응집물질물리실험 예비보고서

실험주제 : STM

HuiJae-Lee¹

¹Physics Department, Inha University* (Dated: September 4, 2022)

이번 실험에서는 STM(주사 터널링 현미경)의 작동원리와 사용 방법에 대해 알아보고 Graphite의 표면을 직접 관찰하며 응용해본다. 또한, STM을 이용한 관찰로 부터 결정구조 에 대해 공부하고 이해하는 것을 목표로 한다.

I. INTRODUCTION

EXPERIMENT

Theory

1. 양자 터널링

STM의 원리를 이해하기 위해서는 양자 터널 링 현상에 대해 알아야 한다. 양자 터널링은 양 자역학과 고전역학의 뚜렷한 차이점 중 하나로, 입자의 동력학적 거동을 해석하는데 파동함수와 확률을 도입하여 설명한다. 다음과 같은 퍼텐셜

FIG. 1. 높이 V_0 와 두께 2a의 퍼텐셜 장벽과 왼쪽에 서 입사하는 자유 입자 ψ_{in}

장벽과 이 장벽에 대해 왼쪽에서 입사하는 자유 입자를 고려하자(FIG. 1). 퍼텐셜 장벽의 너비는 2a이고 퍼텐셜의 크기는 V_0 이다. 중요한 점은 입 사하는 자유 입자가 가진 에너지 E가 V_0 보다 작 다는 것이다. 즉, $E < V_0$ 이다. 이 때 투과확률 T

STM의 기원은 Ricard Fyenman의 1959년 강연 "There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics"에서 찾을 수 있다. 그는 각각의 원자 를 뚜렷하게 보고 우리가 원하는 방식으로 배 열하는 새로운 연구 분야를 제시했고, 그로부터 20년 후 과학자들은 STM(Scanning Tunneling Microscope)과 AFM(Atomic Force Microscope) 의 개발로 그 목표를 달성하기 시작했다. STM 은 80년대 초 IBM 연구소 소속 Gerd Binning 과 Heinrich Rohrer에 의해 개발되었고 Binning 과 Rohrer는 그 공로로 86년 노벨 물리학상을 수상하였다. STM은 나노 스케일에서의 과학과 기술을 더욱 높은 수준으로 끌어올렸고 기초 물 리학에 대한 이해 또한 엄청나게 발전시켰다. 그 중에서도 이번 실험에 사용할 STM은 3차원에서 표면 구조를 직접, 실제로 제공한다.

^{*} hjlee6674@inha.edu

는 다음과 같다.

$$T = \frac{1}{1 + \left(\frac{k^2 + q^2}{2kq}\right)^2 \sinh^2 qa},$$

$$k = \sqrt{\frac{2mE}{\hbar^2}}, \quad q = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}.$$
(1)

중요한 사실은 투과확률 T가 0이 아니라는 것이 다. 고전역학적으로 보았을 때 퍼텐셜 장벽보다 낮은 에너지를 가진 입자는 분명히 장벽을 넘을 수 없고 a < x영역에는 입자가 존재할 수 없다. 하지만 양자역학적인 해석에 의하면, 투과확률이 존재한다는 것은 입자가 퍼텐셜 장벽을 넘어 a <x 영역에 존재할 수 있음을 의미한다. 퍼텐셜 장 벽이 굉장히 두꺼워 1 << a인 경우, 극한을 취 하여 근사하면 투과확률 T가 e^{-2qa} 에 비례하게 된다.

$$T \sim \frac{16k^2q^2}{(k^2+q^2)^2}e^{-2qa}.$$
 (2)

2. STM

STM은 전자의 양자 터널링을 이용해 시료의 표면을 연구할 수 있도록 해준다. 먼저, 시료의 표면을 측정하기 위해 STM에 달린 작은 금속 탐침이 표면에 굉장히 근접한다. FIG. 2에서 볼 수 있듯이, 이 금속 탐침의 끝은 하나의 원자로 되어있다. 시료에 전압을 걸어주었을 때 시료와 금속 탐침 사이에는 터널링 전류(tunneling current)가 측정된다. 시료의 표면에 흐르는 전자가 표면을 탈출하기 위해 STM의 탐침으로 흐르기 위해서는 원자가 전자를 속박하는 에너지보다 큰 에너지가 필요하다. 이는 위에서 살펴본 퍼텐셜 원자의 속박 에너지가 퍼텐셜 장벽처럼 작용하는 것이다. 하지만 투과확률이 0보다 크기 때문에 하게 표면을 측정할 수 있다.

FIG. 2. (a)는 STM의 대략적인 구조이다. 양자 터 널링에 의해 전류는 금속 탐침과 물질 사이 진공을 투과하여 흐를 수 있다. (b)에서 볼 수 있듯이, 두 전극이 거리를 두고 떨어져 있을 때 두 전극의 파 동함수 A와 B는 진공에서 지수적으로 감소하지만, 가까울 수록 터널링이 많이 일어난다.

전자는 속박 에너지보다 작은 에너지를 가지더 라도 속박 에너지를 극복하고 STM의 탐침으로 흐를 확률을 가진다. STM은 이렇게 흐르는 전 류를 이용하여 표면에 대한 측정을 시도한다.이 때 금속 탐침이 근접하는 거리는 탐침과 표면 사 이의 저항을 측정 가능할 만큼이다. 시료에 전류 가 흘러야 하므로, 도체 시료를 이용한다. 터널링 전류는 탐침과 시료 사이 터널링 확률(tunneling probability)에 비례하고 이 확률은 거리에 지수 적으로 민감하다. WKB 근사로부터, 터널링 확 수 있다.

$$P \propto \exp\left(-2\sqrt{\frac{2m\phi}{\hbar^2}z}\right).$$
 (3)

장벽을 투과하는 자유 입자의 상황과 유사하다. ϕ 는 터널링을 위한 유효 장벽의 높이이다. STM은 확률이 거리에 민감하게 반응하는 만큼 정확

3. Graphite

흑연은 육각형을 배열된 탄소 원자의 층들로 이루어진 탄소의 동소체이다. 층이 쌓이는 배열 에는 두가지 형태가 있는데 육각형꼴과 마름모 꼴이 있다. 각 층끼리의 화학 결합은 sp2 오비탈 혼성화를 공유하며 C-C거리는 141.7 pm이다. 층

사이 약한 결합의 세기가 반데르발스 결합에 비 견될 만한 강도를 가진다.

B. Experimental Methods

Theory C.

- [1] G. Binnig and H. Rohrer, Scanning tunneling [6] C. Kittel, P. McEuen, and P. McEuen, Intromicroscopy, Surface Science 126, 236 (1983).
- [2] J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope, Phys. Rev. B **31**, 805 (1985).
- [3] S. Lounis, Theory of scanning tunneling microscopy (2014).
- [4] A. Beiser, S. Mahajan, and S. Choudhury, Concepts of Modern Physics (Tata McGraw-Hill, Higher Education, 2003).
- [5] C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, 2007).

- duction to solid state physics, Vol. 8 (wiley New York, 1996).
- [7] J. S. Townsend, A modern approach to quantum mechanics (University Science Books, 2000).
- [8] nanoSurf, easyScan 2 STM Operating Instructions.
- [9] E. Fitzer, K.-H. Kochling, H. P. Boehm, and H. Marsh, Recommended terminology for the description of carbon as a solid (iupac recommendations 1995), Pure and Applied Chemistry **67**, 473 (1995).