Définition 30.22 - introduction au déterminant

Soit $E \neq \{0\}$ un \mathbb{K} -ev de dimension finie et de base $e = (e_1, \dots, e_n)$. Il existe une unique forme n-linéaire alternée sur E associant à (e_1, \dots, e_n) la valeur 1. Cette application est appelée déterminant dans la base e, est notée \det_e , et est entièrement déterminée par :

1. son caractère alterné :

$$\det_e(e_{i_1},\ldots,e_{i_n})=0$$
 s'il existe $j\neq k$ tel que $i_j=i_k$

2. son antisymétrie :

$$\forall \sigma \in \mathcal{S}_n, \, \det_e(e_{\sigma(1)}, \dots, e_{\sigma(n)}) = \epsilon(\sigma)$$

Théorème 30.23 - description des formes alternées de $\mathcal{L}_n(E)$

Quelle que soit e une base de E, toute forme n-linéaire alternée sur E est de la forme $\lambda \det_e$, où $\lambda \in \mathbb{K}$.