Homework 4: 7.71, 7.89, 7.102, 7.122, 8-71

7.71 Sadness & Spending a) No outliers or skew.

b) Neutral: Sad:
$$\bar{X}_{N}$$
: 0.5714 \bar{X}_{S} = 2.1176 \bar{X}_{S} = 1.2441 \bar{X}_{S} = 1.2441 \bar{X}_{S} = 1.7

d)
$$d = 0.05$$
 $df = 27$.
 $f = \frac{.5714 - 2.1176}{\sqrt{1.09281(\frac{1}{14} + \frac{11}{17})}} = -4.0982 \approx t(29)$

7.89. Breast feeding vs. Baby Formula

a) Ho: $M_8 = M_F$, Ha: $M_6 > M_F$ t = 13.3 - 12.4 = 1.6629 Me $\sqrt{3.0475} \left(\frac{1}{13} + \frac{1}{19}\right)$

c) Assumptions B&F are 2 SRS3 W/ Normal population distributions

7.102. (omparison of standard Deviations. n
$$5^2$$
a) Ho: $\Gamma_1 = \Gamma_2$, Ha: $\Gamma_1 \neq \Gamma_2$
1 11 3.5

$$F = \frac{{S_1}^2}{{S_1}^2} = \frac{9.1}{3.5} = 2.6$$

b)
$$df_1 = 10$$
 $df_2 = 15$ $\frac{15}{10}$

F(15,10) + For this significance level, we would use 3.52

C) conclude that we reject Ho,

7.122 Two sample
$$t-t-est$$
 vs matched pairs $t-t-est$
a) Group 1: Group 2: $P = 0.3838$
 $\bar{x} = 49.692$ $V = 50.545$ $t = -0.8954$
 $S_1^2 = 5.3726$ $S_2^2 = 3.7032$ $df = 16$

$$t = \frac{\bar{X} - \bar{Y}}{\sqrt{S_{i}^{2}(\frac{1}{n_{i}} + \frac{1}{n_{2}})}} = \frac{49.692 - 50.645}{\sqrt{4.5379(\frac{1}{10} + \frac{19}{10})}} = -0.8954$$

$$df = \left[\frac{\left(S_{1}^{2}/n_{1} + S_{2}^{2}/n_{2} \right)^{2}}{\left(S_{1}^{2}/n_{1} \right)^{2} + \left(S_{2}^{2}/n_{2} \right)^{2}} \right] = \left[15.97 \right] = 10$$

b)
$$m = 0.853$$
 | $p = 0.0625$ | $5^2 = 1.6107$ | $t = -2.1255$ | $s = 1.2691$ | $dF = 9$ | $t = m = \frac{-0.853}{5(n)} = -2.1255$

c) the df is different because its 1-sample, so you don't have to pool it together. Also, the t value is different because the standard deviation isn't pobled together, it's just one sd.

a)
$$\hat{p}_{F} = 0.8$$
 SE = 0.05164 = $(\hat{p}(1-\hat{p})/n)$
 $\hat{p}_{M} = .3939$ SE = 0.04253

$$\hat{\beta} = 65208$$

$$SE: \sqrt{.5208(1-.5200)(\frac{1}{60} + \frac{1}{132})} = 0.07778$$

$$\hat{z} = \frac{\hat{\rho}_F - \hat{\rho}_M}{SE} = \frac{0.8 - 0.3939}{0.07778} = 5.22$$

I pledge my honor that I have abided by the Stevens Honor System.

Jamp J