

Métricas evaluación (1) Accuracy: /. de aciertos -> Pregunta: 1si acc = 95%, tengo un blen modelo? Lp es acc brain? [0%, -100%] acct= 95% (>) acctest = 94% -Ejemplo: operación fraudulenta no overfitting Lo es un baen modelo? ace vol = 94%. Lo operaciones diarias >>> Fraudulentas Ly avg $(T) \approx 0^{\circ}/_{\circ} \Rightarrow \text{acc} = 99^{\circ}/_{\circ}$ Ly es un buen modulo? Problema: datasets des balanceados
Lo avy (1) 20% o 200%, modelo tento "siempre predice of (2) (onfusion matrix: número de filas en cada combinación predicción (1,0)/red (1,0)

Problema 1. Distail optimitar con multiples métricas: TP, TN, FP, FN

2. Los fallos FP, FN pueda distinta importancia

(y) ROC, AUC: Solucionar el problema del threshold

id	real	prob	th=6,85	th=0, 6	th = 0, 45	th = 0, 1
1 2 3 4	1.	0.9 0.8 0.5 0.4	4000	11000	1 2 0 0	1 1 1 1- 2-
5	• 1	TPK FPR	1/3=63	2/3=6.	_	3/3=1

AUC = 1

Bagging y boosting

Ensembles: combinación de varios modelas intentando predecir la misma tarea car las mismos datas

M1 H2 M3 MY

Modelo final

· Combinación: cada modelo da su probabilidad

- -> Hard voting: avg (pred (110))
- -> Soft voting: avg (prob)
- -> stacking: utilizer les probabilidades como atributes de un nueva modela
- « Modelos deben
 - Precision: par si nolos son loveros
 - · Variedad: no predecir la mismo -> diferentes algoritmas
 - -> modificando ligeramente el dataset

 -> Bagging + decision tree = Random Forest

 -> Boosting + decision tree = X G Boost

 -> ADABOOST

Bagging réplicas bootstrap Mismo algenit mo Dateset decision tree Véplica 1: 2,5,1,2,3,7,8,4,9,8) : avg (voting) -> prob max - depht = mismr train min-scmple (Lo filu) réplica 50: 2, 3, 2, 9, 7, 2, 5, 8, 10, 6 Random Forest: mas preciso que el decision tree, vigilar overfitting b pocas filas < 40 k no funciona bien toverfitting > 200 K

Random forest

Decision tree Boosting: Proceso iterative DT + Boosting = X GBoost Train orig >> DT > M1 Yearing vs Yeram1 = errores1 1 trainz) > DT -> MZ Ytrainz = errores ? average booting - prob 1 train 501 -> DT -> M50 -

Homework (opcional)

A partir del siguiente árbol, indica:

- Profundidad del árbol
- Min samples split que utilizamos en el entrenamiento
- Con los siguientes datos, dibuja la ROC Curve resultante del modelo.

Pistas:

- Calcula la probabilidad que predice el árbol para cada fila
- Ordena las filas de mayor a menor probabilidad
- Calcula el TPR y FPR para diferentes cortes del threshold (al menos 5 cortes distintos)
- Dibuja estos valores en el gráfico de TPR/FPR

samples = 7

value = [5, 2]

samples = 20

value = [3, 17]

ld fila	ExAng	Ca	Thal	Age	Slope	Target	Probability
1	1	0	8	65	1	1	
2	0	0	5	25	8	1	
3	0	1	2	55	5	0	
4	1	1	1	45	4	0	
5	1	0	0	60	1	0	
6	1	0	0	65	3	0	
7	1	1	3	28	7	1	
8	0	1	0	39	2	1	
9	1	0	0	87	4	1	
10	1	1	1	15	8	0	