NYC Traffic Delay Time Prediction

05th **January 2023** Ahmed Dider Rahat

Goal of the Project:

- 1. Analyze the NYC bus dataset.
- 2. Implement a ML model to predict the delay time.

Data set:

- 1. The dataset is collected from a kaggle.
- 2. The data set is huge and around 26 M data points.
- There are 17 variables in the data set.
- 4. No such column for delay time.

Project Flow:

Data Preparation:

1. Load the data set with pandas dataframe.

	RecordedAtTime	DirectionRef	PublishedLineName	OriginName	OriginLat	OriginLong	DestinationName	DestinationLat	DestinationLong
0	2017-06-01 00:03:34	0.0	B8	4 AV/95 ST	40.616104	-74.031143	BROWNSVILLE ROCKAWAY AV	40.656048	-73.907379
1	2017-06-01 00:03:43	1.0	S61	ST GEORGE FERRY/S61 & S91	40.643169	-74.073494	S I MALL YUKON AV	40.575935	-74.167686
2	2017-06-01 00:03:49	0.0	Bx10	E 206 ST/BAINBRIDGE AV	40.875008	-73.880142	RIVERDALE 263 ST	40.912376	-73.902534
3	2017-06-01 00:03:31	0.0	Q5	TEARDROP/LAYOVER	40.701748	-73.802399	ROSEDALE LIRR STA via MERRICK	40.666012	-73.735939
4	2017-06-01 00:03:22	1.0	Bx1	RIVERDALE AV/W 231 ST	40.881187	-73.909340	MOTT HAVEN 136 ST via CONCOURSE	40.809654	-73.928360

2. The Columns/Variable of the dataset:

```
# get columns name
list(df.columns)
['RecordedAtTime',
 'DirectionRef',
 'PublishedLineName',
 'OriginName',
 'OriginLat',
 'OriginLong',
 'DestinationName',
 'DestinationLat',
 'DestinationLong',
 'VehicleRef',
 'VehicleLocation.Latitude',
 'VehicleLocation.Longitude',
 'NextStopPointName',
 'ArrivalProximityText',
 'DistanceFromStop',
 'ExpectedArrivalTime',
 'ScheduledArrivalTime']
```

3. Rename the Column.

```
'RecordedAtTime',
'DirectionRef',
'PublishedLineName',
'OriginName',
'OriginLat',
'OriginLong',
'DestinationName',
'DestinationLat',
'DestinationLong',
'VehicleRef',
'VehicleLocation.Latitude',
'VehicleLocation.Longitude',
'NextStopPointName',
'ArrivalProximityText',
'DistanceFromStop',
'ExpectedArrivalTime',
'ScheduledArrivalTime']
```



```
['recorded at',
 'direction',
 'line name',
 'org name',
 'org lat',
 'org long',
 'dest name',
 'dest lat',
 'dest long',
 'vech name',
 'vech lat',
 'vech long',
 'next point name',
 'arrivial app',
 'dist from stop',
 'expected arr time',
 'schedule arr time']
```

- **4.** Precondition for calculating **Delay Time**:
 - Delay time is the subtraction of schedule_arr_time and expected_arr_time.
 - Count the null values in these columns.
 - There are approximately **4.5 M** null values in these variable.

```
Null Counts:
False 22058456
True 4462260
dtype: int64
```

So, drop those rows.

- **5.** Removing duplicate rows if exist.
- **6.** Take a sample of 1 M rows for further operations.

- **5.** Removing duplicate rows if exist.
- **6.** Take a sample of 1 M rows for further operations.
- **7.** Expected time and schedule time are:

	expected_arr_time	schedule_arr_time
3497201	2017-10-17 01:06:19	25:10:29
505529	2017-06-03 01:57:44	25:44:34
4491653	2017-10-21 01:35:28	25:28:19
4937382	2017-08-23 01:51:35	25:06:28
3493471	2017-12-17 01:02:27	25:12:13

In Schedule Time:

- date is missing.
- Time starts with 24, 25, 26 [For, next day 00, 01, 02 AM]

8. Calculating Delay time:

```
Expected: 2017-08-22 16:31:00 |
                               schedule: 16:30:22
                               schedule: 09:39:33
Expected: 2017-08-21 09:38:29
Expected: 2017-12-18 00:34:10
                               schedule : 24:27:26
Expected: 2017-08-18 01:52:26
                               schedule : 25:52:54
Expected: 2017-06-27 23:58:46
                               schedule: 24:00:44
Expected: 2017-12-02 23:49:42
                               schedule: 24:00:50
Expected: 2017-06-18 23:34:11
                               schedule: 01:23:21
Expected: 2017-06-18 23:43:50 |
                               schedule: 00:57:48
```

Expected	Schedule	Schedule DateTime
2017-08-22 16:31:00	16:30:22	2017-08-22 16:30:22
2017-12-18 00:34:10	24:27:26	2017-12-18 00:27:26
2017-06-27 23:58:46	24:00:44	2017-06-28 00:00:44
2017-06-18 23:34:11	01:23:21	2017-06-19 01:23:21

- **9.** Calculate the weekend status (**True:** Week End, **False:** Week Day).
- 10. Calculate day of year, month number, day of the month, and time of the day (Min).
- **11.** Calculate delay time = [schedule_arr_time expected_arr_time].

12. Final data look:

	recorded_at	direction	line_name	org_name	org_lat	org_long	dest_name	dest_lat	dest_long	vech_name		arrivial_app
4845711	2017-08-22 16:30:42	1.0	B65	ST JOHNS PL/RALPH AV	40.670227	-73.923233	DNTWN BKLYN FULTON MALL	40.690514	-73.987724	NYCT_6815		approaching
4512798	2017-08-21 09:38:07	0.0	В3	25 AV/HARWAY AV	40.593021	-73.992180	BERGEN BCH E 71 ST via AV U	40.619881	-73.907265	NYCT_7166		at stop
5690526	2017-06-26 19:05:22	1.0	X10	E 57 ST/3 AV	40.760429	-73.967674	PT RICHMOND via NARROWS RD via GANNON AV	40.633698	-74.129776	NYCT_2648	***	approaching
4078859	2017-08-18 19:02:47	0.0	M15-SBS	SOUTH FERRY/TERMINAL	40.702171	-74.013535	SELECT BUS SERVICE 125ST via 1 AV	40.803150	-73.932266	NYCT_1255		< 1 stop away
6498099	2017-06-30 06:02:29	1.0	Bx32	VA HOSPITAL/VA HOSPITAL	40.867352	-73.905624	MOTT HAVEN 136 ST	40.809654	-73.928360	NYCT_7764		approaching

12. Final data look (Cont.):

arrivial_app	dist_from_stop	expected_arr_time	schedule_arr_time	weekend_status	day_of_year	month_number	day_of_month	time_of_day	delays
approaching	65.0	2017-08-22 16:31:00	2017-08-22 16:30:22	False	234	8	22	990	0.63
at stop	14.0	2017-08-21 09:38:29	2017-08-21 09:39:33	False	233	8	21	579	0.00
approaching	95.0	2017-06-26 19:06:01	2017-06-26 19:07:08	False	177	6	26	1147	0.00
< 1 stop away	666.0	2017-08-18 19:07:08	2017-08-18 19:01:00	False	230	8	18	1141	6.13
approaching	94.0	2017-06-30 06:03:00	2017-06-30 06:04:20	False	181	6	30	364	0.00

Exploratory Data Analysis (EDA):

- 1. After data preparation, the size of the columns become: (1000000, 23)
- 2. Check Null values in each columns:

```
In row recorded at, total number of Null values: 0
In row direction, total number of Null values: 0
In row line name, total number of Null values: 0
In row org name, total number of Null values: 0
In row org lat, total number of Null values: 0
In row org long, total number of Null values: 0
In row dest name, total number of Null values: 0
In row dest lat, total number of Null values: 0
In row dest long, total number of Null values: 0
In row vech name, total number of Null values: 0
In row vech lat, total number of Null values: 0
In row vech long, total number of Null values: 0
In row next point name, total number of Null values: 0
In row arrivial app, total number of Null values: 0
In row dist from stop, total number of Null values: 0
In row expected arr time, total number of Null values: 0
In row schedule arr time, total number of Null values: 0
In row weekend status, total number of Null values: 0
In row day of year, total number of Null values: 0
In row month number, total number of Null values: 0
In row day of month, total number of Null values: 0
In row time of day, total number of Null values: 0
In row delays, total number of Null values: 0
```

3. Analysis variable direction:

4. Analysis variable 'Line Name': Total number of Unique line name is 242.

5. Top 10 frequent line name:

' P	.004	u011t 11	no name.													Co
	Line Name	Counts		17500 -												
0	B6	17915		15000 -												
1	B41	15836														
2	Q58	14247		12500 -												
3	Q44-SBS	13679		10000												
4	B35	13271														
5	Bx36	13260		7500 -												
6	M15-SBS	12282		5000 -												
7	M101	12031		25.00												
8	B82	11960		2500 -												
9	Q27	11877		0	B6 -	-11	Å.	- 850	- SS	- 52	98	SBS -	-10	1	32	
					ш	B41		9	Q44-SBS	835	Bx36	M15-SB	M101		B82	027

Top 10 Line Name and their frequency

- 6. Analysis variable 'Source Stop': Total number of Unique source stop is 628.
- 7. Top 10 frequent source stop name:

	Source Name	Counts
0	E 126 ST/2 AV	15808
1	MERRICK BL/ARCHER AV	14427
2	W 179 ST/BROADWAY	13639
3	138 ST/37 AV	10101
4	HARWAY AV/BAY 37 ST	9614
5	4 AV/E 10 ST	9328
6	ASTOR PL/3 AV	8704
7	TEARDROP/LAYOVER	8494
8	STILLWELL TERMINAL BUS LOOP	8081
9	ELTINGVILLE/TRANSIT CENTER	8071

8. Analysis variable 'Destination Stop': Total number of Unique destination stop is 651.

9. Top 10 frequent destination stop name:

	Destination Name	Counts
0	WASHINGTON HTS GW BRIDGE	13936
1	ST GEORGE FERRY	8480
2	FLUSHING MAIN ST STA	7903
3	W FARMS RD SOUTHERN BL	7891
4	SELECT BUS JAMAICA via MAIN ST	6846
5	SELECT BUS SERVICE SOUTH FERRY via 2 AV	6689
6	SELECT BUS BRONX ZOO via MAIN ST	6673
7	FLUSHING MAIN ST STA	6453
8	BED-STUY WOODHULL HOSP	6169
9	WESTCHESTER SQ	5942

10. Analysis variable 'Bus Name': Total number of Unique bus is 4,629.

11. Top 10 frequent bus name:

12. Analysis variable 'Arrival Approximation': Total Unique Arrival App. is 208.

13. Top 10 Arrival Approximation:

	Arrival Approximation	Counts	Percentage
0	approaching	382261	38.2%
1	< 1 stop away	341566	34.2%
2	at stop	242694	24.3%
3	0.6 miles away	6034	0.6%
4	0.5 miles away	4493	0.4%
5	0.7 miles away	3805	0.4%
6	0.8 miles away	2127	0.2%
7	0.9 miles away	1723	0.2%
8	1.0 miles away	1489	0.1%
9	1.1 miles away	978	0.1%

14. Visualize Arrival Approximation:

15. Analysis variable 'Weekend Status': Weekend status

16. Analysis variable 'Day of Year':


```
The volumns of month 6 is: 263491
The volumns of month 12 is: 229950
The volumns of month 10 is: 259155
The volumns of month 8 is: 247393
The volumns of month 11 is: 9
The volumns of month 1 is: 1
The volumns of month 7 is: 1
```

17. Most Important Feature of the project:

- line_name
- org_name
- dest name
- vech_name
- day_of_year
- month number
- day of month
- time_of_day
- weekend_status
- delays

18. Most Important Feature of the project:

	line_name	org_name	dest_name	vech_name	weekend_status	day_of_year	month_number	day_of_month	time_of_day	delays
0	B46-SBS	UTICA AV/AV N	SELECT BUS De KALB AV via UTICA	NYCT_7330	False	156	6	5	439	1.85
1	M101	LEXINGTON AV/E 100 ST	LTD EAST VILLAGE 6 ST via LEX AV	NYCT_6057	False	342	12	8	721	10.03
2	Bx31	TREMONT AV/LANE AV	WOODLAWN KATONAH AV	NYCT_7703	False	298	10	25	341	0.10
3	Q20A	COLLEGE PT BL/15 AV	JAMAICA MERRICK BL via 20 AV via MAIN S	NYCT_7391	False	278	10	5	825	0.15
4	Bx34	VALENTINE AV/E FORDHAM RD	WOODLAWN KATONAH AV	NYCT_4102	False	347	12	13	439	0.23

- 1. As the goal is to predict delay time (continuous value), I use regression.
- **2.** For that, perform factorization to categorical variables.

	line_number	org_number	dest_number	vech_number	is_weekend	day_of_year	month_number	day_of_month	time_of_day	delays
0	0	0	0	0	0	156	6	5	439	1.85
1	1	1	1	1	0	342	12	8	721	10.03
2	2	2	2	2	0	298	10	25	341	0.10
3	3	3	3	3	0	278	10	5	825	0.15
4	4	4	2	4	0	347	12	13	439	0.23

3. Train and Test Split: Split the dataset 80-20 for train and test.

```
X Train (800000, 9), X Test: (200000, 9), Y train: (800000,), Y Test: (200000,)
```

4. Implement Linear Regression:

```
Coefficients: [-4.95098058e-03 -2.40001629e-03 8.87056957e-04 4.83572921e-05 3.98040717e-01 -3.26490386e+00 9.95879609e+01 3.24205572e+00 3.29442801e-03]
```

Mean squared error: 8.894963577608513 Coefficient of determination: 0.017925941050149108

- **5.** Implement XG-Boost Regression:
 - Extreme Gradient Boosting (XGBoost) is an open-source library that provides an efficient and effective implementation of the gradient boosting algorithm.
 - Final RMSE become: 8.35

5. Hyperparameter Optimization of XG-Boost Regression:

Use RandomizedSearchCV for hyperparameter tuning.

```
# Hyper parameter optimizations

n_estimators = [100, 500, 900, 1200]

max_depth = [2, 3, 5, 10]
booster = ['gbtree', 'gblinear']
learning_rate = [0.05, 0.1, 0.15, 0.20]
min_child_weight = [1, 2, 4]
base_score = [0.25, 0.5, 0.75, 1]

heyperparameter_grid = {
    'n_estimators': n_estimators,
    'max_depth': max_depth,
    'learning_rate': learning_rate,
    'min_child_weight':min_child_weight,
    'booster': booster,
    'base_score':base_score
}
```

- **5. Hyperparameter Optimization of** XG-Boost Regression:
 - Best hyperparameter:

```
The Best parameters are: XGBRegressor(base_score=1, booster='gbtree', callbacks=None, colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=0, gpu_id=-1, grow_policy='depthwise', importance_type=None, interaction_constraints='', learning_rate=0.05, max_bin=256, max_cat_threshold=64, max_cat_to_onehot=4, max_delta_step=0, max_depth=10, max_leaves=0, min_child_weight=4, missing=nan, monotone_constraints='()', n_estimators=900, n_jobs=0, num_parallel_tree=1, predictor='auto', random_state=0, ...)
```

Final RMSE become: 8.09

Result Analysis:

Approach	RMSE
Linear Regression	8.90
XG-Boost Regression	8.35
Tuned XG-Boost Regression	8.09

Code Repository:

Github: https://github.com/AhmedDiderRahat/ut_wise2223

Resources

- https://machinelearningmastery.com/xgboost-for-regression/
- https://www.kaggle.com/datasets/stoney71/new-york-city-transport-statistics?select=mta 1708.csv
- https://scikit-learn.org/stable/modules/generated/sklearn.model-selection.RandomizedSearchCV.html

Thank You