MEMS 0031 - Electrical Circuits Quiz #2

Assigned: May 29st, 2020 Due: May 31st, 2020, 9:00 pm

. T			
Name:			
vallic.	<u>~</u>	<u>شرک</u> .	

Problem #1

Using series and parallel resistors, determine the source current i_s . Note: KVL and KCL are not needed. The use of KVL and KCL will result in your answer being marked incorrect.

Thee 8, 12 and 4 $[\Omega]$ resistors are in series, yielding an equivalent of $R_{eq,1}$ =24 $[\Omega]$. This equivalence is in parallel with the 2 $[\Omega]$ resistor, yielding an equivalence of

$$R_{eq,2} = \frac{(24 \, [\Omega])(2 \, [\Omega])}{(24 + 2) \, [\Omega]} = 24/13 \, [\Omega]$$

The 2 and 4 $[\Omega]$ resistors are in series, yielding an equivalent of $R_{eq,3}=6$ $[\Omega]$. The 7, 2 and 3 $[\Omega]$ resistors are in parallel, yielding an equivalent resistance of

$$R_{eq,4} = \left(\frac{1}{7[\Omega]} + \frac{1}{2[\Omega]} + \frac{1}{3[\Omega]}\right)^{-1} = 42/41[\Omega]$$

The 5, 6, 6, and 4 $[\Omega]$ resistors are in parallel, yielding an equivalent resistance of

$$R_{eq,5} = \left(\frac{1}{5[\Omega]} + \frac{1}{6[\Omega]} + \frac{1}{6[\Omega]} + \frac{1}{4[\Omega]}\right)^{-1} = 60/47[\Omega]$$

The 9 and 4 $[\Omega]$ resistor are in parallel, yielding an equivalence of

$$R_{eq,9} = \frac{(9 [\Omega])(4 [\Omega])}{(9+4) [\Omega]} = 36/13 [\Omega]$$

We recognize the 60/47 and 24 $[\Omega]$ resistors are in series, which yields and equivalence of $R_{eq,10} = 1{,}188/47$ $[\Omega]$. We also recognize the 36/13 and 24/13 $[\Omega]$ resistors exist in parallel, yielding an equivalence of

$$R_{eq,11} = \frac{(36/13 \,[\Omega])(24/13 \,[\Omega])}{(36/13 + 24/13) \,[\Omega]} = 72/65 \,[\Omega]$$

The 6 and $1{,}188/47$ [Ω] resistors are in parallel, yielding an equivalence of

$$R_{eq,12} = \frac{(6 \, [\Omega])(1,188/47 \, [\Omega])}{(6+1,188/47) \, [\Omega]} = 1,188/245 \, [\Omega]$$

The 42/41 and 1,188/245 $[\Omega]$ resistors are in series, with an equivalent resistance of $R_{eq,13} = 58,998/10,045$ $[\Omega]$. This equivalence is in parallel with the 72/65 $[\Omega]$ resistor, which yields an equivalence of

$$R_{eq,14} = \frac{(42/41 \,[\Omega])(58,998/10,045 \,[\Omega])}{(42/41+58,998/10,045) \,[\Omega]} \approx 0.932 \,[\Omega]$$

Thus, the source current is

$$i = \frac{10 \,[\text{V}]}{0.932 \,[\Omega]} = 10.73 \,[\text{A}]$$