

AVALIAÇÃO DO SISTEMA DE MEDIÇÃO - TIMON 2.5

Laboratório de Robótica e Sistemas Autônomos - RoSA

Autores:

Jéssica Lima Motta Leonardo Mendes de Souza Lima Miguel Felipe Nery Vieira Vinícius José Gomes de Araujo Felismino

Salvador Bahia, Brasil

Setembro de 2020

SUMÁRIO

1	INTRODUÇÃO	3
2	ESTUDO	5
3	EXPERIMENTOS	7
4	INTERPRETAÇÃO DOS RESULTADOS OBTIDOS	9
5	CONCLUSÃO	13
R.	EFERÊNCIAS	15

1 INTRODUÇÃO

Este documento tem como objetivo analisar um experimento estatístico sobre um modelo de helicóptero de papel. Durante o processo, foi medido o seu tempo de queda em duas alturas diferentes, 1,30 m e 2,10 m, além disto, para alterar o seu desempenho, pedaços de fita foram colados em seu corpo e hélices e um clipe foi adicionado em sua parte inferior a fim de verificar a influência da variação destes parâmetros no resultado final. Para variar o valor. O procedimento resultou em trinta e duas combinações distintas conforme vistas na tabela 1 .

Para realizar o estudo estatístico dos dados foi utilizada a ferramenta R, uma linguagem de programação voltada à manipulação, análise e visualização de dados.

Tabela 1: Dados do experimento.

Clipe	Altura	Ad_top	Ad_left	${ m Ad_right}$	Score
+	-	-	-	-	1,57
-	-	-	-	-	1,27
+	+	-	-	-	1,70
-	+	-	-	-	1,10
+	+	+	=	-	1,75
_	+	+	-	-	1,30
+	-	+	-	-	1,82
-	-	+	-	-	1,31
+	+	+	-	+	1,68
-	+	+	-	+	1,35
+	-	+	-	+	2,04
-	-	+	-	+	1,42
+	-	+	+	+	1,86
-	-	+	+	+	1,32
+	+	+	+	+	1,63
_	+	+	+	+	1,17
+	-	=	+	+	1,58
-	-	-	+	+	1,44
+	+	-	+	+	1,73
-	+	-	+	+	1,25
+	+	-	-	+	1,55
-	+	-	-	+	1,23
+	-	=	-	+	1,91
_	-	-	-	+	1,50
+	-	=	+	-	1,92
-	-	-	+	-	1,36
+	+	-	+	-	1,71
-	+	-	+	-	1,52
+	+	+	+	-	1,74
-	+	+	+	-	1,32
+	-	+	+ +	-	1,83
-	-	+	+	-	1,40

2 ESTUDO

3 EXPERIMENTOS

4 INTERPRETAÇÃO DOS RESULTADOS OBTI-DOS

O modelo de regressão linear encontrado, considerando a interação entre dois elementos, é disposto a seguir.

```
##
## Call:
## lm(formula = tempo ~ (altura + clipe + ad_top + ad_esquerda +
       ad_direita) + altura * clipe + altura * ad_top + altura *
##
      ad esquerda + altura * ad direita + clipe * ad top + clipe *
##
       ad_esquerda + clipe * ad_direita + ad_top * ad_esquerda +
##
##
      ad top * ad direita + ad esquerda * ad direita,
      data = helicoptero)
##
##
## Residuals:
##
        Min
                    1Q
                         Median
                                        30
                                                 Max
## -0.180625 -0.055312 -0.009375 0.059687
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                        0.07069 17.569 6.99e-12 ***
                             1.24188
## altura+
                            0.42125
                                       0.07903
                                                5.330 6.77e-05 ***
                                        0.07903 -0.522 0.60885
## clipe+
                            -0.04125
## ad top+
                             0.07875
                                      0.07903
                                                0.996 0.33386
## ad esquerda+
                             0.17625
                                      0.07903 2.230 0.04040 *
## ad direita+
                             0.19125
                                      0.07903
                                                2.420 0.02779 *
## altura+:clipe+
                            -0.03250
                                       0.07069 -0.460 0.65186
                                        0.07069
                                                1.344 0.19771
## altura+:ad top+
                             0.09500
## altura+:ad esquerda+
                                                -0.566 0.57932
                            -0.04000
                                        0.07069
## altura+:ad_direita+
                            -0.02000
                                        0.07069
                                                -0.283 0.78085
## clipe+:ad top+
                            -0.03750
                                        0.07069
                                                -0.531 0.60304
## clipe+:ad esquerda+
                            0.06750
                                        0.07069
                                                0.955 0.35382
## clipe+:ad direita+
                            -0.14250
                                        0.07069
                                                -2.016 0.06092 .
## ad top+:ad esquerda+
                                                -1.910 0.07425 .
                            -0.13500
                                        0.07069
## ad top+:ad direita+
                            -0.00500
                                        0.07069
                                                -0.071 0.94448
## ad esquerda+:ad direita+ -0.21000
                                        0.07069
                                                -2.971 0.00901 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.09996 on 16 degrees of freedom
## Multiple R-squared: 0.9161,Adjusted R-squared: 0.8375
## F-statistic: 11.65 on 15 and 16 DF, p-value: 6.57e-06
```

Pode-se observar que, para o nosso modelo, as variáveis que possuem relevância estatística, ou seja Pr < 0.05 são: altura (Pr = 6.77e-05), ad_esquerda (Pr = 0.4040), ad_direita (Pr = 0.02779) e ad_esquerda:ad_direita (Pr = 0.00901).

Considerando as variáveis que possuem relevância estatística, a equação linear que representa o modelo é descrita da seguinte forma:

$$tempo = m\'edia(tempos) + \frac{coef(altura)}{2}altura + \frac{coef(ad_esquerda)}{2}ad_esquerda + \\ \frac{coef(ad_direita)}{2}ad_direita + \frac{coef(ad_esquerda:ad_direita)}{2}ad_esquerda:ad_direita$$

Desta forma, fazendo as devidas substituições, temos que:

$$tempo = 1.54 + \frac{0.42125}{2}altura + \frac{0.17625}{2}ad_esquerda + \frac{0.19125}{2}ad_direita \\ + \frac{(-0.21)}{2}ad_esquerda : ad_direita, logo:$$

$$tempo = 1.54 + 0.210625 altura + 0.088125 ad_esquerda + 0.095625 ad_direita - \\ 0.105 ad_esquerda : ad_direita$$
 (4.1)

É fácil de verificar na equação 4.1 que as variáveis altura, ad_direita e ad_esquerda influenciam positivamente no tempo de queda (possuem coeficientes positivos) enquanto a interação entre as variáveis ad_esquerda:ad_direita influencia negativamente (possui coeficiente negativo). Desta forma, considerando que nossas variáveis de entrada assumam apenas valores de -1 ou 1, para encontrar o maior valor de tempo de voo devemos atribuir valor positivo às variáveis altura, ad_direita e valor negativo à interação ad_esquerda:ad_direita, o que resulta em:

tempo
$$max = 1.54 + 0.2106 * (1) + 0.0881 * (1) + 0.0931 * (1) - 0.105 * (-1) = 2.04seq$$

De forma análoga, para encontrar o menor valor de tempo de voo devemos atribuir valor negativo às variáveis altura, $ad_direita$ e $ad_esquerda$ e valor positivo à interação $ad_esquerda:ad_direita$, resultando em :

$$tempo_min = 1.54 + 0.2106 * (-1) + 0.0881 * (-1) + 0.0931 * (-1) - 0.105 * (1) = 1.15 seg$$

Para garantir a veracidade do modelo de regressão linear encontrado deve-se então realizar à análise dos seus resíduos, os quais espera-se possuírem distribuição normal e

aleatoriedade em torno da regressão obtida. A Figura 1 exibe o histograma dos resíduos calculados e pode-se observar a distribuição normal dos valores, conforme o esperado.

Figura 1: Histograma dos resíduos

Fonte: Autoria própria.

Ao usar a função **plot()** para o nosso modelo, o primeiro gráfico gerado é o *Residuals vs Fitted*, exibido na Figura 2, que dá uma indicação se há padrões não-lineares nos resíduos. Pode-se verificar na figura que o nosso modelo exibe uma regressão linear atráves de um certo número dos pontos.

Figura 2: Residuals vs Fitted

Fonte: Autoria própria.

Uma outra forma de verificar a distribuição normal dos resíduos é através da Normal Q-Q. Podemos visualizar na Figura 3 a Normal Q-Q para o nosso modelo, na qual os resíduos seguem próximos à linha reta em diagonal, sendo uma boa indicação de quem encontram-se normalmente distríbuidos.

Figura 3: Normal Q-Q

Fonte: Autoria própria.

É necessário verificar também se os resíduos possuem homocedasticidade, ou seja possuam variância comum ao longo da regressão. Pode-se observar no gráfico exibido na Figura 4 que os resíduos apresentam-se aleatoriamente pela linha, sem concentrar-se nem ao topo nem abaixo da mesma, comportamento que se assemelha ao esperado.

Figura 4: Scale-Location

Fonte: Autoria própria.

A partir da análise realizada dos resíduos é possível então concluir que o modelo de regressão linear encontrado na equação 4.1 é válido para o helicóptero utilizado.

5 CONCLUSÃO

REFERÊNCIAS