если $\lambda(\vec{y}_n) < C'$, то принимается решение γ_0 ,

где C' - пересчитанный порог.

При этом $\Lambda(\vec{y}_n)$ называют достаточной статистикой, а $\lambda(\vec{y}_n)$ минимально достаточной статистикой.

2.1.3. <u>Обнаружение детерминированных сигналов на фоне аддитивного</u> ГБШ.

Пусть $\eta_i \sim N(0, \sigma_\eta^2)$ - ГБШ. Мгновенные значения такой помехи распределены по гаусовскому закону $w_\eta(x) = \frac{1}{\sqrt{2\pi}\sigma_\eta}e^{\frac{-x^2}{2\sigma_\eta^2}}$, с нулевым математическим ожиданием и дисперсией σ_η^2 . Отсчёты такой помехи независимы, спектральная плотность мощности равномерна. Тогда функция правдоподобия факторизуется:

$$w(\vec{\mathbf{y}}_n|\mathbf{H}_k) = \prod_{i=1}^n w(y_i|\mathbf{H}_k), \ \mathbf{k} = \overline{0;1}$$

Мгновенные значения входного воздействия при гипотезе H_0 распределены по закону: $w(y_i|H_0)=\frac{1}{\sqrt{2\pi}\sigma_n}e^{\frac{-y_i^2}{2\sigma_\eta^2}}$, при гипотезе H_1 :

$$\begin{split} w(y_{i}|\mathbf{H}_{1}) &= \frac{1}{\sqrt{2\pi}\sigma_{\eta}}e^{\frac{-(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} => \\ w(\vec{\mathbf{y}}_{n}|\mathbf{H}_{0}) &= (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^{n} \prod_{i=1}^{n} e^{\frac{-y_{i}^{2}}{2\sigma_{\eta}^{2}}} = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^{n} e^{\frac{-\sum_{i=1}^{n}y_{i}^{2}}{2\sigma_{\eta}^{2}}} \\ w(\vec{\mathbf{y}}_{n}|\mathbf{H}_{1}) &= (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^{n} \prod_{i=1}^{n} e^{\frac{-(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^{n} e^{\frac{-\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} => \\ \Lambda(\vec{\mathbf{y}}_{n}) &= \frac{\left(\frac{1}{\sqrt{2\pi}\sigma_{\eta}}\right)^{n} e^{\frac{-\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} = \frac{e^{\frac{-\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} = \frac{e^{\frac{-\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} = e^{\frac{\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} = e^{\frac{\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} = e^{\frac{\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} = e^{\frac{\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} = e^{\frac{\sum_{i=1}^{n}(y_{i}-S_{i})^{2}}{2\sigma_{\eta}^{2}}} = \ln C => \end{split}$$