

Nástroje pro diagnostiku integrity souborového systému v OS Linux

Obhajoba diplomové práce

Autor práce: Bc. Vojtěch Vladyka

Vedoucí práce: Ing. Petr Petyovský, Ph.D.

Obsah

1. Úvod

Cíl práce a nástroje kontroly integrity.

2. Universal Disk Format

Co to je UDF?

3. UDF Filesystem Consistency Check

Návrh a realizace samotného nástroje.

4. Výsledky

Ukázka výsledků práce.

5. Závěr

Shrnutí výsledků práce.

Cíl práce

Cílem práce je vytvořit nástroje pro diagnostiku integrity dat souborových systémů v OS Linux, pro které v současnosti tato podpora neexistuje.

Nástroje kontroly integrity dat

- Nástoj fsck kontroluje metadata a žurnály souborových systémů v GNU/Linux.
- Pro každý souborový systém je tento nástroj jiný (obvykle je dodáván s nástroji k souborovému systému.)
- Integrita samotných dat je zajištěna médiem samotným (ECC bloky)

Volba souborového systému

Při rešerši bylo zjištěno, že pro souborový systém *Universal Disk Format* tyto nástroje **chybí**.

Vzhledem k univerzálnosti a perspektivě tohoto souborového systému byl **vybrán pro další práci**.

Co to je?

Universal Disk Format (UDF) je:

- souborový systém navržený původně pro optická média,
- náhrada zastaralého souborového systému ISO 9660,
- vhodný pro přenos dat mezi různými operačními systémy,
- multiplatformní od návrhu,
- podporovaný v GNU/Linux do verze 2.01 pro zápis (nejnovější verze je 2.60 pouze pro čtení.)

UDF není:

- vhodný jako systémový disk,
- žurnálovaný.

Multiplatformnost UDF

Deskriptory UDF

Struktura UDF

LSN	0 – 15	16 – 20		32 – 37		48 – 53		64		256	257	258	259		Last LSN
LBN											0	1	2	3 – Last LBN	
Descriptors	Reserve	UDF Volume Recognition Sequence (VRS)	Reserve	Main Volume Descriptor Sequence (VDS)	Reserve	Reserve Volume Descriptor Sequence (VDS)	Reserve	Logical Volume Integrity Extent (LVID)	Reserve	Anchor Volume Descriptor Pointer (AVDP)	Reserve	File Set Descriptor (FSD)	UDF/ECMA-119 Files	Free space	Anchor Volume Descriptor Ponter (AVDP)

Ukázka struktury UDF

Cíl nástroje

- Detekovat poruchy na souborovém systému UDF.
- Pokud to je možné, poruchy opravit.
- Podpora až do standardu UDF 2.01.
- Být první open source řešení.

Navržená struktura nástroje

Detekovatelné a opravitelné chyby

- Poškození každého deskriptoru (? záleží na stupni poškození)
- Špatné umístění deskriptoru (
- Nedokončený zápis
 - Zaalokované místo, ale nezapsaná metadata souboru (✓ odstranění nedokončeného souboru)
 - Zapsaná metadata i data souboru, ale nenavýšený počet souborů (
 - Zapsaná metadata i data souboru, ale neaktualizovaný počet volných bloků (✓)
 - ▶ Vše dokončeno, ale neoznačené dokončení práce na systému (
- Špatně nastavené časové značky poslední změny (
- Nenastavené, duplicitní nebo neshodující se Unique ID každého souboru (✓)

Implementace

- Implementace standardu UDF až do verze 2.01 (stejná jako zbytek balíčku udftools)
- Realizace je v jazyce C podle standardu C99.
- Překlad je zajištěn překladači GCC nebo LLVM, ke správě projektu je použita skupina nástrojů GNU Autotools. Debug byl prováděn pomocí GDB.
- Je využíváno mapování souboru (média) do paměti funkcí mmap (2)

Testování

- Testovací prostředí cmocka, které umožňuje tvorbu automatizovaných testů.
- 20 GB testovacích dat ve 32 vzorcích pro automatizované testy.
- Použití služby Travis CI nad těmito daty pro automatický test překladu a zachování funkce.
- Testy pokrývají všechny aktuálně známé (a automaticky otestovatelné) scénáře.
- Pracovní sada testovacích dat použitá při vývoji je řádově větší (přibližně 400 GB dat)

Video ukázka

https://www.youtube.com/

Začlenění nástroje do komunity

Nástroj byl přijat do balíčku udftools a bude integrován do všech linuxových distribucí.

Závěr

Co se podařilo

- Vytvořit první open-source nástroj, který je schopný kontrolovat a opravovat poruchy na souborovém systému UDF pro OS Linux.
- Pokrytí standardu UDF až po verzi 2.01.
- Nástroj je funkční na 32 bitových a 64 bitových little-endian architekturách.

Co je potřeba zlepšit

- Podpora po poslední verzi 2.60 chybí napříč celým balíčkem, udffsck nevyjímaje.
- Podporu pro big-endian architektury.

Další kroky

- Podpora integračního procesu do linuxových distribucí.
- Podpora nástroje v budoucnosti.

Závěr

Zdroje

- Universal Disk Format Specification. Revision 2.01. Cupertino, California: Optical Storage Technology Association, 2000.
- ECMA-167. 3rd Edition. Geneva, Switzerland: ECMA, 1997.
- pali/udftools. In: GitHub [online]. 2016 [cit. 2016-11-21]. Dostupné z: https://github.com/pali/udftools

Konec

Děkuji za pozornost.

Konec

Dotazy?

TODO

- Jak píšete ve své práci, používá souborový systém UDF pro detekci chyb v deskriptorech současně běžný kontrolní součet kombinovaný s CRC. Myslíte si, že tento způsob je lepší než například použití CRC s delším polynomem popř. použití jednoho CRC pro tag a druhého pro celý deskriptor?

TODO

 - Ve čtvrté kapitole se zmiňujete o třech příčinách vzniku chyby na souborovém systému. Jaký máte názor na problematiku "měkkých chyb" (soft errors), které v některých případech nemusí být detekovány a opraveny řadičem paměťového média. Příklad z praxe - napěťová špička.

TODO

- (Otázka nad rámec zadání této práce): zvažoval jste možnost kombinace vašeho nástroje, konkrétně jeho modulu určeného pro opravu souborů, s algoritmy používanými nástrojem PhotoRec?