The First Law Revisited							
dU = dQ + dW							
· Now in an equilibrium process &W = - pdV.							
We have argued that $dS = dQ_{rev}$ System T							
Resevoir							
(T) dQ at T							
Small							
Systen							
• 50							
du = TdS - pdV							
50 V = 1 2 3 13 CV							
• 11							
· Now du is an exact differential an is ds							
and dV so we have							
ALL = (DIL) IC . (DIL) I.							
$\left(\frac{\partial S}{\partial S}\right)_{1}$							
and dV so we have $dU = (\partial U) dS + (\partial U) dV$ $(\partial S)_{V} S - fixed$ No heat flows in							
So 6							
$T = (\partial u) \implies i.e. du = do + dw = TdS$							
P = - / 2U = i.e. 2U = \$0 - pd/							
$\left(\overline{\partial V} \right)_{S}$							

•	We	can	invert	this:	expressing	S(u,v)
	instead)

So since

We have

$$\left(\frac{\partial S}{\partial u}\right)_{v} = \frac{1}{T}$$
 and $\left(\frac{\partial S}{\partial v}\right)_{u} = \frac{P}{T}$

Mechanical Equilibrium

Consider two gasses Sharing the energy and volume. If the volume of gas #1 increases there will be more configurations it can explore (its states are labelled by the positions and momenta of the particles). Thus the entropy is a funcition of energy and volume S(E, V)

 $E_{1}V_{1} = E_{2}V_{2}$ $E_{1}+E_{2}=E=const$ $S(E_{1},V_{1}) = S_{2}(E_{2},V_{2})$ $V_{1}+V_{2}=V=const$

We expect the two gasses will equilibrate when they are at equal temperature and pressure

 $S_{101} = S_1(E_1, V_1) + S_2(E_2, V_2)$

The entropy of the combinded system is a sum of the entropy of the two systems when partitioned into (E, E_2) and (V, V_2)

Then the entropy increases in time Changing E, and V,:

$$\frac{dS_{toT}}{dt} = \left(\frac{\partial S}{\partial E_1}, \frac{\partial E}{\partial E_2}, \frac{\partial E}{\partial E_2}, \frac{\partial E}{\partial E_2} \right) + \left(\frac{\partial S}{\partial V_1}, \frac{\partial V_1}{\partial V_2}, \frac{\partial V_2}{\partial E_2} \right) > 0$$

Now $E_1 + E_2 = const$ so $E_1 + E_2 = 0$ and

Similarly

$$V_1 + V_2 = Const$$
 so $V_1 + V_2 = 0$

So entropy increases as:

$$\frac{dS_{TOT}}{dt} = \begin{pmatrix} \partial S_1 & \partial S_2 \\ \partial E_1 & \partial E_2 \end{pmatrix} \frac{dE_1}{dt} + \begin{pmatrix} \partial S_1 & \partial S_2 \\ \partial V_1 & \partial V_2 \end{pmatrix} \frac{dV_1}{dt} > 0$$

Now
$$(\frac{\partial S}{\partial E}) = \frac{1}{T}$$
 and $(\frac{\partial S}{\partial V}) = \frac{p}{T}$ so

We have

$$\frac{dS_{TOT}}{dt} = \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \frac{dE_1}{dt} + \left(\frac{P_1}{T_1} - \frac{P_2}{T_2}\right) \frac{dV_1}{dt} > 0$$

Thus the entropy will increase until

$$\frac{1}{T_1} = \frac{1}{T_2}$$
 and $\frac{P_1}{T_1} = \frac{P_2}{T_1}$

i.e. until the temperatures and temperatures are equal.