3.4. Subspaces and Linear Independence

Definition

If W is a nonempty set of vectors in \mathbb{R}^n , then

- W is closed under scalar multiplication if cv ∈ W for any scalar c and any vector v ∈ W.
- 2. W is closed under addition if $\mathbf{v}_1 + \mathbf{v}_2 \in W$ for any vectors $\mathbf{v}_1, \mathbf{v}_2 \in W$.
- 3. A nonempty set W of vectors in \mathbb{R}^n is called a subspace of \mathbb{R}^n if it is closed under scalar multiplication and addition.

Examples

- ▶ lines through the origin in \mathbb{R}^2
- ▶ planes through the origin in \mathbb{R}^3

▶ $\{0\}$ is a subspace of \mathbb{R}^n , called zero subspace or trivial subspace.

 $ightharpoonup \mathbb{R}^n$ itself is a subspace of \mathbb{R}^n .

▶ Every subspace of \mathbb{R}^n must contain **0**.

Theorem

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s$ are vectors in \mathbb{R}^n , then the set of all linear combinations

$$\mathbf{x} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \dots + t_s \mathbf{v}_s$$

is a subspace of \mathbb{R}^n called the span of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s$ and denoted by span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s\}$.

```
Example \{\mathbf{0}\} = \operatorname{span}\{\mathbf{0}\}.
```

```
Example \mathbb{R}^n = \text{span}\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}.
```

Example List all subspaces of \mathbb{R}^2 .

Example List all subspaces of \mathbb{R}^3 .

Solution space of a linear system

Theorem

If $A\mathbf{x} = \mathbf{0}$ is a homogeneous linear system with n unknowns, then its solution set is a subspace of \mathbb{R}^n .

Solution space of a linear system

Theorem

- 1. If A is a matrix with n columns, then the solution space of the homogeneous system $A\mathbf{x} = \mathbf{b}$ is all of \mathbb{R}^n if and only if A = 0.
- 2. If A and B are matrices with n columns, then A = B if and only if $A\mathbf{x} = B\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^n .

Definition

A nonempty set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s\}$ in \mathbb{R}^n is said to be linearly independent if the only scalar c_1, c_2, \dots, c_n satisfying the equation

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_s\mathbf{v}_s=\mathbf{0}$$

are
$$c_1 = 0, c_2 = 0, \dots, c_s = 0$$
.

If there are scalars, not all zero, that satisfy this equation, then the set is said to be linearly dependent.

Example

A vector ${\bf v}$ is linearly independent if and only if it is not the zero vector.

Example

A nonempty set of vectors in \mathbb{R}^n containing the zero vector is linearly dependent.

Theorem

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s\}$ in \mathbb{R}^n with two or more vectors is linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of other vectors in S.

Example

Two vectors in \mathbb{R}^n are linearly dependent if they are colinear and linearly independent if they are not.

Example

Three vectors in \mathbb{R}^n are linearly dependent if they lie in a plane through the origin and are linearly independent if they are not.

Theorem

A homogeneous linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution if and only if the column vectors of A are linearly independent.

Example

Determine whether the following vectors are linearly independent or not.

$$\mathbf{v}_1 = (1, 2, 1), \mathbf{v}_2 = (2, 5, 0), \mathbf{v}_3 = (3, 3, 8)$$

Example

Determine whether the following vectors are linearly independent or not.

$$\mathbf{v}_1 = (2, -4, 6), \mathbf{v}_2 = (0, 7, -5), \mathbf{v}_3 = (6, 9, 8), \mathbf{v}_4 = (5, 0, 1)$$

Theorem

A set with more than n vectors in \mathbb{R}^n is linearly dependent.

The unifying theorem

Theorem

If A is an $n \times n$ matrix, then the followings are equivalent.

- 1. The reduced row echelon form of A is I_n .
- 2. A is expressible as a product of elementary matrices.
- 3. A is invertible.
- 4. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- 6. $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- 7. The column vectors of A are linearly independent.
- 8. The row vectors of A are linearly independent.