3 Modelle für Messdaten

Stetige Zufallsvariablen und Wahrscheinlichkeitsverteilung

- Oft Messdaten statt Zähldaten
- Diese können jeden Wert in bestimmten Bereich annehmen
- · Genauigkeitsangabe durch Messgenauigkeit vorgegeben

Diskrete Wahrscheinlichkeitsverteilung

- Zufallsvariable X
- Wertemenge W_X
- Wertemenge besteht aus endlich vielen ganzen Zahlen (diskret)
- Die Menge ist also löchrig
- Beispiel einer Realisierung von X: X(Person) = 174
- x ist eine Zahl, X ist eine Menge
- Wahrscheinlichkeit berechnen:
 - P(X = x): Wahrscheinlichkeit der Zahl x
 - → Anzahl Personen mit x durch Gesamtmenge von X

Stetige Verteilung

- **nicht** löchrig (Wertemenge ist kontinuierlich)
- Wertemenge W_X von Zufallsvariable X = alle Werte die X annehmen kann
- Intervall: z.B. (a, b]
- runde Klammer = Wert liegt ausserhalb des Intervalls
- eckige Klammern = Wert liegt innerhalb des Intervalls

Notiz:

Man hat eine Reihe von Daten, die alle gleichwahrscheinlich vorkommen. Je mehr Kommastellen man zulässt, desto mehr gegen null strebt die Wahrscheinlichkeit eine bestimmte Zahl zu ziehen. (i = Nachkommastellen)

$$\frac{1}{10^{i+1}}$$

Wahrscheinlichkeitsdichte

ullet Die Wahrscheinlichkeitsdichte f ist die Ableitung der kumulativen Verteilungsfunktion:

$$f(x) = F'(x)$$

- bei experimentellen Messdaten verwendet,
- wo relative Häufigkeit in bestimmten Intervallen grösser als in anderen ist
- Wahrscheinlichkeit einer stetigen Zufallsvariablen X kann mit Wahrscheinlichkeiten aller Intervalle (a, b] beschreiben werden,

$$P(X \in (a, b]) = P(a < X \le b)$$

$$P(a < X \le b) = F(b) - F(a)$$

• Berechnen mit der kumulativen Verteilungsfunktion $F(x) = P(X \le x)$

Eigenschaften der kummulativen Verteilungsfunktion:

- 1. $0 \le F(x) \le 1$ (Wahrscheinlichkeit)
- 2. $F(-\infty) = 0$ (Wahrscheinlichkeit, dass Messwert kleiner als $-\infty$)
- 3. $F(\infty) = 1$ (Wahrscheinlichkeit, dass Messwert kleiner als ∞)
- 4. F(x) ist monoton wachsend: F(a) < F(b). Ableitung F'(x) von F(x) also immer grösser gleich 0

Eigenschaften der Wahrscheinlichkeitsdichte:

1. $f(x) \ge 0$, F(x) ist monoton wachsend

2.
$$P(a < X \le b) = F(b) - F(a) = \int_{a}^{b} f(x)dx$$
, Fläche zwischen a und b unter f(x)

$$3. \int_{-\infty}^{\infty} f(x)dx = 1$$

Kennzahlen von stetigen Verteilungen

Erwartungswert

- Mittlere Lage der Verteilung von Daten: μ
- Bei diskreter Verteilung z.B. Mittelwert oder Median

$$E(X) = \mu x = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

Standardabweichung

Selbe Bedeutung, wie bei diskreter Verteilung: σ_{x}

Varianz

Selbe Bedeutung, wie bei diskreter Verteilung: σ_x^2

$$Var(X) = \sigma_x^2 = E((X - E(X))^2) = \int_{-\infty}^{\infty} (x - E(X))^2 \cdot f(x) dx = E(X^2) - E(X)^2$$

Quantile

Selbe Bedeutung, wie bei diskreter Verteilung: $q(\alpha)$

Wichtige stetige Verteilungen

- Im diskreten Fall gibt es Binomial- und Poisson-Verteilung
- Im stetigen Fall gibt es
 - uniforme Verteilung
 - Exponentialverteilung
 - Normalverteilung (Gauss-Verteilung)
 - Standardnormalverteilung

Uniforme Verteilung

- "Ignoranz"
- Dichte ist konstant (gleichförmig)
- gleiche Wahrscheinlichkeit auf ganzem Wertebereich
- Zufallsvariable X ist Uniform verteilt, falls:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{falls } a \le x \le b \\ 0 & \text{sonst} \end{cases}$$

python

Probability density function

```
from scipy.stats import uniform

# An der Stelle x = 5, Intervall [1, 10]
uniform.pdf(x=5, loc=1, scale=9)
```

Falls $X \sim \text{Uniform}([1, 10])$:

```
uniform.cdf(x = 5, loc = 1, scale=9)
```

Wahrscheinlichkeit $P(1.2 \le X \le 4.8)$:

```
uniform.cdf(x = 4.8, loc = 1, scale=9) - uniform.cdf(x = 1.2, loc = 1, scale=9)
```

Uniform verteilte Zufallsvariablen:

```
uniform.rvs(loc = 1, scale=9, size=5)
```

Exponentialverteilung

- einfachste Modell für "Wartezeiten auf Ausfälle" (Lebensdauer)
- (Poissonverteilung: Anzahl Beobachtungen in einem festen Zeitintervall)
- Exponentialverteilung: Wahrscheinlichkeit für eine Lebensdauer
- $exp(x) := e^x$
 - Zufallsvariable *X*,

 - mit Parameter $\lambda \in \mathbb{R}^+$
 - heisst exponentialverteilt falls,

$$f(x) = \begin{cases} \lambda \cdot exp(-\lambda x) & \text{falls } x \ge 0\\ 0 & \text{sonst} \end{cases}$$

• Geschrieben als:

$$X \sim Exp(\lambda)$$

kumulative Verteilungsfunktion dazu:

$$f(x) = \begin{cases} 1 - exp(-\lambda x) & \text{falls } x \ge 0 \\ 0 & \text{falls } x < 0 \end{cases}$$

→ Lambda muss oft aus Experimenten geschätzt werden.

Erwartungswert bei Exponentialverteilung

$$E(X) = \frac{1}{\lambda}$$

Varianz bei Exponentialverteilung

$$Var(X) = \frac{1}{\lambda^2}$$

Standardabweichung bei Exponentialverteilung

$$\sigma_{x} = \frac{1}{\lambda}$$

python

```
from scipy.stats import expon

# X ~ Exp(3), Wahrscheinlichkeit P(0 <= X <= 4)
expon.cdf(x=4, scale=1/3)</pre>
```

Normalverteilung

- häufigste / wichtigste Verteilung für Messwerte
- Dichte der Normalverteilung ist symmetrisch um Erwartungswert
- Je grösser σ , desto flacher / breiter die Dichte
 - Zufallsvariable X
 - ullet mit Wertebereich $W_{\scriptscriptstyle \chi}=\mathbb{R}$
 - mit Parametern $\mu \in \mathbb{R} und\sigma^2 \in \mathbb{R}^+$
 - ist normalverteilt falls,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Geschrieben als:

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

kumulative Verteilungsfunktion dazu:

$$F(x) = \int_{-\infty}^{x} f(y)dy$$

Erwartungswert bei Normalverteilung

$$E(X) = \mu$$

Varianz bei Normalverteilung

$$Var(X) = \sigma^2$$

Standardabweichung bei Exponentialverteilung

$$\sigma_{x} = \sigma$$

python

```
from scipy.stats import norm

# P(X > 130) (also 1 - P(X <= 130)), X ~ N(100, 15^2)
1 - norm.cdf(x=130, loc=100, scale=15)</pre>
```

Standardnormalverteilung

- Normalverteilung $\mathcal{N}(0,1)$
- Normalverteilung kann immer in eine Standardnormalverteilung transformiert werden

Dichte bei Standardnormalverteilung

$$\phi(x) = \frac{1}{\sqrt{2\pi}} exp\left(-\frac{x^2}{2}\right)$$

python: norm.cdf(x)

kumulative Verteilungsfunktion bei Standardnormalverteilung

$$\Phi(x) = \int_{-\infty}^{x} \phi(y) dy$$

python: norm.ppf(q)
 (probability point function ist Umkehrung von cdf)

Funktionen einer Zufallsvariable

- Zu jeder Realisierung x von X gehört die Realisierung y = g(x) von Y
- "Funktion als neue Funktion darstellen"
- solche Transformationen treten häufig auf

Lineare Transformationen von Zufallsvariablen

• y = g(x) = a + bx

Eigenschaften von linearen Transformationen einer Zufallsvariable

1.
$$E(Y) = E(a + bX) = a + b(E(Y))$$

2.
$$Var(Y) = Var(a + bX) = b^2 Var(X), \sigma = |b|\sigma_x$$

3.
$$\alpha$$
 – Quantil von Y = $q_Y(\alpha) = \alpha + bq_X(\alpha)$

4.
$$f_Y(y) = \frac{1}{b} f_X\left(\frac{y-a}{b}\right)$$

Standardisieren einer Zufallsvariablen

- X kann immer linear transformiert werden sodass,
- Erwartungswert = 0 und
- Varianz = 1 ist.

$$E(Z) = a + bE(X) = 0$$

$$Var(Z) = b^{2} Var(X) = 1$$

Standardnormalverteilung:

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

Nichtlineare Transformationen von Zufallsvariablen

z.B. Quadratische Transformation:

$$y = g(x) = x^2$$

Wie sonst auch:

$$E[Y] = \int_{-\infty}^{\infty} y \cdot f_y(y) dy$$

Funktionen von mehreren Zufallsvariablen

- z.B. gleiche Grösse mehrmals messen
- Messungen x_1, x_2, \ldots, x_n werden als Realisierungen X_1, X_2, \ldots, X_n dargestellt
- ullet X_i ist die i-te Wiederholung von unserem Zufallsexperiment

Summe:

$$S_n = X_1 + \ldots + X_n = \sum_{i=1}^n X_i$$

arithmetisches Mittel:

$$\overline{X}_n = \frac{1}{n} S_n$$

ullet Das arithmetische Mittel der Daten \overline{x}_n ist eine Realisierung der Zufallsvariablen $\overline{X_n}$