## Сведения из ТВ и теории оценивания

## Олег Николаевич Граничин

Санкт-Петербургский государственный университет, математико-механический факультет

06 ноября 2012

#### Стохастичность

#### Греческое слово

- целиться, метить (целиться во что (в кого)-л.)
- стремиться к тому, чтобы судьями были самые влиятельные люди
- применяться, приспособляться
- умозаключать, судить, догадываться, разгадывать (догадываться о том, что требуется; заключать на основании чего-л.; путем догадок)

## Случайные величины І

Пусть  $(\Omega,\mathscr{F})$  — некоторое измеримое пространство и  $(\mathbb{R},\mathscr{B}(\mathbb{R}))$  — числовая прямая с системой борелевских множеств  $\mathscr{B}(\mathbb{R})$ . Действительная функция  $\xi=\xi(\omega)$ , определенная на  $(\Omega,\mathscr{F})$  называется  $\mathscr{F}$ -измеримой функцией или случайной величиной, если для любого  $B\in\mathscr{B}(\mathbb{R})$ 

$$\{\omega: \, \xi(\omega) \in B\} \in \mathscr{F}.$$

Пусть  $(\Omega, \mathscr{F}, \mathbf{P})$  — произвольное вероятностное пространство. *Математическим ожиданием*  $\mathrm{E}\{\xi\}$  произвольной случайной величины  $\xi$  называется интеграл Лебега от  $\mathscr{F}$ -измеримой функции  $\xi=\xi(\omega)$  по мере  $\mathbf{P}$ , для которого (наряду с  $\mathrm{E}\{\xi\}$ ) используются также следующие обозначения:  $\int_{\Omega} \xi(\omega) \mathbf{P}\{d\omega\}$  или  $\int_{\Omega} \xi \, d\mathbf{P}$ . Дисперсией случайной величины  $\xi$  называется величина  $\sigma^2=\mathrm{E}\{(\xi-\mathrm{E}\{\xi\})^2\}$ , при этом величина  $\sigma>0$  называется стандартным отклонением.

#### Случайные величины ІІ

Ковариация пары случайных величин  $\zeta$  и  $\eta$ :

$$\operatorname{cov}\{\zeta,\eta\} = \operatorname{E}\{(\zeta - \operatorname{E}\{\zeta\})(\eta - \operatorname{E}\{\eta\})\}.$$

Если  $\mathrm{cov}\{\zeta,\eta\}=0$ , то говорят, что случайные величины  $\zeta$  и  $\eta$  не коррелированы.

Pаспределением случайной величины  $\xi$  на  $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$  называется вероятностная мера  $\mathrm{P}_{\xi}(\cdot)$  на  $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ :

$$P_{\xi}(B) = P\{\omega : \xi(\omega) \in B\}, B \in \mathscr{B}(\mathbb{R}).$$

 $P_{\xi}(x) = \mathbf{P}\{\omega : \xi(\omega) \leq x\}, x \in \mathbb{R}.$ 

Из определения следует, что  $\mathrm{E}\{\xi\} = \int_{\mathbb{R}} x \mathrm{P}_{\xi}(dx)$ . Функция распределения случайной величины  $\xi$ 

Неотрицательная функция  $p_{\xi}(\cdot)$  называется *плотностью* функции распределения случайной величины  $\xi$ , если

$$P_{\xi}(x) = \int_{-\infty}^{x} p_{\xi}(t) dt.$$

4□ > 4₫ > 4불 > 4불 > 월 90

## Случайные величины III

Случайная величина  $\xi$  называется *гауссовской* (или *нормально распределенной*) с параметрами M и  $\sigma^2$  ( $\xi \sim \mathcal{N}(M, \sigma^2)$ ),  $|M| < \infty$ ,  $\sigma > 0$ , если её плотность  $p_{\xi}(\cdot)$  имеет следующий вид:

$$p_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-M)^2}{2\sigma^2}}.$$

Случайные величины  $\xi_1,\ldots,\xi_n$  называются независимыми (независимыми в совокупности), если для любых  $B_1,\ldots,B_n\in\mathscr{B}(\mathbb{R})$ 

$$\mathsf{P}\{\xi_1 \in B_1, \dots, \xi_n \in B_n\} = \mathsf{P}\{\xi_1 \in B_1\} \cdots \mathsf{P}\{\xi_n \in B_n\}.$$

Пусть  $\xi$  и  $\eta$  — независимые случайные величины с  $\mathrm{E}\{|\xi|\}<\infty$  и  $\mathrm{E}\{|\eta|\}<\infty$ . Тогда  $\mathrm{E}\{|\xi\eta|\}<\infty$  и

$$\mathrm{E}\{\xi\eta\} = \mathrm{E}\{\xi\}\mathrm{E}\{\eta\}.$$

Понятие случайная величина естественным образом обобщается и на векторный случай.

#### Некоторые неравенства для случайных величин

Неравенство Маркова Пусть  $\xi$  — неотрицательная случайная величина. Тогда для всякого  $\varepsilon>0$ 

$$P\{\xi \ge \varepsilon\} \le \frac{E\{\xi\}}{\varepsilon}.$$

Неравенство Чебышёва Пусть  $\xi$  — случайная величина. Тогда для всякого  $\varepsilon>0$ 

$$\mathbf{P}\{|\xi| \ge \varepsilon\} \le \frac{\mathrm{E}\{|\xi|^2\}}{\varepsilon^2}.$$

Неравенство Иенсена Пусть g(x) — выпуклая функция, а  $\xi$  — случайная величина с  $\mathbb{E}\{\xi\}<\infty$ . Тогда

$$g(\mathrm{E}\{\xi\}) \leq \mathrm{E}\{g(\xi)\}.$$

Неравенство Гёльдера Пусть  $1 и <math>\frac{1}{p} + \frac{1}{q} = 1$ . Если  $\mathrm{E}\{|\xi|^p\} < \infty$  и  $\mathrm{E}\{|\eta|^q\} < \infty$ , то  $\mathrm{E}\{|\xi\eta|\} < \infty$  и  $\mathrm{E}\{|\xi|^p\}^{1/p}(\mathrm{E}\{|\eta|^q\})^{1/q}$ .

## Закон больших чисел для независимых случайных величин

Закон больших чисел Пусть  $\xi_1, \xi_2, \ldots$  — последовательность независимых одинаково распределенных случайных величин с  $\mathrm{E}\{\xi_1\} < \infty$ ,  $S_n = \xi_1 + \ldots + \xi_n$  и  $\mathrm{E}\{\xi_1\} = M$ .

Тогда при n →  $\infty$ 

$$\forall \varepsilon > 0 \ \mathbf{P}\{|\frac{S_n}{n} - M| \ge \varepsilon\} \to 0.$$

**Теорема Кантелли** Пусть  $\xi_1, \xi_2, \ldots$  — последовательность независимых случайных величин с конечным четвертым моментом:

$$E\{|\xi_n - E\{\xi_n\}|^4\} \le C < \infty, \ n \ge 1,$$

$$S_n = \xi_1 + \ldots + \xi_n.$$

**Тогда** при  $n o \infty$  с вероятностью единица

$$\frac{S_n-\mathrm{E}\{S_n\}}{n}\to 0.$$



#### Усиленный закон больших чисел

Усиленный закон больших чисел (Колмогорова) Пусть  $\xi_1, \xi_2, \dots$  — последовательность независимых случайных величин с конечными вторыми моментами, положительные числа  $\beta_n$  таковы, что

$$eta_n 
ightarrow \infty, \ \sum rac{\mathrm{E}\{(\xi_n - \mathrm{E}\{\xi_n\})^2\}}{eta_n^2} < \infty,$$

$$S_n=\xi_1+\ldots+\xi_n.$$

**Тогда** при  $n \to \infty$  с вероятностью единица

$$\frac{S_n-\mathrm{E}\{S_n\}}{\beta_n}\to 0.$$

#### Неравенство Хёффдинга

**Hoeffding's inequality.** Пусть  $\xi_1, \xi_2, \ldots$  — последовательность независимых случайных ограниченных величин, принимающих значения в интервалах  $[\alpha_k, \beta_k]$ , и  $S_n = \xi_1 + \ldots + \xi_n$ . **Тогда** для всякого  $\varepsilon > 0$ 

$$\mathsf{P}\left\{\frac{S_n - \mathrm{E}\{S_n\}}{n} \le -\varepsilon\right\} \le \mathrm{e}^{-\frac{2n^2\varepsilon^2}{\sum_{k=1}^n (\beta_k - \alpha_k)^2}}$$

И

$$\mathsf{P}\left\{\frac{S_n - \mathrm{E}\{S_n\}}{n} \geq \varepsilon\right\} \leq e^{-\frac{2n^2\varepsilon^2}{\sum_{k=1}^n (\beta_k - \alpha_k)^2}}.$$

Следствие. Если  $[lpha_k,eta_k] = [0,1]$ , то

$$\mathsf{P}\left\{\frac{|S_n-\mathrm{E}\{S_n\}|}{n}\geq \varepsilon\right\}\leq 2e^{-2n\varepsilon^2}.$$

# Наилучшая аппроксимация одной случайной величины с помощью другой

Пусть  $\zeta$  и  $\eta$  — произвольные случайные величины (векторы), принимающие значения соответственно в  $\mathbb R$  и  $\mathbb R^s$ , определенные на некотором вероятностном пространстве  $\Omega$ , и  $\mathscr G$  — некоторое семейство функций, отображающих  $\mathbb R^s$  в  $\mathbb R$ , заданных с точностью до конечномерного набора параметров, называемое регрессионной моделью. Требуется найти функцию  $g(\cdot) \in \mathscr G$ , минимизирующую

$$\mathrm{E}\{\|\zeta-g(\eta)\|^2\}.$$

Если  $\mathscr{G}$  — класс всех измеримых функций из  $\mathbb{R}^s$  в  $\mathbb{R}$ , то соответствующей минимизирующей функцией  $g(\cdot)$  является  $g(\eta)=\mathrm{E}\{\zeta|\eta\}$  — условное (при условии  $\eta$ ) среднее случайной величины  $\zeta$ , называемое *регрессией*  $\zeta$  *по*  $\eta$ .

#### Линейная регрессионная модель

Наиболее распространенной является линейная регрессионная модель, когда требуется найти наилучшую в среднеквадратичном смысле аппроксимацию случайной величины  $\zeta$  с помощью линейной функции от случайной величины  $\eta$ .

Если вектор, составленный из компонент случайных величин  $\zeta$  и  $\eta$  — гауссовский, то регрессия  $\mathrm{E}\{\zeta|\eta\}$  случайной величины  $\zeta$  по  $\eta$  совпадает с линейной регрессией.

### Оценивание по конечному числу наблюдений

Если имеется выборочная последовательность  $\varphi_1, \varphi_2, \dots, \varphi_N$  реализаций случайной величины  $\eta$ , то в рамках линейной регрессионной модели реализации  $y_1, y_2, \dots, y_N$  случайной величины  $\zeta$  удобно представить в виде

$$y_n = \varphi_n^{\mathrm{T}} \theta + v_n, \ n = 1, 2, \dots, N,$$

где  $\theta$  — вектор коэффициентов. В этом представлении невязки  $v_n,\ n=1,2,\ldots,N$ , интерпретируются как ошибки наблюдения. Обозначим  $Y=Y^N=(y_1,y_2,\ldots,y_N)^{\rm T}$  — наблюдаемый в момент времени N вектор, являющийся функцией входных воздействий, помех в канале измерения и некоторого векторного параметра  $\theta$ . Tpe Gyercs по значению вектора Y получить хорошую оценку  $\hat{\theta}=\hat{\theta}^N$  вектора  $\theta$ .

#### Свойства оценок

- Оценка  $\hat{\theta}$  называется *линейной*, если она имеет вид  $\hat{\theta} = \Gamma \, Y$  с некоторой матрицей коэффициентов  $\Gamma$ .
- ullet Оценка  $\hat{ heta}$  называется несмещенной, если  $\mathrm{E}\{\hat{ heta}\}= heta.$
- Последовательность оценок  $\{\hat{\theta}^N\}_{N=1}^\infty$  называется состоятельной, если для любого  $\varepsilon>0$

$$\lim_{N\to\infty} \mathbf{P}\{\|\hat{\theta}^N - \theta\|^2 > \varepsilon\} = 0,$$

• и называется сильносостоятельной, если с вероятностью единица

$$\lim_{N\to\infty}\hat{\theta}^N=\theta.$$



#### Мартингалы, супер- и субмартингалы

Последовательность случайных величин  $v_0,\dots,v_n,\dots$ :  $\mathrm{E}\{|v_n|\}<\infty$ , называется *мартингалом*, если

$$\mathrm{E}\{\nu_{n+1}|\nu_0,\ldots,\nu_n\}=\nu_n,$$

супермартингалом, если

$$\mathrm{E}\{v_{n+1}|v_0,\ldots,v_n\}\leq v_n,$$

субмартингалом, если

$$\mathrm{E}\{v_{n+1}|v_0,\ldots,v_n\}\geq v_n,$$

## Теорема Дуба о сходимости супермартингалов

#### Theorem

Если последовательность  $v_0,\ldots,v_n,\ldots$  — супермартингал, тогда с вероятностью единица существует предел:  $V_\infty=\lim_{n\to\infty}v_n$ , и  $\mathrm{E}|v_\infty|<\infty$ .

# Последовательности случайных величин, близкие к супермартингалам. Лемма Роббинса-Зигмунда

#### Lemma

Если  $v_0, \dots, v_n, \dots$  — последовательность неотрицательных случайных величин:  $v_n \ge 0$ ,  $\mathrm{E}\{v_0\} < \infty$  и

$$\mathrm{E}\{\nu_{n+1}|\nu_0,\ldots,\nu_n\} \leq (1-\alpha_n)\nu_n + \beta_n,$$

$$0 \le \alpha_n \le 1, \ \beta_n \ge 0, \ \sum \alpha_n = \infty, \ \sum \beta_n < \infty, \ \frac{\beta_n}{\alpha_n} \to 0,$$

тогда с вероятностью единица  $v_n o 0$ ,  $\mathrm{E}\{v_n\} o 0$  и

$$\forall \varepsilon > 0, \ n > 0 \ \mathbf{P}\{v_j \le \varepsilon \ \forall j \ge n\} \ge 1 - \varepsilon^{-1}(\mathbb{E}\{v_n\} + \sum_{i=1}^{\infty} \beta_i).$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

### Лемма Чжуна

#### Lemma

Если последовательность неотрицательных чисел  $\{u_n\}$ ,  $u_n \ge 0$ , удовлетворяет неравенству:

$$u_{n+1} \le (1 - \frac{c}{n})u_n + \frac{d}{n^{p+1}}, \ d > 0, \ p > 0, \ c > p,$$

тогда 
$$u_n \leq \frac{d}{c-p} n^{-p} + o(n^{-p})$$
при  $c > p$ ,  $u_n = \mathcal{O}(n^{-c} \ln n)$  при  $c = p$ ,  $u_n = \mathcal{O}(n^{-c})$  при  $c < p$ .



#### Метод усредненных моделей

Рассмотрим дискретную стохастическую систему

$$\bar{x}_{t+1} = \bar{x}_t + F_t(\alpha_t, \bar{x}_t, \bar{w}_t), \qquad t = 0, 1, 2, \dots,$$
 (1)

где  $ar{x}_t \in \mathbb{R}^n$  — вектор состояний,  $ar{w}_t \in \mathbb{R}^m$  — случайный вектор возмущений,  $\alpha_t$  — параметр шага,  $F_t(\cdot,\cdot,\cdot): \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$  — некоторые вектор-функции от параметра шага  $\alpha_t$  и двух аргументов. Обычно вектор-функции  $F_t(\alpha_t, \bar{x}_t, \bar{w}_t)$  имеют вид:  $F_t(\alpha_t, \bar{x}_t, \bar{w}_t) = \alpha_t \bar{F}_t(\bar{x}_t, \bar{w}_t)$ . Будем считать, что при  $k \to \infty$   $\alpha_t \to \alpha \geq 0$ .

#### Усредненные модели

Выпишем соответствующую (1) усредненную дискретную модель

$$\bar{z}_{t+1} = \bar{z}_t + G_t(\alpha_t, \bar{z}_t), \ \bar{z}_0 = \bar{x}_0, \tag{2}$$

в которой функции  $G_t(\cdot,\cdot):\mathbb{R} imes\mathbb{R}^n o\mathbb{R}^n$  при детерминированных значениях ar z определены следующим образом:

$$G_t(\alpha_t, \bar{z}) = EF_t(\alpha_t, \bar{z}, \bar{w}_t).$$
 (3)

Предположив, что для любого  $ar{z} \in \mathbb{R}^n$  существует предел

$$R(\alpha, \bar{z}) = \lim_{t \to \infty} \frac{1}{\alpha_t} G_t(\bar{z}) = \lim_{t \to \infty} \frac{1}{\alpha_t} EF_t(\bar{z}, \bar{w}_t), \tag{4}$$

наряду с (1) рассмотрим соответствующую непрерывную систему (непрерывную модель):

$$\frac{d\bar{x}}{d\tau} = R(\alpha, \bar{x}),\tag{5}$$

в которой траектории — это вектор-функции  $\bar{x}(\tau) \in \mathbb{R}^n$ , зависящие от "непрерывного" аргумента  $\tau \in \mathbb{R}, \ \tau \geq 0$ .

## "Близость" траекторий

- Если параметры шага  $\alpha_t$  достаточно малы  $(\alpha_t \leq \alpha)$ , тогда траектории  $\{\bar{x}_t\}$  системы (1) близки к точкам  $\{\bar{x}(\tau_t)\}$  траекторий системы (5) при  $\tau_t = \alpha_0 + \dots + \alpha_{t-1}$ .
- Если параметры шага  $\alpha_t$  стремятся к нулю при  $t \to \infty$ , то некоторые асимптотические свойства решений системы (1) (например, устойчивость, предельная ограниченность и т. п.) могут быть аналогичны свойствам решений непрерывной модели (5).

В случае близости систем (1) и (5) в указанном выше смысле для целей системного анализа и проектирования можно использовать упрощенную модель (5) вместо (1). Такой подход получил название метод непрерывных моделей (в англоязычной литературе ODE approach или Derevitskii-Fradkov-Ljung (DFL) - scheme.