

Algorithms and Data Structures 2 CS 1501

Fall 2022

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Lab 9 and Homework 9: next Monday 11/21 @ 11:59 pm
 - Assignment 3: Monday 11/28 Friday 12/9 @ 11:59 pm
 - Assignment 4: Friday 12/9 @ 11:59 pm

Recap ...

- Greedy algorithms
 - elegant but hardly correct
 - optimal substructure
 - greedy choice property
- Without the greedy choice property
 - have to solve all subproblems
 - can be done recursively
- Memoization
 - still recursive
 - avoid solving the same subproblem twice

Recap ...

- Dynamic Programming
 - avoid solving the same subproblem twice
 - iterative:
 - start with smaller subproblems then larger subproblems, ...
 - sometimes possible to optimize space needed

Recap ...

- Fibonaaci
 - inefficient recursive solution
 - memorization solution
 - dynamic programming
 - with space optimization

Solving Dynamic Programming Problems

- Can you solve the problem using subproblems?
 - What is the first decision to make to solve the problem?
 - What subproblem(s) emerge out of the that first decision?
- Can you make the first decision without having to wait for the solution of the subproblems?
 - If yes, that's a greedy algorithm! Congratulations!

Solving Dynamic Programming Problems

- If you have to wait for subproblem solutions to make the first decision, try the following steps
- start with a recursive solution
- if inefficient, do you have overlapping subproblems?
- identify the unique subproblems
- solve them from smaller to larger
- This is dynamic programming!
- Optimize space if possible

This Lecture

- Dynamic Programming Problems
 - Unbounded Knapsack
 - 0/1 Knapsack
 - Subset Sum
 - Edit Distance
 - Longest Common Subsequence

The unbounded knapsack problem

Given a knapsack that can hold a weight limit L, and a set of n types items that each has a weight (w_i) and value (v_i) , what is the maximum value we can fit in the knapsack if we assume we have unbounded copies of each item?

value: 30 14 16 9

weight:

Recursive Solution

Overlapping Subproblems!

Bottom-up Solution

weight:

6 3 4 2 30 14 16 9

value:

Size:	0	1	2	3	4	5	6	7	8	9	10
Max val:	0	0	9	14	18	23	30	32	39	44	48

Bottom-up solution

```
K[0] = 0
for (1 = 1; 1 <= L; 1++) {
      int max = 0;
      for (i = 0; i < n; i++) {
             if (w_i \le 1 \&\& v_i + K[1 - w_i]) > max) {
                     \max = v_i + K[1 - w_i];
      K[1] = max;
}
```

A greedy algorithm

Try adding as many copies of highest value per pound item as possible:

```
O Water: 30/6 = 5
```

- O Rope: 14/3 = 4.66
- \bigcirc Flashlight: 16/4 = 4
- O Moonpie: 9/2 = 4.5
- Highest value per pound item? Water
 - O Can fit 1 with 4 space left over
- Next highest value per pound item? Rope
 - O Can fit 1 with 1 space left over
- No room for anything else
- Total value in the 10 lb knapsack?
 - O 44
 - Bogus!

But why doesn't the greedy algorithm work for this problem?

The greedy choice property is missing!

The 0/1 knapsack problem

 What if we have a finite set of items that each has a weight and value?

- O Two choices for each item:
 - Goes in the knapsack
 - Is left out
- What would be our first decision?
- What suproblems emerge?

Recursive solution

```
int knapSack(int[] wt, int[] val, int L, int n) {
   if (n == 0 | L == 0) { return 0 };
   //try placing the n-1 item
   if (wt[n-1] > L) {
       return knapSack(wt, val, L, n-1)
   }
   else {
       return max( val[n-1] + knapSack(wt, val, L-wt[n-1], n-1),
                            knapSack(wt, val, L, n-1)
                           );
```


Subproblems

• What are the unique subproblems?

i∖l	0	1	2	3	4	5	6	7	8	9	10	
0									7.F.17.1	41 1	,	
1								(r	<i>[[i][l]</i> is max) v	alue v	when	
2								a	re ava	ilable		
3									nly <i>I</i> lk ne kna			
4												

i\l	0	1	2	3	4	5	6	7	8	9	10	
0	0	0	0	0	0	0	0	0	0	0	0	
1	0							(r	max) v	the b	vhen	
2	0				-			a	re ava	ilable		
3	0								_	ps rem psack	ain in	
4	0											

i∖l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0					
2	0										
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0										
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0								
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	14	16						
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	14	16	16	30	30	30	44	46
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	14	16	16	30	30	30	44	46
4	0	0									

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	14	16	16	30	30	30	44	46
4	0	0	9	14	16	16	30	30	39	44	46

```
int knapSack(int wt[], int val[], int L, int n) {
   int[][] K = new int[n+1][L+1];
   for (int i = 0; i <= n; i++) {
       for (int l = 0; l <= L; l++) {
           if (i==0 | | 1==0) \{ K[i][1] = 0 \};
           //try to add item i-1
           else if (wt[i-1] > 1){K[i][1] = K[i-1][1]};
           else {
              K[i][1] = max(val[i-1] + K[i-1][1-wt[i-1]],
                                         K[i-1][1]);
   return K[n][L];
```