装 订 线

本试卷适应范围 电信、电气、自 动化二年级

南京农业大学试题纸

2016-2017 学年 I 学期 课程类型: 必修 试卷类型: A

课程号 MATH2605

课程名 复变函数与积分变换

学分____3____

班级____

题号	 1	三	四	五.	总分	签名
得分						

一、选择题(每题2分,共10分)

- 1. $z = -\sqrt{12} 2i$ 的辐角主值 $\arg z = ($).
 - A. $-\frac{5\pi}{6}$ B. $-\frac{2\pi}{3}$
- C. $-\frac{\pi}{\epsilon}$
- D. $-\frac{\pi}{2}$

- 2. 下列复数中,为实数的是(
 - A. $(1-i)^3$ B. $\ln i$
- C. $\cos i$
- D. $e^{1-\frac{\pi}{2}i}$

- 3. 设C是正向圆周|z|=2,则 $\oint_C \overline{z} dz = ($).
 - A. 0

B. $2\pi i$

C. $4\pi i$

- D. $8\pi i$
- 4. 函数 $f(z) = \frac{z}{\tan(z+1)}$ 在点 z=0的泰勒展开式的收敛圆域是(
 - A. $|z| < \frac{\pi}{2} 1$ B. |z| < 1

- C. $|z| < \frac{\pi}{2}$ D. $|z| < \pi 1$
- 5. 设 $F(\omega) = F[f(t)]$ 是f(t)的Fourier变换,则 $F'(\omega) = ($
 - A. $-i\int_{-\infty}^{+\infty}tf(t)e^{-i\omega t} dt$

B. $i \int_{-\infty}^{+\infty} t f(t) e^{-i\omega t} dt$

C. $-\int_{-\infty}^{+\infty} tf(t)e^{-i\omega t} dt$

D. $-i\int_{-\infty}^{+\infty} \frac{f(t)}{t} e^{-i\omega t} dt$

二、填空题(每题2分,共10分)

- 1. $f(z) = z \operatorname{Im} z \operatorname{Re} z$ 的可导点为_____
- 3. 级数 $\sum_{n=0}^{\infty} \left(5 \frac{1}{2^n}\right)^n z^n$ 的收敛半径 R =_______.
- 4. 设 $f(z) = (z+2)e^{\frac{1}{z}}$,则 Res[f(z), 0] = ______.
- 5. Fourier 逆变换 $\mathcal{F}^{-1}[4\pi\delta(\omega)+3]=$ ______.
- 三、计算题(每题6分,共42分)

1	477 十11 22	. (2	:\ _Z	2: 0
Ι.	解方程 e^{2z}	+(2+i)	!)e~+	2i = 0

2. 设
$$z = x + iy$$
, $u(x, y) = x^2 - y^2 - 2y - 1$. 已知 $f(z) = u(x, y) + iv(x, y)$ 是解析函数,且 $f(0) = -1$. 求 $f(z)$.

3. 求函数
$$f(z) = \frac{1}{z(z+1)(z+2)}$$
 在圆环域 $0 < |z| < 1$ 内的洛朗展开式.

4. 计算积分
$$\oint_{|z|=1} \frac{e^{2z}+6}{z^3} dz$$
.

5. 计算积分
$$\oint_{|z|=2} \frac{e^z}{\cos z} dz$$
.

6. 计算积分
$$\oint_{|z|=4} \frac{6z^{13}}{(z^2+5)^3(z^4+1)^2} dz$$
.

7. 利用留数计算积分
$$\int_0^{+\infty} \frac{dx}{x^4 + 16}$$
.

四、综合题(每题8分,共32分)

1. (1) 求
$$f(t) = \begin{cases} 0 & t < 0 \\ e^{-kt} & t \ge 0 \end{cases}$$
 (k 为正实数) 的 Fourier 变换.

(2) 利用 (1) 的结果计算
$$\frac{2}{(3+i\omega)(5+i\omega)}$$
 的 Fourier 逆变换.

2. 己知 $F(\omega) = \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$ 为f(t)的 Fourier 变换,求f(t).

3. 求 $f(t) = t \cos 3t + e^{-2t} \sin 4t$ 的 Laplace 变换 $\mathcal{L}[f(t)]$.

4. 用 Laplace 变换求方程 $y'' + 2y' + y = 9e^{2t}$ 满足初值条件 y(0) = 3, y'(0) = 0 的解.

五、证明题(6分)

计算积分 $\oint_{|z|=1} \frac{e^z}{z} dz$, 并由此证明 $\int_0^{2\pi} e^{\cos\theta} \sin(\sin\theta) d\theta = 0$, $\int_0^{2\pi} e^{\cos\theta} \cos(\sin\theta) d\theta = 2\pi$.