Threefold Way for Typical Entanglement

Haruki Yagi¹, Ken Mochizuki^{1,2}, Zongping Gong¹

1 Department of Applied Physics, Graduate School of Engineering, The University of Tokyo 2 Nonequilibrium Quantum Statistical Mechanics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research

arXiv:2410.11309

Keywords

Physics: typical entanglement, symmetry fractionalization, SPT phases **Mathematics**: random matrices, unitary-antiunitary representations of groups

Background

Quantum Entanglement

Entanglement \simeq cannot be decomposed into tensor products of the local basis

2 qubit:
$$\frac{|0_A 0_B\rangle + |1_A 1_B\rangle}{\sqrt{2}} \quad (\neq |\psi_A\rangle \otimes |\psi_B\rangle)$$
3 qubit:
$$\frac{|0_A 0_B 0_C\rangle + |1_A 1_B 1_C\rangle}{\sqrt{2}}, \quad \frac{|1_A 0_B 0_C\rangle + |0_A 1_B 0_C\rangle + |0_A 0_B 1_C\rangle}{\sqrt{3}}$$
:

Entanglement entropy is a way to evaluate the strength of bipartite entanglement. Partitioning the entire system into system (**sys**) and environment (**env**), we have

$$\rho_{\rm sys} = {\rm Tr}_{\rm env} |\Psi\rangle\langle\Psi|, \quad S_{\rm EE} = -\,{\rm Tr}_{\rm sys} \big[\rho_{\rm sys} \ln \rho_{\rm sys}\big]. \label{eq:rhosys}$$

The larger $S_{\rm EE}$, the more information is lost in the environment.

<u>arXiv:2410.11309</u> 3 / 25

The Black Hole Information Paradox

4

<u>arXiv:2410.11309</u> 4 / 25

Page curve

Hawking: Information would be lost 😭 / Page: Information would be preserved 🧐

Page curve: **sys = the Hawking radiation**, **env = BH**

Volume ratio of the Hawking radiation

Page's consideration:

The entire dynamics should be unitary and maximally chaotic.

 $\Rightarrow |\Psi\rangle \sim U|0\rangle$, where U is a random unitary matrix.

5/25 arXiv:2410.11309

Typical Entanglement

- **Typical** = **uniformly random** sampling on the entire Hilbert space \sim Haar-random
- Entanglement spectrum = eigvals of the reduced density matrix $\rho_{\rm sys}={\rm Tr}_{\rm env}|\psi\rangle\langle\psi|$
- **Typical entanglement** = entanglement of uniformly random-sampled state

The random matrix theory (RMT) is useful to evaluate typical entanglement. (Page, 1993; Sánchez-Ruiz, 1995; Sen, 1996).

Let's see how it works.

<u>arXiv:2410.11309</u> 6 / 25

Laguerre Unitary Ensemble of Random Matrices

Preparing Haar-random pure state from the entire Hilbert space:

$$|\Psi\rangle = \sum_{\mathrm{sys,env}} W_{\mathrm{sys,env}} |\mathrm{sys,env}\rangle, \quad \mathrm{where} \quad \mathrm{i.i.d.} \ W_{\mathrm{sys,env}} \sim \mathcal{CN}(0,1).$$

$$|\Psi
angle \sim {
m Haar} \Leftrightarrow
ho_{
m sys} = egin{array}{c} W \ \end{array} \,.$$

(Zyczkowski and Sommers, 2001; Nechita, 2007)

 $\Rightarrow \rho_{\rm sys}$ follows the **Laguerre unitary ensemble** (**LUE**) of RMT.

The joint probability p distribution of eigenvalues $\{\lambda_i\}$ of ρ_{sys} is

$$p(\lambda_1,...,\lambda_m) \propto \prod_{i=1}^m \lambda_i^{n-m} e^{-\lambda_i} \prod_{1 \leq i < j \leq m} |\lambda_i - \lambda_j|^2.$$

<u>arXiv:2410.11309</u> 7 / 25

Time Reversal Symmetry and Threefold Way of Laguerre Ensemble

$$|\Psi\rangle = \sum_{\rm sys,env} W_{\rm sys,env} |{\rm sys,env}\rangle, \ \ {\rm where} \quad {\rm i.i.d.} \ W_{\rm sys,env} \sim \mathcal{CN}(0,1)$$

What if we change *complex* random variables to *real* random variables?

 $|\Psi\rangle$ and $\rho_{\rm svs}$ obtain **Time Reversal Symmetry** (TRS) of $\mathcal{T}=K$:

$$\begin{split} |\Psi\rangle &\to \mathcal{T} |\Psi\rangle = K |\Psi\rangle = |\Psi\rangle, \\ \rho_{\rm sys} &\to \mathcal{T} \rho_{\rm sys} \mathcal{T}^{-1} = K \rho_{\rm sys} K = \overline{\rho_{\rm sys}} = \rho_{\rm sys}. \end{split}$$

Note that there is the other & nonequivalent kind of TRS!

Time Reversal Symmetry

Integer spin: $\mathcal{T}_+^2 = +1$. ex. $\mathcal{T}_+ = K$

<u>Half-integer spin</u>: $\mathcal{T}_{-}^{2}=-\mathbb{1}$. ex. $\mathcal{T}_{-}=\sigma_{y}K$

Let's look at the eigenvalue statistics of the density matrix with TRS.

<u>arXiv:2410.11309</u> 8 / 25

Time Reversal Symmetry and Threefold Way of Laguerre Ensemble

$$p(\lambda_1,...,\lambda_m) \propto \prod_{i=1}^m \lambda_i^{\frac{\beta}{2}(n-m+1)-1} e^{-\frac{\beta}{2}\lambda_i} \prod_{1 \leq i < j \leq m} |\lambda_i - \lambda_j|^{\beta}$$

No TRS: $\beta = 2$.

Imposing TRS: $\mathcal{T}\rho_{\mathrm{sys}}\mathcal{T}^{-1}=\rho_{\mathrm{sys}}$ allows $\beta=1$ and/or $\beta=4$.

Threefold way of Laguerre ensemble

$$egin{array}{ll} \mathcal{T}_+^2 = +\mathbb{1} & ext{No TRS} & \mathcal{T}_-^2 = -\mathbb{1} \ & (\mathcal{T}_+ \simeq K) & (\mathcal{T}_- \simeq \sigma_y K) \ eta = 1 & eta = 2 & eta = 4 \end{array}$$

Laguerre **orthogonal**, **unitary**, **symplectic** ensemble **LOE LUE LSE**

<u>arXiv:2410.11309</u> 9 / 25

Kramers' theorem and prohibition of $\mathcal{T}_-^2 = -\mathbb{1}$ TRS eigenstate

TRS for ρ_{sys} : $\mathcal{T}\rho_{\text{sys}}\mathcal{T}^{-1}=\rho_{\text{sys}}$ always has solutions. However, TRS for $|\Psi\rangle$ is ill-defined:

Theorem: $\mathcal{T}_{-}^{2}=-\mathbb{1}$ TRS cannot have the eigenstate $\mathcal{T}_{-}|\Psi\rangle=|\Psi\rangle$.

Proof: Time reversal operator \mathcal{T} is anti-unitary, thus $\langle \mathcal{T}_{-}a|\mathcal{T}_{-}b\rangle = \overline{\langle a|b\rangle}$.

$$\langle \psi | \mathcal{T}_- \psi \rangle = \overline{\langle \mathcal{T}_- \psi | \mathcal{T}_-^2 \psi \rangle} = \langle \mathcal{T}_-^2 \psi | \mathcal{T}_- \psi \rangle = -\langle \psi | \mathcal{T}_- \psi \rangle$$

This implies $\langle \psi | \mathcal{T}_{-} \psi \rangle = 0$ for an arbitary state, thus $|\psi\rangle$ is orthogonal to $\mathcal{T}|\psi\rangle$.

 $\mathcal{T}_{+}^{2}=+\mathbb{1}$ No TRS $\mathcal{T}_{-}^{2}=-\mathbb{1}$ $(\mathcal{T}_{+}\simeq K)$ $\beta=1$ $\beta=2$ $\beta=4$

Laguerre orthogonal, unitary, symplectic ensemble
LOE LUE LSE

 $\mathcal{T}|\Psi\rangle=|\Psi\rangle$: real vector complex vector *unknown!*

<u>arXiv:2410.11309</u> 10 / 25

Key Questions and Solutions

Q1. Possible to construct $\rho_{\rm sys} \sim {\sf LSE}$?

Q2. Beyond threefold way if general symmetries?

Q1. Possible to construct $|\Psi\rangle$ whose $\rho_{\rm sys}\sim$ LSE ? A1. Yes, by *fractionalization* of TRS.

Q2. Beyond threefold way if general symmetries? A2. Never. Direct sum of threefold way.

1. Exploring the LSE-Realizing System

Requirement	$\mathcal{T}_+\rho_{\mathrm{sys}}\mathcal{T}_+^{-1}=\rho_{\mathrm{sys}}$	$\mathcal{T}\rho_{\rm sys}\mathcal{T}^{-1}=\rho_{\rm sys}$
Existence of pure state	Yes, $\mathcal{T}_+ \Psi \rangle = \Psi \rangle$	No, $\mathcal{T} \Psi angle eq \Psi angle$
Pure state	real vector	.

$$\begin{array}{c} \textbf{Fractionalization} \text{ of TRS} \\ \mathcal{T}^2 = \left[\mathcal{T}_{\rm sys} \otimes \mathcal{T}_{\rm env}\right]^2 = +\mathbb{1} \\ \\ \swarrow \mathcal{T} = \Upsilon \big(\mathcal{T}_{\rm sys} \otimes \mathcal{T}_{\rm env}\big)\Upsilon^\dagger & \searrow \\ \\ \mathcal{T}^2_{\rm sys} = -\mathbb{1} & \mathcal{T}^2_{\rm env} = -\mathbb{1} \end{array}$$

- Υ fractionalizes TRS pure state of LOE $|\Psi\rangle$.
- We found $\Upsilon=\frac{1-\mathrm{i}}{2}[\mathbb{1}_4-\mathrm{i}\sigma_y\otimes\sigma_y]$ and proved $\Upsilon|\Psi\rangle$ follows LSE.

<u>arXiv:2410.11309</u> 14 / 25

1. Exploring the LSE-Realizing System

<u>arXiv:2410.11309</u> 15 / 25

Groups (mathematics) describe symmetries.

Group G

Set with an assosiative multiplication. Identity and inverse exist for every elements.

- Examples: $\mathbb{Z}_m, \ \mathbb{Z}_m \times \mathbb{Z}_n, \ C_{3v}, \ Q_8, \ \mathbb{Z}_2^{\mathcal{T}}$ (TRS), ...
- Constraints to the states / operators are given by unitary-antiunitary representations.

Unitary-antiunitary representation D of G

$$D(a)D(b) = D(ab)$$

for $\forall a, b \in G$.

• Projective representations describe anomalous symmetries and (1+1)D SPT phases.

Projective representation \mathcal{D} of G

$$\mathcal{D}(a)\mathcal{D}(b) = \omega(a,b)\mathcal{D}(ab)$$

for $\forall a, b \in G, \ \omega : G \times G \to U(1)$.

<u>arXiv:2410.11309</u> 16 / 25

Symmetry Fractionalization

$$\forall g,g'\in G,\ D(g)D(g')=D(gg')\ (\text{regular rep})$$

$$\swarrow\quad \Omega(D\otimes D)\Omega^\dagger=\mathcal{D}\otimes\mathcal{D}'\quad \searrow$$

$$\mathcal{D}(g)\mathcal{D}(g') = \omega(g,g')\mathcal{D}(gg') \qquad \mathcal{D}'(g)\mathcal{D}'(g') = \overline{\omega(g,g')}\mathcal{D}'(gg')$$

The equivalence relation between reps is defined by phase modulation;

$$\mathcal{D}_{\text{new}}(g) = e^{\mathrm{i}\phi(g)}\mathcal{D}(g)$$

Then, reps are classified by 2nd order group cohomology $H^2(G,U(1))$.

Regular reps of different classes lead to different irreducible decompositions.

<u>arXiv:2410.11309</u> 17 / 25

Groups can be extended by (semi)direct product.

Direct product and semidirect product of groups

Direct:
$$G = G_1 \times G_2$$
, $(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2)$

Semidirect:
$$G = G_1 \rtimes G_2$$
, $(a_1, a_2)(b_1, b_2) = \left(a_1 f_{a_2}(b_1), a_2 b_2\right)$

Any unitary-antiunitary reps can be decomposed into a set of *irreducible reps*.

Irreducible representations

Reps for which all the elements in a unitary transformation cannot be further decomposed into direct sums at the same time are called an irreducible reps.

The Regular representation can be chosen for the most natural rep.

Regular representation

 $D(g) = \left[\delta \left(g_i \ g \ g_j^{-1}\right)\right] \text{ where } \underline{\delta(e) = 1 \text{ and otherwise } \delta(g) = 0}$

18/25arXiv:2410.11309

• We consider random G-symmetric states $|\Psi\rangle$, where $G = G_0$ or $G_0 \rtimes \mathbb{Z}_2^{\mathcal{T}}$.

• We concentrate onsite symmetries s.t. the entanglement spectrum is not changed.

• Fractionalization of G_0 by Ω can be done independently of $\mathbb{Z}_2^{\mathcal{T}}$.

<u>arXiv:2410.11309</u> 19 / 25

General Setup

The considered symmetries are $G = G_0$ or $G_0 \rtimes \mathbb{Z}_2^{\mathcal{T}}$ (G_0 : unitary, $\mathbb{Z}_2^{\mathcal{T}}$: anti-unitary).

- G_0 : Green circles.
 - ${}^{\blacktriangleright}$ l,r: $|G_0|$ -dimensional qudit (Finite. The regular rep of G_0 : $\langle g|g'\rangle=\delta_{g,g'}$
 - ▶ P: Projection of $|G_0|^2$ -dim space $l \cup r$ onto G_0 -symmetric $|G_0|$ -dim basis below:

$$\forall g \in G_0, \ \left| \psi_g \right> = \frac{1}{\sqrt{|G_0|}} \sum_{h \in G_0} |hg\rangle |h\rangle. \quad \left(D(g) \otimes D(g) \middle| \psi_g \right> = \left| \psi_g \right> \right).$$

• $\mathbb{Z}_2^{\mathcal{T}}$: Blue circles = 2-dimensional cuts of each subsystem (only when Υ is necessary).

<u>arXiv:2410.11309</u> 20 / 25

General Setup

• Randomness: $\mathcal{U} \sim$ Haar measure on the projected $d_L d_R |G_0|$ -dimensional space:

$$|\Psi\rangle = \sum_{L,g \in G_0,R} c_{L,g,R} |L\rangle \big|\psi_g\big\rangle |R\rangle = \frac{1}{\sqrt{|G_0|}} \sum_{L,g_l,g_r,R} c_{L,g_r^{-1}g_l,R} |L\rangle |g_l\rangle |R\rangle$$

• Fractionalization: Ω fractionalizes G_0 , Υ fractionalizes $\mathbb{Z}_2^{\mathcal{T}}$:

$$\Omega = \sum_{g_l,g_r} \omega(g_r,g_r^{-1}g_l) |g_l,g_r\rangle \langle g_l,g_r|, \ \Upsilon = \frac{1-\mathrm{i}}{2} \big(\mathbb{1}_4 - \mathrm{i}\sigma_y \otimes \sigma_y\big).$$

<u>arXiv:2410.11309</u> 21 / 25

Results and Conclusion

Direct Sum into the Threefold Way

Entanglement-spectrum statistics of $G=G_0$ is

$$\bigoplus_{\alpha} \left[\frac{\mathbb{1}_{d_{\alpha}}}{d_{\alpha}} \otimes \mathbf{LUE}_{\alpha}^{d_{L}d_{\alpha} \times d_{R}d_{\alpha}} \right],$$

On the other hand, that of $G = G_0 \rtimes \mathbb{Z}_2^{\mathcal{T}}$ is

$$\left[\bigoplus_{\alpha:R_+} \frac{\mathbb{1}_{d_\alpha}}{d_\alpha} \otimes \mathbf{LOE}_\alpha^{d_L d_\alpha \times d_R d_\alpha}\right] \oplus \left[\bigoplus_{\alpha:R_0} \frac{\mathbb{1}_{2d_\alpha}}{d_\alpha} \otimes \mathbf{LUE}_\alpha^{d_L d_\alpha \times d_R d_\alpha}\right] \oplus \left[\bigoplus_{\alpha:R_-} \frac{\mathbb{1}_{d_\alpha}}{d_\alpha} \otimes \mathbf{LSE}_\alpha^{d_L d_\alpha \times d_R d_\alpha}\right].$$

Entanglement-spectrum statistics of random symmetric states is always able to be decomposed into the direct sum of the threefold way¹.

<u>arXiv:2410.11309</u> 23 / 25

¹This result is also the Laguerre version of Dyson's Gaussian threefold way (1962).

Conclusion

Until our work

• The setup which follows LSE have been elusive.

What this work reveraled are:

- The LSE setup can be constructed by fractionalizing TRS of the LOE setup.
- Extended the setup to general symmetries.
- Entanglement-spectrum statistics is **direct sum of the threefold way.**

<u>arXiv:2410.11309</u> 24 / 25

References

Nechita, I. (2007) "Asymptotics of random density matrices," in Annales Henri Poincaré, pp. 1521–1538

Page, D. N. (1993) "Average entropy of a subsystem," *Phys. Rev. Lett.*, 71(9), pp. 1291–1294. Available at: https://doi.org/10.1103/PhysRevLett.71.1291

Sen, S. (1996) "Average Entropy of a Quantum Subsystem," *Phys. Rev. Lett.*, 77(1), pp. 1–3. Available at: https://doi.org/10.1103/PhysRevLett.77.1

Sánchez-Ruiz, J. (1995) "Simple proof of Page's conjecture on the average entropy of a subsystem," *Phys. Rev. E*, 52(5), pp. 5653–5655. Available at: https://doi.org/10.1103/PhysRevE.52.5653

Zyczkowski, K. and Sommers, H.-J. (2001) "Induced measures in the space of mixed quantum states," *Journal of Physics A: Mathematical and General*, 34(35), p. 7111

<u>arXiv:2410.11309</u> 25 / 25

Supplemental Materials

Some additional information on group reps

- An irrep is either one of real, complex, or pseudoreal.
- We consider the cases $G = G_0$ or $G_0 \rtimes \mathbb{Z}_2^{\mathcal{T}}$.
- For $G = G_0 \rtimes \mathbb{Z}_2^{\mathcal{T}}$, one can define the indicator to know irreps real, complex, or pseudoreal.

Indicator of irrep

$$\iota_{\alpha} = \frac{1}{|G_0|} \sum_{g \in G_0} \omega(\tilde{g}, g) \operatorname{Tr}[\mathcal{D}_{\alpha}(\tilde{g}) \mathcal{D}_{\alpha}(g)],$$

$$\iota = \begin{cases} 1 : \operatorname{real} \\ 0 : \operatorname{complex} \\ -1 : \operatorname{pseudoreal} \end{cases}$$

$$\iota = \begin{cases} 1 : \text{real} \\ 0 : \text{complex} \\ -1 : \text{pseudoreal} \end{cases}$$

The cocycle (=cohomology class) can be decompled $\omega = \omega_{G_0} \omega_{\mathbb{Z}_2^{\mathcal{T}}}$.

• R_+ = set irreps that satisfies $\iota = \pm \omega(t,t)$. $\omega(t,t) = 1(-1)$ in the absent (present) of Υ .

27/25arXiv:2410.11309