

实验报

课程名称: 物理 实验名称: RLC 和天电影的实验目的	授 川: <u>2024</u> 年		月 <i>13</i>	— _日 <i>下</i> 4
班 级: 秦全芳 於 執学班级:				
页 数:1/7	座	3:	27	
实验目的				
(1)研究RC、RL、RLC 电路的暂态过程。		_		
(2)理解时间常数的物理意义,学会其测量方法。	序号:		蓉全芳	

二、实验仪器

时间: THMJ-1型交流物理实验仪,数字式示波器,导线第二 三、实验原理

利用R.L.C元件进行组合,可以构成RC.RL.LC和RLC四种不同的电路。这些电 路在接通或断开直流电源的瞬瞬间,存在一个从一种平衡态、转变到另一种平衡态、 的过程。这个过程即为暂态过程。

I. RC电路

在由电阻R及电容C组成的直流串联电路中,暂态过程即是是电容器的充放电过程。

【忍图7-1》,当联K打向位置旧时,电频对电容器C开 如一个危电过程,这时回路方程和初始条件了转动:

$$\begin{cases}
\frac{clu_{c}}{clt} + \frac{1}{RC}u_{c} = \frac{E}{RC} \\
u_{c}(t)|_{t=0} = 0
\end{cases}$$
(7-1)

可角甲絲得:

$$u_c = E(1 - e^{-\frac{t}{Rc}})$$
 (7-1)

该式表明电容器网端的充电电压是一条按普数规律增长的曲线,如图7-2的实线 所示。当 UC上升至 0.63 E时,所对它的时间で=RC定义为电路的时间微数,是表征暂忘过程 进行快慢的一个重要物理量量。

当开关 K 打向 位置2时, 电容器 C 通过电阻放电, 回路方程和初始条件为

小 10 41 4

	头 短 报 告	
课程名称: 物理实验BII 实验名	3称:RLC*联电路的实验目期: 2024	·年//月/3日 <i>下午</i>
班 级: 蒙全芳硷 教学班	E级:	
页 数: 2 /7		座 号,27
可解得:	$U_c = E_e^{-t/RC}$	(7.4)
式(7-4)表明电容器网络伯洛	如c= Ee 如应 数包电压按指数规律衰减,效图	(7-4) 17-2 <i>建铁研</i> 士。
时間落数七也可由此曲线看	以外到0.37E所对应的时间来确定。	Uc T
2.RL电路		Charge
	电感L则构成RL电路。当开关置	Discharge
于/时,由于电感 L的自感作	用,回路中的电流不能瞬间突变	t
	引R。同理,当开关K置于2时,电	图7-1 Charge and Discharge of a Capacitor
流i从i=E水逐渐衰减到C		
内流增长过程:		
	j= \(\int (1-e^-till)	(7-5)
电流衰减过程:	$j = \frac{E}{R}e^{-t/\tau}$	(7-6)
其中, 时间常数 ~= L/R,	它决定了i增长的快慢。	,
3、RLC 电路:		
以上讨论的都是	理想化的情况,实际上,电容和	越 本身都有电阻,而电阻性元
12 2	阻的减主要作用就是把阻尼项	引入到回路方程的解中。
	RLC电路,定义电路的阻尼系数	/KR
$\lambda = \frac{R}{2} \sqrt{C}$, 例:	1	$F \stackrel{\downarrow}{=} 2^{\circ}$
(1)阻尼较小时,入<1,	,即RTS4台,有	
充电过程,	THE tricoccutual	图 7-3 RLC Circuit
	$\int \frac{4L}{4L-R^2C} e^{-t/r} \cos(wt+\varphi)$	(7-7)
放电推:	4L ro-t/reas(4+16)	L7-8)
- /,5	I-R'C Ee-t/r coscut+(p)	,
式中,で= <u>2</u> 2为时 **间滚	收, w= 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	的角频率。
联系方式:		指导教师签字:

课程名称: <u>柳建实96BI</u> 实验名称: <u>PLC 半联电路的</u> 实验日期: 2024 年 11 月 13 日 下午 班 级: 秦全芳班 教学班级:

页 数:3/1

以随时间七以衰减振荡的方式区断管城至更如图7-4中曲线所平。这种过程也叫欠阻尼状态。

- (2)临界阻尼状态,即 R=4UC,回路包阻增大到刚则不出现振荡时的状态。此时 Uc的变化过程不再具有周期性,如图 7-4中曲线所存。这时的电阻值好为临界阻尼电阻。
- (3) 过阻尼状态,即尺>4台,此时已不再出现振荡,而足德慢衰减到零,Uc 随时间变化的规律如图74中曲线所示。

四寒验内容及数据处理

1.RC电路的暂态过程

U)观测电容器上电压顺时间的变化类

定信号发生器输出频率f=500Hz的方波,并接入示波器Yi输入端,观察记录方波的 股形,再将Uc接到示波器Yi输入端,电容C取0.47MF。改变R的图值,使了分别为でRC=7/2, T<<7/2, T</p>
2箱子放器Yi输入方波信号的周期,观察记录这三种情况下Uc的波形, 有解释Uc的变化规律。

(2) 测量时间常数7.

2. RL 电路的暂态时间

将电容用10mH包感L代替,参照/转骤,双霉三种不同TF,UR和UL的股形,能量改变R值,作出R-T产品的3,并与理论公式进行比较。

3、RLC电路的暂刻挖

U)按图入6例,取电感L为10mH,电容C为0047pF,计算三种不同图尼状态的电阻值范围。

- (2)) 法释合任的R值,使三被器上出砂完整的圆层振荡波形。
- L3)添断榜大R位,双零临界阻尼状态。
- (4)继旋馆大险,观察过阻尼状态。

联系方式:	指导教师签字:
4、	1E (1.573)1.75.1.!

1/2	1.4	
OX	-17	
17	1 1	

课程	_{名称:} 炯沙里	实验团	实验名称:/	RLC半硬电路的	多态点的 实验目的:_	2024 年年_	則	月 13	_日 <i>下午</i>
班	级: 툧金	芳姐	教学班级:				م الاحرا		
To the	放: 417					F	1号,几		

五、原始数据,

- 2、临界电阻 R=730只
- 3、当电阻 R=20凡时:

T= 138,0µS, A, = 6.08 V, Az= 2.56V

联系方式: ______

指导教师签字:_____

课和	星名称: 如理实验 以	实验名称:	比鞭电	洛加 实验日期	12 12024	_ 年_	<u>//</u>	13	 _日 <i>下午</i>
班	级: <u>東全芳班</u>	教学班级:_							
页	数: 1/7					座	号:27		
) H	+ Q h 5 A								

六数据处理。

11) RC电路的暂态进程,测量支料包围三种大小下的飞值:

7	1.080mS	40.00 µS	2.880ms
R	2130 sz	20 sz	6000 52

论计算各电阻下的 理论 7值:

可以翻测量值的大于理论值,则当R=200时设差较大,

(2) RLC 电路的暂态上程。

- ①: 经观识,临界电阻 R晦=730元,与理论质尽-923元偏差较大,见R临<R 推测电路其全部分也有电阻,且有R=R临+R龄,故有R临<R。
- 包: 选取电阻 R=2001, 观测结果,
 - 1、据荡周期 T=138.0 MS,

关系方式:	指导教师签字:

课程名称: 炯程文字 231	实验名称:BLC 邦民电路的 实验目	程 斯: <u>2024</u> 年_	// 月	<u>13</u> 日 <i>下午</i>
班 级: <i>繁全芳] </i>	教学班级:			,
页↑数170/7		座	号: 27	
、 凤老颗,				

- U)在RC电路中,当方波频率于一定而电电阻R的数值改变时为什么会有各种不同的波形? 女果电阻R一定而方波频率于改变,那么会得到类似的波形吗?为什么?
- 祭:① 当于一定而尽改变时,日刊问常数で二尺 邻省之变化,进而使得响应速度与包减速度发生 改变, 科率与幅度均含发生变化,从局产生不同的波形。
 - ①: ●如可以得到类似的波形。因为T=RC,与频率于无关,于是T不变进而可以证明设形不发生改变。于改变仅会影响有限被之间的时间间隔。
- (2)在RLC电路中,方磁发生器的频率很高或很低,那么我们能观察到阻尼振荡的波形吗? 振荡周期下与角频率业的关系会因方波频率的变化而发生变化吗?
- 答:①可以观察到波形,但当频率很高时,一个暂态还未结束时就会进入下一个暂态,导致微粉不完整;频率很低时可以观察到完整的图图振荡波形,但两波时间间隔极对较长。②:由W= 1 / [LC] 1- \$\frac{\phi}{\sqrt{\sqrt{LC}}} \ \sqrt{\sq\sqrt{\sqrt{\sqrt{\sqrt{\syn}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\q}}}}}}\sqrt{\sin

联系方式:	指导教师签字: