TS-DiffuGen

Release 2023

Sacha Raffaud

CONTENTS

1 Example Functions and Classes from the Package include:	1
Python Module Index	5
Index	7

EXAMPLE FUNCTIONS AND CLASSES FROM THE PACKAGE INCLUDE:

See src.evaluate_samples for details.

src.evaluate_samples.calc_cov_mat(results_matrix, cov_threshold=0.1)

Calculate COV and MAT scores based on D-MAE matrix.

Parameters

- results_matrix (np.ndarray) D-MAE matrix.
- cov_threshold (float, optional) COV threshold. Defaults to 0.1.

Returns

Calculated MAT-R mean, median, and COV-R scores.

Return type

tuple

src.evaluate_samples.calculate_DMAE(gen_mol, true_mol)

Calculate D-MAE between inter-atomic distance matrices.

Parameters

- **gen_mol** (*list*) Inter-atomic distance matrix of generated molecule.
- **true_mol** (*list*) Inter-atomic distance matrix of true molecule.

Returns

D-MAE value.

Return type

float

src.evaluate_samples.calculate_best_rmse(gen_mol, ref_mol, max_iters=100000, use_hydrogens=False)
Calculate Best RMSD between RDKit Molecule Objects.

Parameters

- **gen_mol** (*Chem. Mol*) RDKit molecule object representing generated molecule.
- ref_mol (Chem. Mol) RDKit molecule object representing reference molecule.
- max_iters (int, optional) Maximum atom matches. Defaults to 100_000.
- use_hydrogens (bool, optional) True to include hydrogens. Defaults to False.

Returns

Best RMSD value.

Return type

float

src.evaluate_samples.calculate_distance_matrix(coordinates)

Calculate pairwise distance matrix from 3D coordinates.

Parameters

coordinates (*1ist*) – List of 3D coordinates for each atom.

Returns

Pairwise distance matrix.

Return type

np.ndarray

src.evaluate_samples.create_lists(original_path, RMSD=False)

Create lists of true and generated molecules from the given path.

Parameters

- **original_path** (*str*) Path to the original directory containing molecule files.
- RMSD (bool, optional) True if RMSD format, False if standard XYZ format.

Returns

Two lists containing RDKit molecule objects.

Return type

tuple

 $\verb|src.evaluate_samples.create_table|| \textit{true}_mols, \textit{gen}_mols, \textit{max}_i \textit{ters} = 1, \textit{metric} = \textit{'RMSD'}|| \textit{metric} = \textit$

Create comparison table between molecules.

Parameters

- **true_mols** (*list*) List of true molecule RDKit objects.
- **gen_mols** (*list*) List of lists containing generated molecule RDKit objects.
- max_iters (int) Maximum atom matches for RMSD calculation.
- **metric** (*str*) Metric choice, "RMSD" or "DMAE".

Returns

DataFrame of comparison metrics.

Return type

pd.DataFrame

src.evaluate_samples.evaluate(sample_path, evaluation_type, cov_threshold=0.1)

Evaluate generated samples using RMSE or D-MAE metrics.

Parameters

- **sample_path** (*str*) Path to sample directory.
- evaluation_type (str) Metric choice, "RMSD" or "DMAE".
- cov_threshold (float, optional) COV threshold. Defaults to 0.1.

src.evaluate_samples.get_paths(sample_path)

Load molecule files from a sample path and organize them into true and generated samples.

Parameters

sample_path (*str*) – Path to the sample directory containing molecule files.

Returns

Two lists containing true and generated sample file paths.

Return type

tuple

src.evaluate_samples.import_xyz_file(molecule_path, RMSD=False)

Import an XYZ file as an RDKit molecule object.

Parameters

- **molecule_path** (*str*) File path of the XYZ file to be imported.
- RMSD (bool, optional) True if RMSD format, False if standard XYZ format.

Returns

RDKit molecule object or None if loading fails.

Return type

Chem.Mol or None

PYTHON MODULE INDEX

S

src.evaluate_samples, 1

INDEX

```
C
calc_cov_mat() (in module src.evaluate_samples), 1
                                 (in
calculate_best_rmse()
                                            module
        src.evaluate_samples), 1
calculate_distance_matrix()
                                    (in
                                            module
        src.evaluate_samples), 2
calculate_DMAE() (in module src.evaluate_samples), 1
create_lists() (in module src.evaluate_samples), 2
create_table() (in module src.evaluate_samples), 2
Ε
evaluate() (in module src.evaluate_samples), 2
G
get_paths() (in module src.evaluate_samples), 2
import_xyz_file() (in module src.evaluate_samples),
M
module
    {\tt src.evaluate\_samples}, 1
S
src.evaluate_samples
    module, 1
```