

Case Studies Nonlinear Optimization

Open Cast Mining

Final Presentation

July 09, 2016

InYoung Choi, Olivia Kaufmann, Martin Sperr, Florian Wuttke

Table of Contents

- 1 Project Overview
- 2 Physical Model
- 3 Parameter Identification: Physical Model
- 4 Parameter Identification: Black Box Model
- 5 Summary

Table of Contents

- 1 Project Overview
- 2 Physical Mode
- 3 Parameter Identification: Physical Mode
- 4 Parameter Identification: Black Box Mode
- 5 Summary

originally posted to Flickr by FAndrey at http://flickr.com/photos/43301444@N06/4141786255

- Goal: Optimization of model parameters
- Models of technical system = Physical properties + Control properties

Problem Setting

```
[ label = AA, width = 80mm, height = 50mm, activate = pageopen, addresource= videos/ArmMovement.mp4, flashvars=flv=videos/ArmMovement.mp4 autoplay=1 loop=1 ]player _flv_maxi.swf
```


Procedure

Physical Model

- Rope properties
- Lagrange Formalism

Parameter Identification

Discretization + Optimization

Procedure

Physical Model

- Rope properties
- Lagrange Formalism

Parameter Identification

Discretization + Optimization

and

Blackbox Model

- Realistic model
- Confidential information

Parameter Identification

Derivative-free optimization

Physical Modeling

Why?

Building an accurate model

Good description of the effects of control on motion

Physical Modeling

How?

To consider:

- Friction in cable reels
- Potential/Kinetic energy
- etc

Physical Modeling

How?

To consider:

- Friction in cable reels
- Potential/Kinetic energy
- etc

Lagrange Formalism (ODE)

Parameter Identification

What are parameters?

- Friction coefficients
- Mass
- Inertia

Parameter Identification

What are parameters?

- Friction coefficients
- Mass
- Inertia

Why?

Accurate and realistic parameters

Better prediction and planning of motion

Visualization: Simulink

Visualization Example

Same parameters except different load weights

Table of Contents

- 1 Project Overview
- 2 Physical Model
- 3 Parameter Identification: Physical Mode
- 4 Parameter Identification: Black Box Model
- 5 Summary

Method to describe dynamics of an accelerated system

Method to describe dynamics of an accelerated system

T kinetic energyV potentials

Method to describe dynamics of an accelerated system

T kinetic energy

V potentials

F non-conservative external forces

Method to describe dynamics of an accelerated system

- T kinetic energy
- V potentials
- F non-conservative external forces
- r points of actions of forces F
- q free variables
- Q generalized forces

Method to describe dynamics of an accelerated system

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} + \frac{\partial V}{\partial q_i} = Q_i$$

$$Q = \left(\frac{\partial r}{\partial q} \right)^T F$$

- T kinetic energy
- V potentials
- F non-conservative external forces
- r points of actions of forces F
- q free variables
- Q generalized forces

Physical Model of Excavator

Physical Model of Excavator

Kinetic Energy

Potential Energy

gravitational potential energy

Potential Energy

gravitational potential energy

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} + \frac{\partial V}{\partial q_i} = Q_i$$

$$Q = \left(\frac{\partial r}{\partial q} \right)^T F$$

Generalized Forces

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{s}}\right) - \frac{\partial T}{\partial s} + \frac{\partial V}{\partial s} = Q_s$$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\theta}} \right) - \frac{\partial T}{\partial \theta} + \frac{\partial V}{\partial \theta} = Q_{\theta}$$

Resulting ODE

$$A(x,p)\begin{pmatrix} \ddot{s}\\ \ddot{\theta} \end{pmatrix} = b(x,u,p)$$

Resulting ODE

$$A(x,p) \begin{pmatrix} \ddot{s} \\ \ddot{\theta} \end{pmatrix} = b(x,u,p)$$

→ Transformation into 1st order ODE

$$\frac{d}{dt} \begin{pmatrix} s \\ \theta \\ \dot{s} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \dot{s} \\ \dot{\theta} \\ A^{-1}(x, p)b(x, u, p) \end{pmatrix} = f(x, u, p)$$

 $\begin{array}{ll} \text{state} & x = (s, \theta, \dot{s}, \dot{\theta})^T \\ \text{control} & u = (\tau_1, \tau_2)^T \\ \text{parameters} & p = (p_1, ..., p_k)^T \\ \end{array}$

Table of Contents

- 1 Project Overview
- 2 Physical Mode
- 3 Parameter Identification: Physical Model
- 4 Parameter Identification: Black Box Mode
- 5 Summary

Discretization of the ODE

Discretize time interval:

$$[0,T] \to \{0=t_0,t_1,\ldots,t_{m-1},t_m=T\}$$

Discretize state and control:

$$x_n = x(t_n)$$
$$u_n = u(t_n)$$

Discretization of the ODE

Explicit Euler for every time step $h_n = t_{n+1} - t_n$:

$$\Psi(x_n, u_n, p) = x_n + h_n f(x_n, u_n, p)$$

Discrete constraint:

$$0 = x_{n+1} - \Psi(x_n, u_n, p) =: \Phi_n(x, u, p) \quad \forall n = 0, \dots, m-1$$

Discretization of the ODE

Problem Setting

Given:

- lacksquare control \bar{u}
- \blacksquare motion \bar{x} related to \bar{u} and \bar{p}

Unknown:

lacktriangle parameters \bar{p} of the excavator

Output:

parameters p

[label = DD, width = 50mm, height = 50mm, activate = pageopen, addresource= videos/traj $_{xr}ef3.mp4$, flashvars $flv = videos/traj_{xr}ef3.mp4$ aute

Possible Approaches

continuous vs. stepwise Approximation

Problem Formulation

$$\min_{p} \frac{1}{2} \|\Phi(\bar{x}, \bar{u}, p)\|^{2}$$

s. t.
$$p \ge 0$$

- lacksquare \bar{x} solves ODE for \bar{u}, \bar{p}
- $\Phi(\bar{x},\bar{u},\bar{p}) \to 0$ for discretization $m \to \infty$
- number of parameters fix

Example Instance

- $\blacksquare \ [0,T] = [0,14s]$
- 1500 time steps
- $p_0 \in [0.8\bar{p}, 1.2\bar{p}]$
- internally 5 trajectories in parallel

Results

Results

In total exact up to 3 cm

Table of Contents

- 1 Project Overview
- 2 Physical Mode
- 3 Parameter Identification: Physical Mode
- 4 Parameter Identification: Black Box Model
- 5 Summary

Examples

- Friction coefficients
- Masses
- Inertia

Examples

- Friction coefficients
- Masses
- Inertia

- Realistic model from Siemens
- Confidential information

Examples

- Friction coefficients
- Masses
- Inertia

- Realistic model from Siemens
- Confidential information

Examples

- Friction coefficients
- Masses
- Inertia

- Realistic model from Siemens
- Confidential information

Examples

- Friction coefficients
- Masses
- Inertia

- Realistic model from Siemens
- Confidential information

Examples

- Friction coefficients
- Masses
- Inertia

- Realistic model from Siemens
- Confidential information

Trajectories

Input: Joystick commands for Up/Down and Back/Forth

Output: Position of the shovel

Trajectories

Input: Joystick commands for Up/Down and Back/Forth

Output: Position of the shovel

Trajectories

Input: Joystick commands for Up/Down and Back/Forth

Output: Position of the shovel

Optimized Parameters:

- Inertia (Engine)
- Inertia (Arm)
- Friction
- Mass

Optimized Parameters:

- Inertia (Engine)
- Inertia (Arm)
- Friction
- Mass

Penalty Term:

$$\|\overline{X}_i - X_i(p)\|^2$$

Optimized Parameters:

- Inertia (Engine)
- Inertia (Arm)
- Friction
- Mass

Penalty Term:

$$\frac{\|\overline{X}_{i}-X_{i}\left(p\right)\|^{2}}{\|\overline{X}_{i}\|^{2}}$$

Optimized Parameters:

- Inertia (Engine)
- Inertia (Arm)
- Friction
- Mass

Penalty Term:

$$\frac{\|\overline{X}_{i}-X_{i}\left(p\right)\|^{2}}{\|\overline{X}_{i}\|^{2}}+\frac{\|\overline{Y}_{i}-Y_{i}\left(p\right)\|^{2}}{\|\overline{Y}_{i}\|^{2}}$$

 $\overline{X}_i, \overline{Y}_i$ reference trajectories

Optimized Parameters:

- Inertia (Engine)
- Inertia (Arm)
- Friction
- Mass

Penalty Term:

$$\frac{1}{n} \cdot \sum_{i=1}^{n} \left(\frac{\|\overline{X}_{i} - X_{i}(p)\|^{2}}{\|\overline{X}_{i}\|^{2}} + \frac{\|\overline{Y}_{i} - Y_{i}(p)\|^{2}}{\|\overline{Y}_{i}\|^{2}} \right)$$

 $\overline{X}_i, \overline{Y}_i$ reference trajectories

Optimized Parameters:

- Inertia (Engine)
- Inertia (Arm)
- Friction
- Mass

Penalty Term:

$$\min_{p \in \mathbb{R}^4} f(p) = \frac{1}{n} \cdot \sum_{i=1}^n \left(\frac{\|\overline{X}_i - X_i(p)\|^2}{\|\overline{X}_i\|^2} + \frac{\|\overline{Y}_i - Y_i(p)\|^2}{\|\overline{Y}_i\|^2} \right)$$
s. t.
$$p_j \ge 0$$

 $\overline{X}_i, \overline{Y}_i$ reference trajectories

Influence of the Parameters

10% parameter deviation:

■ Inertia (Engine): $1 \cdot 10^{-3}$

■ Inertia (Arm): $3 \cdot 10^{-3}$

Friction: $8 \cdot 10^{-11}$

■ Mass: $5 \cdot 10^{-2}$

Influence of the Parameters

10% parameter deviation:

Inertia (Engine): $1 \cdot 10^{-3}$

■ Inertia (Arm): $3 \cdot 10^{-3}$

Friction: $8 \cdot 10^{-11}$

■ Mass: $5 \cdot 10^{-2}$

Big parameter changes ⇒ Small effects

Influence of the Parameters

10% parameter deviation:

■ Inertia (Engine): $1 \cdot 10^{-3}$

■ Inertia (Arm): $3 \cdot 10^{-3}$

Friction: $8 \cdot 10^{-11}$

■ Mass: $5 \cdot 10^{-2}$

Big parameter changes ⇒ Small effects

- Derivative free optimization
- Deterministic or stochastic
- Decrease function value by evaluating systematically

- Derivative free optimization
- Deterministic or stochastic
- Decrease function value by evaluating systematically

	value	evaluations	time	dev_{max}	dev _{mean}
Particle Swarm	10^{-12}	2200	6 min	$10^{-1.0}$	$10^{-3.8}$
Pattern Search	10^{-11}	6500	17 min	$10^{-1.3}$	$10^{-3.7}$
Genetic Algorithm	10^{-4}	5500	14 min	$10^{-0.5}$	$10^{-1.0}$
Simulated Annealing	10^{-3}	4200	11 min	$10^{-0.3}$	$10^{-0.6}$

- Derivative free optimization
- Deterministic or stochastic
- Decrease function value by evaluating systematically

	value	evaluations	time	$\operatorname{dev}_{\max}$	dev _{mean}
Particle Swarm	10^{-12}	2200	6 min	$10^{-1.0}$	$10^{-3.8}$
Pattern Search	10^{-11}	6500	17 min	$10^{-1.3}$	$10^{-3.7}$
Genetic Algorithm	10^{-4}	5500	14 min	$10^{-0.5}$	$10^{-1.0}$
Simulated Annealing	10^{-3}	4200	11 min	$10^{-0.3}$	$10^{-0.6}$

- Derivative free optimization
- Deterministic or stochastic
- Decrease function value by evaluating systematically

	value	evaluations	time	$\operatorname{dev}_{\max}$	dev _{mean}
Particle Swarm	10^{-12}	2200	6 min	$10^{-1.0}$	$10^{-3.8}$
Pattern Search	10^{-11}	6500	17 min	$10^{-1.3}$	$10^{-3.7}$
Genetic Algorithm	10^{-4}	5500	14 min	$10^{-0.5}$	$10^{-1.0}$
Simulated Annealing	10^{-3}	4200	11 min	$10^{-0.3}$	$10^{-0.6}$

- Derivative free optimization
- Deterministic or stochastic
- Decrease function value by evaluating systematically

	value	evaluations	time	$\operatorname{dev}_{\max}$	dev _{mean}
Particle Swarm	10^{-12}	2200	6 min	$10^{-1.0}$	$10^{-3.8}$
Pattern Search	10^{-11}	6500	17 min	$10^{-1.3}$	$10^{-3.7}$
Genetic Algorithm	10^{-4}	5500	14 min	$10^{-0.5}$	$10^{-1.0}$
Simulated Annealing	10^{-3}	4200	11 min	$10^{-0.3}$	$10^{-0.6}$

Table of Contents

- 1 Project Overview
- 2 Physical Mode
- 3 Parameter Identification: Physical Mode
- 4 Parameter Identification: Black Box Model
- 5 Summary

Summary

Summary

