Networking Review

CS461 / ECE422 – UIUC Spring 2016 Simon Kim

Topics

- Networking Basics (Lecture 15)
- Attacks (Lecture 16, 17, 20)
 - Sniffing
 - IP Spoofing
 - DDoS
 - Worms (Lecture 20)
 - Botnets (Lecture 20)

- Defense (Lecture 18)
 - Firewall
 - IDS
 - SSL, IPsec
 - VPN
 - 802.11 Security
- Anonymity (Lecture 19)
- MP4
 - Traffic analysis
 - Capturing in monitor mode

Networking Basics

- OSI Layer
- TCP/UDP
- Packet Encapsulation
- Network interface promiscuous vs monitor
- MAC and IP addresses
- CIDR (Classless Inter-Domain Routing) subnets
 - E.g. 192.168.100.1/24
- NAT (Network Address Translation) between internal (private) address and external (public) address

Attacks

- Possible at all layers of the network
 - Data-link
 - Network
 - Transport
 - Application
- Compromises all 3 security properties
 - Confidentiality (e.g. sniffing, eavesdropping)
 - Integrity (e.g. spoofing, content forgeries, MITM)
 - Availability (e.g. denial-of-service)

Attacks – Sniffing

- Active packets from a local network built with a <u>switch</u>
- Passive packets from a local network built with a <u>hub</u> or a <u>wireless</u> network

Attacks – Sniffing (cont.)

- Active Sniffing
 - Need to fool the switch in order to intercept the packets
 - MAC flooding fill up switch's memory with random MAC addresses
 - ARP spoofing change victim's ARP table
 - ARP no authentication

Attacks – IP Spoofing

- IP spoofing faking the source IP address to the target's
- Blind spoofing attack from any source
- Non-blind spoofing attack from the same subnet
- Common usage
 - Denial-of-Service
 - TCP Session hijacking Lecture 16 slide 22-26
 - Man in the Middle

Attacks – DDoS

- Distributed Denial of Service attack against availability
 - Consume target's computing and network resources (e.g. fork bomb, fill disk, flooding)
 - Make service unavailable (e.g. crash or exploit system/service)

Attacks – DDoS (cont.)

- Amplified DDoS attack small request, large response
 - Often relies on properties of several UDP-based protocols
 - Spoofability
 - Broad deployment
 - Large response to small request
 - NTP DDoS using NTP protocol special diagnostic modes (6 or 7)
- Blind spoofing e.g. TCP SYN flood

Blind spoofing

Attacks – DNS

- DNS hijacking change the IP associated with a server
- DNS spoofing DNS response is easily spoofed
- DNS Cache poisoning give DNS servers false records

Attacks – Worms (Lecture 20)

- Self-replicates, spreads through the network
- vs Virus, Trojan horse
 - Virus and Trojan horse rely on human intervention
- Can be used to:
 - Launch DDoS attacks (install bot networks) availability
 - Access sensitive information confidentiality
 - Corrupt the sensitive information integrity

Attacks – Worms (cont.)

Propagation

- Scanning chooses random address
- Coordinated scanning different instances scan different addresses
- Flash propagate along pre-assembled tree of targets
- Meta-server ask server for vulnerable target
- Topological use information from infected
- Contagion propagate along with normal communication

Attacks – Botnet (Lecture 20)

- Bot a servant process on a compromised system
 - Installed by Trojans or worms
- Botnet a network of compromised hosts (i.e. bots, controllers)
- Provides
 - Anonymity
 - Powerful delivery platform
- Lifecycle
 - Propagation infection
 - Communication command and control
 - Attack i.e. DDoS

Attacks – Botnet (cont.)

- Application level
 - Emails
 - Webpage contents
 - SNS (social engineering)

Defense – Firewall

- Controls incoming and outgoing network traffic
- Incoming
 - DDoS attack e.g. SYN flooding
 - Unauthorized access
- Outgoing
 - Bandwidth control
 - Internet usage e.g. games, pornography, SNS
 - Privacy
- Types
 - Application level
 - Packet-filtering

Defense – Firewall (cont.) Simple firewall policy configuration

Source	Dest	Арр	Action
any-inside	dmz-mail	SMTP	allow
any-inside	any-outside	SMTP	drop
any-inside	any-outside	HTTP	allow
any-inside	any-outside	FTP	allow
any-inside	any-outside	any	drop
any-outside	any-inside	any	drop

Defense - IDS

- IDS intrusion detection system
 - Alerts when anomalies detected
 - Post-hoc
- Misuse Detection defines what is abnormal using attack signatures
 - Rule-based requires prior knowledge on attacks
 - Less false-positives
- Anomaly Detection defines what is normal using profiles
 - Statistical analysis on typical traffic flow

Defense – SSL, IPsec

- SSL Lecture 18 slide 21-22
 - Transport layer security to TCP-based applications
- IPsec Lecture 18 slide 23-25
 - Network layer security
 - More complex
 - Difficult to define and maintain
 - More suitable for site-to-site VPN

Defense – VPN

- VPN Virtual Private Network
- IP (site-to-site) VPN
- End-to-end VPN
 - Connect remote hosts to a firewalled network (e.g. vpn.cites.illinois.edu)
 - https://answers.uillinois.edu/illinois/47667

End-to-end VPN

Site-to-site VPN

Defense – 802.11 Security

- WEP (Wired Equivalent Privacy)
 - insecure, broken
 - (Lecture 18 slide 27-29)
- 802.11i
 - WPA (WiFi-Protected Access) draft 802.11i standard (2003)
 - WPA2 full 802.11i standard (2004)

Anonymity

- Anonymity concealing your identity (not contents)
 - In communications, concealing the identity of source and/or destination
- Nymity Spectrum
 - Verinymity credit card #s, driver's license, address
 - Pseudonymity pen names, many blogs
 - Linkable anonymity loyalty cards, prepaid mobile phone
 - Unlinkable anonymity paying in cash, Tor

Anonymity (cont.)

- How?
 - Proxy intermediary that relays traffic
 - VPN
 - https://www.bestvpn.com/blog/4085/proxie s-vs-vpn-whats-the-difference/
 - Tor
 - Onion routing
 - Does not provide end-to-end encryption (use HTTPS!)
 - https://www.torproject.org/docs/faq.html.en
 - Attacks/defense slide 50-52

Key concept: No one relay knows both you and the destination!

Lecture 19 slide 43

Other relevant topics

- Desirable communication properties
 - Forward secrecy
 - Deniability
- Off-the-record
 - Message confidentiality
 - Authentication
 - Perfect forward secrecy
 - Deniability

MP4

- Traffic analysis
 - Active vs. Passive FTP
 - Other common network activities
 - e.g. gateway (router), DNS, DHCP, HTTP/HTTPS
 - Port scanning
 - e.g. TCP SYN scanning
- Capturing in monitor mode
 - Wireless network terms
 - Purpose of each Aircrack-ng Suite tool used for the MP