

Binary Counters

ECE 2372 | Modern Digital System Design | Texas Tech University

Lecture Overview

- Shift Registers
- Synchronous Binary Counters
- Counters for Other Sequences

Shift Registers

Binary Counters | Modern Digital System Design

Shift Registers: Definition

A **shift register** is a register in which binary data can be stored, and this data can be shifted to the left or right when a shift signal is applied.

Shift Registers: Right-Shift Register

This type of Shift Register is also called a "Serial-in, Serial-out" shift register

Shift Registers: Serial-In, Parallel-Out (SIPO)

Suppose a 4-bit SIPO register like the one on the previous slide. If all the flip-flops are initially at rest, Shift is held at 1, and the input bit-stream is,

$$SI = \{0, 1, 0, 1, 1, 0, 1\}$$

What will be the parallel output at the end of the 5th clock cycle?

$$P = \{1, 1, 0, 1\}$$

$$SI = \{0, 1, 0, 1, 1, 0\}$$

$$SI = \{0, 1, 0, 1, 1, 0\}$$
 $P = \{0, 0, 0, 0\}$ $Cycle = 0$

$$Cycle = 0$$

$$SI = \{1, 0, 1, 1, 0\}$$

$$SI = \{1, 0, 1, 1, 0\}$$
 $P = \{0, 0, 0, 0\}$ $Cycle = 1$

$$SI = \{0, 1, 1, 0\}$$

$$P = \{1, 0, 0, 0\}$$
 $Cycle = 2$

$$SI = \{1, 1, 0\}$$

$$P = \{0, 1, 0, 0\}$$
 $Cycle = 3$

$$SI = \{1, 0\}$$

$$P = \{1, 0, 1, 0\}$$
 $Cycle = 4$

$$SI = \{0\}$$

$$P = \{1, 1, 0, 1\}$$
 $Cycle = 5$

Suppose a 4-bit SIPO register like the one on the previous slide. If all the flip-flops are initially at rest, Shift is held at 1, and the input bit-stream is,

$$SI = \{0, 1, 0, 1, 1, 0, 1\}$$

What will be the parallel output at the end of the 5th clock cycle?

$$P = \{1, 1, 0, 1\}$$

Shift-Registers: Parallel-In, Parallel-Out (PIPO)

Shift-Registers: Parallel-In, Parallel-Out (PIPO)

Shift Registers: Parallel-In, Parallel-Out (PIPO)

INPUTS		N	EXT	STAT	E	ACTION
Shift	Load	Q_3^+	Q_2^+	Q_1^+	Q_0^+	
0	0	Q_3	Q_2	Q_1	Q_0	NO CHANGE
0	1	D_3	D_2	D_1	D_0	LOAD
1	X	SI	Q_3	Q_2	Q_1	SHIFT RIGHT

What questions do you have?

EXAM QUESTION: Shift Registers

A 4-bit PIPO right shift register is initially at rest. What will the output, Q, be at the end of the following sequence on inputs?

A.
$$Q = \{1, 1, 1, 1\}$$

B.
$$Q = \{0, 0, 1, 1\}$$

C.
$$Q = \{1, 0, 1, 1\}$$

D.
$$Q = \{0, 1, 1, 1\}$$

SI	Shift	Load		D		
0	0	1	{0,	1,	0,	1}
0	0	0	{0,	1,	1,	0 }
1	1	0	{0,	1,	1,	0 }
1	1	0	{1,	0,	0,	1}
0	0	0	{1,	0,	1,	1}
1	1	1	{1,	1,	0,	1}
0	1	0	{1,	1,	1,	1}

EXAM QUESTION: Shift Registers

A 4-bit PIPO right shift register is initially at rest. What will the output, Q, be at the end of the following sequence on inputs?

SI	Shift	Load	D	
0	0	1	$\{0, 1, 0, 1\}$ Q = $\{0, 1, 0\}$, 1}
0	0	0	$\{0, 1, 1, 0\}$ Q = $\{0, 1, 0\}$, 1}
1	1	0	$\{0, 1, 1, 0\}$ Q = $\{1, 0, 1\}$, 0}
1	1	0	$\{1, 0, 0, 1\}$ Q = $\{1, 1, 0\}$, 1}
0	0	0	$\{1, 0, 1, 1\}$ Q = $\{1, 1, 0\}$, 1}
1	1	1	$\{1, 1, 0, 1\}$ Q = $\{1, 1, 1, 1\}$, 0}
0	1	0	$\{1, 1, 1, 1\}$ Q = $\{0, 1, 1, 1\}$, 1}

Binary Counters | Modern Digital System Design

What if we wanted to apply this same concept of chaining flip-flops together to count through a predetermined sequence of binary values?

A	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

What do you notice about the relationship between A, B, and C that might be useful to us?

What do you notice about the relationship between A, B, and C that might be useful to us?

Notice that every bit toggles when there is a falling edge on the bit to its right.

What flip-flop likes to toggle?

What questions do you have?

EXAM QUESTION: Synchronous Binary Counter

A 4-bit synchronous binary counter is initially at rest. What will the state of the counter be at the end of the following sequence of inputs?

Count	Reset
1	0
1	1
1	0
1	0
0	0
1	0
1	0

EXAM QUESTION: Synchronous Binary Counter

A 4-bit synchronous binary counter is initially at rest. What will the state of the counter be at the end of the following sequence of inputs?

A •	{A,	B,	C}		3'b111
В.	{A,	B,	C }	=	3'b100
C.	{A,	B,	C}		3'b101
D.	{A,	B,	C }		3'b110

Count	Reset	
1	0	${A,B,C} = 3'b001$
1	1	${A,B,C} = 3'b000$
1	0	${A,B,C} = 3'b001$
1	0	${A,B,C} = 3'b010$
0	0	${A,B,C} = 3'b010$
1	0	${A,B,C} = 3'b011$
1	0	${A,B,C} = 3'b100$

Counters for Other Sequences

Binary Counters | Modern Digital System Design

Counters for Other Sequences

- Usually, our binary counters will count in the traditional way.
- Sometimes, we want counters that can move through an arbitrary sequence.
- To do this, we'll need to apply some combinational logic design.

Counters for Other Sequences

Let's design a 3-bit gray code counter

Q_A	Q_B	Q_C
0	0	0
0	0	1
0	1	1
0	1	0
1	1	0
1	1	1
1	0	1
1	0	0

Count	$oldsymbol{Q}_A$	Q_B	Q_C	\boldsymbol{Q}_A^+	Q_B^+	Q_C^+
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	0	1	0	1	1
1	0	1	0	1	1	0
1	0	1	1	0	1	0
1	1	0	0	0	0	0
1	1	0	1	1	0	0
1	1	1	0	1	1	1
1	1	1	1	1	0	1

$$Q_A^+(Count, Q_A, Q_B, Q_C) = \sum_m (4, 5, 6, 7, 10, 13, 14, 15)$$

$$Q_B^+(Count, Q_A, Q_B, Q_C) = \sum_m (2, 3, 6, 7, 9, 10, 11, 14)$$

$$Q_C^+(Count, Q_A, Q_B, Q_C) = \sum_m (1, 3, 5, 7, 8, 9, 14, 15)$$

$$Q_A^+ = Count'Q_A +$$

$$Q_A^+ = Count'Q_A + Q_AQ_C +$$

$$Q_A^+ = Count'Q_A + Q_AQ_C + Q_AQ_B +$$

$$Q_A^+ = Count'Q_A + Q_AQ_C + Q_AQ_B + CountQ_BQ_C'$$

Solving the other K-maps yields,

$$Q_A^+ = Count'Q_A + Q_AQ_C + Q_AQ_B + CountQ_BQ_C'$$

$$Q_B^+ = Q_B Q_C' + Count' Q_B + Count Q_A' Q_C$$

$$Q_C^+ = Count'Q_C + CountQ_AQ_B + CountQ_A'Q_B'$$

```
module gray count(Count, CLK, Q);
 8
          // CONTROL INPUTS
 9
          input Count, CLK;
10
11
          // Data Outputs
12
          output [2:0] Q;
13
14
          // Internal Registers
15
16
          reg qA = 1'b0;
17
          reg qB = 1'b0;
          reg qC = 1'b0;
18
19
          // RTL Logic Implementation
20
          always @(posedge CLK) begin
21
              qA \leftarrow \text{Count & } qA \mid qA \& qC \mid qA \& qB \mid \text{Count & } qB \& \neg qC;
22
              qB \leftarrow qB \& \neg qC \mid \neg Count \& qB \mid Count \& \neg qA \& qC;
23
              qC <= ~Count & qC | Count & qA & qB | Count & ~qA & ~qB;
24
25
          end
26
          // Combinational Logic Implementation
27
          assign Q = \{qA, qB, qC\};
28
29
30
```

ECE 2372 | Lecture 305 40 endmodule

```
PS C:\Users\derek\Desktop\ece2372 305 example> iverilog -o gray_count.vvp gray_count_test.v
PS C:\Users\derek\Desktop\ece2372 305 example> vvp gray count.vvp
Start of test bench for 3-bit gray code counter.
VCD info: dumpfile gray count.vcd opened for output.
Count = 0, 0 = 000
Count = 0, Q = 000
Count = 0, 0 = 000
Count = 0, 0 = 000
Count = 1, Q = 001
Count = 1, Q = 011
Count = 1, Q = 010
Count = 1, 0 = 110
Count = 1, 0 = 111
Count = 1, 0 = 101
Count = 1, Q = 100
Count = 1, Q = 000
Count = 1, 0 = 001
Count = 1, 0 = 011
Count = 1, 0 = 010
Count = 0, Q = 110
Count = 0, Q = 110
Count = 0, 0 = 110
Count = 0, 0 = 110
End of test bench.
```


What questions do you have?

EXAM QUESTION: Arbitrary Binary Counters

What is the next-state equation for flip-flop A in a 2-bit arbitrary sequence binary counter with the given sequence?

A.
$$Q_A^+ = Count'Q_A + Q_A'Q_B' + Count'Q_AQ_B$$

B.
$$Q_A^+ = Q_A Q_B + Count' Q_A' Q_B' + Count Q_A Q_B$$

C.
$$Q_A^+ = \text{Count}' Q_A + Q_A Q_B + \text{Count} Q_A' Q_B'$$

D.
$$Q_A^+ = Count'Q_A' + Q_A'Q_B + CountQ_AQ_B'$$

Q_A^+	Q_B^+
1	1
1	0
0	1
0	0

EXAM QUESTION: Arbitrary Binary Counters

What is the next-state equation for flip-flop A in a 2-bit arbitrary sequence binary counter with the given sequence?

A.
$$Q_A^+ = Count'Q_A + Q_A'Q_B' + Count'Q_AQ_B$$

B. $Q_A^+ = Q_AQ_B + Count'Q_A'Q_B' + CountQ_AQ_B$

C. $Q_A^+ = Count'Q_A + Q_AQ_B + CountQ_A'Q_B'$

D. $Q_A^+ = Count'Q_A' + Q_A'Q_B + CountQ_A'Q_B'$

Q_A^+	Q_B^+
1	1
1	0
0	1
0	0

Q_A^+	Q_B^+
1	1
1	0
0	1
0	0

Count	Q_A	Q_B	Q_A^+	Q_B^+
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

$$Q_A^+(Count, Q_A, Q_B) = \sum_m (2, 3, 4, 7)$$

$$Q_A^+(Count, Q_A, Q_B) = \sum_m (2, 3, 4, 7)$$

$$Q_A^+(Count, Q_A, Q_B) = Count'Q_A +$$

$$Q_A^+(Count, Q_A, Q_B) = Count'Q_A + Q_AQ_B +$$

$$Q_A^+(Count, Q_A, Q_B) = Count'Q_A + Q_AQ_B + CountQ'_AQ_B'$$

EXAM QUESTION: Arbitrary Binary Counters

What is the next-state equation for flip-flop A in a 2-bit arbitrary sequence binary counter with the given sequence?

A.
$$Q_A^+ = Count'Q_A + Q_A'Q_B' + Count'Q_AQ_B$$

B. $Q_A^+ = Q_AQ_B + Count'Q_A'Q_B' + CountQ_AQ_B$

C. $Q_A^+ = Count'Q_A + Q_AQ_B + CountQ_A'Q_B'$

D. $Q_A^+ = Count'Q_A' + Q_A'Q_B + CountQ_A'Q_B'$

Q_A^+	Q_B^+
1	1
1	0
0	1
0	0

$$Q_A^+(Count, Q_A, Q_B) = Count'Q_A + Q_AQ_B + CountQ'_AQ_B'$$

Lecture Recap

- Shift Registers
- Synchronous Binary Counters
- Counters for Other Sequences

What questions do you have?

Binary Counters

ECE 2372 | Modern Digital System Design | Texas Tech University