Bohrsches Atommodell: $N_{max} = 2 \cdot n^2$

mit N_{max} = max. Anzahl Elektronen/Schale und n = Schalennummer von innen

startend, Sonderregel: Äußerste Schale max. 8 Elektronen (Edelgaskonfi.)

Eigenschaften: Halbleiter: 4, Verbindungshalbleiter: 3 oder 5, Metalle: 1 bis 3 Valenzelektronen

Metallbindung: Kristallbildung in Metallen Valenzelektronen nicht beteiligt → daher gute Stromleiter

Elektronenpaarbindung: Teilen sich Valenzelektronen, Edelgaskonfi möglich → schwer zu lösen → Halbleiter

Leitungsmechanismen in Halbleiter: Methode 1.) Eigenleitung Methode 2.) Störstellenleitung

- 1.) Eigenleitung: (bei reinen Halbleitern einzige Methode)
 - a) Paarbildung: Bei Energiezufuhr verlässt Valenzelektron sein Platz, es entsteht Loch, Löcher wandern → positiver Ladungsträger
 - b) Rekombination: freies Elektron wird durch ein Loch wieder eingefangen

 $n_{i\,(Silizium)}$ =1,5 ·10¹⁰ cm⁻³, T_0 = Bezugstemperatur (300K), [Wg] = eV \rightarrow mal 1,6 · 10⁻¹⁹ As =

- Konzentration gleich $n_0 = p_0 = n_i = f(T)$ Gleichgewicht zwischen a) und b) Intrinsic-Zahl, Temp-Abhängig
- 2.) Störstellenleitung: Fremdatome werden hinzugefügt (Ziel: Leitfähigkeit erhöhen)
 - a) Dotieren mit 5-wertigen Fremdatomen (n-Halbleiter) (z.B. Phosphor, Arsen)

Fremdatom wird Donator genannt, kleine Ionisierung Energie, negativer Ladungsträger → n-leitender Halbleiter

b) Dotieren mit 3-wertigen Fremdatomen (p-Halbleiter) (z.B. Bor, Aluminium)

Fremdatom wird Akzeptor genannt, kleine Ionisierung Energie, positiver Ladungsträger → p-leitender Halbleiter

Formeln zu 2.) Ladungsträger im thermodynamischen Gleichgewicht \rightarrow homogen dotiert \rightarrow Kristall neutral

Neutralitätsbedingung: $p_0 + N_D^+ = n_0 + N_A^-$ Massenwirkungsgesetz: $n_0 \cdot p_0 = n_i^2$

Bei einfacher Dotierung ist endweder N_D^+ oder $N_A^- = 0$

Konzentration der freien Ladungsträger im thermod. Gleichgewicht:

$$n_0 = \frac{1}{2} \left(N_D^+ - N_A^- + \sqrt{\left(N_D^+ - N_A^- \right)^2 + 4 \cdot n_i^2} \right)$$

$$p_0 = \frac{1}{2} \left(N_A^- - N_D^+ + \sqrt{\left(N_A^- - N_D^+ \right)^2 + 4 \cdot n_i^2} \right)$$

Majoritätsträger: aus Dotierung \rightarrow bei n-Halbleiter Elektronen n_{n0} in Überzahl, bei p-Halbleiter Löcher p_{p0} in Überzahl

Minoritätsträger: aus Eigenleitung → bei n-Halbleiter Löcher pn₀ in Unterzahl, bei p-Halbleiter sind Elektronen np₀ in Unterzahl

Ladungsträgerkonzentration im n-leitenden Halbleiter:

(Es wird nur mit N_D doniert) $N_D >> n_i$ **Einfachdotierung:**

Majoritätsträger-Konzentration: $n_{n0} \approx N_D^+ \approx N_D$ (Dotierungskonzentration)

Minoritätsträger-Konzentration: $p_{n0} pprox {n_i}^2/N_D$ (Konzentration ist kleiner als die obige)

Mehrfachdotierung: $N_D > N_A$ und $(N_D - N_A) >> n_i$

Majoritätsträger-Konzentration: $n_{n0} \approx N_D^+ - N_A^- \approx N_D - N_A$

Minoritätsträger-Konzentration: $p_{n0} pprox {n_i}^2/(N_D-N_A)$

Ladungsträgerkonzentration im p-leitenden Halbleiter:

Einfachdotierung: (Es wird nur mit N_A doniert) $N_A >> n_i$

Majoritätsträger-Konzentration: $p_{p0} \approx N_A^- \approx N_A$ (Dotierungskonzentration)

Minoritätsträger-Konzentration: $n_{p0} \approx n_i^2 / N_A$

Mehrfachdotierung: $N_A > N_D \text{ und } (N_A - N_D) >> n_i$

Majoritätsträger-Konzentration: $p_{p0} \approx N_A^- - N_D^+ \approx N_A - N_D^-$

Minoritätsträger-Konzentration: $n_{p0} \approx n_i^2/(N_A - N_D)$

Leitfähigkeit eines Halbleiterkristalls:

mit μ siehe Tabelle, Angabe

Leitfähigkeit: $\kappa = e \cdot (n \cdot \mu_n + p \cdot \mu_p)$ hohe Dotierungskonzentration \rightarrow hohe Wärmeschwingung \rightarrow geringe Beweglichkeit \rightarrow geringe Leitfähigkeit

Ladungsträgerbeweglichkeit: $\mu(T) = \mu(T_0) \cdot \left(\frac{T}{T_0}\right)^{-\frac{3}{2}} \rightarrow \text{temperaturabhängig}$

$$[\mu] = \frac{cm^2}{Vs} , [\kappa] = \frac{s}{m}$$

Das Energie-Bändermodell: Valenzband und Leiterband

Bei Hoher Energiedichte sind die einzelnen Energieniveaus nicht mehr voneinander unterscheidbar

Valenzband → Elektron kann sich leicht lösen und frei bewegen (durch Wechselwirkung benachbarte Atome)

Bei Metalle: Valenzband und Leitungsband überlappen → keine verbotene Zone → keine Energiezufuhr nötig → leiten

Bei Nichtleitern: Elektronen können sich im Valenzband nicht frei bewegen da zwischen Atomen "eingesperrt"→ fürs leiten müssten sie ins Leitungsband, das verhindert eine Bandlücke \triangleq verbotenes Band \triangleq \mathbf{W}_{G} (Energie wird benötigt)

Bei Halbleiter: Bandlücke ist klein (bereits bei Raumtemperatur gelangen paar ins Leitungsband) W_G wird überwindet

Für Eigenleitung gilt: $n_0 \cdot p_0 = n_i^2 = N_C \cdot N_V \cdot e^{\frac{-W_G}{k \cdot T}}$ mit Bandabstand: $W_G = W_C - W_V$

Für dotierten Halbleiter (Störstellenleitung): Dotieren mit Fremdatomen → Energie-Terme im verbotenen Band (Störterme)

Temperaturabhängigkeit von Halbleiterdaten:

$$\text{f Für } \mu_n, \ \mu_p, N_C, N_V \rightarrow \boxed{ f(T) = f(T_0) \cdot \left(\frac{T}{T_0}\right)^{-\frac{3}{2}} }$$

$$\text{Für W}_{\text{G}} \text{:} \qquad \qquad \boxed{ W_{\text{G}}(T) = W_{\text{G}0} - \frac{\alpha \cdot T^2}{T + \beta} }$$

Für W_G:

	W _{G0} [eV]	α [eV·K ⁻²]	β [K]
Si	1,17	4,73 · 10 ⁻⁴	636
Ge	0,74	4,44 · 10 ⁻⁴	235
GaAs	1,52	5,41 · 10 ⁻⁴	204

Der pn-Übergang: (Grenzschicht zwischen n-dotierten und p-dotierten Zone)

Raumladungsdichte: Dichte der ortsfesten negativen Ladung in der p-Zone: $ho_p = -e \cdot N_{\!A}^-$ Dichte der ortsfesten positiven Ladung in der n-Zone : $\rho_n = e \cdot N_D^+$

$$x_p \cdot \rho_p = x_n \cdot \rho_n$$

Diffusionsspannung: = gegenseitige Aufladung von p- und n-Zone erzeugt eine elektrische Spannung zwischen den beiden Zonen

Sperrschichtweite: W_s (Raumladungszone) erstreckt sich von x_p bis x_n

Sperrschichtweite ohne äußere anliegende Spannung: $W_{S_0} = \sqrt{\frac{\varepsilon_0 \cdot \varepsilon_r}{e} \cdot \left(\frac{1}{N_A} + \frac{1}{N_D}\right)} \cdot U_D$

Sperrschichtweite mit Sperrspannung: $W_{S_R} = \sqrt{\frac{2\epsilon}{e}} \cdot (\frac{1}{N_A} + \frac{1}{N_D}) \cdot (U_D + U_R) = W_{S0} \cdot \sqrt{\frac{U_D + U_R}{U_D}}$ (U_R positiv einsetzen)

Sperrschichtkapazität: Die Raumladungszone mit den enthaltenen elektrischen Ladungen wirkt wie ein geladener Plattenkondensator.

 $C_S = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{W_G}$ Sperrschichtkapazität Allgemein:

Sperrschichtkapazität Sperrpolung: $C_S = \frac{C_S}{A} = \frac{\varepsilon}{W_{S_R}} = C_{S0} \cdot \sqrt{\frac{U_D}{U_D + U_R}}$ C_{so} = Kapazität des spannungslosen pn-Übergangs

Spannung am pn-Übergang:

Sperrpolung: $U_{pn} = U_D + U_R$ mit $U_R = Sperrspannung \rightarrow Spannung die man außen anliegt$

Flusspolung: $U_{pn} = U_D - U_F$

Durchbruch bei hoher Feldstärke in Sperrrichtung:

1.) Lawinen-Effekt bei (>8V) Übergang der beiden Effekte zwischen 6 und 8 Volt Durchbruchspannung

2.) Zener Effekt bei (<6V)

Temperaturabhängigkeit der Kennlinie: (Beeinflusst alle Bereiche der Kennlinie eines pn-Überganges)

Durchlassspannung (bei unverändertem Strom) =>
$$U_{\vartheta 2} = U_{\vartheta 1} + D_{\vartheta}$$
. Δϑ mit $D_{\vartheta} = \text{Temperaturdurchgriff}$ ≈> $D_{\vartheta} \approx -\frac{\Delta U_F}{2} \approx -2 \text{mV/K}$ (Gleichhaltung

mit
$$D_{\vartheta} = \text{Temperaturdurchgriff}$$
 $\approx > D_{\vartheta} \approx -\frac{\Delta U_F}{\Delta T} \approx -2\text{mV/K}$ (Gleichhaltung Durchlassstrom)

Durchlassstrom (bei unveränderter
$$U_F$$
) => $I_F(T) = I_F(T_0) \cdot e^{-0.05K^{-1} \cdot (T - T_0)}$

Sperrstrom =>
$$I_R(T) = I_R(T_0) \cdot e^{-0.07K^{-1} \cdot (T - T_0)}$$

das bedeutet \approx eine Verdoppelung pro 10K => $I_R(T) = I_R(T_0) \cdot e^{-0.07K^{-1} \cdot (T - T_0)}$

Die Diode

Sperrpolung → Sperrrichtung → nur kleiner Sperrstrom fließt

Flusspolung → Durchlassrichtung → mit Spannung exponentiell stark ansteigender Durchlassstrom

Gesamtstrom durch idealen pn-Übergang $I = I_{S} \cdot \left(e^{\frac{U}{U_{T}}} - 1\right)$

Differenzielle Widerstand: $r_F = \frac{\Delta U}{\Delta I}$

→ Sperrspannung wird erhöht

Lineare Ersatzschaltung der Diode in Durchlassrichtung $U_F = U_{F0} + r_F \cdot I_F$

(U_{FO} ist Schnittpunkt der Tangente mit der X-Achse U im Kennliniendiagramm)

Durchlassverluste bei Gleichstrom: Verlustleistung $P_D \approx U_F \cdot I_F$

Durchlassverluste bei zeitlich verändertem Strom: Verlustleistung $P_D = U_{F0} \cdot I_{F_{AV}} + r_F \cdot \left(I_{F_{eff}}\right)^2$ bei Sinus mal 0,5

mit $I_{F_{AV}}$ = arithmetischer Mittelwert des Durchlassstroms, $I_{F_{eff}}$ = Effektivwert des Durchlassstroms

Z-Diode: Bauteile die im Durchbruchbereich betrieben werden.

Kapazitätsdiode: spannungsabhängig veränderbare Sperrschichtkapazität genutzt

PIN-Diode: am pn-Übergang ist ein eingeschobener, nicht-dotierter (intrinsischer) Bereich

Photodiode: pn-Übergang wird beleuchtet →elektron-Loch-Paare erzeugt → Fotostrom (Sperrstrom) fließt

Schottky-Diode: kein pn-Übergang sondern Metall-Halbleiterübergang

+ Kleinere Durchlassspannung, + Nur eine Ladungsträgerart ist für den Stromtransport zuständig → Keine Speicherladung, deshalb praktisch keine Rückstromspitze beim Ausschalten. Dadurch sehr kleine Umschaltverluste und Anwendung bei hohen Schaltfrequenzen möglich, - Höhere, mit der Temperatur stärker ansteigende Sperrströme als die pn-Diode, - Auf Siliziumbasis nur bis Sperrspannung 60 bis 80 Volt verfügbar (Ausnahme SiC)

Lumineszenzdiode (LED) und Laserdiode: Energie des Elektron-Loch-Paars Wg wird als Lichtquant frei

Stabilisierungsschaltung mit Z-Diode dient Erzeugung einer konstanten, relativ lastunabhängigen Gleichspannung aus einer höheren GS

Zulässiger Arbeitsbereich der Z-Diode:
$$P_{tot} = I_{Zmax} \cdot U_{Zmax}$$
 Sicherheitsfaktor (z.B. 0,8)
exakt: $I_{Zmax} = -\frac{U_{Z0}}{2r_z} + \sqrt{\frac{P_{tot}}{r_Z} + \left(\frac{U_{Z0}}{2r_Z}\right)^2}$ (max. zulässiger Z-Strom I_{Zmax} bei $\theta_J = \theta_{Jmax}$ für $\theta_U = 25$ °C)
mit $U_{Z0} = U_Z - r_{Z\ dyn} \cdot I_Z$ (ohne r_{th}) Für grob: $I_{Z\ max} \approx \frac{P_{tot}}{U_{Z\ max}}$

$$T_j = T_u + R_{thJA} \cdot P_V$$
 mit T_u = Umgebungstemperatur, mit $P_V = U_{Z(temp)} \cdot I_Z$

Grenzwerte für die Versorgungsspannung UB:

Maximum: bei gegebenem Laststrom:
$$U_{Bmax} = (I_{Zmax} + I_L) \cdot R_V + U_{Zmax}$$

bei gegebenen Lastwiderstand:
$$U_{Bmax} = I_{Zmax} \cdot R_V + U_{Zmax} \left(1 + \frac{R_V}{R_L}\right)$$

Minimum: bei gegebenem Laststrom:
$$U_{Bmin} = (I_{Zmin} + I_L) \cdot R_V + U_{Zmin}$$

bei gegebenen Lastwiderstand:
$$U_{Bmin} = I_{Zmin} \cdot R_V + U_{Zmin} \left(1 + \frac{R_V}{R_L}\right)$$

Grenzwerte für Iz:

$$I_{Z~grenz} pprox rac{P_{Z~grenz}}{U_{Z}}$$
 für P_{Z grenz} kann man P_{tot} einsetzen

Grenzwerte für den Vorwiderstand R_V:

Maximum:
$$R_{V max} = \frac{U_{B min} - U_{Z min}}{I_{Z min} + I_{L max}} \qquad R_{V max} = \frac{U_{B min} - U_{Z min}}{I_{Z min} + (\frac{U_{Z min}}{R_L})}$$

Minimum:
$$R_{V min} = \frac{U_{B max} - U_{Z max}}{I_{Z max} + I_{L min}} \qquad R_{V min} = \frac{U_{B max} - U_{Z max}}{I_{Z max} + (\frac{U_{Z max}}{R_L})}$$

Grenzwerte für den Lastwiderstand RL:

Grenzwerte für den Laststrom IL:

Maximum:
$$I_{Lmax} = \frac{U_B - U_{Zmin}}{R_V} - I_{Zmin}$$
Minimum:
$$I_{Lmin} = \frac{U_B - U_{Zmax}}{R_V} - I_{Zmax}$$

Genauere Betrachtung des differenziellen Widerstandes:

Durchbruchspannung der Z-Diode ist temperaturabhängig: $U_Z(\vartheta) = U_Z(\vartheta_1) \cdot [1 + \alpha \cdot (\vartheta_2 - \vartheta_1)]$

$$U_Z(\vartheta) = U_Z(\vartheta_1) \cdot [1 + \alpha \cdot (\vartheta_2 - \vartheta_1)]$$

Durchbruchspannung für konstante Temperatur Sperrschichttemperatur ϑ_I = 25 °C : $U_{Z(25^{\circ}C)} = U_{Z0} + I_Z \cdot r_{Zdyn}$

Durchbruchspannung der Z-Diode ist temperaturabhängig: $U_{Z_{II}} \approx U_{Z0} + r_{ZU} \cdot I_{Z}$

$$U_{Z_U} \approx U_{Z0} + r_{ZU} \cdot I_Z$$
 mit $r_{ZU} = r_{Zdyn} + \alpha \cdot U_Z^2 \cdot R_{th}$

Statisches Betriebsverhalten bei 25°C differenzielle Widerstand r_{zu} maßgebend: $r_{ZU} = r_{Zdyn} + r_{Zth}$

$$r_{ZU} = r_{Zdyn} + r_{Zth}$$

$$t r_{Zth} = \alpha \cdot U_Z^2 \cdot R_{th}$$

$$U_{Brumm} \approx u_{z^{\sim}} = \frac{r_{Zdyn}}{R_V} \cdot U_b$$

Brummspannung am Lastwiderstand: $U_{Brumm} \approx u_{Z^{\sim}} = \frac{r_{Zdyn}}{R_{Vd}} \cdot U_b$ (mit U_b = Wechselspannungsanteil) nur r_{zdyn} !!!

Netzgleichrichter:

Einweggleichrichter (Einpuls-Mittlepunktschaltung M1):

$$u_{20} = \frac{u_1}{\ddot{u}} = \hat{u}_{20} \cdot \sin(\omega \cdot t)$$

Nur eine Diode leitet während positive Halbwelle

Arithmetischer Mittelwert bei Einweggleichrichtung:

$$\bar{u}_L = 0.318 \cdot \hat{u}_L$$

Effektiv-Spannung einer Einweggleichrichtung:

$$U_{L\,RMS} = U_{L\,eff} = \frac{\hat{u}_L}{2} \approx \frac{\hat{u}_{20}}{2}$$

- nur ein Nachladevorgang pro Sinusperiode
- große Kapazität erforderlich für kleine Welligkeit
- große Dioden- und Trafoverluste
- einseitige Transformator Magnetisierung

Zweiweggleichrichter - Mittelpunktschaltung oder Zweipuls-Mittelschaltung auch M2-Schaltung:

positive und negative Halbwelle wird genutzt

- + nur eine Diode im Strompfad → geringere Leistungsspannungsverluste
- zweite Sekundärwicklung am Transformator erforderlich

Arithmetischer Mittelwert der M2-Schaltung:

$$\bar{u}_L = 0,64 \cdot \hat{u}_L$$

Effektiv-Spannung der M2 – Schaltung

$$U_{L\,RMS} = U_{L\,eff} = \frac{\widehat{u}_L}{\sqrt{2}} \approx \frac{\widehat{u}_{20}}{\sqrt{2}}$$

Brückengleichrichter (Zweipuls-Brückenschaltung) auch B2-Schaltung:

- + nur eine Sekundärwicklung
- 2 Dioden im Stromkreis = zweimal Verlustleistung
- kein gemeinsamer Bezugsleiter für Transformator und Last

 $^{R_{L}}\,$ Arithmetischer Mittelwert der B2-Schaltung:

$$\bar{u}_L = 0.64 \cdot \hat{u}_L = U_{Leff} \cdot \sqrt{2} \cdot 0.64$$

Effektiv-Spannung der B2 – Schaltung

$$U_{L \; RMS} = U_{L \; eff} = \frac{\widehat{u}_L}{\sqrt{2}} \approx \frac{\widehat{u}_{20}}{\sqrt{2}}$$

n = 2

Genauere Betrachtung der Zweiweggleichrichter:

wenn:
$$\hat{u}_{20} < 20 \cdot n \cdot U_{F0}$$
 oder $R_L < 20 \cdot (R_{iT} + n \cdot r_f)$ \Rightarrow $\hat{u}_{20} - i_F \cdot R_{iT} - n(U_{F0} + i_F \cdot r_F) - i_F \cdot R_L = 0$

Stromflusszeit und Stromflusswinkel:

Welligkeit der Ausgangsspannung: $U_{SS} = \Delta U$

Stromflusszeit: $t_F = t_2 - t_1$

Stromflusswinkel: $2\theta = \omega \cdot t_F$ (in Bogenmaß)

Symmetrieverschiebung: α = Verschiebungswinkel zur Symmetrieachse

 \bar{u}_L = Mittelwert der Ausgangsspannung

Erforderliche Trafo-Sekundärspannung:

$$U_{20_{RMS}} = \frac{\overline{u_L} + n \cdot U_{T0}}{\sqrt{2} \cdot \cos(\Theta)}$$

mit \bar{u}_L = Klemmenspannung an Ausgangsseite

 $U_{T0} = "U_{F0}" \rightarrow Spannungsabfall Diode 0,7 V$

Transformatorstrom i_2 : $i_2 = \widehat{i_2} \cdot cos(\omega' t)$

Scheitelwert
$$\hat{\imath}_2$$
: $\widehat{\imath_2} = \frac{\pi^2}{4\theta} \cdot \overline{\imath_L}$

Kapazität des Dämpfungskondensators:
$$C_L = \frac{\bar{\iota}_l \cdot \left(\frac{T}{2} - t_F\right)}{\Delta U} = \frac{\bar{\iota}_l \cdot (\pi - 2\theta)}{\omega \cdot \Delta U} = \frac{\bar{\iota}_l \cdot \left(\frac{T}{2} - t_f\right)}{2 \cdot u_S}$$

achte auf Bogenmaß

mit $t_F=rac{2\cdot heta\cdot T}{360^\circ}$, $ar{\iota}_l$ = Stromfluss zu Last, $\Delta U=u_{SS}$

Drehstrom Gleichrichtschaltung:

Ungesteuerte Dreipulsgleichrichtung - M3U

Ungesteuerte Drehstrombrücke – B6U

(Neutralleiter fließt kein Strom)

Spannungsvervielfachung mit Diodenschaltungen:

Einpuls-Spannungsverdoppler D1 nach Villard-Greinacher:

Positive Halbwelle \rightarrow Diode sperrt \rightarrow Negative Halbwelle \rightarrow Diode Leitet \rightarrow Kondensator links negative aufladen \rightarrow Kondensator rechts Masse \rightarrow Ende Negative Halbwelle \rightarrow Kondensator rechts auf Scheitelwert der Wechselspannung positiv aufgeladen \rightarrow positive Halbwelle \rightarrow Diode Sperrt \rightarrow Kondensator kann nicht entladen \rightarrow Spannung verschoben

Einpuls-Spannungsvervielfacher - Hochspannungskaskade:

Der Diodenstrom erhöht sich mit der Stufenzahl n

Eingangsstrom: $i_e = n \cdot i_a$

Ausgangsspannung: $U_a = 2 \cdot U_e \cdot n$

Zweipuls-Spannungsverdoppler D2 - Delon-Schaltung

Der bipolar Transistor:

Emitter: hochdotiert, Basis: schwachdotiert und sehr dünn, Kollektor: mitteldotiert → Stromverstärkung funktioniert

Knotengleichung:
$$I_E + I_B + I_C = 0$$
 Maschengleichung:

$$U_{CE} = U_{CB} + U_{BE}$$

Sperrstrom verdoppelt sich pro 10K

Leistung vom Transistor:
$$P_{transistor} = U_{CE} \cdot I_{C}$$

Temperatur:
$$\vartheta_J = \vartheta_u + \vartheta_{tran} = \vartheta_u + (r_{th} \cdot P_{transistor})$$

Kollektorschaltung

Basisschaltung

Early-Effekt: Einfluss von UCB auf IC, da UCB Einfluss auf WS von Kollektor-pn-Übergang und damit auf WB

Emitterschaltung: (Ein und Ausgang über Emitterverbunden, auf Masse) (Ausgang am Kollektor)

Eingangsstrom I_B Ausgangsstrom I_C

Gleichstromverstärkung $B = \frac{I_C}{I_B}$

Eingangskennlinie: $I_B = f(U_{BE})$ ungefähr Basis-Emitter Diode

Ausgangskennlinie:

 $S\"{attigungsbetrieb}: (U_{CE} < U_{BE}) \rightarrow U_{CB} < 0 \rightarrow Minorit\"{atstr\"{a}ger}$ werden aus Basis n.volls. abgesaugt \rightarrow I_C sinkt, $S\"{attigungsgrenze}: U_{CB} = 0$

Kollektorschaltung: (Eingang an Basis) (Ausgang beim Emitter) (Kollektor an Betrieb Spannung)

Eingangsstrom I_B Ausgangsstrom I_E

Kennlinien: Wie in Emitter Schaltung

Stromverstärkung: B+1

Spannungsverstärkung: $A_U \approx 1$

Basisschaltung: (Eingang am Emitter) (Ausgang am Kollektor) (Basis auf Masse)

Eingangsstrom I_E Ausgangsstrom I_C

Eingangsspannung UEB Ausgangsspannung UCB

 U_{EB} verändern \rightarrow I_E stark verändert \rightarrow I_C stark verändert \rightarrow Spannungsabfalländerung an R_C groß \rightarrow U_{CB} Ausgangsspannung stark verändert

U_{S2}

Uo

Eingangskennlinie:

Stromverstärkung: $A \approx \frac{B}{B+1}$

 $A \approx \frac{B}{B+1} \approx 1$

Ausgangskennlinie: Ic

Kennlinien in Vierquadranten-Darstellung

Darlington- oder Super-Beta-Schaltung

Stromverstärkung multipliziert sich:

Es gilt näherungsweise B_{ges} \approx B_1 \cdot B_2 und analog für Wechselsignale $\beta_{ges} \approx \beta_1 \cdot \beta_2$

Arbeitspunkt des Bipolar-Transistor:

Einstellen des Arbeitspunktes: (UCE und IC)

1. Einprägung des Basisstromes:

 $R_C = \frac{U_S - U_{CE}}{I_C}$ Widerstand R_C:

Widerstand R_B: $R_B = \frac{U_S - U_{BE}}{I_{PB}}$

Kollektorstrom: $I_C \approx I_B \cdot B = \frac{U_S - U_{BE}}{R_B} \cdot B$

a): prinzipiell

b): technische Näherung durch Basis-Vorwiderstand RB

Kollektorspannung: $U_{CE} = U_S - U_{R_C} = U_S - (R_C \cdot I_C)$

2. Einprägung der Basis-Emitter-Spannung:

$$U_{BE} = U_S \cdot \frac{R_2}{R_1 + R_2} - I_B \cdot \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$R_1 = \frac{U_S - U_{BE}}{I_1} = \frac{U_S - U_{BE}}{I_2 + I_B}$$

$$R_2 = \frac{U_{BE}}{I_2}$$

Ersatzschaltung dient zum Herleiten der obigen Formeln

 I_C ergibt sich aus Spannungssteuerkennlinie I_C = $f(U_{BE})$

Einstellen der U_{CE} $R_C = \frac{U_S - U_{CE}}{I_C}$

c): Ersatzschaltung

Stabilisierung des Arbeitspunktes:

Einflussgrößen auf AP-Verschiebung:

1. Temperaturabhängigkeit der U_{BE} (ΔU_{BE} -Effekt) (sinkt bei steigender Temperatur)

Bei Silizium-npn-Transistoren: $D_{\vartheta_{U_{BE}}} = rac{\partial U_{BE}}{\partial artheta} \, pprox -2 rac{mV}{\kappa}$

2. Änderung der Stromverstärkung B (ΔB-Effekt)

Ursache: Alterung oder Temperaturveränderung

$$\frac{B_{max}}{B_{min}} \approx 1.8 \dots 2.6$$

Gegenkopplungsmaßnahmen zur Arbeitspunkt-Stabilisierung:

Basisstrom-Einprägung mit Spannungsgegenkopplung (Parallelgegenkopplung)

$$R_B = \frac{U_{CE} - U_{BE}}{I_B}$$

$$R_C = \frac{U_S - U_{CE}}{I_C + I_B}$$

$$R_B = \frac{U_{CE} - U_{BE}}{I_B} \qquad \qquad R_C = \frac{U_S - U_{CE}}{I_C + I_B} \qquad \qquad I_C \approx B \cdot \frac{(U_S - U_{BE})}{R_B + B \cdot R_C}$$

Steigt I_C um ΔI_C infolge ΔB -Effekt \rightarrow U_{CE} sinkt \rightarrow R_B am Kollektorpotential \rightarrow I_B sinkt \rightarrow I_C wieder reduziert

Basis-Spannungseinprägung mit Strom-Gegenkopplung (Reihengegenkopplung)

$$R_E = \frac{U_{RE}}{-I_E} \approx \frac{U_{R_E}}{I_C}$$

Gl. 10.9
$$R_C = \frac{U_S - U_{CE} - U_{R_E}}{I_C}$$

Gl. 10.10

Gl. 10.12

$$R_1 = \frac{U_S - U_{BE} - U_{R_E}}{I_{R_2} + I_B} \qquad \text{Gl. 10.11} \qquad \qquad R_2 = \frac{U_{BE} + U_{R_E}}{I_{R_2}}$$

$$U_{CE} = U_S - (I_C \cdot R_C) - (I_C \cdot R_E)$$

Steigt I_C um ΔI_C infolge ΔU_{BE} -Effekt \rightarrow Spannungsabfall U_{Re} erhöht $\rightarrow U_{0T}$ const $\rightarrow I_B$ kleiner \rightarrow B-Kopplung $\rightarrow I_C$ kleiner

AP einer bereits dimensionierten Schaltung berechnen:

$$U_{0T} = U_S \cdot \frac{R_2}{R_1 + R_2}$$

$$mit R_{iT} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$U_{0T} = U_S \cdot \frac{R_2}{R_1 + R_2} \qquad mit \ R_{iT} = \frac{R_1 \cdot R_2}{R_1 + R_2} \qquad I_C \approx B \cdot \frac{U_{0T} - U_{BE}}{R_{iT} + B \cdot R_E}$$

Für B >> 1 \rightarrow $I_E \approx I_C$

Verfahren zur Berechnung von Abweichungen des Arbeitspunktes

$$\Delta I_C = f (\Delta U_{BE}, \Delta I_{CBO}, \Delta B, \Delta U_S, \Delta R_x)$$

Berechnung von Abweichungen des Arbeitspunktes einer gegebenen Schaltung:

$$\Delta I_C \approx \frac{B}{R_{iT} + B} \cdot 2 \frac{mV}{K} \cdot \frac{\Delta \vartheta}{R_E}$$

$$\Delta I_C \approx \frac{2mV}{K} \cdot \frac{\Delta \vartheta}{R_E}$$

 $\Delta I_C pprox rac{B}{R_{iT}+B} \cdot 2rac{mV}{K} \cdot rac{\Delta \vartheta}{R_E}$ Bzw. wenn R_{iT} vernb. $\Delta I_C pprox rac{2mV}{K} \cdot rac{\Delta \vartheta}{R_E}$ Ergebnis mit Präfix m, für Ic neu weitere Rechnung

Für ΔB-Effekt:

$$\frac{\Delta I_C}{I_C} = \frac{R_{iT}}{R_E} \cdot \frac{B_{max} - B_{min}}{B^2}$$

$$mit~R_{lT} = rac{R_1 \cdot R_2}{R_1 + R_2}$$
 Bzw. wenn R_{IT} vernb. $\Delta I_C pprox rac{2mV}{K} \cdot rac{\Delta artheta}{R_E}$

$$\Delta I_C \approx \frac{2mV}{K} \cdot \frac{\Delta \vartheta}{R_E}$$

$$\frac{\Delta I_C}{I_C} = \frac{R_1 \cdot R_2}{(R_1 + R_2)} \cdot \frac{B_{max} - B_{min}}{B^2 \cdot R_F}$$

Stabilisierung des Arbeitspunktes bei der Schaltungsdimensionierung:

Dimensionierung des Emitterwiderstand RE

$$R_E \geq \frac{2mV}{K} \cdot \frac{\Delta \vartheta}{\Delta I_C}$$

Dimensionierung des Spannungsteilers R₁, R₂ $R_{iT} \leq \frac{\Delta I_C}{I_C} \cdot R_E \cdot \frac{\left(B_{typ}\right)^2}{B_{max} - B_{min}}$ mit R_{iT} = R₁ // R₂

$$R_{iT} \le \frac{\Delta I_C}{I_C} \cdot R_E \cdot \frac{\left(B_{typ}\right)^2}{B_{max} - B_{min}}$$

mit
$$R_{iT} = R_1 // R_2$$

Vierpoltheorie:

Kleinsignal-Stromverstärkung: $h_{fe} = h_{21e} = \beta \approx \frac{\Delta U_{BE}}{\Lambda I_{e}}$

Eingangsimpedanz: $h_{ie} = h_{11e} = r_{be} = \frac{\Delta I_C}{\Delta I_B}$

Ausgangsadmittanz: $h_{oe} = h_{22e} = \frac{1}{r_{ce}} = \frac{\Delta I_C}{\Delta U_{CF}}$

Vierpolgleichungen mit H-Parametern (Hybrid-Parameter)

 $\underline{\mathbf{U}}_1 = \underline{\mathbf{H}}_{11} \cdot \underline{\mathbf{I}}_1 + \underline{\mathbf{H}}_{12} \cdot \underline{\mathbf{U}}_2$ $I_2 = H_{21} \cdot I_1 + H_{22} \cdot U_2$

Übertragungsverhältnis der Gegenspannung: hre = h12e vernachlässigbar

$$h_{xy_e/AP} = H_{eI} \cdot H_{eU} \cdot h_{platzhalter}$$

Wechselspannungsverstärker in Emitter Schaltung:

Eingangswiderstand

$$R_{ein\sim} = R_1 // R_2 // r_{be} = R_{iT} // r_{be}$$

Leerlauf-Spannungsverstärkung

Ausgangswiderstand

$$R_{aus} \sim = r_{ce} // R_C$$

Stromverstärkung

(Ausgang belastet mit $R_L = 12 \text{ k}\Omega$)

$$V_i = \frac{i_q}{i_i} = \frac{u_q/R_L}{u_i/R_{ein^{\sim}}} = V_u \cdot \frac{R_{ein^{\sim}}}{R_L} = V_{u0} \cdot \frac{R_{ein^{\sim}}}{R_{aus^{\sim}} + R_L}$$

Spannungsverstärkung (Ausgang

$$V_u = \frac{u_q}{u_i} = V_{u0} \cdot \frac{R_L}{R_L + R_{aus^{\sim}}}$$

$$V_p = \frac{p_q}{p_i} = \frac{u_q \cdot i_q}{u_i \cdot i_i} = V_u \cdot V_i$$

$$V_{u0} = \frac{-\beta \cdot r_{ce} \cdot [(R_{E^{\sim}} + r_{ce})//R_{C}]}{(R_{E^{\sim}} + r_{ce}) \cdot [(\beta + 1) \cdot R_{E^{\sim}} + r_{be}]}$$

 $Mit \quad r_{ce}\!>>\! R_{E^\sim} \quad und \quad r_{ce}\!>>\! R_C \quad wird \; daraus$

Gilt auch $r_{be} << (\beta+1) \cdot R_{E}$, so ergibt sich

$$\begin{aligned} V_{u0} \approx \frac{-\beta \cdot R_{C}}{\left(\beta + 1\right) \cdot R_{E^{\sim}} + r_{be}} \\ \\ V_{u0} \approx -\frac{R_{C}}{R_{E^{\sim}}} \end{aligned}$$

Transitfrequenz: die Frequenz wo Verstärkung auf 1 abfällt

Wechselspannungsverstärker in Kollektorschaltung:

$$R_{ein\sim} = R_1 // R_2 // [r_{be} + (\beta+1) \cdot (R_E // R_L // r_{ce})]$$

$$R_{aus\sim} = R_E / / r_{ce} / / \left[\frac{r_{be} + (R_G / / R_1 / / R_2)}{\beta + 1} \right]$$

$$V_{u0} = \frac{(\beta + 1) \cdot (r_{ce} / / R_E)}{r_{be} + (\beta + 1) \cdot (r_{ce} / / R_E)} = \frac{(r_{ce} / / R_E)}{r_{eb} + (r_{ce} / / R_E)} \qquad V_u = V_{u0} \cdot \frac{R_L}{R_{aus^{\sim}} + R_L}$$

$$V_u = V_{u0} \cdot \frac{R_L}{R_{aus^{\sim}} + R_L}$$

	Emitterschaltung	Kollektorschaltung ⁽¹⁸⁾	Basisschaltung
Rein~	mittel	groß	klein
	7 kΩ	$(100 \text{ k}\Omega)$ 17 k Ω	50 Ω
Raus~	mittel	klein	mittel
	10 kΩ	(10 Ω) 10 Ω	10 kΩ
Vu0	groß	≤ 1	groß
	170	(0,99) 0,993	180
Vi	mittel / groß	mittel / (groß)	≤ 1
	50	(90) 17	0,5
$\mathbf{V}_{\mathbf{p}}$	sehr groß	mittel / (groß)	mittel
	5000	(90) 16	40
φ (u _q)	180°	0°	0°

Legende für Formelzeichen:

n_0	Konzentration negativer Ladungsträger (Elektronen)
p_0	Konzentration positiver Ladungsträger (Löcher)
n _i	Gleichgewichtkonzentration, Ladungsträgerdichte, Intrinsic-Zahl
W _G	ΔE zwischen Valenz und Leitungsband → Bandabstand
Wc	Leitband-Kante
W_V	Valenzband-Kante
W_{F}	Fermi-Niveau (Fermi-Kante)
W_D	Energie-Niveau der Störterme
Ws	Sperrschichtweite
W _{vac}	Vakuumenergie
W _M	Austrittsarbeit
Tj	Sperrschichttemperatur
Tu	Umgebungstemperatur
U ₁	primärseitige Klemmenspannung des Trafos
U ₂₀	sekundärseitige Leerlaufspannung des Trafos
U ₂	sekundärseitige Klemmenspannung des Trafos
R _{iT}	Ersatzwiderstand für Wicklungswiderstand
ü	Übersetzungsverhältnis

μ	Ladungsträger-Beweglichkeit	
N _C	Effektive Zustandsdichte vom Leitungsband	
N _V Effektive Zustandsdichte vom Valenzbar		
N_D^+	Konzentration der ionisierten Donatoren	
N_A^- Konzentration der ionisierten Akzeptor		
n _{n0}	Konzentration der Elektronen im n-Halbleiter	
p _{n0}	Konzentration der Löcher in n-Halbleiter	
n _{p0}	Konzentration der Elektronen im p-Halbleiter	
p _{p0} Konzentration der Löcher im p-Halbleiter		
κ Leitfähigkeit		
U _R	Sperrspannung	
U _D	Diffusionspannung	
U Anliegende äußere Spannung		
U _T Temperaturspannung I _s Sperrsättigungsstrom		

Konstanten:

pn-Übergang Temperatur Energiebändermodell Leitfähigkeit

k	Bolzman-Konstante	$k = 1.38 \cdot 10^{-23} \frac{Ws}{K}$
е	Elementarladung	e = 1,6 · 10 ⁻¹⁹ As
K	Kelvin	°C +273,15 = K
?	Temperaturdurc??	-2 mV/K
U _{BE}	Basis-Emitter-Spng.	0,7V
W_{G}	Bei Silizium	1,12eV= 1,12· 1,6 · 10 ⁻¹⁹ Ws

Dichte n _n Metall	$5 \cdot 10^{21} \text{ cm}^{-3} < n_n < 5 \cdot 10^{22} \text{ cm}^{-3}$

Merkhi	Merkhilfen für Umrechnungen			
K	Kelvin	°C +273,15 = K		

10 ²⁴	Yotta	Υ
10 ²¹	Zetta	Z
10 ¹⁸	Exa	E
10 ¹⁵	Peta	Р
10 ¹²	Tera	Т
10 ⁹	Giga	G
10 ⁶	Mega	М
10 ³	Kilo	k
10 ²	Hekto	h
10 ¹	Deka	da
		1

10-1	Dezi	d
10-2	Zenti	С
10 ⁻³	Milli	m
10 ⁻⁶	Mikro	μ
10 ⁻⁹	Nano	n
10 ⁻¹²	Piko	р
10 ⁻¹⁵	Femto	f
10 ⁻¹⁸	Atto	a
10 ⁻²¹	Zepto	Z
10 ⁻²⁴	Yokto	Υ

$$\frac{1}{2\pi} = \frac{1}{360^{\circ}}$$

Komma nach links $\rightarrow 10^{-1}$ Komma nach rechts $\rightarrow 10^{-1}$