Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Филиал «Минский радиотехнический колледж»

Учебная дисциплина «Встраиваемые микропроцессорные системы»

Инструкция

по выполнению лабораторной работы «Программирование на языке Ассемблер. Отладчик программ языка Ассемблер»

Минск

2017

Лабораторная работа № 4

Тема работы: «Программирование на языке Ассемблер. Отладчик программ языка Ассемблер»

1. Цель работы:

Освоение инструментальных средств создания и отладки программ на языке ассемблера. Знакомство с процессом трансляции и компоновки программ на ассемблере. Разработка и отладка программ на языке ассемблера.

2. Задание

Выполнить ассемблирование и компоновку программы. Исследовать программу с помощью отладчика.

3. Оснащение работы

Техническое задание, ПК.

4. Основные теоретические сведения

4.1. Разработка программ

Полный цикл создания программы на Ассемблере можно представить в виде последовательности четырех этапов (рисунок 4.1):

- подготовка исходного текста программы и оформление его в виде текстового файла (одного или нескольких) с помощью текстового редактора в формате DOS-c расширением ASM.
- ассемблирование программы с применением ассемблера Таѕт, результатом чего будет объектный файл с расширением ОВЈ. Если программа состоит из нескольких файлов (модулей), они ассемблируются независимо. Если при ассемблировании обнаруживаются ошибки, то объектный файл не создается, а выдается сообщение об ошибках. По устранении ошибок ассемблирование нужно повторить. Объектный файл (двоично-кодированное представление программы) не может исполняться, так как не содержит информации о загрузке сегментов программы в память компьютера.
- компоновка программы выполняется компоновщиком (редактором связей) Turbo Linker и заключается в доработке объектного файла до исполняемой формы с назначением стартового адреса программы. При компоновке программы из нескольких частей компоновщик объединяет объектные модули в один исполняемый файл. Исполняемый файл обычно

имеет расширение ЕХЕ.

- отладка программы с использованием отладчика AFDPRO, программы отладчика Turbo Debugger (td.exe). Этот этап не всегда нужен и требуется при обнаружении в программе неявных семантических и алгоритмических ошибок, не обнаруживаемых ассемблером, либо при задаче исследования работы программы.

Рисунок 4.1 – Этапы создания ассемблерной программы

Исходный модуль программы создается в любом текстовом редакторе, например, в «Блокноте» и сохраняется в виде файла с именем, присвоенным по правилам MS DOS, с обязательным расширением asm.

Для получения исполняемого модуля, который можно запустить на выполнение, требуется последовательно выполнить этапы трансляции и компоновки. Для этого используются программы, входящие в состав пакета AcceмблераTurbo Assembler (TASM) фирмы Borland.

Трансляция производится с помощью компилятора Турбо Ассемблера, который является исполняемой программой tasm.exe, работающей в режиме командной строки. Он вызывается командой DOS:

tasm /z/zi/n <имя файла><имя файла>, где /z — ключ, разрешающий вывод на экран строк исходного текста программы, в которых Ассемблер обнаружил ошибки;

/zi – ключ, управляющий включением в результирующий файл полных

сведений о номерах строк и именах исходного модуля;

/n – ключ, который исключает из листинга информацию о символических обозначениях в программе.

Следующие далее имена трех файлов – исходного (*.asm), объектного (*.obj) и листинга (*.lst) можно использовать без расширений.

Если исходный модуль не содержит ошибок, то на экран выводится сообщение об успешной трансляции, а в текущем каталоге появятся новые файлы – объектный (.obj) и листинга (.lst).

Компоновка объектных модулей с библиотечными модулями производится вызовом компоновщика tlink.exe из командной строки:

tlink/v <имя файла>

Ключ /v передает в загрузочный файл информацию, используемую при отладке программ. Следующее далее имя файла обозначает имя объектного модуля. Расширение в этом имени можно не указывать.

В случае успешного окончания компоновки в текущем каталоге появляется исполняемый файл — загрузочный модуль .exe, и файл карты сборки .map. Загрузочный модуль может быть запущен на выполнение командой DOS.

Для отладки создаваемых программ используется программа отладчик.

4.2. Демонстрационная программа

TITLE "Демонстрационная программа HELLO.ASM"

IDEAL

MODEL small

STACK 256

DATASEG

Promt DB 'Это время после полудня? (Да/Нет - Y/N)\$'

GoodMorning DB 13,10,'Доброе утро!',13,10,'\$' GoodAfternoon DB 13,10,'Здравствуйте!',13,10,'\$'

NonSence DB 13,10,'4To-4To?',13,10,'\$'

CODESEG

Start: MOV AX, @DATA ;Установка в DS адреса

MOV DS,AX ; сегмента данных

MOV DX,OFFSET Promt ;Сообщение-запрос MOV AH,9 ;Подготовка вывода сообщения INT 21H ;Функция вывода на экран

MOV AH,1 ;Подготовка ввода символа

INT 21H ; Функция ввода символа с клавиатуры

CMP AL,'Y' ;Буква Y?

JZ Afternoon ;Да, время после полудня

CMP AL,'N' ;Буква N?

JZ Morning ;Нет, время до полудня

MOV DX,OFFSET NonSence ;Указание на "Что-что?"

JMP SHORT Disp

Afternoon:

MOV DX,OFFSET GoodAfternoon ;Указание на "Здравствуйте"

JMP SHORT Disp

Morning:

MOV DX,OFFSET GoodMorning ;Указание на "Доброе утро" Disp: MOV AH,9 ;Подготовка вывода на экран

INT 21H ;Функция вывода сообщения на экран Exit: MOV AX,4C00H ;Подготовка выхода из программы INT 21H ;Функция выхода - останов программы

END Start ;Конец программы / точка входа

4.3. Ассемблирование программы. Ключи командной строки

Рассмотрим ассемблирование программы на примере простой интерактивной программы Hello.asm. Для ассемблирования файла Hello.asm в командной строке нужно набрать TASM HELLO.ASM и нажать клавишу ввода. Поскольку особое имя для объектного файла не задано, будет создан объектный файл с тем же программным именем HELLO.OBJ. Расширение имени файла ASM вводить не требуется — TASM принимает его по умолчанию. На экране появится следующее:

Turbo Assembler Version 2.0 Copyright (C) 1988,1990 Borland International

Assembling file: Hello.asm

Error messages: None Warning messages: None

Passes 1

Remaining memory: ***K

(На месте трех звездочек будет выдан объем свободной оперативной памяти DOS.)

Сообщение о том, что ассемблирование завершено без ошибок и предупреждений нет.

Замечания:

- Предупреждение не ошибка, но его игнорирование может привести к неприятностям в дальнейшей работе с программой, поэтому лучше своевременно отреагировать на него.
- Если использовать другое имя программы, сообщения на экране соответственно изменятся.

Для компоновки программы нужно ввести в командную строку TLINK

HELLO.OBJ. Здесь расширение имени OBJ тоже не обязательно. По завершении компоновки будет сформирован файл HELLO.EXE с выводом на экран сообщения

Turbo Linker Version 3.0 Copyright (C) 1987,1990 Borland International

Теперь программу HELLO.EXE можно запустить. Результатом исполнения будет вывод на экран сообщения:

Это время после полудня? (Да/Heт - Y/N)

Курсор будет мерцать после последнего символа в ожидании ответа. Введите букву Y. Программа ответит:

Здравствуйте!

Если будет введена буква N, программа ответит:

Доброе утро!

Если будет введена какая-то другая буква, программа ответит:

Что-что?

Внимание! Буквы Y и N нужно вводить в верхнем регистре - как прописные. Иначе ответом всегда будет "Что-что?".

В ходе ассемблирования или компоновки можно выбирать различные особенности их исполнения, что задается ключами в командной строке Tasm или Tlink. Для вывода списка ключей командной строки нужно набрать просто TASM либо TLINK и нажать ввод.

Ключа записываются в виде одной или нескольких букв. Для задания ключа нужно набрать косую черту (или дефис) и нужную букву между командой TASM либо TLINK и именем программы, которая ассемблируется либо компонуется. Например, для ассемблирования программы HELLO.ASM и получения файла с распечаткой (листингом), где содержится описание хода ассемблирования, нужно ввести команду:

TASM /L HELLO.

Команды и ключи можно набирать прописными и строчными буквами.

Исполните эту команду и затем рассмотрите файл HELLO.LST. В распечатке каждая строка начинается с номера, затем следуют байты объектного кода и собственно строка программы. Кроме того, TASM выводит в этом файле таблицу идентификаторов, где содержится информация о метках и сегментах, включая значение и тип каждой метки и атрибуты каждого сегмента. При ассемблировании программы можно использовать в одной командной строке несколько ключей, разделяя их косыми чертами.

Некоторые примеры для команды TASM:

TASM /L /C HELLO – команда дополняет файл распечатки таблицей перекрестных ссылок, указывающей, где определена каждая метка и где на нее есть ссылка;

TASM /L /N HELLO – исключает таблицу идентификаторов из распечатки;

TASM /ML HELLO – включает различение прописных и строчных

символов в идентификаторах;

TASM /ZI HELLO – команда добавляет в HELLO.OBJ информацию, необходимую для использования отладчика.

Для команды TLINK:

TLINK/M HELLO – ключ /М приводит к созданию файла отображения или файла загрузки HELLO.MAP, где перечисляются имена, адреса загрузки и размеры всех сегментов, входящих в программу;

TLINK /X /V HELLO – команда позволяет загрузить HELLO.EXE в отладчик, запрещая создание (ключ /X) файла отображения.

TLINK /T <FILE_NAME.OBJ> – ключ /Т обеспечивает создание файла типа СОМ.

Внимание: программа типа СОМ требует особой организации, и, если этот ключ использовать некстати, результирующая программа либо не будет создана, либо будет неработоспособна.

Отладчик можно использовать и когда ключи, указанные как полезные для него, не указывались. Но при надобности отладки их лучше использовать.

4.4. Работа с отладчиком AFDPror (или AFDPro)

Debugger AFDPror - AFDPROK.EXE

Таѕт умеет ассемблировать синтактически правильные программы, но «не понимает», что именно эти программы делают. Часто программа работает не так, как должна бы работать. В такой ситуации может помочь программа-отладчик, предназначенная для поиска и исправления логических (семантических) ошибок. Подобно всем отладчикам, AFDPror может работать в режиме супервизора, беря на себя управление программой в режиме пошагового (покомандного) исполнения кода программы. При этом можно изменять значения операндов в памяти, значения регистров и флагов.

Горячие клавиши — все в строке-подсказке (обеспечивают переход по окнам и пр.)

Команды — набираются в строке "CMD >" и нажимается клавиша ввода (Enter):

QUIT – выйти из программы

PD addr, length, filename - параметры addr и length суть шестнадцатеричные

адрес (000 или 100 без буквы H в конце) и длина дисассемблируемого кода в байтах (до ffff без буквы H в конце)

filename – имя файла, в который будет сохранен результат дисассемблирования (например, list.txt)

G start_addr, break_addr — где start_addr есть адрес перехода на код тестируемой программы, а break addr — адрес первого останова.

Остальные команды можно найти, вызвав окно помощи F4. Прервать выполнение программы можно нажатием клавиш Ctrl-Esc.

Для ознакомления с работой отладчика при изучении языка ассемблера

исследуем программу HELLO под его управлением. Снова выполним ассемблирование и компоновку программы с ключами, добавляющими отладочную информацию в файлы OBJ и EXE:

TASM /ZI HELLO.ASM

TLINK /V HELLO.OBJ

AFDPROR HELLO.EXE

После выполнения последней команды на экране появится заставка отладчика. При нажатии любой клавиши оно сменится рабочим окном отладчика.

4.5. Работа над синтактическими ошибками при ассемблировании программы

Самые частые ошибки при написании первых программ. Обнаружение этих ошибок отмечается при ассемблировании (с указанием номера строки):

- искажено имя команды или директивы;
- опущено двоеточие ':' после имени метки;
- неправильно записан пользовательский идентификатор;
- в качестве оператора указан неопределенный ранее идентификатор;
- использовано имя служебного идентификатора в качестве пользовательского;
- значение инициализируемой константы превышает допустимую величину, например:

DB 400 ;400 > 255, т. е. максимального значения в формате BYTE

- поставлена запятая в конце списка элементов при множественной инициализации, например:

DW 1,3,5,400, ;лишняя запятая в конце списка

- нет круглых скобок при операторе DUP, например: DB 4 DUP 7 ;надо "4 DUP (7)"
- ошибка в написании имени модели памяти, или не указана модель памяти при использовании упрощенных директив;
- опущена одна или обе квадратные скобки [], заключающие адресное выражение в режиме Ideal, например:

MOV AX, [BX+SI ;содержимое по адресу BX+SI отправить в AX

- не совпадают типы операндов команды, например:

MOV AL,[VAR W]

(ошибка – ранее переменная VAR_W определена в формате WORD) MOV AX,[VAR_B]

(ошибка – ранее переменная VAR_В определена в формате ВҮТЕ)

- требуется явно указать тип операнда, например: MOV [BX],1

(ошибка – надо явно указать тип ячейки памяти: [BYTE BX] или [WORD BX])

- операнд в текущей инструкции не может быть ссылкой на адрес памяти:

MOV [OPER_1],[OPER_2]

(команда MOV не может передавать данные из одной ячейки памяти в другую);

- недопустимый режим адресации, например:

ADD [DX+SI],AX

(регистр DX нельзя использовать в косвенной адресации)

- недопустимая команда для выбранного типа процессора (по умолчанию используется i8086);
- адрес назначения в команде условного перехода вне допустимого для процессора диапазона не принадлежит интервалу (-128, +127);
 - непарное использование директивы ENDP, например:

PROC ADDITION

.....

ENDP SUBTRACTION

(ошибка – должно быть указано имя процедуры ADDITION). Аналогичные ошибки могут появиться при использовании других парных директив

"SEGMENT <NAME>...ENDS <NAME>", "MACRO <NAME>...ENDM <NAME>" и пр.

- в конце программы отсутствует директива END.

5. Порядок выполнения работы

- 1. Выполнить ассемблирование и компоновку программы HELLO.ASM с ключами, предполагающими использование отладчика AFDPror. Исследовать программу HELLO.EXE с помощью отладчика.
- 2. Выполнить ассемблирование и компоновку программных файлов с ключами, предполагающими получение распечатки и отладочной информации.
- 3. Создать копию файла программы с измененными названиями для экспериментов по ассемблированию (получение распечатки: TASM/L <FILE.ASM>) с добавленными синтактическими ошибками (достаточно 5 7 ошибок). При введении ошибок в правильно составленные программы можно руководствоваться перечнем типичных ошибок, данным выше. Ошибки вместе с замечаниями на них Turbo Assembler выводит в распечатке.

6. Форма отчета о работе

Лабораторная работа №	
Номер учебной группы	_
Фамилия, инициалы учащегося	
Дата выполнения работы	
Тема работы:	
Цель работы:	
Оснащение работы:	

Результат выполнения работы:	
•	

7. Контрольные вопросы и задания

- 1. Запишите команду для ассемблирования файла F_1.ASM с учетом формирования распечатки и возможности использования отладчика.
- 2. Запишите команду для компоновки файла F_1.OBJ, разрешающую использование отладчика и запрещающего создание файла отображения.
- 3. В чем состоит основная разница между исполняемыми файлами программ типа EXE и COM?
- 4. Запишите инструкции, определяющие начало и конец программного кода.
- 5. В чем состоит различие между ошибками и предупреждениями, создаваемыми при ассемблировании? Опишите нужные действия при обнаружении ошибки.
- 6. Опишите основные форматы команд процессоров.
- 7. Какие из приведенных ниже команд записаны с ошибками и каковы эти ошибки? Считайте все идентификаторы переменными-словами в сегменте данных:

MOV BP,AL MOV [OP_1+BX+DI+12],AX MOV [OP_1],[OP_2] MOV AX,[OP_3+DX] MOV CS,AX MOV [BX+SI],2 LEA BX,OP_2 MOV BX,OFFSET [OP_2]

8. Рекомендуемая литература

Финогенов, К. Г. Основы языка Ассемблера [Текст] / К. Г. Финогенов. — М.: Радио и связь, 2000.

Финогенов, К. Г. Использование языка Ассемблера [Текст]: учеб. пособие для вузов / К.Г. Финогенов. – М.: Горячая линия Телеком, 2004.

Юров, В. И. Assembler [Текст]: учеб. пособие для вузов / В. И. Юров. 2-е изд. – СПб.: Питер, 2007.