Experiment No. 01

Name of the Exp: Determination of acceleration due to gravity (g), by a compound pendulum.

Theory: When a rigid body oscillates freely in a vertical plane with respect to horizontal axis then it is called compound pendulum. If the pendulum oscillates with a small angular amplitude, then it's angular velocity

$$w = \sqrt{\frac{mgl}{I}}$$
 or,
$$\frac{2\pi}{T} \sqrt{\frac{mgl}{ml^2 + mk^2}} \quad -----(i)$$

Hence,

- $I = ml^2 + mk^2 =$ moment of inertia.
- T = Time period of the pendulum.
- m = Mass of the pendulum.
- l = Distance between the point of oscillation and the center of mass.
- k = Radius of gyration of the pendulum with respect to horizontal axis pass
- through the center of mass.
- g = acceleration due to gravity of the place.

Squaring equation (i) we get

$$\frac{4\pi^2}{T^2} = \frac{mgl}{m(l^2 + k^2)}$$
or, $l^2 = \frac{T^2g}{4\pi^2}l + k^2 = 0$ $----$ (ii)

Equation (ii) is a second order equation. So, l has two values, $l_1 \& l_2$

Therefore,

$$l_1 + l_2 \frac{T^2 g}{4\pi^2}$$
 & $l_1 l_2 = k^2$

As addition and multiplication of $l_1 \& l_2$ are both positive, so $l_1 \& l_2$ both positive, so $l_1 \& l_2$ both are positive.

Let, the equivalent distance between two points of a simple pendulum, $L=l_1+l_2$ Therefore,

$$T = 2\pi \sqrt{\frac{l_1 + l_2}{g}}$$
 or,
$$T = 2\pi \sqrt{\frac{L}{g}}$$
 or,
$$g = \frac{4\pi^2 L}{T^2} - - - - (iii)$$

Determining the value of $L = l_1 + l_2$ & T from the graph, we get the value of g.

Apparatus:

- 1. A compound pendulum.
- 2. Stopwatch.
- 3. Telescope.
- 4. Meter scale.
- 5. Knife edge.
- 6. A piece of wood.

Fig. A Compound Pendulum

Table 1 (Determination of l & T)

Side	No. of hole with respect to center	Distance of hole from the center	Time for 20 oscillations (t sec)			Time period
	of mass	of mass	1 st	2 nd	Avg t sec	$T = \frac{t}{20} \sec$
A	9	45	33.03	32.85	32.94	1.647
	8	40	31.56	31.70	31.63	1.581
	7	35	30.53	30.47	30.50	1.525
	6	30	30.12	30.05	30.08	1.504
	5	25	29.22	29.15	29.18	1.459
	4	20	32.02	32.12	32.07	1.603
	3	15	33.62	33.55	33.58	1.679
В	9	45	32.75	32.80	32.77	1.638
	8	40	31.45	31.62	31.53	1.576
	7	35	30.44	30.51	30.47	1.523
	6	30	30.15	30.13	30.14	1.507
	5	25	29.19	29.23	29.21	1.460
	4	20	32.13	32.07	32.10	1.605
	3	15	33.54	33.59	33.56	1.678

Graph for $(l \sim T)$

For, 1 unit of (x) in graph = 1 unit. & For, 1 unit of (y) in graph = 10 unit

Procedure:

- 1. At first, we determined the center of mass of the metal plate keeping it on the knife edge.
- 2. We determined the distance of the holes of A & B sides from the center of mass.
- 3. Pulling the bar to any side with an angle (θ <5°) and after leaving it oscillates. Now we determine the time of 20 oscillations and dividing the time by 20 we get time period T.
- 4. Like this, entering the knife edge in the hole in 8,7 and 6 so on, we determined time period *T*.
- 5. Following the same procedure, we determined time period for *B* side.
- 6. Now establishing the distance on X axis and time (*T*) on Y axis we got same graph on both sides.
- 7. Then drawing a parallel line of X as it intersects the graph on A, B, C and D and on Y axis on E.

From the graph, we get

$$AC = l_1 + l_2 = 32.5 + 17 = 49.5cm$$
 and $BD = l_1 + l_2 = 32.4 + 16.9 = 49.3cm$ Therefore, $Avg, \frac{l_1 + l_2}{2} = \frac{49.5 + 49.3}{2} = 49.4cm = L$

Using the value in Equation (iii) we get

$$g = 4\pi^2 \frac{L}{T^2}$$
$$= 4\pi^2 \frac{49.4}{1.55^2} = 811.75$$

<u>Result</u>: We got the value of acceleration due to the gravity.

$$g = 811.75 cm s^{-2} = 8.12 m s^{-2} (almost)$$

Precautions and Discussion:

- 1. The angular amplitude of the pendulum was taken within 5° .
- 2. The stopwatch was used correctly to determine the time period.

- 3. The knife edge was hanged horizontally.
- 4. The pendulum was taken at that place where the air resistance was lesser.
- 5. The graph paper was neat and clean.