Tutorial 12 MetaPhlAn and HUMAnN

Zoe Sucato, Catherine Nguyen, Tobenna Oduah

MetaPhlAn [5]

MetaPhlAn stands for <u>Metagenomic</u> <u>Phylogenetic Analysis</u>.

- Computational tool for profiling the composition of microbial communities from metagenomic shotgun sequencing data.
- Relies on unique clade-specific marker genes.
 - From ~17,000 reference genomes:
 - 13,500 bacterial and archeal genomes
 - 3,500 viral genomes
 - 110 eukaryotic genomes
- Uses bowtie2.

Definitions

Clade: Group of organisms believed to have evolved from a common ancestor on a phylogenetic tree.

Clade-specific marker: Coding sequences that are strongly conserved within the clade's genomes and do not possess substantial local similarity with any sequence outside the clade.

MetaPhlAn Algorithm [2]

HUMAnN [3]

HUMAnN stands for the <u>HMP Unified Metabolic</u> Analysis Network.

 A method for profiling the abundance of microbial metabolic pathways, including other molecular functions from metagenomic/metatranscriptomic sequencing data.

<u>Definitions</u>

HMP: Human Microbiome Project. An initiative to research and understand the microbial components of the human genetic landscape and how that translates to health-related norms and concerns.

HUMAnN Algorithm [6]

MetaPhlAn

Which microbes are there?

HUMAnN

What can the microbes do?

Demo

Original Plans... Changed

Originally meant to use Biobakery Workflows.

Could not use Docker directly, so we used Singularity to run a Docker image.

Many issues were encountered:

- Pre-existing Singularity Container did not have the tools (wmgz) installed.
- Creating a new Singularity container with the Docker image failed due to incorrect dependencies.
- Using pip install was not viable since many modules were installed and some failed to install.

New Plan

Use Galaxy/Hutlab! [4]

All online; no package installs.

However, it has limitations.

Example: Doesn't make the output from one process nice for the next process

Go to the Galaxy/Hutlab Website.

To upload your fasta file, click "load your own data".

Drag your fasta file into this upload box.

Click start to upload.

Wait until status is 100%.

The uploaded file should appear in the right panel.

Navigate to the MetaPhlAn2 profile from the left panel.

Make sure the correct input is set.

Keep default settings and click "Execute".

Successful execution! Job is now added to the queue.

Result will appear green when it is completed.

Click the eye icon to download and view result.

Click the eye icon to download and view result.

MetaphlAn Output Snippet

```
Galaxy3-MetaPhlAn2 on data 2.metaphlan - Notepad
File
     Edit
            View
#SampleID Metaphlan2 Analysis
k Viruses 72.88282
k Bacteria 27.11718
k__Viruses|p__Viruses_noname 72.88282
k Bacteria p Proteobacteria 24.16031
k Bacteria p Bacteroidetes 2.95687
k__Viruses|p__Viruses_noname|c__Viruses_noname 72.88282
k_Bacteria|p_Proteobacteria|c_Gammaproteobacteria 20.08052
k Bacteria|p Proteobacteria|c Alphaproteobacteria 4.0798
k Bacteria|p Bacteroidetes|c Flavobacteriia 2.95687
k__Viruses|p__Viruses_noname|c__Viruses_noname|o__Viruses_noname 54.15491
k Bacteria|p Proteobacteria|c Gammaproteobacteria|o Enterobacteriales
                                                                             20.08052
```

Visualized Output

Species Detected

References

- [1] "biobakery/biobakery_workflows." n.d. GitHub. Accessed May 20, 2022. https://github.com/biobakery/biobakery_workflows.
- [2] Borenstein Lab. n.d. "MetaPhlAn." Accessed May 20, 2022. PowerPoint. http://borensteinlab.com/courses/TAU_CS_3116_B_19/presentations/7_MetaPhlan.pdf.
- [3] The Huttenhower Lab. n.d. "biobakeryWorkflows." The Huttenhower Lab. Accessed May 20, 2022. https://huttenhower.sph.harvard.edu/biobakery_workflows/.
- [4] The Huttenhower Lab. n.d. "Galaxy / Hutlab." Accessed May 20, 2022. https://huttenhower.sph.harvard.edu/galaxy/.
- [5] The Huttenhower Lab. n.d. "MetaPhlAn2." The Huttenhower Lab. Accessed May 20, 2022. https://huttenhower.sph.harvard.edu/metaphlan2/.
- [6] Mehta, Subina, Pratik Jagtap, and Saskia Hiltemann. 2021. "Introduction to metatranscriptomics." Galaxy Training! https://training.galaxyproject.org/archive/2021-10-01/topics/metagenomics/tutorials/metatranscriptomics/slides-plain.html.

Questions?