3 Lecture 3:Jan 25

Last time

• Git

Today

- Linear algebra: vector and vector space, rank of a matrix
- Column space and Nullspace (JM Appendix A)

Notations

$$\mathbf{y}_{n \times 1} = \mathbf{X} \mathbf{\beta}_{n \times p_{p \times 1}} + \mathbf{\epsilon}_{n \times 1}$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

- All vectors are column vector
- Write dimensions underneath as in $X_{n \times p}$ or as $X \in \mathbb{R}^{n \times p}$
- Bold upper-case letters for Matrices. Bold lower-case letters for Vectors.

Vector and vector space

(from JM Appendix A)

- A set of vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly dependent if there exist coefficients c_j for $j = 1, 2, \dots, n$ such that $\sum_{j=1}^n c_j \mathbf{x}_j = \mathbf{0}$ and $||\mathbf{c}||_2 = \sum_{j=1}^n c_j^2 > 0$. They are linearly independent if $\sum_{j=1}^n c_j \mathbf{x}_j = \mathbf{0}$ implies (i.e. \Longrightarrow) $c_j = 0$ for all j.
- Two vectors are *orthogonal* to each other, written $\mathbf{x} \perp \mathbf{y}$, if their inner product is 0, that is $\mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x} = \sum_j x_j y_j = 0$.
- A set of vectors $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$ are mutually orthogonal iff (i.e. \iff) $\mathbf{x}^{(i)T}\mathbf{x}^{(j)} = 0$ for $\forall i \neq j$.
- The most common set of vectors that are mutually orthogonal are the *elementary* vectors $\mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \dots, \mathbf{e}^{(n)}$, which are all zero, except for one element equal to 1, so that $\mathbf{e}_i^{(i)} = 1$ and $\mathbf{e}_j^{(i)} = 0, \forall j \neq i$.
- ullet A vector space $\mathcal S$ is a set of vectors that are closed under addition and scalar multiplication, that is

- if $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are in \mathcal{S} , then $c_1\mathbf{x}^{(1)} + c_2\mathbf{x}^{(2)}$ is in \mathcal{S} .
- A vector space S is generated or spanned by a set of vectors $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$, written as $S = \text{span}\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}\}$, if any vector \mathbf{x} in the vector space is a linear combination of $\mathbf{x}_i, i = 1, 2, \dots, n$.
- A set of linearly independent vectors that generate or span a space S is called a *basis* of S.

Example A.1

Let

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \mathbf{x}^{(2)} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \text{ and } \mathbf{x}^{(3)} = \begin{bmatrix} -3\\-1\\1\\3 \end{bmatrix}.$$

Then $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are linearly independent, but $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, and $\mathbf{x}^{(3)}$ are linearly dependent since $5\mathbf{x}^{(1)} - 2\mathbf{x}^{(2)} + \mathbf{x}^{(3)} = 0$

Rank

Some matrix concepts arise from viewing columns or rows of the matrix as vectors. Assume $\mathbf{A} \in \mathbb{R}^{m \times n}$.

- \bullet rank(**A**) is the maximum number of linearly independent rows or columns of a matrix.
- $\operatorname{rank}(\mathbf{A}) \leqslant \min\{m, n\}.$
- A matrix is full rank if $rank(\mathbf{A}) = min\{m, n\}$. It is full row rank if $rank(\mathbf{A}) = m$. It is full column rank if $rank(\mathbf{A}) = n$.
- a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is singular if $rank(\mathbf{A}) < n$ and non-singular if $rank(\mathbf{A}) = n$.
- $rank(\mathbf{A}) = rank(\mathbf{A}^T) = rank(\mathbf{A}^T\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^T)$. (Show this in HW.)
- $rank(\mathbf{AB}) \leq min\{rank(\mathbf{A}), rank(\mathbf{B})\}$. (Hint: Columns of \mathbf{AB} are spanned by columns of \mathbf{A} and rows of of \mathbf{AB} are spanned by rows of \mathbf{B} .)
- if $\mathbf{A}\mathbf{x} = \mathbf{0}_m$ for some $\mathbf{x} \neq \mathbf{0}_n$, then $\text{rank}(\mathbf{A}) \leqslant n 1$.

Column space

Definition: The column space of a matrix, denoted by $C(\mathbf{A})$ is the vector space spanned by the columns of the matrix, that is,

$$C(A) = \{x : \text{ there exists a vector } c \text{ such that } x = Ac\}.$$

This means that if $\mathbf{x} \in \mathcal{C}(\mathbf{A})$, we can find coefficients c_j such that

$$\mathbf{x} = \sum_{j} c_{j} \mathbf{a}^{(j)}$$

where $\mathbf{a}^{(j)} = \mathbf{A}_{\cdot j}$ denotes the jth column of matrix \mathbf{A} .

- The column space of a matrix consists of all vectors formed by multiplying that matrix by any vector.
- The number of basis vectors for $C(\mathbf{A})$ is then the number of linearly independent columns of the matrix \mathbf{A} , and so, dim $(C(\mathbf{A})) = \operatorname{rank}(\mathbf{A})$.
- The dimension of a space is the number of vectors in its basis.

Example A.2

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -3 \\ 1 & 2 & -1 \\ 1 & 3 & 1 \\ 1 & 4 & 3 \end{bmatrix}$$
 and $\mathbf{c} = \begin{bmatrix} 5 \\ 4 \\ 3 \end{bmatrix}$. Show that \mathbf{Ac} is a linear combination of columns

 ΠH .

solution:

Result A.1

 $\operatorname{rank}(\mathbf{AB}) \leqslant \min(\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B})).$ proof:

Result A.2

- (a) If A = BC, then $C(A) \subseteq C(B)$.
- (b) If $C(A) \subseteq C(B)$, then there exists a matrix C such that A = BC.

proof:

Null space

Definition: The null space of a matrix, denoted by $\mathcal{N}(\mathbf{A})$, is $\mathcal{N}(\mathbf{A}) = \{\mathbf{y} : \mathbf{A}\mathbf{y} = \mathbf{0}\}$.

Result A.3

proof:

If **A** has full-column rank, then $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}.$

Theorem A.1

Assume $\mathbf{A} \in \mathbb{R}^{m \times n}$, then $\dim(\mathcal{C}(\mathbf{A})) = r$ and $\dim(\mathcal{N}(\mathbf{A})) = n - r$, where $r = \operatorname{rank}(\mathbf{A})$.

See JM Appendix Theorem A.1 for the proof.

Interpretation: "dimension of column space + dimension of null space = # columns"

 ${\it Mis}$ -Interpretation: Columns space and null space are orthogonal complement to each other. They are of different orders in general! Next result gives the correct statement.