An introduction to Autoencoders

Baptiste Gregorutti

June 2, 2020

1 / 14

Autoencoders Content

- Mathematical definitions
- Relations with the PCA (linear transformation): AE performs a nonlinear transformation through a nonlinear activation function (e.g. ReLu, sigmoid)
- types of AE: MLP, Deep MLP, Convolutional, Recurrent
- applications to autoencoders

2 / 14

Baptiste Gregorutti Autoencoder June 2, 2020

Definition

Autoencoders are a type of self-supervised learning model that can learn a compressed representation of input data.

Baptiste Gregorutti Autoencoder June 2, 2020 3 / 14

Definition

Let $\mathcal X$ be the original space and $\mathcal F$ be a latent space.

- Encoding function $\phi: \mathcal{X} \longrightarrow \mathcal{F}$
- Decoding function $\psi: \mathcal{F} \longrightarrow \mathcal{X}$

We have to find the optimal encoding and decoding function by minimizing

$$\phi^*, \psi^* \in \arg\min_{\phi, \psi} \|X - (\psi \circ \phi)X\|^2$$

Two networks:

- Encoding network $z = \sigma(Wx + b)$
- Decoding network $\mathbf{x}' = \sigma(\mathbf{W}'\mathbf{z} + \mathbf{b}')$
- Loss function: $\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} \mathbf{x}'\|^2$

◆□▶ ◆□▶ ◆불▶ ◆불▶ 항

4 / 14

Hyperparameters of autoencoders

There are 5 hyperparameters:

- Dimension of the latent space
- Activation function
- Number of layers
- Number of nodes per layers
- Loss function

In practice?

```
input_img = Input(input_dim)
     encoded = Dense(lat_dim, activation='relu')(input_img)
     decoded = Dense(inp_dim, activation='sigmoid')(encoded)
     autoencoder = Model(input_img, decoded)
4
```

Relationships with the Principal Components Analysis

An autoencoder with a single fully-connected hidden layer, a linear activation function and a squared error cost function trains weights that span the same subspace as the one spanned by the principal component loading vectors

Deep autoencoders

Convolutional autoencoders

Recurrent autoencoders

Applications to autoencoders

Applications:

- Data compression
- Image reconstruction
- Image colorization
- Denoising

11 / 14

Take away message

- An autoencoder can learn non-linear transformations with a non-linear activation function and multiple layers
- It doesn't have to learn dense layers. It can use convolutional layers to learn which is better for video, image and series data.
- It is more efficient to learn several layers with an autoencoder rather than learn one huge transformation with PCA.

Baptiste Gregorutti Autoencoder June 2, 2020 12 / 14

Variational autoencoders

Idea

A variational autoencoders is a **generative model**, mainly used for content generation (images, sounds, etc.)

References

- Keras blog
- Comprehensive Introduction to Autoencoders, Matthew Stewart
- How To Perform Data Compression Using Autoencoders?, Sayantini Deb
- A Gentle Introduction to LSTM Autoencoders, Jason Brownlee
- Understanding Variational Autoencoders, Joseph Rocca

Baptiste Gregorutti Autoencoder June 2, 2020 14 / 14