ITP20002 Discrete Mathematics

A Brief Introduction to Halting Problem

Shin Hong

Halting Problem: Overview

- Halting problem is a famous problem which is proven to have no algorithm as its solution (i.e., a undecidable problem)
- Halting problem: for a given arbitrary program and an arbitrary input, determine whether or not the program terminates within a finite number of steps (i.e., halts) when it runs with the input.
- **Theorem**. There is no algorithm that solves the Halting problem.
 - There is no program that always returns the correct determination of whether
 a given arbitrary program terminates with a given arbitrary input, or not within
 a finite time.
- Proof. takes the proof-by-contradiction strategy.
 - 1. assume that there is an algorithm for the Halting problem.
 - 2. shows that the assumption follows algorithms are uncountable.
 - 3. conclude that the assumption is wrong by the contradiction, thus there is no algorithm that solves the Halting problem.

A Turning Machine In The Classic Style http://www.aturingmachine.com/

Historical Aspects

- In 1936, Alan Turing presented the proof that there is no program that solves the halting problem.
- A mathematical model of a general program called *Turing machine*was first presented in the proof, and thereafter Tuning machine
 has been widely used as a foundational model to analyze the
 complexity of computer algorithm in the complexity theories.

Setting: Model Algorithms as C programs

- Suppose that every algorithm can be represented as a C program which receives a finite sequence of characters from STDIN as input, and generates a finite sequence of characters to STDOUT as output
 - In the original proof, an algorithm is modeled as a Tuning machine.
- A C program can be represented as a finite sequence of characters (i.e., a text file).
- It is possible to list valid C programs in a lexicographical order
 - A valid C program is a text file from which a C compiler successfully generates an executable file (i.e., satisfies all C syntaxes; executable).
 - The set of all text files is countable, thus, the set of valid C programs (i.e., a subset) is also countable.
- Let P_i denote the *i*-th valid C program in the lexicographical order.

Setting: Input

- The set of all inputs of algorithm is countable.
 - An algorithm may have multiple inputs.
 - An input to an algorithm can be represented as a finite sequence of characters.
 - Thus, multiple inputs of an algorithm can be represented as a finite sequence.
 - Thus, the set of all inputs is countable because all finite sequences of a countable set is also countable.
- An input of a C program can be represented as a text file given to STDIN.
- It is possible to list all inputs in a lexicographical order.
- Let I_j denotes the j-th input in the lexicographical order.

Setting: Program Execution

- The execution of a program with an input may or may not terminate in a finite number of steps
 - A program never terminates when it runs with an input if the program is stuck in an infinite loop/recursion.
- Let there be a predicate T for a pair of program P_i and input I_j that returns true for iff P_i terminates within a finite number of steps when it runs with I_j
- We can think of a function m which merges a given program and an input as an input (i.e., a sequence of characters)
 - m^{-1} is the inverse function of m, which receives a sequence of characters and returns the corresponding pair of a program and an input

Proof (1/3)

- Theorem. No algorithm solves the Halting problem.
- Lemma. No algorithm solves the Halting problem if there is no program P_H that determines the termination of an arbitrary program with an arbitrary input in a finite number of steps
 - The behavior of P_H for an arbitrary input I_k :
 - 1. $(P_i, I_i) := m^{-1}(I_k)$
 - 2. if P_i is determined to be terminated in a finite number of steps for I_j , return 1
 - 3. Otherwise, return 0
- Proof: Prove the lemma by proof-by-contradiction.

Assume that there exists P_H that always returns the equivalent result with T in a finite time.

Proof (2/3)

- Define another program $P_{H'}$ using P_H
 - $P_{H'}$ extends P_H (which is a C program) as follows:
 - the behavior of $P_{H'}$ when it receives an input I_k
 - 1. $tmp := P_H(m(P_k, I_k))$
 - 2. if *tmp* is 0, return 1 // terminate.
 - 3. if *tmp* is 1, go into an infinite loop
 - Note that it is trivial to construct $P_{H'}$ by adding the three symmetries to P_H
- The assumption and the definition imply that $P_{H'}$ is different to every P_i for $i \in \mathbb{N}$, since $P_i(I_i)$ terminates in a finite time iff $P_H(I_i)$ never terminates in a finite time.
 - As long as P_H behaves as assumed.

Never terminates

T	I_1	I_2		I_i	
P_1	T	F	•••	Т	
P_2	↑ E	F	•••	F	
		1		•••	
P_i	Т	F	1	F	
				1	
					*
$P_{H'}$	F	Т	•••	Т	•••

Proof (3/3)

- The conclusion that there is no $i \in \mathbb{N}$ such that $P_{H'} \equiv P_i$ implies that the set of programs is not countable (i.e., no one-to-one correspondence with Natural number).
- The contradiction between the definition of programs (i.e., the set of all programs is countable) and the existence of P_{H^\prime} (i.e., the set of all programs is uncountable) implies that the assumption is not true.
- Thus, no program, thus no algorithm, that solves the Halting problem.

Implication

- A problem can be proven to be undecidable if there is a finite sequence of steps to transform the problem into the Halting problem.
- It is impossible to write a program that reads the source code of a program and perfectly determines whether or not the program satisfies a certain property (e.g., no null-pointer deferecence).
 - If there is a bug finder that aims to say a program has a bug or no bug,
 we can always come up with a counter-example program for which the bug
 finder returns a wrong answer
 - Proving the correctness of a given program (verification) may require a unique and create strategy specialized for the given program