Phylogeny and the history of life

Phylogeny

The history of life

Processes of diversification

Outline

Phylogeny

Constructing phylogenetic trees Example: the evolution of whales

The history of life

The shape of the tree
The fossil record
Putting the timeline together

Processes of diversification

Adaptive radiations
Mass extinctions

▶ Phylogeny is the evolutionary history of a group of organisms

- ▶ Phylogeny is the evolutionary history of a group of organisms
- ▶ Based on the idea that organisms are related by evolution

- ▶ Phylogeny is the evolutionary history of a group of organisms
- ▶ Based on the idea that organisms are related by evolution
- ► Understanding these relationships is critical to our understanding of both evolution, and how biological processes work

- ▶ Phylogeny is the evolutionary history of a group of organisms
- Based on the idea that organisms are related by evolution
- Understanding these relationships is critical to our understanding of both evolution, and how biological processes work

► A **phylogenetic tree** is a model of how a group of organisms descended from a common ancestor

- ► A **phylogenetic tree** is a model of how a group of organisms descended from a common ancestor
- ► The model consists of **nodes**, where groups split, **branches** where evolution occurs, and **tips** representing observed **taxa** which are the endpoints of the process we are trying to model.

- ► A **phylogenetic tree** is a model of how a group of organisms descended from a common ancestor
- ► The model consists of nodes, where groups split, branches where evolution occurs, and tips representing observed taxa which are the endpoints of the process we are trying to model.
- ► A point where more than two branches diverge is called a *polytomy* .

- ► A **phylogenetic tree** is a model of how a group of organisms descended from a common ancestor
- ► The model consists of nodes, where groups split, branches where evolution occurs, and tips representing observed taxa which are the endpoints of the process we are trying to model.
- A point where more than two branches diverge is called a polytomy.
 - Polytomies mean we don't know which event happened first.

- ► A **phylogenetic tree** is a model of how a group of organisms descended from a common ancestor
- ► The model consists of nodes, where groups split, branches where evolution occurs, and tips representing observed taxa which are the endpoints of the process we are trying to model.
- A point where more than two branches diverge is called a polytomy.
 - Polytomies mean we don't know which event happened first.

► A **monophyletic group** is a group *defined by* a single common ancestor

- ► A monophyletic group is a group defined by a single common ancestor
 - ► All descendants of the ancestor must be in the group

- A monophyletic group is a group defined by a single common ancestor
 - ► All descendants of the ancestor must be in the group
- ► Monophyletic groups can also be called **clades** or **taxa**.

- A monophyletic group is a group defined by a single common ancestor
 - ► All descendants of the ancestor must be in the group
- ► Monophyletic groups can also be called **clades** or **taxa**.
- ► As biologists, we should try to think in terms of clades

- A monophyletic group is a group defined by a single common ancestor
 - ► All descendants of the ancestor must be in the group
- ► Monophyletic groups can also be called **clades** or **taxa**.
- As biologists, we should try to think in terms of clades
 - ► Are flying vertebrates a clade?

- ► A monophyletic group is a group defined by a single common ancestor
 - ▶ All descendants of the ancestor must be in the group
- ► Monophyletic groups can also be called **clades** or **taxa**.
- As biologists, we should try to think in terms of clades
 - Are flying vertebrates a clade?
 - ▶ What are some prominent groups that are not clades?

- ► A monophyletic group is a group defined by a single common ancestor
 - All descendants of the ancestor must be in the group
- ► Monophyletic groups can also be called **clades** or **taxa**.
- As biologists, we should try to think in terms of clades
 - Are flying vertebrates a clade?
 - What are some prominent groups that are not clades?

- ► A monophyletic group is a group defined by a single common ancestor
 - All descendants of the ancestor must be in the group
- ► Monophyletic groups can also be called **clades** or **taxa**.
- As biologists, we should try to think in terms of clades
 - Are flying vertebrates a clade?
 - What are some prominent groups that are not clades?
 - * apes, reptiles, trees

- ► A monophyletic group is a group defined by a single common ancestor
 - All descendants of the ancestor must be in the group
- ► Monophyletic groups can also be called **clades** or **taxa**.
- As biologists, we should try to think in terms of clades
 - Are flying vertebrates a clade?
 - What are some prominent groups that are not clades?
 - * apes, reptiles, trees

► Sister taxa can be a useful way of thinking about trees

- ▶ Sister taxa can be a useful way of thinking about trees
 - two taxa that share a common node

- ▶ Sister taxa can be a useful way of thinking about trees
 - two taxa that share a common node
 - ► You need to take the whole taxon

- Sister taxa can be a useful way of thinking about trees
 - two taxa that share a common node
 - You need to take the whole taxon
- ► E.g., sisters of: *Homo sapiens*; *Homo erectus*; humans?

- Sister taxa can be a useful way of thinking about trees
 - two taxa that share a common node
 - You need to take the whole taxon
- E.g., sisters of: Homo sapiens; Homo erectus; humans?
 - > 3

- Sister taxa can be a useful way of thinking about trees
 - two taxa that share a common node
 - You need to take the whole taxon
- ► E.g., sisters of: *Homo sapiens*; *Homo erectus*; humans?
 - ▶ * Homo neanderthalensis; Hn and Hs; Paranthropus

- Sister taxa can be a useful way of thinking about trees
 - two taxa that share a common node
 - You need to take the whole taxon
- ► E.g., sisters of: *Homo sapiens*; *Homo erectus*; humans?
 - ▶ * Homo neanderthalensis; Hn and Hs; Paranthropus

► The tree indicates the pattern of branching of **lineages** (evolving lines)

- ► The tree indicates the pattern of branching of **lineages** (evolving lines)
- ► Tips are assumed by the model to be monophyletic

- ► The tree indicates the pattern of branching of **lineages** (evolving lines)
- ▶ Tips are assumed by the model to be monophyletic
- ► A tree is a model of how evolution occurred

- ► The tree indicates the pattern of branching of **lineages** (evolving lines)
- ▶ Tips are assumed by the model to be monophyletic
- A tree is a model of how evolution occurred
 - ► Trees that correspond to the same model are considered equivalent

- ► The tree indicates the pattern of branching of **lineages** (evolving lines)
- ▶ Tips are assumed by the model to be monophyletic
- A tree is a model of how evolution occurred
 - Trees that correspond to the same model are considered equivalent

Activity: which of these things is not like the others?

► Except for the branching pattern, we don't interpret anything about the order of a tree

- ► Except for the branching pattern, we don't interpret anything about the order of a tree
 - ► No species are higher or lower than others, according to the tree

- Except for the branching pattern, we don't interpret anything about the order of a tree
 - No species are higher or lower than others, according to the tree
 - ► We've all been evolving for the same amount of time

- ► Except for the branching pattern, we don't interpret anything about the order of a tree
 - No species are higher or lower than others, according to the tree
 - ▶ We've all been evolving for the same amount of time
- ► How do we judge how closely related two organisms are, according to a tree?

- Except for the branching pattern, we don't interpret anything about the order of a tree
 - No species are higher or lower than others, according to the tree
 - ▶ We've all been evolving for the same amount of time
- How do we judge how closely related two organisms are, according to a tree?
 - *

- ► Except for the branching pattern, we don't interpret anything about the order of a tree
 - No species are higher or lower than others, according to the tree
 - ▶ We've all been evolving for the same amount of time
- How do we judge how closely related two organisms are, according to a tree?
 - * By looking for their common ancestor

- ► Except for the branching pattern, we don't interpret anything about the order of a tree
 - No species are higher or lower than others, according to the tree
 - ▶ We've all been evolving for the same amount of time
- How do we judge how closely related two organisms are, according to a tree?
 - * By looking for their common ancestor

Outline

Phylogeny

Constructing phylogenetic trees

Example: the evolution of whales

The history of life

The shape of the tree
The fossil record
Putting the timeline together

Processes of diversification

Adaptive radiations
Mass extinctions

► First, measure **characteristics** (or **characters**) of the taxa of interest – i.e., anything that seems useful to measure

- ▶ First, measure characteristics (or characters) of the taxa of interest – i.e., anything that seems useful to measure
 - ► Can be morphological (i.e., physical) or genetic

- ▶ First, measure characteristics (or characters) of the taxa of interest – i.e., anything that seems useful to measure
 - ► Can be **morphological** (i.e., physical) or genetic
- ► Then infer (make an educated guess about) the phylogenetic relationships.

- ▶ First, measure characteristics (or characters) of the taxa of interest – i.e., anything that seems useful to measure
 - Can be morphological (i.e., physical) or genetic
- ► Then infer (make an educated guess about) the phylogenetic relationships.
 - ► Phenetic approaches use measures of distance between organisms

- ► First, measure characteristics (or characters) of the taxa of interest – i.e., anything that seems useful to measure
 - ► Can be **morphological** (i.e., physical) or genetic
- Then infer (make an educated guess about) the phylogenetic relationships.
 - Phenetic approaches use measures of distance between organisms
 - Cladistic approaches are based on modeling how evolution occurs on the tree

- ► First, measure characteristics (or characters) of the taxa of interest – i.e., anything that seems useful to measure
 - ► Can be morphological (i.e., physical) or genetic
- Then infer (make an educated guess about) the phylogenetic relationships.
 - Phenetic approaches use measures of distance between organisms
 - Cladistic approaches are based on modeling how evolution occurs on the tree

► Should we use morphological or genetic characteristics to infer phylogenies?

- Should we use morphological or genetic characteristics to infer phylogenies?
 - ► We usually have more information from genetic characteristics, and this information is easier to measure precisely

- Should we use morphological or genetic characteristics to infer phylogenies?
 - ► We usually have more information from genetic characteristics, and this information is easier to measure precisely
- ▶ When should we use morphological characteristics?

- Should we use morphological or genetic characteristics to infer phylogenies?
 - ► We usually have more information from genetic characteristics, and this information is easier to measure precisely
- ▶ When should we use morphological characteristics?
 - **▶** ≯

- Should we use morphological or genetic characteristics to infer phylogenies?
 - ► We usually have more information from genetic characteristics, and this information is easier to measure precisely
- ▶ When should we use morphological characteristics?
 - ▶ * When genetic information is not available

- Should we use morphological or genetic characteristics to infer phylogenies?
 - ► We usually have more information from genetic characteristics, and this information is easier to measure precisely
- ▶ When should we use morphological characteristics?
 - ▶ * When genetic information is not available

4 D > 4 P > 4 B > 4 B > B = 490

- Should we use morphological or genetic characteristics to infer phylogenies?
 - ► We usually have more information from genetic characteristics, and this information is easier to measure precisely
- ▶ When should we use morphological characteristics?
 - ► * When genetic information is not available
 - * Most fossil organisms

- Should we use morphological or genetic characteristics to infer phylogenies?
 - ► We usually have more information from genetic characteristics, and this information is easier to measure precisely
- ▶ When should we use morphological characteristics?
 - ► * When genetic information is not available
 - * Most fossil organisms
 - ► Some viruses evolve so fast that morphological characteristics can be more stable than genetic characteristics

- Should we use morphological or genetic characteristics to infer phylogenies?
 - ► We usually have more information from genetic characteristics, and this information is easier to measure precisely
- ▶ When should we use morphological characteristics?
 - ► * When genetic information is not available
 - * Most fossil organisms
 - Some viruses evolve so fast that morphological characteristics can be more stable than genetic characteristics

► Cladistic analysis makes use of the phylogenetic model of organisms evolving from each other to infer phylogenies

- Cladistic analysis makes use of the phylogenetic model of organisms evolving from each other to infer phylogenies
- ► Phenetic analysis ignores the phylogenetic model of organisms evolving from each other while inferring phylogenies

- Cladistic analysis makes use of the phylogenetic model of organisms evolving from each other to infer phylogenies
- ► Phenetic analysis ignores the phylogenetic model of organisms evolving from each other while inferring phylogenies
- ► Which is better?

- Cladistic analysis makes use of the phylogenetic model of organisms evolving from each other to infer phylogenies
- ► Phenetic analysis ignores the phylogenetic model of organisms evolving from each other while inferring phylogenies
- Which is better?

- Cladistic analysis makes use of the phylogenetic model of organisms evolving from each other to infer phylogenies
- ► Phenetic analysis ignores the phylogenetic model of organisms evolving from each other while inferring phylogenies
- Which is better?
 - * Cladistic analysis

- Cladistic analysis makes use of the phylogenetic model of organisms evolving from each other to infer phylogenies
- ► Phenetic analysis ignores the phylogenetic model of organisms evolving from each other while inferring phylogenies
- Which is better?
 - * Cladistic analysis
- ▶ When should we use the other one?

- Cladistic analysis makes use of the phylogenetic model of organisms evolving from each other to infer phylogenies
- ► Phenetic analysis ignores the phylogenetic model of organisms evolving from each other while inferring phylogenies
- Which is better?
 - * Cladistic analysis
- ▶ When should we use the other one?
 - *****

- Cladistic analysis makes use of the phylogenetic model of organisms evolving from each other to infer phylogenies
- ► Phenetic analysis ignores the phylogenetic model of organisms evolving from each other while inferring phylogenies
- Which is better?
 - * Cladistic analysis
- When should we use the other one?
 - ► * When our data are only distances, with no characters available e.g., certain molecular techniques

- Cladistic analysis makes use of the phylogenetic model of organisms evolving from each other to infer phylogenies
- ► Phenetic analysis ignores the phylogenetic model of organisms evolving from each other while inferring phylogenies
- Which is better?
 - * Cladistic analysis
- When should we use the other one?
 - ► * When our data are only distances, with no characters available e.g., certain molecular techniques
 - *

- Cladistic analysis makes use of the phylogenetic model of organisms evolving from each other to infer phylogenies
- ► Phenetic analysis ignores the phylogenetic model of organisms evolving from each other while inferring phylogenies
- Which is better?
 - * Cladistic analysis
- When should we use the other one?
 - ► * When our data are only distances, with no characters available e.g., certain molecular techniques
 - ▶ * When we don't have enough baseline information

- Cladistic analysis makes use of the phylogenetic model of organisms evolving from each other to infer phylogenies
- ► Phenetic analysis ignores the phylogenetic model of organisms evolving from each other while inferring phylogenies
- Which is better?
 - * Cladistic analysis
- When should we use the other one?
 - ► * When our data are only distances, with no characters available e.g., certain molecular techniques
 - ▶ * When we don't have enough baseline information

 Classical cladistic analysis is based on synapomorphies – shared, derived characters – as evidence that two taxa are related

- Classical cladistic analysis is based on synapomorphies shared, derived characters – as evidence that two taxa are related
- ▶ Why do we focus on derived characters?

- Classical cladistic analysis is based on synapomorphies shared, derived characters – as evidence that two taxa are related
- ▶ Why do we focus on derived characters?
 - **▶** *

- Classical cladistic analysis is based on synapomorphies shared, derived characters – as evidence that two taxa are related
- Why do we focus on derived characters?
 - * These are things that evolved in the relevant context

- Classical cladistic analysis is based on synapomorphies shared, derived characters – as evidence that two taxa are related
- ▶ Why do we focus on derived characters?
 - * These are things that evolved in the relevant context
 - *

- Classical cladistic analysis is based on synapomorphies shared, derived characters – as evidence that two taxa are related
- Why do we focus on derived characters?
 - * These are things that evolved in the relevant context
 - * So they are the things our model (the phylogenies) must explain

- Classical cladistic analysis is based on synapomorphies shared, derived characters – as evidence that two taxa are related
- Why do we focus on derived characters?
 - * These are things that evolved in the relevant context
 - * So they are the things our model (the phylogenies) must explain

► Oaks and fish don't fly, but birds do

Oaks and fish don't fly, but birds do

- ► Oaks and fish don't fly, but birds do
 - * We're pretty sure that the common ancestor didn't fly

- ► Oaks and fish don't fly, but birds do
 - ▶ * We're pretty sure that the common ancestor didn't fly
 - **>** *

- Oaks and fish don't fly, but birds do
 - ▶ * We're pretty sure that the common ancestor didn't fly
 - ► * No evidence (any model will have flight evolve once)

- Oaks and fish don't fly, but birds do
 - * We're pretty sure that the common ancestor didn't fly
 - ► * No evidence (any model will have flight evolve once)
 - **▶** ≯

- Oaks and fish don't fly, but birds do
 - ▶ * We're pretty sure that the common ancestor didn't fly
 - ► * No evidence (any model will have flight evolve once)
 - * Flight evolved once in either case

- Oaks and fish don't fly, but birds do
 - ▶ * We're pretty sure that the common ancestor didn't fly
 - ► * No evidence (any model will have flight evolve once)
 - * Flight evolved once in either case
- ► Mosquitoes and birds fly, but fish don't

- Oaks and fish don't fly, but birds do
 - ▶ * We're pretty sure that the common ancestor didn't fly
 - ► * No evidence (any model will have flight evolve once)
 - * Flight evolved once in either case
- Mosquitoes and birds fly, but fish don't
 - >

- Oaks and fish don't fly, but birds do
 - ▶ * We're pretty sure that the common ancestor didn't fly
 - ► * No evidence (any model will have flight evolve once)
 - * Flight evolved once in either case
- Mosquitoes and birds fly, but fish don't
 - * Evidence (flight might have evolved once or twice on this tree)

- Oaks and fish don't fly, but birds do
 - ▶ * We're pretty sure that the common ancestor didn't fly
 - ► * No evidence (any model will have flight evolve once)
 - * Flight evolved once in either case
- Mosquitoes and birds fly, but fish don't
 - * Evidence (flight might have evolved once or twice on this tree)
 - *

- Oaks and fish don't fly, but birds do
 - ▶ * We're pretty sure that the common ancestor didn't fly
 - ► * No evidence (any model will have flight evolve once)
 - * Flight evolved once in either case
- Mosquitoes and birds fly, but fish don't
 - * Evidence (flight might have evolved once or twice on this tree)
 - * But this evidence points in the wrong direction

- Oaks and fish don't fly, but birds do
 - ▶ * We're pretty sure that the common ancestor didn't fly
 - ► * No evidence (any model will have flight evolve once)
 - * Flight evolved once in either case
- Mosquitoes and birds fly, but fish don't
 - * Evidence (flight might have evolved once or twice on this tree)
 - ▶ * But this evidence points in the wrong direction

- Oaks and fish don't fly, but birds do
 - ▶ * We're pretty sure that the common ancestor didn't fly
 - ► * No evidence (any model will have flight evolve once)
 - * Flight evolved once in either case
- Mosquitoes and birds fly, but fish don't
 - * Evidence (flight might have evolved once or twice on this tree)
 - ▶ * But this evidence points in the wrong direction
 - * This is why we combine evidence from different sources

- Oaks and fish don't fly, but birds do
 - ▶ * We're pretty sure that the common ancestor didn't fly
 - ► * No evidence (any model will have flight evolve once)
 - * Flight evolved once in either case
- Mosquitoes and birds fly, but fish don't
 - * Evidence (flight might have evolved once or twice on this tree)
 - ▶ * But this evidence points in the wrong direction
 - * This is why we combine evidence from different sources

► Derived compared to what?

- Derived compared to what?
 - ► The common ancestor (characteristics of the common ancestor are called **basal** or **ancestral** characters).

- Derived compared to what?
 - ► The common ancestor (characteristics of the common ancestor are called basal or ancestral characters).
 - What if our flight example was ostriches, hawks, and sparrows?

- Derived compared to what?
 - ► The common ancestor (characteristics of the common ancestor are called basal or ancestral characters).
 - What if our flight example was ostriches, hawks, and sparrows?
 - **>** 4

- Derived compared to what?
 - The common ancestor (characteristics of the common ancestor are called basal or ancestral characters).
 - What if our flight example was ostriches, hawks, and sparrows?
 - * No evidence for similarity between hawks and sparrows

- Derived compared to what?
 - ► The common ancestor (characteristics of the common ancestor are called basal or ancestral characters).
 - What if our flight example was ostriches, hawks, and sparrows?
 - * No evidence for similarity between hawks and sparrows

- Derived compared to what?
 - The common ancestor (characteristics of the common ancestor are called basal or ancestral characters).
 - What if our flight example was ostriches, hawks, and sparrows?
 - * No evidence for similarity between hawks and sparrows
 - * We believe the common ancestor could fly, so there is no shared, derived characteristic

- Derived compared to what?
 - The common ancestor (characteristics of the common ancestor are called basal or ancestral characters).
 - What if our flight example was ostriches, hawks, and sparrows?
 - * No evidence for similarity between hawks and sparrows
 - * We believe the common ancestor could fly, so there is no shared, derived characteristic
 - ► A **derived** character is a character not shared by the common ancestor of the group that we are currently thinking about

- Derived compared to what?
 - ► The common ancestor (characteristics of the common ancestor are called basal or ancestral characters).
 - What if our flight example was ostriches, hawks, and sparrows?
 - * No evidence for similarity between hawks and sparrows
 - * We believe the common ancestor could fly, so there is no shared, derived characteristic
 - ► A **derived** character is a character not shared by the common ancestor of the group that we are currently thinking about
 - ► One way to think about cladistic vs. phenetic analysis is that phenetic analysis treats derived and basal characters equally

- Derived compared to what?
 - ► The common ancestor (characteristics of the common ancestor are called basal or ancestral characters).
 - What if our flight example was ostriches, hawks, and sparrows?
 - * No evidence for similarity between hawks and sparrows
 - * We believe the common ancestor could fly, so there is no shared, derived characteristic
 - ► A **derived** character is a character not shared by the common ancestor of the group that we are currently thinking about
 - One way to think about cladistic vs. phenetic analysis is that phenetic analysis treats derived and basal characters equally

► We want to know what the common ancestor was like, so we can tell which characters are derived (as opposed to basal)

- ► We want to know what the common ancestor was like, so we can tell which characters are derived (as opposed to basal)
- ► This can be done sometimes by common sense

- ► We want to know what the common ancestor was like, so we can tell which characters are derived (as opposed to basal)
- ▶ This can be done sometimes by common sense
- Inferring the common ancestor statistically is difficult, for technical reasons

- ► We want to know what the common ancestor was like, so we can tell which characters are derived (as opposed to basal)
- ▶ This can be done sometimes by common sense
- Inferring the common ancestor statistically is difficult, for technical reasons
 - ► We can make use of an **outgroup** to study a group. An outgroup is an organism closely related to, but outside, the group being studied.

Inferring the common ancestor

- ► We want to know what the common ancestor was like, so we can tell which characters are derived (as opposed to basal)
- ▶ This can be done sometimes by common sense
- Inferring the common ancestor statistically is difficult, for technical reasons
 - We can make use of an outgroup to study a group. An outgroup is an organism closely related to, but outside, the group being studied.
 - ► We assume that the the **root**, or beginning, of the tree is where the outgroup branches from the group

Inferring the common ancestor

- ► We want to know what the common ancestor was like, so we can tell which characters are derived (as opposed to basal)
- ▶ This can be done sometimes by common sense
- Inferring the common ancestor statistically is difficult, for technical reasons
 - We can make use of an outgroup to study a group. An outgroup is an organism closely related to, but outside, the group being studied.
 - ► We assume that the the **root**, or beginning, of the tree is where the outgroup branches from the group

► Two species may have the same trait because the trait evolved twice independently – **convergent evolution**

► Two species may have the same trait because the trait evolved twice independently – **convergent evolution**

- Two species may have the same trait because the trait evolved twice independently – convergent evolution
 - ► * Flight, trees, dolphins and icthyosaurs

- Two species may have the same trait because the trait evolved twice independently – convergent evolution
 - ► * Flight, trees, dolphins and icthyosaurs
- An organism may lack a character that its ancestors had secondary loss

- Two species may have the same trait because the trait evolved twice independently – convergent evolution
 - ► * Flight, trees, dolphins and icthyosaurs
- An organism may lack a character that its ancestors had secondary loss
 - ► This can be even more confusing

- Two species may have the same trait because the trait evolved twice independently – convergent evolution
 - * Flight, trees, dolphins and icthyosaurs
- An organism may lack a character that its ancestors had secondary loss
 - This can be even more confusing
- Similarities that are not homologies (ie., not due to common ancestry) are called **homoplasies**

- Two species may have the same trait because the trait evolved twice independently – convergent evolution
 - * Flight, trees, dolphins and icthyosaurs
- An organism may lack a character that its ancestors had secondary loss
 - This can be even more confusing
- Similarities that are not homologies (ie., not due to common ancestry) are called **homoplasies**

Figure 25.2 Homology: Similarities Are Inherited from a Common Ancestor. Flowers in diverse plants, such as water lilies and roses, are homologous.

Figure 25.3 Homoplasy: Traits Are Similar but Not Inherited from a Common Ancestor. Dolphins and ichthyosaurs look similar but are not closely related.

Copyright © 2019 Pearson Canada Inc.

 Classical cladistic analysis is based on searching for the tree that can explain the observed data most parsimoniously – with the fewest number of changes necessary.

- Classical cladistic analysis is based on searching for the tree that can explain the observed data most parsimoniously – with the fewest number of changes necessary.
- ► How do we address the problem of convergent evolution and homoplasy?

- Classical cladistic analysis is based on searching for the tree that can explain the observed data most parsimoniously – with the fewest number of changes necessary.
- How do we address the problem of convergent evolution and homoplasy?
 - *

- Classical cladistic analysis is based on searching for the tree that can explain the observed data most parsimoniously – with the fewest number of changes necessary.
- How do we address the problem of convergent evolution and homoplasy?
 - ▶ * Make use of many different characteristics, when possible

- Classical cladistic analysis is based on searching for the tree that can explain the observed data most parsimoniously – with the fewest number of changes necessary.
- How do we address the problem of convergent evolution and homoplasy?
 - ▶ * Make use of many different characteristics, when possible
 - *

- Classical cladistic analysis is based on searching for the tree that can explain the observed data most parsimoniously – with the fewest number of changes necessary.
- How do we address the problem of convergent evolution and homoplasy?
 - ▶ * Make use of many different characteristics, when possible
 - * It may also help to use many different taxa

- Classical cladistic analysis is based on searching for the tree that can explain the observed data most parsimoniously – with the fewest number of changes necessary.
- How do we address the problem of convergent evolution and homoplasy?
 - ▶ * Make use of many different characteristics, when possible
 - * It may also help to use many different taxa
- Modern approaches that use genetic data may use more sophisticated approaches, rather than simple parsimony

- Classical cladistic analysis is based on searching for the tree that can explain the observed data most parsimoniously – with the fewest number of changes necessary.
- How do we address the problem of convergent evolution and homoplasy?
 - * Make use of many different characteristics, when possible
 - * It may also help to use many different taxa
- ► Modern approaches that use genetic data may use more sophisticated approaches, rather than simple parsimony

Outline

Phylogeny

Constructing phylogenetic trees

Example: the evolution of whales

The history of life

The shape of the tree
The fossil record
Putting the timeline together

Processes of diversification

Adaptive radiations
Mass extinctions

► Whales seem, on the surface, to be pretty different from other mammals, including the closest group, the artiodactyls

- ► Whales seem, on the surface, to be pretty different from other mammals, including the closest group, the artiodactyls
- ► Early phenetic analyses showed whales in their own group (sisters to artiodactyls)

- ► Whales seem, on the surface, to be pretty different from other mammals, including the closest group, the artiodactyls
- Early phenetic analyses showed whales in their own group (sisters to artiodactyls)
 - ► Whales lack the distinctive artiodactyl ankle structure (surprise!)

- ► Whales seem, on the surface, to be pretty different from other mammals, including the closest group, the artiodactyls
- Early phenetic analyses showed whales in their own group (sisters to artiodactyls)
 - Whales lack the distinctive artiodactyl ankle structure (surprise!)
- ► What about cladistic analysis?

- ► Whales seem, on the surface, to be pretty different from other mammals, including the closest group, the artiodactyls
- Early phenetic analyses showed whales in their own group (sisters to artiodactyls)
 - Whales lack the distinctive artiodactyl ankle structure (surprise!)
- What about cladistic analysis?

► Which of these doesn't belong?

- ▶ Which of these doesn't belong?
 - ► Whale

- ▶ Which of these doesn't belong?
 - Whale
 - ► Rhinocerous

- ▶ Which of these doesn't belong?
 - Whale
 - Rhinocerous
 - ► Hippopotamus

- ▶ Which of these doesn't belong?
 - Whale
 - Rhinocerous
 - Hippopotamus
 - ► Elephant

- ▶ Which of these doesn't belong?
 - Whale
 - Rhinocerous
 - Hippopotamus
 - Elephant

(a) Data set 1 (morphological traits): Whales diverged before the origin of artiodactyls.

Perissodactyls (horses and rhinos) Whale 2 **ARTIODACTYLS** Camel **Peccary** Gain of pulley-shaped astragalus Pig Hippo Astragalus Deer (ankle bone) Cow

► Hippos have derived characters A, B, C, D, Z

- ► Hippos have derived characters A, B, C, D, Z
- ► Cows have derived character A, Z

- ► Hippos have derived characters A, B, C, D, Z
- Cows have derived character A, Z
- ▶ Whales have derived characters B, C, D, E, F, G, H, I, Z

- Hippos have derived characters A, B, C, D, Z
- Cows have derived character A, Z
- Whales have derived characters B, C, D, E, F, G, H, I, Z
- ► Calculate distances, and make a phenetic tree

Activity: Tree-construction analysis

- Hippos have derived characters A, B, C, D, Z
- Cows have derived character A, Z
- Whales have derived characters B, C, D, E, F, G, H, I, Z
- Calculate distances, and make a phenetic tree
- ► List synapomorphies, and make a cladistic tree

Activity: Tree-construction analysis

- ► Hippos have derived characters A, B, C, D, Z
- Cows have derived character A, Z
- Whales have derived characters B, C, D, E, F, G, H, I, Z
- Calculate distances, and make a phenetic tree
- List synapomorphies, and make a cladistic tree

▶ What is the effect of universal characteristics (like Z, above)?

▶ What is the effect of universal characteristics (like Z, above)?

- ▶ What is the effect of universal characteristics (like Z, above)?
 - ► * None

- ▶ What is the effect of universal characteristics (like Z, above)?
 - ► * None
- ▶ What is the effect of unique characteristics (like E, F, G, H, I)

- ▶ What is the effect of universal characteristics (like Z, above)?
 - ► * None
- ▶ What is the effect of unique characteristics (like E, F, G, H, I)
 - **▶** ×

- What is the effect of universal characteristics (like Z, above)?
 - ► * None
- ▶ What is the effect of unique characteristics (like E, F, G, H, I)
 - ▶ * They affect phenetic trees, but not cladistic trees

- What is the effect of universal characteristics (like Z, above)?
 - ► * None
- ▶ What is the effect of unique characteristics (like E, F, G, H, I)
 - * They affect phenetic trees, but not cladistic trees
 - **>** *

- What is the effect of universal characteristics (like Z, above)?
 - ► * None
- ▶ What is the effect of unique characteristics (like E, F, G, H, I)
 - * They affect phenetic trees, but not cladistic trees
 - ▶ * As long as we are sure that they are derived!

- What is the effect of universal characteristics (like Z, above)?
 - ► * None
- ▶ What is the effect of unique characteristics (like E, F, G, H, I)
 - * They affect phenetic trees, but not cladistic trees
 - * As long as we are sure that they are derived!
- ► Why might whales have more derived characters than the other species?

- What is the effect of universal characteristics (like Z, above)?
 - ► * None
- ▶ What is the effect of unique characteristics (like E, F, G, H, I)
 - * They affect phenetic trees, but not cladistic trees
 - * As long as we are sure that they are derived!
- Why might whales have more derived characters than the other species?
 - *

- What is the effect of universal characteristics (like Z, above)?
 - * None
- What is the effect of unique characteristics (like E, F, G, H, I)
 - * They affect phenetic trees, but not cladistic trees
 - * As long as we are sure that they are derived!
- Why might whales have more derived characters than the other species?
 - * Because they have had to adapt more since moving to the water

- What is the effect of universal characteristics (like Z, above)?
 - * None
- What is the effect of unique characteristics (like E, F, G, H, I)
 - * They affect phenetic trees, but not cladistic trees
 - * As long as we are sure that they are derived!
- Why might whales have more derived characters than the other species?
 - * Because they have had to adapt more since moving to the water

(b) Data set 2 (DNA sequences):

Whales and hippos share a common ancestor.

Confirmation

► Intermediate forms between hippo-like animals and whales

Confirmation

- Intermediate forms between hippo-like animals and whales
- Discovered after they were predicted from DNA evidence!

Confirmation

- Intermediate forms between hippo-like animals and whales
- Discovered after they were predicted from DNA evidence!

▶ 1. Join the two open nodes that are closest to each other

- ▶ 1. Join the two open nodes that are closest to each other
 - ► Shortest distance

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- 2. They are no longer active. Make a new node halfway between them

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- 2. They are no longer active. Make a new node halfway between them
 - Average the traits

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- ▶ 2. They are no longer active. Make a new node halfway between them
 - Average the traits
 - ► This step is conceptually simple and practically tricky

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- ▶ 2. They are no longer active. Make a new node halfway between them
 - Average the traits
 - This step is conceptually simple and practically tricky
 - This is why we have computers

- 1. Join the two open nodes that are closest to each other
 - Shortest distance
- ▶ 2. They are no longer active. Make a new node halfway between them
 - Average the traits
 - This step is conceptually simple and practically tricky
 - This is why we have computers
- ▶ 3. Go back to step 1

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- ▶ 2. They are no longer active. Make a new node halfway between them
 - Average the traits
 - This step is conceptually simple and practically tricky
 - This is why we have computers
- 3. Go back to step 1

▶ 1. Join the two open nodes that are closest to each other

- ▶ 1. Join the two open nodes that are closest to each other
 - ► Shortest distance

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- >

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- ▶ * 2. *Stop!* You're done.

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- ▶ * 2. *Stop!* You're done.
 - *

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- ▶ * 2. *Stop!* You're done.
 - * I will only give you three species

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- ▶ * 2. *Stop!* You're done.
 - * I will only give you three species
 - *

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- ▶ * 2. *Stop!* You're done.
 - * I will only give you three species
 - ► * Seriously.

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- ▶ * 2. *Stop!* You're done.
 - * I will only give you three species
 - * Seriously.
- ▶ I'm here to teach you concepts, not to teach you how to be a really bad computer.

How to make a phenetic tree in this course

- ▶ 1. Join the two open nodes that are closest to each other
 - Shortest distance
- ▶ * 2. *Stop!* You're done.
 - * I will only give you three species
 - * Seriously.
- ► I'm here to teach you concepts, not to teach you how to be a really bad computer.

► Phenetic analysis uses less information

- Phenetic analysis uses less information
- ► To do a cladistic analysis, inferences about the common ancestor can be crucial

- Phenetic analysis uses less information
- ➤ To do a cladistic analysis, inferences about the common ancestor can be crucial
 - ▶ What if we thought the artiodactyl ancestor was aquatic?

- Phenetic analysis uses less information
- ➤ To do a cladistic analysis, inferences about the common ancestor can be crucial
 - What if we thought the artiodactyl ancestor was aquatic?
 - E, F, G, H and I could all be basal characters

- Phenetic analysis uses less information
- ➤ To do a cladistic analysis, inferences about the common ancestor can be crucial
 - What if we thought the artiodactyl ancestor was aquatic?
 - E, F, G, H and I could all be basal characters
 - *

- Phenetic analysis uses less information
- ➤ To do a cladistic analysis, inferences about the common ancestor can be crucial
 - ▶ What if we thought the artiodactyl ancestor was aquatic?
 - E, F, G, H and I could all be basal characters
 - * We would conclude that cows are closely related to hippos

- Phenetic analysis uses less information
- ➤ To do a cladistic analysis, inferences about the common ancestor can be crucial
 - ▶ What if we thought the artiodactyl ancestor was aquatic?
 - E, F, G, H and I could all be basal characters
 - * We would conclude that cows are closely related to hippos

► Why was the genetic analysis more effective than the morphological?

► Why was the genetic analysis more effective than the morphological?

- ► Why was the genetic analysis more effective than the morphological?
 - * It can be hard to tell which traits are derived

- ► Why was the genetic analysis more effective than the morphological?
 - ▶ * It can be hard to tell which traits are derived
 - *

- ► Why was the genetic analysis more effective than the morphological?
 - * It can be hard to tell which traits are derived
 - * This can also be a problem with the genetic analysis

- ► Why was the genetic analysis more effective than the morphological?
 - * It can be hard to tell which traits are derived
 - ▶ * This can also be a problem with the genetic analysis
 - *

- ► Why was the genetic analysis more effective than the morphological?
 - * It can be hard to tell which traits are derived
 - ▶ * This can also be a problem with the genetic analysis
 - * Genetic analyses typically allow us to analyze more traits

- ► Why was the genetic analysis more effective than the morphological?
 - * It can be hard to tell which traits are derived
 - ▶ * This can also be a problem with the genetic analysis
 - * Genetic analyses typically allow us to analyze more traits

► Phylogenetic trees are tremendously useful and powerful tools for organizing, understanding and analyzing biological data

- Phylogenetic trees are tremendously useful and powerful tools for organizing, understanding and analyzing biological data
- ► But they have limitations:

- Phylogenetic trees are tremendously useful and powerful tools for organizing, understanding and analyzing biological data
- But they have limitations:
 - ▶ The true history of life cannot really be summarized by a tree

- Phylogenetic trees are tremendously useful and powerful tools for organizing, understanding and analyzing biological data
- ▶ But they have limitations:
 - ▶ The true history of life cannot really be summarized by a tree
 - Sex, other forms of combination or gene transfer

- Phylogenetic trees are tremendously useful and powerful tools for organizing, understanding and analyzing biological data
- But they have limitations:
 - ▶ The true history of life cannot really be summarized by a tree
 - Sex, other forms of combination or gene transfer
 - ► Trees constructed by humans are not necessarily even the best approximations to the true history of life

- ► Phylogenetic trees are tremendously useful and powerful tools for organizing, understanding and analyzing biological data
- But they have limitations:
 - ▶ The true history of life cannot really be summarized by a tree
 - Sex, other forms of combination or gene transfer
 - ► Trees constructed by humans are not necessarily even the best approximations to the true history of life
 - ► Our guesses often change over time

- ► Phylogenetic trees are tremendously useful and powerful tools for organizing, understanding and analyzing biological data
- But they have limitations:
 - ► The true history of life cannot really be summarized by a tree
 - Sex, other forms of combination or gene transfer
 - ► Trees constructed by humans are not necessarily even the best approximations to the true history of life
 - Our guesses often change over time

Outline

Phylogeny

Constructing phylogenetic trees Example: the evolution of whales

The history of life

The shape of the tree
The fossil record
Putting the timeline together

Processes of diversification

Adaptive radiations
Mass extinctions

Outline

Phylogeny

Constructing phylogenetic trees Example: the evolution of whales

The history of life

The shape of the tree

The fossil record

Putting the timeline together

Processes of diversification

Adaptive radiations
Mass extinctions

► Big recent innovations have told us a lot about the history of life

- ▶ Big recent innovations have told us a lot about the history of life
 - ► Detailed genetic information

- ▶ Big recent innovations have told us a lot about the history of life
 - Detailed genetic information
 - Sophisticated analysis techniques

- Big recent innovations have told us a lot about the history of life
 - Detailed genetic information
 - Sophisticated analysis techniques
 - ► Electronic computers

- Big recent innovations have told us a lot about the history of life
 - Detailed genetic information
 - Sophisticated analysis techniques
 - Electronic computers

► Bacteria

- Bacteria
 - ▶ no nuclei; mostly small

- Bacteria
 - no nuclei; mostly small
 - ▶ most of the micro-organisms you see

- Bacteria
 - no nuclei; mostly small
 - most of the micro-organisms you see
- Archaea

- Bacteria
 - no nuclei; mostly small
 - most of the micro-organisms you see
- Archaea
 - no nuclei; mostly small

- Bacteria
 - no nuclei; mostly small
 - most of the micro-organisms you see
- Archaea
 - no nuclei; mostly small
 - rarer, or live in more extreme environments

Three domains

- Bacteria
 - no nuclei; mostly small
 - most of the micro-organisms you see
- Archaea
 - no nuclei; mostly small
 - rarer, or live in more extreme environments
- ► Eukarya

Three domains

- Bacteria
 - no nuclei; mostly small
 - most of the micro-organisms you see
- Archaea
 - no nuclei; mostly small
 - rarer, or live in more extreme environments
- Eukarya
 - ► large, nucleated cells

Three domains

- Bacteria
 - no nuclei; mostly small
 - most of the micro-organisms you see
- Archaea
 - no nuclei; mostly small
 - rarer, or live in more extreme environments
- Eukarya
 - large, nucleated cells

► Seem to be sisters with archaea, according to most of our key genes

- ► Seem to be sisters with archaea, according to most of our key genes
- Characterized by nuclei and mitochondria

- ► Seem to be sisters with archaea, according to most of our key genes
- Characterized by nuclei and mitochondria
- Mitochondria came later, and are captured bacteria!

- ► Seem to be sisters with archaea, according to most of our key genes
- Characterized by nuclei and mitochondria
- Mitochondria came later, and are captured bacteria!
- ▶ Where did the nucleus come from?

- ► Seem to be sisters with archaea, according to most of our key genes
- Characterized by nuclei and mitochondria
- Mitochondria came later, and are captured bacteria!
- ▶ Where did the nucleus come from?
 - Nobody knows

- ► Seem to be sisters with archaea, according to most of our key genes
- Characterized by nuclei and mitochondria
- Mitochondria came later, and are captured bacteria!
- ▶ Where did the nucleus come from?
 - Nobody knows

► The tree is only part of the story!

- ► The tree is only part of the story!
 - ► If genes (or even whole bacteria) can be transferred, life is not really a tree

- ▶ The tree is only part of the story!
 - ► If genes (or even whole bacteria) can be transferred, life is not really a tree
- ► Reuniting can create new species

- ▶ The tree is only part of the story!
 - ► If genes (or even whole bacteria) can be transferred, life is not really a tree
- Reuniting can create new species
 - ► Hybridization

- ▶ The tree is only part of the story!
 - ► If genes (or even whole bacteria) can be transferred, life is not really a tree
- Reuniting can create new species
 - Hybridization
 - ► Allopolyploidy

- The tree is only part of the story!
 - ► If genes (or even whole bacteria) can be transferred, life is not really a tree
- Reuniting can create new species
 - Hybridization
 - Allopolyploidy
 - •

- ► The tree is only part of the story!
 - ► If genes (or even whole bacteria) can be transferred, life is not really a tree
- Reuniting can create new species
 - Hybridization
 - Allopolyploidy
 - * Polyploids arising from different (allo-) species

- ► The tree is only part of the story!
 - ► If genes (or even whole bacteria) can be transferred, life is not really a tree
- Reuniting can create new species
 - Hybridization
 - Allopolyploidy
 - * Polyploids arising from different (allo-) species
- ► Wolf-coyote example

- ► The tree is only part of the story!
 - ► If genes (or even whole bacteria) can be transferred, life is not really a tree
- Reuniting can create new species
 - Hybridization
 - Allopolyploidy
 - * Polyploids arising from different (allo-) species
- ▶ Wolf-coyote example

► Animals

- Animals
- ► Plants

- Animals
- ► Plants
- ► Fungi

- Animals
- ► Plants
- ► Fungi
- ► Protists

- Animals
- ► Plants
- ► Fungi
- Protists
- ► Bacteria

- Animals
- ► Plants
- ► Fungi
- Protists
- Bacteria

▶ Not really a good way to describe the evolution of life

- ▶ Not really a good way to describe the evolution of life
- ► So why has this idea persisted for so long?

- ▶ Not really a good way to describe the evolution of life
- So why has this idea persisted for so long?

- ▶ Not really a good way to describe the evolution of life
- So why has this idea persisted for so long?
 - ► * It matches the way the world *looks* animals, plants and fungi dominate *visible* life

- ▶ Not really a good way to describe the evolution of life
- So why has this idea persisted for so long?
 - ► * It matches the way the world *looks* animals, plants and fungi dominate *visible* life
 - **▶** ≯

- ▶ Not really a good way to describe the evolution of life
- So why has this idea persisted for so long?
 - ► * It matches the way the world *looks* animals, plants and fungi dominate *visible* life
 - * Some branches are have organisms that are much smaller, or just have much fewer organisms

- Not really a good way to describe the evolution of life
- So why has this idea persisted for so long?
 - ▶ * It matches the way the world looks animals, plants and fungi dominate visible life
 - * Some branches are have organisms that are much smaller, or just have much fewer organisms
 - *

- ▶ Not really a good way to describe the evolution of life
- So why has this idea persisted for so long?
 - ▶ * It matches the way the world looks animals, plants and fungi dominate visible life
 - * Some branches are have organisms that are much smaller, or just have much fewer organisms
 - * Archaea and bacteria are difficult to tell apart even with a microscope

- ▶ Not really a good way to describe the evolution of life
- So why has this idea persisted for so long?
 - ▶ * It matches the way the world looks animals, plants and fungi dominate visible life
 - * Some branches are have organisms that are much smaller, or just have much fewer organisms
 - * Archaea and bacteria are difficult to tell apart even with a microscope

Outline

Phylogeny

Constructing phylogenetic trees Example: the evolution of whales

The history of life

The shape of the tree

The fossil record

Putting the timeline together

Processes of diversification

Adaptive radiations
Mass extinctions

► A fossil is a physical trace of an organism from the past

- ▶ A fossil is a physical trace of an organism from the past
 - Intact fossils retain their form and substance

- ▶ A **fossil** is a physical trace of an organism from the past
 - Intact fossils retain their form and substance
 - Compression fossils are squashed into a thin film

- A fossil is a physical trace of an organism from the past
 - Intact fossils retain their form and substance
 - Compression fossils are squashed into a thin film
 - Cast fossils occur when the decomposing piece is replaced by minerals different from the surrounding ones

- A fossil is a physical trace of an organism from the past
 - Intact fossils retain their form and substance
 - Compression fossils are squashed into a thin film
 - Cast fossils occur when the decomposing piece is replaced by minerals different from the surrounding ones
 - ► Permineralized fossils occur if minerals infiltrate cells as they are decomposing

- A fossil is a physical trace of an organism from the past
 - Intact fossils retain their form and substance
 - Compression fossils are squashed into a thin film
 - Cast fossils occur when the decomposing piece is replaced by minerals different from the surrounding ones
 - Permineralized fossils occur if minerals infiltrate cells as they are decomposing
- ► Does any of this seem likely?

- A fossil is a physical trace of an organism from the past
 - Intact fossils retain their form and substance
 - Compression fossils are squashed into a thin film
 - Cast fossils occur when the decomposing piece is replaced by minerals different from the surrounding ones
 - Permineralized fossils occur if minerals infiltrate cells as they are decomposing
- ► Does any of this seem likely?

(a) Intact fossil (pollen)

(b) Compression fossil (leaf)

(c) Cast fossil (bark)

(d) Permineralized fossil (tree trunk)

► Scientists have learned a lot from studying fossils, but care is needed. Very few things fossilize, and some things are much more likely to fossilize than others, for example:

- Scientists have learned a lot from studying fossils, but care is needed. Very few things fossilize, and some things are much more likely to fossilize than others, for example:
 - ► Things that live in swampy areas, or underground (Habitat bias)

- Scientists have learned a lot from studying fossils, but care is needed. Very few things fossilize, and some things are much more likely to fossilize than others, for example:
 - Things that live in swampy areas, or underground (Habitat bias)
 - ► Hard things, or hard parts of things (**Taxonomic bias**)

- Scientists have learned a lot from studying fossils, but care is needed. Very few things fossilize, and some things are much more likely to fossilize than others, for example:
 - Things that live in swampy areas, or underground (Habitat bias)
 - Hard things, or hard parts of things (Taxonomic bias)
 - Things that lived more recently have had less time to be destroyed, or to be buried too deep for recovery (Temporal bias)

- Scientists have learned a lot from studying fossils, but care is needed. Very few things fossilize, and some things are much more likely to fossilize than others, for example:
 - Things that live in swampy areas, or underground (Habitat bias)
 - Hard things, or hard parts of things (Taxonomic bias)
 - Things that lived more recently have had less time to be destroyed, or to be buried too deep for recovery (Temporal bias)
 - ► Things that are more abundant have more chances to be preserved (Abundance bias)

- Scientists have learned a lot from studying fossils, but care is needed. Very few things fossilize, and some things are much more likely to fossilize than others, for example:
 - Things that live in swampy areas, or underground (Habitat bias)
 - Hard things, or hard parts of things (Taxonomic bias)
 - Things that lived more recently have had less time to be destroyed, or to be buried too deep for recovery (Temporal bias)
 - Things that are more abundant have more chances to be preserved (Abundance bias)

► Because the fossil record is biased, scientists must be very careful about making inferences from what they see

- ▶ Because the fossil record is biased, scientists must be very careful about making inferences from what they see
 - ► Just because you don't see it, doesn't mean that it wasn't there

- ▶ Because the fossil record is biased, scientists must be very careful about making inferences from what they see
 - Just because you don't see it, doesn't mean that it wasn't there
 - ► Just because you see a lot, doesn't mean that there were a lot (relatively speaking)

- ▶ Because the fossil record is biased, scientists must be very careful about making inferences from what they see
 - Just because you don't see it, doesn't mean that it wasn't there
 - Just because you see a lot, doesn't mean that there were a lot (relatively speaking)
- Trying to figure out what happened based on what kind of fossils we happen to find is tricky

- Because the fossil record is biased, scientists must be very careful about making inferences from what they see
 - Just because you don't see it, doesn't mean that it wasn't there
 - Just because you see a lot, doesn't mean that there were a lot (relatively speaking)
- Trying to figure out what happened based on what kind of fossils we happen to find is tricky
- Orchid phylogeny

- Because the fossil record is biased, scientists must be very careful about making inferences from what they see
 - Just because you don't see it, doesn't mean that it wasn't there
 - Just because you see a lot, doesn't mean that there were a lot (relatively speaking)
- Trying to figure out what happened based on what kind of fossils we happen to find is tricky
- Orchid phylogeny

Outline

Phylogeny

Constructing phylogenetic trees Example: the evolution of whales

The history of life

The fossil record

Putting the timeline together

Processes of diversification

Adaptive radiations
Mass extinctions

► Dates of specimens can be inferred using radioactive isotopes (harder than it sounds)

- ▶ Dates of specimens can be inferred using radioactive isotopes (harder than it sounds)
- Geologic inferences can be made about the relative age of different things (for example, if one was deposited on top of another).

- ▶ Dates of specimens can be inferred using radioactive isotopes (harder than it sounds)
- Geologic inferences can be made about the relative age of different things (for example, if one was deposited on top of another).
- Molecular clocks are based on inferences about how fast things are evolving

- ▶ Dates of specimens can be inferred using radioactive isotopes (harder than it sounds)
- Geologic inferences can be made about the relative age of different things (for example, if one was deposited on top of another).
- Molecular clocks are based on inferences about how fast things are evolving
- ► These techniques are complicated, and making the timeline is a difficult and exciting puzzle

- ▶ Dates of specimens can be inferred using radioactive isotopes (harder than it sounds)
- Geologic inferences can be made about the relative age of different things (for example, if one was deposited on top of another).
- Molecular clocks are based on inferences about how fast things are evolving
- ► These techniques are complicated, and making the timeline is a difficult and exciting puzzle

► For most of Earth's history, there has been:

- For most of Earth's history, there has been:
 - ► No life

- For most of Earth's history, there has been:
 - ► No life
 - Life, but no multi-cellular organisms

- ► For most of Earth's history, there has been:
 - No life
 - Life, but no multi-cellular organisms
 - ► Multi-cellular organisms, but no plants, animals or fungi

- ► For most of Earth's history, there has been:
 - No life
 - Life, but no multi-cellular organisms
 - ▶ Multi-cellular organisms, but no plants, animals or fungi
 - Plants, animals, and fungi, but no flowering plants, birds or mammals

- ▶ For most of Earth's history, there has been:
 - No life
 - Life, but no multi-cellular organisms
 - Multi-cellular organisms, but no plants, animals or fungi
 - Plants, animals, and fungi, but no flowering plants, birds or mammals
 - ► Flowering plants, birds and mammals, but no good espresso

- ► For most of Earth's history, there has been:
 - No life
 - Life, but no multi-cellular organisms
 - Multi-cellular organisms, but no plants, animals or fungi
 - Plants, animals, and fungi, but no flowering plants, birds or mammals
 - Flowering plants, birds and mammals, but no good espresso

► For most of Earth's history, there has been:

- For most of Earth's history, there has been:
 - ► No life

- For most of Earth's history, there has been:
 - ► No life
 - ► Life, but no multi-cellular organisms

- For most of Earth's history, there has been:
 - ► No life
 - Life, but no multi-cellular organisms
 - Probably

- For most of Earth's history, there has been:
 - ► No life
 - Life, but no multi-cellular organisms
 - Probably
 - ► Multi-cellular organisms, but no plants, animals or fungi

- For most of Earth's history, there has been:
 - No life
 - Life, but no multi-cellular organisms
 - Probably
 - Multi-cellular organisms, but no plants, animals or fungi
 - ► Probably not may depend on definitions

- For most of Earth's history, there has been:
 - ► No life
 - Life, but no multi-cellular organisms
 - Probably
 - Multi-cellular organisms, but no plants, animals or fungi
 - Probably not may depend on definitions
 - Plants, animals, and fungi, but no flowering plants, birds or mammals

- For most of Earth's history, there has been:
 - ► No life
 - ► Life, but no multi-cellular organisms
 - Probably
 - Multi-cellular organisms, but no plants, animals or fungi
 - Probably not may depend on definitions
 - Plants, animals, and fungi, but no flowering plants, birds or mammals
 - Flowering plants, birds and mammals, but no good espresso

- For most of Earth's history, there has been:
 - No life
 - ► Life, but no multi-cellular organisms
 - Probably
 - Multi-cellular organisms, but no plants, animals or fungi
 - Probably not may depend on definitions
 - Plants, animals, and fungi, but no flowering plants, birds or mammals
 - Flowering plants, birds and mammals, but no good espresso

Outline

Phylogeny

Constructing phylogenetic trees Example: the evolution of whales

The history of life

The shape of the tree
The fossil record
Putting the timeline together

Processes of diversification

Adaptive radiations Mass extinctions

Processes of diversification

► Diversity sometimes arises gradually, and sometimes dramatically (radiation events)

Processes of diversification

- Diversity sometimes arises gradually, and sometimes dramatically (radiation events)
- Species (and families, and bigger groups) sometimes disappear gradually, and sometimes dramatically (mass extinction events)

Processes of diversification

- Diversity sometimes arises gradually, and sometimes dramatically (radiation events)
- Species (and families, and bigger groups) sometimes disappear gradually, and sometimes dramatically (mass extinction events)

Outline

Phylogeny

Constructing phylogenetic trees Example: the evolution of whales

The history of life

The shape of the tree
The fossil record
Putting the timeline together

Processes of diversification

Adaptive radiations

Mass extinctions

Adaptive radiations

► An **adaptive radiation** occurs when a single lineage produces many descendant species, in a short period of time, that make their living in a variety of different ways

Adaptive radiations

- ► An adaptive radiation occurs when a single lineage produces many descendant species, in a short period of time, that make their living in a variety of different ways
- ► Triggered by opportunity, either in the environment, or because of the evolution of the organisms themselves

Adaptive radiations

- ► An adaptive radiation occurs when a single lineage produces many descendant species, in a short period of time, that make their living in a variety of different ways
- Triggered by opportunity, either in the environment, or because of the evolution of the organisms themselves

► Ecological opportunity

- ► Ecological opportunity
 - ► An organism arrives in an area with no similar organisms

- Ecological opportunity
 - ► An organism arrives in an area with no similar organisms
 - ► A group of competing species is driven extinct (or nearly extinct) by some other cause

- Ecological opportunity
 - ▶ An organism arrives in an area with no similar organisms
 - ► A group of competing species is driven extinct (or nearly extinct) by some other cause
- Morphological innovation: an organism comes up with a good, new idea

- Ecological opportunity
 - ▶ An organism arrives in an area with no similar organisms
 - ► A group of competing species is driven extinct (or nearly extinct) by some other cause
- Morphological innovation: an organism comes up with a good, new idea
 - ► Legs in tetrapods

- Ecological opportunity
 - ► An organism arrives in an area with no similar organisms
 - ► A group of competing species is driven extinct (or nearly extinct) by some other cause
- Morphological innovation: an organism comes up with a good, new idea
 - Legs in tetrapods
 - ► New body plans in the Cambrian explosion

- Ecological opportunity
 - ▶ An organism arrives in an area with no similar organisms
 - ► A group of competing species is driven extinct (or nearly extinct) by some other cause
- Morphological innovation: an organism comes up with a good, new idea
 - Legs in tetrapods
 - ▶ New body plans in the Cambrian explosion
 - ► Multi-cellularity

- Ecological opportunity
 - ► An organism arrives in an area with no similar organisms
 - ► A group of competing species is driven extinct (or nearly extinct) by some other cause
- Morphological innovation: an organism comes up with a good, new idea
 - Legs in tetrapods
 - New body plans in the Cambrian explosion
 - Multi-cellularity
- ► Co-evolution: the evolution of one group creates new niches for another group, and vice versa

- Ecological opportunity
 - ► An organism arrives in an area with no similar organisms
 - ► A group of competing species is driven extinct (or nearly extinct) by some other cause
- Morphological innovation: an organism comes up with a good, new idea
 - Legs in tetrapods
 - ▶ New body plans in the Cambrian explosion
 - Multi-cellularity
- ► Co-evolution: the evolution of one group creates new niches for another group, and vice versa
 - ► The insects and the flowering plants

- Ecological opportunity
 - ► An organism arrives in an area with no similar organisms
 - ► A group of competing species is driven extinct (or nearly extinct) by some other cause
- Morphological innovation: an organism comes up with a good, new idea
 - Legs in tetrapods
 - New body plans in the Cambrian explosion
 - Multi-cellularity
- Co-evolution: the evolution of one group creates new niches for another group, and vice versa
 - The insects and the flowering plants

► In many different cases, a new kind of organism has colonized an area, and diversified rapidly

- ► In many different cases, a new kind of organism has colonized an area, and diversified rapidly
- ► This is an opportunity for studying how evolution can go:

- ► In many different cases, a new kind of organism has colonized an area, and diversified rapidly
- This is an opportunity for studying how evolution can go:
 - ▶ What is the same, and what is different, between similar cases?

- ► In many different cases, a new kind of organism has colonized an area, and diversified rapidly
- This is an opportunity for studying how evolution can go:
 - What is the same, and what is different, between similar cases?
 - ▶ Finches

- ► In many different cases, a new kind of organism has colonized an area, and diversified rapidly
- This is an opportunity for studying how evolution can go:
 - What is the same, and what is different, between similar cases?
 - Finches
 - ► Silverswords in Hawaii

- ► In many different cases, a new kind of organism has colonized an area, and diversified rapidly
- This is an opportunity for studying how evolution can go:
 - What is the same, and what is different, between similar cases?
 - Finches
 - Silverswords in Hawaii
 - Anolis lizards

- ► In many different cases, a new kind of organism has colonized an area, and diversified rapidly
- This is an opportunity for studying how evolution can go:
 - What is the same, and what is different, between similar cases?
 - Finches
 - Silverswords in Hawaii
 - Anolis lizards

(c) The same adaptive radiation of *Anolis* has occurred on different islands, starting from different types of colonists.

Competition

► Mammals did very well after the dinosaurs went extinct

Competition

- ▶ Mammals did very well after the dinosaurs went extinct
- ► We have seen major tree extinctions due to introduced diseases in the last century

Competition

- Mammals did very well after the dinosaurs went extinct
- We have seen major tree extinctions due to introduced diseases in the last century
 - *

Competition

- Mammals did very well after the dinosaurs went extinct
- We have seen major tree extinctions due to introduced diseases in the last century
 - * It remains to be seen whether new evolution will fill this opportunity

Competition

- Mammals did very well after the dinosaurs went extinct
- We have seen major tree extinctions due to introduced diseases in the last century
 - * It remains to be seen whether new evolution will fill this opportunity

► A new adaptive mutation can open up further possibilities for adaptation

- A new adaptive mutation can open up further possibilities for adaptation
 - ► Hox gene mutations allowed early animals to develop complex body plans

- A new adaptive mutation can open up further possibilities for adaptation
 - ► Hox gene mutations allowed early animals to develop complex body plans
 - ► The arthropod body plan

- A new adaptive mutation can open up further possibilities for adaptation
 - ► Hox gene mutations allowed early animals to develop complex body plans
 - The arthropod body plan
 - insects, arachnids, crustaceans . . .

- A new adaptive mutation can open up further possibilities for adaptation
 - ► Hox gene mutations allowed early animals to develop complex body plans
 - The arthropod body plan
 - insects, arachnids, crustaceans . . .
 - ► The tetrapod body plan

- A new adaptive mutation can open up further possibilities for adaptation
 - ► Hox gene mutations allowed early animals to develop complex body plans
 - The arthropod body plan
 - insects, arachnids, crustaceans . . .
 - The tetrapod body plan
 - reptiles, mammals . . .

- A new adaptive mutation can open up further possibilities for adaptation
 - ► Hox gene mutations allowed early animals to develop complex body plans
 - The arthropod body plan
 - insects, arachnids, crustaceans . . .
 - The tetrapod body plan
 - reptiles, mammals . . .
 - ► Flowering plants

- A new adaptive mutation can open up further possibilities for adaptation
 - ► Hox gene mutations allowed early animals to develop complex body plans
 - The arthropod body plan
 - insects, arachnids, crustaceans . . .
 - The tetrapod body plan
 - reptiles, mammals . . .
 - Flowering plants
 - ► This opened many new opportunities for *everyone* (insects, mammals, birds), not just the innovators

- A new adaptive mutation can open up further possibilities for adaptation
 - ► Hox gene mutations allowed early animals to develop complex body plans
 - The arthropod body plan
 - insects, arachnids, crustaceans . . .
 - The tetrapod body plan
 - reptiles, mammals . . .
 - Flowering plants
 - ► This opened many new opportunities for *everyone* (insects, mammals, birds), not just the innovators
 - *

- A new adaptive mutation can open up further possibilities for adaptation
 - ► Hox gene mutations allowed early animals to develop complex body plans
 - The arthropod body plan
 - insects, arachnids, crustaceans . . .
 - The tetrapod body plan
 - reptiles, mammals . . .
 - Flowering plants
 - This opened many new opportunities for everyone (insects, mammals, birds), not just the innovators
 - * Co-evolution

- A new adaptive mutation can open up further possibilities for adaptation
 - ► Hox gene mutations allowed early animals to develop complex body plans
 - The arthropod body plan
 - insects, arachnids, crustaceans . . .
 - The tetrapod body plan
 - reptiles, mammals . . .
 - Flowering plants
 - This opened many new opportunities for everyone (insects, mammals, birds), not just the innovators
 - * Co-evolution

► Hox genes are involved in determining the identity of different body parts

- Hox genes are involved in determining the identity of different body parts
- ► Taxa with simpler body structures tend to have fewer hox genes

- Hox genes are involved in determining the identity of different body parts
- ► Taxa with simpler body structures tend to have fewer hox genes
 - ► Phylogenetic comparisons provide important evidence that hox genes were involved in evolution of complex body plans

- Hox genes are involved in determining the identity of different body parts
- ► Taxa with simpler body structures tend to have fewer hox genes
 - Phylogenetic comparisons provide important evidence that hox genes were involved in evolution of complex body plans
- Evidence that new hox genes were largely created by gene duplication events

- Hox genes are involved in determining the identity of different body parts
- ► Taxa with simpler body structures tend to have fewer hox genes
 - Phylogenetic comparisons provide important evidence that hox genes were involved in evolution of complex body plans
- Evidence that new hox genes were largely created by gene duplication events
 - A rare but important type of mutation

- Hox genes are involved in determining the identity of different body parts
- ► Taxa with simpler body structures tend to have fewer hox genes
 - Phylogenetic comparisons provide important evidence that hox genes were involved in evolution of complex body plans
- Evidence that new hox genes were largely created by gene duplication events
 - A rare but important type of mutation
 - ► Natural selection must have played a role in the development of this much complexity

- Hox genes are involved in determining the identity of different body parts
- ► Taxa with simpler body structures tend to have fewer hox genes
 - Phylogenetic comparisons provide important evidence that hox genes were involved in evolution of complex body plans
- Evidence that new hox genes were largely created by gene duplication events
 - A rare but important type of mutation
 - Natural selection must have played a role in the development of this much complexity

© 2014 Pearson Education, Inc.

► One or more genes may be accidentally duplicated so that the genome has two copies of each gene

- ► One or more genes may be accidentally duplicated so that the genome has two copies of each gene
- ► This may make the organism less efficient, and thus be selected against

- One or more genes may be accidentally duplicated so that the genome has two copies of each gene
- This may make the organism less efficient, and thus be selected against
- ► It may also allow for innovation. Why?

- One or more genes may be accidentally duplicated so that the genome has two copies of each gene
- This may make the organism less efficient, and thus be selected against
- It may also allow for innovation. Why?
 - *****

- One or more genes may be accidentally duplicated so that the genome has two copies of each gene
- This may make the organism less efficient, and thus be selected against
- It may also allow for innovation. Why?
 - * Because one copy can continue to do the old function, while the other evolves a new function

- One or more genes may be accidentally duplicated so that the genome has two copies of each gene
- This may make the organism less efficient, and thus be selected against
- It may also allow for innovation. Why?
 - * Because one copy can continue to do the old function, while the other evolves a new function

Outline

Phylogeny

Constructing phylogenetic trees Example: the evolution of whales

The history of life

The shape of the tree
The fossil record
Putting the timeline together

Processes of diversification

Adaptive radiations

► Five major mass extinctions so far

- ► Five major mass extinctions so far
- ► The last one (and maybe others) was caused by a cosmic impact

- Five major mass extinctions so far
- ▶ The last one (and maybe others) was caused by a cosmic impact
 - ► It could happen again

- Five major mass extinctions so far
- ► The last one (and maybe others) was caused by a cosmic impact
 - It could happen again
- ► Are we in the middle of a mass extinction now?

- Five major mass extinctions so far
- ► The last one (and maybe others) was caused by a cosmic impact
 - It could happen again
- ▶ Are we in the middle of a mass extinction now?
 - Extinction rate very high over the last 400 years

- Five major mass extinctions so far
- ► The last one (and maybe others) was caused by a cosmic impact
 - It could happen again
- ▶ Are we in the middle of a mass extinction now?
 - Extinction rate very high over the last 400 years
 - ► Time will tell, but we should be worried

- Five major mass extinctions so far
- ► The last one (and maybe others) was caused by a cosmic impact
 - It could happen again
- ▶ Are we in the middle of a mass extinction now?
 - Extinction rate very high over the last 400 years
 - Time will tell, but we should be worried

► The best way to reconstruct evolution is with a *model* of how it occurred

- ▶ The best way to reconstruct evolution is with a model of how it occurred
 - ► Molecular information, and computer modeling has changed our view of the tree of life

- The best way to reconstruct evolution is with a model of how it occurred
 - ► Molecular information, and computer modeling has changed our view of the tree of life
 - ▶ life is not really a tree

- The best way to reconstruct evolution is with a model of how it occurred
 - Molecular information, and computer modeling has changed our view of the tree of life
 - ► life is not really a tree
 - genetic information can be transferred

- The best way to reconstruct evolution is with a model of how it occurred
 - Molecular information, and computer modeling has changed our view of the tree of life
 - life is not really a tree
 - genetic information can be transferred
 - sexual mixing occurs at different scales

- The best way to reconstruct evolution is with a model of how it occurred
 - Molecular information, and computer modeling has changed our view of the tree of life
 - life is not really a tree
 - genetic information can be transferred
 - sexual mixing occurs at different scales
- Scientists use many clues to figure out the history of life on earth

- ➤ The best way to reconstruct evolution is with a model of how it occurred
 - Molecular information, and computer modeling has changed our view of the tree of life
 - ▶ life is not really a tree
 - genetic information can be transferred
 - sexual mixing occurs at different scales
- Scientists use many clues to figure out the history of life on earth
 - Fossils, geology, phylogeny

- The best way to reconstruct evolution is with a model of how it occurred
 - Molecular information, and computer modeling has changed our view of the tree of life
 - life is not really a tree
 - genetic information can be transferred
 - sexual mixing occurs at different scales
- Scientists use many clues to figure out the history of life on earth
 - Fossils, geology, phylogeny
- ▶ Life has diversified both gradually, and with dramatic episodes

- The best way to reconstruct evolution is with a model of how it occurred
 - Molecular information, and computer modeling has changed our view of the tree of life
 - ▶ life is not really a tree
 - genetic information can be transferred
 - sexual mixing occurs at different scales
- Scientists use many clues to figure out the history of life on earth
 - Fossils, geology, phylogeny
- Life has diversified both gradually, and with dramatic episodes
 - Adaptive radiations, mass extinctions

- The best way to reconstruct evolution is with a model of how it occurred
 - Molecular information, and computer modeling has changed our view of the tree of life
 - life is not really a tree
 - genetic information can be transferred
 - sexual mixing occurs at different scales
- Scientists use many clues to figure out the history of life on earth
 - Fossils, geology, phylogeny
- Life has diversified both gradually, and with dramatic episodes
 - Adaptive radiations, mass extinctions