Test of Distributed Systems Lecture 13: LTL Model checking

Århus School of Engineering

19 May 2014

Contents

LTL Syntax and Duality

Translating LTL Formulas to Büchi Automata

Automata and Never Claims

What do we want to do?

- Verify whether some program M satisfies some LTL formula f
- \blacktriangleright We can execute program M, inspect all its states
- ► How can we relate formula *f* to *M*?
- Idea: turn f into a program N that observes the states of M with respect to f
- ► The meaning of *M* is appropriately described by an automaton
- ► Can we produce an automaton for N to verify f
- ▶ Yes: we can use a Büchi automaton B
- ► The Büchi automaton B can be easily represented by a program N
- That program provides the never claim

From LTL to Never Claims

4

Contents

LTL Syntax and Duality

Translating LTL Formulas to Büchi Automata

Automata and Never Claims

LTL Syntax

Syntax:

 $\begin{array}{lll} \mathbf{G}\,f & : & \text{``always}\,f" \\ \mathbf{F}\,f & : & \text{``eventually}\,f" \\ \mathbf{X}\,f & : & \text{``next}\,f" \\ f\,\mathbf{U}\,g & : & \text{``f until}\,g" \\ f\,\mathbf{R}\,g & : & \text{``f release}\,g" \end{array}$

Duality:

$$\begin{array}{cccc} \mathbf{F}\,f & \leftrightarrow & \neg\,\mathbf{G}\,\neg f \\ \mathbf{X}\,f & \leftrightarrow & \neg\,\mathbf{X}\,\neg f \\ f\,\,\mathbf{R}\,g & \leftrightarrow & \neg(\neg f\,\,\mathbf{U}\,\neg g) \end{array}$$

Contents

LTL Syntax and Duality

Translating LTL Formulas to Büchi Automata

Automata and Never Claims

Definition of Büchi Automaton (BA)

The target of the translation

A Büchi automaton *accepts* infinite computation sequences, that is, infinite words over some alphabet Σ .

It is a tuple $A = (Q, \Sigma, \Delta, I, F)$ where:

- ightharpoonup Q is a finite set of states
- $ightharpoonup \Sigma$ is a finite alphabet
- ▶ $\Delta \subseteq Q \times \Sigma \times Q$ is a transition relation
- $I \subset Q$ is a set of initial states
- ▶ $F \subset Q$ is a set of final states

A Büchi automaton accepts an infinite computation sequence if at least one infinitely often occurring state is in ${\cal F}.$

Examples

► Safety:

A Büchi automaton that accepts a safety property.

► Liveness:

A Büchi automaton that accepts a liveness property.

Definition of Generalised Büchi Automaton (GBA)

An intermediate representation

A Büchi automaton *accepts* infinite computation sequences, that is, infinite words over some alphabet Σ .

It is a tuple $\mathcal{B} = (Q, \Sigma, \Delta, I, \{G_1, \dots, G_n\})$ where:

- Q is a finite set of states
- $ightharpoonup \Sigma$ is a finite alphabet
- ▶ $\Delta \subseteq Q \times \Sigma \times Q$ is a transition relation
- $I \subset Q$ is a set of initial states
- ▶ $G_i \subset Q$ for all i are sets of final states

A generalized Büchi automaton accepts an infinite computation sequence if the set of infinitely often occurring states contains at least one state from each G_i .

Tanslating a GBA into a BA

- ▶ Let $\mathcal{B} = (Q, \Sigma, \Delta, I, \{G_1, \dots, G_n\})$ be a GBA
- Construct a BA

$$\mathcal{A} = (Q \times \{0, \dots, n\}, \Sigma, \Delta', I \times \{0\}, Q \times \{n\}),$$
 where

$$(\langle p,x\rangle,a,\langle q,y\rangle)\in\Delta'$$
 if

- $ightharpoonup (p,a,q) \in \Delta$
- If $q \in G_i$ and x = i 1 then y = i
- If x = n then y = 0
- ▶ Otherwise x = y

So it is sufficient to construct a GBA.

Negation Normal Form (NNF)

LTL Laws

First we have to prepare the formula for the translation:

$$\neg \mathbf{G} f \leftrightarrow \mathbf{F} \neg f
\neg \mathbf{F} f \leftrightarrow \mathbf{G} \neg f
\neg (p \mathbf{U} g) \leftrightarrow \neg f \mathbf{R} \neg g
\neg (p \mathbf{R} g) \leftrightarrow \neg f \mathbf{U} \neg g
\neg \mathbf{X} f \leftrightarrow \mathbf{X} \neg f
\mathbf{F} f \leftrightarrow true \mathbf{U} f
\mathbf{G} f \leftrightarrow false \mathbf{R} f
f \rightarrow g \leftrightarrow \neg f \vee g
f \leftrightarrow g \leftrightarrow (f \rightarrow g) \wedge (g \rightarrow f)$$

NNF: push negation to the inside and remove all logical operators except for \mathbf{X} , \mathbf{U} , \mathbf{R} , \neg , \wedge , \vee

NNF Example

Transform $(f \ \mathbf{U} \ g) \to \mathbf{F} \ h$ into negation normal form:

$$\begin{split} &(f \ \mathbf{U} \ g) \rightarrow \mathbf{F} \ h \\ & \{ \mathsf{NNF} \} \\ & \neg (f \ \mathbf{U} \ g) \lor \mathbf{F} \ h \\ & \{ \mathsf{NNF} \} \\ & (\neg f \ \mathbf{R} \ \neg g) \lor \mathbf{F} \ h \\ & \{ \mathsf{NNF} \} \\ & (\neg f \ \mathbf{R} \ \neg g) \lor (true \ \mathbf{U} \ h) \end{split}$$

Sub-formula closure

The is the basis for expressing the states of the Büchi automaton

For a LTL formula f the sub-formula closure $\mathcal{C}(f)$ is the smallest set satisfying:

- $true \in \mathcal{C}(f)$
- $f \in \mathcal{C}(f)$
- ▶ if $g \in C(f)$ then $neg(g) \in C(f)$ where neg is defined for g with $g \neq \neg h$, for some h, by:

$$neg(g) = \neg g, \quad neg(\neg g) = g,$$

furthermore: neg(true) = false and neg(false) = true.

- ▶ if $\mathbf{X} g \in \mathcal{C}(f)$ then $g \in \mathcal{C}(f)$
- ▶ if $g \odot h \in \mathcal{C}(f)$ then $g \in \mathcal{C}(f)$ and $h \in \mathcal{C}(f)$, where \odot is one of: \land , \lor , \mathbf{U} , \mathbf{R}

Maximally consistent sets of formulas

- ▶ A set $S \in C(f)$ is called maximally consistent if
 - $ightharpoonup true \in S$
 - $ightharpoonup g \in S \quad \leftrightarrow \quad neg(g) \not\in S$
 - $\bullet \ g \wedge h \in S \quad \leftrightarrow \quad g \in S \quad \wedge \quad h \in S$
 - $\bullet \ g \lor h \in S \quad \leftrightarrow \quad g \in S \quad \lor \quad h \in S$

► The states of the GBA to be constructed are subsets of maximally consistent sets.

- ► The idea of the construction is that if a state *S* of the GBA is visited infinitely often, then the formulas in *S* are true.
- ▶ We denote the set of consistent sets of formulas by $\mathcal{M}(f)$.

The Transition Relation of the GBA

- ▶ If a state contains the next operator **X** f, then in the successor state f must hold
- Dealing the operators U and R requires the use of the following two recurrence equations:

$$f \mathbf{U} g \leftrightarrow g \vee (f \wedge \mathbf{X}(f \mathbf{U} g))$$
 (1)

$$f \mathbf{R} g \leftrightarrow g \wedge (f \vee \mathbf{X}(f \mathbf{R} g))$$
 (2)

▶ We can turn the formula (2) into a disjunction:

$$f \mathbf{R} g \leftrightarrow (g \wedge f) \vee (g \wedge \mathbf{X}(f \mathbf{R} g))$$
 (3)

These equations resemble loops!

Construction of the GBA

The GBA
$$\mathcal{B}=(\mathcal{M}(f)\cup\{\iota\},\mathcal{P}(\mathcal{L}),\Delta,\{\iota\},G)$$
 where

- $ightharpoonup \mathcal{L}$ are the propositional literals
- $\Delta = \Delta' \cup \Delta''$
 - $(S, a, T) \in \Delta'$ if and only if $a = T \cap \mathcal{L}$ and
 - $\blacktriangleright \ \mathbf{X} \, g \in S \quad \leftrightarrow \quad g \in T$
 - ▶ $g \cup h \in S$ \leftrightarrow $h \in S$ \lor $(g \in S$ \land $g \cup h \in T)$
 - $\blacktriangleright \ g \ \mathbf{R} \ h \in S \quad \leftrightarrow \quad g \land h \in S \quad \lor \quad (h \in S \quad \land \quad g \ \mathbf{R} \ h \in T)$
 - $\blacktriangleright \ (S,a,T) \in \Delta'' \text{ if and only if } a = T \cap \mathcal{L} \text{ and } S = \iota \text{ and } f \in T$
- ▶ $g \ \mathbf{U} \ h \in \mathcal{C}(f)$ if and only if $\{S \in \mathcal{M}(f) \mid h \in S \ \lor \ \neg(g \ \mathbf{U} \ h) \in S\} \in G$

Contents

LTL Syntax and Duality

Translating LTL Formulas to Büchi Automata

Automata and Never Claims

Example

 $\neg\operatorname{GF} csp$

NNF of \neg **G F** csp

Transform $\neg \mathbf{G} \mathbf{F} cs$ into negation normal form:

```
\neg G F cs
\{\mathsf{NNF}^*\}
F G \neg csp
\{\mathsf{NNF}^*\}
true U (false R \neg csp)
```

GBA for $\neg \mathbf{GF} csp$

true **U** (false $\mathbf{R} \neg csp$)

A Generalised Büchi automaton that $accepts \neg \mathbf{GF} csp$.

GBA for \neg **G F** csp

A Generalised Büchi automaton that *accepts* \neg **G F** csp.

GBA for $\neg \mathbf{GF} csp$

A Generalised Büchi automaton that *accepts* \neg **G F** csp.

GBA for $\neg \mathbf{GF} csp$

A Generalised Büchi automaton that *accepts* \neg **G F** csp.

GBA/BA for \neg **G F** csp

A Büchi automaton that *accepts* \neg **G F** csp.

Never Claim for $\neg \mathbf{GF} csp$

```
never { /*!([]<>csp)*/
   T0 init:
   if
       :: (!((csp))) \rightarrow \mathbf{goto} \ \mathrm{accept\_S4}
       :: (true) \rightarrow \mathbf{goto} T0 init
   fi:
   accept S4:
   if
      :: (!((csp))) \rightarrow \mathbf{goto} \ \mathrm{accept\_S4}
   fi;
```

GBA/BA for \neg **G F** csp

A Büchi automaton that $accepts \neg \mathbf{GF} csp$.

GBA/BA for \neg **G F** csp

A Büchi automaton that $accepts \neg \mathbf{GF} csp$.