Developing credit risk scoring using R programming

Presenter: Mihai DAVID

Date: April 28th, 2020

Venue: R ladies Meet-Up

Content

- Problem Definition
 - Abstract
 - Scoring set-up
 - Dataset
 - Bad definition

Preparation for Modelling

- Variables
- Dataset partition Learning & Testing
- Binning
- Descriptive statistics
- Predictive power of variables IV and WOE

Model Evaluation

- ROC curve and Gini
- Variables selection
- Client Score
- Machine learning
- Confusion matrix

Disclaimer

Opinions expressed are strictly and wholly of the presenter.

R and all other R product or service names are registered trademarks.

Other brand and product names are trademarks of their respective companies.

The information contained in the present document has not been independently verified and no representation or warranty expressed or implied is made as to, and no reliance should be placed on the fairness, accuracy, completeness or correctness of this information or opinions contained herein.

The presenter shall have no liability from any loss howsoever arising from any use of this document or its content or otherwise arising in connection with this document.

Abstract

- Building solid and reliable credit scoring systems is of the utmost importance for the financial institutions as one
 of the most important threats to a country's financial stability is delinquency and defaults of credits (*Bayraci*,
 2017)
- **Credit Risk Score** is an analytical method of modeling the credit riskiness of individual borrowers. This statistical measure, transformed into a individual score, is used in the credit decision-making process, along with other business considerations
- In measuring credit risk, a variety of statistical and machine learning models are being used, such as: discriminant analysis, linear regression, logit analysis, decision trees, Bayesian classifiers, k-nearest neighbors, support vector machines, and artificial neural networks.
- This presentation will introduce the audience on how to develop an in-house Credit Risk Score in R
 programming, using k-nearest neighbors
 - The k-nearest neighbor method (k-NN) a non-parametric statistical approach which evaluates the similarities between the pattern identified in the training set and the input pattern. It is based on choosing a metric on the space of applicants and takes k-nearest neighbor of the input pattern that is nearest in some metric sense. A new applicant will be classified in the class to which the majority of the neighbors belong (*Bayraci*, 2017)
- The scoring development flow is applied on a **sample** credit scoring data set
- R Studio and R packages have been used in the estimation processes

Scoring Set-up

Database

• Dataset: sample database of 4.446 loans, downloaded from GitHub

Sample portfolio data

Status	Seniority	Home	Time	Age	Marital	Records	Job	Expenses	Income	Assets	Debt	Amount	Price	Finrat	Savings
good	9	rent	60	30	married	no_rec	freelance	73	129	0	0	800	846	94.56265	4.2
good	17	rent	60	58	widow	no_rec	fixed	48	131	0	0	1000	1658	60.31363	4.98
bad	10	owner	36	46	married	yes_rec	freelance	90	200	3000	0	2000	2985	67.00168	1.98
good	0	rent	60	24	single	no_rec	fixed	63	182	2500	0	900	1325	67.92453	7.933333
good	0	rent	36	26	single	no_rec	fixed	46	107	0	0	310	910	34.06593	7.083871
good	1	owner	60	36	married	no_rec	fixed	75	214	3500	0	650	1645	39.51368	12.83077
good	29	owner	60	44	married	no_rec	fixed	75	125	10000	0	1600	1800	88.88889	1.875
good	9	parents	12	27	single	no_rec	fixed	35	80	0	0	200	1093	18.29826	2.7
good	0	owner	60	32	married	no_rec	freelance	90	107	15000	0	1200	1957	61.31834	0.85
bad	0	parents	48	41	married	no_rec	partime	90	80	0	0	1200	1468	81.74387	-0.4
good	6	owner	48	34	married	no_rec	freelance	60	125	4000	0	1150	1577	72.92327	2.713043
good	7	owner	36	29	married	no_rec	fixed	60	121	3000	0	650	915	71.03825	3.378462
good	8	owner	60	30	married	no_rec	fixed	75	199	5000	2500	1500	1650	90.90909	3.96
good	19	priv	36	37	married	no_rec	fixed	75	170	3500	260	600	940	63.82979	5.544
bad	0	other	18	21	single	yes_rec	partime	35	50	0	0	400	500	80	0.675
good	0	owner	24	68	married	no_rec	fixed	75	131	4162	0	900	1186	75.88533	1.493333
good	15	priv	24	52	single	no rec	freelance	35	330	16500	0	1500	2201	68.15084	4.72

Variables

- For each customer in the dataset, 16 variables are analyzed
- Each scoring defines a specific set of variables which generally cannot be disclosed for confidentiality reasons.

Database partition and "Bad definition"

- Bad definition
 - When developing a credit risk score, the definition of default ("Bad") must be clearly established via regulatory (e.g., Basel II, IFRS 9) and Risk analytics. Example of Bad: **30+, 90+**
 - **Default rate** in analyzed dataset = **28%** (1.249 loans)
- · Dataset partition:
 - Learning → 67% of the dataset (2,979 observations), randomly selected from the full dataset
 - Testing → 33% of the dataset (1,467 observations), randomly selected from the full dataset, used for model evaluation purposes

Dataset partition into Learning and Testing in R

```
114
115 #impart dd pe trainig si test
116 library(caTools)
117 set.seed(123)
118 split = sample.split(dd$status, SplitRatio = 0.67)
119 training_set = subset(dd, split == TRUE)
120 test_set = subset(dd, split == FALSE)
121
```

For illustrative purpose only

Binning

• Variable Transformation is performed through **binning**, which is widely accepted as the "Gold standard" and has good interpretability with business implications

Original portfolio data

Status	Seniority	Home	Time	Age	Marital	Records	Job	Expenses	Income	Assets	Debt	Amount	Price	Finrat	Savings
good	9	rent	60	30	married	no_rec	freelance	73	129	0	0	800	846	94.56265	4.2
good	17	rent	60	58	widow	no_rec	fixed	48	131	0	0	1000	1658	60.31363	4.98
bad	10	owner	36	46	married	yes_rec	freelance	90	200	3000	0	2000	2985	67.00168	1.98
good	0	rent	60	24	single	no_rec	fixed	63	182	2500	0	900	1325	67.92453	7.933333
good	0	rent	36	26	single	no_rec	fixed	46	107	0	0	310	910	34.06593	7.083871
good	1	owner	60	36	married	no_rec	fixed	75	214	3500	0	650	1645	39.51368	12.83077
good	29	owner	60	44	married	no_rec	fixed	75	125	10000	0	1600	1800	88.88889	1.875
good	9	parents	12	27	single	no_rec	fixed	35	80	0	0	200	1093	18.29826	2.7
good	0	owner	60	32	married	no_rec	freelance	90	107	15000	0	1200	1957	61.31834	0.85
bad	0	parents	48	41	married	no_rec	partime	90	80	0	0	1200	1468	81.74387	-0.4
good	6	owner	48	34	married	no_rec	freelance	60	125	4000	0	1150	1577	72.92327	2.713043
good	7	owner	36	29	married	no_rec	fixed	60	121	3000	0	650	915	71.03825	3.378462
good	8	owner	60	30	married	no_rec	fixed	75	199	5000	2500	1500	1650	90.90909	3.96
good	19	priv	36	37	married	no_rec	fixed	75	170	3500	260	600	940	63.82979	5.544
bad	0	other	18	21	single	yes_rec	partime	35	50	0		400	500		eniorityR

Transformed variables

0 other	18	21 single	yes_rec	partime	35	50	0	<i></i>	400	500		seniorityR	timeR	ageR ÷	expensesR [‡]	incomeR	assetsR	debtR ÷	amountR [‡]	priceR [‡]	finratR [‡]	savingsR [‡]
0 owner	24	68 married	no rec	fixed	75	131	4162		900	1186	75.885	-		_								-
15 priv	24	52 single	no rec	freelance	35	330	16500		1500	2201	68,150	(5,12]	(48,60)	(28, 36]	(72,180]	(124, 170)	(0,3000]	(0,30000)	(700,1000]	(105,1116]	(88.5,100)	(3.12,5.2]
			1			1						(12,48]	(48,60]	(45,68]	(35,51]	(124, 170]	(0,3000]	(0,30000]	(700,1000]	(1400,1691]	(60,77.1]	(3.12,5.2]
	Vai	riable tra	ansfo	rmatio	n in R							(5,12]	(6,36]	(45,68]	(72,180]	(170,959]	(0,3000]	(0,30000]	(1300,5000]	(1691,11140]	(60,77.1]	(1.62,3.12]
25		1 - (- -			(0 1							(0,2]	(48,60]	(18,28]	(51,72]	(170,959]	(0,3000]	(0,30000]	(700,1000]	(1116,1400)	(60,77.1]	(5.2,33.2]
		le(dd\$Seni `ic(v_sen)		probs =	seq(o,)	1, 0.25	"					(0,2]	(6,36]	(18,28]	(35,51]	(90,124]	(0,3000]	(0,30000]	(100,700]	(105,1116]	(6.7,60]	(5.2,33.2]
37 senio	prityR = c	cut (dd\$Sen	iority									(0,2]	(48,60]	(28,36]	(72,180]	(170,959]	(3000,6000]	(0,30000]	(100,700]	(1400,1691]	(6.7,60]	(5.2,33.2]
		na(senior		<-"(0,2]	"							(12,48]	(48,60]	(36,45]	(72,180]	(124,170]	(6000,300000)	(0,30000]	(1300,5000]	(1691,11140]	(88.5,100]	(1.62,3.12]
39 dd\$se 40	eniorityR<	<-seniorit	yR									(5,12]	(6,36]	(18,28]	(35,51]	(1,90]	(0,3000]	(0,30000]	(100,700]	(105,1116]	(6.7,60]	(1.62,3.12]
	n= quantil	le(dd\$Time	,probs	= seq(0	. 1. 0.2	25))					,	(0,2]	(48,60]	(28, 36]	(72,180]	(90,124]	(6000,300000)	(0,30000]	(1000,1300]	(1691,11140]	(60,77.1]	(-8.16, 1.62]
		ric(v_sen)										(0,2]	(36,48]	(36,45]	(72,180]	(1,90]	(0,3000]	(0,30000]	(1000,1300]	(1400,1691]	(77.1,88.5]	(-8.16,1.62]
43 timeR	R = cut(dd	d\$⊤ime, br	eaks=v	_sen)								(5,12]	(36,48]	(28,36]	(51,72]	(124,170]	(3000,6000)	(0,30000]	(1000,1300)	(1400,1691)	(60,77.1]	(1.62,3.12]
44 timeR	R[is.na(ti	imeR)]<- "	(6, 36]									(5) (4)	(30,40]	(20,30]	(51,72)	(124,170)	(5000,0000)	(0,50000)	(1000,1300)	[1400,1091]	(00,77.1]	(1.02,5.12]
45 dd\$ti	imeR<-time	eR .																				

Descriptive statistics

- Transformed variables (11 of the 16) after binning (number of loans in each category):
- This allows us to assess the dataset distribution and customer profile
 - For example: most of our customers are aged 30 40 years and have a work seniority of less than one year

Seniority

seniorityR 🔻	Trn	Tst
(0,2]	1021	475
(2,5]	553	280
(5,12]	676	356
(12,48]	729	356
Grand Total	2979	1467

Time

timeR	Trn	Tst
(6,36]	1075	537
(36,48]	591	294
(48,60]	1312	636
(60,72]	1	
Grand Total	2979	1467

Age

_		
ageR 🔻	Trn	Tst
(18,28]	797	396
(28,36]	780	380
(36,45]	684	343
(45,68]	718	348
Grand Total	2979	1467

Expenses

expensesR -	Trn	Tst
(35,51]	1485	751
(51,72]	740	362
(72,180]	754	354
Grand Total	2979	1467

Income

incomeR	₩.	Trn	Tst
(1,90]		796	376
(90,124]		714	352
(124,170]		729	370
(170,959]		740	369
Grand Total		2979	1467

Assets

assetsR <u>*</u>	Trn	Tst
(0,3000]	1500	752
(3000,6000]	787	373
(6000,300000]	692	342
Grand Total	2979	1467

Debt

debtR	•	Trn	Tst
(0,30000]		2979	1467
Grand Total		2979	1467

Home

∃good ignore other owner parents priv rent bad ignore other owner parents priv

rent **Grand Total**

debtR	~	Trn	Tst
(0,30000]		2979	1467
Grand Total		2979	1467

Amount

amountR	¥	Trn	Tst
100,700]		786	377
700,1000]		881	412
1000,1300]		639	307
1300,5000]		673	371
Grand Total		2979	1467

Price

priceR	~	Trn	Tst
(105,1116]		748	364
(1116,1400]		762	355
(1400,1691]		752	353
(1691,11140]		717	395
Grand Total		2979	1467

Financial ratio

finratR	¥	Trn	Tst
(6.7,60]		753	35
(60,77.1]		752	35
(77.1,88.5]		724	38
(88.5,100]		750	36
Grand Total		2979	146

Savings capacity

savingsR	-	Trn	Tst
(-8.16,1.62]		747	368
(1.62,3.12]		741	374
(3.12,5.2]		753	351
(5.2,33.2]		738	374
Grand Total		2979	1467

Row Labels Count of Home

3,197.00		
11.00	Row Labels	Count of Job
173.00	 good	3,197.00
1,716.00	fixed	2,223.00
550.00	freelan	ce 690.00
162.00	others	103.00
585.00		
1,249.00	partime	181.00
9.00	□bad	1,249.00
146.00	fixed	580.00
390.00	freelan	ce 331.00
232.00	others	68.00
84.00	partime	270.00
388.00	Grand Total	
4,446.00	Grand Total	4,446.00

Job

			Average of Expenses		Average of Assets	Average of Debt	Average of Amount	Average of Price	Average of Finrat	Average of Savings
good	9.32	37.74	55.24	147.86	6,055.91	334.16	992.97	1,458.50	69.79	4.29
bad	4.59	35.41	56.53	122.11	3,560.74	362.98	1,155.97	1,472.68	79.85	2.75
Dau	4.33	33.41	30.33	122.11	3,300.74	302.36	1,133.37	1,472.00	73.03	

Predictive power of variables – Information Value (IV)

• Information value (IV) of each variable is calculated using the formula:

$$IV = \sum_{i=1}^{n} (Distr. Good - Distr. Bad) * ln \left(\frac{Distr. Good}{Distr. Bad}\right) * 100$$

where

n is number of characteristics of each variable

Best practice regarding inferences from information value would be that:

- Less than 0.02 Not Predictive:
- 0.02 to 0.05 Weak;
- 0.05 to 0.3 Medium;
- More than 0.3 Strong
- Out of all variables in dataset, we choose those with medium and strong IV. This combination of variables and different smaller combinations will be considered in order to compute Gini.

Information value calculation

```
123 #calcul IV
     library("woe")
    library("InformationValue")
126
     sen<-IV(X=as.factor(training_set$seniorityR),Y=training_set$Status)
    hm<-IV(X=as.factor(training_set$Home),Y=training_set$Status)
    tm<-IV(X=as.factor(training_set$timeR),Y=training_set$Status)
     ag<-IV(X=as.factor(training_set$ageR),Y=training_set$Status)
     mr<-IV(X=as.factor(training_set$Marital),Y=training_set$Status)
132 rec<-IV(X=as.factor(training_set$Records),Y=training_set$Status)
     jb<-IV(X=as.factor(training_set$Job),Y=training_set$Status)
134 exp<-IV(X=as.factor(training_set$expensesR),Y=training_set$Status)
135 inc<-IV(X=as.factor(training_set$incomeR),Y=training_set$Status)
    asst<-IV(X=as.factor(training_set$assetsR),Y=training_set$Status)
    deb<-IV(X=as.factor(training_set$debtR),Y=training_set$Status)</pre>
138 amt<-IV(X=as.factor(training_set$amountR),Y=training_set$Status)
     pt<-IV(X=as.factor(training_set$priceR),Y=training_set$Status)</pre>
140 fin<-IV(X=as.factor(training_set$finratR),Y=training_set$Status)
141 sav<-IV(X=as.factor(training_set$savingsR),Y=training_set$Status)
    IVdata<-data.frame(sen,hm,tm,ag,mr,rec,jb,exp,inc,asst,deb,amt,pt,fin,sav)
143 IVdata
144
```

Information value of each variable

7 Variables with medium and strong IV: seniority, home, job, income, assets, financial ratio, savings capacity

For illustrative purpose only

Predictive power of Variables – Weight of evidence (WOE)

• The weight of evidence (WOE) is used to measure the

strength of each bin in isolating "good" from "bad" accounts. It is calculated using the following formula:

$$WOE = \left[\ln \left(\frac{\text{Distr. Good}}{\text{Distr. Bad}} \right) \right] * 100$$

where.

- Distr. Good percentage of "good" accounts in the sample data,
- Distr. Bad percentage of "bad" accounts in the sample data.

Negative number of WOE would indicate that the specific variable is isolating a higher proportion of "bad" than "good"

```
woe.atr = subset(training_set, select=c("Status", "seniorityR", "Home", "Job", "assetsR", "finratR", "savingsR", "incomeR"))
149 #fac tabel cu toate WOE pentru a le aduna
     woesen-woe(Data-woe.atr, "seniorityR", FALSE, "Status", length(unique(woe.atr$seniorityR)), Bad=0, Good=1)
     woe.atr$seniorityR=as.character(woe.atr$seniorityR)
152 for (i in seq(1,length(woesen$BIN),1)) {woe.atr$seniorityR[woe.atr$seniorityR==woesen$BIN[i]]<-woesen$woE[i]}
     woe.atr$seniorityR=as.numeric(woe.atr$seniorityR)
     woeh-woe(Data-woe.atr, "Home", FALSE, "Status", length(unique(woe.atr$Home)), Bad=0, Good=1)
     woe.atr$Home=as.character(woe.atr$Home)
156 for (i in seq(1,length(woeh$BIN),1)) {woe.atr$Home[woe.atr$Home==woeh$BIN[i]]<-woeh$WOE[i]}
     woe.atr$Home=as.numeric(woe.atr$Home)
     woej=woe(Data=woe.atr,"Job",FALSE,"Status",length(unique(woe.atr$Job)),Bad=0,Good=1)
     woe.atr$Job=as.character(woe.atr$Job)
     for (i in seq(1,length(woej$BIN),1)) {woe.atr$Job[woe.atr$Job==woej$BIN[i]]<-woej$WOE[i]}
     woe.atr$Job=as.numeric(woe.atr$Job)
     woeas=woe(Data=woe.atr."assetsR",FALSE,"Status",length(unique(woe.atr$assetsR)),Bad=0,Good=1)
     woe.atr$assetsR=as.character(woe.atr$assetsR)
for (i in seq(1,length(woeas$BIN),1)) {woe.atr$assetsR[woe.atr$assetsR==woeas$BIN[i]]<-woeas$WOE[i]}</pre>
     woe.atrSassetsR=as.numeric(woe.atrSassetsR)
     woefin=woe(Data=woe.atr, "finratR", FALSE, "Status", length(unique(woe.atr$finratR)), Bad=0, Good=1)
     woe.atr$finratR=as.character(woe.atr$finratR)
168 for (i in seq(1,length(woefin$BIN),1)) {woe.atr$finratR[woe.atr$finratR==woefin$BIN[i]]<-woefin$WOE[i]}
     woe.atr$finratR=as.numeric(woe.atr$finratR)
     woesav=woe(Data=woe.atr,"savingsR",FALSE,"Status",length(unique(woe.atr$savingsR)),Bad=0,Good=1)
     woe.atr$savingsR=as.character(woe.atr$savingsR)
172 for (i in seq(1,length(woesav$BIN).1)) {woe.atr$savingsR[woe.atr$savingsR=woesav$BIN[i]]<-woesav$WOE[i]}
     woe.atr$savingsR=as.numeric(woe.atr$savingsR)
     woeinc=woe(Data=woe.atr,"incomeR",FALSE,"Status",length(unique(woe.atrSincomeR)),Bad=0,Good=1)
     woe.atr$incomeR=as.character(woe.atr$incomeR)
176 for (i in seq(1,length(woeinc$BIN),1)) {woe.atr$incomeR[woe.atr$incomeR==woeinc$BIN[i]]<-woeinc$WOE[i]}
177 woe.atr$incomeR=as.numeric(woe.atr$incomeR)
```

Weight of evidence calculation

For illustrative purpose only

Predictive power of variables – Weight of evidence (WOE)

- WOE for the 7 variables with medium and strong IV: seniority, home, job, income, assets, financial ratio, savings capacity
 - Higher WOE = lower credit risk

• Lower WOE = higher credit risk

> woesen BIN BAD GOOD TOTAL BAD% GOOD% TOTAL% IV BAD_SPLIT GOOD_SPLIT 0.454 557 1021 0.554 0.260 0.343 -75.6 0.222 0.546 -0.5 0.000 0.282 553 0.186 0.185 0.186 0.718(5.12] 128 548 676 0.153 0.256 0.227 51.5 0.053 0.189 0.811 729 0.106 0.299 0.245 103.7 0.200 0.122 0.878

Home ownership

>	woeh							$\overline{}$			
											GOOD_SPLIT
1	rent	9	6	15	0.011	0.003	0.005	-129.9	0.010	0.600	0.400
2	owner	93	105	198	0.111	0.049	0.066	-81.8	0.051	0.470	0.530
3	priv	253	1143	1396	0.302	0.534	0.469	57.0	0.132	0.181	0.819
4	ignore	165	375	540	0.197	0.175	0.181	-11.8	0.003	0.306	0.694
5	parents	54	113	167	0.065	0.053	0.056	-20.4	0.002	0.323	0.677
6	other	263	400	663	0.314	0.187	0.223	-51.8	0.066	0.397	0.603
								$\overline{}$	•		

Job

>	woej								1		
	BIN	BAD	GOOD	TOTAL	BAD%	GOOD%	TOTAL%	WOE	ΙV	BAD_SPLIT	GOOD_SPLIT
1	fixed	369	1480	1849	0.441	0.691	0.621	44.9	0.112	0.200	0.800
2	partime	226	472	698	0.270	0.220	0.234	-20.5	0.010	0.324	0.676
3	freelance	48	77	125	0.057	0.036	0.042	-46.0	0.010	0.384	0.616
4	others	194	113	307	0.232	0.053	0.103	-147.6	0.264	0.632	0.368
	1										

Savings capacity

>	woesav										
	BI	N BAD	GOOD	TOTAL	BAD%	GOOD%	TOTAL%	WOE	IV	BAD_SPLIT	GOOD_SPLIT
1	(-8.16, 1.62)	330	417	747	0.394	0.195	0.251	-70.3	0.140	0.442	0.558
2	(1.62,3.12	204	537	741	0.244	0.251	0.249	2.8	0.000	0.275	0.725
3	(3.12,5.2)	173	580	753	0.207	0.271	0.253	26.9	0.017	0.230	0.770
4	(5.2,33.2)	130	608	738	0.155	0.284	0.248	60.6	0.078	0.176	0.824

Income

```
> woeinc
        BIN BAD GOOD TOTAL BAD% GOOD% TOTAL%
                                                      IV BAD SPLIT GOOD SPLIT
                                              -66.7 0.133
     (1,90] 344 452
                      796 0.411 0.211 0.267
                                                             0.432
                                                                        0.568
                      714 0.219 0.248
                                              12.4 0.004
                                                             0.256
                                                                        0.744
2 (90.124] 183 531
                                       0.240
3 (124.170] 158 571
                      729 0.189 0.267
                                       0.245
                                              34.6 0.027
                                                             0.217
                                                                        0.783
4 (170,959] 152 588
                      740 0.182 0.275 0.248
                                              41.3 0.038
                                                             0.205
                                                                        0.795
```

Financial ratio

>	woefin							$\overline{}$			
	BIN	BAD	GOOD	TOTAL	BAD%	GOOD%	TOTAL%	WOE	ΙV	BAD_SPLIT	GOOD_SPLIT
1	(6.7,60]	104	649	753	0.124	0.303	0.253	89.3	D.160	0.138	0.862
2	(60,77.1]	183	569	752	0.219	0.266	0.252	19.4	0.009	0.243	0.757
3	(77.1,88.5]	254	470	724	0.303	0.219	0.243	-32.5	0.027	0.351	0.649
4	(88.5,100]	296	454	750	0.354	0.212	0.252	-51.3	0.073	0.395	0.605
									,		

Assets

>	woeas										
	BIN	BAD	GOOD	TOTAL	BAD%	GOOD%	TOTAL%	WOE	ΙV	BAD_SPLIT	GOOD_SPLIT
	(0,3000]	548	952	1500	0.655	0.444	0.504	-38.9	0.082	0.365	0.635
2	(3000,6000]	156	631	787	0.186	0.295	0.264	46.1	0.050	0.198	0.802
3	(6000,300000]	133	559	692	0.159	0.261	0.232	49.6	0.051	0.192	0.808

Best client profile

ROC curve and Gini

We use the **ROC curve** as a tool to visualize and evaluate the probability for scoring classifiers, for the Learning dataset. The **area under the ROC curve** depicts the accuracy of the classification performance (**the greater the area**, **the better average performance of classifiers**).

gini = 2 * N@ROCFunctions["AUROC"][aROCs] - 1

Total score

- Scorecard varibles = seniority, home, job, financial ratio, savings capacity
- Score = constant (1000) + the sum of WOE for each of variable that composes the scorecard
- · For example:
 - 4
 - Highest possible score = 1000 + 103.7 + 57.0 + 44.9 + 89.3 + 60.6 = 1,355.5
 - 41
- **Lowest possible score** = 1000 75.6 129.9 147.6 51.3 70.3 =**525.3**

Seniority

> woesen BIN BAD GOOD TOTAL BAD% GOOD% TOTAL% 1 (0,2] 464 557 1021 0.554 0.260 0.343 -75.6 2 (2,5] 156 397 553 0.186 0.185 0.186 -0.5 3 (5,12] 128 548 676 0.153 0.256 0.227 51.5 4 (12,48] 89 640 729 0.106 0.299 0.245

Job

>	woej							
	BIN	BAD	GOOD	TOTAL	BAD%	GOOD%	TOTAL%	WOE
1	fixed	369	1480	1849	0.441	0.691	0.621	44.9
2	partime							
3	freelance	48	77	125	0.057	0.036	0.042	-46.0
4	others	194	113	307	0.232	0.053	0.103	-147.6
	1							

Savings capacity

>	woesav							$\overline{}$
	BIN	BAD	GOOD	TOTAL	BAD%	GOOD%	TOTAL%	WOE
1	(-8.16, 1.62]	330	417	747	0.394	0.195	0.251	-70.3
	(1.62,3.12]							
3	(3.12, 5.2]	173	580	753	0.207	0.271	0.253	26.9
4	(5.2,33.2]	130	608	738	0.155	0.284	0.248	60.6

Home ownership

Financial ratio

```
> woefin

BIN BAD GOOD TOTAL BAD% GOOD% TOTAL% WOE

(6.7,60] 104 649 753 0.124 0.303 0.253 89.3

(60,77.1] 183 569 752 0.219 0.266 0.252 19.4

(77.1,88.5] 254 470 724 0.303 0.219 0.243 -32.5

(88.5,100] 296 454 750 0.354 0.212 0.252 -51.3
```

Machine learning (1)

- First method - machine learning applied on the sum of WOE of the five variables in the scorecard

ROC

Learning

```
rocsC<-(woe.atr$seniorityR+woe.atr$Home+woe.atr$Job+woe.atr$finratR+woe.atr$savingsR)
380 rocSCtest<-(woe.atr.test)seniorityR+woe.atr.test3Homme+woe.atr.test3Job+woe.atr.test3TinratR+woe.atr.test5savingsR)
381 rocsC<-rocsC+1000
382 rocSCtest<-rocSCtest+1000
383 statustest=woe.atr.test$Status
   status<-woe.atr$Status
385 bigset<-data.frame(rocSC,status,stringsAsFactors = FALSE)
    bisettest<-data.frame(rocSCtest,statustest,stringsAsFactors = FALSE)
387
    library(class)
    y_pred = knn(train = bigset[1],
                test = bigset[1],
391
                cl = bigset[,2],
                k = 5.
393
                prob = TRUE)
395 # Making the Confusion Matrix
396 cm = table(bigset[,2], y_pred)
397 cm
     library("pROC")
     mcptroc<-data.frame(probab=y_pred,status=bigset$status,stringsAsFactors = FALSE)</pre>
     mcptroc$probab<-as.numeric(as.character(mcptroc$probab))</pre>
     mcptroc$status<-as.numeric(as.character(mcptroc$status)
     roc(mcptroc$status,mcptroc$probab,levels=c(0,1)) #70.87
```

Testing

```
379 rocsC<-(woe.atr$seniorityR+woe.atr$Home+woe.atr$Job+woe.atr$finratR+woe.atr$savingsR)
    rocSCtest<-(woe.atr.test$seniorityR+woe.atr.test$Home+woe.atr.test$Job+woe.atr.test$finratR+woe.atr.test$savingsR)
381 rocsC<-rocsC+1000
    rocSCtest<-rocSCtest+1000
383 statustest=woe.atr.test$Status
384 status<-woe.atr$Status
    bigset<-data.frame(rocsC,status,stringsAsFactors = FALSE)
386 bisettest<-data.frame(rocSCtest.statustest.stringsAsFactors = FALSE)
387
    library(class)
    y_pred = knn(train = bigset[1],
390
                test = bisettest[1].
391
                c1 = bigset[,2],
392
                k = 5.
393
                prob = TRUE)
    # Making the Confusion Matrix
    cm = table(bisettest[.2], v_pred)
397 cm
    library("proc")
     mcptroc<-data.frame(probab=y_pred,status=bisettest$status,stringsAsFactors = FALSE)
      mcptrocsprobab<-as.numeric(as.character(mcptrocsprobab))
     mcptroc$status<-as.numeric(as.character(mcptroc$status)
     roc(mcptroc$status,mcptroc$probab,levels=c(0,1)) #63.93
404
```

Machine learning (1) – Confusion matrix

Risk appetite → Loans predicted Good and they are actually Bad - Type II error - 17.71% (422 / (1960 + 422))

- Loss of business potential loans predicted to be Bad and they are actually Good - Type I error - 10.14% (107 / (948 + 107))
- Risk appetite → Loans predicted Good and they are actually Bad
 Type II error 21.91% (266/ (948 + 266))

Machine learning (2)

06 04 02 00 -02

- Second method - machine learning applied on each of the WOE of the five variables in the scorecard

Learning rocSC<-data.frame(training_set\$seniorityR,training_set\$Home,training_set\$Job,training_set\$finratR,training_set\$savingsR) 423 bigset<-data.frame(rocSC, status, stringsAsFactors = FALSE) 425 rocSCtest<-data.frame(test_set\$seniorityR,test_set\$Home,test_set\$Job,test_set\$finratR,test_set\$savingsR) 427 bigsettest<-data.frame(rocSCtest,statustest,stringsAsFactors = FALSE) 429 #sa fac machine learning pe cele adunate de mai sus cu roc maare 430 library(class) 431 y_pred = knn(train = bigset[,-1], 432 test = bigset[,-1], 433 cl = bigset[,6], k = 5434 435 prob = TRUE) 437 # Making the Confusion Matrix 438 cm = table(bigset[,6], y_pred) library("proc") mcptroc<-data.frame(probab=y_pred,status=bigset\$status,stringsAsFactors = FALSE)</pre> mcptroc\$probab<-as.numeric(as.character(mcptroc\$probab))</pre> mcptroc\$status<-as.numeric(as.character(mcptroc\$status)) bigsettest status <- as. numeric (as. character (bigsettest status)) 452 roc(mcptroc\$status.mcptroc\$probab.levels=c(0,1)) #86.25 **ROC** higher in this method

Testing

```
421 rocSC<-data.frame(training_set$seniorityR,training_set$Home,training_set$Job,training_set$finratR,training_set$savingsR)
    status<-training set$Status
423 bigset<-data.frame(rocSC,status,stringsAsFactors = FALSE)
425 roc5Ctest<-data.frame(test_set$seniorityR,test_set$Home,test_set$Job,test_set$finratR,test_set$savingsR)
    bigsettest<-data.frame(rocsCtest,statustest,stringsAsFactors = FALSE)
429
    #sa fac machine learning pe cele adunate de mai sus cu roc maare
430 library(class)
431 v_pred = knn(train = bigset[,-1],
               test = bigsettest[,-1],
               cl = bigset[,6],
433
434
               k = 5
435
               prob = TRUE)
437 # Making the Confusion Matrix
438 cm = table(bigsettest[,6], y_pred)
 431 library("pROC")
 432 mcptroc<-data.frame(probab=y_pred,status=bigsettest$status,stringsAsFactors = FALSE)
 433 mcptroc$probab<-as.numeric(as.character(mcptroc$prob
      mcptroc$status<-as.numeric(as.character(mcptroc$ tatus)
 435 roc(mcptroc$status,mcptroc$probab,levels=c(0,1)) #82.09
 436 plot.roc(mcptroc$status,mcptroc$probab,levels=c(0,1))
                                                                                     ROC higher
                                                                                      in this
                                                                                      method
```

Machine learning (2) – Confusion matrix

- Risk appetite → Loans predicted Good and they are actually Bad Type II error – 8.42%
- !! Lower Type I and II errors in this method compared to previous one

- Loss of business potential loans predicted to be Bad and they are actually Good - Type I error - 6.44%
- Risk appetite → Loans predicted Good and they are actually Bad
 Type II error 10.92%

Takeaway

- Large R community worldwide with resourceful advices:
- https://github.com/gastonstat/CreditScoring
- The specific of R being developed for statistics bring to table various packages to be applied.
- Accessibility in writing code.
- Advantages of Credit scoring brings more structured data.

Contact

Mihai David mihaidavid87@yahoo.com