1 Introdução à Teoria das Categorias

A teoria das categorias é uma área de matemática que relaciona diversas áreas, como por exemplo, Teoria dos Grupos, Teoria dos Anéis, Topologia, Teoria dos Grafos, etc. Cada uma dessas teorias tem em comum a definição de seus objetos (Grupos, Anéis, Espaços topológicos, grafos) e formas de relacionar esses objetos (Homomorfismos de grupos, homomorfismos de aneis, homeomorfismos, homomorfismos entre grafos).

1.1 Categorias

Para estudar categorias, primeiro é necessário defini-las:

Definição 1.1 (Categoria, (??)). Uma categoria C consiste em:

- Objetos: A, B, C, \dots
- Setas (Morfismos): f, g, h, \ldots
- \bullet Para cada seta f existem objetos:

chamados de domínio e contradomínio de f. A escrita

$$f:A\to B$$

indica que A = dom(f) e B = cod(f)

• Sejam setas $f: A \to B \text{ e } g: B \to C \text{ com}$:

$$cod(f) = dom(g)$$

existe uma seta $g\circ f:A\to C$ chamada de composição de f com g

• Para cada objeto A existe uma seta

$$1_A:A\to A$$

chamada de seta identidade de A

Esses dados precisam satisfazer os seguintes axiomas:

• (Associatividade) Sejam $f: A \to B, g: B \to C$ e $h: C \to D$ setas, então:

$$h\circ (g\circ f)=(h\circ g)\circ f$$

• (Identidade) Seja $f: A \to B$ uma seta, então

$$f \circ 1_A = f = 1_B \circ f$$

Para quaisquer objetos A e B em uma categoria C, a coleção de setas de A para B é escrito $Hom_C(A,B)$

Alguns exemplos de categorias são:

- A categoria Set que possui conjuntos como objetos e funções como morfismos.
- 2. Os conjuntos ordenados descritos na Definição 1.31 também podem formar uma categoria junto com os mapeamentos monótonos descritos na Definição 1.32, chamada de **Pos**
- 3. Um monóide é um conjunto M equipado com uma operação binária $\cdot : M \times M \to M$ e um elemento unitário $e \in M$ tal que para todo $x, y, z \in M$:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

e

$$e \cdot x = x = x \cdot e$$

. Por exemplo, o conjunto dos naturais \mathbb{N} , junto à operação de soma usual $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, pode ser considerado um monoide, com o 0 como elemento unitário.

Dois monóides (M,\cdot) e (N,\star) podem ser relacionados através de um homomorfismo $\phi:M\to N$ tal que

$$\phi(x \cdot y) = \phi(x) \star \phi(y)$$

 \mathbf{e}

$$\phi(e_M) = e_N$$

A categoria que possui monóides como objetos e homeomorfismos como morfismos é denominada de ${\bf Mon}$

4. Um grupo G é um monóide onde para todo $a \in G$ existe um elemento $b \in G$ tal que $a \cdot b = e$. b é chamado de *inverso* de a e é escrito como a^{-1} . Um homomorfismo ϕ entre dois grupos (G,\cdot) e (H,\star) obedece as duas condições para homomorfismos entre monóides mais a seguinte:

$$\phi(a^{-1}) = \phi(a)^{-1}$$

A categoria que possui monóides como objetos e homomorfismos como morfismos é denominada de \mathbf{Grp}

5. ((??)) Um grupo G (e também um monóide) define uma categoria BG com um único objeto. Os elementos do grupo são seus morfismos e a composição é dada por \cdot . O elemento unitário $e \in G$ age como o morfismo identidade para o objeto único dessa categoria.

Por exemplo, para $(\mathbb{Z},+)$, e=0 e será representado por $0:\mathbb{Z}\to\mathbb{Z}$. Sendo $1:\mathbb{Z}\to\mathbb{Z}$ e $2:\mathbb{Z}\to\mathbb{Z}$, então a composição $1\circ 2$ é em $(\mathbb{Z},+)$ equivalente a 1+2 e $1\circ 2=3$.

Definição 1.2 (Isomorfismos, (??)). Em qualquer categoria C, um morfismo $f:A\to B$ é chamado de isomorfismo se existe um morfismo $g:B\to A$ em C tal que

$$g \circ f = 1_A \in f \circ g = 1_B$$

g é chamado de inverso de f e, por ser único, pode ser denotado por f^{-1} . Os objetos A e B são ditos isom'orficos e denotados por $A\cong B$ Exemplos:

- 1. Os isomorfismos em **Set** são bijeções
- 2. Os isomorfismos em **Grp** são os homomorfismos bijetivos

Definição 1.3 (Categorias pequenas, (??)). Uma categoria C é chamada de pequena se a coleção C_0 de objetos em C e a coleção C_1 de morfismos em C são conjuntos. Caso contrário, C é chamada de grande

Todas as categorias finitas são pequenas, assim como a categoria $Sets_{fin}$ de conjuntos finitos. Já a categoria Sets é grande (Pois caso a coleção de seus objetos fosse um conjunto, isso geraria o paradoxo de Russell)

Definição 1.4 (Categoria localmente pequena, (??)). Uma categoria C é chamada de localmente pequena se para quaisquer objetos X e Y em C, a coleção de morfismos $Hom_C(X,Y) = \{f \in C_1 | f : X \to Y\}$ é um conjunto (Chamado de hom-set)

1.2 Categorias novas das antigas

Dada a definição de categorias, é interessante analisar o que pode ser feito com uma categoria e como gerar novas categorias de categorias antigas

Definição 1.5 (Categoria oposta, (??)). A categoria oposta (ou "dual") C^{op} de uma categoria C possui os mesmos objetos que C, mas para cada morfismos $f: A \to B$ em C existe um morfismo $f: B \to A$ em C^{op}

A categoria oposta inverte todos os morfismos da categoria que parte. Então seja f^{op} o morfismo invertido, a composição na categoria oposta se torna: $f^{op} \circ g^{op} = (g \circ f)^{op}$

É interessante perceber que cada resultado na Teoria das Categorias terá um resultado dual ganho "de graça" ao fazer esse resultado nas categorias duais.

Também é possível ver que $(C^{op})^{op} = C$

Definição 1.6 (Categoria de setas, (??)). Seja uma categoria C, definimos a categoria de setas de C, denotada por C^{\rightarrow} , tendo:

- Objetos: morfismos $A \xrightarrow{f} B$ de C
- Morfismos: a partir de um objeto de C^{\rightarrow} $A \xrightarrow{f} B$ para outro $A' \xrightarrow{f'} B'$ um morfismo é um par $\langle A \xrightarrow{f} B, A' \xrightarrow{f'} B' \rangle$ de morfismos de C fazendo o diagrama

$$\begin{array}{ccc}
A & \xrightarrow{h} & A' \\
\downarrow^{f} & & \downarrow^{f'} \\
B & \xrightarrow{h} & B'
\end{array}$$

comutar. Ou seja, $k \circ f = f' \circ h$ em C

A composição das setas é feita ao colocar quadrados comutativos lado a lado da seguinte forma:

tal que $\langle l, m \rangle \circ \langle h, k \rangle = \langle l \circ h, m \circ k \rangle$

A identidade de um objeto $A \xrightarrow{f} B$ é dado pelo par $\langle id_A, id_B \rangle$

Outro tipo de categoria de interesse é a categoria slice:

Definição 1.7 (Categoria Slice, (??)). A categoria slice \mathbb{C}/C de uma categoria \mathbb{C} sobre um objeto $C \in \mathbb{C}$ possui:

- Objetos: todas as setas $f \in \mathbf{C}$ tal que cod(f) = C
- Morfismos: g de $f: X \to C$ e $f': X' \to C$ é uma seta $g: X \to X'$ em ${\bf C}$ tal que $f' \circ g = f$ como no diagrama:

A composição desses morfismos é basicamente a junção de desses triangulos

Também é possível definir a categoria (C/\mathbf{C}) chamada de categoria de coslice, onde os objetos são setas f de \mathbf{C} tal que dom(f) = C e uma seta entre $f: C \to X$ e $f': C \to X'$ é uma seta $h: X \to X'$ tal que $h \circ f = f'$ como no diagrama:

$$X \xrightarrow{f} C \xrightarrow{f'} X'$$

Também é possível definir a noção de subcategoria:

Definição 1.8 (Subcategoria, (??)). Uma categoria **D** dita *subcategoria* de **C** é obtida restringindo a coleção de objetos de **C** para uma subcoleção (Ou seja, todo **D**-objeto é um **C**-objeto) e a coleção de morfismos é obtida restringindo a coleção de morfismos de **C** onde:

- Se o morfismo $f: A \to B$ está em **D**, então A e B estão em **D**
- Se A está em \mathbf{D} , então também está o morfismo identidade id_A
- Se $f:A\to B$ e $g:B\to C$ estão em $\mathbf D$, então $g\circ f:A\to C$ também está e também:

Definição 1.9 (Subcategoria cheia, (??)). Seja **D** uma subcategoria de **C**. ENtão **D** é uma subcategoria cheia de **C** quando **C** não possui setas $A \to B$ além dos que já existem em **D**. Ou seja para quaisquer objetos A e B em **D**, **C**:

$$Hom_{\mathbf{D}}(A,B) = Hom_{\mathbf{C}}(A,B)$$

Exemplo:

- \bullet A categoria ${\bf FinSet}$ de conjuntos finitos é uma subcategoria de ${\bf Set}.$
- Um grupo (G,\cdot) é dito *abeliano*, ou comutativo, caso para quaisquer dois elementos $a,b\in G,\ a\cdot b=b\cdot a.$ A categoria de grupos abelianos \mathbf{Ab} é uma subcategoria (cheia) de \mathbf{Grp}