



## **Optimization**



# **Big Data**

Prof. Hwanjo Yu POSTECH

## **Optimization**

- Basis for Modern Machine Learning Techniques
  - Artificial Neural Network and Deep Learning
  - Support Vector Machine
  - Matrix Factorization and Recommender System

• ...



## **Optimization**

- Gradient Descent and Stochastic Gradient Descent
  - Popularly used optimization methods
  - Basis for advanced optimization methods



#### **Gradient descent in a nutshell**

- Express your learning problem in terms of a cost function that should be minimized
- Starting at initial point, step "downhill" until you reach a minimum
- Some situations offer a guarantee that the minimum is the global minimum; others don't





| input    | response |
|----------|----------|
| variable | variable |
| X        | У        |
| 3.1      | 84.2     |
| 19.6     | 175.8    |
| 45.9     | 448.3    |
| 6.8      | 50.4     |
| 3.5      | 81.9     |
| •••      | •••      |
|          |          |









$$y = \theta_0^{(i)} + \theta_1^{(i)} x$$









$$y = \theta_0^{(i)} + \theta_1^{(i)} x$$







$$\bullet y = x^3 - 2x^2 + 2$$

• To find a local minimum,  $x_{i+1} = x_i - \alpha \frac{\partial y}{\partial x}$ 











Model at i

- Initialization
  - Where do you drop the ball? "small random values"
- Step size
  - We don't really "roll", we "jump" in the direction of steepest descent
  - How far should we jump?  $\alpha$
  - Too far => you might hop over the minimum and raise the function value
  - Too small => slow convergence
- Momentum
  - $v_{i+1} \leftarrow \alpha \frac{\partial}{\partial \theta} J(\theta^{(i)}) \beta v_i$
  - $\theta^{(i+1)} \leftarrow \theta^{(i)} v_{i+1}$



## What's the point?

$$\theta_j^{(i+1)} \leftarrow \theta_j^{(i)} - \alpha \frac{\partial}{\partial \theta_j} J(\theta^{(i)})$$

Model parameters can be anything

Cost function can be anything\*

\*needs to be differentiable



#### Other cost functions

• Logistic Regression

vector of weights

vector of instance data

Regularization term

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} log_2(1 + \exp(-y_i(\theta \cdot x_i))) + \frac{\lambda}{2} ||\theta||^2$$

Support Vector Machines

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \max(1 - y_i(\theta \cdot x_i), 0) + \frac{\lambda}{2} ||\theta||^2$$



## **Quick intuition for regularization**

- As one weight goes up, another goes down to compensate.
- And so weights may explode overfitting again
- Need to enforce some condition on the weights to prefer simple models.
- The regularization term provides this balance



#### Aside on norms

• Norm: any function that assigns a strictly positive number to every non-zero vector

$$L^{p} - norm = ||x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$



#### Aside on cost functions

- Not a norm :  $\sum_i H_i H_i'$ 
  - errors cancel out
- L1-norm :  $\sum_i |H_i H_i'|$ 
  - assert that 1 error of 7 units is as bad as 7 errors of 1 unit each
- L2-norm :  $\sqrt{\sum_i (H_i H_i')^2}$ 
  - assert that 1 error of 7 units is as bad as 49 errors of 1 unit each



## **Back to regularization**

• "LASSO": Regularized Least Squares with L1-norm

• 
$$J(\theta) = \sum_{k=1}^{n} (h(x_k) - y_k)^2 + \frac{\lambda}{2} ||\theta||_1$$

• "Ridge Regression": Regularized Least Squares with L2-norm

• 
$$J(\theta) = \sum_{k=1}^{n} (h(x_k) - y_k)^2 + \frac{\lambda}{2} ||\theta||_2^2$$



## **Back to gradient descent**

Process the entire dataset on every iteration

• 
$$\theta_0^{(i+1)} \leftarrow \theta_0^{(i)} - \alpha \sum_{k=1}^n \left( \theta_0^{(i)} + \theta_1^{(i)} x_k - y_k \right)$$

• 
$$\theta_1^{(i+1)} \leftarrow \theta_1^{(i)} - \alpha \sum_{k=1}^n \left( \theta_0^{(i)} + \theta_1^{(i)} x_k - y_k \right) x_k$$

- Stochastic Gradient Descent (SGD)
  - At each step, pick one random data point
  - Continue as if your entire dataset was just the one point
- Minibatch Gradient Descent
  - At each step, pick a small subset of data points
  - Continue as if your entire dataset just this subset



## **Back to gradient descent**

#### **Example using Stochastic Gradient Descent**



#### **Example using Minibatches**





## Parallel stochastic gradient descent

- Stochastic Gradient Descent (SGD)
  - At each step, pick one random data point
  - Continue as if your entire dataset was just the one point
- Parallel Stochastic Gradient Descent
  - In each of k threads, pick a random data point
  - Compute the gradient and update the weights
  - Weights will be "mixed"
    - => converging zig-zag
  - How about forcing "strong consistency" by locking?

| Thread 1                                                                                                | Thread 2                                                                                                |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| $\theta_0^{(1)} \leftarrow \theta_0^{(0)} - \left(\theta_0^{(0)} + \theta_1^{(0)} x_3 - y_3\right)$     |                                                                                                         |
|                                                                                                         | $\theta_0^{(2)} \leftarrow \theta_1^{(1)} - \left(\theta_0^{(1)} + \theta_1^{(0)} x_8 - y_8\right)$     |
| $\theta_1^{(1)} \leftarrow \theta_1^{(0)} - \left(\theta_0^{(2)} + \theta_1^{(0)} x_3 - y_3\right) x_3$ |                                                                                                         |
|                                                                                                         | $\theta_1^{(2)} \leftarrow \theta_1^{(1)} - \left(\theta_0^{(2)} + \theta_1^{(1)} x_8 - y_8\right) x_8$ |
| $\theta_0^{(3)} \leftarrow \theta_0^{(2)} - \left(\theta_0^{(2)} + \theta_1^{(2)} x_5 - y_5\right)$     |                                                                                                         |
|                                                                                                         | $\theta_0^{(4)} \leftarrow \theta_0^{(3)} - \left(\theta_0^{(3)} + \theta_1^{(2)} x_9 - y_9\right)$     |
| $\theta_1^{(3)} \leftarrow \theta_1^{(2)} - \left(\theta_0^{(4)} + \theta_1^{(2)} x_5 - y_5\right) x_5$ |                                                                                                         |
|                                                                                                         | $\theta_1^{(4)} \leftarrow \theta_1^{(3)} - \left(\theta_0^{(4)} + \theta_1^{(3)} x_9 - y_9\right) x_9$ |

