Analogues

Stability, orbit and transitivty all have analogues which can be demonstrated by converting to left actions.

Definition: Cosets

Let $H \leq G$, and let X = G.

We have left action $H \times X \to X$ and h * x = hx (taken in G).

As well as right action $X \times H \to X$ where x * h = xh.

A (left) H-coset is an orbit xH for some $x \in X$.

A (right) *H*-coset is an orbit Hx for some $x \in X$.

Example

Let G = Alt(4), $H = Stab_G(W) = \{Id, (B P Y), (B Y P)\}.$

- 1. Take any $x \in H$, xH = H.
- 2. Take x = (B P)(W Y), and $xH = \{(B P)(W Y), (B P)(W Y)(B P Y) = (P W Y), (B P)(W Y)(B Y P) = (B W Y)\}.$
- 3. There are two more; what are they?

October 10, 2023

Cosets Revisited

Let G be a group, $H \leq G$. Then a (left) H-coset in G is a set of the form

$$gH = \{gh | h \in H\}$$

, where $g \in G$

Coset Space

G/H is the set of H-cosets.

• Example For G = Alt(4), given $C_1 = H = Stab_G(B) = \{1, (P W Y), (P Y W)\}$, we have $C_2 = (B P W)H = \{(B P W), (B P)(W Y), (B P Y)\}$ $(B P W) \circ (P W Y) = (B P)(W Y)$

$$B \leftarrow W \leftarrow P$$

$$Y \leftarrow Y \leftarrow W$$

$$\mathbf{W} \leftarrow \mathbf{P} \leftarrow \mathbf{Y}$$

$$(BPW) \circ (PYW) = (BPY)$$

P ← B ← B
Y ← Y ← P
W ← P ← W
B ← W ← Y

$$C_3 = (B W P)H = \{(B W P), (B W Y), (B W)(P Y)\}$$

 $C_4 = (B Y P)H = \{(B Y P), (B Y)(P W), (B Y W)\}$
Then $G/H = \{C_1, C_2, C_3, C_4\}$.

- Q: What do the 3 elements in C3 have in common in geometric terms? C_3 sends B to W. Similarly, the cosets send B to all other vertices (including to itself).

Definition: Transporter

Let G be a group and X a G-set.

For two points, $x, y \in X$, the transporter $\operatorname{Trsp}_G(x, y) = \{g \in G | gx = y\}$.

Example

$$G/H = \{ \operatorname{Trsp}_G(B, B), \operatorname{Trsp}_G(B, P), \operatorname{Trsp}_G(B, W), \operatorname{Trsp}_G(B, Y) \}$$

Note

When x = y, we recover $\operatorname{Trsp}_G(x, x) = \operatorname{Stab}_G(x)$.

For general G and H, there may not be a nice geometric action associated with it.

But G/H is still a G-set since g'(gH) = (g'g)H.

Proposition (B)

Let $H \leq G$ be a subgroup and let $g \in G$.

Then the map $H \xrightarrow{f} qH$ defined by $h \mapsto f(h) = qh$ is a bijection.

Proof

(Surjective) Any element x in gH is, by definition, of the form gh for some $h \in H$. So x = f(h). (Injective) Say $h_1, h_2 \in H$ satisfy $f(h_1) = f(h_2)$. That is $gh_1 = gh_2$. Multiplying g^{-1} on the left, we get $h_1 = h_2$.

Proposition (C)

Let G act on X, $x \in X$, and $g \in G$.

Take y := gx and $H = \operatorname{Stab}_G(x)$. Then $gH = \operatorname{Trsp}_G(x, y)$.

Proof

(⊆) Let $gh \in gH$ be arbitrary. Then

$$(gh) * x = g * (h * x) = g * x = y$$

$$\underset{h \in \operatorname{Stab}_{G}(x)}{=} g * x = y$$

Therefore $gh \in \text{Trsp}_G(x, y)$.

(2) Suppose $g' \in \text{Trsp}_G(x, y)$. Consider $g^{-1}g'$. Then

$$(g^{-1}g') * x = g^{-1} * (g' * x) = g' \in Trsp_G(x,y)$$

Therefore $(g^{-1}g') \in \operatorname{Stab}_G(x)$. Setting $g^{-1}g' := h$, so $g' = gh \in gH$.

Theorem: Orbit-Stabilizer Theorem

Let G act transitively on a set X (so that there is only one orbit in X, namely X itself). If $|G| < \infty$, then for any $x \in X$ we have

$$|X| \cdot |\operatorname{Stab}_G(x)| = |G|$$

Proof

Let us count |G| by partitioning G into transporters.

$$G = \coprod_{y \in X} \mathrm{Trsp}_G(x, y)$$

Therefore

$$|G| = \sum_{y \in X} |\operatorname{Trsp}_G(x, y)| = \sum_{B+C} \sum_{y \in X} |\operatorname{Stab}_G(x)| = |X| |\operatorname{Stab}_G(x)| \blacksquare$$

Theorem: Lagrange

If G is a finite group and $H \leq G$, then $|G| = |H| \cdot |G/H|$.

Proof (Sketch)

Apply the Orbit-Stabilizer Theorem to X = G/H.

This action is transitive as q(1H) = qH.

Note $gH = H \iff g \in H \text{ and } g1 \in H$.

Therefore $\operatorname{Stab}_G(1H) = \{g \in G \mid g(1H) = 1H\} = H$.

Corollary

If $H \leq G$ and $|G| < \infty$, then |H| | |G|.

The converse is not true. No subgroup of order 6 in Alt(4) (where |Alt(4)| = 12).

Definition: Conjugate

Let G be a group, $H \leq G$, $g \in G$.

- 1. For $x \in G$ the g-conjugate of x is $gxg^{-1} = {}^gx$.
- 2. The g-conjugate of H is $gHg^{-1} = {}^gH = \{gxg^{-1} \mid x \in H\}.$

Example

Let
$$G = Alt(4)$$
 and $H = Stab_G(B) = \{1, (P W Y), (P Y W)\}$. Then, for $g = (B Y P)$

$$gHg^{-1} = \{1, (B W P), (B P W)\} = \operatorname{Stab}_G(Y)$$

$$(B Y P)1(B P Y) = 1$$

 $(B Y P)(P W Y)(B P Y) = (B W P)$

$$W \leftarrow W \leftarrow P \leftarrow B$$

$$B \longleftarrow P \longleftarrow Y \longleftarrow P$$

$$P \longleftarrow Y \longleftarrow W \leftarrow W$$

$$Y \leftarrow B \leftarrow B \leftarrow Y$$

• Note: Shortcut $(qxq^{-1})^{-1} = (q^{-1})^{-1}x^{-1}q^{-1} = qx^{-1}q^{-1}$. Applying this to g = (B Y P) with x = (P W Y)Therefore, from the previous calculation, $gx^{-1}g^{-1} = (gxg^{-1})^{-1} = (B P W)$.

Proposition: Geometric Meaning of Conjugate

Let G act on a set $X, x \in X, g \in G$, and define y := g * x. Then for $H = \operatorname{Stab}_G(x)$, we have

$$gHg^{-1} = \operatorname{Stab}_G(y)$$

That is, the conjugate of a a stabilizer is a stabilizer.

Proof

(⊆) Let $ghg^{-1} \in gHg^{-1}$ be arbitrary. Then.

$$(qhq^{-1}) * y = q * (h * (q^{-1} * y))q * (h * x) = q * x = y$$

Therefore $ghg^{-1} \subseteq \operatorname{Stab}_{G}(y)$. (2) Let $g' \in \operatorname{Stab}_{G}(y)$ be arbitrary. Consider $g^{-1}g'g$. Then

$$(g^{-1}g'g) * x = g^{-1} * (g' * (g * x)) = g^{-1} * (g' * y) = g^{-1} * y = x$$

Therefore $h := g^{-1}g'g \in H$. Then by multiplying g on the left and g^{-1} on the right, we get

$$g' = ghg^{-1} \in gHg^{-1}$$

Orbit-Stablizer Theorem and Lagrange

- 1. If G acts transitively on X, then all the stabilizers have the same cardinality because they are all conjugates. So the Orbit-Stabilizer Theorem is consistent.
- 2. If X = G/H, then $Stab_G(1H) = H$. What about $Stab_G(gH) = gHg^{-1}$?