

CS208 (Semester 1) Week 3 : Logical Modelling II

Dr. Robert Atkey

Computer & Information Sciences

Conversion to CNF

Conjunctive Normal Form (CNF)

$$(\neg a \lor \neg b \lor \neg c)$$

$$\land (\neg b \lor \neg c \lor \neg d)$$

$$\land (\neg a \lor \neg b \lor c)$$

$$\land b$$

- **1.** Entire formula is a conjunction $C_1 \wedge C_2 \wedge \cdots \wedge C_n$
- **2.** where each *clause* $C_i = L_{i,1} \vee L_{i,2} \vee \cdots \vee L_{i,k}$
- **3.** where each *literal* $L_{i,j} = x_{i,j}$ or $L_{i,j} = \neg x_{i,j}$

Disjunctive Normal Form (DNF)

Disjunctive Normal Form (DNF) is similar, but swaps \wedge and \vee .

$$(\neg a \land \neg b \land \neg c)$$

$$\lor (\neg b \land \neg c \land \neg d)$$

$$\lor (\neg a \land \neg b \land c)$$

$$\lor b$$

- **1.** Entire formula is a *disjunction* $D_1 \vee D_2 \vee \cdots \vee D_n$
- **2.** where each *disjunct* $D_i = L_{i,1} \wedge L_{i,2} \wedge \cdots \wedge L_{i,k}$
- 3. where each *literal* $L_{i,j} = x_{i,j}$ or $L_{i,j} = \neg x_{i,j}$

CS208 - Week 3 page 4 of 30

Normal Forms and Satisfiability

CNF

Each clause is a *constraint* and all constraints must be satisfied.

DNF

At least one of the disjuncts must be satisfied.

Exercise (after all the videos): How would you write a SAT Solver for formulas in DNF? Why don't we do this instead of CNF?

University of Strathclyde Science

Conversion to CNF

Not every formula is in CNF, e.g.,

$$(A \wedge B) \rightarrow (B \wedge A)$$

What if we want to use a SAT solver to determine satisfiability?

Two ways to convert a formula to CNF that is "the same":

- "Multiplying out"
- ► Tseytin transformation

First we need to define what we mean by "the same".

Equivalent Formulas

Define two formulas P and Q to be *equivalent*, written

$$P \equiv Q$$

exactly when, for all valuations v,

$$[\![P]\!]\nu = [\![Q]\!]\nu$$

Equivalent to both $P \models Q$ and $Q \models P$ being valid

Simplifying Implication

$$A \rightarrow B \equiv \neg A \lor B$$

valuation			Р	Q
A	В	$\neg A$	$A \rightarrow B$	$\neg A \lor B$
F	F	Т	Т	Т
F	Т	Т	Т	Т
Т	F	F	F	F
Т	Т	F	Т	Т

Double Negation

Negating twice is the same as doing nothing:

$$A \equiv \neg \neg A$$

$$valuation \begin{vmatrix} P & Q \\ A & \neg A & A & \neg \neg A \end{vmatrix}$$

$$F & T & F & F$$

$$T & F & T & T$$

de Morgan's laws

Negation swaps \wedge and \vee :

$$\neg(A \land B) \equiv \neg A \lor \neg B$$

valuation					Р	Q
A	В	$\neg A$	$\neg B$	$A \wedge B$	$\neg(A \land B)$	$\neg A \lor \neg B$
F	F	Т	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
Τ	F	F	Т	F	Т	Т
Т	Т	F	F	Т	F	F

Similar for $\neg (A \lor B) \equiv \neg A \land \neg B$

University of Strathclyde

Negation Normal Form (NNF)

Using the equivalences:

$$A \to B \equiv \neg A \lor B$$

$$A \equiv \neg \neg A$$

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

$$\neg (A \lor B) \equiv \neg A \land \neg B$$

We can rewrite any formula into an equivalent one with

- 1. No implications $(\rightarrow s)$
- 2. All negation signs on the atomic propositions

Example

$$\begin{array}{l} (a \wedge (a \rightarrow b)) \rightarrow c \\ \equiv \neg (a \wedge (a \rightarrow b)) \vee c \quad \textit{converted} \rightarrow \\ \equiv \neg (a \wedge (\neg a \vee b)) \vee c \quad \textit{converted} \rightarrow \\ \equiv \neg a \vee \neg (\neg a \vee b) \vee c \quad \textit{converted} \wedge \textit{to} \vee \\ \equiv \neg a \vee (\neg \neg a \wedge \neg b) \vee c \quad \textit{converted} \vee \textit{to} \wedge \\ \equiv \neg a \vee (a \wedge \neg b) \vee c \quad \textit{converted double negation} \end{array}$$

Now in NNF, but not CNF.

"Push" \vee s into \wedge s

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

valuation					Р	Q	
Α	В	C	$B \wedge C$	$A \vee B$	$A \lor C$	$A \lor (B \land C)$	$(A \lor B) \land (A \lor C)$
F	F	F	F	F	F	F	F
F	F	Т	F	F	Т	F	F
F	Т	F	F	Т	F	F	F
F	Т	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т

Conversion to CNF

$$\neg a \lor (a \land \neg b) \lor c
\equiv multiply out
\neg a \lor ((a \lor c) \land (\neg b \lor c))
\equiv multiply out
(\neg a \lor a \lor c) \land (\neg a \lor \neg b \lor c)$$

Now in CNF.

(Can further simplify to: $(\neg a \lor \neg b \lor c)$)

Exponential Blowup

If we convert $(a \land b \land c) \lor (d \land e \land f) \lor (g \land h \land i)$ to CNF, we get:

$$\begin{split} &(a \lor d \lor g) \land (a \lor d \lor h) \land (a \lor d \lor i) \land (a \lor e \lor g) \land (a \lor e \lor h) \land \\ &(a \lor e \lor i) \land (a \lor f \lor g) \land (a \lor f \lor h) \land (a \lor f \lor i) \land (b \lor d \lor g) \land \\ &(b \lor d \lor h) \land (b \lor d \lor i) \land (b \lor e \lor g) \land (b \lor e \lor h) \land (b \lor e \lor i) \land \\ &(b \lor f \lor g) \land (b \lor f \lor h) \land (b \lor f \lor i) \land (c \lor d \lor g) \land (c \lor d \lor h) \land \\ &(c \lor d \lor i) \land (c \lor e \lor g) \land (c \lor e \lor h) \land (c \lor e \lor i) \land (c \lor f \lor g) \land \\ &(c \lor f \lor h) \land (c \lor f \lor i) \end{split}$$

which has 27 clauses.

Summary

- SAT Solvers take their input in CNF
- Some problems are naturally in CNF
- Conversion by "multiplying out" can generate huge formulas
- We need something better

Logical Modelling II, Part 2

Tseytin Transformation

Tseytin Transformation

The Tseytin transformation converts a formula into CNF with at most 3 times as many clauses as connectives in the original formula (versus potentially exponential for multiplying out the brackets).

- 2. Convert each equation into clauses
 One equation → 2-3 clauses

Result is not equivalent, but equisatisfiable.

1. Name subformulas

Take the formula and name all the non-atomic subformulas.

Example:

$$\neg(a \land (\neg a \lor b)) \lor c$$

becomes:

$$x_1 = x_2 \lor c$$

$$x_2 = \neg x_3$$

$$x_3 = \alpha \land x_4$$

$$x_4 = x_5 \lor b$$

$$x_5 = \neg \alpha$$

2. Converting Equations to Clauses

Given an equation like $x = y \land z$, we want some clauses that are true for every valuation that satisfies the equation.

2. Converting Equations to Clauses

Given an equation like $x = y \land z$, we want some clauses that are true for every valuation that satisfies the equation.

Derive by conversion to CNF:

$$x = y \land z$$

$$\equiv (x \to (y \land z)) \land ((y \land z) \to x)$$

$$\equiv (\neg x \lor (y \land z)) \land (\neg (y \land z) \lor x)$$

$$\equiv (\neg x \lor y) \land (\neg x \lor z) \land (\neg y \lor \neg z \lor x)$$

2. Equations to Clauses

Take each equation $x = y \square z$ and turn it into clauses:

1. If $x = y \land z$, add

$$(\neg x \lor y) \land (\neg x \lor z) \land (\neg y \lor \neg z \lor x)$$

2. If $x = y \lor z$, add

$$(y \lor z \lor \neg x) \land (\neg y \lor x) \land (\neg z \lor x)$$

3. If $x = \neg y$, add

$$(\neg y \lor \neg x) \land (y \lor x)$$

3. Assert the top level variable

If x is the name of the whole formula, add a clause with just x:

equation 1 \land equation 2 \land ... \land x

This asserts that our original formula must be true.

Example: $\neg (A \land B) \lor (B \land A)$

1. Name the subformulas:

$$x_1 = x_2 \lor x_4$$
 $x_2 = \neg x_3$
 $x_3 = A \land B$ $x_4 = B \land A$

Example: $\neg (A \land B) \lor (B \land A)$

1. Name the subformulas:

$$x_1 = x_2 \lor x_4$$
 $x_2 = \neg x_3$
 $x_3 = A \land B$ $x_4 = B \land A$

2+3. Generate clauses: (One line per equation)

$$(x_{2} \lor x_{4} \lor \neg x_{1}) \land (\neg x_{2} \lor x_{1}) \land (\neg x_{4} \lor x_{1})$$

$$\land (\neg x_{3} \lor \neg x_{2}) \land (x_{3} \lor x_{2})$$

$$\land (\neg A \lor \neg B \lor x_{3}) \land (A \lor \neg x_{3}) \land (B \lor \neg x_{3})$$

$$\land (\neg B \lor \neg A \lor x_{4}) \land (B \lor \neg x_{4}) \land (A \lor \neg x_{4})$$

$$\land x_{1}$$

Efficiency

In small examples, we get many clauses.

But we *always* get $\leq 3n$ clauses, where n number of connectives.

Multiplying out can result in exponential number of clauses.

Can also optimise (see the tutorial questions).

Not Equivalent!

The formulas generated by the Tseytin transformation are **not** equivalent to the original, because they have extra atomic propositions.

Example

If the original formula is

 $\neg A$

the Tseytin transformed version is: (assuming we don't optimise)

$$(\neg A \lor \neg x) \land (A \lor x) \land x$$

Then $\{A : F, x : F\}$ satisfies the original, but not the transformed formula.

Equisatisfiable

If we write Tseytin(P) for the Tseytin translation of P, then:

- 1. If there exists a valuation v_1 such that $[P]v_1 = T$, then there exists a valuation v_2 such that $[Tseytin(P)]v_2 = T$;
- 2. If there exists a valuation ν such that $[Tseytin(P)]\nu = T$, then the valuation $\nu' = \nu$ without the additional x_i s makes $[P]\nu' = T$.

This is called "equisatisfiability".

Example

$$v = \{A : F\}$$
 satisfies $\neg A$

The corresponding satisfying valuation for

$$(\neg A \lor \neg x) \land (A \lor x) \land x$$

is
$$\{A : F, x : T\}$$
.

A corresponding satisfying assignment always exists for the Tseytin transformation, because it is built from equations.

Summary

- Tseytin transformation converts formulas to CNF
- ▶ Generates $\leq 3n$ clauses, where n is the number of connectives
- Avoids exponential blowup
- Can be further optimised
- Result is equisatisfiable

Logical Modelling II, Part 3

Online Satisfiability Checker