Throughout this exam m and (in integrals) dx will denote Lebesgue measure on R.

- 1) State and prove the Dominated Convergence Theorem. (You can assume Fatou's lemma.)
- Let f be a nondecreasing function on [a,b]. Prove that there exist unique functions g and h on [a,b] such that a) f=g+h
 - b) g and h are nondecreasing on [a,b]
 - c) g'is absolutely continuous on [a,b] and g(a)=0
 - d) h'(x)=0 a.e.
- Suppose g_n is a sequence of Lebesgue measurable functions on \mathbb{R} such that $|g_n| \le 1$ for n = 1, 2, ... and $\int_a^b g_n(x) \, dx \to 0$ as $n \to \infty$ for every interval [a,b]. Prove that $\int fg_n \to 0$ for all $f \in L^1(\mathbb{R},m)$.
 - 4) Let μ be a measure on [a,b] defined on the Lebesgue measurable subsets of [a,b] such that there exists a constant K with μ(E)≤K·m(E) for all measurable subsets E of [a,b]. Prove that there exists f ∈ L[∞]([a,b],m) such that I f I_∞ ≤ K and μ(E) = ∫_E f(x) dx.
 - 5) Let $f \in L^1(R,m)$.
 - a) Show that $\sum_{n=-\infty}^{+\infty} f(x+n)$ converges absolutely a.e. on [0,1].
 - b) Let $F(x) = \sum_{n=-\infty}^{+\infty} f(x+n)$. Show that $\int_0^1 F(x) dx = \int_R f(x) dx$.
 - 6) Let $f \in L^1(R,m)$.
 - a) Assume f is uniformly continuous on R. Show $f(x) \to 0$ as $|x| \to \infty$.
 - b) Give a counterexample to a), assuming that f is only continuous.
 - 7) Let $f \in C([a,b])$ such that $\int_a^b x^n f(x) dx = 0$ for all n. Show that $f \equiv 0$.

- 8) Let f_n be a sequence of Lebesgue measurable functions on [0,1] such that $f_n \to 0$ a.e. Show that there exist $t_n \ge 0$ with $\overline{\lim} t_n > 0$ such that $\sum_{n=1}^{\infty} t_n f_n(x)$ converges a.e. on [0,1].
- 9) True or false. Prove or give a counterexample:
 - a) If $f \ge 0$ is Lebesgue integrable on [0,1] and $\int_0^1 f(x) dx > 0$, then there exist c > 0 and a nonempty open interval $I \subset [0,1]$ such that $f(x) \ge c$ for all $x \in I$.
 - b) If $0 \le f_1 \le f_2 \le \cdots$ and f_n converges to f in measure on [0,1], then $f_n \rightarrow f$ a.e. on [0,1].
 - c) If $f \in L^1(\mathbb{R},m) \cap L^{\infty}(\mathbb{R},m)$, then $f \in L^p(\mathbb{R},m)$ for all $1 \le p \le \infty$.

os vistantis aspendentes a control de contro

San Show Wat It From &

- d) If E is a Lebesgue measurable set in R such that there exists a $c \in (0,1)$ with $m(E \cap I) \le c m(I)$ for all intervals I, then m(E) = 0.
- e) If f is a bounded Lebesgue integrable function on [a,b], then f is Riemann integrable over [a,b].