Pauli Spin Matrices and Spinors

In classical mechanics kinetic energy $\frac{1}{2}mv^2=\frac{p^2}{2m},\ \vec{p}=m\vec{v},$ and potential energy $W=W(\vec{r})$ sum up to the total energy 1

$$E = \frac{p^2}{2m} + W.$$

Inserting differential operators for total energy and momentum,

$$E = i\hbar \frac{\partial}{\partial t}$$
 and $\vec{p} = -i\hbar \nabla$,

into the above equation results in the Schrödinger equation 2

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + W\psi,$$

a quantum mechanical description of the electron. The Schrödinger equation explains all atomic phenomena except those involving magnetism and relativity.

The wave function ψ is complex valued, $\psi(\vec{r},t) \in \mathbb{C}$. The square norm $|\psi|^2$ integrated over a region in space gives the probability of finding the electron in that region. ³

The Stern & Gerlach experiment, in 1922, showed that a beam of silver atoms splits in two in a magnetic field [there were two distinct spots on the screen, instead of a smear of silver along a line]. Uhlenbeck & Goudsmit in 1925 proposed that silver atoms and the electron have an intrinsic angular momentum, the *spin*. The spin interacts with the magnetic field, and the electron goes up or down according as the spin is parallel or opposite to the vertical magnetic field.

¹ This holds in a conservative system.

² The Schrödinger equation arose out of the hypothesis that if light has both wave and particle properties, then perhaps particles might have wave properties such as interference and diffraction.

³ This is the Born interpretation.

In an electromagnetic field \vec{E}, \vec{B} with potentials V, \vec{A} the Schrödinger equation becomes ⁴

$$i\hbar \frac{\partial \psi}{\partial t} = \frac{1}{2m} [(-i\hbar \nabla - e\vec{A})^2] \psi - eV\psi, \qquad (1)$$

or after 'squaring'

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{1}{2m}[-\hbar^2\nabla^2 + e^2A^2 + i\hbar e(\nabla\cdot\vec{A} + \vec{A}\cdot\nabla)]\psi - eV\psi.$$

This equation does not yet involve the spin of the electron. The differential operator, known as the generalized momentum,

$$\vec{\pi} = \vec{p} - e\vec{A}$$
 where $\vec{p} = -i\hbar\nabla$

is such that its components $\pi_k = p_k - eA_k$ satisfy the commutation relations

$$\pi_1\pi_2 - \pi_2\pi_1 = i\hbar eB_3$$
 (permute 1, 2, 3 cyclically).

Pauli 1927 introduced the spin into quantum mechanics by adding a new term into the Schrödinger equation. The Pauli spin matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

satisfy

$$\sigma_1 \sigma_2 = i \sigma_3$$
 (permute 1, 2, 3 cyclically)

and the anticommutation relations

$$\sigma_j \sigma_k + \sigma_k \sigma_j = 2\delta_{jk} I.$$

Applying the above commutation and anticommutation relations, and temporarily using the old-fashioned notation

$$\vec{\sigma} \cdot \vec{\pi} = \sigma_1 \pi_1 + \sigma_2 \pi_2 + \sigma_3 \pi_3,$$

we may see that

$$(\vec{\sigma} \cdot \vec{\pi})^2 = \pi^2 - \hbar e(\vec{\sigma} \cdot \vec{B})$$

where

$$\pi^2 = p^2 + e^2 A^2 - e(\vec{p} \cdot \vec{A} + \vec{A} \cdot \vec{p}).$$

Pauli replaced π^2 by $(\vec{\sigma} \cdot \vec{\pi})^2$ in equation (1):

$$i\hbar \frac{\partial \psi}{\partial t} = \frac{1}{2m} [\pi^2 - \hbar e(\vec{\sigma} \cdot \vec{B})] \psi - eV\psi.$$

⁴ A Schrödinger equation with W=0 is brought into this form by a gauge transformation $\psi(\vec{r},t) \to \varphi(\vec{r},t)e^{i\alpha(\vec{r},t)}$, when $eV=\hbar\frac{\partial\alpha}{\partial t}$ and $e\vec{A}=\hbar\nabla\alpha$.

This Schrödinger-Pauli equation describes the spin by virtue of the term

$$\frac{\hbar e}{2m}(\vec{\sigma}\cdot\vec{B}).$$

The matrix $\vec{\sigma} \cdot \vec{B}$ operates on two-component column matrices with entries in \mathbb{C} . The wave function sends space-time points to *Pauli spinors*

$$\psi(\vec{r},t) = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \quad \psi_1, \psi_2 \in \mathbb{C},$$

that is, it has values in the complex linear space \mathbb{C}^2 .

The Schrödinger-Pauli equation in the Clifford algebra $\mathcal{C}\ell_3$. The multiplication rules of the Pauli spin matrices $\sigma_1, \sigma_2, \sigma_3 \in \operatorname{Mat}(2, \mathbb{C})$ imply the matrix identity

$$(\vec{\sigma} \cdot \vec{B})^2 = (B_1^2 + B_2^2 + B_3^2)I.$$

Thus, we may regard the set of traceless Hermitian matrices as a Euclidean space \mathbb{R}^3 with an orthonormal basis $\{\sigma_1, \sigma_2, \sigma_3\}$.

The length (of the representative) of a vector \vec{B} is preserved under a similarity transformation $U(\vec{\sigma} \cdot \vec{B})U^{-1}$ by a special unitary matrix $U \in SU(2)$,

$$SU(2) = \{ U \in Mat(2, \mathbb{C}) \mid U^{\dagger}U = I, \text{ det } U = 1 \}.$$

In this way, not only vectors but also rotations become represented within the matrix algebra $\operatorname{Mat}(2,\mathbb{C})$. In fact, each rotation $R \in SO(3)$ becomes represented by two matrices $\pm U \in SU(2)$, and we say that SU(2) is a two-fold covering of SO(3):

$$SO(3) \simeq \frac{SU(2)}{\{\pm I\}}.$$

Pauli spinors could also be replaced by square matrices with only the first column being non-zero,

$$\psi = \begin{pmatrix} \psi_1 & 0 \\ \psi_2 & 0 \end{pmatrix}, \quad \psi_1, \psi_2 \in \mathbb{C}.$$

Such square matrix spinors form a left ideal S of the matrix algebra $\mathrm{Mat}(2,\mathbb{C})$, that is, for $U \in \mathrm{Mat}(2,\mathbb{C})$ and $\psi \in S$ we also have $U\psi \in S$.

The matrix algebra $\operatorname{Mat}(2,\mathbb{C})$ is an isomorphic image of the Clifford algebra $\mathcal{C}\ell_3$ of the Euclidean space \mathbb{R}^3 . Thus, not only vectors in \mathbb{R} and rotations in

⁵ The left ideal can be written as $S = \text{Mat}(2, \mathbb{C})f$, where $f = \frac{1}{2}(I + \sigma_3)$ is an idempotent satisfying $f^2 = f$. The idempotent is primitive and the left ideal is minimal.

SO(3) have representatives in $\mathcal{C}\ell_3$, but also spinor spaces or spinor representations of the rotation group SO(3) 6 can be constructed within the Clifford algebra $\mathcal{C}\ell_3$.

In the notation of the Clifford algebra $\mathcal{C}\ell_3$ we could describe Pauli's achievement by saying that he replaced $\pi^2 = \vec{\pi} \cdot \vec{\pi}$ by $\vec{\pi}^2 = \vec{\pi} \cdot \vec{\pi} + \vec{\pi} \wedge \vec{\pi} = \pi^2 - \hbar e \vec{B}$ and came across the equation

$$i\hbar \frac{\partial \psi}{\partial t} = \frac{1}{2m} [\pi^2 - \hbar e \vec{B}] \psi - e V \psi$$

where $\vec{B} \in \mathbb{R}^3 \subset \mathcal{C}\ell_3$ and $\psi(\vec{r},t) \in S = \mathcal{C}\ell_3 f$, $f = \frac{1}{2}(1+e_3)$. All the arguments and functions now have values in one algebra, which will facilitate numerical computations.

In this chapter we shall study more closely the Clifford algebra $\mathcal{C}\ell_3$ and the spin group $\mathbf{Spin}(3)$, and reformulate once more the Schrödinger-Pauli equation in terms of $\mathcal{C}\ell_3$.

4.1 Orthogonal unit vectors, orthonormal basis

The 3-dimensional Euclidean space \mathbb{R}^3 has a basis consisting of three orthogonal unit vectors \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 . The *Clifford algebra* $\mathcal{C}\ell_3$ of \mathbb{R}^3 is the real associative algebra generated by the set $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ satisfying the relations

$$\begin{split} \mathbf{e}_1^2 &= 1, \quad \mathbf{e}_2^2 = 1, \quad \mathbf{e}_3^2 = 1, \\ \mathbf{e}_1 \mathbf{e}_2 &= -\mathbf{e}_2 \mathbf{e}_1, \quad \mathbf{e}_1 \mathbf{e}_3 = -\mathbf{e}_3 \mathbf{e}_1, \quad \mathbf{e}_2 \mathbf{e}_3 = -\mathbf{e}_3 \mathbf{e}_2. \end{split}$$

The Clifford algebra $\mathcal{C}\ell_3$ is 8-dimensional with the following basis:

1	the scalar
$\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3$	vectors
e_1e_2,e_1e_3,e_2e_3	bivectors
$\mathbf{e_1}\mathbf{e_2}\mathbf{e_3}$	a volume element.

We abbreviate the unit bivectors as $e_{ij} = e_i e_j$, when $i \neq j$, and the unit oriented volume element as $e_{123} = e_1 e_2 e_3$. An arbitrary element in $\mathcal{C}\ell_3$ is a sum of a scalar, a vector, a bivector and a volume element, and can be written as $\alpha + \mathbf{a} + \mathbf{b} e_{123} + \beta e_{123}$, where $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$.

Example. Compute the product $e_{12}e_{13}$. By definition $e_{12}e_{13} = (e_1e_2)(e_1e_3)$

⁶ Actually, spinor representations are representations of the universal covering group $SU(2) \simeq Spin(3)$ of SO(3). The spinor representations cannot be reached by tensor methods, as irreducible components of tensor products of antisymmetric powers of \mathbb{R}^3 .

⁷ The orthogonal group O(3) also has a non-trivial covering group Pin(3) residing within $\mathcal{C}\ell_3$.

and by associativity $(e_1e_2)(e_1e_3) = e_1e_2e_1e_3$. Use anticommutativity, $e_1e_2 = -e_2e_1$, and substitute $e_1^2 = 1$ to get $e_1e_2e_1e_3 = -e_1^2e_2e_3 = -e_{23}$.

Imaginary units. The three unit bivectors e_1e_2 , e_1e_3 , e_2e_3 represent unit oriented plane segments as well as generators of rotations in the coordinate planes, and share the basic property of the imaginary unit, $(e_ie_j)^2 = -1$ for $i \neq j$. The oriented volume element $e_1e_2e_3$ also shares the basic property of the imaginary unit, $(e_1e_2e_3)^2 = -1$, and furthermore it commutes with all the elements in $\mathcal{C}\ell_3$. The unit oriented volume element $e_1e_2e_3$ represents the duality operator, which swaps plane segments and line segments orthogonal to the plane segments.

4.2 Matrix representation of $C\ell_3$

The set of 2×2 -matrices with complex numbers as entries is denoted by $\operatorname{Mat}(2,\mathbb{C})$. Mostly we shall regard this set as a *real* algebra with scalar multiplication taken over the real numbers in \mathbb{R} although the matrix entries are in the complex field \mathbb{C} . The Pauli spin matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

satisfy the multiplication rules

$$\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = I$$
 and $\sigma_1 \sigma_2 = i\sigma_3 = -\sigma_2 \sigma_1$, $\sigma_3 \sigma_1 = i\sigma_2 = -\sigma_1 \sigma_3$, $\sigma_2 \sigma_3 = i\sigma_1 = -\sigma_3 \sigma_2$.

They also generate the real algebra $Mat(2, \mathbb{C})$. The correspondences $e_1 \simeq \sigma_1$, $e_2 \simeq \sigma_2$, $e_3 \simeq \sigma_3$ establish an isomorphism between the real algebras, $\mathcal{C}\ell_3 \simeq Mat(2, \mathbb{C})$, with the following correspondences of the basis elements:

Note that $e_{ij} = -e_{ji}$ for $i \neq j$. The essential difference between the Clifford algebra $\mathcal{C}\ell_3$ and its matrix image $\operatorname{Mat}(2,\mathbb{C})$ is that in the Clifford algebra $\mathcal{C}\ell_3$ we will, in its definition, distinguish a particular subspace, the vector space \mathbb{R}^3 ,

in which the square of a vector equals its length squared, that is, $\mathbf{r}^2 = |\mathbf{r}|^2$. No such distinguished subspace has been singled out in the definition of the matrix algebra $Mat(2,\mathbb{C})$. Instead, we have chosen the traceless Hermitian matrices to represent \mathbb{R}^3 , and thereby added extra structure to Mat(2, \mathbb{C}). 8

4.3 The center of $\mathcal{C}\ell_3$

The element e_{123} commutes with all the vectors e_1, e_2, e_3 and therefore with every element of $\mathcal{C}\ell_3$. In other words, elements of the form

$$x + y\mathbf{e}_{123} \simeq \begin{pmatrix} x + iy & 0 \\ 0 & x + iy \end{pmatrix}$$

commute with all the elements in $\mathcal{C}\ell_3$. The subalgebra of scalars and 3-vectors

$$\mathbb{R} \oplus \bigwedge^{3} \mathbb{R}^{3} = \{x + y \mathbf{e}_{123} \mid x, y \in \mathbb{R}\}$$

is the center $Cen(\mathcal{C}\ell_3)$ of $\mathcal{C}\ell_3$, that is, it consists of those elements of $\mathcal{C}\ell_3$ which commute with every element of $\mathcal{C}\ell_3$. Note that $\sigma_1\sigma_2\sigma_3=iI$. Since $\mathbf{e}_{123}^2=-1$, the center of $\mathcal{C}\ell_3$ is isomorphic to the complex field \mathbb{C} , that is,

$$\operatorname{Cen}(\mathcal{C}\ell_3) = \mathbb{R} \oplus \bigwedge^3 \mathbb{R}^3 \simeq \mathbb{C}.$$

4.4 The even subalgebra $\mathcal{C}\ell_3^+$

The elements 1 and $e_{12} = e_1e_2$, $e_{13} = e_1e_3$, $e_{23} = e_2e_3$ are called even, because they are products of an even number of vectors. The even elements are represented by the following matrices:

$$w+x\mathbf{e}_{23}+y\mathbf{e}_{31}+z\mathbf{e}_{12}\simeq \left(egin{array}{cc} w+iz & ix+y \ ix-y & w-iz \end{array}
ight).$$

The even elements form a real subspace

$$\mathbb{R} \oplus \bigwedge^{2} \mathbb{R}^{3} = \{ w + x e_{23} + y e_{31} + z e_{12} \mid w, x, y, z \in \mathbb{R} \}$$
$$\simeq \{ wI + x i \sigma_{1} + y i \sigma_{2} + z i \sigma_{3} \mid w, x, y, z \in \mathbb{R} \}$$

$$u_1=\frac{1}{4}\begin{pmatrix}3i&5\\5&-3i\end{pmatrix},\quad u_2=\begin{pmatrix}0&-i\\i&0\end{pmatrix},\quad u_3=\frac{1}{4}\begin{pmatrix}5&-3i\\-3i&-5\end{pmatrix},$$

that is, $u_1 = \frac{1}{4}(5\sigma_1 + 3\sigma_1\sigma_2)$, $u_2 = \sigma_2$, $u_3 = \frac{1}{4}(5\sigma_3 - 3\sigma_2\sigma_3)$. These matrices are non-Hermitian and satisfy $u_j u_k + u_k u_j = 2\delta_{jk}I$.

⁸ We could also have chosen, for the representatives of the anticommuting (and therefore orthogonal) unit vectors in \mathbb{R}^3 , the following matrices:

which is closed under multiplication. Thus, the subspace $\mathbb{R} \oplus \bigwedge^2 \mathbb{R}^3$ is a subalgebra, called the *even subalgebra* of $\mathcal{C}\ell_3$. We will denote the even subalgebra by $\operatorname{even}(\mathcal{C}\ell_3)$ or for short by $\mathcal{C}\ell_3^+$. The even subalgebra is isomorphic to the division ring of quaternions \mathbb{H} , as can be seen by the following correspondences:

$$egin{array}{cccc} \mathbb{H} & \mathcal{C}\ell_3^+ & & & \\ i & -\mathbf{e}_{23} & & & \\ j & -\mathbf{e}_{31} & & & \\ k & -\mathbf{e}_{12} & & & \end{array}$$

Remark. The Clifford algebra $\mathcal{C}\ell_3$ contains two subalgebras, isomorphic to \mathbb{C} [the center] and \mathbb{H} [the even subalgebra], in such a way that [temporarily we denote these subalgebras by their isomorphic images]

- 1. ab = ba for $a \in \mathbb{C}$ and $b \in \mathbb{H}$,
- 2. $\mathcal{C}\ell_3$ is generated as a real algebra by $\mathbb C$ and $\mathbb H$,
- 3. $(\dim \mathbb{C})(\dim \mathbb{H}) = \dim \mathcal{C}\ell_3$.

These three observations can be expressed as

$$\mathbb{C} \otimes \mathbb{H} \simeq \mathcal{C}\ell_3$$
.

4.5 Involutions of $C\ell_3$

The Clifford algebra $\mathcal{C}\ell_3$ has three involutions similar to complex conjugation. Take an arbitrary element

$$u = \langle u \rangle_0 + \langle u \rangle_1 + \langle u \rangle_2 + \langle u \rangle_3$$
 in $\mathcal{C}\ell_3$,

written as a sum of a scalar $\langle u \rangle_0$, a vector $\langle u \rangle_1$, a bivector $\langle u \rangle_2$ and a volume element $\langle u \rangle_3$. We introduce the following involutions:

$$\begin{split} \hat{u} &= \langle u \rangle_0 - \langle u \rangle_1 + \langle u \rangle_2 - \langle u \rangle_3, & \text{grade involution,} \\ \tilde{u} &= \langle u \rangle_0 + \langle u \rangle_1 - \langle u \rangle_2 - \langle u \rangle_3, & \text{reversion,} \\ \bar{u} &= \langle u \rangle_0 - \langle u \rangle_1 - \langle u \rangle_2 + \langle u \rangle_3, & \text{Clifford-conjugation.} \end{split}$$

Clifford-conjugation is a composition of the two other involutions: $\bar{u} = \hat{u}^{\tilde{}} = \tilde{u}^{\hat{}}$.

The correspondences $\sigma_1 \simeq e_1$, $\sigma_2 \simeq e_2$, $\sigma_3 \simeq e_3$ fix the following representations for the involutions:

$$\begin{split} u &\simeq \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \qquad a, b, c, d \in \mathbb{C}, \\ \hat{u} &\simeq \begin{pmatrix} d^* & -c^* \\ -b^* & a^* \end{pmatrix}, \qquad \tilde{u} &\simeq \begin{pmatrix} a^* & c^* \\ b^* & d^* \end{pmatrix}, \qquad \bar{u} &\simeq \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \end{split}$$

where the asterisk denotes complex conjugation. We recognize that the reverse \tilde{u} is represented by the Hermitian conjugate u^{\dagger} and the Clifford-conjugate \bar{u} by the matrix $u^{-1} \det u \in \text{Mat}(2,\mathbb{R})$ [for an invertible u].

The grade involution is an automorphism, that is,

$$\widehat{uv} = \hat{u}\hat{v}$$

while the reversion and the conjugation are anti-automorphisms, that is,

$$\widetilde{uv} = \tilde{v}\tilde{u}$$
 and $\overline{uv} = \bar{v}\bar{u}$.

The grade involution induces the even-odd grading of $\mathcal{C}\ell_3 = \mathcal{C}\ell_3^+ \oplus \mathcal{C}\ell_3^-$.

The reversion can be used to extend the norm from \mathbb{R}^3 to all of $\mathcal{C}\ell_3$ by setting

$$|u|^2 = \langle u\tilde{u}\rangle_0.$$

The norm of

$$u = u_0 + u_1 e_1 + u_2 e_2 + u_3 e_3 + u_{12} e_{12} + u_{13} e_{13} + u_{23} e_{23} + u_{123} e_{123}$$

can be obtained from

$$|u|^2 = |u_0|^2 + |u_1|^2 + |u_2|^2 + |u_3|^2 + |u_{12}|^2 + |u_{13}|^2 + |u_{23}|^2 + |u_{123}|^2.$$

The norm satisfies the inequality

$$|uv| \le \sqrt{2}|u||v|$$
 for $u, v \in \mathcal{C}\ell_3$.

The conjugation can be used to determine the inverse

$$u^{-1} = \frac{\bar{u}}{u\bar{u}}$$

of $u \in \mathcal{C}\ell_3$, $u\bar{u} \neq 0$. The element $u\bar{u} = \bar{u}u$ is in the center $\mathbb{R} \oplus \bigwedge^3 \mathbb{R}^3$ of $\mathcal{C}\ell_3$, so that division by it is unambiguous.

4.6 Reflections and rotations

In the Euclidean space \mathbb{R}^3 the vectors \mathbf{r} and $\mathbf{ara}^{-1} = 2(\mathbf{a} \cdot \mathbf{r})\mathbf{a}^{-1} - \mathbf{r}$ are symmetric with respect to the axis a [use the definition of the Clifford product, $ar + ra = 2a \cdot r$]. The opposite of ara^{-1} , the vector

$$-\mathbf{ara}^{-1} = \mathbf{r} - 2\frac{\mathbf{a} \cdot \mathbf{r}}{\mathbf{a}^2}\mathbf{a},$$

is obtained by reflecting r across the mirror perpendicular to a [reflection across the plane ae_{123}].

Two successive reflections in planes perpendicular to \mathbf{a} and \mathbf{b} result in a rotation $\mathbf{r} \to \mathbf{b}\mathbf{a}\mathbf{r}\mathbf{a}^{-1}\mathbf{b}^{-1}$ around the axis which is perpendicular to both \mathbf{a} and \mathbf{b} . Indeed, \mathbf{r} can be decomposed as $\mathbf{r} = \mathbf{r}_{||} + \mathbf{r}_{\perp}$ where $\mathbf{r}_{||}$ and \mathbf{r}_{\perp} are parallel and perpendicular, respectively, to the plane of \mathbf{a} and \mathbf{b} . The perpendicular component \mathbf{r}_{\perp} remains invariant under both the reflections while the two successive reflections together rotate the parallel component $\mathbf{r}_{||}$ in the plane of \mathbf{a} and \mathbf{b} by twice the angle between \mathbf{a} and \mathbf{b} .

Consider a vector $\mathbf{a} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + a_3 \mathbf{e}_3$ and the bivector $\mathbf{a} \mathbf{e}_{123} = a_1 \mathbf{e}_{23} + a_2 \mathbf{e}_{31} + a_3 \mathbf{e}_{12}$ dual to \mathbf{a} . The vector \mathbf{a} has positive square

$$\mathbf{a}^2 = |\mathbf{a}|^2$$
, where $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$,

but the bivector ae₁₂₃ has negative square

$$(\mathbf{a}\mathbf{e}_{123})^2 = -|\mathbf{a}|^2.$$

It follows that

$$\exp(\mathbf{a}\mathbf{e}_{123}) = \cos\alpha + \mathbf{e}_{123}\frac{\mathbf{a}}{\alpha}\sin\alpha$$

where $\alpha = |\mathbf{a}|$. A spatial rotation of the vector $\mathbf{r} = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$ around the axis \mathbf{a} by the angle α is given by

$$\mathbf{r} \to a\mathbf{r}a^{-1}, \qquad a = \exp(\frac{1}{2}\mathbf{a}\mathbf{e}_{123}).$$

The sense of the rotation is clockwise when regarded from the arrow-head of a. The axis of two consecutive rotations around the axes a and b is given by the Rodrigues formula

$$\mathbf{c}' = \frac{\mathbf{a}' + \mathbf{b}' + \mathbf{a}' \times \mathbf{b}'}{1 - \mathbf{a}' \cdot \mathbf{b}'} \quad \text{where} \quad \mathbf{a}' = \frac{\mathbf{a}}{\alpha} \tan \frac{\alpha}{2} \,.$$

oup Spin(3) 59

This result is obtained by dividing both sides of the formula

$$\exp(\frac{1}{2}\mathbf{c}\mathbf{e}_{123}) = \exp(\frac{1}{2}\mathbf{b}\mathbf{e}_{123})\exp(\frac{1}{2}\mathbf{a}\mathbf{e}_{123})$$

by their scalar parts and then by inspecting the bivector parts.

4.7 The group Spin(3)

The Clifford algebra $\mathcal{C}\ell_3$ of \mathbb{R}^3 can be employed to construct the universal covering group for the rotation group SO(3) of \mathbb{R}^3 . A vector $\mathbf{x} \in \mathbb{R}^3$ can be rotated by the formula

$$\mathbb{R}^3 \to \mathbb{R}^3, \ \mathbf{x} \to \rho(s)\mathbf{x} = s\mathbf{x}s^{-1}$$

where s is an element of the group

$$\mathbf{Spin}(3) = \{ s \in \mathcal{C}\ell_3 \mid \tilde{s}s = 1, \ \bar{s}s = 1 \}.$$

The group Spin(3), called the *spin group*, is a two-fold covering group of the rotation group SO(3).

In the matrix formulation provided by the Pauli spin matrices, the spin group $\mathbf{Spin}(3)$ has an isomorphic image, the special unitary group

$$SU(2) = \{ s \in Mat(2, \mathbb{C}) \mid s^{\dagger} s = I, \det s = 1 \}.$$

For an element $s \in SU(2)$ the function $\mathbf{x} \to \rho(s)\mathbf{x} = s\mathbf{x}s^{\dagger}$ is a rotation of the Euclidean space of traceless Hermitian matrices,

$$\{\mathbf{x} \in \mathrm{Mat}(2, \mathbb{C}) \mid \mathrm{trace}(\mathbf{x}) = 0, \ \mathbf{x}^{\dagger} = \mathbf{x}\} \simeq \mathbb{R}^3.$$

Every element in SO(3) can be represented by a matrix in SU(2). There are two matrices s and -s in SU(2) representing the same rotation $R = \rho(\pm s) \in SO(3)$. In other words, the group homomorphism $\rho : \mathbf{Spin}(3) \to SO(3)$ is surjective with kernel $\{\pm 1\}$. This can be depicted by a sequence

$$1 \longrightarrow \{\pm 1\} \longrightarrow \mathbf{Spin}(3) \xrightarrow{\rho} SO(3) \longrightarrow 1$$

which is exact, that is, the image of a homomorphism coincides with the kernel of the successive homomorphism.

The spin group Spin(3) is a universal cover of the rotation group SO(3), that is, the Lie group Spin(3) is simply connected. ⁹ The group SO(3) is doubly connected. ¹⁰

⁹ A Lie group is simply connected if it is connected and every loop in the group can be shrunk to a point.

¹⁰ Rotations in SO(3) can be represented by vectors $\mathbf{a} \in \mathbb{R}^3$, $|\mathbf{a}| \le \pi$. Each rotation, $|\mathbf{a}| < \pi$, has a unique representative, and each half-turn, $|\mathbf{a}| = \pi$, is represented twice, $\pm \mathbf{a}$. A loop connecting the identity and a half-turn does not shrink to a point.

4.8 Pauli spinors

In the non-relativistic theory of the spinning electron one considers column matrices, the *Pauli spinors*

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \in \mathbb{C}^2 \quad \text{where} \quad \psi_1, \psi_2 \in \mathbb{C}.$$

An isomorphic complex linear space is obtained if one replaces Pauli spinors by the square matrix spinors

$$\psi = \begin{pmatrix} \psi_1 & 0 \\ \psi_2 & 0 \end{pmatrix}$$

where only the first column is non-zero. The fact that only the first column is non-zero can be expressed as

$$\psi \in \operatorname{Mat}(2,\mathbb{C})f$$
 where $f = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

We shall regard the correspondences $e_1 \simeq \sigma_1$, $e_2 \simeq \sigma_2$, $e_3 \simeq \sigma_3$ as an identification between $\mathcal{C}\ell_3$ and $\mathrm{Mat}(2,\mathbb{C})$. If we multiply $\psi \in \mathrm{Mat}(2,\mathbb{C})f$ on the left by an arbitrary element $u \in \mathcal{C}\ell_3 = \mathrm{Mat}(2,\mathbb{C})$, then the result is also of the same type:

$$\begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} \begin{pmatrix} \psi_1 & 0 \\ \psi_2 & 0 \end{pmatrix} = \begin{pmatrix} \varphi_1 & 0 \\ \varphi_2 & 0 \end{pmatrix}.$$

Such matrices, with only the first column being non-zero, form a left ideal S of $\mathcal{C}\ell_3$, that is,

$$u\psi \in S$$
 for all $u \in \mathcal{C}\ell_3$ and $\psi \in S \subset \mathcal{C}\ell_3$.

This left ideal S of $\mathcal{C}\ell_3$ contains no left ideal other than S itself and the zero ideal $\{0\}$. Such a left ideal is called *minimal* in $\mathcal{C}\ell_3$.

As a real linear space, S has a basis $\{f_0, f_1, f_2, f_3\}$ where

$$f_0 = \frac{1}{2}(1 + \mathbf{e}_3)$$
 \simeq $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$,
 $f_1 = \frac{1}{2}(\mathbf{e}_{23} + \mathbf{e}_2)$ \simeq $\begin{pmatrix} 0 & 0 \\ i & 0 \end{pmatrix}$,
 $f_2 = \frac{1}{2}(\mathbf{e}_{31} - \mathbf{e}_1)$ \simeq $\begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$,
 $f_3 = \frac{1}{2}(\mathbf{e}_{12} + \mathbf{e}_{123})$ \simeq $\begin{pmatrix} i & 0 \\ 0 & 0 \end{pmatrix}$.

The element $f = f_0$ is an idempotent, that is, $f^2 = f$.

The subset

$$\mathbb{F} = f\mathcal{C}\ell_3 f \simeq \left\{ \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix} \middle| c \in \mathbb{C} \right\}$$

of $\mathcal{C}\ell_3$ is a subring with unity f, that is, af = fa for $a \in \mathbb{F}$. None of the elements of \mathbb{F} is invertible as an element of $\mathcal{C}\ell_3$, but for each non-zero $a \in \mathbb{F}$ there is a unique $b \in \mathbb{F}$ such that ab = f. Thus, \mathbb{F} is a division ring with unity f [this follows from the idempotent f being primitive in $\mathcal{C}\ell_3$]. As a 2-dimensional real division algebra \mathbb{F} must be isomorphic to \mathbb{C} . The isomorphism $\mathbb{F} \simeq \mathbb{C}$ is seen by the equation $f_3^2 = -f_0$ relating the basis elements $\{f_0, f_3\}$ of the real algebra \mathbb{F} .

Comment. The multiplication of an element ψ of the real linear space S on the left by an arbitrary even element $u \in \mathcal{C}\ell_3^+$, expressed in coordinate form in the basis $\{f_0, f_1, f_2, f_3\}$,

$$u\psi = (u_0 + u_1e_{23} + u_2e_{31} + u_3e_{23})(\psi_0f_0 + \psi_1f_1 + \psi_2f_2 + \psi_3f_3),$$

corresponds to the matrix multiplication

$$u\psi\simeq egin{pmatrix} u_0 & -u_1 & -u_2 & -u_3 \ u_1 & u_0 & u_3 & -u_2 \ u_2 & -u_3 & u_0 & u_1 \ u_3 & u_2 & -u_1 & u_0 \end{pmatrix} egin{pmatrix} \psi_0 \ \psi_1 \ \psi_2 \ \psi_3 \end{pmatrix}.$$

The square matrices corresponding to the left multiplication by even elements constitute a subring of $Mat(4, \mathbb{R})$; this subring is an isomorphic image of the quaternion ring \mathbb{H} .

The minimal left ideal

$$S = \mathcal{C}\ell_3 f \simeq \left\{ \begin{pmatrix} \psi_1 & 0 \\ \psi_2 & 0 \end{pmatrix} \,\middle|\, \psi_1, \psi_2 \in \mathbb{C} \right\}$$

has a natural right F-linear structure defined by

$$S \times \mathbb{F} \to S, \ (\psi, \lambda) \to \psi \lambda.$$

We shall provide the minimal left ideal S with this right \mathbb{F} -linear structure, and call it a *spinor space*. ¹¹

The map $\mathcal{C}\ell_3 \to \operatorname{End}_{\mathbb{F}} S$, $u \to \tau(u)$, where $\tau(u)$ is defined by the relation $\tau(u)\psi = u\psi$, is a real algebra isomorphism. Employing the basis $\{f_0, -f_2\}$ for the \mathbb{F} -linear space S, the elements $\tau(\mathbf{e}_1), \tau(\mathbf{e}_2), \tau(\mathbf{e}_3)$ will be represented by the matrices $\sigma_1, \sigma_2, \sigma_3$. In this way the Pauli matrices are reproduced.

¹¹ Note that multiplying a matrix ψ in S, a left ideal, on the left by $\lambda \in \mathbb{F}$ does not result in a left \mathbb{F} -linear structure.

There is a natural way to introduce scalar products on the spinor space $S \subset \mathcal{C}\ell_3$. First, note that for all $\psi, \varphi \in S$ the product

$$\tilde{\psi}\varphi \simeq \begin{pmatrix} \psi_1^* & \psi_2^* \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \varphi_1 & 0 \\ \varphi_2 & 0 \end{pmatrix} = \begin{pmatrix} \psi_1^*\varphi_1 + \psi_2^*\varphi_2 & 0 \\ 0 & 0 \end{pmatrix}$$

falls in the division ring \mathbb{F} ($z \to z^*$ means complex conjugation). To show that the map

$$S \times S \to \mathbb{F}, \ (\psi, \varphi) \to \tilde{\psi}\varphi$$

defines a scalar product we only have to verify that the reversion $\psi \to \tilde{\psi}$ is a right-to-left \mathbb{F} -semilinear map. For all $\psi \in S$, $\lambda \in \mathbb{F}$ we have $(\psi \lambda)^{\tilde{}} = \tilde{\lambda} \tilde{\psi}$ where the map $\lambda \to \tilde{\lambda}$ is an anti-involution of the division algebra \mathbb{F} (actually complex conjugation).

Multiplying a spinor $\psi \in S \subset \mathcal{C}\ell_3$ by an element $s \in \mathcal{C}\ell_3$ is a right \mathbb{F} -linear transformation $S \to S$, $\psi \to s\psi$. The automorphism group of the scalar product is formed by those right \mathbb{F} -linear transformations which preserve the scalar product, that is,

$$(s\psi)^{\sim}(s\varphi) = \tilde{\psi}\varphi$$
 for all $\psi, \varphi \in S$.

The automorphism group of the scalar product $\tilde{\psi}\varphi$ is seen to be the group $\{s \in \mathcal{C}\ell_3 \mid \tilde{s}s=1\}$ which is isomorphic to the group of unitary 2×2 -matrices,

$$U(2) = \{ s \in \operatorname{Mat}(2, \mathbb{C}) \mid s^{\dagger} s = I \}.$$

We can also use the Clifford conjugate $u \to \bar{u}$ of $\mathcal{C}\ell_3$ to introduce a scalar product for spinors. In this case, the element

$$\bar{\psi}\varphi \simeq \begin{pmatrix} 0 & 0 \\ -\psi_2 & \psi_1 \end{pmatrix} \begin{pmatrix} \varphi_1 & 0 \\ \varphi_2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ \psi_1\varphi_2 - \psi_2\varphi_1 & 0 \end{pmatrix}$$

does not appear in the division ring $\mathbb{F} = f\mathcal{C}\ell_3 f$. However, we can find an invertible element $a \in \mathcal{C}\ell_3$ so that $a\bar{\psi}\varphi \in \mathbb{F}$, e.g. $a = \mathbf{e}_1$ or $a = \mathbf{e}_{31}$. The map

$$S \times S \to \mathbb{F}, \ (\psi, \varphi) \to a\bar{\psi}\varphi$$

defines a scalar product. Writing

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

we find that $a\bar{\psi}\varphi \simeq \tau(\psi)^{\mathsf{T}}J\tau(\varphi)$. Hence, the automorphism group $\{s \in \mathcal{C}\ell_3 \mid \bar{s}s=1\}$ of the scalar product $a\bar{\psi}\varphi$ is the group of symplectic 2×2 -matrices,

$$Sp(2, \mathbb{C}) = \{ s \in \operatorname{Mat}(2, \mathbb{C}) \mid s^{\mathsf{T}} J s = J \}.$$

4.9 Spinor operators

Up till now spinors have been objects which have been operated upon. Next we will replace such passive spinors by active spinor operators. Instead of spinors

$$\psi = \left(egin{matrix} \psi_1 & 0 \ \psi_2 & 0 \end{matrix}
ight) \in \mathcal{C}\ell_3 f$$

in minimal left ideals we will consider the following even elements:

$$\Psi = 2\operatorname{even}(\psi) = \begin{pmatrix} \psi_1 & -\psi_2^* \ \psi_2 & \psi_1^* \end{pmatrix} \in \mathcal{C}\ell_3^+,$$

also computed as $\Psi = \psi + \hat{\psi}$ for $\psi \in \mathcal{C}\ell_3 f$. Classically, the expectation values of the components of the spin have been determined in terms of the column spinor $\psi \in \mathbb{C}^2$ by computing the following three real numbers:

$$s_1 = \psi^{\dagger} \sigma_1 \psi, \quad s_2 = \psi^{\dagger} \sigma_2 \psi, \quad s_3 = \psi^{\dagger} \sigma_3 \psi.$$

In terms of $\psi \in \mathcal{C}\ell_3 f$ this computation could be repeated as

$$s_1 = 2\langle \psi \mathbf{e}_1 \tilde{\psi} \rangle_0, \quad s_2 = 2\langle \psi \mathbf{e}_2 \tilde{\psi} \rangle_0, \quad s_3 = 2\langle \psi \mathbf{e}_3 \tilde{\psi} \rangle_0.$$

However, in terms of $\Psi \in \mathcal{C}\ell_3^+$ we may compute $s = s_1e_1 + s_2e_2 + s_3e_3$ directly $s = \Psi e_3 \tilde{\Psi}$.

Since Ψ acts here like an operator, we call it a spinor operator. It should be emphasized that not only did we get all the components of the spin vector s at one stroke, but we also got the entity s as a whole.

Remark. The mapping $\mathcal{C}\ell_3^+ \to \mathbb{R}^3$, $\Psi \to \Psi \sigma_3 \Psi^{\dagger} = \Psi e_3 \tilde{\Psi}$ is the KStransformation (introduced by Kustaanheimo & Stiefel 1965) for spinor regularization of Kepler motion, and its restriction to norm-one spinor operators Ψ satisfying $\Psi\tilde{\Psi}=1$ (or equivalently $\Psi\Psi^{\dagger}=I$) results in a Hopf fibration $S^3 \to S^2$ (the matrix $\Psi \sigma_3 \Psi^{\dagger}$ is both unitary and involutory and represents a reflection of the spinor space with axis ψ).

The above mapping should not be confused with the 'Cartan map', see Cartan 1966 p. 41 and Keller & Rodríguez-Romo 1991 p. 1591. A 'Cartan map' $\mathbb{C}^2 \times \mathbb{C}^2 \to \mathcal{C}\ell_3$, $(\psi, \varphi) \to 2\psi \mathbf{e}_1\bar{\varphi}$, where $\mathbb{C}^2 = \mathcal{C}\ell_3f$, sends a pair of square matrix spinors to a complex 4-vector $x_0 + \mathbf{x}$,

$$\mathbf{x}_0 = -(\psi_1 \varphi_2 - \psi_2 \varphi_1), \quad \mathbf{x} = \begin{pmatrix} \psi_1 \varphi_1 - \psi_2 \varphi_2 \\ i(\psi_1 \varphi_1 + \psi_2 \varphi_2) \\ -(\psi_1 \varphi_2 + \psi_2 \varphi_1) \end{pmatrix}.$$

When $\psi = \varphi$, $\mathbf{x}^2 = 0$. I

Note also that $\operatorname{trace}(\psi\psi^{\dagger}) = 2\langle\psi\tilde{\psi}\rangle_0 = \Psi\tilde{\Psi}$ which equals $\Psi\bar{\Psi} = \det(\Psi)$.

In operator form the Schrödinger-Pauli equation

$$i\hbar \frac{\partial \Psi}{\partial t} = \frac{1}{2m}\pi^2\Psi - \frac{\hbar e}{2m}\vec{B}\Psi \mathbf{e}_3 - eV\Psi$$

shows explicitly the quantization direction e_3 of the spin. The explicit occurrence of e_3 is due to the injection $\mathbb{C}^2 \to \mathcal{C}\ell_3 f$, $\psi \to \Psi$; technically $2 \operatorname{even}(\vec{B}\psi) = \vec{B}\Psi e_3$. If we rotate the system 90° around the y-axis, counter-clockwise as seen from the positive y-axis, then vectors and spinors transform to

$$ec{B}' = u ec{B} u^{-1} \quad ext{and} \quad \Psi' = u \Psi \quad ext{where} \quad u = \exp(rac{\pi}{4} \mathbf{e}_{13}),$$

and the Pauli equation transforms to

$$i\hbar \frac{\partial \Psi'}{\partial t} = \frac{1}{2m}\pi'^2\Psi' - \frac{\hbar e}{2m}\vec{B}'\Psi'\mathbf{e}_3 - eV\Psi'.$$

If this equation is multiplied on the right by u^{-1} , then e_3 goes to $e_1 = ue_3u^{-1}$, and the equation looks like

$$i\hbar\frac{\partial\Psi''}{\partial t} = \frac{1}{2m}\pi'^2\Psi'' - \frac{\hbar e}{2m}\vec{B}'\Psi''\mathbf{e}_1 - eV\Psi'',$$

where $\Psi'' = u\Psi u^{-1}$. Both the transformation laws give the same values for observables, that is, $\Psi'e_3\tilde{\Psi}' = \Psi''e_1\tilde{\Psi}''$.

Exercises

- 1. Compute the square of $\mathbf{a} + \mathbf{b} \mathbf{e}_{123}$ where $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$.
- 2. Compute p^2 , q^2 and pq for $p = \frac{1}{2}(1 + e_3)$ and $q = \frac{1}{2}(1 e_3)$.
- 3. Compute the squares of $\frac{1}{2}(1 + e_3) \pm \frac{1}{2}(1 e_3)e_{12}$.
- 4. Find all the four square roots of $\cos \varphi + e_{12} \sin \varphi$. Hint: $e_{12}e_3 = e_3e_{12}$.
- 5. Find the exponentials of $\pm \frac{\pi}{2}(1-e_3)e_{12}$. Hint: e_{12} and e_{123} commute [or $q=\frac{1}{2}(1-e_3)$ is an idempotent satisfying $q^2=q$].
- 6. Let $u = \alpha + \mathbf{a} + \mathbf{b}\mathbf{e}_{123} + \beta \mathbf{e}_{123}$ $[\alpha, \beta \in \mathbb{R} \text{ and } \mathbf{a}, \mathbf{b} \in \mathbb{R}^3]$. Compute $u\bar{u}$.
- 7. Find the inverse of $u = \alpha + \mathbf{a} + \mathbf{b}\mathbf{e}_{123} + \beta \mathbf{e}_{123}$. Hint: $u\bar{u}$ is of the form $x + y\mathbf{e}_{123}$, $x, y \in \mathbb{R}$.
- 8. Find the exponential of $u = \alpha + \mathbf{a} + \mathbf{be}_{123} + \beta \mathbf{e}_{123}$. Hint: compute $(\mathbf{a} + \mathbf{be}_{123})^2$.
- 9. Show that each non-zero even element in $\mathcal{C}\ell_3^+$ is invertible.
- 10. Show that $u\tilde{u} \in \mathbb{R} \oplus \mathbb{R}^3$ for all $u \in \mathcal{C}\ell_3$.
- 11. Show that $|u\mathbf{a}\tilde{u}| = |u|^2 |\mathbf{a}|$ for $\mathbf{a} \in \mathbb{R}^3$, $u \in \mathbb{R} \oplus \bigwedge^2 \mathbb{R}^3$.
- 12. Show that the norm on $\mathcal{C}\ell_3$, defined by $|u|^2 = \langle u\tilde{u}\rangle_0$, agrees with the

norm given by $|u|^2 = \langle u, u \rangle$ where the symmetric bilinear product is determined by

$$\langle \alpha, \beta \rangle = \alpha \beta$$
 for $\alpha, \beta \in \mathbb{R}$,
 $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a} \cdot \mathbf{b}$ for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$

and by

$$\langle \mathbf{x}_1 \wedge \ldots \wedge \mathbf{x}_k, \mathbf{y}_1 \wedge \ldots \wedge \mathbf{y}_k \rangle = \begin{vmatrix} \mathbf{x}_1 \cdot \mathbf{y}_1 & \ldots & \mathbf{x}_1 \cdot \mathbf{y}_k \\ \vdots & \ddots & \vdots \\ \mathbf{x}_k \cdot \mathbf{y}_1 & \ldots & \mathbf{x}_k \cdot \mathbf{y}_k \end{vmatrix}$$

in $\bigwedge^k \mathbb{R}^3$, $k \geq 2$. [One also needs to assume orthogonality of the components in $\mathcal{C}\ell_3 = \mathbb{R} \oplus \mathbb{R}^3 \oplus \bigwedge^2 \mathbb{R}^3 \oplus \bigwedge^3 \mathbb{R}^3$.]

- 13. Show that the reflection across the plane of the bivector A is obtained by $\mathbf{r} \to \mathbf{r}' = -\mathbf{A}\mathbf{r}\mathbf{A}^{-1}$.
- 14. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$. Compute $\langle \mathbf{x} \mathbf{y} \mathbf{z} \rangle_1$ and $\langle \mathbf{x} \mathbf{y} \mathbf{z} \rangle_3$. Hint: use reversion.

Solutions

- 1. $(\mathbf{a} + \mathbf{b}\mathbf{e}_{123})^2 = \mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} + 2(\mathbf{a} \cdot \mathbf{b})\mathbf{e}_{123}$.
- 2. $p^2 = p$ and $q^2 = q$, that is, p and q are idempotents; and pq = 0 [and so there are zero-divisors in the Clifford algebra $\mathcal{C}\ell_3$].
- 3. e₃ [this shows that vectors can have square roots].
- 4. $\pm(\cos\frac{\varphi}{2} + e_{12}\sin\frac{\varphi}{2}), \pm e_3(\cos\frac{\varphi}{2} + e_{12}\sin\frac{\varphi}{2}).$
- 5. e₃ [this shows that vectors also have logarithms].
- 6. $\alpha^2 \beta^2 \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + 2(\alpha\beta \mathbf{a} \cdot \mathbf{b})\mathbf{e}_{123}$. 8. Denote $r = \sqrt{(\mathbf{a} + \mathbf{b}\mathbf{e}_{123})^2} \in \mathbb{R} \oplus \bigwedge^3 \mathbb{R}^3$, $v = (\mathbf{a} + \mathbf{b}\mathbf{e}_{123})/r$, $v^2 = 1$. Then $\exp(u) = \exp(\alpha + \beta e_{123}) \left[\frac{1}{2} (1+v) \exp(r) + \frac{1}{2} (1-v) \exp(-r) \right]$ when $r \neq 0$. When r = 0: $\exp(u) = \exp(\alpha + \beta e_{123})(1 + \mathbf{a} + \mathbf{b} e_{123})$.
- 10. $u = \alpha + \mathbf{a} + \mathbf{b}\mathbf{e}_{123} + \beta \mathbf{e}_{123}, \ u\tilde{u} = \alpha^2 + \beta^2 + \mathbf{a}^2 + \mathbf{b}^2 + 2(\alpha \mathbf{a} + \beta \mathbf{b} + \mathbf{a} \times \mathbf{b})$ which is in $\mathbb{R} \oplus \mathbb{R}^3$. Direct proof:

$$(u\tilde{u})^{\sim} = \tilde{\tilde{u}}\tilde{u} = u\tilde{u}$$

which implies $u\tilde{u} \in \mathbb{R} \oplus \mathbb{R}^3$, since the reversion sends bivectors and 3-vectors to their opposites.

13. Decompose \mathbf{r} into components parallel, $\mathbf{r}_{||}$, and perpendicular, \mathbf{r}_{\perp} , to \mathbf{A} , and note that A anticommutes with vectors in its plane,

$$\mathbf{A}(\mathbf{r}_{||} + \mathbf{r}_{\perp}) = (-\mathbf{r}_{||} + \mathbf{r}_{\perp})\mathbf{A}$$
. Then $\mathbf{A}(\mathbf{r}_{||} + \mathbf{r}_{\perp})\mathbf{A}^{-1} = (-\mathbf{r}_{||} + \mathbf{r}_{\perp})\mathbf{A}\mathbf{A}^{-1} = -\mathbf{r}'$.

14. First, $(\mathbf{x}\mathbf{y}\mathbf{z})^{\sim} = \mathbf{z}\mathbf{y}\mathbf{x}$ and $(\mathbf{x}\mathbf{y}\mathbf{z})^{\sim} = \langle \mathbf{x}\mathbf{y}\mathbf{z}\rangle_1 - \langle \mathbf{x}\mathbf{y}\mathbf{z}\rangle_3$. Therefore,

$$\langle \mathbf{x}\mathbf{y}\mathbf{z}\rangle_1 = \frac{1}{2}(\mathbf{x}\mathbf{y}\mathbf{z} + \mathbf{z}\mathbf{y}\mathbf{x})$$
 and $\langle \mathbf{x}\mathbf{y}\mathbf{z}\rangle_3 = \frac{1}{2}(\mathbf{x}\mathbf{y}\mathbf{z} - \mathbf{z}\mathbf{y}\mathbf{x})$, and also $\langle \mathbf{x}\mathbf{y}\mathbf{z}\rangle_1 = (\mathbf{y} \cdot \mathbf{z})\mathbf{x} - (\mathbf{z} \cdot \mathbf{x})\mathbf{y} + (\mathbf{x} \cdot \mathbf{y})\mathbf{z}$ and $\langle \mathbf{x}\mathbf{y}\mathbf{z}\rangle_3 = \mathbf{x} \wedge \mathbf{y} \wedge \mathbf{z}$.

Bibliography

- W. Baylis: Theoretical Methods in the Physical Sciences: an Introduction to Problem Solving with MAPLE V. Birkhäuser, Boston, MA, 1994.
- H.A Bethe, E.E. Salpeter: Quantum Mechanics of One- and Two-Electron Atoms. Springer, Berlin, 1957.
- E. Cartan: The Theory of Spinors. The M.I.T. Press, Cambridge, MA, 1966.
- A. Charlier, A. Bérard, M.-F. Charlier, D. Fristot: Tensors and the Clifford Algebra, Applications to the Physics of Bosons and Fermions. Marcel Dekker, New York, 1992.
- R.C. Feynman, R.B. Leighton, M. Sands: The Feynman Lectures on Physics, Vol. III, Quantum Mechanics. Addison-Wesley, Reading, MA, 1965.
- D. Hestenes: Space-Time Algebra. Gordon and Breach, New York, 1966, 1987, 1992.
- J. Keller, S. Rodríguez-Romo: Multivectorial generalization of the Cartan map. J. Math. Phys. 32 (1991), 1591-1598.
- E. Merzbacher: Quantum Mechanics. Wiley, New York, 1970.
- W. Pauli: Zur Quantenmechanik des magnetischen Elektrons. Z. Physik 43 (1927), 601-623.
- M. Riesz: Clifford Numbers and Spinors. The Institute for Fluid Dynamics and Applied Mathematics, Lecture Series No. 38, University of Maryland, 1958. Reprinted as facsimile (eds.: E.F. Bolinder, P. Lounesto) by Kluwer, Dordrecht, The Netherlands, 1993.