Ponto Flutuante

1980 com pesquisa de William Kahan, a Intel lançou uma solução para tratar números em ponto flutuante (proc matematico 8087)

Seguindo a mesma linha de estudo o IEEE em 1985, lançou um documento que serviria de referência para padronizar o tratamento destes números

A solução proposta passa pela normalização dos números, seguindo o padrão:

Exemplo1:

$$5,25_{(10)} = 101,01_{(2)}$$

5 (vai pelas divisões sucessivas)

0,25 (vai pelas multiplicações sucessivas)

$$0.25 * 2 = 0.50 * 2 = 1.00 (01)$$

Normalizado, fica

1,0101₍₂₎ x 2² (trouxe duas casas para a esquerda, entao aumenta o expoente)

Exemplo2:

$$0.375_{(10)} = 0.011_{(2)}$$

0,375 (vai pelas multiplicações sucessivas)

$$0.375 * 2 = 0.75 * 2 = 1.50$$
 (despreza o 1) * 2 = 1.00 (011)

Normalizado, fica

 $1,1_{(2)}$ x 2^{-2} (trouxe duas casas para a direita, entao diminui o expoente) (explicar de onde veio o 2^{-2})

Convertendo binario com vírgulas para decimal

Vimos que a parte inteira se obtem por: digito x base posicao , como o expoente é negativa, causa o efeito da divisão, ou seja, 2^{-1} , é igual a $\frac{1}{2}$, ou seja 0,5

4	2	1	0,5	0,25	0,125	0,0625	0,03125
2 ²	2 ¹	2 ⁰	2-1	2-2	2-3	2-4	2-5

Assim sendo, 0,0011 ficaria

0,125 + 0,0625 = 0,1875

Deste modo, 0,2 ficaria melhor representado por $0,00110011 \times 2^0 = 1,10011 \times 2^{-3} = 0,19921875$

O Padrão IEEE 754, tem a seguinte definição

- 1) Converter em binario
- 2) Normalizar o numero
- 3) Falaremos da precisão simples (32) e dupla (64)
- 4) Notar que um digito é suprimido devido a padrão

Sinal	E + BIAS Caracteristica	M ₁ M ₂ M ₃ Significando ou Mantissa
0:1	E . DIAO	

BIAS = representação de excesso (viés = tendência)

Para precisão simples (32 bits)

No exemplo2:

$$+0.375 = +1.1_{2} \cdot 2^{-2}$$

E + 127 = 125 = 111 1101₂

0 0111 1101 100 0000 0000 0000 0000 0000

No exemplo1:

$$-5,25 = -1,0101_2 \cdot 2^2$$

E + 127 = 129 = 1000 0001₂

Exemplo (precisão simples)

Valor

float F = 15213.0;

$$15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$$

Mantissa

Expoente

Para precisão Dupla (64 bits)

$$\pm 1$$
, $m_1 m_2 \dots m_{52} \cdot 2^E$

1 bit	11 bits	52 bits
SINAL	E+1023	m ₁ m ₂ m ₅₂

Exemplo (precisão dupla)

Valor

double D =
$$178.125 = 128+32+16+2 + 0.125$$
;
 $178.125_{10} = 10110010.001_2$
 $1.78125_{10} = 1.0110010001_2$ X 27

Mantissa

Expoente

0 10000000110 0110010001000...0000 S exp (11) frac (52)

IEEE 754: Precisões de Ponto Flutuante

s exp frac

Tamanhos

- -float: exp = 8 bits, frac = 23 bits, s = 1 bit
 - · Total: 32 bits
 - Faixa de valores: 2-126 até 2127
- -double: exp =11 bits, frac = 52 bits, s = 1 bit
 - · Total: 64 bits
 - Faixa de valores: 2-1022 até 21023
- -Precisão estendida: exp =15 bits, frac = 63 bits,s = 1 bit
 - · Total: 80 bits
 - Faixa de valores: 2-16382 até 216383
 - 1 bit é desperdiçado

Resumão do IEEE 754

• Parâmetros do formato IEEE 754

Parâmetro	Formato Simples	Formato Duplo
Tamanho da palavra	32	64
Tamanho do expoente	8	11
Polarização do expoente	127	1023
Expoente máximo	127	1023
Expoente mínimo	-126	-1022
Tamanho da mantissa	23	52
Número de expoentes	254	2046
Número de mantissas	2 ²³	2 ⁵²
Número de valores	1,98 x 2 ³¹	1,99 x 2 ⁶³

Valores especiais definidos no IEEE 754

	Expoente Polarizado				
Sinal	Formato Simples	Formato Duplo	Mantissa	Valor	
0	0	0	0	0	
1	0	0	0	-0	
0	255	2047	0	∞	
1	255	2047	0	-∞	
0 ou 1	255	2047	≠ 0	NaN	