Miejsce na naklejkę z kodem szkoły

dys	leks	ja

MMA-R1 1P-072

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

Czas pracy 180 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 10. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem ■ i zaznacz właściwe.

Życzymy powodzenia!

MAJ ROK 2007

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów

Wypełnia zdający przed rozpoczęciem pracy										
PESEL ZDAJACEGO										

KOD ZDAJĄCEGO

Zadanie 1. (5 pkt)

Dana jest funkcja f(x) = |x-1| - |x+2| dla $x \in R$.

- a) Wyznacz zbiór wartości funkcji f dla $x \in (-\infty, -2)$.
- b) Naszkicuj wykres tej funkcji.
- c) Podaj jej miejsca zerowe.
- d) Wyznacz wszystkie wartości parametru m, dla których równanie f(x) = m nie ma rozwiązania.

	Nr czynności	1.1.	1.2.	1.3.	1.4.	1.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 2. (5 *pkt*)

Rozwiąż nierówność:
$$\log_{\frac{1}{3}}(x^2-1) + \log_{\frac{1}{3}}(5-x) > \log_{\frac{1}{3}}(3(x+1))$$
.

	Nr czynności	2.1.	2.2.	2.3.	2.4.	2.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 3. (5 *pkt*)

Kapsuła lądownika ma kształt stożka zakończonego w podstawie półkulą o tym samym promieniu co promień podstawy stożka. Wysokość stożka jest o 1 m większa niż promień półkuli. Objętość stożka stanowi $\frac{2}{3}$ objętości całej kapsuły. Oblicz objętość kapsuły lądownika.

	Nr czynności	3.1.	3.2.	3.3.	3.4.	3.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 4. (*3 pkt*)

Dany jest trójkąt o bokach długości 1, $\frac{3}{2}$, 2. Oblicz cosinus i sinus kąta leżącego naprzeciw najkrótszego boku tego trójkąta.

Wypełnia	Nr czynności	4.1.	4.2.	4.3.
	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 5. (7 *pkt*)

Wierzchołki trójkąta równobocznego ABC są punktami paraboli $y=-x^2+6x$. Punkt C jest jej wierzchołkiem, a bok AB jest równoległy do osi Ox. Sporządź rysunek w układzie współrzędnych i wyznacz współrzędne wierzchołków tego trójkąta.

	Nr czynności	5.1.	5.2.	5.3.	5.4.	5.5.	5.6.	5.7.
Wypełnia	Maks. liczba pkt	1	1	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt							

Zadanie 6. (4 pkt)

Niech A, B będą zdarzeniami o prawdopodobieństwach P(A) i P(B). Wykaż, że jeżeli P(A)=0.85 i P(B)=0.75, to prawdopodobieństwo warunkowe spełnia nierówność $P(A|B) \ge 0.8$.

	Nr czynności	6.1.	6.2.	6.3.	6.4.
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 7. (*7 pkt*)

Dany jest układ równań:
$$\begin{cases} mx - y = 2 \\ x + my = m \end{cases}$$

Dla każdej wartości parametru m wyznacz parę liczb (x,y), która jest rozwiązaniem tego układu równań. Wyznacz najmniejszą wartość sumy x+y dla $m\in \langle 2,4\rangle$.

	Nr czynności	7.1.	7.2.	7.3.	7.4.	7.5.	7.6.	7.7.
Wypełnia	Maks. liczba pkt	1	1	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt							

Zadanie 8. (3 pkt)

Dana jest funkcja f określona wzorem $f(x) = \frac{\sin^2 x - |\sin x|}{\sin x}$ dla $x \in (0, \pi) \cup (\pi, 2\pi)$.

- a) Naszkicuj wykres funkcji f.
- b) Wyznacz miejsca zerowe funkcji f.

Wynelnia	Nr czynności	8.1.	8.2.	8.3.
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 9. (*3 pkt*)

Przedstaw wielomian $W(x) = x^4 - 2x^3 - 3x^2 + 4x - 1$ w postaci iloczynu dwóch wielomianów stopnia drugiego o współczynnikach całkowitych i takich, że współczynniki przy drugich potęgach są równe jeden.

	Nr czynności	9.1.	9.2.	9.3.
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 10. (4 pkt)

Na kole opisany jest romb. Stosunek pola koła do pola rombu wynosi $\frac{\pi\sqrt{3}}{8}$. Wyznacz miarę kąta ostrego rombu.

	Nr czynności	10.1.	10.2.	10.3.	10.4.
	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 11. *(4 pkt)*

Suma n początkowych wyrazów ciągu arytmetycznego (a_n) wyraża się wzorem $S_n = 2n^2 + n$ dla $n \ge 1$.

- a) Oblicz sumę 50 początkowych wyrazów tego ciągu o numerach parzystych: $a_2+a_4+a_6+\ldots+a_{100}$.
- b) Oblicz $\lim_{n\to\infty} \frac{S_n}{3n^2-2}$.

Wypełnia	Nr czynności	11.1.	11.2.	11.3.	11.4.
	Maks. liczba pkt	1	1	1	1
	Uzyskana liczba pkt				

BRUDNOPIS