ee101_rc1b.sqproj

Description

The RC circuit shown in the figure is driven by a clock, with T_1 and T_2 as the high and low interval, respectively (and period $T = T_1 + T_2$). Show that the following results hold in the steady state:

- (a) $V_{\text{max}} = V_0 \frac{1 k_1}{1 k_0}$, $V_{\text{min}} = k_2 V_{\text{max}}$, where $k_1 = e^{-T_1/\tau}$, $k_2 = e^{-T_2/\tau}$, $k_0 = k_1 k_2$, $\tau = R C$. Hint: Obtain $V_C(t)$ in the T_1 and T_2 intervals, use the condition of periodicity of V_C in the steady state.
- (b) The average value of V_C is the same as the average value of V_s . i.e.,

$$\frac{1}{T} \int_0^T V_s dt = \frac{1}{T} \int_0^T V_C dt.$$

Hint: write KVL for the circuit and integrate.

Exercise Set

- 1. For R=1 k, C=1 μF , T=2 ms, simulate the circuit for different values of T_1 and T_2 (but keeping the period T the same), e.g., $(T_1=1$ ms, $T_2=1$ ms), $(T_1=0.2$ ms, $T_2=1.8$ ms), $(T_1=0.5$ ms, $T_2=1.5$ ms), etc. In each case, compare the simulation result with the expressions given above.
- 2. Derive an expression for the current i(t) in steady state. For the conditions in (1), validate your analytic result with simulation.
- 3. For $(T_1 = 0.5 \,\text{ms}, T_2 = 1.5 \,\text{ms})$, work out the minimum and maximum values of V_C for the following combinations:

1

(i)
$$R=1\,\mathrm{k}\Omega,\,C=0.2\,\mu F.$$

(ii)
$$R = 0.2 \,\mathrm{k}\Omega,\, C = 1 \,\mu F.$$

(iii)
$$R=0.2\,\mathrm{k}\Omega,\,C=0.2\,\mu F.$$

(iv)
$$R = 5 \,\mathrm{k}\Omega,\, C = 5 \,\mu F.$$

Compare your values with simulation results.

4. Repeat for the current i(t).