Taylor Series

Logan Grosz

October 26, 2017

Abstract

Abstract goes here...

1 Declarations

a; domain value of which the series is about;

n; term in series; $x \in \mathbb{Z}^+$

 f^n ; nth derivative of a function; $n \in \mathbb{Z}^+$, $f^0(a) = f(a)$

2 Rule

$$\sum_{n=0}^{\infty} f^{n}(a) \frac{x-a^{n}}{n!}$$

$$= f(a) + f'(a)(x-a) + f''(a) \frac{(x-a)^{2}}{2!} + f'''(a) \frac{(x-a)^{3}}{3!} + f^{iv}(a) \frac{(x-a)^{4}}{4!}$$

$$\vdots$$

$$+ f^{n-1}(a) \frac{(x-a)^{n-1}}{(n-1)!} + f^{n}(a) \frac{(x-a)^{n}}{n!}$$

3 Pre-Derivation

Anything that the derivation relies on goes here

4 Derivation

Derivation goes here

5 Exempli Gratia

5.1 Taylor Series Expansion of e^x about 0

$$f(x) = e^{x}$$
 $f(0) = 1$
 $f'(x) = e^{x}$ $f'(0) = 1$
 $f''(x) = e^{x}$ $f'''(0) = 1$
 $f^{iv}(x) = e^{x}$ $f^{iv}(0) = 1$
 \vdots \vdots

5.2 Taylor Series Expansion of cos about 0

$f(x) = \cos x$	f(0) = 1
$f'(x) = -\sin x$	f'(0) = 0
$f''(x) = -\cos x$	f''(0) = -1
$f'''(x) = \sin x$	f'''(0) = 0
$f^{\mathrm{iv}}(x) = \cos x$	$f^{\mathrm{iv}}(0) = 1$
:	:

5.3 Taylor Series Expansion of sin about 0

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{iv}(x) = \sin x$ $f^{iv}(0) = 0$
 \vdots \vdots