*For neuroscience basics.

Time series models (e.g. economic, climate forecasts) go beyond our scope

What are time series?

What are time series?

What are time series?

~~Any variable sampled at regular intervals across time~~

 Neural data: neuron spikes, LFPs, Ca++ signals (neurons, fiber photometry), neurochemical measures (eg. voltammetry), EEG, fMRI BOLD

What are time series?

- Neural data: neuron spikes, LFPs, Ca++ signals (neurons, fiber photometry), neurochemical measures (eg. voltammetry), EEG, fMRI BOLD
- Other physiology: heart/respiratory rate, GSR, pupil dilation

What are time series?

- Neural data: spikes, LFPs, Ca++ signals (neurons, fiber photometry), neurochemical measures (eg. voltammetry), EEG, fMRI BOLD
- Other physiology: heart/respiratory rate, GSR, pupil dilation
- Behavior measures: position (x,y coordinates), speed, heading, gaze position, responses (e.g. lever presses)

What are time series?

- Neural data: spikes, LFPs, Ca++ signals (neurons, fiber photometry),
 neurochemical measures (eg. voltammetry), EEG, fMRI BOLD
- Other physiology: heart/respiratory rate, GSR, pupil dilation
- Behavior measures: position (x,y coordinates), speed, heading, gaze position, responses (e.g. lever presses)

What are time series?

- Neural data: spikes, LFPs, Ca++ signals (neurons, fiber photometry), neurochemical measures (eg. voltammetry), EEG, fMRI BOLD
- Other physiology: heart/respiratory rate, GSR, pupil dilation
- Behavior measures: position (x,y coordinates), speed, heading, gaze position, responses (e.g. lever presses)
- Size or counts of something growing or shrinking
- Temperature
- Image pixels in an animation
- Anything!

What are time series?

~~Any variable sampled at <u>regular intervals</u> across time~~

Regular intervals = equally spaced!!

What are time series?

~~Any variable sampled at regular intervals across time~~

Regular intervals = equally spaced!!

This means you are discretizing time

Events (e.g. neuron spiking, lever pressing) can be turned into a time series

"samples" are short time windows

0 = no event in the time window

1 = event occurred

*You must have a concept of relevant timescales for your measure

- sampling rate too low -> you will not optimally capture trends in the data

*You must have a concept of relevant timescales for your measure

- sampling rate too low -> you will not optimally capture trends in the data

Nyquist theorem for periodic signals: the sampling rate for a periodic signal must be >= 2x the highest frequency of interest

*You must have a concept of relevant timescales for your measure

- sampling rate too low -> you will not optimally capture trends in the data
- sampling rate too high -> file sizes explode

- *You must have a concept of relevant timescales for your measure
 - sampling rate too low -> you will not optimally capture trends in the data
 - sampling rate too high -> file sizes explode
- * Each observation has a time stamp
 - these time stamps are necessary to align different streams of data

This means you are discretizing time

Example: Aligning time series to an event

See TimeSeriesDemoScript.m or Time Series Demo in R

Example: Aligning time series to an event

Example: Aligning time series to an event

This also works for time series of discrete observations

Why do this?

- *Aligning data repeatedly samples changes in your data relative to ongoing events e.g.
 - look for event-related responses

Schultz et al., 1997 Science

Why do this?

- *Aligning data repeatedly samples changes in your data relative to ongoing events e.g.
 - look for event-related responses
 - contrast responses to different events
 - consider if data are aligned to the wrong event

Preprocessing = steps taken to "clean up" the data before further analysis

Examples:

normalizing (mean-subtraction, z-scoring, normalizing to a baseline, etc.)

Preprocessing = steps taken to "clean up" the data before further analysis

Examples:

normalizing (mean-subtraction, z-scoring, normalizing to a baseline, etc.) downsampling

Preprocessing = steps taken to "clean up" the data before further analysis

Examples:

normalizing (mean-subtraction, z-scoring, normalizing to a baseline, etc.)

downsampling

interpolating

Preprocessing = steps taken to "clean up" the data before further analysis

Examples:

normalizing (mean-subtraction, z-scoring, normalizing to a baseline, etc.) downsampling interpolating smoothing

Data smoothing

- These techniques convolve the time series with another function

Data smoothing

- These techniques *convolve* the time series with another function

- Do this as a preprocessing step, i.e. before selecting epochs or trials, to avoid edge effects

Preprocessing = steps taken to "clean up" the data before further analysis

Examples:

normalizing (mean-subtraction, z-scoring, normalizing to a baseline, etc.) downsampling interpolating smoothing var. de-noising steps

Preprocessing = steps taken to "clean up" the data before further analysis

Examples:

normalizing (mean-subtraction, z-scoring, normalizing to a baseline, etc.) downsampling interpolating smoothing var. de-noising steps detrending

Preprocessing = steps taken to "clean up" the data before further analysis

Examples:

normalizing (mean-subtraction, z-scoring, normalizing to a baseline, etc.) downsampling interpolating smoothing var. de-noising steps detrending

Best practices: Know your data and which preprocessing steps are appropriate Apply these steps consistently to *all* data

Best carried out in a "pipeline"

HW #6

HW6: Introduction to Time Series Analysis

You have recorded two neurons with the following parameters:

Sampling frequency 1kHz Recording duration 7127.914 sec (or 118.7986 min)

Each vector in the attached data set includes the timestamp *in ms* when the neuron fired an action potential, as well as a timestamp, also in *ms*, for a recurring event.

- 1. Make raster plots of the first 100 events for each neuron's response time-locked to the event. Include times from 500ms before the event to 1s after
- 2. Plot each neuron's average response over all 699 events as a <u>lineplot</u> or PETH in the same time epoch (make sure your x-axis indicates time relative to the event)
- 3. Smooth each neuron's time series using a 200ms moving average, and replot the lineplot from 2