Лабораторная работа 2.1 Опыт Франка-Герца

Карцев Вадим

14 сентября 2021 г.

Цель работы: измерение энергии первого уровня атомов гелия в динамическом и статическом режимах.

В работе используются: серийная лампа ионизационного манометра ЛМ-2, стабилизированный источник питания Б7-4, микроамперметр, вольтметр, осцилограф С1-83.

1 Теоретическая справка

Опыт Франка-Герца доказывает существование дискретных уровней энергии атома.

В опыте используется трехэлектродная лампа, наполненная разреженным одноатомным газом.

Рис 1. Схема установки

Рис 2. Схематическая зависимость тока на коллекторе от разницы потенциалов между анодом и катодом

Увеличивая разницу потенциалов между анодом и катодом мы увеличиваем энергия электронов. Пока энергии недостаточно для перевода атомов в возбужденное состояние, соударения будут практически упругими, т.к. масса электронов мала по сравнению с массой атомов. При дальнейшем увеличении энергии электронов начинает хватать для возбуждения или ионизации атомов газа и часть электронов теряет свою энергию при соударениях. Таким электронам не хватает энергии преодолеть задерживающее напряжение между анодом и коллектором и наблюдается резкое падение тока на последнем.

2 Получение вольт-амперной характеристики $I_{\mbox{\tiny K}}=f(V_a)$ на экране осцилографа C1-83

Рассмотрим полученные осциллограммы

Очевидно, на оцсиллограммах видны прямой и обратный ход. В первом случае напряжение повышается и видно, что ток на коллекторе растет с падениями, а во втором случае ток понижается со скачками. Все измерения на осцилографе проводились с разверткой $X = 5 \mathrm{B/дел}$. Измерим расстояния между максимумами и минимумами в вольтах.

Табл 1. Зависимость энергии возбуждения от напряжения торможения

Vo, B		Цена деления, В/дел	Расстояние между максимумами, дел	Расстояние между минимумами, дел	Расстояние между максимумами, В	Расстояние между минимумами, В	Энергия возбуждения, эВ
1	прямой	5	3,2	3,3	16	16,5	16
4	обратный	5	3,5	3,9	17,5	19,5	17,5
6	прямой	5	3,1	3,3	15,5	16,5	15,5
	обратный	5	3,4	3,9	17	19,5	17
8	прямой	5	3	3,4	15	17	15
0	обратный	5	3,3	4	16,5	20	16,5

Как видно из таблицы, энергия возбуждения атома гелия будет $E_{\text{возб}} = (16.25 \pm 0.94)$ эВ, а относительная погрешность ее измерения $\varepsilon = 5.76\%$

3 Получение вольт-амперной характеристики $I_{\mbox{\tiny K}} = f(V_a)$ в статическом режиме измерений

 Табл 2. Зависимость тока коллектора от напряжения на катоде

V ₀ =	= 4B	Vo = 6B		V ₀ = 8B	
Vк, В	Ік, МКА	Vк, В	Ік, мкА	Vк, В	Ік, МКА
2,8	5	5,89	9	4,71	3
8,35	20	14,71	34	7,11	12
14,04	36	16,94	39	10,69	34
17,8	38	17,52	40	14,48	53
18,44	38	19,35	42	17,96	69
19,76	37	20,59	40	19,25	72
20,39	36	21,33	39	20,66	72
22,1	33	22,37	35	21,65	69
25,13	26	24,12	23	23,74	36
26,3	28	25,75	17	24,23	26
27,87	33	27,02	19	26,55	11
30,56	41	30,21	33	27,82	15
38,01	60	32,82	43	31,28	44
40,46	58	36,81	57	32,32	53
41,67	55	39,07	58	35,4	77
43,05	54	40,71	55	37,58	86
45,37	54	42,32	52	38,81	83
47,81	57	44,15	48	39,77	76
49,86	60	45,74	47	40,28	67
53,56	68	48,25	47	42,08	58
57,33	77	50,08	49	44,39	56
63,59	85	52,67	54	46,89	57
67,65	88	55,88	61	48,15	67
73,5	96	58,04	67	51,01	86
74,98	98	60,31	71	54,56	89

Рис 8. $V_0 = 8$ В

Из графиков 6, 7 и 8 выясним расстояние между максимумами тока для рассчета энергии возбуждения атома гелия. Максимумы выписаны в таблице ниже.

Табл 3. Максимумы тока и энергии возбуждения

V ₀ = 4B		V ₀ = 6B		V ₀ = 8B	
Max1	Max2	Max1	Max2	Max1	Max2
18,44	38,01	19,35	39,07	19,25	37,58

Энергии возбуждения				
V ₀ = 4B	V ₀ = 6B	V ₀ = 8B		
19,57	19,72	18,33		

Рассчитаем энергию возбуждения атома гелия и ее погрешность в соответствии с данной таблицей. Легко понять, что основной вклад в погрешность вносит нерегулярность измерений, так как приборная погрешность значительно меньше, чем минимальное расстояние между измерениями. Таким образом, будем считать погрешность по следующей формуле:

$$\sigma_E = \sqrt{\frac{\sum_{i=1}^n \left(E_i - \overline{E}\right)}{n-1}}$$

В нашем случае погрешность $\sigma_E=0.76$ эВ, а сама энергия первого уровня $E=(19.21\pm0.76)$ эВ. Относительная погрешность составляет $\varepsilon=3.96\%$

4 Вывод

Мы вычислили энергию первого уровня для атомов одноатомного гелия двумя различными способами - динамическим и статическим. В первом случае мы получили большую погрешность, что, вероятно, объясняется наличием прямого и обратного хода. Кроме того, при увеличении количества точек в статическом методе можно добиться большей точности. Расхождения результатов двух вариантов измерения незначительны и по большей части объясняются временем осциляции системы, так как в первом случае мы повышаем и понижаем напряжение с большой частотой, что может заметно влиять на точность представления результатов, в то время как во втором случае мы дожидаемся полного успокоения системы. Табличное значение для энергии первого уровоня атома гелия составляет 24.59 эВ, что не сильно отличается от полученных в ходе эксперимента данных.