#### 11 Statistische Syntaxmodelle

#### 11.1 Erweiterungen von CFG-Grammatiken

- 11.1.1 Grammatikentwicklung
- 11.1.2 Disambiguierung durch statistische Modelle
- 11.1.3 Normalisierung und *Parent-Annotation* von CFG-Grammatiken

#### 11.2 Probabilistische kontextfreie Grammatiken

- 11.2.1 Probabilistische kontextfreie Grammatik (PCFG)
- 11.2.2 Abschätzung der Regelwahrscheinlichkeiten
- 11.2.3 \*Probabilistisches Parsing (Zusatz)

#### 11.3 Dependenzbasierte Modelle

- 11.3.1 Dependenzgrammatiken
- 11.3.2 Vorteile von Dependenzmodellen
- 11.3.3 Dependency-Treebanks
- 11.3.4 Statistische Dependency-Parsing-Modelle
- 11.3.5 Beispiel: Übergangsbasiertes Dependency-Parsing
- 11.3.6 Evaluation von Dependenz-Parsing-Systemen
- 11.3.7 Regelbasierte Dependenzgrammatiken

# 11 Statistische Syntaxmodelle

## 11.1 Erweiterungen von CFG-Grammatiken

#### 11.1.1 Grammatikentwicklung

#### **Grammatik-Entwicklung**

- Ziel automatischer Syntaxanalyse:
  - → Entwicklung von Grammatik mit hoher **Abdeckung**/*coverage*
  - → beschreibungsadäquates **Model der syntaktischen Struktur eines sehr großen Ausschnitts** einer natürlichen Sprache
- Unifikationsgrammatiken:
  - → modellieren **Agreement, Rektion und Subkategorisierung** über Merkmalconstraints
  - → Erkennung genau der **wohlgeformten Sätze**
  - ightarrow beschreibungsadäquate Strukturzuweisung

#### Grammatiksysteme

- von Experten erstellte Grammatik-Systeme, die den Anspruch haben, einen großen Ausschnitt der Syntax einer natürlichen Sprache abzubilden:
  - Head-Driven Phrase Structure Grammar (HPSG):
    - → LinGO Matrix Framework
    - → **delph-in.net** (deutsche Grammatik)
  - Lexical Functional Grammar (LFG): Pargram Projekt
  - Lexicalized Tree Adjoining Grammar: XTAG Projekt

#### Zunahme Ambiguität mit Abdeckung

- hohe Abdeckung (viele Regeln, großes Lexikon mit ambigen Einträgen) und Input langer (komplexer) Sätze führen zu:
  - → hoher Aufwand beim Parsing
  - → große Anzahl an Ableitungen/Analysen (Ambiguität)
- z. B. durch Ambiguität im Lexikon:

```
[NP Time] [VP flies] like an arrow.
```

[VP Time] [NP flies] like an arrow.

[NP Time flies] [VP like] an arrow.

### 11.1.2 Disambiguierung durch statistische Modelle

- Erweiterung von CFGs um probabilistische Parameter
  - → **gewichtete Grammatik**: Produktionsregeln erhalten Bewertung
  - → erlaubt **Ranking der Ableitungen** eines strukturell ambigen Satzes aufgrund von **Trainingsdaten aus Korpus**

#### Disambiguierung über empirisches Modell

- → **statt Disambiguierung über** explizite **semantische Informationen** im Anschluss an syntaktisches Parsing durch semantisches Parsing:
- → Auswahl Ableitung aufgrund von **statistischen Informatio**nen aus Korpusdaten zu Kollokationen von Wörtern und syntaktischen Kategorien
- → beste syntaktische Analyse eines Satzes = die im Sprachgebrauch häufigste
- → graduelle Modellierung von Grammatikalität

- Probabilistische CFG (= PCFG) erlaubt in Kombination mit dynamischem Parsing das effiziente Auffinden der besten (= wahrscheinlichsten) Ableitung
- ohne Gewichtung: dynamische Programmierung (CYK, Earley)
  kann zwar Parsing-Aufwand bei großem Suchraum (großer Grammatik) reduzieren, aber keine Auswahl treffen aus den gefundenen Ableitungen
- statistische Informationen können auch im Parsing von Unfikationsgrammatiken (wie LFG, HPSG) zur Disambiguierung verwendet werden

- nächste Sitzung: statt bloßer Erweiterung einer gegebenen CFG um statistische Informationen aus Treebanks: Extraktion von Grammatiken aus Treebanks
  - → in solchen *induzierten* Grammatiken können auch lexikalische Informationen und Informationen zum strukturellen Kontext berücksichtigt werden, die der weiteren Disambiguierung dienen

# 11.1.3 Normalisierung und Parent-Annotation von CFG-Grammatiken

#### Normalisierung

- Chomsky-Normalform (CNF)
  - → Einschränkung der Form von CFG-Regeln:
  - $\Rightarrow$  RHS: 2 Nichtterminale oder 1 Terminal:  $A \rightarrow B C$ ,  $A \rightarrow a$
  - → **Binärbäume** (bis Präterminalknoten, dort: unäre Bäume)
  - → jede CFG kann in CNF umgewandelt werden:

$$A \rightarrow B C D \Rightarrow A \rightarrow B X, X \rightarrow C D$$
 (Right-Factored)

$$A \rightarrow B C D \Rightarrow A \rightarrow X D, X \rightarrow B C$$
 (Left-Factored)

**Original:** 

A C D

Left-Factored:

Right-Factored:

#### Anwendung Chomsky-Normalform:

- notwendig für CYK-Chart-Parsing
- zur Reduktion von extrahierten Grammatikregeln aus flach annotiertem Korpus:

\* 
$$VP \rightarrow VPP$$

$$VP \rightarrow VPPPP$$

$$VP \rightarrow VPPPPP \quad \text{usw.}$$

\* mit **Chomsky-adjunction** ( $A \rightarrow A B$ ):

$$VP \rightarrow VPP$$
 $VP \rightarrow VPPP$ 

#### Parent Annotation

- → Kategorie des **Mutterknoten in Kategoriensymbol** aufnehmen
- → Modellierung von **Kontext**; s. nächste Sitzung: *history-based PCFGs*
- → ergibt anderes PCFG-Modell: **mehr Nichtterminale, andere Gewichtung**

Original: Parent Annotation: +Grandparent Annot.:

A A A A A B^A C^A B^A C^A D^C D^C-A

# 11.2 Probabilistische kontextfreie Grammatiken

#### Literatur:

- **MS**: Manning, Christopher D. & Schütze, Hinrich (1999): Foundations of Statistical Natural Language Processing.
- NLTK-Teilkapitel 8.6 ('Grammar Development') und 8.5.2 ('Scaling up'): http://www.nltk.org/book/ch08.html
- Teilkapitel 2.12 ('Grammar Induction') des Zusatzkapitels zu Kapitel 8: http://www.nltk.org/book/ch08-extras.html
- Die Teilkapitel 2.9-2.11 des Zusatzkapitels zu Kapitel 8 behandeln probabilistische Chart Parsing-Algorithmen: http://www.nltk.org/book/ch08-extras.html

#### Disambiguierung durch statischen Erweiterung (PCFG)

- Erweiterung von CFG-Grammatiken durch statistische Parameter zur Disambiguierung
- **strukturelle Disambiguierung** durch *parse selection* (Herausfiltern der wahrscheinlichsten Ableitung)
- Wahrscheinlichkeiten der Regeln müssen anhand von Korpusdaten gelernt werden (Parameter-Abschätzung)
- Algorithmen dynamischer Programmierung (Viterbi-Algorithmus)
   zur effizienten Auffindung der wahrscheinlichsten Ableitung

## 11.2.1 Probabilistische kontextfreie Grammatik (PCFG)

• **PCFG** = kontextfreie Grammatik, deren Regeln mit **Wahrschein**-**lichkeiten** gewichtet sind:

 $VP \rightarrow VP PP 0.6$  $NP \rightarrow NP PP 0.2$ 

 $NP \rightarrow N \ 0.8$ 

 Wahrscheinlichkeiten aller Regeln für die Expansion eines bestimmten Nonterminals addieren sich zu 1

- Ableitung/Baum ist Menge an Regeln/Expansionen
  - $\rightarrow$  Teilbäume mit Tiefe 1
- Wahrscheinlichkeit einer Ableitung T(Tree) als Multiplikation der Wahrscheinlichkeiten ihrer Regeln:

$$P(T) = \prod_{i=1}^{n} P(R_i) = \prod_{i=1}^{n} P(RHS_i|LHS_i)$$

- ightarrow Iteration über die n Knoten im Baum: Produkt der Wahrscheinlichkeit der Expansion des LHS-Knotens von  $R_i$  zu RHS-Smbolfolge von  $R_i$
- → Annahme Unabhängigkeit der Regel-Auswahl

zur Disambiguierung muss die wahrscheinlichste Ableitung
 T\* zu einem Satz S gefunden werden:

• Satzwahrscheinlichkeit: Summe der Wahrscheinlichkeiten aller möglichen Ableitungen eines Satzes:

$$P(S) = \sum P(T, S) = \sum P(T)$$

#### Beispiel-PCFG PP-Attachment-Ambiguität

$$S \rightarrow NP \ VP \ 1$$
 $PP \rightarrow P \ NP \ 1$ 
 $NP(0.3)$ 
 $NP(0.6)$ 
 $NP \rightarrow DET \ N \ 0.5$ 
 $NP \rightarrow PRON \ 0.3$ 
 $NP \rightarrow NP \ PP \ 0.2$ 
 $VP \rightarrow V \ NP \ 0.3$ 
 $VP \rightarrow VP \ PP \ 0.6$ 
 $S(1)$ 
 $VP(0.6)$ 
 $VP(0.6)$ 
 $VP(0.6)$ 
 $VP(0.6)$ 
 $VP(0.7)$ 
 $VP(0.8)$ 
 $VP(0.8)$ 

$$P(T_1) = 1 * 0.3 * 0.6 * 0.3 * 0.5 * 1 * 0.5 = 0.0135$$



$$P(T_2) = 1 * 0.3 * 0.3 * 0.2 * 0.5 * 1 * 0.5 = 0.0045$$

 $\Rightarrow$  Auswahl adverbialer Lesart :  $P(T_1) > P(T_2)$ 

Grund: P(VP, PP|VP) > P(NP, PP|NP)

#### Auflistung 1: NLTK: Probabilistische kontextfreie Grammatik (PCFG)

```
grammar1 = nltk.PCFG.fromstring("""
 2
          S \rightarrow NP VP [1.0]
 3
          PP \rightarrow P NP [1.0]
          NP \rightarrow Det N | [0.8] | Det N PP
4
                                                       [0.1]
             [0.1]
 5
          VP \rightarrow V NP [0.8] \mid VP PP [0.2]
          Det \rightarrow 'an' [0.7] | 'my' [0.3]
 6
          \mathbb{N} \rightarrow \text{'elephant'} [0.5] \mid \text{'pajamas'} [0.5]
8
          V \rightarrow 'shot' [1.0]
          P \rightarrow 'in' [1.0]
9
          11 11 11 )
10
11
12
13
14
```

```
15
   parser = nltk.ViterbiParser(grammar1)
16
   for tree in parser.parse(sent):
17
18
       print(tree)
   # (S
19
   \# (NP I)
20
   # (VP
21
22
         (VP (V shot) (NP (Det an) (N elephant)))
23
         (PP (P in) (NP (Det my) (N pajamas)))))
     (p=0.0005376)
24
25
   #(VP-attachment als wahrscheinlichste
     Ableitung)
26
27
28
```

```
grammar2 = nltk.PCFG.fromstring("""
29
           S \rightarrow NP VP [1.0]
30
31
           PP \rightarrow P NP [1.0]
           	exttt{NP} 
ightarrow 	exttt{Det} 	exttt{N} 	exttt{ PP} 	exttt{ [0.2]} 	exttt{ | 'I'}
32
              [0.1]
33
           VP \rightarrow V NP [0.8] \mid VP PP [0.2]
34
           Det \rightarrow 'an' [0.7] | 'my' [0.3]
          N \rightarrow \text{'elephant'} [0.5] \mid \text{'pajamas'} [0.5]
35
36
           V \rightarrow 'shot' [1.0]
37
          P \rightarrow 'in' [1.0]
           """)
38
39
40
41
42
43
```

```
parser = nltk.ViterbiParser(grammar2)
44
   for tree in parser.parse(sent):
45
       print(tree)
46
47
   # (S
48
   \# (NP I)
     (VP
49
   # (V shot)
50
51
     (NP
           (Det an)
52
53
           (N elephant)
           (PP (P in) (NP (Det my) (N
54
     pajamas)))))) (p=0.000588)
55
   #(NP-attachment als wahrscheinlichste
56
     Ableitung)
```

### 11.2.2 Abschätzung der Regelwahrscheinlichkeiten

- Zwei Methoden für Abschätzung:
  - supervised = Bestimmung der relativen Häufigkeiten der Expansionen eines Nichtterminals in geparstem (syntaktisch annotiertem) Korpus (Maximum Likelihood Estimation)
  - unsupervised = wiederholtes Parsen von Korpus mit der gegebenen kontextfreien Grammatik und sukzessive Verbesserung eines statistischen Modells (Inside-Outside-Algorithmus)

#### Maximum Likelihood Estimation

 Abschätzung der Regelwahrscheinlichkeit als relative Häufigkeit der Expansion des LHS-Nonterminals zu RHS-Symbolfolge in Treebank (syntaktisch annotiertem Korpus)

• 
$$P(\alpha \to \beta | \alpha) = \frac{count(\alpha \to \beta)}{\sum_{\gamma} count(\alpha \to \gamma)} = \frac{count(\alpha \to \beta)}{count(\alpha)}$$

· Expansionswahrscheinlichkeit:

$$P(RHS|LHS) = P(Expansion|Nonterminal)$$

→ Idee: gute probabilistische Grammatik **maximiert die Wahrscheinlichkeit der Trainingsdaten** 

• **Beispiel**: Wahrscheinlichkeit für Expansion  $VP \rightarrow VNPPP$ :

$$P(V, \mathit{NP}, \mathit{PP}|\mathit{VP}) = \frac{count(\mathit{VP} \rightarrow \mathit{V} \; \mathit{NP} \; \mathit{PP})}{count(\mathit{VP} \rightarrow \backslash \texttt{*})}$$

• 
$$count(VP \rightarrow V \ NP \ PP) = 10$$
  
 $count(VP \rightarrow V \ NP) = 50$   
 $count(VP \rightarrow V) = 40$   
 $\Rightarrow MLE(VP \rightarrow V \ NP \ PP \ | \ VP) = 1/10$ 

#### Inside-Outside-Algorithmus

- Abschätzung der Regelwahrscheinlichkeiten auch ohne syntaktisch annotiertes Trainingskorpus, d. h. unsupervised möglich mit Inside-Outside-Algorithmus
- Variante von **EM-Algorithmus** (*Expectation-Maximation*)
  - → **iterativen Abschätzung der Regelwahrscheinlichkeiten** (als Parameter des statistischen Modells)
  - → **Übertragung des Forward-Backward-Algorithmus** (zur Abschätzung von Parametern bei HMMs) auf PCFGs

#### 11.2.3 \*Probabilistisches Parsing (Zusatz)

Suche der wahrscheinlichsten Ableitung:

$$arg \ max \ P(T|S) = arg \ max \ P(T)$$

- Suche aller Ableitungen und Berechnung ihrer Wahrscheinlichkeiten wird bei großen Grammatiken sehr aufwendig
- besser: probabilistische Varianten von Chart-Parsing-Algorithmen wie CYK- oder Earley-Algorithmus
- Verwendung statistischer Informationen in dynamischer Programmierung zum effizienten Auffinden der wahrscheinlichsten (Teil)bäume

greifen auf berechnete Teilbäume

gig von seiner Position ist

- PCFG-Version des Viterbi-Algorithmus (analog zu HMM): Finden der wahrscheinlichsten verborgenen Zustandsfolge
   (Ableitung T), die die beobachtete Sequenz emitiert (Satz S)
   → Bestimmung des wahrscheinlichsten Baumes durch Zurück
  - ightarrow die Wahrscheinlichkeit größerer Teilbäume ergibt sich aus den Wahrscheinlichkeiten der kleineren, da aufgrund der Kontextfreiheit die Wahrscheinlichkeit eines Teilbaums unabhän-
  - ightarrow nur die Teilbäume mit höchster Wahrscheinlichkeit werden behalten und zur Berechnung verwendet

- **Performanz-Optimierung** des Parsings durch Verwendung statistischer Informationen
  - → statt allen möglichen **nur die wahrscheinlichsten Teilergebnisse verwenden**

- nltk.ViterbiParser
  - $\rightarrow$  Bottom-up-PCFG-Parser
  - → berechnet inkrementell (beginnend mit Spanne Länge 1) die wahrscheinlichsten (Teil)bäume durch Ausfüllen einer 'Most Likely Constituents Table'
- für **gegebene Spanne** und **Knoten-Wert** (LHS einer Regel):
  - → Suche nach **Folgen von Tabellen-Einträgen**, die gemeinsam die **Spanne abdecken**
  - → Überprüfung, ob **Tabellen-Einträge die RHS-Werte der Regel als Knotenwerte** haben (LHS der Tabellen-Einträge)

| Span  | Node | Tree                                                                     | Prob         |
|-------|------|--------------------------------------------------------------------------|--------------|
| [0:1] | NP   | (NP I)                                                                   | 0.15         |
| [6:7] | NP   | (NN telescope)                                                           | 0.5          |
| [5:7] | NP   | (NP the telescope)                                                       | 0.2          |
| [4:7] | PP   | (PP with (NP the telescope))                                             | 0.122        |
| [0:4] | S    | (S (NP I) (VP saw (NP the man)))                                         | 0.01365      |
| [0:7] | S    | (S (NP I) (VP saw (NP (NP the man) (PP with (NP the telescope))))) $ \\$ | 0.0004163250 |

Abbildung 1: Most Likely Constituents Table (Ausschnitt)

- Tabelle enthält **nur die wahrscheinlichste Ableitung für eine Spanne und Knoten-Wert**: z. B. wird nur die *NP-attachment-*Variante für Spanne [1 : 7] und Knoten-Wert VP aufgenommen:
  - [1:7] VP (VP saw (NP (NP the man) (PP with (NP the telescope))))
  - [1:7] VP (VP saw (NP (NP the man)) (PP with (NP the telescope)))

#### Auflistung 2: NLTK: PCFG-Parsing mit Viterbi-Parser

```
#http://www.nltk.org/ modules/nltk/parse/viterbi.html
   #http://www.nltk.org/book/ch08-extras.html
3
   grammar = nltk.PCFG.fromstring('''
4
5
     NP \rightarrow NNS [0.5] | JJ NNS [0.3] | NP CC NP
        [0.2]
6
     NNS \rightarrow "cats" [0.1] | "dogs" [0.2] | "mice"
        [0.3] | NNS CC NNS [0.4]
     JJ \rightarrow "big" [0.4] | "small" [0.6]
     CC \rightarrow "and" [0.9] \mid "or" [0.1]
8
     111)
9
10
11
   sent = 'big cats and dogs'.split()
12
13
   |viterbi parser = nltk.ViterbiParser(grammar)
```

```
for tree in viterbi parser.parse(sent):
14
15
       print(tree)
   #(NP (JJ big) (NNS (NNS cats) (CC and) (NNS
16
     dogs))) (p=0.000864)
17
18
   viterbi parser.trace(3)
   for tree in viterbi_parser.parse(sent):
19
20
       print(tree)
21
22
23
   #Inserting tokens into the most likely
     constituents table ...
       Insert: | = ... | big
24
       Insert: |.=..| cats
25
   # Insert: | .. = . | and
26
27
   # Insert: |...=| dogs
```

```
28
   #Finding the most likely constituents spanning
      1 text elements...
29
        Insert: |=\ldots| JJ 
ightarrow 'big' [0.4]
                          0.4000000000
        Insert: |.=..| NNS \rightarrow 'cats' [0.1]
30
                        0.1000000000
        Insert: |.=..| NP \rightarrow NNS [0.5]
31
                            0.0500000000
         Insert: |..=.| CC \rightarrow 'and' [0.9]
32
   #
                          0.9000000000
        Insert: |\ldots =| NNS \rightarrow 'dogs' [0.2]
33
                       0.2000000000
         Insert: |\ldots =| NP \rightarrow NNS [0.5]
34
   #
                             0.1000000000
35
36
```

```
37
   #Finding the most likely constituents spanning
      2 text elements...
   # Insert: |==...| NP \rightarrow JJ NNS [0.3]
38
                       0.0120000000
39
   #Finding the most likely constituents spanning
      3 text elements...
40
       Insert: |.===| NP \rightarrow NP CC NP [0.2]
                     0.0009000000
        Insert: |.===| NNS \rightarrow NNS CC NNS [0.4]
41
                 0.0072000000
   # Insert: |.===| NP \rightarrow NNS [0.5]
42
                          0.0036000000
      Discard: |.===| NP \rightarrow NP CC NP [0.2]
43
   #
                     0.0009000000
      Discard: |.===| NP \rightarrow NP CC NP [0.2]
44
                   0.0009000000
```

```
45
   #Finding the most likely constituents spanning
     4 text elements...
46
   # Insert: |====| NP \rightarrow JJ NNS [0.3]
                      0.0008640000
   # Discard: |====| NP \rightarrow NP CC NP [0.2]
47
                    0.0002160000
   # Discard: |====| NP \rightarrow NP CC NP [0.2]
48
                    0.0002160000
   #(NP (JJ big) (NNS (NNS cats) (CC and) (NNS
49
     dogs))) (p=0.000864)
```

- nltk.parse.pchart = Klasse von Bottom-up-PCFG-Chart-Parsern
- Chart-Parsing mit zusätzlicher Datenstruktur edge queue, deren Sortierung die Reihenfolge der Abarbeitung der Zustände festlegt
  - $\rightarrow$  *edge* in Chart-Parsing nach Kay = **Zustand** bei Earley/CYK
- im Gegensatz zu Viterbi-Parser wird nicht nur die wahrscheinlichste Ableitung gefunden, sondern die n-besten Ableitungen
- Verwendung von statistischen Daten zur Sortierung

### • Strategien zur Sortierung des edge queues:

- Lowest Cost First = nltk. InsideChartParser
  - → **Sortierung nach Wahrscheinlichkeit** der Ableitungen
  - → findet immer die **optimale** Lösung (wahrscheinlichste Ableitung)
  - → Problem: kürzere Teilergebnisse haben üblicherweise eine höhere Wahrscheinlichkeit (P = Produkt der Regelwahrscheinlichkeiten) und werden so zuerst abgearbeitet; vollständige Ableitung wird erst spät produziert

- **Best-First Search** = nltk.LongestChartParser
  - $\rightarrow$  **Sortierung nach Länge** (für vollständige Ableitung: längste Spanne gesucht)
  - $\rightarrow$  i. A. **schneller** als Lowest Cost First
  - → garantiert nicht, dass optimale Ableitung gefunden wird

- Beam Search (Pruning) = nltk.InsideChartParser(grammar, beam\_size=20)
  - → Lowest-Cost-First, aber nur die n-besten partiellen Ergebnisse behalten (= Pruning)
  - → **schneller** als *Lowest-Cost-First* ohne Pruning
  - → garantiert nicht, dass optimale Ableitung gefunden wird
  - → garantiert nicht, dass überhaupt eine Ableitung gefunden wird (wenn notwendige *edges* fehlen)

#### Auflistung 3: *NLTK: PCFG-Parsing mit ChartParser*

```
#http://www.nltk.org/ modules/nltk/parse/pchart.html
   #http://www.nltk.org/book/ch08-extras.html
3
4
   inside parser = nltk.InsideChartParser(grammar)
5
   longest parser =
     nltk.LongestChartParser(grammar)
6
   beam parser = nltk.InsideChartParser(grammar,
     beam size=20)
7
8
  for tree in inside parser.parse(sent):
       print(tree)
   #(NP (JJ big) (NNS (NNS cats) (CC and) (NNS
10
     dogs))) (p=0.000864)
  #(NP (NP (JJ big) (NNS cats)) (CC and) (NP
11
     (NNS \ dogs))) (p=0.000216)
```

## 11.3 Dependenzbasierte Modelle

### 11.3.1 Dependenzgrammatiken

- in Computerlinguistik sind traditionell Konstituenten-basierte
   Formalismen dominant (Chomsky-Tradition Generativer Grammatik)
  - siehe Stanford PCFG Parser
- Dependenzbasierte Syntaxmodelle werden immer wichtiger
  - siehe u.a. spaCy

- Syntaxmodelle von binären Abhängigkeitsrelationen zwischen Wörtern statt Phrasenstruktur-Grammatikregeln (PSG)
- Dependency-Parsing-Modelle können aus Dependency-Treebanks induziert werden
  - → Dependency-Treebanks können handannotiert sein oder abgeleitet aus PSG-Treebank
- Dependenzanalysen können auch sekundär aus Analysen mit konstituentenbasierten Parsern erzeugt werden
  - $\rightarrow$  z. B. beim Stanford-Parser

### 11.3.2 Vorteile von Dependenzmodellen

- Relationale Informationen direkt vorhanden statt indirekt über Position in Strukturbaum
  - $\rightarrow$  Verwendung z. B. für Informationsextraktion und semantisches Parsing
- Wortgrammatik = direkte Modellierung von Relation zwischen Wörtern
  - → keine Lexikalisierung notwendig
- Dependenzgrammatik als Wortgrammatik
  - ⇒ reduziert sparse data-Problem bei Parameterabschätzung

### 11.3.3 Dependency-Treebanks

- von Experten erstellte dependenzsyntaktisch annotierte Korpora:
  - relationsannotierte Tokenlisten = Knoten + Relationen
  - verschiedene Formate: dot-Format, CoNLL-Format
- Einsatz zu Training und Evaluation von Dependenz-Parsing-Systemen

### Auflistung 4: dot-Format

```
digraph G{
1 [label="1 (Hund)"]
2 [label="2 (jagt)"]
3 [label="3 (Katze)"]

2 → 1 [label="nsubj"]
2 → 3 [label="obj"]
}
```



Abbildung 2: Visualsierung mit graphviz

### Gewinnung *Dependency-Treebanks* aus PSG-Treebanks:

- Transformation von kopfannotierten Konstituenten-Bäumen in einen Dependenzgraph (s. Sitzung 5):
  - Finden aller head-dependent-Relationen über head-findingrules
  - 2. Labeln der Relationen über handgeschrieben Regeln
    - → Bestimmung Relationstyp **über Strukturposition**:
    - NP mit Mutterknoten S ist subj
    - → bei Penn-Treebank: Verwendung **funktionaler Informationen in den Nichtterminalen**: NP-SBJ

### Funktionale Kategorien in Penn Treebank:

- **Grammatische Relationen/funktionale Angaben** in den phrasalen Kategorien, z. B.: NP-SBJ
  - $\rightarrow$  PP-CLR: 'closely related', z. B. für präpositionales Objekt
  - $\rightarrow$  NP-PUT: adverbiales Komplement von *put*
  - $\rightarrow$  NP-ADV: für Kasusadverbial



### **CoNLL-Dependency-Treebanks:**

- CoNLL: Shared Tasks zu **Dependency Parsing**: mit annotierten
   Treebanks für Evaluation der Systeme
- UD-Treebanks (>30 Sprachen) im CoNLL-U-Format:
  - → http://universaldependencies.org/format.html
- TIGER Dependency Bank (in Dependency-Format konvertiertes TIGER-Korpus, deutsch) verwendet in CoNLL und UD-Treebanks, konvertiert in Stanford bzw. Universal Dependencies

| 1  | Alle   | alle    | PRON  | PIS    | Case=Nom     | 2  | nsubj  | _ | _             |
|----|--------|---------|-------|--------|--------------|----|--------|---|---------------|
| 2  | wußten | wissen  | VERB  | VVFIN  | Number=Plur  | 0  | root   | _ | SpaceAfter=No |
| 3  | ,      | ,       | PUNCT | \$,    | _            | 2  | punct  | _ | _             |
| 4  | daß    | daß     | SCONJ | KOUS   | -            | 10 | mark   | _ | _             |
| 5  | uns    | wir     | PRON  | PPER   | Case=Dat     | 10 | iobj   | _ | _             |
| 6  | nicht  | nicht   | PART  | PTKNEG | Polarity=Neg | 7  | advmod | _ | _             |
| 7  | mehr   | mehr    | ADV   | ADV    | _            | 10 | advmod | _ | _             |
| 8  | viel   | viel    | ADJ   | PIAT   | Case=Nom     | 9  | amod   | _ | _             |
| 9  | Zeit   | Zeit    | NOUN  | NN     | Case=Nom     | 10 | nsubj  | _ | _             |
| 10 | blieb  | bleiben | VERB  | VVFIN  | Number=Sing  | 2  | ccomp  | _ | SpaceAfter=No |
| 11 |        |         | PUNCT | \$.    | _            | 2  | punct  | _ | _             |

Tabelle 1: Satz im CoNLL-Format (deutsches UD-Korpus)



# 11.3.4 Statistische Dependency-Parsing-Modelle

- 1. Übergangsbasiertes Dependenz-Parsing:
  - → Stack-basierter Shift-Reduce-Parser
  - → Auswahl des Übergangs von einem Zustand (Konfiguration von Stack, Buffer und erkannten Relationen) zum nächsten über Klassifikator
  - $\rightarrow$  Klassifikator: bildet Konfigurationen auf Übergänge ab
  - → trainiert anhand von Dependency-Treebank

### 2. Graphbasiertes Dependenz-Parsing:

- → **Auswahl von am besten bewerteten Baum** im Graph aller möglichen Relationen zwischen den Wörtern eines Satzes
- → Lernen der **Gewichte der Relationen** anhand von **Dependency**-**Treebank**
- $\rightarrow$  Vorteil: **Parsing nicht-projektiver Strukturen** möglich (diskontinuierliche Strukturen)
- → Vorteil: **globale Bewertung der Dependenzstruktur von Sät- zen** statt lokaler Entscheidungen

### Übergangsbasierte Parsing-Systeme:

- Malt-Parser (Nivre et al.): transition-based Dependency Parser
- Stanford-Dependency-Parser (Manning et al.):
  - neben der Transformation von PCFG-geparsten Konstituentenbäumen in Dependenzgraphen (englishPCFG.ser.gz):
  - Transition-based Dependency-Parsing-Modell:
    - ightarrow englishFactored.ser.gz:verwendet PCFG-Parser und Dependenz-Parser und vergleicht Ergebnisse
- **spaCy**: *transition-based* Dependency-Parsing; Modelle gelernt mit neuronalen Netzen (https://spacy.io/models/#architecture)

# 11.3.5 Beispiel: Übergangsbasiertes Dependency-Parsing

- SHIFT-Operation: Wörter in Wortliste (Buffer) auf Stack
  - → Stack wird mit root-Knoten initialisiert
  - → Abschluss, wenn Wortliste leer und nur noch root auf Stack
- REDUCE-Operation:
  - → statt Ersatz durch Nonterminal (CFG):
  - ⇒ Hinzufügen von Relation zwischen den beiden obersten Elementen auf dem Stack
  - ⇒ Löschen des Dependents vom Stack

- 2 mögliche REDUCE-Operationen (je nach Position Kopf):
  - LEFTARC (Kopf rechts): the ← flights
  - RIGHTARC (Kopf links): book → me
- Einschränkung bei RIGHTARC: nur, wenn der Dependent der möglichen Relation nicht Kopf einer der Relationen aus der Menge offener Relationen ist
  - → Einschränkung verhindert, dass **Wort zu früh vom Stack** genommen wird
  - $\rightarrow$  dagegen LEFTARC: immer möglich (d.h. nur projektive Strukturen, siehe unten)



Book me the morning flight

| Step | Stack                              | Word List (Buffer)               | Transition | Relation Added                |
|------|------------------------------------|----------------------------------|------------|-------------------------------|
| 0    | [root]                             | [book, me, the, morning, flight] | SHIFT      |                               |
| 1    | [root, book]                       | [me, the, morning, flight]       | SHIFT      |                               |
| 2    | [root, book, me]                   | [the, morning, flight]           | RIGHTARC   | (book $ ightarrow$ me)        |
| 3    | [root, book]                       | [the, morning, flight]           | SHIFT      |                               |
| 4    | [root, book, the]                  | [morning, flight]                | SHIFT      |                               |
| 5    | [root, book, the, morning]         | [flight]                         | SHIFT      |                               |
| 6    | [root, book, the, morning, flight] | О                                | LEFTARC    | $(morning \leftarrow flight)$ |
| 7    | [root, book, the, flight]          |                                  | LEFTARC    | $(the \leftarrow flight)$     |
| 8    | [root, book, flight]               | О                                | RIGHTARC   | (book $\rightarrow$ flight)   |
| 9    | [root, book]                       |                                  | RIGHTARC   | $(root \to book)$             |
| 10   | [root]                             |                                  | Done       |                               |





|                     | Stack                      | Word List (Buffer) | Transition           |                          |
|---------------------|----------------------------|--------------------|----------------------|--------------------------|
|                     | [root,canceled,flights]    | [to, Houston]      | SHIFT oder RIGHTARC? |                          |
| mögliche Übergänge: |                            |                    |                      | Relation Added           |
| SHIFT               | [root,canceled,flights,to] | [Houston]          |                      | -                        |
| RIGHTARC            | [root,canceled]            | [to, Houston]      |                      | $(canceled \to flights)$ |

### • richtiger Übergang: SHIFT

→ bei RIGHTARC wird *flights* zu früh vom Stack entfernt; Relation (*flights* → *Houston*) wäre dann nicht mehr möglich

# 11.3.6 Evaluation von Dependenz-Parsing-Systemen

- Überprüfung an Testmenge (Teilmenge Dependency-Treebank)
- unlabeled attachment accuracy: korrekte Zuweisung Dependent zu Kopf
- labeled attachment accuracy: korrekte Zuweisung und korrekte Relation zwischen Dependent und Kopf

# 11.3.7 Regelbasierte Dependenzgrammatiken

- von Experten erstellte Dependenzgrammatiken
- wichtige Dependengrammatik-Formalismen:
   Bedeutung-Text-Modell (I.A. Mel'čuk), Word Grammar, Link
   Grammar, Constraint-Grammar

- Modellierung über (lexikalisierte) kontextfreie Grammatiken
   → nur projektive Strukturen möglich
- Modellierung über Constraint-basierte Dependenzgrammatiken
  - → Angabe von Wohlgeformtheitsbedingungen
  - ightarrow Entfernung von Constraint-verletzenden Graphen im Parsing
- Constraint-Parsing: Verarbeitung von nicht-projektiven Strukturen

#### Auflistung 5: *Dependenzgrammatik*

```
grammar = nltk.DependencyGrammar.fromstring("""
        'shot' 
ightarrow 'I' | 'elephant' | 'in'
3
        'elephant' 
ightarrow 'an' | 'in'
        'in' 
ightarrow 'pajamas'
4
5
        'pajamas' 
ightarrow 'my'
        """)
6
8
   parser =
     nltk.ProjectiveDependencyParser(grammar)
9
10
   for tree in parser.parse(sent):
11
        print(tree)
        tree.draw()
12
13
   |#(shot I (elephant an (in (pajamas my))))
   |#(shot I (elephant an) (in (pajamas my)))
14
```



Abbildung 3: Syntaxbäume Dependenzanalyse (Stemmas)

### Nichtprojektivität

- projektive Struktur: alle Kanten sind projektiv, d. h. es gibt einen Pfad vom Kopf der Relation zu jedem Wort zwischen Kopf und Dependent
- nicht-projektive Struktur: Überschneidung von Kanten
   → z. B.: Dependent eines Wortes folgt nach dessen Kopf







Abbildung 4: Dependenzanalyse diskontinuierlicher = nicht-projektiver Struktur (mit und ohne Berücksichtigung linearer Ordnung)

- linguistisch: nicht-projektive Strukturen entstehen durch diskontinuierliche Elemente
  - → freie Wortstellung und *long distance dependencies*

- Dependenzgrammatiken sind besser als Konstituentengrammatiken geeignet, diskontinuierliche Strukturen abzubilden
  - → Modellierung **relationaler Struktur**, nicht der linearen Anordnung
  - → Dependenzstruktur **abstrahiert von der linearen Anordnung**
  - → bei Verarbeitung (Parsing) können nicht-projektive Strukturen aber problematisch sein
- bei Ableitung Dependenzgrammatik von PSG-Treebanks durch head-finding-rules ergeben sich automatisch projektive Strukturen