

STA457H1/STA2202HF L5101 - Time Series Analysis

PROBLEM SET # 1 Due by October 2nd, 2019

Problem 1 (10)

Let r_t be a log return. Suppose that r_1, r_2, \ldots are i.i.d. $N(\mu, \sigma^2)$.

- a) What is the distribution of $r_t(3) = r_t + r_{t-1} + r_{t-2}$.
- b) What is the covariance between $r_t(k)$ and $r_t(k+l)$ for some integer t, k and l.

Problem 2 (20)

Suppose you bought an asset at initial price $P_0 = 20$ and the asset price follows a lognormal geometric random walk where

$$P_t = P_0 \exp(r_t + r_{t-1} + \dots + r_1)$$

and r_i are i.i.d. $N(0.03, 0.005^2)$.

- a) Simulate the annual price of the asset for the next 10 years i.e. $(P_1, P_2, \dots, P_{10})$ and plot it against time.
- b) Simulate P_{10} 2000 times and estimated the expected value i.e $\mathbb{E}[P_{10}]$.
- c) Compare your simulated result with the actual expected value of P_{10} .

Problem 3 (10)

Suppose in a normal plot that the sample quantiles are plotted on the vertical axis, rather than on the horizontal axis as in our lectures.

- (a) What is the interpretation of a convex pattern?
- (b) What is the interpretation of a concave pattern?
- (c) What is the interpretation of a convex-concave pattern?
- (d) What is the interpretation of a concave-convex pattern?

Problem 4 (20)

Suppose that X_1 , X_2 , ... is a lognormal geometric random walk with parameters (μ, σ^2) . More specifically, suppose that $X_k = X_0 \exp(r_1 + r_2 + \dots + r_k)$, where X_0 is a fixed constant and r_1, r_2, \dots are i.i.d. $N(\mu, \sigma^2)$.

- (a) Find $P(X_2 > 1.5X_0)$.
- (b) Find a formula for the 0.8 quantile of X_k for all k.
- (c) What is the expected value of X_k^2 for any k? (Find a formula giving the expected value as a function of k).
- (d) Find the variance of X_k for any k.

Problem 5 (20)

Suppose that Y_1, \ldots, Y_n are i.i.d. $N(\mu, \sigma^2)$, where μ is known. Show that the MLE of σ^2 is

$$n^{-1} \sum_{i=1}^{n} (Y_i - \mu)^2$$

Problem 6 (20)

(Mixture models). Let $X_1 \sim N(0, \sigma_1^2)$ and $X_2 \sim N(0, \sigma_2^2)$, two independent normal distribution. Let Y also be another independent random variable with a Bernoulli distribution, that is P(Y = 1) = p and P(Y = 0) = 1-p, for some 0 .

- (a) What is the mean and the variance of $Z = YX_1 + (1 Y)X_2$?
- (b) Are the tails of its distribution heavier or lighter when compared to a normal distribution with the same mean and variance? If so, for what values of p? Give also an intuitive explanation of your mathematical derivation.