Jean-Marie Dufour Janvier 2002

Compilé: 19 janvier 2002

THÉORIE ÉCONOMÉTRIQUE EXERCICES 10

M-ESTIMATEURS

- 1. (a) Définissez la notion de M-estimateur.
 - (b) Expliquez la différence entre «M-estimateur » et «estimateur du maximum de vraisemblance».
- 2. (a) Donnez des conditions de régularité sous lesquelles un M-estimateur converge presque sûrement vers une constante.
 - (b) À quoi correspond cette constante?
 - (c) Donnez des conditions de régularité sous lesquelles le M-estimateur a une distribution asymptotique normale et dérivez cette distribution. Précisez bien la matrice de covariance asymptotique du M-estimateur.
- 3. Peut-on établir la distribution asymptotique d'un estimateur du maximum de vraisemblance à partir de celle des M-estimateurs? Précisez comment.
- 4. (a) Définissez ce qu'est un M-estimateur quasi-généralisé.
 - (b) Donnez une condition sous laquelle la distribution d'un M-estimateur quasigénéralisé ne dépend pas de la distribution asymptotique de l'estimateur de première étape (\tilde{c}_n) .
 - (c) Quelle forme prend alors la matrice de covariance asymptotique du M-estimateur quasi-généralisé ?
- 5. Considérez le modèle de régression non linéaire :

$$Y_i = h(X_i, \beta_0) + u_i, \ \beta_0 \in \mathcal{B}$$

 $E(u_i \mid X_1, \dots, X_n) = 0$
 $E(u_i^2 \mid X_1, \dots, X_n) = \omega^2(X_i, \beta_0) > 0, \quad i = 1, \dots, n$

où

H1: les couples (Y_i, X_i) , $i = 1, \ldots, n$ sont indépendants et identiquement distribués;

 $H2: \mathcal{B}$ est un ensemble compact;

H3: $h(X, \beta)$ est une fonction continue de β et

$$E\left[\left(Y_{i}-h\left(X_{i},\,\beta\right)\right)^{2}\right]<\infty\,,\,\forall\beta\in\mathcal{B};$$

- H4: $\frac{1}{n} \sum_{i=1}^{n} (Y_i h(X_i, \beta))^2$ converge presque sûrement et uniformément sur \mathcal{B} vers $E[(Y_i h(X_i, \beta))^2]$.
 - (a) Quand le paramètre β est-il identifiable au premier ordre ? Quand serait-il identifiable au second ordre ?
 - (b) Si on suppose que β est identifiable au premier ordre, montrez que l'estimateur $\hat{\beta}_n$ obtenu en minimisant $\sum_{i=1}^n \left(Y_i h\left(X_i, \beta\right)\right)^2$ (estimateur des moindres carrés non linéaires) est convergent.
 - (c) Si on suppose que β est identifiable au premier ordre, donnez des conditions de régularité sous lesquelles la distribution asymptotique de $\sqrt{n}(\hat{\beta}_n \beta_0)$ est normale. Explicitez la matrice de covariance asymptotique de $\sqrt{n}(\hat{\beta}_n \beta_0)$.
 - (d) Trouvez un estimateur de β dont la variance asymptotique ne peut être inférieure à celle de $\hat{\beta}_n$.

Pour résoudre 5b et 5c, vous pouvez utiliser la théorie générale des M-estimateurs.

- 6. Exercice 8.3 dans Gouriéroux and Monfort (1989, chap. VIII, p. 297).
- 7. Exercice 8.4 dans Gouriéroux and Monfort (1989, chap. VIII, p. 297-298).

Références

GOURIÉROUX, C., AND A. MONFORT (1989): Statistique et modèles économétriques, Volumes 1 et 2. Economica, Paris.