Package 'targeted'

February 22, 2024

```
Type Package
Title Targeted Inference
Version 0.5
Date 2024-02-22
Author Klaus K. Holst [aut, cre],
     Andreas Nordland [aut]
Maintainer Klaus K. Holst <klaus@holst.it>
Description Various methods for targeted and semiparametric inference including
        augmented inverse probability weighted (AIPW) estimators for missing data and
        causal inference (Bang and Robins (2005) <doi:10.1111/j.1541-0420.2005.00377.x>),
     variable importance and conditional average treatment effects (CATE)
     (van der Laan (2006) <doi:10.2202/1557-4679.1008>),
        estimators for risk differences and relative risks (Richardson et al. (2017)
        <doi:10.1080/01621459.2016.1192546>), assumption lean inference for generalized
     linear model parameters (Vansteelandt et al. (2022) <doi:10.1111/rssb.12504>).
Depends R (>= 4.0), lava (>= 1.7.0)
Imports data.table, digest, futile.logger, future.apply, optimx,
     progressr, methods, mets, R6, Rcpp (>= 1.0.0), survival
Suggests grf, mgcv, testthat (>= 0.11), rmarkdown, scatterplot3d,
     SuperLearner (>= 2.0-28), knitr, xgboost, viridisLite
BugReports https://github.com/kkholst/targeted/issues
License Apache License (== 2.0)
LinkingTo Rcpp, RcppArmadillo
LazyLoad yes
NeedsCompilation yes
ByteCompile yes
RcppModules riskregmodel
Encoding UTF-8
RoxygenNote 7.3.1
VignetteBuilder knitr
```

2 aipw

Repository CRAN

Date/Publication 2024-02-22 10:00:21 UTC

R topics documented:

aipw		AIPW estimator	
Index			38
			31
	· -		30
	_		35
	SL softmax		
	Č		
			31
	•		
	RATE.surv		27
	RATE		
	1		
	•		
	1		
	nondom		23
	NB-class		
	-		
	$ML \ \dots \dots \dots$		
	expand.list		17
	design		16
	cv		15
	crr		13
	cross_validated-class		12
	cate link		11
	cate		9
	calibration class		8
	calibration		7
	alean		_

Description

AIPW for the mean (and linear projections of the EIF) with missing observations

alean 3

Usage

```
aipw(response_model, data, formula = ~1, missing_model, ...)
```

Arguments

response_model Model for the response given covariates (ml_model or formula)

data data.frame

formula design specifying the OLS estimator with outcome given by the EIF

missing_model Optional missing_model (ml_model or formula). By default will use the same design as the response_model.

... arguments to cate

Examples

```
m <- lvm(y ~ x+z, r ~ x) distribution(m,~ r) <- binomial.lvm() transform(m, y0~r+y) <- function(x) { x[x[,1]==0,2] <- NA; x[,2] } d <- sim(m,1e3,seed=1) aipw(y0 ~ x, data=d)
```

alean

Assumption Lean inference for generalized linear model parameters

Description

Assumption lean inference via cross-fitting (Double ML). See <doi:10.1111/rssb.12504

Usage

```
alean(
  response_model,
  exposure_model,
  data,
  link = "identity",
  g_model,
  nfolds = 1,
  silent = FALSE,
  mc.cores,
  ...
)
```

4 alean

Arguments

response_model	formula or ml_model object (formula => glm)
exposure_model	model for the exposure
data	data.frame
link	Link function (g)
g_model	Model for $E[g(Y A,W) W]$
nfolds	Number of folds
silent	supress all messages and progressbars
mc.cores	mc.cores Optional number of cores. parallel::mcmapply used instead of future
• • •	additional arguments to future.apply::future_mapply

Details

Let Y be the response variable, A the exposure and W covariates. The target parameter is:

$$\Psi(P) = \frac{E(Cov[A,g\{E(Y|A,W)\} \mid W])}{E\{Var(A \mid W)\}}$$

The response_model is the model for E(Y|A,W), and exposure_model is the model for E(A|W). link specifies g.

Value

alean.targeted object

Author(s)

Klaus Kähler Holst

ate 5

ate

AIPW (doubly-robust) estimator for Average Treatement Effect

Description

Augmented Inverse Probability Weighting estimator for the Average (Causal) Treatment Effect. All nuisance models are here parametric (glm). For a more general approach see the cate implementation. In this implementation the standard errors are correct even when the nuisance models are misspecified (the influence curve is calculated including the term coming from the parametric nuisance models). The estimate is consistent if either the propensity model or the outcome model / Q-model is correctly specified.

Usage

```
ate(
  formula,
  data = parent.frame(),
  weights,
  offset,
  family = stats::gaussian(identity),
  nuisance = NULL,
  propensity = nuisance,
  all,
  labels = NULL,
  ...
)
```

Arguments

formula Formula (see details below)

data data.frame

weights optional frequency weights

offset optional offset (character or vector). can also be specified in the formula.

family Exponential family argument for outcome model

nuisance outcome regression formula (Q-model)

propensity propensity model formula

6 ate

all If TRUE all standard errors are calculated (default TRUE when exposure only has two levels)

labels Optional treatment labels

Additional arguments to lower level functions

Details

The formula may either be specified as: response ~ treatment | nuisance-formula | propensity-formula

```
For example: ate(y~a | x+z+a | x*z, data=...)

Alternatively, as a list: ate(list(y~a, ~x+z, ~x*z), data=...)

Or using the nuisance (and propensity argument): ate(y~a, nuisance=~x+z, ...)
```

Value

An object of class 'ate.targeted' is returned. See targeted-class for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

See Also

cate

```
m <- lvm(y ~ a+x, a~x)
distribution(m, ~y) <- binomial.lvm()
m <- ordinal(m, K=4, ~a)
transform(m, ~a) <- factor
d <- sim(m, 1e3, seed=1)
(a <- ate(y~a|a*x|x, data=d))
## ate(y~a, nuisance=~a*x, propensity=~x, ...)
# Comparison with randomized experiment
m0 <- cancel(m, a~x)
lm(y~a-1, sim(m0,2e4))
# Choosing a different contrast for the association measures
summary(a, contrast=c(2,4))</pre>
```

calibration 7

calibration

Calibration (training)

Description

Calibration for multiclassication methods

Usage

```
calibration(
  pr,
  cl,
  weights = NULL,
  threshold = 10,
  method = "bin",
  breaks = nclass.Sturges,
  df = 3,
  ...
)
```

Arguments

pr matrix with probabilities for each class

cl class variable

weights counts

threshold do not calibrate if less then 'threshold' events

method either 'isotonic' (pava), 'logistic', 'mspline' (monotone spline), 'bin' (local constant)

breaks optional number of bins (only for method 'bin')

df degrees of freedom (only for spline methods)

additional arguments to lower level functions

Details

•••

Value

An object of class 'calibration' is returned. See calibration-class for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

8 calibration-class

```
sim1 <- function(n, beta=c(-3, rep(.5,10)), rho=.5) {
 p <- length(beta)-1</pre>
 xx <- lava::rmvn0(n,sigma=diag(nrow=p)*(1-rho)+rho)</pre>
 y <- rbinom(n, 1, lava::expit(cbind(1,xx)%*%beta))</pre>
 d <- data.frame(y=y, xx)</pre>
 names(d) \leftarrow c("y",paste0("x",1:p))
 return(d)
}
set.seed(1)
beta <- c(-2, rep(1, 10))
d <- sim1(1e4, beta=beta)</pre>
a1 <- NB(y \sim ., data=d)
a2 <- glm(y \sim ., data=d, family=binomial)
## a3 <- randomForest(factor(y) ~ ., data=d, family=binomial)</pre>
d0 < - sim1(1e4, beta=beta)
p1 <- predict(a1, newdata=d0)
p2 <- predict(a2, newdata=d0, type="response")</pre>
## p3 <- predict(a3, newdata=d0, type="prob")</pre>
c2 <- calibration(p2, d0$y, method="isotonic")</pre>
c1 <- calibration(p1, d0$y, breaks=100)</pre>
if (interactive()) {
  plot(c1)
  plot(c2,col="red",add=TRUE)
  abline(a=0,b=1)##'
  with(c1$xy[[1]], points(pred,freq,type="b", col="red"))
}
set.seed(1)
beta <- c(-2, rep(1, 10))
dd <- lava::csplit(sim1(1e4, beta=beta), k=3)</pre>
mod \leftarrow NB(y \sim ., data=dd[[1]])
p1 <- predict(mod, newdata=dd[[2]])</pre>
cal <- calibration(p1, dd[[2]]$y)</pre>
p2 <- predict(mod, newdata=dd[[3]])</pre>
pp <- predict(c1, p2)</pre>
cc <- calibration(pp, dd[[3]]$y)</pre>
if (interactive()) {##'
  plot(cal)
  plot(cc, add=TRUE, col="blue")
```

cate 9

Description

The functions calibration returns an object of the class calibration.

An object of class 'calibration' is a list with at least the following components:

stepfun estimated step-functions (see stepfun) for each class

classes the unique classes

model model/method type (string)

xy list of data.frame's with predictions (pr) and estimated probabilities of success (only for 'bin' method)

Value

```
objects of the S3 class 'calibration'
```

S3 generics

The following S3 generic functions are available for an object of class targeted:

```
predict Apply calibration to new data.

plot Plot the calibration curves (reliability plot).
```

```
calibration, calibrate
```

print Basic print method.

Examples

See Also

```
## See example(calibration) for examples
```

cate

Conditional Average Treatment Effect estimation

Description

Conditional Average Treatment Effect estimation via Double Machine Learning

Usage

```
cate(
  treatment,
  response_model,
  propensity_model,
  contrast = c(1, 0),
  data,
  nfolds = 5,
```

10 cate

```
type = "dml2",
silent = FALSE,
stratify = FALSE,
mc.cores,
...
)
```

Arguments

formula specifying treatment and variables to condition on treatment response_model formula or ml_model object (formula => glm) propensity_model formula or ml_model object (formula => glm) treatment contrast (default 1 vs 0) contrast data.frame data nfolds Number of folds 'dml1' or 'dml2' type silent supress all messages and progressbars stratify If TRUE the response_model will be stratified by treatment mc.cores Optional number of cores. parallel::mcmapply used instead of future mc.cores

additional arguments to future.apply::future_mapply

Value

cate.targeted object

Author(s)

Klaus Kähler Holst

cate_link 11

```
e <- cate(a ~ z1+z2+z3, response=u^{-}., data=d) e
```

cate_link

Conditional Relative Risk estimation

Description

Conditional average treatment effect estimation via Double Machine Learning

Usage

```
cate_link(
   treatment,
   link = "identity",
   response_model,
   propensity_model,
   importance_model,
   contrast = c(1, 0),
   data,
   nfolds = 5,
   type = "dml1",
   ...
)
```

Arguments

```
treatment
                 formula specifying treatment and variables to condition on
link
                 Link function
response_model SL object
propensity_model
                  SL object
importance_model
                 SL object
contrast
                 treatment contrast (default 1 vs 0)
data
                  data.frame
nfolds
                 Number of folds
                  'dml1' or 'dml2'
type
                 additional arguments to SuperLearner
```

Value

cate.targeted object

12 cross_validated-class

Author(s)

Klaus Kähler Holst & Andreas Nordland

Examples

```
# Example 1:
sim1 <- function(n=1e4,</pre>
                  seed=NULL,
                  return_model=FALSE, ...){
suppressPackageStartupMessages(require("lava"))
if (!is.null(seed)) set.seed(seed)
m <- lava::lvm()</pre>
distribution(m, ~x) <- gaussian.lvm()</pre>
distribution(m, ~v) <- gaussian.lvm(mean = 10)</pre>
distribution(m, ~a) <- binomial.lvm("logit")</pre>
regression(m, "a") <- function(v, x)\{.1*v + x\}
distribution(m, "y") <- gaussian.lvm()</pre>
regression(m, "y") <- function(a, v, x){v+x+a*x+a*v*v}
if (return_model) return(m)
lava::sim(m, n = n)
if (require("SuperLearner",quietly=TRUE)) {
  d < - sim1(n = 1e3, seed = 1)
  e <- cate_link(data=d,
           type = "dm12",
            treatment = a \sim v,
           response_model = y^a *(x + v + I(v^2)),
           importance_model = SL(D_ \sim v + I(v^2)),
           nfolds = 10)
  summary(e) # the true parameters are c(1,1)
}
```

cross_validated-class cross_validated class object

Description

The functions cv returns an object of the type cross_validated.

An object of class 'cross_validated' is a list with at least the following components:

cv An array with the model score(s) evaluated for each fold, repetition, and model estimates (see estimate.default)

names Names (character vector) of the models

rep number of repetitions of the CV

folds Number of folds of the CV

crr 13

Value

```
objects of the S3 class 'cross_validated'
```

S3 generics

The following S3 generic functions are available for an object of class cross_validated:

coef Extract average model scores from the cross-validation procedure.

print Basic print method.

summary Summary of the cross-validation procedure.'

See Also

cv

Examples

```
## See example(cv) for examples
```

crr

Conditional Relative Risk estimation

Description

Conditional Relative Risk estimation via Double Machine Learning

Usage

```
crr(
   treatment,
   response_model,
   propensity_model,
   importance_model,
   contrast = c(1, 0),
   data,
   nfolds = 5,
   type = "dml1",
   ...
)
```

Arguments

```
treatment formula specifying treatment and variables to condition on response_model SL object propensity_model SL object
```

14 crr

```
importance_model
```

SL object

contrast treatment contrast (default 1 vs 0)

data data.frame

nfolds Number of folds type 'dml1' or 'dml2'

... additional arguments to SuperLearner

Value

cate.targeted object

Author(s)

Klaus Kähler Holst & Andreas Nordland

```
sim1 <- function(n=1e4,</pre>
                  seed=NULL,
                  return_model=FALSE, ...){
suppressPackageStartupMessages(require("lava"))
if (!is.null(seed)) set.seed(seed)
m <- lava::lvm()</pre>
distribution(m, ~x) <- gaussian.lvm()</pre>
distribution(m, ~v) <- gaussian.lvm(mean = 10)</pre>
distribution(m, ~a) <- binomial.lvm("logit")</pre>
regression(m, "a") <- function(v, x)\{.1*v + x\}
distribution(m, "y") <- gaussian.lvm()</pre>
regression(m, "y") <- function(a, v, x)\{v+x+a*x+a*v*v\}
if (return_model) return(m)
lava::sim(m, n = n)
}
d <- sim1(n = 2e3, seed = 1)
if (require("SuperLearner", quietly=TRUE)) {
  e <- crr(data=d,
            type = "dm12",
            treatment = a \sim v,
           response_model = ML(y^a a*(x + v + I(v^2))),
           importance_model = ML(D_ \sim v + I(v^2)),
           propensity_model = ML(a \sim x + v + I(v^2), family=binomial),
           nfolds = 2)
  summary(e) # the true parameters are c(1,1)
}
```

cv 15

cv Cross-validation

Description

Generic cross-validation function

Usage

```
cv(
  models,
  data,
  response = NULL,
  nfolds = 5,
  rep = 1,
  weights = NULL,
  modelscore,
  seed = NULL,
  shared = NULL,
  args.pred = NULL,
  args.future = list(),
  mc.cores,
  ...
)
```

Arguments

models	List of fitting functions
data	data.frame or matrix
response	Response variable (vector or name of column in data).
nfolds	Number of folds (default 5. K=0 splits in 1:n/2, n/2:n with last part used for testing)
rep	Number of repetitions (default 1)
weights	Optional frequency weights
modelscore	Model scoring metric (default: MSE / Brier score). Must be a function with arguments: response, prediction, weights,
seed	Random seed (argument parsed to future_Apply::future_lapply)
shared	Function applied to each fold with results send to each model
args.pred	Optional arguments to prediction function (see details below)
args.future	Arguments to future.apply::future_mapply
mc.cores	Optional number of cores. parallel::mcmapply used instead of future

Additional arguments parsed to models in models

16 design

Details

models should be list of objects of class ml_model. Alternatively, each element of models should be a list with a fitting function and a prediction function.

The response argument can optionally be a named list where the name is then used as the name of the response argument in models. Similarly, if data is a named list with a single data.frame/matrix then this name will be used as the name of the data/design matrix argument in models.

Value

An object of class 'cross_validated' is returned. See cross_validated-class for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

Examples

```
f0 <- function(data,...) lm(...,data=data)
f1 <- function(data,...) lm(Sepal.Length~Species,data=data)
f2 <- function(data,...) lm(Sepal.Length~Species+Petal.Length,data=data)
x <- cv(list(m0=f0,m1=f1,m2=f2),rep=10, data=iris, formula=Sepal.Length~.)
x</pre>
```

design

Extract design matrix

Description

Extract design matrix from data.frame and formula

Usage

```
design(formula, data, intercept = FALSE, rm_envir = FALSE, ...)
```

Arguments

```
formula formula

data frame

intercept If FALSE (default) an intercept is not included

rm_envir Remove environment

... additional arguments (e.g, specials such weights, offsets, subset)
```

Value

An object of class 'design'

expand.list 17

Author(s)

Klaus Kähler Holst

expand.list

Create a list from all combination of input variables

Description

Similar to expand.grid function, this function creates all combinations of the input arguments but returns the result as a list.

Usage

```
expand.list(...)
```

Arguments

... input variables

Value

list

Author(s)

Klaus Kähler Holst

Examples

```
expand.list(x=2:4, z=c("a","b"))
```

ML

ML model

Description

Wrapper for ml_model

Usage

```
ML(formula, model = "glm", ...)
```

Arguments

```
formula formula
```

model (sl, rf, pf, glm, ...)

... additional arguments to model object

ml_model

Details

```
model 'sl' (SuperLearner::SuperLearner) args: SL.library, cvControl, f<aamily, method example: model 'grf' (grf::regression_forest) args: num.trees, mtry, sample.weights, sample.fraction, min.node.size, ... example: model 'grf.binary' (grf::probability_forest) args: num.trees, mtry, sample.weights, ... example: model 'glm' args: family, weights, offset, ...
```

ml_model

R6 class for prediction models

Description

Provides standardized estimation and prediction methods

Public fields

info Optional information/name of the model formals List with formal arguments of estimation and prediction functions formula Formula specifying response and design matrix args additional arguments specified during initialization

Active bindings

fit Active binding returning estimated model object

Methods

Public methods:

- ml_model\$new()
- ml_model\$estimate()
- ml_model\$predict()
- ml_model\$update()
- ml_model\$print()
- ml_model\$response()
- ml_model\$design()
- ml_model\$opt()
- ml_model\$clone()

Method new(): Create a new prediction model object

Usage:

```
ml_model$new(
    formula = NULL,
    estimate,
    predict = stats::predict,
   predict.args = NULL,
   info = NULL,
   specials,
   response.arg = "y",
   x.arg = "x",
 )
 Arguments:
 formula formula specifying outcome and design matrix
 estimate function for fitting the model (must be a function response, 'y', and design matrix,
     'x'. Alternatively, a function with a single 'formula' argument)
 predict prediction function (must be a function of model object, 'object', and new design
     matrix, 'newdata')
 predict.args optional arguments to prediction function
 info optional description of the model
 specials optional additional terms (weights, offset, id, subset, ...) passed to 'estimate'
 response.arg name of response argument
 x.arg name of design matrix argument
 ... optional arguments to fitting function
Method estimate(): Estimation method
 Usage:
 ml_model$estimate(data, ..., store = TRUE)
 Arguments:
 data data.frame
 ... Additional arguments to estimation method
 store Logical determining if estimated model should be stored inside the class.
Method predict(): Prediction method
 Usage:
 ml_model$predict(newdata, ..., object = NULL)
 Arguments:
 newdata data.frame
 ... Additional arguments to prediction method
 object Optional model fit object
Method update(): Update formula
 ml_model$update(formula, ...)
 Arguments:
```

20 ml_model

```
formula formula or character which defines the new response
 ... Additional arguments to lower level functions
Method print(): Print method
 Usage:
 ml_model$print(...)
 Arguments:
 ... Additional arguments to lower level functions
Method response(): Extract response from data
 Usage:
 ml_model$response(data, ...)
 Arguments:
 data data.frame
 ... additional arguments to 'design'
Method design(): Extract design matrix (features) from data
 Usage:
 ml_model$design(data, ...)
 Arguments:
 data data.frame
 ... additional arguments to 'design'
Method opt(): Get options
 Usage:
 ml_model$opt(arg, ...)
 Arguments:
 arg name of option to get value of
 ... additional arguments to lower level functions
Method clone(): The objects of this class are cloneable with this method.
 Usage:
 ml_model$clone(deep = FALSE)
 Arguments:
 deep Whether to make a deep clone.
```

Author(s)

Klaus Kähler Holst

NB 21

Examples

```
data(iris)
rf <- function(formula, ...)</pre>
ml_model$new(formula, info="grf::probability_forest",
  estimate=function(x,y, ...) grf::probability_forest(X=x, Y=y, ...),
  predict=function(object, newdata)
             predict(object, newdata)$predictions, ...)
args <- expand.list(num.trees=c(100,200), mtry=1:3,</pre>
          formula=c(Species ~ ., Species ~ Sepal.Length + Sepal.Width))
models <- lapply(args, function(par) do.call(rf, par))</pre>
x <- models[[1]]$clone()</pre>
x$estimate(iris)
predict(x, newdata=head(iris))
 # Reduce Ex. timing
a <- targeted::cv(models, data=iris)</pre>
cbind(coef(a), attr(args, "table"))
ff <- ml_model$new(estimate=function(y,x) lm.fit(x=x, y=y),</pre>
        predict=function(object, newdata) newdata%*%object$coefficients)
## tmp <- ff$estimate(y, x=x)</pre>
## ff$predict(x)
```

NB

Naive Bayes

Description

Naive Bayes Classifier

Usage

```
NB(
  formula,
  data,
  weights = NULL,
  kernel = FALSE,
  laplace.smooth = 0,
  prior = NULL,
  ...
)
```

Arguments

formula

Formula with syntax: response ~ predictors | weights

NB-class

data data.frame

weights optional frequency weights

kernel If TRUE a kernel estimator is used for numeric predictors (otherwise a gaussian

model is used)

laplace.smooth Laplace smoothing

prior optional prior probabilities (default estimated from data)

... additional arguments to lower level functions

Value

An object of class 'NB' is returned. See NB-class for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

Examples

```
data(iris)
m2 <- NB(Species ~ Sepal.Width + Petal.Length, data=iris)
pr2 <- predict(m2, newdata=iris)</pre>
```

NB-class

NB class object

Description

The functions NB returns an object of the type NB.

An object of class 'NB' is a list with at least the following components:

prior Matrix with prior probabilities, i.e. marginal class probabilities Pr(class)

pcond list of matrices with conditional probabilities of the features given the classes (one list element per class), Pr(xlclass)

classes Names (character vector) of the classes

xvar number of repetitions of the CV

xmodel Number of folds of the CV

model Number of folds of the CV

Value

```
objects of the S3 class 'NB'
```

nondom 23

S3 generics

The following S3 generic functions are available for an object of class NB:

```
predict Predict class probabilities for new features data.
print Basic print method.
```

See Also

NB, NB2

Examples

```
## See example(NB) for examples
```

nondom

Find non-dominated points of a set

Description

Find the non-dominated point of a set (minima of a point set).

Usage

```
nondom(x, ...)
```

Arguments

x matrix

... additional arguments to lower level functions

Details

A point x dominates y if it is never worse and at least in one case strictly better. Formally, let f_i denote the ith coordinate of the condition (objective) function, then for all i: $f_i(x) <= f_i(y)$ and there exists j: $f_i(x) < f_i(y)$.

Based on the algorithm of Kung et al. 1975.

Value

matrix

Author(s)

Klaus Kähler Holst

24 pava

Examples

```
rbind(
c(1.0, 0.5),
c(0.0, 1.0),
c(1.0, 0.0),
c(0.5, 1.0),
c(1.0, 1.0),
c(0.8, 0.8)) |> nondom()
```

pava

Pooled Adjacent Violators Algorithm

Description

Pooled Adjacent Violators Algorithm

Usage

```
pava(y, x = numeric(0), weights = numeric(0))
```

Arguments

y response variable

x (optional) predictor vector (otherwise y is assumed to be a priori sorted accord-

ing to relevant predictor)

weights weights (optional) weights

Value

List with index (idx) of jump points and values (value) at each jump point.

Author(s)

Klaus K. Holst

```
x <- runif(5e3, -5, 5)
pr <- lava::expit(-1 + x)
y <- rbinom(length(pr), 1, pr)
pv <- pava(y, x)
plot(pr ~ x, cex=0.3)
with(pv, lines(sort(x)[index], value, col="red", type="s"))</pre>
```

predict.density 25

predict.density

Prediction for kernel density estimates

Description

Kernel density estimator predictions

Usage

```
## S3 method for class 'density'
predict(object, xnew, ...)
```

Arguments

density object object

New data on which to make predictions for xnew additional arguments to lower level functions

Author(s)

Klaus K. Holst

predict.NB

Predictions for Naive Bayes Classifier

Description

Naive Bayes Classifier predictions

Usage

```
## S3 method for class 'NB'
predict(object, newdata, expectation = NULL, threshold = c(0.001, 0.001), ...)
```

Arguments

object density object

newdata new data on which to make predictions

expectation Variable to calculate conditional expectation wrt probabilities from NB classifier threshold Threshold parameters. First element defines the threshold on the probabilities

and the second element the value to set those truncated probabilities to.

Additional arguments to lower level functions . . .

Author(s)

Klaus K. Holst

26 RATE

RATE

Responder Average Treatment Effect

Description

Estimation of the Average Treatment Effect among Responders

Usage

```
RATE(
    response,
    post.treatment,
    treatment,
    data,
    family = gaussian(),
    M = 5,
    pr.treatment,
    treatment.level,
    SL.args.response = list(family = gaussian(), SL.library = c("SL.mean", "SL.glm")),
    SL.args.post.treatment = list(family = binomial(), SL.library = c("SL.mean", "SL.glm")),
    preprocess = NULL,
    efficient = TRUE,
    ...
)
```

Arguments

Response formula (e.g, Y~D*A) response post.treatment Post treatment marker formula (e.g., D~W) treatment Treatment formula (e.g, A~1) data data.frame family Exponential family for response (default gaussian) Number of folds in cross-fitting (M=1 is no cross-fitting) (optional) Randomization probability of treatment. pr.treatment treatment.level Treatment level in binary treatment (default 1) SL.args.response Arguments to SuperLearner for the response model SL.args.post.treatment Arguments to SuperLearner for the post treatment indicator (optional) Data preprocessing function preprocess efficient If TRUE, the estimate will be efficient. If FALSE, the estimate will be a simple plug-in estimate. Additional arguments to lower level functions

RATE.surv 27

Value

estimate object

Author(s)

Andreas Nordland, Klaus K. Holst

RATE.surv

Responder Average Treatment Effect

Description

Estimation of the Average Treatment Effect among Responders for Survival Outcomes

Usage

```
RATE.surv(
  response,
  post.treatment,
  treatment,
  censoring,
  tau,
  data,
 M = 5
  pr.treatment,
  call.response,
  args.response = list(),
 SL.args.post.treatment = list(family = binomial(), SL.library = c("SL.mean", "SL.glm")),
  call.censoring,
  args.censoring = list(),
 preprocess = NULL,
)
```

Arguments

```
response Response formula (e.g., Surv(time, event) \sim D + W).

post.treatment Post treatment marker formula (e.g., D \sim W).

treatment Treatment formula (e.g., A \sim 1).

censoring Censoring formula (e.g., Surv(time, event == 0) \sim D + A + W)).

tau Time-point of interest, see Details.

data data.frame.

M Number of folds in cross-fitting (M=1 is no cross-fitting).

pr.treatment (optional) Randomization probability of treatment.
```

28 riskreg

call.response Model call for the response model (e.g. "mets::phreg").

args.response Additional arguments to the response model.

SL.args.post.treatment

Additional arguments to SuperLearner for the post treatment indicator model.

call.censoring Similar to call.response.

args.censoring Similar to args.response.

preprocess (optional) Data pre-processing function.

... Additional arguments to lower level data pre-processing functions.

Details

Estimation of

$$\frac{P(T \le \tau | A=1) - P(T \le \tau | A=1)}{E[D|A=1]}$$

under right censoring based on plug-in estimates of $P(T \le \tau | A = a)$ and E[D|A = 1].

An efficient one-step estimator of $P(T \leq \tau | A = a)$ is constructed using the efficient influence function

$$\frac{I\{A=a\}}{P(A=a)} \Big(\frac{\Delta}{S_0^c(\tilde{T}|X)} I\{\tilde{T} \leq \tau\} + \int_0^\tau \frac{S_0(u|X) - S_0(\tau|X)}{S_0(u|X) S_0^c(u|X)} dM_0^c(u|X)) \Big) + \Big(1 - \frac{I\{A=a\}}{P(A=a)} \Big) F_0(\tau|A=a,W) - P(T \leq \tau|A) + \frac{I\{A=a\}}{P(A=a)} \Big) F_0(\tau|A=a,W) - \frac{I\{A$$

An efficient one-step estimator of E[D|A=1] is constructed using the efficient influence function

$$\frac{A}{P(A=1)} \left(D - E[D|A=1, W] \right) + E[D|A=1, W] - E[D|A=1].$$

Value

estimate object

Author(s)

Andreas Nordland, Klaus K. Holst

riskreg

Risk regression

Description

Risk regression with binary exposure and nuisance model for the odds-product.

Let A be the binary exposure, V the set of covariates, and Y the binary response variable, and define $p_a(v) = P(Y = 1 \mid A = a, V = v), a \in \{0, 1\}.$

The **target parameter** is either the *relative risk*

$$RR(v) = \frac{p_1(v)}{p_0(v)}$$

riskreg 29

or the risk difference

$$RD(v) = p_1(v) - p_0(v)$$

We assume a target parameter model given by either

$$\log\{RR(v)\} = \alpha^t v$$

or

$$\operatorname{arctanh}\{RD(v)\} = \alpha^t v$$

and similarly a working linear nuisance model for the odds-product

$$\phi(v) = \log\left(\frac{p_0(v)p_1(v)}{(1 - p_0(v))(1 - p_1(v))}\right) = \beta^t v$$

A propensity model for E(A=1|V) is also fitted using a logistic regression working model

$$logit{E(A = 1 \mid V = v)} = \gamma^t v.$$

If both the odds-product model and the propensity model are correct the estimator is efficient. Further, the estimator is consistent in the union model, i.e., the estimator is double-robust in the sense that only one of the two models needs to be correctly specified to get a consistent estimate.

Usage

```
riskreg(
  formula,
  nuisance = ~1,
  propensity = ~1,
  target = ~1,
  data,
  weights,
  type = "rr",
  optimal = TRUE,
  std.err = TRUE,
  start = NULL,
  mle = FALSE,
  ...
)
```

Arguments

formula formula (see details below)
nuisance nuisance model (formula)
propensity propensity model (formula)
target (optional) target model (formula)
data data.frame
weights optional weights

30 riskreg

type	type of association measure (rd og rr)
optimal	If TRUE optimal weights are calculated
std.err	If TRUE standard errors are calculated
start	optional starting values
mle	Semi-parametric (double-robust) estimate or MLE (TRUE gives MLE)
	additional arguments to unconstrained optimization routine (nlminb)

Details

```
The 'formula' argument should be given as response ~ exposure | target-formula | nuisance-formula or response ~ exposure | target | nuisance | propensity
```

```
E.g., riskreg(y \sim a | 1 | x+z | x+z, data=...)
```

Alternatively, the model can specifed using the target, nuisance and propensity arguments: riskreg(y ~ a, target=~1, nuisance=~x+z, ...)

The riskreg_fit function can be used with matrix inputs rather than formulas.

Value

An object of class 'riskreg. targeted' is returned. See targeted-class for more details about this class and its generic functions.

Author(s)

Klaus K. Holst

References

Richardson, T. S., Robins, J. M., & Wang, L. (2017). On modeling and estimation for the relative risk and risk difference. Journal of the American Statistical Association, 112(519), 1121–1130. http://dx.doi.org/10.1080/01621459.2016.1192546

riskreg_cens 31

```
## Model with same design matrix for nuisance and propensity model:
with(d, riskreg_fit(y, a, nuisance=X, type="rr"))

## a <- riskreg(y ~ a, target=~z, nuisance=~x, propensity=~x, data=d, type="rr")
a <- riskreg(y ~ a | z, nuisance=~x, propensity=~x, data=d, type="rr")
a
predict(a, d[1:5,])

riskreg(y ~ a, nuisance=~x, data=d, type="rr", mle=TRUE)</pre>
```

riskreg_cens

Binary regression models with right censored outcomes

Description

Binary regression models with right censored outcomes

Usage

```
riskreg_cens(
  response,
  censoring,
  treatment = NULL,
  prediction = NULL,
  data,
  newdata,
  tau,
  type = "risk",
 M = 1,
  call.response = "phreg",
  args.response = list(),
  call.censoring = "phreg",
  args.censoring = list(),
  preprocess = NULL,
  efficient = TRUE,
  control = list(),
)
```

Arguments

```
\begin{tabular}{lll} response & Response & Response & Formula (e.g., Surv(time, event) $\sim D + W$). \\ & Censoring & Censoring & Formula (e.g., Surv(time, event == 0) $\sim D + A + W$)). \\ & treatment & Optional treatment model (ml_model) \\ & Optional prediction model (ml_model) \\ & data. & frame. \\ \end{tabular}
```

32 scoring

newdata Optional data.frame. In this case the uncentered influence function evalued in

'newdata' is returned with nuisance parameters obtained from 'data'.

tau Time-point of interest, see Details.
type "risk", "treatment", "rmst", "brier"

M Number of folds in cross-fitting (M=1 is no cross-fitting).

call.response Model call for the response model (e.g. "mets::phreg").

args.response Additional arguments to the response model.

call.censoring Similar to call.response.

args.censoring Similar to args.response.

preprocess (optional) Data pre-processing function.

efficient If FALSE an IPCW estimator is returned

control See details

... Additional arguments to lower level data pre-processing functions.

Details

The one-step estimator depends on the calculation of an integral wrt. the martingale process corresponding to the counting process $N(t) = I(C > \min(T, tau))$. This can be decomposed into an integral wrt the counting process, $dN_c(t)$ and the compensator $d\Lambda_c(t)$ where the latter term can be computational intensive to calculate. Rather than calculating this integral in all observed time points, we can make a coarser evaluation which can be controlled by setting control=(sample=N). With N=0 the (computational intensive) standard evaluation is used.##'

Value

estimate object

Author(s)

Klaus K. Holst, Andreas Nordland

scoring Predictive model scoring

Description

Predictive model scoring

scoring 33

Usage

```
scoring(
  response,
  ...,
  type = "quantitative",
  levels = NULL,
  metrics = NULL,
  weights = NULL,
  names = NULL,
  messages = 1
)
```

Arguments

response	Observed response
	model predictions (continuous predictions or class probabilities (matrices))
type	continuous or categorical response (the latter is automatically chosen if response is a factor, otherwise a continuous response is assumed)
levels	(optional) unique levels in response variable
metrics	which metrics to report
weights	optional frequency weights
names	optional names of models coments (given as, alternatively these can be named arguments)
messages	controls amount of messages/warnings (0: none)

Value

Numeric matrix of dimension $m \times p$, where m is the number of different models and p is the number of model metrics

```
data(iris)
set.seed(1)
dat <- csplit(iris,2)
g1 <- NB(Species ~ Sepal.Width + Petal.Length, data=dat[[1]])
g2 <- NB(Species ~ Sepal.Width, data=dat[[1]])
pr1 <- predict(g1, newdata=dat[[2]], wide=TRUE)
pr2 <- predict(g2, newdata=dat[[2]], wide=TRUE)
table(colnames(pr1)[apply(pr1,1,which.max)], dat[[2]]$Species)
table(colnames(pr2)[apply(pr2,1,which.max)], dat[[2]]$Species)
scoring(dat[[2]]$Species, pr1=pr1, pr2=pr2)
## quantitative response:
scoring(response=1:10, prediction=rnorm(1:10))</pre>
```

34 softmax

SL

SuperLearner wrapper for ml_model

Description

SuperLearner wrapper for ml_model

Usage

```
SL(
  formula = ~.,
    ...,
  SL.library = c("SL.mean", "SL.glm"),
  binomial = FALSE,
  data = NULL
)
```

Arguments

formula Model design

... Additional arguments for SuperLearner::SuperLearner

SL.library character vector of prediction algorithms

binomial boolean specifying binomial or gaussian family (default FALSE)

data Optional data.frame

Value

ml_model object

Author(s)

Klaus Kähler Holst

softmax

Softmax transformation

Description

Softmax transformation

Usage

```
softmax(x, log = FALSE, ref = TRUE, ...)
```

solve_ode 35

Arguments

Х	Input matrix (e.g., linear predictors of multinomial logistic model)
log	Return on log-scale (default FALSE)
ref	Add reference level (add 0 column to x)
	Additional arguments to lower level functions

Value

Numeric matrix of dimension n x p, where n= nrow(x) and p = ncol(x) + (ref == TRUE)

solve_ode	Solve ODE

Description

Solve ODE with Runge-Kutta method (RK4)

Usage

```
solve_ode(ode_ptr, input, init, par = 0)
```

Arguments

ode_ptr pointer (externalptr) to C++ function or an R function input Input matrix. 1st column specifies the time points init Initial conditions

par Parameters defining the ODE (parsed to ode_ptr)

Details

The external point should be created with the function targeted::specify_ode.

Value

Matrix with solution

Author(s)

Klaus Kähler Holst

See Also

specify_ode

```
example(specify_ode)
```

36 specify_ode

specify_ode

Specify Ordinary Differential Equation (ODE)

Description

Define compiled code for ordinary differential equation.

Usage

```
specify_ode(code, fname = NULL, pname = c("dy", "x", "y", "p"))
```

Arguments

code string with the body of the function definition (see details)

fname Optional name of the exported C++ function

pname Vector of variable names (results, inputs, states, parameters)

Details

The model (code) should be specified as the body of C++ function. The following variables are defined bye default (see the argument pname)

- dy Vector with derivatives, i.e. the rhs of the ODE (the result).
- x Vector with the first element being the time, and the following elements additional exogenous input variables,
- y Vector with the dependent variable
- p Parameter vector

 $y'(t) = f_p(x(t), y(t))$ All variables are treated as Armadillo (http://arma.sourceforge.net/) vectors/matrices.

As an example consider the Lorenz Equations $\frac{dx_t}{dt} = \sigma(y_t - x_t) \frac{dy_t}{dt} = x_t(\rho - z_t) - y_t \frac{dz_t}{dt} = x_t y_t - \beta z_t$

We can specify this model as ode <- 'dy(0) = p(0)*(y(1)-y(0)); dy(1) = y(0)*(p(1)-y(2)); dy(2) = y(0)*y(1)-p(2)*y(2); 'dy <- specify_ode(ode)

As an example of model with exogenous inputs consider the following ODE: $y'(t) = \beta_0 + \beta_1 y(t) + \beta_2 y(t)x(t) + \beta_3 x(t) \cdot t$ This could be specified as mod <- 'double t = x(0); dy = p(0) + p(1)*y + p(2)*x(1)*y + p(3)*x(1)*t; 'dy <- specify_ode(mod)##'

Value

pointer (externalptr) to C++ function

Author(s)

Klaus Kähler Holst

targeted-class 37

See Also

solve ode

targeted-class

targeted class object

Description

The functions riskreg and ate returns an object of the type targeted.

An object of class 'targeted' is a list with at least the following components:

estimate An estimate object with the target parameter estimates (see estimate.default)

opt Object returned from the applied optimization routine

npar number of parameters of the model (target and nuisance)

type String describing the model

Value

objects of the S3 class 'targeted'

S3 generics

The following S3 generic functions are available for an object of class targeted:

coef Extract target coefficients of the estimated model.

vcov Extract the variance-covariance matrix of the target parameters.

IC Extract the estimated influence function.

print Print estimates of the target parameters.

summary Extract information on both target parameters and estimated nuisance model.'

See Also

```
riskreg, ate
```

```
## See example(riskreg) for examples
```

Index

```
aipw, 2
                                                   riskreg.targeted(targeted-class), 37
alean, 3
                                                   riskreg_cens, 31
ate, 5, 37
                                                   riskreg_fit (riskreg), 28
ate.targeted(targeted-class), 37
                                                   riskreg_mle (riskreg), 28
calibrate, 9
                                                   scoring, 32
                                                   SL, 34
calibrate (calibration), 7
calibration, 7, 9
                                                   softmax, 34
                                                   solve_ode, 35
calibration-class, 8
cate, 9
                                                   specify_ode, 36
cate_link, 11
                                                   targeted-class, 37
cross_validated
         (cross_validated-class), 12
cross_validated-class, 12
crr, 13
cv, 12, 13, 15
\mathsf{design}, \textcolor{red}{16}
estimate.default, 12, 37
expand.list, 17
isoreg (pava), 24
isoregw (pava), 24
ML, 17
ml_model, 18
NB, 21, 22, 23
NB-class, 22
NB2, 23
NB2 (NB), 21
nondom, 23
pava, 24
predict.density, 25
predict.NB, 25
RATE, 26
RATE.surv, 27
riskreg, 28, 37
```