# TabCBM: Concept-based Interpretable Neural Networks for Tabular Data



Mateo Espinosa Zarlenga, Zohreh Shams, Michael E. Nelson, Been Kim\*, Mateja Jamnik\*

UNIVERSITY OF CAMBRIDGE Google DeepMind GATES



**Research Gap:** How do tabular tasks fit within

• Recent work in explainable artificial intelligence (XAI) [1-4] has proposed interpretable neural networks that explain predictions via high-level "concepts".

concept-based interpretable frameworks?

• However, previous works in this field have been uniquely focused on image [2], graph-structured [3], and text [4] tasks, leaving crucial tabular tasks, such as clinical and genomics tasks, outside of the scope of these methods.



• Hence, in this work we explore (1) what a concept entails in a tabular task and (2) how we can construct concept-interpretable models without sacrificing the performance observed in simpler state-of-the-art tabular methods (e.g., GBMs).

## **Main Results**

### **Key idea:** Feature subsets as tabular concepts

Given a task on n input features, we define a tabular concept as a fixed group of highly correlated features  $\pi \in [0,1]^n$  that form the input to a scoring function representing a "meta feature"  $s: \mathbb{R}^{\sum \pi_i} \to \{0, 1\}$ 



#### **Tabular Concept Bottleneck Model (TabCBM)**

We discover concepts via a differentiable feature selection mechanism that learns k'pairs  $\{(\widehat{\pi}^{(i)}, s^{(i)})\}_{i=1}^{K'}$  of subsets of features  $\widehat{\pi}^{(i)}$  and scoring functions  $s^{(i)}$  from which a **bottleneck of concept scores**  $\hat{c} \in [0,1]^k$  can be used to predict a downstream task.



## **Training:** How do we learn meaningful concepts?

We include regularisers that encourage:

- 1. Completeness  $\rightarrow$  discovered concept scores  $\hat{c}$  should predict a task of interest.
  - $\mathcal{L}_{\mathrm{task}}(f(\mathbf{\hat{c}}),y)$
- 2. Coherency > Similar samples should lead to a similar set of concept scores.

$$\mathcal{L}_{ ext{co}}(\mathbf{x}_1,\cdots,\mathbf{x}_N) := -rac{1}{Nt}\sum_{\mathbf{x}_i \in \{\mathbf{x}_1,\cdots,\mathbf{x}_N\}} \sum_{\phi(\mathbf{x}_j) \in \Psi_t(\phi(\mathbf{x}_i))} rac{\mathbf{\hat{c}}(\mathbf{x}_i)^T \mathbf{\hat{c}}(\mathbf{x}_j)}{||\mathbf{\hat{c}}(\mathbf{x}_i)|| \ ||\mathbf{\hat{c}}(\mathbf{x}_j)||}$$

3. Diversity → different scoring functions and masks represent different concepts.

$$\mathcal{L}_{ ext{div}}(\mathbf{x}_1,\cdots,\mathbf{x}_N) := rac{1}{Nk'(k'-1)} \sum_{\mathbf{x} \in \{\mathbf{x}_1,\cdots,\mathbf{x}_N\}} \sum_{i=1}^{k'} \sum_{\substack{j=1 \ i 
eq i}}^{k'} rac{
ho_jig(\mathbf{ ilde{x}}^{(j)}ig)^T 
ho_iig(\mathbf{ ilde{x}}^{(i)}ig)}{||
ho_jig(\mathbf{ ilde{x}}^{(j)}ig)|| \ ||
ho_iig(\mathbf{ ilde{x}}^{(i)}ig)||}.$$

**4. Specificity** → concepts should be a function of only a handful of input features.

$$\mathcal{L}_{ ext{spec}}(oldsymbol{\hat{\pi}}^{(1)},\cdots,oldsymbol{\hat{\pi}}^{(k')}) := rac{1}{k'n} \sum_{i=1}^{k'} \left|\left|oldsymbol{\hat{\pi}}^{(i)}
ight|
ight|_1$$

Furthermore, as in traditional concept bottleneck models (CBMs) [1], we can include supervision for known concepts when we have train-time concept labels.

#### References

[1] Koh, Pang Wei, et al. "Concept bottleneck models." International Conference on Machine Learning. PMLR, 2020.

[2] Ghorbani, Amirata, et al. "Towards automatic concept-based

[3] Magister, Lucie Charlotte, et al. "GCExplainer: Human-in-the-loop concept-based explanations for graph neural networks." arXiv preprint arXiv:2107.11889 (2021)

[4] Yeh, Chih-Kuan, et al. "On completeness-aware concept-based explanations in deep neural networks." Advances in neural information explanations." Advances in neural information processing systems 32 (2019). processing systems 33 (2020): 20554-20565.

### **Key Finding #1: Interpretability without sacrificing** performance



Figure 1: Task accuracy (%) of concept-interpretable methods across synthetic tabular tasks with known ground truth concepts. We show the accuracy as we vary the number of training concepts k.

| _ | Dataset                    | TabCBM (ours)                      | SENN             | CCD (recon)      | MLP              | TabNet           | TabTransformer   | XGBoost          | LightGBM                           |
|---|----------------------------|------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------------------------|
|   | Synth-Linear               | $99.84 \pm 0.06$                   | $98.15 \pm 0.2$  | $96.47 \pm 1.3$  | $97.57 \pm 0.37$ | $97.57 \pm 0.37$ | $82.91 \pm 0.55$ | 96.43            | 96.8                               |
|   | Synth-Nonlin               | $\textbf{98.36} \pm \textbf{0.15}$ | $89.14 \pm 0.71$ | $85.99 \pm 2.28$ | $87.65 \pm 0.98$ | $91.57 \pm 0.48$ | $81.07 \pm 0.83$ | 88.43            | 89.33                              |
|   | Synth-Nonlin-Large         | $\textbf{62.78} \pm \textbf{1.13}$ | $49.78 \pm 2.08$ | $51.64 \pm 1.71$ | $40.73 \pm 6.42$ | $51.01\pm2.57$   | $54.63 \pm 1.17$ | $22.48 \pm 0.48$ | $23.58 \pm 0.78$                   |
|   | Synth-scRNA                | $\textbf{93.66} \pm \textbf{1.41}$ | $78.32 \pm 3.03$ | $68.83\pm1.73$   | $73.87 \pm 1.43$ | $90.66\pm1.10$   | $87.29 \pm 0.68$ | $90.44 \pm 1.06$ | $89.96 \pm 1.57$                   |
|   | Higgs (without high-level) | $\textbf{80.42} \pm \textbf{0.3}$  | $70.61\pm0.12$   | $77.84 \pm 0.08$ | $79.90 \pm 0.15$ | $79.44 \pm 0.16$ | $74.94 \pm 0.21$ | $68.85 \pm 0.02$ | $68.87 \pm 0.06$                   |
|   | Higgs (with high-level)    | $\textbf{78.62} \pm \textbf{0.12}$ | $73.53 \pm 0.71$ | $77.92 \pm 0.09$ | $78.44 \pm 0.02$ | $78.12 \pm 0.05$ | $74.22\pm0.42$   | $75.33\pm0.04$   | $75.33\pm0.03$                     |
|   | PBMC                       | $\textbf{93.35} \pm \textbf{0.16}$ | $92.24 \pm 0.23$ | $93.14 \pm 0.30$ | $91.66 \pm 1.95$ | $92.74 \pm 0.46$ | $91.01 \pm 0.33$ | $93.09 \pm 0.29$ | $93.01 \pm 0.24$                   |
|   | FICO                       | $72.08 \pm 0.42$                   | $66.78 \pm 0.69$ | $65.46 \pm 4.91$ | $67.98 \pm 1.36$ | $71.20 \pm 0.87$ | $65.66 \pm 0.85$ | $72.33 \pm 0.44$ | $\textbf{72.63} \pm \textbf{0.12}$ |

Table 1: Task accuracy (%) of competing methods across tabular tasks without ground truth concept labels at train time.

#### **Key Finding #2: TabCBM discovers tabular** concepts aligned with expert-annotated concepts

| <u>-</u>      | CAS (coherence)                              | MIG (diversity)                                                               | $R^4$ (coherence & diversity)                                        | Dis (diversity)                                                              | Compl (completeness)                                              |  |
|---------------|----------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| TabCBM (ours) | 87.55 $\pm$ 14.07 ( $ar{\mathbf{r}} = 1.5$ ) | $\textbf{57.71} \pm \textbf{26.27} \; (\overline{\mathbf{r}} = \textbf{1.5})$ | $\textbf{78.36} \pm \textbf{17.65} \; (\overline{\mathbf{r}} = 1.5)$ | $\textbf{69.83} \pm \textbf{23.65} \ (\overline{\mathbf{r}} = \textbf{1.5})$ | <b>70.44</b> $\pm$ <b>22.81</b> ( $\overline{\mathbf{r}} = 1.5$ ) |  |
| SENN          | $60.11 \pm 6.26  (\bar{r} = 2.75)$           | $9.92 \pm 5.68  (ar{r} = 3.5)$                                                | $30.83 \pm 17.38  (\bar{r} = 3.5)$                                   | $21.49 \pm 6.51  (\bar{r} = 3.5)$                                            | $29.56 \pm 7.30  (\bar{r} = 3.75)$                                |  |
| CCD           | $52.86 \pm 20.82  (ar{r} = 3)$               | $29.57 \pm 5.86  (\bar{r} = 2)$                                               | $65.79 \pm 10.49  (\bar{r} = 2)$                                     | $39.66 \pm 5.89  (\bar{r} = 2)$                                              | $41.04 \pm 6.93  (\bar{r} = 2.25)$                                |  |
| PCA           | $57.54 \pm 12.89  (\bar{r} = 2.75)$          | $9.48 \pm 5.73  (\bar{r} = 3)$                                                | $19.59 \pm 28.18  (\bar{r} = 3)$                                     | $24.15 \pm 16.9  (\bar{r} = 3)$                                              | $36.17 \pm 15.86  (\bar{r} = 2.25)$                               |  |

Table 2: Mean concept representation quality metrics (%) measured across several synthetic datasets with ground-truth concept annotations (higher values are better).



Figure 2: Five known Gene Expression Programs (GEPs) in a synthetic scRNA task together with TabCBM's discovered concept with the highest absolute correlation with each GEP.

#### **Key Finding #3: Performance can be boosted via** human-in-the-loop concept interventions



**Figure 3**: TabCBM task accuracy after intervening on a varying number of concepts (x-axis), across tasks (columns), and varying whether we intervene only on supervised concepts (rows).