Category Theory with Strings

Shunsuke Sogame

March 24, 2016

1 Introduction

This is a supplemental document for introductory books of category theory ([1], [2], [3], [8]) using *string diagrams*. Don't trust my poor mathematics. Any correction is welcome at github.com/okomok/strcat.

2 Preliminaries

2.1 Lambda Expressions

Definition 2.1 (Lambda Expression) Following famous symbols like Σ , define $\Lambda_x y$ as an anonymous function $x \mapsto y$. We casually call any form of anonymous functions a *lambda expression*.

Definition 2.2 (Lambda-Tasted Form) Given a function Γ whose domain is a set of functions, you can choose a short form of $\Gamma(\Lambda_x y)$ from the following lambda-tasted forms

- 1. $\Gamma_x y$
- 2. $\Gamma x.y$
- 3. $(\Gamma x)(y)$
- 4. Γxy

Definition 2.3 (Placeholder Expression) For simple lambda expressions, you may use *placeholders* for example,

$$?+1 := \Lambda_n n + 1$$

Placeholder symbols can vary: ?, -, 1, etc.

2.2 Universality

Definition 2.4 (Predicate) We call a Boolean-valued function a *predicate*.

Definition 2.5 (Universal Quantifier) Given a predicate P, we define a Boolean value $\forall P$ as "anything satisfies P".

Definition 2.6 (Existential Quantifier) Given a predicate P, we define a Boolean value $\exists P$ as "something satisfies P".

Definition 2.7 (Uniqueness) Given a predicate P, a predicate !P is defined by

$$!P(a) := P(a) \land (\forall a')(P(a') \implies a = a')$$

using the third lambda-tasted form, meaning that "a is the unique thing that satisfies P".

Definition 2.8 (Unique Existential Quantifier) The unique existential quantifier \exists ! is defined as \exists o!, where \circ is the function composition. Spelling out the detail.

$$(\exists!a)(P(a)) = (\exists a)(!P(a))$$

meaning that "there exists a unique thing that satisfies P".

Remark 2.9 On the other hand, $(\exists a)(!P(a) \land Q(a))$ states "there exists a unique a that satisfies P. Furthermore, the a satisfies Q".

Definition 2.10 Given a predicate P and a set X,

$$(\forall x \in X)(P(x)) \coloneqq (\forall x)(x \in X \implies P(x))$$
$$(\exists x \in X)(P(x)) \coloneqq (\exists x)(x \in X \land P(x))$$

Definition 2.11 (Universality) Given a binary predicate P, we boldly call a statement of the form

$$(\forall x \in X)(\exists! y \in Y)(P(x, y))$$

the universality of P.

Proposition 2.12 (Functional Universality) Given a binary predicate P,

$$(\forall x \in X)(\exists ! y \in Y)(P(x,y))$$

$$\iff (\exists f : X \to Y)(\forall x \in X)(\forall y \in Y)(P(x,y) \iff y = f(x))$$

П

PROOF. (\Longrightarrow) by the axiom of choice. (\Leftarrow) immediate.

Definition 2.13 (Functional Bijectivity) Given a function $g: Y \to X$, the statement

$$(\exists f: X \to Y)(\forall x \in X)(\forall y \in Y)(x = g(y) \iff y = f(x))$$

is known as the *bijectivity* of f and g. This is a special case of universality where P(x,y) is x=g(y).

2.3 Families

Syntax of function applications is world-standard:

but sometimes you might want cuter syntax like that

Definition 2.14 (Family) A family declaration is a way to provide a function with arbitrary application syntax. Its usage is clear from an example

$$(\widehat{\langle x \rangle} \in Y)_{x \in X}$$

We call it a family of Y. Furthermore, a function body can be placed like that

$$(\widehat{\langle x \rangle} \coloneqq x^2 \in Y)_{x \in X}$$

Example 2.15 The most-used family declaration is the subscript style $(a_i)_i$. You can view a tuple (a_1, a_2, \ldots, a_n) to be an abbreviation of $(a_i)_{i \in \{1, 2, \ldots, n\}}$. Subscripts are often omitted.

Families can do more.

Definition 2.16 (Dependent Function) Let F a set-valued function. A family

$$(f(x) \in F(x))_{x \in X}$$

defines a function

$$f: X \to \bigcup_{x \in X} F(x)$$

such that

$$(\forall x \in X)(f(x) \in F(x))$$

We call such f a dependent function, for the F(x) depends on x. In case F is a constant function, f is a normal function $X \to Y$.

2.4 Coherence

It is sure you write

$$3 + 1 + 2$$

rather than

$$(3+(0+1))+2$$

because you know the arithmetic laws

$$x + (y + z) = (x + y) + z$$

 $0 + x = x = x + 0$

disambiguate unparenthesized expressions. Informally laws to introduce natural syntax are called coherence conditions or shortly coherence.

3 Categories

3.1 The Definition

Definition 3.1 (Category) A category C consists of

- 1. objects: a class Ob(C)
- 2. morphisms or hom-sets: a family of sets $(\mathcal{C}(A,B))_{A,B\in \mathrm{Ob}(\mathcal{C})}$
- 3. compositions: a family of functions

$$(\circ: \mathcal{C}(B,C) \times \mathcal{C}(A,B) \to \mathcal{C}(A,C))_{A,B,C \in \mathrm{Ob}(\mathcal{C})}$$

4. identities or units: a family of morphisms

$$(\mathrm{id}_A \in \mathcal{C}(A,A))_{A \in \mathrm{Ob}(\mathcal{C})}$$

satisfying the following coherence conditions

1. associativity: for any $f \in \mathcal{C}(A, B)$, $g \in \mathcal{C}(B, C)$, and $h \in \mathcal{C}(C, D)$,

$$h \circ (g \circ f) = (h \circ g) \circ f$$

2. unitality: for any $f \in C(A, B)$,

$$id_B \circ f = f = f \circ id_A$$

A morphism $f \in \mathcal{C}(A, B)$ is often denoted as $f : A \to B$.

3.2 String Diagrams

From now on, we will introduce *string diagrams* to complement(or hopefully replace) commutative diagrams.

Given a category C, an object A is depicted as an optionally-tagged string

A morphism $f:A\to B$ is depicted as a node

The composition joins two strings.

$$\begin{bmatrix} C & & & \\ g & & & \\ B & \coloneqq g \circ f & \\ f & & A \end{bmatrix}$$

Identity morphisms are indistinguishable from objects.

$$A := \mathrm{id}_A$$

Check these diagrams create no ambiguity thanks to the coherence.

Definition 3.2 (Isomorphism) We call a pair of morphisms

$$f: A \to B$$
$$g: B \to A$$

an isomorphism or shortly iso provided that the invertibility

$$\begin{vmatrix} A & & & & B \\ g & & f \\ B & & A & \text{and} & A = B \\ f & & B \end{vmatrix}$$

is satisfied. A morphism that is a part of an isomorphism is called *invertible*.

Remark 3.3 Most people call each morphism of this pair an isomorphism.

Definition 3.4 (Functional Box) Given categories $\mathcal C$ and $\mathcal C'$, a function

$$h: \mathcal{C}(A,B) \to \mathcal{C}'(A',B')$$

is depicted as a functional box

Definition 3.5 (Opposite Category) Given a category \mathcal{C} and a morphism

you can construct a category with strings upside down:

which is denoted as \mathcal{C}^{op} , the *opposite category* of \mathcal{C} .

Definition 3.6 (Discrete Category) A category $\mathcal C$ such that

$$A = B \implies \mathcal{C}(A, B) = \{ \mathrm{id}_A \}$$

 $A \neq B \implies \mathcal{C}(A, B) = \emptyset$

is called a discrete category. Any set can be represented as a discrete category.

Definition 3.7 (Product Category) Given two categories \mathcal{A} and \mathcal{B} , the *product category*

$$\mathcal{A}\times\mathcal{B}$$

is depicted as parallel strings

$$\begin{array}{c|c} \mathcal{A} & \mathcal{B} \\ A' & B' \\ \hline a & b \\ A & B \end{array}$$

The composition, which joins parallel strings, is defined by

Identity morphisms are trivially

By these definitions,

4 Functors

4.1 The Definition

Definition 4.1 (Functor) A functor $F: \mathcal{C} \to \mathcal{D}$ consists of

- 1. domain: a category C
- 2. codomain: a category \mathcal{D}
- 3. a family of objects $(FA \in Ob(\mathcal{D}))_{A \in Ob(\mathcal{C})}$
- 4. families of morphisms

$$((F(f) \in \mathcal{D}(FA, FB))_{f \in \mathcal{C}(A,B)})_{A,B \in Ob(\mathcal{C})}$$

satisfying the functoriality:

1. composition-compatibility: for any $f \in \mathcal{C}(A, B)$ and $g \in \mathcal{C}(B, C)$,

$$F(g \circ f) = F(g) \circ F(f)$$

2. unit-compatibility: for any $A \in Ob(\mathcal{C})$,

$$F(\mathrm{id}_A) = \mathrm{id}_{FA}$$

Definition 4.2 (Infrafunctor) An *infrafunctor* is a functor without the requirement of functoriality.

4.2 Functorial Tubes

In string diagrams, a functor is represented as a tube

$$\begin{bmatrix}
B \\
F \\
F
\end{bmatrix} := F \begin{bmatrix}
B \\
A
\end{bmatrix}$$

$$FA$$

Placeholders make it simple:

One can check the functoriality ensures any tube like

$$\begin{bmatrix} C \\ g \\ B \\ f \\ A \end{bmatrix}$$

be unambiguous. "Join then tube" is the same as "tube then join".

Proposition 4.3 Any functor preserves isomorphisms meaning that

$$(\overbrace{f}, \overbrace{g}) : \text{iso} \implies (\overbrace{f}, \overbrace{g}) : \text{iso}$$

 \square

PROOF. Immediate by functoriality, which inheres in tubes.

Definition 4.4 (Composite Functor) For any two functors

$$F:\mathcal{A} o\mathcal{B}$$

$$G:\mathcal{B} o\mathcal{C}$$

the composite functor of F and G

$$G \circ F : \mathcal{A} \to \mathcal{C}$$

is defined as

Definition 4.5 (Identity Functor) Given a category \mathcal{C} , the *identity functor* on \mathcal{C}

$$\mathrm{Id}_\mathcal{C}:\mathcal{C}\to\mathcal{C}$$

is defined by

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \coloneqq ?$$

 $\begin{tabular}{lll} \textbf{Definition 4.6 (Contravariant Functor)} & A functor whose domain is an opposite category \\ \end{tabular}$

$$F: \mathcal{C}^{\mathrm{op}} \to \mathcal{D}$$

is called *contravariant*, while a normal functor is called *covariant*.

A contravariant functor is depicted as

Definition 4.7 (Variant) Given a statement regarding functors, you can obtain a corresponding one regarding contravariant functors and vice versa. We call such a statement the *variant* of the original one.

 $\begin{tabular}{ll} \textbf{Definition 4.8 (Binary Functor)} & A functor whose domain is a product category \\ \end{tabular}$

$$F: \mathcal{A} \times \mathcal{B} \to \mathcal{C}$$

is called a binary functor or bifunctor.

With numbered placeholders, it is depicted as

Spelling out the definition of functoriality, one can check a diagram like

is unambiguous.

Definition 4.9 (Partial Application) Given a binary functor $F : \mathcal{A} \times \mathcal{B} \to \mathcal{C}$, a partially applied functor

$$\Lambda_B F(A, B) : \mathcal{B} \to \mathcal{C}$$
 or shortly $F(A, ?) : \mathcal{B} \to \mathcal{C}$

is defined as

The definition of F(?, B) is an exercise.

Definition 4.10 (Small Category) A category $\mathcal C$ is called *small* when $\mathrm{Ob}(\mathcal C)$ is a set.

Definition 4.11 (Category of Small Categories) The category of small categories **Cat** is the category whose objects are all small categories and whose morphisms are functors:

where composite functors join strings.

Definition 4.12 (Full and Faithful Functor) A functor $F: \mathcal{C} \to \mathcal{D}$ is called *full and faithful* if for each object A and B in \mathcal{C} , the family

$$(F(f): FA \to FB)_{f:A\to B}$$

is bijective.

In other words, there is a functional box such that

$$\begin{bmatrix}
B \\
B \\
G \\
A
\end{bmatrix} = \begin{bmatrix}
B \\
G \\
A
\end{bmatrix} \iff \begin{bmatrix}
B \\
G \\
A
\end{bmatrix}$$

$$A$$

One can make this box better-looking

Proposition 4.13 This box has a functoriality-like property:

Combined with proposition 4.3,

Proposition 4.14

5 Natural Transformations

5.1 The Definition

Definition 5.1 (Naturality) Given two infrafunctors

$$F,G:\mathcal{C}\to\mathcal{D}$$

a family of morphisms

$$(\tau_A \in \mathcal{D}(FA, GA))_{A \in \mathrm{Ob}(\mathcal{C})}$$

is called *natural* when for any $f \in C(A, B)$,

$$\tau_B \circ F(f) = G(f) \circ \tau_A$$

In case parentheses are cumbersome, you can say " τ_A is natural in A".

Definition 5.2 (Natural Transformation) Furthermore, in particular case F and G are functorial (then they are functors), τ is denoted as a *natural transformation* $\tau: F \to G$.

Remark 5.3 In this document, naturality is explicitly defined to be orthogonal to functoriality.

Proposition 5.4 Let $F: \mathcal{C} \to \mathcal{D}$ be an infrafunctor. Recall this is by definition a family of functions $(F_{A,B}: \mathcal{C}(A,B) \to \mathcal{D}(FA,FB))_{A,B}$. Then $F_{A,B}$ is natural in A or B if and only if F is composition-compatible.

5.2 Natural Connectors

In string diagrams, a natural transformation is a connector of two tubes

because the naturality states a node can travel between tubes

This inspires us to assign

Definition 5.5 (Vertical Composition) Given three functors

$$F, G, H: \mathcal{C} \to \mathcal{D}$$

and two natural transformations

$$\tau: F \to G$$

$$\sigma:G\to H$$

the $vertical\ composition$ of τ and σ

$$\sigma \circ \tau : F \to H$$

is defined as

Definition 5.6 (Horizontal Composition) Given four functors

$$F,G:\mathcal{A}\to\mathcal{B}$$

$$H, K: \mathcal{B} \to \mathcal{C}$$

and two natural transformations

$$\tau: F \to G$$

$$\sigma: H \to K$$

the $horizontal\ composition$ of τ and σ

$$\sigma\tau: H\circ F\to K\circ G$$

is defined as

You can easily check the naturality. Travel by car ferry.

Definition 5.7 (Identity Natural Transformation) Given a functor

$$F:\mathcal{C}\to\mathcal{D}$$

the identity natural transformation

$$\mathrm{id}_F:F\to F$$

is defined by

Definition 5.8 (Whiskering) A *whiskering* is a horizontal composition with identity natural transformations:

Definition 5.9 (Natural Isomorphism) We call a pair of natural transformations

$$\tau: F \to G$$

$$\sigma: G \to F$$

a natural isomorphism or shortly natural iso provided that the invertibility

is satisfied.

Remark 5.10 Most people call each morphism of this pair a natural isomorphism.

Proposition 5.11 For any natural transformation τ ,

$$(\forall A)(\tau_A : \text{invertible})$$

is enough to build the other natural σ .

Definition 5.12 (Functor Category) Given a small category \mathcal{C} and a category \mathcal{D} , the functor category $[\mathcal{C}, \mathcal{D}]$ is a category whose objects are functors from \mathcal{C} to \mathcal{D} and whose morphisms are natural transformations:

where the vertical composition joins strings.

Definition 5.13 For the later use, define a lambda-tasted form for a set of natural transformations:

$$\operatorname{Nat}_A(FA,GA) := \operatorname{Nat}(F,G) := [\mathcal{C},\mathcal{D}](F,G)$$

6 Category of Sets

6.1 The Definition

Definition 6.1 (Category of Sets) The *category of sets* **Set** is a category whose objects are sets and whose morphisms are functions:

where strings are joined by the function composition.

A category is essentially one-dimensional so far: the vertical composition only. Here we introduce the horizontal composition for **Set**.

Definition 6.2 (Monoidal Category of Sets) Parallel strings are defined by

$$X \mid X' := X \times X'$$

The horizontal composition of functions is defined by

$$\begin{array}{c|c} Y & Y' \\ f & f' \\ X & X' \end{array} := \Lambda_{x,x'}(f(x), f'(x'))$$

Strings for the singleton set $\{*\}$ is omitted so that an element of a set is represented as

One can check any string diagram built upon these definitions is unambiguous due to the trivial bijections

$$X \times (X' \times X'') \cong (X \times X') \times X''$$

 $X \times \{*\} \cong X$

Informally such two-dimensional categories are called monoidal.

6.2 Hom-Set Bands

Given a category C, a special string, a band, is introduced for hom-sets:

$$\begin{vmatrix} B & A \end{vmatrix} := \begin{vmatrix} C(A,B) \end{vmatrix}$$

A space-saving form is depicted as

Remark 6.3 Note that the order of objects is flipped. This is resulting from an unfortunate convention that one write "b = h(a)" but not " $h : B \leftarrow A$ ". By the way, " B^A " is fine.

The composition of morphisms can be depicted as

Identity morphisms can be depicted as

As an exercise, write down the associativity and unitality using these diagrams.

Definition 6.4 (Hom-Functor) Hom-sets can be extended to the *Hom-functor*

$$\Lambda_{A,B}\mathcal{C}(A,B): \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathbf{Set} \text{ or shortly}$$

 $\mathcal{C}(\neg,+): \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathbf{Set} \text{ or shortly}$
 $\mathrm{Hom}_{\mathcal{C}}: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathbf{Set}$

defined by

where the world in the box is product category $\mathcal{C}^{\mathrm{op}} \times \mathcal{C}$.

This definition inspires us to depict hom-functors as

that looks topologically equivalent.

Definition 6.5 (Unary Hom-Functor) Due to definition 4.9,

$$\mathcal{C}(A, +) : \mathcal{C} \to \mathbf{Set}$$

 $\mathcal{C}(-, B) : \mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$

are respectively depicted as

Definition 6.6 (Currying) In particular case $C = \mathbf{Set}$, the *curry bijection* is defined by

$$\mathbf{Set}(A \times B, C) \cong \mathbf{Set}(A, \mathbf{Set}(B, C))$$

$$h \mapsto (a \mapsto b \mapsto h(a, b))$$

$$((a, b) \mapsto h(a)(b)) \leftarrow h$$

$$\begin{vmatrix} C & & \\ C & B \\ & A \end{vmatrix}$$

We don't distinguish these two diagrams, for the naturality of this bijection ensures "move the right-side leg up and down" works correct.

Proposition 6.7 The curry bijection is natural in all three variables.

Definition 6.8 (Naming) In case A is the singleton set, which is omitted in diagrams, a currying

$$\begin{array}{c|c}
C \\
\hline
h \\
B \end{array} \sim \begin{array}{c|c}
C \\
B \\
\hline
h
\end{array}$$

is trivial. We call it a naming.

Proposition 6.9 Currying *preserves naturality*, meaning that given a family of functions $(f_X : FX \times B \to GX)_X$ with infrafunctors F and G, f_X is natural in X if and only if $\operatorname{curry}(f_X)$ is. So does uncurrying.

Remark 6.10 In general, natural bijections have similar properties so that you don't bother with proof of naturality ([6]).

19

The Yoneda Lemma

Definition 7.1 Given a functor $F: \mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$ and an object A in \mathcal{C} , a natural transformation of the form

$$(\tau_X: \mathcal{C}(X,A) \to FX)_X$$

can be depicted as

$$\begin{array}{c} \left[\begin{array}{c} F \\ \end{array} \right] \\ \left[\begin{array}{c} F \\ \end{array} \right] \\ \left[\begin{array}{c} A \\ \end{array} \right]$$

owing to the naturality.

Definition 7.2 (Yoneda Bijection) The Yoneda bijection is defined by

Lemma 7.3 (Yoneda Lemma) The Yoneda bijection is actually bijective and natural in F and A.

PROOF. Now the proof is on my soul trivial!

П

Definition 7.4 (Yoneda Embedding) The Yoneda embedding is defined by

$$\Lambda_A \Lambda_X \mathcal{C}(X, A) : \mathcal{C} \to [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$$

$$\begin{vmatrix}
B & B & F \\
f & F & A
\end{vmatrix} = \begin{vmatrix}
A & P & A
\end{vmatrix}$$

using the diagram of hom-functors. In short,

Definition 7.5 A natural transformation of the form

$$(\tau_X: \mathcal{C}(X,A) \to \mathcal{C}(X,B))_X$$

can be depicted as

Definition 7.6 (Yoneda Embedding Bijection) In special case $F := \mathcal{C}(\neg, B)$, the Yoneda bijection is expanded to

The second mapping is the Yoneda embedding so that it is full and faithful. Combined with proposition 4.14,

Proposition 7.7 (Yoneda Principle)

8 Representations

Definition 8.1 (Representation) Given a functor $H: \mathcal{C} \to \mathbf{Set}$, a representation of H is a pair of

- 1. an object R in C
- 2. a natural bijection $(\tau_X : HX \cong \mathcal{C}(R,X))_X$

This bijectivity can be expressed using the weird boxes

$$\begin{bmatrix} a \\ a \end{bmatrix} = \begin{bmatrix} f \\ R \end{bmatrix} \iff \begin{bmatrix} a \\ a \end{bmatrix} = \begin{bmatrix} f \\ R \end{bmatrix}$$

thanks to the naturality. The following proposition allows us to call it the representation of H, denoted as repH.

Proposition 8.2 (Uniqueness of Representations) Representations are unique up to unique isomorphism.

PROOF. Let (R', τ') be another representation. By the variant of proposition 7.7,

Definition 8.3 Given a functor $H : \mathcal{B}^{op} \times \mathcal{A} \to \mathbf{Set}$, a natural bijection of the form

$$(\tau_X : H(B, X) \cong \mathcal{A}(A, X))_X$$

can be expressed by

Proposition 8.4 (Parameterized Representations) Let $H: \mathcal{B}^{op} \times \mathcal{A} \to \mathbf{Set}$ be a functor. Given a family of objects $(SB)_B$ and a family of representations

$$((\tau_X^B : H(B, X) \cong \mathcal{A}(SB, X))_X)_B$$

there exists a unique family

$$(S(f) \in \mathcal{A}(SB, SB'))_{f \in \mathcal{B}(B, B')}$$

such that τ is natural in B. Furthermore, S is functorial.

PROOF. Define S as

 \square

9 Limits

Definition 9.1 (Cone) Given a functor $F: A \to B$, a cone of F consists of

- 1. an object B in \mathcal{B}
- 2. a natural transformation $(v_X : B \to FX)_X$

Definition 9.2 (Conicality) We may explicitly call naturality of cones *conicality*, which can be expressed as

$$\begin{bmatrix} f \\ y \\ y \\ B \end{bmatrix} = \begin{bmatrix} v \\ y \\ B \end{bmatrix}$$

like a magical box any morphism can appear from.

Remark 9.3 Vertical and horizontal composition preserve conicality, a special case of naturality.

Definition 9.4 (Limit) Given a functor $F: \mathcal{A} \to \mathcal{B}$, a limit of F is a pair of

- 1. an object in \mathcal{B} denoted as $\lim F$
- 2. a natural bijection $(\mathcal{B}(B, \lim F) \cong \operatorname{Nat}_X(B, FX))_B$

Definition 9.5 (Limiting Cone) The limit bijectivity, thanks to its naturality, can be expressed as

$$\begin{array}{c}
\lim_{B} F = \lim_{D \to \infty} \lim_{B} F \iff \lim_{B} \lim_{B} F = \underbrace{v}_{B}
\end{array}$$

where <u>lim</u> is a cone called a *limiting cone* of F.

The following proposition justifies the notation $\lim F$, the limit of F.

Proposition 9.6 Limits are unique up to isomorphism.

PROOF. Immediate by proposition 8.2, because a limit is nothing but a contravariant representation

$$\operatorname{rep}_B\operatorname{Nat}_X(B,FX)$$

Proposition 9.7 A limiting cone is *monic* meaning that

$$\begin{array}{c|c}
\hline
\lim_{\text{lim}F} & \overline{\lim}_{\text{lim}F} & \overline{\lim}_{\text{lim}F} \\
\hline
h & g & B
\end{array}$$

PROOF. Immediate by the limit bijectivity.

Definition 9.8 (Product) In particular case the domain of a functor $F : \mathcal{A} \to \mathcal{B}$ is discrete, the limit of F is called the *product* of F, denoted as $\prod F$.

П

Definition 9.9 (Projection) Spelling out the product bijectivity,

$$\begin{array}{c}
\Pi F \\
h \\
B
\end{array}$$

$$\begin{array}{c}
\Pi F \\
\hline
\mu \\
B
\end{array}$$

$$\begin{array}{c}
\Pi F \\
\hline
\mu \\
B
\end{array}$$

where (π) is called the *projection* of F.

Remark 9.10 Conicality has no concern here, because any family of the form

$$(v_X: B \to FX)_{X \in \mathrm{Ob}(\mathcal{A})}$$

is always natural in case A is discrete.

Example 9.11 In case F is a functor $X \to \mathcal{S}et$ with a set X (as a discrete category), the product of F is a set of dependent functions

$$\prod_{x} F(x) \cong \{ f \mid (f(x) \in F(x))_x \}$$

Definition 9.12 (Dual) Given a statement containing string diagrams, by flipping the diagrams upside down, a corresponding statement is obtained. It is called the *dual* of the original one.

Definition 9.13 (Coproduct) A *coproduct* is a structure obtained from the product bijectivity flipped.

$$\begin{array}{c}
B \\
h \\
h
\end{array}$$

$$\begin{array}{c}
B \\
H
\end{array}$$

Remark 9.14 Informally the dual makes a codomain opposite, while the variant does for a domain.

Definition 9.15 (Preservation of Limits) Given a functor $F: \mathcal{A} \to \mathcal{B}$ and a limiting cone of F

$$(\lim_X : \lim_F \to FX)_X$$

a functor $G: \mathcal{B} \to \mathcal{C}$ preserves limits of F provided that

$$(G(\lim_X):G\lim F\to GFX)_X$$

is a limiting cone of $G \circ F$.

In diagrams, G is such that there exists some box! satisfying

Proposition 9.16 (HFPL) Hom-functors preserve limits, meaning that given a functor $F: \mathcal{A} \to \mathcal{B}$ and an object B in \mathcal{B} , the covariant hom-functor $\mathcal{B}(B, +): \mathcal{B} \to \mathbf{Set}$ preserves limits of F.

Proof.

П

10 Adjunctions

Definition 10.1 (Adjunction) Given two categories C and D, an adjunction

$$F \dashv G$$

consists of

1. left adjoint: a functor $F: \mathcal{C} \to \mathcal{D}$

2. right adjoint: a functor $G: \mathcal{D} \to \mathcal{C}$

3. adjunct: a natural bijection

$$(\mathcal{D}(FC, D) \cong \mathcal{C}(C, GD))_{C,D}$$

A nice consequence is that this bijectivity needs no boxes, expressed by natural transformations only.

$$\begin{array}{c}
f \\
F \\
F
\end{array}$$

$$\Leftrightarrow \begin{array}{c}
G \\
F \\

\hline{\eta}
\end{array}$$

$$= \begin{array}{c}
G \\
G \\
\hline{\eta}
\end{array}$$

where

$$:= \cong \begin{array}{|c|c|} \hline G & F \\ \hline G & F \\ \hline \hline G$$

called the unit and counit respectively.

Proposition 10.2 Given a functor $G: \mathcal{D} \to \mathcal{C}$, a family of natural bijections

$$((\mathcal{C}(C,GD) \cong \mathcal{D}(F_c,D))_D)_C$$

is enough to construct the adjunction $F \dashv G$.

PROOF. Immediate by proposition 8.4 with $H(C,D) := \mathcal{C}(C,GD)$.

 \square

Proposition 10.3 (RAPL) Right adjoints preserve limits, meaning that given an adjunction $F \dashv (G : \mathcal{D} \to \mathcal{C})$ and a functor $T : \mathcal{B} \to \mathcal{D}$,

$$(\lim_X: \lim T \to TX)_X: \text{limiting cone}$$

$$\Longrightarrow (G(\lim_X): G \text{lim} T \to GTX)_X: \text{limiting cone}$$

PROOF.

 \square

11 Monads

11.1 The Definition

Definition 11.1 (Monad) Given a category \mathcal{C} , a *monad* on \mathcal{C} consists of

- 1. a functor $T: \mathcal{C} \to \mathcal{C}$
- 2. unit: a natural transformation $\eta: \mathrm{Id}_T \to T$
- 3. multiplication: a natural transformation $\mu: T \circ T \to T$

satisfying the coherence conditions

- 1. associativity: $\mu \circ T\mu = \mu \circ \mu T$
- 2. unitality: $\mu \circ T\eta = \mathrm{Id}_T = \mu \circ \eta T$

A unit and multiplication are depicted respectively as

The associativity is depicted as

This inspires us to assign

The unitality is

Definition 11.2 (Monad Morphism) Given a category \mathcal{C} , a *monad morphism* consists of

- 1. domain: a monad (T, η, μ) on \mathcal{C}
- 2. codomain: a monad (T', η', μ') on C
- 3. a natural transformation $\tau: T \to T'$

satisfying the coherence conditions

- 1. multiplication-compatibility: $\tau \circ \mu = \mu' \circ \tau \tau$
- 2. unit-compatibility: $\tau \circ \eta = \eta'$

The coherence is depicted as

Definition 11.3 (Category of Monads) Given a category C, the *category of monads* $\mathbf{Mnd}(C)$ is a category whose objects are monads and whose morphisms are monad morphisms.

Definition 11.4 (Monad-Associated Adjunction) Given a monad (T, η, μ) , we say an adjunction $F \dashv G$ is T-associated provided that

- 1. $T = G \circ F$
- 2. $\mu = G\epsilon F$

This condition can be depicted as

11.2 Kleisli Categories

Definition 11.5 (Kleisli Category) Given a monad (T, η, μ) on \mathcal{C} , the *Kleisli category* of T, denoted as \mathcal{C}_T , is a category consisting of

- 1. $Ob(\mathcal{C}_T) := Ob(\mathcal{C})$
- 2. $C_T(A, B) := C(A, TB)$
- 3. $l \circ k := \mu \circ T(l) \circ k$
- 4. $id_A := \eta_A$

In diagrams, a morphism in C_T is depicted as a Kleisli box

The composition is defined by

Identity morphisms are defined by

Definition 11.6 (Kleisli Adjunction) Define a functor $L: \mathcal{C} \to \mathcal{C}_T$ as

 $K: \mathcal{C}_T \to \mathcal{C}$ as

then they constitute the Kleisli adjunction $L\dashv K$ whose adjunct is the Kleisli boxing. This adjunction is T-associated.

11.3 EM Categories

Definition 11.7 (Monad Algebra) Given a monad (T, η, μ) on C, a monad algebra, denoted as T-algebra, consists of

1. an object $A \in \mathcal{C}$

2. a morphism $\alpha: TA \to A$

satisfying the coherence

1. associativity: $\alpha \circ \mu = \alpha \circ T(\alpha)$

2. unitality: $\alpha \circ \eta = id$

A T-algebra is depicted as

The coherence can be depicted as

Definition 11.8 (EM Category) Given a monad (T, η, μ) , the Eilenberg-Moore(EM) category of T, denoted as \mathcal{C}^T , is a category whose objects are T-algebras and whose morphisms are those of the form $h: A \to B$ such that

$$h \circ \alpha = \beta \circ T(h)$$

where (A, α) and (B, β) are T-algebras.

This condition is depicted as

$$\begin{array}{c|c}
B & B \\
\hline
A & B \\
\hline
\alpha & A
\end{array}$$

A morphism in \mathcal{C}^T is by compromise depicted as

Boxes are objects. The composition can be depicted as

A diagram for an identity morphism is left as an exercise.

Definition 11.9 (EM Adjunction) Given a monad (T, η, μ) on \mathcal{C} , define a functor $M: \mathcal{C} \to \mathcal{C}^T$ as

a functor $U: \mathcal{C}^T \to \mathcal{C}$ as

They constitute the *EM adjunction* $M \dashv U$ whose adjunct is defined by

$$\mathcal{C}^T(MA,(B,\beta)) \cong \mathcal{C}(A,U(B,\beta))$$

This adjunction is T-associated.

References

- [1] Jiri Adamek, Horst Herrlich, and George E Strecker. Abstract and Concrete Categories: The Joy of Cats (Dover Books on Mathematics). Dover Publications, 8 2009.
- [2] Steve Awodey. Category Theory (Oxford Logic Guides). Oxford University Press, 2 edition, 8 2010.
- [3] Francis Borceux. Handbook of Categorical Algebra: Volume 1, Basic Category Theory (Encyclopedia of Mathematics and its Applications). Cambridge University Press, 1 edition, 4 2008.
- [4] John Bourke and Micah Blake McCurdy. Frobenius morphisms of bicategories, 2009.
- [5] Ralf Hinze. Kan extensions for program optimisation or: Art and dan explain an old trick. In *Mathematics of Program Construction*, pages 324–362. Springer, 2012.
- [6] Max Kelly. Basic Concepts of Enriched Category Theory (London Mathematical Society Lecture Note Series). Cambridge University Press, 4 1982.
- [7] Aleks Kissinger. Pictures of processes: automated graph rewriting for monoidal categories and applications to quantum computing. arXiv preprint arXiv:1203.0202, 2012.
- [8] Saunders Mac Lane. Categories for the Working Mathematician (Graduate Texts in Mathematics). Springer, 2nd ed. 1978. softcover reprint of the original 2nd ed. 1978 edition, 11 2010.
- [9] Dan Marsden. Category theory using string diagrams. CoRR, abs/1401.7220, 2014.
- [10] Micah Blake McCurdy. Strings and stripes, graphical calculus for monoidal functors and monads, 2010.
- [11] Paul-André Mellies. Functorial boxes in string diagrams. In *Computer science logic*, pages 1–30. Springer, 2006.
- [12] Peter Selinger. A survey of graphical languages for monoidal categories. In *New structures for physics*, pages 289–355. Springer, 2010.
- [13] Daniele Turi. Category theory lecture notes. Laboratory for Foundations of Computer Science, University of Edinburgh, 2001.