

CHAPTER 2 ALGORITHM ANALYSIS

Iris Hui-Ru Jiang Fall 2017

Department of Electrical Engineering National Taiwan University

Outline

Content:

- Computational tractability
- Asymptotic order of growth
- Implementing Gale-Shapley algorithm
- Survey on common running times (Self-study)
- Priority queues (Postponed to Section 4.5)

Reading:

Chapter 2

Computational Efficiency

- Q: What is a good algorithm?
- A:
 - Correct: proofs
 - Efficient: run quickly and consume small memory
 - Efficiency ⇔ resource requirement ⇔ complexity

- Q: How do the resource requirements scale with increasing input size?
 - Time: running time
 - Space: memory usage

Running Time

As soon as an Analytical Engine exists, it will necessarily guide the future course of the science.

Whenever any result is sought by its aid, the question will then arise — by what course of calculation can these results be arrived at by the machine

in the shortest time?

how many times do you have to turn the crank?

-- Charles Babbage (1864)

Charles Babbage mathematician, philosopher, inventor, mechanical engineer

Analytical Engine

Difference Engine

Computational Tractability

Defining efficiency

Proposed Definition 1 (1/2)

- Q: How should we turn the fuzzy notion of an "efficient" algorithm into something more concrete?
- A: Proposed definition 1: An algorithm is efficient if, when implemented, it runs quickly on real input instances.
- Q: What's wrong?
- A: Crucial things are missing...
 - Where and how well do we implement an algorithm?
 - Bad algorithms can run quickly with small cases on fast machines.
 - What is a real input instance?
 - We don't know the full range of input instances in practice.
 - How well, or badly, may an algorithm scale as problem sizes grow to unexpected levels.
 - Two algorithms perform comparably on inputs of size 100; multiply the input size tenfold, and one will still run quickly, while the other consumes a huge amount of time.

Proposed Definition 1 (2/2)

- Q: What are we asking for?
- A: A concrete definition of efficiency
 - Platform-independent
 - Instance-independent
 - Of predictive value w.r.t. increasing input sizes
- E.g., the stable matching problem
 - Input size: N = the total size of preference lists
 - *n* men & *n* women: 2*n* lists, each of length *n*
 - $N = 2n^2$
 - Describe an algorithm at a high level
 - Analyze its running time mathematically as a function of N

Proposed Definition 2 (1/2)

- We will focus on the worst-case running time
 - A bound on the largest possible running time the algorithm could have over all inputs of a given size N.
- Q: How about average-case analysis?
 - The performance averaged over random instances
- A: But, how to generate a random input?
 - We don't know the full range of input instances
 - Good on one; poor on another
- Q: On what can we say a running-time bound is good based?
- A: Compare with brute-force search over the solution space
 - Try all possibilities and see if any one of them works.
 - Too slow to be useful
 - Typically takes 2^N time or worse for input size N.
 - Provide no insight into the structure of a problem

Proposed Definition 2 (2/2)

- Proposed definition 2: An algorithm is efficient if it achieves qualitatively better worst-case performance, at an analytical level, than brute-force search.
- Q: What is qualitatively better performance?
- A: We consider the actual running time of algorithms more carefully, and try to quantify what a reasonable running time would be.

Proposed Definition 3 (1/3)

- We expect a good algorithm has a good scaling property.
 - E.g., when the input size doubles, the algorithm should only slow down by some constant factor C.
- Polynomial running time: There exists constants c > 0 and d > 0 so that on every input of size N, its running time is bounded by cN^d primitive computational steps.
 - Proportional to N^d ; the smaller d has a better scalability.
 - The algorithm has a polynomial running time if this running time bound holds for some c and d.
- Q: What is a primitive computational step?
- A: Each step corresponds to...
 - A single assembly-language instruction on a standard processor
 - One line of a standard programming language
 - Simple enough and regardless to input size N

Proposed Definition 3 (2/3)

- Proposed definition 3: An algorithm is efficient if it has a polynomial running time.
- Justification: It really works in practice!
 - In practice, the polynomial-time algorithms that people develop almost always have low constants and low exponents.
 - Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions

- Some polynomial-time algorithms do have high constants and/or exponents, and are useless in practice.
 - Although 6.02×10²³×*N*²⁰ is technically polynomial-time, it would be useless in practice.
- Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.
 - This kind of algorithms may run quickly for average cases.

Proposed Definition 3 (3/3)

- An algorithm is efficient if it has a polynomial running time.
 - It really works in practice.
 - The gulf between the growth rates of polynomial and exponential functions is enormous.

It allow us to ask about the existence or nonexistence of efficient
 algorithms as a well-defined question.

	Polynomial time				Non-polynomial time			
	n	<i>n</i> log₂ <i>n</i>	n ²	n³	1.5 ⁿ	2 ⁿ	n!	
<i>n</i> = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec	
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ yrs	
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 yrs	very long	
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 yrs	10 ¹⁷ yrs	very long	
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long	
<i>n</i> = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long	
<i>n</i> = 100,000	< 1 sec	2 sec	3 hrs	32 yrs	very long	very long	very long	
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 yrs	very long	very long	very long	

Asymptotic Order of Growth

Intrinsic computational tractability O, Ω, Θ

Intrinsic Computational Tractability

- Intrinsic computational tractability: An algorithm's worstcase running time on inputs of size *n* grows at a rate that is at most proportional to some function *f*(*n*).
 - f(n): an upper bound of the running time of the algorithm
- Q: What's wrong with $1.62n^2 + 3.5n + 8$ steps?
- A: We'd like to say it grows like n_{ξ}^2 up to constant factors

Insensitive to constant factors

and low-order terms

- Too detailed
- Meaningless
- Hard to classify its efficiency
- Goal: identify broad classes of algorithms with similar behavior.
 - We'd actually like to classify running times at a coarser level of granularity so that similarities among different algorithms, and among different problems, show up more clearly.

Complexity

$\mathbf{O}, \Omega, \Theta$

- Let *T*(*n*) be a function to describe the worst-case running time of a certain algorithm on an input of size *n*.
- Asymptotic upper bound: T(n) = O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \le cf(n)$.
- Asymptotic lower bound: $T(n) = \Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \ge cf(n)$.
- Asymptotic tight bound: $T(n) = \Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.
 - Also, we can prove: Let f and g be two functions that $\lim_{n\to\infty}\frac{f(n)}{g(n)}$

exists and is equal to some number c > 0. Then $f(n) = \Theta(g(n))$.

n

Example: O, Ω, Θ

- Q: $T(n) = 1.62n^2 + 3.5n + 8$, true or false?
 - 1. T(n) = O(n)
 - 2. $T(n) = O(n^2)$
 - 3. $T(n) = O(n^3)$
 - 4. $T(n) = \Omega(n)$
 - 5. $T(n) = \Omega(n^2)$
 - 6. $T(n) = \Omega(n^3)$
 - 7. $T(n) = \Theta(n)$
 - 8. $T(n) = \Theta(n^2)$
 - 9. $T(n) = \Theta(n^3)$
- A:

In practice, we expect an O(.) as tight as possible because we seek an intrinsic running time.

Abuse of Notation

- Q: Why using equality in T(n) = O(f(n))?
 - Asymmetric:
 - $f(n) = 5n^3$; $g(n) = 3n^2$
 - $f(n) = O(n^3) = g(n)$
 - but $f(n) \neq g(n)$.
 - Better notation: $T(n) \in O(f(n))$
 - lacktriangleq O(f(n)) forms a set
- Cf. "Is" in English
 - Aristotle is a man, but a man isn't necessarily Aristotle.

Properties

- Transitivity:
 - If $f(n) = \Pi(g(n))$ and $g(n) = \Pi(h(n))$, then $f(n) = \Pi(h(n))$, where $\Pi = O$, Ω , or Θ .
- Rule of sums:
 - $f(n) + g(n) = \Pi(\max\{f(n), g(n)\}), \text{ where } \Pi = O, \Omega, \text{ or } \Theta.$
- Rule of products:
 - If $f_1(n) = \Pi(g_1(n))$ and $f_2(n) = \Pi(g_2(n))$, then $f_1(n)f_2(n) = \Pi(g_1(n)g_2(n))$, where $\Pi = O$, Ω , or Θ.
- Transpose symmetry:
 - $f(n) = O(g(n)) \text{ iff } g(n) = \Omega(f(n)).$
- Reflexivity:
 - $f(n) = \Pi(f(n)), \text{ where } \Pi = O, \Omega, \text{ or } \Theta.$
- Symmetry:
 - $f(n) = \Theta(g(n)) \text{ iff } g(n) = \Theta(f(n)).$

Summary: Polynomial-Time Complexity

Complexity

- Polynomial running time: O(p(n))
 - p(n) is a polynomial function of input size $n(p(n) = n^{O(1)})$
 - a.k.a. polynomial-time complexity

Implementing Gale-Shapley Algorithm

Arrays and lists

Recap: Gale-Shapley Algorithm

Correctness:

- $O(n^2)$?
- Termination: G-S terminates after at most n^2 iterations.
- Perfection: Everyone gets married.
- Stability: The marriages are stable.
- Male-optimal and female-pessimal
- All executions yield the same matching

Gale-Shapley

- 1. initialize each person to be free
- 2. **while** (some man *m* is free and hasn't proposed to every woman) **do**
- 3. w = highest ranked woman in m's list to whom m has not yet proposed
- 4. **if** (w is free) **then**
- 5. (*m*, *w*) become engaged
- 6. **else if** (*w* prefers *m* to her fiancé *m*') **then**
- 7. (m, w) become engaged
- 8. m' become free
- 9. **return** the set S of engaged pairs

What to Do?

- Goal: Each iteration takes O(1) time and then $O(n^2)$ in total.
 - Line 2: Identify a free man.
 - Line 3: For a man m, identify the highest ranked woman whom he hasn't yet proposed.
 - Line 4: For a woman w, decide if w is currently engaged, and if so, identify her current partner.
 - Line 6: For a woman w and two men m and m', decide which of m and m' is preferred by w.

Gale-Shapley

- 1. initialize each person to be free
- 2. **while** (some man *m* is free and hasn't proposed to every woman) **do**
- 3. w = highest ranked woman in m' s list to whom m has not yet proposed
- 4. **if** (w is free) **then**
- (m, w) become engaged
- 6. **else if** (*w* prefers *m* to her fiancé *m'*) **then**
- 7. (m, w) become engaged
- 8. m' become free
- 9. return the set S of engaged pairs

Representing Men and Women

- Q: How to represent men and women?
- A: Assume the set of men and women are both {1, ..., n}.
 - Record in two arrays

Clare

Xavier

• Q: How to store men's preference lists?

Yancey

A: Record in an nxn array or (n arrays, each of length n)

Zeus

3

Identifying a Free Man

- Q: Line 2: How to identify a free man in O(1) time?
- A:
 - Since the set of free men is dynamic, a static array is not good for insertion/deletion.
 - How about a linked list? It can be accessed in O(1) time and allows various sizes.
 - Read/insert/delete from first

Complexity

Whom to Propose?

- Q: Line 3: For a man m, how to identify the highest ranked woman whom he hasn't yet proposed in O(1) time?
- A:
 - An extra array Next[] indicates for each man m the position of the next woman he will propose to on his list.
 - m will propose to w = ManPref[m, Next[m]]
 - Next[m]++ after proposal, regardless of rejection/acceptance

Identifying Her Fiancé

 Q: Line 4: For a woman w, how to decide if w is currently engaged? If so, how to identify her current fiancé in O(1) time?

• A:

- An array Current[] of length n.
 - w's current fiancé = Current[w]
 - Initially, Current[w] = 0 (unmatched)
 Initial value
 In progress

ID	Men	ID	Women	Current	Current	W	WomanPref[,]		
1	Xavier	1	Amy	0	1	2	1	3	
2	Yancey	2	Bertha	0	3	1	2	3	
3	Zeus	3	Clare	0	0	1	2	3	

Women's Preferences (1/2)

- Q: Line 6: For a woman w and two men m and m', how to decide w prefers m or m' in O(1)?
- A:
 - An array WomanPref[w, i] is analogous to ManPref[m, i]
- Q: Does it work? Why?
- A:
 - No. Scan WomanPref[,] to extract the rank in O(n) time
 - When man 1 proposes to woman 1 ...

Complexity

Women's Preferences (2/2)

- Q: Can we do better?
- A: Yes.
 - Create an nxn array Ranking[,] at the beginning.
 - Ranking[w, m] = the rank of m is w's preference list (inverse list)
 - When man 1 proposes to woman 1, compare them in O(1) time.
 - Construct Ranking[,] while parsing inputs in $O(n^2)$ time.

for (
$$i$$
=1 to n) **do** Ranking[WomanPref[w , i]] = i

ID	Women	Current		WomanPref[,]							
1	Amy	6	3	1	4	5	6	2			
			1 st	2 nd	3 rd	4 th	5 th	6 th			
				Ranking[,]							
			2	6	1	3	4	5			
28		Men	1	2	3	4	5	6			

What Did We Learn?

- The meaning of efficiency
 - Efficiency ⇔ polynomial-time complexity
- The analysis of an algorithm
 - We try to figure out the intrinsic running time before implementing.
 - Data structures play an important role; if necessary, preprocess the data into a proper form.

Running Times Comparison

 Q: Arrange the following list of functions in ascending order of growth rate.

```
- f_1(n) = n^{1/3}

- f_2(n) = \lg n (\lg = \log_2)

- f_3(n) = 2^{\sqrt{\lg n}}
```

- A: Convert them into a common form:
 - Take logarithm!
 - Let $z = \lg n$
 - $\lg f_1(n) = \lg n^{1/3} = (1/3) \log n = (1/3)z$
 - $\lg f_2(n) = \lg (\lg n) = \lg z$
 - $\lg f_3(n) = \lg (2^{\sqrt{\lg n}}) = \sqrt{\lg n} = \sqrt{z}$
 - DIY the rest! (see Solved Exercise 1)