Esercizi Matlab Crediti D

Domenico Sabatini (0324904) Mihai Alexandru Sandu (0327308)

$24~\mathrm{marzo}~2025$

Indice

Eser		2
1.1	Esercizio 1.1	2
1.2	Esercizio 1.2	2
1.3	Esercizio 1.3	2
1.4	Esercizio 1.4	2
Problemi		
	Problema 2.1	
	Problema 2.2	
2.3	Problema 2.3	7
	Problema 2.4	

1 Esercizi

1.1 Esercizio 1.1

Implementazione dell'algoritmo di valutazione del polinomio d'interpolazione in più punti.

1.2 Esercizio 1.2

Implementazione della formula dei trapezi.

1.3 Esercizio 1.3

Implementazione del metodo di estrapolazione.

1.4 Esercizio 1.4

Implementazione del metodo di Jacobi.

2 Problemi

2.1 Problema 2.1

Interpolazione della funzione \sqrt{x} .

(a) Calcolo del vettore degli errori

Sono stati scelti come nodi di interpolazione i punti $x_i = \{0, \frac{1}{64}, \frac{4}{64}, \dots, 1\}$ e sono stati calcolati i corrispondenti valori $y_i = \sqrt{x_i}$.

Il polinomio di interpolazione p(x) è stato ottenuto utilizzando la funzione **polyfit** di Matlab. Successivamente è stato valutato in 21 punti $\zeta_i = \frac{i-1}{20}$ per $i = 1, \dots, 21$, confrontando i risultati con $\sqrt{\zeta_i}$.

Codice Matlab:

Il vettore delle differenze mostra quanto il polinomio d'interpolazione si discosta dalla funzione esatta \sqrt{x} in ciascun punto ζ_i .

Output del vettore

```
Vettore differenze (per verifica vedi script Problema21):
1: -0.00000
2: 0.00937
3: -0.01662
4: 0.00627
5: 0.02606
6: 0.00000
7: -0.04680
8: -0.05284
9: 0.01904
10: 0.13666
11: 0.19597
12: 0.07022
13: -0.29867
14: -0.79383
```

```
15: -1.04786

16: -0.46169

17: 1.60012

18: 5.33760

19: 9.64872

20: 10.73148

21: -0.00000
```

(b) Grafico di \sqrt{x} e del polinomio p(x)

Figura 1: Confronto tra \sqrt{x} (blu) e polinomio d'interpolazione p(x) (rosso).

Il grafico per mostrare il confronto tra la funzione \sqrt{x} e il polinomio p(x) è stato creato usando il seguente codice MatLab:

```
% Creazione di punti per il grafico
x_plot = linspace(0, 1, 100);
% Valutazione del polinomio nei punti x_plot
p_plot = polyval(p, x_plot);
% Valutazione della funzione sqrt(x) nei punti x_plot
sqrt_plot = sqrt(x_plot);

figure;
plot(x_plot, sqrt_plot, 'b-', 'DisplayName', 'sqrt(x)');
hold on;
plot(x_plot, p_plot, 'r-', 'DisplayName', 'p(x)');
xlabel('x');
ylabel('y');
title('Grafico di sqrt(x) e p(x)');
legend;
```

2.2 Problema 2.2

Approssimazione dell'integrale $\int_0^1 e^x dx$ con la formula dei trapezi.

(a) DA FARE SU CARTA e (b) Determinazione di $n(\varepsilon)$ per vari ε

Il valore esatto dell'integrale è:

$$I = \int_0^1 e^x \, dx = e - 1 \approx 1.718281828459045$$

Abbiamo implementato un algoritmo che, per ogni $\varepsilon \in \{10^{-1}, \dots, 10^{-10}\}$, determina il numero minimo n tale che l'errore $|I - I_n| \le \varepsilon$, dove I_n è l'approssimazione dell'integrale con la formula dei trapezi di ordine n.

Codice Matlab dell'algoritmo:

```
function I = formula_trapezi(f, a, b, n)
    x = linspace(a, b, n + 1);
    y = f(x);
    h = (b - a) / n;
    I = h * (sum(y) - 0.5 * (y(1) + y(end)));
end
```

Epsilon	n	I_n	Error
 1.0e-01	2	1.753931092464826	3.56493e-02
1.0e-02	5	1.724005619782788	5.72379e-03
1.0e-03	16	1.718841128579994	5.59300e-04
1.0e-04	48	1.718343976513113	6.21481e-05
1.0e-05	151	1.718288108448857	6.27999e-06
1.0e-06	476	1.718282460433049	6.31974e-07
1.0e-07	1506	1.718281891593030	6.31340e-08
1.0e-08	4760	1.718281834778786	6.31974e-09
1.0e-09	15051	1.718281829091139	6.32093e-10
1.0e-10	47595	1.718281828522253	6.32083e-11

Figura 2: Tabella di confronto

(c) Approssimazioni per n = 2, 4, 8, 16

Val	I	Error: I_n - I
I2	1.753931092464826	3.56493e-02
I4	1.727221904557517	8.94008e-03
18	1.720518592164302	2.23676e-03
I16	1.718841128579994	5.59300e-04

(d) Interpolazione e calcolo di p(0)

Abbiamo considerato il polinomio d'interpolazione p(x) dei valori I_2, I_4, I_8, I_{16} in funzione dei nodi $h_2^2, ..., h_{16}^2$ (dove $h_n = (1-0)/n$), e valutato il polinomio nel punto 0 (p(0)).

- p(0) = 1.718281828460388
- Errore: $|p(0) I| = 1.343 \cdot 10^{-12}$

Questo risultato mostra che valutare il polinomio d'interpolazione p(x) come definito sopra nel punto 0 è un'approssimazione molto più accurata di $\int_0^1 e^x dx$ rispetto all'utilizzo delle singole formule dei trapezi I_2, I_4, I_8, I_{16} .

2.3 Problema 2.3

Consideriamo la funzione $f(x) = x^2 e^{-x}$ e vogliamo approssimare l'integrale $\int_0^1 f(x) dx$ con la formula dei trapezi.

(a) DA FARE SU CARTA PRIMA PARTE Calcolo numerico dell'integrale esatto

Abbiamo calcolato il valore esatto dell'integrale numericamente tramite la funzione integral di MATLAB:

$$I \approx 0.160602794142788$$

(b) Calcolo delle approssimazioni $I_5, I_{10}, I_{20}, I_{40}$

Ancora una volta utilizziamo l'algoritmo ricavato nel Problema 2.2 per calcolare la formula dei trapezi:

```
f = @(x) x.^2 .* exp(-x);
function I = formula_trapezi(f, a, b, n)
    x = linspace(a, b, n + 1);
    y = f(x);
    h = (b - a) / n;
    I = h * (sum(y) - 0.5 * (y(1) + y(end)));
end
```

I valori ottenuti per n = 5, 10, 20, 40 sono riportati nella tabella del punto (d).

(c) Calcolo di p(0) tramite interpolazione su h^2

Abbiamo considerato il polinomio d'interpolazione p(x) dei valori $I_5, I_{10}, I_{20}, I_{40}$ in funzione dei nodi $h_5^2, ..., h_{40}^2$ (dove $h_n = (1-0)/n$), e valutato il polinomio nel punto 0 (p(0)).

$$p(0) = 0.160602794143036$$

(d) Tabella dei risultati

n	I_n	Errore I_n - I
5	0.161816576820683	1.21378e-03
10	0.160908578632096	3.05784e-04
20	0.160679386811339	7.65927e-05
40	0.160621951474857	1.91573e-05
p(0)	0.160602794142805	1.61815e-14

Figura 3: Approssimazioni dell'integrale con la formula dei trapezi e interpolazione.

(e) DA FARE SU CARTA Determinazione di n tale che $|I_n - I| \le |p(0) - I|$

2.4 Problema 2.4

 $Si\ consideri\ il\ sistema\ lineare\ Ax=b,\ con$

$$A = \begin{bmatrix} 5 & 1 & 2 \\ -1 & 7 & 1 \\ 0 & 1 & -3 \end{bmatrix}, \quad b = \begin{bmatrix} 13 \\ 16 \\ -7 \end{bmatrix}$$

(a) Soluzione esatta

La soluzione esatta del sistema lineare è stata calcolata in Matlab tramite il seguente codice:

```
x_exact = A \ b;
fprintf('(a) Soluzione esatta:\n');
disp(x_exact);
```

La soluzione esatta restituita è il vettore colonna $x = [1.0000, 2.0000, 3.0000]^T$

(b) Metodo di Jacobi – prime 10 iterazioni

Si è applicato il metodo di Jacobi con vettore iniziale $x^{(0)} = [0,0,0]^T$. Le prime 10 iterazioni sono state salvate in una matrice $S \in \mathbb{R}^{3 \times 12}$, dove: - le colonne da 1 a 11 sono $x^{(0)}, x^{(1)}, \dots, x^{(10)}$, - l'ultima colonna è la soluzione esatta x.

Il codice Matlab implementa la formula iterativa:

$$x^{(k+1)} = Px^{(k)} + q, \quad \text{con } P = MatriceIterazione = D^{-1}(D-A), \ q = D^{-1}b$$

```
(b) Matrice 8 conteneurs x^0(), ..., x^1(10), x esatts:

0 2.6000 1.2095 0.8971 0.9536 1.0038 1.0055 1.0006 0.9995 0.9999 1.0000 1.0000

0 2.2857 2.3233 2.0163 1.9699 1.9926 2.0020 2.0011 2.0000 1.9999 2.0000 2.0000

0 2.3333 3.0952 3.1079 3.0054 2.9900 2.9975 3.0007 3.0004 3.0000 3.0000 3.0000
```

Figura 4: Matrice 3x12

(c) Convergenza al variare di ε

Si è analizzata la convergenza del metodo di Jacobi per vari epsilon $\varepsilon \in \{10^{-1}, 10^{-2}, \dots, 10^{-10}\}$. Per ciascuna soglia sono stati registrati:

- il numero minimo di iterazioni K_{ε} affinché $||x^{(k)} x^{(k-1)}||_{\infty} \leq \varepsilon$,
- la soluzione approssimata x_{ε} ,
- l'errore rispetto alla soluzione esatta: $||x x_{\varepsilon}||_{\infty}$.

Di seguito la tabella risultante in output:

```
epsilon = 1.0e-01, K = 5, soluzione approssimata:
   1.0038
   1.9926
   2.9900
errore norma infinito = 1.00e-02
epsilon = 1.0e-02, K = 6, soluzione approssimata:
   2.0020
   2.9975
errore norma infinito = 5.50e-03
epsilon = 1.0e-03, K = 9, soluzione approssimata:
   0.9999
   1.9999
   3.0000
errore norma infinito = 1.50e-04
epsilon = 1.0e-04, K = 11, soluzione approssimata:
   1.0000
   2.0000
   3.0000
errore norma infinito = 2.08e-05
 epsilon = 1.0e-05, K = 13, soluzione approssimata:
   1.0000
    2.0000
    3.0000
errore norma infinito = 2.08e-06
 epsilon = 1.0e-06, K = 15, soluzione approssimata:
   1.0000
    2.0000
    3.0000
errore norma infinito = 1.62e-07
 epsilon = 1.0e-07, K = 17, soluzione approssimata:
    1.0000
    2.0000
    3.0000
errore norma infinito = 1.45e-08
 epsilon = 1.0e-08, K = 19, soluzione approssimata:
   1.0000
    2.0000
    3.0000
errore norma infinito = 1.82e-09
```

```
epsilon = 1.0e-09, K = 21, soluzione approssimata:
    1.0000
    2.0000
    3.0000

errore norma infinito = 2.57e-10

epsilon = 1.0e-10, K = 23, soluzione approssimata:
    1.0000
    2.0000
    3.0000

errore norma infinito = 3.25e-11
```