Passing in the NBA

Tim Vigers

01 December 2019

Questions

- ► Has the passing rate increased in the NBA?
- ▶ Do assists correlate with winning percentage?

Passing

Passes made per season

Passing model selection

Random intercept (RI) for team only:

```
Ime(Passes.Made \sim Season, random = \sim1|Team, data = passing,method = "ML")
```

▶ RI for team and random slope (RS) across season:

```
Ime(Passes.Made \sim Season, \ random = \sim Season|Team, \ data = passing, method = "ML")
```

 \triangleright RI for team with AR(1) structure for repeated measures:

```
Ime(Passes.Made \sim Season, random = \sim1|Team,data = passing, correlation = corAR1(),method = "ML")
```

RI for team and RS across season with AR(1) structure for repeated measures:

```
Ime(Passes.Made \sim Season, random = \sim Season|Team,data = passing, correlation = corAR1(),method = "ML")
```

AIC

	df	AIC
RI Only	4	3159.781
$RI\ and\ AR(1)$	5	3120.225
RI, RS, and AR(1)	7	3124.225

The best model by AIC was random intercept for team with AR(1) structure for repeated measures (RI and RS did not converge without AR(1)). Minutes played did not affect the results.

Passing results

There were no polynomial effects for time:

Table 2: Fixed Effects

	Value	Std.Error	DF	t-value	p-value
(Intercept)	24349.989	235.835	146	103.250	<1e-04
poly(Season, 4)1	-40.362	2004.510	146	-0.020	0.984
poly(Season, 4)2	-1941.549	1404.499	146	-1.382	0.169
poly(Season, 4)3	360.020	1088.741	146	0.331	0.741
poly(Season, 4)4	-465.829	925.730	146	-0.503	0.616

Break point

```
The segmented package in R suggests there's a knot at 2015:
## Call: segmented.lm(obj = linmod)
##
  Meaningful coefficients of the linear terms:
## (Intercept)
                     Season U1.Season
##
     -547034.4
                    283.7
                                  -421.6
##
## Estimated Break-Point(s):
## psi1.Season
          2015
##
```

Piecewise model

Table 3: Fixed Effects

	Value	Std.Error	DF	t-value	p-value
(Intercept)	164836.019	213588.290	148	0.772	0.441
Season	-69.854	106.029	148	-0.659	0.511
Change in Slope	0.181	0.154	148	1.178	0.241

So, the overall passing rate doesn't appear to have changed since 2013.

Assists

Raw assist numbers by team and season

There were lockouts in 1998 and 2011.

Percent assisted

Steph Curry and John Stockton

Do assists help you win?

Modeled winning percentage using normal theory mixed models.

Win model selection

	df	AIC
RI Only	4	9397.703
RI and RS	6	9401.703
$RI\ and\ AR(1)$	5	8991.621
RI, RS, and AR(1)	7	8995.621

Compared the same general model types as for the passing model.

Win model results

Table 5: Fixed Effects

	Value	Std.Error	DF	t-value	p-value
(Intercept)	12.609	6.914	1117	1.824	0.068
% of FG Assisted	0.612	0.115	1117	5.318	<1e-04

An increase of 10 points in percentage of FGs assisted can lead to an approximately 6 point increase in winning percentage on the season. So, about 5 games per season.

Wins by percentage assisted

Wins by percentage assisted

