TEHNICA DE PROGRAMARE "GREEDY"

1. Prezentare generală

Tehnica de programare Greedy este utilizată, de obicei, pentru rezolvarea problemelor de optimizare, adică a acelor probleme în care se cere determinarea unei submulțimi a unei mulțimi date pentru care se minimizează sau se maximizează valoarea unei funcții obiectiv.

Forma generală a unei probleme de optimizare:

"Fie A o mulțime nevidă și $f: \mathcal{P}(A) \to \mathbb{R}$ o funcție obiectiv asociată mulțimii A, unde prin $\mathcal{P}(A)$ am notat mulțimea tuturor submulțimilor mulțimii A. Să se determine o submulțime $S \subseteq A$ astfel încât valoarea funcției f să fie minimă/maximă pe S (i.e., pentru orice altă submulțime $T \subseteq A, T \neq S$, valoarea funcției obiectiv f va fi cel puțin /cel mult egală cu valoarea funcției obiectiv f pe submulțimea S)."

Exemplu:

"Fie A o mulțime nevidă de numere întregi. Să se determine o submulțime $S \subseteq A$ cu proprietatea că suma elementelor sale este maximă."

"Fie $A \subseteq \mathbb{Z}$, $A \neq \emptyset$ și $f : \mathcal{P}(A) \to \mathbb{R}$,

$$f(S) = \sum_{x \in S} x.$$

Să se determine o submulțime $S \subseteq A$ astfel încât valoarea funcției f să fie maximă pe S, i.e. $\forall T \subseteq A, T \neq S \Rightarrow f(T) \leq f(S)$ sau, echivalent, $\forall T \subseteq A, T \neq S \Rightarrow \sum_{x \in T} x \leq \sum_{x \in S} x$."

$$A = \{-5, 7, -1, 10, 3\} => S = \{7, 10, 3\}$$

$$A = \{-5, -7, -1, -10, -3\} => S = \{-1\}$$

Evident, orice problemă de acest tip poate fi rezolvată prin *metoda forței-brute*, dar soluția va avea o complexitate exponențială, respectiv $\mathcal{O}(2^{|A|})!$

Tehnica de programare Greedy încearcă să rezolve problemele de optimizare adăugând în submulțimea S, la fiecare pas, cel mai bun element disponibil din mulțimea A din punct de vedere al optimizării funcției obiectiv.

Practic, metoda Greedy încearcă să găsească optimul global al funcției obiectiv combinând optimele sale locale.

Principiul de optim:

- 1. *Optimul global => optime locale* (forma directă) și este întotdeauna adevărată
- 2. *Optime locale => optim global* (forma inversă) și NU este întotdeauna adevărată

Revenind la problema determinării unei submulțimi *S* cu sumă maximă, observăm faptul că aceasta trebuie să conțină toate elementele pozitive din mulțimea *A*, deci criteriul de selecție este ca elementul curent din *A* să fie pozitiv (demonstrația optimalității este banală). Dacă mulțimea *A* nu conține niciun număr pozitiv, care va fi soluția problemei?

În anumite probleme, criteriul de selecție poate fi aplicat mai eficient dacă se realizează o prelucrare inițială a elementelor mulțimii A – de obicei, o sortare a lor.

Exemplu:

Fie A o mulțime nevidă formată din n numere întregi. Să se determine o submulțime $S \subseteq A$ având exact k elemente $(1 \le k \le n)$ cu proprietatea că suma elementelor sale este maximă.

A = { 1, -3, -2,
$$\frac{5}{5}$$
, -7, 2, $\frac{3}{5}$, -5} n = 8 şi k = 5 S = {5, 3, 2, 1, -2}

Soluția:

- fără sortare (implementare directă): $\mathcal{O}(kn)$
- cu sortare: $O(k + n \log_2 n) \approx O(n \log_2 n)$

Forma generală a unui algoritm de tip Greedy:

```
prelucrarea inițială a elementelor mulțimii A (opțional)

S = []
for x in A
   if x verifică criteriul de selecție:
        S.append(x)

afișarea elementelor soluției S
```

Complexitățile specifice metodei Greedy:

- $\mathcal{O}(n)$ -> fără sortare și verificarea criteriului de selecție pentru un element x în $\mathcal{O}(1)$
- $\mathcal{O}(n\log_2 n)$ -> cu sortare în $\mathcal{O}(n\log_2 n)$ și verificarea criteriului de selecție pentru un element x în $\mathcal{O}(1)$
- $\mathcal{O}(n^2)$ sau $\mathcal{O}(n^2\log_2 n)$ -> cu sortare în $\mathcal{O}(n\log_2 n)$ și verificarea criteriului de selecție în $\mathcal{O}(n)$

Selecția unui element x din mulțimea A este statică, deci trebuie demonstrată corectitudinea criteriului de selecție!!!

Contraexemplu Greedy

Plata unei sume S folosind n tipuri de monede cu valorile v_1 , v_2 ,..., v_n

Dorim să plătim suma S folosind un număr minim de monede!

Idee de tip Greedy: folosim un număr maxim de monede cu valoare maximă la momentul respectiv

a)
$$v = [8, 7, 5]$$
\$ şi $S = 23$ \$

$$S = 2*8\$ + 7\$ = 2*8\$ + 1*7\$ => Nr. monede = 3 => soluție optimă$$

b)
$$v = [8, 7, 1]$$
\$ şi $S = 14$ \$

$$S = 1*8\$ + 6\$ = 1*8\$ + 6*1\$ => Nr.$$
 monede = 7 => soluție corectă, dar care nu este optimă (2*7\$)

c)
$$v = [8, 7, 5]$$
\$ şi $S = 14$ \$

$$S = 1*8\$ + 6\$ = 1*8\$ + 1*5\$ + 1\$$$
 (rest neplătibil) => nu există soluție!

2. Minimizarea timpului mediu de așteptare

La un ghișeu, stau la coadă n persoane p_1, p_2, \ldots, p_n și pentru fiecare persoană p_i se cunoaște timpul său de servire t_i . Să se determine o modalitate de reașezare a celor n persoane la coadă, astfel încât timpul mediu de așteptare să fie minim.

Exemplu:

Persoana	Timpul de servire (t_i)	Timp de așteptare (a_i)
p_1	7	7
p_2	6	7+6=13
p_3	3	13 + 3 = 16
p_4	10	16 + 10 = 26
p_5	6	26 + 6 = 32
p_6	3	32 + 3 = 35
Timpul mediu de așteptare (TMA):		$\frac{7+13+16+26+32+35}{6} = \frac{129}{6} = 21.5$

Rearanjarea optimă (în ordinea crescătoare a timpilor de servire):

Persoana	Timpul de servire (t_i)	Timp de așteptare (a_i)
p_3	3	3
p_6	3	3 + 3 = 6
p_2	6	6 + 6 = 12
p_5	6	12 + 6 = 18
p_1	7	18 + 7 = 25
p_4	10	25 + 10 = 35
Timpul m	ediu de așteptare (TMA):	$\frac{3+6+12+18+25+35}{6} = \frac{99}{6} = 16.5$

minimizarea timpului mediu de așteptare <=> minimizarea timpului de așteptare al fiecărei persoane <=> minimizarea timpilor de așteptare ai persoanelor aflate înaintea sa

Pentru a demonstra mai simplu corectitudinea algoritmului, mai întâi vom renumerota persoanele $p_1, p_2, ..., p_i, ..., p_j, ..., p_n$ în ordinea crescătoare a timpilor de servire, astfel încât vom avea $t_1 \leq t_2 \leq ... \leq t_i \leq ... \leq t_j \leq ... \leq t_n$. De asemenea, vom presupune faptul că timpii individuali de servire $t_1, t_2, ..., t_n$ nu sunt toți egali între ei (în acest caz, problema ar fi trivială), deci există i < j astfel încât $t_i < t_j$. În continuare, presupunem faptul că această modalitate P_1 de aranjare a persoanelor la coadă (o permutare, de fapt) nu este optimă, deci există o altă modalitate optimă $P_2 \neq P_1$ de aranjare $p_1, p_2, ..., p_j, ..., p_i, ..., p_n$ diferită de cea inițială, în care $t_j > t_i$ (practic, am interschimbat persoanele p_i și p_j din varianta inițială, adică persoana p_j se află acum pe poziția i în coadă, iar persoana p_i se află acum pe poziția j, unde i < j).

În cazul primei modalități de aranjare P_1 , timpul mediu de așteptare TMA_1 este egal cu:

$$TMA_{1} = \frac{t_{1} + (t_{1} + t_{2}) + \dots + (t_{1} + \dots + t_{i}) + \dots + (t_{1} + \dots + t_{j}) + \dots + (t_{1} + \dots + t_{n})}{n} = \frac{nt_{1} + (n-1)t_{2} + \dots + (n-i+1)t_{i} + \dots + (n-j+1)t_{j} + \dots + 2t_{n-1} + t_{n}}{n}$$

În cazul celei de-a doua modalități de aranjare P_2 , timpul mediu de așteptare TMA_2 este egal cu:

$$TMA_2 = \frac{t_1 + (t_1 + t_2) + \dots + (t_1 + \dots + t_j) + \dots + (t_1 + \dots + t_i) + \dots + (t_1 + \dots + t_n)}{n} = \frac{nt_1 + (n-1)t_2 + \dots + (n-i+1)t_j + \dots + (n-j+1)t_i + \dots + 2t_{n-1} + t_n}{n}$$

Comparăm acum TMA_1 cu TMA_2 , calculând diferența dintre ele:

$$TMA_1 - TMA_2 = \frac{(n-i+1)t_i + (n-j+1)t_j - (n-i+1)t_j - (n-j+1)t_i}{n} = \frac{t_i(n-i+1-n+j-1) + t_j(n-j+1-n+i-1)}{n} = \frac{t_i(-i+j) + t_j(-j+i)}{n} = \frac{-t_i(i-j) + t_j(i-j)}{n} = \frac{(t_j - t_i)(i-j)}{n}$$

Deoarece i < j și $t_j > t_i$, obținem faptul că $TMA_1 - TMA_2 = \frac{(t_j - t_i)(i - j)}{n} < 0$ (evident, $n \ge 1$), ceea ce implică $TMA_1 < TMA_2$. Contradicție!!!

Detalii de implementare + complexitate!

 $\mathcal{O}(n\log_2 n)$

Forma generală a problemei:

"Se consideră n activități cu duratele $t_1, t_2, ..., t_n$ care partajează o resursă comună. Știind faptul că activitățile trebuie efectuate sub excludere reciprocă (i.e., la un moment dat resursa comună poate fi alocată unei singure activități), să se determine o modalitate de planificare a activităților astfel încât timpul mediu de așteptare să fie minim.".

3. Planificarea optimă a unor spectacole într-o singură sală

Considerăm n spectacole S_1, S_2, \ldots, S_n pentru care cunoaștem intervalele lor de desfășurare $[s_1, f_1), [s_2, f_2), \ldots, [s_n, f_n)$, toate dintr-o singură zi. Având la dispoziție o singură sală, în care putem să planificăm un singur spectacol la un moment dat, să se determine numărul maxim de spectacole care pot fi planificate fără suprapuneri. Un spectacol S_j poate fi programat după spectacolul S_i dacă $s_i \geq f_i$.

De exemplu, să considerăm n=7 spectacole având următoarele intervale de desfășurare:

```
S_1: [10<sup>00</sup>, 11<sup>20</sup>)

S_2: [09<sup>30</sup>, 12<sup>10</sup>)

S_3: [08<sup>20</sup>, 09<sup>50</sup>)

S_4: [11<sup>30</sup>, 14<sup>00</sup>)

S_5: [12<sup>10</sup>, 13<sup>10</sup>)

S_6: [14<sup>00</sup>, 16<sup>00</sup>)

S_7: [15<sup>00</sup>, 15<sup>30</sup>)
```

În acest caz, numărul maxim de spectacole care pot fi planificate este 4, iar o posibilă soluție este S_3 , S_1 , S_5 și S_7 . Soluția nu este unică $(S_3, S_1, S_5$ și $S_6)$!!!

Criterii posibile de selecție:

- a) în ordinea crescătoare a duratelor
- b) în ordinea crescătoare a orelor de început
- c) în ordinea crescătoare a orelor de terminare

Criteriul a)

Programare: S3 (optim: S1, S2)

Criteriul b)

Programare: S3 (optim: S1, S2)

Criteriul c)

.....

Demonstrația optimalității - exchange argument:

Fie G soluția furnizată de algoritmul de tip Greedy și o soluție optimă O, diferită de G, obținută folosind orice alt algoritm:

Algoritmul Greedy:

- sortăm spectacolele în ordinea crescătoare a orelor de terminare;
- planificăm primul spectacol (problema are întotdeauna soluție!);
- pentru fiecare spectacol rămas, verificăm dacă începe după ultimul spectacol programat și, în caz afirmativ, îl planificăm și pe el.

Complexitate: $O(n \log_2 n)$.