Problem Set Chapter 9

Michael Brodskiy
Instructor: Mr. Morgan

December 18, 2020

1. Name the intermolecular force the	following is using in the liquid state:
(a) CCl ₄	
	London Dispersion
(b) CH ₃ F	
	Dipole
(c) NH ₃	
	Hydrogen Bonding
(d) N_2H_4	
	Hydrogen Bonding
(e) F ₂	

- 2. Choose the lower boiling compound and explain why:
 - (a) $\underline{F_2}$ or $Cl_2 F_2$ has a lower boiling point because, even though both use the same intermolecular forces, F_2 has bigger molecules, meaning the distance between them is greater, resulting in a weaker intermolecular force.

London Dispersion

- (b) PH₃ or AsH₃ PH₃ has a lower boiling point because, even though both use the same intermolecular forces, PH₃ has bigger molecules, meaning the distance between them is greater, resulting in a weaker intermolecular force.
- (c) NH_3 or BF_3 BF_3 uses London Dispersion forces, instead of hydrogen bonding (which is much stronger). As a result, BF_3 would have a lower boiling point.
- (d) $\frac{SO_2}{SO_2}$ or SiO_2 Silicon Oxides are known for extremely strong bonds. As such, $\frac{SO_2}{SO_2}$ must be weaker, and, therefore, have a lower boiling point.

3. Only one of the following is a gas at STP: NI₃, BF₃, PCl₃, CH₃COOH. Which do you think and why?

Most likely, BF₃ is a gas at STP. This is because, although NI₃, BF₃, and PCl₃ all use the same type of bonding, BF₃ has the biggest molecules, and, therefore weakest intermolecular forces, resulting in a high vapor pressure. It is definitely not CH₃COOH because the molecule uses hydrogen bonding.

4. Arrange the following substances in the expected order of increasing boiling point: C_4H_9OH , NO, C_6H_{14} , N_2 , $(CH_3)_2O$.

Least N₂ C₆H₁₄ NO (CH₃)₂O C₄H₉OH Greatest

- 5. Explain the following:
 - (a) I₂ has a lower melting point than NaI

 I_2 uses London Dispersion forces, while NaI uses dipole forces. Therefore, I_2 has a lower melting point.

(b) H₂O has a higher boiling point than C₂H₆

 H_2O uses hydrogen bonding, while C_2H_6 uses London Dispersion. As such, a hydrogen bond indicates a higher boiling point.

(c) N_2 has a lower boiling point than CO

 N_2 uses London Dispersion forces, meaning it has weaker bonds than the dipole force used by CO. Therefore, N_2 has a lower boiling point.

(d) SiH₄ has a higher vapor pressure than GeH₄

Although both use London Dispersion forces, the size of the Si atom makes this true.

- 6. Underline the molecule with the lower vapor pressure and explain why
 - (a) Ne or \underline{Ar} Argon is a bigger molecule than neon. This means that it has a lower vapor pressure.
 - (b) $\underline{C_2H_5OH}$ or $C_2H_6 C_2H_5OH$ uses hydrogen bonding, meaning that it is stronger than the London Dispersion of C_2H_6 .
 - (c) $\underline{C_2H_6}$ or $CH_4 C_2H_6$ has stronger bonds because the central C atoms are bonded to each other. As a result, it has a lower vapor pressure.
 - (d) C_2H_5OH or \underline{NaF} NaF has stronger bonds, which gives it the property of lower vapor pressure.

- (e) CO_2 or $\underline{H_2S}$ CO_2 has nonpolar bonding, meaning it uses London Dispersion, while H_2S uses polar, and, therefore dipole bonding. This stronger bond means it has a lower vapor pressure.
- (f) \underline{CO} or $N_2 \underline{CO}_2$ uses dipole bonding, which is stronger than the London bonding of the N_2 , making it have a lower vapor pressure.
- 7. A 1.82[g] sample of water is injected into a 2.55[L] flask at $30[^{\circ}C]$ (VP = 31.8[mmHg]). How many grams of water are in the liquid phase and in the gas phase?

$$\begin{aligned} & \text{H}_2\text{O} \rightarrow 18 \left[\frac{\text{g}}{\text{mol}}\right] \\ & \frac{1.82}{18} = .101 [\text{mol}] \\ & P = \frac{nRT}{V} \\ & P = \frac{.101 \cdot .0821 \cdot 303}{2.55} \\ & .985 [\text{ATM}] = 748.83 [\text{mmHg}] \end{aligned} \tag{1} \\ & 748.83 - 31.8 = 717.03 [\text{mmHg}] = .93 [\text{ATM}] \\ & n = \frac{PV}{RT} \\ & \frac{.93 \cdot 2.55}{.0821 \cdot 303} = .095 [\text{mol}] \\ & .095 \cdot 18 = 1.71 [\text{g}_{solid}] \\ & 1.82 - 1.71 = .11 [\text{g}_{gas}] \end{aligned}$$

8. A 1.25[g] sample of water is injected into a 178.5[g] flask at $0[^{\circ}C]$ (VP = 4.6[mmHg]). How many atoms of water are in the liquid phase and in the gas phase?

$$\frac{1.25}{18} = .0694 [\text{mol}]$$

$$P = \frac{nRT}{V}$$

$$P = \frac{.0694 \cdot .0821 \cdot 273}{178.5} = .0087 [\text{ATM}]$$

$$.0087 [\text{ATM}] = 6.62 [\text{mmHg}]$$

$$6.62 > 4.6$$

Because 6.62 > 4.6, liquid and gas exist in the flask