UNIVERSITY OF CALIFORNIA

College of Engineering

Department of Electrical Engineering and Computer Sciences

Jan M. Rabaey

Homework #4
Due Monday, February 23, 5pm, box in 240 Cory

EECS 141

1. Given the RC network below:

Figure 1 RC network.

- (1) Calculate the Elmore delay from In to Out1 and from In to Out2. Which one is critical path? (10 pts)
- (2) Assume $R = 100\Omega$ and C = 10fF. Calculate the Elmore delay of the critical path you find in part (1) and verify the result using Spectre. (10 pts)

Solution:

(1) From In to Out1:

$$\tau_1 = R \cdot (2C + C + 3C) + 2RC + 3RC + 4RC = 15RC$$

From In to Out2:

$$\tau_2 = R \cdot (2C+C+C+C) + 2RC + 3R \cdot 3C + 4RC = 16RC$$

The path from In to Out2 is critical path

(2) From In to Out1:

$$t_{d1} = 0.69\tau_1 = 0.69 \cdot 15 \cdot 100 \cdot 10 \times 10^{-15} = 10.35 \, ps$$

From In to Out1:

$$t_{d2} = 0.69\tau_2 = 0.69 \cdot 16 \cdot 100 \cdot 10 \times 10^{-15} = 11.04 \, ps$$

From the simulation results, $t_{d1} = 10.77 \, ps$, $t_{d2} = 11.85 \, ps$

2. In the following problem, we will calculate the delay of a NAND2 gate by using two approaches we have learned, logical effort and Elmore delay. The NMOS and PMOS can be modeled as a RC network shown below when the transistor is "ON". When the transistor is "OFF", we use the same model except now the transistor has an infinite off-resistance. Assume $\gamma = 1$.

Figure 2 A NAND2 gate and NMOS and PMOS transistor models.

- (1) Calculate the T_{pLH} and T_{pHL} of a NAND2 gate shown above using logical effort. (5 pts)
- (2) Calculate the T_{pLH} and T_{pHL} of a NAND2 gate shown above using Elmore delay. Do you get different answers in delay between part (1) and (2)? Briefly explain why there is or isn't difference. (15 pts)

Solution:

(1)
$$T_{pLH} = T_{pHL} = t_{p0} (p + fg) = 0.69 \cdot 3RC(2 + \frac{4}{3} \cdot 3) = 12.42RC$$

(2)
$$T_{pLH} = 0.69 \cdot R \cdot (2C + 2C + 2C + 12C) = 12.42RC$$

 $T_{pHL} = 0.69 \cdot [0.5R \cdot 4C + R(2C + 2C + 2C + 12C)] = 13.8RC$

We get different T_{pHL} results between part (1) and (2) because the delay calculation using logical effort ignores the internal node capacitances.