

AFAPL-TR-79-2027

MDA075835

IMPROVED THERMAL BATTERY

Praful V. Dand and Khushrow K. Press KDI SCORE, INC. Cockeysville, Maryland 21030

April 1979

Final Report

June 1976 - December 1978

Approved for public release; distribution unlimited.

Prepared for

Tropulca Tol

AIR FORCE AERO PROPULSION LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

79 10 30

54

DDC FILE COPY

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This final report was submitted by KDI Score Inc. under Contract USAF F33615-76-C-2144. The effort was sponsored by the Air Force Aero Propulsion Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio under Project 3145, Task 22 and Work Unit 79 with Mr. Dick Marsh/POE-1 as Scientist in Charge. Dr. K. Press and Mr. P. Dand of KDI Score Inc. were technically responsible for the work.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Project Engineer

FOR THE COMMANDER

hief, Aerospace Power Division

Technical Area Manager

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFAPL/POE-1, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/1 October 1979 - 200

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. PECIPIENT'S CATALOG NUMBER AFAPL TR-79-2027 5. TYPE OF REPORT & PERIOD COVERED Final 6/76-12/78 IMPROVED THERMAL BATTERY 6. PERFORMING ORG. REPORT NUMBER CONTRACT OR GRANT NUMBER(S) AUTHOR(s) Praful V. Dand 3615-76-C-2144 Khushrow K. Press 9. PERFORMING ORGANIZATION NAME AND ADDRESS KDI SCORE, INC. 406 290 200 Wight Ave., Cockeysville, Md. 21030 11. CONTROLLING OFFICE NAME AND ADDRESS AFAPL/POE-1 BER OF PAGE Wright-Patterson AFB, Ohio 45433 123 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) 15a. DECLASSIFICATION DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Final rept. Jun 76-Dec 78, 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Thermal batteries, calcium chromate, lithium-aluminum, iron disulfide, single-cell 20. ABSTRACT Continue on reverse side if necessary and identify by block number) Under U.S.A.F. Contract F33615-76-C-2144, KDI SCORE undertook a study to advance state-of-the-art technology of thermal batteries for military applications, so that they might meet the requirements of some systems now using more complicated and expensive reserve batteries. An exhaustive study of the calcium/ calcium chromate system and investigation of many new electrochemical systems showed lithium-aluminum/iron disulfide to be DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter

ell

20.

ABSTRACT (continued)

a superior system for thermal batteries, with longer life at high current densities, and greater energy density. Based on battery tests, it was concluded that calcium/calcium chromate thermal batteries could not achieve the goal of 30 minutes' life at 30 volts and 30 amperes, and that the lithium-aluminum/iron disulfide system, which achieved approximately 80% of the goal, could, with further development, reach and possibly surpass this goal.

NTIS	White Section
DDC	Buff Section
UNANNOUN	CED []
JUSTIFICAT	ION
BY	
DISTRIBUT	ION/AVAILABILITY CODES
DISTRIBUT	ON/AVAILABILITY CODES

PREFACE

This report presents the work performed under U.S.A.F. Contract No. F33615-76-C-2144 to develop an improved thermal battery by advancing state-of-the-art technology to extend thermal battery capabilities for military applications. To meet the requirements of some systems which necessitate the use of more complicated and expensive reserve batteries, goals were set for 30 minutes' life, one second activation, voltage of 28 ± 2 volts, capacity of 15 ampere hours at 30 ampere discharge rate, 17 pounds weight and 140 cubic inces volume; with a target cost equal to or lower than present state-of-the-art thermal batteries.

An exhaustive study of the Ca/LiCl-KCl/CaCrO₄ system (which included investigation of the physical, chemical, and thermal properties of the components of the system) produced sufficient test data for determining composition, thickness, density, and configuration of the required pellet. Based on battery test results, it was determined that at 90 mA/cm², a life of approximately 10 minutes could be projected, since the longest life attained was 5 minutes.

Investigation of a number of new electrochemical systems showed Li-Al/LiCl-KCl/FeS $_2$ to be a superior system, producing a life of over 35 minutes at 90 mA/cm 2 while providing an energy density of 248.9 Whr/kg, in single cell tests. In battery tests using the Li-Al/FeS $_2$ system, life of 24 minutes at 90 mA/cm 2 and energy density of 38.4 Whr/kg were achieved.

It is therefore concluded that the Li-Al/FeS $_2$ system is superior to the Ca/CaCrO $_4$ system as it exhibits very predictable performance at less cost, provides three to four times greater energy densities up to 1000 mA/cm 2 , is capable of providing longer battery lives at higher current densities, and it exhibits very low internal resistance and is therefore capable of sustaining very high current pulses (up to 2000 mA/cm 2).

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	1
11	ELECTROCHEMICAL STUDIES	11
	NON-STANDARD SYSTEMS	11
	DETAILED STUDY OF Li-A1/FeS2 SYSTEM	19
111	BATTERY TEST DATA FOR Li-A1/FeS2 SYSTEM	32
IV	CONCLUSION	47
	APPENDIX A TECHNICAL PLAN	51
	APPENDIX B ELECTROCHEMICAL MIXES	55
	APPENDIX C PHYSICOCHEMICAL STUDIES	63
	APPENDIX D ELECTROCHEMICAL STUDIES: Ca/LiCl-KCl/CaCrO ₄ SYSTEM	93
	APPENDIX E NON-STANDARD TECHNIQUES	120

LIST OF TABLES

TABLE		PAGE
1	Comparison of Best Battery Results for the Systems Ca/CaCrO ₄ and Li-Al/FeS ₂ with Program Goal	8
2	Single Cell Test Results for Various Systems at 50 mA/cm ² Current Density	13
3	Single Cell Test Results for Various Systems at 90 mA/cm ² Current Density	15
4	Single Cell Test Results for Various Systems at 150 mA/cm ² Current Density	17
5	Effect of Various Treatments of FeS ₂ on Transient Peak	28
6	Comparison of Battery Performance for Ca/CaCrO ₄ System and Li-Al/FeS ₂ System	33
7	Progressive Development of Battery Performance at 90 mA/cm² Current Density	34
8	Battery Test Data Exhibiting Variation in Performance at Different Ambient Temperatures at 90 mA/cm ² Current Density	37
9	Ten Cell Battery (61 mm OD Cells) Test Results at Different Current Densities	39
10	Ten Cell Battery (38 mm OD Cells) Test Results at Different Current Densities	40
11	Battery Test Data Using Multiple Stacks at 90 mA/cm ² Current Density	42
12	Effect of Using Buffer Pellets in Thermal Batteries at 90 mA/cm ² Current Density	43
13	Thermal Battery Test Data Under Dynamic Conditions (38 mm Cell Diameter)	44
14	Battery Test Results at Various Current Densities (Ten 61 mm OD Cells)	45
15	Comparison of Best Battery Test Data with Goal	50
B-1	Homogeneous Powder Mixes (WPH Series)	56
B-2	Electrolyte Mixes (WPE Series)	57

LIST OF TABLES (CONT'D.)

TABLE		PAGE
B-3	Depolarizer Mix (WPD Series)	58
B-4	Anode Mixes (L Series)	59
B-5	New Depolarizer Mixes (WPN Series)	60-62
C-1	Variations in As-Received Calcium Chromate	65
C-2	Effect of Impurities on Calcium Chromate	66
C-3	Effect of Heat on CaCrO ₄ from Lot No. 8202-2	78
C-4	Solidus Temperatures for Mixture of KC1-LiC1	82
C-5	Thermal Study of Ca/CaCrO ₄ System	90
C-6	Thermal Study of Ca/CaCrO ₄ System	91
C-7	Thermal Peak Temperatures and Results of Chemical Analysis for WPH-2 Powder Mix	92
D-1	Single Cell Test Results at 4.89 psi and 525°C	99
D-2	Single Cell Test Results at 4.89 psi and 525°C	100
D-3	Single Cell Test Results for Homogeneous Single Layer Pellets at 50 mA/cm ² Current Density	104
D-4	Single Cell Test Results for Homogeneous Single Layer Pellets at 90 mA/cm ² Current Density	105
D-5	Single Cell Test Results for Homogeneous Single Layer Pellets at 300 mA/cm ² Current Density	106
D-6	Single Cell Test Results at 4.89 psi and 525°C	112
D-7	Single Cell Test Results at 4.89 psi and 525°C	113
D-8	Single Cell Test Results at 4.89 psi and 525°C	114
D-9	Battery Test Results for Various Ca/CaCrO ₄ Systems Using 38 mm OD Cells	118
D-10	Battery Test Results for Ca/CaCrO ₄ System at Different Current Densities	119
E-1	Evaluation of Fiberglass Tapes for Impregnating with NaCl-Li ₂ SO ₄ Buffer Powder	121

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Single Cell Test Curves for Various Systems	4
2	Comparison of Battery Life at 90 mA/cm ²	6
3	Comparison of Battery Life at Different Current Densities for Ca/CaCrO ₄ and Li-Al/FeS ₂	7
4	Comparison of Actual and Projected Energy Densities with Goal	10
5	Typical Voltage Vs. Time Curves for Various Systems	14
6	Typical Voltage Vs. Time Curves for Various Systems	16
7	Typical Voltage Vs. Time Curves for Various Systems	18
8	Effect of E/D Ratio in Catholyte Layer (DE) on Life in Single Cell Tests for Li-Al/LiCl-KCl/FeS ₂	20
9	Effect of Thickness on Life for the Two Systems Ca/CaCrO ₄ and Li-Al/FeS ₂ in Single Cell Tests	21
10	Change in Specific Conductance with Time in Single Cell Tests for Li-Al/FeS ₂ and Ca/CaCrO ₄ Systems	22
11	Effect of Density on Life for the Two Systems Ca/CaCrO ₄ and Li-Al/FeS ₂ in Single Cell Tests	24
12	Effect of Particle Size on Life for the Two Systems Ca/CaCrO ₄ and Li-Al/FeS ₂ in Single Cell Tests	25
13	Effect of Temperature on Life in Single Cell Tests for Ca/CaCrO ₄ and Li-Al/FeS ₂ Systems	26
14	Typical Voltage Vs. Time Curves at Different Current Densities in Single Cell Tests	29
15	Comparison of Energy Density Vs. Current Density for Ca/CaCrO ₄ and Li-Al/FeS ₂ Systems in Single Cell Tests	30
16	Comparison of Life Vs. Current Density for Ca/CaCrO ₄ and Li-Al/FeS ₂ Systems in Single Cell Tests	31
17	Progress Chart for Ten Cell/Stack Batteries for the System Li-Al/FeS ₂	35
18	Voltage Vs. Time Curve for Battery S/N P-161	36

LIST OF ILLUSTRATIONS (CONT.)

FIGURE		PAGE
19	Effect of Current Density on Capacity Density in Battery Tests	41
C-1	Heating Curve for CaCrO ₄ - Lot 8202-2	67
C-2	Heating Curve for CaCrO ₄ - Lot 8202-11	68
C-3	Heating Curve for CaCrO ₄ - Lot 8058	69
C-4	Heating Curve for CaCrO ₄ - Lot 7619	70
C-5	Heating Curve for CaCrO ₄ - Lot G-219	71
C-6	Heating Curve for CaCrO ₄ - Lot G-301	72
C-7	Heating Curve for CaCrO ₄ - Lot MP	73
C-8	Heating Curve for CaCrO ₄ - Lot 8202-2	74
C-9	Heating Curve for CaCrO ₄ - Lot 8202-2	75
C-10	Heating Curve for CaCrO ₄ - Lot 8202-2	76
C-11	Heating Curve for CaCrO ₄ - Lot 8202-2	79
C-12	Heating Curve for CaCrO ₄ - Lot 8202-2	80
C-13	Heating Curve for CaCrO ₄ - Lot 8202-2	81
C-14	DSC Thermogram for KC1-LiC1 (55.5:44.5)	83
C-15	DSC Thermogram for KC1-LiC1 (60:40)	84
C-16	DSC Thermogram for KC1-LiC1 (35:65)	85
C-17	Comparison Curves for Iron and Stainless Steel	86
C-18	DSC Thermogram for Unfused Powder	87
C-19	DSC Thermogram for Fused Powder	87
C-20	Heating Curve and Cooling Curve for 5.1 mg Pellets	88
D-1	Process Study Flow Diagram	94
D-2	Life Vs. Temperature for WPH-2 (Ca/CaCrO ₄) System at Different Pressures	96

LIST OF ILLUSTRATIONS (CONT.)

FIGURE		PAGE
D-3	Effect of DEB Pellet Density on Life for Ca/LiCl-KCl/CaCrO ₄ System	97
D-4	Effect of DEB Pellet Thickness on Life for Ca/LiCl-KCl/CaCrO ₄ System	98
D-5	Life Vs. Particle Size for WPH-2 (Ca/CaCrO ₄) System	102
D-6	Effect of LiC1-KC1(E)/CaCrO ₄ (D) Ratio on Life for Different Cab-o-Sil (B) Levels at 50 mA/cm ² Current Density	107
D-7	Effect of LiC1-KC1(E)/CaCrO ₄ (D) Ratio on Life for Different Cab-o-Sil (B) Levels at 90 mA/cm ² Current Density	107
D-8	Effect of LiC1-KC1(E)/CaCr0 ₄ (D) Ratio on Life for Different Cab-o-Si1 (B) Levels at 300 mA/cm ² Current Density	108
D-9	Life Vs. Current Density for Ca/LiCl-KCl/CaCrO ₄ Systems with E/D Ratio of 1.5:1	109
D-10	Life Vs. Current Density for Ca/LiCl-KCl/CaCrO ₄ System with E/D Ratio of 1.65:1	110
D-11	Life Vs. Current Density for Ca/LiCl-KCl/CaCrO ₄ System with E/D Ratio of 1.8:1	111
D-12	Effect of EB:DB Ratio on Life of Two Layer Pellet (Ca/LiCl-KCl/CaCrO₁ System)	116

390. Marcauch to the Distagget Paydon

SECTION I

INTRODUCTION

Thermal batteries have always been desirable for military applications because of their long shelf life, high reliability, and relatively low cost. However, their use in long life (over 10 minutes) and high energy density applications has been limited because of the inherent characteristics of conventional electrochemical systems. The production, replacement, and maintenance costs, and lower reliability, of other primary, reserve batteries have been major factors in stimulating the demand for an improved thermal battery. Consequently, in June 1976, the United States Air Force Aeropropulsion Laboratories awarded KDI SCORE, Inc., a contract for Improved Thermal Batteries. The objectives of the program were advancement of the state-of-the-art through optimization of the calcium/calcium chromate system and investigation of new electrochemical systems. The program goal was to develop a 28 volt, 30 ampere battery to operate for thirty minutes.

Thermal batteries are non-rechargeable, electrochemical power sources employing molten salt electrolytes that are solid and non-conductive at normal ambient temperatures. A pyrotechnic source within the battery, when ignited, provides sufficient heat to melt the electrolyte and raise the temperature to a desired operating level. Electrical energy can then be drawn from the system. Various electrochemical systems and cell constructions used in thermal batteries have been described in detail by R. Jasinski (High Energy Density Batteries, Plenum Press, New York. 1967), and N. C. Cahoon and G. W. Heise (The Primary Battery, John E. Wiley & Sons, New York. 1976).

The conventional systems have provided low energy density batteries for short life applications (less than 200 seconds) at moderate current drains. If longer life was required, batteries had to be designed for operation at low current density, thus increasing their size and weight. The Ca/LiCl-KCl/CaCrO₄ system has enjoyed the widest application due to several properties which are generally regarded as superior to those of the other systems.

Long life (60 minutes) batteries have been developed (A. R. Baldwin, "A Sixty Minute Thermal Battery", Proceedings, 27th Power Sources Symposium.

1976) using the Ca/CaCrO₄ system operating at very low current density (15 mA/

cm²) and providing low energy density. However, this system has inherent problems which are evident from its cell reactions:

at the anode:

Ca + 2 Li⁺
$$\longrightarrow$$
 Ca⁺² + 2 Li

Ca + 2 Li \longrightarrow CaLi₂

CaLi₂ \longrightarrow Ca⁺² + 2 Li⁺ + 4 e⁻

at the cathode:

$$3 \text{ Ca} + 2 \text{ Cr0}_4^{-2} + 6 \text{ e}^- \longrightarrow \text{Cr}_2^{0}_3 + 5 \text{ o}^{-2}$$

The overall reaction, as postulated by Cahoon and Heise (cited above) is:

The formation of the complex compounds has been proved by P. F. Hlava and T. J. Headley ("Thermal Battery Reaction Products: Characterization by Electron Microprobe X-Ray Analyzer and Transmission Electron Microscope", SAND77-1317, Sandia Laboratories, Albuquerque, New Mexico. 1977). At low current density, formation of the CaLi $_2$ alloy (mp 230° C) at the anode-electrolyte interface sometimes causes serious voltage fluctuations (noise) and occasional cell dropouts. This causes the reliability of the batteries to be suspect. At high current density, the formation of the double salt, KCaCl $_3$ (mp 485° C), at the interface, per the reaction:

increases internal resistance and thereby reduces life.

Based on literature search, it was assumed that thermal life of well over 30 minutes could be obtained from thermal batteries using adequate insulation. Preliminary calculations revealed that with the Ca/LiCl-KCl/CaCrO $_4$ system, one could drain 30 amperes from a battery using three paralleled stacks of twelve 120 mm 0D cells. This would provide the required 28 \pm 4 volts regulation at a current density of about 90 mA/cm 2 . However, from the battery tests, it was concluded that this system was unable to provide the requisite performance. At 90 mA/cm 2 the best life obtained by a 10 cell battery, S/N P-17 (61 mm 0D cells) was under 5 minutes.

A detailed study of Ca/LiCl-KCl/CaCrO $_4$ is discussed in Appendix D, including single cell and battery test results. From these results it was concluded that other systems would have to be investigated in order to

obtain the long life and high energy density desired for the final design of the battery.

In the past, various electrolyte, anode, and cathode materials have been investigated and suggested, but very few proved practical as thermal battery systems within the framework of existing technology.

The three systems which have found the broadest practical use in military hardware to the present time are:

Ca/LiC1-KC1/CaCrO₄
Ca/LiC1-KC1/WO₃
Mg/LiC1-KC1/V₂O₅

Alternate electrochemical couples utilizing calcium, magnesium, and a lithium-aluminum alloy were evaluated as anodes against various cathodic materials. The latter included calcium chromate, metal sulfides, metal oxides (CuO, $\mathrm{Fe_2O_3}$, NiO, $\mathrm{V_2O_5}$, and $\mathrm{WO_3}$), and cupric chloride. A common electrolyte, the eutectic mixture of lithium chloride and potassium chloride, was used with all couples. Some typical voltage versus time plots are given in Figure 1 at a current density of 90 mA/cm 2 .

At the above current density, the advantages of the Li-Al/FeS $_2$ couple become immediately apparent. Its life of 35 minutes is almost three times that of the Ca/CaCrO $_4$ system. However, because the cell is heavier and provides a lower peak voltage, the energy density (248.9 Whr/kg) is only twice as great. Life as long as 100 minutes has been observed at a current density of 20 mA/cm 2 . The Ca/FeS $_2$, and Ca/CuO systems provided surprisingly good lives, voltages, and energy densities.

There is no inherent problem with the Li-Al/FeS $_2$ system as there is with the Ca/LiCl-KCl/CaCrO $_4$ system. The cell reactions as postulated by R. K. Steunenberg ("Lithium-Aluminum/Metal Sulfide Batteries", Argonne National Laboratory, Illinois. 1977), are:

at the anode:

at the cathode:

4 Li + 3 FeS₂ FeS + Li₄Fe₂S₅ (1.7 V)
2 Li + FeS + Li₄Fe₂S₅
$$\longrightarrow$$
 3 Li₂FeS₂ (1.5 V)

Figure 1. Single Cell Test Curves for Various Systems

The simplified total cell reaction is:

In this system, a low melting alloy is not necessary for the cell to perform and the complex compounds present do not seem to change the internal resistance. Another major advantage is that the solubility of FeS_2 in LiCl-KCl is lower than that of CaCrO_4 , thus reducing side reactions which are responsible for thermal runaways and reduction of capacity.

The performance characteristics of the two systems are compared in detail in later sections.

BATTERY TESTS

Batteries, 75 mm in diameter, using ten 61 mm diameter cells, were built for both the Ca/CaCrO_4 and the Li-Al/FeS_2 systems. These batteries were tested at -40°C , $+23^{\circ}\text{C}$, and $+74^{\circ}\text{C}$, at 90 mA/cm² current drain. Typical data for optimized batteries of both types are plotted in Figure 2. Although identical insulation was used in both types, the batteries containing Li-Al/FeS_2 provided considerably better performance (23.5 minutes, S/N P-161) than those using the Ca/CaCrO_4 system (5 minutes, S/N P-17).

Several batteries were also tested at current densities other than 90 mA/cm², in the range of 50 to 800 mA/cm². These units were fired at room temperature. Life versus current density data for the two systems are compared in Figure 3. The Li-Al/FeS $_2$ system performed two to four times better than the Ca/CaCrO $_4$ system at current densities higher than 50 mA/cm². At lower current densities, the two systems seem to approach each other. It was also observed that there was no noise or appreciable change in the capacity of the Li-Al/FeS $_2$ system at various current densities.

The best energy density of $38.4 \, \text{Whr/kg}$ (70% of the goal) based on the stack weight (including active and non-active material) was supplied by a two-stack battery, S/N P-154, using the Li-Al/LiCl-KCl/FeS₂ system. The longest life of $23.5 \, \text{minutes}$ (78% of the goal) was exhibited by battery S/N P-161 at $90 \, \text{mA/cm}^2$ using the same system in a single stack. The results are given in Table 1. The Ca/LiCl-KCl/CaCrO₄ system exhibited very poor performance and hence was unsuitable. Unlike the latter, the energy density improved by almost

Figure 2. Comparison of Battery Life at 90 mA/cm²

Figure 3. Comparison of Battery Life at Different Current Densities for ${\rm Ca/CaCr0_4}$ and ${\rm Li-Al/FeS_2}$

TABLE 1

COMPARISON OF BEST BATTERY RESULTS FOR THE SYSTEMS
Ca/LiC1-KC1/CaCrO₄ AND Li-A1/LiC1-KC1/FeS₂ WITH PROGRAM GOAL

S/N	SYSTEM	ТҮРЕ	CURRENT DENSITY	LIFE TO 75% P.V.	ENERGY	DENSITY
- 18			mA/cm ²	min	Whr/kg	Whr/dm ³
Program Goal	TBD	4.35" OD cells, 3 stacks in parallel	90	30	54.4	177.6
P-17	Ca/LiC1-KC1/ CaCrO ₄	2.4" OD cells, 1 stack	90	4.5	15.4	0.00
P-161	Li-A1/LiC1-KC1/ FeS ₂	2.4" OD cells, 1 stack	90	23.5	24.8	63.5
P-154	Li-Al/LiCl-KCl/ FeS ₂	2.4" OD cells, 2 stacks in parallel	150	11.2 •	38.4	94.3

50% over battery S/N P-161 (24.9 Whr/kg) by using two paralleled stacks. Battery S/N 125 (life to 75% peak voltage - 22.5 minutes, energy density - 35 Whr/kg) illustrates this. The specific energy density by volume was over 50% of the goal. Thus, a battery operating at 150 mA/cm² using the new system, would require only two stacks in parallel to supply the rated current.

It is estimated that the present state-of-the-art Li-Al/LiCl-KCl/FeS₂ system will provide a life of over 15 minutes at 30 amperes in the given 144 cubic inch envelope, and that it would weigh less than 17 pounds. Life of over 20 minutes could be obtained at 20 amperes with the same limitations. Given additional time and funds, it is believed that this system could be improved considerably, for more efficient operation and broader application.

Figure 4 gives a comparison of the program goal with our projected energy density with the two systems and the actual value obtained. As can be seen, Li-Al/FeS_2 has demonstrated capacity to provide 38.4 Whr/kg (70% of the program goal of 54.4 Whr/kg).

9

Figure 4. Comparison of Actual and Projected Energy Densities with Goal

SECTION II

ELECTROCHEMICAL STUDIES

A comprehensive study was conducted in an effort to optimize the performance of the $Ca/LiC1-KC1/CaCr0_4$ system by varying chemical composition and physical characteristics. A detailed discussion with results is given in Appendix D.

From the results, it was concluded that this system would not be able to meet the project goals and other systems would have to be developed to provide the necessary energy and life.

NON-STANDARD SYSTEMS

In an attempt to find an improved alternate electrochemical system for thermal batteries, various couples were tested at 50 mA/cm^2 , 90 mA/cm^2 , and 150 mA/cm^2 .

The following couples were investigated. In all cases LiCl-KCl eutectic mixture was used as electrolyte, unless otherwise stated.

Ca/CaCrO ₄	Ca/Fe ₂ 0 ₃
Li-A1/CaCrO ₄	Li-A1/Fe ₂ 0 ₃
Mg/CaCrO ₄	Mg/Fe ₂ 0 ₃
Ca/FeS ₂	Ca/WO3
Li-A1/FeS ₂	Li-A1/WO3
Mg/FeS ₂	Mg/WO3
Ca/V ₂ O ₅	Ca/CuO
Li-A1/V205	Ca/NiO
Mg/V ₂ 0 ₅	Ca/CuCl ₂
Li-A1/CuC12 with NaA1C14	electrolyte
Li-Al/FeCl3 with NaAlCl4	electrolyte

Results of the tests are given in Tables 2, 3, and 4, respectively; corresponding voltage versus time curves for these systems are plotted in Figures 5,

6, and 7 respectively. Based on these results, the following observations are made:

- 1) Greatest energy density (245.7 Whr/kg) and longest life (62.5 minutes) were exhibited by the Li-Al/FeS₂ system at 50 mA/cm² (Table 2, Figure 5); its unit cell voltage under load is comparatively low. Li-Al/CaCrO₄ provided 179.4 Whr/kg and 20 minutes' life at 2.33 volts/cell peak, and Ca/CaCrO₄ provided 160.7 Whr/kg and 26 minutes' life at 2.51 volts/cell peak.
- 2) At 90 mA/cm² (Table 3, Figure 6), FeS $_2$ is superior as a cathode material to CaCrO $_4$ or other depolarizers tested. The energy densities were 248.9 Whr/kg and 141.92 Whr/kg, respectively, for Li-Al/FeS $_2$ and Ca/FeS $_2$, as compared to 98.08 Whr/kg for Li-Al/CaCrO $_4$ and 121.03 Whr/kg for Ca/CaCrO $_4$ systems.
- 3) At 150 mA/cm^2 (Table 4, Figure 7), Li-Al/FeS₂ is the best system with 264.7 Whr/kg and 21.0 minutes' life. Li-Al is the best anode when used with FeS₂, but Ca is the best anode when used with CaCrO₄, the latter yielding 154.11 Whr/kg, 8.3 minutes' life.
- 4) With all cathodes, Li-Al exhibits a peak voltage equal to or slightly lower than Ca and also provides noise-free performance except with WO₃.
- 5) If a short-life battery is required for a pulse load application and height is critical, the vanadium pentoxide cathode would be the best choice since it performs well with any anode.
- 6) Cupric chloride exhibited strange behavior; that is, a life of approximately 45 seconds was observed at all current densities with copper being deposited on the anode surface (Table 3, Figure 6).

Based on these results, it was concluded that the Li-Al/FeS_2 system was most suitable as an alternate electrochemical system capable of meeting the goal requirement.

TABLE 2

SINGLE CELL TEST RESULTS FOR VARIOUS SYSTEMS AT AT 50 mA/cm² CURRENT DENSITY

	SYSTEM	PEAK VOLTAGE	ACTIVE LIFE TO 75% P.V.	ENERGY DENSITY
		(Volts)	(Seconds)	(Whr/kg)
(1)	Ca/LiCl-KCl/CaCrO ₄	2.51	1535	160.7
(2)	Li-Al/LiCl-KCl/CaCrO ₄	2.33	1212	125.5
(3)	Mg/LiC1-KC1/CaCrO ₄	1.62	546	45.1
(4)	Ca/LiC1-KC1/FeS ₂	2.37	701	67.1
(5)	Li-A1/LiC1-KC1/FeS2	2.17	3749	245.7
(6)	Mg/LiC1-KC1/FeS ₂	1.57	2554	202.9
(7)	Li-A1/LiC1-KC1/V205	3.06	296	30.7
(8)	Li-Al/LiCl-KCl/Fe ₂ 0 ₃	2.14	463	23.6
(9)	Mg/LiCl-KCl/Fe ₂ 0 ₃	1.37	914	67.2
(10)	Ca/LiC1-KC1/WO3	2.30	823	52.3
(11)	Mg/LiC1-KC1/WO3	1.61	339	10.1
			Souther Issuad	10 1 800 7
			3	

Figure 5. Typical Voltage Vs. Time Curves for Various Systems (The Curve Numbers Correspond to Systems in Table 2)

TABLE 3

SINGLE CELL TEST RESULTS FOR VARIOUS SYSTEMS
AT 90 mA/cm² CURRENT DENSITY

SYSTEM	PEAK VOLTAGE	ACTIVE LIFE TO 75% P.V.	ENERGY DENSITY
	(Volts)	(Seconds)	(Whr/kg)
(1) Ca/LiC1-KC1/CaCrO ₄	2.38	643	121.0
(2) Li-Al/LiCl-KCl/CaCrO ₄	2.18	724	98.1
(3) Mg/LiCl-KCl/CaCrO ₄	1.44	318	41.5
(4) Ca/LiC1-KC1/FeS ₂	2.28	801	141.9
(5) Li-Al/LiCl-KCl/FeS ₂	2.05	2138	248.9
(6) Mg/LiC1-KC1/FeS ₂	1.46	1147	157.6
(7) Ca/LiC1-KC1/V ₂ O ₅	2.91	159	33.5
(8) Li-A1/LiC1-KC1/V ₂ 0 ₅	2.92	240	45.3
(9) Mg/LiC1-KC1/V ₂ 0 ₅	2.38	204	27.6
(10) Ca/LiCl-KCl/Fe ₂ O ₃	2.03	534	55.0
(11) Li-Al/LiCl-KCl/Fe ₂ 0 ₃	2.04	376	34.9
(12) Mg/LiC1-KC1/Fe ₂ 0 ₃	1.27	787	60.9
(13) Ca/LiC1-KC1/WO ₃	2.22	408	48.3
(14) Mg/LiC1-KC1/WO ₃	1.48	219	22.1
(15) Ca/LiC1-KC1/CuO	2.30	676	105.6
(16) Ca/LiC1-KC1/NiO	1.18	543	44.7
(17) Ca/LiC1-KC1/CuC1 ₂	2.67	45	7.9

Figure 6. Typical Voltage Vs. Time Curves for Various Systems (The Curve Numbers Correspond to Systems in Table 3)

TABLE 4

SINGLE CELL TEST RESULTS FOR VARIOUS SYSTEMS
AT 150 mA/cm² CURRENT DENSITY

	SYSTEM	PEAK VOLTAGE	ACTIVE LIFE TO 75% P.V.	ENERGY DENSITY
		(Volts)	(Seconds)	(Whr/kg)
(1)	Ca/LiC1-KC1/CaCr0 ₄	2.30	497	154.1
(2)	Li-A1/LiC1-KC1/CaCrO ₄	1.93	433	92.0
(3)	Mg/LiC1-KC1/CaCrO ₄	1.18	146	25.6
(4)	Ca/LiCl-KCl/FeS ₂	2.15	412	129.6
(5)	Li-A1/LiC1-KCL/FeS ₂	1.95	1260	264.7
(6)	Mg/LiC1-KC1/FeS ₂	1.28	457	97.1
(7)	Ca/LiC1-KC1/Fe ₂ 0 ₃	1.93	235	41.3
(8)	Li-A1/LiC1-KC1/Fe ₂ 0 ₃	1.86	196	30.2
(9)	Ca/LiC1-KC1/WO3	2.08	210	43.2
10)	Mg/LiC1-KC1/WO ₃	1.30	100	24.8
		n parawa a la sand	THE CURP CONTRACT	

Figure 7. Typical Voltage Vs. Time Curves for Various Systems (The Curve Numbers Correspond to Systems in Table 4)

DETAILED STUDY OF Li-A1/FeS, SYSTEM

A comprehensive study of Li-Al/FeS $_2$ system, feasible within the time frame, was conducted. This enabled us to optimize the system to a certain extent. Reproducible results exhibiting the potential of this system were obtained; however, considerable work remains to be done in completely defining and understanding the mechanism of the system. The important parameters that were evaluated in single cell tests (SCT) are discussed here. Whenever possible, a comparison is made with the Ca/CaCrO $_{A}$ system.

Chemical Composition of Depolarizer Layer (DE). Keeping the composition of the anode and electrolyte (EB) layers constant, the electrolyte/depolarizer (E/D) ratio in the catholyte (DE) layer was varied.

The single cell tests were run at 500° C, 0.4 kg/cm^2 , and 90 mA/cm^2 . The results, shown in Figure 8, indicate that an E/D ratio of 0.5 is optimum and that there is a critical amount of electrolyte required for the cathode to conduct satisfactorily. The effect of E/D ratio at different current densities is discussed in detail in Appendix D for the Ca/CaCrO_A system.

Thickness. In Figure 9, life to 75% of peak voltage is plotted against the thickness of the DEB pellet for ${\rm Ca/CaCrO_4}$ and against the thickness of the cathode (DE) layer for the ${\rm Li-Al/FeS_2}$ system. In the latter, the anode and electrolyte layers were held constant at 0.81 mm and 0.25 mm, respectively. In all cases, the densities were kept constant and both systems were tested at the optimum temperature and pressure. From the graphs, it is observed that the life of the ${\rm Ca/CaCrO_4}$ system does not increase substantially after 1.1 mm. However, the life of the ${\rm Li-Al/FeS_2}$ shows a continued increase. This indicates that the specific conductivity of the disulfide cell is considerably higher and hence the intra-cell distance does not substantially affect performance.

Specific Conductance. In order to measure the specific conductance of each system, the internal resistance of the cell was measured by loading the cell at 90 mA/cm² and then opening the circuit (no load condition) every 50 seconds for a period of 0.2 second. Both ohmic and non-ohmic resistances were then included in the calculation of specific conductance. The measurement also includes cell contact resistance and the resistance between the current collectors and the cell. As expected from the thickness experiments, Figure 10 shows that the conductivity of the chromate system decreases with time. The flat behavior of the disulfide conductance suggests that the reaction products

Figure 8. Effect of E/D Ratio in Catholyte Layer (DE) on Life in SCT for Li-Al/LiCl-KCl/FeS₂ System

Figure 9. Effect of Thickness on Life for the Two Systems Ca/CaCrO₄ and Li-Al/FeS₂ in Single Cell Tests

are not deleterious to conductivity and that life is probably limited by concentration of one of the active materials.

Density. As with the study of pellet thickness, the density of the DE layer (FeS_2) and DEB layer ($CaCrO_4$) was varied, keeping all other parameters constant. The $Ca/CaCrO_4$ was found to be less susceptible to slight changes in pellet density (Figure 11) than the Li-Al/ FeS_2 system which exhibited both a maximum and a minimum. To facilitate comparison of the two systems, the density is expressed as a percentage of the actual density of the depolarizer mix.

Particle Size. The DE powder mix for the Li-Al/FeS₂ system and the DEB powder mix for the Ca/CaCrO₄ system were first segregated into different particle size ranges and then pelletized. Cells using the two systems were then studied at 90 mA/cm². The results are shown in Figure 12. It was observed that the Ca/CaCrO₄ system required a narrow range of particle sizes (120 to 160 microns) for maximum life. On the other hand, Li-Al/FeS₂ worked satisfactorily over a wider particle size range. In this study it was noted that along with the particle size separation there also occurred a chemical segregation. It is believed that the effect of this change in chemical composition is minor.

Temperature. The effect of operating temperature on cell life is critical in evaluating a new electrochemical system for use in thermal batteries since they must operate over a wide temperature range. To simulate battery temperatures, single cell tests were conducted between 400° C and 600° C. Two compositions of each system were evaluated. The Li-Al/FeS, system showed a greater stability with temperature change. Figure 13 also shows how this stability can be varied by changing the pellet composition. For the Ca/CaCrO, system, the cell performance is limited at the low temperatures by the freezing out of the double salt, KCaCl₃, below 485°C and by the self-destructive chemical reaction between calcium and calcium chromate at temperatures above 580°C. There is no evidence that the products of reaction of the Li-Al/FeS2 cell cause appreciable deterioration in performance. It is absolutely essential that the separator layer (EB) be used in the Li-Al/FeS, system as Li-Al in direct contact with the DE layer has exhibited highly exothermic reactions causing even the current collectors to melt. The two layer pellet prevents any such self-degrading chemical reaction.

Figure 11. Effect of Density on Life for the Two Systems ${\rm Ca/CaCrO_4}$ and ${\rm Li-Al/FeS_2}$ in Single Cell Tests

Figure 12. Effect of Particle Size on Life for the Two Systems Ca/CaCr 0_4 and Li-Al/Fe 5_2 in SCT

Figure 13. Effect of Temperature on Life in SCT for Ca/CaCr0 $_4$ and Li-Al/FeS $_2$ Systems

<u>Transient Peak</u>. If the Li-Al/FeS₂ is not excessively thick (greater than 2.0 mm), and if the cell is not thermally pre-heated, a transient peak is observed on activation. The cell reaches about 2.05 volts and then drops rapidly to about 85-90% of its initial value in the first 30 seconds. It is suspected that this unpredictably high peak voltage is due to the presence of free sulphur in the pyrite, leading to the reaction

$$2 \text{ Li} + \text{S} \longrightarrow \text{Li}_2\text{S} \qquad \qquad \text{E}_0 = 2.2 \text{ V}$$

In order to prevent this transient condition, and thereby increase life to 80% of peak voltage, several experiments were conducted with limited success. These consisted of altering the entire cell by electrically shorting or thermally fusing these cells. As indicated in Table 8, physical additions to the cathode were also attempted. However, in all cases, the peak voltage was reduced substantially.

<u>Current Density</u>. Single cell tests were run at various current densities to evaluate the performance of the systems. Typical voltage versus time curves at each current density are given in Figure 14. As can be seen at very low current density (20 mA/cm²), life as long as 100 minutes was observed. Even at the designed current density of 90 mA/cm², over 35 minutes' life was attained.

Figure 15 shows the energy density for the Li-Al/FeS $_2$ system at various current densities compared with that of Ca/CaCrO $_4$, and Figure 16 shows the variation of cell life to 75% peak voltage with current density for the two systems. From the test results, it is apparent that Li-Al/FeS $_2$ system promises to substantially extend the present domain of thermal batteries. The highest energy density of 264.7 was obtained at 150 mA/cm 2 ; however, at 90 and 50 mA/cm 2 , the energy density was not too much different.

This data was collected for cells of constant thickness using an 81 mm depolarizer layer. By increasing the thickness of the depolarizer layer and optimizing the composition, this performance could be improved considerably.

TABLE 5

EFFECT OF VARIOUS TREATMENTS OF FeS₂ CELLS ON TRANSIENT PEAK

TREATMENT TO FeS ₂	PEAK VOLTAGE	LIFE TO 80% P.V.	LIFE TO 75% P.V.
NONE	2.05	1075	1861
PRESHORTING CELL FOR 10 SECONDS	1.72	2058	2160
PREFUSION OF CELLS FOR 45 SECONDS	1.75	2159	2255
ADDITION OF Li-Al (0.5%)	1.73	1447	1531
ADDITION OF K2CrO4	1.69	1550	1647
ADDITION OF CuCl ₂	2.17	43	51

Figure 15. Comparison of Energy Density Vs. Current Density for Li-Al/FeS $_2$ and Ca/CaCr 0_4 Systems in S.C.T.

Figure 16. Comparison of Life Vs. Current Density for the Two Systems in Single Cell Tests

SECTION III

BATTERY TEST DATA FOR LiA1/FeS, SYSTEM

In the preceding section, the superiority of the Li-Al/FeS₂ system was established and single cell test data showed the effects of various parameters on life and performance. It was then necessary to evaluate the potential of the system in batteries. Various experiments performed with Li-Al/FeS₂ batteries are discussed in detail in this section.

As with the ${\rm Ca/CaCr0}_4$ systems, 38 mm and 61 mm 0D cells were used to build batteries. Test results are discussed in detail in Appendix D. For the Li-Al/FeS $_2$ system, battery life was almost 75% of that observed in single cell tests. For the ${\rm Ca/CaCr0}_4$ system, less than 40% of life observed in single cell tests was obtained.

Initially, ten cell batteries employing 38 mm diameter cells were built for direct comparison with ${\rm Ca/CaCr0_A}$ batteries. Preliminary tests indicated that ${\rm Li-Al/FeS_2}$ batteries could provide longer life and higher energy density. Batteries S/N's GW-42 and GW-43 achieved a life of 9.5 minutes and an energy density of 10.6 Whr/kg at 100 mA/cm² current density. Similar ${\rm Ca/CaCr0_4}$ batteries, S/N's WP-043 and WP-044, had an average life of 2.7 minutes and produced 4.3 Whr/kg energy at the temperature extremes (Table 6).

Having established that Li-Al/FeS $_2$ would perform better in batteries, the effort was directed toward building long life, higher energy density batteries. For convenience, an intermediate cell size of 61 mm diameter was used in this phase of experimentation. Approximately 160 batteries were tested, usually in groups of three, consisting of one each at -40° C, $+23^{\circ}$ C, and $+70^{\circ}$ C, to obtain data on batteries that were properly thermally balanced.

The data of Table 7 illustrates the progressive development of batteries tested at 90 mA/cm². The same data is presented graphically in Figure 17. As can be seen, in a period of about eight months, about 250 percent improvement was achieved in life and current density.

Figure 18 shows the battery discharge curve for S/N P-161 reproduced to scale. No electrical noise or cell dropouts occurred with batteries using the Li-Al/FeS₂ system.

Table 8 gives data for two sets of batteries thermally balanced and tested at 90 mA/cm². Observe that life of over 15 minutes is achieved throughout

TABLE 6

COMPARISON OF BATTERY PERFORMANCE FOR Ca/CaCrO₄ SYSTEM AND Li-Al/FeS₂ SYSTEM

BATTERY S/N	TEMP.	PEAK VOLTAGE	LIFE TO 75% P.V.	ENERGY DENSITY	REMARKS
	(°C)	(Volts)	(sec)	(Whr/kg)	
WP-043	-40	25.7	161	4.3	Ca/CaCrO ₄ System
WP-044	+70	25.0	164	4.1	Ca/CaCrO ₄ System
GW-42	+70	20.8	572	10.6	Li-Al/FeS, System
GW-43	-40	21.2	413	8.0	Li-Al/FeS, System

38 mm OD cells No. of cells = 10 Current density = 90 mA/cm²

TABLE 7 PROGRESSIVE DEVELOPMENT OF BATTERY PERFORMANCE AT 90 mA/cm² CURRENT DENSITY

BATTERY S/N	TEMP.	PEAK VOLTAGE	LIFE TO 75% P.V.	LIFE TO 15V	REMARKS
	(°C)	(Volts)	(sec)	(sec)	
P-31	-40	21.0	420	458	CR2 1 - SPET 1 - TYS 12
P-36	+23	21.6	473	617	Change in battery design
P-41	+70	20.5	660	690	Change in thermal balance
P-63	+70	21.2	878	1089	Increased insulation
P-111	+23	20.2	1001	1013	Change of E/D ratio
P-125	+23	20.4	1348	1450	Change of composition
P-131	+23	20.2	1344	1380	Change of composition
P-161	+23	20.8	1411	1540	Change of E/D ratio

System: Li-Al/LiCl-KCl/FeS₂ Ten 61 mm OD cells per stack

Figure 17. Progress Chart for 10 Cell/Stack Batteries for the System Li-Al/FeS $_2$

Figure 18. Voltage Vs. Time Curve for Battery S/N P-161

BATTERY TEST DATA EXHIBITING VARIATION IN PERFORMANCE
AT DIFFERENT AMBIENT TEMPERATURES AT 90 mA/cm² CURRENT DENSITY

TABLE 8

BATTERY S/N	TEMP.	PEAK VOLTAGE	START TIME	LIFE TO 75% P.V.	LIFE TO 15V		ACK DENSITY
310	(°c)	(Volts)	(Sec)	(Sec)	(Sec)	Whr/kg	Whr/in
P-130	-40	20.0	0.45	854	854	33.8	1.48
P-131	+23	20.2	0.42	1344	1380		
P-132	+70	20.4	0.30	982	1018	that i end	c 51.0 J
P-133	-40	20.5	0.49	984	995	33.6	1.47
P-134	+23	20.7	0.44	1252	1336		opsil 2
P-135	+70	21.2	0.46	960	1222	No. 1.	

the ambient temperature range and that start times for these batteries are less than 0.5 seconds.

Batteries were tested at current densities up to 840 mA/cm² in order to evaluate the performance as a function of current density. Tests were conducted with both cell sizes and it was found that battery performance does not deteriorate with current density nor with size. Table 9 gives the results for batteries using 61 mm cells and Table 10 gives results for batteries using 38 mm cells. Figure 19 shows the available capacity density (Coulombs/sq.in.) of the batteries plotted against current density. As can be seen, capacity increases with current density for the Li-Al/FeS₂ system and the energy density increases with current density. This is consistent with the single cell test results.

One 10 cell battery (61 mm OD cells) was also tested with pulses up to 2000 mA/cm 2 applied every 50 seconds. Battery internal resistance was measured at 0.12 ohms (.012 ohms per cell) and was accomplished without loss of total capacity or overall performance. Thus, the great superiority of the Li-Al/FeS $_2$ system over the Ca/CaCrO $_4$ system is clearly illustrated.

Since it was estimated that the final battery would require three stacks in parallel at $90~\text{mA/cm}^2$, several batteries were tested with two or three stacks in parallel. It was found that there was no loss in life, but that the two stack battery was less efficient on the basis of energy density than the three stack battery. The results are given in Table 11.

The resulting effect of using buffer pellets was about 20% improvement in battery performance. Therefore, they were incorporated in all subsequent experimental batteries. Test results are given in Table 12. The units with buffer pellets were, in general, not perfectly thermally balanced for high and low temperature operation, but this is readily correctable.

Because all the above batteries were tested under static conditions, it was decided to evaluate some under vibration, shock, and acceleration. Again, the Li-Al/FeS $_2$ proved superior to the Ca/CaCrO $_4$ system. The results and conditions for these tests in which 38 mm cells were used are shown in Table 13.

Finally, several batteries of improved design were tested to study performance at current densities from 50 to $150~\text{mA/cm}^2$. The results are given in Table 14. From the results it can be observed that at 90 mA/cm² the longest life of 23.5 minutes was obtained by battery S/N P-161. It is thus concluded that a battery using three stacks in parallel is capable of delivering 30

TABLE 9

TEN CELL BATTERY (61 mm OD CELLS) TEST RESULTS
AT DIFFERENT CURRENT DENSITIES

TEMP.	CURRENT DENSITY	PEAK VOLTAGE	START TIME	LIFE TO 75% P.V.	STACK ENERGY DENSITY
(°C)	(ma/cm ²)	(Volts)	(sec)	(sec)	(Whr/kg)
	195	67.6			ESA 8729
+23	90	21.1	0.42	844	20.5
+23	200	20.0	0.43	371	25.6
+23	360	16.9	0.51	198	20.2
+23	500	18.3	0.63	188	27.1
+23	635	17.0	0.54	155	27.7
+23	790	16.9	0.66	120	25.1
	(°C) +23 +23 +23 +23 +23	TEMP. DENSITY (°C) (ma/cm²) +23 90 +23 200 +23 360 +23 500 +23 635	TEMP. DENSITY VOLTAGE (°C) (ma/cm²) (Volts) +23 90 21.1 +23 200 20.0 +23 360 16.9 +23 500 18.3 +23 635 17.0	TEMP. DENSITY VOLTAGE TIME (°C) (ma/cm²) (Volts) (sec) +23 90 21.1 0.42 +23 200 20.0 0.43 +23 360 16.9 0.51 +23 500 18.3 0.63 +23 635 17.0 0.54	TEMP. DENSITY VOLTAGE TIME 75% P.V. (°C) (ma/cm²) (Volts) (sec) (sec) +23 90 21.1 0.42 844 +23 200 20.0 0.43 371 +23 360 16.9 0.51 198 +23 500 18.3 0.63 188 +23 635 17.0 0.54 155

SYSTEM: Li-Al/LiC1-KC1/FeS₂

TABLE 10

TEN CELL BATTERY (38 mm OD CELLS) TEST RESULTS
AT DIFFERENT CURRENT DENSITIES

TEMP.	CURRENT DENSITY	PEAK VOLTAGE	START TIME	LIFE TO 75% P.V.	STACK ENERGY DENSITY
(°C)	(ma/cm ²)	(Volts)	(sec)	(sec)	(Whr/kg)
+23	95	21.2	0.53	722	22.4
+23	210	20.7	0.62	340	23.1
+23	420	19.9	0.63	234	30.3
+23	540	19.6	0.67	188	30.6
+23	720	19.3	0.63	145	30.8
+23	840	18.2	0.66	114	26.8
	(°C) +23 +23 +23 +23 +23	TEMP. DENSITY (°C) (ma/cm²) +23 95 +23 210 +23 420 +23 540 +23 720	TEMP. DENSITY VOLTAGE (°C) (ma/cm²) (Volts) +23 95 21.2 +23 210 20.7 +23 420 19.9 +23 540 19.6 +23 720 19.3	TEMP. DENSITY VOLTAGE TIME (°C) (ma/cm²) (Volts) (sec) +23 95 21.2 0.53 +23 210 20.7 0.62 +23 420 19.9 0.63 +23 540 19.6 0.67 +23 720 19.3 0.63	TEMP. DENSITY VOLTAGE TIME 75% P.V. (°C) (ma/cm²) (Volts) (sec) (sec) +23 95 21.2 0.53 722 +23 210 20.7 0.62 340 +23 420 19.9 0.63 234 +23 540 19.6 0.67 188 +23 720 19.3 0.63 145

SYSTEM: Li-Al/LiCl-KCl/FeS2

Figure 19. Effect of Current Density on Capacity Density in Battery Tests

TABLE 11

BATTERY TEST DATA USING MULTIPLE STACKS

AT 90 mA/cm² CURRENT DENSITY

BATTERY S/N	TEMP.	PEAK VOLTAGE	START TIME	LIFE TO 75% P.V.	LIFE TO 15V	STACK ENERGY DENSITY	REMARKS
(+1)	(°c)	(Volts)	(sec)	(sec)	(sec)	(Whr/kg)	
P-113	-40	19.2	0.45	881	850		200
P-114	+23	19.5	0.37	1215	1166	23.1	One
P-115	+70	19.9	0.28	1195	1170	23.6	Stack
P-130	-40	20.0	0.45	854	854	21.0	Two
P-131	+23	20.2	0.42	1344	1380	33.8	Stacks in
P-132	+70	20.4	0.30	982	1018	25.1	Parallel
P-136	-40	20.2	0.42	1290	1320	33.8	Three
P-137	+23	20.9	0.38	1168	1263	32.7	Stacks in
P-138	+70	20.8	0.31	887	951	24.6	Parallel

SYSTEM: Li-Al/LiCl-KCl/FeS2

Ten 61 mm OD cells per stack

TABLE 12

EFFECT OF USING BUFFER PELLETS IN THERMAL BATTERIES

AT 90 mA/cm² CURRENT DENSITY

BATTERY S/N	TEMP.	PEAK VOLTAGE	LIFE TO 75% P.V.	LIFE TO	STACK ENERGY DENSITY	REMARKS
	(°c)	(Volts)	(sec)	(sec)	(Whr/kg)	
P-110	-40	20.0	723	724	985	No buffer pellets
P-111	+23	20.2	1001	1013	19.8	No buffer pellets
P-112	+70	20.2	984	1009	ne Gyrthaetha	No buffer pellets
P-113	-40	19.2	881	850		Buffer pellets
P-114	+23	19.5	1215	1161	23.1	Buffer pellets
P-115	+70	19.9	1195	1170	23.6	Buffer pellets

System: Li-A1/LiC1-KC1/FeS₂

Ten 61 mm OD cells

TABLE 13

THERMAL BATTERY TEST DATA UNDER DYNAMIC CONDITIONS
38 mm CELL DIAMETER

SERTAL NUMBER	CURRENT DENSITY	PEAK VOLTAGE	RISE TIME	LIFE TO 75% PEAK VOLTAGE
	(mA/cm²)	(Volts)	(msec)	(sec)
P-146	230	20.04	580	302
	(30 G shock for 50 Method 516.2)) msec every	45 sec: Per l	MIL-STD-810C,
P-147	230	20.00	610	301
	(30 G Longitudina STD-810C, Metho		n; continuous	: Per MIL-
P-148	230	20.80	120	316
	(Longitudinal Vibr per MIL-STD-810 Curve D of 514.	C, Method 51	4.2, Procedure	
P-150	135	20.10	640	520
	Lateral accelerati	the contract of the contract o		
Teld some	and long as a long	0 - 60 $60 - 17$		
		120 - 18		
	21 (50 d) on	180 - 21	10 30 (increase of 10 G every 30 seconds)

BATTERY CHARACTERISTICS:

Number of cells

Cell area
Battery diameter
Battery height
Battery weight

420 grams

TEST CONDITION: Dynamic (As specified)

TEST TEMPERATURE: +23°C

SYSTEM: Li-A1/LiC1-KC1/FeS,

BATTERY TEST RESULTS AT VARIOUS CURRENT DENSITIES

TEN 61 mm OD CELLS/STACK

BATTERY S/N	CURRENT DENSITY	PEAK VOLTAGE	LIFE TO 75% P.V.	LIFE TO 15V	STACK ENERGY DENSITY	REMARKS
	(mA/cm ²)	(Volts)	(sec)	(sec)	(Whr/kg)	
P-159*	90	21.0	1177	1305	24.4	Increased anode
P-161*	90	20.8	1411	1540	24.9	Increased anode and cathode
P-163*	150	21.0	797	1082	21.2	Increased cathode
	150	01.0				
P-154	150	21.0	675	830	38.4	Standard cells,
P-155	135	21.0	735	871	37.3	2 stacks in
P-156	50	21.9	1191	1517	24.6	parallel.

SYSTEM: Li-Al/LiC1-KC1/FeS,

amperes for at least 23.5 minutes (78% of desired life). However, if the battery were designed for operation at 150 mA/cm 2 , only two stacks would be required and its total volume would be significantly reduced. Based on the longest life obtained at 150 mA/cm 2 (S/N P-163, life to 75% peak voltage is 13.3 minutes), the final battery is projected to operate longer than 15 minutes at -40° C and $+70^{\circ}$ C and over 18 minutes at $+23^{\circ}$ C. The final volume is also expected to be increased 40% from the goal value of 144 cubic inches.

SECTION IV

CONCLUSION

In June 1976, KDI SCORE was awarded a program to develop a 28 volt, 30 ampere, 30 minute thermal battery in a 144 cubic inch envelope and weighing 17 pounds. This was considered a very ambitious goal requiring a significant advance in the state-of-the-art of the existing systems.

Preliminary calculations suggested that the Ca/CaCrO_4 system utilizing three paralleled stacks of 12 cells each, operating at 90 mA/cm 2 over a 120 mm 0D cell, could provide the necessary current. The problem was to determine the optimum conditions for the system or to find a superior alternative system.

An exhaustive study of the Ca/LiCl-KCl/CaCrO₄ system was conducted and, as a result, sufficient test data are presented in Appendix D for determining composition, thickness, density, and configuration of the required pellet. The study also included investigation of the physical, chemical, and thermal properties of the components of the system. Based on the battery results, it can be observed that at 90 mA/cm², the longest life attained was about 5 minutes and that approximately 10 minutes could be projected. Longer life is, however, possible at a current density of 15 mA/cm². At 50 mA/cm², longest life attained in a battery was about 10 minutes. However, one might obtain 15 minutes' life under special conditions. Thus, the best battery performance projected with the Ca/CaCrO₄ system is 28 volts, 15 amperes, for 15 minutes, operating at 50 mA/cm².

This led to the investigation of a number of new electrochemical systems (Section II), as a result of which Li-Al/FeS $_2$ was found to operate in single cell tests at 90 mA/cm 2 for over 35 minutes while providing an energy density of 248.9 Whr/kg.

In a rather limited time, KDI SCORE advanced from single cell tests to battery development using the Li-Al/LiCl-KCl/FeS $_2$ system and successfully tested batteries over the temperature range of -40° C to $+70^{\circ}$ C. Life of 24 minutes at 90 mA/cm 2 (80% of the projected goal) and energy density of 38.4 Whr/kg (78% of the projected goal) were achieved.

Following are the advantages of the Li-Al/LiCl-KCl/FeS $_2$ system over the Ca/LiCl-KCl/CaCrO $_{\!\!A}$ system:

- 1) It has an anode which is solid at operating temperature, thereby precluding failures attributable to the liquid metal alloy.
- 2) It operates over a 140 to $150^{\circ}\mathrm{C}$ temperature range without significant loss of performance.
- 3) It exhibits very low electrical noise.
- 4) It provides three to four times greater energy densities up to 1000 mA/cm^2 .
- 5) Batteries using it exhibit very predictable performance. Up to 75% of the life observed in single cell tests has been obtained in the batteries, whereas less than 50% life was possible with the $Ca/CaCrO_4$ system.
- 6) It is capable of providing longer battery lives (over 20 minutes) at higher current densities.
- 7) Batteries using it will be less costly and more reliable.
- 8) It can withstand more severe dynamic conditions.
- 9) It exhibits very low internal resistance and is therefore capable of sustaining very high current pulses (up to 2000 mA/cm²).

The relatively low cell potential of the Li-Al/LiCl-KCl/FeS $_2$ system is likely to restrict its use in low current, short life applications in which battery length is more critical than total volume since more cells are required for a given battery voltage than with Ca/LiCl-KCl/CaCrO $_4$. However, the difference in the cell potentials of the two systems decreases with increasing current density because of the much lower internal resistance of the Li-Al/LiCl-KCl/FeS $_2$ cell. Therefore, at high current densities there is little difference in battery lengths required for the two systems and the Li-Al/LiCl-KCl/FeS $_2$ battery will be smaller in diameter. In many cases a single Li-Al/LiCl-KCl/CaCrO $_4$ stack may be used instead of parallel Ca/LiCl-KCl/CaCrO $_4$ stacks, thus providing a battery of reduced length.

Table 15 shows some of the battery results which are discussed in detail in Section III. A 30 ampere battery operating at 90 mA/cm 2 for over 20 minutes over the entire temperature range is believed feasible. The volume of such a battery would exceed the desired goal. However, at 150 mA/cm 2 , only two stacks in parallel are required and over 15 minutes life could be obtained. The battery volume goal would be exceeded by about 35%.

Following are the areas recommended for further investigation for achievement of the final goal:

- 1) Elimination of the initial transient voltage peak to provide a linear discharge curve, in order to increase life.
- 2) Use of other anodes to obtain higher peak voltages.
- 3) Use of all Li+ containing electrolytes as against LiCl-KCl.
- 4) Better definition of the reaction mechanism in the battery at different current densities.

TABLE 15

COMPARISON OF BEST BATTERY DATA WITH GOAL

BATTERY S/N	CURRENT DENSITY	PEAK VOLTAGE	LIFE TO 75% P.V.	LIFE TO 15V	STACK ENERGY DENSITY
	(mA/cm ²)	(Volts)	(min)	(min)	(Whr/kg)
GOAL		32	30	-	54.0
P-131	90	30.2	22.3	24.0	33.8
P-161	90	20.8	23.5	25.6	24.9
P-163	150	21.0	13.3	18.0	21.2

System: Li-Al/LiCl-KCl/FeS₂

APPENDIX A

TECHNICAL PLAN

A comprehensive literature survey was conducted at the start of the program. It indicated that a wide variety of materials was used in many different ways; e.g., insulation, composition of powder mixes, electrolytes, and depolarizers. Information previously considered to be of little scientific value was found to be highly significant in conjunction with current technology, materials, processing, and production methods.

To supplement the study of the chemical components of the electrochemical system, the following modes of testing were used.

Laboratory Testing (Physical and Chemical Analysis). Powder mixes were analyzed qualitatively and quantitatively for composition using volumetric titrations and atomic absorption, respectively. A Jarrell-Ash spectrophotometer, JA 82-720, was used. Particle size was measured using a Fisher subsieve sizer and Fisher sieves to study the relationship between particle size and battery performance.

Thermal Analysis. The chemical mixes and their components were analyzed for their thermal behaviors using a differential scanning calorimeter, Perkin-Elmer DSC-2. The purpose of this technique is to study the thermal requirements of the chemical mixes and the physicochemical changes taking place during their heating and cooling. The calorific values of the pyrotechnic mixes were evaluated using a Parr oxygen bomb calorimeter.

Single Cell Testing. Each cell was constructed by placing a pellet between the anode and the cathode current collector. The systems were evaluated by means of an instrumented single cell tester using heated boron nitride platens for cell activation. The tester was similar to that described in Sandia Laboratories Report SLA73-0896. Platen temperatures were controlled to within $\pm 10^{\circ}$ C.

A test cell was placed between the heated platens at constant temperature and pressure, and leads from the anode and cathode collectors were then connected to the desired load. Data was recorded for voltage on load, current, pressure, and temperature, using a Hewlett-Packard recording system (HP Model 7418A with HP8803A amplifiers). Life was measured at the time required for the load voltage to drop by 25% of its peak value. Temperature

and pressure for each system were optimized and the data reported herein are for current densities of 50 mA/cm^2 , 90 mA/cm^2 , and 150 mA/cm^2 .

Small Battery Testing. The systems found most promising in single cell tests were further evaluated in ten 10 cell batteries. Two cell sizes (38 mm and 61 mm) were evaluated. These batteries were tested over the temperature range of -40° C to $+71^{\circ}$ C. Life was measured for specific voltage drops at current densities corresponding to those of the single cell tests. This was done to provide comparative data for single cells and batteries.

<u>Final Battery Testing</u>. Feasibility studies were conducted to establish a preliminary baseline design. Any systems which exhibited the required performance in both single cell and small battery tests, were evaluated in a final battery configuration using 110 mm OD cells.

In order to systematically approach the problems involved and to establish relationships between test results and the required battery design, a prioritized list of areas of investigation was developed as follows:

Physicochemical Studies
Electrochemical Studies
Electrical and Thermal Techniques
Fusible Heat Reservoirs
Pyrotechnic Studies
Advanced Insulation
Battery Geometry
Case Material
New Electrochemical Studies

Physicochemical Studies. This area was divided into two categories:

- 1) Chemical studies
- 2) Thermal Studies

The individual chemicals, their mixtures, and other battery components were evaluated for their chemical and thermal characteristics. This helped in standardization of materials and establishment of proper quality control procedures. The studies made under this title are further discussed in detail in Appendix C.

 $\underline{\text{Electrochemical studies}}. \hspace{0.2cm} \text{The major portion of the program was concencentrated in this area.} \hspace{0.2cm} \text{Most of the work was with the Ca/LiCl-KCl/CaCrO}_{4}$

system. Twenty-five percent of the effort was devoted to new electrochemical systems. These studies are discussed in detail in Appendix D of this report.

<u>Electrical and Thermal Techniques</u>. Feasibility studies were made of these techniques and these techniques are discussed in Appendix E of this report.

<u>Fusible Heat Reservoirs</u>. Eutectic buffer pellets of Li_2SO_4 -NaCl and various non-eutectic compositions were evaluated along with other heat sinks. Ultimately, a heat reservoir was selected which best assured proper battery performance.

<u>Pyrotechnic Studies</u>. A comparison of the zirconium-barium chromate heat paper system with the iron-potassium perchlorate heat pellet system was conducted.

Advanced Insulation. A survey of most of the appropriate high temperature insulating materials was conducted and the Min-K Type TE-1400 produced by Johns Manville was found to be the best candidate. Its thermal conductivity at 1000° F is 0.27 BTU-in/ $^{\circ}$ C/ft²/hr.

<u>Battery Geometry</u>. A theoretical study for optimizing battery geometry was devised to minimize thermal loss as the limiting factor for battery life. This study was to:

- 1) Minimize battery surface area to volume ratio,
- 2) Maximize active cell surface area, and
- Minimize cell surface area cooled per unit time.

However, the study was not completed due to lack of funds and time.

<u>Case Material</u>. An investigation of aluminum, titanium, and other metals and alloys for impact on weight and energy density was planned; but, due to lack of funds and time, these studies were dropped.

New Electrochemical Studies. In addition to study of the Ca/KCl-LiCl/CaCrO $_4$ system, about 25% of the time was to be spent in evaluating other electrochemical systems. However, it was determined that the desired goals could not be attained with the Ca/CaCrO $_4$ system, and more time was spent on other systems.

A study was conducted to evaluate the feasibility of aluminum, lithium, calcium, or their alloys, as the system anode materials:

Ca, Al, Li, alloys/LiCl-KCl/CaCrO4

A study was also conducted to evaluate the feasibility of replacing calcium chromate with other prospective cathodic materials:

Calcium		Metal Oxides
Aluminum	LiC1-KC1	Metal Sulfides
Lithium		Other Chromates
or Alloys		they send had been unable

APPENDIX B

ELECTROCHEMICAL MIXES

The following tables give the compositions of the powder mixes (and the combinations thereof) used for evaluation in single cell tests and batteries.

The nomenclatures which are used are:

WPH - Homogeneous Powder Mixes

WPE - Electrolyte Powder Mixes

WPD - Depolarizer Powder Mixes

WPN - New Depolarizer Powder Mixes

L - Anode Powder Mixes

TABLE B-1

HOMOGENEOUS OWDER MIXES (WPH SERIES)

SINGLE LAYER SYSTEMS

POWDER	%SALT	%CaCrO4	%K ₂ CrO ₄	% OTHER	% OTHER	% OTHER	CAB-O-SIL%	NOTES
WPH-1	56.00	37.00		gare yas	2 646 850	a syfety	7.0	(1)
WPH-2	58.00	32.00					10.0	(2)
WPH-3	55.00	28.80	5.0	3.2 PbCr0 ₄	raali - I		8.0	
WPH-4	52.00	37.00	na FR in ab Tabled F	just mest m teetre four	4.0 Ca(OH) ₂		7.0	
WPH-5	53.00	28.00	4.5	3.0 PbCr0 ₄	0566/ - 3	4.5 CrO ₃	7.0	
WPH-6	52.00	37.00			4.0 Ca(OH) ₂		7.0	(3)
WPH-7	56.40	31.10					12.5	
WPH-8	58.00	35.00					7.0	
WPH-9	59.60	36.40					4.0	
WPH-10	54.0	36.00					10.0	
WPH-11	52.50	35.00					12.5	
WPH-12	55.78	34.22					10.0	
WPH-13	54.23	33.37	ø				12.5	
WPH-14	57.60	38.40	9				4.0	
WPH-15	55.40	30.60					14.0	
WPH-16	55.91	30.84					13.25	
WPH-17	59.80	33.20					7.0	
WPH-18	61.70	34.30					4.0	

- (1) SANDIA Formulation
- (2) SCORE Formulation
- (3) Ca(OH)₂ fused w/salt

TABLE B-2

ELECTROLYTE MIXES (WPE SERIES)

TWO LAYER SYSTEMS

POWDER	%SALT	%CaCrO4	%K ₂ CrO4	% OTHER	% OTHER	% OTHER	CAB-O-SIL%	NOTES
WPE-1	76.0	12.0					12.0	(1)
WPE-2	77.0		13.0				10.0	
WPE-3	74.4		15.6			1.00	10.0	
WPE-4	72.0	0.8	14.5		5.5 Ca(OH) ₂	1000	6.3	5-422
WPE-5	74.4			0 (28)	15.6 Ca(OH) ₂	3,30	10.0	
WPE-6	74.4			3	15.6 Li ₂ CrO ₄		10.0	9-994
WPE-7	70.7		14.8	i i i e		5 Fe	9.5	1 - 1000
WPE-8	55.1	30.4	100			5 Fe	9.5	
WPE-9	85.0						15.0	
WPE-10	85.0			15Y ₂ O ₃		0.83		C-121
WPE-11	80.0			20Y ₂ O ₃				
WPE-12			2.0	9.6 LiF	22.03 LiCl	68.4 LiBr		
WPE-13			56.7	43.89 LiOH	56.2 LiCl			
WPE-14			at the	85 WPE-13			15.0	
WPE-15				60 WPE-13	40 Y ₂ O ₃			
WPE-16	49.0			41 LiCl			10.0	
WPE-17				11.5 KC1	43.5 LiOH			
WPE-18				85 WPE-12			15.0	
WPE-19				85 WPE-17			15.0	
WPE-20	60.0			4	40 Y ₂ O ₃			

⁽¹⁾ SCORE Formulation

TABLE B-3
DEPOLARIZER MIXES (WPD SERIES)
TWO LAYER SYSTEMS

POWDER	%SALT	%CaCrO4	%K ₂ CrO ₄	% OTHER	% OTHER	% OTHER	CAB-O-SIL%	NOTES
WPD-1	25.0	70.0					5.0	(1)
WPD-2	38.7	50.0	6.5				4.8	
WPD-3	23.5	66.7	7.8				2.0	
WPD-4	22.5	64.5	7.0			5.0 CrO ₃	1.0	
WPD-5	23.5	54.5		20 Li ₂ CrO ₄			2.0	
WPD-6	35 Hz			95 WPD-3	5.0 C (Graphite)			3-194
WPD-7				95 WPD-3	5.0 Cu		1,450	
WPD-8				95 WPD-3	5.0 Ni	1.00		5 6 - 38/6
WPD-9	23.0	53.0		20 ZnCrO ₄			4.0	
WPD-10	55.1	30.4			5.0 Cu		9.5	
WPD-11	55.1	30.4			5.0 C		9.5	
WPD-12	55.1	30.4			5.0 Ni		9.5	4 = 274
WPD-13	22.3	63.4	7.4	180	5.0 Fe		1.9	
WPD-14	55.1	30.4			5.0 Fe		9.5	
WPD-15				95 WPH-2	5.0 Cu			
WPD-16	23.0	53.0		20 Cu0			4.0) e kon
7	9.41							

⁽¹⁾ SCORE Formulation

TABLE B-4

ANODE MIXES (L SERIES)

POWDER	% SALT	% K2CrO4	% OTHER	% OTHER	% CAB-O-SIL	NOTES
L-1	30		70 Li-Al (60 a/o Li)	(3) (3)	1 5 1	1498
L-2	50		50 Li-Al (60 a/o Li)	6.81	1,61	
L-3	10		90 Li-Al (60 a/o Li)	\$ UX	1 1 1 1 1 1	
L-4	30		70 Li-Al (45 a/o Li)	700		
L-6	10		90 Li-Al (45 a/o Li)			115
L-7	30		70 Li-Si (58 w/o Si)			77 No. 7
L-8	10		90 Li-Si (58 w/o Si)		1 05 128	
L-10	8.5		90 Li-A1 (45 a/o Li)	6,63	1.5	1
L-11			50 L-6	50 L-3	100	100
L-12	10		90 Li-Al (55 a/o Li)	设度	80 198	
L-13			80 Li-Al (45 a/o Li)	20 C		1000
L-14	8.1		91.9 L-13		3 - 25 460	
		1,002	R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 22		100
		£1.363	2 3 31 31			1994
				97.97	i a ta	
				7.40		
					F 05 30	100
					1 2 2 3 2 3 2 3	
					1948 198	-148
				100	1 000000	
				0.30		100.1
	18		F	N Del	1 10 M	
					1 25 1 25	1
				100	9 63 7 59	
					10.00	PHALL

a/o = Atomic percent
w/o = Weight percent

TABLE B-5

NEW DEPOLARIZER MIXES (WPN SERIES)
FOR TWO LAYER SYSTEMS

POWDER	% SALT	% K2 CrO4	% OTHER	% OTHER	% OTHER	% CAB-O-SIL	NOTES
WPN-1	25		73 ZnCr0 ₄			2	
WPN-2	23		75 ZnCr0 ₄			2	
WPN-3	23		70 Ni0			7	
WPN-4	23		70 Cu0			7	
WPN-5	30		63 NiO(black)			7	
WPN-6	30		63 Cu0			7	
WPN-7	30		59.85 NiO	3.15 C		7	
WPN-8	30		59.85 CuO	3.15 C		7	
WPN-9	44		54 WO ₃			2	
WPN-10	35		63 WO ₃		A A	2	
WPN-11	35		63 U ₂ 0 ₅			2	
WPN-12	25		75 FeS ₂		D.		
WPN-13			26 NaAlCl4	16 C	58 MoC1 ₅		
WPN-14			26 NaA1C14	16 C	58 CuCl ₂		
WPN-15			26 NaA1C14	16 C	58 FeCl ₃		
WPN-16	25		75 Fe ₂ 0 ₃				7
WPN-17	15		85 FeS ₂				
WPN-18	40		60 FeS ₂				
WPN-19	23.4		58 CuCl ₂	16 C		2.6	
WPN-20	23.4		58 FeC1 ₃	16 C		2.6	
WPN-21	60		40 Fe ₂ 0 ₃				
WPN-22	40		56 NiO			4	
WPN-23	40		56 CuO			4	
WPN-24	50		48 WO ₃			2	
WPN-26	45		55 Fe ₂ 0 ₃				
WPN-27	40		60 Cu ₂ S				
WPN-28	34		66 Cu ₂ S		Charles and the		

TABLE B-5

NEW DEPOLARIZER MIXES (WPN SERIES)
FOR TWO LAYER SYSTEMS

POWDER	% SALT	% K2 CrO4	% OTHER	% OTHER	% OTHER	% CAB-O-SIL	NOTES
WPN-30	40		60 MnO ₃				
WPN-31	16		64 FeS		20 WPE-16	100	
WPN-33			66 FeS	2	34 WPE-12	1 (%)	
WPN-34	34		66 FeS		93.0	9 40	Belli de
WPN-35	55		45 FeS	3	A 0	1 4 15	
WPN-36	26		60 FeS ₂	10.	14 Lici	# #3 13	
WPN-37	26		60 FeS		14 KC1	1 0 14	
WPN-38		1 - 1 - 62	60 FeS ₂	2	40 WPE-13		
WPN-39	34.4		60 FeS		5.6 LiC1		l estanti
WPN-40	19.3		60 FeS		20.7 Lic1		
WPN-41	34		59.4 FeS	6.6 C	1 2 00 5 00		
WPN-42	34	1,690	59.4 FeS ₂		6.6 Cu ₂ S		150
WPN-43	34		59.4 FeS		6.6 CoS ₂		
WPN-44			43.6 Cuci,	18.2 C	38.2 NaA1C1		
WPN-45	33.3		64.7 FeS2	2 5	• "		
WPN-46	39.2		58.8 FeS ₂	2 S			
WPN-47	32.3		62.7 FeS ₂	5 S			
WPN-48	38		57 FeS	5 S			
WPN-49			2 LiA1 (60 a/o Li)				
WPN-50			60 FeS		40 WPE-9		
WPN-52	39.2		58.8 FeS,	2 Fe			
WPN-53	39.8		59.7 FeS ₂		0.5 LiA1 (60 a/o Li)		
WPN-54	40		60 FeS,*				
WPN-55	40		30 FeS ₂		30 FeS ₂ *		
WPN-56	40	5	55 FeS ₂				
WPN-57	40	2	58 FeS ₂				

*New source of FeS2

TABLE B-5

NEW DEPOLARIZER MIXES (WPN SERIES)
FOR TWO LAYER SYSTEMS

POWDER	% SALT	% K2CrO4	% OTHER	% OTHER	% OTHER	% CAB-O-SIL	NOTES
WPN-60	40	i ne au	54 FeS ₂		6 CuCl ₂		C SAGES
WPN-61	40		54 FeS ₂		6 FeC1 ₂		
WPN-62	40		6 Fe ₂ 0 ₃		54 FeS ₂		
WPN-63	40		6 MnO ₂		54 FeS ₂		
WPN-64	40.	1.55	30 Fe ₂ 0 ₃		30 FeS ₂	10 16 43	
WPN-65	40		60 FeS		2		
WPN-66	40	100	30 FeS ₂		30 FeS		
WPN-67	39.6	1	59.4 FeS ₂			The As I S	
WPN-68	38		57 FeS ₂		5 Fe		
WPN-69	39.8	0.5	59.7 FeS,				
WPN-70	40		45 FeS ₂	6.3 CoS	8.7 CoS ₂		
WPN-71	50		50 FeS				
WPN-72	30		70 FeS				
0						3 / 10 / 10	
	-	10					
					6907		
					(S)		
				1 391		156 5	
4		A Charle		1 8 2.3	1.88	1 2 62 16	
	9	Title over					
						70 - 11	
				- N			
						P-18	
9	4	¥\$					

APPENDIX C

PHYSICOCHEMICAL STUDIES

Physicochemical studies included physical, chemical, and thermal analysis of individual powders and mixtures. These studies were made in order to standardize materials and establish quality control.

Physical analysis of incoming raw materials was used to determine the particle size of these materials. It was especially important to monitor and subsequently control the particle size of ${\rm CaCrO_4}$ before and after mixing. It was found, for example, that after mixing, the particle size of ${\rm CaCrO_4}$ in the mix was not randomly distributed.

Chemical analysis monitored the purity of incoming raw materials. Electrolyte materials were reagent grade but were chemically analyzed. LiCl-KCl was analyzed after each compound was dried to remove water, mixed in the desired weight ratio, fused, and ground to the proper size.

Calcium, magnesium, and lithium anode materials were obtained in sheet form, 10 mil, 17 mil, and 10 mil, respectively. They were used as received after they were cleaned of the oil in which they were stored for shipment. The alloys of lithium-aluminum and lithium-silicon were received in granular form sealed under argon and were used as received.

Cathode materials were reagent grade chemicals and were also used as received. Where these materials contained water of hydration, it was adequate to remove this water by drying at a temperature in excess of 150° C.

CHEMICAL STUDIES

These studies were undertaken to reinforce the thermographic data and electrochemical studies. The components of the electrochemical cell -- calcium, eutectic KCl-LiCl, and $CaCrO_{\Lambda}$ -- were studied primarily for purity.

<u>Calcium.</u> Calcium metal "as received" was observed to be covered with a film ranging from light grey to dark brown in color. The edges of freshly cut calcium were silvery grey. To find the composition of the film, it was scraped off and analyzed for the calcium content. The following observations were made:

Ca % by volumetric analysis 47.17
Ca % by atomic absorption 57.60

If the film were assumed to be a mixture of CaO and ${\rm Ca_3N_2}$, this analysis could be readily explained. Conclusive proof for the presence of nitride has not yet been established.

Calcium Chromate. Calcium chromate, depending on the method of manufacture, contained one or more of the following impurities: CaCO_3 , Ca(OH)_2 , CrO_3 , Cr_2O_3 , and H_2O . Table C-1 shows the wide variation observed in "as received" material. Incoming CaCrO_4 was analyzed for chromium and calcium content using iodometry and atomic absorption. Furthermore, Cr_2O_3 , CrO_3 , and H_2CrO_4 were added as impurities to calcium chromate in order to study their effect on chemical analysis and thermal behavior. Table C-2 indicates the results of chemical analysis. In general, it can be concluded that the addition of Cr_2O_3 resulted in the lowering of the calcium chromate purity and increased the concentration of the product of reaction in cells. The addition of CrO_3 , however, resulted in increased purity since it increased the Cr(VI) without drastically affecting the thermal behavior observed by means of differential scanning calorimetry.

<u>Eutectic Mixture of KC1-LiC1</u>. The eutectic salt mixture contains 44.5 weight-percent KC1 and 55.5 weight-percent LiC1. The mixture was analyzed for chlorine content by volumetric analysis and, assuming 100% purity of LiC1-KC1, the composition was determined by atomic absorption. The composition of the salt mixture was thus controlled.

THERMAL STUDIES

Thermal studies were conducted using a differential scanning calorimeter (Perkin-Elmer DSC-2) to record the enthalpy change involved in heating and cooling a substance between 40° C and 720° C. These studies were made to determine the effects of heating different components and mixtures and to observe phase changes or reactions involved at elevated temperatures.

<u>Calcium.</u> Various samples of available calcium were scanned for their thermal behavior and the following conclusions were drawn:

An endotherm was observed on the heating curve of a freshly cut calcium sample at temperatures ranging between 320° and 340° C. This endotherm was attributed to an allotropic phase change and its temperature depended upon the purity of the sample. This agreed with observations stated in the literature.

TABLE C-1
VARIATIONS IN AS-RECEIVED CALCIUM CHROMATE

	PERCENTA	GE CALCIUM CH	ROMATE	
LOT NO.	IODOME TRY	ATOMIC A	BSORPTION	DSC
(0) 113	Cr (VI)	Ca	Cr	FIG. NO.
8202-2	95.1	94.6	92.6	C 1
8202-11	98.9	93.0	97.6	C 2
8058	96.0	97.5	93.2	C 3
7619	87.0	109.1	83.5	C 4
G-219	98.3	- 1 m		C 5
G-301	99.1	-	99.2	C 6
MP	84.6	102.0	86.4	C 7

TABLE C-2

EFFECT OF IMPURITIES ON CALCIUM CHROMATE (LOT 8202-2)

	PERCENTAG	GE CALCIUM	CHROMATE	DSC
	IODOMETRY	ATOMIC	ABSORPTION	FIG. NO.
	Cr (VI)	Ca	Cr	
1. As Received	95.1	94.6	92.6	C 1
2. Add 2 Wt% CrO ₃	99.7	89.8	96.7	C 8
3. Add 2 Wt% Cr ₂ 0 ₃	92.7	91.0	93.3	C 9
4. Add H ₂ CrO ₄	95.7	93.8	93.7	C 10

Figure C-1. Heating Curve for $CaCrO_4$ - Lot 8202-2

Figure C-2. Heating Curve for $CaCrO_4$ - Lot 8202-11

Figure C-3. Heating Curve for $CaCrO_4$ - Lot 8058

Figure C-4. Heating Curve for $CaCrO_4$ - Lot 7619

Figure C-5. Heating Curve for $CaCrO_4$ - Lot G-219

Figure C-6. Heating Curve for $CaCrO_4$ - Lot G-301

Figure C-7. Heating Curve for $CaCrO_4$ - Lot MP

Figure C-8. Heating Curve for $CaCrO_4$ - Lot 8202-2

Figure C-9. Heating Curve for $CaCrO_4$ - Lot 8202-2

Figure C-10. Heating Curve for $CaCrO_4$ - Lot 8202-2

Depending on storage conditions and duration, the calcium had a coating which was metallic grey to dark brown. These samples exhibited an exothermic change at about 300°C . This indicated the presence of $\text{Ca}(\text{OH})_2$. In or r to study the nature of this film it was scraped off the calcium surface. Thermal analysis of the particles revealed a highly exothermic phenomena at about 200°C indicating formation of Ca $(\text{OH})_2$ from CaO. The endotherm at 340°C was due to both allotropic phase change of calcium and dissociation of $\text{Ca}(\text{OH})_2$. Upon reheating this sample, no further changes were observed.

When a sample of calcium was placed in a humid atmosphere, a light grey film formed on its surface. This was assumed to be Ca(OH)_2 . Heating a sample of this material showed the absence of both the exothermic peak and the endotherm at 340°C

By the methods described, it is possible to identify certain types of contamination on calcium. It has been confirmed at KDI SCORE that battery noise (due to CaLi₂ bridging) may be prevented by exposing the calcium edges to moisture. This study helped to interpret and standardize the process.

<u>Calcium Chromate</u>. Thermal studies of $CaCrO_4$ revealed some startling results. As indicated in Table C-3, heating $CaCrO_4$ increased its hexavalent chromium content by approximately 2%. Initially, this is due to loss of moisture and later to dissociation of $CaCO_3$ and $Ca(OH)_2$. However, at higher temperatures, the $CaCrO_3$ itself partially decomposed. The thermogram indicates that the heat requirement for this sample is reduced by almost 50% compared with that for untreated $CaCrO_4$. This would have considerable effect on the thermal requirement for batteries where the aim is to minimize caloric input.

<u>Heat Paper</u>. Heat paper is composed of a mixture of Zr (20-30%) and $BaCrO_4$ blended with fibers to control the calorific value and ignition sensitivity. The thermal study of the individual components led to the following observations:

- 1) The glass fibers required a preheat treatment to about 400°C to remove volatile impurities.
- 2) The $Zr-BaCr0_4$ mixture became inactive if heated to $340^{\circ}C$ where Zr was converted to $Zr0_2$. This was indicated by an exotherm on the thermogram.
- Slurry samples from various batches exhibited differences on thermograms indicating composition variations among batches.

TABLE C-3

EFFECT OF HEAT ON CaCrO₄ FROM LOT NO. 8202-2

Tel Control	TEMP.	TIME	IODOMETRY	ATOMIC A		DSC
	°F	(HRS.)	%	Ca%	Cr%	FIG.NO.
1) Uncalcined	arie d ir or	-	94.96	94.6	92.6	
2) Calcined	450	3	95.4	95.2	93.6	C-11
3) Calcined	450	16	96.73	94.88	93.55	700.71
4) Calcined	753	4	97.98	96.66	94.7	C-12
5) Calcined	753	6	97.90	96.0	94.3	100
6) Calcined	753	16	97.97	94.88	93.55	a stanton.
7) Calcined	1000	0.5	97.43	97.13	94.36	000, 04
8) Calcined	1400	0.5	97.26	98.48	94.04	C-13
9) Calcined	1800	0.5	91.22	97.04	92.78	distant.

Figure C-11. Heating Curve for $CaCrO_4$ - Lot 8202-2

Figure C-12. Heating Curve for $CaCrO_4$ - Lot 8202-2

Figure C-13. Heating Curve for $CaCrO_4$ - Lot 8202-2

Eutectic Mixture of KCl-LiCl (44.5:55.5). Thermal studies of eutectic and non-eutectic salt mixtures clearly indicated a means of controlling their compositions. Cooling curves of the salt mixtures clearly indicated the two solidus temperatures in eutectic mixtures and also confirmed the composition of the eutectic mixture by the solidus point. The results are shown in Figures C-14, C-15, and C-16, and are summarized in Table C-4 below.

TABLE C-4

SOLIDUS TEMPERATURES FOR MIXTURE OF KC1-LiC1

	COOLING TE	MPERATURES
MIXTURE	1ST SOLIDUS TEMPERATURE	2ND SOLIDUS TEMPERATURE
KC1-LiC1 (44.5:55.5 eutectic)	352°C	
KCl-LiCl (35:65 off-eutectic)	455 ⁰ C	352 ⁰ C
KC1-LiC1 (60:40)	395°C	352 ⁰ C

Thermograms of KCl revealed that it volatilizes at temperatures over 450°C.

<u>Difference in Heat Requirement Between Iron and Stainless Steel</u>. The thermograms for iron and stainless steel showed that iron required 11.6 cal/gm more than stainless steel in the temperature ranges of 40°C to 600°C. The comparative curves are shown in Figure C-17.

<u>Difference in Behavior Between Fused and Unfused Powder</u>. The mixed powder was usually fused at 400°C after blending. The thermograms for fused and unfused powders showed substantial difference. The examination of the curves indicated improper mixing in unfused powder and an undefined cooling characteristic as against a definite pattern observed for the fused powder. Figures C-18, C-19, and C-20 show the heating and cooling curves for one typical powder mix.

<u>Difference in Behavior Between Pellet and Powder</u>. No significant difference in thermal characteristics was observed between fused powder and pellets made from it.

Figure C-14. DSC Thermogram for KCl-LiCl

Figure C-15. DSC Thermogram for KC1-LiC1

Figure C-16. DSC Thermogram for KC1-LiC1

Figure C-17. Comparison Curves for Iron (1) and Stainless Steel (2)

Figure C-18. DSC Thermogram for Unfused Powder

Figure C-19. DSC Thermogram for Fused Powder

Figure C-20. Heating Curve and Cooling Curve for 5.1 mg Pellets

Thermal studies have also been conducted on KC1, LiC1, $CaCrO_4$, K_2CrO_4 , PbCrO $_4$, their binary and ternary mixtures, and their powder mixes. The results are given in Tables C-5 and C-6.

Table C-7 contains the results of thermal studies on WPH-2 with various particle sizes. The thermograms showed an increase of solidus temperature (on cooling) when the particle size was changed from 230 mesh U.S. Standard size to 60 mesh U.S. Standard size. A similar shift was observed when the time period of fusion was increased and also when the particle size distribution of the WPH-2 powder mix was changed; that is, when the spread of the largest to smallest particle was changed. In all of these cases, the thermal balance of the battery was affected. Modifications in the thermal analyses to include thermal conductivity measurements have been implemented.

100

TABLE C-5

THERMAL STUDY OF Ca/CaCrO4 SYSTEM COMPONENT THERMOGRAMS

			HEATING	NG.		1		C001 1NG	
		PEAK	PEAK TEMPERATURES	C (ENDOTHERMS	(SHS)			PEAK TEMPERATURES OC (EXOTHERMS)	51
COMPONENT SYSTEMS	80 120 160 2	160 200 240 280	0 320 360 400	320 360 400 440 480 520 560 600 640 680 720	260 600 640	680 720	720 680 6	720 660 640 600 560 520 480 440 400 360 320 280 240 200 160 120	80 240 200 160 120
WPH-3	90		350 41	410				580522 342 290	562 0
WPE-3			345	460*				425-410 308	235
WPD-3	-	230	337	067				445 285	5 165
1101	95				630			585	
KCI									13
LICH-KCI 44.5:54.5	100		350					350	5.5
Lic1-KC1 40:60	100		350					380 350	
CaCn04-K2C-04 14.8	**					069	099	909	
CACHO4-KyCHO4 75:25	55					700	670	615	
CACHO4-PDCHO4 90:10	0								
C4Cr04-P6Cr04 80:20	0								
PbCr04-42Cr04 39:61	10				630	715	780	855	387
PBC104-K2C104 50:50	0				635	715	700	565	
CaCrO ₄ -Salt 34.4 65.6	100		360					560••	
Salt-CaCrO ₄ 75:25	5 100		350		260			500**468 320	
Salt-CaCrO ₄ 25:75	5 100		370					320	
5alt-K2Crd4 88:12	2 100	15.3	355	460				400 320	0
Salt-6,000 82.5	105		350	460				420 355 310	260
Salt-K2CrO4 77:23	3 105		345	480				450 30	300 270
Salt-PbCrO4 94.5	96		300 365					328	
541t-PbCrd4 90:10	06 01		320 365					325	

TABLE C-6

THERMAL STUDY OF Ca/CaCrO $_4$ SYSTEM COMPONENT THERMOGRAMS

WPH-1 105 PEAK TEMPEGATURES WPH-2 90 350 41 WPH-3 90 350 41 WPH-4 90 350 41 WPH-5 C.C.O. 36 41 WPH-5 S.270* 355 41 WPH-5 S.270* 355 41 WPH-5 S.270* 355 41 WPH-5 S.270* 355 41 WPH-6 S.270* 355 41 WPH-7 S.270* 355 41 WPH-8 S.270* 355 42 WPH-9 S.270* 355 345 WPH-9 S.270* 335 345 WPH-9 S.270* 334 345 WPH-9 S.270* 334 345 WPH-9 S.270* 345 345 WPH-9 S.270* 345 340 WPH-9 S.270* 340 340 WPH-9	PEAK TEMPEGATURES ^O C (ENDOTHEMS) 100 240 280 320 360 400 440 480 520 560 600 640 680 720 365 635 630	720 680 640 600	PEAK TEMPERATURES OC (EXOTHERMS)	
90 120 160 2	65 670 640 680 520 560 600 640 66 65 635			
105 365 365 365 360 350 350 365	9 25	The state of the s	80 440 400 360 320 280	360 320 260 240 200 160 120
90 350 101thout 355 (cro, 1) 220 355 90 220 355 90 355 101thout 355		88	320	
90 350 362 (c.f.) 2720 355 90 355 90 355 90 355 90 365 90 345 90 340		095	340	
(vithout) 35 (c.c.), 35 90 35 345 230 337 345 345 345	410	880525	342 290	235
(c.c.) 35 (c.c.) 270* 35 90 270* 35 90 345 1230 337 1345 1345 1340 1340 1340 1340	62 675	529 5	310	
270* 35 90 345 345 230 337 346 340 340	620	575	360 330	
90 35 345 230 337 245 345 340 340 340	620	289	360 315	
345 230 337 345 340 340 340	0.09	029 0	320	
345 230 345 345 340 340 340			Euri 34	
230 337 230 345 345 340 340 340	99		305	
230 337 345 346 340 340	460		425410	
230 337 345 345 345 346 340				
E 062	09		330	
3	490		445 285	165
	(6.4) (5.4)		275	
25	ф о 9	078	335	
			445 300 2	250
			445 300	
cor cre tre			900	
1 400°C	000		000	+
			\$ 356	-
*Exotherm in heating; denotes decomposition of CrO.	decomposition of CrO.			

TABLE C-7

THERMAL PEAK TEMPERATURES AND RESULTS OF CHEMICAL ANALYSIS FOR WPH-2 POWDER MIX, PARTICLE SIZE STUDY

				THERMAL	PEAKS (oc)
U.S. STAND	ARD SIEVE NO.	% SALT	% CaCrO4	HEATING		LING
					FIRST	SECOND
-60	+80	12.67	65.18	351	599	302
-80	+100	40.83	43.77	350	542	293
-100	+120	55.99	32.24	351	539	295
-120	+140	-	-	351	535	296
-140	+170	-		350	524	295
-170	+200	59.78	27.95	350	516	298
-200	+230	60.14	26.68	351	511	296
-230	+270	59.73	28.32	350	534	288
-270		57.63	31.06	-	-	_
-80	+200	-	_	358	545	296
-80	+230	_	_	357	550	300
-100	+230	-	-	357	530	296
-100	+200			357	530	297

WPH-2 Powder Mix - 58% salt, 32% $CaCrO_4$, 10% SiO_2 (by weight)

APPENDIX D

ELECTROCHEMICAL STUDIES ca/Lic1-Kc1/cacro4 SYSTEM

The electrochemical studies were divided into two categories: single cell testing and battery testing.

Initial evaluations of the performance of the systems were conducted on the basis of single cell testing, and once the systems showed promising behavior with respect to life and energy density, the pellets were tested in ten cell standard batteries to obtain a direct correlation.

SINGLE CELL TESTING

Single cell testing was divided into the following areas to systemize the studies:

Chemical Formulations.

- 1) Selection, preparation, and acquisition of chemicals.
- 2) Comparison of results obtained with SANDIA and KDI SCORE DEB pellets -- homogeneous powder mixes. (The SANDIA powder mixes and pellets made from them were used as a basis for comparison with other systems).
- 3) Evaluation of simple variations of these chemical formulations.
- 4) Comparison of single layer DEB pellets with two layer (EB and DB) pellets.

Chemical Additives.

The effects of additions of potassium chromate, calcium hydroxide, lead chromate, chromium trioxide, and lithium chromate were studied. Additions of conductive powders like C (graphite), nickel, copper, and iron, in the depolarizer layer of two layer systems were also evaluated. These were further studied by changing the compositions of the mixes. The compositions are given in Appendix B.

Manufacturing Methods.

The purpose of this study is to evaluate effects of variations of treatments of the components of the powder mixes. Figure D-1 gives a

Figure D-1. Process Study Flow Diagram

process flow diagram for a typical three component (salt, $CaCrO_4$, and Cab-o-Sil) system to form a powder mix. The variables are: treatment temperatures and times, effects of impurities, batch size, particle size distribution, and any other physical or chemical treatment applicable.

Powder mixes WPH-4 and WPH-6 have the same composition except that they were processed differently. In the WPH-6 system, $\text{Ca}(\text{OH})_2$ was fused with KCl and LiCl eutectic before mixing with CaCrO_4 and Cab-o-Sil; whereas, $\text{Ca}(\text{OH})_2$ was mixed with LiCl-KCl eutectic salt, CaCrO_4 , and Cab-o-Sil, and then fused in the WPH-4 system.

The major portion of this section is concentrated in the area of electrochemical studies dealing with the Ca/LiCl-KCl/CaCrO $_4$ system. Once studies were concluded with this system, efforts were directed to other systems. The bulk of the electrochemical studies was conducted on single cells.

In order to reduce variables to a practical testing level, only one homogeneous powder mix (WPH-2) was used to establish optimum parameters such as temperature, pressure, pellet thickness, pellet density, particle size, mixing methods, compositions, and additives. Peak voltage, life to 80% and 75% of peak voltage, and internal resistance were recorded using equipment described in Appendix A. The best results were then compared to other homogeneous powder mixes, where relative concentrations of mix ingredients were varied. The variations were limited to overall binder content, electrolyte (E) to depolarizer (D) ratio, and to the addition of various other chemicals to the mixes. These subsequent tests were performed at constant temperature and pressure parameters established during the initial WPH-2 testing.

The physical parameters of temperature, pressure, pellet density, pellet thickness, and particle size significantly affect the electrochemical characteristics of the system. The effect of temperature and pressure is graphically represented in Figure D-2. Although temperature and pressure are very critical for optimum performance, performance over a wide temperature range is ideal when the pressure is 10.34 psi.

The effects of pellet density and pellet thickness are shown in Figures D-3 and D-4, and the data is given in Tables D-1 and D-2

Figure D-2. Life Vs. Temperature for WPH-2 (Ca/LiC1-KC1/CaCrO₄)

System at Different Pressures

Figure D-3. Effect of DEB Pellet Density on Life for Ca/LiCl-KCl/CaCrO $_4$ System

Figure D-4. Effect of DEB Pellet Thickness on Life for Ca/LiCl-KCl/CaCrO₄ System

TABLE D-1 EFFECT OF DENSITY ON LIFE AT CONSTANT THICKNESS IN SINGLE CELL TESTS

SYSTEM	o.c.v.	P.V.	LIFE TO 2.0 V	LIFE TO 1.8 V	r ₁	r ₂	#SHORTS/ #TESTS	REMARKS
WPH-2B1	3.141	2.43	355.3	406	0.585	0.969	0/10	Quiet
WPH-2C1	3.186	2.45	392.0	453	0.600	0.971	0/10	Quiet
WPH-2F1	3.149	2.454	400.0	463	0.566	0.978	0/20	Quiet
WPH-2G1	3.179	2.526	424.0	470	0.517	0.965	2/8	Slight Noise
WPH-2J1	3.162	2.390	404.0	484	0.646	1.000	0/9	Quiet

Thickness (mils) 1 = 32

Pressure = 4.89 psi

Temperature = 525° C

Current Density = 90 mA/cm^2

Density (gm/cc) B = 1.5 C = 1.6 F = 1.7 G = 1.8 J = 1.9

r₁ = Internal resistance at
beginning of test

 r_2 = Internal resistance at 1.6 volts

TABLE D-2

EFFECT OF THICKNESS ON LIFE AT CONSTANT DENSITY

IN SINGLE CELL TESTS

SYSTEM	0.C.V	P.V.	LIFE TO 2.0 V	LIFE TO 1.8 V	r ₁	r ₂	#SHORTS/ #TESTS	REMARKS
WPH-2A1	2.9	2.387	398.7	443.4	0.430	0.659	0/3	Quiet
WPH-2A2	2.964	2.438	561.4	664.0	0.431	0.950	0/5	Quiet
WPH-2A5	3.017	2.340	159.0	258.0	0.578	188 - 639 68 - 385	9/10	Considerable Noise
WPH-2A6	3.169	2.439	294.0	329.0	0.599	0.965	1/10	Quiet
WPH-2A7	3.127	2.490	513.0	676.0	0.511	0.958	0/10	Slight Fluctuation at 1.8 v

Current Density = 90 mA/cm^2

Temperature = 525° C

Pressure = 4.89 psi

A denotes density = 1.7535 g/cc

1 denotes thickness = 0.032 inches

2 denotes thickness = 0.046 inches 5 denotes thickness = 0.016 inches

6 denotes thickness = 0.022 inches

7 denotes thickness = 0.055 inches

respectively. For WPH-2 powder mixes, the optimum performance was achieved when the pellet thickness was 0.8 mm and the pellet density was 1.8 g/cc. Beyond a pellet thickness of 1.2 mm, single cell life did not improve and an increase in cell resistance was seen.

The effects of particle size on battery performance were studied by making pellets in which mix particle sizes varied little within one pellet, and by making pellets in which mix particle sizes were varied over a given range. The results of tests at average current densities of 50 mA/cm² and 90 mA/cm² are given in Figure D-5. It was found that particle size affected both battery performance and pelletization. Large particles in the mix caused difficulties in forming pellets, and small particles caused flow problems in the automatic feed press. Although these problems posed no mechanical difficulties, it was found that a particle size distribution of -80 to +170 U.S. Standard mesh size was optimal for electrochemical performance and caused no pelletization problems.

Mixing problems become acute when the percentage of Cab-o-Sil was high. It was found, as suggested by Sandia Laboratories, that freon blending was the best mixing method when mixes high in binder content were used. The homogeneity of these mixes was determined by using a differential scanning calorimeter, and subsequent cell tests showed that lives remained within 2% of the mean. Pellets made from WPH-2 mixes blended by the freon method showed lives of 970 seconds at 50 mA/cm², about a 12% improvement over the life of pellets made by employing a V-blender for mixing. Latter pellets showed a life of 858 seconds at 50 mA/cm². Ball milling was a third mixing alternative, but was found to be too slow for the number of batches to be processed.

To obtain the best composition for this system, the composition of homogeneous powder mixes was varied, both with respect to the relative concentrations of electrolyte, depolarizer, and binder, and to the relative oncentrations of additives to fixed amounts of homogeneous powder ingredients. Mixes were made up which had 4, 7, 10, and 12.5 percent of binder by weight and E/D ratios of 1.5:1, 1.65:1, and 1.8:1. Twelve mixes were subsequently evaluated at three different test loads, incorporating the effect of current densities on the

Figure D-5. Life Vs. Particle Size for WPH-2 (Ca/LiC1-KC1)/CaCrO₄

performance of the systems. The results of these tests at the various current densities are shown in Tables D-3, D-4, and D-5, and in Figures D-6 through D-11. The performance of the cells depended more on binder content and current desity than on the ratio of electrolyte to depolarizer. At current densities of 50, 90, and 300 mA/cm², the shape of the life versus E/D ratio curves reversed between 7% and 10% binder content as shown in Figures D-6, D-7, and D-8. Thus, at binder content between 7% and 10%, the cell life becomes independent of the E/D ratio.

From Figures D-9, D-10, and D-11, it can be seen that at a low current density of 50 mA/cm 2 , cell life is longest at Cab-o-Sil content of 12.5%. At high current density; i.e., 300 mA/cm 2 , a lower binder content provides the longest life. A slight variation in E/D ratio is not critical at a current density of 300 mA/cm 2 but could be detrimental to cell life at 50 mA/cm 2 .

The highest energy density of 128.5 Whr/kg was achieved with the WPH-11 system at low current density and with a Cab-o-Sil content of 12.5%. The next highest energy density was achieved from WPH-8, a mix which had 7% Cab-o-Sil. At 90 mA/cm², the WPH-2 mix containing 10% Cab-o-Sil had the highest energy density of 99.15 Whr/kg, and at 300 mA/cm², the WPH-9 mix containing 4% Cab-o-Sil showed the highest energy density of 88.15 Whr/kg. In conclusion, high energy densities could be obtained at low current densities in single cell tests, although this was not true in batteries. It is important to note that different mixes are desirable for operation at different current densities. The current density for the battery for which these experiments were conducted was 90 mA/cm². Consequently, the optimal mix was WPH-2, and further work was done with this mix only.

In an attempt to further optimize the performance of WPH-1, $Ca(OH)_2$, $CaCl_2$, K_2Cro_4 , Cro_3 , graphite, copper, and iron were used as additives in both single and two layer pellets. Peak voltage, life, alloy formation, and electrical noise were considered in single cell testing. The results at the three current densities are given in Tables D-6, D-7, and D-8.

Ten percent $CaCl_2$ was added to the electrolyte of WPH-2, improving the performance at current densities of 90 and 50 mA/cm². At 90 mA/cm²

TABLE D-3

SINGLE CELL TEST RESULTS FOR HOMOGENEOUS

SINGLE LAYER PELLETS AT 50 mA/cm² CURRENT DENSITY

SYSTEM	E/D	Cab-o-sil	PEAK VOLTAGE	LIFE TO 75% P.V.	ENERGY DENSITY	
		(%)	(volts)	(sec.)	(Whr/Kg)	
WPH-14	1.50	4	2.60	809	90.75	
WPH-9	1.65	4	2.55	844	91.10	
WPH-18	1.80	4	2.69	686	82.37	
WPH-1	1.50	7 15	2.59	836	93.06	
WPH-8	1.65	7	2.69	1013	121.64	
WPH-17	1.80	sorte 17 m d	2.76	665	84.06	
WPH-10	1.50	10	2.60	939	105.34	
WPH-12	1.63	10	2.59	801	89.17	
WPH-2	1.80	10	2.62	970	110.48	
WPH-11	1.50	12.5	2.67	1086	128.48	
WPH-13	1.63	12.5	2.55	1087	117.30	
WPH-7	1.80	12.5	2.50	1164	120.74	

TABLE D-4

SINGLE CELL TEST RESULTS FOR HOMOGENEOUS

SINGLE LAYER PELLETS AT 90 mA/cm² CURRENT DENSITY

SYSTEM	E/D	Cab-o-Sil	PEAK VOLTAGE	LIFE TO 75% P.V.	ENERGY DENSITY
10.7120	24140	(%)	(volts)	(sec.)	(Whr/Kg)
WPH-14	1.50	4	2.40	476	90.99
WPH-9	1.65	4	2.39	500	94.80
WPH-18	1.80	4	2.40	423	80.87
WPH-1	1.50	7	2.35	435	79.73
WPH-8	1.65	7	2.35	449	82.30
WPH-17	1.80	7	2.37	429	79.97
WPH-10	1.50	10	2.39	502	95.17
WPH-12	1.63	10	2.37	461	85.93
WPH-2	1.80	10	2.35	541	99.15
WPH-11	1.50	12.5	2.30	147	25.81
WPH-13	1.63	12.5	2.33	118	21.27
WPH-7	1.80	12.5	2.33	112	20.17

TABLE D-5

SINGLE CELL TEST RESULTS FOR HOMOGENEOUS

SINGLE LAYER PELLETS AT 300 mA/cm² CURRENT DENSITY

SYSTEM	E/D	Cab-o-Sil	PEAK VOLTAGE	LIFE TO 75% P.V.	ENERGY DENSITY
	od object to be	(%)	(volts)	(sec.)	(Whr/Kg)
WPH-14	1.50	4	2.09	144	83.51
WPH-9	1.65	4	2.07	155	88.15
WPH-18	1.80	4	1.75	144	58.54
WPH-1	1.50	7	1.85	88	40.00
WPH-8	1.65	7	1.80	119	51.19
WPH-17	1.80	7	1.82	106	46.62
WPH-10	1.50	10	1.90	24	11.51
WPH-12	1.63	10	2.01	23	12.32
WPH-2	1.80	10	1.97	30	15.47
WPH-11	1.50	12.5	1.91	14	6.78
WPH-13	1.63	12.5	1.97	18	9.28
WPH-7	1.80	12.5	1.80	8	12.03

Figure D-6. Effect of LiC1-KC1(E)/CaCr0 $_4$ (D) Ratio on Life for Different Cab-o-Si1(B) Levels at 50mA/cm 2 Current Density

Figure D-7. Effect of LiC1-KC1(E)/CaCrO₄ Ratio on Life for Different Cab-o-Si1(B) Levels at 90 mA/cm² Current Density

Figure D-8. Effect of LiCl-KCl(E)/CaCrO₄(D) Ratio on Life for Different Cab-o-Sil Levels at 300 mA/cm² Current Density

Figure D-9. Life Vs. Current Density for Ca/LiCl-KCl/CaCrO₄
Systems with E/D Ratio of 1.5:1

. 140

Figure D-10. Life Vs. Current Density for Ca/LiCl-KCl/CaCrO₄
Systems with E/D Ratio of 1.65:1

Figure D-11. Life Vs. Current Density for Ca/LiC1-KC1/CaCrO₄
Systems with E/D Ratio of 1.8:1

TABLE D-6 SINGLE CELL TEST RESULTS AT 4.89 PSI AND 525°C

SYSTEM	OPEN CIRCUIT VOLTAGE	PEAK VOLTAGE	LIFE TO 2.0V	LIFE TO 1.8V	r ₁	r ₂	SHORTS TESTS	REMARKS
			(sec)	(sec)	Ω	Ω		
WPH-2(CaCl ₂)	3.07	2.58	1520	-	0.762	1.09	0/6	Quiet
WPH-3	2.86	2.57	361	395	0.451	0.900	3/6	
WPH-4	2.68	2.44	498.2	585	0.393	1.21	1/6	Noisy
WPH-5	3.4	3.16	780	884	0.303	1.20	1/6	Quiet
WPE-1/WPD-9	3.16	2.89	622	665	0.367		1/6	
WPE-2/WPD-3	3.03	2.69	534	695	0.505	1.13	0/3	
WPE-3/WPD-3	3.17	2.63	634	841	0.821	1.18	0/6	Slight noise
WPE -4/WPD-3	3.02	2.55	374	658	0.751	1.13	0/4	Noise before
WPH-2/WPD-3	3.06	2.54	523	569	0.824	1.67	1/4	Noise off load
WPE-3/WPD-5	3.10	2.56	520	722	0.844	1.13	0/6	Slight noise before load
WPE-3/WPD-6	3.15	2.66	589	703	0.728	1.18	2/6	
WPE-3/WPD-7	2.81	2.55	520	651	0.416	1.15	0/6	Slight noise
WPE-3/WPD-8	2.87	2.56	627	829	0.484	1.24	3/6	Noisy
WPE-3/WPD-9	3.18	2.94	660	758	0.329	1.156	4/6	
WPE-3/WPD-10	2.76	2.615	320	407	0.222	0.511	0/6	Quiet
WPE-B/WPD-12	2.72	2.44	315	462	0.458	1.29	0/3	Noise @ 2.0
WPE-8/WPD-15	2.74	2.45	317	441	0.469	1.27	0/3	Unstable Voltage
WPE-2/WPD-11	2.93	2.58	551	637	0.543	1.29	0/3	Very quiet
WPH-2/WPD-15	2.764	2.50	697	814	0.422	1.22	0/3	Slight noise

r₁ = Internal Resistance at Start of Life r₂ = Internal Resistance at 1.8 Volts

Current Density = 50 mA/cm²

TABLE D-7 SINGLE CELL TEST RESULTS AT 4.89 PSI AND $525^{\rm o}{\rm c}$

SYSTEM	OPEN CIRCUIT VOLTAGE	PEAK VOLTAGE	LIFE TO 2.0V	LIFE TO 1.8V	r ₁	r ₂	SHORTS TESTS	REMARKS
			(sec)	(sec)	Ω	n		
WPH-2(CaCla)	2.98	2.45	406	710	0.465	0.67	0/6	Quiet
WPH-3	2.89	2.38	227	254	0.428	0.840	3/6	
WPH-5	3.395	3.06	368	459	0.219	1.1	1/6	Quiet
WPH-4	2.66	2.32	313	380	0.293	0.980	4/9	
WPE-1/WPD-3	3.03	2.24	234	407	0.554	1.01	3/6	
WPE-2/WPD-3	3.04	2.46	197	349	0.473	0.893	0/10	Noise before & after load
WPE-3/WPD-3	3.09	2.3	178	360	0.687	0.9	6/25	
WPE-4/WPD-3	3.01	2.44	184	334	0.467	0.9	2/10	
WPH-2/WPD-3	2.913	2.343	145	222	0.487	1.22	1/5	Noise before load
WPE-3/WPD-5	3.12	2.46	227	356	0.54	0.89	0/10	1
WPE-3/WPD-6	3.15	2.47	242	340	0.55	0.91	0/10	
WPE -3/WPD-7	2.72	2.37	185	309	0.295	0.86	1/10	
WPE-3/WPD-8	2.754	2.49	154	253	0.212	0.82	2/10	Noisy
WPE-3/WPD-9	3.20	2.79	228	351	0.296	0.925	4/10	
WPE-3/WPD-10	2.78	2.43	175	229	0.293	0.652	2/10	
WPE-8/WPD-12	2.75	2.31	98	159	0.378	1.14	0/3	Noise at 2V level
WPE-8/WPD-15	2.73	2.28	80	151	0.395	1.14	0/3	Voltage unstable
WPH-2/WPD-11	2.96	2.45	134	307	0.416	0.99	0/3	Quiet
WPH-2/WPD-15	2.80	2.39	335	421	0.350	0.88	1/9	Very slight Noise

r₁ = Internal Resistance at Start of Life r₂ = Internal Resistance at 1.6 Volts

Current density = 90mA/cm²

TABLE D-8

SINGLE CELL TEST RESULTS AT 4.89 PSI AND 525°C

	CIRCUIT	PEAK VOLTAGE	LIFE TO 2.0V	LIFE TO 1.8V	L IFE TO 1.6V	r_1	r ₂	SHORTS TESTS	REMARKS
		(sec)	(sec)	(sec)	Ω	Ω			
WPH-3	2.88	1.71		v	13			1/5	
WPH-4	2.67	1.98			12			1/6	
WPH-5	3.40	2.56	5.8	20.4	28.6	0.165	0.384	1/6	Quiet
WPE-1/WPD-3	3.05	2.00		17.7	23.8	0.264	0.327	1/4	
WPE-2/WPD-3	3.05	2.00		38.7	61.0	0.261	0.269	0/3	Noise after load
WPE -3/WPD-3	3.17	1.72		100	21.2	1.5	241	0/5	
WPE -4/WPD-3	3.03	1.98		27.0	61.0	0.265	0.275	0/3	
WPE-2/WPD-3	3.07	1.93		5.3	11.3	0.293	0.33	0/4	
WPE-3/WPD-5	3.15	2.14	15.1	50.0	79.3			0/6	
WPE-3/WPD-6	3.15	2.08	8.0	32.7	67.3			0/6	
WPE-3/WPD-7	2.77	2.04	12.3	52.4	73.8			1/6	Clean
WPE-3/WPD-8	2.88	2.08	14.2	53.3	80.9			0/6	Noise
WPH-2/WPD-10	2.8	2.0	-	6.0	10.0	0.2	0.357	0/3	
WPH-2/WPD-11	2.96	1.99	-	6.7	17.1	0.243	0.356	0/3	
WPH-2/WPD-12	2.72	1.81	-	1.0	4.0	0.249	0.306	0/3	Whose may for

r₁ = Internal Resistance at Start of Life

Current Density = 300 mA/cm²

r₂ * Internal Resistance at 1.6 Volts

the cell life increased from 541 seconds to over 700 seconds at an energy density of 131.56 Whr/kg. At 50 mA/cm², the cell life increased from 970 seconds to 1534 seconds at an energy density of 141.68 Whr/kg. WPH-2 with a 10% CaCl_2 additive has been found to be the best $\operatorname{Ca/LiCl-KCl/CaCrO}_4$ system so far. $\operatorname{Li}_2\operatorname{CrO}_4$ and CrO_3 increased the peak voltages on load, but did not improve cell life. $\operatorname{K}_2\operatorname{CrO}_4$ decreased the peak voltage and $\operatorname{Ca(OH)}_2$ caused electrical noise and alloying. Formation of alloys and subsequent shorts were negligible in all other tests, however. Lastly, the metallic additives showed no improvement in cell performance.

Similar experiments involving two layer pellets produced different results. Two layer pellets were made which had the same weight and thickness as the single layer homogeneous pellet. In studying the effect of the E/D ratio on the performance of the two layer pellet at current densities of 50, 90, and 300 mA/cm², it was found that this ratio was critical at high current densities. At 50 and 90 mA/cm² the cell performance was virtually unaffected. These results are illustrated in Figure D-12. The experiments with additives showed little or no improvement in cell performance when compared to WPH-2 with CaCl2. Homogeneous pellets appeared to produce the best results for long life applications at 90 mA/cm². This is not necessarily true for other catholytes or for systems requiring short lives with high current drain.

BATTERY TESTING

Batteries with standard size cells of 38 mm diameter were made for direct correlation with single cell tests. Subsequently, batteries with 61 mm diameter cells were made, the design goal being to produce even larger batteries which would produce 30 amperes at 90 mA/cm², with three paralleled stacks.

38 mm Diameter Cell Batteries.

Approximately 150 Ca/LiCl-KCl/CaCrO $_4$ batteries with standard 38 mm diameter cells were built, using both single layer homogeneous and two layer pellet systems and were tested at various current densities. In addition, studies were made in the pyrotechnical aspects of battery operation. Both heat paper, consisting of Zr and BaCrO $_4$, and heat

Figure D-12. Effect of EB:DB Ratio on Life of Two Layer Pellet (Ca/LiCl-KCl/CaCrO₄ System)

pellets, made from a mixture of Fe and $KC10_4$ (86:14 w/o), were used as a pyrotechnic and these results are discussed in detail in Appendix E of this report.

Results from battery tests using standard size cells indicated that the WPH-2 pellet mix produced the most desirable results. The best batteries of this group, S/N WPO-43 and S/N WPO-44, Table D-9, achieved an average life of 2.7 minutes and an energy density of 4.3 Whr/kg at the temperature extremes tested. The results of these battery tests, including several powder mixes, using heat paper, heat pellets, different pressures and tests at the three current densities have been discussed in interim reports.

61 mm Diameter Cell Batteries.

Batteries with 61 mm diameter cells using Ca/LiCl-KCl/CaCrO $_4$ systems were also built and tested at different current densities. At a current density of 90 mA/cm 2 , a life of 4.5 minutes and 15.4 Whr/kg energy density was produced by the Ca/LiCl-KCl/CaCrO $_4$ battery (S/N P-17). A life of over 16 minutes was achieved using this system (S/N 3831) indicating that this system is capable of sustaining a long thermal life. At 48 mA/cm 2 , the energy density of Ca/LiCl-KCl/CaCrO $_4$ battery S/N P-18 was improved to 13.3 Whr/kg and the life extended to 9.4 minutes. The results of the batteries achieving the best performance are given in Table D-10.

TABLE D-9

BATTERY TEST RESULTS FOR VARIOUS Ca/LiC1-KC1/CaCrO₄ SYSTEMS

USING 38 mm OD CELLS

BATTERY NO.	BATTERY CONDITION	PEAK VOLTAGE	RISE TIME	LIFE	SYSTEM	REMARKS
	ос		(ms)	(sec)		
greated	Telactic SH-T	al Na Visas	y i desse	0019 465	estimen ystra	s colleges
WP -035	-40	25.0	370	127	WPE-3/WPD-3	
WP-037	+70	24.9	280	121	WPE-3/WPD-3	
WP-043	-40	25.7	570	161	WPH-2	4.3WHr/Kg
WP-044	+70	25.2	370	164	WPH-2	4.3WHr/Kg
WP-047	-40	25.2	430	169	WPH-4	
WP-048	+70	25.2	420	80	WPH-4	
WP-086	-40	30.0	290	213	WPH-5	1
WP-088	+70	28.0	200	70	WPH-6	
WP-114	-40	25.5	400	11	WPE-3/WPD-7	
WP-116	+70	25.3	350	77		

LOAD = 20.0 s

LIFE MEASURED TO 18 VOLTS

TABLE D-10

BATTERY TEST RESULTS FOR Ca/LiC1-KC1/CaCrO₄ SYSTEM AT DIFFERENT CURRENT DENSITIES (61 mm DIAMETER CELL BATTERY)

SYSTEM	S/N	TEMP °C	CURRENT DENSITY (mA/cm ²)	PEAK VOLTAGE (Avg.)	LIFE TO 75% P.V. (Min.)	STACK ENERGY DENSITY (Whr/kg)
Ca/LiCl- KC1/CaCrO ₄	P-14 P-16 P-17	-40 +70 +23	90 90 90	26.7 26.7 26.7	3.8 2.6 4.5	13.3 8.8 15.4
Ca/LiC1- KC1/CaCrO ₄	P-18 P-20	+23 +23 +23	48 16 9	27.2 28.2 19.0	9.4 11.1 16.0	13.3 9.4 5.9

APPENDIX E

NON-STANDARD TECHNIQUES

FUSIBLE HEAT RESERVOIRS

Fusible heat reservoirs have the advantage of providing heat at a predetermined temperature. They are "thermally timed" sources in which the activation temperature and amount of heat released can be varied by changing the chemical compositions and weight.

An eutectic mixture of NaCl and $\rm Li_2SO_4$ was made and blended with Cab-o-Sil in a ratio of 88:12 for future studies as a possible fusible heat reservoir.

DSC studies were made on this eutectic and certain off-mixtures to ascertain the thermal properties and solidus temperatures. The studies were along the following lines:

- Choosing a chemical system for optimum performance at a high or low temperature only.
- 2) Studying the feasibility of manufacturing a fusible reservoir paper for use in the sidewall of a battery. Also, use of these reservoirs at appropriate stack positions.

Table E-1 gives the results of evaluations of different fiberglass tapes impregnated with eutectic mixture of sodium chloride-lithium sulfate at 500° C. It was found that ECCIIB was the most suitable tape for this purpose. This impregnated tape was tested for use in the outer can as a buffer reservoir.

For the stack, pellets made of this mixture of sodium chloride-lithium sulfate with Cab-o-Sil were used.

ELECTRICAL AND THERMAL TECHNIQUES

This task was directed toward electrical and thermal devices which might enhance overall battery performance. No experimental work was done in this area. However, several ideas worth looking into are suggested below.

To increase battery life, the following areas are suggested for investigation:

TABLE E-1

EVALUATION OF FIBERGLASS TAPES FOR IMPREGNATING WITH NaC1-Li₂SO₄ BUFFER POWDER

	TYPE OF TAPE	TAPE. WT. gm/in ²	AMT.SALT gm/in ²	Cal/in ²	RESPONSIVE CHARACTERISTICS
1)	Columbia (Tight Weave)	.1218	.2365	22.25	Brittle
2)	Columbia (Loose Weave)	.1114	.2980	28.04	Brittle
3)	Burlington (Loose Weave)	.1162	.3466	32.61	Slightly flexible
4)	Tight Weave Volan	.1211	.3093	29.10	Brittle
5)	Burlington (1-3/4" wide, .005" thick)	.0725	.1793	16.87	Smooth and very flexible
6)	Very Loose Weave (As received)	.1126	.2130	20.04	Improper wetting
7)	Loose Weave Volan (As received)	.1344	.2387	22.46	Brittle
8)	Tight Weave Volan (As received)	e de Trado	nes cosílu La remitent	ns some	Broke down
9)	Tight Weave Volan (Fired)	.1369	.3009	28.30	Smooth, brittle, good absorption
10)	Tight Weave Volan (Fired)	.1343	.2610	24.56	Same as above
11)	Tight Weave Volan (As rec'd.)	.1369	.2666	25.08	Smooth, brittle
12)	Loose Weave Volan (Fired)	.1315	.3769	35.46	Smooth, flexible
13)	Very Loose Weave (As rec'd.)	.1160	.3294	31.0	Very flexible, smooth
14)	Loose Weave Volan (Fired)	.1320	.3504	32.97	Brittle
15)	ECCIIB	.1241	.5648	53.14	Very flexible (dipped at 500°C lumpy deposit)
16)	ECCIIB	.1217	.4399	41.39	Very flexible and smooth

- 1) Stacks paralleled outside the battery. This will lower the heat generated within the battery and at the same time allow the use of buss bars to decrease the internal resistance drop.
- 2) Use of diodes to prevent one stack of the battery from acting as a load on other parallel stacks.
- Use of voltage regulating devices to control designed-in over voltage.

To increase battery performance at high and low temperatures (i.e., to widen the operating temperature range of the battery), the following are suggested:

- 1) Squib systems that will be activated thermostatically and be used for supplying auxiliary heat when needed.
- 2) Squib systems that will be activated with a time delay circuit and used for supplying auxiliary heat at a critical point in life.

A market search has uncovered a pyrotechnic switch which may be activated by a thermostat, a voltage sensing circuit, or a timing circuit. This switch can be adapted for use in a thermal battery. At present, the most promising technique is the use of a voltage sensing device which would trigger either a secondary heat source or another battery stack to prolong battery operation.

PYROTECHNIC STUDIES

The pyrotechnic studies were based on the application of heat pellet technology; i.e., the use of heat pellets using a mixture of iron powder and potassium perchlorate.

Since heat paper made from $Zr + BaCrO_4$ was readily available, batteries were thermally balanced using this heat source. Later, the batteries were also balanced with heat pellets and a comparative study was conducted to determine the differences.

Based on the results of the tests of the batteries built using WPH-2 powder mixes and tested on a 20 ohms load, the following conclusions were drawn:

- 1) The heat paper batteries were faster activating than the heat pellet batteries.
- 2) The peak voltages were higher for pellet batteries than for heat paper batteries, but there was no discernable difference in performance.

- 3) The pressure requirement for heat pellet batteries was lower than for heat paper batteries. This pressure was responsible for faster or slower start times.
- 4) The heat pellet batteries were simpler to manufacture than were the heat paper batteries, since they require fewer parts and fewer assembly operations are involved.
- 5) The heat pellets were preferable for long life batteries where rigidity in shape and maintenance of stack pressure for optimum performance were desired. The pressure drops to almost zero for heat paper batteries.