- 1: A fair 6-sided die should have a population mean  $\mu = 3.5$  and a population standard deviation  $\sigma = 1.708$ . To check the fairness of a die, you are asked to perform a sampling of size n = 100 and two-tailed hypothesis test with significance level  $\alpha = 0.05$ .
  - **a:** State the hypotheses.

**b:** Describe and sketch the null's population distribution. Use  $X_0$  as the random variable.

**c:** Describe and sketch the null's sampling distribution (with n = 100). Let  $\overline{X_0}$  be the random variable.

**d:** Determine r such that  $P(|\overline{X_0} - 3.5| \ge r) = \alpha$ . Then describe what r means in context.

e: Your sample yielded  $\bar{x} = 3.3$ . Determine the test statistic (z) and p-value. Also, make a conclusion. In this case, p-value =  $P(|\bar{X}_0 - 3.5| \ge 0.2)$ .

2: Someone guessing on a 4-choice question has a 25% chance of success (worth 1 point) and a 75% chance of failure (worth 0 points). This means  $\mu = 0.25$  and  $\sigma = \sqrt{(0.25)(0.75)} = 0.433$  (Bernoulli distribution).

You wonder whether Jules will randomly guess on all 36 questions on a test. You decide to use a one-tailed test with  $\alpha=0.05$  to decide whether Jules is doing better than random guessing.

**a:** State the hypotheses.

**b:** Describe and sketch the null's population distribution (the probability distribution of a single random guess). Use  $X_0$  as the random variable.

**c:** Describe and sketch the null's sampling distribution (with n = 36). Let  $\overline{X_0}$  be the random variable.

**d:** Determine c such that  $P(\overline{X_0} \ge c) = \alpha$ . Then describe what c means in context.

e: Your sample yielded  $\bar{x} = 0.389$  (because Jules got 14 questions right). Determine the test statistic (z) and p-value. Also, make a conclusion. In this case, p-value =  $P(\overline{X_0} \ge 0.389)$ .

3: Harold read that he has a 20% chance to win a scratch-off lottery each time he plays. Thus, on average he should only have to wait  $\mu = 5$  times before winning, with a standard deviation of  $\frac{\sqrt{1-0.2}}{0.2} = 4.47$  (geometric distribution). Harold wants to run a two-tail hypothesis test with a significance  $\alpha = 0.02$  on the mean waiting time until success.

For the next 60 successes, Harold tracks how many tickets it takes until success.

**a:** State the hypotheses.

**b:** Describe and sketch the null's population distribution. Use *X* as the random variable.

c: Describe and sketch the null's sampling distribution (with n = 60). Let  $\bar{X}$  be the random variable.

**d:** Determine r such that  $P(|\bar{X} - \mu_0| \ge r) = \alpha$ , where  $\mu_0$  is the null's mean. Then describe what r means in context.

e: Herold's sample yielded  $\bar{x} = 5.6$ . Determine the test statistic (z) and p-value. Also, make a conclusion.

| 4: | A company claims the average weight of a trinket is 100 pounds. You decide to test their claim with a random sample and two-tail hypothesis test with a significance level of 0.05. |                                                                                                                                                                                                                                                              |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | a:                                                                                                                                                                                  | Describe the hypotheses.                                                                                                                                                                                                                                     |  |
|    | b:                                                                                                                                                                                  | You measure 40 trinkets, yielding a sample mean of 98.8 pounds with a standard deviation of 10 pounds. Using $\sigma \approx 10$ , describe the sampling distribution <b>under the null hypothesis</b> . (Give the type of distribution and its parameters.) |  |
|    | c:                                                                                                                                                                                  | Determine the test statistic $(z)$ of the observation. In other words, determine a $z$ score of the observed sample mean in the null's sampling distribution.                                                                                                |  |
|    | d:                                                                                                                                                                                  | Determine a <i>p</i> -value. Also make a conclusion.                                                                                                                                                                                                         |  |

| You wonder if $\mu$ is 888. You decide to do a 2-tail hypothesis test with a significance level A random sample of size 50 is taken, yielding $\bar{x} = 851$ and $s = 106$ . |    |                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------|
|                                                                                                                                                                               | a: | Describe the hypotheses.                                                   |
|                                                                                                                                                                               | b: | Describe the null's sampling distribution by assuming $\sigma \approx s$ . |
|                                                                                                                                                                               | c: | Describe the $p$ -value using a probability expression.                    |
|                                                                                                                                                                               | d: | Find the test statistic and <i>p</i> -value.                               |
|                                                                                                                                                                               | e: | Make a final judgement.                                                    |

- 6: When a fair coin is flipped, it lands tails 50% of the time. Kimberly has a coin, and she wonders if it is fair. She plans to flip the coin 100 times, record the proportion of tails, and perform a hypothesis test with a significance level of 0.05.
  - **a:** Describe the hypotheses.

**b:** Determine p and  $\sigma$  of a single flip under the null hypothesis. (Bernoulli trial)

c: Determine p and SE of the sampling distribution under the null hypothesis.

**d:** Kimberly flips the coin 100 times and gets 57 tails, giving  $\hat{p} = 0.57$ . **Determine the test statistic**, z, of this observation under the null's sampling distribution.

e: Determine a p-value, where p-value =  $P(|\hat{p} - p_0| > 0.07)$  assuming  $H_0$  is true.

**f:** What conclusion will Kimberly make?

1: **a:**  $H_0$ :  $\mu = 3.5$ 

$$H_0: \mu \neq 3.5$$

**b:**  $\frac{x_{0i}}{P(X_0 = x_{0i})} \frac{1}{\frac{1}{6}} \frac{2}{\frac{1}{6}} \frac{3}{\frac{1}{6}} \frac{4}{\frac{1}{6}} \frac{5}{\frac{1}{6}} \frac{1}{6}$ 

 $X_0$  is uniformly distributed across its 6 discrete possibilites (1 through 6).

## 6-sided die Prob Dist



**c:** We calculate  $SE = \frac{1.708}{\sqrt{100}} = 0.1708$ , so  $\overline{X_0} \sim \mathcal{N}(\mu = 3.5, \ \sigma = 0.1708)$ .



- d: You should sketch a picture. We recognize we need the two-tail area to equal 0.05. We determine  $z_{\alpha}$  such that  $P(Z < z_{\alpha}) = 0.025$ . That gives  $z_{\alpha} = -1.96$ . We convert this into a  $\bar{x_{\alpha}}$  value.  $\bar{x_{\alpha}} = 3.5 (1.96)(0.1708)$ , giving 3.17, which is 0.33 units from the mean. Thus, r = 0.33. In this context, r is how far an observed mean can be from 3.5 before we reject the null hypothesis.
- **e:** You should sketch a picture. We want two-tail area below 3.3 and above 3.7. We find a z score.  $z = \frac{3.3-3.5}{0.1708} = -1.17$ . We determine the left area associated with z = -1.17.

P(Z < -1.17) = 0.121. We double this for the two-tailed area. p-value = 0.242. We retain the null hypothesis! This die seems fair to me.

**2: a:**  $H_0$ :  $\mu = 0.25$ 

 $H_A: \mu > 0.25$ 

**b:**  $X_0 \sim Bernoulli(0.25)$ .

## **Mult-choice Prob Dist**



**c:** We calculate  $SE = \frac{0.433}{\sqrt{36}} = 0.072$ , leading to  $\overline{X_0} \sim \mathcal{N}(0.25, 0.072)$ .



- **d:** c = 0.369. In this context, c is the cutoff mean for us deciding whether or not Jules is merely guessing.
- e:  $z = \frac{0.389-0.25}{0.072} = 1.93$ . We use the z table to find P(Z > 1.93) = 0.0268. So, p-value = 0.0268. We reject the null hypothesis. Jules is NOT merely guessing!

3: **a:** 
$$H_0: \mu = 5$$
  
 $H_A: \mu \neq 5$ 

**b:** 
$$X \sim \text{Geo}(0.20)$$
.

## **Attempts until win Prob Dist**



**c:** We calculate  $SE = \frac{4.47}{\sqrt{60}} = 0.577$ . So,  $\bar{X} \sim \mathcal{N}(5, 0.577)$ .



- **d:** We find z from P(Z > z) = 0.01, giving z = 2.32. We can find the corresponding distance from mean,  $r = z \cdot SE = 2.32 \cdot 0.577 = 1.34$ . In this context r represents a cutoff distance, between observed mean and  $\mu_0$ , for rejecting the null.
- **e:** We find  $z^* = \frac{5.6-5}{0.577} = 1.04$ . We find  $P(|Z| > z^*) = 0.298$ . We retain the null.

**4: a:** 
$$H_0: \mu = 100$$
  $H_A: \mu \neq 100$ 

**b:** The sampling distribution is normal. We calculate standard error,  $SE = \frac{10}{\sqrt{40}} = 1.58$ . So,  $\bar{X} \sim \mathcal{N}(100, 1.58)$ .

**c:** 
$$z = \frac{98.8 - 100}{1.58} = -0.759$$
.

**d:** For this two-tailed test, we determine P(|Z| > 0.759) = 0.447. We retain the null hypothesis.

5: **a:** 
$$H_0$$
:  $\mu = 888$   
 $H_A$ :  $\mu \neq 888$   
**b:** We find  $SE = \frac{106}{\sqrt{50}} = 15$ .

So,  $\bar{X} \sim \mathcal{N}(888, 15)$ .

c: Let  $\bar{X}$  represent a random draw from the null's sampling distribution. p-value =  $P(|\bar{X} - \mu_0| > 37)$ . I got 37 from the absolute difference be-

**d:** 
$$z = \frac{851 - 888}{15} = -2.47.$$
  
 $P(|Z| > 2.47) = 0.0136.$   
*p*-value is 0.0136.

tween 888 and 851.

**e:** We reject the null hypothesis.

**6: a:** 
$$H_0: p = 0.5$$
  $H_A: p \neq 0.5$ 

- **b:** Under the null, p = 0.5 and (Bernoulli)  $\sigma = \sqrt{(0.5)(0.5)} = 0.5$ . This population distribution is a Bernoulli distribution.
- c: The sampling distribution is normal, with the same proportion as the population. p = 0.5. However, the SE is smaller than  $\sigma$ .

$$SE = \frac{\sigma}{\sqrt{n}} = \frac{0.5}{\sqrt{100}} = 0.05$$

**d:** 
$$z = \frac{\hat{p} - p_0}{SE} = \frac{0.57 - 0.5}{0.05} = \boxed{1.4}$$
.

**e:** We find P(|Z| > 1.4) = 0.1615.

**f:** Kimberly retains the null hypothesis. For now she is still satisfied that the coin seems fair.