Estadística. Grupo m3 Hoja 1. Distribuciones muestrales

- 1. Sea (X_1, \ldots, X_n) una muestra aleatoria de una población N(0,1). Hallar la distribución en el muestreo de la variable aleatoria $Y = \sum_{i=1}^{n} X_i^2$. Hallar su esperanza y su varianza.
- 2. Sean X, X_1, \ldots, X_n variables aleatorias independientes con distribución $N(0, \sigma^2)$. Hallar la distribución en el muestreo de la variable aleatoria $T = \frac{X}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}X_i^2}}$.
- 3. Sea (X_1, \ldots, X_n) una muestra aleatoria de una población $N(\mu, \sigma^2)$. Hallar la distribución en el muestreo de la media muestral $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- 4. Sea (X_1, \ldots, X_n) una muestra aleatoria de una población $N(\mu, \sigma^2)$. Hallar la distribución en el muestreo de la variable aleatoria $X = \frac{(n-1)S^2}{\sigma^2}$, donde S^2 es la cuasivarianza muestral $S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i \bar{X}\right)^2$.
- 5. Sea (X_1, \ldots, X_n) una muestra aleatoria de una población $N(\mu, \sigma^2)$. Hallar la distribución en el muestreo de la variable aleatoria $T = \frac{\sqrt{n}(\bar{X} \mu)}{S}$.
- 6. Sea (X_1, \ldots, X_{25}) una muestra aleatoria simple de una población $N(0, \sigma = 4)$ e (Y_1, \ldots, Y_{25}) una muestra aleatoria simple e independiente de la anterior de una población $N(0, \sigma = 3)$. Calcular $P(\bar{X} > \bar{Y})$.
- 7. Sea (X_1, \ldots, X_n) una muestra aleatoria de una población U(0,1). Hallar la esperanza y la varianza de $X_{(j)}$.
- 8. Dada una muestra aleatoria (X_1, \ldots, X_n) de una población U(0,1), encontrar la probabilidad de que el rango $R = X_{(n)} X_{(1)}$ sea menor que 1/2.
- 9. Sea (X_1, \ldots, X_n) una muestra aleatoria de una distribución F. Sea $F_n(x)$ la función de distribución empírica de la muestra.
 - (a) Demostrar que

$$P(|F_n(x) - F(x)| > \frac{\epsilon}{2\sqrt{n}}) \le \epsilon^{-2}$$

(b) Para $x \in y$ fijos, calcular la covarianza entre $F_n(x)$ y $F_n(y)$.