江 西 理 工 大 学 期 终 考 试 卷 B

试卷编号	
77 太紀 元	٠
はんに 3世 ユ	٠

- 20 学年第二学期

考试性质(正考、补考或其它): [正考]

课程名称:

高等数学(二)

考试方式(开卷、闭卷):[闭卷]

考试时间: 2018 年 6 月 27 日9:00-10:40

试卷类别(A、B):[B]共三大面

温馨提示

请考生自觉遵守考试纪律,争做文明诚信的大学生。如有违犯考试纪律,将严格按照《江西 理工大学学生违纪处分规定》处理。

题号	_	<u> </u>	三	总 分
得分				

一、选择题(请将正确答案编码填入下表中,每小题3分,共24分)

题号	1	2	3	4	5	6	7	8
答案								

- 1. 设L为直线 $y = y_0$ 上从点 $A(0,y_0)$ 到点 $B(2,y_0)$ 的有向直线段,则 $\int_{0}^{\infty} 3 dy = ($)
 - (A) 0
- (B) $3y_0$
- (C) $6y_0$
- (D) 6

- 2. 设 $z = \arctan^{xy}$, 则 $\frac{\partial z}{\partial x} = ($)

 - (A) $\frac{y e^{xy}}{\sqrt{1 e^{2xy}}}$ (B) $-\frac{y e^{xy}}{\sqrt{1 e^{2xy}}}$ (C) $\frac{y e^{xy}}{1 + e^{2xy}}$ (D) $-\frac{y e^{xy}}{1 + e^{2xy}}$

3. Σ 为平面x+y+z=1与三坐标面所围区域表面的外侧,则

$$\iint\limits_{\Sigma} (2y+3z) \,\mathrm{d}y \,\mathrm{d}z + (x+2z) \,\mathrm{d}z \,\mathrm{d}x + (y+1) \,\mathrm{d}x \,\mathrm{d}y = (\quad)$$

- (A) $\frac{1}{6}$ (B) $\frac{2}{3}$ (C) $\frac{5}{3}$
- 4. 设 $\Omega = \{(x,y,z) | x^2 + y^2 + z^2 \le 2, x \le 0\}$, 则以下等式错误的是()

(A)
$$\iiint (x - 2xy) dv = 0$$
 (B) $\iiint x^2 y dv = 0$ (C) $\iiint z dv = 0$

$$(B) \iiint_{\Omega} x^2 y \, \mathrm{d}v = 0$$

(C)
$$\iiint_{\Omega} z \, \mathrm{d}v = 0$$

$$\text{(D)} \iiint_{\Omega} xy \, \mathrm{d}v = 0$$

- 5. 设向量 \vec{a} 的三个方向角为 α 、 β 、 γ , 且已知 α =60°、 β =120°, 则 γ =()
 - (A) 30°
- (B) 45°
- (C) 60°
- 6. 交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{3^{n-1}}$ ()

 - (A) 发散 (B) 绝对收敛
- (C) 条件收敛 (D) 无法确定
- 7. D为平面区域 $x^2 + y^2 \le 4$,利用二重积分的性质, $\iint (x^2 + 4y^2 + 9) dx dy$ 的最佳估值

区间为()

- (A) $[9\pi, 25\pi]$
- (B) $[36\pi, 52\pi]$ (C) $[36\pi, 100\pi]$
- (D) $[52\pi, 100\pi]$
- 8. 微分方程 $y'' 6y' + 9y = (6x^2 + 2)e^x$ 的待定特解得一个形式可为()

- (A) $y^* = x^2(x^2 + 1)e^x$ (B) $y^* = x(ax^2 + bx + c)e^x$ (C) $y^* = x^2(ax^2 + bx + c)e^x$ (D) $y^* = (ax^2 + bx + c)e^x$
- 二、填空题(请将正确答案填写在以下相应的横线上,每空3分,共24分)
- 1. ______2. ______3. _____

- 4. ______5. _____6. ____

- 1. 设 $z = x^3 y$,则dz = ______.
- 2. 设L为由三点(0,0), (3,0), (3,2)围成的平面区域D的正向边界曲线, 由格林公式知 $\int_{T} (3x - 2y + 4) dx + (5y + 3x - 6) dy = \underline{\qquad}.$
- 4. 设Σ是上半圆锥面 $z = \sqrt{x^2 + y^2}$ (0 $\leq z \leq 1$),则曲面积分 $\iint (x^2 + y^2) dS = ______.$

- 5. 以 $y_1 = e^{2x}$, $y_2 = xe^{2x}$ 为特解的阶数最低的常系数齐次线性微分方程是
- 6. 级数 $\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} \frac{1}{2^n} \right)$ 的和为______.
- 7. 直线L: $\begin{cases} x = 3t 2 \\ y = t + 2 \end{cases}$ 和平面 π : 2x + 3y + 3z 5 = 0的交点是_______.
- 8. 设 $\Omega = \{-1 \leqslant x \leqslant 1, -1 \leqslant y \leqslant 3, 0 \leqslant z \leqslant 3\},$ 则 ∭ $\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z = \underline{\qquad}$.
- 三、综合题(请写出求解过程,8小题,共52分)
- 1. 求方程 $\frac{dy}{dx} = \frac{2xy}{1+x^2}$ 的通解.(6分)

2. 用格林公式计算 $\oint_C x^2 y \, dx - xy^2 \, dy$, 其中 C 为圆周 $x^2 + y^2 = 4$, 取正向.(8分)

- 3. 设 $z = \ln(x^2 y)$,而 $y = \sec x$,求 $\frac{\mathrm{d}z}{\mathrm{d}x}$.(6分)
- 4. 用高斯公式计算 $\iint_{\Sigma} (a^2x + x^3) dy dz + y^3 dz dx + z^3 dx dy$, 其中Σ为球面 $x^2 + y^2 + z^2 = a^2$, 取内侧.(8分)

5. 判断级数
$$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}(2n-1)}$$
 的敛散性.(6分)

6. 计算
$$\iint_D (x^2+y^2) dx dy$$
, D 为曲线 $x^2-2x+y^2=0$, $y=0$ 围成的在第一象限的闭区域.(6分)

7. 在区间
$$(-1,1)$$
 内求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的和函数 $s(x)$.(6分)

8. 计算
$$\iiint 2z \, dx \, dy \, dz$$
, 其中Ω是由圆锥面 $z = \sqrt{x^2 + y^2}$ 与球面 $z = \sqrt{2 - x^2 - y^2}$ 围成的区域.(6分)