AP Chemistry: Additional Aspects of Aqueous Equilibria Multiple Choice

- 64. The net ionic equation for the reaction that occurs during the titration of nitrous acid with sodium hydroxide is...
- (A) $HNO_2 + Na^+ + OH^- \rightarrow NaNO_2 + H_2O$
- (B) $HNO_2 + NaOH \rightarrow Na^+ + NO_2^- + H_2O$
- $(C) H^+ + OH^- \rightarrow H_2O$
- (D) $HNO_2 + H_2O \rightarrow NO_2^- + H_3O^+$
- (E) $HNO_2 + OH^- \rightarrow NO_2^- + H_2O$
- 16. Commercial vinegar was titrated with NaOH solution to determine the content of acetic acid, HC₂H₃O₂. For 20.0 milliliters of the vinegar, 32.0 milliliters of 0.500-molar NaOH solution was required. What was the concentration of acetic acid in the vinegar if no other acid was present?
- (A) 1.60 M
- (B) 0.800 M
- (C) 0.640 M
- (D) 0.600 M
- (E) 0.400 M

	Acid
	Dissociation
Acid	Constant, Ka
H ₃ PO ₄	7×10^{-3}
$\mathrm{H_2PO_4}^-$	8 x 10 ⁻⁸
HPO ₄ ²⁻	5 x 10 ⁻¹³

- 63. On the basis of the information above, a buffer with a pH = 9 can best be made by using...
- (A) pure NaH₂PO₄
- (B) $H_3PO_4 + H_2PO_4^-$ (C) $H_2PO_4^- + PO_4^{3-}$

- (D) $H_2PO_4^- + HPO_4^{2-}$
- (E) $HPO_4^{2-} + PO_4^{3-}$
- 19. In the titration of a weak acid of unknown concentration with a standard solution of a strong base, a pH meter was used to follow the progress of the titration. Which of the following is true for this experiment?
- (A) The pH is 7 at the equivalence point.
- (B) The pH at the equivalence point depends on the indicator used.
- (C) The graph of pH versus volume of base added rises gradually at first and then much more rapidly.
- (D) The graph of pH versus volume of base added shows no sharp rise.
- (E) The [H⁺] at the equivalence point equals the ionization constant of the acid.
- 55. What volume of 0.150-molar HCl is required to neutralize 25.0 milliliters of 0.120-molar Ba(OH)₂?
- $(A) 20.0 \, mL$
- (B) 30 0 mL
- (C) 40.0 mL
- (D) $60.0 \, \text{mL}$
- (E) 80.0 mL

- 35. When phenolphthalein is used as the indicator in a titration of an HCl solution with a solution of NaOH, the indicator undergoes a color change from clear to red at the end point of the titration. This color change occurs abruptly because...
- (A) phenolphthalein is a very strong acid that is capable of rapid dissociation
- (B) the solution being titrated undergoes a large pH change near the end point of the titration
- (C) phenolphthalein undergoes an irreversible reaction in basic solution
- (D) OH⁻ acts as a catalyst for the decomposition of phenolphthalein
- (E) phenolphthalein is involved in the rate-determining step of the reaction between H₃O⁺ and OH⁻
- 8. Use these answers for questions 8 10.
- (A) a solution with a pH less than 7 that is not a buffer solution
- (B) a buffer solution with a pH between 4 and 7
- (C) a buffer solution with a pH between 7 and 10
- (D) a solution with a pH greater than 7 that is not a buffer solution
- (E) a solution with a pH of 7

Ionization Constants

 $CH_3COOH = 1.8 \times 10^{-5}$

 $NH_3 = 1.8 \times 10^{-5}$

 H_2CO_3 ; $K_1 = 4 \times 10^{-7}$

 H_2CO_3 ; $K_2 = 4 \times 10^{-11}$

- 8. A solution prepared to be initially 1 M in NaCl and 1 M in HCl.
- 9. A solution prepared to be initially 1 M in Na₂CO₃ and 1 M in CH₃COONa
- 10. A solution prepared to be initially 0.5 M in CH₃COOH and 1 M in CH₃COONa
- 52. When dilute nitric acid was added to a solution of one of the following chemicals, a gas was evolved, This gas turned a drop of limewater, Ca(OH)₂, cloudy, due to the formation of a white precipitate. The chemical was...
- (A) household ammonia, NH₃
- (B) baking soda, NaHCO₃
- (C) table salt, NaCl

- (D) epsom salts, MgSO₄ · 7H₂O
- (E) bleach, 5% NaOCl

Questions 9-12 refer to aqueous solutions containing 1:1 mole ratios of the following pairs of substances. Assume all concentrations are 1 M.

- (A) NH₃ and NH₄Cl
- (B) H₃PO₄ and NaH₂PO₄
- (C) HCl and NaCl

- (D) NaOH and NH₃
- (E) NH₃ and HC₂H₃O₂ (acetic acid)
- 9. The solution with the lowest pH
- 10. The most nearly neutral solution
- 11. A buffer at a pH > 8
- 12. A buffer at a pH <6

- 69. Correct procedures for a titration include which of the following?
- I. Draining a pipet by touching the tip to the side of the container used for the titration
- II. Rinsing the buret with distilled water just before filling it with the liquid to be titrated
- III. Swirling the solution frequently during the titration
- (A) I only (B) II only (C) I and III only (D) II and III only (E) I, II, and III
- 24. The safest and most effective emergency procedure to treat an acid splash on skin is to do which of the following immediately?
- (A) Dry the affected area with paper towels
- (B) Sprinkle the affected area with powdered Na₂SO₄(s)
- (C) Flush the affected area with water and then with a dilute NaOH solution
- (D) Flush the affected area with water and then with a dilute NaHCO₃ solution
- (E) Flush the affected area with water and then with a dilute vinegar solution
- 32. The net ionic equation for the reaction between silver carbonate and hydrochloric acid is...
- (A) $Ag_2CO_{3(s)} + 2 H^+ + 2 Cl^- \rightarrow 2 AgCl_{(s)} + H_2O + CO_{2(g)}$
- (B) $2 \text{ Ag}^+ + \text{CO}_3^{2-} + 2 \text{ H}^+ + 2 \text{ Cl}^- \rightarrow 2 \text{ AgCl}_{(s)} + \text{H}_2\text{O} + \text{CO}_{2(g)}$
- (C) $CO_3^{2-} + 2 H^+ \rightarrow H_2O + CO_{2(g)}$
- (D) $Ag^+ + Cl^- \rightarrow AgCl_{(s)}$
- (E) $Ag_2CO_{3(s)} + 2 H^+ \rightarrow 2Ag^+ + H_2CO_3$

Questions 33-34

The graph below shows the titration curve that results when 100. mL of 0.0250 M acetic acid is titrated with 0.100 M NaOH.

33. Which of the following indicators is the best choice for this titration?

pH Range of Color Change

	Color Change
(A) Methyl orange	3.2 - 4.4
(B) Methyl red	4.8 - 6.0
(C) Bromthymol blue	6.1 - 7.6
(D) Phenolphthalein	8.2 - 10.0
(E) Alizarin	11.0 - 12.4

- 34. What part of the curve corresponds to the optimum buffer action for the acetic acid/acetate pair?
- (A) Point V
- (B) Point X
- (C) Point Z
- (D) Along all of section WY
- (E) along all of section YZ
- 61. How can 100. mL of sodium hydroxide solution with a pH of 13.00 be converted to a sodium hydroxide solution with a pH of 12.00?
- (A) By diluting the solution with distilled water to a total volume of 108 mL
- (B) By diluting the solution with distilled water to a total volume of 200 mL
- (C) By diluting the solution with distilled water to a total volume of 1.00 L
- (D) By adding 100. mL of 0.10 M HCl
- (E) By adding 100. mL of 0.10 M NaOH

II. 0.10 M HF + 0.10 M NaF III. 0.10 M HBr + 0.10 M NaBr
 (A) I only (B) II only (C) III only (D) I and II (E) II and III
64. Ascorbic acid $H_2C_6H_6O_{6(s)}$, is a diprotic acid with $K_1 = 7.9 \times 10^{-5}$ and $K_2 = 1.6 \times 10^{-12}$. In a 0.005 M aqueous solution of ascorbic acid, which of the following species is present in the <u>lowest</u> concentration?
$\begin{array}{c} (A) \ H_2O_{(l)} \\ (B) \ H_3O^+_{(aq)} \\ (C) \ H_2C_6H_6O_{6(aq)} \\ (D) \ HC_6H_6O_6^{(aq)} \\ (E) \ C_6H_6O_6^{2^-}_{(aq)} \end{array}$
74. A pure white crystalline solid dissolves in water to yield a basic solution that liberates a gas when excess acid is added to it. On the basis of this information, the solid could be
(A) KNO ₃ (B) K ₂ CO ₃ (C) KOH (D) KHSO ₄ (E) KCl
74. Equal volumes of 0.10-molar H ₃ PO ₄ and 0.20-molar KOH are mixed. After equilibrium is established, the type of ion a solution in largest concentration, other than the K ⁺ ion, is
(A) H ₂ PO ₄ ⁻ (B) HPO ₄ ²⁻ (C) PO ₄ ³⁻ (D) OH ⁻ (E) H ₃ O ⁺

63. Mixtures that would be considered buffers include which of the following?

I. 0.10 M HCl + 0.10 M NaCl