[Robust Optimization]

$$(\text{Original}) \quad \min \quad d^T \Omega d - \lambda d^T \alpha$$
 Let set $U := \{ \tilde{\alpha} \mid \tilde{\alpha}_i = \hat{\alpha}_i + \bar{\alpha}_i \gamma_i, \quad -1 \leq \gamma_i \leq 1, \quad \sum_i |\gamma_i| = \Gamma \}.$
$$(\text{robustness}) \quad \min \quad d^T \Omega d - \lambda \min_{\tilde{\alpha} \in U} d^T \tilde{\alpha}$$

$$\Rightarrow \quad \min_{\tilde{\alpha} \in U} d^T \tilde{\alpha} = \min \sum_i d^T (\hat{\alpha}_i + \bar{\alpha}_i \gamma_i)$$

$$(\text{Dual}) \Rightarrow \quad \max \quad \Gamma \pi + \sum_i \theta_i$$

$$\text{s.t.} \quad \pi + \theta_i \leq \bar{\alpha} d_i, \quad \forall i \in N$$

$$\pi \geq 0,$$

$$\theta_i \geq 0, \quad \forall i \in N$$

(ALL) min
$$d^T \Omega d - \lambda (\Gamma \pi + \sum_i \theta_i)$$

s.t $(1) - (11)$
 $\pi + \theta_i \leq \tilde{\alpha} d_i, \quad \forall i \in N$
 $\pi \geq 0$
 $\theta_i \geq 0, \quad \forall i \in N$

We may a simplified formulation because the worst-case only occurs when $\tilde{d}_i = \hat{d}_i - \bar{\alpha}_i, \forall i \in N (i.e \gamma_i = -1).$

Let set
$$U := \{ \tilde{\alpha} \mid \tilde{\alpha}_i = \hat{\alpha}_i + \bar{\alpha}_i \gamma_i, \quad 0 \le \gamma_i \le 1, \quad \sum_i \gamma_i = \Gamma \}.$$

For a given α ,

(robustness)
$$\min_{\bar{\alpha} \in U} d^T \tilde{\alpha} = \min \sum_{i} d^T (\hat{\alpha}_i - \bar{\alpha}_i \gamma_i)$$
$$\sum_{i} \gamma_i \leq \bar{\alpha}_i d_i, \quad \forall i \in N$$
$$0 \leq \gamma_i \leq 1, \quad \forall i \in N$$
(Dual) $\Rightarrow \max \quad \Gamma \pi + \sum_{i} \theta_i$ s.t
$$\pi + \theta_i \leq \bar{\alpha} d_i, \quad \forall i \in N$$
$$\pi \geq 0$$
$$\theta_i > 0, \quad \forall i \in N$$

(ALL) min
$$d^T \Omega d - \lambda (\Gamma \pi + \sum_i \theta_i)$$

s.t $(1) - (11)$
 $\pi + \theta_i \leq \bar{\alpha} d_i, \quad \forall i \in N$
 $\pi \geq 0$
 $\theta_i \geq 0, \quad \forall i \in N$