MIT OpenCourseWare http://ocw.mit.edu

6.094 Introduction to MATLAB® January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.094 Introduction to Programming in MATLAB®

Lecture 5: Simulink®

Sourav Dey Danilo Šćepanović Ankit Patel Patrick Ho

IAP 2009

What is Simulink?

- A model-based equation solver
- Some analysis packages (ANSYS, Multisim) have built in equations modeling complex engineering problems.
 - ➤ Save lots of time
 - ➤ Can only be used for tackling specific problems
- Simulink lets you build a GUI-based model and simulates the result.
 - Unlimited complexity (constrained by runtime and memory)
 - ➤ Adaptable for any field
 - > Downside? You have to do the modeling work

Getting Started

- Create a new file
- Examine the Simulink Library Browser
 - ➤ Click on a library: "Sources"
 - ➤ Drag a block into Simulink: "Constant"
 - Visualize the block by going into "Sinks"
 - ➤ Drag a "Scope" into Simulink

Connections

Click on the carat/arrow on the right of the constant box

Drag the line to the scope

- ➤ You'll get a hint saying you can quickly connect blocks by hitting Ctrl
- Connections between lines represent signals
- Click the play button
- Double click on the scope.
 - ➤ This will open up a chart of the variable over the simulation time

Simulink Math

- Everything is visual in Simulink!
- Click on the library Continuous
 - Drag the integrator block between the constant and the scope
- Play and click on scope.
- What happens?
 - ➤ Simulink has a built in ODE solver
 - The equation that represents your model is solved by Simulink
 - \triangleright We've represented $\int_{a}^{b} dx$

Behind the curtain

 Go to "Simulation"->"Configuration Parameters" at the top menu

Courtesy of The MathWorks, Inc. Used with permission.

So what's going on?

- The toolboxes Simulink provides you are full of modeling tools
- By selecting components that correspond to your model, you can design a simulation

Toolboxes

- Math
 - > Takes the signal and performs a math operation
 - » Add, subtract, round, multiply, gain, angle
- Continuous
 - > Adds differential equations to the system
 - » Integrals, Derivatives, Transfer Functions,
 State Space
- Discontinuities
 - ➤ Adds nonlinearities to your system
- Discrete
 - ➤ Simulates discrete difference equations
 - ➤ Useful for digital systems

Building systems

Sources

```
» Step input, white noise, custom input, sine
wave, ramp input,

> Provides input to your system
```

Sinks

```
» Scope: Outputs to plot
» simout: Outputs to a MATLAB vector on workspace
» MATLAB mat file
```

Modifying Blocks

 Right click on the block, select the "Parameters" item corresponding to the item type

Transfer Function:

» Numerator on

first row

» Denominator on
second row

Summing Junction:

» List of signs

determines

inputs to

junction

Not shown:

Sampling time row

Courtesy of The MathWorks, Inc. Used with permission.

Modifying Scopes

- Within the scope:
 - » Autoscale fits the axes
 to the curve automatically
 » Axes properties lets you
 customize the axes
- Changing the number of axes:
 - » Left click on

Courtesy of The MathWorks, Inc. Used with permission.

» Change the number of axes field

icon

Courtesy of The MathWorks, Inc. Used with permission.

General Da	ta history	Tip: 1	try right clicking on a
Axes			
Number of	axes: 2		floating scope
Time range:	auto		
Tick labels:	bottom axis	s only	
Sampling			
Decimation	▼ 1		10

Courtesy of The MathWorks, Inc. Used with permission.

First System

- Drag a summing junction between the constant and integrator
- Change the signs to |+-

Creating Subsystems

- Drag a box around the parts of the subsystem
 - ➤ Summing Junction
 - > Integrator
- Right click and select "create subsystem"
- Double click the subsystem:
 - ➤ The parts are now inside
- What's the system do when you run it?

Example Systems

ODE

$$d^{3}y/dt^{3} + a*d^{2}y/dt^{2} +$$

b* dy/dt + c*y = F

Integrator Integrator1 Integrator2 d*3y/dt*3 - - X Scope d^3y/dt^3 Courtesy of The MathWorks, Inc. Used with permission.

Classical Control System

Example: Nervous System

- Neural circuits in animals often exhibit oscillatory behavior
- Use Simulink to model one behavior of this type:
 - > Locomotion
 - Limbs go "Left-right, left-right, left-right"
- Locomotive behaviors are generated by "central pattern generators," which oscillate on their own naturally
- When connected to an appendage, the central pattern generator will adapt its frequency and move the appendage. Open "RIOCPGDemo.mdl"
- Model based on Iwasaki, T., Zheng, M. (2006a). Sensory feedback mechanism underlying entrainment of central pattern generator to mechanical resonance. *Biological Cybernetics*, 94(4), 245-261

Central Pattern Generator Model

Playing with the model

- Look at scopes
 - ➤ What are the output signals?
- Delete signals
 - Especially the signal after the feedback gain
- Change gains
 - ➤ Muscular actuator gains
 - ➤ Switch feedback gain from negative to positive
- Look inside subsystems
 - ➤ What's inside the CPG?
 - ➤ What's inside the neuron firing dynamics?

Toolboxes

- Simulink has many advanced toolboxes
 - ➤ Control Systems
 - ➤ Neural Networks
 - ➤ Signal Processing
 - ➤ SimMechanics
 - ➤ Virtual Reality
 - > Real Time
- Hopefully you'll get to use some of these powerful tools!