Property	Mathematical Description
1, Linearity	$ag_1(t) + bg_2(t) + aG_1(f) + bG_2(f)$ where a and b are constants
2. Dilation (time scaling)	$g(u) = \frac{1}{ u } G(u)$ where u is a constant
3. Duality	If $g(t) \in SG(f)$, then $G(t) \in g(-f)$
4. Time shifting	$g(t-t_0) = G(t) \exp(-i2\pi t_0)$
5. Frequency shifting	$\exp(i2\pi f_{\epsilon}t)g(t) \rightleftharpoons G(f - f_{\epsilon})$
6. Area under g(t)	$\int_{-\infty}^{\infty} g(t) dt = G(0)$
7. Area under $G(t)$	$g(0) = \int_{-\infty}^{\infty} G(f) df$
8. Differentiation in the time domain	$\frac{d}{dt}g(t) \rightleftharpoons j2\pi fG(f)$
9. Integration in the time domain	$\int_{-\infty}^{t} g(\tau) d\tau \rightleftharpoons \frac{1}{i2\pi f} G(f) + \frac{G(0)}{2} \delta(f)$
10. Conjugate functions	$ \begin{array}{ccc} J_{\infty} & j2\pi f^{-1}(f) & 2 & 0 \\ \text{If} & g(t) \rightleftharpoons G(f), \end{array} $
11. Multiplication in the time domain	then $g^*(t) = G^*(-f),$
The time domain	$g_1(t)g_2(t) \Longrightarrow \int_{-\infty}^{\infty} G_1(\lambda)G_2(f-\lambda) d\lambda$
12. Convolution in the time domain	$\int_{-\infty}^{\infty} g_1(\tau)g_2(t-\tau) d\tau \rightleftharpoons G_1(f)G_2(f)$
13. Correlation theorem	$\int_{-\infty}^{\infty} g_1(t)g_2^*(t-\tau) dt \rightleftharpoons G_1(f)G_2^*(f)$
14. Rayleigh's energy theorem	$\int_{-\infty}^{\infty} g(t) ^2 dt = \int_{-\infty}^{\infty} G(f) ^2 df$

Hilbert-Transform Pairsa

Time Punction	Hilbert Transform
$m(t) \cos(2\pi f_o t)$ $m(t) \sin(2\pi f_o t)$ $\cos(2\pi f_o t)$ $\sin(2\pi f_o t)$	$m(t) \sin(2\pi f_c t)$ $-m(t) \cos(2\pi f_c t)$ $\sin(2\pi f_c t)$ $-\cos(2\pi f_c t)$
8(1)	$\frac{1}{\pi t}$
$-\frac{1}{t}$	$-\pi\delta(t)$

^aIn the first two pairs, it is assumed that m(t) is band limited to the interval $-W \le f \le W$, where $W < f_c$

TABLE A6.2 Fourier-Transform Pairs

Time Function	Fourier Transform
$rect\left(\frac{t}{T}\right)$	T sinc (fT)
sinc (2 <i>₩t</i>)	$\frac{1}{2W}\operatorname{rect}\left(\frac{f}{2W}\right)$
$\exp(-at)u(t), a>0$	$\frac{1}{a+j2\pi f}$
$\exp(-a t), a>0$	$\frac{2a}{a^2 + (2\pi f)^2}$
$\exp(-\pi t^2)$	$\exp(-\pi f^2)$
$\begin{cases} 1 - \frac{ t }{T}, & t < T \\ 0, & t \ge T \end{cases}$	
$0, \qquad t \geq T$	$T \operatorname{sinc}^2(fT)$
$\delta(t)$	1
1	$\delta(f)$
$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$
$\exp(j2\pi f_c t)$	$\delta(f-f_c)$
$\cos(2\pi f_c t)$	$\frac{1}{2}[\delta(f-f_c)+\delta(f+f_c)]$
$\sin(2\pi f_c t)$	$\frac{1}{2j}[\delta(f-f_c)-\delta(f+f_c)]$
sgn(t)	$\frac{1}{i\pi f}$
1	
πt	$-i \operatorname{sgn}(f)$
u(t)	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$
$\sum_{i=0}^{\infty} \delta(t-iT_0)$	$\frac{1}{2} \sum_{i=1}^{\infty} \delta(f-\frac{n}{2})$

TABLE A6.4 Trigonometric Identitie