16-17-2工科分析期中试卷参考答案

一、 填空题(本题共9小题,每小题4分,满分36分)

1.
$$\underline{10! \sin 1}$$
; 2. $\underline{e^2}$; 3. $\underline{x^{\cos(1+2x)}}(\frac{\cos(1+2x)}{x} - 2\ln x \sin(1+2x))dx$;
4. $\underline{y = x - 1}$; 5. $\underline{\frac{1}{2}}$; 6. $\underline{25, -20}$; 7. $\underline{\pi}$; 8. $\underline{0, e}$; 9. $\underline{x + \frac{1}{2}}$.

4.
$$\underline{y = x - 1}$$
; 5. $\frac{1}{2}$; 6. $\underline{25}$, $\underline{-20}$; 7. $\underline{\pi}$; 8. $\underline{0}$, \underline{e} ; 9. $x + \frac{1}{2}$.

二、 计算下列各题(本题共5小题,每小题7分,满分35分)

1.
$$\mathbf{R} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos 2t}{t}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = -\frac{2t\sin 2t + \cos 2t}{2t^3}$$

2.
$$\mathbf{M} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'}{1+f'}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{f''}{(1+f')^3}$$

3.
$$\mathbf{R} y' = \frac{1}{1+x} - \frac{1}{1-x}, y^{(n)} = (\frac{1}{1+x})^{(n-1)} - (\frac{1}{1-x})^{(n-1)} = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n} - \frac{(n-1)!}{(1-x)^n}$$

4. 解
$$g(x) = f(f(x)) =$$

$$\begin{cases} \ln \ln x, & x \ge e, \\ 2(\ln x - 1), & 1 \le x < e, \\ 4x - 6, & x < 1 \end{cases}$$
 当 $x > e$ 时, $g'(x) = \frac{1}{x \ln x}$,当 $1 < x < e$ 时, $g'(x) = \frac{2}{x}$,当 $x < 1$ 时, $g'(x) = 4$; 因为 $g(1+0) = g(1-0) = -2$, $g'(1+0) = 2 \ne g'(1-0) = 4$,所以 $g(x)$ 在 $x = 1$ 处不可导; $g(e+0) = g(e-0) = 0$, $g'(e+0) = \frac{1}{e} \ne g'(e-0) = \frac{2}{e}$,所以 $g(x)$ 在 $x = e$ 处不可导。

5.
$$\mathbf{ff}(1)a = \lim_{x \to 0} \frac{1+x}{\sin x} - \frac{1}{x} = \lim_{x \to 0} \frac{x+x^2 - \sin x}{x^2} = \lim_{x \to 0} \frac{1+2x - \cos x}{2x} = \lim_{x \to 0} \frac{2+\sin x}{2} = 1$$

$$(2) \lim_{x \to 0} \frac{\frac{1+x}{\sin x} - \frac{1}{x} - 1}{x^k} = \lim_{x \to 0} \frac{x + x^2 - \sin x - x \sin x}{x^{k+2}} = \lim_{x \to 0} \frac{1 + 2x - \cos x - \sin x - x \cos x}{(k+2)x^{k+1}} = \lim_{x \to 0} \frac{2 + \sin x - 2 \cos x + x \sin x}{(k+2)(k+1)x^k} = \lim_{x \to 0} \frac{\cos x + 3 \sin x + x \cos x}{(k+2)(k+1)kx^{k-1}} = c(c \neq 0), \text{ figure } 1.$$

三、(本题满分7分)

解:不妨设x > 0,则对 $\forall \varepsilon > 0$,取 $\delta = \min(\frac{3\varepsilon}{2}, 1)$,则当 $0 < |x - 1| < \delta$ 时, 有 $\left|\frac{1}{2x+1} - \frac{1}{3}\right| = \frac{2|x-1|}{3|2x+1|} < \frac{2|x-1|}{3} < \varepsilon$,所以 $\lim_{x \to 1} \frac{1}{2x+1} = \frac{1}{3}$.

解 因为
$$\frac{1}{2} \le a_n \le 1$$
,且 $a_{n+2} - a_n = \frac{1+a_n}{2+a_n} - \frac{1+a_{n-2}}{2+a_{n-2}} = \frac{a_n - a_{n-2}}{(2+a_n)(2+a_{n-2})}$,

所以数列 $\{a_{2n-1}\}$ $\{a_{2n}\}$ 都单调有界,故均收敛

设
$$\lim_{n\to\infty}a_{2n}=A$$
,则 $A=\frac{1+A}{2+A}$,解得 $A=\frac{\sqrt{5}-1}{2}$. 同理可得 $\lim_{n\to\infty}a_{2n-1}=\frac{\sqrt{5}-1}{2}$. 于是 $\{a_n\}$ 收敛,且 $\lim_{n\to\infty}a_n=\frac{\sqrt{5}-1}{2}$.

五、(本题满分7分) 证明: 对 $\forall \varepsilon>0,$ 取 $\delta=rac{arepsilon}{3},$ 则 $\forall x_1,x_2\in R, |x_1-x_2|<\delta$ 时,

 $|f(x_1) - f(x_2)| = |x_1 - x_2 + \cos 2x_1 - \cos 2x_2| < 3|x_1 - x_2| < \varepsilon,$

所以 $f(x) = x + \cos 2x$ 在 $(-\infty, +\infty)$ 上一致连续.

六、(本题满分7分) 证明(法一)设 F(x) = f(x) - 2x,则 F(x) 在[1,3]上连续,在(1,3)内可导。

因为 F(1) = -1, F(2) = 1, F(3) = -4, 所以 F(3) < F(1) < F(2), 由 F(x) 在区间 [2,3] 上连续可得,存在 $\eta \in (2,3)$ 使得 $F(\eta) = F(1)$ 。于是由罗尔定理可得,存在 $\xi \in (1,\eta) \subset (1,3)$,使得 $F'(\xi) = 0$,即 $f'(\xi) = 2$ 。

(法二) 在区间 (1,2) 和 (2,3) 上分别对 f(x) 用拉格朗日中值定理,存在 $\xi_1 \in (1,2)$ 使得 $f'(\xi_1) = \frac{f(2)-f(1)}{2-1} = 4$,存在 $\xi_2 \in (2,3)$ 使得 $f'(\xi_2) = \frac{f(3)-f(2)}{3-2} = -3$ 。因为 $f'(\xi_2) < 2 < f'(\xi_1)$,所以由达布定理可得,存在 $\xi \in (\xi_1,\xi_2) \subset (1,3)$ 使得 $f'(\xi) = 2$ 。