Homeostasis and Concept of Control System Its importance and the principle of feedback mechanism

Body compartments

- External environment (always changing, often hostile)
- Internal environment (relatively stable, actively maintained by cells & organs)
 - The internal environment is under sophisticated physiological regulation
- Communication between external & internal environments at:
 - Respiratory, digestive, & renal systems
- Extracellular fluid (surrounding cells):
 - Vehicles for transport of substances
 - Constantly changing to maintain optimal conditions

Homeostasis

- "The constancy of the internal environment is the condition for the free and independent life."
- Uniform conditions that prevail in the body in face of all the disturbances that tend to change them
- Homeostatic mechanism
 - The key to maintaining a stable internal environment is a regulatory mechanism
 - Homeostatic control cannot maintain complete constancy
 - Regulated variables have a <u>range of normal values</u> (depending on the conditions)

Homeostatic control system

Stimulus (change in internal environment)

- → Receptors
- → Control centre (set point)
- → Effectors (muscles/ glands)
- → Response (change in internal environment is corrected)

Negative feedback control

- Adopted by most control systems
- Involved in homeostatic control
- Output shuts off the original stimulus → Physiological event <u>returns to optimal status</u>
- Examples:
 - Body temperature
 - Blood glucose level / water level in blood / blood gas level / blood pressure
 - Endocrine gland secretions
- Some homeostatic responses are highly localized (e.g. in skeletal muscle cells during exercise)

Positive feedback control

- NOT for homeostatic control
- For a transient physiological change
- The output exaggerates the original stimulus
- Examples:
 - Parturition / ovulation / blood clotting
 - Heat stroke

Feedforward control

- Proactive: prompt the system to act before the changes begin to affect it
- Variation of "other variable" <u>directly compensates the **anticipated** changes</u> in the controlled variable (independent of a sensor for the controlled variable)

Health & Illness

Healthcare intervention aims to re-establish patient's homeostasis