First-order justification logic JT45

Felipe Salvatore¹

¹graduate student in philosophy University of São Paulo

USP, April 02, 2015

Justification logic: a brief introduction

First-order justification logic

First-order JT45

Discussion: Realization

Discussion: Interpolation

- Introduce justification terms into epistemic first-order logic.
- Investigate the connection between justification logic and modal logic; specifically the role of the *Interpolation Theorem*.
 - The Interpolation Theorem fails for first-order S5 (FOS5) [4].
 - The Interpolation Theorem can be restored:
 - i) Restoration through the mechanism of hybrid logic [1].
 - ii) Restoration through propositional quantification [5].

Justification logic: a brief introduction

First-order justification logic

First-order JT45

Discussion: Realization

Discussion: Interpolation

Intuiitionistic logic

In the debate around foundations of mathematics one of the philosophical positions that arose was Brouwer's intuitionism.

Briefly, intuitionism says that the truth of a mathematical statement should be identified with the proof of that statement. Summarizing the core idea of this position in a slogan:

truth means provability

BHK semantics

The Brouwer–Heyting–Kolmogorov (BHK) semantics gives an informal meaning to the logical connectives $\bot, \land, \lor, \rightarrow, \neg$ in the following way:

- \perp is a proposition which has no proof (a absurdity, e.g. 0 = 1).
- A proof of $\varphi \wedge \psi$ consist of a proof of φ and a proof of ψ .
- A proof of φ ∨ ψ is given by exhibiting either a proof of φ or a proof of ψ.
- A proof of φ → ψ is a construction f transforming any proof t of φ into a proof f(t) of ψ.
- A proof of $\neg \varphi$ is a construction which transforms any proof of φ into a proof of a contradiction.

In [7] Gödel introduced a new unary operator B to classical logic; $B\varphi$ should be read as ' φ is provable'. To describe the behavior of this operator Gödel constructed the following calculus (S4):

All tautologies

$$egin{aligned} Barphi
ightarrow arphi \ B(arphi
ightarrow \psi)
ightarrow (Barphi
ightarrow B\psi) \ Barphi
ightarrow BBarphi \ (ext{Modus Ponens}) dash arphi, dash arphi
ightarrow \psi
ightarrow dash \psi \ (ext{Internalization}) dash arphi
ightarrow arphi
ightarrow dash arphi
ightarrow dash arphi \ egin{align*} A arphi
ightarrow A
ightarrow A arphi
ightarr$$

Based on the intuitionistic notion of truth as provability, Gödel defined the following translation:

- $p^B = Bp$;
- \bullet $\perp^B = \perp$;
- $(\varphi \wedge \psi)^B = (\varphi^B \wedge \psi^B);$
- $(\varphi \vee \psi)^B = (\varphi^B \vee \psi^B);$
- $(\varphi \to \psi)^B = B(\varphi^B \to \psi^B)$.

It was shown that this translation 'makes sense', i.e., that the following theorem holds:

For every formula φ , Int $\vdash \varphi$ iff S4 $\vdash \varphi^B$.

In [7] Gödel pointed out that S4 does not correspond to the calculus of the predicate $Prov(x) - \exists y Proof(y, x) - \text{in } \textbf{PA}$. Simply because S4 proves the formula:

$$B(B(\perp) \to \perp)$$

If we translate this formula in the language of **PA**:

$$Prov(\lceil Prov(\lceil \bot \rceil) \rightarrow \bot \rceil)$$

Since the following sentences are equivalent in **PA**:

$$Prov(\ulcorner \bot \urcorner) \rightarrow \bot$$

 $\neg Prov(\ulcorner \bot \urcorner)$
 $Consist(\mathbf{PA})$

 $Prov(\lceil Prov(\lceil \bot \rceil) \to \bot \rceil)$ means that the consistency of **PA** is internally provable in **PA**, which contradicts Gödel's Second Incompleteness Theorem.

In a lecture in 1938 [8] Gödel suggested a way to remedy this problem. Instead of using the implicit representation of proofs by the existential quantifier in the formula $\exists y Proof(y, x)$ one can use explicit variables for proofs (like t) in the formula Proof(t, x). In these lines, Gödel proposed the following ternary operator

$$tB(\varphi,\psi)$$

which should be read as

't is a derivation of ψ from φ '

Using $tB(\varphi)$ as an abbreviation of $tB(\top, \varphi)$, Gödel formulate the following axiom system:

```
All tautologies tB(\varphi) \to \varphi tB(\varphi, \psi) \to (sB(\psi, \theta) \to f(t, s)B(\varphi, \theta)) tB(\varphi) \to t'B(tB(\varphi)) (Modus Ponens) \vdash \varphi, \vdash \varphi \to \psi \Rightarrow \vdash \psi; (Internalization) \vdash \varphi \Rightarrow \vdash tB(\varphi) (where t is an derivation of \varphi).
```

Independently of Gödel's system presented in [8] (the lecture was published only in 1998), Artemov (in [2]) propose one new logic called Logic of Proofs (LP) which is axiomatized by the following system:

All tautologies

 $t:\varphi \to \varphi$

$$\begin{split} t : & (\varphi \to \psi) \to (s : \varphi \to [t \cdot s] : \psi) \\ t : & \varphi \to !t : t : \varphi \\ t : & \varphi \to [t + s] : \varphi \\ s : & \varphi \to [t + s] : \varphi \\ (\textit{Modus Ponens}) \vdash \varphi, \vdash \varphi \to \psi \Rightarrow \vdash \psi; \\ (\textit{axiom necessitation}) \vdash c : \varphi, \text{ where } \varphi \text{ is an axiom and } c \text{ is a justification constant.} \end{split}$$

LP can mirror derivations in S4. For example:

In S4:

- 1. $p \rightarrow (p \lor q)$ (tautology)
- 2. $\Box(p \to (p \lor q))$ (necessitation)
- 3. $\Box p \rightarrow \Box (p \lor q)$ (distribution)
- 4. $q \rightarrow (p \lor q)$ (tautology)
- 5. $\Box(q \to (p \lor q))$ (necessitation)
- 6. $\Box q \rightarrow \Box (p \lor q)$ (distribution)
- 7. $(\Box p \lor \Box q) \to \Box (p \lor q)$ (classical reasoning)

In LP:

- 1. $p \rightarrow (p \lor q)$ (tautology)
- 2. $c_1:(p \to (p \lor q))$ (axiom necessitation)
- 3. $c_1:(p \to (p \lor q)) \to (x:p \to [c_1 \cdot x]:(p \lor q))$
- 4. $x:p \rightarrow [c_1 \cdot x]:(p \lor q)$ (modus ponens)
- 5. $q \rightarrow (p \lor q)$ (tautology)
- 6. $c_2:(q \to (p \lor q))$ (axiom necessitation)
- 7. $c_2:(q \to (p \lor q)) \to (y:q \to [c_2 \cdot y]:(p \lor q))$
- 8. $y:q \rightarrow [c_2 \cdot y]:(p \lor q)$ (modus ponens)
- 9. $[c_1 \cdot x]:(p \vee q) \to [[c_1 \cdot x] + [c_2 \cdot y]]:(p \vee q)$
- 10. $[c_2 \cdot y]:(p \vee q) \to [[c_1 \cdot x] + [c_2 \cdot y]]:(p \vee q)$
- 11. $(x:p \lor y:q) \rightarrow [[c_1 \cdot x] + [c_2 \cdot y]]:(p \lor q)$ (classical reasoning)

If φ is a S4 formula, there is a mapping r (called a *realization*) from the occurrences of B's (or boxes) into terms. The result of this mapping on φ is denoted φ^r . For example:

$$((\Box p \lor \Box q) \to \Box (p \lor q))^r = (x:p \lor y:q) \to [[c_1 \cdot x] + [c_2 \cdot y]]:(p \lor q)$$

(Realization Theorem between S4 and LP) For every φ in the language of S4, there is a realization r such that

S4
$$\vdash \varphi$$
 iff LP $\vdash \varphi^r$

There is a way to define an interpretation * of the LP formulas into the sentences of **PA** (for details see [2]). And with all this machinery Artemov was able to prove the following result:

(Provability Completeness of Intuitionistic Logic) For every φ , for every interpretation *, there is a realization r such that

Int
$$\vdash \varphi$$
 iff S4 $\vdash \varphi^B$ iff LP $\vdash (\varphi^B)^r$ iff **PA** $\vdash ((\varphi^B)^r)^*$

JT45

LP is just one example of *Justification Logic*. Another example, that is interesting to us, is the one called JT45, it extends the language of LP with the unary justification operator? and has the following additional axiom scheme:

$$\neg t:\varphi \rightarrow ?t:\neg t:\varphi$$

We can prove the realization theorem for this logic too!

(Realization Theorem between S5 and JT45) For every φ in the language of S5, there is a realization r such that

S5
$$\vdash \varphi$$
 iff JT45 $\vdash \varphi^r$

Justification logic: a brief introduction

First-order justification logic

First-order JT45

Discussion: Realization

Discussion: Interpolation

Let $\varphi(x)$ be any tautology, and let t be the following derivation:

- 1. $\varphi(x)$
- 2. $\forall x \varphi(x)$ (generalization)
- 3. $\forall x \varphi(x) \rightarrow (Q(x) \rightarrow \forall x \varphi(x))$ (tautology)
- 4. $Q(x) \rightarrow \forall x \varphi(x)$ (Modus Ponens)

Although x is free in the formula $Q(x) \to \forall x \varphi(x)$, if c is a term we can not substitute c for x in t in order to obtain a derivation t(c) of $Q(c) \to \forall x \varphi(x)$ (if we do that we ruin the derivation at 2.).

Now, let *s* be the following derivation:

- 1. $\varphi(x)$
- 2. $\forall x \varphi(x)$ (generalization)
- 3. $\forall x \varphi(x) \rightarrow (Q(y) \rightarrow \forall x \varphi(x))$ (tautology)
- 4. $Q(y) \rightarrow \forall x \varphi(x)$ (Modus Ponens)

y is free in the formula $Q(y) \to \forall x \varphi(x)$ and moreover for every term c the result of substituting c for y in s, s(c/y), is the derivation of $Q(c) \to \forall x \varphi(x)$.

These examples show us that there are two different roles of variables in a derivation: a variable can be a *formal symbol* that can be subjected to generalization or a *place-holder* that can be substituted for.

In t, x is both a formal symbol and a place-holder. And in s, x is a formal symbol and y is a place-holder.

This consideration motivates the following definition:

x is free in the derivation t of the formula φ iff for every term c, t(c/x) is the derivation of $\varphi(c/x)$.

In propositional justification logic we write $t:\varphi$ to express that t is a derivation of φ . In order to represent the distinct roles of variables in the first-order justification logic, we are going to write formulas of the form:

$$t:Q(x)\to \forall x\varphi(x)$$

$$s:_{\{y\}}Q(y) \to \forall x\varphi(x)$$

The role of $\{y\}$ in $s:_{\{y\}}Q(y) \to \forall x\varphi(x)$ is to point out that y is free in the derivation s of $Q(y) \to \forall x\varphi(x)$.

Justification logic: a brief introduction

First-order justification logic

First-order JT45

Discussion: Realization

Discussion: Interpolation

Language of first-order JT45

The basic definitions that we present here are taken from the technical report of Artemov and Yarvorskaya [3].

Justification Terms

$$t := p_i \mid c_i \mid (t_1 \cdot t_2) \mid (t_1 + t_2) \mid !t \mid ?t \mid gen_x(t)$$

Formulas

$$\varphi := Q(x_1,\ldots,x_n) \mid \bot \mid \varphi \to \psi \mid \forall x \varphi \mid t:_{X} \varphi$$

Language of first-order JT45

Where X, Y, \ldots are variables for finite set of individual variables. We write Xy instead of $X \cup \{y\}$, in this case it is assumed that $y \notin X$. We use $t:\varphi$ as an abbreviation for $t:_{\emptyset}\varphi$. And we write L to denote the set of formulas.

We define the notion of free variables of φ , $fv(\varphi)$, by induction similarly as in the classical case, the new clause is

• If φ is $t:_X \psi$, then $fv(\varphi)$ is X.

First-order JT45: axiom system

justification constant.

First-order JT45 (FOJT45) is axiomatized by the following schemes and inference rules:

```
A1 classical axioms of first-order logic
A2 t: \chi_V \varphi \to t: \chi_{\varphi}, provided y does not occur free in \varphi
A3 t:_{X}\varphi \to t:_{X_{V}}\varphi
B1 t: \mathbf{y} \varphi \to \varphi
B2 s:_X(\varphi \to \psi) \to (t:_X\varphi \to [t\cdot s]:_X\psi)
B3 t: \chi \varphi \to [t+s]: \chi \varphi, s: \chi \varphi \to [t+s]: \chi \varphi
B4 t: \mathbf{y} \varphi \to !t: \mathbf{y} t: \mathbf{y} \varphi
B5 \neg t: \chi \varphi \rightarrow ?t: \chi \neg t: \chi \varphi
B6 t: x\varphi \to gen_x(t): x\forall x\varphi, provided x \notin X
R1 (Modus Ponens) \vdash \varphi, \vdash \varphi \rightarrow \psi \Rightarrow \vdash \psi
R2 (generalization) \vdash \varphi \Rightarrow \vdash \forall x \varphi
R3 (axiom necessitation) \vdash c:\varphi, where \varphi is an axiom and c is a
```

Theorem

(*Internalization*) Let p_0, \ldots, p_k be justification variables; X_0, \ldots, X_k be finite sets of individual variables, and $X = X_0 \cup \cdots \cup X_k$. In these conditions, if $p_0:_{X_0}\varphi_0, \ldots, p_k:_{X_k}\varphi_k \vdash \psi$, then there is a justification term $t(p_0, \ldots, p_k)$ such that

$$p_0: \chi_0 \varphi_0, \ldots, p_k: \chi_k \varphi_k \vdash t: \chi \psi.$$

Proposition

(Explicit counterpart of the Barcan Formula and its converse) For every formula $\varphi(x)$ and every justification term t, there are justification terms CB(t) and B(t) such that:

$$\vdash t: \forall x \varphi(x) \to \forall x CB(t):_{\{x\}} \varphi(x)$$
$$\vdash \forall x t:_{\{x\}} \varphi(x) \to B(t): \forall x \varphi(x)$$

- $t: \forall x \varphi(x) \rightarrow \forall x [c \cdot t]:_{\{x\}} \varphi(x)$
- $\forall xt:_{\{x\}}\varphi(x) \rightarrow [r\cdot?[[c_3\cdot[c_2\cdot gen_x(c_1)]]\cdot?t]]: \forall x\varphi(x)$

Proposition

(Explicit counterpart of the Barcan Formula and its converse) For every formula $\varphi(x)$ and every justification term t, there are justification terms CB(t) and B(t) such that:

$$\vdash t: \forall x \varphi(x) \to \forall x CB(t):_{\{x\}} \varphi(x)$$
$$\vdash \forall x t:_{\{x\}} \varphi(x) \to B(t): \forall x \varphi(x)$$

- $t: \forall x \varphi(x) \rightarrow \forall x [c \cdot t]:_{\{x\}} \varphi(x)$
- $\forall xt:_{\{x\}}\varphi(x) \rightarrow [r\cdot?[[c_3\cdot[c_2\cdot gen_x(c_1)]]\cdot?t]]: \forall x\varphi(x)$

Proposition

(Explicit counterpart of the Barcan Formula and its converse) For every formula $\varphi(x)$ and every justification term t, there are justification terms CB(t) and B(t) such that:

$$\vdash t: \forall x \varphi(x) \to \forall x CB(t):_{\{x\}} \varphi(x)$$
$$\vdash \forall x t:_{\{x\}} \varphi(x) \to B(t): \forall x \varphi(x)$$

- $t: \forall x \varphi(x) \rightarrow \forall x [c \cdot t]:_{\{x\}} \varphi(x)$
- $\forall xt:_{\{x\}}\varphi(x) \rightarrow [r\cdot?[[c_3\cdot[c_2\cdot gen_x(c_1)]]\cdot?t]]: \forall x\varphi(x)$

Semantics

A possible world semantics for first-order LP is presented in Fitting [6]. We have adopted the definitions of this paper for FOJT45 and with this definitions we were able to prove a completeness theorem for this logic.

But we leave the semantical part for a future talk...

Justification logic: a brief introduction

First-order justification logic

First-order JT45

Discussion: Realization

Discussion: Interpolation

Realization

Let φ be a formula of FOS5. We define the realization of φ in the language of FOJT45, φ^r , as follows:

- If φ is atomic, then $\varphi^r = \varphi$.
- If $\varphi = \psi \to \theta$, then $\varphi^r = \psi^r \to \theta^r$
- If $\varphi = \forall x \psi$, then $\varphi^r = \forall x \psi^r$
- If $\varphi = \Box \psi(x_1, \ldots, x_n)$, then $\varphi^r = t_{\{x_1, \ldots, x_n\}} \psi^r$

A realization is normal if all negative occurrences of \square are assigned justification variables. It can easily be checked that

For every
$$\varphi$$
, $fv(\varphi) = fv(\varphi^r)$

Realization

Let φ be a formula of FOJT45. The forgetful projection of φ , φ° , is defined as follows:

- If φ is atomic, then $\varphi^{\circ} = \varphi$.
- If $\varphi = \psi \to \theta$, then $\varphi^{\circ} = \psi^{\circ} \to \theta^{\circ}$
- If $\varphi = \forall x \psi$, then $\varphi^{\circ} = \forall x \psi^{\circ}$
- If $\varphi = t:_X \psi$, then $\varphi^{\circ} = \Box \forall \vec{y} \psi^{\circ}$ where $\vec{y} \in fv(\psi) \backslash X$.

As before, it can easily be checked that

For every
$$\varphi$$
, $\mathit{fv}(\varphi) = \mathit{fv}(\varphi^{\circ})$

Realization

Proposition

For every justification formula φ ,

If FOJT45
$$\vdash \varphi$$
, then FOS5 $\vdash \varphi^{\circ}$.

Theorem

(Realization) If FOS5 $\vdash \varphi$, then FOJT45 $\vdash \varphi^r$ for a normal realization r.

Justification logic: a brief introduction

First-order justification logic

First-order JT45

Discussion: Realization

Discussion: Interpolation

- The Interpolation Theorem holds for FOS5 iff for every sentences φ and ψ if $\vdash \varphi \to \psi$, then there is a formula θ such that $\vdash \varphi \to \theta, \vdash \theta \to \psi$ and the non-logical symbols that occur in θ occur both in φ and ψ .
- The Interpolation Theorem holds for FOJT45 iff for sentences φ and ψ if $\vdash \varphi \to \psi$, then there is a formula θ such that $\vdash \varphi \to \theta, \vdash \theta \to \psi$ and the non-logical symbols and the justification terms that occur in θ occur both in φ and ψ .

Proposition

If the Realization Theorem holds between FOS5 and FOJT45, then the Interpolation Theorem fails for FOJT45.

Proof

Suppose that the Interpolation Theorem holds for FOJT45. By [4], let φ and ψ be sentences such that FOS5 $\vdash \varphi \to \psi$ and there is no interpolant between them.

By the Realization Theorem, there is a normal realization *r* such that

$$\mathsf{FOJT45} \vdash \varphi^r \to \psi^r$$

By hypothesis, there is a formula θ such that the non-logical symbols and the justification terms that occur in θ occur both in φ^r and ψ^r .

FOJT45
$$\vdash \varphi^r \to \theta$$

FOJT45 $\vdash \theta \to \psi^r$

By the forgetful projection:

FOS5
$$\vdash (\varphi^r \to \theta)^\circ$$

FOS5 $\vdash (\theta \to \psi^r)^\circ$

i.e.,

FOS5
$$\vdash \varphi \rightarrow \theta^{\circ}$$

FOS5 $\vdash \theta^{\circ} \rightarrow \psi$

Now, since there is no interpolant between φ and ψ , then there is no relation symbol occurring in θ° . Hence, θ° is a formula such that \bot is the only atomic formula that occur in θ° . Thus, either θ° is valid or θ° is unsatisfiable.

If θ° is valid, then, since $\models \theta^\circ \to \psi$, ψ is valid. And so, $\varphi \to \psi$ has an interpolant, a contradiction.

If θ° is unsatisfiable, then, since $\models \varphi \to \theta^\circ$, φ is unsatisfiable. And so, $\varphi \to \psi$ has an interpolant, a contradiction.

Thank you for your attention.

References I

- [1] Carlos Areces, Patrick Blackburn, and Maarten Marx, Repairing the interpolation theorem in quantified modal logic, Annals of Pure and Applied Logic 124 (2001), 287–299.
- [2] Sergei Artemov, Explicit provability and constructive semantics, The Bulletin of Symbolic Logic **7** (2001), no. 1, 1–36.
- [3] Sergei Artemov and Tatiana Yavorskaya (Sidon), First-order logic of proofs, Technical Report TR-20111005, CUNY Ph.D Program in Computer Science, May 2011.
- [4] Kit Fine, Failures of the interpolation lemma in quantified modal logic, The Journal of Symbolic Logic **44** (1979), no. 2, 201–206.
- [5] Melvin Fitting, *Interpolation for first-order S5*, The Journal of Symbolic Logic **67** (2002), no. 2, 621–634.

References II

- [6] _____, Possible world semantics for first order LP, Annals of Pure and Applied Logic **165** (2014), 225–240.
- [7] Kurt Gödel, An interpretation of the intuitionistic propositional calculus, Kurt Gödel, Collected Works (Solomon Feferman et al, ed.), vol. 1, Oxford University Press, 1986, pp. 296–303.
- [8] _____, Lecture at Zilsel's, Kurt Gödel, Collected Works (Solomon Feferman et al, ed.), vol. 3, Oxford University Press, 1995, pp. 86–113.