Grundbegriffe der Informatik Aufgabenblatt 4

Matr.nr.:			
Nachname:			
Vorname:			
Tutorium:	Nr.	Name des Tutors:	
Ausgabe:	11. November 2009		
Abgabe:	20. November 2009, 13:00 Uhr im Briefkasten im Untergeschoss von Gebäude 50.34		
rechtzeitin Ihrer emit diese	eigenen Handsch er Seite als Deckl beren linken Eck	nrift, olatt und	l
Vom Tutor au	ıszufüllen:		
erreichte Punkte			
Blatt 4:	/ 19		
Blätter 1 – 4:	/ 73		

Aufgabe 4.1 (3+1 Punkte)

Gegeben sei das Alphabet $A = \{(,)\}.$

Wir definieren für $i \in \mathbb{N}_0$ die formalen Sprachen $L_i \subseteq A^*$ wie folgt:

- $L_0 = \{\epsilon\}$
- $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup L_i \cdot L_i \cup \{(\} \cdot L_i \cdot \{)\}$

Die formale Sprache $L \subseteq A^*$ erfülle $L = \{\epsilon\} \cup L \cdot L \cup \{(\} \cdot L \cdot \{)\}.$

- a) Beweisen Sie (durch vollständige Induktion): $\forall i \in \mathbb{N}_0 : L_i \subseteq L$.
- b) Zeigen Sie: $\bigcup_{i=0}^{\infty} L_i \subseteq L$

(Hinweis: Dies bedeutet, dass $L' = \bigcup_{i=0}^{\infty} L_i \subseteq L$ die formale Sprache mit den "wenigsten" Elementen ist, für die $L' = \{\epsilon\} \cup L' \cdot L' \cup \{(\} \cdot L' \cdot \{)\}$ gilt.)

Aufgabe 4.2 (3+3 Punkte)

Sei M eine Menge und $\diamond: M \times M \to M$ eine assoziative Operation auf M. Weiterhin habe M ein neutrales Element e bezüglich \diamond , d.h. für alle $a \in M$ gilt: $a \diamond e = e \diamond a = a$. Wir definieren für alle $a \in M$: $a^0 = e$ und $\forall i \in \mathbb{N}_0 : a^{i+1} = a^i \diamond a$

- a) Beweisen Sie (durch vollständige Induktion): $\forall j \in \mathbb{N}_0 : \forall i \in \mathbb{N}_0 : a^i \diamond a^j = a^{i+j}$.
- b) Nennen Sie zwei Stellen in der Vorlesung, an der dieses Ergebnis anwendbar ist. Geben Sie jeweils M, e und \diamond an.

Aufgabe 4.3 (2+3+2+2 Punkte)

Gegeben seien die Grammatik $G = (\{S\}, \{a, b\}, S, \{S \rightarrow aSb \mid aS \mid a\})$.

- a) Geben Sie eine mathematisch präzise Beschreibung der Sprache L(G) an, die sich nicht auf G oder eine andere Grammatik bezieht.
- b) Zeigen Sie: $\forall w \in \{a, b, S\}^* : (S \Rightarrow^* w) \Longrightarrow N_S(w) + N_a(w) > N_b(w)$. (Hinweis: Für ein Zeichen x wurde N_x auf Übungsblatt 3 definiert.)
- c) Gegeben seien Wörter $w_1, w_2 \in \{a, b\}^*$ mit $S \Rightarrow^* w_1 S w_2$. Welche Möglichkeiten gibt es für w_1 ? Welche Möglichkeiten gibt es für w_2 ? In welcher Beziehung stehen die Wörter w_1 und w_2 ? (Ohne Beweise.)
- d) Geben Sie ein Wort $w \in L(G)$ an, für das es zwei verschiedene Ableitungsbäume aus S gibt. Geben Sie zwei verschiedene Ableitungsbäume von w an.