

Network Design

Part V TSP related problems

ATSP

Given

edge in AA directed graph G=(N,A) and a cost $c_{ij} \ge 0$ for each

Find

minimal length The tour (a directed cycle that contains all *n* nodes) of

For our discussion we work on complete graphs embedded in a planar

between nodes (scaled by an appropriate factor) plus a random perturbation Distances between nodes are equal to the euclidean distances

The code **generator_atsp.py** invoked as

generator_atsp.py 12 -x 40 -y 30 -p 100

x 30 cells returns a complete graph with 12 nodes embedded in a gride of size 40

The graph is complete (arcs are not represented)

Distance matrix

_	–	2	ω	4	<u>у</u>	6	7	∞	9	10	11	1
ا ج		2011	1/95	380	/87	2452	/86	250/	11/4	227		1011
,,	1954	0	1053	1670	2208	1941	1370	925	2237	2055		1432
	1792	1008	0	1445	1937	2837	1157	1968	1562	2956		926
_	399	1644	1416	0	582	2426	379	2343	1051	2791		592
U1	272	2178	1914	534	0	2666	919	2790	1095	3114		1060
O1	2468	1926	2853	2356	2732	0	2349	1419	3432	536		2584
7	817	1327	1111	362	906	2367	0	2060	1064	2685		322
ω	2519	975	1949	2292	2778	1359	2091	0	3059	1263		2170
v	1118	2295	1577	1043	1085	3416	1067	3061	0	3770		979
0	2850	1969	2965	2799	3117	537	2627	1226	3737	0		2890
12	935	1395	897	603	1024	2655	371	2198	898	2890		0
12	2644	1694	951	2323	2704	3537	1999	2476	2113	3608		1789 0

Optimal solution: value 11623

Linear Programming formulation

Variables

$$x_{ij} = \begin{cases} 1 \text{ if arc } (i,j) \text{ is in the tour} \\ 0 \text{ otherwise} \end{cases}$$

Assignment Constraints

$$\min \sum_{(i,j) \in A} c_{ij} x_{ij}$$

$$\text{s.t.} \quad \sum_{j \in \delta^+(i)} x_{ij} = 1 \quad \forall i \in N$$

$$\sum_{j \in \delta^-(i)} x_{ji} = 1 \quad \forall i \in N$$

$$0 \le x_{ij} \le 1$$

In the code

```
atsp += lp.lpSum (G[i][j]['dist'] * x[(i,j)] for (i,j) in G.edges())
                                                                                                                                                                                                                                                                       for i in G.nodes():
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          cat=lp.LpContinuous)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                x = lp.LpVariable.dicts ('x', G.edges(), lowBound=0, upBound=1,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            atsp = lp.LpProblem ("ATSP formulation", lp.LpMinimize)
                                                                                        for i in G.nodes():
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   # Objective function
                                                                                                                                                                                                                                                                                                                                                                     Assignment contstraints
atsp += lp.lpSum (x[(j,i)] for j in G.predecessors(i)) == 1, name
                                                                                                                                                                                  atsp += lp.lpSum (x[(i,j)] for j in G.successors(i)) == 1, name
                                                                                                                                                                                                                           name = "FS_",i
```


__+ _____

First idea

Forbid all cycles of length 2

$$x_{ij} + x_{ji} \le 1 \quad \forall (i,j) \in A, i < j$$

Add the code:

```
for i in G.nodes():
                  for j in G.nodes()[i:]:
    name="Sub_" + str(i) + "_" + str(j)
atsp += x[(i,j)] + x[(j,i)] <= 1, name
```

and run again. You get the optimal solution:

Optimal solution: value 10044

elimination constraints Assignment constraints + 2-cycle

Subtour Elimination Constraints Miller Tucker Zemlin

variables *u_i* and the contraints: To exclude all subtours, one can use extra

$$u_i \in \mathbb{R}, \forall i \in n$$
 $u_1 = 1$
 $2 \le u_i \le n \quad \forall i \ne n$
 $u_i - u_j + 1 \le (n - 1)(1 - x_{ij}) \quad \forall i \ne 1, \forall j \ne 1.$

The last set of inequalities are known as arc-constraints This formulation is compact

Miller Tucker Zemlin **Subtour Elimination Constraints**

In the code:

```
for i in G.nodes()[1:]:
                                                                                                                        for j in G.nodes()[1:]:
                                                                                            if i != j:
                           name ="MTZ" + str(i) +"_" + str(j)
atsp += u[i] - u[j] + (G.number_of_nodes() - 1) \
* x[(i,j)] \le G.number_of_nodes() - 2, name
```

the x variable type: Remove the 2-cycle elimination constraints and change

```
lowBound=0, upBound=1, cat=lp.LpBinary)
                                                 lp.LpVariable.dicts ('x', G.edges(), \
```

* Solver output

Solving LP relaxation...

```
GLPK Simplex Optimizer, v4.52
                                                                                                                                                                                                                                                                                                                                                                                                                                  OPTIMAL LP SOLUTION FOUND
INTEGER OPTIMAL SOLUTION FOUND
                                                                                                                                                                                                                                                                                                                                                                                                       Integer optimization begins..
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         134 rows, 143 columns, 594 non-zeros
                           + 1387: mip = 1.162300000e+04 >=
                                                       1318: >>>>
                                                                               1290: >>>>
                                                                                                                                                               1042: >>>>>
                                                                                                                                      1079: >>>>
                                                                                                                                                                                       974: >>>>>
                                                                                                                                                                                                                                                                                                                                                                                                                                                           97: obj = 8.405181818e+03 infeas = 5.433e-16 (1)
                                                                                                          1255: >>>>
                                                                                                                                                                                                                                                                                                                                                                            97: mip =
                                                                                                                                                                                                                   911: >>>>
                                                                                                                                                                                                                                             775: >>>>>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     45: obj = 2.471363636e+04 infeas = 2.220e-16 (1)
                                                                                                                                                                                                                                                                                                   467: >>>>>
                                                                                                                                                                                                                                                                                                                           368: >>>>
                                                                                                                                                                                                                                                                        694: >>>>
                                                                                                                                                                                                                                                                                                                                                     211: >>>>>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0: obj = 2.259100000e+04 infeas = 6.875e+01(1)
                                                                                                                                                                                                                                             1.340900000e+04 >=
                                                                                                                                                                                                                  1.270600000e+04 >=
                                                                                                                                                                                                                                                                                                                                                                             not found yet >=
                                                                                                                                                                                                                                                                                                1.373100000e+04 >=
                                                                                                                                                                                                                                                                                                                         1.444400000e+04 >=
                                                                                                                                                                                      1.258900000e+04 >=
                                                                                                                                                                                                                                                                      1.354300000e+04 >=
                                                                                                                                                                                                                                                                                                                                                   1.489400000e+04 >=
                                                       1.162300000e+04 >=
                                                                                1.168000000e+04 >=
                                                                                                                                  1.193000000e+04 >=
                                                                                                                                                               1.194200000e+04 >=
                                                                                                         1.185400000e+04 >=
                                                                                                                                                                                                                                                                                           9.711000000e+03 32.8% (35; 7)
9.978000000e+03 27.3% (40; 14)
                                                                                                                                                                                                                                                                                                                                                   9.593000000e+03
                                                                                                                                                                                                      1.089100000e+04 18.8% (50; 51)
1.114900000e+04 12.3% (55; 65)
                                                                                                                                                         1.121300000e+04 10.9% (37; 123)
1.128300000e+04 5.5% (45; 126)
                                                                                                                                                                                                                                                               1.076000000e+04 20.5% (48; 38)
                                                     1.148100000e+04 1.2% (17; 209)
                                                                            1.144500000e+04 2.0% (26; 188)
                                                                                                                                  1.132100000e+04
                                                                                                        1.142800000e+04
                                                                                                                                                                                                                                                                                                                                                                                 -inf
                          tree is empty 0.0% (0; 261)
                                                                                                                                                                                                                                                                                                                                                35.6% (19; 0)
```

Memory used: 0.4 Mb (412725 bytes)

Time used: 0.1 secs

Linear relaxation

0.8182

4.0

5.0

+

Lifted MTZ Subtour Elimination Constraints

strengthening of MTZ arc constraints Desrochers and Laporte (1991) proposed the following

$$u_i - u_j + (n-1)x_{ij} + (n-3)x_{ji} \le n-2$$

 $\forall i \ne j = 2, ..., n$

Code

```
(G.number_of_nodes() - 3) * x[(j,i)] \le G.number_of_nodes() - 2, name
                                                                                                                                                                                        i in G.nodes()[1:]:
                                                                                                                                                for j in G.nodes()[1:]:
                                                                                                               .
!= j
                                 name ="MTZ_lifted" + str(i) + "_" + str(j)
atsp += u[i] - u[j] + (G.number_of_nodes() - 1) * x[(i,j)]\
```

Linear relaxation

Value of the linear relaxation: 10069.17 Red arcs: fractional variables

Subtour Elimination Constraints Dantzig Fulkerson Johnson

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1 \quad \forall S \subsetneq N, |S| \ge 2$$

polytope under mild conditions. but are known to be facet defining for the ATSP These constraints are exponential in number

SECs separation algorithm: see MST slides

Linear relaxation

Value of the linear relaxation: 10556.5 Red arcs: fractional variables

Observations

constraints The **largest lower bound** has been obtained by the DFJ

algorithm into the enumeration scheme requires particular care. However, embedding the constraints generation

Such an approach is called branch-and-cut.

formulation consists in merging the two formulations. A simpler way to combine the strength of the DFJ constraints and the compactness of the lifted-MTZ

A possible approach

- Start with the lifted MTZ formulation plus the 2-cycle elimination constraints
- 2. Run the DFJ separation algorithm before beginning the enumeration
- 3. Run the branch-and-bound

Important note

solving small TSP-derived problems CONCORDE) but the previous scheme can be useful in TSP exact approaches are very sophisticated (see

Solver log

Value of the initial relaxation [lifted-MTZ + 2-cycle elimination]: 10158

Add the violated subtour inequality

$$S = [12, 3, 2]$$

Improved lower bound: 10556.5

Branch-and-bound

Integer optimization begins..

+

Further notes

The code atsp.py contains 2 copies of the problem.

The pulp object atsp_int cpntains binary variables The pulp object atsp contains only continuous variables

Both objects contains the same set of contraints

discussed in this material You can comment/uncomment part of the code to replicate the exercise

Drawing functions

each node ${ t DrawSolMTZ}$ $({ t x}, { t u})$ draws the values of the ${ t u}$ variables associated to <code>DrawSol</code> (${f x}$) draws the current solution (integer variables are represented by black arcs, red arcs correspond to fractional variables)

the cutting plane DrawSubtour (x, subtour) draws the violated subtour found during

mTSP

Given

edge in AA directed graph G=(N,A) and a cost $c_{ij} \ge 0$ for each

Find

turn back to a home city (depot) A set of routes for *m* salesmen who all start from and

Linear Programming formulation

Variables

$$x_{ij} = \begin{cases} 1 \text{ if arc } (i,j) \text{ is in the tour} \\ 0 \text{ otherwise} \end{cases}$$

LP formulation

$$\min \sum_{(i,j) \in A} c_{ij} x_{ij}$$
 $\sup_{j=2}^{n} \sum_{x_{1j} = m} x_{1j} = m$
 $\sum_{i=2}^{n} x_{i1} = m$
 $\sum_{j \in \delta^{+}(i)} x_{ij} = 1 \ i = 2, \dots, N$
 $\sum_{j \in \delta^{-}(i)} x_{ji} = 1 \ i = 2, \dots, N$

 $0 \le x_{ij} \le 1$

Subtour Elimination Constraints

Subtour Elimination Constraints

DFJ constraints

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1 \quad \forall S \subseteq N \setminus \{1\}, S \neq 0$$

MTZ constraints

$$u_i - u_j + px_{ij} \le p - 1 \text{ for } 2 \le i \ne j \le n$$

Problem Capacitated Vehicle Routing

Given

A fleet of identical vehicles, with limited capacity Q located at a depot {0}.

and a traveling cost $c_{ij} \ge 0$ for each edge in AA complete directed graph G=(N,A) with $N=\{0,1,...,n\}$ A set of *n* customers with demand $q_i > 0$.

Find

A minimum-cost collection of vehicle routes, each starting and ending at the depot, such that each demand exceeds Q. vehicle visits a set of customers whose total customer is visited by exactly one vehicle, and no

CVRP: 2 index formulation

$$x_{ij} = \begin{cases} 1 \text{ if some vehicle travels from } i \text{ to } j, \\ 0 \text{ otherwise.} \end{cases}$$

$$q(S) = \sum_{i \in S} q_i$$
, for any $S \subset N_c$

CVRP: 2 index formulation

$$\min \sum_{(i,j) \in A} c_{ij}x_{ij}$$

$$\text{s.t.} \sum_{i \in N_c} x_{ij} = 1 \ \forall j \in N_c$$

$$\sum_{j \in N_c} x_{ij} = 1 \ \forall i \in N_c$$

$$x(\delta^+(S)) \ge \lceil q(S)/Q \rceil \ \forall S \subseteq N_c$$

$$x \in \{0,1\}^{|A|}$$

commodity CVRP: 2 index formulation single

$$f_{ij} = \{ \text{Load carried from } i \text{ to } j \}$$

$$\sum_{j \in \delta^{-}(i)} f_{ji} - \sum_{j \in \delta^{+}(i)} f_{ij} = q_i \ orall i \in N_c$$
 $0 \leq f_{ij} \leq Qx_{ij}$