Université Pierre et Marie Curie - LM121 - Année 2012-2013

Interro nº 3

Question de cours : donner la définition d'une base de \mathbb{R}^2 .

Exercice 1:

Soit
$$A = \begin{pmatrix} 3 & 4 & 4 \\ 1 & 2 & 1 \\ 0 & -2 & 4 \end{pmatrix}$$
. Calculer son déterminant, et si c'est possible calculer A^{-1} .

Exercice 2:

Soit A = (1, 1, 1), B = (1, 2, 3), C = (0, 1, 2). Ces points sont-ils alignés? Si non, donner une équation du plan (ABC).

Exercice 3:

On considère le déterminant suivant de taille 2n:

$$D = \begin{vmatrix} a & 0 & \cdots & \cdots & \cdots & 0 & b \\ 0 & a & \ddots & & \ddots & b & 0 \\ \vdots & \ddots & \ddots & 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & & 0 & a & b & 0 & & \vdots \\ \vdots & & 0 & b & a & 0 & & \vdots \\ \vdots & \ddots & \ddots & 0 & 0 & \ddots & \ddots & \vdots \\ 0 & b & \ddots & & & \ddots & a & 0 \\ b & 0 & \cdots & \cdots & \cdots & \cdots & 0 & a \end{vmatrix}$$

Calculer D.

Exercice 4: Soit $M = \begin{pmatrix} 4 & -4 \\ 1 & 0 \end{pmatrix}, P = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ et $T = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$.

- 1. Calculer P^{-1} .
- 2. Pour $n \in \mathbb{N}^*$ trouver une formule simple pour T^n . Justifier soigneusement votre résultat.
- 3. Montrer que pour $n \in \mathbb{N}^*$, $(P^{-1}MP)^n = P^{-1}M^nP$. Calculer $P^{-1}MP$ et en déduire une formule pour M^n .
- 4. On considère la suite (u_n) définie par $u_0 = 3$, $u_1 = 4$ et par la relation de récurrence :

$$u_{n+2} = 4u_{n+1} - 4u_n$$
 pour $n \in \mathbb{N}$

- (a) Trouver une matrice $A \in M_2(\mathbb{R})$ telle que $\binom{u_{n+2}}{u_{n+1}} = A \binom{u_{n+1}}{u_n}$ pour tout $n \in \mathbb{N}$. En déduire que $\binom{u_{n+1}}{u_n} = A^n \binom{4}{3}$ pour tout $n \in \mathbb{N}$.
- (b) En utilisant la question précédente, et la formule obtenue pour M^n à la question (3), en déduire une formule pour u_n .

une formule pour u_n .

Puis montrer que $u_n \neq 0$ pour $n \geq 4$.

Finalement justifier que $\lim_{n \to +\infty} \frac{u_{n+5}}{u_{n+4}}$ existe et la calculer.

^{1.} Si vous bloquez, commencez par calculer T^2 , T^3 , T^4 , T^5 .