

8 OCTOBER 2024

ASE 367K: FLIGHT DYNAMICS

TTH 09:30-11:00 CMA 2.306

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Topics for Today

- Topic(s):
 - Rate of Change of Angular Momentum
 - Euler Angle Rates

RATE OF CHANGE OF ANGULAR MOMENTUM

Copyrighted by Robert Stengel and used with permission: http://www.stengel.mycpanel.princeton.edu/MAE331.html

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Newton's 2nd Law, Applied to Rotational Motion

In inertial frame, rate of change of angular momentum = applied moment (or torque), M

$$\frac{d\mathbf{h}}{dt} = \frac{d(\mathbb{I}\boldsymbol{\omega})}{dt} = \frac{d\mathbb{I}}{dt}\boldsymbol{\omega} + \mathbb{I}\frac{d\boldsymbol{\omega}}{dt}$$

$$=\dot{\mathbb{I}}\boldsymbol{\omega} + \mathbb{I}\dot{\boldsymbol{\omega}} = \mathbf{M} = \begin{bmatrix} m_x \\ m_y \\ m_z \end{bmatrix}$$

Angular Momentum and Rate

Angular momentum and rate vectors are not necessarily aligned

$$h = \mathbb{I}\omega$$

Angular Momentum Expressed in Two Frames of Reference

- Angular momentum and rate are vectors
 - Expressed in either the inertial or body frame
 - Two frames related algebraically by the rotation matrix

$$\mathbf{h}_{B}(t) = \mathbf{H}_{I}^{B}(t)\mathbf{h}_{I}(t); \qquad \mathbf{h}_{I}(t) = \mathbf{H}_{B}^{I}(t)\mathbf{h}_{B}(t)$$

$$\mathbf{\omega}_{B}(t) = \mathbf{H}_{I}^{B}(t)\mathbf{\omega}_{I}(t); \qquad \mathbf{\omega}_{I}(t) = \mathbf{H}_{B}^{I}(t)\mathbf{\omega}_{B}(t)$$

Vector Derivative Expressed in a Rotating Frame

Chain Rule $\dot{\mathbf{h}}_{I} = \mathbf{H}_{B}^{I}\dot{\mathbf{h}}_{B} + \dot{\mathbf{H}}_{B}^{I}\mathbf{h}_{B}$ Rate of change expressed in body frame

$$\dot{\mathbf{h}}_{I} = \mathbf{H}_{B}^{I} \dot{\mathbf{h}}_{B} + \boldsymbol{\omega}_{I} \times \mathbf{h}_{I} = \mathbf{H}_{B}^{I} \dot{\mathbf{h}}_{B} + \tilde{\boldsymbol{\omega}}_{I} \mathbf{h}_{I}$$

Consequently, the 2nd term is

$$\dot{\mathbf{H}}_{B}^{I}\mathbf{h}_{B} = \tilde{\boldsymbol{\omega}}_{I}\mathbf{h}_{I} = \tilde{\boldsymbol{\omega}}_{I}\mathbf{H}_{B}^{I}\mathbf{h}_{B}$$

... where the cross-product equivalent matrix of angular rate is

$$\tilde{\boldsymbol{\omega}} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}$$

External Moment Causes Change in Angular Rate

Positive rotation of Frame B w.r.t.
Frame A is a negative rotation of
Frame A w.r.t. Frame B

Center of

In the body frame of reference, the angular momentum change is

$$\dot{\mathbf{h}}_{B} = \mathbf{H}_{I}^{B}\dot{\mathbf{h}}_{I} + \dot{\mathbf{H}}_{I}^{B}\mathbf{h}_{I} = \mathbf{H}_{I}^{B}\dot{\mathbf{h}}_{I} - \boldsymbol{\omega}_{B} \times h_{B} = \mathbf{H}_{I}^{B}\dot{\mathbf{h}}_{I} - \tilde{\boldsymbol{\omega}}_{B}h_{B}$$
$$= \mathbf{H}_{I}^{B}\mathbf{M}_{I} - \tilde{\boldsymbol{\omega}}_{B}\mathbb{I}_{B}\boldsymbol{\omega}_{B} = \mathbf{M}_{B} - \tilde{\boldsymbol{\omega}}_{B}\mathbb{I}_{B}\boldsymbol{\omega}_{B}$$

Moment = torque = force x moment arm

$$\mathbf{M}_{I} = \begin{bmatrix} m_{x} \\ m_{y} \\ m_{z} \end{bmatrix}; \quad \mathbf{M}_{B} = \mathbf{H}_{I}^{B} \mathbf{M}_{I} = \begin{bmatrix} m_{x} \\ m_{y} \\ m_{z} \end{bmatrix}_{B} = \begin{bmatrix} L \\ M \\ N \end{bmatrix}$$

Rate of Change of Body-Referenced Angular Rate due to External Moment

In the body frame of reference, the angular momentum change is

$$\begin{aligned} \dot{\mathbf{h}}_{B} &= \mathbf{H}_{I}^{B} \dot{\mathbf{h}}_{I} + \dot{\mathbf{H}}_{I}^{B} \mathbf{h}_{I} = \mathbf{H}_{I}^{B} \dot{\mathbf{h}}_{I} - \boldsymbol{\omega}_{B} \times h_{B} \\ &= \mathbf{H}_{I}^{B} \dot{\mathbf{h}}_{I} - \tilde{\boldsymbol{\omega}}_{B} h_{B} = \mathbf{H}_{I}^{B} \mathbf{M}_{I} - \tilde{\boldsymbol{\omega}}_{B} \mathbb{I}_{B} \boldsymbol{\omega}_{B} \\ &= \mathbf{M}_{B} - \tilde{\boldsymbol{\omega}}_{B} \mathbb{I}_{B} \boldsymbol{\omega}_{B} \end{aligned}$$

For constant body-axis inertia matrix

$$\dot{\mathbf{h}}_{B} = \mathbb{I}_{B}\dot{\mathbf{\omega}}_{B} = \mathbf{M}_{B} - \tilde{\mathbf{\omega}}_{B}\mathbb{I}_{B}\mathbf{\omega}_{B}$$

Consequently, the differential equation for angular rate of change is

$$\dot{\boldsymbol{\omega}}_{B} = \mathbb{I}_{B}^{-1} \left(\mathbf{M}_{B} - \tilde{\boldsymbol{\omega}}_{B} \mathbb{I}_{B} \boldsymbol{\omega}_{B} \right)$$

EULER ANGLE RATES

Copyrighted by Robert Stengel and used with permission: http://www.stengel.mycpanel.princeton.edu/MAE331.html

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Euler-Angle Rates and Body-Axis Rates

Body-axis angular rate vector orthogonal

Euler angles form a non-orthogonal vector

Euler-angle rate vector is not orthogonal

Relationship Between Euler-**Angle Rates and Body-Axis Rates**

- · ... which is

•
$$\dot{\psi}$$
 is measured in the Inertial Frame
• $\dot{\theta}$ is measured in Intermediate Frame #1
• $\dot{\phi}$ is measured in Intermediate Frame #2

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \mathbf{I}_{3} \begin{bmatrix} \dot{\phi} \\ 0 \\ 0 \end{bmatrix} + \mathbf{H}_{2}^{B} \begin{bmatrix} 0 \\ \dot{\theta} \\ 0 \end{bmatrix} + \mathbf{H}_{2}^{B} \mathbf{H}_{1}^{2} \begin{bmatrix} 0 \\ 0 \\ \dot{\psi} \end{bmatrix}$$

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\sin\theta \\ 0 & \cos\phi & \sin\phi\cos\theta \\ 0 & -\sin\phi & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \mathbf{L}_{I}^{B}\dot{\boldsymbol{\Theta}}$$

Can the inversion become singular?

What does this mean?

Inverse transformation $[(.)^{-1} \neq (.)^{T}]$

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 & \sin\phi \tan\theta & \cos\phi \tan\theta \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi \sec\theta & \cos\phi \sec\theta \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \mathbf{L}_{B}^{I} \mathbf{\omega}_{B}$$

Avoiding the Euler Angle Singularity at $\theta = \pm 90^{\circ}$

- Alternatives to Euler angles
 - Direction cosine (rotation) matrix
 - Quaternions

Propagation of direction cosine matrix (9 parameters)

$$\dot{\mathbf{H}}_{B}^{I}\mathbf{h}_{B} = \tilde{\boldsymbol{\omega}}_{I}\mathbf{H}_{B}^{I}\mathbf{h}_{B}$$

Consequently
$$\dot{\mathbf{H}}_{I}^{B}(t) = -\tilde{\mathbf{\omega}}_{B}(t)\mathbf{H}_{I}^{B}(t) = -\begin{bmatrix} 0 & -r(t) & q(t) \\ r(t) & 0 & -p(t) \\ -q(t) & p(t) & 0(t) \end{bmatrix}_{B} \mathbf{H}_{I}^{B}(t)$$

$$\mathbf{H}_{I}^{B}(0) = \mathbf{H}_{I}^{B}(\phi_{0}, \theta_{0}, \psi_{0})$$

Avoiding the Euler Angle Singularity at $\theta = \pm 90^{\circ}$

<u>Propagation of quaternion vector</u>: single rotation from inertial to body frame (4 parameters)

- Rotation from one axis system, *I*, to another, *B*, represented by
 - Orientation of axis vector about which the rotation occurs (3 parameters of a <u>unit</u> <u>vector</u>, a₁, a₂, and a₃)
 - Magnitude of the <u>rotation</u> angle, Ω , rad

