

Nelson J. Ramirez 2021-0360

CIRCUITO

Figura 1.3: amplificador en configuración no inversora.

- Elegir los valores para que R₂>R₁.
- Ganancia en la zona lineal: 1+ R₂/R₁.

PROCEDIMIENTO EXPERIMENTAL

- Poner en la entrada una señal sinusoidal con el generador de señal a 1 kHz de frecuencia y una amplitud grande (>10 V).
- 2. Colocar la sonda del CH1 del osciloscopio a la entrada y la CH2 a la salida y poner el osciloscopio en modo de medida X-Y (en la base tiempos).
- 3. En esa gráfica que representa V_0 en función de V_i , medir la pendiente que será la ganancia del circuito (-R₂/R₁) y los puntos exactos donde la respuesta es plana por saturación.
- 4. Representar gráficamente estos datos comparándolos con la teoría.

1.1.2 Amplificador en configuración inversora:

OBJETIVO

Medida con el osciloscopio de la característica de transferencia del circuito, $V_o=f(V_i)$, calculando su ganancia y los puntos de saturación.

FTC.3

INGENIERIA INFORMATICA

FUNDAMENTOS TECNOLOGICOS DE LOS COMPUTADORES

CIRCUITO

Figura 1.4: amplificador en configuración inversora.

1.1.3. Amplificador sumador inversor:

OBJETIVO

Medida con el osciloscopio de la característica de transferencia del circuito, V_o=f(V_i), calculando su ganancia.

CIRCUITO

Figura 1.5: amplificador sumador inversor.

FTC.4

INGENIERIA INFORMATICA

FUNDAMENTOS TECNOLOGICOS DE LOS COMPUTADORES

- Elegir los valores para que R₃=R₁ <R₂.
- Ganancia en la zona lineal: $-R_2 \left(\frac{V_1}{R_1} + \frac{V_2}{R_3} \right)$.
- Tomar para V₁ una señal sinusoidal y para V₂ una tensión continua de la fuente ajustable.

PROCEDIMIENTO EXPERIMENTAL

Medir en el osciloscopio algunos puntos de la tensión de salida en la zona lineal para poder comprobar que la ecuación de la ganancia se cumple:

- Poner el osciloscopio en el modo normal (amplitud frente a tiempo) y visualizar la entrada V₁ y la salida V₀.
- Medir con los cursores la amplitud de ambas señales en varios puntos: (máximo y mínimo por ejemplo de las ondas) y verificar la expresión de la ganancia.
- Cambiar la tensión de entrada V₂ de la fuente ajustable y volver a medir.
 Comprobar que incrementando esta entrada se entra en saturación y se recorta la señal de salida.

SESIÓN 1.2: Aplicaciones del amplificador operacional II.

Instrumental de laboratorio:

- Osciloscopio.
- Polímetro.
- Fuente de tensión continua.
- Generador de señal alterna.

Componentes electrónicos:

- 1 amplificador operacional
- 2 resistencias.
- 1 condensador
- 1 transistor bipolar

1.2.1. Circuito derivador.

OBJETIVO

Comprobar en el dominio del tiempo la respuesta del circuito derivador con amplificador operacional.

CIRCUITO

Figura 1.6: circuito derivador.

Tomar R·C= 10^{-4} (por ejemplo C = $100 \text{ nF y R} = 1 \text{ k}\Omega$)

Este circuito, tal y como se ha demostrado en clase, tiene la siguiente tensión de salida:

$$v_o(t) = -R \cdot C \cdot \frac{dv_i(t)}{dt} \tag{1.1}$$

PROCEDIMIENTO EXPERIMENTAL

- 1. Introducir a la entrada una señal sinusoidal de amplitud 10V y f = 1 kHz.
- 2. Calcular teóricamente el resultado de la ecuación 1 con esa señal de entrada.
- Comprobar con el osciloscopio el punto anterior: midiendo la amplitud de la señal de salida y compararla con la dada por la ecuación 1. Dibuje lo observado.
- Introducir una señal triangular, medir y representar la señal de salida obtenida.
 Justifiquela.

OBJETIVO

Comprobar en el dominio del tiempo y de la frecuencia la respuesta del circuito integrador con amplificador operacional.

CIRCUITO

Figura 1.7: circuito integrador (filtro paso baja).

Tome R2-C=10-4 y R1= R2

PROCEDIMIENTO EXPERIMENTAL

- Comprobar con el osciloscopio que la salida es proporcional a la integral de la entrada cuando la señal de entrada es una seno y una señal cuadrada. Dibujar lo observado en la pantalla.
- Obtener y representar gráficamente el diagrama de Bode en amplitud de este circuito, es decir, medir la tensión de salida pico a pico, la tensión de entrada
 - pico a pico (señal senoidal de 10 V pico a pico), para cada frecuencia en el rango de 500 Hz a 100 kHz y representar el 20 logaritmo de su cociente frente al logaritmo de la frecuencia (repasar los guiones de prácticas de la asignatura de fundamentos físicos).
- 3. ¿Qué ocurre si se elimina R2?. Dibuje lo que ocurre y explíquelo.

1.2.1. Amplificador logarítmico.

OBJETIVO

Comprobar la respuesta del amplificador logarítmico.

CIRCUITO

Figura 1.8: amplificador logarítmico.

En ese circuito, la tensión de salida viene dada por:

$$V_o = -V_{T} \ln(K \cdot V_i / R_1)$$
 (1.2)

donde V_T y K son constantes dependientes de la temperatura y del transistor usado. Use R_1 = 1 k Ω y el transistor bipolar suministrado.

PROCEDIMIENTO EXPERIMENTAL

 Introducir a la entrada la fuente continua ajustable entre 0 y +15 V. En el rango de entrada de 0 a 1 V en pasos de 0.1 V y hasta 15 V en pasos de 1 V.

FTC.8

INGENIERIA INFORMATICA

FUNDAMENTOS TECNOLOGICOS DE LOS COMPUTADORES

- Mida con el polímetro la tensión de salida en función de la entrada en el rango señalado. Represente gráficamente la tensión de salida V_o, en función de In(V_i) obteniendo el ajuste por mínimos cuadrados de la curva obtenida.
- 3. Introduzca más puntos de Vi donde la salida varíe más rápidamente.

