UNION OF SOVIET SOCIALIST REPUBLICS

(19) SU (11) 1691497 A1

STATE COMMITTEE ON INVENTIONS AND DISCOVERIES, SUBORDINATE TO THE STATE COMMITTEE ON SCIENCE AND TECHNOLOGY OF THE USSR

(51)5 <u>E 21 B 10/16</u>

Republic Scientific Technical Library BSSR Numerical Catalog

DESCRIPTION OF INVENTION for the Inventor's Certificate

(21) 4433084/03

(22) 30.05.88 [April 30, 1988]

(46) 15.11.91 [November 15, 1991]. Bul. # 42

(71) "Grozneft" Production Association

(72) L. S. Kurumov, Kh-M. S. Izmailov, T. G. Agoshashvili and A. P. Gryakolov

(53) 622.24.051.55(088.8)

(56) USSR Inventor's Certificate No. 976008, class E 21 B 10/16, 1982

(54) TRICONE DRILL BIT

(57) The invention is a rock-breaking tool for drilling wells. The goal of the invention is to increase the service life of a drill bit through an equal distribution of the load on all bearings. The tricone drill bit contains legs with journals and cutters mounted on them by means of bearings. The cutters contain an identical number of rock-breaking rows 4, 5, and 6, which are different distances from the drill bit axis, and peripheral rows 7, which are equidistant from the drill bit axis. The lengths of the three adjacent rows $\{1, \ell 2, \text{ and } \ell 3\}$ of the first, second, and third cutters are related to the corresponding distance of the middle of these rows from the drill bit axis r1, r2, and r3, with the following ratio: $\ell 1r1 = \ell 2r2 = \ell 3g3$; $r1 + \ell 1/2 < r2$; $r2 + \ell 2/2 < r3$. Drill bit operation provides an equal distribution of the load on all bearings by means of the rows breaking up circular bottomhole areas that are identical in area. This contributes to increasing the service life of the drill bit. 2 illustrations.

The invention relates to a rock-breaking tool for drilling wells.

The goal of the invention is to increase drill bit service life through an equal distribution of the load on all bearings.

Figure 1 shows a developed view of the drill bit cutters; figure 2 shows a diagram of the bottomhole coverage by the rock-breaking rows of the drill bit.

The tricone drill bit contains legs with journals (not shown) and self-cleaning cutters 1, 2, and 3 mounted thereon by means of bearings. The cutters contain an identical number of rock-breaking rows 4, 5, and 6, which are located at different distances from the drill bit axis, and peripheral rows 7, which are equidistant from the drill bit axis. The lengths of the three adjacent rows $\ell 1$, $\ell 2$, and $\ell 3$, which correspond to the tirst, second, and third cutters, are related to the corresponding distances of the middle of these rows from the drill bit axis r1, r2, and r3, with the following ratios:

l1r1=l2r2=l3g3;

r1+l1/2 < r2; r2+l2/2 < r3.

The tricone drill bit operates in the following manner.

When turning under a load, the drill bit penetrates by the value of Δh over the time interval. Each row of the drill bit, except for the peripheral rows, break up their own circular area by a width equal to the length of the teeth, i.e., the width of the row.

$$S_{ij}=2\pi r_{ij}\cdot l_{ij}$$
, $i=1, 2, 3$; $j=1, 2,...,n$.

Since the rock-breaking mechanism of drill bits of type "C", "T" and "K" is close to the penetration, the drilling fluid dispersion is considered identical for the adjacent rows. Therefore all of the work to break up the bottomhole is determined by:

$$\Delta A = \xi \sum_{i=1}^{3} \sum_{j=1}^{n} S_{ij} \cdot \Delta h = \xi \Delta h \cdot \pi R^{2};$$

where ξ - a factor demonstrating energy losses for breaking up a volumetric unit of rock; R - bottomhole radius.

According to Rittenger's and Kirpichev's laws, the work being performed by the lj-th row when penetrating by Δh is determined by:

$$\Delta A_{ij} = \xi \Delta h 2\pi r_{ij} \cdot L_{ij}$$

The load on the cutter teeth Plj at each moment of time is dependent upon the contact conditions of the teeth of the remaining rows and the rows of the two other cutters. This load has a pulsed nature, which fluctuates greatly in value and has a probabilistic distribution. Therefore, the row load over time Δt is estimated by the average weighted value:

$$P_{ij} = \frac{\sum_{k=1}^{z_{ij}} P_k \cdot \delta t_k}{\Delta t} : \sum \delta t_k \leq \Delta t.$$

where Pk – the value of the k-th pulse of the load acting on the tooth; zlj – number of teeth of a row; δtk – pulse duration.

Therefore, the work being conducted by the lj-th cutter row when breaking up its own circular area for a depth of Δh is determined by:

1691497

where U - proportionality factor.

Thus, [formula]

The average weighted load on each cutter is equal to:

$$P_{j} = \sum_{j=1}^{n} \vec{P}_{lj} \quad i=1, \, 2, \, 3; \, j=1, \, 2, ..., n.$$

Since the peripheral circular fraction is broken up simultaneously by three rows with a width of ln, each with an identical number of teeth, then the appreciable load Pln will be identical. Thus, for an identical loading, the cutter bearing must meet:

$$\sum_{j=1}^{n} \widetilde{P}_{ij} = const \quad i=1, 2, 3.$$

This condition can be met by a drill bit in which three adjacent rows belonging to the 1^{st} , 2^{nd} , and 3^{rd} cutters and located at a distance of r1, r2, and r3 from the bottomhole center, break up circular areas that are identical in area, i.e.

$$S_{ij}=S_{2j}=S_{3j}+l_{1j}\cdot r_{1j}=l_{2j}\cdot r_{2j}=l_{3j}r_{3j}$$

in which case
$$\frac{1}{2} + r_{1} < r_{2}$$
; $\frac{1}{2} + r_{2} < r_{3}$:

This type of drill bit provides an identical load on all cutter bearings.

CLAIM

A tricone drill bit, including legs with journals, self-cleaning cutters installed thereon by means of bearings and which have an identical number of rock-breaking rows, each of which, except for the peripheral ones, is located at a different distance from the drill bit axis, while the peripheral row on all cutters is equidistant from the drill bit axis, is distinctive in that, in order to increase the drill bit service life through an equal distribution of the load on the individual bearings, the rock-cutting rows are of equal length, and the lengths of the adjacent rows \(\ell\)1, \(\ell2\)2, are \(\ell3\)3, which belong to the first, second, and third cutters, respectively, are related to the corresponding distances of the middles of these rows from the drill bit axis, \(\tau1\)1, \(\ell2\)2, and \(\ell3\)3, with the following ratios:

$$|1_1r_1=|2_1r_2=|3_1r_3|$$

 $|r_1+\frac{1}{2}| < |r_2|$;
 $|r_2+\frac{1}{2}| < |r_3|$;

Fig. 1

Compiled by A. Nikolayev

M. Bandura, Editor Order No. 3912 M. Morgental, Technical Editor Pressrun –

T. Paliy, Copy Editor Subscription

VNIIPI of the State Committee on Inventions and Discoveries, subordinate to the State Committee on Science and Technology of the USSR, 4/5 Raushskaya nab., Zh-35, Moscow, 113035

"Patent" Publishing House, 101 ul. Gagarina, Uzhgorod

союз советских СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

1691497

(51)5 E 21 B 10/16

ГОСУДАРСТВЕННЫЙ КОМИТЕТ по изобретениям и открытиям при гкнт ссср

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Республиканская поучать тахническия бибего БССР нумерационный <u>с</u>

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4433084/03 (22) 30.05.88

jj

(46) 15.11.91. Бюл. № 42

(71) Производственное объединение "Гроз-

(72) Л. С. Курумов, Х.-М. С. Измайлов, Т. Г. Агошашвили и А. П. Гряколов (53) 622.24.051.55(088.8)

(56) Авторское свидетельство СССР № 076008, кл. Е 21 В 10/16, 1982.

(54) БУРОВОЕ ТРЕХШАРОШЕЧНОЕ ДОЛОТО

(57) Изобретение относится к породоразрушающему инструменту для бурения скважин. Цель'- повышение долговечности долота путем равномерного распределения нагрузки на все опоры. Буровое трехшаро-

шечное долото содержит лапы с цапфоми и смонтированные на них посредством опор шарошки. Шарошки содержат одинаковое количество лородоразрушающих венцов 4, 5 и 6, удаленных от оси долота на разное расстояние, и периферийные венцы 7, равноудаленные от оси долота. Длины трех соседних венцов 11, 12 и 13 первой, второй и третьей шарошек связаны с соответствующим расстоянием середины этих венцов от оси долота rfi r2 и r3 следующим соотношением liri=l2r2=l3r3; r1+l1 / 2 < r2; r2+l2/2<r3. При работе долота обеспечивается равномерное распределение нагрузки на все опоры за счет разрушения венцами одинаковых по площади кольцевых зон забоя. Это способствует повышению долговечности долота. 2 ил.

Изобретение относится к породоразрушающему инструменту для бурения скважин.

Цель изобретения – повышение долговечности долота путем равномерного распределения нагрузки на все опоры.

На фиг. 1 представлена развертка шарошек долота; на фиг. 2 – схема перекрытия забоя породоразрушающими венцами долота

Буровое трехшарошечное долото содержит лапы с цапфами (не представлены) и смонтированные на них посредством опор самоочищающиеся шарошки 1, 2 и 3. Шарошки содержат одинаковое количество поро доразрушающих венцов 4, 5 и 6, удаленных от оси долота на разное расстояние, и периферийные венцы 7, равноудаленные от оси долота. Длины трех соседних венцов I₁, I₂ и I₃, принадлежащих соответственно первой, второй и третьего шарошкам, связаны с соответствующими расстояниями середин этих венцов от оси долота r₁, r₂ и r₃ следующими соотношениями:

$$l_{1}r_{1}=l_{2}r_{2}=l_{3}r_{3};$$

 $r_{1}+\frac{l_{1}}{2} < r_{2}; r_{2}+\frac{l_{2}}{2} < r_{3}.$

Буровое трехшарошечное долото работает следующим образом.

При вращении под нагрузкой буровое долото за отрезок времени углубляется на величину Ап. При этом каждый венец долота, кроме периферийных, разрушает свою кольцевую зону шириной, равной длине 35 зубьев, т.е. ширине венца.

Sij=2
$$\pi$$
 nj lij, i=1, 2, 3; j=1, 2,...,n.

Поскольку для долот типов "С", "Т" и "К" механизм разрушения забоя близок к вдавливанию, то дисперсность шлама считается одинаковой для соседних венцов. Тогда вся работа по разрушению забоя определяется:

$$\Delta A = \xi \sum_{i=1}^{3} \sum_{j=1}^{n} S_{ij} \Delta h = \xi \Delta h \cdot \pi R^{2},$$

где ξ — коэффициент, показывающий затраты энергии на разрушение единицы объема породы;

R - радиус забоя.

$$\Delta A_{ij} = \xi \Delta h 2\pi r_{ij} + L_{ij}$$

Нагрузка зубцов Ріј шарошки в каждый момент времени зависит от условий контактирования зубьев оставшихся венцов и венцов двух других шарошек. Эта нагрузка имеет импульсный характер, сильно колеблется по величине и имеет вероятностное распределение. Поэтому нагрузка венца за время Δt оценивается средневзвешенной величиной:

$$\begin{split} & \sum_{k=1}^{|z|} P_k \cdot \delta t_k \\ & \sum_{k=1}^{|z|} \Delta t \quad : \sum_{k=1}^{|z|} \delta t_k \leq \Delta t \,. \end{split}$$

где P_{κ} — величина к-го импульса нагрузки действующей на зубец;

zij – число зуоцов венца; отк – длительность импульса.

Тогда работа, совершаемая ІІ-м венцом шарошки при разрушении своей кольцевой зоны на глубину Ді, определяется:

$$\Delta A_{ij} = U \tilde{P}_{ij} \cdot \Delta h$$

где U — коэффиционт пропорциональности. Следовательно, Ріј ~ ΔАіј ~ 2π. гіј-liј. Средневзвешенная нагрузка на каждую

Средневзвешенная нагрузка на каждую шарошку равна:

$$P_{i}=\sum_{j=1}^{n} \vec{P}_{ij}$$
 $i=1, 2, 3; j=1, 2,...,n$.

Поскольку периферийная кольцевая доля разрушается одновременно тремя венцами шириной і_в каждый с одинаковым числом зубцов, то воспринимаемая нагрузка Рі_вбудет одинаковой. Следовательно, для одинаковой нагруженности опор шарошек нужно потребовать выполнения

$$\sum_{j=1}^{n} \bar{P}_{ij} = \text{const} \quad i=1, 2, 3.$$

Удовлетворить такому условию может долото, в котором три соседних венца, принадлежащие 1, 2-й и 3-й шарошкам и расположенные по мере удаления от центра забоя на расстояние 11, 12, 13, разрушают одинаковые по площади кольцевые зоны, т.е.

$$S_{ij}=S_{2j}=S_{3j}+I_{1j}\cdot r_{1j}=I_{2j}\cdot r_{2j}=I_{3j}r_{3j}$$

5 при этом
$$\frac{|y|}{2}$$
 + r_{1j} < r_{2j} ; $\frac{|2j|}{2}$ + r_{2j} < r_{2j} :

В таком долоте обеспечивается одинаковая нагрузка, деиствующая на все опоры́ шарошек.

Формула изобретения

Буровое трехшарошечное долото, включающее лапы с цапфами, установленные на них посредством опор, самоочищающиеся шарошки с одинаковым количеством породоразрушающих венцов, каждый из которых, кроме периферийного, удален от оси долота на разное расстояние, а периферийный венец на всех шарошках равноудален от оси долота, от л и ч а ю щ е е с я тем, что, с целью повышения долговечности долота путем равномерного распределения нагрузки на все опоры, породоразрушающие вен-

цы выполнены разной длины, при этом длины трех соседних венцов I₁, I₂, I₃, принадлежащих соответственно первой; второй и третьей шарошкам, связаны с соответствующими расстояниями середин этих венцов от оси долота r₁, r₂, r₃ следующими соотношениями:

 $\begin{array}{ll}
 & \text{I1r1=I2r2=I3r3;} \\
 & \text{r1+}\frac{1}{2} < \text{r2}; \\
 & \text{r2+}\frac{12}{2} < \text{r3};
\end{array}$

Редактор М. Бандура

Составитель А. Николаев Техред М.Моргентал

Коррсктор Т.Палий

Заказ 3912

Тирах

Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101