AUDL* Ultimate Frisbee – Win Prediction Modeling

* Prior to the 2024 season, the AUDL re-branded as UFA. This presentation encompasses the 2012-2023 seasons, and will keep nomenclature consistent with the report.

Project Repository
Presentation | Report

Contents

- Project Overview
- Data Wrangling
- Target Definition, Initial Feature Selection
- Feature Engineering
- Data for Modeling Summary
- Model Selection, Hyperparameter Tuning
- Final Model
- Model Applications
- Model Refinement, Future work
- Project Implications
- Acknowledgments

Project Summary

regression model predicts home margin from game summary statistics

AUDL statistics

Processed data

Regression Model

home_margin prediction

```
gid = '2023-05-19-LA-SLC'
print('model predicted home margin\n',
round(final_model.predict(data[\
data.game==gid].iloc[:,6:-2])[0]))

model predicted home margin
12
```

Project Overview

- **Problem Statement:** Can the AUDL and its teams leverage the league's existing data streams to create useful models?
 - Eleven seasons of the game summary data was collected to develop models which predict the difference in score between home and away team
 | Home Margin |

Outcomes:

- Final regression model achieved R² ~ 0.85, mean absolute error ~ 1.7.
 - Classification model: 94% accuracy for winning team prediction
- Model feature importance provides game management insights
- Fixable data quality issues identified, rationale for cleaning efforts.

Data Wrangling

- AUDL website provides REST API for statistics
- Collection of endpoints used to gather each game's summary data
- Imported data was thoroughly explored and cleaned.
- Game records reduced from 1,604
 on import to 1,521 after cleaning.
 Cleaning process detailed in
 project report.

Target Definition, Feature Selection

- Target: home margin =home_score away_score
- Some data features allow exact analytical determination of **home margin** and were dropped
- Remaining features (for both home and away teams):
 - ⁻ Throws, Completions, Blocks, Turnovers
- Categorical features used to group data, but not for modeling

	1545	2180		
game	2016-07-02-TOR-MTL	2014-07-26-MAD-SJ		
date	2016-07-02 19:00:00+00:00	2014-07-26 19:00:00+00:00		
week	14	championship		
home	Royal	Spiders		
away	Rush	Radicals		
home_score	18	23		
away_score	29	20		
away_completions	237	265		
away_throws	252	286		
away_hucks_completed	-1	-1		
away_hucks	-1	-1		
away_blocks	15	16		
away_turnovers	15	21		
away_o_scores	17	15		
away_o_points	20	25		
away_o_possessions	22	33		
away_d_scores	12	5		
away_d_points	31	22		

Sample data before cleaning steps, not all features shown. Values of "-1" indicate missing data.

Feature Engineering

- Each basic feature was used as a component for engineered features:
 - Completion rate, completion rate difference
 - Block+Turnover difference
- Engineered features were distributed more normally and had higher target correlation than their component features

Data for Modeling Summary:

features capturing change of possession correlate strongly with target

- Feature distributions, correlation coefficient with home margin
- Feature importance via p-value scores scored via f_regression

Model Selection, Hyperparameter Tuning

better models are ∠ | testing results (right) used for final evaluation and shown in table

Tuned test scores

	R2	RMSE	MAE	MAPE
voting_GBR-Cat	0.849	2.789	1.644	0.438
Gradient Boosting Regressor	0.847	2.801	1.719	0.459
voting_GBR-Cat-XGB	0.847	2.809	1.663	0.449
CatBoostRegressor	0.843	2.845	1.627	0.435
XGBRegressor	0.832	2.938	1.771	0.496
KNeighborsRegressor	0.817	3.065	1.809	0.504

- 22 regression models were evaluated and tuned.

 Top models' tuned performance is shown for the training and test splits below.
- Combinations of the top three models were blended into a voting regressor.
- Final model: GradientBoosting+CatBoost blend

Final Model

residual analysis, data quality/quantity

- Model's worst two predictions were games that should have been removed during data cleaning.
 [2013-05-04-DC-NY, 2018-07-14-DET-PIT]
 - Higher error for 2012, 2013 seasons when bookkeeping was more suspect. Model error is not independent of team

- Learning curve analyses indicate model performance slightly limited by dataset size
- Retroactive data fill ins / cleaning could add 83 games to the dataset. Data collection pipeline can be adapted for online data retrieval, continuously update as games are played.

Model Applications

utilize feature importance to develop strategy

home_completions away_completions home_throws away_throws home_blocks away_blocks home_turnovers away_turnovers home_completion_rate away_completion_rate comp_rate_diff block_turnover_diff

home_completions
away_completions
home_throws
away_throws
home_blocks
away_blocks
home_turnovers
away_turnovers
home_completion_rate
away_completion_rate
comp_rate_diff
block turnover diff

- Model feature importance provides context for most important factors to improve score margin.
- Feature interactions could allow a coach to have a numerical basis of focus:

The four strongest interactions the block_turnover_diff involve forcing turns on defense and maintaining possession on offense. It may be more advantageous to aggressively go for blocks on defense, instead of forcing more difficult throws.

Model Refinement, Future work

- Incorporate classification model into regression model pipeline, may help predict correct +/- for games with narrow margins.
- Descriptive features such as "week" and "team" can be encoded and included in the model. Team identity should improve performance, based on the variation in their residuals.
 - Match-up specific models can be used to establish odds for upcoming games
- The data pipeline can be adapted to other available AUDL data streams, allowing the expansion of current work and many new applications.
 - Bring back dropped features for other applications.
 Incorporate individual player statistics. Event-by-event data (with field coordinates).

Project Implications

AUDL Data Streaming and Cleaning

- Methodology provided for collecting and cleaning AUDL data from API to model training. Can be adapted for online learning.
- Data integrity issues identified, worth retroactive cleaning and/or imposing more stringent data collection standards.
- Winning contribution of game features (throws, catches, turnovers)
 - Model provides quantification of a team/player's statistics and could be used to develop strategy and to better analyze previous results
- Basis for team match-up evaluation and odds prediction

Acknowledgments

Aditya Bhattacharya

Thank you for your mentorship and guidance throughout the project!

AUDL/UFA

Thank you for commitment to open data and a well documented REST API

Springboard Curriculum

The guided capstone project served as a useful guide for this project.

Project Overview

Data Wrangling

Target Definition, Initial Feature Selection

eature Engineering

Data for Modeling Sum mary

Model Selection, Hyper parameter Tuning

Final Model

Model Applications

Model Refinement, Fut ure work

Project Implications

Acknowledgments