

Neural Characteristic Function Learning for Conditional Image Generation

Shengxi Li¹, Jialu Zhang¹, Yifei Li¹, Mai Xu*¹, Xin Deng², Li Li¹

¹School of Electronic and Information Engineering, Beihang University, Beijing, China ²School of Cyber Science and Technology, Beihang University, Beijing, China {LiShengxi, JialuZhang, leafy, MaiXu, cindydeng, lili2005}@buaa.edu.cn

Background

Contribution

Ill-posed discrepancy measure between distributions leads to mode collapse and instability problems in training cGANs.

Proposed Method

Scan Me.

Lemma 1. For any two random variables $V, \tilde{V} \in \mathbb{R}^d, \mathcal{L}(V||\tilde{V}) \ge$ $\mathcal{D}_{\mathcal{T}}(\mathcal{V}||\widetilde{\mathcal{V}})$ for any \mathcal{T} .

Lemma 2. If V, $\tilde{V} \in \mathbb{R}^d$ are two random variables, $\mathcal{L}(\mathcal{V}||\tilde{\mathcal{V}})$ in (1) is a valid distance metric.

$$\mathcal{L}(\mathcal{V}||\tilde{\mathcal{V}}) = \max_{f} \mathcal{D}_{\mathcal{F}}(\mathcal{V}||\tilde{\mathcal{V}})$$

$$= \max_{f} \left(\frac{1}{k} \sum_{i=1}^{k} \left| \Phi_{\mathcal{V}}^{f_{i}} - \Phi_{\tilde{\mathcal{V}}}^{f_{i}} \right|^{2} \right)^{\frac{1}{2}} (1)$$

$\begin{array}{c} 1 & \text{SS} \\ 1 & \text{S} \end{array}$ 0.180

Optimising generator solely by $\mathcal{D}_{\mathcal{T}}(\mathcal{V}||\tilde{\mathcal{V}})$ for Gaussian \mathcal{T} .

$\min_{g} \mathcal{L}(\mathcal{X}, \mathcal{Y} || \widetilde{\mathcal{X}}, \widetilde{\mathcal{Y}}) = \min_{g} \max_{f} \mathcal{D}_{\mathcal{F}}(\mathcal{X}, \mathcal{Y} || \widetilde{\mathcal{X}}, \widetilde{\mathcal{Y}})$

$$= \left(\frac{1}{k} \sum_{i=1}^{k} \left| \Phi_{\mathcal{X}, \mathcal{Y}}^{f_i}(\mathbf{t}_{\mathcal{Y}}^i) - \Phi_{\widetilde{\mathcal{X}}, \widetilde{\mathcal{Y}}}^{f_i}(\mathbf{t}_{\mathcal{Y}}^i) \right|^2 \right)^{\frac{1}{2}}$$
(3)

II. New Architecture: We establish the CCF-GAN by explicitly modelling conditional distribution.

I. New Metric: We develop neural networks to upper-bound

the CF discrepancy, called the neural CF (NCF) metric.

III. New Loss: We propose a conditional CF loss function based on the NCF metric for joint distributions.

Experimental Results

☐ Learning in low-dimension support: Distribution fitting results, from the mixture of vMF distributions.

(c) CCF-GAN (Ours)

CCF-GAN GT ACGAN **TACGAN ADCGAN**

Quantitative results:

Method	CIFAR10	V200	V500	V1000	ImageNet	
		FID	\downarrow		FID↓	IS↑
BigGAN	14.73	66.23	43.10	24.07	22.77	38.05
ACGAN	8.01	95.70	31.90		184.41	7.26
FisherGAN	11.46	13.28	9.02	7.30		
TACGAN	8.42	29.12	12.42	13.60	23.75	28.86
cRCFGAN	6.90	27.03	18.03	20.72		
ContraGAN	10.60				19.69	31.10
ReACGAN	6.22	13.48	7.19	6.47	13.98	68.27
ADCGAN	7.17	18.64	11.34	7.94		
CCF-GAN (Ours)	6.08	11.61	6.81	5.70	11.34	180.84

□Stability analysis:

□Qualitative results:

