Developing a GRMHD code for heterogeneous computing

Challenges and perspectives

Based on work done in collaboration with L. Rezzolla

Table of Contents

- 1. Introduction to GPU computing
- 2. Application to GRMHD equations

Introduction and motivation

Graphics Processing Units are becoming prevalent tools for High Performance Computing

Introduction and motivation

GPUs on paper offer far more raw compute power than CPUs

Introduction and motivation

The microarchitecture and data models are very different.

What works well on GPUs

- Ray tracing and image processing

High degree of parallelism, little data dependency

- Al and Machine Learning (e.g. deep neural net back propagation)

Lots of operations can be run independently, mostly reliant on linear algebra kernels

Repeat for N rays

Trace a single ray

Repeat for N neurons

Repeat for M weights

Compute weight gradients

What about PDE solvers?

CONS

- Hyperbolic PDEs describe the transport of information.
 - a. Causal structure —> data dependencies
 - b. Need for **communication** and synchronization
- II) Large I/O and memory requirements
- III) GPUs are usually optimized for FP8-16-32 workloads.

PROS

- Plenty of parallelism, lots of grid sites / particles to update
- Can benefit heavily from **SMP** (~shared memory parallelism)
- III) Mixed hyperbolic / elliptic systems could have even larger benefits.

What about PDE solvers?

Only one way to know for sure.

- -> We are developing a new GRMHD framework on GPU backends aimed at:
 - Exploring the applicability of heterogeneous computing to computational astrophysics.
 - Building a modern and future-proof tool for research.

Codename: General Relativistic Astrophysics Code for Exascale.

Rest of this talk

- 1. Introduction to GPU computing
- 2. Application to GRMHD equations
 - Introduction to GRACE
 - Code Tests & Preliminary Results
 - What can we say about performance?

Introduction to GRACE

Two main components:

1. p4est AMR library

Grids with adaptive resolution are a fundamental ingredient of any code that aims at serious scientific contributions.

2. Kokkos Performance Portability Layer

GPUs are complex and varied (different vendors, different APIs) and a software layer in between the physics code and the silicon helps to mitigate these challenges.

p4est AMR library

- p4est only handles the grid, not the data
- More dev work but ideal for GPUs

- Data always sits on the GPU
- AMR routines (prolongation, restriction, ghost zones) are custom written GPU kernels

Kokkos Performance Portability Layer

Kokkos is used in GRACE to offload work to GPU devices.

Code Tests & Preliminary Results

Two **model** equations:

Scalar advection

Simplest hyperbolic equation. Test of basic finite-volume + AMR infrastructure.

ii) Burgers equation

Nonlinear hyperbolic PDE -> High Resolution Shock Capturing methods required to handle discontinuities.

GRMHD module currently under testing

Burgers equation

- HRSC solvers for nonlinear PDEs implemented on Cartesian grid (2D and 3D).
- Currently supported reconstruction algorithms: minmod, monotonizedcentral, WENO (3rd/5th order).
- Currently supported Riemann solvers: HLLE.
- Prototypical PDE system: Burgers' inviscid equation.

$$\partial_t U(\mathbf{x}, t) + \frac{1}{2} \partial_x U(\mathbf{x}, t)^2 = 0$$

Code Tests & Preliminary Results: Burgers equation

- Three-state shock-tube for Burgers' equation
- Solved in 3D with uniform mesh refinement and Runge-Kutta 2 time-stepping.
- The reconstruction method is MC2.
- This initial data leads to a double shockwave.

Three state shocktube

Code Tests & Preliminary Results

- N-wave test
- Initial data

$$U(x,0) = e^{-\frac{(x-1)^2}{2}} - e^{-\frac{(x+1)^2}{2}}$$

Solution:

$$U(x,t) = e^{-\frac{(x-U(x,t)t-1)^2}{2}} - e^{-\frac{(x-U(x,t)t+1)^2}{2}} - 0.50$$

Results

What can we say about performance?

Profiling codes on heterogeneous systems is hard.

- Scaling is a measure of how well an application performs on a large number of compute resources
- Strong scaling: fixed problem size, increasing resources
- Weak scaling: problem size grows proportionally to the available resources
- Scaling alone is not always a good proxy for performance.

- Code efficiency on a single compute unit is largely uncorrelated to scaling
- Measuring efficiency can be very challenging
- Having a grip on "single-core" code performance is key for effective optimization.

Profiling case study: Unigrid simulation

- Unigrid simulation of Burgers equation N wave test case.
- 5 levels of refinement with 16x16x16 points / block + ghost zones.
- Take-away: Over 80% of the time is spent doing useful calculations

Profiling case study: Unigrid simulation

- The code scales well on the (limited) available resources.
- Caveat: MPI not properly fine-tuned for the system.
- Take-away: need a production environment to properly assess performance.

Profiling case study: AMR simulation

- AMR simulations of Gaussian pulse advection with periodic boundaries
- 5 levels of refinement with 16x16x16 points / block + ghost zones.
- Take-away: Hanging interfaces are costly to handle

Code performance: evolution kernel

- Evolution: most timeintensive section.
- Schematically consists of a series of directional loops and a final loop to add sources
- Performance counters sampled with low-level device profilers

Code performance: evolution kernel

- Heuristic optimization based on saving memory transfers where possible
- Remove intermediate storage at the price of extra computations
- Directional dependence reduces vectorization performance

Code performance: roofline model

Performance

- Optimistic "speed of light" model for resource utilization.
- Applies to a single computational kernel.
- Bottleneck either:
 - Execution of ______ P_{peak} work
 - Data path $I \cdot b_S$ [flop/byte x byte/s]

$$P = \min(P_{\text{peak}}, I \cdot b_S)$$

Code performance: roofline model

- Evolution kernel peaks at ~ 1.2 TFLOP/s
- Tested on a single AMD Mi50 card
- Theoretical peak for **FP64** workload:
 - ~ 6.5 TFLOP/s

$$P = \min(P_{\text{peak}}, I \cdot b_S)$$

Code performance: roofline model

Pinning down compute bottlenecks is complex.

- L2 cache misses not accounted for in simple model.
- Likely suffering from port contention
- iii. Vectorization might be limited by loop dependencies

Example of more **realistic** roofline model diagram

Model port scheduler diagram for Intel Haswell chip

Conclusions

- We have a functional, oct-tree AMR enabled framework for solving nonlinear hyperbolic PDEs on GPU backends.
- The code shows promising single-GPU performance and good scaling on the available in-situ resources.
- The tool is fully built in-house and can be easily extended.
- Further developments are in progress and we hope to be production-ready in the Fall.

Current landscape

- Theoretical Astrophysics relies on HPC for realistic and accurate simulations of complex systems.
- Overwhelming majority of existing codes are complex and built upon years iterative improvements / modifications.
- The basic algorithms can often be streamlined by careful reviewing of existing codebases.
- The basic computing paradigm has shifted since these codes where designed.
- GPUs are an (almost) obvious candidate for modern simulation codes infrastructures.

Current landscape: my take

- GPU offloading is not a drop-in replacement for traditional parallel programming paradigms.
- Current grid-based codes typically perform very poorly with a large number of threads (why?).
- Efficiency and performance require knowledge of both the basic hardware architecture and the algorithm.
- Low-level routines likely need to be revised to better suit the execution model of target machines.
- High-level algorithms also require modifications achieve the best possible performance on modern systems.

Introducing GRACE

- Development of a scalable, efficient and portable GRMHD code using GPUs and Discontinuous Galerkin methods.
- Based on the p4est library for an efficient, low level forest-of-oct-trees AMR infrastructure.
- GPU offloading handled by the Kokkos library, with full support for HIP and CUDA and experimental support for Sycle.
- Custom AMR routines and algorithmic flow of the code tailored to target system architectures.
- Low-level components of the code (memory allocation, numeric kernels...) redesigned to perform well on new systems.

Example algorithm: ghost-zone exchange

BACKUP

- 1 (Host): p4est loop over quadrant faces to find neighbors
- 2 (Host-Device): initiate asynchronous data exchange for halo quads
- 3 (Device): Apply physical BCs while waiting for data

Example algorithm: ghost-zone exchange

BACKUP

• 4 (Device): copy interior simple ghost zones and fill coarse ghost cells from fine data

 (Host-Device): Exchange coarse data with filled ghost zones

• 6 (Device): Fill fine ghost zones from coarse data

Variables always sit on device, only very lightweight bookkeeping data is exchanged (integers)

