

MATB42_TU T5_First_a...

MATB42 TUT03/12 Nick Huang First and Second Order Linear Equation Jan.26 2021 Week 3 Second order linear equations When solving the general solution of the heat equation using the method of separation of variables, we have two linear equations $T' + \lambda kT = 0$ and $X'' + \lambda X = 0$ where $\lambda > 0$. Using the knowdledge of ordinary differential equations, we solved that and $X(x) = C\cos(\sqrt{\lambda}x) + D\sin(\sqrt{\lambda}x)$ The details are as follow: To solve a second order differential equation 4(x) ay'' + by' + cy = 0 where at $b \in C$ are constants start with the guess $y = e^{rx}$ for some constant r. Plug into the differential equation, and ... 0 = ay"+ty+ty+cy = r2aerx+rberx+cerx where drx > 0 for all x $0 = C^{rx}(ar^2 + br + c) \Rightarrow ar^2 + br + c = 0$ real, distinct

real, distinct

real, equal c $r = -b \pm nb^2 + back$ which we know how to solve using quadratic familiar. Examples; $T' + \lambda kT = 0$, claim, $T(H) = Ae^{-\lambda kt}$ Stant with guess, T(t) = evt nert + xkert = 0 r+xk=0 => r=-xk > T(+) = C^{-\lambda kt} => The persual columbus to Titl = AC-Akt, A is constaint Examples: $\chi_{11} + \chi_{X} = 0$, claim; $\chi(\chi) = \cos(\chi \chi_{X}) + \sin(\chi \chi_{X})$ p2= -> < 0 He >> 0 $r = \pm \sqrt{\lambda} = \pm i \sqrt{\lambda}$, $\lambda = \sqrt{-1}$ or $\lambda^2 = -1$ Khi = 7 new

 $r = \pm \sqrt{1-\lambda} = \pm i\sqrt{\lambda}, \quad i = \sqrt{1-1} \text{ or } i^2 = -1$ when $r = i\sqrt{\lambda}$ $\chi(x) = e^{ix} = e^{i\sqrt{\lambda}x}$ $= (05(\sqrt{\lambda}x) + i\sin(\sqrt{\lambda}x)) \quad e^{i\theta} = \cos\theta + i\sin\theta$ $= \sin(\sqrt{\lambda}x), \quad \cos(\sqrt{\lambda}x), \quad \sin\theta = \sin(\sqrt{\lambda}x) \text{ are solutions.}$ $= i\cos(\sqrt{\lambda}x) + i\sin(\sqrt{\lambda}x) \quad e^{i\theta} = \cos\theta + i\sin\theta$ $= \sin\theta + i\sin\theta + i\cos\theta + i\sin\theta$ $= \sin\theta + i\sin\theta + i\cos\theta + i\sin\theta + i\cos\theta + i\sin\theta$ $= \sin\theta + i\sin\theta + i\cos\theta + i\cos\theta + i\sin\theta + i\cos\theta + i\cos\theta + i\sin\theta + i\cos\theta + i\cos\theta + i\cos\theta + i\sin\theta + i\cos\theta + i\sin\theta + i\cos\theta + i\cos$