resolucao

February 18, 2024

1 Proposta de resolução da TP1 (Análise de dados)

1.1 1.

A PORDATA, Base de Dados de Portugal Contemporâneo (https://www.pordata.pt/), constitui uma base de dados com "informação sobre múltiplas áreas da sociedade, para Portugal, municípios e países europeus". Em Pordata>Portugal>Ambiente, Energia e Território>Poluição Atmosférica e Clima, encontra o número de dias sem chuva em estações meteorológicas portuguesas, nas últimas décadas.

1.1.1 a)

Importe da folha de calculo os dados numéricos com os respetivos rótulos de linhas e de colunas. Selecione apenas as células que contém os dados relevantes.

1.1.2 Resolução:

	Unnamed: 0	Viana do Castelo	Bragança	Porto	Castelo Branco	Lisboa	\
0	1960	0	195	0	243	212	
1	1961	0	212	0	263	253	
2	1962	0	269	0	290	267	
3	1963	0	212	0	242	225	
4	1964	0	256	0	283	262	
	•••	•••	•••		•••		
56	2016	212	228	218	253	245	
57	2017	237	279	245	292	290	
58	2018	181	231	185	245	255	
59	2019	199	258	215	263	258	
60	2020	180	234	201	240	247	

	Beja	Faro	Funchal	Angra	do	Heroísmo
0	241	0	292			0
1	271	0	317			0

2	283	0	311	0
3	232	0	291	0
4	278	0	307	0
			•••	•••
56	244	283	279	202
57	284	315	303	190
58	224	275	277	193
59	267	312	323	197
60	0	288	291	185

[61 rows x 10 columns]

1.1.3 b) Por visualização direta dos dados, verifique os rótulos das colunas. Corrija, se necessário, o(s) nome(s) dos rótulos das colunas.

1.1.4 Resolução:

- É conveniente renomear a 1ª coluna
- É igualmente aconselhavel eliminar os acentos os espaços e simplificar os nomes dos rótulos

Empty DataFrame

Columns: [Unnamed: O, Viana do Castelo, Bragança, Porto, Castelo Branco, Lisboa, Beja, Faro, Funchal, Angra do Heroísmo]

Index: []

	ano	Viana	Bragança	Porto	C_Branco	Lisboa	Beja	Faro	Funchal	Angra
0	1960	0	195	0	243	212	241	0	292	0
1	1961	0	212	0	263	253	271	0	317	0
2	1962	0	269	0	290	267	283	0	311	0
3	1963	0	212	0	242	225	232	0	291	0
4	1964	0	256	0	283	262	278	0	307	0
	•••	•••				•••	•••	•••		
56	2016	212	228	218	253	245	244	283	279	202
57	2017	237	279	245	292	290	284	315	303	190
58	2018	181	231	185	245	255	224	275	277	193
59	2019	199	258	215	263	258	267	312	323	197
60	2020	180	234	201	240	247	0	288	291	185

[61 rows x 10 columns]

[3]: print(df)

	ano	Viana	Bragança	Porto	${\tt C_Branco}$	Lisboa	Beja	Faro	Funchal	Angra
0	1960	0	195	0	243	212	241	0	292	0
1	1961	0	212	0	263	253	271	0	317	0
2	1962	0	269	0	290	267	283	0	311	0
3	1963	0	212	0	242	225	232	0	291	0
4	1964	0	256	0	283	262	278	0	307	0
	•••	•••		•••		•••	•••	•••		
56	2016	212	228	218	253	245	244	283	279	202
57	2017	237	279	245	292	290	284	315	303	190
58	2018	181	231	185	245	255	224	275	277	193
59	2019	199	258	215	263	258	267	312	323	197
60	2020	180	234	201	240	247	0	288	291	185

[61 rows x 10 columns]

1.1.5 c)

- 1.1.6 i) Construa um gráfico com os diagramas de extremos e quartis (box plot) que permita comparar os números de dias sem chuva nas estações meteorológicas da base de dados.
- 1.1.7 ii) Qual a estação que registou mais e a que registou menos dias sem chuva nas últimas décadas? Analise o gráfico, referindo a concentração e a dispersão dos dados;

1.1.8 d) Comente a existência de zeros, nos dados e nos gráficos. Como podemos interpretar estes valores? Substitua todos os zeros por NaN e repita o exercício anterior. Quais as diferenças mais notórias?

1.1.9 Resolução:

Não é credivel que num ano não tenha havido pelo menos um dia de chuva. Os zeros significam que **não há dados relativos a esse anos/estações**.

```
[5]: import numpy as np
    df.replace(0, np.nan, inplace=True)
    boxp2=df.boxplot(by = None, column = estacoes, grid = False)
    plt.suptitle('Dias sem chuva')
    plt.title('zeros substituidos por NaN')
    plt.show()
```

Dias sem chuva zeros substituidos por NaN

[6]:	##### resumo estatistico	
	<pre>round((df.iloc[:,1:10]).describe(),2)</pre>	

[6]:		Viana	Bragança	Porto	C Branco	Lighoa	Beja	Faro	Funchal	\
[0].		Viana	Di agança	10100	C_Dranco	LISUUA	Deja	raio	runchai	`
	count	51.00	61.00	54.00	61.00	61.00	60.00	53.00	61.00	
	mean	210.86	239.13	215.56	265.84	254.59	262.60	283.40	301.33	
	std	16.87	18.18	19.06	24.25	17.59	17.51	16.36	15.72	
	min	178.00	195.00	154.00	225.00	208.00	219.00	247.00	252.00	
	25%	201.50	224.00	203.00	246.00	244.00	250.00	273.00	291.00	
	50%	210.00	240.00	215.00	266.00	256.00	266.00	285.00	303.00	
	75%	224.50	254.00	227.00	279.00	266.00	275.25	295.00	311.00	
	max	248.00	279.00	251.00	353.00	290.00	301.00	315.00	328.00	

	Angra
count	51.00
mean	177.02
std	15.84
min	143.00
25%	167.50

```
50% 175.00
75% 189.00
max 208.00
```

1.1.10 e) Refaça os gráficos restringindo às estações meteorológicas do continente e removendo os outliers. Comente os resultados;

```
[7]: dfcont = df.iloc[:,0:8] # DataFrame com apenas as estações do continente # remover outliers
```

Para remover os "outliers" de um DataFrame iremos remover as linhas que contenham "outliers".

```
[8]: def remover_outliers(dataframe, threshold=1.5):
    Q1 = dataframe.quantile(0.25)
    Q3 = dataframe.quantile(0.75)
    AIQ = Q3 - Q1
    linhas_filtradas = ~((dataframe < (Q1 - threshold * AIQ)) | (dataframe > (Q3 + threshold * AIQ))).any(axis=1)
    return dataframe[linhas_filtradas]

dfcont_sem_outliers = remover_outliers(dfcont, threshold=1.5)
```

```
[9]: cols_list = (dfcont_sem_outliers.columns.tolist())[1:8]
  boxp3=dfcont_sem_outliers.boxplot(by = None, column = cols_list, grid = False)
  plt.suptitle('Dias sem chuva')
  plt.title('Outliers removidos')
  plt.show()
```

Dias sem chuva Outliers removidos

1.1.11 f) Descreva em termos de quartis a distribuição do número de dias sem chuva em Castelo Branco. Repita com os dados relativos ao Porto;

```
[10]: dfcont_sem_outliers['Viana'].quantile([0,0.25, 0.5, 0.75,1])
[10]: 0.00
              180.0
      0.25
              202.0
      0.50
              210.0
      0.75
              225.0
      1.00
              248.0
      Name: Viana, dtype: float64
[11]: dfcont_sem_outliers['Porto'].quantile([0,0.25, 0.5, 0.75,1])
[11]: 0.00
              185.0
      0.25
              203.0
      0.50
              215.0
      0.75
              228.0
      1.00
              251.0
```

Name: Porto, dtype: float64

```
[12]: dfcont_sem_outliers['Porto'].quantile([0,0.25, 0.5, 0.75,1])

[12]: 0.00     185.0
     0.25     203.0
     0.50     215.0
     0.75     228.0
     1.00     251.0
     Name: Porto, dtype: float64
```

1.1.12 g) Construa uma tabela de frequências para o número de dias sem chuva no Porto. Repita o exercício com os dados em classes definidas empiricamente e compare com a utilização da regra de Sturges;

```
[13]: Dias_sem_chuva_Porto = pd.crosstab(df['Porto'], 'numero de dias')
Dias_sem_chuva_Porto
```

```
[13]: col_0 numero de dias
      Porto
      154.0
                            1
      185.0
                            1
                            2
      188.0
      189.0
                            1
      191.0
                            1
      198.0
                            1
      200.0
                            1
      201.0
                            2
      202.0
                            2
                            4
      203.0
      204.0
                            1
      205.0
                            1
      207.0
                            2
      209.0
                            2
      210.0
                            1
      212.0
                            1
      215.0
                            4
      217.0
                            1
      218.0
                            2
      220.0
                            1
      221.0
                            1
      222.0
                            2
      223.0
                            3
      224.0
                            1
      227.0
                            2
      229.0
                            2
      231.0
                            1
```

232.0	1
237.0	1
240.0	1
241.0	1
242.0	1
245.0	2
249.0	1
250.0	1
251.0	1

não aconselhável para dados numéricos... é conveniente personalizar as classes (intervalos). Por exemplo usar os intervalos com extremos nos pontos indicados na lista "Fclasses"

```
[14]: Fclasses=[150,175,200,225,250,275,300]
# definir classes

Porto_myclasses = pd.cut(dfcont_sem_outliers['Porto'],bins=Fclasses)

cross_tab_result = pd.crosstab(index=Porto_myclasses, columns=['numero de_outliers])

cross_tab_result
```

```
[14]: col_0 numero de dias
Porto
(175, 200] 6
(200, 225] 31
(225, 250] 13
(250, 275] 1
```

1.1.13 Classes definidas pela regra de Sturges:

Na regra de Sturges as classes, de um conjunto de dados numérico X, têm todas a mesma amplitude e o número de classes (nc) é dado por

$$nc = int(1 + log_2(n))$$
, onde, n é o tamanho do conjunto X

e a amplitude de cada classe é dada por

$$xc = \frac{\max(X) - \min(X)}{nc}$$

```
assert data.ndim == 1
          n = data.size
          width = 1.0 + np.log2(n)
          nbins = math.ceil((data.max() - data.min()) / width)
          nbins = max(1, nbins)
          return nbins
      # transformar Pandas. Series data em np.array
[16]: #Porto_nan_removed=dfcont_sem_outliers['Porto'].dropna() # remover_NaN
      Porto_nan_removed=(dfcont_sem_outliers['Porto'])[~dfcont_sem_outliers['Porto'].
       →isnull()]
      Porto1=Porto_nan_removed.to_numpy(dtype=None, copy=False) # converter Pandas.
       ⇔series para numpy.narray
      print(Porto1)
     [222. 212. 210. 237. 201. 242. 223. 231. 223. 188. 200. 207. 204. 223.
      215. 198. 221. 203. 203. 203. 218. 222. 227. 240. 202. 209. 205. 202.
      209. 232. 220. 191. 215. 203. 207. 249. 250. 229. 251. 217. 189. 215.
      245. 229. 224. 241. 218. 245. 185. 215. 201.]
[17]: nc=sturge_rule_bins(Porto1)
      Porto sturges classes = pd.cut(Porto nan removed,bins=10)
      sturge_tab_result = pd.crosstab(index=Porto_sturges_classes, columns=['dias sem_u
       ⇔chuva'])
      sturge_tab_result
```

[17]:	col_0		dias	sem	chuva
	Porto				
	(184.93	4, 191.6]			4
	(191.6,	198.2]			1
	(198.2,	204.8]			10
	(204.8,	211.4]			6
	(211.4,	218.0]			8
	(218.0,	224.6]			8
	(224.6,	231.2]			4
	(231.2,	237.8]			2
	(237.8,	244.4]			3
	(244.4,	251.0]			5

1.1.14 h)

Construa um gráfico que permita visualizar a forma da distribuição do número de dias sem chuva no Porto. O que pode observar no gráfico? Analise a tabela com as frequências observadas no gráfico;

Histograma dos números de dias sem chuva (classes obtidas pelo método de Sturges)


```
[19]: Porto_nan_removed.plot(kind='hist', bins=20, edgecolor='black', color='skyblue')
plt.title('Histograma dos números de dias sem chuva (Com 20 classes)')
plt.show()
```



```
[20]: Porto_nan_removed.plot(kind='line')
plt.show()
```


1.1.15 i)

1.1.16 Analise graficamente a evolução temporal do número de dias sem chuva no Porto. O que conclui? Repita a análise para o número de dias sem chuva em Faro.

```
[26]: df.plot(x='ano',y='Porto',kind='line')
plt.title('Histograma dos números de dias sem chuva')
plt.show()
```



```
[29]: df.plot(x='ano',y=['Porto','Faro'],kind='line')
    plt.title('Histograma dos números de dias sem chuva (Porto vs. Faro)')
    plt.show()
```


[]: