

# $\mu$ A759 • $\mu$ A77000 Power Operational Amplifiers

Linear Division Operational Amplifiers

Description

The  $\mu$ A759 and  $\mu$ A77000 are high performance monolithic operational amplifiers constructed using the Fairchild Planar Epitaxial process. The  $\mu$ A759 provides 325 mA and the  $\mu$ A77000 provides 250 mA output current and feature small signal characteristics better than the  $\mu$ A741. The amplifiers are designed to operate from a single or dual power supply with the input common mode range including the negative supply. The high gain and high output power provide superior performance whenever an operational amplifier is needed. The  $\mu$ A759 and  $\mu$ A77000 employ internal current limiting, thermal shutdown, and safe-area compensation making them essentially indestructible. These amplifiers are intended for a wide range of applications including voltage regulators, audio amplifiers, servo amplifiers, and power drivers.

Output Current

 $\mu$ A759 — 325 mA Minimum  $\mu$ A77000 — 250 mA Minimum

- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- Internal Output Transistors Safe-Area Protection
- Input Common Mode Voltage Range Includes Ground Or Negative Supply

#### **Absolute Maximum Ratings**

| Storage Temperature Range            |        |           |
|--------------------------------------|--------|-----------|
| Metal Can                            | -65°C  | to +175°C |
| Power Watt                           | -65°C  | to +150°C |
| Operating Junction Temperature Range |        |           |
| Extended (uA759M)                    | -55 to | ±150°C    |

Extended ( $\mu$ A759M) -55 to +150°C Commercial ( $\mu$ A759C,  $\mu$ A77000C) 0°C to +125°C

Lead Temperature

Metal Can (soldering, 60 s) 300°C
Power Watt (soldering, 10 s) 265°C
Internal Power Dissipation Internally Limited

Supply Voltage ± 18 V
Differential Input Voltage 30 V
Input Voltage<sup>2</sup> ± 15 V

#### Notes

- Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, use the thermal resistance values which follow the Electrical Characteristics Table.
- For a supply voltage less than 30 V between V+ and V-, the absolute maximum input voltage is equal to the supply voltage.

Connection Diagram 8-Lead Metal Package (Top View)



Lead 4 connected to case.

Order Information

 Device Code
 Package Code
 Package Description

 μΑ759HM
 5W
 Metal

 μΑ759HC
 5W
 Metal

Connection Diagram TO-202 Package (Top View)



# Order Information

| Device Code | Package Code | Package Description |
|-------------|--------------|---------------------|
| μΑ759U1C    | 8Z           | Power Watt          |
| μΑ77000U1C  | 8Z           | Power Watt          |

# **Equivalent Circuit**



All resistor values in ohms.

μA759 Electrical Characteristics  $T_J = 25$ °C,  $V_{CC} = \pm 15$  V, unless otherwise specified.

| Symbol          | Characteristic                |                          | Condition                                               | Min          | Тур           | Max      | Unit |
|-----------------|-------------------------------|--------------------------|---------------------------------------------------------|--------------|---------------|----------|------|
| V <sub>IO</sub> | Input Offset Voltage          |                          | $R_S \leq 10 \text{ k}\Omega$                           |              | 1.0           | 3.0      | mV   |
| I <sub>IO</sub> | Input Offset Current          |                          |                                                         |              | 5.0           | 30       | nA   |
| I <sub>IB</sub> | Input Bias Current            |                          |                                                         |              | 50            | 150      | nA   |
| Z <sub>I</sub>  | Input Impedance               |                          |                                                         | 0.25         | 1.5           |          | мΩ   |
| lcc             | Supply Current                |                          |                                                         |              | 12            | 18       | mA   |
| V <sub>IR</sub> | Input Voltage Range           |                          |                                                         | +13<br>to V- | + 13<br>to V- |          | ٧    |
| los             | Output Short Circuit Curre    | ent                      | V <sub>CC</sub> - V <sub>O</sub>   = 30 V               |              | ± 200         | -        | mA   |
| IO PEAK         | Peak Output Current           |                          | $3.0 \text{ V} \leq  V_{CC} - V_{O}  \leq 10 \text{ V}$ | ± 325        | ± 500         |          | mA   |
| A <sub>VS</sub> | Large Signal Voltage Gain     |                          | $R_L \geqslant 50 \Omega$ , $V_O = \pm 10 V$            | 50           | 200           |          | V/mV |
| TR              | Transient Response            | Rise time                | $R_L = 50 \ \Omega, \ A_V = 1.0$                        |              | 300           |          | ns   |
|                 |                               | Overshoot                |                                                         |              | 5.0           |          | %    |
| SR              | Slew Rate                     |                          | $R_L = 50 \ \Omega, \ A_V = 1.0$                        |              | 0.6           |          | V/μs |
| BW              | Bandwidth                     |                          | A <sub>V</sub> = 1.0                                    |              | 1.0           |          | MHz  |
| The follow      | wing specifications apply for | -55°C ≤ T <sub>J</sub> ≤ | ≤ + 150°C                                               |              |               | <u>_</u> |      |
| V <sub>IO</sub> | Input Offset Voltage          |                          | $R_S \leq 10 \text{ k}\Omega$                           |              |               | 4.5      | mV   |
| l <sub>IO</sub> | Input Offset Current          |                          |                                                         |              |               | 60       | nA   |
| I <sub>IB</sub> | Input Bias Current            |                          |                                                         |              |               | 300      | nA   |
| CMR             | Common Mode Rejection         |                          | $R_S \leq 10 \text{ k}\Omega$                           | 80           | 100           |          | dB   |
| PSRR            | Power Supply Rejection Ratio  |                          | $R_S \leq 10 \text{ k}\Omega$                           | 80           | 100           |          | dB   |
| A <sub>VS</sub> | Large Signal Voltage Gain     |                          | $R_L \geqslant 50 \Omega$ , $V_O = \pm 10 V$            | 25           | 200           |          | V/mV |
| V <sub>OP</sub> | Output Voltage Swing          |                          | $R_L = 50 \Omega$                                       | ± 10         | ± 12.5        |          |      |

# **μΑ759 • μΑ77000**

 $\mu$ A759C Electrical Characteristics T<sub>J</sub> = 25°C, V<sub>CC</sub> =  $\pm$  15 V, unless otherwise specified.

| Symbol          | Characteristic               |                             | Condition                                           | Min          | Тур          | Max | Unit |
|-----------------|------------------------------|-----------------------------|-----------------------------------------------------|--------------|--------------|-----|------|
| V <sub>IO</sub> | Input Offset Voltage         |                             | R <sub>S</sub> ≤ 10 kΩ                              |              | 1.0          | 6.0 | mV   |
| I <sub>IO</sub> | Input Offset Current         |                             |                                                     |              | 5.0          | 50  | nA   |
| I <sub>IB</sub> | Input Bias Current           |                             |                                                     |              | 50           | 250 | nA   |
| Zı              | Input Impedance              |                             |                                                     | 0.25         | 1.5          |     | МΩ   |
| lcc             | Supply Current               |                             |                                                     |              | 12           | 18  | mA   |
| V <sub>IR</sub> | Input Voltage Range          |                             |                                                     | +13<br>to V- | +13<br>to V- |     | ٧    |
| los             | Output Short Circuit Current |                             | V <sub>CC</sub> - V <sub>O</sub>   = 30 V           |              | ± 200        |     | mA   |
| O PEAK          | Peak Output Current          |                             | 3.0 V ≤   V <sub>CC</sub> - V <sub>O</sub>   ≤ 10 V | ± 325        | ± 500        |     | mA   |
| A <sub>VS</sub> | Large Signal Voltage Gain    |                             | $R_L \geqslant 50 \Omega$ , $V_O = \pm 10 V$        | 25           | 200          |     | V/mV |
| TR              | Transient Response           | Rise time                   | $R_L = 50 \ \Omega, \ A_V = 1.0$                    | ï            | 300          |     | ns   |
|                 |                              | Overshoot                   |                                                     |              | 10           |     | %    |
| SR              | Slew Rate                    |                             | $R_L = 50 \ \Omega, \ A_V = 1.0$                    |              | 0.5          |     | V/μs |
| BW              | Bandwidth                    |                             | A <sub>V</sub> = 1.0                                |              | 1.0          |     | MHz  |
| The follow      | wing specifications apply fo | r 0° ≤ T <sub>J</sub> ≤ + 1 | 25°C                                                |              |              |     |      |
| V <sub>IO</sub> | Input Offset Voltage         |                             | R <sub>S</sub> ≤10 kΩ                               |              |              | 7.5 | mV   |
| I <sub>IO</sub> | Input Offset Current         |                             |                                                     |              |              | 100 | nA   |
| I <sub>iB</sub> | Input Bias Current           |                             |                                                     |              |              | 400 | пА   |
| CMR             | Common Mode Rejection        |                             | R <sub>S</sub> ≤ 10 kΩ                              | 70           | 100          |     | dB   |
| PSRR            | Power Supply Rejection Ratio |                             | R <sub>S</sub> ≤ 10 kΩ                              | 80           | 100          |     | dB   |
| A <sub>VS</sub> | Large Signal Voltage Gain    |                             | $R_L \geqslant 50 \Omega$ , $V_O = \pm 10 V$        | 25           | 200          |     | V/mV |
| V <sub>OP</sub> | Output Voltage Swing         | Output Voltage Swing        |                                                     | ± 10         | ± 12.5       |     | ٧    |

# **μΑ759 • μΑ77000**

 $\mu$ A77000 Electrical Characteristics T<sub>J</sub> = 25°C, V<sub>CC</sub> =  $\pm$  15 V, unless otherwise specified.

| Symbol          | Characteristic                |                             | Condition                                          | Min          | Тур          | Max | Unit |
|-----------------|-------------------------------|-----------------------------|----------------------------------------------------|--------------|--------------|-----|------|
| $V_{IO}$        | Input Offset Voltage          |                             | $R_S \leq 10 \text{ k}\Omega$                      |              | 1.0          | 8.0 | mV   |
| l <sub>iO</sub> | Input Offset Current          | Input Offset Current        |                                                    |              | 5.0          | 50  | nA   |
| I <sub>IB</sub> | Input Bias Current            |                             |                                                    |              | 50           | 250 | nA   |
| Zı              | Input Impedance               |                             |                                                    | 0.25         | 1.5          |     | ΩМ   |
| lcc             | Supply Current                |                             |                                                    |              | 12           | 18  | mA   |
| V <sub>IR</sub> | Input Voltage Range           |                             |                                                    | +13<br>to V- | +13<br>to V- |     | ٧    |
| los             | Output Short Circuit Current  |                             | V <sub>CC</sub> - V <sub>O</sub>   = 30 V          |              | ± 200        |     | mA   |
| O PEAK          | Peak Output Current           |                             | 3.0 V ≤  V <sub>CC</sub> - V <sub>O</sub>   ≤ 10 V | ± 250        | ± 400        |     | mA   |
| A <sub>VS</sub> | Large Signal Voltage Gain     |                             | $R_L \geqslant 50 \Omega$ , $V_O = \pm 10 V$       | 25           | 200          |     | V/mV |
| TR              | Transient Response            | Rise time                   | $R_L = 50 \ \Omega, \ A_V = 1.0$                   |              | 300          |     | ns   |
|                 |                               | Overshoot                   |                                                    |              | 10           |     | %    |
| SR              | Slew Rate                     |                             | $R_L = 50 \ \Omega, \ A_V = 1.0$                   |              | 0.5          |     | V/µs |
| BW              | Bandwidth                     |                             | A <sub>V</sub> = 1.0                               |              | 1.0          |     | MHz  |
| The follow      | wing specifications apply for | . 0° ≤ L <sup>1</sup> ≤ + 1 | 25°C                                               |              |              |     |      |
| V <sub>IO</sub> | input Offset Voltage          |                             | R <sub>S</sub> ≤ 10 kΩ                             |              |              | 10  | mV   |
| 110             | Input Offset Current          |                             |                                                    |              |              | 100 | nA   |
| I <sub>IB</sub> | Input Bias Current            |                             |                                                    |              |              | 400 | nA   |
| CMR             | Common Mode Rejection         |                             | R <sub>S</sub> ≤ 10 kΩ                             | 70           | 100          |     | dB   |
| PSRR            | Power Supply Rejection Ratio  |                             | R <sub>S</sub> ≤ 10 kΩ                             | 80           | 100          |     | dB   |
| A <sub>VS</sub> | Large Signal Voltage Gain     |                             | $R_L \ge 50 \Omega$ , $V_O = \pm 10 V$             | 25           | 200          |     | V/mV |
| V <sub>OP</sub> | Output Voltage Swing          |                             | $R_L = 50 \Omega$                                  | ± 10         | ± 12.5       |     | V    |

| Package         | Тур                     | Max                     | Тур                     | Max                     |
|-----------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                 | θ <sub>JC</sub><br>°C/W | θ <sub>JC</sub><br>°C/W | θ <sub>JA</sub><br>°C/W | θ <sub>JA</sub><br>°C/W |
| Power Watt (U1) | 8.0                     | 12                      | 75                      | 80                      |
| Metal Can (H)   | 30                      | 40                      | 120                     | 150                     |

$$\begin{split} P_{D\,\text{Max}} &= \frac{T_{J\,\,\text{Max}} - T_{A}}{\theta_{J\text{C}} + \theta_{C\text{A}}} \text{ or} \\ &= \frac{T_{J\,\,\text{Max}} - T_{A}}{\theta_{J\text{A}}} \text{ (Without a heat sink)} \\ \theta_{C\text{A}} &= \theta_{C\text{S}} + \theta_{S\text{A}} \end{split}$$

Solving 
$$T_J$$
: 
$$\begin{split} T_J &= T_A + P_D(\theta_{JC} + \theta_{CA}) \text{ or } \\ &= T_A + P_D\theta_{JA} \text{ (Without a heat sink)} \end{split}$$

#### Where:

T<sub>J</sub> = Junction TemperatureT<sub>A</sub> = Ambient TemperatureP<sub>D</sub> = Power Dissipation

 $\theta_{\mathsf{JA}}$  = Junction to ambient thermal resistance

 $\theta_{\rm JC}$  = Junction to case thermal resistance  $\theta_{\rm CA}$  = Case to ambient thermal resistance

 $\theta_{\rm CS}$  = Case to heat sink thermal resistance

 $\theta_{SA}$  = Heat sink to ambient thermal resistance

#### **Mounting Hints**

#### Metal Can Package (µA759HC/µA759HM)

The  $\mu$ A759 in the 8-Lead TO-99 metal can package must be used with a heat sink. With  $\pm$  15 V power supplies, the  $\mu$ A759 can dissipate up to 540 mW in its quiescent (no load) state. This would result in a 100°C rise in chip temperature to 125°C (assuming a 25°C ambient temperature). In order to avoid this problem, it is advisable to use either a slip on or stud mount heat sink with this package. If a stud mount heat sink is used, it may be necessary to use insulating washers between the stud and the chassis because the case of the  $\mu$ A759 is internally connected to the negative power supply terminal.

#### Power Watt Package (µA759U1C/µA77000U1C)

The  $\mu$ A759U1C and  $\mu$ A7700U1C are designed to be attached by the tab to a heat sink. This heat sink can be either one of the many heat sinks which are commercially available, a piece of metal such as the equipment chassis, or a suitable amount of copper foil as on a double sided PC board. The important thing to remember is that the negative power supply connection to the op amp must be made through the tab. Furthermore, adequate heat sinking must be provided to keep the chip temperature below 125°C under worst case load and ambient temperature conditions.

## **Typical Performance Curves**

# Frequency Response For Various Closed Loop Gains



#### Open Loop vs Frequency Response



#### **Output Voltage vs Frequency**



PC02491F

# μΑ759 • μΑ77000

### Typical Performance Curves (Cont.)

#### Output Voltage vs Load Resistance



#### Voltage Follower Large Signal Pulse Response



Voltage Follower Transient Response



Total Harmonic Distortion vs Frequency



Total Harmonic Distortion vs **Power Output** 



Input Noise Voltage vs Frequency



Noise Current vs Frequency



Short Circuit Current vs **Junction Temperature** 



Peak Output Current vs Output Voltage



PC02580F

# Offset Null Circuit



# **Audio Applications**

# Low Cost Phono Amplifier



# Paralleling $\mu$ A759 Power Op Amps



| Speaker<br>Impedance<br>(ohms) | Output<br>Power<br>(watts) | Min<br>Supply<br>(volts) | V <sub>Op-p</sub><br>(volts) |
|--------------------------------|----------------------------|--------------------------|------------------------------|
| 4                              | .18                        | 9                        | 2.4                          |
| 8                              | .36                        | 12                       | 4.8                          |
| 16                             | .72                        | 15                       | 9.6                          |
| 32                             | 1.44                       | 25                       | 19.2                         |

### Headphone Amplifier



#### Note

All resistor values in ohms.

# Bi-Directional Intercom System Using the $\mu A759$ Power Op Amp



Features

Circuit Simplicity

1 Watt of Audio Output

Duplex operation with only one two-wire cable as interconnect.

#### Note

1. All resistor values in ohms.

### High Slew Rate Power OP Amp/Audio Amp



Features High Slew Rate 9 V/ $\mu$ s High 3 dB Power Bandwidth 85 kHz 18 Watts Output Power Into an 8  $\Omega$  Load. Low Distortion — .2%, 10 VRMS, 1 kHz Into 8  $\Omega$ 

Design Consideration  $A_V \ge 10$ 

# Servo Applications

### DC Servo Amplifiers



Features Circuit Simplicity One Chip Means Excellent Reliability

Design Considerations  $I_O \le 325$  mA Note 1. All resistor values in ohms.

## AG Servo Amplifier - Bridge Type



Features Gain of 10 Use of  $\mu$ A759 Means Simple Inexpensive Circuit

Design Considerations 325 mA Max Output Current

# **Regulator Applications**

### Adjustable Dual Tracking Regulator



#### Features

Wide Output Voltage Range ( $\pm$  2.2 to  $\pm$  30 V) Excellent Load Regulation  $\Delta$ V $_{O}$  <  $\pm$  5 mV for  $\Delta$ I $_{O}$  =  $\pm$  0.2 A

Excellent Line Regulation  $\Delta V_0 < \pm 2$  mV for  $\Delta V_1 = 10$  V

#### Note

All resistor values in ohms.

# Regulator Applications (Cont.)

# 10 Amp - 12 Volt Regulator



### Features

Excellent Load and Line Regulation Excellent Temperature Coefficient-Depends Largely on Tempco of the Reference Zener

#### Note

1. All resistor values in ohms.