Explaining Neural Models for Image Classification

Rishabh Ranjan – 2018CS10416

Part I: Explanations

SHAP

SHapley Additive ExPlanations[1]

• Additive feature attribution:

$$g(z') = \phi_0 + \sum_{i=1}^{M} \phi_i z_i'; \ z' \in \{0,1\}^M \to \text{simplified inputs, } g \to \text{local approximation}$$

• Shapley values:

$$\phi_i(f, x) = \sum_{z' \subseteq x'} \frac{|z'|!(M - |z'| - 1)!}{M!} f_x(z') - f_x(z' \setminus i)$$

Approximations

Exact SHAP is Intractable

- KernelSHAP (Linear LIME^[2] + Shapley values)
 - model-agnostic approximation
 - KernelExplainer class in shap (Python library)
- DeepSHAP (DeepLIFT[3] + Shapley values)
 - optimised for deep neural networks
 - DeepExplainer class in shap (Python library)

^[2] Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining.* 2016.

^[3] Shrikumar, Avanti, Peyton Greenside, and Anshul Kundaje. "Learning important features through propagating activation differences." *International conference on machine learning*. PMLR, 2017.

Task

Motivation

What is the model looking at?

Wrong

Baseline:
A man sitting at a desk with a laptop computer.

Right for the Right Reasons

Our Model:

A woman sitting in front of a laptop computer.

Right for the Wrong Reasons

Baseline:
A man holding a tennis
racquet on a tennis court.

Right for the Right Reasons

Our Model:

A man holding a tennis
racquet on a tennis court.

Figure from [4]. XAI methods applied to various models expose gender bias.

Image Classification

Multi-Class Classification on MNIST^[5]-like Datasets

• Input: 28 x 28 grayscale image (pixel values o to 255)

• Classes: o to 9

• Training examples: 60,000

• Testing examples: 10,000

[5] Deng, Li. "The mnist database of handwritten digit images for machine learning research [best of the web]." *IEEE signal processing magazine* 29.6 (2012): 141-142.

Datasets

- MNIST (Modified National Institute of Standards and Technology)
 - handwritten digits
 - classes: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- FMNIST (Fashion MNIST)
 - items of clothing
 - classes: top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, boot

Results

Current Progress

- Datasets: MNIST, FMNIST
- Explainer: DeepSHAP, KernelSHAP

```
• Model: self.conv_layers = nn.Sequential(
                        nn. Conv2d(1, 10, kernel size=5),
                       nn.MaxPool2d(2),
                       nn.ReLU(),
                       nn.Conv2d(10, 20, kernel size=5),
                       nn. Dropout(),
                       nn.MaxPool2d(2),
                       nn.ReLU(),
                    self.fc layers = nn.Sequential(
                        nn.Linear(320, 50),
                       nn.ReLU(),
                        nn.Dropout(),
                        nn.Linear(50, 10),
                        nn.Softmax(dim=1)
```

Interpretation

SHAP Visualization for Multi-Class Classification

- One-vs-Rest binary classification, per class
- BLUE: absence of pixels predicts class
- RED: presence of pixels predicts class
- But, shap library inverts colors in visualization:
 - MNIST has white foreground, and black background
- So, in visualization:
 - BLUE: absence of pixels predicts class
 - RED: presence of pixels predicts class
- Red blob on the correct class is due to local approximation

MNIST Visualisation (Acc. 99%)

Label

Trouser

Pullover

Dress

Coat

Sandal

Sneaker

Shirt

Bag

Boot

Top

FMNIST Visualisation (Acc. 85%)

Part II: Counterfactuals

Motivation

Counterfactuals for Image Classification

How to change pixels to obtain desired class?

TOP: Input and predicted class **BOTTOM:** Counterfactual for desired class (Figure from [6])

[6] Samoilescu, Robert-Florian, Arnaud Van Looveren, and Janis Klaise. "Model-agnostic and Scalable Counterfactual Explanations via Reinforcement Learning." arXiv preprint arXiv:2106.02597 (2021).

Method 1: The First Approach^[7]

- $\mathcal{L}(x'|x) = (f_t(x') p_t)^2 + \lambda ||x' x||_1$, where, $x \rightarrow input$ $x' \rightarrow$ counterfactual $\mathcal{L} \to loss$ $f_t \rightarrow$ model prediction at class t $p_t \rightarrow$ desired probability of class t (typically $p_t = 1$) $\lambda \rightarrow$ hyperparameter $\|.\|_1 \rightarrow L_1$ -norm (for sparse changes)
- Counterfactual class in alibi (Python library)

[7] Wachter, Sandra, Brent Mittelstadt, and Chris Russell. "Counterfactual explanations without opening the black box: Automated decisions and the GDPR." Harv. JL & Tech. 31 (2017): 841.

Method 2: Guided by Prototypes^[8]

- Fast
- Model agnostic
- Interpretable counterfactuals (in-distribution)
- Uses class prototypes
- CounterfactualProto class in alibi (Python library)

Method 3: Via Reinforcement Learning^[9]

- Fast, model agnostic
- Does not assume model differentiability
- Allows flexible feature range constraints
 - eg. immutable protected features like gender, race, etc.
- RL technique: Deep Deterministic Policy Gradient (DDPG)
- CounterfactualRL class in alibi (Python library)

Model details

- Framework: Tensorflow2 + Keras
- MNIST test accuracy: 98.6 %
- FMNIST test accuracy: 88.71 %

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 28, 28, 1))] 0
conv2d (Conv2D)	(None, 28, 28, 64)	320
max_pooling2d (MaxPooling2D)	(None, 14, 14, 64)) 0
dropout (Dropout)	(None, 14, 14, 64)) 0
conv2d_1 (Conv2D)	(None, 14, 14, 32)	8224
max_pooling2d_1 (MaxPooling2	(None, 7, 7, 32)	0
dropout_1 (Dropout)	(None, 7, 7, 32)	0
flatten (Flatten)	(None, 1568)	0
dense (Dense)	(None, 256)	401664
dropout_2 (Dropout)	(None, 256)	0
dense_1 (Dense)	(None, 10)	2570

Trainable params: 412,778
Non-trainable params: 0

Results

Input Image

- Gray ⇒ counterfactual not found
- Method 3 failed to train due to bug in library

Method 1: Simple

Method 2: Prototype

Method 3: RL

Thank You!