

planetmath.org

Math for the people, by the people.

Landau notation

Canonical name LandauNotation
Date of creation 2013-03-22 11:42:56
Last modified on Owner Mathprof (13753)
Last modified by Mathprof (13753)

Numerical id 28

Author Mathprof (13753)

Entry type Definition Classification msc 26A12msc 20H15Classification Classification msc 20B30Synonym O notation Synonym omega notation Synonym theta notation Synonym big-O notation

Related topic LowerBoundForSorting Related topic ConvergenceOfIntegrals

Defines big-o
Defines small-o
Defines small-omega

Given two functions f and g from \mathbb{R}^+ to \mathbb{R}^+ , the notation

$$f = O(g)$$

means that the ratio $\frac{f(x)}{g(x)}$ stays bounded as $x \to \infty$. If moreover that ratio approaches zero, we write

$$f = o(q)$$
.

It is legitimate to write, say, $2x = O(x) = O(x^2)$, with the understanding that we are using the equality sign in an unsymmetric (and informal) way, in that we do not have, for example, $O(x^2) = O(x)$.

The notation

$$f = \Omega(q)$$

means that the ratio $\frac{f(x)}{g(x)}$ is bounded away from zero as $x \to \infty$, or equivalently g = O(f).

If both f = O(g) and $f = \Omega(g)$, we write $f = \Theta(g)$.

One more notational convention in this group is

$$f(x) \sim g(x),$$

meaning $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$.

In analysis, such notation is useful in describing error http://planetmath.org/AsymptoticEst For example, the Riemann hypothesis is equivalent to the conjecture

$$\pi(x) = \lim x + O(\sqrt{x} \log x),$$

where $\lim x$ denotes the logarithmic integral.

Landau notation is also handy in applied mathematics, e.g. in describing the time complexity of an algorithm. It is common to say that an algorithm requires $O(x^3)$ steps, for example, without needing to specify exactly what is a step; for if $f = O(x^3)$, then $f = O(Ax^3)$ for any positive constant A.