Chapter 19

Conducting Research

Presenting Tables and Graphs

Doing Economics: A Primer

Posing a question

- Topic the beginning of your search, not the end
 - Narrow it down
 - Talk to (other) faculty
 - Research existing literature
 - Find a niche or replicate?
- Assess feasibility
 - Are data sufficient?
 - Are my tools and other resources sufficient?
- Focus on a testable hypothesis

Literature Review

- Review the *literature*, not individual contributions
 - Organize papers into different "threads" of the literature -Differentiate by type of analysis (theory vs. empirical, causal vs. descriptive), type of result (positive, negative, none), type of data (geographic location, macro vs. micro, time periods), sub-topics...
- State your paper's contribution
 - Niche
 - Replication
 - Literature Review
 - Meta-Analysis
- Databases

Research Databases

- Library: EBSCO Host, JSTOR, Science Direct
- Google Scholar
 - Pro tip: Select "Endnote" as your bibliography manager in "Search results" and search and add "SAU" to the "Library links" in settings.

Structure of the Paper

- Introduction
- Conceptual Framework
- Data and Methods
- Results and Discussion
- Conclusion

Data Collection

- Online Sources
 - Formatted Electronic Data (.xls, .csv, .dta, .dat, etc....)
 - PDFs (require some manual entry/editing)
- Merging Data
 - ID variable (Key)
 - Dealing with mismatches?
- Cleaning Data
 - Dealing with (and reformatting) NA's
 - Naming, labelling, and storing data (.Rdata files, .Rproj files, and project directories)

Summarizing Data

Single Variables

Do the following: - Explore the objects in your environment using ls() - Using the ceosal1 data, separately calculate the mean, median, and standard deviation of the salary variable. - Calculate the summary statistics for the salary variable.

```
ls()
## [1] "affairs" "ceosal1"
mean(ceosal1$salary)
## [1] 1281.12
median(ceosal1$salary)
## [1] 1039
sd(ceosal1$salary)
## [1] 1372.345
summary(ceosal1$salary)
                    Median
                               Mean 3rd Qu.
##
      Min. 1st Qu.
                                                Max.
##
       223
               736
                       1039
                               1281
                                       1407
                                               14822
```

Summarizing an Entire Data Frame

• Calculate the summary statistics for all of the variables in *ceosal1*.

summary(ceosal1)

```
##
        salary
                       pcsalary
                                          sales
                                                             roe
           : 223
                           :-61.00
                                             : 175.2
                                                              : 0.50
   Min.
                    Min.
                                     Min.
                                                        Min.
    1st Qu.: 736
                    1st Qu.: -1.00
                                     1st Qu.: 2210.3
                                                        1st Qu.:12.40
   Median: 1039
                    Median: 9.00
                                     Median : 3705.2
                                                        Median :15.50
   Mean
          : 1281
                          : 13.28
                                     Mean
                                            : 6923.8
                                                        Mean
                                                               :17.18
                    Mean
                    3rd Qu.: 20.00
                                     3rd Qu.: 7177.0
                                                        3rd Qu.:20.00
    3rd Qu.: 1407
##
   Max.
           :14822
                    Max.
                           :212.00
                                     Max.
                                             :97649.9
                                                        Max.
                                                               :56.30
##
        pcroe
                         ros
                                        indus
                                                         finance
   Min.
           :-98.9
                           :-58.0
                                            :0.0000
                                                      Min.
                                                             :0.0000
                    Min.
                                    Min.
   1st Qu.:-21.2
                    1st Qu.: 21.0
                                    1st Qu.:0.0000
                                                      1st Qu.:0.0000
   Median : -3.0
                    Median: 52.0
                                    Median :0.0000
                                                      Median :0.0000
```

##	Mean	: 10.8	Mean	: 61.8	Mean	:0.3206	Mean	:0.2201
##	3rd Qu.	: 19.5	3rd Qu.	: 81.0	3rd Qu.	:1.0000	3rd Qu.	:0.0000
##	Max.	:977.0	Max.	:418.0	Max.	:1.0000	Max.	:1.0000
##	cons	prod	uti	lity	ls	alary	ls	ales
##	Min.	:0.0000	Min.	:0.0000	Min.	:5.407	Min.	: 5.166
##	1st Qu.	:0.0000	1st Qu	.:0.0000	1st Q	u.:6.601	1st Qu	.: 7.701
##	Median	:0.0000	Median	:0.0000	Media	n:6.946	Median	: 8.217
##	Mean	:0.2871	Mean	:0.1722	Mean	:6.950	Mean	: 8.292
##	$3rd\ Qu.$:1.0000	3rd Qu	.:0.0000	3rd Q	u.:7.249	3rd Qu	.: 8.879
##	Max.	:1.0000	Max.	:1.0000	Max.	:9.604	Max.	:11.489

Creating Pretty Tables

Standard Output

Create summary tables of ceosal1 using the tbl_summary function in the gtsummary package.

tbl_summary(ceosal1)

Characteristic	N = 209
salary	1,039 (736, 1,407)
pcsalary	9 (-1, 20)
sales	3,705 (2,210, 7,177)
roe	16(12, 20)
pcroe	-3 (-21, 20)
ros	52(21,81)
indus	67 (32%)
finance	46 (22%)
consprod	60 (29%)
utility	36 (17%)
lsalary	$6.95 \ (6.60, 7.25)$
lsales	8.22 (7.70, 8.88)

Means and Standard Deviations

Input the request from the feedback below.

Characteristic	N = 209
salary	1,281.12 (1,372.35)
pcsalary	13.28 (32.63)
sales	6,923.79 (10,633.27)
roe	$17.18 \ (8.52)$
pcroe	10.80 (97.22)
ros	$61.80 \ (68.18)$
indus	67 (32%)
finance	46~(22%)
consprod	60~(29%)
utility	36 (17%)

Characteristic	N = 209
lsalary	6.95 (0.57)
lsales	8.29(1.01)

Relationships between Variables

Correlation Matrix

Calculate the following:

- The correlation of salary with ROE;
- The correlation matrix for all numeric variables.

cor(ceosal1\$salary, ceosal1\$roe)

```
## [1] 0.1148417
```

cor(ceosal1)

```
##
                 salary
                           pcsalary
                                          sales
                                                                   pcroe
                                                         roe
## salary
            1.000000000
                        0.008672195
                                    0.119869489
                                                             0.028710443
                                                 0.114841735
## pcsalary
           0.008672195
                        1.000000000
                                     0.017010310
                                                 0.087335193
                                                             0.207962311
## sales
            0.119869489
                        0.017010310
                                    1.000000000 -0.055385713
                                                             0.005594043
            0.114841735
                        0.087335193 -0.055385713
                                                1.000000000
                                                             0.004191102
## roe
## pcroe
            0.028710443
                        0.207962311
                                    0.005594043
                                                 0.004191102
                                                             1.000000000
                        0.137778486
                                    -0.136087621
                                                 0.274918807
## ros
           -0.033681897
                                                             0.128939567
## indus
           -0.071133642
                        0.004435904
                                    0.093608307
                                                 0.013461034 -0.029601568
## finance
            0.024753643 -0.090806118 -0.054073079 -0.178530972
                                                             0.091719844
## consprod 0.204546281
                        0.051998671
                                    0.069174857
                                                0.408517256 -0.015684306
## utility -0.184309255
                        0.031852925 -0.139244839 -0.310193625 -0.045259914
                                    0.281285760 0.208499203
## lsalary
            0.794208152
                        0.043842774
                                                             0.107694007
## lsales
            0.194092092 -0.065224367
                                    0.742921432 -0.122553150
                                                             0.023288281
##
                   ros
                             indus
                                       finance
                                                 consprod
                                                              utility
## salary
           -0.03368190 -0.071133642 0.02475364
                                               0.20454628 -0.18430926
## pcsalary 0.13777849
                       0.004435904 -0.09080612
                                               0.05199867
                                                          0.03185292
## sales
           -0.13608762
                       0.093608307 -0.05407308
                                               0.06917486 -0.13924484
                       0.013461034 -0.17853097
                                              0.40851726 -0.31019363
## roe
            0.27491881
## pcroe
            0.12893957 -0.029601568 0.09171984 -0.01568431 -0.04525991
## ros
            1.00000000 -0.209503670 -0.10798696 0.34782108 -0.03929917
           -0.20950367 1.000000000 -0.36490376 -0.43588881 -0.31334403
## indus
## finance
           -0.10798696 -0.364903764 1.00000000 -0.33710687 -0.24233342
## consprod 0.34782108 -0.435888810 -0.33710687 1.00000000 -0.28947475
## utility -0.03929917 -0.313344032 -0.24233342 -0.28947475
                                                          1.00000000
## lsalary -0.07456453 -0.016145538
                                   ## lsales
##
               lsalary
                           lsales
```

```
## salary
            0.79420815 0.19409209
## pcsalary 0.04384277 -0.06522437
## sales
            0.28128576 0.74292143
## roe
            0.20849920 -0.12255315
## pcroe
            0.10769401 0.02328828
## ros
           -0.07456453 -0.35032965
           -0.01614554 0.06027756
## indus
## finance 0.10084137 0.03902509
## consprod 0.22028456 -0.01907079
## utility -0.35461477 -0.09447193
## lsalary 1.00000000 0.45914817
## lsales
            0.45914817 1.00000000
```

Pretty Correlation Matrix

Use the *corrgram* function (part of the *corrgram* package) to create a correlogram.

corrgram(ceosal1)

Pretty Numerical Correlation Matrix

Input the suggestion from the feedback below.

corrgram(ceosal1, panel = panel.cor)

```
salary 0.01 0.12 0.11 0.03 -0.03 -0.07 0.02 0.20 -0.18 0.79 0.19 0.01 pcsalary 0.02 0.09 0.21 0.14 0.00 -0.09 0.05 0.03 0.04 -0.07 0.12 0.02 sales -0.06 0.01 -0.14 0.09 -0.05 0.07 -0.14 0.28 0.74 0.11 0.09 -0.06 roe 0.00 0.27 0.01 -0.18 0.41 -0.31 0.21 -0.12 0.03 0.21 0.01 0.00 pcroe 0.13 -0.03 0.09 -0.02 -0.05 0.11 0.02 -0.03 0.14 -0.14 0.27 0.13 ros -0.21 -0.11 0.35 -0.04 -0.07 -0.35 -0.07 0.00 0.09 0.01 -0.03 -0.21 indus -0.36 -0.44 -0.31 -0.02 0.06 0.02 -0.09 -0.05 -0.18 0.09 -0.11 -0.36 finance -0.34 -0.24 0.10 0.04 0.20 0.05 0.07 0.41 -0.02 0.35 -0.44 -0.34 consprod -0.29 0.22 -0.02 -0.18 0.03 -0.14 -0.31 -0.05 -0.04 -0.31 -0.24 -0.29 utility -0.35 -0.09 0.79 0.04 0.28 0.21 0.11 -0.07 -0.02 0.10 0.22 -0.35 Isalary 0.46 0.19 -0.07 0.74 -0.12 0.02 -0.35 0.06 0.04 -0.02 -0.09 0.46 Isales
```

Factor Variables

Crosstabulation Tables

Using the affairs data, do the following:

- Generate the factor variables haskids and marriage for kids and ratemarr labels with labels no/yes and very unhappy/unhappy/average/happy/very happy, respectively;
- Create a table that displays the proportions of each outcome of marriage happiness rating;
- Create a table that displays the proportions of each outcome of marriage happiness rating and having kids.

```
affairs$haskids <- factor(affairs$kids, labels = c("no","yes"))
affairs$marriage <- factor(affairs$ratemarr, labels = c("very unhappy", "unhappy", "average", "happy", "very happy"))
prop.table(table(affairs$marriage))
##
## very unhappy
                     unhappy
                                                          very happy
                                   average
                                                  happy
                   0.1098170
      0.0266223
                                0.1547421
                                              0.3227953
                                                           0.3860233
prop.table(table(affairs$marriage,affairs$haskids))
##
##
##
     very unhappy 0.004991681 0.021630616
                  0.013311148 0.096505824
##
     unhappy
##
     average
                  0.039933444 0.114808652
##
    happy
                  0.066555740 0.256239601
     very happy
                  0.159733777 0.226289517
```

Pretty Crosstab Tables

- Replicate the previous tables using "tbl_cross" (using percent to generate percentages instead of proportions) to generate a more attractive layout that you can save as html.
- Combine counts and percentages in one table with each cell displaying percentages in parentheses next to its count.

```
tbl_cross(affairs, row = marriage, col = haskids)
```

	no	yes	Total
marriage			
very unhappy	3	13	16
unhappy	8	58	66
average	24	69	93

	no	yes	Total
happy	40	154	194
very happy	96	136	232
Total	171	430	601

tbl_cross(affairs, row = marriage, col = haskids, statistic = "{p}%")

	no	yes	Total
marriage			
very unhappy	0.5%	2.2%	2.7%
unhappy	1.3%	9.7%	11%
average	4.0%	11%	15%
happy	6.7%	26%	32%
very happy	16%	23%	39%
Total	28%	72%	100%

tbl_cross(affairs, row = marriage, col = haskids, percent = 'cell')

	no	yes	Total
marriage			
very unhappy	3~(0.5%)	13 (2.2%)	16 (2.7%)
unhappy	8 (1.3%)	58 (9.7%)	66 (11%)
average	24(4.0%)	69 (11%)	93 (15%)
happy	40~(6.7%)	154~(26%)	194 (32%)
very happy	96 (16%)	136 (23%)	232 (39%)
Total	171 (28%)	430 (72%)	601 (100%)

Graphs

Base R Graphics

Plot the following:

- A histogram of CEO salary relative frequencies using the base-graphics hist() function;
- A scatterplot of CEO salaries with ROE using the plot() function.

Make sure your plots have descriptive (English) titles: Histogram of Salary, Salary versus ROE, Salary, and ROE.

hist(ceosal1\$salary, main = "Histogram of Salary", xlab = "Salary", freq = FALSE)

Histogram of Salary

plot(ceosal1\$salary, ceosal1\$roe, main = "Salary versus ROE", xlab = "Salary", ylab = "ROE")

Salary versus ROE

Grammar of Graphics (ggplot2)

Some people prefer base graphics. Some prefer gg. Depending on what packages you use, you should know a little of each. You can call the ggplot() function with no arguments (but add them in layers) or inline. Either way, the main arguments you need to specify include (1) data and (2) aesthetics (aes).

Try replicating the previous plots using ggplot geom_hist() and geom_point syntax.

```
ggplot() +
geom_histogram(data = ceosal1, mapping = aes(salary))
```


ggplot() +
 geom_point(data = ceosal1, mapping = aes(salary, roe))

Options in ggplot

Implement the suggestion in the feedback.

```
ggplot() +
  geom_histogram(data = ceosal1, mapping = aes(x = salary, y = stat(count)/sum(count)))
```

