EE102 Week 0, Lecture 1 (Fall 2025)

Instructor: Ayush Pandey

Date: August 29, 2025; Updated: Sep 3, 2025

1 Goals

• Logistics, grading, extensions, expectations

- Motivation to study signal processing
- Pre-requisites to signal processing: vectors and complex numbers

2 Why study signal processing?

Signal processing and linear systems theory is foundational in engineering. It has revolutionized engineering in more ways than we realize — machine learning/AI, RF amplifiers, satellite communications, airplanes, medical devices, automotive vehicles, MRI scans, and pretty much every other engineering and science discipline out there directly uses concepts from this course. This is fantastic but there is also a downside! Learning signal processing is dependent on many prerequisites as it builds on various other fundamental courses in engineering. As electrical engineers, you are required to learn signal processing and linear systems theory. Other engineering disciplines typically do not require such a course. This gives electrical engineers an edge because what you learn in this course is not just applicable to EE but also to all other areas. So, despite many pre-requisite requirements, I hope that you will be motivated to cross the technical barriers in learning signal processing.

2.1 Real-world significance

Count the number of questions you answer "yes" to from the list below:

- Do you enjoy music? Did you ever find songs that sounded very similar to each other? Would you like to be able to explain why that's the case (mathematically)?
- Would you like design your own electrical circuits that are able to meet performance specifications of your (future) clients?

- Do you anticipate that you will be working on radio frequency circuits in your career where you need to design circuits and systems that communicate at specific frequencies?
- Are you attracted to the rigor of electrical engineering? Or perhaps, put another way, are you looking forward to setting aside time to learn the mathematical underpinnings of electrical engineering?
- Would you like to gain a better understanding of how various "scanners" scan our body parts to provide useful medical information (like X-rays, MRI, CT scans, etc.)?
- Do you want to be able to explain to others how images and colors on any digital display are created and manipulated?
- Would you like to *mathematically* create new music that takes the best parts of some of the songs that you like? Or perhaps, create entirely new sounds that have never been heard before? By doing it mathematically, you will be making the process general, easily customizable, and reproducible.
- Do you anticipate that your career choice after graduation will involve image processing / machine learning / artificial intelligence?
- Are you interested in understanding the underpinnings of the controllers that are used in automotive vehicles, or robotics, or even in the design of precise drugs that target pathogens in the human body?
- Noise canceling in audio tech is a huge industry! Are you someone who fancies designing / understanding these systems?
- Do you want to understand how Shazam (or other apps that can recognize a song just based on a few beats) work?

If you counted more than a few "yes" answers, you are in the right place! This course will help you understand the mathematical underpinnings of many of these applications. Of course, this course will not go into the technical specifics of any of the applications. There won't be enough time for it. Other courses exist for such details. See below for what this course is not.

2.2 What signal processing is not?

In signal processing, you will **not** learn the fundamentals of circuit analysis, AC analysis, transistors, communication algorithms, design of RF circuits, or controller design. Most of those topics are already assigned to other specific courses. In signal processing and linear

systems course, we will focus on the mathematical tools and techniques used to analyze and process signals and systems.

With that motivation, let us jump into a discussion about various pre-requisites that you will need to be familiar with to succeed in this course.

3 Pre-requisite #1: Vectors

When studying problems with many entities/observations, we structure our variables into vectors.

An *n*-dimensional vector \mathbf{x} can be written as

$$\mathbf{x} = [x_1, x_2, \dots, x_n], \qquad \mathbf{x} \in \mathbb{R}^n.$$

Matrices are transformations 3.1

If you transform a vector \mathbf{x} to a new vector \mathbf{y} such that all elements in \mathbf{y} are linear combinations of elements in x, then the transformation is called a matrix.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \longmapsto \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

such that

$$y_1 = \sum_{i=1}^n \alpha_{1i} x_i, \quad y_2 = \sum_{i=1}^n \alpha_{2i} x_i, \quad \dots, \quad y_m = \sum_{i=1}^n \alpha_{mi} x_i.$$

Then $A\mathbf{x} = \mathbf{y}$, where

$$A \in \mathbb{R}^{m \times n}, \qquad A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{bmatrix}.$$

We write

$$A: X \to Y$$

where X is the vector space in \mathbb{R}^n where x lies and Y is the vector space in \mathbb{R}^m where y lies.

Recall

- Diagonal matrix
- Identity matrix
- Symmetric matrix
- Zero matrix
- Matrix transpose
- Matrix algebra $(+, -, \times, inverse)$

3.2 Real-world significance

Note that a transformation is called an "affine" transformation if it is linear

$$y = Ax + b$$
,

where A is a linear transformation (matrix) and b is a translation vector. Affine transformations are common in many practical applications such as image processing, computer-aided design in engineering, medical imaging, graphic design, and many more. On a lighter note, check this fun meme template out which uses matrix transformations at its core — the content aware scale gif and some related Reddit discussion on it. Creating memes often requires very specific image transforms (such as the Wide Keanu or the general Stretched Resolution meme)! On a more technical note, you can check out the Adobe Photoshop tool called "Transform" (or the equivalent rotate, scale, and skew tools in Microsoft Paint) — these tools allow users to manipulate images using affine transformations. The same concepts are at the core of many research-grade affine transform tools. Some examples are rasterio for geographical applications, flirt for affine transformations of MRI images and the RandomAffine tool for affine transformations in image augmentation used in machine learning applications.

In summary, vector and matrix algebra is the centerpiece in signal processing and you will see the mathematical preliminaries being used throughout the course.

4 Pre-requisite #2: Complex numbers

Although the usual way we learn about the complex unit "j" is as a convenient notation for a solution of

$$x^2+1=0 \quad \Rightarrow \quad x=\sqrt{-1}:=\mathbf{j},$$
 Page 4 of 94
$$4$$

it is useful to recognize other places where this convenience is beneficial. In signal processing we are often looking for easy ways to analyze physical signals, not only to solve algebraic equations.

From vectors to a complex scalar. 4.1

Given a vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix},$$

define the (complex) scalar

$$z_{\mathbf{x}} = x_1 + \mathbf{j}x_2.$$

The entries x_1 and x_2 are not "added" in \mathbb{R} ; they are bound only because they are components of the same vector. Writing $z_{\mathbf{x}}$ lets us treat the vector like a single scalar living in \mathbb{C} .

4.2Inner products and linear dependence

In simple terms, the inner product between two vectors is a scalar quantity that quantifies a relationship between two vectors: how much they align with each other. In quantifying this, the inner product takes into account the lengths of the two vectors and the angle between them. The inner product can be used to define orthogonality (perpendicularity) — which is one the most fundamental concepts in signal processing.

Why? The key idea in EE 102 is that a linear combination of a set of orthogonal signals can be used to represent any signal (no matter how complicated), under some conditions, of course. So, understanding orthogonality, linear independence, and linear combinations is key to this course. Consequently, inner product is an important concept for this course.

If two vectors are orthogonal (that is, their inner product is zero), then these vectors are linearly independent. Indeed, we can prove that a set of non-zero mutually orthogonal vectors (say, v_1, v_2, \ldots, v_n) are linearly independent. You can show this by writing the linear combination of the vectors: $S = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$ and showing that it is zero only if all constants α_i , $i = \{1, \dots, n\}$ are equal to zero. To prove this linear independence, you can take the inner product of the above with any vector in the set (or any linear combination, thereof) say v_k :

$$S = v_k \cdot (c_1 v_1 + c_2 v_2 + \dots + c_n v_n)$$

$$S = v_k \cdot c_1 v_1 + v_k \cdot c_2 v_2 + \dots + v_k \cdot c_n v_n = 0$$

since the pairwise dot products (the inner product between each pair of vectors) are zero, we are only left with

$$c_k(v_k \cdot v_k) = 0$$

which is only possible if $c_k = 0$ since $v_k \cdot v_k$ is non-zero. Since this is true for any k, we have that all coefficients are zero. So, inner products play an important role in proving orthogonality (and thus, linear independence of vectors).

4.3 Inner product via complex numbers.

All the vector algebra can be tedious work! Complex numbers come to our rescue as we can represent a 2D vector as a complex number. For $\mathbf{x} = [x_1, x_2]^{\top}$ and $\mathbf{y} = [y_1, y_2]^{\top}$,

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathsf{T}} \mathbf{y} = x_1 y_1 + x_2 y_2.$$

With the complex representations

$$z_{\mathbf{x}} = x_1 + \mathbf{j}x_2, \qquad z_{\mathbf{y}} = y_1 + \mathbf{j}y_2,$$

their product with conjugation is

$$\overline{z}_{\mathbf{x}} z_{\mathbf{y}} = (x_1 - jx_2)(y_1 + jy_2)$$

= $(x_1y_1 + x_2y_2) + j(x_1y_2 - x_2y_1).$

Taking the real part gives the vector inner product:

$$\Re(\overline{z}_{\mathbf{x}} z_{\mathbf{y}}) = x_1 y_1 + x_2 y_2 = \langle \mathbf{x}, \mathbf{y} \rangle.$$

Polar form viewpoint. Write x in polar coordinates with $r_x = ||x||$ and angle θ_x :

$$x_1 = r_x \cos \theta_x, \qquad x_2 = r_x \sin \theta_x,$$

SO

$$z_{\mathbf{x}} = r_x(\cos\theta_x + \mathrm{j}\sin\theta_x) = r_x e^{\mathrm{j}\theta_x}.$$

Similarly $z_{\mathbf{y}} = r_y e^{\mathrm{j}\theta_y}$ from Euler's identity¹. Then

$$\begin{split} \overline{z}_{\mathbf{x}} \ z_{\mathbf{y}} &= r_x e^{-\mathrm{j}\theta_x} \ r_y e^{\mathrm{j}\theta_y} = r_x r_y e^{\mathrm{j}(-\theta_x + \theta_y)} \\ &= r_x r_y \Big[\cos(-\theta_x + \theta_y) + \mathrm{j} \sin(-\theta_x + \theta_y) \Big], \end{split}$$

hence

$$\Re(\overline{z}_{\mathbf{x}} \ z_{\mathbf{y}}) = r_x r_y \cos(-\theta_x + \theta_y) = r_x r_y \cos(\theta_x - \theta_y) = \langle \mathbf{x}, \mathbf{y} \rangle.$$
 Page 6 of 94

Figure 1: Geometric view of the inner product using polar form

Note that cosine is an even function, which allowed us to write the last equality above.

In Figure 1, observe that vectors \mathbf{x} and \mathbf{y} make angles θ_x and θ_y with the real axis and the angle between them is $\varphi = \theta_x - \theta_y$. You can make intuitive sense of the inner product in polar form by understanding its geometric interpretation (see Figure 1). Specifically, recall how we defined inner products in the previous section — a quantification of the alignment between two vectors. For our example in Figure 1, decompose \mathbf{x} relative to \mathbf{y} : drop a perpendicular from the tip of \mathbf{x} to the line span $\{\mathbf{y}\}$ (the direction spanned by \mathbf{y}). This splits \mathbf{x} into a part parallel to \mathbf{y} and a part perpendicular to \mathbf{y} :

$$\mathbf{x} = \underbrace{\left(\mathbf{x} \cdot \hat{\mathbf{y}}\right) \hat{\mathbf{y}}}_{\text{projection onto span}\{\mathbf{y}\}, \text{ parallel to } \mathbf{y}} + \underbrace{\left(\mathbf{x} - \left(\mathbf{x} \cdot \hat{\mathbf{y}}\right) \hat{\mathbf{y}}\right)}_{\text{perpendicular (rejection) to } \mathbf{y}}.$$

The second part that is perpendicular to \mathbf{y} is called the rejection because that's the part that is remaining (you can see that it is quite literally the remaining part as it is obtained by subtracting the projection from \mathbf{x}). Note that the inner product of \mathbf{x} with the unit vector $\hat{\mathbf{y}}$ gives us the projection of \mathbf{x} onto span $\{\mathbf{y}\}$. By computing the inner product, you can also check that the remaining (perpendicular part) of \mathbf{x} is orthogonal to \mathbf{y} :

$$rej_{\mathbf{v}}(\mathbf{x}) \cdot \hat{\mathbf{y}} = \mathbf{x} \cdot \hat{\mathbf{y}} - (\mathbf{x} \cdot \hat{\mathbf{y}})(\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}) = \mathbf{x} \cdot \hat{\mathbf{y}} - \mathbf{x} \cdot \hat{\mathbf{y}} = 0.$$

Thus

$$\mathbf{x} = \operatorname{proj}_{\mathbf{y}}(\mathbf{x}) + \operatorname{rej}_{\mathbf{y}}(\mathbf{x}), \qquad \|\mathbf{x}\|^2 = \|\operatorname{proj}_{\mathbf{y}}(\mathbf{x})\|^2 + \|\operatorname{rej}_{\mathbf{y}}(\mathbf{x})\|^2.$$

In summary, the inner product measures how much of \mathbf{x} points along \mathbf{y} , scaled by the length of \mathbf{y} . This is given by

$$\mathbf{x} \cdot \mathbf{y} = \|\mathbf{y}\| (\mathbf{x} \cdot \hat{\mathbf{y}}) = \|\mathbf{x}\| \|\mathbf{y}\| \cos \varphi.$$

¹You can practice proving Euler's identity that $e^{j\theta} = \cos \theta + j \sin \theta$ by expanding the left-hand side using the exponential series and collecting the real and imaginary parts together (the real part will be the cosine series and the imaginary part will be the sine series).

The sign of $\cos \varphi$ carries the orientation: it is positive when the angle is acute and negative when obtuse. Complex numbers in their polar form express the same geometric intuition:

$$\overline{z_{\mathbf{x}}} z_{\mathbf{y}} = r_x r_y e^{\mathrm{j}(\theta_x - \theta_y)}$$

so the real part matches the dot product:

$$\Re(\overline{z_{\mathbf{x}}}\,z_{\mathbf{y}}) = r_x r_y \cos \varphi = \mathbf{x} \cdot \mathbf{y}.$$

Therefore, the scalar projection of **x** onto **y** is $r_x \cos(\theta_x - \theta_y)$, which when multiplied by the absolute value of y gives the inner product (that is, $r_x r_y \cos(\theta_x - \theta_y)$ in complex polar form).

4.4 Real-world significance

We discussed three main topics in this section — vectors, complex numbers, and their products. Representing quantities as vectors has many advantages, which mirrors the advantage of using lists and arrays in computer programming. Inner products are useful in quantifying the alignment between vectors. A simple example is in machine learning, where the similarity between data points can be measured using inner products, which has applications in face detection, recommendation systems, and more. Finally, as discussed, complex numbers help us analyze vectors in a more nuanced way by providing a framework for understanding their magnitude and direction. You will see many more real-world application examples of complex numbers in signal processing. In Fourier analysis, complex exponentials are used as the orthogonal basis functions for representing signals in the frequency domain.

Pre-requisite #3: Circuits 5

Without going into the specific details about various electrical circuits, this section will briefly discuss the fundamental concepts of circuits that are relevant to signal processing. In signal processing, we will use circuits only as examples. In fact, equivalent examples can be devised that are relevant for other disciplines. For example, in circuit theory, Kirchoff's voltage and current laws are essential tools that are commonly used to analyze currents and voltages. These laws frame the conservation of energy for an electrical circuit setting. An equivalent mechanical engineering example is the analysis of forces in a static system (such as a spring-mass damper system), where conservation of energy provides a similar framework for understanding the system's behavior.

Historically, signal processing has been a field that has drawn heavily from electrical engineering concepts, particularly in the analysis and manipulation of signals. The design of the feedback amplifier in the 1920s is the prime example. Scientists and engineers were interested in maximizing the signal to noise ratio for amplifier circuits, which led to the use of many of the foundational mathematical theory that existed at the time. The formalization of these mathematical tools for electrical engineering applications led to the development of the field of signal processing. Since then, these tools have found applications in many other disciplines, including mechanical engineering, civil engineering, computer science, biomedical engineering, and more. But for better or for worse, the pedagogy of signal processing has remained set in that historical context. So, without challenging the years of history too much, we will continue to use circuit examples in this course. However, wherever possible, we will try to incorporate broader application examples too.

EE 102 Week 1, Lecture 1 (Fall 2025)

Instructor: Ayush Pandey

Date: September 3, 2025

Goals 1

- Introduction to signals: continuous-time and discrete-time
- Basic properties of signals: scaling, offset, linearity, and time invariance, and more
- Quantifying the energy and power of signals

2 What are signals?

A signal is a set of data or information. This is intentionally defined in a very broad manner. A simple way to understand signals: all mathematical functions that you have studied in your calculus classes are signals if you can attach a physical meaning to the function. Note that a signal need not be a function of time. It is often intuitive to think about functions of time and physical signals are functions of time (often, but not always!).

A system maps (that is, it processes) input signals into output signals. So, systems are characterized by their input-output relationships. See Figure 1 for a visual representation of signals and systems.

$$\begin{array}{c|c}
x(t) & H & y(t) \\
\hline
input & y(t) = x(\alpha t) & \text{output}
\end{array}$$

Figure 1: A system H that maps input signal x(t) to output signal y(t).

2.1 Continuous-time and discrete-time signals

Continuous-time domain is \mathbb{R} , and we write continuous-time signals as x(t), if they are continuous functions of time (recall: continuous functions from your math classes). On the other hand, discrete-time domain is \mathbb{Z} , and a discrete-time signal is written as x[n], where $n \in \mathbb{Z}$. This means that discrete-time signals are defined only at integer time indices.

2.2Sketching signals

To sketch, draw and label axes, mark key values (peaks, zeros, discontinuities), and indicate any symmetry, periodicity, decay/growth, or piecewise structure (try to identify as many properties as you can before starting to sketch). The best way to start your sketch is to compute the values of the signal at "easy" points like, zero, the max time, etc.

3 Properties of signals

3.1Scaling

Time scaling changes the horizontal axis by a constant α :

$$x_s(t) = x(\alpha t).$$

If $0 < \alpha < 1$, the signal expands in time whereas if $\alpha > 1$, it compresses the signal in time.

3.2 Offset

Time shifting offsets the horizontal axis by a constant T. A (right) delay of T seconds is defined by

$$x_d(t) = x(t - T).$$

Equivalently, $x_d(t_1 + T) = x(t_1)$ for every t_1 .

Linearity of systems 3.3

A system H is *linear* if it satisfies additivity and homogeneity:

$$H\{x_1 + x_2\} = H\{x_1\} + H\{x_2\}, \qquad H\{k\,x\} = k\,H\{x\} \quad (\forall k \in \mathbb{C}).$$

Example: the exponential-weighting system $y(t) = e^{-at}x(t)$ is linear since

$$H\{x_1 + x_2\} = e^{-at}(x_1 + x_2) = e^{-at}x_1 + e^{-at}x_2 = H\{x_1\} + H\{x_2\}.$$

Remark. "Linear system" is a property of the mapping, not of the input/output signals. You should not confuse it with a straight-line graph of a scalar function, which you are used to thinking about when thinking about "linearity".

3.4 Time invariance of systems

A system H is time invariant if delaying the input by T produces the same delay at the output:

If
$$y(t) = H\{x\}(t)$$
, then $H\{x(t-T)\} = y(t-T)$, $\forall T \in \mathbb{R}$.

Intuition: If your opinion of a friend is dependent on the input about the friend, let's say that input is x(t) (the friend descriptor signal), and seeing that input, you decide your opinion of your friend with an opinion signal called y(t). Then, if your opinion about your friend does not change with time, that is, if you have the same opinion about your friend in the morning, in the evening (and even as the day changes), then your "opinion-defining" system (the one that outputs y(t) is time-invariant! However, if your opinion of your friend keeps changing based on the time that you're meeting your friend, then you have a time-varying system of opinion generation (probably not a good trait!). Note that for time-invariant systems, the output is the "same response" delivered at the new time. It should not become, e.g., k y(t)or ky(t-T) depending on T.

3.5 A special signal — the unit step function

A unit step function is defined as

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

It is a special signal because it models the "start" of something, or an "onset" of an event, or more simply, a "switching on" of a process. You can shift the time to t-T to delay the start by T seconds, so it's a very versatile signal. Therefore, the unit step function finds use in various applications.

Quick check (in-class): Is the unit step u(t) time-invariant? (Trick question: time invariance is a *system* property, not a signal property.)

4 Energy and power of signals

We quantify the "size" of signals using energy and (time-averaged) power. For continuoustime signals, we define

$$E_{\infty} \triangleq \int_{-\infty}^{+\infty} |x(t)|^2 dt, \qquad P_{\infty} \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt.$$

For discrete-time signals:

$$E_{\infty} \triangleq \sum_{n=-\infty}^{+\infty} |x[n]|^2, \qquad P_{\infty} \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} |x[n]|^2.$$

With a desired signal s and noise n, one practical signal-to-noise ratio is

$$SNR = \frac{E_{\infty}(s)}{E_{\infty}(n)} \quad \text{(or } P_{\infty} \text{ for power signals)}.$$

Each student takes one quadrant. Label axes clearly and annotate what is your signal?, where is the signal likely to be Worksheet #1: Sketching Signals (Part 1) — Groups of 4.

Each pair of students should scale and shift the two signals drawn by the other pair of students. Agree as a pair what scaling and shifting would mean and then draw it out. Clearly show the parameters and the transformed axes. Worksheet #2: Transforming Signals (Part 2) — Groups of 2.

EE 102 Week 2, Lecture 1 (Fall 2025)

Instructor: Ayush Pandey

Date: September 8, 2025

1 Goals

- Review: time scaling, shifting, and combined operations on time-domain signals
- Review: energy and power metrics to quantify signals
- Understand periodic signals using time shifting operations
- Derive the fundamental period of a signal
- Understand even and odd signals and their properties
- Apply signal operations to real-world signals using a guitar audio distortion example
- Next class: Complex exponentials, the unit impulse and step functions

2 Review: transforming signals

For a signal x(t), common time operations include:

- 1. Reversal: x(-t)
- 2. Compression: x(2t)
- 3. Expansion: $x(\frac{t}{2})$
- 4. Delay: x(t-6)
- 5. Advance: x(t+6)

2.1How to sketch signal transformations?

To sketch signal transformations, first note down the key points on the X-axis (the time axis for time-domain signals). Then evaluate the value at the new domain (the shifted/scaled time) by looking at the values of the original signal at the corresponding time.

A quick summary: keep the vertical axis unchanged; apply horizontal changes only. For x(at), compress if |a| > 1 and expand if 0 < |a| < 1; for $x(t \pm T)$, shift right by T for x(t - T)and left by T for x(t+T); for x(-t), reflect across the vertical axis.

Example: scaling and shifting a sinusoidal signal

Consider a sinusoidal signal $x(t) = \sin(t)$. A time-shifting transformation of x(t) is given by

$$y(t) = x(t + t_0) = \sin(t + t_0)$$

where $t_0 \in \mathbb{R}$. For $t_0 > 0$, the signal is shifted to the left by t_0 while for $t_0 < 0$, the signal is shifted to the right by $|t_0|$. Similarly, a time-scaling transformation of x(t) is given by

$$y(t) = x(\alpha t) = \sin(\alpha t)$$

where $\alpha \in \mathbb{R}$. For $|\alpha| > 1$, the signal is compressed by a factor of α while for $0 < |\alpha| < 1$, the signal is expanded by a factor of $\frac{1}{\alpha}$. If $\alpha < 0$, the signal is also reflected across the vertical axis.

Let us look at some specific values of t_0 and α to see how the signal is transformed. Figure 1 shows the original signal $x(t) = \sin(t)$ along with its time-shifted and time-scaled versions for different values of t_0 and α . Note that for $\alpha = -1$, we get a reflection of the original signal across the vertical axis. Expanding on this example, we can also combine time-shifting and time-scaling operations to get more complex transformations. For instance, consider the transformation

$$y(t) = x(\alpha t + t_0)$$

where both α and t_0 are non-zero. This transformation first scales the time by α and then shifts it by t_0 . The order of operations matters here — if we were to shift first and then scale, we would have

$$y(t) = x(\alpha(t+t_0)) = x(\alpha t + \alpha t_0)$$

which is different from the previous transformation unless $\alpha = 1$.

If you intend to reverse the order of operations, you can redefine the shift parameter accordingly. For example, to achieve the same effect as $x(\alpha t + t_0)$ by shifting first and then scaling, you would need to use $x(\alpha(t+\frac{t_0}{\alpha}))$. Similarly, for the second combined transformation, you

Figure 1: Time-shifting and time-scaling transformations of the signal $x(t) = \sin(t)$.

would need to use $x(\alpha t + \alpha t_0)$ to achieve the same effect as shifting first and then scaling by α next. Python code for generating signal transformations is available on Github¹.

2.2 Measuring the energy and power of signals

Previously, we defined energy as the integral of the squared magnitude of a signal over all time:

$$E_{\infty}(x) = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

and power as the time-averaged measure for a time period [-T, T]:

$$P_{\infty}(x) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt.$$

It is natural to wonder how we ended up with those specific definitions. You can build the intuition behind these definitions in two ways: (a) by considering an electrical signal x(t) as a voltage across a 1-ohm resistor, and (b) by considering the mathematical convenience that these definitions provide. For (a), it is pretty clear that the energy dissipated in a resistor is given by the integral of the square of the voltage over time divided by the value of the resistor

¹github.com/ee-ucmerced/ee102-signals-systems

(in this case, 1 ohm). To fully appreciate the mathematical meaning of these definitions, consider the following alternate definition of energy as the integral of the absolute value of the signal over all time:

 $E'_{\infty}(x) = \int_{-\infty}^{\infty} |x(t)| dt.$

This would be a valid way to quantify the "energy" of a signal as well. Note that our goal is to not physically define "energy", the electrical engineering concept, rather we are interested in coming up with measures of signals that we can use to compare two different signals. Note that taking absolute value is atleast required to prevent the integral from being zero for signals that oscillate between positive and negative values. Despite this, the integral of the square of the absolute value (E) is preferred over just the integral of the absolute value (E') because it is the metric that lets us compare signals in the L^2 space, which is a Hilbert space². Simply stated, this means that the space of signals with finite energy (i.e., $E_{\infty}(x) < \infty$) has mathematical properties that enable better analysis and manipulation of signals. For example, we can define an inner product between two signals as a metric that quantifies the similarity between two signals x(t) and y(t) as

$$\langle x, y \rangle = \int_{-\infty}^{\infty} x(t)y^*(t)dt,$$

where $y^*(t)$ is the complex conjugate of y(t). This inner product allows us to define concepts like orthogonality and projection in the space of signals. Remember that being able to represent complex signals as linear combinations of standard signals is the core concept in signal processing — this is not possible without a clear notion of orthogonality! In fact, the definition of E above is simply the inner product of a signal with itself, i.e., $E_{\infty}(x) = \langle x, x \rangle$. The L^1 space (signals with finite E') does not have these properties, which is why we prefer to use E as our measure of energy. Power can then be defined as the time-averaged energy over a time period.

3 Periodic signals

Definition 1. A signal x(t) is periodic if $\exists T_0 > 0$ such that $x(t+T_0) = x(t)$ for all t. The smallest such T_0 is the fundamental period of the signal.

In more verbose language, we say that a signal is a periodic signal if we can find a time shift T_0 such that shifting the signal by T_0 does not change the signal. If such a T_0 does not exist, then the signal is aperiodic. For example, $x(t) = \sin(t)$ is periodic. To find the fundamental period, we would have to find the smallest shift T_0 to satisfy $\sin(t+T_0) = \sin(t)$ for all t.

²Read more on Hilbert spaces here: https://en.wikipedia.org/wiki/Hilbert_space

Using the periodicity of the sine function, we know that $\sin(t+2\pi) = \sin(t)$ for all t. Thus, $T_0 = 2\pi$ is the fundamental period of $\sin(t)$. Note that $T_0 = 4\pi$ also satisfies the periodicity condition, but it is not the fundamental period since it is not the smallest such T_0 . In fact, any integer multiple of 2π would satisfy the periodicity condition, but we are only interested in the smallest such value for the fundamental period.

Why periodic signals? 3.1

Just like many other concepts in signal processing, periodic signals are also a mathematical convenience! Intuitively, it is clear that if something repeats over and over again, then we can analyze just one cycle of it and extend the results to the entire signal. Therefore, studying periodic signals is often a good starting point. But you may wonder — what if the signal is not periodic? Read on.

3.2 Periodic extensions

When a signal is defined on a finite interval (e.g., a single cycle), it is often useful to periodically extend it by repeating that interval end-to-end. This makes the time-averaged power well defined and makes symmetries/harmonics easier to see.

Example: Periodic or not? 3.3

Consider the following three signals. Our goal is to find out whether they are periodic or not. If they are periodic, we will report the fundamental period of these signals.

- 1. $x(t) = \cos(t)$
- 2. $x(t) = \cos(t)$ for $t \ge 0$ and $x(t) = -\sin(t)$ for t < 0
- 3. $x(t) = e^{j\omega t}$ where $\omega \neq 0$

How to prove periodicity? We can simply propose a T_0 and check if the periodicity condition is satisfied. If you cannot find a T_0 , that does not mean that the signal is aperiodic — it just means that you have not found the right T_0 yet! To prove aperiodicity, you have to show that no such T_0 exists. This is often done by contradiction. Proofs by contradiction is an important mathematical trick where you assume that the statement you want to prove is false and then show that this assumption leads to a contradiction (something that will be

obviously incorrect). This implies that the original statement must be true. You will find the signal transformation properties useful in proving (a) periodicity. Finally, if you can exploit the properties of the given signal, then you will find a much easier path to the proof.

For the first example, we know that the cosine function is "oscillatory", which indicates that it is probably periodic. Let's try to find a T_0 such that $\cos(t+T_0)=\cos(t)$ for all t. You might propose a $T_0 = \pi$ and observe that $\cos(t + \pi) = -\cos(t)$, which is not what we were looking for. So, $T_0 = \pi$ is not a good choice for T_0 . Let's try one more time. Propose $T_0 = 2\pi$. Then, compute $\cos(t + 2\pi) = \cos(t)$, which is a valid choice. To check if it is the fundamental period, we can see that any integer multiple of 2π would also satisfy the periodicity condition, but 2π is the smallest such value. Therefore, the fundamental period of $x(t) = \cos(t)$ is $T_0 = 2\pi$. Note that you can use trignometric identities to help you prove periodicity in an alternate way too.

For the second signal, sketch the signal to first get an intuition about whether it is periodic or not. You will see that the signal is a cosine wave for $t \geq 0$ and a negative sine wave for t < 0. The two parts do not match at t = 0, which indicates that the signal is not periodic. To prove this, we can use contradiction. Assume that the signal is periodic with period T_0 . Then, we have $\cos(t+T_0)=x(t+T_0)=x(t)$ for all t. Now, consider the case when $t=-\frac{T_0}{2}$. Then, we have $\cos(-\frac{T_0}{2}+T_0)=\cos(\frac{T_0}{2})=x(-\frac{T_0}{2})=\sin(-\frac{T_0}{2})=\sin(\frac{T_0}{2})$. This is clearly not true! So, our assumption that the signal is periodic must be false. Therefore, the signal is aperiodic.

For the third signal, we can use the properties of the complex exponential function to prove periodicity. Write $x(t+T_0)=e^{j\omega(t+T_0)}=e^{j\omega t}e^{j\omega T_0}$. If we can find a T_0 such that $e^{j\omega T_0}=1$, then we have periodicity. This is satisfied if $T_0 = \frac{2\pi}{\omega}$. Therefore, the fundamental period of $x(t) = e^{j\omega t}$ is $T_0 = \frac{2\pi}{\omega}$.

3.4 Power and energy of periodic signals

We can revisit the power and energy definitions for periodic signals. If x is periodic with period T_0 , then the time-average power is well defined and can be computed over any interval of length T_0 . Note that for a finite-duration input, E_{∞} is finite and $P_{\infty} = 0$ (time average over an unbounded window goes to zero) whereas E_{∞} is finite because we have finite-duration signal. For periodic signals, we have

$$P_{\infty}(x) = \frac{1}{T_0} \int_{t_0}^{t_0+T_0} |x(t)|^2 dt \quad \text{(independent of } t_0\text{)}, \qquad E_{\infty}(x) = \infty \text{ unless } x \equiv 0.$$

Thus, periodic signals are *power signals* (finite power, infinite energy).

Energy and power for a periodic input

If x(t) is periodic with fundamental period T_0 , then $y_d(t)$ is also periodic with the same T_0 (memoryless mapping preserves period). Hence

$$E_{\infty}(y_d) = \int_{-\infty}^{\infty} |y_d(t)|^2 dt = \infty, \qquad P_{\infty}(y_d) = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |y_d(t)|^2 dt \text{ (finite)}.$$

Even and odd signals 4

Recall that a mathematical function is called even if f(-t) = f(t) for all t and odd if f(-t) = -f(t) for all t. Examples of even functions include $\cos(t)$, t^2 , and |t|. Examples of odd functions include $\sin(t)$, t^3 , and the sign function $\operatorname{sgn}(t)$.

Definition 2. A signal x(t) is even if x(-t) = x(t) for all t and odd if x(-t) = -x(t) for all

Proposition 1. Any signal x(t) can be uniquely decomposed as the sum of an even signal $x_e(t)$ and an odd signal $x_o(t)$.

Proof. Let $x_e(t) = \frac{x(t) + x(-t)}{2}$ and $x_o(t) = \frac{x(t) - x(-t)}{2}$. Then, we have

$$x_e(-t) = \frac{x(-t) + x(t)}{2} = x_e(t)$$

so $x_e(t)$ is even. Similarly,

$$x_o(-t) = \frac{x(-t) - x(t)}{2} = -x_o(t).$$

which is is odd. Now, we can see that

$$x_e(t) + x_o(t) = \frac{x(t) + x(-t)}{2} + \frac{x(t) - x(-t)}{2} = x(t).$$

To prove uniqueness, we again use the proof by contradiction method. Assume, to the contrary, that there exist another pair of even and odd signals $x'_e(t)$ and $x'_o(t)$ such that $x(t) = x'_e(t) + x'_o(t)$. Then, we have

$$x_e(t) - x'_e(t) = x'_o(t) - x_o(t).$$

The left side is even (difference of two even functions), and the right side is odd (difference of two odd functions). The only function that is both even and odd is the zero function. Therefore, we have $x_e(t) - x'_e(t) = 0$ and $x'_o(t) - x_o(t) = 0$, which implies that $x_e(t) = x'_e(t)$ and $x_o(t) = x'_o(t)$. Hence, the decomposition is unique.

5 Application demonstration: a guitar amplifier

An amplifier system can be modeled as $y(t) = \alpha x(t)$ where $\alpha > 1$ is the amplifier gain. However, real-world amplifiers have limits on the maximum and minimum output levels they can produce. When the input signal is too large, the output signal gets "clipped" at these limits. Although this is an undesirable effect for most audio applications, it is often used intentionally by musicians to create a distorted sound effect. This is common in many music genres such as rock, metal, and punk.

We can model a simple hard-clipping (overdrive) amplifier system as:

$$y_d(t) = \begin{cases} -\beta, & \alpha x(t) < -\beta, \\ \alpha x(t), & |\alpha x(t)| \le \beta, \\ \beta, & \alpha x(t) > \beta, \end{cases} \quad \alpha > 0, \ \beta > 0.$$

This is a memoryless nonlinearity: at each t, $y_d(t)$ depends only on x(t). It amplifies small inputs by α and saturates at $\pm \beta$ for large inputs. Here, the parameter α controls the amount of gain (loudness) and β controls the amount of distortion to apply. Vierinen has a YouTube demonstration for this effect³.

The transfer curve for this system is shown in Figure 2.

Figure 2: Hard-clipping nonlinearity: linear region $|\alpha x| \leq \beta$, saturation outside.

Transforming the system: You can apply all the signal transformations to transform the system by transforming the transfer curve of the system shown above. Using Python, try to draw all time operations discussed above for $y_d(t)$ — the distorting amplifier system. Figure 3 shows the results.

³https://youtu.be/I30Mn_-yYF8.

Figure 3: Time operations on the signal $y_d(t)$.

5.1 Distortion effects

By running the provided code, you can test various distortion effects by changing the parameters α and β . The code loads a .wav file for a sample guitar tone. Practice your Python (and music design) skills with this example!

5.2 Optional: Audio tone signal example and time operations

In the supplementary notes, you will find a Python notebook that creates a guitar-like audio tone. You can use computer programming to compute various time-transformed versions yourself.

Next class

The unit impulse $\delta(t)$ and step u(t); convolution preview.

EE 102 Week 2, Lecture 2 (Fall 2025)

Instructor: Ayush Pandey

Date: September 10, 2025

1 Goals

- The timeless trio of signals: the complex exponential, the unit step, and impulse.
- The unit step function as a switch and an accumulator.
- The unit impulse function as an exciter and a sampler.
- The complex exponential signal as a sinusoid and a phasor.
- Applications of the timeless trio in real-world signal processing.

2 The unit step function

When we defined signals informally, we discussed how any mathematical function from your calculus class could be a signal as long as it represents something physical. Then it will not come as a surprise that for physical system applications, we would usually be interested only in positive values of time and we would want our signal to take the value of zero for all t < 0. Since we are extending the general concept of mathematical functions (which are defined for all t), it is important to have a mathematical way to write signals that are zero for t < 0. The unit step function does exactly that! Formally, we define the unit step function as

Definition 1. The unit step is a function defined as

$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}.$$

2.1 The unit step as a switch

As you can see in Figure 1, it is a discontinuous function that "steps" from 0 to 1 at t = 0. You may find the unit step function with different names: like the Heaviside function, or the ultrasensitive switch function.

Figure 1: The unit step function u(t).

So, any function that is zero for t < 0 can be written as the product of the unit step function and another function that defines the behavior of the signal for $t \geq 0$. For example, if we have a signal that is zero for t < 0 and equals f(t) for $t \ge 0$, we can write it as x(t) = f(t)u(t).

2.2Example: A sinusoidal audio wave that starts at zero time

If $f(t) = A\sin(\omega t + \phi)$, then we can write the signal as

$$x(t) = A\sin(\omega t + \phi)u(t).$$

This signal is zero for t < 0 and equals a sinusoidal wave for $t \ge 0$. The unit step function effectively "switches on" the sinusoidal wave at t=0. But did we really need the step function here? You can argue that we could have defined all signals using two cases,

$$x(t) = \begin{cases} f(t), & t \ge 0\\ 0, & t < 0 \end{cases}$$

but this type of definition will quickly get cumbersome. So, yet again, we are introducing a mathematical object to make our lives easier, at least in the long run (at the moment, it may seem that we are making our life harder by learning another new function). For the specific sinusoidal example, the alternative way to define it is using a piecewise function that would need two different cases:

$$x(t) = \begin{cases} 0, & t < 0 \\ A\sin(\omega t + \phi), & t \ge 0 \end{cases}.$$

We would prefer $x(t) = A\sin(\omega t + \phi)u(t)$ over the piecewise definition so that we can work with just a single expression.

2.3 Unit step as a general switch

Beyond the switching behavior of unit step, we can also use it to define arbitrary "pulse" signals and also other piecewise continuous signals. For example, we can define a rectangular pulse of width τ as

$$p_{\tau}(t) = u(t) - u(t - \tau).$$

This pulse is 1 for $0 \le t < \tau$ and zero otherwise (can you prove this without relying on sketching?). It is also possible to write the equation of the pulse signal by using a time reversal:

$$p_{\tau}(t) = u(t) + u(\tau - t) - 1$$

The sketch in both cases is the same: a pulse that starts at t=0 and ends at $t=\tau$. More generally, we can write a pulse that starts at t_1 and ends at t_2 as

$$p_{t_1,t_2}(t) = u(t-t_1) - u(t-t_2).$$

See Figure 2 for a sketch of the rectangular pulse that starts at t_1 and ends at t_2 .

Figure 2: A rectangular pulse $p_{t_1,t_2}(t)$ that is 1 for $t \in [t_1,t_2)$ and 0 otherwise.

The pulse function provides us with more control over when the signal "turns on" and "turns off" — in Figure 2, it turns on at $t = t_1$ and turns off at $t = t_2$. We would expect such knobs of any modern switching system!

We can also define a triangular pulse of width 2τ that is zero for all t < 0 and $t > 2\tau$, and peaks at $t = \tau$. This triangular pulse would increase linearly from 0 to 1 in the interval $[0,\tau]$ and then decrease linearly from 1 to 0 in the interval $[\tau,2\tau]$. By writing the equations of the two linear segments and then combining with unit step to decide when would each linear segment be "active", we can write the equation of the triangular pulse. Let's build it step-by-step. We write the two parts that "activate" the two linear segments using unit step functions:

$$w_1(t) = \underbrace{u(t) - u(t - \tau)}_{\text{active on } [0,\tau)}, \qquad w_2(t) = \underbrace{u(t - \tau) - u(t - 2\tau)}_{\text{active on } [\tau,2\tau)}.$$
Page 27 of 94

now, we define the two linear segments:

$$r(t) = \underbrace{\frac{t}{\tau}}_{\text{linear rise}}, \qquad f(t) = \underbrace{2 - \frac{t}{\tau}}_{\text{linear fall}}.$$

Then, the triangular pulse is obtained by gating each linear segment with its corresponding window and then adding the two gated segments:

$$tr_{\tau}(t) = \underbrace{r(t)}_{\text{rise}} \underbrace{w_1(t)}_{\text{gate }[0,\tau)} + \underbrace{f(t)}_{\text{fall}} \underbrace{w_2(t)}_{\text{gate }[\tau,2\tau)}.$$

$$tr_{\tau}(t) = \frac{t}{\tau} \left[u(t) - u(t - \tau) \right] + \left(2 - \frac{t}{\tau} \right) \left[u(t - \tau) - u(t - 2\tau) \right].$$

See Figure 3 for a sketch of the triangular pulse.

Figure 3: Triangular pulse of width 2τ : zero outside $[0, 2\tau]$, peak 1 at $t = \tau$.

The triangular pulse provides a smoother transition between the off and the on states compared to the rectangular pulse and is constructed using the unit step function as well. So, the unit step function is not just a simple switch it is also a building block for constructing more complex signals. The next "pulse" type signal that you should try is a trapezoidal pulse!

2.4 The unit step as an accumulator

The unit step function can also be viewed as an accumulator. If we integrate the unit step function, we obtain the ramp function (Problem 2.1 in HW #2):

$$r(t) = \int_{-\infty}^t u(\tau) d\tau = \begin{cases} t, & t \geq 0 \\ 0, & t < 0 \end{cases}.$$
 Page 28 of 94

Figure 4: The unit step function u(t) (left) and its accumulated area, the ramp function r(t) (right). The slider below sets the upper limit of integration T.

This ramp function increases linearly for $t \geq 0$ and is zero for t < 0. It effectively accumulates the area under the unit step function. See Figure 4 for a sketch of the unit step function and its accumulated area (the ramp function) on the right side. A virtual manipulative is available for you to explore this concept interactively on the course Github page¹.

3 The unit impulse function

The unit impulse function is our second of the "timeless trio" of signals — one of the three most important signals in signal processing. In other fields, such as physics, it is also known as the Dirac delta function. In discrete mathematics, it is known as the Kronecker delta function. So, the same mysterious function has many different names! The reason is clear — it is a very useful mathematical object, while not even being a function in the traditional sense! We will define it formally later, but for now, let's understand it informally. You only need to remember two properties about the impulse function:

• It is zero at all times except at t=0, that is $\delta(t)=0$ for all $t\neq 0$.

 $^{^{1}\}mathrm{Here}$ is the link for virtual manipulative on Github for unit step as an accumulator

• It has an area of 1 under its curve, that is, $\int_{-\infty}^{\infty} \delta(t) dt = 1$.

How is that possible? If a signal is zero everywhere except at one point, then there must be something unique happening at that point. To build intuition for this function, consider the rectangular pulse we defined earlier, with a slight modification. Let's define a rectangular pulse of width ϵ and height $\frac{1}{\epsilon}$ around the origin:

$$p_{\epsilon}(t) = \frac{1}{\epsilon} \left[u \left(t + \frac{\epsilon}{2} \right) - u \left(t - \frac{\epsilon}{2} \right) \right].$$

A sketch of this pulse is shown in Figure 5.

Figure 5: Rectangular pulse $p_{\epsilon}(t) = \frac{1}{\epsilon} \left[u \left(t + \frac{\epsilon}{2} \right) - u \left(t - \frac{\epsilon}{2} \right) \right]$ of width ϵ centered at the origin.

As you can see in the figure, the area of the rectangle is equal to 1 for all values of ϵ . But this does not satisfy the two properties of the impulse function listed above as there are points $t \neq 0$ where the pulse is non-zero. So, we need to modify this pulse further. As we make ϵ smaller, visualize how the rectangle becomes taller and narrower, while still maintaining an area of 1. You can interactively explore this concept using the virtual manipulative available on the course Github page².

3.1 Impulse as the limit of a rectangular pulse

Formally, we can write the unit impulse function as the limit of the rectangular pulse as ϵ approaches zero:

$$\delta(t) = \lim_{\epsilon \to 0} p_{\epsilon}(t) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[u \left(t + \frac{\epsilon}{2} \right) - u \left(t - \frac{\epsilon}{2} \right) \right].$$

Despite the definition above, it is not possible to write a closed-form expression for the impulse function because it is not defined at t=0 and is zero everywhere else. The only

²Here is the link for virtual manipulative on Github for impulse approximation using a pulse. Additionally, you can approximate an impulse using a Gaussian function, see here.

quantifiable property that we know so far is that the area under the curve of a delta function is equal to 1. To visually describe an impulse function, we draw an arrow pointing upwards at the point at which the impuse is located. That is, if we have $\delta(t)$, we draw an arrow at t=0; if we have $\delta(t-t_0)$, we draw an arrow at $t=t_0$. The height of the arrow is not important, but we label it with a number to indicate the area under the impulse. For example, if we have $A\delta(t-t_0)$, we draw an arrow at $t=t_0$ and label it with A to indicate that the area under the impulse is equal to A.

In practice, we can never generate a true impulse function, we can only get infinitesimally close to it as we keep making the width of the rectangular pulse infinitesimally close to zero and the height of the pulse close to infinity. Even though this may sound needlessly confusing, it provides us with a very powerful mathematical tool. One example is discussed next.

3.2 Impulse as a time-sampler

The impulse function can sample any test function at a specific point in time. Note that if we write $f(t)\delta(t)$, the product will be zero for all $t \neq 0$ because $\delta(t)$ is zero for all $t \neq 0$. The only point where the product is non-zero is at t = 0. So we can write $f(t)\delta(t) = f(0)\delta(t)$. This is also an impulse function located at t = 0 with an area of f(0). Now if we integrate this product over all time, we get

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0)\int_{-\infty}^{\infty} \delta(t)dt = f(0) \cdot 1 = f(0).$$

This property is known as the sifting property of the impulse function. By integrating any test function multiplied by an impulse function, we can extract the value of the test function at the location of the impulse \rightarrow we have sampled that function! More generally, if we have an impulse located at $t = t_0$, we can write this impulse as $\delta(t - t_0)$. Then, by the same reasoning as above, we can show that

$$f(t_0) = \int_{-\infty}^{\infty} f(t)\delta(t - t_0) dt.$$

To prove the above, write the integral as

$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0) dt = f(t_0) \int_{-\infty}^{\infty} \delta(t-t_0) dt = f(t_0) \cdot 1 = f(t_0).$$

We obtained the latter equality by observing that $\delta(t-t_0)$ is zero at every point other than $t=t_0$. Since $f(t_0)$ is independent of t, we can take it outside the integral. The remaining integral is equal to 1 because the area under the impulse function is equal to 1. This property makes the impulse function a powerful tool in signal processing and system analysis.

In formal mathematical analysis, the above is not seen as a property but is instead used to define the impulse function.

Definition 2. The unit impulse function $\delta(t)$ is defined as the function for which the area under curve of its product with any test function f(t) that is continuous at t = 0, is equal to the value of the test function at the time instant at which the impulse is located $(t = 0 \text{ for } \delta(t))$. That is,

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0). \tag{1}$$

3.3 Relationship between unit step and unit impulse

If you look back at the unit step function, you will notice that it is discontinuous at t = 0. So, can we define the differentiation of unit step function with time, du/dt? Generally, the answer will be no since the derivative of a function is not defined at points where the function is discontinuous. Let's try an alternate approach. Consider the following integral:

$$\int_{-\infty}^{\infty} f(t) \frac{du(t)}{dt} dt.$$

We can evaluate this integral using integration by parts to write

$$\int_{-\infty}^{\infty} f(t) \frac{du(t)}{dt} dt = f(t)u(t) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} u(t) \frac{df(t)}{dt} dt$$
$$= f(\infty) - \int_{0}^{\infty} \frac{df(t)}{dt} dt$$
$$= f(\infty) - [f(t)]_{0}^{\infty}$$
$$= f(\infty) - f(\infty) + f(0).$$

So, we derived that

$$\int_{-\infty}^{\infty} f(t) \frac{du(t)}{dt} dt = f(0), \tag{2}$$

which is the same as the definition of the impulse function discussed earlier — the area under the product of any test function and the impulse function is equal to the value of the test function at the location of the impulse. So, we can conclude by comparing equations (1) and (2) that

$$\frac{du(t)}{dt} = \delta(t).$$

Using a similar approach, you can also show that (HW #2)

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau.$$
 Page 32 of 94

4 Complex exponential signals

Continuous time

$$x(t) = A e^{j(\omega_0 t + \phi)} = A \cos(\omega_0 t + \phi) + j A \sin(\omega_0 t + \phi).$$

Real and imaginary parts are orthogonal sinusoids. Fundamental period $T_0 = \frac{2\pi}{\omega_0}$.

Discrete time

$$x[n] = A e^{j(\Omega_0 n + \phi)}.$$

This is periodic iff $\frac{\Omega_0}{2\pi} = \frac{M}{N}$ with integers M,N coprime. Then the fundamental period is $N_0 = N$. Otherwise, it is *aperiodic* on \mathbb{Z} .

Geometric phasor

The complex exponential traces a circle of radius A in the complex plane at angular speed ω_0 (continuous) or advances by a fixed angle Ω_0 per sample (discrete). The real part is the projection on the horizontal axis and the imaginary part is the vertical projection.

EE 102 Week 3, Lecture 1 (Fall 2025)

Instructor: Ayush Pandey

Date: September 15, 2025

Logistics

- HW #3 due: Mon, Sep 22 (new deadlines: every Monday at midnight). Midterm: Wed, Sep 24.
- Feedback from Week 2: new assignment deadline, more worked examples, will tie to book exercises, and the weekly HW.
- New office hours (Ayush): Mondays at 3.30pm in the library cafe. (Yaoyun, TBD): Fridays at 12pm.
- Midterm exam: in class, closed book, timed. One hour exam. Will be designed to be completed in 40 minutes. Will cover material up to Week 3 Lecture 2. A practice quiz will be posted on CatCourses. No programming problems on the exam.
- Suggested study approach (in order): lecture notes, concepts on the HW assignments, books as references (work on solved examples).

1 Goals for today

We will review EE 102 topics so far. This includes: signals, sketching signals, properties of signals, transformations of signals, and the three special signals (step, impulse, complex exponentials).

2 Icebreaker activity: comparing signal energy

You are driving an electric vehicle (EV) on a one-hour trip from point A to point B. There are many ways you can do this trip — which one uses the least energy?

Each team is assigned a simple signal trace x(t) that represents how much battery is used up in an electric vehicle over [0,1] hour for a given scenario (assume arbitrary units such that

the math works out). Your task is to compute the total energy E (in kWh) to determine who has the biggest energy consumption and predict your rank (1 = least energy spent). Among your team, you should confirm that everyone has the same answer and come to a consensus of the rank. Then, you will be asked to announce your energy and your guess of where you stand.

Key formula (use t in hours):

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt.$$

Team Prompts (pick one per team)

All signals are zero outside the intervals shown.

Team 1: Flat road, stop, flat road

$$x_1(t) = \begin{cases} 12, & 0 \le t < \frac{1}{3} \\ 0, & \frac{1}{3} \le t < \frac{2}{3} \\ 12, & \frac{2}{3} \le t \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Team 1: Record your results Predicted rank =kWh Energy E = 1(/8)

Team 2: Uphill, stop, downhill

$$x_2(t) = \begin{cases} 18, & 0 \le t < \frac{1}{3} & \text{(uphill)} \\ 0, & \frac{1}{3} \le t < \frac{2}{3} & \text{(stop)} \\ 6, & \frac{2}{3} \le t \le 1 & \text{(downhill)} \\ 0, & \text{otherwise} \end{cases}$$

Team 2: Record your results

Energy
$$E =$$
_____ kWh Predicted rank = ____ (/8)

Team 3: Rapid cruise (less efficient) to destination

$$x_3(t) = \begin{cases} 13.5, & 0 \le t < \frac{2}{3} \\ 0, & \frac{2}{3} \le t \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Team 3: Record your results

Energy E =_____kWh Predicted rank = _____(/8)

Team 4: Dynamic speeding (ramp up, then ramp down)

Ramp up such that battery uses from 8 to 16 over the first 0.5 h, then ramp down to 8 over the next 0.5 h.

$$x_4(t) = \begin{cases} 8 + 16t, & 0 \le t < \frac{1}{2} \\ 24 - 16t, & \frac{1}{2} \le t \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Team 4: Record your results

Energy E =_____kWh Predicted rank = _____(/8)

Team 5: Stop-and-go traffic (three bursts)

Scenario where x(t) = 18 for three 10 min segments, with 10 min stops between.

$$x_5(t) = \begin{cases} 18, & 0 \le t < \frac{1}{6}, & \frac{1}{3} \le t < \frac{1}{2}, & \frac{2}{3} \le t < \frac{5}{6} \\ 0, & \text{else on } [0, 1] \\ 0, & \text{otherwise} \end{cases}$$

Team 5: Record your results

Energy E =_____kWh Predicted rank = _____(/8)

Team 6: Eco mode (slow and steady)

$$x_6(t) = \begin{cases} 9, & 0 \le t \le 1\\ 0, & \text{otherwise} \end{cases}$$

Team 6: Record your results

Energy E =_____kWh Predicted rank = _____(/8)

Team 7: Late starter, speeding later

$$x_7(t) = \begin{cases} 0, & 0 \le t < \frac{1}{2} \\ 16, & \frac{1}{2} \le t \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Team 7: Record your results

Energy E =_____kWh Predicted rank = _____(/8)

Team 8 — Two hills then cruise

$$P_8(t) = \begin{cases} 24, & 0 \le t < \frac{1}{4} \\ 6, & \frac{1}{4} \le t < \frac{1}{2} \\ 10, & \frac{1}{2} \le t \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Team 8: Record your results

Energy E =_____ kWh Predicted rank = ____ (/8)

3 Review: signals and basic properties

Refer to the previous week's notes for more details on signals. As a quick reminder: we defined signals as mathematical functions that describe physical quantities or represent information.

3.1Basic properties of signals

- Continuous-time and discrete-time: Continuous-time signals are defined for every real-valued time t, while discrete time signals are defined only at discrete time instances n (usually integers).
- Energy and power signals: Energy signals have finite energy

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$$

and zero average power, while power signals have finite, non-zero average power

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt < \infty$$

and infinite energy.

- Deterministic and random signals: Deterministic signals can be precisely described by mathematical functions, while random signals exhibit uncertainty and are often characterized statistically.
- **Periodicity** Periodic signals repeat after a fixed interval T (i.e., x(t) = x(t+T)), while aperiodic signals do not exhibit such repetition. The smallest time-shift T_0 for which $x(t) = x(t + T_0)$ is called the fundamental period.
- Even vs. odd: Even signals satisfy x(t) = x(-t), while odd signals satisfy x(t) = x(-t)-x(-t).

3.2 Signal transformations

Remember that the two most important types of transformations are time shifts and time scaling:

$$y(t) = x(t - t_0)$$
 (time shift), $y(t) = x(at)$ (time scaling).

Here, for time-shift the t is replaced by $t-t_0$, and for time-scaling the t is replaced by at. So, if the signal is $x(t) = A\sin(\omega t + \phi)$, then the time-shifted signal is $y(t) = A\sin(\omega(t - t_0) + \phi)$ and the time-scaled signal is $y(t) = A\sin(\omega(at) + \phi)$.

3.3 Decomposition of signals with even and odd functions

In this course, we will often decompose signals into its fundamental components. There are many ways in which you can define these components. One of these is decomposing a signal into an even and an odd part. This helps us apply the properties of even and odd functions to analyze the signal, without having to analyze the entire signal at once.

Consider a signal x(t),

$$x(t) = x_{e}(t) + x_{o}(t), \qquad x_{e}(t) \triangleq \frac{x(t) + x(-t)}{2}, \quad x_{o}(t) \triangleq \frac{x(t) - x(-t)}{2}.$$

Pop quiz Show that $x_e(t)$ is an even function and $x_o(t)$ is an odd function.

The "timeless trio" of signals 4

We noted three special signals: step, impulse, complex exponential and gave them a name (the "timeless trio"). We will now review these three signals in more detail.

4.1 The unit step as a switch

The unit step u(t) is a fundamental building block for constructing piecewise signals. It acts as a switch that turns on at t=0 and remains on thereafter. By combining and shifting unit steps, we can create complex piecewise functions.

The ideal unit step function is not realizable in practice. However, smooth sigmoids can approximate u(t). You will find that these sigmoids are the main building blocks of neural networks! In a reductionist view, neural networks are just millions (or billions) of such sigmoids (unit steps) trained together to approximate any general function. That's why neural networks are sometimes also called universal function approximators. Someone who learns signal processing will be able to see the deeper picture: everything is a switch after all (as in electronics and computers).

You can write down the sigmoid functions as approximate unit steps:

$$\sigma_k(t) = \frac{1}{1 + e^{-kt}}$$
 and $\tilde{\sigma}_k(t) = \frac{1}{2}(1 + \tanh(kt)),$ $k \gg 1 \Rightarrow \sigma_k(t) \approx u(t).$

Let's consider two examples to demonstrate the power of the unit step functions.

4.2 Example 1: A square wave using steps

The bipolar square pulse in Figure 1 can be written as a combination of unit step functions. Let's try to build it step-by-step. First, note that the first unit step (part 1 of the figure) turns on the signal at t=0, so this can be written as u(t). Next, we want the signal to turn off at t=1 (part 2 of the figure). Consider the time-shifted signal u(t-1), which turns on at t=1. If we subtract this from the first step, we get a signal that is +1 on [0,T) and 0 elsewhere. Next, we want the signal to turn negative at t=2T (part 3 of the figure). Consider the negative of the step function -u(t-2T), which turns on at t=2T. Adding this to the previous result gives a signal that is +1 on [0,T), 0 on [T,2T), and -1 on $[2T,\infty)$. Finally, we want the signal to return to 0 at t=3T (part 4 of the figure). Consider the time-shifted step u(t-3T), which turns on at t=3T. Adding this to the previous result gives the desired square pulse. Thus, the complete expression for the square pulse is

$$x(t) = u(t) - u(t - T) - u(t - 2T) + u(t - 3T)$$

equals +1 on [0,T), 0 on [T,2T), -1 on [2T,3T), and 0 otherwise. It is a sum of four shifted/scaled steps. Figure 1 overlays the four contributors.

Figure 1: Square pulse constructed as u(t) - u(t-T) - u(t-2T) + u(t-3T) (here T=1). Colored dashed curves show the four step contributors.

Example 2 (piecewise levels using steps). A signal that is 0 for t < 1, jumps to 1 on [1, 2), and then to 2 for $t \geq 2$ can be written only with steps:

$$x(t) = u(t-1) + u(t-2).$$

More generally, any piecewise-constant x(t) can be expressed as $\sum_k a_k u(t-t_k)$ with appropriate increments a_k at the change points t_k .

4.3 The unit impulse as a sampler

We defined the impulse by its sifting property:

$$\int_{-\infty}^{\infty} f(t) \, \delta(t - t_0) \, dt = f(t_0).$$

Think of δ as an idealized sampler that extracts the value of f(t) at t_0 .

A common approximation uses a narrow rectangle (area 1):

$$p_{\varepsilon}(t) = \frac{1}{\varepsilon} \left[u\left(t + \frac{\varepsilon}{2}\right) - u\left(t - \frac{\varepsilon}{2}\right) \right], \qquad \lim_{\varepsilon \to 0^+} p_{\varepsilon}(t) = \delta(t) \text{ in the distribution sense.}$$

You can visualize this approximation by running the VM_delta_via_pulse.py script available on course Github.

4.4 Complex exponentials

We have discussed the complex exponential function before: $e^{j\omega t}$. However, that is just a special case of the generalized complex exponential

$$x(t) = Ae^{st}, \qquad A \in \mathbb{C}, \ s = \sigma + j\omega \in \mathbb{C}.$$

Why complex numbers / complex signals? With complex numbers, the central question is always: why did we even introduce the imaginary! Recall that when we worked with 2D vectors, we could represent them instead using a complex scalar. So, the vector operations, which can be tricky to account for become simpler with the standard scalar algebra that is applicable for complex numbers. We want the same convenience with signals. Additionally, as we will see, complex exponentials let us represent a really large class of signals such as sinusoids (of all kinds!), exponentials (both growing and decaying), and arbitrary combinations of these!

Pop Quiz 4.1: Check your understanding!

Recall that the utility of complex numbers is that they allow us to represent higher dimensions, in this case, two signals, using just one signal. Can you identify the two signals represented by $x(t) = e^{j\omega t}$?

Solution on page 11

To see that the general complex exponential can represent a large class of signals, write $A = |A|e^{j\phi}$ to obtain the amplitude-phase form

$$x(t) = |A| e^{\sigma t} e^{j(\omega t + \phi)} = e^{\sigma t} \Big(|A| \cos(\omega t + \phi) + j |A| \sin(\omega t + \phi) \Big).$$
 Page 41 of 94

Special cases emerge by selecting A and s:

1. A sinusoidal signal (pick A and s): Set $\sigma = 0$, $A = |A|e^{j\phi}$, $s = j\omega$:

$$x(t) = |A|e^{j(\omega t + \phi)} \implies \operatorname{Re}\{x(t)\} = |A|\cos(\omega t + \phi), \ \operatorname{Im}\{x(t)\} = |A|\sin(\omega t + \phi).$$

You can see that $e^{j\omega t}$ is periodic with $T = \frac{2\pi}{\omega}$ for $\omega \neq 0$.

Pop Quiz 4.2: Check your understanding!

When is Ae^{st} a constant k?

Solution on page 11

2. Real decaying exponential: Take $\omega = 0$, $\sigma < 0$, and $A \in \mathbb{R}$:

$$x(t) = Ae^{\sigma t}$$
, monotone decay to 0 as $t \to \infty$.

Pop Quiz 4.3: Check your understanding!

Derive the growing exponential using the complex exponential.

Solution on page 11

3. Exponentially damped sinusoid. Choose $\sigma < 0$, $\omega \neq 0$, $A = |A|e^{j\phi}$ and take the real part:

$$x(t) = |A|e^{\sigma t}\cos(\omega t + \phi).$$

Pop Quiz 4.4: Check your understanding!

Derive the exponentially growing cosine using the complex exponential.

Solution on page 11

4.4.1 Using complex algebra

You can derive all of the standard signals above from the general complex exponential also by expanding out the complex exponential by writing $A = a_1 + jb_1$ and $s = \sigma + j\omega$:

$$x(t) = (a_1 + jb_1)e^{(\sigma + j\omega)t} = (a_1 + jb_1)e^{\sigma t}(\cos(\omega t) + j\sin(\omega t)).$$

Expanding this out, we get

$$x(t) = e^{\sigma t} \big((a_1 \cos(\omega t) - b_1 \sin(\omega t)) + j(a_1 \sin(\omega t) + b_1 \cos(\omega t)) \big).$$
 Page 42 of 94

Thus, the real and imaginary parts of x(t) are

$$\operatorname{Re}\{x(t)\} = e^{\sigma t}(a_1 \cos(\omega t) - b_1 \sin(\omega t)), \quad \operatorname{Im}\{x(t)\} = e^{\sigma t}(a_1 \sin(\omega t) + b_1 \cos(\omega t)).$$

This shows that by choosing appropriate values for a_1 , b_1 , σ , and ω , we can generate a wide variety of signals, including sinusoids, exponentials, and combinations thereof.

Next steps

Next class: properties of systems (time invariance, linearity, causality, memory/memoryless, invertibility), responses of LTI systems, and how complex exponentials act as eigenfunctions of LTI systems.

Pop Quiz Solutions

Pop Quiz 4.1: Solution(s)

The two signals are the real and imaginary parts of the complex exponential: $\text{Re}\{x(t)\} = \cos(\omega t)$ and $\text{Im}\{x(t)\} = \sin(\omega t)$.

Pop Quiz 4.2: Solution(s)

Set $\omega = 0$ and $\sigma = 0$ to get x(t) = A = k. For real k, choose $A \in \mathbb{R}$.

Pop Quiz 4.3: Solution(s)

Set $\sigma > 0$, $\omega = 0$, and $A \in \mathbb{R}$ to get $x(t) = Ae^{\sigma t}$, which grows unbounded as $t \to \infty$.

Pop Quiz 4.4: Solution(s)

Set $\sigma > 0$, $\omega \neq 0$, and $A = |A|e^{j\phi}$ to get $x(t) = |A|e^{\sigma t}\cos(\omega t + \phi)$, which grows unbounded as $t \to \infty$.

EE 102 Week 3, Lecture 2 (Fall 2025)

Instructor: Ayush Pandey

Date: September 17, 2025

1 Goals for today

- Review (and wrap up) the introduction to signals and systems.
- Recall the differences between signals and systems and examples of each.
- Properties of signals to design systems: amplifier, frequency modulator, and more.
- Understand the properties of systems: time invariance, linearity, causality, memory, invertibility.
- Analyze system response using linearity and time-invariance.

2 Review: Signals and Systems

Recall that signals are mathematical functions that represent physical quantities, or information. Usually, we may think of signals as functions of time, but they can also be functions of space or other variables. A simple rule of thumb to remember is that signals are mathematical functions (that you can also visualize, if they are 1D or 2D).

On the other hand, you can easily distinguish systems from signals because systems are "processors" of signals. Every quantity/information/measurement is a signal, and systems can process a signal to produce an output signal. The signal that gets processed by the system is the input signal and the processed signal is the output signal. Due to this, a common abstraction of a system is a "black box" that takes in an input signal and produces an output signal. Formally, we write a system as an operator (or a mapping) that takes in a signal and produces another signal:

$$H: x(t) \mapsto y(t)$$

where x(t) is the input signal, y(t) is the output signal, and H is the system. Note that the above does not imply that x(t) = y(t), and in fact, if the system is doing something meaningful, the output signal will be different from the input signal. System examples:

2.1 Example: A matrix as a system

Given an input vector $x \in \mathbb{R}^n$, a matrix $A \in \mathbb{R}^{m \times n}$ can be thought of as a system that produces an output vector $y \in \mathbb{R}^m$ as follows:

$$y = Ax$$

where A is the system that performs the matrix multiplication operation. The block diagram of the system can be represented as:

$$X \in \mathbb{R}^n \longrightarrow H: y = Ax \qquad y \in \mathbb{R}^m \longrightarrow A \in \mathbb{R}^{m \times n}$$

Figure 1: A system as a linear map implemented by matrix multiplication.

2.2 Example: An amplifier as a system

An amplifier is a system that takes in an input signal x(t) and produces an output signal y(t) by amplifying the input signal by a constant factor $\alpha \in \mathbb{R}$. The system can be represented as:

$$H: x(t) \mapsto y(t) = \alpha x(t)$$

where H is the system that amplifies the input signal by the factor α . We can draw a block diagram of the system as follows:

Figure 2: Amplifier system: multiply the input by a real gain α .

2.3 Example: A differential equation as a system

A system can also be represented by a differential equation that relates the input signal x(t) and the output signal y(t). For example, consider the following first-order linear differential equation:

$$\frac{dy(t)}{dt} + ay(t) = bx(t)$$

where a and b are constants. This equation describes a system that takes in the input signal x(t) and produces the output signal y(t) by solving the differential equation. In this case, the block diagram of the system can be represented as:

Figure 3: Realization of $\dot{y}(t) + a y(t) = b x(t)$.

2.4 Example: A frequency modulation system

A frequency modulation (FM) system is a system that takes in an input signal x(t) and produces an output signal y(t) by modulating the frequency of a carrier signal.

Pop Quiz 2.1: Check your understanding!

For a purely sinusoidal audio signal $x(t) = A\cos(\omega_0 t)$, define a frequency modulator system that produces an output signal y(t) that has a different frequency than the input signal. What are various ways in which you can achieve this? Can you think of a general approach to create such a system by leveraging the properties of the complex exponential signal (see previous chapter of the notes)?

Solution on page 9

Consider a specific example where $x(t) = e^{j2\pi(10t)}$ and we send this input through a modulator system that multiplies $e^{j2\pi(32t)}$ to the input signal. The output can be obtained by computing the shift in frequency (exponents get added on multiplication). The output signal y(t) for both the real and imaginary parts of the complex exponential modulator system is shown in Figure 4.

An audio signal can be thought of as a combination of many sinusoidal signals with different frequencies. So, we can leverage the properties of the general complex exponential signal to define the input audio signal x(t) as a sum of complex exponentials:

$$x(t) = \sum_{k} \operatorname{Re} \left(A_k e^{j\omega_k t} \right)$$

where A_k and ω_k are the amplitude and frequency of the k-th sinusoidal component of the audio signal. Note that for simplicity, we are just considering the cosine component. To keep it general, we can continue to work with complex numbers as it allows us to take into account both sine and cosine components (orthogonally phase shifted by $\pi/2$, which is important in representing a general signal). If we define our system as a multiplication of the input signal

Figure 4: Frequency modulation of a sinusoidal signal using multiplication with a complex exponential.

with $\text{Re}\{Ae^{j\omega_0t}\}$, we will see that the output signal has a frequency that is shifted by ω_0 from the input signal. The system can be represented as:

$$H: x(t) \mapsto y(t) = x(t) \cdot \operatorname{Re}\{Ae^{j\omega_0 t}\}$$

where H is the system that modulates the frequency of the input signal by multiplying it with a carrier signal $\text{Re}\{Ae^{j\omega_0t}\}$. In this case, the output y(t) can be written as a sum of sinusoidal signals with frequencies shifted by ω_0 :

$$y(t) = \sum_{k} \operatorname{Re} \left(A_k e^{j(\omega_k + \omega_0)t} \right)$$

For a real audio signal that you can find on course Github: guitar_clean.wav, we can create the simple frequency modulator using the multiplication of a complex exponential. The input and the output signals are shown in Figure 5. You can interactively visualize and

interpret the frequency of the output signal by running the virtual manipulator on frequency modulator using complex exponentials: VM_modulation.py.

Figure 5: Frequency modulation of a guitar audio signal using multiplication with a complex exponential.

Pop Quiz 2.2: Check your understanding!

By using the virtual manipulator VM_modulation.py, test three different frequencies of the modulator system: 0.5 Hz, 5 Hz, and 20 Hz. Reflect on the expected sound for each modulation before listening to the output guitar_modulated.wav. Which one of the output signals is closest to the original audio signal? How would you describe the frequency modulation effect on audio?

Solution on page 9

Pop Quiz 2.3: Check your understanding!

Can you define a noise cancellation system that takes in a noisy signal and produces an output signal that cancels the noise? Assume that the noise is a sinusoidal signal with a known frequency and amplitude.

Solution on page 9

3 Properties of Systems

Systems can have various properties that define their behavior and characteristics. Some of the most common properties of systems are:

- Linearity: A system is linear if it satisfies the principles of superposition and homogeneity. This means that the output of the system for a linear combination of input signals is equal to the same linear combination of the outputs for each individual input signal.
- **Time-invariance:** A system is time-invariant if its behavior and characteristics do not change over time. This means that if the input signal is shifted in time, the output signal will also be shifted by the same amount.
- Causality: A system is causal if the output at any given time depends only on the current and past input values, and not on future input values. In other words, a causal system cannot anticipate future inputs.
- Memory: A system has memory if its output depends on past input values. A system without memory (also called memoryless) produces an output that depends only on the current input value.
- **Invertibility:** A system is invertible if there exists an inverse system that can recover the original input signal from the output signal. In other words, if you apply the inverse system to the output, you should get back the original input.
- Stability: A system is "BIBO" stable if bounded input signals produce bounded output signals. This means that if the input signal remains within a certain range, the output signal will also remain within a certain range (bounded input implies bounded output: BIBO).

Pop Quiz 3.1: Check your understanding!

Can you find a positive and a negative system example of each of the properties listed above? For example, for the memory property, the "positive" would be a system that has memory, and the "negative" would be a system that is memoryless.

Solution on page 9

A common type of system that we will end up studying is a causal stable LTI system. Causality is important because we will be studying time-domain signals. To ensure that signals don't blow up to ∞ , we require stability. Finally, LTI systems, or linear time-invariant systems, will be the central class of systems we will study due to their nice properties and because many useful practical signals can be modeled as LTI systems.

3.1Example: LTI system response

By using linearity and time-invariance, we can analyze the response of an LTI system to inputs and initial conditions. Consider the system with three different inputs: $x_1(t)$, $x_2(t)$, and $x_3(t)$. Define the output of the system for each of the signals as $y_1(t)$, $y_2(t)$, and $y_3(t)$ respectively. Let us assume that the system is also affected by its initial conditions $q_1(0)$ and $q_2(0)$.

We denote $y_i^{\text{ZS}}(t)$ as the zero-state output due to $x_i(t)$ with all initial conditions set to zero. Further, we denote $y_{q_1}(t)$ and $y_{q_2}(t)$ as the zero-input outputs produced by initial conditions in those two modes (with external inputs, x_i , set to zero).

Then, for any scalars $\alpha_1, \ldots, \alpha_5$,

$$x(t) = \alpha_1 x_1(t) + \alpha_2 x_2(t) + \alpha_3 x_3(t), \quad q(0) = \alpha_4 q_1(0) + \alpha_5 q_2(0)$$

$$\implies y(t) = \alpha_1 y_1^{\text{ZS}}(t) + \alpha_2 y_2^{\text{ZS}}(t) + \alpha_3 y_3^{\text{ZS}}(t) + \alpha_4 y_{q_1}(t) + \alpha_5 y_{q_2}(t).$$

Note that it is essential that y_i^{ZS} are computed with zero initial conditions otherwise the initial contributions would be double-counted. Likewise, y_{q_1}, y_{q_2} are computed with zero external input.

Further, if one of the inputs is shifted in time, say $x_3(t-t_0)$, then by the time-invariance property of the system, the output is also shifted by the same amount:

$$x(t) = \alpha_1 x_1(t) + \alpha_2 x_2(t) + \alpha_3 x_3(t - t_0), \quad q(0) = \alpha_4 q_1(0) + \alpha_5 q_2(0)$$

$$\implies y(t) = \alpha_1 y_1^{\text{ZS}}(t) + \alpha_2 y_2^{\text{ZS}}(t) + \alpha_3 y_3^{\text{ZS}}(t - t_0) + \alpha_4 y_{q_1}(t) + \alpha_5 y_{q_2}(t).$$

3.2 Example: LTI system properties to compute system response

Consider a continuous-time LTI system with input x(t) and output y(t). We have the following information about the system:

$$x_1(t) = \cos(t) \longrightarrow y_1(t) = \frac{1}{10}\cos(t) - \frac{3}{10}\sin(t),$$

$$x_2(t) = \cos(2t) \longrightarrow y_2(t) = \frac{1}{5}\cos(2t) + \frac{3}{10}\sin(2t),$$

$$x_3(t) = \delta(t) \longrightarrow y_3(t) = \delta(t),$$

Then, for a new input

$$x_{\text{new}}(t) = \cos(2t) - 10\sin(t+10),$$

our goal is to find $y_{\text{new}}(t)$ using only linearity and time invariance properties of the system.

Let us start by noting that since $\sin(t) = \cos(t - \frac{\pi}{2})$, we can use time-invariance of the system to write the output for $\sin(t)$ (say $y_4(t)$) as

$$y_4(t) = y_1 \left(t - \frac{\pi}{2}\right) = \frac{1}{10}\sin(t) + \frac{3}{10}\cos(t).$$

Then, the output to $\sin(t+10)$ is (say $y_5(t)$), again due to time-invariance is obtained by shifting $y_4(t)$ by 10:

$$y_5(t) = \frac{1}{10}\sin(t+10) + \frac{3}{10}\cos(t+10)$$

Putting it all together using the linearity of the system, we get the desired output $y_{\text{new}}(t)$:

$$y_{\text{new}}(t) = \frac{1}{5}\cos(2t) + \frac{3}{10}\sin(2t) - \sin(t+10) - 3\cos(t+10).$$

Finally, if the system has an initial condition at t = 0, superpose the corresponding measured responses:

$$y_{\text{new,IC}}(t) = y_{\text{new}}(t) + a \delta(t)$$
,

with $a \in \mathbb{R}$ set by the magnitude of the initial condition.

Pop Quiz Solutions

Pop Quiz 2.1: Solution(s)

If you define the system as a multiplication of the input signal with $\text{Re}\{Ae^{j\omega_0t}\}$, you will see that the output signal has a frequency that is shifted by ω_0 from the input signal.

Pop Quiz 2.2: Solution(s)

The 0.5 Hz modulation is closest to the original audio signal. The frequency modulation effect on audio can be described as a shift in the frequency spectrum of the original signal, resulting in a change in the perceived pitch and timbre of the sound, which ends up sounding like a reverberation.

Pop Quiz 2.3: Solution(s)

See Problem 1 on Homework 3.

Pop Quiz 3.1: Solution(s)

Here are some examples:

- Linearity: Positive Amplifier system $y(t) = \alpha x(t)$; Negative Clipping system y(t) = clip(x(t)) is nonlinear.
- Time-invariance: Positive Delay system $y(t) = x(t t_0)$; Negative Time-varying gain system y(t) = tx(t).
- Causality: Positive Delay system $y(t) = x(t t_0)$; Negative Anticipatory system $y(t) = x(t + t_0)$ for $t_0 > 0$.
- Memory: Positive Integrator system $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$; Negative Memoryless system $y(t) = x(t)^2$ only depends on the current instant of time.
- Invertibility: Positive Scaling system y(t) = 2x(t); Negative Clipping system y(t) = clip(x(t)) cannot be inverted as all values lead to the same clipped behavior after a certain threshold.
- Stability: Positive An RC circuit with decaying voltage: $y(t) = (1 e^{-t/\tau})x(t)$; Negative Unstable system (e.g., $y(t) = e^t x(t)$).

EE 102 Week 4, Lecture 1 (Fall 2025)

Instructor: Ayush Pandey

Date: September 22, 2025

Goals for today 1

To understand how to compute the output of a linear-time invariant system given any general input signal that is applied to the system.

2 Representing signals using impulses

We have discussed the three fundamental signals: the unit step, the unit impulse, and the complex exponential. What's common about all three of these functions? Why are these three signals so special? The answer is that these three signals can be used to represent any arbitrary signal (well, almost any!) — especially the signals that we come across in engineering practice. In the previous lectures, we have discussed how to write general signals only by using unit steps and complex exponentials. We have also briefly discussed how the definition of the unit impulse (in the sense of distributions), is in fact, a definition that says that each signal is made up of its samples at each time point and the impulse is the function that does the sampling. Let's try to break this down further with some examples.

Discrete-time step using impulse 2.1

To help you build intuition for this concept, consider a signal in discrete-time. For example, the unit step signal u[n] is defined as

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

which can be visualized as a train of unit impulses as shown in Figure 1. It is clear that it is a signal that is made up of many impulses (see pop quiz below).

Pop Quiz 2.1: Check your understanding!

In discrete-time, write the unit step signal u[n] as a sum of scaled and shifted unit impulses $\delta[n]$.

Solution on page 7

Figure 1: Unit step signal u[n] visualized as a train of unit impulses.

We see that the unit step can be viewed as many impulses (one impulse at each time point). This is also true for every other signal — the simplest way to break down a signal is to view it as a sample at each time point. The unit impulse helps us pick out the samples at each time point so that we can write the logic above formally. A visualization of this idea is shown in Figure 2.

2.2 Impulse as a sampler in continuous-time

Recall the sampling property of the impulse in continuous-time:

$$\int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt = x(t_0).$$

This property tells us that the impulse function $\delta(t-t_0)$ acts as a sampler that picks out the value of the signal x(t) at the specific time $t=t_0$. This means that we can represent any continuous-time signal x(t) as an integral of scaled and shifted impulses.

2.3 Example: Representing a sinusoidal signal using impulses

Let's work through this with a specific example of a sinusoidal signal: $x(t) = \sin(t)$. We can write $\sin(0)$ as

$$\sin(0) = \int_{-\infty}^{\infty} \sin(\tau) \delta(\tau - 0) d\tau.$$
 Page 55 of 94 2

Figure 2: Visualization of the running sum representation of the unit step signal u[n] as a sum of shifted impulses.

Similarly, we can write $\sin(t_1)$ for any arbitrary time t_1 as

$$\sin(t_1) = \int_{-\infty}^{\infty} \sin(\tau) \delta(\tau - t_1) d\tau.$$

This means that we can represent the entire signal $\sin(t)$ as an integral of scaled and shifted impulses:

$$\sin(t) = \int_{-\infty}^{\infty} \sin(\tau) \delta(\tau - t) d\tau.$$

Now, this might seem trivial or even circular! But the key insight here is that we are expressing the signal as a continuous superposition of impulses, each weighted by the value of the signal at that point in time.

General representation of signals using impulses 2.4

In general, any continuous-time signal x(t) can be represented using impulses. Let's visualize an arbitrary signal x(t) and see how it can be decomposed into impulses at each time point (see Figure 3).

Figure 3: Impulse samplers drawn as arrows from the time axis to the signal x(t) (arrowheads at the curve).

At each point, the impulse signal can be written by shifting the impulse to that point and scaling it by the value of the signal at that point. Therefore, we start with $\delta(t)$ as the impulse at t=0. To get the impulse at an arbitrary time $t=\tau$, we shift the impulse to that point, which gives us $\delta(t-\tau)$. To scale this impulse by the value of the signal at that point, we multiply it by $x(\tau)$, resulting in $x(\tau)\delta(t-\tau)$. So, we have

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau.$$

3 General output of an LTI system using impulse response

We finally get to the main goal of this lecture. Our goal is to compute the output of systems given any arbitrary input signal. This is very important because in practice, we often encounter signals that are not as simple as the unit step or the complex exponential. We need a systematic way to compute the output of a system for any input signal. Think about the following examples, where we might want to compute the output of a system:

• An audio signal (your recorded voice singing a song, for example) that needs to be filtered to remove noise. How would you represent your filtered signal mathematically (to be able to analyze and report back its properties to your music producer!)?

- For an integrated circuit, you might want to compute the output voltage of a circuit given an arbitrary input voltage signal (in real-world, the voltage signal is never a perfect sinusoid!).
- In communications, you might want to compute the output of a communication channel given an arbitrary input signal (for example, a modulated signal carrying information).

To achieve all of the above, we start by describing the impulse response of the system.

3.1 Impulse response of an LTI system

We define the impulse response of a system as the output of the system when the input is an impulse signal. In continuous-time, if the system input is $\delta(t)$, then we call the output of this system, the impulse response and denote it as h(t) (see Figure 4). Now, the question

Figure 4: Impulse response of a system: output h(t) when input is $\delta(t)$. What is the output for a general input x(t)?

is, what is the output of the system when the input is an arbitrary signal x(t)?

Pop Quiz 3.1: Check your understanding!

What is the output of the system for a shifted impulse input $\delta(t-\tau)$? Do you need additional assumptions about the system to answer this question?

Solution on page 7

Pop Quiz 3.2: Check your understanding!

What is the output of the system for a scaled impulse $k\delta(t)$? Do you need additional assumptions about the system to answer this question?

Solution on page 7

We start by writing the output of the system for a shifted and scaled impulse input. That is, if the input is $x(\tau)\delta(t-\tau)$, then the output will be $x(\tau)h(t-\tau)$ (only if, of course, the system is linear and time-invariant!). Now, we can write the output of the system for an arbitrary input x(t) (see Figure 5) by using the integral representation of the input signal using impulses: So, using the integral representation of the input signal, we can write the

$$x(\tau)\delta(t-\tau)$$
 System: H $\rightarrow x(\tau)h(t-\tau)$

Figure 5: Impulse response of a system: output h(t) when input is $\delta(t)$. What is the output for a general input x(t)?

output of the system as

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau.$$

This integral is called the convolution integral, and it is denoted by the symbol *. Therefore, we can write the output of the system as

$$y(t) = x(t) * h(t).$$

Pop Quiz 3.3: Check your understanding!

Write the discrete-time version of the convolution integral.

Solution on page 7

4 Virtual manipulatives to understand convolution

In the next lecture, we will use virtual manipulatives to understand convolution better. We will also discuss some properties of convolution and how to compute convolution using graphical methods (with many practical examples!).

Pop Quiz Solutions

Pop Quiz 2.1: Solution(s)

Notice that for any given value of n, the unit step u[n] is equal to 1 if $n \geq 0$ and 0 otherwise. This means that the unit step can be viewed as a sum of all the unit impulses $\delta[k]$ for k from $-\infty$ to n. So, we can write

$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

for all $n \in \mathbb{Z}$. To represent the signal in terms of the general impulse $\delta[n]$, we can write:

$$u[n] = \sum_{k=0}^{\infty} \delta[n-k].$$

You can see that for any given n, the sum will only include the impulses from k=0to k = n, which corresponds to the definition of the unit step.

Pop Quiz 3.1: Solution(s)

To answer this question, we need to assume that the system is time-invariant. This means that if the input is shifted in time, the output will also be shifted by the same amount. Therefore, if the input is $\delta(t-\tau)$, the output will be $h(t-\tau)$.

Pop Quiz 3.2: Solution(s)

To answer this question, we need to assume that the system is linear. This means that if the input is scaled by a constant factor, the output will also be scaled by the same factor. Therefore, if the input is $k\delta(t)$, the output will be kh(t).

Pop Quiz 3.3: Solution(s)

In discrete-time, the convolution integral becomes a sum. Therefore, we can write the output of the system as

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$

This sum is called the convolution sum, and it is also denoted by the symbol *.

EE 102 Week 5, Lecture 1 (Fall 2025)

Instructor: Ayush Pandey

Date: September 29, 2025

1 Goals

2 Review: LTI systems and convolutions

Recall that using the linearity and time-invariance of the system, we can define the output, y(t) of the system to any arbitrary input x(t) in terms of the impulse response of the system h(t) using the following integral:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau.$$
 (1)

This integral is called the convolution integral.

Pop Quiz 2.1: Check your understanding!

Using the convolution integral, show that you recover the impulse response h(t) when the input is $\delta(t)$. As a consequence, you will have proven that the convolution of a signal (in this case, h(t)) with an impulse is equal to the same signal.

Solution on page 8

3 Time-domain system response

In this section, we discuss the response of systems in time-domain. We focus our discussion on linear systems and their responses. The <u>overarching message about linear systems</u> is the following: if you *know* how the system responds under a given condition or an input, then you can construct the system output if any linear combination of the known conditions occur. In other words, you can use the isolated system response to obtain the output to a new input that is a linear combination of the inputs for which you have the data already. This is called the *principle of superposition* (note that the above is only an informal description).

We often find it useful to talk about two kinds of system outputs: (1) the "natural" or the

characterisitic output of the system when there are no forcing inputs, and (2) the output of the system to forced inputs. For linear systems, we can add these two outputs to get the full output of the system when both are present simultaneously.

3.1 Building intuition for a system's responses

Consider yourself — a student invested in learning new things — as a system. As you stroll past the lakes in and around the campus, you must have observed that the number of birds increases through late fall and winter and then thins from late spring into the hot, dry summer. Without anyone explicitly teaching you the ecology of bird movement, you self-learn and update your knowledge about bird movement as you observe these patterns and correlate them with the season. This is your natural response as a "system" that is invested in learning new things. Simultaneously, if you enroll in an ecology class as you expand your general education, you might be "forced" to learn (due to the pressure of exams!) that the Central Valley lies on the Pacific Flyway. Large flocks of geese, cranes, and ducks concentrate here from roughly October through February and by early summer many waterfowl have departed north to breeding grounds. This learning will be your response to the external input (the instruction in the ecology course). Your overall learning (if your learning progresses linearly) is the sum of your self-learned concepts and the concepts from the course. In this case, a nonlinear learner can have an advantage — one who accentuates their overall learning by synthesizing new (extra) knowledge by combining the natural (selflearning) and forced learning in innovative ways.

We conclude by writing the output of any general linear system as a combination of the natural/characteristic/initial condition response and the forced response. For a system with initial condition x_0 and an input u(t), we write the output y(t) as

$$y(t) = y_0(t) + y_{\text{forced}}(t)$$

where $y_0(t)$ is the initial condition response to initial condition x_0 . This is the characteristic response of the system without any forced inputs (the self-learning by seeing initial conditions, in the example above). Finally, $y_{\text{forced}}(t)$ is the forced response, that is, the output of the system when only the forced input u(t) is present in isolation (the forced course-based learning, in the example above).

3.2 Example: Analyzing an RC circuit using convolution

Consider a series RC circuit shown in the diagram 1. Assume that we have an input voltage $u_{in}(t)$ that can be applied to the circuit using a function generator and the capacitor can have an initial voltage v_0 volts at time t = 0. We denote the output voltage for the circuit as

Figure 1: An RC circuit with input voltage $v_{\rm in}(t)$ and output voltage $v_{\rm out}(t)$.

the voltage across the capacitor $v_{\text{out}}(t)$. A typical analysis of such circuits uses differential equations to describe and compute the system response (recall pre-requisite #3 where you solved a differential equation to solve this circuit). Here, we will use convolution to find the output of the system to various common types of inputs:

- an impulse input at t=0
- a step input voltage (modeling DC input)
- a sinusoidal voltage input (modeling AC input)
- a generalized complex exponential input signal

Pop Quiz 3.1: Check your understanding!

Before we jump into the application of convolution to the RC circuit example, it is important to ensure that the assumptions for the convolution integral to hold are still met. Your task is to state these assumptions (linearity and time-invariance) and prove that the RC circuit is linear and time-invariant. Additionally, also prove that the RC circuit is a causal system.

Solution on page 8

3.2.1An impulse input to an RC circuit

An impulse at t=0 is simply given by $v_{\rm in}(t)=v_0\delta(t)$, where v_0 is the magnitude of the impulse (the area under the curve of this impulse is v_0). That is,

$$\int_{-\infty}^{\infty} v_{\rm in}(t)dt = v_0.$$

From the pop quiz at the beginning of this lecture, you know that the output of the system (with zero initial conditions) to an impulse is just the impulse response. Since the system is linear (see pop quiz above), the output of the system to a scaled impulse $v_0\delta(t)$ will be equal to

$$y(t) = v_0 h(t)$$

where v_0 is the magnitude of the input impulse (the area under curve). To find the impulse response of the RC circuit, we will have to rely on our circuits knowledge — signal processing can only get us so far! From circuit theory, we know that an initial impulse on the circuit will cause a jump in the voltage and then an exponential decay (with a time constant of RC) through the resistor in the circuit. Full proof of this fact can be found in the solution of the pop-quiz below. We have the impulse response of an RC circuit (response to unit impulse)

$$h(t) = \frac{1}{RC}e^{-\frac{t}{RC}}u(t) \tag{4}$$

Therefore, the output to the scaled impulse is $y(t) = \frac{v_0}{RC}e^{-\frac{t}{RC}}u(t)$.

Pop Quiz 3.2: Check your understanding!

Prove that the impulse response of an RC circuit is given by equation (4).

Solution on page 9

3.2.2 A step input to an RC circuit

Let's compute the forced input response of the RC circuit for a scaled step input that models a DC voltage applied to the circuit $x(t) = v_{DC}u(t)$. By applying the convolution integral, we can compute the system output y(t) as

$$y(t) = \int_{-\infty}^{\infty} v_{\rm DC} u(\tau) h(t-\tau) d\tau$$

which can be evaluated as

$$y(t) = v_{\rm DC} \int_0^t h(t - \tau) d\tau$$

since the step function is zero for $\tau < 0$ and $h(t - \tau)$ is zero for $\tau > t$ (causality of the real-life RC circuit's voltage response). To further understand this, you can see that the step input of the DC voltage is only applied at time t=0. So, anything for negative time is 0 (important note: we must account for this by multiplying a u(t) to the final output expression!). Similarly, you will see that the impulse response of the system will be zero for any negative time. Therefore, we can limit the integration limits to 0 and t. Next, we can substitute the impulse response from equation (4) to get

$$y(t) = \frac{v_{\rm DC}}{RC} \int_0^t e^{-\frac{t-\tau}{RC}} d\tau.$$

Evaluating this integral, we get

$$y(t) = v_{\rm DC} \left(1 - e^{-\frac{t}{RC}} \right) u(t). \tag{5}$$

This is the forced response of the RC circuit to a step input voltage.

Pop Quiz 3.3: Check your understanding!

Verify the above equation from your circuit theory notes. Does it match up with the the output of an RC circuit when a DC voltage is applied as input?

Solution on page 10

3.2.3 A sinusoidal input to an RC circuit

We can compute the forced response of the RC circuit to a sinusoidal input voltage x(t) = $v_{\rm AC}\cos(\omega t)u(t)$. Using the convolution integral, we can write

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau.$$

Substituting the expressions for x(t) and h(t), we get

$$y(t) = \int_0^t v_{\rm AC} \cos(\omega \tau) \frac{1}{RC} e^{-\frac{t-\tau}{RC}} d\tau.$$
 (6)

Evaluating this integral will give us the forced response of the RC circuit to the sinusoidal input. This is same as the pre-requisite #3 problem set! As you might remember, integrating the above requires a bit of effort as it is an integration by parts. Keep reading this section to learn a much easier way to do the same.

3.2.4A generalized complex exponential signal input to an RC circuit

For a complex exponential signal, note that we are aiming for analysis of a broader variety of possible real signals. As we have seen before, complex exponentials can be used to define sinusoids, exponentials, and their combinations. By isolating the real and imaginary parts as needed, we can get a large class of signals as a subset of the general complex exponential signal $x(t) = Ae^{st}$ where A and s are complex numbers. We can apply the convolution integral (1) to compute the output of the signal y(t) to this input. As expected, the output will also be a complex signal and its special cases will lead to the computation of the output of the system for the input signal represented in that special case. For zero initial conditions, we write the convolution equation for this input as

$$y(t) = \int_0^t A e^{s\tau} \frac{1}{RC} e^{-\frac{t-\tau}{RC}} d\tau = \frac{A}{RC} e^{-t/(RC)} \int_0^t e^{\left(s + \frac{1}{RC}\right)\tau} d\tau.$$

Evaluating the integral,

$$y(t) = \frac{A}{RC} e^{-t/(RC)} \frac{e^{\left(s + \frac{1}{RC}\right)t} - 1}{s + \frac{1}{RC}} = A \frac{e^{st} - e^{-t/(RC)}}{1 + sRC} u(t).$$

By further manipulating the above, we can see that it is made up of two parts:

$$y(t) = Ae^{st} \frac{1}{1 + sRC} u(t) - A \frac{e^{-t/(RC)}}{1 + sRC} u(t).$$
 (7)

This is an interesting result due to many properties that we can observe from the output:

Observation 1: The system is linear. We observe the output that the output has the same "shape" as the input. Because the system is linear, the complex exponential input Ae^{st} reappears in the output multiplied by a constant factor $\frac{1}{1+sRC}$. That first term,

$$y_{\text{forced}}(t) = A \frac{e^{st}}{1 + sRC} u(t),$$

is the forced (particular) response. This is what you would derive by integrating the differential equation by parts! Here, we did the same but in two lines of algebra and a very simple integration instead — the power of exponentials!

Observation 2: The transient term decays to 0. The second term,

$$y_{\text{transient}}(t) = -A \frac{e^{-t/(RC)}}{1 + sRC} u(t),$$

is the transient (natural) response. It always decays like $e^{-t/(RC)}$, so for large t the output approaches the forced response, the transient part will disappear to 0 as $t \to \infty$.

Observation 3: As promised, the complex exponential is useful because it specializes to many other simple cases we derived individually above.

Special case 1: Unit step. Note that by setting s = 0, $A = v_{DC}$, we get

$$y(t) = v_{\rm DC} \big(1 - e^{-t/(RC)}\big) u(t),$$
 Page 66 of 94

which matches the step-response derived above in equation (5).

Special case 2: Real exponential. Although we did not derive this earlier, we can now easily compute the output of the RC circuit to an exponential input $x(t) = Ae^{\alpha t}$. For this, set $s = \alpha \in \mathbb{R}$, and choose A to be a real in the general form. Then, we have

$$y(t) = A \frac{e^{\alpha t} - e^{-t/(RC)}}{1 + \alpha RC} u(t).$$

Pop Quiz 3.4: Check your understanding!

Remind yourself and derive the sine signal from the complex exponential: Prove that a real input signal $x(t) = A_{AC} \sin(\omega t)$ can be obtained from the general complex exponential $x_c(t) = Ae^{st}$ by taking an appropriate real (or imaginary) part. In particular, show that x(t) is the imaginary part of the general complex exponential for a suitable choice of A and s.

Solution on page 10

Special case 3: Sinusoidal input. With $s = j\omega$, A real (see pop quiz above), take the real part of

$$y(t) = A \frac{e^{j\omega t} - e^{-t/(RC)}}{1 + j\omega RC} u(t).$$

For large t, the transient dies out and the output is a sinusoid with scaled amplitude and a phase lag, consistent with the earlier sinusoidal case (see equation (6)). In fact, note that we did not derive the output in closed form earlier (due to fear of the ugly integration by parts!). Now we have the answer to the same input but obtained in a much easier way.

Observation 4: If the input grows (Re $\{s\} > 0$), the forced term grows accordingly; the RC remains stable (its transient decays), but a growing input produces a growing output.

Pop Quiz 3.5: Check your understanding!

Is the RC circuit bounded input bounded output stable?

Solution on page 10

Next class 4

In the next class, we will talk about an image processing example using convolution and will visualize convolution further.

Pop Quiz Solutions

Pop Quiz 2.1: Solution(s)

Substitute $x(t) = \delta(t)$ in equation (1) to write

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} \delta(\tau)h(t - \tau)d\tau.$$

Since $\delta(\tau)$ is non-zero only when $\tau = 0$, we have

$$y(t) = h(t) \int_{-\infty}^{\infty} \delta(\tau) d\tau$$

with h(t) out of the integral since it does not depend on τ (the integration variable). Notice that the integral is equal to 1 (definition of the impulse signal). So, we get the desired result y(t) = h(t). Additionally, notice that $\delta(t) * x(t) = x(t)$ — holds true in general for any signal.

Pop Quiz 3.1: Solution(s)

Hints:

For linearity, prove that the principle of superposition holds for the system. Assume that for inputs u_1 and u_2 , the outputs are y_1 and y_2 . Then, write the system description using KVL (forward refer to the next pop quiz for a simple derivation of the following):

$$\dot{y}_1(t) + \frac{1}{RC}y_1(t) = \frac{1}{RC}u_1(t),\tag{8}$$

$$\dot{y}_2(t) + \frac{1}{RC}y_2(t) = \frac{1}{RC}u_2(t), \tag{9}$$

Now, for an input $k_1u_1+k_2u_2$, find the output y^* and show that it is equal to $k_1y_1+k_2y_2$ by using equations (8) and (9).

For time-invariance, consider one of the input-output pairs, say equation (8) and a time-shifted input $u_1(t-t_1)$. Prove that the output to the time-shifted input is the same as applying time-shift in the original output y_1 .

For causality, note that the impulse response (voltage output to an impulse) is zero for all negative time in a RC circuit. You will need to closed-form expression for the impulse response to show this formally.

Pop Quiz 3.2: Solution(s)

Start by writing the KVL for the series RC circuit. The input is the applied source voltage $v_{\rm in}(t)$ and the output is the capacitor voltage $v_{\rm out}(t)$. KVL gives

$$v_{\rm in}(t) = v_R(t) + v_C(t) = R i(t) + v_{\rm out}(t),$$

where i(t) is the series current and

$$v_{\text{out}}(t) = \frac{1}{C} \int i(t) dt,$$

with the constant of integration set by the initial capacitor voltage. Differentiating v_{out} yields $i(t) = C \dot{v}_{\text{out}}(t)$. Substituting into KVL gives a first-order ODE in one variable:

$$\dot{v}_{\mathrm{out}}(t) + \frac{1}{RC} v_{\mathrm{out}}(t) = \frac{1}{RC} v_{\mathrm{in}}(t).$$

The homogeneous (natural) solution for arbitrary initial condition $v_{\text{out}}(0^-) = v_0$ is

$$v_{\text{out}}(t) = v_0 e^{-t/(RC)}$$
.

This is the *natural response* of the system due to the initial capacitor voltage.

To compute the *impulse response*, drive the circuit with a unit impulse input and set zero initial voltage:

$$v_{\rm in}(t) = \delta(t), \qquad v_{\rm out}(0^-) = 0.$$

Using the ODE above,

$$\dot{v}_{\rm out}(t) + \frac{1}{RC} \, v_{\rm out}(t) = \frac{1}{RC} \, \delta(t). \label{eq:vout}$$

Using the integrating factor method, you can write

$$\frac{d}{dt} \left(e^{t/(RC)} v_{\text{out}}(t) \right) = \frac{1}{RC} e^{t/(RC)} \delta(t).$$

Since the system is causal, $v_{\text{out}}(t) = 0$ for t < 0 and the initial voltage is zero, so $v_{\text{out}}(0^-) = 0$. Integrating from 0^- to t > 0 gives

$$e^{t/(RC)} v_{\text{out}}(t) - 0 = \frac{1}{RC} \int_{0^{-}}^{t} e^{\tau/(RC)} \delta(\tau) d\tau = \frac{1}{RC}.$$

Hence, for t > 0, the impulse response is

$$h(t) = v_{\text{out}}(t) = \frac{1}{RC} e^{-t/(RC)}.$$

For a general definition of the impulse response that holds for all time, we can include causality using the unit step u(t) function as

$$h(t) = \frac{1}{RC} e^{-t/(RC)} u(t).$$

Note that the units of the impulse response are 1/seconds so that the convolution (h * x)(t) has units of volts (the units of output signal — $v_{\text{out}}(t)$).

Pop Quiz 3.3: Solution(s)

You should work on finding your circuit theory (ENGR/EE 065) notes and make sure that you understand why the two output expressions match.

Pop Quiz 3.4: Solution(s)

For $s = j\omega$ and $A = A_{AC}$ and taking the imaginary part, we get

$$\operatorname{Im}\left\{A_{\mathrm{AC}}e^{j\omega t}\right\} = \operatorname{Im}\left\{A_{\mathrm{AC}}\cos(\omega t) + jA_{\mathrm{AC}}\sin(\omega t)\right\} = A_{\mathrm{AC}}\sin(\omega t).$$

where we used the Euler's identity $e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$ to expand the complex exponential. This is not the only way to obtain the sine function from the generalized complex exponential. An alternative is to set $s = j\omega$ and $A = -jA_{AC}$ and take the real part:

$$\operatorname{Re}\{(-jA_{AC})e^{j\omega t}\} = \operatorname{Re}\{-jA_{AC}\cos(\omega t) - j^2A_{AC}\sin(\omega t)\}\$$
$$= \operatorname{Re}\{-jA_{AC}\cos(\omega t) + A_{AC}\sin(\omega t)\}.$$

The first term is purely imaginary, so its real part is 0, and the second term is real. Hence

$$\operatorname{Re}\left\{ (-jA_{AC})e^{j\omega t}\right\} = A_{AC}\sin(\omega t).$$

Pop Quiz 3.5: Solution(s)

For any bounded input x(t), we have |x(t)| < M for some finite M and all time t. The output is given by the convolution integral

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau.$$

Since $|x(\tau)| < M$, we can write

$$|y(t)| \le \int_{-\infty}^{\infty} |x(\tau)| |h(t-\tau)| d\tau < M \int_{-\infty}^{\infty} |h(t-\tau)| d\tau.$$

Since the impulse response of the RC circuit is given by equation (4), we can evaluate the integral to get

$$|y(t)| < M \int_0^\infty \frac{1}{RC} e^{-\frac{t-\tau}{RC}} d\tau = M.$$

Therefore, the output is bounded by M for all time t. Hence, the RC circuit is bounded input bounded output stable.

An alternative way is to start from equation (7) to show in a single step that y(t) is bounded as long as the input Ae^{st} is bounded.

EE 102 Week 5, Lecture 2 (Fall 2025)

Instructor: Ayush Pandey

Date: September 29, 2025

Goals 1

The main goal of this lecture is to learn how to visualize the process of convolution using graphs.

2 Review: Convolution definition

Recall that in continuous-time, the output y(t) of an LTI system with input x(t) and impulse response h(t) is given by the convolution integral:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau) d\tau.$$

Pop Quiz 2.1: Check your understanding!

Prove that convolution is commutative, i.e., show that x(t) * h(t) = h(t) * x(t). Solution on page 15

3 Discrete time convolution

Similar to the derivation for continuous-time convolution, we can derive the discrete-time convolution sum. Consider a discrete-time LTI system with input x[n], output y[n], and impulse response h[n]. Note that for a discrete-time impulse $\delta[n]$, the output is h[n]. Recall the sifting property of the discrete-time impulse:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k].$$

Using linearity and time-invariance of the system, we can write the output as

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$

This is the discrete-time convolution sum, denoted by y[n] = x[n] * h[n].

4 Example: A discrete-time echo system

An audio receiver system produces an echo. When excited by a unit impulse, it responds with an echo of magnitude 1 at n=0 that decays exponentially as α^n for $\alpha \in (0,1)$ until n=5 (that is, for six seconds in total). You may assume that $\alpha=\frac{1}{2}$ for numerical parts. Answer the following:

- (A) Sketch the impulse response h[n] and label $h[0], h[1], \ldots, h[5]$.
- (B) We want to understand the kind of echo that will be produced when the audio receiver system is excited by a pulse input of unit amplitude lasting three seconds, starting at n=0 and staying at unit amplitude until n=3. Find y[n] for this input using convolution and show your steps.

The impulse response of the system is

$$h[n] = \begin{cases} \alpha^n, & 0 \le n \le 5, \\ 0, & \text{otherwise,} \end{cases}$$

The input is a unit amplitude tone that starts at n=0 and lasts three seconds. So, we can write the pulse signal for the input x[n] as

$$x[n] = u[n] - u[n-3] = \begin{cases} 1, & n = 0, 1, 2, \\ 0, & \text{otherwise.} \end{cases}$$

Now, we can compute the output y[n] using convolution:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k],$$

and give y[n] explicitly for all n where it is nonzero. It is important that we are careful about all values of n for which y[n] is nonzero. Echos can last longer than the original sound!

4.1 Convolution computation (without visualizing)

Let us compute the output for various values of n using the convolution sum directly:

So, we find that the output y[n] is nonzero for n = 0, 1, ..., 8. In general, the output of convolution in discrete-time is equal to N + M - 1 where N and M are the lengths of the two signals being convolved. Here, the length of x[n] is 3 and the length of h[n] is 6, so the length of y[n] is 3 + 6 - 1 = 8. **This is important!**

4.2 Visualizing convolution (with graphs)

Now, we will solve this by using illustrations of convolution. For each index $n=0,1,\ldots$, draw three plots in a row for each n:

$$x[k]$$
, $h[n-k]$ (as a function of k), and the resulting single sample $y[n]$,

so that the overlap of x[k] and h[n-k] and the accumulation giving y[n] are visually clear.

Let's start by drawing h[n] for $\alpha = \frac{1}{2}$:

4.3 Idea: Flip 'h' and slide through 'x'

Note the x-axis labels carefully! We have x[k] and h[k] because we need these for the convolution sum. We are interested in finding y[n] for each value of n. For each n, we have a x[k] and h[k] that we use for all values of k to solve the convolution sum. Notice that h[k]

Figure 1: Impulse response h[n] for $\alpha = \frac{1}{2}$.

is not directly used in the convolution sum, instead we have h[n-k]. This means that for each value of n, we need to flip h[k] around the vertical axis and then shift it by n units to get h[n-k].

For n = 0, the convolution is visualized in Figure 2.

Then, for n = 1, the convolution is visualized in Figure 3 and for all other values of n see Figures 4, 5, 6, 7, 8, 9, 10, and 11.

Figure 2: Convolution for n = 0.

Figure 3: Convolution for n = 1.

Figure 4: Convolution for n = 2.

Figure 5: Convolution for n = 3.

Figure 6: Convolution for n = 4.

Figure 7: Convolution for n = 5.

Figure 8: Convolution for n = 6.

Figure 9: Convolution for n = 7.

Figure 10: Convolution for n = 8.

Figure 11: Convolution for n = 9.

Pop Quiz Solutions

Pop Quiz 2.1: Solution(s)

Write the convolution integral for left-hand side as

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau) d\tau.$$

Now, let $s=t-\tau$. Then, $\tau=t-s$ and $d\tau=-ds$. When τ goes from $-\infty$ to ∞ , s goes from ∞ to $-\infty$. Thus, we can rewrite the integral as

$$x(t) * h(t) = \int_{-\infty}^{-\infty} x(t-s)h(s)(-ds) = \int_{-\infty}^{\infty} h(s)x(t-s) ds.$$

This is exactly the convolution integral for h(t) * x(t). Hence, convolution is commutative.

Visualize convolution

Graphically solve for n = -1

(Solved) Graphically show for n = 0

$$y[0] = \sum_{k} x[k] h[0-k] = x[0] h[0] + x[1] h[-1] + x[2] h[-2] = 1 + 0 + 0 = 1.$$

Graphically solve for n = 1

Graphically solve for n=2

Graphically solve for n=3

Graphically solve for n = 4

Graphically solve for n = 5

Graphically solve for n=6

Graphically solve for n = 7

EE 102 Week 6, Lecture 1 (Fall 2025)

Instructor: Ayush Pandey

Date: October 6, 2025

1 Goals

The main goal of this lecture is to write the Fourier series representation of periodic signals. To motivate this, we will show how sinusoidal signals are eigenfunctions of LTI systems (that is, when a sinusoid is input to an LTI system, the output is also a sinusoid of the same frequency). This will lead us to the Fourier series representation of periodic signals.

2 Recap: The convolution integral

Recall that for a continuous-time LTI system with impulse response h(t), the output y(t) to an input x(t) is given by the convolution integral:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau.$$

In discrete-time, we have an equivalent expression for the convolution sum. Here, for an input x[n] and impulse response h[n], the output y[n] is given by:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$

Pop Quiz 2.1: Check your understanding!

What is the maximum non-zero value of y[n] if the length of x[n] is M and the length of h[n] is N? Note that in discrete-time for finite-length signals, the length of a signal is defined as the number of samples in the signal for which the signal is non-zero.

Solution on page 6

3 The importance of sinusoids

Historically, sinusoids have been very important in engineering and science. This is because many natural phenomena are periodic (for example, sound waves, light waves, etc.). In engineering, the motion of rotation objects (for example, wheels, gears, etc.), the alternating current (AC) in power systems, and the oscillations in electrical circuits are all periodic. Therefore, we focus our attention to this most fundamental class of periodic signals: sinusoids.

In defining convolution, the key idea was to express any given signal as a linear combination of shifted impulses. Similarly, we pose the following question: can we express any given periodic signal as a linear combination of sinusoids? The answer is yes, as you will see in the next few lectures.

3.1 Sinusoids are a special case of the general complex exponential

Recall that the general complex exponential is given by:

$$x_q(t) = A_z e^{st},$$

where A_z and s are complex numbers. We can write A_z and s in terms of their real and imaginary parts as:

$$A_z = a_1 + jb_1, \quad s = \sigma + j\omega,$$

where a_1, b_1, σ, ω are real numbers. Substituting these into the expression for x(t), we have:

$$x(t) = (a_1 + jb_1)e^{(\sigma + j\omega)t} = (a_1 + jb_1)e^{\sigma t}e^{j\omega t}.$$

The general complex exponential can be used to represent a wide variety of signals by choosing special case values of A_z and s and then taking the real or the imaginary part, as needed.

Pop Quiz 3.1: Check your understanding!

For what values of A_z and s do we get a sinusoidal signal $x(t) = A\sin(\omega t)$? Solution on page 6

Note that the sinusoidal signal is periodic with period $T_0 = \frac{2\pi}{\omega}$. A simple way to denote a sinusoidal signal is to use the complex exponential notation: $Ae^{j\omega t}$, and then take the real or imaginary part as needed. With the exponential function, we avoid the possibility of integration by parts (and we will be able to see more advantages next).

4 The eigenfunction of LTI systems

Let us consider an LTI system with impulse response h(t) and an input $x(t) = Ae^{j\omega t}$. The output of the system is given by the convolution integral:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

by commutativity of convolution, we can also write:

$$\begin{split} &= \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau \\ &= \int_{-\infty}^{\infty} h(\tau) A e^{j\omega(t-\tau)} d\tau \\ &= A e^{j\omega t} \left[\int_{-\infty}^{\infty} h(\tau) e^{-j\omega \tau} d\tau \right] \end{split}$$

This is a very interesting result!

Observation 1 The input appears exactly as it is in the output, except for a scaling factor that is within the square brackets. This means that when a complex exponential is input to an LTI system, the output is also a complex exponential signal.

A word of caution: the output above is only valid if the integral converges. This is true for physically realizable systems (for example, systems with stable impulse responses). More concretely, we need the impulse response to be absolutely integrable, that is,

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

for the integral to converge. Then, the system is said to be BIBO (bounded-input bounded-output) stable since a bounded input will produce a bounded output (this is true, in general for any LTI system with absolutely integrable impulse response).

Observation 2 For a general complex exponential input, the above derivation still holds:

$$y(t) = Ae^{st} \left[\int_{-\infty}^{\infty} h(\tau)e^{-s\tau} d\tau \right].$$

In the equation above, you might recognize the term in the square brackets as the Laplace transform of the impulse response h(t) evaluated at s! So, the output of the system is the input scaled by the Laplace transform of the impulse response!

4.1 The meaning of the word "eigen"

Recall the definition of eigenvalues and eigenvectors from linear algebra. For a square matrix A, if there exists a non-zero vector v such that

$$Av = \lambda v$$
,

where λ is a scalar, then v is called an eigenvector of A and λ is called the corresponding eigenvalue. The word "eigen" is a German word that means "own" or "self", or "characteristic". In the case of vectors, the eigenvectors are the special vectors that, when the matrix transformation A is applied to them, the output remains in the same direction as v, just scaled by λ . So, they remain their "own self" even after the matrix transformation is applied to them. Now, since v is a vector, it is called an eigenvector.

For our discussion on signals and systems, we do not have vectors. Instead, we have signals x(t), y(t), and so on which are functions of time. So, we define a new term called an eigenfunction.

The meaning of eigenfunction is similar to that of eigenvectors. It is that special function that, when the system transformation is applied to it, the output remains the same function (up to a scaling factor). In our case, the complex exponential is that special function. When it is input to an LTI system, the output remains a complex exponential of the same frequency (up to a scaling factor). So, we say that complex exponentials are eigenfunctions of LTI systems.

5 Linear combinations of sinusoids

Since the system is linear, we can write the following for various combinations of inputs $a_i e^{s_i t}$:

if
$$x_1(t) = a_1 e^{s_1 t}$$
, then $y_1(t) = a_1 e^{s_1 t} H(s_1)$,
if $x_2(t) = a_2 e^{s_2 t}$, then $y_2(t) = a_2 e^{s_2 t} H(s_2)$,
 \vdots
if $x_n(t) = a_n e^{s_n t}$, then $y_n(t) = a_n e^{s_n t} H(s_n)$.

By linearity, if the input is a linear combination of the above inputs, that is,

$$x(t) = \sum_{k=1}^{n} a_k e^{s_k t},\tag{1}$$

then the output is given by

$$y(t) = \sum_{k=1}^{n} a_k e^{s_k t} H(s_k).$$

This is a very powerful result! It means that if we can express any given signal as a linear combination of complex exponentials, then we can easily find the output of the system to that input.

Now what remains is to write the equation (1) for any given arbitrary signal. That is, can we represent any signal x(t) as a linear combination of complex exponentials? This is where Fourier series comes in as it provides us a way to compute the coefficients a_k and the exponents s_k for periodic signals. We will see this in the next lecture.

Recommended Practice Problems 6

To practice the concepts learned in this lecture, here are the recommended examples and problems that you should practice:

- 1. Example 3.1 in Oppenheim and Willsky Signals and Systems textbook (2nd edition): the problem with $x(t) = e^{j2t}$ and the system description given by y(t) = x(t-3)
- 2. Problems 3.17 and 3.18 in Oppenheim and Willsky Signals and Systems textbook (2nd edition).
- 3. A challenging (but similar to midterm 1) problem: Problem 3.13 in Oppenheim and Willsky Signals and Systems textbook (2nd edition) on computing the output of a periodic signal with period $T_0 = 8$ and impulse response $H(j\omega)$ given to you.

Pop Quiz Solutions

Pop Quiz 2.1: Solution(s)

The length of y[n] is M+N-1. To see this, use the graphical intuition of convolution. We flip the impulse response and slide it (h[n-k]) as n varies, across the input signal x[k]. Mathematically, the flip is making h[k] to h[-k] and the slide is making it h[n-k] (the shift to the right by n, for positive n). The first non-zero value of y[n] occurs when the last (right most) non-zero sample of h[n-k] aligns with the first non-zero sample of x[k] (since h was flipped). The last non-zero value of y[n] occurs when the left-most non-zero sample of h[n-k] aligns with the last non-zero sample of x[k]. So, the total number of non-zero samples in y[n] is the sum of the lengths of x[n] and h[n] minus 1 (since the two end points are counted twice).

Pop Quiz 3.1: Solution(s)

For $A_z = A$ (a real number) and $s = j\omega$, that is, $\sigma = 0$, we have

$$x(t) = Ae^{j\omega t} = A\cos(\omega t) + jA\sin(\omega t).$$

Taking the imaginary part, we get $x(t) = \text{Im}(x_q(t)) = A\sin(\omega t)$.