tb coctb.v

AUTHORS

JAY CONVERTINO

DATES

2024/12/10

INFORMATION

Brief

Test bench wrapper for cocotb

License MIT

Copyright 2024 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

tb_cocotb

```
module tb_cocotb #(
parameter
PARITY_ENA
=
0,
parameter
PARITY_TYPE
=
1,
parameter
STOP_BITS
=
1,
parameter
```

```
DATA_BITS

=
8,
parameter
DELAY

=
0,
parameter
BUS_WIDTH

=
1
) ( input aclk, input arstn, input [BUS_WIDTH*8-1:0] s_axis_tdata, input s_axis_stdata, input
```

Test bench for AXIS UART TX, simple UART TX from AXI Streaming interface.

Parameters

PARITY_ENA Enable Parity for the data in and out.

parameter

PARITY_TYPE Set the parity type, 0 = even, 1 = odd, 2 = mark, 3 = space.

parameter

STOP_BITS Number of stop bits, 0 to crazy non-standard amounts.

parameter

DATA_BITS Number of data bits, 1 to crazy non-standard amounts.

parameter

DELAY Delay in tx data output. Delays the time to output of the data.

paramete

BUS_WIDTH BUS_WIDTH for axis bus in bytes.

parameter

Ports

aclk Clock for AXIS

arstnNegative reset for AXISs_axis_tdataInput data for UART TX.

s_axis_tvalid When set active high the input data is valid

s_axis_tready When active high the device is ready for input data.

uart_clk Clock used for BAUD rate generation

uart_rstn Negative reset for UART, for anything clocked on uart_clk

uart_ena When active high enable UART transmit state.

uart_hold Output to hold back clock in reset state till uart is in transmit state.

txd transmit for UART (output to RX)

INSTANTIATED MODULES

dut

```
axis_uart_tx #(

PARITY_ENA(PARITY_ENA),

PARITY_TYPE(PARITY_TYPE),

STOP_BITS(STOP_BITS),
```

```
DATA_BITS(DATA_BITS),

DELAY(DELAY),

BUS_WIDTH(BUS_WIDTH)
) dut ( .aclk(aclk), .arstn(arstn), .s_axis_tdata(s_axis_tdata), .s_axis_tva
```

Device under test, axis_uart_tx