逸出功的测量实验报告

江灿 2019011325

清华大学 物理系, 北京 100084

【摘 要】 逸出功又叫功函数或脱出功,是指电子从金属表面逸出时克服表面势垒必须做的功。金属材料的逸出功不但与材料的性质有关,还与金属表面的状态有关,在金属表面涂覆不同的材料可以改变金属逸出功的大小。本实验使用数学方法,避开了测量一些不容易测准的数据,使用里查孙直线法巧妙的算出逸出功。

【关键词】 逸出功, 能量, 测量, 里查孙直线法

1 实验目的

略

2 实验原理

略

3 实验仪器

略

4 实验步骤

脓

5 实验基本原理概述

主要是使用公式:

$$I_{o} = AST^{2}e^{\frac{e_{0}\phi}{KT}}$$

通过里查孙直线法

$$\lg\frac{I_e}{T^2} = \lg(AS) - 5.039 \times 10^3 \frac{\phi}{T}$$

在 $\lg \frac{T_c}{T^2} \sim \frac{1}{T}$ 的图中,可以通过直线斜率求得 ϕ

$$\lg I_e' = \lg I_e + \frac{4.39}{2.303T} \frac{1}{\sqrt{r_1 ln(r_2/r_1)}} \sqrt{U_a}$$

在 $\lg \frac{I_c}{T_3} \sim \frac{1}{T}$ 图上,可以通过直线斜率求得 ϕ

实验电路图设计:

图 1 实验电路图设计

6 实验数据

6.1 温度 T 的处理

佑实验室给出的表格

$I_f(A)$	0.500	0.550	0.600	0.650	0.700	0.750
T(K)	1726	1809	1901	1975	2059	2136

通过线性内插法,可以求得电流 I_f 与温度 \mathbf{T} 之间的关系为

$I_f(A)$	0.500	0.540	0.580	0.620	0.660	0.700
T(K)	1726	1792	1864	1930	1991	2059

实验时间: 2022-03-20 循环组号: 双周日下午 M 组内循序号 7 号

*学号: 2019011325 *E-mail: jiang-c19@mails.tsinghua.edu.cn

6.2 数据拟合

6.2.1 section 1

对不同温度下 $\log u_e' \sim \sqrt{u_a}$ 的拟合 对不同温度下 $\log u_e' \sim \sqrt{u_a}$ 的拟合,截距等于 $\log U_e$,实验所拟合的图像如下。

图 2 对不同温度下 $\log u'_e \sim \sqrt{u_a}$ 的拟合

6.2.2 section 2

对 $\log \frac{U_c}{T^2} \sim \frac{1}{T}$ 的拟合实验拟合的图像如下

图 3 对 $\log \frac{U_e}{T^2} \sim \frac{1}{T}$ 的拟合

拟合的方程为

$$\log \frac{u_e}{T^2} = -22921x + 7.5862$$

拟合的方程 R^2 为 $R^2 = 0.9989$,接近 1,直线拟合程度较好

6.3 计算Φ

$$\log \frac{I_e}{T^2} = \log AS - 5.039 \times 10^3 \frac{\phi}{T^2} \tag{1}$$

$$\log \frac{I_e}{T^2} = \log \frac{T_e R}{T^2} \tag{2}$$

$$= \log AS + \log R - 5039 \frac{\phi}{T} \tag{3}$$

对 $\log \frac{U_c}{T^2} \sim \frac{1}{T}$ 拟合的直线斜率为 k=-22921=-50394 ϕ , 所以可得

$$\phi = \frac{k}{-5039} = \frac{-22921}{-5039} = 4.549(w)$$

所以计算出的逸出功大小为

$$W_0' = e\phi = 4.55(ev)$$

测量出来的相对偏差为

$$\frac{W_0'-W_0}{W_0}\times 100\%=0.220264\%$$

6.4 误差原因分析

- 1. 对于温度 T_0 ,线性内插法一定存在一定的误差,所以得到的温度不够准确
- 2. 实验时电压表精度与读数,因为实验数据过 多,每一个实验数据的读取或者调整可能存在 一定的波动,未能准确的读取当时的电压
- 3. 电流表读数时,因为视线的问题,可能存在一 定的误差

7 实验总结

这次实验最主要也是最重要的一点可以说是 里查孙直线法,把原本测量准确会很困难,甚至说 基本上无法测量的量,通过数学公式的变为,变为 避免测量这些复杂的量,而只用测量更少的量,使 用直线拟合即可得出结果,十分的巧妙,也值得学 习。

同时也感谢助教认真的指导,我开始电路连接部分,有一个地方电压表没有正常连接检查了很久,最后在助教的帮助下成功的完成了电路的连接。助教对于其他部分的讲解也很细致,再次感谢!

逸出功的测量

江灿 2019011325 软件02 双日下M

表1灯丝电流I_f与温度T的关系表

I_f(A)	0.500	0.550	0.550	0.650	0.700	0.750
T(K)	1726	1890	1901	1975	2059	2136

表2测量数据

U/V		36.00	55.00	74.00	93.00	112.0	131.0	150.0	U(e)	т	Ue/T2	1/T
I/A	T/K											
0.500		36.41	54.83	71.12	91.86	110.3	129.1	147.8	0.7943	1726	0894234	79374275
		0699366	172821918	32674569	3622636	2380682	2218093	73023323				
		6.94	7.14	7.31	7.46	7.56	7.68	7.78				
		35947045	369821177	39173769	73882747	52179550	3612200	9795969				
0.541		37.01	54.72	73.65	92.28	110.5	129.1	148.0	1.2589	1792	.15941343	58035714
		5844697	2968035	95781858	52479668	1898020	2218093	5525060	1.3361			
		23.87	24.71	25.07	25.51	25.72	26.16	26.64				
		85241900	87274540	1543339	7104586	2709642	5377396	5342204				
0.579		37.02	55.38	73.73	92.27	111.2	129.39	148.0	1.3361	1864	4.743432	6480686

U/	V	36.00	55.00	74.00	93.00	112.0	131.0	150.0	U(e)	Т	Ue/T2	1/T
I/A	T/K											
		1406298	7739820	6174946	57274581	45141061	49725274	5525060	1.837			
		73.57	75.56	77.19	78.60	79.88	81.06	82.05				
		37007560	32919492	5610409	1.90	4380561	8065994	-0785853				
0.617		37.35	55.63	74.13	92.40	111.1	130.0	148.9	1.837	1930	4.298413	181347150
		1646362	35521383	98780479	4918725	40398474	1754250	2458768	1.2589			
		20.19	20.68	21.12	21.48	21.83	22.16	22.46				
		313631894	5505344	16939138	0342770	0537357	5697560	40975192				
0.658		37.56	55.76	74.31	92.87	111.2	130.0	148.7	1.663	1991	3.9161321	02260170
		36213784	72618810)3248198	59082178	345141061	1754250	4260945				
		50.78	52.04	53.04	53.92	54.72	55.46	56.07				
		692696	33728788	60351539	7498835	1460887	9798652	7305560				
0.700		37.18	55.96	74.56	93.36	111.6	130.3	148.9	2.034	2059	3.543242	35672656
		5404877	6416837	18132579	2978633	4090116	1902540	2458768				
		118.7	121.4	123.7	127.5	127.5	129.1	130.5				
		4507189	1 2186867	23696996	551018470	651018476	9262422	56105116				

lg U_e

22921/5039=4.549

逸出功的测量

表1灯丝电流I_f与温度T的关系表

I_f(A)	0.500	0.550	0.550	0.650	0.700	0.750
T(K)	1726	1890	1901	1975	2059	2136

表2测量数据

U/\	,	36.00	55.00	74.00	93.00	1120	131.0	1500		
I/A	T/K			4						
0.50		36.41	54.83	73.12	91.86	-1/0,3 1/8,1	129.1	147.8		
0.500		6.94	7.14 54.72	7.3		7.61 7.56 110.5	7.68	7.78		
0.541		23.87 37.20	24.71 SS.38	25.07 73.73	2S.S) 92.27		26.16	26.64		
0.579		73.57		77-19	78.60	H-79.88		82.0S 148.9		
0.62		37.35 20.19	55.63 20.68	74.13	92.40	21.83	130.0	22.46		
0.66 0.658		37.56 50.78	35.76 52.04	74.7 63.05	92.87 53.92	111-2 54.72	130.0 55.46	148.7		
0.70		37.18	55.96	14.56 1 13 .7%	93.36	111.6	130.3 129.1	148.6		

y: 19 the x: 1/T 积初