1979-02278B [02] Tri:aryl phosphonium salt aq. soln. or dispersion prodn. - by treating organic solvent solns. with steam **Derwent Classes:** B05 C01 E11 Additional Words: PEST CAROTENOID INTERMEDIATE Patent Assignee: (BADI) BASF AG Inventor(s): GRAFEN P; SCHOLZ HU; SCHULZ B Nbr of Patents: 9 Nbr of Countries: 9 Patent Number: DSR: BE CH DE FR GB NL 区DE2729974 A 19790118 DW1979-04 LIP54009248 A 19790124 DW1979-09 LUS4182731 A 19800108 DW1980-03 EP----140 B 19800723 DW1980-31 DSR: BE CH DE FR GB NL DE2729974 B 19801210 DW1980-51 ACA1101431 A 19810519 DW1981-24 EDE2860043 G 19801113 DW1981-31 LJP87028798 B 19870623 DW1987-28 **Priority Details:** 1977DE-2729974 19770702; 1977DE-2727384 19770618 Citations: GB1059673 IPCs: A01N-009/36 A01N-057/22 C07C-175/00 C07F-009/54 Abstract: EP----140 A 10-70 wt.% organic solvent solutions of polyenyl-triaryl-phosphonium salts of formula (I) (R is a 5-20C aliphatic, cycloaliphatic-aliphatic or araliphatic polyenyl residue; X is the anion equivalent of a strong acid; Ar is aryl) are converted into solvent-free aq. solutions or fine dispersions, the solvent and other steam-volatile cpds, originating from the synthesis of (I) are driven off with steam at 30-120degrees C. Part of the steam is allowed to condense so as to produce the aq. soln. or dispersion. Some cpds. (I) are useful as pesticides (e.g. against water snails), while others are intermediates, esp. for carotenoids. Aq. solns. or dispersions of (I) often preferred for organic syntheses) are easily obtd. from the organic solutions formed in the synthesis of (I).

BEST AVAILABLE COPY

1/1 WPAT - ©Thomson Derwent

Accession Nbr :

THIS PAGE BLANK (USPTO)

A 01 N 57/22

DEUTSCHES

PATENTAMT

- (2) Aktenzeichen:
- ② Anmeldetag:
- 4 Offenlegungstag:
- Bekanntmachungstag:
- 45 Veröffentlichungstag:

P 27 29 974.7-42

2. 7.77

18. 1.79

11. 12. 80

24. 9.61

Patentinhaber
BASF AG, 6700 Ludwigshafen, DE

(7) Erfinder:

Reif, Werner, Prof.Dr., 6710 Frankenthal, DE; Schulz, Bernhard, Dr., 6830 Schwetzingen, DE; Grafen, Paul, Dr., 6719 Weisenheim, DE; Scholz, Hans-Ulrich, Dr., 6840 Lampertheim, DE; Grassner, Hans, Dr., 6900 Heidelberg, DE

Entgegenhaltungen: NICHTS ERMITTELT

Verfahren zur Herstellung von wäßrigen Lösungen bzw. feinteiligen wäßrigen Dispersionen von Polyenyltrierylphosphoniumsalzen

BUNDESDRUCKEREI BERLIN 08. 81 130 239/358

Patentanspruch:

Verfahren zur Überführung 10- bis 70gew.-%iger Lösungen von Polyenyltriarylphosphoniumsalzen 5 der allgemeinen Formel I

$$[R - P(Ar)_3]^+ X^-$$
 (I)

in der R für einen aliphatischen, cycloaliphatisch-aliphatischen oder aromatisch-aliphatischen Polyenylrest mit 5 bis 20 C-Atomen steht, X das Anionäquivalent einer starken Säure bezeichnet und Ar einen Arylrest bedeutet, in einem organischen

Lösungsmittel in weitgehend lösungsmittelfreie wäßrige Lösungen bzw. feinteilige Dispersionen, dadurch gekennzeichnet, daß man das Lösungsmittel sowie sonstige von der Synthese von I herstammenden wasserdampfflüchtigen Verbindungen aus der auf 30 bis 120°C gehaltenen Lösung mit Wasserdampf abtreibt, wobei man einen Teil des Wasserdampfes zur Erzeugung der wäßrigen Lösungen bzw. der feinteiligen Dispersionen kondensieren 1881.

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von wäßrigen Lösungen bzw. wäßrigen feinteiligen Dispersionen von Polyenyltriarylphosphoniumsalzen der allgemeinen Formel I

$$[R - P(Arb)] = X$$
 (1)

in der R für einen aliphatischen, cycloaliphatisch-aliphatischen oder aromatisch-aliphatischen Polyenylrest mit 5 bis 20 C-Atomen steht, X das Anionāquivalent einer starken Säure bezeichnet und Ar einen Arylrest, insbesondere den Phenylrest bedeutet.

Einige der Verbindungen I (2. B. I mit $R = \beta$ -Jonylidenäthyl) eignen sich unmittelbar als Schäd-

lungsbekämpfungsmittel, z. B. zur Bekämpfung von Wasserschnecken, andere dienen als Zwischenprodukte für organische Synthesen, insbesondere auf dem 5 Carotinoidgebiet (vgl. u. a. die DE-PS 12 03 264 und 10 46 046). Sowohl für die unmittelbare Verwendung als auch für die Verwendung für weitere Synthesen, wie z. B. für die Herstellung von symmetrischen Carotinoiden gemäß der DE-OS 25 05 869, empfehlen sich häufig wäßrige Lösungen bzw. wäßrige. feinteilige Dispersionen der Verbindungen I.

Nach Houben Weyl, »Methoden der Organischen Chemie«, Band XII/1, Seiten 90 ff., erhält man Phosphoniumsalze aus Triphenylphosphin, einer Säure 35 und einem Alkohol gemäß der Reaktionsgleichung

$$(C_6H_4)_1P + HX + HOR \longrightarrow [(C_6H_4)_1P - R]X^- + H_2O$$

Als Lösungsmittel für diese Umsetzung sind niedere aliphatische Alkohole, niedere Carbonsäuren, wie HCOOH oder CH3COOH, Aceton oder die üblichen wasserunlöslichen Lösungsmittel wie Benzol, Toluol, Tetrahydrofuran, Acetonitril, Methylenchlorid, Chloroform, Diathylather, Dioxan und Ester, wie Methyl- und Diäthylacetat bekannt, d. h., es fallen bei den üblichen Herstellungsmethoden Lösungen von I in den genannten Lösungsmitteln an. Eine direkte Umsetzung von Triphenylphosphin mit einer Säure und einem Polyenalkohol in Wasser zwecks Herstellung einer wäßrigen Lösung von Polyenyltriphenylphosphoniumsalzen (1) erscheint aussichtslos, da einerseits weder das Triphenylphosphin noch der Polyenalkohol in Wasser löslich sind, andererseits mit einer großen Hydrolyseempfindlichkeit con I bei höheren Temperaturen zu rechnen ist und man annehmen kann, daß das Vorhandensein großerer Mengen eines der bei der gewünschten Reaktion sich bildenden Produkte, das Reaktionsgleichgewicht ungünstig beeinflußt.

Nach dem bekannten Verfahren erhält man die besten Ausbeuten an I bei Verwendung von niederen an Alkoholen, wie Äthanol, Isopropanol, Isobutanol, ni-Propanol, n-Butanol und insbesondere Methanol als Lösungsmittel. So werden als Ausgangslösungen für die Herstellung wäßriger I-Lösungen bevorzugt Lösungen von I in den genannten niederen Alkoholen, insbesondere methanolische I-Lösungen eingesetzt werden. Aber auch die Überführung von Lösungen von I in einem der anderen obengenannten Lösungsmittel in wäßrige

I-Lösungen ist von Interesse. Die Herstellung möglichst 40 lösungsmittelfreier, wäßriger I-Lösungen aus den entsprechenden Lösungen in organischen Lösungsmitteln durch restloses destillatives Entfernen des Lösungsmittels und Aufnahme von I in Wasser ist wegen hierbei unvermeidlichen örtlichen Überhitzungen und der großen thermischen Empfindlichkeit der Verbindungen (s. l. c. S. 105) mit großen Ausbeuteverlusten verbunden und daher technisch kaum realisierbar. Versetzt man die Lösungen von I in organischen Lösungsmitteln zuerst mit Wasser und versucht das Lösungsmittel danach abzudestillieren, so beginnen dir. Lösungen im allgemeinen so heftig zu schäumen, daß eine reguläre Desti'lation nicht mehr möglich ist. Auch die Verwendung von Lösungs, nitteln, in denen I weniger gut löslich ist, anschließendes Auskristallisierenlassen von 1 aus dem Solvens und Aufnahme von 1 in Wasser erscheint wegen des hohen Aufwandes an Zeit und Apparaten sowie durch die bei Kristallisationsverfahren unvermeidlichen Ausbeuteverluste nicht sehr attraktiv. Andererseits kann man die Umsetzung auch nicht ohne Lösungsmittel ausführen, da sonst (insbesondere bei Verwendung von Schwefelsäure als Protonendonator) Zersetzungen des Alkohols oder Oxidation des Phosphins zum entsprechenden Phosphinoxid auftreten.

Es war daher die Aufgabe der Erfindung, auf möglichst einfache und wirtschaftliche Weise wäßrige Lösungen bzw. feinteilige wäßrige Dispersionen von I herzustellen.

Es wurde nun überraschenderweise ein sehr vorteil-

haftes Verfahren zur Überführung von 10- bis 70gew.-%iger Lösungen von Polyvenyltriarylphosphoniumsalzen der allgemeinen Formel I

$$[R - P(Arb)]^+ X^-$$
 (1)

in der R für einen aliphatischen, cycloaliphatisch-aliphatischen oder aromatisch-aliphatischen Polyenylrest mit 5 bis 20 C-Atomen steht, X das Anionāquivalent einer starken Säure bezeichnet und Ar einen Arylrest, 10 insbesondere den Phenylrest bedeutet, in einem organischen Lösungsmittel in 10- bis 70gew.-%ige, weitgehend lösungsmittelfreie, wäßrige Lösungen bzw. feinteilige Dispersionen, gefunden, das dadurch gekennzeichnet ist, daß man das Lösungsmittel sowie sonstige von der Synthese von I herstammenden, wasserdampfflüchtigen Verbindungen aus der auf 30 bis 120°C gehaltenen Lösung mit Wasserdampfe zur Erzeugung der wäßrigen Lösungen kondensieren läßt. Beim Abkühlen unter Rühren bilden sich aus diesen homogenen, viskosen I-Lösungen feinteilige Dispersionen.

Es wurde weiterhin überraschend gefunden, daß dieses Verfahren besonders gut kontinuierlich durchzuführen ist, indem man die organische Lösung von I von oben kontinuierlich in eine Kolonne, vorzugsweise in eine Füllkörperkolonne leitet, sie im Gegenstrom mit dem Wasserdampf in Kontakt bringt, hierbei einen Teil des Wasserdampfes kondensieren läßt und die gebildete, wäßrige Lösung von I kontinuierlich aus dem unteren Teil der Kolonne abzieht. Die Dosierung der I-Lösung sowie des Wasserdam, pies kann unschwer so eingerichtet werden, daß man die gewünschte wäßrige I-Lösung in Form einer homogenen, viskosen Lösung unmittelbar als Sumpfprodukt abziehen kann.

Das heiße Sumpfprodukt wird zweckmäßig kontinuierlich in einen Rührbehälter überführt. Durch Kühlen und Rühren erhält man im allgemeinen aus dieser heißen, wäßrigen I-Lösung eine Dispersion, die feinteiliges, kristallines Phosphoniumsalz, dispergiert in 40 Wasser bzw. in wäßriger Phosphoniumsalzlösung, enthält.

Es ist bekannt, daß die Schmelzpunkte bzw. die Zersetzungspunkte der Triarylphosphoniumsalze, insbesondere der Triphenylphosphoniumhydrogensulfate 45 über 100°C liegen (β-Jonylidentriphenylphosphoniumhydrogensulfat schmilzt beispielsweise bei 183–85°C unter Zersetzung, Axerophthyltriphenylphosphoniumhydrogensulfat bei 188–190°C unter Zersetzung) und

deren Methylhomologen oder den Axerophtylrest (III)

und dessen Methylhomologen. Allgemein kommen als Polyenylreste solche mit 5 bis 20 C-Atomen und

daß die Löslichkeit der Triarylphosphoniumsalze in Wasser vor allem bei Raumtemperatur gering ist. Daher war zu erwarten, daß bei einer kontinuierlichen Fahrweise in einer Kolonne mit abnehmender Konzentration des organischen Lösungsmittels im Abtriebsteil der Kolonne die Phosphoniumsalze teilweise auskristalisieren und die Kolonne verstopfen. Überraschenderweise treten bei dem erfindungsgemäßen Verfahren solche Schwierigkeiten jedoch nicht auf.

Das erfindungsgemäße Verfahren kann sowohl diskontinuierlich als auch kontinuierlich durchgeführt werden. Überraschenderweise ist weder bei diskontinuierlicher noch bei kontinuierlicher Verfahrensvariante eine störende Schaumbildung zu beobachten.

Zur Durchführung der diskontinuierlichen Variante hält man die Lösung von I in dem organischen Lösungsmittel in einem Reaktionsgefäß auf einer Temperatur kurz unterhalb der Siedetemperatur des Lösungsmittels, leitet hierein Wasserdampf ein und fäßt das hierdurch verdampfende Lösungsmittel, sonstige von der Synthese von I herstammende wasserdampfflüchtige Verbindungen sowie einen Teil des Wasserdampfs aus dem Reaktionsgefäß abdestillieren.

Zu den Betriebsbedingungen für die kontinuierliche erfindungsgemäße Variante läßt sich allgemein gültig etwa folgendes sagen: Die Temperatur der Eingangslösung sollte unterhalb der Siedetemperatur der Lösungsmittels liegen; die Sumprtemperatur soll etwa 100°C betragen; der Zulauf ist so zu regulieren, daß das Lösungsmittel auf dem Weg der Lösung durch die Kolonne an den Füllkörpern weitgehend verdampft. Für geringen Zulauf genügt eine geringe Kolonnenhöhe, für größere Durchsätze muß die Kolonnenkapazität entsprechend größer sein. Im einzelnen sind die geeigneten Betriebsbedingungen anhand einiger Vorversuche unschwer zu ermitteln, so daß sich eingehende Ausführungen hierüber erübrigen. Dies gilt auch für das Arbeiten bei niedrigerem oder höherem Druck als Normaldruck.

Der gute Erfolg des erfindungsgemäßen Verfahrens ist von der Art der Polyenreste in den Phosphoniumsalzen I nach bisherigen Beobachtungen praktisch nicht abhängig. Da die Wittigsche Ylid-Synthese vornehmlich zur Herstellung von Verbindungen der Carotinoidreihe, vor allem des Vitamin A und dessen Derivaten sowie des β -Carotins selbst dient, haben solche Polyenylreste die größte Bedeutung, welche Bausteine für diese Carotinoide sind. Genannt seien vor allem solche Phosphoniumsalze, in denen R für den α - oder β -Jonylidenäthylrest (IIa bzw. IIb).

mindestens 2 konjugierten Doppelbindungen in Betracht, wobei eine der konjugierten Doppelbindungen auch eine Kohlenstoff-Sauerstoffbindung sein kann, wie z. B. in dem Rest

Diese Reste können auch weitere — C — C-Gruppierungen enthalten und u.a. Hydroxyl-, Methoxy- oder Acetoxygruppen als Substituenten tragen. Der cycloaliphatische Rest kann auch durch einen aromatischen Rest, wie Phenyl oder alkyliertes, insbesondere methyliertes Phenyl, ersetzt sein.

Auch die Art des Anions im Polyenyltriarylphosphoniumsalz ist für den Erfolg des erfindungsgemäßen Verfahrens ohne Belang. Im allgemeinen werden die Phosphoniumsalze starker Säuren wie H₂SO₄, HCl, HBr, HCOOH und H₂PO₄ verwendet, so daß X in I für HSO₄O, Cl., Br., HCOOO oder H₂PO₄O, vorzugsweise für HSO₄O steht.

Das erfindungsgemäße Verfahren ist im Prinzip geeignet für die Überführung von I-Lösungen in allen organischen Lösungsmitteln, die beim Einblasen von 23 Wasserdampf einen Beladungsanteil des Wasserdampfs mit organischem Lösungsmittel von 10% und mehr betragen und die einen Siedepunkt von etwa 50 bis 150°C haben. Besondere Bedeutung hat das Verfahren für diejenigen Lösungsmittel, in denen die Herstellung der Polyenyltriarylphosphoniumsalze mit besonders guten Ausbeuten gelingt und in denen die Phosphoni umsalze gut löslich sind. Genannt seien niedere Alkohole, wie Methanol, Äthanol, n-Propanol, iso-Propanol. n-Butanol und iso-Butanol; niedere Carbonsäuren, wie HCOOH und Essigsäure sowie Aceton und Methylenchlorid. Mit besonderem Vorteil verwendet man das erfindungsgemäße Verfahren für die Überführung methanolischer Lösungen von Polyenyltriarylphosphoniumsalzen.

Die Herstellung der Lösungen von I in organischen Lösungsmitteln erfolgt nach üblichen Methoden aus dem Triarylphosphin, insbesondere Triphenylphosphin, einer starken Säure, wie HCl, HBr, HCOOH, H₁PO₄ oder insbesondere Schwefelsäure und einer Verbindung R-X, wobei X vorzugsweise eine freie Hydroxlygruppe oder eine mit einer niederen Carbonsäure, wie Essigsäure veresterte Hydroxylgruppe ist. Auch andere Methoden zur Herstellung von Triarylphosphoniumsalzen können selbstverständlich benutzt werden.

Geringe Mengen Triphenylphosphin oder der Ausgangsverbindung R-X sowie von Nebenprodukten, die sich bei dieser Quaternierungsreaktion bilden, sind teilweise mit Wasserdampf flüchtig, so daß das erfindungsgemäße Verfahren den Vorteil der Herstellung von reinen wäßrigen I-Lösungen bzw. reinen feinteiligen wäßrigen Dispersionen bietet. Da die Herstellung von Lösungen von I in organischen Lösungsmitteln nicht Gegenstand der Erfindung ist, erübrigen sich nähere Angaben hierüber.

Menge und Temperatur des erforderlichen Wasserdampfs richten sich nach den Gegebenheiten des Einzelfalls. Handelt es sich z. B. um reine methanolische 1-Lösungen, so sind zur Entfernung von 1 kg Methanol etwa 1-3 kg Wasserdampf von 100°C erforderlich. 65 Dieser Wert ermit Bigt sich mit steigender Temperatur und wird größer bei fallender Temperatur und bei vermindertem Druck, so daß man bei Anwendung

höherer Dampstemperaturen konzentriertere wäßrige I-Lösungen erhält. Enthalten die methanolischen I-Lösungen noch Verunreinigungen (in der Regel sind es etwa 1 bis 10 Mol-% von I), so ist zu deren Austreibung zusätzlich Wasserdamps erforderlich. Aufgrund dieser Angaben ist es dem Fachmann möglich, die optimalen Verfahrensbedingungen, darunter die Einstellung des Rücklaufverhältnisses, mittels einiger Vorversuche zu ermitteln. Durch geeignete Auslegung der Kolonne gelingt es z. B. ein 80—90%iges Methanol über den Kopf der Kolonne abzudestillieren.

Bei der Überführung von Lösungen von Polyenyltriarylphosphoniumhydrogensulfat in einem Lösungsmittel, in dem das Phosphoniumsalz nur schlecht löslich ist, wie in iso-Propanol oder Aceton, empfiehlt es sich, wenn die Lösung von I kontinuierlich ins Reaktionsgefäß gefördert werden soll, der Lösung vor der Dampfbehandlung etwas Wasser zuzusetzen, um auskristallisiertes Phosphoniumsalz in Lösung zu bringen. Generell läßt sich sagen, daß das Vorhandersein von gewissen Mengen (bis etwa 50 Gew. 40) Wasser in der organischen I-Lösung vor und während der Dampfbehandlung sich nicht nachteilig, in einigen Fällen sogar vorteilhaft auswirkt.

Macht man von der kontinuierlichen Fahrweise Gebrauch, so verwendet man als Kolonnen zweckmäßigerweise Füllkörperkolonnen mit einer geeigneten Anzahl theoretischer Böden, um das Lösungsmittel quantitativ abzutrennen. Apparative oder materialmäßige Besonderheiten sind hierbei nur insofein zu beachten als die sauren wäßrigen Phosphoniumsalzlösungen auf das Material der Reaktionsgefäße korrodierend wirken.

In allen Fällen ist es möglich, das Lösungsmittel gänzlich zu entfernen, jedoch reicht es im allgemeinen aus, wenn man auf einen Restlösungsmittelgehalt von 1 bis 2 Gew.-% hinzuarbeitet. Die anfallenden Lösungsmittel-Wasser-Gemische können auf übliche Weise destillativ in ihre Komponenten zerlegt und das Lösungsmittel wieder eingesetzt werden.

Die als Verfahrensprodukte anfallenden wäßrigen I-Lösungen bzw. feinteiligen Dispersionen von I in Wasser können für weitere Umsetzungen, z. B. für die Herstellung von symmetrischen Carotinoiden, wie dem β-Carotin oder zur Herstellung von Vitamir. A verwendet oder nach den üblichen Methoden. z. B. als Schädlingsbekämpfungsmittel, eingesetzt werden.

Beispiel 1

 a) Herstellung einer methanolischen Lösung von β- Jonyliden-äthyltriphenylphosphoniumhydrogensulfat

Zu einer Mischung aus 700 ml Methanol und 258 g
Tripnenylphosphin wurden unter Rühren und Kühlen
auf 25–30°C nacheinander 99 g Schwefelsäure und
220 g Vinyl-β-jouol (Reinheitsgrad 93%) zugetropft.
Nach 12 Stunden wurde 3× mit je 250 ml Heptan
extrahiert. Man erhält 1150 g einer etwa 43%igen
methanolischer. Lösung von β-jonyliden-äthyl-triphenylphosphonium-hydrogensulfat.

 b) Überführung der methanolischen in eine wäßrige Lösung von β-Jonyliden-äthyl-triphenylphosphoniumhydrogensulfat

Die gemäß in erhaltene methanolische Phosphoniumsalzlösung wurde in 90 Minuten von oben auf eine

15

85

Füllkörperkolonne aus Glas von 50 cm Länge und 3 cm Durchmesser gegeben. Die Kolonne war mit Raschigringen aus Glas gefüllt und isoliert. Am unteren Kolonnenende wurde in den 90 Minuten 3900 g Wasserdampf eingeblasen. Die wäßrige Phosphonium- 5 salzlösung bzw. suspension wurde über einen Siphon aus dem Sumpf der Kolonne ablaufen lassen und in einem Rührkolben gesammelt. Man erhielt ca. 1400 g einer gut rührbaren, wäßrigen Suspension, die 497 g β-jonyliden-äthyl-triphenylphosphonium-hydrogensul- 10 fat enthielt. Dies entspricht einer Ausbeute von 95% der Theorie.

Beispiel 2

a) Herstellung einer methanolischen Lösung von Axerophthyl-triphenylphosphoniumhydrogensulfat

Zu einer Mischung von 400 ml Methanol und 131 g Triphenylphosphin wurden in 30 Minuten unter Rühren und Kühlen auf 10°C nacheinander 49 g Schwefelsäure 20 und 164 g Vitamin-A-acctat zugegeben. Anschließend wurde das Reaktionsgemisch noch 12 Stunden bei 25°C nachgerührt. Man erhielt 665 g einer etwa 38%igen methanolischen Lösung von Axerophthyltriphenylphosphoniumhydrogensulfat.

b) Überführung der methanolischen in eine wäßrige Phosphoniumsalzlösung

Die gemäß 2a erhaltene methanolische Lösung wurde in 60 Minuten von oben auf die in Beispiel 1 30 beschriebene Füllkörperkolonne gegeben. Am unteren Ende der Kolonne wurden in den 60 Minuten 2200 g Wasserdampf eingeblasen. Man erhielt etwa 1000 g Sumpfablauf.

c) Weiterverarbeitung der wäßrigen Phosphoniumsalzlösung

Die erhaltene wäßrige Lösung von Axerophthyltriphenylphosphoniumhydrogensulfat wurde gemäß Beispiel 6 der DE-OS 25 05 859 zu β-Carotin umgesetzt. 40 Nach Isomerisieren des erhaltenen Produkts in Heptan ernieit man aiitrans-p-Carotin in 70% iger Ausbeute. bezogen auf eingesetztes Vitamin-A-acetat.

Beispiel 3

a) 700 ml Eisessig wurden unter Rühren mit 262 g Triphenylphosphin und 90 g Schweselsäure versetzt. Anschließend wurden zu dem Reaktionsgemisch innerhalb von 2 Stunden unter Rühren und 50 Kühlen 220 g Vinyl-β-jonol (Reinheitsgrad 93%ig) zugetropft. Hierbei wurde darauf geachtet, daß die Temperatur 35°C nicht überstieg. Schließlich wurde das Reaktionsgemisch noch 12 Stunden unter Rühren ausreagieren lassen.

b) Die gemäß 3a erhaltene Lösung von β-Jonylidenāthyl-triphenylphosphoniumhydrogensulfat in Essigsäure wurde in einen mit Destillationsbrücke und Vorlage versehenen Kolben überführt und in diesen in ca. 2 Stunden bei 30-40 mbar 1.67 kg 60 Wasserdampf eingeblasen, wobei die Temperatur auf 40-45°C stieg. Man erhielt 1,9 kg Destillat, das im wesentlichen Essigsäure und Wasser enthält und 1.1 kg Sumpf, der 501 g β-Jonylidenāthyltriphenylphosphoniumhydrogensulfat als wäßrige Lösung 65 bzw. Suspension enthalt. Das entspricht einer Ausbeute von 96%, bezogen auf eingesetztes Vinyl-β-jonoL

Beispiel 4

a) 700 ml Methanol wurden mit 258 g Triphenylphosphin und 100 g kristalliner Phosphorsäure (gelöst in möglichst wenig Wasser) versetzt. Zu dieser Mischung wurden in 2 Stunden unter Rühren 220 g Vinyl-\$4-jonol (Reinheitsgrad 93%, entsprechend 0,93 Mol) zugetropft. Anschließend wurde noch eine Stunde unter Rückfluß zum Sieden erhitzt. Nach dem Abkühlen wurde noch 3 x mit je 250 ml Heptan extrahiert. Man erhielt 1150 g einer etwa 34%igen methanolischen Lösung von β-Jonylidenäthyl-triphenylphosphoniumphosphat.

b) Die gemäß 4a erhaltene methanolische Lösung wurde analog Beispiel 1 in der dort beschriebenen Kolonne mit Wasserdampf behandelt. Man erhielt 1400 g einer 26%igen Suspension von β-Jonylidenäthyl-triphenylphosphoniumphosphat in Wasser. Das entspricht einer Ausbeute von 70%. bezogen

auf eingesetztes Vinyl-β-jonol.

Beispiel 5

a) 854 g Ameisensäure wurden unter Rühren mit 262 g Triphenylphosphin versetzt. Zu dieser Mischung wurden innerhalb von 2 Stunden 220 g Vinyl-β-jonol (Reinheitsgrad 83%) zugetropft. Hierbei wurde dafür gesorgt, daß die Temperatur des Reaktionsgemisches 35°C nicht überstieg. Anschließend wurde das Reaktionsgemisch noch 12 Stunden unter Rühren ausreagieren lassen. Man erhielt 1340 g einer etwa 27 gew.- %igen Lösung β-Jonylidenäthyl-triphenylphosphoniumforýοπ

miat. b) In die gemäß 5a erhaltene Lösung wurde analog

Beispiel 3b in der dort beschriebenen Apparatur in 6 Stunden bei 40 mbar 1.7 kg Wasserdampf cingeblasen. Man erhielt etwa 1,5 kg Destillat, das Ameisensäure und Wasser enthält, sowie 1,5 kg Sumpl. der 0.65 Mol β-Jonylidenäthyl-triphenylphosphoniumformiat gelöst bzw. suspendiert in Wasser enthält. Dies entspricht einer Ausbeute von élwa 70% des Theorie, bezogen auf eingeseizies

Vinyl-β-jonol.

c) Behandelt man die gemäß 5a erhaltene Ameisensäurelösung analog Beispiel 1b kontinuierlich mit Wasserdampf, so erhält man nahezu gleiche Ausbeuten an wäßrigem β-Jonylidenāthyl-triphenylphosphoniumformiat wie gemäß 5b.

Beispiel 6

a) 550 g Äthanol wurden mit 258,5 g Triphenylphosphin versetzt und zu dieser Mischung zunächst innerhalb von 15 Minuten 99,5 g konzentrierte Schweselsäure und dann in 60 Minuten 220 g Vinyl-β-jonol (Reinheitsgrad 95%) zugetropfi. Anschließend wurde das Reaktionsgemisch 20 Stunden bei Raumtemperatur nachreagieren lassen. Man erhielt 1128 g einer etwa 40gew.-%igen äthanolischen Lösung von β -Jonyliden-äthyl-tri-phenylphosphoniumhydrogensulfat.

b) Die gemäß 6a erhaltene Lösung wurde analog Beispiel 1 in der dort beschriebenen Kolonne mit Wasserdampf behandelt. Man erhielt 1400 g einer wäßrigen Suspension, die 454 g β-Jonylidenäthyltriphenylphosphoniumhydrogensulfat Dies entspricht einer Ausbeute von 85%, bezogen

auf eingesetztes Vinyl-β-jonol.

Beispiel 7

a) 700 ml Isopropanol wurden mit 258,8 g Triphenylphosphin versetzt und zu dieser Mischung zunächst in 15 Minuten 99,5 g konzentrierte Schwefelsäure und dann in 60 Minuten 220 g Vinyl-β-jonol (Reinheitsgrad 93%) zugetropft. Das gebildete β-Jonylidenäthyl-triphenylphosphoniumhydrogensulfat kristallisierte teilweise aus und wurde durch Zugabe von 200 ml Wasser in Lösung gebracht.

b) Die gemäß 7a erhaltene Lösung wurde analog Beispiel 1 in der dort beschriebenen Kolonne mit Wasserdampf behandelt. Man erhielt 1450 g einer wäßrigen Suspension (bzw. Emulsion), die 470 g β-Jonyliden-äthyl-triphenylphosphoniumhydrogensulfat enthielt. Dies entspricht einer Ausbeute von 90%, bezogen auf eingesetztes Vinyl-β-jonol.

Beispiel 8

ã) 7.00 ml Isobutanol wurden mit 258,5 g Triphenyl-phosphin versetzt und zu dieser Mischung wie in Beispiel 6 zunächst 99,5 g konzentrierte Schwefelsäure und dann 220 g Vinyl-β-jonol (Reinheitsgrad 93%) zugetropft. Anschließend wird das Reaktionsgemisch mit 200 ml Wasser versetzt und für 2 25 Stunden auf 50°C erwärmt.

b) Die gemäß 8a erhaltene Lösung wurde analog Beispiel 1 in der dort beschriebenen Kolonne mit Wasserdampf behandelt. Man erhält 1500 g einer wäßrigen Suspension (bzw. Emulsion), die 480 g 30 β-lonyliden-ätnyl-triphenylphosphoniumhydrogensulfat enthält. Dies entspricht einer Ausbeute von 92%, bezogen auf eingesetztes Vinyl-β-jonol.

Beispiel 9

a) 700 ml Aceton wurden mit 258.5 g Triphenylphosphin versetzt und zu dieser Mischung wie in Beispiel 6 zunächst 99.5 g konzentrierte Schwefelsäure und dann 220 g Vinyl-β-jonol zugetropft. Anschließend wurde das Reaktionsgemisch mit 100 ml Wasser versetzt, für 2 Stunden auf 30°C erwärmt und noch 20 Stunden nachreagieren

b) Die gemäß 9a erhaltene Lösung wurde analog Beispiel 1 in der dort beschriebenen Kolonne mit 45 Wasserdampf behandelt. Man erhält 1450 g einer wäßrigen Suspension (bzw. Emulsion), die 470 g β-Jonylidenäthyl-triphenylphosphonium-hydrogensulfat enthält. Das entspricht einer Ausbeute von 90%, bezogen auf eingesetztes Vinyl-β-jonol.

Beispiel 10

a) 700 ml Methanol wurden mit 50 ml Pyridin, 50 ml konzentrierter wäßriger HCl und 6 ml einer 10gew.-%igen Lösung von butyliertem Hydroxyanisol in Benzol versetzt, die Mischung 5 Minuten gerührt und danach gemäß DE-OS 25 37 072 mit 139 g Triphenylphosphin und 120 g Vinyl-β-jonol (Reinheitsgrad 93%) versetzt. Anschließend wurde das Reaktionsgemisch 4× mit 250 ml Heptan extrahiert.

b) Die gemäß 10a erhaltene methanolische Lösung wurde analog Beispiel 1 in der dort beschriebenen Apparatur mit Wasserdampf behandelt. Man erhält 1450 g einer wäßrigen Suspension, die 386 g β-Jonyliden-äthyl-triphenylphosphoniumchlorid enthält. Das entspricht einer Ausbeute von 83%, bezogen auf eingesetztes Vinyl-β-jonol.

Beispiel II

800 ml Methylenchlorid wurden mit 262 g Triphenylphosphin versetzt. Zu dieser Lösung wurden unter Rühren und Kühlen 99,5 g konzentrierte Schwefelsäure und danach 220 g Vinyl-β-jonol bei 10—15°C zugetropft. Man läßt 12 Stunden bei Raumtemperatur nachreagieren. Diese Lösung wurde wie in Beispiel 1 kontinuierlich in 90 Minuten auf die dort beschriebene Kolonne aufgegeben.

Gleichzeitig wurden ca. 2 kg Wasserdampf eingeblasen. Man erhielt als Destillat 800 ml Methylenchlorid und ca. 1,3 kg Wasser.

Das Methylenchlorid kann nach Abtrennen des Wassers und Destillation wieder eingesetzt werden.

Der Sumpf wurde in einen Rührkolben ablaufen lassen und unter fortwährendem Rühren auf Raumtemperatur abgekühlt. Man erhielt 1200 g einer gut Führbaren wäßrigen Kristallmaische, die 497 g P Jonyli dentriphenylphosphoniumhydrogensulfat enthielt.

Dies entspricht einer Ausbeute von 93% der Theorie.