Harsh Mahesheka

Email: harsh.mahesheka.eee20@iitbhu.ac.in Website: https://harshmahesheka.github.io/

Mobile: +91-947-0292-105

EDUCATION

Indian Institute of Technology (BHU)

Bachelor and Masters of Technology - Electrical Engineering; GPA: 9.50 with minor in Computer Science and Engineering

Varanasi, India July 2020 - June 2025

Publications

• Daniel Honkeramp*, Harsh Mahesheka*, Jan Ole von Hartz, Tim Welschehold, Abhinav Valada Zero-Cost Whole-Body Teleoperation for Mobile Manipulation

Accepted at IEEE Robotics and Automation Letters (RA-L)

*Equal Contribution

 Harsh Mahesheka, Zhixian Xie, Zhaoran Wang, Wanxin Jin Language-Model-Assisted Bi-Level Programming for Reward Learning from Internet Videos Accepted at Workshop on Language and Robot Learning at CORL 2024

SKILLS AND INTERESTS

- Areas of Interests: Deep Reinforcement Learning, Computer Vision
- Languages & Libraries: Python, MATLAB, C++, CMake, Tensorflow, Pytorch, Stable Baselines, RLlib
- Tools and Simulators: Robotic Operating System, Moveit, Gazebo, Isaac Sim, Isaac Gym, PyBullet, Carla

RESEARCH EXPERIENCE

MyoLab, Carnegie Mellon University

Research Internship Under Dr. Vikas Kumar

Remote

Nov 2024 - Present

- o Goal: Create an accurate biomechanical model of a user's arm using inertial data from a smartwatch
- Utilized inertial data from smartwatches to accurately track user's arm movements with **2cm** accuracy.
- The data was then employed to simulate a human arm, with an optimization process applied to refine kinematic parameters such as joint strengths, segment lengths, movement constraints, etc. This ensured a highly accurate **digital clone** of the arm, enabling precise **synthetic data generation**.

Intelligent Robotics and Interactive Systems Lab, Arizona State University

Remote

Research Internship Under Dr. Wanxin Jin and Dr. Zhaoran Wang

April 2024 - Dec 2024

- o Goal: Learn biological motions from in-wild videos without extensive data preparation.
- Developed a hierarchical **VLM-LLM** architecture for **inverse reinforcement learning** from videos by generating reward functions. The framework uses a high-level VLM (Gemini 1.5) to analyze expert and learner videos, providing feedback that a low-level LLM (GPT-40) uses to update the reward function.
- Implemented and tested the framework in **Isaac Gym**, training simulated robots (Ant, Humanoid, ANYmal) with **PPO** to perform complex biological motions like jumping, running and splitting.

Robot Learning Lab, University of Freiburg

Freiburg, Germany

DAAD-WISE Research Internship Under Dr. Abhinav Valada

May 2023 - September 2024

- Goal: Develop a low-cost and intuitive teleoperation system for mobile manipulation
- The teleoperation method produces whole-body motions for mobile manipulation by delegating the base motions to a **reinforcement learning agent**, leaving the operator to focus on end-effector motions.
- Trained the reinforcement learning policy using A2C algorithm in Isaac Sim to generate whole-body motions and achieved zero-shot Sim2Real transfer on PR2, HSR robots.
- o Demonstrated precise, intuitive, and 40% faster task completion compared to existing methods.

Robotics Research Center, IIIT Hyderabad

Hyderabad, India

Research Internship Under Dr. K. Madhava Krishna

May 2022 - December 2022

- o Goal: Develop a global planner to reduce localisation drift by avoiding featureless areas
- Designed and implemented a **reinforcement learning-based global planner**, trained to intelligently navigate through environments by actively avoiding areas that could cause localization drift.
- Developed a modular platform for training and validating reinforcement learning models for global planners, integrated with **ROS** and **Gazebo** for real-time performance assessment and tuning.

Hindustan Unilever Limited

ULIP Technical Intern

Mumbai, India

May 2024 - June 2024

- Energy Optimizer: Used machine learning and data analytics to develop a tool to serve as an end-to-end solution for optimising parameters to enhance factory energy efficiency.
- Energy By Design: Benchmarked various process parameters and machine specifications across factories to generate energy insights worth **3.5 crores**.

Google Summer of Code - Project Mesa

Remote

Student Developer

May 2024 - September 2024

• Mesa RL: Enhanced the Mesa agent-based modelling framework for Multi-Agent Reinforcement Learning by creating wrappers and functions for seamless integration with reinforcement learning libraries like RLlib and Stable Baselines. Created tutorials and documentation for getting started.

Google Summer of Code - Open Robotics

Remote

Student Developer

May 2022 - September 2022

- Package Creation Tool: Created a command line tool using embedded Ruby for helping new users get started with Gazebo by generating custom template packages.
- CMake Macros: Created macros for installing and sourcing worlds, models, plugins, etc., in Gazebo.

PROJECTS

• Multi-Purpose Household Bot (Supervised by Dr. Shyam Kamal):

/Link/

- o Goal: Design a Compact Ground Robot to perform household tasks like Cleaning and child care.
- Designed a CAD model and integrated ROS pckages for Exploration, Navigation, and Coverage.
- Used Computer Vision for tasks like threat detection and child following for child care in households.
- Developed prototype with Jetson Nano and STM Microcontroller and Intel Realsense.
- Centralized Multi-Agent Pick Up and Delivery System (Flipkart Grid 3.0):

/Link/

- o Goal: Develop a Multi-Agent Pick Up and Delivery system to automate warehouses.
- Designed and fabricated a swarm of Omnidirectional ROS-based mobile robots with centralized control.
- Implemented Conflict-Based Search for Global Planning and PID tracking for Local Planning.
- Localized bots using Kalman filter-based sensor fusion of overhead camera and odometry data.
- Autonomous Wheelchair (Supervised by Dr. K. Madhav Krishna):

[Link]

- Goal: Develop an autonomous interactive robotic wheelchair for assisting disabled people
- Used RTAB libraries for mapping and localization using 3-D point cloud from Intel Realsense.
- Detected and modelled human movement with **Time Elastic Band** (TEB) Planner for path planning.
- Build a mobile app and used NLP to enable voice-based commands for navigation.

RELEVANT COURSE WORK

- CSO-101 Computer Programming CSE-458 Soft Computing, CSE-241 Artificial Intelligence, ME-314 Mechatronics, EE-211 Linear Control Systems, EE-313 Modern Control Engineering, EE-414 Optimal and Adaptive Control, EE-404 Operations Research, CSO-323 Graph Theory and Applications,
- Deep Learning Specialization by Andrew Ng on Coursera, Reinforcement Learning Specialization by the University of Alberta on Coursera, ROS Specialization by Anis Koubaa on Udemy

ACHIEVEMENTS

- Among Top-15 students selected from 400 applicants nationwide for IUSSTF-Viterbi Scholarship 2023.
- Awarded **DAAD-WISE Scholarship** 2023 to pursue a Research Internship in German Public Institutes.
- Got selected to present my project to a global audience at the G20 Global Summit 2023.
- Stood first in **Robotics Conclave**, third in **Labyrinth** (ROS-based maze solver), and first in **Scientist of Utopia** (Astronomy-based Hackathon) at Technex (Annual Technical Fest of IIT BHU).
- Among Top-10 winners in National Robotics Competition for developing innovative household robots.
- Cleared Tabs in multiple International Debates, including being ranked 3rd out of 60+ teams in TIB-JUDO.

SERVICES AND LEADERSHIP

- Secretary of Robotics Club, IIT BHU.
- Mentor at RoboReG (Robotics Research Group at IIT BHU).
- Debating Lead at Literary Club, IIT BHU.
- Teaching Assistant for Dr. Shyam Kamal, for the course EE-561 (Modern Control Theory)
- Reviewer at LangRob Workshop at Conference of Robot Learning, 2024.