Power Engineering 3

Tutorial 1 Solution

SPEED Laboratory

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject: POWER ENG Z: TUTORIAL I 92. 93. CHOSEN V TO DE ON RECENENCE 450 Axis

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

)4	۹)		-> Ts	> √s
		1> =		s = 100 = 20A S
6)	P90°		⇒√ı	$X_{L} = \omega_{L} = 2\pi \times 50 \times 15 \times 10^{-7}$ => $X_{L} = 4.71$
	13			100 = Von = 240 = 50.9A
=)	Ī _s			Xc = 1 = 1 wc 2π x60x 7700 x10-6
	90°		-> √,	=> Xe = 0.8 x 1 - 240 = 300A Xe 0.8

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject:	Date:
φς 8= 6	Очг
4) XL = 2	278 × L = 6.28 × 60 × 220 × 10°
	1 = 1 = 12.0 x 18 C 211×60×220×10-6
Q6 q) 15 4	+ 210
Draw	me Impedance Triangle.
2 50 15	jio laductive Elenen a
Z ² = (0	2+ X2) = (152+103) = 325
ə Z = 18	A DETTEL TO)
0 = 0	$\frac{15}{18} = 33.5^{\circ} \left(\frac{5}{15} + \frac{10}{15} \right)$
=> 18 437	

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject:		Date:
	20 - 33	
Draw	. ue Impe	edance Triangle:
	20	
Ve		Z, = (R2+ Xc1)
		= 201 + 301
2,	-570	= 1300
		⇒ Z _T = 36
0 =	Lan -30 20	= -56.30
(No-	e 6 13	-ve)
Thans i	who draw.	s ue Impedance Triangle is
wo-4.wh,	le as me	con cleary See 8 is NECATIVE
	Zc =	36 <u>L-s6.2°</u>

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

bject:	Date:
07 a) V =	200 L 20°
Draw	ne Phaso- on he Complex Plane
Lo Des	ernine Read and Imajinary Paris:
200	Jula Re = HCOSE
J20°	= 200 cos 20° = 188
	In = H Sin 0
	= 200 Sin 200 = 68.4
	38 + 5 68.4
b) V= 100	L-40°
Re	Ce = HCOSE
100 -11	= 100Cos-40° = 76.6
	Im = HSin @
	= 100517-400 = -64.2
⇒ V = 76	5.6 - 564.2

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject:	Date:
98 4) X1 = WL => L = X1 = W	20 = 63.7 nH 211x56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Pola- vame 80- ZT:
$2\tau = 15 + 520$ $7^{2} = (15^{2} + 20^{2}) = 625$	2 320
	0.6 (Beve ro use)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2- = 25 L 53.1°
$= 2 \int_{S} = \frac{10L}{2\tau}$	0° = 4.4 L-53.1°

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

Tel: +44 (0)141 330 3157 Fax: +44(0)141 330 3158 Email: saffron@elec.gla.ac.uk Web: www.speedlab.co.uk

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject:	Date:
c)	V-53.J°
	V—————————————————————————————————————
۵)	Pour = 132 C = 4.42.15 = 290 w
e)	Input Poue = Tora Outpu Poue
50	Pin = 2900
8)	V2 = C. Ts = 15. 4.4 L-50.10
=)	VR = 66 L-53.1°
	Vc = ZcTs = 520.44L-55.10
	= 20290°. 4.42-50.10
	= 88 L36.9°

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject:		Date:
	V _s	
	V-53.10	\rightarrow
	15	
	Ve V	C
09		
9)	Z+= 310 + 5 - 320	= 5-310
5)	$T_s = \overline{V}_s$	5 20 Z ₇ : 5 ² +10 ²
	2-	= 125
=>	13 = 11000 L0°	=> 2+ = 11.18
		0 = Lan -10 5
=)	15 = 987.4/67.40	⇒ 0 = -63.4°°
		⇒ Z+= 11.18L-63.

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

To serve industry with the most advanced CAD software for electric motors and drives, supported by special control hardware and test equipment, with consultancy, long-term research, and education.

Subject:	Date	2:
د)	is 7	
	√63.~°	-
(ه	For ne current to be in pi vovage ne ne is tern , zero sor Zi	
<i>)</i>	=> Z+ = R+ 50	
	= 27 = R + 310 - 310	
	=> Zc = -310 Zc Zc	
	$\Rightarrow X_c = 10 = \frac{1}{\omega c}$	
	\Rightarrow $C = \frac{1}{1000} = \frac{1}{10.2\pi \times 50} = \frac{1}{2}$	318mF

Department of Electronics & Electrical Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK