Лабораторная работа №2 Гармоники

Смирнов Никита

19 апреля 2021 г.

Оглавление

1	Упражнение 2.1	4
2	Упражнение 2.2	5
	2.1 Написание класса и проверка сигнала	5
	2.2 Спектр звука	6
3	Упражнение 2.3	8
4	Упражнение 2.4	10
	4.1 Создание сигнала	10
	4.2 Нулевой компонент спектра	11
	4.3 Изменение нулевого компонента	11
5	Упражнение 2.5	12
	5.1 Создание функции	12
	5.2 Проверка работоспособности функции	12
6	Упражнение 2.6	14
7	Выводы	17

Список иллюстраций

2.1	Полученный пилообразный звук
2.2	Спектр сегмента звука
3.1	Спектр сегмента звука
4.1	Визуализация созданного сигнала
4.2	Визуализация ускоренного звука
5.1	Сравнение спектров
6.1	Спектр сигнала
6.2	Спектр сигнала
6.3	Сравнение спектров

Листинги

2.1	Класс SawtoothSignal
2.2	Визуализация пилообразного звука
2.3	Спектр звука
3.1	Создание прямоугольного сигнала
3.2	Воспроизведение прямоугольного сигнала
3.3	Создание и воспроизведение сигнала с пониженной частотой
4.1	Создание треугольного сигнала
4.2	Вывод нулевого компонента
4.3	Смещение спектра и его визуализация
5.1	Создание функции
5.2	Создание сигнала и его воспроизведение
5.3	Сравнение спектров
5.4	Воспроизведение отфильтрованного звука
6.1	Создание сигнала и визуализация его спектра
6.2	Сравнение гармоник
6.3	Сегмент звука

Упражнение 2.1

В данном упражнении нас просят открыть chap02.ipynb, прочитать пояснения и запустить примеры. Поэтому я просто изучил все примеры и комментарии к ним.

Упражнение 2.2

2.1 Написание класса и проверка сигнала

Для данного упражнения нужно написать класс под названием SawtoothSignal и за основу просят взять Signal, но в главе примеры на основе Sinusoid, поэтому я буду использовать Sinusoid.

```
import thinkdsp

class MySawtoothSignal(thinkdsp.Sinusoid):
    def evaluate(self, ts):
        cycles = self.freq * ts + self.offset / thinkdsp.PI2
        frac, _ = np.modf(cycles)
        ys = self.amp * frac
        return ys
```

Листинг 2.1: Класс SawtoothSignal

Убедимся, что все работает корректно.

Листинг 2.2: Визуализация пилообразного звука

Рис. 2.1: Полученный пилообразный звук

2.2 Спектр звука

Теперь рассмотрим спектр нашего пилообразного звука.

- spect = sawtooth_wave.make_spectrum()
- 2 spect.plot()

Листинг 2.3: Спектр звука

Рис. 2.2: Спектр сегмента звука

В сравнении с треугольной волной пилообразная форма уменьшается практически аналогично, но включает как четные, так и нечетные гармоники.

Упражнение 2.3

Нам нужно создать прямоугольный сигнал 1100 Гц и вычислить его спектр. Создадим прямоугольный сигнал 1100 Гц и вычислим его спектр.

```
signal = thinkdsp.SquareSignal(1100)
wave = signal.make_wave(duration=0.5, framerate=10000)
spect = wave.make_spectrum()
spect.plot()
```

Листинг 3.1: Создание прямоугольного сигнала

Рис. 3.1: Спектр сегмента звука

Основная и первая гармоника находятся в нужном месте, но вторая гармоника, которая должна быть 5500 Γ ц, смещается на 4500 Γ ц. Третья, которая должна быть 7700 Γ ц, находится на 2300 Γ ц и так далее.

Прослушаем полученный звук.

wave.make_audio()

Листинг 3.2: Воспроизведение прямоугольного сигнала

Когда мы слушаем полученную волну, можем слышать эти aliasingгармоники, поскольку низкий тон имеет частоту 300 Гц. Создадим такой сигнал и прослушаем его. Разница присутствует и данные частоты можно расслышать.

```
1 signal = thinkdsp.SinSignal(300)
2 wave = signal.make_wave(duration=0.5, framerate=10000)
3 wave.make_audio()
```

Листинг 3.3: Создание и воспроизведение сигнала с пониженной частотой

Упражнение 2.4

4.1 Создание сигнала

Создадим треугольный сигнал с частотой $440~\Gamma$ ц и wave длительностью $0.01~{\rm cekyhgh}$.

```
signal = thinkdsp.TriangleSignal(440)
wave = signal.make_wave(duration=0.01)
wave.plot()
```

Листинг 4.1: Создание треугольного сигнала

Рис. 4.1: Визуализация созданного сигнала

4.2 Нулевой компонент спектра

Первый элемент спектра - комплексное число, близкое к нулю. Если мы добавим в компонент нулевой частоты какое-то число, то это приведет к добавлению вертикального смещения спектра.

```
spectrum = wave.make_spectrum()
```

Листинг 4.2: Вывод нулевого компонента

На выходе получили (1.0436096431476471e-14+0j).

4.3 Изменение нулевого компонента

Теперь установим смещение равное 100 и увидим, что сигнал сместился по вертикали.

```
spectrum.hs[0] = 100
spectrum.make_wave().plot()
```

Листинг 4.3: Смещение спектра и его визуализация

Рис. 4.2: Визуализация ускоренного звука

² spectrum.hs[0]

Упражнение 2.5

5.1 Создание функции

Напишем функцию, которая принимает Spectrum в качестве парметра и иизменяет его делением каждого элемента hs на соответсвующую частоту из fs.

```
def modify(spectrum):
   for it in range (1 , len(spectrum.hs)):
     spectrum.hs[it] /= spectrum.fs[it]
   spectrum.hs[0] = 0
```

Листинг 5.1: Создание функции

5.2 Проверка работоспособности функции

Создадим прямоугольный сигнал и прослушаем его.

```
wave = thinkdsp.SquareSignal(freq=440).make_wave(duration=0.5)
wave.make_audio()
```

Листинг 5.2: Создание сигнала и его воспроизведение

Теперь выведем только что созданный спектр, а также изменим его при помощи нашей функции и посмотрим на результат.

```
high = 10000
spectrum = wave.make_spectrum()
spectrum.plot(high=high, color='red')
modify(spectrum)
spectrum.scale(440)
```

6 spectrum.plot(high=high)

Листинг 5.3: Сравнение спектров

Рис. 5.1: Сравнение спектров

Фильтр подавляет гармоники, поэтому он действует как фильтр низких частот. Звук слышется почти как синусоида.

- 1 filtered = spectrum.make_wave()
- 2 filtered.make_audio()

Листинг 5.4: Воспроизведение отфильтрованного звука

Упражнение 2.6

Создадим пилообразный сигнал и выведем его спектр.

```
freq = 500
signal = thinkdsp.SawtoothSignal(freq=freq)
wave = signal.make_wave(duration=0.5, framerate=30000)
wave.make_audio()
spectrum = wave.make_spectrum()
spectrum.plot()
```

Листинг 6.1: Создание сигнала и визуализация его спектра

Рис. 6.1: Спектр сигнала

На рисунке видно, что гармоники уменьшаются как $1/f^2$.

```
spectrum.plot(color='red')
filter_spectrum(spectrum)
spectrum.scale(freq)
spectrum.plot()
```

Листинг 6.2: Сравнение гармоник

Рис. 6.2: Спектр сигнала

Теперь гармоника схожа с синусоидой.

wave.segment(duration=0.01).plot()

Листинг 6.3: Сегмент звука

Рис. 6.3: Сравнение спектров

Выводы

Во время выполнения лабораторной работы получены навыки работы с новыми сигналами и их гармониками, а именно с треугольными, прямоугольными и пилообразными сигналами. Также рассмотрено одно из наиболее важных явлений в цифровой обработке сигналов - биения.