Joint and Marginal Distributions

1. Definition:

Let x and y be 2 r.v.. The set of all P((x,y) eB), YB ER2 is the joint dist of x and y.

a. Joint CDF:

Let x and y be 2 (-v.. The joint cor of x and y is the function Fx,y (x,y): R > [0,1] defined by Fx,y (x,y) = P(X \in x, y \in y). The comma means "and." I, e, Fx, 5(x, 9) = P(x + x n y + y) = P(x + x, y + y).

3. Marginal Dist for Joint CDF:

Note: (x 500, y 500) =1

1. Fx,y (x = -0, Y = -0) = 0

2. Fx,y (x5-0, 464) = 0

3. Fx, y (x = x, y = -0) = 0

4. Fx, 9

4. Joint PMF:

Let x and y be 2 discrete v.v. The joint PMF of x and y is the function Px,y: R2-> [0,1] be defined by Px,y (x,y) = P(x=x, y=y).

6. Joint PDF:

A function, f, is a joint PDF if it satisfies

1.
$$f_{x,y}(x,y) \ge 0 \ \forall (x,y) \in \mathbb{R}^2$$

2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{x,y}(x,y) \ dx dy = 1$

1.
$$f_{x}^{(x)} = \int_{-\infty}^{\infty} f_{x,y}^{(x,y)} dy$$

2. $f_{y}^{(y)} = \int_{-\infty}^{\infty} f_{x,y}^{(x,y)} dx$

a) Find Fx,y (2,0)

$$F_{x,y}^{(2,0)} = P(x \le 2, y \le 0)$$

= $\frac{1}{12} + \frac{1}{12}$
= $\frac{1}{6}$

b) Find the marginal joint pmf of x.

$$p_{x}(x) = \sum_{y} p_{x,y}(x,y)$$

Xe	1	2	3	4	5	6	Py (4)
0	12	12	12	1/2	七	九	1/2
1	市	七	12	12	九	12	之
Px	16	76	76	16	16	6	

×	Px(x)	-	Marginal	Joint	PMF	of x
1	6		· ·			
2	16					
3	16					
4	16					
5	16					
6	16					

c) Find the marginal joint pmf of 9

9	Py(Y)	< M	larginal	Joint	PMF	of	9
0	之						
11	12						

E.g. 2
$$f_{x,y}^{(x,y)} = \begin{cases} kxy, & 0 \le x \le 1, & 0 \le y \le 1 \\ 0, & o \text{ therwise} \end{cases}$$

$$=\frac{k}{2}\left[\frac{y^2}{2}\right]$$

b) Find
$$P(x \in \frac{1}{2}, y \in \frac{3}{4})$$
 $= 4 \int \int xy \, dx \, dy$

$$= 4 \int y(\frac{1}{2} - 0) \left[\frac{x^2}{2} \right]^{\frac{1}{6}} \, dy$$

$$= \frac{4}{16} \int y \, dy$$

$$= \frac{1}{4} \left[\frac{y^2}{2} \right]^{\frac{3}{4}} \, dy$$

$$= \frac{1}{8} \left[\frac{9}{16} \right]$$