3 Поля

3.1 Расширение полей

Теорема 1. Пусть F - поле, $P(X) \in F[X]$ - неприводим над F. Если α - кореньP(X) в некотором расширении E поля F, то $F(\alpha) \cong {}^{F[X]}/{}_{(P(X))}$. Кроме того, если $\deg P = n$, то \forall элемент из $F(\alpha)$ единственным образом представим в слудеющем виде: $c_{n-1}\alpha^{n-1} + c_{n-2}\alpha^{n-2} + \ldots + c_1\alpha + c_0$

Доказатель ство. Рассмотрим $\varphi: \begin{tabular}{l} F[X] \to F(\alpha) \\ f(X) \to f(\alpha) \end{tabular} \geqslant \varphi$ - гомоморфизм колец $\Rightarrow Ker \ \varphi = (P(X))$

 α - корень P(X) в некотором расширении $F(\alpha) \Rightarrow P(\alpha) = 0 \Rightarrow P(X) \in Ker \ \varphi \Rightarrow (P(X)) \subset Ker \ \varphi$

F[X] - кольцо главных идеалов P(X) - неприводим P(X) - неприводим P(X) - негриводим P(X) - жег P(X) будет содержаться в P(X) P(X)

Если $Im \varphi = F(\alpha)$ $Ker \varphi = (P(X))$ $\Rightarrow F[X]/_{Ker \varphi} \cong Im \varphi \Rightarrow F[X]/_{(P(X))} \cong F(\alpha)$ $h(X) \in F[X]/_{(P(X))} \Rightarrow h(x) + (P(X)) = c_{n-1}X^{n-1} + c_{n-2}X^{n-2} + \dots + c_1X + c_0 + (P(X)) \xrightarrow{x=\alpha} c_{n-1}\alpha^{n-1} + c_{n-2}\alpha^{n-2} + \dots + c_1\alpha + c_0 + 0, c_i \in F$

Следствие 1. Пусть F - поле, $P(X) \in F[X]$ - неприводим над F. Если α - корень P(X) в некотором расширении E поля F и β - корень P(X) в некотором расширении E' поля F, то $F(\alpha) \cong F(\beta)$

Лемма 1. Пусть F - поле, $P(X) \in F[X]$ - неприводим над F. Если α - корень P(X) в некотором расширении E поля F. Если φ - изоморфизм полей: $F \to F'$ и β - корень $\varphi(P(X))$ в некотором расширении E' поля F', то \exists изоморфизм: $F(\alpha) \to F'(\beta)$

Доказатель ство. Так как P(X) - неприводим над $F\Rightarrow \varphi(P(X))$ - неприводим над F'

Необходимо доказать: $\underbrace{\frac{F[X]/(P(X))}{f(\alpha)}}_{F(X)+(P(X))} \to \underbrace{\frac{F'[X]/_{(\varphi(P(X)))}}{F'(\beta)}}_{F'(\beta)}$

По предыдущей теореме $F(\alpha) \cong F'(\alpha)$

Теорема 2. Пусть $\varphi F \to F'$ - изоморфизм полей $f(X) \in F[X]$. Если E - поле разложения многочлена f над F и E' - поле разложения многочлена $\varphi(f)$ над F', то \exists изоморфизм $E \cong E'$

Следствие 2. Любые два поля разложения одного многочлена изоморфны

Корни неприводимых многочленов

Определение 1. Пусть $f(X)=a_nX^n+...+a_1X+a_0\in F[X]$. Производной многочлена f(X) называется многочлен $f'(X)=na_nX^{n-1}+...+2a_2X+a_1\in F[X]$

Лемма 2. Пусть $f(X), g(X) \in F[X]$ и $\alpha \in F$. Тогда:

- 1. (f+g)' = f' + g'
- 2. $(\alpha \cdot f)' = \alpha \cdot f'$
- 3. $(f \cdot g)' = f' \cdot g'$

Теорема 3. Многочлен f(X) над полем F имеет кратные корни в некотором расширении $\Leftrightarrow f(X)$ и f'(X) имеют общий множитель положительной степени в F[X]

Теорема 4. Пусть f(X) - неприводим над полем F. Если char F=0, то f(X) не имеет кратных корней. Если char $F\neq 0$, то f(X) имеет кратные корни, если f(X)=g(X') для некоторого $g(X)\in F[X]$

Определение 2. Поле F называется совершенным, если $\left\{ \begin{array}{l} char \ F=0 \\ char \ F=P \\ F^p=\{\alpha^p \big| \alpha\in F\}=F \end{array} \right.$

Теорема 5. Любое конечно поле является совершенным

Теорема 6. Если f[X] - неприводимо над совершенным полем F, то f(X) не имеет кратных корней

Теорема 7. Пусть f(X) - неприводим над F. E - поле разложения f(x) над F. Тогда все корни многочлена f(X) в E имеют одинаковую кратность

Следствие 3. $f(X) = \alpha (X - \alpha_1)^n (X - \alpha_2)^n ... (X - \alpha_m)^n$, где $\alpha_i \in E, \alpha \in F$