Attività di allineamento Laboratorio Informatico-Statistico

Corso di Laurea Magistrale in Statistica Economia e Impresa

Dipartimento di Scienze Statistiche Paolo Fortunati Anno Accademico 2021/2022

Who am 1?

raffaele.anselmo2@unibo.it

raffaeleanselmo@gmail.com

Laurea in **Scienze Statistiche**, curriculum Economia e Impresa

Master Degree in **Data Science**

TensorflowCertified developer

Data Scientist
@CRIF

What is this course about?

21 Il mondo *Data* e gli 3²4⁷5 strumenti per gestirlo

How is it structured?

2 Data Exploration

Matrici, Dataframes, statistiche e grafici

Intro

Nozioni di base sulla programmazione ed R

3 Next Steps

> Funzioni, Approfondimenti e librerie utili

Introduzione

First Steps Download

https://cran.r-project.org/bin/windows/base/

https://www.rstudio.com/products/rstudio/download/

La finestra RStudio

Code Editor

Console

Workspace

Plot/Help

"Hello world"

"Hello world"

"Hello world"

First Steps Gestione dei pacchetti

R contiene poche semplici funzioni. Gran parte delle funzioni più potenti sono rese disponibili tramite librerie (packages) direttamente installabili da R.

Per installare una libreria si utilizza la funzione:

>install.packages("nomelibreria")

Per utilizzare le funzioni di una libreria già installata è necessario importare la libreria nell'ambiente di lavoro (workspace) tramite la funzione:

>library("nomelibreria")

Alternativamente, i pacchetti possono essere direttamente gestiti tramite il tab packages in basso a destra

I primi comandi

In R tutto ciò che esiste è un oggetto. Per assegnare qualcosa (il numero 5) ad un oggetto (a) si possono utilizzare gli operatori "=" e "<-"

```
> a = 5
```

> a

[1] 5

> a

[1] 5

Gli oggetti possono essere di diverso tipo. Per controllare la tipologia dell'oggetto si usa la funzione:

```
> class(a)
```

[1] "numeric"

I primi comandi

Se il valore è compreso tra apici, questo sarà considerato di tipo character:

```
> a = '5'
> class(a)
[1] "character"
```

Nota bene che abbiamo assegnato il carattere '5' all'oggetto a che precedentemente conteneva il valore numerico 5. In questo caso l'oggetto numerico 5 è stato sostituito con l'oggetto carattere '5'. Per vedere la lista degli oggetti in memoria (per oggetti si intendono sia le variabili che le funzioni) si utilizza la funzione:

```
> ls()
[1] "a"
```

Per rimuovere un oggetto si usa la funzione:

```
> rm('a')
> ls()
character(0)
```

I primi comandi

Le funzioni vengono utilizzare nella seguente forma:

> nomefunzione(arg_1, arg_2, ..., arg_n)

Dove arg_i sono gli argomenti della funzione.

Ogni funzione è accompagnata da una documentazione racchiusa nel comando *help*. Ad esempio per conoscere la funzione *sqrt* utilizziamo il comando:

> help(sqrt)

Oppure:

> ?sqrt

L'output dell'help appare nel tab in basso a destra

Le prime operazioni

La console può essere utilizzata come una vera e propria calcolatrice:

```
> 3+2*10/5-6
```

[1] 1

R segue l'ordine logico delle operazioni. Le operazioni di base sono:

- +: addizione
- -: sottrazione
- *: moltiplicazione
- /: divisione
- ^ : elevamento a potenza

Le prime operazioni

Oltre agli operatori matematici, vi sono gli operatori logici:

- > : maggiore
- <: minore
- >= : maggiore o uguale
- <= : minore o uguale
- == : identico
- != : diverso (! Indica la negazione)
- &: intersezione (e)
- | : unione (*o*)

L'output di un operatore logico è a sua volta un valore logico, ovvero *TRUE*, *FALSE* e *NA*, che indicale "risposta non disponibile".

> 3>2

[1] TRUE

> 3<2

[1] FALSE

> A=7

> A = = 7

[1] TRUE

> A! = 3

[1] TRUE

Gli oggetti

Variabili

Dato in forma atomica

Vettori

Insieme lineare di elementi omogenei per tipologia

Matrici

Vettori bidimensionali

Fattori

Classifica o suddivide in livelli gli elementi di un altro vettore

Dataframe

Matrici con vettori eterogenei per tipo

Array

Matrici n-dimensionali

Gli oggetti - Variabili e Vettori

Le variabili sono oggetti atomici come quelli già visti in precedenza:

- > a = 5
- > a

Un vettore è invece un insieme di dati omogenei. Un vettore può ussere creato utilizzando la funzione c, che combina gli argomenti al suo interno:

$$> vec.1 = c(18,2,3,6,6,4,3)$$

Se i vettori contengono valori numerici si possono applicare le funzioni statistiche come:

> min(vec.1) #valore minimo

> median(vec.1) #valore mediano

> max(vec.1) #valore minimo

- > range(vec.1) #restituisce un vettore con min e max
- > length(vec.1) #numero di valori > sd(vec.1) #deviazione standard
- > mean(vec.1) #media

> var(vec.1) #varianza

N.B. Il carattere # viene utilizzato per i commenti. Tutto ciò che sta alla destra di # non verrà eseguito dalla console

Gli oggetti - Variabili e Vettori

$$> vec.1 = c(18,2,3,6,6,4,3)$$

Si può accedere agli elementi del vettore tramite posizione:

> vec.1[2] #secondo elemento	[1] 2
> vec.1[-3] #tutto tranne il terzo elemento	[1] 18 2 6 6 4 3
> vec.1[2:4] #elementi dal secondo al quarto	[1] 2 3 6
> vec.1[-(2:4)] #tutto tranne gli elementi dal secondo al quarto	[1] 18 6 4 3
> vec.l[c(1,5)] #primo e quinto elemento	[1] 18 6

Gli oggetti - Variabili e Vettori

$$> vec.1 = c(18,2,3,6,6,4,3)$$

o tramite **valore**:

> vec.1[vec.1==6] #elementi uguali a 6	[1] 6 6
> vec.1[vec.1<4] #elementi minori di 4	[1] 2 3 3

> vec.1[vec.1 %in% c(2,18)] #elementi contenuti nel set (2,18) [1] 18 2

Gli oggetti - Fattori

I Fattori vengono utilizzati per i vettori che contengono variabili categoriche in quanto suddividono in *livelli* gli elementi del vettore:

```
> vec.2 = c('blu', 'giallo', 'blu', 'verde', 'verde', 'blu', 'blu')
```

- > fattore.2 = factor(vec.2)
- > fattore.2

[1] blu giallo blu verde verde blu blu

Levels: blu giallo verde

Gli oggetti - Array e Matrici

Le matrici sono vettori bidimensionali che possono essere costruiti partendo da uno o più vettori di dati.

```
> Matrix.l = matrix(data=
c(vec.l, vec.2), nrow=7, ncols=2)
```

> Matrix.1

```
[,1] [,2]
[1,] "18" "blu"
[2,] "2" "giallo"
[3,] "3" "blu"
[4,] "6" "verde"
[5,] "6" "verde"
[6,] "4" "blu"
[7,] "3" "blu"
```

Gli array possono invece avere anche più di due dimensioni.

```
> vec.3 = c(1,20,8,5,6,1,5)
> vec.4 = c('giallo', 'verde', 'verde', 'blu', 'verde', 'giallo',
'verde')
```

> Array.1 = array(data= c(vec.1, vec.2, vec.3, vec.4), dim=c(7,2,2))

> Array. l

```
[,1] [,2] [,1] [,2]
[1,] "18" "blu" [1,] "1" "giallo"
[2,] "2" "giallo" [2,] "20" "verde"
[3,] "3" "blu" [3,] "8" "verde"
[4,] "6" "verde" [4,] "5" "blu"
[5,] "6" "verde" [5,] "6" "verde"
[6,] "4" "blu" [6,] "1" "giallo"
[7,] "3" "blu" [7,] "5" "verde"
```

First Steps Gli oggetti - Dataframes

I Dataframes sono delle matrici in cui i tipi delle colonne possono essere diversi. È il formato dati più comodo da utilizzare in quanto le colonne (e anche le righe) possono essere identificate da un nome.

- > dataframe = data.frame(age = vec.1, color=vec.2)
- >dataframe

```
age color
1 18 blu
2 2 giallo
3 3 blu
4 6 verde
5 6 verde
6 4 blu
7 3 blu
```

Gli oggetti - Dataframes

Per accedere ai singoli vettori (colonne) del dataframe si utilizza il metodo \$:

```
> dataframe$color
```

```
[1] blu giallo blu verde verde blu blu
```

Per accedere ai singoli elementi del dataframe si utilizzano gli indici di riga e colonna:

```
> dataframe[2,1]
```

```
[1] 2
```

color

2 giallo

6 verde

6 verde

blu

blu

blu

blu

Oltre all'indice posizionale è possibile utilizzare il nome della colonna (riga):

> dataframe[3,"color"]

[l] blu

N.B. Possono essere utilizzati tutti i metodi di accesso anche per le singole colonne (righe) del dataframe

First Steps Importare dati esterni

L'elaborazione di dati esterni è la principale funzione di R. Proprio per questo motivo è possibile importare file di diversa natura, dai file di testo separati da tabulazioni a quelli prodotti da altri software (es: *SAS*).

La funzione più utilizzata per caricare dati esterni è read.table() della libreria utils:

```
> df = read.table(file.choose())
```

L'unico argomento obbligatorio della funzione *read.table* è il path del file da caricare. Per comodità si usa al suo posto la funzione *file.choose()* che fa apparire il classico pop-up di navigazione dei file.

Una volta aperto il file esempio.csv lo si analizza chiamandolo nella console:

Il file risulta essere evidentemente corrotto.

L'errato caricamento del file è dovuta alla non specificazione degli altri argomenti che risultano essere necessari per questo tipo di file.

Importare dati esterni

Per importare correttamente il file è necessario specificare la presenza dei nomi delle colonne nella prima riga del file (header) ed il separatore (;):

```
> df = read.table(file.choose(), sep=";", header=TRUE)
```

> df

	id	sesso	anni	peso	altezza
1	MT	М	69	76	1.78
2	GF	F	56	63	NA
3	MC	F	53	71	1.60
4	SB	М	28	73	1.78
5	FE	F	61	54	1.54
6	ΑB	М	46	92	1.84
7	RF	F	31	81	1.56
	-				

Si noti che oltre al *sep* e *header* sono presenti molti altri argomenti nella funzione *read.table*, proprio per la moltitudine di file che possono essere importati.

> ?read.table

First Steps Importare dati esterni

Come gran parte delle funzioni di bas, l'import dei dati può essere eseguito sia da console che in modo grafico sfruttando l'apposito tab in Rstudio.

Importare dati esterni

Esercizi