JOSHUA VICTOR - 789339

EP01 - Arquitetura de Computadores ||

1/2 somador logisim

Tabela verdade ½ somador

a	b	Carry_out	Soma
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Somador completo

Tabela verdade somador completo

		1		
carry in	a	b	saida	Carry out
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

Decodificador hexadecimal

Decodificador hexadecimal

Calculadora de 4 bits Logisin

1/2 somador Tinkercad

Somador completo Tinkercad

- 1- Cada uma das portas lógicas possui uma tabela verdadeira já pré definida para cada entrada. Porém, se um dos terminais de uma porta lógica não estiver ligado a um valor válido não sendo nem 0 nem 1, dependendo ela poderá ocorrer um erro na saída, tornando imprevisível. Isso acontece porque a porta lógica é sensível a pequenas interferências elétricas, e, portanto, estas podem influenciar e levar a resultados inesperados.
- **2-** Para somar os 4 bits, inicialmente somente alguns valores já são conhecidos: a 0 , a1 , a2 , a3 , b0 , b1 , b2 , b3 e ci0 . Estas são as 2 palavras de 4 bits e o carry in inicial. Para passar no primeiro somador dos primeiros bits, o tempo necessário é de 30ns. Esse mesmo tempo poderia ser observado em cada um dos outros 3 somadores completos. No entanto, para os seguintes, é necessário que o carry out da porta anterior envie o sinal para o carry in da atual. Em outras palavras: o cin+1 depende do con . Portanto, o somador não leva 30ns para somar tudo, pois é necessário o somador anterior finalizar para completar o próximo ligado a ele.

3a0
0
10ns
20ns
0 s0
ci0
0 30ns
0 co0

No somador para 4 bits, o processo é semelhante. Todavia, nota-se que o co 0 só esteve concluído após 30ns. Então, o sinal do co1 só estará disponível após este tempo.

Logo, para o somador de 4 bits acima, seriam necessários 90ns para que a soma fosse efetuada por completo

4- Seguindo o padrão do somador de 4 bits, seria necessário, para o de 32 bits, 32 somadores completos. Em outras palavras:

- 32 * 2 * portas XOR = 64 XOR
- -32 * 2 * portas AND = 64 AND
- -32 * 1 * portas OR = 32 OR

Além, claro, das 32 entradas e saídas, bem como o carry out e o overflow caso necessário. A operação toda de soma, neste caso, ocorreria em 650ns: 1 * 30ns para a primeira parte com co0 + 31 * 20ns para os con .

6- A partir dos itens anteriores, nota-se uma significativa ineficácia deste somador completo para n bits. Por se tratar de operações lógicas com portas lógicas, uma possível solução para minimizar essa perda de tempo seria simplificar o circuito, de tal sorte que não seja necessário todo o tempo para se obter o resultado esperado, utilizando técnicas de simplificação da tabela verdade e da sua equação.