Out[4]:

	Α	В	С	id
0	0.490142	-0.179654	11.536508	0
1	-1.414793	-1.225605	11.828531	1
2	0.943066	4.506148	-3.235349	2
3	3.569090	5.068347	-23.891922	3
4	-1.702460	6.905051	-22.125437	4
295	6.921271	- 0.420972	33.171951	295
296	11.698800	-1.291124	107.953284	296
297	9.921899	3.686432	-126.378458	297
298	11.438586	6.293760	-315.397489	298
299	10.888887	2.567629	-97.700397	299

300 rows × 4 columns

We see an extreme value --> outlier.

I would like to exclude this outlier because its too far away from the majority. I am using OLS for regression, such an extreme value would have a great effect.

Model 1: C = b1A + b2B

```
In [9]: X = raw_data[['A','B']] #independent variables
y = raw_data['C'] #dependent variable
model = sm.OLS(y, X).fit() # sm.OLS(output, input)
predictions = model.predict(X)

# Print out the statistics
model.summary()
```

Out[9]:

OLS Regression Results

Dep. Variable: С R-squared (uncentered): 0.328 Model: OLS Adj. R-squared (uncentered): 0.324 Method: Least Squares F-statistic: 72.63 Date: Wed, 19 Feb 2020 Prob (F-statistic): 2.10e-26 Time: 19:57:38 Log-Likelihood: -1642.2

No. Observations: 299 AIC: 3288.

Df Residuals: 297 **BIC:** 3296.

Df Model: 2

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 A
 0.0523
 0.558
 0.094
 0.925
 -1.046
 1.151

 B
 -11.3852
 0.946
 -12.031
 0.000
 -13.247
 -9.523

Omnibus: 138.103 Durbin-Watson: 1.432

Prob(Omnibus): 0.000 Jarque-Bera (JB): 734.133

Skew: -1.865 **Prob(JB):** 3.85e-160

Kurtosis: 9.710 **Cond. No.** 1.70

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

R-squared: 0.328 Adj. R-squared: 0.324

Model 2: C = b0 + b1A + b2B

C:\Users\gaosa\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:2389: FutureWarning: Method .ptp is deprecated and will be removed in a future ve rsion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

Out[11]:

OLS Regression Results

Covariance Type:

Dep. Variable:	С	R-squared:	0.394
Model:	OLS	Adj. R-squared:	0.390
Method:	Least Squares	F-statistic:	96.21
Date:	Wed, 19 Feb 2020	Prob (F-statistic):	6.47e-33
Time:	19:57:48	Log-Likelihood:	-1624.9
No. Observations:	299	AIC:	3256.
Df Residuals:	296	BIC:	3267.
Df Model:	2		

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	25.7393	4.265	6.034	0.000	17.345	34.134
Α	-1.3703	0.578	-2.371	0.018	- 2.508	-0.233
В	-15.2259	1.098	-13.869	0.000	-17.386	-13.065

 Omnibus:
 81.737
 Durbin-Watson:
 1.635

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 271.992

 Skew:
 -1.168
 Prob(JB):
 8.67e-60

 Kurtosis:
 7.047
 Cond. No.
 8.23

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

R-squared: 0.394 Adj. R-squared: 0.390

Model 3: C = b0 + b1A + b2B + b3AB

C:\Users\gaosa\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

This is separate from the ipykernel package so we can avoid doing imports until

C:\Users\gaosa\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:2389: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

Out[13]:

OLS Regression Results

Dep. Variable:	С	R-squared:	0.729	
Model:	OLS	Adj. R-squared:	0.726	
Method:	Least Squares	F-statistic:	264.2	
Date:	Wed, 19 Feb 2020	Prob (F-statistic):	3.09e - 83	
Time:	19:58:06	19:58:06 Log-Likelihood:		
No. Observations:	299	AIC:	3017.	
Df Residuals:	295	BIC:	3032.	
Df Model:	3			
Covariance Type:	nonrobust			
coef	std err t P	> t [0.025 0.97	51	

	coef	std err	t	P> t	[0.025	0.975]
const	12.3339	2.943	4.190	0.000	6.541	18.127
Α	2.1502	0.429	5.012	0.000	1.306	2.994
В	-10.7236	0.773	-13.880	0.000	-12.244	-9.203
AB	-2.5730	0.135	-19.082	0.000	-2.838	-2.308

Omnibus: 72.917 Durbin-Watson: 1.986

Prob(Omnibus): 0.000 Jarque-Bera (JB): 190.647

Skew: -1.127 **Prob(JB)**: 4.00e-42

Kurtosis: 6.197 **Cond. No.** 25.4

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

R-squared: 0.729 Adj. R-squared: 0.726

According to the R-Square and the plot, this model 3 seems to be a good regression model.

In []: ▶