Hacking

Time limit: 1 sec

There are $\bf n$ servers in our university network, numbered 0 to n-1. These servers are connected by $\bf m$ network cables. There are some hacker trying to gain access of our network. The hacker launch a virus that trying to hack $\bf k$ servers immediately. Each server has different defensive system. It takes $\bf c[i]$ seconds for the virus to hack into server $\bf m$. Once infected, the virus will use the server as a base and it will try to hack all neighbor servers. Two servers are neighbor when they have a network cable directly connecting them together.

Your task is to find the earliest time that all servers in the network has been hacked.

Input

- The first line of input contains three integers \mathbf{n} , \mathbf{m} and \mathbf{k} which are the number of servers, the number of network cable, and the number of server being attacked first $(1 \le n \le 10,000; n-1 \le m \le 40,000; k \le n)$
- The next line contains k integers which indicate the server that are being attacked first.
- The next line contains n integers that indicates c[0] to c[n-1]. $(1 \le c[i] \le 1000)$
- The next n-1 line gives information about the cables. Each line contains two
 integer a, b indicating that there is a bidirectional network cable connecting server
 a and b. (0 ≤ a < b < n)

Output

The output must contain exactly n lines. Each line gives the important of each choke point, starting from choke point 0 to n-1.

Example

Input	Output
3 2 1	8
1	
3 5 1	// at 5 secs, server #1 is hacked.
0 1	// at 6 secs, server #2 is hacked via #1
1 2	// at 8 secs, server #0 is hacked via #1

```
4 4 1
                 7
0
2 5 3 1
                 // at 2 secs, server #0 is hacked
                 // at 5 secs, server #2 is hacked via #0
0 1
                 // at 6 secs, server #3 is hacked via #2
0 2
1 3
                 // at 7 secs, server #1 is hacked via #0
2 3
4 3 2
                 6
0 3
4 3 2 1
                 //the earliest time is 6 secs when #1 is
0 1
                 hacked via #2 which is hacked via #3
1 2
2 3
```

Subtask

• 30% of test case has k = 1