

Machine Learning

Linear regression with one variable

Model representation

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Classification: Discrete-valuel output

Training set of housing prices (Portland, OR)

-> m = Number of training examples

y's = "output" variable / "target" variable

x's = "input" variable / features

(x,y) - one training

Notation:

Size in feet² (x) 2104

1416

1534

852

460

232

315

178

Andrew Ng

How do we represent *h* ?

$$h_{e}(x) = \Theta_{0} + \Theta_{1} \times Shurthand: h(x)$$

Linear regression with one variable. (*)
Univariate linear regression.

Machine Learning

Linear regression with one variable

Cost function

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460)
1416	232	h M= 47
1534	315	
852	178	
•••)

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Andrew Ng

Machine Learning

Linear regression with one variable

Cost function intuition I

<u>Simplified</u>

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

Cost Function:

 θ_0, θ_1

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1) \qquad \Diamond_{\prime} \times^{(i)}$$

(for fixed
$$\theta_1$$
, this is a function of x)

$$\frac{h_{\theta}(x)}{3}$$
(function of the particles)

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{$$

$$h_{\theta}(x)$$

$$J(\theta_1)$$
(for fixed θ_1 , this is a function of x)
$$\frac{1}{3}$$

$$\frac{1}{2}$$

$$\frac{1}{3}$$

$$\frac$$

Andrew Ng

Andrew Ng

Machine Learning

Linear regression with one variable

Cost function intuition II

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0, \theta_1$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters $heta_0, heta_1$)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters $heta_0, heta_1$)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters $heta_0, heta_1$)

Machine Learning

Linear regression with one variable

Gradient descent

Have some function
$$J(\theta_0,\theta_1)$$
 $J(\theta_0,\theta_1)$ $J(\theta_0,\theta_1)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0, \Theta_1 = 0$)
- Keep changing $\underline{\theta_0},\underline{\theta_1}$ to reduce $\underline{J(\theta_0,\theta_1)}$ until we hopefully end up at a minimum

The way we do this is by taking the derivative (the tangential line to a function) of our cost function. The slope of the tangent is the derivative at that point and it will give us a direction to move towards. We make steps down the cost function in the direction with the steepest descent. The size of each step is determined by the parameter **a**, which is called the learning rate.

is taken is determined by the partial derivative of $J(\theta \ 0 \ , \theta \ 1)$.

Gradient descent algorithm

repeat until convergence
$$\{\theta_i := \theta_i - \alpha \frac{\partial}{\partial \alpha} J(\theta_0, \theta_1) \}$$
 (for

Assignment

$$(\text{for } j = 0 \text{ and } j = 1)$$

Correct: Simultaneous update

learning rate

temp
$$0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\Rightarrow \text{ tempo} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$
$$\Rightarrow \text{ templ} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\rightarrow \theta_0 := \text{temp0}$$

$$\theta_0 := \text{tempo}$$
 $\theta_1 := \text{tempo}$

$$\bullet$$
 \bullet \bullet

Incorrect:

$$\rightarrow \text{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0}$$

$$\rightarrow \theta_0 := \text{temp} 0$$

$$temp1 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := \text{temp1}$$

Andrew Ng

ليهو update عول

Like Comparison

القدار بعد كده theta0 & theta1 إستخدر

operator not assignment

Machine Learning

Linear regression with one variable

Gradient descent intuition

Gradient descent algorithm

Andrew Ng

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Machine Learning

Linear regression with one variable

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$

(for
$$j = 1$$
 and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{30j} \underbrace{\frac{1}{2m}}_{\text{in}} \underbrace{\frac{2}{5} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}}_{\text{in}}$$

$$= \underbrace{\frac{2}{30j}}_{\text{in}} \underbrace{\frac{2}{5} \left(0. + 0. x^{(i)} - y^{(i)} \right)^{2}}_{\text{in}}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{def}}{=} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{def}}{=} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right). \quad \chi^{(i)}$$

Gradient descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

}

 $J(\theta_0,\theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

Algorithm is sometimes icalled batch

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

This method looks at every example in the entire training set on every step, and is called batch gradient descent. Note that, while gradient descent can be susceptible to local minima in general, the optimization problem we have posed here for linear regression has only one global, and no other local, optimum