

بيوانفورماتيك

بیوانفورماتیک علم استفاده از ابزارهای کامپیوتری برای تحلیل دادههای زیستی است در تقاطع زیستشناسی، علوم کامپیوتر، آمار و ریاضیات قرار دارد .

29 trillion non-nucleated + 7 trillion nucleated cells = 36 trillion cells (+ 38 trillion bacteria)

21.5 kg of skeletal myocytes + 23.5 kg of all other cells = 45 kg cell biomass (of 70 kg total mass)

monocyte

36 Trillion Cell!

(۳۶ با ۱۲ صفر جلوی آن)

زن بالغ ۲۸ تریلیون

کودک ۱۰ ساله حدود ۱۷ تریلیون سلول

تعداد ۴۰۰ نوع سلول

۶۰ بافت

44 جلد کتاب ۱۰۰۰ صفحه ای در هر ۱ میلیمتر یک حرف A4

نوکلئوتید: ترکیب قند، فسفات و باز آلی نوکلئوتید ترکیبی متشکل از یک قند ۵-کربنی (ریبوز یا دئوکسی ریبوز) اسید فسفریک (فسفات) و یکی از بازهای آلی پورین (آدنین، گوانین) یا پیریمیدین (سیتوزین، تیمین، یوراسیل) است. اغلب نوکلئوتید را نوکلئوزید فسفات می گویند.

Gene Structure in Eukaryotes

What is bioinformatics?

Bioinformatics: word was coined in 1978

Bio-: life

Informatics: information systems & computer science

Analysis of molecular biology data using techniques from information systems

computer science artificial intelligence statistics

mathematics

~computational biology

Molecular biology data?

DNA, RNA, genes, proteins...

Important sub-disciplines within bioinformatics

- Development of new algorithms and statistics with which to assess relationships among members of large data sets
- Analysis and interpretation of various types of data including nucleotide and amino acid sequences, protein domains, and protein structures
- Development and implementation of tools that enable efficient access and management of different types of information" (NCBI)"
- All biological computing are not bioinformatics, e.g. mathematical modelling is not bioinformatics, even when connected with biology-related problems

Bioinformatics

Health

Aim of bioinformatics

"To improve the quality of life" by understanding how it works

- Disease prevention:
 - Detect people at risk
 - Change of lifestyle, diet...
 e.g. risk of cardiovascular diseases exercise...
 - Study virus evolution
 e.g. bird flu virus
- Treatment:
 - Quantitative evaluation of disease spread
 - Rational drug design
 e.g. first efficient drug against HIV (Norvir 1996)
 - Gene therapy
 e.g. "bubble" kids with no immune system
 - Animal model
 e.g. zebra fish is the new mouse

Other applications

Forensic (DNA fingerprints)

- Criminal suspects (UK: database of 3M people)
- Paternity tests
 Identification of victims (Titanic, earthquakes...)
- Prevent illegal trade (drugs, ivory...)

Paleoanthropology & archaeology

Human evolution
 e.g. where is the first American from?

Food industry

• GMOs (Genetically Modified Organisms)
Famine buster or Frankenfood?

Discovery of new biological insights

Create a global perspective of living system

Formulate unifying principles in biology

From 'unknown' to 'known'

Fast, efficient way to extract information

Bioinformatics vs Computational Biology

- Almost interchangeable
- Computational biology may be broader
 - Computational biology is an interdisciplinary field that applies the techniques of computer science, applied mathematics and statistics to address biological problems
 - Includes bioinformatics

Impacts of Bioinformatics

- On biological sciences (and medical sciences)
 - Large scale experimental techniques
 - Information growth
- On computational sciences
 - Biological has become a large source for new algorithmic and statistical problems!

Related Fields

- Proteomics/genomics (metagenomics)/ comparative genomics/structural genomics
- Chemical informatics
- Health informatics/Biomedical informatics
- Complex systems
- Systems biology
- Biophysics
- Mathematical biology
 - tackles biological problems using methods that need not be numerical and need not be implemented in software or hardware

Home work

• 1 – Github Account: Create a Repository Named "NUS-Assignment"

• 2 -Upload your CV to "NUS-Assignment"

• 3 – Share your **LinkedIn** profile in "Readme.md" on "NUS-Assignment"

Thanks