

MATEMÁTICA I SECCIÓN: U1

CLASE N° 14

- ► Límite de una función
 - **▶** Definición de límite
 - **►** Límites laterales
 - Existencia de límite en un valor
 - ► Estudio de límites usando diagramas

▶ DEFINICIÓN DE LÍMITE

<u>Límite</u>

Definición intuitiva: Estudiar el comportamiento de f(x) = 3x - 2 en torno a x = 2.

Algunos valores de f(x) cuando nos acercamos a 2 por la izquierda (x < 2) y cuando nos acercamos a 2 por la derecha (x > 2) son los siguientes:

x < 2		
x	f(x)	
1,5	2,5	
1,6	2,8	
1,8	3,4	
1,99	3,97	
1,999	3,997	

x > 2		
x	f(x)	
2,5	5,5	
2,3	4,9	
2,1	4,3	
2,09	4,27	
2,009	4,027	

DEFINICIÓN DE LÍMITE

Observemos que independientemente de como nos acerquemos al valor 2, pero sin llegar a ser 2, la función se aproxima progresivamente a 4. Este resultado se expresa diciendo que el límite de f(x) cuando x tiende a 2 es 4, lo cual se abrevia así:

$$\lim_{x\to 2} f(x) = 4$$

O bien,

$$\lim_{x\to 2} 3x - 2 = 4$$

Es importante tener en cuenta que el límite de una función cuando x tiende a un cierto número no siempre es equivalente al valor numérico de la función para ese número. Además, es importante resaltar que se puede calcular el límite de una función cuando x tiende a un cierto número a pesar de que la función no este definida en dicho número.

▶ DEFINICIÓN DE LÍMITE

Definición formal

Decir que $\lim_{x\to c} f(x) = L$ significa que:

 $\forall \varepsilon > 0$, $\exists \delta > 0$ tal que $\forall x$ con $0 < |x - c| < \delta$ se cumple que $|f(x) - L| < \varepsilon$

► LÍMITES LATERALES

Límites laterales

Para hallar el límite de una función en un punto "c" nos aproximamos a "c" por ambos lados, por la izquierda y por la derecha. Si sólo nos aproximamos a "c" por un solo lado, bien sea por la izquierda o por la derecha, tenemos los límites laterales.

- ightharpoonup Diremos que $\lim_{x\to c^-} f(x) = L$ si cuando x esta cerca de "c" por la izquierda, f(x) se aproxima a L.
- ightharpoonup Diremos que $\lim_{x\to c^+} f(x) = L$ si cuando x esta cerca de "c" por la derecha, f(x) se aproxima a L.

$$\lim_{x \to c} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to c^{-}} f(x) = L \quad \text{y} \quad \lim_{x \to c^{+}} f(x) = L$$

► EXISTENCIA DE LIMITE EN UN VALOR

Existencia de límite en un valor

- La curva existe a ambos lados del valor.
 - a) Existen los dos límites laterales.
 - i. Si son iguales el límite existe.
 - ii. Si son diferentes el límite no existe.
 - b) Uno de los límites laterales no existe, entonces el límite no existe.
- 2. La curva existe sólo de un lado del valor, entonces existe el límite si existe el límite lateral que corresponde al lado donde hay curva.

Ejemplo:

b)
$$\lim_{x\to 2^-} f(x) = -\infty$$

c)
$$\lim_{x\to 2} f(x) = \nexists$$

► EXISTENCIA DE LIMITE EN UN VALOR

$$\lim_{x \to -1^+} f(x) = \infty$$

$$b) \lim_{x \to -1^{-}} f(x) = \infty$$

c)
$$\lim_{x\to -1} f(x) = \infty$$

$$\lim_{x \to 1^+} f(x) = M$$

$$b) \lim_{x \to 1^{-}} f(x) = \nexists$$

$$c) \quad \lim_{x\to 1} f(x) = \nexists$$

EXISTENCIA DE LIMITE EN UN VALOR

$$a) \lim_{x \to 0^+} f(x) = N$$

b)
$$\lim_{x\to 0^-} f(x) = \text{No hay curva}$$

c)
$$\lim_{x\to 0} f(x) = N$$

a)
$$\lim_{x \to b^{+}} f(x) = p^{+}$$

b) $\lim_{x \to b^{-}} f(x) = p^{-}$

$$b) \lim_{x \to b^-} f(x) = p^-$$

c)
$$\lim_{x\to b} f(x) = p$$

1. $\lim_{x\to 0} e^{\frac{1}{x}}$ Solución:

$$\lim_{x\to 0^+} e^{\frac{1}{x}} = \infty$$

$$\lim_{x\to 0^-} e^{\frac{1}{x}} = 0$$
 por encima

$$lim_{x\to 0}e^{\frac{1}{x}}=\nexists$$

2.
$$\lim_{x\to 1^+} \frac{1}{(x+1)^2}$$
 Solución:

$$\lim_{x\to 1^+} \frac{1}{(x+1)^2} = \frac{1}{4}$$
(Por debajo)

$$\lim_{x\to\infty}\frac{2x+1}{x^2+1}=?$$

4.
$$\lim_{x\to\infty}(x+2)^2\frac{x}{2}$$

Solución:

$$\lim_{x\to\infty}(x+2)^2\frac{x}{2}=\infty$$