Ames Housing -Sale price prediction

By Zackarias Chia, Farah Liyana, Seth Ang

Problem statement

Most banks' businesses involve real estate acquisitions and mortgages.

As being part of bank's real estate risk assessment team, we often look into property sales pricing to evaluate potential and risks of properties. The ability to predict property's sale price allows us to provide a better analysis and evaluation to risks managers and management.

We are tasked to create a regression model that provide the most accurate prediction on price of a property at sale. The model will be built using Ames Housing Dataset. Models will be fine-tuned through analysis of features utilised, type of modelling and parameters, and will be evaluated through array of scoring such as RMSE, R² before a final model is selected.

Methodology

EDA	& Data Cleaning	V	Data 'isualisation	Pr	e-Processing	N	⁄lodel	Rec	Business ommendation
1.	Determine missing values and identify	1.	Use of scatter plot for	1.	Features/Output Split	1.	Ridge	1.	Model Decision
	·		numerical data	2	- · /- · c !:	2.	Linear	2.	Highest accuracy
2.	Understand categorical values	2.	Use of violin	2.	Train/Test Split		Regression		(R2)
			plots/bar plots	3.	Standard Scalar	3.	Lasso	2	I DNASE
3.	Identify outliers		for categorical data	4.	Hyper-parameter	4.	Elastic Net	3.	Lowest RMSE
4.	Multicollinearity				tuning				
5.	Log Transformation								

Data cleaning

<u>Type</u>	<u>Method</u>		
Null values	 Categorical: cross reference with data dictionary, impute with missing rating or mode if not available Numerical: impute with Median/Mean 		
Outliers	Drop obvious outliers		
Features	Combine/drop similar features that provide similar data		
Collinear features	Drop when identified via python function / algorithms		

Exploratory Data Analysis (EDA)

Exploratory Visualizations

Sale Price Distribution

Before

Not normally distributed based on the graph

 Will log the value to make the graph more normally distributed

Exploratory Visualizations

Correlation Features above 0.5

- 1. Overall Quality
- 2. Ground Living Area
- 3. Garage Area
- 4. Garage Cars
- 5. Total Basement Square Feet
- 6. 1st Floor Square Feet
- 7. Full Bath
- 8. Masonry Veneer Area
- 9. Total Rooms Above Ground

Exploratory Visualizations

Categorical Variables - Drop features that are dominated by one outcome:

- 1. Street
- 2. Land Contour
- 3. Utilities
- 4. Land Slope
- 5. Condition 2
- 6. Roof Material
- 7. Basement Condition
- 8. Basement Finish Type 2
- 9. Heating
- 10. Central Air Con
- 11. Electrical

Pre-processing

One-hot encode categorical variables

Log transformation variables > 0.5 skew Train/test split

Standard Scale date Drop non-statistical significant Check multicollinear data

Cook Distance to check for \
outliers

Review and revisit

Model Results

Model	Cross-Val Score	Mean Test Score	RMSE
Lasso Regression	0.920700	0.897334	26001.582
Ridge Regression	0.920675	0.897268	26027.659
Linear Regression	0.910649	0.897340	26000.857
Elastic Net Regression	0.906654	0.874658	27889.666

	Feature			
Top 5 Coefficients:	Top Positive Features			
Top o oddinoidits.	Gr Liv Area			
Top 5 Positive Features: 1. Ground Living Area	Total Bsmt SF			
2. Total Basement Square Feet	Overall Qual			
3. Overall Quality 4. Lot Area	Lot Area			
5. Kitchen Quality Excellent	Overall Condition			
Top 5 Negative Features: 1. NAmes Neighborhood	Top Negative Features			
2. OldTown Neighborhood	Neighborhood_Gilbert			
3. Edwards Neighborhood 4. CollgCr Neighborhood	Neighborhood_CollgCr			
5. Gilbert Neighborhood	Neighborhood_Edwards			
	Neighborhood_OldTown			
	Neighborhood_NAmes			

18625 11317 9759 9512 7173

-12526

-12549

-13384

-14394

-18210

Coefficient

Model recommendation

Objective: Best prediction of property sale price

Criteria: Highest accuracy (R² score) with the lowest RMSE

Model chosen: Lasso regression with standard scaling (Z-score)

Shortlisting based on above criteria ensures chosen model provide best predict property value, allowing bank give a safe valuation for closest mortgage loan or real estate acquisition consideration.

Business recommendation

Contributing features:

• Gr Liv Area - Above grade (ground) living area square feet

For every unit increase in living area square feet, sales price is predicted to increase by ~\$18,000

Overall Quality

For every unit increase in Overall Quality, sale price is predicted to increase ~\$11,500

Neighborhood

Properties in certain neighborhoods have positive or negative impact on sale price.

E.g. properties in Northridge Heights increase sales price, while properties in Edwards Neighborhood lowers

Limitations

- Limited to features and scaling used in model such as neighbourhood, type of housing
- Model is feasible on assumptions that future environment remain constant/same, i.e. national real estate regulations, economic status at time of sales.
- Sales price can change drastically should there be changes in macroeconomy.
- Accuracy is limited to type of modelling and parameters used.
 - There may be better machine learning models or hypertuning methods available currently and in future that can provide better prediction.