Taille mot mémoire

La taille d'un mot mémoire est forcément un multiple de $8.\ C'est$ pourquoi nous pouvons appliquer le tableau suivant :

Nom	Symbole	Puissances binaires et valeurs en décimal	Nombre	Hexa	Ordre de grandeur SI décimal
unité	o/B	2 ⁰ = 1	un(e)	1	10° = 1
kilo	ko/Ko kB/KB	2 ¹⁰ = 1 024	mille	400	10 ³ = 1 000
méga	Mo/MB	2 ²⁰ = 1 048 576	million	100000	10 ⁶ = 1 000 000
giga	Go/GB	2 ³⁰ = 1 073 741 824	milliard	4000000	10 ⁹ = 1 000 000 000
téra	To/TB	2 ⁴⁰ = 1 099 511 627 776	billion	10000000000	10 ¹² = 1 000 000 000 000
péta	Po/PB	2 ⁵⁰ = 1 125 899 906 842 624	billiard	40000000000	10 ¹⁵ = 1 000 000 000 000 000
exa	Eo/EB	2 ⁶⁰ = 1 152 921 504 606 846 976	trillion	1000000000000000	10 ¹⁸ = 1 000 000 000 000 000 000

Gestion des adresses

En fonction de la taille de la mémoire nous aurons une taille d'adresses variables, le tableau suivant représente les possibilités :

Adressage	Puiss. binaire et décimal	Hexa	byte	bit
8 bits	2 ⁸ = 256	100	256 B	2 Kb
16 bits	2 ¹⁶ = 65 536	10000	64 KB	512 Kb
32 bits	2 ³² = 4 294 967 296	100000000	4 GB	32 Gb
64 bits	2 ⁶⁴ = 18 446 744 073 709 551 616	10000000000000000	16 EB	128 Eb

Calculer la mémoire

Calculer adresse de fin

$${\rm Adr.Fin} = {\rm Adr.Deb} + {\rm Taille} - 1$$

Calculer adresse de début

$${\bf Adr.Deb} = {\bf Adr.Fin-Taille} + 1$$

Calculer la taille

$${\bf Taille} = {\bf Adr.Fin} - {\bf Adr.Deb} + 1$$

Autre formule

$$\mathrm{Taille} = 1 \ll \log_2(2^n)$$

n= le nombre de bits alloué à la zone mémoire Exemple : $2{\rm KB}=2^{10}*2^1=2^{11}$ donc n=11

Saut inconditionnel

L'opcode pour un saut inconditionnel prends 5 bits et le reste est alloué pour donner l'adresse de la prochaine instruction à exécuter.

Calcul de l'adresse de saut

Pour calculer l'adresse de saut il suffit d'utiliser la formule suivante :

 $Adr = PC + extension_16bits(offset_{11}*2) + 4$

Code d'instruction	Incrément						
Adr	Adresse finale du saut						
PC	Adresse de l'instruction courante						
Extension 16 bits	Extension de l'adresse de saut en y ajoutant la valeur du bit de signe						
Offset	Correspond à l'instruction moins les 5 bits de l'opcode						
4	Valeur en fixe à ajouter à l'adresse de saut						

Saut conditionnel

Adresse cible

Pour calculer l'adresse de saut il suffit d'utiliser la formule suivante **attention elle est** légèrement différente de celle pour le saut inconditionnel :

$$Adr = PC + extension_16bits(offset_8*2) + 4$$

Instructions

Mnemonic	Instruction			
ADC	Add with Carry			
ADD	Add			
AND	AND			
ASR	Arithmetic Shift Right			
В	Uncoditional Branch			
Bxx	Conditional Branch			
BIC	Bit Clear			
BL	Branch and Link			
BX	Branch and Exchange			
CMN	Compare NOT			
CMP	Compare			
EOR	XOR			
LDMIA	Load Multiple			
LDR	Load Word			
LDRB	Load Byte			
LDRH	Load Halfword			
LSL	Logical Shift Left			
LDSB	Load Sign-Extended Byte			
LDSH	Load Sign-Extended Halfword			
LSR	Logical Shift Right			
MOV	Move Register			
MUL	Multiply			
MVN	Move NOT(Register)			
NEG	Negate $(*-1)$			
ORR	OR			
POP	Pop Register			
PUSH	Push Register			
ROR	Rotate Right			
SBC	Subtract with Carry			
STMIA	Store Multiple			
STR	Store Word			
STRB	Store Byte			
STRH	Store Halfword			
SWI	Software Interrupt			
SUB	Subtract			
TST	Test Bits			

1 CSt Bits								
Héxadécimal	Binaire							
0	0000							
1	0001							
2	0010							
3	0011							
4	0100							
5	0101							
6	0110							
7	0111							
8	1000							
9	1001							
A	1010							
В	1011							
С	1100							
D	1101							
Е	1110							
F	1111							
	Héxadécimal 0 1 2 3 4 5 6 7 8 9 A B C D							

Incrémenter le PC

Code d'instruction	Incrément
8 bits = 1 byte	1
16 bits = 2 bytes	2
32 bits = 4 bytes	4

Registres spéciaux

<u> </u>	
Registre	Objectif
R13 / R5	Stack Pointer (SP) → Stocke la position dans la pile de stockage (interruptions chaînées)
R14 / R6	Link Register (LR) →Garde l'adresse de retour (appel de fct, interruption)
R15 / R7	Program Counter (PC) →Stocke l'adresse de la prochaine instruction

Lors d'une interruption on stocke la valeur actuelle du PC dans le LR et on met la valeur de l'adresse de l'interruption dans le PC.

Puissance de 2

Puissance de 2	Résultat
2^{0}	1
2^{1}	2
2^{2}	4
2^3	8
2^{4}	16
2^5	32
2^{6}	64
27	128
2^{8}	256
2^9	512

Pipeline

Découpage des instructions

Découpage d'une instruction

- Fetch : Recherche d'instruction
- Decode : Décodage instruction & lecture registres opérandes
- Execute : Exécution de l'opération / calcul adresse mémoire
- Memory : Accès mémoire / écriture PC de l'adresse de saut
- Write back : Écriture dans un registre du résultat de l'opération

Calcul de métriques

Formule séquentielle vs pipeline

 $T_e={\rm temps}$ de passage à chaque étape $T_p = n \ast T_e = \text{temps}$ de passage pour n étapes

 $T_t = m * T_p = \text{temps total pour m personnes}$

$$T_t = n \ast m \ast T_e$$

Formule pipeline

$$T_t = n \ast T_e + (m-1) \ast T_e$$

Nombre de cycles d'horloges

$$\frac{T_t}{T_e} = n + m - 1$$

Débit

Nombre d'opérations (tâches, instructions) exécutées par unités de temps.

Temps écoulé entre le début et la fin d'exécution de la tâche (instruction).

IPC

Instructions Per Cycle : nombre d'instructions exécutées par cycle d'horloge.

$$IPC = \frac{1}{\text{ratio instruction sans arret} * 1 + \text{ratio instruction avec arret} * \text{(nb opération)}$$

Accélération

Accélération: nombre de fois plus vite qu'en séquentiel.

$$A = \frac{T_s}{T_p} = \frac{m*n*T_e}{(n+m-1)*T_e} = \frac{m*n}{n+m-1} \sim n \ \ (\text{pour m très grand})$$

- T_t: temps total
 m: nombre d'instructions fournies au pipeline
 n: nombre d'étages du pipeline (MIPS, ARM = 5)
- + T_e : temps de cycle d'horloge (= $\frac{1}{\mathrm{Fréquence\ horloge}}$)

2	3			
	-	4	5	6
ID	EX	MA	WB	
IF	ID	EX	MA	WB
IF				ID
2	3	4	5	6
ID	EX	MA	WB	
IF	ID	EX	MA	WB
	IF IF IF	IF ID IF ID IF ID IF ID IF ID IT ID	IF ID EX IF	IF ID EX MA IF 2 3 4 5 ID EX MA WB

Pipelining aléas

Résolution d'aléas

Arrêt de pipeline (hardware/software)

Hardware: Arrêter le pipeline (stall/break) -> dupliquer les opérations bloquées.

Software : Insérer des NOPs (no operation).

Sans forwarding

Les règles de gestion des aléas sont les suivantes :

- Si l'instruction dépend d'une valeur calculée par une instruction précédente (RAW) nous devons attendre que l'opération write-back soit terminée.
- Dans le cas ou nous avons des dépendances de données (WAW ou WAR) cela n'impacte pas le pipeline.

Attention dans le cas d'aléas structurels, nous ne pouvons pas faire d'opération Memory Access (M) et Fetch (F) en même temps.

Avec forwarding

Les règles de gestion des aléas sont les suivantes :

- Si l'instruction suivante dépend d'une valeur calculée par une instruction précédente, la valeur sera directement disponible dans le bloc Execute.
- Si un LOAD est fait, la valeur sera accesible directement après le bloc Memory dans le bloc Execute, donc pas besoin d'attendre jusqu'au bloc Write Back.

			Dep.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
1	LDR	r1,[r5]		F	D	E	М	W																						
2	ADD	r5,r1,1	1		F	D	D	E	M	W																				
3	LDR	r1,[r6]				F	F	D	E	М	W																			
4	ADD	r3,r5,r6	2					F	D	E	М	W																		
5	SUB	r2,r6,#1							F	D	E	М	W																	
6	SUB	r4,r3,#5	4							F	D	E	M	W																
7	ADD	r3,r2,r4	5,6								F	D	E	М	W															
8	LDR	r2,[r7]										F	D	E	М	W														
9	ORR	r4,r2,r1	3,8										F	D	D	Е	М	W												
10	SUB	r7,r3,#9	4,7											F	F	D	Ε	м	W											

Taxonomie de Flynn

Classification basée sur les notions de flot de contrôle

- 2 premières lettres pour les instructions, I voulant dire Instruction, S Single et M Multiple
- 2 dernières lettres pour le flot de données avec D voulant dire Data, S Single et M -Multiple

	Single Data	Multiple Data
Single Instruction	SISD	SIMD
Multiple Instruction	MISD	MIMD

SISD

Machine SISD (Single Instruction Single Data) = Machine de «Von Neuman».

• Une seule instruction exécutée et une seule donnée (simple, non-structurée) traitée.

SIMD

Plusieurs types de machine SIMD : parallèle ou systolique.

 En général l'exécution en parallèle de la même instruction se fait en même temps sur des processeurs différents (parallélisme de donnée synchrone).

MISD

Exécution de plusieurs instructions en même temps sur la même donnée.

MIMD

Machines multi-processeurs où chaque processeur exécute son code de manière asynchrone et indépendante.

- S'assurer la cohérence des données,
- Synchroniser les processeurs entre eux, les techniques de synchronisation dépendent de l'organisation de la mémoire.