WCD Machine Learning Project

•••

Healthcare Provider Fraud Detection Analysis

Cheryl Chien **05.13.2023**

- Intro
- ML in Healthcare & Types of Health Insurance Fraud
- ML workflow
- Target Variable
- Dataset EDA
- Features Used for Modeling
- Data Preprocessing
- Model Selection
- Summary

Intro

Why this topic?

- Want to work on healthcare IT and analysis
- Financial factors play an important role in healthcare decisions.
- Preventing health insurance fraud can ensure that resources are used fairly
- Prevent insurance premium increase

ML in Healthcare & Types of Health Insurance Fraud

ML in Healthcare

- 1. Fraud prediction
- 2. Risk assessment
- 3. Dx and Rx evaluation
- 4. Healthcare workforce automation

Health Insurance Fraud

- 1. By provider, beneficiary, prescription
- 2. Billing for services that were not provided.
- 3. Duplicate submission of a claim for the same service.
- 4. Misrepresenting the service provided.
- 5. Charging for a more complex or expensive service than was actually provided.

ML Project Workflow

5. Evaluation

Test the accuracy

4. Preprocessing & Modeling

Tried two different processing and models

Use SQL and Python to explore the dataset and find trends

Target Variable

- 1. Predict the potentially fraudulent providers-- YES/NO
- 2. Discover patterns of potentially fraudulent providers
- Health insurance beneficiaries who are at greater risk of abuse, ex. Age,
 Health condition...

About Dataset

- Data source: Kaggle <u>HEALTHCARE PROVIDER FRAUD DETECTION ANALYSIS</u>
- 4 Tables: Provider data, Beneficiary Details Data, Inpatient Data, Outpatient Data

01	Provider Data	 Shape: 5410, 2 5410 unique providers Potential Fraud Yes/No
02	Beneficiary Details Data	 Shape: 138556, 25 138556 unique beneficiaries KYC like demographic, health conditions
03	Inpatient Data	 Shape: 40474, 30 40474 unique claimID Dates, provider, diagnosis, \$ Reimburse
04	Outpatient Data	 Shape: 517737, 27 517737 unique claimID Dates, provider, diagnosis, \$ Reimburse

Exploratory Data Analysis--1

Provider Data

Beneficiary Data

Exploratory Data Analysis--2

Joining all table: Provider, Beneficiary, IP, OP Data

Features Used for Modeling

Original Merged dataset shape: 558211 rows, 61 features dtypes: bool(1); datetime64[ns](4), float64(8), int64(27), object(21)

>> Drop features

- 10 Unrelated features: 'BeneID', 'ClaimID', 'ClaimStartDt', 'ClaimEndDt', 'has_claimed_op', 'DOB', 'DOD', 'NoOfMonths_PartACov', 'NoOfMonths_PartBCov', 'has_claimed_ip'
- 20 More than 50% null: 'AttendingPhysician', 'OperatingPhysician', 'OtherPhysician', 'ClmDiagnosisCode_4', 'ClmDiagnosisCode_5', 'ClmDiagnosisCode_6', 'ClmDiagnosisCode_7', 'ClmDiagnosisCode_8', 'ClmDiagnosisCode_9', 'ClmDiagnosisCode_10', 'ClmProcedureCode_1', 'ClmProcedureCode_2', 'ClmProcedureCode_3', 'ClmProcedureCode_4', 'ClmProcedureCode_5', 'ClmProcedureCode_6', 'ClmAdmitDiagnosisCode', 'AdmissionDt', 'DischargeDt', 'DiagnosisGroupCode'

Dataset used for Training

After dropping the features, the dataset will be used for training has 558211 rows and 31 features

>> Separate X and y data

X = Drop Provider and PotentialFraud columns

y = PotentialFraud

>>> Split the data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Data Preprocessing 1

- 1. Replace PotentialFraud value from YES/NO to 1 and 0
- 2. Replace RenalDiseaseIndicator value from YES/ 0 to 1 and 0

3. TargetEncoder:

Transform Object ClmDiagnosisCode_1, ClmDiagnosisCode_2, and ClmDiagnosisCode_3

4. Filling missing value:

ClmDiagnosisCode_1, ClmDiagnosisCode_2, and ClmDiagnosisCode_3, and DeductibleAmtPaid

Model Selection

Target variable: Predict the potentially fraudulent providers-- YES/NO

Features are labeled>> Supervised machine learning

Tried Logistic Regression and Random Forest Classifier

Logistic Regression

Accuracy: 0.6311457055077345

Random Forest Classifier 🗸

Accuracy: 0.7123868043674928

Evaluation

Data Preprocessing 2

- 1. StandardScaler
- 2. Imblearn.over_sampling
 - > RandomOverSampler
 - >> SMOTE

Logistic Regression	Random Forest Classifier
Accuracy: 0.5517049882213843	Accuracy: 0.6877457610418924

Summary

1. From EDA:

- a. Overall fraud rate in inpatient and outpatient data is about 38.12%
- b. Older beneficiaries have a slight higher risk to be involved in fraud
- c. Most common codes those also involved in fraud are 4019, 4011

2. Data processing & Model selection

	Logistic Regression	Random Forest Classifier
Data Processing 1	Accuracy: 0.6311457055077345	Accuracy: 0.7123868043674928
Data Processing 2	Accuracy: 0.5517049882213843	Accuracy: 0.6877457610418924

Limitation

- 1. Not sure the source and date of the dataset
- 2. Missing definition of some features, ex. Race, State, Chronic diseases
- 3. Could drop more features provider and Has_ChronicCondition
- 4. Could test more models like xgboostclassifier

Thank You

Reference

- 1. Health Care Fraud FBI
- 2. <u>Medicare Fraud & Abuse: Prevent, Detect, Report</u>
- 3. HEALTHCARE PROVIDER FRAUD DETECTION ANALYSIS | Kaggle
- 4. GitHub Atharvak19/Big-Data-Medicare-Fraud-Detection