Algebra e Calcolo Relazionale

Linguaggi per le basi di dati

- Operazioni sullo schema
 - Data Definition Language (DDL)
- Operazioni sui dati
 - Data Manipulation Language (DML)
 - Interrogazione (query)
 - Aggiornamento (update)

Linguaggi di interrogazione per le basi di dati

- Cosa si intende per **interrogazione**?
 - Operazione di lettura sulla base di dati che può richiedere l'accesso a più di una tabella
- Cosa è necessario fare per specificare il significato di una interrogazione?
- Due formalismi:
 - Modo dichiarativo: si specificano le proprietà del risultato ("che cosa")
 - Modo procedurale: si specificano le modalità di generazione del risultato ("come")

Linguaggi di interrogazione per le basi di dati

- Si definisce il comportamento delle interrogazioni in modo procedurale utilizzando le espressioni dell'algebra relazionale
- Si definisce qual è il **risultato** di un'interrogazione in **modo dichiarativo** utilizzando le espressioni del **calcolo relazionale**
- Il calcolo relazionale è l'effettiva semantica del linguaggio
 - Le interrogazioni sono espresse ad alto livello
 - Nessun concetto di costo
- Con l'algebra relazionale si definisce il modo in cui il DBMS esegue un'interrogazione

Algebra Relazionale

- Algebra = dati + operatori
- Algebra relazionale:
 - Dati: relazioni
 - Operatori:
 - su relazioni,
 - che producono relazioni,
 - e che possono essere composti

Operatori dell'Algebra Relazionale

- Operatori su insiemi:
 - unione, intersezione, differenza
- Operatori su relazioni:
 - ridenominazione
 - selezione
 - proiezione
 - join:
 - naturale, prodotto cartesiano, theta

Operatori su Insiemi

- Le relazioni sono insiemi
- I risultati devono essere relazioni
- Si possono applicare gli operatori su insiemi solo a relazioni definite sugli stessi attributi
 - In modo che il risultato sia una relazione sugli stessi attributi

Unione

 L'unione di due relazioni sullo stesso insieme di attributi X è una relazione su X che contiene le n-uple sia dell'una che dell'altra relazione originarie

Laureati

Matricola	Nome	Età
7274	Rossi	32
7432	Neri	24
9824	Verdi	25

Specialisti

Matricola	Nome	Età
9297	Neri	33
7432	Neri	24
9824	Verdi	25

Laureati ∪ **Specialisti**

Matricola	Nome	Età
7274	Rossi	32
7432	Neri	24
9824	Verdi	25
9297	Neri	33

Intersezione

 L'intersezione di due relazioni sullo stesso insieme di attributi X
 è una relazione su X che contiene le n-uple appartenenti a entrambe le relazioni originarie

Laureati

Matricola	Nome	Età
7274	Rossi	32
7432	Neri	24
9824	Verdi	25

Specialisti

Matricola	Nome	Età
9297	Neri	33
7432	Neri	24
9824	Verdi	25

Laureati ∩ **Specialisti**

Matricola	Nome	Età
7432	Neri	24
9824	Verdi	25

Differenza

• La differenza tra due relazioni sullo stesso insieme di attributi X è una relazione su X che contiene le n-uple appartenenti alla prima relazione che non appartengono anche alla seconda

Laureati

Verdi

Matricola

7274

7432

9824

Nome	Età
Rossi	32
Neri	24

25

Matricola	Nome	Età
9297	Neri	33
7432	Neri	24

Verdi

25

Specialisti

Laureati - Specialisti

9824

Matricola	Nome	Età
7274	Rossi	32

Unione Impossibile?

 Sebbene abbia senso, come effettuare l'unione delle due relazioni seguenti?

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Paternità ∪ Maternità ???

Ridenominazione

- Operatore con un solo operando ("monadico")
- Modifica lo schema dell'operando, lasciandone inalterata l'istanza
- Data una relazione R, in generale, questo operatore si scrive come:

$$\rho_{B_1B_2...\leftarrow A_1A_2...(R)}$$

- da leggersi:
 - ullet L'attributo A_1 viene sostituito dall'attributo B_1
 - ullet L'attributo A_2 viene sostituito dall'attributo B_2

• ...

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio	
Eva	Abele	
Eva	Set	
Sara	Isacco	

Paternità

Padre	Figlio	
Adamo	Abele	
Adamo	Caino	
Abramo	Isacco	

Maternità

Madre	Figlio	
Eva	Abele	
Eva	Set	
Sara	Isacco	

 $\rho_{\mathsf{Genitore} \leftarrow \mathsf{Padre}}(\mathsf{Paternita})$

 $\rho_{\mathsf{Genitore} \leftarrow \mathsf{Madre}(\mathsf{Maternita})}$

Paternità

Padre	Figlio	
Adamo	Abele	
Adamo	Caino	
Abramo	Isacco	

Maternità

Madre	Figlio	
Eva	Abele	
Eva	Set	
Sara	Isacco	

$\rho_{\mathsf{Genitore} \leftarrow \mathsf{Padre}}(\mathsf{Paternita})$

Paternità

Genitore	Figlio	
Adamo	Abele	
Adamo	Caino	
Abramo	Isacco	

ρ Genitore \leftarrow Madre (Maternità)

Maternità

Genitore	Figlio	
Eva	Abele	
Eva	Set	
Sara	Isacco	

$\rho_{\mathsf{Genitore} \leftarrow \mathsf{Padre}}(\mathsf{Paternita}) \cup \rho_{\mathsf{Genitore} \leftarrow \mathsf{Madre}}(\mathsf{Maternita})$

Genitore	Figlio	
Adamo	Abele	
Adamo	Caino	
Abramo	Isacco	
Eva	Abele	
Eva	Set	
Sara	Isacco	

Selezione

- Operatore con un solo operando ("monadico")
- Produce un risultato che:
 - ha lo stesso schema dell'operando
 - contiene un **sottoinsieme delle** *n*-**uple** dell'operando
 - solo quelle n-uple che soddisfano una condizione fissata

Selezione

• Data una relazione R(X), in generale, questo operatore si scrive come:

$$\sigma_F(R)$$

- dove:
 - F è una espressione Booleana ottenuta componendo con gli operatori logici AND, OR e NOT delle condizioni atomiche
 - Una condizione atomica ha la forma:
 - $A \star B$, dove $A \in B$ sono **attributi** di X con domini **compatibili** e \star è un **operatore di confronto**
 - $A \star k$ dove A è un attributo di X, k è una costante con dominio compatibile con A e \star è un operatore di confronto

• Impiegati che guadagnano più di 50000 euro

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

• Impiegati che guadagnano più di 50000 euro

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

 $\sigma_{\textbf{Stipendio}>50}(\textbf{Impiegati})$

• Impiegati che guadagnano più di 50000 euro

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

$\sigma_{\textbf{Stipendio}>50}(\textbf{Impiegati})$

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64

 Impiegati che guadagnano più di 50000 euro e lavorano a Milano

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

 Impiegati che guadagnano più di 50000 euro e lavorano a Milano

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

^σStipendio >50 AND Filiale='Milano' (Impiegati)

 Impiegati che guadagnano più di 50000 euro e lavorano a Milano

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

^σStipendio >50 AND Filiale='Milano' (Impiegati)

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	64

 La condizione atomica è vera solo per valori non nulli in qualsiasi attributo

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	NULL
9553	Milano	Milano	32
5698	Neri	Napoli	40

 La condizione atomica è vera solo per valori non nulli in qualsiasi attributo

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	NULL
9553	Milano	Milano	32
5698	Neri	Napoli	40

 σ Filiale='Milano'(Impiegati)

 La condizione atomica è vera solo per valori non nulli in qualsiasi attributo

		_ •
In	nic	egati
	IPIC	gali
		J

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	NULL
9553	Milano	Milano	32
5698	Neri	Napoli	40

σ Filiale='Milano'(Impiegati)

Matricola	Cognome	Filiale	Stipendio
9553	Milano	Milano	32

 Per riferirsi a valori nulli esistono condizioni apposite: IS NULL e IS NOT NULL

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	NULL
9553	Milano	Milano	32
5698	Neri	Napoli	40

Per riferirsi a valori nulli esistono condizioni apposite: IS NULL
 e IS NOT NULL

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	NULL
9553	Milano	Milano	32
5698	Neri	Napoli	40

 Per riferirsi a valori nulli esistono condizioni apposite: IS NULL e IS NOT NULL

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	NULL
9553	Milano	Milano	32
5698	Neri	Napoli	40

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	NULL
9553	Milano	Milano	32

Proiezione

- Operatore con un solo operando ("monadico")
- Produce un risultato che:
 - ha un sottoinsieme degli attributi dell'operando
 - contiene tutte le n-uple cui contribuiscono tutti i valori esistenti dell'operando

Proiezione

• Data una relazione R(X) e un insieme di attributi $Y \subseteq X$, in generale, questo operatore si scrive come:

$$\pi_Y(R)$$

- Il risultato è una relazione su Y che contiene l'insieme delle n-uple di R ristrette ai soli attributi di Y
- Ricordarsi che il risultato è un insieme
 - Non può contenere n-uple uguali

• Calcolare matricola e cognome di tutti gli impiegati

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	32
5998	Rossi	Roma	40

• Calcolare matricola e cognome di tutti gli impiegati

Impiegati

 $\pi_{\mathsf{Matricola},\mathsf{Cognome}}(\mathsf{Impiegati})$

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	32
5998	Rossi	Roma	40

• Calcolare matricola e cognome di tutti gli impiegati

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	32
5998	Rossi	Roma	40

$\pi_{\mathsf{Matricola},\mathsf{Cognome}}(\mathsf{Impiegati})$

Matricola	Cognome
7309	Neri
5998	Neri
9553	Rossi
5998	Rossi

• Calcolare cognome e filiale di tutti gli impiegati

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	32
5998	Rossi	Roma	40

• Calcolare cognome e filiale di tutti gli impiegati

Impiegati

 $\pi \textbf{Cognome}, \textbf{Filiale}(\textbf{Impiegati})$

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	32
5998	Rossi	Roma	40

• Calcolare cognome e filiale di tutti gli impiegati

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	32
5998	Rossi	Roma	40

$\pi \textbf{Cognome}, \textbf{Filiale}(\textbf{Impiegati})$

Cognome	Filiale
Neri	Napoli
Neri	Milano
Rossi	Roma
Rossi	Roma

• Calcolare cognome e filiale di tutti gli impiegati

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	32
5998	Rossi	Roma	40

π Cognome, Filiale (Impiegati)

Cognome	Filiale
Neri	Napoli
Neri	Milano
Rossi	Roma
Rossi	Roma

• Calcolare cognome e filiale di tutti gli impiegati

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	32
5998	Rossi	Roma	40

$\pi \textbf{Cognome}, \textbf{Filiale}(\textbf{Impiegati})$

Cognome	Filiale
Neri	Napoli
Neri	Milano
Rossi	Roma

Cardinalità delle Proiezioni

- Una proiezione
 - Può contenere al più tante n-uple quante ne ha l'operando
 - Può contenerne di meno
- Se X è una superchiave di R allora $\pi_X(R)$ contiene esattamente tante tuple quante ne ha R

Proiezione e Selezione

- Selezione σ : decomposizione orizzontale
- Proiezione π : decomposizione verticale

• Calcolare matricola e cognome degli impiegati che guadagnano più di 50000 euro

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

 Calcolare matricola e cognome degli impiegati che guadagnano più di 50000 euro

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

 π Matricola,Cognome (σ Stipendio > 50 (Impiegati))

 Calcolare matricola e cognome degli impiegati che guadagnano più di 50000 euro

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	32
5698	Neri	Napoli	40

 π Matricola,Cognome (σ Stipendio > 50 (Impiegati))

Matricola	Cognome
7309	Rossi
5998	Neri

Selezione e Proiezione

- Combinando selezione e proiezione possiamo estrarre informazioni da una sola relazione
- Non possiamo combinare informazioni presenti in relazioni diverse
- Non possiamo combinare informazioni presenti in n-uple diverse della stessa relazione

- Prove scritte in un concorso pubblico:
 - I compiti sono anonimi e a ognuno è associata una busta chiusa con il nome del candidato
 - Ogni compito e la relativa busta è contrassegnato con uno stesso numero

Numero	Voto
1	25
2	13
3	27
4	28

Numero	Candidato
1	Mario Rossi
2	Nicola Russo
3	Mario Bianchi
4	Remo Neri

Numero	Voto
1	25
2	13
3	27
4	28

Numero	Candidato
1	Mario Rossi
2	Nicola Russo
3	Mario Bianchi
4	Remo Neri

Numero	Candidato	Voto
1	25	Mario Rossi
2	13	Nicola Russo
3	27	Mario Bianchi
4	28	Remo Neri

Join Naturale

- Operatore con due operandi (generalizzabile)
- Produce un risultato:
 - sull'unione degli attributi degli operandi
 - contiene le n-uple costruite ciascuna a partire da una n-upla di ognuno degli operandi

Join Naturale

• Date due relazioni $R_1(X_1)$ e $R_2(X_2)$, in generale questo operatore si scrive come

$$R_1 \bowtie R_2$$

• Il risultato è una relazione $R(X_1 \cup X_2)$ definita come

$$R(X_1 \cup X_2) = R_1(X_1) \bowtie R_2(X_2) =$$

$$= \{ t \mid \text{esistono } t_1 \in R_1 \text{ e } t_2 \in R_2 \}$$

$$\text{con } t[X_1] = t_1 \text{ e } t[X_2] = t_2 \}$$

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Reparto	Capo
А	Mori
В	Bruni

=

Impiegato	Reparto	Capo
Rossi	А	Mori
Neri	В	Bruni
Bianchi	В	Bruni

Ogni n-upla contribuisce al risultato: join completo

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

×

Reparto	Capo
В	Mori
С	Bruni

=

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

 \bowtie

Reparto	Capo
D	Mori
С	Bruni

Impiegato	Reparto	Capo

Impiegato	Reparto
Rossi	В
Neri	В

 \bowtie

Reparto	Capo
В	Mori
В	Bruni

=

Impiegato	Reparto	Capo
Rossi	В	Mori
Rossi	В	Bruni
Neri	В	Mori
Neri	В	Bruni

Cardinalità del Join

- Il join di R_1 e R_2 contiene un numero di n-uple:
 - ullet Compreso fra 0 e il prodotto di $|R_1|$ e $|R_2|$
- ullet Se il join coinvolge una chiave di R_2 allora il numero di n-uple è
 - Compreso fra 0 e $|R_1|$
- Se il join coinvolge una chiave di R_2 e un vincolo di integrità referenziale allora il numero delle n-uple è
 - Uguale a $|R_1|$

Cardinalità del Join

• Il join di $R_1(A,B)$ e $R_2(B,C)$ contiene un numero di n-uple:

$$0 \le |R_1 \bowtie R_2| \le |R_1| \times |R_2|$$

ullet Se B è una chiave di R_2 allora il numero di n-uple è

$$0 \le |R_1 \bowtie R_2| \le |R_1|$$

• Se B è una chiave di R_2 ed esiste un vincolo di integrità referenziale fra B (in R_1) e R_2 allora il numero delle n-uple è

$$|R_1 \bowtie R_2| = |R_1|$$

Join, una difficoltà

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

×

Reparto	Capo
В	Mori
С	Bruni

=

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Alcune n-uple non contribuiscono al risultato: vengono "tagliate fuori"

Join Esterno

- Il **join esterno** estende, con **valori nulli**, le *n*-uple che verrebbero tagliate fuori da un **join (interno)**
- Ne esistono tre versioni:
 - Sinistro: mantiene tutte le n-uple del primo
 operando, estendendole con valori nulli se necessario
 - Destro: mantiene tutte le *n*-uple del secondo
 operando, estendendole con valori nulli se necessario
 - Completo: mantiene tutte le *n*-uple di entrambi gli operandi, estendendole con valori nulli se necessario

Join Esterno Sinistro

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

⋈_{LEFT}

Reparto	Capo	
В	Mori	=
С	Bruni	

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	А	NULL

Join Esterno Destro

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

⊠RIGHT

Reparto	Capo	
В	Mori	
С	Bruni	

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
NULL	С	Bruni

Join Esterno Completo

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

⋈FULL

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL
NULL	С	Bruni

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Mori

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Mori

Impiegato	Reparto
Neri	В
Bianchi	В

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Mori

Impiegato	Reparto
Neri	В
Bianchi	В

Reparto	Capo
В	Mori

• Date due relazioni $R_1(X_1)$ e $R_2(X_2)$

$$\pi_{X_1}\left(R_1\bowtie R_2\right)\subseteq R_1$$

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Bruni
Verdi	А	Bini

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Bruni
Verdi	А	Bini

Impiegato	Reparto
Neri	В
Bianchi	В
Verdi	А

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Bruni
Verdi	Α	Bini

Impiegato	Reparto
Neri	В
Bianchi	В
Verdi	А

Reparto	Саро
В	Mori
В	Bruni
А	Bini

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Bruni
Verdi	Α	Bini

Impiegato	Reparto
Neri	В
Bianchi	В
Verdi	А

Reparto	Саро	
В	Mori	
В	Bruni	
А	Bini	

Impiegato	Reparto	Саро
Neri	В	Mori
Neri	В	Bruni
Bianchi	В	Mori
Bianchi	В	Bruni
Verdi	А	Bini

• Date due relazioni $R_1(X_1)$ e $R_2(X_2)$

$$\pi_{X_1}\left(R_1\bowtie R_2\right)\subseteq R_1$$

• Data una relazione R(X) con $X = X_1 \cup X_2$

$$\left(\pi_{X_1}(R)\bowtie\pi_{X_2}(R)\right)\supseteq R$$

Prodotto Cartesiano

- Date due relazioni $R_1(X_1)$ e $R_2(X_2)$ senza attributi a comuni, cioè $X_1 \cap X_2 = \emptyset$, la definizione di join naturale funziona ugualmente
- La relazione risultante contiene sempre un numero di n-uple pari al prodotto delle cardinalità degli operandi
 - Tutte le n-uple sono combinabili tra loro
- La relazione risultante corrisponde al prodotto cartesiano delle relazioni:

$$R = R_1 \bowtie R_2 = R_1 \times R_2$$

Esempio

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Codice	Саро
А	Mori
В	Bruni

Esempio

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Codice	Саро
А	Mori
В	Bruni

Impiegato	Reparto	Codice	Capo
Rossi	А	А	Mori
Rossi	А	В	Bruni
Neri	В	А	Mori
Neri	В	В	Bruni
Bianchi	В	А	Mori
Bianchi	В	В	Bruni

Theta-Join

 Nella pratica, il prodotto cartesiano ha senso (quasi) solo se seguito da una selezione:

$$\sigma_F(R_1 \times R_2)$$

 Questa composizione di operatori è un operatore derivato chiamato theta-join e indicato come:

$$R_1 \bowtie_F R_2$$

- La condizione F è spesso una **congiunzione** (**AND**) di atomi di confronto $A_1 \, \vartheta \, A_2$ dove ϑ è un **operatore di confronto** $(\leq , < , = , ...)$ e A_1 e A_2 sono attributi di relazioni diverse
- Se l'operatore di confronto è l'uguaglianza (=) allora si parla di equi-join

Esempio

Impiegati

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Reparti

Codice	Саро
А	Mori
В	Bruni

Impiegati ⋈_{Reparto=Codice} Reparti

Impiegato	Reparto	Codice	Саро
Rossi	А	А	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

Esercizi

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Supervisione

Impiegato	Саро
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Matricola	Nome	Età	Stipendio

Supervisione

Impiegato	Саро

 Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40

Matricola	Nome	Età	Stipendio

Supervisione

Impiegato	Capo	

 Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40

$$\sigma$$
Stipendio>40 (Impiegati)

Matricola	Nome	Età	Stipendio

Supervisione

Impiegato	Capo	

• Trovare matricola, nome ed età degli impiegati che guadagnano più di 40

Matricola	Nome	Età	Stipendio

Supervisione

Impiegato	Саро

 Trovare matricola, nome ed età degli impiegati che guadagnano più di 40

$$\pi$$
Matricola,Nome,Età (
$$\sigma_{\text{Stipendio}>40}\left(\text{Impiegati}\right)\right)$$

Matricola	Nome	Età	Stipendio

Supervisione

Impiegato	Capo

• Trovare i capi degli impiegati che guadagnano più di 40

Matricola	Nome	Età	Stipendio

Supervisione

Impiegato	Capo

• Trovare i capi degli impiegati che guadagnano più di 40

$$\pi_{Capo}(Supervisione$$

MImpiegato=Matricola

 σ Stipendio>40 (Impiegati))

Matricola	Nome	Età	Stipendio

Supervisione

Impiegato	Саро

• Trovare nome e stipendio dei capi degli impiegati che guadagnano più di 40

Matricola	Nome	Età	Stipendio

Supervisione

Impiegato	Capo	

 Trovare nome e stipendio dei capi degli impiegati che guadagnano più di 40

 π Nome, Stipendio (Impiegati

™Matricola=Capo

 $\pi_{Capo}(Supervisione)$

Mimpiegato=Matricola

σStipendio>40 (Impiegati))

Matricola	Nome	Età	Stipendio

Supervisione

Impiegato	Саро

 Trovate gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

Matricola	Nome	Età	Stipendio

Supervisione

Impiegato	Capo	

 Trovate gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

```
\label{eq:matr_Nome_Stip_Matr_CNomeCStipC} $$^{\sigma}$Stip>StipC($$$ $^{\rho}$MatrC,NomeC,StipC,EtàC\leftarrow Matr,Nome,Stip,Età (Impiegati) $$$ $$ $^{\omega}$MatrC=Capo $$$ Supervisione <math>\bowtie_{Impiegato=Matr} Impiegati)$$
```