Community Detection

Mauro Sozio

Telecom ParisTech

December 13, 2016

1 / 17

Community Detection from Seed Sets

We are interested in accessing or studying a group of people in a social network (algorithmists, data scientists, hikers, . . .) but we know only a few users in the group. We wish to expand this group.

Problem: Given a graph G, a set S of seed nodes, an integer k > 0, find k additional nodes belonging to the "same community" of S.

Community Detection from Seed Sets

Example: Study on *secularists* vs. *islamists* on Twitter [2].

Figure: Retweet network: red nodes indicate islamists, blue nodes indicate secularists. Communities are found starting by a few known islamists/secularists.

Algorithms

Several algorithms based on:

- *local modularity* [3] (different than the one we saw): add the node increasing modularity the most.
- conductance [4]: add the node decreasing conductance the most.
- PageRank . . .

4 / 17

PageRank with Restart: Matrix

Let G=(V,E) (web graph) be a directed graph, with $V=\{v_1,\ldots,v_n\}$. Let $\delta_{\mathrm{in}}(v)$ be the in-degree of v, i.e. $\delta_{in}(v)=|\{u:(u,v)\in E\}|$, while let $\delta_{\mathrm{out}}(v)$ be its out-degree, i.e. $\delta_{out}(v)=|\{u:(v,u)\in E\}|$.

Let M_G (M for short) be a $n \times n$ matrix with entries in [0,1] as follows:

$$M_{ij} = \begin{cases} \frac{1}{\delta_{\text{out}}(v_j)} & \text{if } (v_j, v_i) \in E \\ 0 & \text{if } (v_j, v_i) \notin E \end{cases}, \quad \forall i, j \in [1, n].$$

PageRank with Restart: Matrix

Let $S \subseteq V$ be the *seed* nodes, $\beta \in (0,1)$ (probability to jump). Let $R_{G,S}$ (R for short), be a $n \times n$ matrix with entries in [0,1] defined as follows:

$$R_{ij} = \begin{cases} \frac{1}{|S|} & \text{if } v_i \in S \\ 0 & \text{if } v_i \notin S \end{cases}, \quad \forall i, j \in [1, n].$$

The PageRank matrix A is then: $A_{ij} = \beta M_{ij} + (1 - \beta)R_{ij}$, $i, j \in [1, n]$.

Fact: The Markov chain defined by A might not be ergodic, but there is a unique stationary distribution which can be computed by PageRank.

PageRank with Restart: Algorithm¹

Input: A directed graph G with n nodes (Web pages), $0 < \beta < 1, \epsilon > 0$. **Output:** The PageRank vector r of the web pages in G.

- 1: Remove dead ends iteratively from G;
- 2: Build the stochastic matrix M_G (M for short);
- 3: Let $\pi^{(0)} = [\frac{1}{n}, \dots \frac{1}{n}]^T$
- 4: while (true) do
- 5: t = t + 1;
- 6: $\pi^{(t)} = A\pi^{(t-1)}$;
- 7: If $||\pi^{(t)} \pi^{(t-1)}||_1 < \epsilon$ break;
- 8: return $\pi^{(t)}$.

¹see [1] for efficiency issues

Experimental Evaluation

Study [6] on community detection from seed sets.

Dataset	Nodes	Edges	Communities
DBLP	317080,	1049866,	13477,
	authors	co-authorship	conferences
Amazon	334863,	925872,	151037,
	products	co-purchased	product categories
YouTube	1134890,	2987624,	8385,
	users	friendship	user-defined groups

Figure: Datasets with ground-truth communities.

Experimental Evaluation: Settings

Consider the 600 communities² closest in size to $c_{\text{max}}^{3/4}$.

Fair evaluation as communities have approximately the same size.

Recall=
$$\frac{|P \cap C|}{|C \setminus S|}$$
, where:

- P is the set of nodes found by the algorithm with |P| = k;
- *C* is the ground-truth community we wish to find;
- *S* is the set of seed nodes.

S is chosen to be a randomm subset of C with cardinality $\frac{|C|}{10}$.

 $^{^{2}}c_{\text{max}} = \text{size of the largest community}.$

Experimental Evaluation: Results

Figure: Recall as a function of k. Probability of jump in PR with restart = 0.1 ($\beta = 0.9$). The envelopes represent two standard errors centered about the mean.

Experimental Evaluation: Results

Figure: Recall as a function of k. Probability of jump in PR with restart =0.1 ($\beta=0.9$). The envelopes represent two standard errors centered about the mean.

Experimental Evaluation: Findings

Findings:

- PageRank with restart is simple and efficient and performs best.
- The PR algorithm needs to be iterated for 2-3 steps.

Limitations:

- how large k must be?
- good also with other choices of β , set of communities, datasets?

A Combinatorial Approach: Problem Definition ([7])

Problem Definition: Given a graph $G = (V_G, E_G)$, $S \subseteq V$, $d \in \mathbb{N}$ find an induced subgraph $H = (V_H, E_H)$ of G such that:

- H is connected;
- \circ $S \subseteq V_H$
- **1** the distance between any node in S and $V_H \setminus S$ is at most d;
- the minimum degree of *H* is maximized (among all subgraphs satisfying constraints 1-3).

A Combinatorial Approach: Algorithm ([7])

At each step $t = 1, \ldots, n$:

- let $G_t = (V_t, E_t)$ be the current graph $(G_1 = G)$.
- ② If there is a node violating the distance constraint, remove it.
- lacktriangle Otherwise, remove a node (and all its edges) with min. degree in G_t .

If none of the G_t 's satisfy all the constraints return *unfeasible*. Otherwise, among the subgraphs G_t 's satisfying all the constraints, return the one with maximum minimum degree.

A Combinatorial Approach: Proof

Theorem 1

If there is a feasible solution, the previous algorithm computes an optimum solution otherwise it returns unfeasible.

Proof.

Let $O=(V_O,E_O)$ be an optimum solution (if any) and let $H=(V_H,E_H)$ be the graph returned by the algorithm. Let t be the first step when a node $v\in O$ is deleted from the current graph $(v\in V_t)$. There must be such a step as we remove eventually all nodes. O is a subgraph of G_t , which implies that v satisfies the distance constraint in G_t . Therefore all nodes in G_t satisfy the distance constraint. It follows that:

$$\delta_{\min}(H) = \delta_{\min}(G_t) = \delta_{\min}(O).$$

References I

- Glen Jeh and Jennifer Widom.
 Scaling personalized web search.
 In WWW, pages 271279. ACM, 2003.
- [2] Ingmar Weber, Venkata R Kiran Garimella, and Alaa Batayneh. Secular vs. islamist polarization in egypt on twitter ASONAM pages 290297. ACM, 2013.
- [3] Aaron Clauset.
 Finding local community structure in networks.

 Physical review E, 72(2):026132, 2005.
- [4] Alan Mislove, Bimal Viswanath, Krishna P Gummadi, and Peter Druschel. You are who you know: inferring user profiles in online social networks. In WSDM, pages 251260. ACM, 2010.

References II

- [5] Alan Mislove, Bimal Viswanath, Krishna P Gummadi, and Peter Druschel. You are who you know: inferring user profiles in online social networks. In WSDM, pages 251260. ACM, 2010.
- [6] Kloumann, Isabel M., and Jon M. Kleinberg. Community membership identification from small seed sets. SIGKDD, 2014.
- [7] Sozio, M., and A. Gionis.
 The community-search problem and how to plan a successful cocktail party.
 ACM SIGKDD, 2010.