In Exercises 19 through 24, find the matrix B of the linear transformation $T(\vec{x}) = A\vec{x}$ with respect to the basis $\mathfrak{B} = (\vec{v}_1, \vec{v}_2)$. For practice, solve each problem in three ways: (a) Use the formula $B = S^{-1}AS$, (b) use a commutative diagram (as in Examples 3 and 4), and (c) construct B "column by column."

19.
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

20.
$$A = \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

21.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

22.
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

23.
$$A = \begin{bmatrix} 5 & -3 \\ 6 & -4 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

24.
$$A = \begin{bmatrix} 13 & -20 \\ 6 & -9 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

In Exercises 25 through 30, find the matrix B of the linear transformation $T(\vec{x}) = A\vec{x}$ with respect to the basis $\mathfrak{B} = (\vec{v}_1, \dots, \vec{v}_m)$.

25.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

26.
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$27. \ A = \begin{bmatrix} 4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4 \end{bmatrix};$$

$$\vec{v}_1 = \begin{bmatrix} 2\\1\\-2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0\\2\\1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

Let $\mathfrak{B} = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ be any basis of \mathbb{R}^3 consisting of perpendicular unit vectors, such that $\vec{v}_3 = \vec{v}_1 \times \vec{v}_2$. In Exercises 31 through 36, find the \mathfrak{B} -matrix **B** of the given linear transformation T from \mathbb{R}^3 to \mathbb{R}^3 . Interpret T geometrically.

31.
$$T(\vec{x}) = \vec{v}_2 \times \vec{x}$$
 32. $T(\vec{x}) = \vec{x} \times \vec{v}_3$

32.
$$T(\vec{x}) = \vec{x} \times \vec{v}$$

33.
$$T(\vec{x}) = (\vec{v}_2 \cdot \vec{x})\vec{v}_2$$

33.
$$T(\vec{x}) = (\vec{v}_2 \cdot \vec{x})\vec{v}_2$$
 34. $T(\vec{x}) = \vec{x} - 2(\vec{v}_3 \cdot \vec{x})\vec{v}_3$

35.
$$T(\vec{x}) = \vec{x} - 2(\vec{v}_1 \cdot \vec{x})\vec{v}_2$$

36.
$$T(\vec{x}) = \vec{v}_1 \times \vec{x} + (\vec{v}_1 \cdot \vec{x})\vec{v}_1$$

In Exercises 37 through 42, find a basis \mathfrak{B} of \mathbb{R}^n such that the \mathfrak{B} -matrix B of the given linear transformation T is diagonal.

37. Orthogonal projection T onto the line in \mathbb{R}^2 spanned by

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

50. Given a hexagonal tiling of the plane, such as you might find on a kitchen floor, consider the basis \mathfrak{B} of \mathbb{R}^2 consisting of the vectors \vec{v} , \vec{w} in the following sketch:

- a. Find the coordinate vectors $[\overrightarrow{OP}]_{\mathfrak{B}}$ and $[\overrightarrow{OQ}]_{\mathfrak{B}}$.

 Hint: Sketch the coordinate grid defined by the basis $\mathfrak{B} = (\vec{v}, \vec{w})$.
- **b.** We are told that $\left[\overrightarrow{OR}\right]_{\mathfrak{V}} = \begin{bmatrix} 3\\2 \end{bmatrix}$. Sketch the point R. Is R a vertex or a center of a tile?
- c. We are told that $\begin{bmatrix} \overrightarrow{OS} \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} 17 \\ 13 \end{bmatrix}$. Is S a center or a vertex of a tile?

61. Find a basis \mathfrak{B} of \mathbb{R}^2 such that the \mathfrak{B} -matrix of the linear transformation

$$T(\vec{x}) = \begin{bmatrix} -5 & -9 \\ 4 & 7 \end{bmatrix} \vec{x}$$
 is $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

EXERCISES 5.1

GOAL Apply the basic concepts of geometry in \mathbb{R}^n : length, angles, orthogonality. Use the idea of an orthogonal projection onto a subspace. Find this projection if an orthonormal basis of the subspace is given.

Find the length of each of the vectors \vec{v} in Exercises 1 through 3.

1.
$$\vec{v} = \begin{bmatrix} 7 \\ 11 \end{bmatrix}$$
 2. $\vec{v} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ **3.** $\vec{v} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$

ind the angle θ between each of the pairs of vectors \vec{u} and in Exercises 4 through 6.

4.
$$\vec{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 7 \\ 11 \end{bmatrix}$$

5.
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \vec{v} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

6.
$$\vec{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \\ -2 \end{bmatrix}, \vec{v} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

0. For which value(s) of the constant k are the vectors

$$\vec{u} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1 \\ k \\ 1 \end{bmatrix}$

perpendicular?

16. Consider the vectors

$$\vec{u}_1 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \\ -1/2 \end{bmatrix}, \quad \vec{u}_3 = \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \\ -1/2 \end{bmatrix}$$

in \mathbb{R}^4 . Can you find a vector \vec{u}_4 in \mathbb{R}^4 such that the vectors \vec{u}_1 , \vec{u}_2 , \vec{u}_3 , \vec{u}_4 are orthonormal? If so, how many such vectors are there?

17. Find a basis for W^{\perp} , where

$$W = \operatorname{span}\left(\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix}\right).$$

28. Find the orthogonal projection of

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

onto the subspace of \mathbb{R}^4 spanned by

$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}.$$