9. CNN Architectures

GEV6135 Deep Learning for Visual Recognition and Applications

Kibok Lee

Assistant Professor of
Applied Statistics / Statistics and Data Science
Nov 10, 2022

Assignment 5

- Due Wednesday 11/23, 11:59pm KST
- Fully-connected networks
 - Modularized implementation (loss will be given!)
 - Dropout

- Before submitting your work, we recommend you
 - Re-download clean files
 - Copy-paste your solution to clean py
 - Re-run clean ipynb only once
- If you feel difficult, consider to take **option 2**.

Recall: Components of Convolutional Networks

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Question: How should we put them together?

ImageNet Classification Challenge

ImageNet Classification Challenge

227 x 227 inputs5 Convolutional layersMax pooling3 fully-connected layersReLU nonlinearities

Used "Local response normalization"; Not used anymore

Trained on two GTX 580 GPUs – only 3GB of memory each! Model split over two GPUs

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

AlexNet Citations per year (as of 2/2/2022)

Total Citations: 102,486

Citation Counts

Darwin, "On the origin of species", 1859: 60,117

Shannon, "A mathematical theory of communication", 1948: **140,459**

Watson and Crick, "Molecular Structure of Nucleic Acids", 1953: **16,298**

	Inpu	t size		Laye	er			Output size
Layer	С	H / W	filters	kernel	stride	pad	С	H / W
conv1	3	227	64	11	2	1 2		?

	Ir	nput si	ze		La	aye	er				Outp	ut	size
Layer	С	Н	/ W	filters	kernel		stride		pad	C		Н	/ W
conv1		3	227	64		11		4	2		64		?

Recall: Output channels = number of filters

		Input	t size		Lay	er		Outp	ut size
Layer	С		H/W	filters	kernel	stride	pad	С	H / W
conv1		3	227	64	11	. 4	1 2	64	. 56

Recall: W' =
$$(W - K + 2P) / S + 1$$

= $(227 - 11 + 2*2) / 4 + 1$
= $220/4 + 1 = 56$

		Inpu	t si	ze		Lay	er			Output s	ize	
Layer	C		Н	/ W	filters	kernel	stride	pad	С	н /	W	memory (KB)
conv1		3		227	64	11		1 :	2	64	56	; ?

		Inpu	t si	ize		Lay	er			0	utp	ut s	ize	
Layer	C		Н	/ W	filters	kernel	stride	р	ad	С		н /	W	memory (KB)
conv1		3		227	64	11		4	2		64		56	784

Number of output elements =
$$C * H' * W'$$

= $64*56*56 = 200,704$

Bytes per element = 4 (for 32-bit floating point)

KB = (number of elements) * (bytes per elem) / 1024

= 200704 * 4 / 1024

= 784

		Inpu	ıt s	ize)		La	ıye	er			Outp	ut	size		
Layer	C		Н	/	W	filters	kernel		stride	pad	(Н	/ W	memory (KB)	params (k)
conv1		3	3	2	227	64		11	4		2	64		56	784	. j

		Inpu	t siz	e.		Laye	er			Outpu	ıt size		
Layer	С		H /	W	filters	kernel	stride	pad	С	F	1 / W	memory (KB)	params (k)
conv1		3		227	64	- 11	. 4	- 2		64	56	784	23

Weight shape =
$$C_{out} \times C_{in} \times K \times K$$

= $64 \times 3 \times 11 \times 11$
Bias shape = $C_{out} = 64$
Number of weights = $64*3*11*11 + 64$
= $23,296$

	I	nput siz	е		Lay	er		0	utpu	ut size			
Layer	С	н /	W	filters	kernel	stride	pad	С	ŀ	1 / W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	. 4	. 2	2	64	56	784	23	?

		Input s	size		Lay	er		Out	tput siz	ze			
Layer	C	Н	/ W	filters	kernel	stride	pad	С	H /	W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	. 4	. 2	2 6	64	56	784	23	73

Number of floating point operations (multiply+add)

- = (number of output elements) * (ops per output elem)
- $= (C_{out} \times H' \times W') * (C_{in} \times K \times K)$
- = (64 * 56 * 56) * (3 * 11 * 11)
- = 200,704 * 363
- = 72,855,552

								- 10			
	Inpu	ıt size		Laye	er		Out	out size			
Layer	С	H / W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
conv1	3	3 227	64	11	4	. 2	64	1 56	784	23	73
pool1	64	1 56		3	2			?			

		Inpu	t si	ze		Lay	er			Outp	ut size			
Layer	С		Н	/ W	filters	kernel	stride	pad	С		H / W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	11	. 4	1 2	2	64	56	784	23	73
pool1		64		56		3	3 2	2 ()	64	27			

For pooling layer:

#output channels = #input channels = 64

		Inpu	t si	ze		Lay	er			Outp	ut size			
Layer	C		Н	/ W	filters	kernel	stride	pad	С		H / W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	11	. 4	1 2	2	64	56	784	. 23	73
pool1		64		56		3	2	2 ()	64	27	182	?	

#output elems =
$$C_{out} \times H' \times W'$$

Bytes per elem = 4
KB = $C_{out} * H' * W' * 4 / 1024$
= 64 * 27 * 27 * 4 / 1024
= **182.25**

		Inpu	t siz	e.	Layer				Output size					
Layer	C		H /	W	filters	kernel	stride	pad	C		H / W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	13	1 4	1 :	2	64	56	784	23	73
pool1		64		56		3	3 2	2 (C	64	27	182	C	?

Pooling layers have no learnable parameters!

		Inpu	t size		Laye	er	r Output size					
Layer	С		H / W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	4	2	6	4 5	784	· 23	73
pool1		64	56		3	2	C	6	4 2	7 182	C	0

Floating-point ops for pooling layer

= (number of output positions) * (flops per output position)

$$= (C_{out} * H' * W') * (K * K)$$

$$= (64 * 27 * 27) * (3 * 3)$$

- = 419,904
- **= 0.4 MFLOP**

	Input size				Laye	er		Outp	ut size			
Layer	С		H/W	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	4	2	64	56	784	23	73
pool1		64	56		3	2	0	64	27	182	0	0
conv2		64	27	192	5	1	2	192	27	547	307	224
pool2		192	27		3	2	0	192	13	127	0	0
conv3		192	13	384	3	1	1	384	13	254	664	112
conv4		384	13	256	3	1	1	256	13	169	885	145
conv5		256	13	256	3	1	1	256	13	169	590	100
pool5		256	13		3	2	0	256	6	36	0	0
flatten		256	6					9216		36	0	0

Flatten output size =
$$C_{in} \times H \times W$$

= 256 * 6 * 6
= **9216**

	Input size		Layer				Outp	ut size			
Layer	С	H / W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
conv1	3	227	64	11	4	2	64	56	784	23	73
pool1	64	56		3	2	C	64	27	182	0	0
conv2	64	27	192	5	1	2	192	27	547	307	224
pool2	192	2 27		3	2	C	192	13	127	0	0
conv3	192	2 13	384	3	1	1	384	13	254	664	112
conv4	384	13	256	3	1	1	256	13	169	885	145
conv5	256	13	256	3	1	1	256	13	169	590	100
pool5	256	13		3	2	C	256	6	36	0	0
flatten	256	6					9216		36	0	0
fc6	9216	.	4096				4096		16	37,753	38

FC params =
$$C_{in} * C_{out} + C_{out}$$
 FC flops = $C_{in} * C_{out}$
= 9216 * 4096 + 4096 = 9216 * 4096
= 37,752,832 = 37,748,736

								3 40			
	Inpu	t size		Laye	er		Outp	ut size			
Layer	С	H / W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
conv1	3	227	64	11	4	. 2	64	56	784	23	73
pool1	64	- 56		3	2	. 0	64	27	182	0	0
conv2	64	. 27	192	5	1	. 2	192	27	547	307	224
pool2	192	27		3	2	. 0	192	13	127	0	0
conv3	192	13	384	3	1	. 1	384	13	254	664	112
conv4	384	. 13	256	3	1	. 1	256	13	169	885	145
conv5	256	13	256	3	1	. 1	256	13	169	590	100
pool5	256	13		3	2	. 0	256	6	36	0	0
flatten	256	6					9216		36	0	0
fc6	9216		4096				4096		16	37,753	38
fc7	4096		4096				4096		16	16,781	17
fc8	4096		1000				1000		4	4,097	4

How to choose this? Trial and error =(

	Inpu	t size		Laye	er	
Layer	С	H/W	filters	kernel	stride	pad
conv1	3	227	64	11	4	2
pool1	64	56		3	2	0
conv2	64	27	192	5	1	2
pool2	192	27		3	2	0
conv3	192	13	384	3	1	1
conv4	384	13	256	3	1	1
conv5	256	13	256	3	1	1
pool5	256	13		3	2	0
flatten	256	6				
fc6	9216		4096			
fc7	4096		4096			
fc8	4096		1000			

Outp	ut si	ze			
	H /	W	memory (KB)	params (k)	flop (M)
64		56	784	23	73
64		27	182	0	0
192		27	547	307	224
192		13	127	0	0
384		13	254	664	112
256		13	169	885	145
256		13	169	590	100
256		6	36	0	0
9216			36	0	0
4096			16	37,753	38
4096			16	16,781	17
1000			4	4,097	4

Interesting trends here!

		Inpu	t si	ze		Laye	er		Out	out size			
Layer	С		H /	w W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	11	. 4	2	64	1 56	784	23	73
pool1		64		56		3	2	C	64	1 27	182	0	0
conv2		64		27	192	5	1	. 2	192	2 27	547	307	224
pool2		192		27		3	2		192	2 13	127	0	0
conv3		192		13	384	3	1	. 1	. 384	1 13	254	664	112
conv4		384		13	256	3	1	. 1	. 256	5 13	169	885	145
conv5		256		13	256	3	1	. 1	. 256	5 13	169	590	100
pool5		256		13		3	2	C	256	5 6	36	0	0
flatten		256		6					9216	5	36	0	0
fc6		9216			4096				4096	5	16	37,753	38
fc7		4096			4096				4096	5	16	16,781	17
fc8		4096			1000				1000)	4	4,097	4

Most of the **memory usage** is in the early convolution layers

Memory (KB)

Nearly all parameters are in the fully-connected layers

Params (K)

pooling

Most **floating-point** ops occur in the convolution layers

poo**l**ing

ImageNet Classification Challenge

ImageNet Classification Challenge

ZFNet: A Bigger AlexNet

ImageNet top 5 error: 16.4% -> 11.7%

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

More trial and error =(

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

ImageNet Classification Challenge

ImageNet Classification Challenge

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Network has 5 convolutional **stages**:

Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-conv-[conv]-pool

Stage 4: conv-conv-conv-[conv]-pool

Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stage 3--5)

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Softmax FC 4096 FC 1000 FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool Pool

Softmax

FC 1000

VGG16 VGG19

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

Conv(5x5, C -> C) Conv(3x3, C -> C)

 $Conv(3x3, C \rightarrow C)$

Params: 25C² Params: 18C²

FLOPs: 25C²HW FLOPs: 18C²HW

FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96

AlexNet

Input

	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input

VGG16

VGG19

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Conv layers at each spatial resolution take the same amount of computation!

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C²

FLOPs: 36HWC²

Input: 2C x H x W

Conv(3x3, 2C -> 2C)

Memory: 2HWC

Params: 36C²

FLOPs: 36HWC²

FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
11x11 conv, 96

Softmax

AlexNet

Input

FC 1000 Softmax FC 4096 FC 1000 FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool Pool

Softmax

VGG16

VGG19

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

AlexNet vs VGG-16: Much bigger network!

AlexNet total: 1.9 MB

VGG-16 total: 48.6 MB (25x)

AlexNet total: 61M

VGG-16 total: 138M (2.3x)

AlexNet total: 0.7 GFLOP

VGG-16 total: 13.6 GFLOP (19.4x)

ImageNet Classification Challenge

ImageNet Classification Challenge

GoogLeNet: Focus on Efficiency

Many innovations for efficiency: reduce parameter count, memory usage, and computation

Szegedy et al, "Going deeper with convolutions", CVPR 2015

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Inp	ut size		Laye	er		Outpu	ut size			
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
conv	3	224	64	7	2	. 3	64	112	3136	9	118
max-pool	64	112		3	2	. 1	64	56	784	. 0	2
conv	64	56	64	1	1	. 0	64	56	784	. 4	13
conv	64	56	192	3	1	. 1	192	56	2352	111	347
max-pool	192	56		3	2	. 1	192	28	588	0	1

Total from 224 to 28 spatial resolution:

Memory: 7.5 MB

Params: 124K

MFLOP: 418

Compare VGG-16:

Memory: 42.9 MB (5.7x)

Params: 1.1M (8.9x)

MFLOP: 7485 (17.8x)

GoogLeNet: Inception Module

Inception module

Local unit with parallel branches

Local structure repeated many times throughout the network

Szegedy et al, "Going deeper with convolutions", CVPR 2015

GoogLeNet: Inception Module

Inception module

Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1x1 "Bottleneck" layers to reduce channel dimension before expensive conv (we will revisit this with ResNet!)

Szegedy et al, "Going deeper with convolutions", CVPR 2015

GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Input	size		Lay	er		Outpu	ıt size			
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
avg-pool	1024	. 7		7	1	0	1024	1	4	. 0	0
fc	1024		1000				1000		0	1025	1

GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Input	size		Lay	er		Outpu	t size			
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
avg-pool	1024	7		7	1	0	1024	1	4	0	0
fc	1024		1000				1000		0	1025	1

Compare with VGG-16:

Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
flatten	512	7					25088		98		
fc6	25088			4096			4096		16	102760	103
fc7	4096			4096			4096		16	16777	17
fc8	4096			1000			1000		4	4096	4

GoogLeNet: Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm no longer need to use this trick

ImageNet Classification Challenge

ImageNet Classification Challenge

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

Deeper model does worse than shallow model!

Initial guess: Deep model is **overfitting** since it is much bigger than the other model

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

In fact the deep model seems to be **underfitting** since it also performs worse than the shallow model on the training set! It is actually **underfitting**

A deeper model can <u>emulate</u> a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an <u>optimization</u> problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!

Solution: Change the network so learning identity functions with extra layers is easy!

A residual network is a stack of many residual blocks

Regular design, like VGG: each residual block has two 3x3 conv

Network is divided into **stages**: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels

Uses the same aggressive **stem** as GoogleNet to downsample the input 4x before applying residual blocks:

	lr	put					Οι	tput			
	9	size		Layer			S	ize			
										params	flop
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	(k)	(M)
conv	3	224	64	. 7	2	3	64	112	3136	9	118
max-pool	64	112		3	2	1	64	56	784	0	2

Like GoogLeNet, no big fully-connected-layers: instead use **global average pooling** and a single linear layer at the end

ResNet-18:

Stem: 1 conv layer

Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

GFLOP: 1.8

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-34:

Stem: 1 conv layer

Stage 1: 3 res. block = 6 conv

Stage 2: 4 res. block = 8 conv

Stage 3: 6 res. block = 12 conv

Stage 4: 3 res. block = 6 conv

Linear

ImageNet top-5 error: 8.58

GFLOP: 3.6

VGG-16:

ImageNet top-5 error: 9.62

GFLOP: 13.6

Residual Networks: Basic Block

Residual Networks: Bottleneck Block

			Stag	ge 1	Sta	ge 2	Sta	ge 3	Stag	ge 4			
	Block	Stem									FC		ImageNet
	type	layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	layers	GFLOP	top-5 error
ResNet-18	Basic	1	2	4	2	4	2	4	2	4	1	1.8	10.92
ResNet-34	Basic	1	3	6	4	8	6	12	3	6	1	3.6	8.58

FC 1000 Pool 3x3 conv, 512 3x3 conv, 512, /2 3x3 conv, 128 3x3 conv. 128 3x3 conv, 128 3x3 conv. 128 3x3 conv, 64 3x3 conv. 64 Input

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by torchvision

ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck Blocks. This is a great baseline architecture for many tasks even today!

			Stag	ge 1	Stag	ge 2	Sta	ge 3	Stag	ge 4			
	Block	Stem									FC		ImageNet
	type	layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	layers	GFLOP	top-5 error
ResNet-18	Basic	1	2	4	2	4	2	4	2	4	1	1.8	10.92
ResNet-34	Basic	1	3	6	4	8	6	12	3	6	1	3.6	8.58
ResNet-50	Bottle	1	3	9	4	12	6	18	3	9	1	3.8	7.13

FC 1000 Pool 3x3 conv. 512 3x3 conv, 512, /2 3x3 conv. 128 3x3 conv. 64 Input

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by torchvision

Deeper ResNet-101 and ResNet-152 models are more accurate, but also more computationally heavy

			Stag	ge 1	Sta	ge 2	Stage 3		Stage 4				
	Block	Stem									FC		ImageNet
	type	layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	layers	GFLOP	top-5 error
ResNet-18	Basic	1	2	4	2	4	2	4	2	4	1	. 1.8	10.92
ResNet-34	Basic	1	3	6	4	8	6	12	. 3	6	1	3.6	8.58
ResNet-50	Bottle	1	3	9	4	12	6	18	3	9	1	3.8	7.13
ResNet-101	Bottle	1	3	9	4	12	23	69	3	9	1	7.6	6.44
ResNet-152	Bottle	1	3	9	8	24	36	108	3	9	1	. 11.3	5.94

FC 1000 Pool 3x3 conv. 512 3x3 conv, 512, /2 3x3 conv, 128 3x3 conv. 128 3x3 conv. 64 Input

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

- Able to train very deep networks
- Deeper networks do better than shallow networks (as expected)
- Swept 1st place in all ILSVRC and COCO 2015 competitions
- Still widely used today!

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block

Note ReLU after residual:

Cannot actually learn identity function since outputs are nonnegative!

Note ReLU **inside** residual:

Can learn true identity function by setting Conv weights to zero!

He et al, "Identity mappings in deep residual networks", ECCV 2016

Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block

Slight improvement in accuracy (ImageNet top-1 error)

ResNet-152: 21.3 vs 21.1

ResNet-200: 21.8 vs **20.7**

Not actually used that much in practice

He et al, "Identity mappings in deep residual networks", ECCV 2016

Recall: Kaiming / MSRA Weight Initialization

```
dims = [4096] * 7 ReLU correction: std = sqrt(2 / Din)
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din/2)
    x = np.maximum(0, x.dot(W))
    hs.append(x)
```

"Just right" – activations nicely scaled for all layers

He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ICCV 2015

Weight Initialization for Residual Networks

If we initialize with MSRA: then Var(F(x)) = Var(x)But then Var(F(x) + x) > Var(x)variance grows with each block!

Solution: Initialize first conv with MSRA, initialize second conv to zero. Then Var(x + F(x)) = Var(x)

Zhang et al, "Fixup Initialization: Residual Learning Without Normalization", ICLR 2019

Recall: Stochastic Depth for Regularization

Training: Skip some residual blocks in ResNet

Testing: Use the whole network

Starting to become common in recent architectures!

- Pham et al, "Very Deep Self-Attention Networks for End-to-End Speech Recognition", INTERSPEECH 2019
- Tan and Le, "EfficientNetV2: Smaller Models and Faster Training", ICML 2021
- Fan et al, "Multiscale Vision Transformers", ICCV 2021
- Bello et al, "Revisiting ResNets: Improved Training and Scaling Strategies", NeurIPS 2021
- Steiner et al, "How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers", arXiv 2021

Inception-v4: Resnet + Inception!

VGG: Highest memory, most operations

Top-1 accuracy [%] 55 AlexNet NIN ENet Net 18 16 19 34 50 101 152 NA GOODRESNET VGG VGG 19 RESNET NET 152 NCE INCEPTION VA

GoogLeNet: Very efficient!

AlexNet: Low compute, lots of parameters

ResNet: Simple design,

ImageNet Classification Challenge

CNN architectures have continued to evolve!

We will see more later

ImageNet Classification Challenge

Next: Deep Learning Software