Předmluva

Psal se rok 2005 a já se probíral příspěvky v internetové konferenci elektroniků, elektrotechniků a vůbec elektrošotoušů a bastlířů. Většina příspěvků se točila okolo tehdy populárního jednočipu PIC16C84, popřípadě kolem toho, jaké vybavení je pro dílnu dostatečné, a najednou do diskuse vstoupil *opravdový amatér*. Člověk, pro kterého byla mikroelektronika kouzelný svět, který s nadšením objevoval a se kterým se seznamoval.

Na začátku příspěvku se omluvil za to, že se vůbec dovoluje na něco zeptat (ano, to patřívalo k bontonu... omluvte mě, vy moudří, že mám hloupý začátečnický dotaz), a pak položil skvělou otázku: Jestli by mu někdo nemohl poradit, jak by si mohl splnit svůj sen, totiž navrhnout si vlastní mikroprocesor.

A já se opět, jak mávnutím kouzelného proutku, ocitl v roce 1984 v okresní knihovně, v oddělení techniky, a držel jsem v ruce knihu "Polovodičové paměti a jejich použití". Hned v úvodu autor popisoval, jak se vytvářejí tranzistory MOS a jak pracují. Bylo to tak jasné a pochopitelné, že jsem věřil – opravdu jsem tomu věřil! – že je možné si takové tranzistory dělat doma na koleni. Však křemík je všude, ty donory a akceptory by se taky někde sehnat daly, to přeci musí jít! A věřil jsem tomu, že jednou, jednoho dne, si ve sklepě v Petriho misce stvořím vlastní polovodič! Inu, byl rok 1984, bylo mi 11 let a připadalo mi snazší si udělat vlastní integrované obvody, než doufat, že si je jednou koupím v Elektře na rohu.

Nota bene když jsem v ruce držel knihu, kde to všechno bylo popsané. Jak se z tranzistorů poskládají hradla, z hradel klopné obvody, multiplexory, matice paměťových buněk... prostě všechno. I vlastní mikroprocesor bych zvládnul, určitě!

Úplně jsem cítil atmosféru té knihovny a svou dětskou radost, když jsem si do sešitu obkresloval tranzistory, křemíkové struktury a obvody a navrhoval jsem si vlastní komponenty. Tužkou, na papíře... Moc se mi líbilo, že si někdo takový sen udržel i po dvaceti letech a statečně se zeptal: "chtěl bych si navrhnout vlastní mikroprocesor, jak na to?"

Nepřekvapivě dostal neskutečnej kartáč od osazenstva konference, plus mínus ve stylu "my tu řešíme reálné problémy a na takovéhle bláznivé fantazie tady nejsme zvědaví, kšá!" Vlastní procesor? To nejde, na to nikdy mít nebudeš, to nikdy nezvládneš, to ti žádná fabrika nikdy nevyrobí, to nikdy nikdo nebude používat, tak s tím neotravuj.

A po zhruba dvaceti odpovědích v tomto stylu přišel jeden z členů té konference a tazatele nezadupal, ale naopak ho povzbudil. Ať si z těch řečí kolem nic nedělá, ať to klidně zkusí, protože se u toho naučí o elektronice mnohem víc než všichni ostatní účastníci té diskuse dohromady, a ať se nebojí, že to nevyjde, protože i tak získá spoustu neocenitelných znalostí. No a nakonec dodal, že nejjednodušší bude podívat se na obvody CPLD nebo FPGA a naučit se nějaký HDL

jazyk, kterým je možné ty obvody programovat.

Jak to s tazatelem dopadlo a jestli si vlastní procesor někdy navrhl, to netuším. Já si jen pamatuju, že jsem si kamsi v hlavě udělal poznámku: FPGA, HDL, zajímavé. A pak to na dlouhé roky vytěsnil, protože to bylo ve škatulce "drahé, nedostupné, není na hraní" - a já chci elektroniku hlavně na hraní.

Není to tak dlouho, tak sedm let, kdy se najednou objevily levné kity s FPGA, dostupné i pro nás, bastlíře, a začaly se objevovat první nesmělé pokusy a první konstrukce. A tehdy jsem si i já koupil svůj první kit, asi za tisícovku, a po několika týdnech experimentů jsem stvořil funkční repliku mikropočítače PMI-80.

Dnes jsou FPGA ještě dostupnější, a ti z vás, co už vymačkali maximum ze svých Arduin, BluePill a jiných Raspberry, se možná začínají poohlížet právě po těchto obvodech. Nedivím se – pověst, která je předchází, je zajímavá. *Obvod, který může být čímkoli, co zvládnete nadefinovat*, no není to sen?

Možná se trochu bojíte, možná máte v hlavě nějaký vnitřní majáček, který vám říká, že to je složité, nezvládnete to, na nic to nebude... Kašlete na majáček! Vážně! Pusťte se do toho.

Kniha, kterou právě držíte v ruce a kterou si za chvíli koupíte, je přesně to, co potřebujete, aby se z vás, z člověka, *co by to rád zkusil*, stal člověk, který si to zkusil – a možná ho to chytlo a bude pokračovat! Ukážeme si, co jsou vlastně FPGA, jaké možnosti coby amatér máte, a pak se naučíme jeden z univerzálních jazyků pro popis elektroniky, totiž VHLD. Zabrousíme i do Verilogu, naučíme se obvody navrhovat, testovat, simulovat, naučíme se, jak se ve VHDL zapisují základní konstrukční prvky, jak se skládají dohromady, jak se vytvářejí obvody pomocí popisu jejich chování, připravíme si sadu užitečných elementů pro vlastní pokusy, a pak si ukážeme nejen to, jak ve FPGA vytvoříte celý počítač, ale i to, jak si uděláte vlastní mikroprocesor.

Kniha není ani technická příručka, ani učebnice. Na to je příliš hovorová a příliš populární. Nenahradí vám vysokoškolská skripta a po jejím přečtení asi nebudete připraveni nastoupit do vývojové laboratoře a živit se jako konstruktér s FPGA obvody. To ani není její cíl. Její cíl je jiný: ukázat vám zajímavý svět obvodů FPGA a uživatelsky definované elektroniky, což je dnešní "hi-tech" oblast, zbavit vás ostychu a strachu, že *tomu nebudete rozumět*, a povzbudit ve vás chuť zkoušet a vymýšlet nové věci.

I kdyby to mělo být něco neužitečného a nepraktického.

Pojďme na to!

Důležité post scriptum: K této knize je dostupný web https://datacipy.cz/, kde kromě tipů na další čtení a užitečných odkazů najdete i zdrojové kódy všech příkladů z knihy, včetně testů, a také kódy, které byly příliš dlouhé a do knihy se nevešly.

— Obsah

Poděkování	7
Předmluva vydavatele	11
Předmluva	15
1 FPGA? Co, prosím?	25
1.1 Programovatelné obvody	25
1.2 Jaké FPGA?	30
1.3 Jaký kit vybrat?	34
2 Základy VHDL	49
2.1 Proč se učit VHDL?	49
2.2 Než začneme	49
2.3 Úplné základy a nezbytná teorie	50
2.4 Hello world!	53
2.5 LUT	58
2.6 Testování	58
2.7 Komponenty a signály	68
2.8 Bit sem, bit tam	79
2.9 Typy, operátory a atributy	88
2.10 Proces	98
2.11 Hodinové signály a čas	109
2.12 Klopné obvody, registry a další	114
2.13 Funkce, procedury, balíčky	129
2.14 VHDL 2008	140
3 Podrobněji o FPGA	145
3.1 Jak FPGA pracují?	145
3.2 Piny a jejich přiřazení	145
3.3 Hodinové signály	147
3.4 Nahrávání konfigurace do kitu EP2C5	147
4 Analogový výstup	157
4.1 PWM	157
4.2 Pokus: FPGA siréna	164
5 Paměti	173
5.1 Obousměrná sběrnice	173
5.2 Paměti RAM (RWM)	174
5.3 Paměť ROM	180

— Obsah

5.4	IP: Hotové paměti	180
5.5	Pokus: Melodický zvonek	183
6 (Čítače	187
6.1	Binární čítače	187
6.2	Speciální čítače	190
6.3	Problém s přenosem	192
7 /	Automaty	195
7.1	Konečné automaty	195
7.2	UART	197
8 I	Hodinové domény	207
8.1	Hodinové domény	207
8.2	UART, druhý díl - přijímač	215
9 (Generátor (pseudo)náhodných čísel	223
9.1	LFSR	224
10	IP, OpenCores a hardware s FPGA	231
10.1	Multicomp	233
10.2	? MiST	234
10.3	3 ZX Spectrum Next	235
10.4	Gameduino	236
11	OMEN Alpha, tentokrát ve FPGA	239
12	Generování VGA videosignálu	249
	VGA teoreticky	249
12.2	•	250
12.3	·	252
12.4		252
12.5		254
12.6	Jednoduchý obrazec	255
13	Užitečné obvody	261
13.1	, ,	261
13.2	1 9	263
13.3	Generická dělička kmitočtu	265
13.4	Generátor úvodního signálu RESET	266
13.5	Dehouncer	267

— Obsah

13.6	Sériové rozhraní SPI	269
13.7	Rozhraní I ² C	276
13.8	Připojení SD karty	279
13.9	Generátor parity	281
	Připojení PS/2	282
13.11		285
13.12	2 HDMI	290
14	Vlastní mikroprocesor	295
14.1	Architektura mikroprocesoru	296
14.2	Přípravné práce	297
14.3	Mikroprocesor MHRD	305
	Stručný úvod do Verilogu	317
15.1	Syntaktické základy Verilogu	319
15.2	313	320
15.3	Operátory	322
15.4	Moduly	322
15.5	Porty	323
15.6	•	324
15.7	•	326
15.8		329
15.9	<u> </u>	332
) Parametrizace modulů	333
15.11		335
15.12	2 A dál?	337
	Verilog prakticky	341
	FORTH a procesor J1	341
	Implementace procesoru J1 ve Verilogu	345
16.3	Verilog vs VHDL	352
17	Doslov	357
18	Příloha: Kit EP2C5T144	361
18.1	Mapa obsazených pinů	361
19	Příloha: Kit OMDAZZ	365
	Příloha: VHDL v kostce	369
20.1	Operátory	369