Session 23: Relations on a Set

- Properties of Relations
 - Reflexive Relations
 - Symmetric and Antisymmetric Relations
 - Transitive Relations

Binary Relation on a Set

Definition: A **binary relation** R **on a set** A is a subset of $A \times A$ or a relation from A to A.

Example:

- Let $A = \{a, b, c\}$ Then $R = \{(a, a), (a, b), (a, c)\}$ is a relation on A.
- Let $A = \{1, 2, 3, 4\}$ R = $\{(a, b) \mid a \text{ divides } b\}$ is a relation on A.

Reflexive Relations

Definition: A relation R on a set A is **reflexive** iff $(a, a) \in R$ for every element $a \in A$.

R is reflexive iff $\forall x \ (x \in A \longrightarrow (x, x) \in R)$

Observation: The empty relation on an empty set is reflexive!

Domain Inlegers

$$R_1 = \{(a, b) \mid a \le b\}$$
 $R_2 = \{(a, b) \mid a > b\}$
 $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\}$
 $R_4 = \{(a, b) \mid a = b\}$
 $R_5 = \{(a, b) \mid a = b + 1\}$
 $R_6 = \{(a, b) \mid a + b \le 3\}$

reflexive
not reflexive
reflexive
not reflexive
not reflexive

Symmetric Relations

Definition: A relation R on a set A is **symmetric** iff $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

R is symmetric iff $\forall x \ \forall y \ ((x, y) \in R \longrightarrow (y, x) \in R)$

$$R_1 = \{(a, b) \mid a \le b\}$$

 $R_2 = \{(a, b) \mid a > b\}$
 $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\}$
 $R_4 = \{(a, b) \mid a = b\}$
 $R_5 = \{(a, b) \mid a = b + 1\}$
 $R_6 = \{(a, b) \mid a + b \le 3\}$

not symmetric
not symmetric
symmetric
not symmetric
symmetric
symmetric
symmetric

Antisymmetric Relations

Definition: A relation R on a set A such that for all a, $b \in A$ if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called **antisymmetric**.

R is antisymmetric iff $\forall x \ \forall y \ ((x, y) \in R \land (y, x) \in R \longrightarrow x = y)$

Note: symmetric and antisymmetric are not opposites of each other!

$$R_1 = \{(a, b) \mid a \le b\}$$

 $R_2 = \{(a, b) \mid a > b\}$
 $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\}$
 $R_4 = \{(a, b) \mid a = b\}$
 $R_5 = \{(a, b) \mid a = b + 1\}$
 $R_6 = \{(a, b) \mid a + b \le 3\}$

anti-symmetric

anti-symmetric

not anti-symmetric

anti-symmetric

anti-symmetric

anti-symmetric

anti-symmetric

not anti-symmetric

but 1+2

Transitive Relations

Definition: A relation R on a set A is called **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

R is transitive if and only if $\forall x \forall y \forall z ((x, y) \in R \land (y, z) \in R \longrightarrow (x, z) \in R)$

$$R_1 = \{(a, b) \mid a \le b\}$$

 $R_2 = \{(a, b) \mid a > b\}$
 $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\}$
 $R_4 = \{(a, b) \mid a = b\}$
 $R_5 = \{(a, b) \mid a = b + 1\}$
 $R_6 = \{(a, b) \mid a + b \le 3\}$

dransitue

transitue

transitue

transitue

not dransitue

not transitue

(4,3)(3,2)

not transitue

(2,1)(1,2)

Number of Relations on a Set

How many relations are there on a set A?

$$A \times A$$
 has $|A|^2$ elements when A has $|A|$ elements.

Every subset of $A \times A$ can be a relation

Therefore there are $2^{|A|^2}$ relations on a set A.

Summary

- Properties of Relations
 - Reflexive Relations
 - Symmetric and Antisymmetric Relations
 - Transitive Relations

Rus, Rns, Ros Transducty of composed relations: R, S relations on set A, dransitue R n S is transitue: if (x,y), (y, 2) & RnS, they are also in R and S Since Rand S are branslive, (x, 2) is also in R and S, and thus RnS RUS not necessarily transitive;

if R = { (x,y)} and S = {(y,z)}, then R, S dranstine RUS is not dranstine since (x,z) & RUS

RDS not necesserly dransdue:
use same R, S as for showing RUS is not dransitive