

Neural and Evolutionary Learning

Class 4 - Semantic Learning algorithm based on Inflate and Deflate Mutations (SLIM)

Prof.: Karina Brotto Rebuli

krebuli@novaims.unl.pt

	GA	Tree-based GP	GSGP
Genome	Constant length	Lisp-like tree	Lisp-like tree
Task type	Optimization	Many tasks, including ML	Many tasks, including ML
Population initialization	Random values	Random trees*	Random trees*
Crossover	"Blind" genotype variation**	"Blind" genotype variation**	Semantic (phenotype-based) genotype variation
Mutation	"Blind" genotype variation**	"Blind" genotype variation**	Semantic (phenotype-based) genotype variation

Important!

Remind that the <u>neighbourhood of the fitness landscape is defined by the genetic operators</u>. Therefore, the use of these Geometric Semantic operators enables the problem to be optimized in the error space, transforming any problem into a CONO one.

Three functions to produce [-ms, ms] perturbations

• SIG2 $ms \times (S(T_{R1}) - S(T_{R2}))$

as the traditional GSM

• SIG1
$$ms \times (2 \times S(T_R) - 1)$$

• ABS
$$ms \times \left(1 - \frac{2}{1 + |T_R|}\right)$$

Two perturbation modes

- Addition (+): it adds or subtracts a near-zero value to gener- ate the small perturbation needed for ball mutation. Inflate GS mutation adds the SIG2, SIG1 or ABS output, while Deflate GS mutation subtracts one of the previously added terms.
- Multiplication (*): it multiplies or divides by a factor close to one, to generate the small perturbation needed for ball mutation. Inflate GS mutation multiplies by $1+\phi$, where ϕ is either SIG2, SIG1 or ABS, while Deflate GS mutation divides by one of the previosuly multiplied terms.

Six SLIM-GSGP variants

- SLIM*SIG2 • SLIM*SIG1
- SLIM*ABS

T + [SIG2, SIG1, ABS]

Six SLIM-GSGP variants

Inflate Mutation

$$+$$
 [SIG2, SIG1, ABS]

$$T \times (1 + [SIG2, SIG1, ABS]) \times (1 + [SIG2, SIG1, ABS])$$

Six SLIM-GSGP variants

Inflate Mutation

Deflate Mutation

$$T \times (1 + [SIG2, SIG1, ABS]) \times (1 + [SIG2, SIGI, ABS])$$

T + [SIG2, SIG1, ABS]

$$\times (1 + [SIG2, -SIGI, ABS])$$

Six SLIM-GSGP variants

$$T + [SIG2, SIG1, ABS]$$

$$T \times (1 + [SIG2, SIG1, ABS])$$

Deflate Mutation

Formally, the addition deflate mutation subtracts a previously added mutation subtree, while the multiplication deflate divides by a previously multiplied mutation subtree. The effect is, in both cases, to remove a previously added mutation subtree.

Geometry of SLIM-GSGP mutation variants

SLIM+SIG2

SLIM+SIG1

SLIM+ABS

Multiplication variants: greater variability in the mutation output.

Source: Vanneschi, et al. 2025 Exploring Non-bloating Geometric Semantic Genetic Programming. Genetic Programming Theory and Practice XXI. G https://doi.org/10.1007/978-981-96-0077-9_12

slim_gsgp NOVA IMS library

Let's take a look at the codes.

Questions?

https://forms.gle/EV9VkExNtfNckMSM8 Register your feedback

