Amendments to the Specification

Please replace the paragraph beginning at page 11, line 16 with the following amended paragraph. Support for the amendment can be found on at least page 2, lines 20-21.

In one possible embodiment, a voltage potential of about 5 Volts or less and a current of about 10 mA or less actuates the MEM switch 100. In this embodiment, the coil 138 consumes about 50 mW or less of power. In another embodiment, a voltage potential of about 3 Volts or less and a current of about 10 mA or less actuates the MEM switch 100. In this embodiment, the coil 138 consumes about 30 mW Watts or less of power. In yet another possible embodiment, the coil 138 consumes power in the range of about 1 mW and about 50 mW when the MEM switch 100 is in the actuated state. In one possible embodiment, the impedance of the contact bridge 172 substantially matches the impedance of the first and second contact traces 112 and 114. One possible technique to match the impedance between the contact bridge 172 and the first and second contact traces 112 and 114 is to adjust the width of the contact bridge 172. In this embodiment, the electrical characteristics of the signal path 174 formed by the contact bridge 172 and the first and second contact traces 112 and 114 is expected to be substantially similar to the electrical characteristics of a single conductor. One possible impedance for the contact bridge is about 50 Ohms. Accordingly, it is anticipated that in one possible embodiment, the signal path 174 will conduct DC signals as well as a signal having at least one frequency component. In one possible embodiment, for example, the signal path 174 will conduct a signal having at least one frequency component of about 20 GHz or higher with a return loss of about 15 dB or higher less. In another embodiment, it is anticipated that the signal path 174 will conduct a signal having at least one frequency component of about 30 GHz or higher with a return loss of about 15 dB or higher less. In yet another possible embodiment, it is anticipated that the signal path 174 will conduct a signal having at least one frequency component of about 50 GHz or higher with a return loss of about 15 dB or higher less.