COMPOSITE FUNCTIONS

INTRODUCTION TO CALCULUS

TRANSFORMATION OF A FUNCTION

- Shift
 - Horizontal
 - Vertical
- Scaling
 - Horizontal
 - Vertical
- Reflection about the axis

TRANSFORMATION: VERTICAL SHIFT

- Original
 - $f(x) = \sin(x)$
- Vertical shift up 2 units
 - **1** 7
- Vertical shift down 3 units

TRANSFORMATION: VERTICAL SHIFT

- Original
 - f(x)
- Vertical shift up c units (c > 0)
 - f(x) + c
- Vertical shift down c units (c > 0)
 - f(x) c

A vertical shift of a function occurs if we add or subtract the same constant to each output y. For c>0, the graph of f(x)+c is a shift of the graph of f(x) up c units, whereas the graph of f(x)-c is a shift of the graph of f(x) down c units. For example, the graph of the function $f(x)=x^3+4$ is the graph of $y=x^3$ shifted up 4 units; the graph of the function $f(x)=x^3-4$ is the graph of $y=x^3$ shifted down 4 units (Figure 1.23).

TRANSFORMATION: HORIZONTAL SHIFT

- Original
 - f(x) = |x|
- Horizontal shift left 2 units
 - **?**
- Horizontal shift right 3 units
 - **2**

TRANSFORMATION: HORIZONTAL SHIFT

- Original
 - f(x)
- Horizontal shift left c units (c > 0)
 - f(x+c)
- Horizontal shift right c units (c > 0)
 - f(x-c)

TRANSFORMATION: VERTICAL SCALING

- Original
 - $f(x) = \sin(x)$
- Vertical scaling by a factor of 2
 - **?**
- Vertical scaling by a factor of $\frac{1}{3}$
 - **2**
- What is the difference between vertical scaling and vertical shift?

TRANSFORMATION: VERTICAL SCALING

- Original
 - f(x)
- New
 - -cf(x)
- Vertical scaling by a factor of c > 1
 - stretching
- Vertical scaling by a factor of 0 < c < 1
 - compressing

TRANSFORMATION: HORIZONTAL SCALING

- Original
 - $f(x) = \sin(x)$
- Horizontal scaling by a factor of 2
 - **2**

Assume that we know
$$\sin\left(\frac{\pi}{2}\right) = 1$$

TRANSFORMATION: HORIZONTAL SCALING

- Original
 - $f(x) = \sin(x)$
- Horizontal scaling by a factor of $\frac{1}{2}$
- What is the difference between horizontal scaling and horizontal shift?

Assume that we know $\sin\left(\frac{\pi}{2}\right) = 1$

TRANSFORMATION: HORIZONTAL SCALING

- Original
 - f(x)
- New
 - f(cx)
- Horizontal scaling by a factor of c > 1
 - compressing
- Horizontal scaling by a factor of 0 < c < 1
 - stretching

TRANSFORMATION: REFLECTION

- Vertical scaling
 - -cf(x)
- Horizontal scaling
 - \bullet f(cx)
- What if c < 0?
- In particular, what if c = -1?

-2 **-3**

TRANSFORMATION: REFLECTION c=-1

Original

$$f(x) = |x^2 - 1|$$

• Reflection about the x-axis

?

 $y \rightarrow -y (f(x) \rightarrow -f(x)) \text{ or } x \rightarrow -x?$

-2 **-3**

TRANSFORMATION: REFLECTION c=-1

- Original
 - f(x)
- Reflection about the x-axis
 - -f(x)

TRANSFORMATION: REFLECTION c = -1

- Original
 - f(x) = |x 5|
- Reflection about the y-axis

 - $y \to -y \text{ or } x \to -x?$

TRANSFORMATION: REFLECTION c = -1

- Original
 - f(x)
- Reflection about the y-axis
 - f(-x)

SUMMARY: SHIFT

SUMMARY: SCALING (STRETCH AND COMPRESSION)

SUMMARY: REFLECTION

SUMMARY

Transformation of $f(c > 0)$	Effect on the graph of \boldsymbol{f}
f(x) + c	Vertical shift up c units
$f\left(x\right) -c$	Vertical shift down c units
f(x+c)	Shift left by c units
f(x-c)	Shift right by c units
cf(x)	Vertical stretch if $c>1$; vertical compression if $0< c<1$
f(cx)	Horizontal stretch if $0 < c < 1$; horizontal compression if $c > 1$
-f(x)	Reflection about the <i>x</i> -axis
f(-x)	Reflection about the y-axis

Table 1.7 Transformations of Functions

EXAMPLE

WHICH TRANSFORMATIONS

ARE INCLUDED IN THE FIGURE?

If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph in the correct order.

HOW TO DEAL WITH MORE THAN ONE TRANSFORMATION?

FROM I TO 2 TO 3 TO 4, WHAT IS THE COMPOUND TRANSFORMATION?

$$f(x) = cf(a(x+b)) + d$$

Original function

$$f(x+b)$$

• Horizontal shift. If b > 0, shift left, if b < 0, shift right.

Original function

$$f(x+b)$$

• Horizontal shift. If b > 0, shift left, if b < 0, shift right.

$$f(a(x+b))$$

f(a(x+b)) • Horizontal scaling.

Original function

$$f(x+b)$$

• Horizontal shift. If b>0, shift left, if b<0, shift right.

$$f(a(x+b))$$

• Horizontal scaling. If a < 0, reflect the graph about the y-axis?

- Original function $f(x) = \sqrt{x}$
- Target function $f(x) = \sqrt{-2(x-5)}$
- Horizontal shift
 - b = -5 < 0, shift right
- Horizontal scaling
 - |a| = 2 > 1, compress
 - a = -2 < 0, reflect about the vertical line x = -b.

SECOND TYPO

If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph in the correct order. Given a function f(x), the graph of the related function y = cf(a(x + b)) + d can be obtained from the graph of y = f(x) by performing the transformations in the following order.

- 1. Horizontal shift of the graph of y = f(x). If b > 0, shift left. If b < 0, shift right.
- 2. Horizontal scaling of the graph of y = f(x + b) by a factor of |a|. If a < 0, reflect the graph about the y-axis.

about x = -b

• Horizontal scaling. If a < 0, reflect the graph about x = -b.

• Vertical scaling. If c < 0, reflect the graph about the x-axis!

$$cf(a(x+b)) + d$$

• Horizontal scaling. If a < 0, reflect the graph about x = -b.

$$cf(a(x+b))$$

• Vertical scaling. If c < 0, reflect the graph about the x-axis!

$$cf(a(x+b)) + d$$

• Vertical shift. If d > 0, shift up. If d < 0, shift down.

- Function from last time $f(x) = \sqrt{-2(x-5)}$
- Target function $f(x) = -2\sqrt{-2(x-5)+5}$
- Vertical scaling
 - |c| = 2 > 1, stretch
 - c = -2 < 0, reflect about the *x*-axis
- Vertical shift
 - d = 5 > 0, shift up

Figure 1.29 The function $f(x) = 3\sqrt{-x} + 1$ can be viewed as a sequence of three transformations of the function $y = \sqrt{x}$.

THIRD TYPO

If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph in the correct order. Given a function f(x), the graph of the related function y = cf(a(x + b)) + d can be obtained from the graph of y = f(x) by performing the transformations in the following order.

- 1. Horizontal shift of the graph of y = f(x). If b > 0, shift left. If b < 0, shift right.
- 2. Horizontal scaling of the graph of y = f(x + b) by a factor of |a|. If a < 0, reflect the graph about the y-axis.
- 3. Vertical scaling of the graph of y = f(a(x + b)) by a factor of |c|. If c < 0, reflect the graph about the x-axis.
- 4. Vertical shift of the graph of y = cf(a(x + b)). If d > 0, shift up. If d < 0, shift down.

EXERCISE ONE

- Describe how the following function can be graphed using a well-known function and a sequence of transformations.
- $f(x) = \frac{1}{2}(x-2)^2 3$

- A well-known function
 - \mathbf{x}^2
- Horizontal shift right 2 units
 - $(x-2)^2$
- ...
- The target function

$$f(x) = \frac{1}{2}(x-2)^2 - 3$$

- Horizontal shift right 2 units
 - $(x-2)^2$
- Vertical scaling by a factor of $\frac{1}{2}$
 - $\frac{1}{2}(x-2)^2$
- **...**
- The target function
 - $f(x) = \frac{1}{2}(x-2)^2 3$

- Vertical scaling by a factor of $\frac{1}{2}$
 - $\frac{1}{2}(x-2)^2$
- Vertical shift down 3 units

$$f(x) = \frac{1}{2}(x-2)^2 - 3$$

EXERCISE TWO

- Describe how the following function can be graphed using a well-known function and a sequence of transformations.
- f(x) = |-2x + 4| 3

- Step 0
 - write the function in standard form

$$f(x) = |-2x + 4| - 3 = |2x - 4| - 3 = |2(x - 2)| - 3$$

- A well-known function
 - |*x*|
- Horizontal shift right 2 units
 - |x-2|
- ...
- The target function
 - f(x) = |2(x-2)| 3

- Horizontal shift right 2 units
 - |x-2|
- Horizontal scaling by a factor of 2
 - |2(x-2)|
- ...
- The target function

$$f(x) = |2(x-2)| - 3$$

- Horizontal scaling by a factor of 2
 - |2(x-2)|
- Vertical shift down 3 units

$$f(x) = |2(x-2)| - 3$$