21:26 JAN 19, 2004 ID: 7136522556

TEL NO: 7136522556

#0831 PAGE: 5/20

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Cancelled)
- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Cancelled)
- 5. (Cancelled)
- 6. (Cancelled)
- 7. (Cancelled)
- 8. (Cancelled)
- 9. (Cancelled)
- 10. (Cancelled)
- 11. (Cancelled)
- (Currently amended): A ball valve for handling very corrosive fluids and abrasive solid particles in a pressure leaching process, comprising:
 - a valve body;
 - a ball centrally positioned in the valve body and having a central passage rotatable in the valve body between open and closed positions;

at least one seat disposed between the ball and the valve body; wherein the ball and seat each comprise a titanium substrate and a titania coating;

wherein the titania coating has a grain size of less than 500 nm.

- 13. (Original): The ball valve of claim 12 wherein the coating comprises a titania phase and a phase immiscible with the titania phase in a proportion effective to inhibit grain growth.
- 14: (Original): The ball valve of claim 13 wherein the immiscible phase comprises from 5 to 45 percent by volume of the coating.
- 15. (Original): The ball valve of claim 13 wherein the immiscible phase is selected from zirconia, tantalum oxide, boron carbide, silicon carbide, titanium carbide, diamond and combinations thereof.
- 16. (Original): The ball valve of claim 12 wherein the coating has a thickness from 100 to 500 microns.
- 17. (Cancelled)
- 6-18. (Original): The ball valve of claim 12 wherein the coating has a ground and polished surface.
- 19. (Original): The ball valve of claim—18 wherein the coating is deposited by thermal spray application of a powder comprising spherical agglomerates in a size range of from 10 to 45 microns comprising a mixture of ultrafine particles of less than 0.3 microns.
 - 20. (Previously presented): A pressure acid leaching process comprising alternately opening and closing the ball valve of claim 12 to respectively allow and stop passage of an acid leach mixture comprising abrasive particles in a solution of sulfuric acid at a temperature above 250°C and pressure above 4000 kPa.
 - 21. (Cancelled)
 - 22. (Cancelled)
 - 23. (Cancelled)
 - 24. (Cancelled)

9	·
- 25 .	(Currently amended): The invention of claim 12 wherein the ultrafine
	particles are titania coating comprises nanostructured ultrafine particles.
26.	(Currently amended): The invention of claim 20 wherein the ultrafine
	particles are titania coating comprises nanostructured ultrafine particles.
27.	(Cancelled)
10.38.	(Previously presented): The ball valve of claim 12-wherein the coating has a
	grain size less than 300 nm.
1 129.	(Previously presented): The ball valve of claim 12 wherein the coating has a
	grain size less than 100 nm.
11 -30.	(Previously presented): The ball valve of claim 28 wherein the coating
	comprises a titania phase and a phase immiscible with the titania phase in a
	proportion effective to inhibit grain growth.
12-31.	(Previously presented): The ball valve of claim 30 wherein the immiscible
	phase comprises from 5 to 45 percent by volume of the coating.
13 32 .	(Previously presented): The ball valve of claim 30-wherein the immiscible
	phase is selected from zirconia, tantalum oxide, boron carbide, silicon
Ėι	carbide, titanium carbide, diamond and combinations thereof.
- 3 3.	(Previously presented): The ball valve of claim 28-wherein the coating has a
15	thickness from 100 to 500 microns.
34.	(Previously presented): The ball valve of claim-28 wherein the coating has a
16	ground and polished finish.
	(Previously presented): The ball valve of claim 34 wherein the coating is
	deposited by thermal spray application of a powder comprising spherical
	agglomerates in a size range from 10 to 45 microns comprising a mixture of
27	ultrafine particles of less than 300 nm.
36.	(Previously presented): The process of claim 20, wherein the solution is at

least 98 percent sulfuric acid.

- (New): The ball valve of claim 12; wherein the coating has a uniform composition.

 (New): The ball valve of claim 12; wherein the titania coating is bonded
 - directly to the titanium substrate.
- (New): The ball valve of claim 37, wherein the titania coating is bonded directly to the titanium substrate.
- 40: (New): The ball valve of claim-12, wherein the titania coating is bonded to a roughened surface of the titanium substrate.
- (New): The ball valve of claim 37, wherein the titania coating is bonded to a roughened surface of the titanium substrate.
- (New): The ball valve of claim 19; wherein the titania coating has a uniform composition and is bonded directly to a pre-roughened surface of the titanium substrate.
 - (New): The ball valve of claim 40 wherein the roughened surface is grit blasted to 2-3 mils (50-80 microns).
- (New): The ball valve of claim 41 wherein the roughened surface is grit blasted to 2-3 mils (50-80 microns).