Wpływ zmiany parametrów definiowania kas ruchowych w DiffServ na transmisję w sieci

Projek z przedmiotu Gwarantowanie Jakości Obsługi w Internecie

Jacek Szarski Mateusz Zawisza Naszym zadaniem było znalezienie związku pomiędzy konfiguracją mechanizmu DiffServ a uzyskaną jakością obsługi. W tym celu przygotowaliśmy symulację niedużej sieci IP z implementacją owego systemu, a następnie analizowaliśmy wyniki uzyskan dla różnych zadanych ustawień. Topologia badanej sieci.

W zestawionej przez nas sieci znajdowały się trzy węzły stanowiące źródła ruchu (A1, A2, A3), oraz trzy węzły będące odbiorcami ruchu (B1, B2, B3). Transmisja odbywała się od każdego nadawcy do każdego odbiorcy. Symulacja została ustawiona tak aby wystąpiły przeciążenia sieci na odcinku Agw - Bgw, co wiąże się z utratą przesyłanych pakietów.

Poniżej parametry ustawione w sieci.

Rozmiar pakietów (packet size) - 1000 KB

Ilość przepływów (flows count) - 100

Przepustowość wszystkich łączy (throughput) - 4Mb

CIR (committed information rate) pasmo zapewnione - 30 kb/s

PIR (peak information rate) pasmo szczytowe - 60 kb/s

Średnie opóźnienie pomiędzy wysyłanymi pakietami - 0.01 s Zastosowaliśmy politykę DiffServ Time Sliding Window Three Color Marker (TSW3CM).

Polityka ta przyjmuje dwa parametry: CIR oraz PIR. Na ich podstawie oznacza pakiety kolorami zielony, żółty oraz czerwony. Pakiety które mieszczą się pod progiem CIR znaczone są na zielono, te które mieszczą się pomiędzy CIR oraz PIR znaczone są na żółto oraz te które są ponad progiem PIR znaczone są na czerwono. U nas przekładają się ona na wirtualne kanały, odpowiednio 0,1 oraz 2 co też wiąże się z odpowiednimi priorytetami. Najmniejszy priorytet mają pakiety w kanale wirtualnym 2, a największy w kanale 0.

Przeciążenie łącza pozwoliło nam na zbadanie ilości pakietów zrzuconych przez DiffServ (edrops) oraz ilość pakietów zrzuconych z powodu przeciążenia łącza (ldrops) dla różnych prawdopodobieństw zrzutu w odpowiednich kanałach.

Ilość pakietów wysyłanych w ciągu sekundy przez węzły powoduje bardzo szybkie przekroczenie wartości CIR i PIR. Większość pakietów w związku z tym zostaje oznaczona kolorem czerwonym i posiada najniższy priorytet. Dlatego znaczenie praktycznie ma tylko prawdopodobieństwo zrzutu dla pakietów oznaczonych kolorem czerwonym.

Chcielibyśmy aby zrzucanie pakietów w większości dokonywane było przez DiffServ, gdyż w ten sposób zrzucane w pierwszej kolejności będą pakiety z najmniejszym priorytetem. Pakiety które zrzucane są z powodu przeciążenia łącza (Idrop) są pakietami losowymi i nie możemy w takiej sytuacji zapewnić zadanych parametrów QoS.

Symulację napisaliśmy w języku TCI, dla symulatora NS (plik router.tcl), a następnie, aby zautomatyzować proces gromadzenia danych, stworzyliśmy bibliotekę napisaną w języku Ruby która uruchamia go z zadanymi parametrami (simulation.rb). Część parametrów przekazywane jest przez zmienne środowiskowe środowiska BASH, część zaś przez plik tekstowy queue_params. Cały program znajduje się w pliku program.rb.

W poszczegulnych symulacjach zmienialiśmy wartości prawdopodobieństw zrzutu pakietów odpowiednio dla punktów kodowych 10, 11, 12, odpowiadającym kolorom zielonemu, żółtemu i czerwonemu.

Całość wyników można znaleźć w pliku wyniki.xls.

Badając ilość paketów które dotarły oraz stosunek ilości edropów do Idropów zauważylimy ścisłą korelację pomiędzy prawdopodobieństwem zrzutu kolojki czerowonej a wynikami.

Zmiany pozostałych prawdopodobieństw nie miały wpływu na wyniki, przedstawiamy więc tylko ich wybraną część, która pokrywa się z pozostałymi.

Charakterystyka łącza DiffServ

utracone pakiety w zależności od prawdopodobieństw zrzutu

Prawdopo dobieństwa zrzutu kolejki zielonej, żółtej, czerwonej

procent pakietów które do- procentt zrzuceń typu tarły edrop

p1	p2	рЗ	10				11			12				all				dotarło	zrzucono	edrops/	
			to	tx	ld	ed	to	tx	ld	ed	to	tx	ld	ed	to	tx	ld	ed	uotario	(e + l)	zrzuconych
0.1	0.5	0.0	153	143	10	0	139	124	15	0	3200	2519	681	0	3492	2786	706	0	79,78%	706	0,00%
0.1	0.5	0.1	178	170	8	0	154	142	12	0	3261	2484	497	280	3593	2796	517	280	77,82%	797	35,13%
0.1	0.5	0.2	182	170	12	0	172	159	13	0	3251	2468	331	452	3605	2797	356	452	77,59%	808	55,94%
0.1	0.5	0.3	147	139	8	0	148	136	12	0	3312	2510	105	697	3607	2785	125	697	77,21%	822	84,79%
0.1	0.5	0.4	170	162	8	0	137	126	11	0	3271	2505	98	668	3578	2793	117	668	78,06%	785	85,10%
0.1	0.5	0.5	170	162	8	0	142	131	11	0	3312	2495	91	726	3624	2788	110	726	76,93%	836	86,84%
0.1	0.5	0.6	267	261	6	0	246	234	12	0	3398	2318	154	926	3911	2813	172	926	71,93%	1098	84,34%
0.1	0.5	0.7	162	156	6	0	139	128	11	0	3290	2496	87	707	3591	2780	104	707	77,42%	811	87,18%
0.1	0.5	0.8	245	239	6	0	204	193	11	0	3354	2430	148	776	3803	2862	165	776	75,26%	941	82,47%
0.1	0.5	0.9	163	157	6	0	175	164	11	0	3323	2478	82	763	3661	2799	99	763	76,45%	862	88,52%
0.1	0.5	1.0	341	327	14	0	272	259	13	0	3418	2296	341	781	4031	2882	368	781	71,50%	1149	67,97%

Procent edropów który przyjeliśmy za wyznacznik jakości łącza przyjmuje najwyższe wartości dla prawdopodobieństwa p3 z zakresu 0,3 do 0,9. Dla tego przedziału procent pakietów które dotarły do swojego przeznaczenia największą wartość osiąga dla p3=0,4, zatem tą wartość moglibyśmy uznać za najbardziej odpowiednią dla naszej topologii.

Minimalna wartość Idropów w kolejce zielonej wystąpiła dla p3=0,6 i wynosiła 2,25%. Przy tak małych wartościach ciężko jednak uznać tą wartość za reprezentatywną.

DIffServe jest jednym z wielu rozwiązań pozwalającym administratorom na dostosowanie sieci do wymogów biznesowych. Pozwala zapewnić odpowiednie parametry jakości obsługi dzięki szczegułowej konfiguracji zachowania węzłów jak i połączeń. Jego obszar aplikacji to większe sieci składające się z dużej ilości urządzeń w których skład wchodzą routery brzegowe i szkieletowe.