## 2d CFT

邹海涛

ID: 17210180015

#### Week 1

Exercise 0.0.1. The first order transitions and second order transitions show in the diagram



**Exercise 0.0.2.** By the homogeneous relation

$$f(t,h) = b^{-d} f(b^{y_t}t, b^{y_h}h)$$

we have

$$f(t,h) = t^{\frac{d}{y_t}}g(\alpha)$$

where  $g(\alpha) = f(1, \alpha)$  and  $\alpha = t^{-\frac{y_h}{y_t}}h$ . It is easy to see that  $\alpha$  is invariance under scaling transformation  $x \to x/b$ . Hence we have

$$C(t,0) = -T \frac{\partial^2 f}{\partial T^2} \Big|_{h=0} = -\frac{1}{T_c} t^{\frac{d}{y_t} - 2} g''(0)$$

$$M(t,0) = -\frac{\partial f}{\partial B} \Big|_{h=0} = t^{\frac{d - y_h}{y_t}} g'(0)$$

$$\chi(t,0) = \frac{\partial^2 f}{\partial B^2} \Big|_{h=0} = t^{(d - 2y_h)/y_t} g''(0)$$

As function with single variable h,  $\lim_{t\to 0} M(t,h) \sim h^{\frac{1}{\delta}}$ , which implies that  $g'(\alpha) \sim \alpha^{\frac{1}{\delta}}$  since  $\alpha$  is linear function of h. Hence we have

$$\lim_{t\to 0} M = \lim_{t\to 0} t^{(d-y_n-\frac{y_n}{\delta})} h^{1/\delta}$$

since it is non-zero, we have  $d - y_n - y_n \frac{1}{\delta} = 0$ . Hence we have

$$\delta = \frac{y_h}{d - y_h}$$

Exercise 0.0.3. We have following relation

$$G_{\sigma}(\mathbf{r};t,h) = t^{-2x_{\sigma}}G_{\sigma}(\frac{\mathbf{r}}{b};b^{y_{t}}t,b^{y_{h}}h)$$
(1)

Let  $h = 0, K = b^{y_t}t$ ,

$$G_{\sigma}(\mathbf{r};t,0) = t^{2x_{\sigma}/y_t}G_{\sigma}(\frac{\mathbf{r}}{Kt^{-1/y_t}};K,0)$$

Since  $G_{\sigma}(\mathbf{r}) \sim r^{-\tau} e^{-\frac{r}{\xi}}$ , we have  $\xi \sim t^{-1/y_t}$ . It implies  $\nu = 1/y_t$ . With relation 1, we have

$$\chi(t,h) = \frac{1}{T} \int d^d \mathbf{r} G_{\sigma}(\mathbf{r};t,h) = t^{d-2x_{\sigma}} \chi(b^{y_t}t,b^{y_h}h)$$

So  $\gamma = (d-2x_{\sigma})/y_t$ . But we have  $\eta = 2x_{\sigma} + 2 - d$  for finite limit of G(r) when  $t \to 0$  and h = 0. Therefore, we get

$$\gamma = \nu(2 - \eta)$$

With scaling relations

$$\alpha + 2\beta + \gamma = 2$$
$$\alpha + \beta(1 + \delta) = 2$$

and  $\alpha = 2 - d\nu$ , we have

$$\beta = \frac{d\nu - 2\nu + \nu\eta}{2}$$
$$\delta = \frac{d - \eta + 2}{d + \eta - 2}$$

**Exercise 0.0.4.** By listed commutation relations, we have, for r, s > 0,

$$[D, J_{rs}] = [D, L_{rs}] = \frac{i}{2} [D, [K_r, P_s]]$$

$$= -\frac{i}{2} ([P_s, [D, K_r]] + [K_r, [P_s, D]])$$

$$= \frac{1}{2} [P_s, K_r] - \frac{1}{2} [K_r, P_s]$$

$$= 0$$

For r = -1, s = 0,  $[D, J_{rs}] = [D, D] = 0$ . For  $r = -1, s \neq 0$ ,  $[D, J_{-1,s}] = [D, \frac{1}{2}(P_s - K_s)] = \frac{i}{2}(P_s + K_s)$ . For r = 0,  $[D, J_{0s}] = \frac{i}{2}(P_s - K_s)$ . Hence (2,25) is satisfied when (m, n) = (-1, 0). If (m, n) = (-1, n), then we have

$$[J_{mn}, J_{rs}] = \frac{1}{2}[P_n, J_{rs}] - \frac{1}{2}[K_n, J_{rs}]$$

With listed commutation relations, we can easily check it coincides with (2,25) respectively. Similarly check in the case of (m,n)=(0,n).

# 2d CFT (Week 3)

邹海涛

ID: 17210180015

# 1 $SL_2(\mathbb{C})$

**Exercise 1.0.1.** We have det  $X = t^2 - (x^2 + y^2 + z^2)$ . Since points in  $\mathbb{R}^{1,3}$  can be written with Pauli matrix as base. Elements in SO(1,3) can be viewed as action on  $M_2(\mathbb{C})$  with form  $P \mapsto PXP^*$ , which preserve det of X. We have exact sequence of groups as follows:

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow SL_2(\mathbb{C}) \stackrel{sp}{\longrightarrow} SO(1,3) \longrightarrow 1$$

where sp is map  $P \mapsto (X \mapsto PXP^*)$ . Since for  $P \in SL_2(\mathbb{C})$ ,  $\det(PXP^*) = \det(X) = t^2 - (x^2 + y^2 + z^2)$ , sp is well-defined. Hence  $SO(1,3) \cong SL_2(\mathbb{C})/\mathbb{Z}_2$ .

Exercies 1.0.2.

$$z \mapsto \frac{(z_2 - z_3)(z - z_1)}{(z_2 - z_1)(z - z_3)}$$

• We have

$$(w_1 - w_3) = \frac{(az_1 + b)(cz_3 + d) - (az_2 + b)(cz_4 + d)}{(cz_1 + d)(cz_3 + d)}$$
$$= \frac{z_1 - z_3}{(cz_1 + d)(cz_3 + d)}$$

Hence we have  $[z_1, z_2, z_3, z_4] = [w_1, w_2, w_3, w_4]$ .

## 2 Three-point function

**Exercise 2.0.1.** Let  $\langle \phi_1(z_1)\phi_2(z_2)\phi_3(z_3)\rangle = f(z_{12}, z_{23}, z_{13})$ . Under scalar transformation  $z_i \mapsto \lambda z_i$ , we have

$$f(z_{12}, z_{23}, z_{13}) = \lambda^{h_1 + h_2 + h_3} f(\lambda z_{12}, \lambda z_{23}, \lambda z_{13})$$

Therefore, f is with form

$$f(z_{12}, z_{23}, z_{13}) = \frac{C_{123}}{z_{12}^a z_{23}^b z_{13}^c}$$

where  $a+b+c=h_1+h_2+h_3$ . Then under comformal transformation  $z_i\mapsto \frac{1}{z_i}$ , we have

$$z_1^{-2h_1}z_2^{-2h_2}z_3^{-2h_3}\frac{(z_1z_2)^a(z_2z_3)^b(z_1z_3)^c}{z_{12}^a z_{23}^b z_{13}^c} = \frac{1}{z_{12}^a z_{23}^b z_{13}^c}$$

Hence  $a = h_1 + h_2 - h_3$ ,  $b = h_2 + h_3 - h_1$ ,  $c = h_1 + h_3 - h_2$ .

# 3 Energy-momentum tensor

Exercise 3.0.1.

$$T^{\mu\nu} = -\eta^{\mu\nu}\partial_k\varphi\partial^k\varphi + 2\partial^\mu\varphi\partial^\nu\varphi$$

• We have

$$\delta\sqrt{g} = -\frac{1}{2}\sqrt{g}g_{\mu\nu}\delta g^{\mu\nu}$$

Therefore,

$$\begin{split} \tilde{T}^{\mu\nu} &= \frac{2}{\sqrt{g}} \frac{\delta S}{\delta g^{\mu\nu}} \\ &= \frac{1}{2} (-\delta_{\mu\nu} + 2) \partial_{\mu} \varphi \partial_{\nu} \varphi \end{split}$$

# 2d CFT

### 4 Derivations

### 4.1 Energy-momentum tensor in complex coordinate

Since

$$\partial_0 \Phi = \partial_z \Phi + \partial_{\bar{z}} \Phi$$
$$\partial_1 \Phi = i \partial_z \Phi - i \partial_{\bar{z}} \Phi$$

we have

$$\begin{split} \partial_z \Phi &= \frac{1}{2} \partial_0 \Phi - \frac{i}{2} \partial_1 \Phi \\ \partial_{\bar{z}} \Phi &= \frac{1}{2} \partial_0 \Phi + \frac{i}{2} \partial_1 \Phi \end{split}$$

Also, since there are metric tensors in complex coordinates

$$g^{\alpha\beta} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \quad g_{\alpha\beta} \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$$

, we have  $\partial^z \Phi = 2\partial_{\bar{z}}$  and  $\partial^{\bar{z}} \Phi = 2\partial_{\bar{z}} \Phi$ . Therefore, from definition of energy-momentum tensor

$$T_{\alpha\beta} = -g_{\alpha\beta}\mathcal{L} + \frac{\partial \mathcal{L}}{\partial(\partial^{\alpha}\Phi)}\partial_{\beta}\Phi$$

we get expression of them in complex coordinates

$$\begin{split} T_{zz} &= \frac{1}{4} \Big( \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_0 \Phi - i \frac{\partial}{\partial_1 \Phi} \partial_0 \Phi - i \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_1 \Phi - \frac{\partial \mathcal{L}}{\partial_1 \Phi} \partial_1 \Phi \Big) \\ T_{\bar{z}\bar{z}} &= \frac{1}{4} \Big( \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_0 \Phi + i \frac{\partial}{\partial_1 \Phi} \partial_0 \Phi + i \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_1 \Phi - \frac{\partial \mathcal{L}}{\partial_1 \Phi} \partial_1 \Phi \Big) \\ T_{z\bar{z}} &= -\frac{1}{2} \mathcal{L} + \frac{1}{4} \Big( \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_0 \Phi - i \frac{\partial}{\partial_1 \Phi} \partial_0 \Phi + i \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_1 \Phi + \frac{\partial \mathcal{L}}{\partial_1 \Phi} \partial_1 \Phi \Big) \\ T_{z\bar{z}} &= -\frac{1}{2} \mathcal{L} + \frac{1}{4} \Big( \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_0 \Phi + i \frac{\partial}{\partial_1 \Phi} \partial_0 \Phi - i \frac{\partial \mathcal{L}}{\partial_0 \Phi} \partial_1 \Phi + \frac{\partial \mathcal{L}}{\partial_1 \Phi} \partial_1 \Phi \Big) \end{split}$$

Hence

$$T_{zz} = \frac{1}{4}(T_{00} - 2iT_{10} - T_{11})$$

$$T_{\bar{z}\bar{z}} = \frac{1}{4}(T_{00} + 2iT_{10} - T_{11})$$

$$T_{z\bar{z}} = T_{\bar{z}z} = \frac{1}{4}(T_{00} + T_{11})$$

#### 4.2 Schwarzian derivative

$$\tilde{T}(z+\epsilon(z)) = (1+\partial_z \epsilon(z))^{-2} \left[ T(z) - \frac{c}{12} \left( \frac{\partial_z^3 \epsilon(z)}{1+\partial_z \epsilon(z)} - \frac{2}{3} \frac{\partial_z^2 \epsilon(z)}{1+\partial_z \epsilon(z)} \right) \right]$$

Since

$$\frac{1}{1 + \partial_z \epsilon(z)} = 1 - \partial_z \epsilon(z) + (\partial_z \epsilon)^2 + \cdots$$

we have

$$\tilde{T}(z+\epsilon(z)) \approx T(z)(1-2\partial_z \epsilon(z)) - \frac{c}{12}(\partial_z^3 \epsilon(z) - \frac{2}{3}\partial_z^2 \epsilon(z))$$
$$\approx T(z) - 2\partial_z \epsilon(z)T(z) - \frac{c}{12}\partial_z^3 \epsilon(z)$$

Hence

$$\tilde{T}(z+\epsilon(z)) - \left[\epsilon(z)\partial_z T(z) + T(Z)\right] \approx -\frac{c}{12}\partial_z^3 \epsilon(z) - 2\partial_z \epsilon(z)T(z) - \epsilon(z)\partial_z T(z)$$

It implies that  $\delta_{\epsilon}(T(z)) = -\frac{c}{12}\partial_z^3 \epsilon(z) - 2\partial_z \epsilon(z)T(z) - \epsilon(z)\partial_z T(z)$ .

#### 4.3 Virasoro algebra

The Larrent expansion of  $z^{n+1}$  around  $\omega$  is

$$z^{n+1} = (z - \omega)^{n+1} + \binom{n+1}{1} \omega (z - \omega)^n + \dots + \binom{n+1}{i} \omega^i (z - \omega)^{n+1-i} + \dots + \omega^{n+1}$$

Hence we have following residues:

$$\operatorname{Res}_{\omega} \frac{z^{n+1}}{(z-\omega)^4} = 2\pi i \frac{(n+1)n(n-1)}{6} \omega^{n-2}$$

$$\operatorname{Res}_{\omega} \frac{z^{n+1}}{(z-\omega)^2} = 2\pi i (n+1)\omega^n$$

$$\operatorname{Res}_{\omega} \frac{z^{n+1}}{z-\omega} = 2\pi i \omega^{n+1}$$

Hence we have

$$\begin{split} &[L_n,L_m] = \frac{1}{(2\pi i)^2} \oint_0 d\omega \ \omega^{m+1} \oint_\omega dz \ z^{n+1} \left( \frac{c}{2(z-\omega)^4} + \frac{2T(\omega)}{(z-\omega)^2} + \frac{\partial_\omega T(\omega)}{(z-\omega)} + \text{regular part} \right) \\ &= \frac{1}{2\pi i} \oint_0 d\omega \ \omega^{m+1} \left( \frac{c}{12} (n+1)n(n-1)\omega^{n-2} + 2(n+1)\omega^n T(\omega) + \omega^{n+1} \partial_\omega T(\omega) \right) \\ &= \frac{1}{2\pi i} \left\{ \oint_0 d\omega \ \left( \frac{c(n+1)n(n-1)}{12} \omega^{m+n-1} \right) - (m-n) \oint_0 d\omega \omega^{m+n+1} T(\omega) \right\} \\ &= \frac{c}{12} n(n^2 - 1) \delta_{n+m,0} - (m-n) L_{n+m} \end{split}$$

#### 4.4 Commutation relations in free boson

We have

$$\varphi = \varphi_0 + \frac{4\pi}{l}\pi t + i\sum_{n\neq 0} \frac{1}{n} \left( a_n e^{-2\pi i n(t-x)/l} + \bar{a}_n e^{-2\pi n(t+x)/l} \right)$$

on cylinder.

$$\Pi = \frac{\pi_0}{l} + \frac{1}{2l} \sum_{n \neq 0} \left( a_n e^{-2\pi i n(t-x)/l} + \bar{a}_n e^{-2\pi i n(t+x)/l} \right)$$

With  $[\Pi, \Pi] = 0$ , we can get  $[\pi_0, a_n] = 0$  and  $[\pi_0, \bar{a}_n] = 0$ . Furthermore, since  $[\varphi, \varphi] = 0$ , we have  $[\varphi_0, a_n] = [\varphi_0, \bar{a}_n] = 0$ .

$$i\delta(x-y) = [\varphi(x,t),\Pi(y,t)] = \frac{1}{l}[\varphi_0,\pi_0] + \frac{i}{2l} \sum_{n\neq 0,m\neq 0} \frac{1}{n} \Big( [a_n,\bar{a}_m] \exp(-2\pi i [(n+m)t - nx + my]/l) + [\bar{a}_n,a_m] \exp(-2\pi i [(n+m)t + nx - my]/l) + [\bar{a}_n,a_m] \exp(-2\pi i [(n+m)t - nx - my]/l) + [\bar{a}_n,\bar{a}_m] \exp(-2\pi i [(n+m)t + nx + my]/l) \Big)$$

Since t can be arbitrary,  $[a_n, \bar{a}_m] = [\bar{a}_n, a_m] = 0$  when  $n + m \neq 0$ . Then let t = 0, we get

$$\begin{split} i\delta(x-y) &= [\varphi(x,0),\Pi(y,0)] \\ &= \frac{1}{l}[\varphi_0,\pi_0] + \frac{i}{2l}\sum_{n\neq 0}\frac{1}{n}\Big([a_n,\bar{a}_{-n}]e^{-2\pi i(-nx-ny)/l} + [\bar{a}_n,a_{-n}]e^{-2\pi i(nx+ny)/l} + \text{other terms}\Big) \\ &= \frac{1}{l}[\varphi_0,\pi_0] + \frac{i}{l}\sum_{n\neq 0}\Big(\frac{2[a_n,\bar{a}_{-n}]}{n}\Big)e^{2\pi i(n(x+y))/l} + \text{other terms} \end{split}$$

Since  $e^{2\pi i(n(x+y))/l}$  is independent of x-y, then its coefficient is zero. Hence  $[a_n, \bar{a}_{-n}] = 0$ . Take integral of both left and right side, we can get  $[\varphi_0, \pi_0] = i$  and  $[a_n, a_{-n}] = [\bar{a}_n, \bar{a}_{-n}] = 1$ .

#### 4.5 Action of free fermion

$$S = \frac{1}{4\pi} \int d^2x \psi^{\dagger} \gamma^0 (\gamma^0 \partial_0 \psi + \gamma^1 \partial_1 \psi)$$

But

$$\gamma^{0}(\gamma^{0} + \gamma^{1})\psi = \begin{pmatrix} \partial_{0} + i\partial_{1} & 0\\ 0 & \partial_{0} - i\partial_{1} \end{pmatrix}\psi$$

Write  $\psi$  as  $\begin{pmatrix} \varphi \\ \bar{\varphi} \end{pmatrix}$ , then we have

$$\gamma^0(\gamma^0 + \gamma^1)\psi = \begin{pmatrix} 2\partial_{\bar{z}}\varphi\\ 2\partial_z\bar{\varphi} \end{pmatrix}$$

Hence

$$S = \frac{1}{2\pi} \int d^2x (\bar{\varphi} \partial_z \bar{\varphi} + \varphi \partial_{\bar{z}} \varphi)$$

#### 4.6 TT OPE in free fermion

By derivative, we get

$$\langle \psi(z), \partial_{\omega} \psi(\omega) \rangle \sim \frac{1}{(z-\omega)^2}$$
  
 $\langle \partial_z \psi, \partial_{\omega} \psi \rangle \sim \frac{-2}{(z-\omega)^3}$ 

Hence

$$T(z)\partial_{\omega}\psi(\omega) = \frac{1}{2} : \psi(z)\partial_{z}\psi(z) : \partial_{\omega}\psi(\omega)$$
$$\sim -\frac{\psi(\omega)}{(z-\omega)^{3}} - \frac{1}{2}\frac{\partial_{\omega}\psi(\omega)}{(z-\omega)^{2}}$$

and

$$T(z)T(\omega) = \frac{1}{4} : \psi(z)\partial_z\psi(z) :: \psi(\omega)\partial_\omega\psi(\omega)$$

$$\sim \frac{1}{4} \left\{ -\frac{\partial_z\psi(z)\partial_\omega\psi(\omega)}{z-\omega} + \frac{2 : \psi(z)\psi(\omega) :}{(z-\omega)^3} - \frac{\partial_z\psi(z)\partial_\omega\psi(\omega) + \partial_z\psi(z)\psi(\omega) :}{(z-\omega)^2} + \frac{1}{(z-\omega)^4} \right\}$$

$$\sim \frac{1}{4} \left\{ \frac{2\partial_\omega T(\omega)}{z-\omega} + \frac{4T(\omega)}{(z-\omega)^2} + \frac{1}{(z-\omega)^4} \right\}$$

## 5 Vertex operator and OPE

If we write  $\varphi(z,\bar{z})$  into laurent series since  $\varphi$  is free boson, then we can find  $\exp(ik\varphi)$  is product of infinite exponential components which are commutative. Hence the normal ordering has taylor expansion form

$$: \exp(ik\varphi(z,\bar{z})) := \sum_{n=0}^{\infty} \frac{(ik)^n}{n!} : \varphi(z,\bar{z})^n :$$

To justify that :  $\exp(ik\varphi)$  : is primary field, we calculate its OPE

$$T(z) : \exp ik\varphi(\omega, \bar{\omega}) := -\frac{1}{2} \sum_{n=0}^{\infty} : \partial \varphi(z) \partial \varphi(z) :: \varphi(\omega, \bar{\omega})^{n}$$

$$\sim -\sum_{n=1}^{\infty} \frac{(ik)^{n}}{n!} n : \partial \varphi(z) \overbrace{\partial \varphi(z) \varphi(\omega, \bar{\omega})} \varphi(\omega, \bar{\omega})^{n-1} :$$

$$-\frac{1}{2} \sum_{n=2}^{\infty} \frac{(ik)^{n}}{n!} n(n-1) : \overbrace{\partial \varphi(z) \overbrace{\partial \varphi(z) \varphi(\omega, \bar{\omega})} \varphi(\omega, \bar{\omega})} \varphi(\omega, \bar{\omega})^{n-2} :$$

$$\sim \frac{ik\partial_{\omega}\varphi(\omega)}{z-\omega} : \exp(ik\varphi) : +\frac{k^{2}}{2(z-\omega)^{2}} : \exp(ik\varphi) :$$

This form implies that :  $\exp(ik\varphi)$  : is primary field with conformal dimension  $\frac{k^2}{2}$ .

## 6 bc ghost system

$$T(z)b(\omega) = (-2:b(z)\partial c(z):+:c(z)\partial b(z):)b(\omega)$$
$$2\frac{b(z)}{(z-\omega)^2} - \frac{\partial_z b(z)}{z-\omega}$$

Take Taylor expansion of b(z) and  $\partial_z b(z)$  around  $\omega$ , we have

$$T(z)b(w) \sim 2\frac{b(\omega)}{(z-\omega)^2} + \frac{\partial_{\omega}b(\omega)}{z-\omega}$$

Hence the conformal dimension of b is 2.

Similarly, we have

$$T(z)c(\omega) = (-2:b(z)\partial c(z):+:c(z)\partial b(z):)c(\omega)$$

$$\sim -\frac{c(z)}{(z-\omega)^2} + 2\frac{\partial_z c(z)}{z-\omega}$$

$$\sim -\frac{c(\omega)}{(z-\omega)^2} + \frac{\partial_\omega c(\omega)}{z-\omega}$$

Hence conformal dimension of c is -1.

$$T(z)T(\omega) = 4 : b(z)\partial c(\omega) :: b(\omega)\partial c(\omega) :$$

$$-2 : c(z)\partial b(z) :: b(\omega)\partial c(\omega) : -2 : b(z)\partial c(z) :: c(\omega)\partial b(\omega) :$$

$$+c(z)\partial b(z) :: c(\omega)\partial b(\omega) :$$

We will calculate it term by term

$$4:b(z)\partial c(z)::b(\omega)\partial c(\omega):$$

$$\sim 4\Big(:b(z)\partial c(z)b(\omega)\partial c(\omega):+b(z)\partial c(z)b(\omega)\partial c(\omega)+:b(z)\partial c(z)b(\omega)\partial c(\omega):\Big)$$

$$\sim \frac{4(-:\partial_z c(z)b(\omega):+:b(z)\partial_\omega c(\omega):)}{(z-\omega)^2}-\frac{4}{(z-\omega)^4}$$

$$\sim -\frac{4}{(z-\omega)^4}+\frac{8b(\omega)\partial_\omega c(\omega)}{(z-\omega)^2}+\frac{-4:\partial^2_\omega c(\omega)b(\omega):+4\partial_\omega b(z)\partial_\omega c(\omega)}{z-\omega}$$

and

$$2:c(z)\partial b(z)::b(\omega)\partial c(\omega):$$

$$\sim 2 \left( - : c(z) \partial b(z) b(\omega) \partial c(\omega) - : c(z) \partial b(z) b(\omega) \partial c(\omega) \right) - : \partial b(z) c(z) b(\omega) \partial c(\omega) \right)$$

$$\sim \frac{4}{(z-\omega)^4} + \frac{4 : c(z) b(\omega) :}{(z-\omega)^3} - \frac{2 : \partial b(z) \partial c(\omega)}{(z-\omega)}$$

$$\sim \frac{4}{(z-\omega)^4} + \frac{4 : c(\omega) b(\omega) :}{(z-\omega)^3} + \frac{4 : \partial_\omega c(\omega) b(\omega) :}{(z-\omega)^2} + \frac{2 : \partial_\omega^2 c(\omega) b(\omega) : -2 : \partial_\omega b(\omega) \partial_\omega c(\omega) :}{z-\omega}$$

and symmetrically

$$2:b(z)\partial c(z)::c(\omega)\partial b(\omega)\\\sim\frac{4}{(z-\omega)^4}+\frac{4:b(\omega)c(\omega):}{(z-\omega)^3}+\frac{4:\partial_{\omega}b(\omega)c(\omega):}{(z-\omega)^2}+\frac{2:\partial_{\omega}^2b(\omega)c(\omega):-2:\partial_{\omega}c(\omega)\partial_{\omega}b(\omega):}{z-\omega}$$

and

$$c(z)\partial b(z) :: c(\omega)\partial b(\omega) :$$

$$\sim \frac{2 : c(\omega)\partial_{\omega}b(\omega)}{(z-\omega)^{2}} + \frac{-\partial_{\omega}^{2}b(\omega)c(\omega) + \partial_{\omega}c(\omega)\partial_{\omega}b(\omega)}{z-\omega} - \frac{1}{(z-\omega)^{4}}$$

Hence we have

$$T(z)T(\omega) \sim -\frac{13}{(z-\omega)^4} + \frac{2T(\omega)}{(z-\omega)^2} + \frac{\partial T(\omega)}{z-\omega}$$

So the central charge is equal to -26.

### 7 Schwarzian derivatives

Let  $\omega = \frac{az+b}{cz+d}$ , then

$$\frac{d\omega}{dz} = \frac{ad - bc}{(cz+d)^2}$$
$$\frac{d^2\omega}{dz^2} = \frac{-2c(ad - bc)}{(cz+d)^3}$$
$$\frac{d^3\omega}{dz^3} = \frac{6c^2(ad - bc)}{(cz+d)^4}$$

Hence

$$\{\omega, z\} = \frac{6c^2}{(cz+d)^2} - \frac{3}{2}(\frac{-2c}{cz+d})^2$$

Then

$$\begin{split} &\left(\frac{a\omega+b}{c\omega+d}\right)_z' = \frac{ad-bc}{(c\omega+d)^2}\omega_z' \\ &\left(\frac{a\omega+b}{c\omega+d}\right)_z'' = \frac{-2c(ad-bc)}{(c\omega+d)^3}(\omega_z')^2 + \frac{ad-bc}{(c\omega+d)^2}\omega_z'' \\ &\left(\frac{a\omega+b}{c\omega+d}\right)_z''' = \frac{6c^2(ad-bc)}{(c\omega+d)^4}(\omega_z')^3 + 3\frac{-2c(ad-bc)}{(c\omega+d)^3}\omega_z''\omega_z' + \frac{ad-bc}{(c\omega+d)^2}\omega_z''' \end{split}$$

Hence we have

$$\{\frac{a\omega+b}{c\omega+d},z\} = \frac{6c^2}{(c\omega+d)^2}(\omega_z')^2 + 3\frac{-2c}{c\omega+d}\omega_z'' + \frac{\omega_z'''}{\omega_z'} - \frac{3}{2}\left(\frac{-2c}{c\omega+d}\omega_z' + \frac{\omega_z''}{\omega_z'}\right)^2$$

It is equal to  $\{\omega, z\}$ .

## 2d CFT

**邹海涛** ID: 17210180015

## 8 Modular invariant

$$Z_R(\tau,\bar{\tau}) = \frac{1}{|\eta(\tau)|^2} \sum_{m,n} q^{\frac{1}{2}(\frac{m}{R} + \frac{Rn}{2})^2} \bar{q}^{\frac{1}{2}(\frac{m}{R} - \frac{Rn}{2})^2}$$

#### 9 Modular transformation

We have

$$\begin{split} \gamma \cdot \tau &= \frac{a\tau + b}{c\tau + d} \\ &= \frac{(a\tau + b)(c\bar{\tau} + d)}{|c\tau + d|^2} \\ &= \frac{ac|\tau|^2 + bc\bar{\tau} + ad\tau}{|c\tau + d|^2} \\ &= \frac{ac|\tau|^2 + (ad + bc)\operatorname{Re}\tau + i(ad - bc)\operatorname{Im}\tau}{|c\tau + d|^2} \end{split}$$

Since ad - bc = 1, we can conclude that

$$\operatorname{Im}(\gamma \cdot \tau) = \frac{\operatorname{Im} \tau}{|c\tau + d|^2}$$

In the upper-half plane, the gray region can be described as

$$-\frac{1}{2} \le \operatorname{Re} \tau \le \frac{1}{2}$$
$$|\tau| > 1$$

If S acts on the gray region, then we have  $S(z) = -\frac{1}{z} = -\frac{\bar{z}}{|z|^2}$ , hence it sends the region to the red region. And the blue region is the image of the gray origin under T. Finally, the transformation ST, maps to the green region.