Final Report

LIMITED ENERGY STUDY GEODSS FACILITY

WHITE SANDS MISSILE RANGE, NEW MEXICO

Prepared for

U.S. ARMY ENGINEER DISTRICT, MOBILE MOBILE, ALABAMA 36628

Under

U.S. ARMY ENGINEER DISTRICT, MOBILE INDEFINITE DELIVERY A-E CONTRACT Contract No. DACA01-94-D-0033 Delivery Order 0008 EMC No. 1406-008

November 1995

DTIC QUALITY INSPECTED 2

By

E M C Engineers, Inc. 2750 S. Wadsworth, Suite C-200 Denver, Colorado 80227 303/988-2951 This report has been prepared at the request of the client, and the observations, conclusions, and recommendations contained herein constitute the opinions of EMC Engineers, Inc. In preparing this report, EMC has relied on some information supplied by the client, the client's employees, and others which we gratefully acknowledge. Because no warranties were given with this source of information, EMC Engineers, Inc. cannot make certification or give assurances except as explicitly defined in this report.

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering

TABLE OF CONTENTS

List of Abbreviations	V
Executive Summary	ES-1
1. INTRODUCTION	1-1
1.1 AUTHORITY FOR STUDY	1-1
1.2 PURPOSE OF STUDY	
1.3 STATEMENT OF WORK	1-1
1.4 GENERAL APPROACH	
1.5 LIFE CYCLE COST ANALYSIS	
1.6 ORGANIZATION OF DOCUMENT	1-2
2. BUILDING AND HVAC DATA	2-1
2.1 GENERAL	2-1
2.2 COMPUTER ROOM	
2.3 OFFICES	
2.4 CONFERENCE ROOM	
2.5 TOWERS	
2.6 CENTRAL CHILLED WATER SYSTEM	
2.7 LIGHTING	
3. BASELINE ENERGY USE	
3.1 HISTORICAL ENERGY USE	
3.2 BASELINE ENERGY SIMULATION	
4. INDIVIDUAL ECO ANALYSIS	4-1
4.1 ECO 1: ALBEDO MODIFICATION	
4.2 ECO 2: ROOF INSULATION	
4.3 ECO 3: LOW EMISSIVITY ROOF COATING	
4.4 ECO 4: T-8 FLUORESCENT LIGHTING	
4.5 ECO 5: VORTEX TUBE	
4.6 ECO 6: PREMIUM EFFICIENCY MOTORS	
4.7 ECO 7: UNINTERRUPTED POWER SUPPLY MODIFICATION	
4.9 ECO 9: RECIRCULATE AIR IN TOWERS	
4.10 ECO 10: TURN OFF OFFICE AHU AT NIGHT	4-93
4.11 ECO 11: PROPANE HEAT	
4.12 ECO 12: ECONOMIZERS	
5. RESULTS AND RECOMMENDATIONS	5-1
5.1 RESULTS OF ECO ANALYSIS	
5.1 RESULTS OF ECO ANALTSIS	

APPENDICES

Scope of Work and Correspondence Field Survey Notes Utility Data Computer Simulations Project Documentation

A B C D

LIST OF FIGURES
FIGURE ES-1. ENERGY USE DISTRIBUTION
LIST OF TABLES
TABLE ES-1. HISTORICAL ENERGY CONSUMPTION DATA
TABLE ES-3. SUMMARY OF RESULTS
TABLE ES-4. RECOMMENDED ECO Upgrades with Computer Renovation
TABLE ES-5. ECOs Not Recommended
TABLE 3-1. FACILITY ANNUAL ENERGY
TABLE 5-1. SUMMARY OF RESULTS5-1
TABLE 5-2. SUMMARY OF RECOMMENDED ECOs
TABLE 5-3. RECOMMENDED UPGRADES WITH COMPUTER RENOVATION
TABLE 5-4. ECOs Not Recommended

LIST OF ABBREVIATIONS

ACC - air cooled condenser

ACCU - air cooled condensing unit

AHU - air handling unit

Btu - British thermal unit

CHLR - chiller

CNW - condenser water

CNWR - condenser water return

CNWS - condenser water supply

COE - Corps of Engineers

CRUs - computer room units

CV - converter

CW - chilled water

CWP - chilled water pump

CWR - chilled water return

CWS - chilled water supply

DOE2.1d - Computer program used for calculating building hour energy use.

DTW - dual temperature water

DTWP - dual temperature water pump

ECO - Energy Conservation Opportunity

EMC - EMC Engineers, Inc.

F - fahrenheit

FEMP - Federal Energy Management Program

ft - foot, feet

ft² - square feet

gal - gallons

gpm - gallons per minute

hp - horsepower

hr - hour

HRU - heat recovery unit

HW - hot water

HWP - hot water pump

HWR - hot water return

HWS - hot water supply

H&V - heating and ventilating

IR - infrared radiant

kW - kilowatt, one thousand watts

kWh - kilowatt-hours, one thousand watt-hours

lb/hr - pounds per hour

LCCA - life cycle cost analysis

MAU - make-up air unit

MBtu - million British thermal unit

MZ - multizone

O&M - operation and maintenance

OA - outside air

psia - pounds per square inch absolute

psig - pounds per square inch gage

RA - return air

RAD - radiation heating system

RAF - return air fan

rpm - revolutions per minute

SOW - scope of work

sq ft - square foot

STM - steam

SZ - single zone

temp. - temperature

UH - unit heater

UMCS - utility monitoring and control system

VAV - variable air volume

VSD - variable speed drive

WAC - window air conditioner

WSMR

- White Sands Missile Range

yr

- year(s)

EXECUTIVE SUMMARY

AUTHORITY

This study was performed and this report prepared under Contract No. DACA01-94-D-0033, Delivery Order No. 8. The delivery order was issued by U.S. Army Engineer District, Mobile, to E M C Engineers, Inc. on 8 May 1995.

PURPOSE

The purpose of this study is to identify and evaluate Energy Conservation Opportunities (ECOs), to determine their energy savings potential and economic feasibility, and to document results for possible future funding.

BUILDING AND HVAC DATA

The Ground Based Electro-Optical Deep Space Surveillance (GEODSS) Facility, Building 34568, is a windowless, concrete block structure approximately 10,000 square feet. The building is located on the northern end of the White Sands Missile Range in central New Mexico. The building consists of a large central computer room with perimeter offices. Concrete towers at three corners of the building are topped with telescopes in movable domes. The building is occupied 24 hours per day. The building is conditioned by the following HVAC and auxiliary systems:

- The computer room is conditioned by three Computer Room Units (CRUs) each rated at 12,000 cfm. The CRUs are located within the computer room and distribute supply air via a perforated floor. Each CRU contains a fan, chilled water coil, electric reheat coil, and a humidifier. Room temperature is maintained in the 70° to 72°F range and relative humidity in the 35% to 50% range.
- The offices and hallways are conditioned by a single-zone HVAC system consisting of a fan supplying 4,770 cfm, a chilled water cooling coil, and an electric duct heater. Outside air is specified at 26% of supply air. Room temperature is maintained in the 70° to 72°F range.
- A small conference room adjacent to the offices is served by a small dedicated AHU
 containing a chilled water cooling coil.
- Each telescope tower is served by a dedicated 2,000 cfm AHU. Each AHU is a oncethrough system in which outside air is drawn in, cooled by a chilled water cooling coil, ducted to the tower, and expelled through openings in the dome. Each room thermostat is set at 40°F, but the HVAC system is incapable of reaching this

temperature, given the 45°F chilled water temperature serving the cooling coil. It is desired to keep the telescope as cool as possible to minimize stabilization time when the telescope is exposed to the cold night sky. The AHUs serving the towers are operated from mid April to mid November. The AHUs are turned off in the winter.

- All eight AHUs in the building are supplied with chilled water from the central chilled water system. The chilled water system consists of two 36-ton chillers coupled to two air-cooled condensers. Chilled water is supplied to HVAC cooling coils via a primary/secondary pumping arrangement.
- Lighting is provided mainly by recessed fluorescent fixtures each containing two standard 40 watt T-12 fluorescent lamps powered by standard magnetic coil ballasts. Offices and hallways have been extensively delamped and most offices are equipped with occupancy sensors.
- Electric power is supplied to the computer room and electronic equipment associated with the telescopes through a rotating Uninterrupted Power Supply (UPS) system. The UPS system consists of a 120 volt/150 kW generator coupled to a large flywheel turned by a 250 horsepower motor. The flywheel will provide about 17 seconds of uninterrupted power, sufficient time for the emergency diesel-electric generator to come on-line in the event of an interruption to commercial power. Power to the motor was measured during the field survey. The motor was drawing about 85 amps at 281 volts with a power factor of about 0.45.

HISTORICAL ENERGY USE

Electric power is supplied to the GEODSS Facility by Socorro Electric. The facility is billed for electricity by the White Sands Missile Range at a rate of \$0.0821 per kWh. There is no demand charge.

The facility is metered by a dedicated electric meter. This meter was calibrated by ZIA Electrical Products as part of this study. The meter was found to be accurate within 1.0% in its "as found" condition.

The diesel-electric generator provides backup power for the facility and is used quite often due to poor reliability of commercial service and the frequency of electrical storms.

Average site energy consumption was based on four years of utility data and is presented in Table ES-1.

Table ES-1. Historical Energy Consumption Data

Energy Type	Annual Energy Use	Unit Energy Cost	Annual Energy Cost	Annual MBtu
Electricity	1036 MWh	\$0.0821/kWh	\$85,056	3536
Diesel Fuel	5932 gal	\$1.03/gal	\$6,110	823

BASELINE ENERGY USE

The DOE2.1d Building Energy Simulation Program was used to model the building using TMY weather for Truth or Consequences, New Mexico. Figure ES-1 presents the electric energy use distribution. Miscellaneous equipment consumes about 35% of the annual energy used at the facility. Miscellaneous equipment includes computers, office equipment, electronic equipment, cameras, and the air compressors. Space cooling consumes about 43% of the annual energy. Fans, pumps, and lighting consumes the remaining 20%. Space heating consumes less than 2% of the annual energy.

Figure ES-1. Energy Use Distribution

HVAC Aux
12%

Space Cool
43%

Misc. Equip
35%

Space Heat
2%

ENERGY CONSERVATION OPPORTUNITIES (ECOs)

The following is a brief summary of the ECOs investigated.

- ECO 1: Albedo Modification: Repainting the exterior walls white and placing white gravel on the roof to decrease solar heat gain was found not to be cost-effective. Energy savings are minimal due to good insulation.
- **ECO 2:** Roof Insulation: The existing roof insulation thickness of 4 inches is greater than the optimum insulation thickness of 2 inches.
- **ECO 3:** Low-Emissivity Roof Coating: A low-emissivity coating applied to the underneath side of the roof deck was found not to be cost effective. Energy savings are minimal due to good insulation.
- ECO 4: T-8 Fluorescent Lamps: Installing high efficiency lighting and electronic ballasts were found to be cost effective.
- **ECO 5: Vortex Tube Cooling:** Cooling for the telescope cameras was found to consume a relatively large amount of energy. Correction is beyond the scope of this project.
- **ECO 6**: **High-Efficiency Motors**: Replacing one of the existing HVAC fan motors with a more efficient motor was found to be cost effective.
- **ECO 7: UPS System:** The existing system was found to be very inefficient. Two cost effective modifications are recommended.
- **ECO 8:** Chiller Replacement: Replacing the existing chillers was found to be cost effective.
- **ECO 9:** Recirculate Air in Towers: Recirculating room air and reducing the outside airflow rate in the camera towers was found to be cost effective. The HVAC systems are currently 100% outside air systems.
- ECO 10: Turn Off Office AHU at Night: Installing a time clock to turn off the AHU serving the office areas in the building at night was found to be cost effective.
- **ECO 11:** Propane Heat: Replacing the existing electric duct heaters with propane-fired duct furnaces was found not to be cost effective.
- **ECO 12: Economizer:** Installing an economizer on AHU-2 serving the office was found not to be cost effective.

Table ES-2 on the following page presents the results of the analysis for each ECO.

Table ES-2. Summary of Results

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
1	Albedo Modification	1,532	126	0	N/A	N/A	N/A
2	Roof Insulation 6"	1,939	159	0	N/A	N/A	N/A
3	Low-Emissivity Roof Coating	900	74	0	N/A	N/A	N/A
4	T-8 Fluorescent Lamps	29,455	2,418	47	12,429	2.38	5.0
5	Vortex Tube Cooling	38,441	3,156	0	N/A	N/A	N/A
6	High-Efficiency Motors	2,197	180	0	1,753	1.55	9.7
7	UPS System	89,454	7,344	0	22,874	4.85	3.1
8	Chiller Replacement	85,453	7,016	0	99,539	2.01	8.3
9	Recirculation of Tower Air	74,518	6,118	0	22,767	4.05	3.7
10	Turn Off AHU at Night	48,210	3,958	0	420	80.86	0.1
11	Propane Heat	1,199	65	0	11,182	0.08	171.7
12	Economizers	967	79	0	4,096	0.29	51.6

A graphical representation of the annual energy use for the baseline model and each of the ECOs is presented in Figure ES-2 below.

Figure ES-2. Baseline Energy Use Vs. Recommended ECO Modifications

RECOMMENDATIONS

The following ECOs are recommended for implementation.

Table ES-3. Summary of Recommended ECOs

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
10	Turn Off AHU at Night	48,210	3,958	0	420	80.86	0.09
7	UPS System	89,454	7,344	0	22,874	4.85	3.11
9	Recirculation of Tower Air	74,518	6,118	47	22,767	4.05	3.72
4	T-8 Fluorescent Lamps	29,455	2,418	0	12,429	2.38	5.04
8	Chiller Replacement	85,453	7,016	0	99,539	2.01	8.30
6	High Efficiency Motors	2,197	180	0	1,753	1.55	9.72
	Overall Savings	280,029	22,990	47	101,292	N/A	4.41

The overall savings takes into account the synergistic effects of multiple ECOs. The total annual energy cost savings for combined ECOs is \$22,990 per year with a resulting simple payback of 4.4 years. The combined ECOs annual energy savings is 280,029 kWh per year, 27% of the present annual energy use.

To qualify for FEMP funding, ECOs must have an SIR greater than 1.25 and a simple economic payback less than 10 years. The following ECOs are recommended for funding as a Federal Energy Management Program (FEMP) project.

Table ES-4. Summary of ECOs Recommended for FEMP Funding

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
7	UPS System	89,454	7,344	0	22,874	4.85	3.11
9	Recirculation of Tower Air	74,518	6,118	0	22,767	4.05	3.72
4	T-8 Fluorescent Lamps	29,455	2,418	47	12,429	2.38	5.04
8	Chiller Replacement	85,453	7,016	0	99,539	2.01	8.30
	Combined Savings	252,877	20,761	47	157,609	2.74	5.7

The combined savings of these ECOs with synergistic effects taken into account is \$20,761 per year with a resulting SIR of 2.74 and a simple payback of 5.7 years.

The following ECOs are recommended for in-house implementation by the GEODSS maintenance staff.

Table ES-5. Summary of ECOs Recommended for In-House Implementation

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
10	Turn Off AHU at Night	48,210	3,958	0	420	80.86	0.09
6	High-Efficiency Motors	2,197	180	0	1,753	1.55	9.72

The following ECOs are recommended for implementation with the installation of the new computer system, in about two years.

Table ES-6. Recommended ECO Upgrades with Computer Renovation

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
5	Vortex Tube Cooling	38,441	3,156	0	N/A	N/A	N/A

The following ECOs were not found to be cost effective:

Table ES-7. ECOs Not Recommended

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
1	Albedo Modification	1,532	126	0	N/A	N/A	N/A
2	Roof Insulation 6"	1,939	159	0	N/A	N/A	N/A
3	Low-Emissivity Roof Coating	900	74	0	N/A	N/A	N/A
11	Propane Heat	1,199	65	0	11,182	0.08	171.70
12	Economizers	967	79	0	4,096	0.29	51.60

1. INTRODUCTION

1.1 AUTHORITY FOR STUDY

This study was performed and this report prepared under Contract No. DACA01-94-D-0033, Delivery Order No. 8. The delivery order was issued by U.S. Army Engineer District, Mobile, to E M C Engineers, Inc. on 8 May 1995.

1.2 PURPOSE OF STUDY

The purpose of this study is to identify and evaluate Energy Conservation Opportunities (ECOs) for the Ground Based Electro-Optical Deep Space Surveillance (GEODSS) Facility, Building 34568, to determine their energy savings potential and economic feasibility, and to document results for possible future funding.

1.3 STATEMENT OF WORK

The following services are required by the Statement of Work contained in Appendix A:

- Perform a limited site survey.
- Evaluate selected ECOs.
- Use building energy simulations to calculate envelope and HVAC system energy savings.
- Combine selected ECOs into recommended projects taking into account the effects of multiple ECOs on energy savings and implementation costs.
- Provide a comprehensive report presenting field survey data, assumptions, methods of analysis, and results of the study.

1.4 GENERAL APPROACH

EMC attended a pre-proposal meeting at the GEODSS site in March 1995. At that meeting, EMC was given a tour of the facility and received information regarding the history of the facility, including details of present operations and problems. The meeting produced a preliminary list of ECOs to be evaluated.

A detailed field survey was completed the 1st and 2nd of June 1995. As part of the field survey, the electric meter serving the site was recalibrated and electrical measurements were made on selected electrical equipment.

The building energy use was simulated using the DOE2.1d program to produce a baseline model. The baseline model energy use was compared to historical energy use data.

Each ECO was analyzed individually. Energy savings were calculated by modifying the baseline model to reflect the proposed modification. A detailed cost estimate and a Life Cycle Cost Analysis (LCCA) were performed for each ECO.

ECOs with favorable economics were combined into recommended projects. The effects of multiple ECOs on energy savings and implementation costs were taken into account. A Form DD1391 was used to present the data and text for the recommended projects.

A comprehensive Preliminary Report was prepared presenting the field survey data, assumptions, methods of analysis, and results of the study.

1.5 LIFE CYCLE COST ANALYSIS

The Life Cycle Cost Analysis (LCCA) methodology used in this study comprised a present value analysis of capital costs, operational costs, and projected energy costs over the expected life cycle of the ECO. Uniform present value (UPV) factors and escalation rates for energy costs were taken from Energy Prices and Discount Factors for Life-Cycle Cost Analysis 1995, which is the current update to NBS Handbook 135. A 3.0% discount rate was used for the purpose of this study in compliance with FEMP guidelines.

The following UPV factors, adjusted for average fuel price escalation, were taken from the NBS 135 Supplement:

		Uniform Present Value Factor					
No. of Years	Electricity	LP Gas	Non-Energy	Applicable ECOs			
10	8.58	9.60	8.53	Controls			
15	12.02	14.17	11.94	Lighting Systems			
20	15.08	18.58	14.88	HVAC, Weatherization			

1.6 ORGANIZATION OF DOCUMENT

This report is organized as follows:

Section 2 summarizes the existing building and HVAC data.

- Section 3 presents the energy use of the existing baseline building.
- Section 4 contains the analysis for each individual ECO.
- Section 5 summarizes the results of the analysis and makes recommendations.
- Appendix E contains a completed Form DD-1391 for use in obtaining Federal Energy Management Program (FEMP) funding for the selected project package.

2. BUILDING AND HVAC DATA

2.1 GENERAL

The GEODSS Facility (Building 34568) is a windowless, concrete block structure of approximately 10,000 square feet. The building is located on the northern end of the White Sands Missile Range (WSMR) in central New Mexico. The building consists of a large central computer room surrounded by offices on the perimeter. Concrete towers at three corners of the building are topped with telescopes in movable domes. The building is occupied continuously 24 hours per day. Field survey notes and tabulated data on the building and HVAC systems is contained in Appendix B.

2.2 COMPUTER ROOM

The computer room is in the center of the building with one wall exposed to the outside. The wall consists of concrete block, fiberglass batt insulation, and interior wall board. There are no windows. The built-up flat roof is insulated with an estimated 4 inches of polystyrene insulation supported by a metal deck. A drop acoustic ceiling is suspended about 3 feet below the metal deck.

The computer room contains a large quantity of computer equipment which contributes significant heat gain to the room.

The computer room is conditioned by three computer room units (CRUs) each rated at 12,000 cfm and 326 MBH cooling capacity. The CRUs are located within the computer room and distribute supply air via a perforated floor. Each CRU contains a fan, chilled water coil, electric reheat coil, and a humidifier. Room temperature is maintained in the 70° to 72°F range and relative humidity in the 35% to 50% range.

2.3 OFFICES

Offices and hallways are arranged along three sides of the building. Wall and roof construction is identical to the computer room and there are no windows.

The offices contain typical office equipment such as personal computers, printers, a coffee maker, a refrigerator, vending machines, and a photocopy machine. Additionally, there is some electrical test equipment for maintaining electronic equipment associated with the telescopes.

The offices and hallways are conditioned by a single-zone HVAC system consisting of a fan supplying 4770 cfm, a chilled water cooling coil, and an electric duct heater. Outside air is specified at 26% of supply air. Room temperature is maintained in the 70° to 72°F range.

2.4 CONFERENCE ROOM

A small conference room adjacent to the offices is served by a small dedicated AHU containing a chilled water cooling coil.

2.5 TOWERS

Three two-story towers topped with dome-covered telescopes are located at three corners of the building. The domes are constructed of an aluminum outer skin, about 4 inches of insulation, and an inside skin of unknown construction, possibly fiberglass. The domes are equipped with a tight fabric skirt around the perimeter to limit infiltration. There is a noticeable gap around the aperture door in the dome. The walls are 12 inch cast concrete, fiberglass batt insulation, and interior wallboard. There are no windows.

Equipment in the towers consists of a rack of electronic processing equipment, the telescope drives, and the electronic camera within the telescope. The cameras are cooled by vortex cooling tubes supplied by 90 psig compressed air. Each tower has a dedicated 5 horsepower air compressor to serve the vortex tubes.

Each tower is served by a dedicated 2,000 cfm AHU. Each AHU is a once-through system in which outside air is drawn in, cooled by a chilled water cooling coil, ducted to the tower, and expelled through openings in the dome. Each room thermostat is set at 40°F, but the HVAC system is incapable of reaching this temperature given the 45°F chilled water temperature serving the cooling coil. The result is that the cooling coils are operating at full capacity during the cooling season. It is desired to keep the telescope as cool as possible to minimize stabilization time when the telescope is exposed to the cold night sky.

The AHUs serving the towers are operated from mid-April to mid-November. The AHUs are turned off in the winter.

It is unclear why the HVAC system is a once-through system; there are no ventilation requirements for the space. We originally believed the once-through system was for the purpose of pressurization, to keep dust from infiltrating through the dome. However, the system is not operated in the winter and the openings in the dome do not appear to be large enough to require 2,000 cfm of airflow for pressurization. The once-through system has insufficient capacity to cool the OA air from 95°F to 45°F.

2.6 CENTRAL CHILLED WATER SYSTEM

All eight AHUs in the building are supplied with chilled water from the central chilled water system. The chilled water system consists of two 36 ton chillers coupled to two aircooled condensers. Chilled water is supplied to HVAC cooling coils via a primary/secondary pumping arrangement.

2.7 LIGHTING

Interior lighting consists of the following:

- The computer room and offices are lit with recessed fluorescent fixtures each
 containing two standard 40 watt T-12 fluorescent lamps powered by standard
 magnetic coil ballasts. Offices and hallways have been extensively delamped and
 most offices are equipped with occupancy sensors which automatically turn lights
 on and off.
- Ten exit signs are located in the building each with two 20 watt incandescent lamps.
- Twelve 150 watt floodlights serve the three towers. These floodlights are operated for only 1 to 2 hours per day.
- Nine 60 watt recessed incandescent fixtures were noted at various places in the building.
- Fifty-one small, ground-level, shaded, incandescent lamps serve walkways and parking lots around the building. These lamps are rated at 15 and 25 watts at 220 volts, but are operated at 110 volts which results in actual wattages of 7.5 and 12.5.
- . The building perimeter is equipped with a high intensity security lighting system which is only activated for an intruder alert. Use of this lighting system for any other purpose is incompatible with the function of the telescopes.

2.8 ELECTRIC POWER

Electric power is supplied to the GEODSS Facility by Socorro Electric. The facility is billed for electricity by the White Sands Missile Range at a rate of \$0.0821 per kWh. There is no demand charge. The rate schedule is contained in Appendix C.

The facility is metered by a dedicated electric meter. This meter was calibrated by ZIA Electrical Products as part of this study. The meter was found to be accurate within 1.0 percent in its "as found" condition. The meter was adjusted slightly during calibration for

better accuracy. Meter nameplate data, calibration data, and historical meter data is contained in Appendix C.

Total power to the facility was measured during the field survey at the main breaker. The system was drawing about 250 amps at 282 volts with a power factor of about 0.63. This extremely low power factor should be corrected because utility companies have begun to penalize customers with low power factors. There currently is no power factor penalty from the utility.

Power supplied to the computer room and electronic equipment associated with the telescopes is termed "Tech power" and is routed through a rotating Uninterrupted Power Supply (UPS) system. The UPS system consists of a 120 volt/150 kW generator coupled to a large flywheel turned by a 250 horsepower electric motor. The flywheel will provide about 17 seconds of uninterrupted power, which is sufficient time for the emergency diesel-electric generator to come on-line in the event of an interruption to commercial power. Power to the motor was measured during the field survey and found to be drawing about 85 amps at 281 volts with a power factor of about 0.45. This low power factor is probably the main reason for the low power factor at the main breaker.

The diesel-electric generator is operated during thunderstorms when there is a strong possibility of commercial power interruptions, and in the event of an actual commercial power interruption.

3. BASELINE ENERGY USE

3.1 HISTORICAL ENERGY USE

Monthly electric energy purchased from Socorro electric and generated on site using the diesel-electric generator is indicated in Figure 3-1 below.

Figure 3-1. Electricity Purchased and Generated Oct 1991 to Jan 1995

Figure 3-1 is based on facility electric meter data and diesel fuel consumption data. The fuel rate for the diesel-electric generator was assumed to be 0.064 gallons per kWh based on typical fuel rates for diesel-electric generators.

The supporting energy consumption data is contained in Appendix C. The following problems were noted with the electric data:

- The electric meter failed and produced erroneous readings from May 1993 through October 1993, when it was replaced.
- The electric consumption for March 1994 appears to be in error.
- No fuel oil consumption data was supplied after January 1994.

Data for FY91 and FY92 appears consistent and accurate and was judged to be the best representation of energy consumption for the facility. Referring to FY91 and FY92 in Figure 3-1, the following comments apply:

- Monthly energy use throughout the year is fairly steady ranging from about 80 to 105 MWh per month. This is due to a high percentage of electric use going to steady loads which vary little from month to month. These include Tech power, lights, HVAC fans, and office equipment.
- Electricity is consistently low in February and March, probably a result of lower cooling loads and minimal heating loads.

3.2 BASELINE ENERGY SIMULATION

The DOE2.1d building energy simulation program was used to model the building. The model used TMY weather for Truth or Consequences, New Mexico. The following methods and assumptions were made in developing a baseline energy simulation which is intended to represent the existing condition of the building:

- Lighting electric loads were based on fixture counts for each zone, incandescent lamp wattages, and fluorescent fixture wattages based on catalog data for the type of lamps and ballasts in the fixture. Fixtures which had been delamped and light circuits with occupancy sensors were taken into account. Occupancy sensors were assumed to reduce energy use by 30%. The lighting schedules were based on interviews of personnel in the building.
- Equipment electric loads from office equipment were based on the equipment inventory and handbook data containing average energy use.
- Heat gain from people was based on the occupancy schedule of the building.
- Tech power electric loads were based on electrical measurements made during the field survey. The Tech power electric loads were reported to be fairly steady. These loads were varied somewhat as a means for calibrating the model to historical

- energy use. Tech power is used by the computers and electronic equipment in the computer room and by electronic equipment and the cameras in the towers.
- Air compressor electric loads were based on vortex tube flow which ranges from 5 to 15 cfm with an average at about 10 cfm. The compressors will supply about 20 cfm, and are thus about 50% loaded. The resulting average load is 2.12 kW per compressor. Vortex tubes and air compressors are operated from 3 p.m. to 7 a.m. daily.
- Fan electric loads were based on motor horsepower and motor loading. Motor loading was determined by measuring motor speed during the field survey and calculating motor slip which is proportional to motor load fraction.
- Chiller performance in terms of kW per ton was difficult to estimate. The chiller is a
 built-up system consisting of refrigerant compressors and air-cooled condensers
 from different manufacturers. The baseline air-cooled chiller was assumed to
 operate 1.43 kW per ton based on catalog data for a chiller of similar type and age.

Figure 3-2 below is a plot of historical and predicted electric energy use of the facility. As can be seen, there is good agreement between the model and historical data.

Figure 3-2. DOE2.1d Model vs. Historical Data

Figure 3-3 below is a graphic of the distribution of electric energy use. As can be seen miscellaneous equipment consumes about 35% of the annual energy used at the facility. Miscellaneous equipment includes computers, office equipment, electronic equipment, cameras, and the air compressors. Space cooling consumes about 43% of the annual energy. HVAC Aux, which includes fans and pumps, and lighting consumes the remaining 20%. Space heating consumes less than 2% of the annual energy.

Figure 3-3. Energy Use Distribution

Table 3-1 below presents the annual energy use and cost for the facility.

Table 3-1. Facility Annual Energy

	Annual Electric Use (MWh)	Annual Energy Cost (\$)
DOE2.1d Model	1,047	\$85,981
FY91	1,010	\$82,921
FY92	1,031	\$84,645

4. INDIVIDUAL ECO ANALYSIS

This section contains a description and complete analysis for each ECO, including backup data. These ECOs are:

- ECO 1: Albedo Modification.
- ECO 2: Roof Insulation.
- ECO 3: Low-Emissivity Roof Coating.
- ECO 4: T-8 Fuorescent Lamps.
- ECO 5: Vortex Tube Cooling.
- ECO 6: High-Efficiency Motors.
- ECO 7: UPS System.
- ECO 8: Chiller Replacement.
- ECO 9: Recirculate Air in Towers.
- ECO 10: Turn Office AHU at Night.
- ECO 11: Propane Heat.
- ECO 12: Economizer.

4.1 ECO 1: ALBEDO MODIFICATION

<u>Proposed Modifications</u>: Repaint the building white and replace the gravel on the roof with white rock in order to reduce on the cooling load.

The ability of a building surface to reflect incoming electromagnetic radiation is called albedo. Dark building surfaces absorb heat while light surfaces reflect the heat and stay cooler. The absorptance of a surface is measured on a scale from 0 to 1, with an absorptance of 1 absorbing all of the radiation, while a surface with an absorptance of 0 reflects it all. A previous energy conservation study of a typical house in Sacramento, California, indicated that the total air-conditioning bill could be reduced by up to 22% if the absorptance of the walls and roof were decreased from 0.6 to 0.2.

Existing Conditions: The building, originally white, was repainted a light tan approximately two years ago. The outside doors were also changed from white to dark brown and the building's roof was also changed from white roof gravel to a medium brown roof gravel. The occupants of the building began to notice an increase in electrical consumption right after the color of the building was changed. The absorptance of the existing flat, built-up roof was assumed to be 0.6, based on the absorptance of similar colored material. The existing wall absorptivity was assumed to be 0.7.

Method of Analysis:

- The DOE 2.1d baseline model was modified and the building's energy consumption was calculated for roof and wall absorptance values of 0.29 and 0.26, respectively.
- Simulations were also run for roof and wall absorptances of 0.1 versus 0.9 to see the effect of a wider range of absorptances.

Results: The simulations (summarized in the table below) indicated that with the proposed modifications, there would be a negligible drop in the cooling load which would be partially offset by an increase in heating load. This is due to adequate insulation in the roof and walls. The total annual energy savings was estimated at 5.2 MBtu or about 1,532 kWh which would save \$126 annually.

Item	Baseline	ECO
Roof Absorptance	0.70	0.29
Wall Absorptance	0.60	0.26
Heating (MBtu)	55	59
Cooling (MBtu)	1569	1560
HVAC (MBtu)	427	426
Lights (MBtu)	289	289
Misc. Equipment (MBtu)	1234	1234
Total Use (MBtu)	3,575	3,569

Recommendations: Changing the color of the walls and roof would not substantially decrease the amount of energy consumed by the building or be cost efficient. An albedo modification is not recommended. However, it is recommended that the color of the outer doors be changed for safety reasons from the current dark brown color to a lighter color that will not absorb as much heat. The doors now become so hot in the summer that building personnel have to use gloves to open the doors to avoid being burned.

EMC	ENGINEERS	INC.	EZDOE - ELITE SOFTWARE DEVELOPMENT I	NC	DOE-2.1D	8/ 7/1995	12:22:21	PDL RUN 1
DENVER,	CO	80227	GEODSS SITE DOE EVALUATION					
REPORT- BEPS	ESTIMATED	BUILDING ENERGY	PERFORMANCE		TRUTH OR C	CONSEQU, N		

ENERGY TYPE IN SITE MBTU - CATEGORY OF USE	ELECTRICITY
SPACE HEAT	59.02
SPACE COOL	1560.06
HVAC AUX	426.40
DOM HOT WTR	0.00
AUX SOLAR	0.00
LIGHTS	288.88
VERT TRANS	0.00
MISC EQUIP	1233.86
TOTAL	3568.23

TOTAL SITE ENERGY 3568.14 METU 313.0 KETU/SQFT-YR GROSS-AREA 313.0 KETU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3568.14 METU 313.0 KETU/SQFT-YR GROSS-AREA 313.0 KETU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

LIFE CYCLE COST ANALYSIS

ECO # + ALBEDO MODIFICATION

LCCECOS.XLS
Prepared By: EMS

Checked By:

Existing and Proposed Albedo Modification

Existing and Fropos	sed Albedo Modil	iloation				
CATEGORY	EXIS	TING	PROPOSED		SAVINGS	
	Roof	Wall	Roof	Wall	(MBTU)	
Absorptance	0.6	0.7	0.29	0.26		
Heating		55.1		59.0	(3.9)	
Cooling		1,569.0		1,560.1	8.9	
HVAC		426.6		426.4	0.2	
Lights		288.8		288.9	(0.1)	
Misc Equip		1,233.9		1,233.9	_	
Total Use (MBtu)		3,573.4		3,568.2	5.2	

Maximum and Minimum Albedo Modification

CATEGORY	HIGHES	ST	LOW	SAVINGS	
	Roof	Wall	Roof	Wall	(MBTU)
Absorptance	0.90	0.90	0.10	0.10	
Heating		51.8		61.5	(9.6)
Cooling	poling		1,555.5		22.9
HVAC	426.8		426.3		0.6
Lights		288.9		288.9	
Misc Equip	sc Equip 1,233.9		1,233.9		0.0
Total Use (MBtu)		3,579.8		3,565.9	13.9

ABSORPTANCE for Various Exterior Surfaces*

<u>Material</u>	Absorptance	Paint	<u>Absorptance</u>
Black concrete	0.91	Optical flat black paint	0.98
Stafford blue brick	0.89	Flat black paint	0.95
Red brick	0.88	Black lacquer	0.92
Bituminous felt	0.88	Dark gray paint	0.91
Blue gray slate	0.87	Dark blue lacquer	0.91
Roofing, green	0.86	Black oil paint	0.90
Brown concrete	0.85	Dark olive drab paint	0.89
Asphalt pavement, weathered	0.82	Dark brown paint	0.88
Wood, smooth	0.78	Dark blue-gray paint	0.88
Uncolored asbestos cement	0.75	Azure blue or dark green	0.88
Uncolored cement	0.65	lacquer	
Asbestos cement, white	0.61	Medium brown paint	0.84
White marble	0.58	Medium light brown paint	0.80
Light buff brick	0.55	Borwn or green lacquer	0.79
Built-up roof, white	0.50	Medium rust paint	0.78
Bituminous felt, aluminized	0.40	Light gray oil paint	0.75
Aluminum paint	0.40	Red oil paint	0.74
Gravel	0.29	Medium dull green paint	0.59
White on galvanized iron	0.26	Medium orange paint	0.58
White glazed brick	0.25	Medium yellow paint	0.57
Polished aluminum reflector	0.12	Medium blue paint	0.51
sheet		Medium Kelly green paint	0.51
Aluminized mylar film	0.10	Light green paint	0.47
Tinned surface	0.05	White semi-gloss paint	0.30
		White gloss paint	0.25
		Silver paint	0.25
		White lacquer	0.21
		Laboratory vapor deposited	0.05
		coatings	

^{*}This table is a compilation of data from several sources including <u>Passive Solar Design Analysis</u> by J. Douglas Balcomb (US Department of Energy, Office of the Assistant Secretary for Conservation and Solar Energy, December 1979) and Ref. 3

4.2 ECO 2: ROOF INSULATION

<u>Proposed Modifications</u>: This ECO analysis determines the optimum thickness of rigid insulation in the roof of the building.

It is assumed that any modification to roof insulation will occur only during scheduled roof repair and/or replacement. Therefore, the only cost involved will be the material and labor cost to install the incremental thickness of rigid, polystyrene insulation. The time and labor cost of any demolition of the existing roof or the built-up roofing over the insulation was not included in the analysis.

This ECO determines the optimum balance between the energy savings and the material and labor costs of various thicknesses of rigid insulation on the roof.

<u>Existing Conditions</u>: The building roof consists of built-up roofing on 4 inches of rigid insulation supported by a metal deck. Beneath the roof deck is a 4 to 5 foot air space and an acoustic tile suspended ceiling. This air space is not used as a plenum for return air flow.

Method of Analysis: Analysis proceeded as follows:

- The roof construction was determined from the building plans.
- The building was then modeled on DOE2.1d with insulation thicknesses ranging from 0 inches to 6 inches of rigid polystyrene roof insulation. The building energy consumption was calculated for each 1 inch increment of insulation.
- Using industry construction cost data, the material and labor costs for installing each insulation thickness were calculated.
- A life cycle cost analysis was performed for each thickness of insulation and the optimum thickness was then determined.

Results: The following table presents the results of the computer energy simulations. The LCCA on page 4-12 presents the results of the analysis for six different thicknesses of rigid roof insulation. The optimal insulation thickness is 2 inches, as seen on the graph of roof insulation thickness vs. the LCCA on page 4-11. In summary, additional roof insulation would not be cost effective.

Item	Equipment (MBtu)	Lights (MBtu)	HVAC Aux (MBtu)	Space Heat (Mbtu)	Space Cool (Mbtu)	Total (MBtu)
0" Roof Insulation	1233.9	288.9	427.7	103.9	1587.8	3,642.2
1" Roof Insulation	1233.9	288.9	427.0	76.4	1577.1	3,604.0
2" Roof Insulation	1233.9	288.7	427.0	64.9	1572.3	3,586.8
3" Roof Insulation	1233.9	288.9	426.7	58.9	1570.2	3,578.5
4" Roof Insulation	1233.9	288.9	426.6	55.1	1568.95	3,573.4
5" Roof Insulation	1233.9	288.9	426.6	52.5	1567.4	3,569.3
6" Roof Insulation	1233.9	288.9	426.6	50.7	1566.93	3,567.0

<u>Recommendations</u>: Since the building roof already contains 4 inches of rigid polystyrene insulation, any modification to existing roof insulation is unnecessary and not cost effective.

E M C Engineers, Inc. EMC #1406-008 GEODSS Site, White Sands Missile Range, NM

LIFE CYCLE COST ANALYSIS ECO # 2 ROOF INSULATION

LCCE.COS.XLS
Prepared By: EMS
8/22/95
Checked By

 Economic Life (yrs)	
 20	

El	ectric Energy	Cost	
	0.0821	\$/kWh	

Construction Cost - Roof Insulation Replacement

Building No.		34568					
Roof Insulation Thickness (inches)	0	1	2	3	4	5	6
Roof R-value including Plenum	4.50	9.00	13.50	18.00	22.50	25.00	29.50
	0440.00	9413.33	9413.33	9413.33	9413.33	9413.33	9413.3
Roof Area (sqft)	9413.33				1	- 1	
Material Cost Per sqft	0	0.69	0.95	1.21	1.47	2.16	2.4
Total Material Cost	\$0	\$ 6, 4 95	\$8,943	\$11,390	\$13,838	\$20,333	\$22,780
Labor Hours Per SqFt	0.000	0.005	0.006	0.008	0.008	0.010	0.01
Labor Rate	0.00	47.07	56.48	75.31	75.31	94.13	112.9
Total Labor Cost	\$0	\$1,038	\$1,245	\$1,661	\$1, 661	\$2,076	\$2,491
Total Cost	\$0	\$7,533	\$10,188	\$13,051	\$15,498	\$22,408	\$25,271
Overhead and Profit, Contingency, etc.	\$0	\$4,188	\$5,664	\$7,256	\$8,616	\$12,458	\$14,049
Total Project Cost	\$0	\$11,721	\$15,852	\$20,306	\$24,114	\$34,866	\$39,320

Rigid Roof Insulation Thickness	0	1	2	3	4	5	6
nvestment Costs							
Construction Cost	\$0	\$11,721	\$15,852	\$20,306	\$24,114	\$34,866	\$39,320
SIOH (6.0%)	\$0	\$703	\$951	\$1,218	\$1,447	\$2,092	\$2,359
Design Cost (6.0%)	\$0	\$703	\$951	\$1,218	\$1,44 7	\$2,092	\$2,359
Total Construction Cost	\$0	\$13,128	\$17,754	\$22,743	\$27,008	\$39,050	\$44,039
Total Investment	\$0	\$13,128	\$17,754	\$22,743	\$27,008	\$39,050	\$44,039
Annual Energy Use							
Electric Energy (kWh)	1,067,393	1,056,005	1,051,181	1,048,770	1,047,272	1,046,005	1,045,006
Electric Demand (kW)	0	0	0	0	0	0	(
Annual Energy Cost							
Electric Energy (kWh)	\$87,633	\$86,698	\$86,302	\$86,104	\$85,981	\$85,877	\$85,795
Electric Demand (kW)	0	0	0	0	0	0	(
Discount Factors (Region 4)							
Electric Energy	15.08	15.08	15.08	15.08	15.08	15.08	15.08
Electric Demand	0	0	0	0	0	0	(
Discounted Energy Cost							
Electric Energy	\$1,321,505	\$1,307,406	\$1,301,434	\$1,298,449	\$1,296,594	\$1,295,025	\$1,293,788
Electric Demand	0	0	0	0	0	0	(
Total Discounted Cost	\$1,321,505	\$1,307,406	\$1,301,434	\$1,298,449	\$1,296,594	\$1,295,025	\$1,293,788
Total Life Cycle Cost	\$1,321,505	\$1,320,534	\$1,319,188	\$1,321,191	\$1,323,602	\$1,334,076	\$1,337,827

EMC	ENGINEERS	INC.	EZDOE - ELITE SOFTWARE DEVELOPMENT INC	DOE-2.1D	8/ 7/1995	14:27:35	PDL RUN 1
DENVER,	CO	80227	GEODSS SITE DOE EVALUATION		-, -,		
REPORT- BEPS	ESTIMATED	BUILDING ENERGY		TRUTH OR (CONSEQU, N		

ENERGY TYPE IN SITE MBTU - CATEGORY OF USE	ELECTRICITY
SPACE HEAT	103.87
SPACE COOL	1587.78
HVAC AUX	427.69
DOM HOT WTR	0.00
AUX SOLAR	0.00
LIGHTS	288.88
VERT TRANS	0.00
MISC EQUIP	1233.86
TOTAL	3642.08

TOTAL SITE ENERGY 3642.09 MBTU 319.5 KBTU/SOFT-YR GROSS-AREA 319.5 KBTU/SOFT-YR NET-AREA TOTAL SOURCE ENERGY 3642.09 MBTU 319.5 KBTU/SOFT-YR GROSS-AREA 319.5 KBTU/SOFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 1.3 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 14:20:29 PDL RUN 1 DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU, N

ENERGY TYPE IN SITE MBTU - CATEGORY OF USE SPACE HEAT SPACE COOL HVAC AUX DOM HOT WTR AUX SOLAR LIGHTS VERT TRANS MISC EQUIP	76.39 1577.06 427.04 0.00 0.00 288.88 0.00 1233.86
TOTAL	3603.23

TOTAL SITE ENERGY 3603.18 MBTU 316.1 KBTU/SQFT-YR GROSS-AREA 316.1 KBTU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3603.18 MBTU 316.1 KBTU/SQFT-YR GROSS-AREA 316.1 KBTU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.7 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

EMC	ENGINEERS	INC.	EZDOE - ELITE SOFTWARE DEVELOPMENT INC	DOE-2.1D 8/ 7/1995	14:13:20 PDL RUN 1
DENVER,	CO	80227	GEODSS SITE DOE EVALUATION		
REPORT- BEPS	ESTIMATED	BUILDING ENERGY	PERFORMANCE	TRUTH OR CONSEQU, N	

ENERGY TYPE IN SITE MBTU - CATEGORY OF USE SPACE HEAT	ELECTRICITY 64.96 1572.27
SPACE COOL HVAC AUX	426.82
DOM HOT WTR AUX SOLAR	0.00
LIGHTS VERT TRANS	288.88
MISC EQUIP	1233.86
TOTAL	3586.79

TOTAL SITE ENERGY 3586.71 MBTU 314.7 KBTU/SOFT-YR GROSS-AREA 314.7 KBTU/SOFT-YR NET-AREA TOTAL SOURCE ENERGY 3586.71 MBTU 314.7 KBTU/SOFT-YR GROSS-AREA 314.7 KBTU/SOFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.5 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 14:6:1 PDL RUN 1
DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU, N

ENERGY TYPE IN SITE MBTU - CATEGORY OF USE SPACE HEAT SPACE COOL HYAC AUX DOM HOT WTR AUX SOLAR LIGHTS VERT TRANS WISC FOULD	58.92 1570.20 426.70 0.00 0.00 288.88 0.00
MISC EQUIP	1233.86
TOTAL	3578.56

TOTAL SITE ENERGY 3578.48 METU 313.9 KETU/SQFT-YR GROSS-AREA 313.9 KETU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3578.48 METU 313.9 KETU/SQFT-YR GROSS-AREA 313.9 KETU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 PDL RUN 1
DENVER,
REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE TRUTH OR CONSEQU, N

ENERGY TYPE
IN SITE MBTU CATEGORY OF USE
SPACE HEAT
SPACE COOL
HVAC AUX
DOM HOT WTR
AUX SOLAR
LIGHTS
VERT TRANS
MISC EQUIP
TOTAL

ELECTRICITY
1568.95
1268.95
10.00
1268.88
0.00
1233.86

TOTAL SITE ENERGY 3573.36 METU 313.5 KBTU/SQFT-YR GROSS-AREA 313.5 KBTU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3573.36 METU 313.5 KBTU/SQFT-YR GROSS-AREA 313.5 KBTU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

				DOE-2.1D 8/ 7/1995	13:58:36 PDL RUN 1
EMC	ENGINEERS	INC.	EZDOE - ELITE SOFTWARE DEVELOPMENT INC	DOE-2.1D 8/ 1/1995	13.30.30 IDD NON I
DENVER,	CO	80227	GEODSS SITE DOE EVALUATION		
DEDODT BEDS	FSTIMATED	BUILDING ENERGY		TRUTH OR CONSEQU, N	

ENERGY TYPE IN SITE MBTU - CATEGORY OF USE SPACE HEAT	ELECTRICITY
SPACE COOL HVAC AUX	1567.42 426.59
DOM HOT WTR	0.00
LIGHTS VERT TRANS	288.88
MISC EQUIP	1233.86
TOTAL	3569.28

TOTAL SITE ENERGY 3569.18 METU 313.1 KBTU/SOFT-YR GROSS-AREA 313.1 KBTU/SOFT-YR NET-AREA TOTAL SOURCE ENERGY 3569.18 METU 313.1 KBTU/SOFT-YR GROSS-AREA 313.1 KBTU/SOFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 10.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

						. 	
EMC	ENGINEERS	INC.	EZDOE - ELITE SOFTWARE DEVELOPMENT INC	DOE-2.1D	8/ 7/1995	13:50:15	
DENVER,	CO	80227	GEODSS SITE DOE EVALUATION				
DEDODT- REPS	ESTIMATED	BUILDING ENERGY	PERFORMANCE	TRUTH OR (CONSEQU. N		

ENERGY TYPE	
IN SITE MBTU -	ELECTRICITY
CATEGORY OF USE	
SPACE HEAT	50.65
SPACE COOL	1566.93
HVAC AUX	426.55
DOM HOT WTR	0.00
AUX SOLAR	0.00
LIGHTS	288.88
VERT TRANS	0.00
MISC EQUIP	1233.86
TOTAL	3566.B6

TOTAL SITE ENERGY 3566.78 MBTU 312.9 KBTU/SQFT-YR GROSS-AREA 312.9 KBTU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3566.78 MBTU 312.9 KBTU/SQFT-YR GROSS-AREA 312.9 KBTU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

071	2 Insulation and Firepro 2 200 Roof & Deck Insulation		DAJLY OUTPUT	MAN- Hours	UNIT	MAT.	1995 BAR	EQUIP.	TOTAL	TOTAL INCL OLP
0/4					<u> </u>		.18	Equi.	1.03	1.2
755	3 1/2" thick R25	1 Rofc	1,000	.008	S.F. B.F.	.85 .41	.13		.54	7
765	Tapered for drainage	<u> </u>	1,400	.006	b.r.	.41	.13			
900	Extruded Polystyrene	1		005		20	.12		.41	.5.
910	15 PSI compressive strength, 1" thick R5	1 Rofc	1,500	.005	Ş.F.	.29			.41	.8:
920	2" thick R10		1,250	.00 6		.52	.14			
930	3" thick R15		1,000	.008	$\sqcup \sqcup$.73	.18		.91	1.12
932	4" thick R20		1,000	.008	+	.97	.18		1.15	1.39
934	Tapered for drainage		1,500	.0 05	B.F.	.34	.12		.46	.59
940	25 PSI compressive strength, 1" thick R5		1,500	.005	S.F.	.31	.12		.43	.50
942	2" thick R10		1,250	.006		.57	.14		.71	.8:
944	3" thick R15		1,000	.008		.83	.18		1.01	1.2
	4" thick R20	1	1,000	.008	↓	1.09	.18		1.27	1.5
946	Tapered for drainage		1,500	.0 05	B.F.	.38	.12		.50	.6
1948	40 PSI compressive strength, 1" thick R5	1	1,500	.005	S.F.	.36	.12		.48	.6:
1950	2" thick R10		1,250	.006		.68	.14		.82	1.0
952	3" thick R15		1,000	.008		1	.18		1.18	1.4
954		- -	1,000	.008		1.32	.18		1.50	1.7
956	4° thick R20		1 .	.006	B.F.	.48	.13		.61	.7
958	Tapered for drainage		1,400			.42	.12		.54	.6
960	60 PSI compressive strength, 1° thick R5		1,450	.006	S.F.					1.1
962	2" thick R10		1,200	.007	$\sqcup \sqcup$.78	.15		.93	
964	3" thick R15		975	.008		1.15	.18		1.33	1.6
966	4" thick R20		950	.008	<u>+</u>	1.53	.19		1.72	2.0
968	Tapered for drainage		1,400	.006	B.F.	.58	.13		.71	.8
970	115 PSI compressive strength, 1" thick R5	1 1	1,400	.006	S.F.	.90	.13		1.03	1.2
972	2" thick R10		1,150	.007		1.78	.15		1.93	2.2
974	3" thick R15	1	950	.008		2.65	.19		2.84	3.2
976	4" thick R20		900	.009		3.53	.20		3.73	4.2
978	Tapered for drainage		1,400	.006	B.F.	.97	.13		1.10	1.3
2010	Expanded polystyrene, 1#/CF density, 3/4" thick R2.89		1,500	.005	Ş.F.	.16	.12		.28	,
020	1" thick R3.85	11	1,500	.005		.16	.12		.28	.4
	2" thick R7.69		1,250	.006	HH	.27	.14		.41	.5
2100	3" thick R11.49	11	1,250	.006		.39	.14		.53	£
110	The state of the s		1,200	.007	\vdash	.50	.15		.65	.8
2120	4" thick R15.38		1	.007		.63	.15		.78	.9
2130	5" thick R19.23		1,150		\vdash	.74	.15		.89	1.0
2140	6" thick R23.26		1,150	1 1	*		.12		.40	.5
2150	Tapered for drainage	_ *	1,500	.005	B.F.	.28	.12		,70	
2400	Composites with 2" EPS						,,		.77	
2410	1" Fiberboard	1 Rofc		.008	S.F.	.58	.19			1.1
2420	7/16" Oriented strand board		800	.010		.68	.22		.90	
2430	1/2* Plywood		800	.010	ЩЦ	.72	.22		.94	1.2
2440	1" Perlite	₩	800	.010	+	.60	.22		.82	1.0
2450	Composites with 1 1/2" polyisocyanurate									
2460	1° Fiberboard	1 Rofc	800	.010	S.F.	.70	.22		.92	1.1
2470	1" Perlite		850	.009		.72	.21		.93	1.1
2480	7/16" Oriented strand board	1 🕸	800	.010	\forall	.82	.22		1.04	1.3
		<u> </u>	<u> </u>							
	2 400 Exterior Insulation SANDWICH PANELS See division 061-281	_	-							
4										
W10	EXTERIOR INSULATION FINISH SYSTEM	1				ا	,	12	4.59	6.7
0100	Field applied, 1" EPS insulation	J-1	295	.136	S.F.	1.46	3	.13	4.39	6.9
0110	2" EPS insulation	1	295	.136		1.63	3	.13		7.
		1 1	295	.136	a !	1.80	3	.13	4.93	/ /.
0120 0130	3" EPS insulation		295	.136		1.97	3	.13	5.10	

TOTAL NCL OLP

ty Cost land

. 213

4.3 ECO 3: LOW EMISSIVITY ROOF COATING

<u>Proposed Modifications</u>: Install a low emissivity roof coating on the outer and underside of the roof in order to reduce the cooling load.

A low emissivity coating on the underside of the roof forms a radiant barrier that restricts the transfer of heat across the airspace. A low emissivity surface does not radiate energy, thus preventing radiant heat transfer. The barrier should be installed shiny side down so that dust will not collect on it and cause its effectiveness to be reduced. It also needs to have an airspace separating the shiny side from other building materials so that it will effectively eliminate the exchange of heat between itself and the other material. This will reduce the amount of heat that is transferred between building components and lessen the cooling load.

The product evaluated is LO/MIT-l, a silver-colored, low emissivity coating that reflects both heat and light. It is a radiant barrier coating that will create a surface emissivity of 0.21 - 0.26 with an 81% - 85% reflectivity. When placed on the outer surface at the roof, the coating reduces solar heat gain.

<u>Existing Conditions</u>: No type of radiant barrier exists now. The roof is a built-up type supported by 4 inches of rigid polystyrene insulation on a metal deck with a suspended acoustic tile ceiling that hangs 4 to 5 feet below the bottom of the roof.

Method of Analysis:

- Information was obtained from several Denver area roofing contractors on various reflective and light-colored roofing materials. The information included technical data on the material's absorptance as well as material and labor costs for installation or application.
- Information was also received from the USAED in Mobile, Alabama, concerning low emissivity roof coatings.
- The DOE2.1d baseline simulation was modified to include the low emissivity coating. The building energy consumption was calculated with the low emissivity coating in-place.

Results: The computer energy simulation revealed that a slight drop occurs in the cooling and heating loads of 3.1 MBtu or 900 kWh annually with a resulting annual energy cost savings of \$74.

Item	Baseline (MBtu)	ECO (MBtu)
Heating	55	53
Cooling	1569	1568
HVAC	427	427
Lights	289	289
Misc. Equipment	1234	1234
Total Use (MBtu)	3,574	3,571

Recommendations: A low-emissivity roof coating is not recommended because the savings are too small for this to be a cost-effective ECO.

						·	
EMC	ENGINEERS	INC.		INC	DOE-2.1D	8/ 7/1995	PDL RUN 1
DENVER,	CO	80227	GEODSS SITE DOE EVALUATION				
REPORT- BEPS	ESTIMATED	BUILDING ENERGY	PERFORMANCE		TRUTH OR C	CONSEQU, N	

ENERGY TYPE IN SITE MBTU - CATEGORY OF USE	ELECTRICITY
SPACE HEAT	53.31
SPACE COOL	1567.73
HVAC AUX	426.59
DOM HOT WTR	0.00
AUX SOLAR	0.00
LIGHTS	288.88
VERT TRANS	0.00
MISC EQUIP	1233.86
TOTAL	3570.38

TOTAL SITE ENERGY 3570.29 MBTU 313.2 KBTU/SQFT-YR GROSS-AREA 313.2 KBTU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3570.29 MBTU 313.2 KBTU/SQFT-YR GROSS-AREA 313.2 KBTU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

E M C Engineering, Inc. EMC #1406-008

LIFE CYCLE COST ANALYSIS LOW EMISSIVITY COATING

ECO-3.XLS Prepared By: EMS 11/20/95

GEODSS Site, White Sands Missile Range, NM

	ı	1120190
Checked	Ву:	

Economic Life(Years)	10

Simulation	Energy Consumed (MBTU)	Energy Consumed (kWh)
Baseline Model	3573.45	1047011.40
LowEmissivity Coating	3570.37	1046190.60
Savings	3.08	902.4
Cost Savings		\$74,087

Annual Electric Energy Savings (kWh)	902.4
Total Annual Energy Cost Savings	\$74,087

Cape Conoveral.

For Energy Conservation and Light Reflection

LO/MIT-I is a sliver colored, non-thickness dependent, low emissivity coating. Its superb ability to reflect both heat (infrared radiation) and light make it an excellent, low cost substitute for metallic folis or metallized plastic films. High temperature tolerance, excellent adhesion and the ability to produce uniformly low emissivities on a wide variety of substrates make LO/MIT-I unique in the field of high technology coatings.

OPTICAL CHARACTERISTICS

Laboratory application of LO/MIT-I on glass substrates has lowered emissivity from .86 to .22 and increased spectral reflectivity from 7.3% to 85%. LO/MIT-I can be applied to a wide variety of substrates and normally will create a surface emissivity of .21-.26, and a spectral reflectivity of 81%-85%, depending on the substrate used. The chart on the rear of this bulletin shows optical properties on specific materials.

CONSTITUENTS

Aromatic hydrocarbons, allphatic ketones, proprietary pigments and binders.

SOLVENT

Solsolv 301 or xylene.

VISCOSITY

29 seconds #1 Zahn's cup.

ARDNESS

Extremely strong 3H hardness after 24 hour room temperature cure. Hardness increases with age.

DEGRADATION & OUTGASSING

Unaffected by UV or elevated temperatures. Thermally tolerant to 1000° F (538°C). No outgassing when correctly cured.

COVERAGE

400-800 square feet/gallon, depending on surface and application method.

Clean application equipment with Solsolv 301 or Xylene. Use isopropyl Alcohol for operator clean up and removal from clothing.

MIXING

Coating supplied ready for use. No thinning is required or suggested. Snake well before using. If possible, agitate during ap-

SURFACE PREPARATION

Normally, adhesion is the only factor that will be affected by surface preparation. Optical properties will remain constant except on surfaces that are very porous such as brick and cement. To improve optical properties on porous substrates, appropriate fillers and primers may be used to increase surface smoothness. This will also increase coverage. On metallic substrates, such as cold rolled or galvanized steel, that may be subject to possible corrosion or oxidation, appropriate primers should be used before applying LO/MiT-I. Where a surface is already primed or painted, apply a test patch of LO/MIT-I to ascertain that the prepared surface is compatible with the solvents used in LO/MIT-I. Plastics may require surface treatment to increase adhesion and should be lested for compatibility with LO/MIT-I. Most building materials, such as wood, plasterboard, paper faced insulation batts. Sprous ceiling thes and painted metal roof decking require no surface preparation except that they be clean and dust free. Masonry surfaces should be allowed to cure for one month prior to the application of LO/MIT-I.

Any surface preparation questions not answered in this section should be referred to our Technical Services Department,

Air Atomization: Use DeVilbles pressure gun #JGA-502-704-FX; gun pressure of 30 psi (2.11 kg/cm²); tank pressure of 4-8 psi (.14-42 kg/cm²). Remote paint supply pots should be equipped with an air driven agitator to keep coating thoroughly mixed during application.-OR-DeVilbias suction gun #JGA-502-43-FF, gun pressure of 25 psi (1.76 kg/cm²). Needle adjustment = 1/2 open. Hold spray gun 8-14" from work. Spray-Ing at the lower pressure (25-30 psi) indicated will lessen overspray and effect better coverage. Use 2 horsepower or larger compressor.

Airiess and Electrostatic: Test airiess and electrostatic equipment for compatability with LO/MIT-I before using. Remote paint supply pots should be equipped with an air driven agitator to keep coating thoroughly mixed during application.

Portable Compression Sprayer: The SOLEC Model LS-1

portable compression sprayer is a low cost, self-contained costing application device for the field application of LO/MIT-I to roof decks, cinder block walls, attics, or new construction where power is unavailable. Ask for Bulletin LS-1.

Brush and Roller: LO/MIT-I may also be applied using a solvent resistant paintbrush or roller. However, coverage may

be substantially reduced.

Note: Good ventilation is necessary for operator safety and drying and curing of the applied coating.

DRYING AND CURE

Coating will skin dry within one minute after application. Drying to touch will generally occur within 15 minutes to one hour depending on ambient temperature and humidity. Curing can be accelerated by application of heat up to 500°F (260°C) for 4 to 30 minutes. Experimentation will determine the best curing procedures for your particular environment.

STORAGE

Keep at room temperature in tightly sealed container. Keep out of direct sunlight to avoid pressure increase in container. Full containers will remain usable for 1 year from date of manufac-

CAUTION

Contains flammable solvents. Do not expose to elevated heat or open flames. Use with adequate ventiliation and avoid excessive breathing of vapor or spray mist. Avoid contact with eyes. OSHA regulations. Sections 1915.24-Painting. 1915.25-Fiammable Uquids and 1915.82-Respiratory Protection give additional helpful safety suggestions.

FIRST AID

Remove from skin using isopropyl alcohol and warm soapy water. In case of contact with eyes, flush with clean water for at least 15 minutes and get medical attention. If swallowed, get immediate medical attention. If headache, dizziness or nausea result from excessive inhatation of vapors, remove to fresh air and administer oxygen if necessary.

SOLAR ENERGY CORPORATION, BOX 3065, PRINCETON, NJ 08543-3065, U.S.A.

PACKAGING .

Steel containers. Quarts, gallons, 5 gallon tight head pails. Weights Including containers: Quart (.95 liters) - 2.5 lbs. (1.13 kilos), Galions (3.79 liters) = 8.2 lbs. (4.24 kilos), 5 gallons (18.93 liters) = 42.5 lbs. (21.66 kilos).

ORDERING AND PRICING INFORMATION

Contact factory at 609-883-7700 for name of your local distributor, pricing and availability, F.O.B. Ewing, N.J. Shipping and packaging extra. Available for export.

Terms: Net 30 days for D&B rated firms.

U.S. GOVERNMENT PURCHASERS:

LO/MIT-I is available through GSA: Contract #TFTC-88-CK-NIIS-01 effective 7/1/89-Section Heading: 80 Brushes, Paint, Sealers & Adhesives. GSA, Proc. Div. (9FTP10-C-M) GSA Center, Aubum, WA 98001.

TECHNICAL SERVICES DEPARTMENT Contact factory at 609-883-7700, 9-5 pm. EST or fax 609-497-0182, 24 hours a day.

ACCESSORIES & ADDITIONAL PRODUCTS

LS-1, Modified Compression Sprayer, a low cost, self-contained, coating application device.

SOLKOTE HI/SORB-II, spray applied selective coating. SOLKLEAN 101, Production metal cleaner.

SOLKLEAN 201, Water based aluminum conversion coating. SOLSOLV 301, Low cost replacement solvent for Xylene.

ISOPROPYL ALCOHOL, For clean-up of LO/MIT-I coatings.

IMPORTANT NOTICE TO PURCHASER

This bulletin is an introductory summary of LO/MIT-I Fladiant Barry Coating. The information provided is based upon typical installat conditions and tests we believe to be reliable. However, due to a wi variety of possible use conditions, SOLEC does not guarantee that typical values expressed will necessarily be obtained. The following is made in lieu of warranties, expressed or implied, including merchantabeny.

Seller's only obligation shall be to replace such quantity of the product proved to be defective. Seller shell not be liable for any injury, loss or demage, direct or consequential, arising out of the use of or inability to use the product. Before using, user shall determine the suitability of the product for their intended use, and user excumes all risk and liability whatsoever in connection therewith.

No statement or recommendation shall have any force or effect unless in an agreement signed by officers of seller and user.

RESEARCH FACILITIES

The Sofar Energy Corporation maintains a complete laboratory for the analysis of optical coatings. Our low cost services for the analysis of optical surfaces are used by many large manufacturers. Please contact us for prices.

LOMITINOTES

The Solar Energy Corporation maintains a continuing research program in spray applied optical surfaces. Pentinent data is published in the form of bulletins called LO/MIT/NOTES. These bulletins are available, free to our customers and other interested parties. Please write us to have your name placed on our mailing list.

OPT	1CAL	PROP	erties	OF	SELE	CTED	SUB5	TRA	\T	ES

	OP HUAL PROPERTIES	3111212	mare made and dear	
Substrate	Emisslylty Before LO/MIT Applied	Emissivity After LO/MIT Applied	Diffuse Reflectivity Before LO/MIT Applied	Diffuse Reflectivity After LO/MIT Applied
brick (red clay) cement block glass (soda lime) galvanized steel (bright) galvanized steel (dull paint lock) paper (kraft) plasterboard plywood poly carbonate (clear) polypropylene (opaque) steel, cold rolled, primed steel, cold rolled, unprimed steel, 316 stainlees	.92 .93 .86 .03 .57 .80 .90 .72 .84 .90 .87 .10	.36 .37 .22 .25 .26 .24 .21 .22 .22 .23 .23 .23	36% 32 7.3 77 15 48 55 46 8.8 8.1 22 57	71% 68 85 84 82 81 85 61 84 83 64 84

LO/MIT-I Application ideas-

LO/MIT-I is extremely lightweight (less than .05 ex_It*). It may be effectively used as a heat shield on many aircraft components including wiring harnesses, cowlings, fire walts and electronic components, it is also an excellent coating for balloon fabrics.

LO/MIT-I may be used as a low cost, lightweight heat snield on many automotive components including wrining harnessas, battery bexes, exhaust systems, air conditioning ducts, fire walls, intake manifolds, fuel pumps, rubber hoses, shock absorber boots, floor pans, electronic and plastic components.

Building and Construction

LO/MIT-I is a low cost substitute for metallic or metallized plastic folis. LU/MITH HE B TOW COST BUILDING FOR MELITIES OF MELITIE be easily sorey applied.

Daylighting
Since LO/MIT-I exhibits a high diffuse reliectivity on many building meterials. It may be effectively used to enhance daylighting and lower Humination coats.

The use of LO/MIT-I on ceiling and wall surfaces can result in substantial heating and cooling energy sevings, (See Radiant Barriers, Building and Construction, Metal Buildings.) Also, in factory buildings and ware-nouses, the application of LO/MIT-I to interior calling surfaces may raise winter radiant temperatures and increase ceiling reflectivity, thereby lowering both heating and lighting costs.

Metal Buildings
LO/MIT-1, when applied to the exterior of metal buildings, has been shown to lessen building skin temperatures in excess of 30°F (16°C) in 95°F (35°C) ambient environments. This can lead to substantial cecreases in healing and air conditioning costs.

Ovens, Pracess Piping, Power Generation Equipment LOIAST-I when applied to the exterior surfaces of boilers exens or ne temperature process piping can effectively block thermal radiation and may lead to substantial efficiency increases.

Whenever plastics are subjected to elevated temperatures, aurizes application of LO/MIT-I may lessen degradation due to adverse thermal environments. In many cases, lower cost and lower weight plactics may be used when they are conted with LO/MIT-L.

Regient Berriers

Recent herts by the Florida Solar Energy Center (FSEC) Indicate that Placent harts by the Florida Solar Energy Center (FSE) indicate that the role of radiam heat transfer, particularly in hot, sunny climates, may be much more important than recently recognized. In wase climated, heat gain prevention is often more critical to the energy performance of a building than stopping heat loss. Application of LO/MIT-I to the undersides of roofs and cavity wall surfaces creates an extremely effective defeat the control of the con tive radiant barrier that may lead to substantial energy savings at lower installed per square foot costs than aluminum foll or metallized plastic films.

Reflectors

LO/MIT-I exhibits excellent diffuse reflectivity on many aubstrates, it may be used as a low cost reflective auriscs in lighting fixtures, control panels and many other applications where reflectivity is needed.

Roof Coating

LO/MIT-I will lower root skin temperatures 20-40°F, it is unaffected by UV radiation and highly reflective to infrared, it will greatly extend root life and may be brushed, rolled or soray applied to blumen, PVC. are and may be prushed, rolled or soray applied to blumen, rec-rubber, aaphalt, tar and gravel, foam, ahingle, tile, ateel and most other roching aurhaces, it is hydrophobic and tends to be self-cleening. Field testing in Southern climates has shown energy savings from 15°s to in excess of 30% when LO/MIT-I is used as a reflective roof coaling.

Selective Surfaces

Selective Surfaces
High emissivity surfaces such as glass or cement, when coaled with LO/MIT MIT-I, exhibit low emissivities of .22-.30, By overcosting the LO/MIT I surface with SOLKOTE Mi/Sorb-II spray applied selective coating. At semi-selective surface exhibiting emissivities of .42-.50 and absorbivities of 50 50 97% may be achieved. At an installed coal of 12 of 12 certains can be achieved. conta per square foot, substantial cost savings can be achieved over the use of selective metal fails

4.4 ECO 4: T-8 FLUORESCENT LIGHTING

<u>Proposed Modifications</u>: Install high-efficiency T-8 fluorescent lamps driven by high frequency electronic ballasts into existing fixtures..

T-8 fluorescent lamps use rare earth phosphors to increase the lumen efficiency of the lamp. T-8 fluorescent lamps will not operate off standard or energy-saving magnetic ballasts, although there is a rapid-start magnetic ballast available specifically designed for T-8 fluorescent lamps. However, T-8 fluorescent lamps are most effective when used with high frequency, electronic ballasts which increase lumen efficiency in addition to minimizing ballast energy consumption.

Existing Conditions: Fluorescent lighting fixtures in the building are equipped with standard 40 Watt lamps and Magnetek magnetic ballasts.

Method of Analysis:

- The number and type of lighting fixtures in the building were tabulated during the field survey. They were used to develop input data for the Baseline energy simulation program and as a basis for cost estimates. Existing lighting fixture wattage was estimated based on fixture manufacturer's data.
- Lighting schedules were obtained from building managers at the time of the field survey.
- Lighting fixture wattage for T-8 fluorescent lamps and ballasts was estimated from lamp manufacturer's data. Total lighting electrical use with the T-8 fluorescent lighting modification was computed for the building.
- Annual electric energy savings were calculated by modifying the Baseline DOE2.1d computer simulation with the T-8 fluorescent lighting parameters, and subtracting the modified baseline computer simulation from the baseline computer simulation. The DOE2.1d model automatically calculates reductions in cooling loads and increases in heating loads to give an overall energy savings with the T-8 fluorescent lighting in-place.
- Any fixtures that are presently delamped remained delamped in the computer simulations.
- Use of T-8 fluorescent lighting will result in an estimated 3% reduction in lumen output.

- Added annual maintenance costs were calculated based on a rated life of 20,000 hours for existing F-40D lamps and new T-8 fluorescent lamps. Maintenance costs for ballasts were based on a rated life of 60,000 hours.
- Lamp costs were provided by Conserve-a-Watt. Unit lamp costs for existing F-40D lamps and T-8 four-foot straight fluorescent lamps were \$1.68 and \$4.90, respectively.

<u>Results</u>: The energy savings and economic results are summarized in the following table. The LCCA is presented on page 4-31. The T-8 fluorescent lamps can be installed with a project SIR of 3.31, a simple payback of 3.6 years, and an annual savings of \$2,418.

Annual Electric Energy Savings (kWh)	29,455
Total Annual Energy Cost Savings	\$2,418
Annual Maintenance Cost Savings	\$47
Investment Cost	\$12,429
Savings-to-Investment Ratio (SIR)	2.38
Simple Payback (Years)	5.0

<u>Recommendations</u>: This ECO is recommended for implementation. High-efficiency T-8 fluorescent lamps driven by high frequency electronic ballasts are recommended for the building.

EMC	ENGINEERS		EZDOE - ELITE SOFTWARE DEVELOPMENT INC	DOE-2.1D	8/ 7/1995	12:46:27	PDL RUN 1
DENVER,	CO	80227	GEODSS SITE DOE EVALUATION				
REPORT- BEPS	ESTIMATED	BUILDING ENERGY	PERFORMANCE	TRUTH OR	CONSEQU, N		

ENERGY TYPE IN SITE MBTU - CATEGORY OF USE	ELECTRICITY
SPACE HEAT	69.45
SPACE COOL	1547.35
HVAC AUX	426.10
DOM HOT WTR	0.00
AUX SOLAR	0.00
LIGHTS	196.29
VERT TRANS	0.00
MISC EQUIP	1233.86
TOTAL	3473.05

TOTAL SITE ENERGY 3473.00 MBTU 304.7 KBTU/SQFT-YR GROSS-AREA 304.7 KBTU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3473.00 MBTU 304.7 KBTU/SQFT-YR GROSS-AREA 304.7 KBTU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.5 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

1 (100	MPONENT	FY 1995	MILITARY C	ONSTRUCTION	PROJECT DATA	\	2. DATE
	ARI	· ·						Nov-95
3. 1	NST	TALLATION AND I	LOCATION					
_		ODSS Site, White	Sands Miss	ile Range, NN	Λ		TE DOO ITCT NUM	DED
		JECT TITLE	a Cuatama				5. PROJECT NUM 1406.008	IBER
	ECI	P: Upgrade Lightir	ig Systems	1155 03/01	E COOT ANALYSIS	CLINANA A DV	1400.000	
			ENE		E COST ANALYSIS : 'ATION INVESTMEN'			
		LOCATION: GEODS	SS Site, Whit	e Sands Missile	: Range, NM	REGION: 4	PROJECT NO:	1406.008
		PROJECT TITLE:	ECIP: UPGRA	ADE LIGHTING	SYSTEMS		FISCAL YEAR:	1995
		DISCRETE PORTION	I NAME:	TOTAL				
		ANALYSIS DATE:	11/09/95		ECONOMIC LIFE:	15	PREPARED BY:	E. Smith
1.		ESTMENT					£11 000	
		CONSTRUCTION CO		=			\$11,098 \$666	
		SIOH COST		i.0% of 1A) =			\$666	
		DESIGN COST	•-	i.0% of 1A) =			\$12,429	
		TOTAL COST	•	+1B +1C) =			\$12,429	
		SALVAGE VALUE O					\$O	
		PUBLIC UTILITY CO					>	\$12,429
	G.	TOTAL INVESTMEN	11 (1D -1E -1F) =				V12,420
2.	ENE	RGY SAVINGS (+)	OR COST (-):	:				
	DAT	TE OF NISTR-4942-1	USED FOR	DISCOUNT FA	CTORS:	<u>JUL '95</u>		
		ENERGY	FUEL COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED	1
		SOURCE	\$/kWh (1)	kWh (2)	SAVINGS (3)	FACTOR (4)		•
	Α.	ELECT	\$0.0821	29,455	\$2,418	12.02	\$29,067	
	₿.	DIST	\$0.00	0	\$0	-	\$0	
	C.	NAT GAS	\$0.00	0	\$0	-	\$0	
	D.	REFUS	\$0.00	0	\$ O	-	\$0	
	E.	COAL	\$0.00	0	\$0	-	\$0	
	F.	OTHER			\$0	-	\$0	
		DEMAND SAVINGS		0	\$0	-	\$0	\$29,067
	H.	TOTAL		29,455	\$2,418		>	\$29,067
3.	NOI	N-ENERGY SAVINGS	(+) OR CO	ST (-)				
	A.	ANNUAL RECURRIN	IG (+/-)		\$47			
		1 DISCOUNT FACT	TOR		(From Table A) =	11.94		
		2 DISCOUNTED SA	AVINGS (+)	COST (-)	$(3A \times 3A1) =$		\$560	
	В.	NON-RECURRING (+ /-)					
		ITEM		SAVINGS (+)	YEAR OF			
				COST(-) (1)	OCCURRENCE (2)	FACTOR (3) (TABLE B)	SAVINGS/COST (4)
		a. MATERIAL: NON	ΝE	\$0	0	0.00	\$0	
		b. MATERIAL: NO	NE	\$0	0	0.00	\$0	
		c. MATERIAL: NON	NE	\$0	. 0	0.00	\$0	
		d. TOTAL		\$0			\$0	
	C.	TOTAL NON-ENERG	Y DISCOUN	TED SAVINGS	(+) OR COST (-)	(3A2 + 3Bd4) =		\$560
4.	FIR	ST YEAR DOLLAR S	AVINGS (+)	/ COSTS (-)		(2H3+3A+(3Bd1/E	conomic Life))	\$2,465
					O YEARS TO QUALI	$FY) \qquad (1G/4) =$		5.04
		TAL NET DISCOUNT				(2H5 + 3C) =		\$29,628
		COUNTED SAVINGS			SIR)	(6/1G) =		2.38
	_	(MUST HAVE SIR >						

	ENGINEER'S OPIN	ION OF PRO	DBABL	E COST				•	SHEET	1		OF	1
AREA		TIVITY			LOCATION					AMENDME			
					White Sands	Missile Rang							
ł	CT TITLE T-8 Lighting	Installation				CONTRACT							
GEODS	S, Energy Conservation Survey					DA	CA01-94-D-0			,			
				MATERI	AL COST		LABC	OR COST	7.4.1	EQUIPM	ENT COST	TOTA	L COST
١		Unit	l., ,	14.5				Labor	Total				
Line	Item Description	of	No. of	Unit		Manhrs/	Total	Cost/	Labor	Unit	.	Unit	l <u> </u>
No.		Measure	Units	Cost	Total	Unit	Manhrs	Manhour	Cost	Cost	Total	Cost	Total
1	Replace lamps	ea	294	\$4.90	\$1,441	0.08	24.50		\$453 \$227	\$0.00	\$0	\$6.44	\$1.894
2	Replace ballasts Travel to Socorro	ea	147	\$15.15	\$2,227 \$0	0.08	12.25 6.00	\$18.50 \$18.50	\$111	\$0.00 \$0.00	\$0	\$16.69 \$18.50	\$2.454
3 4	Travel to job site	hrs	4		\$0 \$0	1.00	4.00	\$18.50	\$74	\$0.00	\$0 \$0	\$18.50	\$111 \$74
5	Travel to lamp disposal site	hrs	2		\$0 \$0	1.00	2.00	\$18.50	\$37	\$0.00	\$0	\$18.50	\$37
6	Load old lamps in truck	hrs	- 2		\$0	1.00	2.00	\$18.50	\$37	\$0.00	\$0	\$18.50	\$37
7	Lodging and per diem	days	5		\$0		0.00	\$18.50	\$0	\$100.00	\$500	\$100.00	\$500
B	Milage	miles	600		\$0		0.00	\$18.50	\$0	\$0.30	\$180	\$0.30	\$180
9			1		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
10					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
11					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
12					\$0		0.00	\$ 18.50	\$ 0	\$0.00	\$0	\$0.00	\$0
13					\$ 0		0.00	\$1 8.50	\$ 0	\$0.00	\$0	\$0.00	\$0
14			ļ		\$0		0.00	\$ 18.50	\$0	\$0.00	\$0	\$0.00	\$0
15			 		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
16			<u> </u>		\$0		0.00	\$18.50	\$ 0	\$0.00	\$0	\$0.00	\$0
17			!		\$0 \$0		0.00	\$18.50 \$18.50	\$0 \$0	\$0.00 \$0.00	\$0	\$0.00	\$0 \$0
18 19					\$0		0.00	\$18.50 \$18.50	\$0 \$0	\$0.00	\$0 \$0	\$0.00 \$0.00	\$0 \$0
20			ļ		\$0 \$0		0.00	\$18.50	\$ 0	\$0.00	\$0	\$0.00	\$0
21			 		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
22			 		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
23			<u> </u>		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
24					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
25			1		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$ 0
2 6					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
27					\$ 0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
28					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
29					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
30			_		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
31			ļ		\$0 \$0		0.00	\$18.50 \$18.50	\$0 \$0	\$0.00 \$0.00	\$0 \$0	\$0.00 \$0.00	\$0 \$0
33			 		\$0 \$0		0.00	\$18.50 \$18.50	\$0	\$0.00	\$0	\$0.00	\$0
34			<u> </u>		\$0		0.00		\$0	\$0.00	\$0	\$0.00	\$0
35			1		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
36					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
37					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
38					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	\$0
3 9	SUBCONTRACTOR S	UBTOTAL			\$3,668		\$51		\$939		\$680		\$ 5,287
40	LABOR BURDEN	%	30		\$0				\$282		\$204		\$486
41	SUBTO				\$3,668				\$1,221		\$884		\$ 5,772
42	OVERHEAD	- %	12.0		\$440				\$146		\$106		\$ 693
43	SUBTO		ļ		\$4,108				\$1,367		\$990		\$6.465
44	PROFIT	% OTAL	12		\$493				\$164		\$119		\$776
45 46	SUBCONTRACTOR T OVERHEAD	OTAL %	10.95		\$4,601 \$504	-			\$1,531 \$168		\$1,109		\$7,241 \$703
40	SUBTO		10.95		\$5,104				\$168 \$1,699		\$121 \$1,230		\$793
47	PROFIT	%	8		\$5,104			L	\$1,699	L	\$1,230 \$98	·	\$8,033 \$643
49	SUBTO		l °		\$5,513				\$1,835		\$1,329		\$8,676
50	BOND	% %	0.737		\$41	i		L	\$1,033	L	\$10		\$64
51	SUBTO		J		\$5,553				\$1,848		\$1,339		\$8.740
52	N. M. TAX	%	5.8125		\$323				\$107		\$78		\$508
53	SUBT				\$5,876				\$1,956		\$1,416		\$9,248
54	CONTINGENCY	%	20		\$1,175				\$391		\$283		\$1,850
55	GRAND TOTAL				\$7,052				\$2,347		\$1,700		\$11,098
PREPAR	EDSY API	PROVED BY			TITLE OR OR	GANIZATION				DATE			
l	EMS					E M C Engi	ineers, Inc.				11/2	2/95	

LIFE CYCLE COST ANALYSIS

T-8 LAMPS BALLASTS ECO-4.XLS
Prepared by:E. Smith
11/9/95
Checked by:

	Economic Life (yrs)	7
	15	
		0
	Building No.	34568
Investmen		
	Construction Cost	\$11,098
	SIOH (6.0%)	\$666
	Design Cost (6.0%)	\$666
	Salvage Value of Existing Equipment	\$0
	Public Utility Company Rebate	\$0
	Total investment	\$12,429
Current Si	tuation (Baseline) Annual Energy Use	200 00
	Lights	288.88
	Space Cool	1,568.95
	Space Heat	55.12
	HVAC Aux	426.63
	Misc. Equip	1,233.86
	Total (MBtu)	3,573.44
	Electric Energy (kWh)	1,047,008
Pronosed	Situation Annual Energy Use with ECO	
Порозос	Lights	196.17
	Space Cool	1,547.35
	Space Heat	69.45
	HVAC Aux	426.10
	1	1,233.84
	Misc. Equip	3,472.91
	Total (MBtu)	1,017,553
	Electric Energy (kWh)	1,017,330
Annual Er	nergy Savings	
	Electric Energy (kWh)	29,455
Annual Fr	nergy Cost Savings	
ANIDO LI	Electric Energy	\$2,418
	Electric Demand	\$0
	1-	\$2,418
	Total Annual Energy Cost Savings	Ψ£, 410
	- ,	
Discount		12.02
	Electric Energy	12.02
	Liberto Energy	
Discounte	d Energy Cost Savings	
Discounte		\$29,067
Discounte	d Energy Cost Savings	\$29,067
	d Energy Cost Savings Electric Energy gy Savings(+)/Cost(-)	
	d Energy Cost Savings Electric Energy	\$353
	d Energy Cost Savings Electric Energy gy Savings(+)/Cost(-)	
	d Energy Cost Savings Electric Energy gy Savings(+)/Cost(-) Existing Annual Ballast Replacement Cost Savings Lamp Replacement Cost Savings	\$353
	d Energy Cost Savings Electric Energy gy Savings(+)/Cost(-) Existing Annual Ballast Replacement Cost Savings Lamp Replacement Cost Savings Annual Recurring Savings(+)/Cost(-)	\$353 (\$306)
	d Energy Cost Savings Electric Energy gy Savings(+)/Cost(-) Existing Annual Ballast Replacement Cost Savings Lamp Replacement Cost Savings Annual Recurring Savings(+)/Cost(-) Discount Factor	\$353 (\$306) \$47 11.94
	d Energy Cost Savings Electric Energy gy Savings(+)/Cost(-) Existing Annual Ballast Replacement Cost Savings Lamp Replacement Cost Savings Annual Recurring Savings(+)/Cost(-)	\$353 (\$306) \$47
Non-Ener	d Energy Cost Savings Electric Energy gy Savings(+)/Cost(-) Existing Annual Ballast Replacement Cost Savings Lamp Replacement Cost Savings Annual Recurring Savings(+)/Cost(-) Discount Factor Discounted Non-Energy Savings(+)/Cost(-)	\$353 (\$306) \$47 11.94
Non-Ener	d Energy Cost Savings Electric Energy gy Savings(+)/Cost(-) Existing Annual Ballast Replacement Cost Savings Lamp Replacement Cost Savings Annual Recurring Savings(+)/Cost(-) Discount Factor Discounted Non-Energy Savings(+)/Cost(-) e Cost Summary	\$353 (\$306) \$47 11.94 \$560
Non-Ener	d Energy Cost Savings Electric Energy gy Savings(+)/Cost(-) Existing Annual Ballast Replacement Cost Savings Lamp Replacement Cost Savings Annual Recurring Savings(+)/Cost(-) Discount Factor Discounted Non-Energy Savings(+)/Cost(-) cost Summary Simple Payback (yrs)	\$353 (\$306) \$47 11.94 \$560
Non-Ener	d Energy Cost Savings Electric Energy gy Savings(+)/Cost(-) Existing Annual Ballast Replacement Cost Savings Lamp Replacement Cost Savings Annual Recurring Savings(+)/Cost(-) Discount Factor Discounted Non-Energy Savings(+)/Cost(-) cost Summary Simple Payback (yrs) Total Net Discounted Savings	\$353 (\$306) \$47 11.94 \$560
Non-Ener	d Energy Cost Savings Electric Energy gy Savings(+)/Cost(-) Existing Annual Ballast Replacement Cost Savings Lamp Replacement Cost Savings Annual Recurring Savings(+)/Cost(-) Discount Factor Discounted Non-Energy Savings(+)/Cost(-) cost Summary Simple Payback (yrs)	\$353 (\$306) \$47 11.94 \$560

ECO-4.XLS
Prepared by:E. Smith
11/9/95
Checked by:____

T-8 LAMPS BALLASTS

D. Statters Miles	24550
Building No.	343001

			scount Factors (1)
Energy Type	Unit Energy Cost		Region 4	
Economic Life of ECO (yrs)		10	15	20
Electric Energy	0.0821 (\$/kWh)	8.58	12.02	15.08
Electric Demand	0 (\$/kW)	0 -	0	0
Annual Recurring Non-Energy Savings		8.53	11.94	14.88

(1) NISTIR 4942-1 Energy Prices and Discount Factors for Life-Cycle Cost Analysis 1995

		T		EXISTING	T-8
	LAMP	NO.	LAMP	FIXTURE	FIXTURE
DESCRIPTION	TYPE	LAMPS	WATTS	WATTS	WATTS
4' RECESSED FLUORESCENT	FLUOR	2	40	89	58

4' RECESSED FLUORESCENT-2 LAMP	14
ual Operating Hours Calculation	
Baseline Lighting Electric Demand (kW)	13.1
Baseline Lighting Electric Energy (kWh)	84,641
Annual Operating Hours	6,470
facement of Lamps	
Number of Lamps 4' Straight Tube	294
Lamp Life	20,000
Lamp Replacements per Year	95
Replacement Cost Per Lamp	\$6.44
Incremental Replacement Cost per Lamp	\$3.22
Incremental Annual Lamp Replacement Cost	\$306
Total Annual Lamp Replacement Cost Savings	(\$306
lacement of Existing Ballasts	
Number of Ballasts	147
Ballast Life (hrs)	60,000
Ballast Replacements Per Year	16
Replacement Cost Per Ballast	\$15.15
Labor Hours Per Ballast	0.33
Labor Cost Per Ballast	\$7.13
Total Annual Ballast Replacement Cost	\$350
acement of New Ballasts	

- Opposing, rotary-action cam latches for secure door closing. Latches finished after fabrication with smooth, durable, white nylon coating.
- T-hinges die-embossed for maximum strength. Door frame can be hinged or latched from either side.
- Door frame corners screwed together for rigidity ensures tight fit and easy lens replacement.
- Full-depth end plates secured by screws and unique interlocking corner detail.
- Shielding media completely framed in all door types. Diffusers 100% UV-stabilized acrylic plastic except as noted.
- Urethane foam gasket seals fully between door frame and housing—eliminates light leaks.
- · Pressure-lock lampholders secured by snap-in socket track for simplified maintenance.

SPECIFICATIONS

Ballast

Thermally-protected, resetting, Class P, HPF ballast standard. Sound rating A, CBM/ETL certified, UL listed. Advance, GE or Universal installed unless otherwise specified.

Wiring & Electrical

AVM, TFN or THHN wire used throughout, rated for required temperatures. All ballast leads extend minimum of 6" through access plate.

Input watts: standard 89, energy-saving 69.

Materials

Metal parts die-formed from heavy-gauge steel. Housing dieembossed for added rigidity. Metal gauges: channel and end plates 22-gauge; steel door frame 20-gauge; channel cover and socket track 24-gauge.

Finish

Five-stage, iron-phosphate pretreatment ensures superior paint adhesion and rust resistance. High-gloss, baked white enamel finish (88% gloss, 86% reflectance). Salt spray test 250 hours. Hardness minimum 2H.

UL listed and labeled I.B.E.W.—A.F. of L.

Fixture guaranteed for one year against mechanical defects in manufacture.

Dimensions and specifications subject to change without notice

MOUNTING DATA Lay-in Grid Luminaire for use in:

Exposed Grid Tee Ceilings

Minimum 5%" plenum depth required for installation

Concealed Grid Tee Ceilings

Approval

Job Information

2GT 240

GRID TROFFER 2' x 4' • 2 LAMPS • RAPID START

PHOTOMETRICS

2GT 240 A12*

COEFFICIENTS OF UTILIZATION

Pcc

2

ZONAL CAVITY

П						2	0%							
_		0%			7	0%			504	4		304		
70%	50%	30%	10%	70%	50%	30%	10%	50%	30%	10%	50%	30%	10%	1 1
 85 78 72 66 61 56 52 48 44 41	81 72 65 58 52 47 42 38 34	78 58 59 52 45 40 36 32 28 25	76 64 55 47 41 36 31 27 24 21	82 76 70 55 55 51 47 43 40	80 71 64 57 51 46 42 37 34	77 67 58 51 45 40 36 31 28 25	75 63 54 47 41 36 31 27 24	76 68 61 55 49 45 40 36 33	74 65 57 50 44 39 35 31 27 25	72 62 53 46 40 35 31 27 24	73 66 59 54 43 39 36 32 29	72 63 56 49 43 39 34 31 27 24	70653460 5340 3517731	

CANDLEPOWER

ANGLE	ALONG	22 .5°	45.0°	67.5°	ACROSS
8884388886888866 ₀₀	1945 1933 1909 1864 1800 1709 1592 1448 1273 1077 698 549 418 328 2625 1855 96	1948 1948 1928 1835 1756 1835 1756 1506 1327 1128 931 236 414 310 236 163 91	1948 1946 1946 1950 1862 1795 1795 1795 1795 1381 1386 8754 272 2042 880 0	1946 1943 1933 1938 1893 1893 1894 1765 1475 1271 1052 620 241 1771 96 0	948 1947 1947 1947 1957 1852 1757 1497 1298 1998 1998 1998 1998 1998 1998 1998

ZONAL LUMEN SUMMARY

ZONE	LUMENS	44 LAMP	44 FIXTURE
030	1550	24 2	31 6
3060	2586	40 5	52 7
6090	772	12 0	15 7
090	4910	76.7	100 0

TYPICAL VCP PERCENTAGES

ROOM SIZE (FEET)	S'2, VER			GHT 1088 10.0
20 x 20 30 x 30 30 x 60 60 x 30 60 x 60	7855656	75 67 58 69 59	88X8X	73 66 57 69 58

*Standard ballast, F40T12/CW lamps (3150 lumens)

Spacing criteria: $II = 1.2 \times mounting height; L = 1.3 \times mounting height$

Full report available. Request ITL 27058

For photometrics on other configurations, see Technical Data section or Lithonia representative

ORDERING INFORMATION

Explanation of Catalog Number:

2GT

240

Example: 2GT 240 RN A12 120 ES GLR

VOLTAGE 120 or 277 Others available-consult factory

FRAME TYPE

FLUSH STEEL

Series -No. Lamps

Lamp Wattage

FLUSH ALUMINUM REGRESSED ALUMINUM

(Leave Blank) FN 'latural FM-Matte black FW-White

RN-Natural RM-Matte black RW-White

Carn-action spring-loaded latch standard on aluminum door frames

DIFFUSER TYPE

A12	#12 pattern acrylic
A12.125	#12 pattern acrylic, .125" thick
A19	#19 pattern acrylic, .156" thick
K20	#20 pattern acrylic, .140" thick
3E	KSH 3-E pattern
IM	Injection-molded acrylic, .150" thick
84Y	Holophane 8224 with overlay
AC	Dropped dish, matte white acrylic

For complete list of lenses and louvers, see OPTIONS AND ACCESSORIES section.

FIXTURE SCHEDULE

TYPE	CATALOG NUMBER

REMARKS

OPTIONS

ES	Energy-saving ballasts (Advance Mark III Universal SLH or GE Maximiser I)
GLR	Internal fast-blow fusing
EL	Self-contained emergency lighting
LP	F40 CW lamps (installed)
SLP	Energy-saving lamps (installed, 34W, full light output, 3050 lumens)
SW	Stretch-Wrap (palletized in cartons)
JP	Job Palletized (uncartoned)
FR	Suitable for UL listed fire-rated ceilings

For details and complete list of options, see OPTIONS AND ACCESSORIES section

4-36

4.5 ECO 5: VORTEX TUBE

<u>Proposed Modifications</u>: The vortex tube cooling system is part of the telescope camera system and can only be modified through redesign of the camera which is beyond the scope of this project. However, the vortex tube cooling system has very poor efficiency and is a major energy user. The cameras are scheduled for replacement in about two years. The purpose of this evaluation is to quantify energy use and energy costs for this system.

<u>Existing Conditions</u>: Each vortex tube in each camera is operated by a separate 5 hp air compressor. The compressors are interconnected in case of a compressor failure. Since the compressors are not fully loaded, the maintenance crew keeps one compressor off-line and uses the other two to provide the air needed to cool the cameras. Even then the compressors are still not operating at capacity.

Flow through the vortex tubes is seasonally adjusted to maintain the desired temperature range in the camera. Compressed air pressure supplied to the vortex tubes are manually adjusted at a throttling valve at each camera. Pressures are varied from 40 to 80 psig.

Based on discussions with building personnel, it was assumed that the compressors operate about 50% of the time between the hours of 3 p.m. and 7 a.m. throughout the year. Under these conditions, the air compressors consume 38,441 kWh annually at an annual cost of \$3,156.

Recommendations: It is recommended that the new cameras be cooled with a more efficient cooling system.

EM C Engineers, Inc. EMC#1406-008 GEODSS, White Sands Missile Range DACA 63-92-C-0152

UPS-ECO.XLS Prepared by: D Jones

Vortex Tube Energy Use

Specifications state that vortex tubes should provide 5 scfm of 0 to 10 degree C air for each camera.

A 5 horsepower air compressor will provide about 18 scfm of 140 psig air.

Building personnel report varying pressures to vortex tubes from 40 to 80 psig depending on the season.

Flow thru orifice given by:

cfm = 31.5 * C * D * D * sqrt(Ro * DP) / Ro

where

cfm is cubic feet per minute at upstream conditions

C is discharge coefficient of 0.6

D is diameter in inches

Ro is upstream density in lbm/ft3

DP is pressure drop across orifice in psia

Orifice diameter (inches)

0.08

Air Properties

Air Flow Calculations

Pressure	Pressure	Density	Flow	Flow
(psia)	(psig)	(lbm/ft3)	(cfm)	(scfm)
12.2	0	0.0623	0	0
52.2	40	0.2663	1.4824	6.3371
72.2	60	0.3684	1.5437	9.1279
92.2	80	0.4704	1.5774	11.9107
132.2	120	0.6745	1.6134	17.4676

At full load, air compressors draw the following kW:

kW = HP * 0.746 / 0.85 =

4.39

where

HP is motor horsepower 0.746 is conversion to kW 0.85 is motor efficiency

Assume each compressor operates 50% of the time from 3 pm to 7 am, 365 days per year.

Annual operating hours =

5840

Annual electricity use = 3 * kW * hours * 50% =

38,441 kWh

Cost per kWh

0.0821 \$/kWh

Annual electricity cost

\$3,156

QR-25 Series Tank Mounted Two-Stage Compressors

Quincy two-stage tank mounted compressors are furnished with Safe-Q-Lube pressure lubrication system. Start-stop mechanism includes Quincy patented loadless starting. Pressure gauge, safety valve, tank drain, shut-off valve, enclosed belt guard,

pressure switch and inlet filter are standard equipment. Tanks conform to ASME and National Board specifications for 200 PSI working pressure. Electric motors of the finest quality are standard equipment. Dual control is standard on tank mounted units — 10 HP and larger.

SPECIFICATIONS—PRESSURE LUBRICATED

MODE	MOTOR OR ENG.		CU. FT. FREE AIR	STD. PRESS. SWITCH	SIZE BORE & STROKE	OPER. SPEED	REC.	SIZE	APPROX. SHIPPING WEIGHT	
MODEL	H.P.	MIN.	MIN.	SETTING	IN.	R.P.M.	IN.	GAL.	LBS.	
F310-60	1½ 2	6.90 9.10	4.80 6.30	140-175 140-175	3½ & 2×2½	500 660	20×48	60	560 595	
F310-80	1½ 2	6.90 9.10	4.80 6.30	140-175 140-175	3½ & 2×2½	500 660	20×63	80	660 695	
F325	3 5	13.90 23.30	10.70 18.00	140-175 140-175	4½ & 2½×3	500 840	20×63	80	765 785 -	
F340	71/2	34.30	26.10	140-175	5¼ & 3×3½	780	20×63	80	1185	TWO CYLINDER
† F350	10	52.00	37.40	140-175	6 & 314×31/2	900	24×72	120	1495	
† F370	10 15	52.00 69.60	37.40 50.10	120-150 120-150	6 & 3 1/4 × 4	790 1070	24×72	120	1600 1670	MODELS
† F390-120	10 15 20	57.30 78.70 90.00	44.10 60.60 69.30	120-150 120-150 120-150	7½ & 4×4	560 770 870	24×72	120	1920 1970 2000	
† F390-200	10 15 20	57.30 78.70 90.00	44.10 60.60 69.30	120.150 120-150 120-150	7½ & 4×4	560 770 870	30×75½	200	2320 2370 2390	
†*DF390	10 15 20	57.30 78.70 90.00	44.10 60.60 69.30	120-150 120-150 120-150	7½ & 4×4	560 770 870	24×72	120	2145 2200 2300	

[†]These units are equipped with dual control. Standard VD pilot setting is 130-140 PSIG.

SPECIFICATIONS—PRESSURE LUBRICATED

	MOTOR	CU. FT.	CU. FT.	STD. PRESS. SWITCH	SIZE BORE &	OPER. SPEED	REC.	SIZE	APPROX. SHIPPING
MODEL	OR ENG. H.P.	DISPL. MIN.	FREE AIR MIN.	SETTING	STROKE IN.	R.P.M.	IN.	GAL.	WEIGHT LBS.
† F510 5	15 20	87.50 107.00	64.70 79.20	120-150 120-150	6 & 3¼×3½	760 940	30×75½	200	2550 2600
†*DF5105	15 20	87.50 107.00	64.70 79.20	120-150 120-150	6 & 3¼×3½	760 940	24×72	120	2500 2550
† F5120	20 25	113.00 123.00	84.70 93.00	120-150 120-150	6 & 31/4×4	870 940	30×75½	200	2625 2715
†*DF5120	20 25	113.00 123.00	84.70 93.00	120-150 120-150	6 & 31/4×4	870 940	24×72	120	2600 2650

FOUR CYLINDER MODELS

^{*}These units are base mounted with separate vertical air receivers. NOTE: Performance data is based on maximum 110% motor load.

[†]These units are equipped with dual control. Standard VD pilot setting is 130-140 PSIG.

^{*}These units are base mounted with separate vertical air receivers.

NOTE: Performance data is based on maximum 110% motor load.

4.6 ECO 6: PREMIUM EFFICIENCY MOTORS

Proposed Modifications: Install premium efficiency electric motors on HVAC equipment.

Existing Conditions: Most existing motors in the building are standard efficiency motors in the 1.0 to 7.5 horsepower range. A large 250 horsepower motor is used to turn a rotating UPS system.

Method of Analysis: Analysis proceeded as follows:

- Complete electrical measurements were made on the 250 horsepower motor including voltages, amps, power factor, and operating speed. The motor was found to be 11% loaded, operating with a 65% efficiency and a 45% power factor. This motor was evaluated in ECO 7 -Uninterruptible Power Supply Modifications.
- Nameplate data was collected for all motors.
- Speed measurements were made on accessible motors. Speed measurements were used to calculate motor slip which is proportional to the load fraction on the motor.
- Annual baseline electricity use was calculated based on the nameplate horsepower, annual operating hours, and speed measurements.
- Efficiencies and costs for premium motors were based on data provided by four motor manufacturers. Data from three manufacturers was averaged to produce the average efficiency and costs for each standard size of motor.
- Electric demand, annual electric use, and energy savings were calculated based on the load fractions, efficiencies, and operating hours of the premium efficiency motors.
- Annual maintenance costs for standard and premium motors were assumed to be the same.
- Installation costs were based on Means 1995 Electrical Cost Data and included a 20% remote location cost.

Results:

The 5 horsepower fan motor on AHU-2 was found to be a good candidate for replacement with a premium efficiency motor. Results are summarized in the following table.

Annual Electric Energy Savings (kWh)	2,197
Total Annual Energy Cost Savings	\$180
Annual Maintenance Cost Savings	\$0
Investment Cost	\$1753
Savings-to-Investment Ratio (SIR)	1.55
Simple Payback (Years)	9.7

Analysis results for other motors follow.

Recommendation: Replace the 5 horsepower fan motor on AHU-2 serving the office area with a premium efficiency motor.

1.	CON	MPONENT	FY 1995 M	ILITARY CON	ISTRUCTION PRO	JECT DATA		2. DATE
		MY						Nov-95
3.		TALLATION AND LO						
_		ODSS Site, White S	ands Missile R	ange, NM			5. PROJECT NUMBE	.D
₽.		JECT TITLE IP: Upgrade Lighting	Systems				1406.008	:n
		ii . Opgrade Lighting	Cystems	HEE CVC	LE COST ANALYSIS SI	IMANA A DV		
			E		VATION INVESTMENT			
		LOCATION: GEODS	SS Site, White S	ands Missile Rang	ge, NM	REGION: 4	PROJECT NO:	1406.008
		PROJECT TITLE:	ECIP: PREMIUN	M EFFICIENCY M	OTORS		FISCAL YEAR:	1995
		DISCRETE PORTION I	NAME:	TOTAL				
		ANALYSIS DATE:	11/09/95		ECONOMIC LIFE:	15	PREPARED BY:	E. Smith
	INV	ESTMENT						
	A.	CONSTRUCTION COS	ST	=			\$1,567	
	В.	SIOH COST	((6.0% of 1A) =			\$94	
	C.	DESIGN COST	((6.0% of 1A) =			\$94	
	D.	TOTAL COST	(1)	A + 1B + 1C) =			\$1,755	
	E.	SALVAGE VALUE OF	EXISTING EQUI	PMENT =			\$0	
	F.	PUBLIC UTILITY COM	IPANY REBATE	=			\$0	
	G.	TOTAL INVESTMENT		(1D -1E -1F) =			>	\$1,755
		RGY SAVINGS (+) OF						
	DA.	TE OF NISTR-4942-1				JUL '95		
		ENERGY	FUEL COST	SAVINGS	ANNUAL \$	DISCOUNT		
		SOURCE	\$/kWh (1)	kWh (2)	SAVINGS (3)			ı
		ELECT	\$0.0821	2,197	\$180	15.08	\$2,720	
		DIST	\$0.00	0	\$0	-	\$0	
		NAT GAS	\$0.00	0	\$0	-	\$0	
	D.	REFUS	\$0.00	0	\$0	-	\$0	
	Ε.	COAL	\$0.00	0	\$0	•	\$0	
		OTHER			\$0	•	\$0	
	G.	DEMAND SAVINGS		0	\$0	•	\$0	
	Н.	TOTAL		2,197	\$180		>	\$2,720
3.	NO	N-ENERGY SAVINGS (+) OR COST (-)					
	A.	ANNUAL RECURRING	6 (+/-)		\$0			
		1 DISCOUNT FACTO	OR .		(From Table A) =	11.94		
		2 DISCOUNTED SAV	/INGS (+) / COS	ST (-)	$(3A \times 3A1) =$		\$0	
	В.	NON-RECURRING (+	/-)					
		ITEM		SAVINGS (+)	YEAR OF	DISCOUNT		
				COST(-) (1)	OCCURRENCE (2)	FACTOR (3) (TABLE B)	SAVINGS/COST (4)	1
		a. MATERIAL: NONE	<u> </u>	\$ O	0	0.00	\$0	
		b. MATERIAL: NONE	<u> </u>	\$O	0	0.00	\$0	
		c. MATERIAL: NONE	ŧ	\$ 0	0	0.00	\$0	
		d. TOTAL		\$O			\$0	
	c.	TOTAL NON-ENERGY	DISCOUNTED	SAVINGS (+) OF	R COST (-)	(3A2 + 3Bd4) =		\$(
4.	FIR	ST YEAR DOLLAR SAV	VINGS (+) / CO	STS (-)		(2H3+3A+(3Bd1/Eco	nomic Life))	\$180
 5.		IPLE PAYBACK (SPB) I			S TO QUALIFY)	(1G/4) =		9.73
		TAL NET DISCOUNTED				(2H5 + 3C) =		\$2,720
		COUNTED SAVINGS T		RATIO (SIR)		(6/1G) =		1.5
-		(MUST HAVE SIR >				• •		

TOTAL	COST (6)	(\$)	\$802	\$876	\$940	1,040	\$1,242	1,567	\$1,782	457	.073	699	279	\$5,574	\$6,617	\$9,382	11,441	\$14,550						
Ŀ	_		8\$	**	\$	\$	\$1.	£,	\$1,	\$2,	\$3,	, , ,	\$4,	\$5,	\$6,	\$9,	\$ 1	\$14						
BASE (5)	LABOR	(\$)	\$82	\$92	\$96	\$114	\$129	\$156	\$187	\$227	\$297	\$316	\$359	\$432	\$492	\$534	\$576	\$711		ngency.				
	INSTALL	(hrs)	1.78	1.78	1.78	1.78	1.78	1.91	2.00	2.50	3.08	3.20	3.33	4.00	5.00	5.71	6.67	8.89	24.95/hr.	20% contii				
	HANDLE	(hrs)	2.00	2.50	2.67	3.50	4.20	5.33	6.67	8.00	10.67	11.40	13.30	16.00	17.78	19.00	20.00	24.00	ta 1993 is	profit, and				
S	AVG	1,384	\$359	\$389	\$420	\$457	\$553	\$704	\$791	\$1,122	\$1,390	\$1,699	\$1,989	\$2,628	\$3,140	\$4,616	\$5,704	\$7,277	cal Cost Da	erhead, 10%				
TOR COST	(4)		\$395	\$410	\$430	\$451	\$478	\$651	\$732	\$1,045	\$1,266	\$1,658	\$1,969	\$2,574	\$2,900	\$4,501	\$5,260	\$7,180	eans Electri	or, 15% ove	သွ			
PREMIUM EFFICIENCY MOTOR COSTS	(3)		\$362	\$402	\$442	\$490	\$678	\$776	\$815	\$1,232	\$1,535	\$1,828	\$2,125	\$2,823	\$3,467	\$4,974	\$6,305	\$7,790	(5) Labor cost for electrician from Means Electrical Cost Data 1993 is \$24.95/hi	(6) Includes 20% site & location factor, 15% overhead, 10% profit, and 20% contingency	(7) NEMA Standard MG 1, Table 12.6C			
MIUM EFFI	(2)	_	\$289	\$302	\$323	\$383	\$453	\$919	\$1,078	\$1,350	\$1,682	\$2,000	\$2,325	\$3,105	\$3,812	\$5,472	\$6,936	\$8,572	ist for electri	20% site &	tandard MG			
PRE	Ê		\$319	\$354	\$387	\$429	\$502	\$685	\$825	\$1,088	\$1,368	\$1,610	\$1,874	\$2,486	\$3,053	\$4,374	\$5,548	\$6,860	(5) Labor co	(e) Includes	(7) NEMA S			
ENCY	AVG	1,384	77.5%	77.5%	80.8%	83.2%	85.2%	86.3%	87.5%	88.3%	89.4%	%0.06	90.3%	91.0%	91.8%	92.6%	93.4%	93.0%	_	_	_			
STANDARD EFFICIENCY MOTOR EFFICIENCY	(4)		77.0%	78.5%	82.5%	81.5%	84.0%	85.5%	87.5%	87.5%	88.5%	89.5%	90.2%	91.0%	91.7%	92.4%	92.4%	93.0%						
IENCY MO	(3)		77.0%	77.0%	80.0%	84.0%	85.5%	86.5%	87.5%	88.5%	90.2%	90.2%	90.2%	91.0%	91.7%	93.0%	94.1%	93.0%						
RD EFFIC	(2)		78.5%	81.5%	81.5%	85.5%	85.5%	86.5%	87.5%	88.5%	87.5%	90.2%	91.0%	91.7%	91.7%	91.0%	93.0%	91.7%						
STANDA	E		78.5%	77.0%	80.08	84.0%	86.0%	87.0%	87.5%	89.0%	89.5%	90.2%	90.6%	91.0%	92.0%	92.4%	93.6%	93.0%						
	AVG	1,384	86.2%	86.2%	86.5%	88.8%	89.7%	91.5%	91.7%	92.4%	93.0%	93.4%	93.8%	94.2%	94.4%	94.7%	94.7%	94.7%						
ENCY	4		85.5%	85.5%	86.5%	89.5%	90.2%	91.0%	91.7%	92.4%	93.0%	94.1%	94.1%	94.5%	95.0%	95.0%	95.0%	95.0%					,	
R EFFICI	(3)		86.5%	86.5%	86.5%	88.5%	89.5%	91.7%	91.7%	92.4%	93.0%	93.0%	93.6%	94.1%	94.1%	94.5%	94.5%	94.6%	cage					
Y MOTO	(2)		78.5%	81.5%	81.5%	85.5%	85.5%	87.5%	89.5%	91.0%	91.7%	93.0%	93.0%	93.6%	94.1%	94.1%	94.5%	95.0%	ed, squirre	里	Spartan			
PREMIUM EFFICIENCY MOTOR EFFICIENCY	ε		86.5%	86.5%	86.5%	88.5%	89.5%	91.7%	91.7%	92.4%	93.0%	93.0%	93.6%	94.1%	94.1%	94.5%	94.5%	94.6%	ed, fan cook	touse Optim	k Louis Allis	r-E1	Jer-E	
PREMIUN	NEMA	2	82.5%	84.0%	84.0%	87.5%	87.5%	89.5%	89.5%	91.0%	91.0%	92.4%	92.4%	93.0%	93.0%	93.6%	94.1%	94.5%	Totally enclosed, fan cooled, squirrel cage	 Westinghouse Optim HE 	(2) Magnetek Louis Allis Spartan	(3) TECO Max-E1	(4) Baldor Super-E	
	울		1.0	1.5	2.0	3.0	5.0	7.5	2	5	20	25	30	40	50	9	75	5		·	_	-		

UPW Discount Factors (1) Unit Energy Cost

 Economic Life of ECO (yrs)
 Unit Energy Cost
 10
 15
 20

 Electric Energy
 0.0821 (\$/kWh]
 8.53
 12.02
 15.08

 Annual Recurring Non-Energy Savings
 8.53
 11.34
 14.58

 Chi NISTIR 85.323-7
 Elbnergy Prices and Discount Factors to Life-Cycle Cost Analysis 1995

 Discount rate = 3%, Region 4

		Name	Nameplate Data							Field Me	Field Measurements	S					Calculated Values	d Values	
							Voltage			Current						(2)	(1)	(3)	(4)
		Rated			Rated										Motor	Load	Input	Output	Motor
escripti	유	Volts	7	Phase	Speed	A-B	ပ္		⋖		ပ	Power	Motor	Fan	Sync	Fraction	Power	Power	Effic.
		(Volts)	(Amps)		(mdu)	(Volts)	(Volts)	(Voits)	(Amps)	(Amps)	(Amps)	Factor	(mdu)	(udu)	(rpm)	(%)	(kW)	(kW)	(%)
Generat	250	480	285	က	1770	487	486		98	9	81	45.0	1796.6	N/A	1800	411%	32.58	21.14	65%
Generat	250	210	V/Ν	9	1800	210.3	210.5	210.7	79	52	67	6.96 6.96	1796.6	N/A	1800	i0/AIQ#	23.32	N/A	N/A
Conden	1.5	115	3	3	ΑN							N/A	W/A	N/A	1800	%02	0.97	0.78	81%
Refrig C	2	460	7.3	က	1750							A/A	W/W	V/A	1800	%02	3.02	2.61	86%
Refrig C	2	460	7.3	9	1750							N/A	W/N	N/A	1800	%02	3.02	2.61	86%
Chilled	_	208	3.3	6	1725							N/A	V/N	N/A	1800	%04	0.67	0.52	78%
Chilled	-	208	3.3	3	1725							A/A	V/A	N/A	1800	%02	0.67	0.52	78%
Chilled	-	208	3.3	က	1725							N/A	V/N	N/A	1800	%02	0.67	0.52	78%
Chilled	-	208	3.3	6	1725							N/A	V/A	A/A	1800	%04	0.67	0.52	78%
Air Com	2	208	15.4	6	1750							N/A	V/V	N/A	1800	%02	3.02	2.61	86%
Air Com	5	208	15.4	3	1750							Ν	N/A	A/A	1800	%02	3.02	2.61	86%
Air Com	2	208	15.4	6	1750							ΥN	N/A	N/A	1800	%02	3.02	2.61	86%
AHU-2	9	460	7.3		1730							N/A	1727.6	N/A	1800	103%	4.47	3.86	86%
AHU-3	က	230	8.36	3	1760							N/A	1781.7	1393	1800	46%	1.20	1.02	85%
AHU4	က	230	8.6	က	1740							N/A	1768.9	1255.7	1800	52%	1.36	1.16	85%
AHU-5	က	230	6	3	1740								1766.2	1370	1900	56%	1.48	1.26	85%
AHU-6	7.5	480	11	က	1750							N/A	W/A	N/A	1800	70%	4.48	3.92	88%
AHU-7	7.5	480	11	က	1750							N/A	N/A	N/A	1800	70%	4.48	3.92	88%
AHU-8	7.5	480	11	က	1750							N/A	N/A	N/A	1800	%02	4.48	3.92	88%
6-UHV	0.33	230	2.9	၉								N/A	N/A	N/A	1800	70%	0.22	0.17	78%

Savings

E M C E Inc.
EMC#140.008
GEODSS, White Sands Missile Range
DACA 63-92-C-0152

Rate	ō	Return	(AIRR)	14.4%	N/A	-1.6%	-0.1%	-0.1%	-0.5%	-0.5%	-0.5%	~6.0-	-0.1%	-0.1%	-0.1%	6.3%	-7.8%	-6.2%	-5.8%	2.0%	2.0%	2.0%	-2.6%
		SIR		69.9	N/A	0.33	0.45	0.45	0.41	0.41	0.41	0.41	0.45	0.45	0.45	1.55	0.09	0.13	0.14	1.20	1.20	1.20	0.27
Discounted	Cost	Savings	(\$)	\$108,834	N/A	\$325	\$621	\$621	\$368	\$368	\$368	\$368	\$621	\$621	\$621	\$2,720	\$89	\$134	\$145	\$2,105	\$2,105	\$2,105	\$243
	Simple	Payback		2.3	N/A	45.4	33.7	33.7	36.8	36.8	36.8	36.8	33.7	33.7	33.7	9.7	166.6	118.7	109.2	12.6	12.6	12.6	55.8
	nvestmen	Cost	(\$)	****	N/A	\$980	\$1,389	\$1,389	\$897	\$897	\$897	\$897	\$1,389	\$1,389	\$1,389	\$1,753	\$980	\$1,051	\$1,051	\$1,753	\$1,753	\$1,753	\$897
	Cellity	Incentive	(\$)	\$0	0\$	0\$	\$0	0\$	\$0	0\$	င္တ	S	0\$	0\$	0\$	0\$	0\$	0\$	0\$	0\$	0\$	0\$	0\$
	Installed	Cost	(\$)	\$14,550	N/A	\$876	\$1,242	\$1,242	\$802	\$802	\$802	\$802	\$1,242	\$1,242	\$1,242	\$1,667	\$876	\$940	\$940	\$1,567	\$1,567	\$1,567	\$802
Annual	Cost	Savings	(\$)	\$7,217	N/A	\$22	\$41	\$41	\$24	\$24	\$24	\$24	\$41	\$41	\$41	\$180	9\$	6\$	\$10	\$140	\$140	\$140	\$16
Energy	Sost	Savings	(\$)	\$7,217	N/A	\$22	\$41	\$41	\$24	\$24	\$24	\$24	\$41	\$41	\$41	\$180	\$ 8	6\$	\$10	\$140	\$140	\$140	\$16
Demand			(\$)	Н	⊢	Н	\vdash	\vdash	⊢	├-	├-	⊢	-	⊢	⊢	Н	Н	┝	⊢	_	S	L	\$0
Annual	Energy	Savings	(KWh)	906'28	ΥN	263	205	205	297	297	297	297	205	205	502	2,197	72	108	117	1,700	1,700	1,700	138
Electric	<u> </u>		(k)	10.03	Υ×	90.0	0.11	0.11	0.07	0.07	0.07	0.07	0.11	0.11	0.11	0.26	0.01	0.02	0.02	0.19	0.19	0.19	0.02
Annual	peratin	Hours		8760	Ϋ́	4380	4380	4380	4380	4380	4380	4380	4380	4380	4380	8760	5138	5136	5136	8760	8760	8760	8760
6)	Indu	Power	<u>(</u>	22.54	ΥN	0.91	2.91	2.91	0.61	0.61	0.61	0.61	2.91	2.91	2.91	4.22	1.19	1.34	1.46	4.28	4.28	4.28	0.20
(8)	Load	Fraction	8	11%	Α/N	%02	70%	70%	70%	70%	402	70%	%02	%02	70%	103%	46%	52%	26%	20%	%02	%02	20%
6	Motor	Effic	8	0.938	A/A	0.862	0.897	0.897	0.862	0.862	0.862	0.862	0.897	0.897	0.897	0.915	0.862	0.865	0.865	0.915	0.915	0.915	0.862
(9)	New	Motor	(gr	250	250	1.5	2	3	-	-	-	-	2	2	2		3	3	6	7.5	7.5	7.5	0 33
(2)	Output	Power	f)	28.3	¥	=	3.5	3.5	2.0	0.7	0.7	20	3.5	3.5	3.5	6.2	4.	9.	1.	5.3	5.3	5.3	00

		INC.	EZDOE - ELITE SOFTWARE DEVELOPMENT INC	DOE-2.1D	8/ 7/1995	13:27: 2 PDL RUN 1	
EMC DENVER,	ENGINEERS CO	80227	GEODSS SITE DOE EVALUATION	TRUTH OR (CONCROSS N		
REPORT- BERS	ESTIMATED	BUILDING ENERGY	PERFORMANCE	IRUIH OR (LONSEQU, N		_

ENERGY TYPE IN SITE MBTU -	ELECTRICITY
CATEGORY OF USE SPACE HEAT SPACE COOL	57.53 1565.05
HVAC AUX DOM HOT WTR	420.43
AUX SOLAR LIGHTS	0.00 288.88
VERT TRANS MISC EQUIP	0.00 1233.86
TOTAL	3565.76

TOTAL SITE ENERGY 3565.62 MBTU 312.8 KBTU/SOFT-YR GROSS-AREA 312.8 KBTU/SOFT-YR NET-AREA TOTAL SOURCE ENERGY 3565.62 MBTU 312.8 KBTU/SOFT-YR GROSS-AREA 312.8 KBTU/SOFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

4.7 ECO 7: UNINTERRUPTED POWER SUPPLY MODIFICATION

<u>Proposed Modifications</u>: It is proposed to replace or modify the existing Uninterrupted Power Supply (UPS) system for more efficient operation. Two options were evaluated:

- Option 1: Modify the existing rotating UPS with a smaller motor.
- Option 2: Replace the existing rotating UPS with a static UPS.

Existing Conditions: Presently, the existing UPS system consists of a 250 horsepower motor which turns a large flywheel coupled to an electric generator. The system receives 480 volts and delivers a maximum of 150 kW of 208 volt power. The system will provide at least 17 seconds of uninterrupted power if the electricity to the motor is interrupted. The lag time is needed for start up of the emergency generator. This is important because the site is over 18 miles away from the substation and the electricity supply is not always reliable.

Even though the existing UPS system is capable of supplying 150 kW of power, the requirements are reported to be a maximum of 44 kW. Electrical measurements indicated that the system was supplying only 23 kW at the time of the field survey. About 33 kW was being supplied to the motor in order to produce the 23 kW. The power factor at the motor was measured at 45%.

Assuming the power loss in the system remains at 10 kW, the annual energy cost for it is about \$7200. At this time, the Socorro Electric Company has not yet started to penalize WSMR for poor power factor, but they have started selectively penalizing other customers and will likely penalize WSMR soon. Poor power factor also increases power line losses and voltage drop. White Sands must pay for any line losses downstream of the utility meter which could be significant depending on the location of the meter.

An analysis of the two options stated above is presented below.

Option 1:

The existing 250 horsepower motor could be replaced with a 100 horsepower motor which should include a soft start system. The soft start, or variable speed drive, system would allow the motor to bring a non-rotating flywheel up to speed without damaging the motor. It may take twice as long to get the flywheel up to speed as with the 250 hp motor, but that should not significantly affect the operation of the facility. Based on the reported maximum demand of 44 kW, the maximum size motor required is about 56 horsepower. Use of a 100 horsepower motor would provide a good safety margin.

Measurements on the existing 250 hp motor at the time of the field survey indicated that the motor was 11% loaded and was operating with a 65% efficiency and a 45% power factor.

The new 100 hp motor operating at the same conditions would be 28% loaded and operate with a 94% efficiency and a power factor of 68%.

Option 2:

The existing rotating UPS system could be replaced with a static UPS system. The rotating UPS is a technology that is nearly obsolete. A static UPS system consists of an electronic and battery cabinet typically installed in the computer room which provides power line protection and a battery backup. At 40 kW, the smallest battery cabinet will provide 13 minutes of uninterrupted power as opposed to 17 seconds for the existing rotating UPS.

The static UPS operates with a 92% efficiency down to about 25% load. At 10% load, the efficiency is still in the high eighties. Two static UPS systems were priced:

- A 64 kW system for \$58,000
- A 100 kW system for \$68,000

Installation is typically in the range of 25 to 50% of equipment cost.

Analysis: Analysis proceeded as follows:

- Existing energy use was based on electrical field measurements at the time of the field survey.
- Energy use with the proposed modifications was based on data from the MotorMaster data base and from the static UPS manufacturer.
- Equipment and installation costs were based on local supplier quotes and estimates of installation time.
- Maintenance costs were assumed to be \$0.01/kWh for electrical motors and generators associated with the static UPS and \$0.03/kWh for the diesel-electric generator. The diesel-electric generator currently produces about 95,000 kWh of electricity annually. It was assumed that operation of the diesel-electric generator during thunderstorms would not be necessary with the static UPS system.
- A spreadsheet was used to calculate energy cost savings and ECO economics.

Results:

Results for both options are summarized in the following table:

	Option 1	Option 2
Annual Electric Energy Savings (kWh)	89,454	85,172
Total Annual Energy Cost Savings	\$7344	\$6993
Annual Maintenance Cost (Savings)	0	\$4909
Investment Cost	22,847	97,292
Savings-to-Investment Ratio (SIR)	4.85	1.83
Simple Payback (Years)	3.1	13.9

Recommendations:

Of the two options, Option 1 - New $100\ hp$ Motor, is recommended. This modification is the most cost effective.

UPS-ECO.XLS
Prepared by: D Jones
11/9/95

Checked by:____

1. COMPO	NENT		FY 1995 M	ILITARY CON	STRUCTION PROJEC	CT DATA		2. DATE
	ARMY							Apr-95
INSTAL	ATION AND I							
		ite, White Sands Missile Rar	ige, NM				5. PROJECT	NUMBER
PROJEC							S. PROSECT	NONBER
	ECIP: Upgr	ade Lighting Systems		LIEE CV	CLE COST ANALYSIS SU	IMMARY	<u> </u>	
					RVATION INVESTMENT			
				2.12.101				
		LOCATION: GEODSS Si	te, White Sands N	Aissile Range, NM		REGION: 4	PROJECT NO:	1413-001
		PROJECT TITLE:	ECIP: UPGRAI	DE UPS SYSTEM			FISCAL YEAR	1995
		DISCRETE PORTION NAME	i:	TOTAL				
		ANALYSIS DATE:	11/09/95		ECONOMIC LIFE:	20	PRÉPARED B	D Jones
	INVESTMEN	uT						
	A.	CONSTRUCTION COST	=	32			\$20,491	
	В.	SIOH COST		(5.5% of 1A) =			\$1,127	
	C.	DESIGN COST		(6.0% of 1A) =			\$1,229	
	D.	TOTAL COST	(-	1A +1B +1C) =			\$22,847	
	E.	SALVAGE VALUE OF EXIS	TING EQUIPMEN	T ==				
	F.	PUBLIC UTILITY COMPAN						
	G.	TOTAL INVESTMENT		(1D -1E -1F) =			>	\$22,84
	ENERGY SA	VINGS (+) OR COST (-):						
	DATE OF N	ISTR-4942-1 USED FOR DISC	OUNT FACTORS	:		OCT '94		
		ENERGY	FUEL COST	SAVINGS	ANNUAL \$		r DISCOUNTED	
		SOURCE	\$/kWh (1)	kWh (2)	SAVINGS (3)) SAVINGS (5)	
	Α.	ELEC	\$0.0821	89,454	\$7,344	15.08	\$110,750	
	В.	DIST						
	C.	NAT GAS						
	D.	REFUS						
	Ε.	COAL						
	F.	OTHER CANUNCS		10.21				
	G. H.	DEMAND SAVINGS TOTAL		89,454	\$7,344		>	\$110,75
	NON ENER	GY SAVINGS (+) OR COST (-)						
•	A.	ANNUAL RECURRING (+/			•			
	Δ.	1 DISCOUNT FACTOR	•		(From Table A) =			
		2 DISCOUNTED SAVINGS	S (+) / COST (-)		$(3A \times 3A1) =$			
	В.	NON-RECURRING (+/-)						
		ITEM		SAVINGS (+)	YEAR OF	DISCOUN	T DISCOUNTED	•
				COST(-) (1)	OCCURRENCE (2)	FACTOR (3 (TABLE B)) SAVINGS/CO	ST (4)
		a. MATERIAL: NONE						
		b. MATERIAL: NONE						
		c. MATERIAL: NONE						
		d. TOTAL						
	c.	TOTAL NON-ENERGY DIS	COUNTED SAVIN	GS (+) OR COST	Γ (-)	(3A2 + 3Bd4) =	•	
						10110 - 04 - 100 14 75	l (fa))	ė7 9.
		R DOLLAR SAVINGS (+) / CO				(2H3 + 3A + (3Bd1/Economic		\$7,34 3.1
		YBACK (SPB) IN YEARS (MUS	T BE < 10 YEAR	S TO QUALIFY)		(1G/4) =		3.1 \$110,75
		T DISCOUNTED SAVINGS				(2H5 + 3C) = (6/1G) =		\$110,75 4.8
-	DISCOUNT	ED SAVINGS-TO-INVESTMEN				(0/10)	-	4.0
		(MUST HAVE SIR > 1.25	10 QUALIFY)					

UPS-ECO.XLS Prepared by: D Jones 11/9/95

Checked by:____

Description		New	/ 100 Horsep	ower Motor		New 64 kW	Static UPS S	ystem
·			Driver	Generator		Driver	Generator]
Nameplate Data								_
Horsepower			250	250		250	250	
Rated Volts		(Volts)	480	480		480	480	
FLA		(Amps)	285	285		285	285	
Phase			3	3		3	3	
Full Load Speed		(rpm)	1770	1770		1770	1770	
Field Measurements								•
Voltage	A-B	(Volts)	487	210.3		487	210.3]
	B-C	(Volts)	486	210.5		486	210.5	
	C-A	(Volts)	485	210.7		485	210.7	İ
Current	Α	(Amps)	86	79		86	79	1
	В	(Amps)	91	52		91	52	1
	C	(Amps)	81	67	:	81	67	
Power Factor	A	(0.465	0.969		0.465	0.969	1
	В		0.47	0.999		0.47	0.999]
	Č		0.42	0.967		0.42	0.967	Ì
Motor Speed		(rpm)	1796.6	1796.6		1796.6	1796.6	1
Calculated Values		(rpitt)	1700.0	1700.0		1700.0	1100.0	1
Motor Load Fract	ion	(%)	11%	l N/A	i i	11%	N/A	1
Output Power	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(kW)	21.14	N/A		21.14	N/A	
Input Power		(kW)	32.70	23.54	1	32.70	23.54	
Motor Sync Spee	.d	(rpm)	1800	1800		1800	1800	
Motor Efficiency	tu.	(%)	65%	N/A		65%	N/A	
INICIOI ETIICIETICY			w 100 Horse		l l		Static UPS S	j vstem
Output Power		(hp)	28.3	N/A	ا ا	28.3	N/A]
Horsepower		(hp)	100	N/A		N/A	N/A	
Motor Efficiency		(%)	94%	N/A		92%	N/A	
Motor Load Fract	ion	(%)	28%	N/A		N/A	N/A	
Input Power	.1011	(kW)	22.49	N/A		22.97	N/A	
Energy Savings		(KVV)	22.43	14/0	1	22.51	1 19/2	J
Annual Operating	Hours		8760	N/A	1 1	8760	N/A	1
Demand Savings		(kW)	10.21	N/A		9.72	N/A	
			89,454	N/A		85,172	N/A	
Annual Energy S Demand Cost Sa		(kWh)	09,404	N/A N/A		05,172	N/A N/A	
		(\$) (\$)	\$7,344	N/A N/A		\$6,993	N/A	
Energy Cost Sav				N/A N/A		\$6,993	N/A N/A	
Annual Cost Sav	nigs	(\$) (\$)	\$7,344 \$20,491	1		\$87,000	N/A N/A	
Installed Cost Maintenance Savings		(\$)	Φ 20,491	N/A	j l	φοι,υυυ	I IN/A	J
		/¢\	I	I NI/A	ا ا	\$2,850	N/A	1
Diesel Generator		(\$)		N/A				
UPS Driver		(\$)		N/A		\$2,059 \$2,050	N/A	
UPS Generator		(\$)		N/A		\$2,059	N/A	
Static UPS	7-1	(\$)		N/A		(\$2,059)	N/A	-
Life Overla Cont Com		al (\$)	<u> </u>	N/A	j l	\$4,909	N/A]
Life Cycle Cost Summar		(4)	400 017	1 N/A	1 1	407.000	L 17/4	1
Investment Cost		(\$)	\$22,847	N/A		\$97,292	N/A	
Simple Payback		(yrs)	3.1	N/A		13.9	N/A	
Life Cycle Cost S	avings	(\$)	\$110,750	N/A		\$178,488	N/A	
SIR			4.85	N/A		1.83	N/A	
Rate of Return		(AIRR)	12.5%	N/A]	7.2%	N/A]
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				

	ENGINEER'S OPINION OF	11(00)(10			LOCATION					AMENDMENT	NO.		
A	ACTIVITY				LOCATION	liesila Danas I	MA.			CWEWDHEN!			
					White Sands N	CONTRACT N							
	TITLE UPS Modification												
DSS,	Energy Conservation Survey					DA	CA01-94-D-00			EOI (IDM	ENT COST	TOTAL	L COST
			l ⊦	MATERIA	AL COST		LABU	R COST	Total	EQUIFIM	ENT COST		. 000.
		Unit						Labor		l lait	-	Unit	
ne	Item Description	of	No. of	Unit		Manhrs/	Total	Cost/	Labor	Unit	T-1-1	Cost	Total
6		Measure	Units	Cost	Total	Unit	Manhrs	Manhour	Cost	Cost	Total		I Olai
1	Replace 250 hp motor with 100 hp motor				\$0	0.00	0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
2 1	Electric motor, 100 hp, Premium efficiency	ea	1	\$2,365	\$ 2,365	20.00	20.00	\$18.50	\$ 370	\$0.00	\$0	\$2,735	\$2,7
- 1-	Starter, 100 hp, Soft start	ea	1	\$4 ,450	\$4,450	48.00	48.00	\$18.50	\$888	\$0.00	\$0	\$5,338	\$ 5.3
- 1	Remove existing motor	ea	1	\$0.00	\$0	8.00	8.00	\$18.50	\$148	\$0.00	\$0	\$148.00	\$ 1
	Travel to Socorro	hrs	12		\$0	1.00	12.00	\$18.50	\$222	\$0.00	\$0	\$18.50	\$2
1	Travel to job site	hrs	8		\$0	1.00	8.00	\$18.50	\$148	\$0.00	\$0	\$18.50	\$1
. 1	Lodging and per diem	days	10		\$0		0.00	\$18.50	\$0	\$100.00	\$1,000	\$100.00	\$1,0
]		miles	600		\$0		0.00	\$18.50	\$0	\$0.30	\$180	\$0.30	\$1
- 1	Milage	ITRIES			\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
0			l		I		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
1					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
2					\$0				\$0	\$0.00	S 0	\$0.00	
3					\$0		0.00	\$18.50			\$ 0	\$0.00	
4			<u> </u>		\$0		0.00	\$18.50	\$0	\$0.00			
5					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
6					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
7					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
8					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
9			 		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
			 		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
0			l		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
1					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
2							0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
3					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
4					\$0		L		\$0	\$0.00	\$0	\$0.00	
5					\$0		0.00	\$18.50				\$0.00	
6					\$0		0.00	\$18.50	\$0	\$0.00	\$0 \$0	\$0.00	
7			1		\$0		0.00	\$18.50	\$0	\$0.00		\$0.00	
8					\$0		0.00	\$18.50	\$0	\$0.00	\$0		
9					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
ю					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	i
1					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
32					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
3					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
14			1		\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
35					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
					\$0		0.00	\$18.50	\$0	\$0.00	\$0	\$0.00	
36					\$0		0.00	·	\$0	\$0.00	\$0	\$0.00	
37	.,				\$0		0.00		\$0	\$0.00	\$0	\$0.00	
38		1			\$6,815	L	\$96		\$1,776		\$1,180		\$9,
39	SUBCONTRACTOR SUBTOTA		 				3370	 	\$533		\$354		S
10	LABOR BURDEN	%	30		\$0				\$2,309	·	\$1,534		\$10.
11	SUBTOTAL				\$6,815	1		l	\$2,309		\$184		\$1.
12	OVERHEAD	%	12.0		\$818						\$1,718		\$11
13	SUBTOTAL				\$7,633				\$2,586				\$1
14	PROFIT	%	12		\$916				\$310		\$206		\$13
45	SUBCONTRACTOR TOTAL				\$ 8,549			,	\$2,896		\$1,924		
46	OVERHEAD	%	10.95		\$936		L		\$317		\$211		\$1,
47	SUBTOTAL				\$9,485			L	\$3,213		\$ 2,135		\$14.
48	PROFIT	%	8		\$759				\$257		\$171		\$1,
49	SUBTOTAL				\$10,244				\$3,470		\$2,306		\$16
50	BOND	%	0.737		\$75	·		•	\$26		\$17		
	SUBTOTAL				\$10,319				\$3,496		\$2,323		\$16
51		*	5.8125		\$600				\$203		\$135		
52	N. M. TAX	*	3.6123		\$10,919				\$3,699		\$2,458		\$17
53	SUBTOTAL		-						\$740		\$492		\$3
54	CONTINGENCY	%	20		\$2,184		1		\$4,439	<u> </u>	\$2,949		\$20,49
55	GRAND TOTAL	I	1 1		\$13,103	l	L		\$7,439	I	42,040	L	420,70
	D BY APPROVE				TITLE OR OR					DATE			

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 13:34:35 PDL RUN 1
DENVER, CO 80227 GEODSS SITE DOE EVALUATION
REPORT- BEPS ESTIMATED EUILDING ENERGY PERFORMANCE TRUTH OR CONSEQU, N

ENERGY TYPE
IN SITE MBTU CATEGORY OF USE
SPACE HEAT
SPACE COOL
HVAC AUX
AUX SOLAR
LIGHTS
VERT TRANS
MISC EQUIP
TOTAL

ELECTRICITY
1569.61
1569.61
1669.61
1669.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
1689.61
16

TOTAL SITE ENERGY 3304.94 MBTU 289.9 KBTU/SQFT-YR GROSS-AREA 289.9 KBTU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3304.94 MBTU 289.9 KBTU/SQFT-YR GROSS-AREA 289.9 KBTU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

07/10/95 MotorMaster Database Query - Single Motor

Page 1

CRITERIA: Horsepower 250

Speed (RPM) 1800

Enclosure Totally Enclosed

Manufacturer: Toshiba

Model:

Catalog:

STD EFF B2504FLF4BM

List Price (\$): 13448

3/4 1/2 1/4 Full

Efficiency (%): 94.1 93.9 92.9 n/a

Power factor: 87.5 86.3 81.7 n/a

Full Load RPM: 1780

Voltage Rating: 460

Frame Size: 505UZ

Features: n/a

Warranty (yrs): n/a

Service Factor: 1.15

FLBD

LR

Torque (ft-lb): 738 1705

2214

Idle

FL

Current (amps): 72.0 285

1820

07/Il/95 MotorMaster Database Query - Single Motor Page 1

CRITERIA: Horsepower 100

Speed (RPM) 1800

Enclosure Totally Enclosed

Manufacturer: Reliance

Model: TEFC U-FRAME STD EFF

Catalog: P44G611 List Price (\$): 7343

Full 3/4 1/2 1/4
Efficiency (%): 95.8 96.1 95.9 94.0
Power factor: 90.5 89.1 84.4 68.0

Full Load RPM: 1786
Voltage Rating: 460
Frame Size: 445U
Features: U-Frame
Warranty (yrs): 1
Service Factor: 1.15

FL BD LR
Torque (ft-lb): 294 687 406

Facsimile Cover Sheet

	To: _	Dennis	Jone 5	-
Con	npany: _	EM		
F	Phone: _ Fax: _	985-25	27	
Cor	Phone: 3	GE SUPPLY, DEN 303-572-7115 303-572-7120	Kin Kei IVER	ndoll
Pages includi cove	Date: ng this r page:	7/13/95	5_	
Comments:	Estim	ated Quo	te on	
		Motor ?	501.0	
_			GE Supply — ((mag) / . a /c '
		Kirkandoli n Region Motor Specialist Danvar, CO 80204		Sul
	4/3 UUWES 3(. Denver, LO 60204		

GE Supply Quotation

General Distric Cornery

EMC Engineers, Inc.

70 2750 5. Cabebaruth Blud
Sute C-200
Denver CO 80227
AHM: Dennis Jones

Unless otherwise stated, this quotation expires 30 days from its date may be modified or withdrawn by QE Supply prior to any 1288 pts 200 SUPPRESIDE AND SUPPRESIDES AND PRIOR VIOLENCE OF THE WORLD AND COMMITMENSIONS should refer to the quotation number and be addressed to our office at the above

Attn: Dennis Jones	TIME PAGE
CFLOR9180L SQUARTE TO THE SQUARTE SA	Customata treatest rate from the state of th
TIME NO PART RAIMBER , DECERIPTION	QUANTITY (ONLY PRICE)
The following quot	ation'i
I will offer an i	educated File
1 if DM = IXOCX	\wedge
2. Motor Enclosure - 0	Pen dupproof - 441 16-A2
(with a large 1 17 st	
Jen 1. 100 hp. 1800 RPM ODP 404 T France	1, Energy 50 mc (1) \$2,365,00 each
Item 2. 100 hp GE AST Reduced Voltage Stort	AT-CD Sold State & 4450.00 Lev, Nemal (1) 4450.00
Delivery! Wotor 15 51	s 1/weeks.
Freight! Prepaid to	1 De Horak Mach
SALE OF ANY SOCIOE CONFIED BY THIS QUITITION IS EXPRESSLY CONDITION THE SADA OF THIS LETTER AND THIOSE CONTAINED IN ANY ATTACHMENTS	NED UPON THE TERMS AND CONDITIONS CONTAINED OR REFERRED TO HEREIN, INCLUDING THOSE SET FORTH ON JC107 9~ (3-80)

Dripproof

Frames 182 - 449, Type K, KS, KG, KGS and KR 3 Phase

Dimensions

DIMENSIONS-For ESTIMATING ONLY

												10 0	- la la -4										
												nension	e in Inct	=-					1	_ 1	. 1	0	P
	Ap-			SHA	FT					MOUNT	NG ®				8	c	8	G	J	K	•		
Frame	imate Net	Key	ray	Key	N-W	Ų	v	E	н	BA	BS	2 F	2XF					0.54	1,60	2.38	5.82	9.18	9,34 9,34
	W(in LD	Width	Depth	Length 1.75	2.76	1,125	© 2.60	3.75	0.406	2.75 2.75	2.26 2.75	5,50	4,50	8.66 8.68	6,64 6,64 8,00	14,58 14.58 17,26	4.50 4.50 5,25	.64	1.60	2.3B 2.60 2.60	6.88 8.88	9.15 10,44 10,44	10.34
182T 184T	64 80 120	0,250 ,250 312	0.125 ,125 .166	1.75	2.75 3.38	1.125	2.50 3.12 3.12	3.75 4.25 4.25	406 408 408	3,50	3.50 3.50	7.00	\$.60	9.60	8.00	17.26	5.25 6.25	,60 .70	1,50	2.35	9.06	12.44	12.28
215T 215T	125	312	,156 .188	2.3B 2.6E	3.38 4.00	1.875	3.75	5.00 5.00	531 ,531	4.25 4.25	5.00 5.00	10.00	8.25 9,50	11.20 11.20 12.40	11.30 11.30 12.80	22.31	6.25 7.00	.70 .80	1.50 1.70 1.70	3,35 3,30 3,30	10.0E	13.94	13,76 13,76
254T 256T 284T8	220 225	.375	,188 ,188	2.68	4.00 3.25 4.62	1.625 1.625 1.875	3.75 3.00 4.3B	5.50 5.50	.530 .530	4,76	5.50 5.50		9.50	12.40	12.50	24.84	7.00	.60 .60	1.70	5,30 3,30	10.06 10.06	12.94	13.78 13.78
284T 286TS	295	.500	,185	3.26	3.25	1,825 1,875	3.00	5.50 5.50	.530	4.75 4.75	5.50 5.50	11.00	10.50	12.40	12.60	24.94	7.00 8.00 2.00	1.00 1.00	1.70	3.60	11.06	15.94	15.72
286T 324TS	325 325 435	.500 .500	.250 .250 .250	3.25 2.00 3.88	4.62 3.76 5.25	1.876	3.80 5.00	6.25 6.25	.858 .858	5.25 5.25	6.00 6.00	12.00	10.50	14.40	13.80	27.66 26.06	8.00 8.00	1,00	1.70	3.60	11.08	15.94	15.72 16.72 17.68
324T 326T8	435	.500	.250	2.00	3.75 5.25	1.875	3.50 6.00	6.25 6.25	.656 .656	5.26 5.25 6.88	6.00 6.00 6.12	12.00	11.25	14.40	13.80		9.00	1.10	2.20	3.40	11,81	17.94	17.68
38418	450 850 850	.600 .600	250	2.00	3.75 5.85	1.878 2.375	3.50 5.62	7.00	.690	5.88	6,12 6,12	12,25	11.25	16.00	14.40	27.5€	9.00	1.10	2.20	3.40	11,81	17.94 17.94 18.94	17.88
384T 385TS	700	,500	.250	2.00	3.75 5.88	1.875 2.375	3.50 5.62	7,00 7,00 8,00	.690 .690	5.88 5.88 6.62	6.88	12.2	12.2		18.00	31.08	10.00	1,30	2.40	4.10	13.31	19.94	19.64
365T 404TS	760 925 925		250	2.75	4.26 7.25	2,125 2,875	7.00	8.00	,810 ,810	8.62	6.88	13.70	s \	18.00	16.00	31.06	10.00	1,30	2.40	4,10 4,10 4,90	13.31 13.31 15.64	19.94	19.64 21,60
405T	1	.500		2.75 5 5.52	4.25 7.25	2.125 2.875	7.00	8.00 8.00 9.00	.810	6.62 7.50	8.88	13.7	14.5		18.8	38.06 39.81	11.00	1.50	2.60 2.60 2.60	4.90	15.5	5 21.34	21.60
405T 444T 444T	S 122	.825 .878	31 43	2 3.05 7 6.88			8.25	9.00	,810	7.50	8.26 8.25	16.5	i	20.00	18.8	0 39.81	11.00	1.50	2.60 2.60	4,90	19.8	1 21.94	21.6
446T	8 130	.829 .879	.43	7 6.88	8.50	3.37	8.25	9.00	,811	7.50	8,2 12,5 12,5	0 25.0	0	20.0	27.3	0 44,50	111.00	1,50	2.60	4.90	19.8		21.6
4491 4491	6 169	0 .62	5 4	7 6.8	8.50	3.37	5 8.25	8.00		7.50 7.50			ŏ	เรากา	0 27.3	0 46.3	111.00					in the	

CONDUIT BOX DIMENSIONS

	JIT BO			Dim	ensione is	hehes		XN
Frame	Nominal Ho	Approx Voi	M	AB	AC	AF	XL	AR
TANDAR	ם בסאטטח	BOX ©			2.00	1,32	2.64	6,12
182-184 213-215 264-256	5 10 20	32 30 78	0.50 .50 1.25 1.50	7.03 8,66 10.31 12,53	6.06 7.20 8.25 9,78	2.38 3.50 4.35	5.00 6.06 7,59	3.62 5.52 6.26
284-286 324-326 364-365 404-405	30 60 75 125	137 370 370 700	2.00 3.00 3.00 3.00	15.20 18.25 19.01 20.32	11,46 12.51 14.88 16,19	6.44 6.44 7.00 7.00	10.69 10.69 11.76 11.75	8.56 10.00 10.00
444-449 444-449 444-449	250-300 350-400 450-500	700 1600 1500 1500	4.00 4.00 2-3.00 2-4.00	21,56 21,56 21,56 21,56	16.44 18.44 16.44 16.44	7,00 7,00 7,00 7,00	13,68 13,68 13,68 13,68	17.00 17.00 17.00 17.00
044-449 0458812	E CONDUI					1	2.64	6.1
182-184 213-215 254-256 284-256	10 20 30	32 78 - 137 370	0.50 1.25 1.50 2.00	7,03 8,31 12,16 13,93	9.41 10.19	1.32 3.50 4.36 6.44	6.08 7.59 10.69	6.5 6.2 8.5 8.5
324-326 384-365 404-405	50 76 125	370 700 925 925	3.00 3.00 4.00	15.20 18.01 18.43 19.74	11.48 13.88 14.13 15.44	6.44 7.00 7.00 7,00	10.69 11.75 13.16 13.16	10.0 14.1 14.1
444-449	200 250-300 350-400 450-500	2500 2500 2600	2-4.00 2-4.00 2-4.00 2-4.00	21.54 21.54 21.54 21.54	15.44 16.44 16.44	7.00 7.00 7.00 7.00	13.68 13.68 13.68 13.88	27.2 27.2 27.2 27.3

- © Shaft diameters 1½ inches and smaller will come within the limits of +0.000 inch -0.0005 inch: diameters 1% inches and larger +0.000 inch -0.001 inch.
- "V" represents length of straight part of shaft extension.
- Tolerance on "D" dimensions will be:
 - On Frames 182T-326T +0.000 inch-0.032 inch.
 - On Francs 364-449T +0.000 inch-0.060 inch.
- Oversized conduit box will be provided for 125 hp and larger for less
- O Hole for h inch condult with knockouts for 0.75 and 1.00-inch conduit.
- Motor feet have 2 holes-per-foot allowing NEMA F-1 or F-2 assembly while maintaining critical NEMA mounting dimensions.
- Providing incunting conditions permit, conduit box may be turned so that entrance can be made upward, downward, or from either side.
- Weights shown are approximate shipping weights and should be used for estimating only.

Premium Efficiency, Energy Saver® Motors pe KS, NEMA Design B, Continuous

40 C Ambient, 60 Hertz, 460 Volts, 3-phase, 1.15 Service Factor

Performance Data

1		P/	ille	SI	eel F	Volts,	182-	28 5,	AIUI	HIHL	1.05	000-02301		a	5004e11000654	Pow	er Fact	or O	_		No Loa	10
'IPF	100					000000000000000000000000000000000000000	30.305 Section 1	Torous				<u>E</u> ff	iciency	Ψ					_	Max.	Sound	
			_Amp	1184	FLAS	NEMA		NEM	NE		FL	FL	r. 3/4	ı	1/2-	Full-	3/4-		/2- pad	KVAR	Press.	
	Full-	Ful			EMA	Code	Full-	БT		•	Nom-	Gua Ente			load	1084	losd	10	280	` \$	00	•
orse	load	los			Potor	Letter	load	%FL		: I	inal	(mlr	•		0							
OW61	RPM	8		•	max.)	1	Lbtt.	(min.) (m	in.)	0	(IIIII							- 1	_	1	
	1	480	V 20	0 (1100.7										85.8	72.0	66.0) !	53.2	1.0	51	
		7			_ }		6.7	165	2	50	87.5	85	5 88	.8	œ.e	,			1	.9	51	
1/2	117	0 2	3 4	8.	20.0	M i	Q.7	,,,,					- 10	0.0	87.6	74,0	68.2	2	55.6		1	
	i	1	_			L.	9.0	160	7	246	87.5	85	.5 61			1	_			1.5	55	
2	116	5 2	9 6	.4	25.0	-					00 B	88	5 9	1.4	90.2	80.0	75.4	-	84.0 58.1	1.7	57	
	l	ـ اـ		8.5	32.0	K	8.9	215		260	90.2 89.5	87		9,9	88.1	75.0	70.	o .	3 5.1	• • • • • • • • • • • • • • • • • • • •	1	
3	176			9.2	32.0	K	13.4	155	i 7	230	95.5	•				85.5	85.	n	76.6	9.7	68	
	117	ר ופ	£ '			\		451		215	89,5	87		2.1	91.6	80.0			66.2	2.2	55	
-	35	n 8	.2 1	3.6	48.0	J	7.5	150 180		225	89.5			0.9	90.S	76.0		_	59.9	2.8	57	
5	17			4.6	48.0	١	15.0	150	•	215	89.5	87	7.5 8	8.8	88.5	,	•				64	2
	11	, – 1	.9 1	5.4	48.0	J	22.5			1		_		2.1	82.2	86.0	85	.3	78.8	2.2	6	
	1	- 1	_		P	н	11.3	14	3	200	89.5			2.9	92.6	81.5	; 8 <u>0</u>		73.0	2.5	5	
7 1/2	2 35			0.8	63.5	H	22.3	17	5	215	91.7			2.6	91.4	71.5	5 87	.5	58.1	1 7	\	
	17			2.2	63.5 83.5	H	33.4	15	0	205	91.7	•	•					7 4	80.9	2.8	. 7	
	111	80 1	3.8 2	3.6	5 3	\			_	-m	90.2		8.5	32.1	91.7	87.		7.6 9.3	71.5	3.6	6	11
	1	. اه	2.0 2	27.4	81.0	н	14.9	13		200	91.7		0.2	23.1	92.9	80.		7,2	55.8	5.9) 5	8
10				29.8	81.0	H	29.8	18 18		200	91.7		0.2	92.7	91.7	1 "				1	. 1 .	10
				31.4	81.0	H	44.6	12	~				•	aa a	92.8	88.	5 89	9.7	84,9	3.3		70 56
	- ''					1 _	22.4	13	30	200	91,0			92.8 94.1	92.0	81	5 8	0.0	72.0	5.	· 1 .	90 81
15	3!	20 1	7.5	40,8	116.0	G	44.5		\$0	200	93.0			92.5	91.6	76	,5 7·	4,7	65.6	1 6.	' '	,.
	1			43.4	116.0	Ğ	66.8	1	40	200	92.4	•	91.0	BL .~		1			82.9	4.	8 I '	71
	1	180 1	9.9	48.5	115.0	"	1				82.4		91.0	94.3	93.9	87		8.5	73.5	1 -		88
	1.	. ا	~ ~	52.5	145.0	· G	29.5		30	500	83.	•	92.4	94.5	94.2	82	''	11.0 15.1	68.7		2	61
20				56.8		a	59.3		50	200	92.	•	91.0	93.8	93.6	75		14.3	64.1		.0	84
		• • •		64.8		G	89.4		35	200 200	92.	•	91.0	\$3.2	92.9	77			•	1	- 1	
	1		∞., ≱.2	•	145.0	G	1184	, 1	25	200	1			_		م ا).5 E	30.6	88.4		.9	71
	- 1	900				1 _			30	200	83.	.0	91.7	84.8	94.6 94.6			77.9	59.	- 1 -	1	67 64
. 2	. ! :	540	28.1	64.6	182.5	g	37.		50	200	94.	.1	93.0	94.9	94,5			83.0	76.	- 1	2	54
-	" []		29.8	70.4	182.5	G	111.	· .	35	200	83.		82.7	94.4 93.2	63.2	' 1 i	1.0	75.3	65.	B 10		•
		180	30.0	•	182.5	G	148.	-	25	200	92.	,4	91.4	5 0.4	•••	ì		- · -	87.		.5	73
	1	885	32.5	-	182.5	1 "	1				93		92.4	94.6	93.		***	91.5 83.5	78.	- 1 -	.2	87
	1		AG 2	78 5	217.5	G	44.	_	130	200 200	94		93.0	94.9				82.8	78	2 1	3.7	64
3		1560	33.2 36.0	85.	217.5	1 4	88.	_	150	200		3.6	92.7	94.6		' 1 -		72.9	82		2.2	66
		1180	36.0	•		G	133	•	135 125	200	93		92.7	94.2	93.	• '	0.4	,		- 1 .	1	73
	1	890	39.5	•	217.5		176	.9	153	•••				04.5	94.	z s	20.5	91.6	87	•• 1	7.3	70
						. \ _	69	٥	125	200		3,6	92.4	94.8 95.4		- 1	7.0	88.5	80	- (9.9	66
	40	3560	44.2	101.			118		140	200		4.5	93.7	94.5			35.5	84.3	77	- 1 -	9.8 7.8	66
	-	1780	45.6		290.0				135	500		4,1	93.3 92.7	94.0			75.0	71.5	60	ر ا ه.،		
	1	1185	46.B	•					125	200	E	3.5	76.	J-1.1	•	ļ		~ ~	01	2.0	6.5	79
	1	890	53.3	-	290.0	′	ì					3.0	92.0	93.0		•~	92.0	93.6 85.8			2.8	70
	_ 1		E 4 9	_	382.	5 G		3.7	120	200		4.5	93.7	95.	4 95	·• 1	88.5 ec.5	85.0 84.5			2.1	66
	50	3560	54.3 57.2		362.	5 G	144		140	200 200	1 -	4,1	83.3	94.		~	86.5 84.0	82.6			3.0	69
		1780 1185	38.2		302.	5 G			135 125	200	1 -	5.6	92.7	94.	8 S:	.0	٠.٠	JV		l		**
	1	1153	59.3		362.		29	5.5	140		- 1				, ~	3,4	91,0	93.1		0.3	9.1	79 73
	1	555				0 0	. ۱ .	8.4	120	500		33.6	92.7	94. 95.		(i.g)	85.5	84.2			15.4	69
	60	3565	65.9		435.	·		6.2	140	200	1 2	85.4	94.7	95.		.4	85.5	84.4			15.8	69
		1790	69.1		. 435.	. 1		4.7	135	200		95.0	94.3 83.3	95 95		5.1	83.5	82.4	7	5.2	.5.5	
	1	1190		•	- 435. - 435.	•		4.7	125	200	' '	D4.1	J	••		1		23.3		0.7	10.4	83
	1	890	71.4	•	- 400	. `	- 1			200	, 1,	94.5	93.7	85	• • •	4.8	92.0	83.5		76.7	20.3	73
	\	6575	80.7	,	- 542			0.2	105	200		96.4	94.7	95	_	5.1	84.5 86.0	B4.9		78.6	17.7	69
	75	357E			. 542	.5	- 1	20.3	140 135		٠ ١	95.4	94.7	96	.,-	5.7	84.5	83.5		77.3	17.5	69
		1/90	1		. 542	2.5	- 1	30.7	125			94.5	93.7	98	.3 8	5.3	J-1,4			1		8.
		890	1		. 542	2.5	G 4	43.5	. 20		1	_			5.2	4.9	89.5	90.5		85.1	20.8	7
							G 1	45.9	105		- 1	94.5	93.7			5.7	85.0	82.9	•	74.9	30.4	6
	100	357	5 110.		. 725			93.2	125	20	~ [96.2	95.7 94.7			5.8	89.0	88.	<u>.</u>	84.3	18.1 26.4	6
	-	178	115	.0	. 725			40.7	125	20		95.4	94.7 94.3			5.2	84.0	82.	5	75.2	20.7	•
	•		110		. 72	, v		91.6	125	20	0	95.0	54 .4			{			•	88.6	19.6	9
		89	0 117	.0	. 72	J. U	- 1-				_	95.0	94.5	9	~ **	93.9	90.0	91.	•	87.4	19.7	7
				^	. 90	7.5		83.8	100			95.0 95.4	84.		6.0	96.1	90.5	90. 88.		84.3	22.8	
	125	357	0 136 5 135	.0		7.5	G	68.2	110			95.4	94.	7 9	~	96.0	88.5 82.5	60.		71.6	37.5	
		1 1/0	0 136	*		7.5		50.9 739.3	129		õ Ì	95.0	94,		15.5	95.5	-					

Average expected values — 60 not use as guaranteed values. Efficiency, speed, torque, power factor and sound values are the same for 200, 230, or 575 value. Current values vary inventely with voltage.

Recommended maximum capetion rating when capetion and males are perioned as a unit.

Sound Power dBA - To 10 " watts; Sound Pressure (dBA) measured in a free field with a reference pressure of 0,00002 pascals, average reading at three feet.

Tested in apportance with IEEE Standard 112, Test Method B, using appulsery improvement by segregated loss determination including stray load loss improvement as specified in NEMA standard MG1-12,532.

Control power input Heatsink Input line terminals Output relay terminals Digital display 121114 23 DIP switches Programmable keypad ID rag Viewing window **ASTAT** Terminal markings 422 : 485 Control terminals Communications port Output line terminals

ASTAT-CD Soft Starter

New

Advanced microprocessor technology for reliability and versatility

Heavy-duty, rugged construction

Simplified sctup using keypad and digital display

Easy to-read alphanumeric digital display shows status of working conditions and provides diagnostics when fault conditions occur

User-contigurable for most applications including pump control, DC injection braking, slow speed and soft start

Outstanding diagnostics capability means easy maintenance, reduced downtime; 17 fault codes

Integral electronic overload relay for optimism motor protection; selectable for standard or heavy-duty applications

RS-422/485 communications link available for remote operation

I nergy saving mode reduces power costs and reactive power

User-configurable output relay for increased versatility

Builr-in Snubbers and MOVs protect against harmful voltage spikes

SUPPORTEK, INC.

FAX TRANSMISSION

TO: DENNIS JOHES DATE: 7-11-95

COMPANY: EMC

FROM: Tom EBNER

FAX NUMBER: 985-2527 TOTAL # OF PAGES:

REGARDING:

If transmission is incomplete or illegible, please contact us at: (303)293-3112.

Budget Prices

Model 80 80 KVA/64 KWh 958,000

Model 125 125 EVA/100 EWG \$68,000

Add 50% for installation

Powerware® Plus 80 On-line Uninterruptible Power System

Model 50	50kVA / 40kW	
Model 65	65kVA / 52kW	
MODEL 80	80kVA / 64kW	

The Exide Electronics Powerware
Plus 80 combines on-fine UPS
technology with the latest in network
communications. A complete solution
for your mission-critical applications.
For use in both mainframe and
client/server environments, the Plus 80
gives you:

- Continuous on-line protection
- Superior system reliability
- · World class quality
- Flexible network communications

The Exide Electronics Powerware
Plus 80 UPS provides power protection
through superior on-line technology,
flexible communications and userfriendly operation. A variety of
options allows easy integration of the

Plus 80 into centralized or remote monitoring systems, and network adapters provide LAN connectivity and SNMP compatibility. Other communications options include remote terminal capabilities, remote monitoring panel and remote emergency power-off, which are available through standard RS-232 and RS-485 ports.

Powerful, yet easy to understand. The Powerware Plus 80's monitor panel features a large easy-to-read LCD, push-button controls, operational metering features, utility statistics and intelligent alarm management. These features allow you to quickly monitor UPS

operations and the status of the supported system. A battery monitoring and test system proactively identifies the battery time available should a loss of utility power occur.

The Powerware Plus 80 is equipped with intelligent controls, dual-feed input capability, self-diagnostics, redundant fans and redundant control power supplies. The integration of insulated gate bipolar transistors (IGBTs) into a high speed inverter lets the Plus 80 more effectively support demanding non-linear loads, such as PCs, laser printers and industrial motor drives.

Powerware Plus & Perform	Mare Pa	ATEC US	154100	odel 50				М	odel 65			-	M	odel 80		
	}	·		VA/40kV	A/			65k	VA/52kV	N			80k\	/A/64kV	V	
		400 :	480 i	208	600	400	480	480	208	600	400	480	480	208	600	400
nput Voltage †	Volts	480	480	208	208	400	208	480	208	208	400	208	480	208	208	400
Output Voltage †	Voits	208	480	. 200 :	200	-700										
nput Voltage Range	- ↓				510	340	408	408	177	510	340	408	408	177	510	340
Minimum	Volus	408	408	177		440	528	528	229	660	440	528	528	229	660	440
Maximum	Volts	528	528	229	660	50/60	50	60	60	60	50/60	60	60	60	60	50/60
nput / Output Frequency	Hz	60	60	60	60	50/00	- 00 :	- 00								
AC Input (With input filter)	<u>: </u>						72	72	167	58	90	89	89	205	72	106
Nominal Amps	Amps	_ 56	56	128	45 56	69 86	90	90	208	72	112	111	111	256	89	133
Maximum Amps	Amps	69	69	160		-00	30	_ <u></u>						-		
AC Input (Without input filter)							85	85	196	68	105	105	105	241	84	126
Nominal Amps	Amps	66	66	150	.52	81	106	106	245	85	131	131	131	301	105	157
Maximum Amps	Amps	82	82	188	85	101	100 :	100 :	240							
Bypass Input	<u>!</u>					74	78	78	180	63	97	96	96	222	77	115
Nominal Amps	Amps	60	60	139	48		78	70	100			1				
AC Output	<u> </u>							70	180	180	97	222	96	222	222	115
Nominal Amps	Amps	139	60	139	139	74	180	78 98	225	225	121	278	120	278	278	144
10 Minutes Max.	Amps	174	75	174	174	93	225	- 30	225			-				
DC Link								400	480	480	480	480	480	480	480	480
Nominal DC Voltage	Volts	480	480	480	480	480	480	480	540	540	540	540	540	540	540	540
Float Voltage	Volts	540	540	540	540	540	540	540	401	401	401	401	401	401	4D1	401
End of Discharge	Volts	401	401	401	401	401	401	401			130	160	160	160	160	160
Maximum Amps	Amps	100	100	100	100	100	130	130_	130	130	130	100			:	i
Physical Attributes (w/o batt.)					<u> </u>	<u> </u>	<u></u> .	ļ	<u> </u>	<u>: </u>	: 2475	2000	2000	2475	3400	247
Installed Weight 11	Lbs	2000	2000	2475	3400	2475	2000	2000	2475	3400	2475	34	34	34	58	34
Installed Width	Inches	34	34	34	58	34	34	34_	34	58	34	 34	<u>: 34</u>	: 34		÷ •
Systems Efficiencies		†	Ī			Ī			<u> </u>	<u> </u>	<u> </u>		<u> </u>	90	90	91
@ 100% Load	<u>:</u> %	92	92	91	91	91	92	92	91	91	91_	92	92	<u> </u>	91	91
	*	92	92	90	90	90	92	92	91	91	91	92	92	91		90
@ 75% Load	*	91	91	88	88	88	92	92	89	89	89	92	92	90	90	- 30
@ 50% Load	+ -	 	+	: 	-	1			<u> </u>	<u>!</u>	ــــــ		ļ	<u> </u>	: 242	21.
Full Load Heat Dissipation	\div	11.9	11.9	13.5	13.5	13.5	15.4	15.4	17.6	17.6		19.0	19.0	24.3	24.3	5.4
BTU/Hr. (x1000)	+	3.00	3.00	3.40	3.40	3.40	3.89	3.89	4.43	4.43		4.79	4.79	6.12	5.12	; <u>5.9</u> 9:
KCal/Hr. (x1000) Inverter Efficiency (Full Load)		93	93	93	93	93	93	93	93	93	93	93	93	93	93	: 9.

[†] Easily adjustible for 380, 400 or 415 VAC Input/Output, 50 or 60 Hz

¹¹ All cabinets are 73.5 inches (1867 mm) high and 31.5 inches (800 mm) in depth

Battery	Nominal	Battery Prote Total	Output l	oed on UP	S in KW	-			Weight (lbs.)	Widtl (in.)
Cabinet	DC Voltage	Battery Cabinets	20	26	32	40	52	64	0.005	- 24
FF00	480	1	38	25	19	13	8	5	2,225	
5508				45	35	26	16	12	3,325	36
800 8	480	1 -	80			39	27	19	4,450	48
5516	480	2	90	.60	52					72
	480	2	125	95	80	60	46	35	6,650	
8016				140	115	95	70	59	9,975	108
8024	480	3 :	185					80	13,300	144
B032	480	4	240+	190	155	125	95	- DU	: 10,000	

^{&#}x27;All battery cabinets are 73.5 inches (1867mm) high and 31.5 inches (800mm) in depth; Line-up configuration

Specifications subject to change without notice.

All previously exercioned composite names and brands are registered as trademarks by their respective companies.

1-800-554-3448 (Toll-free in US & Canada) World Headquarters, 8521 Six Forks Road, Raleigh, NC 27615 USA

Telephone (US): 1-919-872-3020; Fax (US): 1-800-75-EXIDE: International Telephone: 1-919-870-3150; International Fax: 1-919-870-3300

Powerware® Plus 150 On-line Uninterruptible Power System

Model 100	100kVA / 80kW	
Model 125	125kVA / 100kW	
Model 150	150kVA / 120kW	

Powerware Plus 40 / 50 / 65 / 80 (left) Powerware Plus 125 / 150 (right)

The Exide Electronics Powerware
Plus 150 combines on-line UPS
technology with the latest in network
communications. A complete solution
for your mission-critical applications.
For use in both mainframe and
client/server environments, the
Plus 150 gives you:

- · Continuous on-line protection
- Superior system reliability
- World class quality

Flexible network communications

The Exide Electronics Powerware
Plus 150 UPS provides power protection through superior on-line technology, flexible communications and
user-friendly operation. A variety of
options allows easy integration of the

Plus 150 into centralized or remote monitoring systems, and network adapters provide LAN connectivity and SNMP compatibility. Other communications options include remote terminal capabilities, remote monitoring panel and remote emergency power-off, which are available through standard RS-232 and RS-485 ports.

Powerful, yet easy to understand. The Powerware Plus 150's monitor panel features a large easy-to-read LCD, push-button controls, operational metering features, utility statistics and intelligent alarm management. These features allow you to quickly monitor UPS

operations and the status of the supported system. A battery monitoring and test system proactively identifies the battery time available, should a loss of utility power occur.

The Powerware Plus 150 is equipped with intelligent controls, dual-feed input capability, self-diagnostics, redundant fans and redundant control power supplies. The integration of insulated gate bipolar transistors (IGBTs) into a high speed inverter lets the Plus 150 more effectively support demanding non-linear loads, such as PCs, laser printers and industrial motor drives.

Powerwere Plas	130 Performence	Characteristics

				Made	100				Mode	1 125				Mada	160	
			1	IOOkVA/	BOKW			125kVA/100kW				Model 150 150kVA/120kW				
Input Voltage †	Volta	480	480	208	600	400	480				400	480				
Output Voltage +	Volts	208	480	208	208	400	208	:				208				_: . <u>_</u> :
Input Voltage Range		7	· 🔭 ·	1			-	+		200	+400	208	480	208	208	400
Minimum	Voits	408	408	177	510	: 340	408	408	177	510	340	408	+			
Maximum	Velts	528	528	229	030	440	528	528	229		440	528	408			
Input / Output Frequency	Hz	60	60	60	60	50/60		60	60	60	50/60		528	229	-:	
AC Input (With input filter)			-		1	1 00,00	1 -	1 00	- 00	: 00	: 50/60	60		60	: 60	50/6
Nominal Amps	Amps	111	111	256	89	134	139	139	320	111		+· <u>-</u>	+	<u> </u>	<u> </u>	
Maximum Amps	Amps	139	139	320	111	168	174	174	400		168	166	166	384	134	200
AC Input (Without input filter)		1	-	1	†· ···	100	1/4	174	400	139	210	208	208	480	167	250
Nominal Amps	Amps	130	130	302	105	158	163	163	377	130	198	 	! .==	.		<u> </u>
Maximum Amps	Amps	163	163	377	131	198	204	204	471	163	247	196 245	196	452	157	235
Bypass Input	<u> </u>				1		 _	- 204	1-11	103	<u>: 24/</u> _	245	245	565	198	294
Nominal Amps	Amps	120	120	278	96	146	150	150	347	120	182	180	100		!	<u> </u>
AC Output						-	† · · · · ·	130	1 347	120	102	-!80_	180	416	144	217
Nominal Amps	Amps	278	120	278	278	146	347	150	347	347	182	416	100	-	<u>:</u>	!
10 Minutes Max.	Amps	348	150	348	348	183	434	188	434	434	228	-	180	416	416	217
C Link						- :	-	100		734	: .220	520	225	520	520	271
Nominal DC Voltage	Voks	480	480	480	480	480	480	480	480	480	480	480	480		!	
Float Voltage	Volts	540	540	540	540	540	540	540	540	540	540	540		480	480	480
End of Discharge	Volts	401	401	401	401	401	401	401	401	401			540	540	540	540
Maximum Amps	Amps	200	200	200	200	200	250	250	250	250	401	401	401	401	401	401
nysical Attributes (w/o batt.)			200	200	200	200	-230	250	250	250	250	300	300	300	300	300
Installed Weight 11	Lbs	3150	3150	5000	5000	3975	3150	3150	5000	5000	3975	3150	3150		<u> </u>	<u>!</u>
Installed Width	Inches	49	49	73	73	49	49	49	73	73	49	49	49	5000	5000	3975
stems Efficiencles										-/3	- 43	- 49		73	73	49_
@ 100% Load	%	92	92	91	91	91	92	92	91	91	91	92	92			
@ 75% Load	%	92	92	90	90	90	92	92	91	91	91	·		90	90	91
₡ 50% Load	%	91	91	88	88	88	92	92	89	89	89	92	92	91	91	91
I Load Heat Dissipation		<u>~</u> †			-			32	- 63	.03	-03	92	92	90	90	90
BTU/Hr. (x1000)		23.6	23.8	27.0	27.0	27.0	29.7	29.7	33.8	22.0	-220	<u>i</u>	<u> </u>			
KCal/Hr. (x1000)	- †	5.99	5.99	6.81	δ.81 :	6.81	7.48	7.48	33.6 : 8.51 :	33.8 8.51	33.8	35.6	35.6	45.5	45.5	40.5
erter Efficiency (Full Load)	*	93	93	93	93	93	7.70 :	7.40 j	0.71	5.51	8.51	8.98	8.98	11.47	11.47	10.21

[†] Easily adjustible for 380, 400 or 415 VAC Inut/Output, 50 or 60 Hz

TT All cabinets are 73.5 inches (1867 mm) high and 31.5 inches (800 mm) in depth

Battery Cabinet	Nominal DC	Total Battery	Output	Load on UF	S in kW				Weight (lbs.)	Width
	Voltage	Cabinets	40	50	60	80	100	120	(1621)	(in.)
5508	480	1	14	.9	5	N/A	N/A	N/A	2,225	24
8008	480	1	28	20	15	9	5	N/A	3,325	36
5516	480	2	38	28	21	14	9	5	4,450	48
8016	480	2	60	48	40	27	20	15	6,650	 .
8024	480	3	90	70	60	46	35	28	9,975	<u>:*-</u> 108
8032	480	4	120	95	80	60	49	40	13,300	144

All bettery cabinets are 73.5 inches (1867mm) high and 31.5 inches (800mm) in depth; Line-up configuration

cifications subject to change without notice.

previously mentioned corporate names and branch are negistered as trademarks by their respective companies.

1-800-554-3448 (Intl-free in US & Canada) World Headquarters, 8521 Six Forks Road, Releigh, NC 27615 USA

Telephone (US): 1-919-872-3020; Fax (US): 1-800-75-EXIDE; International Telephone: 1-919-870-3150; International Fax: 1-919-870-3300

4-66

4.8 ECO 8: CHILLER REPLACEMENT

<u>Proposed Modifications</u>: Replace the current chillers with more efficient and environment-friendly chillers. The proposed chillers are scroll air-cooled 40-ton chillers.

The main advantage of a scroll air-cooled chiller is its part-load efficiency is very high compared to the existing chillers. This is important for the GEODDS site since it operates at partial loads the majority of the year. The proposed chillers at full-load use 1.51 kW/ton, but at half load this ratio drops to 1.02 kW/ton.

Existing Conditions: The current chillers at full-load use 1.43 kW/ton. At half-load, this ratio increases to 1.72 kW/ton. These chillers also use R-22 refrigerant as their coolant which has been linked to the destruction of the ozone layer.

Method of Analysis: Analysis proceeded as follows:

- The nameplate information of the chillers was obtained during the field survey, as were the specifications on the replacement chillers.
- Manufacturer's specifications were used to determine the tonnages and kW consumed of both existing and proposed chillers at part-loads.
- The baseline computer model was modified to reflect the replacement of the current chillers with scroll air-cooled chillers.
- The savings from the avoided cost of replacing the existing chillers in 10 years, at the end of their expected useful life, was included in the analysis.

<u>Results</u>: Replacing the chillers will result in large energy and cost savings. The LCCA is summarized in the following table.

Annual Electric Energy Savings (kWh)	85,453
Total Annual Energy Cost Savings	\$7,016
Annual Maintenance Cost Savings	\$0
Discounted Replacement Cost Savings	\$93,865
Investment Cost	\$99,539
Savings-to-Investment Ratio (SIR)	2.01
Simple Payback (Years)	8.30

Recommendations: The current chillers should be replaced by two 30-ton scroll chillers. The GEODSS site will see an approximate 8% decrease in energy consumption.

EMC Engineers, Inc. EMC#1406-008 GEODSS, White Sands Missile Range DACA 63-92-C-0152

CHILLER REPLACEMENT

ECO-8.XLS Prepared by: D Jones 11/10/95

Checked by:_____

1. COM	PONENT		FY 1995 N	ILITARY CO	NSTRUCTION PR	OJECT DATA		2. DATE Apr-9
INICT	ARMY	ND LOCATION					i	Api-3
. 11131		Site, White Sands Mis	sile Bance NM					
PRO.	JECT TITLE	orte, write during with	isite Hange, 14.41				5. PROJECT	NUMBER
. 1 1100		grade Lighting System	s					
		<u> </u>		LIFE CYCL	E COST ANALYSIS S	UMMARY		
			EN	ERGY CONSERV	ATION INVESTMENT	PROGRAM (ECIP)		
		LOCATION: GEODS	Site, White Sands	Missile Range,	NM	REGION: 4	PROJECT N	1413-001
		PROJECT TITLE:	ECIP: REPLAC	E CHILLERS			FISCAL YEA	1995
		DISCRETE PORTION N	IAME:	TOTAL				
		ANALYSIS DATE:	11/10/95		ECONOMIC LIFE:	20	PREPARED B	D Jones
	INVESTM	ENT						
	A.	CONSTRUCTION COS	т =	=			\$89,272	
	В.	SIOH COST		5.5% of 1A) =			\$4,910	
	C.	DESIGN COST	(6	6.0% of 1A) =			\$5,356	
	D.	TOTAL COST	(1A	+1B +1C) =			\$99,539	
	E.	SALVAGE VALUE OF	EXISTING EQUIPME	ENT =				
	F.	PUBLIC UTILITY COM	PANY REBATE =					
	G.	TOTAL INVESTMENT	•	(1D -1E -1F) =			>	\$99,53
	ENERGY S	SAVINGS (+) OR COST (-)	ı:					
•		NISTR-4942-1 USED FOR		ORS:		OCT '94		
		ENERGY	FUEL COST	SAVINGS	ANNUAL \$	DISCOUNT	ISCOUNTED	
		SOURCE	\$/kWh (1)	kWh (2)	SAVINGS (3)	FACTOR (4)	SAVINGS (5)	
	Α.	ELEC	\$0.0821	85,456	\$7,016	15.08	\$105,800	
	В.	DIST						
	C.	NAT GAS						
	D.	REFUS						
	E.	COAL						
	F.	OTHER						
	G.	DEMAND SAVINGS						
	Н.	TOTAL		85,456	\$7,016		>	\$105,80
	NON-ENE	RGY SAVINGS (+) OR CO	ST (-)					
	A.	ANNUAL RECURRING	(+/-)					
		1 DISCOUNT FACTO	R		(From Table A) =			
		2 DISCOUNTED SAV	INGS (+) / COST (-	-)	$(3A \times 3A1) =$			
	В.	NON-RECURRING (+/	-)					
		ITEM		SAVINGS (+)	YEAR OF	DISCOUNT	DISCOUNTED)
				COST(-) (1)	OCCURRENCE (2)		SAVINGS/CO	ST (4)
		a. AVOIDED COST O	E CHILLER REPLA	\$99,539	2	(TABLE B) 0.943	\$93,86 5	
		b. MATERIAL: NONE		400,000	-	5.5.0	100,000	
		c. MATERIAL: NONE						
		d. TOTAL		\$99,539			\$93,865	
	C.	TOTAL NON-ENERGY	DISCOUNTED SAV	•	COST (-)	(3A2 + 3Bd4) =		\$93,86
	FIRST YE	AR DOLLAR SAVINGS (+)	/ COSTS (-)			(2H3+3A+(3Bd1/Economi	ic Life))	\$11,9
	SIMPLE P	AYBACK (SPB) IN YEARS	(MUST BE < 10 YE	EARS TO QUAL	IFY)	(1G/4) =		8.3
	TOTAL N	ET DISCOUNTED SAVING	s			(2H5 + 3C) =		\$199,66
' .	DISCOUN	ITED SAVINGS-TO-INVEST	MENT RATIO (SIR)			(6/1G) =	į	2.0
		(MUST HAVE SIR >	1.25 TO QUALIFY					

CHILLER REPLACEMENT

ECO-8.XLS Prepared By: EMS 11/10/95

Checked By:__

Existing Reciprocating Chiller

Specified capacity

428,750 Btuh

35.73 tons

Full load performance

0.274 Btu in/Btu out DOE default for reciprocating chiller

0.96 kW/ton 1.43 kW/ton DOE default for reciprocating chiller Carrier 30GB-40 Air cooled chiller

115 EAT, 45 LWT

Part load performance

%kW = 0.0881 + 1.138 * PLR - 0.2258 * PLR^2

where

PLR is part load ratio

DOE default for reciprocating chiller

PLR	TONS	kW	kW / Ton	% kW
1.00	31.3	44.80	1.43	1.00
0.75	23.5	36.49	1.55	0.81
0.50	15.7	26.91	1.72	0.60
0.25	7.8	16.06	2.05	0.36

Proposed Scroll Chiller

Selected Model

CCAD-40

Condenser

CAUC-C50

Part load performance

r	0110111101100				
•	PLR	TONS	kW	kW / Ton	% kW
	1.00	34.4	52.00	1.51	1.000
	0.75	25.8	32.46	1.26	0.624
	0.50	17.2	17.63	1.02	0.339
	0.25	8.6	8.67	1.01	0.167

Energy Savings

Current Energy Use (MBTU)	3573.45
Proposed Energy Use (MBTU)	3281.79
Annual Energy Savings (MBTU)	291.66
Annual Energy Savings (kWh)	85,456
Annual Cost Savings (\$)	\$7,015.91
UPV Factor (20 years)	15.08
Discounted Energy Savings	\$105,800

EMC	ENGINEERS	INC.	EZDOZ - ELITE SOFTWARE DEVELOPMENT INC	DOE-2.1D 8/7/1995	
DENVER, REPORT - BEPS	ESTIMATED	80227 BUILDING ENERGY	GEODES SITE DOT EVALUATION PERFORMANCE	TRUTH OR CONSEQU, N	

ENERGY TYPE IN SITE MBTU - CATEGORY OF USE SPACE HEAT SPACE COOL HVAC AUX DOM HOT WTR AUX SOLAR LIGHTS VERT TRANS	55.12 1277.30 426.63 0.00 288.88 0.00
VERT TRANS MISC EQUIP	0.00 1233.86
TOTAL	3281.79

TOTAL SITE ENERGY 3281.71 MBTU 287.9 KBTU/SQFT-YR GROSS-AREA 287.9 KBTU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3281.71 MBTU 287.9 KBTU/SQFT-YR GROSS-AREA 287.9 KBTU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

	ENGINEER'S OPINION	OF PRO	BABL	E COST					SHEET	1		OF	1
REA	ACTIVITY				LOCATION	Marian Di	- 414.1			AMENDMEN	I NO.		
						Missile Rang CONTRACT							
	TTITLE Replace Chiller						NO. CA01-94-D-0(133					
EODSS	S, Energy Conservation Survey		- т	MATERIA	TPOD I	DAG		R COST		FQUIPM	ENT COST	TOTAL	COST
		Unit	-	MATERIA	41.0031	T	5.00	Labor	Total				
	the Description	of	No. of	Unit		Manhrs/	Total	Cost/	Labor	Unit	j	Unit	
Line	Item Description	Measure	Units	Cost	Total	Unit	Manhrs	Manhour	Cost	Cost	Total	Cost	Total
No.	To a 20 to a Committee CCAD 20	Ea.	2	\$16,338	\$32.675	118.00	236.00	\$22.99	\$5,426	\$0.00	\$0	\$19,050	\$38,10
1	Trane 30-ton Scroll Chiller CCAD-30	Ea.	2	\$0.00	\$32,073	0.00	0.00	\$22.99	\$0	\$0.00	so	\$0	\$
	with Condenser CAUC-C40	Ea.			\$0 \$0	0.00	0.00	\$22.99	\$0	\$0.00	\$0	\$0	\$
3	T	hrs	24		\$0	1.00	24.00	\$22.99	\$552	\$0.00	\$0	\$22.99	\$ 55
4	Travel to Socorro	Ea.	2	\$0.00	\$0	16.00	32.00	\$22.99	\$736	\$0.00	\$0	\$367.84	\$73
	Demolition Travel to job site	hrs	30		\$0	1.00	30.00	\$22.99	\$690	\$0.00	\$0	\$22.99	\$69
. 6 7	Lodging and per diem	days	30		\$0		0.00	\$22.99	\$0	\$100.00	\$3,000	\$100.00	\$3,00
8	Milage	miles	600		\$0		0.00	\$22.99	\$ 0	\$0.30	\$180	\$0.30	\$18
9	winage				\$0		0.00	\$22.99	\$0	\$0.00	\$ 0	\$0.00	S
10					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$
11					\$0		0.00	\$22.99	\$0	\$0.00	\$ 0	\$0.00	\$
12					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$
13					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$
14					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	S
15					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$
16					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	S
17					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	S
18					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	S
19					\$0		0.00	\$22.99	\$0	\$ 0. 0 0	\$0	\$0.00	S
20					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$
21					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$
22					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$
23					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	
24					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	
25					\$0		0.00	\$22.99	\$0	\$0.00	\$ 0	\$0.00	
26					\$0		0.00		\$0	\$0.00	\$0	\$0.00	\$
27					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$
28					\$0		0.00		\$0	\$0.00	\$0	\$0.00	\$
29					\$0		0.00		\$0	\$0.00	\$0	\$0.00	S
30					\$0		0.00		\$0	\$0.00	\$0	\$0.00	<u> </u>
31					\$0		0.00		\$0	\$0.00	\$0	\$0.00 \$0.00	3
32				·	\$0		0.00	ļ	\$0	\$0.00	\$0 \$0	\$0.00	
33					\$0		0.00		\$0	\$0.00	1		\$
34					\$0	<u> </u>	0.00		\$0	\$0.00	\$0 \$0	\$0.00 \$0.00	3
35					\$0	ļ	0.00		\$0 •0	\$0.00	\$0	\$0.00	,
36			L		\$0		0.00		\$0	\$0.00	\$0	\$0.00	
37			ļ		\$0		0.00		\$0 \$0	\$0.00 \$0.00	\$0	\$0.00	
38			<u> </u>		\$0		0.00	\$22.99		\$0.00		30.00	\$43,25
39	SUBCONTRACTOR SUBTO				\$32,675		322		\$7,403		\$3,180		\$43,2
40	LABOR BURDEN	%	30		\$0		<u> </u>	ļ	\$2,221		\$954 \$4,134		\$3,1 \$46,4
41	SUBTOTAL		<u> </u>		\$32,675	<u> </u>	<u> </u>	L	\$9,624	<u> </u>	\$4,134 \$496	L	\$5,5
42	OVERHEAD	%	12.0		\$3,921				\$1,155 \$10,778		\$4,630		\$52,0
43	SUBTOTAL		 		\$36,596				\$10,778 \$1,293		\$556		\$6,2
44	PROFIT	%	12	 	\$4,392 \$40,988				\$1,293		\$5,186		\$58,2
45	SUBCONTRACTOR TOTAL		10.95	 	\$40,988	,			\$1,322		\$568		\$6,3
46	OVERHEAD	%	10.95	ļ	\$45,476		 	 	\$13,394		\$5,754		\$64,6
47	SUBTOTAL	%	8	_	\$3,638		L	<u> </u>	\$1,071	1	\$460		\$5,1
48	PROFIT	76	 	ł	\$49,114		<u> </u>	Γ	\$14,465	Γ	\$6,214		\$69,7
49	SUBTOTAL	6/	0.727	 	\$362		i	٠	\$107		\$46	L	\$5
50	BOND	- %	0.737	ļ 	\$49,476				\$14,572		\$6,260		\$70,3
51	SUBTOTAL	-	F 8405	ļ					\$847		\$364		\$4,0
52	N. M. TAX	%	5.8125	 	\$2,876				\$15,419		\$6,623		\$74,3
53	SUBTOTAL	%	20		\$52,351 \$10,470				\$3,084		\$1,325		\$14,8
		. 94	(20	i .	\$10,470				₩0,004		Ţ., ,		/+
54	CONTINGENCY		 -			1	Г		\$18.503		\$7,948	•	\$89,272
54 55	GRAND TOTAL RED BY APPROV				\$62,822	RGANIZATION			\$18,503	DATE	\$7,948		\$89,27

1	57 Air Conditioning and V	er	ıt	18	tio	n								
15	67 100 A.C. & Vent. Units	Т		DAIL	Y MAI	4			1995	BARE COSTS		TOTAL	7	
		CR	EW	OUTPL	л нои	RS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL OLP	1	
15	80 ton cooling	T Q	8	.10	320		Ea.	42,800	8,925	5	25 52,250	61,50	00	190
152	100 ton cooling			.09	355	5		49,700	9,925	5	85 60,210	70,50		
1540	120 ton cooling			.08	400		Τ	55,000	11,200	6	55 66,855	78,50		
1560	135 ton cooling			.07	457			62,500	12,800	7:	76,050	89,50		
1580	150 ton cooling			.07	457		Ţ	66,500	12,800	75	80,050	93,50		
1600 1620	175 ton cooling			.06	533			76,500	14,900	87	5 92,275	108,00	0	
1640	200 ton cooling		J	.05	640			88,500	17,900	1,05	0 107,450	126,00		
1660	225 ton cooling 250 ton cooling	44	4	.05	640			94,000	17,900	1,05	0 112,950	132,00	0	
4000	Packaged chiller, with remote air cooled condensers incl.	1	'	.04	800	1	₩	102,500	22,300	1,30	0 126,100	148,00	0	
4020	15 ton cooling	1	4		1	┸						i	1	
4030	20 ton cooling	Q	7	.35	91.42	9	Ea.	12,300	2,550		14,850	17,400	0	
4040	25 ton cooling	1	4	.32	100	┸	\sqcup	14,200	2,800		17,000	20,000	0	
4050	30 ton cooling		- 1	.30	106	ı	$ \ $	16,900	2,975		19,875	23,200	5	
4060	40 ton cooling	14	_	.27	118	L	Ш	19,200	3,300		22,500	26,200)	
4070	50 ton cooling		1	.22	145	ı	$ \ $	24,900	4,050		28,950	33,500	7	
4080	60 ton cooling	+	4	.18	177	↓_	\sqcup	27,900	4,950		32,850	38,300		
4090	70 ton cooling	II		.14	228	ł		30,400	6,375		36,775	43,200		
4100	80 ton cooling	╂╌┼	+	.12	266	1_	Ш	37,900	7,450		45,350	53,000		
4110	90 ton cooling			.11	290	ŀ		38,900	8,125		47,025	55,000	7	
4120	100 ton cooling	╂╌┼	4	.10	320	┸	Ш	51,000	8,925	<u> </u>	59,925	69,500		
4130	110 ton cooling	*		.09	355	Į	1 1	56,500	9,925		66,425	77,000		
1140	120 ton cooling	약	1	.08	400	↓_	Н	58,000	11,200	655		81,500	_	
1150	140 ton cooling		1	.07	457	i		59,500	12,800	750	1	86,000		5
	WINDOW UNIT AIR CONDITIONERS	 	+	.06	533	Ľ	4	66,000	14,900	875	81,775	96,500		_
1000	Portable/window, 15 amp 125V grounded receptacle required	İ				1							19	5
1060	5000 BTUH	1.2	_	_		Ļ	_				<u> </u>		J	3
13	6000 BTUH	1 Car	P	8	1	E	-	275	24.50	l	299.50		1	MECHANICAL
1480	8000 BTUH	₩	+	8	1	Н	-	350	24.50		374.50			₹
1500	10,000 BTUH	11	1	6	1.333	ll		465	33		498	565	I	天
1520	12,000 BTUH	L-2	+-	6 8	1.333	Н	4	525	33		558	635	1	
1600	Window/thru-the-wall, 15 amp 230V grounded receptacle required	1 62	1	٠I	2	١٧	'	560	43.50		603.50	685	ı	3
1780	17,000 BTUH	1-2	╀	6	2 552	Ļ	-	745					1	_
1940	25,000 BTUH	1		,	2.667	E	١	745	58		803	915	ı	
960	29,000 BTUH	╟	╀	: 	4	Н	+	980	87		1,067	1,225	1	
		*		4	4	•		1,175	87		1,262	1,450		
	200 System Components												Γ	•
100 010 C	OILS, FLANGED Basic water or condenser coils		Τ				T						201	•
110	Copper tubes, alum. fins, galv. end sheets		╀-	-		<u> </u>	4							
	H is finned height, L is finned length			ı				i i	İ					
112 120	3/8" x .016 tube, .0065 AL fins		╀	_			_							
	2 row, 8 fins per inch		l					ļ	ŀ					
130 140	4" H x 12" L	0.5	⊢.			_	_							
	4" Hx 24" L	Q-5			.333	Ea.	1	255	8.80		263.80	294		
150 160	4"H x 48"L		-		.667	4	+	275	17.55		292.55	330		
170	4"H x 72"L			,	1.333	-		355	35		390	445		
180	6"H x 12"L			B	2 500	\perp	+	390	52.50		442.50	510		
90	6"H x 24"L		•		.500			266	13.15	l	279.15	315		
300	6"H x 48"L	-		6	1	4	4	287	26.50		313.50	355		
10	6"H x 72"L		,	3	2			375	52.50		427.50	495		
20	10'H x 12'L	+			3.002	4	_	420	79		499	580		
	10 H x 12 L		19.		.829			290	22]	312	355		
30	10'H x 48'L	+-	9.6		1.667	+	\bot	315	44		359	415		
30	10 H x 48 L 10 H x 72 L		4.8		3.333			420	88	ļ	508	595		
_	TO HATEL	*	3.2	0	5	+		470	132		602	715		

4-73

6675 S. Kenton St., Suite 118 Englewood, CO 80111

FAX COVER SHEET

DATE:

September 29, 1995

TIME:

1:10 PM

TO:

Dennis Jones

PHONE: FAX:

FROM:

EMC Engineers Gerry L. Boarman

PHONE:

303-705-9100

The Trane Company

FAX:

303-649-9195

RE:

CC:

Number of pages including cover sheet: 1

Message

Dennis,

Sorry for the delay.

The budget for 2-30 ton compressor chillers and associated 40 ton air cooled condensers is \$ 32,675.00 Please let me know what else I can get for you and thank you for the opportunity.

SLC-DS-1 January 1994

First Printing

Cold Generator[®] Scroll Liquid Chillers

20 to 60 Tons Water Cooled and Condenserless

Features and Benefits

Leading in Efficiency and Reliability With State-Of-The-Art Scroll Compressor Technology

Reliability

The Trane Cold Generator® water chiller with many new improvements, now brings an exciting new compressor to the commercial market — the Trane 3-D™ Scroll compressor. Trane has designed the scroll compressor to be a leader in reliability. HERE'S HOW:

- Simple design with 64 percent fewer parts than equal capacity reciprocating compressor.
- 3-D Scroll compliance allows liquid and dirt to pass through without damaging compressor (liquid slugging resistant).
- Advanced microelectronics protect both compressor and motor from typical electrical fault conditions.
- Scroll compressors have less than a third the torque variations of a reciprocating compressor.
- Years of laboratory testing have optimized compressor and chiller systems reliability.
- Water-Cooled Cold Generators are 100 percent RUN TESTED at the factory.

Efficiency

The energy efficiency of the Cold Generator liquid chiller results in energy costs lower than any other comparable chiller. Full load efficiencies are typical of reciprocating chillers, but part load efficiencies are simply unmatched by any other manufacturer.

Superior efficiencies are obtained by combining many of the traditional Cold Generator chiller energy efficient features with the Trane 3-D scroll compressor technology. HERE'S HOW:

- Scroll compressor's positive displacement design
- Dual refrigerant circuits (40-60 ton units)
- Multiple compressors
- Optimum system design
- Reduced Friction
- No Valves
- Advanced Heat Transfer Surfaces

Chart illustrates low torque variation of 3-D scroll compressor vs reciprocating compressor.

Graph illustrates Trane Cold Generator chiller's superior annual energy costs vs typical reciprocating chillers.

Trane 3-D[™] Compliance Scroll Compressor

 Maximum Efficiency with Enhanced Reliability

How Does 3-D Compliance Work?

The 3-D compressor has a patented tip seal on the tip of each spiral. The tip seal acts like a piston ring to provide sealing between high and low pressure chambers without wearing the mating surfaces.

Radial compliance is achieved with a swing link mechanism that allows the spiral walls on the disks to touch without wear. The swing link joins the motor shaft and the orbiting scroll disk.

In normal operation this contact provides sealing between high and low pressure cavities. However, if a contaminant such as dirt or liquid refrigerant enters the compression chamber, the swing link allows the spiral walls to separate in the radial direction and pass the contamination without harm to the compressor.

General

The 3-D compressor has two scrolls. The top scroll is fixed and the bottom scroll orbits. Each scroll has walls in a spiral shape that mesh.

Inlet-First Orbit

As the bottom scroll orbits, two refrigerant gas pockets are formed and enclosed.

Compression-Second Orbit The refrigerant gas is compressed as the volume is reduced closer to the center of the scroll.

Discharge-Third Orbit
The gas is compressed
further and discharged
through a small port in the
center of the fixed scroll.

Scroll Principal Components

This is a cutaway view of a hermetic, scroll compressor, showing the relative positions of the principal components. Shown is a Trane 10-ton, 3600 rpm, scroll compressor as an example.

The principle of operation of this example compressor is as follows: The suction gas is drawn into the compressor at A. The gas then passes through the gap between the rotor and stator, B, cooling the motor, before it enters the compressor housing, C. Here, the velocity of the gas is reduced, causing a separation of the entrained oil from the gas stream. The gas then enters the intake chamber, D, that encircles the scrolls.

Finally, the suction gas is drawn into the scroll assembly where it is compressed and discharged into the dome of the compressor. The dome of this example compressor acts as a hot gas muffler which dampens the pulsations before the gas enters the discharge line, E.

Performance Data

Table 16-1 — CCAD Performance Data, 42 F Leaving Chilled Water Temperature

						Enterin	g Condens	er Air Temp	perature				
Unit	Condenser		85			9 5	*		105			115	
Size	Size	Tons	Kw	EER	Tons	Kw	EER	Tons	Kw	EER	Tons	Kw	EER
20	CAUC-C20	19.4	19.5	11.8	18.4	21.6	10.1	17.3	23.9	8.6	16.1	26.6	7.2
20	CAUC-C25	19.7	18.6	12.6	18.7	20.6	10.8	17.6	23.0	9.1	16.5	25.5	7.7
25	CAUC-C25	24.1	24.9	11.5	22.8	27.6	9.9	21.5	30.6	8.4	20.0	34.0	7.0
25 25	CAUC-C30	24.5	23.4	12.5	23.3	26.0	10.7	22.0	28.9	9.1	20.6	32.1	7.7
30	CAUC-C30	28.8	29.1	11.8	27.3	32.2	10.1	25.7	35.7	8.6	24.1	39.6	7.3
30	CAUC-C40	29.2	27.0	12.9	27.8	29.9	11.1	26.3	33.2	9.5	24.7	36.9	8.0
40	CAUC-C40	38.7	38.8	11.9	36.7	43.0	10.2	34.5	47.8	8.6	32.2	53.2	7.2
40	CAUC-C50	39.1	37.4	12.5	37.1	41.6	10.6	35.0	46.2	9.0	32.7	51.4	7.6
50	CAUC-C50	47.6	50.2	11.3	45.1	55.6	9.7	42.5	61.8	8.2	39.7	68.4	6.9
	CAUC-C60	48.4	47.0	12.3	46.0	52.2	10.5	43.5	58.2	8.9	40.8	64.6	7.6
50			58.4	11.6	54.0	64.8	10.0	50.9	71.8	8.5	47.6	79.8	7.1
60	CAUC-C60	56.9			54.7	59.6	11.0	51.8	66.4	9.3	48.6	73.8	7.9
60	CAUC-C80	57.5	53.6	12.8	54.7	JJ.0	11.0	J1.0	55.4				

Table 16-2 — CCAD Performance Data, 44 F Leaving Chilled Water Temperature

						Enterin	g Condens	er Air Temp	perature				
Unit	Condenser		85			95			105			115	
Size	Size	Tons	Kw	EER	Tons	Kw	EER	Tons	Kw	EER	Tons	Kw	EER
20	CAUC-C20	20.0	19.7	12.1	19.0	21.8	10.4	17.8	24.2	8 .8	16.6	26.8	7.4
20	CAUC-C25	20.4	18.8	12.9	19.3	20.8	11.0	18.2	23.2	9.3	17.1	25.7	7.9
25	CAUC-C25	24.9	25.1	11.8	23.6	27.9	10.1	22.2	30.9	8.6	20.7	34.3	7.2
25 25	CAUC-C30	25.3	23.7	12.7	24.1	26.3	10.9	22.7	29.2	9.3	21.3	32.4	7.9
30	CAUC-C30	29.7	29.4	12.1	28.2	32.6	10.3	26.6	36.1	8.8	24.9	40.0	7.4
30	CAUC-C40	30.2	27.2	13.2	28.8	30.2	11.4	27.2	33.5	9.7	25.6	37.2	8.2
40	CAUC-C40	39.9	39.2	12.1	37.8	43.4	10.4	35.6	48.2	8.8	33.3	53.6	7.4
	CAUC-C50	40.3	37.8	12.7	38.3	42.0	10.9	36.1	46.6	9.2	33.8	51.8	7.8
40	CAUC-C50	49.1	50.6	11.6	46.6	56.2	9.9	43.9	62.2	8.4	41.0	69.0	7.1
50			47.4	12.6	47.5	52.6	10.8	44.9	58.6	9.2	42.2	65.2	7.7
50	CAUC-C60	50.0				65.4	10.2	52.6	72.6	8.7	49.2	80.6	7.3
60	CAUC-C60	58.7	58.5	12.0	55.7				66.8	9.6	50.3	74.4	8.1
60	CAUC-C80	59.3	54.0	13.1	56.5	60.0	11.3	53.5	00.0	9.0	50.5	74.4	- 0.1

Table 16-3 — CCAD Performance Data, 45 F Leaving Chilled Water Temperature

						Enterin	g Condens	er Air Temp	perature				
Unit	Condenser		85			95			105			115	
Size	Size	Tons	Kw	EER	Tons	Kw	EER	Tons	Kw	EER	Tons	Kw	EER
20	CAUC-C20	20.3	19.8	12.2	19.3	21.9	10.5	18.1	24.3	8.9	16.9	26.9	7.5
20	CAUC-C25	20.7	18.9	13.0	19.6	20.9	11.2	18.5	23.3	9.5	17.3	25.8	8.0
25	CAUC-C25	25.3	25.3	11.9	24.0	28.0	10.2	22.6	31.1	8.7	21.1	34.4	7.3
25 25	CAUC-C30	25.8	23.8	12.9	24.5	26.4	11.1	23.1	29.3	9.4	21.7	32.5	8.0
30	CAUC-C30	30.2	29.5	12.2	28.7	32.7	10.5	27.0	36.3	8.9	25.3	40.2	7.5
30	CAUC-C40	30.7	27.3	13.4	29.2	30.3	11.5	27.7	33.7	9.8	26.0	37.4	8.3
40	CAUC-C40	40.5	39.4	12.3	38.4	43.6	10.5	36.2	48.4	8.9	33.8	53.8	7.5
→ → 40	CAUC-C50	40.9	38.0	12.8	38.9	42.0	11.1	36.7	46.8	9.4	34.4	52.0	7.9
50	CAUC-C50	49.9	50.8	11.7	47.3	56.4	10.0	44.6	62.6	8.5	41.7	69.4	7.2
50	CAUC-C60	50.8	47.6	12.7	48.3	53.0	10.9	45.7	58.8	9.3	42.9	65.4	7.8
60	CAUC-C60	59.6	59.2	12.0	56.6	65.6	10.3	53.4	72.8	8.8	50.1	80.8	7.4
60	CAUC-C80	60.3	54.2	13.3	57.4	60.4	11.4	54.4	67.2	9.7	51.1	74.6	8.2

1. Evaporator fouling factor is 0.00025 on ARI Standard 590-92.
2. Interpolation between points is permissible. Extrapolation is not permitted.

Kw input is for compressors only.
 EER = Energy Efficiency Ratio, (Btu/watt-hour). Power includes compressors and control power.
 Rated in accordance with ARI Standard 590-92.

6. Ratings are based on evaporator temperature drop of 10 F.

Proposed Chiller

Performance Data Part Load

The Mark Street

Table 15-1 — CGWD 20-60 Ton Part Load Performance

CGWD 20 Unit Compressor Capacity														
	100% 75% 50% 25% IPLV													
Tons	20.6	15.5	10.3	5.2	•									
Kw	16.4	10.7	5.9	3.1	18.1									
EER	R 15.0 17.2 20.6 18.7													

	CGWD 25													
Unit Compressor Capacity														
	100% 75% 50% 25% IPLV													
Tons	24.9	18.7	12.5	6.2										
Kw	21.8	14.2	9.0	4.7	15.4									
EÉR 13.6 15.6 16.2 15.2														

	CGWD 30 Unit Compressor Capacity													
	100% 75% 50% 25% IPLV													
Tons	29.5	22.1	14.8	7.4										
Kw	25.8	17.3	9.9	5.2	15.8									
EER	EER 13.7 15.2 17.5 16.4													

CGWD 40 Unit Compressor Capacity 100% 75% 50% 25% IPLV Tons 41.2 20.6 10.3 30.9 33.0 20.6 11.2 5.5 19.0 Kw EER 14.9 17.8 21.7

	CGWD 50 Unit Compressor Capacity														
	100% 75% 50% 25% IPLV														
Tons	48.6	3 6.5	24.3	12,2											
Kw	42.6	27.3	16.2	8.1	16.3										
EER	EER 13.6 15.8 17.8 17.6														

	CGWD 60 Unit Compressor Capacity													
	100%	75%	50%	25%	IPLV									
Tons	59.3	44.5	29.7	14.8										
Kw	52.2	3 3.9	19.3	9.4	16.5									
EER	EER 13.6 15.7 18.2 18.4													

Notes:

- Evaporator and condenser flow rates are constant. Flow rates determined at ARI full load standard rating points.
- Part load is rated in accordance with ARI Standard 590-92.
- IPLV is a single number part-load efficiency figure of merit calculated per ARI Standard 590-92.
- 4. KW input is for compressor(s) only.

30 ton

Performance data (cont) Existing Chiller

PERFORMANCE RATINGS (10 F Chilled Water Rise)

	Maria	CAP.	SDT	COMPR	COO FLOW		CAP.	SDT	COMPR	COO FLOW		CAP.	SDT	COMPR	COO FLOW	
LIM	T 30	(Tons)	(F)	KW	Gpm	PD	(Tons)	(F)	·KW	Gpm	PD	(Tons)	(F)	KW	Gpm	PD
5-14	28						05 F C	ondense	r Entering	Air Temp	eratur	e				
	4		4	O F LCWT			1	4	2 F LCWT				4	4 F LCWT		
	020	15.4	127.4	20.1	36.8	2.8	16.1	128.3	20.5	38.5	3.0	16.9	129.4	21.0	40.4	3.3
GA-	025	19.5	127.1	25.4	46.6	4.3	20.4	128.1	26.2	48.9	4.7	21.4	129.2	26.9	51.3	5.2
	030	22.8	125.2	28.7	54.6	5.8	23.9	126.1	29.4	57.1	6.4	24.9	127.0	30.1	59.7	6.9
	040	30.4	130.3	40.7	72.6	7.5	31.7	131.4	41.7	75.9	8.1	33.1	132.4	42.7	79.2	8.8 7.7
GB	045	37.8	130.0	50.0	90.3	6.5	39.4	131.1	51.3	94.4	7.1	41.2	132.1 133.7	52.6 62.5	93.6 114.5	10.3
GB	055	44.0	131.5	59.5	105.1	8.8	45.9	132.6	61.0 80.3	169.8 144.6	9.5 10.7	47.8 63.1	132.1	82.4	151.0	11.6
44.7	070	57.9	130.1	78.4	138.4	9.8	60.5	131.1				75.9	133.8	103,0	181.7	10.2
	085	69.8	131.6	98.0	166.7	8.7	72.8	132.7 133.1	100.5 121.2	174.1 217.5	9.4 7.9	94.4	133.6	124.0	226.0	8.5
GA	100	87.5	132.1	118.4 145.4	209.1 229.1	7.4 8.8	90.9 99.5	136.2	149.0	238.0	9.4	103.2	137.3	152.6	247.1	10.1
	110	95.8 103.0	135.1 138.1	170.7	246.1	10.1	106.8	139.2	175.0	255.4	10.8	110.6	140.4	179.3	264.9	11.6
	120	100.0		5 F LCWT				4	6 F LCWT				4	8 F LCWT		
	020	17.2	129.9	21.3	41.3	3.4	17.6	130.4	21.5	42.2	3.6	18.4	131.4	22.0	44.1	3.9
. GA	025	21.9	129.7	27.3	52.5	5.4	22.4	130.2	27.6	53.8	5.7	23.5	131.3	28.4	56.3	6.2
, 3	030	25.5	127.4	30.4	61.0	7.2	26.0	127.9	30.8	62.3	7.5	27.1	128.8	31.5	65.0	8.1
	040	33.8	132.9	43.1	80.9	9.2	34.5	133.5	43.6	82.6	9.6	35.9	134.6	44.6	86.1	10.3
GB	045	42.0	132.7	53.2	100.7	8.1	42.9	133.2	53.8	102.8	8.4	44.7	134.3	55.1	107.2	9.1
GB	055	48.8	134.3	63.3	116.9	10.7	49.8	134.8	64.1	119.4	11.2	51.9	136.0	65.7	124.4 164.2	12.1 13.6
N. 2	070	64.4	132.7	83.4	154.3	12.1	65.8	133.2	84.4	157.5	12.6	68.5	134.3	86.4		
. 2		77.5	134.4	104.3	185.6	10.7	79.1	134.9	105.6	189.5	11.1	82.3	136.0	108.1 129.7	197.3 243.7	12.0 9.9
GA	105	96.2	134.7	125.4	230.4	8.9	98.0	135.2	126.9	234.8	9.2	101.7	136.2 139.5	159.7	265.8	11.7
GA	110	105.1	137.9	154.4	251.7	10.5	107.0	138.4	156.2 183.6	256.4 274.4	10.9 12.4	118.6	142.7	188.0	284.2	13.3
_ X = 2	120	112.6	140.9	181.4	269.6	12.0	114.6	141.5	183.6	274.4	12.4	110.0	(72./	1		

PERFORMANCE RATINGS (10 F Chilled Water Rise)

1.2		CAP.	SDT	COMPR	COO!		CAP.	SDT	COMPR	COO!		CAP.	SDT	COMPR	COO FLOW	DATA
4.7	T 30	(Tons)	(F)	KW	Gpm	PD	(Tons)	(F)	KW	Gpm	PD	(Tons)	(F)	VAA	Gpm	PD
100	CS4 - 1 - 3 -						15 F C	ondense.	r Entering A	Air Tem	peratur	9				
4. 持禁			4	OF LCWT			1	4	42 F LCWT			<u> </u>	· ·	44 F LCWT		
* GA	020 025 030	14.2 17.6 21.2	136.2 135.5 134.3	20.8 25.7 30.0	34.0 42.1 50.7	2.4 3.6 5.1	14.9 18.6 22.2	137.1 136.5 135.1	21.3 26.6 30.8	35.6 44.4 53.1	2.6 4.0 5.5	15.6 19.5 23.2	138.1 137.5 135.9	21.9 27.4 31.6	37.4 46.7 55.5	2.9 4.4 6.0
GB	040 045 055 070	28.1 35.0 40.8 53.7	139.1 138.8 140.3 138.9	42.2 52.1 61.9 81.5	67.1 83.6 97.6 128.5	6.4 5.6 7.6 8.5	29.4 36.6 42.6 56.2	140.0 139.8 141.3 139.9	43.2 53.4 63.6 83.7	70.2 87.5 102.0 134.4	7.0 6.2 8.3 9.3	30.7 38.2 44.5 58.6	141.1 140.8 142.4 140.9	44.3 54.8 65.3 85.8	73.4 91.5 106.5 140.4	7.6 6.7 9.0 10.1
GA	085 105 110 120	64.8 81.8 89.8 96.6	140.4 141.1 144.1 147.0	101.9 123.8 151.9 178.2	155.0 195.6 214.6 230.9	7.5 6.5 7.7 8.9	67.7 85.1 93.3 100.2	141.5 142.1 145.1 148.1	104.5 126.8 155.7 182.7	162.1 203.7 223.1 239.8	8.2 7.0 8.3 9.6	70.7 88.5 96.9 104.0	142.5 143.0 146.2 149.2	107.3 129.9 159.6 187.3	169.3 211.9 231.8 248.9	8.9 7.5 9.0 10.3
			4	5 F LCWT	2		;	4	46 F LCWT			L		48 F LCWT		
GA	020 025 030	16.0 20.0 23.7	138.6 138.1 136.4	22.1 27.9 31.9	38.2 47.9 56.8	3.0 4.6 6.3	24.2	139.1 138.6 136.8	22.4 28.3 32.3	39.1 49.1 58.0	3.1 4.8 6.6	17.1 21.5 25.3	140.1 139.7 137.7	22.9 29.1 33.1	40.9 51.5 60.6	3.4 5.2 7.1
GB	040 045 055 070	31.3 39.0 45.4 59.9	141.6 141.3 142.9 141.4	44.8 55.5 66.1 87.0	75.0 93.5 108.8 143.5	8.0 7.0 9.4 10.5	32.0 39.9 46.4 61.2	142.1 141.9 143.5 141.9	45.3 56.1 67.0 88.1	76.7 95.5 111.1 146.6	8.3 7.3 9.7 11.0	33.4 41.6 48.3 63.8	143.2 143.0 144.6 143.0	46.4 57.5 68.7 90.3	80.0 99.7 115.8 153.0	9.0 7.9 10.6 11.9
GA	085 105 110 120	72.2 90.2 98.7 105.9	143.1 143.5 146.7 149.8	108.6 131.4 161.5 189.6	173.0 216.0 236.3 253.5	9.3 7.8 9.3 10.7	73.8 92.0 100.5 107.8	143.6 144.0 147.3 150.4	110.1 133.0 163.5 191.9	176.7 220.3 240.7 258.1	9.7 8.1 9.6 11.0	76.8 95.5 104.2 111.6	144.7 145.1 148.4 151.6	112.8 136.1 167.4 196.6	184.2 228.8 249.8 267.5	10.5 8.7 10.4 11.8

Cap. — Capacity
Kw — Compressor Motor Power Input at Rated Voltage
LCWT — Leaving Chilled Water Temperature
PD — Pressure Drop (ft water)
SDT — Saturated Discharge Temperature

4.9 ECO 9: RECIRCULATE AIR IN TOWERS

<u>Proposed Modification</u>: Reduce the outside airflow rate in three telescope towers by installing a return air duct system in each tower for recirculation of room air.

Each return air duct system would come through the tower wall next to the existing supply air ductwork. Putting this system in place would involve cutting through the concrete between the tower and its adjacent compressor room and routing a return air duct back into the air handling unit (AHU) in that room. This system will intake only 400 cfm of outside air (OA) (or 20% of supply air) and return 1600 cfm from the tower.

Existing Conditions: Presently, the three telescope towers use 100% OA for cooling. This system consumes significant energy as the cool air is directly vented to the outside and is not reused. According to the building personnel, there is no specific reason why this particular system is in place.

Method of Analysis: Analysis proceeded as follows:

- A baseline computer model of the building was created using DOE2.1d which simulated the building energy consumption over a period of one year.
- The baseline computer model was modified to reflect an 80% reduction of the total outside air. The modified baseline computer model was subtracted from the baseline computer model to determine the energy savings.

<u>Results</u>: The LCCA summarized below represents the results of lowering outside air quantities on the AHUs serving the telescope towers.

Annual Electric Energy Savings (kWh)	74,537
Total Annual Energy Cost Savings	\$6,118
Annual Maintenance Cost Savings	\$0
Investment Cost	\$22,767
Savings-to-Investment Ratio (SIR)	4.05
Simple Payback (Years)	3.7

<u>Recommendations</u>: The reduction of outside airflow in each tower is recommended for implementation.

1. COMPONENT FY 1995 MILITARY CONSTRUCTION PROJECT DATA ARMY								2. DATE Jul-95
3. I		ALLATION AND LOC	ATION					
		ODSS Site, White	Sands Missile	Range, NM				
4.	PROJECT TITLE 5. PROJECT NUM							IBER
	Recirculate Tower Air							
LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)								
		LOCATION: White S	Sands Missile Ra	nge, NM	REGION: 4 (New M		PROJECT NO:	1406.008
		PROJECT TITLE:	Recirculate Tow	/er Air			FISCAL YEAR:	1995
		ANALYSIS DATE:	12/01/95		ECONOMIC LIFE:	20	PREPARED BY:	E.Smith
1.	IMN	/ESTMENT						
1.		CONSTRUCTION C	OST	=			\$20,328	
		SIOH COST		(6.0% of 1A) =			\$1,220	
		DESIGN COST		(6.0% of 1A) =			\$1,220	
		TOTAL COST	(1A +1B +1C) =			\$22,767	
	E.	SALVAGE VALUE C	F EXISTING EC	UIPMENT =			\$0	
	F.	PUBLIC UTILITY CO	MPANY REBAT	E =			\$0	
	G.	TOTAL INVESTMEN	IT	(1D -1E -1F) =			>	\$22,767
2.	EN	FRGY SAVINGS (±)	OR COST (-)					
۷.	ENERGY SAVINGS (+) OR COST (-): DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS:					Jul-95		
	אל	ENERGY	FUEL COST	SAVINGS		DISCOUNT	DISCOUNTED	ı
		SOURCE	\$/KWH (1)	KWH/YR (2)		FACTOR (4)	SAVINGS (5)	ı
	Α.	ELECT. (SAV'GS)	\$0.0821	74537		15.08	\$92,282	
		DIST (GAL.)	\$1.10	0	\$0	18.57	\$0	
	C.	RESID (GAL.)	\$3.00	0	\$0	21.02	\$0	
	D.	NAT GAS (MBTU)	\$6.18	0	\$0	18.58	\$0	
	E.	COAL	\$2.00	0	\$0	16.83	\$0	
	G.	DEMAND (\$/kW)	\$0.00	0	•	15.08		# 00.000
	H.	TOTAL		74,537	\$6,119		>	\$92,282
3.	NON-ENERGY SAVINGS (+) OR COST (-)							
	A. ANNUAL RECURRING (+/-)							
İ		1 ANNUAL MAINTE	NANCE SAVING	as	\$0	14.88	\$0	
		2				14.88	\$0	
		3 TOTAL ANNUAL	DISC. SAVINGS	(+) / COST (-)	\$0		\$0	
	В.	NON-RECURRING	(+/-)					
		ITEM	•	SAVINGS (+)	YEAR OF	DISCOUNT		
				COST(-) (1)	OCCURRENCE (2)		SAV'G/COST(4)	
						(TABLE A-2)		
		a.		\$0	0	0.00		
		b.		\$0	0	0.00		
		C.		\$0	0	0.00	\$0 \$0	
	C	d. TOTAL TOTAL NON-ENER	GY DISCOUNTE	\$0 +) D SAVINGS (-) OR COST (-)	(3A3 + 3Bg4) =	\$ 0	\$0
		(,						A A 44A
4.		RST YEAR DOLLAR S	(2H3+3A+(3Bg1/Ecc		\$6,119			
5.	SIMPLE PAYBACK (SPB) IN YEARS (MUST BE < 10 YEARS TO QUALIFY)							3.7
6.		TAL NET DISCOUNT		(2H5 + 3C) =		\$92,282 4.05		
7.	DIS	SCOUNTED SAVING < MUST HAVE SIR >			н)	(6/1G) =		4.05

E M C Engineers, Inc. EMC No. 1406.008 GEODSS, White Sands Missile Range, NM

Recirculate Tower Air

E.XLS Prepared By: E. Smith 11/10/95

Checked By:_

Discount Rate = 4%, Region 4 15.02 **UPW Discount Factors (1)** Economic Life of ECO (yrs)

Electric Energy

(1) NISTER 4942-1 Energy Prices and Discount Factors for Life-Cycle Cost Analysis 1995 Unit Energy Cost Economic Life (yrs) **Energy Information Energy Type**

Proposed Supply Airflow Reduction

		Existing	Existing	Existing	Proposed	Proposed	Proposed
	Floor	Supply	Outside	Return	Supply	Outside	Return
Zone	Area	Airflow	Airflow	Airflow	Airflow	Airflow	Airflow
	(ft^2)	(ctm)	(ctm)	(cfm)	(cfm)	(ctm)	(ctm)
Tower 1	576	2000	2000	0	2000	400	1600
Tower 2	9/9	2000	2000	0	2000	400	1600
Tower 3	576	2000	2000	0	2000	400	1600

Energy Savings Predicted by DOE 2.1

	Annual	Energy	Cost	Savings (\$)	\$6,119
	Chit	Energy	Cost	(\$/kWh)	0.0821
		Annual	Savings	(kWh)	74537
	Predicted	Energy	Savings	(MBTUh)	254.33
J DOL 2. 1	Energy	Consumption With	Return Air in Towers	(MBTUh)	3319.11
icity damings i regioned by DOL 2.	Basesline	Energy	Consumption	(MBTUh)	3573.44

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 13:11:23 PDL RUN 1
DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU, N

ENERGY TYPE IN SITE METU - CATEGORY OF USE	ELECTRICITY
SPACE HEAT	55.12
SPACE COOL	1323.79
HVAC AUX	417.46
DOM HOT WTR	0.00
AUX SOLAR	0.00
LIGHTS	288.88
VERT TRANS	0.00
MISC EQUIP	1233.86
TOTAL	3319.12

TOTAL SITE ENERGY 3319.12 MBTU 291.2 KBTU/SQFT-YR GROSS-AREA 291.2 KBTU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3319.12 MBTU 291.2 KBTU/SQFT-YR GROSS-AREA 291.2 KBTU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.0 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

Saming Controls Replace Replac		ENGINEER'S OPINION	OF PRO	BABL	E COST	•				SHEET	1		OF	1
PROJECT TITLE Rescription Survey Section Control		<u> </u>				LOCATION					AMENDMEN	T NO.		
December December			47			White Sands								
Line Name Description Unit Un			Air						กรร					
Item	GEODS	s, Energy Conservation Survey			MATERI	NI COST	DA				FOLIPM	ENT COST	TOTA	COST
Per			Hoit		WATE NO	12 0001		5,50		Total	EQUI: III	2111 0001		
No. No.	Lina	Item Description		No of	Unit		Manhrs/	Total			Unit		Unit	
Second S	- 1	nem besorption		1 1		Total	1					Total		Total
Commission Supplies Str.		Sawing Concrete										\$0		\$1,003
Secretary Secr													\$3	\$1,704
A District Section S											\$0.00	\$0	\$1	\$780
Sementaric Control Sementaric Sementaric Sementaric Control Se							1.00	3.00	\$22.99	\$ 69	\$0.00	\$0	\$92.99	\$279
6 Percentac Expens Control 6 Part Act Crit 7 Seturn AC Crit 8 Set Set Set Set Set Set Set Set Set Set				3	\$153.00	\$459	1.00	3.00	\$22.99	\$69	\$0.00	\$0	\$175.99	\$528
Salenchry		Pneumatic Econo Control	ea	3	\$250.00	\$750	1.50	4.50	\$22.99	\$103	\$0.00	\$0	\$284.49	\$853
Dyward Repair	7	Return Air Grill	ea	6	\$39.00	\$234	0.53	3.20	\$22.99	\$74	\$0.00	\$0	\$51.25	\$308
10 Painting SF 150 Si 94 SP 0.04 Co S229 S138 S0.00 S0 S539 11 Cleans pither phompleidy Ls 1 S S 0.04 Co S229 S328 S0.00 S0 S539 12 Travel to Scorom hm 18 S0 1.00 16.00 S229 S344 S0.00 S0 S229 13 Travel to Scorom hm 18 S0 1.00 16.00 S229 S344 S0.00 S0 S229 14 Travel to Do tale hm 15 S0 S0 Co Co S229 S0 S0.00 S0 S229 15 Ladging and per dism days 15 S0 Co Co S229 S0 S0.00 S1,000 S	8	Balancing	ea	3	\$0.00	\$0	1.50	4.50	\$22.99	\$103	\$0.00	\$0	\$34.49	\$103
10 Cleamp (plate job compeled)	9	Drywall Repair	SF	150	\$0.25	\$38	0.04	6.00	\$22.99	\$138	\$0.00	\$0	\$1.17	\$1 75
13 Travel to Socomo	10	Painting	SF	150	\$0.04	\$ 6	0.04	6.00	\$22.99	\$138	\$0.00	\$0	\$0.96	\$144
Travel to Socomo	11	Cleanup (after job completed)	Ls	1		\$0	16.00							\$368
Travel to jub site	12													\$0
10	13	Travel to Socorro	hrs											\$414
Mage	14					·····	1.00							\$345
17	15	Lodging and per diem												\$1,500
18		Milage	miles	800										\$240
19						L								\$0
SO														\$0
SO						ļ								\$0 \$0
\$22 \$50 \$50 \$0.00 \$22.99 \$50 \$50.00 \$50.00 \$0.00 \$22.99 \$50 \$50.00 \$50.00 \$23.00 \$24 \$50 \$50.00 \$22.99 \$50 \$50.00 \$50.00 \$25.00 \$2														\$0
Sample S														\$0
So					-									\$0
So							-							\$0
SO														\$0
SO													\$0.00	\$0
28								0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
SO						\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
SO	29					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
S0	30					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
SO SO SO SO SO SO SO SO	31					\$0		0.00				<u> </u>		\$0
SO	3 2													\$0
SS SO SO SO SO SO SO SO	33					1		1			•			\$0
\$0							1		1					\$0
SO SO SO SO SO SO SO SO				ļ		1								\$0 \$0
SO SO SO SO SO SO SO SO				ļ <u></u>	<u> </u>		-		l					\$0
SUBCONTRACTOR SUBTOTAL S2,645 190 S4,359 S1,740				ļ			ļ			1				\$0
A0		CURCOUTE LOTOR OUT)TAI	<u> </u>				<u> </u>	1 462.33		1 40.00	<u> </u>	\$0.00	\$8,743
SUBTOTAL \$2,645 \$5,667 \$2,262 \$42 OVERHEAD \$4 12 \$317 \$680 \$271 \$43 \$580 \$121 \$2,962 \$6,346 \$2,533 \$44 PROFIT \$4 12 \$355 \$762 \$304 \$45 \$580 \$111 \$363 \$7,108 \$2,837 \$46 \$680 \$111 \$363 \$7,108 \$2,837 \$46 \$680 \$111 \$363 \$7,108 \$2,837 \$46 \$680 \$111 \$363 \$7,108 \$2,837 \$46 \$680 \$111 \$363 \$7,108 \$2,837 \$47 \$880 \$111 \$363 \$7,886 \$3,148 \$48				20			 	190			 			\$1,830
42 OVERHEAD % 12 \$317 \$680 \$271			70	1 30				 				I		\$10,573
43 SUBTOTAL \$2,962 \$6,346 \$2,533			94.	12	 		-		ļ		 			\$1,269
A4			 ~	 '	ļ	·						I		\$11,842
45 SUBCONTRACTOR TOTAL \$3,317 \$7,108 \$2,837			%	12			 	 						\$1,421
46 OVERHEAD % 11 \$363 \$778 \$311				†	 		 							\$ 13,263
Subtotal \$3,681 \$7,886 \$3,148				11			 	1	<u> </u>		1			\$1,452
48				<u> </u>			1			\$7,886		\$3,148	ĺ	\$14,715
49 SUBTOTAL \$3,975 \$8,517 \$3,400 50 BOND % 1 \$29 \$63 \$25 51 SUBTOTAL \$4,004 \$8,580 \$3,425 52 N. M. TAX % 6 \$233 \$499 \$199 53 SUBTOTAL \$4,237 \$9,079 \$3,624 54 CONTINCENCY % 20 \$847 \$1,816 \$725 55 GRAND FOYAL \$5,084 \$10,895 \$4,349 PREPARED BY APPROVED BY ITILE OR ORGANIZATION DATE			%	8				l		\$631		\$252		\$1,177
SO BOND % 1 \$29 \$63 \$25		SUBTOTAL				\$3,975				\$8,517		\$3,400		\$15,892
52 N. M. TAX % 6 \$233 \$499 \$199 53 SUBTOTAL \$4,237 \$9,079 \$3,624 54 CONTINGENCY % 20 \$847 \$1,816 \$725 55 GRAND TOTAL \$5,084 \$10,895 \$4,349 PREPARED BY APPROVED BY TITLE OR ORGANIZATION DATE		BOND	%	1	[\$29				\$63		\$25		\$117
53 SUBTOTAL \$4,237 \$9,079 \$3,624 54 CONTINGENCY	51	SUBTOTAL				\$4,004				\$8,580		\$3,425		\$16,009
54 CONTINGENCY % 20 \$847 \$1,816 \$725 55 GRAND TOYAL \$5,084 \$10,895 \$4,349 PREPARED BY ITILE OR ORGANIZATION DATE	52	N. M. TAX	%	6		L				\$499				\$931
55 GRAND FOYAL \$5,084 \$10,895 \$4,349 PREPARED BY APPROVED BY TITLE OR ORGANIZATION DATE	53	SUBTOTAL											ļ	\$16,940
PREPARED BY APPROVED BY TITLE OR ORGANIZATION DATE	54	CONTINGENCY	%	20								l		\$3,388
	5 5	<u> </u>	1	<u> </u>				<u> </u>	<u> </u>	\$10,895		\$4,349	<u> </u>	\$20,328
	PREPAR	Ę.	ED BY			TITLE OR O					DATE			
EMS E M C Engineers, Inc. 11/10/95		BMS (E M C Eng	gineers, Inc.			<u></u>	11/	10/95	

7 Air Conditioning and 200 System Components			DAILY	MAN-			1995 BA	RE COSTS		TOTAL	Τ
200 System Components		CREW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL OLP	1_
7 200 1 3		Q-6	.30	80	Ea.	11,400	2,175		13,575	15,900	23
J0 WII		1	.20	120		15,200	3,275	<u> </u>	18,475	21,700	4
40 ton		\top	.18	133		18,800	3,650	1	22,450	26,200	1
50 ton		Н	.16	150		22,000	4,100	ļ <u>-</u>	26,100	30,500	4
60 ton 75 ton			.14	171		37,100	4,675	1	41,775	48,000	1
80 ton			.12	200		38,000	5,450		43,450	50,000	4
100 ton			.09	266	1	51,000	7,275		58,275	67,500	1
Water cooled, compressor, heat exchanger, controls			İ						4.005	4,925	-1
5 ton		Q-5	.70	22.857	Ea.	3,625	600	1	4,225	4,925 7,925	
35 ton		•	.50	32		6,025	845	ļ	6,870	11,700	-
20 too		Q.6	.40	60		8,325	1,650		9,975	22,300	I
40 ton			.20	120		15,700	3,275	ļ	18,975	46,300	-
100 ton		1	.11	218	♦	33,900	5,950		39,850	40,300	1
			<u> </u>					ļ <u>.</u>			12
COOLING TOWERS Packaged units	AB.4		T					1			ľ
Draw thru, single flow	-120			<u></u>			ļ		76.00	87.50	\forall
Belt drive, 60 tons	A8.4	0.6	90	.267	TonAC	1		1	76.80	76	1
95 tons	-230		100	.240		60	6.5	4	66.55	76	4
110 tons		\sqcap	109	220	\sqcap	59	6		65	74 72.50	۱
125 tons		↓	120	.200	l 🛨	58	5.4	5	63.45	12.50	4
For higher capacities, use multiples			1								١
Induced air, double flow		l	1	l _					01.70	92.50	ᅱ
Gear drive, 150 ton		Q-6	126	.190	TonA	1	1		81.70		۷
300 ton			129	.186		52.5			57.60	66	-
COO for			132	.182	П	41.5			46.46	53	
840 ton		1	142	.169		44	4.6	1	48.61	55.50	끡
1 25 1 Up to 1,000 tons		1	150	.160	1	43	4.3	7	47.37	54	
For higher capacities, use multiples		1		l	1	l			50.05	64.5	
For pumps and piping, add		Q-6	38	.632	TonA	- 1	17.2		52.25	64.5	~
For absorption systems, add		i	-	1	1	759	75%				4
For rigging, see division 016-460			1	\top							
to read, accuracy		1	1			1					_
	R157				T				ļ		
DUCTWORK Fabricated rectangular, includes fittings, joints, supports,	-050		1	1	L.				_	 	
allowance for flexible connections, no insulation	R157						l l				
NOTE: Fabrication and installation are combined	-070		1	1						<u> </u>	
as LABOR cost.	R157	т	1	\top						l .	
Add to labor for elevated installation	-100	П		1	i					<u> </u>	
a of fabricated ductwork		1	\top							1	
***************************************		1	1		1		67				
10' to 15' nigh		1	\top	\top			125		1	1	
20' to 25' high		1	1	1			155			1	
25' to 30' high		1			T		219	1			
30' to 35' high		1	1	1			24			-	
35' to 40' high		1			\top		30	1		j	
A 401 L1-4		1	- 1				33	×			_
For duct insulation and lining see 155-651-3000		1	1							.] ,	
Aluminum, alloy 3003-H14, under 100 lb.		Q-I	10 75	32	0 U			.40	11.8		
Aluminum, afloy 3003-H14, under 100 lb. 100 to 500 lb. 500 to 1,000 lb. 1,000 to 2,000 lb. 2,000 to 5,000 lb.		17	80		0			.85	9.6		.30
500 to 1,000 tb.			95			1		.65	8.2		2.20
1 000 to 2 000 to		-1-1	12			1		.25	6.7		9.85
1,000 to 2,000 lb.]]	13	1		1		.84	6.2		9.10
2,000 to 5,000 lb.			14					.34	5.7	_	8.30
Over 5,000 lb.			23					68	5.1		5.90
								.57	3.5	7 5	5.10
Over 5,000 lb. Galvanized steel, under 200 lb. 200 to 500 lb.			24	5 .09	28 1	1 1		7/	1		4.55

		bsurface Invest			DAILY	MAN-	1		1995 BAI	RE COSTS		TOTAL
020	700 [Selective Demolition		CREW	OUTPUT	HOURS	TINU	MAT.	LABOR	EQUIP.	TOTAL	INCL OLP
320	Do	ıble		1 Plum	7	1.143	Ea.		33.50		33.50	53
400	Water o	loset, floor mounted			8	1			29.50		29.50	46.50
120	Wa	li mounted			7	1.143			33.50		33.50	53
500	Urinal.	floor mounted			4	2			58.50		58.50	92.50
520		Il mounted			7	1.143			33.50		33.50	53
600	Water f	ountains, free standing			8	1			29.50		29.50	46.50
620		ressed			6	1.333			39		39	61.50
000	***	al, to 2" diameter		Ш	200	.040	LF.		1.17	1	1.17	1.85
050		4" diameter		1 👃	150	.053			1.56		1.56	2.47
100		8° diameter		2 Plum	100	.160			4.69		4.69	7.40
150		16" diameter		•	60	267			7.80		7.80	12.35
240		ons, see division 020-732		l			•			1		
250	Water heate			1 Plum	6	1.333	Ea.		39		39	61.50
		reset fixtures, minimum		l'i	6	1.333	Ī		39		39	61.50
000	Maximu			╁╁╴	4	2			58.50		58.50	92.50
100	Maxim			•	"	•	•	•	30.30			32.00
010 04	WEING AND	SIDING DEMOLITION	R020	1	-							
4		concrete plank	-510	B-13	1,680	.033	S.F.		.70	.30	1	1.49
000		, '		1 513	3,900	.014			.70	.13	.43	.64
100	Gypsun Metal d	•			3,500	.016			.34	.13	.48	.72
150		boards, tongue and groove, 2" x 6"		2 Clab	960	.017			.32	74.	.32	.55
200	W 000,			124	1,040	.015			30		.30	.51
220	- 01-	2" x 10"		 		.015	-		29		29	.49
280	203	ndard planks, 1" x 6"		11	1,080	.014			27		27	A5
1320		1"x 8"		1	1,160				26		26	- A3 A4
1340		1" x 12"		. ♥ .	1,200	.013	*				.65	1.10
2000		minum or wood, edge hung		1 Clab	240	.033	LF.		.65		1.55	2.63
2100	Built-in				100	.080			1.55			
2500		ories, plumbing vent flashing		$oxed{oxed}$	14	.571	Ea.		11.10		11.10	18.80
2600	•	ble metal chimney flashing		*	9	.8 89	1		17.25		17.25	29
3000	Roofing, bu	it-up, 5 ply roof, no gravel		B-2	1,600	.025	S.F.		.49		.49	.84
3001		Including gravel			890	.045			.89		.89	1.51
3100	Gra	vel removal, minimum		\sqcup	5,000	.008			.16		.16	27
3120		Maximum			2,000	.020			.40		.40	.67
3400		of insulation board			3,900	.010			.20		.20	.34
4000	-	s, asphalt strip		1	3,500	.011			.23		.23	.38
4100	Sla				2,500	.016	\Box		.32		.32	.54
4300	W			♦	2,200	.018	₩		.36		.36	.61
4500		t to 10 S.F.		1 Clab		1	Ea.		19.40		19.40	33
5000	Siding, met	al, horizontal			444	.018	S.F.		.35		.35	.59
5020		tical			400	.020			.39		.39	.66
5200	Wood,	boards, vertical			400	.020			.39		.39	.66
5220	Cla	pboards, horizontal			380	.021			.41		.41	.69
5240		ngles			350	.023			.44		.44	.75
5260	Te	ctured plywood		Ţ.	725	.011	\downarrow		.21		21	.36
00 10 S	AW CUTTING	Asphalt over 1000 L.F., 3" deep		B-89	775	.021	Ľ.	.21	.46	.36	1.03	1.36
WZ0	Each a	dditional inch of depth			1,250	.013		.05	.28	.22	.55	.76
0400		abs, mesh reinforcing, per inch of depth		П	960	.017		.27	.37	.29	.93	1.21
9420		nforcing, per inch of depth		↓	550	.029		.36	.64	.50	1.50	1.98
9800		alls, plain, per inch of depth		A-1A	100	.080		.25	1.55	.34	2.14	3.27
0820		nforcing, per inch of depth			60	.133		.36	2.59	.57	3.52	5.40
1200	Masonry w	alls, brick, per inch of depth		1	146	.055		.25	1.06	.23	1.54	2.33
120		valls, solid, per inch of depth		11	122	.066		.25	1.27	.28	1.80	2.74
1000	Wood shee	hing to 1" thick, on walls		1 Carp		.040	Ш		.98		.98	1.67
300	On the			1,	250	.032			.79	1	.79	1.33
100		: 020-125 core chil ling		1	,		• •					

22

Z.

ž

			DAILY	MAN-			1995 BAR	E COSTS		TOTAL
155	5 600 Heating System Access.	CREW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	MCL 64
2000	Breeching, 2" calcium silicate with 1/2" cement finish, no lath									
2020	Rectangular	Q-14	42	.381	S.F.	4.79	9.60		14.39	21
2040	Round	1	38.70	.413	•	5.30	10.40	1	15.70	22
2300	Calcium silicate block, + 200° to + 1200°F		1							
2310	On irregular surfaces, valves and fittings						1	İ		
2340	1" thick	Q-14	30	.533	S.F.	2.71	13.45		16.16	25
2360	1-1/2" thick		25	.640		2.95	16.15	· ·	19.10	29.
2380	2" thick		22	.727		3.74	18.35		22.09	33
2400	3" thick	1 1	18	.88 9	1	5.95	22.50		28.45	43
2410	On plane surfaces	1	1			1				
2420	1" thick	Q-14	168	.095	S.F.	2.71	2.40		5.11	6
2430	1-1/2" thick		144	.111	1	2.95	2.80	- 1	5.75	7
2440	2" thick		126	.127	\Box	3.74	3.20		6.94	9
2450	3" thick	1 1	100	.160		5.95	4.03	- 1	9.98	13
2900	Domestic water heater wrap kit	┰	† : ~							
	•	1 Pkm	8	1	Ea.	30	29.50	- 1	59.50	78
2920	1-1/2" with viryl jacket, 20-60 gal.	1, 1991	+-	<u> </u>	-					
3000	Ductwork		1					ł	ļ	
3020	Blanket type, fiberglass, flexible		 		\vdash					
3030	Fire resistant liner, black coating one side					- l	100	l	1.44	
3050	1/2" thick, 2 lb. density	0-14	380	.042	S.F.	.38	1.06		1.65	
3060	1" thick, 1-1/2 tb. density	1 1	350	.046		.50	1.15	1	1	2
3070	1-1/2" thick, 1-1/2 lb. density		320	.050		.62	1.26		1.88	
3080	2" thick, 1-1/2 lb. density	1	300	.053	\	.86	1.34	1	2.20	
3140	FRK vapor barrier wrap, .75 lb. density									
3160	1" thick	Q-14	350	.046	S.F.	.28	1.15	. 1	1.43	1
3170	1-1/2" thick	1 1	320	.050		.37	1.26		1.63	
3180	2" thick	\top	300	.053	\Box	.46	1.34		1.80	- 7
3190	3" thick		260	.062		.53	1.55		2.08	
3200	4" thick	11	242	.066	TT T	.71	1.67		2.38	:
3210	Vinyl jacket, same as FRK	1				- 1				
3280	Unfaced, 1 tb. density									
3310	1" thick	Q-14	360	.044	S.F.	.29	1.12		1.41	
3320	1-1/2" thick	-1-7	330	.048		.39	1.22		1.61	
	2" thick	11	310	.052		.48	1.30		1.78	
3330		 	+		 					
3490	Board type, fiberglass, 3 tb. density		İ						ı	
3500	Fire resistant, black pigmented, 1 side	Q-14	150	.107	S.F.	1.44	2.69		4.13	
3520	1" thick	414	130	.123	31.	1.78	3.10		4.88	
3540	1-1/2" thick	- - -			$\vdash \vdash \vdash$	2.15	3.36		5.51	
3560	2" thick	\ \	120	.133	🔻	2.13	3.30		~ ~.	
3600	FRK vapor barrier		1	L	-	- 110	0.00		3.79	
3620	1" thick	Q 14	1	.107	S.F.	1.10	2.69			
3630	1-1/2" thick		130	.123	Ш	1.30	3.10		4.40	
3640	2" thick	↓	120	.133	♦	1.60	3.36		4.96	
3680	No finish			<u> </u>						
3700	1" thick	Q-14	170	.094	S.F.	.65	2.37		3.02	
3710	1-1/2" thick	11	140	.114		.75	2.88		3.63	
3720	2" thick	→	130	.123	V	1	3.10		4.10	
3730	Sheet insulation	1	1	ļ	`]		
3760	Polyethylene foam, closed cell, UV resistant	\top	1							
3770	Standard temperature (-90° to +212° F)	1	1	1						Į
		Q-14	450	.036	S.F.	.31	.90		1.21	
3771	1/4" thick	1	440	.036	7	.A7	.92		1.39	Ì
3772	3/8" thick	-+	420	.038	╂┼┼┤	.62	.96		1.58	
3773	1/2" thick		1			.99	1.01		2	
3774	3/4" thick	44	400	.040	┞┼┼┤		1.06		2.38	
3775	1" thick		380	.042	1	1.32	1.00	1 1	2.30	i

00	92 Latin, Plaster and Gyp 2 600 Gypsum Board Systems	1	- 1	DAILY	MAN-			1995 BA			TOTAL
US —	2 000 appoint board bystems	CRE		OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL OLP
000	5/8" thick, on walls, standard, no finish included	2 C	arp	2,000	.008	S.F.	.20	.20		.40	.5!
050	Taped and finished			965	.017		.25	.41		.66	.97
100	Fire resistant, no finish included		- 1	2,000	.008		22	.20		.42	.57
150	Taped and finished			965	.017		27	.41		.68	.99
200	Water resistant, no finish included			2,000	. 00 8		.29	.20		.49	.65
250	Taped and finished			965	.017		.34	.41		.75	1.06
300	Prefinished, vinyl, clipped to studs	П	Т	900	.018		.59	.44		1.03	1.39
000	On ceilings, standard, no finish included	1	-	1,800	.009		.20	.22		.42	.59
050	Taped and finished		寸	765	.021		.25	.51		.76	1.15
100	Fire resistant, no finish included			1,800	.009	1	.22	.2 2		.44	.61
150	Taped and finished	1	+	765	.021	+	.27	.51		.78	1.17
	Water resistant, no finish included	- 1 1	ı	1,800	.009		29	22		.51	.69
200		1	+	765	.021	-	.34	.51		.85	1.24
250	Taped and finished		ŀ								
500	On beams, columns, or soffits, standard, no finish included		4	675	.024	4	29	.58		.87	1.31
550	Taped and finished			475	.034		.35	.83		1.18	1.79
600	Fire resistant, no finish included	-	\perp	675	.024	Ш	.31	.58		.89	1.33
650	Taped and finished		ł	475	.034		.37	.8 3		1.20	1.81
700	Water resistant, no finish included		- }	675	.024		.38	.58		.96	1.4
750	Taped and finished		7	475	.034		.43	.83		1.26	1.8
000	Fireproofing, beams or columns, 2 layers, 1/2" thick, incl finish		- 1	330	.048		.49	1.19		1.68	2.50
050	5/8" thick	1	\dashv	300	.053	\top	.55	1.31		1.86	2.8
100	3 layers, 1/2" thick		-	225	.071		.73	1.75		2.48	3.7
150	5/8" thick		+	210	.076	+	.79	1.87		2.66	4.0
- 1	•	1 1	- [480	.033		.51	.82		1.33	1.9
050	For 1" thick coreboard on columns		4	400	133	+					
100	For foil-backed board, add		1.				.08			.08	.0:
200	For high ceilings, over 8' high, add	2 C2		3,060	.005		.09	.13		.22	.33
270	For textured spray, add	2 12		1,600	.010		.11	.24		.35	.5
300	For over 3 stories high, add per story	2 C	arp	6,100	.003	\psi	.05	.06		.11	.17
350	For finishing corners, inside or outside, add		\exists	1,100	.015	LF.	.06	.36		.42	.5
500	For acoustical sealant, add per bead	1 Ca	arp	500	.016	•	.03	.39		.42	.70
550	Sealant, 1 quart tube					Ea.	4.10			4.10	4.5
600	Sound deadening board, 1/4" gypsum	2 ℃	amp 🛭	1,800	.009	S.F.	.16	.2 2		.38	.5
650	1/2" wood fiber	7		1,800	.009	,	22	.22		.44	£.
010	METAL STUDS, DRYWALL Partitions, 10' high, with runners	- -	+								
050		ı	-				1			1	
88		10	am I	450	.018	S.F.	.24	.44		.68	1
2100		lï		520	.015	Ī	.19	.38		.57	.89
200		\dashv	+	440	.013	+	26	.45		.71	1.0
250			1	510	.016		22	.43		.61	.8
230 2300			+				30	.46		.76	1.1
	•			430	.019		1			1	
2350	<u> </u>	_ -	4	500	.016	4	26	.39		.65	.99
2400	• • • • • • • • • • • • • • • • • • • •		1	420	.019		.35	.47		.82	1.1
2450				490	.016	ot	.28	.40		.68	9.
2500				410	.020		.45	.48		.93	1.3
2550				480	.017		.34	.41		.75	1.0
2600			T	450	.018		.42	.44		.86	1.2
2650	24° O.C.			520	.015		.34	.38		.72	1.0
2780		11	\dashv	440	.018	\vdash	.47	.45		.92	1.2
2750	24" O.C.			510	.016		.38	.39		.77	1.0
uju.	3-5/8" wide, 16" O.C.	\dashv	+	430	.019	- -	.56	.46		1.02	1.4
2800	1	11		500	.016		.45	.40		.84	1.1
2800	1 24* O.C		•	JUU	1010	Ш.					
2800 2850		\dashv	-+	420	010		En.	47		1.00	1 4
2800 2850 2900,	4" wide, 16" Q.C.	+	T	420	.019		.59	.A7		1.06	
2800 2850	4" wide, 16" Q.C.			420 490 410	.019 .016		.59 .47	.47 .40		1.06 .87 1.22	1.4 1.2 1.6

LOLP

.55 1.04 1.28 1.75 .56 1.05 .57 1.07 1.31 1.80

1.85 56 1.08 1.31 1.80 33 .17

1.16 1.18 1.45 1.48

> 145 145 190

\$5 | 130 | 55 | 130 | 130 | 135 | 13

<u>.</u>

) Painting and Wall Cov		DA	ILY	MAN-			1995 BAF	E COSTS		TOTAL
199	200 Interior Painting	CREW			HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL OLP
	To 16" diameter, primer or sealer coat, brushwork	2 Por	d 34	40	.047	LF.	.19	1.06		1.25	1.96
6300	Spray Spray	l i	56	67	.028		.21	.64		.85	1.28
350	Paint 1 coat, brushwork		32	25	.049	T	.20	1.11		1.31	2.05
100	Spray	11	56	67	.028	\perp	.23	.64		.87	1.30 3.38
150	Paint 2 coats, brushwork	$\neg \neg$	20	02	.079		.40	1.79		2.19	2.32
00	Spray	1 +	32	23	.050	<u> </u>	.44	1.12		1.56	232
50	Trim, wood, incl. puttying, under 6" wide		T		i			•		.22	.35
00	Primer coat, oil base, brushwork	1 Por		00	.009	LF.	.02	.20		.23	.36
50	Paint, 1 coat, brushwork			75	.009	-	.02	21		.39	.61
00	2 coats			20	.015	4	.04	.35		.54	.86
50	3 coats	11	- 1	70	.022		.05	. 4 9 . 3 0		.34	.53
00	Over 6" wide, primer coat, brushwork	\dashv		00	.013	4	.04	.40		.44	.70
50	Paint, 1 coat, brushwork	1	- 1	50	.018		.04	.68	1	.75	1.20
00	2 coats	_ -		65	.030	+	.07	.95		1.04	1.66
50	3 coats	1 1	1 -	90	.042	*	.09	.33		.42	.64
00	Cornice, simple design, primer coat, oil base, brushwork	\rightarrow	-	50	.015	S.F.	.09	.36		.45	.69
50	Paint, 1 coat		1 1	00	.016		.18	.60		.78	1.19
00	2 coats		_	00	.027		.19	.60		.79	1.20
50	Ornate design, primer coat	11	1 -	100	.027		1	.65		.84	1.27
00	Paint, 1 coat			280	.029	4	.19	1.06		1.41	2.14
50	2 coats	- 1 1	- 1	70	.047			30		.35	.56
00	Balustrades, primer coat, oil base, brushwork	-		598	.013	1	.05	.33	 	38	.61
50	Paint, 1 coat	11	1 -	544	.015		.05	.53	1	.62	.97
ωl	2 coats			340	.024	\vdash		23	1	28	
00	Trusses and wood frames, primer coat, oil base, brushwork	1	- 1	800	.010		.05 .05	.15	1	20	.31
50	Spray			,200	.007	╟╫	.05	24	1	29	.46
∞	Paint 1 coat, brushwork	1 }		750	.011	Н	.05	1	,	20	.31
200	Spray			,200	.007 .016	Н	.09			.45	.69
220	Paint 2 coats, brushwork	11	- 1	500	.013		.09	1	1	.39	.59
240	Spray			600	.013	\vdash	.03			.33	.52
60	Stain, brushwork, wipe off		- 1	600 275	.029		.10	1		.76	1.19
280	Varnish, 3 coats, brushwork		<u>' '</u>	213	3023	$\vdash \pm$	10%	1	1	1	1
50	For latex paint, deduct	İ				_	10%				
10	WALLS AND CEILINGS										
20	Labor cost includes protection of adjacent items not painted	 -	+			⊢			+		
100	Concrete, dry wall or plaster, oil base, primer or sealer coat	١.,	. ا ـــ	200	l nnc	S.F	.04	.14	ı	.18	2
200	Smooth finish, brushwork			1,300 2,040	.006	1 3.7	.04			.13	
240	Roller			2,040 1,163	.007		.07	1	1	.23	. 3
000	Sand finish, brushwork			1,700	1	╂┤	.0.			.18	
340	Roller			1,700 2,720			.0.	1		.12	
380	Spray			1,200		╉┤	.0.			.20	3
400	Paint 1 coat, smooth finish, brushwork			1,200 2,000	1		.0			.13	
140	Roller	$ \vdash$		<u>2,200</u>		┲┤	- 0	1		.12	
480	Spray			2,260 1, 0 50	1		٥			23	
500	Sand finish, brushwork			1,600		┪	.0			.17	
540	Roller			2,100			.0	.0 D			
580	Spray Paint 2 coats, smooth finish, brushwork			680	.012	11	.0			3	
600		į	1 1	1,190			.0		5		
840	Roller	-		1,700		T	.0	1	.1	.19	
680	Spray	ł		605	1		.1		ю	A	
900	Sand finish, brushwork	-	††	1,020			.1		.8	2	
940	Roller			1,700			٥. ا	·	1	2	
980	Spray Paint 3 coats, smooth finish, brushwork	-	+	510					35	A	
1200	Paint 5 coats, smooth mish, trushwork	1	1 1	790					23	1 3	4

TOTAL VCI COL 1

4.10 ECO 10: TURN OFF OFFICE AHU AT NIGHT

Proposed Modifications: Install a time clock to turn off the AHU serving the office areas in the building at night.

Since these areas are not occupied at night, the temperature does not need to be maintained or the space ventilated during unoccupied periods. In the summer the temperature may be allowed to rise, while in the winter the temperature may be allowed to drop, in order to save energy.

Existing Conditions: Presently, the thermostat is set to maintain 70°F year-round, even when the offices are unoccupied.

Method of Analysis: The analysis proceeded as follows:

- The AHU operating schedules in the baseline energy model were altered so that the AHU only operates from 6 a.m. to 4 p.m. daily.
- The energy savings were compared to the baseline model and the energy and cost savings were calculated.
- A LCCA was prepared to determine the cost effectiveness of implementing this ECO.
- It was assumed that the GEODSS maintenance staff would install the time clock as part of their normal daily duties. The cost of a time clock is the only expense to implement this ECO.

Results: The LCCA results are presented in the following table.

Annual Electric Energy Savings (kWh)	48,210
Total Annual Energy Cost Savings	\$3 <i>,</i> 958
Annual Maintenance Cost Savings	\$0
Investment Cost	\$420
Savings-to-Investment Ratio (SIR)	80.86
Simple Payback (Years)	0.10

Recommendations: Turning off the office AHU at night is recommended.

	MPONENT	FY 1995 M	ILITARY CO	INSTRUCTION F	PROJECT DATA		2. DATE
	RMY						Jul-95
	TALLATION AND LOC		Danca NIM				
	EODSS Site, White OJECT TITLE	Sanus Missie	nalige, ivivi			5. PROJECT NUM	ARER
	ecirculate Tower Air	r				0.1110020111011	IDEN.
	0.00.000		LIFE CYCL	E COST ANALYSIS	SUMMARY		
		ENEF		ATION INVESTMEN)	
		0 1 14: -11- 5	A18.4	DECION: 4 (Nov. N	lalaal	DDO ISCT NO.	1406 000
	LOCATION: White		-		iexico)	PROJECT NO: FISCAL YEAR:	1406.008 1995
	PROJECT TITLE: ANALYSIS DATE:	11/13/95	e Ano at Nign	ECONOMIC LIFE:	10	PREPARED BY:	
	ANALISIS DATE.	11/13/93		ECONOMIC EN E.	10	THE ARED DT.	Lionin
INV	VESTMENT						
	CONSTRUCTION CO	OST	=			\$375	
	SIOH COST		.0% of 1A) =			\$22	
C.	DESIGN COST	(6	.0% of 1A) =			\$22	
D.	TOTAL COST	(1A	+1B +1C) =			\$420	
E.	SALVAGE VALUE O	F EXISTING EC	UIPMENT =			\$0	
F.	PUBLIC UTILITY CO	MPANY REBAT	E =			\$0	
G.	TOTAL INVESTMEN	Τ (1D -1E -1F) =			>	\$42
. EN	ERGY SAVINGS (+)	OR COST (J)					
	TE OF NISTR-85-327		R DISCOUNT F	ACTORS:	Jul-95		
<i>-</i>		FUEL COST	SAVINGS		DISCOUNT	DISCOUNTED	
	SOURCE	\$/KWH (1)	KWH/YR (2)		FACTOR (4)	SAVINGS (5)	
Α.	ELECT. (SAV'GS)	\$0.0821	48210		8.58	\$33,960	
	DIST (GAL.)	\$1.10	0	\$0		\$0	
C.	RESID (GAL.)	\$3.00	0	\$0		\$0	
D.	NAT GAS (MBTU)	\$6.18	0	\$0		\$0	
E.	COAL	\$2.00	0	\$0		\$0	
G.	DEMAND (\$/kW)	\$0.00	0	\$0		\$0	
Н.	TOTAL		48,210	\$3,958		>	\$33,96
. NO	N-ENERGY SAVINGS	(+) OR COST	(-)				
Α.	ANNUAL RECURRIN	G (+/-)					
	1 ANNUAL MAINTE	ENANCE SAVIN	IGS	\$0	14.88	\$0	
	2				14.88	\$ O	
	3 TOTAL ANNUAL	DISC. SAVING	S (+) / COST	\$ O		\$0	
В.	NON-RECURRING (+	+ /-)					
	ITEM	!	SAVINGS (+)		DISCOUNT		
			COST(-) (1)	OCCURRENCE (2)	FACTOR (3) (TABLE A-2)	SAV'G/COST(4)	
	a.		\$0	0	0.00	\$0	
	b.		\$0	0	0.00	\$0	
	C.		\$0	0	0.00	\$0	
	d. TOTAL		\$0			\$0	
C.	TOTAL NON-ENERG	Y DISCOUNTE	SAVINGS (+	-) OR COST (-)	(3A3 + 3Bg4) =		\$
FIR	ST YEAR DOLLAR SA	AVINGS (+) / C	OSTS (-)	(2H3+3A+(3Bg1/	Economic Life))	\$3,95
SIN	MPLE PAYBACK (SPB)	IN YEARS (MU	JST BE < 10 \	YEARS TO QUALIFY	(1G/4) =		0.
TO	TAL NET DISCOUNTE	ED SAVINGS			(2H5 + 3C) =		\$33,96
		-TO-INVESTME	NT PATIO (SI	⊋1	(6/1G) =		80.80

Turn Off Office AHU at Night

ECO-10.XLS
Prepared By: EMS
11/13/95
Checked By:_____

Economic Life(Years)	10

Simulation	Energy Consumed (MBTU)	Energy Consumed (kWh)
Baseline Model	3573.45	1,047,011
Night Setback	3408.91	998,802
Savings	164.54	48,210
Cost Savings		\$3,958

	~
Annual Electric Energy Savings (kWh)	48,210
Total Annual Energy Cost Savings	\$3,958
Construction Cost	\$375
SIOH (6.0%)	\$22
Design Cost (6.0%)	\$22
Investment Cost	\$420
Discounted Savings	\$33,960
Savings-to-Investment Ratio (SIR)	80.86
Simple Payback (Years)	0.11

HUAC AUX 11.12% LIGHTS 8.47% SPACE COOL 44.08% SPACE HEAT 0.12% MISC EQUIP 36.20%

	ENGINEER'S OPINION	OF PRO	BABL	E COST					SHEET	1		OF	1
AREA	ACTIVITY	Y T			LOCATION				·	AMENDMEN	IT NO.		
					White Sands	Missile Rang	e, NM			<u> </u>			
PROJEC	CT TITLE Turn Off Office Al-	łU				CONTRACT							
GEODS	S, Energy Conservation Survey					DAG	CA01-94-D-0						
				MATERIA	AL COST		LABO	R COST		EQUIPM	ENT COST	TOTA	L COST
		Unit						Labor	Total				
Line	Item Description	of	No. of	Unit		Manhrs/	Total	Cost/	Labor	Unit		Unit	
No.		Measure	Units	Cost	Total	Unit	Manhrs	Manhour	Cost	Cost	Total	Cost	Total
1	Programmable Timer	ea	1	\$249.33	\$249	2.00	2.00	\$22.99	\$46	\$0.00	\$0	\$295	\$295
2	(solid state w/battery)				\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0	\$0
3	(Installation by GEODSS staff)				\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0	\$0
4					\$ 0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
5					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
6					\$0		0.00	\$22.99	\$ 0	\$0.00	\$0	\$0.00	\$0
7					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
8					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
9					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
10					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
11					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
12					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
13					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
14			<u> </u>		\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
15					\$0		0.00	\$22.99	\$0	\$100.00	\$0	\$100.00	\$0
16					\$0		0.00	\$22.99	\$0	\$0.30	\$0	\$0.30	\$0
17					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
18		m			\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
19					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
20					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
21					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
22					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
23					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
24					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
25					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
26					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
27					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
28					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
29					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
30		•			\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
31					\$0		0.00	\$22.99	\$0 \$0	\$0.00	\$0	\$0.00	\$0 \$0
32					\$0 \$0		0.00	\$22.99 \$22.99	\$0 \$0	\$0.00 \$0.00	\$0 \$0	\$0.00 \$0.00	\$0 \$0
33					\$0		0.00		\$ 0	\$0.00	\$0 \$0	\$0.00	\$0
34					\$0 \$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
35 36			\vdash		\$0		0.00	\$22.99	\$ 0	\$0.00	\$0 \$0	\$0.00	\$0
37					\$0 \$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
38		-	$\vdash \vdash \vdash$		\$0		0.00	\$22.99	\$0	\$0.00	\$0 \$0	\$0.00	\$0
39	SUBCONTRACTOR SUBTO	TAI	 		\$249		2	722.00	\$46	\$5.00	\$0	40.00	\$295
40	LABOR BURDEN	%	0		\$249				\$40	 	\$0 \$0		\$293
41	SUBTOTAL	70	0		\$249				\$46	 	\$0 \$0		\$295
41	OVERHEAD	%	0		\$249				\$40		\$0 \$0		\$290
43	SUBTOTAL		0		\$249				\$46		\$0		\$295
44	PROFIT	- %	0		\$249				\$40		\$0		\$295
45	SUBCONTRACTOR TOTAL		0		\$249			ļ	\$46		\$0 \$0		\$295
46	OVERHEAD	%	0		\$249				\$0	-	\$0		\$293
47	SUBTOTAL		0		\$249				\$46		\$0 \$0		\$295
48	PROFIT	%	0		\$249				\$40		\$0		\$295
49	SUBTOTAL		0		\$249				\$46		\$0		\$295
		%	0		\$249				\$40	 	\$0 \$0		\$295
50 51	BOND SUBTOTAL	70	0		\$249				\$0 \$46	-	\$0 \$0		\$29
52		%	5.8125		\$249 \$14	-			\$40		\$0 \$0		\$29
	N. M. TAX	70	5.8125		\$14 \$264				\$3 \$49	ļ	\$0 \$0		\$1 \$31:
53	SUBTOTAL		20		\$264 \$53				\$49 \$10		\$0		\$312
54 55	CONTINGENCY	76	20		\$53 \$317				\$10 \$58		\$0 \$0		\$375
רר	GRAND TOTAL								\$26		3 U		\$3/5
PREPAR	ED BY APPROVE	n RV		1	TITLE OR OR	CANIZATION				DATE			

ļ	15	
	IANICAL [
•	ZEC	

_	7 Air Conditioning and \	- 1		DALLY	MAN		T		1995 BAR	HE COSTS		TOTAL
157	400 Accessories	a	EW	OUTPUT	HOURS	UNIT	, -	MAT.	LABOR	EQUIP.	TOTAL	INCL OF
(30	Pneumatic/electric	17	lum	16	.500	Ea.	十	135	14.65		149.65	172
140	Pneumatic proportioning		1	8	1	1	1	156	29.50		185.50	217
150	Pneumatic switching		┢	12	.667	一十	┪	74.50	19.55		94.05	112
460	Selector, 3 point		i	6	1.333	1 1		55.50	39		94.50	121
170	Time delay		╌	8	1		+	206	29.50		235.50	271
	Sensor, air operated	ŀ	•	ľ		•		_				
500	Humidity		auf.	16	.500	Ea.	+	175	14.65		189.65	216
520		l''		16	.500	ΙĪ		194	14.65		208.65	236
540	Pressure		-	12	.667	╁	+	138	19.55		157.55	182
560	Temperature	- []	•	"	.~~	▼	į		25.00			
600	Electric operated		Elec	8	1	Ea.	+	40	28.50		68.50	87
620	Humidity	- 1'	DEC I	1 -		ī		485	28.50		513.50	580
650	Pressure		_	8	- 1	┢┵	+				103.50	124
680	Temperature	1	¥	10	.800	\ ▼		80.50	23		100	127
000	Thermometers					L_	4		7.00		102.30	116
100	Dial type, 3-1/2" diameter, vapor type, union connection	1	Stpi	32	250	Ea.		95	7.30			
120	Liquid type, union connection	j_		32	250	Ш	\perp	133	7.30		140.30	157
130	Remote reading, 15' capitlary		Γ	32	.250	IT		90	7.30		97.30	110
500	Stem type, 6-1/2" case, 2" stem, 1/2" NPT	1	١	32	250		-	24	7.30		31.30	37.50
520	4" stem. 1/2" NPT		T	32	250	П	Т	33	7.30		40.30	47.5
600	9" case, 3-1/2" stem, 3/4" NPT			28	.286			40	8.35		48.35	57
620	6" stem, 3/4" NPT	\top	1	28	286	\sqcap	1	43	8.35		51.35	60.5
640	8" stem, 3/4" NPT	- 1	ĺ	28	286		-	49	8.35		57.35	67
660	12" stem, 1" NPT	-	<u>t </u>	26	308	 	十	55	9		64	74.5
	•		•			•	1	·			i I	
000	Thermostats	1	Shee	8	1	Ea	_	21	28		49	67
030	Manual	- 1	Ī	8	1	Ιī		69.50	28		97.50	121
2040	1 set back, electric, timed			8	Hi	一	+	42.50	28		70.50	90.5
5050	2 set back, electric, timed	- 1	•	"	'	1		13.80			13.80	15.1
100	Locking cover		Shee	8	1	\vdash	+	87	28		115	140
200	24 hour, automatic, clock	1-	orece Elec	13	.615		- [11.60	17.55		29.15	39.5
220	Electric, 2 wire		·	10	.800	ҥ	+	14.05	23		37.05	50
230	3 wire	-	-	10	.500	♦		14.05	ພ		"""	
2240	Pneumatic	┩.	<u> </u>		 	<u> </u>	+	102	29.50		131.50	157
\$250	Single temp., single pressure	1	Stpi	8	1	þ	١.		29.50		170.50	200
251	Dual pressure		1_	8	1	₩	4	141	29.50		161.50	190
2252	Dual temp., dual pressure	- 1	1	8	1			132			153.50	181
5253	Reverse acting w/averaging element		上	8	1	Н	4	124	29.50		168.50	198
254	Heating-cooling w/deadband	ĺ	1	8	1			139	29.50	ł	4	187
9255 9256	Integral wipiston top valve actuator		上	8	1	Ц	4	129	29.50		158.50	211
256	Dual temp., dual pressure			8	1		- 1	151	29.50		180.50	
2257	Low limit, 8' averaging element			8	1	Ц		94	29.50		123.50	149
5258	Room single temp. proportional	$\neg \top$	Ŧ	8	1	₩		42	29.50	ļ	71.50	91
5300	Transmitter, pneumatic				<u> </u>	<u> </u>						
5320	Temperature averaging element		Q-1	8	2	Ea.		80.50	53		133.50	169
\$350	Pressure differential	1	Plum	7	1.143			470	33.50		503.50	565
5370	Humidity, duct		Т	8	1	П	П	158	29.50		187.50	218
5380	Room			12	.667			143	19.55		162.55	188
5390	Temperature, with averaging element	1	Ŧ	6	1.333	\sqcap	Т	90	39		129	159
5020	Electric operated, humidity	1	Elec	8	1			40	28.50		68.50	87
5430	DPST	_	•	8	1	1 7	,	56	28.50		84.50	105
6000	Valves, motorized zone	1			1	'			l			
6100	Sweat connections, 1/2" C x C	- 1	Stpi	20	.400	E L	\Box	37	11.70		48.70	59
6110	•	ı,	Ī	20	.400	I		37	11.70	1	48.70	59
\$120	3/4° C x C	-	十	19	.421	╆╅	十	41.50	12.30		53.80	65
5240	1°CxC	1	1	20	.400			48	11.70		59.70	1
6150	1/2" C x C, with end switch, 2 wire		╀	20	.400	╂┤	-+	48	11.70		59.70	71
6160	3/4" C x C, with end switch, 2 wire 1" C x C, with end switch, 2 wire	- 1	1	19	.400	1	1	52.50	1	1	64.80	76.

4.11 ECO 11: PROPANE HEAT

Proposed Modification: Replace electric heating coils in ducts with propane-fired duct furnaces which use a less expensive fuel.

This would involve installing propane duct heaters and associated propane lines and a propane storage tank.

Existing Conditions: Only the computer room CRUs and AHU-2 have heating coils, which are placed in the ducts. Propane duct heaters are not practical for the CRUs, therefore they were not evaluated. Since the price of electricity is high at \$0.0821/kWh, a way to save money and energy is to convert the existing electric duct heaters over to propane-fired duct furnaces in AHU-2 serving the office.

Method of Analysis: Analysis proceeded as follows:

- A baseline energy consumption model was developed using DOE2.1d.
- A modified baseline energy consumption model was developed using DOE2.1d. ECO 10 (Turn Off Office AHU at Night) significantly reduced the heating energy use. Most heating energy was consumed at night when internal heat gain from lights, office equipment, and people was minimal. The dominant heating load at night was ventilation air heating which was eliminated by ECO 10.
- The baseline models were then modified so that the heating coils for AHU-2 were propane-fired instead of electric.
- The baseline energy consumption model and the modified model were compared and the energy savings were calculated.

Results: The LCCA results are presented in the following table.

	Baseline	Modified
		Baseline
Annual Electric Energy Savings (kWh)	16,150	1,199
Total Annual Energy Cost Savings	\$878	\$65
Annual Maintenance Cost Savings	\$0	\$0
Investment Cost	\$11,182	\$11,182
Savings-to-Investment Ratio (SIR)	1.04	0.08
Simple Payback (Years)	12.74	171.7

<u>Recommendations</u>: Switching over to propane is not recommended because it is not cost effective when used in conjunction with ECO 10. Furthermore, GEODSS does not desire to use propane in the building due to the risk to the facility.

ECONOMIC LIFE	(YEARS)	20

Existing Conditions

manage of the stat		
		Baseline
	Baseline	with ECO 10
Baseline Electric Heating Energy (MBtu)	55.12	4.09
Conversion Factor (MBtu/kWh)	0.003413	0.003413
Baseline Electric Heating Energy (kWh)	16,150	1,199
Unit Electricity Cost (\$/kWh)	\$0.0821	\$0.0821
Annual Energy Cost (\$)	\$ 1,326	\$ 98

Proposed Modification

			Baseline
	Baseline	wi	th ECO 10
Modified Propane Heating Energy (MBtu)	61.38		4.56
Conversion Factor (MBtu/gal)	0.095		0.095
Baseline Propane Required (gal)	646		48
Unit Propane Cost (\$/gal)	\$0.6940		\$0.6940
Annual Energy Cost (\$)	\$ 448	\$	33

Annual Electric Energy Savings (kWh)	16,150	1,199
Annual Propane Savings (gal)	(646)	(48)
Total Annual Energy Cost Savings	\$ 878	\$ 65
Annual Maintenance Costs		-
Economic Life (yrs)	\$ 20	\$ 20
UPV Factor - Electricity	15.08	15.08
UPV Factor - LP Gas	18.58	18.58
Life Cycle Cost Savings	\$ 11,664	\$ 86 6
Construction Cost	\$ 9,984	\$ 9,984
SIOH (6.0%)	\$ 599	\$ 599
Design Cost (6.0%)	\$ 599	\$ 599
Total Investment	\$ 11,182	\$ 11,182
Savings-to-Investment Ratio	1.04	0.08
Simple Payback (years)	12.74	171.70

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/8/1995 9:9:49 PDL RUN 1
DENVER, CO 80227 GEODSS SITE DOE EVALUATION
REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE TRUTH OR CONSEQU, N

ENERGY TYPE IN SITE MBTU - CATEGORY OF USE	ELECTRICITY	NATURAL-GAS
SPACE HEAT	0.00	61.38
SPACE COOL	1568.96	0.00
HVAC AUX	426.63	0.00
DOM HOT WTR	0.00	0.00
AUX SOLAR	0.00	0.00
LIGHTS	288.88	0.00
VERT TRANS	0.00	0.00
MISC EQUIP	1233.87	0.00
TOTAL	3518.34	61.38

TOTAL SITE ENERGY 3579.61 MBTU 314.0 KBTU/SQFT-YR GROSS-AREA 314.0 KBTU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3579.61 MBTU 314.0 KBTU/SQFT-YR GROSS-AREA 314.0 KBTU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.4 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED =100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

TOTAL SITE NATURAL-GAS ENERGY USE 61.38 MBTU

Baseline with Eco - 10

	ENGINEER'S OPINION	OF PRO	BABL	E COST					SHEET	1		OF	1
AREA	ACTIVIT	Y			LOCATION					AMENDMEN	IT NO.		
					White Sands	Missile Rang							
	CT TITLE Turn Off Office Al	łU				CONTRACT							
GEODS	S, Energy Conservation Survey			r		DAG	CA01-94-D-0						
				MATERI	AL COST		LABO	R COST	· · · · · · · · · · · · · · · · · · ·	EQUIPM	ENT COST	TOTA	L COST
		Unit						Labor	Total				
Line	Item Description	of	No. of	Unit		Manhrs/	Total	Cost/	Labor	Unit		Unit	
No.		Measure	Units	Cost	Total	Unit	Manhrs	Manhour	Cost	Cost	Total	Cost	Tota!
1	Propane Tank 305 Gallons	Ea.	1	\$2,865	\$2,865	8.00	8.00	\$22.99	\$184	\$0.00	\$0	\$3,049	\$3,049
2	Cernent Pad	S.F.	18	\$ 0.96	\$17	0.00	0.00	\$22.99	\$0	\$0.00	\$0	\$1	\$17
3	Piping	L.F.	44	\$2.84	\$126	0.11	4.75	\$22.99	\$109	\$0.00	\$0	\$ 5	\$235
4	Propane Furnace	Ea.	1	\$880.00	\$880	8.00	8.00	\$22.99	\$184	\$0.00	\$0	\$1,064	\$1,064
5	Excavation	L.F.	20	\$0.00	\$0	0.10	2.00	\$22.99	\$46	\$0.00	\$0	\$2.30	\$46
6	Pressure Regulator Valve	Ea.	1	\$153.00	\$153	1.60	1.60	\$22.99	\$37	\$0.00	\$0	\$189.78	\$190
7	Gas Stop	Ea.	1.0	\$ 17.75	\$18	0.67	0.67	\$22.99	\$15	\$0.00	\$0	\$33.08	\$33
8					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
9							0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
10	Travel to job site	hrs	9		\$0	1.00	9.00	\$22.99	\$207	\$0.00	\$0	\$22.99	\$207
11	Lodging and per diem				\$0		0.00	\$22.99	\$0	\$100.00	\$0	\$100.00	\$0
12	Milage	miles	300		\$0		0.00	\$22.99	\$0	\$0.30	\$90	\$0.30	\$90
13					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
14					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
15					\$0		0.00	\$22.99	\$ 0	\$100.00	\$0	\$100.00	\$0
16					\$0		0.00	\$22.99	\$0	\$0.30	\$0	\$0.30	\$0
17					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
18					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
19					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
20					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
21					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
22					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
23					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
24					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
25					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
26					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
27					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
28					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
29	•				\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
30					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
31					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
32					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
33					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
34					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
35					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
36					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
37					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
38					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
39	SUBCONTRACTOR SUBTO	TAL			\$4,059		34		\$782		\$90	1	\$4,931
40	LABOR BURDEN	%	30		\$0	· · · · · · · · · · · · · · · · · · ·			\$235	 	\$27		\$262
41	SUBTOTAL			· · · · · · · · · · · · · · · · · · ·	\$4,059				\$1,017	i	\$117		\$5,193
42	OVERHEAD	%	12		\$487				\$122	 	\$14	<u> </u>	\$623
43	SUBTOTAL				\$4,546				\$1,139		\$131		\$5,816
44	PROFIT	%	12		\$546				\$137		\$16		\$698
45	SUBCONTRACTOR TOTAL	· · · · · · ·		-	\$5,092				\$1,275		\$147		\$6,514
46	OVERHEAD	%	11		\$558				\$140		\$16		\$713
47	SUBTOTAL				\$5,649				\$1,415		\$163		\$7,227
48	PROFIT	%	8		\$452	-			\$113	 	\$13		\$578
49	SUBTOTAL			-	\$6,101				\$1,528	-	\$176		\$7,805
50	BOND	%	1		\$45				\$1,326		\$170		\$58
51	SUBTOTAL		-		\$6,146				\$1,539	-	\$177		\$7,863
52	N. M. TAX	%	6		\$357	 			\$1,539	 	\$177		\$7,003 \$457
53	SUBTOTAL	, re			\$6,503	<u> </u>			\$1,629		\$10 \$187		\$8,320
54	CONTINGENCY	%	20		\$6,503				\$1,629 \$326	ļ	\$187 \$37		
	GRAND TOTAL	70	20		\$1,301 \$7,804					-	\$37 \$225		\$1,664
PREPAR		IN RY	L		TITLE OR OR	CANIZATION			\$1,955	DATE	9220		\$9,984
REPAR	i	DI			I THE OK OK					DAIL	4 * * *	200	
	EMS				l	E M C Engi	neers, inc.		**	<u> </u>	11/1	U/dJ	

	c onn i	Fuel Distribution			DAILY	MAN-	1			RE COSTS		TOTAL
02	6 800 l	ruei Distribution		CREW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL OLP
3320	Reduce	rs 2*		Q-6	27	.889	Ea.	13.45	24.50		37.95	53.50
1330	3*	diameter			22	1.091		15.55	30		45.55	64
340	4*	diameter		+	20	1.200	+	24	33		57	77.50
010	Gas station	product line for secondary containment	(double wall)									
100	Fiberglass r	einforced plastic pipe 25' lengths										
120	Pipe, pi	lain end 3°		Q-6	375	.064	LF.	3.62	1.75		5.37	6.75
130	4*	diameter			350	.069		4.66	1.87		6.53	8.05
140	5*	diameter			325	.074		5.20	2.02		7.22	8.90
150	6*	diameter		+	300	.080	1	8.80	2.18		10.98	13.15
200	Fittings			•			'					
230		ows, 90° & 45° 3°		Q-6	18	1.333	Ea.	35	36.50		71.50	96
		4" diameter		Ī	16	1.500	lī	65	41		106	136
240		5' diameter		+	14	1.714	-	134	47		181	221
250		6" diameter			12	2		139	54.50		193.50	239
260							Н-	48.50	43.50		92	123
270	100	s 3°			15	1.600		1 1				175
280		4" diameter			12	2	 -	80.50	54.50		135	
290		5" diameter	1		9	2.667		150	73		223	280
300		6" diameter		_	6	4	4	155	109		264	345
310	Cou	iplings 3"	1		18	1.333		23	36.50		59.50	82.50
20		4" diameter			16	1.500		63	41		104	134
30		5" diameter			14	1.714		125	47		172	212
40		6" diameter			12	2		130	54.50		184.50	229
350	Cro	ss-over nipples, 3"			18	1.333		5.40	36.50		41.90	63.50
60		4" diameter	1		16	1.500		6.30	41		47.30	71.50
70		5" diameter		$\exists \Box$	14	1.714		9.40	47		56.40	84.50
80		6" diameter			12	2		9.75	54.50		64.25	96.50
00	Tele	escoping, reducers, concentric 4" x 3"		丁	18	1.333		18.05	36.50		54.55	77.50
110		5" x 4"			17	1.412		46.50	38.50		85	112
120		6' x 5'		\downarrow	16	1.500		114	41		155	444
i_							_	114	71		155	190
		Gas Distribution S						114	41		155	190
010 F	PIPING, GAS SE	RVICE & DISTRIBUTION, POLYETHY						114	41		133	190
010 F	PIPING, GAS SE not including	RVICE & DISTRIBUTION, POLYETHYI	LENE	B-20			LF.					
010 F 020	PIPING, GAS SE not including 60 psi coils,	ERVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3	LENE	B-20	450	.053	¥ <u>1</u> :	.25	1.18		1.43	2.26
010 F 020 000 040	PIPING, GAS SE not including 60 psi coils, 1-1	RVICE & DISTRIBUTION, POLYETHY g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11	LENE	B-20	450 400	.053 .060	LF.	.25 .65	1.18 1.32		1.43 1.97	2.26 2.94
010 F 020 000 040	PIPING, GAS SE not including 60 psi coils, 1-1,	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 fiameter, SDR 11	LENE	B-20	450 400 360	.053 .060	₽	.65 1.21	1.18 1.32 1.47		1.43 1.97 2.68	2.26 2.94 3.81
010 F 020 000 040 000	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 fiameter, SDR 11 fiameter, SDR 11	LENE	+	450 400 360 300	.053 .060 .067 .080	LF.	.65 .65 1.21 2.27	1.18 1.32 1.47 1.76	36	1.43 1.97 2.68 4.03	2.26 2.94 3.81 5.45
010 F 020 000 040 160	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 diameter, SDR 11 diameter, SDR 11 ts with coupling, 3" diameter, SDR 11	LENE	B-20	450 400 360 300 300	.053 .060 .067 .080	₹ .	25 .65 1.21 2.27 2.47	1.18 1.32 1.47 1.76 2.11	.36	1.43 1.97 2.68 4.03 4.94	2.26 2.94 3.81 5.45 6.65
010 F 020 000 040 000 160 000	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c	ervice & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 liameter, SDR 11 liameter, SDR 11 ts with coupling, 3" diameter, SDR 11 liameter, SDR 11	LENE	+	450 400 360 300 300 260	.053 .060 .067 .080 .093 .108	LF.	25 .65 1.21 2.27 2.47 3.91	1.18 1.32 1.47 1.76 2.11 2.44	.41	1.43 1.97 2.68 4.03 4.94 6.76	2.26 2.94 3.81 5.45 6.65 8.85
010 F 020 000 040 000 000 000 000 000 000 000	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 fiameter, SDR 11 fiameter, SDR 11 ts with coupling, 3" diameter, SDR 11 fiameter, SDR 11 fiameter, SDR 11 fiameter, SDR 11	LENE	+	450 400 360 300 300 260 240	.053 .060 .067 .080 .093 .108	y	25 .65 1.21 2.27 2.47 3.91 8.95	1.18 1.32 1.47 1.76 2.11 2.44 2.64	.41 .45	1.43 1.97 2.68 4.03 4.94 6.76	2.26 2.94 3.81 5.45 6.65 8.85
010 F 020 000 040 000 000 000 000 000 000 000	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c 6" c	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 tis with coupling, 3" diameter, SDR 11 filameter, SDR 11	LENE	+	450 400 360 300 300 260	.053 .060 .067 .080 .093 .108	∀ U.F. ↓	25 .65 1.21 2.27 2.47 3.91	1.18 1.32 1.47 1.76 2.11 2.44	.41	1.43 1.97 2.68 4.03 4.94 6.76	2.26 2.94 3.81 5.45 6.65 8.85
010 F 020 000 040 000 000 000 000 000 000 000	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c 6" c 8" c	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 fiameter, SDR 11 fiameter, SDR 11 ts with coupling, 3" diameter, SDR 11 fiameter, SDR 11	LENE	+	450 400 360 300 300 260 240	.053 .060 .067 .080 .093 .108	∀ U f.	25 .65 1.21 2.27 2.47 3.91 8.95	1.18 1.32 1.47 1.76 2.11 2.44 2.64	.41 .45	1.43 1.97 2.68 4.03 4.94 6.76	2.26 2.94 3.81 5.45 6.65 8.85
010 F 020 0 000 0 100 0 160 0 560 0 560 0 560 0 760 0 760 0 760 0	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c 6" c 8" c	excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 filameter, SDR 11 ts with coupling, 3" diameter, SDR 11 filameter, SDR 11	LENE	+	450 400 360 300 300 260 240	.053 .060 .067 .080 .093 .108	Lf.	25 .65 1.21 2.27 2.47 3.91 8.95	1.18 1.32 1.47 1.76 2.11 2.44 2.64	.41 .45	1.43 1.97 2.68 4.03 4.94 6.76	2.26 2.94 3.81 5.45 6.65 8.85
010 F 000 0 040 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0 160 0	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c 6" c 8" c PIPING, GAS SE not including Schedule 40	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 fliameter, SDR 11 fliameter, SDR 11 ts with coupling, 3" diameter, SDR 11 fliameter, SDR 11	NTapped	B-21	450 400 360 300 300 260 240 200	.053 .060 .067 .080 .093 .108 .117 .140	•	.25 .65 1.21 2.27 2.47 3.91 8.95 14.90	1.18 1.32 1.47 1.76 2.11 2.44 2.64 3.17	.41 .45 .54	1.43 1.97 2.68 4.03 4.94 6.76 12.04 18.61	2.26 2.94 3.81 5.45 6.65 8.85 14.75 22
010 F 120 000 000 000 000 000 000 000 000 000	PIPING, GAS SE not including 60 psi coits, 1-1, 2" c 3" c 40' join 4" c 6" c 8" c PIPING, GAS SE not including Schedule 40	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 RVICE & DISTRIBUTION, STEEL g excavation or backfill, tar coated and w , plain end 1" diameter	NTapped	+	450 400 360 300 260 240 200	.053 .060 .067 .080 .093 .108 .117 .140	Lf	.25 .65 1.21 2.27 2.47 3.91 8.95 14.90	1.18 1.32 1.47 1.76 2.11 2.44 2.64 3.17	.41 .45 .54	1.43 1.97 2.68 4.03 4.94 6.76 12.04 18.61	2.26 2.94 3.81 5.45 6.65 8.85 14.75 22
010 F 120 000 000 000 000 000 000 000 000 000	PIPING, GAS SE not including 60 psi coits, 1-1, 2" c 3" c 40' join 4" c 6" c 8" c PIPING, GAS SE not including Schedule 40	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 rVICE & DISTRIBUTION, STEEL g excavation or backfill, tar coated and w , plain end 1" diameter 2" diameter	NTapped	B-21	450 400 360 300 260 240 200 300 280	.053 .060 .067 .080 .093 .108 .117 .140	•	25 .65 1.21 2.27 2.47 3.91 8.95 14.90	1.18 1.32 1.47 1.76 2.11 2.44 2.64 3.17	.41 .45 .54 .17	1.43 1.97 2.68 4.03 4.94 6.76 12.04 18.61	2.26 2.94 3.81 5.45 6.65 8.85 14.75 22
010 F 020 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c 8" c PIPING, GAS SE not including Schedule 40	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 rVICE & DISTRIBUTION, STEEL g excavation or backfill, tar coated and w , plain end 1" diameter 2" diameter 2" diameter 3" diameter	NTAPPED NTAPPED	B-21 	450 400 360 300 260 240 200 300 280 260	.053 .060 .067 .080 .093 .108 .117 .140	•	25 .65 1.21 2.27 2.47 3.91 8.95 14.90 2.84 3.21 6.45	1.18 1.32 1.47 1.76 2.11 2.44 2.64 3.17 2.98 3.20 3.44	.41 .45 .54 .17 .19 .20	1.43 1.97 2.68 4.03 4.94 6.76 12.04 18.61 5.99 6.60 10.09	2.26 2.94 3.81 5.45 6.65 8.85 14.75 22
010 F 020 000 040 0100 0100 0100 0100 0100 0100	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c 8" c PIPING, GAS SE not including Schedule 40	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 rVICE & DISTRIBUTION, STEEL g excavation or backfill, tar coated and w , plain end 1" diameter 2" diameter	NTAPPED NTAPPED	B-21	450 400 360 300 260 240 200 300 280 260 255	.053 .060 .067 .080 .093 .108 .117 .140 .107 .114 .123 .188	•	25 .65 1.21 2.27 2.47 3.91 8.95 14.90 2.84 3.21 6.45 9.25	1.18 1.32 1.47 1.76 2.11 2.44 2.64 3.17 2.98 3.20 3.44 4.49	.17 .19 .20	1.43 1.97 2.68 4.03 4.94 6.76 12.04 18.61 5.99 6.60 10.09	2.26 2.94 3.81 5.45 6.65 8.85 14.75 22 8 8.80 12.75 19.65
010 F 020 0 000 0 000 0 160 0 540 0 540 0 000 0 040 0 040 0 040 0	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c 6" c 8" c PIPING, GAS SE not including Schedule 40	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 revice & DISTRIBUTION, STEEL g excavation or backfill, tar coated and w plain end 1" diameter 2" diameter 3" diameter 4" diameter 5" diameter 5" diameter 5" diameter	NTAPPED NTAPPED	B-21 	450 400 360 300 260 240 200 300 280 260 255 220	.053 .060 .067 .080 .093 .108 .117 .140 .107 .114 .123 .188 .218	•	25 .65 1.21 2.27 2.47 3.91 8.95 14.90 2.84 3.21 6.45 9.25 13.90	1.18 1.32 1.47 1.76 2.11 2.44 2.64 3.17 2.98 3.20 3.44 4.49 5.20	.17 .19 .20	1.43 1.97 2.68 4.03 4.94 6.76 12.04 18.61 5.99 6.60 10.09 15.70 21.37	2.26 2.94 3.81 5.45 6.65 8.85 14.75 22 8 8.80 12.75 19.65 26.50
010 F 020 0 040 0 160 0 560 5640 0 000 0 000 0 120 0 160 0 120 0 160 0 120 0	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c 6" c 8" c PIPING, GAS SE not including Schedule 40	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 filameter, SDR 11 ts with coupling, 3" diameter, SDR 11 filameter, SDR 11 RVICE & DISTRIBUTION, STEEL g excavation or backfill, tar coated and w plain end 1" diameter 2" diameter 3" diameter 4" diameter 5" diameter 6" diameter 6" diameter 6" diameter	NTAPPED NTAPPED	B-21 	450 400 360 300 260 240 200 300 260 240 200 255 220 180	.053 .060 .067 .080 .093 .108 .117 .140 .107 .114 .123 .188 .218	•	25 .65 1.21 2.27 2.47 3.91 8.95 14.90 2.84 3.21 6.45 9.25 13.90 17.05	1.18 1.32 1.47 1.76 2.11 2.44 2.64 3.17 2.98 3.20 3.44 4.49 5.20 6.35	.17 .19 .20 1.96 2.27 2.77	1.43 1.97 2.68 4.03 4.94 6.76 12.04 18.61 5.99 6.60 10.09 15.70 21.37 26.17	2.26 2.94 3.81 5.45 6.65 8.85 14.75 22 8 8.80 12.75 19.65 26.50
010 F 020 0 000 1 000 1 000 1 000 1 000 0 000 G, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c 6" c 8" c PIPING, GAS SE not including Schedule 40	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 revice & DISTRIBUTION, STEEL g excavation or backfill, tar coated and w plain end 1" diameter 2" diameter 3" diameter 4" diameter 5" diameter 5" diameter 5" diameter	NTAPPED NTAPPED	B-21 	450 400 360 300 260 240 200 300 260 255 220 180 140	.053 .060 .067 .080 .093 .108 .117 .140 .107 .114 .123 .188 .218 .267 .343	•	25 .65 1.21 2.27 2.47 3.91 8.95 14.90 2.84 3.21 6.45 9.25 13.90 17.05 27	1.18 1.32 1.47 1.76 2.11 2.44 2.64 3.17 2.98 3.20 3.44 4.49 5.20 6.35 8.15	.41 .45 .54 .17 .19 .20 1.96 2.27 2.77 3.56	1.43 1.97 2.68 4.03 4.94 6.76 12.04 18.61 5.99 6.50 10.09 15.70 21.37 26.17 38.71	2.26 2.94 3.81 5.45 6.65 8.85 14.75 22 8 8.80 12.75 19.65 26.50	
010 F 120 100 F 120 100 F 120 120 120 120 120 120 120 120 120 120	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40' join 4" c 6" c 8" c PIPING, GAS SE not including Schedule 40	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 filameter, SDR 11 ts with coupling, 3" diameter, SDR 11 filameter, SDR 11 RVICE & DISTRIBUTION, STEEL g excavation or backfill, tar coated and w plain end 1" diameter 2" diameter 3" diameter 4" diameter 5" diameter 6" diameter 6" diameter 6" diameter	NTAPPED NTAPPED	B-21 	450 400 360 300 260 240 200 300 260 240 200 255 220 180	.053 .060 .067 .080 .093 .108 .117 .140 .107 .114 .123 .188 .218	•	25 .65 1.21 2.27 2.47 3.91 8.95 14.90 2.84 3.21 6.45 9.25 13.90 17.05	1.18 1.32 1.47 1.76 2.11 2.44 2.64 3.17 2.98 3.20 3.44 4.49 5.20 6.35	.17 .19 .20 1.96 2.27 2.77	1.43 1.97 2.68 4.03 4.94 6.76 12.04 18.61 5.99 6.60 10.09 15.70 21.37 26.17	2.26 2.94 3.81 5.45 6.65 8.85 14.75 22 8 8.80 12.75 19.65 26.50 32 47 65.50
010 F 020 0 040 0 100 160 0 540 0 04	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40" join 4" c 6" c 8" c PIPING, GAS SE not including Schedule 40	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 filameter, SDR 11 ts with coupling, 3" diameter, SDR 11 filameter, SDR 11 RVICE & DISTRIBUTION, STEEL g excavation or backfill, tar coated and w p, plain end 1" diameter 2" diameter 2" diameter 4" diameter 5" diameter 5" diameter 6" diameter 8" diameter 8" diameter 8" diameter	NTAPPED NTAPPED	B-21 	450 400 360 300 260 240 200 300 260 255 220 180 140	.053 .060 .067 .080 .093 .108 .117 .140 .107 .114 .123 .188 .218 .267 .343	•	25 .65 1.21 2.27 2.47 3.91 8.95 14.90 2.84 3.21 6.45 9.25 13.90 17.05 27	1.18 1.32 1.47 1.76 2.11 2.44 2.64 3.17 2.98 3.20 3.44 4.49 5.20 6.35 8.15	.41 .45 .54 .17 .19 .20 1.96 2.27 2.77 3.56 4.99 6.25	1.43 1.97 2.68 4.03 4.94 6.76 12.04 18.61 5.99 6.60 10.09 15.70 21.37 26.17 38.71 53.44 67.05	2.26 2.94 3.81 5.45 6.65 8.85 14.75 22 8 8.80 12.75 19.65 26.50 32 47 65.50 81.50
010 F 020 000 040 100 160 500 540 660 640	PIPING, GAS SE not including 60 psi coils, 1-1, 2" c 3" c 40" join 4" c 6" c 8" c PIPING, GAS SE not including Schedule 40	RVICE & DISTRIBUTION, POLYETHYI g excavation or backfill 1/2" diameter, SDR 9.3 /4" diameter, SDR 11 filameter, SDR 11 RVICE & DISTRIBUTION, STEEL g excavation or backfill, tar coated and w p, plain end 1" diameter 2" diameter 3" diameter 4" diameter 5" diameter 6" diameter 6" diameter 8" diameter 8" diameter 10" diameter	NTAPPED NTAPPED	B-21 	450 400 360 300 260 240 200 300 280 260 255 220 180 140	.053 .060 .067 .080 .093 .108 .117 .140 .107 .114 .123 .188 .218 .267 .343 .480	•	25 .65 1.21 2.27 2.47 3.91 8.95 14.90 2.84 3.21 6.45 9.25 13.90 17.05 27	1.18 1.32 1.47 1.76 2.11 2.44 2.64 3.17 2.98 3.20 3.44 4.49 5.20 6.35 8.15 11.45	.41 .45 .54 .17 .19 .20 1.96 2.27 2.77 3.56 4.99	1.43 1.97 2.68 4.03 4.94 6.76 12.04 18.61 5.99 6.60 10.09 15.70 21.37 26.17 38.71 53.44	2.26 2.94 3.81 5.45 6.65 8.85 14.75 22 8 8.80 12.75 19.65 26.50 32 47 65.50

690

.55 7.15 3.75

6 3.50 5 8.50 3.50 79 77.50 85 61 74.50 93

260

1	7	55 Heating					حري									
	۲	55 Heating														
ļ	1	55 200 Boiler Accessories				DALL		AH-			1:	995 BA	RE COSTS			
1	9470			4	CREW	OUTPU	л но	URS	UNIT	MAT.			EQUIP.	TOTA		OTAL 1. OLP
	_			- 1	Q-6	.29	82.7	759	Ea.	26,10	0 2,2	50		28,35		,200
•	1	INDUCED DRAFT FANS		+		├─	┿	4							"	.,2.00
ı	1000	Breeching installation		- 1	!				- 1						_	
- 1	1800	Hot gas, 600°F, variable pitch pulley and motor		+		 	┼	+							ı	
	1840	6" diam. inlet, 1/4 H.P., 1 phase, 400 CFM		4	ا وي	6	2.66	67	Ea.	1 000						
	1850 1860	7" diam. inlet, 1/4 H.P., 1 phase, 800 CFM	_	7	7	5	3.20		+	1,000		7.50		1,06		200
	1870	8° diam. inlet, 1/4 H.P., 1phase, 1120 CFM			\perp	4	4		II	1,575	101	1		1,156		300
	1880	9" diarn. Inlet, 3/4 H.P., 1 phase, 1440 CFM 10" diarn. Inlet, 3/4 H.P., 1 phase, 2000 CFM		T	П	3.60	4.44	丌	11	1,850	112			1,676		875
	900	12" diam. inlet, 3/4 H.P., 3 phase, 2960 CFM		4	\sqcup	3.30	4.84		Ш	2,075	123	1		2,198		200 175
ŀ	910	14" diam. inlet, 1 H.P., 3 phase, 4160 CFM			Ш	3	5.33		\prod	2,150	135	1		2,285		50
	920	16" diam. inlet, 2 H.P., 3 phase, 6720 CFM		╂	+		6.154	_1_	╀	2,525	156			2,681		
	940	18" diam. inlet, 3 H.P., 3 phase, 9120 CFM		1		2	6.957 8	1		2,750	176	Τ		2,926		
•	950	20" diam. inlet, 3 H.P., 3 phase, 9760 CFM		1	廾		10.667	十	++-	3,325 3,625	202	4		3,527	3,9	75
-	990	22" diam. Inlet, 5 H.P., 3 phase, 13,360 CFM	_			1	16			4,225	270 405	-		3,895	4,4	
	900	24° diam. inlet, 7-1/2 H.P., 3 phase, 17,760 CFM For multi-blade damper at fan inlet, add		T	亓	.80	20	17	, -	5,200	505	+		4,630	5,2	
_	200	Chimneytop installation		L	\perp	\Box		1	'	20%	~~		- 1	5,705	6,5	25
	00	6" size			Τ			Г			1	+				
	40	8' size		18	-	8	1	L	<u> </u>	305	28		1	333	38	, I
2	80	13" size					1.143			310	32	\top		342	39	
	80	For speed control switch, add	-		+-	- '	.333	₩	- -	420	37.5	0		457.5		
		For thermal fan control, add						П		49.50	1			49.5	0 5	1.50
100		Flue shutter damper for draft control,		_	十	\dashv	ᅱ	-	+-		 	+-		29	3	2
E		parallel blades 8° size			_		ı	l	- [1	- 1			\neg
100		9' size		0.9	1	丌	2	Ea.	1	350	50.50	1	-+	400.50	16	
5		10° size	4	4	7.		133	丄		380	54			434	465 505	
		12' size	ı	1	1.7	1	286		T	390	58	T		448	520	
		14' size	4	+-	6.5		462 667	4	╀	430	62.50			492.50		1
		16' size	-		5.5	1			1	490	67.50			557.50	640	7
2		18° size	7	+	5	_	200	+	+-	530 580	73.50 81	<u> </u>		603.50		
ä	+	20° size 22° size			4.5		56			645	90		- 1	661	765	7
51		24" size	T	Τ	4	14		1	†	710	101	-		735 811	850	4
		27° size	1	1	3.50			\perp	L	750	116			866	940 1,000	1
		30° size			3	5.3		T		775	135		$\neg +$	910	1,075	-
3		32° size	+	+	2.50	_		4		825	162			987	1,175	1
=		36" size			1.50	10.6			Į.	865	202			1,067	1,275	7
11	15	100 Warm Air Systems	†	•	للغد	110.0	"—	¥		930	270			1,200	1,450	
	Dir	I DIPHICE A LINE OF THE PARTY O							ĺ		1					T
		T FURNACES includes burner, controls, stainless steel	T			_	十									
Į		text exchanger. Gas fired, electric ignition Indoor installation	L								1			ı		401
		100 MBH output	Ι.			П	T	\exists		_			$-\!\!\!\!+\!\!\!\!\!-$	\longrightarrow		-
7		120 MBH output	Ľ	15	5	3.200) [E	2		B80	84.50			964.50	1,100	
7	• •	200 MBH output			4	4		ΙŢ		000	105		_	1,105	1,250	1
×		240 MBH output	\vdash	$\vdash \vdash$	2.70 2.30	5.926 6.957		\sqcup		775	156			1,531	1,775	1
	<u> </u>	280 MBH output			2.30	0.95/			1,4		183		3	1,633	1,850	1
7	·	320 MBH output	H	,+	1.60	10	╂┤	$\vdash \vdash$	1,6		211			1,811	2,100	
		For powered venter and adapter, add	'							20	263		7	2,013	2,325	1
7	. 1	For required flue pipe, see division 155-680 Outdoor installation with		\top			╁┸	+						220	242	1
{		Outdoor installation, with vent cap 75 MBH output	L													1
ų,	Mary .	94 MBH output	4	5	4	4	Ĺ.	.	1,32	25	105			1,430	1 600	
1					4	4	L		1,47		105			,580	1,600	I
	ţ٠.													, www	1,775	l

MCT 673

2,025

2,425 3,150 3,450 3,725 6,300 7,225 8,200

O

50

N
SITE
WO
R

	20 Forthwork		,								A. S. C. C.	
	22 Earthwork		DAIL	I MA	N-				1995 BARE	COSTS		TOTAL
02	2 200 Excav./Backfill/Compact	CREW	1		-	UNIT	MAT	. U	BOR	EQUIP.	TOTAL	BHC C
	FYCAVATING, UTILITY TRENCH Common earth							}				
050	Trenching with chain trencher, 12 H.P., operator walking		900	0	10	LF.	-		24	.10	.34	
100	4" wide trench, 12" deep	B-53	l.		11	Lr.		i	26	.11	.37	
150	18" deep	_	750		11	┿	+	\dashv	28	.12	.40	1
200			650		12		ļ		.30	.13	.43	
300			600		13	十	+		.32	.14	.46	
350	18" deep	11	550	•	15	1	1		.35	.15	.50	
400	24" deep		450		18	+	+		.43	.19	.62	
450		- 11	47!	1	17	-		l	.41	.18	.59	
0600			400	-	20	十			.48	.21	.69	1.
0650	1	11	356	1	123				.55	.24	79	1.
0700			30)27	+	 		.64	.28	.92	l.
0750	36" deep				_	•		- 1				
1000		A-I	80	0 1	010	LF.			.19	.08	.27	
1050		17	53	· ["	015	1		1	.29	.11	.40	
1100	18° deep		40	-1	020	\vdash			.39	.15	.54	
1150	0 24" deep	11	54		015		1		.29	.11	.40	
1300			40	_	020	$\vdash \vdash$	+-		.38	.15	.53	
1350		11	27	٠ ا ٠	030				.57	22	.79	1
1400	0 24" deep		18		044	H			.86	.33	1.19	1
1450	0 36" deep	11	40	~ `	.020		1	1	.39	.15	.54	
1600	8" wide trench, 12" deep		1 20		.030		_		.59	23	.82	
1650	0 18" deep				.040	1	1	İ	.78	.30	1.08	1
1700			- -		.059	1	,		1.15	A5	1.60	
1750	36 ° d eep	'	′ •	_ [Ι'	- [ļ				
2000	1. 184 304 400	- B-	54 1.	200	.007	u	F.		.16	.16	.32	
2050	•			1	800.	1			.19	.19	.38	
210					.008	П			.20	.20	.40	1
215		1	9	00	.009	П			21	21	.42	
220	and the same of th		7	50	.011	П			.26	.26	.52	
225	The state of the s	j	6	50	.012				.30		.60	
230			1,	000	.008	1			.19	1	1	1
240		- 1	9	50	.008				.20		.40	
245			119	900	.009				.21	l .	1	
250		ŀ	1 1 1	800	.010	1_			.24			
_	36" deep		17	550	.012	T		ł	.30		1	
1	48" deep	1	11:	975	.008		<u> </u>		20			
	700 12" wide trench and backfill, 12" deep		† †	860	.009				22	1	3	
	750 18" deep		11.	800	.010		<u> </u>		.24		1	
	800 24* deep		++	725	.011	П	T	- 1	2	1	1	
1	850 36" deep 000 16" wide trench and backfill, 12" deep	.		835	.010				2			
			\top	750	.011			1	2	1	l .	
	050 18" deep	1	↓	700	.011	Ц	*		2	8 21	50%	
	100 24" deep 200 Compaction with vibratory plate, add							i			50%	1
32	Compaction with vibratory plate, and									8 8	5 1.1	
1	2010 FILL Spread dumped material, by dozer, no compaction			1,000	.012	•	C.Y.	1	12.0	~ 1	12.9	
		1	Clab	12	.56	7			12.9		+	1
	0100 By hand 0150 Spread fill, from stockpile with 2-1/2 C.Y. F.E. loader					. 1		1		6 1.3	5 1.5	1
•		1	B-10P	600	.02		C.Y.					
		1	3-10M	600	.02		'			`` 1 .	TI .	1
	A Secretary Affician	1	B-37	10,000			S.F.	.10				8
			\top	8,600	.00			.15		· .	-1	11
	0600 6°deep	l		7,200	.00)7		.25				33
	0700 9" deep		77	6,000			*	.35 7.50		**	~ I	
	0800 12" deep		1 1	120	.40		C.Y.	7.0		20 1.1	.n. 10/	~ .

15
MECHANICAL

	l eating			DAN	y T k	WAN-		Т		1995 BAR	E COSTS		TOTAL	١
E 600	Heating System Access	;.	CREW		אן דטי		UNIT	. -	MAT.	LABOR	EQUIP.	TOTAL	INCL OUP	L
5 000			0-5	17		941	Ea.	十	485	25		510	570	671
	15 gallon capacity		1	14		.143	Ī	1	520	30		550	620	1
	24 gallon capacity		+	12		.333	十	十	605	35		640	720	ļ
	30 gallon capacity			10		1.600		1	690	42		732	825	1
	40 gallon capacity		+	8		2	十	\top	790	52.50		842.50	955	
	60 gallon capacity			1 7	- 1	2.286	-		905	60		965	1,100	4
	80 gallon capacity		╌	1 6		2.667	十	十	1,100	70		1,170	1,325	1
	100 gation capacity			5		3.200			1,275	84.50		1,359.50	1,525	4
	120 gallon capacity		\vdash	4.	50	3.556	寸	十	1,375	93.50		1,468.50	1,650	1
	135 gation capacity			1	- 1	4		1	1,675	105		1,780	2,025	4
	175 gallon capacity		$\vdash \vdash$	3.0	60	4.444		7	1,925	117		2,042	2,300	1
	220 gallon capacity		1	1		4.848		-	2,025	128		2,153	2,425	4_
L	240 gation capacity		╂┼		1_	5.333	H	十	2,725	140		2,865	3,225	15
	305 gallon capacity		11	1		5.714			3,325	150		3,475	3,900	4
	400 gailion capacity	•	1 +			1.333	H	十	1,125	35		1,160	1,300	ı
Steel	ASME expansion, rubber diaphragm, 19 gal. cap. accep	7. .			8	2			1,250	52.50		1,302.50		4
	31 gallon capacity		1+			2.667	H	1	1,750	70		1,820	2,025	١
	61 gallon capacity				- 1	3.200	i i		1,875	84.50	1	1,959.50		1
	79 gallon capacity		╂┼		4	4	H	$\vdash \uparrow$	1,975	105	1	2,080	2,350	1
	119 gallon capacity		1	1		4.211			2,775	111		2,886	3,250	_
1	158 gallon capacity		╂╌┼		.30	4.848	H	$\vdash \vdash$	3,200	128		3,328	3,725	1
0	211 gallon capacity		1	ı	2.80	5.714			4,200	150	1	4,350	4,875	┙
	317 gallon capacity		╂┤		2.60	6.154	╀	\vdash	6,200	162		6,362	7,075	1
	422 gallon capacity		1 1	1	ı	6.667	١.	Ιl	6,800	176	ł	6,976	7,750	
ol .	528 gallon capacity		1-4	' '	2.40	0.007	尸	-	0,000					
VENT CH	IIMNEY Prefab metal, U.L. listed		1	-	1	1				1	1	į		_1
Gas,	double wall, galvanized steel		4	_		1 222	1	LF.	2.92	5.6	0	8.5	2 12.	30
	3" diameter	0	Q	9	72	222	١"	۲.	3.57	1	1	9.5	2 13.	55
	4" diameter	8	\mathbf{H}		68	.235	╀	╀	4.20			10.5	0 14.	80
0	5" diameter			1	64	250	1	1	4.93	4		11.6	8 16.	30
ю	6° diameter	3	\perp		60	267	╂-	+	7.25			14.5	0 19.	70
50	7° diameter	A.	1		56	286			8.10	1		15.9		.50
30	8" diameter		1_	\sqcup	52	.308	_	╀	17.05			25.5	0 32.	.50
00	10° diameter	The second	1		48	.333		1	23	9.	1	32.2		, 1
20	12° diameter	٤		Ш	44	.364	_	+	38.5		65	48.1	5 57.	.50
40	14" diameter		-	11	42	.381			52	10.		62.1		1.50
60	16" diameter		┸	Ш	40	.400	_	+	67	10.		77.9).50
80	18" diameter		1	↓	38	.42			79	17.		96.		ا ز
00	20° diameter		Q	-10	36	.66		-		18		118.		
20	22" diameter			\prod	34	.70		1	100		.65	142		
40	24" diameter			\sqcup	32	.75		4	123		.50	168.		
360	26° diameter		T	1	31	.77			148	21		177	200	
380	28" diameter			\sqcup	30		_	4	156		.50	187.		
100	30" diameter				28	.85		1	165			215		
120	32° diameter		┛	Ш	27			4	192		.50	242		
140	34" diameter		T		26			1	218	24		256	1	
460	36" diameter		_		25		-	_	231	2!		278		
480	38" diameter		T		24			1	252	20		308		
500	40° diameter		I	1	23		_	\perp	281		7.50	323		
520	42° diameter		十	\top	22	1.0	91	T	295	i i	3.50			
			1	-	21	1.1	43		325	3		355		
540	44" diameter		十	\top	20		200		360		1.50	391	****	
560	46" diameter		1	Ţ	19	1	263	↓	395		3	421	5 45	90
580	48° diameter		一十	_¥	T			Γ	50	%		1	1	
	For 4", 5" and 6" oval, add		1			1			1					26
	ias, double wall, galvanized steel, fittings Elbow 45°, 3" diameter		1	Q-9	36	6 1.4	44	Ea	• 1		1.25			26 28.5
0660									.] 8		1.90			

မ
C
9
Ō
곮
긂
•

OKK		Cast-In-Place Concre					Ţ			1995 BAR	E COSTS			TOTAL
	کے			٠,	DAILY	MAN			way T	LABOR	EQUIF		TOTAL	INCL O
033	100	Structural Concrete	CRE	W O	UTPUT	_	_	NIT	MAT.	46.50		.65	136.15	17
			C-1	5 3		2.01	1	Υ.	88	46.50 113		1	202	
050		er 20 C.Y.	↓	. 1	14.76	4.87		$\bot \bot$	85			1.50	321.50	~
200	Grade v	valls, 8" thick, 8' high	CI	4 :	21.98	6.55	1	11	113	157	i e	2.85	160.35	22
250		14' high	C-1	5	20.70	3.47	8	$\perp \perp$	77	80.50	3		230.50	3:
260	12	thick, 8' high	CI	4	32.20	4.47	12		88.50	107		2.29	140.29	1
270		14' high	C-1	5	25.76	2.79	55		73	65		7.50	189	
1300	15	* thick, 8' high	C	14	41.24	3.49	92	7 1	78	83.50		8.50	203.50	2
4350		12' high			39.32	3.66	62	↓	87.50	87.50			174.10	2
4500		18' high		\sqcap	47.37	3.0	40	LF.	91.50	75.50	1	7.10	177.15	2
4520	Handi	ap access ramp, railing both sides, 3' wide			47	3.0	53	1	94	76	1	7.15	288.85	
4525		5' wide		\vdash	26.22	5.4	91	$\top \top$	148	137	1	3.85		
4530	W	ith cheek walls and rails both sides, 3' wide		Ll	24.32	1		11	180	154		6.80	340.80	
4535		5' wide		15	52.36	1.3	_	C.Y.	62	32		1.13	95.13	
4650	Slab o	n grade, not including finish, 4" thick	1	.13	78.79	9			59	21	ļ _	.75	80.75	
4700	6	thirk			10.13	+								
4751	Slah (on grade, incl. troweled finish, not incl. forms	1.			1.	۱,,	S.F.	.66	.51	ıl		1.17	
· · ·	Jugo	r reinforcing, over 10,000 S.F., 4" thick slab	0	-8A	1,982	_	24	3.1.	.96	.51			1.47	
4760		6" thick slab	1	1	2,000	1	24	11	1.32	.5	1		1.87	
4820		8" thick stab	1		1,840		26	44		.6			2.62	
4840		12" thick slab		T	1,594		30	1 1	1.98	.7		1	3.19	
4900			1	↓	1,458	3 (133	*	2.49		' 			
4950		15" thick slab				Т						- 1	1.10	
5000	Slab	on grade, incl. textured finish, not incl. forms	- 1	C-8A	2,20	ı lo	022	S.F.	.64	4			1.47	
5001		For reinforcing, 4" thick slab		T	2,00	_	024		.96			- 1	1.85	ŀ
5010		6" thick	ı	1	1,80	٠,	027	↓	1.28		57		1.63	├ ─
5020		8" thick	-	Υ.	+	+					-	1		1
5200	Lift	slab in place above the foundation, incl. forms,	1	C-14	1,66	5	.086	S.F.	3.38	2.0	37	.68	6.13	!
5210		reinforcing, concrete and columns, minimum	+	<u>~!*</u>	1,24		.116		3.63	2.	78	.91	7.32	1 .
5250		Average	- 1		1,20	1	.120		3.92	2.5	87	.94	7.73	14
5300		Maximum		<u> </u>	1,21	~ -	.140	-		T	\neg			
5500	1 iot	tweight, ready mix, including screed finish only,						1			1	ŀ		1_
5510]	not including forms or reinforcing			 _	,+	.700	C.Y.	79.50	15.	25	7.15	101.90	1
		1:4 for structural roof decks	į	Ç-8	1	·		V. I.	75	13	- 1	6.35	94.90	
5550		1:6 for ground slab with radiant heat		\bot	9(-	.622	╂╌┼╌	79.50			7.15	101.90	
5600		1:3:2 with sand aggregate, roof deck		- 1	8		.700		79.50	1	.60	5.45	96.5	5
5650	,	Ground stab	1		10		.533	╂╌┼╌	74		.50	1.72	124.2	2
5700		e caps, incl. forms and reinf., sq. or rect., under 5 C.Y.		C-1!			2.097		1	1	.50	1.25	108.2	5
5900	L				47.		1.521		71.5		50	1.75	117.7	
5950		Over 10 C.Y.		П			2.139			31		1.10	103.1	
6000	•	Triangular or hexagonal, under 5 C.Y.					1.336		71	1	3.50	2.77	149.2	
605	1	Over 10 C.Y.		\sqcap			3.372		68	. I		1.47		
620) Re	taining walls, gravity, 4' high see division 022-708	1		40).17	1.792	2	59.5		1.50	2.61	<u> </u>	_
625	0	10' high		П		.59	3.18	7	75.	- 1 -			1	
630	0	Cantilever, level backfill loading, 8' high			1	2.29	2.45		73.	<u> </u>	7	2.02		
635	0	16' high		H		20	.600	LF No		l l	3.95	.49	1	
680	0 S	airs, not including safety treads, free standing				180	.400	1	3.		9.30	33		06
685	Į.	Cast on ground		╅		285	25	_			5.85	.21	1 .	
700		Stair landings, free standing				585	.10			13	2.44	.09		66
701	:nl	Cast on ground		15		55	29	_	. 2	78	5.65		1	43
34 00	0 CURI	NG With burlap, 4 uses assumed, 7.5 oz.		1 ''		55 55	29	1 1	4	1	5.65			.65
01		12 oz.		+	┼-┼-	70	22		5	30	4.43			.73
02		With waterproof curing paper, 2 ply, reinforced			11		.16		L	.07	3.27			.34
1	ml .	With soraved membrane curing compound		1	*	95	+.10	S.I		.81	$\neg \uparrow$		1	.81
1		Curing blankets, 1" to 2" thick, buy, minimum		1	1		1	3.1	. 1	.53	1		2	.53
	1	Maximum					_		1	24	-+		1 4	.24
	50	Maximum Electrically heated pads, 110 volts, 15 watts per S.F., t	ouy							5.65	ļ		!	5.65
1	- 1	DO wells par S.E. May		_{_			\perp							.11
	500	20 watts per S.F., buy Electrically, heated pads, 15 watts/sf, 20 uses, minimu	m	7						.15 .25	ļ			.25
V.	710	Flectrically, nealed Dads, 10 walls/31, 20 0300,			- 1		- 1			75 I	Į.			

4.12 ECO 12: ECONOMIZERS

<u>Proposed Modifications</u>: Install an economizer on AHU-2, which serves the hall and office areas.

An economizer uses outside air to cool the building when the outdoor temperature drops below a preset temperature. With the outside air cooling the building instead of the chillers, less energy is used in maintaining the indoor temperature.

<u>Existing Conditions</u>: Only the office AHU is eligible for an economizer as this is the only AHU using outside air as a percentage of their supply air. The restricted environment of the computer room makes an economizer on the CRUs an impractical option.

Method of Analysis: Analysis proceeded as follows:

• The baseline energy consumption model was modified so that the office AHUs included economizers controlled by dry-bulb temperature.

Results: The results are presented in the table below.

Annual Electric Energy Savings (kWh)	967
Total Annual Energy Cost Savings	\$79
Annual Maintenance Cost Savings	\$0
Investment Cost	\$4,096
Savings-to-Investment Ratio (SIR)	0.29
Simple Payback (Years)	51.6

Recommendations: An economizer on AHU-2 is not recommended.

PROJECT TITLE: Recirculate Tower Air ANALYSIS DATE: 12/01/95 ECONOMIC LIFE: 20 PREPARED BY: E.Smith 1. INVESTMENT A. CONSTRUCTION COST = \$3,657 B. SIOH COST (6.0% of 1A) = \$219 C. DESIGN COST (6.0% of 1A) = \$219 D. TOTAL COST (1A +1B +1C) = \$4,096 E. SALVAGE VALUE OF EXISTING EQUIPMENT = \$0 F. PUBLIC UTILITY COMPANY REBATE = \$0 G. TOTAL INVESTMENT (1D -1E -1F) = \$0 2. ENERGY SAVINGS (+) OR COST (-): DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS: ENERGY FUEL COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$/KWH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAVGS) \$0.0821 967 \$79 15.08 \$1,197 B. DIST (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/KW) \$0.00 0 \$0 15.08 \$0		MPONENT RMY	FY 1	1995 Mil	LITARY CO	NSTRUCTION F	PROJECT DATA	A	2. DATE Jul-95
PROJECT TITLE Install Economizer					D 1111				
Install Economizer			White Sand	ls Missile	Hange, NM			E PROJECT NUM	IDED
LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)			701					5. PROJECT NUM	IBER
LOCATION: White Sands Missile Range, NM	in	Istali Economi	Zei		LIEE CYCL	E COST ANAL VSIS	CHMMADY		
PROJECT TITLE: Recirculate Tower Air ANALYSIS DATE: 12/01/95 ECONOMIC LIFE: 20 PREPARED BY: 1995 PREPARED BY: E.Smith				ENER				P)	
ANALYSIS DATE: 12/01/95 ECONOMIC LIFE: 20 PREPARED BY: E.Smith 1. INVESTMENT A. CONSTRUCTION COST = \$3,657 B. SIOH COST (6.0% of 1A) = \$219 C. DESIGN COST (6.0% of 1A) = \$219 D. TOTAL COST (14.18 + 1C) = \$4,096 E. SALVAGE VALUE OF EXISTING EQUIPMENT = \$0 F. PUBLIC UTILITY COMPANY REBATE = \$0 G. TOTAL INVESTMENT (1D -1E -1F) = \$0 2. ENERGY SAVINGS (+) OR COST (-): DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS: ENERGY FUEL COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$1/KWH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAV'GS) \$0.0821 967 \$79 15.08 \$1.197 B. DIST (GAL.) \$1.10 0 \$0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.57 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/KW) \$0.00 0 \$0 15.08 \$0 H. TOTAL \$967 \$79 \$15.08 \$0 S. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 B. NON-RECURRING (+/-) 1 TEM SAVINGS (+) YEAR OF COST (-) A. ANNUAL RECURRING (+/-) 1 TEM SAVINGS (+) YEAR OF COST (-) A. ANNUAL RECURRING (+/-) 1 TEM SAVINGS (+) YEAR OF DISCOUNT PACTOR (3) SAVIGONTED FACTOR		LOCATION:	White Sands I	Missile Ra	nge, NM	REGION: 4 (New M	exico)	PROJECT NO:	1406.008
1. INVESTMENT A. CONSTRUCTION COST B. SIOH COST C. DESIGN COST (6.0% of 1A) = \$219 D. TOTAL COST (1A+1B+1C) = \$4,096 E. SALVAGE VALUE OF EXISTING EQUIPMENT = \$0 F. PUBLIC UTILITY COMPANY REBATE = \$0 G. TOTAL INVESTMENT (1D-1E-1F) = \$0 2. ENERGY SAVINGS (+) OR COST (-): DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS: ENERGY FUEL COST SAVINGS ANNUAL\$ SOURCE \$1/KWH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAV'GS) \$0.0821 967 \$79 15.08 \$11.97 B. DIST (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/KW) \$0.00 0 \$0 15.08 \$0 H. TOTAL NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS (+) / COST (-) A. NON-RECURRING (+/-) 1 TIEM SAVINGS (+) YEAR OF COST (-) B. NON-RECURRING (+/-) 1 TIEM SAVINGS (+) YEAR OF COST (-) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAVG/COST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL		PROJECT TI	TLE: Recirc	culate Tow	er Air				
A. CONSTRUCTION COST		ANALYSIS D	ATE: 1	12/01/95		ECONOMIC LIFE:	20	PREPARED BY:	E.Smith
B. SIOH COST (6.0% of 1A) = \$219 C. DESIGN COST (6.0% of 1A) = \$219 D. TOTAL COST (1A + 1B + 1C) = \$4,096 E. SALVAGE VALUE OF EXISTING EQUIPMENT = \$0 F. PUBLIC UTILITY COMPANY REBATE = \$0 G. TOTAL INVESTMENT (1D - 1E - 1F) = \$0 2. ENERGY SAVINGS (+) OR COST (-): DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS: ENERGY FUEL COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$1/40WH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAV'GS) \$0.0821 967 \$79 15.08 \$11.197 B. DIST (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$1/40W) \$0.00 0 \$0 16.83 \$0 H. TOTAL 967 \$79 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNTED SAVINGS (3) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAVG/COST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 c. \$0 0.00 \$0 c. \$0 0.	. IN	VESTMENT							
C. DESIGN COST (6.0% of 1A) = \$219 D. TOTAL COST (1A +1B +1C) = \$4.096 E. SALVAGE VALUE OF EXISTING EQUIPMENT = \$0 F. PUBLIC UTILITY COMPANY REBATE = \$0 G. TOTAL INVESTMENT (1D -1E -1F) = \$0 2. ENERGY SAVINGS (+) OR COST (-): DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS: ENERGY FUEL COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$/KWH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAV'GS) \$0.0921 967 \$79 15.08 \$1,197 B. DIST (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 18.57 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 H. TOTAL 967 \$79 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS (+) / COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS (+) / COST (-) B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED SAVINGS (-) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAVIGOST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 \$0 c. \$0 0 0.00 \$0 c. \$0 0.00 \$0 d. TOTAL	A.	CONSTRUC	TION COST		=				
D. TOTAL COST (1A +1B +1C) = \$4,096 E. SALVAGE VALUE OF EXISTING EQUIPMENT = \$0 F. PUBLIC UTILITY COMPANY REBATE = \$0 G. TOTAL INVESTMENT (1D -1E -1F) = \$0 2. ENERGY SAVINGS (+) OR COST (-): DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS: ENERGY FUEL COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$/KWH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAV'GS) \$0.0821 967 \$79 15.08 \$1,197 B. DIST (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/KW) \$0.00 0 \$0 15.08 \$0 H. TOTAL 967 \$79 \$10.08 \$0 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST (-) \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST (-) \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED FACTOR (3) SAV'G/COST (4) (TABLE A-2) a. \$0 0 0 0.00 \$0 c. \$0 0 0 0.00 \$0 d. TOTAL \$0 C. \$0 0 0 0.00 \$0 d. TOTAL	В.	SIOH COST			(6.0% of 1A) =			•	
E. SALVAGE VALUE OF EXISTING EQUIPMENT = \$0 F. PUBLIC UTILITY COMPANY REBATE = \$0 G. TOTAL INVESTMENT (1D -1E -1F) = \$0 2. ENERGY SAVINGS (+) OR COST (-): DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS: ENERGY FUEL COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$1/KWH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAV'GS) \$0.0821 967 \$79 15.08 \$1,197 B. DIST (GAL.) \$1.10 0 \$0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 \$18.58 \$0 E. COAL \$2.00 0 \$0 18.58 \$0 G. DEMAND (\$/kW) \$0.00 0 \$0 15.08 \$0 H. TOTAL 967 \$79 \$15.08 \$0 A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST (-) \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST (-) \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST (-) \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST (-) \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST (-) \$0 DISCOUNTED SAV'G/COST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL	C.	DESIGN COS	ST		(6.0% of 1A) =			•	
F. PUBLIC UTILITY COMPANY REBATE = \$0 G. TOTAL INVESTMENT (1D -1E -1F) = \$0 22. ENERGY SAVINGS (+) OR COST (-): DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS: ENERGY FUEL COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$1/KWH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAV'GS) \$0.0821 967 \$79 15.08 \$1,197 B. DIST (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$1/KW) \$0.00 0 \$0 15.08 \$0 H. TOTAL 967 \$79 \$15.08 \$0 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 2 14.88 \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) SAV'G/COST(4) COST(-) (1) O	D.	TOTAL COST	Γ	(1A +1B +1C) =			• •	
G. TOTAL INVESTMENT G. TOTAL INVESTMENT G. TOTAL INVESTMENT (1D -1E -1F) =	E.	SALVAGE VA	ALUE OF EXIS	STING EQ	UIPMENT =				
2. ENERGY SAVINGS (+) OR COST (-): DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS: ENERGY FUEL COST SAVINGS ANNUAL\$ DISCOUNT DISCOUNTED SOURCE \$/KWH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAVGS) \$0.0821 967 \$79 15.08 \$1,197 B. DIST (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 H. TOTAL 967 \$79 \$0 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED SAV'G/COST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 c. \$0 0.00 \$0 d. TOTAL \$0 00 \$0 SO \$0 0.00 \$0 C. \$0 0 0 0.00 \$0 SO \$0 C. \$0 0 0 0.00 \$0 SO \$0	F.	PUBLIC UTIL	ITY COMPAN	IY REBAT	E =			\$0	
DATE OF NISTR-85-3273-9 USED FOR DISCOUNT FACTORS: ENERGY FUEL COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$/KWH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAV'GS) \$0.0821 967 \$79 15.08 \$1,197 B. DIST (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/KW) \$0.00 0 \$0 15.08 \$0 H. TOTAL 967 \$79 \$15.08 \$0 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED SAVINGS () (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0 0.00 \$0 d. TOTAL	G.	TOTAL INVE	STMENT		(1D -1E -1F) =			>	\$4,096
ENERGY FUEL COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED SOURCE \$/KWH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAV'GS) \$0.0821 967 \$79 15.08 \$1,197 B. DIST (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/KW) \$0.00 0 \$0 15.08 \$0 H. TOTAL 967 \$79 \$> 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 2 14.88 \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT SOURCE (2) B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) C. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0 0.00 \$0 d. TOTAL \$0	. EN	NERGY SAVING	GS (+) OR CO	OST (-):					
SOURCE \$/KWH (1) KWH/YR (2) SAVINGS (3) FACTOR (4) SAVINGS (5) A. ELECT. (SAV'GS) \$0.0821 967 \$79 15.08 \$1,197 B. DIST (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/kW) \$0.00 0 \$0 15.08 \$0 H. TOTAL 967 \$79 \$0 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0 0.00 \$0 d. TOTAL \$0	DA	ATE OF NISTR-	85-3273-9 US	SED FOR	DISCOUNT FA				
A. ELECT. (SAV'GS) \$0.0821 967 \$79 15.08 \$1,197 B. DIST (GAL.) \$1.10 0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/kW) \$0.00 0 \$0 15.08 \$0 H. TOTAL 967 \$79 \$ \$0 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST (-) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0 0.00 \$0 d. TOTAL \$0 \$0		ENERGY	FUEL	COST	SAVINGS				
B. DIST (GAL.) \$1.10 0 \$0 \$0 18.57 \$0 C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/kW) \$0.00 0 \$0 15.08 \$0 H. TOTAL \$967 \$79 \$0 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT COST (-) COST(-) (1) OCCURRENCE (2) FACTOR (3) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL \$0 \$0 \$0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL \$0 \$0 \$0 0.00 \$0 c. \$0 0 0.00 \$0 c. \$0		SOURCE	\$/KV	WH (1)	KWH/YR (2)	` '	• •		
C. RESID (GAL.) \$3.00 0 \$0 21.02 \$0 D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/kW) \$0.00 0 \$0 15.08 \$0 H. TOTAL 967 \$79 \$0 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL		•	'GS) \$			· ·			
D. NAT GAS (MBTU) \$6.18 0 \$0 18.58 \$0 E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/kW) \$0.00 0 \$0 15.08 \$0 H. TOTAL 967 \$79 \$ \$0 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT COST (-) SO B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT SAV'G/COST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL				•				•	
E. COAL \$2.00 0 \$0 16.83 \$0 G. DEMAND (\$/kW) \$0.00 0 \$0 15.08 \$0 H. TOTAL 967 \$79 \$ \$0 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT COST (-) \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT (-) SAVINGS (-) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL \$0					-			· ·	
G. DEMAND (\$/kW) \$0.00 0 \$0 15.08 \$0 H. TOTAL 967 \$79 \$> 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 \$0 B. NON-RECURRING (+/-) 1TEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST (-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST (4) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL \$0 \$0 \$0			BTU)						
H. TOTAL 967 \$79> 3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL \$0 \$0					_			•	
3. NON-ENERGY SAVINGS (+) OR COST (-) A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS 2 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED SAVIGORY (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0			(W)	\$0.00			15.08		\$1,197
A. ANNUAL RECURRING (+/-) 1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED SAVIGORY (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL	11.	TOTAL				4. · ·			
1 ANNUAL MAINTENANCE SAVINGS \$0 14.88 \$0 2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0					(-)				
2 14.88 \$0 3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL	Α.								
3 TOTAL ANNUAL DISC. SAVINGS (+) / COST (-) \$0 \$0 B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST(-) (1) OCCURRENCE (2) FACTOR (3) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL		1 ANNUAL M	IAINTENANCI	E SAVING	iS	\$0			
B. NON-RECURRING (+/-) ITEM SAVINGS (+) YEAR OF DISCOUNT DISCOUNTED COST(-) (1) OCCURRENCE (2) FACTOR (3) (TABLE A-2) a. \$0 0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL			NILLAL DICC C	C A V/INICC	(.) / COST (.)	\$0	14.88	,	
ITEM		3 TOTAL AN	NUAL DISC. S	SAVINGS	(+) / COST (-)	40		Ψ	
COST(-) (1) OCCURRENCE (2) FACTOR (3) SAV'G/COST(4) (TABLE A-2) a. \$0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL	В.		RING (+/-)			V=15.5	DIA 66111	DISCOUNTED	
(TABLE A-2) a. \$0 0 0.00 \$0 b. \$0 0 0.00 \$0 c. \$0 0 0.00 \$0 d. TOTAL		ITEM			, ,				
b. \$0 0 0.00 \$0 c. \$0 0.00 \$0 d. TOTAL \$0 \$0 \$0					COST(-) (1)	OCCURRENCE (2)			
b. \$0 0 0.00 \$0 c. d. TOTAL \$0 \$0 \$0 \$0		a.			\$0	0	0.00	\$0	
d. TOTAL \$0 \$0		b.			\$0	0	0.00	\$0	
d. TOTAL		C.			\$0	0	0.00	\$0	
C. TOTAL NON-ENERGY DISCOUNTED SAVINGS (+) OR COST (-) (3A3 + 3Bg4) =					•			\$0	
	C.	TOTAL NON-	ENERGY DIS	COUNTE	D SAVINGS (+	OR COST (-)	(3A3 + 3Bg4) =		\$0
4. FIRST YEAR DOLLAR SAVINGS (+) / COSTS (-) (2H3+3A+(3Bg1/Economic Life))								onomic Life))	\$79
5. SIMPLE PAYBACK (SPB) IN YEARS (MUST BE < 10 YEARS TO QUALIFY) (1G/4) =	. SIN	MPLE PAYBAC	K (SPB) IN YE	EARS (MU	JST BE < 10 YE	EARS TO QUALIFY)	•		51.6
· · · · · · · · · · · · · · · · · · ·							•		\$1,197
7. DISCOUNTED SAVINGS-TO-INVESTMENT RATIO (SIR) (6/1G) = (MUST HAVE SIR > 1.25 TO QUALIFY)	. DIS					₹)	(6/1G) =		0.29

EMC Engineers, Inc EMC #1406-008

LIFE CYCLE COST ANALYSIS ECONOMIZERS

ECO-12.XLS
Prepared By: EMS
11/10/95
Checked By:_____

GEODSS Site, White Sands Missile Range, NM

Economic Life(Years)	20

Simulation	Energy Consumed (MBTU)	Energy Consumed (kWh)
Baseline Model	3573.44	1,047,008
Economizer Model	3570.14	1,046,042
Savings	3.30	967
Cost Savings		\$79

Annual Electric Energy Savings (kWh)	967
Total Annual Energy Cost Savings	\$79
Construction Cost	\$ 3,657
SIOH (6.0%)	\$ 219
Design Cost (6.0%)	\$ 219
Total Investment	\$ 4,096
Discounted Savings	\$1,197
Savings-to-Investment Ratio (SIR)	0.29
Simple Payback (Years)	51.60

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/8/1995 13:42:14 PDL RUN 1
DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU, N

REPORT- BEPS ESTIMATED BUILDING ENERGY PERFORMANCE TRUTH OR CONSEQU, N

TOTAL SITE ENERGY 3570.04 METU 313.2 KETU/SQFT-YR GROSS-AREA 313.2 KETU/SQFT-YR NET-AREA TOTAL SOURCE ENERGY 3570.04 METU 313.2 KETU/SQFT-YR GROSS-AREA 313.2 KETU/SQFT-YR NET-AREA PERCENT OF HOURS ANY SYSTEM ZONE OUTSIDE OF THROTTLING RANGE = 0.0 PERCENT OF HOURS ANY PLANT LOAD NOT SATISFIED = 100.0 NOTE ELECTRICITY AND/OR FUEL USED TO GENERATE ELECTRICITY IS APPORTIONED BASED ON THE YEARLY DEMAND. ALL OTHER ENERGY TYPES ARE APPORTIONED HOURLY.

	ACTIVIT CT TITLE Install Economize SS, Energy Conservation Survey				LOCATION					AMENDMEN	IT NO		
Line										AMENUMEN	II NO.		
Line					White Sands	Missile Rang							
Line No.	SS, Energy Conservation Survey	r				CONTRACT							
No.	T			AL COST	DAG	CA01-94-D-00		L coulby	CNT COCT	TOTA	T2001		
No.		Unit		MATERIA	AL COST		LABO	R COST Labor	Total	EQUIPM	ENT COST	IOIA	L COST
No.	Item Description	of	No. of	Unit		Manhrs/	Total	Cost/	Labor	Unit		Unit	
	nem bescription	Measure	Units	Cost	Total	Unit	Manhrs	Manhour	Cost	Cost	Total	Cost	Total
	Damper Motor	Ea.	3	\$153.00	\$459	0.50	1.50	\$22.99	\$34	\$0.00	\$0	\$164	\$493
2	Outside Air Temp Sensor	Ea.	1	\$69.20	\$69	0.80	0.80	\$22.99	\$18	\$0.00	\$0	\$88	\$88
3	Controller	Ea.	1	\$250.00	\$250	1.14	1.14	\$22.99	\$26	\$0.00	\$0	\$276	\$276
4	Dampers	Ea.		\$132.00	\$396	1.00	3.00	\$22.99	\$69	\$0.00	\$0	\$155	\$465
5	Ductwork Modification	Ls.	1	\$0.00	\$0	8.00	8.00	\$22.99	\$184	\$0.00	\$0	\$183.92	\$184
- 6					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
7		· · · · · · · · · · · · · · · · · · ·			\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
8					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
9							0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
10	Travel to job site	hrs	6		\$0	1.00	6.00	\$22.99	\$138	\$0.00	\$0	\$22.99	\$138
11	Lodging and per diem				\$0		0.00	\$22.99	\$0	\$100.00	\$0	\$100.00	\$0
12	Milage	miles	300		\$0		0.00	\$22.99	\$0	\$0.30	\$90	\$0.30	\$90
13					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
14					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
15					\$0		0.00	\$22.99	\$0	\$100.00	\$0	\$100.00	\$0
16					\$0		0.00	\$22.99	\$0	\$0.30	\$0	\$0.30	\$0
17					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
18					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
19					\$0		0.00	\$22.99	\$ 0	\$0.00	\$0	\$0.00	\$0
20					\$0 \$0		0.00	\$22.99 \$22.99	\$0 \$0	\$0.00	\$0	\$0.00	\$0 \$0
21	-				\$0 \$0		0.00	\$22.99	\$0	\$0.00 \$0.00	\$0 \$0	\$0.00 \$0.00	\$0 \$0
23					\$0 \$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0 \$0
24					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
25					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
26					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
27					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
28					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
29					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
30					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
31					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
32				·	\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
33					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
34					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
3 5					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
36					\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
37					\$ 0		0.00	\$22.99	\$ 0	\$0.00	\$0	\$0.00	\$0
38	AUG-AUG-AUG-AUG-AUG-AUG-AUG-AUG-AUG-AUG-	741		-	\$0		0.00	\$22.99	\$0	\$0.00	\$0	\$0.00	\$0
39	SUBCONTRACTOR SUBTO				\$1,174		20		\$470		\$90		\$1,734
40	LABOR BURDEN	*	30		\$0 \$1.174				\$141		\$27		\$168
41	SUBTOTAL OVERHEAD	%	12		\$1,174 \$141	-			\$611		\$117 \$14		\$1,902
42	SUBTOTAL	70	12		\$1,315				\$73 \$684		\$14 \$131		\$228 \$2,130
44	PROFIT	- %	12		\$1,315 \$158				\$82		\$131 \$16		\$2,130 \$256
45	SUBCONTRACTOR TOTAL	~	12		\$1,473				\$766		\$147		\$2,386
46	OVERHEAD	%	11		\$161			-	\$84		\$16		\$2,360
47	SUBTOTAL	· ·			\$1,634				\$850		\$163		\$2,647
48	PROFIT	%	8		\$131				\$68		\$13		\$212
49	SUBTOTAL				\$1,765				\$918		\$176		\$2,859
50	BOND	%	1		\$13				\$7		\$1		\$21
51	SUBTOTAL				\$1,778				\$925		\$177		\$2,880
52	N. M. TAX	%	6		\$103		t		\$54		\$ 10		\$167
53	SUBTOTAL				\$1,881				\$979		\$187		\$3,048
54	CONTINGENCY	%	20		\$376				\$196		\$37		\$610
55	GRAND TOTAL				\$2,258				\$1,175		\$225		\$3,657
REPAI	RED BY APPROVE	D BY			TITLE OR OR	GANIZATION				DATE			
	EMS					E M C Engir	neers, Inc.				11/1	0/95	

	7 Air Conditioning and		Ţ	DALY	N/A				1995 BAR	COSTS		TOTAL
15	7 400 Accessories	CR.	EW	OUTPUT			JAKIT	MAT.	LABOR	EQUIP.	TOTAL	4
850	Double pack to 30,000 CFM, add					\top		5%				
860	Double pack to 60,000 CFM, add				╙	_		6%			-	
870	Inlet or outlet transition, vertical		- 1		ì	ı		2%				
880	Single pack to 5000 CFM, add		ᅴ		├			3%				
890	Single pack to 24,000 CFM, add	1						2%			1 1	
900	Double pack to 24,000 CFM, add				╁╌	十						
2000	Electronic air cleaner, duct mounted	1,9	Shee	2.30	3.4	178	Ea.	380	97.50		477.50	57
150	400 - 1000 CFM	 -` `		2.20		636		485	102		587	6
200	1000 - 1400 CFM 1400 - 2000 CFM		Ţ	2.10	3.1	B10	1	545	107		652	
250	Mechanical media filtration units		-		Τ	\Box						
2950	High efficiency type, with frame, non-supported					- [1	MCFM	35			35	
3000	Supported type				1	\neg		50			50	
3100	Medium efficiency, extended surface				1			5.50			5.50	
4000	Permanent washable				1		Т	45			45	
4500	Renewable disposable roll			1	1_	_1	<u>+</u>	165			165	1
5000	Throwavay glass or peper media type				Τ		Ea.	4.10			4.10	
5500	HINDINGHEN BEESS OF PERSON STATES					_					+	
0010	ANTI-FREEZE inhibited			Ì		ı						
0900	Ethylene glycol concentrated			├ ─	+-		Gai	6.15			6.15	
1000	55 gallon drums, small quantities			1		ı	Ī	5.70			5.70	
1200	Large quantities			┼─	╂╌		十	7.25			7.25	
2000	Propylene glycol, for solar heat, small quantities	1		1	1		1	7.15			7.15	
2100	Large quantities			+-	╁	-1						
	CONTROL COMPONENTS			1	1	ı		ł				4
0700		——————————————————————————————————————	Plus	8	╅	1	Ea.	175	29.50		204.50	
0730	1 1	ı.	ī	8	1	i	Ī	182	29.50		211.50	
0740			ŧ	17	1	.143		250	33.50		283.50	
0750		I :	l Dec	: 4	1	2		244	57		301	
0850			T	3	72	2.667		325	76	}	401	
0860		1	1	8		1		156	28.50	<u> </u>	184.50	
9870			十	8	Т	1	П	315	28.50		343.50	
0880	Tamandan analysise		1	8		1	¥	149	28.50	↓	177.50	
0830				T	Т						218	
1000	A second		1 Elec	c 3		2.667	Es.	142	76	<u> </u>	218	
2000											15.30	
2100			1 Stp			250	Es.	8	7.30		16.70	
2200			T	32	1	250		9.40	7.30		19.30	
230			┵	32	1-	.250	\sqcup	12			23.80	-
240	· ·		\	32	!	.250	♦	16.50	'	'		l
270				4-	4	050	-	43	7.3	, 	50.30	
280		1	1 St		•	250	Es.	52	7.3		59.30	1
290	0 4-1/2" diameter dial		4	32	_	.250	╀	70.50			77.80	
300	0 6' diameter dial	1	*	33	'	.250		18%	′ ′~	1		
330				-	-+		╀	10%		+		
335	O Humidistat		ĺ	1	- 1		1		1	1		<u> </u>
336	n Pneumatic operation		1.2	<u> </u>	,+	.667	E	133	19.5	0	152.50	Г
330	Room humidistat, direct acting		15			.667	1 "	133	19.5		152.50	
336	Room humidistat, reverse acting		Н		_	A71	╂┼	143	13.7		156.75	
330	Room humidity transmitter				2	.667		175	19.5	1	194.50	
330	54 Duct mounted controller		H		$\frac{2}{2}$.667	╂┤	158	19.		177.50	
33	55 Duct mounted transmitter			1	8	.286		63.5			71.85	
33	66 Humidity indicator, 3-1/2"		18		25 B	200	╂┪	40	28	1	68	
1	90 Electric operated		112	· -	س ا		i 7	' ' '	1	1	1	I.

٠,١

5...| |-----|

5. RESULTS AND RECOMMENDATIONS

5.1 RESULTS OF ECO ANALYSIS

Table 5-1 presents the results of the analysis for each ECO.

Table 5-1. Summary of Results

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
1	Albedo Modification	1,532	126	0	N/A	N/A	N/A
2	Roof Insulation 6"	1,939	159	0	N/A	N/A	N/A
3	Low-Emissivity Roof Coating	900	74	0	N/A	N/A	N/A
4	T-8 Fluorescent Lamps	29,455	2,418	47	12,429	2.38	5.0
5	Vortex Tube Cooling	38,441	3,156	0	N/A	N/A	N/A
6	High-Efficiency Motors	2,197	180	0	1,753	1.55	9.7
7	UPS System	89,454	7,344	0	22,874	4.85	3.1
8	Chiller Replacement	85,453	7,016	0	99,539	2.01	8.3
9	Recirculation of Tower Air	74,518	6,118	0	22,767	4.05	3.7
10	Turn Off AHU at Night	48,210	3,958	0	420	80.86	0.1
11	Propane Heat	1,199	65	0	11,182	0.08	171.7
12	Economizers	967	79	0	4,096	0.29	51.6

5.2 RECOMMENDATIONS

The following ECOs are recommended for implementation.

Table 5-2. Summary of Recommended ECOs

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
10	Turn Off AHU at Night	48,210	3,958	0	420	80.86	0.09
7	UPS System	89,454	7,344	0	22,874	4.85	3.11
9	Recirculation of Tower Air	74,518	6,118	47	22,767	4.05	3.72
4	T-8 Fluorescent Lamps	29,455	2,418	0	12,429	2.38	5.04
8	Chiller Replacement	85,453	7,016	0	99,539	2.01	8.30
6	High Efficiency Motors	2,197	180	0	1,753	1.55	9.72
	Overall Savings	280,029	22,990	47	101,292	N/A	4.41

The overall savings takes into account the synergistic effects of multiple ECOs. The total annual energy cost savings for combined ECOs is \$22,990 per year with a resulting simple payback of 4.4 years. The combined ECOs annual energy savings is 280,029 kWh per year, 27% of the present annual energy use.

To qualify for FEMP funding, ECOs must have an SIR greater than 1.25 and a simple economic payback less than 10 years. The following ECOs are recommended for funding as a Federal Energy Managerment Program (FEMP) project.

Table 5-3. Summary of ECOs Recommended for FEMP Funding

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
7	UPS System	89,454	7,344	0	22,874	4.85	3.11
9	Recirculation of Tower Air	74,518	6,118	0	22,767	4.05	3.72
4	T-8 Fluorescent Lamps	29,455	2,418	47	12,429	2.38	5.04
8	Chiller Replacement	85,453	7,016	0	99,539	2.01	8.30
	Combined Savings	252,877	20,761	47	157,609	2.74	5.7

The combined savings of these ECOs with synergistic effects taken into accout is \$20,761 per year with a resulting SIR of 2.74 and a simple payback of 5.7 years.

The following ECOs are recommended for in-house implementation by the GEODSS maintenance staff.

Table 5-4. Summary of ECOs Recommended for In-House Implementation

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
10	Turn Off AHU at Night	48,210	3,958	0	420	80.86	0.09
6	High-Efficiency Motors	2,197	180	0	1,753	1.55	9.72

The following ECOs are recommended for implementation with the installation of the new computer system, in about two years.

Table 5-5. Recommended ECO Upgrades with Computer Renovation

	ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
ľ	5	Vortex Tube Cooling	38,441	3,156	0	N/A	N/A	N/A

The following ECOs were not found to be cost effective:

Table 5-6. ECOs Not Recommended

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
1	Albedo Modification	1,532	126	0	N/A	N/A	N/A
2	Roof Insulation 6"	1,939	159	0	N/A	N/A	N/A
3	Low-Emissivity Roof Coating	900	74	0	N/A	N/A	N/A
11	Propane Heat	1,199	65	0	11,182	0.08	171.70
12	Economizers	967	79	0	4,096	0.29	51.60

APPENDIX A SCOPE OF WORK AND CORRESPONDENCE

YDW	-	ORDE	R FOR SU	PPLIES OR bmit four copies	SERVICES of invoice)			1	Form Appro OMB No. 0 Expires Au	oved 1704-0187 g 31, 1992	PAGE 1 OF
maintaining the d including sugges	ieta nei iicas fo	for this collection of integrating and completing or reducing this burden Office of Management the procurement officers.	to Washington Hea	dquarters Services, Dire	response, including the Send comments regardin ectorate for Information C 0704-0187), Washingtor	ime for g this b peration , DC 20	reviewing instruc- urden estimate or ns and Reports, 1 0503. Please DO				athering and rmation, 4, Arlington, VA se addresses. Send
1. CONTRACT / F	WRCH	ORDER NO	2. DELIVERY ORD	PER NO.	3. DATE OF ORDER		4. REQUISIT	ION / PUR	CH REQUEST	NO.	5. CERTIFIED FOR NA- TIONAL DEFENSE UNDER DMS REG 1
	4-D-	-0033	0008		08 MAY 95	If other	than 6)	CODE			DO DOS REG 1
P.O. BOX	228	GINEER DIST B BAMA 36628	RICT, MOBI		7. ADMINISTERED DT	0016	u un o y				8 DELIVERY FOB X DEST OTHER (See Schedule if other)
9. CONTRACTOR	!		CODE		FACILITY CODE					DINT BY (Date)	11. MARK IF BUSINESS SMALL
		*EMC ENGIN	IEERS, INC.	·	•		1		PPENDI	X "A"	SMALL DISAD-
NAME AND		2750 SO. W DENVER, C	ADSWORTH	HBLVD, SUITI	E C-200			N/A	ONI TERMS		X WOMEN-OWNED
ADDRESS		DENVER, C	OFOLVEDO	00221-0400	•		Ì	13. MAIL I	NVOICES TO		
		-						CESA	M-EN-M	N	
14. SHIP TO			CODE		15. PAYMENT WILL BE	MADE	BY	C	DDE		MARK ALL
P.O. BOX	228	GINEER DIST 8 BAMA 36628		ILE	FINANCE AND US ARMY END P.O. BOX 228 MOBILE, ALA	GINE 8	EER DISTF	RICT, I	ICER MOBILE	·	PACKAGES AND PAPERS WITH CONTRACT OR ORDER NUMBER
16. DEL 0/5	-DV	This delivery order	is issued on anothe	r Government agency o	r in accordance with and	subject	t to terms and cor	nditions of	above number	ed contract.	
TYPE DELIVE	X		13 13 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3								rms specified herein.
ORDER PURCH	ASE	Reference your	UE CONTRACTOR	HERERY ACCEPTS TH	E OFFER REPRESENT	ED BY	THE NUMBERED	D PURCHA			YOUSLY HAVE BEEN OR
		IS NOW MODIFIED), SUBJECT TO ALL	OF THE TERMS AND	CONDITIONS SET FOR	TH, AN	D AGREES TO P	ERFORM	THE SAME.		
:											
N/	AME O	FCONTRACTOR		SIGN	ATURE		TY	PED NAM	E AND TITLE		DATE SIGNED
18.	19.		8.75-25CZ S		15B231B400 (F	20.	QUANTITY ORDERED/	21. UNIT	22. UNIT		23. AMOUNT
ITEM NO.		SCHEL	OLE OF SUPPLIES	/ SERVICE		1	ACCEPTED*				
	GE			MITED ENERG SANDS MISS							\$44,069.00
*If quantity acci	opted b	y the Government is s	erne as 24	LUNITED STATES OF	AMERICA D		2 MA		<i></i>	25. TOTAL	\$44.069.00
quantity orders	d. indic	ate by X. If different, and below quantity order	enter ered and	EDWARD M	SLANA	a co	SMA! ONTRACTING H	/		29. DIFFERENCE	
	IN COL	UMN 20 HAS BEEN		••	27. SHIP NO.	2	B. D.O. VOUCHE			30. INITIALS	
INSPECT	г	RECEIVED	ACCEPTED, A CONTRACT E	ND CONFORMS TO TO XCEPT AS NOTED	PARTIAL	3	2. PAID BY				VERIFIED CORRECT FOR
DATE		SIGNATU	RE OF AUTHORIZE	D GOVERNMENT TVE	FINAL	-				34. CHECK	IUMBER
ctify this	accour	nt is correct and proper	for payment		31. PAYMENT COMPLETE PARTIAL					35. BILL OF	LADING NO.
DATE	AT 1.	SIGNATURE 38. RECEIVED BY	AND TITLE OF CE	RTIFYING OFFICER	FINAL ED 40.TOTAL CONTAIN	IERS 4	11. S/R ACCOUN	T NUMBE	R	42. S/R VOU	CHER NUMBER
37. RECEIVED	^'	N. NEGERED DT		US.DATE REGELY							

APPENDIX "A"

SCOPE OF WORK

LIMITED ENERGY STUDY

GEODDS FACILITY, BUILDING 34568

STALLION SITE

WHITE SANDS MISSILE RANGE, NM

Performed as part of the ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

WSMRLS1.doc

SCOPE OF WORK FOR A LIMITED ENERGY STUDY GEODDS FACILITY WHITE SANDS MISSILE RANGE, NM

TABLE OF CONTENTS

- 1. BRIEF DESCRIPTION OF WORK
- 2. GENERAL
- 3. PROJECT MANAGEMENT
- 4. SERVICES AND MATERIALS
- 5. PROJECT DOCUMENTATION
 - 5.1 ECIP Projects
 - 5.2 Non-ECIP Projects
 - 5.3 Nonfeasible ECOs
- 6. DETAILED SCOPE OF WORK
- 7. WORK TO BE ACCOMPLISHED
 - 7.1 Perform a Limited Site Survey
 - 7.2 Evaluate Selected ECOs
 - 7.3 Combine ECOs into Recommended Projects
 - 7.4 Submittals, Presentations and Reviews

ANNEXES

- A DETAILED SCOPE OF WORK
- B EXECUTIVE SUMMARY GUIDELINE
- C REQUIRED DD FORM 1391 DATA

- 1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:
- 1.1 Perform a site survey of a specific facility to collect all data required to perform a thorough energy audit of the facility.
- 1.2 Identify and evaluate Energy Conservation Opportunities (ECOs) to determine their energy savings potential and economic feasibility.
- 1.3 Provide project documentation for recommended ECOs as detailed herein.
- 1.4 Prepare a comprehensive report to document all work performed, the results and all recommendations.

2. GENERAL

- 2.1 This study is limited to the evaluation of the specific building listed in Annex A, DETAILED SCOPE OF WORK.
- 2.2 The information and analysis outlined herein are considered to be minimum requirements for adequate performance of this study.
- 2.3 For the building listed in Annex A, all methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All ECOs which produce energy or dollar savings shall be documented in this report. Any ECO considered infeasible shall also be documented in the report with reasons for elimination.
- 2.4 The study shall consider the use of all energy sources applicable to each building, system, or ECO.
- 2.5 The "Energy Conservation Investment Program (ECIP) Guidance", described in letter from DAIM-FDF-U, dated 10 Jan 1994 establishes criteria for ECIP projects and shall be used for performing the economic analyses of <u>all</u> ECOs and projects. The program, Life Cycle Cost In Design (LCCID), has been developed for performing life cycle cost calculations in accordance with ECIP guidelines and is referenced in the ECIP Guidance. If any program other than LCCID is proposed for life cycle cost analysis, it must use the mode of calculation specified in the ECIP Guidance. The output must be in the format of the ECIP LCCA summary sheet, and it must be submitted for approval to the Contracting Officer.
- 2.6 Computer modeling will be used to analyze ECOs which would modify, replace, or significantly alter the load on an existing heating, ventilating, and air-conditioning (HVAC) system. Modeling will be done using a professionally recognized and proven computer program or programs that integrate architectural features with air-conditioning, heating, lighting and other energy-producing or consuming systems. These programs will be capable of

simulating the features, systems, and thermal loads of the building under study. The program will use established weather data files and may perform calculations on a true hour-by-hour basis or may condense the weather files and the number of calculations into several "typical" days per month. The Detailed Scope of Work, Annex A, lists programs that are acceptable to the Contracting Officer. If the AE desires to use a different program, it must be submitted for approval with a sample run, an explanation of all input and output data, and a summary of program methodology and energy evaluation capabilities.

- 2.7 Energy conservation opportunities determined to be technically and economically feasible shall be developed into projects acceptable to installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP funding, and determining in coordination with installation personnel the appropriate packaging and implementation approach for all feasible ECOs.
- 2.7.1 Projects which qualify for ECIP funding shall be identified, separately listed, and prioritized by the Savings to Investment Ratio (SIR).
- 2.7.2 All feasible non-ECIP projects shall be ranked in order of highest to lowest SIR.

3. PROJECT MANAGEMENT

- 3.1 <u>Project Managers</u>. The AE shall designate a project manager to serve as a point of contact and liaison for work required under this delivery order. Upon award of this delivery order, the individual shall be immediately designated in writing. The AE's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this delivery order. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this delivery order. This individual will be the Government's representative.
- 3.2 <u>Installation Assistance</u>. The Commanding Officer or authorized representative at the installation will designate an individual to assist the AE in obtaining information and establishing contacts necessary to accomplish the work required under this delivery order. This individual will be the installation representative.
- 3.3 <u>Public Disclosures</u>. The AE shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.

- 3.4 <u>Meetings</u>. Meetings will be scheduled whenever requested by the AE or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The AE's project manager and the Government's representative shall be required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer. These meetings, if necessary, are in addition to the presentation and review conferences.
- 3.5 <u>Site Visits, Inspections, and Investigations</u>. The AE shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

3.6 Records

- 3.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, and delivery order number, participating personnel, subject discussed and conclusions reached. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the records.
- 3.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the contract number and delivery order number. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the record of request or receipt of material.
- 4. <u>SERVICES AND MATERIALS</u>. All services, materials (except those specifically enumerated to be furnished by the Government), labor, supervision and travel necessary to perform the work and render the data required under this delivery order are included in the lump sum price of the delivery order.
- 5. <u>PROJECT DOCUMENTATION</u>. All energy conservation opportunities which the AE has considered shall be included in one of the following categories and presented in the report as such:
- 5.1 <u>ECIP Projects</u>. To qualify as an ECIP project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$300,000, a Savings to Investment Ratio (SIR) greater than 1.25 and a simple payback period of less than ten years. The overall project and each discrete part of the project shall have an SIR greater than 1.25. All projects meeting the above criteria shall be arranged as specified in paragraph 2.7.1 and shall be provided with programming documentation. Programming documentation shall consist of a DD Form 1391 and life cycle cost analysis (LCCA) summary sheet(s) (with necessary backup

data to verify the numbers presented). A life cycle cost analysis summary sheet shall be developed for each ECO and for the overall project when more than one ECO are combined. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs.

- 5.2 Non-ECIP Projects. Projects which do not meet ECIP criteria with regard to cost estimate or payback period, but which have an SIR greater than 1.25 shall be documented. Projects or ECOs in this category shall be arranged as specified in paragraph 2.7.2 and shall be provided with the following documentation: the life cycle cost analysis (LCCA) summary sheet completely filled out, a description of the work to be accomplished, backup data for the LCCA, ie, energy savings calculations and cost estimate(s), and the simple payback period. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs. In addition these projects shall have the necessary documentation prepared, as required by the Government's representative, for one of the following categories:
- a. Federal Energy Management Program (FEMP) Projects. A FEMP (or O&M Energy) project is one that results in needed maintenance or repair to an existing facility, or replaces a failed or failing existing facility, and also results in energy savings. The criteria are similar to the criteria for ECIP projects, ie, SIR ≥ 1.25 , and simple payback period of less than ten years. Projects with a construction cost estimate up to \$1,000,000 shall be documented as outlined in par 5.2 above; projects over \$1,000,000 shall be documented on 1391s. In the FEMP program, a system may be defined as "failed or failing" if it is inefficient or technically obsolete. However, if this strategy is used to justify a proposed project, the equipment to be replaced must have been in use for at least three years.
- b. Low Cost/No Cost Projects. These are projects which the Director of Public Works (DPW) can perform using his resources. Documentation shall be as required by the DPW.
- 5.3 <u>Nonfeasible ECOs</u>. All ECOs which the AE has considered but which are not feasible, shall be documented in the report with reasons and justifications showing why they were rejected.
- 6. <u>DETAILED SCOPE OF WORK</u>. The Detailed Scope of Work is contained in Annex A.

7. WORK TO BE ACCOMPLISHED.

7.1 <u>Perform a Limited Site Survey</u>. The AE shall obtain all necessary data to evaluate the ECOs or projects by conducting a site survey. The AE shall document his site survey on forms developed for the survey, or standard forms, and submit these completed forms as part of the report. All test and/or measurement equipment shall be properly calibrated prior to its use.

- 7.2 Evaluate Selected ECOs. The AE shall analyze all identified ECOs in detail to determine their feasibility. Savings to Investment Ratios (SIRs) shall be determined using current ECIP guidance. The AE shall provide all data and calculations needed to support the recommended ECO. All assumptions and engineering equations shall be clearly stated. Calculations shall be prepared showing how all numbers in the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of the products, manufacturers catalog cuts, pertinent drawings and sketches shall also be included. A life cycle cost analysis summary sheet shall be prepared for each ECO and included as part of the supporting data.
- 7.3 Combine ECOs Into Recommended Projects. During the Interim Review Conference, as outlined in paragraph 7.4.1, the AE will be advised of the DPW's preferred packaging of recommended ECOs into projects for implementation. Some projects may be a combination of several ECOs, and others may contain only one. These projects will be evaluated and arranged as outlined in paragraphs 5.1, 5.2, and 5.3. Energy savings calculations shall take into account the synergistic effects of multiple ECOs within a project and the effects of one project upon another. The results of this effort will be reported in the Final Submittal per par 7.4.2.
- 7.4 <u>Submittals</u>, <u>Presentations</u> and <u>Reviews</u>. The work accomplished shall be fully documented by a comprehensive report. report shall have a table of contents and shall be indexed. and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. Names of the persons primarily responsible for the project shall be included. The AE shall give a formal presentation of the interim submittal to installation, command, and other Government personnel. Slides or view graphs showing the results of the study to date shall be used during the presentation. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study. A review conference will be conducted the same day, following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. It is anticipated that the presentation and review conference will require approximately one working day. The presentation and review conference will be at the installation on the date agreeable to the building occupant, the DPW, the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.
- 7.4.1 Interim Submittal. An interim report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain a plan of the work remaining to complete the study. Calculations

showing energy and dollar savings, SIR, and simple payback period of all the ECOs shall be included. The results of the ECO analyses shall be summarized by lists as follows:

- a.All ECOs eliminated from consideration shall be grouped into one listing with reasons for their elimination as discussed in par 5.3.
- b.All ECOs which were analyzed shall be grouped into two listings, recommended and non-recommended, each arranged in order of descending SIR. The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. At the Interim Submittal and Review Conference, the Government's and AE's representatives shall coordinate with the DPW to provide the AE with direction for packaging or combining ECOs for programming purposes and also indicate the fiscal year for which the programming or implementation documentation shall be prepared. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.
- 7.4.2 Final Submittal. The AE shall prepare and submit the final report when all sections of the report are 100% complete and all comments from the interim submittal have been resolved. AE shall submit the Scope of Work for the study and any modifications to the Scope of Work as an appendix to the submittal. report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The recommended projects, as determined in accordance with paragraph 5, shall be presented in order of priority by SIR. The lists of ECOs specified in paragraph 7.4.1 shall also be included for continuity. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The final report shall be arranged to include:
- a. An Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex B for minimum requirements).
- b. The narrative report describing the problem to be studied, the approach to be used, and the results of this study.
- c. Documentation for the recommended projects (includes LCCA Summary Sheets).

- d. Appendices to include as a minimum:
 - 1) Energy cost development and backup data
 - 2) Detailed calculations
 - 3) Cost estimates
 - 4) Computer printouts (where applicable)
 - 5) Scope of Work

ANNEX A

DETAILED SCOPE OF WORK

LIMITED ENERGY STUDY

GEODDS FACILITY, BUILDING 34568

STALLION SITE, WHITE SANDS MISSILE RANGE, NM

- 1. The General Scope of Work outlines requirements for the study and the report; and the detailed scope of work describes the specific area to be studied. If any conflicts arise between the General and the Detailed scopes of work, the Detailed Scope of Work shall govern.
- 2. The facility to be investigated in this study is Building 34568, which is located at Stallion Site in the northern part of White Sands Missile Range. It is approximately 30 miles south and east of Socorro, NM and south of US Highway 380. Access to the site is controlled. Temporary passes will be required for both personnel and vehicle access. A one-week notice should be given by the AE prior to any visit. This time will be needed to make the necessary arrangements for the visit.
- 3. The installation representative for this contract will be Mr. Julian Delgado, Energy Manager, Directorate of Public Works. The occupant representative will be Msgt. Luther Mills, Chief, Detachment 1, 18th SSS.
- 4. Building 34568 is a windowless, filled-concrete-block, high-bay structure with an area of approximately 10,000 SF. It is a research facility with scientific and computer equipment, and it is occupied 24 hours per day, 365 days per year. Two TRANE 40-ton, air-cooled chillers are used for air conditioning. Some spaces require year-round cooling. Those spaces that require heat are served by electric resistance duct heaters or unit heaters. The building, although owned by the Army, is occupied by an Air Force Detachment. The site is separately metered, and the Air Force reimburses White Sands Missile Range for all power used. Records of electrical consumption are available for the past three years. Building 34568 and a motor-generator set that serves equipment in B/34568 are the major users of electrical energy on the site.
- 5. Approximately two years ago the electrical consumption for this facility began to rise sharply. The purpose of this study is to find all cost-effective measures which may be employed to reduce energy consumption and cost.
- 6. The work consists of conducting a thorough energy audit and to identify and evaluate energy conservation opportunities (ECOs) for the GEODDS facility. All energy-related aspects of the facility should be investigated, ie. skin, lighting, HVAC systems, equipment and controls, other equipment, operations and maintenance. Field data taken should include lighting levels and operating

amps of all major equipment. A field calibration of the electrical meter for the site should be a part of the field investigation. Any proposal that would modify or replace the chillers must take into consideration the latest guidance on CFC refrigerants. See suggested ECOs at the end of this annex.

7. Completion and Payment Schedule: The following schedule shall be used as a guide in approving payments on this contract. The final report for this study shall be due not later than 90 days after Notice to Proceed.

MILESTONE	PERCENT OF CONTRACT AMOUNT AUTHORIZED FOR PAYMENT
Completion of Field Work	25
Receipt of Interim Submittal	75
Completion of Interim Presentation & I	Review 85
Receipt of Final Report	100

- 8. The following computer programs will be acceptable for use in building and HVAC system simulation. If it is desired to use a program other than one of the following, it must be submitted for approval as outlined in par 2.6 of the general scope of work.
 - a. Building Loads and System Thermodynamics (BLAST)
 - b. Carrier E20 or Hourly Analysis Program (HAP)
 - c. DOE 2.1B
 - d. Trane Air-Conditioning Economics (TRACE)
- 9. Government-Furnished Information: The following documents will be furnished to the AE:
 - a. As-built drawings (as available) of Building 34568.
 - b. Energy consumption records.
 - c. Energy Conservation Investment Program (ECIP) Guidance, dated 10 Jan 1994.
 - d. ETL 1110-3-254, Use of Electric Power for Comfort Space Heating
 - e. ETL 1110-3-282, Energy Conservation
 - f. TM 5-785, Engineering Weather Data
 - q. TM 5-800-2, Cost Estimates, Military Construction
 - h. AR 415-15, 1 Jan 84, Military Construction, Army (MCA) Program Development
 - i. Architectural and Engineering Instructions, Design Criteria, 9 December 1991
 - j. The latest MCP Index

- 10. A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois for a nominal fee. The current edition of LCCID is dated October 1994. This computer program can be used for performing the economic calculations for ECIP and non-ECIP ECOs. The AE is encouraged to obtain and use this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana, Illinois 61801. The telephone number is (217) 333-3977 or (800) 842-5278.
- 11. Reports and correspondence shall be provided in the quantities shown to the offices listed below:

REPORT SUBMIT	CORRES IELD NO FTALS		NCE
Commander US Army White Sands Missile Range ATTN: STEWS-DPW-PE (Delgado) White Sands Missile Range, NM 88002-5076	2	1	1
Det 1 18th SSS/DC (Msgt Mills) PO Box W Socorro, NM, 87801	2	1	1
Air Force Space Command ATTN: 73 MSS/CE (Soderlund) 400 O'Malley Avenue, Suite 56 Falcon AFB, CO, 80912-4056	1		
Commander US Army Engineer District, Mobile ATTN: CESAM-EN-DM (Mr. Battaglia) PO Box 2288 Mobile, AL 36628-0001	2	1	1
Commander US Army Engineer District, Fort Worth ATTN: CESWF-ED-MP (Mr Champagne) PO Box 17300 Fort Worth, TX, 76102 - 0300	1	-	_

^{*} To be submitted in final form with the interim submittal

SUGGESTED ENERGY CONSERVATION OPPORTUNITIES

ENVELOPE

- o Insulation (wall, roof, etc.)
- o Color of outside walls, doors, and roof
- o Low emissivity roof coating

POWER

- o Improve power factor
- High efficiency motor replacement

HVAC

- o Reduce outside air
- o Night setback/setup thermostats
- o Economizer cycles (dry bulb)
- o Chiller replacement
- O Chiller controls
- o Revise or repair building HVAC controls

IMPROVE LIGHTING EFFICIENCY

- o Replace standard fluorescent lamps with energy-conserving lamps
- o Replace standard fluorescent ballasts with electronic ballasts
- o Replace existing fluorescent fixtures with new fixtures having efficient reflectors, electronic ballasts, and energy-conserving lamps
- O Use more efficient lighting source, ie, upgrade from incandescent to fluorescent, from fluorescent to HID, from mercury vapor to high pressure sodium, etc

ANNEX B

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- Building Data (types, number of similar buildings, sizes, etc.)
- 3. Present Energy Consumption of Buildings or Systems Studied.
 - Total Annual Energy Used.
 - o Site Energy Consumption.

Electricity - MWH, Dollars, MBTU
Fuel Oil - GALS, Dollars, MBTU & MWH
Natural Gas - THERMS, Dollars, MBTU & MWH
Propane - GALS, Dollars, MBTU & MWH
Other - QTY, Dollars, MBTU & MWH

- 4. Energy Conservation Analysis.
 - o ECOs Investigated.
 - o ECOs Recommended.
 - o ECOs Rejected. (Provide economics or reasons)
 - o ECIP Projects Developed. (Provide list)*
 - o Non-ECIP Projects Developed. (Provide list)*
 - o Operational or Policy Change Recommendations.
- 5. Energy and Cost Savings.
 - o Total Potential Energy and Cost Savings resulting from recommended projects in MBTU/yr, MWH/yr, and \$K/yr.
 - o Percentage of Energy Conserved.
 - o Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.
- * Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date.

2750 South Wadsworth Blvd. • Suite C-200 Denver, Colorado 80227-3400 303/988-2951 • Fax: 303/985-2527

CONFIRMATION NOTICE

Confirmation Notice No. 1

EMC #1406-008

DATE:

22 September 1995

PROJECT:

Limited Energy Study - GEODSS Facility

CONTRACT NO.: DACA01-94-D-0033

DELIVERY ORDER:

0008

NOTES

PREPARED BY:

EMC Engineers, Inc.

DATE OF

MEETING:

19 September 1995

PLACE OF

MEETING:

WSMR, New Mexico

SUBJECT:

Review of Preliminary Report

ATTENDEES:

Mobile COE (334) 690-2613 Anthony W. Battaglia Capt. Ray Marsh 21 CES/CECR (719) 556-8935 Sgt. Charles E. Rodgers Det 1 18SPSS/DC (505) 835-4546 Jim Finley PRC Sitel DSN 349-4134 Mike Barrett PRC Sitel DSN 349-4134 Julian T. Delgado DPW-PE (505) 678-8762 (303) 988-2951 Dennis Jones **EMC**

The following is a summary of the items discussed, the comments made, and the decisions made during the meeting.

EMC verbally presented the findings of the Preliminary Report.

The following review comments were offered by Mobile COE:

1. Overall, this is a good report, well-presented, and well documented.

Thank you

2. Pg ES-6 Table ES-3, Summary Of Recommended ECOs: See Comment 15 below.

Concur. An additional DOE simulation containing all recommended ECOs will be performed.

3. Page 1-2 Section 1.5: A UPV value for LP Gas should also be included.

Concur.

4. Page 2-1 Section 2.2: The CFM rating for the CRUs is given. It would be helpful if the BTU/Hr. rating could also be given.

Concur. Will add to report.

5. Section 4 Please add the Life Cycle Cost Analysis (LCCA) Summary Sheet for all ECOs for which SIR was determined, as on page 4-31, except that the Form 1391 heading and borders are not necessary.

Concur.

6. Page 4-25 Please clarify if this ECO is for complete fixture replacement or for retrofit of existing fixtures with new ballast's and lamps.

Will clarify. ECO is retrofit.

7. Pg. 4-42 In the motor data table, please define the heading of the column "COE."

Corps of Engineers. Will add note for COE standards.

8. In the paragraph on Existing Conditions, please make sure that the subjects, verbs and pronouns all agree.

Concur.

9. Pg. 4-65 I was not able to reconcile the data presented for the Existing Reciprocating Chiller with the backup material on or around page 4-75. Please Clarify.

Existing chiller cut sheet is missing. Will add to report.

10. Pg. 4-69 Item 2, Condenser: Should model number be CAUC-C50 rather than CAUA-C50?

Yes. Will correct.

11. Pg 4-69 Are the unit costs for the chiller and the condenser from a quete? I could not find a price like that in the Means data on page 4-70. If from a quote, please include a copy.

Copy of quote will be included.

12. Pg. 4-75 Part of the heading for this page, the part towards the right, did not copy well: so I can't tell to which equipment (existing or proposed) this data supplies. Please clarify.

Heading will be more clearly identified.

13. Pg. 4-95 At bottom of page, Recommendations: Delete the words "saves energy and " The analysis on page 4-98 shows that there is a net increase in energy use.

Concur.

14. Pg. 5-1 Section 5.2 Recommendations: According to the guidelines for FEMP projects ECOs 8 & 11 should not be recommended as their simple payback periods are greater than 10 years. During the review meeting, we should solicit guidance from the customers to see if they want to include these since they are just barely over ten years.

These ECOs will be re-evaluated as per comments discussed later in the Confirmation Notice. It is likely that the resulting payback periods will be less than 10 years.

15. Page 5-1 Section 5.2, The overall energy savings appears to be a straight sum of the individual energy savings of each ECO. This is probably not correct for a synergistic approach. The proper way to obtain the energy savings would be to make one more DOE run with all the appropriate changes in inputs. The resulting annual energy usage could then be subtracted from the base case to obtain the savings. All the rest of the LCCA inputs are pretty straightforward.

Concur. An additional DOE simulation containing all recommended ECOs will be performed.

16. Be sure to update the distribution list, as some of the names and addresses have changed.

Concur.

The following additional items were discussed:

GEODSS does not want to use propane in the building due to risk to the facility. EMC will evaluate use of a double-bundle chiller for heating as an alternative.

The Chiller Replacement ECO should be re-evaluated to include the need to replace existing chillers within two years due to corrosion in the condenser. The new chillers should be down sized from 40 to 30 tons.

The sketch indicating modifications necessary for ECO #9 ,Recirculation of Air in Towers, should be improved to better show work to be performed. EMC obtained additional plans at the site to form the basis of the improved sketch.

Julian Delgado indicated that WSMR has had problems with funding previous ECIP projects because labor rates and other costs differ between previous EMC assumptions and actual negotiated rates under the IDT with the present contractor. Julian will supply EMC with current labor rates and other applicable rates.

Capt. Marsh will fax EMC the 1391 format the Air Force likes to use.

Programming documentation should be prepared for ECOs 4, 7, 8, and 9. GEODSS will implement ECOs 6 and 10 in-house with O&M funds.

This meeting was adjourned.

Dennis E.Jones

v:\1406.008\cn-1a.doc

If any portion of this Confirmation Notice is incorrect, please notify us immediately. If correspondence is not received to the contrary within 14 days, it will be assumed that the decisions, conclusions, and status outlined in this Confirmation Notice are correct.

ANNEX C

REOUIRED DD FORM 1391 DATA

To facilitate ECIP project approval, the following supplemental data shall be provided:

- a. In title block clearly identify projects as "ECIP."
- b. Complete description of each item of work to be accomplished including quantity, square footage, etc.
- c. A comprehensive list of buildings, zones, or areas including building numbers, square foot floor area, designated temporary or permanent, and usage (administration, patient treatment, etc.).
- d. List references, and assumptions, and provide calculations to support dollar and energy savings, and indicate any added costs.
- (1) If a specific building, zone, or area is used for sample calculations, identify building, zone or area, category, orientation, square footage, floor area, window and wall area for each exposure.
 - (2) Identify weather data source.
- (3) Identify infiltration assumptions before and after improvements.
- (4) Include source of expertise and demonstrate savings claimed. Identify any special or critical environmental conditions such as pressure relationships, exhaust or outside air quantities, temperatures, humidity, etc.
- e. Claims for boiler efficiency improvements must identify data to support present properly adjusted boiler operation and future expected efficiency. If full replacement of boilers is indicated, explain rejection of alternatives such as replace burners, nonfunctioning controls, etc. Assessment of the complete existing installation is required to make accurate determinations of required retrofit actions.
- f. Lighting retrofit projects must identify number and type of fixtures, and wattage of each fixture being deleted and installed. New lighting shall be only of the level to meet current criteria. Lamp changes in existing fixtures is not considered an ECIP type project.

- g. An ECIP life cycle cost analysis summary sheet as shown in the ECIP Guidance shall be provided for the complete project and for each discrete part included in the project. The SIR is applicable to all segments of the project. Supporting documentation consisting of basic engineering and economic calculations showing how savings were determined shall be included.
- h. The DD Form 1391 face sheet shall include, for the complete project, the annual dollar and MBTU savings, SIR, simple amortization period and a statement attesting that all buildings and retrofit actions will be in active use throughout the amortization period.
- i. The calendar year in which the cost was calculated shall be clearly shown on the DD Form 1391.
- j. For each temporary building included in a project, separate documentation is required showing (1) a minimum 10-year continuing need, based on the installation's annual real property utilization survey, for active building retention after retrofit, (2) the specific retrofit action applicable and (3) an economic analysis supporting the specific retrofit.
- k. Nonappropriated funded facilities will not be included in an ECIP project without an accompanying statement certifying that utility costs are not reimbursable.
- 1. Any requirements required by ECIP guidance dated 10 Jan 1994 and any revisions thereto. Note that unescalated costs/savings are to be used in the economic analyses.
- m. The five digit category number for all ECIP projects except for Family Housing is 80000. The category code number for Family Housing projects is 71100.

2750 South Wadsworth Blvd. • Suite C-200 Denver, Colorado 80227-3400 303/988-2951 • Fax: 303/985-2527

CONFIRMATION NOTICE

Confirmation Notice No. 1

EMC #1406-008

DATE:

22 September 1995

PROJECT:

Limited Energy Study - GEODSS Facility

CONTRACT NO.: DACA01-94-D-0033

DELIVERY ORDER: 0008

NOTES

PREPARED BY:

E M C Engineers, Inc.

DATE OF

MEETING:

19 September 1995

PLACE OF

MEETING:

WSMR, New Mexico

SUBJECT:

Review of Preliminary Report

ATTENDEES:

Mobile COE	(334) 690-2613
21 CES/CECR	(719) 556-8935
Det 1 18SPSS/DC	(505) 835-4546
PRC Sitel	DSN 349-4134
PRC Sitel	DSN 349-4134
DPW-PE	(505) 678-8762
EMC	(303) 988-2951
	21 CES/CECR Det 1 18SPSS/DC PRC Sitel PRC Sitel DPW-PE

The following is a summary of the items discussed, the comments made, and the decisions made during the meeting.

EMC verbally presented the findings of the Preliminary Report.

The following review comments were offered by Mobile COE:

1. Overall, this is a good report, well-presented, and well documented.

Thank you

2. Pg ES-6 Table ES-3, Summary Of Recommended ECOs: See Comment 15 below.

Concur. An additional DOE simulation containing all recommended ECOs will be performed.

3. Page 1-2 Section 1.5: A UPV value for LP Gas should also be included.

Concur.

4. Page 2-1 Section 2.2: The CFM rating for the CRUs is given. It would be helpful if the BTU/Hr. rating could also be given.

Concur. Will add to report.

5. Section 4 Please add the Life Cycle Cost Analysis (LCCA) Summary Sheet for all ECOs for which SIR was determined, as on page 4-31, except that the Form 1391 heading and borders are not necessary.

Concur.

6. Page 4-25 Please clarify if this ECO is for complete fixture replacement or for retrofit of existing fixtures with new ballast's and lamps.

Will clarify. ECO is retrofit.

7. Pg. 4-42 In the motor data table, please define the heading of the column "COE."

Corps of Engineers. Will add note for COE standards.

8. In the paragraph on Existing Conditions, please make sure that the subjects, verbs and pronouns all agree.

Concur.

9. Pg. 4-65 I was not able to reconcile the data presented for the Existing Reciprocating Chiller with the backup material on or around page 4-75. Please Clarify.

Existing chiller cut sheet is missing. Will add to report.

10. Pg. 4-69 Item 2, Condenser: Should model number be CAUC-C50 rather than CAUA-C50?

Yes. Will correct.

11. Pg 4-69 Are the unit costs for the chiller and the condenser from a quate? I could not find a price like that in the Means data on page 4-70. If from a quote, please include a copy.

Copy of quote will be included.

12. Pg. 4-75 Part of the heading for this page, the part towards the right, did not copy well: so I can't tell to which equipment (existing or proposed) this data supplies. Please clarify.

Heading will be more clearly identified.

13. Pg. 4-95 At bottom of page, Recommendations: Delete the words "saves energy and " The analysis on page 4-98 shows that there is a net increase in energy use.

Concur.

14. Pg. 5-1 Section 5.2 Recommendations: According to the guidelines for FEMP projects ECOs 8 & 11 should not be recommended as their simple payback periods are greater than 10 years. During the review meeting, we should solicit guidance from the customers to see if they want to include these since they are just barely over ten years.

These ECOs will be re-evaluated as per comments discussed later in the Confirmation Notice. It is likely that the resulting payback periods will be less than 10 years.

15. Page 5-1 Section 5.2, The overall energy savings appears to be a straight sum of the individual energy savings of each ECO. This is probably not correct for a synergistic approach. The proper way to obtain the energy savings would be to make one more DOE run with all the appropriate changes in inputs. The resulting annual energy usage could then be subtracted from the base case to obtain the savings. All the rest of the LCCA inputs are pretty straightforward.

Concur. An additional DOE simulation containing all recommended ECOs will be performed.

16. Be sure to update the distribution list, as some of the names and addresses have changed.

Concur.

The following additional items were discussed:

GEODSS does not want to use propane in the building due to risk to the facility. EMC will evaluate use of a double-bundle chiller for heating as an alternative.

The Chiller Replacement ECO should be re-evaluated to include the need to replace existing chillers within two years due to corrosion in the condenser. The new chillers should be down sized from 40 to 30 tons.

The sketch indicating modifications necessary for ECO #9 ,Recirculation of Air in Towers, should be improved to better show work to be performed. EMC obtained additional plans at the site to form the basis of the improved sketch.

Julian Delgado indicated that WSMR has had problems with funding previous ECIP projects because labor rates and other costs differ between previous EMC assumptions and actual negotiated rates under the IDT with the present contractor. Julian will supply EMC with current labor rates and other applicable rates.

Capt. Marsh will fax EMC the 1391 format the Air Force likes to use.

Programming documentation should be prepared for ECOs 4, 7, 8, and 9. GEODSS will implement ECOs 6 and 10 in-house with O&M funds.

This meeting was adjourned.

Dennis E.Jones

v:\1406.008\cn-1a.doc

If any portion of this Confirmation Notice is incorrect, please notify us immediately. If correspondence is not received to the contrary within 14 days, it will be assumed that the decisions, conclusions, and status outlined in this Confirmation Notice are correct.

APPENDIX B FIELD SURVEY NOTES

E M C Jineers, Inc.
White Sands Missile Range, New Mexico
EMC #1406.008

GE Site Building No. 34568 TRACE Input Data

Prepared I. Smith 8/11/95 Checked by: T Poeling Prepared L

10,671 ft2

FLOOR AREA

INTERIOR LIGHTS

BLDG NO.

34568

	LAMP	ON	LAMP	FIXTURE	FIXTURE	TOTAL
DESCRIPTION	TYPE	LAMPS	WATTS	WATTS	COUNT	WATTS
4' RECESSED FLUORESCENT	FLUOR	2	40	89	131	11659
EXIT LIGHT	NC NC	2	20	40	9	400
EXPOSED INCANDESCENT	NC	_	150	150	12	1800
RECESSED INCANDESCENT	NC	_	09	09	6	540
	, <u>-</u>					
			TOTAL WATTS	S		14,399
			WATTS PFR	WATTS PER SOUARF FOOT	_	1.35

EXTERIOR LIGHTS

B-1

548		S	TOTAL WATTS			
412.5	33	12.5	12.5	~	INC	INCANDESCENT (PARKING LOT)
135	18	7.5	7.5	τ-	NC	INCANDESCENT
WATTS	COUNT	WATTS	WATTS	LAMPS	TYPE	DESCRIPTION
TOTAL	FIXTURE	FIXTURE	LAMP	Ö	LAMP	

EQUIPMENT OUTSIDE CONDITIONED SPACE

	PEAK	SO	USE
DESCRIPTION	WATTS	FACTOR	WATTS
COMPRESSOR #1	4244	0.5	2122
COMPRESSOR #2	4244	0.5	2122
COMPRESSOR #3	4244	0.5	2122
TOTAL WATTS	S		6 366

White Sands Missile Range, New Mexico EMC Engineers, Inc. EMC #1406.008

GEODSS Site Building No. 34568 TRACE Input Data

Prepared by: E. Smith

8/11/95

Checked by: T Poeling

ASHRAE 1989 FUNDAMENTALS page 26.8 & 28.4 0.50 5,350 WATTS TOTAL 225 60 720 270 1750 500 700 1125 COUNT WATTS PER SQUARE FOOT WATTS 1750 500 700 USE 1125 225 60 80 30 TOTAL WATTS **FACTOR** USE 0.15 1.00 0.5 0.5 1.00 1.00 1.00 WATTS PEAK 1750 500 700 225 400 160 1500 9 EQUIPMENT INSIDE CONDITIONED SPACE PERSONAL COMPUTER VENDING MACHINE MEDIUM COPIER COFFEE MAKER REFRIGERATOR LASER PRINTER **COKE MACHINE** DESCRIPTION MICROWAVE

762 ASHRAE 1993 FUNDAMENTALS p 26.8 COUNT 125 LATENT BTUh SQUARE FOOT PER PERSON 225 SENSE BTUh TOTAL PEOPLE PEOPLE HEAT GAIN BUILDING TYPE OFFICE

Prepared E. Smith 8/11/95 Checked by: T Poeling

HVAC SYSTEMS

ZONE DATA						
DESIGNATION		AHU-2	AHU-3,4,5	AHU-6,7,8	AHU-9	
AREA SERVED	(A) (A)	OFFICES 4770	TOWERS	COMPUTER	CONFERENCE	·
VENTILATION		4770 1257	2000	000,21	008	
EXHAUST		1257	2000	0	. 0	
RETURN		3513	0	12,000	800	
OUTSIDE AIR (%)		26.40%	100%	%0	%0	
AHU DATA						٠,
SYSTEM TYPE		SZ	ZS	CRU	SZ	_
MANUFACTURER	r	TRANE	TRANE	AIRFLOW CO.	WILLIAMS	
MODEL NUMBER	~	CLIMATE CHANGER #8	CLIMATE CHANGER #6	CCT-41C4	AH-800-W2-B40	
COOLING CAPACITY (MBH)	CITY (MBH)	113	62	326	10	
HEATING CAPACITY (MBH)	NTY (MBH)	131	A/N	115	Ϋ́Z	
SUPPLY FAN HORSEPOWER	RSEPOWER	5	ო	7.5	0.33	
SUPPLY FAN ST	SUPPLY FAN STATIC PRESSURE ("H2O)	3.0	2.5	0.5	ı	
SUPPLY FAN LOAD (KW)	AD (kW)	3.14	1.9	4.72	0.246	
RETURN FAN HORSEPOWER	DRSEPOWER	A/N	N/A	N/A	N/A	
RETURN FAN ST	RETURN FAN STATIC PRESSURE	√Z	A/N	N/A	N/A	
RETURN FAN LOAD	AD	N/A	N/A	N/A	A/N	
CONTROLS						,
OPERATING SEASON	NOSY	ALWAYS	APRIL - NOVEMBER	ALWAYS	ALWAYS	_
HEATING SEASON	Z	ALWAYS	N/A	ALWAYS	A/N	
COOLING SEASON	NO.	ALWAYS	APRIL - NOVEMBER	ALWAYS	ALWAYS	
TIMECLOCK		NON	NONE	NONE	NONE	
WEEKDAY SCHEDULE	DULE	24 HOURS	24 HOURS	24 HOURS	24 HOURS	
WEEKEND SCHEDULE	DULE	THERMOSTAT	THERMOSTAT	THERMOSTAT	THERMOSTAT	
SUPPLY AIR TEN	SUPPLY AIR TEMPERATURE CONTROL	THERMOSTAT	THERMOSTAT	A/N	THERMOSTAT	
SUPPLY AIR SETPOINT (°F)	POINT (°F)	√Z	A/N	V/A	N/A	
MIXED AIR TEMP	MIXED AIR TEMPERATURE CONTROL	NONE	NONE	NONE	NONE	
MIXED AIR SETPOINT (°F)	OINT (°F)	A/N	√Z	ΨŻ	A/N	
COOLING THERMOSTAT	MOSTAT	72	40	72	72	
HEATING THERMOSTAT	10STAT	20	A/Z	70	A/N	
ECONOMIZER TYPE	/PE	NONE	N/A	N/A	N/A	

B-3

Page 3

E M C Engineers, Inc. White Sands Missile Range, New Mexico EMC #1406.008

TOWER WALL AND ROOF U-VALUES

TOWER WALL

Layer	R-value	
Outside air film	0.17	
1' Concrete Wall	1.23	
4" Insulation (on 2 1/2" metal studs)	13.00	
5/8" Gypsum	0.56	
Inside air Film	0.68	
Total R-value	15.64	
Total U-value (Btu/hr-ft2-°F)	0.064	

R-values taken from ASHRAE Table 22.4, pg. 22.6-22.9

COMPUTER WALL, FACILITY WALL, AND ROOF U-VALUES
COMPUTER WALL

B-4

Layer	R-value
Outside air film	0.68
8" Concrete masonry unit	2.50
(Assume medium aggregate	
w/perlite filled cores at	
reinforced areas)	
3/4" Plywood	0.93
Air Space	0.91
1 3/8" Plywood removeable doors	1.05
5/8" Gypsum	0.56
Inside air Film	0.68
Total R-value	7.31
Total U-value (Btu/hr-ft2-°F)	0.137

R-values taken from ASHRAE Table 22.4, pg. 22.6-22.9

GEODSS Site Building No. 34568 TRACE Input Data

Prepared by: E. Smith 8/11/95 Checked by: T Poeling

TOWER ROOF

Layer	R-value
Outside air film	0.17
4" Rigid Insulation	25.00
Inside air Film	0.68
Total R-value	25.85
Total U-value (Btu/hr-ft2-°F)	0.039

COMPUTER AND FACILITY ROOF

Layer	R-value
Outside air film	0.17
Built-up roof on underlayment	0.33
on steel deck on steel joists	
4" Rigid insulation	20.00
Inside air Film	0.68
Total R-value	21.18
Total U-value (Btu/hr-ft2-°F)	0.047

FACILITY EXTERIOR WALLS

Layer	R-value
Outside air film	0.17
8" Concrete masonry unit	2.50
(Assume medium aggregate	
w/perlite filled cores at	
reinforced areas)	
4" Fiberglass Batt Insulation	13.00
5/8" Gypsum (on metal studs)	0.56
Inside air Film	0.68
Total R-value	16.91
Total U-value (Btu/hr-ft2-°F)	0.059

E M gineers, Inc. White Sands Missile Range, New Mexico EMC #1406.008

Prepared E. Smith 8/11/95 Checked by: T Poeling

Prepared

COMPRESSOR

Trane CRHR400C-3RAT 35.73

Manufacturer Model No.

Tons

CONDENSER

5.00 Tri volt 3N659A Manufacturer Model No. RPM Η

B-5

PUMPS

	Motor	Full	Flow		Operating
Description	Size	Load	Rate	Speed	Schedule
	(hp)	(kW)	(mdb)	(rpm)	
Chilled Water Loop	1	0.63	72	1725	AVAIL
Chilled Water Loop	_	0.63	72	1725	AVAIL
Chilled Water Loop	-	0.63	72	1725	AVAIL
Chilled Water Loop	τ	0.63	72	1725	AVAIL

E M C Engineers, Inc. Energy Conservation Survey White Sands Missile Range, NM

CHILLER PLANT DATA

LLER PLANT DATA		Chiller No.: 1				
Manufacturer: TRANE		Location: CHILL	ER ROOM			
Model No.: CRHR400C - 3RAT	-					
Serial No.: N884062288		Serves AHUs: 2,3,4,	5,6,7,8,9			
TYPE OF CHILLER:	TYPE OF REFRIGERANT	: FREON	MULTIPLE CHILLERS:			
Absorption:	DX:		Series Piping:			
Centrifugal:	Water:		Parallel Piping:			
Reciprocating:	Other:		SIZE OF PIPING:			
Rotary Screw:	Air-Cooled:		Supply (in.):			
Other:	Water-Cooled:		Return (in.):			
COMPRESSOR DATA:	CONDENSING FANS:	TRANE	EVAPORATOR DATA:			
No. of Compressors:	1 No. of Fans:	4	Serial No.:			
RLA: LR: 315	HP:	1.5	No. of Passes:			
Volts: 460	FLA:	3	Miscellaneous:			
kW:	Volts:					
Capacity (tons):	38.23 Phase/Hz: 3 / 60					
OPERATING TIMES:						
Present Start Time:		Required Start Time:				
Present Stop Time:		Required Stop Time:				
Months Operating:		Timeclock (Y/N):				
CONTROLS:		CONTROL VALVES:				
Pneumatic:		Location:				
Electric:		2-Way:				
DDC:		3-Way:				
Setpoints: CHW:	CNW:	Size:				
Comments: MAX FUSE SIZE TI	IME DELAY: 15, MIN CIR A	AMPACITY: 13,				
CONDENSOR MOD	DEL #: CAUA - 4004 - OB,	CONDENSOR TYPE:	621 - 0340 - 3A,			
CONDENSOR SER	RIAL #: J79E - 20224					

E M C Engineers, Inc. Energy Conservation Survey White Sands Missile Range, NM

CHILLER PLANT DATA

LLER PLAN				Chiller No.: 2				
Manufacturer			Location: CHI	ILLER ROOM				
Model No.:	CRHR400C - 3FAT							
Serial No.:	GOD40J4178		Serves AHUs: 2,3,	4,5,6,7,8,9				
TYPE OF CH	ILLER:	TYPE OF REFRIGE	RANT: FREON	MULTIPLE CHILLERS:				
Absorption	n:	DX:		Series Piping:				
Centrifuga	al:	Water:	· · · · · ·	Parallel Piping:				
Reciprocating	g:	Other:		SIZE OF PIPING:				
Rotary Screv	w:	Air-Cooled:		Supply (in.):				
Othe	er:	Water-Cooled:		Return (in.):				
COMPRESSO	OR DATA:	CONDENSING FAN	IS: TRANE	EVAPORATOR DATA:				
No. of Compr	essors:	1 No. of Fans:	4	Serial No.:				
RLA:	LR: 315	HP:	1.5	No. of Passes:				
Volts:	460	FLA:	3	Miscellaneous:				
kW:		Volts:						
Capacity (ton:	s):	38.23 Phase/Hz: 3 / 6	60					
OPERATING	TIMES:							
Present Start	Time:		Required Start Time:					
Present Stop	Time:		Required Stop Time:	Required Stop Time:				
Months Opera	ating:		Timeclock (Y/N):	Timeclock (Y/N):				
CONTROLS:			CONTROL VALVES	<u>:</u>				
Pneumatic:			Location:					
Electric:			2-Way:					
DDC:			3-Way:					
Setpoints:	CHW:	CNW:	Size:					
Comments:	MAX FUSE SIZE TI	ME DELAY: 15, MIN	I CIR AMPACITY: 13,					
	CONDENSOR MOD	DEL #: CAUA - 4004 - OB,	CONDENSOR TYPE	E: 621 - 0340 - 3A,				
	CONDENSOR SER	IAL #: J79E - 20224						
	USED ONLY WHEN	NEEDED, OTHERWISE IT	IS SHUT DOWN					

MOTORS

Compressor Room #2 Application: Location: Pump Motor: Tri volt Manufacturer: Model No.: Manufacturer Dayton Serial No.: Model No.: 3N659A GO34A1F9OTO81RO43F Frame No.: Serial No.: HP: 5 1750 Pump Type: D RPM: GPM: Head (ft.): Volts: 200-236/460 FLA: Ph/Hz: 3/60 LRA: Measured RPM: Operating Hours: Months Operating: Comments: Type: D, SF: 1.15, Insul Class: B, Frame: 184T, Nema Design: B, Amps: 15.4 - 14.6 / 7.3, SFA: 18.0 - 15.8 / 7.9, Shaft End BRG: 6206, KVARmax: 2.0, Opp End BRG: 6204, Nema Nom Eff: 85.5, Power Factor: 79.5, Duty: Continuous

Location:	34566 Building				Application	n: Powers Generator	
Pump Motor						Manufacturer:	
Manufacture	r Toshiba					Model No.:	
Model No.:	B2504VLF4B3					Serial No.:	
Serial No.:	10123512					Frame No.: 447TZ	
HP:	250	RPM:	1770			Pump Type:	
Volts:		FLA:				GРМ:	Head (ft.):
Ph/Hz:	4 / 60	LRA:					
Measured R	PM:	1796.6					
Operating H	ours:			Months Oper	ating:	All	
Comments:	Type: TIKK, Form	n: VBKI, Code:	E,	Amps: 28.5,	Class: F,	Nema Design: B,	4 Poles,
	BRG No: LS-NU3	18 OS-6318,		SF: 1.15,	MAX ANB:	40	

E M C Engineers, Inc. Energy Conservation Survey White Sands Missile Range, NM **PUMPS**

Field Survey

EMC No. 1406.008 Date: <u>6/22/95</u> Prepared By: <u>65</u>

Location: Chiller Room

Pump Mo	tor: GE Motor			Pump No.:	1,2,3,4	Type:	
Manufacti	urer:			Manufacture	r:		
Model No				Model No.:	5K43MG816	3A	
Serial No.	•			Serial No.:			
HP:	1	RPM:	1725	Frame No.:			
Volts:	208	FLA:	3.3	GPM:		Head (ft.):	
Fluid:	Water			Comments:	Typical of all	four pumps	
					Chilled Wate	r	

CON	TROL SCHEMATIC/PIPING SCHEMATIC

AIR HANDLING UNIT DATA

AHU No.: 2

	Trane				Location:		Chiller Room		
Manufacture					Served by:	-	Chinol Hoon		
Model No.:	Climate Char	nger Size o			Served by:		Office areas		
Serial No.:	V80E15027						Unit Heater:		
AHU TYPE:	Single-zone:	√	2 Pipe FC:		4 Pipe FC:			11.	
	H&V Unit:		Multizone:		Double Duct		Induction Un	iit:	
	VAV:		Reheat:		Comp. Room	1:	Other:		
	Number of Zo	ones:							
SUPPLY FA	N:	Blow-thru:		Draw-thru:	√	In-line:			
X	Centrifugal:	B.I.:		F.C:		Airfoil:		Radial:	
	Axial:	Vaneaxial:		Tubeaxial:		Propeller:			
Manufacture	••	Motor Dayton							
Model No.:		3N659							
HP:	5	Volts:	460	FLA:	7.3	RPM:	1730	Phase/Hz:	3 / 60
RETURN FA	N:	Axial:		Centrifugal:					
Manufacture									
Model No.:		N/A							
Model No.: HP:		Volts:		FLA:		RPM:		Phase/Hz:	
	LOUNA	HW	Steam	Electric	CNTRL VLV		CW	Н	N
COILS:	CHW		Steam		Location:				<u></u>
Preheat:				T 7	2-Way:				
Heating:	\				3-Way:				
Cooling:	· · · ·				Size:	-			
Humidity:					Pneu/Elec.:	-	Pneu		
Reheat:		<u> </u>			SETPOINTS	<u> </u>	7 1100	1	
CONTROLS					Space:). 			
Pneumatic:		· · · · · · · · · · · · · · · · ·			Occupied He	acting:			
Electric:					Unoccupied				
DDC:									
Damper Con		· V			Occupied Cooling:				
Damper Con	· · · · · · · · · · · · · · · · · · ·				Unoccupied Cooling:				
Damper Con		N 11 O 4			Setback (Y/N Setback Set				
Economizer		N small OA	duct			point.			
Comments:		°F,			PF = 81%				
	SA: 69	°F,							
		.6 rpm measui							
		rpm measure	<u>d</u>						
	$\eta = 82.5\%$								

Field Survey

EMC No. 1406.008 Date: 6/22/95 Prepared By: 5

^	
-4	

Model No.: CC SIZE 6 Served by:	Manufacture	O ONIT DA	Trane			Location:	Compresso	r Room # 1		<u> </u>
Serial No.:							Compresso	11100111 # 1		
### AHUTYPE: Single-zone: ### AV Unit:						H		Tower 1		
H&V Unit: Multizone: Double Duct: Induction Unit: VAV: Reheat: Comp. Room: Other: Number of Zones: SUPPLY FAN: Blow-thru: Draw-thru: ✓ In-line: X Centrifugal: B.I.: F.C. Airfoil: Radial: Axial: Vaneaxial: Tubeaxial: Propeller: Model No.: 51-385-215 R6-6P HP: 3 Volts: 230 FLA: 8.36 RPM: 1760 Phase/Hz: 3 / 6 RETURN FAN: Axial: Centrifugal: Manufacturer: NONE Manufacturer: NONE Model No.: HP: Volts: FLA: RPM: Phase/Hz: COILS: CHW HW Steam Electric CNTRL VLV CW HW Preheat: Location: Location: Heating: Cooling: √ Way: √ Humidity: Size: Pneu/Elec.: Way: √ Humidity: Size: Pneu/Elec.: COCONTROLS: Pneumatic: Space: Electric: Cocupied Heating: DDC: Unoccupied Heating: DDC: Unoccupied Cooling: Damper Control (RA): Setback (Y/N): Economizer (Y/N): Setback Setpoint: Comments: No heating coils Measured rpm Motor: 1781.7 100% outside air Fan: 1393		Cingle zone:		2 Dina EC:		J				
VAV: Reheat: Comp. Room: Other:	ANU ITPE:		V						.:4.	
Number of Zones: SUPPLY FAN: Blow-thru: Draw-thru: √ In-line: X Centrifugal: B.I.: F.C.: Airfoil: Radial: Axial: Vaneaxial: Tubeaxial: Propeller: Manufacturer: Motor Economite Model No.: 51-385-215 R6-6P HP: 3 Volts: 230 FLA: 8.36 RPM: 1760 Phase/Hz: 3 / 6 RETURN FAN: Axial: Centrifugal: Model No.: HP: Volts: FLA: RPM: Phase/Hz: COILS: CHW HW Steam Electric CNTRL VLV CW HW Preheat: Location: Loca									II L.	
SUPPLY FAN: Blow-thru: Draw-thru: √ In-line: X Centrifugal: B.I.: F.C: Airfoil: Radial: Manufacturer: Motor Economite Model No.: 51-385-215 R6-6P HP: 3 Volts: 230 FLA: 8.36 RPM: 1760 Phase/Hz: 3 / 6 RETURN FAN: Axial: Centrifugal: Axial: Centrifugal: Axial: Phase/Hz: Axial: Phase/Hz: Axial: Centrifugal: Axial: Phase/Hz: Axial: Phase/Hz: Axial: Centrifugal: Axial: Phase/Hz: Axial: Axial: Centrifugal: Axial: Axial: Axial: Centrifugal: Axial:			2000	Refleat.		Comp. Room	l.	Other.		
X Centrifugal: Vaneaxial: Tubeaxial: Propeller:	OUDDLY EA			······································	D		In Process			
Axial: Vaneaxial: Tubeaxial: Propeller:						٧			D - P - I	
Manufacturer: Motor Economite Model No.: 51-385-215 R6-6P HP: 3 Volts: 230 FLA: 8.36 RPM: 1760 Phase/Hz: 3 / 6 RETURN FAN: Axial: Centrifugal: Monufacturer: NONE Model No.: HP: Volts: FLA: RPM: Phase/Hz: COILS: CHW HW Steam Electric CNTRL VLV CW HW Preheat: Location: Location: Location: HW HW HW HW Phase/Hz: CW HW HW HW Phase/Hz: CW HW HW Phase/Hz: CW HW HW Phase/Hz: CW Location: Location:	Х				-				Radial:	
Model No.: 51-385-215 R6-6P HP: 3 Volts: 230 FLA: 8.36 RPM: 1760 Phase/Hz: 3 / 6 RETURN FAN: Axial: Centrifugal: Model No.: HP: Volts: FLA: RPM: Phase/Hz: COILS: CHW HW Steam Electric CNTRL VLV CW HW Preheat: Location: Location: Location: HW Location: Location: Location: HW Steam Electric: Decay: Steam Steam Fneu/Electric: Pneu/Electric: Pneu/Electric: Decay: Steam Estepoints: Estepoints: End Pneu/Electric: Droccupied Heating: Doccupied Heating: Doccupied Cooling: Doccupied Cooling: Damper Control (RA): Unoccupied Cooling: Setback (Y/N): Setback (Y/N): Setback Setpoint: Setback Setpoint: Comments: No heating coils Measured rpm Motor: 1781.7 Fan: 1393					lubeaxial:		Propeller:			
HP: 3 Volts: 230 FLA: 8.36 RPM: 1760 Phase/Hz: 3 / € RETURN FAN: Axial: Centrifugal: Manufacturer: NONE Model No.: HP: Volts: FLA: RPM: Phase/Hz: COILS: CHW HW Steam Electric CNTRL VLV CW HW Preheat: Location: 2-Way: Cooling: Size: Reheat: Pneu/Elec.: SetPoINTS: Reheat: Pneu/Beat: Pneu/Beat: Space: SetPoINTS: Pour Matter Control (OA): Cocupied Heating: Doc: Damper Control (RA): Damper Control (EA): Setback Setpoint: Comments: No heating coils Measured rpm Motor: 1781.7 Took outside air Fan: 1393				mite						
RETURN FAN: Axial: Centrifugal: Manufacturer: NONE Model No.: HP: Volts: FLA: RPM: Phase/Hz: COILS: CHW HW Steam Electric CNTRL VLV CW HW Preheat: Location: Location: HW				000		0.00	5511	4700	DI (1)	0./00
Manufacturer: NONE Model No.: HP: Volts: FLA: RPM: Phase/Hz: COILS: CHW HW Steam Electric CNTRL VLV CW HW Preheat: Location: Location: HW				230		8.36	RPM:	1/60	Phase/Hz:	3/60
Model No.: HP: Volts: FLA: RPM: Phase/Hz: COILS: CHW HW Steam Electric CNTRL VLV CW HW Preheat: Location: Location: Heating: Location: Heating: HW Cooling: √ 3-Way: √ Heating: Jectoric: Heating: Heating: Jectoric: ""><td>RETURN FA</td><td>N:</td><td></td><td></td><td>Centrifugal:</td><td></td><td></td><td></td><td></td><td></td></td<>	RETURN FA	N:			Centrifugal:					
HP: Volts: FLA: RPM: Phase/Hz: COILS: CHW HW Steam Electric CNTRL VLV CW HW Preheat: Location: Location: Heating: Location: Heating: Heating: Jectoric: Jectoric: Jectoric: Jectoric: Pneu/Elec.: Pneu/Elec.: Jectoric: facture</td> <td></td> <td>NONE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Manufacture		NONE							
COILS: CHW HW Steam Electric CNTRL VLV CW HW Preheat: Location:	Model No.:									
Preheat: Location: Heating: 2-Way: Cooling: √ Humidity: Size: Reheat: Pneu/Elec.: CONTROLS: SETPOINTS: Pneumatic: √ Electric: Occupied Heating: DDC: Unoccupied Heating: Damper Control (OA): √ Damper Control (RA): Unoccupied Cooling: Damper Control (EA): Setback (Y/N): Economizer (Y/N): Setback Setpoint: Comments: No heating coils Measured rpm Motor: 1781.7 100% outside air Fan: 1393	HP:		Volts:		FLA:		RPM:		Phase/Hz:	
Heating:	COILS:	CHW	HW	Steam	Electric	CNTRL VLV		CW		HW
Cooling:	Preheat:					Location:				
Humidity: Reheat: Pneu/Elec.: SETPOINTS: Pneumatic: Pneumatic: DDC: Damper Control (OA): Damper Control (RA): Damper Control (EA): Damper Control (EA): Economizer (Y/N): Comments: No heating coils Measured rpm Motor: 1781.7 100% outside air SETPOINTS: SetPOINTS: Space: Unoccupied Heating: Occupied Cooling: Unoccupied Cooling: Setback (Y/N): Setback Setpoint: Comments: No heating coils Measured rpm Motor: 1781.7	Heating:					2-Way:				
Reheat: CONTROLS: Pneumatic: Pneumatic: Space: Cocupied Heating: DDC: Damper Control (OA): Damper Control (RA): Damper Control (EA): Damper Control (EA): Comments: No heating coils Measured rpm Motor: 1781.7 100% outside air Pneu/Elec.: Pneu/Elec.: SETPOINTS: Space: Unoccupied Heating: Unoccupied Heating: Unoccupied Cooling: Unoccupied Cooling: Setback (Y/N): Setback Setpoint: Fan: 1393	Cooling:					3-Way:		$\neg $		
CONTROLS: Pneumatic: Electric: DDC: Damper Control (OA): Damper Control (RA): Damper Control (EA): Damper Control (EA): Comments: No heating coils Measured rpm Motor: 1781.7 100% outside air Space: Occupied Heating: Occupied Cooling: Unoccupied Cooling: Unoccupied Cooling: Setback (Y/N): Setback Setpoint: Fan: 1393	Humidity:					Size:				
Pneumatic: Electric: DDC: Damper Control (OA): Damper Control (RA): Damper Control (EA): Damper Control (EA): Comments: No heating coils Measured rpm Motor: 1781.7 100% outside air Space: Occupied Heating: Occupied Cooling: Unoccupied Cooling: Setback (Y/N): Setback Setpoint: Fan: 1393	Reheat:					Pneu/Elec.:				
Electric: DDC: Damper Control (OA): Damper Control (RA): Damper Control (EA): Damper Control (EA): Damper Control (EA): Damper Control (EA): Damper Control (EA): Economizer (Y/N): Economizer (Y/N): Comments: No heating coils Measured rpm Motor: 1781.7 100% outside air Doccupied Heating: Occupied Heating: Unoccupied Cooling: Unoccupied Cooling: Setback (Y/N): Setback Setpoint: Fan: 1393	CONTROLS					SETPOINTS	<u> </u>			
DDC: Damper Control (OA): Damper Control (RA): Damper Control (EA): Damper Control (EA): Damper Control (EA): Damper Control (EA): Damper Control (EA): Damper Control (EA): Setback (Y/N): Setback Setpoint: Comments: No heating coils Measured rpm Motor: 1781.7 100% outside air Fan: 1393	Pneumatic:					Space:				
DDC: Damper Control (OA): Damper Control (RA): Damper Control (EA): Damper Control (EA): Damper Control (EA): Damper Control (EA): Damper Control (EA): Damper Control (EA): Setback (Y/N): Setback Setpoint: Comments: No heating coils Measured rpm Motor: 1781.7 100% outside air Fan: 1393	Electric:					Occupied He	ating:			
Damper Control (OA): Damper Control (RA): Damper Control (RA): Damper Control (EA): Damper Control (EA): Economizer (Y/N): Comments: No heating coils Measured rpm Motor: 1781.7 100% outside air Doccupied Cooling: Unoccupied Cooling: Setback (Y/N): Setback Setpoint: Fan: 1393	DDC:								W	·
Damper Control (RA): Damper Control (EA): Economizer (Y/N): Comments: No heating coils 100% outside air Unoccupied Cooling: Setback (Y/N): Setback Setpoint: Measured rpm Motor: 1781.7 Fan: 1393	Damper Con	trol (OA):								
Damper Control (EA): Economizer (Y/N): Comments: No heating coils 100% outside air Setback (Y/N): Setback Setpoint: Measured rpm Motor: 1781.7 Fan: 1393										
Economizer (Y/N): Comments: No heating coils 100% outside air Setback Setpoint: Measured rpm Motor: 1781.7 Fan: 1393						_ L				
Comments: No heating coils Measured rpm Motor: 1781.7 100% outside air Fan: 1393	<u>-</u>	<u> </u>								
100% outside air Fan: 1393			oils		Measured ro	m Motor:	1781.7	,		

E M C Engineers, Inc.
Energy Conservation Survey
White Sands Missile Range, NM
AIR HANDLING UNIT DATA

Field Survey

EMC No. 1406.008 Date: 6 22/95 Prepared By: 5

UMINDERIA	G UNIT DAT	.'A					AHU No.:	4	
Manufacturer	:	Trane			Location:	Compressor	r Room # 2		
Model No.:		CC SIZE 6			Served by:				
Serial No.:		V8OE15028			Serves Area:		Tower 2		
	Single-zone:		2 Pipe FC:		4 Pipe FC:		Unit Heater:		
	H&V Unit:		Multizone:		Double Duct:		Induction Un	<u>iit:</u>	
	VAV:		Reheat:		Comp. Room	ภ:	Other:		
	Number of Zo	ones:							
SUPPLY FA	N:	Blow-thru:		Draw-thru:		In-line:			
X	Centrifugal:	B.I.:		F.C:		Airfoil:		Radial:	
	Axial:	Vaneaxial:		Tubeaxial:		Propeller:			
Manufacture	r:	Fan Doerr							
Model No.:		3N228							0.100
HP:	3	Volts:	230	FLA:	9.8	RPM:	1740	Phase/Hz:	3 / 60
RETURN FA	N:	Axial:		Centrifugal:					
Manufacture	r:								
Model No.:		NONE							
HP:		Volts:		FLA:		RPM:		Phase/Hz:	
COILS:	CHW	HW	Steam	Electric	CNTRL VLV	/	CW	H/	₩
Preheat:					Location:				
Heating:	1				2-Way:				
Cooling:	$\sqrt{}$				3-Way:		√		
Humidity:					Size:				
Reheat:					Pneu/Elec.:				
CONTROLS	 ;:				SETPOINTS	3:			
Pneumatic:					Space:				
Electric:					Occupied He				
DDC:					Unoccupied				
Damper Cor	ntrol (OA):				Occupied Cooling:				
Damper Cor	ntrol (RA):				Unoccupied Cooling:				
Damper Cor					Setback (Y/N):				
					Setback Set				
Economizer	1 171 1/2) OF			
		om Motor:	1768.9		SAT: 70				
	: Measured rp	om Motor: Fan: 1			SAT: 70 CWT: 53 LWT: 66	3 °F		- Aller - Alle	

EMC No. 1406.008 Date: 6/22/95 Prepared By: 55

_	
~	
v	

Manufacture	7 :	Trane			Location:	Compresso	r Room #3		
Model No.:		CC SIZE 6			Served by:				
Serial No.:		V8OE15028			Serves Area:		Tower 3		
AHU TYPE:	Single-zone:	V	2 Pipe FC:		4 Pipe FC:		Unit Heater:		
	H&V Unit:		Multizone:		Double Duct:		Induction Un	it:	
	VAV:		Reheat:		Comp. Room	າ:	Other:		
	Number of Z	ones:							
SUPPLY FA		Blow-thru:		Draw-thru:		In-line:			
Х	Centrifugal:	B.I.:		F.C:		Airfoil:		Radial:	
	<u>Axial:</u>	Vaneaxial:		Tubeaxial:		Propeller:			
Manufacture		Motor U.S. E	Electric						
Model No.:	G137D/N07N								
HP:	3	Volts:	230	FLA:	9	RPM:	1740	Phase/Hz:	3 / 60
RETURN FA		Axial:		Centrifugal:					
Manufacture	T :								
Model No.:		NONE							
HP:		Volts:		FLA:		RPM:		Phase/Hz:	
COILS:	CHW	HW	Steam	Electric	CNTRL VLV		CW	HW	
Preheat:					Location:				
Heating:					2-Way:				
Cooling:	√ V				3-Way:		√		
Humidity:					Size:				
Reheat:					Pneu/Elec.:				
CONTROLS					SETPOINTS:				
Pneumatic:	√				Space:				
Electric:		44.6.0			Occupied He				
DDC:				and and any own Addresses	Unoccupied Heating:				
Damper Con	<u>`</u>	√			Occupied Cooling:				
Damper Con					Unoccupied Cooling:				
Damper Con		n security and the second			Setback (Y/N):				
Economizer	<u> </u>				Setback Setpoint:				
Comments:	Measured rp					°F			
		Fan: 13	370			°F			
	Identical to A				LWT: 62	°F			
	Damper on s	upply air							
	$\eta = 81.5\%$								

E M C Engineers, Inc. Energy Conservation Survey Field Survey

EMC No. 1406.008 Date: 6/22/95 Prepared By: __________

White Sands Missile Range, NM
AIR HANDLING UNIT DATA AHU No.: 6,7,8

Manufacturer		Airflow Co.			Location:	Computer	Room		
Model No.:		CCT-41C4			Served by:				
Serial No.:		M11MD228			Serves Area:		Computer F	Room	
AHU TYPE:	Single-zone:	V	2 Pipe FC:		4 Pipe FC:		Unit Heater:		
	H&V Unit:		Multizone:		Double Duct:		Induction U	nit:	
1	VAV:		Reheat:		Comp. Room	1:	Other:		
	Number of Z	ones:							
SUPPLY FAN	ł:	Blow-thru:		Draw-thru:		In-line:			
Х	Centrifugal:			F.C:		Airfoil:		Radial:	
	<u>Axial:</u>	Vaneaxial:		Tubeaxial:		Propeller:			
Manufacturer		Marathon Ele	ectric						
Model No.:	UVA213TTD	R7026GPL							
HP:	7.5	Volts:	480	FLA:	11	RPM:	1750	Phase/Hz:	3 / 60
RETURN FAI	N:	Axial:		Centrifugal:					
Manufacturer:	,								
Model No.:									
HP:		Volts:		FLA:		RPM:		Phase/Hz:	
COILS:	CHW	HW	Steam	Electric	CNTRL VLV	I	CW	H	W
Preheat:					Location:				
Heating:				V	2-Way:				
Cooling:	V				3-Way:		$\sqrt{}$		
Humidity:					Size:				
Reheat:					Pneu/Elec.:		Pneu		
CONTROLS:					SETPOINTS:				
Pneumatic:		- √			Space:				
Electric:					Occupied He				
DDC:					Unoccupied H				_
Damper Contr					Occupied Co				
Damper Contr					Unoccupied (
Damper Contr					Setback (Y/N		N		
Economizer (\	Y/N):	N			Setback Setp				
Comments:	Nema nom e	ff: 84.0,	Nom PF: 76	.6,	Maxc CAP K	VAR: 5.3,	SF: 1.15,	ONA1	
	Continuous d	uty							
							· · · · · · · · · · · · · · · · · · ·		

Field Survey

EMC No. 1406.008
Date: 6/22/95
Prepared By: 55

	O OIMI DA	1/1					ALIO NO	
Manufacture		Williams			Location:	Conference	Room Plenum	
Model No.:	AH-800-W2-	B40			Served by:			
Serial No.:					Serves Area:		Conference f	Room
AHU TYPE:	Single-zone:		2 Pipe FC:		4 Pipe FC:		Unit Heater:	
	H&V Unit:		Multizone:		Double Duct:		Induction Uni	it:
	VAV:		Reheat:		Comp. Room	1:	Other:	Fan Coil
	Number of Z	ones:						
SUPPLY FA	N:	Blow-thru:		Draw-thru:		In-line:		
	Centrifugal:	B.I.:		F.C:		Airfoil:		Radial:
	Axial:	Vaneaxial:		Tubeaxial:		Propeller:		
Manufacture	r:							
Model No.:								
HP:	0.33	Volts:	230	FLA:	2.9	RPM:		Phase/Hz:
RETURN FA	N:	Axial:		Centrifugal:				
Manufacture	r:							
Model No.:		NONE						
HP:		Volts:		FLA:		RPM:		Phase/Hz:
COILS:	CHW	HW	Steam	Electric	CNTRL VLV		CW	HW
Preheat:					Location:			
Heating:					2-Way:			
Cooling:					3-Way:			
Humidity:					Size:			
Reheat:					Pneu/Elec.:			
CONTROLS:					SETPOINTS			
Pneumatic:	√				Space:			
Electric:					Occupied He	ating:		
DDC:					Unoccupied I			
Damper Cont					Occupied Co	~		
Damper Cont					Unoccupied (•		
Damper Cont					Setback (Y/N			
Economizer (Setback Setp	oint:	- IN DESCRIPTION OF THE PARTY O	
Comments:	No outside ai	r						
						T ME A Administra		,,

E M C Engineers, Inc. Energy Conservation Survey White Sands Missile Range, NM INTERNAL LOADS DATA

Field Survey

EMC No. 1406.008 Date: 6/22/PS Prepared By: ES

Equipment D	Description:	Lighting					*** ** * * * * * * *******************
Equipment L		Conference F	₹oom				
Manufacture	er:						
Model No.:					water and a selection of the selection o		
Serial No.:						AUADA ()	
Motor Data:	HP:		RPM:		Volts:	Amps:	-
	- " · D'	5 11 1	**	700 ATO D	f l	T 40D	
Comments:	Ballast- Dimr		Magnetek	502-ATO-P,	Four foot lamps	- F-400 Watts	
	Thermostat-		°F,		40	vvarts	
	Wall-	70	<u>*</u> F				
Equipment D	Description:						
Equipment L	ocation:	Conference F	Room				
Manufacture	er:						
Model No.:							
Serial No.:							
Motor Data:	HP:		RPM:		Volts:	Amps:	
Comments:	Temperature	Plenum=		75 °F		ya	
** AN-1818-0-1-1		Roof Bottom		71 °F			
		Room=		70 °F			
Equipment D	Description:						
Equipment L		Halls					
Manufacture							
Model No.:							
Serial No.:							
Motor Data:	HP:		RPM:		Volts:	Amps:	
Comments:		ersal Rapid S					
	Lamps- F-40	0 D	2 Lamp	40 Watts			
						AND STORES	
1							

EMC No. 1406.008 Date: 6/22/95 Prepared By: 55

Energy Conservation Survey White Sands Missile Range, NM LDING MANAGER INTERVIEW

BUILDING INFORMATION	ON:									
Building No: 3456	88	Building Name:		GEODSS					THE RESERVE	
Surveyed by:		Date:	6/2/9	5	Building Use);				
Building Contact:	Jim Mills				Phone No:	835 -	4546			
Building Contact:					Phone No:					
OCCUPANCY:		Day	Night		Day			Night		
Number of Employees:	MonFri.:	12 - 14	3 - 4	Schedule:	7am	То	4pm	5pm	То	7am
	Saturday:	2	3 - 4		7am	То	4pm	5pm	То	7am
	Sun./Hol.:	2	3 - 4		7am	To	4pm	5pm	То	7am
Visitors Per Day:	MonFri.:			Schedule:		То		•	То	
	Saturday:					То			То	
	Sun./Hol.:					То			То	
Meals Served Per Day:	Breakfast:			Schedule:		То			То	
	Lunch:					То			То	
	Dinner:					То			То	
Comments:										
LIGHTING SCHEDULE:										
Normal Occupancy:	MonFri.:			Schedule:		То			То	
	Sat./Sun.:			NO PROCESSION OF THE PROPERTY		То			То	
Cleaning Crew/2nd Shift:	MonFri.:			Schedule:		То			То	
	Sat./Sun.:					То			То	
EQUIPMENT SCHEDULE	:									
Fan/AHU Schedule:	MonFri.:			Schedule:		То			То	
	Sat./Sun.:					То			То	
Chiller Schedule:	MonFri.:			Schedule:		То	- T.W		То	
	Sat./Sun.:					То			То	
Boiler Schedule:	MonFri.:			Schedule:	1000000	То			To	411-140-141-
	Sat./Sun.:		· ···-			To			To	
Aux. Equipment Schedule						77814118			***************************************	
	MonFri.:			Schedule:		То			То	
	Sat./Sun.:					То			То	
	MonFri.:			Schedule:		То			То	
	Sat./Sun.:					То			То	
Comments:										

E M C Engineers, Inc. Energy Conservation Survey White Sands Missile Range, NM EMC No. 1406.008

Date: 42/95

Prepared By: 55

LIGHTING

	# OCCUPANCY	# FIXTURES		# FIXTURES	TOTAL OPERATING
SPACE	SENSORS	W/ O.S.	# DELAMPED	IN SPACE	FIXTURES IN SPACE
HALLS	0	0	0	17	17
OFFICES	7	23	19	82	56
COMPUTER ROOM	3	13	27	77	47
CONFERENCE ROOM	0	0	0	6	6
TOWER 1	0	0	0	7	7
TOWER 2	0	0	0	7	7
TOWER 3	0	0	0	7	7

ENERGY CONSUMPTION

	TOTAL OPERATING	WATTS PE	R FIXTURE	TOTAL kW	CONSUMED
SPACE	FIXTURES IN SPACE	PRESENT	T-8	PRESENT	T-8
HALLS	17	89	58	1.513	0.986
OFFICES	56	89	58	4.984	3.248
COMPUTER ROOM	47	89	58	4.183	2.726
CONFERENCE ROOM	6	89	58	0.534	0.348
TOWER 1	7	89	58	0.623	0.406
TOWER 2	7	89	58	0.623	0.406
TOWER 3	7	89	58	0.623	0.406

TOTAL ENERGY CONSUMED BY LIGHTING

	TOTAL kW CO	NSUMED	OTHER	WATTAGE OF	TOTAL KW CON	ISUMED
SPACE	PRESENT	T-8	LIGHTS	OTHER LIGHTS	PRESENT	T-8
HALLS	1.513	0.986	0	0	1.513	0.99
OFFICES	4.984	3.248	0	0	4.984	3.25
COMPUTER ROOM	4.183	2.726	7	60	4.603	3.15
CONFERENCE ROOM	0.534	0.348	0	0	0.534	0.35
TOWER 1	0.623	0.406	4	150	1.223	1.01
TOWER 2	0.623	0.406	4	150	1.223	1.01
TOWER 3	0.623	0.406	4	150	1.223	1.01

E M C Engineers, Inc. Energy Conservation Survey White Sands Missile Range, NM Field Survey

EMC No. 1406.008 Date: 42495 Prepared By: 5

MOTORS

		DI KOOHI# I		Application	•	Compressed A	air for Camera in Tower # 1
Pump Motor:	A.C. TEFO)			Manufacture	T:	
Manufacture	r:	Lincoln			Model No.:		
Model No.:	T-3482 (L	incoln Code)			Serial No.:		
Serial No.:	22783	02			Frame No.:		
HP:		5 RPM	<i>1</i> : 1740		Pump Type:		
Volts:	200/400	FL	\ :		GPM:		Head (ft.):
Ph/Hz:	3 / 60	LR	/ :				
Measured RI	PM:						
Operating Ho	ours:		Months	Operating:			:
Comments:	INS: B,	SF: 1.15,	Max Amb: 40,	EEF index:	K,	Nema Design:	В,
	Nema Cod	e: J,	Amps: 15.6 / 7.8,				

MOTORS

Location:	Compressor	Room # 2		Application	:	Compressed A	ir for Camera in Tower # 2
Pump Motor:	A.C. TEFC				Manufacturer	:	
Manufacture	r:	Acurate Air E	NGR, INC.		Model No.:		
No.:	325-14				Serial No.:		
No.:	119526LS				Frame No.:		
HP:		RPM:	1740		Pump Type:		
Volts:	200/400	FLA:			GPM:	900	Head (ft.):
Ph/Hz:	3 / 60	LRA:					
Measured RF	PM:						
Operating Ho	ours:		Months C	perating:			
Comments:	INS: B,	SF: 1.15,	Max Amb: 40,	EEF index:	K,	Nema Design:	B,
	Nema Code:	. J,	Amps: 15.6 / 7.8,				
	Vessel Servi	ce #: 292700		77 3 20 20 20 20 20 20 20 20 20 20 20 20 20			
			The second secon				

MOTORS

Location:	Compresso	or Room #3		Application:		Compressed A	Air for Camera in Tower#
Pump Motor	: A.C. TEFO				Manufacture	r:	
Manufacture	er:	Lincoln			Model No.:		
Model No.:	T - 3482 (Lincoln Code)			Serial No.:		
Serial No.:	25802	35			Frame No.:		
HP:		5 RPM	1740		Pump Type:		
Volts:	200/400	FLA			GPM:		Head (ft.):
Ph/Hz:	3 / 60	LRA					
Measured R	РМ:						
ting H	ours:		Months	Operating:			
comments:	INS: B,	SF: 1.15,	Max Amb: 40,	EEF index:	K,	Nema Design:	В,
	Nema Cod	e: J,	Amps: 15.6 / 7.8,		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
							,
				D 10			

APPENDIX C UTILITY DATA

			1. CONTRACT ID	
AMENDMENT OF SOLICITATION	I/MODIFICATION	OF CONTRACT		1 1 1
2. MANONE TIMODIFICATION NO.	3. EFFECTIVE DATE	4. REQUISITION/PURC	HASE REQ. NO.	5. PROJECT NO. (If applicable)
P00006	1 Jan 95			
6. ISSUED BY CODE		7. ADMINISTERED BY	(If other than Item 6	CODE
ilities Sales Officer EWS-DPW-PE, Bldg 1748 White Sands Missile Range, NM				
880	002-5076			
8. NAME AND ADDRESS OF CONTRACTOR (No.	street, county, State and	ZIP Code)	(/) 9A. AMENDM	ENT OF SOLICITATION NO.
•		•		
Detachment 1, 1st Space Wing ATTN: SMSGT Luther Mills P.O. Box W	(AFSPACECOM)		9B. DATED (S	EE ITEM 11)
Socorro, New Mexico 87801-500	00		10A, MODIFIC	CATION OF CONTRACT/ORDER
			110.	
			DAAD07	89-S-0034 (SEE ITEM 13)
0005	IFACILITY CODE		l 1	
CODE 11 THIS ITE	FACILITY CODE MONLY APPLIES TO	AMENIOMENTS OF SC		Jan 89
			Т	
The above numbered solicitation is amended as tended.	set forth in Item 14. The h	our and date specified for	receipt of Offers L	is extended, is not ex-
(a) By completing Items 8 and 15, and returningsubmitted; or (c) By separate letter or telegram white MENT TO BE RECEIVED AT THE PLACE DESIGN IN REJECTION OF YOUR OFFER. If by virtue o letter, provided each telegram or letter makes referer 12. ACCOUNTING AND APPROPRIATION DATA	ch includes a reference to NATED FOR THE RECEIF f this amendment you desince to the solicitation and t	the solicitation and amend PT OF OFFERS PRIOR TO re to change an offer alread	ment numbers. FAIL D THE HOUR AND dy submitted, such c	URE OF YOUR ACKNOWLEDG- DATE SPECIFIED MAY RESULT hange may be made by telegram or
	,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
13. THIS ITEM AP	PLIES ONLY TO MOD	IFICATIONS OF CON	TRACTS/Q4RV2E4F	38.
IT MODIFIES	THE CONTRACT/OARS	BANNO. AS DESCRIB	ED IN ITEM 14.	•
A. THIS CHANGE ORDER IS ISSUED PURSU TRACT ORDER NO. IN ITEM 10A.	JANT TO: (Specify autho	rity) THE CHANGES SET	FORTH IN ITEM 1	4 ARE MADE IN THE CON-
X Per paragraph 4 of cited c	ontract, CHANGE	OF RATE CLAUSE		
B. THE ABOVE NUMBERED CONTRACT/OF appropriation date, etc.) SET FORTH IN IT	RDER IS MODIFIED TO F EM 14. PURSUANT TO T	REFLECT THE ADMINIST HE AUTHORITY OF FAI	TRATIVE CHANGE R 43.103(b).	S (such as changes in paying office,
C. THIS SUPPLEMENTAL AGREEMENT IS E				
D. OTHER (Specify type of modification and a	uthority)			
E. IMPORTANT:PURCHASER X is not,	is required to sign th	nis document and return	n copie	s to the issuing office.
14. DESCRIPTION OF AMENDMENT/MODIFICAT			· · · · · · · · · · · · · · · · · · ·	<u> </u>
CHANGE OF RATES as follows:				
	o ' \			
SPECIAL PROVISIONS A (Electri SPECIAL PROVISIONS B-1 (Propa SPECIAL PROVISIONS C (Water S SPECIAL PROVISIONS F (Refuse	ne Gas Service): ervice): RATE A	RATE A - \$0.69 - \$1.3593/KGAL	40/GAL	
Except as provided herein, all terms and conditions of and effect.				
15A. NAME AND TITLE OF SIGNER (Type or prin	11)	JULIAN T.		NG OFFICER (Type or print)
156 PURCHASER	15C. DATE SIGNE	16B. UNITED STATES	OF AMERICA	16C. DATE SIGNED
TOROIMIODIC		BY Julian-	T. Velga	le 2, Feb 95
(Signature of person authorized to sign)		(Signature	of Contracting offic	er) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	C	ilos	CT	ANDARD FORM 30 (REV. 10-83)

NSN 7540-01-152-8070 PREVIOUS EDITION UNUSABLE 105

STANDARD FORM 30 (REV. 10-83) Prescribed by GSA FAR (48 CFR) 53.243 CONTRACT NO. DAAD07-89-S-0034 MODIFICATION P00006

DETACHMENT 1, 1st SPACE WING (AF)

RATE A - CY 95

Electricity:

Bldg 34568 - Metered

Bldg 34226 - Metered

Propane Gas: Charge is made from metered consumption.

Water: FLAT RATE

6.5 KGAL/yr/employee x 26 employees = 169 KGAL/yr 169 Kgal/yr x \$1.3593/Kgal = \$229.72 per yr \$ 19.14 per month

Refuse: FLAT RATE

Bldg 34568:

14.27 CY/yr/person x 24 people = 342.48 CY/yr 342.48 CY/yr x \$1.4513 = \$497.04 per yr \$ 41.42 per month

Bldg 34226:

14.27 CY/yr/person x 2 people = 28.54 CY/yr 28.54 CY/yr x \$1.4513 = \$41.42 per yr \$ 3.45 per month

PRC Inc. **GEODSS Site 1** P.O. Box 1159 Socorro, NM 87801

March 27, 1995

Attn: Dennis Jones;

The electric meter installed at the GEODSS site on WSMR New Mexico is labeled as follows.

Westinghouse Manufacturer Class 20 Volts 120 4wY D458M Type 6\$ Form

280C021G60 Style 2.5 TA

1.8 Kh

Two stator Watt Hour meter

60 Hz

2.4/1 PTR 691.2 PKh 800/5 CTR

The meter has a secondary plate with the following information.

3947514 Ser Mark Io Demand Register

120V 60Hz

F.5 KW 13.824/27.648 Reg Ratio 14 101/216

t-15

Direct reading for Kh 6912

If you need any more information please feel free to contact me.

Mike Barrett GEODSS Site One

Maintenance Supervisor

THU JUN 1, 1995 9:51:29 AM TEST STATUS: AS FOUND

FORM: 6S 120 VOLTS 2.50 AMPS Kh= 1.80 REV:FL= 5 PF= 5 LL= 1 N= 0 Nt= 0 SERIES LEFT COMMON RIGHT FL 100.31 99.34 100.18 100.43 REG. PF 99.76 100.41 100.36 100.36 LL 99.58

ZIA ELECTRICAL PRODUCTS

Customer #:

Serial #: 5808 143 ~

Reading: 565

Meter Brand: Westinghease

Tested by: 50K

THU JUN 1, 1995 10:48:34 AM TEST STATUS: AS LEFT

FORM: 6S 120 VOLTS 2.50 AMPS Kh= 1.80 REV:FL= 5 PF= 5 LL= 1 N= 0 Nt= 0 SERIES LEFT COMMON RIGHT FL 100.79 100.08 100.93 100.33 REG. PF 100.26 100.79 101.05 100.50 LL 100.14

ELECTRIC CONSUMPTION OCT 1991- JAN 1995

Page 1

YEARLY

		ELECTRIC	MONTHLY		MONTHL
		CONSUMED(MWH)	COST	ONSUMED (GAL	
	OCT	109.3	8033.55	288	
	NOV	88.2	6482.70	192	
	DEC	74.9	5505.15	1768	1821.0
1991	JAN	90.9	6681.15	232	238.9
	FEB	71.9	5284.65	520	535.
	MAR	72.9	5358.15	568	585.0
	APR	77.9	5725.65	624	642.7
	MAY	83.7	6151.95	464	477.9
	JUN	83.8	6159.30	536	552.0
	JUL	76.3	5608.05	1528	1573.8
	AUG	72.9	5358.15	632	650.9
	SEP	110.2	8099.70	400	41
	TOTAL	1012.9	74448.15	7752	7984.5
-					
	OCT	83.9	6166.65	48	49.4
	NOV	105.2	7732.2	32	32.9
	DEC	80.6	5924.1	352	362.5
1992	JAN	101.5	7460.25	104	107.1
	FEB	91.3	6710.55	80	82
	MAR	85.7	6298.95	160	164
	APR	85.3	6269.55	352	362.5
	MAY	83.4	6129.9	784	807.5
	JUN	74.1	5446.35	592	609.7
	JUL	96.1	7063.35	608	626.2
	AUG	90.7	6666.45	784	807.5
	SEP	80.8	5938.8	216	222.4
	TOTAL	1058.6	77807.1	4112	4235.3
	<u> </u>				
	OCT	99.1	7283.85	168	173.0
	NOV	77.1	5666.85	16	16.4
	DEC	65.9	4843.65	1896	1952.8
1993	JAN	91.6	6732.6	96	98.8
	FEB	79.6	5850.6	16	16.4
	MAR	79	5806.5	176	181.2
	APR	88.7	6519.45	80	82
	MAY	61.9	4549.65	256	263.6
	JUN	12	882	457	470.7
	JUL	13.6	999.6	784	807.5
	AUG	11.7	859.95	1392	1433.7
	SEP	11.7	859.95	96	98.8
	TOTAL	691.9		5433	

YEARLY

			1		
	OCT	30	2205	48	49.44
	NOV	91.5	6725.25	64	65.92
	DEC	73.25	5383.875	80	82.4
1994	JAN	91.33	6712.755	24	24.72
		<u> </u>	6179.6181		0
	MAR	23	1741.1		0
APR MAY		72	5450.4		0
		73.7	5579.09		0
	JUN	63.4	4799.38		0
	JUL	80.78	6115.046		0
	AUG	97.96	7415.572		0
	SEP	98.4	7448.88		0
	TOTAL	876.953	65755.966	216	222.48
					!
		i			
	OCT	77.98	5903.086		
-:	NOV	97.92	7412.544		
	DEC	82.06	6211.942		
1995		.	8305.236		
	TOTAL	359.12	27832.808		
	i				
		ELECTRIC		DIESEL FUEL	MONTHLY
YEAR		CONSUMPTION	COST\$	ONSUMED (GAL	COST
1991	i i	1012.9	74448.15	7752	7984.56
1992		1058.6	77807.1	4112	4235.36
1993		691.9	50854.65	5433	5595.99
1994		876.953	65755.966	216	222.48
1995		359.12	27832.808		
			 		

APPENDIX D COMPUTER SIMULATIONS

Page 1

EZDOE Model Data

ELECTRICAL DATA FROM SITE

	ELECTRIC	EZDOE ELECTRIC	1994 ELECTRIC	1992 ELECTRIC	1991 ELECTRIC
	CONSUMED	CONSUMED	CONSUMED	CONSUMED	CONSUMED
	(MBTU)	(MWH)	(MWH)	(MWH)	(MWH)
1994 JAN	285.20	83.58	91.33	101.50	90.90
FEB	249.90	73.24		91.30	71.90
MAR	272.83	79.96	23.00	85.70	72.90
APR	274.47	80.44	72.00	85.30	77.90
MAY	302.69	88.71	73.70	83.40	83.70
JUN	3 4 4.08	100.84	63.40	74.10	83.80
JUL	360.70	105.71	80.78	96.10	76.30
AUG	346.30	101.49	97.96	90.70	72.90
SEP	314.83	92.27	98.40	80.80	110.20
ост	278.59	81.65	77.98	99.10	83.90
NOV	263.28	77.16	97.92	77.10	105.20
DEC	280.48	82.20	82.06	65.90	80.60
TOTAL	3573.35	1047.25	940.16	1031.00	1010.20

Eco-8 Chiller Replacement

ECO's 4, 6, 7, 8, 9, 10

INPUT LOADS ...

\$ E Z - D O E L O A D S I N P U T \$

\$ GENERAL PROJECT DATA

TITLE LINE-1 * EMC ENGINEERS INC.

LINE-2 *EZDOE - ELITE SOFTWARE DEVELOPMENT INC*

LINE-3 * DENVER, CO 80227

LINE-4 *GEODSS SITE DOE EVALUATION

ABORT ERRORS ..

DIAGNOSTIC WARNINGS ...

LOADS-REPORT VERIFICATION=(LV-B, LV-D, LV-F, LV-G, LV-I)

SUMMARY= (LS-A, LS-B, LS-C, LS-D)

HOURLY-DATA-SAVE = YES ...

BUILDING-LOCATION ALTITUDE = 4998.

SHIELDING-COEF = 0.31

X-REF = 0.0

 $Y-REF = 0.0 \dots$

RUN-PERIOD JAN 1 1994 THRU DEC 31 1994 ...

\$ SCHEDULES

D LIGHTS =DAY-SCHEDULE (1,6) (0.75)

(7,16) (1.)

(17,24) (0.75) ..

SSH_LIGHTS =DAY-SCHEDULE (1,6) (0.4)

(7,16) (0.16)

(17,24) (0.4) ..

DAYOCCUP =DAY-SCHEDULE (1,5) (0.25)

(6) (0.5)

(7,10) (1.)

(11,13) (0.75)

(14,16) (1.)

(17) (0.5)

(18,24) (0.25) ..

SSH OCCUP =DAY-SCHEDULE (1,6) (0.25)

(7,16) (0.14)

(17,24) (0.25) ..

OFFICEQUIP =DAY-SCHEDULE (1,5) (0.5)

(6) (0.75)

(7,16) (1.)

(17) (0.75)

(18,24) (0.5) ...

D_ON =DAY-SCHEDULE (1,24) (1.) ..

SSHOFFEQUP =DAY-SCHEDULE (1,6) (0.6)

(7,16) (0.25)

```
(17,24) (0.6) ..
CONFOCCUP =DAY-SCHEDULE (1,9) (0.)
                          (10,12) (1.,0.,1.)
                          (13,24) (0.) ..
TOWERLIGHT =DAY-SCHEDULE (1,5) (0.)
                          (6) (1.)
                          (7,11) (0.)
                          (12) (1.)
                          (13,16) (0.)
                          (17) (1.)
                          (18,24) (0.) ..
TOWEQUIP =DAY-SCHEDULE (1,6) (1.)
                          (7,14) (0.)
                          (15,24) (1.) ..
          =DAY-SCHEDULE (1,24) (0.) ..
ld_off
infiltow =DAY-SCHEDULE (1,6) (5.)
                          (7,17) (1.)
                          (18,24) (5.) ..
SUMINFIL =DAY-SCHEDULE (1,6) (1.)
                          (7,18) (0.)
                          (19,24) (1.) ..
WEEKLIGHTS =WEEK-SCHEDULE (WD) D_LIGHTS
                           (WEH) SSH_LIGHTS ..
WEEKLYPEOP =WEEK-SCHEDULE (WD) DAYOCCUP
                          (WEH) SSH_OCCUP ..
          =WEEK-SCHEDULE (WD) OFFICEQUIP
W EQUIP
                          (WEH) SSHOFFEQUP ..
W CONFOCCU =WEEK-SCHEDULE (ALL) CONFOCCUP ..
LITETOWER =WEEK-SCHEDULE (ALL) TOWERLIGHT ..
T_EQUIP
          =WEEK-SCHEDULE (ALL) TOWEQUIP ..
compequip =WEEK-SCHEDULE (ALL) D_ON ..
          =WEEK-SCHEDULE (ALL) ld_off ...
lw off
towinfil =WEEK-SCHEDULE (ALL) infiltow ...
INFILSUM =WEEK-SCHEDULE (ALL) SUMINFIL ..
$ YEAR SCHEDULE
          =SCHEDULE THRU DEC 31 WEEKLIGHTS ...
y_lights
$ YEARLYOCCUP
          -SCHEDULE THRU DEC 31 WEEKLYPEOP ..
A OCCUP
```

S OCUUPANCYOFCONFERENCERM OCCUCONFRM =SCHEDULE THRU DEC 31 W_CONFOCCU ... \$ TOWER LIGHTS T_LIGHTS =SCHEDULE THRU DEC 31 LITETOWER .. S EQIPMENT IN TOWER TOWEREQUIP =SCHEDULE THRU DEC 31 T_EQUIP ... \$ computer room equip equipcomp =SCHEDULE THRU DEC 31 compequip ... L-hrly_rps =SCHEDULE THRU MAR 12 lw_off THRU MAR 13 compequip THRU SEP 7 lw off THRU SEP 8 compequip THRU DEC 31 lw_off ... \$ infiltration into tower towerinfil =SCHEDULE THRU APR 1 towinfil THRU NOV 1 INFILSUM THRU DEC 31 towinfil ... \$ CONSTRUCTION TYPES \$ ROOF OVER MAIN BUILDING MATERIAL= (RG01, BR01, IN37, AL23) TOP_ROOF =LAYERS THICKNESS=(0.042,0.031,0.333,0.000) ... REGROOF = CONSTRUCTION LAYERS = TOP_ROOF ABSORPTANCE = 0.600 .. \$ WALL AROUND TOWERS T_WALL =LAYERS MATERIAL= (CC07, IN02, GP02) THICKNESS=(1.000,0.296,0.052) ... LAYERS = T WALL TOWERWAL =CONSTRUCTION ABSORPTANCE = 0.650 ... \$ FLOOR OF BLDG (NOT COMP ROOM) =CONSTRUCTION U-VALUE = 0.800 .. FLOOR \$ DOME ON TOWER TOWEROOF =CONSTRUCTION U-VALUE = 0.048 ABSORPTANCE = 0.400 ... \$ CEILING WITH 4.5 FT PLENUM REGCEIL =LAYERS MATERIAL= (HF-E4, AC03) THICKNESS=(0.000,0.063) ... CEILING =CONSTRUCTION LAYERS = REGCEIL \$ CEILING WITH 4.5 FT PLENUM T_CEILIG =LAYERS MATERIAL= (HF-E4, IN03, HF-E1) THICKNESS=(0.000,0.511,0.063) ... TOWCEIL =CONSTRUCTION LAYERS = T_CEILIG ...

=SCHEDULE THRU DEC 31 W_EQUIP ..

Y_EQUIP

\$ REGULAR WALL AROUND BUILDING

WALL =LAYERS MATERIAL=(CB14,IN02,PW05,GP02)

THICKNESS=(0.667,0.296,0.063,0.052) ..

REGWALL =CONSTRUCTION LAYERS = WALL

ABSORPTANCE = 0.650 ...

\$ INT WAL IN COMPUTER ROOM

C_WALL =LAYERS MATERIAL=(CB14, IN02, PW05, GP02)

THICKNESS=(0.667,0.296,0.063,0.052) ...

COMPWAL =CONSTRUCTION LAYERS = C_WALL

\$ FLOOR OF COMPUTER ROOM

FLOORCOM = CONSTRUCTION U-VALUE = 0.800 ..

\$ INT WAL IN COMPUTER ROOM

I_WALL =LAYERS MATERIAL=(CB12, PW05, GP02)

THICKNESS=(0.667,0.063,0.052) ...

INTWALL =CONSTRUCTION LAYERS = I_WALL .

GEODSS =GLASS-TYPE GLASS-TYPE-CODE = 1

INSIDE-EMISS = 0
VIS-TRANS = 0.00 ...

S SPACE DESCRIPTION

CONFERENCE = SPACE AREA = 348.0 VOLUME = 2786.0

ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = OCCUCONFRM

NUMBER-OF-PEOPLE = 1.0 PEOPLE-HEAT-GAIN = 350.0

PEOPLE-HG-LAT = 125.0 PEOPLE-HG-SENS = 250.0

LIGHTING-TYPE = REC-FLUOR-NV LIGHTING-KW = 0.53

LIGHT-TO-SPACE = 0.8 LIGHT-TO-OTHER = 0.2

LIGHT-HEAT-TO = CONFPLENUM

LIGHTING-SCHEDULE = OCCUCONFRM

EQUIP-SCHEDULE = OCCUCONFRM EQUIPMENT-KW = 0.5

FURNITURE-TYPE = HEAVY FURN-WEIGHT = 4.

INF-METHOD = CRACK NEUTRAL-ZONE-HT = 6.0

I-W HEIGHT = 8.0 WIDTH = 18.4 CONS = INTWALL

NEXT-TO = HALLS ..

I-W HEIGHT = 8.0 WIDTH = 19.0 CONS = INTWALL

NEXT-TO = HALLS ..

I-W HEIGHT = 8.0 WIDTH = 18.4 CONS = INTWALL

NEXT-TO = COMPUTERRM ..

I-W HEIGHT = 8.0 WIDTH = 19.0 CONS = INTWALL

NEXT-TO = COMPUTERRM

HALLS =SPACE AREA = 5285.5 VOLUME = 42284.0

ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = A_OCCUP

NUMBER-OF-PEOPLE = 4.0 PEOPLE-HEAT-GAIN = 350.0

PEOPLE-HG-LAT = 125.0 PEOPLE-HG-SENS = 250.0

LIGHTING-TYPE = REC-FLUOR-NV LIGHTING-KW = 6.5

LIGHT-TO-SPACE = 0.8 LIGHT-TO-OTHER = 0.2

LIGHT-HEAT-TO = HALLPLENUM

LIGHTING-SCHEDULE = Y_lights

EQUIP-SCHEDULE = Y_EQUIP EQUIPMENT-KW = 5.35

FURNITURE-TYPE = LIGHT INF-METHOD = CRACK

NEUTRAL-ZONE-HT = 0.0 ..

- E-W HEIGHT = 8.0 WIDTH = 80.0 CONS = REGWALL
 AZIMUTH = 315 ..
- E-W HEIGHT = 8.0 WIDTH = 117.6 CONS = REGWALL
 AZIMUTH = 45 ..
- E-W HEIGHT = 8.0 WIDTH = 80.0 CONS = REGWALL
 AZIMUTH = 135 ..
- U-W HEIGHT = 1.0 WIDTH = 80.0 CONS = FLOOR ..
- U-W HEIGHT = 117.6 WIDTH = 1.0 CONS = FLOOR ..
- U-W HEIGHT = 1.0 WIDTH = 80.0 CONS = FLOOR ..
- TOWER_1 =SPACE AREA = 576.0 VOLUME = 14976.0

 ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = T_LIGHTS

 NUMBER-OF-PEOPLE = 2.0 LIGHTING-TYPE = INCAND

 LIGHTING-KW = 1.23 LIGHTING-SCHEDULE = T_LIGHTS

 EQUIP-SCHEDULE = TOWEREQUIP EQUIPMENT-KW = 4.39

 EQUIP-SENSIBLE = 0.3 INF-METHOD = AIR-CHANGE

 AIR-CHANGES/HR = 0.75 INF-SCHEDULE = towerinfil ...
 - ROOF HEIGHT = 24.0 WIDTH = 24.0 CONS = TOWEROOF
 TILT = 0 ...
 - E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 45 ..
 - E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 135 ..
 - E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 225 ...
 - U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..
 - E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 315 ...
 - U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..
 - U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..
 - U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

TOWER_3 =SPACE AREA = 576.0 VOLUME = 14976.0

ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = T_LIGHTS

NUMBER-OF-PEOPLE = 2.0 LIGHTING-TYPE = INCAND

LIGHTING-KW = 1.23 LIGHTING-SCHEDULE = T_LIGHTS

EQUIP-SCHEDULE = TOWEREQUIP EQUIPMENT-KW = 4.39

EQUIP-SENSIBLE = 0.3 INF-METHOD = AIR-CHANGE

D-11

AIR-CHANGES/HR	2	0.75	INF-SCHEDULE	=	towerinfil
----------------	---	------	--------------	---	------------

- ROOF HEIGHT = 24.0 WIDTH = 24.0 CONS = TOWEROOF TILT = 0 ...
- E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 45 ..
- E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 135 ...
- E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 225 ...
- U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..
- E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 315 ..
- U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..
- U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..
- U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

COMPUTERRM = SPACE AREA = 4037.4 VOLUME = 36337.0

ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = equipcomp
NUMBER-OF-PEOPLE = 4.0 PEOPLE-HEAT-GAIN = 350.0
PEOPLE-HG-LAT = 125.0 PEOPLE-HG-SENS = 250.0
LIGHTING-TYPE = REC-FLUOR-NV LIGHTING-KW = 4.72
LIGHT-TO-SPACE = 0.8 LIGHT-TO-OTHER = 0.2
LIGHT-HEAT-TO = COMPRMPLN
LIGHTING-SCHEDULE = equipcomp
EQUIP-SCHEDULE = equipcomp
EQUIP-SCHEDULE = equipcomp EQUIPMENT-KW = 29.0
EQUIP-SENSIBLE = 0.67 INF-METHOD = CRACK
NEUTRAL-ZONE-HT = '0.0 ...

- I-W HEIGHT = 9.0 WIDTH = 59.6 CONS = INTWALL
 NEXT-TO = HALLS ...
- I-W HEIGHT = 9.0 WIDTH = 40.6 CONS = INTWALL
 NEXT-TO = HALLS ...
- I-W HEIGHT = 9.0 WIDTH = 49.3 CONS = INTWALL
 NEXT-TO = HALLS ...
- I-W HEIGHT = 9.0 WIDTH = 18.3 CONS = INTWALL
 NEXT-TO = CONFERENCE ..
- I-W HEIGHT = 9.0 WIDTH = 19.0 CONS = INTWALL NEXT-TO = CONFERENCE ..
- E-W HEIGHT = 9.0 WIDTH = 67.6 CONS = COMPWAL AZIMUTH = 225 ...
- U-W HEIGHT = 67.6 WIDTH = 1.0 CONS = FLOORCOM ..

ZONE-TYPE = UNCONDITIONED ..

- I-W HEIGHT = 5.4 WIDTH = 18.4 CONS = INTWALL
 NEXT-TO = COMPRMPLN ..
- I-W HEIGHT = 5.4 WIDTH = 19.0 CONS = INTWALL
 NEXT-TO = COMPRMPLN ..
- I-W HEIGHT = 5.4 WIDTH = 18.4 CONS = INTWALL
 NEXT-TO = HALLPLENUM ..
- I-W HEIGHT = 5.4 WIDTH = 19.0 CONS = INTWALL
 NEXT-TO = HALLPLENUM ..
- I-W HEIGHT = 18.4 WIDTH = 19.0 CONS = CEILING
 NEXT-TO = CONFERENCE ...
- ROOF HEIGHT = 17.4 WIDTH = 19.0 CONS = REGROOF TILT = 0 ...
- ROOF HEIGHT = 1.0 WIDTH = 19.0 CONS = REGROOF

 TILT = 0 ...
- COMPRMPLN = SPACE AREA = 4037.4 VOLUME = 17764.6

 ZONE-TYPE = UNCONDITIONED INF-METHOD = CRACK

 NEUTRAL-ZONE-HT = 0.0 ..
 - I-W HEIGHT = 4.4 WIDTH = 59.6 CONS = INTWALL
 NEXT-TO = HALLPLENUM ..
 - I-W HEIGHT = 4.4 WIDTH = 40.6 CONS = INTWALL
 NEXT-TO = HALLPLENUM ..
 - I-W HEIGHT = 4.4 WIDTH = 49.3 CONS = INTWALL
 NEXT-TO = HALLPLENUM ..
 - I-W HEIGHT = 4.4 WIDTH = 18.3 CONS = INTWALL NEXT-TO = CONFPLENUM ..
 - I-W HEIGHT = 4.4 WIDTH = 19.0 CONS = INTWALL NEXT-TO = CONFPLENUM ..
 - I-W HEIGHT = 49.3 WIDTH = 59.6 CONS = CEILING
 NEXT-TO = COMPUTERRM ..
 - I-W HEIGHT = 18.3 WIDTH = 40.6 CONS = CEILING
 NEXT-TO = COMPUTERRM ..
 - E-W HEIGHT = 4.4 WIDTH = 67.6 CONS = COMPWAL AZIMUTH = 225 ..
 - ROOF HEIGHT = 49.3 WIDTH = 59.6 CONS = REGROOF TILT = 0 ..
 - ROOF HEIGHT = 18.3 WIDTH = 40.6 CONS = REGROOF
 TILT = 0 ...

ZONE-TYPE = UNCONDITIONED INF-METHOD = CRACK NEUTRAL-ZONE-HT = 0.0 ..

- E-W HEIGHT = 5.4 WIDTH = 80.0 CONS = REGWALL
 AZIMUTH = 315 ..
- E-W HEIGHT = 5.4 WIDTH = 117.6 CONS = REGWALL
 AZIMUTH = 45 ...
- E-W HEIGHT = 5.4 WIDTH = 80.0 CONS = REGWALL
 AZIMUTH = 135 ...
- I-W HEIGHT = 25.0 WIDTH = 80.0 CONS = CEILING
 NEXT-TO = HALLS ..
- I-W HEIGHT = 67.6 WIDTH = 19.0 CONS = CEILING
 NEXT-TO = HALLS ..
- I-W HEIGHT = 25.0 WIDTH = 80.0 CONS = CEILING
 NEXT-TO = HALLS ..
- ROOF HEIGHT = 25.0 WIDTH = 80.0 CONS = REGROOF TILT = 0 ...
- ROOF HEIGHT = 67.6 WIDTH = 19.0 CONS = REGROOF
 TILT = 0 ...
- ROOF HEIGHT = 25.0 WIDTH = 80.0 CONS = REGROOF
 TILT = 0 ...
- TOWER_2 =SPACE AREA = 576.0 VOLUME = 14976.0

 ZONE-TYPE = CONDITIONED PEOPLE-SCHEDULE = T_LIGHTS

 NUMBER-OF-PEOPLE = 2.0 LIGHTING-TYPE = INCAND

 LIGHTING-KW = 1.23 LIGHTING-SCHEDULE = T_LIGHTS

 EQUIP-SCHEDULE = TOWEREQUIP EQUIPMENT-KW = 4.39

 EQUIP-SENSIBLE = 0.3 INF-METHOD = AIR-CHANGE

 AIR-CHANGES/HR = 0.75 INF-SCHEDULE = towerinfil ...
 - ROOF HEIGHT = 24.0 WIDTH = 24.0 CONS = TOWEROOF TILT = 0 ...
 - E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 45 ..
 - E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 135 ...
 - E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 225 ...
 - U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..
 - E-W HEIGHT = 26.0 WIDTH = 24.0 CONS = TOWERWAL AZIMUTH = 315 ...
 - U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..
 - U-W HEIGHT = 24.0 WIDTH = 1.0 CONS = FLOOR ..

\$ HOURLY REPORT DESCRIPTION

GLOBAL_BLK =REPORT-BLOCK VARIABLE-TYPE = GLOBAL

VARIABLE-LIST = (24,17) ...

END .

COMPUTE LOADS ..

INPUT SYSTEMS ..

\$ GENERAL PROJECT DATA

TITLE LINE-1 * EMC ENGINEERS INC.

LINE-2 *EZDOE - ELITE SOFTWARE DEVELOPMENT INC*

LINE-3 * DENVER, CO 80227

LINE-4 *GEODSS SITE DOE EVALUATION

ABORT

ERRORS ..

DIAGNOSTIC

WARNINGS ..

SYSTEMS-REPORT VERIFICATION= (SV-A)

SUMMARY= (SS-A, SS-C, SS-K, SS-O) ...

\$ SCHEDULES

DAILYTEMP =DAY-SCHEDULE (1,24) (68.) ..

TOWER_AHU =DAY-SCHEDULE (1,24) (1.) ..

S_GEODSSYS =DAY-SCHEDULE (1,7) (100.)

(8,15) (50.)

(16,24) (100.) ..

CAMCOMPRES =DAY-SCHEDULE (1,7) (100.)

(8,15) (0.)

(16,24) (100.) ..

CRU =DAY-SCHEDULE (1,24) (72.) ..

WINTOWER =DAY-SCHEDULE (1,24) (0.) ..

COOLCOMP =DAY-SCHEDULE (1,24) (72.) ..

ahu2 =DAY-SCHEDULE (1,24) (0.26) ...

INSIDE =WEEK-SCHEDULE (ALL) DAILYTEMP ...

W_GEODSS =WEEK-SCHEDULE (ALL) TOWER_AHU ..

WINGEODSS =WEEK-SCHEDULE (ALL) WINTOWER ...

W_CAMERA =WEEK-SCHEDULE (ALL) CAMCOMPRES ..

COMPHEAT =WEEK-SCHEDULE (ALL) CRU ..

CONF_AHU =WEEK-SCHEDULE (ALL) TOWER_AHU ..

BIGAHU =WEEK-SCHEDULE (ALL) TOWER_AHU ..

COMPCOOL =WEEK-SCHEDULE (ALL) COOLCOMP ..

w_ahu2 =WEEK-SCHEDULE (ALL) ahu2 ..

\$ FULL TIME RUNNUNG AHU

FULL ON =SCHEDULE THRU DEC 31 CONF_AHU ..

S YEARLY SYSTEMS TOWERS

TOWERYEAR =SCHEDULE THRU APR 1 WINGEODSS

THRU NOV 1 W_GEODSS

THRU DEC 31 WINGEODSS ..

\$ YEARLY CAMERA COMPRESSO

Y CAMERA =SCHEDULE THRU DEC 31 W_CAMERA ..

\$ TEMPERATURE IN BLDG

BLDGTEMP =SCHEDULE THRU DEC 31 INSIDE ..

\$ TEMPERATUREOFCOMPRM

COMPUTER =SCHEDULE THRU DEC 31 COMPHEAT ..

s_off =SCHEDULE THRU DEC 31 WINGEODSS ...

hrly-sched =SCHEDULE THRU MAR 12 WINGEODSS

THRU MAR 13 CONF_AHU

THRU SEP 7 WINGEODSS

THRU SEP 8 CONF_AHU

THRU DEC 31 WINGEODSS ...

\$ HEATER FOR AHU #1

HEATER =SCHEDULE THRU APR 1 CONF_AHU

THRU NOV 1 WINGEODSS

THRU DEC 31 CONF_AHU ..

\$ TEMP TO COOL IN COMP RM

COOL_COMP =SCHEDULE THRU DEC 31 COMPCOOL ..

\$ outside air to ahu2

oaahu2 =SCHEDULE THRU DEC 31 w_ahu2 ...

\$ ZONE DESCRIPTION

CONFERENCE = ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0

HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COMPUTER

ZONE-TYPE = CONDITIONED MAX-HEAT-RATE = -1.0

THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 800.

SIZING-OPTION = FROM-LOADS COOLING-CAPACITY = 10000.0

COOL-SH-CAP = 8000.0

HALLS =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0

HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COMPUTER

ZONE-TYPE = CONDITIONED

THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 4770.

OUTSIDE-AIR-CFM = 1247. SIZING-OPTION = FROM-LOADS

EXHAUST-CFM = 1247.0 HEATING-CAPACITY = -76817.0

COOLING-CAPACITY = 113658.0 COOL-SH-CAP = 102183.0

TOWER 1 = ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0

HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COMPUTER

ZONE-TYPE = CONDITIONED MAX-HEAT-RATE = -1.0

THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 2000.

SIZING-OPTION = FROM-LOADS EXHAUST-CFM = 2000.0

COOLING-CAPACITY = 62702.0 COOL-SH-CAP = 62702.0

TOWER_3 =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0

HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COMPUTER

ZONE-TYPE = CONDITIONED MAX-HEAT-RATE = -1.0

THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 2000.

SIZING-OPTION = FROM-LOADS EXHAUST-CFM = 2000.0

COOLING-CAPACITY = 62866.0 COOL-SH-CAP = 62866.0

COMPUTERRM = ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0

HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COOL COMP

ZONE-TYPE = CONDITIONED

THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 36000.

SIZING-OPTION = FROM-LOADS RATED-CFM = 36000.0

HEATING-CAPACITY = -345300.0

COOLING-CAPACITY = 978600.0 COOL-SH-CAP = 838200.0

CONFPLENUM =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0

ZONE-TYPE = UNCONDITIONED SIZING-OPTION = FROM-LOADS

COMPRMPLN =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0

ZONE-TYPE = UNCONDITIONED SIZING-OPTION = FROM-LOADS

HALLPLENUM =ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0

ZONE-TYPE = UNCONDITIONED SIZING-OPTION = FROM-LOADS

TOWER_2 = ZONE DESIGN-HEAT-T = 68.0 DESIGN-COOL-T = 72.0

HEAT-TEMP-SCH = BLDGTEMP COOL-TEMP-SCH = COMPUTER

ZONE-TYPE = CONDITIONED MAX-HEAT-RATE = -1.0

THERMOSTAT-TYPE = PROPORTIONAL ASSIGNED-CFM = 2000.

SIZING-OPTION = FROM-LOADS EXHAUST-CFM = 2000.0

COOLING-CAPACITY = 62702.0 COOL-SH-CAP = 62702.0 ..

\$ SYSTEM DESCRIPTION

1TOWER =SYSTEM SYSTEM-TYPE = SZRH

MAX-SUPPLY-T = 120.0 MIN-SUPPLY-T = 55.0

HEATING-SCHEDULE = s_off

COOLING-SCHEDULE = TOWERYEAR MAX-HUMIDITY = 90.0

OA-CONTROL = FIXED SUPPLY-CFM = 2000.

MIN-OUTSIDE-AIR = 1.0 FAN-SCHEDULE = TOWERYEAR

SUPPLY-STATIC = 2.5 SUPPLY-EFF = 0.72

NIGHT-CYCLE-CTRL = STAY-OFF NIGHT-VENT-DT = 0.0

MIN-CFM-RATIO = 1.0 REHEAT-DELTA-T = 65.

COOLING-CAPACITY = 40000. COOL-SH-CAP = 40000.

COOL-FT-MIN = 0. FURNACE-AUX = 0.

FURNACE-HIR = 1.0

ZONE-NAMES = (TOWER_1)

CRUINT =SYSTEM SYSTEM-TYPE = SZRH

MAX-SUPPLY-T = 72.0 MIN-SUPPLY-T = 62.0

HEATING-SCHEDULE = FULL_ON

COOLING-SCHEDULE = FULL_ON MAX-HUMIDITY = 55.0

MIN-HUMIDITY = 30.0 OA-CONTROL = FIXED

SUPPLY-CFM = 36000. RETURN-CFM = 36000.

MAX-OA-FRACTION = 0.0 FAN-SCHEDULE = FULL_ON

SUPPLY-STATIC = 1.5 SUPPLY-EFF = 0.72

NIGHT-CYCLE-CTRL = STAY-OFF NIGHT-VENT-DT = 0.0

MIN-CFM-RATIO = 1.0 REHEAT-DELTA-T = 65.

COOLING-CAPACITY = 978600. COOL-SH-CAP = 838200.

COOL-FT-MIN = 0. HEATING-CAPACITY = -345300.

FURNACE-AUX = 0. HEAT-SOURCE = ELECTRIC

RETURN-AIR-PATH = DUCT

ZONE-NAMES = (COMPUTERRM, COMPRMPLN) ..

2TOWER =SYSTEM

SYSTEM-TYPE = SZRH

MAX-SUPPLY-T = 120.0 MIN-SUPPLY-T = 55.0

HEATING-SCHEDULE = s_off

COOLING-SCHEDULE = TOWERYEAR MAX-HUMIDITY = 90.0

OA-CONTROL = FIXED SUPPLY-CFM = 2000.

MIN-OUTSIDE-AIR = 1.0 FAN-SCHEDULE = TOWERYEAR

SUPPLY-STATIC = 2.5 SUPPLY-EFF = 0.72

NIGHT-CYCLE-CTRL = STAY-OFF NIGHT-VENT-DT = 0.0

MIN-CFM-RATIO = 1.0 REHEAT-DELTA-T = 65.

COOLING-CAPACITY = 40000. COOL-SH-CAP = 40000.

COOL-FT-MIN = 0. FURNACE-AUX = 0.

FURNACE-HIR = 1.0

ZONE-NAMES = (TOWER_2) ..

3TOWER =SYSTEM

SYSTEM-TYPE = SZRH

MAX-SUPPLY-T = 120.0 MIN-SUPPLY-T = 55.0

HEATING-SCHEDULE = s_off

COOLING-SCHEDULE = TOWERYEAR MAX-HUMIDITY = 90.0

OA-CONTROL = FIXED SUPPLY-CFM = 2000.

MIN-OUTSIDE-AIR = 1.0 FAN-SCHEDULE = TOWERYEAR

SUPPLY-STATIC = 2.5 SUPPLY-EFF = 0.72

NIGHT-CYCLE-CTRL = STAY-OFF NIGHT-VENT-DT = 0.0

MIN-CFM-RATIO = 1.0 REHEAT-DELTA-T = 65.

COOLING-CAPACITY = 40000. COOL-SH-CAP = 40000.

COOL-FT-MIN = 0. FURNACE-AUX = 0.

FURNACE-HIR = 1.0

ZONE-NAMES = (TOWER_3) ..

REGAHU =SYSTEM

SYSTEM-TYPE = SZRH

MAX-SUPPLY-T = 120.0 MIN-SUPPLY-T = 58.0

HEATING-SCHEDULE = FULL_ON

COOLING-SCHEDULE = FULL_ON HEAT-SET-T = 120.0

MAX-HUMIDITY = 80.0 OA-CONTROL = FIXED

SUPPLY-CFM = 4770. RETURN-CFM = 3523.

MIN-OUTSIDE-AIR = 0.26 MAX-OA-FRACTION = 0.26

FAN-SCHEDULE = FULL_ON SUPPLY-STATIC = 3.0

SUPPLY-EFF = 0.72 NIGHT-CYCLE-CTRL = STAY-OFF

NIGHT-VENT-DT = 0.0 MIN-CFM-RATIO = 1.0

REHEAT-DELTA-T = 65. COOLING-CAPACITY = 113658.

COOL-SH-CAP = 102183. COOL-FT-MIN = 0.

HEATING-CAPACITY = -76817. FURNACE-AUX = 0.

FURNACE-HIR = 1.0 HEAT-SOURCE = ELECTRIC

RETURN-AIR-PATH = DUCT

ZONE-NAMES = (HALLS, HALLPLENUM) ...

CONFRMAHU =SYSTEM SYS

SYSTEM-TYPE = SZRH

MAX-SUPPLY-T = 70.0 MIN-SUPPLY-T = 62.0

HEATING-SCHEDULE = s_off COOLING-SCHEDULE = FULL ON

MAX-HUMIDITY = 50.0 OA-CONTROL = FIXED

SUPPLY-CFM = 800. RETURN-CFM = 800.

MAX-OA-FRACTION = 0.0 FAN-SCHEDULE = FULL_ON

SUPPLY-DELTA-T = 2.42 SUPPLY-KW = 0.00031

NIGHT-CYCLE-CTRL = STAY-OFF NIGHT-VENT-DT = 0.0

MIN-CFM-RATIO = 1.0 REHEAT-DELTA-T = 65.

COOLING-CAPACITY = 10000. COOL-SH-CAP = 8000.

COOL-FT-MIN = 0. FURNACE-AUX = 0.

FURNACE-HIR = 1.0 RETURN-AIR-PATH = DUCT

ZONE-NAMES = (CONFERENCE, CONFPLENUM) ...

\$ HOURLY REPORT DESCRIPTION

zone-blk =REPORT-BLOCK VARIABLE-TYPE = TOWER_1

VARIABLE-LIST = (6,7,17,18) ...

ahu-blk =REPORT-BLOCK VARIABLE-TYPE = 1TOWER

VARIABLE-LIST = (5,6,8,1,2,17) ...

hrly-0zone = HOURLY-REPORT REPORT-SCHEDULE = hrly-sched

REPORT-BLOCK = (zone-blk)

hrly-sys1 = HOURLY-REPORT REPORT-SCHEDULE = hrly-sched

REPORT-BLOCK = (ahu-blk)

END ..

COMPUTE SYSTEMS ...

INPUT PLANT ..

\$-----\$

\$EZ-DOE PLANTS INPUT\$

\$-----\$

\$ GENERAL PROJECT DATA

TITLE LINE-1 * EMC ENGINEERS INC.

LINE-2 *EZDOE - ELITE SOFTWARE DEVELOPMENT INC*

LINE-3 * DENVER, CO 80227 *

LINE-4 *GEODSS SITE DOE EVALUATION

ABORT ERRORS ..

DIAGNOSTIC WARNINGS ...

PLANT-REPORT SUMMARY= (PS-A, PS-B, PS-C, BEPS)

\$ SCHEDULES

PD_ON =DAY-SCHEDULE (1,24) (1.) ..

PW_ON =WEEK-SCHEDULE (ALL) PD_ON ..

\$ EQUIPMENT DESCRIPTION

\$ CURVE-FIT

CHILLER1 = CURVE-FIT TYPE = QUADRATIC

OUTPUT-MIN = 1.00

COEF = (0.088, 1.138, -0.226) ..

CHILLERS =PLANT-EQUIPMENT TYPE = HERM-REC-CHLR

SIZE = 0.4 INSTALLED-NUMBER = 2

MAX-NUMBER-AVAIL = 2 ...

HERM-REC-COND-TYPE = AIR HERM-REC-UNL-RAT = 1.0 PLANT-PARAMETERS

CHILL-WTR-T = 45. CCIRC-MOTOR-EFF = 0.85

CCIRC-HEAD = 45.0 HCIRC-MOTOR-EFF = 0.83

HCIRC-HEAD = 0.0 ..

PART-LOAD-RATIO TYPE = HERM-REC-CHLR

MIN-RATIO = 0.2500 MAX-RATIO = 1.0000

OPERATING-RATIO = 1.0000 ELEC-INPUT-RATIO = 0.4071 ..

ENERGY-RESOURCE RESOURCE = ELECTRICITY SOURCE-SITE-EFF = 1.000 ...
ENERGY-RESOURCE RESOURCE = NATURAL-GAS ...

EQUIPMENT-QUAD HERM-REC-EIR-FPLR = CHILLER1 ...

END ..

COMPUTE PLANT ..

STOP ..

BUILDING ENERGY ANALYSIS PROGRAM

DEVELOPED BY LAWRENCE BERKELEY LABORATORY/UNIVERSITY OF CALIFORNIA AND James J. Hirsch/HIRSCH & ASSOCIATES/(805) 482-5515

WITH MAJOR SUPPORT FROM
UNITED STATES DEPARTMENT OF ENERGY
ASSISTANT SECRETARY FOR CONSERVATION AND RENEWABLE ENERGY
OFFICE OF BUILDINGS AND COMMUNITY SYSTEMS
BUILDING SYSTEMS DIVISION

THIS PROGRAM WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED BY THE UNITED STATES GOVERNMENT AND OTHERS. NEITHER THE UNITED STATES NOR THE DEPARTMENT OF ENERGY, NOR JAMES J. HIRSCH, NOR OTHER SPONSORS, NOR ANY OF THEIR EMPLOYEES, NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR EMPLOYEES MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS OR USEFULNESS OF ANY DATA OR RESULTS PRESENTED, APPARATUS, INFORMATION, PRODUCT OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

LBL RELEASE DEC 1990 version : JJHirsch PC 2.1D-017 Elite Software PC DOE-2.1D released in April 1993. Copyright (c) Elite Software Development, 1993. All Rights Reserved.

EMC DENVER, EPORT- LV-B	ENGINEERS CO SUMMARY OF	INC 8022 SPACES	7 G OCCURRING	ZDOE - EL EODSS SIT IN THE P	ITE SOFTWAI E DOE EVAL ROJECT	RE DEVELO UATION	PMENT INC	DOE-2.1D TRUTH OR	8/ 7/1995 CONSEQU, N	15: 8:11	LDL RUN
UMBER OF SP	ACES 9	E	XTERIOR	8 I	NTERIOR	1					
PACE	SPACE MULT	SPACE TYPE	AZIMUTH	LIGHTING (WATT / SQFT)	PEOPLE	EQUIP (WATT / SQFT)	INFILTRATION METHOD	AIR CHANGE	S AREA	A V (OLUME UFT)
ONFERENCE ALLS ONER 1 OMER 3 ONPUTERRM ONFPLENUM OMPRMPLN ALLPLENUM OWER 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0	INT EXT EXT EXT EXT EXT EXT EXT	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.52 1.23 2.14 2.14 1.17 0.00 0.00 0.00	1.0 4.0 2.0 2.0 4.0 0.0 0.0	1.44 1.01 7.62 7.62 7.18 0.00 0.00 7.62	CRACK CRACK AIR-CHANGE AIR-CHANGE CRACK NO-INFILT. CRACK CRACK AIR-CHANGE	0.00 0.00 0.77 0.77 0.00 0.00 0.00	0 348.00 5285.50 5 576.00 5 576.00 4 037.40 0 4037.40 0 5285.50 5 576.00	276 4220 1497 0 1499 0 363 0 18 0 1777 2850 0 149	86.00 84.00 76.00 37.00 37.00 79.20 64.60 41.70 76.00
UILDING TOT	ALS				15.0				21069.80	1745	20.50
								DOE-2.1D TRUTH OR	8/ 7/1995 CONSEQU, N	15: 8:11	LDL RUN
UMBER OF EXU-VALUE INC	TERIOR SURFA	CES 30 AIR FIL	M PLUS OU	RECTANGUL TSIDE AIR - G L A S VALUE	AR 30 FILM AT 7 S AREA	OTHER .5 MPH WI U-	0 NDSPEED) - W A L L VALUE	AREA	8/ 7/1995 CONSEQU, N W A L L + G L J U-VALUE /HR-SQFT-F) 0.066 0.068 0.068 0.068 0.068 0.066 0.066 0.068 0.068 0.068 0.068 0.066 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068	ASS- AREA A	ZIMUTH

EMC ENGIN DENVER, EPORT- LV-D DETAI	EERS INC. CO 80227 LS OF EXTERIOR SU	EZDOE - ELITE SO GEODSS SITE DOE RFACES IN THE PROJE	DETWARE DEVELOPMENT INC EVALUATION T	DOE-2.1 TRUTH O	D 8/7/1995 R CONSEQU, N	15: 8:11 LDL RUN 1
нныттоотнынтттттт	ALLPLENUM ALLPLENUM ALLPLENUM OMER 2 OWER 3 OMERMPLN OMERMPLN OMER 1 ALLS ALLS ALLS ALLS ALLS OWER 1 OWER 1 OWER 1 OWER 1 OWER 3 OWER 3 OWER 3 OWER 3 OWER 3 OWER 2 OWER 2 OWER 2 OWER 2 OWER 2	0.000 0.000	0.00	2000.00 1284.40 2000.00 576.00 576.00 576.00 2938.28 742.98 576.00 117.60 80.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00	0 .053 0 .053 0 .053 0 .047 0 .047 0 .047 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800 0 .800	2000.00 ROOF 1284.40 ROOF 2000.00 ROOF 576.00 ROOF 576.00 ROOF 676.00 ROOF 676.00 ROOF 80.00 UNDERGRND 117.60 UNDERGRND 24.00 UNDERGRND
EMC ENGIN DENVER, EPORT- LV-D DETAI	EERS INC. CO 80227	EZDOE - ELITE SO GEODSS SITE DOE	OFTWARE DEVELOPMENT INC	DOE-2.1	D 8/7/1995 R CONSEOU, N	
	AVERAGE U-VALUE/GLASS	AVERAGE U-VALUE/WALLS (BTU/HR-SOFT-F)	AVERAGE U-VALUE WALLS+GLASS	GLASS AREA	OPAQUE ARÉA	GLASS+OPAQUE AREA
ORTH-EAST OUTH-EAST OUTH-WEST ORTH-WEST OOF LL WALLS WALLS+ROOFS UNDERGRND UILDING	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.067 0.067 0.067 0.067 0.052 0.067 0.060 0.800		(SQFT) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	3447.84 2944.00 2777.84 2944.00 11043.26 12113.68 23156.94 633.20 23790.14	3447.84 2944.00 2777.84 2944.00 11043.26 12113.68 23156.94 633.20 23790.14
EMC ENGIN DENVER,	EERS INC. CO 80227	EZDOE - ELITE SE GEODSS SITE DOE REACES IN THE PROJE	OFTWARE DEVELOPMENT INC EVALUATION CT	DOE-2.1	D 8/7/1995 R CONSEQU, N	15: 8:11 LDL RUN
MBER OF INTERIOR	SURFACES 24					
TRFACE	AREA CON (SOFT) NAM 147.20 INT 152.00 INT	STRUCTION SURFA	CE TYPE (BTU ED STANDARD	U-VALUE (/HR-SQFT-F) 0.326	ADJACENT SPACE-1 CONFERENCE	SPACE-2 HALLS

```
ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC CO 80227 GEODSS SITE DOE EVALUATION DETAILS OF SCHEDULES OCCURRING IN THE PROJECT
                                                                                                                  DOE-2.1D 8/ 7/1995
                                                                                                                                                 15: 8:11 LDL RUN 1
      EMC
DENVER
                                                                                                                  TRUTH OR CONSEQU, N
                                                   ( NON DIMENSIONLESS SCHEDULES ARE GIVEN IN ENGLISH UNITS )
NUMBER OF SCHEDULES
     SCHEDULE y_lights
          THROUGH 31 12
          FOR DAYS MON TUE WED THU FRI
               SCHEDULE A_OCCUP
          THROUGH 31 12
               FOR DAYS SUN SAT HOL
               FOR DAYS MON TUE WED THU FRI
          SCHEDULE Y_EQUIP
          THROUGH 31 12
EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DENVER, CO 80227 GEODSS SITE DOE EVALUATION REPORT - LV-G DETAILS OF SCHEDULES OCCURRING IN THE PROJECT
                                                                                                                                                 15: 8:11 LDL RUN 1
                                                                                                                 DOE-2.1D 8/ 7/1995
                                                                                                                  TRUTH OR CONSEQU, N
          FOR DAYS MON TUE WED THU FRI
          SCHEDULE OCCUCONFRM
          THROUGH 31 12
          FOR DAYS SUN MON TUE WED THU FRI SAT HOL HOUR 1 2 3 4 5 FRI
              SCHEDULE T_LIGHTS
          THROUGH 31 12
               FOR DAYS SUN MON TUE WED THU FRI SAT HOL
          SCHEDULE TOWEREQUIP
          THROUGH 31 12
EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DERVER, CO 80227 GEODSS SITE DOE EVALUATION REPORT - LV-G DETAILS OF SCHEDULES OCCURRING IN THE PROJECT
                                                                                                                                8/ 7/1995
                                                                                                                  DOE-2.1D
                                                                                                                                                 15: 8:11 LDL RUN 1
                                                                                                                  TRUTH OR CONSEQU, N
               FOR DAYS SUN MON TUE WED THU FRI SAT HOL
          HOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
     SCHEDULE equipcomp
          THROUGH 31 12
               FOR DAYS SUN MON TUE WED THU FRI SAT HOL
              SCHEDULE L-hrly_rps
          POR DAYS SUN MON TUE WED THU FRI SAT HOL
              THROUGH 13 3
               FOR DAYS SUN MON TUE WED THU FRI SAT HOL
```

THROUGH 7 9

EMC ENGINEERS INC. CO 80227 REPORT- LV-G DETAILS OF SCHEDULE:	EZDOE GEODSS S S OCCURRING IN	ELITE SOFTWARE DEVELOPMENT INC SITE DOE EVALUATION THE PROJECT	DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1 TRUTH OR CONSEQU, N
	WED THU FRI SA 5 6 7 00 0.00 0.00 0.	AT HOL 8 9 10 11 12 13 14 10 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	WED THU FRI SA 5 6 7 00 1.00 1.00 1.	AT HOL 8 9 10 11 12 13 14 00 1.00 1.00 1.00 1.00 1.00 1	15 16 17 18 19 20 21 22 23 24 1.00 1.00 1.00 1.00 1.00 1.00 1.00
	WED THU FRI SA 5 6 7 00 0.00 0.00 0.	AT HOL 8 9 10 11 12 13 14 .00 0.00 0.00 0.00 0.00 0.00 0.00	15 16 17 18 19 20 21 22 23 24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
SCHEDULE towerinfil THROUGH 1 4			
FOR DAYS SUN MON TUE HOUR 1 2 3 4 5.00 5.00 5.00 5.00 5.00	WED THU FRI SA 5 6 7 00 5.00 1.00 1.	AT HOL 8 9 10 11 12 13 14 .00 1.00 1.00 1.00 1	15 16 17 18 19 20 21 22 23 24 1.00 1.00 1.00 5.00 5.00 5.00 5.00 5.00
THROUGH 1 11 FOR DAYS SUN MON TUE HOUR 1 2 3 4 1.00 1.00 1.00 1.00 1.00	WED THU FRI SA 5 6 7 00 1.00 0.00 0.	AT HOL 8 9 10 11 12 13 14 .00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
THROUGH 31 12			
EMC ENGINEERS INC. DENVER, CO 60227 REPORT- LV-G DETAILS OF SCHEDULE	EZDOE - GEODSS S S OCCURRING IN	ELITE SOFTWARE DEVELOPMENT INC SITE DOE EVALUATION THE PROJECT	DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1 TRUTH OR CONSEQU, N
FOR DAYS SUN MON TUE	WED THU FRI SA	AT HOL 8 9 10 11 12 13 14	15 16 17 18 19 20 21 22 23 24 1.00 1.00 1.00 5.00 5.00 5.00 5.00 5.00
5.00 5.00 5.00 5.00 5.	00 5.00 1.00 1.	.00 1.00 1.00 1.00 1.00 1.00 1.00	
			DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1 TRUTH OR CONSEQU, N
EMC ENGINEERS INC. DENVER, CO 80227 REPORT- LV-I DETAILS OF CONSTRUC	EZDOE - GEODSS S TIONS OCCURRING		
EMC ENGINEERS INC. DENVER, CO 80227 REPORT- LV-I DETAILS OF CONSTRUCTIONS 10	EZDOE GEODSS S TIONS OCCURRING DELAYED 7 U-VALUE	ELITE SOFTWARE DEVELOPMENT INC SITE DOE EVALUATION G IN THE PROJECT 7 QUICK 3 SURFACE SURFACE ROUGHNESS SURFACE O.60 3 DELAYED O.65 3 DELAYED O.70 3 QUICK O.70 3 QUICK O.70 3 DELAYED O.70 3 DELAYED O.65 3 DELAYED O.70 3 DELAYED O.70 3 DELAYED O.70 3 DELAYED O.65 3 DELAYED O.70 3 DELAYED O.70 3 DELAYED O.70 3 DELAYED O.70 3 DELAYED O.70 3 DELAYED O.70 3 DELAYED O.70 3 DELAYED	
EMC ENGINEERS INC. DENVER, CO 80227 REPORT- LV-I DETAILS OF CONSTRUCTIONS 10 CONSTRUCTION NAME (BTU/HR REGROOF TOMERWAL FILOOR TOMEROOF CEILING TOMEROOF CEILING TOMELL REGNALL FLOORCOM	EZDOE GEODSS STIONS OCCURRING DELAYED 7 U-VALUE -SOFT-F) ABSC 0.054 0.069 0.048 0.279 0.045 0.067 0.067 0.067 0.226	ELITE SOFTWARE DEVELOPMENT INC SITE DOE EVALUATION G IN THE PROJECT 7 QUICK 3 SURFACE SURFACE SURFACE ORPTANCE INDEX TYPE 0.60 3 DELAYED 0.50 3 DELAYED	DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1 TRUTH OR CONSEQU, N NUMBER OF RESPONSE FACTORS 15 0 0 4 5 19 19 0 9 DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1 TRUTH OR CONSEQU, N
EMC ENGINEERS INC. DENVER, CO 80227 REPORT- LV-I DETAILS OF CONSTRUCTIONS 10 CONSTRUCTION 10 CONSTRUCTION (BTU/HR REGROOF TOWERWAL FLOOR TOWERWAL FLOOR CEILING TOWCEIL REGWALL COMPWAL FLOORCOM INTWALL EMC ENGINEERS INC. DENVER, CO 80227 REPORT- LS-A SPACE PEAK LOADS SUM	EZDOE GEODSS STIONS OCCURRING DELAYED 7 U-VALUE -SOFT-F) ABSC 0.054 0.069 0.048 0.279 0.045 0.067 0.067 0.067 0.226	ELITE SOFTWARE DEVELOPMENT INC SITE DOE EVALUATION G IN THE PROJECT 7 QUICK 3 SURFACE SURFACE SURFACE ROUGHNESS SURFACE ORFTANCE INDEX TYPE 0.60 3 DELAYED 0.65 3 DELAYED 0.70 3 QUICK 0.40 3 QUICK 0.70 3 DELAYED 0.70 3 DELAYED 0.65 3 DELAYED 0.70 3 DELAYED 0.70 3 DELAYED 0.70 3 DELAYED 0.70 3 DELAYED 0.70 3 DELAYED 0.70 3 DELAYED 0.70 3 DELAYED 0.70 3 DELAYED 0.70 3 DELAYED 0.70 3 DELAYED 0.70 3 DELAYED 0.70 3 DELAYED	DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1 TRUTH OR CONSEQU, N NUMBER OF RESPONSE FACTORS 15 0 0 4 5 19 19 0 9 DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1 TRUTH OR CONSEQU, N

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DENVER, CO 80227 GEODSS SITE DOE EVALUATION CONFERENCE DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1 TRUTH OR CONSEQU, N SPACE CONFERENCE 1.0 FLOOR MULTIPLIER 348 SOFT 32 M2 2786 CUFT 79 M3 MULTIPLIER FLOOR AREA VOLUME COOLING LOAD

APR 3 12NOON
60F 16C
45F 7C HEATING LOAD TIME DRY-BULB TEMP WET-BULB TEMP SENSIBLE (KBTU/H) (KW) (KBTU/H) (KW)

0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.170 0.055 0.082 0.024
0.851 0.249 0.000 0.000
0.170 0.055 0.082 0.024
0.851 0.249 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.2252 0.659 0.082 0.024
2.334 KBTU/H 0.683 KW
6.71BTU/H.SQFT 21.139 W / ME SENSIBLE (KBTU/H) (KW)

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WALLS
ROOFS
GLASS CONDUCTION
GLASS SOLAR
DOOR
INTERNAL SURFACES
UNDERGROUND SURFACES
OCCUPANTS TO SPACE
LIGHT TO SPACE
EQUIPMENT TO SPACE
EQUIPMENT TO SPACE
INFILTRATION 0.000 0.000 KBTU/H 0.000BTU/H.SQFT 0.000 TOTAL LOAD TOTAL LOAD / AREA NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR
LOADS
2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION IN CONSIDERATION ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC R. CO 80227 GEODSS SITE DOE EVALUATION -B SPACE PEAK LOAD COMPONENTS HALLS DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1 EMC DENVER, REPORT- LS-B TRUTH OR CONSEQU, N SPACE HALLS FLOOR MULTIPLIER
491 M2
1197 M3 MULTIPLIER FLOOR AREA VOLUME 1.0 5286 SOFT 42284 CUFT ATING

JAN 16 2P.

43F
31F -1

SENSIBLE
(KBTU/H) (KW)

-6.538 -1.915
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000
10 0.000 COOLING LOAD

AUG 1 4PM
97F 36C
65F 18C TIME DRY-BULB TEMP WET-BULB TEMP MALLS
ROOFS
GLASS CONDUCTION
GLASS SOLAR
DOOR
INTERNAL SURFACES
UNDERGROUND SURFACES
COCUPANTS TO SPACE
LIGHT TO SPACE
EQUIPMENT TO SPACE
FROCESS TO SPACE
INFILTRATION -6.538 0.000 0.000 0.000 0.000 -4.146 0.144 3.534 5.253 0.000 -1.752 KBTU/H 0.332BTU/H.SQFT 0.328 11.129 22.664 37.671 11.033 37.998 KBTU/H 7.19BTU/H.SQFT -0.513 -0.513 1.045 0.096 TOTAL LOAD TOTAL LOAD / AREA KW / M2 NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR LOADS
2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION IN CONSIDERATION

```
EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DENVER, CO 80227 GEODSS SITE DOE EVALUATION REPORT- LS-B SPACE PEAK LOAD COMPONENTS TOWER_1
                                                                                                                                                                                                              DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1
                                                                                                                                                                                                                         TRUTH OR CONSEQU, N
SPACE TOWER_1
                                                  MULTIPLIER 1.0 FLOOR MULTIPLIER 1.0 FLOOR AREA 576 SQFT 54 M2 VOLUME 14976 CÜFT 424 M3
                                                                                                                                                                                                                   HEATING LOAD

JAN 10 9PM

4F -16C
2F -17C
                                                                                              COOLING LOAD

JUL 31 7PM
96F 36C
60F 16C
                                      TIME
DRY-BULB TEMP
WET-BULB TEMP
                                                                                                                                                                                             2F -17C

SENSIBLE
(KBTU/H) ( KW )

-8.386 -2.456
-1.845 -0.540
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
-1.434 -0.420
0.000 0.000
0.319 0.094
4.062 1.190
-109.381 -32.035
-116.665 KBTU/H -34.168
202.543BTU/H.SQFT 638.513
                                                                     SENSIBLE LATENT
(KBTU/H) (KW) (KBTU/H) (KW)

2.592 0.759 0.000 0.000
0.733 0.215 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.258 0.076 0.000 0.000
0.422 0.124 0.000 0.000
0.422 0.124 0.000 0.000
0.422 0.124 0.000 0.000
0.598 2.038 0.000 0.000
0.5958 2.038 0.000 0.000
14.370 4.208 0.000 0.000
14.370 KBTU/H 4.208 KW
24.95BTU/H.SQFT 78.645 W / M2
            WALLS
ROOFS
GLASS CONDUCTION
GLASS SOLAR
            GLASS SOLAR
DOOR
INTERNAL SURFACES
UNDERGROUND SURFACES
COCCUPANTS TO SPACE
LIGHT TO SPACE
EQUIPMENT TO SPACE
PROCESS TO SPACE
INFILTRATION
            TOTAL LOAD TOTAL LOAD / AREA
                                                                                 NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR LOADS
2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION IN CONSIDERATION
EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DENVER, CO 80227 GEODSS SITE DOE EVALUATION TOWER 3
                                                                                                                                                                                                        DOE-2.1D 8/7/1995 15:8:11 LDL RUN 1
                                                                                                                                                                                                                         TRUTH OR CONSEQU, N
SPACE TOWER_3
                                                  MULTIPLIER 1.0 FLOOR MULTIPLIER 1.0 FLOOR AREA 576 SQFT 54 M2 VOLUME 14976 CUFT 424 M3
                                                                                             COOLING LOAD

JUL 31 7PM
96F 36C
60F 16C
                                                                                                                                                                                                                               HEATING LOAD
                                                                                                                                                                                                                  JAN 10 9PM
4F -16C
2F -17C
                                      TIME
DRY-BULB TEMP
WET-BULB TEMP
                                                                                                                                                                                                                SENSIBLE
(KBTU/H) ( KW )

-8.386 -2.456
-1.845 -0.540
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
-1.434 -0.420
0.000 0.000
0.319 0.094
4.062 1.190
0.000 0.000
-109.381 -32.035
                                                                      -8.386 -2.456
-1.845 -0.540
0.000 0.000
0.000 0.000
0.000 0.000
-1.434 -0.420
0.000 0.000
0.319 0.094
4.062 1.190
0.000 0.000
-109.381 -32.035
-116.665 KBTU/H -34.168
-32.543BTU/H.SQFT 638.513
             WALLS
ROOFS
GLASS CONDUCTION
GLASS SOLAR
DOOR
INTERNAL SURFACES
UNDERGROUND SURFACES
OCCUPANTS TO SPACE
LIGHT TO SPACE
EQUIPMENT TO SPACE
FROCESS TO SPACE
INFILTRATION
             PALLS
                                                                                                                                0.000 U...
0.000 U...
0.000 0.000
4.208 KW / M2
              TOTAL
TOTAL LOAD
TOTAL LOAD / AREA
                                                                                      NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR
LOADS
2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION
IN CONSIDERATION
```

.

DOE-2.1D 8/7/1995 15:8:11 LDL RUN 1 EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DENVER, CO 80227 GEODSS SITE DOE EVALUATION COMPUTERRM TRUTH OR CONSEQU, N SPACE COMPUTERRM 1.0 FLOOR MULTIPLIER 4037 SOFT 375 M2 36337 CUFT 1029 M3 MULTIPLIER FLOOR AREA VOLUME 1.0 COOLING LOAD

AUG 1 11PM

83F 28C
64F 18C HEATING LOAD TIME DRY-BULB TEMP WET-BULB TEMP SENSIBLE
(KBTU/H) (KW)

1.043 0.306
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
-0.007 -0.002
0.946 0.277
12.887 3.774
66.315 19.422
0.000 0.000
0.000 0.000 LATENT
(KBTU/H) (KW)

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.328 0.096
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000 WALLS
ROOFS
GLASS CONDUCTION
GLASS SOLAR
DOOR
INTERNAL SURFACES
UNDERGROUND SURFACES
OCCUPANTS TO SPACE
LIGHT TO SPACE
EQUIPMENT TO SPACE
FROCESS TO SPACE
INFILTRATION 0.328 23.873 63.647 81.185 23.777 81.513 KBTU/H 20.19BTU/H.SQFT 0.096 KW W / M2 0.000 0.000 KBTU/H 0.000BTU/H.SQFT 0.000 0.000 0.000 TOTAL LOAD TOTAL LOAD / AREA NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR LOADS
2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION IN CONSIDERATION EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D 8/7/1995 15: 8:11 LDL RUN 1
DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR CONSEQU, N
REPORT- LS-B SPACE PEAK LOAD COMPONENTS CONFPLENUM TRUTH OR CONSEQU, N SPACE CONFPLENUM 1.0 FLOOR MULTIPLIER 348 SOFT 32 M2 1879 CUFT 53 M3 MULTIPLIER FLOOR AREA VOLUME COOLING LOAD

JUL 13 3PM
86F 30C
61F 16C TIME DRY-BULB TEMP WET-BULB TEMP SENSIBLE (KBTU/H) (KBTU/H) 0.000 1.328 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 WALLS
ROOFS
GLASS CONDUCTION
GLASS SOLAR
DOOR
INTERNAL SURFACES
UNDERGROUND SURFACES
COCUPANTS TO SPACE
LIGHT TO SPACE
EQUIPMENT TO SPACE
EQUIPMENT TO SPACE
INFILTRATION 1.359 0.398 1.359 KBTU/H 3.90BTU/H.SQFT TOTAL LOAD TOTAL LOAD / AREA NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR LOADS
2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION IN CONSIDERATION

EMC ENGINEERS DENVER, CO REPORT- LS-B SPACE PEAK LOAD	INC. EZDOE - 80227 GEODSS COMPONENTS	ELITE SOFT	WARE DEVELOPMENT ALUATION COMPRMPLN	INC DOE-2.1D TRUTH OR C	8/ 7/1995 15: 8:11 LDL RUN 1 CONSEQU, N
COMPONDIN					
MULTIPLII FLOOR AI VOLUME	ER 1.0 REA 4037 SOFT 17765 CUFT	FLOOR PR 375 503	M2 M3	1.0	
	COOLIN	G LOAD		HEATING	******
TIME DRY-BULB TEMP WET-BULB TEMP	COOLIN JUL 13 86F 61F	3PM 30C 16C		JAN 11 -3F -4F	-19C -20C
	SENSIBLE (KBTU/H) (KW)	LATE! (KBTU/H)	NT (K₩)	SENSII (KBTU/H)	BLE (KW)
WALLS ROOFS	-0.011 -0.003 13.987 4.096	0.000	0.000	-1.328 -16.017 0.000	-0.389 -4.691 0.000
GLASS CONDUCTION GLASS SOLAR DOOR	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000
WALLS ROOFS GLASS CONDUCTION GLASS SOLAR DOOR INTERNAL SURFACES UNDERGROUND SURFACES OCCUPANTS TO SPACE LIGHT EQUIPMENT TO SPACE PROCESS TO SPACE INFILTRATION TOTAL TOTAL TOTAL LOAD TOTAL LOAD TOTAL LOAD	0.000 0.000 0.000 0.000 0.000 0.000	0.000	0.000	0.000 0.000 3.222	0.000 0.000 0.944
LIGHT TO SPACE EQUIPMENT TO SPACE PROCESS TO SPACE	3.222 0.944 0.000 0.000 0.000 0.000	0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000
INFILTRATION	0.000 0.000 17.198 5.037	0.000	0.000	-14.123 -14.123 KRTU/H	-4.136 -4.136 KW
TOTAL LOAD TOTAL LOAD / AREA	17.198 KBTU/H 4.26BTU/H.SQFT	13.429	W / M2	3.498BTU/H.SQFT	11.028 W / M2
	*		PACKTED VILLETUE	UPNTILATION AIR	
	* LOAD * 2)TIME * IN C	S S GIVEN IN ONSIDERATIO	STANDARD TIME FO	OR THE LOCATION	
			****		•
EMC ENGINEERS	INC. EZDOE -	ELITE SOFT SITE DOE EV	WARE DEVELOPMENT	INC DOE-2.1D	8/ 7/1995 15: 8:11 LDL RUN 1
EMC ENGINEERS DENVER, CO REPORT- LS-B SPACE PEAK LOAD	INC. EZDOE - 80227 GEODSS COMPONENTS	ELITE SOFT SITE DOE EV	WARE DEVELOPMENT ALUATION HALLPLENUM	T INC DOE-2.1D TRUTH OR	8/ 7/1995 15: 8:11 LDL RUN 1 CONSEQU, N
					8/ 7/1995 15: 8:11 LDL RUN 1 CONSEQU, N
SPACE HALLPLENUM MULTIPLI FLOOR A VOLUME	ER 1.0 REA 5286 SOFT 28542 CUFT	FLOOR M 491 808	RULTIPLIER M2 M3	1.0	
SPACE HALLPLENUM MULTIPLI FLOOR A VOLUME	ER 1.0 REA 5286 SOFT 28542 CUFT	FLOOR M 491 808	RULTIPLIER M2 M3	1.0	
SPACE HALLPLENUM MULTIPLI FLOOR A VOLUME TIME	ER 1.0 REA 5286 SOFT 28542 CUFT COOLIN JUL 13	FLOOR M 491 808 G LOAD	RULTIPLIER M2 M3	1.0 HEATING JAN 11 -3F -4F	LOAD 8AM -19C -20C
SPACE HALLPLENUM MULTIPLI FLOOR A VOLUME TIME	ER 1.0 REA 5286 SOFT 28542 CUFT COOLIN JUL 13	FLOOR M 491 808 G LOAD	RULTIPLIER M2 M3	1.0 HEATING JAN 11 -3F -4F SENSI (KBTU/H)	LOAD 8AM -19C -20C BLE (KW)
SPACE HALLPLENUM MULTIPLI FLOOR A VOLUME TIME	ER 1.0 REA 5286 SOFT 28542 CUFT COOLIN JUL 13	FLOOR M 491 808 G LOAD	RULTIPLIER M2 M3	1.0 HEATING JAN 11 -3F -4F SENSI (KBTU/H)	LOAD 8AM -19C -20C BLE (KW)
SPACE HALLPLENUM MULTIPLI FLOOR A VOLUME TIME	ER 1.0 REA 5286 SOFT 28542 CUFT COOLIN JUL 13	FLOOR M 491 808 G LOAD	RULTIPLIER M2 M3	1.0 HEATING JAN 11 -3F -4F SENSI (KBTU/H) -6.758 -22.992 0.000 0.000 0.000	LOAD 8AM -19C -20C BLE (KW) -1.979 -6.734 0.000 0.000 0.000
SPACE HALLPLENUM MULTIPLI FLOOR A VOLUME TIME	ER 1.0 REA 5286 SOFT 28542 CUFT COOLIN JUL 13	FLOOR M 491 808 G LOAD	RULTIPLIER M2 M3	1.0 HEATING JAN 11 -3F -4F SENSI (KBTU/H)6.758 -22.992 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	LOAD 8AM -19C -20C BLE (KW) -1.979 -6.734 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPACE HALLPLENUM MULTIPLI FLOG A VOLUME TIME DRY-BULB TEMP WET-BULB TE	ER 1.0 COOLIN TO THE PROPERTY OF THE PROPERTY	FLOOR M 491 808 G LOAD	RULTIPLIER M2 M3	1.0 HEATING JAN 11 -3F -4F SENSI (KBTU/H) -6.758 -22.992 0.000	IOAD
SPACE HALLPLENUM MULTIPLI FLOGR A VOLUME TIME DRY-BULB TEMP WET-BULB T	ER 1.0 REA 5286 SOFT 28542 CUFT COOLIN JUL 13	FLOOR M 491 491 31C 16C LATE (KBTU/H) 0.000	MITIPLIER M2 M3 M3 MT (KW) 0.000	1.0 HEATING JAN 11 -3F -4F SENSI (KBTU/H) -6.758 -22.992 0.000	LOAD 8AM -19C -20C BLE (KW) -1.979 -6.734 0.000
SPACE HALLPLENUM MULTIPLI FLOOR A VOLUME TIME DRY-BULB TEMP WET-BULB T	ER 1.0 COOLIN JUL 13 87F 61F SENSIBLE (KETU/H) (KW) 0.759 0.222 19.951 5.843 0.000 0	FLOOR M 491 808 G LOAD 4PM 31C 16C (KBTU/H) 0.000	MITIPLIER M2 M3 M1 (KW) 0.000	1.0 HEATING JAN 11 -3F -4F SENSI (KBTU/H) -6.758 -22.992 0.000	LOAD 8AM -19C -20C BLE (KW) -1.979 -6.734 0.000
SPACE HALLPLENUM MULTIPLI FLOGR A VOLUME TIME DRY-BULB TEMP WET-BULB T	ER 1.0 COOLIN JUL 13 87F 61F SENSIBLE (KETU/H) (KW) 0.759 0.222 19.951 5.843 0.000 0	FLOOR M 491 491 31C 16C LATE (KBTU/H) 0.000 0.00	MITIPLIER M2 M3 M3 MT (KM) 0.000	1.0 HEATING JAN 11 -3F -4F SENSI (KBTU/H) -6.758 -22.992 0.000	LOAD 8AM -19C -20C BLE (KW) -1.979 -6.734 0.000
SPACE HALLPLENUM MULTIPLI FLOGR A VOLUME TIME DRY-BULB TEMP WET-BULB TEMP WET-BULB TEMP WET-BULB TEMP WALLS ROOFS GLASS CONDUCTION GLASS SOLAR DOOR INTERNAL SURFACES UNDERGROUND SURFACES OCCUPANTS TO SPACE LIGHT TO SPACE EQUIPMENT TO SPACE EQUIPMENT TO SPACE INFILTRATION TOTAL TOTAL TOTAL TOTAL	ER 1.0 REA 2286 SOFI 28542 CUFT 28542 CUFT 387F 61F SENSIBLE (KETU/H) (KW) 0.759 0.222 19.951 5.843 0.000 0.	FLOOR M 491 491 31C 16C LATE (KETU/H) 0.000 0.00	MIT (KW)	1.0 HEATING JAN 11 -3F -4F SENSI (KBTU/H) -6.758 -22.992 0.000	LOAD 8AM -19C -20C BLE (KW) -1.979 -6.734 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -7.536 KW 15.347 W / M2

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC
DENVER. CO 80227 GEODSS SITE DOE EVALUATION
REPORT- LS-B SPACE PEAK LOAD COMPONENTS TOWER_2 DOE-2.1D 8/7/1995 15:8:11 LDL RUN 1 TRUTH OR CONSEQU, N SPACE TOWER_2 FLOOR MULTIPLIER
54 M2
424 M3 MULTIPLIER FLOOR AREA VOLUME 1.0 576 SOFT 14976 CUFT JAN 10 9PM COOLING LOAD JUL 31 7PM 96F 36C 60F 16C JAN 10 9PM 4F -16C 2F -17C TIME DRY-BULB TEMP WET-BULB TEMP SENSIBLE (KBTU/H) (K SIBLE (KW)
-2.456
-0.540
0.000
0.000
0.000
-0.420
0.000
0.000
1.190
0.000
-32.035 -8.386 -1.845 0.000 0.000 0.000 WALLS
ROOFS
GLASS CONDUCTION
GLASS SOLAR
DOOR
INTERNAL SURFACES
UNDERGROUND SURFACES
OCCUPANTS TO SPACE
LIGHT TO SPACE
EQUIPMENT TO SPACE
FORCESS TO SPACE
INFILTRATION 0.000 -1.434 0.000 0.319 4.062 0.000 -109.381 14.370 4.208 14.370 KBTU/H 24.95BTU/H.SQFT 0.000 4.208 78.645 -116.665 -34.168 -116.665 KBTU/H -34.168 202.543BTU/H.SQFT 638.513 0.000 KW W / M2 TOTAL LOAD TOTAL LOAD / AREA KW / M2 NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR LOADS 2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION IN CONSIDERATION EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC
DENVER, CO 80227 GEODSS SITE DOE EVALUATION
REPORT- LS-C BUILDING PEAK LOAD COMPONENTS DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1 TRUTH OR CONSEQU, N *** BUILDING *** FLOOR AREA VOLUME 11399 SOFT 1059 SOMT 126335 CUFT 3578 CUMT COOLING LOAD HEATING LOAD JAN 10 9PM 4F -16C 2F -17C AUG 1 7PM 94F 34C 65F 18C TIME DRY-BULB TEMP WET-BULB TEMP SENSIBLE
(KETU/H) (KW) (KETU/H)

12.638 3.701 0.000
2.142 0.627 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
-0.003 0.000 0.000
-0.083 -0.024 0.000
-0.083 -0.024 0.000
13.316 0.385 0.410
28.405 8.319 0.000
0.000 0.000 0.000
0.000 0.000 0.000
13.316 0.385 0.410
28.405 8.319 0.000
13.819 4.047 0.000
147.375 43.163 0.410
147.785 KETU/H 43.282
12.966TU/H.SQFT 40.871 2F -17C

SENSIBLE
(KBTU/H) (KW)

-25.157 -7.368
-5.536 -1.621
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
-4.301 -1.260
0.000 0.000
0.958 0.281
12.186 3.569
0.000 0.000
-328.143 -96.105
-349.994 -102.505 LATENT (KW) (KBTU/H)

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.000 0.000 WALLS
ROOFS
GLASS CONDUCTION
GLASS SOLAR
DOOR
INTERNAL SURFACES
UNDERGROUND SURFACES
COCUPANTS TO SPACE
LIGHT TO SPACE
EQUIPMENT TO SPACE
EQUIPMENT TO SPACE
FROCESS TO SPACE
INFILTRATION -349.994 KBTU/H -102.505 30.704BTU/H.SQFT 96.795 0.120 KW W /SQMT TOTAL KW W /SQMT TOTAL LOAD TOTAL LOAD / AREA NOTE 1) THE ABOVE LOADS EXCLUDE OUTSIDE VENTILATION AIR LOADS 2) TIMES GIVEN IN STANDARD TIME FOR THE LOCATION IN CONSIDERATION

	COOLING	C O	OLI DRY-	NG - ·	MAXIMUM COOLING	 HEATING		H E IME	ATI DRY-	WET-	MAXIMUM HEATING	E L ELEC- TRICAL	MAXIMUM ELEC
ONTH	ENERGY (MBTU)	OF MAX DY HR	BULB	BULB TEMP	LOAD (KBTU/HR)	ENERGY (MBTU)	OF I	MAX HR	BULB TEMP	BULB TEMP	LOAD (KBTU/HR)	ENERGY (KWH)	LOAD (KW)
AN EB AR PR AY UN UL UG	69.37014 63.04140 71.42878 71.72991 78.91193 86.18958 90.58653 91.05647	21 12 18 12 9 15 22 16 9 18 23 18 28 18 1 18	56.F 62.F 78.F 89.F 86.F 91.F 94.F	85.63.285.55 55.55 66.65	107.628 107.796 116.264 122.174 130.740 147.152 143.785 147.375	-35.625 -36.330 -34.220 -3.298 -0.771 -0.002 0.000 0.000	10 3 2 1 2	21 22 5 23 3 10	4.F 31.F 30.F 60.F 37.F 83.F	2.F 25.F 26.F 43.F 24.F 52.F	-349.994 -292.306 -255.733 -25.152 -18.115 -0.540 0.000 0.000	37827. 34170. 38070. 366889. 368811. 37705. 38070.	59.443 59.443 59.443 59.443 59.443 59.443 59.443
P T V	85.07023 77.88515 70.93912 70.90217	1 18 6 16 10 15 9 12	85.F 80.F 68.F 52.F	61.F 51.F 47.F 40.F	126.112 114.183 108.745	-2.154 -15.763 -29.420	15 19 30	24 5 23	43.F 34.F 29.F		-36.774 -127.152 -197.853	37705. 36567. 37827.	59.443 59.443 59.443
TAL	927.111 DATA FILE	1FROM P			147.375	-157.582					-349.994	445954.	59.44

EMC ENC DENVER, glob_hrly	INEERS INC. CO 80227 HOURLY-REPORT	EZDOE - ELITE SOFTWARE DEVELOPMENT INC GEODSS SITE DOE EVALUATION	DOE-2.1D 8/ 7/1995 15: 8:11 LDL RUN 1 TRUTH OR CONSEQU, N
GLOBAL COMMING THE PROPERTY STATES AND TEMP STATES AND TEMP STATES AND THE PROPERTY STATES AND THE PRO	#LOBAL HIND PEED NOTS (17)		
DENVER	INEERS INC. CO 80227 - HOURLY-REPORT	EZDOE - ELITE SOFTWARE DEVELOPMENT INC GEODSS SITE DOE EVALUATION	DOE-2.1D 8/7/1995 15:8:11 LDL RUN 1 TRUTH OR CONSEQU, N

MMODHH GLOBAL

GLOBAL

EMC DENVER, dup_glob_b	ENGINEERS INC. CO 80227 = HOURLY-REPORT	EZDOE - ELITE GEODSS SITE D	SOFTWARE DEVELOPMOE EVALUATION	ENT INC	DOE-2.1D 8/ 7/ TRUTH OR CONSEQU		: 8:11 IJ	OL RUN 1
GLOBAL DRY BU ABS TE R	GLOBAL LE WIND MP SPEED KNOTS 4) (17) .0 8.0 .0 5.0 .0 0.0 .0 10.0 .							
WARNING* **MARNING*** **WARNING*** **WARNING*** **WARNING*** **WARNING***	SYSTEM 1TOMER (CHECK COOLING-CAPACI' STEM CRUINT 2TOMER THE UT YOUR SETPOINT IS 0 SYSTEM 2TOMER (CHECK COOLING-CAPACI' 3TOMER THE UT YOUR SETPOINT IS 0 SYSTEM 3TOMER (CHECK COOLING-CAPACI' SYSTEM 3TOMER (CHECK COOLING-CAPACI' SYSTEM REGAHU (CHECK COOLING-CAPACI' CCHECK COOLING-CAPACI'	RETURN HUMIDITY FOOD MAY HAVE INADEOUT HAS ZERO OUTSIDE J RETURN HUMIDITY FOOD MAY HAVE INADEOUT RETURN HUMIDITY FOOD MAY HAVE INADEOUT PETURN HUMIDITY FOOD RETURN HUMIDITY FOOD MAY HAVE INADEOUT MAY HAVE INADEOUT MAY HAVE INADEOUT TY AND MIN-SUPPLY- TY AND MIN-SUPPLY- TY AND MIN-SUPPLY- THAS ZERO OUTSIDE J	R A COIL EXIT T = F BE HELD. F BE HELD. F BE HELD. FOR CONSISTENCY) AIR FOR DESIGN CAL R A COIL EXIT T = BE HELD. HATE COOLING CAPAB F FOR CONSISTENCY) R A COIL EXIT T = F BE HELD. JATE COOLING CAPAB I F FOR CONSISTENCY) JATE COOLING CAPAB I F FOR CONSISTENCY) JATE COOLING CAPAB I FOR CONSISTENCY) JATE COOLING CAPAB I FOR CONSISTENCY)	CULATION 53.7 IS 0.00 53.7 IS 0.00 1LITY 53.7 IS 0.00	090			
EMC DENVER, REPORT- SV-A	ENGINEERS INC. CO 80227 SYSTEM DESIGN PARAME	EZDOE - ELIT GEODSS SITE I	E SOFTWARE DEVELOP DOE EVALUATION 1TOWER	MENT INC	DOE-2.1D 8/7 TRUTH OR CONSEQ	/1995 15 U, N	5: 8:11 S	DL RUN 1
SYSTEI NAMI 1TOMER SUPPLY FAN (CFM) 2400.	FIEC DELTA-T	RETURN ELEC (CFM) (EM)	OUTSIDE DELTA-T AIR (F) RATIO 0.0 1.000	COOLING CAPACITY SI (KBTU/HR) 40.000	HEATING ENSIBLE CAPACITY (SHR) (KBTU/HR) 1.000 -166.707	COOLING EIR (BTU/BTU) 0.00	HEATING EIR (BTU/BTU) 0.00	
ZONI NAMI TOWER_1	SUPPLY E	XHAUST FAN FLOW (KW) 2400. 0.000	MINIMUM OUTSIDE FLOW AIR RATIO FLOW 1.000 2400.	CAPACITY S:	EXTRACTION ENSIBLE RATE (SHR) (KBTU/HR) 0.00 -0.33	HEATING CAPACITY (KBTU/HR) -168.48	ADDITION RATE (KBTU/HR) -134.78	MULTIPLIER 1.0

EMC DENVER, REPORT- SV-A	ENGINEER CO SYSTEM D	S INC 8022 ESIGN PARA	7 METERS	EZDOE - ELI	TE SOFTWARI DOE EVALUI CI	E DEVELOPM ATION RUINT	ENT INC	DOE-2 TRUTH	.1D 8/7	/1995 1 U, N	5: 8:11 8	SDL RUN 1
SYSTEM NAME CRUINT SUPPLY FAN (CFM) 43200.	MU ELEC (KW)	ALTITUDE LTIPLIER 1.200 DELTA-T (F) 0.8	RETURN FAN (CFM) 43200	ELEC (KW) 0.000	DELTA-T (F) 0.0	OUTSIDE AIR RATIO 0.000	COOLING CAPACITY (KBTU/HR) 978.600	SENSIBLE (SHR) 0.857	HEATING CAPACITY (KBTU/HR) -345.300	COOLING EIR (BTU/BTU) 0.00	HEATING EIR (BTU/BTU) 0.00	
ZONE NAME COMPUTERRM COMPRMPLN					MINIMIM	OUTSIDE AIR FLOW 0. 0.	COOLING CAPACITY (KBTU/HR) 0.00 0.00	SENSIBLE (SHR) 0.00 0.00	XTRACTION RATE (KBTU/HR) 387.05 0.00	HEATING CAPACITY (KBTU/HR) -2529.79 0.00	ADDITION RATE (KBTU/HR) -155.68 0.00	MULTIPLIER 1.0 1.0
EMC DENVER, REPORT- SV-A	ENGINEER CO SYSTEM D	S INC 8022 ESIGN PARA	7 AMETERS	EZDOE - ELI GEODSS SITE	TE SOFTWARI DOE EVALUI 21	E DEVELOPM ATION COWER	ENT INC	DOE-2 TRUTH	.1D 8/7	/1995 1 U, N	5: 8:11 8	GDL RUN 1
SYSTEM NAME 2TOWER SUPPLY FAN	MU ELEC	ALTITUDE ULTIPLIER 1.200 DELTA-T (F) 1.3	RETURN FAN	ELEC	DELTA-T	OUTSIDE AIR	COOLING CAPACITY	SENSIBLE (SHR) 1.000	HEATING CAPACITY	COOLING EIR (BTU/BTU)	HEATING EIR (BTU/BTU)	
2400.	0.815	SUPPLY FLOW 2400.	0.	0.000	0.0	1.000 OUTSIDE AIR FLOW 2400.	COOLING CAPACITY (KBTU/HR)	1.000 E SENSIBLE (SHR) 0.00	-166.707 XTRACTION RATE (KBTU/HR) -0.33	0.00 HEATING CAPACITY (KBTU/HR) -168.48	ADDITION RATE (KBTU/HR) -134.78	MULTIPLIER 1.0
EMC DENVER, REPORT- SV-A	ENGINEER CO SYSTEM D	S INC 8022 DESIGN PARA	7 AMETERS	EZDOE - ELI' GEODSS SITE	TE SOFTWARI DOE EVALUI	E DEVELOPM ATION TOWER	ENT INC	DOE-2 TRUTH	.1D 8/7	/1995] U, N	5: 8:11 \$	SDL RUN 1
SYSTEM NAME 3TOWER SUPPLY PAN	MU ELEC	ALTITUDE ULTIPLIER 1.200 DELTA-T	RETURN FAN	ELEC	DELTA-T	OUTSIDE AIR	COOLING CAPACITY	SENSIBLE (SHR) 1.000	HEATING CAPACITY	COOLING	HEATING EIR	
PAN (CFM) 2400. ZONE NAME				ELEC (KW) 0.000 FAN (KW) 0.000	(F) 0.0 MINIMUM FLOW RATIO 1.000	OUTSIDE AIR FLOW	COOLING CAPACITY (KBTU/HR)	SENSIBLE (SHR)	XTRACTION RATE (KBTU/HR)	HEATING CAPACITY (KBTU/HR)	ADDITION RATE (KBTU/HR)	MULTIPLIER
						2400.	0.00		-0.33	-168.48 /1995]	-134.78	1.0
EMC DENVER, REPORT- SV-A				GEODSS SITE	DOE EVALUE	ATION EGAHU		TRUTH	OR CONSEC	U, N		
SYSTEM NAME REGAHU SUPPLY FAN (CFM) 5724.	ELEC (KW) 2.333	LTIPLIER 1.200 DELTA-T (F) 1.5	RETURN FAN (CFM) 4228.	ELEC (KW) 0.000	DELTA-T (F) 0.0	OUTSIDE AIR RATIO 0.261	COOLING CAPACITY (KBTU/HR) 113.658	SENSIBLE (SHR) 0.899	HEATING CAPACITY (KBTU/HR) -76.817	COOLING EIR (BTU/BTU) 0.00	HEATING EIR (BTU/BTU) 0.00	
ZONE NAME HALLS HALLPLENUM			EXHAUST FLOW 1496. 0.	(KW) 0.000	FLOW RATIO	AIR	(KBTU/HR)	SENSIBLE (SHR) 0.00	RATE	HEATING CAPACITY (KBTU/HR) -346.17 0.00	RATE (KBTU/HR)	MULTIPLIER 1.0 1.0
EMC DENVER, REPORT- SV-A	ENGINEER CO SYSTEM I	RS INC 8022 DESIGN PARA	7 AMETERS	EZDOE - ELI GEODSS SITE	TE SOFTWARI DOE EVALUI CO	E DEVELOPM ATION ONFRMAHU	ENT INC	DOE-2 TRUTH	.1D 8/7	/1995 J yu, N	5: 8:11	SDL RUN 1
SYSTEM NAME CONFRMAHU SUPPLY FAN (CFM) 960.	MU ELEC	ALTITUDE ILTIPLIER 1.200 DELTA-T (F) 2.0	RETURN FAN (CFM) 960.	ELEC (KW)	DELTA-T (F) 0.0	OUTSIDE AIR RATIO 0.000	COOLING CAPACITY (KBTU/HR) 10.000	SENSIBLE (SHR) 0.800	HEATING CAPACITY (KBTU/HR) 0.000	COOLING EIR (BTU/BTU) 0.00	(BTU/BTU)	
ZONE NAME CONFERENCE CONFFLENUM		SUPPLY FLOW 960. 0.	EXHAUST FLOW 0.	FAN (KW)		OUTSIDE AIR	COOLING CAPACITY (KBTU/HR)	SENSIBLE (SHR) 0.00	MULTINGELA	HEATING	ADDITION	MULTIPLIER 1.0 1.0

E D REPORT	MC ENVER, - SS-A	ENGINEEN CO SYSTEM I	RS MONTH	INC. 80227 LY LOAD	s summ	EZDOE GEODS: IARY FO	- ELITE S SITE DO	SOFTWARE DOE EVALUATI	EVELOPMENT ON ER	INC	DOE-2.1D TRUTH OR	8/ 7/1995 CONSEQU, N	15: 8:11	SDL RUN 1
MONTH	COOL ENE (MB	RGY OF	- C O TIME MAX HR	O L I : DRY- BULB TEMP				HEAT ENE (MB	ING TIR RGY OF M TU) DY	HEATII ME DRY- AX BULB HR TEMP		MAXIMUM HEATING LOAD (KBTU/HR)	ELEC- TRICAL ENERGY (KWH)	
JAN PEB MAR APR MAY JUN JUN JUN JUN JUN JUN JUN JUN JUN JUN	0.00 0.00 0.00 8.67 14.27 124.99 23.42 18.79 0.23 0.00	000 000 732 9675 23 347 1 665 22 902 13 281 1	18 15 18	90.F 98.F	54.FF 53.FF 63.FF 667.FF 60.FF 57.FF		0.000 0.000 46.677 45.304 57.992 62.778 53.562 45.225 38.099 26.300 0.000		000 000 000 000 000 000			0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2291. 2069. 2291. 2784. 2897. 2897. 2897. 2604. 2897. 2237.	6.433 6.433
OTAL AX	121.						62.778	0.	000			0.000	31159.	6.433
REPORT	- SS-C	ENGINEER CO SYSTEM N	MUNITH	שאטאו זי	MOOKS	FOR	- ELITE S SITE DO	SOFTWARE DE EVALUATION	EVELOPMENT ON ER	INC	DOE-2.1D	8/ 7/1995 CONSEQU, N	15: 8:11	SDL RUN 1
ONTH (HOURS COOLING LOAD	HOURS HEATIN LOAD	S CO	HOURS	NT T H	OURS	HOURS HEATIN AVAIL	HOURS		HOURS FANS N CYCLE OF	HOURS	HOURS FLOATING	PEAK (KBTU/HR)	LECTRIC OAD AT OOLING PEAK (KW)
IAN TEB HAR LPR HUN TUL HUG HOT HOT HOT HOT HOT HOT HOT HOT HOT HOT	0 0 0 498 621 713 744 744 714 507 14			000000000000		744 672 744 222 123 7 0 6 237 704		0 68 0 66 0 71 0 74 0 74 0 72 0	0 0 6 696 7 744 5 720 4 744 4 744 0 720 744 4 24	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 198 123 7 0 0 6 237 10	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	4.388 4.388 4.388 5.203 5.203 5.203 5.203 5.203 5.203 5.203 5.203 4.388
E	MC	ENGINEER CO SPACE TI		INC.		4205 EZDOE GEODSS	- ELITE S SITE DO		EVELOPMENT ON	O INC		581 8/ 7/1995 CONSEQU, N	15: 8:11	SDL RUN 1
	ALL HOURS	E R A G				TEM ON FA		AVERAGE TO BETWEEN OUTDOOR& ROOM AIR ALL HOURS (F)	BETWEEN	OUTDOORS ROOM AIR	BETWEEN		reen were	IDITY RATIO DIFFERENCE BETWEEN OUTDOOR AND ROOM AIR .OR MULT.
IONTH TEB GAR APR APR TOLL AUG SEP OCT OCT OCT OCT OCT OCT OCT OCT OCT OCT	(F) 44.6661 551.99 67.536 67.536 64.79 57.34 57.021	59.77 62.91 67.33 67.53 66.03 64.84 59.85	7 1 3 3 4	· /	0. 0. 57. 67. 66. 64. 57.	00 00 00 48 91 28 53	44.72 48.66 53.36 62.90 0.00 0.00 0.00	-7.83 -4.68 -3.10 2.48 5.30 10.48 10.72 7.62 1.41 -8.88	0.00 0.00 0.00 2.58 5.30 10.48 10.72 9.02	-7.83 -4.68 -3.10 -0.45 0.00 0.00 0.00 0.00 0.00	,	173 228 321 332 280 242 159	. 37 . 91 . 24 66 . 38 . 87 . 87	-0.00508 -0.00527 -0.00470 -0.00015 0.00001 0.00001 0.00011 0.00022 0.00004 0.00004 0.000017 0.00021
UNNUAL	57.99	64.47	7	0.00	63.	18	50.64	1.10	6.73	-6.87	0.00	3086	. 05	-0.00118
EPORT	MC ENVER,	TEMPERA:	TURE S	SCATTER	PLOT	LIOME	₹	FOR TOWE	K 1		IKUIN OK	8/ 7/1995 CONSEQU, N	15: 8:11	SDL RUN 1
	ABOVE 81-85 76-80 71-75 66-75	HOUR 85	1AM 0 0 0	2 3 0 0 0 0 0 0 3 0	4	TOTAL 1 5 6 0 0 0 0 0 0	OURS AT 0 0 0 0 0 0 0 1	TEMPERATURI 9 10 11 0 0 0 0 0 0 0 0 3 7 3	E LEVEL ANI 12 1PM 0 0 0 0 0 0 0 0 0 1 21 40	2 3 4 0 0 0 0 0 0 1 1 1 85 62 83	5 6 0 0 0 0 1 3 63 68		71 58 52	TOTAL 0 0 7 602 1521

E D REPORT	MC DENVER, S-SS-A	ENGINEERS CO SYSTEM MC	S INC. 80227 ONTHLY LOAD	EZDOE GEODS S SUMMARY FO	- ELITE S S SITE DOE	OFTWARE DEV EVALUATION CRUINT	ELOPMENT I	NC	DOE-2.1D TRUTH OR (8/ 7/1995 CONSEQU, N	15: 8:11	SDL RUN 1
40мтн	COOLI ENER (MBT	NG T	IME DRY-	NG WET- BULB TEMP (K	MAXIMUM COOLING LOAD BTU/HR)	HEATIN ENERG (MBTU	G TIME Y OF MAX) DY HR	DRY- N BULB I TEMP	G WET- BULB TEMP (I	MAXIMUM HEATING LOAD (BTU/HR)	E L ELEC- TRICAL ENERGY (KWH)	E C MAXIMUM ELEC LOAD (KW)
IAN FEB GAR APR IAY IUL AUG SEP SCT ROV SEC	217.589 196.189 217.122 210.484 217.777 211.184 218.161 217.556 211.651 217.997 210.651 217.305	180 14 157 27 779 29 166 22 84 16 96 5 118 23 114 10 222 6 87 22 15	8 51.F 7 60.F 3 60.F	29.F 34.F 45.F 61.F 60.F 42.F 42.F 321.F	295.765 294.231 294.359 295.580 295.134 296.336 296.612 297.234 295.759 295.569	-120.25 -131.74 -125.64 -128.49 -122.63 -125.92 -123.52 -123.52	6 2 9 1 8 2 24 11 1 7 25 11 27 10 5 20 9 1 22 10 16 11	51.F 48.F 61.F 78.F 71.F 69.F 46.F	10.F 35.F 38.F 43.F 31.F 53.F 53.F 53.F	187.717 182.704 182.082 178.955 173.556 173.166 174.459 175.570 179.452 183.868 185.580	31626. 28566. 31626. 30606. 31626. 31626. 31626.	42.509 42.509 42.509 42.509 42.509 42.509 42.509 42.509 42.509
IAX			S INC. 80227 ONTHLY LOAD	EZDOE GEODS HOURS FOR	297.234 - ELITE S S SITE DOE	OFTWARE DEV EVALUATION CRUINT	ELOPMENT I	nc				
			HOURS	N U M	BER C	F HOU	rs	HOURS		HOURS FLOATING WHEN	COINCIDENT HEATING E LOAD AT L	*****
IAN TEB TAR TAP TAY TUN TUL TUL TUL TUL TUL TUL TUL TUL TUL TUL	744 672 744 720 744 720 744 720 744 720 744	744 672 744 720 744 720 744 720 744 720 744	744 720 744 720 744 744 720	000000000000000000000000000000000000000	744 672 744 720 744 720 744 720 744 720	672 744 720 744 720 744 744 720 744 720	720 744 720 744 744 720 744 720 744	000000000000000000000000000000000000000		000000000000000000000000000000000000000	-183.958 -180.864 -181.009 -178.922 -174.995 -173.326 -171.898 -173.186 -174.287 -175.213 -183.868 -184.895	42.509 42.509 42.509 42.509 42.509 42.509 42.509 42.509 42.509 42.509 42.509
E	EMC	ENGINEER	S INC. 80227	EZDOE GEODS	- ELITE S S SITE DOE					0 8/7/1995 CONSEQU, N	15: 8:11	SDL RUN
	ALL.	COOLING	E SPA	FAN ON I	AN OFF	AVERAGE TEM BETWEEN OUTDOOR& ROOM AIR ALL HOUTES	PERATURE D BETWEEN OUTDOOR& ROOM AIR FAN ON	DIFFERENCE BETWEEN OUTDOOR& ROOM AIR FAN OFF	SUMMED 'BETWEEN OUTDOOR ROOM AII HEATING	TEMP DIFFER BETW COUTD R ROOM ALL HOUR	ENCE EEN HUP OOR& AIR S) (FRAC	IDITY RATI DIFFERENCE BETWEEN OUTDOOR AN
MONTH JAN FEB HAR APR HAY JUN JUL AUG SEP OCT MOV DEC	(F) 67.31 67.90 68.38 69.21 69.75 70.53 70.77 70.19 69.16 68.20 67.55	HOURS (F) 67.31 67.90 68.38 69.21 69.75 70.57 70.57 70.19 68.20	67.31 67.90 68.38 69.75 70.53 70.77 70.57 70.19 69.16 68.20 67.55	67.31 67.90 68.38 69.21 70.53 70.57 70.57 70.19 69.16 68.20 67.55	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-30.42 -23.92	-30.42 -23.92 -18.12 -9.07 -2.53 7.23 7.48 4.48 2.21 -10.41 -20.07 -27.99	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	942.93 670.83 572.24 360.75 282.73 305.93 221.80 231.80 231.80 604.96 867.60	942 670 572 360 282 305 278 221 231 380 604	.93 .24 .75 .93 .23 .80 .14 .02	OR MULT. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	L 69.13 EMC DENVER, T- SS-O	69.13 ENGINEER CO TEMPERAT	S INC.	69.13 EZDOI GEODE	: - ELITE S S SITE DOE	SOFTWARE DEVELOPMENT OF COMPUTE	/ELOPMENT I	INC	DOE-2.1D			
	ABOVE 81-85 76-80 71-75 66-70	HOUR 85	1AM 2 3	TOTAL 4 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 365 365 365	HOURS AT 1	PEMPERATURE 9 10 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LEVEL AND 12 1PM 2 0 0 0 0 0 0 365 365 36	0 0 0	0 0 0 0 0 0 0 0 365 365 3	0 0 0	10 11 12 0 0 0 0 0 0 0 0 0 0 365 365 365	8760

E	MC ENVER,	ENGINEERS CO	INC. 80227 F SCATTER	EZDO GEOD	E - ELITE S SS SITE DOE	OFTWARE DEV EVALUATION FOR COMPRM	ELOPMENT IN	c :	DOE-2.1D	8/ 7/1995 DNSEQU, N	15: 8:11	SDL RUN 1
REPORT	ABOVE	HOUR 1	AM 2 3	TOTAL 4 5 6	HOURS AT T	EMPERATURE 9 10 11	LEVEL AND T 12 1PM 2	3 4		8 9 10 0 0 0 0 0 0		TOTAL
	76-80 71-75 66-70 61-65 BELOW	15	9 29 30	30 33 3	5 35 35	35 33 31	26 24 20	20 16	17 21 23	0 0 0 0 0 0 0 0 2 46 38 34 1 146 153 154 1 150 151 150 3 23 27 0 0 0 0	28 29 0 0	880 3584 3644 652 0
E	MC ENVER,	ENGINEERS CO	INC. 80227	EZDO GEOD	E - ELITE S	OFTWARE DEV EVALUATION 2TOWER	ELOPMENT IN	Č i	DOE-2.1D TRUTH OR CO	8/ 7/1995 DNSEQU, N	15: 8:11	SDL RUN 1
	COOL	C ING TIM RGY OF MA	OOLINE DRY-	I G	MAXIMUM		H E			MUMIXA	- E L ELEC- TRICAL ENERGY (KWH)	E C MAXIMUM ELEC LOAD (KW)
MONTH JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	(MB' 0.00 0.00 0.00 8.67: 14.27: 22.71: 24.99 23.42 18.79 8.20 0.23	000 000 000 000 692 22 1 732 9 1 675 23 1 347 1 1 665 22 1 902 13 1 2284 7 1	5 91.F 8 90.F 5 98.F	54.F 53.F 63.F 60.F 60.F 57.F 48.F	0.000 0.000 0.000 46.677 45.304 57.992 62.778 53.562 45.225 38.099 26.300 0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0			0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2291. 2069. 2291. 2784. 2897. 2804. 2897. 2897. 2897. 2291.	5.618 5.618 6.433 6.433 6.433 6.433 6.433 6.433 6.433 6.433
TOTAL MAX E REPORT	MC ENVER,		INC. 80227 THLY LOAD	EZDO GEOD HOURS FOR	62.778 E - ELITE S	0.00 OFTWARE DEV EVALUATION 2TOWER		c	DOE-2.1D TRUTH OR CO	0.000 8/ 7/1995 DNSEQU, N		6.433 SDL RUN 1
MONTH	HOURS COOLING LOAD	HOURS HEATING LOAD	HOURS	int.	BER C HOURS HEATING G AVAIL.	HOURS	HOURS	HOURS	HOURS I	FLOATING LOAD THEN COOL FANS ON PER	ING C	LOADS LECTRIC DAD AT COOLING PEAK (KW)
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0 0 498 621 713 744 714 507 14 507	0 0 0	000000000000000000000000000000000000000			0 686 667 715 744 744 720 744 24			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	4.388 4.388 5.203 5.203 5.203 5.203 5.203 5.203 5.203 5.203 4.388
E D REPORT	IMC DENVER, I- SS-K	ENGINEERS CO SPACE TEME	EKATUKE SC	ALILLIAN I	E - ELITE S SS SITE DOB	OFTWARE DEV EVALUATION 2TOWER			DOE-2.1D TRUTH OR CO		15: 8:11	SDL RUN 1
MANAGE	ALL HOURS (F)	E R A G E COOLING HOURS (F)	S P A C	FAN ON	FAN OFF	OUTDOOR& ROOM AIR ALL	BETWEEN OUTDOOR& ROOM AIR FAN ON	FFERENCE BETWEEN OUTDOOR& ROOM AIR FAN OFF HOURS (F)	SUMMED TI BETWEEN OUTDOOR& ROOM AIR HEATING HOURS (F)	EMP DIFFERENCE BETWEEN OUTDOOR ROOM ALL HOURS (F)	HUM R	IDITY RATIO DIFFERENCE BETWEEN OUTDOOR AND ROOM AIR .OR MULT.)
MONTH JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	44.72 48.66 53.366 57.28 67.28 67.28 67.28 67.34 64.79 57.34	59.77 62.91 67.30 67.53 66.03 64.84 59.89 57.83	(.,	0.00 0.00 0.00 57.48 61.91 67.28 67.53 66.03 64.79 57.34 54.98 0.00	44.72 48.66 53.36 62.90 0.00 0.00 0.00 0.00 0.00 0.00 57.07		0.00 0.00 0.00 2.58 5.30 10.48 10.72 9.02 7.62 1.41 1.85	-7.83 -4.68 -3.10 -0.45 0.00 0.00 0.00 0.00 0.00 0.00		173.37 228.91 321.24 332.66 280.38 242.87 159.87 314.89		-0.00508 -0.00527 -0.00470 -0.00015 0.000001 0.00001 0.00001 0.00004 0.00000 0.000017
	57.99	64.47	0.00	63.18	50.64	1.10	6.73	-6.87	0.00	3086.05		-0.00118

E D REPORT	MC ENVER, - SS-O	ENGINEERS CO TEMPERATU	ING 802 RE SCATT	C. 27 ER PLOT					ELOPMENT	INC			8/ 7			15: 8	8:11	SDL RUN 1
	ABOVE 81-85 76-80 71-75 66-70 61-65 BELOW	85	1AM 2 : 0 0 0 0 0 0 0 0 4 3 3 9 2 06 105 1 61 67 1 5 1	0 0 0 0 0 0 0 0 27 23 14 110 1	5 6 0 0 0 0 0 0 0 0 21 10 115 76 78 128	7 8 0 0 0 0 0 0 33 45 88 7 93 93	9 1 0 0 0 0 1 3 5 74 7 67	10 11 0 0 0 0 0 0 7 31 93 96 56 45 58 42	0 0 0 0 21 40 100 101 49 39	0 0	0 (0 0 3 6B 78 31 34	0 0 0 0 45 32 79 75 46 62	0 0 0 0 0 0 2 20 77 2 68 49	0 0 0 14 71 78 51	88 56	0 0 0 8 52 95 59	1641
E D REPORT	MC ENVER, - SS-A	ENGINEERS CO SYSTEM MC	INC 802: NTHLY LO	C. 27 ADS SUM	EZDOE GEODS MARY FO	- ELITI S SITE I		3 TOWER	ELOPMENT		DOI	7TH OR	8/ 7	7/199! OU, N	5	15: 4	8:11	SDL RUN 1
MONTH	COOL:	RGY OF M	ME DDV.	ING- WET- BBULB PTEMP		MAXIMUM COOLING LOAD BTU/HR)		HEATIN ENERG (MBTU	I IG TII SY OF M	IEAT ME DRY NX BUL MR TEM	ING WET BULL		MAXIN HEATI I.C (KBTU/I	NUM ING DAD IR)	-	ELI TRIC ENEI (KI	ELI EC- CAL RGY WH)	E C MAXIMUM ELEC LOAD (KW)
JAN FEB MAR APR MAY JUL AUG SEP OCT NOV DEC	0.000 0.000 0.000 8.677 14.27 22.71(24.99) 23.42(18.79) 8.200 0.23(0.000	000 000 592 22 732 9 675 23 347 1 665 22 902 13 284 7 611 1	18 100.1	P 60.F		0.000 0.000 46.677 45.304 57.992 62.778 53.562 45.225 38.099 26.300 0.000		0.00 0.00 0.00 0.00 0.00 0.00 0.00	00 00 00 00 00 00 00 00 00 00			-	0.0 0.0 0.0 0.0 0.0 0.0	000	_	200 227 227 288 288 288 288 288 288 288 288	69. 91. 84. 97. 04. 97. 97. 97. 937.	5.618 5.618 6.433 6.433 6.433 6.433 6.433 6.433 5.618
TOTAL MAX	121.					62.778								000				6.433
E D REPORT	MC ENVER, - SS-C	ENGINEERS CO SYSTEM MC	IN 802: NTHLY LO	C. 27 AD HOUR	EZDOE GEODS S FOR	- ELIT S SITE	SOFTI						6/ CONSE	7/199 QU, N	5	15:	8:11	SDL RUN 1
	HOURS			S DENT EAT		BER HOUI HEAT	OF RS		JRS		RS I	 HOURS NIGHT	HOUR!	S FING	LOAI COOI	OINCII	DENT I	SDL RUN 1 LOADS ECTRIC AD AT OLING PEAK (KW)
	HOURS	HOURS HEATING	HOUR. COINCII: COOL-H LOAD	DENT EAT F	N U M HOURS LOATING 744 672 744 222 123 7 0 0 6 237 704	BER HOU	OF RS	HOURS COOLING	JRS HOURS FANS OF	HOU FAN CYCLE	RS I	 HOURS NIGHT	HOURS FLOAT WHEN FANS	ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CC HEAT LOAI COOI (KB*	OINCII TING D AT LING	DENT :	LOADS ECTRIC AD AT OLING PEAK
MONTH JAN FEB MAR APR MAY JUL AUG SEP OCT OCT ODC ANNUAL	HOURS COOLING LOAD 0 0 0 498 6213 744 714 714 714 714 714 714 714 714 714	HOURS HEATING LOAD	HOUR. COINCII COOL-H LOAD	SEAT F	N U M HOURS LOATING 672 744 672 744 222 123 7 0 0 6 237 706 744 4205	BER HOUL HEAT AVA	OF RS RS IL. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H O T HOURS COOLING AVAIL. 0 0 0 686 6677 715 744 720 744 224 5044	HOURS FANS OF TANS OF	HOUD FAN	RS 1 S N VI	HOURS NIGHT ENTING 0 0 0 0 0 0 0 0	HOURS FLOW WHEN FANS	S FING ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CC HEAT LOAI COO! PEJ (KBT	DINCI TING AT LING AK TU/HR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DENT ELL LO CO	LOADS BCTRIC AD AT OLING FEAK (KW) 4.388 4.388 5.203 5.203 5.203 5.203 5.203 5.203 5.203 4.388
MONTH JAN FEB MAR APR MAY JUL AUG SEP OCT OCT ODC ANNUAL	HOURS COOLING LOAD 0 0 0 498 6213 744 714 714 714 714 714 714 714 714 714	HOURS HEATING LOAD	HOUR COINCII COOL-H LOAD	S DENT F 0 0 0 0 0 0 0 0 0	N U M HOURS LOATING 744 672 744 222 123 7 7 7 0 0 6 237 7 706 744 4205	BER HOUL HEAT AVA	OF RS ING 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HOURS COOLING AVAIL. 0 0 0 0 686 6677 715 744 744 744 744 744 744 744 744 744 74	HOURS FANS OF TANS OF	HOUD FAN CYCLE	RS 1 1 1 1 1 1 1 1 1	HOURS VIGHT ENTING 0 0 0 0 0 0 0 0 0 0 0 0	HOURI FLOAT WHEN FANS	STING ON 0 0 0 0 998 23 7 0 0 0 6 6 6 7 7/199	CCOO	DINCII TING D AT LING AK C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DENT ELL LO CO	LOADS BCTRIC AD AT OULING FEAK (KW) 4.388 4.388 5.203 5.203 5.203 5.203 5.203 5.203 5.203 4.388
MONTH JAN FEB MAR MAPR MAPR MAY MAY MAY MOO OCT NOV DEC ANNUAL	HOURS COOLING 10AD 0 0 498 621 713 744 714 714 714 0 4555	HOURS HEATING 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HOUR COINCII COOL-H LOAD	S DENT FOOD OF THE PROPERTY OF	N U M HOURS LOATING 744 672 724 222 123 7 7 0 0 6 237 706 744 4205 EZDOE GEODS Y	BER HOUL HEAT AVA	O F RS ING 0 0 0 0 0 0 0 0 0 0 0 0 0 AVE BETT OUT ROOD ALL HOU	HOURS COOLING O O O 686 686 667 715 744 720 744 24 0 5044 WARE DETAILUATION 3 TOMES RAGE TER MEEN MERN ERN ERN ERN ERN ERN ERN ERN ERN ERN	HOURS FANS OF TANS OF	HOU FAN CYCLE	RS ISON VI	HOURS VIGHT ENTING 0 0 0 0 0 0 0 0 0 0 0 0	HOURIFICATION HO	STING ON 0 0 0 0 998 37 7 0 0 0 6 6 7 7 199 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CCO HEAT LOAR COOD (KB'	DINCII TING D AT LING D AT TU/HR U .000 0 0 .000 0 0 0 0	DENT : ELI IOCCO	(ADS
MONTH JAN FEB MAR APR MAY JUL AUG SEP OCT OCT ODC ANNUAL	HOURS COOLING LOAD 0 0 498 6213 744 714 714 714 707 10 4555	HOURS HEATING O O O O O O O O O O O O O O O O O O O	HOUR. COINCII; COOL-H LOAD INTERPRETATIVE S P HEATIN HOURS	SDENT F. 00 00 00 00 00 00 00 00 00 00 00 00 00	N U M HOURS LOATING 744 672 744 222 123 7 0 0 6 237 706 744 4205 EZDOE GEODS Y T E M ON F RS H	BER HOULHEAT AVA - ELIT S SITE	O F RS ING O O O O O O O O O O O O O O O O O O O	HOURS COOLING 0 0 0 686 667 715 744 720 744 724 24 24 31 00 3TOMEI RAGE TER WEEN MEN MEN MEN MEN MEN MEN MEN MEN MEN	HOURS FANS OF TANS OF	HOU FAN CYCLE	RS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HOURS NIGHT ENTING 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HOURIFICATION HO	TING ON ON ON ON ON ON ON ON ON ON ON ON ON	CCO HEAT LOAR COOD (KB'	DINCII TING DING DING DING DING O.000 O.00	DENT : ELI IOCCO	LOADS BCTRIC AD AT OLING PEAK (KW) 4.388 4.388 5.203 5.203 5.203 5.203 5.203 5.203 5.203 5.203 5.203 5.203 5.203

EN DI REPORT	MC ENVER, - SS-0	ENGINEERS CO TEMPERATUR	INC. 80227 E SCATTER PLOT	EZDOE - EI GEODSS SI 3TOWER	ITE SOF	TWARE DEVE VALUATION OR TOWER_3	ELOPMENT IN	o o	OE-2.1D 8/	7/1995 15: QU, N	8:11 SDL RUN 1
	ABOVE 81-85 76-80 71-75 61-65 BELOW	HOUR 1 85	AM 2 3 4 	TOTAL HOURS 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 21 10 33	S AT TEM 8 9 0 0 0 0 1 3 45 74 77 67 91 70	10 11 1 10 11 1 10 0 0 0 0 0 0 0 0 0 0 0 1 7 31 1 93 96 1 7 56 45	DEVEL AND T 12 1PM 2 0 0 0 0 0 0 0 0 0 121 40 85 100 101 73 49 39 30 44 34 26	TIME OF DAY	5 6 7 8 0 0 0 0 0 0 0 0 1 3 0 63 68 45 3 86 78 79 7 35 31 46 6 29 34 44 4	9 10 11 0 0 0 0 0 0 0 0 0 0 0 0 2 20 14 12 5 77 71 58	12 TOTAL 10 0 0 0 10 0 0 7 2 8 602 3 52 1521 3 95 1641 3 55 1365
EP Di REPORT-	MC ENVER, - SS-A	ENGINEERS CO SYSTEM MON	INC. 80227 THLY LOADS SU	EZDOE - E GEODSS SI MARY FOR	LITE SOF	TWARE DEVI	ELOPMENT IN	ic r	OE-2.1D 8/	7/1995 15 QU, N	: 8:11 SDL RUN 1
MONTH	COOL:	ING TIM	OOLING BULB BULL TEMP TEMP	MAXII COOL LA KBTU/	TUM ING DAD IR)			DRY- WE	MAXI T- HEAT LB L MP (KBTU/	MUM I ING TI OAD EI HR)	-ELEC- MAXIMUM RICAL ELEC HERGY LOAD (KWH) (KW) 3170. 36.616
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.01 0.31; 2.84; 8.60; 17.97; 31.52; 34.38; 32.51; 26.14; 9.68; 1.87; 0.00;	148 7 1 244 18 1 964 9 1 703 22 1 717 9 1 359 23 1 252 1 1 456 1 1 971 7 1 308 10 1	66 F 46. 78 F 56. 59 F 56. 90 F 53. 5 98 F 63. 6 97 F 65. 6 97 F 65. 6 91 F 63. 6 85 F 57.	21. 35. 61. 79.	82 66	-19.195 -9.587 -5.525 -0.162 -0.117 0.000 0.000 0.000 -0.466 -5.596	3 13 7 2 3 7 7 2 6	-4.F -5 25.F 21 27.F 20 41.F 35 34.F 22 33.F 26 25.F 21 21.F 18	F -48. -44. -13. -15. 0. 0. 0.	643 647 9919 906 000 000 000 000 993 931 820 1	9630 24.635 9410. 23.701 9435. 14.841 7583. 16.018 7592. 14.178 7427. 14.178 7388. 14.178 7388. 14.176 7563. 17.664 8505. 24.470 1789. 24.852
TOTAL MAX	165.	 887		81.		-55.124	1		-77.		36.616
REPORT	HOURS		HOURS COINCIDENT	- NUMBE:		F HOURS	RS	HOURS	HOUR	COIN S HEATIN TING LOAD A	G COOLING PEAK
JAN FEB MAR APR JUL JUL AUG SEP OCTI NOV DEC	34 232 478 669 720 744 718 529 163 7	0 71 332 609	0	96 138 196 205 59 0 0 2 144 225 128	744 672 744 720 744 720 744 720 744 720 744	685	744 672 744 720 744 720 744 720 744 720 744 720 744	000000000000000000000000000000000000000	000000000000000000000000000000000000000	96 0.0 38 0.0 96 0.0 05 0.0 59 0.0 0 0.0 0 0.0 0 0.0 2 0.0 44 0.0 228 0.0	00 14.178 00 14.178 00 14.178 00 14.178 00 14.178 00 14.178 00 14.178 00 14.178 00 14.178
E D REPORT	MC ENVER, - SS-K	ENGINEERS CO SPACE TEMI	INC. 80227 PERATURE SUMMA	EZDOE - E GEODSS SI RY	LITE SOI TE DOE	REGAHU	ELOPMENT II	NC 1	DOE-2.1D 8/	7/1995 15	: 8:11 SDL RUN 1
***************************************			S P A C E HEATING FA HOURS HO (F) (F		B) O)	ETWEEN UTDOOR& OOM AIR	BETWEEN OUTDOOR& ROOM AIR FAN ON HOURS (F)	OUTDOOR& ROOM AIR FAN OFF HOURS (F)	SUMMED TEMP BETWEEN OUTDOOR& ROOM AIR HEATING HOURS (F)	DIFFERENCE BETWEEN OUTDOOR& ROOM AIR ALL HOURS (F)	HUMIDITY RATIO DIFFERENCE BETWEEN OUTDOOR AND ROOM AIR (FRAC.OR MULT.)
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	(F) 66.18 67.42 68.81 70.95 73.71 74.03 70.87 70.87 66.31	67.66 69.73 70.42 71.55 72.38 73.71 74.03 73.72	65.94 67.03 67.56 69.14 69.22 7 7 68.79 67.25	7	00 00 00 00 00 00 00	-29.29 -23.45 -18.55 -10.82 -4.93 -4.05 4.22 -1.33	-29.29 -23.45 -18.55 -10.82 -4.93 4.05 4.22 1.33 -0.68 -12.12 -20.25 -27.15	0.00 0.00 0.00 0.00	849.78 560.53 354.10 37.88 17.73		-0.00002 -0.00003 -0.00003 -0.00002 -0.00002 -0.00011 0.00023 0.00001 -0.00002 -0.00002 -0.00002
		72.75					-11.42		3016.30	5601.12	0.00001

or open

D	MC ENVER, - SS-0	ENGINEE CO TEMPERA	rs Ture s	INC. 80227 SCATTER	PLOT	EZDOE GEODS REGAH	- ELITE S SITE D	SOFTWA OE EVAL FOR	ARE DEV LUATION HALLS	JELOPMENT	INC	D	OE-2.1D	8/ 7/199 CONSEQU, N	15: 8:1	SDL RUN 1
	ABOVE 81-85 76-80 71-75 66-70 61-65 BELOW		0 0 0	154 157 0 0	0 0 0 204 161	5 6 0 0 0 0 0 0 201 204	7 8 0 0 0 0 0 0 210 212 155 153 0 0	9 10 0 0 222 22 143 13	0 11 0 0 0 0 0 0 29 245 36 120 0 0	0 0 0 0 251 255 114 110 0 0 0 0	1 2 3 0 0 0 0 263 275 102 90 0 0	4 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	5 6 0 0 0 0 71 254 94 111 0 0	0 0 0 0 0 0 244 237 236 121 128 129 0 0 0	0 0 0	5607 3153
EN DE REPORT-	4C Enver, - SS-0	ENGINEE CO TEMPERA	RS TURE S	INC. 80227 SCATTER	PLOT	EZDOE GEODS: REGAHI	- ELITE S SITE D	SOFTWA OE EVAL FOR	ARE DEV JUATION HALLPI	VELOPMENT LENUM	inc	Do Ti	DE-2.1D	8/ 7/199 CONSEQU, N	5 15: 8:13	SDL RUN 1
	ABOVE 81-85 76-85 71-75 66-70 61-65 BELOW	85	0 0 95	2 3 0 0 9 0 0 9 1 9 0 9 8 9 7 9 6 9 6 7 4 7 6 6 6		5 6	78	9 10	11	LEVEL AN 12 1PM 0 0 0 99 99 96 100 94 101 72 62 4 3	2 3	4 :	5 6		10 11 12 0 0 0 0 98 97 96 97 96 96 95 95 95 3 3 4	TOTAL 0 0 2240 2372 2333 1707 108
EM DE REPORT-	AC ENVER, SS-A	ENGINEEI CO SYSTEM I	rs Monthi	INC. 80227 LY LOAD	s sum	EZDOE GEODS: MARY FOI	- ELITE S SITE D	SOFTWA OE EVAL	ARE DEV JUATION CONFRA	VELOPMENT I IAHU	INC	DX TI	DE-2.1D RUTH OR	8/ 7/199 CONSEQU, N	5 15: 8:1	SDL RUN 1
MONTH	COOLI ENER (MBT	GY OF	- CO TIME MAX HR	O L I DRY- BULB TEMP	N G - WET- BULB TEMP	(KI	MAXIMUM COOLING LOAD STU/HR)	-	HEATIN ENERG (MBTU	G TI TY OF M	HEAT ME DR IAX BU HR TE	ING Y-WET LBBUT MPTE	r- LB MP	MAXIMUM HEATING LOAD (KBTU/HR)	E I ELEC- TRICAL ENERGY (KWH)	MAXIMUM ELEC LOAD (KW)
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.848 0.876 1.084 1.232 1.381 1.456 1.543 1.422 1.266 1.014	25 18 29 30 04 22 65 10 95 29 52 27 802 1 42 8 40 10 95 9	12 12	5623FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	38.FF.FF.FF.FF.FF.FF.FF.FF.FF.FF.FF.FF.FF		5.406 5.500 5.558 5.648 5.629 5.728 5.764 5.811 5.691 5.540 5.432		0.00 0.00 0.00 0.00 0.00 0.00	00 00 00 00 00 00 00 00				0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	248. 240. 248. 240. 248. 248.	1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278
TOTAL MAX	14.6						5.811		0.00				-	0.000	2924.	1.278
EM DE REPORT-	AC ENVER, SS-C	ENGINEER CO SYSTEM	RS MONTHI	INC. 80227 Y LOAD	HOURS	EZDOE GEODSS FOR	- ELITE SITE D	SOFTWA	RE DEV UATION CONFRM	ELOPMENT I IAHU	INC	DX TI	E-2.1D	8/ 7/199 CONSEQU, N	5 15: 8:11	SDL RUN 1
c	HOURS COOLING LOAD	HOURS HEATII LOAD		HOURS DINCIDE OL-HEA LOAD	NT T i	N U M I	BER HOUR HEATI AVAI	NG CC	H O U HOURS XOLING WAIL.	HOURS	HO FA	URS NS E ON V	HOURS NIGHT /ENTING	HOURS FLOATING WHEN	LOAD AT I	LOADS ELECTRIC LOAD AT COOLING PEAK (KW)
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT	675 6162 682 6680 684 690 6682 6680			000000000000000000000000000000000000000		696202066655920		00000000000	675 6162 6682 6684 6684 6662 6682	744 672 744 720 744 720 744 720 744		000000000000000000000000000000000000000	000000000000000000000000000000000000000	656 662 662 660 664 552 660	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278
NOV DEC	682			0		62			682	744		Ŏ :		62	0.000	1.278

E D EPORT	MC ENVER, - SS-K	ENGINEER CO SPACE TE	EMPER	ATU	0227 RE S	UMMA	RY																	
onth	ALL HOURS (F)	COOLING HOURS (F)	E J H	S E	PA	C E FA HO (F	N OI URS	T E	M P FAN HOUR (F)	OFF S	AV BE OU RO AL HO	ERAGI TWEEI TDOOI OM A: L URS F)	E TEM N R& IR	IPERATURE BETWEEN OUTDOOR& ROOM AIR FAN ON HOURS (F)	DIFFEREN BETWEE OUTDOO ROOM A FAN OF HOURS (F)	NCE S EN E OR& C AIR F FF I	JUMMER BETWEE DUTDOO ROOM / HEATIN HOURS (F)) TEMF IN OR& LIR IG	DIFF BE OU RC AI HC	TERES TWE TOO XOM I L URS (F)	NCE EN OR& AIR	HU (FRA	MIDITY R DIFFERE BETWEEN OUTDOOR ROOM AI C.OR MUL	ATIO NCE ANI R
AN EBB AR PR AY UUL UUG EP CT OV EC	68.35 69.82 70.96 71.67 73.03 72.26 70.85 68.57	68.37 69.16 69.97 71.68 72.77 732.77 72.85 68.68	7 6 2 7 8 1 1 4 9 6 8			6 6 7 7 7 7 7 7	8.3 9.1 9.8 9.8 0.9 12.7 3.0 2.7 2.2 9.5 8.6	5 5 5 6 8 1 3 8 8 5 7	0000000000	.00	-	31.46 25.17 10.87 -4.46 55.22 0.17 12.14 121.43	7	-31.46 -25.17 -19.56 -10.82 -4.46 5.05 5.22 2.27 0.15 -12.13 -21.43 -29.11	0.00	00 00 00 00 00 00 00 00 00 00 00 00 00				705. 193. 193. 181. 146. 128. 113. 143.	36 61 06 31 93 84 02 54 525 74		0.00	00000
nnual	70.83	70.84	1	0.	.00	7	0.8	3	0	.00	-	11.73	3	-11.73	0.0	00	0.0	0	59	03.2	25		0.0	
E	MC ENVER,	ENGINEER CO	RS	80	INC.		 1	EZDO	E - :	ELITE	SOF OOE E	TWARI	E DEV	ELOPMENT	INC	DOE	3-2.1I ЛТН ОБ	8/	7/19 SEQU,	95 N	15	5: 8:1	1 SDL R	UN
E D PORT	- 55-0	IEMPERA	OKE				:: T	OTAL	ноц	RS AT	r Tem	PERAT	TURE	LEVEL AN	TD TIME OF	F DAY	6	7	8 9	1	0 13	1 12	TOTAL	UN
E D PORT	- 55-0	IEMPERA	OKE				:: T	OTAL	ноц	RS AT	r Tem	PERAT	TURE	LEVEL AN	TD TIME OF	F DAY	6	7	8 9	1	0 13	1 12	TOTAL	UN
PORT	ABOVE 81-85 76-80 71-75 66-70 61-65 BELOW	HOUR 85	1AM 0 0 0 0 365 0 0	0 0 0 365 0 0	3 0 0 0 365 0 0	4 0 0 0 365 0 0	36:	OTAL 6000000000000000000000000000000000000	HOU 7 0 0 0 0 5 36 0	RS AT 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TEM 9 0 0 0 0 0 181 0 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PERAT 10 0 0 0 210 155 0	TURE 11 0 0 0 170 195 0	LEVEL AN 12 1PM 0 0 0 0 210 365 155 0 0 0	TO TIME OF 12 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F DAY 4 5 0 0 0 0 365 365	6 0 0 0 0 0 0 5 365 0 0 0 0	7 0 0 0 365 3 0	8 5 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 11 0 0 0 0 65 36	1 12 0 0 0 0 0 0 0 55 365 0 0 0 0	TOTAL 0 0 0 0 8071 689 0	
PORT	ABOVE 81-85 76-80 71-75 66-70 61-65 BELOW	HOUR 85 60 ENGINEER CO TEMPERAT	1AM 0 0 0 365 0 0 THE	2 0 0 0 365 0 0 0 0 SCAT	3 0 0 0 365 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 0 0 0 3 3 6 5 0 0	365 (((((((((((((((((((OTAL 6000 53600 0000 EZDO GEODE	HOU 7 7 0 0 0 0 5 36 0 0 0 0 5 SS SRMAH	RS AT	TEM 9 00 00 00 00 181 00 184 00 00 00 00 00 00 00 00 00 00 00 00 00	PERAT 10 0 0 210 155 0 0 TWARF	TURE 11 00 170 195 0 0 TIPE TONIE TO	LEVEL AN 12 1PM 0 0 0 0 0 0 210 365 155 0 0 0 0	TO TIME OF 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F DAY 4 5 0 (0 0) 0 (0 0) 365 365 0 0 (0 0) TRU	6 0 0 0 0 0 0 5 365 0 0 0 0	7 0 0 365 3 0 0	8 5 0 0 0 0 365 36 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 11	1 12 0 0 0 0 0 0 0 0 0 55 365 0 0 0 0 0 0 55 365: 8:1	TOTAL 0 0 0 8071 689 0	
PORT	ABOVE 81-85 76-80 71-75 66-70 61-65 BELOW	HOUR 85 60 ENGINEER CO TEMPERAT	1AM 0 0 0 365 0 0 0 The second	0 0 0 365 0 0 0 86 SCAT	3 0 0 0 365 0 0 0	4 0 0 365 0 0 0	369 (((((((((((((((((((OTAL 6 0 0 0 5 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HOU 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RS AT	TEM 9 0 0 0 0 0 0 0 181 0 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PERAT 10 0 0 210 155 0 0 TWARN	TURE 11 0 0 170 195 0 0 ===	LEVEL AN 12 1PM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TO TIME OF 12 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F DAY 4 5 0 0 0 0 365 365 0 0 0 TRU	6 0 0 0 0 0 0 5 365 0 0 0 0 0 0 E-2.1I	7 0 0 0 365 3 0 0 0 8/CONS	8 5 0 0 0 0 0 0 0 0 0 0 0 0 7/19	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 11	1 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOTAL	UN

EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR MMDDHH TOWER 1 TOWER 1 TOWER 1 MMDDHH TOWER 1 TOWER 1 TOWER 1	
	8/ //1995 15: 8:11 SDL RUN 1 CONSEQU, N
Problem Tomacia Tomacia Tomacia	
ZONE THERMOST HTG SET CLG SET TEMP SETPOINT POINT POINT	
F F F	
313 2 39.9 -999.0 -999.0 999.0 313 3 38.3 -999.0 -999.0 999.0	
313 4 38.0 -999.0 -999.0 999.0 313 5 35.9 -999.0 -999.0 999.0 313 6 37.2 -999.0 -999.0 999.0	
313 7 40.9 -999.0 999.0 313 8 40.9 -999.0 -999.0 999.0 313 9 40.9 -999.0 -999.0 999.0	
31310 41.5 -999.0 -999.0 999.0 31311 42.1 -999.0 -999.0 999.0 31312 43.7 -999.0 -999.0 999.0	
31313 43.0 -999.0 -999.0 999.0 31314 43.2 -999.0 -999.0 999.0 31315 45.3 -999.0 -999.0 999.0	
31316 45.7 -999.0 -999.0 999.0 31317 47.3 -999.0 -999.0 999.0 31318 45.6 -999.0 -999.0 999.0	
31319 45.3 -999.0 -999.0 999.0 31320 43.4 -999.0 -999.0 999.0 31321 44.3 -999.0 -999.0 999.0	
31322 44.4 -999.0 -999.0 999.0 31323 43.2 -999.0 -999.0 999.0	
DAILY SUMMARY (MAR 13) MN 35.9 -999.0 -999.0 999.0 MY 473 -999.0 -999.0 999.0	
SM 1016.3 -23976.0 -23976.0 23976.0 AV 42.3 -999.0 -999.0 HONTHLY SUMMARY (MAR)	
MN 35.9 -999.0 -999.0 999.0 MX 47.3 -999.0 -999.0 999.0 SM 1016.3 -23976.0 -23976.0 23976.0	
AV 42.3 -999.0 -999.0	
EMC ENGINEERS INC. EZDOE - ELITE SOFTWARE DEVELOPMENT INC DOE-2.1D DENVER, CO 80227 GEODSS SITE DOE EVALUATION TRUTH OR	8/ 7/1995 15: 8:11 SDL RUN 1 CONSEQU, N
TOWER 1 TOWER 1 TOWER 1 TOWER 1	
ZONE THERMOST HTG SET CLG SET	
F F F F F F F F F F F F F F F F F F F	
9 8 2 64.9 68.0 68.0 72.0 9 8 3 63.7 68.0 68.0 72.0	
9 8 4 62.0 68.0 68.0 72.0 9 8 5 63.1 68.0 68.0 72.0 9 8 6 60.3 68.0 68.0 72.0 9 8 7 62.9 68.0 68.0 72.0	
9 8 5 63.1 68.0 68.0 72.0 9 8 6 60.3 68.0 68.0 72.0 9 8 7 62.9 68.0 68.0 72.0 9 8 8 65.0 68.0 68.0 72.0	
9 8 4 62.0 68.0 68.0 72.0 9 8 6 60.3 68.0 68.0 72.0 9 8 7 62.9 68.0 68.0 72.0 9 8 8 65.0 68.0 68.0 72.0 9 8 9 66.0 68.0 68.0 72.0 9 8 10 67.9 68.0 68.0 72.0 9 811 68.4 68.0 68.0 72.0 9 812 70.1 68.0 68.0 72.0 9 813 68.4 68.0 68.0 72.0	
9 810 67.9 68.0 68.0 72.0 9 811 68.4 68.0 68.0 72.0 9 812 70.1 68.0 68.0 72.0 9 813 68.4 68.0 68.0 72.0 9 814 72.1 72.0 68.0 72.0 9 815 69.7 68.0 68.0 72.0	
9 810 67.9 68.0 68.0 72.0 9 811 68.4 68.0 68.0 72.0 9 812 70.1 68.0 68.0 72.0 9 813 68.4 68.0 68.0 72.0 9 814 72.1 72.0 68.0 72.0 9 815 69.7 68.0 68.0 72.0 9 816 72.1 72.0 68.0 72.0 9 817 68.2 68.0 68.0 72.0 9 818 67.1 68.2 68.0 68.0 72.0	
9 810 67.9 68.0 68.0 72.0 9 811 68.4 68.0 68.0 72.0 9 812 70.1 68.0 68.0 72.0 9 813 68.4 68.0 68.0 72.0 9 814 72.1 72.0 68.0 72.0 9 815 69.7 68.0 68.0 72.0 9 816 72.1 72.0 68.0 72.0 9 817 68.2 68.0 68.0 72.0 9 817 68.2 68.0 68.0 72.0 9 818 67.3 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 820 67.4 68.0 68.0 72.0	
9 810 67.9 68.0 68.0 72.0 9 811 68.4 68.0 68.0 72.0 9 812 70.1 68.0 68.0 72.0 9 813 68.4 68.0 68.0 72.0 9 814 72.1 72.0 68.0 72.0 9 815 69.7 68.0 68.0 72.0 9 816 72.1 72.0 68.0 72.0 9 817 68.2 68.0 68.0 72.0 9 818 67.3 68.0 68.0 72.0 9 818 67.3 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 820 67.4 68.0 68.0 72.0 9 821 65.8 68.0 68.0 72.0 9 822 65.7 68.0 68.0 72.0 9 823 65.4 68.0 68.0 72.0	
9 810 67.9 68.0 68.0 72.0 9 811 68.4 68.0 68.0 72.0 9 812 70.1 68.0 68.0 72.0 9 813 68.4 68.0 68.0 72.0 9 814 72.1 72.0 68.0 72.0 9 815 69.7 68.0 68.0 72.0 9 816 72.1 72.0 68.0 72.0 9 817 68.2 68.0 68.0 72.0 9 818 67.3 68.0 68.0 72.0 9 818 67.3 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 820 67.4 68.0 68.0 72.0 9 821 66.8 68.0 68.0 72.0 9 822 65.7 68.0 68.0 72.0 9 823 65.4 68.0 68.0 72.0 9 823 65.4 68.0 68.0 72.0 9 824 65.7 68.0 68.0 72.0 9 825 65.7 68.0 68.0 72.0 9 827 67.4 68.0 68.0 72.0 9 828 65.7 68.0 68.0 72.0 9 829 67.4 68.0 68.0 72.0 9 821 66.8 68.0 68.0 72.0 9 821 66.8 68.0 68.0 72.0 9 822 65.7 68.0 68.0 72.0	
9 810 67.9 68.0 68.0 72.0 9 811 68.4 68.0 68.0 72.0 9 812 70.1 68.0 68.0 72.0 9 813 68.4 68.0 68.0 72.0 9 814 72.1 72.0 68.0 72.0 9 815 69.7 68.0 68.0 72.0 9 816 72.1 72.0 68.0 72.0 9 817 68.2 68.0 68.0 72.0 9 818 67.3 68.0 68.0 72.0 9 818 67.3 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 821 66.8 68.0 68.0 72.0 9 822 65.7 68.0 68.0 72.0 9 823 65.4 68.0 68.0 72.0 9 824 64.7 68.0 68.0 72.0 9 825 65.4 68.0 68.0 72.0 9 826 64.7 68.0 68.0 72.0 9 827 65.4 68.0 68.0 72.0 9 828 65.4 68.0 68.0 72.0 9 829 65.4 68.0 68.0 72.0 9 820 65.4 68.0 68.0 72.0 9 821 64.7 68.0 68.0 72.0 9 823 65.4 68.0 68.0 72.0 9 824 64.7 68.0 68.0 72.0 9 825 65.4 68.0 68.0 72.0 9 826 64.0 68.0 72.0 9 827 65.4 68.0 68.0 72.0 9 828 65.4 68.0 68.0 72.0	
9 810 67.9 68.0 68.0 72.0 9 811 68.4 68.0 68.0 72.0 9 812 70.1 68.0 68.0 72.0 9 813 68.4 68.0 68.0 72.0 9 814 72.1 72.0 68.0 72.0 9 815 69.7 68.0 68.0 72.0 9 816 72.1 72.0 68.0 72.0 9 817 68.2 68.0 68.0 72.0 9 818 67.3 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 820 67.4 68.0 68.0 72.0 9 821 66.8 68.0 68.0 72.0 9 822 65.7 68.0 68.0 72.0 9 824 64.7 68.0 68.0 72.0 9 825 65.7 68.0 68.0 72.0 9 826 64.7 68.0 68.0 72.0 9 827 65.7 68.0 68.0 72.0 9 828 65.7 68.0 68.0 72.0 9 829 65.7 68.0 68.0 72.0 9 820 67.4 68.0 68.0 72.0 9 821 66.8 68.0 72.0 9 822 65.7 68.0 68.0 72.0 9 823 65.4 68.0 68.0 72.0 9 824 64.7 68.0 68.0 72.0 9 825 65.7 68.0 68.0 72.0 9 827 65.7 68.0 68.0 72.0 9 828 65.7 68.0 68.0 72.0 9 829 65.7 68.0 68.0 72.0 9 820 67.2 68.0 68.0 72.0 9 821 66.4 68.0 68.0 72.0 9 823 65.4 68.0 68.0 72.0 9 824 64.7 68.0 68.0 72.0 9 825 65.7 68.0 68.0 72.0 9 827 65.7 68.0 68.0 72.0 9 828 65.7 68.0 68.0 72.0 9 829 65.7 68.0 68.0 72.0 9 829 65.7 68.0 68.0 72.0 9 829 65.7 68.0 68.0 72.0 9 829 65.7 68.0 68.0 72.0 9 829 65.7 68.0 68.0 72.0 9 829 65.7 68.0 68.0 72.0	
9 810 67.9 68.0 68.0 72.0 9 811 68.4 68.0 68.0 72.0 9 812 70.1 68.0 68.0 72.0 9 813 68.4 68.0 68.0 72.0 9 814 72.1 72.0 68.0 72.0 9 815 69.7 68.0 68.0 72.0 9 816 72.1 72.0 68.0 72.0 9 817 68.2 68.0 68.0 72.0 9 818 67.3 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 819 67.6 68.0 68.0 72.0 9 820 67.4 68.0 68.0 72.0 9 821 66.8 68.0 68.0 72.0 9 821 66.8 68.0 68.0 72.0 9 822 65.7 68.0 68.0 72.0 9 823 65.4 68.0 68.0 72.0 9 824 64.7 68.0 68.0 72.0 9 825 65.4 68.0 68.0 72.0 9 826 65.4 68.0 68.0 72.0 9 827 65.4 68.0 68.0 72.0 9 828 65.4 68.0 68.0 72.0 9 829 65.4 68.0 68.0 72.0 9 820 65.4 68.0 68.0 72.0 9 821 66.8 68.0 68.0 72.0 9 824 64.7 68.0 68.0 72.0 9 825 65.4 68.0 68.0 72.0 9 826 65.4 68.0 68.0 72.0 9 827 65.4 68.0 68.0 72.0 9 828 65.4 68.0 68.0 72.0 9 829 65.4 68.0 68.0 72.0	

DHH		1 TOWER	1TOWER	1TOWER		OPMENT INC			
Dan	TOT HTG COIL PWR BTU/HR	TOT CLG COIL PWR	TOT ZONE CLG PWR BTU/HR	HTG COIL AIR TEMP	CLG COIL AIR TEMP	TOT SYST FLOWRATE			
	BTU/HR (5)	BTU/HR (6) 0.	BTU/HR (8)	F (_1)	F (2) 0.0	CUFT/MIN (17) 0.			
1 2 3	0. 0. 0.	0. 0. 0.	0. 0.	0.0	0.0 0.0 0.0 0.0 0.0	0. 0.			
4 5	0. 0.	0. 0.	0. 0. 0.	0.0 0.0 0.0	0.0 0.0 0.0	0. 0. 0.			
6 7 8	0. 0. 0.	0. 0. 0.	0. 0.	0.0	0.0	0. 0.			
9	0. 0.	0. 0.	0. 0. 0.	0.0	0.0	0. 0. 0.			
11 12 13	0. 0. 0.	0. 0. 0.	0. 0.	0.0 0.0	0.0 0.0	0. 0.			
14 15	0. 0.	0. 0. 0.	0. 0. 0.	0.0	0.0	0. 0. 0.			
16 17 18	0. 0. 0.	0. 0.	0. 0.	0.0	0.0	0. 0.			
19 20	0. 0. 0.	0. 0. 0.	0. 0. 0.	0.0	0.0	0. 0. 0.			
21 22 23	0. 0.	0. 0.	0. 0.	0.0 0.0	0.0 0.0 0.0	0. 0. 0.			
LY S	COMMARY (MAR 13	0. 0.	0.			0.			
MX SM	0. 0.	0. 0.	0. 0. 0.	0.0	0.0	0. 0. 0.			
AV THLY MN	SUMMARY (MAR)								
MX SM	0. 0. 0.	0. 0.	0. 0. 0. 0.	0.0 0.0	0.0 0.0 0.0	0. 0. 0.			
AV	•								
			P2D/C	ELITE COE	TWARE DEVE	OPMENT INC	DOE-2.1D 8/ 7/1995	15: 8:11	SDL RUN
EMC DEN 8V8-	ENGINEER VER, CO 11 = HOU	S INC. 80227 RLY-REPORT	GEODSS S	ITE DOE E	VALUATION	DIFERT INC	DOE-2.1D 8/ 7/1995 TRUTH OR CONSEQU, N		
	1TOWER	1TOWER	1TOWER	1TOWER	1TOWER	1TOWER			
	TOT HTG COIL PWR	TOT CLG COIL PWR BTU/HR (6)	TOT ZONE	HTG COIL AIR TEMP	CLG COIL AIR TEMP	TOT SYST FLOWRATE			
3 1	BTU/HR (5) 0.	BTU/HR (6) 25182.	BTU/HR (8) 0.	61.0	(2) 59.5	CUFT/MIN (17) 2400.			
3	0. 0. 0.	25182. 24549. 24879. 27853.	0. 0. 0.	59.2	57.6 55.8	2400. 2400. 2400.			
4 5 6	0. 0.	18722.	0. 0. 0.	57.0 57.0	55.5 55.5	2400. 2400. 2400.			
1 7 1 8 1 9	0. 0. 0.	23298. 26155. 30408.	0. 0.	62.5 64.4	61.0 62.9	2400. 2400.			
110	0. 0. 0.	33518. 35078. 39546.	0. 0. 0.	67.1	65.6 68.3	2400. 2400. 2400.			
112 113 114	0.	39698. 42071. 40639.	0. 0.	68.9 70.6	67.3 69.1	2400. 2400. 2400.			
115 116	0. 0. 0.	40033. 40033. 35375.	0. 0. 0.	69.6	68.0 65.4	2400. 2400.			
	Ö. O.	33007. 32973.	0. 0. 0.	63.3	61.7	2400. 2400. 2400.			
117 118 119		30008. 27233.				2400. 2400.			
117 118 119 120	0. 0. 0.	00010	0. 0.	61.7	60.1				
17 18 19 20 21 22 23	0. 0. 0. 0.	25818. 25135. 24549.	0. 0. 0.	61.0 60.3		2400. 2400.			
17 18 19 20 21 22 23 24 LY S MN MX	0. 0. 0. 0. 0. 0. 0. 0. 0.	25818. 25135. 24549.	0. 0. 0.	57.0	EE 6	2400. 2400.			
117 118 119 120 122 122 123 124 124 125 127 128 128 128 128 128 128 128 128 128 128	0. 0. 0. 0. 0. 0. SUMMARY (SEP 8 0. 0.	25818. 25135. 24549. } 18722. 42071. 724629. 30193.	0. 0. 0. 0.	57.0 70.6 1523.1 63.5	55.5 69.1 1486.1 61.9	2400. 2400. 2400. 2400. 57600. 2400.			
117 118 119 120 121 122 123 124 123 124 SMN MX SM AV THLY MN MX	O. O. O. SUMMARY (SEP 8 O. O. (SUMMARY (SEP) O.	25818. 25135. 24549. } 18722. 42071. 724629. 30193.	0. 0. 0. 0.	57.0 70.6 1523.1 63.5	55.5 69.1 1486.1 61.9	2400. 2400. 2400. 57600. 2400. 2400. 2400. 57600.			
117 318 319 321 322 323 324 324 324 324 5MN MX SM WX MN MX SM MX SM MX SM MX SM MX SM MX SM MX MX MX MX MX MX MX MX MX MX MX MX MX	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7 SUMMARY (SEP) 0. 0.	25818. 25135. 24549.) 18722. 42071. 724629. 30193. 18722. 42071. 724629. 30193.	0. 0. 0. 0. 0.	57.0 70.6 1523.1 63.5 57.0 70.6 1523.1 63.5	55.5 69.1 1486.1 61.9 55.5 686.1 1486.1 61.9	2400. 2400. 2400. 57600. 2400. 2400. 2400. 57600.			
117 118 120 121 122 122 123 124 124 124 127 132 132 132 132 132 132 132 132 132 132	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7 SUMMARY (SEP) 0. 0.	25818. 25135. 24549.) 18722. 42071. 724629. 30193. 18722. 42071. 724629. 30193.	0. 0. 0. 0. 0.	57.0 70.6 1523.1 63.5 57.0 70.6 1523.1 63.5	55.5 69.1 1486.1 61.9 55.5 686.1 1486.1 61.9	2400. 2400. 2400. 57600. 2400. 2400. 2400. 57600.			
117 118 120 121 122 123 124 123 124 125 127 137 141 151 171 171 171 171 171 171 171 171 17	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7 SUMMARY (SEP) 0. 0.	25818. 25135. 24549. } 18722. 42071. 724629. 30193.	0. 0. 0. 0. 0.	57.0 70.6 1523.1 63.5 57.0 70.6 1523.1 63.5	55.5 69.1 1486.1 61.9 55.5 686.1 1486.1 61.9	2400. 2400. 2400. 57600. 2400. 2400. 2400. 57600.			
117 118 120 121 122 123 124 124 124 123 124 123 124 124 125 125 126 127 127 127 127 127 127 127 127 127 127	GUMMARY (SEP) 8 SUMMARY (SEP) 8 C SUMMARY (SEP) C SUMMARY (SEP) C SUMMARY C C C C C C C C C C C C C C C C C C C	25818. 25135. 24549.) 18722. 42071. 724629. 30193. 18722. 42071. 724629. 30193.	0. 0. 0. 0. 0. 0. 0.	57.0 70.6 1523.1 63.5 77.0 70.6 1523.1 63.5 0.0 70.6 1523.1	55.5 69.1 1486.1 61.9 55.5 69.1 1486.1 61.9 0.0 69.1 1486.1 31.0	2400. 2400. 2400. 2400. 57600. 2400. 2400. 2400. 2400. 2400. 57600. 1200.		18. 0-44	מו זום דום
117 118 120 121 122 123 124 124 124 123 124 123 124 124 125 125 126 127 127 127 127 127 127 127 127 127 127	SUMMARY (SEP) 8 O CO CO CO CO CO CO CO CO CO CO CO CO CO	25818. 25135. 24549.) 18722. 42071. 724629. 30193. 18722. 42071. 724629. 30193.	0. 0. 0. 0. 0. 0. 0.	57.0 70.6 1523.1 63.5 77.0 70.6 1523.1 63.5 0.0 70.6 1523.1	55.5 69.1 1486.1 61.9 55.5 69.1 1486.1 61.9 0.0 69.1 1486.1 31.0	2400. 2400. 2400. 2400. 57600. 2400. 2400. 2400. 2400. 2400. 57600. 1200.	DOE-2.1D 8/ 7/1995 TRUTH OR CONSEQU, N	15: 8:11	PDL RU

. . . .

EMC DENVE ORT- PS	ENGIN R, -A PLANT	CO	INC. 80227 UTILIZATION	GEODSS	SITE DOE	OFTWARE DE EVALUATI	EVELOPMEN ON	T INC	DOE-2 TRUTH	OR CONSE	7/1995 QU, N	15: 8:11	PDL RU
					s	ITE E	NERG	Y				*	SOURCE
	2	3	4	5	6	7	8	9	10	11	12	13	14
MONTH	TOTAL HEAT LOAD	TOTAL COOLING LOAD	TOTAL ELECTR LOAD	RCVRED ENERGY	WASTED RCVRABL ENERGY	FUEL INPUT COOLING	ELEC INPUT COOLING	FUEL INPUT HEATING	ELEC INPUT HEATING	FUEL INPUT ELECT	TOTAL FUEL INPUT	TOTAL SITE ENERGY	TOTAL SOURC ENERG
Jan	136.3	225.7	285.2 83.5E	0.0	0.0	0.0	107.9 31.6E	0.0	0.0 0.0E	0.0	0.0	285.2	285.
FEB	121.5	204.0	249.9 73.2E	0.0	0.0	0.0	97.5 28.6E	0.0	0.0 0.0E	0.0	0.0	249.9	249.
MAR	133.1	228.3	272.8 79.9E	0.0	0.0	0.0	108.4 31.7E	0.0	0.0 0.0E	0.0	0.0	272.8 *	272.
APR	127.0	253.4	274.5 80.4E	0.0	0.0	0.0	115.2 33.8E	0.0	0.0 0.0E	0.0	0.0	274.5 *	274.
MAY	129.9	287.3	302.7 88.7E	0.0	0.0	0.0	138.3 40.5E	0.0	0.0 0.0E	0.0	0.0	302.7	302.
JUN	124.0	319.4	344.1 100.8E	0.0	0.0	0.0	184.4 54.0E	0.0	0.0 0.0E	0.0	0.0	344.1 *	344.
JUL	127.3	336.4	360.7 105.6E	0.0	0.0	0.0	196.8 57.6E	0.0	0.0 0.0E	0.0	0.0	360.7	360.
AUG	127.0	329.2	346.3 101.4E	0.0	0.0	0.0	181.2 53.1E	0.0	0.0 0.0E	0.0	0.0	346.3	346.
SEP	124.9	302.7	314.8 92.2E	0.0	0.0	0.0	155.6 45.6E	0.0	0.0 0.0E	0.0	0.0	314.8 *	314.
OCT	131.1	260.8	278.6 81.6E	0.0	0.0	0.0	114.3 33.5E	0.0	0.0 0.0E	0.0	0.0	278.6 *	278.
NOV	129.2	221.3	263.3 77.1E	0.0	0.0	0.0	104.6 30.6E	0.0	0.0 0.0E	0.0	0.0	263.3	263.
DEC	135.1	225.5	280.5 82.1E	0.0	0.0	0.0	107.9 31.6E	0.0	0.0 0.0E	0.0	0.0	280.5	280.
	1546.4	3193.9	3573.4 1046.5E	0.0	0.0	0.0	1612.2 472.2E	0.0	0.0 0.0E	0.0	0.0	3573.4 *	3573.

NOTE-- ALL ENTRIES ARE IN MBTU EXCEPT ENTRIES FOLLOWED BY E ARE IN MWH (THOUSANDS OF KWH)

EMC DENVER, REPORT- PS-B	ENGINEER CO MONTHLY	S INC. 80227 PEAK AND TOTAL	EZDOE - ELITE SOFTWARE DEVELOPMENT INC GEODSS SITE DOE EVALUATION ENERGY USE	DOE-2.1D 8/ 7/1995 15: 8:11 PDL RUN 1 TRUTH OR CONSEQU, N
	MO	UTILITY-	ELECTRICITY	
	JAN	TOTAL (MBTU) PEAK (KBTU)	285.200 463.528	
	FEB	DY/HR TOTAL (MBTU) PEAK (KBTU)	11/6 249.904 425.794	
	FEB	DY/HR	3/6	
	MAR	TOTAL (MBTU) PEAK (KBTU)	272.826 429.078	
		DY/HR TOTAL (MBTU)	14/6 274.472	
	APR	PEAK (KBTU) DY/HR	612.297 22/15	
	MAY	TOTAL (METU) PEAK (KETU)	302.693 611.021	
		DY/HR TOTAL (MBTU)	9/17 344.078	
	JUN	PEAK (KBTU) DY/HR	643.065 22/17	
		TOTAL (MBTU)	360.698 647.350	
	JUL	PEAK (KBTU) DY/HR	1/17	
	AUG	TOTAL (METU) PEAK (KETU)	346.303 639.052	
		DY/HR TOTAL (MBTU)	1/17 314.834	
	SEP	PEAK (KBTU) DY/HR	612.207 1/16	
	OCT	TOTAL (MBTU) PEAK (KBTU)	278.588 590.171	
	001	DY/HR TOTAL (MBTU)	7/16 263.279	
	NOV	PEAK (KBTU)	424.847	
		TOTAL (MBTU)	22/6 280.481	
	DEC	PEAK (KBTU) DY/HR	428.507 16/6	
		ONE YEAR	3573.357	
		USE/PEAK	647.350	

HUAC AUX 11.94% LIGHTS 8.08% SPACE COOL 43.91% SPACE HEAT 1.54% MISC EQUIP 34.53%

APPENDIX E PROJECT DOCUMENTATION

1. COMPONENT AIR FORCE	FY 1995 MILITARY	CT DATA	2. DATE 15-Nov-95				
3. INSTALLATION AND LOCATION GEODSS Site, Wh	,				servation Package		
5. PROGRAM ELEMENT 6. CATEGORY CODE		7. PROJEC	OT NO.	8. PROJECT COST (\$000) 160			
	9. COS	ST ESTIMATES			1 10		
πεм		U/M	QUANTITY	UNIT COST	COST (\$000)		
Primary Facilities: UPS System Modification Air Recirculation System High Efficiency Lighting Chiller Replacement Supporting Facilities		LS LS LS LS			21 21 11 89		
Estimated Contract Cost					142		
Supervision, Inspection and Overhead (6%) Design (6%)					9		
TOTAL REQUEST TOTAL REQUEST (R Installed Equipment-O	•				160 160		

10. DESCRIPTION OF PROPOSED CONSTRUCTION

This project includes four separate subprojects:

Uninterruptible Power Supply Air Recirculation System High Efficiency Lighting Chiller Replacement

11. REQUIREMENT

This project is required for HVAC and lighting systems to operate at peak efficiency and effectiveness. An immediate utility savings would be recognized.

 $\underline{\text{UPS System Modifications}}$ - Measurements on the existing 250 hp motor at the time of the field survey indicated that the motor was 11% loaded and was operating with a 65% efficiency and a 45% power factor.

The new 100 hp motor operating at the same conditions would be 28% loaded and operate with a 94% efficiency and a power factor of 68%.

1. COMPONENT AIR FORCE	FY 1995 MILITARY CONSTRUCTION PROJECT DATA		2. DATE 15-NOV-95
3. INSTALLATION AND LO GEODSS Site, WI	OCATION nite Sands Missile Range, NM		
4. PROJECT TITLE FEMP Energy Co	nservation Opportunity Package	5. PROJECT	NUMBER

11. REQUIREMENT (continued)

<u>Air Recirculation System</u> - Presently, the three telescopes use 100% outside air cooled with mechanical refrigeration for cooling. This system consumes significant energy as the cool air is directly vented to the outside and is not reused. According to the building personnel, there is no specific reason why this particular system is in place.

The project would provide return air ducting and motorized dampers which would allow recirculation with mechanical cooling or 100% outside air when outside air is cool.

<u>High Efficiency Lighting</u> - Fluorescent lighting fixtures in the building are equipped with standard 40 watt lamps and magnetic ballasts. High-efficiency T-8 fluorescent lamps and electronic ballasts would reduce lighting energy consumption by 32%.

<u>Chiller Replacement</u> - The current chillers are full-load use 1.43 kW/ton. At half-load this ratio increases to 1.72 kW/ton. These chillers also use R-22 refrigerant coolant which has been linked to the destruction of the ozone layer. The proposed chillers at full-load would use 1.51 kW/ton, but at half-load this ratio drops to 1.02 kW/ton.

Impact If Not Provided:

If this project is not funded, the GEODSS Facility will continue to operate with excessive energy requirements and will not realize a \$432,000 life cycle energy savings over the next 20 years.

Supporting Documentation:

Supporting data includes the basic engineering calculations which show the energy savings. The supporting data was documented and conducted under an Army contract performed by an A-E firm (E M C Engineers, Inc.) in FY 95.

Verification of Savings:

The energy use for the periods prior to the project can be compared to the energy use for billing periods subsequent to the project upgrade.

Amount of Energy Conserved:

The amount of combined energy conserved is estimated to be 252,877 kWh/yr (\$20,761/yr).

Summary of ECOs Recommended for FEMP Funding

ECO #	ECO Description	Annual Electric Energy Savings (kWh)	Annual Energy Cost Savings (\$)	Annual Maintenance Cost Savings (\$)	Total Investment Costs (\$)	SIR	Simple Payback (yrs)
7	UPS System	89,454	7,344	0	22,874	4.85	3.11
9	Recirculation of Tower Air	74,518	6,118	0	22,767	4.05	3.72
4	T-8 Fluorescent Lamps	29,455	2,418	47	12,429	2.38	5.04
8	Chiller Replacement	85,453	7,016	0	99,539	2.01	8.30
	Combined Savings	252,877	20,761	47	157,609	2.74	5.7

1. C	OMPONENT	FY 19	96 MILITA	ARY CONSTRU	JCTION PROJECT	DATA		2. DATE
	ARMY							Apr-9
. IN	STALLATION AND LO	CATION						
(GEODSS Site, White S	Sands Missile Range, NM						
	ROJECT TITLE						5. PROJECT NU	JMBER
	FEMP - Energy Conser	vation Opportunity Pack	age					
				LIFE CYCL	E COST ANALYSIS SU	JMMARY		
			i	ENERGY CONSERV	ATION INVESTMENT	PROGRAM (ECIP)		
	LOCATION:	GEODSS Site, White Sands		•		REGION: 4	PROJECT NO:	4005
	PROJECT TITLE:		•		ortunity Package		FISCAL YEAR:	1995
	DISCRETE PORTION	NAME:		TOTAL	FOOLION NO LIFE	20	PREPARED BY:	D Jones
	ANALYSIS DATE:		11/22/95		ECONOMIC LIFE:	20	FREFARED B1.	D Jones
,	NIV/CCTA#ENIT							
	NVESTMENT A. CONSTRUCTION CO	ST =		=			\$141,353	
	B. SIOH COST	-		(5.5% of 1A) =			\$7,774	
	C. DESIGN COST			(6.0% of 1A) =			\$8,481	
	D. TOTAL COST		(1	A + 1B + 1C =			\$157,609	
		EXISTING EQUIPMENT =	,					
	F. PUBLIC UTILITY CON							
	3. TOTAL INVESTMENT			(1D -1E -1F) =			>	\$157,60
	ENERGY SAVINGS (+) O							
I	DATE OF NISTR-4942-1	USED FOR DISCOUNT FACT				OCT '94	DIOCOLINEES	
		FUEL CO		SAVINGS	ANNUAL \$	DISCOUNT		
	ECO	\$/kWh (kWh (2)	SAVINGS (3)	FACTOR (4)	\$AVINGS (5 \$110,750)
	A. UPS System	 	\$0.0821	89,454	\$7,344 \$6,118	15.08 15.08	\$92,258	
	B. Recirculation of		\$0.0821 \$0.0821	74,518 29,455	\$2,418	12.02	\$29,067	
	 T-8 Fluorescent I Chiller Replacem 	·	\$0.0821	25,455 85,453	\$7,016	15.08	\$105,796	
	E.		¥0.0021	00,400	17,010		, , , , , , , , , , ,	
	-· = _.							
	3.							
1	H. TOTAL			278,880	\$22,896		>	\$337,87
	NON-ENERGY SAVINGS (
,	A. ANNUAL RECURRING				(F T-bl. A)			
	1 DISCOUNT FACTO				(From Table A) = $(3A \times 3A1) =$			
	2 DISCOUNTED SAY	VINGS (+) / COST (-)			(3A X 3A I) =			
i	B. NON-RECURRING (+	/-)						
	ITEM	SAVINGS (+)		YEAR OF	DISCOUNT	DISCOUNTED		
				COST(-) (1)	OCCURRENCE (2)	FACTOR (3)	SAVINGS/COST (4	1)
						(TABLE B)		
	a. AVOIDED COST (OF CHILLER REPLACEMENT		\$99,539	2	0.943	\$93,865	
	b. MATERIAL: NON	!						
	c. MATERIAL: NON							
	d. TOTAL			\$99,539			\$93,865	
(C. TOTAL NON-ENERGY	DISCOUNTED SAVINGS (+	-) OR COST	(-)		(3A2 + 3Bd4) =		\$93,86
. 1	FIRST YEAR DOLLAR SAY	VINGS (+) / COSTS (-)			((2H3 + 3A + (3Bd1/Econ	iomic Life))	\$27,87
5. SIMPLE PAYBACK (SPB) IN YEARS (MUST BE < 10 YEARS TO QUALIFY) (1G/4) =						5.6		
	TOTAL NET DISCOUNTED					(2H5 + 3C) =		\$431,73
. 1	DISCOUNTED SAVINGS-T	O-INVESTMENT RATIO (SIR)			(6/1G) =		2.7