Universidad Tecnológica Nacional Facultad Regional Villa María

Ingeniería Mecánica - Materiales Metálicos

Trabajo Práctico 3-02

Grupo DEL RÍO:

- Abregú, Iván.
- Antico, Rodrigo.
- Brussa, Julián.
- Cabral, Franco.
- Cárdenas, Felipe.
- Cardozo, Martín.
- Córdoba, Nathan.
- Cucco, Ramiro.
- del Río, Juan.
- Guerini, Nazareno.
- Medina, Ivo.
- Ortiz, Gastón.
- Picos, Elías.
- \blacksquare Quinteros, Lautaro.

Docentes:

- Dr. Lucioni, Eldo José.
- Ing. Victorio Vallaro, Juan Manuel.

14 de agosto de 2025

Índice

1.	Obtención de Arrabio (Pig Iron)	1
	1.1. Método conceptual	1
	1.2. Horno asociado	2
2.	Obtención de Acero (Steel)	2
	2.1. Método conceptual	2
	2.2. Hornos asociados	3
3.	Obtención de Fundición (Cast Iron)	3
	3.1. Método conceptual	3
	3.2. Horno asociado	3

Resumen

Investigue los métodos de obtención de arrabio, acero y fundición a fin de adquirir la capacidad de explicar conceptualmente los mismos. La actividad requerida incluye la identificación del tipo y uso de los hornos asociados a dichos métodos de obtención. [NOTA: A modo de orientación, puede consultar la siguiente fuente de información:]

- Aguilar Schafer, J.A. Yacimientos minerales y procesos geológicos. Sitio Web: biblio3.
- Aguilar Schafer, J.A. Explotación minera, preparación y concentración. Sitio Web: biblio3.
- Aguilar Schafer, J.A. Metalurgia extractiva del hierro. Sitio Web: biblio3.u.
- Aguilar Schafer, J.A. Hornos Industriales. Sitio Web: biblio3.ur.

1. Obtención de Arrabio (Pig Iron)

El arrabio es el producto primario de la reducción del mineral de hierro, con un alto contenido de carbono (alrededor del 4%) y otras impurezas como silicio, manganeso, fósforo y azufre. Se obtiene mediante un proceso de reducción indirecta y directa en un horno alto, donde el mineral de hierro (como hematita o magnetita) se reduce usando coque como agente reductor y caliza como fundente para eliminar impurezas en forma de escoria.

1.1. Método conceptual

- Carga: Mineral de hierro (2 t), coque (1 t), caliza (0.5 t) y aire (4 t).
- Reacciones principales:
 - Reducción indirecta (en la zona superior): $3\text{Fe}_2\text{O}_3 + \text{CO} \rightarrow 2\text{Fe}_3\text{O}_4 + \text{CO}_2$; $\text{Fe}_3\text{O}_4 + \text{CO} \rightarrow 3\text{FeO} + \text{CO}_2$; $\text{FeO} + \text{CO} \rightarrow \text{Fe} + \text{CO}_2$.
 - Reducción directa (en la zona media): FeO + C \rightarrow Fe + CO.
 - Fusión y carburación: $3\text{Fe} + 2\text{CO} \rightarrow \text{Fe}_3\text{C} + \text{CO}_2$.
 - Desulfuración y formación de escoria: $CaCO_3 \rightarrow CaO + CO_2$; impurezas como SiO_2 se combinan con CaO para formar escoria.

- **Producto:** Arrabio (1 t, con composición típica: Fe 93.7 %, C 4.5 %, Mn 0.4 %, Si 0.45 %, P 0.11 %, S 0.025 %), escoria (0.5 t) y gases (6 t).
- Temperaturas: Desde 200°C en la parte superior hasta 1500°C en la zona de fusión.
- Eficiencia: Se mejora con aire precalentado (1030°C) y enriquecido en oxígeno, reduciendo pérdidas térmicas.

1.2. Horno asociado

- **Tipo:** Alto Horno (Blast Furnace).
- Uso: Reducción de minerales de hierro en estado sólido para producir arrabio líquido. Es un horno continuo de gran capacidad (hasta 5000 t/día), con estructura cilíndrica refractaria, toberas para inyección de aire caliente y regeneradores para precalentar el aire.
- Características: Altura de 30-40 m, funciona a contracorriente (carga por arriba, gases por abajo). Asociado a procesos como sinterización de minerales y producción de coque.

Componente	Kg/t	Descripción
Mineral de hierro	490	Fuente principal de Fe.
Pellets	995	Mineral aglomerado.
Chatarra	15	300
Mineral de Mn	22	450
Caliza	112	Fundente para escoria.
Cuarzo	12	250
Coque	451	Reductor y combustible.
Petróleo + Alquitrán	44	899
Aire Insuflado	$1530 \mathrm{\ m^3/min}$	Oxidante precalentado a 1030°C.

Cuadro 1: Carga típica en Alto Horno de CSH

Composición del arrabio: Fe 93.7 %, C 4.5 %, Mn 0.4 %, Si 0.45 %, P 0.11 %, S 0.025 %.

2. Obtención de Acero (Steel)

El acero se obtiene a partir del arrabio mediante procesos de afino, donde se reduce el carbono (a 0.05-1.5%) y se eliminan impurezas (Si, Mn, P, S) mediante oxidación. Hay métodos con oxígeno (convertidores) y eléctricos. Incluye fases de oxidación (eliminar C e impurezas) y reducción (eliminar S y óxidos).

2.1. Método conceptual

- Carga típica: Arrabio (93 % Fe, 4 % C, 0.5-2 % Si, 1 % Mn, 2-0.1 % P, 0.05 % S) + chatarra + fundentes.
- Reacciones principales:

- Oxidación: Si + O₂ \rightarrow SiO₂; Mn + $\frac{1}{2}$ O₂ \rightarrow MnO; 2C + O₂ \rightarrow 2CO; P + $\frac{5}{2}$ O₂ + $\frac{3}{2}$ CaO \rightarrow $\frac{1}{2}$ Ca₃(PO₄)₂.
- Desulfuración: $FeS + CaO \rightarrow Fe + CaS$.
- Adiciones: Desoxidantes (Al, Si) y ferroaleaciones para ajustar composición.
- Metalurgia secundaria: Agitación (con argón o EMS), desgasificación (RH o tanque), horno cuchara para recalentamiento y ajustes.
- **Producto:** Acero con Fe 98 %, C 0.05-1.5 %, Si 0.5-2 %, Mn 0.3-0.6 %, P/S <0.05 %.

2.2. Hornos asociados

Cuadro 2: Comparación de Hornos para Acero

-			
Horno	Tipo de Energía	Uso Principal	Ventajas
Bessemer/Thomas	Aire	Afino rápido de arrabio	Económico, simple
LD/BOF	Oxígeno puro	Producción masiva de acero	Alta eficiencia, bajo cos
Siemens-Martin	${ m Gas/combustibles}$	Afino con chatarra	Flexible para aleacione
Arco Eléctrico	Eléctrica (arco)	Reciclaje de chatarra	Bajo impacto ambiental, pi
Inducción	Eléctrica (inducción)	Aceros especiales	Uniformidad, sin contamina

3. Obtención de Fundición (Cast Iron)

La fundición o hierro colado se obtiene remoldeando arrabio y chatarra, con alto carbono (2.5-3.75%) para propiedades de fundición. Es gris (grafito libre) o blanca (cementita).

3.1. Método conceptual

- Carga: Arrabio, chatarra, coque y fundentes.
- **Reacciones:** Fusión y ajuste de C/Si para formar grafito o cementita. Reducción de S/P.
- **Producto:** Fundición gris (maleable, usada en piezas fundidas) o blanca (dura, para laminación).

3.2. Horno asociado

- **Tipo:** Horno de Cubilote (Cupola Furnace).
- Uso: Fusión de arrabio y chatarra con coque y aire. Es un horno vertical con toberas, para producción continua de fundición (capacidad 10-50 t/h). Usado en fundiciones para piezas como bloques de motor o tuberías.
- Características: Contacto directo entre combustible, material y productos de combustión. Bajo costo, pero alto consumo de coque.

Cuadro 3: Tipos de Fundición

Tipo de Fundición	Contenido de C	Horno	Uso
Fundición Gris	2.5 3.75 %	Cubilote	Piezas fundidas maleables (e.g., motor
Fundición Blanca	2-4 %	Cubilote o Inducción	Material duro para laminación o aleacio

Estos métodos permiten explicar la transformación del mineral de hierro en productos útiles, con hornos diseñados para eficiencia energética y control de impurezas. El alto horno es clave para arrabio, convertidores y eléctricos para acero, y cubilote para fundición.