Probe Design Documentation

Jiahao Huang

2023-05-09

Find shorest isoform for each gene in CCDS and whole transcriptome dataset

- 1. Download corresponding FASTA files from NCBI FTP site
 - Human (H_sapiens) whole transcriptome / CCDS
 - Mouse (M_musculus) whole transcriptome / CCDS
 - o Marmoset GCF_000004665.1_Callithrix_jacchus-3.2_rna.fna.gz (version used in 2019)
- 2. Find the shortest isoform for each gene using the following example scripts
 - find_shortest_isoforms_ccds.R
 - o find_shortest_isoforms_rna.R
 - o find shortest isoforms rna marmosets.R (for marmoset only)
- 3. The output files of these scripts will be
 - H_sapiens_ccds_shortest_isoforms_10_21_19.fa
 - H_sapiens_rna_shortest_isoforms_10_21_19.fa
 - M_musculus_ccds_shortest_isoforms_10_21_19.fa
 - o M_musculus_rna_shortest_isoforms_10_21_19.fa
 - Marmosets_rna_shortest_isoforms_10_21_19.fa

Use Picky 2.0 to find probe sequences

- Input target sequence is each output FASTA file from last step (*load single file for each computation round*)
- 2. Parameters wt/ alternatives
 - O Maximum oligo size: 46
 - O Minimum oligo size: 40
 - O Maximum GC content: 70
 - O Minimum GC content: 30
 - O Number of probes per gene: 5

- O Salt Concentration (milliM): 300
- 3. Parameters w/ alternatives
 - O Maximum match length: 15 / Minimum match length: 10
 - O Maximum match length: 18 / Minimum match length: 15
 - O Maximum match length: 20 / Minimum match length: 15
- 4. Output (for each species)
 - O Species_ccds_max_min.picky (ie. H_sapiens_ccds_15_10.picky)
 - O Species_rna_max_min.picky (ie. Marmosets_rna_15_10.picky)

Probe QC w/ Python scripts & BBmap (Dedupe.sh)

- 1. All the python functions used in this step are included in the probe.
 design/scripts/2.filtration/probe.py file and you can find a parsing example under the same directory titled example.ipynb.
- 2. If you would like to run the picky parsing step on the Broad UGER cluster, related demo scripts are under probe-design/scripts/2. filtration/cluster-run-example directory.
- 3. Here is the original documentation in 2019 and the <code>probe_test_multi.py</code> and <code>rm_overlap.py</code> file have been moved to the <code>archive</code> folder.
 - 1. probe test multi.py
 - Input should be a folder containing all the .picky files of each species
 - The script will first parse each .picky file based on the following order:

CCDS - Max = 15, Min = 10, #1	RNA - Max = 15, Min = 10, #2
CCDS - Max = 18, Min = 15, #3	RNA - Max = 18, Min = 15, #4
CCDS - Max = 20, Min = 15, #5	RNA - Max = 20, Min = 15, #6

- Then drop all duplicated records (will keep first one)
- Remove all the records with ReverseComplement field containing continous single nucleotide sequence longer than 5bp (ie. 'CCCCC')
- Output (for each species)
 - a log.txt file with all script running info
 - a .fa file with all probes

^{*} noted that Marmosets does not have CCDS dataset

- a .fq file with all probes
- a .xlsx file with all probe records
- 4. Once you parsed the picky files and create a dataframe with all the probes, you can filter them with the following command in BBmap:
 - o dedupe.sh in=path/to/.fa out=out.fa outd=dup.fa s=1 k=20 sort=id
 - This script tool from BBmap will identify
 - <u>duplicated probes</u> two probes are complementary with each other
 - containment probes probe pairs where shorter one has a full length exact match with the longer one
 - overlaps minimum length of overlap is 20bp
 - In this step, every duplicated or containment probes will be stored in the dup.fa file
 - dedupe.sh in=path/to/.fa pattern=clust/cluster_%.fa fo c pto pc cc s=1 k=20 mo=20
 mcs=2
 - This step will generate a cluster_%.fa file for each probe set containing overlap sequence longer than 20bp
- 5. Then refer to the "Filtering based on bbmap (dedupe.sh)" section in example.ipynb or Run rm_overlap.py
 - Using all the cluster_%.fa files and dup.fa file to filter the .xlsx file which contains all the probe records