Семінар 10

Властивості коефіцієнта кореляції

Коваріація та коефіцієнт кореляції

$$D\left(\sum_{i=1}^{n} \xi_{i}\right) = M\left(\sum_{i=1}^{n} \xi_{i} - M\sum_{i=1}^{n} \xi_{i}\right)^{2} = M\left(\sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} M \xi_{i}\right)^{2} = M\left(\sum_{i=1}^{n} (\xi_{i} - M \xi_{i})\right)^{2} = M\left(\sum_{i=1}^{n} \xi_{i} - M \xi_{i}\right)^{2}$$

$$= \sum_{i=1}^{n} M(\xi_{i} - M\xi_{i})^{2} + 2\sum_{j>i} M(\xi_{i} - M\xi_{i})(\xi_{j} - M\xi_{j}) = \sum_{i=1}^{n} D\xi_{i} + 2\sum_{j>i} \text{cov}(\xi_{i}, \xi_{j})$$

Коваріацією $cov(\xi, \eta)$ величин ξ і η називають

$$cov(\xi, \eta) = M(\xi - M\xi)(\eta - M\eta)$$
.

Коефіцієнтом кореляції величин ξ і η називають величину

$$r_{\xi,\eta} = \frac{\text{cov}(\xi,\eta)}{\sqrt{D\xi D\eta}}.$$

Випадкові величини ξ і η **некорельовані**, якщо $r_{\xi,\eta}=0$.

Властивості коефіцієнта кореляції:

- 1) $-1 \le r_{\xi,\eta} \le 1$.
- 2) Якщо | $r_{\xi,\eta}$ |= 1, то з ймовірністю 1 виконується співвідношення

$$\xi = a\eta + b$$
.

Дійсно, нехай $r_{\xi,\eta}=1$. Це можливо тоді і тільки тоді, коли

$$D(\frac{\xi}{\sqrt{D\xi}} - \frac{\eta}{\sqrt{D\eta}}) = 0,$$

що в свою чергу можливо тоді і тільки тоді, коли

$$\frac{\xi}{\sqrt{D\xi}} - \frac{\eta}{\sqrt{D\eta}} = \frac{M\xi}{\sqrt{D\xi}} - \frac{M\eta}{\sqrt{D\eta}}$$
 з імовірністю 1.

Звідси випливає, що

$$\xi = a\eta + b$$
, $\Delta e = a = \frac{\sqrt{D\xi}}{\sqrt{D\eta}}$, $b = M\xi - \frac{\sqrt{D\xi}}{\sqrt{D\eta}}M\eta$.

Аналогічно розбирається випадок $r_{\xi,\eta} = -1$.

3) Якщо випадкові величини незалежні, то $r_{\xi,\eta} = 0$.

Для коваріації величин ξ і η знаходимо

$$cov(\xi,\eta) = M(\xi - M\xi)(\eta - M\eta) = M(\xi\eta - \eta M\xi - \xi M\eta + M\xi \cdot M\eta) = M\xi\eta - M\xi \cdot M\eta.$$

Таким чином, якщо ξ і η - незалежні, то $\operatorname{cov}(\xi,\eta)=0$ і $r_{\xi,\eta}=0$.

Обернене твердження невірно. Наведемо ідею, на основі якої можна будувати конкретні приклади пар залежних випадкових величин, що некорельовані.

1. Знайти лінійну функцію, яка найкращим чином у середньо квадратичному сенсі наближає випадкову аеличину η по випадковій величині ξ , тобто знайти a та b такі, що $g(a,b) = M(\eta - (a\xi + b))^2 \to \min$

$$\frac{\partial g(a,b)}{\partial a} = -2M\xi(\eta - (a\xi + b)) = 0$$

$$\frac{\partial g(a,b)}{\partial b} = -2M(\eta - (a\xi + b)) = 0$$

$$\lambda\left(\xi\right) = a^*\xi + b^* \;,\; \text{de} \quad a^* = \frac{\text{cov}\left(\xi,\eta\right)}{D\xi} = \frac{\text{cov}\left(\xi,\eta\right)}{\sqrt{D\xi D\eta}} \sqrt{\frac{D\eta}{D\xi}} = r\left(\xi,\eta\right) \sqrt{\frac{D\eta}{D\xi}} \;\;,\;\; \text{a} \quad b^* = M\eta - a^*\xi$$

При цьому
$$\Delta^* = M \left(\eta - \left(a^* \xi + b^* \right) \right)^2 = D \eta - \frac{\operatorname{cov}^2 \left(\xi, \eta \right)}{D \xi} = D \eta \left(1 - r^2 \left(\xi, \eta \right) \right)$$

Якщо $r(\xi,\eta)=0$, тоді $a^*=0$. Якщо $r^2(\xi,\eta)=1$, тоді $\Delta^*=0$.

2. Нехай
$$\alpha = \begin{cases} 0, & \frac{1}{3} \\ \frac{\pi}{2}, & \frac{1}{3} \end{cases}$$
, $\xi = \sin \alpha$, $\eta = \cos \alpha$, $M\xi = M \sin \alpha = 0\frac{1}{3} + 1\frac{1}{3} + 0\frac{1}{3} = \frac{1}{3}$ π , $\frac{1}{3}$

$$M\eta = M\cos\alpha = 1\frac{1}{3} + 0\frac{1}{3} - 1\frac{1}{3} = 0$$

$$cov(\xi,\eta) = M(\xi - M\xi)(\eta - M\eta) = M\xi\eta - M\xi M\eta$$

В нашому випадку
$$\operatorname{cov}(\xi,\eta) = M(\xi - M\xi)(\eta - M\eta) = M\xi\eta$$

Знайдемо

$$cov(\xi,\eta) = M(\xi - M\xi)(\eta - M\eta) = M\xi\eta = M\sin\alpha\cos\alpha = 0\cdot1\cdot\frac{1}{3} + 1\cdot0\cdot\frac{1}{3} - 0\cdot1\cdot\frac{1}{3} = 0$$

Hатомість
$$\xi^2 + \eta^2 = 1$$