

Rozwiązania Kontestu 3 – mini PreOM 2025

Zadanie 1. Wszystkie liczby ze zbioru $1, 2, 3, \ldots, 2000$ połączono w pary

$$(a_1,b_1),(a_2,b_2),\ldots,(a_{1000},b_{1000})$$

w taki sposób, że każda z liczb $|a_i - b_i|$ jest równa 1 lub 6.

Wyznaczyć wszystkie możliwe reszty z dzielenia przez 10 liczby

$$|a_1 - b_1| + |a_2 - b_2| + \ldots + |a_{1000} - b_{1000}|.$$

Źródło: Zwardoń 2000, zawody indywidualne zadanie 4 link

Rozwiązanie 1. Niech k będzie liczbą "jedynek" wśród liczb $|a_i - b_i|$. Dana w treści zadania suma jest więc równa k + 6(1000 - k) = 6000 - 5k.

Liczba $a_1 + b_1 + a_2 + b_2 + \ldots + a_{1000} + b_{1000}$ jest parzysta, skąd wynika, że k jest liczbą parzystą (liczby $|a_i - b_i|$ oraz $a_i + b_i$ dają taką samą resztę z dzielenia przez 2). Zatem dana suma jest podzielna przez 10.

Źródło: Zwardoń 2000, zawody indywidualne zadanie 4 link

Zadanie 2. Danych jest 2n różnych liczb rzeczywistych $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ oraz szachownica $n \times n$. W pole leżące w *i*-tym wierszu i *j*-tej kolumnie wpisujemy liczbę $a_i + b_j$. Niech c_i będzie iloczynem liczb stojących w *i*-tym wierszu, zaś d_j iloczynem liczb stojących w *j*-tej kolumnie.

Dowieść, że jeżeli $c_1 = c_2 = \ldots = c_n$, to $d_1 = d_2 = \ldots = d_n$.

Źródło: Zwardoń 2000, zawody indywidualne zadanie 13 link

Rozwiązanie 2. Rozpatrzmy wielomian:

$$w(x) = (x - a_1)(x - a_2) \dots (x - a_n) - (x + b_1)(x + b_2) \dots (x + b_n).$$

Liczby $w(a_i) = -c_i$ są równe. Wielomian jest stopnia n-1 oraz mamy dane wartości w n punktach, co oznacza, że w jest wielomianem stałym. Zatem wszystkie liczby $d_j = (-1)^n w(-b_j)$ są równe.

Źródło: Zwardoń 2000, zawody indywidualne zadanie 13 link

Zadanie 3. Liczba a jest dodatnia i mniejsza od 1. Dowieść, że dla każdego skończonego, ściśle rosnącego ciągu nieujemnych liczb całkowitych (k_1, \ldots, k_n) zachodzi nierówność:

$$\left(\sum_{i=1}^{n} a^{k_i}\right)^2 < \frac{1+a}{1-a} \sum_{i=1}^{n} a^{2k_i}.$$

Źródło: LIV OM etap III, zadanie 2 link

Rozwiązanie 3. Stosujemy indukcję względem n. Dla n=1 nierówność ma postać:

$$1 < \frac{1+a}{1-a}$$

i oczywiście jest spełniona. Ustalmy $n \ge 2$ i załóżmy, że nierówność jest spełniona dla każdego rosnącego ciągu długości n-1. Weźmy pod uwagę dowolny rosnący ciąg długości n:

$$0 \le k_1 < k_2 < \ldots < k_n$$
.

Dzieląc dowodzoną nierówność stronami przez a^{2k_1} możemy bez straty ogólności przyjąć, że $k_1=0$. Wówczas:

$$\left(\sum_{i=1}^{n} a^{k_i}\right)^2 = \left(1 + \sum_{i=2}^{n} a^{k_i}\right)^2 = 1 + 2\sum_{i=2}^{n} a^{k_i} + \left(\sum_{i=2}^{n} a^{k_i}\right)^2.$$
 (1)

Z nierówności $0 < k_2 < k_3 < \ldots < k_n$ oraz 0 < a < 1 wynika, że:

$$\sum_{i=2}^{n} a^{k_i} \leqslant \sum_{j=1}^{k_n} a^j < \frac{a}{1-a}.$$

Stąd, z równości (1) oraz z założenia indukcyjnego uzyskujemy:

$$\left(\sum_{i=1}^{n} a^{k_i}\right)^2 < 1 + \frac{2a}{1-a} + \frac{1+a}{1-a} \sum_{i=2}^{n} a^{2k_i} = \frac{1+a}{1-a} \left(1 + \sum_{i=2}^{n} a^{2k_i}\right) = \frac{1+a}{1-a} \sum_{i=1}^{n} a^{2k_i}.$$

To kończy krok indukcyjny i rozwiązanie zadania.

Źródło: LIV OM etap III, zadanie 2 link

Zadanie 4. Różne punkty A, B, C leżą na prostej k, a punkt P leży poza nią. Punkty Q, R, S są środkami okręgów opisanych na trójkątach PAB, PBC, PCA. Wykazać, że punkty P, Q, R, S leżą na jednym okręgu.

Źródło: Obóz OM – Zwardoń 2001, zadanie 9 z Meczu Matematycznego link

Rozwiązanie 4. Niech punkty K, L, M będą odpowiednio środkami odcinków PA, PB i PC. Symetralne odcinków PA, PB i PC tną się wyznaczając punkty Q, R, S. Punkty K, L, M są rzutami prostokątnymi punktu P na proste QS, QR, RS. Ponieważ punkty K, L, M są współliniowe (w jednokładności o środku P i skali 2 przechodzą na współliniowe punkty A, B, C), więc punkt P leży na okręgu opisanym na trójkącie QRS na mocy twierdzenia o prostej Simsona.

Źródło: Obóz OM – Zwardoń 2001, zadanie 9 z Meczu Matematycznego link

