Power Consumption Due to Data Movement in Distributed Programming Models

Siddhartha Jana (UH), Oscar Hernandez (ORNL), Stephen Poole (ORNL), Barbara Chapman (UH)

> Green HPC – EuroPar14 August 28th, 2014

Outline

- Motivation
 - Impact of data movement
- Factors impacting energy and power consumption across the h/w s/w stack
 - Design of data-transfer protocols
 - Choice of transport layer
- Impact of remote data transfers
 - Experimental setup
 - Observations
- Conclusions and Future Work

Impact of Data Movement

Impact of Data Movement

Factors impacting energy and power consumption

MPI_Send and MPI Recv Impact across the hardware-software stack

Choice of programming model constructs

Communication Kernel Characteristics

e.g. total size of the data-payload transferred, the number of calls initiated to service the transfers

Choice of Transport Layer

e.g. TCP, OpenFabrics, shared memory

Communication Protocols

e.g. Message passing (Eager, Rendezvous) or Direct access

Implementation Details

e.g. Polling, registration of memory, reliability, reusability of memory, caching, memory management, fault-tolerance

Flow / Congestion control

e.g. routing protocols, deadlock handling, load-balancing, quality-of-service

Intra-node Constraints

e.g. Cache sizes, set-associativity, cache-coherency protocol memory bandwidth, Hyperthreading, page-replacement

Inter-node Constraints

e.g. router-switch, organization, network topology, reliability, latency, peak-bandwidth

Factors impacting energy and power consumption

MPI_Send and MPI Recv Impact across the hardware-software stack

Scope of this talk

Choice of programming model constructs

Communication Kernel Characteristics

e.g. total size of the data-payload transferred,
 the number of calls initiated to service the transfers

Choice of Transport Layer

e.g. TCP, OpenFabrics, shared memory

Communication Protocols

e.g. Message passing (Eager, Rendezvous) or Direct access

Implementation Details

e.g. Polling, registration of memory, reliability, reusability of memory, caching, memory management, fault-tolerance

Flow / Congestion control

e.g. routing protocols, deadlock handling, load-balancing, quality-of-service

Intra-node Constraints

e.g. Cache sizes, set-associativity, cache-coherency protocol memory bandwidth, Hyperthreading, page-replacement

Inter-node Constraints

e.g. router-switch, organization, network topology, reliability, latency, peak-bandwidth

Energy and power efficiency - software stack Remote data transfers

Consider the following case for a given problem:

N * MPI_Send(const void *buf, int **count**, MPI_Datatype **datatype**, int dest,..)

Energy and power efficiency - software stack Identifying factors at the application layer

Consider the following case for a given problem:

Middleware design factors

- TCP
- OS dependant
- impact on energy signatures
- OFED (OpenFabrics Enterprise Distribution)
 - OpenIB
 - RDMA capable
 - OS kernel bypass

Data Transfer Protocols

Rendezvous protocol

Data Transfer Protocols Eager protocol

The Impact of Remote Transfers Microbenchmarks

The Impact of Remote Transfers Microbenchmarks

```
Msg
                                  me = my_pe();
         Size
                                  for(j=1; j \le MAX_WRK_SIZE; j*=2)
     Number of
                                    for(frag_cnt=MIN_MSG_NUM;
     transfers
                                             frag_cnt<=j; frag_cnt*=2)</pre>
                                       bytes_per_frag = j / frag_cnt;
Synchronizing Barrier
                                       MPI_Barrier();
                                       // instrumentation start
                                      for (it=0; it<frag_cnt; it++){
                                             if(rank == 0)
                  Remote
                                               MPI_Send(···, bytes_per_frag,.., 0)
                  Write
                                             else
                                               MPI_Recv(···, bytes_per_frag,.., 0)
                                       // instrumentation end
```

The Impact of Remote Transfers

Experimental Setup

The Impact of Remote Transfers

A note on reading the plots

TCP + Rendezvous protocol (sender) CPU cores Power (W) 17.9793 1048576 77.8311 ج #Fragments[Log-scale] 32768 (B) (C) 17.6841 ₺ 17.5383≦ 1024 (A) 17.3937 17.2503 32 17.1081 $\begin{array}{ccc} & & & & 1\\ & & & & \\ 1024 & & & \\ 1$ MPI_Recv() posted MPI_Send() posted RTS DRAM Power (W) **CTS** 1048576 86.293 Data transfer #Fragments[Log-scale] 84.5927 [₽] 32768 (B) 82.9259 Transfer complete 81.2919 1024 (A) 79.6901[©] 78.1199 <u>6</u> 32 76.5806 75.0717 $\begin{array}{c} 1 \\ 1024 \\ \hline 1$

TCP + Rendezvous protocol (receiver)

TCP + Rendezvous protocol Lessons learned

- (Sender:) Relying on the traditional protocol for small sized transfers => higher CPU core power consumption
- Drop in power consumption for bulk sized transfers for the sender. The opposite for the receiver => Participation in handshaking is a dominant factor
- (Sender:) Chunking of bulk transfers lead to a rise in power consumption
- DRAM power is primarily influenced by the total payload size

OpenIB+ Eager protocol Lessons learned

- The bytes transferred per chunk plays a dominant role.
- A sweet spot where the memory bandwidth is utilized efficiently. Opportunities for fine-tuning libraries. This can be attributed to the switch between using pre-registered buffers and dynamic registration of memory.
- Overall, the range of power consumed by the system while using OpenIB is lower than using TCP.

Bytes transferred per joule

$$\frac{Bw}{P_{net}} = \frac{Bw}{(P_{s,cpu} + P_{s,mem} + P_{r,cpu} + P_{r,mem})} = \frac{B_{payload}}{\Delta E_s + \Delta E_r} \quad (\frac{Bytes}{Joule})$$

$$\frac{Power @ sender}{CPU + DRAM} \quad CPU + DRAM \qquad Consumed$$

Overall impact (TCP+Rendezvous v/s OpenIB+Eager)

Metric: Bytes Transferred per Joule (Two node system)

Overall impact (all configurations)

Metric: Bytes Transferred per Joule (Two node system)

TCP+RENDEZVOUS: Bytes per Joule (B/J)

OPENIB+RENDEZVOUS: Bytes per Joule (B/J)

TCP+EAGER: Bytes per Joule (B/J)

OPENIB+EAGER: Bytes per Joule (B/J)

Overall impact (all configurations) Lessons learned

- Main factors dominate energy efficiency of transfers
 - Total achievable bandwidth by the underlying interconnect
 - The overhead of the data transfer protocols

Conclusions

(Tips for achieving energy-efficient transfers)

- Data movement is costly
 - Impact of design of communication kernels
 - Total data transfer size
 - Total number of fragments / chunks
 - Underlying design factors of middleware
 - Data transfer protocols
 - Choice of transport layer
- Empirical results indicate:
 - Aggregating smaller chunks of buffers into larger contiguous memory buffers
 - Small-sized transfers should be preferred
 - Algorithm dependent
 - If used, the overhead of the data transfer protocol need to be accounted for.

Acknowledgments

- •Funding supported by the U.S. DOD
- •Resources supported by ORNL, TN
- •Facility supported by U.S. DOE through
 - •Contract No. DE-AC05-000R22725.
- •Project supported by HPCTools @ University of Houston
- •Thanks are due to support teams of:
 - •PAPI @ University of Tennessee, Knoxville
 - •VampirTrace @ Technische Universität Dresden
 - •PowerPack @ Virginia Tech

Thank You!

Speaker: Siddhartha Jana (sidjana@cs.uh.edu) University of Houston, USA

Questions?

Backup slides

TCP + Eager protocol

OpenIB + Rendezvous protocol

