

Anindita Septiarini

- Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.
- Representasi visual dari graf adalah dengan menyatakan objek sebagai noktah/bulatan/titik, sedangkan hubungan antara objek dinyatakan dengan garis.

- Secara matematis graf didefinisikan sebagai berikut :
 Suatu graf G(V,E) adalah suatu pasangan himpunan V(v₁,v₂, ..., v_n) dan himpunan E(e₁, e₂, ..., e_n) dimana :
 - ✓ V : himpunan vertek dan digambarkan sebagai *titik*.
 - \checkmark E : himpunan sisi (edge) yang elemennya $e_i = (v_j, v_k)$ disebut sisi dan digambarkan sebagai *garis*.
 - Dan dikatakan sisi e_i bertumpu (incident) pada v_j dan v_k.

Contoh

G₁ adalah graf dengan

$$V = \{ 1, 2, 3, 4 \}$$

 $E = \{ (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) \}$

 G_2

G₂ adalah graf dengan

$$V = \{ 1, 2, 3, 4 \}$$

$$E = \{ (1, 2), (2, 3), (1, 3), (1, 3), (2, 4), (3, 4), (3, 4) \}$$

$$= \{ e_1, e_2, e_3, e_4, e_5, e_6, e_7 \}$$

Contoh

Pada G_2 , sisi $e_3 = (1, 3)$ dan sisi $e_4 = (1, 3)$ dinamakan sisi-ganda (*multiple edges*) atau *paralel edges*) karena kedua sisi ini menghubungkan dua buah simpul yang sama, yaitu simpul 1 dan simpul 3.

Jenis-Jenis Graf

1. Graf sederhana (simple graph)

Graf yang tidak mengandung **gelang** atau **sisi-ganda**

2. Graf tak-sederhana (unsimple-graph)

Graf yang mengandung **sisi ganda** atau **gelang** dinamakan graf taksederhana (*unsimple graph*)

Jenis-Jenis Graf

3. Graf tak-berarah (undirected graph)

Graf yang sisinya tidak mempunyai orientasi arah disebut graf tak-berarah.

Jenis-Jenis Graf

4. Graf berarah (directed graph atau digraph)

Graf yang setiap sisinya diberikan orientasi arah dan tidak memiliki sisi ganda.

Graf berarah

Graf-ganda berarah

Berdasarkan orientasi arah pada sisi, maka secara umum graf dibedakan atas 2 jenis :

Graf Tidak Berarah (undirect graph)
 Suatu graf yang mana setiap sisinya tidak mempunyai arah, dengan kata lain sisi (v_i,v_k) = sisi (v_k,v_i).

Contoh:


```
•G = (V,E)

•V = {A,B,C,D,E}

•E = (e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub>, e<sub>4</sub>, e<sub>5</sub>, e<sub>6</sub>,e<sub>7</sub>, e<sub>8</sub>, e<sub>9</sub>, e<sub>10</sub>) = {(B,C), (C,C), (B,B), (A,B), (A,A), (A,D), (D,E), (D,D), (B,E), (E,E)}

•e<sub>1</sub> = (B,C) = (C,B)

•e<sub>4</sub> = (A,B) = (B,A)

•e<sub>6</sub> = (A,D) = (D,A)

•e<sub>7</sub> = (D,E) = (E,D)

•e<sub>9</sub> = (B,E) = (B,E)
```


Graf Berarah (*direct graph*)

Suatu graf yang mana semua sisi pada graf tersebut mempunyai arah tertentu dengan kata lain sisi $(v_i, v_k) \neq sisi (v_k, v_i)$.

 $e_{q} = (E,I)$

Contoh:

Sisi (A,B) → A dapat memerintah B

```
{}^{\bullet}G = (V,E)
V = \{A,B,C,D,E\}
^{\bullet}\mathsf{E} = (\mathsf{e}_1,\,\mathsf{e}_2,\,\mathsf{e}_3,\,\mathsf{e}_4,\,\mathsf{e}_5,\,\mathsf{e}_6,\!\mathsf{e}_7,\,\mathsf{e}_8,\,\mathsf{e}_9,\,\mathsf{e}_{10}\,,\,\mathsf{e}_{11},\,\mathsf{e}_{12})
e_1 = (A,B) \neq (B,A)
e_2 = (A,C) \neq (C,A)
e_3 = (A,D) e_{10} = (E,J)
e_4 = (A,E) e_{11} = (G,H)
e_5 = (C,F)
                                 e_{12} = (H,G)
e_6 = (D,G)
e_7 = (D, H)
e_8 = (E,H) Titik awal dari suatu sisi = initial vertek
```


Beberapa istilah pada Graf:

Loop

Suatu sisi yang incident ke / dari vertek yang sama.

Contoh: e = (C,C)

Adjacent

Dua buah vertek didalam graf G dikatakan adjacent (bersisian) bila keduanya terhubung langsung oleh sebuah sisi.

Contoh: $e = (v_1, v_2) \rightarrow v_1 = adjacent ke v_2 \qquad v_2 = adjacent dari v_1$

- In degree (derajat masuk) dari suatu vertek
 Banyaknya sisi yang menuju vertek tersebut.
- Out degree (derajat keluar) dari suatu vertek Banyaknya sisi yang incident dari vertek tersebut.
- Derajat Total = derajat
 Jumlah derajat masuk dan derajat keluar dari suatu vertek.
 Jumlah sisi yang incident pada vertek tersebut.

TEOREMA 1:

• Jumlah derajat semua vertek dalam suatu graf sama dengan dua kali banyaknya sisi $\rightarrow \sum d(v_i) = 2n(E)$

TEOREMA 2:

- Banyaknya vertek dengan derajat ganjil dalam suatu graf adalah genap.
- Sebuah vertek dikatakan terasing / terisolasi, jika tidak ada rusuk / sisi yang incident pada vertek tersebut atau vertek yang mempunyai derajat 0.
- Matrik Adjacent dari suatu graf G = (V,E) dengan $V = \{v_1, v_2, ..., v_n\}$ adalah matrik yang berordo n dan mempunyai bentuk sebagai berikut :

$$A = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \\ v_1 & a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_n & a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
 Dimana $a_{ij} = 1$ bila ada sisi $e = (v_i, v_j)$
$$= 0$$
 bila tidak ada sisi yang menghubungkan vertek v_i dengan v_j .

Contoh

Contoh:

Tidak Berarah

	V ₁	V ₂	V ₃	V_4
V ₁	0	1	1	1
V ₂	1	0	1	0
V_3	1	1	0	1
V ₄	1	0	1	0

Berarah

	V ₁	V_2	V_3	V_4	V_5
V_1	0	1	1	1	0
V ₂	0	0	0	0	0
V ₃	0	1	0	0	0
V ₄	0	0	1	0	0
V ₅	0	0	1	0	0

- Jadi matrik adjacent pada graf tidak berarah adalah suatu matrik simetri.
- Jadi untuk graf berarah :
 - √ d_{in} (v_i) = jumlah unsur pada kolom ke-i
 - √ d_{out} (v_i) = jumlah unsur pada baris ke-i

Subgraf

- Graf G₁ = (V₁, E₁) dinamakan graf bagian (Subgraf) dari graf G = (V,E) bila himpunan vertek dan edge dari G₁ adalah himpunan bagian dari himpunan vertek dan edge dari G.
- V₁⊆ E, E₁⊆E dan G₁ sendiri merupakan suatu graf sedemikian hingga sisi-sisi dalam E₁ berinsidensi dengan vertek dalam V₁.
- Contoh :

Jadi G₁ adalah subgraf dari graf G

- G = (V,E)
- $V = (V_1, V_2, V_3, V_4, V_5)$
- $e = (e_1, e_2, e_3, e_4, e_5, e_6)$
- $G_1 = (V_1, E_1)$
- $V_1 = (V_1, V_2, V_3, V_5)$
- $e_1 = (e_1, e_2, e_5)$

Spanning Subgraf

- $G_1 = (V_1, E_1)$ disebut spanning subgraf dari graf G = (V, E) jika dipenuhi $V_1 = V$.
- Contoh:

Jadi $V_1 = V \rightarrow G_1 = Spanning subgraf$

- G = (V,E)
- $V = (V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10})$
- $e = (e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}, e_{14}, e_{15})$
- $G_1 = (V_1, E_1)$
- $V_1 = (V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10})$
- $e_1 = (e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}, e_{14}, e_{15})$

Graf Planar

- Adalah graf yang dapat digambarkan pada bidang datar, tanpa ada sisi yang saling berpotongan.
- Contoh :

Graf Berbobot

- Suatu graf dimana sisi-sisinya diberi bobot. Dinyatakan oleh G = (V,E) dimana :
 - \vee V = (V₁, V₂, V₃, ..., V_n)
 - \checkmark E₁ = (e₁, e₂, e₃, ..., e_q) dengan
 - \cdot e₁ = (v_{i1} , v_{i2} , v_{i3} , w_{i}), untuk setiap i = 1, 2, ..., q

- G = (V,E)
- V = (A, B, C, D, E, F, G, H)
- E = ((A,B,240), (A,C,200), (A,D,80), (A,E,120), (B,E,80), (B,F,200),
 (C,D,650), (C,G,120), (D,E,650),
 (D,G,120), (E,F,650), (E,G,80),
 (F,H,120), (G,H,200))

