Constraints selection for the Hamiltonian graph problem

Adrián Enríquez Ballester

January 9, 2022

The set of constraints stated in the assignment description are not minimal. Some of them follow from the others, so a subset can be choosen while keeping the problem requirements. This document explains the constraints selection and proves it to be correct.

The constraints, as specified in the assignment, are:

- 1. For each $i \in \{1..n\}$, v_i appears in the sequence.
- 2. For each $i \in \{1..n\}$, v_i does not appear in two different positions of the sequence.
- 3. For each $j \in \{1..n\}$, the j-th element of the sequence contains a vertex.
- 4. For each $i, j \in \{1..n\}$ such that $i \neq j$, v_i and v_j do not appear in the same position of the sequence.
- 5. For each $i, j \in \{1..n\}$ such that $i \neq j$: if v_i and v_j are not adjacent in the graph, then they do not appear together in the sequence.

Let p_{ij} be the propositional variable meaning that 'vertex i is in the path position j'. The first four constraints can be translated into the following propositional formulas:

- 1. For each $i \in \{1..n\}$, we have $p_{i1} \vee p_{i2} \vee ... \vee p_{in}$.
- 2. For each $i, j \in \{1..n\}$, we have $p_{ij} \Rightarrow \neg p_{i1} \land \neg p_{i2} \land ... \land \neg p_{i(j-1)} \land \neg p_{i(j+1)} \land ... \land \neg p_{in}$.
- 3. For each $j \in \{1..n\}$, we have $p_{1j} \vee p_{2j} \vee ... \vee p_{nj}$.
- 4. For each $i, j, k \in \{1..n\}$ such that $i \neq j$, we have $\neg (p_{ik} \land p_{jk})$.

We are going to prove that 2 and 3 are logical consequences of 1 and 4, thus an equivalent smaller set of constraints is $\{1,4,5\}$.

Lemma. $\{1,4\} \models 2 \ and \ \{1,4\} \models 3.$

Proof. Let n be the number of nodes in the graph and let α be an assignment that satisfies $\{1,4\}$. Let $S = \{p_{ij} : \alpha(p_{ij})\}$ be the set of variables assigned to true by α .

On the one hand, 1 implies that $|S| \ge n$, because at least one p_{ij} must be true for each $i \in \{1..n\}$. On the other hand, 4 implies that $|S| \le n$, because for every pair $p_{ij}, p_{kj} \in S$, i must be the same as k in order to not contradict 4, so both elements are the same. This leaves us with the result |S| = n.

If we suppose $\neg 2$, then there exists a pair $p_{ij}, p_{ik} \in S$ with $j \neq k$ and, together with 1, this would fall into the case |S| > n, which is not compatible with 4. As $1 \land 4 \land \neg 2$ is unsatisfiable, we have that $\{1, 4\} \models 2$.

For the last part, if we suppose $\neg 3$, then there exists some $j \in \{1..n\}$ such that $p_{ij} \notin S \ \forall i \in \{1..n\}$ and, together with 4, this time it falls into the case where |S| < n, which is not compatible with 1. This ends the proof with the result $\{1,4\} \models 3$.