MA50260 Statistical Modelling

Lecture 12: GLM - Model Selection and Modelling Aspects

Ilaria Bussoli

March 15, 2024

Model Comparison

In the last lecture, we compared nested GLMs using the deviance.

 \blacktriangleright If ϕ is known, we use

$$D(\mathcal{M}_2, \mathcal{M}_1) = 2\left[\ell\left(\underline{\hat{\beta}}^{(2)}\right) - \ell\left(\underline{\hat{\beta}}^{(1)}\right)\right] = \frac{D_1 - D_2}{\phi} \sim \chi^2_{\rho_2 - \rho_1}.$$

 \blacktriangleright If ϕ is unknown, we consider

$$\frac{(D_1-D_2)/(p_2-p_1)}{D_2/(n-p_2)}\sim F_{p_2-p_1,n-p_2}.$$

How do we compare models that are not nested?

AIC and BIC

The AIC and BIC incorporate the complexity to assess model fit.

Akaike's Information Criterion (AIC) is

$$AIC = -2\ell\left(\underline{\hat{\beta}}\right) + 2p,$$

and Schwarz Information Criterion (BIC) is

$$BIC = -2\ell\left(\underline{\hat{\beta}}\right) + p\log n,$$

where p is the number of explanatory variables.

For a better fitting model, we want a lower AIC or BIC.

Example - Contraceptive Use (I)

Data for n = 1607 women in Fiji across multiple age groups

```
##
     age education wantsMore notUsing using
## 1
    <25
              low
                       yes
                                53
                                      6
## 2 <25
              low
                                10
                        no
## 3 <25
             high
                              212
                                     52
                       yes
## 4 <25
             high
                               50
                                     10
                       no
## 5 25-29
             low
                               60 14
                       yes
## 6 25-29
             low
                                19
                                     10
                        no
```

We fit a binomial GLM with the factor age:

```
## [1] 86.58064
```

Example - Contraceptive Use (II)

Let's check if we should another explanatory variable

```
add1(fit1, ~. + education + wantsMore, test = "Chisq")
## Single term additions
##
## Model:
## cbind(using, notUsing) ~ age
##
           Df Deviance AIC LRT Pr(>Chi)
## <none> 86.581 166.09
## education 1 80.418 161.93 6.162 0.01305 *
## wantsMore 1 36.888 118.40 49.693 1.798e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
```

Example - Contraceptive Use (III)

Results indicate that both could be added

```
fit2 <- update(fit1, ~. + education + wantsMore)</pre>
```

Do we improve the model fit?

```
fit2$deviance
```

```
## [1] 29.91722
```

What are the estimates?

```
##
              Estimate Std. Error z value Pr(>|z|)
  (Intercept) -0.8082
                         0.1590 - 5.0832
                                        0.0000
          0.3894
                         0.1759 2.2143
                                        0.0268
## age25-29
## age30-39
          0.9086
                         0.1646 5.5194
                                        0.0000
          1.1892
## age40-49
                         0.2144 5.5460
                                        0.0000
## educationlow -0.3250
                         0.1240 - 2.6202
                                        0.0088
## wantsMoreyes
               -0.8330
                         0.1175 - 7.0908
                                        0.0000
```

Forward and Backward selection

How can we select the best fitting model?

Forward and Backward selection

How can we select the best fitting model?

There are generally two strategies:

Forward Selection:

Start with the simplest model and add single explanatory variables sequentially to see if they improve the model.

Backward Selection:

Start with the full model and remove single explanatory variables sequentially, and check whether the model fit changes substantially.

Doctor Deaths - Nonlinear Predictors (I)

##			8	age	smoking	${\tt deaths}$	person-years
##	1	35	to	44	smoker	32	52407
##	2	45	to	54	smoker	104	43248
##	3	55	to	64	smoker	206	28612
##	4	65	to	74	smoker	186	12663
##	5	75	to	84	smoker	102	5317
##	6	35	to	44	${\tt non-smoker}$	2	18790
##	7	45	to	54	${\tt non-smoker}$	12	10673
##	8	55	to	64	${\tt non-smoker}$	28	5710
##	9	65	to	74	${\tt non-smoker}$	28	2585
##	10	75	to	84	${\tt non-smoker}$	31	1462

Doctor Deaths - Nonlinear Predictors (II)

Doctor Deaths - Nonlinear Predictors (III)

For the Poisson regression model, we have

```
## [1] 157.5874
```

We get good improvements by adding a quadratic term:

```
## [1] 14.65234
```

Doctor Deaths - Varying Exposure

So far, the Poisson models ignore the varying number of doctors across groups.

Doctor Deaths - Varying Exposure

So far, the Poisson models ignore the varying number of doctors across groups.

We account for this varying exposure by defining

$$Y_i \sim \text{Poisson}(\mu_i)$$

 $\log(\mu_i) = \log(u_i) + \mathbf{x}_i^{\text{T}} \underline{\beta}.$

The term $log(u_i)$ is called the **offset**.

This new model achieves the lowest deviance

Further improvements are achieved by including an interaction effect between age and smoking status.

Overdispersion (I)

Observations are **overdispersed** if their variance is much higher than their mean.

Overdispersion (I)

Observations are **overdispersed** if their variance is much higher than their mean.

A high deviance despite a good model fit can signify overdispersion.

Overdispersion (I)

Observations are **overdispersed** if their variance is much higher than their mean.

A high deviance despite a good model fit can signify overdispersion.

We can look for this feature via the standardized residuals

$$r_i^P = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$$

and check if they are greater than 1, or via

$$\hat{\phi} = \frac{1}{n-p} \sum_{i=1}^{n} (r_i^P)^2,$$

which we can compare to a χ^2_{n-p} distribution.

Overdispersion (II)

How can we address the issue of overdispersion in a Poisson or binomial model?

Fit a quasi-Poisson or quasi-binomial model with

$$\operatorname{Var}(Y_i) = \phi V(\mu_i) = \phi \mu_i.$$

Use a negative-binomial distribution with

$$f(y \mid \mu, \vartheta) = \frac{\Gamma(y + \vartheta)}{\Gamma(\vartheta)y!} \left(\frac{\mu}{mu + \vartheta}\right)^y \left(\frac{\vartheta}{mu + \vartheta}\right)^{\vartheta},$$

The first option prevents us from using the likelihood summaries (e.g., AIC), but we can still use the deviance for model comparison.

Example - Disease Incidents

Let's fit a Poisson model to the citydisease data set

```
## [1] 2.609231
```

fitp\$deviance

```
## [1] 45.70303
```

The estimate $\hat{\phi}_P > 1$. So let's try a negative-binomial model

```
fitnb2 <- glm.nb(Incidents ~ Month, data = citydisease)
fitnb2$deviance</pre>
```

```
## [1] 26.99114
```

This model reduces the deviance from 45.7 to 27.0.