Deep mutational scanning of an H3 hemagglutinin can inform evolutionary forecasting of human H3N2 influenza virus

Juhye M. Lee 1,4,5,† John Huddleston 2,6,† Michael B. Doud 1,4,5 Kathryn A. Hooper 1,6 Trevor Bedford, 2,3 Jesse D. Bloom 1,3,4*

¹Basic Sciences Division, ²Vaccine and Infectious Diseases Division, and ³Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

⁴Department of Genome Sciences, ⁵Medical Scientist Training Program, and ⁶Molecular and Cellular Biology Program,
University of Washington, Seattle, WA, USA

[†]These authors contributed equally

*Correspondence: jbloom@fredhutch.org

Abstract

[Some title ideas: - Determination of lineage-specific mutational effects in hemagglutinin of seasonal H3N2 influenza virus evolution - Experimental measurements of mutational effects to hemagglutinin reveal lineage-specific evolution of seasonal H3N2 influenza virus - Understanding the effects of mutation to hemagglutinin in the context of seasonal H3N2 influenza virus evolution]