Exercício de Introdução à Geofísica Computacional - MS590

Antônio Queiroz Manetta - RA:231565

21 de Junho de 2022

1 Introdução

Vamos começar com um código geral que tem como valores de entrada: v_1, ρ_1, v_2, ρ_2 . O Código plota ao final um gráfico R x θ_I

```
function[] = coacus(v1,rho1,v2,rho2)
 2
    n=360; #aqui n será o tamanho dos vetores.
    vtheta=linspace(0,pi/2,n); #vtheta será o vetor linear do ângulo.
 3
     R=zeros(1,n); #esse será o vetor do coeficiente de reflexão.
 4
 5
 6
    for i=1:n
      theta t=asin(v2*sin(vtheta(i))/v1); #aqui, para cada ângulo de
 7
           incidência, teremos um valor para o ângulo de transmissão,
           conforme a Lei de Snell.
      R(i)=(v2*rho2*cos(vtheta(i))-v1*rho1*cos(theta_t))/(v2*rho2*cos(theta_t))
 8
           (vtheta(i))+v1*rho1*cos(theta t)); #aqui, usamos a fórmula para
           o coeficiente de reflexão em função das velocidades, das
           densidades e dos ângulos.
     endfor
 9
10
11
    plot(vtheta,R);
12
13
     endfunction
```

Figure 1: Código utilizado.

2 Aplicação do Código

Vamos aplicar o código aos seguintes dados:

Material	v(km/s)	$\rho(g/cm^3)$
Metano	0,46	0,30
Petróleo	1,28	0,90
Água	1,5	1,00

Table 1: Tabela de materiais.

2.1 Do metano para o petróleo

Aqui, temos o seguinte caso: como $v_2 > v_1$, temos um ângulo crítico para θ_I , denotado θ_c , tal que, $sen(\theta_c) = v_1/v_2 \approx 0,36$, a partir do qual, θ_T será um valor complexo, pois $sen(\theta_T) > 1$. Assim, a curva muda seu comportamento a partir de $\theta_I = \theta_c$, pois R passa a ser um valor complexo.

Nestes casos, a onda é chamada de Evanescente, pois se propaga na interface, e é amortecida na direção perpendicular à interface. Ver Figura 2.

Figure 2: Coeficiente de reflexão em função do ângulo de incidência de 0 à $\pi/2$, saindo do metano e indo para o petróleo.

2.2 Do metano para a água

Aqui, a mesma coisa acontece, com $sen(\theta_c) = v_1/v_2 \approx 0,307$. A curva apresenta um comportamento semelhante. Ver Figura 3.

Figure 3: Coeficiente de reflexão em função do ângulo de incidência de 0 à $\pi/2$, saindo do metano e indo para a água.

2.3 Do petróleo para o metano

Neste caso, não há ângulo crítico, pois $v_1 > v_2$. Assim, o comportamento da função não se altera. Ver Figura 4.

Figure 4: Coeficiente de reflexão em função do ângulo de incidência de 0 à $\pi/2$, saindo do petróleo e indo para o metano.

2.4 Do petróleo para a água

Aqui, há um ângulo crítico, com $sen(\theta_c) = v_1/v_2 \approx 0,85$. Também podemos observar que, para $\theta_I > \theta_c$, R cai mais abruptamente de 1 para -1, ao contrário dos gráficos anteriores. Ver Figura 5.

Figure 5: Coeficiente de reflexão em função do ângulo de incidência de 0 à $\pi/2$, saindo do petróleo e indo para a água.

2.5 Da água para o metano

Neste caso, não há ângulo crítico, pois $v_1 > v_2$. Assim, o comportamento da função não se altera. Ver Figura 6.

2.6 Da água para o petróleo

Neste caso, não há ângulo crítico, pois $v_1 > v_2$. Assim, o comportamento da função não se altera. Aqui, podemos ver que a função possui um decaimento mais tardio e abrupto, e nos outros casos, nos quais as diferenças entre as velocidades e entre as densidades são maiores, o decaimento acontece mais cedo e mais suave. Ver Figura 7.

Figure 6: Coeficiente de reflexão em função do ângulo de incidência de 0 à $\pi/2$, saindo da água e indo para o metano.

Figure 7: Coeficiente de reflexão em função do ângulo de incidência de 0 à $\pi/2$, saindo da água e indo para o petróleo.