(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-79174

(43)公開日 平成10年(1998) 3月24日

(51) Int. Cl.	識別記号	庁内整理番号	FΙ			技術表示箇所
G11B 20/12		9295-5D	G11B 20/12			
	103	9295-5D		103		
G06F 12/14	320		G06F 12/14	320	E	
G11B 20/10		7736-5D	G11B 20/10		Н	
27/00			27/00		D	•
		審査請求	未請求 請求項の数	23 OL	(全43頁)	最終頁に続く
(21)出願番号	特願平9-225	5 7	(71)出願人	0000058	3 2 1	
			1	松下電器産業材	k式会社	
(22)出願日	平成9年(199	7) 2月5日	7	大阪府門真市人	字門真10	0 6 番地
•			(72)発明者 L	山内 一彦		
(31)優先権主張番号	特願平8-195	9 1		大阪府門真市人	字門真10	06番地 松下
(32)優先日	平8 (1996)	2月6日	1	電器産業株式会	≷社内	
(33)優先権主張国	日本 (JP)		(72)発明者 /	小塚 雅之		
31)優先権主張番号	特願平8-177	6 2 9	7	大阪府門真市大	に字門真10	06番地 松下
32)優先日	平8 (1996)	7月8日	. 1	電器産業株式会	≷社内	
33)優先権主張国	日本(JP)		(72)発明者 相	植田 宏		
			7	大阪府門真市大	字門真10	06番地 松下
	•		į	電器産業株式会	注社内	
			(74)代理人 #	弁理士 中島	司朗 .	
						最終頁に続く

(54) 【発明の名称】著作物の不正コピーの防止に好適なデータ受信装置

(57)【要約】

【課題】 映像データに対して著作権保護上の処理を施すことが容易なデータ受信装置等を提供する。

【解決手段】 伝送路を介してデータ送信装置から送られてきたデジタルデータを受信し外部媒体に記録するデータ受信装置であって、データ送信装置が正規のデータ送信装置であるか否かの認証を試みるマイクロプロセッサ109及びSCSIバス制御回路105と、受信したデジタルデータ中の利用形態指定コードからそのデジタルデータの媒体への記録が許可されているか否かを判定するCGMS識別・更新回路104と、認証が成功し、かつ、コピーが許可されている場合にデジタルデータを媒体に記録するデータ記録回路101とを備える。

【特許請求の範囲】

【請求項1】 伝送路を介してデータ送信装置から送られてきたデジタルデータを受信し、外部媒体に記録するデータ受信装置であって、

前記デジタルデータには、映像データと、その映像データの利用形態を指定するための利用形態指定コードとが 含まれ、

前記データ送信装置が正規のデータ送信装置であるか否 かの認証を試みる認証手段と、

前記デジタルデータを受信する受信手段と、

受信したデジタルデータ中の利用形態指定コードからそのデジタルデータの前記媒体への記録が許可されているか否かを判定するコピー許否判定手段と、

前記認証手段により認証が成功し、かつ、前記コピー許 否手段により許可されていると判定された場合に、前記 デジタルデータを前記媒体に記録する記録手段とを備え ることを特徴とするデータ受信装置。

【請求項2】 前記利用形態指定コードには、前記映像 データのコピーを許可する場合の世代の上限を示す情報 が含まれ、

前記コピー許否判定手段は、前記利用形態指定コードが 1世代以上の上限を示す場合には前記許可がされている と判定することを特徴とする請求項1記載のデータ受信 装置。

【請求項3】 前記記録手段はさらに、前記記録に先立ち、前記利用形態指定コードが示す前記世代の上限が1だけ減少するよう前記利用形態指定コードを更新する更新部を有することを特徴とする請求項2記載のデータ受信装置。

【請求項4】 前記記録手段はさらに、前記認証手段に 30 よる認証が失敗した場合又は前記コピー許否手段により 許可されていないと判定された場合には、前記映像データを無意味なデータに置換した後に前記記録をする受信 データ置換部を有することを特徴とする請求項3記載の データ受信装置。

【請求項5】 前記媒体は情報記録媒体であり、

前記記録手段は、前記情報記録媒体のユーザデータ領域 に前記映像データを記録し、そのユーザデータ領域と対 応するヘッダ領域に前記利用形態指定コードを記録する ことを特徴とする請求項4記載のデータ受信装置。

【請求項6】 前記認証手段は、前記データ送信装置に対して乱数に基づいて生成した認証データを送信し、それに対して返信されてきた証明データを用いて前記認証を試みることを特徴とする請求項5記載のデータ受信装置。

【請求項7】 前記映像データは暗号化されており、 前記記録手段は、前記記録に先立ち、前記映像データを 復号化する復号化部を有することを特徴とする請求項6 記載のデータ受信装置。

【請求項8】 前記復号化部は、前記認証データに基づ 50

いて復号鍵を生成し、その復号鍵を用いて前記映像データを復号化することを特徴とする請求項7記載のデータ 受信装置。

【請求項9】 外部媒体から取り出したデジタルデータ を伝送路を介してデータ受信装置に送信するデータ送信装置であって、

前記デジタルデータには、ユーザデータと、そのユーザ データの利用形態を指定するための利用形態指定コード とが含まれ、

10 前記媒体からデジタルデータを取り出すデータ取り出し手段と、

取り出されたデジタルデータ中のユーザデータが映像データであるか否かを判定するデータ種別判定手段と、

映像データであると判定された場合には、前記データ受信装置が前記利用形態指定コードで指定される利用形態 で前記映像データを処理する正規のデータ受信装置であるか否かの認証を試みる認証手段と、

前記認証手段により認証が成功した場合に、前記伝送路を介して前記データ受信装置に前記デジタルデータを送 20 信する送信手段とを備えることを特徴とするデータ送信 装置。

【請求項10】 前記利用形態指定コードには、前記映像データの再生及びコピーの許可に関する情報が含まれ

前記認証手段は、前記利用形態指定コードが再生のみを 許可する旨を示す場合には、前記データ受信装置が再生 のみを行うものである場合に正規のデータ受信装置と認 証し、前記利用形態指定コードがコピーを許可する旨を 示す場合には、前記データ受信装置が映像データを記録 するものである場合に正規のデータ受信装置と認証する ことを特徴とする請求項 9 記載のデータ送信装置。

【請求項11】 前記利用形態指定コードには、前記映像データのコピーを許可する場合の世代の上限を示す情報が含まれ、

前記認証手段は、前記データ受信装置が映像データを記録するものである場合には、前記利用形態指定コードが1世代以上の上限を示す場合に前記データ受信装置を正規のデータ受信装置と認証することを特徴とする請求項10記載のデータ送信装置。

40 【請求項12】 前記送信手段はさらに、前記認証手段 による認証が失敗した場合には、前記映像データを無意 味なデータに置換した後に前記デジタルデータを送信す る送信データ置換部を有することを特徴とする請求項1 1記載のデータ送信装置。

【請求項13】 前記デジタルデータにはさらに、前記ユーザデータの属性を示すデータ属性コードが含まれ、前記データ種別判定手段は、前記データ属性コードの値によって前記判定をすることを特徴とする請求項12記載のデータ送信装置。

【請求項14】 前記媒体は予め前記デジタルデータが

記録された情報記録媒体であり、

前記データ取り出し手段は、前記情報記録媒体の前記ユーザデータが格納されたユーザデータ領域と対応するヘッダ領域から前記データ属性コード及び利用形態指定コードを取り出すことを特徴とする請求項13記載のデータ送信装置。

【請求項15】 前記認証手段は、前記データ受信装置に対して乱数に基づいて生成した認証データを送信し、それに対して返信されてきた証明データを用いて前記認証を試みることを特徴とする請求項14記載のデータ送信装置。

【請求項16】 前記送信手段は、前記送信に先立ち、前記デジタルデータ中のユーザデータを暗号化する暗号 化部を有することを特徴とする請求項15記載のデータ 送信装置。

【請求項17】 前記暗号化部は、前記認証データに基づいて暗号鍵を生成し、その暗号鍵を用いて前記ユーザデータを暗号化することを特徴とする請求項16記載のデータ送信装置。

【請求項18】 映像データが含まれたデジタルデータ 20 をコピーするための情報処理システムであって、

伝送路と、

前記伝送路に接続された請求項9記載のデータ送信装置と、

前記伝送路に接続された請求項1記載のデータ受信装置 と、

オペレータからの指示に従って、前記データ送信装置が 前記媒体からデジタルデータを取り出して前記伝送路を 介して前記データ受信装置に転送し、前記データ受信装 置がそのデジタルデータを受信し前記媒体に記録する、 ように前記データ送信装置及び前記データ受信装置を制 御する制御装置とを備えることを特徴とする情報処理シ ステム。

【請求項19】 前記情報処理システムはさらに、入力されたデジタルデータ中のユーザデータが映像データである場合には、その映像データを映像信号及び音声信号に変換し、それら信号に基づくグラフィック表示及び音声出力をする再生装置を含み、

前記制御装置はさらに、オペレータからの指示に従って、前記データ送信装置が前記媒体からデジタルデータ 40を取り出して前記伝送路を介して前記再生装置に転送し、前記再生装置が前記グラフィック表示及び前記音声出力をする、ように前記データ送信装置及び前記再生装置を制御することを特徴とする請求項18記載の情報処理システム。

【請求項20】 前記映像データは、水平解像度が450本以上の映像データに対してフレーム間圧縮を施したものであることを特徴とする請求項19記載の情報処理システム。

【請求項21】 伝送路を介してデータ送信装置から送 50

られてきたデジタルデータを受信し、外部媒体に記録する方法であって、

前記デジタルデータには、映像データと、その映像データの利用形態を指定するための利用形態指定コードとが 含まれ、

前記データ送信装置が正規のデータ送信装置であるか否 かの認証を試みる認証ステップと、

前記デジタルデータを受信する受信ステップと、

受信したデジタルデータ中の利用形態指定コードからそ 10 のデジタルデータの前記媒体への記録が許可されている か否かを判定するコピー許否判定ステップと、前記認証 ステップにより認証が成功し、かつ、前記コピー許否ス テップにより許可されていると判定された場合に、前記 デジタルデータを前記媒体に記録する記録ステップとを 含むことを特徴とするデータ受信方法。

【請求項22】 前記利用形態指定コードには、前記映像データのコピーを許可する場合の世代の上限を示す情報が含まれ、

前記コピー許否判定ステップは、前記利用形態指定コードが1世代以上の上限を示す場合には前記許可がされていると判定し、

前記記録ステップにはさらに、

前記記録に先立ち、前記利用形態指定コードが示す前記世代の上限が1だけ減少するよう前記利用形態指定コードを更新するステップと、

前記認証ステップによる認証が失敗した場合又は前記コピー許否ステップにより許可されていないと判定された場合には、前記映像データを無意味なデータに置換した後に前記記録をするステップとが含まれることを特徴とする請求項21記載のデータ受信方法。

【請求項23】 前記認証ステップは、前記データ送信装置に対して乱数に基づいて生成した認証データを送信し、それに対して返信されてきた証明データを用いて前記認証を試み、

前記映像データは暗号化されており、

前記記録ステップにはさらに、前記記録に先立ち、前記認証データに基づいて復号鍵を生成し、その復号鍵を用いて前記映像データを復号化する復号化ステップが含まれることを特徴とする請求項22記載のデータ受信方

【発明の詳細な説明】

[0001]

30

【発明の属する技術分野】著作物がデジタルデータとして記録された情報記録媒体からデジタルデータを読み出して出力するデータ送信装置、データ送信装置から出力されたデジタルデータを受け取って映像再生したり2次記録するデータ受信装置、及びそれらデータ送信装置及びデータ受信装置を備えた情報処理システム等に関し、特に、著作物のコピーガードに好適なデータ送信装置等に関する。

[0002]

【従来の技術】従来、プログラムデータ、音声情報、映像情報の情報記録媒体としては Compact Disc Read Only Memory (CD-ROM) が知られている。CD-ROMは540MBの情報容量を持つ読み出し専用の光ディスクであり、プログラムデータ、音声情報、映像情報の配布媒体として広く利用されている。またCD-ROMの記録情報を読み出し、情報処理を行う情報処理システムとしては、CD-ROMドライブ内蔵パーソナルコンピュータがある。

【0003】近年、パーソナルコンピュータ上での音声情報や映像情報の処理環境の充実に伴い、CD-ROMに格納された音声情報、映像情報をパーソナルコンピュータ上で直接、音声出力、映像出力することも可能になってきている。ところが、映像情報はプログラムデータなどに比べてデータ量が極めて大きいため、ディジタル圧縮してからCD-ROMに格納することが必要になる。

【0004】I.2Mbpsの転送レートをサポートする映像情報の圧縮方式としてはMPEG(Moving Picture Exp 20 erts Group)1方式がある。MPEG1方式では主にフレーム間圧縮により映像情報を圧縮する。映像情報は1秒あたり数10枚のフレームと称される静止画から構成される動画であるが、フレーム間圧縮では、数フレーム毎に1枚のフレームだけその静止画を再現するために十分なデータを用意し、それ以外のフレームについては再現に十分なデータが用意されたフレームからの差分のデータのみ用意することにより必要なデータ量を圧縮している。

【0005】実際には、MPEG1方式では映像情報だ 30 けでなく音声情報も混在して圧縮し、MPEGシステムストリームと呼ばれるデジタルデータに圧縮する。このため、デジタルデータを一概に映像情報、音声情報と区別することが難しく、このような映像情報と音声情報、さらには、これらを再生するのに必要な情報が混在した情報は、AVデータ構造(Audio and Video data Structure)を持つデータ、あるいは、AVデータ(Audio and Video data)と呼称されることが多くなってきている。本明細書においては、少なくとも上述の映像情報及び音声情報が混在した情報を「AVデータ」という。な 40 お、非AVデータであるデジタルデータを「非AVデータ」と呼ぶ。

【0006】上述のMPEG1方式の映像は、水平解像度が250本程度であり、映画アプリケーション等、高品質の映像が要求されるアプリケーションなどには十分ではないとされる。このため、高画質な映像が要求されるアプリケーションの格納媒体には、水平解像度が430本である、アナログ方式で映像情報を格納する Laser Disc (LD) がこれまで利用されてきた。しかし、アナログ形式のデータはコンピュータ上での処理に適さな 50

いため、最近、コンピュータ上で扱えるディジタル方式であり、かつ、映画アプリケーションが実現可能な解像度を有する新しい光ディスクとして Digital Versatile Disk (DVD) が供給され始めた。DVDはCD-ROMの8倍以上のデジタルデータの記憶容量を持ち、CD-ROMの5倍以上のデータ転送レートを実現することができる。これによりDVDは映像情報のデータ圧縮方式として水平解像度450本以上を実現するMPEG2方式を採用し、映画アプリケーションに対応可能な高10 画質な動画を実現している。

【0007】以下、図面を参照しながら、上記したAVデータをパーソナルコンピュータ上で直接再生する情報処理システムであるCD-ROMドライブ付パーソナルコンピュータについて説明する。図36は、従来のCD-ROMドライブ付パーソナルコンピュータの構成を示す図である。

【0008】 CD-ROM2401は、デジタルデータが記録された情報記録媒体であり、AVデータであるMPEGストリームがファイルシステムで管理され記録されている。CD-ROMドライブ2402は、CD-ROM2401上の指定されたセクタ番号のデジタルデータを読み出して外部に出力する。

【0009】AV信号処理部2403は、入力されたMPEGストリームに対して所定の伸長処理を施した後、アナログ音声信号と映像データに変換し外部出力する。出力されたアナログ音声信号は、付随するスピーカ2403Sから音声出力される。HD装置2404は、ハードディスク装置である。入力部2405は、マウス2405Mやキーボード2405Kを介してユーザから入力された指示命令を受け取るボートである。

【0010】 I / Oバス2406は、各構成要素を接続する本コンピュータの内部バスである。ビデオ信号処理部2407は、A V信号処理部2403から出力された映像データとパーソナルコンピュータの内部で生成されたディスプレイ用の映像データとを合成し、アナログ映像信号に変換して付随するディスプレイ装置2407Dに出力する。このビデオ信号処理部2407は、典型的には、ビデオカードと呼ばれるものである。

【0011】制御部2408は、本コンピュータの全体の制御を行うものであり、さらに、プロセッサバス2408日接続されたCPU2408C、バスInterface (I/F)2408I及び主記憶2408Mから構成される。この制御部2408の主記憶2408Mにはファイルシステムを管理するためのOperating System (OS)OS下のアプリケーションとしてユーザ指示に従いてローROM2401に記録されたデータを再生したりコピーしたりする制御用プログラムとがロードされている。 尚、ディスプレイ装置2407Dには、制御部2408にロードされている制御用プログラムにより生成されたグラフィックユーザインタフェースが表示され

る。

【0012】図37は、ディスプレイ装置2407Dの 正面図である。2301はディスプレイ装置2407D の正面の外枠、2302は表示領域、2303はMPE G動画表示領域、2304はコントロールパネル表示領 域、 2 3 0 5 は入力部 2 4 0 5 に付随するキーポード 2 405K及びマウス2405Mが指定する位置座標を画 面上にフィードバックするためのグラフィックスであ

7

【0013】以上のように構成されたCD-ROMドラ 10 イブ付パーソナルコンピュータについて、以下その動作 を説明する。尚、全体の動作は汎用のパーソナルコンピ ュータ(例えば、IBM社製PC/ATコンピュータの 互換機)と同様であるため、ここでは全体の詳細な説明 は省略し、本発明と関係があるCD-ROM2401上 のAVデータが再生される動作と、CD-ROM240 1上のファイルがHD装置2404にコピーされる動作 についてのみ説明する。

【0014】ここで、「再生する」とは、AVデータを 人間が視聴できる映像及び音声に復元することをいい、 「コピーする」とは、ある媒体から情報を読み出し、そ の情報をそのまま他の媒体に記録することをいう。まず 最初に、AVデータが再生される動作について説明す る。ユーザがコントロールパネル表示領域2304に表 示されるキー"PLAY"を入力部2405に付随する マウス2405Mで指定すると、制御部2408は入力 座標から"再生開始"の再生制御命令であると解釈し、 予め定められた再生開始用MPEGストリームを格納す るファイルのCD-ROM2401上の記録アドレスを ファイルシステムに従い算出する。制御部2408は算 30 出した記録アドレスのデータ読み出し命令(READ \$Addr ess)をCD-ROMドライブ2402に行い、読み出 したデジタルデータをデータ書き込み命令(WRITE)で AV信号処理部2403に出力する。AV信号処理部2 403は入力されたMPEGストリームであるデジタル データに所定の伸長処理を施してアナログ音声信号と映 像データに変換し出力する。アナログ音声信号は付随す るスピーカで音声出力され、映像データはビデオ信号処 理部2407に入力され、コンピュータのディスプレイ 07Dで映像出力される。このようにして、CD-RO M2401から読み出されたMPEGストリームはディ スプレイ装置2407DのMPEG動画表示領域230 3に表示されることになる。

【0015】次に、CD-ROM2401に記録される ファイルがHD装置2404にコピーされる動作を説明 する。入力部2405は、付随するキーポード2405 Kにより、ユーザが入力するコマンドを受け取る。入力 されたコマンドがCD-ROM2401のファイルをH D装置2404へコピーするコピー命令であれば、制御 50 権価値の極めて高い映画アプリケーションなどについて

部2408は読み出すべきファイルのCD-ROM24 01上の記録アドレスをファイルシステムに従って算出 する。記録アドレスが算出されると、制御部2408は CD-ROMドライブ2402にデータ読出し命令(RE AD #Address) を発することで、算出した記録アドレス のデジタルデータを読出し、続いてHD装置2404に データ書き込み命令 (WRITE) を発することで、そのデ ジタルデータをHD装置2404に出力し記録させる。 【0016】このようにして、上記従来の情報処理シス テムにおいて、情報記録媒体に格納されたAVデータ は、ユーザの指示に従って再生されたりコピーされたり する。

[0017]

【発明が解決しようとする課題】しかしながら、このよ うな従来の情報処理システムでは、CD-ROM240 1 から読み出されたデジタルデータは、それがAVデー タである場合と非AVデータである場合とで区別される ことなく、制御部2408により同一に処理されてしま う。そのために、AVデータに対して著作権保護上の処 理を施すことが困難であるという問題点がある。

【0018】ここで「著作権保護上の処理」とは、AV データが著作権者の指定した利用形態に限定して情報処 理システム内で利用されるという事を確保するための処 理をいう。この「利用形態」には、具体的にはAVデー 夕の再生のみ許可(つまりHD装置等へのコピーは禁 止)する場合や、再生のみならずAVデータのコピーも 含めて許可する場合等がある。

【0019】しかし上述の従来技術による構成では、ユ ーザの誤操作等で、著作権者がコピーを許可していない AVデータを格納したファイルに対してHD装置240 4 へのコピー命令が行われた場合でも、CD-ROMド ライブ2402には再生命令の際と同様に読出し命令 (READ #Address) が入力されるため、通常データと同 様にCD-ROMドライヴ2402からAVデータが出 力され、HD装置2404にコピーされてしまうことに

【0020】また別の問題として、制御部2408の動 作はロードされたOS及び再生制御プログラムにより動 的に決定されるが、もし内容に誤りがあるプログラムが 用画像情報と合成され、付随するディスプレイ装置24 40 ロードされた場合には、ユーザの意思とは無関係に、コ ピーが許可されていないAVデータを格納したファイル がコピーされてしまうという誤動作が発生し得る。上述 した問題から、AVデータの著作権者がコピーを許可し ていないAVデータであっても、HD装置等に2次記録 される可能性があり、AVデータの著作権者の著作権が 保護されない。この問題は水平解像度が多い高画質な映 像を利用するアプリケーションで特に顕著になり、その 対抗策として、著作権者が著作権侵害による損失を見込 んだアプリケーション価格の設定をおこなったり、著作

9

は制作自体を断念するという事態も生じかねない。その 結果、数多くのアプリケーションが適切な価格でユーザ に提供されるという健全な市場は期待できず、ユーザに とっての不利益が極めて大きい。

【0021】そこで、本発明は上記課題を鑑みてなされたものであり、AVデータに対して著作権保護上の処理を施すことが容易なデータ受信装置、データ送信装置、情報処理システム、データ受信方法及びその方法を記録した情報記録媒体を提供すること、即ち、情報記録媒体に記録されたAVデータが著作権者の指定する利用形態 10でのみ処理されることを確保することが可能なデータ受信装置等を提供することを目的とする。

[0022]

【課題を解決するための手段】上記目的を達成するために、本発明に係るデータ受信装置等は、伝送路を介してデータ送信装置から送られてきたデジタルデータ(このデジタルデータには、映像データと、その映像データの利用形態を指定するための利用形態指定コードと、数置であって、前記でするとはでデータ送信装でであるかの認証を試みるとでデジタルデータの利用形態指定コードからそのデジタルデータの利用形態指定コードからそのデジタルデータの制用形態指定コードからそのデジタルデータの制用形態が許可されているかを判定するコピー許否判定手段と、前記認証手段により認証が成功し、かつに場合に前記デジタルデータを前記媒体に記録する記録手段とを備えることを特徴とする。

【0023】この構成により、映像データが、著作権者が指定する利用形態の範囲を逸脱して記録装置等のデータ受信装置に不法にコピーされるという不正が防止される。

[0024]

【発明の実施の形態】以下、本発明に係る情報処理システムの実施形態について図面を用いて説明する。

(第1実施例)第1実施例に係る情報処理システムは、DVDに記録されたデジタルデータを読み出し、その著作権者の指定する利用形態の範囲内で処理(再生及びコピー)するものであり、内部バスと外部バスを備えることを特徴とする。

(情報処理システムの構成)図1は第1実施例に係る情報処理システムの外観を示す図であり、図2は第1実施例に係る情報処理システムの構成を示す機能プロック図である。

【0025】本情報処理システムは、大きく分けて、情報処理装置40と、それにSmall Computer System Interface (SCSI) バス43を介して接続されたSCSIデバイス群50とからなる。情報処理装置40は、さらに制御部49、入力部45、キーボード45K、マウス45MIL/Oバス42 AV信号処理部47 ビデ

オ信号処理部48、ディスプレイ装置48D及びスピーカ47Sから構成される。SCSIデバイス群50は、さらにHD装置44、DVD-Read Only Memory (ROM) 41、DVD-ROMドライブ46、DVD-Rand on Access Memory (RAM) 99及びDVD-RAMドライブ910から構成される。

【0026】制御部49は、本情報処理システムを構成する上記全ての構成要素を制御するものであり、主にユーザからの指示を獲得したり、その指示に従ってDVDーROM41に記録されたデジタルデータを再生したりコピーしたりするための制御を行う。この制御部49は、I/Oバス42に接続された構成要素47、48、45に対してはI/Oバス42を介して直接制御し、SCSIバス43に接続された構成要素44、46、910に対してはAV信号処理部47を介して間接的に制御する。

【0027】入力部45は、ユーザからの指示命令を受け取るためのインタフェースであり、ここにはマウス45M及びキーボード45Kが接続されている。I/Oバス42は、情報処理装置40の内部バスであり、制御部49、入力部45、AV信号処理部47、及びビデオ信号処理部48を接続する。I/Oバス42としては、例えばPCIバス、又はISAバスを用いることができる

【0028】AV信号処理部47は、制御部49とSC SIデバイスとの中継をするSCSIインタフェースと しての機能と、SCSIバス43を介して受け取ったA Vデータを再生する、即ち、AVデータを伸長し映像デ ータ及び音声データとしてそれぞれビデオ信号処理部4 8及びスピーカ47Sに出力する正規のデータ受信装置 としての機能とを有する。ここで、「データ受信装置」 とは、伝送路を介してデジタルデータを受信し一定の処 理を行う装置をいう。また、「正規のデータ受信装置」 とは、AVデータを正規に処理するデータ受信装置、即 ち、著作権者の指定する利用形態の範囲内でデジタルデ ータを処理するデータ受信装置をいう。具体的には、正 規のデータ受信装置とは、例えば、コピーが禁止され再 生のみが許可されたAVデータを受信した場合には、そ の再生のみを行ない、これを内部で2次記録したりしな 40 いデータ受信装置をいう。

【0029】ビデオ信号処理部48は、AV信号処理部47から出力された映像データと制御部49からの指示により生成したグラフィックスデータとを合成し、アナログ映像信号に変換した後にディスプレイ装置48Dに出力する。HD装置44は、非AVデータの2次記憶装置であり、本実施例では、DVD-ROM41に記録されたプログラムデータのコピー先として利用される。

Ⅰデバイス群50とからなる。情報処理装置40は、さ 【0030】 DVD-ROM41は、読み出し専用のDらに制御部49、入力部45、キーボード45K、マウ VDであり、本情報処理システムによる処理対象であるス45M、I/Oバス42、AV信号処理部47、ビデ 50 デジタルデータが予め記録された情報記録媒体である。

12 【0036】尚、本実施例では、デバイス・タイプが

DVD-ROMドライブ46は、正規のデータ送信装置 の一つであり、DVD-ROM41に記録されたデジタ ルデータを読み出して、SCSIバス43を介してデー 夕受信装置に出力する。ここで、「データ送信装置」と は、媒体からデジタルデータを取り出して伝送路を介し てデータ受信装置に出力するものをいい、「正規のデー 夕送信装置」とは、AVデータを正規に処理するデータ 送信装置、即ち、送信先が正規のデータ受信装置である ときにのみAVデータを出力するデータ送信装置をい う。

"AVディスク読み出し専用デバイス(1010 1) "、"AVディスク記録デバイス(1011 1) "、及び "A V信号処理デバイス (10010)" のうちのいずれかであるSCSIデバイスを本明細書で は「AVデバイス」と総称する。本実施例における、D VD-ROMドライブ46は "AVディスク読み出し専 用デバイス(10101)"であり、AV信号処理部4 7は "A V 信号処理デバイス (10010) " であり、 10 DVD-RAMドライブ910は "AVディスク記録デ バイス(10111)"であり、これらはいずれもAV デバイスである.

【0031】DVD-RAM99は、書き換え可能のD VDであり、本実施例では、DVD-ROM41に記録 されたAVデータを2次記憶するための情報記録媒体と して利用される。DVD-RAMドライブ910は、正 規のデータ受信装置の一つであり、SCSIバス43を 介して受信したデジタルデータをDVD-RAM99に 記録する。

【0037】尚、SCSIバスに接続されるSCSIデ バイスは、認証用のSCSIコマンド(INQUIRY)が入 力されれば、このデバイス属性情報をSCSIバスを介 して返送する。デバイス属性情報を受けとったSCSI デバイスは、伝送元のデバイスIDと対応づけてデバイ ス属性情報を内部に保持する。このため、一度、認証用 のSCSIコマンド(INQUIRY)によりデバイス属性情 報を獲得したSCSIデバイスは、デバイス属性情報を 獲得した他のSCSIデバイスのデバイスタイプを把握 することができる。

【0032】SCSIバス43は、情報処理装置40と SCSIデバイス群50とを接続するSCSI規格に準 拠した外部バスである。本情報処理システムでは、SC 20 SIデバイスが正規のデータ送信装置又は正規のデータ 受信装置であるか否かを判断するために、SCSI規格 の範囲において独自に定義したデバイスタイプコードを 利用している。以下、このデバイスタイプコードに関連 するSCSI規格を説明する。

【0038】本明細書では、AVデバイスが、認証用S CSIコマンド (INQUIRY) を用いて、データ転送元及 びデータ転送先が互いにAVデバイスであることを確認 する動作を「AVデバイス相互認証」という。次に、D V D - R O M 4 1 , D V D - R A M 9 9 , D V D - R O Mドライブ46、DVD-RAMドライブ910、AV 信号処理部47及び制御部49について、さらに詳細に 説明する。

【0033】SCSI規格では、バスに接続されるSC SIデバイスはバス上の識別コードとしてIDコードを 有している。データやコマンドを伝送するSCSIデバ イスは、その前処理として、自らのIDコードと伝送先 のIDコードを含むバス専有要求をバスに出力し、これ 30 に伝送先SCSIデバイスが応答することによりバスを 専有し、この後、データやコマンドを伝送する。すなわ ち、SCSIバスに接続されるSCSIデバイスは、I Dコードにより、データ伝送時に互いを識別することが 可能になる。

[DVD-ROM41及びDVD-RAM99] DVD - R O M 4 1 及び D V D - R A M 9 9 (両者を併せて単 に「DVD」と呼ぶ)の構造とそれらに記録されるデジ タルデータの構造は以下の通りである。

【0034】また、さらに、SCSIバスに接続される SCSIデバイスは、SCSIデバイスのタイプ及び機 能を示すデバイス属性情報を有する。図3(a)及び図 3 (b) は、デバイス属性情報を説明するための図であ る。図3(a)はデータ属性情報の全体のフォーマット 40 を示す。同図において、先頭1バイトには上位3ピット に周辺機器分類コード、下位4ピットにデバイスタイプ コードが格納される。

【0039】 <DVDの構造>図4 (a) はDVDの正 面図である。DVD2200は中心穴2201を有す る。また、中心穴の周囲にはディスクのクランプ領域2 202が設けられ、クランプ領域の外側からデジタルデ ータを格納する情報記録領域2203が設けられてい る。

【0035】図3(b)は上記デパイスタイプコードと それが示すデバイスタイプの対応関係を示す。同図に示 されるように、デバイスタイプコードが(10101) であれば" AVディスク読み出し専用デバイス"、デ バイスタイプコードが(10111)であれば"AVデ ィスク記録デバイス"、デバイスタイプコードが(10 010) であれば "AV信号処理デバイス" を示す。

【0040】情報記録領域は、内周からリードイン領域 (lead-in)領域2205、データ領域記録 (data-record ed) 2206、リードアウト領域 (lead-out) 2207 領域に大別される。リードイン領域2205には読み出 し開始時のDVDドライブ(DVD-ROMドライブ4 6及びDVD-RAMドライブ910を併せて単に「D VDドライブ」と呼ぶ)初期化のためのデータが格納さ れ、データ記録領域2206にはアプリケーション毎に 異なるデジタルデータが格納される。リードアウト領域 50 2207はDVDドライブにデータ記録領域2206の

(8)

30

14

終端を告知する領域であり、意味のあるデジタルデータは格納されない。すなわち、DVDドライブによる読み出しにおいては、ディスク装着時にまずリードイン領域2205が読み出され、以降、外部から入力される指示に従いデータ記録領域2206が読み出されることになる。

【0041】図4(b)はDVDの断面図である。DVD220の情報記録領域は、図面の下側から厚さ約0.6mm(0.5mm以上0.7mm以下)の第1の透明基板2208、その上に情報層2209、厚さ約0.6mmの第2の透明基板2211、情報層2209と第2の透明基板2211との間に設けられ両者を接着する接着層2210から形成され、さらに、必要に応じて第2の透明基板2211の上にラベル印刷用の印刷層2212が設けられる。印刷層2212は、部分的に設けていてもよい。

【0042】光ビーム2213が入射し情報が読み出される下側の読み出し面を表面A、印刷層2212が形成される上側の面を裏面Bと呼ぶ。DVD-ROM41の場合には、情報層2209には金属薄膜等の反射膜が付20着されており、第1の透明基板2208と接する面に凹凸のピットが形成されている。このピットの長さと間隔によりデジタルデータの内容が決定される。このピットの長さや間隔はCDの場合に比べ短くなり、ピット列で形成する情報トラックのピッチも狭く構成されている。情報の読み出しは、光ビーム2213がピットに照射され、その反射率の変化を読み出すことで行われる。

【0043】一方、DVD-RAM99の場合には、情報層2209は特殊な記録材料(一種の合金)でできており、その相変化により情報が記録される。つまり、高出力の光ビームによる高温加熱によって情報層2209の光スポット2214部分が結晶状態からアモルファス状態に変化することを利用して情報の記録が行われる。情報の読み出しは、低出力の光ビームによってアモルファス相と結晶相の反射率の変化を読み出すことで行われる。

【0044】DVDでの光スポット2214は、対物レンズの開口数NAが大きく、光ビームの波長入が小さいことから、CDでの光スポットに比べ直径で約1/1.6になっている。このような物理構造をもつDVDの記 40録容量は、DVD-ROM41では約4.7Gバイト、DVD-RAM99では約2.6Gバイトである。なお、約4.7GバイトというDVD-ROM41の記憶容量は、それまでのCD-ROMに比べて約8倍近い大きさである。そのため、DVD-ROMに記録できる動画像について、その画質の大幅な向上が可能であり、再生時間についても2時間以上にまで向上させることができる。このような記録容量のため、DVDは高画質な映像の記録媒体に非常に適している。

<DVDの物理フォーマット>図5 (a) ~図5 (f)

は、DVDの物理フォーマットと称される記録データの 物理的な構造を示す図である。

【0045】図5(a)はDVDのデータ記録領域22 06の物理的な構造を示す図である。DVDのデータ記録領域2206は複数セクタに分割されている。セクタはデータの書き込み又は読み出しを行う際の最小単位である。図5(b)は、1個のセクタの構造を示す構造図である。それぞれのセクタは、先頭から、12バイトのセクタヘッダ領域、2048バイトのユーザデータ領域、及び4バイトの誤り検出符号領域が配置された構成を有する。

【0046】ユーザデータ領域にはファイル管理情報又はAVデータを含むアプリケーション情報を内容として有するデジタルデータが格納される。アプリケーション情報に含まれるAVデータとしては、MPEGストリームが格納される。またファイル管理情報としては、複数のセクタをファイルとして、さらに複数のファイルをグループ化してディレクトリとして管理するファイルシステムに関する管理情報が格納される。

【0047】セクタヘッダ領域には先頭から順に、セクタを識別するためのアドレス情報であるセクタアドレス、セクタアドレスの誤り訂正符号、Copy Generation Management System (CGMS)制御データが格納される。CGMS制御データは、そのセクタに格納されたデジタルデータの利用形態を指定する情報である。DVDドライブは、一つのセクタを読み出す時には、そのCGMS制御データに従った読み出し制御を行う。

【0048】尚、セクタのアドレス情報には、前述したリードイン領域2205、データ記録領域2206及びリードアウト領域2207のそれぞれを識別する情報も含まれており、DVDドライブはこのセクタのアドレス情報によりいずれの領域かを判定することができる。図5(c)は、6バイトからなるCGMS制御データは、1バイトのデータ属性コードと1バイトのCGMSデータと4バイトの予約からなる。

【0049】図5(d)は、データ属性コードの意味を 説明する図である。データ属性コードが「01h」

(「h」は、16進数であることを示す)であるときは、このセクタのユーザデータ領域にAVデータが記録されていることを示す。「00h」であるときは、データ属性の指定が行わなれていないことを示す。図5

(e) は、CGMSデータの構造を示す図である。CGMSデータのサイズは1バイトであるが、その上位2ビットは、CGMSコードと呼ばれ、このセクタのユーザデータ領域に格納されるデジタルデータの利用形態を指定する情報が格納される。

【0050】図5(f)は、CGMSコードの意味を説明する図である。CGMSコードが「00」である場合 はコピー許可を、「10」である場合は1世代に限りコ

ピー許可を、「11」である場合にはコピー禁止である ことをそれぞれ意味する。なお、「1世代のコピー許 可」とは、例えば、DVD-ROM41に記録されたA VデータをDVD-RAM99にコピーすることは許さ れるが、そのDVD-RAM99にコピーされたAVデ ータをさらに他のDVD-RAMにコピーすることは許 されないことをいう。また、本実施例においては、いず れのコードでも再生は許可されていることを意味する。 【0051】以上のようなセクタ構造により、DVDド ライブは、DVDのセクタのユーザデータ領域からデジ 10 タルデータを読み出す際にそのセクタのCGMS制御デ ータを参照することで、そのデジタルデータがAVデー 夕であるか否か、及び、そのコピーの許否がいかなる内 容に設定されているかを知ることができる。

<DVDの論理フォーマット>図6(a)と図6(b) は、DVDの論理フォーマットと称される記録データの 論理的な構造を示す図である。

【0052】図6(a)はDVDのデータ記録領域22 06の論理的な構造を示す図である。データ記録領域2 206は、先頭にファイル管理情報が記録され、その後 20 ろに複数のファイルが記録される。「ファイル」とは、 複数のセクタのデータをグループ化して管理するための 論理的なデータ単位である。各ファイルの属性を示す情 報はファイル管理情報に格納される。またファイル管理 情報は、さらに、複数のファイルのグループをディレク トリという単位で管理するための情報も含みうる。

【0053】図6(b)は、本実施例におけるファイル **/ディレクトリ構造を示すツリー図である。楕円がディ** レクトリを、長方形がファイルを示す。この例では、R ootディレクトリの下に、DVD_VIDEOディレ クトリと、Filel. DAT及びFile2. DAT の2つのファイルが存在する。DVDディレクトリに は、さらに、Moviel. VOB、Movie2. V OB、及びMovie3. VOBの計3個のファイルが 存在する。

【0054】本実施例では、ファイルの種類を容易に識 別できるように、ファイル名及びディレクトリ名に関し て規約を定めている。ファイル名の拡張子にVOBが付 与されたものをAVデータファイルとしている。また、 名称がDVD__VIDEOであるディレクトリをAVデ 40 ータ格納用の特定ディレクトリとし、このディレクトリ に格納されるファイルを一律にAVデータを格納するフ ァイルとしている。図6(b)のツリー図では、Mov i e 1. VOB、Movie 2. VOB、及びMovi e 3. VOBがAVデータを格納するファイル(以下、 このようなAVデータを格納するファイルを「AVデー タファイル」という。) である。一方、File1. D AT及びFile 2. DATが非AVデータを格納する ファイル (以下、このような非AVデータを格納するフ ァイルを「非AVデータファイル」という。) である。

【0055】このような名称規約によって、読み出しが 指定されたファイルやディレクトリの名称を解釈するこ とで、AVデータファイルの読み出しが試みられたか、 又は、非AVデータファイルの読み出しが試みられたか を判別することが可能となる。例えば、読み出しを試み たファイルのパスにDVD VIDEOという名称のデ ィレクトリが含まれていれば、AVデータファイルの読 み出しであると判別できる。尚、本実施例のファイル管 理情報は、ISO13346規格に従うものとする。

【0056】図7(a)~図7(c)は、図6(a)及 び図6(b)で示された論理フォーマットのファイルシ ステムとして利用されているISO13346規格を説 明するための図である。これらの図を用いて、本発明に 関係のある手順、つまりファイル名よりファイルの記録 アドレスを獲得する手順を説明する。図7(a)は、I SO13346規格に従ったファイル管理情報内のデー 夕の論理的な関係を示す図である。

【0057】 1 S O 1 3 3 4 6 規格では、読み出し専用 ディスクに加えて、書き換え可能ディスクにも対応する ため、ファイルの記錄位置はファイルエントリ(File E ntry)と呼ばれる情報に格納され管理される。例えば、 Moviel. VOBにはMoviel用のファイルエ ントリがファイル管理情報内に存在し、File1. D ATにはFile1用のファイルエントリがファイル管 理情報内に存在する。このためファイルの記録アドレス を獲得するためには、対象となるファイルエントリを獲 得することが必要になる。これらファイルエントリはフ ァイルの階層構造を形成するディレクトリを辿ることに より獲得することができる。ディレクトリ情報はディレ クトリファイルとしてファイル管理情報内に存在する。 ディレクトリファイルは複数のファイル識別記述子(Fi le Identify Descriptor)から構成され、各ファイル識 別記述子にはディレクトリが管理するファイル又はディ レクトリのファイルエントリの記録アドレス及びファイ ル名が含まれている。ディレクトリ階層構造の頂点であ るルートのファイルエントリはファイル管理情報内に予 め定められた位置に格納されるファイル群記述子(File Set Descrddiptor) に格納される。このため、ルート を起点としてファイル名によりディレクトリ階層を辿り 対象となるファイルエントリを獲得し、ファイルエント リからアドレス情報を獲得することが可能になる。

【0058】図7(b)は、ディレクトリ用のファイル 識別記述子の構造を示す図である。このファイル識別記 述子のディレクトリ名については、図示されているよう に、上述した名称規約が定められている。図7(c) は、ファイル用のファイル識別記述子の構造を示す図で ある。このファイル識別記述子のファイル名について も、図示されているように、上述した名称規約が定めら れている。

[DVD-ROMドライブ46] 図8は、DVD-RO

50

Mドライブ46の詳細な構成を示すブロック図である。 [0059] DVD-ROMドライブ46はさらに、イ ンタフェースコネクタ500、データ読み出し回路50 1、ССМS制御データ用メモリ502、ユーザデータ 用メモリ503、CGMSデータ識別回路504、SC SIバス制御回路505、ユーザデータ置換回路50 6、内部データバス507、制御バズ508、マイクロ プロセッサ509から構成される。

【0060】インタフェースコネクタ500は、SCS Iバス43とDVD-ROMドライブ46を接続するコ ネクタである。データ読み出し回路501は、アドレス 情報としてセクタ番号の指定を受けると、付随するディ スク駆動装置を制御し、指定されたセクタに格納される デジタルデータをDVD-ROM41から読み出し、セ クタのユーザデータ領域のユーザデータをユーザデータ 用メモリ503に、セクタのセクタヘッダ領域のCGM S 制御データをCGMS制御データ用メモリ502に格 納する。

【0061】 CGMS制御データ用メモリ502は、セ クタデータのCGMS制御データを一時的に格納するメ 20 モリである。ユーザデータ用メモリ503は、セクタデ ータのユーザデータを一時的に格納するメモリである。 CGMSデータ識別回路504は、CGMS制御データ の内容を識別する回路であり、具体的には、CGMS制 御データ用メモリ502に格納されたCGMS制御デー 夕を読込み、そのCGMS制御データ中のデータ属性コ ードを参照することにより、ユーザデータ用メモリ50 3に格納されているユーザデータのデータ属性が"未指 定"及び"AVデータ"のいずれであるかを判断し、そ の結果をマイクロプロセッサ509に通知する。また、 そのCGMS制御データ中のCGMSデータを参照する ことにより、ユーザデータ用メモリ503に格納されて いるユーザデータのコピー制限情報が"コピー許可"、 "一世代コピー許可"及び"コピー不許可"のいずれで あるかを判断し、その結果をマイクロプロセッサ509 に通知する。

【0062】SCSIバス制御回路505は、SCSI バスのコントローラであり、インタフェースコネクタ5 00を介してSCSIパス43に接続されており、SC SI規格に従ってコマンド及びデータの送受信を行う。 ユーザデータ置換回路506は、著作権を保護するため の回路の一つであり、マイクロプロセッサ509からの 指示により、ユーザデータ用メモリ503に格納されて いるユーザデータを読み込み、それをNULLデータに 変換する。ここで「NULLデータ」とは、例えば「0 0 0 0 h 」のような、情報をもたないダミーデータのこ

【0063】内部データバス507は、データ読み出し 回路501が読み出したデータ又はSCS1バス制御回 路505がSCS1バス43に出力するためのデータの 50 る。

伝送路である。制御バス508は、マイクロプロセッサ 509から出力される指示情報(つまりコマンドのセッ ト) や、各回路から送られる処理結果情報などの伝送路 である。

18

【0064】マイクロプロセッサ509は、内臓する制 御プログラムに従って、SCSIバス制御回路505か 受け取ったSCSIコマンドを解釈し、DVD-ROM ドライブ46全体の制御を行う。以下、データ送受信先 の機器のデバイス・タイプ及び相互認証を行うための認 証用SCSIコマンド (INQUIRY)、DVD上のデジタ ルデーター般を読み出すためのSCSIコマンド(REA D)、デジタルデータの中でも専らAVデータの読み出 しを行うための専用コマンドであるSCSIコマンド (READ_AV) が入力された際のマイクロプロセッサ50 9の制御を説明する。

【0065】 <認証用SCSIコマンド (INQUIRY) > マイクロプロセッサ509は、入力されたSCSIコマ ンドが認証用SCSIコマンド(INQUIRY)であると判 定すると、SCSIバス制御回路505を介して、DV D-ROMドライブ46自身の機器属性データを図3 (a) で示されるフォーマットでこの認証用SCSIコ マンド (INQUIRY) を発行した対象機器に返送する。 尚、返送される機器属性データ中のデバイス・タイプ・ コードは、図3(b)に示されるように、"1010 1" (AVディスク再生専用デバイス)である。

【0066】 <データ読み出し用SCSIコマンド(RE AD) >マイクロプロセッサ509は、入力されたSCS I コマンドがデータ読み出し用SCSI コマンド (REA D) であると判定すると、コマンドのパラメータとして 付随されてきたセクタ番号に従ってDVD-ROM41 に記録されたデジタルデータを読み出すようデータ読み 出し回路501を起動する。データ読み出し回路501 により読み出されたデジタルデータは、セクタのヘッダ 領域に格納されたCGMS制御データと、そのセクタの ユーザデータ領域に格納されたユーザデータとに分離さ れて、それぞれCGMS制御データ用メモリ502と、 ユーザデータ用メモリ503とに格納される。

【0067】その後、CGMSデータ識別回路504 は、ユーザデータ用メモリ503に格納されたユーザデ 40 一夕 (2048バイト)がAVデータかどうかを判定す る。その結果、ユーザデータがAVデータである場合 は、著作権保護処理として、ユーザデータ置換回路50 6 は、そのユーザデータ(2048バイト)をNULL データ(2048バイト)に置換する。その後、SCS 1 パス制御回路505は、置換されたユーザデータをこ のコマンドを発行したSCSIデバイスに転送する。 【0068】一方、ユーザデータが非AVデータである 場合には、上記置換を行うことなく、そのユーザデータ をこのコマンドを発行したSCSIデバイスに転送す

30

<AVデータ読み出し用SCSIコマンド(READ_AV)
>マイクロプロセッサ509は、入力されたSCSIコマンドがAVデータ読み出し用SCSIコマンド(READ_AV)であると判定すると、同様に、コマンドのパラメータとして付随されてきたセクタ番号に従ってDVDーROM41に記録されたデジタルデータを読み出し回路501を起動する。データ読み出し回路501を起動する。データ読み出しの路501を起動する。データ読み出しりりのヘッダ領域に格納されたCGMS制御データは、セクタのユーザデータ領域に格納されたユーザデータとに分離されて、それぞれCGMS制御データ用メモリ502とユーザデータ用メモリ503とに格納される。

【0069】その後、マイクロプロセッサ509は、CGMSデータ識別回路504により、ユーザデータ用メモリ503に格納されたユーザデータ(2048バイト)がAVデータかどうか、さらに、そのユーザデータのコピー制限情報が"コピー許可"、"一世代コピー許可"及び"コピー不許可"のいずれであるかを判断する。

【0070】続いて、マイクロプロセッサ509は、デ 20 ータ転送先のSCSIデバイスの機器属性データ(これは、AVデータ読み出し用SCSIコマンド(READ_A V)と付随して送られてくる)を参照することで、上記ユーザデータの転送先がAVデバイスであるか否か、さらに、AVデバイスである場合に、上記ユーザデータが再生に使用されるのか、コピーに使用されるのかを判断する。具体的には、データ転送先のSCSIデバイスのデバイスタイプコードが"10101"、"10111"及び"10010"のいずれかの場合にはAVデバイスと判断し、"10010"であれば再生に使用されると判断し、"10111"であればコピーに使用されると判断し、"10111"であればコピーに使用されると判断する。

【0071】上記判断の結果、次のいずれかの場合には、マイクロプロセッサ509は、CGMS制御データ用メモリ502に格納されたCGMS制御データ(1セクタあたり6バイト)とユーザデータ用メモリ503に格納されたユーザデータ(1セクタあたり2048バイト)の合計2054バイトのデジタルデータを、データ転送の単位を2054バイトとして、このコマンドを送ってきたSCSIデバイスに出力する。

- (1) ユーザデータ(2048バイト)が非AVデータ である場合。
- (2) ユーザデータ (2048バイト) がAVデータであり、かつ、そのAVデータが再生に使用される場合。
- (3) ユーザデータ(2048バイト)がAVデータであり、かつ、そのAVデータがコピーに使用され、かつ、上記コピー制限情報が"コピー許可"又は"一世代コピー許可"である場合。

【0072】一方、次のいずれかの場合には、マイクロ プロセッサ509は、著作権保護処理として、ユーザデ 50

ータ用メモリ 5 0 3 に格納されたユーザデータ(1 セクタあたり 2 0 4 8 バイト)をユーザデータ置換回路 5 0 6 により N U L L データ(2 0 4 8 バイト)に置換した後に、それに C G M S 制御データ用メモリ 5 0 2 に格納された C G M S 制御データ(6 バイト)を加えた合計 2 0 5 4 バイトのデジタルデータを、データ転送の単位を2 0 5 4 バイトとして、このコマンドを送ってきた S C S I デバイスに出力する。

- (1) ユーザデータがAVデータであり、かつ、ユーザデータの転送先が非AVデバイスである場合。
- (2) ユーザデータがAVデータであり、かつ、そのA Vデータがコピーに使用され、かつ、上記コピー制限情報が"コピー禁止"である場合。

[DVD-RAMドライブ910] 図9は、DVD-R AMドライブ910の詳細な構成を示すブロック図である。

【0073】 DVD-RAMドライブ910はさらに、インタフェースコネクタ100、データ記録回路101、CGMS制御データ用メモリ102、ユーザデータ用メモリ103、CGMSデータ識別・更新回路104、 SCSIバス制御回路105、ユーザデータ置換回路106、内部データバス107、制御バス108、マイクロプロセッサ109から構成される。

【0074】上述した構成のなかでインタフェースコネクタ100、CGMS制御データ用メモリ102、ユーザデータ用メモリ103、 SCSIバス制御回路105、ユーザデータ置換回路106、内部データバス107、制御バス108はDVD-ROMドライブ46のそれぞれ対応する構成と同様であり、重複する説明は省略し、機能の異なるマイクロプロセッサ109及び、新規構成であるCGMSデータ識別・更新回路104、データ記録回路101についてのみ説明を行う。

【0075】尚、説明を省略した各構成と第1実施例における構成との対応関係は、インタフェースコネクタ100とインタフェースコネクタ500、CGMS制御データ用メモリ102とCGMS制御データ用メモリ502、ユーザデータ用メモリ103とユーザデータ用メモリ503、SCSIバス制御回路105とSCSIバス制御回路505、ユーザデータ置換回路106とユー40 ザデータ置換回路506、内部データバス107と内部データバス507である。

【0076】データ記録回路101は、マイクロプロセッサ109からの指示に従って、ユーザデータ用メモリ103又はCGMS制御データ用メモリ102に格納されたデータをDVD-RAM99に書き込む。この際、CGMS制御データとユーザデータについては、図5(a)~図5(f)に示されるフォーマットで、指定されたセクタのセクタヘッダ領域とユーザデータ領域に記

【0077】CGMSデータ識別・更新回路104は、

録する。

21

CGMS制御データの内容を識別したり更新したりする 回路である。具体的には、マイクロプロセッサ109からの指示に従って、CGMS制御データ用メモリ102からCGMS制御データを読み出し、その中にデータ属性コードとCGMSコードを識別し、その結果をマイクロプロセッサ109に報告する。また、マイクロブロセッサ109からの指示に従って、CGMS制御データ用メモリ102に格納されたCGMS制御データ中のCGMSデータの更新処理を行う。この更新処理においては、CGMSコードが"1世代コピー許可(d7,d6 = 1,10)"である場合には、"コピー禁止(d7,d6 = 1,1)"に更新する。これは、2世代目のコピーを禁止するためである。

【0078】マイクロプロセッサ109は、内蔵する制御プログラムに従って、SCSIバス制御回路105が受け取ったSCSIコマンドを解釈し、DVD-RAMドライブ910全体を制御する。以下、AVデータ記録用SCSIコマンド(WRITE_AV)、認証用SCSIコマンド(INQUIRY)が入力された場合のこのDVD-RAMドライブ910の動作について説明する。

【0079】 <認証用SCSIコマンド(INQUIRY)>マイクロプロセッサ109は、SCSIバス制御回路105に入力されたSCSIコマンドが認証用SCSIコマンド(INQUIRY)であると判定すると、SCSIバス制御回路105を介して、DVD-RAMドライブ910の機器属性データを図3(a)で示されるフォーマットでこのSCSIコマンド(INQUIRY)を発行したSCSIデバイスに返送する。尚、返送される機器属性データ中のデバイス・タイプ・コードは、図3(b)に示されるように、"10111"(AVディスク記録デバイス)である。

【0080】また逆に、マイクロプロセッサ109は、SCSIバスに接続されたSCSIデバイスに認証用SCSIコマンド(INQUIRY)を発行し、対象機器の属性データを受け取り、これを、SCSIデバイスのIDコードと対応づけて、例えば内部メモリに保持する。また、マイクロプロセッサ109は、逆に、その対象機器に認証用SCSIコマンド(INQUIRY)を発行してその対象機器の属性データを受け取り、これを、その対象機器のIDコードと対応づけて内部メモリに保持する。【0081】<AVデータ記録用SCSIコマンド(WR

ITE_AV) >マイクロプロセッサ109は、入力されたS
CSIコマンドがAVデータ記録用SCSIコマンド
(WRITE_AV) であると判定すると、SCSIバス制御回路105を制御して、2054バイトの転送単位のデジタルデータを受取り、デジタルデータのユーザデータを
ユーザデータ用メモリ103に、CGMS制御データを
CGMS制御データ用メモリ102に格納する。

【0082】次に、CGMSデータ識別・更新回路10 4は、ユーザデータ用メモリ103に格納されたユーザ 50

データがコピーが許可されているデータか否かを判定する。具体的にはCGMSデータのCGMSコードが"1世代コピー許可(d7, d6=0.0)"であればコピー許可であるデジタルデータであると判定する。さらに、マイクロプロセッサ109は、事前に行われた相互認証により獲得し保持している機器の属性データを参照することで、AVデータ記録用SCSIコマンド($WRITE_AV$)を発行したSCSIデバイスがAVデバイスであるか否かを判定する。

【0083】その結果、AVデータ記録用SCSIコマンド(WRITE_AV)を発行したSCSIデバイスがAVデバイスであり、かつ、ユーザデータがコピー許可なデジタルデータであれば、CGMSデータ識別・更新回路104は、CGMS制御データを更新する。その後、データ記録回路101は、ユーザデータ(2048バイト)と、いま更新されたCGMS制御データ(6バイト)をDVD-RAM99に記録する。

【0084】一方、相互認証の結果により、 SCSIコマンド (WRITE_AV) を発行したSCSIデバイスが非20 AVデバイスである場合、あるいは、コピー禁止なデジタルデータ、具体的にはCGMSコードが"コピー禁止(d7,d6 = 1.1)"である場合は、ユーザデータ置換回路106は、ユーザデータ用メモリ103に格納されたユーザデータをNULLデータに置換する。その後、データ記録回路101は、そのNULLデータ(2048バイト)とCGMS制御データ(6バイト)をDVD-RAM99に記録する。

[AV信号処理部47]図10は、AV信号処理部47の詳細な構成を示すプロック図である。

30 【0085】AV信号処理部47はさらに、コネクタ600、1/Oバス制御回路601、I/Oコマンド・ステータス・レジスタ602、SCSIバス制御回路603、データバッファ604、CGMSデータ検出識別回路605、MPEGデコーダ606、D/A変換回路607、制御バス608、内部データバス609、マイクロプロセッサ610、インタフェースコネクタ611から構成される。

【0086】コネクタ600は、AV信号処理部47とI/Oバスを接続する。I/Oバス制御回路601は、I/Oバスから入力される情報を識別する回路である。具体的には、入力された情報がデータであれば、それをデータバッファ604に格納し、I/Oコマンド等の制御コマンドであれば、I/Oコマンド・ステータス・レジスタ602に格納する。

【0087】 I / Oコマンド・ステータス・レジスタ 6 0 2 は、制御部 4 9 からこの A V 信号処理部 4 7 に入力されるコマンドや、この A V 信号処理部 4 7 による処理結果などを一時的に格納するメモリである。 S C S I バス制御回路 6 0 3 は、S C S I バスのコントローラであり、インタフェースコネクタ 6 1 1 を介して S C S I バ

る。尚、返送される機器属性データ中のデバイス・タイプ・コードは、図3(b)に示されるように、"10010" (AV信号処理デバイス)である。

24

【0093】 <データ読み出し用 I / O コマンド (10_R EAD) >マイクロプロセッサ 6 1 0 は、 I / O コマンド・ステータス・レジスタ 6 0 2 に格納されたコマンドが"データ読み出し用 I / O コマンド (10_READ)"であると判定すると、SCSIバス制御回路 6 0 3 を制御してDVD-ROMドライブ 4 6 にDVD-ROM 4 1 の デジタルデータを読み出すためのSCSIコマンド (RE AD) を発行し、SCSIバス制御回路 6 0 3 が受け取ったデジタルデータを一時的にデータバッファ 6 0 4 に格納し、 I / O バス制御回路 6 0 1 を制御してデータバッファ 6 0 4 に格納したデジタルデータを I / O バス 4 2 を介して制御部 4 9 に出力する・

【0094】 <AVデータ再生用I/Oコマンド(IO_PLAY)>マイクロプロセッサ610は、I/Oコマンド・ステータス・レジスタ602に入力されたコマンドが"AVデータ再生用I/Oコマンド(IO_PLAY)"であると判定すると、DVD-ROMドライブ46と相互認証を行う。具体的にはSCSIバス制御回路603を制御してDVD-ROMドライブ46に認証用SCSIコマンド(INQUIRY)を送出し、返送されてくる機器属性データによりデータ転送元のSCSIデバイスがAVデバイスであるかどうかを判定する。

【0095】その結果、データ転送元のSCSIデバイスがAVデバイスとは異なる場合には、マイクロプロセッサ610は、I/〇コマンド・ステータス・レジスタ602にエラー・ステータスを格納して処理を終了する。一方、データ転送元のSCSIデバイスがAVデバイスである場合には、マイクロプロセッサ610は、SCSIバス制御回路603を制御してDVD-ROMドライブ46にAVデータ読み出し用SCSIコマンド(READ_AV)を発行し、転送されてくるデジタルデータをデータバッファ604に一時格納する。

【0096】その後、データバッファ604に格納されたデジタルデータは、マイクロプロセッサ610により、CGMSデータ検出識別回路605に転送され、CGMSデータ検出識別回路605は、そのデジタルデータがAVデータであるか否かを判定する。その結果、AVデータと判定されると、マイクロプロセッサ610は、そのデジダルデータをMPEGデコーダ606に転送し、一方、非AVデータであると判定されると、MPEGデコーダ606への転送を中断する。

【0097】MPEGデコーダ606に転送されたデジタルデータは、ここで所定の伸長処理が施され、映像データ及び音声データに変換されて出力される。変換された映像データはビデオ信号処理部48へ出力され、音声データはD/A変換回路607によりアナログ音声信号に変換され、外部に出力されると共に付随するスピーカ

ス43と接続されており、SCSI規格に従ってコマンド及びデータの送受信を行う。このSCSIバス制御回路603は、マイクロプロセッサ610からの指示に従い、AVデータ読み出し用SCSIコマンド(READ_AV)をDVD-ROM41に発行することによりDVD-ROM41に対してAVデータの読み出し要求をしたり、AVデータ記録用SCSIコマンド(WRITE_AV)をDVD-RAMドライブ910に発行することによりDVD-RAM99への記録要求をしたりする。

【0088】データバッファ604は、制御バス608及び内部データバス609上のデータを受け取り、一時的に格納するメモリである。CGMSデータ検出識別回路605は、入力されるデジタルデータ中からCGMS制御データを抽出し、その中のデータ属性コードの値からデータ属性を判定し、その結果、AVデータであればユーザデータのみをMPEGデコーダ606に出力し、AVデータでなければそのデジタルデータのMPEGデコーダ606への出力を中断する。

【0089】MPEGデコーダ606は、入力されるM 20 PEGストリームであるデジタルデータに対し所定の伸長処理を施すことによって映像データ及び音声データに変換し出力する。D/A変換回路607は、MPEGデコーダ606から出力された音声データをアナログ音声信号に変換して出力する。

【0090】制御バス608は、マイクロプロセッサ6 10から発行される指示情報や、各回路から報告される 処理結果情報などの伝送路である。内部データバス60 9は、1/Oバス制御回路601、SCSIバス制御回路603、データバッファ604、CGMSデータ検出 30 識別回路605を接続するバスである。

【0091】インタフェースコネクタ611は、AV信号処理部47とSCSIバスを接続するコネクタである。マイクロプロセッサ610は、内蔵する制御プログラムに従って、I/Oコマンド・ステータス・レジスタ602に格納されたI/Oコマンド、及びSCSIバス制御回路603が受け取ったSCSIコマンドを解釈して、AV信号処理部47全体の制御を行う。

[0092]以下、データ読み出し用 I / Oコマンド (IO_READ)、A Vデータ再生用 I / Oコマンド (IO_PL 40 AY)、A Vデータコピー用 I / Oコマンド (IO_COP Y)、認証用 S C S I コマンド (INQUIRY) が入力された 場合の A V 信号処理部 4 7 の動作を説明する。

く認証用SCSIコマンド (INQUIRY) >マイクロプロセッサ610は、SCSIバス制御回路603に入力されたSCSIコマンドが認証用SCSIコマンド (INQUIRY) であると判定すると、SCSIバス制御回路603を介して、AV信号処理部47の機器属性データを図3(a)に示されるフォーマットでこのSCSIコマンド (INQUIRY) を発行したSCSIデバイスに返送す

47Sにより音声出力される。

【0098】 <AVデータコピー用 I / Oコマンド(IO _COPY) >マイクロプロセッサ 6 1 0 は、I / Oコマンド・ステータス・レジスタ 6 0 2 に入力されたコマンドが "AVデータコピー用 I / Oコマンド (IO _COPY)"であると判定すると、DVDーROMドライブ 4 6 及びDVDーRAMドライブ 9 1 0 とそれぞれ相互認証を行う。具体的にはSCSIバス制御回路 6 0 3 を制御してDVDーROMドライブ 4 6 に認証用SCSIコマンド(INQUIRY)を送出し、返送されてくる機器属性データによりデータ転送元のSCSIデバイスがAVデバイスであるかどうかを判定する。また同様に、DVDーRAMドライブ 9 1 0 に認証用SCSIコマンド (INQUIRY)を送出し、返送されてくる機器属性データによりデータ転送元のSCSIデバイスがAVデバイスであるかどうかを判定する。

【0099】その結果、データ転送元あるいはデータ転 送先のいずれかのSCSIデバイスがAVデバイスとは 異なる場合には、マイクロプロセッサ610は、I/O コマンド・ステータス・レジスタ602にエラー・ステ 20 ータスを格納して処理を終了する。 一方、データ転送元 及びデータ転送先のSCSIデバイスのいずれもがAV デバイスである場合には、マイクロプロセッサ610 は、コピーすべきAVデータを指定するセクタ番号とコ ピー先であるDVD-RAMドライブ910の機器属性 データ"10111"を付随させたAVデータ読み出し 用SCSIコマンド (READ_AV) をDVD-ROMドラ イブ46に発行し、読み出して転送されてくるデジタル データをデータバッファ604に一時格納する。デジタ ルデータが格納されると、マイクロプロセッサ610 は、AVデータ記録用のSCSIコマンド(WRITE_AV) をDVD-RAMドライブ910に発行すると共に、バ ッファに格納されたデジタルデータをDVD-RAMド ライブ910に出力する。

[制御部49] 制御部49はさらに、図2に示されるように、プロセッサバス49B、CPU49C、バスI/F49I及び主記憶49Mから構成される。CPU49Cは、プロセッサバス49Bを介してバスI/F49I及び主記憶49Mに接続されている。CPU49Cは、主記憶49Mに口一ドされているOS及び本情報処理シ 40ステム固有の制御用プログラムに従って、入力部45を介して受け取られた外部からの指示命令を解釈し、DVD-ROM41からのデジタルデータの取り出しとその伝送先の制御を行う。制御部49は、ディスプレイ装置48Dに図37に示されるような表示をしたり、キーボード45Kやマウス45Mを制御して、ユーザとの対話を行う。

【0 1 0 0】 なお、D V D - R O M 4 1 のファイル管理情報は、ディスクのローディング時等に行われる初期化動作において、D V D - R O M 4 1 から読み出され、制 50

御部49の内部の主記憶49Mに保持される。上述したように、このファイル管理情報を1SO13346規格に従って検索することにより、DVD-ROM41に格納されるファイルの記録アドレスをファイル名から獲得することができるからである。

【0101】制御部49は、入力部45を介してDVD - ROM41のAVデータファイルを再生する旨の指示 命令を受け取った場合には"AVデータ再生制御"を行 い、AVデータファイルをコピーする旨の指示命令を受 け取った場合には"AVデータコピー制御"を行い、D VD-ROM41上のファイルをコピーする旨の指示命 令を受け取った場合には"データコピー制御"を行う。 【0102】 "AVデータ再生制御"では、制御部49 は、指定されたファイルがAVデータを格納するファイ ルかどうかを判定する。これは、指定されたファイルが 格納されたディレクトリ名がDVD-Videoである か否かによって判定する。その結果、AVデータファイ ルであると判定した場合には、AVデータ再生用I/O コマンド(IO_PLAY)をI/Oバス42を介してAV信 号処理部47に発行することでAVデータファイルの再 生を行わせる。一方、非AVデータファイルであると判 定した場合には、ビーブ音等でエラーをユーザに告知す

【0103】 "AVデータコピー制御"では、制御部49は、上記と同様にして、指定されたファイルがAVデータを格納するファイルかどうかを判定する。その結果、AVデータファイルであると判定した場合には、AVデータ再生用I/Oコマンド(I0_COPY)をI/Oバス42を介してAV信号処理部47に発行することでAVデータファイルのコピーを行わせる。一方、非AVデータファイルであると判定した場合には、ビーブ音等でエラーをユーザに告知する。

【0104】 "データコピー制御"では、制御部49は、上記と同様にして、指定されたファイルがAVデータを格納するファイルかどうかを判定する。その結果、非AVデータファイルであると判定した場合には、I/〇パス42を介してAV信号処理部47にデータ読み出し用I/〇コマンド(IO_READ)を発行することで非AVデータファイルのコピーを行わせる。一方、AVデータファイルであると判定した場合には、著作権保護処理としてピープ音等でエラーをユーザに告知する。

【0105】尚、制御部49は、上述した I/Oコマンドの発行時において、付随するパラメータとして、データの読み出し及び書き出しを行うドライブを指定するためのデバイス識別用の IDコード及び読み出しを行うファイルの開始アドレス及びデータ長を共に出力する。

[コマンドの一覧] なお、上述した I / O コマンド及び S C S I コマンドの意味をまとめると、図 1 1 (a)及 び図 1 1 (b)に示される表の通りとなる。即ち、図 1 1 (a)に示される I / O コマンドは、I / O バス 4 2

30

28

27

を介して制御部49からAV信号処理部47に発行される制御指令であり、図11(b)に示されるSCSIコマンドは、SCSIバス43を介してSCSIデバイス間でやりとりされる制御指令である。

(情報処理システムの動作)次に、以上のように構成された情報処理システムの動作について、DVD-ROM41に記録されたファイルがDVD-RAM99にコピーされる場合、HD装置44にコピーされる場合及び再生される場合の3つのケースを例にとって説明する。なお、上述したように、DVD-ROM41がDVD-ROMドライブ46に装着された際の初期化動作としてファイル管理情報が制御部49の主記憶49Mに保持されているものとする。

[DVD-RAM99へのコピー]まず、DVD-RO M41のAVデータファイルがDVD-RAM99にコ ピーされる際の情報処理システムの動作を説明する。

【0106】図12は、DVD-ROM41のAVデータファイルがDVD-RAM99にコピーされる処理手順を示すフローチャートである。図13は、上記コピーにおける制御部49、AV信号処理部47、DVD-R 20 OMドライブ46及びDVD-RAMドライブ910間での通信のやりとりを示す通信シーケンス図である。

【0107】まず、制御部49が入力部45を介してユーザからファイルのコピー要求を受け取ると、そのファイルを格納するディレクトリ名を参照することによってAVデータファイルであるかどうかを判定する(S300、S301)。その結果、制御部49は、指定されたファイルが非AVデータファイルであると判定すればエラーメッセージをユーザに告知して動作を終了する(S303、S304)。

【0108】一方、制御部49は、指定されたファイルがAVデータファイルであると判定すればAV信号処理部47にAVデータコピー用 I / O コマンド(I0 _ COP Y)を発行する(S302、Q300)。その I / O コマンド(I0 _ COP Y)を受け取ったAV信号処理部47は、まず、DVD-ROMドライブ46に対して認証用SCSIコマンド(INQUIRY)を発行し、AVデバイス相互認証を行う(S305、Q301~Q304)。

【 0 1 0 9 】続いて、A V信号処理部 4 7 は、D V D - R A M ドライブ 9 1 0 に対しても認証用 S C S I コマン 40 ド (I N Q U I R Y) を発行し、A V デバイス相互認証を行う (S 3 0 6、Q 3 0 5~Q 3 0 8)。上記 2 つの A V デバイス相互認証がいずれも正常に成功した場合、A V 信号処理部 4 7 は、まず、D V D - R O M ドライブ 4 6 に対して A V データ読み出し用 S C S I コマンド (READ_A V) を発行する (S 3 0 7、Q 3 0 9)。

【0110】そのコマンドを受けたDVD-ROMドライブ46は、デジタルデータを読み出し、AV信号処理部47に転送する(処理H、Q310)。図14は、処理Hの詳細な手順を示すフローチャートである。AVデ 50

ータ読み出し用SCSIコマンド (READ_AV) を受けた DVD-ROMドライブ46は、DVD-ROM41の 指定されたアドレスからデータを読み出し、CGMS制御データをCGMS制御データ用メモリ502に、ユーザデータをユーザデータ用メモリ503にそれぞれ格納 する (S321)。

[0111] 次に、DVD-ROM41は、CGMS制御データに基づいてセクタデータがコピー可能なデータかどうかを判定する(S322)。具体的には、CGMS制御データ識別回路504は、CGMS制御データ用メモリ502に格納されたCGMS制御データを参照することで、ユーザデータ用メモリ503に格納されているユーザデータのデータ属性("未指定"か"AVデータ"か)及びコピー制限情報("コピー許可"(d7,d6=0.0)か"一世代コピー許可"(d7,d6=1.0)か"コピー不許可"(d7,d6=1.1)か)を識別する。

【0112】続いて、DVD-ROMドライブ46は、AVデバイス相互認証が成功している(つまりデータ受信装置が正規のデータ受信装置である)かどうかを判定する(S323)。その結果、相互認証に成功し、かつ、ステップS322の識別によりAVデータであるでである。では、CGMS制御データ(6バイト)及びユーザデータに送単位として、セクタデータをAV信号処理部47に転送する(S325)。それ以外の場合には、DVD-ROMドライブ46は、ユーザデータをユーザデータを選換回路506によってNULLデータに変換して、S324)から、AV信号処理部47に転送する(S325)。

【0113】以上の処理Hが終了すると、DVD-ROMドライブ46からのデジタルデータを受け取ったAV信号処理部47は、DVD-RAMドライブ910にAVデータ記録用SCSIコマンド(WRITE_AV)を発行し(Q311)、そのデジタルデータを転送する。(S308、Q312)。AV信号処理部47から転送されてきたデジタルデータを受け取ったDVD-RAMドライブ910は、DVD-RAM99への記録を行う(処理1、Q311~Q313)。

【 0 1 1 4 】 図 1 5 は、処理 I の詳細な手類を示すフローチャートである。 D V D - R A M ドライブ 9 1 0 は、上記デジタルデータを受け取ると、それを C G M S 制御データとユーザデータに分離する (S 3 3 1)。 具体的には、デジタルデータ中のユーザデータをユーザデータ用メモリ 1 0 3 に、C G M S 制御データを C G M S 制御データ用メモリ 1 0 2 に格納する。

【0115】次に、DVD-RAMドライブ910は、 ユーザデータ用メモリ103に格納されたユーザデータ がコピーが許可されているデータか否かを判定する(S 332)。具体的にはCGMSデータ中のCGMSコー

. - - - -

_ ---

29

ドが"1世代コピー許可 (d7,d6 = 1,0)"又は"コピー許可 (d7,d6 = 0,0)"であればコピー許可であるデジタルデータであると判定する。

【0116】続いて、DVD-RAMドライブ910は、既に行ったAVデバイス相互認証(Q307、Q308)が成功し、かつ、上記ユーザデータがコピー許可されたものであるかを判断する(S333)。この相互認証の成功は、相互認証により獲得し保持している機器の属性データを参照することでSCSIコマンド(WRITE_AV)を発行したSCSIデバイスがAVデバイスであるか否かによって判定する。

【0117】その結果、上記判断(S333)が満足されない場合、即ち、相互認証が失敗に終わっていたり、又は、デジタルデータがコピー禁止である場合は、DVD-RAMドライブ910は、ユーザデータ用メモリ103に格納されたユーザデータをNULLデータに置換する(S334)。一方、満足された場合には、DVD-RAMドライブ910は、CGMS制御データを更新する(S335)。具体的には、CGMSコードが"1世代コピー許可(d7,d6=!,0)"である場合には、

"コピー禁止(d7,d6 = 1,1)"に書き換える(S 3 3 5)。

【0118】そして、DVD-RAMFライブ910は、そのユーザデータと、いま更新されたCGMS制御データをDVD-RAM99に記録する(S336)。以上の処理(処理 $H\sim$ 処理I)を指定された転送長だけ繰り返すことで、DVD-ROM41に記録されたデジタルデータは、著作権保護処理が行われつつ、DVD-RAM99にコピーされる(S309、S310)。

[HD装置44へのコピー]次に、DVD-ROM41のファイルがHD装置44にコピーされる際の本情報処理システムの動作を説明する。

【0119】図16は、DVD-ROM41のファイルがHD装置44にコピーされる処理手順を示すフローチャートである。図17(a)は、上記ファイルが非AVデータファイルであり、かつ、DVD-ROMドライブ46から読み出されたデータが非AVデータである場合の制御部49、AV信号処理部47、DVD-ROMドライブ46及びHD装置44間での通信のやりとりを示す通信シーケンス図である。

【0120】図17(b)は、上記ファイルが非AVデータファイルであるが、DVD-ROMドライブ46から読み出されたデータがAVデータである場合の制御部49、AV信号処理部47、DVD-ROMドライブ46及びHD装置44間での通信のやりとりを示す通信シーケンス図である。まず、制御部49が入力部45を介してユーザからファイルのコピー要求を受け取ると、そのファイルを格納するディレクトリ名を参照することによってAVデータファイルであるかどうかを判定する(S201、S202)。

【0121】その結果、制御部49は、指定されたファイルがAVデータファイルであると判定すればエラーメッセージをユーザに告知して動作を終了する(S202、S204、S213)。一方、制御部49は、指定されたファイルが非AVデータファイルであると判定すればAV信号処理部47にデータ読み出し用 I / O コマンド(I0_READ)を発行する(S202、S203、Q200、Q210)。

[0122] データ読み出し用 I / Oコマンド (10_READ) を受け取った A V 信号処理部 4 7 は、D V D - R OMドライブ 4 6 に対してデータ読み出し用 S C S I コマンド (READ) を発行する (S 2 0 5、Q 2 0 1、Q 2 1 1)。そのコマンドを受け取った D V D - R OMドライブ 4 6 は、指定されたデジタルデータを読み出して A V信号処理部 4 7 を介して制御部 4 9 に転送する (処理 C、Q 2 0 2 ~ Q 2 0 3、Q 2 1 2 ~ Q 2 1 3)。

【0123】図18は、処理Cの詳細な処理手順を示すフローチャートである。データ読み出し用SCSIコマンド (READ) を受け取ったDVD-ROMドライブ46
は、DVD-ROM41の指定されたアドレスからデジタルデータを読み出し、デジタルデータのユーザデータに付随するCGMS制御データを検出する(S206)。そして、DVD-ROMドライブ46は、検出されたCGMS制御データに従いユーザデータのデータ属性がAVデータかどうかを判定する(S207)。

【0124】その結果、DVD-ROMドライブ46は、読み出されたユーザデータのデータ属性が非AVデータであると判定すれば、ユーザデータ(2048バイト)をAV信号処理部47に転送する(S209、Q202)。逆にDVD-ROMドライブ46は、読み出されたユーザデータのデータ属性がAVデータであると判定すれば、ユーザデータをユーザデータ置換回路506によりNULLデータに置換した後にAV信号処理部47に転送する(S208、Q212)。

【0125】AV信号処理部47に転送されたデジタルデータは、制御部49に再転送され(Q203、Q213)、制御部49によりHD装置44に書き込み処理が行われてHD装置44に記録される(S210、Q204~Q207、Q214~Q217)。具体的には、制御部49は出力先SCSIデバイスとしてHD装置44を指定する書き込み用I/Oコマンド(IO_WRITE)と共に読み出したデジタルデータをAV信号処理部47に再度出力する(Q204、Q214)。AV信号処理部47は、入力されたデジタルデータを書き込み用SCSIコマンド(WRITE)でHD装置44に書き込む(Q205~Q207、Q215~Q217)。

【0126】以上の処理(処理C、S210)を指定された転送長だけ繰り返すことで、DVD-ROM41に記録されたAVデータファイルは、非AVデータについてはそのまま、AVデータについてはNULLに置換さ

50

れた後に、それぞれHD装置44にコピーされる(S2 11. S212).

[再生] 次に、DVD-ROM41に記録されたAVデ ータファイルが再生される場合の本情報処理システムの 動作について説明する。

【0127】図19は、DVD-ROM41に記録され たAVデータファイルが再生される場合の処理手順を示 すフローチャートである。図20は、上記再生における 制御部49、AV信号処理部47及びDVD-ROMド ライブ46間で行われる通信のやりとりを示す通信シー 10 ケンス図である。まず、制御部49が入力部45を介し てユーザから指定ファイルの再生要求を受け取ると(S 100)、そのファイルを格納するディレクトリ名を参 照することによって指定されたそのファイルがAVデー タファイルであるかどうかを判定する(S101)。

【0128】制御部49は、指定されたファイルがAV データファイルであると判定すれば、AV信号処理部4 7にDVD-ROMドライブ46からの読み出しを要求 するためにAVデータ再生用I/Oコマンド(IO_PLA Y) を発行する (S102、Q100)。 一方、非AV データファイルであると判定した場合には、エラー処理 (例えばビープ音でエラーをユーザに告知) をおこない (S103)、終了する(S104)。

【0129】AVデータ再生用I/Oコマンド(IO_PLA Y)を受け取ったAV信号処理部47は、DVD-RO Mドライブ46に対して認証用SCSIコマンド (INQU IRY) を発行し、AVデバイス相互認証を行う(S10 5、Q101~Q104)。AVデバイス相互認証が正 常に成功した場合、AV信号処理部47は、DVD-R OMドライブ46に対してAVデータ読み出し用SCS I コマンド (READ_AV) を発行する (S106、Q10 5).

【0130】そのコマンドを受けたDVD-ROMドラ イブ46は、データの読み出しと転送を行う(処理A、 Q106)。図21は、処理Aの詳細な手順を示すフロ ーチャートである。AVデータ読み出し用SCSIコマ ンド (READ_AV) を受けたDVD-ROMドライブ46 は、DVD-ROM41の指定されたアドレスからデー 夕を読み出し、CGMS制御データをCGMS制御デー モリ503にそれぞれ格納する(S107)。

【0 1 3 1】次に、CGMSデータ識別回路 5 0 4 は、 CGMS制御データに基づいてセクタデータがAVデー タかどうかを判定する (S108)。 もしセクタデータ がAVデータでなければステップS111にジャンプす る。また、もしセクタデータがAVデータであればステ ップS109に進む。DVD-ROMドライブ46は、 AVデバイス相互認証が成功している(つまりデータ受 信装置が正規のデータ受信装置である)かどうかを判定 する(S109)。もし成功であれば、CGMS制御デ 50 データ受信装置を備える情報処理システムは、AVデー

ータ (6パイト) 及びユーザデータ (2048パイト) の合計である2054バイトをデータ転送単位として、 セクタデータをAV信号処理部47に転送する(S11 1)。もし成功でなければ、DVD-ROMドライブ4 6は、ユーザデータをユーザデータ置換回路506によ ってNULLデータに変換して(S110)から、AV 信号処理部47に転送する(S111)。

【0132】以上の処理Aが終了すると、AV信号処理 部47は、映像出力処理を行う(処理B)。図22は、 処理Bの詳細な手順を示すフローチャートである。AV 信号処理部47は、DVD-ROMドライブ46からデ ジタルデータを受け取り、CGMS制御データとユーザ データとに分離する(S112)。

【0133】 そして、AV信号処理部47は、AVデバ イス相互認証が成功している(つまりデータ送信装置が 正規のデータ送信装置である)かどうかを判定する(S 113)。 もし成功でなければ、処理 B を終了する。 一 方、成功であれば、続いてCGMS制御データを参照す ることでユーザデータがAVデータかどうかを判定す る。その結果、ユーザデータがAVデータでなければ、 処理Bを終了する。一方、ユーザデータがAVデータで あれば、ユーザデータのデコード処理をおこない、得ら れた映像データはビデオ信号処理部48に出力し、音声 データはD/A変換した後にアナログ音声信号としてス ピーカ47Sに出力する(S115)。

【0134】そして、アナログ音声信号は付随するスピ ーカ47Sから出力され、映像データは、ビデオ信号処 理部48により、グラフィクスデータと合成処理が施さ れ、アナログ映像信号に変換され、付随するディスプレ イ装置48Dによって映像表示され(S116)、これ によって処理Bは終了する。以上の一連の処理(処理 A、処理B)は、指定された転送長だけ繰り返されるこ とで、AVデータファイルの再生処理が終了する(S1 17, S118, Q107).

[まとめ]以上のように、本発明による情報処理システ ムのデータ送信装置 (DVD-ROMドライブ46) に おいては、デジタルデータがAVデータを含むと判定さ れ、かつデータ受信装置が正規のデータ受信装置である と認証された場合のみ、AVデータの利用形態の指定情 タ用メモリ502に、ユーザデータをユーザデータ用メ 40 報と共にAVデータを出力するように制御する制御部を 備えている。

> 【0135】また、本発明による情報処理システムのデ ータ受信装置 (AV信号処理部47、DVD-RAMド ライブ910)においては、AVデータの利用形態の指 定情報を判定し、指定された利用形態の範囲内で、入力 されたAVデータを再生あるいは記録処理する機能を有 すると共に、これを示す認証用データを生成し、出力す る認証部を備えている。

> 【0136】これにより、本発明のデータ送信装置及び

34

タをその指定される利用形態の範囲内で扱う正規のデータ受信装置以外のSCSIデバイスに出力されることが禁止される。また、本実施例の情報処理システムによれば、図20及び図13の通信シーケンス図から判るように、AVデータは制御部49を経由することなくSCSIデバイス間で転送される。これにより、再生制御プログラムの誤り等により、制御部49を経由中にAVデータが抜き取られるという誤動作が回避される。

【0137】また、本実施例の情報記録媒体には、デジタルデータがAVデータであるか否かをファイル管理レベルとセクタ管理レベルのいずれでも認証可能な状態で記録され、かつ、AVデータについては利用形態の範囲を指定する情報も記録される。このため、ファイル管理レベルしか認証しない機器(例えばパーソナルコンピュータ)であっても、セクタ管理レベルしか認証しない機器(例えばディスクドライブ)であってAVデータの場合には、その利用形態をも確認することができる。従って、本実施例の情報記録媒体は、パーソナルコンピュータ及びディスクドライブを備えた本情報処理システムのようなシステムに好適である。

【0138】これにより、認証と復号が関連づけられ、より強固なコピーガードが実現される。以上、第1実施例に係る情報処理システムについて説明したが、本発明はこの実施例に限定されるものでないことは言うまでもない。例えば、DVD-RAMドライブ910が記録する情報記録媒体(DVD-RAM99)は書き換え可能型のDVDであったが、1度だけ書き込みが可能な追記型のDVDや、その他MO(Magneto-Optical disk)等の光磁気ディスクであってもよい。

【0139】また、本実施例では、デジタルデータの再生やコピーはAV信号処理部47の介在によって実現されたが、これに限定されるものではない。DVDーROM41やDVDーRAMドライブ910がSCSIコントローラとして直接通信し合う方式であってもよい。なお、本実施例の情報処理システムにおいて、DVDーROM41に格納されるの具体的なパラメータを以下のように設定することが好ましい。すなわち、水平解像度が450本以上である高解像度の動画情報を、MPEG規格に準拠したデータとして)DVDーROM41に記録することが望ましい。これは、映画アプリケーションが可能になる高質であり、本発明の効果である。作権保護上の効果が極めて有功になるからであ

【0140】また、本実施例では、CGMSコードはコピー許可、1世代コピー許可、コピー禁止の3通りだけであったが、予約コード(d7=0,d6=1)等を用いることで2世代や3世代までのコピー許可等を定義し、DVD-RAMドライブ910がコピー時にそのCGMSコードを更新することによって、さらにきめ細か 50

い利用形態に対応した著作権保護処理が可能となるのは 言うまでもない。

(第2実施例)次に、本発明の第2実施例に係る情報処理システムを説明する。

【0141】第2実施例に係る情報処理システムは、D VDに記録されたデジタルデータを読み出し、その著作 権者の指定する利用形態の範囲内で処理(再生及びコピー)するものであり、暗号を用いて相互認証及びデータ 転送を行うことを特徴とする。

(情報処理システムの構成)図23は第2実施例に係る情報処理システムの外観を示す図であり、図24は第2実施例に係る情報処理システムの構成を示す機能プロック図である。

【0142】本情報処理システムは、制御部1049、 I/Oパス1042、入力部45、キーボード45K、 マウス45M、HD装置44、DVD-ROMドライブ 1046、DVD-ROM41、DVD-RAMドライブ 1910、DVD-RAM99、AV信号処理部10 47、ビデオ信号処理部48、ディスプレイ装置48D 及びスピーカ47Sから構成される。これら構成要素の うち第1実施例の情報処理システムと同じ構成要素には 同一の符号を付けている。

【0143】図2と図24を比較して判るように、本情報処理システムは第1実施例のものと基本的な構成要素は同じであるが、以下の点において相違する。本情報処理システムでは、第1実施例で用いられた外部バスであるSCSIインタフェースが用いられず、主な構成要素1049、44、1046、1910、1047は全て内部バスであるI/Oバス1042に接続され、図23の外観図に示されるように、1つのシャーシに収納されている。

【0144】このI/Oバス1042は、具体的には、ATAPI(AT Attachment PacketInterface)と呼ばれるデジタル・インタフェースである。ATAPIでは、SCSIとは異なり、その規約上、制御部1049以外はバスマスタになれないという制限がある。つまり、SCSIのようにDVD-ROMドライブ1046とAV信号処理部1047の間でAVデータやコマンドを直接やりとりするということができず、AVデータやコマンドは全て制御部1049によって中継される。これは、制御部1049においてAVデータが不正にコピーされ易いことを意味する。

【0145】そこで、第2実施例の情報処理システムは、AVデータを高いセキュリティレベルで保護するために、データ送信装置(DVD-ROMドライブ1046)及びデータ受信装置(AV信号処理部1047、DVD-RAMドライブ1910)は、相互認証だけでなく、データの暗号化及び復号化を行う構成要素を備えている。これによって、仮に1/Oバス1042からAVデータが不正にコピーされたり誤動作により抜き取られ

たりした場合であっても、そのAVデータは暗号化され ているので、AVデータの著作権は保護される。

【0146】以下、本情報処理システムの各構成及び動 作について、第1実施例と異なる点を中心に説明する。 [DVD-ROMドライブ1046] 図25は、DVD - ROMドライブ1046の詳細な構成を示すプロック 図である。

【0147】DVD-ROMドライブ46はさらに、イ ンタフェースコネクタ1500、データ読み出し回路5 01、CGMS制御データ用メモリ502、ユーザデー 10 夕用メモリ503、CGMSデータ識別回路504、イ ンタフェース制御回路1505、ユーザデータ置換回路 506、内部データバス507、制御バス508、マイ クロプロセッサ1509及び暗号・認証回路1510か ら構成される。第1実施例のDVD-ROMドライブ4 6と相違する構成要素は以下である。

【0148】インタフェースコネクタ1500は、 1/ Oバス1042とDVD-ROMドライブ1046を接 統するコネクタである。インタフェース制御回路150 5は、ATAPI方式に従い、I/Oバス1042を介 20 して、コマンド及びデータの送受信を制御する。マイク ロプロセッサ1509は、内臓する制御プログラムに従 って、インタフェース制御回路1505が受け取ったコ マンドを解釈し、DVD-ROMドライブ1046全体 の制御を行う。具体的なコマンドと制御内容は後述す

【0149】暗号・認証回路1510は、マイクロプロ セッサ1509からの指示に従って、I/Oバス104 2へのデジタルデータの出力に先立つ認証処理と暗号化 処理とを行う。この暗号・認証回路1510が行う認証 30 処理は、第1実施例におけるAVデバイス相互認証とは 相違し、データ送信装置とデータ受信装置との間で認証 用データを授受することによって、相互に相手が正規の デバイスであることを認証することで行われる。この認 証処理は、認証用データ生成、認証結果判定、及び証明 用データ生成の3つのステップからなる。一方、暗号・ 認証回路1510が行う暗号化処理は、DVD-ROM 41から読みだしたデジタルデータを暗号化するための 処理であり、暗号鍵生成及び暗号化の2つのステップか らなる。

【0150】なお、暗号・認証回路1510は、上述し た暗号化処理及び認証処理において、乱数発生演算及び 暗号化関数E(KEYI、DATA)を用いた演算を行う。以下、 これら演算の内容とその特徴を説明する。暗号化関数E (KEYI、DATA)は、暗号鍵「KEYI」を用いてデータ「DAT A」を一定の暗号化アルゴリズムで変換することを意味 する。そして、この暗号化関数E(KEYI、DATA)の逆関数 である複号化関数D(KEY2、DATA)が存在する。ここでKEY 2は復号鍵である。すなわち、暗号化されたデータをEnc rypiData = E(KEYi, Data)とするとき、Data = D(KEY2, 50 を特定し、それを証明用データK1としてDVD-RO

EncryptData)が成立する。つまり、暗号化関数E(KEY 1、DATA)によって暗号化されたデータEncryptDataに復 号化関数D(KEY2、DATA)による演算を施せば、つまりD(K EY2, EncryptData)を演算すれば、元のデータDataを復 号することができる。なお本実施例における暗号化関数 E(KEYI、DATA)、復号化関数D(KEY2、DATA)では、暗号鍵 「KEY1」=復号鍵「KEY2」(=「KEY」)が成立するもの とし、以後、暗号鍵と復号鍵は等しいものとして説明す

【0151】一方、乱数発生演算とは、ここでは16ビ ットからなる乱数を発生することを意味する。典型的に は、動的なハードウェアの値を利用して発生させる。例 えば、DVDのリードイン領域に格納されるアプリケー ション毎に異なる初期化用のデータは読み出しに先立ち DVDドライブの内部に保持されているため、この値等 を利用することができる。また、タイマーを別途設け、 これを利用してもよい。

【0152】以下、暗号・認証回路1510が有する機 能、即ち、認証用データ生成、認証結果判定、証明用デ ータ生成、暗号鍵生成、及び暗号化について順に説明す る。

<認証用データ生成>まず暗号・認証回路 1 5 1 0 が行 う認証用データ生成を説明する。暗号・認証回路151 0は、まず2つの乱数R1及びR2(これらは、上述の 通りいずれも16ピット)を生成する。次に乱数R1を 上位16ピット、乱数R2を下位16ピットに配した3 2ビット値を生成する。なお、この32ビットのデータ を「データR1||R2」と表記する。

【0153】暗号・認証回路1510は、予め内部に保 持している暗号鍵Sを用いて、このデータR1||R2を 暗号化関数E(KEY、DATA)に従って暗号化することで、認 証用データC1を生成する。つまり、認証用データC1 =E(S, R1||R2)なる関係が成立する。

<認証結果判定>次に暗号・認証回路 1 5 1 0 が行う認 証結果判定を説明する。

【0154】認証結果判定は、データ送信装置であるD VD-ROMドライブ1046が、データ受信装置(A V信号処理部1047、DVD-RAMドライブ191 0) が正規のデータ受信装置であるかどうかを認証する 処理である。この認証は、データ受信装置が復号化関数 40 D(KEY, DATA)及び復号鍵Sを有するかどうかを判定する ことによって行われる。この判定は、具体的には、以下 の手順で行われる。

【0155】まずDVD-ROMドライブ1046は、 . 認証用データ生成によって得られた認証用データC1 (=E(S, R!||R2)) を認証の対象であるデータ受信装置 に出力する。データ受信装置は、受け取った認証用デー 夕C1に対して復号鍵Sを用いて復号化関数D(KEY、DAT A)に従った復号化を行うことで、乱数R2に相当する値

Mドライブ1046に返す。

【0156】もしデータ受信装置が復号化関数D(KEY, DA TA)及び復号鍵Sをもつなら、認証用データC1から乱 数R2を算出できるはずである。なぜならデータ受信装 置は、認証用データC1からデータRII|R2に復号し、そ の下位16ビットである乱数R2を特定することができ るからである。DVD-ROMドライブ1046では、 暗号・認証回路1510は、データ受信装置から受け取 った証明用データK1を用いて認証結果判定を行う。具 体的には、もしK1=R2であれば、認証成功の旨をマ 10 イクロプロセッサ1509に知らせ、K1=R2でなけ れば、認証失敗の旨をマイクロプロセッサ1509に知 らせる。

【0157】このようにして、DVD-ROMドライブ 1046はデータ受信装置が正規のデータ受信装置であ ると認証する。

<証明用データ生成>次に暗号・認証回路1510が行 う証明用データ生成を説明する。相互認証を完遂するた めには、データ受信装置がDVD-ROMドライブ10 4.6 を認証する必要がある。このときには、DVD-R 2.0 OMドライブ1046は、上記とは逆の立場になって正 規のデータ送信装置であることをそのデータ受信装置に 証明するための証明用データを生成する。

【0158】具体的には、まず、データ受信装置は、2 つの乱数R3及びR4から生成されたデータR3川R4 を復号化関数D(KEY、DATA)及び復号鍵Sによって変換し て得られる認証用データC2をDVD-ROMドライブ 1046に出力する。つまり認証用データC2は、D(S, R3||R4)に等しい。そして、DVD-ROMドライブ1 0 4 6 では、暗号・認証回路 1 5 1 0 は、自ら所有して 30 いる暗号化関数E(KEY, DATA)及び暗号鍵Sにより、認証 用データC2から乱数R4に対応する値を求め、この値 を証明用データK2として、データ受信装置に返す。す なわち、E(S, C2)の演算によって、データR3||R4を 求め、これからさらに得られる乱数R4に対応する値を 証明用データK2とする。データ受信装置は、データ送 信装置からの証明用データK2を用いて認証結果判定を 行う。すなわち、もしK2=R4であれば、認証成功で あり、K2=R4でなければ、認証失敗である。

【0159】〈暗号鍵生成〉次に暗号・認証回路151 0が行う暗号鍵生成を説明する。ここでいう暗号鍵は、 DVD-ROM41から読み出されたデジタルデータを 暗号化するために用いられる秘密鍵である。暗号・認証 回路1510は、マイクロプロセッサ1509からの指 示に従って、その事前に行われている認証用データ生成 及び証明用データ生成のそれぞれの過程で獲得した乱数 R1と乱数R3を用いて、データR1川R3を作成し、 これを暗号鍵として生成する。したがって、この暗号鍵 は、DVD-ROMドライブ1046とそのデータ転送

なる。

【0160】〈暗号化〉次に暗号・認証回路1510が 行う暗号化を説明する。ここでの暗号化は、DVD-R OM41から読み出されたデジタルデータを暗号化する ために用いられる秘密鍵である。暗号・認証回路151 0は、マイクロプロセッサ1509からの指示に従っ て、DVD-ROM41から読み出されたデジタルデー 夕を暗号鍵生成により生成した暗号鍵R1 IIR3を用い て暗号化関数E(KEY, DATA)に従って暗号化する。すなわ ち、入力されるデータをData、暗号化されたデータをEn cryptDataとすると、EncryptData = E(R1||R3, Data)の **油質が行われる。**

【0161】次に、このDVD-ROMドライブ104 6に各種コマンドが入力された場合の動作を説明する。 このDVD-ROMドライブ1046が受け付けるコマ ンドには、データ読み出し用コマンド(READ)、AVデ ータ読み出し用コマンド(READ_AV)、データ受信装置 認証用コマンド (CHALLENGE_RECEIVER) 、データ受信装 置確認用コマンド (CONFIRM_RECEIVER) 、データ送信装 置証明用コマンド (PROOF_SENDER) 及び証明用データ獲 得用コマンド (GET_PROOF_INFO) がある。

【0162】これらのうち、データ読み出し用コマンド (READ) が入力された場合のDVD-ROMドライブ1 046の動作は第1実施例のデータ読み出し用SCSI コマンド (READ) と同じであるので、その他のコマンド について説明する。なお、後者の4つのコマンド(CHAL LENGE_RECEIVER. CONFIRM_RECEIVER. PROOF_SENDER. GE T_PROOF_INFO) は、AVデータ読み出し用コマンド(RE AD_AV) の入力に先立ち行われる一連の認証処理のため のコマンドである.

【0163】<データ受信装置認証用コマンド(CHALLE NGE_RECEIVER) >マイクロプロセッサ1509は、入力 されたコマンドがデータ受信装置認証用コマンド(CHAL LENGE_RECEIVER) であると判定すると、データ受信装置 の認証を開始するために、暗号・認証回路1510によ り認証用データを生成しインタフェース制御回路150 5を介して制御部1049へ出力する制御を行う。

【0164】 <データ受信装置確認用コマンド、(CONFIR M_RECEIVER) >マイクロプロセッサ1509は、入力さ 40 れたコマンドがデータ受信装置確認用コマンド (CONFIR M_RECEIVER) であると判定すると、上記認証の成否を判 定するために、上記コマンドと併せて入力された証明用 データを暗号・認証回路1510により検証する。そし て、その認証結果を内部に保持する。

【0165】 <データ送信装置証明用コマンド (PROOF_ SENDER) >マイクロプロセッサ1509は、入力された コマンドがデータ送信装置証明用コマンド(PROOF_SEND ER) であると判定すると、自分が正規のデータ送信装置 . であることを証明するために、上記コマンドと併せて入 先デバイスとで行われる認証毎に異なる値となることに 50 力された認証用データから、暗号・認証回路1510に

より証明用データを生成し、内部に保持する制御を行 う。

【0166】<証明用データ獲得用コマンド(GET_PROOF_INFO)>マイクロプロセッサ1509は、入力されたコマンドが証明用データ獲得用コマンド(GET_PROOF_INFO)であると判定すると、上記証明用データをデータ受信装置に送信するために、内部に保持していた証明用データをインタフェース制御回路1505を介して制御部1049へ出力させる制御を行う。

【0167】 <A V データ読み出し用コマンド(READ_A 10 V) >マイクロプロセッサ1509は、入力されたコマンドがA V データ読み出し用コマンド(READ_AV)であると判定すると、第1実施例におけるA V データ読み出し用S C S I コマンド(READ_AV)が入力された場合の処理に加えて、暗号鍵生成と暗号化を行う。

【0168】つまり、DVD-ROM41から読みだしたデジタルデータがAVデータであり、かつ、データ受信装置の認証に成功している場合には、暗号・認証回路1510は、暗号鍵を生成し、それを用いてユーザデータ用メモリ503に格納されたユーザデータ(2048 20パイト)を暗号化する。そして、マイクロプロセッサ1509は、その暗号化されたユーザデータ(2048パイト)とCGMS制御データ用メモリ502に格納されたCGMS制御データ(6パイト)との合計2054パイトのデジタルデータを制御部1049に出力する。

【0169】その他の場合は、第1実施例のAVデータ 読み出し用SCS1コマンド (READ_AV) が入力された 場合の処理と同様である。 [DVD-RAMドライブ1 910] 図26は、DVD-RAMドライブ1910の 詳細な構成を示すブロック図である。

【0170】 D V D - R A M ドライブ1910はさらに、インタフェースコネクタ1100、データ記録回路101、C G M S 制御データ用メモリ102、ユーザデータ用メモリ103、C G M S データ識別・更新回路104、インタフェース制御回路1105、ユーザデータ置換回路106、内部データバス107、制御バス108、マイクロプロセッサ1109及び復号・認証回路1110から構成される。第1実施例のD V D - R A M ドライブ910と相違する構成要素は以下である。

【0171】コネクタ1100は、I/Oバス1042 40 とDVD-RAMドライブ1910を接続するコネクタである。インタフェース制御回路1105は、ATAPI方式に従い、I/Oバス1042を介して、コマンド及びデータの送受信を制御する。マイクロプロセッサ1109は、内蔵する制御プログラムに従って、インタフェース制御回路1105が受け取ったコマンドを解釈し、DVD-RAMドライブ1910全体を制御する。具体的なコマンドと制御内容は後述する。

【0172】復号・認証回路1110は、マイクロプロセッサ1109からの指示に従って、認証処理及び復号 50

化処理を行う。この認証処理は、データ送信装置を認証するための処理であり、証明用データ生成、認証用データ生成及び認証結果判定の3つのステップからなる。一方、復号化処理は、入力された暗号化されたデジタルデータを復号するための処理であり、復号鍵生成及び復号化の2つのステップからなる。

40

【0173】なお、復号・認証回路1110は、上述した復号化処理及び認証処理において、乱数発生演算及び復号化関数D(KEY、DATA)を用いた演算を行う。この復号化関数D(KEY、DATA)は、DVD-ROMドライブ1046の暗号・認証回路1510が行う暗号化関数E(KEY、DATA)の逆関数である。

く証明用データ生成>証明用データ生成は、データ受信装置であるDVD-RAMドライブ1910が、データ送信装置に対して、自らの正当性、即ち、正規のデータ受信装置であることを証明するための処理である。

【0174】具体的には、復号・認証回路1110は、データ送信装置から送られてきた認証用データC1(=E(S, R1||R2))に対して予め内部に保持している暗号鍵 Sを用いて復号化関数D(KEY, DATA)で復号化し、その結果得られたデータ(=R1||R2)から乱数R2を分離し、それを証明用データK1としてデータ送信装置に返す。 < 認証用データ生成〉認証用データ生成は、DVD-RAMドライブ1910が、データ送信装置が正規のデータ送信装置であることを認証するための処理である。 【0175】具体的には、復号・認証回路1110は、16ビットからなる2つの乱数R3及びR4を発生し、その乱数R3を上位16ビット、乱数R4を生成する。

ットに配した 3 2 ビットデータ R 3 || R 4 を生成する。 30 続いて、復号・認証回路 1 1 1 0 は、上記暗号鍵 S を用いて、このデータ R 3 || R 4 を復号化関数 D (KEY、DATA) に従って復号化することで、認証用データ C 2 (= D(S, R3||R4))を生成する。

【0176】 <認証結果判定>認証結果判定は、DVD-RAMドライブ1910が、データ送信装置が正規のデータ送信装置であるとの認証に成功したかどうかを判定するための処理である。具体的には、復号・認証回路1110は、データ送信装置から返信されてきた証明用データK2が乱数R4に等しいか否かで判断する。等しい場合には、認証が成功したことを意味する。

【0177】〈復号鍵生成〉復号鍵生成は、データ送信装置から送られてきた暗号化されたデジタルデータを復号するための鍵を生成しておく処理である。具体的には、復号・認証回路1110は、上記証明用データ生成及び認証用データ生成の過程で得られた乱数R1及びR3を合成することで、復号鍵R1川R3を生成する。

【0178】 <復号化>復号化は、データ送信装置から送られてきた暗号化されたデジタルデータを復号する処理である。具体的には、復号・認証回路1110は、上記デジタルデータに対して上記復号鍵生成で得られた復

号鍵を用いて復号化関数D(KEY, DATA)によって復号する。

【0179】これは、データ送信装置から送られてくる暗号化されたデジタルデータEncryptDataはデジタルデータDataに対して暗号鍵RillR3を用いて暗号化関数E(KEY,DATA)によって暗号化したもの(= E(RillR3, Data))なので、この暗号化されたデジタルデータEncryptDataに対して復号鍵RillR3を用いて復号化関数D(KEY,DATA)によって復号化したもの(=D(RillR3,EncryptData)は元のデジタルデータDataに等しくなるからである。

【0180】次に、データ受信装置証明用コマンド(PR 00F_RECEIVER)、証明用データ獲得用コマンド(GET_PR 00F_INFO)、データ送信装置認証用コマンド(CHALLENG E_SENDER)、データ送信装置確認用コマンド(CONFIRM_SENDER)、A Vデータ書き込みコマンド(WRITE_AV)が入力された場合のD V D - R A M ドライブ1910の動作を説明する。

【 O 1 8 1】なお、上記コマンドの内の 4 つPROOF_RECE IVER、GET_PROOF_INFO、CHALLENGE_SENDER、CONFIRM_SE NDERは、A V データ記録用コマンド(WRITE_AV)の入力 20 に先立ち行われる一連の認証処理のためのコマンドである。

マデータ受信装置証明用コマンド(PROOF_RECEIVER)>マイクロプロセッサ1109は、入力されたコマンドがデータ受信装置証明用コマンド(PROOF_RECEIVER)であると判定すると、自分が正規のデータ受信装置であることを証明するために、上記コマンドと併せて入力された認証用データから、復号・認証回路1110により証明用データを生成し、内部に保持する制御を行う。

【0182】 <証明用データ獲得用コマンド (GET_PR00 30 F_INF0) >マイクロプロセッサ1109は、入力されたコマンドが証明用データ獲得用コマンド (GET_PR00F_INF0) であると判定すると、上記証明用データを返信するために、内部に保持していた証明用データをインタフェース制御回路1105を介して制御部1049へ出力する制御を行う。

【0183】 <データ送信装置認証用コマンド(CHALLE NGE_SENDER)>マイクロプロセッサ1109は、入力されたコマンドがデータ送信装置認証用コマンド(CHALLE NGE_SENDER)であると判定すると、データ送信装置の認 40 証を開始するために、復号・認証回路1110により認証用データを生成し、インタフェース制御回路1105 を介して制御部1049へ出力する制御を行う。

【0184】 <データ送信装置確認用コマンド(CONFIR M_SENDER)>マイクロプロセッサ1109は、入力されたコマンドがデータ送信装置確認用コマンド(CONFIRM_SENDER)であると判定すると、上記認証の成否を判定するために、上記コマンドと併せて入力された証明用データを復号・認証回路1110により検証し、認証が成功したかどうかを判定する制御を行う。また、認証結果の50

正否を内部に保持する。

【0185】 <AVデータ記録用コマンド(WRITE_AV) >マイクロプロセッサ1109は、入力されたコマンド がAVデータ記録用コマンド(WRITE_AV)であると判定 すると、第1実施例におけるAVデータ記録用SCSI コマンド(WRITE_AV)が入力された場合の処理に加え て、復号鍵生成と復号化を行う。

【0186】具体的には、マイクロプロセッサ1109は、2054バイトの転送単位のデジタルデータを受け10 取ると、そのデジタルデータのユーザデータをユーザデータ用メモリ103に、CGMS制御データをCGMS制御データ用メモリ102に格納する。次に、CGMS識別・更新回路104は、ユーザデータ用メモリ103に格納されたユーザデータがコピーが許可されているデータか否かを判定する。具体的にはCGMSデータのCGMSコードが"1世代コピー許可(d7,d6=1,0)"又は"コピー許可(d7,d6=0,0)"であればコピー許可であるデジタルデータであると判定する。さらに、マイクロプロセッサ1109は、事前に行われた認証に成りまする。功しているか否かを判定する。

【0187】その結果、データ送信装置が正規のデータ送信装置であり、かつ、ユーザデータがコピー許可なデジタルデータであれば、CGMS識別・更新回路104は、CGMS制御データを更新する。そして、復号・認証回路1110は復号鍵を生成し、それを用いてユーザデータを復号する。その後、データ記録回路101は、復号化されたユーザデータ(2048バイト)と、いま更新されたCGMS制御データ(6バイト)をDVDーRAM99に記録する。

【0188】一方、データ送信装置が正規のデータ送信装置でない場合、あるいは、コピー禁止なデジタルデータ、具体的にはCGMSコードが"コピー禁止(d7,d6=1,1)"である場合は、ユーザデータ置換回路106は、ユーザデータ用メモリ103に格納されたユーザデータをNULLデータに置換する。その後、データ記録回路101は、そのNULLデータ(2048バイト)とCGMS制御データ(6バイト)をDVD-RAM99に記録する。

[AV信号処理部1047]図27は、AV信号処理部 1047の詳細な構成を示すブロック図である。

【0189】AV信号処理部1047はさらに、コネクタ1600、I/Oバス制御回路1601、I/Oコマンド・ステータス・レジスタ602、復号・認証回路1603、データバッファ604、CGMSデータ検出識別回路605、MPEGデコーダ606、D/A変換回路607、制御バス608、内部データバス609及びマイクロプロセッサ1610から構成される。第1実施例のAV信号処理部1047と相違する構成要素は以下である。

【0 1 9 0】コネクタ 1 6 0 0 は、I/Oパス 1 0 4 2

とAV信号処理部1047を接続するコネクタである。 インタフェース制御回路1601は、ATAPI方式に 従い、1/Oバス1042を介して、コマンド及びデー タの送受信を制御する。マイクロプロセッサ1610 は、内臓する制御プログラムに従って、1/0コマンド ・ステータス・レジスタレジスタ602に格納されたコ マンドを解釈し、AV信号処理部1047全体の制御を 行う。具体的なコマンドと制御内容は後述する。

【0191】復号・認証回路1603は、マイクロプロ 化処理を行う。この認証処理は、データ送信装置を認証 するための処理であり、証明用データ生成、認証用デー 夕生成及び認証結果判定の3つのステップからなる。 一 方、復号化処理は、入力された暗号化されたデジタルデ ータを復号するための処理であり、復号鍵生成及び復号 化の2つのステップからなる。これら5つのステップ は、DVD-RAMドライブ1910の復号・認証回路 1110が行う処理と同一である。

【0192】なお、復号・認証回路1603は、上述し た復号化処理及び認証処理において、乱数発生演算及び 20 復号化関数D(KEY、DATA)を用いた演算を行う。この乱数 発生演算はDVD-ROMドライブ1046の場合と同 様であり、復号化関数D(KEY, DATA)は、DVD-ROM ドライブ1046の暗号・認証回路1510が行う暗号 化関数E(KEY, DATA)の逆関数である。次に、各種コマン ドが入力された場合のAV信号処理部1047の動作を 説明する。

【0193】AV信号処理部1047は、データ受信装 置証明用コマンド(PROOF_RECEIVER)、証明用データ獲 得用コマンド (GET_PROOF_INFO) 、データ送信装置認証 30 用コマンド (CHALLENGE_SENDER) 、データ送信装置確認 用コマンド (CONFIRM_SENDER) 及びAVデータ再生用コ マンド (PLAY_AV) を受け付ける。これらのうち前者4 つのコマンド (PROOF_RECEIVER、GET_PROOF_INFO、CHAL LENGE_SENDER、CONFIRM_SENDER) は、AVデータ再生用 コマンド (PLAY_AV) の入力に先立ち行われる一連の認 証処理のためのコマンドであり、DVD-RAMドライ ブ1910の場合と同様であるので、その説明を省略す る。

【0 1 9 4】 <A V データ再生用コマンド (PLAY_AV) >マイクロプロセッサ1610は、1/0コマンド・ス テータス・レジスタ1602に入力されたコマンドがA Vデータ再生用コマンド (PLAY_AV) であると判定する と、これに先立ち行われている復号・認証回路1603 による認証が成功していなければ、入力されるデジタル データに対し如何なる処理も行わない。

【0195】一方、認証が成功していれば、転送されて くるデジタルデータをデータバッファ604に一時格納 し、暗号化されたデジタルデータを復号・認証回路16 03により復号し、その復号化されたデジタルデータを 50 結果、AVデータファイルであると判定した場合には、

CGMSデータ検出識別回路605を介してMPEGデ コーダ606に出力する。この際、CGMSデータ検出 識別回路605により非AVデータであると判定される と、マイクロプロセッサ1610はデジタルデータの処 理を中断し終了する。すなわち、デジタルデータをMP EGデコーダ606に転送することを中断する。

【0196】一方、 CGMSデータ検出識別回路60 5によりAVデータであると判定されれば、デジタルデ ータはMPEGデコーダ606に入力され、所定の伸長 セッサ1610からの指示に従って、認証処理及び復号 10 処理が施され、映像データと音声データに変換される。 変換された音声データはD/A変換回路607により音 声アナログ信号に変換されて付随するスピーカ47Sに 出力され、ここから音声出力される。また、変換された 映像データはビデオ信号処理部48に出力される。

> [制御部1049] 制御部1049はさらに、図24に 示されるように、プロセッサバス49B、CPU104 9 C、バス I / F 4 9 I 及び主記憶 4 9 M から構成され る。CPU1049Cは、主記憶49Mにロードされて いるOS及び本情報処理システムに固有の制御用プログ ラムに従って、入力部45を介して受け取られた外部か らの指示命令を解釈し、DVD-ROM41からのデジ タルデータの取り出しとその伝送先の制御を行う。

【0197】この制御部1049は、見かけ上は、第1 実施例の制御部49と同様の制御を行う。即ち、制御部 1049は、入力部45を介してDVD-ROMドライ ブ1046のAVデータファイルを再生する旨の指示命 令を受け取った場合には"AVデータ再生制御"を行 い、AVデータファイルをコピーする旨の指示命令を受 け取った場合には"AVデータコピー制御"を行い、D VD-ROM41上のファイルをコピーする旨の指示命 令を受け取った場合には"データコピー制御"を行う。 【0198】しかし、第1実施例の場合と相違し、制御 部1049は、自らが制御の中心となって再生及びコピ ーを遂行する。"AVデータ再生制御"では、制御部1 049は、指定されたファイルがAVデータを格納する ファイルかどうかを判定する。これは、指定されたファ イルが格納されたディレクトリ名がDVD-Video であるか否かによって判定する。その結果、AVデータ ファイルであると判定した場合には、AVデータファイ 40 ルの再生制御を開始する。具体的には、DVD-ROM ドライブ1046とAV信号処理部1047の間の認証 処理を行い、続いて、DVD-ROMドライブ1046 からAVデータファイルを読み出し、それをAV信号処 理部1047に書き出して再生させる。一方、非AVデ ータファイルであると判定した場合には、ピープ音等で エラーをユーザに告知する。

【0199】 "AVデータコピー制御"では、制御部1 049は、上記と同様にして、指定されたファイルがA Vデータを格納するファイルかどうかを判定する。その

45

AV データファイルのコピー制御を開始する。具体的には、DVD-ROMドライブ 1046 とDVD-RAMドライブ 1910 の間の認証処理を行い、続いて、DVD-ROMドライブ 1046 からAV データファイルを読み出し、それをDVD-RAMドライブ 1910 に書き出して記録させる。一方、**FAV データファイルであると判定した場合には、ビープ音等でエラーをユーザに告知する。

【0200】 "データコピー制御"では、制御部1049は、上記と同様にして、指定されたファイルがAVデータを格納するかどうかを判定する。その結果、非AVデータファイルであると判定した場合には、DVD-ROMドライブ1046から非AVデータファイルを読み出し、それをHD装置44に書き込む。一方、AVデータファイルであると判定した場合には、著作権保護処理としてピープ音等でエラーをユーザに告知する。

[コマンドの一覧] なお、上述したコマンドの意味をまとめると、図28に示される表の通りとなる。即ち、これらコマンドは、1/Oバス1042を介して制御部1049から他の装置44、1046、1910、1047に発行される制御指令である。

(情報処理システムの動作)次に、以上のように構成された情報処理システムの動作について、DVD-ROM41に記録されたファイルがDVD-RAM99にコピーされる場合及び再生される場合の2つのケースを例にとって説明する。なお、上述したように、DVD-ROM41がDVD-ROMドライブ1046に装着された際の初期化動作としてファイル管理情報が制御部1049の主記憶49Mに保持されているものとする。

[DVD-RAM99へのコピー]まず、DVD-ROM41のAVデータファイルがDVD-RAM99にコピーされる際の情報処理システムの動作を説明する。

【0201】図29は、上記コピーが行われる際に、制御部1049、DVD-ROMドライブ1046及びDVD-RAMドライブ1910間で行われるデータ及びコマンドのやりとりを示す通信シーケンス図である。このコピーは、3つの大きな処理、即ち、フェーズR(Q320~Q328)、フェーズS(Q329~Q336)及びフェーズD(Q337~Q340)から構成される。

【0202】フェーズRは、DVD-ROMドライブ1046がDVD-RAMドライブ1910を正規のデータ受信装置と認証するための処理であり、フェーズSは、DVD-RAMドライブ1910がDVD-ROMドライブ1046を正規のデータ送信装置と認証するための処理であり、フェーズDは、DVD-ROMドライブ1046からDVD-RAMドライブ1910にデジタルデータを転送する処理である。

【0203】 <フェーズR>フェーズRにおいては、制 御部1049がデータ送信装置であるDVD-ROMド 50

 ライブ1046にデータ受信装置認証用コマンド (CHAL

 LENGE_RECEIVER) を出力する (Q320)。 そのデータ

 受信装置認証用コマンド (CHALLENGE_RECEIVER) を受け

 取ったDVD-ROMドライブ1046は、暗号・認証

 回路1510により、認証用データC1 (=E(S,RII|R

 2)) を生成し、制御部1049に返す (Q321)。

【0204】認証用データC1を受け取った制御部1049は、データ受信装置証明用コマンド(PROOF_RECEIVER)及び認証用データC1をDVD-RAMドライブ1910に出力する(Q323及びQ324)。このデータ受信装置証明用コマンド(PROOF_RECEIVER)を受け取ったDVD-RAMドライブ1910は、併せて入力された認証用データC1を復号・認証回路1110により演算しR2を求め、証明用データK1とする。

[0205] 制御部1049は、続いて、証明用データ 獲得用コマンド (GET_PROOF_INFO) をDVD-RAMド ライブ1910に出力し(Q325)、それに対して、 DVD-RAMドライブ1910は証明用データK1を 制御部1049に返す(Q326)。証明用データK1 を受け取った制御部1049は、データ受信装置確認用 コマンド (CONFIRM_RECEIVER) 及び証明用データK1を DVD-ROMドライブ1046に出力する(Q327 及びQ328)。このデータ受信装置確認用コマンド (CONFIRM_RECEIVER) を受け取ったDVD-ROMドラ イブ1046は、併せて入力された証明用データK1を 暗号・認証回路1510により判定し、データ受信装置 であるDVD-RAMドライブ1910との認証が成功 したかどうかを決定し、認証結果を内部に保持する。具 体的には、暗号・認証回路1510は、証明用データK 1がR2と等しいかどうかを判定し、等しければデータ 受信装置が正規のデータ受信装置であるとの認証に成功 する.

【0206】 <フェーズS > 制御部1049は、データ送信装置認証用コマンド (CHALLENGE_SENDER) をDVD-RAMドライブ1910に出力する (Q329)。 このデータ受信装置認証用コマンド (CHALLENGE_SENDER)を受け取ったDVD-RAMドライブ1910は、復号・認証回路1110により、認証用データC2 (=D(S,R3||R4)) を生成し、制御部1049に返す (Q330)。

【0207】認証用データC2を受け取った制御部1049は、データ送信装置証明用コマンド(PROOF_SENDER)及び認証用データC2をDVD-ROMドライブ1046に出力する(Q331及びQ332)。このデータ送信装置証明用コマンド(PROOF_SENDER)を受け取ったDVD-ROMドライブ1046は、併せて入力された認証用データC2を暗号・認証回路1510により演算しR4を求め、証明用データK2とする。

[0208] 制御部1049は、続いて、証明用データ 獲得用コマンド (GET_PROOF_INFO) をDVD-ROMド

ライブ1046に出力し(Q333)、これに対して、DVD-ROMドライブ1046は証明用データK2を制御部に返す(Q334)。証明用データK2を受け取った制御部1049は、データ送信装置確認用コマンド(CONFIRM_SENDER)を証明用データK2と共にDVD-RAMドライブ1910に出力する(Q335及びQ336)。データ送信装置確認用コマンド(CONFIRM_SENDER)を受け取ったDVD-RAMドライブ1910は、併せて入力された証明用データK2を復号・認証回路1110により判定し、DVD-ROMドライブ1046との認証が成功したかどうかを決定し、認証結果を内部に保持する。具体的には、復号・認証回路1110は、等は明用データK2がR4と等しいかどうかを判定し、等しければデータ送信装置が正規のデータ送信装置であると判定し認証に成功する。

【0209】 <フェーズD>制御部1049は、DVD-ROMドライブ1046に対してAVデータ読み出し用コマンド(READ_AV)を発行する(Q337)。AVデータ読み出し用コマンド(READ_AV)を発行されたDVD-ROM41の指定されたアドレスからデータを読み出し、CGMS制御データをCGMS制御データ用メモリ1302に、ユーザデータをユーザデータ用メモリ1303にそれぞれ格納する。そして、CGMS制御データによりユーザデータがAVデータか否かを判定する。

【0210】その結果、AVデータならば、さらに、内部に保持している認証結果を参照することにより、DVD-RAMドライブ1910が正規のデータ受信装置であるとの認証に成功しているか否かを判断する。その結果、成功していれば、暗号・認証回路1510はユーザ 30データ (2048バイト)を暗号化する。成功していなければ、ユーザデータ置換回路506はユーザデータをNULLデータに置き換える。

【0212】DVD-ROMドライブ1046からデジタルデータE(R1||R3, DATA)を得た制御部1049は、AVデータ記録用コマンド(WRITE_AV)と共にデジタルデータをDVD-RAMドライブ1910に出力する(Q339及びQ340)。2054バイトのデジタルデータを受け取ったDVD-RAMドライブ1910 50

-

48

は、そのデジタルデータのユーザデータをユーザデータ 用メモリ103に、CGMS制御データをCGMS制御 データ用メモリ102に格納する。

【0213】そして、DVD-RAMドライブ1910は、そのユーザデータがコピーが許可されているデータか否か、及び、事前に行われた認証に成功しているか否かを判定する。その結果、認証に成功し、かつ、ユーザデータがコピー許可なデジタルデータであれば、CGMS識別・更新回路104は、CGMS制御データを更新する。そして、復号・認証回路1110は復号鍵(RIII R3)を生成し、それを用いてユーザデータを復号する。その後、データ記録回路101は、復号化されたユーザデータ(D(RI||R3,DATA))と、いま更新されたCGMS制御データをDVD-RAM99に記録する。

【0214】一方、認証に失敗した場合、あるいは、コピー禁止なデジタルデータである場合は、ユーザデータ 間換回路106は、ユーザデータ用メモリ103に格納されたユーザデータをNULLデータに置換する。そして、データ記録回路101は、そのNULLデータとCGMS制御データをDVD-RAM99に記録する。以上の処理を指定された転送長だけ繰り返した後、AVデータファイルのコピーが終了する。次に、以上のコピー動作の手順をフローチャートで示す。

【0215】図30は、DVD-ROM41のAVデータファイルがDVD-RAM99にコピーされる処理手順を示すフローチャートである。図31は、図30の処理HHの詳細な手順を示すフローチャートである。図32は、図30の処理IIの詳細な手順を示すフローチャートである。これら3つのフローチャートは、それぞれ第1実施例における図12、図14及び図15に示されたフローチャートに対応する。第1実施例と異なる点は以下の通りである。

【0216】このコピー動作においては、制御部1049による制御の下でDVD-ROM41のAVデータファイルがDVD-RAM99にコピーされる。従って、第1実施例のごとくAV信号処理部47が介在することはない。DVD-ROMドライブ1046がDVD-RAMドライブ1910を認証する処理(S1302)は、図29のフェイズRに相当し、暗号技術が利用されている。

【0217】同様に、DVD-RAMドライブ1910がDVD-ROMドライブ1046を認証する処理(S1303)は、図29のフェイズSに相当し、暗号技術が利用されている。処理HHにおいて、暗号化処理(S1325)が追加されている。即ち、読み出されたデジタルデータがコピー可能なデータであり、かつ、認証に成功している場合には、DVD-RAMドライブ1910への転送に先立ち、そのデジタルデータが暗号化される。

【0218】同様に、処理IIにおいて、復号化処理

50

(S1335) が追加されている。即ち、入力されたデジタルデータがコピー可能なデータであり、かつ、認証に成功している場合には、DVD-RAM99への記録に先立ち、そのデジタルデータが復号化される。

[再生] 次に、DVD-ROM41のAVデータファイルが再生される際の情報処理システムの動作を説明する。

【0219】制御部1049、DVD-ROMドライブ1046及びAV信号処理部1047間で行われるデータ及びコマンドのやりとりは、図29に示される通信シーケンスとほぼ同一である。即ち、図29に記された「DVD-RAMドライブ1910」を「AV信号処理部1047」に置換した通信シーケンス図に示される通りである。

【0220】 これは、AV信号処理部1047は、DVD-RAMドライブ1910と同様に、AVデータを扱うデータ受信装置である点で共通するからである。図33は、DVD-ROM41のAVデータファイルが再生される処理手順を示すフローチャートである。図34は、図33の処理AAの詳細な手順を示すフローチャー20トである。

【0221】図35は、図33の処理BBの詳細な手順を示すフローチャートである。これら3つのフローチャートは、それぞれ第1実施例における図19、図21及び図22に示されたフローチャートに対応する。第1実施例と異なる点は以下の通りである。この再生動作においては、DVD-ROM41とAV信号処理部1047間に制御部1049が介在する。従って、第1実施例のごとく、2つのSCSIデバイス(AV信号処理部47及びDVD-ROMドライブ46)間で再生が行われる形態とは異なる。

【0222】 DVD-ROMドライブ1046がAV信号処理部1047を認証する処理(S1102) は、図29のフェイズRに相当し、暗号技術が利用されている。同様に、AV信号処理部1047がDVD-ROMドライブ1046を認証する処理(S1105) は、図29のフェイズSに相当し、暗号技術が利用されている。

【0223】処理AAにおいて、暗号化処理(S1115)が追加されている。即ち、読み出されたデジタルデ 40一夕がAVデータであり、かつ、認証に成功している場合には、AV信号処理部1047への転送に先立ち、そのデジタルデータが暗号化される。同様に、処理BBにおいて、復号化処理(S1123)が追加されている。即ち、入力されたデジタルデータがAVデータであり、かつ、認証に成功している場合には、デコード処理に先立ち、そのデジタルデータが復号化される。

[まとめ]以上のように、本発明による情報処理システムのデータ送信装置(DVD-ROMドライブ1046)においては、デジタルデータがAVデータを含むと 50

判定され、かつデータ受信装置が正規のデータ受信装置であると認証された場合のみ、AVデータを暗号化して出力するように制御する制御部を備えている。また、本発明による情報処理システムのデータ受信装置(AV信号処理部1047)においては、暗号化されて伝送されてきたデジタルデータを復号し、さらに、映像データに変換する機能を有すると共に、この機能を示す認証用データを生成し、出力する認証部を備えている。これにより、本発明のデータ送信装置及びデータ受信装置を備える情報処理システムは、AVデータの再生を行う正規のデータ受信装置以外のデバイスに出力されることを禁止できる。

【0224】このためなんらかの原因で(例えば、制御部1049にロードされる再生制御プログラムの誤りで)、AVデータ読み出し用コマンド(READ_AV)により読み出されたAVデータが、AV信号処理部1047に出力されることなく制御部1049の主記憶128Mに存在してもAVデータの著作権を保護することができる。なぜなら、主記憶128Mに格納されたデータは暗号化されているので、仮にハードディスク装置等に2次記録されても再生はもちろん、データの改変を行うことは不可能だからである。

【0225】また、上記暗号化及び復号化において、暗号化のための暗号鍵及び復号化のための復号鍵を、認証毎に異なる認証データに基づき生成する。これにより伝送するAVデータを認証毎に異なる暗号鍵で暗号化することができる。このため、一つの暗号鍵が知られた場合でも、以降の認証タイミングが異なる場合のAVデータ伝送における暗号化はなおかつ有功とすることができる。

【0226】また、上記暗号化及び復号化において、暗号化のための暗号鍵及び復号化のための復号鍵を、データ送信装置によ生成される認証毎に異なる第一の認証用データ及びデータ受信装置により生成される認証毎に異なる第二の認証用データの両者に基づき生成する。このため、伝送するAVデータを、データ送信装置及びデータ受信装置のいずれもが正当の時のみ暗号化されたAVデータを復号することができ、より高いセキュリティでAVデータを伝送することができる。

【0227】以下、セキュリティが高い理由の説明を、 片方のみのデバイスにより暗号鍵が決定される場合に発 生しうる誤動作を説明する事により行う。データ受信装 置のみにより、暗号化のための暗号鍵と復号鍵が生成されるとする。すなわち、この場合、データ受信装置は、 暗号化AVデータの入力を受ける前に、暗号化AVデータを生成する暗号鍵をデータ送信装置に伝送する。また データ送信装置は伝送された暗号鍵でAVデータを暗号 化して伝送し、この入力を受けたデータ受信装置は暗号 鍵に対応する復号鍵でこれを再生することになる。

【0228】この場合、データ送信装置が伝送する暗号

鍵及びそれにより暗号化されるデータの解読方法が一セ ットでも判明したとする。この場合、この解読情報に基 づき作成された不正なデータ受信装置は、解読された暗 号の暗号鍵を正当なデータ送信装置に伝送することによ り、常に解読方法が判明した同じ暗号化によるAVデ∽ 夕を出力させる誤動作を発生させることが可能になる. 【0229】しかし、本発明のように、データ受信装置 に加えてデータ送信装置も暗号鍵及び復号鍵の生成に携 わる場合、暗号鍵がデータ受信装置の出力する値にのみ により確定しないため、上述した誤動作を回避すること 10 ができる。また、上記判定においては、情報記録媒体に 格納されたデジタルデータがAVデータを含むかどうか を、それぞれのセクタのヘッダ領域に格納されたデータ 属性フラグによって判定することができる。これによ り、セクタごとにきめ細かにAVデータを保護すること ができる。

【0230】以上、第2実施例に係る情報処理システム について説明したが、本発明はこの実施例に限定される ものでないことは言うまでもない。本実施例では、DV D-ROMドライブ1046の暗号·認証回路151 0、DVD-RAMドライブ1910の復号・認証回路 1110及びAV信号処理部1047の復号・認証回路 1603は、それぞれ、1組の秘密鍵Sと暗号化関数 (又は復号化関数)を有し、これを用いて認証用データ の生成、証明用データの生成、デジタルデータの暗号化 (又は復号化)を行ったが、これに限定されるものでは ない。例えば、認証用データの生成、証明用データの生 成、デジタルデータの暗号化(又は復号化)のそれぞれ に、異なる暗号化関数を用いることもできる。これによ って、著作権保護処理における安全性が向上される。 【0231】また、本実施例では、暗号鍵はフェーズR 及びSをおこなってから、フェーズDにおいてデータ転 送をおこなったが、暗号鍵を片認証の結果生成するセキ ュリティが許容できるのであればこれには限られない. すなわち、フェーズR及びSのうちのいずれかのみをお こなってから、フェーズDをおこなってもよい。また、 図29に示されるプロトコルでは、制御部1049がフ ェーズR及びSにおいてデータ送信装置及びデータ受信 装置の間に介在しているが、これには限られない。例え ば、データ送信装置とデータ受信装置を専用の信号線で 結び、これによりデータ送信装置及びデータ受信装置が 直接、認証用データをやりとりする方法であってもよ 11

【0232】また、本実施例では、1/Oバス1042を流れるAVデータは暗号化されたが、もし、伝送中のAVデータが抜き取られる誤動作が許容できるのであれば、AVデータの転送に伴う暗号化及び復号化を省略してもよい。この場合、暗号化によるセキュリティの向上の効果は得られないが、より簡易な構成でAVデータを保護することができる。

【0233】なお、上記両実施例において、AVデータを含むデジタルデータが記録された媒体はDVD-ROM41であり、また、そのようなデジタルデータが記録される媒体はDVD-RAM99であったが、AVデータの格納位置が識別可能に格納することができるデジタルデータの配布媒体や記録媒体であれば、DVD-ROMPOVD-RAMに限られない。例えば、同様なセクタ構造を有する光磁気ディスクなどの情報記録媒体であってもよいことは言うまでもない。

【0234】さらに、これら媒体は、AVデータを含む デジタルデータの格納位置が識別できる媒体であれば、 光ディスクなどの情報記録媒体に限られない。例えば、 放送波などの無線や通信回線などの有線による伝送媒体 であってもよい。ここでいう伝送媒体とは、典型的には Open Systems Interconnection (OSI) の通信プロ トコルの物理層として規定されており、デジタルデータ の伝送を保証するものである。例えば、電話回線、イン ターネットLAN、衛星放送などが挙げられる。この場 合、伝送媒体によって伝送されるデジタルデータは、パ ケットと呼ばれる単位に分割されて伝送される。パケッ トは、ヘッダ部及びデータ部を有しており、前述の実施 例で説明したセクタにおけるヘッダ部及びデータ部と同 様の構成を有する。このため、データ部に格納されるデ ータが A V データかどうかの識別フラグをパケットのへ ッダ部に設けることによって、本発明が適用できること になる。またこの場合、データ送信装置は、ディスクド ライブの代わりに伝送媒体を介して情報を受信するレシ ーバ装置になることは明らかである。

【0235】また、MPEGのトランスポートストリー30 ムを利用したディジタル衛星放送に適用することもできる。この場合には、複数のMPEGストリームが伝送される。またこれら複数のストリームには複数のストリームを管理するための情報を伝送するための管理情報用ストリームも存在する。この管理情報用ストリームに、他のストリームがAVデータか否かのデータ属性情報及びCGMSデータを格納して伝送することにより本発明を実施することもできる。

【0236】また、上記両実施例においては、映像データとしてMPEG2で圧縮されたデジタルデータが用いられたが、これには限られない。例えばMPEG4方式などであってもよい。また、上記両実施例のDVD-RAMドライブ910、1910は、図8、図9、図25、図25に示されるように、ハードウェア的に実現されたが、本発明はこれに限られるものではなく、ソフトウェア的に現することもできる。具体的には、図12~図22や図29~図35のフローチャート等に示されたステップを含むプログラムとして実現することができる。

【0237】そして、そののプログラムが格納された情 50 報記録媒体は、単体で流通させることができる。使用に

際しては、その情報記録媒体からプログラムを汎用DV ロードすることで、本発明に係るDVD-ROMドライ ブやDVD-RAMドライブに変身させることが可能と なる.

【0238】また、上記両実施例では、DVD-RAM ドライブ910、1910は、デジタルデータのDVD - RAM99への記録だけを行ったが、DVD-RAM 99からの読み出しも行うことは言うまでもない。 DV D-RAMドライブ910、1910における読み出し は、DVD-ROMドライブ46、1046における読 み出しと同様の手順で行われる。

【0239】また、ビデオ信号処理部48、AV信号処 理部47、1047は、I/Oバス42、1042に対 する接続部を有し、着脱可能な状態で装着されるカード 型機器であってもよいことは言うまでもない。この場 合、AV信号処理部47、1047は、一般的にAV信 号処理カード又はAVデコーダカードと呼ばれものに相 当し、またビデオ信号処理部48はビデオカードと呼ば れるものに相当する。

【0240】また、ビデオ信号処理部48はグラフィッ ク生成機能と映像合成機能とを有しているが、映像合成 機能をビデオ合成部として外部に設けることで、これら を分離してもよい。尚、上述の全ての実施例において、 制御部により行われるファイルシステムレベルでのAV データファイルの識別はDVD-Videoというディ レクトリに格納されるかどうかで行われたが、名称規約 により定めうるAVデータを格納するディレクトリの名 称はこれに限るものではない。また、AVデータファイ ルや非AVデータファイルの名称規約についても上記実 30 施例に限られるものではなく。例えば、AVデータファ イルの名称規約を別に定め、例えば拡張子を統一し、こ れを検出する等でAVデータファイルを識別してもよい ことは言うまでもない。

[0241] また、DVD-ROMドライブ46、10 46は、著作権保護処理としてユーザデータをNULL データに置き換えて出力する処理を行ったが、このよう な著作権保護処理に限られるものではない。例えば、N ULLデータの出力を行わずにエラーコードを返すこと でもよい。また、AV信号処理部47、1047は独立 40 した構成としたが、CGMS制御を行うMPEGデコー ダであればよく、例えば、制御部内にDiscrete Cosine Transform (DCT) 回路とCGMS制御部を有し、MPE Gのソフトデコードを行うソフト等によりAV信号処理部 を実現するMPEGのソフトデコーダでもよい。

【0242】また、情報処理システムのディジタルイン タフェースとして第1実施例ではSCSIが、第2実施 例ではATAPIが使用されたが、AVデータであるデ ジタルデータを伝送でき、複数のデバイスが接続できれ ばこれに限られるものではない。例えば、IEEE P 50 れに対して返信されてきた証明データを用いて前記認証

1394に定められるディジタルインタフェースでもよ

[0243]

【発明の効果】上記目的を達成するために、本発明に係 るデータ受信装置は、伝送路を介してデータ送信装置か ら送られてきたデジタルデータ(このデジタルデータに は、映像データと、その映像データの利用形態を指定す るための利用形態指定コードと、が含まれる)を受信し 外部媒体に記録するデータ受信装置であって、前記デー 10 夕送信装置が正規のデータ送信装置であるか否かの認証 を試みる認証手段と、前記デジタルデータを受信する受 信手段と、受信したデジタルデータ中の利用形態指定コ ードからそのデジタルデータの前記媒体への記録が許可 されているか否かを判定するコピー許否判定手段と、前 記認証手段により認証が成功し、かつ、前記コピー許否 手段により許可されていると判定された場合に前記デジ タルデータを前記媒体に記録する記録手段とを備えるこ とを特徴とする。

【0244】この構成により、映像データが、著作権者 20 が指定する利用形態の範囲を逸脱して記録装置等のデー 夕受信装置に不法にコピーされるという不正が防止され る。ここで、前記利用形態指定コードには前記映像デー 夕のコピーを許可する場合の世代の上限を示す情報が含 まれ、前記コピー許否判定手段は前記利用形態指定コー ドが1世代以上の上限を示す場合には前記許可がされて いると判定するとすることもできる。

【0245】これにより、コピーを許可する世代数のみ から、コピーの許否の判断をすることが可能になる。ま た、前記記録手段はさらに前記記録に先立ち前記利用形 態指定コードが示す前記世代の上限が1だけ減少するよ う前記利用形態指定コードを更新する更新部を有すると することもできる。

【0246】これにより、制限された世代数を超える不 正なコピーが防止される。また、前記記録手段はさらに 前記認証手段による認証が失敗した場合又は前記コピー 許否手段により許可されていないと判定された場合には 前記映像データを無意味なデータに置換した後に前記記 録をする受信データ置換部を有するとすることもでき

【0247】これにより、映像データがそのまま不正に 利用されることが防止される。また、前記媒体は情報記 録媒体であり、前記記録手段は前記情報記録媒体のユー ザデータ領域に前記映像データを記録しそのユーザデー 夕領域と対応するヘッダ領域に前記利用形態指定コード を記録するとすることもできる。これにより、著作権者 は、ユーザデータ領域の単位で、映像データの利用形態 を指定することが可能となる。

【0248】また、前記認証手段は前記データ受信装置 に対して乱数に基づいて生成した認証データを送信しそ

を試みるとすることもできる。これにより、同一データ を用いて認証するために生じ得る盗聴に基づく不正が排 除される。

【0250】これにより、認証と復号化が関連づけら れ、より強固なコピーガードが実現される。また、上記 目的を達成するために、本発明に係るデータ送信装置 は、外部媒体から取り出したデジタルデータ(このデジ タルデータには、ユーザデータと、そのユーザデータの 利用形態を指定するための利用形態指定コードと、が含 まれる)を伝送路を介してデータ受信装置に送信するデ ータ送信装置であって、前記媒体からデジタルデータを 取り出すデータ取り出し手段と、取り出されたデジタル 20 データ中のユーザデータが映像データであるか否かを判 定するデータ種別判定手段と、映像データであると判定 された場合には前記データ受信装置が前記利用形態指定 コードで指定される利用形態で前記映像データを処理す る正規のデータ受信装置であるか否かの認証を試みる認 証手段と、前記認証手段により認証が成功した場合に前 記伝送路を介して前記データ受信装置に前記デジタルデ ータを送信する送信手段とを備えることを特徴とする。 【0251】これにより、情報記録媒体に記録されたA

Vデータが著作権者の指定する利用形態でのみ処理され 30 ることを確保することが可能となる。ここで、前記利用形態指定コードには前記映像データの再生及びコピーの許可に関する情報が含まれ、前記認証手段は前記利用形態指定コードが再生のみを許可する旨を示す場合には前記データ受信装置が再生のみを行うものである場合に正規のデータ受信装置と認証し前記利用形態指定コードがコピーを許可する旨を示す場合には前記データ受信装置が映像データを記録するものである場合に正規のデータ受信装置と認証するとすることもできる。

【0252】これにより、データ送信装置から映像デー 40 タを取り扱わない装置に映像データが転送されるという不正や誤動作が防止される。また、前記利用形態指定コードには前記映像データのコピーを許可する場合の世代の上限を示す情報が含まれ、前記認証手段は前記データ受信装置が映像データを記録するものである場合には前記利用形態指定コードが1世代以上の上限を示す場合に前記データ受信装置を正規のデータ受信装置と認証するとすることもできる。

【0253】これにより、コピーを許可する世代数のみから、コピーの許否の判断をすることが可能になる。ま 50

た、前記送信手段はさらに前記認証手段による認証が失敗した場合には前記映像データを無意味なデータに置換した後に前記デジタルデータを送信する送信データ置換部を有するとすることもできる。

【0254】これにより、映像データがそのまま不正に利用されることが防止される。また、前記デジタルデータにはさらに前記ユーザデータの属性を示すデータ属性コードが含まれ、前記データ種別判定手段は前記データ属性コードの値によって前記判定をするとすることもできる。

【0255】これにより、映像データとそうでないデータとが明確に区別され、不正に情報記録媒体から映像データが読み出されることが防止される。前記媒体は予め前記デジタルデータが記録された情報記録媒体であり、前記データ取り出し手段は前記情報記録媒体のユーザデータ領域と対応するヘッダ領域から前記データ属性コード及び利用形態指定コードを取り出すとすることもできる。

【0256】これにより、著作権者は、ユーザデータ領域の単位で、映像データの利用形態を指定することが可能となる。また、前記認証手段は前記データ受信装置に対して乱数に基づいて生成した認証データを送信しそれに対して返信されてきた証明データを用いて前記認証を試みるとすることもできる。

【0257】これにより、同一データを用いて認証するために生じ得る盗聴に基づく不正が排除される。また、前記送信手段は前記送信に先立ち前記デジタルデータ中のユーザデータを暗号化する暗号化部を有するとすることもできる。これにより、映像データの転送時における不正や誤動作に基づく映像データの抜き取りが防止される。

【0258】また、前記暗号化部は前記認証データに基づいて暗号鍵を生成しその暗号鍵を用いて前記ユーザデータを暗号化するとすることもできる。これにより、認証と暗号化が関連づけられ、より強固なコピーガードが実現される。また、上記目的を達成するために、本発明は、上記データ送信装置とデータ受信装置を併せ持つ情報処理システムとすることもできる。

(0259)上記データ受信装置におけるコピーガードのための手順をプログラムとして実現することもできる。以上のように、本発明によればアプリケーション著作権者の著作権が確実に保護されるので、多数のアプリケーションが適切な価格で市場に流通することが促進され、これにより一般ユーザの利益が確保される。

【図面の簡単な説明】

【図1】 第1実施例に係る情報処理システムの外観図で なる

【図2】同情報処理システムの構成を示す機能ブロック 図である。

【図3】デバイス属性情報のフォーマットである。図3

(a) は、SCSIデバイス間でやりとりされるデータ 属性情報の全体のフォーマットを示す。 図3 (b) は上 記データ属性情報に含まれるデバイスタイプコードとそ れが示すデバイスタイプの対応関係を示す。

【図4】図4 (a) はDVDの正面図である。図4 (b) はDVDの断面図である。

【図5】図5 (a) ~図5 (f) は、DVDの物理フォ ーマットと称される記録データの物理的な構造を示す図 である。図5 (a) はDVDのデータ記録領域2206 の物理的な構造を示す図である。図5 (b)は、1個の 10 セクタの構造を示す図である。図5 (c)は、6パイト からなるCGMS制御データの構造を示す図である。図 5 (d)は、データ属性コードの意味を説明する図であ る。図5(e)は、CGMSデータの構造を示す図であ る。図5(f)は、CGMSコードの意味を説明する図 である。

【図 6】図 6 (a) と図 6 (b) は、DVDの論理フォ ーマットと称される記録データの論理的な構造を示す図 である。図 6 (a) は D V D の データ 記録 領域 2 2 0 6 の論理的な構造を示す図である。図6(b)は、ファイ 20 ル/ディレクトリ構造を示すツリー図である。

【図7】図7 (a) ~図7 (c) は、図6 (a) 及び図 6 (b) で示された論理フォーマットのファイルシステ ムとして利用されているISO13346規格を説明す るための図である。図7 (a) は、ISO13346規 格に従ったファイル管理情報内のデータの論理的な関係 を示す図である。図7(b)は、ディレクトリ用のファ イル識別記述子の構造を示す図である。図7(c)は、 ファイル用のファイル識別記述子の構造を示す図であ

【図8】DVD-ROMドライブ46の内部構成を示す ブロック図である。

【図9】 DVD-RAMドライブ910の内部構成を示 すブロック図である。

【図10】AV信号処理部47の内部構成を示すブロッ ク図である。

【図11】図11 (a) は、1/0コマンドの一覧を示 す。図11(b)は、SCSIコマンドの一覧を示す。

【図12】 DVD-ROM41のAVデータファイルが DVD-RAM99にコピーされる処理手順を示すフロ 40 チャートである。 ーチャートである。

【図13】図12でのコピーにおける通信のやりとりを 示す诵信シーケンス図である。

【図14】図12の処理Hの詳細な手順を示すフローチ ャートである。

【図15】図12の処理1の詳細な手順を示すフローチ ャートである。

【図16】 DVD-ROM41のデータファイルがHD 装置44にコピーされる手順を示すフローチャートであ

【図17】図17 (a) 及び図17 (b) は、図16で のコピーにおける通信のやりとりを示す通信シーケンス 図である。図17(a)は、図16でのデータファイル ファイルが非AVデータファイルであり、かつ、DVD - ROMドライブ46から読み出されたデータが非AV データである場合の通信のやりとりを示す通信シーケン ス図である。図17(b)は、図16でのデータファイ ルファイルが非AVデータファイルであるが、DVDー ROMドライブ46から読み出されたデータがAVデー 夕である場合の通信のやりとりを示す通信シーケンス図 である。

【図18】図16の処理Cの詳細な処理手順を示すフロ ーチャートである。

【図19】 D V D - R O M 4 1 の A V データファイルが 再生される処理手順を示すフローチャートである。

【図20】図19での再生における通信のやりとりを示 す通信シーケンス図である。

【図21】図19の処理Aの詳細な手順を示すフローチ ャートである。

【図22】図19の処理Bの詳細な手順を示すフローチ ャートである。

【図23】第2実施例に係る情報処理システムの外観図

【図24】同情報処理システムの構成を示す機能プロッ

【図25】 DVD-ROMドライブ1046の内部構成 を示すブロック図である。

【図26】 DVD-RAMドライブ1910の内部構成 を示すブロック図である。

【図27】AV信号処理部1047の内部構成を示すブ ロック図である。

【図28】各装置間でやりとりされるコマンドの一覧を

【図29】 DVD-ROM41のAVデータファイルが DVD-RAM99にコピーされる場合の通信のやりと りを示す通信シーケンス図である。

【図30】図29のコピーにおける処理手順を示すフロ ーチャートである。

【図31】図30の処理HHの詳細な手順を示すフロー

【図32】図30の処理 I I の詳細な手順を示すフロー チャートである。

【図33】 D V D - R O M 4 1 の A V データファイルが 再生される処理手順を示すフローチャートである。

【図34】図33の処理AAの詳細な手順を示すフロー チャートである。

【図35】図33の処理BBの詳細な手順を示すフロー チャートである。

【図36】従来のCD-ROMドライブ付パーソナルコ 50 ンピュータの構成を示すプロック図である。

59 【図 3 7】 ディスプレイ装置 2 4 0 7 D の正面図であ

る.

【符号の説明】

40 情報処理装置

4 1 D V D - R O M

42, 1042 I/O/X

43 SCSINA

4.4 HD装置

4.5 入力部

46、1046 DVD-ROMドライブ

47、1047 AV信号処理部

48 ビデオ信号処理部

49、1049 制御部

50 SCSIデバイス群

9 9 D V D - R A M

100、500 インタフェースコネクタ

101 データ記録回路

102、502 CGMS制御データ用メモリ

103、503 ユーザデータ用メモリ

104 CGMSデータ識別・更新回路

105、505 SCSIバス制御回路

106、506 ユーザデータ置換回路

107、507 内部データバス

108、508 制御パス

109、509、1109、1509 マイクロプロ

セッサ

10 501 データ読み出し回路

504 CGMSデータ識別回路

1100、1500 コネクタ

910、1910 DVD-RAMドライブ

1105、1505 インタフェース制御回路

1110 復号・認証回路

1510 暗号・認証回路

【図1】

[図20]

[図2] [図3]

【図8】

【図9】 43 SCSIバス ,910 インターフェース コネクタ DVD-RAM .100 マイクロプロセッサ ドライブ 108 制御バス 102 104 103 CGMS データ識別 CGMS制御 SCSIバス 制御回路 データ - 夕用 データ用 置換回路 メモリ メモリ 更新回路 内部データバス 107 データ記録回路 DVD-RAM

【図11】

(a)

形式	名称	意味
IO_PLAY	AVデータ再生用I/Oコマンド	DVD-ROM41のAVデータを再生する
IO_READ	データ読み出し用1/Oコマンド	DVD-ROM4lから非AVデータを読む
IO_WRITE	データ書き込み用VOコマンド	HD装置に非AVデータを送る
IO_COPY	AVデータコピー用L/Oコマンド	DVD-ROM4IからDVD-RAM99にAVデータをコピー

(b)

形式 名称		意味		
INQUIRY	認託用SCSIコマンド	機器属性データを要求する		
READ	データ読み出し用SCSIコマンド	データ送信装置から非AVデータを読む		
WRITE	データ書き込み用SCSIコマンド	アータ受信装置に非AVアータを送る		
READ_AV	AVデータ読み出し用SCSIコマンド	データ送信装置からAVデータを読む		
WRITE_AV	AVデータ書き込み用SCSIコマンド	データ受信装置にAVデータを送る		

【図12】

コピー終了

【図13】

【図17】

【図25】

【図26】

【図27】

【図28】

形式	名称	意味
READ	データ読み出し用コマンド	データ送信装置から非AVデータを読み出す
WRITE	データ書き込み用コマンド	プータ受信装置に非AVデータを送る
READ_AV	AVデータ読み出し用コマンド	データ送信装置からAVデータを読み出す
WRITE_AV	AVデータ書き込み用コマンド	データ受信装置にAVデータを送る
CHALLENGE _RECEIVER	アータ受信装置認証用コマンド	アータ受信装置を認証する処理を開始させる
CHALLENGE SENDER.	データ送信装置認証用コマンド	アータ送信装置を認証する処理を開始させる
CONFIRM _RECEIVER	データ受信装置確認用コマンド	データ受信装置の認証結果を判定させる
CONFIRM _SENDER	データ送信装置確認用コマンド	データ送信装置の認証結果を判定させる
PROOF _RECEIVER	アータ受信装置証明用コマンド	データ受信装置に自己の正当性を証明させる
PROOF _SENDER	データ送信装置証明用コマンド	データ送信装置に自己の正当性を証明させる
GET_PROOF _INFO	証明用データ獲得用コマンド	証明データを読み出す

【図36】

【図37】

フロントページの続き

(51) Int. Cl. 6	識別記号	庁内整理番号	FΙ		技術表示箇所。
HO4N 5/91			H04N	5/91	P
5/92				5/92	Н

(72)発明者 福島 能久 大阪府門真市大字門真1006番地 松下電器産業株式会社内

(72)発明者 遠藤 幸一郎 大阪府門真市大字門真1006番地 松下 電器産業株式会社内

(72) 発明者 館林 誠 大阪府門真市大字門真1006番地 松下電器産業株式会社内

(72) 発明者 原田 俊治 大阪府門真市大字門真1006番地 松下電器産業株式会社内