NETFLIX STOCK ANALYSIS PROJECT

In [1]: import pandas as pd import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from datetime import datetime

In [2]: df=pd.read_csv(r"C:\Users\ADMIN\Desktop\jupytercommand\Netflix.csv")

In [3]: df

Out[3]:

	Date	Open	High	Low	Close	Adj Close	Volume
0	2002-05-23	1.156429	1.242857	1.145714	1.196429	1.196429	104790000
1	2002-05-24	1.214286	1.225000	1.197143	1.210000	1.210000	11104800
2	2002-05-28	1.213571	1.232143	1.157143	1.157143	1.157143	6609400
3	2002-05-29	1.164286	1.164286	1.085714	1.103571	1.103571	6757800
4	2002-05-30	1.107857	1.107857	1.071429	1.071429	1.071429	10154200
4869	2021-09-24	592.500000	592.979980	583.640015	592.390015	592.390015	2124800
4870	2021-09-27	587.950012	593.580017	576.929993	592.640015	592.640015	2504700
4871	2021-09-28	589.000000	599.539978	580.159973	583.849976	583.849976	4431100
4872	2021-09-29	589.010010	609.880005	588.010010	599.059998	599.059998	6221000
4873	2021-09-30	608.049988	619.000000	608.049988	610.340027	610.340027	6612600

4874 rows × 7 columns

In [4]: | df.head()

Out[4]:

	Date	Open	High	Low	Close	Adj Close	Volume
0	2002-05-23	1.156429	1.242857	1.145714	1.196429	1.196429	104790000
1	2002-05-24	1.214286	1.225000	1.197143	1.210000	1.210000	11104800
2	2002-05-28	1.213571	1.232143	1.157143	1.157143	1.157143	6609400
3	2002-05-29	1.164286	1.164286	1.085714	1.103571	1.103571	6757800
4	2002-05-30	1.107857	1.107857	1.071429	1.071429	1.071429	10154200

In [5]: sns.set(rc={'figure.figsize':(10,5)})

```
In [6]: df['Date']=pd.to_datetime(df['Date'])
    df=df.set_index('Date')
    df.head()
```

Out[6]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2002-05-23	1.156429	1.242857	1.145714	1.196429	1.196429	104790000
2002-05-24	1.214286	1.225000	1.197143	1.210000	1.210000	11104800
2002-05-28	1.213571	1.232143	1.157143	1.157143	1.157143	6609400
2002-05-29	1.164286	1.164286	1.085714	1.103571	1.103571	6757800
2002-05-30	1.107857	1.107857	1.071429	1.071429	1.071429	10154200

VOLUME V/S TIME

```
In [7]: sns.lineplot(x=df.index,y=df['Volume'],label='volume')
plt.title='Volume of stock v/s time'
plt.show()
```


STOCK PRICE HIGH, OPEN, CLOSE

```
In [8]: df.plot(y=['High','Close','Open'],title='netflix stock price')
plt.show()
```


NETFLIX STOCK PRICE -DAY, MONTH, YEAR WISE

TOP-5 DATES WITH HIGHEST STOCK PRICE

TOP-5 DATES WITH Lowest STOCK PRICE


```
In [84]: fig,axes=plt.subplots(nrows=1,ncols=2,sharex=True,figsize=(12,5))
fig.suptitle('high & low values stock per period of time ',fontsize=18)
sns.lineplot(ax=axes[0],y=df['High'],x=df.index,color='pink')
sns.lineplot(ax=axes[1],y=df['Low'],x=df.index,color='yellow')
plt.show()
```

high & low values stock per period of time

