UNCLASSIFIED

AD NUMBER AD852896 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Mar 1969. Other requests shall be referred to Naval Warfare Center, China Lake, CA. **AUTHORITY** USNWC 1tr, 30 Aug 1974

STORAGE TEMPERATURE OF EXPLOSIVE HAZARD MAGAZINES

D852896

Part 5. CARIBBEAN AND MID-ATLANTIC

by

I. S. Kurotori and H. C. Schafer Propulsion Development Department

ABSTRACT. Storage magazine temperature measurements (140,920 data points) from Cuba, Puerto Rico, Bermuda, and the Azores are under study. This data collection is for the purpose of establishing a temperature criterion by statistical methods for ordnance stored in explosive hazard magazines.

This report is the fifth of the series of reports that covers explosive nazard magazine storage temperatures in most parts of the world. This report includes 24 figures and 17 tables.

NAVAL WEAPONS CENTER

CHINA LAKE, CALIFORNIA * MARCH 1969

DISTRIBUTION STATEMENT

THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO FOREIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF THE NAVAL WEAPONS CENTER.

NAVAL WEAPONS CENTER AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

M. R. Etheridge, Capt., USN Commender
Thomas S. Amilie, Ph.D. Technical Director

FOREWORD

This report (Part 5) covers work accomplished by the Naval Weapons Center (NWC), China Lake, California, to determine the valid temperature environment of ordnance stored in "explosive hazard magazines" located in Cuba, Puerto Rico, Bermuda, and the Azores. It is the fifth in a series of reports (NWC TP 4143) and follows Part 1, American Desert; Part 2, Western Pacific; Part 3, Okinawa and Japan; and Part 4, Cold Extremes.

It is expected that there will be sufficient interest generated among ordnance designers to warrant continued work in the study of storage temperatures in the areas already covered and in other areas.

This work was supported by Task Assignment Number A-33-536-711/216-1/F009-06-01.

This report has been reviewed for technical accuracy by Warren $\mbox{W}.$ Oshel.

Released by CRILL MAPLES, Head Quality Assurance Division 15 January 1969 Under authority of G. W. LEONARD, Head Propulsion Development Department

NWC Technical Publication 4143, Part 5

ACKNOWLEDGMENT

The authors are indebted to personne? at the Naval Air Station, Guantanamo Bay, Cuha; Naval Station, Roosevelt Roads, Puerto Rico; Naval Station, Bermuda; and the Naval Air Facility, Lajes, Azores; who provided the magazine temperature data, photographs and other valuable information concerning Storage Magazines.

Special acknowledgment is due Mrs. Ruth Massaro who has generated, via computer equipment, the pertinent graphs and statistics presented in this report.

NWC TP 4143 Part 5

CONTENTS

Introduction					•	•				1
Instrumentation										2
Method of Data Retrieval and Reduction		•					•	•		2
Results										2
Conclusions							•			9
Appendixes:										
A Data Handling			•	 •				•		11
B Monthly Temperature Summaries .			•	 •						15
C Classification of Magazines										23
D Applicable Statistics										37
E Statistical Notes and Implication	nc									57

INTRODUCTION

はるとはないではないと でんと はいまして

語ははほっ

Environmental temperature criteria are a major controlling factor in the design of all types of ordnance. However, the accepted temperature criteria, as set forth in Military Specifications, may be such that there are ordnance that actually meet the needs of our Naval services and yet have failed over-strenuous qualification requirements. If accurate knowledge of the thermodynamic interplay between the atmospheric temperature and the ordnance hardware temperature is known, more realistic design criteria can be assigned. It is therefore important that the actual temperature environment of ordnance be investigated to determine realistic limitations of thermal exposure relative to infleet service. Realistic qualification tests can then be formulated to simulate the known service conditions. Accomplishment of the foregoing suggestions can then be used to either (1) authenticate the existing Military Specifications or (2) make more realistic the criteria set forth in those specifications.

The first four parts of this report, American Desert, Western Pacific, Okinawa and Japan, and Cold Extremes, have encompassed the range of temperatures to which ordnance are exposed in storage magazines. It was found that in the storage magazines, the MIL-STD high temperature of 165°F and the low temperature of -65°F are not realistic. This report includes temperatures from storage magazines located in the Caribbean and Mid-Atlantic and also validates the findings in the first four parts. The data are available because of the requirement set forth in Naval Ordnance Systems Command publication OP5, "Ammunition Ashore, Handling, Storage and Shipping", which defines a requirement for recording and returning magazine maximum and minimum air temperature records.

This report covers a comparatively small area of the storage environment of explosive ordnance. Storage temperatures were obtained by personnel at the Naval Air Station (NAS), Guantanamo Bay, Cuba; Naval Station (NS), Roosevelt Roads, Puerto Rico; Naval Station (NS), Bermuda; and the Naval Air Facility (NAF), Lajes, Azores, for use in their ammunition safety programs.

The data reported herein are comprised of the measured air temperatures inside the described structures only. Any ordnance stored in these structures cannot be expected to thermally follow the variations in temperature of the enclosed air. The difference in mass between the air and ordnance can be expected to prevent this. Therefore, any temperatures herein reported can be treated as "conservative" for the temperature of the ordnance stored in these explosive hazard magazines. (In general, the temperature of the ordnance hardware will tend to follow the mean daily air temperature within the storage structure rather than the maximum and minimum recorded air temperatures.)

INSTRUMENTATION

The magazine temperature data were obtained through the use of "horseshoe" maximum and minimum mercury thermometers. These thermometers are equipped with steel "tattletale" devices that float on the mercury and remain at the highest and lowest temperature positions reached during the measurement period. The ordnancemen reset the tattletales with a magnet after reading the indicated maximum and minimum temperature for the measurement period. The manufacturers of the thermometers (Taylor, Weksler, and Moeller) warrant that the temperature readings are accurate to within 2°F at the time of delivery. These thermometers are generally mounted on the inside forward face of the back wall of the storage magazines at about eye level (standard procedure).

Nonstandard magazines, such as buried transportainers, may not allow the placement of the thermometers at the standard locations within the magazine. Thermometers have been observed to be mounted on boards, or even bare, and situated for convenience even in "standard" types of magazines.

METHOD OF DATA RETRIEVAL AND REDUCTION

All available storage magazine temperature data from the NAS, Guantanamo Bay, Cuba; NS, Roosevelt Roads, Puerto Rico; NS, Bermuda; and NAF, Lajes, Azores, were collected and sent to the Analysis Branch, Propulsion Development Department at NWC. The raw data were reduced to meaningful statistics and the significant points of interest for each location were tabulated. These were (1) the number of temperature measurements collected, (2) the number of measured temperatures greater than or equal to 90, 100, and 110°F for each month, and (3) the average maximum and the average minimum temperature for each month. The method used in processing the data is explained in detail in Appendix A.

RESULTS

A summation of the temperature readings greater than or equal to 90, 100, and 110°F (the maximum recorded temperature) and the minimum recorded temperature from both earth-covered and non-earth-covered magazines located in Cuba, Puerto Rico, Bermuda, and Azores is presented in Table 1. The detailed monthly breakdowns from which the data in Table 1 were summarized are presented in Appendix B.

TABLE 1. Data Summary by Station and Magazine Type

Storage locations	Magazine type	Months ^a	Np		ax temper than or e		Recor temper (°F	
locations	Суре			90°F	100°F	110°F	Max	Min
Naval Air Station Guantanamo Bay	Earth covered	39	8,861	1,043	1	0	100	60
Cuba	Non-earth covered	21	2,537	222	0	o	98	55
Waval Station Roosevelt Roads	Earth cove r ed	38	98,515	15,929	27	1	110	52
Puerto Rico	Non-earth covered	30	5,472	1,359	3	0	102	55
Naval Station Bermuda	Earth covered	31	15,177	559	0	0	98	47
	Non-earth covered	33	2,741	202	0	o	98	40
Naval Air Facility Azores	Earth covered	37	7,616	0	0	0	86	35

aLength of time in months.

The results presented in Table 1 give an indication of temperatures to be expected in explosive hazard magazines at locations indicated. Some of the differences in temperatures between locations is due to the construction of the individual storage magazines. Descriptions of the magazine classifications pertinent to this report are given in Appendix C.

The average maximum and minimum temperatures of each month for the four magazine sites are shown in Fig. 1 through 9. Figures 1, 3, 5, 7, and 8 are data reported from earth-covered explosive hazard magazines at these various locations. Figures 2, 4, 6, and 9 are the data reported from the non-earth-covered magazines. Figures 8 and 9 are collections of data from both Cuba and Puerto Rico; the data are combined because of the similarity in the environment. The upper lines in Fig. 1 through 9 represent the monthly observed average maximums and the lower lines represent the observed average minimums.

The data which support the plots of Fig. 1 through 9 are included in Appendix D. These data include the number of measured points from which the averages and the standard deviations were computed. The standard deviations of the data for Fig. 8 and 9 are not given because Fig. 8 represents a collection of the data from Fig. 1 and 3, and Fig. 9 a collection of the data from Fig. 2 and 4.

The importance of reporting these data and the implications arising therefrom are discussed in Appendix E.

^bNumber of data points represented in the sample.

FIG. 1. The Average Maximum and Average Minimum Temperatures of Earth-Covered Magazines at NAS, Cuba.

FIG. 2. The Average Maximum and Average Minimum Temperatures of Non-Earth-Covered Magazines at NAS, Cuba.

FIG. 3. The Average Maximum and Average Minimum Temperatures of Earth-Covered Magazines at NS, Puerto Rico.

FIG. 4. The Average Maximum and Average Minimum Temperatures of Non-Earth-Covered Magazines at NS, Puerto Rico.

FIG. 5. The Average Maximum and Average Minimum Temperatures of Earth-Covered Magazines at NS, Bermuda.

FIG. 6. The Average Maximum and Average Minimum Temperatures of Non-Earth-Covered Magazines at NS, Bermuda.

FIG. 7. The Average Maximum and Average Minimum Temperatures of Earth-Covered Magazines at NAF, Azores.

FIG. 8. The Average Maximum and Average Minimum Temperatures of Earth-Covered Magazines at Both NAS, Cuba and NS, Puerto Rico.

FIG. 9. The Average Maximum and Average Minimum Temperatures of Non-Earth-Covered Magazines at Both NAS, Cuba and NS, Puerto Rico.

CONCLUSIONS

Assuming that the data are representative of the enclosed air temperatures encountered in the explosive hazard magazines located in Cuba, Puerto Rico, Bermuda, and Azores, the results indicate that ordnance, explosives, propellants, pyrotechnics, etc., stored in these storage magazines will probably never be subjected to temperatures below 30°F or above 110°F (see Appendix D). It can be seen in Fig. 1 through 9 that the data displayed in this report were taken from two types of structures; earth-covered and non-earth-covered. The magazines are of metal and concrete construction. The records indicate a consistent difference in temperature ranges and daily fluctuations between the earth-covered and non-earth-covered magazines at a given site. There is a great difference between the outside air temperature and the temperature inside the magazines in all cases. These differences, for the purpose of protection from the elements, are almost the same regardless of the type of magazine. It appears that any sort of covering protects the ordnance from the ambient extremes.

Parts 1, 2, 3, 4, and 5 of this series of reports have, to a large extent, statistically established that explosive hazard ordnance, stored in magazines among existing Naval stations throughout the world, are not being subjected to the -65°F minimum or +165°F maximum temperatures specified in Military Specifications for ordnance design.

The procedure for handling the storage temperature data is as follows:

Step 1. The applicable data are key punched onto IBM type cards from the temperature summary sheets as received from the ammunition storage facility as shown in Table 2.

TABLE 2. Punchcard Data

	Month	Day	Year	Type of	Temp r	eading	Storage
	Motren	Day	leai	magazine	Low	H i gh	location
Example	08	01	65	13BC1	83	84	NAS, Cuba
Card column	3		8	18-26	36-38	42-44	55-79

- Step 2. The punched cards (Step 1) are sorted in the following manner:
 - a. Storage location: e.g., NS, Bermuda, NAF, Azores.
 - b. Type of magazine: earth-covered or non-earth-covered.
 - c. Calendar sequence: Month, day, and year.
- Step 3. The input and output for a computer run are:
 - a. Input:

- (1) Computer program (420-052).
- (2) Total card: number of months.
- (3) Sorted cards from Step 2.
- b. Output:
 - (1) Averages and standard deviations of maximum and minimum temperatures of each month on cards, as shown in Fig. 10.
 - (2) Raw data information, as shown on microfilm, Fig. 11.

DO:	6	•	65	•			, ć				_	_	, 11			ři			i	78		*		Ōŧ	5.	5 	7		ŝi	j I			í	, ŝ	5	6																	j	HT
						ı																																																
0 2	9	0 (C 0	0	0 4	0	0 Q 11 (2		1 0	0	0 0		0 6	0,22	0 (8	B (90	0		0		0 4 X	0 1 30 1	0 0	0	0 0	0 0		8	0 0	0	[0 	0 0	0	0 0 M	0 (0 0	0 (0	0 (0	0	0 0	0 (1	0	0 0	0	0 0	0	0 (0 (
11	1	1	П	ľ	1 1	Į	1	1	I	Ī	11	Ī	1	P	II	1	1	ı	1	1	1	1	1 1	1	1 1	ī	1	11	ī	П	11	1		11	1	11	1	11	11	1	1	1 1	1	11	1	1 1	1	11	Ī	1 1	1	1	1	11
2 2 :	2	2 :	2 2	2	2 2	2	2 2	21	2	2	2 2	2	1	2	2 2	2	2 ;	2 2	2	2 2	2	2	2 2	2	2 2	2	2 :	2 2	•	2 2	2 2	? 2	2	2 2	2	2 2	2 :	2 2	2 2	2	2 :	2 2	2 :	2 2	2 :	2 2	2	2 2	2	2 2	1 2	2	2 2	2 2
3 3 3	3	1	1 1	3	3 1	1	1			3	3 [3	1 1	3	3 3	3	3 ;	3 3	3	3 3	3	3	3	3	3 [] 3	3 :	3 3	3 :	3 3	3 ;	3	3		3	3 3	3 :	3 3	3 3	1 3	3 :	3 3	3	3 3	3 :	3 3	3	3 3	1	3 :	1 1	3	3 :) [
84	4	4	4 4	4	4 4	4	44	4	14	4	14	i	4.4	4	44	4	41	14	4	44	4	4	14	4	4 4	14	4 4	14	4	14	44	1 4	4	14	4	4 4	4	14	4.4	4	4 4	14	4	4 4	4 4	1 4	4	41	4	4 4	4	4	4 /	14
5 5 1	-1			ı		ı		l		ı		1		ı		ı		ı		1		П		- 1					ı		1		ı		ļ		ŀ		i.				l		١.				ı					
6 B I		6 I	- 1 6			6	6 8						6 6		6 6	Ţ,	6 1		Ė			6			6		4 1									4 6			8 1				Ĺ					R 6		6 6			6 (
	+	_	_	┿	-	+		+-		-		+	_	+-		₽	_	+		4-	_	4	_	4	_	_	_	_	┖	_			Ļ.		١.		١_	_	_	-	L.		L.,		_		L		1					
77	1			,		,		,		i		,		ŀ		ł		,		7)		7		- 1			Г		,				,		,		,						,)		ŧ)					
111	۱	ŧ	1 1		1 1	1			ł	1	1 1		1 1	8	11	1	11	ı	ı	ı	1	1	ı	H	ı	ı	1	ŧ	1	1	1	1		įŧ	1	ľ	8 (11	* (1	ł	1	ı	1	6 (1		11	ı	ı	ı	ŧ	ij	ľ
9 9 9	9	8 1	9 1	9	11	,	, ,		1	9 :	9 9		9 1		11	1	• •	١,	1	,	,	9	,	9	1		, ,	,	9 1	, ,	9 9	•	,	9 9	,	,,	9 1	9 9	9 9) 9	9 9	9 9	,	,,	9 1	9	9	9 9	9	9 9	19	,	9 :	3 9
113	11	4		11	* 1	110	11 12	111	1 15	16	17 10	Νů	70 7	1 22	11 %	d,ri	* 1	1 21	79 2	10 31	32	ıyı	4 31	M)	1 3	1 31	44 4	11 42	43 4	4 45	14 4	1 44	111	4 51	111	3 54	169 1	4 37	M 1	1 10	8 1 8	2 63	и	15 46	17 (4 11	170	nn	itl:	24 1	5 76	11	70 1	9 90

FIG. 10. Typical \overline{x} , s Card.

L.	ATA (Track)														
. A 8	CUBA "														
DATE	HAG NO	W	1 Н1	BTAG	MAG: NO	14)	HI	DATE	MACC NET	U	. нг	DATE	MAG NO	, 10	•
60166	MS1, 10	64	65	080165	13BC (8.1	H-4	080165	1.3HC 1	16.62	46	08036 5	OBG	H 6	H7
00265	13801	86	88	080265	RS1. 10	8%	86	080365	ICST 10	H-4	86	០០០ រុស្	1386,1	. в7	. #8
00366	13801	85	n T	080465	13BC1	н5	HH	080465	1.386.1	н5	N.A	080465	RS1 10	н3	H5
89665	13861	86	87	080565	HS1 10	H*+	15%	080565	1.500 (He	ян*	080865	1,386(1)	н6	₩7
80465	RSL. 10	84	86	080665	1.3Bc. i	H*1	nn	080765	1.88K.L	н	μI_1	080765	RS1 10	71.4	H
60765	138GL 5	84	86	080865	1980 1 -	H4	8.6	080865	H281, 1Q	18.1	835	080865	13000	' H6	N.H
80965	1.380.1	н 1	85	080965	HSL, 10	H 4	, any	OHU965	13861.	H-q	M*,	UH1065	1384.1	115	116
81965	RSt. 10	84	88	081065	L3BC 1	8%	HJ	081165	1.580.1	HE	h b	081165	1.3160.1	75.6	116
83165	R51. 10	84	88	081 465	RS1. 10 -4	n 4	nn -	081265	1.386.1	ны	90	0.81.265	1.316(1)	1.85	HH
81365	13801	H6	an	OH 1 185	R8[10	8.3	нħ	081485	1.3HC.1	* Bh	BB *	URI 465	1.3190-1	265	147
81465	RBI. 10	8.1	и6	0H1465	1386.1	н5	нн	081565	RSI 10	B1.	88	UB1665	1:33K-1	Mb.	H.H
81465	R81. 10	H4	H6	081665	13801	86	нн	-081165	Alext 100	84	Nb	061769	1,11# 1	16.72	Hŧ
61 T6/r	1380	85	86	081865	BSL 10	H.		081865	1.3BC.1	ne.	ян.	081865	131# 1	къ	н7
61965	RISI. 10	83	86	041965	UBEL	В6		081985	1,186.1	nti	N.H.	0H2065	1.31% 1	₩0	90
62045	13801	8.4	88	0H2 165	13BC 1	V 87	ни	082365	1.31001	4 86	H I	. 082365	RST 10	H-4	n I
82465	13801	85	90	084465	PSL 10	85	96	0,82465	1.3801	нb	hn.	UH# 565	1.118.1	H 4	116
82565	RSL 10	85	85	08#565	1.386-1	80	Н6	042665	1.0001	116	B.I	04466	fest. 16	F1 1	21 f
8266h	LJBCL	86	. не	082765	1.3HH, 1	n'ı	₩0	0#2165	RSI 10	н3	8.7	OH2765	1.34M-1	PC 14	HB
82865	13BC1 f	67	89	083085	RSL: 10 -	8.4	HI	081 0 65	1 HK i	n's	$\mathbf{n} I$	081164	RSI 10	нb	нн

FIG. 11. Raw Data on Microfilm.

- (3) Maximum and minimum temperature data for each month. The maximum temperature data labeled "High temperature", as shown on microfilm, Fig. 12.
- (4) Deck of cards which carries the necessary identification for mounting the microfilm on the aperture card.
- Step 4. The identification punched into the output decks created in Step 3b(2) and (3) are cut into segments and mounted on aperture cards as shown in Fig. 13 and 14.
- Step 5. The output deck (Step 3b(1)) is assembled for the computer program (420-053) and fed into the Univac 1108 computer. The output is a curve plot, similar to Fig. 1, which gives average maximum and minimum temperatures for the effective dates of output deck data retention. A microfilm of the curve is produced and mounted on an aperture card.

FIG. 12. Data on Microfilm.

FIG. 13. Aperture Card With Microfilm Insert of Raw Data Shown in Fig. 11.

FIG. 14. Aperture Card With Microfilm Insert of Data Shown in Fig. 12.

Appendix B

MONTHLY TEMPERATURE SUMMARIES

The monthly breakdown of the summary of results for each location is presented in Tables 3 through 9. The first row of each table contains column headings. Reading from the left, the first two column headings "year" and "Month" are self-explanatory. "N" indicates the number of temperature readings taken during the month, the fourth through the sixth column labeled "The Number of Data Points Greater Than or Equal to 90, 100, and 110°F" is self-explanatory. "Max Temp" indicates the highest temperature that was recorded during the month.

TABLE 3. Summary of Results, Earth-Covered Magazines, NAS, Guantanamo Bay, Cuba

110	yaz mes	, MAS, C	uan canan		uba	
Year	Month	N		per of data point of than or equa		Max
102	2101141		90°F	100°F	110 ⁰ F	temp
1965 1965 1965 1965 1965 1965 1965 1965	01 02 03 04 05 06 07 08 11	177 212 246 220 220 225 241 78 117 112	0 1 12 24 25 26 34 4 14	000000000	0 00 00 000 00	88 92 91 92 92 95 94 90 92 89
1966 1966 1966 1966 1966 1966 1966 1966	01 02 03 04 05 06 07 08 09 10	140 137 166 155 160 143 141 154 133 147 123	9 0 3 15 23 17 33 31 43 5 0	00000000000	00000000000	95 96 94 95 97 97 98 84
1967 1967 1967 1967 1967 1967 1967 1967	01 02 03 04 05 06 07 08 09	179 170 188 190 19C 202 214 217 208 214 209	7 3 3 2 10 18 26 57 87 25	000000000000000000000000000000000000000	0000000000	95 96 95 95 90 92 90 100
1968 1968 1968 1968 1968 1968	01 02 03 04 05 06	403 454 559 565 767 326	1 1 7 277 198	00000	00000	90 90 90 92 95

TABLE 4. Summary of Results, Non-Earth-Covered Magazines, NAS, Guantanamo Bay, Cuba

Year	Month	N		ber of data po or than or equi		Max
			90°F	100 ⁰ F	110 ⁰ F	temp
1965	01	71	0	0	0	86
1965	02	108	0	0	0	88
1965	03	125	0	0] 0	88
1965	04	101	1 0			89
1965	0.5	108	0	0	0	89
1965	٦6	107	1 3 20	0	0	90
1965	07	112	3	0	0	90
1965	08	93	20) 0	0	97
1965] 11	40	2	. 0	0	90
1965	12	46	0	0	0	88
1966	01	63	2	0	0	90
1966	02	116	4	Ó	Ó	92
1966	03	148	10	0	0	90
1966	04	141	18	0	0	92
1966	05	128	24	0	0	98
1968	01	184	1	0	0	94
1968	02	204	5	ō	ō	96
1968	03	186	5 0	0 0	ŏ	88
1968	04	151	10	0	0	92
1968	05	155	57	Ō	à	98
1968	06	150	65	0	Ö	97

TABLE 5. Summary of Results, Earth-Covered Magazines, NS, Roosevelt Roads, Puerto Rico

Year	Month	N		er of data poi r than or equa		Max
1 941	MOIIII	I I	90°F	100 ⁰ F	110 ⁰ F	temp
1965 1965 1965 1965 1965 1965 1965	05 06 07 08 09 10 11	1512 1753 1758 2051 2078 2127 2582 2831	180 300 322 393 697 958 619 498	1 0 1 2 2 1	0 0 0 0 1 0 0	100 98 102 99 100 110 107
1966 1966 1966 1966 1966 1966 1966 1966	01 02 03 04 05 06 07 08 09 10 11	2794 2421 2776 2643 2875 2865 2875 2907 2716 2791 2783 2908	239 130 155 185 86 283 652 658 703 744 691 248	0 1 0 0 2 0 2 0 8 0	00000000000	99 100 98 99 96 102 96 100 98 98 106
1967 1967 1967 1967 1967 1967 1967 1967	01 02 03 04 05 06 07 08 09 10 11	2917 2649 2930 2803 2857 2795 3011 2901 2899 2452 2278 2580	84 71 97 152 164 496 282 697 781 980 787 500	0 1 0 2 0 0 2 0	00000000000	94 102 96 102 98 102 98 99 100 98
1968 1968 1968 1968 1968 1968	01 02 03 04 05 06	2901 2953 3082 2897 3039 524	217 317 632 517 334 80	00000	00000	96 98 96 98 98 98

TABLE 6. Summary of Results, Non-Earth-Covered Magazines, NS, Roosevelt Roads, Puerto Rico

Number of the male										
Year	Month	N		er of data poi t than or equa		Max				
<u> </u>			90 ⁰ F	100 ⁰ F	110 ⁰ F	temp				
1965	10	136	64	0	. 0	96				
1965	11	177	28	0	0	91				
1965	12	201	14	0	0	90				
1966	01	207	11	0	0	90				
1966	02	196	23	0	0	92				
1966	03	207	39	0	0	96				
1966	04	203	71	0	0	96				
1966	05	202	46	0	0	96				
1966	06	204	66	0	0	96				
1966 1 96 6	07 08	87 209	26 47	0	0	98 96				
1966	09	203	43	. 0	0	98				
1966	10	197	40	0	Ö	96				
1966	ii	221	30	ŏ	ŏ	94				
1966	12	210	1	Ö	0	90				
1967	01	210	1	0	0	90				
1967	02	191	6	0	0	90				
1967	03	213	6	0	0	90				
1967	04	196	53	0	0	96				
1967 1967	05	201 188	74	0	0	97 102				
1967	06 07	155	127 60	2	0	99				
1967	08	192	130	Ö	ŏ	99				
1967	09	174	117	i	ŏ	100				
1968	01	151	2	0	0	90				
1968	02 :	135	3	Ò	Ō	92				
1968	03	155	26	0	0	95				
1968	04	153	38	0	0	98				
1968	05	155	79	0	0	99				
1968	06	143	88	0	C	99				

TABLE 7. Summary of Results, Earth-Covered Magazines, NS, Bermuda

		494211103				
Year	Month	N		er of data poin than or equal		Max
			90°F	100°F	110 ⁰ F	temp
1965	12	744	0	0	0	77
1966 1966 1966 1966 1966 1966 1966 1966	01 02 03 04 05 06 07 08 09 10	580 504 391 357 399 396 366 412 378 375 360 378	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000	0 0 0 0 0 0 0 0 0 0 0	79 74 72 76 86 94 92 98 93 89 89 78
1967 1967 1967 1967 1967 1967 1967 1967	01 02 03 04 05 06 07 08 09 10	3697 645 5440 594 625 6440 5472 519	0 0 0 0 16 137 205 20 6 0	00000000000	000000000000	80 83 76 77 85 92 96 96 95 85 83
1968 1968 1968 1968 1968 1968	01 02 03 04 05 06	550 500 480 570 565 259	0 0 0 0 0 5	0 0 0 0	0 0 0 0 0	78 72 78 79 86 90

TABLE 8. Summary of Results, Non-Earth-Covered Magazines, NS, Bermuda

riagazities, its, betiliada												
Yeu	- Month	N		er of data poi than or equal	to	Max						
			90 ⁰ F	100 ⁰ F	110 ⁰ F	temp						
1965 1965 1965	10 11 12	59 55 153	0 0 0	000	0 0	89 85 78						
1966 1966 1966 1966 1966 1966 1966 1966	01 02 03 04 05 06 07 08 09 10	151 137 127 124 125 104 106 108 102 103 100 93	0 0 0 0 0 4 14 69 35 4 0	00000000000	000000000000	72 74 80 79 87 91 98 94 94 91 88 91						
1967 1967 1967 1967 1967 1967 1967 1967	01 02 03 04 05 06 07 08 09 10	60 54 66 65 66 66 66 66 66 66	0 0 0 0 0 0 10 41 14 10	00000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85 80 78 80 83 88 92 97 94 92 88 82						
1968 1968 1968 1968 1968	01 02 03 04 05 06	66 60 60 66 63 30	0 0 0 0	0 0 0 0 0	0 0 0 0 0	76 76 78 79 84 89						

TABLE 9. Summary of Results, Earth-Covered Magazines, NAF, Lajes, Azores

Magazines, NAF, Lajes, Azores Number of data points						
Year	Month	N		er of data poi r than or equa		Max
	3707141		90°F	100°F	110 ⁰ F	temp
1965 1965 1965	05 06 07	227 250 245	000	000	000	75 80 80
1965 1965 1965 1965 1965	08 09 10 11	239 211 173 205 164	00000	00000	00000	85 81 80 75
1966 1966 1966 1966 1966 1966 1966 1966	01 02 03 04 05 06 07 08 09 10 11	194 231 252 219 192 213 211 215 215 161 168 159	00000000000	0000000000	00000000000	65 70 69 74 77 80 83 86 73 72
1967 1967 1967 1967 1967 1967 1967 1967	01 02 03 04 05 06 07 08 09 10	205 201 247 191 242 226 212 236 197 212 203 194	000000000000000000000000000000000000000	00000000000	000000000000000000000000000000000000000	68 67 71 72 73 78 82 3
1968 1968 1968 1968 1968	01 02 03 04 05	176 169 170 217 174	0 0 0	0 0 0	00000	72 68 71 71 73

Appendix C

CLASSIFICATION OF MAGAZINES

Storage magazines differ in construction and deployment for the type of ammunition that is to be stored. The storage magazines from which the temperature data have been collected differ greatly in that their classifications range from Explosive Hazard Magazines to storehouses. Their construction, labeling, maintenance, etc., and the frequency at which temperature measurements were taken are in accordance with the document "Ammunition Ashore Handling, Stowing, and Shipping", OP5, Vol. 1, second revision. The letter designations, as established by OP5, are presented in Table 10, so that the reader should have no difficulty in distinguishing between types of magazines that are found at the specified locations.

In order to indicate the type of magazine, OP5 requires that the letter T be added if the magazine is earth-covered and barricaded; the letter C added if the magazine is earth-covered but the door is not barricaded; and the letter S added if the magazine is not earth-covered but is barricaded.

TABLE 10. Storage Magazine Description.

L to N Inclusive and Y Fire Hazard--Powder (Bulk, Semifixed or Bag Ammunition), Pyrotechnics, Ignition Fuzes and Primers, Small Arms, Smoke Drums, Chemical Ammunition

Dimensions (nominal) (ft)	Normal explosive limit (lb)	Letter designator
50 x 100	500,000	L
25 x 80 triple arch	500,000	. L
52 dome (Corbetta type)	500,000	D
50 x 60	300,000	М
30 x 50	125,000	N
25 x 48	125,000	N
25 x 40	125,000	N
Miscellaneous or non- standard size	Dependent upon location, size, and construction	Y

TABLE 10. (Contd) P and Z Missile Hazard--Projectile and Fixed Ammunition

Dimensions (nominal) (ft)	Maximum explosive limit (lb)	Letter designator	
50 x 100	143,000	p	
25 x 80 triple arch	143,000 (total for three arches)	P	
52 dome (Corbetta type)	143,000	۵	
Miscellaneous or non- standard size	143,000	Z	

A to K Inclusive and W, and X Explosion Hazard--High Explosive (Bulk, Depth Charges, Mines, Warheads, Bombs, etc.) Fuzes, Detonators, Exploders, Black Powder

Dimensions (nominal) (ft)	Normal use	Normal explosive limit (lb)	Letter designator
25 x 80 arch type (igloo)	High explosives	250,000	Α
25 x 50 arch type (igloo)	High explosives	143,000	В
25 x 40 arch type (igloo)	High explosives	143,000	В
39 x 44 or 32 x 44 (warhead type)	High explosives	250,000	W
12 x 17 (box type)	Black powder	20,000	E
Miscellaneous or non- standard size	High explosives	Dependent upon size, location, and construction	Х
25 x 20 arch type (igloo)	Fuze and detonator	70,000	F
Dimensions vary (gallery or tunnel type)	High explosives	250,000	G
10 x 14	Fuze and detonator	15,000	н
10 x 7	Fuze and detonator	7,500	Н
6 x 8-2/3 (keyport type)	High explosives	4,000	K

. TABLE 10. (Contd)

Miscellaneous Magazines

Dimensions (nominal) (ft)	Туре	Letter designator	
25 x 68	Smoke drum type	SD	
25 x 34	Smoke drum type	SD	
25 x 51	Smoke drum type	SD	
	All inert storehouses	SH	

Type of hazard	Letter designator		
Explosive hazard magazine	X		
Fire hazard magazine	Υ Υ		
Missile hazard magazine	Z		

Most naval facilities use storage shelters called Ready Service Lockers (RSL) for supposedly temporary storage. The construction of these shelters differ widely; wooden surface structures to earth covered, concrete structures.

NAVAL AIR STATION, GUANTANAMO BAY, CUBA

There are 25 storage magazines from which temperature data have been reported. Eighteen magazines are earth covered with letter designations BT, FT, BC (Fig. 15), 190, 191, RBL (Fig. 16), RSL (Fig. 17), and AV 106. (It should be noted that some of these designations are not defined in OP5). Seven are non-earth covered magazines with the letter designation RSL.

NAVAL STATION, ROOSEVELT ROADS, PUERTO RICO

There are 97 storage magazines from which temperature data have been reported. Ninety-three magazines are earth covered with letter designations LC, PC (Fig. 18), AT, BT, HT, FC, NC, and XT. Four are non-earth covered magazines with the letter designations SD, Y (Fig. 19), and Z.

NAVAL STATION, BERMUDA

There are approximately 257 storage magazines from which data have been reported. Approximately 254 are earth covered with letter designations CY (Fig. 20) and HTX. Three are non-earth covered magazines with letter designations MY, XS, and MZ (Fig. 21).

NAVAL AIR FACILITY, LAJES, AZORES

There are 11 storage magazines from which temperature data have been reported. They are all earth covered magazines with letter designations YC (Fig. 22), XC (Fig. 22 and 23), and HT.

FIG. 15. NAS, Guantanamo Bay, Cuba, Magazine 13BC1.

FIG. 16. NAS, Guantanamo Bay, Cuba, Magazine RBL2.

FIG. 17. MAS, Guantanamo Bay, Cuba, Magazines RSL10, RSL11, and RSL11-1/2.

FIG. 18. NS, Roosevelt Roads, Puerto Rico, Magazine 8PC8C.

FIG. 19. NS, Roosevelt Roads, Puerto Rico, Magazine 1Y3.

FIG. 20. NS, Bermuda, Magazine 5CY2.

FIG. 21. NS, Bermuda, Magazine 4MZ1.

FIG. 22. NAF, Lajes, Azores, Magazines 3XC1A and 3YC1B.

FIG. 23. NAF, Lajes, Azores, Magazine 2XC9.

Appendix D

APPLICABLE STATISTICS

The standard deviation given along with the average maximum and minimum temperatures is a measure of dispersion (precision, reproducibility, spread, scatter, etc.) of temperatures within the month. If it is assumed that the temperature readings within each month are dispersed normally (Gaussian distribution), then the standard deviation (σ) can easily be used for calculating the percentage of temperature readings that would exceed nominal temperatures. The Gaussian distribution is a group of measurements that is symmetrical about the average. That is, the spread of measurements below and above the average would appear as equally descending bell-shaped curves on either side of the average. Skewness is a term used to define the degree of departure from the symmetrical bell-shaped curve. Figure 24 presents this Gaussian information. The distributions for within-month temperatures differ from month to month in that the skewness of these distributions differ. ever, the skewness is never so extreme that the assumption of normality, which can easily provide the prediction of approximate percentage points, can be discarded.

Temperature averages for the eight storage sites under consideration in this report are given in Tables 11 through 17. An explanation of the symbols is as follows:

D = Date, followed by month and year

LOC = Location; i.e., N.A.S., CUBA

N = Number of data points measured

X = Average

SD = Standard deviation

LT = Low temperature (minimum)

HT = High temperature (maximum)

For a Gaussian distribution, the average (μ) minus 1 standard deviation (σ) to the average (μ) plus 1 standard deviation (σ) , that is $\mu \pm 1\sigma$, includes approximately 68% of all the values of the distribution. Similarly $\mu \pm 2\sigma$ covers 95% and $\mu \pm 3\sigma$ covers 99% of all the values of the distribution.

FIG. 24. Gaussian Distribution and Skewed Distributions.

TABLE 11. Minimum and Maximum Storage Temperature in Earth-Covered Storage Magazines, Monthly Summaries, NAS, Guantanamo Bay, Cuba

		Sur	nmaries,	NAS,	Guanta	ana	mo Bay,	<u>Cuba</u>		
D 01	65	N.A.S.	CUBA	N	177	X	77.69	SD	2.892	LT
D 01	65	N. A.S.	CUBA	N		X	82.53	SD	1.943	нΤ
D 03	65	N.A.S.	CUBA	N	212	X	79.15	SD	2 • 407	LT
D 02	65	N.A.S.	CUBA	N ·		X	83.70	SD	2.066	ΗT
		N.A.S.	CUBA	N	246	X	80.72	SD	2.357	LT
D 03		N. A.S.	CUBA	N		X	84.54	SD	2.240	HT
D 04		N.A.S.	CUBA	N	220	X	81.70	SD	2 • 204	LT
D 04		N. A. S.	CUBA	N	220	X	85 • 46	SD	2 • 342	HΤ
D 05		N.A.S.	CUBA	N	220	X	82 • 44	SD	1.858	LT
D 05		N.A.S.	CUBA	N	220	X	86.05	SD	2.045	HT
D 06		N. A. S.	CUBA	N	225	X	83 • 25	SD	2.073	LT
D 06		N. A.S.	CUBA	N	225	X	86.32	SD	2.217	HT
D 07		N.A.S.	CURA	N	241	X	84.82	SD	1.713	LT
D 07		N. A. S.	CURA	N	241	X	87.28	SD	2.203	HΤ
D 08		N. A.S.	CUBA	N	78	X	84.95	SD	1.298	LT
D 08		N. A. S.	CUBA	N	78	X	86.97	SD	1.358	HT
D 11		N. A. S.	CUBA	N	117	X	83.74	SD	2.093	LT
D 11		N.A.S.	CUBA	N	117	X	86.90	SD	1.793	HΤ
D 12		N.A.S.	CURA	N	112	X	81.35	SD	2.915	LT
D 12		N.A.S.	CUBA	N	112	X	84 - 45	SD	2.585	нΤ
0 01		N.A.5.	CUBA	N	140	X	78.31	SD	3.079	LT
D 01		N.A.S.	CURA	N	140	X	83.78	SD	3.342	ΗŤ
D 02		N. A. S.	CURA	N	137	X	77.19	SD	3.207	LT
D 02		N.A.S.	CUBA	N	137	X	81.50	SD	2.752	HT
D 03		N. A.S.	CURA	N	166	X	80 • 15	SD	2.327	LT
D 03		N.A.S.	CUBA	Ň	166	X	83.2 2	SD	2.516	HΤ
D 04		N.A.S.	CUBA	N	155	X	81.94	5D	2.090	LT
D 04		N.A.S.	CUBA	N	155	X	84 • 86	SD	2.658	нт
D 0		N.A.S.	CUBA	N	160	X	81.92	\$D	2.752	LT
D 0		N.A.S.	CUBA	N	160	X	85.52	SD	2.811	нT
D 0		N. A. S.	CUBA	N	143	X	83.05	SD	2.209	LT
D 00		N.A.S.	CUBA	Ñ	143		86.39	SD.	2.475	HT
D 0		N. A. S.	CUBA	N	141	X	84.13	SD	2.165	LT
D 0.		N.A.S.	CUBA	N	141	X	87.55	SD	2.297	нт
D 0		N.A.S.	CUBA	N	154	X	84.97	SD	2.040	LT
D 0		N.A.S.	CUBA	N	154	X	88.28	SD	2.413	нT
D 0		N.A.S.	CUBA	N	133		84.98	SD	2.870	LT
D 0	_	N. A. S.	CUBA	N	133		88 • 65	SD	2.270	HΤ
D 1		N.A.S.	CUBA	N	147		83.27		1.769	LT
Di		N.A.S.	CUBA	Ñ	147		85 • 46		1.990	HT
Di		N.A.S.	CUBA	N	123		80.97	SD	2.279	L, T
Di			CUBA	N	123		83.12		2.242	HT
Dì			CUBA	Ň	159		78.73		2.492	LT
D 1			CUBA	N	159		80.50		1.990	нт
				•	-			-		

TABLE 11. (Continued)

				(0,011,011	,			
D 01 6		CUBA	N	179 X	79.46	SD	2.461	LT
D 01 6	,,	CUBA	N	179 X	82.39	SD	2.970	HT
D 02 6	7 N.A.S.	CUBA	N	170 X	79.95	SD	2.292	LT
D 02 6	7 N.A.S.	CUBA	N	170 X	82.66	SD	2.774	HT
D 03 6		CUBA	N	188 X	79.97	SD	2.572	LT
D.03 6		CUBA	N	188 X	83.21	SD	2.459	ĤΤ
D 04 6	7 N.A.S.	CUBA	N	190 X	80.33	SD	2.551	L, T
D 04 6		CUBA	N	190 X	83.15	SD	2 • 295	H
D 05 6		CUBA	N	190 X	82.15	SD	2 • 305	LT
D 05 6		CUBA	N	190 X	85.13	SD	2.267	HT
D 06 6		CUBA	N	202 X	83.60	SD	1.947	LT
D 06 6	7 N.A.S.	CUBA	N	202 X	86.04	SD	2•164	HT
D 07 6		CUBA	N	214 X	84.01	SD	2.606	LT
D 07 6		CUBA	N	214 X	B7.03	SD	1.803	HT
D 08 6		CUBA	N	217 X	85.09	SD	2.366	LT
D 08 6		CUBA	N	217 X	87.90	SD	1.675	HT
D 09 6	7 N.A.S.	CUBA	N	208 X	85.84	SD	2.060	LT
D 09 6	7 N.A.S.	CUBA	N	208 X	88.70	SD	1.844	HT
D 10 6		CUBA	N	214 X	84.40	SD	2.379	LT
D 10 6	7. N.A.S.	CUBA	N	214 X	87.56	SD	1.651	HT
D 11 6	7 N.A.S.	CUBA	N	209 X	82.46	SD	2.059	LT
D 11 6	7 N.A.S.	CUBA	N	209 X	85.42	SD	2.027	HT
D 01 6	8 N.A.S.	CUBA	N	403 X	78.39	SD	3.718	LT
D 01 6	8 N.A.S.	CUBA	N	403 X	82.61	SD	3.181	HT
D 02 6	8 N.A.S.	CUBA	N	454 X	77.00	SD	3.946	LT
D 02 6	8 N.A.S.	CUBA	N	454 X	81.25	SD	3.169	HT
D 03 6	8 N.A.S.	CUBA	N	559 X	77.61	SD	3.335	LT
D 03 6	B. N.A.S.	CUBA	N	559 X	82.43	SD.	2 • 468	HT
D 04 6	8 N.A.S.	CUBA	N	565 X	79.06	5D	3.015	LT
D 04 6	8 N.A.S.	CUBA	N	565 X	84.43	SD	2.375	HΤ
D 05 6	B N.A.S.	CUBA	N	767 X	82.56	SD	3.157	LT
D 05 6	8 N.A.S.	CUBA	N	767 X	87.70	SD	3.247	HT
D 06 6	8 N.A.S.	CUBA	N	326 X	84.46	5 D	3.169	LT
D 06 6	8 N.A.S.	CUBA	N	326 X	89.06	SD	3.099	HT

TABLE 12. Minimum and Maximum Storage Temperature in Non-Earth-Covered Storage Magazines, Monthly Summaries, NAS, Guantanamo Bay, Cuba

	Sui	maries,	NAS,	Guant	ana	mo Bay,	cupa		
D 01 65	N.A.S.	CUBA	N	71	X	66.15	SD .	3.576	LT
D 01 65	N.A.S.	CUBA	N	71	X	79.30	SD	2-604	HT
D 02 65	N.A.S.	CUBA	N	108	X	68.47	SD	2.783	LT
D 02 65	N.A.S.	CUBA	N	108	X	80.16	SD	4.435	ΗŤ
D 03 65	N.A.S.	CUBA	Ñ	125	X	71.01	SD	2.340	LT
D 03 65	N.A.S.	CUBA	N	125	X	81.54	SD	3.747	HT
D 04 65	N.A.S.	CUBA	N	101	X	71.67	SD	3.430	LT
D 04 65	N.A.S.	CUBA	N	101		82.39	SD	3.108	HT
0 05 65	N.A.S.	CUBA	N	108	X	73.94	SD	2.408	LT
D 05 65	N.A.S.	CUBA	N	108	X	83.49	SD	2.512	HT
D 06 65	N . A . S .	CUBA	N	107	. X	74.91	SD	1.674	LT
D 06 65	N . A . S .	CUBA	N	107	X	85.59	SD	1.962	HT
D 07 65	N.A.S.	CUBA	N	112	X	76.69	SD	2.169	LT
D 07 65	N.A.S.	CUBA	N	112	X	85.69	SD	3 • 698	HT
D 08 65	N.A.S.	CUBA	N	93	X	76.33	SD	1.549	LT
D 08 65	N.A.S.	CUBA	N	93	X	86.58	SD	4.249	HT
D 11 65	N.A.S.	CUBA	N	40	X	73.60	SD	2.216	LT
D 11 65	N.A.S.	CUBA	N	40	X	85.65	SD	3.118	HT
D 12 65	N.A.S.	CUBA	N	46	X	69.98	SD	4.683	LT
D 12 65	N.A.S.	CUBA	N	46	X	83.91	SD	3.332	HT
D 01 66	N.A.S.	CUBA	N	63	X	69.79	SD	4.810	LT
D 01 66	N.A.S.	CUBA	N	63	X	82.40	SD	4.637	HT
D 02 66	N.A.S.	CUBA	N	116	X	70.12	SD	5.280	LT
D 02 66	N.A.S.	CUBA	N	116	X	81.49	SD	5.693	HT
D 03 66	N.A.S.	CUBA	N	148	X	74.35	SD	4.693	LT
D 03 66	N . A . S .	CUBA	N	148	X	82.10	SD	4.826	HT
D 04 66	N.A.S.	CUBA	N	141	X	76.03	SD	3.678	LT
D 04 66	N.A.S.	CUBA	N	141	X	84.49	SD	4.033	HT
D 05 66	N.A.S.	CUBA	N	128	X	75.90	SD	3.327	LT
D 05 66	N.A.S.	CUBA	N	128	X	86.12	SD	4.270	HT
D 01 68	N.A.S.	CUBA	N	184	X	70.24	SD	4.720	LT
D 01 68	N. A. S.	CUBA	N	184	X	81.13	SD	3.034	HT
D 02 68	N.A.S.	CUBA	N	204	X	71.03	SD	5.064	LT
D 02 68	N.A.S.	CUBA	N	204	X	80.47	SD	4.867	HT
D 03 68	N.A.S.	CUBA	N	186	X	69.99	SD	4.574	LT
D 03 68	N.A.S.	CUBA	N	186	X	82.05	SD	2.839	HT
D 04 68	N.A.S.	CUBA	N	151	X	71.00	SD	5.188	LT
D 04 68	N.A.S.	CUBA	N	151	X	83.23	SD	3.473	HT
D 05 68	N.A.S.	CUBA	N	155	X	76.54	SD	6.096	LT
D 05 68	N.A.S.	CUBA	N	155	Х	87.51	SD	4.337	HT
D 06 68	N.A.S.	CUBA	N	150	X	78.96	SD	4.960	LT
D 06 68	N.A.S.	CUBA	Ņ	150	X	88.09	SD	4.056	HT

TABLE 13. Minimum and Maximum Storage Temperature in Earth-Covered Storage Magazines, Monthly Summaries, NS, Roosevelt Roads, Puerto Rico

			NS, K	ooseve	Ιτ	KOAGS	, r	uerto Kic	0		
D 05	65	N.S.	PUERTO	RICO	N	1512	X	81.24	SD	3.945	LT
-	65	N.S.	PUERTO				X	84.86	SD	4.056	HT
D06		N.S.					X	81.66	SD	3.974	LT
D 06		N.S.			N	1753	X	86.05	SD	3.844	HT
D 07		N.S.		RICO		1758	X	82.74	SD	3.969	L. T
D 07	-	N.S.	PUERTO	RICO		1758	χ.		SD	4.185	HT
D 08		N.S.	PUERTO			2051	X	83.07	SD	4.140	LT
D 08		N.S.	PUERTO		N	2051	X	86.59	SD	3.972	ΗT
D 09		N.S.	PUERTO	RICO	N	2078	X	84.10	SD	4.191	LT
D 09		N.S.	PUERTO	RICO	N	2078	X	87.92	SD	3.848	HT
D 10	65	N.S.	PUERTO	RICO		2127	X	83.37	SD	3.965	LT
D 10	65	N.S.	PUERTO	RICO	N	2127	X	88.66	SD	3.940	ΗТ
D 11	65	N.S.	PUERTO	RICO	N	2582	X	82.07	SD	3.912	LT
D 11	65	N.S.	PUERTO	RICO	N	2582	X	86.59	SD	4.135	ΗT
D 12	2 65	N.S.	PUERTO	RICO	N	2831	X	80.05	SD	4.207	LT
D 12	2 65	N.S.	PUERTO	RICO	N	2831	X	85.60	SD	4.164	HT
D 01	66	N.5.	PUERTO	RICO	N	2794	X	79.34	SD	4.050	L T
D 01	66	N.S.	PUERTO	RICO	N	2794	X	84.20	SD	4.121	нт
D 02	2 66	N.S.	PUERTO	RICO	N	2421	X	78.95	SD	3.617	LT
D 02	2 66	N.S.	PUERTO	RICO	Ν	2421	X	84.15	5D	3.851	HT
D 03	3 66	N.S.	PUERTO	RICO	N	2776	X	79.58	SD	3.527	LT
D 0:				RICO	Ν	2776	X	84.29	SD	3.570	HT
D 04	4 66			RICO	N	2643	X	81.53	SD	3.081	LT
D 0	4 66	N • 5 •		RICO	N	2643	X	85.03	SD	3.641	HŢ
D 0					N	2875	X	81.15	SD	2.268	LT
D 0	_				N	2875	X	84.39	SD	2.302	HT
D 0					N		X	82.65	SD	2.081	LT
D 0					N	2865	X	86.07	SD	2.441	HT
D 0					N	2875	X	83.79	SD	2.490	LT
D 0						2875	X	87.38	SD	2.601	HT
D 0						2907		83.67	SD	2.493	LT
D 0					N	2907	X	87.09	SD	2.869	HT
D 0						2716		83.83	SD	2.530	LT
D 0						2716		87.36	SD	2.831	HT
D 1						2791		82.78	SD	2.707	LT HT
	0 66							86.73	SD	3.337	
	1 66					2783			SD	3.245	L1
	1 66					2783			SD	3.975	HT
	2 60								SD	2.944	
D 1	2 66	5 N.S	• PUERTO	RICO	N	2908	X	83.77	SD	3.684	нт

								_				
_	01		N. S.	PUERTO		N	2917		79.17	SD	2.802	LT
-	01	67	N.5.	PUERTO	RICO	Ν	2917	Χ.	82.58	SD	3 • 464	ΗT
-	0.2	67	N.S.	PUERTO	RICO	N	2649	X	79.41	SD	2.857	LT
D	02	67	N.S.	PUERTO	RICO	Ν	2649	X	82.75	SD	3 - 36 6	ΗT
D	0,3	67.	N.S.	PUERTO	RICO	.N	2930	X	79 • 86	SD	2.972	LT.
D	03	67	N.S.	PUERTO	RICO	N	2930	X	83.30	SD	.3.118	HT
D	04	67	N.S.	PUERTO	RICO	N	2803	X	80.16	SD	2 • 9 0 2	LT
D	04	67	N.S.	PUERTO	RICO	N	2803	X	84.20	SD	3.047	н٣
D	05	67	N.S.	PUERTO	RICO	N	2857	X	81.18	SD	2.730	LT
D	05	67	N.S.	PUERTO	RICO	N	2857	X	84.46	SD	2.920	нт
D	06	67	N.S.	PUERTO	RICO	N	2795	Χ	83.40	SD	2 • 800	LT
D	0.6	67	N.S.	PUERTO	RICO	N	2795	Х	86.81	SD	2.989	ΗT
D	07	67	N.S.	PUERTO	RICO	N	3011	Х	83.01	SD	2 • 642	LΤ
D	07	67	N.S.	PUERTO	RICO	Ν	3011	Χ	85.88	SD	2 • 8 5 2	ΗŤ
D	08	67	N.S.	PUERTO	RICO	Ν	2901	X	84.18	SD	2 • 660	LT
D	08	67	N.S.	PUERTO	RICO	Ν	2901	X	87.32	SD	3 • 0 6 2	HT
D	09	67	N.S.	PUERTO	RICO	Ν	2899	X	84.45	SD	2.519	LT
D	09	67	N.S.	PUERTO	RICO	N	2899	X	87.40	SD	2 • 666	нт
D	10	67	N.S.	PUERTO	RICO	Ν	2452	X	84.43	SD	2•616	LT
D	10	67	N.S.	PUERTO	RICO	N	2452	X	88.13	SD	2.881	HT
D	11	67	N.S.	PUERTO	RICO	Ν	2278	X	83.76	SD	2.716	LT
D	11	67	N.S.	PUERTO	RICO	Ν	2278	X	87.54	SD	3 • 248	ΗT
D	1 2	67	N.S.	PUERTO	RICO	Ν	2580		81.30	SD	2 • 832	LT
D	12	67	N.S.	PUERTO	RICO	N	2580	X	85.57	SD	3•7 3 1	ΗT
D	01	68	N.S.	PUERTO	RICO	Ν	2901	X	79.25	SD	2 .86 1	LT
D	01	68	N.S.	PUERTO	RICO	Ν	2901	X	83.72	SD	3.701	нт
D	02	68	N.S.	PUERTO	RICO		2953	X	79.18	SD	3 • 476	LT
D	0.2	68	N.S.	PUERTO	RICO		2953	X	84.21	SD	3.819	HT
D	03	68	N.5.	PUERTO	RICO	Ν	3082	X	78.95	SD	3.002	LT
_		4 5										

2897

2897

3039

3039

524 X

524 X

Х

X

N

Ν

85.40

78.91

85.10

81.06

85.95

83.00

86.72

5D

5D

SD

SD

SD

SD

SD

3.867

2.776

3.746

3.154

3.029

2.284

2.867

(Continued)

TABLE 13.

N.S. PUERTO RICO N 3082 X

PUERTO RICO N

PUERTO RICO

N.S. PUERTO RICO

N.S. PUERTO RICO N

N.S. PUERTO RICO N

D 03 68

D 04 68

04 68

05 68

05 68

D 06 68

N.S.

N.S.

D 06 68 N.S. PUERTO RICO N

HT

LT

 HT

LT

HT

LT

HT

TABLE 14. Minimum and Maximum Storage Temperature in Non-Earth-Covered Storage Magazines, Monthly Summaries, NS, Roosevelt Roads, Puerto Rico

			113, 1	KOOSEY	216	ROAGS	,	Puerto Ki	30		
D 1	0 65	N.S.	PUERTO	RICO	N	136	X	80.23	SD	3.306	LT
Di		N.S.	PUERTO		N	136	x	88.51	SD	3.521	ЙŤ
Dī	_	N.S.	PUERTO		N	177	x	79.34	SD	3.060	LŤ
D 1		N.S.	PUERTO		Ň	177	x	86.10	5D	2.818	HT
οi		N.S.	PUERTO	RICO		201	x	75 • 09	SD	2.857	LT
D 1		N.S.	PUERTO		N	201	X	84.89	SD	4.256	
D 0		N.S.	PUERTO	RICO	N	207	X	75.13		2.344	HŢ
D 0		N.S.	PUERTO	RICO		207		83.98	SD	3.489	LT
	2 66	N.S.	PUERTO	RICO	N N	196	X	75.96	SD	3.501	HT
	2 66	N.S.	PUERTO	RICO	N	196	X	84.04	SD SD	4.045	LT HT
	3 66	N. 5.	PUERTO	RICO	N	207	Ŷ	76.33	SD	3.478	LT
	_	N.5.	PUERTO	RICO	N	207		84.34	SD	4.673	HT
-	4 66	N. 5.	PUERTO	RICO	-	207	Ŷ	78.33	SD	3.663	LT
	_				N	203	X	86.50		4.838	HT
		N.S.	PUERTO	RICO	N				SD		
	_	N.S.	PUERTO	RICO	N	202	X	78.87	SD	3.174	LT
		N.S.	PUERTO	RICO	N	202	X	86.31	SD	3 • 405	HT
		N.S.	PUERTO	RICO	N	204	X	80.76	SD	4.874	LT
	66	N.S.	PUERTO	RICO	N	204	X	86.84	ŞD	4.020	HT
	7 66	N.S.	PUERTO	RICO	N	87	X	80.52	SD	4.635	LT
	7 66	N.S.	PUERTO	RICO	Ŋ	87	X	86.11	SD	4.379	HT
	8 66	N.5.	PUERTO	RICO	N	209	X	82.17	SD	2.524	LT
	8 66	N.S.		RICO	N	209	X	86.22	SD	3.636	HT
	9 66	N.S.		RICO	N	203	X	82.08	SD	2.164	LT
	9 66	N.S.	PUERTO	RICO	N	203	Х	86.56	SD	3.742	HT
	0 66	N.S.	PUERTO	RICO	N	197	X	80.56	SD	2.234	LT
	10 66	N.S.	PUERTO	RICO	N	197		86.43	SD	3.977	HT
	11 66	N.S.			N	221	X	78.10	SD	3.318	LT
	11 66	N.S.		RICO	N	221	X	84.02	SD	4.190	HT
	12 66	N.S.	PUERTO			210	X	75.95	SD	3.306	LT
	2 66	N.S.	PUERTO			210		82.10	SD	3.726	HT
	01 67		PUERTO	RICO	N	210	X	75.95	SD	2.947	LT
	1 67	N.S.	PUERTO	RICO	N	210	X	82.36	SD	3.345	HT
	2 67		PUERTO	RICO		191	X	76.72	SD	3.281	LT
	02 67		PUERTO			191	X	83.02	SD	3.673	HT
	3 67		PUERTO		N	213	X	75.53	SD	3.538	LT
	3 67					213	X	84.07	SD	3.014	нт
	04.67	N.S.	PUERTO			196		75.65	SD	2.995	LT
-	04 67	N.S.				196		86.16	SD	4.145	НТ
	05 67					201			SD	2.818	LT
	75 67					201			SD	3.775	HT
	06 67					188			SD	3.299	LT
	06 67					188			SD	3.802	HT
	07 67					155			SD	1.886	LT
_	07 67					155			SD	3.951	HT
D (08 67	N.S.	PUERTO	RICO	N	192	X	81.37	SD	1.959	LT

					TABLE	14.	(Co	nti	nued)			
D	08	67	N.S.	PUERTO	RICO	N	192	X	90.81	SD	4.120	HT
D	09	67	N.S.	PUERTO	RICO	N	174	Х	80.79	SD	2.111	LT
Ď	09	67	N.S.	PUERTO	RICO	N	174	Х	90.53	SD	3.837	HT
D	01	68	N.S.	PUERTO	RICO	Ν	151	Х	73.11	5D	2.922	ĹŤ
D	01	68	N.S.	PUERTO	RICO	N	151	Х	83.09	SD	3.456	нт
D	02	68	N.S.	PUERTO	RICO	N	135	X	73.51	SD	4.182	LT
D	02	68	N.S.	PUERTO	RICO	N	135	X	82.36	SD	3.977	HT
D	03	68	N.5.	PUERTO	RICO	Ν	155	Х	75.39	SD	2.825	LT
D	03	68	N.S.	PUERTO	RICO	Ν	155	Х	84.76	SD	4.703	HT
D	04	68	N.S.	PUERTO	RICO	N	153	X	76.32	SD	2.930	LT
D	04	68	N.S.	PUERTO	RICO	N		X	86.69	SD	3.862	HT
D	05	68	N.S.	PUERTO	RICO	N	155	Χ	81.10	SD	2.461	LT
D	05	68	N.S.	PUERTO	RICO	Ñ	155	X	89.14	SD	3.942	нт
D	06	68	N.S.	PUERTO	RICO	N	143	x	31.99	SD	2.481	LŤ
D	06	68	N.S.	PUERTO	RICO	N	143	X	89.63	SD	3.367	нт

TABLE 15. Minimum and Maximum Storage Temperature in Earth-Covered Storage Magazines, Monthly Summaries, NS, Bermuda

		Juliun	41 163	110, 00				
D 12 65	N. S.	BERMUDA	N	744 X	61.93	SD	2.553	LT
D 12 65	N. S.	BERMUDA	N	744 X	67.14	SD	2.786	HT
D 01 66	N. S.	BERMUDA	N	580 X		SD	3.282	L T
D 01 66	N.S.	BERMUDA	N	580 X		SD	3.294	ΗŢ
D 02 66	N.S.	BERMUDA	N	504 X		SD	3 • 476	LT
D 02 66	N.S.	BERMUDA	N	504 X		SĐ	3.476	ΗŢ
D 03 66	N.S.	BERMUDA	N	391 X		SD	2.085	LT
D 03 66	N . S .	BERMUDA	N	391 X	_	SD	2.293	HI
D 04 66	N.S.	BERMUDA	N	357 X		SD	1.835	LT
D 04 66	N.S.	BERMUDA	N	357 X		SD	2.030	HT
D 05 66	N.S.	BERMUDA	N	399 X		SD	4.883	LŢ
D 05 66	N.S.	BERMUDA	N	399 X	•	SD	4.912	ΗŢ
D 06 66	N.S.	BERMUDA	N	396 X		SD	4.499	LT
D 06 66	N.5.	BERMUDA	N	396)		SD	4.448	HT
D 07 66	N.S.	BERMUDA	N	366 <i>)</i>		SD	3.368	LT
D 07 66	N.S.	BERMUDA	N	366		SD	2.859	HT
D 08 66	N.S.	BERMUDA	N	412)		SD	2 • 542	LT
D 08 66	N.S.	BERMUDA	Ň	412 >		SD	2.934	ΗŢ
D 09 66	N.S.	BERMUDA	N	378	78.91	SD	2.617	LT
D 09 66	N.S.	BERMUDA	N	378	K 82.80	SD	3.011	HT
D 10 66	N.S.	BERMUDA	N	375	73.95	SD	3.184	LT
D 10 66	N.S.	BERMUDA	N	375	x 78.55	SD	2.973	HT
D 11 66	N.S.	BERMUDA	N		x 67.85	SD	2.789	LT
D 11 66	N . S .	BERMUDA	N	360	X 72.56	SD	3.681	нт
D 12 66	N.S.	BERMUDA	N		x 62.43	SD	3.569	LT
D 12 66	N.5.	BERMUDA	N	378	x 67.54	SD	3.422	HΤ
D 01 67	N.S.	BERMUDA	N		X 61.90	SD	3 • 584	LT
D 01 67	N . 5 .	BERMUDA	N	360	X 67.24	SD	3.368	HT
D 02 67	N . S .	BERMUDA	N		X 61.79	SD	3.819	LT
D 02 67	N.5.	BERMUDA	N	497	X 66.86	SD	3.942	HΤ
D 03 67	N.S.	BERMUDA	N	645	X 60.44	SD	3.742	LT
D 03 67	N . S	BERMUDA	N	645	X 65.81	SD	3.388	нт
D 04 67	N.5.	BERMUDA	N	540	X 62.53	SD	3.042	LT
D 04 67	N.S.	BERMUDA	N		X 68.12	5D	3.045	HT
D 05 67	N.S.	BERMUDA	N	594	X 68.03	SD	4.432	LT
D 05 67	N.S.		N		X 74.40	SD	4.462	HT
D 06 67	N.S.		N		X 72.68	SD	5.146	LT
D 06 67	N.S.	BERMUDA	N	625	X 78•19	SD	5.725	HT

1977年 - 1978年 - 1978年 - 1979年 - 1978年 - 1987年 - 1988年 - 1988

	TABLE 15. (Continued)												
D	07	67	N.S.	BERMUDA	N	560	Х	80.73	SD	3 • 42.8	LT		
D	07	67	N.S.	BERMUDA	N	560	X	86.51	SD	4.417	HT.		
D	08	67	N.S.	BERMUDA	N	640	X	82.87	SD	2.929	LΤ		
D	0.8	67	N.S.	BERMUDA	N	640	X	88.15	SD	3.431	HT		
D	09	67	N . S .	BERMUDA	N	542	X	78•38	SD	3.312	LT		
D	09	67	N . 5 .	BERMUDA	N	542	X	82.89	SD	3.681	ΗŦ		
D	10	67	N.5.	BERMUDA	N	572	X	74.17	SD	3.636	LT		
D	10	67	N.5.	BERMUDA	N	572	X	78.54	SD	3.949	ΗT		
D	11	67	N.5.	BERMUDA	N	520	X	66•90	SD	3.608	LT		
D	11	67	N.5.	BERMUDA	N	520	X	72•87	SD	3.840	нт		
D	12	67	N.5.	BERMUDA	N	519	X	62.59	SD	3.314	LT		
D	12	67	N.S.	BERMUDA	N	519	Χ	67.89	SD	3.524	ΗT		
D	01	68	N.S.	BERMUDA	N	550	X	58.63	SD	3.411	LΤ		
D	01	68	N.S.	BERMUDA	N	550	X	63.90	SD	3.614	HT		
D	Q 2		N.S.	BERMUDA	N	500	Χ	5 7•75	SD	2.681	LT		
D	02	68	N.5.	BERMUDA	N	500	X	62•91	SD	3.340	нт		
D	03	68	N.S.	BERMUDA	N	480	X	57.81	SD	4.149	LŢ		
D	03	68	N.S.	BERMUDA	N	480	X	63.96	SD	3.945	ΗŤ		
D	04	68	N.S.	BERMUDA	N	570	X	63.49	5D	2.987	LT		
D	04	68	N.S.	BERMUDA	Ν	570	X	69•45	\$D	3.450	HŢ		
D	05	68	N.S.	BERMUDA	N	565	X	67.49	SD	3.788	LŤ		
D	05	68	N.S.	BERMUDA	Ν	565		74.12	SD	4.173	ΗT		
D	06	-	N.5.		N	259		72.91	SD	3.657	LT		
D	0.6	68	N.S.	BERMUDA	N	259	Х	79.24	SD	4.865	HT		

TABLE 16. Minimum and Maximum Storage Temperature in Non-Earth-Covered Storage Magazines, Monthly Summaries, NS, Bermuda

			20100	aries,	113,	Der	Iliuua			
D 10	65	N.S.	BERMUDA	Ν .	59	X	72.92	SD	3 • 400	LT
D 10		N.S.	BERMUDA	N	59	Х	81.10	SD	3.532	HT
D 11		N.5.	BERMUDA	N -	55	Х	67.31	SD	2.741	LT
D 11			BERMUDA	N	55	X	75.62	SD	3.603	HŤ
D 12		N.S.	BERMUDA	N	153	Х	62.62	SD	2.700	LT
D 12	65	N . 5 .	BERMUDA	N	153	X	69.82	SD	3.775	HT
D 01		N.5.	BERMUDA	N	151	Х	58•47	SD	3.398	LT
0 01	. 66	N.5.	BERMUDA'	N	151	X	66.30	SD	3.869	НΤ
D 02	? 66	N.S.	BERMUDA	N	137	Х	57.99	SD	4.613	LT
D 02	? 66	N.S.	BERMUDA	Ν	137	Х	66.53	SD	3.720	ΗT
D 03	66	N.S.	BERMUDA	N	127	Х	60.13	SD	3.819	LT
D 03	3 66	N.S.	BERMUDA	N	127		70.05	SD	3.590	ΗT
D 04	4 66	N.S.	BERMUDA	N	124		61.06	SD	2.879	LT
D 04	4 66	N.S.	BERMUDA	N	124		70.91	SD	3.364	нт
D 0!	5 66	N.S.	BERMUDA	N	125		67.26	SD	4.676	LT
D 0	5 66	N.5.	BERMUDA	N	125		78.04	SD	3.942	HT
D 0	6 66	N.S.	BERMUDA	N	104		74.60	SD	4.061	LT
D 0	6 66	N.S.	BERMUDA	N	104		83.94	SD	3.869	HT
D 0.	7 66	N.S.	BERMUDA	N	106	X	78.28	SD	3.363	LT
D 0.	7 66	N.5.	BERMUDA	N	106		87.18	SD	2.640	нт
D 0	8 66	N.S.	BERMUDA	N	108	X	82.72	SD	2.992	L T
D 0	8 66	N.S.		N	108		89.34	SD	3.142	ΗŢ
D 0	9 66	N.S.		N	102	. X	79.64	SD	3.570	LT
D C	9 66	N.S.	BERMUDA	N	102		86.61	SD	3.956	ΗŢ
D 1		N • S •		N	103		75.31	SD	3.202	LŢ
D 1	0 66	N • S •		N	103		82.76	SD	4.609	ΗŢ
D 1		N.5.		N	100		69.23	SD	3.378	L T
D 1	1 66	N.5.	BERMUDA	N	100		76•37	SD	4.846	ΗŢ
D 1		N.S.	BERMUDA	N	93		62.77	SD	3.725	LT
D 1		N.S.		N	93		73 • 37	SD	5.505	HT
D 0		N. S.		N	60		61.57	SD	2.554	LT
D 0		N.S.		N	60) X	69.93	SD	4.356	HT
D 0	2 67	N.5.	BERMUDA	N	54		61.67	SD	3.180	LT
D O		N.S.		N	54		69.02	SD	4.901	HT
D 0		N.S.		N	69		60.20	SD	3.636	LT
D 0	-	N. 5.		N	69		68.13	SD	4.811	HT
D 0		N.S.		N	60		61.65	SD	3.287	LT
	4 67	N . S .		N	60		69.87	SD	4.102	HT
	5 67			N	6		66.43	SD	4.943	LT
	5 67			N	6		75.62	SD	3.948	HŢ
	6 67			N	66			SD	4.541	LT
D O	6 67	N. 5	BERMUDA	N	66	5 X	78.74	SD	4.744	нТ

		TAI	BLE 16.	(Cont	inued)			
D 07 67	N . S .	BERMUDA	N	60 X	79.30	SD	2.265	LT
D 07 67	N . S .	BERMUDA	N	60 X		SD	2.965	HT
D 08 67	N . S .	BERMUDA	N	69 X	82.39	SD	3.322	LT
D 08 67	N.S.	BERMUDA	N	69 X	89.75	SD	2.735	ĤТ
D 09 67	N.S.	BERMUDA	N	60 X		SD	3.039	LT
D 09 67	N . S .	BERMUDA	N	60 X	86.23	SD	4.135	HT
D 10 67	N. S.	BERMUDA	N	66 X	75 • 17	SD	3.418	LT
D 10 67	N . S .	BERMUDA	N	66 X	82.24	SD	5.147	HT
D 11 67	N . S .	BERMUDA	N	60 X	68.37	SD	3.319	LT
D 11 67	N.S.	BERMUDA	N	60 X	76.72	SD	5.536	HT
D 12 67	N.S.	BERMUDA	N	60 X		SD	3.252	LT
D 12 67	N.S.	BERMUDA	N	60 X	71.07	SD	4.577	HT
D 01 68	N.S.	BERMUDA	N	66 X		SD	2.662	LT
D 01 68	N.S.	BERMUDA	N	66 X	66.74	SD	4.189	HT
D 02 68	N.S.	BERMUDA	N	60 X	59.23	SD	2.733	LT
D 02 68	N.S.	BERMUDA	N	60 X	67.17	SD	4.231	ΗT
D 03 68	N . S .	BERMUDA	Ν	60 X		5D	4.787	LT
D 03 68	N . S .	BERMUDA	N	60 X	68.43	SD	4.834	HТ
D 04 68	N . S .	BERMUDA	N	66 X	65.18	SD	3.028	LT
D 04 68	N. 5.	BERMUDA	N	66 X	73.33	SD	3.492	HT
D 05 68	N.S.	BERMUDA	N	63 X		SD	4.016	LT
D 05 68	N.S.	BERMUDA	N	63 X		SD	3.705	нT
D 06 68	N . S .	BERMUDA	N	30 X		SD	4.041	LT
D 06 68	N.S.	BERMUDA	N	30 X		SD	4.644	HT

TABLE 17. Minimum and Maximum Storage Temperature in Earth-Covered Storage Magazines, Monthly Summaries, NAF, Lajes, Azores

	•	Summer 16	5 , IV	13 g LQ,	Jes	, AZUIES			
D 05 65	N.A.F. A	ZORES	N	227	x	58.17	SD	4.131	LT
D 05 65	N.A.F. A		N		X	65.35	SD	3.978	HT
D 06 65		ZORES	N		X	60.95	SD	4.689	LT
D 06 65		ZORES	N ···	250	X	67.98	SD	5.132	HT
D 07 65		ZORES	N	245	X	63.27	SD	6.027	LT
D 07 65		AZORES	N	245	X	72.18	SD	4.244	HT
D 08 65		AZORES	N	239	X	65.27	SD	4.702	LT
D 08 65		AZORES	N	239	X	75 • 16	SD	4.985	HΤ
D 09 65	N.A.F.	AZORES	N	211	X	65.13	SD	3.669	LT
D 09 65		AZORES	N	211	X	74.08	SD	5 • 0 4 7	ΗŤ
D 10 65		AZORES	N	173	X	61.07	SD	4.179	LT
D 10 65	N.A.F.	AZORES	N	173	X	69.01	SD	5.596	HT
D 11 65		AZORES	N	205	X	56.30	SD	4.586	LT
D 11 65	N.A.F.	AZORES	N	205	X	61.74	SD	5.197	HT
D 12 65	N.A.F.	AZORES	N	164	X	54.35	SD	4.328	LT
D 12 65		AZORE5	N	164	X	59.23	SD	4.151	ΗŢ
D 01 66		AZORES	N	194	X	52•7 2	SD	3.711	LT
D 01 66	N.A.F.	AZORES	Ν	194	X	56.86	SD	3.777	ΗŢ
D 02 66		AZORES	N	231	X	50 • 48	SD	5.113	LT
D 02 66		AZORES	N	231	X	58.93	SD	4.710	HŢ
D 03 66	N.A.F.	AZORES	N	252	X	54•30	SD	3.360	LT
r 03 66		AZORES	N	252	X	59.94	SD	4.006	HŢ
D 04 66		AZORES	N	219	X	54.08	SD	3.694	LT
D 04 66		AZORES	N	219	X	58.79	SD	4.428	ΗŢ
D 05 66		AZORES	N	192	X	55.67	SD	4.321	LT
0 05 66		AZORES	N	192	X	64.18	SD	4.685	HT
D 06 66		AZORES	N	213	X	59.21	SD	4.103	LT
D 06 66		AZORES	N	213	X	66.79	SD	4.891	HT
D 07 66	•	AZORES	N	211	X	63.33	SD	3.757	LT
D 07 66		AZORES	N	211	X	69.00	SD	4.996	HT
D 08 66		AZORES	N	215	X	66.46	SD	3.831	LT
D 08 66		AZORES	N	215	X	72.85	SD	4.925	HŢ
D 09 66		AZORES	N	215	X	64.32	SD	3.630	LT
D 09 66		AZORES	N	215	X	70.40	SD	5.257	ΗŢ
D 10 66	N.A.F.	AZORES	N	161	X	62.01	SD	3.404	LT
D 10 66	N.A.F.	AZORES	N	161	X	67.63	SD	5•393 3.706	HT
D 11 66		AZORES	N	168		57.10	SD	3.796 4.500	LT
D 11 66	N • A • F •	AZORES	N	168	X	60.90	SD SD	4.500	HT
D 12 66	N. A. F.	AZORES	N	159 159		55.14 58.91		3.610 4.856	L.T HT
D 12 66	N • A • F •	AZORES	Ν	124	X	58.91	SD	4.020	r7 I

				TABL	E 17.	(Co	nti	nued)			
0	01	57	NoAcFo	AZORES	N \	205	X	53:06	SD	3.567	L.T
D	01	67	N.A.F.	AZORES	N	205	X	57.42	SD	4.413	HT
D	02	67	N.A.F.	AZORES	N	201	X	51.63	SD	3.576	LT
D	02	67	N.A.F.	AZORES	N	201	X	56.42	SD	4.836	HT
D	03	67	N.A.F.	AZORES	N	247	X	54.17	5D	3.841	LT
D	03	67	N.A.F.	AZORES	N	247	X	60.62	SD	5.365	HT
D	04	67	N.A.F.	AZORES	N	191	X	54•80	SD	3.906	LT
D	04	67	N.A.F.	AZORES	N	191	X	61.69	SD	5 • 204	۴'
D	05	67	N.A.F.	AZORES	N .	242	X	54.47	SD	3.838	
_ D	05	67		AZORES	N ·	242	X	61.73	SD	5.476	
D	06	67	N.A.F.	AZORES	N	226	X	60.38	SD	3.665	<u>. [</u>
D	06	67		AZORES	N	226	X	67.91	SD	5.034	HT
D	07	67	N.A.F.	AZORES	N	212	X	63.60	SD	3.784	LT
D	07	67	N.A.F.	AZORES	N	212	X	71.81	SD	5.540	HT
D	0.8	_	N.A.F.	AZORES	N	236		65.64	SD	3.554	LT
D	08		N • A • F •	AZORES	N	236	X	75.03	SD	5.111	HT
D	09		N • A • F •	AZORES	N	197	X	64.67	SD	3.335	LT
D	09	67	N.A.F.		N	197	X	73.37	SD	5.938	HT
D				AZORES	N	212	X	63.12	SD	4•111 5•604	LT HT
D	_			AZORES	N	212		70 • 27	SD	4.019	LT
D		67		AZORES	N	203	X	57.31	SD SD	6.010	HT
D	11	67		AZORES	N	203	X	62 • 90 56 • 37	SD	3.223	LT
D			N.A.F.		N	194 194		59 • 68	5D	4.216	НŤ
D	_		N.A.F.		N	176		53.58	SD	3.503	LT
D	-		N.A.F.		N N	176		58.23	SD	4.712	нŤ
D		-	N.A.F.		N	169		51,49	SD	3.637	LT
D			N.A.F.	AZORES	N	169		58.10	50	4.989	нт
D			N.A.F.		N	170		50.74	SD	3.413	LT
D			N.A.F.		N	170		58.66	50	5+308	нт
D			N.A.F.		N	217		51.91	SD	3.669	LT
D			N.A.F.		N	217		58 - 84	SD	5.035	HT
נ	_		N.A.F.		N	174		54.98	SD	3.862	LT
5				AZORES	N	174		63.34	SD	5.345	нт

TABLE 18. Minimum and Maximum Storage Temperature in Earth-Covered Storage Magazines, Monthly Summaries, NAS, Guantanamo Bay, Cuba and NS, Roosevelt Roads, Puerto Rico

				and no	1/20261	C 1 U 100		,, ,,uci 00 i	1140	
1	65	CUBA	+	P.R.	. N	177	X	77.69		LT
1	65	CUBA			N	177	X	82.53		HT
2	65	CUBA	+	P.R.	N	212	X	79.15		LT
. 2	65			P.R.	N	212		83.70		HT
3	65	CUBA	+	P.R.	N	246		80.72	•	LŢ
3	65			P.R.	N	246		84.54		ĤŢ
4	65	CUBA			N	220	X	81.70		LŢ
4	65			P.R.	N	220		85.46		НŢ
5	65	CUBA			Ņ	1732		81.39		LŢ
5	65	CUBA	+	P.R.	N	1732		85.01		HT
6	65	CUBA			N	1978		81.84		LT HT
6	65	CUBA	+	P.K.	N	1976	X	86.08		LT
7	65	CUBA	+	P.K.	N	1999	X	82.99		HT
7	65	CUBA	+	P.K.	N	1999		86.23		LT
8	65	CUBA	+	PeRe	N	2129		83.14 87.01		HŤ
8	65	CUBA	+	PoKe	N	21 29 2078		84.10		LŤ
9 9	65	CUBA			N N	2078	X	87.92		HT
10	65 65	CUBA			N	2127		83.37		Εt
10	65	CUBA			N	2127		88.66		HT
		CUBA			N	2699		82.14		LT
11	65 65	CUBA	T	D D	N	2699		86.60		НŤ
12	65	CUBA			N	2943		80.37		ĹŤ
12	65	CUBA			N	2943		85.56		нŤ
12	66	CUBA			N	2934		79.29		LŤ
1	66	CUBA			N	2934		84.18		нŤ
2	66	CUBA			N	2558		78.86		LŤ
2	66	CUBA			N	2558		84.01		HT.
3	66	CUBA	1	P.R.	N	2942		79.61		LT
3	66	CUBA	1	D.R.	N	2942		84.23		нŤ
4	66	CUBA	<u>.</u>	P.R.	N	2798		81.55		LT
4	66	CUBA			N	2798		85.02		ЙŤ
5	66	CUBA			N	3035		81.19		LŤ
5	66	CUBA			Ñ	3035		84.45		HŤ
6	66	CUBA	+	P.R.	N	3008		82.67		LT
6	66	CUBA			N	3008		86.09		HT
7	66	CUBA	4.	P.R.	N	3016		83.81		LŤ
7		CUBA	+	P.R.	N	3016		87.39		ЙT
8	66			P.R.	N	3061		83.74		LT
8				P.R.	N	3061		87.15		HT
9				P.R.	Ň	2849		83.88		LŤ
ģ				P.R.	Ñ	2849		87.42		ЙT
10				P.R.	N	2938				LT
10				P.R.	N	2938		86.67		HT

			TABLE 18.	(Cont	inued)	·	
11	66	CUBA + P.R.	N 29	906 X	82.27		LT
11	66	CUBA + P.R.		906 X	86.06		HT
12	66	CUBA + P.R.	N 30	067 X	80.19		LT
12	66	CUBA + P.R.	N 60	067 X	83.60		HT
1	67	CUBA + P.R.		096 X	79.19		LT
1	67	CUBA + P.R.		096 X	82.56		HT
2	67	CUBA + P.R.		819 X	79.44	• • • • • • • • • • • • • • • • • • • •	LΤ
2	67	CUBA + P.R.		819 X	82.74		HT
3	67	CUBA + P.R.		118 X	79.87		LT
3	67	CUBA + P.R.		118 X	83.29		HT
4	67	CUBA + P.R.		993 X	80.17		LT
4	67	CUBA + P.R.		993 X	84.13	·	HT
5	67	CUBA + P.R.		047 X	81.24		LT
5	67	CUBA + P.R.		047 X	64.50		HT
6	67	CUBA + P.R.		997 X	83.41		LT
6	67	CUBA + P.R.		997 X	86.76	•	HT
7	67	CUBA + P.R.		225 X	83.33		LT
7	67	CUBA + P.R.		225 X	85.96		HT
8	67	CUBA + P.R.		118 X	84.17		LT.
8	67	CUBA + P.R.		118 X	87.36		HT
9	67	CUBA + P.R.		107 X	84.54		LT
9	67	CUBA + P.R.		107 X	87.49		HT
10	67	CUBA + P.R.		666 X	84.43		LT
10	67	CUBA + P.R.		666 X	88.08		HT
11	67	CUBA + P.R.		487 X	83.65		LT
11	67	CUBA + P.R.		487 X	87.36		HT
12	67	CUBA + P.R.		580 X	81.30		LT
12	67	CUBA + P.R.		580 X	85.57		HT
1	68	CUBA + P.R.		304 X	79.15		LT
1	68	CUBA + P.R.		304 X	33.58		HT
2	68	CUBA + P.R.		408 X	78.89		LT
3	68	CUBA + P.R.		408 X	83.81		HT
	68	CUBA + P.R.		541 X	78 • 74		LT
3	68	CUBA + P.R.		541 X	84.94		HT
4	68	CUBA + P.R.		462 X	78.93		LT
-	68	CUBA + P.R.		462 X	84.99		HT
5 5	68	CUBA + P.R.		806 X	81.36		LT
	68	CUBA + P.R.		806 X	86.30		HT
6	68	CUBA + P.R.		850 X	83.56		LT
6	68	CUBA + P.R.	N (850 X	87.62		HT

TABLE 19. Minimum and Maximum Storage Temperature in Non-Earth-Covered Storage Magazines, Monthly Summaries, NAS, Guantanamo Bay, Cuba

			and NS,	Rooseyel	t Roads,	Puerto	Rico	
1	65	CUBA +	+ P.R.	N	71 X	66.15		LT
ī	65	CUBA +		N	71 X	79.30		HT
2	65	CUBA 4	+ P.R.	N	108 X	68.47		LT
. 2	65	CUBA +	+ P.R.	N	108 X	80.16	•	HT
3	65	CUBA -	+ P.R.	. N	125 X	71.01		LT
3	65	CUBA -		· N	125 X	81.54		HT
4	65	CUBA -		N	101 X	71.67		LT
4	65	CUBA -	+ P.R.	N	101 X	82.39		HT
5	65	CUBA -		N	108 X	73.94		LT
5	65	CUBA -		N	108 X	83.49		HT
6	65	CUBA -		N	107 X	74.91		LT
6	65	CUBA -		Ņ	107 X	85.59		HT
7	65	CUBA -		N	112 X	76.69		LT
7	65	CUBA -		N	112 X 93 X	85.69 76.33		HT LT
8	65	CUBA .		N	93 X 93 X	86.58	•.	HT
8	65	CUBA -		N	136 X	80.23		LT
10 10	65 65	CUBA .		N N	136 X	88.51		ĤŤ
11	65		+ P.R.	N	217 X	78.28		ĽΤ
11	65	CUBA	+ P.R.	Ň	217 X	86.02		ЙŤ
12	65		+ P.R.	Ň	247 X	74.14		LT
12	65		+ P.R.	N	247 X	84.71		HT
1	66		+ P.R.	N	270 X	73.88		LT
i	66		+ P.R.	N	270 X	83.61		HT
2	66	CUBA		Ñ	312 X	73.79		ĹΤ
Ž	66		+ P.R.	Ň	312 X	83.09		ĤТ
3	66		+ P.R.	N	355 X	75.50		LT
3	66	CUBA		N	355 X	83.41		HT
4	66		+ P.R.	N	344 X	77.39		LT
4	66	CUBA		N	344 X	85.68		HT
5	66		+ P.R.	N	330 X	77.72		LT
5	66	CUBA	+ P.R.	N	330 X	86.24		HT
6	66		+ P.R.	N	204 X	80.76		LT
6	66	CUBA		N	204 X	86.84		HT
7	66	CUBA		N	87 X	80.52		LT
7	66	CUBA		N	87 X	86.11		HT
8	66	CUBA		N	209 X	82.17		LT HT
8	66	CUBA	+ P.R.	N	209 X	86.22		LT
9	66	CUBA	+ P.R.	N N	203 X 203 X	82.08 86.56		HT
9	66	CUDA	+ P.R. + P.R.	N	203 X 197 X	80.56		LT
10 10	66	CUBA		N	197 X	86.43		HT
11	66 66	CUBA		N	221 X	78.10		ĹŤ
11	66	CUBA	+ P.R.	N	221 X	84.02		HT
12	66	CURA	+ P.R.	Ň	210 X	75.95		ĽŤ
12	66		+ P.R.	N	210 X	82.10		ЙŤ
	_ •			. •				

ので、 用語が 可需用語音音を構成しているます。 1911年 - 中国では、1911年 - 1911年 - 1911年

		TABLE 19.	. (Cont	inued)	
1 67	CUBA + P.R.	N	210 X	75.95	LT
1 67	CUBA + P.R.	N	210 X	82.36	HT
2 67	CUBA + P.R.	N	191 X	76.72	LT
2 67	CUBA + P.R.	N	191 X	83.02	HT
3 67	CUBA + P.R.		213 X	75.53	LT
3 67	CUBA + P.R.	·	213 X	84.07	 HT.
4 67	CUBA + P.R.	N	196 X	75 • 65	LT
4 67	CUBA + P.R.	N	196 X	86.16	HT
5 67	CUBA + P.R.	N	201 X	78.60	LT
5 67	CUBA + P.R.	N	201 X	87.64	HT
	CUBA + P.R.	N	188 X	80.77	LT
	CUBA + P.R.	N	188 X	90.70	HT
	CUBA + P.R.	N	155 X	80.41	LT
	CUBA + P.R.	N	155 X	88.17	ΗŢ
	CUBA + P.R.	N	192 X	81.37	LŢ
	CUBA + P.R.	N	192 X	90.81	ΗŤ
	CUBA + P.R.	Ņ	174 X	80.79	ĿΙ
	CUBA + P.R.	N	174 X	90.53	HT
	CUBA + P.R.	N	335 X	71.53	LT
	CUBA + P.R.	N	335 X	82.01	HT
	CUBA + P.R.	N	339 X	72.02	LT
	CUBA + P.R.	N	339 X	81.22	HT
• • •	CUBA + P.R.	N	341 X	72.44	LT
-	CUBA + P.R.	N	341 X	83.28	HT
	CUBA + P.R.	N	304 X	73.68	LT
	CUBA + P.R.	N	304 X	84.97	HT
	CUBA + P.R.	N	310 X	78.82	LT
	CUBA + P.R.	N	310 X	88.33	HT
	CUBA + P.R.	N	293 X	80.44	LT
6 68	CUBA + P.R.	N	293 X	88.84	 HT

Appendix E

STATISTICAL NOTES AND IMPLICATIONS

The following points concerning the data should be considered before making final judgment on the contents of this report.

- (1) The time intervals at which temperature readings were taken were not equal. The maximum and minimum temperature readings were those encountered within the magazine during those intervals of time. The difference in reading-time intervals biases the results in both maximum and minimum directions. It has been found that the temperatures in some magazines were recorded daily, weekly, biweekly, or monthly, or less frequently, depending on the material and procedures cogent to each facility. This, of course, biases the results upward, since a high temperature for 1 day may be the recorded temperature for that magazine for a 1-week or greater period instead of for that specific day.
- (2) The amount of ammunition in the storage magazines is not always constant. The absorption of heat by the ammunition (dependent on the quantity of material) within the magazine could cause differences in temperature readings that are not accounted for.
- (3) The frequency at which the magazine doors are opened will also influence the temperature readings. This effect is also not accounted for.
- (4) In some cases inaccuracies of thermometers are large and the thermometers are not read properly. These effects were also not considered.
- (5) The Monthly Temperature Summaries (Appendix B) indicating the number of maximum temperature readings greater than nominal temperatures is exclusive of minimum temperature readings. Perhaps the minimum temperatures could be used in such a way as to provide the time duration of these nominal temperatures. If, for example, the minimum temperature recorded for a reading interval is 85°F, it is certain that the temperature within the storage magazine was no lower than 85°F during that reading interval.

The number of data points, the averages, and the standard deviations of temperature readings for each month was reported in Appendix B and D because these statistics provide information concerning the distribution of temperature readings. If it is assumed that these temperature measurements are normally distributed (the Gaussian curve) within each month, and the data in most cases do not indicate that this is a poor assumption for practical use, the standard deviation can be used to attach probabilities of occurrences to nominal temperature values. For example, in October 1965, for earth-covered magazines at NS, Roosevelt

NWC TP 4143

Part 5

Roads, Puerto Rico, the sample size is 2127, the average maximum temperature is 88.66°F , and the standard deviation is 3.940. From this and the assumption that the data is representative of the storage temperatures encountered in October, the probability of experiencing a storage temperature of $99.48~(88.66+3\sigma)^{\circ}\text{F}$ or more in an earth-covered magazine is less than 0.005.

UNCLASSIFIED

Security Classification			
•			
1	ľ		
China Lake. California	<u> </u>		UNCLASSIFIED
Online ments and it are in the	1		
3. REPORT TITLE			
STORAGE TEMPERATURE OF EXPLOSIVE HAZA	ARD MAGAZINES		
PART 5. CARIBBEAN AND MID-AIL	ANTIC		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
A ALIVIANIEL Sizel name middle initial last name)	 		
I. S. Kurotori and H. C. Schafer			
6 REPORT DATE	78. TOTAL NO. OF	PAGES	7b. NO. OF REFS
March 1969	64		
BE. CONTRACT OR GRANT NO.	98. ORIGINATOR'S	REPORT NUM	BER(S)
		49.	
	N.	WC TP 414	3, Part 5
A-33-536-711/216-1/F009-06-01			
,	this report)	f NO(5) (Any o	ther numbers that may be easigned
d.			
10. DISTRIBUTION STATEMENT	<u></u>		
1	CONTROLS AND EA	LCH TRANSMI	TTAL TO FOREIGN
GOVERNMENTS OR FOREIGN NATIONALS MAY BE MA	ADE ON Y WITH PRI	OR APPROVA	L OF THE NAVAL
WEAPONS CENTICK.			
11. SUPPLEMENTARY NOTES			
IN LUCTRIAT	Wasning	ton, μ. ι	20360
13. ABSTRACT			
,			
Storage magazine temperature meas	surements (140	-920 data	noints) from
Cuba. Puerto Rico. Bermuda, and the A	zores are unde	r study.	This data
	·		•
This report is the fifth of the s	series of repo	rts that	covers_explo-
sive hazard magazine storage temperatu	ures in most p	arts of t	the world.
This report includes 24 figures and 17	7 tables.		
·			
DOCUMENT CONTROL DATA - R & D (Security classification of tillo, hody of abstract and indexing, annotation must be entered when the overall report is classified) OHIGINATING ACTIVITY (Corporate author) Naval Weapons Center China Lake, California DINCLASSIFIED 2b. REPORT SECURITY CLASSIFICATION UNCLASSIFIED 2c. GROUP PREPORT TITLE STORAGE TEMPERATURE OF EXPLOSIVE HAZARD MAGAZINES PART 5. CARIBBEAN AND MID-ATLANTIC C. DESCRIPTIVE NOTES (Type of report and inclusive dates) D. AUTHOR(S) (First name, middle initial, lest name) I. S. Kurotori and H. C. Schafer HEPORT DATE March 1969 C. CONTRACT OR GRANT NO D. PROJECT NO. C. A-33-536-711/216-1/F009-06-01 D. DISTRIBUTION STATEMENT THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO FOREIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF THE NAVAL WEAPONS CENTER.			

DD FORM 1473

(PAGE 1)

S/N 0101-807-6801

UNCLASSIFIED
Security Classification

UNCLASSIFIED

Security Classification						
	LIN	K A	LINK B	LINI	٠ с	
K E Y WORDS	ROLE	₩T	ROLE	T Vi	ROLE	WT
Magazine temperature at	į į					
NAS. Guantanamo Bay. Cuba			1		1	
NS Pansavelt Poads Puerto Rico	ı					• •
NAS, Guantanamo Bay, Cuba NS, Roosevelt Roads, Puerto Rico NS, Bermuda						
NAF, Lajes, Azores	1		1			
MAP, Lajes, Azores	1					
Tammaua tuua data matudaya	1					
Temperature data retrieval Temperature data reduction						
remperature data reduction	i					
					i l	
]	
	- 1	}			1	
]				
	l					
		ļ				
	Ì	1]	1]	
	1					
•	ł	ţ .	ļ	}		
	Į.			1		
	1					-
	ì	1	1	1)	1
	ı					ŀ
	,	1	1	<u> </u>	.	\
				Ì		1
	1			}		
					}	ł
		1		İ		
		[ļ	ļ	1	1
				Ì		1
		1	l]	
		ì	1]		1
				1		
			1	{	}	l
		1				
		1	1			
]]		1	l
•		l	1			
·		1	1	}	ļ	1
			[!	1	l
		ŀ		1	1	1
		1	1	1	1	1
		1	1	1	1	i
·		1	İ	1	}	1
,		1			1	
·		ļ		1		ļ
			1			1
				l	[
	}	1	1	[1	}
		1	1		1	}
	1	1	l	l	į	ļ
	1	1		l		
		1	1	1	1	I

DD (NOV...1473 (BACK) (PAGE 2)

UNCLASSIFIED

Security Classification