Determine whether or not these objects exist. If so, write down an example. If not, explain why not.

- (1) A 3×2 matrix whose columns are linearly independent.
- (2) A 2×3 matrix whose columns are linearly independent.
- (3) A noninvertible 4×4 matrix whose columns span \mathbb{R}^4 .
- (4) A basis of the vector space $null((1 \ 1 \ 2))$.
- (5) An orthogonal matrix whose rows are linearly dependent.
- (6) A nonidentity matrix which equals its own inverse.
- (7) A matrix A such that null(A) = col(A).
- (8) A basis $\{v_1, v_2, v_3\} \in \mathbb{R}^3$ such that $||v_i v_j|| = 1$ for all $i \neq j$.
- (9) An orthogonal matrix Q such that $\text{null}(QQ^{\top}) \cap \text{col}(QQ^{\top})$ is larger than $\{0\}$.
- (10) A 3×2 matrix A and a 2×3 matrix B such that $AB = Id_{3\times 3}$.
- (11) Two matrices A,B such that $AB=\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\operatorname{null}(B)$ is larger than $\{0\}.$
- (12) Two matrices A, B such that $AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ and null(B) is larger than $\{0\}$.
- (13) Two linearly independent vectors in null($\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$) which are both perpendicular to $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
- (14) A rank-one matrix whose columns are linearly independent.
- (15) An nonzero upper-triangular matrix whose columns are linearly dependent.
- (16) Two matrices A, B such that $AB = \mathrm{Id}_{4\times 4}$, the matrix A is not invertible, and the columns of B are linearly independent.
- (17) A diagonal matrix Σ such that $P\Sigma P$ is not diagonal, where $P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.
- (18) A 3×4 matrix A and a 3-vector b such that Ax = b has a unique solution.
- (19) A spanning set $v_1, v_2, v_3, v_4, v_5 \in \mathbb{R}^4$ with $v_i + v_j + v_k = 0$ whenever i, j, k are all different.
- (20) Nonzero 2×2 projection matrices P, Q, R satisfying $P + Q + R = \mathrm{Id}_{2 \times 2}$.
- (21) Nonzero 2×2 projection matrices P, Q, R satisfying $P + Q + R = \frac{3}{2} \operatorname{Id}_{2 \times 2}$.