Результаты тестирования производительности ОАС-алгоритма трикластеризации (на штрих-операторах)

Реализация: Python 2.7.3

Машина: Core i3-370M, 2 x 2.4 ГГц, 3.87 Гб ОЗУ

OC: Windows 7 x64

Контекст	G	M	B	# троек	Плотность
1	30	30	30	2677	0.0991
2	250	795	22	3815	0.00087
3	51	924	2844	3037	2.266e-05

1) Kohtekct 1 (input\context_gen_3ox3ox3o.txt)

Порог	Т, сек – время	N, шт – кол-во
плотности $ ho_{min}$	исполнения	порожденных
	алгоритма	трикластеров
0	2.932	2677
0.1	2.917	2677
0.2	2.919	2572
0.3	2.936	789
0.4	2.919	96
0.5	2.924	15
0.6	2.889	10
0.7	2.92	3
0.8	2.91	1
0.9	2.934	0
1	2.896	0

2) Kohtekct 2 (input\context_gen_250x795x22.txt)

Порог плотности	Т, сек – время	N, шт – кол-во
$ ho_{min}$	исполнения	порожденных
	алгоритма	трикластеров
0	5.099	3679
0.1	5.145	3679
0.2	5.115	3601
0.3	5.154	3227
0.4	5.186	2399
0.5	5.165	1438
0.6	5.136	654
0.7	5.142	297
0.8	5.126	244
0.9	5.197	234
1	5.132	234

3) Kohtekct 3 (input\context_gen_51x924x2844.txt)

Порог плотности $ ho_{min}$	Т, сек – время исполнения	N, шт – кол-во порожденных
	алгоритма	трикластеров
0	3.303	2459
0.1	3.266	2459
0.2	3.275	2456
0.3	3.271	2449
0.4	3.273	2413
0.5	3.274	2305
0.6	3.272	2011
0.7	3.268	1287
0.8	3.275	1023
0.9	3.299	1001
1	3.292	1001

Отличие в реализации по сравнению с описанием в статье «Экспериментальное сравнение алгоритмов трикластеризации»

1) В статье (алгоритм 1)

Вход: K = (G; M; B; I) _ триконтекст;

```
ho_{min} - порог плотности
Выход: TSet = \{(X; Y; Z)\}
1: для всех (g,m): g \in G, m \in M
       PrOA[g,m] = (g,m)'
3: для всех (g,b): g \in G, b \in B
       PrOC[g,b] = (g,b)'
5: для всех (m,b): m \in M, b \in B
      PrAC[m,b] = (m,b)'
7: для всех (g, m, b) \in I
       T = (PrAC[m,b]; PrOC[g,b]; PrOA[g,m])
8:
       Tkey = hash(T)
9:
       если Tkey \in Tset.keys \land \rho(T) > \rho_{min} то
10:
       Tset[Tkey] = T
11:
   2) Моя реализация (алгоритм 2)
Вход: K = (G; M; B; I) _ триконтекст;

ho_{min} - порог плотности
Выход: TSet = \{(X; Y; Z)\}
1: для всех (g, m, b) \in I
       T = ((g,m)', (g,b)', (m,b)')
2:
       Tkey = hash(T)
3:
       если Tkey \in Tset.keys \land \rho(T) > \rho_{min} то
4:
       Tset[Tkey] = T
5:
```

Я не понял, зачем в стр 1-6 алгоритма 1 считать много лишнего, если затем используются только значения (g,m,b) из I. Например, для контекста 3 (|G| = 51, |M| = 924, |B| = 2844, |I| = 3037), посчитаются |G||M| + |G||B| + |M||B| = 2820024 значений массивов PrOA, PrOC и PrAC (в сумме), но потом, начиная со строки 7, используются только |I| = 3037 из них. Поэтому в алгоритме 2 поиск трикластеров начинается сразу со строки 7 алгоритма 1.