Wykrywanie naczyń dna siatkówki oka

Karol Krakowski, Dominik Grzelak

1. Wersja na 3.0

Opis programu

W najprostszej wersji programu korzystamy z technik przetwarzania obrazu w celu zlokalizowania naczyń krwionośnych. Na samym początku wczytujemy kanał zielony obrazu, ponieważ ze wszystkich trzech kanałów RGB to na nim naczynia są najbardziej kontrastowe w stosunku do tła. Tak wczytany obraz poddajemy działaniu funkcji *equalize_adapthist*, która oblicza histogramy dla obrazu i powoduje zwiększenie kontrastu, dzięki czemu szczegóły obrazu stają się bardziej widoczne. Następnie stosujemy filtr Gaussa, aby zmniejszyć zaszumienie, a po nim filtr Frangiego, który wykrywa ciągłe krawędzie na obrazie. Dla tak obrobionego obrazu obliczamy wartość progową z użyciem funkcji *threshold_triangle*, której następnie używamy do wygenerowania maski binarnej na podstawie przygotowanego obrazu.

Analiza statystyczna jakości wyników

2. Wersja na 4.0

Opis programu

Program generuje losowo fragmenty obrazu rozmiaru 5x5 px, które następnie zostaną wykorzystane do wyuczenia klasyfikatora. Następnie dla każdego z fragmentów są obliczane miary statystyczne, które posłużą do obliczenia metryk euklidesowych. W dalszej kolejności tak przygotowany klasyfikator poddawany jest testom – dla każdego testowanego fragmentu metodą 3 najbliższych sąsiadów sprawdzamy, które 3 przypadki z klasyfikatora są najbliżej niego i na ich podstawie podejmowana jest decyzja o klasyfikacji.

Analiza statystyczna jakości wyników

```
03 dr.JPG
sensitivity 100.0 %
specificity 94.69469469469 %
          94.6999999999999 %
05 h.jpg
sensitivity 28.57142857142857 %
specificity 90.5337361530715 %
           90.10000000000001 %
accuracy
06 g.jpg
sensitivity 0.0 %
specificity 93.7937937937938 %
           93.7 %
accuracy
07 g.jpg
sensitivity 0.0 %
specificity 94.69469469469 %
           94.6 %
accuracy
13 h.jpg
sensitivity 57.14285714285714 %
specificity 92.54783484390735 %
accuracy 92.3000000000000000001 %
```

3. Wersja na 5.0

Opis programu

Algorytm oparty jest na sieci neuronowej o trzech warstwach ukrytych i funkcji aktywacji relu (f(x) = max(0, x)) wytrenowanej w oparciu o algorytm LBFGS. Generowanie zbioru próbek odbywa się analogicznie, jak w przypadku wersji z klasyfikatorem kNN. Korzystamy także z k-krotnej walidacji skrośnej, aby podzielić zbiór próbek na 10 równych podzbiorów, z których jeden jest zbiorem testowym, a pozostałe służą do uczenia sieci.

Analiza statystyczna jakości wyników

Prezentujemy tylko 1 przypadek z uwagi na bardzo długotrwałe obliczenia (prawie 70 minut).

06_g.jpg sensitivity 27.63434443031734 % specificity 93.24558830281822 % accuracy 92.93578779710855 %