DFA
$$M=(Q, \xi, s, s, f)$$
 where $s: Q \times \xi \to Q$

We can "lift" S as a transition function over strings.

 $\hat{S}: Q \times \xi^* \to Q$.

Defining \hat{S} inductively.

 $\hat{S}(q, \epsilon) = q$
 $\hat{S}(q, \alpha) = S(\hat{S}(q, \alpha), \alpha)$

well defined by induction

Claim 1. We can show that $\hat{S}(q, \alpha) = S(q, \alpha)$
 $\hat{S}(q, \alpha) = \hat{S}(q, \epsilon)$ [Since $q = \epsilon \alpha$]

 $= S(\hat{S}(q, \epsilon), \alpha)$

or is accepted by
$$M$$
 if $\hat{s}(s,x) \in F$ or is rejected by M if $\hat{s}(s,x) \notin F$

Language of the DFAM.

$$L(M) = \{x \in \mathcal{E}^{*} \mid \hat{S}(S,x) \in F\}$$

 $= \delta(2,a)$

Example:

Input
$$x = aabba$$

Maccept
$$x$$
 since $\hat{S}(0,x)=3$ and $3EF$.
Input $y=abbab$

M rejects y since
$$\hat{s}(0,y) = 2$$
 and $2 \notin F$

$$L(m) = \{ x \in \{a_1b\}^* \mid x \text{ Contains at least} \}$$
three $a's\}$.

A={x ∈ {a,b3* | x contains a substring of three Consecutive a's}.

baabbaabb EA baabbabb &A

Question. Is A regular?

To show that A is regular it suffices to Construct a DFA M Such that L(M) = A.

Example

x: baabbaab EL(M)

y: babbbab € L(M).

L(M) = {x Ex* | x contains 3 or more a's}.

aabbb EL(M) aab EL(M) abaa EL(M) abaaa &L(M)

 $L(m) = \{x \in z^* \mid x \text{ contains at least one b and on even number of a's follow the last by.$

L(M) = { XEZ | xends in b}

A= {xelo,13* | x represents a multiple of three in binony 3.

M:

For
$$x \in \{0,1\}^*$$

$$\hat{S}(0,x)=0$$
 iff $\#x \equiv 0 \mod 3$
 $\hat{S}(0,x)=1$ iff $\#x \equiv 1 \mod 3$
 $\hat{S}(0,x)=2$ iff $\#x \equiv 2 \mod 3$

To prove:
$$\hat{S}(0,x) = \# \times \text{mod } 3$$
.

$$\#(x0) = 2(\#x)+0$$

$$\#(xc) = 2(\#x)+C$$

$$\#(x1) = 2(\#x)+1$$

$$\#(xc) = 2(\#x)+C$$

$$\#(xc) = 2(\#x)+C$$

For all
$$9 \in \{0, 1, 2\}$$
 and Symbol $C \in \{0, 1\}$.
 $S(9, c) = (29 + c) \mod 3$. A

Induction on /x1.

$$\hat{S}(0,E) = 0 [del. 4\hat{S}]$$

= # \in mod 3.

A= {xelo,13* | x represents a multiple of three in binory?

For
$$x \in \{0,1\}^*$$

$$5(0, \infty) = 0$$
 iff $\# x \equiv 0 \mod 3$
 $5(0, \infty) = 1$ iff $\# x \equiv 1 \mod 3$
 $5(0, \infty) = 2$ iff $\# x \equiv 2 \mod 3$

To prove:
$$\hat{S}(0,x) = \# \times \text{mod } 3$$
.

$$\#(x0) = 2(\#x)+0$$
 $\#(xc) = 2(\#x)+c$
 $\#(x1) = 2(\#x)+1$
 $\#(xc) = 2(\#x)+c$
 $\#(xc) = 2(\#x)+c$

For all
$$9 \in \{0, 1, 2\}$$
 and Symbol $C \in \{0, 1\}$.
 $S(9, c) = (29 + c) \mod 3$. A

Induction on 1x1.

$$\hat{S}(0, >cc) = S(\hat{S}(0, x), c)$$
 [Definition of \hat{S}]

$$= (2 (\#x) + C) \mod 3.$$

$$= # > c c mod 3.$$

Closure properties of regular Sets. Let A,B $\leq \mathcal{E}^*$

AUB = $\{x \mid x \in A \text{ or } x \in B\}$ Union

ANB = $\{x \mid x \in A \text{ and } x \in B\}$ Intersection $\overline{A} = \{x \mid x \in A\}$ Complement

Question. Are regular set closed under union, intersection, complementation?

Intersection:

if A and Bare regular then is ANB regular?

Let
$$A_1B \subseteq \Sigma^*$$
Stakement: if A and B are regular then $A \cap B$ is regular.

 $\exists M_1, S : L(M_1) = A$; $\exists M_2 \in L(M_2) = B$

To construct $M_3 \in L(M_3) = A \cap B$.

 M_3 runs over S trings in Σ^* ; $\exists o L(M_3) \subseteq \Sigma^*$
 $M_1 = (Q_1, \Sigma, S_1, S_1, F_1)$ $M_2 = (Q_2, \Sigma, S_2, S_2, F_2)$
 $M_3 = (Q_3, \Sigma_1, S_3, S_3, F_3)$.

 $Q_3 = Q_1 \times Q_2 = \{(Y_1, Q_2) \mid Q_1 \in Q_1, Q_2 \in Q_2\}$.

 $S_3 = (S_1, S_2)$
 $F_3 = F_1 \times F_2 = \{(Q_1, Q_2) \mid Q_1 \in F_1, and Q_2 \in F_2\}$.

 $S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$
 $E \cap S_3 : Q_3 \times \Sigma \to Q_3$

M3- product of M, 2M2.