## Claims

 Use of a liquid crystal composition in a liquid crystal device said composition comprising

5

at least 30 weight% (based on the total weight of the composition) of a component (a) containing one or more compounds having a dielectric anisotropy Δε of at least 25, whereby at least 25 weight% (based on the total weight of the composition) of said compounds have a dielectric anisotropy Δε of at least 40; and

10

a component (δ) containing one or more compounds each having a ratio of γ<sub>1</sub>/T<sub>NI</sub><sup>K</sup> of 0.51 mPa·s/K or less, a clearing point T<sub>NI</sub> of at least 100 °C and a rotational viscosity γ<sub>1</sub> of not more than 190 mPa·s (wherein γ<sub>1</sub> is the rotational viscosity at 20 °C in mPa·s and T<sub>NI</sub><sup>K</sup> is the clearing point in degrees Kelvin).

15

2. Use of a liquid crystal composition according to claim 1 whereby said liquid crystal device is a zenithal bistable nematic liquid crystal device.

20

 Use of a liquid crystal composition according to any one of claims 1 or 2 whereby said component (δ) comprises at least one compound of formula I

25

$$R^{11}$$
  $A$   $B$   $R^{12}$ 

in which

10

15

R<sup>11</sup> and R<sup>12</sup> are independently of each other C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

is or L<sup>11</sup>

in which

L<sup>11</sup> and L<sup>12</sup> are independently of each other H or F; and

in which

L<sup>13</sup> and L<sup>14</sup> are independently of each other H or F.

4. Use of a liquid crystal composition according to any one of claims 1 to 3 whereby said component (a) comprises at least one compound of formula II and/or at least one compound of formula III

25
$$R^{21} \longrightarrow CO_{2} \longrightarrow Z^{21} CN$$

$$R^{31} \longrightarrow CO_{2} \longrightarrow Z^{31} CN$$

$$(F)_{a} \longrightarrow (F)_{d}$$

$$(F)_{b} \longrightarrow (F)_{d}$$

$$(F)_{d} \longrightarrow (F)_{d}$$

$$(F)_{d} \longrightarrow (F)_{d}$$

in which

10

15

25

30

a, b, c and d are independently of each other 0, 1, 2, 3 or 4;

is C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

R<sup>31</sup> is C<sub>2</sub>-C<sub>15</sub> alkenyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

 $Z^{21}$  and  $Z^{31}$  are independently of each other a single bond or -C=C-.

5. Use of a liquid crystal composition according to claim 4 whereby said component (a) comprises at least one compound of formula IV

$$R^{41}$$
  $CO_2$   $Z^{41}$   $CN$   $IV$ 

20 in which

e and f are independently of each other 0, 1, 2, 3 or 4;

is C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

 $Z^{41}$  is a single bond or -C=C-.

10

15

6. Use of a liquid crystal composition according to any one of claims 3 to 5 whereby in formula I

R<sup>11</sup> is C<sub>2</sub>-C<sub>15</sub> alkenyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

A is ; and is .

7. Use of a liquid crystal composition according to any one of claims 1 to 6 whereby said liquid crystal composition further comprises at least 5 weight% (based on the total weight of the composition) of a component (β) comprising at least one compound selected from the group consisting of compounds of formula V, VI, VII, VIII and IX

15

30

in which

a is 0 or 1;

R<sup>51</sup>, R<sup>52</sup>, R<sup>61</sup>, R<sup>62</sup>, R<sup>71</sup>, R<sup>72</sup>, R<sup>81</sup>, R<sup>82</sup>, R<sup>91</sup> and R<sup>92</sup> are independently of each other C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

10 L<sup>51</sup> is H or F;

Z<sup>61</sup> is -CO-O-, -CH<sub>2</sub>O-, -OCH<sub>2</sub>-, -CF<sub>2</sub>O-, -OCF<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CF<sub>2</sub>CF<sub>2</sub>-, -CH<sub>2</sub>CF<sub>2</sub>-, -CF<sub>2</sub>CH<sub>2</sub>-, -CH=CH- or -C $\equiv$ C-;

$$-$$
C  $-$ F  $-$ G  $-$ and  $-$ J  $-$ 

are independently of each other

20

$$- \underbrace{D} \qquad \qquad \qquad \qquad \underbrace{L^{52}}_{\text{or}}$$

25 E or or

in which

L<sup>52</sup> and L<sup>53</sup> are independently of each other H or F.

- 8. Use of a liquid crystal composition according to any one of claims 1 to 7 whereby said liquid crystal composition further comprises at least 3 weight% (based on the total weight of the composition) of a component (γ) containing one or more compounds having an optical anisotropy Δn of at least 0.20.
- 9. Use of a liquid crystal composition according to claim 8 whereby said component (y) comprises at least one compound of formula X

$$R^{101} \underbrace{K} \underbrace{R^{102}}_{(F)_k} R^{102}$$

in which

5

15

20

30

k is 0, 1 or 2;

R<sup>101</sup> and R<sup>102</sup> are independently of each other C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other; and

10. Use of a liquid crystal composition according to any one of claims 3 to 9 whereby said liquid crystal composition further comprises at least one compound of formula XI and/or at least one compound of formula XII and/or at least one compound of formula XIV

$$R^{111} \longrightarrow \begin{array}{c} L^{111} \\ \\ L^{112} \end{array}$$

$$R^{121}$$
  $L$   $CO_2$   $M$   $R^{122}$   $XII$ 

$$R^{131}$$
  $R^{132}$  XIII

in which

5

10

20

25

30

15 R<sup>111</sup> and R<sup>142</sup> are independently of each other C<sub>2</sub>-C<sub>15</sub> alkenyl

which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C=C-, -CO-O-, -OC-O- such that there are no hetero atoms

adjacent to each other;

R<sup>121</sup>, R<sup>131</sup>, R<sup>132</sup> and R<sup>141</sup> are independently of each other C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no

hetero atoms adjacent to each other;

is C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or polysubstituted with halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

20

25

- Use of a liquid crystal composition according to any one of claims 1 to
   10 whereby said liquid crystal composition comprises at least 50 weight% (based on the total weight of the composition) of said component (a).
- 12. Use of a liquid crystal composition according to any one of claims 1 to 11 whereby said liquid crystal composition comprises at least 50 weight% (based on the total weight of the composition) of said component (a) whereby at least 30 weight% (based on the total weight of the composition) of said compounds have a dielectric anisotropy Δε of at least 40.
  - 13. Use of a liquid crystal composition according to any one of claims 1 to 12 whereby said liquid crystal composition comprises at least 5 weight% (based on the total weight of the composition) of said component (δ).
  - 14. Use of a liquid crystal composition according to any one of claims 1 to 13 whereby said liquid crystal composition comprises at least one compound of formula XVI and/or XVII and/or of formula XVIII and/or of formula XIX and/or of formula XX and/or of formula XXI and/or of formula XXII:

- 101 -

$$R^{161} \longrightarrow Z^{161} \longrightarrow Z^{161}$$

$$L^{161} \longrightarrow Z^{161}$$

$$XVI$$

 $R^{171} \longrightarrow V^{171}$   $L^{171}$  XVII

 $R^{201}$   $Y^{201}$   $Y^{201}$ 

 $R^{211} = \sum_{\substack{216 \\ 216}}^{215} L^{213} = \sum_{\substack{211 \\ 214}}^{211} L^{211} = \sum_{\substack{212 \\ 212}}^{211} L^{211} = \sum_{\substack{212 \\ 212}}^{211$ 

in which

30

- 102 -

 $R^{161}$ ,  $R^{171}$ ,  $R^{181}$ ,  $R^{182}$ ,  $R^{201}$ ,  $R^{211}$  and  $R^{221}$ are independently of each other C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH2 groups 5 may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other; R<sup>191</sup> is C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more 10 of the CH2 groups may be replaced independently of each other by -O-, -S-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other; Y<sup>161</sup>, Y<sup>171</sup>, Y<sup>191</sup>, Y<sup>201</sup>, Y<sup>211</sup> and Y<sup>221</sup> are independently of each other F, Cl, C<sub>1</sub>-C<sub>15</sub> alkanyl or C<sub>2</sub>-C<sub>15</sub> alkenyl that are 15 independently of each other mono- or poly-substituted with halogen, or C<sub>1</sub>-C<sub>15</sub> alkoxy, which is mono- or polysubstituted with halogen;  $\mathsf{L}^{161},\,\mathsf{L}^{171},\,\mathsf{L}^{191},\,\mathsf{L}^{192},\,\mathsf{L}^{201},\,\mathsf{L}^{202},\,\mathsf{L}^{203},\,\mathsf{L}^{204},\,\mathsf{L}^{211},\,\mathsf{L}^{212},\,\mathsf{L}^{213},\,\mathsf{L}^{214},\,\mathsf{L}^{215},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}^{216},\,\mathsf{L}$ L<sup>221</sup>, L<sup>222</sup>, L<sup>223</sup> and L<sup>224</sup> are independently of each other H or F; 20 and  $Z^{161}$ is -CO-O-, CH2O or CF2O.

10

15

- 15. Liquid crystal medium comprising
  - at least 30 weight% (based on the total weight of the composition) of a component (a) containing one or more compounds having a dielectric anisotropy Δε of at least 25, whereby at least 25 weight% (based on the total weight of the composition) of said compounds have a dielectric anisotropy Δε of at least 40; and
  - a component (δ) containing one or more compounds each having a ratio of γ<sub>1</sub>/T<sub>Ni</sub><sup>K</sup> of 0.51 mPa·s/K or less, a clearing point T<sub>Ni</sub> of at least 100 °C and a rotational viscosity γ<sub>1</sub> of not more than 190 mPa·s (wherein γ<sub>1</sub> is the rotational viscosity at 20 °C in mPa·s and T<sub>Ni</sub><sup>K</sup> is the clearing point in degrees Kelvin).
- 16. Liquid crystal medium according to claim 15 whereby

lacktriangleright said component ( $\delta$ ) comprises at least one compound of formula I

$$R^{11}$$
  $A$   $B$   $R^{12}$ 

in which

20 R<sup>11</sup> and R<sup>12</sup> are independently of each other C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

in which

L<sup>11</sup> and L<sup>12</sup> are independently of each other H or F; and

- 104 -

in which  $L^{13} \text{ and } L^{14} \quad \text{are independently of each other H or F;}$ and

said component (a) comprises at least one compound of formula II

10 
$$R^{21}$$
  $CO_2$   $Z^{21}$   $CN$   $(F)_a$   $(F)_b$ 

in which

15

20

25

30

a and b are independently of each other 0, 1, 2, 3 or 4;

is C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

 $Z^{21}$  is a single bond or -C=C-.

- 17. Liquid crystal medium according to claim 15 whereby
  - said component (δ) comprises at least one compound of formula I

$$R^{11}$$
  $A$   $B$   $R^{12}$ 

in which

10

15

20

25

30

R<sup>11</sup> and R<sup>12</sup> are independently of each other C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C=C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

in which

L<sup>11</sup> and L<sup>12</sup> are independently of each other H or F; and

B or L<sup>13</sup>

in which

L<sup>13</sup> and L<sup>14</sup> are independently of each other H or F; and

said component (a) comprises at least one compound of formula
 III

 $R^{31}$   $CO_2$   $Z^{31}$  CN

in which

c and d are independently of each other 0, 1, 2, 3 or 4;

R<sup>31</sup> is C<sub>2</sub>-C<sub>15</sub> alkenyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

 $Z^{31}$  is a single bond or -C=C-.

18. Liquid crystal medium according to any one of claims 16 or 17 whereby said component (a) further comprises at least one compound of formula IV

$$R^{41}$$
  $CO_2$   $Z^{41}$   $CN$   $IV$ 

15

20

30

10

5

in which

WO 2004/053020

e and f are independently of each other 0, 1, 2, 3 or 4;

R<sup>41</sup> is C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more of

the CH₂ groups may be replaced independently of each other by -O-, -S-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

Z<sup>41</sup> is a single bond or -C≡C-.

- 25 19. Bistable liquid crystal device comprising
  - two outer substrates which, together with a frame, form a cell;
  - a liquid crystal composition present in said cell;

WO 2004/053020

5

10

15

20

25

30

- 107 -

- electrode structures with alignment layers on the inside of said outer substrates whereby at least one alignment layer comprises an alignment grating that permits the compounds of said liquid crystal composition to adopt at least two different stable states whereby the assembly of said electrode structures with said alignment layers being such that a switching between the said at least two different stable states is achieved by applying suitable electric signals to said electrode structures;
- whereby said liquid crystal composition comprises
  - at least 30 weight% (based on the total weight of the composition) of a component (a) containing one or more compounds having a dielectric anisotropy Δε of at least 25, whereby at least 25 weight% (based on the total weight of the composition) of said compounds have a dielectric anisotropy Δε of at least 40; and
  - a component (δ) containing one or more compounds having a ratio of γ<sub>1</sub>/T<sub>Ni</sub><sup>K</sup> of 0.51 mPa·s/K or less, a clearing point T<sub>Ni</sub> of at least 100 °C and a rotational viscosity γ<sub>1</sub> of not more than 190 mPa·s (wherein γ<sub>1</sub> is the rotational viscosity at 20 °C in mPa·s and T<sub>Ni</sub><sup>K</sup> is the clearing point in degrees Kelvin).
- 20. Bistable liquid crystal device according to claim 19 whereby
  - said device is a zenithal bistable nematic liquid crystal device;
     and
  - said electrode structures with alignment layers on the inside of said outer substrates have at least one alignment layer that comprises an alignment grating that permits the compounds of said liquid crystal composition to adopt at least two different stable states with different pretilt angles in the same azimuthal plane.

10

15

20

30

21. Bistable liquid crystal device according to any one of claims 19 or 20 whereby said component ( $\delta$ ) comprises at least one compound of formula I

 $R^{11}$  A B  $R^{12}$ 

in which

R<sup>11</sup> and R<sup>12</sup> are independently of each other C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

in which

L<sup>11</sup> and L<sup>12</sup> are independently of each other H or F; and



25 in which

L<sup>13</sup> and L<sup>14</sup> are independently of each other H or F.

22. Zenithal bistable nematic liquid crystal device according to any one of claims 19 or 21 whereby said component (a) comprises at least one compound of formula II and/or at least one compound of formula III

$$\mathbb{R}^{21}$$
  $\mathbb{CO}_2$   $\mathbb{C}^{21}$   $\mathbb{C}^{21}$   $\mathbb{C}^{21}$ 

$$R^{31} \longrightarrow CO_2 \longrightarrow Z^{31} CN$$

in which

25

a, b, c and d are independently of each other 0, 1, 2, 3 or 4;

10 R<sup>21</sup> is C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

is C<sub>2</sub>-C<sub>15</sub> alkenyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

 $Z^{21}$  and  $Z^{31}$  are independently of each other a single bond or -C=C-.

23. Zenithal bistable nematic liquid crystal device according to claim 22 whereby said component (α) comprises at least one compound of formula IV

$$R^{41}$$
  $CO_2$   $Z^{41}$   $CN$   $IV$ 

in which
e and f are independently of each other 0, 1, 2, 3 or 4;

10

- R<sup>41</sup> is C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;
- Z<sup>41</sup> is a single bond or -C≡C-.
- 24. Zenithal bistable nematic liquid crystal device according to any one of claims 21 to 23 whereby said liquid crystal composition further comprises
  - at least 5 weight% (based on the total weight of the composition)
     of a component (β) comprising at least one compound selected
     from the group consisting of compounds of formula V, VI, VII, VIII
     and IX

15  $R^{51} \longrightarrow C \longrightarrow D \longrightarrow E \longrightarrow R^{52} \qquad V$ 20  $R^{61} \longrightarrow Q \longrightarrow R^{62} \longrightarrow R^{62} \longrightarrow V$ 21  $R^{71} \longrightarrow CH = CH \longrightarrow R^{62} \longrightarrow R^{62} \longrightarrow V$ 25  $R^{81} \longrightarrow CH = CH \longrightarrow R^{62} \longrightarrow V$ 27  $R^{81} \longrightarrow CH = CH \longrightarrow R^{62} \longrightarrow V$ 28  $R^{81} \longrightarrow CH = CH \longrightarrow R^{62} \longrightarrow V$ 29  $R^{81} \longrightarrow CH = CH \longrightarrow R^{62} \longrightarrow V$ 21

in which

30 g is 0 or 1;

10

30

R<sup>51</sup>, R<sup>52</sup>, R<sup>61</sup>, R<sup>62</sup>, R<sup>71</sup>, R<sup>72</sup>, R<sup>81</sup>, R<sup>82</sup>, R<sup>91</sup> and R<sup>92</sup> are independently of each other C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

L<sup>51</sup> is H or F;

Z<sup>61</sup> is -CO-O-, -CH<sub>2</sub>O-, -OCH<sub>2</sub>-, -CF<sub>2</sub>O-, -OCF<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CF<sub>2</sub>CF<sub>2</sub>-, -CH<sub>2</sub>CF<sub>2</sub>-, -CF<sub>2</sub>CH<sub>2</sub>-, -CH=CH- or -C=C-;

- C - F - G and - J -

are independently of each other

15

in which
25

L<sup>52</sup> and L<sup>53</sup> are independently of each other H or F.

25. Zenithal bistable nematic liquid crystal device according to any one of claims 19 to 24 whereby said liquid crystal composition further comprises at least 3 weight% (based on the total weight of the composition)
 of a component (γ) containing one or more compounds having an optical anisotropy Δn of at least 0.20.

5

26. Zenithal bistable nematic liquid crystal device according to claim 25 whereby said component (y) comprises at least one compound of formula X

10

$$R^{101}$$
  $K$   $R^{102}$   $K$ 

in which

15

k is 0, 1 or 2;

R<sup>101</sup> and R<sup>102</sup> are independently of each other C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other; and

20

25

30

27. Zenithal bistable nematic liquid crystal device according to any one of claims 21 to 26 whereby said liquid crystal composition further comprises at least one compound of formula XI and/or at least one compound of formula XII and/or at least one compound of formula XIII at least one compound of formula XIV

- 113 -

5

$$R^{121}$$
  $L$   $CO_{\overline{2}}$   $M$   $R^{122}$  XII

$$R^{131}$$
  $R^{132}$  XIII

10

in which

15

R<sup>111</sup> and R<sup>142</sup> are independently of each other C<sub>2</sub>-C<sub>15</sub> alkenyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C=C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

20

R<sup>121</sup>, R<sup>131</sup>, R<sup>132</sup> and R<sup>141</sup> are independently of each other C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

25

R<sup>122</sup> is C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or polysubstituted with halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

Y<sup>111</sup> is F or Cl;

L<sup>111</sup> and L<sup>112</sup> are independently of each other H or F; and

$$-$$
L and  $-$ M

are independently of each

28. Bistable liquid crystal device according to any one of claims 19 to 27
whereby said liquid crystal composition comprises at least one
compound of formula XVI and/or XVII and/or of formula XVIII and/or
of formula XIX and/or of formula XX and/or of formula XXII:

5

$$Z^{161}$$
  $Z^{161}$   $Z^{161}$   $Z^{161}$ 

20

XVIII

$$R^{201}$$
  $Y^{201}$   $Y^{201}$   $Y^{201}$ 

$$R^{211}$$
 $L^{215}$ 
 $L^{213}$ 
 $L^{211}$ 
 $L^{211}$ 
 $L^{211}$ 
 $L^{211}$ 
 $L^{212}$ 

10

15

in which

$$R^{161}$$
,  $R^{171}$ ,  $R^{181}$ ,  $R^{182}$ ,  $R^{201}$ ,  $R^{211}$  and  $R^{221}$ 

20

are independently of each other  $C_1$ - $C_{15}$  alkyl which is unsubstituted or mono- or poly-substituted with CN or halogen and in which one or more of the  $CH_2$  groups may be replaced independently of each other by -O-, -S-, -CH=CH-, -C $\equiv$ C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

R<sup>191</sup>

is C<sub>1</sub>-C<sub>15</sub> alkyl which is unsubstituted or mono- or polysubstituted with CN or halogen and in which one or more of the CH<sub>2</sub> groups may be replaced independently of each other by -O-, -S-, -C≡C-, -CO-O-, -OC-O- such that there are no hetero atoms adjacent to each other;

Y<sup>161</sup>, Y<sup>171</sup>, Y<sup>191</sup>, Y<sup>201</sup>, Y<sup>211</sup> and Y<sup>221</sup> are independently of each other F, CI, C<sub>1</sub>-C<sub>15</sub> alkanyl or C<sub>2</sub>-C<sub>15</sub> alkenyl that are independently of each other mono- or poly-substituted with halogen, or C<sub>1</sub>-C<sub>15</sub> alkoxy, which is mono- or poly-substituted with halogen;

L<sup>161</sup>, L<sup>171</sup>, L<sup>191</sup>, L<sup>192</sup>, L<sup>201</sup>, L<sup>202</sup>, L<sup>203</sup>, L<sup>204</sup>, L<sup>211</sup>, L<sup>212</sup>, L<sup>213</sup>, L<sup>214</sup>, L<sup>215</sup>, L<sup>216</sup>, L<sup>221</sup>, L<sup>222</sup>, L<sup>223</sup> and L<sup>224</sup> are independently of each other H or F; and Z<sup>161</sup> is -CO-O-, CH<sub>2</sub>O or CF<sub>2</sub>O.

10

5

15

20

25