Movimento Retilíneo (Parte 3)

Esdras Lins Bispo Jr. bispojr@ufg.br

Física para Ciência da Computação Bacharelado em Ciência da Computação

24 de janeiro de 2017

Plano de Aula

- Pensamento
- 2 Revisão
- Movimento Retilíneo (Cont.)

Sumário

- Pensamento
- 2 Revisão
- Movimento Retilíneo (Cont.)

Pensamento

Pensamento

Frase

Mude, mas comece devagar, porque a direção é mais importante que a velocidade.

Quem?

Clarice Lispector (1920-1977) Escritora ucraniana/brasileira.

Sumário

- Pensamento
- 2 Revisão
- Movimento Retilíneo (Cont.)

Velocidade Instantânea

Velocidade Instantânea

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

• v também é uma grandeza vetorial.

Velocidade Escalar Instantânea

Velocidade escalar instantânea, ou, simplesmente, **velocidade escalar**, é o módulo da velocidade, ou seja, a velocidade desprovida de qualquer indicação de direção ou sentido.

Velocidade Instantânea

Exercício

As equações a seguir fornecem a posição x(t) de uma partícula em quatro casos (em todas as equações, x está em metros, t em segundos e t>0):

- (a) Em que caso(s) a velocidade v da partícula é constante?
- (b) Em que caso(s) a velocidade v é no sentido negativo do eixo x?

1
$$x = 3t - 2$$

$$x = -4t^2 - 2$$

Sumário

- Pensamento
- 2 Revisão
- Movimento Retilíneo (Cont.)

Aceleração Média

$$a_{\mathsf{m\'ed}} = rac{\Delta v}{\Delta t} = rac{v_2 - v_1}{t_2 - t_1}$$

Aceleração Média

$$a_{\mathsf{m\'ed}} = rac{\Delta v}{\Delta t} = rac{v_2 - v_1}{t_2 - t_1}$$

a_{méd} também é uma grandeza vetorial.

Aceleração Média

$$a_{\mathsf{m\'ed}} = rac{\Delta v}{\Delta t} = rac{v_2 - v_1}{t_2 - t_1}$$

a_{méd} também é uma grandeza vetorial.

Aceleração Instantânea

$$a = \frac{dv}{dt}$$

Aceleração Média

$$a_{\mathsf{m\'ed}} = rac{\Delta v}{\Delta t} = rac{v_2 - v_1}{t_2 - t_1}$$

• a_{méd} também é uma grandeza vetorial.

Aceleração Instantânea

$$a = \frac{dv}{dt}$$

Em outras palavras...

Aceleração de uma partícula, em um dado instante, é a taxa de variação de velocidade nesse instante.

Exemplo: Aceleração nula

Exemplo: Aceleração positiva

Exemplo: Aceleração negativa

Logo temos que...

$$a = \frac{dv}{dt}$$

Logo temos que...

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right)$$

Logo temos que...

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2}$$

Logo temos que...

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2}$$

Em palavras...

A aceleração de uma partícula em um dado instante é a **derivada** segunda da posição x(t) em relação ao tempo nesse instante.

Logo temos que...

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2}$$

Em palavras...

A aceleração de uma partícula em um dado instante é a **derivada** segunda da posição x(t) em relação ao tempo nesse instante.

Unidade no SI

 m/s^2 (metro por segundo ao quadrado)

Elevador: posição × tempo

Elevador: velocidade × tempo

Elevador: $x(t) \in v(t)$

Elevador: aceleração × tempo

Elevador: $v(t) \in a(t)$

Elevador: o que você sentiria?

Normalmente...

Grandes acelerações são expressas em unidades g:

• 1 g =
$$9.8 \text{ m/s}^2$$

Normalmente...

Grandes acelerações são expressas em unidades g:

• 1 g =
$$9.8 \text{ m/s}^2$$

Exemplo

Montanha russa: 3g

Normalmente...

Grandes acelerações são expressas em unidades g:

• 1 g =
$$9.8 \text{ m/s}^2$$

Exemplo

Montanha russa: 3g

Aceleração positiva ou negativa?

Na disciplina, estes termos referenciarão ao **sentido** e não ao aumento/diminuição de velocidade.

Exemplo

Enunciado

Um marsupial se move ao longo do eixo x. Qual é o sinal da aceleração do animal se está se movendo

- no sentido positivo com velocidade escalar crescente;
- 2 no sentido positivo com velocidade escalar decrescente;
- o no sentido negativo com velocidade escalar crescente;
- no sentido negativo com velocidade escalar decrescente?

Velocidade constante

Logo...

$$v_{\text{m\'ed}} = v = \frac{x - x_0}{t - 0}$$

Velocidade constante

Logo...

$$v_{\text{m\'ed}} = v = \frac{x - x_0}{t - 0}$$

Neste caso...

$$x = x_0 + vt$$

Logo...

$$a_{\mathsf{m\'ed}} = a = \frac{v - v_0}{t - 0}$$

Logo...

$$a_{\mathsf{m\'ed}} = a = \frac{v - v_0}{t - 0}$$

Neste caso...

$$v = v_0 + at$$

Função x(t)...

$$v_{\mathsf{m\'ed}} = \frac{x - x_0}{t - 0}$$

Logo...

$$x = x_0 + v_{\text{méd}} t$$

Entretanto...

$$v_{\mathsf{m\'ed}} = \frac{1}{2}(v_0 + v)$$

Como sabemos que $v = v_0 + at$ temos...

$$v_{\text{m\'ed}} = \frac{1}{2}(v_0 + v)$$

 $v_{\text{m\'ed}} = v_0 + \frac{1}{2}at$

E temos...

$$x - x_0 = v_0 t + \frac{1}{2} a t^2$$

Bônus (0,5 pt)

Desafio

(Halliday 2.72) Uma pedra é lançada verticalmente para cima a partir da borda do terraço de um edifício. A pedra atinge a altura máxima 1,60 s após ter sido lançada e, em seguida, caindo paralelamente ao edifício, chega ao solo 6,00 s após ter sido lançada. Em unidades do SI:

- o com que velocidade a pedra foi lançada?
- Qual foi a altura máxima atingida pela pedra em relação ao terraço?
- 3 Qual é a altura do edifício?

Informações úteis

- Candidaturas (26 de janeiro, 17h20);
- Resposta escrita e apresentação (31 de janeiro, 19h00).

Movimento Retilíneo (Parte 3)

Esdras Lins Bispo Jr. bispojr@ufg.br

Física para Ciência da Computação Bacharelado em Ciência da Computação

24 de janeiro de 2017

