Guía 9

Análisis Avanzado

En lo que sigue \mathcal{M} será la σ -álgebra de los conjuntos medibles Lebesgue de \mathbb{R} y μ la medida de Lebesgue. Además, E denotará a un subconjunto medible Lebesgue de \mathbb{R} .

1. Sea f una función simple. Probar que |f| es simple.

NOTA: funcion indicadora \equiv funcion caracteristica

Para demostrar que |f| es una función simple, partimos de la definición de una función simple y mostramos que tomar el valor absoluto de una función simple resulta en otra función simple.

Definición de función simple

Una función $f: \mathbb{R} \to \mathbb{R}$ se llama simple si puede ser expresada como:

$$f(x) = \sum_{i=1}^{n} a_i \chi_{A_i}(x),$$

donde $a_i \in \mathbb{R}$ son constantes, A_i son conjuntos medibles, y χ_{A_i} es la función indicadora del conjunto A_i . Esto significa que f toma un número finito de valores distintos y es medible.

Demostración

Supongamos que f es una función simple:

$$f(x) = \sum_{i=1}^{n} a_i \chi_{A_i}(x),$$

donde $a_i \in \mathbb{R}$ y A_i son conjuntos medibles de \mathbb{R} .

Consideremos |f(x)|:

$$|f(x)| = \left| \sum_{i=1}^{n} a_i \chi_{A_i}(x) \right|.$$

Dado que $\chi_{A_i}(x)$ toma valores de 0 o 1, podemos escribir |f(x)| como:

$$|f(x)| = \sum_{i=1}^{n} |a_i| \chi_{A_i}(x).$$

- $\sum_{i=1}^{n} |a_i| \chi_{A_i}(x)$ es una combinación finita de funciones indicadoras χ_{A_i} ponderadas por las constantes $|a_i|$. - Cada $|a_i|$ es una constante real no negativa. - Cada χ_{A_i} es una función indicadora de un conjunto medible A_i .

Por lo tanto, |f| se puede expresar como una combinación finita de funciones indicadoras de conjuntos medibles, lo que significa por definición que |f| es una función simple.

- 2. Probar que dada una σ -álgebra \mathcal{A} de subconjuntos de X y dada $f: X \to \mathbb{R}$, son equivalentes:
 - a) $\{x \in X : f(x) > a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.
 - b) $\{x \in X : f(x) \leq a\} \in \mathcal{A} \text{ para todo } a \in \mathbb{R}.$
 - c) $\{x \in X : f(x) \ge a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.
 - d) $\{x \in X : f(x) < a\} \in \mathcal{A} \text{ para todo } a \in \mathbb{R}.$

Concluir que si $X \in \mathcal{M}$ y $\mathcal{A} = \mathcal{M}$, entonces f es medible si y sólo si vale alguno de (y por lo tanto todos) los ítems de arriba.

Para demostrar que las condiciones dadas son equivalentes y concluir que si $X \in \mathcal{M}$ (donde \mathcal{M} es la σ -álgebra de los conjuntos medibles de Lebesgue) y $\mathcal{A} = \mathcal{M}$, entonces f es medible si y sólo si se cumple alguna (y por lo tanto todas) de las condiciones dadas, sigamos estos pasos:

Paso 1: Demostrar la equivalencia de las condiciones

Supongamos que \mathcal{A} es una σ -álgebra de subconjuntos de X y $f: X \to \mathbb{R}$.

(a) implica (b)

Supongamos que $\{x \in X : f(x) > a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.

Para demostrar que $\{x \in X : f(x) \leq a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$, consideremos el complemento de $\{x \in X : f(x) > a\}$:

$${x \in X : f(x) \le a} = {x \in X : f(x) > a}^c.$$

Dado que $\{x \in X : f(x) > a\} \in \mathcal{A}$ y \mathcal{A} es una σ -álgebra (por lo tanto cerrada bajo complementos), se sigue que:

$${x \in X : f(x) \le a} \in \mathcal{A}.$$

(b) implica (c)

Supongamos que $\{x \in X : f(x) \leq a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.

Para demostrar que $\{x \in X : f(x) \geq a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$, consideremos:

$${x \in X : f(x) \ge a} = \bigcap_{n=1}^{\infty} {x \in X : f(x) > a - \frac{1}{n}}.$$

La intersección numerable de conjuntos en \mathcal{A} sigue perteneciendo a \mathcal{A} porque \mathcal{A} es una σ -álgebra. Por lo tanto:

$${x \in X : f(x) \ge a} \in \mathcal{A}.$$

(c) implica (d)

Supongamos que $\{x \in X : f(x) \ge a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.

Para demostrar que $\{x \in X : f(x) < a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$, consideremos el complemento de $\{x \in X : f(x) \geq a\}$:

$${x \in X : f(x) < a} = {x \in X : f(x) \ge a}^c.$$

Dado que $\{x \in X : f(x) \ge a\} \in \mathcal{A}$ y \mathcal{A} es cerrada bajo complementos, se sigue que:

$$\{x \in X : f(x) < a\} \in \mathcal{A}.$$

(d) implica (a)

Supongamos que $\{x \in X : f(x) < a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.

Para demostrar que $\{x \in X : f(x) > a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$, consideremos:

$${x \in X : f(x) > a} = \bigcup_{n=1}^{\infty} {x \in X : f(x) \ge a + \frac{1}{n}}.$$

La unión numerable de conjuntos en \mathcal{A} sigue perteneciendo a \mathcal{A} porque \mathcal{A} es una σ -álgebra. Por lo tanto:

$$\{x \in X : f(x) > a\} \in \mathcal{A}.$$

- 3. Sean $f, g: E \to \mathbb{R}$. Probar que:
 - a) Si f es medible entonces $\{x \in E : f(x) = a\} \in \mathcal{M}$ para todo $a \in \mathbb{R}$.
 - b) Si f y g son medibles entonces $\{x \in E : f(x) \leq g(x)\} \in \mathcal{M}$.
 - c) Si f es medible y f(x) = g(x) para casi todo $x \in E$, entonces g es medible.
- 4. Sean $f, g: E \to \mathbb{R}$ funciones medibles. Probar que:
 - a) f + g es medible.
 - b) αf es medible para todo $\alpha \in \mathbb{R}$.
 - c) f^2 es medible.
 - d) $f \cdot g$ es medible.

Sugerencia: $f \cdot g = \frac{(f+g)^2 - (f-g)^2}{2}$.

item (b)

Demostración

Consideramos dos casos: cuando $\alpha \neq 0$ y cuando $\alpha = 0$.

Caso 1: $\alpha > 0$

Si $\alpha>0$, entonces $\alpha f(x)>a$ es equivalente a $f(x)>\frac{a}{\alpha}$. Más precisamente:

$${x \in X : \alpha f(x) > a} = {x \in X : f(x) > \frac{a}{\alpha}}.$$

Dado que f es medible, sabemos que para cualquier $b \in \mathbb{R}$:

$$\{x \in X : f(x) > b\} \in \mathcal{M}.$$

Aplicando esto a $b = \frac{a}{\alpha}$, obtenemos que:

$${x \in X : f(x) > \frac{a}{\alpha}} \in \mathcal{M}.$$

Por lo tanto:

$${x \in X : \alpha f(x) > a} \in \mathcal{M}.$$

Esto muestra que αf es medible cuando $\alpha > 0$.

Caso 2: $\alpha < 0$

Si $\alpha < 0$, entonces $\alpha f(x) > a$ es equivalente a $f(x) < \frac{a}{\alpha}$. Más precisamente:

$${x \in X : \alpha f(x) > a} = {x \in X : f(x) < \frac{a}{\alpha}}.$$

Aplicando esto a $b = \frac{a}{\alpha}$, obtenemos que:

$${x \in X : f(x) < b} \in \mathcal{M}.$$

Esto muestra que αf es medible cuando $\alpha < 0$.

Caso 3: $\alpha = 0$

Si $\alpha = 0$, entonces $\alpha f(x) = 0$ para todo $x \in X$. En este caso, para cualquier $a \in \mathbb{R}$:

$$\{x \in X : \alpha f(x) > a\} = \{x \in X : 0 > a\}.$$

- Si $a < 0, \{x \in X : 0 > a\} = X.$
- Si $a \ge 0$, $\{x \in X : 0 > a\} = \emptyset$.

Dado que $X \in \mathcal{M}$ y $\emptyset \in \mathcal{M}$, esto demuestra que el conjunto $\{x \in X : \alpha f(x) > a\} \in \mathcal{M}$ para cualquier $a \ y \ \alpha \in \mathbb{R}$.

item (c)

Demostración

Consideremos f como una función medible. Entonces, sabemos que para cualquier $a \in \mathbb{R}$, el conjunto $\{x \in X : f(x) > a\} \in \mathcal{M}$.

Paso 1: Relación entre $f^2(x)$ y f(x)

Observamos que $f^2(x) > a$ si y solo si $f(x) > \sqrt{a}$ o $f(x) < -\sqrt{a}$, siempre que a > 0. Si $a \le 0$, entonces $f^2(x) > a$ es trivialmente cierto para cualquier x, porque $f^2(x) \ge 0$ para todo $x \in X$.

Para formalizar esto:

$$\{x \in X : f^2(x) > a\} = \begin{cases} X, & \text{si } a \le 0, \\ \{x \in X : f(x) > \sqrt{a}\} \cup \{x \in X : f(x) < -\sqrt{a}\}, & \text{si } a > 0. \end{cases}$$

Paso 2: Verificación de la medibilidad

1. Caso $a \leq 0$:

En este caso, el conjunto $\{x \in X : f^2(x) > a\} = X$. Dado que $X \in \mathcal{M}$, este conjunto es medible.

2. Caso a > 0:

Aquí necesitamos considerar los conjuntos $\{x \in X : f(x) > \sqrt{a}\}\ y \{x \in X : f(x) < -\sqrt{a}\}.$

- $\{x \in X : f(x) > \sqrt{a}\} \in \mathcal{M}$ porque f es medible.

- $\{x \in X : f(x) < -\sqrt{a}\} \in \mathcal{M}$ porque f es medible y el conjunto $\{x \in X : f(x) < b\}$ es medible para cualquier $b \in \mathbb{R}$.

La unión de dos conjuntos medibles es medible. Por lo tanto:

$${x \in X : f^{2}(x) > a} = {x \in X : f(x) > \sqrt{a}} \cup {x \in X : f(x) < -\sqrt{a}} \in \mathcal{M}.$$

item (d)

Sale basicamente juntando los items a, b y c.

5. Sea $f: \mathbb{R} \to \mathbb{R}$ monótona. Probar que f es medible.

Propiedades de funciones monótonas

Las funciones monótonas tienen propiedades importantes que podemos utilizar en la demostración:

- 1. Las funciones monótonas (crecientes o decrecientes) tienen la propiedad de que sus preimágenes de intervalos abiertos son intervalos (o uniones de intervalos) en \mathbb{R} .
- 2. Los intervalos y uniones numerables de intervalos son medibles en el sentido de Lebesgue.

Demostración

Caso 1: f es monótona creciente

Supongamos que f es monótona creciente. Entonces, si $f(x_1) \leq f(x_2)$ siempre que $x_1 \leq x_2$. Para cualquier $a \in \mathbb{R}$:

$${x \in \mathbb{R} : f(x) > a} = (f^{-1}((a, \infty))).$$

Consideremos la estructura de este conjunto:

- 1. Si f es estrictamente creciente, $f^{-1}((a, \infty))$ es un intervalo de la forma (x_0, ∞) , donde x_0 es el punto en el cual $f(x_0) = a$.
- 2. Si f es no estrictamente creciente (puede ser constante en algunos intervalos), $f^{-1}((a, \infty))$ es una unión de intervalos de la forma (x_0, ∞) o $[x_0, \infty)$, donde x_0 es el supremo de los puntos x tales que $f(x) \leq a$.

En ambos casos, (x_0, ∞) o $[x_0, \infty)$ son intervalos, y los intervalos son conjuntos medibles. Además, cualquier unión numerable de intervalos es medible.

Por lo tanto, $\{x \in \mathbb{R} : f(x) > a\}$ es un conjunto medible.

Caso 2: f es monótona decreciente

Supongamos que f es monótona decreciente. Entonces, si $f(x_1) \ge f(x_2)$ siempre que $x_1 \le x_2$. Para cualquier $a \in \mathbb{R}$:

$${x \in \mathbb{R} : f(x) > a} = (f^{-1}((a, \infty))).$$

Consideremos la estructura de este conjunto:

- 1. Si f es estrictamente decreciente, $f^{-1}((a, \infty))$ es un intervalo de la forma $(-\infty, x_0)$, donde x_0 es el punto en el cual $f(x_0) = a$.
- 2. Si f es no estrictamente decreciente (puede ser constante en algunos intervalos), $f^{-1}((a, \infty))$ es una unión de intervalos de la forma $(-\infty, x_0)$ o $(-\infty, x_0]$, donde x_0 es el ínfimo de los puntos x tales que $f(x) \leq a$.

En ambos casos, $(-\infty, x_0)$ o $(-\infty, x_0]$ son intervalos, y los intervalos son conjuntos medibles. Además, cualquier unión numerable de intervalos es medible.

Por lo tanto, $\{x \in \mathbb{R} : f(x) > a\}$ es un conjunto medible.

Conclusión

Hemos demostrado que si f es una función monótona (creciente o decreciente) de \mathbb{R} a \mathbb{R} , entonces f es medible. Esto se debe a que las preimágenes de intervalos abiertos bajo funciones monótonas son intervalos o uniones de intervalos, los cuales son medibles en el sentido de Lebesgue.

- 6. Sea $f:[0,1]\to\mathbb{R}$ una función. Probar que:
 - a) Si f es continua en [0,1], entonces es medible.

b) Si f es continua en casi todo punto de [0,1] (esto es, si su conjunto de discontinuidades es nulo), entonces es medible.

item (a)

Demostración

- 1. Definición de medibilidad: Una función $f:[0,1] \to \mathbb{R}$ es medible si para todo $a \in \mathbb{R}$, el conjunto $\{x \in [0,1]: f(x) > a\}$ es medible.
- 2. Propiedad de los conjuntos abiertos: Si f es continua, entonces la preimagen de cualquier conjunto abierto bajo f es un conjunto abierto (en [0,1]). Esto se debe a la propiedad de la continuidad.
- 3. Medibilidad de conjuntos abiertos: Los conjuntos abiertos en [0,1] son medibles en el sentido de Lebesgue.
- 4. Aplicación de la continuidad: Consideremos un conjunto de la forma (a, ∞) . Dado que f es continua, la preimagen de (a, ∞) bajo f es:

$$f^{-1}((a,\infty)) = \{x \in [0,1] : f(x) > a\}.$$

Dado que (a, ∞) es un conjunto abierto y la preimagen de un conjunto abierto bajo una función continua es abierta, se sigue que:

$$\{x \in [0,1] : f(x) > a\}$$

es un conjunto abierto en [0, 1] y, por lo tanto, medible.

item (b)

Demostración

- 1. Conjunto de discontinuidades: Supongamos que $D \subseteq [0,1]$ es el conjunto de discontinuidades de f. Por hipótesis, D es un conjunto nulo, es decir, $\mu(D) = 0$, donde μ denota la medida de Lebesgue.
- 2. Descomposición de [0,1]: Dado que D es nulo, podemos escribir [0,1] como la unión disjunta de D y C, donde $C=[0,1]\setminus D$ es el conjunto donde f es continua. Así:

$$[0,1] = C \cup D.$$

Dado que $\mu(D) = 0$, tenemos $\mu(C) = 1$.

3. Función medible en C: La función f es continua en C y $C \subseteq [0,1]$. Hemos demostrado en la parte (a) que si f es continua en un conjunto, entonces es medible en ese conjunto. Por lo tanto, f es medible en C.

4. Extensión a [0,1]: Para cualquier $a \in \mathbb{R}$, consideremos el conjunto $\{x \in [0,1] : f(x) > a\}$. Podemos escribir este conjunto como:

$$\{x \in [0,1] : f(x) > a\} = \{x \in C : f(x) > a\} \cup \{x \in D : f(x) > a\}.$$

Dado que f es medible en C, $\{x \in C : f(x) > a\} \in \mathcal{M}$. Además, dado que D es un conjunto nulo, cualquier subconjunto de D es también nulo y, por lo tanto, medible:

$${x \in D : f(x) > a} \in \mathcal{M}.$$

5. Unión de conjuntos medibles: La unión de dos conjuntos medibles es medible. Por lo tanto,

$$\{x \in [0,1] : f(x) > a\} = \{x \in C : f(x) > a\} \cup \{x \in D : f(x) > a\}$$

es un conjunto medible.

7. Dada una sucesión $(f_n)_{n\in\mathbb{N}}$ de funciones en E, consideremos las funciones

$$S(x) = \sup_{n \in \mathbb{N}} f_n(x)$$
 \mathbf{y} $I(x) = \inf_{n \in \mathbb{N}} f_n(x)$.

Probar que si las funciones f_n son medibles, entonces S e I también lo son.

Demostración

1. Medibilidad de $S(x) = \sup_{n \in \mathbb{N}} f_n(x)$

Consideremos el conjunto $\{x \in E : S(x) \leq a\}$. Por la definición de S(x):

$$S(x) = \sup_{n \in \mathbb{N}} f_n(x)$$

Por lo tanto,

$${x \in E : S(x) \le a} = {x \in E : \sup_{n \in \mathbb{N}} f_n(x) \le a}$$

Formalmente:

$$\{x \in E : S(x) \le a\} = \bigcup_{n \in \mathbb{N}} \{x \in E : f_n(x) \le a\}$$

Dado que cada f_n es medible, sabemos que $\{x \in E : f_n(x) \leq a\} \in \mathcal{M}$ para todo n. La unión numerable de conjuntos medibles también es medible, por lo que:

$$\{x \in E : S(x) \le a\} = \bigcup_{n \in \mathbb{N}} \{x \in E : f_n(x) \le a\} \in \mathcal{M}$$

Esto demuestra que $S(x) = \sup_{n \in \mathbb{N}} f_n(x)$ es medible.

2. Medibilidad de $I(x) = \inf_{n \in \mathbb{N}} f_n(x)$

Consideremos el conjunto $\{x \in E : I(x) \ge a\}$. Por la definición de I(x):

$$I(x) = \inf_{n \in \mathbb{N}} f_n(x)$$

Por lo tanto,

$${x \in E : I(x) \ge a} = {x \in E : \inf_{n \in \mathbb{N}} f_n(x) \ge a}$$

Esto significa que para todo $n \in \mathbb{N}$, $f_n(x) \geq a$. Formalmente:

$$\{x \in E : I(x) \ge a\} = \bigcap_{n \in \mathbb{N}} \{x \in E : f_n(x) \ge a\}$$

Dado que cada f_n es medible, sabemos que $\{x \in E : f_n(x) \geq a\} \in \mathcal{M}$ para todo n. La intersección numerable de conjuntos medibles también es medible, por lo que:

$$\{x \in E : I(x) \ge a\} = \bigcap_{n \in \mathbb{N}} \{x \in E : f_n(x) \ge a\} \in \mathcal{M}$$

Esto demuestra que $I(x) = \inf_{n \in \mathbb{N}} f_n(x)$ es medible.

8. Dada $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones medibles y no negativas en E, sea $f(x)=\sum_{n=1}^{\infty}f_n(x)$. Probar que f es medible, y que

$$\int_{E} f \, d\mu = \sum_{n=1}^{\infty} \int_{E} f_n \, d\mu.$$

9. Sea $f: E \to \mathbb{R}$ una función medible, no negativa e integrable. Probar que si $A \in \mathcal{M}$, entonces

$$\int_{A} f(x+y) d\mu(x) = \int_{A+y} f(x) d\mu(x)$$

para todo $y \in \mathbb{R}$ tal que $A + y \subseteq E$.

- 10. Sea $f:E\to\mathbb{R}$ una función medible y acotada. Supongamos que E tiene medida finita. Probar que f es integrable.
- 11. Sean $f,g:E\to\mathbb{R}$ funciones medibles e integrables tales que para todo $A\subseteq E$ medible se tiene que

$$\int_A f \, d\mu = \int_A g \, d\mu.$$

Probar que f = g en casi todo punto de E.

12. Consideremos $E = [0, +\infty)$. Sea $f_n : E \to \mathbb{R}$ dada por $f_n = \left(-\frac{1}{n}\right)\chi_{[0,n]}$. Probar que la sucesión $(f_n)_{n\in\mathbb{N}}$ converge uniformemente a la función nula en E. Probar que, sin embargo,

$$\int_E f_n \, d\mu = -1, \quad \text{de manera que} \quad \liminf_{n \to \infty} \int_E f_n \, d\mu = -1 < 0 = \int_E \liminf_{n \to \infty} f_n \, d\mu.$$

Deducir que el lema de Fatou no vale si las funciones f_n no son no negativas, aun cuando converjan uniformemente.

- 13. Sean $f: E \to \mathbb{R}$ una función integrable y $(E_n)_{n \in \mathbb{N}}$ una sucesión de subconjuntos medibles de E tales que $E = \bigcup_{n \in \mathbb{N}} E_n$. Probar que:
 - a) Si los E_n son disjuntos dos a dos entonces

$$\int_{E} f \, d\mu = \sum_{n=1}^{\infty} \int_{E_n} f \, d\mu.$$

b) Si $(E_n)_{n\in\mathbb{N}}$ es creciente entonces

$$\lim_{n\to\infty} \int_{E_n} f\,d\mu = \int_E f\,d\mu \quad \mathbf{y} \quad \lim_{n\to\infty} \int_{E\backslash E_n} f\,d\mu = 0.$$

14. Sea $f:(0,+\infty)\to\mathbb{R}$ integrable. Probar que para todo x>0 la función $F_x:(0,+\infty)\to\mathbb{R}$ dada por $F_x(t)=f(t)e^{-xt}$ es integrable, y que la función $g:(0,+\infty)\to\mathbb{R},\ g(x)=\int_{(0,+\infty)}f(t)e^{-xt}\,dt$, es continua.