[4]

OR iii Using Floyd's algorithm, find all pair shortest path for the graph. 6

Q.6 Attempt any two:

- i. Explain Graph coloring in Backtracking with the help of an example. 5
- ii. Explain in detail n-queens problem with an example.
- iii. Briefly explain NP-Hard and NP-Completeness with the help of an 5 example

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2022 CS3CO13 Design & Analysis of Algorithms

Programme: B.Tech. Branch/Specialisation: CSE

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	Which of the following is the complexity of? $for(i=1;i < n;i+20)$						
		•	print("Hello");					
		} print(frenc						
		*	(b) O(n)	(c) O(1)	(d) $O(\sqrt{n})$			
	ii.		. , . ,					
	11.				Jpper bound of nlogn?			
		(a) $O(n^2)$	(b) O(n)	(c) $O(2^n)$	(d) $O(n^n)$			
	iii.	Algorithms like merge sort, quick sort and binary search are based on						
		(a) Greedy algorithm		(b) Divide and Conquer algorithm				
		(c) Hash table		(d) Parsing				
	iv.	What is the worst-case time complexity of Quick Sort?						
		(a) O(nlog n)	(b) O(log n)	(c) O(n)	(d) $O(n^2)$			
	v.	Four Jobs wit	th following dea	adlines and pr	rofits			
			JobID	Deadline	Profit			
			J1	4	20			
			J2	1	10			
			J3	1	40			
			J4	1	30			
		Which of the following is maximum profit sequence of Jobs?						
		(a) J3->J1	(b) J3->J2	(c) J3->J2->	>J1 (d) J3->J2->J4			
	vi.	The minimum number of record movements required to merge five						
		files A (with 5 records), B (with 10 records), C (with 20 records), D						
		(with 30 records) and E (with 30 records) is:						
		•	(b) 205	· · · · · · · · · · · · · · · · · · ·				
		\ \ \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	() =	() = - =	()			

P.T.O.

- Which of the following problems is NOT solved using dynamic 1 programming?
 - (a) 0/1 knapsack problem
 - (b) Matrix chain multiplication problem
 - (c) Edit distance problem
 - (d) Fractional knapsack problem
- viii. Which of the following is/are property/properties of a dynamic 1 programming problem?
 - (a) Optimal substructure
- (b) Overlapping subproblems

1

- (c) Greedy approach
- (d) Both (a) and (b)
- Graph Coloring is which type of algorithm design strategy?
 - (a) Backtracking
- (b) Greedy
- (c) Dynamic Programming (d) Divide and Conquer
- A search technique where we keep expanding nodes with least 1 accumulated cost so far is called .
 - (a) Hill climbing
- (b) Branch and bound
- (c) Dynamic Programming (d) Divide and Conquer
- Explain space and time complexity in algorithms. Q.2 i.
 - ii. Solve the recurrences using Master's theorem:
 - (a) $T(n) = 2T(n/2) + \sqrt{n}$
 - (b) $T(n) = 8T(n-2) + n^3/\log n$
 - (c) $T(n) = 3T(n-4) + n^2$
- Explain Asymptotic Notations. What is the upper bound of f(n)=n!? OR iii.
- What is the significance of Divide and Conquer Strategy? O.3 i. 2
 - Sort the following using
 - (a) Quick Sort (b) Merge Sort
 - 38, 81, 22, 48, 13, 69, 93, 14, 45, 58, 79, 72.
- Explain Strassen's Matrix multiplication in detail. How is it better 8 OR iii. than normal 2x2 matrix multiplication in terms of complexity?
- Define Greedy Strategy. Differentiate between Optimal and Feasible 4 Q.4 i. solution.

A Knapsack capacity is 100. The weights and values of 5 objects is as 6 follows:

Weight (Wi)	10	20	30	40	50
Values (Pi)	20	30	66	20	60

Solve the Knapsack problem using Greedy Strategy & find the maximum profit that can be obtained.

Given a digraph with non-negative edge weights G=(V,E). Determine 6 OR iii. the distance and a shortest path from the source vertex 'A' to every vertex in the digraph using Dijkstra's Algorithm. Make a table to show order of selected nodes & updated distances.

- What do you mean by Dynamic programming? Write any two 4 Q.5 i. benefits of using dynamic programming.
 - Consider a Multistage graph with 4 stages & find the path from 6 source to sink using Forward approach with appropriate steps.

P.T.O.

Marking Scheme CS3CO13 Design & Analysis of Algorithms

Q .1	i.	Which of the following is the complexity of?				
		for(i=1;i < n;i+20)				
		{ print("Hello");				
		}				
		(b) O(n)				
	ii.	Which of the following is not a possible Upper bound of nlogn?				
		(b) $O(n)$				
	iii.	Algorithms like merge sort, quick sort and binary search are based on	rge five 1 brds), D			
		(b) Divide and Conquer algorithm				
	iv.	What is the worst-case time complexity of Quick Sort?				
		$(d) O(n^2)$				
	v.	Four Jobs with following deadlines and profits				
		JobID Deadline Profit				
		J1 4 20				
		J2 1 10				
		J3 1 40				
		J4 1 30				
		Which of the following is maximum profit sequence of Jobs?				
	(a) J3->J1					
	vi.	The minimum number of record movements required to merge five	1			
	files A (with 5 records), B (with 10 records), C (with 20 records					
		(with 30 records) and E (with 30 records) is:				
		(b) 205				
	vii.					
		programming?				
		(d) Fractional knapsack problem				
	viii.	Which of the following is/are property/properties of a dynamic	1			
		programming problem?				
		(d) Both (a) and (b)				
	ix.					
		(a) Backtracking				
	х.	A search technique where we keep expanding nodes with least	1			
		accumulated cost so far is called				
		(b) Branch and bound				

Q.2	i.	Explain space complexity in algorithms	2 Marks	4
	Time complexity in algorithms.		2 Marks	
	ii.	(a)	2 Marks	6
		(b)	2 Marks	
		(c)	2 Marks	
OR	iii.	Asymptotic Notations	5 Marks	6
		Upper bound	1 Mark	
Q.3	i.	Significance of Divide and Conquer Strategy	2 Marks	2
	ii.	(a) Quick Sort	4 Marks	8
		(b) Merge Sort	4 Marks	
OR	iii.	Detailed explanation	6 Marks	8
		Comparison	2 Marks	
Q.4	i.	Definition	2 Marks	4
		Difference (at least 1)	2 Marks	
	ii.	As per solution	6 Marks	6
OR	iii.	Solution	4 Marks	6
		Table	2 Marks	
Q.5	i.	Definition	2 Marks	4
		Any two benefits	2 Marks	
	ii.	As per solution	6 Marks	6
OR	iii	As per solution	6 Marks	6
Q.6		Attempt any two:		
	i.	As per the explanation	5 Marks	5
	ii.	As per the explanation	5 Marks	5
iii.		NP-Hard and NP-Completeness	2.5 Marks	5
		with the help of an example	2.5 Marks	