Number Theory (C)

Proof

prove

Prove that if $m =_{(n)} m'$ and $p =_{(n)} p'$ then $m * p =_{(n)} m' * p'$.

proof

Let $m = k_1 * n + m'$ and $p = k_2 * n + p'$, Therefore,

$$m * p = (k_1 * n + m') * (k_2 * n + p')$$

= $k_1 * k_2 * n^2 + k_1 * p' * n + k_2 * m' * n + m' * p'$
= $(k_1 * k_2 * n + k_1 * p' + k_2 * m') * n + m' * p'$

Let $k_1 * k_2 * n + k_1 * p' + k_2 * m' = k$, so m * p = k * n + m' * p'. Therefore, $m * p = \binom{n}{m} m' * p'$.