

Measurements of the top Yukawa Coupling at the LHC & other Related Results

Interpretations Workshop (2016-05-04)

Jordan Webster

Motivation

- Precise measurements of Higgs couplings could reveal departures from the SM
 - * Large top mass \rightarrow top Yukawa (λ_t) \approx 1
- Dominant impact on stability of Higgs mass
- Window to new physics related to EWSB
- O(10%) variation between stable/unstable

Vacuum [arXiv:1411.1923]

 Could point to scale of new physics

Measurements

- Most precise measurement from m_t = 173.34 ± 0.76 GeV
- Indirect constraints from ggH and γγH vertices
 ... or ttH production gives access to a direct measurement

Virtues of a Direct Measurement

- * λ_t is the easiest Yukawa to measure directly
- * Many accessible final states, including H→bb!
- Complex final states
 - Many handles for controlling background

Primary Challenge

Tiny signal...

- ATLAS+CMS has ~6000 ttH events in all of Run 1
- * $\sigma(tt)/\sigma(ttH) \approx 2000$

H→hadrons

H→bb, H→thth

Analysis Strategy

- * Target $H \rightarrow bb$ and $H \rightarrow \tau_h \tau_h$ (CMS-only)
- Divide into channels based on top decays

Analysis Strategy

Categorize events based on N_{jets}, N_{b-tags}

- Signal depleted regions help measure backgrounds
 - Very useful for tt + heavy-flavor jets
- Fit multivariate discriminant...
 - * CMS: BDT or matrix-element discriminant
 - * ATLAS: Neural network, matrix-elements used in training

Results: ATLAS, √s = 8 TeV

* In single lepton + dilepton $\mu = 1.5 \pm 1.1^{\frac{[arXiv:1503.05066]}{}}$

Results: ATLAS, √s = 8 TeV

- * In single lepton + dilepton $\mu = 1.5 \pm 1.1^{\frac{[arXiv:1503.05066]}{}}$
- * Fully hadronic final state recently included...
 - * μ shifts down to 1.4 ± 1.0

[arXiv:1604.03812]

Results: CMS √s = 7,8,13 TeV

* 7+8 TeV results: [arXiv:1408.1682]

- * 8 TeV H→bb measurement updated to μ = 1.2 ± ~1.5 using Matrix-element method [arXiv:1502.02485]
- * 13 TeV $H \rightarrow bb$ [CMS-PAS-HIG-16-004]

*
$$\mu = -2.0 \pm 1.8$$

H→leptons

 $H \rightarrow VVV, H \rightarrow ZZ, H \rightarrow \tau_{\ell}\tau_{\ell}$

Analysis Strategy

- Primarily targets H→WW with ≥1 leptonic decay, but non-negligible H→ττ & H→ZZ
- Background dominated by ttV

Basic Selection

- * Events categorized by nLeptons: same sign 2l, 3l, 4l
 - Jet requirements differ between categories:
 nJets ≥ 2-4, nBTags ≥ 1-2

* ATLAS includes H→τ_hτ_h as part of this analysis with additional regions that have hadronic τ tags

	Higgs boson decay mode								
Category	WW^*	$\tau \tau$	ZZ^*	Other					
$2\ell 0\tau_{\rm had}$	80%	15%	3%	2%					
3ℓ	74%	15%	7%	4%					
$2\ell 1 au_{ m had}$	35%	62%	2%	1%					
4ℓ	69%	14%	14%	4%					
$1\ell 2\tau_{\mathrm{had}}$	4%	93%	0%	3%					

Results: ATLAS, √s = 8 TeV

- * Cut & count measurement
- * Combined $\mu = 2.1 \pm \sim 1.4$ [arXiv:1506.05988]
 - * Signal significance = 1.8σ (expected 0.9σ)

Results: CMS, √s = 8 TeV

- * Fit to BDT response or nJets (4\ell region)
- * Small excess in 2ℓ category, driven primarily by ~2-3σ excess in μ±μ±

[arXiv:1406.1682]

Results: CMS, √s = 8 TeV

Results: CMS, √s = 13 TeV

... or by CMS in recent Run 2 result

H→**photons**

* Analysis with very low signal & background

ATLAS and CMS both have
 7+8 TeV results consistent with SM

* ATLAS: $\mu = 1.4^{+2.2}_{-1.4}$ [arXiv:1409.3122]

* CMS: $\mu = 2.7^{+2.6}_{-1.8}$ [arXiv:1408.1682]

Analysis is particularly sensitive to tH+X, which make up non-negligible fraction of signal

CMS Run 1 Combination

H→hadrons + H→leptons + H→photons

- * $\mu_{comb} = 2.8^{+1.1}_{-0.9}$
 - * Signal significance = 3.4σ
 - * p-value(SM) = 2.0% (~ 2σ)

"Related" Search for Top Squarks

Analysis Overview

- * ATLAS 13 TeV stop pair search [ATLAS-CONF-2016-007]
 - * Targets direct pair production & gluino mediated pair production
 - Basically a tt + MET search

Direct pair production

- Focusing on final with one W decaying leptonically
- * Dominant background: tt, tW, ttZ, W+jets
 - * Modeled by MC, constrained in control regions

Basic Selection & Results

- ★ Exactly 1 lepton, p_T > 25 GeV
- ★ ≥4 jets, p_T > 25 120 GeV
- * τ_h jet veto
- * MET > 260 (SR1), 350 (SR2), 480 (SR3) GeV
- Consistent with SM, but 2.3σ excess observed in SR1

[ATLAS-CONF-2016-007]

Signal region	SR1	SR2	SR3
Observed	12	1	1
Total bkg	5.50 ± 0.72	1.25 ± 0.26	1.03 ± 0.18
$t\bar{t}$	2.21 ± 0.60	0.29 ± 0.10	0.20 ± 0.07
Single top	0.46 ± 0.39	0.09 ± 0.08	0.10 ± 0.09
W+jets	0.71 ± 0.43	$0.15^{+0.19}_{-0.15}$	0.20 ± 0.09
$t\bar{t} + W/Z$	1.90 ± 0.42	0.61 ± 0.14	0.41 ± 0.10
Diboson	0.23 ± 0.15	0.11 ± 0.07	0.12 ± 0.07
$t\bar{t}$ NF	1.10 ± 0.14	1.06 ± 0.14	0.80 ± 0.13
Single top NF	0.62 ± 0.46	0.65 ± 0.49	0.71 ± 0.42
W+jets NF	0.75 ± 0.12	0.78 ± 0.15	0.93 ± 0.12
$t\bar{t} + W/Z \text{ NF}$	1.42 ± 0.24	1.45 ± 0.24	1.46 ± 0.24
p_0	$0.01(2.3 \sigma)$	$0.50(0.0\sigma)$	$0.50(0.0\sigma)$
$N_{\text{non-SM}}^{\text{limit}}$ exp. (95% CL)	$6.4^{+3.2}_{-2.0}$	$3.6^{+2.3}_{-1.3}$	$3.5^{+2.2}_{-1.2}$
$N_{\text{non-SM}}^{\text{limit}}$ obs. (95% CL)	13.3	3.4	3.4

Basic Selection & Results

- ★ Exactly 1 lepton, p_T > 25 GeV
- ★ ≥4 jets, p_T > 25 120 GeV

Interesting impact on mass limits for direct stop pair production...

... but no matching excess in Run 1

ATLAS 8 TeV Search [arXiv:1407.0583]

CMS 8 TeV Search [arXiv:1308.1586]

Final Remarks

- * σ(ttH) measurements from LHC are consistent with SM
 - * Uncertainty still large, O(40%) in CMS combination
- CMS Run 2 results already competitive with Run 1
- * LHC prospects...
 - * H→bb: potential for 5σ significance with ~100 fb-1 [PRL 104, 111801 (2010)]
 - * With 3000 fb⁻¹...
 - * ~10% experimental uncertainty in H→leptons [arXiv:1307.7280]
 - * ~20% experimental uncertainty in H→photons [AL-PHYS-PUB-2014-012]
 - * Theoretical uncertainty becomes dominant
- These measurements have forced analyzers to find clever ways to control systematics & backgrounds
 - → valuable experience!

Backups

Motivation

- Precise measurements of Higgs couplings could reveal departures from the SM
 - * Large top mass \rightarrow top Yukawa (λ_t) \approx 1
- Dominant impact on stability of Higgs mass
- * Window to new physics related to EWSB
- * O(5%) variation between stable/metastable/unstable vacuum [arXiv:1411.1923]
 - Could point to scale of new physics

Contraints on ggH and yyH Vertices

Top Mass Measurements

J. Webster

H→leptons jet requirements

Category	ATLAS	CMS
same sign 2ℓ	≥4 jets, ≥1 b-tag	≥4 jets, ≥2 b-tags
3ℓ	(≥4 jets, ≥1 b-tag) or (3 jets, ≥2 b-tags)	≥2 jets, ≥2 b-tags
4ℓ	≥2 jets, ≥1 b-tag	≥2 jets, ≥2 b-tags

CMS H→leptons Yields

	ee	еµ	μμ	3ℓ	4ℓ
$t\overline{t}H, H \rightarrow WW$	1.0 ± 0.1	3.2 ± 0.4	2.4 ± 0.3	3.4 ± 0.5	0.29 ± 0.04
$t\bar{t}H, H \rightarrow ZZ$	_	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.09 ± 0.02
$t\bar{t}H, H \rightarrow \tau \tau$	0.3 ± 0.0	1.0 ± 0.1	0.7 ± 0.1	1.1 ± 0.2	0.15 ± 0.02
tīW	4.3 ± 0.6	16.5 ± 2.3	10.4 ± 1.5	10.3 ± 1.9	_
$t\bar{t}Z/\gamma^*$	1.8 ± 0.4	4.9 ± 0.9	2.9 ± 0.5	8.4 ± 1.7	1.12 ± 0.62
ttWW	0.1 ± 0.0	0.4 ± 0.1	0.3 ± 0.0	0.4 ± 0.1	0.04 ± 0.02
$t\bar{t}\gamma$	1.3 ± 0.3	1.9 ± 0.5	_	2.6 ± 0.6	
WZ	0.6 ± 0.6	1.5 ± 1.7	1.0 ± 1.1	3.9 ± 0.7	_
ZZ	_	0.1 ± 0.1	0.1 ± 0.0	0.3 ± 0.1	0.47 ± 0.10
Rare SM bkg.	0.4 ± 0.1	1.6 ± 0.4	1.1 ± 0.3	0.8 ± 0.3	0.01 ± 0.00
Non-prompt	7.6 ± 2.5	20.0 ± 4.4	11.9 ± 4.2	33.3 ± 7.5	0.43 ± 0.22
Charge misidentified	1.8 ± 0.5	2.3 ± 0.7	_	_	_
All signals	1.4 ± 0.2	4.3 ± 0.6	3.1 ± 0.4	4.7 ± 0.7	0.54 ± 0.08
All backgrounds	18.0 ± 2.7	49.3 ± 5.4	27.7 ± 4.7	59.8 ± 8.0	2.07 ± 0.67
Data	19	51	41	68	1

H→photons Analysis Strategy

- Categorize events based on top decays
 - * Leptonic (≥1ℓ) vs. hadronic
- Signal and background both small
 - Estimated using data in sidebands of m_W

H→photons Analysis Strategy

Categorize events based on top decays

Analysis is particularly sensitive to tH+X!

ATLAS	ιο ρ	ar tre	Jaiai	ly C	0110		, to ti	11/\	•
Category	N_H	ggF	VBF	WH	ZH	t₹H	tHqb	WtH	N_B
7 TeV leptonic selection	0.10	0.6	0.1	14.9	4.0	72.6	5.3	2.5	$0.5^{+0.5}_{-0.3}$
7 TeV hadronic selection	0.07	10.5	1.3	1.3	1.4	80.9	2.6	1.9	$0.5^{+0.5}_{-0.3}$
8 TeV leptonic selection	0.58	1.0	0.2	8.1	2.3	80.3	5.6	2.6	$0.9^{+0.6}_{-0.4}$
8 TeV hadronic selection	0.49	7.3	1.0	0.7	1.3	84.2	3.4	2.1	$2.7^{+0.9}_{-0.7}$

Expected fraction of signal yield

H→photons Selections

Leptonic channel

Hadronic channel

2 photons, $p_T > 0.35 m_{yy} / 0.25 m_{yy}$

≥ 1 e/µ, p_T>15/10 GeV

E_T^{miss}>20 GeV (only for 1 b-tag)

≥ 1 jets, p_T>25 GeV

≥ 1 b-tags (80% WP)

2 photons, $p_T > 0.5 m_{\gamma\gamma} / 25 \text{ GeV}$

 \geq 1 e or μ , $p_T>20$ GeV

No E_Tmiss cut

≥ 2 jets, p_T>25 GeV

≥ 1 b-tags (70% WP)

```
2 photons, p_T > 0.35 m_{\gamma\gamma} / 0.25 m_{\gamma\gamma}
```

0 leptons

≥ 6 jets, p_T>25 GeV, ≥ 2 b-tags (80% WP)

or

≥ 5 jets, p_T>30 GeV, ≥ 2 b-tags (70% WP)

or

≥ 6 jets, p_T>30 GeV, ≥ 1 b-tags (60% WP)

2 photons, $p_T > 0.5 m_{yy} / 25 \text{ GeV}$

0 leptons

≥ 4 jets, p_T>25 GeV, ≥ 1 b-tags (70% WP)

slide from Aurelio Juste

tH Diagrams related to H→photons

ATLAS bb+yy Combination

Stop Search MC

Process	ME Generator	ME	Fragmentation	UE	Cross-section
		PDF		Tune	Order
$t\bar{t}$	Powheg-Box v2	CT10	Рутніа 6	P2012	NNLO+NNLL [71–76]
Single top	Powheg-Box	CT10	Рутніа 6	P2012	NNLO+NNLL [77–79]
W/Z+jets	SHERPA 2.1.1	CT10	SHERPA	Default	NNLO [80]
Diboson	SHERPA 2.1.1	CT10	SHERPA	Default	NLO
$t\bar{t} + W/Z$	MG5_aMC 2	NNPDF2.3	Pythia 8	A14	NLO [43]
$t\bar{t} + \gamma$	MG5_aMC 2	CTEQ6L1	Pythia 8	A14	NLO [43]
SUSY Signal	MG5_aMC 2	NNPDF2.3	Pythia 8	A14	NLO+NLL [81]
VLQ Signal	Protos v2.2	NNPDF2.3	Pythia 8	A14	NNLO+NNLL

Stop Limits

- * Run 1 gluino mass limit extended to 1460 GeV in the gluino mediated scenario with low stop mass (left)
- [745, 780] GeV stop mass exclusion added in direct stop model with massless neutralino

ATLAS 8 TeV Stop Yields

