Building Binomial Heaps

For any permutation π on set $SET(Z) = \{0, 1, 2, ..., Z-1\}$, Z > 0, let us denote by $VAL(\pi)$ the sequence $\pi(0), \pi(1), ..., \pi(Z-1)$. Let

```
SEQP(Z) = \pi_0, \, \pi_1, \, \pi_2, \, ..., \, \pi_{Z!-1}
```

be a sequence of all permutations of the set SET(Z) and let SEQP(Z) be ordered in such way that $VAL(\pi_k)$ is lexicographically smaller than $VAL(\pi_{k+1})$ for each k=0,1,...,Z!-2.

For any permutation π of set SET(Z) we define the **rank of permutation** π to be the index of permutation π in the sequence SEQP(Z), supposing the indices of permutations in SEQP(Z) start from 0. We denote the rank of permutation π by symbol RANK(π). Because there are exactly Z! permutations of SET(Z) the rank of any permutation of this set is at least 0 and at most Z!-1.

For example, rank of permutation (0, 1, 2, 3, ..., Z-4, Z-3, Z-1, Z-2) is 1, rank of permutation (Z-1, Z-2, ..., 5, 4, 3, 2, 0, 1) is Z!-2, rank of permutation (1, 0, 2, 3, 4, ..., Z-3, Z-2, Z-1) is (Z-1)!.

Let π be a permutation of set SET(M) = {0, 1, ..., M-1}, M > 0. Let N be a positive integer divisible by M. On the set SET(N) = {0, 1, ..., N-1} we define an **extended permutation** EP(π , N) as follows EP(π ,N)(i) = (i div M)×M + π (i mod M), i = 0, 1, ..., N-1.

Let BH be an unempty minimum (keeps track of its minimum elements) binomial heap consisting of binomial trees B(1), B(2), ..., B(k), $k \ge 1$. Note that the index i of particular binomial tree B(i) in BH in this definition is not related to the order of B(i). For example, when k = 1 then the order of binomial tree B(1) might be any non-negative integer.

Let MAX(B(i)) be the maximum key value of all keys in the tree B(i), i = 1, 2, ..., k.

Let ROOT(B(i)) be the value of the key in the root of tree B(i), i = 1,2,...,k.

Define DIFF(BH) = $\sum_{B(i) \in BH} (MAX(B(i)) - ROOT(B(i)))$.

When there is an input sequence S containing N (N > 0) mutually distinct values then the binomial heap BH(S) is constructed in the following way:

At first, the heap is empty. Next, the first element of S is inserted into the heap. Then the second element of S is inserted into the heap, then the third element and so on until finally the last element of S is inserted into the heap. Each time standard binomial heap operation Insert is used.

Let us denote by $BH(\pi, N)$ a binomial heap $BH(VAL(EP(\pi, N)))$, where $EP(\pi, N)$ is an extended permutation specified above.

The task

We are given an unempty set SETEP of extended permutations of the set SET(N) = $\{0, 1, ..., N-1\}$. We have to choose such permutation $\pi_{MAX} \in SETEP$ which maximizes the value DIFF(BH(π_{MAX}, N)).

Formally stated: Find $\pi_{MAX} \in SETEP$ such that

 $(\forall \pi \in SETEP) (DIFF(BH(\pi_{MAX}, N)) \ge DIFF(BH(\pi, N))).$

Input

The first line of input contains two positive integers N, M in this order separated by space. N specifies the size of the input sequence of which the binomial heap is built. M specifies set $SET(M) = \{0, 1, ..., M-1\}$. N is divisible by M.

It holds $0 < M \le 100$, $M \le N \le 2000000$. The second line contains a permutation π_1 of set SET(M) and the third line contains a permutation π_2 of set SET(M). Permutation π_1 resp. π_2 is given as a sequence $VAL(\pi_1)$ resp. $VAL(\pi_2)$. All elements in the sequence are separated by space. The set SETEP is a set of all extended permutations $EP(\pi, N)$ where rank of π is greater of equal to the rank of π_1 and less or equal to the rank of π_2 . SETEP is always unempty.

Output

Output consists of two lines. The first line contains integer value DIFF(BH(π_{MAX} ,N)), where π_{MAX} is the permutation specified above in the section "The task". The second line contains first M values of the sequence VAL(π_{MAX}), the elements of the sequence are separated by space. When there are more possibilities to choose π_{MAX} , output the permutation with lowest rank.

Example 1

Input:

- 3 3
- 0 1 2
- 2 1 (

Output:

2 0 2 1

Example 2

Input:

25 5 0 2 4 1 3 0 4 2 1 3

Output:

23 0 2 4 1 3

Example 3

Input:

Output:

25003 0 1 2 4 6 9 3 5 7 8