北京工业大学2019—2020学年第一学期末 《概率论与数理统计》(工、经类)课程考试试卷(A卷)

承例	试说明: <u>考试闭卷;可使用文曲星外的计算器。</u> 话: 本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到 违纪、不作弊、不替考。 若有违反,愿接受相应的处分。
承	诺人: 学号: 班号:
注	: 本试卷共6页,满分100分。 考试时必须使用统一发放的答题纸、草稿纸。
	页面成绩汇总表 (阅卷教师填写) 题号 ー 二(1) 二(2) 二(3) 二(4) 二(5) 总分 得分
_	· 、填空题(15个空, 每空2分, 共30分)
	设 A 与 B 为事件, $P(A)=0.6$, $P(B)=0.4$, $P(A B)=0.5$. 则 $P(A\cup B)=$
2.	设连续型随机变量 X 有分布函数 $F(x) = \begin{cases} a + be^{-0.5x}, & x \ge 0 \\ 0, & x < 0. \end{cases}$ 其中 a 与 b 为常数则 $a = __ b = __\$
3.	设随机变量 X 服从参数为 λ 的泊松分布,且 $P\{X \geq 1\} = 1 - e^{-2}$,则 $\lambda =$ $E(X^2) =$.
4.	若随机变量 X 可能取的值为 -2 , 0 和1, 且 $P\{X=-2\}=0.2$, $P\{X=0\}=0.4$. 贝 $E(X)=$, $Var(X)=$
5.	若随机变量 X_1 与 X_2 相互独立,且 $X_1 \sim N(3, 3^2)$, $X_2 \sim N(1, 2^2)$, $X = X_1 - 2X_2$ 则 $X \sim$ 进一步,记 $\Phi(x)$ 为标准正态分布的分布函数,且 $\Phi(1) = 0.8413$ $\Phi(2) = 0.9772$,则 $P\{-9 < X < 6\} =$
6.	设 X_1, \dots, X_{10} 为抽自参数为 2 的泊松分布的随机样本, 记 \overline{X} 与 S^2 分别为样本均值与方差, 则 $E(\overline{X}) = \underline{\hspace{1cm}}, \ Var(\overline{X}) = \underline{\hspace{1cm}}, \ E(S^2) = \underline{\hspace{1cm}}.$
7.	设 X_1, \dots, X_n 为抽自正态总体 $N(\mu, \sigma^2)$ 的随机样本, 记 \overline{X} 与 S^2 分别为样本均值与为差. 则 μ 的置信度为 $1-\alpha$ 的置信区间为

二、解答题(每题14分, 共70分)

注:解答以下各题时,要求写出解题过程,否则不得分!

- 1. 甲乙两盒分装同型号、同质的小球若干, 甲盒装球8个, 3个色白, 5个色黑; 乙盒装球7个, 5个色白, 2个色黑. 现从甲盒中随机取出两球放入乙盒, 再从乙盒中随机取出1球. 求:
 - (1). 从乙盒中取出的球是白球的概率;
 - (2). 在从乙盒中取出的球是白球的情况下, 从甲盒中取出的两球都是白球的概率.

2. 设连续型随机变量X有概率密度函数

$$f_X(x) = \begin{cases} 1 - |x|, & x \in (-1, 1) \\ 0, & \text{其他.} \end{cases}$$

设随机变量 $Y = X^2$, 求:

(1). Y的概率密度函数 $f_Y(y)$; (2). Y的期望E(Y)和方差Var(Y).

3. 设二维连续型随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} e^{-y}, & 0 < x < y < \infty, \\ 0, & \text{其他.} \end{cases}$$

- (1). 求X和Y的边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$; (2). 判断X与Y是否独立, 为什么?
- (3). 求E(XY).

- 4. 设 X_1, X_2, \dots, X_n 是抽自正态总体 $X \sim N(\mu, \sigma^2)$ 的随机样本, 试求: (1). μ 和 σ^2 的矩估计 $\hat{\mu}$ 和 $\hat{\sigma}^2$; (2). μ 和 σ^2 的极大似然估计 $\hat{\mu}$ 和 $\hat{\sigma}^2$; (3). $E(\hat{\mu})$ 和 $E(\hat{\sigma}^2)$.

- 5. 设某厂生产的一批零件的长度(单位: mm)服从正态分布 $X \sim N(\mu, \sigma^2)$, $\mu n \sigma^2$ 是未知参数, 需要进行统计检验. 现从该批产品中随机抽取零件25件, 算得零件长度的样本均值为75.5, 标准差为3.95. 问在显著性水平 $\alpha=0.05$ 下, 从样本看:
 - (1). 是否接受 " $\mu = 75$ "的假设? (2). 是否接受 " $\sigma \le 4.0$ "的假设?

t 分布与 χ^2 分布表

$t_{24}(0.025) = 2.0639$	$t_{24}(0.05) = 1.7109$	$t_{25}(0.025) = 2.0595$	$t_{25}(0.05) = 1.7081$
$\chi_{24}^2(0.025) = 39.364$	$\chi_{24}^2(0.05) = 36.415$	$\chi_{25}^2(0.025) = 40.646$	$\chi_{25}^2(0.05) = 37.652$
$\chi_{24}^2(0.975) = 12.401$	$\chi_{24}^2(0.95) = 13.848$	$\chi_{25}^2(0.975) = 13.120$	$\chi_{25}^2(0.95) = 14.611$