ANTENNA GAIN CALCULATION FOR THE 212-1621-501 & 212-1630-501 PCBAs

The Pneumatics RFID PCBA (212-1621-501) has 7 antennas, 6 of which are identical in size (marked VIT above). The 7th antenna is marked AGF above (largest of the 3). The Illuminator RFID PCBA (212-1630-501) has two antennas, identical in size (marked ILLUM above).

Antenna Gain was calculated for each of the three antenna sizes using 3 different lengths for D (diameter): OD, AVG, ID. The equation used to calculate gain:

$$G = \eta (\pi DF/c)^2$$

where η = is net efficiency and for a typical antenna = 0.55

where D = diameter in meters

where F = frequency, or 13.56MHz

where $c = \text{speed of light, or } 3(10)^8$

diameter calculations

		_					
INCHES	OD	AVG	ID	METERS	OD	AVG	ID
AGF	1.065	0.91	0.76	AGF	0.027	0.023	0.019
ILLUM	1.105	0.945	0.81	ILLUM	0.028	0.024	0.02
VIT	0.865	0.725	0.605	VIT	0.021	0.018	0.015

from the table we can show that $G = D^2(1.109)10^{-2}$,

which provides:

GAIN	OD	AVG	ID
AGF	8.085E-06	5.867E-06	4.004E-06
ILLUM	8.695E-06	6.388E-06	4.436E-06
VIT	4.891E-06	3.593E-06	2.495E-06

Using $10\log(Po/Pi) = dB$, we plug the values from the gain table in for Po/Pi to get:

ANTENNA GAIN CALCULATION FOR THE 212-1621-501 & 212-1630-501 PCBAs

GAIN (dBD)	OD	AVG	ID
AGF	-50.9233	-52.3161	-53.9755
ILLUM	-50.6074	-51.9464	-53.53
VIT	-53.1062	-54.4452	-56.0288

now, if we assume that the equation $G = \eta(\pi DF/C)^2$ assumes that the dB gain is with respect to a halfwave dipole (dBD), then to express the gain (dB) in dBi (with respect to an isotropol radiator) we must add 2.14 to the value to get:

GAIN (dBi)	OD	AVG	ID
AGF	-48.7833	-50.1761	-51.8355
ILLUM	-48.4674	-49.8064	-51.39
VIT	-50.9662	-52.3052	-53.8888

Based on the above, we can use a theoretical antenna gain of \approx -50 dBi as an average for the 3 different antennas.

Reference:

http://www.aticourses.com/antennas tutorial.htm