PSD, then we define

$$oldsymbol{Q}^{1/2} \stackrel{ ext{def}}{=} oldsymbol{\Phi} oldsymbol{\Lambda}^{1/2} oldsymbol{\Phi}^t = \sum_{i \in [n]} \sqrt{\lambda_i} oldsymbol{arphi}_i oldsymbol{arphi}_i^t.$$

The following basic result will be useful for us.

LEMMA 2.2. For any $Q: \mathbb{R}^n \to \mathbb{R}^m$, rank $(Q) = \operatorname{rank}(Q^tQ)$.

Proof. It suffices to show that dim ker $Q = \dim \ker Q^t Q$, by rank-nullity. Clearly ker $Q \subseteq \ker Q^t Q$ since Q = 0 implies $Q^t Q = 0$. Conversely, if $Q^t Q = 0$ then $0 = f^t Q^t Q = \|Qf\|_2^2$, implying that Q = 0.

2.2.1. Pseudoinverse

Moore-Penrose pseudo-inverse: Nice overview by Barata [BH12]. Introduced by Moore [Moo20], rediscovered by Penrose [Pen55, Pen56]. Pseudoinverse of Laplacian discussed by Van Meighem et al. [VMDC17].

TODO introduce properties and defns of pseudo inverse.

DEFINITION 2.1 ([BH12]). Let $\mathbf{M} \in \mathbb{C}^{n \times m}$ for some $n, m \in \mathbb{N}$. We call a matrix $\mathbf{M}^+ \in \mathbb{C}^{m \times n}$ satisfying both

- (i). $MM^+M = M$ and $M^+MM^+ = M^+$:
- (ii). MM^+ and M^+M are hermitian, i.e., $MM^+ = (MM^+)^t$, $M^+M = (M^+M)^t$;

the Moore-Penrose Pseudoinverse of M.

LEMMA 2.3 ([BH12]). Let $\mathbf{M} \in \mathbb{C}^{n \times m}$. There exists a unique Pseudoinverse of \mathbf{M}^+ of \mathbf{M} . Moreover, the following properties hold:

- (i). MM^+ is an orthogonal projector obeying range(MM^+) = range(M); and
- (ii). $\mathbf{M}^+\mathbf{M}$ is an orthogonal projector obeying range($\mathbf{M}^+\mathbf{M}$) = range(\mathbf{M}^+).

•

Lemma 2.4. Suppose $M \in \mathbb{C}^{m \times m}$ admits the eigendecomposition

$$oldsymbol{M} = \sum_{i=1}^k \lambda_i oldsymbol{arphi}_i oldsymbol{arphi}_i^t,$$

where λ_i , $1 \leq i \leq k$ are the non-zero eigenvalues of M with corresponding orthornomal eigenvectors $\varphi_1, \ldots, \varphi_k$. Then the pseudoinverse of M is

$$M^{+} = \sum_{i=1}^{k} \frac{1}{\lambda_i} \varphi_i \varphi_i^t. \tag{2.3}$$

Proof. Put $\mathbf{Q} = \sum_{i=1}^{k} \lambda_i^{-1} \boldsymbol{\varphi}_i \boldsymbol{\varphi}_I^t$. Since the pseudoinverse is unique, it suffices to show that \mathbf{Q} satisfies the condition of Definition 2.1. Since the eigenvectors are orthonormal by assumption, $\boldsymbol{\varphi}_i^t \boldsymbol{\varphi}_j = \delta_{i,j}$ for all i, j. Hence,

$$egin{aligned} oldsymbol{M} \mathbf{Q} &= \sum_{i=1}^k \lambda_i oldsymbol{arphi}_i oldsymbol{arphi}_i^t \sum_{j=1}^k \lambda_j^{-1} oldsymbol{arphi}_j oldsymbol{arphi}_j^t = \sum_{i,j=1}^k \lambda_i \lambda_j^{-1} oldsymbol{arphi}_i oldsymbol{arphi}_j^t oldsymbol{arphi}_j^t \ &= \sum_{i=1}^k \lambda_i \lambda_i^{-1} oldsymbol{arphi}_i oldsymbol{arphi}_i^t oldsymbol{arphi}_j^t = \sum_{i=1}^k oldsymbol{arphi}_i oldsymbol{arphi}_i^t = \mathbf{Q} oldsymbol{M}. \end{aligned}$$

Performing a similar computation then demonstrates that

$$m{M}m{Q}m{M} = \sum_{i=1}^k m{arphi}_i m{\sum}_{j=1}^k \lambda_j m{arphi}_j m{arphi}_j^t = \sum_{i,j=1} \lambda_i m{arphi}_i m{arphi}_j^t m{arphi}_j^t = \sum_{i=1}^k \lambda_i m{arphi}_i m{arphi}_i^t = m{M},$$

and similarly, $\mathbf{Q}M\mathbf{Q} = \mathbf{Q}$. Moreover, $\varphi_i \varphi_i^t(k, \ell) = \varphi_i(k)\varphi_i(\ell) = \varphi_i(\ell)\varphi_i(k) = (\varphi_i \varphi_i^t)^t(k, \ell)$ implying that $\varphi_i \varphi_i^t = (\varphi_i \varphi_i^t)^t$, so

$$(\mathbf{Q}m{M})^t = (m{M}\mathbf{Q})^t = \left(\sum_{i=1}^k m{arphi}_im{arphi}_i^t
ight)^t = \sum_{i=1}^k (m{arphi}_im{arphi}_i^t)^t = \sum_{i=1}^k m{arphi}_im{arphi}_i^t = m{M}\mathbf{Q} = \mathbf{Q}m{M},$$

so both required conditions hold, and we conclude that $\mathbf{Q} = \mathbf{M}^+$.

 \boxtimes

§2.3. Spectral Graph Theory

We begin with basic graph theory. We denote a graph by a triple G = (V, E, w) where V is the vertex set, $E \subseteq V \times V$ is the edge set and $w: V \times V \to \mathbb{R}_{\geq 0}$ (the non-negative reals) a weight function. We let the domain of w be $V \times V$ for convenience; for $(i,j) \notin E$ we have w((i,j)) = 0. We call G unweighted if $w((i,j)) = \chi_{(i,j) \in E}$ for all i,j. In this case, we may omit the weight function and simply write G = (V, E). We will typically take V = [n] for simplicity. For a vertex $i \in V$, we denote the set of its neighbours by

$$\delta(i) \stackrel{\text{def}}{=} \{ j \in V : w(i,j) > 0 \},\$$

a set we call that neighbourhood of i. The degree of i if $\deg(i) \stackrel{\text{def}}{=} |\delta(i)|$. The weight of i if $w(i) \stackrel{\text{def}}{=} \sum_{j \in \delta(i)} w(i,j)$. Note that if G is unweighted, then $w(i) = \deg(i)$. If the degree of each vertex in G is equal to k, we call G a k-regular graph. We call G regular if it is k-regular for some k. If $U \subseteq V$ contains only vertices with the same degree, we call it degree homogeneous. Abusing notation, we extend the weight function w to sets of edges or vertices by setting $w(A) = \sum_{a \in A} w(a)$. For a set of subset of vertices U, the volume of U is

$$\operatorname{vol}_G(U) \stackrel{\text{def}}{=} \sum_{i \in U} w(i),$$

and the volume of G is $vol(G) \stackrel{\text{def}}{=} vol_G(V(G))$. As usual, we will drop the subscript if the graph is clear from context. Given a subset $U \subseteq V$, we write G[U] to be the graph induced by U, i.e., $V(G[U]) = V \cap U$ and $E(G[U]) = E \cap U \times U$. If a graph is connected and acyclic (i.e., there is a unique path between each pair of vertices) we call it a tree. It's well known that a tree on n nodes has n-1 edges.

Unless otherwise stated, we will assume that graphs are undirected—that is, there is no orientation on the edges. Consequently, we identify each tuple (i,j) with its sister pair (j,i). This implies, for example, that when summing over all edges $(i, j) \in E$ we are not summing over all vertices and their neighbours. Indeed, this latter summation double counts the edges: $\begin{array}{l} \sum_{(i,j)\in E} = \frac{1}{2}\sum_{i}\sum_{j\in\delta(i)}. \text{ We will often write } i\sim j \text{ to denote an edge } (i,j); \text{ so, for example,} \\ \sum_{i\sim j} = \sum_{(i,j)\in E}. \end{array}$ We will also appeal to so-called "handshaking lemma" for unweighted graphs, which states

that $\sum_{i} \deg_{G}(i) = 2|E(G)|$; easily verified with a counting argument.

2.3.1. Laplacian Matrices

Survey of Laplacian: [Mer94]. Let G = (V, E, w) be a graph, with V = [n] and |E| = m. Let **W** be the weight matrix of G, i.e., $\mathbf{W} = \operatorname{diag}(w(1), w(2), \dots, w(n))$. The degree matrix of G is $\operatorname{diag}(\operatorname{deg}(1), \operatorname{deg}(2), \ldots, \operatorname{deg}(n))$. The adjacency matrix of G encodes the edge relations, namely, $A_G(i,j) = w((i,j))$ for all $i \neq j$, and $A_G(i,i) = 0$ for all i. Notice that (for undirected graphs) A_G is symmetric. If G is unweighted, then W_G is also called the degree matrix of G. The combinatorial Laplacian of G is the matrix

$$L_G = W_G - A_G$$
.

There are several useful representations of the Laplacian. Let $\mathbf{L}_{i,j} = w(i,j)(\chi_i - \chi_j)(\chi_i - \chi_j)^t \in \mathbb{R}^{V \times V}$, i.e.,

$$\mathbf{L}_{i,j}(a,b) = \begin{cases} w(i,j) & a = b \in \{i,j\}, \\ -w(i,j), & (a,b) = (i,j), \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\mathbf{L}_G = \sum_{i \sim j} \mathbf{L}_{i,j}. \tag{2.4}$$

Another representation comes via the *incidence matrix* of G, $\mathbf{B}_G \in \mathbb{R}^{E \times V}$, defined as follows. Place an arbitrary orientation on the edges of G (say, for example, (i, j) is directed from i to j iff i < j), and for an edge e, let $e^- \in V$ denote the vertex at which e begins, and e^+ the vertex at which it ends. Set

$$\boldsymbol{B}_{G}(e,i) = \begin{cases} 1 & \text{if } i = e^{-}, \\ -1 & \text{if } i = e^{+}, \\ 0 & \text{otherwise,} \end{cases}$$

or, equivalently, $B_G(e,i) = (\chi_{(i=e^-)} - \chi_{(i=e^+)})$. Then,

$$(\mathbf{B}_{G}^{t}\mathbf{W}_{G}\mathbf{B}_{G})(i,j) = \sum_{e \in E} \mathbf{B}_{G}^{t}(i,e)\mathbf{B}_{G}(e,j) = \sum_{e \in E} w(e)(\chi_{i=e^{-}} - \chi_{i=e^{+}})(\chi_{j=e^{-}} - \chi_{j=e^{+}}).$$

Let $\alpha(e) = (\chi_{i=e^-} - \chi_{i=e^+})(\chi_{j=e^-} - \chi_{j=e^+})$. If i = j, then $\alpha(e) = 1$ iff e is incident to i, and 0 otherwise. If $i \neq j$, then $\alpha(e) = 1$ for e = (i, j) and 0 otherwise, regardless of whether $i = e^-$ and $j = e^+$ or vice versa (this is what ensures that the orientation we chose for the edges is inconsequential). Consequently,

$$(\boldsymbol{B}_{G}^{t}\boldsymbol{W}_{G}\boldsymbol{B}_{G})(i,j) = \begin{cases} \sum_{e \ni i} w(e), & \text{if } i = j, \\ -w((i,j)), & \text{otherwise,} \end{cases}$$

which is precisely $L_G(i,j)$. That is, we have

$$L_G = (W_G^{1/2} B_G)^t (W_G^{1/2} B_G). \tag{2.5}$$

We associate with L_G the quadratic form $\mathcal{L}_G: \mathbb{R}^V \to \mathbb{R}$ which acts on function $f: V \to \mathbb{R}$ as

$$f \stackrel{\mathcal{L}_G}{\longmapsto} f^t \mathbf{L}_G f.$$

The Laplacian quadratic form will be crucial in our study of the geometry of graphs. Luckily for us then, its action on a vector is captured by an elegant closed-form formula. Computing

$$\boldsymbol{L}_{i,j}f = w(i,j)(\boldsymbol{\chi}_i - \boldsymbol{\chi}_j)(\boldsymbol{\chi}_i - \boldsymbol{\chi}_j)^t f = w(i,j)(f(i) - f(j))(\boldsymbol{\chi}_i - \boldsymbol{\chi}_j).$$

we find that

$$f^t \mathbf{L}_{i,j} f = w(i,j)(f(i) - f(j))^2.$$

Therefore, applying Equation 2.4 yields

$$\mathcal{L}_G(f) = f^t \left(\sum_{i \sim j} \mathbf{L}_{i,j} \right) f = \sum_{i \sim j} f^t \mathbf{L}_{i,j} f = \sum_{i \sim j} w(i,j) (f(i) - f(j))^2.$$
 (2.6)

The symmetric normalized Laplacian or simply the normalized Laplacian of G is given by

$$\widehat{\boldsymbol{L}}_{G} = \boldsymbol{W}_{G}^{-1/2} \boldsymbol{L}_{G} \boldsymbol{W}_{G}^{-1/2} = \mathbf{I} - \boldsymbol{W}_{G}^{-1/2} \boldsymbol{A}_{G} \boldsymbol{W}_{G}^{-1/2}.$$

To investigate \hat{L}_G we may carry out a similar procedure to above. In particular, if we define $\hat{L}_{i,j} = W_G^{-1/2} L_{i,j} W_G^{-1/2}$ then we obtain the equivalent of Equation 2.4 for the normalized Laplacian:

$$\widehat{\boldsymbol{L}}_G = \sum_{i \sim j} \widehat{\boldsymbol{L}}_{i,j}. \tag{2.7}$$

Likewise,

$$m{W}_G^{-1/2} \widehat{m{B}}_G^t m{W}_G \widehat{m{B}}_G m{W}_G^{-1/2} = m{W}_G^{-1/2} m{L}_G m{W}_G^{-1/2} = \widehat{m{L}}_G$$

As we've done here, we will typically emphasize the associate of elements associated to the normalized Laplacian with a hat. Using Equation (2.7), we see that the quadratic form $\widehat{\mathcal{L}}_G$ associated with $\widehat{\mathcal{L}}_G$ acts as

$$\widehat{\mathcal{L}}_G(f) = \sum_{i \sim j} w(i, j) \left(\frac{f(i)}{\sqrt{w(i)}} - \frac{f(j)}{\sqrt{w(j)}} \right)^2.$$

Pseudoinverse of L_G and \widehat{L}_G Since L_G and \widehat{L}_G are both symmetric, range(L^t) = range(L) = $\mathbb{R}^n \setminus \ker(L) = \mathbb{R}^n \setminus \operatorname{span}(\{1\})$, and range(\widehat{L}^t) = range(\widehat{L}) = $\mathbb{R}^n \setminus \operatorname{span}(\{W^{1/2}1\})$. It follows that the pseudo-inverses of these two Laplacians satisfy

$$L_G(L_G)^+ = (L_G)^+ L_G = I - \frac{1}{n} \mathbf{1} \mathbf{1}^t,$$
 (2.8)

and

$$\widehat{\boldsymbol{L}}_G(\widehat{\boldsymbol{L}}_G)^+ = (\widehat{\boldsymbol{L}}_G)^+ \widehat{\boldsymbol{L}}_G = \mathbf{I} - \frac{1}{n} \boldsymbol{D}_G^{1/2} \mathbf{1} (\boldsymbol{D}_G^{1/2} \mathbf{1})^t.$$

What is the following lemma used for?

Lemma 2.5. $\ker(\mathbf{L}^+) \subseteq \ker(\mathbf{L})$ and $\ker(\widehat{\mathbf{L}}^+) \subseteq \ker(\widehat{\mathbf{L}})$.

Proof. Let $\boldsymbol{x} \in \ker(\boldsymbol{L}^+)$, so $\boldsymbol{L}^+\boldsymbol{x} = \boldsymbol{0}$. Multiplying by \boldsymbol{L} and using Equation (2.8) gives $\boldsymbol{0} = \boldsymbol{L}\boldsymbol{L}^+\boldsymbol{x} = (\mathbf{I} - \mathbf{1}\mathbf{1}^t/n)\boldsymbol{x}$, implying that $\boldsymbol{x} = \mathbf{1} \cdot \|\boldsymbol{x}\|_1/n$, i.e., $\boldsymbol{x} \in \operatorname{span}(\{\mathbf{1}\}) = \ker(\boldsymbol{L})$. The argument for the other inclusion is similar.

2.3.2. The Laplacian Spectrum

Both the combinatorial and normalized Laplacian of an undirected graph G are real, symmetric matrices. By the spectral theorem therefore, they both admit a basis of orthonormal eigenfunctions corresponding to real eigenvalues. Focus for the moment on the combinatorial

Laplacian L_G , with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and corresponding orthonormal eigenfunctions $\varphi_1, \ldots, \varphi_n$. A straightforward consequence of Equation 2.5 is that all eigenvalues of L_G are non-negative. Let λ be an eigenvalue with (unit) eigenvector φ . Then,

$$\lambda = \lambda \langle \varphi, \varphi \rangle = \langle \lambda \varphi, \varphi \rangle = \langle \boldsymbol{L}_{G} \varphi, \varphi \rangle = \langle \boldsymbol{B}_{G}^{t} \boldsymbol{B}_{G} \varphi, \varphi \rangle = \langle \boldsymbol{B}_{G} \varphi, \boldsymbol{B}_{G} \varphi \rangle = \| \boldsymbol{B}_{G} \varphi \|_{2}^{2} \geq 0.$$

Let $V_1, \ldots, V_k \subseteq V$, $V_i \cap V_j = \emptyset$ for $i \neq j$ be the disjoint vertex sets of the distinct connected components of G. (If G is connected then k = 1.) The quadratic form satisfies

$$\mathcal{L}_{G}(f) = \sum_{\ell=1}^{k} \sum_{i \sim j, i, j \in V_{\ell}} w(i, j) (f(i) - f(j))^{2}.$$

Suppose $\mathbf{L}\varphi = \mathbf{0}$. Then $\varphi^t \mathbf{L}\varphi = \mathcal{L}(\varphi) = 0$, which implies that $\varphi(i) = \varphi(j)$ for all $i, j \in V_\ell$. We can immediately see k orthonormal vectors which satisfy this condition, namely

$$\frac{1}{\sqrt{|V_1|}} \chi_{V_1}, \dots, \frac{1}{\sqrt{|V_k|}} \chi_{V_k}.$$

On the other hand, consider a non-zero vector φ which is orthogonal to all of the above vectors. Then

$$0 = \sum_{i=1}^{k} \langle \boldsymbol{\varphi}, \boldsymbol{\chi}_{V_i} \rangle = \langle \boldsymbol{\varphi}, \mathbf{1} \rangle = \sum_{i=1}^{k} \boldsymbol{\varphi}(i),$$

implying that there exists $\ell \in [k]$ such that $\varphi(i) \neq \varphi(j)$ for some $i, j \in V_{\ell}$. Hence, $\mathcal{L}(\varphi) > 0$ and so $\mathbf{L}\varphi \neq 0$. Therefore, there are no other linearly independent eigenfunctions corresponding to the zero eigenvalue. We have thus shown that 0 is an eigenvalue of \mathbf{L} with multiplicity equal to the number of connected components and

$$\ker(\mathbf{L}) = \operatorname{span}(\{\boldsymbol{\chi}_{V_1}, \dots, \boldsymbol{\chi}_{V_k}\}).$$

For the most part this thesis will deal with connected graphs, in which case $\ker(L) = \operatorname{span}(\{1\})$.

A similar analysis holds for the normalized Laplacian. Using the same argument but replacing B with \hat{B} demonstrates that its eigenvalues are non-negative. Its kernel can be determined as follows. For any eigenfunction φ of L corresponding to the zero eigenvalue, observe that

$$\widehat{m{L}} m{W}^{1/2} m{arphi} = m{W}^{-1/2} m{L} m{W}^{-1/2} m{W}^{1/2} m{arphi} = m{W}^{-1/2} m{L} m{arphi} = m{0},$$

so $\boldsymbol{W}^{1/2}\boldsymbol{\chi}_{V_1},\ldots,\boldsymbol{W}^{1/2}\boldsymbol{\chi}_{V_k}$ lie in the kernel of $\widehat{\boldsymbol{L}}$. Conversely, if $\boldsymbol{\varphi}\in\ker(\widehat{\boldsymbol{L}})$, define vp' such that $\boldsymbol{\varphi}=\boldsymbol{W}^{1/2}\boldsymbol{\varphi}'$ (this is possible because $\boldsymbol{W}^{1/2}$ is diagonal—we simply factor out $\sqrt{w(i)}$ from $\boldsymbol{\varphi}(i)$ to obtain $\boldsymbol{\varphi}'(i)$). Then

$$\mathbf{0} = \widehat{\mathbf{L}} \varphi' = \mathbf{W}^{-1/2} \mathbf{L} \mathbf{W}^{-1/2} \mathbf{W}^{1/2} \varphi = \mathbf{W}^{-1/2} \mathbf{L} \varphi,$$

so $\boldsymbol{L}\boldsymbol{\varphi} = \boldsymbol{0}$ (since w(i) > 0 for all i). That is, each element in the kernel of $\widehat{\boldsymbol{L}}$ takes the form $\boldsymbol{W}^{1/2}\boldsymbol{\varphi}$ for $\boldsymbol{\varphi} \in \ker(\boldsymbol{L})$. We conclude that

$$\ker(\widehat{\boldsymbol{L}}) = \operatorname{span}(\{\boldsymbol{W}^{1/2}\boldsymbol{\chi}_{V_1},\ldots,\boldsymbol{W}^{1/2}\boldsymbol{\chi}_{V_k}\}).$$

§2.4. Electrical Flows

Given an undirected, weighted graph G = (V, E, w), orient the edges of G arbitrarily and encode this information in the matrix \mathbf{B} , as in Section ??. For an edge e = (i, j) oriented from i to j, denote $e^+ = i$ and $e^- = j$. We will consider G as an electrical network. To do this, we imagine placing a resistor of resistance 1/w(e) on each edge e. Edges thus carry current between the nodes and, in general, higher weighted edges will carry more current. An electrical flow $\mathbf{f}: E \to \mathbb{R}_{\geq 0}$ on G assigns a current to each edge e and respects, roughly speaking, Kirchoff's current law and Ohm's law. More precisely, let e be a vector describing the amount of current injected at each node. By Kirchoff's law, the amount of current passing through a vertex i must be conserved. That is,

$$\sum_{e:i=e^{+}} f(e) - \sum_{e:i=e^{-}} f(e) = e(i),$$

or, more succinctly,

$$\mathbf{B}^t \mathbf{f} = \mathbf{e}.\tag{2.9}$$

Note that this property is also called *flow conversation* in the network flow literature. By Ohm's law, the amount of flow across an edge is proportional to the difference of potential at its endpoints. The constant of proportionality is the inverse of the resistance of that edge, i.e., the weight of the edge. Let $\rho: V \to \mathbb{R}_{\geq 0}$ describe the potential at each vertex. For e = (i, j) with $i = e^+$, $j = e^-$, ρ is defined by the relationship

$$f(e) = w(e)(\rho(i) - \rho(j)) = w(e)(B(e, i)\rho(i) + B(e, j)\rho(j)),$$

so that

$$f = WB\rho. \tag{2.10}$$

Combining (2.9) and (2.10) we see that $e = B^t f = B^t W B \rho = L_G \rho$, and so $\rho = L_G^+ e$ whenever $\langle e, 1 \rangle$ (recall that L_G^+ is the inverse of L_G in the space span(1)^t).

The effective resistance of an edge e = (i, j) is the potential difference induced across the edge when one unit of current is injected at i and extracted at j. That is, for $e = \chi_i - \chi_j$, we want to measure $\rho(i) - \rho(j)$. We do this by noticing that

$$\rho(i) - \rho(j) = \langle \boldsymbol{\chi}_i, \boldsymbol{\rho} \rangle - \langle \boldsymbol{\chi}_j, \boldsymbol{\rho} \rangle = \langle \boldsymbol{\chi}_i, \boldsymbol{\chi}_j, \boldsymbol{L}_G^+ \boldsymbol{e} = \mathcal{L}_G^+ (\boldsymbol{\chi}_i - \boldsymbol{\chi}_j).$$

Note that here we've relied on the fact that $\chi_i - \chi_i \perp 1$.

Definition 2.2. The effective resistance between nodes i and j is $r^{\text{eff}}(i,j) \stackrel{\text{def}}{=} \mathcal{L}_G^+(\chi_i - \chi_j)$.

§2.5. Simplices

DEFINITION 2.3. A set of points x_1, \ldots, x_k are said to be affinely independent if the only solution to $\sum_{i \in [n]} \alpha_i x_i = \mathbf{0}$ with $\sum_{i \in [n]} \alpha_i = 0$ is $\alpha_1 = \cdots = \alpha_n = 0$.

Perhaps a more useful characterization of affine independence is the following.

LEMMA 2.6. The set $\{x_1, \ldots, x_k\}$ is affinely independent iff for each j, $\{x_j - x_i\}_{i \neq j}$ is linearly independent.

Figure 2.1: Simplices in dimensions one, two, and three.

Proof. Suppose that $\{x_j - x_i\}_{i \neq j}$ is not linearly independent, and let $\{\beta_i\}$ (not all zero) be such that $\sum_{i \neq j} \beta_i(x_j - x_j) = \mathbf{0}$. Putting $\beta = \sum_i \beta_i$, we can write this as

$$\sum_{i \neq j} rac{eta_i}{eta} oldsymbol{x}_i - oldsymbol{x}_j = oldsymbol{0}.$$

But these coefficients sum to 0, i.e., $\sum_{i\neq j} \beta_i/\beta - 1 = 1 - 1 - 0$, so $\{x_i\}$ are not affinely independent. Conversely, suppose that $\sum_i \alpha_i x_i = \mathbf{0}$ where $\sum_i \alpha_i = 0$ and $\alpha_k \neq 0$ for some k. Then,

$$\mathbf{0} = \sum_{i} \alpha_i \mathbf{x}_i = \sum_{i \neq j} \alpha_i \mathbf{x}_i + \alpha_j \mathbf{x}_j = \sum_{i \neq j} \alpha_i \mathbf{x}_i - \sum_{i \neq j} \alpha_i \mathbf{x}_j = \sum_{i \neq j} \alpha_i (\mathbf{x}_i - \mathbf{x}_j),$$

implying that $\{x_j - x_i\}_{i \neq j}$ is not linearly independent.

LEMMA 2.7. Let $\{x_1, \ldots, x_n\} \subseteq \mathbb{R}^{n-1}$ be affinely independent, and let $\mathbf{y} \in \mathbb{R}^{n-1}$ be arbitrary. Then there exists coefficients $\{\alpha_i\} \subseteq \mathbb{R}$ obeying $\sum_{i \in [n]} \alpha_i = 1$ such that $\mathbf{y} = \sum_{i \in [n]} \alpha_i \mathbf{x}_i$.

 \boxtimes

Proof. By Lemma 2.6, the vectors $\boldsymbol{\zeta}_i = \boldsymbol{x}_i - \boldsymbol{x}_n$, i < n are linearly independent and span \mathbb{R}^{n-1} . Therefore, there exist real numbers α_i , i < n with $\boldsymbol{y} - \boldsymbol{x}_n = \sum_{i < n} \alpha_i \boldsymbol{\zeta}_i$. Putting $\alpha_n = 1 - \sum_{i < n} \alpha_i$, we have $\boldsymbol{y} = \sum_{i < n} \alpha_i \boldsymbol{\zeta}_i + x_n = \sum_{i < n} \alpha_i \boldsymbol{x}_i + (1 - \sum_{i < n} \alpha_i) \boldsymbol{x}_n = \sum_{i \in [n]} i \alpha_i \boldsymbol{x}_i$. It's immediate that $\sum_i \alpha_i = 1$.

DEFINITION 2.4. A simplex S in \mathbb{R}^{n-1} is the convex hull of n affinely independent vectors $\sigma_1, \ldots, \sigma_n$. That is,

$$S = \left\{ \sum_{i=1}^{n} \sigma_{i} \alpha_{i} : \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} = 1 \right\}.$$

If we gather the vertices of the simplex S into the vertex matrix $\Sigma = (\sigma_1, \ldots, \sigma_n)$ whose columns are the vertex vectors of S, then we can write the simplex as

$$\mathcal{S} = \{\boldsymbol{\Sigma}\boldsymbol{x}: \boldsymbol{x} \geq \boldsymbol{0}, \ \|\boldsymbol{x}\|_1 = 1\}.$$

Given a point $p = \Sigma x \in \mathcal{S}$, x is called the barycentric coordinate of p.

As is illustrated in two and three dimensions by the triangle and the tetrahedron, the projection of the simplex onto spaces spanned by subsets of its vertices yields simplices of lower dimensions. Let $U \subseteq [n]$. The face of S corresponding to U is

$$\mathcal{S} \upharpoonright_{U} \stackrel{\text{def}}{=} \{ \Sigma \boldsymbol{x} : \boldsymbol{x} \ge 0, \ \|\boldsymbol{x}\|_{1} = 1, \ x(i) = 0 \text{ for all } i \in U^{c} \}.$$

The following observation demonstrates that $\mathcal{S} \upharpoonright_U$ is a well-defined simplex.

Figure 2.2:

Observation 2.2. Any subset of an affinely independent set of vectors is again affinely independent.

Proof. Let $\{v_i\}_{i\in[n]}$ be a set of vectors and let $U\subsetneq[n]$ be a proper subset of [n]. If $\{\mathbf{v}_i\}_{i\in U}$ is not affinely independent, then there exists $\{\alpha_i\}_{j\in U}$ not all zero such that $\sum_{i\in U}\alpha_i\mathbf{v}_i=\mathbf{0}$ and $\sum_i\alpha_i=0$. Taking $\alpha_j=0$ for $j\in U^c$ implies that $\sum_{i\in[n]}\alpha_i\mathbf{v}_i=\mathbf{0}$ while maintaing that $\sum_i\alpha_i=0$. Hence $\{v_i\}_{i\in[n]}$ is not affinely independent.

Trusting the reader's capacity for variation, depending on the situation we may adopt different notation for the faces of a simplex. Often times the vertical restriction symbol will be dropped and we will write only S_U ; other times we will write S[U], especially when the space reserved a subscript is being used for other purposes.

The *centroid* of a simplex is the point

$$c(S) \stackrel{\text{def}}{=} \frac{1}{n} \Sigma \mathbf{1} = \frac{1}{n} \sum_{i \in [n]} \sigma_i.$$

The centroid of a simplex can be thought of as its centre of mass, assuming that weight is distributed evenly across its surface.

Given a simplex S, an altitude between faces S_U and S_{U^c} is a vector which lies in the orthogonal complement of both S_U and S_{U^c} and points from one face to the other. We denote the altitude pointing from S_{U^c} to S_U as $a_(S_U)$. We can write the altitude as $a_U = p - q$ for some $p \in S_{U^c}$ and $q \in S_U$, and thus as $\Sigma(x_{U^c} - x_U)$ where x_{U^c} and x_U are the barycentric coordinates of p and q.

We will use the symbol \cong to denote isomorphism or congruency between simplices. That is, $S_1 \cong S_2$ iff S_1 can be converted to S_2 via translation and rotation.

Centred simplex. When discussing general graphs, it will be useful to study a translated copy of $\widehat{\mathcal{S}}_G$ which is centred at the origin. Accordingly, given any simplex \mathcal{T} with vertices $\{\boldsymbol{\sigma}_i\}$, we let \mathcal{T}^0 denote the simplex with vertices $\{\boldsymbol{\sigma}_i-\boldsymbol{c}(\mathcal{T})\}$. It's clear that the centroid of \mathcal{T}^0 is the origin:

$$egin{aligned} oldsymbol{c}(\mathcal{T}^0) &= rac{1}{n}(oldsymbol{\sigma}_1 - oldsymbol{c}(\mathcal{T}), \ \dots \ oldsymbol{\sigma}_n - oldsymbol{c}(\mathcal{T})) oldsymbol{1} \ &= rac{1}{n}(oldsymbol{\sigma}_1 \ \dots \ oldsymbol{\sigma}_n) oldsymbol{1} - rac{1}{n}(oldsymbol{c}(\mathcal{T}) \ \dots \ oldsymbol{c}(\mathcal{T})) oldsymbol{1} = oldsymbol{c}(\mathcal{T}) - oldsymbol{c}(\mathcal{T}) = oldsymbol{0}. \end{aligned}$$

We solidify the concept with a definition.

DEFINITION 2.5. Given a simplex \mathcal{T} , the unique (up to rotation and translation) simplex with vertex matrix $\Sigma(\mathcal{T}) - (c(\mathcal{T}) \dots c(\mathcal{T}))$ centred at the origin is called the *canonical (or centred) simplex corresponding to* \mathcal{T} and is denoted \mathcal{T}^0 .

In order to discuss translations of simplices, we will introduce equivalence classes. Given a simplex \mathcal{S} , define $[\mathcal{S}]$ as the set of all simplices which have the same inter-vertex distances but whose vertices have all been shifted by some constant vector:

$$[S] \stackrel{\text{def}}{=} \{S + \alpha \mathbf{1}^t : \alpha \in \mathbb{R}^{n-1}\}.$$

2.5.1. Dual Simplex

Let $\Sigma = (\sigma_1, \dots, \sigma_n) \in \mathbb{R}^{n-1 \times n}$ be the vertex matrix of a simplex $S \subseteq \mathbb{R}^{n-1}$. For each $i \in [n-1]$, put $\mathbf{v}_i = \sigma_n - \sigma_i$. Then $\{\mathbf{v}_1, \dots, \mathbf{v}_{n-1}\}$ is a linearly independent set, and thus admits a sister basis $\{\gamma_1, \dots, \gamma_{n-1}\}$ which together form biorthogonal bases of \mathbb{R}^{n-1} (Lemma 2.1). Put $\gamma_n = -\sum_{i=1}^{n-1} \gamma_i$.

CLAIM 2.1. The set $\{\gamma_1, \ldots, \gamma_n\}$ is affinely independent.

Proof. Suppose not and let $\{\beta_i\}$ be such that $\sum_i \beta_i \gamma_i = \mathbf{0}$ with $\sum_i \beta_i = 0$. Then,

$$\mathbf{0} = \sum_{i} \beta_{i} \boldsymbol{\gamma}_{i} = \sum_{i=1}^{n-1} \beta_{i} \boldsymbol{\gamma}_{i} - \left(\sum_{i=1}^{n-1} \beta_{i}\right) \sum_{j=1}^{n-1} \boldsymbol{\gamma}_{j} = \sum_{i=1}^{n-1} \left(\beta_{i} - \sum_{j=1}^{n-1} \beta_{j}\right) \boldsymbol{\gamma}_{i},$$

 \boxtimes

implying that $\{\gamma_i\}_{i=1}^{n-1}$ is linearly dependent; a contradiction.

Therefore, the set $\{\gamma_1, \ldots, \gamma_n\}$ determines a simplex, which we call the *dual simplex* of S. Of course, it would highly suboptimal if the notion of a dual simplex depended on the labelling of the vertices of S. More specifically, we defined the vertices of the dual simplex γ_i with respect to the vectors $\sigma_i - \sigma_n$. It is not clear a priori whether the vertices of the dual simplex would change were we to relabel the indices of $\{\sigma_i\}$. In fact, they do not—the demonstration of which is the purpose of the following lemma.

LEMMA 2.8. Let $\{\boldsymbol{\sigma}_1, \ldots, \boldsymbol{\sigma}_n\}$ be a set of affinely independent vectors. Fix $k \in [n-1]$ and define $\mathbf{v}_i = \boldsymbol{\sigma}_i - \boldsymbol{\sigma}_n$ for $i \in [n-1]$ and $\mathbf{u}_i = \boldsymbol{\sigma}_i - \boldsymbol{\sigma}_k$ for $i \in [n] \setminus \{k\}$. If $\{\boldsymbol{\gamma}_1, \ldots, \boldsymbol{\gamma}_{n-1}\}$ is the sister basis to $\{\mathbf{v}_1, \ldots, \mathbf{v}_{n-1}\}$ and $\boldsymbol{\gamma}_n = -\sum_{i=1}^{n-1} \boldsymbol{\gamma}_i$, then $\{\boldsymbol{\gamma}_1, \ldots, \boldsymbol{\gamma}_{k-1}, \boldsymbol{\gamma}_{k+1}, \ldots, \boldsymbol{\gamma}_n\}$ is the sister basis to $\{\mathbf{u}_1, \ldots, \mathbf{u}_{k-1}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$.

Proof. We need to show that $\langle \gamma_i, \mathbf{u}_j \rangle = \delta_{ij}$ for all $i, j \neq k$. For $i \neq n$, we have

$$\langle \boldsymbol{\gamma}_i, \boldsymbol{\sigma}_j - \boldsymbol{\sigma}_k \rangle = \langle \boldsymbol{\gamma}_i, \boldsymbol{\sigma}_j - \boldsymbol{\sigma}_n + \boldsymbol{\sigma}_n - \boldsymbol{\sigma}_k \rangle$$

 $= \langle \boldsymbol{\gamma}_i, \boldsymbol{\sigma}_j - \boldsymbol{\sigma}_n \rangle - \langle \boldsymbol{\gamma}_i, \boldsymbol{\sigma}_k - \boldsymbol{\sigma}_n \rangle$
 $= \delta_{ij} - \delta_{ik} = \delta_{ij},$

since $i \neq k$. For i = n meanwhile,

$$\langle m{\gamma}_n, m{\sigma}_j - m{\sigma}_k
angle = -\sum_{\ell=1}^{n-1} \langle m{\gamma}_\ell, m{\sigma}_j - m{\sigma}_n + m{\sigma}_n - m{\sigma}_k
angle$$

$$=\sum_{\ell=1}^{n-1}\langle m{\gamma}_\ell, m{\sigma}_j - m{\sigma}_n
angle - \sum_{\ell=1}^{n-1}\langle m{\gamma}_\ell, m{\sigma}_k - m{\sigma}_n
angle = \sum_\ell \delta_{j\ell} - \delta_{k\ell} = 0.$$

We also observe that, using the same notation as above,

$$-\sum_{i=1,i\neq k}^n \boldsymbol{\gamma}_i = -\bigg(\sum_{i=1,i\neq k}^{n-1} \boldsymbol{\gamma}_i\bigg) - \boldsymbol{\gamma}_n = -\sum_{i=1,i\neq k}^{n-1} \boldsymbol{\gamma}_i + \sum_{j=1}^{n-1} \boldsymbol{\gamma}_j = \boldsymbol{\gamma}_k,$$

hence had we set $\mathbf{v}_i = \boldsymbol{\sigma}_k - \boldsymbol{\sigma}_i$ and defined $\boldsymbol{\gamma}_k = -\sum_{i \neq k} \boldsymbol{\gamma}_i$ (as we did for k = n), Lemma 2.8 demonstrates that we would produce the same set of vectors for the dual simplex. We honour the fact that the dual simplex is independent of labelling, i.e., well-defined, with the following definition.

DEFINITION 2.6 (Dual Simplex). Given a simplex $S_1 \subseteq \mathbb{R}^{n-1}$ with vertex set $\Sigma(S_1) = (\sigma_1, \ldots, \sigma_n)$, a simplex $S_2 \subseteq \mathbb{R}^{n-1}$ with vertex vectors $\Sigma(S_2) = (\gamma_1, \ldots, \gamma_n)$ is called a dual simplex of S_1 if for all $k \in [n]$, $\{\gamma_i\}_{i \neq k}$ is the sister basis to $\{\sigma_i - \sigma_k\}_{i \neq k}$. We denote the dual of the simplex S as S^* .

We remark that in light of the previous lemma that in order to determine whether the vertices $\{\gamma_i\}$ are the dual vertices to $\{\sigma_i\}$ it suffices to check whether $\langle \gamma_i, \sigma_j - \sigma_k \rangle = \delta_{ij}$ for a single $k \neq i, j$, as opposed to all $k \in [n]$. This will be done henceforth and will not be further remarked upon. We also note that duality between simplices is not a relationship between individual simplices per se, but rather assigns to each congruence class of simplices a centred simplex. Indeed, let [S] be a congruence class of simplices such that for every $S_1, S_2 \in [S]$, $\Sigma(S_1) = \Sigma(S_2) + \alpha \mathbf{1}^t$ for some $\alpha \in \mathbb{R}^{n-1}$ (i.e., S_1 is a shifted version of S_2). Let S_1^* have vertices $\{\sigma_i^*\}$. Then

$$\langle \boldsymbol{\sigma}_i^*, (\boldsymbol{\sigma}_j - \boldsymbol{\alpha}) - (\boldsymbol{\sigma}_n - \boldsymbol{\alpha}) \rangle = \langle \boldsymbol{\sigma}_i^*, \boldsymbol{\sigma}_j - \boldsymbol{\sigma}_n \rangle = \delta_{ij},$$

meaning that \mathcal{S}_1^* is also dual to \mathcal{S}_2 . We encapsulate this in an observation for easy recollection.

Observation 2.3. A simplex \mathcal{T} and corresponding centred simplex \mathcal{T}_0 share the same dual, i.e., $\mathcal{S}^* = \mathcal{T}_0^*$.

Observe that the dual simplex is always centred by construction (since $\gamma_n = -\sum_{i < n} \gamma_i$). The following lemma demonstrates that, in the language of the preceding paragraph, if \mathcal{S}^* is the dual of the congruence class $[\mathcal{S}]$, then the dual of $[\mathcal{S}^*]$ is the representative of $[\mathcal{S}]$ which is centred.

LEMMA 2.9. Let a simplex $S \in \mathbb{R}^{n-1}$ have vertices $\Sigma = (\sigma_i)$, S^* have vertices $\Sigma = (\sigma_i^*)$ and $(S^*)^*$ have vertices (γ_i) . Then, after potential re-ordering, $\gamma_i = \sigma_i - \sigma_n$.

Proof. We are given that $\langle \boldsymbol{\sigma}_i^*, \boldsymbol{\sigma}_j - \boldsymbol{\sigma}_n \rangle = \delta_{ij}$ and $\langle \boldsymbol{\gamma}_i, \boldsymbol{\sigma}_j^* - \boldsymbol{\sigma}_n^* \rangle = \delta_{ij}$. Since dual bases are unique, it suffices to show that $\boldsymbol{\sigma}_i - \boldsymbol{\sigma}_n$ satisfies the relationships of $\boldsymbol{\gamma}_i$, and indeed $\langle \boldsymbol{\sigma}_i - \boldsymbol{\sigma}_n, \boldsymbol{\sigma}_j^* - \boldsymbol{\sigma}_n^* \rangle = \langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j^* - \boldsymbol{\sigma}_n^* \rangle - \langle \boldsymbol{\sigma}_n, \boldsymbol{\sigma}_j^* - \boldsymbol{\sigma}_n^* \rangle = \delta_{ij}$.

Remark 2.1. The notion of the dual simplex expounded here is the same as the object discovered by Fiedler in his book [Fie11, Chapter 5], which he calls the *inverse simplex*. In a covert attempt to confuse the reader, we will reserve the name inverse simplex for a (sometimes) distinct object. Fiedler defines the inverse simplex with respect to the centroid of the given simplex, finding vectors \mathbf{u}_i such that $\langle \mathbf{u}_i, \boldsymbol{\sigma}_j - \boldsymbol{c} \rangle = \delta_{ij} - 1/n$, where $\boldsymbol{c} = \boldsymbol{c}(\mathcal{S})$. Such vectors then satisfy $\langle \mathbf{u}_i, \boldsymbol{\sigma}_j - \boldsymbol{\sigma}_k \rangle = \langle \mathbf{u}_i, \boldsymbol{\sigma}_j - \boldsymbol{c} - (\boldsymbol{\sigma}_k - \boldsymbol{c}) \rangle = \delta_{ij} - \delta_{ik} = \delta_{ij}$ for $i, j \neq k$, hence are the (unique) dual vertices.

We summarize the discussion with the following theorem.

THEOREM 2.2. Each simplex has a unique dual simplex. Moreover, if S^* is the dual of S, then S_0 is the dual of S^* , where $S_0 \cong S$ is centred.

Proof. Existence follows from Lemma 2.1 using the construction above. Uniqueness follows from Observation 2.1 and Lemma 2.8. The second part of the statement follows from Lemma 2.9. \boxtimes

LEMMA 2.10. Let S^* be the dual of the simplex $S \in \mathbb{R}^{n-1}$. For all $U \subseteq [n]$, $\emptyset \neq U \neq [n]$, S_U is orthogonal to S_{Uc}^* .

Proof. Let $\Sigma(S) = (\sigma_1, \dots, \sigma_n)$ and $\Sigma(S^*) = (\sigma_1^*, \dots, \sigma_n^*)$. Let $\Sigma x \in S_U$ and $\Sigma^* y_1, \Sigma^* y_2 \in S_{U^c}^*$, where y_1 and y_2 are barycentric coordinates. Fix $k \in U^c$. We need to show that $\langle \Sigma x, \Sigma^* y_1 - \Sigma^* y_2 \rangle = 0$. First, using $||y_i|| = 1$, i = 1, 2, write

$$\begin{split} \boldsymbol{\Sigma}^* \boldsymbol{y}_1 - \boldsymbol{\Sigma}^* \boldsymbol{y}_2 &= \sum_{j \in U^c} \boldsymbol{\sigma}_j^* (y_1(j) - y_2(j)) \\ &= \sum_{j \in U^c \setminus \{k\}} \boldsymbol{\sigma}_j^* (y_1(j) - y_2(j)) + \boldsymbol{\sigma}_k^* (y_1(k) - y_2(k)) \\ &= \sum_{j \in U^c \setminus \{k\}} \boldsymbol{\sigma}_j^* (y_1(j) - y_2(j)) - \boldsymbol{\sigma}_k^* \bigg(\sum_{j \in U^c \setminus \{k\}} y_1(j) - y_2(j) \bigg) \\ &= \sum_{j \in U^c \setminus \{k\}} (\boldsymbol{\sigma}_j^* - \boldsymbol{\sigma}_k^*) (y_1(j) - y_2(j)). \end{split}$$

Now, by definition, $\langle \boldsymbol{\sigma}^i, \boldsymbol{\sigma}_j^* - \boldsymbol{\sigma}_k^* \rangle = \delta_{i,j}$ for $i, j \neq k$ so it follows that

$$\begin{split} \langle \boldsymbol{\Sigma} \boldsymbol{x}, \boldsymbol{\Sigma}^*(\boldsymbol{y}_1 - \boldsymbol{y}_2) \rangle &= \sum_{i \in U} x(i) \langle \boldsymbol{\sigma}_i, \boldsymbol{\Sigma}^*(\boldsymbol{y}_1 - \boldsymbol{y}_2) \rangle \\ &= \sum_{i \in U} x(i) \sum_{j \in U^c \setminus \{k\}} \langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j^* - \boldsymbol{\sigma}_k^* \rangle (y_1(j) - y_2(j)) \\ &= \sum_{i \in U} x(i) \sum_{j \in U^c \setminus \{k\}} \delta_{ij} (y_1(j) - y_2(j)) = 0, \end{split}$$

since $U^c \setminus \{k\} \cap \{i\} = \emptyset$.

2.5.2. Angles in a Simplex

There are several angles worth discussing in a simplex. For a simplex \mathcal{T} , let $\phi_{ij}(\mathcal{T})$ be the angle between the outer normals to $\mathcal{S}_{\{i\}^c}$ and $\mathcal{S}_{\{j\}^c}$. As usual, the paranthetical (\mathcal{T}) will typically be dropped when the simplex is understood from context. Using the notion of the dual simplex introduced in the previous section, we can write

$$\cos \phi_{ij}(\mathcal{T}) = \frac{\langle \gamma_i, \gamma_j \rangle}{\|\gamma_i\|_2 \cdot \|\gamma_j\|_2},$$

where $\{\gamma_i\}$ are the vertices of \mathcal{T}^D . Now, define $\theta_{ij}(\mathcal{T})$ to be the angle between $\mathcal{T}_{\{i\}^c}$ and $\mathcal{T}_{\{j\}^c}$. Appealing to elementary geometry, we see that the angles ϕ_{ij} and θ_{ij} are supplementary, i.e., their sum is π . Hence,

$$\cos \theta_{ij}(\mathcal{T}) = -\frac{\langle \gamma_i, \gamma_j \rangle}{\|\gamma_i\|_2 \cdot \|\gamma_j\|_2}, \tag{2.11}$$

where we've used that $\cos(\phi_{ij}) = \cos(\pi - \theta_{ij}) = -\cos(\theta_{ij})$.

DEFINITION 2.7. We call the simplex $\mathcal{T} \subseteq \mathbb{R}^{n-1}$ hyperacute if $\theta_{ij}(\mathcal{T}) \leq \pi/2$ for all $i, j \in [n]$. If \mathcal{T} is not hyperacute, it is called *obtuse*.

The Graph-Simplex Correspondence

In this chapter we introduce the graph simplex correspondence and explore its mathematical foundations and properties. While the focus of this dissertation is the bijective relationship between graphs and simplices, we begin by introducing the more general relationship between matrices and convex polytopes. The correspondence between graphs and simplices will then follow as a consequence.

§3.1. Convex Polyhedra of Matrices

Here we introduce the (perhaps complex) convex polytope associated with a given matrix. Let $M \in \mathbb{R}^{n \times n}$ be symmetric and admitting of the eigendecomposition $M = \sum_{i=1}^{d} \lambda_i \varphi_i \varphi_i^t$ for some $d \leq n$ (i.e., M has eigenvalue zero with multiplicity n - d) where the eigenvectors $\{\varphi_i\}_{i=1}^d$ are orthonormal. Writing out the eigendecomposition as

$$oldsymbol{M} = oldsymbol{\Phi}_M oldsymbol{\Lambda}_M oldsymbol{\Phi}_M^t = (oldsymbol{\Phi}_M oldsymbol{\Lambda}_M^{1/2}) (oldsymbol{\Phi}_M oldsymbol{\Lambda}_M^{1/2})^t,$$

with $\Phi_M = (\varphi_1, \dots, \varphi_d)$, $\Lambda_M = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$ (note the respective absences of $\varphi_{d+1}, \dots, \varphi_n$ and $\lambda_{d+1}, \dots, \lambda_n$), suggests that we might consider $\Lambda_M^{1/2} \Phi_M$ as a vertex matrix, thus M as a gram matrix. Inorexably compelled by this intuition, define the vertices $\sigma_1, \dots, \sigma_n$ given by the columns of $\Lambda_M^{1/2} \Phi_M^t$, i.e.,

$$\boldsymbol{\sigma}_i = (\boldsymbol{\Lambda}_M^{1/2} \boldsymbol{\Phi}_M^t)(\cdot, i) = (\boldsymbol{\varphi}_1(i)\lambda_1^{1/2}, \boldsymbol{\varphi}_2(i)\lambda_2^{1/2}, \dots, \boldsymbol{\varphi}_d(i)\lambda_d^{1/2})^t \in \mathbb{C}^d,$$

where we emphasize that the vertex vector will have complex entries if $\lambda_j < 0$ for any $j \in [d]$. We may now define the *polytope of the matrix* M as the polytope given by their convex hull:

$$\mathcal{P}_{\boldsymbol{M}} \stackrel{\text{def}}{=} \text{conv}(\boldsymbol{\sigma}_1, \dots, \boldsymbol{\sigma}_n).$$

Letting $\Sigma = \Sigma(\mathcal{P}_M) = (\sigma_1, \dots, \sigma_n) \in \mathbb{R}^{d \times n}$ be the matrix whose *i*-th column is the *i*-th vertex σ_i —henceforth called the *vertex matrix of* \mathcal{P}_M —we see that $\Sigma = \Lambda_M^{1/2} \Phi_M^t = (\Phi_M \Lambda^{1/2})^t$, and

$$\mathbf{\Sigma}^t \mathbf{\Sigma} = (\mathbf{\Phi} \mathbf{\Lambda}^{1/2}) (\mathbf{\Phi} \mathbf{\Lambda}^{1/2})^t = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^t = \mathbf{M}.$$

Observe that the polytope $\mathcal{S}(M)$ is d-dimensional, i.e., its vertices span a d-dimensional subspace,

$$rank(\mathbf{\Sigma}) = rank(\mathbf{\Sigma}^t \mathbf{\Sigma}) = rank(\mathbf{M}) = d,$$

where we've employed Lemma 2.2 and the fact that M has rank d due to its eigendecomposition. We thus conceptualize of \mathcal{P}_M as a polytope in \mathbb{R}^d .

Remark 3.1. The ordering of the non-zero eigenvalues did not enter our considerations when defining \mathcal{P}_M . Let us consider re-ordering the indices; take $\tau:[d] \to [d]$ to be any permutation and $\{\sigma_i^{\tau}\}$ be the vertices as they would be defined under the ordering given by τ . Hence $\sigma_i^{\tau}(j) = \varphi_{\tau^{-1}(j)}(i)\lambda_{\tau^{-1}(j)}^{1/2}$. The pairwise distances between these vertices then obey

$$\|\boldsymbol{\sigma}_{i}^{\tau} - \boldsymbol{\sigma}_{k}^{\tau}\|_{2}^{2} = \sum_{j=1}^{d} \lambda_{\tau^{-1}(j)} (\boldsymbol{\varphi}_{\tau^{-1}(j)}(i) - \boldsymbol{\varphi}_{\tau^{-1}(j)}(k))^{2} = \sum_{j=1}^{d} \lambda_{j} (\boldsymbol{\varphi}_{j}(i) - \boldsymbol{\varphi}_{j}(k))^{2} = \|\boldsymbol{\sigma}_{i} - \boldsymbol{\sigma}_{j}\|_{2}^{2},$$

since τ is a bijection, hence summing over $\tau^{-1}(j)$ yields the same result as summing from 1 to d. Therefore, we see that the polytopes $\operatorname{conv}(\boldsymbol{\sigma}_1^{\tau},\ldots,\boldsymbol{\sigma}_n^{\tau})$ and $\operatorname{conv}(\boldsymbol{\sigma}_1,\ldots,\boldsymbol{\sigma}_n)$ are congruent. In fact, since they share the same centroid they are simply rotations of one another.

3.1.1. The Inverse Polytope

Given that we can associate a polytope with the matrix M, it is natural to wonder about the relationship between this polytope and that associated to M^{-1} if M if invertible, or with its pseudoinverse M^+ more generally. As illustrated in Section 2.2.1, with the eigendecompition of M as above, we can write the pseudoinverse as

$$oldsymbol{M}^+ = \sum_{i=1}^d \lambda_i^{-1} oldsymbol{arphi}_i oldsymbol{arphi}_i^t = oldsymbol{\Phi}_M oldsymbol{\Lambda}_M^{-1/2} oldsymbol{\Phi}_M.$$

We can thus associated with M^+ a polytope \mathcal{P}_{M^+} , which has as its vertex matrix $\Sigma(\mathcal{P}_{M^+}) = (\Phi \Lambda^{-1/2})^t$; that is, the vertices $\{\sigma_i^+\}$ of \mathcal{P}_{M^+} are defined by $\sigma_i^+(j) = \varphi_j(i)/\lambda_j^{1/2}$. We call \mathcal{P}_{M^+} the inverse polytope of M.

Let us observe several properties of the relationship between \mathcal{P}_M and \mathcal{P}_{M^+} . In what follows we drop the subscript M from the eigenvalue and eigenvector matrix. Note that because of the orthogonality relationships among eigenvectors of M,

$$oldsymbol{\Phi}^t oldsymbol{\Phi} = egin{pmatrix} \langle oldsymbol{arphi}_1, oldsymbol{arphi}_1
angle & \ldots & \langle oldsymbol{arphi}_1, oldsymbol{arphi}_d
angle \ drampsilon_d, oldsymbol{arphi}_1
angle & \ldots & \langle oldsymbol{arphi}_d, oldsymbol{arphi}_d
angle \end{pmatrix} = oldsymbol{I}_d.$$

Consequently,

$$M^+M = \Phi \Lambda \Phi^t \Phi \Lambda^{-1} \Phi^t = \Phi \Lambda \Lambda^{-1} \Phi^t = \Phi \Phi^t,$$

and similarly $MM^+ = \Phi\Phi^t$. As it happens, the vertex matrices of \mathcal{P}_M and \mathcal{P}_M^+ satisfy the same pseudoinverse relation:

$$\Sigma^t \Sigma^+ = \Phi \Lambda^{1/2} \Lambda^{-1/2} \Phi^t = \Phi \Phi^t$$

and $(\Sigma^+)^t \Sigma = \Phi \Phi^t$. Using the properties of the relationship between a matrix and its pseudoinverse immediately yields the following result.

LEMMA 3.1. Let $\Sigma = \Sigma(M)$ and $\Sigma^+ = \Sigma(M^+)$ by the vertex matrices of \mathcal{P}_M and \mathcal{P}_{M^+} where M is a real and symmetric matrix. The matrices $\Sigma^t \Sigma^+$ and $(\Sigma^+)^t \Sigma$ are equal and moreover

- (i). act as the orthogonal projection onto range(M);
- (ii). $(\mathbf{I} \mathbf{\Sigma}^t \mathbf{\Sigma}^+)$ acts as the orthogonal projection onto $\ker(\mathbf{M})$.

Proof. Apply Lemma 2.3.
$$\square$$

Further exploring the relationships between the vertex matrices and themselves, we find that

$$\Sigma\Sigma^{t} = \begin{pmatrix} \sum_{i} \sigma_{i}(1)\sigma_{i}(1) & \dots & \sum_{i} \sigma_{i}(1)\sigma_{i}(n) \\ \vdots & \ddots & \vdots \\ \sum_{i} \sigma_{i}(n)\sigma_{i}(1) & \dots & \sum_{i} \sigma_{i}(n)\sigma_{i}(n) \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_{1}\langle \varphi_{1}, \varphi_{1} \rangle & \dots & \lambda_{1}^{1/2}\lambda_{n}^{1/2}\langle \varphi_{1}, \varphi_{n} \rangle \\ \vdots & \ddots & \dots \\ \lambda_{1}^{1/2}\lambda_{n}^{1/2}\langle \varphi_{n}, \varphi_{1} \rangle & \dots & \lambda_{n}\langle \varphi_{n}, \varphi_{n} \rangle \end{pmatrix} = \Lambda, \tag{3.1}$$

and likewise,

$$\widehat{\boldsymbol{\Sigma}}^{+}(\widehat{\boldsymbol{\Sigma}}^{+})^{t} = \boldsymbol{\Lambda}^{-1}. \tag{3.2}$$

In summary, any real symmetric $n \times n$ matrix of rank d yields a d-dimensional convex polytope \mathcal{P}_M in $\mathbb{C}^{d \times d}$. If all eigenvalues are positive then the polytope sits in $\mathbb{R}^{d \times d}$. The vertex matrices of \mathcal{P}_M and \mathcal{P}_{M^+} —the polytope of the pseudoinverse of M—when multiplied together are equal to and hence satisfy the projection properties of M^+M . In the next section we will explore how to apply this result to graphs.

§3.2. A Bijection Between Graphs and Simplices

This section introduces the graph-simplex correspondence—the core of which is a bijective mapping between the set of all (finite) connected, weighted, and undirected graphs and hyperacute simplices. We begin by exploring the polytopes—and in particular the simplices—associated with a given graph. The subsequent section will then demonstrate how to extract a graph from an arbitrary hyperacute simplex.

3.2.1. The Simplices of a Graph

Fix an undirected, connected and weighted graph G = (V, E, w). By means of the graph's adjacency and Laplacian matrices, the previous section yields several polytopes corresponding to G. The adjacency matrix \mathbf{A}_G , for instance, yields a complex polytope of dimension rank(\mathbf{A}_G). However, while Theorem 2.1 dictates that \mathbf{A}_G has real eigenvalues and a set of orthogonal eigenvectors, we do not in general know the rank of \mathbf{A}_G , nor much of the magnitudes of its eigenvalues. This makes it difficult to explore the structure of $\mathcal{P}_{\mathbf{A}_G}$.

We will instead focus on the polytopes generated by G's Laplacian matrices; $\mathcal{S}_G \stackrel{\text{def}}{=} \mathcal{P}_{L_G}$ and $\widehat{\mathcal{S}}_G \stackrel{\text{def}}{=} \mathcal{P}_{\widehat{L}_G}$ corresponding to the combinatorial and normalized Laplacians, respectively. (The reasoning behind the nomenclature will quickly become apparent.) We let $\Sigma_G = \Sigma(\mathcal{P}_{L_G}) = (\sigma_1, \dots, \sigma_n)$ and $\widehat{\Sigma}_G = \Sigma(\mathcal{P}_{\widehat{L}_G}) = (\widehat{\sigma}_1, \dots, \widehat{\sigma}_n)$ denote the vertices of \mathcal{S}_G and

 $\widehat{\mathcal{S}}_G$, respectively. We recall that $\Sigma = \Lambda^{1/2} \Phi^t$ (resp., $\widehat{\Sigma} = \widehat{\Lambda}^{1/2} \widehat{\Phi}^t$)) where Λ (resp., $\widehat{\Lambda}$) is the diagonal matrix containing the non-zero eigenvalues of L_G (resp., \widehat{L}_G) and Φ (resp., $\widehat{\Phi}$) is the matrix of the corresponding (normalized) eigenvectors. Since rank(L_G) = rank(\widehat{L}_G) = n-1, the polytopes \mathcal{S}_G and $\widehat{\mathcal{S}}_G$ are simplices—a fact which is demonstrated more directly by the following Lemma.

LEMMA 3.2. The vertices $\{\boldsymbol{\sigma}_i\}$ and $\{\hat{\boldsymbol{\sigma}}_i\}$ are affinely independent.

Proof. We provide the proof in the case of $\{\sigma_i\}$ only. Suppose $\boldsymbol{\alpha}=(\alpha_1,\ldots,\alpha_n)$ is such that $\sum_{i=1}^n \alpha_i \boldsymbol{\sigma}_i = \mathbf{0}$, i.e., $\boldsymbol{\alpha} \in \ker(\boldsymbol{\Sigma})$. Since $\ker(\boldsymbol{\Sigma}) = \ker(\boldsymbol{\Sigma}^t \boldsymbol{\Sigma}) = \ker(\boldsymbol{L}) = \operatorname{span}(\{\mathbf{1}\})$, there exists some $k \in \mathbb{R}$ such that $\boldsymbol{\alpha} = k\mathbf{1}$. If $\langle \boldsymbol{\alpha}, \mathbf{1} \rangle = \langle k\mathbf{1}, \mathbf{1} \rangle = kn = 0$ however, then we must have k = 0, demonstrating that $\alpha_i = 0$ for all i. Hence the vectors $\{\boldsymbol{\sigma}_i\}$ are affinely independent. Likewise, if $\boldsymbol{\alpha} \in \ker(\widehat{\boldsymbol{\Sigma}}) = \ker(\widehat{\boldsymbol{L}}) = \operatorname{span}(\{\sqrt{\boldsymbol{w}}\})$, then $\boldsymbol{\alpha} = k\sqrt{\boldsymbol{w}}$. But $\langle k\sqrt{\boldsymbol{w}}, \mathbf{1} \rangle = k\sum_i w(i) = 0$, so $\boldsymbol{\alpha} = \mathbf{0}$.

Consequently, we will often refer to \mathcal{S}_G as the combinatorial simplex of G or simply the simplex of G, and to $\widehat{\mathcal{S}}_G$ as the normalized simplex of G. If G is clear from context we will often drop it from the subscript. As per Section 3.1.1, we also introduce the inverse simplex and inverse normalized simplex of G, which have respective vertex matrices

$$\Sigma^+ = \Lambda^{-1/2} \Phi^t$$
, and $\widehat{\Sigma}^+ = \widehat{\Lambda}^{-1/2} \widehat{\Phi}^t$.

We will often refer to the pair \mathcal{S}_G and \mathcal{S}_G^+ as the combinatorial simplices of G, and the pair $\widehat{\mathcal{S}}_G$ and $\widehat{\mathcal{S}}_G^+$ as the normalized simplices of G, to avoid the tedious task of constantly referring to, say, the combinatorial simplex and its inverse.

As illustrated by the discussion at the end of Section 3.1.1, the vertex matrices of the polytope of a matrix and its inverse share the same relationship as the matrix and its pseudoinverse (Lemma 3.1). Since this relationship is well understood for the Laplacian and its pseudoinverse, we may explicit compute the relationships between Σ , Σ^+ and $\widehat{\Sigma}$, $\widehat{\Sigma}^+$.

Let $\widetilde{\Phi}$ be the matrix containing all eigenvectors of L_G (i.e., also containing $1/\sqrt{n}$). It is well known that $\widetilde{\Phi}$ is an orthogonal matrix (see e.g., [VM13]), i.e., $\widetilde{\Phi}^t \widetilde{\Phi} = \widetilde{\Phi} \widetilde{\Phi}^t = \mathbf{I}$, a property which is also called *double orthogonality*. When expanded, this second equality implies that

$$\delta_{i,j} = \sum_{k=1}^{n} \varphi_k(i)\varphi_k(j) = \sum_{k=1}^{n-1} \varphi_k(i)\varphi_k(j) + 1/n.$$

From this, it follows that

$$\langle \sigma_i^+, \sigma_j \rangle = \delta_{i,j} - \frac{1}{n},$$

hence,

$$\Sigma^{t} \Sigma^{+} = (\Sigma^{+})^{t} \Sigma = \mathbf{I} - \frac{\mathbf{J}}{n}.$$
(3.3)

Beyond simply exemplifying an elegant relationship between Σ and Σ^+ , this also demonstrates the following important result.

Observation 3.1. The dual simplex of S_G is equal to the inverse simplex S_G^+ .

Proof. Recall that the dual simplex is the unique simplex with vertices σ_i^* obeying $\langle \sigma_i^*, \sigma_j - \sigma_k \rangle = \delta i j$ for $i, j \neq k$. The vertices σ_i^+ satisfy this property: $\langle \sigma_i^+, \sigma_j - \sigma_k \rangle = (\delta_{ij} - 1/n) - (\delta_{ik} - 1/n) = \delta_{ij}$ since $i \neq k$.

Let θ_{ij}^+ be the interior angle between $\mathcal{S}_{\{i\}^c}^+$ and $\mathcal{S}_{\{j\}^c}^+$. Since \mathcal{S}^+ is dual to \mathcal{S} , Equation 2.11 gives

$$\cos \theta_{ij}^+ = -\frac{\langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j \rangle}{\|\boldsymbol{\sigma}_i\|_2 \|\boldsymbol{\sigma}_j\|_2} = \frac{w(i,j)}{\sqrt{w(i)w(j)}} \in [0,1],$$

hence $\theta_{ij}^+ \in [0, \pi/2]$, which proves the following observation.

Observation 3.2. The inverse combinatorial simplex of a graph is hyperacute.

We turn out attention now to the normalized simplex. Double orthogonality also holds for the eigenvectors of the normalized Laplacian and so, recalling that $\varphi_n \in \text{span}(\mathbf{W}_G^{1/2}\mathbf{1})$, (Section 2.3.2) we can write

$$\varphi_n = \frac{\sqrt{\boldsymbol{w}}}{(\operatorname{vol}(G))^{1/2}},$$

where we recall that $\operatorname{vol}(G) = \sum_{i \in [n]} w(i)$. Therefore, $\widehat{\varphi}_n(i)\widehat{\varphi}_n(j) = \sqrt{w(i)w(j)}/\operatorname{vol}(G)$, implying that

$$\delta_{i,j} = \sum_{k=1}^{n} \widehat{\varphi}_k(i) \widehat{\varphi}_k(j) = \sum_{k=1}^{n-1} \widehat{\varphi}_k(i) \widehat{\varphi}_k(j) + \frac{\sqrt{w(i)w(j)}}{\operatorname{vol}(G)},$$

and so

$$\widehat{\Sigma}^t \widehat{\Sigma}^+ = (\widehat{\Sigma}^+)^t \widehat{\Sigma} = \mathbf{I} - \frac{\sqrt{w}\sqrt{w}^t}{\operatorname{vol}(G)}.$$
(3.4)

It is worth emphasizing the fact that this inverse relationship is a function of the weights of the graph for the normalized simplex, while it is constant for the combinatorial simplex. As we will see, this dependency on \boldsymbol{w} will severely complicate the relationship between $\widehat{\mathcal{S}}_G$ and $\widehat{\mathcal{S}}_G^+$, making their study more complicated than that of \mathcal{S}_G and \mathcal{S}_G^+ .

3.2.2. The Graph of a Simplex

We now proceed to demonstrating that each hyperacute simplex is the inverse simplex of a graph G. This will constitute the second half of the bijective relationship between graphs and simplices.

LEMMA 3.3. Given a simplex $\mathcal{T} \subseteq \mathbb{R}^{n-1}$ centered at the origin, let $\{\mathbf{u}_i\}$ be vectors describing its outer normal directions, though with no particular length. Let \mathbf{Q} be their Gram matrix; i.e., $\mathbf{Q}(i,j) = \langle \mathbf{u}_i, \mathbf{u}_j \rangle$. If $\mathbf{Q}_1 \in \mathbb{R}^{n \times n}$ is the diagonal matrix containing the norms of the outer normals,

$$Q_1 = diag(\|\mathbf{u}_1\|_2, \dots, \|\mathbf{u}_n\|_2),$$

and $Q_2 \in \mathbb{R}^{n \times n}$ describes the angles in the simplex,

$$\mathbf{Q}_{2}(i,j) = \begin{cases} 1, & \text{if } i = j, \\ -\cos\theta_{i,j}, & \text{otherwise,} \end{cases}$$

where $\theta_{i,j}$ is the (interior) angle between $\mathcal{T}_{\{i\}^c}$ and $\mathcal{T}_{\{j\}^c}$, then

$$Q = Q_1 Q_2 Q_1.$$

Proof. Using Equation 2.11 from the discussion in Section 2.5.2, we can write the entries of Q_2 as

$$rac{\left\langle oldsymbol{\gamma}_{i},oldsymbol{\gamma}_{j}
ight
angle }{\left\|oldsymbol{\gamma}_{i}
ight\|_{2}\left\|oldsymbol{\gamma}_{j}
ight\|_{2}},$$

where $\{\gamma_i\}$ are the vertices of \mathcal{T}^* (note that this holds for i=j as well). Lemma ?? implies that these vertices are parallel to the outer normals of \mathcal{T} , hence $\gamma_i = \kappa_i \mathbf{u}_i$ where $\kappa_i \in \mathbb{R}_{>0}$. Therefore,

$$(\boldsymbol{Q}_1 \boldsymbol{Q}_2 \boldsymbol{Q}_1)(i,j) = \|\mathbf{u}_i\|_2 \frac{\langle \kappa_i \mathbf{u}_i, \kappa_j \mathbf{u}_j \rangle}{\|\kappa_i \mathbf{u}_i\|_2 \|\kappa_j \mathbf{u}_j\|_2} \|\mathbf{u}_j\|_2 = \frac{\kappa_i \kappa_j}{|\kappa_i| |\kappa_j|} \langle \mathbf{u}_i, \mathbf{u}_j \rangle = \langle \mathbf{u}_i, \mathbf{u}_j \rangle = \boldsymbol{Q}(i,j). \quad \boxtimes$$

Let \mathcal{T} be a hyperacute simplex, and \mathcal{T}^* its dual. The vertex matrix Σ^* of \mathcal{T}^* contains the outer normals of \mathcal{T} (see discussion on dual simplex in Section 2.5.1). Hence, taking $\mathbf{Q} = (\Sigma^*)^t \Sigma^*$ in the above Lemma applied to the simplex \mathcal{T} , we obtain explicit entries for this Gram matrix:

$$((\mathbf{\Sigma}^*)^t \mathbf{\Sigma}^*)(i,j) = \begin{cases} \|\boldsymbol{\sigma}_i^*\|_2^2, & \text{if } i = j, \\ -\cos\theta_{i,j} \|\boldsymbol{\sigma}_i^*\|_2 \cdot \|\boldsymbol{\sigma}_j^*\|_2, & \text{if } i \neq j. \end{cases}$$

We claim that Q is the Laplacian matrix of some graph G. First, the matrix is symmetric. Second, for each i, $Q(i,i) = \|\boldsymbol{\sigma}_i^*\|_2^2 > 0$, and for $i \neq j$, $Q(i,j) \leq 0$ since $\theta_{i,j} \leq \pi/2$ by assumption (note therefore the importance that \mathcal{T} is hyperacute). Finally, denote $\Sigma^* = (\boldsymbol{\sigma}_1^*, \ldots, \boldsymbol{\sigma}_n^*)$, and recall from the construction of the dual simplex in Section 2.5.1 that $\boldsymbol{\sigma}_n^* = -\sum_{i < n} \boldsymbol{\sigma}_i^*$. Therefore, for $i \neq n$,

$$\sum_{j=1}^{n} \boldsymbol{Q}(i,j) = \sum_{j=1}^{n-1} \langle \boldsymbol{\sigma}_{i}^{*}, \boldsymbol{\sigma}_{j}^{*} \rangle + \langle \boldsymbol{\sigma}_{i}^{*}, -\sum_{j < n} \boldsymbol{\sigma}_{j}^{*} \rangle = \sum_{j < n} \langle \boldsymbol{\sigma}_{i}^{*}, \boldsymbol{\sigma}_{j}^{*} \rangle - \sum_{j < n} \langle \boldsymbol{\sigma}_{i}^{*}, \boldsymbol{\sigma}_{j}^{*} \rangle = 0,$$

hence Q1 = 0, meaning that

$$Q(i,i) = -\sum_{j \neq i} Q(i,j).$$

If we construct a weighted graph $G = (V, E, \mathbf{w})$ on n vertices with edge weights $\mathbf{w}(i, j) = -\mathbf{Q}(i, j)$, it then follows that $\mathbf{Q} = (\mathbf{\Sigma}^*)^t \mathbf{\Sigma}^* = \mathbf{L}_G$. Thus, the simplex \mathcal{T}^* is congruent to the combinatorial simplex of G (by virtue of the fact that $\langle \boldsymbol{\sigma}_i^*, \boldsymbol{\sigma}_j^* \rangle = \mathbf{L}_G(i, j)$), and \mathcal{T} is (congruent to) the dual of the combinatorial simplex of G.

Remark 3.2. All the faffing¹ about with congruence is, unfortunately, necessary. If G is the graph constructed from the simplex \mathcal{T} as above, there is no reason that its inverse combinatorial simplex \mathcal{S}_G^+ as constructed in Section 3.2.1 will be precisely \mathcal{T} . In fact, this is highly unlikely. The construction of G from \mathcal{T} and its dual \mathcal{T}^* used only the magnitudes of the vectors of $\{\sigma_i^*\}$ and not their absolute position. Thus, any rotation of \mathcal{T} would produce the same graph. It is for this reason that the relationship between graphs and simplices must deal with congruence relationships.

¹U.K. slang has obviously had its effect on me.

We summarize the material in Sections 3.2.1 and 3.2.2 with the following theorem.

THEOREM 3.1. There exists a bijection between (the congruence classes of) hyperacute simplices in \mathbb{R}^{n-1} and connected, weighted graphs on n vertices.

Several observations are in order. First, the astute reader may wonder why it was necessary in this section to explore the relation between a given hyperacute simplex \mathcal{T} and its corresponding graph by means of the dual simplex \mathcal{T}^* . A second, more astute reader will then question the sanity of the first, and point out that in order to demonstrate that \mathcal{T} is congruent to the inverse simplex of G, one would have to have a firm grasp of the structure of L_G^+ , which is much more poorly understood in general than L_G . For instance, would one have to argue that there exists a graph G such that $\Sigma(\mathcal{T})^t\Sigma(\mathcal{T}) = L_G^+$. This seems difficult to do in general since, for example, even the sign of the entries of L_G^+ aren't known.

Second, considering that Theorem 3.1 was proved using combinatorial simplices, one might wonder whether a similar relationship holds between "normalized" simplices and graphs. That is, given \mathcal{T} , when is \mathcal{T}^* the normalized simplex of a graph? Since the vertices of the normalized simplex lie on the unit sphere, we would require that $\|\boldsymbol{\sigma}_i^*\|_2 = 1$, which is clearly only holds for a very restricted class of simplex. Assume this holds. We would then need to cosntruct a graph with weights obeying

$$\cos \theta_{ij} = \frac{1}{\sqrt{w(i)w(j)}},$$

hence

$$\frac{1}{\sqrt{w(i)}} = \sum_{j \neq i} \cos \theta_{ij} \sqrt{w(j)}.$$

Think more about whether this system of equations has a solution.

§3.3. Examples & Simplices of Special Graphs

In this section we provide several of examples of simplices of graphs in order to give the reader a more intuitive feeling of the correspondence. Fix a connected and undirected graph G = (V, E, w). We begin by considering the simplices generated by three special graphs relating to G—the complement graph G^c , an arbitrary subgraph of G, and the case in which G is a product graph. We then proceed to analyzing several concrete examples.

Simplex of complement graph, G^c . Suppose that G is unweighted; so $w(i,j) \in \{0,1\}$ for all i,j. The complement graph of G, denoted G^c , is the graph $G^c = (V, E^c)$ where $E^c = \{(i,j) : (i,j) \notin E\}$. That is, it has edges where G has none and vice versa. Therefore, it has the adjacency matrix $\mathbf{A}^c \stackrel{\text{def}}{=} \mathbf{A}_{G^c} = \mathbf{1}\mathbf{1}^t - \mathbf{I} - \mathbf{A}_G$ and degree matrix $\mathbf{D}^c \stackrel{\text{def}}{=} \mathbf{D}_{G^c} = (n-1)\mathbf{I} - \mathbf{D}_G$ since $\deg(i)_{G^c} = n-1 - \deg(i)_G$. The Laplacian of G^c thus reads as

$$L^{c} = D^{c} - A^{c} = nI - D_{G} - 11^{t} + A_{G} = nI - 11^{t} - L_{G}.$$

Of course, 1 is still an eigenfunction of L^c (G^c is, after all, a graph). For $\varphi \perp 1$, we have

$$L^{c}\varphi = n\varphi - 1\langle 1, \varphi \rangle - L\varphi = (n - \lambda)\varphi,$$

from which it follows that L^c shares the same eigenfunctions as L, with corresponding eigenvalues $\{n - \lambda_i\}$. Consequently, the simplex corresponding to G^c , S^c has vertices given by

$$\sigma_i(j) = \varphi_j(i)\sqrt{n-\lambda_j},$$

and the inverse simplex has vertices

$$\sigma_i^+(j) = \frac{\varphi_j(i)}{\sqrt{n-\lambda_j}}.$$

Subgraphs Let $H \subseteq G$, in the sense that $w_H(i,j) \le w_G(i,j)$ for all $i,j \in [n]$ (we allow for G to be weighted once again). Then, for any $\mathbf{f}: V \to \mathbb{R}$ we see that

$$\mathcal{L}_G(\boldsymbol{f}) = \sum_{i \sim j} w_G(i,j) (\boldsymbol{f}(i) - \boldsymbol{f}(j))^2 \ge \sum_{i \sim j} w_H(i,j) (\boldsymbol{f}(i) - \boldsymbol{f}(j))^2 = \mathcal{L}_H(\boldsymbol{f}).$$

Therefore,

$$\|\boldsymbol{\Sigma}_{H}\boldsymbol{f}\|_{2}^{2} \leq \|\boldsymbol{\Sigma}_{G}\boldsymbol{f}\|_{2}^{2}$$

In particular, taking $f = \chi_i$ for any i, this yields $\|\sigma_i(G)\|_2^2 \ge \|\sigma_i(H)\|_2^2$, where $\{\sigma_i(G)\}$ are the vertices of S_G , and $\{\sigma_i(H)\}$ those of S_H . That is, the length of the vertex vectors of G is greater than those of G.

If G is a multiple of H such that $w_G(i,j) = c \cdot w_H(i,j)$ for all i,j, then we see that $\mathcal{L}_G(f) = c \cdot \mathcal{L}_H(f)$ so that $\|\boldsymbol{\sigma}_i(G)\|_2^2 = c \cdot \|\boldsymbol{\sigma}_i(H)\|_2^2$. This gives us a sense that volume of the simplex of the supergraph is greater than that of the subgraph. This notion will be made more precise in Section 4.1.

Meanwhile however, the normalized simplex is unaffected by the re-weighting:

$$\begin{split} \widehat{\mathcal{L}}_{G}(\boldsymbol{f}) &= \sum_{i \sim j} w_{G}(i,j) \left(\frac{\boldsymbol{f}(i)}{\sqrt{w_{G}(i)}} - \frac{\boldsymbol{f}(j)}{\sqrt{w_{G}(j)}} \right)^{2} \\ &= \sum_{i \sim j} c \cdot w_{H}(i,j) \left(\frac{\boldsymbol{f}(i)}{\sqrt{c \cdot w_{H}(i)}} - \frac{\boldsymbol{f}(j)}{\sqrt{c \cdot w_{H}(j)}} \right)^{2} \\ &= \sum_{i \sim j} w_{H}(i,j) \left(\frac{\boldsymbol{f}(i)}{\sqrt{w_{H}(i)}} - \frac{\boldsymbol{f}(j)}{\sqrt{w_{H}(j)}} \right)^{2} = \widehat{\mathcal{L}}_{H}(\boldsymbol{f}), \end{split}$$

implying that $\|\widehat{\boldsymbol{\sigma}}_i(G)\|_2 = \|\widehat{\boldsymbol{\sigma}}_i(H)\|$.

Product graphs. We begin with the definition of a product graph.

DEFINITION 3.1. Given two graphs G = (V(G), E(G)) and H = (V(H), E(H)), the product graph of G and H is the graph with vertex set $V(G) \times V(H)$ and edge set $\{((i_1, j), (i_2, j)) : (i_1, i_2) \in E(G), j \in V(H)\} \cup \{((i, j_1), (i, j_2)) : (j_1, j_2) \in E(H), i \in V(G)\}$. It is typically denoted $G \times H$.

In order to investigate the simplex of a product graph, we must better understand its eigenstructure. The following discussion demonstrates that the eigenstructure of $G \times H$ relates directly to that of G and H. Put n = |V(G)| and m = |V(H)|. Suppose G has

eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$ and corresponding eigenvectors $\varphi_1, \ldots, \varphi_n$, as usual. Let H have eigenvalues $\mu_1 \geq \cdots \geq \mu_m$ and corresponding eigenvectors ψ_1, \ldots, ψ_m . We claim that $G \times H$ has mn eigenvalues $\{\lambda_i + \mu_j\}_{(i,j)i \in [n] \times [m]}$ with eigenvectors $\{f_{i,j}\}_{(i,j) \in [n] \times [m]}$ given by

$$f_{i,j}(k,\ell) = \varphi_i(k)\psi_j(\ell).$$

Indeed:

$$\begin{split} (\boldsymbol{L}_{G\times H}f_{uv})(ij) &= \deg_{G\times H}((i,j))f_{uv}(ij) - \sum_{(k,\ell)\in\delta((i,j))} f_{uv}(k\ell) \\ &= (\deg_G(i) + \deg_H(j))\varphi_u(i)\psi_v(j) - \sum_{(k,\ell)\in\delta_{G\times H}((i,j))} \varphi_u(i)\psi_v(j) \\ &= (\deg_G(i) + \deg_H(j))\varphi_u(i)\psi_v(j) - \sum_{k\in\delta_G(i)} \varphi_u(k)\psi_v(j) - \sum_{\ell\in\delta_H(j)} \varphi_u(i)\psi_v(\ell) \\ &= \left(\deg_G(i)\varphi_u(i) - \sum_{k\in\delta_G(i)} \varphi_u(k)\right)\psi(j) + \left(\deg_H(j)\psi_v(j) - \sum_{\ell\in\delta_H(j)} \psi_v(\ell)\right)\varphi_u(i) \\ &= (\boldsymbol{L}_G\varphi_u)(i)\cdot\psi_v(j) + (\boldsymbol{L}_H\psi_v)(j)\cdot\varphi_u(i) \\ &= \lambda_u\varphi_u(i)\psi_v(j) + \mu_v\psi_v(j)\varphi_u(i) \\ &= (\lambda_u + \mu_v)\varphi_u(i)\psi_v(j) = (\lambda_u + \mu_v)f_{uv}(ij), \end{split}$$

as desired. Consequently, the product graph yields a simplex $S_{G\times H} \in \mathbb{R}^{mn-1}$ with vertices $\{\sigma_{ij}\}_{(i,j)\in[n]\times[m]}$ given by

$$\sigma_{ij}(k\ell) = f_{k\ell}(ij)(\lambda_k + \mu_\ell)^{1/2}.$$

3.3.1. Examples

We now move onto concrete examples of the simplices of particular graphs whose eigenstructures we can compute explicitly.

The Complete Graph, K_n . First let us consider the combinatorial simplex, $\mathcal{S}^{c}(K_n)$. The combinatorial Laplacian L_{K_n} has two eigenvalues: 0 with multiplicity 1 and n with multiplicity n-1. To see this, observe that for any φ perpendicular to 1, we have

$$L_{K_n} \varphi = \left(\varphi(1)(n-1) - \sum_{i \neq 1} \varphi(i), \dots, \varphi(n)(n-1) - \sum_{i \neq n} \varphi(i) \right)$$

$$= \left(\varphi(1)n - \sum_{i} \varphi(i), \dots, \varphi(n)n - \sum_{i} \varphi(i) \right)$$

$$= \left(\varphi(1)n, \dots, \varphi(n)n \right) = n\varphi,$$

since $\sum_{i} \varphi(i) = \langle \varphi, \mathbf{1} \rangle = 0$. finish this

Cycle Graph

Path Graph

The probability simplex. Fix $n \in \mathbb{N}$. The probability simplex is the simplex $\widetilde{\mathcal{S}}_p = \operatorname{conv}(\{\chi_i\}_{i=1}^n \cup \{\mathbf{0}\})$. It is most likely the simplex of greatest familiarity to mathematicians and computer scientists, being used to reason geometrically about probability distributions. The probability simplex has centroid $\mathbf{1}/n \neq \mathbf{0}$ and we will consider its centred version

$$S_p \stackrel{\text{def}}{=} \widetilde{S}_p - \frac{1}{n},$$

which has vertices $\sigma_i = \chi_i - 1/n$, i < n, and $\sigma_n = -1/n$. Note that $\sigma_j - \sigma_n = \chi_j$ and so $\langle \chi_i, \sigma_j - \sigma_n \rangle = \delta_{ij}$. Taking $\gamma_i = \chi_i$ and $\gamma_n = -\sum_i \chi_i = -1$ thus gives us the dual vertices. The angles between the facets of S_p are thus defined by

$$\cos \theta_{ij}(\mathcal{S}_p) = -\langle \boldsymbol{\chi}_i, \boldsymbol{\chi}_j \rangle = -\delta_{ij}, \ i, j \in [n-1], \quad \text{and} \quad \cos \theta_{in}(\mathcal{S}_p) = \frac{\langle \boldsymbol{\chi}_i, \mathbf{1} \rangle}{\|\mathbf{1}\|} = 1/\sqrt{n}, \ i \in [n].$$

This implies that $\theta_{ij}(\mathcal{S}_p) = 0$ for $i \neq j$, $i, j \neq n$ and $\theta_{in}(\mathcal{S}_p) \in (0, \pi/2)$. The angles in \mathcal{S}_p and $\widetilde{\mathcal{S}}_p$ don't change, but those it seems like those in the shifted simplex do. What is going on here?

§3.4. Properties of \mathcal{S}_G and \mathcal{S}_G^+

We now embark on our voyage to understand the mathematical properties of the simplices of a graph. This section is devoted to the study of \mathcal{S}_G and \mathcal{S}_G^+ , while Section 3.5 is concerned with $\widehat{\mathcal{S}}_G$ and $\widehat{\mathcal{S}}_G^+$. For bibliographic purposes, we will encode many of the results as Lemmas even if they are relatively simple. There are many results, and this should enable easier accounting. We begin with three basic properties.

Lemma 3.4. The following three properties hold:

- 1. Both S_G and S_G^+ are centred at the origin;
- 2. The squared distance between the vertices of S_G^+ is equal to the effective resistance between the corresponding vertices of G;
- 3. For any non-empty $U \subsetneq V$, the faces S_U and S_{Uc}^+ are orthogonal.

Proof. For (i) we simply compute $c(S) = n^{-1} \Lambda^{-1/2} \Phi^t \mathbf{1} = \mathbf{0}$, since $\langle \varphi_i, \mathbf{1} \rangle = 0$ for all i < n. Likewise, $c(S^+) = \mathbf{0}$. For (ii),

$$\left\| \boldsymbol{\sigma}_{i}^{+} - \boldsymbol{\sigma}_{j}^{+} \right\|_{2}^{2} = \left\| \boldsymbol{\sigma}_{i}^{+} \right\|_{2}^{2} + \left\| \boldsymbol{\sigma}_{j}^{+} \right\|_{2}^{2} - 2 \langle \boldsymbol{\sigma}_{i}^{+}, \boldsymbol{\sigma}_{j}^{+} \rangle = \boldsymbol{L}_{G}^{+}(i, i) + \boldsymbol{L}_{G}^{+}(j, j) - 2\boldsymbol{L}_{G}^{+}(i, j) = r^{\text{eff}}(i, j).$$

Property three follows as a result of the fact that \mathcal{S}_G^+ is dual to \mathcal{S}_G (Observation 3.1) and Lemma 2.10.

Property (ii) in the previous lemma was first noticed by Fielder [Fiel1, Chapter 6], and was also remarked upon by Van Mieghem *et al.* [VMDC17] who used it in their study of best spreader nodes in electrical networks. We will return to this connection in later sections. We now turn our attention to properties of the angles of a simplex.

Figure 3.1: A simplex of a graph and its inverse.

LEMMA 3.5. The combinatorial simplex S_G of a graph G is hyperacute iff L_G^+ is a Laplacian.

Proof. Using Equation 2.11 and the fact that $\mathcal{S}_G^+ = \mathcal{S}_G^*$ (Observation 3.1), we have

$$\cos heta_{ij} = -rac{\langle oldsymbol{\sigma}_i^+, oldsymbol{\sigma}_j^+
angle}{\left\|oldsymbol{\sigma}_i^+\right\|_2 \left\|oldsymbol{\sigma}_j^+\right\|_2},$$

where we recall that θ_{ij} is the angle between $\mathcal{S}_{\{i\}^c}$ and $\mathcal{S}_{\{j\}^c}$. Thus, \mathcal{S}_G is hyperacute iff

$$-\langle \boldsymbol{\sigma}_i^+, \boldsymbol{\sigma}_j^+ \rangle / \|\boldsymbol{\sigma}_i^+\|_2 \|\boldsymbol{\sigma}_j^+\|_2 \in [0, 1],$$

which occurs iff $\langle \boldsymbol{\sigma}_i^+, \boldsymbol{\sigma}_j^+ \rangle \leq 0$. In this case $\boldsymbol{L}_G^+(i,j) \leq 0$, implying that \boldsymbol{L}_G^+ is a Laplacian (recall that it already satisfies the other required properties: $\boldsymbol{L}_G^+ = \boldsymbol{0}$ and $\boldsymbol{L}_G^+(i,i) \geq 0$).

COROLLARY 3.1. The combinatorial simplex of the complete graph, S_{K_n} , is hyperacute.

Proof. Let $\mathbf{L} = \mathbf{L}_{K_n}$. It suffices to show by the previous lemma that $\mathbf{L}^+ = \mathbf{L}_{K^n}^+$ is a Laplacian. We've already seen that $\mathbf{L}_G^+ \mathbf{1} = \mathbf{0}$ for any G, so it remains only to show that $\mathbf{L}^+(k,k) > 0$ for all $k \in [n]$ and $\mathbf{L}^+(k,\ell) \leq 0$ for all $k \neq \ell$, i.e., that $\operatorname{sign}(\mathbf{L}(k,\ell)) = \operatorname{sign}(\mathbf{L}^+(k,\ell))$ for all k,ℓ . Recall from Section 3.3.1 that K_n has eigenvalue n with multiplicity n-1 and a single zero eigenvalue. Hence, $\mathbf{L} = n \sum_{i < n} \varphi_i \varphi_i^t$ and $\mathbf{L}^+ = n^{-1} \sum_{i < n} \varphi_i \varphi_i^t$. Therefore, $\operatorname{sign}(\mathbf{L}(k,\ell)) = \operatorname{sign}(n \sum_{i < n} \varphi_i(k) \varphi_i(\ell)) = \operatorname{sign}(\sum_{i < n} \varphi_i(k) \varphi_i(\ell)) = \operatorname{sign}(\mathbf{L}^+(k,\ell))$ which implies the result.

As Fiedler pointed out [Fie93], the correspondence also allows us to answer questions related to the distribution of angles of simplices. It is not, for example, a priori obvious that all distributions of angles are possible in a hyperacute simplex, in the following sense.

LEMMA 3.6. For every $n-1 \le k \le {n \choose 2}$, there exists a hyperacute simplex on n vertices with k strictly acute interior angles.

Proof. Fix k and consider a connected graph on n vertices with k edges (note the importance that $k \geq n-1$). The interior angles $\{\theta_{ij}^+\}_{i,j}$ of \mathcal{S}_G^+ obey $\cos \theta_{ij} = w(i,j)/\sqrt{w(i)w(j)}$, hence $\theta_{ij} = \pi/2$ whenever w(i,j) = 0, and $\theta_{ij} \in (0,\pi/2)$ for all $(i,j) \in E(G)$. Therefore, \mathcal{S}_G^+ meets the desired criteria.

The following lemma presents an alternate characterization of the simplex, and was first proved by Devriendt and Van Mieghem [DVM18]. As they notice, the following representation provides an easy way to check whether a given point lies inside the simplex.

LEMMA 3.7 ([DVM18]). For a simplex S of a graph G,

$$S = \left\{ \boldsymbol{x} \in \mathbb{R}^{n-1} : \boldsymbol{x}^t \boldsymbol{\Sigma}^+ + \frac{\mathbf{1}^t}{n} \ge \mathbf{0}^t \right\}. \tag{3.5}$$

 \boxtimes

 \boxtimes

Proof. Put $E = \{ \boldsymbol{x} \in \mathbb{R}^{n-1} : \boldsymbol{x}^t \boldsymbol{\Sigma}^+ + \boldsymbol{1}^t / n \geq \boldsymbol{0}^t \}$. First we show that $E \subseteq \mathcal{S}$. Since $\operatorname{rank}(\boldsymbol{\Sigma}) = n - 1$, it follows that given any $\boldsymbol{x} \in E$ (indeed, any $\boldsymbol{x} \in \mathbb{R}^{n-1}$) we can write $\boldsymbol{x} = \boldsymbol{\Sigma} \boldsymbol{y}$ for some $\boldsymbol{y} \in \mathbb{R}^n$. Letting $\bar{y} = n^{-1} \sum_i y(i)$ be the mean of the vector \boldsymbol{y} , compute

$$\boldsymbol{x}^{t}\boldsymbol{\Sigma}^{+} = \boldsymbol{y}^{t}\boldsymbol{\Sigma}^{t}\boldsymbol{\Sigma}^{+} = \boldsymbol{y}^{t}(\mathbf{I} - \mathbf{1}\mathbf{1}^{t}/n) = \boldsymbol{y}^{t} - \bar{y}\mathbf{1}^{t}.$$

If $x \in E$ the above implies that

$$\mathbf{y}^t - \bar{y}\mathbf{1}^t + \mathbf{1}^t/n \ge \mathbf{0}^t.$$

Moreover, since $\Sigma 1 = 0$, we have $x = \Sigma y = \Sigma (y - \bar{y}1 + 1/n)$. Noticing that

$$\langle \boldsymbol{y} - \bar{y}\boldsymbol{1} + \boldsymbol{1}^t/n, \boldsymbol{1} \rangle = n\bar{y} - n\bar{y} + 1 = 1,$$

demonstrates that the vector $\tilde{\boldsymbol{y}} = \boldsymbol{y} - \bar{y}\mathbf{1} + \mathbf{1}^t/n$ is a barycentric coordinate for \boldsymbol{x} , and so $\boldsymbol{x} \in \mathcal{S}$.

Conversely, for $x \in \mathcal{S}$ let y be its barycentric coordinate. Then

$$oldsymbol{x}^toldsymbol{\Sigma}^+ + rac{\mathbf{1}^t}{n} = oldsymbol{y}^tigg(\mathbf{I} - rac{\mathbf{J}}{n}igg) + rac{\mathbf{1}^t}{n} = oldsymbol{y}^t - rac{\mathbf{1}^t}{n} + rac{\mathbf{1}^t}{n} = oldsymbol{y}^t \geq oldsymbol{0}^t,$$

hence $S \subseteq E$. This completes the proof.

Just as each facet of a tetrahedron is contained in a plane and each edge is contained in an infinite line, each face S_U of a simplex U is contained in a flat of dimension |U| - 1. The following Lemma helps characterize these flats.

Lemma 3.8. Let S be the simplex of a graph G = (V, E, w), and fix $U \subseteq V$. For any non-empty $E \subseteq U^c$,

$$\mathcal{S}_U \subseteq \bigg\{ oldsymbol{x} \in \mathbb{R}^{n-1} : \sum_{i \in E} \langle oldsymbol{x}, oldsymbol{\sigma}_i^+
angle + rac{|E|}{n} = 0 \bigg\},$$

and

$$\mathcal{S}_{U}^{+} \subseteq \left\{ \boldsymbol{x} \in \mathbb{R}^{n-1} : \sum_{i \in E} \langle \boldsymbol{x}, \boldsymbol{\sigma}_{i} \rangle + \frac{|E|}{n} = 0 \right\},$$

Proof. Let $\boldsymbol{x} \in \mathcal{S}_U$ be arbitrary. For any $i \in U^c$ we have $\langle \boldsymbol{x}, \boldsymbol{\sigma}_i^+ \rangle = -1/n$. Hence, for any $E \subseteq U^c$

$$\sum_{i \in E} \langle \boldsymbol{x}, \boldsymbol{\sigma}_i^+ \rangle + \frac{|E|}{n} = \sum_{i \in E} \left(\langle \boldsymbol{x}, \boldsymbol{\sigma}_i^+ \rangle + \frac{1}{n} \right) = \sum_{i \in E} \left(\frac{1}{n} - \frac{1}{n} \right) = 0,$$

implying that x is in the desired set.

Lemma 3.8 gives us an alternate way to prove Lemma 3.7. For any i, taking $U = N \setminus \{i\}$ and $E = \{i\}$, it implies that $\mathcal{S}_{\{i\}^c}$ is a subset of the hyperplane

$$\mathcal{H}_i \stackrel{\text{def}}{=} \{ \boldsymbol{x} \in \mathbb{R}^{n-1} : \langle \boldsymbol{x}, \boldsymbol{\sigma}_i^+ \rangle + 1/n = 0 \}.$$

All points in the simplex S lie to one side of $S_{\{i\}^c}$, i.e., they lie in the halfspace

$$\mathcal{H}_i^{\geq \text{ def}} \{ \boldsymbol{x} \in \mathbb{R}^{n-1} : \langle \boldsymbol{x}, \boldsymbol{\sigma}_i^+ \rangle + 1/n \geq 0 \}.$$

(We know it is this halfspace because $\mathbf{0} \in \mathcal{S} \cap \mathcal{H}_i^{\geq}$.) The simplex is the interior of the region defined by the intersection of the faces $\mathcal{S}_{\{i\}^c}$, i.e.,

$$S = \bigcap_{i} \mathcal{H}_{i}^{\geq}. \tag{3.6}$$

Moreover, $\boldsymbol{x} \in \bigcap_i \mathcal{H}_i^{\geq}$ iff $\langle \boldsymbol{x}, \boldsymbol{\sigma}_i^+ \rangle + 1/n \geq 0$ for all i, i.e., $(\langle \boldsymbol{x}, \boldsymbol{\sigma}_1^+ \rangle, \dots, \langle \boldsymbol{x}, \boldsymbol{\sigma}_n^+ \rangle) + 1/n \geq 0$, meaning \boldsymbol{x} satisfies (3.5). We emphasize that a very similar discussion applies to \mathcal{S}^+ , in which case one has

$$S^{+} = \bigcap_{i} (\mathcal{H}_{i}^{+})^{\geq}, \tag{3.7}$$

for
$$(\mathcal{H}_i^+)^{\geq} \stackrel{\text{def}}{=} \{ \boldsymbol{x} \in \mathbb{R}^{n-1} : \langle \boldsymbol{x}, \boldsymbol{\sigma}_i \rangle + 1/n \geq 0 \}.$$

Centroids and Altitudes

We now turn to investigating the centroids and altitudes of the simplices, and how they relate to properties of the underlying graph. We begin by exploring the relationships between properties of the simplices themselves.

Recall that the altitude between $\mathcal{S}[U]$ and $\mathcal{S}[U^c]$ of a simplex \mathcal{S} is denoted $\boldsymbol{a}(\mathcal{S}_U)$ and is the unique vector $\boldsymbol{p} - \boldsymbol{q}$ where $\boldsymbol{p} \in \mathcal{S}_{U^c}$ and $\boldsymbol{q} \in \mathcal{S}_U$ which lies in the orthogonal complement of both \mathcal{S}_U and \mathcal{S}_{U^c} . One would thus expect that $\boldsymbol{a}(\mathcal{S}_U)$ and $\boldsymbol{a}(\mathcal{S}_{U^c})$ to be antiparallel; a fact verified by Lemma 3.9.

In what follows, we will often write c_U for $c(S_U)$ (resp., c_U^+ for $c(S_U^+)$) and a_U for $a(S_U)$ (resp., a_U^+ for $a(S_U^+)$).

LEMMA 3.9. Let $U \subseteq V$ be non-empty. Then the vectors $\mathbf{c}(\mathcal{S}_U)$ and $\mathbf{c}(\mathcal{S}_{U^c})$ are antiparallel. In particular, $(n - |U|)\mathbf{c}(\mathcal{S}_{\backslash}U^c) = |U|\mathbf{c}(\mathcal{S}_U)$ and

$$\frac{\boldsymbol{c}(\mathcal{S}_U)}{\|\boldsymbol{c}(\mathcal{S}_U)\|_2} = -\frac{\boldsymbol{c}(\mathcal{S}_{U^c})}{\|\boldsymbol{c}(\mathcal{S}_{U^c})\|_2}.$$

Proof. This is a straightforward computation: Observing that $\chi_U = 1 - \chi_{U^c}$ we have

$$c_U = |U|^{-1} \Sigma \chi_U = |U|^{-1} \Sigma (1 - \chi_{U^c}) = -|U|^{-1} \Sigma \chi_{U^c} = -|U|^{-1} \frac{|U^c|}{|U^c|} \Sigma \chi_{U^c} = \frac{n - |U|}{|U|} c_{U^c},$$

where we've used that $\Sigma 1 = 0$. This proves the first result; the second follows from normalizing the two vectors.

We would now like to examine the relationships between altitudes and centroids in the simplex and its inverse. We will demonstrate that centroids of opposing faces are antiparallel, and that the centroid of the face U is parallel to the altitude of originating from the face generated by U in its inverse. First however, we require the following technical result.

LEMMA 3.10. Any vector perpendicular to S_U can be written as $\Sigma^+(f_{U^c} + \alpha \chi_U)$ for some $\alpha \in \mathbb{R}$ and vector f_{U^c} such that $f(U) = \mathbf{0}$.

Proof. Let $\mathbf{y} \in \mathbb{R}^{n-1}$ be orthogonal to \mathcal{S}_U . Since $\operatorname{rank}(\mathbf{\Sigma}^+) = n-1$, we can find some \mathbf{z} such that $\mathbf{y} = \mathbf{\Sigma}^+ \mathbf{z} = \sum_{i \in U^c} \sigma_i^+ z(i) + \sum_{j \in U} \sigma_j^+ z(j)$. Define \mathbf{f} by $\mathbf{f}(U^c) = \mathbf{z}(U^c)$ and $\mathbf{f}(U) = \mathbf{0}$ and \mathbf{z}_{U^c} . We can then write \mathbf{y} as $\mathbf{\Sigma}^+ \mathbf{f} + \sum_{j \in U} \sigma_j^+ z(j)$, so we must show that $\mathbf{z}(U)$ is a constant vector. The orthogonality of \mathbf{y} to \mathcal{S}_U implies that for every two barycentric coordinates \mathbf{z}_U and \mathbf{y}_U with $\mathbf{z}(U^c) = \mathbf{y}(U^c) = \mathbf{0}$,

$$0 = \langle \boldsymbol{y}, \boldsymbol{\Sigma} \boldsymbol{x}_{U} - \boldsymbol{\Sigma} \boldsymbol{y}_{u} \rangle$$

$$= \sum_{i \in U^{c}} z(i) \langle \boldsymbol{\sigma}_{i}^{+}, \boldsymbol{\Sigma} (\boldsymbol{x}_{U} - \boldsymbol{y}_{U}) \rangle + \sum_{j \in U} z(j) \langle \boldsymbol{\sigma}_{j}^{+}, \boldsymbol{\Sigma} (\boldsymbol{x}_{U} - \boldsymbol{y}_{U}) \rangle$$

$$= \sum_{j \in U} z(j) \langle \boldsymbol{\sigma}_{j}^{+}, \boldsymbol{\Sigma} (\boldsymbol{x}_{U} - \boldsymbol{y}_{U}) \rangle, \qquad (3.8)$$

where the final inequality follows because σ_i^+ is orthogonal to \mathcal{S}_U for $i \in U^c$ by Lemma 3.4. Now, for $j \in U$,

$$\langle \boldsymbol{\sigma}_{j}^{+}, \boldsymbol{\Sigma}(\boldsymbol{x}_{U} - \boldsymbol{y}_{U}) \rangle = \boldsymbol{\chi}_{j}^{t} \boldsymbol{\Sigma}^{+} \boldsymbol{\Sigma}(\boldsymbol{x}_{U} - \boldsymbol{y}_{U}) = \boldsymbol{\chi}_{j}^{t} \left(\mathbf{I} - \frac{\mathbf{J}}{n} \right) (\boldsymbol{x}_{U} - \boldsymbol{y}_{U}) = \boldsymbol{\chi}_{j}^{t} (\boldsymbol{x}_{U} - \boldsymbol{y}_{U}). \quad (3.9)$$

Suppose for contradiction that $z(k) \neq z(j)$ for some $k, j \in U$. Put $\mathbf{x}_U = \mathbf{\chi}_k$ and $\mathbf{y}_U = \mathbf{\chi}_j$. Using Equation (3.9) write (3.8) as

$$z(k)\boldsymbol{\chi}_k^t(\boldsymbol{\chi}_k-\boldsymbol{\chi}_j)+z(j)\boldsymbol{\chi}_j^t(\boldsymbol{\chi}_k-\boldsymbol{\chi}_j)+\sum_{\ell\in U^c,\ell\neq j,k}z(\ell)\boldsymbol{\chi}_\ell^t(\boldsymbol{\chi}_k-\boldsymbol{\chi}_j)=z(k)-z(j)\neq 0,$$

a contradiction.
$$\square$$

We can now proceed to the main result.

LEMMA 3.11. For a simplex S of a graph G = (V, E) and any $U \subseteq V$, $U \neq \emptyset$,

$$\frac{\boldsymbol{a}(\mathcal{S}_{U})}{\|\boldsymbol{a}(\mathcal{S}_{U})\|_{2}} = \frac{\boldsymbol{c}^{+}(\mathcal{S}_{U^{c}})}{\|\boldsymbol{c}^{+}(\mathcal{S}_{U^{c}})\|_{2}} = -\frac{\boldsymbol{c}^{+}(\mathcal{S}_{U})}{\|\boldsymbol{c}^{+}(\mathcal{S}_{U})\|_{2}},$$
(3.10)

and

$$\frac{a^{+}(\mathcal{S}_{U})}{\|a^{+}(\mathcal{S}_{U})\|_{2}} = \frac{c(\mathcal{S}_{U^{c}})}{\|c(\mathcal{S}_{U^{c}})\|_{2}} = -\frac{c(\mathcal{S}_{U})}{\|c(\mathcal{S}_{U})\|_{2}}.$$

Proof. We prove the first set of equalities only; the second is obtained similarly. By definition, a_U is orthogonal to both S_U and S_{U^c} . Lemma 3.10 then implies both that

$$\boldsymbol{a}_U = \boldsymbol{\Sigma}^+ \boldsymbol{f} + \alpha \boldsymbol{\Sigma}^+ \boldsymbol{\chi}_U,$$

and

$$a_U = \Sigma^+ g + \beta \Sigma^+ \chi_{U^c},$$

for some $\alpha, \beta \in \mathbb{R}$, and vectors f, g with f(U) = 0 and $g(U^c) = 0$. In particular then,

$$\frac{\boldsymbol{\Sigma}^{+}(\boldsymbol{f} + \alpha \boldsymbol{\chi}_{U})}{\|\boldsymbol{\Sigma}^{+}(\boldsymbol{f} + \alpha \boldsymbol{\chi}_{U})\|_{2}} = \frac{\boldsymbol{\Sigma}^{+}(\boldsymbol{g} + \beta \boldsymbol{\chi}_{U^{c}})}{\|\boldsymbol{\Sigma}^{+}(\boldsymbol{g} + \beta \boldsymbol{\chi}_{U^{c}})\|_{2}}.$$
(3.11)

By Lemma 3.9, taking $f = \pm \chi_{U^c}/|U^c|$, $g = \mp \chi_U/|U|$, and $\alpha = \beta = 0$ yield solutions to the above equation. We have thus obtained Equation (3.10) up to its sign; it remains to determine whether $a(S_U)$ is parallel to antiparallel to $c(S_U)$. Since it is one of the two, we have

$$\frac{\langle a_U, c_U^+ \rangle}{\|a_U\|_2 \|c^+ U\|_2} \in \{1, -1\},\,$$

hence to see that they are antiparallel it suffices to show that $\langle \boldsymbol{a}_{U}, \boldsymbol{c}^{+}U \rangle < 0$. Let $\boldsymbol{a}_{U} = \boldsymbol{\Sigma} \boldsymbol{y}_{U^{c}} - \boldsymbol{\Sigma} \boldsymbol{z}_{U}$ for barycentric coordinates $\boldsymbol{y}_{U^{c}}$ and \boldsymbol{z}_{U} representing the faces $\mathcal{S}_{U^{c}}$ and \mathcal{S}_{U} . Then,

$$egin{aligned} \langle oldsymbol{a}_{U}, oldsymbol{c}_{U}^{+}
angle &= rac{1}{n} \langle oldsymbol{\Sigma} (oldsymbol{y}_{U^{c}} - oldsymbol{z}_{U}), oldsymbol{\Sigma} oldsymbol{\chi}_{U}^{+}
angle \ &= rac{1}{n} (oldsymbol{y}_{U^{c}}^{t} - oldsymbol{z}_{U}^{t}) \Big(oldsymbol{\mathrm{I}} - rac{oldsymbol{\mathrm{J}}}{n} \Big) oldsymbol{\chi}_{U} \ &= -rac{1}{n} oldsymbol{z}_{U}^{t} oldsymbol{\chi}_{U} - rac{1}{n^{2}} (oldsymbol{y}_{U^{c}}^{t} - oldsymbol{z}_{U}^{t}) oldsymbol{1}^{t} oldsymbol{\chi}_{U} \ &= -rac{1}{n} < 0. \end{aligned}$$

Therefore, a_U is indeed antiparallel to c_U^+ , meaning that the correct signage is $f = \chi_{U^c}/|U^c|$ and $g = -\chi_U/|U|$. Thus,

$$rac{oldsymbol{a}_U}{\|oldsymbol{a}_U\|_2} = rac{oldsymbol{\Sigma}^+oldsymbol{\chi}_{U^c}}{ig\|oldsymbol{\Sigma}^+oldsymbol{\chi}_{U^c}ig\|_2} = -rac{oldsymbol{\Sigma}^+oldsymbol{\chi}_U}{ig\|oldsymbol{\Sigma}^+oldsymbol{\chi}_Uig\|_2},$$

which is Equation (3.10).

Remark 3.3. We note that there are no other solutions, up to scaling, of the system of equations for a_U in the previous proof. Indeed, let f, g, α, β satisfy the equations. Then

 \boxtimes

$$\Sigma^{+}(\boldsymbol{f} - \beta \boldsymbol{\chi}_{U^{c}}) + \Sigma^{+}(\alpha \boldsymbol{\chi}_{U} - \boldsymbol{g}) = \mathbf{0},$$

so $f - \beta \chi_{U^c} + \alpha \chi - g \in \ker(\Sigma^+) = \operatorname{span}(1)$, implying that $f - \beta \chi_{U^c} = k \chi_{U^c}$ and $\alpha \chi_U - g = k \chi_U$ for some $k \in \mathbb{R}$, which yields the same solution as in the proof.

Whereas the previous few lemmas explored relationships among \mathcal{S}_G and \mathcal{S}_G^+ only, we now begin to observe several connections between the geometry of the simplices and properties of the graph. We begin by recalling that given $U \subseteq V(G)$ the *cut-set* of U is

$$\delta U \stackrel{\text{def}}{=} (U \times U^c) \cap E(G) = \{(i, j) \in E(G) : i \in U, j \in U^c\}.$$

Noting that $|\chi_U(i) - \chi_U(j)| = \chi_{(i,j) \in \delta U}$, we see that

$$w(\delta U) = \sum_{i,j \in E} w(i,j) |\boldsymbol{\chi}_U(i) - \boldsymbol{\chi}_U(j)| = \sum_{i,j \in E} w(i,j) (\boldsymbol{\chi}_U(i) - \boldsymbol{\chi}_U(j))^2 = \mathcal{L}(\boldsymbol{\chi}_U).$$

Moreover, $\|\boldsymbol{c}(\mathcal{S}_U)\|_2^2 = \langle |U|^{-1}\boldsymbol{\Sigma}\boldsymbol{\chi}_U, |U|^{-1}\boldsymbol{\Sigma}\boldsymbol{\chi}_U \rangle = |U|^{-2}\mathcal{L}(\boldsymbol{\chi}_U)$ and so

$$\|\boldsymbol{c}(\mathcal{S}_U)\|_2^2 = \frac{w(\delta U)}{|U|^2}.$$
 (3.12)

Via the same process we can also obtain an equivalent expression for the centroid of the inverse simplex:

$$\|\boldsymbol{c}(\mathcal{S}_{U}^{+})\|_{2}^{2} = \frac{w(\delta^{+}U)}{|U|^{2}},$$
 (3.13)

where we define $w(\delta^+ U) \stackrel{\text{def}}{=} \langle \mathbf{\Sigma}^+ \chi_U, \mathbf{\Sigma}^+ \chi_U \rangle = \langle \chi_U, \mathbf{L}^+ \chi_U \rangle$. Equations (3.12) and (3.13) were also given in [DVM18]. As a sanity check, we note that the equations are consistent with the facts that $\|\boldsymbol{\sigma}_i\|_2^2 = w(i)$ and $\|\boldsymbol{\sigma}_i^+\|_2^2 = \mathbf{L}^+(i,i) = \widehat{\mathcal{L}}^+(\chi_i)$. These equations allow us to give an interesting correspondence between the sizes of the altitudes and cut-sets of G.

LEMMA 3.12. For any non-empty
$$U \subseteq V$$
, $\|\boldsymbol{a}_{U}^{+}\|_{2}^{2} = 1/w(\delta U)$ and $\|\boldsymbol{a}_{U}\|_{2}^{2} = 1/w(\delta^{+}U)$.

Proof. By definition of the altitude there exists barycentric coordinates \mathbf{x}_U and \mathbf{x}_{U^c} such that $a^+U = \mathbf{\Sigma}^+(\mathbf{x}_U - \mathbf{x}_{U^c})$. Combining this representation of a_U^+ with that given by Lemma 3.11, write

$$\left\|a_U^+\right\|_2 = \frac{\langle a_U^+, a_U^+ \rangle}{\left\|a_U^+\right\|_2} = \frac{\langle \boldsymbol{\Sigma}^+(\boldsymbol{x}_{U^c} - \boldsymbol{x}_U), c_{U^c} \rangle}{\left\|c_{U^c}\right\|_2} = \frac{\langle \boldsymbol{\Sigma}^+(\boldsymbol{x}_{U^c} - \boldsymbol{x}_U), \boldsymbol{\Sigma} \boldsymbol{\chi}_{U^c} \rangle}{\sqrt{w(\delta U^c)}},$$

where the final equality comes from using the definition of the centroid in the numerator, and Equation 3.12 in the denominator. Recalling the relation between Σ and Σ^+ given by Equation 3.3 and that x_U and x_{U^c} are barycentric coordinates, we can rewrite the above as

$$\frac{(\boldsymbol{x}_{U^c} - \boldsymbol{x}_U)^t (\mathbf{I} - \mathbf{1}\mathbf{1}^t/n) \boldsymbol{\chi}_{U^c}}{\sqrt{w(\delta U^c)}} = \frac{1}{\sqrt{w(\delta U^c)}}.$$

Squaring both sides while noting that $\delta U = \delta U^c$ completes the proof of the first equality. For the second, we proceed in precisely the same manner to obtain $||a_U||_2^2 = 1/w(\delta^+ U^c)$. However, it's not immediately obvious that $w(\delta^+ U^c) = w(\delta^+ U)$. To see this, first recall that $\Sigma^+ \mathbf{1} = \Lambda^{-1/2} \Phi^t \mathbf{1} = \mathbf{0}$, and so

$$w(\delta^{+}U^{c}) = \langle \mathbf{\Sigma}^{+} \mathbf{\chi}_{U^{c}}, \mathbf{\Sigma}^{+} \mathbf{\chi}_{U^{c}} \rangle$$

$$= \langle \mathbf{\Sigma}^{+} (\mathbf{1} - \mathbf{\chi}_{U}), \mathbf{\Sigma}^{+} (\mathbf{1} - \mathbf{\chi}_{U}) \rangle$$

$$= \langle \mathbf{\Sigma}^{+} \mathbf{\chi}_{U}, \mathbf{\Sigma}^{+} \mathbf{\chi}_{U} \rangle = w(\delta^{+}U).$$

The aforementioned astute reader may have noticed that the above result implies something about the computational difficulty of determining the length of the minimum and maximum altitudes in hyperacute simplices. We tell this reader to "hold their horses"—this result and others like it will be presented in Chapter 5.

The next two lemmas were both proven by Devriendt and Van Mieghem [DVM18], extending work done by Fiedler. The following lemma gives an explicit expression for the altitudes in terms of graph properties and the inverse centroid.

Lemma 3.13. For any non-empty $U \subseteq V$,

$$oldsymbol{a}_U = rac{n - |U|}{w(\delta^+ U)} oldsymbol{c}_{U^c}^+, \quad and \quad oldsymbol{a}_U^+ = rac{n - |U|}{w(\delta U)} oldsymbol{c}_{U^c}.$$

Proof. This is a consequence of identities (3.12) and (3.13) and Lemmas 3.11 and 3.12. Applying the latter and then the former, observe that

$$m{a}_{U} = rac{\|m{a}_{U}\|_{2}}{\|m{c}_{U^{c}}^{+}\|_{2}}m{c}_{U^{c}}^{+} = \left(rac{1}{\sqrt{w(\delta^{+}U^{c})}} \middle/ rac{\sqrt{w(\delta^{+}U)}}{|U^{c}|}
ight)m{c}_{U^{c}}^{+} = rac{n - |U|}{w(\delta^{+}U)}m{c}_{U^{c}}^{+},$$

where we've once against used that $w(\delta^+U^c) = w(\delta^+U)$. A similar computation holds for a_U^+ .

Just as one generalizes the incidence of a vertex to the neighbourhood of a set of vertices, one can generalize an edge to the incidence between groups of vertices, as

$$\delta U_1 \cap \delta U_2 = \{(i,j) \in E(G), i \in U_1, j \in U_2\},\$$

for $U_1, U_2 \subseteq V(G)$. The final lemma gives an expression for the weight (or size) of this set in terms of the altitudes and centroids of the simplices.

Lemma 3.14. Let $U_1, U_2 \subseteq V$ with $U_1 \cap U_2 = \emptyset$. Then

$$\langle \boldsymbol{c}(\mathcal{S}_{U_1}), \boldsymbol{c}(\mathcal{S}_{U_2}) \rangle = -\frac{w(\delta U_1 \cap \delta U_2)}{|U_1||U_2|}, \quad and \quad \langle \boldsymbol{a}_{U_1}^+, \boldsymbol{a}_{U_2}^+ \rangle = -\frac{w(\delta U_1^c \cap \delta U_2^c)}{w(\delta U_1)w(\delta U_2)}.$$

Proof. For $i, j \in V$, $i \sim j$, observe that

$$\boldsymbol{\chi}_{U_1}^t \boldsymbol{L}_{i,j} \boldsymbol{\chi}_{U_2} = \begin{cases} -w(i,j), & i \in U_1, j \in U_2 \text{ or } i \in U_2, j \in U_1, \\ 0, & \text{otherwise.} \end{cases}$$

Therefore,

$$\langle \boldsymbol{c}_{U_{1}}, \boldsymbol{c}_{U_{2}} \rangle = \langle |U_{1}|^{-1} \boldsymbol{\Sigma} \boldsymbol{\chi}_{U_{1}}, |U_{2}|^{-1} \boldsymbol{\Sigma} \boldsymbol{\chi}_{U_{2}} \rangle = |U_{1}|^{-1} |U_{2}|^{-1} \boldsymbol{\chi}_{U_{1}}^{t} \boldsymbol{L}_{G} \boldsymbol{\chi}_{U_{2}}$$

$$= |U_{1}|^{-1} |U_{2}|^{-1} \sum_{i \sim j} \boldsymbol{\chi}_{U_{1}}^{t} \boldsymbol{L}_{(i,j)} \boldsymbol{\chi}_{U_{2}} = |U_{1}|^{-1} |U_{2}|^{-1} \sum_{(i,j) \in \delta U_{1} \cap \delta U_{2}} -w(i,j),$$

which proves the first equality. The second is shown similarly by employing Lemma 3.13 and the previous identity:

$$\langle \boldsymbol{a}_{U_{1}}^{+}, \boldsymbol{a}_{U_{2}}^{+} \rangle = \frac{|U_{1}^{c}||U_{2}^{c}|}{w(\delta U_{1})w(\delta U_{2})} \langle \boldsymbol{c}_{U_{1}^{c}}, \boldsymbol{c}_{U_{2}^{c}} \rangle = -\frac{w(\delta U_{1}^{c} \cap \delta U_{2}^{c})}{w(\delta U_{1})w(\delta U_{2})}.$$

Given the number of—often related and interacting—results in this section, it may be worth providing a brief summary. The important takeaways are that (i) the geometry of the inverse simplex S^+ is intimately related to the effective resistance of the graph (Lemma 3.4) and (ii) the lengths of the altitudes and centroids of S and S^+ are proportional to the weights of cuts (Equations (3.12), (3.13), Lemmas 3.12, 3.13, 3.14). A less concrete but equally important takeaway is the idea of using

§3.5. Properties of $\widehat{\mathcal{S}}_G$ and $\widehat{\mathcal{S}}_G^+$

Here we study the normalized simplex $\widehat{\mathcal{S}}_G$ of the connected graph G = (V, E, w)—which we again fix throughout this section—a somewhat less accessible object than its unnormalized counterpart. The normalized simplex is, roughly speaking, distorted by the weights of the vertices. Consequently, many of the relationships between \mathcal{S}_G and \mathcal{S}_G^+ are lost between $\widehat{\mathcal{S}}_G$ and $\widehat{\mathcal{S}}_G^+$. The first issue is that, in general, $\widehat{\mathcal{S}}_G$ and its inverse are not centred at the origin. Indeed, recall that the zero eigenvector $\widehat{\boldsymbol{\varphi}}_n$ of $\widehat{\boldsymbol{L}}_G$ sits in the space $\operatorname{span}(\boldsymbol{W}_G^{1/2}\mathbf{1})$, which is distinct from $\operatorname{span}(\mathbf{1})$ unless $\boldsymbol{W}_G^{1/2} = d\mathbf{I}$ for some d, in which case G is regular. If G is not regular, we thus have that $\boldsymbol{\varphi}_i \in \operatorname{span}(\boldsymbol{W}_G^{1/2}\mathbf{1}) \subseteq \operatorname{span}(\mathbf{1})^{\perp}$ for all i < n implying that $\langle \boldsymbol{\varphi}_i, \mathbf{1} \rangle \neq 0$. In this case then,

$$oldsymbol{c}(\widehat{\mathcal{S}}_G) = rac{1}{n}\widehat{oldsymbol{\Lambda}}^{1/2}\widehat{oldsymbol{\Phi}}^t oldsymbol{1} = rac{1}{n} \left(egin{array}{c} \sqrt{\lambda_1} \langle oldsymbol{arphi}_1, oldsymbol{1}
angle \ \sqrt{\lambda_{n-1}} \langle oldsymbol{arphi}_{n-1}, oldsymbol{1}
angle
ight)
eq oldsymbol{0}.$$

The above argument proves the following.

LEMMA 3.15. The centroid of $\widehat{\mathcal{S}}_G$ coincides with the origin of \mathbb{R}^{n-1} iff G is regular.

Given this, one might wonder whether the origin is even a point in the simplex $\widehat{\mathcal{S}}$. It is easily seen that it is, however. Consider the barycentric coordinate $\mathbf{u} = \sqrt{w}/\|\sqrt{w}\|_1$, where $\sqrt{w} = (w(1)^{1/2}, \dots, w(n)^{1/2})$. Since all eigenvectors $\widehat{\boldsymbol{\varphi}}_i$, i < n are orthogonal to $\boldsymbol{\varphi}_n \in \operatorname{span}(\boldsymbol{w}^{1/2})$ it follows that $\mathbf{0} = \widehat{\boldsymbol{\Sigma}} \mathbf{u} \in \widehat{\mathcal{S}}$.

The next set of properties which don't hold between $\widehat{\mathcal{S}}$ and $\widehat{\mathcal{S}}^+$ are the orthogonality relationships present between a simplex and its dual. That is, in general $\widehat{\mathcal{S}}_G^+$ is the not the dual of $\widehat{\mathcal{S}}_G$.

LEMMA 3.16. The inverse simplex $\widehat{\mathcal{S}}_{G}^{+}$ is the dual of $\widehat{\mathcal{S}}_{G}$ iff G is regular.

Proof. For any $i, j, k \in \mathbb{N}$ write

$$\langle \widehat{\boldsymbol{\sigma}}_{i}^{+}, \widehat{\boldsymbol{\sigma}}_{j} - \widehat{\boldsymbol{\sigma}}_{k} \rangle = \delta_{ij} - \delta_{ik} + \frac{\sqrt{w(i)w(k)}}{n} - \frac{\sqrt{w(i)w(j)}}{n}.$$
 (3.14)

 \boxtimes

First suppose that G is k-regular. Then for $i \neq k$, Equation (3.14) becomes $\langle \widehat{\boldsymbol{\sigma}}_i^+, \widehat{\boldsymbol{\sigma}}_j - \widehat{\boldsymbol{\sigma}}_k \rangle = \delta i j$. Since k was arbitrary, we see that $\{\widehat{\boldsymbol{\sigma}}_i^+\}$ is the sister pair of $\{\widehat{\boldsymbol{\sigma}}_j - \widehat{\boldsymbol{\sigma}}_k\}$. Conversely, suppose G is not regular and let i, k obey $0 \neq w(i) \neq w(k)$. Taking $i = j \neq k$ in (3.14) we see

$$\langle \widehat{\boldsymbol{\sigma}}_i^+, \widehat{\boldsymbol{\sigma}}_i - \widehat{\boldsymbol{\sigma}}_k \rangle = 1 - \frac{\sqrt{w(i)}}{n} (\sqrt{w(k)} - \sqrt{w(i)}) \neq 1,$$

so $\{\widehat{\boldsymbol{\sigma}}_i^+\}$ is not the sister set of $\{\widehat{\boldsymbol{\sigma}}_j - \widehat{\boldsymbol{\sigma}}_k\}$, completing the argument.

A consequence of the previous Lemma is that we can no longer apply Lemma 2.10 (regarding the orthogonality of \mathcal{T}_U and $\mathcal{T}_{U^c}^*$) to obtain information concerning $\widehat{\mathcal{S}}_U$ and $\widehat{\mathcal{S}}_{U^c}^+$. The following two lemmas and corresponding corollary address the link between these faces, and—rather unfortunately—demonstrate that indeed, they are not orthogonal in general.

The first gives sufficient conditions under which the faces are orthogonal, the second provides necessary conditions. Before we state the lemmas, recall from Section 2.3 that a subset of vertices is weight (or degree) homogenous if each vertex in the set has the same weight.

LEMMA 3.17. Let $U_1, U_2 \subseteq V(G)$ be two non-empty, weight homogenous subsets such that $U_1 \cap U_2 = \emptyset$. Then the faces $\widehat{S}^+[U_1]$ and $\widehat{S}[U_2]$ are orthogonal.

Proof. Suppose $w(i) = w_1$ for all $i \in U_1$ and $w(i) = w_2$ for all $i \in U_2$. Let \boldsymbol{x}_{U_1} be the barycentric coordinate of any point in $\widehat{\mathcal{S}}^+[U_1]$ and \boldsymbol{x}_{U_2} that of any point in $\widehat{\mathcal{S}}[U_2]$.

$$\begin{split} \langle \widehat{\boldsymbol{\Sigma}}^{+} \boldsymbol{x}_{U_{1}}, \widehat{\boldsymbol{\Sigma}} \boldsymbol{x}_{U_{2}} \rangle &= \boldsymbol{x}_{U_{1}}^{t} \bigg(\mathbf{I} - \frac{\sqrt{\boldsymbol{w}} \sqrt{\boldsymbol{w}}^{t}}{\operatorname{vol}(G)} \bigg) \boldsymbol{x}_{U_{2}} \\ &= \boldsymbol{x}_{U_{1}}^{t} \boldsymbol{x}_{U_{2}} - \frac{1}{\operatorname{vol}(G)} \sum_{i \in U_{1}} \boldsymbol{x}_{U_{1}}(i) \sqrt{\boldsymbol{w}(i)} \sum_{j \in U_{2}} \boldsymbol{x}_{U_{2}}(j) \sqrt{\boldsymbol{w}(j)} \\ &= -\frac{1}{\operatorname{vol}(G)} \sqrt{\boldsymbol{w}_{1} \boldsymbol{w}_{2}} \sum_{i \in U_{1}} \boldsymbol{x}_{U_{1}}(i) \sum_{j \in U_{2}} \boldsymbol{x}_{U_{2}}(j) = -\frac{\sqrt{\boldsymbol{w}_{1} \boldsymbol{w}_{2}}}{\operatorname{vol}(G)}, \end{split}$$

where the second equality is due to fact that $U_1 \cap U_2 = \emptyset$. This demonstrates that $\langle \widehat{\boldsymbol{\Sigma}}^+ \boldsymbol{x}_{U_1}, \boldsymbol{p} - \boldsymbol{q} \rangle = 0$ for any $\boldsymbol{p}, \boldsymbol{q} \in \widehat{\mathcal{S}}[U_2]$, completing the proof.

LEMMA 3.18. Suppose $U_1 \subseteq V(G)$ is not degree homogeneous. Then for all $U_2 \subseteq V(G)$ then faces $\widehat{\mathcal{S}}[U_1]$ (resp., $\widehat{\mathcal{S}}^+[U_1]$) and $\widehat{\mathcal{S}}^+[U_2]$ (resp., $\widehat{\mathcal{S}}[U_2]$) are not orthogonal.

Proof. We show that $\widehat{\mathcal{S}}[U_1]$ and $\widehat{\mathcal{S}}^+[U_2]$ are not orthogonal; the other case is nearly identical. Let $i, j \in U_1$ be such that $w(i) \neq w(j)$ and consider the points $\boldsymbol{p} = \widehat{\boldsymbol{\Sigma}} \boldsymbol{\chi}_i, \boldsymbol{q} = \widehat{\boldsymbol{\Sigma}} \boldsymbol{\chi}_j \in \widehat{\mathcal{S}}[U_1]$. For any $\widehat{\boldsymbol{\Sigma}}^+ \boldsymbol{x} \in \widehat{\mathcal{S}}^+[U_2]$, performing the usual arithmetic yields

$$\langle \widehat{\boldsymbol{\Sigma}}^+ \boldsymbol{x}, \boldsymbol{p} - \boldsymbol{q} \rangle = \frac{1}{\text{vol}(G)} \sum_{k \in U_2} \sqrt{w(k)} x(k) (\sqrt{w(j)} - \sqrt{w(j)}) \neq 0.$$

We state a consequence of Lemmas 3.17 and 3.18 which exemplifies a clear contrast between the combinatorial simplices and the normalized simplices.

COROLLARY 3.2. The vertex $\widehat{\boldsymbol{\sigma}}_{i}^{+}$ (resp., $\widehat{\boldsymbol{\sigma}}_{i}$) is orthogonal to $\widehat{\mathcal{S}}_{\{i\}^{c}}$ (resp., $\widehat{\mathcal{S}}_{\{i\}^{c}}^{+}$) iff $G[\{i\}^{c}] = G[V \setminus \{i\}]$ is regular.

Proof. If $G[\{i\}^c]$ is regular then $\{i\}^c$ is weight homogenous. By Lemma 3.17 $\widehat{\mathcal{S}}[\{i\}] = \widehat{\sigma}_i$ (resp., $\widehat{\mathcal{S}}^+[\{i\}] = \widehat{\sigma}_i^+$) is orthogonal to $\widehat{\mathcal{S}}[\{i\}^c]$ (resp., $\widehat{\mathcal{S}}^+[\{i\}^c]$). (Note that the singleton $\{i\}$ is clearly degree homogeneous.) Conversely, if $G[\{i\}^c]$ is not regular then by Lemma 3.18 $\widehat{\sigma}_i$ (resp., $\widehat{\sigma}_i^+$) is not orthogonal to $\widehat{\mathcal{S}}[\{i\}^c]$ (resp., $\widehat{\mathcal{S}}^+[\{i\}^c]$).

Centroids and altitudes. Let us attempt to parallel the arguments given in Section 3.4 concerning the centroids and altitudes of S_G and S_G^+ . For the normalized Laplacian we have

$$\widehat{\mathcal{L}}(\boldsymbol{\chi}_{U}) = \sum_{i \sim j} w(i, j) \left(\frac{\boldsymbol{\chi}_{U}(i)}{\sqrt{w(i)}} - \frac{\boldsymbol{\chi}_{U}(j)}{\sqrt{w(j)}} \right)^{2}$$

$$= \sum_{i \in U, j \in U^c} w(i, j) \left(\frac{\chi_U(i)}{\sqrt{w(i)}} - \frac{\chi_U(j)}{\sqrt{w(j)}} \right)^2$$

$$= \sum_{i \in U, j \in U^c} w(i, j) \frac{\chi_U(i)}{w(i)}$$

$$= \sum_{i \in U} \frac{1}{w(i)} \sum_{j \in \delta(i) \cap U^c} w(i, j)$$

$$= \sum_{i \in U} \frac{w_{G[i+U^c]}(i)}{w(i)}, \qquad (3.15)$$

where we've used the shorthand $i + U^c = \{i\} \cup U^c$ and we recall that G[I] is the graph restricted to the vertices in I. To interpret the above quantity, we might define

$$\gamma(i,B) \stackrel{\text{def}}{=} \frac{w_{G[i+B^c]}(i)}{w(i)},$$

as the fractional weight of i in B. Further defining $\gamma(A,B)$ as the total fractional weight from A to B:

$$\gamma(A, B) \stackrel{\text{def}}{=} \sum_{i \in A} \gamma(i, B),$$

we have

$$\widehat{\mathcal{L}}(\boldsymbol{\chi}_{U}) = \gamma(U, U^{c}),$$

and so the length of the centroid $c(\widehat{\mathcal{S}}_U)$ captures the total fraction of weight between U and U^c :

$$\left\| c(\widehat{\mathcal{S}}_U) \right\|_2^2 = \frac{1}{|U|^2} \langle \widehat{\mathbf{\Sigma}} \chi_U, \widehat{\mathbf{\Sigma}} \chi_U \rangle = \frac{1}{|U|^2} \widehat{\mathcal{L}}(\chi_U) = \frac{1}{|U|^2} \gamma(U, U^c), \tag{3.16}$$

which is the equivalent to Equation 3.12 for the normalized simplex. Performing a similar computation for $c(\widehat{\mathcal{S}}_{U}^{+})$ doesn't seem to yield anything overly insightful:

$$\left\|\boldsymbol{c}(\widehat{\mathcal{S}}_{U}^{+})\right\|_{2}^{2}=\frac{1}{|U|^{2}}\widehat{\mathcal{L}}^{+}(\boldsymbol{\chi}_{U}),$$

except perhaps to demonstrate that $\widehat{\mathcal{L}}^+(\chi_U) \geq 0$ for all $U \subseteq V$.

Alternate descriptions and duals. As we did for the combinatorial simplices, we now try to formulate a hyperplane representation of the normalized simplices. As the reader will see, however, this is difficult due to the influence of the graph weights on their geometry. We begin with a lemma which is roughly the equivalent of Lemma 3.8 for the normalized simplex.

LEMMA 3.19. Let $U \subseteq V$ be non-empty and $F \subseteq U^c$. Setting

$$\beta_i^S = \sqrt{w(i)} \frac{\max_{j \in S} \sqrt{w(j)}}{\operatorname{vol}(G)},$$

for any set S, we have

$$\widehat{\mathcal{S}}_U \subseteq \widehat{\mathcal{H}}_F^{\geq def} = \left\{ oldsymbol{x} \in \mathbb{R}^{n-1} : \sum_{i \in F} (\langle oldsymbol{x}, \widehat{oldsymbol{\sigma}}_i^+
angle + eta_i^{F^c}) \geq 0
ight\}.$$

Similarly,

$$\widehat{\mathcal{S}}_{U}^{+} \subseteq (\widehat{\mathcal{H}}_{F}^{+})^{\geq} \stackrel{def}{=} \bigg\{ \boldsymbol{x} \in \mathbb{R}^{n-1} : \sum_{i \in F} (\langle \boldsymbol{x}, \widehat{\boldsymbol{\sigma}}_{i} \rangle + \beta_{i}^{F^{c}}) \geq 0 \bigg\}.$$

Proof. Let $\mathbf{x} = \widehat{\mathbf{\Sigma}} \mathbf{y} \in \widehat{\mathcal{S}}_U$, where \mathbf{y} is a barycentric coordinate with $\mathbf{y}(U^c) = \mathbf{0}$. For $i \in U^c$,

$$\langle \widehat{\boldsymbol{\Sigma}} \boldsymbol{y}, \widehat{\boldsymbol{\sigma}}_i^+ \rangle = \boldsymbol{y}^t \widehat{\boldsymbol{\Sigma}}^t \widehat{\boldsymbol{\Sigma}}^+ \boldsymbol{\chi}_i = \boldsymbol{y}^t \left(\mathbf{I} - \frac{\sqrt{\boldsymbol{w}}\sqrt{\boldsymbol{w}}^t}{\operatorname{vol}(G)} \right) \boldsymbol{\chi}_i = -\frac{1}{\operatorname{vol}(G)} \left(\sum_{j \in U} y(j) \sqrt{w(j)} \right) \sqrt{w(i)}.$$

Since $\| {\boldsymbol y} \|_1 = 1$, and $F^c \supseteq U$ (since $F \subseteq U^c$) it follows that

$$\sum_{i \in U} y(i) \sqrt{w(j)} \le \max_{j \in U} \sqrt{w(j)} \le \max_{j \in F^c} \sqrt{w(j)},$$

hence

$$\langle \widehat{m{\Sigma}} m{y}, \widehat{m{\sigma}}_i^+ \rangle \geq - rac{\sqrt{w(i)}}{ ext{vol}(G)} \max_{j \in F^c} \sqrt{m{w}(j)} = -eta_i^{F^c}.$$

Consequently, $\sum_{i \in F} (\langle \boldsymbol{x}, \widehat{\boldsymbol{\sigma}}_i^+ \rangle + \beta_i^{F_c}) \geq \sum_{i \in F^c} (-\beta_i^{F^c} + \beta_i^{F^c}) = 0$, so indeed $\boldsymbol{x} \in \widehat{\mathcal{H}}_F$. The proof for the $\widehat{\mathcal{S}}_G^+$ and $\widehat{\mathcal{H}}_F^+$ is almost identical.

We might expect that Lemma 3.19 yields a hyperplane representation of the normalized simplex, as did Lemma 3.8 for the combinatorial simplex. Unfortunately however, the issue is once again complicated by the vertex weights and the relation between $\widehat{\Sigma}^+$ and $\widehat{\Sigma}$. Let us illustrate the problem by focusing on $\widehat{\mathcal{S}}$.

As opposed to Section 3.4, $\widehat{\mathcal{S}}_{\{i\}^c}$ is not contained in the hyperplane $\widehat{\mathcal{H}}_i = \{x : \langle x, \widehat{\sigma}_i^+ \rangle + \beta_i = 0\}$, where we take $\beta_i = \beta_i^{\{i\}^c} = \sqrt{w(i)} \max_{j \neq i} \sqrt{w(j)} / \operatorname{vol}(G)$. To see this, take any $k \notin \operatorname{argmax}_{j \neq i} \sqrt{w(j)}$ (such a k exists iff the graph is not regular) and note that while $\sigma_k \in \widehat{\mathcal{S}}_U$ it is not in $\widehat{\mathcal{H}}_i$:

$$\langle \boldsymbol{\sigma}_k, \boldsymbol{\sigma}_i^+ \rangle = \boldsymbol{\chi}_k \widehat{\boldsymbol{\Sigma}}^t \widehat{\boldsymbol{\Sigma}}^+ \boldsymbol{\chi}_i = -\frac{\sqrt{w(k)w(i)}}{\operatorname{vol}(G)} \neq \beta_i,$$

by assumption. The other way to see this is to note that $\widehat{\sigma}_i^+$ is not perpendicular to $\mathcal{S}_{\{i\}^c}$ in general by Corollary 3.2. Thus, it is not clear how to generate an analogous description to Equation (3.5) for the normalized simplex. While this may seem relatively inconsequential, it severely complicates finding the dual of $\widehat{\mathcal{S}}_G$, which is the question we turn to next.

What is $\widehat{\mathcal{S}}_G^*$? Given that $\widehat{\mathcal{S}}_G^+$ is not the dual of $\widehat{\mathcal{S}}_G$ in general, is Noting that

$$c(\widehat{S}) = \frac{1}{n} \left(\sum_{\ell=1}^{n} \widehat{\sigma}_{\ell}(1), \dots, \sum_{\ell=1}^{n} \widehat{\sigma}_{\ell}(n) \right)^{t},$$

we see that the vertices of $\widehat{\mathcal{S}}_0$ have coordinates

$$\widehat{\pmb{\sigma}}_i(j) - \pmb{c}(\widehat{\mathcal{S}})(j) = \widehat{\pmb{\varphi}}_j(i) \widehat{\lambda}_j^{1/2} - \frac{1}{n} \sum_{\ell=1}^n \widehat{\pmb{\varphi}}_j(\ell) \widehat{\lambda}_j^{1/2} = \widehat{\lambda}_j^{1/2} \bigg(\widehat{\pmb{\varphi}}_j(i) - \frac{1}{n} \langle \widehat{\pmb{\varphi}}_j, \mathbf{1} \rangle \bigg).$$

Likewise, the vertices of \mathcal{S}_0^+ have coordinates

$$\widehat{\boldsymbol{\sigma}}_{i}^{+}(j) = \widehat{\lambda}_{j}^{-1/2} \bigg(\widehat{\boldsymbol{\varphi}}_{j}(i) - \frac{1}{n} \langle \widehat{\boldsymbol{\varphi}}_{j}, \mathbf{1} \rangle \bigg).$$

In light of Lemma 3.8, one might imagine that if given a simplex in H-description, say $\mathcal{T} = \bigcap_i \{ \boldsymbol{x} : \langle \boldsymbol{z}_i, \boldsymbol{x} \rangle \geq b_i \}$ then the vectors \boldsymbol{z}_i are parallel to the dual vertices of \mathcal{T} . Lemma 3.19, however, disconfirms this hypothesis. As is illustrated by some ugly arithmetic in Section 3.5, the dual vertices of $\widehat{\mathcal{S}}_G$ are not $\{\widehat{\boldsymbol{\sigma}}_i^+\}$, but $\widehat{\mathcal{S}}_G = \bigcap_i \{ \boldsymbol{x} : \langle \boldsymbol{x}, \widehat{\boldsymbol{\sigma}}_i^+ \rangle \geq \beta_i / n \}$ by Equation (??). It turns out the key difference is that \mathcal{S}_G is centred whereas $\widehat{\mathcal{S}}_G$ is not.

LEMMA 3.20. Let $\mathcal{T} \subseteq \mathbb{R}^{n-1}$ be a centred simplex with $\mathcal{T} = \bigcap_{i=1}^n \{ \boldsymbol{x} \in \mathbb{R}^{n-1} : \langle \boldsymbol{x}, \boldsymbol{z}_i \rangle \geq \alpha_i \}$. Then $\{-\boldsymbol{z}_i/(\alpha_i n)\}$ are the vertices of \mathcal{T}^D .

Proof. As usual, let $\{\boldsymbol{\sigma}_i\}$ be the vertices of \mathcal{T} . Put $\boldsymbol{\gamma}_i = -\boldsymbol{z}_i/(\alpha_i n)$. We need to show that $\{\boldsymbol{\gamma}_i\}_{i=1}^{n-1}$ is the sister basis to $\{\boldsymbol{\sigma}_i - \boldsymbol{\sigma}_n\}_{i=1}^{n-1}$. Let H_i be the boundary of the halfspace $\{\boldsymbol{x}: \langle \boldsymbol{x}, \boldsymbol{z}_i \rangle \geq \alpha_i\}$, so $H_i = \{\boldsymbol{x}: \langle \boldsymbol{x}, \boldsymbol{z}_i \rangle = \alpha_i\}$. Enumerate the vertices $\{\boldsymbol{\sigma}_i\}$ such that $\mathcal{S}_{\{i\}^c} \subseteq H_i$. Fix $i \in [n-1]$. We claim that

$$\sigma_i \in \bigcap_{j \neq i} H_i$$
.

Indeed, $S_{\{j\}^c}$ is the n-1 dimensional simplex with vertices $\{\boldsymbol{\sigma}_\ell\}_{\ell\neq j}$. Hence $\boldsymbol{\sigma}_i \in S_{\{j\}^c}$ for all $j \neq i$ and thus also lies in $\cap_{j\neq i}H_j$. Therefore, $\langle \boldsymbol{\sigma}_i, \boldsymbol{z}_j \rangle = \alpha_j$ for all $j \neq i$, from which it follows that $\langle \boldsymbol{\gamma}_j, \boldsymbol{\sigma}_i - \boldsymbol{\sigma}_n \rangle = -\langle \boldsymbol{z}_j, \boldsymbol{\sigma}_i \rangle/(\alpha_j n) + \langle \boldsymbol{z}_j, \boldsymbol{\sigma}_n \rangle/(\alpha_j n) = 1/n - 1/n = 0$. It remains to show that $\langle \boldsymbol{\gamma}_i, \boldsymbol{\sigma}_i - \boldsymbol{\sigma}_n \rangle = 1$ for all $i \neq n$. Since \mathcal{T} is centred by assumption, we have $\boldsymbol{\sigma}_i = -\sum_{j\neq i} \boldsymbol{\sigma}_j$. Consequently,

$$\langle \boldsymbol{\gamma}_i, \boldsymbol{\sigma}_i - \boldsymbol{\sigma}_n \rangle = -\sum_{i \neq i} \langle \boldsymbol{\gamma}_i, \boldsymbol{\sigma}_j \rangle - \langle \boldsymbol{\gamma}_i, \boldsymbol{\sigma}_n \rangle = \frac{1}{n}(n-1) + \frac{1}{n} = 1,$$

as was to be shown. \boxtimes

LEMMA 3.21. Let $\mathcal{T} = \bigcap_i \{ \boldsymbol{x} : \langle \boldsymbol{x}, \boldsymbol{z}_i \rangle \geq \alpha_i \}$ be a simplex. Its centred version, \mathcal{T}_0 , can be written as $\bigcap_i \{ \boldsymbol{x} : \langle \boldsymbol{x}, \boldsymbol{z}_i \rangle \geq \alpha_i - \langle \boldsymbol{c}(\mathcal{T}), \boldsymbol{z}_i \rangle \}$.

Proof. As usual, take $\mathcal{H}_i = \{ \boldsymbol{x} : \langle \boldsymbol{x}, \boldsymbol{z}_i \rangle = \alpha_i \}$ to be the hyperplanes bounding the simplex. The hyperplanes bounding the centred simplex, are parallel to the hyperplanes \mathcal{H}_i and can thus be written as

$$\mathcal{H}_{i0} = \{ \boldsymbol{x} : \langle \boldsymbol{x}, \boldsymbol{z}_i \rangle = \beta_i \},$$

for some β_i . Moreover, just as $\sigma_j \in \mathcal{H}_i$ for $j \neq i$, we have $\sigma_j - c(\mathcal{T}) \in \mathcal{H}_{i0}$, since $\{\sigma_j - c(\mathcal{T})\}$ are the vertices of \mathcal{T}_0 . As such, $\langle \sigma_j - c(\mathcal{T}), z_i \rangle = \beta_i$, and

$$\langle \boldsymbol{\sigma}_j - \boldsymbol{c}(\mathcal{T}), \boldsymbol{z}_i \rangle = \langle \boldsymbol{\sigma}_j, \boldsymbol{z}_i \rangle - \langle \boldsymbol{c}(\mathcal{T}), \boldsymbol{z}_i \rangle = \alpha_i - \langle \boldsymbol{c}(\mathcal{T}), \boldsymbol{z}_i \rangle,$$

whence $\beta_i = \alpha_i - \langle \boldsymbol{c}(\mathcal{T}), \boldsymbol{z}_i \rangle$. It then follows that

$$\mathcal{T}_0 = \bigcap_i \mathcal{H}_{i0}^{\geq},$$

where
$$\mathcal{H}_{i0}^{\geq} = \{ \boldsymbol{x} : \langle \boldsymbol{x}, \boldsymbol{z}_i \rangle \geq \alpha_i - \langle \boldsymbol{c}(\mathcal{T}), \boldsymbol{z}_i \rangle \}.$$

Taken together, Lemmas 3.20 and 3.21 provide a path to try and determine the dual simplex of $\widehat{\mathcal{S}}_G$. In particular, if we could determine a hyperplane representation of any simplex congruent to $\widehat{\mathcal{S}}_G$, then we can obtain a hyperplane representation of its centred version by Lemma 3.21 and to the dual of its centred version by Lemma 3.20. Since the dual is common to all congruent simplices by Observation 2.3, this would yield \mathcal{S}_G^* . The trick is simply to determine a hyperplane representation of \mathcal{S}_G —which we leave as an exercise for the reader. Just kidding.

Further Properties of the Correspondence

§4.1. Construction via Extended Menger and Gramian

In this section we derive matrix equations which relate the geometry of hyperacute simplices and their duals. The equations appeal to the relationship between hyperacute simplices and graphs by using well known results from the literature on electrical networks and effective resistance. The goal of this section is to demonstrate to the reader the utility of the graph-simplex correspondence in generating statements about hyperacute simplices, by hijacking our knowledge of graph theory.

Let a centred, hyperacute simplex S^+ be given. By Theorem 3.1 it is the inverse simplex of a graph G, whose corresponding simplex $S = S_G$ is dual to S^+ . Therefore, $\mathbf{L}_G = \mathbf{\Sigma}^t \mathbf{\Sigma}$ and $\mathbf{L}_G^+ = (\mathbf{\Sigma}^+)^t \mathbf{\Sigma}$ and the vertices $\boldsymbol{\sigma}_i^+$ of S^+ can be written as $\boldsymbol{\sigma}_i^+ = (\boldsymbol{\varphi}_1(i)\lambda_1^{1/2}, \dots, \boldsymbol{\varphi}_{n-1}(i)\lambda_{n-1}^{1/2})^t$. Hence,

$$\left\|\boldsymbol{\sigma}_i^+ - \boldsymbol{\sigma}_j^+\right\|_2^2 = (\boldsymbol{\chi}_i - \boldsymbol{\chi}_j)^t (\boldsymbol{\Sigma}^+)^t \boldsymbol{\Sigma}^+ (\boldsymbol{\chi}_i - \boldsymbol{\chi}_j) = r^{\text{eff}}(i, j).$$

That is, the distance between the vertices of S^+ encodes the effective resistance between nodes i and j in G. Let D^+ be the distance matrix of S^+ (thus the effective resistance matrix R_G of G).

Detour into electrical networks, not sure where this goes exactly. Observe that starting with the equation $\mathbf{R} = \mathbf{1} \mathrm{diag}(\mathbf{L}_G^+(i,i))^t + \mathrm{diag}(\mathbf{L}_G^+(i,i))\mathbf{1}^t - 2\mathbf{L}_G^+$, should explain where this equation comes from it follows that $\mathbf{x}^t \mathbf{R} \mathbf{x} = -2\mathbf{x}^t \mathbf{L}_G^+ \mathbf{x}$ for any $\mathbf{x} \in \mathrm{span}(\mathbf{1})^{\perp}$. Therefore,

$$\begin{split} \boldsymbol{L}_{G}^{+}(i,j) &= \boldsymbol{\chi}_{i}^{t} \boldsymbol{L}_{G}^{+} \boldsymbol{\chi}_{j} \\ &= \left(\boldsymbol{\chi}_{i} - \frac{1}{n} \mathbf{1}\right)^{t} \boldsymbol{L}_{G}^{+} \left(\boldsymbol{\chi}_{j} - \frac{1}{n} \mathbf{1}\right) \\ &= -\frac{1}{2} \left(\boldsymbol{\chi}_{i} - \frac{1}{n} \mathbf{1}\right)^{t} \boldsymbol{R}_{G} \left(\boldsymbol{\chi}_{j} - \frac{1}{n} \mathbf{1}\right) \\ &= \frac{1}{2n} \left(\sum_{k \in [n]} r^{\text{eff}}(i,k) + r^{\text{eff}}(j,k)\right) - \frac{1}{2} r^{\text{eff}}(i,j) - \frac{R_{G}}{n^{2}}, \end{split}$$

where R_G is the total effective resistance of the graph. For i = j, this becomes

$$L_G^+(i,i) = \frac{1}{n} \sum_{k \in [n]} r^{\text{eff}}(i,k) - \frac{R_G}{n^2}.$$

Let \overline{d} be the average squared distance between all the vertices of S^+ , that is

$$\overline{d} \stackrel{\text{def}}{=} \frac{1}{n^2} \sum_{i \le j} \left\| \boldsymbol{\sigma}_i^+ - \boldsymbol{\sigma}_j^+ \right\|_2^2.$$

Let $\xi(i)$ give the average squared distance of vertex i from other vertices minus the total average distance,

$$\xi(i) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i} \left\| \boldsymbol{\sigma}_{i}^{+} - \boldsymbol{\sigma}_{j}^{+} \right\|_{2}^{2} - \overline{d},$$

and put $\boldsymbol{\xi} = (\xi(1), \dots, \xi(n))$. Then we have the following result.

LEMMA 4.1. Let $S \subseteq \mathbb{R}^{n-1}$ be a centred hyperacute simplex with squared distance matrix D, and average squared distance vector $\boldsymbol{\xi}$. Denote by $\boldsymbol{\Gamma}$ the vertex matrix of the dual simplex to S. Then,

$$-\frac{1}{2} \begin{pmatrix} 0 & \mathbf{1}_n^t \\ \mathbf{1}_n & D \end{pmatrix} \begin{pmatrix} \boldsymbol{\xi}^t \boldsymbol{\Gamma}^t \boldsymbol{\Gamma} \boldsymbol{\xi} + 4\overline{d} & -(\boldsymbol{\Gamma}^t \boldsymbol{\Gamma} \boldsymbol{\xi} + 2\mathbf{1}/n)^t \\ -(\boldsymbol{\Gamma}^t \boldsymbol{\Gamma} \boldsymbol{\xi} + 2\mathbf{1}/n) & \boldsymbol{\Gamma}^t \boldsymbol{\Gamma} \end{pmatrix} = \mathbf{I}_{n+1}. \tag{4.1}$$

Moreover, the vertices of the dual simplex to S and the distance matrix of S are related by the equation

$$\Gamma^t \Gamma D \Gamma^t \Gamma = -2\Gamma^t \Gamma, \tag{4.2}$$

and in the space $\operatorname{span}(\mathbf{1})^{\perp}$ it holds that

$$D\Gamma^t\Gamma D = -2D.$$

Proof. As above, S is the inverse simplex of some graph G, and therefore, D = R, where R is the effective resistance matrix. Therefore, we can rewrite $\xi(i)$ as

$$\frac{1}{n} \sum_{i} r^{\text{eff}}(i,j) - \frac{1}{n^2} \sum_{i < i} r^{\text{eff}}(i,j),$$

and $\boldsymbol{\xi}$ as

$$\boldsymbol{\xi} = \frac{1}{n} \mathbf{R} \mathbf{1} - \frac{1}{n^2} \mathbf{1} \mathbf{1}^t \mathbf{R} \mathbf{1} = \frac{1}{n} \mathbf{R} \mathbf{1} - \frac{1}{n^2} \mathbf{J} \mathbf{R} \mathbf{1}.$$

Meanwhile, the dual simplex to S is the simplex of the graph G, and hence obeys $\Gamma^t \Gamma = L_G$. Consequently, letting $\mathbf{u} = \frac{1}{n} \mathbf{R} \mathbf{1} - \frac{1}{n^2} \mathbf{J} \mathbf{R} \mathbf{1}$, we can rewrite Equation 4.1 as the purely graph theoretic statement

$$-\frac{1}{2} \begin{pmatrix} 0 & \mathbf{1}_n^t \\ \mathbf{1}_n & \mathbf{R} \end{pmatrix} = \begin{pmatrix} \mathbf{u}^t \mathbf{L}_G \mathbf{u} + \frac{4}{n_c^2} R & -(\mathbf{L}_G \mathbf{u} + \frac{2}{n} \mathbf{1})^t \\ -(\mathbf{L}_G \mathbf{u} + \frac{2}{n} \mathbf{1}) & \mathbf{L}_G \end{pmatrix}^{-1}.$$

where $R = \sum_{i < j} r^{\text{eff}}(i, j)$ is the total effective resistance in the graph. The above equality was proved by Van Mieghem *et al.* [VMDC17], and in a more general form by Fiedler [Fie93, Fie11], but we prove it here for completeness. Multiplying out the left hand side, the top left-hand corner of the resulting block matrix is

$$-\frac{1}{2}(\mathbf{1}^t \mathbf{L}_G - \frac{2}{n} \mathbf{1}^t \mathbf{1}) = 1,$$

since $\mathbf{1}^t L_G = \mathbf{1}^t L_G^t = \mathbf{0}$. Likewise the top-right hand corner is $\mathbf{0}$. The bottom left-hand corner is

$$-\frac{1}{2}\left(\mathbf{1}\boldsymbol{\xi}^{t}\boldsymbol{L}_{G}\boldsymbol{\xi}+\frac{4}{n^{2}}R\mathbf{1}-R\boldsymbol{L}_{G}\boldsymbol{\xi}-\frac{2}{n}R\mathbf{1}\right),\tag{4.3}$$

where, using that $\mathbf{R} = \boldsymbol{\xi} \mathbf{1}^t + \mathbf{1} \boldsymbol{\xi}^t - 2 \mathbf{L}_G^+$ and $\mathbf{1}^t \mathbf{L}_G = \mathbf{0}$,

$$\mathbf{R}\mathbf{L}_G = \mathbf{1}\boldsymbol{\xi}^t \mathbf{L}_G - 2\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right). \tag{4.4}$$

 \boxtimes

Equation (4.3) thus becomes

$$\frac{1}{n}\mathbf{R}\mathbf{1} - \frac{2}{n^2}R\mathbf{1} - \left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right)\boldsymbol{\xi} = \frac{1}{n}\mathbf{R}\mathbf{1} - \frac{2}{n^2}R\mathbf{1} - \left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right)\left(\frac{1}{n}\mathbf{R}\mathbf{1} - \frac{1}{n^2}\mathbf{J}\mathbf{R}\mathbf{1}\right)$$

$$= -\frac{2}{n^2}R\mathbf{1} + \frac{1}{n^2}\mathbf{R}\mathbf{1} + \frac{1}{n^2}\mathbf{J}\mathbf{R}\mathbf{1} - \frac{1}{n^3}\mathbf{J}^2\mathbf{R}\mathbf{1}$$

$$= -\frac{2}{n^2}R\mathbf{1} + \frac{1}{n^2}\mathbf{J}\mathbf{R}\mathbf{1} = \mathbf{0},$$

using that $\mathbf{J}^2 = n\mathbf{J}$, $R = \frac{1}{2}\mathbf{1}^t\mathbf{R}\mathbf{1}$, and $\mathbf{J}\mathbf{R}\mathbf{1} = \mathbf{1}(\mathbf{1}^t\mathbf{R}\mathbf{1}) = \mathbf{1}R$. Finally, again using (4.4), the bottom right-hand side is

$$\frac{1}{2}\mathbf{1}\boldsymbol{\xi}^{t}\boldsymbol{L}_{G} + \frac{1}{n}\mathbf{1}\mathbf{1}^{t} - \frac{1}{2}\boldsymbol{R}\boldsymbol{L}_{G} = \frac{1}{n}\mathbf{J} + \left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right) = \mathbf{I}.$$

This demonstrates that (4.3) holds. We now show that $L_G R L_G = -2L_G$ and that $R L_G R x = -2Rx$ for all $x \in \text{span}(1)^{\perp}$, which will complete the proof. Applying Equation (4.4) we have

$$oldsymbol{L}_G oldsymbol{R} oldsymbol{L}_G = oldsymbol{L}_G \mathbf{1} oldsymbol{\xi}^t oldsymbol{L}_G = -2 oldsymbol{L}_G + rac{2}{n} oldsymbol{L}_G \mathbf{1} \mathbf{1}^t = -2 oldsymbol{L}_G.$$

In the same way as (4.4) was derived, we see that

$$L_G R = L_G \xi \mathbf{1}^t - 2\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right),$$

and so

$$RL_GR = \left(RL_G\xi^t + \frac{2}{n}\mathbf{1}\right)\mathbf{1}^t - 2R,$$

as desired.

Putting aside simplex geometry for the moment, it is worth meditating on the significance of Equation (4.1) as applied to electrical networks. As demonstrated in [VMDC17], the result translates into the matrix equation

$$-\frac{1}{2} \begin{pmatrix} 0 & \mathbf{1}^{t} \\ \mathbf{1} & \mathbf{R} \end{pmatrix} = \begin{pmatrix} \operatorname{diag}(\mathbf{L}_{G}^{+}(i,i))^{t} \mathbf{L}_{G} \operatorname{diag}(\mathbf{L}_{G}^{+}(i,i)) + 4R_{G}/n^{2} & -(\mathbf{L}_{G} \operatorname{diag}(\mathbf{L}_{G}^{+}(i,i)) + \frac{2}{n}\mathbf{1})^{t} \\ -(\mathbf{L}_{G} \operatorname{diag}(\mathbf{L}_{G}^{+}(i,i)) + \frac{2}{n}\mathbf{1}) & \mathbf{L}_{G} \end{pmatrix}^{-1}.$$

$$(4.5)$$

Let D be the distance matrix of a set X of d points. The matrix

$$\begin{pmatrix} 0 & \mathbf{1}^t \\ \mathbf{1} & \mathbf{D} \end{pmatrix} \in \mathbb{R}^{(d+1)\times(d+1)},\tag{4.6}$$

is called the Menger matrix of X.

A variant of the following result was proved by Fiedler [Fie11].

LEMMA 4.2. For a weighted and connected tree T = (V, E, w) on n vertices let the matrix \mathbf{S}_T describe the inverse distances between vertices, i.e., for $(i, j) \in E$, $\mathbf{S}_T(i, j) = 1/w(i, j)$ and for $(i, j) \notin E$, $\mathbf{S}_T(i, j) = \sum_{\ell=1}^{k-1} 1/w(v_\ell, v_{\ell+1})$ where $i = v_1, v_2, \ldots, v_k = j$ is the unique path between i and j. Then,

$$-\frac{1}{2} \begin{pmatrix} 0 & \mathbf{1}^t \\ \mathbf{1} & \mathbf{S}_T \end{pmatrix} \begin{pmatrix} \sum_{i \sim j} 1/w(i,j) & (\mathbf{d} - 2\mathbf{1})^t \\ \mathbf{d} - 2\mathbf{1} & \mathbf{L}_T \end{pmatrix} = \mathbf{I}.$$
 (4.7)

Proof. We begin by computing the left hand side of the matrix equation. Note that for connected trees on n nodes, there are precisely n-1 edges. Therefore, $\mathbf{1}^t \mathbf{d} - 2n = \sum_i \deg(i) - 2n = 2|E| - 2n = -2$, by the handshaking lemma. Since $\mathbf{1}^t \mathbf{L}_T = \mathbf{0}$, it follows that the top row of the resulting matrix is as desired. Next, let us consider the term

$$\sum_{i\sim j}\frac{\mathbf{1}}{w(i,j)}+\boldsymbol{S}_T(\boldsymbol{d}-2\boldsymbol{1}),$$

which we need to demonstrate is equal to $\mathbf{0}$. Consider the k-th row of the above vector,

$$\sum_{i \sim j} \frac{1}{w(i,j)} + \sum_{\ell \in [n]} \mathbf{S}_T(k,\ell) (\deg(\ell) - 2). \tag{4.8}$$

Denote the sum on the right by S. Fix some $(i,j) \in E$ and let us consider how many occurrences of 1/w(i,j) there are in S. Since T is a tree, we may partition V into two disjoint sets of vertices, V_i and V_j (so that $V_i \cup V_j = V$ and $V_i \cap V_j = \emptyset$) where $i \in V_i$, $j \in V_j$, and $T[V_i]$, $T[V_j]$ are both connected trees. That is, the original graph T is a union of $T[V_i]$, $T[V_j]$ and the edge (i,j) which connects them. Now, the edge (i,j) will be on the path between two vertices if and only if one lies in V_i and the other in V_j . (Again, this is due to the fact that T is a tree—there is thus no other path between the components V_i and V_j other than via (i,j).) Assume without loss of generality that $k \in V_i$. Then, by the above argument, 1/w(i,j) appears only in those terms $S_T(k,\ell)$ with $\ell \in V_j$. Consequently, collecting and summing over all the terms 1/w(i,j), we may rewrite S as

$$\sum_{i \sim j} \frac{1}{w(i,j)} \sum_{\ell \in V_i} (\deg_T(\ell) - 2).$$

Since $T[V_j]$ is a tree, $\sum_{\ell \in V_j} \deg_{T[V_j]}(\ell) = 2(|V_j| - 1)$ (using the same arguments as above). Moreover, $\deg_{T[V_j]}(\ell) = \deg_T(\ell)$ for every $\ell \in V_j \setminus \{j\}$, since no other vertex besides j shares an edge with any vertex in V_i . On the other hand, since $(i, j) \in E$, $\deg_{T[V_j]}(j) = \deg_T(j) - 1$. Hence,

$$\sum_{\ell \in V_i} (\deg_T(\ell) - 2) = 2(|V_i| - 1) + 1 - 2|V_i| = -1.$$

We have thus shown that $S = -\sum_{i \sim j} 1/w(i, j)$, and so (4.8) is indeed 0. Finally, we consider the term $\mathbf{1}^t \mathbf{d} - 2\mathbf{1}\mathbf{1}^t + \mathbf{S}_T \mathbf{L}_T$, which we need to show is -2I. Let us expand the (k, ℓ) -th component of this matrix:

$$\deg(\ell) - 2 + \sum_{i \in [n]} \mathbf{S}_T(k, i) \mathbf{L}_T(\ell, k) = \deg(\ell) - 2 + \mathbf{S}_T(k, \ell) \mathbf{L}_T(\ell, \ell) + \sum_{i \neq \ell} \mathbf{S}_T(k, i) \mathbf{L}_T(\ell, k)$$

$$= \deg(\ell) - 2 + \mathbf{S}_T(k, \ell) w(\ell) - \sum_{i \in \delta(\ell)} \mathbf{S}_T(k, i)$$

$$= \deg(\ell) - 2 + \sum_{i \in \delta(\ell)} w(i, \ell) (\mathbf{S}_T(k, \ell) - \mathbf{S}_T(k, i)).$$

For $k=\ell$, we have $\mathbf{S}_T(k,\ell)=0$ and $\mathbf{S}_T(k,i)=\mathbf{S}_T(\ell,i)=1/w(i,\ell)$. It follows that the above sum is -2, as desired. Now consider $k\neq \ell$. Fix $i\in \delta(\ell)$ and let $P=(k=v_1,\ldots,v_r=\ell)$ be the unique path between k and ℓ . First, suppose that $i\in P$ so that $i=v_{r-1}$. Then $\mathbf{S}_T(k,ell)-\mathbf{S}_T(k,i)=\sum_{s=1}^{r-1}1/w(v_s,v_{s+1})-\sum_{s=1}^{r-2}1/w(v_s,v_{s+1})=1/w(v_{r-1},v_r)=1/w(i,\ell)$. Otherwise, if $i\in P$ then the unique path between i and k in T is $P\cup\{\ell\}=(v_1,\ldots,v_r,i)$. In this case $\mathbf{S}_T(k,ell)-\mathbf{S}_T(k,i)=\sum_{s=1}^{r-1}1/w(v_s,v_{s+1})-(\sum_{s=1}^{r-1}1/w(v_s,v_{s+1})+1/w(i,\ell))=-1/w(i,\ell)$. Finally, we note that there can be at most one neighbour of ℓ which is on the shortest path between k and ℓ . Therefore, $\sum_{i\in\delta(\ell)}w(i,\ell)(\mathbf{S}_T(k,\ell)-\mathbf{S}_T(k,i))=1-(|\delta(\ell)|-1)=2-\deg(\ell)$, demonstrating that the (k,ℓ) -th component is zero, completing the proof.

COROLLARY 4.1. Let T be a weighted and connected tree. Then

$$\boldsymbol{\xi}^t \boldsymbol{L}_T \boldsymbol{\xi} + \frac{4R_T}{n^2} = \sum_{i,j} \frac{1}{w(i,j)}, \quad and \quad \boldsymbol{L}_G \boldsymbol{\xi} = \left(2 - \frac{2}{n}\right) \boldsymbol{1} - \boldsymbol{d},$$

where
$$\boldsymbol{\xi} = diag(\boldsymbol{L}_{T}^{+}(i, i)) = \frac{1}{n}\boldsymbol{R}\boldsymbol{1} - \frac{1}{n^{2}}\boldsymbol{J}\boldsymbol{R}\boldsymbol{1}$$
 and $\boldsymbol{d} = (\deg(1), \ldots, \deg(n)).$

Proof. Let S_T be as it was in Lemma 4.2. It's well known that in trees, the effective resistance between nodes i, j is equal to $\sum_{s=1}^{r-1} 1/w(v_s, v_{s+1})$ where $i = v_1, \ldots, v_r = j$ is the shortest path between i and j in T (see e.g., [Ell11]). That is, $R_T = S_T$. Since matrix inverses are unique, combining Equations (4.7) and (4.5) yields

$$\begin{pmatrix} \sum_{i\sim j} 1/w(i,j) & (\boldsymbol{d}-2\boldsymbol{1})^t \\ \boldsymbol{d}-2\boldsymbol{1} & \boldsymbol{L}_T \end{pmatrix} = \begin{pmatrix} \boldsymbol{\xi}^t \boldsymbol{L}_T \boldsymbol{\xi} + 4R_T/n^2 & -(\boldsymbol{L}_T \boldsymbol{\xi} + \frac{2}{n}\boldsymbol{1})^t \\ -(\boldsymbol{L}_T \boldsymbol{\xi} + \frac{2}{n}\boldsymbol{1}) & \boldsymbol{L}_T \end{pmatrix},$$

 \bowtie

from which the claim follows.

LEMMA 4.3 ([Men31]). Let D be the distance matrix of a set X of d points. The d-1 dimensional volume of the convex hull of X is proportional to the root of the determinant of the Menger matrix:

$$\operatorname{vol}(CH(X))^2 = \frac{(-1)^d}{((d-1)!)^2 2^{d-1}} \det \begin{pmatrix} 0 & \mathbf{1}^t \\ \mathbf{1} & \boldsymbol{D} \end{pmatrix}.$$

Sharpe [Sha67] said something about something which should probably be cited, but not exactly sure what it is yet.

Using this and a previous calculated formula for the entries of the pseudoinverse yields

$$\begin{split} \boldsymbol{L}_{H}^{+}(i,j) &= \frac{1}{2} \bigg(\sum_{k} r_{H}^{\text{eff}}(i,k) + \sum_{k} r_{H}^{\text{eff}}(j,k) \bigg) - \frac{1}{2} r_{H}^{\text{eff}}(i,j) - \frac{R_{H}}{n^{2}}, \\ &= \frac{1}{2} \sum_{k} (w_{G}(i) + w_{G}(j) + 2w_{G}(k) + 2w_{G}(i,k) + 2w_{G}(j,k)) - \frac{1}{2} w_{G}(i,j) - \frac{R_{H}}{n^{2}} \\ &= \bigg(\frac{n}{2} + 1 \bigg) (w_{G}(i) + w_{G}(j)) - \frac{1}{2} w_{G}(i,j) + \bigg(2 - \frac{2}{n} - \frac{2}{n^{2}} \bigg) W_{G}. \end{split}$$

§4.2. Inequalities

The conductance of a graph G is

$$\theta(S) \stackrel{\text{def}}{=} \frac{|\delta(S)|}{|S|}.$$

We have the following inequality:

$$\theta(S) \ge \lambda_2 \left(1 - \frac{|S|}{|V|}\right) \ge \frac{\lambda_2}{2},$$

which yields

$$\|\mathbf{\Sigma}\chi S\|_2^2 \ge \frac{|S|}{2}\lambda_{n-1}.$$

We can relate the eigenvalues of G to the geometry of S via the relation $\Sigma \Sigma^t = \Lambda$. Hence

$$\|\mathbf{\Sigma}\chi_S\|_2^2 \ge \frac{|S|}{2}\mathbf{\Sigma}\mathbf{\Sigma}^t(n-1,n-1) \ge \frac{|S|}{2}\min_i\{(\mathbf{\Sigma}\mathbf{\Sigma}^t)(i,i):(\mathbf{\Sigma}\mathbf{\Sigma}^t)(i,i) \ne 0\} = \frac{|S|}{2}\min_{i=1}^{n-1}\|\Pi_i(\mathbf{\Sigma})\|_2^2$$

LEMMA 4.4. If \boldsymbol{p} is any vector pointing from \mathcal{S}_U to \mathcal{S}_{U^c} which has a non-empty intersection with both faces, then $\|\boldsymbol{p}\|_2 \geq \|\boldsymbol{a}(\mathcal{S}_U)\|_2$.

 \boxtimes

Proof. Geometry. Work this out.

The following lemma is due to Devriendt and Van Mieghem [DVM18].

LEMMA 4.5. For any f with $\langle f, \mathbf{1} \rangle = 0$,

$$\mathcal{L}(f) \ge \frac{\|f\|_1^2}{4W(\delta^+ F^+)},$$

for $F^+ \stackrel{def}{=} \{i : f(i) > 0\}.$

Proof. Let F^+ be as above and let $F^- \stackrel{\text{def}}{=} [n] \setminus F^+ = \{i : f(i) < 0\}$. Observe that

$$||f||_1 = \sum_i |f(i)| = \langle \chi_{F^+} - \chi_{F^-}, f \rangle = (\chi_{F^+} - \chi_{F^-})^t f = (\chi_{F^+} - \chi_{F^-})^t (\mathbf{I} - \mathbf{J}/n) f,$$

where the last inequality follows since f is orthogonal to 1 by assumption. Using the pseudoinverse relation (3.3), we can continue as

$$||f||_1 = (\chi_{F^+} - \chi_{F^-})^t (\Sigma^+)^t \Sigma f$$

$$= (\chi_{F^{+}} - \mathbf{1} + \chi_{F^{+}})^{t} (\mathbf{\Sigma}^{+})^{t} \mathbf{\Sigma} f$$

$$= 2\chi_{F^{+}}^{t} (\mathbf{\Sigma}^{+})^{t} \mathbf{\Sigma} f - (\mathbf{\Sigma}^{+} \mathbf{1})^{t} \mathbf{\Sigma} f$$

$$= 2\langle \mathbf{\Sigma}^{+} \chi_{F^{+}}, \chi_{F^{+}}^{t} (\mathbf{\Sigma}^{+})^{t} \mathbf{\Sigma} f \rangle \qquad \text{since } \mathbf{\Sigma}^{+} \mathbf{1} = \mathbf{0}$$

$$\leq 2 \|\mathbf{\Sigma} \chi_{F^{+}}\|_{2} \cdot \|\mathbf{\Sigma}^{+} f\|_{2} \qquad \text{by Cauchy-Schwartz}$$

$$= 2 (\chi_{F^{+}} \mathbf{L}^{+} \chi_{F^{+}} \cdot f^{t} \mathbf{L} f)^{1/2}.$$

Squaring both sides and recalling that $\chi_{F^+}L^+\chi_{F^+}=W(\delta^+F^+)$ gives the desired result.

We obtain several inequalities for the simplex via immediate application of inequalities from the literature on electrical networks.

Since $\mathbf{R}_G = n \sum_i \lambda_i^{-1} = n \operatorname{tr}(\mathbf{\Sigma} \mathbf{\Sigma}^t)$, facts/inequalities pertaining to the effective resistance can be translated to the simplex.

LEMMA 4.6. Let G = (V, E, w) be a weighted graph and let $U \subseteq V$ obey vol(U) < vol(V)/2 and

$$\theta(U) \ge \frac{\alpha}{\operatorname{vol}(U)^{1/2 - \epsilon}}.$$

TODO finish this/decide whether this is worth including.

§4.3. Quadrics

Circumscribed ellipsoid for normalized Laplacian is not necessarily the sphere – could be deformed. **TODO** Read more about quadrics in general but filling this out. Might be more we can say. Also look into any algorithmic work done on quadrics. Does this relationship help us answer anything interesting? Fiedler derivation: [Fie05]. More Fiedler geometry: [Fie93]. A quadric in \mathbb{C}^d is a hypersurface of dimension d-1 of the form

$$\{\boldsymbol{x} \in \mathbb{C}^d : \boldsymbol{x}^t \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{r}^t \boldsymbol{x} + s = 0\}.$$

DEFINITION 4.1. The Steiner Circumscribed Ellipsoid, or simply the Steiner Ellipsoid of a simplex S with vertices $\{\sigma_i\}$ is a quadric which contains the vertices and whose tangent plane at σ_i is parallel to the affine plane spanned by $\{\sigma_j\}_{j\neq i}$.

THEOREM 4.1. The Steiner ellipsoid of a simplex S is unique and moreover, is the ellipsoid with minimum volume which contains S.

Owing to its uniqueness, we denote the Steiner ellipsoid of the simplex \mathcal{S} by $\mathcal{E}(\mathcal{S})$. The following lemma gives an explicit representation of $\mathcal{E}(\mathcal{S})$.

LEMMA 4.7 ([Fie05]). The Steiner circumscribed Ellipsoid of S = S(G) satisfies

$$\mathcal{E}(\mathcal{S}) = \left\{ \boldsymbol{x} : \boldsymbol{x}^t \boldsymbol{\Sigma}^+ (\boldsymbol{\Sigma}^+)^t \boldsymbol{x} - \frac{n-1}{n} = 0 \right\}.$$
 (4.9)

Proof. Set $M = \Sigma^+(\Sigma^+)^t$ and $E = \{x : x^t M x = (n-1)/n\}$. The claim is that $\mathcal{E}(\mathcal{S}) = E$. First we demonstrate that the vertices of \mathcal{S} are contained in E. Noticing that $\mathbf{J}^2 = n\mathbf{J}$, we compute

$$\boldsymbol{\sigma}_i^t \boldsymbol{M} \boldsymbol{\sigma}_i = \chi_i^t \boldsymbol{\Sigma}^t \boldsymbol{\Sigma}^+ (\boldsymbol{\Sigma}^+)^t \boldsymbol{\Sigma} \chi_i = \chi_i^t \left(\mathbf{I} - \frac{1}{n} \mathbf{J} \right)^2 \chi_i = \chi_i^t \left(\mathbf{I} - \frac{1}{n} \mathbf{J} \right) \chi_i = 1 - \frac{1}{n},$$

so indeed the vertices σ_i are contained in E. Now, define the hyperplane

$$\mathcal{H} \stackrel{ ext{def}}{=} igg\{ oldsymbol{x} : oldsymbol{x}^t oldsymbol{M} oldsymbol{\sigma}_i = -rac{1}{n} igg\}.$$

We claim that \mathcal{H} is the affine plane containing the points $\{\sigma_j\}_{j\neq i}$. Indeed, consider σ_j for some fixed $j\neq i$. Then, as above

$$\sigma_j^t M \sigma_i = \chi_j^t \left(\mathbf{I} - \frac{1}{n} \mathbf{J} \right) \chi_i = -\frac{1}{n}.$$

It remains to show that \mathcal{H} is parallel to the tangent plane of E at the point σ_i . But this tangent plane is defined by the equation [Fie05] Should figure out how this is actually done

$$oldsymbol{x}^t oldsymbol{M} oldsymbol{\sigma}_i = rac{n-1}{n},$$

which is clearly parallel to \mathcal{H} . This completes the proof.

Perhaps a more insightful representation of $\mathcal{E}(\mathcal{S})$ comes from appealing to Equation (3.2), i.e., $\Sigma \Sigma^t = \Lambda^{-1/2}$. Hence, by (4.9),

$$\mathcal{E}(\mathcal{S}) = \left\{ \boldsymbol{x} : \boldsymbol{x}^t \boldsymbol{\Lambda}^{-1} \boldsymbol{x} = \frac{n-1}{n} \right\}. \tag{4.10}$$

 \bowtie

On the other hand, it's easy to see that the Steiner ellipsoid of the normalized simplex, $\mathcal{E}(\widehat{\mathcal{S}})$ is simply the unit sphere, i.e., $\mathcal{E}(\widehat{\mathcal{S}}) = \{ \boldsymbol{x} : \boldsymbol{x}^t \boldsymbol{x} = 1 \}$, since $\|\widehat{\boldsymbol{\sigma}}_i\|_2^2 = 1$. Is this enough to justify it? Therefore, we see that the circumscribed sphere and the circumscribed ellipsoid of the normalized simplex are one and the same.

For the combinatorial simplex, however, it's not even clear whether the circumscribed sphere exists Unless it exists for all simplices?. Demonstrating that it does in fact exist is the purpose of the following lemma.

I think this should hold for more than simply hyperacute simplices, but need to generalize the Menger matrix stuff in order for the result to go through.

LEMMA 4.8. Let $S^+ \subseteq \mathbb{R}^{n-1}$ be a hyperacute simplex. The circumscribed sphere of S^+ exists and is given by the set of points $\{x : x = \Sigma \alpha, \ \langle \alpha, 1 \rangle = 1, \ \langle \alpha, D\alpha \rangle = 0\}$, which is a sphere centred at the point $\frac{1}{2}\Sigma(L_G\xi + 1/n)$ with radius $\frac{1}{2}\sqrt{\xi^t L_G\xi + 4R_G/n^2}$.

Proof. Set $\zeta = \frac{1}{2}(\mathbf{L}_G \boldsymbol{\xi} + \mathbf{1}/n)$ and $r = \boldsymbol{\xi}^t \mathbf{L}_G \boldsymbol{\xi} + 4R_G/n^2$. Let us expand \boldsymbol{x} in barycentric coordinates in accordance with Lemma 2.7. Put $\boldsymbol{x} = \sum_i \alpha_i \boldsymbol{\sigma}_i$ where $\sum_i \alpha_i = \sum_i \beta_i = 1$. Let $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n)$. The claim is that the circumscribed sphere of \mathcal{S}^+ is given by the equation

$$\|\boldsymbol{x} - \boldsymbol{\Sigma}\boldsymbol{\zeta}\|_{2}^{2} = \frac{1}{4}r,\tag{4.11}$$

and that this equation is equivalent to $\alpha^t D \alpha = 0$. Note first that due to Equation 4.5, $\langle \mathbf{1}, -2\zeta \rangle = \langle \mathbf{1}, -\mathbf{L}_G \xi - \frac{2}{n} \mathbf{1} \rangle = -2$, so $\zeta = (\zeta_1, \dots, \zeta_{n-1})$ obeys $\sum_i \zeta_i = 1$. The left hand side of (4.11) then becomes

$$\langle \boldsymbol{x} - \boldsymbol{\Sigma} \boldsymbol{\zeta}, \boldsymbol{x} - \boldsymbol{\Sigma} \boldsymbol{\zeta} \rangle = \sum_{i,j \in [n]} (\alpha_i - \zeta_i) (\alpha_j - \zeta_j) \langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j \rangle$$

$$= \sum_{i,j \in [n]} (\alpha_i - \zeta_i)(\alpha_j - \zeta_j) \langle \boldsymbol{\sigma}_i - \boldsymbol{\sigma}_n, \boldsymbol{\sigma}_j - \boldsymbol{\sigma}_n \rangle,$$

where the last line uses that $\sigma_n \sum_i (\alpha_i - \zeta_i) = \mathbf{0}$. Observing that

$$\langle \boldsymbol{\sigma}_i - \boldsymbol{\sigma}_n, \boldsymbol{\sigma}_j - \boldsymbol{\sigma}_n \rangle = \frac{1}{2} (\|\boldsymbol{\sigma}_i - \boldsymbol{\sigma}_n\|_2^2 + \|\boldsymbol{\sigma}_j - \boldsymbol{\sigma}_n\|_2^2 - \|\boldsymbol{\sigma}_i - \boldsymbol{\sigma}_j\|_2^2),$$

we may proceed as

$$\langle \boldsymbol{x} - \boldsymbol{\Sigma} \boldsymbol{\zeta}, \boldsymbol{x} - \boldsymbol{\Sigma} \boldsymbol{\zeta} \rangle = \frac{1}{2} \left(\sum_{j} (\alpha_{j} - \zeta_{j}) \sum_{i} (\alpha_{i} - \zeta_{i}) \|\boldsymbol{\sigma}_{i} - \boldsymbol{\sigma}_{n}\|_{2}^{2} + \sum_{i} (\alpha_{i} - \zeta_{i}) \sum_{j} (\alpha_{j} - \zeta_{j}) \|\boldsymbol{\sigma}_{j} - \boldsymbol{\sigma}_{n}\|_{2}^{2} - \sum_{i,j} (\alpha_{i} - \zeta_{i}) (\alpha_{j} - \zeta_{j}) \|\boldsymbol{\sigma}_{i} - \boldsymbol{\sigma}_{j}\|_{2}^{2} \right)$$

$$= -\frac{1}{2} \sum_{i,j} (\alpha_{i} - \zeta_{i}) (\alpha_{j} - \zeta_{j}) \|\boldsymbol{\sigma}_{i} - \boldsymbol{\sigma}_{j}\|_{2}^{2}. \tag{4.12}$$

Recalling the block matrix equation (4.5) for hyperacute simplices, for all i we have $\mathbf{1}(\boldsymbol{\xi}^t \boldsymbol{L}_G \boldsymbol{\xi} + 4R_G/n^2) - \boldsymbol{D}(\boldsymbol{L}_G \boldsymbol{\xi} + 2\mathbf{1}/n) = \mathbf{0}$, i.e., $r\mathbf{1} - 2\boldsymbol{D} = \mathbf{0}$. Hence

$$\langle \boldsymbol{D}(i,\cdot), \boldsymbol{\zeta} \rangle = \frac{r}{2}.$$

Using this, we rewrite the summation in on the right hand side of (4.12) as

$$\sum_{i,j} (\alpha_i - \zeta_i)(\alpha_j - \zeta_j) \mathbf{D}(i,j) = \sum_i (\alpha_i - \zeta_i) \left(\sum_j \alpha_j \mathbf{D}(i,j) - \sum_j \alpha_j \mathbf{D}(i,j) \right)$$

$$= \sum_j \alpha_j \sum_i (\alpha_i - \zeta_i) \mathbf{D}(i,j) - \frac{1}{2} r \sum_i (\alpha_i - \zeta_i)$$

$$= \sum_j \alpha_j \left(\sum_i \alpha_i \mathbf{D}(i,j) - \frac{1}{2} r \right)$$

$$= \sum_{i,j} \alpha_i \mathbf{D}(i,j) \alpha_j - \frac{1}{2} r = \boldsymbol{\alpha}^t \mathbf{D} \boldsymbol{\alpha} - \frac{1}{2} r.$$

The equation of the sphere in (4.11) now becomes $\frac{1}{4}r - \frac{1}{2}\boldsymbol{\alpha}^t\boldsymbol{D}\boldsymbol{\alpha} = \frac{1}{4}r$, i.e., $\boldsymbol{\alpha}^t\boldsymbol{D}\boldsymbol{\alpha} = \mathbf{0}$ as was claimed. Now, to see that this sphere contains the vertices of \mathcal{S}^+ , $\{\boldsymbol{\sigma}_i^+\}$, we need only note that the barycentric coordinate of $\boldsymbol{\sigma}_{\ell}^+$ is $\boldsymbol{\chi}_{\ell}$ and that $\boldsymbol{\chi}_{\ell}^t\boldsymbol{D}\boldsymbol{\chi}_{\ell} = \sum_{i,j} \boldsymbol{\chi}_{\ell}(i)\boldsymbol{D}(i,j)\boldsymbol{\chi}_{\ell}(j) = \boldsymbol{D}(\ell,\ell) = 0$.

§4.4. Random Walks

Very unclear if there's anything interesting here. Mostly just contains Karel's thought on rws at the moment. Think about:

- (1) can we generate a theory/answer questions regarding random walks in simplices using our knowledge of rws in graphs.
- (2)Straight lines are geodesics. If in the simplex the path created by a random walk is a straight line, is this telling us the random walk is as "efficient" as possible? Whereas those with curved lines are inefficient? Unclear how to formalized this /where to take it. After thinking about this a bit, probably not: It just says that the eigenvalues corresponding to the vertices which contribute to the starting position are equal.

4.4.1. Discrete Time Random Walks

In a discrete time random walk (DSRW) we envision a walker who jumps from vertex i to vertex j with probability proportional to w(i,j). To this end, one defines the transition matrix

$$T(i,j) = \frac{w(i,j)}{w(i)} = \frac{A_G(i,j)}{\sum_{k \in \delta(i)} A_G(i,k)}.$$

It's clear that $\sum_{i} \mathbf{T}(i,j) = 1$. The probability that the walker is at node i at time t is the probability that that she was at node j at time t-1 and transitioned to node i. Thus,

$$\pi_i(t) = \sum_j \pi_j(t-1) \mathbf{T}(i,j),$$

or, more succinctly,

$$\boldsymbol{\pi}(t) = \boldsymbol{T}\boldsymbol{\pi}(t-1).$$

The stationary distribution $\pi(\infty) \stackrel{\text{def}}{=} \lim_t \pi(t)$ satisfies $\pi(\infty) = T\pi(\infty)$, which yields that The stationary distribution of such a walk is given by

$$\pi_i = \frac{\sum_{j \in \delta(i)} w(i, j)}{\sum_{j,k \in V} w(i, j)},$$

which, for an undirected and unweighted graph simplifies to $\pi_i = \deg(i)/2|E|$.

4.4.2. Continuous Time Random Walks

A Continuous Time Random Walk [MPL17] satisfies the equation

$$\frac{d\boldsymbol{\pi}(t)}{dt} = -\boldsymbol{\pi}(t)^t \boldsymbol{W}^{-1} \boldsymbol{L},\tag{4.13}$$

hence

$$\boldsymbol{\pi}(t)^t = \boldsymbol{\pi}(0)^t \exp(-\boldsymbol{W}^{-1}\boldsymbol{L}t).$$

After converging to the stationary distribution there is, by definition, no change in the distribution. Therefore, $d\boldsymbol{\pi}(t)/dt = 0$ and Equation (4.13) reduces to $-\boldsymbol{\pi}(t)\boldsymbol{W}^{-1}\boldsymbol{L} = \boldsymbol{0}$. Therefore, $\boldsymbol{\pi}(t)\boldsymbol{W}^{-1}$ is a left eigenfunction of \boldsymbol{L} or equivalently, $\boldsymbol{W}^{-1}\boldsymbol{\pi}$ is a right eigenfunction

with corresponding eigenvalue zero. Hence, $W^{-1}\pi \in \text{span}\{1\}$, i.e., $\pi \in \text{span}\{w\}$. Since $\|\pi(\infty)\|_1 = 1$, we see that

$$oldsymbol{\pi}(\infty) = rac{oldsymbol{w}}{\left\lVert oldsymbol{w}
ight\rVert_1}.$$

In particular, the CTRW shares the same stationary distribution as the DTRW.

4.4.3. mixing time

The distribution $\pi = (\pi_1, \dots, \pi_n)$ corresponds to a point in the simplex, namely $p_{\pi} = \S \pi$. It is thus natural to wonder whether this point tells us anything interesting about the dynamics of the walk.

The variation distance between two distributions p_1 and p_2 with finite state space S is given by

$$||p_1 - p_2||_V = \frac{1}{2} \sum_{s \in S} |p_1(s) - p_2(s)|.$$

Mixing Time. Let p_i^t be the distribution over the set of vertices V at time t obtained by beginning the random walk at vertex i. Define

$$\Delta(t) = \max_{i \in V} \left\| \boldsymbol{p}_i^t - \boldsymbol{\pi} \right\|_V,$$

where $\lVert \cdot \rVert_V$ is the variation distance. Given $\epsilon > 0$ set

$$\tau(\epsilon) = \min\{t : \Delta(t) \le \epsilon\}.$$

We have

Algorithmics

This final chapter will discuss some of the algorithmic foundations and consequences of the graph-simplex correspondence. Vis-à-vis foundations, we will chiefly be concerned with transitioning between a graph and its various simplices. We will explore lower bounds for how quickly this can be done if we wish to obtain the precise result, and whether we can "approximate" any of the constructions (e.g., given the graph G can we quickly obtain a simplex which serves as an approximation 1 to S_G .) With respect to algorithmic consequences on the other hand, we will attempt to leverage knowledge we have in the hitherto relatively unrelated areas of computational graph theory and high-dimensional computational geometry to draw new conclusions about the complexity of several problems in these areas. For instance, if a graph theoretic problem has an analogue in the simplex, any fact regarding the problems difficulty—whether it's NP-complete, say—translates to an immediate result about its geometric counterpart. In particular, since the simplex of a graph can be generate in polynomial time given the graph (due to the fact that an eigendecomposition can be computed in polynomial time) and vice versa, problems which are solvable in polynomial in either the simplex or graph domain translate to polynomial (yet perhaps not optimal!) problems in the other domain and likewise, problems which are NP-hard in one domain have analogues which are NP-hard in the other.

For the benefit reader unfamiliar with computational complexity and reductions, we begin the chapter with a short section containing this background material. We will also discuss computational representations of a simplex therein.

§5.1. Preliminaries

We begin with asymptotic notation which will be used to analyze the running time of various algorithms. We use the standard definitions—see any reference text on algorithm design for more background (e.g., [KT06]). Let $f,g:U\subseteq\mathbb{R}\to\mathbb{R}$ be functions. Write f=O(g) (or f(n)=O(g(n))) if $\limsup_{x\to\infty}|f(x)/g(x)|<\infty$, and $f=\Omega(g)$ if g=O(f). Write f=o(g) as $x\to c$ if $\lim_{x\to\infty}|f(x)/g(x)|=0$ and $f=\omega(g)$ if g=o(f). If f=O(g) and $f=\Omega(g)$ we write $f=\Theta(g)$. We will also use the tilde to hide polylog factors. Say $f=\widetilde{O}(g)$ if $f(n)=O(g(n)\log^c n)$ and $f=\widetilde{\Omega}(g)$ if $f(n)=\Omega(g(n)\log^c n)$, for some $c\geq 0$.

In order to discuss the algorithmics pertaining to simplices and convex polyhedra in general, we must discuss how such objects are represented by a machine. Clearly, we cannot simply enumerate all the points enclosed by a body in high-dimensional space. Instead

¹The notion of approximating a simplex is rather ambiguous and will be expounded upon at a later time.

we must concisely represent the boundaries of the polytope. The two most common such descriptions are

- *V-description*, in which we are given the vertex vectors of the polytope;
- *H-description*, in which we are given the parameters of the half-spaces whose intersection defines the polytope. That is, if $\mathcal{T} = \bigcap_i \{ \boldsymbol{x} : \langle \boldsymbol{z}_i, \boldsymbol{x} \rangle \geq b_i \}$, then an H-description of \mathcal{T} would be the vectors $\{\boldsymbol{z}_i\}$ and the scalars $\{b_i\}$.

It's not at all clear whether these descriptions are equivalent in the sense that one can easily generate one from the other. Indeed, the complexity of vertex enumeration (generating a V-description from an H-description) and facet enumeration (generating an H-description from a V-description) remains an open problem for general polytopes [KP03], although there exist polynomial time algorithms when the polytopes are simplices (e.g., [BFM98]). We will return to this fact later on.

Some background on computational models and reductions will also be useful. **TODO**

§5.2. Computational Complexity

In this section we investigate the relationships between problems in one domain—either the graph-theoretic or geometric domain—and their analogues in the other. The following result exemplifies the power of the graph-simplex correspondence in yielding results which seem otherwise to be difficult to obtain (certainly more difficult than the following proof, at any rate). First we generalize the no The following result was first stated by Devriendt and Van Mieghem [DVM18], although it was stated only for inverse simplices of graphs. We observe that it can be generalized as follows.

LEMMA 5.1. Computing the altitude of minimum length in a convex polytope is NP-hard.

Proof. The relationship $\|\boldsymbol{a}(\mathcal{S}_U^+)\|_2^2 = w(\delta U)^{-1}$ (Lemma 3.13) for the inverse simplex of a graph G demonstrates that the problem of computing a minimum length altitude in any hyperacute simplex is NP-hard, because computing the maximum weight cut in any weighted graph is NP-hard [Kar72]. Since the class of convex polytopes contains the class of hyperacute simplices, the result follows.

Remark 5.1. In the above statement and its proof, the description of the polytope and simplex was not specified. This is due to the fact that—as discussed above—for simplices there is a polynomial time algorithm to translate betweent the various descriptions. With regard to NP-completeness therefore, the description makes no difference.

The remainder of this section is dedicated to obtaining more results of this type.

We begin by investigating independent sets. Given a graph G = (V, E, w), recall that an independent set is a subset $I \subseteq V$ such that if $i, j \in I$ then $(i, j) \notin E$. The weight of an independent set is nicely described by the Laplacian quadratic form. If I is an independent set note that

$$vol(I) = w(\delta I),$$

and so

$$\mathcal{L}(\pmb{\chi}_I) = \sum_{i \sim j} w(i,j) (\pmb{\chi}_I(i) - \pmb{\chi}_I(j))^2 = \sum_{i \in I} \sum_{j:j \sim i} w(i,j) = \sum_{i \in I} w(i) = w(\delta I),$$

where the second and fourth inequalities follows from the fact that I is an independent set. Now, suppose we assign each vertex i a weight $f(i) \geq 0$. The Max-Weight Independent-Set problem consists of maximizing $f(I) \stackrel{\text{def}}{=} \sum_{i \in I} f(i)$ over all independent sets I. Clearly Max-Weight Independent-Set is NP-hard in general, seeing as it reduces to the usual independent set maximization problem by taking f(i) = 1 for all i. If f is a linear function of the weights so that $f(i) = \alpha w(i)$ for all i and some $\alpha > 0$, we call the corresponding problem α -Vertex-Weighted Independent-Set. We will focus on the case $\alpha = 1$ for clarity, and call the corresponding problem just Vertex-Weighted Independent-Set. The difficulty of this problem is not immediately clear, since it is more structured than simply Max-Weight Independent-Set. The next lemma removes any doubt as to the problems tractability.

LEMMA 5.2. VERTEX-WEIGHTED INDEPENDENT-SET is NP-Complete.

Proof. Given a purported independent I, it is easily checkable in polynomial time whether $\operatorname{vol}(I)$ is of a certain size—hence Vertex-Weighted Independent-Set is in NP. To that it is NP-hard, we reduce from Independent-Set. Let G = (V(G), E(G)) and $k \in \mathbb{N}$ be an instance of Independent-Set. The intuition behind the following reduction is to create a separate graph H which, for each independent set $I \subseteq V(G)$, has an independent set I in H such that $\operatorname{vol}_H(J) = |I|$ in H and conversely, for each maximal independent set I in I there exists an independent set I in I with I is a yes instance to I in I that I is a yes instance to I in I

Construct a graph H = (V(H), E(H)) as follows. For each vertex $u \in V(G)$, create $\deg_G(u) + 1$ vertices $u_0, u_1, \ldots, u_{\deg_G(u)}$ in V(H). For $1 \le k \le \deg_G(u)$ set

$$w_H(u_k) = \frac{1}{\deg_G(u)}.$$

Construct the edge set E(H) such that the neighbours of each vertex are described by

$$\delta_H(u_k) = \{u_0\} \cup \bigcup_{v \in \delta_G(u)} \{v_\ell : 0 \le \ell \le \deg_G(v)\}.$$

In words, u_k is connected to all the vertices representing v if $(u, v) \in E(G)$, and to u_0 . Now, let $I \subseteq V(G)$ be an independent set in G and consider the set

$$J = \{v_k : v \in I, 1 \le k \le \deg_G(v)\}.$$

We claim that J is an independent set in H. Indeed, if $v_k, u_\ell \in J$ and $(v_k, u_\ell) \in E(H)$ for some $k \in [\deg_G(v)], \ \ell \in [\deg_G(u)]$ then $v \in d_G(u)$ by definition of $\delta_H(u)$. Since I is an

independent set however, both u and v are not in I, a contradiction. This demonstrates that J is bonafide independent set. Moreover,

$$\operatorname{vol}_{H}(J) = \sum_{v \in I} \sum_{k=1}^{\deg_{G}(u)} w_{H}(v_{k}) = \sum_{v \in I} \sum_{k=1}^{\deg_{G}(u)} \frac{1}{\deg_{G}(u)} = |I|.$$

Conversely, let J be an independent set in H. We claim that there exists an independent J' in H with $\operatorname{vol}_H(J') \geq \operatorname{vol}_H(J)$ containing only vertices of the form v_ℓ for $\ell \geq 1$, i.e., not v_0 . Initially, set J' = J but suppose $v_0 \in J$. Replace v_0 by $v_1, \ldots, v_{\deg_C(v)}$ in J'. None of the these vertices share edges, and aside from one another, v_{ℓ} and v_0 for $\ell > 0$ have the same edge set. It follows that J' remains an independent set. Moreover, since $w_H(v_0) < w_H(v_\ell)$ by construction, we have $\operatorname{vol}_H(J) < \operatorname{vol}_H(J')$. Let us remark further that if J contains vertices $\{v_\ell\}_{\ell\in F}$ for some $F\subsetneq [\deg_G(v)]$, then we may add the missing vertices $v_k, k \in [\deg_G(v)] \setminus F$ while maintaining the property that J is an independent set (this follows since $\delta_H(v_k) = \delta_H(v_\ell)$ for all $\ell, k \geq 1$). We have thus argued that every maximal independent set in H can be written in the form $J = \bigcup_{v \in I} \{v_k : 1 \le k \le \deg_G(v)\}$ for some set $I \subseteq V(G)$. We now claim that I is an independent set in G. The argument is similar to above: If not, then $u, v \in I$ with $u \sim v$, but this implies that $v_k \sim v_\ell$ in H meaning that J is not an independent set. Additionally, as above, $vol_H(J) = |I|$. Therefore, there exists an independent set J in H with $vol_H(J) \geq k$ iff there exists an independent set I in G with $|I| \geq k$, concluding the argument. \bowtie

This result allows us to conclude that certain optimizations problems in hyperacute simplices—thus convex polytopes in general—are NP-hard.

LEMMA 5.3. Let \mathcal{P} be a convex polytope with vertex set V. The optimization problem

$$\min_{\substack{I \subseteq V, I \neq \emptyset}} \frac{\|\boldsymbol{c}(\mathcal{P}_I)\|_2^2}{|I|}$$
s.t. $\langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_i \rangle = 0, i, j \in I$,

is NP-hard. In particular, it is NP-hard whenever \mathcal{P} is the combinatorial simplex of a graph.

Proof. Let \mathcal{P} be the combinatorial simplex of a graph G. Using that $\langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j \rangle = w(i, j)$, the condition that $\langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j \rangle = 0$ for all $i, j \in I$ translates to $(i, j) \in E(G)$ for all $i, j \in I$. Moreover, Equation (3.12) in Section 3.4 gives us

$$\frac{|I|}{\|c(\mathcal{S}_I)\|_2^2} = w_G(\delta I) = \text{vol}(I),$$

for I an independent set. The above optimization problem can consequently be formulated as

$$\max_{I\subseteq V(G)}\operatorname{vol}_G(I)$$
, s.t. I is an independent set.

 \boxtimes

which is precisely the Vertex-Weighted Independent-Set problem.

We can play a similar game by using the relationships furnished by the normalized Laplacian as opposed to the combinatorial Laplacian. Doing this removes the normalizing factor of |I| from the optimization problem in the previous result.

LEMMA 5.4. Let \mathcal{P} be a convex polytope with vertex set V. The optimization problem

$$\begin{split} \min_{I \subseteq V, I \neq \emptyset} & & \| \boldsymbol{c}(\mathcal{P}_I) \|_2^2 \\ s.t. & & \langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j \rangle = 0, \ i, j \in I, \end{split}$$

is NP-hard. In particular, it is hard for those polytopes and simplices with all vertices on the unit sphere.

Proof. The proof is similar to the previous lemma. For \mathcal{P} the normalized simplex of a graph G, the condition $\langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j \rangle = 0$ once again implies that I must be an independent set. Notice that for such an I, if $i \in I$ then $\delta(i) \cap I^c = \delta(i)$ (none of i's neighbours are in I). Therefore, Equation (3.15) yields

$$\widehat{\mathcal{L}}(\boldsymbol{\chi}_I) = \sum_{i \in I} \frac{1}{w(i)} \sum_{j \in I^c \cap \delta(i)} w(i,j) = \sum_{i \in I} \frac{w(i)}{w(i)} = |I|.$$

Equation (3.16) then implies that

$$||c(\mathcal{P}_I)||_2^2 = \frac{1}{|I|^2} \widehat{\mathcal{L}}_G(\chi_I) = \frac{1}{|I|},$$

so the optimization problem can be formulated as

$$\max_{I \subseteq V(G)} |I|$$
, s.t. I is an independent set,

 \boxtimes

which is the Independent-Set problem.

Need to say more about this

Theorem 5.1. Deciding whether two polytopes are isomorphic is Graph-Isomorphism-Hard. Moreover, subpolytope isomorphism is NP-hard.

Proof. Let two graphs G_1 and G_2 be given. Compute their corresponding inverse simplices S_1^+ and S_2^+ . If $S_1^+ \cong S_2^-$, then there exists a (linear) mapping T between the vertices such that $T\sigma_1^+ = \sigma_2^+$ for all $\sigma_1^+ \in \Sigma(S_1^+)$ and $\sigma_2^+ \in \Sigma(S_2^+)$. In this case, the matrix obtained by the dot products of the vectors $T\Sigma(S_1^+)$ yields L_{G_1} , implying that $G_1 \cong G_2$.

The first result was also proved in [KS08].

§5.3. There and Back Again: A Tale of Graphs to Simplices

In this section we investigate the computational aspects of transitioning between various simplices and between the graph and its simplices. We are interested in obtaining computational results which are strictly sub-cubic in time, i.e., $o(n^3)$ because in cubic time one can solve linear systems and compute eigendecompositions.

We let M(n) denote the complexity of the eigendecomposition problem. It is known that $M(n)\widetilde{\Omega}(n^3 + n\log^2\log\epsilon)$ to obtain a relative error² of $2^{-\epsilon}$, while there exists algorithms

²We note that the relative error is a necessary parameter of any algorithm because eigenvalues may be irrational.

			V				Н			
From/To		G	\mathcal{S}_G	\mathcal{S}_G^+	$\widehat{\mathcal{S}}_G$	$\widehat{\mathcal{S}}_{G}^{+}$	\mathcal{S}_G	\mathcal{S}_G^+	$\widehat{\mathcal{S}}_G$	$\widehat{\mathcal{S}}_{G}^{+}$
	G		$\Omega(n^{\tau})$	$\Omega(n^{\tau})$	$\Omega(n^{\tau})$	$\Omega(n^{\tau})$	$\Omega(n^{\tau})$	$\Omega(n^{\tau})$		
V	\mathcal{S}_G	$O(n^3)$		$\Omega(n^{\tau})$	$O(n^2)$		$\Omega(n^{\tau})$	O(1)		
	\mathcal{S}_G^+		$\Omega(n^{\tau})$	_			O(1)	$\Omega(n^{\tau})$		
	$\widehat{\mathcal{S}}_G$? $/ O(n^2)$			$\Omega(n^{\tau})$				
	$\widehat{\mathcal{S}}_{G}^{+}$				$\Omega(n^{\tau})$					
Н	\mathcal{S}_G		$\Omega(n^{ au})$	$O(n^2)$			_	$\Omega(n^{\tau})$		
	\mathcal{S}_G^+		$O(n^2)$	$\Omega(n^{\tau})$			$\Omega(n^{\tau})$	_		
	$\widehat{\mathcal{S}}_G$									
	$\widehat{\mathcal{S}}_{G}^{+}$									

Figure 5.1: Summary of results for precise mappings. A slash refers to a difference in runtimes when the graph is available versus when it isn't. The quantity before the slash indicates the runtime *without* the graph, after the slash the runtime *with* the graph. A question mark indicates that the runtime isn't known.

which run in time $O(n^3 + n \log^2 \log \epsilon)$ [PC99]. We let L(n) denote the runtime of LAPLACIAN EIGENDECOMPOSION, and we assume that $L(n) = \omega(n^2)$. This must be the case.

fix this section Thus, for instance, given G it is trivial to compute all of \mathcal{S}_G , \mathcal{S}_G^+ , $\widehat{\mathcal{S}}_G$, and $\widehat{\mathcal{S}}_G^+$ by finding the eigendecomposition of L_G from which we can construct the relevant vertex set. Moreover, starting with a simplex with vertex set Σ , one can compute $\Sigma^t\Sigma$ in cubic time. If the simplex is the simplex if a graph then this yields the Laplacian (or the pseudoinverse of the Laplacian) of the graph, which as above allows us to compute any of the simplices. In what follows therefore, we attempt to beat the barrier of $O(n^3)$.

A question which is raised by the above discussion is one of certifying whether a given simplex \mathcal{T} is the combinatorial, normalized, or one of their duals of some graph G. Again, in cubic time we can compute $\Sigma^t \Sigma$ and thus decide whether $\Sigma^t \Sigma$ is equal to L_G for some graph G. In quadratic time we can check whether all the angles θ_{ij} between the faces $\mathcal{T}_{\{i\}^c}$ are non-obtuse, in which case \mathcal{T} is the inverse simplex of some graph. Beyond computing $\Sigma(\mathcal{T})^t \Sigma(\mathcal{T})$ however, it's not clear how to obtain the original graph or the combinatorial simplex.

5.3.1. Precise Mappings

We begin by exploring the complexity of transitioning between the different objects pre-cisely—e.g., given G compute its precise combinatorial simplex. The subsequent section will explore various approximations.

The results obtained in this section are summarized in Figure

Between S and \widehat{S} . Let us consider the computational complexity of transitioning between S and \widehat{S} and vice versa. Let ϕ_{ij} (resp., $\widehat{\phi}_{ij}$) be the angle between σ_i and σ_j (resp., $\widehat{\sigma}_i$ and $\widehat{\sigma}_j$). Using the typical formula for the dot product in Euclidean space we have

$$\cos \phi_{ij} = \frac{\langle \boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j \rangle}{\|\boldsymbol{\sigma}_i\|_2 \|\boldsymbol{\sigma}_j\|_2} = \frac{\boldsymbol{L}_G(i,j)}{\sqrt{w(i)w(j)}} = \widehat{\boldsymbol{L}}_G(i,j), \quad \text{and} \quad \cos \widehat{\phi}_{ij} = \frac{\langle \widehat{\boldsymbol{\sigma}}_i, \widehat{\boldsymbol{\sigma}}_j \rangle}{\|\widehat{\boldsymbol{\sigma}}_i\|_2 \|\widehat{\boldsymbol{\sigma}}_j\|_2} = \widehat{\boldsymbol{L}}_G(i,j),$$

using that $\|\widehat{\sigma}_i\|_2 = 1$ for all i. That is, the angles between vertices in \mathcal{S} in $\widehat{\mathcal{S}}$ are the same. Suppose we are given the simplex \mathcal{S} and told it is the combinatorial simplex of a graph. For each $\sigma_i = \Sigma(\mathcal{S})$, define a new vertex

$$oldsymbol{\gamma}_i = rac{oldsymbol{\sigma}_i}{\left\lVert oldsymbol{\sigma}_i
ight
Vert_2}.$$

Is it evident that the angle between γ_i and γ_j is identical to that between σ_i and σ_j :

$$\frac{\langle \boldsymbol{\gamma}_i, \boldsymbol{\gamma}_j \rangle}{\|\boldsymbol{\gamma}_i\|_2 \|\boldsymbol{\gamma}_j\|_2} = \left\langle \frac{\boldsymbol{\sigma}_i}{\|\boldsymbol{\sigma}_i\|_2}, \frac{\boldsymbol{\sigma}_j}{\|\boldsymbol{\sigma}_j\|_2} \right\rangle = \cos(\phi_{ij}).$$

Therefore, it follows that the simplex with vertices is congruent to \widehat{S} . This yields the following result.

LEMMA 5.5. Given a combinatorial simplex S, a simplex congruent to \widehat{S} can be computed in time $O(n^2)$.

Proof. Given S, define the vertices γ_i as above. Computing $\|\sigma_i\|_2$ takes time O(n) and must be done for each vertex.

Given the relative ease with which we can transition from \mathcal{S} to $\widehat{\mathcal{S}}$, it is somewhat surprising that it is much more difficult to transition from $\widehat{\mathcal{S}}$ to \mathcal{S} , especially if the underlying graph G is not given. The obvious tactic is, given the vertices $\{\widehat{\boldsymbol{\sigma}}_i\}$, to define vertices $\widehat{\boldsymbol{\sigma}}_i\sqrt{w(i)}$, which, since $\sqrt{w(i)} = \|\boldsymbol{\sigma}_i\|_2$, have the same magnitude as $\boldsymbol{\sigma}_i$. As above, the scaling does not affect the angle between the vertices, and thus the simplex with these vertices is congruent to \mathcal{S} . However, it's not clear how to obtain the value $\sqrt{w(i)}$ from $\widehat{\mathcal{S}}$. Using that $\langle \widehat{\boldsymbol{\sigma}}_i, \widehat{\boldsymbol{\sigma}}_j \rangle = (w(i)w(j))^{-1/2}$ we can write

$$w(i)^{1/2} = -\sum_{j \neq i} w(j)^{-1/2} / \sum_{j \neq i} \langle \widehat{\boldsymbol{\sigma}}_i, \widehat{\boldsymbol{\sigma}}_j \rangle,$$

which yields a non-linear system of equations.

Of course, if we are given the graph then we have access to $\sqrt{w(i)}$ and can compute $\hat{\sigma}_i w(i)^{1/2}$ in time O(n). The following result is then immediate.

LEMMA 5.6. Given a graph G = (V, E, w) and its normalized simplex \widehat{S}_G , a simplex congruent to the combinatorial simplex S_G can be computed in $O(n^2)$ time.

Think about possible lower bounds on computing S from \widehat{S} when no graph is given. Doing so would imply knowledge of $\sqrt{\boldsymbol{w}}$ (taking ratio of lengths of vertices). What does this imply? Does knowledge of \boldsymbol{w} give us some knowledge of the graph structure from which we can extract a lower bound?

 \mathcal{S} and \mathcal{S}^+ . Let us suppose that we can generate \mathcal{S}^+ from \mathcal{S} (or vice versa) in time O(g(n)). Note that for i < n,

$$\lambda_i = rac{\lambda_i^{1/2} oldsymbol{arphi}_j(i)}{\lambda_i^{-1/2} oldsymbol{arphi}_j(i)} = rac{oldsymbol{\sigma}_i(j)}{oldsymbol{\sigma}_i^+(j)}, \quad ext{and} \quad oldsymbol{arphi}_i(j) = rac{oldsymbol{\sigma}_j(i)}{\lambda_i^{1/2}},$$

hence knowledge of $\{\sigma_i\}$ and $\{\sigma_i^+\}$ yields knowledge of the eigendecomposition of the underlying graph G in $O(n^2)$ time (O(n) to determine all the eigenvalues and $O(n^2)$ to determine the eigenvectors). The same argument holds *mutatis mutandis* for the normalized Laplacian.

LEMMA 5.7. If a V-description of S^+ (resp., \widehat{S}^+) can be generated from a V-description of S (resp., \widehat{S}) or vice versa in time O(g(n)), then LAPLACIAN EIGENDECOMPOSION can be solved in time $O(g(n) + n^2)$ for arbitrary weighted graphs. Consequently $g(n) = \Omega(n^{\tau})$.

An alternate way of seeing that constructing the inverse simplex from its dual is computationally challenging is to recall from Section 3.4 that $S_{\{i\}^c}$ is contained in the hyperplane $\{x \in \mathbb{R}^{n-1} : \langle x, \sigma_i^+ \rangle = -1/n\}$ (Lemma 3.8) and that that σ_i^+ is perpendicular to $S_{\{i\}^c}$ (Lemma ??). Hence, computing the inverse simplex would imply that we had computed normal vectors to n hyperplanes, the typical procedure for which typically involves computing an $n \times n$ determinant and requires $O(n^3)$ time.

We now consider transitioning between different descriptions of S and S^+ . Let us recall that the H-description of S and S^+ yield immediate insight into the vertices of its inverse as $S = \bigcap_i \{ \boldsymbol{x} : \langle \boldsymbol{x}, \boldsymbol{\sigma}_i^+ \rangle \ge -1/n \}$ and $S^+ = \bigcap_i \{ \boldsymbol{x} : \langle \boldsymbol{x}, \boldsymbol{\sigma}_i \rangle \ge -1/n \}$ (Equations (3.6) and (3.7)). Consequently, given given a H-description of one of these simplices, the vertices of its inverse are recoverable in quadratic time. This yields the following result.

LEMMA 5.8. Suppose we can compute an H-description of S (resp., S^+))given its V-description in time t(n). Then a V-description of S^+ (resp., S) is recoverable in time $t(n) + O(n^2)$, implying by Lemma 5.7 that $t(n) = \Omega(n^{\tau})$.

We also note that a consequence of the relationship between the vertices of \mathcal{S} and the H-description of \mathcal{S}^+ that given V-description of \mathcal{S} or \mathcal{S}^+ , we have immediate access to the H-description of its inverse.

A similar result for going from between the H-description of the combinatorial simplices. The argument runs as usual: Given an H-description of S, suppose we can generate an H-description of S^+ in time t(n). We can obtain the vertices $\{\sigma_i^+\}$ from the H-description of S, and the vertices $\{\sigma_i\}$ from the H-description of S^+ . Using these, we can then obtain the eigendecomposition of S in time S

LEMMA 5.9. Generating an H-description of S_G given an H-description of S_G^+ , and vice versa, requires time $\Omega(n^{\tau})$.

Between G and S or \widehat{S} . Similar kinds of results hold in these cases. Assume that we obtain the simplex S_G from G. Notice that

$$\sum_{i=1}^{n-1} \sigma_i(j)^2 = \lambda_j \sum_{i=1}^{n-1} \varphi_j(i) = \lambda_j \left(1 - \frac{1}{n}\right),$$

$$\lambda_j = \frac{\sum_{i=1}^{n-1} \sigma_i(j)}{1 - 1/n},$$

which can be computed in O(n) time. Then, as above, knowledge of the eigenvalues furnishes knowledge of the eigenvectors in $O(n^2)$ time. Running almost identical arguments for \mathcal{S}^+ , $\widehat{\mathcal{S}}$, or $\widehat{\mathcal{S}}^+$ yields an almost equivalent result as in the previous section.

LEMMA 5.10. If either the combinatorial or normalized simplex or their inverses can be generated from a graph G in O(g(n)) time, then LAPLACIAN EIGENDECOMPOSION can be solved in time $O(g(n) + n^2)$ for arbitrary weighted graphs. Consequently $g(n) = \Omega(n^{\tau})$.

The information encoded in the dot products between vertices allow us to make queries regarding the edge weights, but each query takes O(n) time since we must compute a dot product between two vectors of length n-1. Hence, re-constructing the graph or its Laplacian takes $O(n^3)$ if we wish do it precisely.

Let us now consider transitioning between G and the H-description of a simplex. The following lemma summarizes the consequences of this relationship.

LEMMA 5.11. Given a graph G suppose an H-description of S (resp., S^+) can be generated in time g(n). Then a V-description of S^+ (resp., S can be obtained in time $O(g(n) + n^2)$ starting from G. Consequently, by Lemma 5.10, $g(n) = \Omega(n^{\tau})$.

Between different descriptions of the simplices. Here we investigate the interplay between the various different descriptions of the simplices.

The following is an immediate consequence of Lemma 3.20.

COROLLARY 5.1. If \mathcal{T} is a centred simplex in H-description, we can obtain a V-description of \mathcal{T}^D in quadratic time. In particular, given an H-description of the combinatorial simplex \mathcal{S}_G (resp., inverse combinatorial simplex \mathcal{S}_G^+) of a graph G, a V-description of \mathcal{S}_G^+ (resp., \mathcal{S}_G) is obtainable in quadratic time.

Due to the fact that $\widehat{\mathcal{S}}_G^+$ is not the dual of $\widehat{\mathcal{S}}_G$ Lemma 3.20 is less useful here.

LEMMA 5.12. Generating an V-description of the simplex S given its H-description requires time $\Omega(n^{\tau})$ for any $S \in \{S_G, S_G^+\}$.

Proof. Consider \mathcal{S}_G ; the argument is similar for \mathcal{S}_G^+ . Suppose obtaining the H-description takes time t(n). Due to the properties of the hyperplane representations, this yields access to both sets of vertices in time $t(n) + O(n^2)$. Using the arithmetic in the previous section, this implies that we can obtain the eigenvalues and eigenvectors of G in time $O(n^2)$, i.e., we can solve Laplacian Eigendecomposion in time $t(n) + O(n^2)$ implying that $t(n) = \Omega(n^{\tau})$. \boxtimes

5.3.2. Approximations

Low Rank Approximation Define low rank approximation Let us suppose the we have obtained a low rank—k, say—approximation of L_G , written \tilde{L} . We might then ask several questions:

- 1. Is $\tilde{\boldsymbol{L}}$ still a gram matrix? That is, can $\tilde{\boldsymbol{L}}$ be written $\tilde{\boldsymbol{\Sigma}}^t \tilde{\boldsymbol{\Sigma}}$ where $\tilde{\boldsymbol{\Sigma}}$ is the vertex matrix of some set of points, $P = \{\boldsymbol{p}_1, \dots, \boldsymbol{p}_\ell\}$? If so, what is the relationship between $\boldsymbol{\Sigma}$ and $\tilde{\boldsymbol{\Sigma}}$, where $\boldsymbol{\Sigma} = \boldsymbol{\Sigma}(\mathcal{S}_G)$ is the usual vertex matrix of the combinatorial simplex of G? If $\tilde{\boldsymbol{L}}$ has rank k then P spans a subspace of dimension k and $\operatorname{conv}(P)$ forms a polytope in that space. What is the relationship between the geometry of $\operatorname{conv}(P)$ and \mathcal{S}_G ?
- 2. Is $\tilde{\boldsymbol{L}}$ useful in helping estimate properties of the simplex \mathcal{S}_G ? For example, if one could bound the difference in the quadratic products of \boldsymbol{L}_G and $\tilde{\boldsymbol{L}}$, this would imply (via the results in Section 3.4) that we could estimate many of the properties of \mathcal{S}_G .

Of course, we have chosen to work with L_G and \mathcal{S}_G for convenience; we could have asked the same questions of \widehat{L}_G and $\widehat{\mathcal{S}}_G$.

Let us examine a specific low rank approximation proposed by Drineas and Mahoney [DM05], which finds low rank approximations to Gram matrices. We will give a brief overview of their method in general, and then elaborate on how it applies to our case in particular. Let $M \in \mathbb{R}^{n \times m}$ be a gram matrix. Using the probability distribution $F(i) = M(i,i)^2/\operatorname{tr}(M^2)$ sample $a \leq m$ columns of M independently at random and with replacement, where a is some given parameter. Let $I \subseteq [n], |I| \leq a$, be the indices of sampled columns. Let $C \in \mathbb{R}^{n \times a}$ be the matrix formed by these columns (that is, $C = M(\cdot, I)$). Let Q be the matrix $M(I, I) \in \mathbb{R}^{a \times a}$, i.e., the submatrix of M with entries corresponding to indices in I, and Q_k^+ the optimal rank k-approximation to Q^+ , the pseudoinverse of Q (section 2.2.1). The low rank approximation to M is then

$$\widetilde{\boldsymbol{M}} \stackrel{\text{def}}{=} \boldsymbol{C} \boldsymbol{M}(I,I)_k^+ \boldsymbol{C}^t.$$

THEOREM 5.2 ([DM05]). Let M be a gram matrix and let \widetilde{M} be as above. Let $\epsilon > 0$, $k \leq c \in \mathbb{N}$. If $c = \Omega(k/\epsilon^4)$, then

$$\left\| \boldsymbol{M} - \widetilde{\boldsymbol{M}} \right\|_{\kappa} \le \left\| \boldsymbol{M} - \boldsymbol{M}_k \right\|_{\kappa} + \epsilon \operatorname{tr} \left(\boldsymbol{M}^2 \right),$$

for $\kappa = 2, F$.

Let us analyze how this result translates to the case when $M = L_G$. Let I and C be as above. First we observe that $L_G(I, I)$ is simply the Laplacian on the subgraph G[I]. Put $\widetilde{G} = G[I]$. Performing an eigendecomposition, write

$$oldsymbol{L}_{\widetilde{G}} = \sum_{r=1}^{|I|} \mu_r oldsymbol{
u}_r oldsymbol{
u}_r^t,$$

for where $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{|I|} = 0$ and $\{\nu_r\}$ are the eigenvalues and eigenvectors of $L_{\widetilde{G}}$, respectively. The results of Section 2.2.1 then dictate that

$$oldsymbol{L}_{\widetilde{G}}^{+} = \sum_{r=1}^{|I|} rac{1}{\mu_r} oldsymbol{
u}_r oldsymbol{
u}_r^t,$$

and so the best rank k approximation to $L_{\widetilde{G}}$ is given by

$$L_k \stackrel{\text{def}}{=} (L_{\widetilde{G}}^+)_k = \sum_{r=1}^k \frac{1}{\mu_r} \nu_r \nu_r^t.$$

The approximation for L_G is thus given by $\widetilde{L} = CL_kC^t = CL_k^{1/2}L_k^{t/2}C^t = (L_k^{t/2}C^t)^tL_k^{t/2}C^t$. That is, we can view \widetilde{L} as the gram matrix of the vectors given by the columns of $\widetilde{\Sigma} = (L_k^{t/2}C^t)$.

Let us examine $\widetilde{\boldsymbol{\Sigma}}^t = \mathbb{C}\boldsymbol{L}_k^{t/2}$. First consider rank (\boldsymbol{C}) , which we claim is |I|. Suppose $\boldsymbol{C}\boldsymbol{f} = \boldsymbol{0}$, where $\boldsymbol{f}: I \to \mathbb{R}$. Extend \boldsymbol{f} to $\widehat{\boldsymbol{f}}: [n] \to \mathbb{R}$ by setting $\widehat{\boldsymbol{f}}(u) = 0$ for all $u \in [n] \setminus I$. Then

$$(\boldsymbol{L}_{G}\widehat{\boldsymbol{f}})(k) = \sum_{i \in [n]} \boldsymbol{L}_{G}(k,i)\widehat{\boldsymbol{f}}(i) = \sum_{i \in I} \boldsymbol{L}_{G}(k,i)\boldsymbol{f}(i) + \sum_{i \in [n] \setminus I} \boldsymbol{L}_{G}(k,i)\widehat{\boldsymbol{f}}(i) = \sum_{i \in I} \boldsymbol{C}(k,i)\boldsymbol{f}(i) = 0,$$

implying that $L_G \widehat{f} = 0$, so $\widehat{f} \in \text{span}(1)$). However, as long as $|I| \neq [n]$, this is impossible since $\widehat{f}([n] \setminus I) = 0$. Therefore, so long as c < n, we have rank(C) = c. We now claim that $\text{rank}(CL_k^{t/2}) = \text{rank}(L_k^{t/2})$, which is easier to prove in the abstract.

LEMMA 5.13. Let $\mathbf{S}: \mathbb{R}^n \to \mathbb{R}^\ell$, $T \in \mathbb{R}^m \to \mathbb{R}^n$ be linear maps with $\operatorname{rank}(\mathbf{S}) = \ell$. Then $\operatorname{rank}(\mathbf{S}T) = \operatorname{rank}(T)$.

Proof. If Tf = 0 then clearly STf = 0 so dim $\ker(T) \leq \dim \ker(ST)$. On the other hand, if STf = 0 then because S is full rank, Tf = 0 implying that dim $\ker T \geq \ker ST$. By the rank nullity Theorem (e.g., [Axl97]) $\operatorname{rank}(ST) + \dim \ker ST = n = \operatorname{rank}(T) + \dim \ker T$ from which the result follows immediately.

Taking C = S and $T = L_k^{t/2}$ in the above lemma gives that $\operatorname{rank}(CL_k^{t/2}) = k$. Consequently, the vertex matrix $\widetilde{\Sigma} \in \mathbb{R}^{|I| \times n}$ contains n vectors in $\mathbb{R}^{|I|}$. Moreover,

$$\operatorname{rank}(\widetilde{\boldsymbol{L}}) = \operatorname{rank}(\widetilde{\boldsymbol{\Sigma}}^t \widetilde{\boldsymbol{\Sigma}}) = \operatorname{rank}(\widetilde{\boldsymbol{\Sigma}}) = k,$$

meaning the n vectors span a k-dimensional space.

One might hope that the approximation matrix \tilde{L} was a Laplacian, but this does not seem to be the case in general. While it is true that $\tilde{L}(i,i) \geq 0$ (by virtue of being a gram matrix) and that $\tilde{L}\mathbf{1} = \mathbf{0}$ (this follows since $C^t\mathbf{1} = \mathbf{0}$ because the rows of C^t are columns and hence rows of L_G). However,

$$\widetilde{\boldsymbol{L}}(i,j) = \sum_{r=1}^{c} \boldsymbol{C}(i,r) \boldsymbol{C}(j,s) \boldsymbol{L}_{k}(r,s),$$

which does not look to be necessarily non-positive.

Embedding S in lower dimensions Johnson-Lindenstrauss Lemma [JL84, DG03]:

THEOREM 5.3 (Johnson-Lindenstrauss Lemma). Let $E \subseteq \mathbb{R}^k$ be a set of n points, for some $k \in \mathbb{N}$. For any $\epsilon > 0$ and $d \geq 8 \log(n) \epsilon^{-2}$ there exists a map $q_{\epsilon} : \mathbb{R}^k \to \mathbb{R}^d$ such that

$$(1 - \epsilon) \|\mathbf{u} - \mathbf{v}\|_{2}^{2} \le \|g_{\epsilon}(\mathbf{u}) - g_{\epsilon}(\mathbf{v})\|_{2}^{2} \le (1 + \epsilon) \|\mathbf{u} - \mathbf{v}\|_{2}^{2}$$

for all $\mathbf{u}, \mathbf{v} \in E$.

THEOREM 5.4 ([SS11]). For any $\epsilon > 0$ and graph G = (V, E, w), there exists an algorithm which computes a matrix $\widetilde{\mathbf{R}} \in \mathbb{R}^{O(\log(n)\epsilon^{-2})\times n}$ such that

$$(1 - \epsilon)r(i, j) \le \left\|\widetilde{\boldsymbol{R}}(\boldsymbol{\chi}_i - \boldsymbol{\chi}_j)\right\|_2^2 \le (1 + \epsilon)r(i, j).$$

The algorithm runs in time $\widetilde{O}(|E|\log(r)/\epsilon^2)$, where

$$r = \frac{\max_{i,j} w(i,j)}{\min_{i,j} w(i,j)}.$$

Consider inverse simplex for which we have $\left\|\boldsymbol{\sigma}_i^+ - \boldsymbol{\sigma}_j^+\right\|_2^2 = r(i,j)$ where r(i,j) is the effective resistance between vertices i and j. Add a point \boldsymbol{o} which is the centroid of these points. Thus $\left\|\boldsymbol{\sigma}_i^+ - \boldsymbol{o}\right\|_2^2 = \boldsymbol{L}_G^+(i,i)$ for all i. Note that we can compute this in linear time since

$$\left\| {m{\sigma}}_i^+ - {m{o}}
ight\|_2^2 = \left\| {m{\sigma}}_i^+
ight\|_2^2 = rac{1}{W(\delta(\{i\}))} = rac{1}{w(i)}.$$

Applying JL transform to obtain n+1 points in \mathbb{R}^d , for $d = O(\log(n)/\epsilon^2)$. Let f be the mapping, e.g., σ_i^+ mapped to $f(\sigma_i^+)$. By JL, have

$$\|(1-\epsilon)\|x-y\|_2^2 \le \|f(x)-f(y)\|_2^2 \le (1+\epsilon)\|x-y\|_2^2$$

for all $x, y \in \{\sigma_1^+, \dots, \sigma_n^+, o\}$. Apply a linear transformation to the points so that f(o) coincides with the origin $\mathbf{0} \in \mathbb{R}^d$. Note that this does not affect the distances between the points themselves, and does not damage the approximation. Update f to reflect this transformation. Then,

$$||f(\sigma_i^+)||_2^2 = ||f(\sigma_i^+) - f(o)||_2^2 = (1 + \epsilon_{i,o}) ||\sigma_i^+ - o||_2^2 = (1 + \epsilon_{i,o}) L_G^+(i,i).$$

Hence,

$$\begin{aligned} \left\| f(\boldsymbol{\sigma}_i^+) - f(\boldsymbol{\sigma}_j^+) \right\|_2^2 &= \langle f(\boldsymbol{\sigma}_i^+) - f(\boldsymbol{\sigma}_j^+), f(\boldsymbol{\sigma}_i^+) - f(\boldsymbol{\sigma}_j^+) \rangle \\ &= \left\| f(\boldsymbol{\sigma}_i^+) \right\|_2^2 + \left\| f(\boldsymbol{\sigma}_j^+) \right\|_2^2 - 2 \langle f(\boldsymbol{\sigma}_i^+), f(\boldsymbol{\sigma}_j^+) \rangle, \end{aligned}$$

implying that

$$\begin{split} \langle f(\boldsymbol{\sigma}_i^+), f(\boldsymbol{\sigma}_j^+) \rangle &= -\frac{1}{2} \bigg((1 + \epsilon_{i,j}) \bigg\| \boldsymbol{\sigma}_i^+ - \boldsymbol{\sigma}_j^+ \bigg\|_2^2 - (1 + \epsilon_{i,o}) \boldsymbol{L}_G^+(i,i) - (1 + \epsilon_{j,o}) \boldsymbol{L}_G^+(j,j) \bigg) \\ &= -\frac{1}{2} ((1 + \epsilon_{i,j}) r(i,j) - (1 + \epsilon_{i,o}) \boldsymbol{L}_G^+(i,i) - (1 + \epsilon_{j,o}) \boldsymbol{L}_G^+(j,j)) \\ &= -\frac{1}{2} ((1 + \epsilon_{i,j}) (\boldsymbol{L}_G^+(i,i) - \boldsymbol{L}_G^+(j,j) - 2 \boldsymbol{L}_G^+(i,j)) \\ &\quad - (1 + \epsilon_{i,o}) \boldsymbol{L}_G^+(i,i) - (1 + \epsilon_{j,o}) \boldsymbol{L}_G^+(j,j)) \\ &= (1 + \epsilon_{i,j}) \boldsymbol{L}_G^+(i,j) + \varepsilon(i,j), \end{split}$$

where

$$\varepsilon(i,j) \stackrel{\text{def}}{=} \frac{1}{2} (\epsilon_{i,o} - \epsilon_{i,j}) \boldsymbol{L}_{G}^{+}(i,i) + (\epsilon_{j,o} - \epsilon_{i,j}) \boldsymbol{L}_{G}^{+}(i,j),$$

is an error term dictated by $\epsilon_{i,j}$, $\epsilon_{i,o}$ and $\epsilon_{j,o}$. Setting

$$M \stackrel{\text{def}}{=} \max_{i} \boldsymbol{L}_{G}^{+}(i, i),$$

we can bound the error term via repeated applications of the triangle inequality:

$$|\varepsilon(i,j)| \leq \frac{1}{2} \left(|(\epsilon_{i,o} - \epsilon_{i,j}) \boldsymbol{L}_{G}^{+}(i,i)| + |(\epsilon_{j,o} - \epsilon_{i,j}) \boldsymbol{L}_{G}^{+}(i,j)| \right)$$

$$\leq \frac{1}{2} \left([|\epsilon_{i,j}| + |\epsilon_{i,o}|] \boldsymbol{L}_{G}^{+}(i,i) + [|\epsilon_{i,j}| + |\epsilon_{j,o}|] \boldsymbol{L}_{G}^{+}(j,j) \right)$$

$$\leq \frac{1}{2} (2\epsilon \boldsymbol{L}_{G}^{+}(i,i) + 2\epsilon \boldsymbol{L}_{G}^{+}(j,j)) \leq 2\epsilon M,$$

since $|\epsilon_{i,j}|, |\epsilon_{i,o}|, |\epsilon_{j,o}| \leq |\epsilon|$. Setting $f(\Sigma^+) = (f(\sigma_1^+), \dots, f(\sigma_n^+)) \in \mathbb{R}^{d \times n}$, this approximation implies that

$$L_G^+ - O(\epsilon M)\mathbf{I} \le f(\mathbf{\Sigma}^+)^t f(\mathbf{\Sigma}^+) \le L_G^+ + O(\epsilon M)\mathbf{I}.$$

In other words, we can approximately recover the Gram matrix $L_G^+ = \Sigma^+ \Sigma^+$ using the lower dimensional matrix $f(\Sigma^+)$.

Given a graph G = (V, E, w), we can compute all the approximate distances $\|\boldsymbol{\sigma}_i^+ - \boldsymbol{\sigma}_j^+\|_2^2 = r(i, j)$ in time

$$\widetilde{O}(|E|\log(r)/\epsilon^2) + O(|E|\log(n)/\epsilon^2) = \widetilde{O}(|E|/\epsilon^2),$$

assuming r = O(1). Note that we can compute a single effective resistance in time $O(\log n/\epsilon^2)$, since it involves simply computing the ℓ_2 norm the vector $\tilde{R}(\chi_i - \chi_j)$ which is simply the difference of two columns of \tilde{R} . Question: Does JL Lemma work with approximate distances??

Possible reduction techniques: (1) Projection of simplex onto subspace $\mathbb{R}^k \subseteq \mathbb{R}^n$, probably either the subspace corresponding to largest or smallest eigenvalues. (2) Graph Sparsification: Keeps the same dimension, but removes many edges, i.e., many vertices becomes orthogonal. (3) JL Lemma approach.

Obviously the JL embedding approach does not maintain the fact that the dot product between non-neighbours is zero. But does it approximate this information? I.e., is the dot product smaller for non-neighbours than it is for neighbours?

For example, it maintains approximate information about random spanning trees. We know that

$$\left\|\boldsymbol{\sigma}_{i}^{+} - \boldsymbol{\sigma}_{j}^{+}\right\|_{2}^{2} = \frac{1}{w(i,j)} \Pr_{T \sim \mu}[(i,j) \in T],$$

where μ is the uniform distribution over all spanning trees. Hence the new JL body approximately maintains this information.

Another thought, about how to do the embedding quickly: Karel says that replacing λ_j with $\lambda_j^{1/2}$ still yields a Laplacian, i.e., $f(\mathbf{L}_G) = \mathbf{\Phi} f(\mathbf{\Lambda}) \mathbf{\Phi}^t = \sum_i f(\lambda_i) \varphi_i \varphi_i^t$ with $f(x) = \sqrt{x}$ is still a Laplacian. What's the graph which corresponds to this Laplacian? Can we get to that graph from the original graph, without calculating eigendecomposition? Let this graph be G'. Then $\mathbf{L}_{G'}^+ = \mathbf{L}_{G}^{+/2}$, implying that by Spielman Teng we can get a good approximation of $\mathbf{L}_{G'}^{+/2}$ (if we can compute G' quickly). Thus, we can get an approximate resistive embedding. Perhaps we can then get an approximate simplex from the resistive embedding by projection onto appropriate subspace (really need to figure out what this subspace is).

Resistive Embedding Notice that the effective resistance is encoded naturally by the simplex $\mathcal{S}(G)$:

$$r^{ ext{eff}}(i,j) = \langle oldsymbol{\chi}_i - oldsymbol{\chi}_j, oldsymbol{L}_G^+(oldsymbol{\chi}_i - oldsymbol{\chi}_j)
angle = \langle oldsymbol{\Sigma}^+(oldsymbol{\chi}_i, oldsymbol{\chi}_j), oldsymbol{\Sigma}^+(oldsymbol{\chi}_i - oldsymbol{\chi}_j)
angle = \left\| oldsymbol{\sigma}_i^+ - oldsymbol{\sigma}_j^+
ight\|_2^2.$$

That is, the distance between the vertices of the inverse simplex are precisely the effective resistances.

Consider the vertices $\mu_i = L_G^{+/2} \chi_i \in \mathbb{R}^n$, for $i \in [n]$. This yields n points in \mathbb{R}^n , also with pairwise squared distances equal to the effective resistance of the graph:

$$\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|_2^2 = \|\boldsymbol{L}_G^{+/2}(\boldsymbol{\chi}_i - \boldsymbol{\chi}_j)\|_2^2 = (\boldsymbol{\chi}_i - \boldsymbol{\chi}_j)^t \boldsymbol{L}_G^+(\boldsymbol{\chi}_i - \boldsymbol{\chi}_j) = r^{\text{eff}}(i, j).$$

CLAIM 5.1. Sort this out. Seems true but should make sure. The polytope defined by the vertices $\{\mu_i\}$ sits in an n-1 dimensional subspace. That is, there exists a linear map $T: \mathbb{R}^n \to \mathbb{R}^{n-1}$ such that $T\mu \subseteq \mathbb{R}^{n-1}$ is a simplex.

Based on above, should have that $T\mu$ is a shifted/rotated/reflected copy of \mathcal{S} . So there exists a map $M: \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ such that $MT\mu = \Sigma$.

We have

$$\mu_i(\ell) = \boldsymbol{L}_G^{+/2}(\ell, i) = \sum_{j \in [n]} \lambda_j^{-1/2} \boldsymbol{\varphi}_j \boldsymbol{\varphi}_j^t(\ell, i) = \sum_{j \in [n]} \lambda_j^{-1/2} \boldsymbol{\varphi}_j(\ell) \boldsymbol{\varphi}_j(i).$$

Recalling the formula for the vertices of the inverse simplex S^+ demonstrates that

$$\mu_i(\ell) = \sum_{j \in [n]} \sigma_{\ell}^+(j) \varphi_j(i) = \sum_{j \in [n]} \sigma_i^+(j) \varphi_j(\ell).$$

Moreover,

$$\langle \boldsymbol{\mu}_i, \boldsymbol{\mu}_j \rangle = \sum_{\ell \in [n]} \boldsymbol{L}_G^{+/2}(\ell, i) \boldsymbol{L}_G^{+/2}(\ell, j) = \langle \boldsymbol{L}_G^{+/2}(\cdot, i), \boldsymbol{L}_G^{+/2}(\cdot, j) \rangle = \langle \boldsymbol{L}_G^{+/2}(\cdot, i), \boldsymbol{L}_G^{+/2}(j, \cdot) \rangle = \boldsymbol{L}_G^+(i, j),$$

since $L_G^{+/2}$ is symmetric and $L_G^{+/2}L_G^{+/2}=L_G^+$. We can also see this from recalling that

$$r^{\text{eff}}(i,j) = \mathbf{L}_{G}^{+}(i,i) + \mathbf{L}_{G}^{+}(j,j) - \frac{1}{2}\mathbf{L}_{G}^{+}(i,j),$$

combined with the facts that $\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|_2^2 = r^{\text{eff}}(i,j)$ and $\|\boldsymbol{\mu}_i\|_2^2 = \boldsymbol{L}_G^+(i,i)$. If we can figure out the map which projects the polyhedron onto the correct subspace, the relationships of the simplex will hold and we can maybe use this to discover interesting eigenvector/eigenvalue properties.

Let $\mathcal{R} = \text{conv}(\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_n)$ be the convex polygon defined by the vertices $\{\boldsymbol{\mu}_i\}$. Note that $L_G^{+/2}$ is \mathcal{R} 's associated vertex matrix.

The centroid of \mathcal{R} coincides with the origin of \mathbb{R}^n :

$$oldsymbol{c}(\mathcal{R}) = rac{1}{n} oldsymbol{L}_G^{+/2} oldsymbol{1} = rac{1}{n} \sum_{i \in [n-1]} \lambda_i^{-1/2} oldsymbol{arphi}_i oldsymbol{arphi}_i oldsymbol{1} = oldsymbol{0}.$$

Lemma 5.14. The all ones vector is orthogonal to \mathcal{R} .

Proof. We need to show that for all $p, q \in \mathcal{R}$, $\langle \mathbf{1}, p - q \rangle = 0$. As usual, let x and y be the barycentric coordinates of p and q so that $p = L_G^{+/2}x$ and $q = L_G^{+/2}y$. We have

$$\langle \mathbf{1}, \boldsymbol{p} \rangle = \sum_{\ell \in [n]} (\boldsymbol{L}_G^{+/2} \boldsymbol{x})(\ell) = \sum_{\ell \in [n]} \sum_{j \in [n]} \boldsymbol{L}_G^{+/2}(\ell, j) x(j) = \sum_{j \in [n]} x(j) \sum_{\ell \in [n]} \boldsymbol{L}_G^{+/2}(\ell, j),$$

where for any j,

$$\sum_{\ell \in [n]} \boldsymbol{L}_G^{+/2}(\ell,j) = \boldsymbol{1}^t \boldsymbol{L}_G^{+/2} \boldsymbol{\chi}_j = \sum_{\ell \in [n-1]} \lambda_\ell^{-1/2} \boldsymbol{1}^t \boldsymbol{\varphi}_\ell \boldsymbol{\varphi}_\ell^t \boldsymbol{\chi}_j = 0,$$

since $\varphi_i \in \text{span}(\mathbf{1})^{\perp}$ for all i < n. Hence $\langle \mathbf{1}, \boldsymbol{p} \rangle = 0$ meaning that $\langle \mathbf{1}, \boldsymbol{p} - \boldsymbol{q} \rangle = 0$ as well.

The relationship between \mathcal{R} and \mathcal{S} gives us an alternate way to prove equalities such as (3.12). Indeed, there exists an isometry between \mathcal{R} and \mathcal{S} ; therefore,

$$\|\boldsymbol{c}(\mathcal{S}_U)\|_2^2 = \|\boldsymbol{c}(\mathcal{R}_U)\|_2^2 = \frac{1}{|U|^2} \|\boldsymbol{L}_G^{+/2} \boldsymbol{\chi}_U\|_2^2 = \frac{1}{|U|^2} w(\delta^+ U).$$

What is the "inverse" of \mathcal{R} ?? This inverse will relate to a lot of graph properties. If we can obtain a closed form analytical expression this could yield new relationships.

Answer: Inverse simply has vertices $L_G^{1/2}\chi_i$.

Chapter 6

Conclusion

 $\S 6.1.$ Open Problems and Future Directions

Bibliography

- [AALG17] Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. Graph clustering using effective resistance. arXiv preprint arXiv:1711.06530, 2017.
- [Axl97] Sheldon Jay Axler. Linear algebra done right, volume 2. Springer, 1997.
- [BFM98] David Bremner, Komei Fukuda, and Ambros Marzetta. Primaldual methods for vertex and facet enumeration. *Discrete & Computational Geometry*, 20(3):333–357, 1998.
- [BH12] João Carlos Alves Barata and Mahir Saleh Hussein. The Moore–Penrose pseudoinverse: A tutorial review of the theory. *Brazilian Journal of Physics*, 42(1-2):146–165, 2012.
- [CG97] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American Mathematical Soc., 1997.
- [DG03] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.
- [DM05] Petros Drineas and Michael W Mahoney. Approximating a gram matrix for improved kernel-based learning. In *International Conference on Computational Learning Theory*, pages 323–337. Springer, 2005.
- [DVM18] Karel Devriendt and Piet Van Mieghem. The simplex geometry of graphs. arXiv preprint arXiv:1807.06475, 2018.
- [Ell11] Wendy Ellens. Effective resistance and other graph measures for network robustness. PhD thesis, Master thesis, Leiden University, 2011.
- [Fie93] Miroslav Fiedler. A geometric approach to the laplacian matrix of a graph. In Combinatorial and Graph-Theoretical Problems in Linear Algebra, pages 73–98. Springer, 1993.
- [Fie98] Miroslav Fiedler. Some characterizations of symmetric inverse m-matrices. *Linear algebra and its applications*, 275:179–187, 1998.
- [Fie05] Miroslav Fiedler. Geometry of the laplacian. *Linear algebra and its applications*, 403:409–413, 2005.
- [Fie11] Miroslav Fiedler. *Matrices and graphs in geometry*. Number 139. Cambridge University Press, 2011.

- [GKPS67] Branko Grünbaum, Victor Klee, Micha A Perles, and Geoffrey Colin Shephard. Convex polytopes. 1967.
- [Haw75] Thomas Hawkins. Cauchy and the spectral theory of matrices. Historia Mathematica, 2(1):1-29, 1975.
- [JL84] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. *Contemporary mathematics*, 26(189-206):1, 1984.
- [Kar72] Richard M Karp. Reducibility among combinatorial problems. In *Complexity of computer computations*, pages 85–103. Springer, 1972.
- [KP03] Volker Kaibel and Marc E Pfetsch. Some algorithmic problems in polytope theory. In Algebra, geometry and software systems, pages 23–47. Springer, 2003.
- [KS08] Volker Kaibel and Alexander Schwartz. On the complexity of isomorphism problems related to polytopes. *Graphs and Combinatorics*, 2008.
- [KT06] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.
- [Men31] Karl Menger. New foundation of euclidean geometry. American Journal of Mathematics, 53(4):721–745, 1931.
- [Mer94] Russell Merris. Laplacian matrices of graphs: a survey. *Linear algebra and its applications*, 197:143–176, 1994.
- [Moo20] Eliakim H Moore. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc., 26:394–395, 1920.
- [MPL17] Naoki Masuda, Mason A Porter, and Renaud Lambiotte. Random walks and diffusion on networks. *Physics reports*, 716:1–58, 2017.
- [PC99] Victor Y Pan and Zhao Q Chen. The complexity of the matrix eigenproblem. In *Proceedings of the thirty-first annual ACM symposium on Theory of computing*, pages 507–516. ACM, 1999.
- [Pen55] Roger Penrose. A generalized inverse for matrices. In *Mathematical proceedings* of the Cambridge philosophical society, volume 51, pages 406–413. Cambridge University Press, 1955.
- [Pen56] Roger Penrose. On best approximate solutions of linear matrix equations. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 52, pages 17–19. Cambridge University Press, 1956.
- [Sha67] GE Sharpe. Theorem on resistive networks. *Electronics letters*, 3(10):444–445, 1967.
- [Spi09] Daniel Spielman. Spectral graph theory. Lecture Notes, Yale University, pages 740–0776, 2009.
- [SS11] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011.

- [Ste22] Ernst Steinitz. Polyeder und raumeinteilungen. Encyk der Math Wiss, 12:38–43, 1922.
- [V⁺13] Nisheeth K Vishnoi et al. Lx= b. Foundations and Trends® in Theoretical Computer Science, 8(1-2):1-141, 2013.
- [VM13] P Van Mieghem. Double orthogonality and the nature of networks. *Delft University of Technology*, 2013.
- [VMDC17] Piet Van Mieghem, Karel Devriendt, and H Cetinay. Pseudoinverse of the laplacian and best spreader node in a network. *Physical Review E*, 96(3):032311, 2017.