

Функциональные полимерные композиционные материалы

Бурмистров Игорь Николаевич Ведущий эксперт каф. ФНСиВТМ

Направления использования электропроводных композитов

- Радиаторы обогрева/охлаждения;
- Резистивные нагреватели;
- Саморегулирующиеся обогревающие материалы;
- Электродные материалы;
- Материалы для 3D печати функциональных прототипов.

Повышение теплопроводности экструзионных и литьевых термопластов Топпопроводности

Радиатор охлаждения LED

Аналоги:Листовой материал **НОМАКОН™ КПТД-2**- 1,4 Вт/м*К

Трубчатые радиаторы

Аналоги: Труба ProtectorFlex с повышенным коэффициентом теплопроводности — 0,49 Bт/м*К

Теплопроводность композитов на основе ПП, наполненного 18% масс. УВ и 2% масс. МУНТ

Теплопроводность композитов на основе ПП и МУНТ d = 9 нм

Корреляция структуры и проводимости полимерного композиционного материала (ПКМ)

Область 1 — композит не проводит электричество, матрица включает отдельные частицы проводящего наполнителя. Область 2 — область формирования перколяционной сетки или проводящего кластера, проводимость резко возрастает при $\phi > \phi_{C}$. Область 3 — проводимость медленно увеличивается за счет роста проводящего кластера.

$$\sigma = \sigma_0(\varphi - \varphi_c)^t$$

где:

 σ_0 – собственная проводимость наполнителя;

 ϕ_c — порог электрической перколяции; t — критический показатель, зависящий от особенности структуры наполнителя.

Полимерные смеси в качестве матрицы ПКМ

- а) дисперсная структура (капля в матрице) (ТПУ/ПП = 80/20)
- б) матрично-волокнистая структура (САН/ПА = 70/30)
- в) пластинчатая структура (ПП/ЭПДМ = 80/20)
- Γ) структура взаимопроникающих сеток (ПС/ПЭ = 75/25)

 $\Pi \Lambda A/C3BA = 50/50$

Формирование структуры смеси взаимно не растворимых полимеров в процессе переработки

Структура смесей ПЛА и СЭВА при различных соотношениях компонентов

20 % масс. ПЛА 80 % масс. СЭВА 50 % масс. ПЛА 50 % масс. СЭВА 80 % масс. ПЛА 20 % масс. СЭВА

Механические свойства смесей ПЛА и СЭВА

ПЛА/СЭВА/СВ

8

Формирование структуры наполненных смесей взаимно не растворимых полимеров

полимер А

полимер Б

SEBS/140 - 40 wt.% PP - 50 wt. % CB - 10 wt. %

Корреляция структуры и проводимости полимерного композиционного материала (ПКМ)

Область 1 — непроводящий композит, состоящий из полимерная смеси непроводящего полимера A с включениями наполненного полимера (проводящего композита) Б.

Область 2 — взаимопроникающая сетка из проводящей и непроводящей фаз. Это область начала перколяции Б в A, проводимость резко возрастает при $\phi > \phi_C$. Область 3 — Структура композита состоит из проводящей матрицы (композит Б), проводимость медленно увеличивается пропорционально объемной доле проводящей фазы.

Распределение сажи в смеси полипропилена (ПП) и стирол-этилен-бутилен-стирольного каучука (СЭБС)

А – Структура частиц сажи

Printex XE 2-B,

В – Рамановский спектр сажи

Printex XE 2-B;

Структура композитов на основе сажи и смеси ПП с СЭБС содержанием ПП:

C - 5% macc.,

D - 30% macc.,

E - 50% macc.,

F - 80% macc.

Распределение сажи в смеси полипропилена (ПП) и стирол-этилен-бутилен-стирольного каучука (СЭБС)

$\Pi\Pi/C3EC = 60/40$

90/10 UU/6

100 µm 20 µm (c2)

https://doi.org/10.1016/j.compositesa.2025.109294

Функциональные полимерные композиционные материалы

12

Морфология ПП в системе ПП/СЭБС/сажа

Влияние сажи на структуру смесей ПЛА с СЭВА

Создание сегрегированной структуры методом

уплотнения

Сегрегированные структуры в системе ПММА- Таунит-М

% MYHT

0,5

HMMA +

Композиты на основе порошка ПММА и МУНТ йодированные в газовой фазе

Функциональные полимерные композиционные материалы

+ 0,5 % МУНТ после

ПММА

Спасибо за внимание!

Ленинский проспект, д. 4 Москва, 119049 тел. +7 (495) 955-00-32 e-mail: kancela@misis.ru misis.ru

