Exercices sur les amplis-op

But de la manipulation

Cette manipulation a pour but, en préparation au labo n°3, de vous faire pratiquer les notions du cours se rapportant aux amplis-op.

Le laboratoire n°3 consistera à réaliser pratiquement et à tester un amplificateur audio réalisé à l'aide d'amplis-op.

Prérequis

L'ensemble du **chapitre 4** du cours est supposé connu avant ce laboratoire.

On utilisera en particulier les notions suivantes :

- amplification d'un signal analogique au moyen d'un amplificateur opérationnel ;
- montages inverseur et non inverseur ;
- relation entre le gain et la bande passante d'un ampli-op;
- les imperfections de l'ampli-op (tension de décalage et courants de polarisation).

Plusieurs datasheets d'amplis-op sont fournies en annexe de cet énoncé.

Prédéterminations

Réfléchir à l'avance aux deux premiers exercices. Cela vous permettra de voir quelles sont les notions que vous n'avez pas bien comprises.

1. Exercices de base

Exercice 1.1 L'ampli comme outil mathématique

Soit le montage ci-dessous (Gain de l'ampli = 10⁵)

Que vaut Vout dans les 6 cas suivants ?

a)
$$V+ = 1\mu V$$
 et $V- = 0V$

b)
$$V+=0V$$
 et $V-=1V$

c)
$$V+=0V$$
 et $V-=1V.\sin(2.\pi.1000.t)$

d)
$$V+ = 1V.\sin(2.\pi.1000.t)$$
 et $V- = -3V$

e)
$$V + = 1 \mu V.\sin(2.\pi.1000.t)$$
 et $V - = -3V$

f)
$$V + = 1 \mu V.\sin(2.\pi.1000.t)$$
 et $V - = 0V$

Exercice 1.2 Amplis non-inverseur et inverseur

Résoudre les circuits suivants en utilisant le zéro virtuel :

$$V_{in}$$
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_4
 R_5
 R_7
 R_8
 R_9
 R

- a) R1=1k Ω , R2=10k Ω Vin=500mV.sin(2. π .1000.t)
- b) on remplace la source sinusoïdale par une source continue -4V (R1=1k Ω , R2=10k Ω)
- c) R1=1k Ω , R2=10k Ω Vin=4V.sin(2. π .1000.t)

2. Analyse de circuit

Exercice 2.1 Ampli avec charge

Résoudre le circuit suivant :

R1=1k Ω , R2=5k Ω R3=1k Ω et Vin=500mV.sin(2. π .1000.t)

Exercice 2.2

Résoudre le circuit suivant :

- a) R1=1k Ω , R2=10k Ω R3=1k Ω et Vin=500mV.sin(2. π .1000.t)
- b) R1=1k Ω , R2=10k Ω R3=20k Ω et Vin=500mV.sin(2. π .1000.t)

Exercice 2.3 Le suiveur

Soit les montages suivants :

- 2.3.1. Calculer le gain en tension
- 2.3.2. Quelle est l'utilité de ce genre de montage ?
- 2.3.3. Illustrer par l'exemple suivant : on souhaite connecter les 2 blocs suivants

Calculer V_1 :

- en connectant directement les deux blocs
- en insérant un des deux montages ci-dessus entre les deux blocs

Exercice 2.4

Résoudre les montages suivants :

R1=1k Ω , R2=5k Ω , R3=1k Ω et Vin=500mV.sin(2. π .1000.t)

 $R1=1k\Omega,\,R2=5k\Omega,\,R3=1k\Omega,\,R4=1k\Omega,\,R5=500\Omega\text{ et Vin}=500\text{mV.sin}(2.\pi.1000.t)$

Exercice 2.5 Ampli avec plusieurs sources

- 2.5.1. R1=1k Ω , R2=5k Ω , Vin=500mV.sin(2. π .1000.t) et Vin₂=50mV. sin(2. π .500t)
- 2.5.2. R1=1k Ω , R2=20k Ω , Vin=100mV.sin(2. π .1000.t) et Vin₂=50mV. sin(2. π .1000t)

Exercice 2.6 Sources de courant

Résoudre les circuits suivants pour les valeurs :

R1=1k Ω , R2=5k Ω , I1=0,5mA

Exercice 2.7 Calcul de la tension de décalage

Soit le montage suivant :

On donne $R_s = 100k\Omega$; $R_1 = 1k\Omega$; $R_2 = 9k\Omega$

- 2.7.1. Calculez la tension de décalage à la sortie de l'amplificateur, soit $V_o(E_s=0)$, dans le cas d'un LM741, puis d'un CA3140A.
- 2.7.2. Comparez les deux résultats obtenus. A quoi est due la différence ?

On considère le montage ci-dessous, pour lequel :

- I₁ est une source de courant continue de 1µA modélisant une imperfection
- à la fréquence de la source de tension, la capacité C peut être considérée comme un court-circuit.

Exercice 2.8 Polarisation

Il arrive fréquemment que nous n'ayons pas accès à des alimentations symétriques. Par exemple, les lecteurs multimédias portables sont généralement alimentés par des batteries fournissant une tension entre 3V et 5V, l'autre borne étant connectée à la masse du système.

2.8.1. Tracez la sortie du montage inverseur suivant, où $V_{\rm in}$ est une sinusoïde d'amplitude 10 mV et de fréquence 5 kHz

La sortie est manifestement déformée. Pour supprimer ce problème, nous allons *polariser* le montage, ce qui signifie que nous allons changer la moyenne du signal de sortie au moyen d'un condensateur et d'une tension continue.

- 2.8.2. A l'aide de la superposition, et pour une tension V_{in} à très haute fréquence, expliquez en quoi ce circuit résout le problème. Calculez la composante continue de la tension en tous les points du circuit.
 - 2.8.3. Calculez la sortie $V_{out} = H_1(j\omega)V_{in} + H_2(j\omega)5V$
- 2.8.4. Sachant que V_{in} est un signal audio dont la bande passante s'étend de 20 Hz à 20 kHz, dimensionnez R1, R2 et C pour que le gain du montage soit le même qu'avant dans toute cette bande de fréquence.
- 2.8.5. Réalisez un filtre RC permettant de supprimer cette composante continue sans déformer la composante alternative. Dimensionnez ses composants.

3. Dimensionnement de circuit à ampli-op

Exercice 3.1

- 3.1.1. Dimensionnez un étage amplificateur inverseur à ampli-op ayant les caractéristiques suivantes :
 - gain à vide : A_0 = 14dB impédance d'entrée : R_{in} ≥ 10kΩ
- 3.1.2. En supposant que l'ampli-op utilisé pour réaliser ce montage est un LM741, déterminez :
 - l'impédance de sortie du montage,
 - la bande passante du montage,
 - la tension de décalage à la sortie

Exercice 3.2

On vous demande de réaliser un amplificateur d'entrée pour l'entrée ligne d'une carte son d'ordinateur. On vous donne les informations suivantes :

- La source de signal connectée à l'entrée de la carte (micro, baladeur, discman, ...) fournit un signal sans composante continue et dont l'amplitude crête ne dépasse pas 100mV et son impédance de sortie est égale à 100Ω.
- La sortie de l'étage à réaliser est connectée à un convertisseur analogique/numérique dont l'impédance d'entrée est égale à 100kΩ. La plage de conversion du CAN va de -1V à +1V.
- Votre montage doit amplifier correctement les signaux entre 20Hz et 20kHz.
- Vous avez à votre disposition des amplis-op LM741 ou CA3140A. Le LM741 coûte 0,37€/pièce et le CA3140A coûte 0,96€/pièce.

Exercice 3.3

On vous demande de réaliser le pré-amplificateur d'un micro-baladeur. On vous donne les informations suivantes :

- La source de signal est un microphone à membrane, caractérisé par une impédance de sortie de 100kΩ et dont l'amplitude de sortie sera au maximum de 1mV.
- La sortie de l'étage à réaliser est connectée à l'entrée de modulation de l'émetteur radio du micro-baladeur;
 celle-ci est caractérisée par une impédance d'entrée de 150kΩ. L'amplitude du signal appliqué à cette entrée ne peut dépasser 1V.
- Votre montage doit amplifier correctement les signaux entre 20Hz et 20kHz.
- Vous avez à votre disposition des amplis-op CA3140A.

Exercice 3.4 Examen janvier 2003

On désire amplifier un signal dont la bande passante s'étend de 2kHz à 2MHz. Ce signal est représenté par une source composée d'une f.e.m. sinusoïdale de $10mV_{eff}$ et d'une impédance de sortie de 50Ω .

On désire obtenir à la sortie du bloc amplificateur un signal :

- d'amplitude réglable, comprise entre 5mV_{eff} et 4V_{eff} au choix de l'utilisateur.
- non déphasé par rapport au signal d'entrée
- 3.4.1. En supposant que l'impédance de charge R_C vaut $10k\Omega$, proposez et dimensionnez un montage pour le bloc amplificateur. Justifiez chaque étape de votre raisonnement et donnez un schéma final complet de votre montage amplificateur
- 3.4.2. En supposant maintenant que la résistance de charge R_C vaut 4Ω , comment faut-il modifier le montage et pourquoi ?

Remarques:

- vous disposez de trois types d'ampli opérationnels dont les caractéristiques sont données dans le tableau cidessous. Si plusieurs solutions sont possibles, utilisez toujours la solution <u>la moins coûteuse</u>.
- pour chacune des questions ci-dessus, justifiez rigoureusement chaque étape de votre raisonnement.

type	$V_{ m DD}$	I _{out,max}	A.B _w	slew-rate	prix
		mA	MHz	V/µs	€
AD8129	3V à 12V	11	200	1100	1,55
OPA549	8V à 60V	8000	3	100	10,54
OPA132	4,5V à 36V	4,8	8	20	1,3

Légende du tableau :

- V_{DD} : limites de variation de la tension d'alimentation positive (l'ampli-op est alimenté par deux tensions de valeur: $+V_{DD}$ et $-V_{DD}$)
- I_{out,max}: courant de sortie maximal