Zadanie domowe

Zadanie 1

Dany jest układ:

a sprężyna ma charakterystykę nieliniową: $k = k_1(1 + k_2 \cdot x^2)$

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t)$.

Uwagi

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $x_0 \neq 0, v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 2

Dany jest układ:

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na masę, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $\alpha(t), \omega(t), \omega(\alpha)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t)$.

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $\alpha_0 \neq 0, \omega_0 \neq 0$

- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

3

Dany jest układ:

Figure 2:

wahadło matematyczne; duże drgania, tzn. $sin(\alpha) \neq \alpha$

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na masę, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $\alpha(t), \omega(t), \omega(\alpha)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t)$.

Uwagi

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $\alpha_0 \neq 0, \omega_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 4

Dany jest układ:

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t), y(t), v_y(t), y(x)$.

Figure 3:

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- warunki początkowe: x_0, y_0 zależnie od wprowadzonego układu, $v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

5

Dany jest układ:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gęstość powietrza, v-prędkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

Figure 4:

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury ${\tt vrk4}.$
- 5. Sporzadzić wykresy: $z(t), v_z(t)$.

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- warunki początkowe: x_0 zależnie od wprowadzonego układu współrzędnych, $z_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)

• Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 6

Dany jest układ:

Figure 5:

duże drgania, tzn. $sin(\alpha) \neq \alpha$; uproszczenie: siła od sprężyny działa zawsze poziomo

W ramach zadania należy:

7

1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające

- na masę, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $\alpha(t), \omega(t), \omega(\alpha)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t)$.

Uwagi

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $\alpha_0 \neq 0, \omega_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 7

Dany jest układ:

duże drgania, tzn. $sin(\alpha) \neq \alpha$; uproszczenie: siła od sprężyny działa zawsze poziomo

W ramach zadania należy:

- 1. Wykonać rysunek (porządny!), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na masę, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $\alpha(t), \omega(t), \omega(\alpha)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t)$.

Uwagi

9

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $\alpha_0 \neq 0, \omega_0 \neq 0$

- Wykresy sporzadzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 8

Dany jest układ:

Figure 6:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gestość powietrza, v-predkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

W ramach zadania należy:

1. Wykonać rysunek (porządny!), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na masę, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).

- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $\alpha(t), \omega(t), \omega(\alpha)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t).\,$

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $\alpha_0 \neq 0, \omega_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 9

Dany jest układ:

Figure 7:

sprężyna o charakterystyce nieliniowej: $k = k1(1 + k_2 \cdot x^2)$

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na masę, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t)$.

Uwagi

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $x_0 \neq 0, v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 10

Dany jest układ:

Figure 8:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gęstość powietrza, v-prędkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t), y(t), v_y(t)$.

Uwagi

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- warunki początkowe: x_0,y_0 zależnie od wprowadzonego układu współrzędnych, $v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 11

Dany jest układ:

13

Stożek w wodzie. Należy tak dobrać gęstość, aby stan równowagi odpowiadał zanurzeniu do $\frac{2}{3}$ wysokości. W celu uproszczenia problemu należy wziąć pod uwage jedyni siły hydrostatyczne.

W ramach zadania należy:

Figure 9:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na masę, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury ${\tt vrk4}.$
- 5. Sporządzić wykresy: $z(t), v_z(t)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t)$.

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $z_0 \neq 0, v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Dany jest układ:

Figure 10:

Kula w wodzie. Należy tak dobrać gęstość, aby stan równowagi odpowiadał zanurzeniu do $\frac{1}{2}$ wysokości. W celu uproszczenia problemu należy wziąć pod uwage jedyni siły hydrostatyczne.

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na masę, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury ${\tt vrk4}.$
- 5. Sporządzić wykresy: $z(t), v_z(t)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t)$.

Uwagi

15

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $z_0 \neq 0, v_0 \neq 0$

- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 13

Dany jest układ:

Figure 11:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gestość powietrza, v-predkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

W ramach zadania należy:

- 1. Wykonać rysunek (porządny!), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości majace wpływ na rozwiazanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t), y(t), v_y(t)$.

Uwagi

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- \bullet warunki początkowe: x_0,y_0 zależnie od wprowadzonego układu współrzęd nych, $v_0 \neq 0$
- Wykresy sporzadzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Figure 12:

Zadanie 14

Dany jest układ:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gestość powietrza, v-predkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t), y(t), v_y(t)$.

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- warunki początkowe: x_0, y_0 zależnie od wprowadzonego układu współrzędnych, $v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Dany jest układ:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gęstość powietrza, v-prędkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

W ramach zadania należy:

1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).

Figure 13:

- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury ${\tt vrk4}.$
- 5. Sporządzić wykresy: $x(t), v_x(t), y(t), v_y(t)$.

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- warunki początkowe: x_0,y_0 zależnie od wprowadzonego układu współrzędnych, $v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Dany jest układ:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gęstość powietrza, v-prędkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

${\bf W}$ ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t), y(t), v_y(t)$.

Figure 14:

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- warunki początkowe: x_0, y_0 zależnie od wprowadzonego układu współrzędnych, $v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 17

Dany jest układ:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gestość powietrza, v-predkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

W ramach zadania należy:

- 1. Wykonać rysunek (porządny!), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości majace wpływ na rozwiazanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t), y(t), v_y(t)$.

Uwagi

• Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury

Figure 15:

- warunki początkowe: x_0, y_0 zależnie od wprowadzonego układu współrzędnych, $v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Dany jest układ:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gęstość powietrza, v-prędkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t), y(t), v_y(t)$.

\mathbf{U} wagi

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- warunki początkowe: x_0, y_0 zależnie od wprowadzonego układu współrzędnych, $v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Figure 16:

Dany jest układ:

Figure 17:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gęstość powietrza, v-prędkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t), y(t), v_y(t)$.

Uwagi

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- warunki początkowe: x_0,y_0 zależnie od wprowadzonego układu współrzędnych, $v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 20

Dany jest układ:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gęstość powietrza, v-prędkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na ciało, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.

Figure 18:

- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t), y(t), v_y(t)$.

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- warunki początkowe: x_0, y_0 zależnie od wprowadzonego układu współrzędnych, $v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 21

Dany jest układ:

Figure 19:

Ruch masy może odbywać się tylko w pionie, sprężyna o charakterystyce nieliniowej: $k = k_1(1 + k_2 \cdot x^2).$

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na masę, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $z(t), v_z(t)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t)$.

Uwagi

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $z_0 \neq 0, v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 22

Dany jest układ:

31

Ruch masy może odbywać się tylko w pionie.

W ramach zadania należy:

- 1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na masę, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $z(t), v_z(t)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t)$.

Figure 20:

Uwagi

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $z_0 \neq 0, v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 23

Dany jest układ:

W ramach zadania należy:

1. Wykonać rysunek (**porządny!**), rysunek powinien zawierać: wprowadzony układ współrzędnych (początek w położeniu równowagi), siły działające na masę, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).

Figure 21:

- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $x(t), v_x(t)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t)$.

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) prosze zadawać z klawiatury
- Warunki początkowe: $x_0 \neq 0, v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej

Zadanie 24

Dany jest układ:

33

Figure 22:

Ruch masy może odbywać się tylko w pionie, opór powietrza wyraża się wzorem:

$$F_{oporu} = \frac{\rho v^2}{2} \cdot S \cdot C$$

gdzie: ρ -gęstość powietrza, v-prędkość kuli względem powietrza, S-powierzchnia odniesienia i C-stały współczynnik.

W ramach zadania należy:

- 1. Wykonać rysunek (porządny!), rysunek powinien zawierać: wprowadzony układ współrzednych (poczatek w położeniu równowagi), siły działające na mase, inne wielkości mające wpływ na rozwiązanie zadania (wymiary, współczynniki, itp.).
- 2. Wyprowadzić różniczkowe równania ruchu.
- 3. Sprowadzić ww. równania do układu równań I rzędu.
- 4. Układ równań rozwiązać numerycznie za pomocą procedury vrk4.
- 5. Sporządzić wykresy: $z(t), v_z(t)$.
- 6. Sporządzić wykres energii mechanicznej w czasie $E_{MECH}(t)$.

- Wszystkie stałe wymagane do rozwiązania zadania (warunki początkowe, wymiary, itp.) proszę zadawać z klawiatury
- Warunki początkowe: $z_0 \neq 0, v_0 \neq 0$
- Wykresy sporządzić dla przykładowego zestawu danych (dane te należy zapisać razem z wykresem)
- Wyprowadzenia, rysunki i wykresy należy oddawać w formie pisemnej