

Statistical Inference — Lab 4

Date of issue: December, 6 th 2018	Due Date: Decembe	r, 20 th 2018, 6:00 pm
Family Name:		
First Name:		
Student ID:		

Linear and polynomial regression

Four different data sets (AnscombeQuartet.mat or the data file AnscombeQuartet.dat, both available on Ilias \rightarrow Statistical Inference \rightarrow Lab 4) plotted below in Fig.1 are to be fitted in a least-squares sense (A-model) to a linear function y = a + bx and a parabola $y = a + bx + cx^2$. Such modellings are called respectively simple linear regression and polynomial regression. (Please note that the use of built-in MATLAB functions for the regression is not allowed!)

In this respect, the following quantities, if they exist, must be determined and reported for each case:

- the design matrix *A*
- The normal matrix N and its inverse N^{-1}
- the estimator \hat{a} , \hat{b} resp. \hat{a} , \hat{b} , \hat{c} of the regression functions
- the sum of squared residuals $\hat{e}^T\hat{e}$, the number of degree of freedom (or redundancy r) and the normalised sum of squared residuals $\frac{\hat{\varrho}^{\dagger}\hat{\varrho}}{r}$.

All the results must be critically analysed, compared and when required, fully explained. In particular, a plot containing the initial data set and the curve of the regression functions must be made for each scenario.

F. J. Anscombe (1973): Graphs in Statistical Analysis. The American Statistician 27: 17–21