UNIVERSITY OF LONDON IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

Examinations 2001

BEng Honours Degree in Computing Part II
MEng Honours Degrees in Computing Part II
for Internal Students of the Imperial College of Science, Technology and Medicine

This paper is also taken for the relevant examinations for the Associateship of the City and Guilds of London Institute

PAPER C210

ARCHITECTURE II

Monday 30 April 2001, 14:00 Duration: 90 minutes (Reading time 5 minutes)

Answer THREE questions

Paper contains 4 questions Calculators required

- 1a What does CPI stand for? Explain whether the CPI for a processor can be affected by the compiler, the instruction set architecture, and the implementation technology for that processor.
 - A subset of the instructions for a machine M can be accelerated by n_1 times using a coprocessor C_1 . Given that a program P is compiled into instructions of M such that the overall speedup is K_1 , calculate α_1 , the fraction of instructions that belongs to the subset which can be accelerated by C_1 .
- c For the system containing M and C_1 described in part b, express β_1 , the ratio of the time for C_1 to process instructions amenable to its acceleration and the overall execution time of the system, in terms of α_1 and n_1 .
- Another subset of the instructions for the machine M in part b, which does not overlap with the instruction subset for C_1 , can be accelerated by n_2 times using a coprocessor C_2 . Given that P is compiled into instructions of M, such that a fraction α_1 of the instructions is accelerated by C_1 and a fraction α_2 of the instructions is accelerated by C_2 . What is the overall speedup that can be achieved using C_1 and C_2 ?

The four parts carry, respectively, 30%, 25%, 25% and 20% of the marks.

- 2 This question concerns regular combinational circuits formed by replicating a simple unit. For each of the four parts below, provide a circuit diagram and label one of the replicating units using a dotted box.
 - a Design a circuit for multiplying an N-bit number by 3, using only N fulladders. Label the signal value on all the wires in your circuit when N=4 and the input is 0100.
 - b Design a circuit, using and-gates, or-gates and inverters, that will produce a one at the output when all the input bits are the same. Provide a diagram for the case when the input is 0000.
 - c Leading zeroes of a multi-bit number are zeroes in a more significant position than the most significant one; for instance there are two leading zeroes in 001XXX, and three leading zeroes in 0001XX, where X is either a zero or a one.

Design a circuit, using inverters, and-gates and halfadders, that counts the number of leading zeroes in an N-bit number. Provide a diagram for the case when N=5, the input is 00101 and the output is 010.

The three parts carry, respectively, 25%, 25% and 50% of the marks.

- 3a Provide an advantage and a disadvantage for datapaths supporting
 - i) horizontal microinstructions, and
 - ii) vertical microinstructions.
- b A datapath containing m control signals has been developed for a set of instructions with an n-bit opcode. A microsequencer, which supports k-bit horizontal microinstructions, has been developed for this datapath. The microsequencer contains an incrementer, a ROM (Read-Only Memory), a register, and address select logic. Provide a diagram for the microsequencer, and label the size of components and wires in the diagram whenever possible.
- c Describe how the address select logic in part b can be implemented using ROMs and multiplexors. Explain how the number of ROMs in the address select logic relates to the state diagram for the control unit.
- d The microprogram for a microsequencer has n ℓ -bit microinstructions, some of which are identical. Given that there are k distinct microinstructions in this microprogram, explain how the total microprogram storage can be reduced by reducing the width of the microinstructions, while including an additional store of the k distinct microinstructions. Calculate the value of ℓ to achieve a reduction of α bits in microprogram storage using this approach, and comment on possible disadvantages.

The four parts carry, respectively, 20%, 25%, 20% and 35% of the marks.

- 4a Give one advantage and one disadvantage of
 - i) a direct-mapped cache, and
 - ii) a fully-associative cache.
- b Explain what an n-way set-associative cache is, and indicate the effect of increasing n on the size and speed of the cache.
- c Calculate the total number of tag bits when implementing a cache, containing 2^n blocks and dealing with m-bit addresses, as:
 - i) a direct-mapped cache,
 - ii) a 2^k -way set-associative cache, and
 - iii) a fully-associative cache.
- d Explain what TLB stands for, and how associative caches improve the performance of TLBs.

The four parts carry, respectively, 20%, 30%, 30% and 20% of the marks.