Matematisk Analys V.2

Rasmus Thorén March 30, 2023

Derivatan

Defenition: $\frac{d}{dx}f(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$

Deriveringsregler

Potensregeln: $\frac{d}{dx}(x^n) = nx^{n-1}$ Summaregeln: $\frac{d}{dx}(f(x) \pm g(x)) = \frac{d}{dx}(f(x)) \pm \frac{d}{dx}(g(x))$ Produktregeln: $\frac{d}{dx}(f(x)g(x)) = f(x)\frac{d}{dx}(g(x)) + g(x)\frac{d}{dx}(f(x))$ Kvoteregeln: $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)\frac{d}{dx}(f(x)) - f(x)\frac{d}{dx}(g(x))}{[g(x)]^2}$ Kjedjeregeln: $\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$

Om $f \to R$ är deriverbar i x, då är f kontinuerlig i x. Om f är deriverbar i ICD_f , då är f kontinuerlig på I

Bevis Vi vill visa att $\lim_{y\to x} f(y) = f(x)y = \lim_{h\to 0} f(x+h) - f(x) = 0$ Då f är deriverbar i x.

Högre Derivator

Om f'(x) själv är deriverbar i $C \in D_f$, CD_f då kallas derivatan av f'(x) för andra derivatan av f i x, skrivs f"(x). Den n:te derivatan av f skrivs som f^n .

2 Tolkning Av Derivatan

1. Lutning till tangent till funktionsgraf Se ovan

2. Förändringshastighet

Exempel f(t) anger hur långt en bil färdats efter tid t. Då anger f'(t) hastigheten vid t. Medlehastigheten för bilen under $[t_1, t_2]$ ges av $\frac{f(t_2) - f(t_1)}{t_2 - t_1}$

3. Känslighet under föränding

4. Linjär approximation

Kontinuitet av f i $x_0 - > |f(x) - f(x_0)|$ är likt om x är nära x_0 Linjär approximationen av f i $x_0 \in D_f'$ ges av $L(x) = f'(x_0)(x - x_0) + f(x_0)$. Detta är den bästa linjära approximationen vilket bevisas enligt nedan.

$$\lim_{x \to 0} \frac{f(x_0 + h) - (f(x_0))}{h} = f'(x_0)$$

$$\lim_{x \to 0} \frac{f(x_0 + h) - (f(x_0) - (hf'(x_0)))}{h} = 0$$

$$\lim_{x \to 0} \frac{f(x) - (f(x_0) + f'(x_0)) + f'(x_0)(x - x_0)}{x - x_0} = 0$$

Exempel

Använd linäriseringen av $g(x) = \sqrt{x}$ kring x=25 för att approximera $\sqrt{26}$. Vi vet att $g'(x) = \frac{1}{2\sqrt{x}}$ vilket ger oss $g'(25) = \frac{1}{10}, g(25) = 5$.

 $L(x) = \frac{1}{10}(x-25) + 5$. Det approximativa för $g(26) = \sqrt{26} = 5.0990195...$ blir $L(26) = \frac{1}{10} + 5 = 5.1$

Lokala och globala maximum och minimum

DEF: En funktion f har ett **globalt maximum** i $x_0 \in D_f$ om $f(x) <= f(x_0)$ för alla $x_0 \in D_f$. Om $f(x) >= f(x_0)$ för alla $x \in D_F$ sägs f ha ett **globalt minimum** i x.

Def

f sägs ha ett **lokalt maximum** i $x \in D_f$ om det finns en omgivning I till x_0 så att $f(x) = \langle f(x_0)$ för alla $x \in I$. **Lokalt minimum** om istället $f(x) >= f(x_0)$ för $x \in I$

En funktion som har ett loolaklt max/min i x_0 sägs ha en lokal **extrempunkt** i x_0 . Värdet kalls då lokalt **extremvärde**. **Sats**

Låt $f: D_f - > R$ vara deriverbar i x_0 och ha en lokal **extrempunkt** i x_0 . Då är f'(x-0) = 0

 $Vi \ kallar \ x \in D_f \ d\ddot{a}r \ f'(x_0) = 0 \ f\ddot{o}r \ station\ddot{a}ra \ (eller \ kritiska) \ punkter$

 ${\bf Sats}$ Låt $f:D_f->R$ vara deriverbar i x_0 och ha en lokal extrempunkt i $x_0.$ Då är $f'(x_0)=0$ Obs~1

Det omvända av satsen gäller inte. Om x_0 är en stationärpunkt för f så behöver x_0 inte vara en lokal extrempunkt t.ex. x->x

Obs 2: Satsen säger inget om lokala extrempunkter där f ej är deriverbar.

Bevis, Vi visar när x_0 är lokalt max.

Då
$$x_0 \in D_f \to f'(x_0) = \lim_{x \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Då f har ett lokalt max i x_0 . Så gäller det att $\frac{f(x_0+h)-f(x_0)}{h}=0$ om h>0. $\frac{f(x_0+h)-f(x_0)}{h}$ om h<0.

Vilket ger oss $f'(x_0) = 0$.

v.v.s

Medelvärdessatsen

Sats (Derivatans medelsvärdesats)

Låt $f:[a,b]\to R$ vara kontinuerlig och deriverbar på (a,b). Då exister det $p\in(a,b)$ sådan att f'(p)(b-a)=f(b)-f(a).

Sats (Rolles sats)

Om f är som ovan och f(a) = f(b). Då extisterar det $p \in (a, b)$ så att f'(p) = 0.

Sats (Generaliserade Medelvärdessatsen)

Om f, g är kant på [a, b] och deriverbara på (a, b). Då finns det $p \in (a, b)$ så att f'(p)(g(b) - g(a)) = g'(p)(f(b) - f(a))

Primitiva funktioner

Låt $(a,b) \to R$ va ren funktion $F:[a,b] \to R$ sägs vara en primitiv funktion till f på (a,b) om F'=f.

3 Imlicita derivator

Studera kurvor i planet $(x, y) \in R$ som ges av ekvationen på formen F(x, y) = 0Mål givet (x_0, y_0) som uppfuller ekvationen $f(x_0, y_0) = 0$

1) Vi kan hitta en omgivning I till x_0 så atg
t det finns en funktion $y:I\to R$ sådan att $y(x_0)=y_0$ och för all
a $x\in I, F(x,y(x))=0.$

Om detta är faller hittta tangentlinjen till L

Det finns en Sats som säger att om $y \to F(x_o, y)$ är deriverbar i y_0 och $g'(y_0) \neq 0$ så finn funktionen vi sökte i I.

Om vi vet att $y: I \to R$ som i I exister. F(x, y(x)) = 0

Om vi kan lösa ut y'(x) kan nvi hitta tangentlinjen till kurvan genom (x_o, y_0)

Exempel:

Hitta tangentlinje till kurvan genom (0,0) som uppfyller F(x,y) = sin(x+y) - cos(xy) + 1 = 0

- 1) Kontollera att F(0,0) = 0
- 2) $g: y \to F(0, y) = \sin(y), g'(0) = \cos(0) = 1 \neq 0$
- 3) Nu vet vi att $y: I \to R$ deriverbar sådan att f(x, (x)) = 0

$$sin(x + y(x)) - cos(xy(x)) + 1 = 0$$

Derivera

$$cos(x+y(x))(1+y'(x)) + sin(xy(x))(y(x)+xy'(x)) = 0$$

sätt $x_0 = 0, y = 0$ Vilket ger oss
 $1(1+y'(0)) + 0 = 0 \implies y'(0) = -1$
Så tangentlinjen är $y = -x$

Sats(Derivata av invers)

Låt $f.D_f \to V_f$ vara deriverbar och inverterbar. Då är $f^{-1}: V_f \to D_f$ deriverbar i alal punkter $y \in V_f$ sådan att om y = F(x) så är $f'(x) \neq 0$. Och $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$

Bevis

Från defentionen av invers så $x = f^1 - 1(y)$ om och endast om y = f(x)

Vi vill skriva x som en funktion av y. Det vi vet är att $(x, y) \in \mathbb{R}^2$

$$F(x,y)=f(x)-y=0$$
 Om (x_0,y_0) på kurvan

 $g: x \to F(x_0, y_0)$

g'(x)=f'(x) så om $f'(x_0)\neq 0$ finns det en deriverbar funktion $f^-1(y)$ så att $F(f^-1(y),y)=0$ i en omgivning av $y=y_0$

L'Hopitals regler 4

Sats(L'Hopitals första regel)

Låt f,g vara deriverbara funktioner definerade i en punkterad omgivning I till $a \in R$ och $g'(x) \neq 0$ för alla $x \in I$.

$$\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$$
och gränsvärdet $\lim_{x\to a}\frac{f'(x)}{g'(x)}, existerar$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Då gäller det att $\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}$ OBS. Tillåttet att $\frac{f'}{g'}$ har oegntlig gränsvärde

Sats(L'Hospitals andra regel)

Låt f,g vara deriverbara funktioner i en punkterad omgivning till $a \in R$. Sådan

1)
$$g'(x) \neq 0$$
 på I

2)
$$\lim_{x \to a} |g(x)| = \infty$$

3) och
$$\lim_{x\to a} \frac{f'(x)}{g(x)}$$
, existerar

Bevis av regel 1

Vi vill bevisa L'Hôpitals första regel, som säger att om

$$\lim_{x \to a} f(x) = 0 \quad \text{och} \quad \lim_{x \to a} g(x) = 0,$$

så är

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

För att bevisa detta, definiera vi $h(x)=\frac{f(x)}{g(x)}.$ Vi vill visa att $\lim_{x\to a}h(x)=$ $\lim_{x\to a} \frac{f'(x)}{g'(x)}$. Eftersom f och g är differentierbara i a med $g'(a)\neq 0$, så kan vi använda kvotregeln för att få:

$$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} = \frac{f'(x)}{g'(x)} - \frac{f(x)g''(x)}{(g'(x))^2}.$$

Notera att den andra termen i uttrycket ovan innehåller f(x) och g(x), vilket betyder att den går mot 0 när x går mot a eftersom både f(x) och g(x) går mot 0. Därför har vi

$$\lim_{x \to a} h'(x) = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

vilket betyder att

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} h(x) = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

, Vilket var det vi ville visa