《线性代数(I)》考试试卷(第一套)(A卷)

课程号 2515650030 考试时间 100 分钟

适用专业年级(方向): 2020 年秋全校选修此门课程的所有专业学生

考试方式及要求: 闭卷, 所有题目都在答题纸上解答, 在试卷上解答无效

一、单项选择题【每小题3分,共18分】

- 1、设A是实数域R上的n阶矩阵 (n>1),则下列命题**正确**的是
 - (A) 对任意 $A \neq \mathbf{0}$, 且 $A \neq E$, 都有 $A^2 \neq A$
 - (B) 对任意 $A \neq E$,且 $A \neq -E$,都有 $A^2 \neq E$
 - (C) 对任意 $A \neq E$, 且 $A^2 = E$, 都有 $|A + E| \neq 0$
 - (D) 对任意 $A \neq \mathbf{0}$, 且 $A^2 = \mathbf{0}$, 都有 $|A + E| \neq \mathbf{0}$
- 2、设向量组 α_1 , α_2 , α_3 **线性无关**,则下列向量组中也线性**无关**的是
- $(A) \ \alpha_1, \quad \alpha_2-2\alpha_3, \quad \alpha_1-\alpha_2+2\alpha_3 \qquad \qquad (B) \quad \alpha_1+2\alpha_2, \quad \alpha_2+2\alpha_3, \quad \alpha_1+2\alpha_3$
- (C) $\alpha_1 2\alpha_2$, $\alpha_2 2\alpha_3$, $\alpha_1 4\alpha_3$ (D) α_1 , $\alpha_2 2\alpha_3$, $2\alpha_1 + \alpha_2 2\alpha_3$
- 3、设 A 是实数域 R 上的 n 阶**非零**矩阵 ($n \ge 3$),且满足 $A^* = A^T$,其中 A^* 为 A 的 伴随矩阵,则下列结论**不正确**的是
 - (A) |A| = -1 (B) |A| = 1 (C) $A^{-1} = A^{T}$ (D) $AA^{*} = E$

- 4、设A, B, C 都是实数域R 上的n 阶矩阵 (n>1),则下列命题中**不正确**的是
 - (A) $\Xi |A| \neq 0$, $\exists A^T B = \mathbf{0}$, $\exists B = \mathbf{0}$
 - (B) 若 $BA^T = \mathbf{0}$, 且 $B \neq \mathbf{0}$, 则 $|A| = \mathbf{0}$
 - (C) 若 $R(A^2B) < R(B)$, 则 $R(A) \neq n$
 - (D) 若 AB = CA, 且 R(A) = n, 则 B = C
- 5、对于非齐次线性方程组 AX = B,下列命题**正确**的是
 - (A) 如果方程组 AX = B 有无穷组解,那么方程组 AX = 0 可能没有非零解
 - (B) 如果方程组 $AX = \mathbf{0}$ 有非零解,那么方程组 AX = B 不可能有唯一解
 - (C) 如果方程组 $AX = \mathbf{0}$ 只有零解,那么方程组 AX = B 不可能无解
 - (D) 如果方程组 AX = B 有唯一解,那么方程组 AX = 0 可能有无穷组解

6、矩阵
$$A = \begin{bmatrix} -2 & -2 & 1 \\ 2 & a & -2 \\ 0 & 0 & -2 \end{bmatrix}$$
 与矩阵 $B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & b \end{bmatrix}$ 相似,则有

- (*A*) a = 3, b = -2
- (*B*) a = 2, b = -3
- (*C*) a = -3, b = 2
- (D) a = -2, b = 3

二、填空题【每小题 4 分, 共 20 分】

1、设矩阵
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
,则 $|(AA^T)^2| - |A^TA|^2 = _____.$

四 第 石 油 大 字 瓜 を
$$2$$
、设 $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix}$,则 $\begin{vmatrix} A^2 + 2A - 3E \end{vmatrix} =$ _____.

3、设矩阵
$$A = \begin{bmatrix} 0 & 1 & \lambda \\ 0 & 1 & 9 \\ 3 & 0 & 0 \end{bmatrix}$$
, 满足 $AB = \mathbf{0}$, 且 $B \neq \mathbf{0}$, 则常数 $\lambda = \underline{\hspace{1cm}}$.

4、设 $\alpha = (1, 0, 0, 0)^T$, $\beta = (0, 2, 0, 0)^T$, $\gamma = (0, 0, \lambda, 0)^T$, 若在实数域 *R* 上的一个向量空间 $V = \{x\alpha + y\beta + z\gamma | x, y, z \in R\}$ 的**维数**是 2,则 $\lambda =$ ______.

5、设向量组 $\alpha_1 = (0, 1, 1, 0)^T$, $\alpha_2 = (-3, 0, \lambda, 1)^T$, 已知 $\alpha_1 与 \alpha_2$ 正交,则常数 $\lambda =$ _____

三、【10 分】 设矩阵
$$A = \begin{bmatrix} -1 & 0 & 0 \\ 2 & 3 & 0 \\ -2 & -4 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & 1 \\ -2 & -2 & -3 \\ 2 & 4 & 9 \end{bmatrix}$, 计算 $\left| -\frac{1}{2}A^TB^2 \right|$ 和

 $|E+A^{-1}B|$.

四、【12分】 已知矩阵
$$A = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 6 & 5 \\ 5 & 6 & 3 \end{bmatrix}^T$, 且矩阵 X 满足方

程X = AX + B, 求矩阵X.

五【12 分】已知向量组 $\alpha_1 = (1, 2, 3, 4), \alpha_2 = (2, 1, 0, 1), \alpha_3 = (1, 1, -1, 2),$ $\alpha_4 = (4, 4, 2, 7)$,求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的**秩**与一个**极大线性无关组**,并用这 个极大线性无关组来**线性表出**该向量组 α_1 , α_2 , α_3 , α_4 中**其余**的向量.

六、【14 分】 问 a, b 为何值时, 下列线性方程组无解? 有唯一解? 有无穷多组解? 有无穷多组解时,求出其通解.

$$\begin{cases} 2x_1 + 2x_2 + 2x_3 + 2x_4 = 2\\ x_1 + 2x_3 - x_4 = 0\\ 2x_1 + 2x_2 + (a+2)x_3 + 2x_4 = b + 2\\ 3x_1 + 4x_2 + 2x_3 + (a+5)x_4 = 4 \end{cases}$$

七、【14分】 已知二次型

$$f(x_1, x_2, x_3) = x_1^2 + 5x_2^2 + 2x_3^2 + 4x_2x_3$$

- (1) 写出二次型 f 对应的实**对称**矩阵 A;
- (2) 求正交线性变换 X = PY,化二次型 f 为标准形,并写出正交矩阵 P,

其中
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
, $Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$;

(3) 判定该二次型 f 是否为正定二次型.