M464S3254BT1 SDRAM SODIMM

32Mx64 SDRAM SODIMM based on 16Mx16, 4Banks, 8K Refresh,3.3V Synchronous DRAMs with SPD

GENERAL DESCRIPTION

The Samsung M464S3254BT1 is a 32M bit x 64 Synchronous Dynamic RAM high density memory module. The Samsung M464S3254BT1 consists of eight CMOS 16M x 16 bit with 4banks Synchronous DRAMs in TSOP-II 400mil package and a 2K EEPROM in 8-pin TSSOP package on a 144-pin glass-epoxy substrate. Three 0.1uF decoupling capacitors are mounted on the printed circuit board in parallel for each SDRAM. The M464S3254BT1 is a Small Outline Dual In-line Memory Module and is intended for mounting into 144-pin edge connector sockets.

Synchronous design allows precise cycle control with the use of system clock. I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable latencies allows the same device to be useful for a variety of high bandwidth, high performance memory system applications.

FEATURE

Performance range

Part No.	Max Freq. (Speed)
M464S3254BT1-L1H /C1H	100MHz (10ns @ CL=2)
M464S3254BT1-L1L /C1L	100MHz (10ns @ CL=3)

- Burst mode operation
- Auto & self refresh capability (8192 Cycles/64ms)
- LVTTL compatible inputs and outputs
- Single $3.3V \pm 0.3V$ power supply
- MRS cycle with address key programs
 Latency (Access from column address)
 Burst length (1, 2, 4, 8 & Full page)
 Data scramble (Sequential & Interleave)
- All inputs are sampled at the positive going edge of the system clock
- · Serial presence detect with EEPROM
- · PCB: Height (1,250mil), double sided component

PIN CONFIGURATIONS (Front side/back side)

Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back
1	Vss	2	Vss	51	DQ14	52	DQ46	95	DQ21	96	DQ53
3	DQ0	4	DQ32	53	DQ15	54	DQ47	97	DQ22	98	DQ54
5	DQ1	6	DQ33	55	Vss	56	Vss	99	DQ23	100	DQ55
7	DQ2	8	DQ34	57	NC	58	NC	101	Vdd	102	VDD
9	DQ3	10	DQ35	59	NC	60	NC	103	A6	104	A7
11	Vdd	12	VDD					105	A8	106	BA0
13	DQ4	14	DQ36	'	Voltag	je K	ey	107	Vss	108	Vss
15	DQ5	16	DQ37					109	A9	110	BA1
17	DQ6	18	DQ38	61	CLK0	62	CKE0	111	A10/AP	112	A11
19	DQ7	20	DQ39	63	Vdd	64	Vdd	113	Vdd	114	Vdd
21	Vss	22	Vss	65	RAS	66	CAS	115	DQM2	116	DQM6
23	DQM0	24	DQM4	67	WE	68	CKE1	117	DQM3	118	DQM7
25	DQM1	26	DQM5	69	CS0	70	A12	119	Vss	120	Vss
27	Vdd	28	VDD	71	CS1	72	*A13	121	DQ24	122	DQ56
29	A0	30	А3	73	DU	74	CLK1	123	DQ25	124	DQ57
31	A1	32	A4	75	Vss	76	Vss	125	DQ26	126	DQ58
33	A2	34	A5	77	NC	78	NC	127	DQ27	128	DQ59
35	Vss	36	Vss	79	NC	80	NC	129	Vdd	130	Vdd
37	DQ8	38	DQ40	81	Vdd	82	Vdd	131	DQ28	132	DQ60
39	DQ9	40	DQ41	83	DQ16	84	DQ48	133	DQ29	134	DQ61
41	DQ10	42	DQ42	85	DQ17	86	DQ49	135	DQ30	136	DQ62
43	DQ11	44	DQ43	87	DQ18	88	DQ50	137	DQ31	138	DQ63
45	Vdd	46	VDD	89	DQ19	90	DQ51	139	Vss	140	Vss
47	DQ12	48	DQ44	91	Vss	92	Vss	141	**SDA	142	**SCL
49	DQ13	50	DQ45	93	DQ20	94	DQ52	143	VDD	144	Vdd

PIN NAMES

Pin Name	Function
A0 ~ A12	Address input (Multiplexed)
BA0 ~ BA1	Select bank
DQ0 ~ DQ63	Data input/output
CLK0 ~ CLK1	Clock input
CKE0 ~ CKE1	Clock enable input
CS0 ~ CS1	Chip select input
RAS	Row address strobe
CAS	Column address strobe
WE	Write enable
DQM0 ~ 7	DQM
VDD	Power supply (3.3V)
Vss	Ground
SDA	Serial data I/O
SCL	Serial clock
DU	Don't use
NC	No connection

- * These pins are not used in this module.
- ** These pins should be NC in the system which does not support SPD.

SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.

PIN CONFIGURATION DESCRIPTION

Pin	Name	Input Function
CLK	System clock	Active on the positive going edge to sample all inputs.
CS	Chip select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQM
CKE	Clock enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disable input buffers for power down in standby. CKE should be enabled 1CLK+tss prior to valid command.
A0 ~ A12	Address	Row/column addresses are multiplexed on the same pins. Row address: RA0 ~ RA12, Column address: CA0 ~ CA8
BA0 ~ BA1	Bank select address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
RAS	Row address strobe	Latches row addresses on the positive going edge of the CLK with RAS low. Enables row access & precharge.
CAS	Column address strobe	Latches column addresses on the positive going edge of the CLK with CAS low. Enables column access.
WE	Write enable	Enables write operation and row precharge. Latches data in starting from CAS, WE active.
DQM0 ~ 7	Data input/output mask	Makes data output Hi-Z, tsHz after the clock and masks the output. Blocks data input when DQM active. (Byte masking)
DQ0 ~ 63	Data input/output	Data inputs/outputs are multiplexed on the same pins.
VDD/Vss	Power supply/ground	Power and ground for the input buffers and the core logic.

FUNCTIONAL BLOCK DIAGRAM CS1 CS0 DQM0 DQM4 CS **LDQM** CS LDQM CS LDQM LDQM CS DQ0 DQ32 DQ0 DQ0 DQ0 DQ0 DQ33 DQ1 DQ1 DQ1 DQ1 DQ1 DQ2 DQ34 DQ2 DQ2 DQ2 DQ2 U0 U2 U6 U4 DQ3 DQ3 DQ35 DQ3 DQ3 DQ3 DQ4 DQ4 DQ36 DQ4 DQ4 DQ4 DQ5 DQ5 DQ5 DQ5 DQ37 DQ5 DQ6 DQ6 DQ6 DQ6 **DQ38** DQ6 DQ7 DQ7 DQ7 DQ39 DQ7 DQ7 **UDQM UDQM UDQM UDQM** DQM1 ° DQM5 ° DQ40 DQ8 DQ8 DQ8 DQ8 DQ8 DQ9 DQ9 DQ9 DQ41 DQ9 DQ9 DQ10 DQ42 DQ10 DQ10 **DQ10** DQ10 DQ11 DQ11 DQ11 DQ43 DQ11 DQ11 DQ12 DQ12 DQ12 DQ44 DQ12 DQ12 DQ13 DQ13 DQ13 DQ45 **DQ13** DQ13 DQ14 DQ14 DQ14 DQ46 DQ14 DQ14 DQ47 DQ15 DQ15 DQ15 DQ15 DQ15 DQM2 · DQM6 o LDQM CS LDQM CS LDQM CS LDQM CS DQ0 DQ0 DQ0 DQ0 DQ16 DQ48 -DQ17 DQ1 DQ1 DQ49 W DQ1 DQ1 DQ2 DQ2 DQ18 DQ2 DQ50 DQ2 -W+ U1 U5 U3 U7 DQ3 DQ3 DQ3 **DQ19** DQ51 DQ3 DQ4 DQ4 DQ20 DQ4 DQ52 -W DQ4 DQ21 DQ5 DQ5 DQ53 DQ5 DQ5 DQ22 DQ6 DQ6 DQ54 DQ6 DQ6 DQ23 DQ7 DQ7 DQ55 -DQ7 DQ7 -- ^/\/₇ DQM3 **UDQM UDQM** DQM7 ° **UDQM UDQM** DQ24 ° DQ8 DQ8 DQ56 ° DQ8 DQ8 DQ57 DQ25 DQ9 DQ9 DQ9 DQ9 DQ26 **DQ10** DQ10 DQ58 -′W∀ DQ10 DQ10 DQ27 DQ11 DQ11 DQ59 DQ11 DQ11 W DQ28 DQ12 DQ12 DQ60 DQ12 DQ12 ·W DQ13 DQ29 DQ13 DQ13 DQ61 DQ13 -W DQ30 DQ14 DQ14 DQ62 --444-DQ14 DQ14 DQ31 DQ15 DQ15 **DQ15** DQ15 ➤ SDRAM U0 ~ U7 A0 ~ A12, BA0 & 1 -RAS -SDRAM U0 ~ U7 Serial PD ➤ SDRAM U0 ~ U7 → SDA SCL → WP SA0 SA1 SA2 ► SDRAM U0 ~ U7 WE -///// CKE0 -► SDRAM U0 ~ U3 CKE1 -SDRAM U4 ~ U7 10Ω DQn -Every DQ pin of SDRAM U0/U4 U1/U5 VDD ○ CLK0/1 U2/U6 Three 0.1 uF X7R 0603 Capacitors To all SDRAMs per each SDRAM -U3/U7

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	Vin, Vout	-1.0 ~ 4.6	V
Voltage on VDD supply relative to Vss	VDD, VDDQ	-1.0 ~ 4.6	V
Storage temperature	Тѕтс	-55 ~ +150	°C
Power dissipation	PD	8	W
Short circuit current	los	50	mA

Note: Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	Vdd	3.0	3.3	3.6	V	
Input high voltage	ViH	2.0	3.0	VDDQ+0.3	V	1
Input low voltage	VIL	-0.3	0	0.8	V	2
Output high voltage	Voн	2.4	-	-	V	Iон = -2mA
Output low voltage	Vol	-	-	0.4	V	IoL = 2mA
Input leakage current	Iц	-10	-	10	uA	3

Notes : 1. ViH (max) = 5.6V AC.The overshoot voltage duration is ≤ 3 ns.

2. VIL (min) = -2.0V AC. The undershoot voltage duration is \leq 3ns.

3. Any input $0V \le VIN \le VDDQ$.

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with Tri-State outputs.

$\textbf{CAPACITANCE} \quad \text{(VDD} = 3.3 \text{V, TA} = 23 ^{\circ}\text{C, f} = 1 \text{MHz, VREF} = 1.4 \text{V} \pm 200 \text{ mV)}$

Parameter	Symbol	Min	Max	Unit
Input capacitance (Ao ~ A12, BA0 ~ BA1)	CIN1	25	45	pF
Input capacitance (RAS, CAS, WE)	CIN2	25	45	pF
Input capacitance (CKE0 ~ CKE1)	CIN3	15	25	pF
Input capacitance (CLK0 ~ CLK1)	CIN4	15	21	pF
Input capacitance (CS0 ~ CS1)	CIN5	15	25	pF
Input capacitance (DQM0 ~ DQM7)	CIN6	8	10	pF
Data input/output capacitance (DQ0 ~ DQ63)	Соит	13	18	pF

DC CHARACTERISTICS

(Recommended operating condition unless otherwise noted, TA = 0 to $70^{\circ}C$)

Parameter	Cumbal	Test Condition	Ver	sion	Unit	Note	
Parameter	Symbol	rest Condition		-1H	-1L	Unit	Note
Operating current (One bank active)	ICC1	Burst length = 1 tRc ≥ tRc(min) Io = 0 mA		70	00	mA	1
Precharge standby current	Icc2P	CKE ≤ VIL(max), tcc = 10ns		1	6	mA	
in power-down mode	ICC2PS	CKE & CLK ≤ VIL(max), tcc =∞		1	6	IIIA	
Precharge standby current	Icc2N	CKE ≥ VIH(min), CS ≥ VIH(min), tcc = 1 Input signals are changed one time du		12	28	A	
in non power-down mode ICC2NS ICC2NS ICC2NS INDEX Signate die Shanges eine standig Zene ICC2NS ICC2NS					12	- mA	
Active standby current in	Icc3P	CKE ≤ VIL(max), tcc = 10ns		4	.8	mA	
power-down mode	Icc3PS	CKE & CLK ≤ VIL(max), tcc =∞		48		IIIA	
Active standby current in non power-down mode	Icc3N	CKE ≥ VIH(min), CS ≥ VIH(min), tcc = 1 Input signals are changed one time du		28	30	mA	
(One bank active)	Icc3NS	CKE \geq VIH(min), CLK \leq VIL(max), tcc = Input signals are stable	∞	24	40	mA	
Operating current (Burst mode)	ICC4	Io = 0 mA Page burst 4Banks activated tccp = 2CLKs	72	20	mA	1	
Refresh current	ICC5	trc ≥ trc(min)		98	30	mA	2
Self refresh current	ICC6	CKE < 0.2V	С	2	:4	mA	
Jen renesir current	1006	ICC6 CKE ≤ U.ZV		1	6	mA	

Notes: 1. Measured with outputs open.

- 2. Refresh period is 64ms.
- 3. Unless otherwise noted, input swing level is CMOS(VIH/VIL=VDDQ/VSSQ)

AC OPERATING TEST CONDITIONS (VDD = $3.3V \pm 0.3V$, TA = 0 to 70° C)

Parameter	Value	Unit
AC input levels (Vih/Vil)	2.4/0.4	V
Input timing measurement reference level	1.4	V
Input rise and fall time	tr/tf = 1/1	ns
Output timing measurement reference level	1.4	V
Output load condition	See Fig. 2	

(Fig. 1) DC output load circuit

(Fig. 2) AC output load circuit

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Parameter		Symbol	Ver	sion	Unit	Note
Farameter		Syllibol	-1H	-1L	- Onit	Note
Row active to row active delay	ow active to row active delay		20	20	ns	1
RAS to CAS delay		tRCD(min)	20	20	ns	1
Row precharge time		trp(min)	20	20	ns	1
Row active time		tras(min)	50	50	ns	1
Row active time		tras(max)	100		us	
Row cycle time		trc(min)	70 70		ns	1
Last data in to row precharge		tRDL(min)	2		CLK	2,5
Last data in to Active delay		tdal(min)	2 CLK + 20 ns		-	5
Last data in to new col. address delay		tcdl(min)	1		CLK	2
Last data in to burst stop		tBDL(min)	1		CLK	2
Col. address to col. address delay		tccd(min)	1		CLK	3
Number of valid output data	CAS late	ncy=3		2	ea	4
Number of valid output data	CAS late	ncy=2	1		- ea	4

- **Notes:** 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer.
 - 2. Minimum delay is required to complete write.
 - 3. All parts allow every cycle column address change.
 - 4. In case of row precharge interrupt, auto precharge and read burst stop.
 - 5. For -1H/1L, tRDL=1CLK and tDAL=1CLK+20ns is also supported . SAMSUNG recommends tRDL=2CLK and tDAL=2CLK + 20ns.

AC CHARACTERISTICS (AC operating conditions unless otherwise noted) REFER TO THE INDIVIDUAL COMPONENT, NOT THE WHOLE MODULE.

Parame	tor	Symbol	Symbol -1H		-1	L	Unit	Note
Faranie	ter	Syllibol	Min	Max	Min	Max	Onit	Note
CLK cycle time	CAS latency=3	tcc	10	1000	10	1000	ns	1
OLN Cycle time	CAS latency=2	icc	10	1000	12	1000	113	'
CLK to valid output delay	CAS latency=3	tsac		6		6	ne	1,2
CER to valid output delay	CAS latency=2	ISAC		6		7	ns	1,2
Output data hold time	CAS latency=3	ton	3		3		ns	2
Output data noid time	CAS latency=2	IOH	3		3			2
CLK high pulse width		tсн	3		3		ns	3
CLK low pulse width		tCL	3		3		ns	3
Input setup time		tss	2		2		ns	3
Input hold time		tsH	1		1		ns	3
CLK to output in Low-Z		tslz	1		1		ns	2
CLK to output in Hi-Z	CAS latency=3	tshz		6		6	ns	
CLN to output in the	CAS latency=2	ISHZ		6		7	119	

Notes: 1. Parameters depend on programmed CAS latency.

- 2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.
- 3. Assumed input rise and fall time (tr & tf) = 1ns.

If tr & tf is longer than 1ns, transient time compensation should be considered,

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

SIMPLIFIED TRUTH TABLE

С	Command		CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	BA 0,1	A10/AP	A12, A11 A9 ~ A0	Note
Register	Mode regis	ter set	Н	Х	L	L	L	L	Х		OP code		
	Auto refresi	h	Н	Н	L	L	L	Н	Х		Х		3
Refresh		Entry	11	L	_	_	_		^		^		3
Reflesii	Self refresh	Exit	L	Н	L	Н	Н	Н	Х		Х		3
		LAIL	_	''	Н	Х	Х	Х	^		^		3
Bank active & row	addr.		Н	Х	L	L	Н	Н	Х	V	Row a	address	
Read &	Auto precha	arge disable	Н	Х	L	Н	L	Н	Х	V	L	Column address	4
column address	Auto precha	arge enable	''	^	_	''	_	''	^	V	Н	(A ₀ ~ A ₈)	4,5
Write &	Auto precha	arge disable	Н	Х	L	Н	1	L L	Х	V L	L	Column address	4
column address	Auto precha	arge enable	""	^			_		^	V	Н	(A0 ~ A8)	4,5
Burst stop			Н	Х	L	Н	Н	L	Х		Х		6
Precharge	Bank select	tion	Н	Х	L	L	Н	L	Х	V	L	Х	
1 recharge	All banks	All banks		^	_	_		_		Х	н		
l.,		Entry	Н	L	Н	Х	Х	Х	Х				
Clock suspend or active power down		Litty		_	L	V	V	V	^	X			
· [Exit	L	Н	Х	Х	Х	Х	Χ				
		Entry	Н	L	Н	Х	Х	Х	Х				
Precharge nower	down mode	Litty		_	L	Н	Н	Н	^		Х		
recharge power	Precharge power down mode Exit		L	Н	Н	Х	Х	Х	Х		Λ		
		LXII	_	11	L	V	V	V	^				
DQM			Н			Х			V		Х		7
No operation com	mand		Н	Х	Н	Х	Х	Х	х	X			
	mana		''		L	Н	Н	Н	^	^			

(V=Valid, X=Don't care, H=Logic high, L=Logic low)

Notes: 1. OP Code: Operand code

A0 ~ A12 & BA0 ~ BA1 : Program keys. (@ MRS)

- 2. MRS can be issued only at all banks precharge state.
 - A new command can be issued after 2 clock cycles of MRS.
- 3. Auto refresh functions are as same as CBR refresh of DRAM.
 - The automatical precharge without row precharge command is meant by "Auto".
 - Auto/self refresh can be issued only at all banks precharge state.
- 4. BA₀ ~ BA₁ : Bank select addresses.
 - If both BAo and BA1 are "Low" at read, write, row active and precharge, bank A is selected.
 - If both BAo is "High" and BA1 is "Low" at read, write, row active and precharge, bank B is selected.
 - If both BA $_0$ is "Low" and BA $_1$ is "High" at read, write, row active and precharge, bank C is selected.
 - If both BAo and BA1 are "High" at read, write, row active and precharge, bank D is selected.
 - If A10/AP is "High" at row precharge, BA0 and BA1 is ignored and all banks are selected.
- During burst read or write with auto precharge, new read/write command can not be issued.Another bank read/write command can be issued after the end of burst.
- New row active of the associated bank can be issued at tRP after the end of burst.
- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at positive going edge of a CLK and masks the data-in at the very CLK (Write DQM latency is 0), but makes Hi-Z state the data-out of 2 CLK cycles after. (Read DQM latency is 2)

PACKAGE DIMENSIONS

Units: Inches (Millimeters)

Tolerances: ±.006(.15) unless otherwise specified

The used device is 16Mx16 SDRAM, TSOP

SDRAM Part No.: K4S561632B

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.