

Sectia Robotica, Grupa 4LF811

TEMĂ DE PROIECT

I. Mecanism cu bare articulate

Se dă desenul semiconstructiv al mecanismului din figura de mai jos, reprezentând un mecanism bicontur cu bare articulate la care mişcarea de rotație completă a elementului conducător (element legat la bază) este transformată în mişcare de rotație şi/sau translație la elementele conduse. Se cere analiza structural-cinematică pentru realizarea cursei h = mm.

Date de proiectare:

- lungimea manivelei: l₁ = 85 mm
- lungimea bielei l2 = 255 mm

1 80..100 200..300

Proiectul va cuprinde:

- a. Identificarea elementelor și cuplelor cinematice;
- b. Schema structurală a mecanismului, mobilitatea și grupele cinematice;
- c. Stabilirea dimensiunilor neprecizate (cu respectarea condiției de existență a manivelei);
- d. Determinarea grafică a legii de mişcare construcția grafică la scară pentru funcțiile φ₃(φ₁) şi s₅(φ₁);
- e. Stabilirea relaţiilor funcţiei de transmitere a mişcării φ₃(φ₁) şi s₅(φ₁);
- f. Calcule numerice pentru sase poziții ale elementului conducător.
- g. Precizarea dimensiunilor finale ale elementelor mecanismului pentru realizarea cursei impuse h.

II. Mecanisme cu roți dințate

Să se conceapă și să se analizeze un mecanism cu roți dințate compus dintr-un angrenaj exterior înseriat cu un mecanism planetar simplu având brațul condus.

Date de proiectare:

Raport de transmitere i = 5,5 +10/8

Student Condrea Laurentiu Daniel

Secția Robotica, Grupa 4LF811

Proiectul va cuprinde:

- a. Schema transmisiei
- b. Expresia raportului de transmitere
- c. Stabilirea numărului de dinți pentru roțile dințate
- d. Calculul elementelor geometrice ale roților dințate

Grafic de desfășurare:

Săptămâna	Planificat pct.	Vize	Realizat	Observații
		obligatorii		
2	Darea temei			
4	I.a I.b I.c			
6	l.d	Viza 1		
8	l.e l.f	Viza 2		
10	I.g II.a II.b			
12	II.c II.d	Viza 3		
13	Predare			
14	Susținere			

Şef lucr. dr. ing. Răzvan Boboc

- I .a)Identificare elementelor si cuplelor cinematice
 - b)Schema structurala a mecanismului, mobilitatea si grupele cinematice

Viza 1- Mecanisme

1-bozā

1,-monsvelā

12-bselā

13-bolansses

$$7A = 3(n-1) - 2 \cdot c_1 - 0 \cdot c_2$$

$$= 3(6-1) - 2 \cdot 7$$

$$= 15 - 14 = 1$$

d)Determinarea grafica a legii de miscare-constructia grafica la scara pentru functii

The same	100	7	477	4:00	3.3	33
Pi	0	30	600	90° 120°	1500	1800
<i>f</i> ₃	357	280	50°	3° 321°	230	266
55	179,63	177,98	177,05 17	7,06 148,57	182,99	184, 55
Pi	210	2500	270°	300	330	
f ₃	230	253°	242	292	3250	
55	197,44	183,90	180,51	178,35	180,12	
				11.3	100	

Contact I:

$$a_{3}$$
 A_{3}
 A_{4}
 A_{5}
 A_{5}

+ $2 |_3 |_4 \cos l_5 \cos l_4 + 2 |_3 |_4 \sin l_3 \sin l_4 + 2 |_3 |_5 \cos l_3 \cos l_5$ + $2 |_3 |_5 \sin l_3 \sin l_5 = 0$

=> $5\ln f_3(2113) \sin f_1 + 21514 \sin f_2 + 21515 \sin f_5) +$ $\cos f_3(2113) \cos f_1 + 21514 \cos f_3 + 21515 \cos f_5) +$ $21114 \cos f_1 \cos f_4 + 21114 \sin f_1 \sin f_3 + 21515 \cos f_1 \cos f_5$ $+ 21115 \sin f_1 \sin f_5 + 21515 \cos f_4 \cos f_5 \cos f_5$ $+ 11^2 + 13^2 + 15^2 - 12^2$ = 0

A 51, P3 + B cos P3 + C = 0

A = 2/1/3 sm for + 2/3/4 sm for + 2/3/5 sm for)

b = 2/1/3 cos P, + 2/3/4 cos P4 + 2/3/5 cos P5)

 $C = 2 \frac{1}{16} \cos \beta_1 \cos \beta_2 + 2 \frac{1}{16} \sin \beta_1 \sin \beta_2 + 2 \frac{1}{16} \cos \beta_1 \cos \beta_3$ $+ 2 \frac{1}{16} \sin \beta_1 \sin \beta_5 + 2 \frac{1}{16} \cos \beta_2 \cos \beta_3 + 2 \frac{1}{16} \sin \beta_1 \sin \beta_3$ $+ \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} - \frac{1}{12}$

U₅ ≥ 260mac 270°

44 100

UK = 1005 (PK) + jsin (PK) -13+11+12+12+12+15+2/11/2 cosfi cosf2+2/1/25/19/,5/19/2 + (-21/14 cos Pij) + (-21/14 sinfij) +2/15 cos Pij + 21,15 shfi i + (-2/2/4 cosf2 i) + (-2/2/4 shf2 i) + 2/2/5 sinf2i + 2/2/5 cosf2i =0 => -12+12+12+12+15+2/12 rost, cost2+ 2/1/2 sh f, sh /2 - 2/1/4 sinfi + 2/1/5 cosfi -2/2/4 sin/2 + 2/2/5 cos/2 = 0 19 - 2/1/4 5h /1 - 2/2/4 5h/2 - 13 + /1 + /2 + 1/2 + 1/5 + 2/1/2 cosf, cosf2 + 2/1/2 sinf, shf2 + 2/1/5 cosfi +2/2/5 cosf2 =0 14 + D 14 + E =0 D= 19 (2/15/1/2-2/25/1/2) $E = -13 + 11 + 212 + 15 + 21, 12 \cos \theta, \cos \theta_2 + 21/2 \sin \theta_2$ +2/1/5 cosfi +2/2/0 cos /2

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CF} + \overrightarrow{FM} + \overrightarrow{MA} = 0$$

$$|\overrightarrow{U}_1 + \overrightarrow{U}_2 + \overrightarrow{U}_2 + \overrightarrow{U}_3 + \overrightarrow{U}_4 + \overrightarrow{U}_4 + \overrightarrow{U}_5 = 0$$

$$|\overrightarrow{U}_1 + \overrightarrow{U}_2 + \overrightarrow{U}_4 + \overrightarrow{U}_4 + \overrightarrow{U}_5 + \overrightarrow{U}_5 = 0$$

$$|\overrightarrow{U}_1 + \overrightarrow{U}_2 + \overrightarrow{U}_4 + \overrightarrow{U}_4 + \overrightarrow{U}_5 + \overrightarrow{U}_5 = 0$$

$$|\overrightarrow{U}_1 + \overrightarrow{U}_2 + \overrightarrow{U}_4 + \overrightarrow{U}_4 + \overrightarrow{U}_5 + \overrightarrow{U}$$

 $||\vec{q}| + |2|^{2} + ||\vec{q}|| + ||(5| = 0)$ $||\vec{q}|| + ||2|| - ||3|| + ||5|| = -||3|| / 2$ $||\vec{q}|| + ||2|| + ||2|| - ||3|| + ||5|| = -||3|| / 2$ $||\vec{q}|| + ||2|| + ||2|| + ||3|| + |3|| + |3|| + |3|| + |3|| + |3|| + |3|| + |3|$

f)Calculele numerice pentru sase pozitii ale elementului conducator

7,	0	60	120	180	240	300
) m	357	50	321	266	253	292
13 c	-357	240	-321	-258	-250	-292
5 m	199,63	177,05	148,57	184,55	183,90	178,35
55 c						19.80

```
isme.m × mecconturII.m × +
           11 = 85;
           12 = 170;
           13 = 140;
           15 = 30;
           fi1 = 0;
           fi2 = 61;
           d = 2*11*sind(fi1)-2*12*sind(fi2);
           e = -13^2 + \frac{11}{2} + \frac{12}{2} + \frac{12}{2} + \frac{12}{2} + \frac{11}{2} + \frac{12}{2} + \frac{11}{2} + \frac{12}{2} + \frac{11}{2} + \frac{12}{2} + \frac{12}{2}
           s5p = (-d+sqrt(d^2-4*e))/2;
           s5n = (-d-sqrt(d^2-4*e))/2;
   14 = 128;
   11 = 85;
   12 = 255;
   13 = 80;
   15 = 227;
   fi1 = 300;
   a = 2*11*13*sind(fi1) - 2*13*15;
   b = 2*11*13*cosd(fi1)-2*13*14;
   c = 15^2+11^2+13^2-12^2+14^2-2*11*14*cosd(fi1)-2*11*15*sind(fi1);
   fi3p = 2*atand((-a+sqrt(a^2+b^2-c^2))/(b-c));
   fi3m = 2*atand((-a-sqrt(a^2+b^2-c^2))/(b-c));
  s5n
                                                                                                    7.5073e+01 - 2.1950e+02i
   gZs 📊
                                                                                                     7.5073e+01 + 2.1950e+02i
```

g)Precizarea dimensiunilor finale ale elementelor mecanismului pentru realizarea cursei impuse h

П

- a)Schema transmisiei
- b)Expresia raportului de transmisie

c)Stabilirea numarului de dinti pentru rotile dintate

$$\begin{array}{l}
21, 22, 23, 24, 25 \\
1 = 5, 5 + \frac{10}{8} = 6, 45 \\
25 = 23 + 124 & 24 \in I14, 301 \Rightarrow 24, =20 \\
23 = 2, 5 \cdot 24 \\
23 = 2, 5 \cdot 24 \\
24 = 1012, 5 \Rightarrow 21 \in I30, 401 \Rightarrow 21 = 30$$

$$\begin{array}{l}
1 = -\frac{21}{21} \left(\frac{25}{23} + 1 \right) = 6, 45 \\
1 = -\frac{22}{70} \left(\frac{30}{50} + 1 \right) = 6, 45
\end{array}$$

$$\begin{array}{l}
1 = -\frac{22}{150} = 9, 45 \Rightarrow -1422 = 1012, 5
\end{array}$$

$$\begin{array}{l}
21 = -\frac{21}{150} = 9, 45 \Rightarrow -1422 = 1012, 5
\end{array}$$

$$\begin{array}{l}
22 = -\frac{1012}{15} = 73
\end{array}$$

	1				
	1	2	3	4	5
da	96	225	156	66	276
df	82,5	211,5	142,5	52,5	262,5
0	90	2/9	150	60	270
db	84,57	205,79	140,95	56,38	253,7/