Comment décrit-on généralement l'appartenance d'un point à une droite de l'espace ?

- Par un système à deux équations
- Par un système à trois équations
- Par les vecteurs coplanaires à cette droite
- Par les vecteurs colinéaires à cette droite

Comment appelle-t-on le système à trois équations qui décrit l'appartenance d'un point à une droite de l'espace?

- Le système triplaire de la droite (d)
- Le système paramétrique de la droite (d)
- La représentation paramétrique de la droite (d)
- La représentation triplaire de la droite (d)

À quoi servent les équations cartésiennes d'un plan?

- À caractériser l'appartenance d'un point à un plan à partir de ses coordonnées dans le repère
- À caractériser l'appartenance d'un point à un plan à partir des vecteurs directeurs de la base
- À caractériser l'appartenance d'un vecteur à un plan à partir de ses coordonnées dans le repère
- À caractériser les vecteurs normaux à une droite donnée

Si le plan P a pour vecteur normal \overrightarrow{n} $\left| egin{array}{c} b \\ \end{array}
ight|$, quelle est une équation type du plan P ?

- Il n'existe pas de d'équation type.
- On ne dispose pas de suffisamment d'informations pour répondre.
- ax + by + cz + d = 0
- ax + by + cz = 0

Représentation paramétrique et équation cartésienne

Terminale Mathématiques

Comment peut-on caractériser l'appartenance d'un point à une droite ?

Avec une équation cartésienne	
Avec un système de deux équations cartésiennes	
Avec un système de trois équations cartésiennes	
On ne peut pas faire de telle caractérisation avec des équations cartésiennes.	

2/4

Représentation paramétrique et équation cartésienne

Comment décrit-on généralement l'appartenance d'un point à une droite de l'espace ?
Par un système à deux équations
Par un système à trois équations
Par les vecteurs coplanaires à cette droite
Par les vecteurs colinéaires à cette droite
On décrit l'appartenance d'un point à une droite de l'espace par un système de trois équations.
Comment appelle-t-on le système à trois équations qui décrit l'appartenance d'un point à une droite de l'espace ?
Le système triplaire de la droite (d)
Le système paramétrique de la droite (d)
La représentation paramétrique de la droite (d)
La représentation triplaire de la droite (d)
Le système à trois équations qui décrit l'appartenance d'un point à une droite de l'espace est appelé représentation paramétrique de la droite (d) .
À quoi servent les équations cartésiennes d'un plan ?
À caractériser l'appartenance d'un point à un plan à partir de ses coordonnées dans le repère
À caractériser l'appartenance d'un point à un plan à partir des vecteurs directeurs de la base
À caractériser l'appartenance d'un vecteur à un plan à partir de ses coordonnées dans le repère
À caractériser les vecteurs normaux à une droite donnée
Les équations cartésiennes d'un plan dans l'espace sont des équations permettant de caractériser l'appartenance d'un point à un plan à partir de ses coordonnées dans le repère.

Si le plan P a pour vecteur normal \overrightarrow{n} $\left| \begin{array}{c} b \end{array} \right|$, quelle est une équation type du plan P ?

- Il n'existe pas de d'équation type.
- On ne dispose pas de suffisamment d'informations pour répondre.

$$ax + by + cz + d = 0$$

$$ax + by + cz = 0$$

Le plan $\,P\,$ admet une équation cartésienne du type : ax+by+cz+d=0 .

Comment peut-on caractériser l'appartenance d'un point à une droite?

- Avec une équation cartésienne
- Avec un système de deux équations cartésiennes
- Avec un système de trois équations cartésiennes
- On ne peut pas faire de telle caractérisation avec des équations cartésiennes.

On peut décrire une droite comme l'intersection de deux plans, donc on peut caractériser l'appartenance d'un point à une droite avec un système de deux équations cartésiennes.