<u>Instytut Automatyki Politechniki Łódzkiej - Metody Numeryczne przykłady różniczkowanie i całkowanie numeryczne</u>

Problem 1.

Oblicz $\frac{d}{dx}e^x\Big|_{x=1}$ używając liczb zaokrąglonych do 5 cyfr i stosując różnicę progresywną i centralną dla h= 0.04, 0.02, 0.01 i h= 0.4, 0.2, 0.1

h	h^2	PD	PDErr	CD	CDErr
0.04	0.0016	2.7725	(-0.0542)	2.7188	(-0.0005)
0.02	0.0004	2.7450	(-0.0267)	2.7175	(0.0008)
0.01	0.0001	2.7300	(-0.0117)	2.7200	(0.0017)

$$x = 0.6000 \quad 0.7000 \quad 0.8000 \quad 0.9000 \quad 1.0000 \quad 1.1000 \quad 1.2000 \quad 1.3000 \quad 1.4000$$
 $e^{x} = 1.8221 \quad 2.0138 \quad 2.2255 \quad 2.4596 \quad 2.7183 \quad 3.0042 \quad 3.3201 \quad 3.6693 \quad 4.055$

h	h^2	PD	PDErr	CD	CDErr
0.4	0.16	3.3422	(-0.6239)	2.7914	(-0.0731)
0.2	0.04	3.0090	(-0.2907)	2.7365	(-0.0182)
0.1	0.01	2.8590	(-0.1407)	2.7230	(-0.0047)

Problem 2

Oblicz $\frac{d}{dx}e^x\Big|_{x=1}$ używając danych z problemu 1 i ekstrapolacji Richardsona.

Z różnicy centralnej dla h=0.4, 0.2, 0.1

h	CD(h)	$\frac{\Delta}{2^2-1}$		$\frac{\Delta}{2^4-1}$	
0.4	2,7914				
0.2	2,7365	-0,018300	2,7182		
0.1	2,723	-0,004500	2,7185	0,000020	2,71852

Problem 3

Oblicz $\int_{1}^{3} \frac{dx}{x}$ używając wzoru prostokątów i dzieląc przedział [1,3] na 1, 2, 4, 8 podprzedziałów. Dokładna wartością jest ln 3 = 1.098612.

$$\int_{1}^{3} \frac{dx}{x} \approx h \sum_{i=0}^{n-1} \frac{1}{x_{i} + \frac{h}{2}}, \qquad x_{i} = 1 + i h, \qquad h = \frac{b - a}{n} = \frac{2}{n}$$

		2	
h	n		error
2	1	$\int_{1}^{3} \frac{dx}{x} \approx 2 \left(\frac{1}{1+1} \right) = 1$	0.098612
1	2	$\int_{1}^{3} \frac{dx}{x} \approx 1 \sum_{i=0}^{1} \frac{1}{x_{i} + \frac{1}{2}} = 1 \left(\frac{1}{1 + \frac{1}{2}} + \frac{1}{2 + \frac{1}{2}} \right) = 1 \left(\frac{2}{3} + \frac{2}{5} \right) = 1 \frac{1}{15} = 1.066666$	0,031946
$\frac{1}{2}$		$\int_{1}^{3} \frac{dx}{x} \approx \frac{1}{2} \sum_{i=0}^{3} \frac{1}{x_{i} + \frac{1}{4}} = \frac{1}{2} \left(\frac{1}{1 + \frac{1}{4}} + \frac{1}{1 + \frac{1}{2} + \frac{1}{4}} + \frac{1}{2 + \frac{1}{4}} + \frac{1}{2 + \frac{1}{2} + \frac{1}{4}} \right) =$ $= \frac{1}{2} \left(\frac{4}{5} + \frac{4}{7} + \frac{4}{9} + \frac{4}{11} \right) = \frac{1}{2} * 2 \frac{622}{3465} = 1,089754$	0,008858
$\frac{1}{4}$	8	$\int_{1}^{3} \frac{dx}{x} \approx \frac{1}{4} \sum_{i=0}^{7} \frac{1}{x_{i} + \frac{1}{8}} =$ $= \frac{1}{4} \left(\frac{1}{1 + \frac{1}{8}} + \frac{1}{\frac{5}{4} + \frac{1}{8}} + \frac{1}{\frac{3}{2} + \frac{1}{8}} + \frac{1}{\frac{7}{4} + \frac{1}{8}} + \frac{1}{2 + \frac{1}{8}} + \frac{1}{\frac{9}{4} + \frac{1}{8}} + \frac{1}{\frac{5}{2} + \frac{1}{8}} + \frac{1}{\frac{11}{4} + \frac{1}{8}} \right) =$ $\frac{1}{4} * 4.385299 = 1,096325$	0,002287

Problem 4

Rozwiąż problem 3 stosując wzór trapezów:

$$\int_{1}^{3} \frac{dx}{x} = \frac{h}{2} \sum_{i=0}^{n-1} \left(\frac{1}{x_{i}} + \frac{1}{x_{i+1}} \right), \qquad x_{i} = 1 + i h, \qquad h = \frac{2}{n}$$

$$\int_{1}^{3} \frac{dx}{x} = h \left(\frac{1}{2} \frac{1}{x_{0}} + \frac{1}{x_{1}} + \dots + \frac{1}{x_{n-1}} + \frac{1}{2} \frac{1}{x_{n}} \right), \qquad x_{i} = 1 + i h, \qquad h = \frac{2}{n}$$

h	n	T(h)	error
2	1	$\int_{1}^{3} \frac{dx}{x} \approx 2 \left[\frac{1}{2} \frac{1}{1} + \frac{1}{2} \frac{1}{3} \right] = 1 \frac{1}{3} = 1,3333333$	0.234721
1	2	$\int_{1}^{3} \frac{dx}{x} \approx \frac{1}{2} \sum_{i=0}^{1} \left(\frac{1}{x_{i}} + \frac{1}{x_{i+1}} \right) = 1 \left[\frac{1}{2} \frac{1}{1} + \frac{1}{2} + \frac{1}{2} \frac{1}{3} \right] = 1 \frac{1}{6} = 1,166667$	0,068055
$\frac{1}{2}$	4	$\int_{1}^{3} \frac{dx}{x} \approx \frac{1}{4} \sum_{i=0}^{3} \left(\frac{1}{x_{i}} + \frac{1}{x_{i+1}} \right) = \frac{1}{2} \left[\frac{1}{2} \frac{1}{1} + \frac{1}{\frac{3}{2}} + \frac{1}{2} + \frac{1}{\frac{5}{2}} + \frac{1}{2} \frac{1}{3} \right] =$ $= \frac{1}{2} \frac{67}{30} = \frac{67}{60} = 1,116667$	0,018055
$\frac{1}{4}$	8	$\int_{1}^{3} \frac{dx}{x} = \frac{1}{8} \sum_{i=0}^{7} \left(\frac{1}{x_{i}} + \frac{1}{x_{i+1}} \right) =$ $\approx \frac{1}{4} \left[\frac{1}{2} \frac{1}{1} + \frac{1}{\frac{5}{4}} + \frac{1}{\frac{3}{2}} + \frac{1}{\frac{7}{4}} + \frac{1}{2} + \frac{1}{\frac{9}{4}} + \frac{1}{\frac{5}{2}} + \frac{1}{\frac{11}{4}} + \frac{1}{2} \frac{1}{3} \right] =$ $= \frac{1}{4} * 4,412843 = 1,103211$	0,004599

Problem 5

Wykonaj 2 iteracje ekstrapolacji Richardsona by poprawić wyniki uzyskane w rozwiązaniu problemu 4 (metoda Romberga)

		Δ		Δ		Δ		
h	T(h)	3		15		63		error
2	1,333333							
1	1,166667	-0,05556	1,111111					-0,012498978
0.5	1,116667	-0,01667	1,1	-0,00074	1,099259			-0,000646996
0.25	1,103211	-0,00449	1,098726	-8,5E-05	1,098641	-9,8E-06	1,098631	-1,87099E-05