Traits of Time Series Data

Statistical Background

Important terminology to know

Time series vectors and lags

Visualizing time series data

Identifying time series characteristics with plots

Stationarity

- Mean and variance
- Differencing

Autocorrelation

What are the basic characteristics of a time series?

What makes the difference between a vector and a univariate time series?

The Time Stamp

Time Series or Vector?

Time Series

The time stamp specifies a successive order for the values

Vector

A unique ID does not necessarily provide a specific order to the data

Meaningful and Non-meaningful Orders

Choose time stamps whenever possible.

Converting Vectors to Time Series

Function ts()

- Attaches a time stamp to a vectors
- Converts the class to 'ts'
- Use it to build time series from scratch

Library(xts)

- Importing time series data into R

What Is a Lag?

Y_t: An observation of the time series

 Y_{114} = 3396 (The last observation of 'lynx')

Lag of 1 =
$$Y_t - Y_{t-1} = Y_{114} - Y_{113} = 3396 - 2657$$

Lag of 2 =
$$Y_t - Y_{t-2} = Y_{114} - Y_{112} = 3396 - 1590$$

Lag: a gap between two or more observations

General Summary Statistics of Time Series

Univariate Time Series

One variable attached to a time stamp

Multivariate Time Series

Two or more variables attached to a time stamp

Short, cyclical peaks High mean Lower median


```
quantile(
    lynx,
    prob =
        seq(0, 1, length=11),
    type = 5)
```

- **◄** Extracting the deciles
- Use the function quantile()
- Data to process
- Numeric vector of probabilities
- Sequence of 11 values from 0 to 1
- **◄** Specifies the deciles

Basic Functions for Univariate Time Series

From Vector to Time Series

Class 'ts'

Time Series Data


```
mytimeseries =
    ts(
        data = mydata,
        start = c(1956, 3),
        frequency = 4)
```

- Changing the class and attaching the time stamp
- Time series object to be created
- ▼ Function ts() converts 'mydata' to 'ts' class
- Data to be converted
- Start point of the time stamp
- ◆ Concatenate: 1956 Q3
- Assigning four values per year to get quarterly data
- ◆ Describe equally spaced time interval patterns with the arguments frequency and start
 ◆ Class = 'mts' for multivariate
- ◆ Class = 'mts' for multivariate
 time series

Datasets and their statistical character
Successive order by time component
Visualizing reveals the characteristics
Visualizing helps to find the appropriate

Patterns to identify:

analytical method

- Trend
- Seasonality
- Mean
- Variance
- Stationarity

Main Statistical Characters of Univariate Data

Trend

Dataset moving towards a direction

Seasonality

Repeated pattern over a fixed interval

Mean

The average of the dataset

Variance

Indicator of variability

Stationarity

Constant mean and variance

Time series of random normally distributed data

No trend

Constant mean

Constant variance

Stationarity is present

Transformation and differencing is not needed

Constant mean

Changing variance

Heteroscedastic dataset

Non-stationary

Preprocessing prior analysis

Time series with a clear trend

Increasing mean

Non-stationary dataset

Preprocessing prior modeling

Seasonality
Constant mean
Constant variance
Non-stationary
Autocorrelation is present

Trend with exponential curve

Changing mean

Changing variance

Non-stationary

Transformation is required

Seasonality
Changing variance
Trend
Non-stationary

Seasonality

Constant variance

Clear trend

Non-stationary

Autocorrelation

Exponential seasonality

Exponential trend

Changing variance

Non-stationary

Classification of Time Series Data

Patterns

Learn and recognize the most frequent ones

Tools and methods

Transform the data before further analysis

Visualizing Time Series Data

Makes presentation easy

Supports understanding of patterns

Demo

Function plot() of R Base

Line graphs

Basics of plotting time series data

No advanced packages (besides forecast)

Useful Functions

plot() decompose() plot.ts() ggseasonplot()

Autocorrelation in time series

Previous observations influence the later ones

- Correlation between the lags

R tools for identifying autocorrelation

- Autocorrelation is often obvious to see

Classic dataset: Lynx trappings

Autocorrelation Pattern

'Lynx' dataset with autocorrelation present

Random dataset with no autocorrelation

Identifying Model Parameters

Function acf()

Shows the autocorrelation

Function pacf()

Shows the partial autocorrelation

Two Definitions to Remember

Autocorrelation

The correlation coefficient between lags of the time series

Partial autocorrelation

The correlation coefficient adjusted for shorter lags


```
acf(
    lynx,
    lag.max = 20)
pacf(
    lynx,
    lag.max = 20)
```

- Testing for autocorrelation and partial autocorrelation
- Use the functions acf() and pacf()
- Dataset of lynx trappings
- Maximum number of lags
- ◆ 'Plot = FALSE' suppresses the plot and returns the coefficient values only

ACF and PACF of 'Lynx'

ACF and PACF of 'rnorm'

Demo

Testing for stationarity

Has the data the same statistical properties throughout the time series?

Stats:

- Constant mean,
- Constant variance,
- No autocorrelation

What to Do with Non-stationary Data?

Transformation • Log transformation Same statistics Differencing throughout the dataset Time series **De-trending** decomposition

Differencing on the Lag of One

Unit Root Tests

Unit root tests check if a dataset is stationary and if differencing is required

The Augmented Dickey-Fuller test removes autocorrelation and tests for stationarity

Statistical Background of Time Series Data

Function ts()

Data visualization

Stationarity

Autocorrelation

Patterns

Differencing

