Teoria da Amostragem por Conglomerados e o Estimador de Horvitz-Thompson

Uma Abordagem Teórica para Planos Amostrais Complexos

Material de Aula para Pós-Graduação

2025-06-30

Sumário

1. Fundamentos da Amostragem por Conglomerados	1
1.1 1.1. Motivação: A Limitação do Cadastro Populacional	1
2. Amostragem em Um Estágio e a Necessidade de uma Teoria Geral 2.1 2.1. O Cenário Idealizado: Conglomerados de Tamanhos Iguais	2
3. O Estimador de Horvitz-Thompson (HT)	3
3.3 3.3. A Variância do Estimador HT	4
3. Amostragem com Probabilidade Proporcional ao Tamanho (PPS)	4
4.1 3.1. O Princípio PPS	5
4.2 3.2. Por Que a Amostragem PPS Funciona?	5
4. Eficiência do Desenho e o Efeito de Desenho (deff)	5
	6
5. Determinação do Tamanho da Amostra	7
6.2 5.2. Tamanho da Amostra Usando o Efeito de Desenho (deff)	7
6. Conclusões Finais	8
	 2.1 2.1. O Čenário Idealizado: Conglomerados de Tamanhos Iguais 2.2 2.2. A Realidade: Tamanhos Desiguais e Probabilidades de Inclusão 3. O Estimador de Horvitz-Thompson (HT) 3.1 3.1. Probabilidades de Inclusão 3.2 3.2. O Estimador e seu Não-Viesamento 3.3 3.3. A Variância do Estimador HT 3. Amostragem com Probabilidade Proporcional ao Tamanho (PPS) 4.1 3.1. O Princípio PPS 4.2 3.2. Por Que a Amostragem PPS Funciona? 4. Eficiência do Desenho e o Efeito de Desenho (deff) 5.1 4.1. deff na Amostragem por Conglomerados com Tamanhos Iguais 5.2 Exemplo Numérico (para ser resolvido "no quadro") 5. Determinação do Tamanho da Amostra 6.1 5.1. Tamanho da Amostra para Conglomerados de Tamanhos Iguais (via AAS) 6.2 5.2. Tamanho da Amostra Usando o Efeito de Desenho (deff) 6.3 Exemplo Numérico de Planejamento (para ser resolvido "no quadro")

1 1. Fundamentos da Amostragem por Conglomerados

1.1 1.1. Motivação: A Limitação do Cadastro Populacional

A teoria clássica de amostragem frequentemente assume a existência de um **cadastro** (ou sampling frame), uma lista completa de todas as N_0 unidades elementares da população U. Em muitas aplicações reais—sociais, econômicas ou de saúde pública—tal cadastro é inexistente ou sua construção é logisticamente inviável e financeiramente proibitiva.

A amostragem por conglomerados surge como uma solução elegante e prática para este problema. A ideia central é agrupar as unidades elementares em conglomerados (ou clusters), que servem como unidades primárias de amostragem.

 Definição Formal: Uma população U é particionada em N subconjuntos disjuntos U_1, U_2, \dots, U_N tais que $U = \bigcup_{i=1}^{N} U_i$. Cada U_i é um conglomerado. O plano amostral consiste em selecionar uma amostra de conglomerados, e não de unidades elementares.

Principais Vantagens:

- 1. Redução de Custo: Exige apenas o cadastro dos conglomerados (e.g., quarteirões de uma cidade, escolas de um estado), que é muito mais fácil de obter.
- 2. Eficiência Logística: Os custos de deslocamento e coleta são drasticamente reduzidos, pois as unidades observadas estão geograficamente concentradas.

Desvantagem Principal:

• Unidades dentro de um mesmo conglomerado tendem a ser mais homogêneas entre si do que com o resto da população (correlação intra-classe positiva). Isso geralmente leva a uma perda de precisão (aumento da variância) em comparação com uma Amostra Aleatória Simples (AAS) de mesmo número de unidades elementares.

1.2. Notação Formal

Para desenvolver a teoria, estabelecemos a seguinte notação:

- N: Número total de conglomerados (UPAs) na população.
- n: Número de conglomerados selecionados na amostra.
- M_i : Número de unidades secundárias (elementos) no conglomerado U_i .
- $M_0 = \sum_{i=1}^N M_i$: Número total de unidades elementares na população. y_{ij} : Valor da variável de interesse y para a unidade j no conglomerado i.

- $\tau_i = \sum_{j=1}^{M_i} y_{ij}$: Total populacional do conglomerado i. $\tau = \sum_{i=1}^{N} \tau_i$: Total populacional (o parâmetro que mais frequentemente queremos estimar). $\mu = \tau/M_0$: Média populacional por unidade elementar.

2. Amostragem em Um Estágio e a Necessidade de uma Teoria Geral

No desenho em **um estágio**, após selecionar uma amostra S de n conglomerados, **todas** as M_i unidades dentro de cada conglomerado $i \in S$ são investigadas.

2.1. O Cenário Idealizado: Conglomerados de Tamanhos Iguais

Vamos considerar um caso inicial onde $M_i = M$ para todo i. Se selecionarmos os conglomerados via AAS, a probabilidade de inclusão de qualquer conglomerado $i \in \pi_i = n/N$.

Estimador para o Total (τ) :

$$\hat{\tau}_{clu} = N \cdot \frac{1}{n} \sum_{i \in S} \tau_i$$

Este estimador é não-viesado para τ , e sua variância é:

$$\mathrm{Var}(\hat{\tau}_{clu}) = N^2 \left(1 - \frac{n}{N}\right) \frac{\sigma_b^2}{n}, \quad \text{onde } \sigma_b^2 = \frac{1}{N-1} \sum_{i=1}^N (\tau_i - \bar{\tau})^2$$

A variância depende exclusivamente da variabilidade entre os totais dos conglomerados.

2.2 2.2. A Realidade: Tamanhos Desiguais e Probabilidades de Inclusão

Na prática, os conglomerados quase sempre possuem tamanhos M_i desiguais. Uma AAS de conglomerados neste cenário implica que a probabilidade de inclusão de uma unidade elementar j no conglomerado i, denotada por $\pi_{(ij)}$, é:

$$\pi_{(ij)} = P(\text{unidade } (ij) \text{ \'e inclu\'ida}) = P(\text{conglomerado } i \text{ \'e inclu\'ido}) = \frac{n}{N}$$

Embora simples, este esquema é sub-ótimo. A intuição sugere que conglomerados maiores, que contribuem mais para o total populacional τ , deveriam ter uma maior chance de serem selecionados. Este é o princípio da **amostragem com probabilidades desiguais**.

Para lidar com essa generalidade, precisamos de uma ferramenta teórica robusta: o estimador de Horvitz-Thompson.

3 3. O Estimador de Horvitz-Thompson (HT)

O estimador HT é uma estrutura geral para estimar totais populacionais sob qualquer plano amostral probabilístico. No nosso caso, as "unidades" da teoria HT são os conglomerados.

3.1 3.1. Probabilidades de Inclusão

A teoria requer o conhecimento das probabilidades de inclusão dos conglomerados:

- $\pi_i = P(i \in S)$: Probabilidade de o conglomerado i ser incluído na amostra.
- $\pi_{ij} = P(i \in S \text{ e } j \in S)$: Probabilidade conjunta de os conglomerados i e j serem incluídos.

Condição: O plano amostral deve garantir que $\pi_i > 0$ para todos os $i \in \{1, ..., N\}$.

3.2 3.2. O Estimador e seu Não-Viesamento

O estimador de Horvitz-Thompson para o total populacional $\tau = \sum_{i=1}^N \tau_i$ é definido como:

$$\hat{\tau}_{HT} = \sum_{i \in S} \frac{\tau_i}{\pi_i}$$

A intuição é que cada conglomerado amostrado τ_i é ponderado pelo inverso de sua chance de ser selecionado.

Teorema: O estimador $\hat{\tau}_{HT}$ é não-viesado para o total populacional τ .

Prova: Seja I_i uma variável aleatória indicadora tal que $I_i=1$ se o conglomerado i está em S, e $I_i=0$ caso contrário. Por definição, $E[I_i]=P(I_i=1)=\pi_i$. Podemos reescrever o estimador como uma soma sobre a população de conglomerados:

$$\hat{\tau}_{HT} = \sum_{i=1}^{N} I_i \frac{\tau_i}{\pi_i}$$

Usando a linearidade da esperança:

$$\begin{split} E[\hat{\tau}_{HT}] &= E\left[\sum_{i=1}^{N} I_{i} \frac{\tau_{i}}{\pi_{i}}\right] \\ &= \sum_{i=1}^{N} \frac{\tau_{i}}{\pi_{i}} E[I_{i}] \\ &= \sum_{i=1}^{N} \frac{\tau_{i}}{\pi_{i}} \pi_{i} = \sum_{i=1}^{N} \tau_{i} = \tau \quad \blacksquare \end{split}$$

3.3 3.3. A Variância do Estimador HT

A variância é a medida central da precisão de um estimador. Sua derivação é um resultado clássico e fundamental.

Teorema: A variância de $\hat{\tau}_{HT}$ é dada por:

$$\mathrm{Var}(\hat{\tau}_{HT}) = \sum_{i=1}^N \frac{1-\pi_i}{\pi_i} \tau_i^2 + \sum_{i=1}^N \sum_{j\neq i} \frac{\pi_{ij} - \pi_i \pi_j}{\pi_i \pi_j} \tau_i \tau_j$$

Prova: A variância de uma soma de variáveis aleatórias é $\text{Var}(\sum X_i) = \sum \text{Var}(X_i) + \sum_{i \neq j} \text{Cov}(X_i, X_j)$. Aplicando isso a $\hat{\tau}_{HT} = \sum_{i=1}^{N} I_i(\tau_i/\pi_i)$:

$$\begin{split} \operatorname{Var}(\hat{\tau}_{HT}) &= \sum_{i=1}^{N} \operatorname{Var}\left(I_{i}\frac{\tau_{i}}{\pi_{i}}\right) + \sum_{i \neq j} \operatorname{Cov}\left(I_{i}\frac{\tau_{i}}{\pi_{i}}, I_{j}\frac{\tau_{j}}{\pi_{j}}\right) \\ &= \sum_{i=1}^{N} \left(\frac{\tau_{i}}{\pi_{i}}\right)^{2} \operatorname{Var}(I_{i}) + \sum_{i \neq j} \left(\frac{\tau_{i}\tau_{j}}{\pi_{i}\pi_{j}}\right) \operatorname{Cov}(I_{i}, I_{j}) \end{split}$$

Os termos de variância e covariância das indicadoras são:

- $\bullet \ \, \mathrm{Var}(I_i) = E[I_i^2] (E[I_i])^2 = \pi_i \pi_i^2 = \pi_i (1 \pi_i).$
- $Cov(I_i, I_j) = E[I_i I_j] E[I_i]E[I_j] = \pi_{ij} \pi_i \pi_j$.

Substituindo de volta na equação:

$$\begin{split} \operatorname{Var}(\hat{\tau}_{HT}) &= \sum_{i=1}^{N} \left(\frac{\tau_{i}^{2}}{\pi_{i}^{2}}\right) \pi_{i} (1-\pi_{i}) + \sum_{i \neq j} \left(\frac{\tau_{i} \tau_{j}}{\pi_{i} \pi_{j}}\right) (\pi_{ij} - \pi_{i} \pi_{j}) \\ &= \sum_{i=1}^{N} \frac{1-\pi_{i}}{\pi_{i}} \tau_{i}^{2} + \sum_{i \neq j} \frac{\pi_{ij} - \pi_{i} \pi_{j}}{\pi_{i} \pi_{j}} \tau_{i} \tau_{j} \quad \blacksquare \end{split}$$

3.3.1 Forma Alternativa da Variância (Sen-Yates-Grundy)

Para planos amostrais de tamanho fixo n, uma forma alternativa e muitas vezes preferível da variância é a de Sen-Yates-Grundy (SYG):

$$\mathrm{Var}_{SYG}(\hat{\tau}_{HT}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i} (\pi_i \pi_j - \pi_{ij}) \left(\frac{\tau_i}{\pi_i} - \frac{\tau_j}{\pi_j}\right)^2$$

Implicação Estratégica: Esta fórmula revela a chave para um desenho amostral eficiente. A variância será minimizada se conseguirmos fazer com que a razão τ_i/π_i seja o mais constante possível para todos os conglomerados i.

4 3. Amostragem com Probabilidade Proporcional ao Tamanho (PPS)

A fórmula da variância de Sen-Yates-Grundy (SYG) nos fornece a principal intuição para a construção de planos amostrais eficientes:

$$\mathrm{Var}_{SYG}(\hat{\tau}_{HT}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i} (\pi_i \pi_j - \pi_{ij}) \left(\frac{\tau_i}{\pi_i} - \frac{\tau_j}{\pi_j} \right)^2$$

Para minimizar esta variância, devemos escolher as probabilidades de inclusão π_i de modo a tornar a razão τ_i/π_i o mais constante possível. Embora τ_i seja desconhecido, frequentemente temos acesso a uma variável auxiliar x_i (uma "medida de tamanho"), como o tamanho do conglomerado M_i , que é altamente correlacionada com τ_i .

4.1 3.1. O Princípio PPS

Um plano de amostragem com Probabilidade Proporcional ao Tamanho (PPS) é aquele em que a probabilidade de selecionar uma unidade (conglomerado) é diretamente proporcional à sua medida de tamanho x_i .

Definição: Um plano é PPS se a probabilidade de seleção no primeiro sorteio é $p_i = x_i/X$, onde $X = \sum_{k=1}^{N} x_k$.

Quando a amostragem é realizada **com reposição**, a probabilidade de inclusão de 1^a ordem é simplesmente $\pi_i = n \cdot p_i$. Embora mais simples de analisar, a amostragem sem reposição é universalmente mais eficiente.

Para amostragem sem reposição (PPS-SR), o cálculo das π_i é mais complexo, mas a intuição central permanece: π_i deve ser o mais próximo possível de $n \cdot p_i$. Vários algoritmos existem para implementar a amostragem PPS-SR (e.g., método de Brewer, amostragem sistemática PPS).

4.2 3.2. Por Que a Amostragem PPS Funciona?

A eficiência do PPS repousa na suposição de que $\tau_i \approx \beta x_i$. Se esta relação linear através da origem se mantém, então:

$$\frac{\tau_i}{\pi_i} \approx \frac{\beta x_i}{n(x_i/X)} = \frac{\beta X}{n} = \text{constante}$$

Quando esta condição é satisfeita, a variância do estimador HT se aproxima de zero, resultando em uma precisão notavelmente alta para um dado tamanho de amostra.

Cenários:

- 1. Relação Perfeita $(\tau_i/x_i = \beta)$: A variância de SYG é zero. Obtemos uma estimativa perfeita.
- 2. Relação Forte $(\tau_i/x_i \approx \beta)$: A variância será pequena. O plano PPS é muito eficiente.
- 3. Relação Fraca ou Inexistente: O plano PPS pode ser *menos* eficiente que uma AAS de conglomerados. A escolha da variável de tamanho x_i é, portanto, uma decisão crítica no planejamento amostral.

5 4. Eficiência do Desenho e o Efeito de Desenho (deff)

Como podemos quantificar a perda (ou ganho) de precisão de um plano amostral complexo, como o de conglomerados, em relação a uma Amostra Aleatória Simples (AAS)? A resposta é o **Efeito de Desenho** (deff).

Definição: O efeito de desenho de um estimador $\hat{\theta}$ sob um plano amostral p é a razão entre a variância do estimador sob o plano p e a variância que seria obtida com um estimador análogo sob uma AAS de **mesmo** número de unidades elementares.

$$\operatorname{deff}(\hat{\tau}_{clu}) = \frac{\operatorname{Var}_p(\hat{\tau}_{clu})}{\operatorname{Var}_{AAS}(\hat{\tau}_{AAS})}$$

onde $\operatorname{Var}_{AAS}(\hat{\tau}_{AAS}) = M_0^2 (1 - m/M_0) \frac{S_y^2}{m}$, com m sendo o número total de elementos na amostra de conglomerados

4.1. deff na Amostragem por Conglomerados com Tamanhos Iguais

Para o caso simplificado de n conglomerados de tamanho M selecionados por AAS:

$$\text{deff} \approx 1 + (M-1)\rho_{int}$$

onde ρ_{int} é o coeficiente de correlação intra-classe, que mede a homogeneidade média das unidades dentro dos conglomerados.

$$\bullet \quad \rho_{int} = \tfrac{1}{M-1} \tfrac{\sum_{i=1}^N \sum_{j \neq k} (y_{ij} - \mu)(y_{ik} - \mu)}{M_0 \sigma^2}$$

Interpretação:

- Se $\rho_{int}>0$ (cenário comum): Unidades dentro do mesmo cluster são parecidas. deff >1, significando que a amostragem por conglomerados é menos precisa que uma AAS de mesmo tamanho. Cada unidade adicional dentro de um cluster fornece menos "informação nova".
- Se $\rho_{int} \approx 0$: Não há correlação. deff ≈ 1 . A precisão é similar à de uma AAS.
- Se $\rho_{int} < 0$ (raro): Unidades dentro de um cluster são mais diferentes entre si do que a média. deff < 1. O desenho é mais preciso que uma AAS.

O deff é a "taxa de câmbio" da informação: se deff=2, precisamos de uma amostra de 2000 unidades em um desenho por conglomerados para obter a mesma precisão de uma AAS com 1000 unidades.

Exemplo Numérico (para ser resolvido "no quadro") 5.2

Considere uma população pequena com N=4 conglomerados, da qual selecionaremos uma amostra de n=2conglomerados.

Conglomerado (i)	Tamanho (M_i)	Total (τ_i)
1	10	50
2	20	105
3	30	150
4	40	195
Total	100	500

O verdadeiro total populacional é $\tau = 500$. Vamos comparar dois planos amostrais.

5.2.1 Plano 1: Amostra Aleatória Simples de Conglomerados

- Neste caso, $\pi_i = n/N = 2/4 = 0.5$ para todos os i.
- Neste case, $n_i = n_i + 1$ Amostra possível: $S = \{1, 3\}$. Estimativa HT: $\hat{\tau}_{HT} = \frac{\tau_1}{\pi_1} + \frac{\tau_3}{\pi_3} = \frac{50}{0.5} + \frac{150}{0.5} = 100 + 300 = 400$.
- Amostra possível: $S = \{3, 4\}$.
- Estimativa HT: $\hat{\tau}_{HT} = \frac{\hat{\tau}_3}{\pi_3} + \frac{\hat{\tau}_4}{\pi_4} = \frac{150}{0.5} + \frac{195}{0.5} = 300 + 390 = 690.$
- Observação: As estimativas variam muito, pois não levamos em conta os tamanhos muito diferentes dos conglomerados.

5.2.2 Plano 2: Amostragem com Probabilidade Proporcional ao Tamanho (PPS)

Vamos definir a probabilidade de seleção $p_i=M_i/M_0$. * $p_1=0.1, p_2=0.2, p_3=0.3, p_4=0.4$. * Usaremos um método onde π_i é aproximadamente $n \cdot p_i$. Para simplificar, vamos assumir $\pi_i = np_i$: * $\pi_1 = 0.2, \pi_2 = 0.2, \pi_2 = 0.2, \pi_3 = 0.2, \pi_4 = 0.2, \pi_5 = 0.2, \pi_6 = 0.2,$ $0.4, \pi_3 = 0.6, \pi_4 = 0.8$. (Nota: esta é uma aproximação; um método PPS exato teria valores ligeiramente diferentes, mas a lógica se mantém).

• Amostra possível: $S = \{1, 3\}.$

- Estimativa HT: $\hat{\tau}_{HT} = \frac{50}{0.2} + \frac{150}{0.6} = 250 + 250 = 500.$ Amostra possível: $S = \{3, 4\}.$ Estimativa HT: $\hat{\tau}_{HT} = \frac{150}{0.6} + \frac{195}{0.8} = 250 + 243.75 = 493.75.$
- Observação: As estimativas são muito mais estáveis e próximas do valor real (500). Isso ocorre porque os valores τ_i/π_i são quase constantes:

 - $-\tau_1/\pi_1=250,\,\tau_2/\pi_2=262.5,\,\tau_3/\pi_3=250,\,\tau_4/\pi_4=243.75.$ A condição $\tau_i/M_i\approx$ constante é bem satisfeita nesta população, tornando o plano PPS muito

5. Determinação do Tamanho da Amostra 6

A questão mais prática no planejamento amostral é: "Quantos conglomerados (n) devo selecionar?". A resposta depende da precisão desejada e do orçamento disponível.

A abordagem geral é:

- 1. Definir uma margem de erro aceitável para o estimador. Por exemplo, queremos que a variância do estimador do total seja no máximo um valor V^* : $Var(\hat{\tau}) \leq V^*$.
- 2. Isolar o tamanho da amostra n na fórmula da variância.

5.1. Tamanho da Amostra para Conglomerados de Tamanhos Iguais (via AAS)

Usando a fórmula da variância, temos:

$$V^* = N^2 \left(1 - \frac{n}{N}\right) \frac{\sigma_b^2}{n}$$

Resolvendo para n:

$$\begin{split} V^*n &= N^2\sigma_b^2 - nN\sigma_b^2 \implies n(V^* + N\sigma_b^2) = N^2\sigma_b^2 \\ n &= \frac{N^2\sigma_b^2}{V^* + N\sigma_t^2} \end{split}$$

Se a fração de amostragem for pequena $(n/N \approx 0)$, a correção para população finita pode ser ignorada, e a fórmula se simplifica para:

$$n_0 = \frac{N^2 \sigma_b^2}{V^*}$$

E o tamanho final da amostra é ajustado por:

$$n = \frac{n_0}{1 + n_0/N}$$

Problema Prático: A fórmula requer o conhecimento de σ_b^2 , a variância entre os totais dos conglomerados, que é um parâmetro populacional desconhecido. Soluções: * Usar dados de uma pesquisa piloto. * Usar dados de uma pesquisa anterior similar. * Fazer suposições embasadas sobre a estrutura da população.

6.25.2. Tamanho da Amostra Usando o Efeito de Desenho (deff)

Uma abordagem mais prática e geral envolve o deff. 1. Primeiro, calcula-se o tamanho de amostra necessário para uma Amostra Aleatória Simples (m_{aas}) para atingir a precisão desejada.

$$m_{aas} = \frac{M_0^2 S_y^2}{V^* + M_0 S_y^2}$$

onde S_y^2 é a variância populacional das unidades elementares.

2. Em seguida, inflaciona-se este número pelo deff estimado para obter o tamanho de amostra total necessário (m_{clu}) no desenho por conglomerados.

$$m_{clu} = m_{aas} \cdot \text{deff}$$

3. Finalmente, determina-se o número de conglomerados (n) a serem amostrados. Se os conglomerados têm tamanho médio M:

$$n = \frac{m_{clu}}{\bar{M}} = \frac{m_{aas} \cdot \text{deff}}{\bar{M}}$$

Vantagem desta abordagem: Muitas vezes é mais fácil estimar ou encontrar na literatura valores plausíveis para a correlação intra-classe (ρ_{int}) , e assim estimar o deff, do que estimar diretamente a variância entre os totais dos conglomerados (σ_h^2) .

6.3 Exemplo Numérico de Planejamento (para ser resolvido "no quadro")

Cenário: Queremos estimar o número total de horas de estudo semanais dos alunos de uma universidade (τ) . A universidade tem 10.000 alunos, distribuídos em aproximadamente N=200 cursos (conglomerados) de tamanho médio M=50.

Objetivo: Obter uma estimativa com um erro padrão de no máximo 5.000 horas, o que implica uma variância máxima $V^* = (5.000)^2 = 25 \times 10^6$.

Informação prévia: 1. Uma pesquisa anterior em outra universidade sugeriu que o desvio padrão das horas de estudo por aluno é de cerca de $S_y = 10$ horas $(S_y^2 = 100)$. 2. Para pesquisas em contextos educacionais, a correlação intra-classe para variáveis de comportamento (como horas de estudo) dentro de cursos é tipicamente moderada, em torno de $\rho_{int} = 0.1$.

Passo a Passo do Cálculo:

- 1. Tamanho de amostra sob AAS (m_{aas}) :
 - Ignorando a correção para população finita para simplificar: $m_0 = \frac{M_0^2 S_y^2}{V^*} = \frac{(10.000)^2 \cdot 100}{25 \times 10^6} = \frac{10^8 \cdot 100}{25 \cdot 10^6} = \frac{1$ $\frac{10^{10}}{25\cdot 10^6} = \frac{10^4}{25} = 400 \text{ alunos.}$ • Com correção: $m_{aas} = \frac{400}{1+400/10000} = \frac{400}{1.04} \approx 385 \text{ alunos. Vamos usar } m_{aas} = 385.$
- 2. Estimar o Efeito de Desenho (deff):
 - deff $\approx 1 + (M-1)\rho_{int} = 1 + (50-1)(0.1) = 1 + 49 \cdot 0.1 = 1 + 4.9 = 5.9$.
 - Interpretação: Precisaremos de uma amostra quase 6 vezes maior no desenho por conglomerados para atingir a mesma precisão de uma AAS.
- 3. Calcular o tamanho de amostra total para o desenho por conglomerados (m_{clu}) :
 - $m_{clu} = m_{aas} \cdot \text{deff} = 385 \cdot 5.9 \approx 2272 \text{ alunos.}$
- 4. Determinar o número de conglomerados a amostrar (n):
 - $n = \frac{m_{clu}}{M} = \frac{2272}{50} \approx 45.4.$
 - Conclusão: Devemos arredondar para cima. Seria necessário selecionar uma amostra de n=46cursos (conglomerados) e entrevistar todos os alunos dentro desses cursos para atingir a precisão desejada.

6. Conclusões Finais

A amostragem por conglomerados é indispensável na prática, mas sua implementação e análise exigem um ferramental teórico mais sofisticado. O estimador de Horvitz-Thompson oferece uma estrutura unificada e não-viesada, enquanto a amostragem PPS emerge como a estratégia chave para maximizar a eficiência. O conceito de efeito de desenho é a ponte crítica entre a teoria e o planejamento, permitindo quantificar a perda de precisão e, fundamentalmente, determinar um tamanho de amostra adequado para atingir os objetivos da pesquisa. ""