

Classic Exploration Strategies

Christopher Mutschler

Agenda

- Motivation, Problem Definition & Multi-Armed Bandits
- Classic Exploration Strategies
 - Epsilon Greedy
 - (Bayesian) Upper Confidence Bounds
 - Thomson Sampling
- Exploration in Deep RL:
 - Count-based Exploration: Density Models, Hashing
 - Prediction-based Exploration:
 - Forward Dynamics
 - Random Networks
 - Physical Properties
 - Memory-based Exploration:
 - Episodic Memory
 - Direct Exploration
- Summary and Outlook

Random Exploration: ϵ -greedy

- Exploration at random: ϵ -greedy
- Recap & let's formulate:
 - Take the best action most of the time, but do random exploration occasionally
 - Action-values are estimated according to the past experience (by averaging rewards associated with the action up to time step *T*):

$$\widehat{Q}_T(a) = \frac{1}{N_T(a)} \sum_{t=1}^T r_t \mathbb{I}[a_t = a],$$

• where \mathbb{I} is a binary indicator function and $N_t(a)$ is the action selection counter, i.e.:

$$N_t(a) = \sum_{t=1}^T \mathbb{I}[a_t = a].$$

• With a small probability of ϵ we take a random action (explore) and with probability of $1 - \epsilon$ we pick the best action that we have learnt so far (exploit):

$$a_T^* = \arg\max_{a \in \mathcal{A}} \widehat{Q}_T(a)$$
.

How to pick ϵ ?

is this enough?

Random Exploration: ϵ -greedy

- Greedy may select a suboptimal action forever
 - → Greedy has hence linear expected total regret
- ϵ -greedy continues to explore forever
 - with probability 1ϵ it selects $a = \arg \max_{a \in A} Q_T(a)$
 - with probability ϵ it selects a random action
- Will hence continue to select all suboptimal actions with (at least) a probability of $\frac{\epsilon}{|\mathcal{A}|}$
 - \rightarrow ϵ -greedy, with a constant ϵ has a linear expected total regret

Random Exploration: ϵ -greedy (Demo)

```
In [1]: import matplotlib # noga
         #matplotlib.use('Agg') # noga
         import matplotlib.pyplot as plt
         import numpy as np
         import time
         from scipy.stats import beta
         BernoulliBandit class
In [2]: class BernoulliBandit(object):
             def __init__(self, n, probas=None):
                 assert probas is None or len(probas) == n
                 self.n = n
                 if probas is None:
                      np.random.seed(int(time.time()))
                      self.probas = [np.random.random() for _ in range(self.n)]
                      self.probas = probas
                 self.best_proba = max(self.probas)
             def generate_reward(self, i):
                 # The player selected the i-th machine.
                 if np.random.random() < self.probas[i]:</pre>
                      return 1
                 else:
                      return 0
                                                                                    0.8
           600
                                                                                    0.6
            400
                                                                                  g 0.4
                                                                                    0.2
                                                0.2
                   10000 20000 30000 40000 50000
                                                          Actions sorted by \theta

    ε-Greedy
    AnnealedEpsilonGreedy

In []:
```


Random Exploration: ϵ -greedy

- Random exploration allows us to try out option that we have not much knowledge about yet
 - However: due to randomness, we end up exploring bad actions all over again!
 - What to do about it?
- Option #1: decrease ϵ over course of training might work
 - We saw in the demo that this helps
 - However, it is not easy to tune the parameters
- Option #2: be optimistic with options of high uncertainty
 - Prefer actions for which you do not have a confident value estimation yet
 → Those have a great potential to be high-rewarding!
 - This idea is called Upper Confidence Bounds

Upper Confidence Bounds

• Idea: estimate an upper confidence $U_t(a)$ for each action value, such that with a high probability we satisfy

$$Q(a) \le \hat{Q}_t(a) + U_t(a)$$

Next, we select the action that maximizes the upper confidence bound:

$$a_t^{UCB} = \arg\max_{a \in \mathcal{A}} [Q_t(a) + U_t(a)]$$

- The upper bound $U_t(a)$ is a function of the number of trials $N_t(a)$:
 - Small $N_t(a) \rightarrow$ large bound $U_t(a)$ (estimated value is uncertain)
 - Large $N_t(a) \rightarrow$ small bound $U_t(a)$ (estimated value is certain/accurate)
 - Central limit theorem¹: the uncertainty decreases as $\sqrt{N_t(a)}$ (as long as the variance of rewards is bounded)

→ How can we efficiently estimate the upper confidence bound?

Upper Confidence Bounds

- Wait, let's put all the sidenotes on a single slide first:
 - We want to minimize $\sum_a N_t(a) \Delta_a$
 - If Δ_a is big \rightarrow we want $N_t(a)$ to be small
 - If $N_t(a)$ is big \rightarrow we want Δ_a to be small
 - Not all $N_t(a)$ can be small: their sum is (exactly) t
 - We know $N_t(a)$
 - We do not know Δ_a but what what can we learn about it?

Theorem: Hoeffding's Inequality

- Let $X_1, ..., X_n$ be i.i.d. random variables whose value are in [0,1]
- Let $\bar{X}_T = \frac{1}{t} \sum_{t=1}^T X_t$ be the sample mean
- Then (for any u > 0):

$$P(\mathbb{E}[X] \ge \bar{X}_t + u) \le e^{-2tu^2}$$

- Example: How likely is it to achieve an eye sum of at least 500 when rolling a dice for a hundred times?
 - X is a random variable that describes the result of a roll, its mean is $\mathbb{E}[X] = 3.5$ $\rightarrow -2.5 \le X - \mathbb{E}[X] \le 2.5$
 - Hoeffding's Inequality:

$$P\left[\sum X \ge 500\right] = P\left[\sum (X - \mathbb{E}[X]) \ge 150\right] \le e^{\frac{-2 \cdot 150^2}{\sum (2,5+2,5)^2}} = e^{\frac{-45000}{100 \cdot 25}} = e^{-18} \approx 1,523 \cdot 10^{-8}$$

see also https://en.wikipedia.org/wiki/Hoeffding%27s_inequalit

Upper Confidence Bounds

- Let us apply Hoeffding's Inequality to bandits with bounded rewards
- Given one target action *a*, let us consider
 - $r_t(a)$ as the random variables
 - Q(a) as the true mean
 - $\hat{Q}_t(a)$ as the sample mean
 - u as the upper bound confidence bound, $u = U_t(a)$
- From this follows:

$$P[Q(a) > \hat{Q}_t(a) + U_t(a)] \le e^{-2tU_t(a)^2}$$

- We now want to pick a bound $U_t(a)$ so that with high chances the true mean lies below the sample mean + the upper confidence bound
 - $\rightarrow e^{-2tU_t(a)^2}$ should be a small probability
- Given a tiny threshold p and solve for $U_t(a)$:

$$e^{-2tU_t(a)^2} = p \rightarrow U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

Upper Confidence Bounds: one more thing

- With collecting more and more samples, we will get more confident!
- Let us now do a tiny little tweak: reduce p as we observe more rewards:
 - For instance: $p = \frac{1}{r}$

$$U_t(a) = \sqrt{\frac{\log t}{2N_t(a)}}$$

- This ensures that we always keep exploring
- But we select the optimal action much more often as $t \to \infty$
- The vanilla **UCB1** algorithm uses $p = t^{-4}$:

$$U_t(a) = \sqrt{\frac{2 \log t}{N_t(a)}}$$
 and $a_t^{UCB} = \arg \max_{a \in \mathcal{A}} Q(a) + \sqrt{\frac{2 \log t}{N_t(a)}}$

- However, we could insert any hyper parameter c (here) to adjust this
- \rightarrow UCB (with $c = \sqrt{2}$) has a logarithmic expected total regret

Upper Confidence Bounds: UCB1 (demo)

```
class UCB1(Solver):
    def __init (self, bandit, init proba=1.0):
        super(UCB1, self).__init__(bandit)
        self.estimates = [init_proba] * self.bandit.n
    @property
    def estimated_probas(self):
        return self.estimates
    def run one step(self):
        self.t += 1
        # Pick the best one with consideration of upper confidence bounds.
        i = max(range(self.bandit.n), key=lambda x: self.estimates[x] + np.sqrt(
            2 * np.log(self.t) / (1 + self.counts[x])))
        r = self.bandit.generate_reward(i)
        self.estimates[i] += 1. / (self.counts[i] + 1) * (r - self.estimates[i])
        return i
/Users/mut/workspace/anaconda3/envs/py36/lib/python3.6/site-packages/ipykernel_launcher.py:44: MatplotlibDeprecation
Warning: Passing the drawstyle with the linestyle as a single string is deprecated since Matplotlib 3.1 and support
will be removed in 3.3; please pass the drawstyle separately using the drawstyle keyword argument to Line2D or set d
rawstyle() method (or ds/set ds()).
  300
  200
                                     0.4
3 100
                                                                       0.2
              4000 6000
                        8000 10000
                Time step
                                               Actions sorted by \theta
                                             ε-Greedy
```


Extension: Bayesian UCB

- In UCB we did not assume any prior on the reward distribution
 - Hence, from Hoeffding's Inequality follows a relatively pessimistic bound
- Idea: prior knowledge on the distribution allows for a better bound!
- Example:
 - We expect the mean reward of the slot machines to follow (independent) Gaussians
 - We may set the upper bound to the 95% confidence interval by setting $\widehat{U}_t(a)$ to be twice the standard deviation
- Use the posterior to guide exploration!
 - UCB
 - Thompson Sampling (probability matching)

Image taken from UCL Course by David Silver - Lecture 9: XX.

Extension: Bayesian UCB

Example

- We again consider a Bernoulli distribution: rewards are either 0 or +1
- Prior: uniform on $[0,1] \forall a \in \mathcal{A}$ (each mean reward is equally likely)
- The posterior is a Beta distribution $Beta(\alpha_a, \beta_a)$ with initial parameters $\alpha_a = 1$ and $\beta_a = 1$ for each action α
- Update the posterior:
 - $\alpha_{a_t} \leftarrow \alpha_{a_t} + 1$, if $r_t = 0$
 - $\beta_{a_t} \leftarrow \beta_{a_t} + 1$, if $r_t = 1$

Image taken from UCL Course by David Silver - Lecture 9: XX.

Extension: Bayesian UCB

Example

- We again consider a Bernoulli distribution: rewards are either 0 or +1
- Prior: uniform on $[0,1] \forall a \in \mathcal{A}$ (each mean reward is equally likely)
- The posterior is a Beta distribution $Beta(\alpha_a, \beta_a)$ with initial parameters $\alpha_a = 1$ and $\beta_a = 1$ for each action α
- Update the posterior:
 - $\alpha_{a_t} \leftarrow \alpha_{a_t} + 1$, if $r_t = 0$
 - $\beta_{a_t} \leftarrow \beta_{a_t} + 1$, if $r_t = 1$
- Assume: $r_1 = 1$, $r_2 = 1$, $r_3 = 0$, $r_4 = 0$

https://en.wikipedia.org/wiki/Beta_distribution

 \rightarrow Pick action that maximizes $Q_t(a) + c\sigma(a)$

Extension: Bayesian UCB (demo)

```
class BayesianUCB(Solver):
   """Assuming Beta prior."""
   def __init__(self, bandit, c=3, init_a=1, init_b=1):
        c (float): how many standard dev to consider as upper confidence bound.
        init_a (int): initial value of a in Beta(a, b).
        init b (int): initial value of b in Beta(a, b).
        super(BayesianUCB, self).__init__(bandit)
        self.c = c
        self._as = [init_a] * self.bandit.n
        self._bs = [init_b] * self.bandit.n
   @property
   def estimated_probas(self):
        return [self._as[i] / float(self._as[i] + self._bs[i]) for i in range(self.bandit.n)]
   def run one step(self):
        # Pick the best one with consideration of upper confidence bounds.
        i = max(
            range(self.bandit.n),
            key=lambda x: self._as[x] / float(self._as[x] + self._bs[x]) + beta.std(
                self._as[x], self._bs[x]) * self.c
        r = self.bandit.generate_reward(i)
        # Update Gaussian posterior
        self._as[i] += r
        self.\_bs[i] += (1 - r)
        return i
  800
  600
                                                                       0.4
  400
                                   5 0.4
J 200
                                               Actions sorted by \theta
                                     - ε-Greedy - UCB1 - Bayesian UCB
```


Exploration via Probability Matching

We can also try the idea of directly sampling the action

 Select action a according to probability that a is the optimal action (given the history of everything we observed so far):

$$\pi_t(a|h_t) = P[Q(a) > Q(a'), \forall a' \neq a|h_t]$$
$$= \mathbb{E}_{r|h_t} \Big[\mathbb{I} \Big(a = \arg \max_{a \in \mathcal{A}} Q(a) \Big) \Big]$$

Probability matching via Thompson Sampling:

- 1. Assume Q(a) follows a Beta distribution for the Bernoulli bandit
 - As Q(a) is the success probability of θ
 - Beta (α, β) is within [0,1], and α and β relate to the counts of success/failure
- 2. Initialize prior (e.g., $\alpha = \beta = 1$ or something different/what we think it is)
- 3. At each time step t we sample an expected reward $\hat{Q}(a)$ from the prior Beta (α_i, β_i) for every action
 - We select and execute the best action among the samples: $a_i^{TS} = \arg\max_{a \in \mathcal{A}} \widehat{Q}(a)$
- 4. With the newly observed experience we update the Beta distribution:

$$\alpha_i \leftarrow \alpha_i + r_i \mathbb{I}[a_t^{TS} = a_i]$$
$$\beta_i \leftarrow \beta_i + (1 - r_i) \mathbb{I}[a_t^{TS} = a_i]$$

Exploration via Probability Matching (demo)

```
class ThompsonSampling(Solver):
    def __init__(self, bandit, init_a=1, init_b=1):
        init_a (int): initial value of a in Beta(a, b).
       init_b (int): initial value of b in Beta(a, b).
       super(ThompsonSampling, self).__init__(bandit)
        self. as = [init a] * self.bandit.n
        self._bs = [init_b] * self.bandit.n
   @property
   def estimated probas(self):
        return [self._as[i] / (self._as[i] + self._bs[i]) for i in range(self.bandit.n)]
   def run one step(self):
        samples = [np.random.beta(self._as[x], self._bs[x]) for x in range(self.bandit.n)]
       i = max(range(self.bandit.n), key=lambda x: samples[x])
       r = self.bandit.generate_reward(i)
       self._as[i] += r
        self._bs[i] += (1 - r)
        return i
  400
  300
                                 Egg 0.4 -
  200
              4000
                   6000
                        8000 10000
                             — AnnealedEpsilonGreedy — UCB1 — Bayesian UCB
```

Classic Exploration Strategies: Summary

We need exploration because information is valuable

- What did we not cover?
 - Boltzman exploration: the agent draws actions from a Boltzmann distribution (softmax) over the learned Q-values, regulated by a temperature parameter τ
 - When policies are approximated with neural networks:
 - Entropy loss terms: we can add an entropy term $H(\pi(a|s))$ into the loss function, encouraging the policy to take more diverse actions
 - Noise-based Exploration: add noise into the observation, action or even parameter space^{1,2}

¹ Meire Fortunato et al.: Noisy Networks for Exploration. ICLR 2018.

² Matthias Plappert et al.: Parameter Space Noise for Exploration. ICLR 2018.