Abusive behavior in social media

Albert-Ludwigs-Universität zu Freiburg SS 2017

Tarek Saier

Outline

Introduction

- Abusive behavior
- Problem definition
- Challenges
- Solution approaches

Abusive Yahoo! comments

Agressive Twitter accounts

Conclusion

Types

- Frequency (aggressive behavior ↔ bullying)
- Channel (physical, verbal, relational, property)

Offline

All of the above

Types

- Frequency (aggressive behavior ↔ bullying)
- Channel (physical, verbal, relational, property)

Offline

All of the above

Online

- Pysical X
- Property ?
- Relational ✓
- Verbal ✓

Types

- Frequency (aggressive behavior ↔ bullying)
- Channel (physical, verbal, relational, property)

Offline

All of the above

Online

- Pysical
- Property
- Relational
- Verbal 🗲

Problem definition

General

- detect (stop) abusive behavior
- here "behavior" = textual communication

Operator's perspective

- available information
 - actor (≈real person/consistent ↔ anonymous)
- problem modeling
 - abusive user
 - abusive content

Problem definition | Examples

Facebook

- user ≈ real person
- friends
- likes
- activity patterns
- (→ qualities of user that engages in abusive behavior)

4chan

- consistency throughout one session
- ... maybe
- (→ abusive content)

Challenges

User

- intentional obfuscation
- sarcasm
 - false positives
 - bullying

Language

- multi sentence
- social context
- language changes

Challenges | Examples

Intentional obfuscation

- \$hit
- SHIT

• shit

► zero width non-joiner (U+200C)

Challenges | Examples

Sarcasm

false positives:

"oh of course we should kill them all that would clearly solve all the problems."

bullying:

"what a genius idea!"

"who would've thought of that? amazing!"

"damn you're smart!"

"you REALLY know what you're talking about!"

. . .

Challenges | Examples

Multi sentence

• "I tell you the [ethnic group] are the reason. We'd better get rid of them all."

Social context

- utterance X
 - acceptable to group A
 - not acceptable to group B

Language changes

- offensive words loose their impact over time
 - \rightarrow new offensive words

Word lists

- X blacklists
- features

n-grams

- example: 3-grams \rightarrow exa, xam, amp, mpl, ple
- padded: \$\$p, \$pa, pad, add, dde, ded, ed\$, d\$\$
- level: character / token

tf-idf

word importance

•
$$\#\text{term}|_{\text{Doc}}$$
 • $\log \frac{\#\text{Doc}}{\#\text{Doc}|_{\text{contains term}}}$

POS tags

- word-category disambiguation
 - noun
 - verb
 - preposition
- \rightarrow similarity

Domain specific

- URLs
- hashtags
- CAPS
- mentions
- emojis
- etc.
- \rightarrow similarity

Distributional semantics

- word embeddings
 - "the <u>ice</u> cream melted quickly" 0 1 0 0 0
 - "the ice cream melted quickly" 1 0 1 1 1
- word2vec: king man + woman = queen

Inter word dependencies

"[ethnic group] are lower class pigs"

 \rightarrow context

Beyond just text

- user
 - likes
 - activity patterns
 - profile (picture, age, ...)
- network
 - centrality
 - polularity
 - reciprocity
- ... if possible

Two concrete approaches

Targets

- Abusive Yahoo! comments [1]
- Aggressive Twitter accounts [2]

Discussion

- Data
- Features
- Experiments
- [1] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang. Abusive language detection in online user content. WWW '16, pages 145–153, 2016.
- [2] D. Chatzakou, N. Kourtellis, J. Blackburn, E. D. Cristofaro, G. Stringhini, and A. Vakali. Mean birds: Detecting aggression and bullying on twitter. CoRR, abs/1702.06877, 2017.

Two concrete approaches

Targets

- Abusive Yahoo! comments [1]
 - abusive content.
- Aggressive Twitter accounts [2]
 - abusive users

- [1] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang. Abusive language detection in online user content. WWW '16, pages 145–153, 2016.
- [2] D. Chatzakou, N. Kourtellis, J. Blackburn, E. D. Cristofaro, G. Stringhini, and A. Vakali. Mean birds: Mean birds: Detecting aggression and bullying on twitter. CoRR, abs/1702.06877, 2017.

Abusive Yahoo! comments

Detect

- hate speech
- derogatory language
- profanity

In

- Comments
 - Yahoo! News
 - Yahoo! Finance

Abusive Yahoo! comments Data

Data sets	% abusive	
 primary (2.1 M) 	13	
 temporal (1.2 M) 	7	
• WWW15 (1 M)	6	
evaluation (2 K)	50	(tripple labels)

Labels

- Yahoo! employees
- Amazon Mechanical Turk*

Abusive Yahoo! comments | Features

Features

- n-grams
- syntactic
- linguistic
- distributional semantics

Abusive Yahoo! comments | Features

Features

- n-grams
- syntactic
- linguistic
- distributional semantics

Syntactic

inter word dependencies, POS tags

Linguistic

average word length, number of CAPS,
 URLS, tokens, punctuations, hate speech words, ...

Primary data set F-scores

• all features: 0.80 0.82

• token n-grams: 0.77 0.74

• char. n-grams: 0.73 0.77

Goal and interpretation

- assess feature contribution (only highlights shown above)
- n-grams alone give high quality results

WWW15 dataset

• F-score: 0.78 -

• AUC now: 0.90

• AUC '15: 0.80

Goal and interpretation

outperforms approach from 2015 [3]

[3] N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Radosavljevic, and N. Bhamidipati. Hate speech detection with comment embeddings. WWW '15, 2015.

Evaluation dataset

• F-score all agree: 0.84

majority: 0.83

• 2 of 3: 0.43

Goal and interpretation

- test ground truth (calculation) variations
- lanugage is hard to judge

Temporal data set

 Original 	train(primary)	$\operatorname{predict}(\operatorname{t})$
Each slice	train(t)	predict(t+1)

• Accumulated train(0..t) preditct(t+1)

Goal

- assess how much training data is necessary
- assess if updating a model is necessary

Temporal data set

```
    Original train(primary) predict(t)
    Each slice train(t) predict(t+1)
    Accumulated train(0..t) predict(t+1)
```

Interpretation

- Each slice close to Original
 - → reasonable predictions for small training data
- Accumulated best
 - → recent training data more important than much

Aggressive Twitter accounts

Detect

- bullying
- aggressive behaviour

In

- Twitter accounts
 - Tweets
 - profile

Aggressive Twitter accounts Data

Data sets

- baseline (1 M)
- hate related (650 K)
 - #GamerGate

Labels

- CrowdFlower
- fivefold, majority
- → 9,484 annotated
 - 60% normal
 - 32% spam
 - 4.5% bully
 - 3.5% aggressive

Aggressive Twitter accounts | Features

User

 account age, verified, interarrival time, num. tweets, session statistics

Text

 num. hashtags, emoticons, URLs, hate score, word embeddings

Network

 num. friends, followers, polularity (fo/fr), reciprocity, centrality scores

Aggressive Twitter accounts | Experiments

Features

- 12 not useful
 - (session stats, hate score, word embeddings, etc.)

Classification

• 4-classes: bully, aggressive, normal, spam

3-classes: bully, aggressive, normal

Aggressive Twitter accounts | Experiments

Features

- 12 not useful
 - (session stats, hate score, word embeddings, etc.)

Classification	precision	recall	(in %)
			(

- 4-classes: 72 73
- 3-classes: 90 92

Interpretation

- actual textual content comparably not very useful
- approach works well

Conclusion

Central differences

- abusive content vs. behavior
- target: comments vs. users

Take-home messages

- natural language is hard
- context is valuable
- what about other languages?
- what about non-textual abusive behavior?

Discussion & Questions

"Participation in discussions [...] is also part of the final grade assigned" (no pressure)

Sources

- C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, Y. Chang. Abusive language detection in online user content.
 WWW '16, pages 145–153, 2016.
- D. Chatzakou, N. Kourtellis, J. Blackburn, E. D. Cristofaro, G. Stringhini, A. Vakali.
 Mean birds: Detecting aggression and bullying on twitter. CoRR, abs/1702.06877, 2017.
- N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Radosavljevic, N. Bhamidipati.
 Hate speech detection with comment embeddings.
 WWW '15, 2015.
- V. Le Quoc, T. Mikolov
 Distributed Representations of Sentences and Documents.
 CoRR, abs/1405.4053, 2014.