Lagrange Duality

Yuanming Shi

 $ShanghaiTech\ University$

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Lagrangian

Consider an optimization problem in standard form (not necessarily convex)

minimize
$$f_0(\boldsymbol{x})$$

subject to $f_i(\boldsymbol{x}) \leq 0$ $i=1,\cdots,m$
 $h_i(\boldsymbol{x}) = 0$ $i=1,\cdots,p$

with variable $\boldsymbol{x} \in \mathbb{R}^n$, domain \mathcal{D} , and optimal value p^*

The Lagrangian is a function $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$, defined as

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i h_i(\boldsymbol{x})$$

where λ_i is the Lagrange multiplier associated with $f_i(\mathbf{x}) \leq 0$ and ν_i is the Lagrange multiplier associated with $h_i(\mathbf{x}) = 0$.

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Lagrange Dual Function I

The *Lagrange dual function* is defined as the infimum of the Lagrangian over $x: g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$
$$= \inf_{\boldsymbol{x} \in \mathcal{D}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i h_i(\boldsymbol{x}) \right)$$

- **Observe** that:
 - the infimum is unconstrained (as opposed to the original constrained minimization problem)
 - g is concave regardless of original problem (infimum of affine functions)
 - * *g* can be −∞ for some λ , ν

Lagrange Dual Function II

Lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$.

Proof.

Suppose \tilde{x} is feasible and $\lambda \succeq 0$. Then,

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

Now choose minimizer of $f_0(\tilde{x})$ over all feasible \tilde{x} to get $p^* \geq g(\lambda, \nu)$. \square

We could try to find the best lower bound by maximizing $g(\lambda, \nu)$. This is in fact the dual problem.

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Dual Problem

The Lagrange dual problem is defined as

$$\begin{array}{ll} \underset{\boldsymbol{\lambda}, \boldsymbol{\nu}}{\text{maximize}} & g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \text{subject to} & \boldsymbol{\lambda} \succeq \mathbf{0} \end{array}$$

- * This problem finds the best lower bound on p^* obtained from the dual function
- It is a convex optimization (maximization of a concave function and linear constraints)
- The optimal value is denoted d^*
- **№** λ , ν are dual feasible if $\lambda \succeq 0$ and $(\lambda, \nu) \in \text{dom } g$ (the latter implicit constraints can be made explicit in problem formulation)

Example: Least-Norm Solution of Linear Equations I

Consider the problem

minimize
$$x^T x$$
 subject to $Ax = b$

The Lagrangian is

$$L(\boldsymbol{x}, \boldsymbol{\nu}) = \boldsymbol{x}^T \boldsymbol{x} + \boldsymbol{\nu}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b})$$

To find the dual function, we need to solve an unconstrained minimization of the Lagrangian. We set the gradient equal to zero

$$\nabla_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\nu}) = 2\boldsymbol{x} + \boldsymbol{A}^T \boldsymbol{\nu} = \boldsymbol{0} \Longrightarrow \boldsymbol{x} = -\frac{1}{2} \boldsymbol{A}^T \boldsymbol{\nu}$$

Example: Least-Norm Solution of Linear Equations II

and we plug the solution in L to obtain g:

$$g(\boldsymbol{\nu}) = L(-\frac{1}{2}\boldsymbol{A}^T\boldsymbol{\nu},\boldsymbol{\nu}) = -\frac{1}{4}\boldsymbol{\nu}^T\boldsymbol{A}\boldsymbol{A}^T\boldsymbol{\nu} - \boldsymbol{b}^T\boldsymbol{\nu}$$

- The function g is, as expected, a concave function of ν .
- From the lower bound property, we have

$$p^* \ge -\frac{1}{4} \boldsymbol{\nu}^T \boldsymbol{A} \boldsymbol{A}^T \boldsymbol{\nu} - \boldsymbol{b}^T \boldsymbol{\nu}$$
 for all $\boldsymbol{\nu}$

The dual problem is the QP

$$\underset{\boldsymbol{\nu}}{\text{maximize}} \quad -\frac{1}{4}\boldsymbol{\nu}^T \boldsymbol{A} \boldsymbol{A}^T \boldsymbol{\nu} - \boldsymbol{b}^T \boldsymbol{\nu}$$

Example: Standard Form LP I

Consider the problem

$$\begin{aligned} & \underset{\boldsymbol{x}}{\text{minimize}} & & \boldsymbol{c}^T \boldsymbol{x} \\ & \text{subject to} & & \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, & \boldsymbol{x} \succeq \boldsymbol{0} \end{aligned}$$

The Lagrangian is

$$L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$

= $(c + A^T \nu - \lambda)^T x - b^T \nu$

L is a linear function of x and it is unbounded if the term multiplying x is nonzero.

Example: Standard Form LP II

Hence, the dual function is

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \begin{cases} -b^T \nu & c + A^T \nu - \lambda = 0 \\ -\infty & \text{otherwise} \end{cases}$$

- **№** The function g is a concave function of (λ, ν) as it is linear on an affine domain.
- From the lower bound property, we have

$$p^{\star} \geq -\boldsymbol{b}^{T} \boldsymbol{\nu} \quad \text{if } \boldsymbol{c} + \boldsymbol{A}^{T} \boldsymbol{\nu} \succeq \boldsymbol{0}$$

The dual problem is the LP

$$\begin{array}{ll} \text{maximize} & - \boldsymbol{b}^T \boldsymbol{\nu} \\ \text{subject to} & \boldsymbol{c} + \boldsymbol{A}^T \boldsymbol{\nu} \succeq \boldsymbol{0} \end{array}$$

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Weak and Strong Duality I

- From the lower bound property, we know that $g(\lambda, \nu) \leq p^*$ for feasible (λ, ν) . In particular, for a (λ, ν) that solves the dual problem.
- Hence, weak duality always holds (even for nonconvex problems):

$$d^{\star} \leq p^{\star}$$

- The difference $p^* d^*$ is called **duality gap**.
- Solving the dual problem may be used to find nontrivial lower bounds for difficult problems.
- Even more interesting is when equality is achieved in weak duality. This is called **strong duality**:

$$d^{\star} = p^{\star}$$

Weak and Strong Duality II

- Strong duality means that the duality gap is zero.
- Strong duality:
 - is very desirable (we can solve a difficult problem by solving the dual)
 - does not hold in general
 - usually holds for convex problems
 - conditions that guarantee strong duality in convex problems are called constraint qualifications.

Slater's Constraint Qualification I

- Slater's constraint qualification is a very simple condition that is satisfied in most cases and ensures strong duality for convex problems.
- Strong duality holds for a convex problem

minimize
$$f_0(m{x})$$
 subject to $f_i(m{x}) \leq 0$ $i=1,\cdots,m$ $m{A}m{x} = m{b}$

if it is strictly feasible, i.e.,

$$\exists x \in \text{int } \mathcal{D}: \quad f_i(x) < 0 \quad i = 1, \dots, m, \quad Ax = b$$

There exist many other types of constraint qualifications.

Example: Inequality Form LP

Consider the problem

$$egin{array}{ll} ext{minimize} & oldsymbol{c}^T oldsymbol{x} \ ext{subject to} & oldsymbol{A} oldsymbol{x} \preceq oldsymbol{b} \ \end{array}$$

The dual problem is

$$\begin{array}{ll} \text{maximize} & - \boldsymbol{b}^T \boldsymbol{\lambda} \\ \text{subject to} & \boldsymbol{A}^T \boldsymbol{\lambda} + \boldsymbol{c} = \boldsymbol{0}, \quad \boldsymbol{\lambda} \succeq \boldsymbol{0} \end{array}$$

- From Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x} .
- ***•** In this case, in fact, $p^* = d^*$ except when primal and dual are infeasible.

Example: Convex QP

ightharpoonup Consider the problem (assume $P \succeq 0$)

$$egin{array}{ll} ext{minimize} & m{x}^T m{P} m{x} \ ext{subject to} & m{A} m{x} \preceq m{b} \end{array}$$

The dual problem is

$$\begin{array}{ll} \text{maximize} & -\frac{1}{4} \boldsymbol{\lambda}^T \boldsymbol{A} \boldsymbol{P}^{-1} \boldsymbol{A}^T \boldsymbol{\lambda} - \boldsymbol{b}^T \boldsymbol{\lambda} \\ \text{subject to} & \boldsymbol{\lambda} \succeq \boldsymbol{0} \end{array}$$

- From Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x} .
- In this case, in fact, $p^* = d^*$ always.

Complementary Slackness

Assume strong duality holds, x^* is primal optimal and (λ^*, ν^*) is dual optimal. Then

$$f_0(\boldsymbol{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) = \inf_{\boldsymbol{x}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i^* f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i^* h_i(\boldsymbol{x}) \right)$$

$$\leq f_0(\boldsymbol{x}^*) + \sum_{i=1}^m \lambda_i^* f_i(\boldsymbol{x}^*) + \sum_{i=1}^p \nu_i^* h_i(\boldsymbol{x}^*)$$

$$\leq f_0(\boldsymbol{x}^*)$$

- Hence, the two inequalities must hold with equality. Implications:
 - $m{x}^{\star}$ minimizes $L(m{x}, m{\lambda}^{\star}, m{
 u}^{\star})$
 - $\lambda_i^{\star} f_i(x^{\star}) = 0$ for $i = 1, \dots, m$; this is called **complementary slackness**:

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(\boldsymbol{x}^{\star}) = 0, \quad f_i(\boldsymbol{x}^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$$

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Karush-Kuhn-Tucker (KKT) Conditions

KKT conditions (for differentiable f_i, h_i):

1 primal feasibility:

$$f_i(\mathbf{x}) \le 0, \ i = 1, \dots, m, \ h_i(\mathbf{x}) = 0, \ i = 1, \dots, p$$

- **2** dual feasibility: $\lambda \succeq 0$
- **3** complementary slackness: $\lambda_i f_i(\mathbf{x}) = 0$ for $i = 1, \dots, m$
- **4** zero gradient of Lagrangian with respect to x:

$$abla f_0(oldsymbol{x}) + \sum_{i=1}^m \lambda_i
abla f_i(oldsymbol{x}) + \sum_{i=1}^p
u_i
abla h_i(oldsymbol{x}) = oldsymbol{0}$$

KKT condition

- We already known that if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions.
- What about the opposite statement?
- If x, λ , ν satisfy the KKT conditions for a convex problem, then they are optimal.

Proof.

From complementary slackness, $f_0(\mathbf{x}) = L(\mathbf{x}, \lambda, \nu)$ and, from 4th KKT condition and convexity, $g(\lambda, \nu) = L(\mathbf{x}, \lambda, \nu)$. Hence, $f_0(\mathbf{x}) = g(\lambda, \nu)$.

Theorem

If a problem is convex and Slater's condition is satisfied, then x is optimal if and only if there exists λ , ν that satisfy the KKT conditions.

Reference

Chapter 5 of:

Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*. Cambridge, U.K.: Cambridge University Press, 2004.