Scalar Descent and Fracture Analysis in P3 Space

Lawrence C. Andrews

July 29, 2025

1 Scalar Descent Path with Fracture Persistence

The following table represents a descent path in P3 space, with fracture annotations and persistence values:

Step	P3 Input	Reduction Outcome	Fracture ID	Birth T	Death T	Persistence
0	P_0	Canonical		_		
1	$P_0 + \delta_1$	Slight misalignment	F_1	0.12	0.46	0.34
2	$P_0 + \delta_2$	Flip across fold B	F_2	0.28	0.36	0.08
3	$P_0 + \delta_3$	Stuck in corner	F_3	0.05	0.67	0.62

2 Simplicial Bin Network with Fracture Connections

Each vertex represents a scalar bin. Edges represent adjacency relations via reduction or fracture events. Edge labels denote fracture identifiers.

3 Bin Merging Protocol Based on Stability

This code snippet defines merge conditions based on fracture persistence and signature similarity.

Listing 1: Bin Merge Criteria Based on Scalar Stability

This helps define bin boundaries that reflect stable scalar neighborhoods in fold space.

