W-Air: Enabling Personal Air Pollution Monitoring on Wearables

Balz Maag, Zimu Zhou and Lothar Thiele UBICOMP, October 2018

Personal Air Pollution Monitoring

- Goal: Allowing users to directly monitor quality of their surrounding air
- Main motivation: Personal air pollution monitoring
 - Quantitative health and well-being applications
 - Relationship: Physiological state ⇔ Environmental conditions?
- Additional benefits: Crowd-sourced air pollution monitoring
 - Leverage the power of the crowd: big data
 - Cheap high-resolution data

Personal Air Pollution Monitoring Devices

System	Pollutants	Usage	Scenario
Budde et al.	PM2.5, PM10	Carriable	Outdoor
AirSense	PM2.5	Carriable	In-&Outdoor
MyPart	PM10	Wearable	In-&Outdoor
MAQS	CO2	Carriable	Indoor
CitiSense	CO, NO2, O3	Carriable	In-&Outdoor
CommonSense	CO, NOx, O3	Handheld	Outdoor
Oletic et al.	CO, NO2, SO2	Handheld	Outdoor
Piedrahita et al.	CO, CO2, NO2, O3	Carriable	In-&Outdoor
W-Air	CO2, O3	Wearable	In-&Outdoor

Carriable: Handheld, attached to a backpack, bike etc.

Wearables

- Many commercial products available (FitBit, Apple Watch etc.)
- Simple and compact devices ease user engagement
- Seamlessly integrated into peoples daily lives
- Biological or physiological parameters are commonly measured (e.g. heart rate, galvanic skin response)

Wearables look promising for personal air quality monitoring

W-Air: Wearable Prototype

Thunderboard Sense & Rel.Humidity Temperature MiCS-OZ-47 Ozone O3

VOC/eCO2 (metaloxide)

(metaloxide)

Goal: Measure ozone (O₃) outdoors and carbon dioxide (CO₃) indoors (eCO2 via VOC)

> Can we use this prototype for accurate air pollution monitoring?

Measurement Study

Outdoor: Ozone (O₃)

- City-center and residential area
- Reference: Aeroqual SM-50
 - Indoor: Carbondioxide (CO₂)
- Office, living- and bed-room
- Reference: Telair 6713
- ~100 hours recorded in each environment
- Distributed over 21 days between April and October 2017
- Basic data smoothing
- User was mainly sitting and reading/working

Observations Outdoor

O3: Uncalibrated, raw ADC values

VOC: Factory calibrated VOC measurements

Observations Indoor

We observe the same human interference indoors!

Belt and Backpack Settings

- Q: Is the human interference a wrist-usage problem?
 A: No!
- Belt and backpack usage have been used before in related work (Budde et al., MAQS, clarity.io etc.)

Observations Belt and Backpack

We observed human interference for all settings (wrist, belt and backpack) in both outdoor and indoor environments!

Human interference

- General observation during human presence situations:
 - VOC concentration increases
 - O₃ concentration decreases
- Possible reasons are different VOC emissions from:
 - Human skin: natural skin oils and cosmetic products
 - Clothing
 - Human breath
 - Chemical reactions with ambient O₃

Problem: Both gas sensors are affected by the human generated interference. This is a possible error source for ambient air quality monitoring in a wearable setup!

Calibration of Human Interference

• Can we counteract the human interference and therefore reconstruct the true O_3 & CO_2 concentrations by calibrating the air quality sensors?

- Sensor array:
 - Measurements from both gas sensors and temperature sensor are calibrated to reference measurements
- Approach
 - Method 1: Linear Multiple Least-Squares (MLS)
 - Method 2: Non-Linear Artificial Neural Network
 - 10-fold CV on 2000 random samples from dataset

Results

Non-linear **neural networks** are able to compensate for the human interference and recover the true O3 and CO₂ concentrations with high accuracy

W-Air Work Flow

- Challenges
 - Calibration should work in situations with and without human interference
 - Training efforts should be small (e.g. training dataset size)
- Our approach to tackle these challenges
 - Shared hidden layer neural network architecture
 - Semi-supervised model updating
- Assumption: The calibration process knows if the user is wearing W-Air and if she/he is out- or indoors

Neural Network Architectures

- Unified NN: no distinction between human and non-human interference
- Two independent NNs: Individual training with data from only one case
- Shared layer NN: one shared hidden layer and two individual layers
 - Exploit potential shared features between HI and w/o HI data to reduce training dataset requirements → Also known as *multi-task learning*
- Shared layer NN improves accuracy up to 12% compared to other two architectures

Overall Calibration Performance

- Baseline: Linear MLS calibration trained on data w/o HI
 - Represents a typical factory calibration
- Shared hidden layer architecture
- 10³ training samples, 10⁴ testing samples
- Results RMSE (RMSE $_{\sigma}$) :

Environment	Test Case	Baseline	NN-based
Outdoor (O ₃)	No Human Interference	10 ppb (2.0)	4.3 ppb (0.86)
	With Human Interference	16.8 ppb (3.7)	4.3 ppb (0.94)
Indoor (CO ₂)	No Human Interference	177 ppm (1.5)	64 ppm (0.57)
(CO_2)	With Human Interference	325 ppm (2.3)	38 ppm (0.29)

Model Updating

- We need to be able to update our calibration model:
 - Abundant and diverse data covering different environmental conditions
- Problem: Acquiring ground-truth during usage by un-trained users is impractical
 - Requires high-quality reference measurements
- Our solution: Semi-supervised learning based on the COREG [1] algorithm to generate our own artificial ground-truth

- Basic idea: Boost situations during training with only a few samples by adding artificial ground-truth
- In average 20% accuracy improvement for semi-supervised model updates
- Details in paper and [1]

Conclusion

- W-Air enables personal and accurate air pollution monitoring on Wearables
- Human interference affects metaloxide based gas sensors and significantly decrease measurement accuracy
- Our solution: neural network based calibration
- We boost the training process by using
 - Shared-hidden layer architecture
 - COREG Semi-superviced learning

