Homework 6

Arjun Koshal

March 18, 2022

Task 1

Task 2

Let R and S be equivalence relations on a set A.

Theorem. The relation $R \cup S$ is an equivalence relation on A.

Proof. Let us disprove this statement by first assuming the theorem holds and then providing a counterexample. Suppose the theorem holds true and $A = \{x, y, z\}$. Let $R = \{(x, x), (y, y), (z, z), (x, y), (y, x)\}$ and $S = \{(x, x), (y, y), (z, z), (y, z), (z, y)\}$.

It follows that $R \cup S = \{(x,x), (y,y), (z,z), (x,y), (y,x), (y,z), (z,y)\}$ But for $R \cup S$, $(x,y), (y,z) \in R \cup S$ does not mean $(x,z) \in R \cup S$. Therefore the relation is not transitive. Since the relation is not transitive, the relation $R \cup S$ is not an equivalence relation on A.

Theorem. The relation $R \cap S$ is an equivalence relation on A.

Proof. We can prove $R \cap S$ to be an equivalence relation by showing it is reflexive, symmetric, and transitive. For reflexivity, let $x \in A$. We have $(x,x) \in R$ because R is reflexive and $(x,x) \in S$ because S is also reflexive. Therefore it holds that $(x,x) \in R \cap S$. For symmetry, let $(x,y) \in R \cap S$. Then, $(x,y) \in R$ and $(x,y) \in S$. By the symmetry of R, it holds that $(y,x) \in R$ and by the symmetry of S, it holds that $(y,x) \in S$. Therefore it holds that $(y,x) \in R \cap S$. For transitivity, let $(x,y),(y,z) \in R \cap S$. By the transitivity of R and S, it holds that $(x,z) \in R$ and $(x,z) \in S$. Therefore $(x,z) \in R \cap S$. Thus we can conclude the relation $R \cap S$ is an equivalence relation on A.