TD 2

Nombres premiers, Relations d'équivalence

Esercizio 1. Soit $n \geq 2$ un entier. Montrer que n est premier si et seulement si n n'admet aucun diviseur premier inférieur ou égal à \sqrt{n} .

Esercizio 2. Démontrer le théorème d'Euclide :

Il existe une infinité de nombres premiers.

Indice: Supposer par l'absurde qu'il existe un nombre fini de nombres premiers, p_1, \ldots, p_k , et considérer le produit $p_1 \cdots p_k + 1$.

Esercizio 3. Montrer que, pour tout nombre premier p, le nombre \sqrt{p} n'est pas rationnel.

Esercizio 4. Soit p un nombre premier. On définit la fonction $\nu_p: \mathbb{Z} \setminus \{0\} \to \mathbb{N}$ de la manière suivante : pour tout entier $n \neq 0$, si $n = p^e m$ avec $p \nmid m$, alors $\nu_p(n) := e.$

(a) Montrer que tout entier $n \neq 0$ admet une factorisation en nombres premiers de la forme

$$n = \pm \prod_{n} p^{\nu_p(n)},$$

où le produit est pris sur l'ensemble des nombres premiers.

(b) Montrer que, pour $a, b \neq 0$,

$$a \mid b \iff \nu_p(a) \leq \nu_p(b)$$
 pour tout nombre premier p .

(c) En déduire que le plus grand commun diviseur de a et b peut s'écrire

$$\operatorname{pgcd}(a,b) = \prod_{p} p^{\min(\nu_p(a),\nu_p(b))}.$$

(d) On prolonge la définition de ν_p à \mathbb{Z} en posant

$$\nu_n(0) := \infty.$$

où ∞ satisfait les règles suivantes :

- $\begin{array}{l} \bullet \ \, \infty \geq a \quad \text{pour tout } a \in \mathbb{Z}, \\ \bullet \ \, \infty + a = a + \infty = \infty + \infty = \infty \quad \text{pour tout } a \in \mathbb{Z}. \end{array}$

Montrer que pour tout $a, b \in \mathbb{Z}$, on a

$$\nu_p(a \cdot b) = \nu_p(a) + \nu_p(b).$$
 et $\nu_p(a+b) \ge \min\{\nu_p(a), \nu_p(b)\}.$

et que l'égalité $\nu_p(a+b) = \min\{\nu_p(a), \nu_p(b)\}$ est vraie si $\nu_p(a) \neq \nu_p(b)$.

(e) On prolonge encore la définition de ν_p à \mathbb{Q} en posant, pour $a, b \in \mathbb{Z} \setminus \{0\}$,

$$\nu_p\left(\frac{a}{b}\right) := \nu_p(a) - \nu_p(b).$$

Vérifier que cette définition est bien posée, c'est-à-dire indépendante de l'écriture de a/b.

- (f) Soit K un corps. Une application $v: K \to \mathbb{Z} \cup \{\infty\}$ est une valuation discrète si, pour tous $x, y \in K$,
 - v(xy) = v(x) + v(y),
 - $v(x+y) \ge \min\{v(x), v(y)\},$
 - $v(x) = \infty \Leftrightarrow x = 0$.

Montrer que ν_p est une valuation discrète sur \mathbb{Q} , appelée valuation p-adique.

Esercizio 5. On considère sur \mathbb{Z} la relation suivante : soient $a, b \in \mathbb{Z}$

$$a \sim b \Leftrightarrow |a - b| \le 2$$
.

Est-ce que \sim est une relation d'équivalence? Si oui, décrire pour tout $a \in \mathbb{Z}$ la classe d'équivalence [a] de a et l'ensemble quotient \mathbb{Z}/\sim .

Esercizio 6. On considère sur \mathbb{R} la relation suivante : soient $x, y \in \mathbb{R}$

$$x \sim y \Leftrightarrow x^2 = y^2$$
.

Est-ce que \sim est une relation d'équivalence? Si oui, décrire pour tout $x \in \mathbb{R}$ la classe d'équivalence [x] de x et l'ensemble quotient \mathbb{R}/\sim .

Esercizio 7. Soit $n \in \mathbb{Z}_{>0}$. On considère sur \mathbb{Z} la relation suivante : soient $a,b \in \mathbb{Z}$

$$a \sim_n b \Leftrightarrow n \mid (a - b).$$

- 1) Montrer que \sim_n est une relation d'équivalence.
- 2) Décrire les classes d'équivalences de 0, 1 et n, c'est-à-dire :

$$[0]_n := \{ a \in \mathbb{Z} : a \sim_n 0 \},$$

$$[1]_n := \{ a \in \mathbb{Z} : a \sim_n 1 \},$$

$$[r]_n := \{ a \in \mathbb{Z} : a \sim_n r \}, \text{ pour } 1 < r < n,$$

$$[n]_n := \{ a \in \mathbb{Z} : a \sim_n n \}.$$

3) Décrire l'ensemble quotient \mathbb{Z}/\sim_n .