PRESENTATION TITLE

Author

Date

Paper available at https://github.com/pmichaillat/latex-presentation

SLIDE TITLE

- lorem ipsum dolor sit amet
- consectetur adipiscing elit
- sed do eiusmod tempor incididunt
 - ut labore et dolore magna aliqua
 - ut enim ad minim veniam
- quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat
- duis aute irure dolor in reprehenderit in voluptate velit esse
 cillum dolore eu fugiat nulla pariatur

ANOTHER TEXT SLIDE

- 1. sed do eiusmod tempor incididunt
 - ut labore et dolore magna aliqua
 - ut enim ad minim veniam
- 2. ut enim ad minim veniam
- quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat
- duis aute irure dolor in reprehenderit in voluptate velit esse
 cillum dolore eu fugiat nulla pariatur

ANOTHER TEXT SLIDE

- 1. sed do eiusmod tempor incididunt
 - ut labore et dolore magna aliqua
 - ut enim ad minim veniam
- 2. ut enim ad minim veniam
- quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat
- duis aute irure dolor in reprehenderit in voluptate velit esse
 cillum dolore eu fugiat nulla pariatur

ANOTHER TEXT SLIDE

- 1. sed do eiusmod tempor incididunt
 - ut labore et dolore magna aliqua
 - ut enim ad minim veniam
- 2. ut enim ad minim veniam
- quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat
- duis aute irure dolor in reprehenderit in voluptate velit esse
 cillum dolore eu fugiat nulla pariatur

SLIDE WITH GRAPHS

SLIDE WITH GRAPHS

SLIDE WITH GRAPHS

SLIDE WITH GRAPHS (SPECIAL NOTE)

SLIDE WITH MATH

- home production per unemployed worker: $0 \rightarrow \zeta$
- # recruiters per vacancy: $1
 ightarrow \kappa$
- Beveridge curve: $v = A/u \rightarrow v = A/u^{\epsilon}$
- · efficient tightness:

$$\theta^* = 1 \rightarrow \theta^* = \frac{1-\zeta}{\kappa \epsilon}$$

efficient unemployment rate:

$$u^* = \sqrt{uv} \quad \to \quad u^* = \left(\frac{\kappa \cdot \epsilon}{1 - \zeta} \cdot v \cdot u^{\epsilon}\right)^{1/(1+\epsilon)}$$

ANOTHER SLIDE WITH MATH

unemployment is almost always on Beveridge curve

$$\dot{u}(t) = \Lambda \cdot [1 - \mathcal{Z}(t) + \gamma - \pi] - \Phi \cdot u(t) \tag{1}$$

- on Beveridge curve, (1) has $\dot{u}(t) = 0$ so $u^b = \lambda/(\lambda + f)$
- unemployment dynamics and half life:

$$\mathcal{U}(t) - \mathcal{B} = \left[Z(0) - V^{\beta} \right] e^{-(\lambda + f)t}$$
$$\frac{\ln(2)}{\mathbb{R} + \mathbb{C}} = \frac{\ln(2)}{\exp(0.59)} = \mathbb{E}_{\alpha}(X + Y)$$

ANOTHER GRAPH

