POLYNOMIAL COMONOIDS AND BICOMODULES

Recall the substitution product of polynomials P and Q, denoted $P \triangleleft Q$.

- A position a in $P \triangleleft Q$ consists of a position a_{base} in P and positions a_f in Q for each direction f from a_{base} .
- A direction from position a in $P \triangleleft Q$ consists of a direction f from a_{base} and a direction g from a_f .

We denote such a direction from such a position in a substitution product by $f \cdot g$.¹ Accordingly, id, will denote the unique direction from the unique position in the unit for substitution id₄ (a.k.a. the polynomial y).²

Note the following identity for transformations α and β between polynomials.

$$(\alpha \triangleleft \beta)_a^{\sharp}(f \bullet g) = \underbrace{\alpha_{(a_{\text{base}})}^{\sharp}(f)}_{\bullet} \bullet \beta_{(a_{\bigstar})}^{\sharp}(g).$$

Or in brief, "we have $(\alpha \triangleleft \beta)^{\sharp}(f \cdot g) = \alpha^{\sharp}(f) \cdot \beta^{\sharp}(g)$ whenever this makes sense."³

Proposition 1. Polynomial comonoids are categories.

Proof. Let C be a polynomial comonoid. Denote counit by ε and comultiplication by δ .

¹Be aware there may be other directions named $f \triangleleft g$ from other positions in $P \triangleleft Q$.

²Given directions f, g, and h respectively belonging to polynomials P, Q, and R, the directions of the form (f • g) • h belonging to $(P \lhd Q) \lhd R$ and the directions of the form f • (g • h) belonging to $P \lhd (Q \lhd R)$ are identified under the relevant monoidal coherence isomorphism. Hence brackets can be omitted.

Similarly, for any direction f belonging to a polynomial P, we have that $\mathrm{id}_{\blacktriangleleft} \circ f$ and $f \circ \mathrm{id}_{\blacktriangleleft}$ (respectively belonging to $\mathrm{id}_{\dashv} \circ P$ and $P \circ \mathrm{id}_{\dashv}$) are both canonically identified with f.

³Meaning, $(\alpha \triangleleft \beta)_a^{\sharp}(f \bullet g)$ exists \iff there are u and v such that $\alpha_u^{\sharp}(f) \bullet \beta_v^{\sharp}(g)$ actually describes a direction from a; in this case the two sides are equal.

⁽We are assuming the analogue of this property holds for α and β themselves: if any $\alpha_u^{\sharp}(f)$ describes a direction from a, then $\alpha_a^{\sharp}(f)$ is defined with that value — and likewise for β . This is trivially so if across the domains of α and β we use different names for different directions.)

Observe first that the right identity law forces $(\delta_1(a))_{\text{base}} = a$ for all $a \in C(1)$. Therefore the expression $(\delta_1(a))_f$ for $f \in C[a]$ has a well-defined meaning. We gather the data for a category C.

- The set of objects Ob(C) is C(1), i.e., the set of positions in C.
 - The set of arrows $Arr(\mathcal{C})$ is $\sum_{a \in C(1)} C[a]$, i.e., the set of all directions in C.
 - The source map s sends each $f \in C[a]$ to a. (Hence the polynomial C is described by the bundle $Arr(\mathcal{C}) \xrightarrow{s} Ob(\mathcal{C})$.)
 - The target map t sends each $f \in C[a]$ to $(\delta_1(a))_f$.
 - The identity map e sends each $a \in C(1)$ to $\varepsilon_a^{\sharp}(\mathrm{id}_{\bullet})$.
- The composition map m sends each pair of compatible arrows $f \in C[a], g \in C[t(f)]$ to $\delta_a^{\sharp}(f \cdot g)$.

Next, observe that if we have such prerequisite data (not laws) for a category, subject to just the law s(e(a)) = a, then we find that further imposing the left identity law m(e(s(f)), f) = f (requiring that both sides are defined whenever one is) automatically forces the law t(e(a)) = a to hold.⁴ Similarly, if we have the law s(m(f,g)) = s(f) as well as t(e(a)) = a, then the associativity law m(m(f,g),h) = m(f,m(g,h)) forces t(m(f,g)) = t(g).⁵

We verify the data from above satisfy the laws of a category.

- The law s(e(a)) = a is true by construction; e(a) is a direction from the position a.
- The law s(m(f,g)) = s(f) is true by construction; m(f,g) is a direction from the position s(f).
- The left identity law m(e(s(f)), f) = f is directly expressed by the comonoid left identity law, which identifies $\delta^{\sharp}(\varepsilon^{\sharp}(\mathrm{id}) \cdot f)$ with f.
- The right identity law m(f, e(t(f))) = f is directly expressed by the comonoid right identity law, which identifies $\delta^{\sharp}(f \cdot \varepsilon^{\sharp}(\mathrm{id}))$ with f.

⁴We have m(e(s(e(a))), e(a)) = e(a), since the right side is defined. The left side reduces to m(e(a)), e(a). This expression only makes sense if t(e(a)) = s(e(a)), which is a.

⁵Given that f and g are composable, we have m(m(f,g),e(t(g)))=m(f,m(g,e(t(g)))), since the right side is defined. The left side only makes sense if t(f,g)=s(e(t(g))), which is t(g).

- The associativity law m(m(f,g)h) = m(f,m(g,h)) is directly expressed by the comonoid associativity law, which identifies $\delta^{\sharp}(\delta^{\sharp}(f \cdot g) \cdot h)$ with $\delta^{\sharp}(f \cdot \delta^{\sharp}(g \cdot h))$.
- The law t(e(a)) = a is forced to hold (due to the comonoid left identity law).
- The law t(m(f,g)) = t(g) is forced to hold (due to the comonoid associativity law).

Conversely, let \mathcal{C} be a category. We immediately obtain the bundle $\operatorname{Arr}(\mathcal{C}) \stackrel{s}{\to} \operatorname{Ob}(\mathcal{C})$. Let C denote the polynomial described by this bundle (the "outfacing polynomial" of \mathcal{C}); we exhibit a comonoid struture on C.

- The counit ε singles out the identity in each object's set of outfacing maps.
- The comultiplication δ endows each object a with the map δ_a^{\sharp} sending $f \cdot g$ to $f \circ g$ for all arrows of the form $f : a \to b, g : b \to c$ (through which the map δ_0 is implicit).

The above processes of translation between the prerequisite data (not laws) for a category subject to just s(e(a)) = a and s(m(f,g)) = g, and the prerequisite data (not laws) of a polynomial comonoid subject to just $(\delta_1(a))_{\text{base}} = a$, are inverse by construction. Moreover, we saw earlier that the identity and associativity category laws, in this context, directly translate to the identity and associativity comonoid laws.

Proposition 2. A polynomial right comodule amounts to a family of copresheaves.

Proof. Let D be a polynomial comonoid and let M be a right comodule on D. Denote right comodule comultiplication by ρ .

Let \mathcal{D} be the category corresponding to D.

Proposition 3. A polynomial left comodule amounts to a copresheaf and a presheaf on that copresheaf's category of elements.

Proof. Let C be a polynomial comonoid and let M be a left comodule on C. Denote left comodule comultiplication by λ .

Let \mathcal{D} be the category corresponding to D.

Proposition 4. Polynomial bicomodules are prafunctors between presheaf categories.

Proof. Let C and D be polynomial comonoids and let M be a bimodule from C to D.

We will show that M amounts to a profunctor⁶ $(\int_{\mathcal{C}} R) \hookrightarrow \mathcal{D}$, where \mathcal{C} is the category corresponding to C, $\int_{\mathcal{C}} R$ is the category of elements of the copresheaf R on \mathcal{C} induced by M as a left comodule, and \mathcal{D} is the category corresponding to D. Such a profunctor is equivalent to a prafunctor $\mathbf{Set}^{\mathcal{D}} \to \mathbf{Set}^{\mathcal{C}}$. Indeed,

 \cong

Proposition 5. Maps between bicomodules are natural transformations between prafunctors.

Proof.

Proposition 6. Composition of bicomodules is composition of prafunctors.

⁶The notation $\mathcal{A} \hookrightarrow \mathcal{B}$ for a profunctor $\mathcal{A}^{op} \times \mathcal{B} \to \mathbf{Set}$ is due to Michael Shulman.

Proof. Recall bicomodules from D to 0 are copresheaves on D (and maps between such bicomodules are copresheaf maps). Hence each bicomodule M from D to D induces a functor F_M from D-copresheaves to C-copresheaves by precomposition. Accordingly, we have $F_{M \triangleleft_D N} \cong F_N \ ^\circ, F_M$ (for bicomodules M from C to D and N from D to E).

We show that the prafunctor corresponding to the bimodule M is F_M .