Análisis Real

Segundo Parcial 17/03/2021

- 1. Esta es una evaluación en parejas con una duración de 90 minutos.
- 2. Adicionalmente tendrá 10 minutos para tomar fotos del examen y subir sus respuestas en formato .pdf al aula virtual.
- 3. Se permite el uso de libros, apuntes y consultar en internet. No está permitido consultarse entre grupos.
- 4. Las respuestas deben estar totalmente justificadas y acorde a lo demostrado en clase.
- 5. Cualquier incumplimiento de lo anterior conlleva la anulación del examen.
- 1. [1 pto] Usando la definición de límite, demostrar que:

$$\lim_{n \to \infty} \frac{2n^2 - 3}{n^2 - 4n + 6} = 2$$

2. [1 pto] Sea $\{a_n\}$ una sucesión de números reales tal que

$$a_{n+1} = \frac{3(1+a_n)}{3+a_n}, \quad a_1 = 3$$

Muestre que la sucesión converge y halle su límite.

- 3. [1 pto] Sean $\{a_n\}$, $\{b_n\}$ dos sucesiones de números reales tales que $\{b_n\}$ es acotada y $a_n \to 0$. Muestre que $\{a_nb_n\}$ converge a 0.
- 4. [1 pto] Sea A un subconjunto infinito de \mathbb{R} acotado superiormente, denotamos $u = \sup(A)$. Muestre que existe una sucesión $(x_n) \subset A$, creciente tal que $x_n \to u$.
- 5. [1 pto] Considere la sucesión (x_n) definida por

$$x_n = \sum_{k=1}^n \frac{1}{k}$$

Muestre que (x_n) no converge.