

+ Anomaly Detection: Motivation

- Previously we looked for:
 - Related columns (dimensionality reduction)
 - Related rows (clustering)
- Sometimes you are interested in finding unusual items
 - "Anomalies", "Outliers"
- ...As a pre-processing step
 - E.g., algorithms that use Sum-Squared objectives are not robust to outliers. Use outlier detection first to find and discard such rows
- ...As an end goal.
 - The aim of the data mining exercise is anomaly detection

*Anomaly Detection: Motivation

Applications

- Fraud detection
- Cyber-security
- Machine / Factory maintenance
- Data-center maintenance
- Process-control
- Security and surveillance
- Anti-terrorism

Anomaly Detection: Example

Example: Manufacturing Quality Control: Aircraft Engines
 x₁ = heat, x₂ = vibration.

- (Logardian) of the control of the co
- Can you imagine an algorithm?
 - Input: x_1, x_2
 - Output: Anomaly or Not Anomaly?

Anomaly Detection: Probability Recap I

Two common probability distributions

- Categorical variables: Multinomial
 - x is 1-of-N encoding. u from 0 to 1. u's sum to 1.

$$p(\mathbf{x}; \mathbf{u}) = \prod u_i^{x_i} \qquad \qquad u_k = \frac{\sum_i x_{ik}}{\sum_i \sum_k x_{ik}} = \frac{N_k}{N}$$

- Continuous variables: Gaussian
 - x is real vector. u is a real vector. S is a matrix.

$$p(\mathbf{x}; \mathbf{u}, S) = \frac{1}{Z} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{u})^T S^{-1}(\mathbf{x} - \mathbf{u})\right) \implies \mathbf{u} = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \quad S = \frac{1}{N} \sum_{i} (\mathbf{x} - \mathbf{u})(\mathbf{x} - \mathbf{u})^T$$

Fitting Example: Multinomial

$$u_k = \frac{\sum_{i} x_{ik}}{\sum_{i} \sum_{k} x_{ik}} = \frac{N_k}{N}$$

- Fitting multinomial parameters
 - Suppose throw coin: H, T, T, H, H
 - Suppose dice role: 2, 1, 3, 5, 5, 4, 6, 1

Throw	Head	Tail
\mathbf{x}_1	1	0
\mathbf{x}_2	0	1
\mathbf{x}_3	0	1
x_4	1	0
\mathbf{x}_5	1	0
u_k	3/(3+2) =3/5	2/(3+2) =2/5

Roll	1	2	3	4	5	6
\mathbf{x}_1	0	1	0	0	0	0
\mathbf{x}_2	1	0	0	0	0	0
\mathbf{x}_3	0	0	1	0	0	0
\mathbf{x}_4	0	0	0	0	1	0
\mathbf{x}_5	0	0	0	0	1	0
\mathbf{x}_6	0	0	0	1	0	0
\mathbf{x}_7	0	0	0	0	0	1
\mathbf{x}_8	1	0	0	0	0	0
$\mathbf{u}_{\mathbf{k}}$	2/8	1/8	1/8	1/8	2/8	1/8

Fitting Example: Gaussian

- Fitting Gaussian parameters
 - Suppose fish length = [1, 3, 5, 3, 2]
- Mean, u = (1+3+6+3+2)/5 = 3
- Variance, $v = ((1-3)^2+(3-3)^2+(6-3)^2+(3-3)^2+(2-3)^2)/5=14/5$

$$\mathbf{u} = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \quad S = \frac{1}{N} \sum_{i} (\mathbf{x} - \mathbf{u}) (\mathbf{x} - \mathbf{u})^{T}$$

+

Anomaly Detection: Probability Recap II

- Continuous variables: Gaussian
 - x is real vector. u is a real vector. S is a matrix.

$$p(\mathbf{x}; \mathbf{u}, S) = \frac{1}{Z} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{u})^T S^{-1}(\mathbf{x} - \mathbf{u})\right) \quad \Longrightarrow \quad \mathbf{u} = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \quad S = \frac{1}{N} \sum_{i} (\mathbf{x} - \mathbf{u})(\mathbf{x} - \mathbf{u})^T$$

- Tells us:
 - For a specified Gaussian:
 - What data do we expect?
 - How likely is any particular piece of data?
 - For a specified Dataset:
 - What Gaussian best explains it?

■ Anomaly if p(x) < T

x = length

Anomaly Detection Algorithm

- Algorithm:
 - Read in normal training data, {x}
 - Compute the Gaussian (u,S) that best explains the data $\{x\}$

$$\mathbf{u} = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \quad S = \frac{1}{N} \sum_{i} (\mathbf{x} - \mathbf{u}) (\mathbf{x} - \mathbf{u})^{T}$$

- Given a new example x and estimated u,S, compute p(x)
- If p(x)<T
 - Then Anomaly
- $p(\mathbf{x}; \mathbf{u}, S) = \frac{1}{Z} \exp \left(-\frac{1}{2} (\mathbf{x} \mathbf{u})^T S^{-1} (\mathbf{x} \mathbf{u}) \right)$

- Else
 - Ok

Anomaly Detection:

What if the data is more complicated than a multivariate Gaussian?

- Some data cannot be well modeled by a multivariate Gaussian.
 - How to detect anomalies here?
 - ...Ideas?

+

Anomaly Detection:

What if the data is more complicated than a multivariate Gaussian?

- Some data cannot be well modeled by a multivariate Gaussian.
 - => Model with Gaussian Mixture model

$$p(\mathbf{x}) \propto \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{u})^T S^{-1}(\mathbf{x} - \mathbf{u})\right)$$
 $p(\mathbf{x}) \propto \sum_{k} \pi_k \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{u}_k)^T S_k^{-1}(\mathbf{x} - \mathbf{u}_k)\right)$

+ How to Evaluate?

- Input:
 - 10,000 normal aircraft engines (Features, x)
 - 20 broken/flawed ones (Label, y)
- Split into half train and test
- Compute $\{u,S\}$ for model p(x) on train $\{x_1,...,x_{5000}\}$
- On a test set, predict anomaly if p(x)<T
- Evaluation metric
 - TP/FP/FN/TN rate
 - ROC Curve
 - Precision/Recall
- How to choose T?
 - Cross-validation!

Understanding ROC curves ■ Suppose you have a set of models S1: Expensive to miss an anomaly. False alarms not that costly. to choose from (colored lines)... \Rightarrow Prioritize high TPR Scenario 1: Early-stage financial ⇒ Pick Blue/Black systems fraud filtering. Potentially anomalous transactions flagged for an analyst to examine. 80 ■ Scenario 2: Late stage flagging of potential low-quality items on a 60 production line. Flagging an factory production line for an hour. 40 S2: Not critical to catch all anomalies. 20 False alarms very costly. ⇒ Prioritize low FPR \Rightarrow Pick Magenta system 60 80

Anomaly Detection Versus Supervised Learning

Anomaly Detection

- Small number of positive examples (e.g., 0-10)
- Many negative examples
- Many different types of anomalies. Hard to model what they look like.
- Future anomalies may look nothing like previous ones

Supervised Learning

- Large number of positive and negative examples (E.g., 100s)
- Enough positive examples to model their typical characteristics.
- Future positive examples likely to be similar to train set

+

Anomaly Detection Versus Supervised Learning: Quiz

Task

- Fraud Detection
- Spam classification
- Weather prediction
- Manufacturing defects
- Data center crash prediction
- Surveillance crime detection
- Disease classification

Method to Use?

- Anomaly
- Supervised
- Supervised
- Anomaly
- Anomaly
- Anomaly
- Supervised

*Example Application: EECS Work ©

After unsupervised learning, we can.. infer behaviour class and screen for unusual events.

Hospedales et al, IEEE ICCV 2009, IJCV 2011

+ Alternative Application of Anomaly Detection: Scientific Data Exploration

- Apply anomaly detection to large scale data streams: flags new items of interest to focus limited manual inspection time.
 - E.g., telescope images => new astronomical phenomena.
 - E.g., radio telescope images => focus SETI search.
 - E.g., particle accelerator readings => focus new particle search

+ Association Mining

- What is association mining?
 - Find frequent patterns, associations, correlations or causations among items or objects in transaction or relational databases.
- Example: Shopping baskets and shopping rules

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

Examples

$$\{bread\} \Rightarrow \{milk\}$$

 $\{soda\} \Rightarrow \{chips\}$
 $\{bread\} \Rightarrow \{jam\}$

+ Association Mining

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

Examples

 $\{bread\} \Rightarrow \{milk\}$ $\{soda\} \Rightarrow \{chips\}$ $\{bread\} \Rightarrow \{jam\}$

■ Given a set of transactions, find rules that will predict the occurrence of an item based on occurrences of other items in the transaction

Association Mining: Definitions

- Itemset:
 - A collection of one or more items
 - E.g., {milk, bread jam}
- Association Rule
 - X=>Y implication
- Count: N(X). Occurrences of itemset X
- Support of Itemset S(X)
 - % transactions contain itemset: N(X)/N
 - S({milk,bread})=3/8,({soda,chips})=4/8
- Support of Rule S(X=>Y)
 - % transactions with X+Y: N(X+Y)/N
- Confidence of Rule: C(X=>Y)
 - N (X+Y)/N (X)

- Challenge:
 - Find all rules X=>Y where:
 - S(X=>Y) > MinSup
 - C(X=>Y) > MinConf
 - I.e., both (frequent and confident)

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

+

Support and Confidence

- Support of Rule S(X=>Y)
 - % transactions with X+Y: N(X+Y)/N
 - Intersection over total area.
- Confidence of Rule: C(X=>Y)
 - N (X+Y)/N (X)
 - Intersection over X

Association Mining: Example

- Example:
 - 1. {shoes, socks, tshirt}
 - 2. {socks, sweater, pants}
 - 3. {tshirt, pants, socks}
 - 4. {shoes, socks}
- MinSup = 2/4, Minconf = 2/3
 - {shoes=>socks}
 - Sup = $\frac{1}{2}$, conf= $\frac{2}{2}$
 - {socks=>shoes}
 - Sup = $\frac{1}{2}$, conf= $\frac{2}{4}$
 - {sweater}
 - Sup = 1/4

- Challenge
 - Find all rules X=>Y where:
 - S(X=>Y) > MinSup
 - \blacksquare C(X=>Y) > MinConf
 - (frequent and confident)
- Support of Itemset s(X)
 - % transactions contain itemset: N(X)/N
- Support of Rule S(X=>Y)
 - % transactions with X+Y: N(X+Y)/N
- Confidence of Rule: C(X=>Y)
 - Given you saw X, how confident about Y?
 - N (X+Y)/N (X)

+

Association Mining: Algorithm?

- Algorithm Sketch
 - List all possible rules
 - Check the support and confidence for each
 - Keep the ones above MinSup and MinConf
- Algorithm Sketch
 - List all possible itemsets
 - Count their support
 - Count their confidence
 - Generate rules above MinSup & MinConf
- => Cost O(2^N) ⊗

П

- Apriori Observation
 - Any subset of a frequent itemset must also be frequent.
 - Any superset of an infrequent itemset must also be infrequent
- Apriori Algorithm
 - Generate frequent itemsets bottom up. Don't bother to consider those which have a subset known to be infrequent.

⁺ Apriori Algorithm

- K=1.
- Generate frequent itemsets of length k=1.
- Repeat until no new frequent itemsets
 - Generate K+1 candidate itemsets from K sized frequent itemsets
 - Count the support of each candidate by scanning the DB
 - Eliminate infrequent candidates
- Check confidence for frequent itemsets

+ Summary: You Should Know

■ Anomalies

- What is the anomaly detection problem?
- Sketch an anomaly detection algorithm
- Applications of anomaly detection
- When anomaly detection versus supervised learning is appropriate
- Connection to clustering with Gaussian Mixtures

■ Itemset Mining

- What is the itemset mining problem?
- Sketch the Apriori algorithm
- Applications of itemset mining