Colorization of black-and-white images with Deep Learning

Studienprojekt – Daniel Ketterer

Colorization

- Schwarz-weiß Bilder farbig machen
- Entfernen von Farbe aus einem Bild ist surjektiv
- Es gibt mehrere plausible farbige Lösungen zu einem SW-Bild

Quelle: http://arxiv.org/abs/1705.07208, rechts Original

Agenda

- Scribble-based Colorization
- Example-based Colorization
- Automatic Colorization
- Colorization mit U-Net und Regression Loss

Scribble-based Colorization

- Nutzen Farb-Hinweise als Striche oder Punkte die von einer Nutzerin erzeugt werden
- Funktioniert ohne Deep-Learning
- Idee z.B.:
 - Nachbarpixel mit derselben Lichtintensität haben dieselbe Farbe
 - Ähnliche Texturen haben dieselbe Farbe
 - → Hinweise über das Bild verteilen
 - Segmentation des Bildes um Colorbleeding zu verhindern
- Scribbles brauchen Übung und Erfahrung im Zusammenspiel mit den Algorithmen

Example-based Colorization

- SW-Bild wie Referenz Bild kolorieren
- Statistische Analysen und Histogramm Abstimmung
- Deep Convolutional Neural Networks (DCNN) mit der Referenz und dem SW-Bild trainieren
- Aligned Referenz R' und Ähnlichkeits-Matching mit Deep Image Analogy (Liao et al., 2017)
- Vorverarbeitung mit VGG-19 für Ähnlichkeits-Matching
- Autoencoder-DCNN für die Farbvorhersage

Target T_L

Reference R.

Aligned reference R'

Predicted result $T_L \bigoplus R'_{ab}$

Chrominance difference $|P_{ab} - R'_{ab}|$

Matching error $1 - sim_{T \to R}$

Matching error $1 - sim_{R \to T}$

Quelle: http://arxiv.org/abs/1807.06587

Automatic Colorization

- DCNN das ohne weitere Hilfe zu einem SW-Bild plausible Farben findet
- Verwenden alle irgendeine Autoencoder Architektur
- Ausgabe als:
 - direkte Vorhersage der Farbwerte
 - Verteilung, aus der die Farbwerte abgeleitet werden
- Loss als:
 - L1/L2-Regression loss
 - cGAN
 - Cross-entropy / KL-Divergenz

Colorization als Klassifikation

- Unterteilung des (2D-) Farbraums in Klassen
- Training mit Cross-entropy
- Höhere Gewichtung seltener Klassen während des Trainings
- Prediction mit:
 - dem wahrscheinlichstem Wert
 - o annealed-mean

Colorization als Regression

- Direkte Vorhersage von Werten im entsprechenden Farbraum
- Kombiniertes Training mit Klassifikation von Bildern möglich
- Vorteil, da bekannt das Training für Klassifikation zuverlässig gute Filter ergibt
- Autoencoder (Hypercolumn) Architektur
- L1-/L2-Norm als Loss-Funktion
- Eher desaturierte Ergebnisse, Objekte oft nur zum Teil gefärbt, "Color-Bleeding"

Colorization mit Conditional GAN

- Generator produziert direkte Farbwerte
- Generator hat Zufallsvektor und SW-Bild als Eingabe
- Diskriminator muss Ausgabe von Generator und echte Farben unterscheiden
- Diskriminator bekommt auch das SW-Bild als Eingabe
- Training mit L1 + cGAN Loss für die besten Ergebnisse
- Training als PatchGAN mit 70x70 Pixel großen Patches

PixColor: PixelCNN + Refinement CNN

- PixelCNN:
 - Hat zufälligen Startwert
 - Nimmt Global Features und SW-Bild
 - o Gibt 2 Farbkanäle (U + V) 28x28
- Refinement CNN:
 - Nimmt vergrößerte Farbkanäle + SW-Bild
 - Gibt 2 Farbkanäle in Originalgröße
- Unabhängiges Training von PixelCNN und Refinement CNN

Eigene Arbeit

Training und Evaluation eines
Colorization Netzes mit Keras + TF

U-Net und Regression Loss

- U-Net: Autoencoder mit Skip-Connections
- CIE Lab Farbraum
- Vorhersage der ab Kanäle
- Training mit L1- und L2-Norm
- Conv Aktivierung: ReLU 1 ###
- Letztes Layer: tanh

Datensatz

- ImageNet ILSVRC 2012
 - ~1.2M Bilder im Trainingsset
 - o 50000 Bilder im Validierungsset
 - o 1000 unterschiedliche Kategorien
 - Objekte in natürlichem Kontext

Training

- Aufteilung in L und ab der Bilder
- Verschiebung in des Intervall [-1, 1]
- Größe Anpassen: längste Seite 256 Pixel
- Zero-Padding zu 256x256 → Gleiche Größen im Batch
- ADAM mit Lernrate: 0.0003 als Optimierer
- 4 Epochen Training
- Kein Transferlernen
 - \rightarrow Starkes Overfitting bei Batch size 1
 - \rightarrow Moderates Overfitting bei Batch size 8

Loss beim Training mit L1

Loss beim Training mit L2

Ergebnisse

Beispiele

Histogram Intersection

0.14

		U-Net L1	U-Net L2	CIC	LTBC	LRAC	PixColor	L1 + cGAN
	а	0.631	0.768	0.85	0.82	0.78	0.93	0.84
	b	0.648	0.683	0.85	0.82	0.78	0.93	0.82

Schwarz: Verteilung ImageNet val1k Grün: a* Blau: b* **Typische Fehler**

Farben verlaufen

Desaturiert

Inkonsistente Farben

Fazit

- Ergebnisse mit Regression sind visuell nicht zufriedenstellend
- Histogram-Instersection in der Nähe der Literaturwerte
- Mögliche Verbesserungen durch:
 - Transferlernen
 - Normalisierung der Daten
 - Finetuning der Lernrate
 - Größere Batchsize auf anderer GPU
- Thematisch große Schnittmengen mit spannenden Themen aus dem DL: cGAN, PixelCNN

Vielen Dank für die Aufmerksamkeit!