Data Analytics & Statistics in Python:

Recap of Sessions 1–6 & Cryptocurrency Analysis Mini-Project

Learning data-driven decision-making with Python

Instructor: Hamed Ahmadinia, Ph.D.

Email: hamed.ahmadinia@metropolia.fi

Concepts of Today

Session Agenda:

- Course Overview
- Cryptocurrency Mini-project Overview
- Jupyter Notebook Walkthrough
- Descriptive Stats, Visualisation & Hypothesis Testing
- Predictive Insights & Token Recommendation
- Kahoot Quiz

Session 1: Introduction & Fundamentals

 Overview of data analytics and its types (Descriptive, Diagnostic, Predictive, Prescriptive)

 Course structure and recommended tools (Anaconda, VS Code, etc.)

Python Basics Recap

Core data types:

integers, floats, strings, lists, sets, dictionaries

Basic control flows:

if/else, loops, functions, file I/O

Working with Data Frames & Arrays (Session 2)

NumPy: Array Creation & Reshaping

Array creation: np.array, np.zeros, np.ones, np.eye

Reshaping arrays: reshape(), ravel(), transpose, newaxis

```
import numpy as np

# Create a 1D array with 6 elements
one_d_array = np.array([1, 2, 3, 4, 5, 6])
print("1D Array:")
print(one_d_array)

# Reshape the 1D array into a 2D array with 2 rows and 3 columns
two_d_array = one_d_array.reshape(2, 3)
print("\n2D Array:")
print(two_d_array)
```

- **np.array([1, 2, 3, 4, 5, 6])**: Creates a 1D Numpy array with the elements 1, 2, 3, 4, 5, and 6.
- reshape(2, 3): Reshapes the 1D array into a 2D array with 2 rows and 3 columns.
- print: Outputs the arrays to the console.

Pandas Data Handling Essentials

CREATING DATA FRAMES, INDEXING, AND SELECTING DATA

EDITING DATA:
ADDING/DROPPING COLUMNS,
FILTERING, GROUPING

Session 3: Descriptive Statistics Overview

Measures of central tendency: mean, median, mode

Measures of spread: range, quantiles, IQR, variance, standard deviation

Descriptive Statistics:

	Year	CSIRO Adjusted Sea Level
count	134.000000	134.000000
mean	1946.500000	3.650341
std	38.826537	2.485692
min	1880.000000	-0.440945
25%	1913.250000	1.632874
50%	1946.500000	3.312992
75%	1979.750000	5.587598
max	2013.000000	9.326772

Python Functions for Descriptive Statistics

BUILT-IN FUNCTIONS
(MIN(), MAX()) AND
NUMPY METHODS
(NP.MEAN(),
NP.MEDIAN())

PANDAS METHODS: DF.DESCRIBE(), DF.MIN(), DF.MAX()

NumPy / Pandas
<pre>mean_value = np.mean(data)</pre>
df.describe(

Handling Missing Data

METHODS: DELETION, BASIC IMPUTATION (MEAN, MEDIAN, MODE), ADVANCED TECHNIQUES (KNN, MICE)

Session 4: Probability & Variability

Probability distributions: discrete vs. continuous

Key concepts: expected value, variance, standard deviation, and the normal distribution

Z-Score & Outlier Detection

Z-score formula: $z = (x - \mu) / \sigma$

Using z-scores to identify outliers (typically |z| > 3)

Hypothesis Testing Overview

Null vs. alternative hypotheses, p-values, significance levels

Overview of one-sample, twosample, and paired sample tests

Session 5: Relationships Between Variables

UNDERSTANDING COVARIANCE AND CORRELATION

DIFFERENT CORRELATION METRICS: PEARSON, SPEARMAN, KENDALL

Positive Correlation with Covariance

Introduction to Linear Regression

BASIC REGRESSION EQUATION: $Y = B_0 + B_1X$

EXTENSION TO MULTIVARIATE REGRESSION

Evaluating Regression Models

Data splitting: training, validation, test sets Evaluation metrics: Mean Squared Error (MSE) and R² score Concepts of overfitting and underfitting

Session 6: Data Visualization Fundamentals

Importance of visualization for communication

Common chart types: line plots, bar charts, histograms, scatter plots, box plots

Matplotlib: The Basics

• CORE PYPLOT FUNCTIONS: PLT.PLOT(), PLT.XLABEL(), PLT.YLABEL(), PLT.TITLE() • CREATING SUBPLOTS AND ADDING ANNOTATIONS


```
import matplotlib.pyplot as plt
x = [1, 2,3, 4, 5]
y = [1, 4, 9,16,25]
plt.plot(x, y)
plt.xlabel('xlabel')
plt.title('SamplePlots')
```


Seaborn: Enhancing Visualisations

 Generating plots with sns.histplot(), sns.scatterplot(), sns.boxplot(), sns.heatmap(), sns.pairplot()

Advantages: Cleaner visualizations with minimal code

Good vs. Poor Data Visualization

Criteria for effective visualizations: clarity, accuracy, proper labeling, minimal clutter

Common pitfalls: Misleading scales, poor color choices, unnecessary effects

Best Practices for Data Visualization

Selecting the appropriate chart for your data

Using accessible color palettes and clear labels

The importance of annotation

DATA VISUALIZATION BEST PRACTICES

Metropolia University of Applied Sciences

Integrating Analysis & Visualization

END-TO-END WORKFLOW:

DATA CLEANING → STATISTICAL

ANALYSIS → VISUALIZATION

REAL-WORLD EXAMPLES OF ACTIONABLE INSIGHTS

Recap of Key Python Functions & Methods

01

NumPy essentials: np.array(), np.mean(), np.reshape() 02

Pandas operations:
DataFrame
manipulation,
df.describe(), df.fillna()

03

Visualization functions: plt.plot(), sns.heatmap(), sns.boxplot()

Cryptocurrency Mini-Project Overview

INTRODUCTION TO THE MINI-PROJECT

OBJECTIVES: ANALYZE HISTORICAL CRYPTOCURRENCY DATA (2015–2025) USING THE METHODS LEARNED

Load	Load the cryptocurrency dataset (2015–2025)
Inspect	Inspect structure using .head() and .info()
Check	Check for missing values and data types
Initial	Initial shape and data cleaning steps

Perform a descriptive summary of the dataset

Basic metrics: mean, median, standard deviation of price, volume, and market cap

Identify trends by year and by cryptocurrency token

Detect unusual values or outliers using .describe() and
visual tools (boxplots, z-scores)

Perform a time-based analysis

GROUP PRICE, VOLUME, AND MARKET CAP DATA BY MONTH AND YEAR

VISUALIZE LONG-TERM TRENDS ACROSS 2015– 2025

IDENTIFY **MAJOR SHIFTS**IN TOKEN PERFORMANCE
OVER TIME (E.G.,
BULL/BEAR PHASES)

Visualize Data

Histograms: Token popularity and distribution

Boxplots: Detect outliers in price and volume

Line charts: Explore market trends from 2015 to 2025

//

Heatmaps: Visualize correlations among key features

Predictive Analysis (Optional)

Identify variables affecting token price trends

Use **regression or time-series analysis** to model price movement

Make a final recommendation: Which token(s) might be profitable to invest in?

Тор	10 Recommended C	ryptocurrencies	by Model Perform	ance (Positiv	e Growth Only):
	symbol	current_price	<pre>predicted_price</pre>	growth_rate	MAE \
333	SUSDE-USD	1.151583	1.167743	0.014032	0.003069
306	UNFI-USD	0.336828	0.475860	0.412766	0.843185
11	ZERO31076-USD	0.000110	0.000133	0.205024	0.000034
140	DUKO-USD	0.000208	0.000326	0.565166	0.000208
7	BLAST28480-USD	0.004059	0.004739	0.167299	0.001509
216	HEZ-USD	3.605058	3.822553	0.060330	0.122043
262	MERL-USD	0.096103	0.125313	0.303935	0.053729
381	TAIKO-USD	1.049121	1.238912	0.180905	0.167899
210	JITOSOL-USD	225.270432	240.624095	0.068157	30.517831
54	ETH-USD	2595.514893	3084.196290	0.188279	508.119174

Notebook Review

Notebook Walk-through

- Project Title: Cryptocurrency Historical Data Analysis
- Dataset: Crypto historical data (2015–2025)
- Goals:
 - Clean and preprocess data
 - Compute descriptive statistics and visualize trends
 - Conduct hypothesis testing on market behavior
 - Develop predictive models for token price movement
 - Deliver actionable recommendations for potential profitable investments

Kahoot Quiz Time!

Let's Test Our Knowledge!

Reference

- Vohra, M., & Patil, B. (2021). A Walk Through the World of Data Analytics., 19-27. https://doi.org/10.4018/978-1-7998-3053-5.ch002.
- VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data. O'Reilly Media. Available at https://jakevdp.github.io/PythonDataScienceHandbook/
- Severance, C. (2016). Python for everybody: Exploring data using Python 3.
 Charles Severance. Available at https://www.py4e.com/html3/
- McKinney, W. (2017). Python for data analysis: Data wrangling with pandas, NumPy, and Jupyter. O'Reilly Media.