Конспект по алгебре за I семестр бакалавриата Чебышёва СПбГУ (лекции Степанова Алексея Владимировича)

November 18, 2019

Contents

1	Введение в топологию			2
	1.1	Произ	ведение топологических пространств	2
			Произведение параметризуемых метрических пространств	
		1.1.2	Непрерывность	4

Chapter 1

Введение в топологию

1.1 Произведение топологических пространств

Определение 1. X,Y - топологические пространства.

Топология произведения на $X \times Y$, база которой равна

$$\{A \times B \mid A \subset X, B \subset Y - \text{открыты.}\}.$$

 $X \times Y$ с такой топологией – произведение X и Y.

Теорема 1.1.1. Определение 1 корректно.

Доказательство. 1. Все пространства открыто

2. Пересечение двух множеств из базы = объединение множеств базы.

$$(A\times B)\cap (c\times D)=(A\cap D)\times (B\cap D).$$

Получили объединение открытого в X и в Y, а значит принадлежит базе.

Теорема 1.1.2. $A \cap X$ – замкнуто, $B \cap Y$ – замкнуто. Тогда $A \times B$ – замкнуто в $X \times Y$.

Доказательство. Докажем, что дополнение открыто.

$$(X\times Y)\setminus (A\times B)=X\times (Y\setminus B)\cup (X\setminus A)\times Y.$$

Упраженение. Для любых $A\subset X,\ B\subset Y$:

- 1. $Int(A \times B) = Int(A) \times Int(B)$
- 2. $Cl(A \times B) = Cl(A) \times Cl(B)$
- 3. $A \times B$ как произведение подпространств равно $A \times B$ как подпространство произведения.

1.1.1 Произведение параметризуемых метрических пространств

Здесть все также, только топология задается метрикой. d_X, d_Y - метрики.

Теорема 1.1.3.

$$d((x,y),(x',y')) = \max\{d_X(x,x'),d_Y(y,y')\}.$$

d - метрика на $X \times Y$. Произведение метризуемых пространств метризуемо.

Доказательство. 1. Проверим, что d - метрика.

$$d(p, p') + d(p', p'') \ge d(p, p'') = d_X(x, x'').$$

$$d_X(x, x') + d_X(x, x'') \ge d_X(x, x'').$$

2.
$$\Omega_d \subset \Omega_{X \times Y}$$

$$B_r((x,y)) = B_r^X(x) \times B_r^Y(y).$$

А это базовое множество.

3. $\Omega_{X\times Y}\subset\Omega_d$ Рассмотрим $W\in\Omega_{X\times Y}$. катринка

$$\exists A \subset X, \ B \subset Y$$
- открытые, $(x, y) \in A \times B \subset W$.
 $\exists r_1 > 0 : B_{r_1}^X(x) \subset A$.
 $\exists r_2 > 0 : B_{r_2}^Y(y) \subset A$.

Теперь возьмем $r = \min(r_1, r_2)$

$$B_r^{X\times Y}((x,y)) = B_r^X(x) \times B_r^Y(y) \subset A \times B \subset W.$$

Утверждение (Согласование метрик).

$$d_1((x,y),(x',y')) = d(x,x') + d_Y(y,y').$$

$$d_2((x,y),(x',y')) = \sqrt{d_X(x,x')^2 + d_Y(y,y')^2}.$$

Доказательство. Проверим неравентсво треугольника для второй метрики (для превого - очевидно).

$$\sqrt{(a+b)^2 + (c+d)^2} = d_2((x,y),(x'',y'')) \le 2d_2((x,y),(x',y')), d_2((x',y'),(x'',y'')) = \sqrt{a^2 + c^2} + \sqrt{b^2 + d^2}.$$

Определение 2. Бесконечное произведение пространств

 $\{X_i\}_{i\in I}$ - семеййство топологичеких пространств. Ω_i - топология.

Множество $\prod_{i \in I} X_i = \{\{x_i\}_{i \in I} \mid \forall i, x_i \in X_i\}.$

Тагде расмотрим отображение $p_i:X\mapsto X_i$ - проекция.

Тихоновская топология на X – топология с предбазой

$$\left\{p_i^{-1}(U)\right\}_{i\in I,\ U\in\Omega}.$$

Tasks. 1. Счетное произведение метризуемых – метризуемо. Сначала можно разобраться с отрезком $[0,1]^{\mathbb{N}} = \prod_{i \in \mathbb{N}} [0,1]$.

2. Канторовское множество $\approx \{0,1\}^{\mathbb{N}}$

1.1.2 Непрерывность

X,Y - топологические пространства, Ω_1,Ω_2 - топологии, $f:X\to Y$.

Определение 3. f – непрерывна, если $\forall U \subset \Omega_Y: f^{-1} \subset \Omega_X$.

Замечание.

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

Примеры. 1. Тождественное отображение непрерывно. $id_X: X \to X$

- 2. Константа тоже непрерывна. $Const_{y_0}: X \to Y, \ \forall x \in X \quad x \mapsto y_0$
- 3. Если X дискретно, $\forall f: X \to Y$ непрерывно.
- 4. Если Y антидискретно, $\forall f: X \to Y$ непрерывно.

Определение 4. $f: X \to Y, \ x_0 \in Y \ f$ непрерывна в точке x_0 , если

 \forall окрестности $U \ni y_0 = f(x_0) \exists$ окрестность $V \ni x_0 : f(U) \subset V$.

Теорема 1.1.4. f - непрерывна тогда и только тогда, когда $\forall x_0 \in X : f$ - непрерывна в точке x_0 .

 \mathcal{A} оказательство. \Rightarrow) $y_0 \in U$.

$$\left\{\begin{array}{ll} f^{-1}(U) \text{ открыт} & V:=f^{-1}(U) \\ x_0 \in f^{-1}(U) & f(V) \subset U \end{array}\right..$$

 \Leftarrow

 $U \subset Y$ - открыто, хотим доказать $f^{-1}(U)$ - открыто. Достаточно доказать, что $\forall x \in f^{-1}(x)$ - внутренняя.

$$\exists V\ni x: f(V)\subset U \Leftrightarrow x\in V\subset f^{-1}(U).$$

Тогда x - внутренняя точка $f^{-1}(U)$.