

AD

DR 1222 Feb. 82

AD AL 13567

METEOROLOGICAL DATA REPORT
19304D MLRS
Missile Numbers V01-017, V01-020, BN-048,
BN-037, BN-035
Round Numbers V-225/MD-79, V-226/MD-80, V-227/MD-81
V-228/MD-82, V-229/MD-83,
19 Feb 1982

bу

DONALD C. KELLER Program Support Coordinator Phone Number (505) 679-9568

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

ECOM
UNITED STATES ARMY ELECTRONICS COMMAND

SPR 27 1982

E

82 04 26 136

חווכ לייר ייסף

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER DR 1222	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
,	TA NUMBERS VOI-	
4. TITLE (and Substite) 19304 DMLRS, M1551 017, V01-020, BN-048, BN-037, BN-03 V-225/MD-79, V-226/MD-80, V-227/MD-	35, kouna numbers	5. TYPE OF REPORT & PERIOD COVERED
V-229/MD-83		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)		B. CONTRACT OR GRANT NUMBER(*)
White Snads Meteorological Team		DA TASK 1F665702D127-02
9. PERFORMING ORGANIZATION NAME AND ADDRESS	•	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
US Army Electronics Research & Deve	elopment Cmd	Feb 82
Atmospheric Sciences Laboratory	•	13. NUMBER OF PAGES
White Sands Missile Range, New Mex 14. MONITORING AGENCY NAME & ADDRESS(I different US Army Electronics Research & Devi		15. SECURITY CLASS. (of this report)
Adelphi, MD 20783	eropinent cina	UNCLASSIFIED
		15a, DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (at this Report)		
17. DISTRIBUTION STATEMENT (of the abatract entered	in Block 20, it different fro	om Report)
Approved for public release; distr	1.	
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary a	nd identify by block number)
·		
20. ABSTRACT (Cantinue as reverse attle if necessary as		
Meteorological data gathered for t VO1-017, VO1-020, BN-048, BN-037, MD-83		
}		

CONTENTS

	5511121115	PAGE
INTRODUC	TION	1
DISCUSSIO	ON	1
GENERAL A	AREA MAP	2
LAUNCH A	REA DIAGRAM	3
TABLES:		
1.	Surface Observations taken at 1500 MST at LC 33	4
2.	Anemometer-Measured Wind Speed and Direction, LC-33 Fixed Pole, taken at 1505 MST	5
3.	Anemometer-Measured Wind Speed and Direction, Tower Levels 1, 2, 3, and 4, taken at 1505 MST	5
4.	Launch and Impact Pilot-Balloon Measured Wind Data -	6
5.	Aiming Computer Met Messages	7
6.	WSD Significant Level Data at 1200 MST	8
7.	WSD Upper Air Data at 1200 MST	9
8.	WSD Mandatory Levels at 1200 MST	10
9.	WSD Significant Level Data at 1340 MST	11
10.	WSD Upper Air Data at 1340 MST	12
11.	WSD Mandatory Levels at 1340 MST	13

INTRODUCTION

19304D MLRS, Missile Numbers V01-017, V01-020, BN-048, BN-037, and BN-035, Round Numbers V-225/MD-79 thru V-229/MD-83, were launched from LC-33, White Sands Missile Range (WSMR), New Mexico, at 1503:37, 1503:41 1510:00, 1510:05, and 1510:09 MST, 19 Feb 1982. The scheduled launch times were 1500:00, 1500:04.5, 1505:00 1505:04.5, and 1505:09 MST.

DISCUSSION

Meteorological data were recorded and reduced by the White Sands Meteorological Team, Atmospheric Sciences Laboratory (ASL), White Sands Missile Range, New Mexico. The data were obtained by the following methods:

1. Observations

a. Surface

- (1) Standard surface observations to include pressure, temperature (°C), relative humidity, dew point (°C), density (gm/m 3), wind direction and speed, cloud cover were made at the LC-33 Met Site at T-0 minutes.
- (2) Anemometer data were provided form existing pole-mounted and tower-mounted anemometers at LC-33. Monitor of wind speed and direction from one aneometer was also provided in the launch control room.

b. Upper Air

(1) Low level wind data were obtained form pilot-balloon observations at:

SITE AND ALTITUDE

LC-33 2 Km NICK 2 Km

(2) Air structure data (rawinsonde) were collected at the following Met Sites.

SITE AND TIME

WSD 1200 MST WSD 1340 MST

WSMR METEOROLOGICAL SITES

				ر	POJECT	PPOJECT SURFACE OBSERVATION	ERVATION				
TABLE	1							STATION	LC-33 E + A	E + A	
DATE 19	NORTH	82 YEAR	,				·	X= 485,135.	76 y=	X= 485,135.76 Y= 185,919.24 H= 3988.57	1= 3988.57
7112E	PRESSUPE mbs	TEHPERATURE OF OC	4TURE	DEW POINT OF OC	JINT OC	PELATIVE HUMIDITY	DENSITY gm/m3	DI RECTION degs In	WIND SPEED kts	DIRECTION SPEED CHARACTER VISIBIL- degs In kts kts	VISIBIL-
1500	0 000	-									
200	8.000		18.2		3.6	38.	1048	090	12		C I
											OC .
			•								
			.								

		REMARKS					
	טאלין דאני	AMT TYPE / UCT	101				
CLOUDS	Γ	AMT TYPE HGT	7				
		AMT TYPE HGT		1 CU 5000			
	UBS I RUC I DRIS	TO VISIBILITY		None			

PSYCHROPETRIC COMPUTATION

T1%:	1500		
DRY BULB TE!.P.	18.2		
WET BULB TEMP.	10.2	-	
WET BULB DEPR.	8.0		
DEW POINT	3.6		
RELATIVE HUMID.	38		

POLE #1 X485,87 Y185,95 H4018.7 38.7 ft	4.29 8.90 4		POLE #2 X485,874 Y186,012 H4033.5 53.0 ft	1.93 2.00 7		POLE # 4485,87 (186,11 H4)63.9 83.6 ft	7.29 6.06 2	
T-TIME SEC	DIR DEG	SPEED KTS	T-TIME SEC	DIR DEG	SPEED	T-TIME SEC	DIR DEG	SPEED KTS
T - 30	022	09	T -30	035	13	T - 30	003	10
T -20	028	09	T-20	031	16	T .20	011	10
T-10	025	10	T-10	027	16	T ₋₁₀	007	11
To.0	043	, 09	To.0	039	15	T _{0.0}	015	08
T+10	041	10	T+10	047	13	T +10	009	11
	7	1	1		1	7		

TABLE 3 LC-33 METEOROLOGICAL TOWER ANEMOMETER MEASURED WINDS (202 FT TOWER)

LEVEL #1, 1 X484,982.64		73, H3983.00 (base)	LEVEL #2, 62 X484.982.64,		, H3983.00 (base)
T-TIME SEC	DIR DEG	SPEED KTS	T-TIME SEC	DIR DEG	SPEED KTS
T - 30	001	08	T -30	014	13
-20	005	11	T-20	017	12
T-10	009	10	T -10	017	13
T0.0	003	09	T0.0	010	11
T+10	004	08	T +10	011	14
			<u> </u>	_L	1

LEVEL #3, 10 X484,982.64	02 FEET Y185,057.7	3, H3983.00 (base)	LEVEL #4, 20 X484,982, Y1		3983.00 (base)
T-TIME SEC	DIR DEG	SPEED KTS	T-TIME SEC	DIR DEG	SPEED KTS
T -30	009	13	T-30	005	13
T-20	011	13	T -20	012	13
T-10	011	15	T-10	012	12
T0.0	010	15	T0.0	013	12
T +10	017	14	T+10	034	12

T-TIME PILOT-BALLOON MEASURED WIND DATA DATE DATE

SITE: LC-33

TI'E: 1500 MST

WST! COORDINATES:

y = 484,837.34

を見るため

Y = 184,124.44

H = 3,975.57

SITE: NICK

TIME: 1510 MST

WSTM COOPDINATES:

x = 470,734.56

Y = 255,744.64

H = 4,126.57

LAYER MIDPOINT METERS AGL	DIRECTION DEGREES	SPEED KNOTS	LAYER MIDPOINT METERS AGL	DIRECTION DEGREES	SPEED KNOTS
SURFACE	060	12	SURFACE		CALM
150	030	11	150	360	05
210	027	11	210	001	06
270	030	11	270	002	06
330	302	10	330	003	05
390	036	10	390	009	05
500	044	10	500	022	05
650	062	09	650	036	03
008	079	08	800	068	01
950	100	07	950	143	03
1150	127	09	1150	146	09
1350	134	10	1350	155	12
1550	142	11	1550	161	16
1750	153	17	1750	159	17
2000	158	19	2000	172	15

All data obtained form single-theodolite tracked pilot-balloon observations.

TABLE 5

AIMING COMPUTER MET MESSAGES

WSD 1200	MST	WSD 1340	MST
METCM1324	064	MTCM13240	64
191900122	884	192070122	882
00267010	29100884	00107004	29240882
01166018	28940874	01055011	29100872
02143010	28620848	02104007	28770846
03154013	28,210808	03194009	28420807
04209010	27720760	04204010	27930759
05240021	27340715	05242010	27390714
06243027	27050631	06279021	27320671
07285021	27050631	07326020	27060630
08329024	26610592	08324027	26650591
09320027	26150555	09317021	26270555

9600611c 600nU1HA1ES 52.40043 LAT CE6 196.37033 LON OEG																
ΔΙΆ	MLES.IUM. PEMCENT	0.04	0.65)	0,10	6.65	0,40	87.0	74.0	0.10	20.0	31.0	0.1.	20.0	16.0	13.0
SIGNIFICANT LEVEL DATA 0.50902,0005, WHITE SAMES TABLE 6	TEMPERATUKE AIR DEWPOIN DEGREES CENTINKADE	3.0	1.1		ç.,	-1.1	2.5	-6.1	5.4-	3.4-	-18.3	-19.5	-25.0	-20.3	-34·C	-35.3
519110515 -0 1440 [TEMPL AIR DEGREES	16.6	14.9	12.4	9.1	6.3	-1.4	۲.۶	֥!	٦•6	-2.3	-5.0	-12.5	-12.9	-13.7	-16.6
.s.	PRESSUM, GROWETRIC ALTITUDE TLLIBAMS WSL FEET	3089.0	4274.2	5076.2	6127.1	7084.5	9586.4	10280.4	11043.6	11725.3	12790.0	13864.9	16436.3	15812.0	17559.9	16395.3
1200 HRS MS	PRESSUR _L MILLIBARS	0.483	875.0	850.0	81.3.0	789.6	716.0	700°	0.080	662.6	636.2	610.4	551.8	543.6	527.6	200.0
STALLOW ALLITUDE 3989.nO FFFT .SL 19 FEB. c2 ASCEMSION NO. 63																8

	UEODETIC COUNDIMATES	32.40045 LAT UEG	106.57055 LUH DEG
UPPLY AIN DAIA	กราเลกรายกา	WHITE SANUS	TABLE 7
	STATION "LITTULE 3989.00 FEET SL	19 FEB. 22 1200 HRS NST	ASCEMSION NO. 63

INCEX OF INEFPACTION	1.000270	1.000270	1.000204	1.000200	1.000257	1.000253	1.000250	1.000247	1.000244	1.000241	1.000238	1.000235	1.000252	1.0002<8	1.0002<2	1.000216	1.000207	1.000200	1.000193	1.000188	1.000165	1.000163	1.000100	1.000177	1.000174	1.000172	1.000169	1.000104	1.000150	1.000157	1.000155
A A SPLE U KI40TS	6.6	6.6	9.1	6.3	9.3	10.4	11.0	11.0	11.2	11.6	12.7	13.9	17.7	22.2	75.1	27.3	26.3	24.7	22.6	21.3	21.0	21.7	22.8	25.7	28.0	29.7	25.3	19.9	14.3		
The Structure of the st	100.0	1+9•7	100.0	5.611	104.6	91.0	7.06	97.5	103.7	112.7	1,10	1.8.0	1.2.3	104.0	135.5	1.001	10801	143.0	1,25.7	103.4	174.9	1/9.9	182.9	193.0	103.0	101.1	177.6	172.0	156.0		
SPEEU OF SOUND ANOLS	2.490	_		659.5	1.750	6.050		4.750			6.140	6.647	543.8	643.9	4.440	5.440	640.9	043.1	042.0	0.040	639.5	537.7	030.0	634.2	632.5	630.7	629.1	620.3	1527.7	450.4	620+1
DEUSITY GMZCUBIC MLTER	1059.4	1059.2	1049.2	1030.0	1023.0	1010.1	0.700	985.9	4070	457.6	8.446	932.3	919.9	902.3	883.4	8€7.8	452.3	830.2	825.1	812.6	8000	789.3	770.3	767.4	750.6	746.1	735.4	722.5	709.8	696.4	687.4
REL HUM. PERCENT	0.04	0.04	†*0	43.5	46.8	50.2	54.1	58.3	64.6	71.3	78.0	84.8	91.5	90•3	83.3	74.7	58.6	45.1	34.3	28.6	30.0	31.5	33.5	35.4	37.4	39.3	38.5	23.5	16.8	16.7	17.4
TESPERATURE AIR DEWPOINT DEAREES CENTIORADE	0.5	2•9	6.	9.	•1	£••	7	-1.0	-1.0	-1.1	-1.3	-1.6	-2.1	-2.5	-2.7	-4-3	9. 2-	-11.4	-15.5	-1A.5	-19.0	-19.6	-20.5	6-07-	-21.6	-22.3	-23.8	-29.6	-33.5	-34.4	-34.9
TESIP A1R DEGREES	9.91	10.5	14.2	12.6	11.1	y•5	Q•9	6.5	5.1	3.6	2•1	9.	8	8	F: 3	1.5	5	-1.0	-1.8	-2.8	-4.1	-5.4	6.9-	-8.3	8•6−	-11.5	-12.6	-13.1	-13.6	-14-7	-15.7
PRESSURE MILLIBARS (884.0	883.7	861.9	852.3	830.9	821.8	8 10. 8	792.1	171.4	6.791	748.7	734.7	721.0	707.5	2.469	681.1	668•3	655.7	643.3	631.1	619.0	607.2	595.4	583.8	575.5	561.3	550.4	534.5	528.9	518.3	508.0
ofoneTRic ALTITUDE 33C FEET	3989.6	40000	4500•€	0.0003	0.00dd	0•000a	0.0050	7000.0	7500.0	90000	8500.9	900 0 •0	9500.0	10000.0	10500.6	11000.0	11500.0	12000.0	12500.0	13000.0	13500.0	14000.0	1.4500.0	15000.0	15500.0	100000	16500.0	17000.0	17500.0	18000.0	18500•0

CLODELL, COUNCINALES 52.40345 LAT DEG 106.37033 LON DEG		
vi.0DL1 32 106	AINU DATA CTION SPEED ES(IN) KNOFS	25.0 25.0 25.0 25.0 25.0 25.0
	U.L. L. L. Give	117.5 95.7 120.3 135.2 147.6 147.6
בינו ט טי טי	hel Ma. Febeuri	77. 77. 87. 40. 33.
AND ATORY LEVELS PSOUNDSOUDS WHITE SAINDS	TEMPERATURE AIR DE POINT REGREES CENTIGRADE	12000 12000 13000
	TEMPE AIR PEGREES C	12.4 7.3 2.3 -1.4 -1.6 -12.6
1 St. 181	PRESSURE GLOPOTFRITAL ILLINAKS FEET (5072. 6726. 8454. 19270. 12216. 14291. 16497.
JE 3989•r0 FE, TSL 120n HRS NST 63	PRESSURE GI	850.0 800.0 750.0 700.0 650.0 600.0 550.0
STALLON ALTITUDE 19 PEB+ 32 ASCENSION 40+		

VEODETIC COURDINATES 32-46043 LAT DEG 106-37033 LUN DEG												
۷۱۷	MEL.LOM. PERLENT	34.0	9.04	51.0	95.0	79.0	45.0	39.0	39.0	0.65	50.0	29.0
SIGNIFICANT LEVEL DATA USANDZOUDY WHITE SANDS TABLE 9	TEMPERATURE AIR DÉWPOINT DE GREES CENTIGRADE	7.1	.	-1.0	4.2-	-5.7	-10.1	-14.0	-14.5	-10.7	-25.1	-50.2
SIGNIFI 0 WH WH	TEMPI AIR DEGREES	18.5	13.9	A.5	-1.7	4.62-	1:1	-1.9	-2.5	-10.0	-11.0	-16.4
SL.	PRESSURE GEORETRIC ALTITUDE WILLIBARS MSL FEET	3989.0	5014.3	7147.6	10255.3	10766.5	11261.2	12516+2	12968.3	15788.7	16542.7	18879.9
STATION ALIITUDE 3989.00 FEET ASL 19 PEB. 82 1340 HRS ASI ASCEUSION 110. 64	Pressume Willibars	3.183	950°Ü	786.4	100.007	h•989	673.6	642.2	633.6	565.6	0.643	υ·00ς

STATION ALITIUDE 19 FEB. 82		3989•∩0 FFET _SL 134n HRS EST	TSL k5 [_	UPPLR AIN DAIN OST	A 1 + 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0E.UDE.T.	VECULTIC COURDINATES 52.40045 LAT UEG
ASCENSION NO	*9 •0N				TABLE 10			106.	106.37033 LON LEG
GEOMETRIC	PRESSURE	TERIP	TERPERATURE R DE WOOTRIT	KEL . HUM.	DENSITY	Spirit of	INC DATA	1] A 121 ED	INJEX
MSL FEET	MILLIDARS	S	CENTIGRADE	2 3 3	METER	N401S	LAN CHIN	N10TS	HEFKAC1101
3989.f	841.8	18.5	2 • 4	34.0	1050.0	6.099	0.00	4.1	1.000206
à•000th	881.5	18.5	2.3	34.1	1049.8	0.000	4.00	4 - 1	1.000200
4500•6	860.8	16.2	1.5	37.0	1039.3	663.7	77.1	4.6	1.000202
5000.0	850.4	14.0	9.	39.9	1028.9	061.1	J•60	5.4	1.000259
2.0050	835.1	12.7	•3	45.5	1014.9	059.6	5•8f.	£.0	1.000255
3·0009	820.0	11.4	-:	45.1	1001.1	650.1	105.0	7.5	1.000252
0.0050	805.2	10.1	5	47.7	987.4	0.050	109.7	8.7	1.000248
7000.9	9.062	8•9	6	50.5	974.0	1.050	111.7	9.5	1:000244
7500 · C	770.1	7.3	æ••	26.0	961.2	653.4	113.1	10.3	1.000242
600 0.	761.7	2.1	9•-	63.1	948.8	051.5	110.4	11.4	1.000240
ა-005გ	747.5	4.1	6•-	2.07	936.7	9.649	121.0	13.2	1.000237
3000€	733.7	2.4	-1.2	77.2	954.8	0.149	1:6:1	14.9	1.000234
9500.0	720.0	.8	-1.6	£4.0	913.1		152.9	15.8	1.060231
10000.0	7000	6••	-2.1	91.4	901.6		159.0	16.9	1.000228
10500+0	693.4	-2•0	-3.9	86.8	888.4		147.3	16.8	1.000222
11000.0	680.3	7	-7.2	61.5	860.3	043.0	157.5	16.5	1.000212
11500.0	667.5	• 5	-10.8	42.2	848.4	040.0	104.7	17.2	1.060203
12000.0	624.9	7	-12•4	40.6	636.2	643.5	1,0.0	16.5	1.000198
12500.0	9.749	-1.9	-13.9	39.1	854.2	642.1	174.2	20.3	1.000194
13000.0	630.4	-2.8	-14.7	39.5	A11.4	6.049	177.9	21.7	1.000191
13500.0	618.2	-4.1	-15.3	41.2	799.6	039.4	101.1	23.1	1.000168
1,4000.0	600.3	-5.4	-16.0	42.9	788.0	637.6	104.5	23.9	1.000105
14500.0	294.7	-6.7	-16.7	9.44	770.0		107.6	24.7	1.000182
15000.0	583.2	-8.0	-17.4	46.3	765.4		107.4	25.3	1.000179
15500.0	574.0	-9.3	-18.2	48.0	754.4	633.2	186.4	25.8	1.000176
10000.0	6•09¢	-10.3	-20.5	43.7	742.7	631.9	101.5	23.2	1.000172
10500.0	6.644	-10.9	-24.7	31.1	730.2	631.0	1/5.2	20.5	1.000167
17000-0	539.0	-15.1	-26.1	29.8	710.9	1.620	104.3	17.3	1.000104
17500.0	529.4	-13.2	-27.2	59.6	707.B	623.2			1.000101
10000	517.9	7.7.	-28.3	7°62	6.069	650.4			1.000159
18500.0	1.100	-15.5	-29.4	29.2	686.2	625+4			1.000156

GEOULTIL COUNDINATES 32.40045 LAT LEG 106.3/035 LON DEG	LILLO UATA LOTILLOTTON SPLED LOTILLOTTON KNOTS	.4
	U.L., L. OKL	09.8. 110.7 121.0 142.5 171.7 186.5
* v E L S 54 75	nel.HU	
ANDATORY LEVELS OSOBOZOBOG WHITE SANDS TABLE 11	TEMPERATURE AIR DEWPOINT DEGREES CENTIGRADE	11111
3 -	TEMPE AIR JEGREES	13.00 4.03 1.1.7 1.1.7 1.1.1 1
<u></u> SL S	UpOTFEITIAL FEET	5011. 6675. 8419. 10243. 12137. 14263. 16476.
N ALTITUDE 3989.00 FEI F _{BI} SL • 82	PRESSUME GEOPOTENTIAL MILLIMANS FEET	850.0 800.0 750.0 700.0 650.0 600.0 550.0
4 ALTITUDE • 82 ION NO.		

