CS262

LAB ASSIGNMENT 8

Hostel Management System

TA: Mr. Atul Sharma

GROUP 4

GROUP MEMBERS:

KAMLESH KUMAR: 202051099

KANANI DARPAN ASHOKBHAI: 202051100

KOMMULA CHIRANJEEVI SAGAR: 202051103

LINGAREDDY SAI CHARAN PREET REDDY: 202051111

RUSHIKESH JADHAV: 202051164

Task 1-

Find closure and minimal cover of the functional dependencies designed in Assignment 7 Task 1.

Person:

FD:{ { Id → Fname,Lname,Email_Id}, { Email_Id → Id,Fname,Lname} }

PK: Id

CK: Id, Email_Id

Closure:

Id+ = {Id, Fname, Lname, Email_Id}

Fname⁺ = {Fname}

Lname⁺ = {Lname}

Email_Id* = {Id, Fname, Lname, Email_Id}

Minimal Cover:

{ Id \rightarrow Fname, Id \rightarrow Lname, Id \rightarrow Email_Id, Email_Id \rightarrow Id }

Mobile_no

FD: $\{Mob_no \rightarrow Id \}$

PK: Mob_no

CK: Mob_no

Closure:

$$Mob_no^+ = \{ Mob_no, Id \}$$

$$Id^{+} = \{ Id \}$$

Minimal Cover:

$${Mob_no \rightarrow Id}$$

Mess Vendor

FD: { Id
$$\rightarrow$$
 Mess_Id, Mess_Id \rightarrow Id }

PK: Id

CK: Id, Mess_Id

Closure:

$$Id^+ = \{ Id, Mess_Id \}$$

Minimal Cover:

$$\{ Id \rightarrow Mess_Id, Mess_Id \rightarrow Id \}$$

Mess

FD: { Mess_Id
$$\rightarrow$$
 No_of_Students }

PK: Mess_Id

CK: Mess_Id

Closure:

Minimal Cover:

Block Manager:

FD: { Id
$$\rightarrow$$
 Block_Id, Block_Id \rightarrow Id }

PK: Id

CK: Id, Block_Id

Closure:

Minimal Cover:

{
$$Id \rightarrow Block_Id$$
, $Block_Id \rightarrow Id$ }

Block

 $FD: \{ Block_Id \rightarrow No_of_Students, No_of_Rooms \}$

PK: Block Id

CK: Block_Id

Closure:

Block_Id⁺ = { Block_Id, No_of_Students, No_of_Rooms }

No_of_Students+ = { No_of_Students }

```
No_of_Rooms<sup>+</sup> = { No_of_Rooms }

Minimal Cover:

{ Block_Id → No_of_Students, Block_Id → No_of_Rooms }
```

Student

Staff

FD: { Id \rightarrow Block_Id, Id \rightarrow Salary }

PK: Id

CK: Id

Closure:

Id+ = { Id, Block_Id, Salary }

Block_Id⁺ = { Block_Id }

Salary⁺ = { Salary }

Minimal Cover:

 $\{ Id \rightarrow Block_Id, Id \rightarrow Salary \}$

Doctor

FD: { Id → Degree }

PK: Id

CK: Id

Closure:

Id* = { Id, Degree }

Degree⁺ = { Degree }

Minimal Cover:

 $\{ Id \rightarrow Degree \}$

Warden

FD: { Id \rightarrow Type }

PK: Id

CK: Id

Closure:

Id+ = { Id, Type }

Type⁺ = { Type }

Minimal Cover:

 $\{ Id \rightarrow Type \}$

Watchman

 $\mathsf{FD} \colon \{ \, \mathsf{Id} \to \mathsf{Shift} \, \}$

PK: Id

CK: Id

Closure:

Id⁺ = { Id, Shift }

Shift⁺ = { Shift }

Minimal Cover:

 $\{ Id \rightarrow Shift \}$

Room

FD: { Room_Id → Block_Id }

PK: Id

CK: Id

Closure:

Room_Id⁺ = { Room_Id, Block_Id }

Block_Id⁺ = { Block_Id }

Minimal Cover:

{ Room_Id → Block_Id }

Visitor

FD: { { Id,Date,In_time
$$\rightarrow$$
 Out_time },

Closure:

$$Id^{+} = \{ Id \}$$

```
Minimal Cover:
```

```
{ { Id,Date,In_time → Out_time },
 { Id,Date,Out_time → In_time } }
```

Hostel


```
FD: {{Name → No_of_Blocks, No_of_Students, No_of_Mess}

{No_of_Blocks → Name, No_of_Students, No_of_Mess}

{No_of_Students → No_of_Blocks, Name, No_of_Mess}

{No_of_Mess → No_of_Blocks, No_of_Students, Name}}

PK: Name

CK: Name, No_of_Blocks, No_of_Students, No_of_Mess}

Closure:

Name+= {Name, No_of_Blocks, No_of_Students, No_of_Mess}

No_of_Blocks+= {Name, No_of_Blocks, No_of_Students, No_of_Mess}

No_of_Students+= {Name, No_of_Blocks, No_of_Students, No_of_Mess}

No_of_Mess+= {Name, No_of_Blocks, No_of_Students, No_of_Mess}

Minimal Cover:

{Name → No_of_Blocks, No_of_Blocks → Name,
 No_of_Blocks → No_of_Students, No_of_Students → Name,
 No_of_Students → No_of_Mess, No_of_Students → Name,
 No_of_Students → No_of_Mess, No_of_Mess → No_of_Students }
```

Task 2- Show that the minimal cover of the functional dependencies designed in Task 1 is equivalent to the original set of functional dependencies.

 \rightarrow

Person:

X: { { Id → Fname,Lname,Email_Id}, { Email_Id → Id,Fname,Lname} }

Y: { Id \rightarrow Fname, Id \rightarrow Lname, Id \rightarrow Email_Id, Email_Id \rightarrow Id }

To check if X covers Y:

Id* = Id,Fname,Lname,Email_Id

Email_Id⁺ = Id,Fname,Lname,Email_Id

So X covers Y

To check if Y covers X:

Id* = Id,Fname,Lname,Email_Id

Email_Id⁺ = Id,Fname,Lname,Email_Id

So Y covers X

∴ X and Y are equivalent.

Mobile_no

 $X : \{Mob_no \rightarrow Id \}$

 $Y : \{Mob_no \rightarrow Id \}$

To check if X covers Y:

 $Mob_No^+ = Id, Mob_no$

So X covers Y

To check if Y covers X:

 $Mob_No^+ = Id, Mob_no$

So Y covers X

∴ X and Y are equivalent.

Mess Vendor

 $X: \{ Id \rightarrow Mess_Id, Mess_Id \rightarrow Id \}$

Y: { Id \rightarrow Mess_Id, Mess_Id \rightarrow Id }

To check if X covers Y:

Id⁺ = Id, Mess_Id

Mess_Id⁺ = Id, Mess_Id

So X covers Y

To check if Y covers X:

Id+ = Id, Mess_Id

Mess_Id⁺ = Id, Mess_Id

So Y covers X

∴ X and Y are equivalent.

Mess

X: { Mess_Id → No_of_Students }

Y: { Mess Id \rightarrow No of Students }

Both X and Y are same

∴ X and Y are equivalent.

Block Manager:

 $X: \{ Id \rightarrow Block_Id, Block_Id \rightarrow Id \}$

Y: { Id \rightarrow Block_Id, Block_Id \rightarrow Id }

Both X and Y are same

 $\ensuremath{\raisebox{.3ex}{$:$}}$ X and Y are equivalent.

```
Block
```

```
X: { Block_Id → No_of_Students, No_of_Rooms }

Y: { Block_Id → No_of_Students, Block_Id → No_of_Rooms }

To check if X covers Y:

Block_Id+ = Block_Id, No_of_Students, No_of_Rooms

So X covers Y

To check if Y covers X:

Block_Id+ = Block_Id, No_of_Students, No_of_Rooms

So Y covers X

∴ X and Y are equivalent.
```

Student

Staff

$$X: \{ Id \rightarrow Block_Id, Id \rightarrow Salary \}$$

$$Y: \{ Id \rightarrow Block_Id, Id \rightarrow Salary \}$$

Both X and Y are same

∴ X and Y are equivalent.

Doctor

$$X: \{ Id \rightarrow Degree \}$$

$$Y: \{ Id \rightarrow Degree \}$$

Both X and Y are same

∴ X and Y are equivalent.

Warden

$$X: \{ Id \rightarrow Type \}$$

$$Y: \{ Id \rightarrow Type \}$$

Both X and Y are same

∴ X and Y are equivalent.

Watchman

$$X: \{ Id \rightarrow Shift \}$$

$$Y: \{ Id \rightarrow Shift \}$$

Both X and Y are same

 $\ensuremath{\raisebox{.3ex}{$:$}}$ X and Y are equivalent.

```
Room
```

```
X: { Room_Id → Block_Id }
Y: { Room_Id → Block_Id }
Both X and Y are same
∴ X and Y are equivalent.
```

Visitor

Hostel

```
X: {{Name → No_of_Blocks, No_of_Students, No_of_Mess}}
{No_of_Blocks → Name, No_of_Students, No_of_Mess}}
{No_of_Students → No_of_Blocks, Name, No_of_Mess}}
{No_of_Mess → No_of_Blocks, No_of_Students, Name}}
Y: {Name → No_of_Blocks, No_of_Blocks → Name,
No_of_Blocks → No_of_Students, No_of_Students → Name,
No_of_Students → No_of_Mess, No_of_Mess → No_of_Students}
To check if X covers Y:
Name+ = Name, No_of_Blocks, No_of_Students, No_of_Mess
No_of_Blocks+ = Name, No_of_Blocks, No_of_Students, No_of_Mess
```

No_of_Students⁺ = Name, No_of_Blocks, No_of_Students, No_of_Mess
No_of_Mess⁺ = Name, No_of_Blocks, No_of_Students, No_of_Mess
So X covers Y

To check if Y covers X:

Name⁺ = Name, No_of_Blocks, No_of_Students, No_of_Mess
No_of_Blocks⁺ = Name, No_of_Blocks, No_of_Students, No_of_Mess
No_of_Students⁺ = Name, No_of_Blocks, No_of_Students, No_of_Mess
No_of_Mess⁺ = Name, No_of_Blocks, No_of_Students, No_of_Mess
So Y covers X

∴ X and Y are equivalent.

Task 3- Using the Matrix method, show that the relations designed in Task 3 of Assignment 7 satisfies the Lossless join property.

 \rightarrow

In task 3 of Assignment 7 we divided the table

Student(USER_ID, HOSTEL_ID, MESS_ID, ROOM_ID, YEAR_OF_STUDY)

in two

R1(USER_ID, MESS_ID, ROOM_ID), YEAR_OF_STUDY) AND

R2(ROOM_ID, HOSTEL_ID)

FD: { {USER_ID -> HOSTEL_ID ,MESS_ID ,ROOM_ID,YEAR_OF_STUDY},

{ROOM_ID->HOSTEL_ID}}

	USER_ID	HOSTEL_ID	MESS_ID	ROOM_ID	YEAR_OF_STUDY
R1	α 11	β 12	α 13	α 14	α 15
R2	β 21	α 22	β 23	α 24	β 25

For ROOM_ID->HOSTEL_ID

we get α in both R1 and R2 for ROOM_ID so HOSTEL_ID in R1 becomes α .

	USER_ID	HOSTEL_ID	MESS_ID	ROOM_ID	YEAR_OF_STUDY
R1	α 11	α 22	α 13	α 14	α 15
R2	β 21	α 22	β 23	α 24	β 25

Now we have alpha in full R1. So, it satisfies the lossless join property.

THANK YOU

^{*}Note: We have updated our relational model. So some of the tables in assignment 8 are different than assignment 7.