freqdom (version 2.0.2)

spectral.density: Compute empirical spectral density

Description

Estimates the spectral density and cross spectral density of vector time series.

Usage

Arguments

X a vector or a vector time series given in matrix form. Each row corresponds to a timepoint.

Y a vector or vector time series given in matrix form. Each row corresponds to a timepoint.

freq a vector containing frequencies in $[-\pi,\pi]$ on which the spectral density should be evaluated.

q window size for the kernel estimator, i.e. a positive integer.

weights kernel used in the spectral smoothing. By default the Bartlett kernel is chosen.

Value

Returns an object of class ` $\underline{freqdom}$ `. The list is containing the following components:

`operators` an array. The k-th matrix in this array corresponds to the spectral density matrix evaluated at the k-th frequency listed in `freq`.

`freq` returns argument vector `freq`.

Details

Let $[X_1, \dots, X_T]'$ be a $T \times d_1$ matrix and $[Y_1, \dots, Y_T]'$ be a $T \times d_2$ matrix. We stack the vectors and assume that $(X_t', Y_t')'$ is a stationary multivariate time series of dimension $d_1 + d_2$. The cross-spectral density between the two time series (X_t) and (Y_t) is defined as

$$\sum_{h\in {f Z}} {
m Cov}(X_h,Y_0) e^{-ih\omega}.$$

The function `spectral.density` determines the empirical cross-spectral density between the two time series (X_t) and (Y_t) . The estimator is of form

$$\widehat{\mathcal{F}}^{XY}(\omega) = \sum_{|h| \leq q} w(|k|/q) \widehat{C}^{XY}(h) e^{-ih\omega},$$

with $\widehat{C}^{XY}(h)$ defined in `cov.structure` Here w is a kernel of the specified type and q is the window size. By default the Bartlett kernel w(x)=1-|x| is used.

See, e.g., Chapter 10 and 11 in Brockwell and Davis (1991) for details.

References

Peter J. Brockwell and Richard A. Davis *Time Series: Theory and Methods* Springer Series in Statistics, 2009