

Software Engineering for Embedded Systems

Real-time systems

Laura Carnevali

Software Technologies Lab
Department of Information Engineering
University of Florence
http://stlab.dinfo.unifi.it/carnevali
laura.carnevali@unifi.it

Outline

- 1. Basic concepts
- 2. Periodic task scheduling
- 3. Resource access protocols
- 4. Credits & References

Basic concepts

Task (1/2)

- A task is a sequence of instructions that, in the absence of other activities, is continuously executed by the processor until completion
 - Example: a single running task that incurs no preemption

A process is a program in execution, composed by concurrent tasks
 (also termed threads) that share a common memory space

Images by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 2 / 128

Task (2/2)

- Task characteristics
 - Activation time a_i : time at which a task becomes ready for execution
 - Start time s_i : time at which a task starts its execution
 - Finishing time f_i : time at which a task finishes its execution
 - Computation time C_i : task execution time without interruption
 - Completion time $K_i := f_i s_i$ (in the example, $K_i = C_i$)
 - Response time $R_i := f_i a_i$

Images by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 3 / 128

Task states

- A task is termed active if it can potentially execute on the processor
 - An active task is termed ready if it is waiting for the processor
 - An active task is termed running if it is in execution
- A task is termed blocked if it is waiting to use some resource

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 4/128

Dispatching

- Ready tasks are kept in a ready queue managed by a scheduling policy
- A dispatching operation assigns the processor to the first task in the queue
- If there were multiple types of task ⇒ there may be multiple ready queues

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 5 / 128

Preemption

- Kernel mechanism that suspends the execution of the running task (which goes back in the ready queue) in favour of a more important task
- ullet Enhances concurrency among tasks igorplus
- Reduces the response time of high priority tasks, destroys program locality, and introduces a runtime overhead on the execution times of tasks ©
- Can be disabled (temporarily/permanently) to ensure critical task consistency

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 6 / 128

Schedule

- Informally, a schedule is an assignment of tasks to the processor, which determines the execution sequence of the considered tasks
- Formally, a schedule for a task set $\Gamma = \{\tau_1, \tau_2, \dots, \tau_n\}$ is a function $\sigma: \mathbb{R}^+ \to \mathbb{N}$ such that $\forall \, t \in \mathbb{R}^+ \; \exists \, t_1, t_2 \in \mathbb{R}^+$ such that $t \in [t_1, t_2)$ and $\sigma(t) = \sigma(t') \; \forall \, t' \in [t_1, t_2]$ where:
 - $\sigma(t)$ = 0 if the processor is idle at time t
 - $\sigma(t) = k \in \{1, 2, ..., n\}$ if the processor is executing task τ_k at time t
- Each time interval $[t_i, t_{i+1})$ is termed **time slice** $\forall i \in \mathbb{N}^+$
- At each time instant t_i the processor performs a **context switch** $\forall i \in \mathbb{N}^+$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 7/128

Preemptive schedule

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 8 / 128

Concurrent system

- Multiple tasks can be simultaneously active (i.e., ready or running)
- One and only one task is running at any time

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 9 / 128

Real-time task

- A real-time task is a task characterized by a timing constraint on its response time, which is termed (absolute/relative) deadline
 - Absolute deadline d_i : time before which a task should complete execution
 - Relative deadline $D_i := d_i a_i$

• A real-time task τ_i is termed **feasible** if it completes its execution within its absolute deadline d_i , i.e., if $f_i \leq d_i$ or, equivalently, if $R_i \leq D_i$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 10 / 128

Laxity

- Laxity X_i of task τ_i : the maximum delay that τ_i can experience after its activation and still complete within its deadline
 - Measured at the activation time
 - Equal to the relative deadline minus the computation time, i.e., $X_i := D_i C_i$
 - Also termed slack time
- Residual laxity Y_i of task τ_i : the laxity measured upon the completion of τ_i
 - ullet Equal to the absolute deadline minus the finishing time, i.e., $Y_i\coloneqq d_i-f_i$

Image adapted from Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 11 / 128

Lateness and tardiness

- Lateness L_i of task τ_i : delay of τ_i completion with respect to its deadline
 - ullet Equal to the finishing time minus the absolute deadline, i.e., $L_i\coloneqq f_i-d_i$
 - Negative if the task completes before the deadline

- Tardiness E_i of a task τ_i : time τ_i stays active after its deadline
 - Defined as $E_i := \max\{0, L_i\}$
 - Also termed exceeding time

Image adapted from Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 12 / 128

Tasks and jobs

 A task running several times on different input data generates a sequence of identical activities termed jobs or task instances (same code, different data)

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 13 / 128

Activation mode of a task

- Time-driven activation mode
 - Task automatically activated by the operating system at predefined times
 - Activation mode of periodic tasks
- Event-driven activation mode
 - Task activated at the arrival of an event, by an interrupt or by another task through an explicit system call
 - Activation mode of aperiodic tasks

Laura Carnevali Real-time systems Basic concepts 14 / 128

Periodic task (1/3)

- A **periodic task** τ_i consists of an infinite sequence of **jobs** $\tau_{i1}, \tau_{i2}, \dots, \tau_{ik}$ that are regularly activated at a constant rate, i.e., with period T_i
 - If $T_i = D_i$ then the task is termed a **pure periodic task**
 - The task utilization factor is $U_i := C_i/T_i$

Images by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 15 / 128

Periodic task (2/3)

- Parameters of a periodic task τ_i
 - Period T_i , computation time C_i , relative deadline D_i
 - Activation time of the first job: $\Phi_i := a_{i,1}$ (termed **phase** of the task)
 - Activation time of the k-th job with k > 1: $a_{i,k} := \Phi_i + (k-1)T_i$
 - Absolute deadline of the k-th job with k > 1: $d_{i,k} \coloneqq a_{i,k} + D_i$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 16 / 128

Periodic task (3/3)

- Support for periodic tasks
 - Pseudo-code illustrating a fragment of a typical implementation
 wait_for_activation();
 while(condition) {
 ...
 wait_for_next_period();
 }
 - In the time interval from the invocation of wait_for_next_period() until the
 beginning of the next period the task is neither active nor blocked...It is idle!

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 17 / 128

Images by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 18 / 128

- An aperiodic task τ_i consists of an infinite sequence of jobs $\tau_{i1}, \tau_{i2}, \dots, \tau_{ik}$ that are not regularly activated
- A sporadic task τ_i is an aperiodic task whose consecutive jobs are separated by a minimum inter-arrival time T_i , i.e., $a_{i,k+1} \ge a_{i,k} + T_i$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 19 / 128

- Jitter is a measure of variation of a periodic event
 - Absolute jitter: $\max_{k} \{t_k a_k\} \min_{k} \{t_k a_k\}$
 - Relative jitter: $\max_{k}\{|(t_k-a_k)-(t_{k-1}-a_{k-1})|\}$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 20 / 128

Start time jitter

- Absolute start time jitter
 - Maximum deviation of the start time among all jobs

•
$$\max_{k} \{s_{i,k} - a_{i,k}\} - \min_{k} \{s_{i,k} - a_{i,k}\}$$

- Relative start time jitter
 - Maximum deviation of the start time among two consecutive jobs
 - $\max_{k} \{ |(s_{i,k} a_{i,k}) (s_{i,k-1} a_{i,k-1})| \}$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 21 / 128

Finishing time jitter

- Absolute finishing time jitter
 - Maximum deviation of the finishing time among all jobs
 - $\max_{k} \{f_{i,k} a_{i,k}\} \min_{k} \{f_{i,k} a_{i,k}\}$
- Relative finishing time jitter
 - Maximum deviation of the finishing time among two consecutive jobs
 - $\max_{k} \{ |(f_{i,k} a_{i,k}) (f_{i,k-1} a_{i,k-1})| \}$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 22 / 128

Completion time jitter

- Absolute completion time jitter
 - Maximum deviation of the completion time among all jobs
 - $\max_{k} \{f_{i,k} s_{i,k}\} \min_{k} \{f_{i,k} s_{i,k}\}$
- Relative completion time jitter
 - Maximum deviation of the completion time among two consecutive jobs
 - $\max_{k} \{ |(f_{i,k} s_{i,k}) (f_{i,k-1} s_{i,k-1})| \}$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 23 / 128

Summary of task parameters

- Parameters known offline (specified by the programmer)
 - Period T_i
 - Computation time C_i
 - Relative deadline D_i
- Parameters known online (dependent on scheduling and actual execution)
 - Arrival time a_i , start time s_i , finishing time f_i , and response time R_i
 - Laxity X_i and residual laxity Y_i
 - Lateness L_i and tardiness E_i
 - Start time jitter, finishing time jitter, and completion time jitter

Image adapted from Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Feasibility vs schedulability (1/2)

- A schedule is termed feasible if all task constraints are satisfied
 - Timing constraints: activation, period, deadline, jitter
 - Explicit constraints: directly included in the system specification
 - Implicit constraints: not included in the system specification but needed to be met to satisfy performance requirements
 - Precedence constraints: impose an order in the execution of tasks, typically expressed in the form of a Directed Acyclic Graph (DAG) termed task graph
 - Resource access constraints: enforce synchronization in accessing mutually exclusive resources (to solve conflicts generated by concurrent access)

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 25 / 128

Feasibility vs schedulability (2/2)

- A task set Γ is termed feasible if there exists an algorithm that generates a feasible schedule for Γ
- A task set Γ is termed schedulable by an algorithm A if A generates a feasible schedule for Γ

Laura Carnevali Real-time systems Basic concepts $26 \, / \, 128$

The scheduling problem

- Given a set of tasks $\Gamma = \{\tau_1, \dots, \tau_n\}$, a set of processors $P = \{P_1, \dots, P_m\}$, a set of resources $R = \{R_1, \dots, R_s\}$, a set of constraints $C = \{H_1, \dots, H_k\}$, the **scheduling problem** consists in finding an assignment of P and R to Γ that produces a feasible schedule (i.e., satisfying the constraints in C)
 - The scheduling problem is NP-complete (Garey&Johnson, 1979): in practice, scheduling algorithms have exponential execution time in the number of tasks
 - Polynomial time algorithms can be found under simplifying assumptions
 - Single processor, homogeneous task set (e.g., only periodic/aperiodic tasks), fully preemptable tasks, simultaneous activations, no precedence constraints, no resource constraints

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Basic concepts 27 / 128

Recap on complexity

- A decision problem is NP if it can be solved in polynomial time by a nondeterministic Turing machine
 - It may not be solved in polynomial time by a deterministic Turing machine (i.e., it may not be solved in polynomial time by a computer)
 - It can be solved in over-polynomial time by a deterministic Turing machine (i.e., it can be solved in over-polynomial time by a computer)
 - Over-polynomial complexity is typically exponential complexity
- ullet A decision problem H is **NP-hard** if every decision problem in NP can be reduced in polynomial time to H
- A decision problem is NP-complete if it is NP and NP-hard
- ullet Example: algorithm with the elementary step requiring 1 μs and n = 20 tasks
 - Linear complexity $O(n) \Rightarrow 20 \,\mu s$
 - Polynomial complexity $O(n^{10}) \Rightarrow 2844.44 \,\mathrm{h}$
 - Exponential complexity $O(10^n) \Rightarrow \sim 3$ million years

Laura Carnevali Real-time systems Basic concepts 28 / 128

Taxonomy of scheduling algorithms (1/2)

- Preemptive vs non preemptive
 - Preemptive: a task can be interrupted by a higher priority task
 - Non preemptive: a task can never be interrupted by another task
- Static vs dynamic
 - Static: decisions taken based on fixed parameters which are statically assigned to tasks before activation
 - Dynamic: decisions taken based on parameters that can change with time
- Offline vs online
 - Offline: decisions taken before task activation (table driven scheduling)
 - Online: decisions taken at runtime based on the active tasks

Laura Carnevali Real-time systems Basic concepts 29 / 128

Taxonomy of scheduling algorithms (2/2)

- Optimal vs heuristic
 - Optimal: generates a schedule that minimizes a cost function defined by an optimality criterion
 - Heuristic: generates a schedule according to a heuristic function that tries to satisfy an optimality criterion with no guarantee of success
- Guaranteed-based vs best-effort
 - Guaranteed-based: generates a feasible schedule if it exists;
 needed for hard real-time tasks
 - Best-effort: no guarantee of a feasible schedule; useful for soft real-time tasks; optimizes average performance
- Clairvoyant algorithm
 - It knows all future task activations
 - It can be used to compare performance

Laura Carnevali Real-time systems Basic concepts 30 / 128

Classification of scheduling algorithms

Scheduling anomalies

- Theorem (Graham, 1976): If a task set is optimally scheduled on
 a multiprocessor with some priority assignment, fixed number of processors,
 fixed execution times, and precedence constraints ⇒
 ⇒ increasing the number of processors, reducing execution times, or
 - Small changes in parameters may have big unexpected consequences!

weakening precedence constraints can increase the schedule length

• Example: faster processor, i.e., double speed (yellow indicates critical sections)

Laura Carnevali Real-time systems Basic concepts 32 / 128

Periodic task scheduling

Periodic task scheduling: problem formulation (1/2)

- Set of n **periodic tasks** $\Gamma = \{\tau_1, \dots, \tau_n\}$, each task τ_i characterized by:
 - Initial arrival time (phase) $\Phi_i := a_{i,1}$
 - Worst Case Execution Time (WCET) C_i
 - Activation period T_i
 - Relative deadline $D_i \leq T_i$
- All tasks independent of each other
 - No precedence constraints
 - No resource constraints (except for the processor)
 - No task self-suspension (except for the suspension until the next period)
 - Task release upon task arrival
 - Zero or negligible kernel overheads

Images by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 33 / 128

- ullet Goal: guarantee that each job $au_{i,k}$ of each periodic task au_i
 - is activated at time $a_{i,k} := \phi_i + (k-1)T_i$
 - completes within time $d_{i,k} \coloneqq a_{i,k} + D_i$

Images by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 34 / 128

Periodic task scheduling: other parameters of interest

- Hyper-period $H := lcm\{T_1, ..., T_n\}$ (lcm = least common multiple)
 - Minimun time interval after which the schedule repeats itself
- Job response time $R_{i,k} := f_{i,k} a_{i,k}$
- Task response time $R_i := \max_k \{R_{i,k}\}$
 - Maximum response time among all the jobs of the task

Image adapted from Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 35 / 128

Periodic task scheduling: critical instant of a task

- The arrival time that yields the largest task response time
- Occurs when the task arrives together with higher priority tasks
 - ullet Consider the interference of a high priority task au_i with a low priority task au_n

ullet Reducing the phase of au_i increases the response time of au_n

 \bullet Reducing the phase of any higher-prio task increases the response time of τ_n

Images from "Hard real-time computing systems" by Prof. G. Buttazzo $\,$

Laura Carnevali Real-time systems Periodic task scheduling 36/128

Static clock-driven non-preemptive scheduling (1/2)

Laura Carnevali Real-time systems Periodic task scheduling 37/128

Static clock-driven non-preemptive scheduling (2/2)

- For periodic tasks with relative deadlines equal to periods
- Decisions only made offline at priory chosen time instants (i.e., static schedule computed offline and stored in a table for use at runtime by a dispatcher activated by a timer)
 - Regular time instants: cyclic executive scheduling
 - Irregular time instants: timer-driven scheduling (timer needs reprogramming)
- Advantages
 - Simple implementation (no real-time operating system needed)
 - Low runtime overhead
 - Very low jitter
- Disadvantages
 - Not robust during overloads
 - Schedule difficult to expand
 - Aperiodic tasks not easy to handle

Laura Carnevali Real-time systems Periodic task scheduling 38 / 128

Cyclic executive scheduling (timeline scheduling)

- One of the most used scheduling algorithms in defense military systems and traffic control systems (e.g., Boeing 777, Space Shuttle)
- How it works
 - Time divided into intervals (time slots) of equal duration Δ (minor cycle)
 - ullet One or more tasks **statically allocated** to each time slot (by hand) so that the sum of task WCETs in each time slot is not larger than Δ
 - Execution in each time slot activated by a timer
 - Schedule repeated after a time interval of duration T (major cycle)
- Typical values of parameters
 - $\Delta = \gcd\{T_1, \dots, T_n\}$ (great common divisor of the task periods)
 - $T = \text{lcm}\{T_1, \dots, T_n\}$ (least common multiple of the task periods)

Laura Carnevali Real-time systems Periodic task scheduling 39 / 128

Cyclic executive scheduling: example

• A set of three tasks:

task $ au_i$	WCET C_i	period T_i
$ au_A$	10	25
$ au_B$	10	50
$ au_C$	10	100

- Parameter values selected to guarantee that $C_A + C_B \le \Delta$ and $C_A + C_C \le \Delta$:
 - Major cycle T = 100
 - Minor cycle Δ = 25

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 40 / 128

Cyclic executive scheduling: implementation and coding

Images by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 41 / 128

Cyclic executive scheduling: disadvantages

- Problems during overloads (task overruns)
 - Let the task continue ⇒ possible domino effect on the other tasks
 - Abort the task ⇒ possible inconsistent system state
- Difficulty in expanding the schedule in case of task parameter changes
 - WCET change: $C_B = 20 \Rightarrow C_A + C_B > \Delta \Rightarrow \text{Split } \tau_B \text{ in 2 subtasks } \tau_{B1} \text{ and } \tau_{B2} \text{ with WCET equal to 15 and 5, respectively, and redesign the schedule!}$

task $ au_i$	WCET C_i	period T_i
$ au_A$	10	25
$ au_B$	<u>20</u>	50
$ au_C$	10	100

• Period change: $T_B = 40 \Rightarrow \Delta = 5$, $T = 200 \Rightarrow 40$ synchronizations per major cycle! \Rightarrow Very difficult to redesign the schedule by hand!

task $ au_i$	WCET C_i	period T_i
$ au_A$	10	25
$ au_B$	10	<u>40</u>
$ au_C$	10	100

Images by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

 ${\sf Laura\ Carnevali} \qquad \qquad {\sf Real-time\ systems} \qquad \qquad {\sf Periodic\ task\ scheduling} \qquad \qquad {\sf 42\ /\ 128}$

Processor utilization factor U

Fraction of the processor time spent in the task set execution:

$$U \coloneqq \sum_{i=1}^{n} \frac{C_i}{T_i}$$

• Example: task set with $U = \frac{10}{25} + \frac{10}{40} + \frac{20}{100} = \frac{34}{40} = 0.85$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 43/128

Upper bound $U_{\mathrm{ub}}(\Gamma,A)$ of the processor utilization factor U

- ullet Upper bound $U_{
 m ub}(\Gamma,A)$ of U for a task set Γ under a scheduling algorithm A
 - If $U = U_{\rm ub}(\Gamma, A) \Rightarrow \Gamma$ is said to **fully utilize** the processor (if task WCETs are further increased \Rightarrow the task set becomes unfeasible)
 - Each task set may have a different upper bound!
- Example (the processor is assigned to tasks in increasing order of periods)

• Task set with
$$U_{\rm ub} = \frac{2}{4} + \frac{2}{6} = \frac{5}{6} \simeq 0.833$$

• Task set with $U_{\rm ub} = \frac{2}{4} + \frac{2}{5} = \frac{9}{10} = 0.9$

Images from "Hard real-time computing systems" by Prof. G. Buttazzo

Laura Carnevali Real-time systems Periodic task scheduling 44 / 128

Least upper bound $U_{\text{lub}}(A)$ of the processor utilization factor U

• Least upper bound $U_{\mathrm{lub}}(A)$ of U under a scheduling algorithm A (min of utilization factors over all task sets that fully utilize the processor):

$$U_{\mathrm{lub}}(A) \coloneqq \min_{\Gamma} U_{\mathrm{ub}}(\Gamma, A)$$

• Is a task set schedulable by A? If $U \le U_{\text{lub}}(A) \Rightarrow \text{YES}$; If $U > 1 \Rightarrow \text{NO}$

Maximum value of the least upper bound $U_{\mathrm{lub}}(A)$

Theorem

If the processor utilization factor of a task set Γ is larger than $1\Rightarrow\Gamma$ is not feasible

Proof.

$$U > 1 \Rightarrow UH > H \text{ since } H > 0 \Rightarrow \sum_{i=1}^n \frac{C_i}{T_i} H > H \text{ by } U \text{ definition } \Rightarrow \sum_{i=1}^n \frac{H}{T_i} C_i > H$$

 $\frac{H}{T_i}$ is the (integer) number of times task au_i is executed in the hyper-period

 $\Rightarrow \frac{H}{T_i}C_i$ is the computation time requested by task au_i in the hyper-period $rac{n}{T_i}H$

 $\Rightarrow \sum_{i=1}^{n'} \frac{H}{T_i} C_i$ is the computation time requested by the task set in the hyper-period

If demand exceeds the available processor time H, the task set is not feasible

Remark

This result holds for any scheduling algorithm

Priority-driven scheduling

- How it works
 - Assign priority to each task based on its timing constraints
 - Verify the feasibility of the schedule using analytical techniques
 - Execute tasks on a priority-based kernel
- Schedulability analysis goal: construct an optimal schedule by considering the processor utilization and by computing the response time of each task

Laura Carnevali Real-time systems Periodic task scheduling 47/128

Rate Monotonic (RM) scheduling

Laura Carnevali Real-time systems Periodic task scheduling 48 / 128

RM: salient traits

- Preemptive **static** online scheduling algorithm
- Addressing scheduling of pure periodic tasks (i.e., $D_i = T_i \ \forall \ \text{task} \ \tau_i$)
- A task is assigned a fixed priority inversely proportional to its period
- Example: priority τ_A > priority τ_B > priority τ_C

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 49 / 128

RM: optimality (Liu & Layland, 1973)

Theorem

RM is **optimal** in the sense of **feasibility** among all **fixed priority** algorithms (for scheduling of periodic tasks with deadlines equal to periods):

- If a fixed priority schedule is feasible for a task set $\Gamma \Rightarrow$
 - \Rightarrow The RM schedule is feasible for Γ
- If the RM schedule is not feasible for a task set $\Gamma \Rightarrow$
 - \Rightarrow No fixed priority schedule is feasible for Γ
- Note that the two statements are equivalent $(a \Rightarrow b \text{ if and only if } \neg b \Rightarrow \neg a)$
- Given that each task achieves its worst response time at its critical instant, then it is sufficient to **check optimality at the critical instants**:

Theorem

If a fixed priority schedule is feasible for a task set Γ at the critical instants \Rightarrow

 \Rightarrow The RM schedule is feasible for Γ at the critical instants

C. L. Liu, J. W. Layland, "Scheduling algorithms for multiprogramming in a hard-real-time environment", Journal of the ACM, 20(1), 1973

50 / 128

RM: proof of optimality for a task set made of 2 tasks (1/3)

- Consider a task set Γ made of 2 periodic tasks τ_1 and τ_2 with $T_1 < T_2$ (the proof can be easily extended to a task set made of n tasks)
- If priorities are not assigned according to RM \Rightarrow priority τ_2 > priority τ_1 \Rightarrow \Rightarrow The schedule is feasible for Γ at the critical instants if $C_1 + C_2 \le T_1$

Remark

It is sufficient to prove that:

If
$$C_1 + C_2 \le T_1 \Rightarrow$$
 The RM schedule is feasible for Γ at the critical instants

Image adapted from "Hard real-time computing systems" by Prof. G. Buttazzo

Laura Carnevali Real-time systems Periodic task scheduling 51/128

RM: proof of optimality (2/3)

- Number of periods of τ_1 entirely contained in T_2 : $F \coloneqq \lfloor T_2/T_1 \rfloor$
- ullet If priorities are assigned according to RM \Rightarrow priority au_1 > priority au_2
- Case 1 (left): $C_1 < T_2 FT_1$ (i.e., all the jobs of τ_1 released within $[0, T_2)$ are completed before the second job of τ_2 is released)
 - The task set is schedulable if $(F+1)C_1 + C_2 \le T_2$
 - We prove that $C_1+C_2 \leq T_1 \Rightarrow (F+1)C_1+C_2 \leq T_2$
- Case 2 (right): $C_1 \ge T_2 FT_1$ (i.e., some job of τ_1 released within $[0, T_2)$ is not completed before the second job of τ_2 is released)
 - The task set is schedulable if $FC_1 + C_2 \le FT_1$
 - We prove that $C_1 + C_2 \le T_1 \Rightarrow F C_1 + C_2 \le F T_1$

Images adapted from "Hard real-time computing systems" by Prof. G. Buttazzo

Laura Carnevali Real-time systems Periodic task scheduling 52 / 128

- Case 1: We prove that $C_1 + C_2 \le T_1 \Rightarrow (F+1)C_1 + C_2 \le T_2$
 - $C_1 + C_2 \le T_1 \Rightarrow F C_1 + F C_2 \le F T_1$ given that $F \ge 1 \Rightarrow$ $\Rightarrow F C_1 + C_2 \le F C_1 + F C_2 \le F T_1$ given that $F \ge 1 \Rightarrow$ $\Rightarrow (F+1)C_1 + C_2 \le F T_1 + C_1 \Rightarrow$ $\Rightarrow (F+1)C_1 + C_2 \le F T_1 + C_1 < T_2$ given that $C_1 < T_2 F T_1 \Rightarrow$ $\Rightarrow (F+1)C_1 + C_2 < T_2$
- Case 2: We prove that $C_1 + C_2 \le T_1 \Rightarrow FC_1 + C_2 \le FT_1$
 - $C_1 + C_2 \le T_1 \Rightarrow FC_1 + FC_2 \le FT_1$ given that $F \ge 1 \Rightarrow FC_1 + C_2 \le FC_1 + FC_2 \le FT_1$ given that $F \ge 1 \Rightarrow FC_1 + C_2 \le FT_1$

Laura Carnevali Real-time systems Periodic task scheduling 53/128

RM guarantee test (Liu & Layland, 1973)

Theorem

If $U \le n(2^{1/n} - 1)$ for a set Γ of n pure periodic tasks $\Rightarrow \Gamma$ is schedulable by RM

- The test is only sufficient
- Polynomial complexity O(n) with respect to the number n of tasks
- Proof methodology
 - Assign priorities to tasks according to RM
 - Assume simultaneous task arrivals (worst case scenario for the task set)
 - Increase all computation times so as to fully utilize the processor
 - ullet Compute the upper bound U_{ub} on U
 - ullet Minimize $U_{
 m ub}$ with respect to all the other parameters so as to derive $U_{
 m lub}$

C. L. Liu, J. W. Layland, "Scheduling algorithms for multiprogramming in a hard-real-time environment", Journal of the ACM, 20(1), 1973

Laura Carnevali Real-time systems Periodic task scheduling $54\ /\ 128$

RM guarantee test: proof for 2 tasks (1/5)

- Consider a task set Γ made of 2 periodic tasks τ_1 and τ_2 with $T_1 < T_2$
- Number of periods of τ_1 entirely contained in τ_2 : $F \coloneqq \lfloor T_2/T_1 \rfloor$
- Case 1 (left): $C_1 < T_2 FT_1$ (i.e., all the jobs of τ_1 released within $[0, T_2)$ are completed before the second job of τ_2 is released)
- Case 2 (right): $C_1 \ge T_2 FT_1$ (i.e., some job of τ_1 released within $[0, T_2)$ is not completed before the second job of τ_2 is released)
- ullet In both cases, we maximize C_2 and we derive $U_{
 m ub}$ as a function of C_1

Images adapted from "Hard real-time computing systems" by Prof. G. Buttazzo

Laura Carnevali Real-time systems Periodic task scheduling 55 / 128

RM guarantee test: proof for 2 tasks (2/5)

- Case 1: $C_1 < T_2 FT_1$ (i.e., all the jobs of τ_1 released within $[0, T_2)$ are completed before the second job of τ_2 is released)
 - $C_2^{\max} = T_2 (F+1)C_1$

•
$$U_{\text{ub}} := \frac{C_1}{T_1} + \frac{C_2^{\text{max}}}{T_2} = \frac{C_1}{T_1} + 1 - \frac{C_1}{T_2} (F+1) = 1 + \frac{C_1}{T_2} \left(\frac{T_2}{T_1} - (F+1) \right)$$

- $\frac{T_2}{T_1} (F+1) \le 0$ given that $F := \lfloor T_2/T_1 \rfloor \Rightarrow$
 - $\Rightarrow U_{\rm ub}$ decreases with $C_1 \Rightarrow$
 - \Rightarrow The minimum value of U_{ub} occurs for C_1 = T_2 FT_1

Images adapted from Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

RM guarantee test: proof for 2 tasks (3/5)

- Case 2: $C_1 \ge T_2 FT_1$ (i.e., some job of τ_1 released within $[0, T_2)$ is not completed before the second job of τ_2 is released)
 - $C_2^{\max} = F(T_1 C_1)$

•
$$U_{\text{ub}} := \frac{C_1}{T_1} + \frac{F(T_1 - C_1)}{T_2} = F\frac{T_1}{T_2} + \frac{C_1}{T_2} \left(\frac{T_2}{T_1} - F\right)$$

- $\frac{T_2}{T_1} F \ge 0$ given that $F := \lfloor T_2/T_1 \rfloor \Rightarrow$
 - $\Rightarrow U_{\rm ub}$ increases with $C_1 \Rightarrow$
 - \Rightarrow The minimum value of $U_{\rm ub}$ occurs for C_1 = T_2 $F\,T_1$

Images adapted from Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 57 / 128

RM guarantee test: proof for 2 tasks (4/5)

ullet Compute the minimum value $U_{
m ub}^{{
m min},C_1}$ of $U_{
m ub}$ with respect to C_1 :

$$U_{\text{ub}}^{\min,C_{1}} = U_{\text{ub}} \mid_{C_{1}=T_{2}-F} T_{1} = F \frac{T_{1}}{T_{2}} + \frac{T_{2}-FT_{1}}{T_{2}} \left(\frac{T_{2}}{T_{1}} - F\right) =$$

$$= F \frac{T_{1}}{T_{2}} + \left(1 - F \frac{T_{1}}{T_{2}}\right) \left(\frac{T_{2}}{T_{1}} - F\right) = F \frac{T_{1}}{T_{2}} + \frac{T_{1}}{T_{2}} \frac{T_{2}}{T_{1}} \left(1 - F \frac{T_{1}}{T_{2}}\right) \left(\frac{T_{2}}{T_{1}} - F\right) =$$

$$= F \frac{T_{1}}{T_{2}} + \frac{T_{1}}{T_{2}} \left(\frac{T_{2}}{T_{1}} - F\right) \left(\frac{T_{2}}{T_{1}} - F\right) = \frac{T_{1}}{T_{2}} \left(F + \left(\frac{T_{2}}{T_{1}} - F\right)^{2}\right)$$

Image from Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 58 / 128

RM guarantee test: proof for 2 tasks (5/5)

- Decimal part of T_2/T_1 : $G \coloneqq T_2/T_1 F$ where $F \coloneqq \lfloor T_2/T_1 \rfloor$
- Compute $U_{\rm ub}^{\min,C_1} = \frac{T_1}{T_2} \left(F + \left(\frac{T_2}{T_1} F \right)^2 \right)$ as a function of G:

$$U_{\text{ub}}^{\min,C_1} = \frac{F+G^2}{T_2/T_1} = \frac{F+G^2}{T_2/T_1+F-F} = \frac{F+G^2}{F+G}$$
$$= \frac{F+G-G+G^2}{F+G} = 1 - \frac{G(1-G)}{F+G}$$

$$0 \le G < 1 \Rightarrow G(1 - G) \ge 0 \Rightarrow U_{\text{ub}}^{\min, C_1}$$
 increases with F

 \bullet Compute the minimum value $U_{\mathrm{ub}}^{\min,C_1,F}$ of $U_{\mathrm{ub}}^{\min,C_1}$ with respect to F:

$$U_{\rm ub}^{\min,C_1,F} = U_{\rm ub}^{\min,C_1} \mid_{F=1} = \frac{T_1}{T_2} \left(1 + \left(\frac{T_2}{T_1} - 1 \right)^2 \right) = \frac{k^2 - 2k + 2}{k} \text{ with } k = \frac{T_2}{T_1}$$

• Compute U_{lub} as the minimum value of $U_{\mathrm{ub}}^{\min,C_1,F}$ with respect to k:

$$\frac{dU_{\text{ub}}^{\min,C_1,F}}{dk} = \frac{(2k-2)k - (k^2 - 2k + 2)}{k} = \frac{k^2 - 2}{k^2} = 0 \text{ for } k = \sqrt{2} \Rightarrow$$

$$\Rightarrow U_{\text{lub}} = U_{\text{ub}}^{\min,C_1,F} \mid_{k=1/2} = 2(\sqrt{2} - 1) \approx 0.83$$

RM guarantee test: the case of tasks with harmonic periods

- Consider two periodic tasks τ_1 and τ_2 with harmonic periods $T_1 < T_2$
 - $\frac{T_2}{T_1} \in \mathbb{N}$ by definition of harmonic periods and by the fact that $T_1 < T_2 \Rightarrow F := \left\lfloor \frac{T_2}{T_1} \right\rfloor = \frac{T_2}{T_1} \Rightarrow U_{\text{lub}} = \frac{T_1}{T_2} \left(F + \left(\frac{T_2}{T_1} F \right)^2 \right) = 1$
 - Example: $C_1 = 2$, $T_1 = 4$, $C_2 = 4$, $T_2 = 8 \Rightarrow U = \frac{2}{4} + \frac{4}{8} = 1$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 60 / 128

RM guarantee test: proof for n tasks (1/3)

- ullet Worst case conditions for the schedulabiliy of 2 tasks with $T_1 < T_2$
 - $C_1 = T_2 F T_1$ and $F = 1 \Rightarrow T_2 < 2T_1$ (given that F = 1), $C_1 = T_2 - F T_1 = T_2 - T_1$, $C_2 = F(T_1 - C_1) = T_1 - C_1 = T_1 - (T_2 - T_1) = 2T_1 - T_2$
- Worst case conditions for the schedulability of n tasks with $T_1 < T_2 < \cdots < T_n$
 - $T_n < 2T_1$, $C_1 = T_2 T_1$, $C_2 = T_3 T_2$, ..., $C_n = T_1 - (\sum_{i=1}^{n-1} C_i) = T_1 - (T_2 - T_1) - (T_3 - T_2) \cdots - (T_n - T_{n-1}) = 2T_1 - T_n$

Images by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

RM guarantee test: proof for n tasks (2/3)

 $\bullet\,$ Compute the upper bound on U based on worst case schedulability conditions

$$U_{\text{ub}} = \sum_{i=1}^{n} \frac{C_i}{T_i} = \frac{T_2 - T_1}{T_1} + \frac{T_3 - T_2}{T_2} + \dots + \frac{T_n - T_{n-1}}{T_{n-1}} + \frac{2T_1 - T_n}{T_n}$$
$$= \frac{T_2}{T_1} + \frac{T_3}{T_2} + \dots + \frac{T_n}{T_{n-1}} + \frac{2T_1}{T_n} - n$$

• Define $R_i = \frac{T_{i+1}}{T_i} \ \forall i \in \{1, \dots, n-1\}$ and note that $\prod_{i=1}^{n-1} R_i = \frac{T_n}{T_1}$

$$U_{\rm ub} = \sum_{i=1}^{n} R_i + \frac{2}{R_1 R_2 \cdots R_{n-1}} - n$$

• Minimize $U_{\rm ub}$ with respect to $R_i \,\, \forall \, i \in \{1,\ldots,n-1\}$

$$\begin{split} &\frac{\partial U_{\mathrm{ub}}}{\partial R_{i}} = 1 - \frac{2}{R_{i}^{2}} \frac{1}{R_{1} R_{2} \cdots R_{i-1} R_{i+1} \cdots R_{n}} = 1 - \frac{2}{R_{i} P} \text{ where } P \coloneqq \prod_{i=1}^{n-1} R_{i} \Rightarrow \\ &\Rightarrow \frac{\partial U_{\mathrm{ub}}}{\partial P} = 0 \text{ for } R_{i} P = 2 \Rightarrow U_{\mathrm{ub}} \text{ is minimum if } R_{i} P = 2 \ \forall \ i \in \{1, \dots, n-1\} \end{split}$$

•
$$R_i P = 2 \ \forall i \in \{1, \dots, n-1\}$$
 if $R_i = 2^{\frac{1}{n}}$, which yields $P = (2^{\frac{1}{n}})^{n-1}$

RM guarantee test: proof for n tasks (3/3)

ullet Compute the least upper bound on U

$$U_{\text{lub}} = \sum_{i=1}^{n} R_i + \frac{2}{P} - n \Big|_{R=2^{\frac{1}{n}}, P=(2^{\frac{1}{n}})^{n-1}} = (n-1)2^{\frac{1}{n}} + \frac{2}{(2^{\frac{1}{n}})^{n-1}} - n =$$

$$= n 2^{\frac{1}{n}} - 2^{\frac{1}{n}} + \frac{2}{(2^{\frac{1}{n}})^{n-1}} - n = n 2^{\frac{1}{n}} - 2^{\frac{1}{n}} + \frac{2}{(2^{\frac{n-1}{n}})} - n$$

$$= n 2^{\frac{1}{n}} - 2^{\frac{1}{n}} + \frac{2}{(2^{1-\frac{1}{n}})} - n = n 2^{\frac{1}{n}} - 2^{\frac{1}{n}} + 2^{\frac{1}{n}} - n = n (2^{\frac{1}{n}} - 1)$$

n	U_{lub}
1	1.000
2	0.828
3	0.780
4	0.757
5	0.743
10	0.718
20	0.705
50	0.698
100	0.696
1000	0.693

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 63 / 128

RM hyperbolic bound (Bini et al, 2003)

Theorem

If
$$\prod_{i=1}^{n} (U_i + 1) \le 2$$
 for a set Γ of n pure periodic tasks $\Rightarrow \Gamma$ is schedulable by RM

• Worst case conditions for the schedulability of n tasks with $T_1 < T_2 < \cdots < T_n$: $T_n < 2T_1$, $C_1 = T_2 - T_1$, $C_2 = T_3 - T_2$, ..., $C_n = T_1 - (\sum_{i=1}^{n-1} C_i) = 2T_1 - T_n$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

E. Bini, G. C. Buttazzo, G. M. Buttazzo, "Rate monotonic scheduling: The hyperbolic bound", IEEE Trans. on Comp., 52(7):933–942, July 2003

RM hyperbolic bound: proof

$$\bullet \ \ R_i \coloneqq \frac{T_{i+1}}{T_i} \ \forall \ i \in \{1, \dots, n-1\} \Rightarrow R_i = \frac{T_{i+1} - T_i + T_i}{T_i} = U_i + 1 \ \text{and} \ \prod_{i=1}^{n-1} R_i = \frac{T_n}{T_1}$$

Proof.

• The worst case schedulability condition is $\sum_{i=1}^{n} C_i \leq T_1 \Rightarrow$

$$\Rightarrow \sum_{i=1}^{n-1} C_i + C_n \le T_1 \Rightarrow C_n \le T_1 - \sum_{i=1}^{n-1} C_i \Rightarrow C_n \le 2T_1 - T_n \text{ given that }$$

$$\sum_{i=1}^{n} C_i = T_n - T_1$$
 by the worst case schedulability conditions \Rightarrow

$$\Rightarrow U_n \le \frac{2T_1}{T_n} - 1 \Rightarrow U_n + 1 \le \frac{2T_1}{T_n} = \frac{2}{\prod_{i=1}^{n-1} R_i} = \frac{2}{\prod_{i=1}^{n-1} (U_i + 1)} \Rightarrow$$

$$\Rightarrow \prod_{i=1}^{n} (U_i + 1) \leq 2$$

RM: Liu & Layland bound vs hyperbolic bound

- The hyperbolic bound is tight, i.e., if the hyperbolic bound is not satisfied ⇒
 ⇒ an unfeasible RM schedule exists with that processor utilization
- Gain achieved by hyperbolic (HB) bound over the Liu & Layland (LL) bound
 - $\bullet\,$ Ratio between the hypervolumes in the $U\mbox{-space}$ of the task sets found schedulable by the HB bound and by the LL bound
 - Increases with n and tends to $\sqrt{2}$ when n tends to infinity

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 66 / 128

Deadline Monotonic (DM) scheduling

Laura Carnevali Real-time systems Periodic task scheduling 67 / 128

DM: salient traits (Leung & Whitehead, 1982)

- Extension of RM to periodic tasks with **constrained deadlines** (i.e., $D_i \le T_i$)
- Preemptive static online scheduling algorithm
- A task has a fixed priority inversely proportional to its relative deadline
- Example: priority τ_1 > priority τ_2

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

J. Leung, J. Whitehead, "On the complexity of fixed-priority scheduling of periodic real-time tasks", Performance Evaluation, 2(4):237–250, 1982

Laura Carnevali Real-time systems Periodic task scheduling 68 / 128

DM: optimality

Theorem

DM is **optimal** in the sense of **feasibility** among all **fixed priority** algorithms (for scheduling of periodic task with constrained deadlines):

- If a fixed priority schedule is feasible for a task set $\Gamma \Rightarrow$
 - \Rightarrow The DM schedule is feasible for Γ
- If the DM schedule is not feasible for a task set $\Gamma \Rightarrow$
 - \Rightarrow No fixed priority schedule is feasible for Γ
- Note that the two statements are equivalent $(a \Rightarrow b \text{ if and only if } \neg b \Rightarrow \neg a)$

Laura Carnevali Real-time systems Periodic task scheduling 69 / 128

DM: problem with the LL bound and the HB bound

- Use the LL bound and the HB bound by replacing periods with deadlines: the processor workload is overestimated ⇒ the test result is too pessimistic!
- Example where tests based on the processor utilization are not conclusive:
 - The LL bound is not satisfied: $\frac{C_1}{D_1} + \frac{C_2}{D_2} = \frac{2}{3} + \frac{3}{6} = \frac{7}{6} > 1$
 - The HB bound is not satisfied: $\left(\frac{C_1}{D_1} + 1\right) \left(\frac{C_2}{D_2} + 1\right) = \left(\frac{2}{3} + 1\right) \left(\frac{3}{6} + 1\right) = \frac{5}{2} > 2$
 - But the task set is schedulable!

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 70 / 128

DM: response time analysis (Audlsey et al, 1993)

- For each task τ_i :
 - 1. Compute the **interference** I_i due to higher priority tasks in the interval $[0, R_i]$:

$$\begin{split} I_i &= \sum_{\tau_k \, | \, D_k < D_i} z_{ik} C_k \text{ where } z_{ik} \coloneqq \text{number of releases of } \tau_k \text{ in } \left[0, R_i\right] \Rightarrow \\ &\Rightarrow I_i = \sum_{k=1}^{i-1} \left\lceil \frac{R_i}{T_k} \right\rceil C_k \text{ assuming tasks ordered by increasing relative deadline} \end{split}$$

2. Compute the **response time** R_i :

$$R_i = C_i + I_i = C_i + \sum_{k=1}^{i-1} \left[\frac{R_i}{T_k} \right] C_k$$

- 3. Verify that $R_i \leq D_i$
- The worst case response time is the smallest value satisfying the equation

N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, A. J. Wellings, "Applying new scheduling theory to static priority preemptive scheduling", Software Engineering Journal, 8(5):284–292, Sept. 1993

Laura Carnevali Real-time systems Periodic task scheduling 71 / 128

- Iterative solution to derive the smallest R_i satisfying R_i = C_i + $\sum_{k=1}^{i-1} \left\lceil \frac{R_i}{T_k} \right\rceil C_k$
 - Step 0: $R_i^{(0)} = \sum_{k=1}^i C_k$ (min response time with synchronous task arrivals)
 - Step j > 0: $R_i^{(j)} = C_i + \sum_{k=1}^{i-1} \left[\frac{R_i^{(j-1)}}{T_k} \right] C_k$
 - Iterate while $\left(R_i^{(j)} > R_i^{(j-1)} \&\& R_i^{(j)} \le D_i\right) \; \forall \; j > 0$

```
input : A set \Gamma of n periodic tasks \tau_1,\dots,\tau_n with constrained deadlines output : TRUE if the task set \Gamma is schedulable by DM, FALSE otherwise 

1 foreach task \tau_i \in \Gamma do 
2 I_i = \sum_{k=1}^{i-1} C_k 
3 do 
4 I_i = R_i + C_i 
5 if R_i > D_i then 
6 | return FALSE 
7 end 
8 I_i = \sum_{k=1}^{i-1} \left\lceil \frac{R_i}{T_k} \right\rceil C_k 
9 while I_i + C_i > R_i; 
10 end 
11 return TRUE
```

Laura Carnevali Real-time systems Periodic task scheduling $72\ /\ 128$

- Pseudo-polynomial complexity $O(n \cdot N)$, i.e., polynomial complexity in the number of elements of an input set and in the values of the input set
 - ullet Polynomial complexity in the number n of tasks
 - \bullet Polynomial complexity in the maximum number N of iterations per task, which mainly depends on the relations among task periods

```
: A set \Gamma of n periodic tasks \tau_1, \ldots, \tau_n with constrained deadlines
                : TRUE if the task set \Gamma is schedulable by DM. FALSE otherwise
1 foreach task \tau_i \in \Gamma do
          I_i = \sum_{k=1}^{i-1} C_k
          do
 3
                R_i = I_i + C_i
                if R_i > D_i then
                       return FALSE
                end
 7
               I_i = \sum_{k=1}^{i-1} \left[ \frac{R_i}{T_k} \right] C_k
 8
          while I_i + C_i > R_i:
10 end
11 return TRUE
```

Laura Carnevali Real-time systems Periodic task scheduling 73/128

DM: example of an unfeasible schedule (1/2)

task $ au_i$	C_i	T_i	D_i
τ_1	2	8	4
τ_2	2	6	5
τ_3	4	12	8

- $R_1^{(0)} = C_1 = 2 < D_1$; $R_1^{(1)} = C_1 = 2 < D_1 \Rightarrow R_1 = 2$
- $R_2^{(0)} = C_1 + C_2 = 4 < D_2$; $R_2^{(1)} = C_2 + \lceil R_2^{(0)} / T_1 \rceil C_1 = C_2 + C_1 = 4 < D_2 \Rightarrow R_2 = 4$ (note that the task response is the maximum among the job response times)
- $R_3^{(0)} = C_1 + C_2 + C_3 = 8 = D_3$; $R_3^{(1)} = C_3 + \left[R_3^{(0)}/T_1\right]C_1 + \left[R_3^{(0)}/T_2\right]C_2 = C_3 + C_1 + 2C_2 = 10 > D_3 \Rightarrow$ the DM schedule is **unfeasible** for the task set

Laura Carnevali Real-time systems Periodic task scheduling 74 / 128

DM: example of an unfeasible schedule (2/2)

 $\bullet\,$ The estimated response time increases at each task release: R_3 = 12

Laura Carnevali Real-time systems Periodic task scheduling 75 / 128

DM: example of a feasible schedule (1/2)

task $ au_i$	C_i	T_i	D_i
$ au_1$	2	8	4
τ_2	2	6	5
τ_3	2	12	8

- \bullet The response times of τ_1 and τ_2 remain the same: R_1 = 2 < D_1 , R_2 = 4 < D_2
- $R_3^{(0)} = C_1 + C_2 + C_3 = 6 < D_3$; $R_3^{(1)} = C_3 + \lceil R_3^{(0)} / T_1 \rceil C_1 + \lceil R_3^{(0)} / T_2 \rceil C_2 = C_3 + C_1 + C_2 = 6 < D_3 \Rightarrow$ the DM schedule is **feasible** for the task set

Laura Carnevali Real-time systems Periodic task scheduling 76 / 128

DM: example of a feasible schedule (2/2)

ullet The estimated response time increases at each task release: R_3 = 6

Laura Carnevali Real-time systems Periodic task scheduling 77 / 128

Earliest Deadline First (EDF) scheduling

Laura Carnevali Real-time systems Periodic task scheduling 78 / 128

- Preemptive dynamic online scheduling algorithm
- Addressing scheduling of pure periodic tasks (i.e., $D_i = T_i \ \forall \ \text{task} \ \tau_i$)
- A task has a dynamic priority inversely proportional to its absolute deadline
- Example: C_1 = 3, T_1 = D_1 = 6; C_2 = 4, T_1 = D_1 = 9

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling $79\ /\ 128$

EDF schedule vs RM schedule

The EDF schedule is feasible for the task set:

• The RM schedule is not feasible for the task set:

- Tests based on the Liu & Layland and hyperbolic bounds are inconclusive, i.e., they do not permit assessing the feasibility of the RM schedule:
 - $U = C_1/T_1 + C_2/T_2 = 3/6 + 4/9 = 0.944 > 2(\sqrt{2} 1) = 0.828$
 - $(U_1+1)(U_2+1)=(3/6+1)(4/9+1)=13/6>2$

Images by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 80 / 128

EDF guarantee test (1/2) (Liu & Layland, 1973)

Theorem

A set of pure periodic tasks is schedulable by EDF if and only if $U \le 1$

- The test is necessary and sufficient
- Polynomial complexity O(n) with respect to the number n of tasks
- Necessity: if a set of pure periodic tasks is schedulable by EDF $\Rightarrow U \le 1$ (i.e., if $U > 1 \Rightarrow$ a set of pure periodic tasks is not schedulable by EDF)
- Sufficiency: if $U \le 1 \Rightarrow$ a set of pure periodic tasks is schedulable by EDF (i.e., if a set of pure periodic tasks is not schedulable by EDF $\Rightarrow U > 1$)

Proof of necessity.

- If $U > 1 \Rightarrow UT > T$ given that $T = T_1T_2 \cdots T_n > 0 \Rightarrow$
 - $\Rightarrow \sum_{i=1}^{n} \frac{C_i}{T_i} T > T$ by definition of $U \Rightarrow \sum_{i=1}^{n} \frac{T}{T_i} C_i > T \Rightarrow$
 - \Rightarrow the total demand in [0,T) is larger than $T\Rightarrow$ the task set is not feasible

81 / 128

C. L. Liu, J. W. Layland, "Scheduling algorithms for multiprogramming in a hard-real-time environment", Journal of the ACM, 20(1), 1973

Proof of sufficiency (by contradiction).

- ullet We assume that the task set is not schedulable by EDF and U < 1:
 - $t_2 :=$ first time instant at which a deadline is missed
 - $[t_1,t_2]$:= longest interval of continuous utilization before t_2 during which only jobs $\tau_{i,k}$ with arrival time $a_{i,k} \ge t_1$ and absolute deadline $d_{i,k} \le t_2$ are executed
 - $C_p(t_1,t_2) \coloneqq$ total processor demand during the interval $[t_1,t_2] \Rightarrow$

$$C_p(t_1, t_2) = \sum_{\tau_{i,k} \mid a_{i,k} \ge t_1 \land d_{i,k} \le t_2} C_i = \sum_{i=1}^n \left\lfloor \frac{t_2 - t_1}{T_i} \right\rfloor C_i \le \sum_{i=1}^n \frac{t_2 - t_1}{T_i} C_i = (t_2 - t_1) U$$

• $C_p(t_1,t_2) > t_2 - t_1$ given that a deadline is missed at $t_2 \Rightarrow t_2 - t_1 < C_p(t_1,t_2) \le (t_2 - t_1)U \Rightarrow U > 1$, which is a contradiction

Laura Carnevali Real-time systems Periodic task scheduling 82 / 128

EDF optimality (Dertouzos, 1974)

Theorem

EDF is optimal in the sense of feasibility among all algorithms:

- If a schedule is feasible for a task set $\Gamma \Rightarrow$
 - \Rightarrow The EDF schedule is feasible for Γ
- If the EDF schedule is not feasible for a task set $\Gamma \Rightarrow$
 - \Rightarrow No schedule is feasible for Γ
- Note that the two statements are equivalent $(a \Rightarrow b \text{ if and only if } \neg b \Rightarrow \neg a)$
- Note that this result is independent of periodicity

M. L. Dertouzos, "Control robotics: the procedural control of physical processes", Information Processing, 74, 1974

- A feasible schedule σ for task set Γ is divided into time slices of one time unit (note that the time slice duration could be arbitrary small):
 - $\sigma(t) := \text{task executing during the time slice } [t, t+1)$
 - E(t) := index of the task with minimum absolute deadline at t
 - $t_E := \text{time } \ge t$ at which $\tau_{E(t)}$ is executed first
 - $d_{\max} \coloneqq \max_{i \in \{1, \dots, n\}} \{d_i\}$ (maximum absolute deadline)
- Schedule σ is transformed into an EDF schedule $\sigma_{\rm EDF}$:

Laura Carnevali Real-time systems Periodic task scheduling 84 / 128

EDF optimality: proof (2/3)

Images from "Hard real-time computing systems" by Prof. G. Buttazzo $\,$

- A transposition preserves schedulability, i.e., $\sigma_{\rm EDF}$ is feasible for Γ
 - If a time slice of task τ_i is anticipated \Rightarrow The feasibility of τ_i is preserved
 - If a time slice of task τ_i is postponed at $t_E \Rightarrow$
 - $\Rightarrow t_E + 1 \le d_E$ with $d_E :=$ earliest absolute deadline at t, since σ is feasible \Rightarrow
 - $\Rightarrow t_E + 1 \le d_E \le d_i \ \forall \text{ task } \tau_i \text{ by definition of } d_E \Rightarrow$
 - \Rightarrow the time slice postponed at t_E is schedulable

Laura Carnevali Real-time systems Periodic task scheduling 86 / 128

EDF optimality wrt minimizing max lateness (Jackson, 1955)

Theorem

Given a set of n independent tasks, any algorithm that executes the tasks in order of non-decreasing absolute deadlines is optimal with respect to minimizing the maximum lateness $L_{\max} := \max_{i \in \{1,\dots,n\}} \{L_i\}$

- Note that this result is independent of periodicity
- If an algorithm minimizes $L_{\rm max} \Rightarrow$ It is optimal in the sense of feasibility (the opposite is not true)

Image adapted from Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

J. R. Jackson, "Scheduling a production line to minimize maximum tardiness", Management Science Research Proj. 43, Univ. of California, LA, USA, 1955

Laura Carnevali Real-time systems Periodic task scheduling 87/128

EDF optimality wrt minimizing max lateness: proof

Proof.

- Consider the transposition by Dertouzos (see EDF optimality proof)
- ullet A transposition between two slices Σ_a and Σ_b cannot increase L_{\max}
 - Let Σ_a be anticipated (i.e., $f_a' < f_a$) and Σ_b be postponed (i.e., $f_b' > f_b$)
 - If $L'_a \ge L'_b \Rightarrow L'_{\max} = L'_a = f'_a d_a < f_a d_a = L_{\max}$ given that $f'_a < f_a$
 - If $L'_a \le L'_b \Rightarrow L'_{\max} = L'_b = f'_b d_b = f_a d_b < f_a d_a = L_{\max}$ given that $d_a < d_b$
- By a finite number of transpositions, σ can be transformed in $\sigma_{\rm EDF}$, and, given that the maximum lateness cannot increase, $\sigma_{\rm EDF}$ is optimal

Image from "Hard real-time computing systems" by Prof. G. Buttazzo

EDF with constrained deadlines (Baruah et al, 1990)

Processor demand criterion

A set of n periodic tasks $\{\tau_1,\ldots,\tau_n\}$ with $D_i\leq T_i$ \forall task τ_i is schedulable by EDF if and only if in any interval of time $[t_1,t_2]$ the processor demand $g(t_1,t_2)$ does not exceed the available time, i.e., $g(t_1,t_2)\leq t_2-t_1$ \forall t_1,t_2 with $t_1< t_2$

• The processor demand in the time interval $[t_1, t_2]$ is the processing time requested by jobs activated in $[t_1, t_2]$ with absolute deadline $\leq t_2$:

$$g(t_1, t_2) = \sum_{i=1}^{n} \eta_i(t_1, t_2) C_i$$

where $\eta_i(t_1, t_2)$ is the no. of jobs of τ_i contributing to demand in $[t_1, t_2]$:

- $\eta_i(t_1, t_2) \coloneqq |\{\tau_{i,k} \mid a_{i,k} \in [t_1, t_2] \land d_{i,k} \le t_2\}| = \max\{0, K_2^i K_1^i\}$
- $K_2^i := |\{\tau_{i,k} \mid a_{i,k} \in [\phi_i, t_2] \land d_{i,k} \le t_2\}| = [t_2 + T_i D_i \phi_i/T_i]$
- $K_1^i := |\{\tau_{i,k} \mid a_{i,k} \in [\phi_i, t_1]\}| = [t_1 \phi_i/T_i]$

Image by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

S. K. Baruah, L. E. Rosier, R. R. Howell, "Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on one processor", Journal of Real-Time Systems, 2, 1990

Laura Carnevali Real-time systems Periodic task scheduling 89 / 128

EDF with constrained deadlines: evaluation of K_1

 $\bullet \ K_1^i \coloneqq |\{\tau_{i,k} \mid a_{i,k} \in [\phi_i, t_1]\}| = \lceil t_1 - \phi_i/T_i \rceil$

Laura Carnevali Real-time systems Periodic task scheduling 90 / 128

Real-time systems Periodic task scheduling 91 / 128

EDF with constrained deadlines: demand bound function

• Worst case scenario: all tasks activated at time 0 (i.e., $\phi_i = 0 \ \forall \ \text{task} \ \tau_i$):

$$\mathsf{dbf}(t) \coloneqq g(0,t) = \sum_{i=1}^n \eta_i(0,t) C_i = \sum_{i=1}^n \Big\lfloor \frac{t + T_i - D_i}{T_i} \Big\rfloor C_i$$

Remark

A synchronous set of n periodic tasks $\{\tau_1,\ldots,\tau_n\}$ with $D_i \leq T_i \ \forall$ task τ_i is schedulable by EDF if and only if $\mathrm{dbf}(t) \leq t \ \forall \ t>0$

Image adapted from Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling $92\ /\ 128$

- 1. Synchronous set of periodic tasks \Rightarrow Verify the criterion only for $t \leq H$ (where H is the hyper-period of the task-set)
- 2. $\operatorname{dbf}(t)$ is a step function that increases when t equals an absolute deadline \Rightarrow
 - \Rightarrow if dbf(t) < t for $t = d_i$ then dbf(t) < t $\forall t \mid d_i \le t < d_{i+1} \Rightarrow$
 - \Rightarrow Verify the criterion only for values of t equal to absolute deadlines
- 3. Verify the criterion at least until $d_{\max} \coloneqq \max_i \{d_i\} \le H$

Laura Carnevali Real-time systems Periodic task scheduling 93 / 128

EDF with constrained deadlines: bounding complexity (2/2)

4.
$$\operatorname{dbf}(t) = \sum_{i=1}^{n} \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor C_i \leq \sum_{i=1}^{n} \frac{t + T_i - D_i}{T_i} C_i = \sum_{i=1}^{n} (T_i - D_i) U_i + t U \Rightarrow$$

$$\Rightarrow G(0, t) := \sum_{i=1}^{n} (T_i - D_i) U_i + t U \text{ is an increasing function with slope } U \Rightarrow$$

$$\Rightarrow$$
 if $U < 1$ then $\exists t^* \mid G(0, t^*) = t^*$ where $t^* = \sum_{i=1}^{\infty} (T_i - D_i)U_i/(1 - U) \Rightarrow$

 \Rightarrow dbf(t) \leq $G(0,t) \leq$ $t \forall t \geq$ $t^* \Rightarrow$ Verify the criterion only for $t < t^*$ (note that the task set considered in figure below is NOT schedulable)

Image adapted from Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Periodic task scheduling 94 / 128

- Recap: how to bound complexity?
 - 1. Verify the criterion only for $t \leq H$
 - 2. Verify the criterion only for values of t equal to absolute deadlines
 - 3. Verify the criterion at least until $d_{\max} := \max_i \{d_i\} \le H$
 - 4. Verify the criterion only for $t < t^*$

Processor demand test

A synchronous set of n periodic tasks $\{\tau_1,\ldots,\tau_n\}$ with $D_i \leq T_i \ \forall$ task τ_i is schedulable by EDF if and only if U < 1 and $\mathrm{dbf}(t) \leq t \ \forall \ t \in \mathcal{D}$ where $\mathcal{D} = \{d_i \mid d_i \leq \min\{d_{\max},t^*\}\}$ and $t^* = \sum_{i=1}^n (T_i - D_i)U_i/(1-U)$

Laura Carnevali Real-time systems Periodic task scheduling 95 / 128

RM vs EDF

- RM scheduling
 - ullet Less efficient (processor utilization nearly equal to 69% in the worst case)
 - Simpler to implement in commercial Real-Time Operating Systems (RTOSs)
 - More predictable during overloads (but low-priority tasks are blocked while high-priority tasks are executed at the proper rate)
- EDF scheduling
 - More efficient (processor utilization equal to 100%)
 - Lower number of preemptions ⇒ Lower overhead due to context switches
 - More flexible during overloads (all tasks executed at slower rate)
 - Better responsiveness in handling aperiodic tasks
 - More uniform jitter control

Laura Carnevali Real-time systems Periodic task scheduling 96 / 128

Periodic task scheduling: summary (1/2)

- 3 scheduling approaches
 - 1. offline (timeline scheduling)
 - 2. online static priority (RM, DM)
 - 3. online dynamic priority (EDF)
- 3 schedulability analysis techniques
 - 1. Utilization based analysis
 - LL bound for RM: $U \le n(2^{1/n} 1)$ (sufficient)
 - HB bound for RM: $\prod_{i=1}^{n} (U_i + 1) \le 2$ (sufficient)
 - LL bound for harmonic task sets: $U \le 1$ (necessary & sufficient)
 - EDF bound: $U \le 1$ (necessary & sufficient)
 - Polyomial complexity O(n)
 - 2. Response time analysis
 - $R_i \le D_i \ \forall \ i \in \{1,\dots,n\}$ with $R_i = C_i + \sum_{k=1}^{i-1} \lceil R_i / T_k \rceil C_k$ (necessary & sufficient)
 - Pseudo-polyomial complexity
 - 3. Processor demand analysis
 - $dbf(t) \le t \ \forall \ t \in \mathcal{D}$ (necessary & sufficient)
 - Pseudo-polyomial complexity

Laura Carnevali Real-time systems Periodic task scheduling 97 / 128

Periodic task scheduling: summary (2/2)

	$D_i = T_i \ \forall \ i \in \{1, \dots, n\}$	$\exists i \in \{1, \dots, n\} \mid D_i < T_i$
	LL bound for harmonic task sets	
RM	LL bound, HB bound	response time analysis
	response time analysis	
EDF	EDF bound	processor demand approach

3 schedulability analysis techniques

- 1. Utilization based analysis
 - LL bound for RM: $U \le n(2^{1/n} 1)$ (sufficient)
 - HB bound for RM: $\prod_{i=1}^{n} (U_i + 1) \le 2$ (sufficient)
 - EDF bound: $U \le 1$ (necessary & sufficient)
 - LL bound for harmonic task sets: $U \le 1$ (necessary & sufficient)
 - Polyomial complexity O(n)
- 2. Response time analysis
 - $R_i \le D_i \ \forall \ i \in \{1,\dots,n\}$ with $R_i = C_i + \sum_{k=1}^{i-1} \lceil R_i/T_k \rceil C_k$ (necessary & sufficient)
 - Pseudo-polyomial complexity
- 3. Processor demand analysis
 - $dbf(t) \le t \ \forall \ t \in \mathcal{D}$ (necessary & sufficient)
 - Pseudo-polyomial complexity

Laura Carnevali Real-time systems Periodic task scheduling 98 / 128

Resource access protocols

Resources

- **Resource**: any software structure used by a task to advance its execution (e.g., variables, files, devices, main memory areas)
 - Private resource: dedicated to a particular task
 - Shared resource: can be used by multiple tasks
- Exclusive resource: a shared resource protected against concurrent accesses
 - Resource access protocols: mechanisms that guarantee mutual exclusion
 - Critical section: piece of code executed under mutual exclusion

Images by Prof. G. Buttazzo, Scuola Superiore Sant'Anna, Pisa

Laura Carnevali Real-time systems Resource access protocols 99 / 128

Priority inversion (1/2)

- Priority inversion is a phenomenon where a high priority task is blocked by a low priority task for a time interval of unbounded duration
 - The blocking time of a task is a delay caused by lower priority tasks
 - E.g., τ_1 and τ_3 $(P_1 > P_3)$ share a resource managed by a binary semaphore S
 - ullet Blocking time of $au_1=$ Time needed by au_3 to execute the critical section

Image adapted from "Hard real-time computing systems" by Prof. G. Buttazzo

Laura Carnevali Real-time systems Resource access protocols 100 / 128

Priority inversion (2/2)

- The blocking time of the high priority task cannot be bounded by the duration of the critical section executed by the low priority task
 - E.g., Add a **mid priority** task τ_2 $(P_1 > P_2 > P_3)$
 - The maximum blocking time of τ_1 depends not only on the duration of the critical section of τ_3 but also on the WCET of τ_2

The solution to unbounded blocking is using resource access protocols

Image adapted from "Hard real-time computing systems" by Prof. G. Buttazzo

Resource access protocols: problem formulation (1/2)

- Set of n **periodic tasks** $\Gamma = \{\tau_1, \dots, \tau_n\}$ with each task τ_i characterized by:
 - Phase Φ_i , WCET C_i , period T_i , relative deadline $D_i \leq T_i$
 - Nominal (static, fixed) priority P_i (assigned by the application developer)
 - Dynamic (active) priority $p_i \ge P_i$ (initialized to P_i)
- A set of m shared resources $\Psi = \{R_1, \dots, R_m\}$
 - Each resource R_k guarded by a distinct binary semaphore S_k
- Assumptions
 - τ_1, \ldots, τ_n are released upon arrival
 - τ_1, \ldots, τ_n are subject to zero or negligible kernel overheads
 - τ_1, \ldots, τ_n have different nominal priority
 - τ_1, \ldots, τ_n are listed in increasing order of nominal prio (i.e., $P_1 > \ldots > P_n$)
 - τ_1, \ldots, τ_n suspend themselves only:
 - to wait the beginning of next period
 - on locked semaphores
 - Critical sections are guarded by binary semaphores and properly nested
 - $z_{i,k} \coloneqq$ critical section of task τ_i guarded by binary semaphore S_k
 - For any pair $z_{i,h}$, $z_{i,k}$, it holds that $z_{i,h} \subset z_{i,k}$ or $z_{i,k} \subset z_{i,h}$ or $z_{i,h} \cap z_{i,k} = \emptyset$

Resource access protocols: problem formulation (2/2)

- ullet Goal: derive the **maximum blocking time** B_i that a task τ_i can experience
- Protocol key aspects
 - Access rule: decides whether to block and when
 - Progress rule: decides how to execute inside a critical section
 - Release rule: decides how to order the pending requests of the blocked tasks

Laura Carnevali Real-time systems Resource access protocols $103 \, / \, 128$

Priority Inheritance Protocol (PIP) (Sha et al, 1990)

- Access rule: A task τ_i blocks at the entrance of a critical section $z_{i,k}$ if resource R_k is already held by a lower priority task τ_j
 - Task τ_i is said to be **blocked** by task τ_j
 - Blocked tasks are scheduled based on their dynamic priority
 - Blocked tasks with same priority scheduled by First Come First Served (FCFS)
- Progress rule: Inside a critical section associated with resource R_k a task executes with the highest priority of the tasks blocked on R_k
 - Task τ_j inherits the highest priority of the tasks it blocks:

$$p_j = \max\{P_j, \max_i\{P_i \mid \tau_i \text{ is blocked on } R_k\}\}$$

- Transitivity property: if au_3 blocks au_2 and au_2 blocks $au_1 \Rightarrow p_3$ = P_1
- Release rule: When τ_j exits the critical section associated with resource R_k :
 - Semaphore S_k is unlocked
 - ullet The highest priority task blocked on S_k (if any) is awakened
 - If no other task is blocked by τ_j then p_j = P_j otherwise
 τ_i inherits the highest priority of the tasks it blocks

L. Sha, R. Rajkumar, J. P. Lehoczky, "Priority inheritance protocols: An approach to real-time synchronization", IEEE Trans. on Comp., 39(9), Sept. 1990

PIP: types of blocking

- Direct blocking: occurs when a high priority task blocks at the entrance
 of the critical section of a resource already held by a low priority task
 - Necessary to ensure the consistency of shared resources
- Push-through blocking: occurs when a mid priority task is blocked by a low priority task that has inherited a higher priority from a task
 - Necessary to avoid priority inversion
- 3 tasks τ_1 , τ_2 , τ_3 with $P_1 > P_2 > P_3$ and with τ_1 and τ_3 share resource R

Image adapted from "Hard real-time computing systems" by Prof. G. Buttazzo

Laura Carnevali Real-time systems Resource access protocols $105 \ / \ 128$

PIP: nested critical sections

• 3 tasks au_1 , au_2 , au_3 : au_1 and au_3 share resource R_a ; au_2 and au_3 share resource R_b

Image adapted from "Hard real-time computing systems" by Prof. G. Buttazzo

Laura Carnevali Real-time systems Resource access protocols $106\ /\ 128$

PIP: transitive priority inheritance

- 3 tasks au_1 , au_2 , au_3 : au_1 and au_2 share resource R_a ; au_2 and au_3 share resource R_b
- ullet At time t_4 , task au_3 inherits the priority of task au_1 via task au_2

Image adapted from "Hard real-time computing systems" by Prof. G. Buttazzo

Laura Carnevali Real-time systems Resource access protocols $107 \, / \, 128$

PIP: properties (1/5)

When does blocking occur?

Lemma 1

A semaphore S_k can cause push-through blocking to a task τ_i only if S_k is accessed by a task with priority $\langle P_i \rangle$ and a task with priority $\langle P_i \rangle$

Proof.

Ab absurdo, assume that S_k is accessed by a task τ_l with priority $< P_i$ but not by a task with priority $> P_i \Rightarrow \tau_l$ cannot inherit a priority $> P_i \Rightarrow \tau_i$ will preempt τ_l

Real-time systems Resource access protocols 108 / 128

PIP: properties (2/5)

• When does transient priority inheritance occur?

Lemma 2

Transient priority inheritance can occur only in case of nested critical sections

Proof.

Transient priority inheritance occurs when a high priority task τ_h is blocked by a mid priority task τ_m that, in turn, is blocked by a low priority task $\tau_l \Rightarrow$

- $\Rightarrow \tau_m$ holds a semaphore S_a (given that τ_m blocks $\tau_h)$ and
- τ_l holds a different semaphore S_b (given that τ_l blocks τ_m) \Rightarrow
- $\Rightarrow \tau_m$ attempted to lock S_b inside the critical section guarded by $S_a \Rightarrow$
- ⇒ The two critical sections are nested

PIP: properties (3/5)

• How many times can a task be blocked?

Lemma 3

If there are l_i lower priority tasks that can block a task $\tau_i \Rightarrow$

 \Rightarrow au_i can be blocked for **at most** the duration of l_i critical sections

(one for each lower prio task, regardless of the number of semaphores used by au_i)

Proof.

 au_i can be blocked by a lower priority task au_j only if au_i has preempted au_j within a critical section $z_{i,k}$ that can block $au_i \Rightarrow$

 $\Rightarrow \tau_i$ can be preempted by τ_i once it exits $z_{i,k} \Rightarrow$

 $\rightarrow r_j$ can be preempted by r_i once it exits $z_{j,k}$ =

 \Rightarrow au_i cannot be blocked by au_j again \Rightarrow

 $\Rightarrow \tau_i$ can be blocked at most l_i times

PIP: properties (4/5)

• How many times can a task be blocked?

Lemma 4

If there are s_i distinct semaphores that can block a task $\tau_i \Rightarrow \tau_i$ can be blocked for **at most** the duration of s_i critical sections

(one for each semaphore, regardless of the number of critical sections used by au_i)

Proof.

Semaphores are binary ⇒

- \Rightarrow only one of the lower prio task au_j can be within a blocking critical section \Rightarrow
- $\Rightarrow \tau_i$ can be preempted by τ_i once τ_i exits such critical section \Rightarrow
- $\Rightarrow \tau_i$ cannot be blocked by τ_i again \Rightarrow
- $\Rightarrow \tau_i$ can be blocked at most s_i times

PIP: properties (5/5)

• How many times can a task be blocked?

Theorem 1

Under the Priority Inheritance Protocol (PIP), a task τ_i can be blocked for **at most** the duration of $\alpha_i = \min\{l_i, s_i\}$ critical sections, where:

- ullet l_i is the number of lower priority tasks that can block au_i
- ullet s_i is the number of semaphores that can block au_i

Proof.

The thesis directly follows from Lemmas 3 and 4

• Not tight bounds on blocking times of tasks are derived based on Theorem 1

Laura Carnevali Real-time systems Resource access protocols 112 / 128

PIP: summary (1/2)

- Advantages
 - Low pessimism (a task is blocked only when really needed)
 - Transparency to the programmer
 - Bounded blocking time (at most the duration of α_i critical sections)
- Disadvantages (1/2)
 - Computation of blocking times is quite complex (due to direct blocking, push-through blocking, transitive priority inheritance)
 - Implementation somewhat hard (requires modifying kernel data structures)
 - Prone to **chained blocking** (each task τ_i blocked α_i times in the worst case)

Image adapted from "Hard real-time computing systems" by Prof. G. Buttazzo

Laura Carnevali Real-time systems Resource access protocols 113 / 128

PIP: summary (2/2)

- Disadvantages (2/2)
 - Does not prevent deadlocks caused by wrong use of semaphores

Image from "Hard real-time computing systems" by Prof. G. Buttazzo

Laura Carnevali Real-time systems Resource access protocols $114 \ / \ 128$

Priority Ceiling Protocol (PCP) (1/2) (Sha et al, 1990)

- The priority ceiling $C(S_k)$ of a semaphore S_k is the highest priority among those of the tasks that can lock S_k , i.e., $C(S_k) \coloneqq \max_{i \in \{1, ..., n\}} \{P_i \mid \tau_i \text{ uses } S_k\}$
- Access rule: A task τ_i blocks at the entrance of a critical section if its priority is not higher than the maximum ceiling of the semaphores locked by other tasks, i.e., $P_i \leq \max\{C(S_k) \mid S_k \text{ locked by tasks } \neq \tau_i\}$
 - PCP access test for granting a lock request on a free semaphore
 - A task is not allowed to enter a critical section locked by a free semaphore
 if there are locked semaphores that could block it ⇒ Once a task enters its first
 critical section, it can never be blocked by lower prio tasks until its completion
- Progress rule is the same as in the PIP
- Release rule is the same as in the PIP

L. Sha, R. Rajkumar, J. P. Lehoczky, "Priority inheritance protocols: An approach to real-time synchronization", IEEE Trans. on Comp., 39(9), Sept. 1990

Laura Carnevali Real-time systems Resource access protocols $115 \ / \ 128$

Priority Ceiling Protocol (PCP) (2/2)

- **Progress** rule: Inside a critical section associated with resource R_k a task executes with the highest priority of the tasks blocked on R_k
 - Task τ_j inherits the highest priority of the tasks it blocks:

$$p_j = \max\{P_j, \max_i\{P_i \mid \tau_i \text{ is blocked on } R_k\}\}$$

- Transitivity property: if τ_3 blocks τ_2 and τ_2 blocks $\tau_1 \Rightarrow p_3$ = P_1
- Release rule: When τ_j exits the critical section associated with resource R_k :
 - ullet Semaphore S_k is unlocked
 - The highest priority task blocked on S_k (if any) is awakened
 - If no other task is blocked by τ_j then p_j = P_j otherwise τ_j inherits the highest priority of the tasks it blocks

Laura Carnevali Real-time systems Resource access protocols 116 / 128

PCP: ceiling blocking

- Ceiling blocking: occurs when a task is blocked given that it does not pass the PCP access test, i.e., $P_i \le \max\{C(S_k) \mid S_k \text{ locked by tasks } \neq \tau_i\}$
 - Necessary to avoid deadlock and chained blocking
- 3 tasks τ_1 , τ_2 , τ_3 with $P_1 > P_2 > P_3$, and with τ_1 using resources R_A and R_B , τ_2 using resource R_C , and τ_3 using resources R_B and R_C

Image from "Hard real-time computing systems" by Prof. G. Buttazzo

Laura Carnevali Real-time systems Resource access protocols 117 / 128

PCP: properties (1/4)

Lemma 1

If a task τ_k is preempted within a critical section by a task τ_i that enters a critical section $z_{i,b}\Rightarrow \tau_k$ cannot inherit a priority \geq the priority of τ_i until τ_i completes

Proof.

- If τ_k inherits a priority \geq the priority of τ_i until τ_i completes \Rightarrow \exists task τ_h blocked by $\tau_k \mid P_h \geq P_i$
- If τ_i enters its critical section \Rightarrow $\Rightarrow P_i > C^*$ where $C^* := \max$ ceiling of semaphores locked by lower prio tasks
- Hence, $P_h \ge P_i > C^\star \Rightarrow \tau_h$ cannot be blocked by τ_k , which is a contradiction

PCP: properties (2/4)

Lemma 2

The Priority Ceiling Protocol (PCP) prevents transitive blocking

Proof.

If a transitive blocking occurs ⇒

$$\Rightarrow \exists \text{ tasks } \tau_1, \tau_2, \tau_3 \mid P_1 > P_2 > P_3, \tau_1 \text{ is blocked by } \tau_2, \tau_2 \text{ is blocked by } \tau_3 \Rightarrow$$

$$\Rightarrow \tau_3$$
 will inherit the priority of τ_1 , which contradicts Lemma 1

Theorem 1

The Priority Ceiling Protocol (PCP) prevents deadlocks

Proof.

If a deadlock occurs ⇒

 $\Rightarrow \exists \text{ tasks } \tau_1, \tau_2, \dots, \tau_n \mid P_1 > P_2 > \dots > P_n, \tau_1 \text{ is blocked by } \tau_2, \tau_2 \text{ is blocked}$

 $... \Rightarrow$

 $\Rightarrow \tau_n$ will inherit the priority of τ_1 , which contradicts Lemma 1

Laura Carnevali Real-time systems Resource access protocols 120 / 128

PCP: properties (4/4)

Theorem 2

Under the Priority Ceiling Protocol (PCP), a task can be blocked for at most the duration of one critical section

Proof.

- Let task τ_i be blocked by τ_1 and τ_2 with $P_i > P_1 > P_2$
- ullet Let au_2 enter its blocking critical section first
- ullet Let C_2^\star be the max ceiling among the semaphores locked by au_2
- If τ_1 enters a critical section $\Rightarrow P_1 > C_2^{\star}$
- If τ_i can be blocked by $\tau_2 \Rightarrow P_i \leq C_2^{\star}$
- Hence $P_i \leq C_2^{\star} < P_1$, which contradicts the assumption that $P_i > P_1$

• The maximum blocking time of each task is derived based on Theorem 2

Laura Carnevali Real-time systems Resource access protocols 121 / 128

PCP: summary

- Advantages
 - Limits blocking to the duration of a critical section
 - Prevents deadlock and transitive blocking
- Disadvantages
 - Complex to implement
 - Pessimistic (it can cause unnecessary blocking)
 - Not trasparent to the programmer (ceilings specified in the source code)

Laura Carnevali Real-time systems Resource access protocols 122 / 128

Schedulability analysis of periodic tasks with shared resources

- Unbounded blocking times ⇒ Unfeasible task set
- ullet Bounded blocking times \Rightarrow Extend schedulability tests for independent tasks
 - Guarantee one task at a time
 - Preemption by higher priority tasks and blocking by lower priority tasks
 - Blocking conditions derived in worst case scenarios that differ for each task and could never occur simultaneously ⇒ Tests are only sufficient

Laura Carnevali Real-time systems Resource access protocols $123 \, / \, 128$

- Utilization based analysis
 - LL test for RM:

A set of periodic tasks $\{\tau_1,\ldots,\tau_n\}$ with blocking factors and with D_i = T_i \forall task τ_i is schedulable by RM if $\sum_{k|P_k>P_i} \frac{C_k}{T_k} + \frac{C_i + \pmb{B_i}}{T_i} \leq i(2^{1/i}-1) \ \forall$ task τ_i

• HB test for RM:

A set of periodic tasks $\{\tau_1,\ldots,\tau_n\}$ with blocking factors and with D_i = T_i \forall task τ_i is schedulable by RM if $\prod_{k|P_k>P_i} \left(\frac{C_k}{T_k}+1\right) \left(\frac{C_i+B_i}{T_i}+1\right) \leq 2 \ \forall$ task τ_i

LL test for EDF:

A set of periodic tasks $\{\tau_1,\ldots,\tau_n\}$ with blocking factors and with $D_i=T_i$ \forall task τ_i is schedulable by EDF if $\sum\limits_{k|P_k>P_i} \frac{C_k}{T_k} + \frac{C_i + B_i}{T_i} \leq 1 \ \forall$ task τ_i

Laura Carnevali Real-time systems Resource access protocols 124 / 128

- Response time analysis
 - A set of periodic tasks $\{\tau_1,\ldots,\tau_n\}$ with blocking factors and with $D_i \leq T_i$ \forall task τ_i is schedulable by DM if $R_i = C_i + B_i + \sum_{k|P_k>P_i} \left\lceil \frac{R_i}{T_k} \right\rceil C_k \leq D_i \ \forall$ task τ_i
 - ullet Iterative solution to compute R_i

$$\begin{cases} R_i^{(0)} &= \sum_{k|P_k > P_i} C_k + C_i + B_i \\ R_i^{(j)} &= C_i + B_i + \sum_{k|P_k > P_i} \left\lceil \frac{R_i^{(j-1)}}{T_k} C_k \right\rceil \end{cases}$$

Laura Carnevali Real-time systems Resource access protocols 125 / 128

- Processor demand analysis
 - A set of periodic tasks $\{\tau_1, \dots, \tau_n\}$ with blocking factors and with $D_i \leq T_i$ \forall task τ_i is schedulable by EDF if U < 1 and $\mathsf{dbf}(t) + B(t) \leq t \ \forall \ t \in D$

•
$$dbf(t) = \sum_{i} \left[\frac{t + T_i - D_i}{T_i} C_i \right]$$

- $B(t) = \max_{i,j \mid i \neq j} \{\beta_{ij} \mid D_i > t \land D_j \leq t\}$ is termed **blocking function** (maximum time for which τ_i with $D_i \leq T_i$ may be blocked by τ_j with $D_i > t$)
- $\beta_{ij}\coloneqq$ maximum time for which au_i holds a resource that is also needed by au_j
- $D \coloneqq \{d_i \mid d_i \le \max\{D_{\max}, \min\{H, t^{\star}\}\}\}, D_{\max} \coloneqq \max_i\{D_i\}$
- $H := \text{lcm}(T_1, \dots, T_n), t^* = \sum_i (T_i D_i) U_i / (1 U)$

Laura Carnevali Real-time systems Resource access protocols 126 / 128

Credits & References

Credits

- Most of this material is taken from the slides of the course "Real-Time Systems" given by Prof. Giorgio Buttazzo in the A.Y. 2018/2019: http://retis.sssup.it/~giorgio/rts-MECS.html
- These slides are authorized for personal use only
- Any other use, redistribution, and profit sale of the slides (in any form) requires the consent of the copyright owners

Laura Carnevali Real-time systems Credits & References 127 / 128

References

- Giorgio Buttazzo, "Hard Real-Time Computing Systems Predictable Scheduling Algorithms and Applications", Third Edition, Springer, 2011
 - Chapters 1, 2, 4, 7, 11, 12; Paragraph 3.3

Laura Carnevali Real-time systems Credits & References 128 / 128