Week 5: Signals and Systems February 25, 2019 5:34 PM

Signals & Systems

Sara Taghizadeh

Overview

- Signal
- Signal processing
- Signal Classification
 - Continuous time signals
 - Discrete time signals
 - Digital signals
 - Analog signals
- Systems
 - Impulse response
 - System properties
 - Linear time invariant (LTI systems)

<u> </u>			

Overview

- Sampling
- Frequency domain (Fourier Analysis)
- Discrete time fourier transform (DTFT)
 - o DTFT important properties
- Aliasing
 - o Aliasing in time domain
 - Aliasing in frequency domain
- Nyquist theorem
- Frequency Response

Overview

- Filter design
 - Filter typeFIR vs IIR

 - Filter order
 - Filter characteristics
- Summary

Signal

- Signal is something that conveys information
- Is used for communicating information between humans or between humans and machines
- Examples of signals:
 - Audio signals
 - sound, human voice, sound of a car, music instruments
 - Biological signals
 - EEG, EMG, ECG, etc.
 - Images, and Videos

Signal processing

- Is a subfield of mathematics and electrical engineering [1]
- Deals with analyzing and modifying signals [1]
- Application of signal processing
 - Audio and speech processing
 - o Video and image processing
 - Biological signal processing
 - Biomedical imaging

Signal processing applications

Biological signal processing

Signal processing applications

Biomedical Image processing

Original image

Direct back-projection

Filtered back-projection

[3]

Discrete time signals

- Represented as a sequence of numbers
- Defined at integer values, undefined everywhere else

Signal classification

- <u>One dimensional (1D)</u> signal is represented as a function of one variable (usually time)
 - x(t), x[n]
- **Two dimensional (2D)** signal is represented as a function of two variables
 - f(x,t)
 - Images

N[N]

Important Signals

• One specific discrete time signal of special importance in signal processing is the *unit impulse (delta)* function

Periodic signals

- A *periodic signal* is a signal that repeats
- The period is the number for which the signal repeats
- A signal that is not periodic is referred to as an aperiodic signal
- Is denoted by T in continuous time
- Is denoted by N in discrete time

Frequency

- Represents the number of cycles in one second
- Denoted by f and has a unit of Hz (hertz)
- We can represents signals frequency as a function of time (t)
- We can also represent signals as function of frequency (f)

(HZ) f = /T period (5

Signal manipulation

Question

he following is a discrete time signal. Sketch x[n-2]!

1,			
4			

System

- System takes an input and maps it to an output
- Some examples of systems are:
 - o Amplifiers, Filters, etc
- Continuous time systems have a continuous time input and output
- Discrete time systems have a discrete time input and output

x(t) (t) (t) (t) (t) (t) (t) (t) (t) (t)

Discrete time Systems

• Maps a discrete time input signal to a discrete time output signal

Impulse Response

- If the input to the system is the unit impulse signal, the output of the system is called the <u>impulse response</u>

 The impulse response in represented by h[n]

systems

• Linearity

Some important properties of discrete-time systems

• <u>Time Invariance</u>: implies that if we shift the input by a value(n0) the output of the system will be shifted by the same value(n0)

LTI systems

- Time invariance and linearity property together make up an important class of systems
- These systems are referred to as <u>Linear Time Invariant (LTI) systems</u>
- LTI systems have great importance in signal and system analysis

LTI systems

Convolution:

- The output of an LTI system can be represented by the convolution of the input with the impulse response of the system
- Convolution is denoted by " * "
- Convolution is an operation like multiplication and summation

some important operations on discrete time systems

Convolution:

• If the impulse response of an LTI system is known, the output corresponding to any input can be calculated

Sampling

Sampling

Fourier Analysis

- So far we talked about signals as a function of time (time domain)
- Another way to think of signals is a function of their frequency components
- Fourier analysis converts a signal from time domain to frequency domain

Fourier Analysis

<u>ittps://www.coursera.org/lecture/cryo-em/1-d-sine-waves-and-their-sums-78u</u>
#F

Discrete Time Fourier Transform (DTFT)

- Recall: last week we introduced the fourier transform
- Fourier transform (FT) is the frequency representation of a continuous time signal
- The frequency representation of a <u>discrete</u> and <u>aperiodic</u> signal is called the <u>discrete time fourier transform (DTFT)</u>
- The DTFT is the periodic (repetition of the fourier transform)

Example

Aliasing

- Assume we want to recover the original continuous time signal from the sampled discrete time signal
- If the recovered continuous signal is different from the original one **Aliasing** has occurred
- If multiple signals result from the reconstruction they are called aliases
- If the frequency components overlap this is called *Aliasing*

Aliasing

Aliasing in time domain

2007

Aliasing

[6]

Nyquist Theorem

- To prevent aliasing we utilize the Nyquist theorem
- If highest frequency component in signal is at fm
- The sampling rate fs has to be at least 2fm

• Also 2fm is called the **N***quist rate

Frequ

 The frequ Frequenc

ency Respor	nse
	e impulse response (h[n]) is called the
	$\rightarrow H(\omega)$
NCW)	TH(W)
	4
Workshops Page 20	

Important note

Time Domain

★ Convolution

Multiplication

Convolution

Multiplication

Convolution

X(W) X(W)

X(W)

X(W)

X(W)

X(W)

Filters

- One special type of <u>LTI systems</u>
- Have many applications
- Can be used to remove, reduce, amplify the frequency content of signals
- Have to consider different parameters when designing filters
- Filters perform their operation on signals in <u>time domain using</u> <u>convolution(*)</u>, and using <u>multiplication in the frequency domain</u>

Example

• How do filters perform:

Filters

• Cut off frequency:

o Also called the corner frequency

o Is the frequency at which some frequency content begins to be eliminated or reduced

FIR vs IIR

- <u>FIR</u> stands for Finite <u>impulse</u> response \(\(\(\) \)
- IIR stands for Infinite impulse response
- Remember the impulse response (the system output to the delta function) h[n]
- In <u>FIR</u> filters h[n] has a finite duration
- In <u>IIR</u> filters h[n] does not have finite duration(it is infinite)

FIR vs IIR

[7]

Filter Order N

Summary

- Signal
- Signal processing
- Signal Classification
 - Continuous time signals Discrete time signals
 - Digital signalsAnalog signals
- Systems
 - Impulse response
 - System properties
 - Linear time invariant (LTI systems)

Summary

- Sampling
- Frequency domain (Fourier Analysis)
- Discrete time fourier transform (DTFT)
 - o DTFT important properties
- Aliasing
 - o Aliasing in time domain
 - Aliasing in frequency domain
- Nyquist theorem
- Frequency Response

Summary

- Filter design
 - Filter type
 - FIR vs IIR
 - Filter order
 - Filter characteristics
- Summary

References

- 1] https://en.wikipedia.org/wiki/Signal_processing
- 2]https://github.com/neurotechuoft/Workshops/blob/master/workshop 2018 2019/notebooks/exercises/wk2b intro to signal processing.ipynb
- 3] https://q.utoronto.ca/courses/65501/files/868141?module_item_id=150010
- 4] http://brl.ee.washington.edu/neural-engineering/bci-security/
- 5] Digital Signal Processing, Allan V. Oppenheim

References

- **6]**https://en.wikipedia.org/wiki/Aliasing?fbclid=lwAR1hNakVtUjiF3csB7mLSXr8 ;pMNTxafEWrSiv6e4TpJLYlB7fzZ6DgBwFA
- 7] https://radiopaedia.org/articles/aliasing-in-mri
- **8]**https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Bae/Introduction-to-Filters-FIR-versus-IIR/ta-p/520959?fbclid=lwAR2y2k1H5grd_8LHcPI0Vvpliab2HpJzCOclb1K_AEYD7KUMxSMtYwk1bc

