Spis treści

1	Parametry wejściowe	2
2	Obliczenia wspólne dla wszystkich przypadków	4
3	Obliczenie w przypadku słupa prostokątengo wewnętrznego	7
4	Obliczenie w przypadku słupa okrągłego wewnętrznego	9
5	Obliczenie w przypadku słupa prostokątnego krawędziowego	11
6	Obliczenie w przypadku słupa okrągłego krawędziowego	13
7	Obliczenie w przypadku słupa prostokątnego narożnego	15
8	Obliczenie w przypadku słupa okrągłego narożnego	17
9	Obliczenie w przypadku końca ściany	19
10	Obliczenie w przypadku naroża ściany	19
11	Momenty statyczne i środek cieżkości	21

1 Parametry wejściowe

- (a) f_{ck} [MPa] (dla badań naukowych f_{cm}) klasa wytrzymałości betonu
- (b) $\gamma_c=1.4$ (EN-PN) lub $\gamma_c=1.5$ (EN) współczynnik częściowy dla betonu
- (c) f_{yk} [MPa] (dla badań naukowych f_{ym}) granica plastyczności zbrojenia podłużnego
- (d) $f_{ywk} = 500 \ MPa$ (dla badań f_{ywm}) granica plastyczności zbrojenia poprzecznego
- (e) $\gamma_s = 1.15$ współczynnik częściowy dla stali
- (f) $k_{max} = 1.40/1.50/1.70/1.90/1.96$ współczynnik zależny od rodzaju zbrojenia na przebicie
- (g) $\beta = 1.15/1.40/1.50/1.35/1.20$ współczynnik zwiększający obciążenie (słup wewnętrzny / krawędziowy / narożny / krawędź ściany / naroże ściany)
- (h) $\delta = 1.2 \in [1, 10]$ współczynnik dynamiczny (dynamic load)
- (i) c_{upp} , c_{low} [mm] górna i dolna otulina zbrojenia (w obliczeniach przyjąć $c_{nom} := c_{upp}$)
- (j) h [mm] grubość płyty
- (k) zbrojenie w kierunku y
 - ϕ_y [mm], s_y [mm] średnica i rozstaw prętów
 - $\phi_y \quad [mm], \quad A_{sy} \quad [\frac{cm^2}{m}] \quad$ średnica prętów i przekrój zbrojenia
 - ϕ_y [mm], ρ_{ly} [%] średnica prętów i stopień zbrojenia
- (l) zbrojenie w kierunku x
 - ϕ_x [mm], s_x [mm] średnica i rozstaw prętów
 - ϕ_x [mm], A_{sx} $\left[\frac{cm^2}{m}\right]$ średnica prętów i przekrój zbrojenia
 - $\phi_x \quad [mm], \quad \rho_{lx} \quad [\%] \quad$ średnica prętów i stopień zbrojenia
- (m) M_{Edx} , M_{Edy} [kNm] momenty w płaszczyźnie osi OX i OY w przypadku końca ściany oraz naroża ściany momenty M_{Edx} , M_{Edy} nie występują
- (n) V_{Ed} [kN] siła w złączu
- (o) ϕ_{sw} [mm] średnica zbrojenia na ścinanie
- (p) c_x [mm] szerokość przekroju słupa
- (q) c_y [mm] długość przekroju słupa
- (r) d_c [mm] średnica przekroju słupa

- (s) b_c [mm] grubość ściany
- (t) $l_x, l_y \quad [mm] \quad$ przewieszenie (odległość krawędzi od słupa)
- (u) $\alpha \in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ kạt obrotu ściany
- (v) s_{r1} [mm] rozstaw pierwszego obwodu
- (w) $s_r \quad [mm] \quad \text{rozstaw kolejnych obwodów}$

2 Obliczenia wspólne dla wszystkich przypadków

(1) przekrój zbrojenia w kierunku x

$$A_{sx} = \frac{\pi \cdot \phi_x^2}{4} \cdot \frac{1000}{s_x} \quad \left[\frac{mm^2}{m} \right]$$

(2) przekrój zbrojenia w kierunku y

$$A_{sy} = \frac{\pi \cdot \phi_y^2}{4} \cdot \frac{1000}{s_y} \quad \left[\frac{mm^2}{m}\right]$$

(3) stopień zbrojenia w kierunku x

$$\rho_{lx} = \frac{A_{sx}}{1000 \cdot d_x} \quad [-]$$

(4) stopień zbrojenia w kierunku y

$$\rho_{ly} = \frac{A_{sy}}{1000 \cdot d_y} \quad [-]$$

(5) średni stopień zbrojenia

$$\rho_l = \sqrt{\rho_{lx} \cdot \rho_{ly}} \leqslant 0.02 \quad [-]$$

(6) wysokość użyteczna w kierunku x

$$d_x = h - c_{nom} - 0.5 \cdot \phi_x - \phi_y \quad [mm]$$

(7) wysokość użyteczna w kierunku y

$$d_u = h - c_{nom} - 0.5 \cdot \phi_u \quad [mm]$$

(8) wysokość użyteczna płyty

$$d_{eff} = \frac{d_x + d_y}{2} \quad [mm]$$

(9)
$$C_{Rdc} = \frac{0.18}{\gamma_c}$$
 [-], $k = 1 + \sqrt{\frac{200}{d_{eff}}} \le 2.0$ [-]

(10) obliczeniowa wytrzymałość na ścinanie przy przebiciu

$$\nu_{Rdc} = \max \begin{cases} C_{Rdc} \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{\frac{1}{3}} \\ \nu_{min} := 0.035 \cdot k^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}} \end{cases} [MPa]$$

d_{eff}	[mm]	≤ 160	$161 \div 180$	$181 \div 220$	$221 \div 260$	$261 \div 340$	$341 \div 600$	> 600
ϕ_{sw}	[mm]	_	14	16	18	20	25	30

Tabela 1: Zalecane maksymalne średnice zbrojenia poprzecznego w funkcji $d_{\it eff}$

(i) naprężenia styczne działające na obwodzie podstawowym u_0

$$\nu_{Ed0} = \beta \cdot \frac{V_{Ed}}{u_0 \cdot d_{eff}} \cdot 1000 \quad [MPa]$$

(ii) naprężenia styczne działające na obwodzie kontrolnym u_{cr}

$$\nu_{Ed1} = \beta \cdot \frac{V_{Ed}}{u_{cr} \cdot d_{eff}} \cdot 1000 \quad [MPa]$$

(iii) naprężenia maksymalne

$$\nu_{Rd,max,u0} = 0.4 \cdot 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right) \cdot \frac{f_{ck}}{\gamma_c} \quad [MPa]$$

(iv) naprężenia maksymalne

$$\nu_{Rd,max,u1} = k_{max} \cdot \nu_{Rdc}$$

- (v) weryfikacja konieczności stosowania zbrojenia na przebicie
 - $\nu_{Ed1} > \nu_{Rd,max,u1}$ należy zmienić parametry połączenia (grubość płyty, klasę wytrzymałość betonu, stopień zbrojenia głównego)
 - $\nu_{Ed1} \leqslant \nu_{Rdc}$ zbrojenie na przebicie nie jest wymagane
 - $\nu_{Ed0} > \nu_{Rd,max,u0}$ należy zmienić parametry połączenia (grubość płyty, klasę wytrzymałość betonu, stopień zbrojenia głównego)
 - $\nu_{Ed0} \le \nu_{Rd,max,u0}$ zbrojenie na przebicie jest wymagane
- (vi) granica plastyczności zbrojenia na przebicie

$$f_{ywd,eff} = \min \begin{cases} 250 + 0.25 \cdot d_{eff} \\ f_{ywd} := \frac{f_{ywk}}{\gamma_s} \end{cases} [MPa]$$

(vii) wymagane pole przekroju zbrojenia na przebicie

$$A_{sw,req} = \frac{(\nu_{Ed1} - 0.75 \cdot \nu_{Rdc}) \cdot s_r \cdot u_{cr}}{1.5 \cdot f_{ywd,eff}} \quad [mm^2]$$

(viii) wymagana liczba elementów konstrukcyjnych na jednym obwodzie

$$n_{sw,req} = \left[\frac{4 \cdot A_{sw,req}}{\pi \cdot \phi_{sw}^2} \right] \quad [-]$$

Minimalna liczba obwodów zbrojenia – dwa. Pierwszy obwód powinien być usytuowany w odległości: $0.3 \cdot d_{eff} < s_{r1} \le 0.5 \cdot d_{eff}$, kolejne obwody: $s_r \le 0.75 \cdot d_{eff}$. Jeżeli odległość s_t pomiędzy elementami

- "na odwodzie zbrojenia usytuowanym wewnętrz u_{cr} " przekracza $1.5 \cdot d_{eff}$
- "na odwodzie zbrojenia usytuowanym poza u_{cr} " przekracza $2.0 \cdot d_{eff}$

to należy dodać odpowiednią liczbę elementów (trzpieni) konstrukcyjnych.

- $A_{sw,prov}$ pole przekroju zbrojenia na przebicie po dodaniu elementów (trzpieni) konstrukcyjnych
- $A_{sw,total}$ pole przekroju zbrojenia na przebicie po uwzględnieniu listw ($A_{sw,total}$ = pole jednego pręta * liczba prętów na wszystkich obwodach)
- graniczne naprężenia płyty ze zbrojeniem

$$\nu_{Rdcz} = 0.75 \cdot \nu_{Rdc} + \frac{1.5 \cdot A_{sw,min} \cdot f_{ywd,eff}}{s_r \cdot u_{cr}} \quad [MPa]$$

gdzie $A_{sw,min}$ to pole przekroju zbrojenia faktycznie przyjętego, przypadający na jeden obwód. W przypadku zróżnicowanej liczby prętów na kolejnych obwodach bierzemy pod uwagę najmniejszą ich liczbę.

Wykorzystanie nośności dla płyty bez zbrojenia poprzecznego:

$$\frac{\nu_{Ed1}}{\nu_{Rdc}} \cdot 100\%$$

Wykorzystanie nośności dla płyty ze zbrojeniem poprzecznym:

$$\frac{\nu_{Ed1}}{\nu_{Rdcz}} \cdot 100\%$$

3 Obliczenie w przypadku słupa prostokątengo wewnętrznego

(i) współczynnik zwiększający obciążenie

$$\beta = 1 + \kappa \cdot \frac{M_{Ed}}{V_{Ed}} \cdot \frac{u_{cr}}{W_1} \quad [-]$$

gdzie: κ jest współczynnikiem zależnym od stosunku wymiarów $\widetilde{c_x}$ i $\widetilde{c_y}$ słupa, natomiast W_1 odpowiada rozkładowi naprężeń stycznych

$$W_1 = \int_{u_{cr}} |\xi| \ dl,$$

dl oznacza przyrost długości obwodu, zaś ξ to odległość dl od osi, względem której występuje zginanie momentu M_{Ed} . Dla wewnętrznych słupów prostokątnych z mimośrodem w dwóch kierunkach można stosować wzór przybliżony:

$$\beta = 1 + 1.8 \cdot \sqrt{\left(\frac{e_y}{b_x}\right)^2 + \left(\frac{e_x}{b_y}\right)^2} \quad [-]$$

wymiary obwodu kontrolnego

$$b_x = c_x + 4 \cdot d_{eff}$$
 [mm] $b_y = c_y + 4 \cdot d_{eff}$ [mm]

• mimośrody (obliczane na podstawie momentu względem odpowiednich osi)

$$e_x = \frac{M_{Edy}}{V_{Ed}} \cdot 1000 \quad [mm] \qquad e_y = \frac{M_{Edx}}{V_{Ed}} \cdot 1000 \quad [mm]$$

(ii) długość obwodu podstawowego słupa u_0

$$u_0 = 2 \cdot (c_x + c_y) \quad [mm]$$

(iii) długość obwodu kontrolnego słupa u_{cr} (zielony obwód)

$$u_{cr} = u_0 + 4 \cdot \pi \cdot d_{eff}$$
 [mm]

(iv) długość obwodu zewnętrznego, ograniczającego obszar, w którym zbrojenie na przebicie jest wymagane

$$u_{out,req} = \frac{\beta \cdot V_{Ed}}{\nu_{Rdc} \cdot d_{eff}} \cdot 1000 \quad [mm]$$

(v) promień obwodu $u_{out,req}$

$$r_{out} = \frac{u_{out,req} - 2 \cdot (c_x + c_y)}{2 \cdot \pi} \quad [mm]$$

(vi) minimalny zasięg zbrojenia poprzecznego

$$r_{sw} = r_{out,reg} - 1.5 \cdot d_{eff}$$
 [mm]

7

(vii) $l_{s,req} = r_{sw}$ – odległość od krawędzi słupa do $u_{out,req} - 1.5 \cdot d_{eff}$

(viii) $l_{s,prov}$ – odległość od krawędzi słupa do ostatniego obwodu z trzpieniami

$\widetilde{c_x}/\widetilde{c_y}$	≤ 0.5	$(0.5 \div 1.0)$	1.0	$(1.0 \div 2.0)$	2.0	$(2.0 \div 3.0]$	≥ 3.0
$\kappa = f(\tau)$	0.45	$0.3 \cdot \tau + 0.3$	0.6	$0.1 \cdot \tau + 0.5$	0.7	$0.1 \cdot \tau + 0.5$	0.8

Tabela 2: Wartości κ dla słupów prostokątnych

Dla wewnętrznego słupa prostokątnego W_1 oblicza się ze wzoru:

$$W_1 = 0.5 \cdot \widetilde{c_x}^2 + \widetilde{c_x} \cdot \widetilde{c_y} + 4 \cdot \widetilde{c_y} \cdot d_{eff} + 16 \cdot d_{eff}^2 + 2 \cdot \pi \cdot d_{eff} \cdot \widetilde{c_x}.$$

- $-\ \widetilde{c_x}$ oznacza wymiar słupa równoległy do mimośrodu obciążenia,
- $-\ \widetilde{c_y}$ oznacza wymiar słupa prostopadły do mimośrodu obciążenia.

Rysunek 1: Rozkład prętów na obwodach w przypadku słupa prostokątnego wewnętrznego

4 Obliczenie w przypadku słupa okrągłego wewnętrznego

(i) współczynnik zwiększający obciążenie

$$\beta = 1 + \kappa \cdot \frac{M_{Ed}}{V_{Ed}} \cdot \frac{u_{cr}}{W_1} \quad [-]$$

gdzie: $\kappa = 0.6$, natomiast W_1 odpowiada rozkładowi naprężeń stycznych

$$W_1 = \int_{u_{cr}} |\xi| \ dl,$$

dl oznacza przyrost długości obwodu, zaś ξ to odległość dl od osi, względem której występuje zginanie momentu M_{Ed} . Dla wewnętrznych słupów okrągłych z momentem wypadkowym $M_{Ed} = \sqrt{M_{Edx}^2 + M_{Edy}^2}$ można stosować wzór przybliżony:

$$\beta = 1 + 0.6 \cdot \pi \cdot \frac{\frac{M_{Ed}}{V_{Ed}} \cdot 1000}{(d_c + 4 \cdot d_{eff})} \quad [-]$$

(ii) długość obwodu podstawowego słupa u_0

$$u_0 = \pi \cdot d_c \quad [mm]$$

(iii) długość obwodu kontrolnego słupa u_{cr} (zielony obwód)

$$u_{cr} = u_0 + 4 \cdot \pi \cdot d_{eff} \quad [mm]$$

(iv) długość obwodu zewnętrznego, ograniczającego obszar, w którym zbrojenie na przebicie jest wymagane

$$u_{out,req} = \frac{\beta \cdot V_{Ed}}{\nu_{Rdc} \cdot d_{eff}} \cdot 1000 \quad [mm]$$

(v) promień obwodu $u_{out,req}$

$$r_{out,req} = \frac{u_{out,req}}{2 \cdot \pi} \quad [mm]$$

(vi) minimalny zasięg zbrojenia poprzecznego

$$r_{sw} = r_{out,req} - 1.5 \cdot d_{eff} \quad [mm]$$

9

(vii) $l_{s,req} = r_{sw}$ – odległość od krawędzi słupa do $u_{out,req} - 1.5 \cdot d_{eff}$

(viii) $l_{s,prov}$ – odległość od krawędzi słupa do ostatniego obwodu z trzpieniami

Rysunek 2: Rozkład prętów na obwodach w przypadku słupa okrągłego wewnętrznego

5 Obliczenie w przypadku słupa prostokątnego krawędziowego

(i) współczynnik zwiększający obciążenie

$$\beta = 1 + \kappa \cdot \frac{M_{Ed}}{V_{Ed}} \cdot \frac{u_{cr}}{W_1} \quad [-]$$

gdzie: κ jest współczynnikiem zależnym od stosunku wymiarów $\widetilde{c_x}$ i $\widetilde{c_y}$ słupa, natomiast W_1 odpowiada rozkładowi naprężeń stycznych

$$W_1 = \int_{u_{cr}} |\xi| \ dl.$$

(ii) długość obwodu podstawowego słupa u_0 (krawędź pionowa)

$$u_0 = 2 \cdot l_x + c_y + \min\{2 \cdot c_x, 3 \cdot d_{eff}\}$$
 [mm]

(iii) długość obwodu podstawowego słupa u_0 (krawędź pozioma)

$$u_0 = 2 \cdot l_y + c_x + \min\{2 \cdot c_y, 3 \cdot d_{eff}\}$$
 [mm]

(iv) długość obwodu kontrolnego słupa u_{cr} (krawędź pionowa)

$$u_{cr} = 2 \cdot l_x + 2 \cdot c_x + c_y + 2 \cdot \pi \cdot d_{eff} \quad [mm]$$

(v) długość obwodu kontrolnego słupa u_{cr} (krawędź pozioma)

$$u_{cr} = 2 \cdot l_y + 2 \cdot c_y + c_x + 2 \cdot \pi \cdot d_{eff} \quad [mm]$$

(vi) długość obwodu zewnętrznego, ograniczającego obszar, w którym zbrojenie na przebicie jest wymagane

$$u_{out,req} = \frac{\beta \cdot V_{Ed}}{\nu_{Rdc} \cdot d_{eff}} \cdot 1000 \quad [mm]$$

(vii) promień obwodu $u_{out,req}$ (krawędź pionowa)

$$r_{out,req} = \frac{u_{out,req} - 2 \cdot (l_x + c_x) - c_y}{\pi} \quad [mm]$$

(viii) promień obwodu $u_{out,req}$ (krawędź pozioma)

$$r_{out,req} = \frac{u_{out,req} - 2 \cdot (l_y + c_y) - c_x}{\pi} \quad [mm]$$

(ix) minimalny zasięg zbrojenia poprzecznego

$$r_{sw} = r_{out,reg} - 1.5 \cdot d_{eff}$$
 [mm]

Uwaga. Jeżeli $u_{cr} > u_{cr}^{in} := 2 \cdot (c_x + c_y) + 4 \cdot \pi \cdot d_{eff}$ to obliczenia wykonać jak w przypadku słupa wewnętrznego.

11

Rysunek 3: Rozkład prętów na obwodach w przypadku słupa prostokątnego krawędziowego

6 Obliczenie w przypadku słupa okrągłego krawędziowego

(i) współczynnik zwiększający obciążenie

$$\beta = 1 + \kappa \cdot \frac{M_{Ed}}{V_{Ed}} \cdot \frac{u_{cr}}{W_1} \quad [-]$$

gdzie: $\kappa = 0.6$, natomiast W_1 odpowiada rozkładowi naprężeń stycznych

$$W_1 = \int_{u_{cr}} |\xi| \ dl.$$

(ii) długość obwodu podstawowego słupa u_0

$$u_0 = 2 \cdot l_x + 0.5 \cdot \pi \cdot d_c + \min\{d_c, 3 \cdot d_{eff}\}$$
 [mm]

(iii) długość obwodu kontrolnego słupa u_{cr}

$$u_{cr} = 2 \cdot l_x + d_c + \pi \cdot (0.5 \cdot d_c + 2 \cdot d_{eff}) \quad [mm]$$

(iv) długość obwodu zewnętrznego, ograniczającego obszar, w którym zbrojenie na przebicie jest wymagane

$$u_{out,req} = \frac{\beta \cdot V_{Ed}}{\nu_{Rdc} \cdot d_{eff}} \cdot 1000 \quad [mm]$$

(v) promień obwodu $u_{out,req}$

$$r_{out,req} = \frac{u_{out,req} - (2 \cdot l_x + d_c)}{\pi} \quad [mm]$$

(vi) minimalny zasięg zbrojenia poprzecznego

$$r_{sw} = r_{out,req} - 1.5 \cdot d_{eff} \quad [mm]$$

Uwaga. Jeżeli $u_{cr} > u_{cr}^{in} := 2 \cdot \pi \cdot (0.5 \cdot d_c + 2 \cdot d_{eff}) = \pi \cdot (d_c + 4 \cdot d_{eff})$ to obliczenia wykonać jak w przypadku słupa wewnętrznego.

Rysunek 4: Rozkład prętów na obwodach w przypadku słupa okrągłego krawędziowego

7 Obliczenie w przypadku słupa prostokątnego narożnego

(i) współczynnik zwiększający obciążenie

$$\beta = 1 + \kappa \cdot \frac{M_{Ed}}{V_{Ed}} \cdot \frac{u_{cr}}{W_1} \quad [-]$$

gdzie: κ jest współczynnikiem zależnym od stosunku wymiarów $\widetilde{c_x}$ i $\widetilde{c_y}$ słupa, natomiast W_1 odpowiada rozkładowi naprężeń stycznych

$$W_1 = \int_{u_{cr}} |\xi| \ dl.$$

(ii) długość obwodu podstawowego słupa u_0

$$u_0 = l_x + l_y + \min\{c_x + c_y, 3 \cdot d_{eff}\}$$
 [mm]

(iii) długość obwodu kontrolnego słupa u_{cr}

$$u_{cr} = l_x + l_y + c_x + c_y + \pi \cdot d_{eff} \quad [mm]$$

(iv) długość obwodu zewnętrznego, ograniczającego obszar, w którym zbrojenie na przebicie jest wymagane

$$u_{out,req} = \frac{\beta \cdot V_{Ed}}{\nu_{Rdc} \cdot d_{eff}} \cdot 1000 \quad [mm]$$

(v) promień obwodu $u_{out,req}$

$$r_{out,req} = \frac{u_{out,req} - (l_x + l_y + c_x + c_y)}{0.5 \cdot \pi} \quad [mm]$$

(vi) minimalny zasięg zbrojenia poprzecznego

$$r_{sw} = r_{out,reg} - 1.5 \cdot d_{eff}$$
 [mm]

Uwaga. Jeżeli $u_{cr}>u_{cr}^{in}:=2\cdot(c_x+c_y)+4\cdot\pi\cdot d_{eff}$ to obliczenia wykonać jak w przypadku słupa wewnętrznego.

Rysunek 5: Rozkład prętów na obwodach w przypadku słupa prostokątnego narożnego

8 Obliczenie w przypadku słupa okrągłego narożnego

(i) współczynnik zwiększający obciążenie

$$\beta = 1 + \kappa \cdot \frac{M_{Ed}}{V_{Ed}} \cdot \frac{u_{cr}}{W_1} \quad [-]$$

gdzie: $\kappa = 0.6$, natomiast W_1 odpowiada rozkładowi naprężeń stycznych

$$W_1 = \int_{u_{cr}} |\xi| \ dl.$$

(ii) długość obwodu podstawowego słupa u_0

$$u_0 = l_x + l_y + \min\{d_c \cdot (1 + 0.25 \cdot \pi), 3 \cdot d_{eff}\}$$
 [mm]

(iii) długość obwodu kontrolnego słupa u_{cr}

$$u_{cr} = l_x + l_y + d_c + 0.5 \cdot \pi \cdot (0.5 \cdot d_c + 2 \cdot d_{eff})$$
 [mm]

(iv) długość obwodu zewnętrznego, ograniczającego obszar, w którym zbrojenie na przebicie jest wymagane

$$u_{out,req} = \frac{\beta \cdot V_{Ed}}{\nu_{Rdc} \cdot d_{eff}} \cdot 1000 \quad [mm]$$

(v) promień obwodu $u_{out,req}$

$$r_{out,req} = \frac{u_{out,req} - (l_x + l_y + d_c)}{0.5 \cdot \pi} \quad [mm]$$

(vi) minimalny zasięg zbrojenia poprzecznego

$$r_{sw} = r_{out,req} - 1.5 \cdot d_{eff} \quad [mm]$$

Uwaga. Jeżeli $u_{cr} > u_{cr}^{in} := 2 \cdot \pi \cdot (0.5 \cdot d_c + 2 \cdot d_{eff}) = \pi \cdot (d_c + 4 \cdot d_{eff})$ to obliczenia wykonać jak w przypadku słupa wewnętrznego.

Rysunek 6: Rozkład prętów na obwodach w przypadku słupa okrągłego narożnego

9 Obliczenie w przypadku końca ściany

- (i) współczynnik zwiększający obciążenie $\beta = 1.35$ [-]
- (ii) długość obwodu podstawowego ściany u_0

$$u_0 = b_c + 3 \cdot d_{eff} \quad [mm]$$

(iii) długość obwodu kontrolnego ściany u_{cr}

$$u_{cr} = u_0 + 2 \cdot \pi \cdot d_{eff}$$
 [mm]

(iv) długość obwodu zewnętrznego, ograniczającego obszar, w którym zbrojenie na przebicie jest wymagane

$$u_{out,req} = \frac{\beta \cdot V_{Ed}}{\nu_{Rdc} \cdot d_{eff}} \cdot 1000 \quad [mm]$$

(v) promień obwodu $u_{out,req}$

$$r_{out,req} = \frac{u_{out,req} - b_c - 3 \cdot d_{eff}}{\pi}$$
 [mm]

(vi) minimalny zasięg zbrojenia poprzecznego

$$r_{sw} = r_{out,req} - 1.5 \cdot d_{eff} \quad [mm]$$

10 Obliczenie w przypadku naroża ściany

- (i) współczynnik zwiększający obciążenie $\beta = 1.20$ [-]
- (ii) długość obwodu podstawowego ściany u_0

$$u_0 = 3 \cdot d_{eff}$$
 $[mm]$

(iii) długość obwodu kontrolnego ściany u_{cr}

$$u_{cr} = u_0 + \pi \cdot d_{eff}$$
 $[mm]$

(iv) długość obwodu zewnętrznego, ograniczającego obszar, w którym zbrojenie na przebicie jest wymagane

$$u_{out,req} = \frac{\beta \cdot V_{Ed}}{\nu_{Rdc} \cdot d_{eff}} \cdot 1000 \quad [mm]$$

(v) promień obwodu $u_{out,req}$

$$r_{out,req} = \frac{u_{out,req} - 3 \cdot d_{eff}}{0.5 \cdot \pi} \quad [mm]$$

(vi) minimalny zasięg zbrojenia poprzecznego

$$r_{sw} = r_{out,reg} - 1.5 \cdot d_{eff}$$
 [mm]

Rysunek 7: Rozkład prętów na obwodach w przypadku końca ściany

Rysunek 8: Rozkład prętów na obwodach w przypadku naroża ściany

11 Momenty statyczne i środek ciężkości

Moment statyczny względem osi OX:

$$S_x = \sum_i y_i \cdot l_i = \int_K y \ dl$$

• przypadek odcinka pionowego: $x=C,y=t\in[y_a,y_b]$ $dl=\sqrt{dx^2+dy^2}=dt$

$$S_x = \pm \int_{y_a}^{y_b} t \ dt = \pm \frac{y_b^2 - y_a^2}{2}$$

• przypadek odcinka pioziomego: $x=t\in [x_a,x_b], y=C \qquad dl=\sqrt{dx^2+dy^2}=dt$

$$S_x = \pm \int_{x_a}^{x_b} C \ dt = \pm C \cdot (x_b - x_a)$$

• przypadek łuku: $x = r \cdot \cos(t), y = r \cdot \sin(t), t \in [\alpha, \beta]$ $dl = r \; dt$

$$S_x = \int_{\alpha}^{\beta} r \cdot \sin(t) \cdot r \, dt = r^2 \cdot (-\cos(\beta) + \cos(\alpha))$$

Moment statyczny względem osi OY:

$$S_y = \sum_i x_i \cdot l_i = \int_K x \ dl$$

$$S_y = \pm \int_{y_a}^{y_b} C dt = \pm C \cdot (y_b - y_a)$$

• przypadek odcinka pioziomego: $x=t\in [x_a,x_b], y=C \qquad dl=\sqrt{dx^2+dy^2}=dt$

$$S_y = \pm \int_{x_a}^{x_b} t \ dt = \pm \frac{x_b^2 - x_a^2}{2}$$

• przypadek łuku: $x = r \cdot \cos(t), y = r \cdot \sin(t), t \in [\alpha, \beta]$ $dl = r \; dt$

$$S_y = \int_{\alpha}^{\beta} r \cdot \cos(t) \cdot r \, dt = r^2 \cdot (\sin(\beta) - \sin(\alpha))$$

-moment statyczny dla odcinka = długości odcinka * odległości od osi
-moment statyczny dla łuku = długość łuku * odległość do środka +

+ moment statyczny względem osi przesuniętej (krawędzi słupa)

Środek ciężkości

$$x_{cg} = \frac{S_y}{\sum_i l_i} = \frac{S_y}{\int_K 1 \ dl} = \frac{S_y}{|K|}, \qquad y_{cg} = \frac{S_x}{\sum_i l_i} = \frac{S_x}{\int_K 1 \ dl} = \frac{S_x}{|K|}.$$

Momenty względem środka ciężkości

$$M_{Edx,cg} = M_{Edx} - V_{Ed} \cdot y_{cg},$$

$$M_{Edy,cg} = M_{Edy} + V_{Ed} \cdot x_{cg}.$$

$$W_{1} = \int_{u_{cr}} |\xi| \ dl = \int_{u_{cr}} \frac{|-M_{Edy} \cdot x + M_{Edx} \cdot y|}{\sqrt{M_{Edy}^{2} + M_{Edx}^{2}}} \ dl$$

$$W_{1} = \int_{a}^{b} \frac{|-M_{Edy} \cdot (x - x_{cg}) + M_{Edx} \cdot (y - y_{cg})|}{\sqrt{M_{Edy}^{2} + M_{Edx}^{2}}} \ dt$$

$$W_{1} = \int_{0}^{2\pi} \frac{|-M_{Edy} \cdot (r \cdot \cos(t) - x_{cg}) + M_{Edx} \cdot (r \cdot \sin(t) - y_{cg})|}{\sqrt{M_{Edy}^{2} + M_{Edx}^{2}}} \ dt$$