DIFFERENTIAL AND INTEGRAL CALCULUS ASSIGNMENT 4

AAKASH JOG ID: 989323563

Exercise 1.

Let $\sum_{n=0}^{\infty}$ be a non-negative series (i.e. $a_n \leq 0$). Prove that the series either converges to a finite limit or else, diverges to ∞ .

Solution 1.

As the series is non-negative, the sum must always be non-negative. Therefore, as $n \to \infty$, the sum will go on increasing, and will always remain non-negative. Therefore, the series will converge in a wide sense. Therefore, it will either converge to a finite limit, or an infinite one, i.e. either it will converge to a finite limit or diverge to ∞ .

Exercise 2.

Check whether the following series converge:

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{7n}}{n^2 + 3n + 5}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+3)}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+3)}}$$
(c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 4n^2 + 8}}$$
(d)
$$\sum_{n=1}^{\infty} \frac{1}{n2^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n2^n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \sin \frac{10\pi}{n^2}$$

(f)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

$$(f) \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

$$(g) \sum_{n=1}^{\infty} \frac{n^n}{2^n n!}$$

$$(h) \sum_{n=1}^{\infty} \frac{n^n}{3^n n!}$$

$$(h) \sum_{n=1}^{\infty} \frac{n^n}{3^n n!}$$

$$(i) \sum_{n=1}^{\infty} \frac{1}{(\ln n)^n}$$

(i)
$$\sum_{n=1}^{\infty} \frac{1}{(\ln n)^n}$$
(j)
$$\sum_{n=1}^{\infty} \left(\frac{2n+1}{3n-1}\right)^n$$

Date: Thursday 30th April, 2015.

$$(k) \sum_{n=1}^{\infty} \frac{n!}{a^n}, a > 0$$

Solution 2.

(a)

$$a_n = \frac{\sqrt{7n}}{n^2 + 3n + 5}$$

Therefore, let

$$b_n = \frac{1}{n^{\frac{3}{2}}}$$

Therefore,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{\sqrt{7n}}{n^2 + 3n + 5}}{\frac{1}{n^{\frac{3}{2}}}}$$
$$= \sqrt{7}$$

As $\sum b_n$ is a *p*-series, and as $\frac{3}{2} > 1$, $\sum b_n$ converges. Therefore, by the second comparison test, as $\sum b_n$ converges, $\sum a_n$ also converges.

(b)

$$a_n = \frac{1}{\sqrt{n(n+3)}}$$

Therefore, Let

$$b_n = \frac{1}{n}$$

Therefore,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n(n+3)}}{\frac{1}{n}}$$

$$= 1$$

Therefore, by the second comparison test, as $\sum b_n$ diverges, $\sum b_n$ also diverges.

(c)

$$a_n = \frac{1}{\sqrt{n^3 + 4n^2 + 8}}$$

Therefore, let

$$b_n = \frac{1}{n^{\frac{3}{2}}}$$

Therefore,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n^3 + 4n^2 + 8}}}{\frac{1}{n^{\frac{3}{2}}}}$$
= 1

Therefore, by the second comparison test, as $\sum b_n$ diverges, $\sum b_n$ also diverges.

(d)

$$a_n = \frac{1}{n2^n}$$

Therefore,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n2^n}{(n+1)2^{n+1}} \right|$$
$$= \frac{1}{2}$$
$$\therefore \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

Therefore, by the d'Alembert Criteria, $\sum a_n$ converges.

(e)

$$a_n = \frac{1}{2^n} \cdot \sin \frac{10\pi}{n^2}$$

Therefore,

$$\lim_{n \to \infty} \sqrt[n]{\left| \frac{1}{2^n} \cdot \sin \frac{10\pi}{n^2} \right|} = \lim_{n \to \infty} \frac{1}{2} \sqrt[n]{\sin \frac{10\pi}{n^2}}$$

$$\therefore \lim_{n \to \infty} \sqrt[n]{\frac{1}{2^n} \cdot \sin \frac{10\pi}{n^2}} < 1$$

Therefore, by the Cauchy Root Test, $\sum a_n$ converges.

(f)

$$a_n = \frac{(n!)^2}{(2n)!}$$

Therefore,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\left((n+1)! \right)^2 (2n)!}{2(n+1)! (n!)^2} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(n+1)^2}{(2n+1)(2n+2)} \right|$$

$$= \frac{1}{4}$$

Therefore, by the d'Alembert Criteria, $\sum a_n$ converges.

(g)

$$a_n = \frac{n^n}{2^n n!}$$

Therefore,

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{n^n}{2^n n!}}$$

$$= \lim_{n \to \infty} \sqrt[n]{\frac{n^n}{2^n \left(\frac{n}{e}\right)^n \sqrt{2\pi n}}}$$

$$= \lim_{n \to \infty} \frac{e}{2} \frac{1}{\sqrt[2n]{2\pi n}}$$

$$= \frac{e}{2}$$

Therefore, by the Cauchy Root Test, $\sum a_n$ diverges.

(h)

$$a_n = \frac{n^n}{3^n n!}$$

Therefore,

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{n^n}{3^n n!}}$$

$$= \lim_{n \to \infty} \sqrt[n]{\frac{n^n}{3^n \left(\frac{n}{e}\right)^n \sqrt{2\pi n}}}$$

$$= \lim_{n \to \infty} \frac{e}{3} \frac{1}{\sqrt[2n]{2\pi n}}$$

$$= \frac{e}{3}$$

Therefore, by the Cauchy Root Test, $\sum a_n$ diverges.

(i)

$$a_n = \frac{1}{(\ln n)^n}$$

Therefore, a_1 is infinite.

Therefore, as the series is non-negative, and as $\lim_{n\to\infty} a_n = 0$, $\sum a_1$ cannot converge to any finite value.

Therefore, $\sum a_n$ diverges.

(j)

$$a_n = \left(\frac{2n+1}{3n-1}\right)^n$$

Therefore,

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{2n+1}{3n-1}\right)^n}$$
$$= \lim_{n \to \infty} \frac{2n+1}{3n-1}$$
$$= \frac{2}{3}$$

Therefore, by the Cauchy Root Test, $\sum a_n$ converges.

(k)

$$a_n = \frac{n!}{a^n}$$

Therefore,

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{n!}{a^n}}$$

$$= \lim_{n \to \infty} \sqrt[2]{\frac{\left(\frac{n}{2}\right)^n \sqrt{2\pi n}}{a^n}}$$

$$= \lim_{n \to \infty} \frac{n}{ae} \sqrt[n]{\sqrt{2\pi n}}$$

$$= \infty$$

Therefore, by the Cauchy Root Test, $\sum a_n$ diverges.

Exercise 3.

Check whether the following series converge, converge absolutely or diverge

(a)
$$\lim_{n \to \infty} (-1)^{\frac{n^2+n}{2}} \cdot \frac{1}{n^{2-\frac{1}{n}}}$$

(b)
$$\lim_{n\to\infty} (-1)^n \cdot \left(\frac{n-1}{n}\right)^n$$

(b)
$$\lim_{n \to \infty} (-1)^n \cdot \left(\frac{n-1}{n}\right)^{n^2}$$

(c) $\lim_{n \to \infty} (-1)^n \cdot \left(\frac{n-1}{n}\right)^n$

(c)
$$\lim_{n \to \infty} (-1)^n \cdot \left(\frac{n}{n}\right)^n$$

(d) $\lim_{n \to \infty} (-1)^n \cdot \left(\frac{2n+100}{3n+1}\right)^n$
(e) $\lim_{n \to \infty} (-1)^n \cdot \frac{1}{n+2}$
(f) $\frac{\sin n\alpha}{n^4}$

(e)
$$\lim_{n \to \infty} (-1)^n \cdot \frac{1}{n+2}$$

$$(f) \frac{\sin nc}{n^4}$$

Solution 3.

(a)

$$a_n = (-1)^{\frac{n^2+n}{2}} \cdot \frac{1}{n^{2-\frac{1}{n}}}$$

Therefore,

$$|a_n| = \frac{1}{n^{2-\frac{1}{n}}}$$

$$\therefore \lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \frac{1}{n^{2-\frac{1}{n}}}$$

$$= 0$$

Therefore, by Leibnitz Rule, as a_n is monotonically increasing, and as $\lim_{n\to\infty} |a_n| = 0$, $\sum a_n$ converges absolutely.

(b)

$$a_n = (-1)^n \cdot \left(\frac{n-1}{n}\right)^{n^2}$$

Therefore,

$$|a_n| = \left| \left(\frac{n-1}{n} \right)^{n^2} \right|$$

$$\therefore \lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \left| \left(\frac{n-1}{n} \right)^{n^2} \right|$$

$$= 0$$

Therefore, by Leibnitz Rule, as a_n is monotonically increasing, and as $\lim_{n\to\infty} |a_n| = 0$, $\sum a_n$ converges absolutely.

(c)

$$a_n = (-1)^n \cdot \left(\frac{n-1}{n}\right)^n$$

Therefore,

$$\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \left| \left(\frac{n-1}{n} \right)^n \right|$$
$$= e$$

Therefore, $\sum a_n$ diverges.

(d)

$$a_n = (-1)^n \cdot \left(\frac{2n+100}{3n+1}\right)^n$$

Therefore

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{2n + 100}{3n + 1}$$
$$= \frac{2}{3}$$

Therefore, by the Cauchy Root Test, $\sum a_n$ converges absolutely.

(e)

$$a_n = (-1)^n \cdot \frac{1}{n+2}$$

Therefore,

$$|a_n| = \frac{1}{n+2}$$

$$\therefore \lim_{n \to \infty} |a_n| = 0$$

Therefore, as $\lim_{n\to\infty} |a_n| = 0$, and as a_n is monotonically decreasing, $\sum a_n$ converges absolutely.

(1)

$$a_n = \frac{\sin n\alpha}{n^4}$$

Therefore, let

$$b_n = \frac{1}{n^3}$$

Therefore,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sin n\alpha}{n}$$
$$= 1$$

Therefore, by the second comparison test, as $\sum b_n$ converges, $\sum a_n$ also converges.

Exercise 4.

Prove or disprove the following claims

- (a) There exists a non-negative sequence $\{a_n\}$ such that $\sum_{n=1}^{\infty} a_n$ converges and $\sum_{n=1}^{\infty} a_n^2$ diverges.
- (b) There exists a sequence $\{a_n\}$ such that the series $\sum_{n=1}^{\infty} a_n$ converges absolutely and the series $\sum_{n=1}^{\infty} a_n^2$ diverges.
- (c) There exists a sequence $\{a_n\}$ such that $\sum_{n=1}^{\infty} a_n$ converges and $\sum_{n=1}^{\infty} a_n^2$ diverges.
- (d) Let $\{a_n\}$, $\{b_n\}$ be two sequences such that $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$. If $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} b_n$ converges.

Solution 4.

(a) Let $\{a_n\}$ be a sequence bounded between 0 and 1.

Therefore, $\forall n, a_n^2 < a_n$.

Therefore, by the first comparison test, as $\sum a_n$ converges, $\sum a_n^n$ must also converge.

Therefore the statement is false.

(b) Let $\{a_n\}$ be a sequence bounded between -1 and 1.

Therefore, $\{|a_n|\}$ is bounded between -1 and 1.

Therefore, as proved above, $\sum a_n^2$ also must converge.

Therefore, $\sum a_n^2$ cannot diverge.

Therefore the statement is false.

(c) Let

$$a_n = (-1)^n \frac{1}{\sqrt{n}}$$

$$\therefore a_n^2 = \frac{1}{n}$$

Therefore, $\sum a_n$ converges, but $\sum a_n^2$ diverges.

Therefore, such a sequence exists. Hence, the statement is true.

(d)

$$\lim_{n\to\infty}\frac{a_n}{b_n}=1$$

Therefore, by the second comparison test, as $\sum a_n$ converges, $\sum b_n$ also converges.

Exercise 5.

Let $\{a_n\}$ be a non-negative sequence such that $\sum_{n=1}^{\infty} a_n$ converges. Prove

that $\sum_{n=1}^{\infty} a_n a_{n+1}$ also converges.

Solution 5.

As $\sum a_n$ converges, $\{a_n\}$ is monotonically decreasing. Therefore, $\exists a_n$, such that

$$a_{n+1} < 1$$

$$\therefore a_n a_{n+1} < a_n$$

$$\therefore \sum a_n a_{n+1} < \sum a_n$$

Therefore, by the first comparison test, as $\sum a_n$ converges, $\sum a_n a_{n+1}$ also converges.