

Reading Notes: Inter-Task Association for Cross-Resolution Person Re-Identification

This paper proposes a training regularisation called Inter-Task Association Critic (INTACT) to accelerate the integrated model (Supre-Resolution and Reid) training.

MOTIVATION: The multi-task joint learning framework cascades SR and Reid to address the cross-resolution tasks is dramatically more difficult gradients backpropagation.

METHODOLOGY: Use a dedicated network \phi to represent the intrinsic association between the SR and Reid.

• Part I: Association Learning

$$\mathcal{L}_{\mathrm{intact}} = ||\phi(\boldsymbol{f}_{\mathrm{c}}) - \boldsymbol{f}_{\mathrm{d}}||_{2}^{2}$$

To optimize the parameters of /epi

$$\mathcal{L}_{\mathrm{e}} = ||\sigma(\boldsymbol{f}_{\mathrm{d}}) - \boldsymbol{f}_{\mathrm{e}}||_{2}^{2}$$

 σ is a transform of the target fd

Add an additional bridging constraint to manipulate the optimizing direction

$$\mathcal{L}_{\text{intact-e}} = \mathcal{L}_{\text{intact}} + \mathcal{L}_{\text{e}}$$

The association model /epi and the bridging model σ are jointly learned

• Part II: Association Regularisation

$$\mathcal{L}_{\mathrm{dis}} = ||\phi(\boldsymbol{f}_{\mathrm{c}}') - \boldsymbol{f}_{\mathrm{d}}'||_{2}^{2}$$

 $f_c^{\prime\prime}$ and $f_d^{\prime\prime}$ are the identity and discriminator of the SR model

The association network /epi is fixed to serve as an external critic

Brief summary: Use a model to learn the association between the real identity classification feature and the discriminator feature. After that, fixed the model parameters as a constraint to train the SR model, with the hope that the identity representation from SR could be more like Reid.

EXPERIMENTS

Table 1. Cross-resolution person re-id performance (%). Bold and underlined numbers indicate top two results, respectively.															
Model	MLR-Market-1501			MLR-CUHK03			MLR-VIPeR			MLR-DukeMTMC-reID			CAVIAR		
	Rank1	Rank5	Rank10	Rank1	Rank5	Rank10	Rank1	Rank5	Rank10	Rank1	Rank5	Rank10	Rank1	Rank5	Rank10
CamStyle [51]	74.5	88.6	93.0	69.1	89.6	93.9	34.4	56.8	66.6	64.0	78.1	84.4	32.1	72.3	85.9
FD-GAN [12]	79.6	91.6	93.5	73.4	93.8	97.9	39.1	62.1	72.5	67.5	82.0	85.3	33.5	71.4	86.5
SLD^2L [17]	-	-	-	-	-	-	20.3	44.0	62.0	-	i — i	-	18.4	44.8	61.2
SING [16]	74.4	87.8	91.6	67.7	90.7	94.7	33.5	57.0	66.5	65.2	80.1	84.8	33.5	72.7	89.0
CSR-GAN [40]	76.4	88.5	91.9	71.3	92.1	97.4	37.2	62.3	71.6	67.6	81.4	85.1	34.7	72.5	87.4
JUDEA [25]	-	-	-	26.2	58.0	73.4	26.0	55.1	69.2	-	-	-	22.0	60.1	80.8
SDF [39]	-	-	-	22.2	48.0	64.0	9.3	38.1	52.4	-	-	-	14.3	37.5	62.5
RAIN [7]	-	-	-	78.9	97.3	98.7	42.5	68.3	79.6	-	-	7-1	42.0	77.3	89.6
CAD [26]	83.7	92.7	95.8	82.1	97.4	98.8	43.1	68.2	77.5	75.6	86.7	89.6	42.8	76.2	91.5
INTACT (Ours)	88.1	95.0	96.9	86.4	97.4	98.5	46.2	73.1	81.6	81.2	90.1	92.8	44.0	81.8	93.9

ABLATION STUDY

Table 3. Evaluating INTACT's loss components on MLR-Market-1501. MSE: pixel-wise content loss, ID: identity classification loss (Eq. (3)), Association: our association loss (Eq. (7) & (8)).

Supervision	Rank1	Rank5	Rank10
MSE+ID	83.7	93.0	95.6
MSE+ID+GAN	84.7	93.9	96.1
MSE+ID+GAN+Association	88.1	95.0	96.9

Table 5. Effect of the bridge constraint (Eq. (6)).

Bridge constraint	Rank1	Rank5	Rank10
W/O (Fig. 5 (d))	84.3	93.5	95.8
W (Fig. 5 (c))	88.1	95.0	96.9