Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegrifl
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkei
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkeit
- 9. Das Postsche Korrespondenzproblem
- 10. Komplexität Einführung
- 11. NP-Vollständigkei
- 12. PSPACE

(Semi-)Entscheidbarkeit und Aufzählbarkeit

Definition (Erinnerung)

- a) Eine Sprache $A\subseteq \Sigma^*$ heißt **entscheidbar**, falls die charakteristische Funktion $\chi_A:\Sigma^*\to\{0,1\}$ berechenbar ist.
- b) Eine Sprache $A\subseteq \Sigma^*$ heißt **semi-entscheidbar**, falls die halbe charakteristische Funktion $\chi_A':\Sigma^*\to\{0,1\}$ berechenbar ist.

$$\chi_A(x) := \begin{cases} 1, & \text{falls } x \in A, \\ 0, & \text{falls } x \notin A. \end{cases}$$

$$\chi'_A(x) := \begin{cases} 1, & \text{falls } x \in A, \\ \bot, & \text{falls } x \notin A. \end{cases}$$

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt **(rekursiv)** aufzählbar, falls $A = \emptyset$ gilt oder falls es eine totale, berechenbare Funktion $f : \mathbb{N} \to \Sigma^*$ derart gibt, dass $A = \{f(0), f(1), f(2), \ldots\} = f(\mathbb{N})$.

Das heißt, f zählt A auf.

Beachte: *f* muss weder injektiv noch monoton sein!

Frage: Können Sie ein f angeben, das die Sprache $\{w \in \{0,1\}^* \mid w \text{ ist Binärkodierung einer Primzahl}\}$ aufzählt?

Entscheidbare und Semi-Entscheidbare Sprachen

Theorem

 $A\subseteq \Sigma^*$ ist genau dann entscheidbar, wenn sowohl A als auch $\Sigma^*\setminus A$ semi-entscheidbar ist.

Beweis

"":
$$A$$
 entscheidbar \Rightarrow 1. A semi-entscheidbar. 2. $\Sigma^* \setminus A$ entscheidbar $\Rightarrow \Sigma^* \setminus A$ semi-entscheidbar.

",
$$\leftarrow$$
": χ'_A und $\chi'_{\Sigma^* \setminus A}$ berechenbar durch Dann entscheidet folgendes Programm A:

WHILE-Programme mit einer **WHILE**-Schleife 1 $x_i := 1$; $x_j := 1$; (& disjunkten Variablennamen): 2 **WHILE** $x_i \neq 0$ und $x_i \neq 0$ **DO**

$$x_i := 1$$
; WHILE $x_i \neq 0$ DO P_A END; $x_0 := 1$ 3 P_A ; $P_{\bar{A}}$;

5 IF
$$x_i = 0$$
 THEN $x_0 := 1$ ELSE $x_0 := 0$;

$$x_j := 1$$
; WHILE $x_j \neq 0$ DO $P_{\bar{A}}$ END; $x_0 := 1$

(Rekursiv) Aufzählbare Sprachen

Theorem

Eine Sprache L ist aufzählbar gdw.

<u>L</u> is semi-entscheidbar.

Beachte: Wir nehmen an, dass $\chi_A': \mathbb{N} \to \{0,1\}$ (Bijektion zwischen $\mathbb{N} \& \Sigma^*$ berechenbar)

Beweis

" \Rightarrow ": $f(\mathbb{N}) = A$ total & berechenbar $\rightsquigarrow \chi_A'$ berechnet durch

 $x_2 := 0;$

WHILE $x_0 \neq 1$ DO

IF $f(x_2) = x_1$ THEN $x_0 := 1$; $x_2 := x_2 + 1$;

END

Konstruiere Algorithmus der eine totale Funktion *f* berechnet die *A* aufzählt:

Versuch 3: In Schritt i des Algorithmus für f, simuliere Algorithmus für $\chi'_A(j)$ für jedes $j \leq i$ genau einen Schritt, bis n+1 "Erfolge" $(\chi'_A(j)=1)$ beobachtet wurden und gebe das letzte erfolgreiche w_j aus.

Zusammenfassung (Semi-) Entscheidbarkeit

Für beliebige Sprachen $A \subseteq \Sigma^*$ gelten folgende Äquivalenzen:

 $\Leftrightarrow \chi'_A$ ist berechenbar

A ist semi-entscheidbar

- *⇔*A ist aufzählbar
- $\Leftrightarrow A = T(M)$ wird von einer Turing-Maschine M akzeptiert
- \Leftrightarrow A ist Definitionsbereich einer (partiellen) berechenbaren Funktion $f: \Sigma^* \to \Pi^*$ (A läßt sich schreiben als $A = f^{-1}(\Pi^*)$)
- $\ \ \, \Leftrightarrow A$ ist Wertebereich einer (partiellen) berechenbaren Funktion $g:\Pi^* \to \Sigma^*$
- ⇔ A ist Typ 0-Sprache (Chomsky-Hierarchie)

 Mathias Weller (TU Berlin) Berechenbarkeit und Komplexität

(A läßt sich schreiben als $A = g(\Pi^*)$)

- A ist entscheidbar
- \Leftrightarrow_{χ_A} ist berechenbar
- ⇔ A endlich oder aufzählbar durch totale, berechenbare, streng monotone Funktion
- A = T(M) wird von einer Turing-Maschine M akzeptiert die auf allen Eingaben hält
- \Leftrightarrow A ist Urbild eines Bildwertes einer totalen, berechenbaren Funktion $f: \Sigma^* \to \Pi^*$ (A läßt sich schreiben als $A = f^{-1}(1)$, mit $1 \in \Pi^*$)
- \Leftrightarrow A ist Wertebereich einer totalen, berechenbaren, streng monotonen Funktion $g:\Pi^*\to\Sigma^*$ (A läßt sich schreiben als $A=g(\Pi^*)$)