数字电子技术基础(A)试 题

班号	
姓名	

题号	_	 三	四	五.	六	七	八	卷面	平时	总分
分数										

注	本题得分 一、(12分)填空和选择(每空1分) (1)进制为一千的计数器至少应使用个触发器实现。
意	(2)集电极开路门使用时应注意在输出端接。
行	(3) 32 选 1 数据选择器有个选择变量。
为	(4)函数式 $Y=AB+\overline{BCD}$,写出其对偶式 $Y'=$ 。
规	(5) 相同供电电源的 CMOS 门电路与 TTL 门电路相比,门的噪声容限
范	更大;门的静态功耗更低。
	(6)模数转换时,要求能分辨 ADC 输入满量程 0.1%的变化,则至少需要使用
	位的 ADC。若信号频率为 20kHz,则要求该 ADC 采样频率至少为kHz。
遵	(7) 由与非门构成的基本 RS 触发器,其约束条件是。
守	(8)下列器件的信号一定不能和其他输出信号接在一起的是。
计考场纪	 (a) RAM 的数据信号; (b) ROM 的数据信号; (c) 74LS138 的输出信号。 (9) 下列说法正确的是。
律 主領事核	(a)输入悬空时,TTL 门电路的输入端相当于接低电平; (b)输入悬空时,CMOS 门电路的输入端相当于接低电平; (c)输入悬空时,CMOS 门电路的输入端相当于接高电平; (d)实际应用中,门电路的输入端应尽量避免悬空。 (10)用万用表测量一个标准 TTL 门电路的输出信号,发现其值为 1.5V,可能的情况有(多选):
·····································	(a)输出端处于高阻态; (b)两输出信号短接; (c)输出为脉冲信号; (d)驱动门过载。

二、(8分)简答题。

(1) 画出函数 F_1 和 F_2 的卡诺图,并求出 F_1 和 $\overline{F_2}$ 的最简与或式。

$$F_1(A,B,C,D) = \overline{A} \overline{B}D + \overline{A}B + ABC$$

 $F_2(A,B,C,D) = \sum m(0,1,2,7,11,14,15) + \sum d(8,9,10)$

(2) 图 2 中门电路 G_1 和 G_2 为 TTL 门电路,并假设传输门导通电阻可忽略,分别填写 C_1 和 C_2 不同电平下电压表 V_1 和 V_2 电压值(TTL 门电路输出高电平 3.6V,输出低电平 0.3V):

三、(8分)设计一个故障显示电路。要求为:

当只有电机 A 发生故障时,故障指示灯 F 以 4Hz 的频率闪烁; 当只有电机 B 发生故障时,故障指示灯 F 以 2Hz 的频率闪烁; 当电机 A、B 同时发生故障时,故障指示灯 F 成亮; 当电机 A、B 均无故障时,故障指示灯 F 灭。

已知时钟信号为 8Hz; 用变量 A、B 表示电机状态,"1"表示电机发生故障; 用变量 F 表示指示灯状态,"1"表示灯亮。试求:

- (1) 在图 3 中利用 8Hz 时钟和 2 个 D 触发器得到 4Hz 和 2Hz 的时钟信号;
- (2)继续在图 3 中将上述故障显示电路设计实现。

图 3

本题得分

四、(8分) 简答题

(1) 要实现异步清零的 12 进制计数器,更正下列 verilog 程序的错误。
module Cnt0 (clk, rst, Q);
input clk, rst;
output [2:0] Q;
reg [2:0] Q;
always@(posedge clk)
begin
 if (!rst)
 Q = 0;
else
 Q = Q + 1'b1;
if (Q >= 12)
 Q = 0;
end
endmodule

(2) 根据下列程序画出完整的状态转换图(要求按照 Q[2]、Q[1]、Q[0]的顺序表示输出状态)

```
module Cnt1 (clk, rst, Q); input clk, rst; output [2:0] Q; reg [2:0] Q; always@( posedge clk ) if( !rst ) Q <= 3\text{'b}000; \\ else \\ begin \\ Q[0] <= \sim Q[0]; \\ Q[1] <= Q[0]^{\circ}Q[1]; \\ Q[2] <= Q[0]^{\circ}Q[1]; \\ end \\ endmodule
```

五、(8分) 由 16 进制同步加法计数器 74LS161 和存储器构成的电路如图 5 所示。

- (1) 将 D_0 、 D_3 用 A_3 、 A_2 、 A_1 、 A_0 的最小项表示 (按 $A_3A_2A_1A_0$ 的顺序确定最小项编号);
- (2) 画出 Q_D 、 Q_C 、 Q_B 、 Q_A 完整的状态转换图;
- (3)在正常计数循环内, D_1 、 D_2 平时输出低电平,当计数器输出为最小值时, D_1 输出高电平;当计数达到最大值时, D_2 输出高电平,为实现该功能,请直接在图上画出 D_1 、 D_2 的阵列。

六、(8分) 由 2-8 分频异步加法计数器 74LS93 和 555 定时器构成电路如图 6(a)所示:

- (1) 写出虚线框内电路的名称;
- (2) CP 时钟信号频率为 20kHz,假设计数器初态为 0,在图 6(b)中画出 u_I 、 u_O 的波形。

七、(10分)由触发器、74LS138及 DAC 芯片构成的电路如图 7 所示。

- (1) 写出图 7(a)中各触发器的状态方程;
- (2) 按 $Q_2Q_1Q_0$ 的顺序画出完整的状态转换图,指出其计数进制和计数方向;
- (3) 在图 7(b)中,已知当 DAC 的输入只有最低有效位为 1 时,输出模拟电压为 10mV,试画出计数器一个计数循环内 D/A 转换器的输出电压波形,必须标注电压值。

八、(8分) 某移位寄存器型计数器如图 8(a)所示。已知该计数器的计数循环中并不包含所有的 8 个输出状态,如果上电后计数器的初始状态位于计数循环之外,该计数器能够实现自启动。该计数器在某 3 次不同的上电启动过程 (用 A、B、C 标记)

的初始阶段,恰好观测到Q。输出如下序列:

- A) 000111001110011100111001110011
- B) 010011100111001110011100111001
- C) 101110011100111001110011100111
- (1) 请指出该计数器的进制数是多少;
- (2) 在表 A、B、C 中将上述三次上电启动过程最初 10 个周期的计数器状态转换表补充完整;
- (3) 画出计数器输出 $Q_2Q_1Q_0$ 的完整状态转换图;
- (4) 在图 8(b)所示的电路的基础上,用必要的逻辑门实现图 8(a)中的反馈逻辑电路,使计数器实现上述功能。(注意不能改变其移位寄存器型计数器的属性,即不能改动图 8(b)中的已有连接)

表A过程A状态转换表

态序	Q_0	Q_1	Q_2			
0			0			
1			0			
2			0			
3			1			
4			1			
5			1			
6			0			
7			0			
8			1			
9			1			

表B过程B状态转换表

态序	Q_0	Q_1	Q_2
0			0
1			1
2			0
3			0
4			1
5			1
6			1
7			0
8			0
9			1

表C过程C状态转换表

态序	Q_0	Q_1	Q_2
0			1
1			0
2			1
3			1
4			1
5			0
6			0
7			1
8			1
9			1

图 8(b)