MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2017-18. Semestre de primavera

Pràctica 3: Interpolació polinomial

Exercici 1 Interpolació de Lagrange

a) Programeu una funció amb prototipus

que, donats els vectors x i y, que contenen $\{x_0, \ldots, x_n\}$ i $\{f(x_0), \ldots, f(x_n)\}$ respectivament, retorni un vector difer amb les diferències dividides

$$f[x_0], f[x_0, x_1], \ldots, f[x_0, \ldots, x_n],$$

en aquest ordre.

Verifiqueu aquesta funció per a diferents taules de diferències dividides.

b) Escriviu una funció amb prototipus

que, donats el vector x, que conté $\{x_0, \ldots, x_n\}$, i el vector difer, que conté les diferències dividides $\{f[x_0], f[x_0, x_1], \ldots, f[x_0, \ldots, x_n]\}$, avaluï el polinomi interpolador en el punt z, usant la regla de Horner.

Recordeu que en el mètode de Newton el polinomi interpolador ve donat per

$$p_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$
 amb $a_j = f[x_0, x_1, \dots, x_j], \ j = 0, \dots, n.$

Verifiqueu aquesta funció per a diferents valors de z.

- c) Programeu una funció main que llegeix n, el grau del polinomi interpolador, la llista dels punts d'interpolació $\{x_i, y_i\}, i = 0, \dots, n$ i z abscissa on avaluarem el polinomi, i escriu el valor del polinomi en z.
- d) Programeu una funció main que llegeix a,b els extrems de l'interval on treballem i n el grau del polinomi interpolador i calcula el polinomi interpolador d'una funció f en abscisses equidistants. Després calcularà una aproximació de l'error, mitjançant una malla de pas h en l'interval indicat.

Definiu una funció de prototipus **double** f (**double** x); que retorna el valor d'una funció f en el punt x.

Aplicacions

1 El punt d'ebullició de l'aigua varia amb la pressió atmosfèrica. Donada la següent taula de valors, estimeu el punt d'ebullició quan la pressió és 753 mm de mercuri.

Pressió (mm)	750	755	760	765
Punt Ebullició (°C)	99.630	99.815	100.00	100.184

- **2** Interpoleu la funció $f(x) = \sin(x) \cos(2x)$ en l'interval $[0, 2\pi]$ en abscisses equidistants per a diferents nombre de punts.
- 3 Interpoleu la funció $g(x) = \frac{1}{1+25x^2}$ en l'interval [-1,1] en m abscisses equidistants. Feu-lo per a m = 5, 10, 15, 20. Feu una malla de pas h en els intervals indicats per obtenir una aproximació de l'error.

Exercici 2 Interpolació d'Hermite

a) Programeu una funció amb prototipus

que, donats els vectors x, fx i derfx, que contenen els valors $\{x_0, \ldots, x_n\}$, $\{f(x_0), \ldots, f(x_n)\}$ i $\{f'(x_0), \ldots, f'(x_n)\}$ respectivament, retorni un vector differ amb les diferències dividides

$$f[x_0], f[x_0, x_0], f[x_0, x_0, x_1], \dots, f[x_0, x_0, \dots, x_n, x_n],$$

en aquest ordre.

Verifiqueu aquesta funció per a diferents taules de diferències dividides.

b) Escriviu una funció amb prototipus

que, donats el vector x, que conté $\{x_0, \ldots, x_n\}$, i el vector differ, que conté les diferències dividides $\{f[x_0], f[x_0, x_0], f[x_0, x_0, x_1], \ldots, f[x_0, x_0, \ldots, x_n, x_n]\}$, avaluï el polinomi interpolador d'Hermite en el punt z, usant la regla de Horner.

Recordeu que el polinomi interpolador d'Hermite es pot escriure com

$$p(x) = f[x_0] + f[x_0, x_0](x - x_0) + f[x_0, x_0, x_1](x - x_0)^2 + \dots + f[x_0, x_0, x_1, x_1, \dots, x_n, x_n](x - x_0)^2 + \dots (x - x_{n-1})^2 (x - x_n)$$

c) Feu funcions principals anàlogues a les de la interpolació de Lagrange.

Aplicacions

1 Calculeu el polinomi interpolador d'Hermite de la taula

x	у	y'
1	3	1
2	2	4

- **2** Interpoleu la funció $f(x) = \sin(x) \cos(2x)$ en l'interval $[0, 2\pi]$ en abscisses equidistants per a diferents nombre de punts.
- 3 Interpoleu la funció $g(x) = \frac{1}{1+25x^2}$ en l'interval [-1,1] en m abscisses equidistants per m = 5, 10, 15, 20.

Exercici 3 La primera derivada d'una funció f(x) en un punt c es pot aproximar, si h és prou petit, per les expressions següents:

$$F_1(c,h) = \frac{f(c+h) - f(c)}{h}$$
 $F_2(c,h) = \frac{f(c+h) - f(c-h)}{2h}$

i

$$F_3(c,h) = \frac{f(c-2h) - 8f(c-h) + 8f(c+h) - f(c+2h)}{12h}$$

a) Programeu les funcions de prototipus

```
double primDeriv_1 (double c, double h);
double primDeriv_2 (double c, double h);
double primDeriv_3 (double c, double h);
```

que, donats c i h retornin $F_1(c,h)$, $F_2(c,h)$ i $F_3(c,h)$, respectivament.

b) Programeu una funció main que llegeixi els valors c, h_0, r i n, avaluï $F_1(c,h), F_2(c,h)$ i $F_3(c,h)$ per als passos $h_0, h_i = \frac{h_{i-1}}{r}, i = 1, ..., n$, i escrigui en un fitxer la informació següent (en punt flotant amb notació exponencial i controlant el nombre de dígits de la mantissa):

$$h_i |f'(c) - F_1(c, h_i)| |f'(c) - F_2(c, h_i)| |f'(c) - F_3(c, h_i)|$$

Per a cada exemple, cal programar dues funcions **double** f (**double**); i **double** df (**double**); que retornin el valor de f(x) i f'(x), respectivament.

c) Feu una gràfica dels errors, en valor absolut, en funció del pas *h* usant una escala logarítmica. Deduïu-ne el comportament de l'error en l'aproximació amb cadascuna de les fórmules.

Proveu per a diferents valors de r per calcular una aproximació del pas òptim.

Apliqueu-lo als casos següents:

- $f_1(x) = \sin^2(x) \cos(x)$, c = 2.5, $h_0 = 1$:
- $f_2(x) = \sqrt{2+x}$, $c = 1, h_0 = 0.64$;
- $f(x) = e^{x^3}$, c = 1, $h_0 = 0.2$.

Exercici 4 Volem calcular $I(f) = \int_a^b f(x) dx$

a) Siguin $h = \frac{b-a}{n}$ i les abscisses $x_i = a + ih, i = 0, \dots, n$. Llavors la fórmula dels trapezis per aproximar I(f) és

$$T(h) = h \left[\frac{f(x_0)}{2} + f(x_1) + \dots + f(x_{n-1}) + \frac{f(x_n)}{2} \right]$$

i es verifica, si f'' és continua,

$$\int_{a}^{b} f(x) \, dx = T(h) + R_{T} \quad \text{on} \quad R_{T} = -\frac{b-a}{12} f''(\xi) h^{2} \quad (\text{amb } \xi \in (a,b))$$

Programeu una funció **double** trapezis (**double** a, **double** b, **int** n); que, donats un interval [a,b], i un enter n retorni una aproximació de la integral de f(x) a l'interval [a,b] usant la fórmula dels trapezis, on n és el nombre de subintervals en què dividim l'interval [a,b].