НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет ПИиКТ

Дисциплина Лабораторная работа № 6

Выполнил студент

Набокова Алиса Владиславовна

Группа № Р3120

Преподаватель: Болдырева Елена Александровна

г. Санкт-Петербург

Оглавление

Отчёт	
Вариант	
Задание	
Получившийся файл	
Исходная страница журнала квант Получившийся файл Код файла	
Дополнительное задание	g
Получившийся файл	<u>c</u>
Код файла	10
Код файла Код файла main	11
Вывод	11
Список литературы	11
	

Отчёт

Вариант

Задание

Сверстать страницу, максимально похожую на выбранную страницу из журнала «Квант».

Исходная страница журнала квант

1974 год номер 10 страница 9

№ 14. Построение ј $\overline{b^2-a^2}$. Разделим отрезок b-EF пополам (см. № 7). Из центра О проведем окружность O_b радиуса b/2 (рис. 12). Из точки E проведем засечку радиуса a, пересекающую O_b в некоторой точке G. Отрезок FG будет иметь нуж-

 $aV\overline{3}$ напишем

$$a\sqrt{3} - \sqrt{(2a)^2 - a^2}$$
.

С помощью № 1 построим отрезок b=2a и применим № 14 к отрезкам - 2a и a. № 16. Запишем тождество

$$a\sqrt{2} = 1 (a\sqrt{3})^2 - a^2$$
.

Мы умеем строить $a\sqrt{3}$ и, значит, умеем строить а √2, применив № 14 к $b = a \sqrt{3}$ и a. № 17. Запишем тождество

 $\sqrt{b^2+a^2}$

$$V \overline{(b V \overline{2})^2 - (V \overline{b^2 - a^2})^2}$$
.

Мы умеем строить $b\sqrt{2}$ (см. №16) и $V \overline{b^2 - a^2}$ (см. № 14). Значит, умеем строить и $\sqrt{b^2 + a^2}$.

Теперь мы можем решить нужную задачу.

Задача № 18. Найти пересечение окружности с прямой, проходящей через ее центр.

Решение. Пусть дана окружность O_A с центром A и точка $B \neq A$. Нужно найти пересечения O_A с прямой AB. Обозначим радиус O_A через a, длину AB через b и построим $\sqrt{a^2+b^2}$ и $a\sqrt{2}$ (см. № 16 и 17).

Теперь (рис. 13) из центра В проведем засечку радиуса с до пересечения с O_A в некоторой точке C. Из точки C проведем окружность O_C радиуса a $\sqrt{2}$. Пересечения O_C и

радиуса a V 2 . Пересечения O_C и O_A дадут искомые точки E и F . Действительно, \triangle BAC — прямо-угольный, ибо $c^2 - a^2 + b^2$. Если E и F — точки пересечения прямой AB с окружностью O_A , то $(CE)^2$ — $(CF)^2 - 2a^2$, как и было сделано. Теорема Маскерони доказана пол-

§ 7. Зачем нужны построения циркулем без линейки

Хорошо известно, что математика не исчерпывается решением готовых задач, что она включает поиск проблем и постановку задач, формулировку теорем. Эта часть математики остается скрытой, хоть мы и знаем, что направляет работу именно она. А на проблеме построения циркулем хорошо видны задачи и решения именно «второй» части математики.

Когда мы смотрим кино, то видим актеров, а о том, что есть режиссер, только догадываемся. Должен ли режиссер оставаться за кадром? Мы решили однажды вывести его на сцену.

Реакция	φ _{min} (σ)	Реакция	φ _{min} (e)
K+ + e-→K	2,92	$H^+ + e^- \rightarrow -\frac{1}{2} H_2$	0
Na+ + e-→Na	2,71	$\frac{1}{2} \operatorname{Cu}^{++} + e^{-} \rightarrow \frac{1}{2} \operatorname{Cu}$	0,34
$\frac{1}{2} Mg^{++} + e^{-} \rightarrow \frac{1}{2} Mg$	2,37	$Ag^+ + e^- \rightarrow Ag$	-0,80
$\frac{1}{3} \text{ Al} + + + e^- \rightarrow \frac{1}{3} \text{ Al}$	1,66	$\frac{1}{3} \text{ Au}^{+++} + e^{-} \rightarrow \frac{1}{3} \text{ Au}$	-1,50
$\frac{1}{2} Z_{n++} = e^{-} \rightarrow \frac{1}{2} Z_{n}$	0,76	$Br \rightarrow \frac{1}{2} Br_2 + e^-$	1,00
$\frac{1}{2} \text{ Fe}^{++} + e^{-} \rightarrow \frac{1}{2} \text{ Fe}$	0,44	$OH^- \to \frac{1}{2} H_2O + \frac{1}{4} O_2 + e^-$	1,23
$\frac{1}{2} Pb^{++} + e^{-} \rightarrow \frac{1}{2} Pb$	0,13	$Cl^- \rightarrow \frac{1}{2} Cl_2 + e^-$	1,3

Получившийся файл

Рис. 12.

№ 14. Построение ; $\sqrt{b^2 - a^2}$.

Разделим отрезок b-EF попалам (см № 7). Из центра O проведем окружность O_b радиуса b/2(рис. 12). Из точки E проведем засечку радиуса a, пересекающую O_b в некоторой точке G. ОТрезок FG будет иметь нужную длину. Действительно, угол EGF прямой, так как опирается на диаметр. Поэтому $(GF)^2=b^2-a^2$.

N9 15. Для построения отрезка $a\sqrt{3}$ на-

$$a\sqrt{3} - \sqrt{(2a)^2 - a^2}$$
.

С помощью № 1 построим отрезок b=2a и применим № 14 к отрезкам b-2a и a.

№ 16. Запишем тождество

$$a\sqrt{2} = \sqrt{(a\sqrt{3})^2 - a^2}$$

Мы умеем строить $a\sqrt{3}$ и, значит, умеем строить $a\sqrt{2}$, применив №14 к $b-a\sqrt{3}$ и a. №17. Запишем тождество $\sqrt{b^2+a^2}$

$$\sqrt{(b\sqrt{2})^2 - (\sqrt{b^2 - a^2})^2}$$

Мы умеем строить $b\sqrt{2}$ (см.N16) и $\sqrt{b^2-a^2}$ (см.N14). Значит, умеем строить и $\sqrt{b^2+a^2}$.

Теперь мы можем решить нужную задачу.

Задача №18. Найти пересечение окружности с прямой, проходящей через ее центр.

Рис. 13.

Решение. Пусть дана окружность O_A с центром A и точка $B \neq A$. Нужно найти пересечения O_a с прямой AB. Обозначим радиус O_A через a, длину AB через b и построим с $\sqrt{a^2+b^2}$ и $a\sqrt{2}$ (см. \mathbb{N}^1 6 и 17). Теперь (рис. 13) из центра B проведем засечку радиуса c до пересечения с O_A в некоторой точке C. Из точки C проведем окружность O_c радиуса $a\sqrt{2}$. Пересечения O_c и O_A дадут искомые точки E и F.

Действительно, ΔBCA - прямоугольный, ибо $c^2 - a^2 + b^2$. Если E и F -точки пересечения прямой AB с окружностью O_A , то $(CE)^2 - (CF)^2 - 2a^2$, как и было сделано. Теорема Маскерони доказана полно-

§ 7. Зачем нужны построения циркулем без линейки

Хорошо известно, что математика не исчерпывается решением готовых задач, что она включает поиск проблем и постановку задач, формулировку теорем. Эта часть математики остается скрытой, хоть мы и знаем, что направляет работу именно она. А на проблеме построения циркулем хорошо видны задачи и решения именно «второй» части математики.

Когда мы смотрим кино, то видим актеров, а о том, что есть режиссер, только догадываемся. Должен ли режиссер оставаться за кадром? Мы решили однажды вывести его на сцену.

Реакция	$\phi_{min}(b)$	Реакция	$\phi_{min}(b)$
$K^+ + e^- \rightarrow K$	2,92	$H^+ + e^- \rightarrow \frac{1}{2}H_2$	0
$Na^+ + e^- \rightarrow Na$	2,71	$\frac{1}{2}Cu^{++} + e^{-} \to \frac{1}{2}Cu$	-0,34
$\boxed{\frac{1}{2}Mg^{++} + e^- \rightarrow \frac{1}{2}Mg}$	2,37	$Ag^+e^- o Ag$	-0,80
$\boxed{\frac{1}{3}Al^{+++} + e^- \rightarrow \frac{1}{3}Al}$	1,66	$\frac{1}{3}Au^{+++} + e^{-} \to \frac{1}{3}Au$	-1,50
$\frac{1}{2}Zn^{++} + e^- \rightarrow \frac{1}{2}Zn$	0,76	$Br^- o \frac{1}{2}Br_2 + e^-$	1,06
$\frac{1}{2}Fe^{++} + e^{-} \rightarrow \frac{1}{2}Fe$	0,44	$OH^- \to \frac{1}{2}H_2O + \frac{1}{4}O_2 + e^-$	1,23
$\frac{1}{2}Pb^{++} + e^- \rightarrow \frac{1}{2}Pb$	0,13	$Cl^- \to {\textstyle \frac{1}{2}} Cl_2 + e^-$	1,36

Код файла

```
1 \setlength{\columnseprule}{Opt}% размер полоски посреди листа
  3 ▼ \begin{multicols}{2} % делим страницу на два столбика
  4 ▼ \begin{center}
                                                                    1
  6 \includegraphics[width=1\linewidth]{111.png}
  7 \end{center}
  8
  9 \noindentРис. 12.
 10 \newline
 12 № 14. \textit{Построение} ;$\sqrt{b^2 -a^2}.$
 14 Разделим отрезок $b - EF$ попалам (см № 7). Из центра $0$
      проведем окружность $0_b$ радиуса $b/2$(рис. 12). Из точки $E$
      проведем засечку радиуса $a$, пересекающую $0_b$ в некоторой
      точке $G$. ОТрезок $FG$ будет иметь нужную длину.
      Действительно, угол $EGF$ прямой, так как опирается на
      диаметр. Поэтому \$(GF)^2 = b^2 -a^2\$.
 15
 16 № 15. Для построения отрезка $a\sqrt{3}$ напишем
 17 $$a\sqrt{3}-\sqrt{(2a)^2-a^2}.$$
 18 С помощью № 1 построим отрезок $b=2a$ и применим № 14 к
      отрезкам $b-2a$ и $a$.
 19
 20 № 16. Запишем тождество
 21 \$a\sqrt{2} = \sqrt{(a\sqrt{3})^2 -a^2}$
     Мы умеем строить $a\sqrt{3}$ и, значит, умеем строить
      a\ $a\sqrt{2}$, применив \mu14 к $b-a\sqrt{3}$ и $a$.
 24 №17. Запишем тождество$\sqrt{b^2 + a^2}$
25 $$\sqrt{(b\sqrt{2})^2 -(\sqrt{b^2 - a^2})^2}$$
    Мы умеем строить b\left(cm.l_16\right) и \left(cm.l_16\right) и \left(cm.l_16\right) и \left(cm.l_16\right)
    №14). Значит, умеем строить и $\sqrt{b^2+a^2}$.
27
28 Теперь мы можем решить нужную задачу.
29
    Задача №18. Найти пересечение окружности с прямой,
30
     проходящей через ее центр.
31
32 \columnbreak
33 * \begin{center}
34
35 \includegraphics[width=1\linewidth]{222.png}
36
   \end{center}
37 Рис. 13.
38 \newline
39
40 Решение. Пусть дана окружность $0_А$ с центром $А$ и точка
    $В\пед А$. Нужно найти пересечения $0_а$ с прямой $АВ$.
    Обозначим радиус $0_A$ через $a$, длину $AB$ через $b$ и
    построим с \sqrt{a^2+b^2} и a\sqrt{2} (см. Me16 и 17).
41 Теперь (рис. 13) из центра $B$ проведем засечку радиуса $c$
    до пересечения с $0_А$ в некоторой точке $С$.
42 Из точки $С$ проведем окружность $0_c$ радиуса $a\sqrt{2}$.
    Пересечения $0_c$ и $0_А$ дадут искомые точки $E$ и $F$.
43
44 Действительно, $\Delta BCA$ - прямоугольный, ибо $c^2-
    a^2+b^2$. Если $E$ и $F$ -точки пересечения прямой $AB$ с
    окружностью $0_A$, то $(CE)^2- (CF)^2 -2a^2$, как и было
    сделано.
45
```

```
46 Теорема Маскерони доказана полностью.
47 \newline
48
49 \textbf{§ 7. Зачем нужны построения циркулем без линейки}
50
51 \noindentXopowo известно, что математика не исчерпывается
    решением готовых задач, что она включает поиск проблем и
    постановку задач, формулировку теорем. Эта часть математики
    остается скрытой, хоть мы и знаем, что направляет работу
    именно она. А на проблеме построения циркулем хорошо видны
    задачи и решения именно «второй» части математики.
53 Когда мы смотрим кино, то видим актеров, а о том, что есть
    режиссер, только догадываемся. Должен ли режиссер оставаться
    за кадром? Мы решили однажды вывести его на сцену.
54
55
56
57 \newpage
58 \renewcommand{\arraystretch}{3}
59 ▼ \scalebox{1.2}{
60 v \begin{tabular}{|c|c|c|}
61 \hline
62 Реакция & $\phi_m_i_n (b)$ & Реакция & $\phi_m_i_n (b)$ \\
64 $K^+ + e^- \rightarrow K$ & 2,92 & $H^+ +e^- \rightarrow
     \frac{1}{2}H_2 $ & 0\\
66 $Na^+ + e^- \rightarrow Na$ & 2,71 & $\frac{1}{2}Cu^+^+ + e^-
    \rightarrow \frac{1}{2}Cu$ & -0,34\\
67 \hline
68 $\frac{1}{2}Mg^+++ + e^- \rightarrow \frac{1}{2}Mg$& 2,37 &
    $Ag^+ e^- \rightarrow Ag$ & -0,80 \\
70 $\frac{1}{3}Al^++^+ +e^- \rightarrow \frac{1}{3}Al$& 1,66 &
    $\frac{1}{3}Au^+^+^+ +e^- \rightarrow \frac{1}{3}Au$ & -1,50
    11
71 \hline
Br^- \left(1}{2}Br_2 + e^- \& 1,06\right)
73 \hline
74 $\frac{1}{2}Fe^+++ + e^- \rightarrow \frac{1}{2}Fe$ & 0,44 &
    0H^- \left(1\right)_{2}H_20 + \frac{1}{4}0_2 + e^- \
    1,23\\
75 \hline
76  $\frac{1}{2}Pb^+^+ + e^- \rightarrow \frac{1}{2}Pb$ & 0,13 &
    $Cl^- \rightarrow \frac{1}{2}Cl_2 +e^-$ & 1,36 \\
77 \hline
78 \end{tabular}
79 }
80 \end{multicols}
```

Дополнительное задание

- 1. Сверстать титульный лист.
- 2. Создать файл main.tex, в котором будет содержаться преамбула и ссылки на 2 документа: титульный лист и статью (ссылки создаются с помощью команды \input).

Получившийся файл

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет ПИиКТ

Информатика Лабораторная работа №6

Выполнил студент Набокова Алиса Владиславовна Группа №Р3120 Преподаватель: Болдырева Елена Александровна

г. Санкт-Петербург 2023

Код файла

```
1
2
    \textheight=24cm
3
   \textwidth=16cm
4
   \oddsidemargin=0pt
5
    \topmargin=-1.5cm
 6 ▼ \begin{large}
7 ₹
        \begin{center}
        {\bfseries \large НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
8
        УНИВЕРСИТЕТ ИТМО{}}\\
        \vspace{0,5cm}
 9
        Факультет ПИиКТ\\
10
11
        \vspace{6cm}
12
        Информатика\\
        Лабораторная работа №6
13
14
        \end{center}
15
        \vspace{6cm}
        \begin{flushright}
16 ▼
17
            Выполнил студент\\
            Набокова Алиса Владиславовна\\
18
19
            Группа №Р3120\\
20
            Преподаватель: Болдырева Елена Александровна
        \end{flushright}
21
22
        \vspace{3cm}
23 ▼
        \begin{center}
        г. Санкт-Петербург\\
24
25
        2023
26
        \end{center}
27 \end{large}
```

Код файла таіп

```
1 \documentclass[12pt, a4paper]{article}
2 \usepackage{graphicx} % Required for inserting images
3 \graphicspath{ {images/} }%cooбщает LaTeX, что изображения находятся в каталоге images в текущей директории.
4 \usepackage [russian]{babel}
5 \usepackage [utf8]{inputenc}
6 \usepackage{multicol}
7 \usepackage[left=22mm, right=23mm, top=18mm]{geometry}
8
9 \underline{\text{begin}{document}}
10 \input{title}
11 \newpage
12 \input{lab6}
13 \end{document}
```

Вывод

В ходе данной лабораторной работы была изучена система вёрстки Latex

Список литературы

URL: http://www.ccas.ru/voron/download/voron05latex.pdf