

# Winning Space Race with Data Science

Adrian Fuentes Barrios 21/03/2023



#### **Outline**

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

### **Executive Summary**

- Summary of methodologies
  - Data Collection through API
  - Data Collection with Web Scraping
  - Data Wrangling
  - Exploratory Data Analysis with SQL
  - Exploratory Data Analysis with Data Visualization
  - Interactive Visual Analytics with Folium
  - Machine Learning Prediction
- Summary of all results
  - Exploratory Data Analysis result
  - Interactive analytics in screenshots
  - Predictive Analytics result

#### Introduction

#### Project background and context

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. This goal of the project is to create a machine learning pipeline to predict if the first stage will land successfully.

#### Problems you want to find answers

- What factors determine if the rocket will land successfully?
- The interaction amongst various features that determine the success rate of a successful landing.
- What operating conditions needs to be in place to ensure a successful landing program.



# Methodology

#### **Executive Summary**

- Data collection methodology:
  - Data was collected using SpaceX API and web scraping from Wikipedia.
- Perform data wrangling
  - Collected data was enriched by creating a landing outcome label based on outcome data after summarizing and analyzing features
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - Data that was collected until this step were normalized, divided in training and test data sets and evaluated by four different classification models, being the accuracy of each model evaluated using different combinations of parameters.

#### **Data Collection**

#### The data was collected using various methods

- Data collection was done using get request to the SpaceX API.
- Next, we decoded the response content as a Json using .json() function call and turn it into a pandas dataframe using .json\_normalize().
- We then cleaned the data, checked for missing values and fill in missing values where necessary.
- In addition, we performed web scraping from Wikipedia for Falcon 9 launch records with BeautifulSoup.
- The objective was to extract the launch records as HTML table, parse the table and convert it to a pandas dataframe for future analysis.

### Data Collection – SpaceX API

- SpaceX offers a public API from where data can be obtained and then used;
- This API was used according to the flowchart beside and then data is persisted.
- Source code:

   https://github.com/adrianfb94/SpaceX/
   blob/main/1 jupyter-labs-spacex-data-collection-api.ipynb



### **Data Collection - Scraping**

- Data from SpaceX launches can also be obtained from Wikipedia;
- Data are downloaded from Wikipedia according to the flowchart and then persisted.
- Source code:

https://github.com/adrianfb94/SpaceX/blob/main/2\_jupyter-labs-webscraping.ipynb



### **Data Wrangling**

- Initially some Exploratory Data Analysis (EDA) was performed on the dataset.
- Then the summary launches per site, occurrences of each orbit and occurrences of mission outcome per orbit type were calculated.
- Finally, the landing outcome label was created from Outcome column.



• Source code: <a href="https://github.com/adrianfb94/SpaceX/blob/main/3\_IBM-DS0321EN-SkillsNetwork labs module 1 L3 labs-jupyter-spacex-data wrangling jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyterlit

#### **EDA** with Data Visualization

 We explored the data by visualizing the relationship between flight number and launch Site, payload and launch site, success rate of each orbit type, flight number and orbit type, the launch success yearly trend.





 The link to the notebook is <a href="https://github.com/adrianfb94/SpaceX/blob/main/4">https://github.com/adrianfb94/SpaceX/blob/main/4</a> IBM-DSO321EN-<a href="https://skillsNetwork.labs.module-2">SkillsNetwork labs module 2</a> jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb

#### **EDA** with SQL

- The following SQL queries were performed:
  - Names of the unique launch sites in the space mission;
  - Top 5 launch sites whose name begins with the string 'CCA';
  - Total pay load mass carried by boosters launched by NASA (CRS);
  - Average payload mass carried by booster version F9 v1.1;
  - Date when the first successful landing outcome in ground pad was achieved;
  - Names of the boosters which have success in drone ship and have payload mass between 4000 and 6000 kg;
  - Total number of successful and failure mission outcomes;
  - Names of the booster versions which have carried the maximum payload mass;
  - Failed landing out comes in droneship, their booster versions, and launch site names for in year 2015; and
  - Rank of the count of landing outcomes (such as Failure (droneship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20.
- Source code: <a href="https://github.com/adrianfb94/SpaceX/blob/main/5">https://github.com/adrianfb94/SpaceX/blob/main/5</a> jupyter-labs-eda-sql-coursera sqllite.ipynb

#### Build an Interactive Map with Folium

- We marked all launch sites, and added map objects such as markers, circles, lines to mark the success or failure of launches for each site on the folium map.
- We assigned the feature launch outcomes (failure or success) to class 0 and 1.i.e., 0 for failure, and 1 for success.
- Using the color-labeled marker clusters, we identified which launch sites have relatively high success rate.
- We calculated the distances between a launch site to its proximities. We answered some question for instance:
  - Are launch sites near railways, highways and coastlines.
  - Do launch sites keep certain distance away from cities.
- Source code: <a href="https://github.com/adrianfb94/SpaceX/blob/main/6">https://github.com/adrianfb94/SpaceX/blob/main/6</a> IBM-DS0321EN-SkillsNetwork labs module 3 lab jupyter launch site location.jupyterlite.ipynb

### Build a Dashboard with Plotly Dash

- We built an interactive dashboard with Plotly dash
- We plotted pie charts showing the total launches by a certain sites
- We plotted scatter graph showing the relationship with Outcome and Payload Mass (Kg) for the different booster version.
- The link to the notebook is <a href="https://github.com/adrianfb94/SpaceX/blob/main/7">https://github.com/adrianfb94/SpaceX/blob/main/7</a> spacex dash app.py

### Predictive Analysis (Classification)

- We loaded the data using numpy and pandas, transformed the data, split our data into training and testing.
- We built different machine learning models and tune different hyperparameters using GridSearchCV.
- We used accuracy as the metric for our model, improved the model using feature engineering and algorithm tuning.
- We found the best performing classification model.
- The link to the notebook is <a href="https://github.com/adrianfb94/SpaceX/blob/main/8">https://github.com/adrianfb94/SpaceX/blob/main/8</a> IBM-DS0321EN-
  - SkillsNetwork labs module 4 SpaceX Machine Learning Prediction Part 5.jupyterlit e.ipynb

#### Results

#### Exploratory data analysis results:

- Space X uses 4 different launch sites;
- The first launches were done to Space X itself and NASA;
- The average payload of F9 v1.1 booster is 2,928 kg;
- The first success landing outcome happened in 2015 fiver year after the first launch;
- Many Falcon 9 booster versions were successful at landing in drone ships having payload above the average;
- Almost 100% of mission outcomes were successful;
- Two booster versions failed at landing in drone ships in 2015: F9 v1.1 B1012 and F9 v1.1 B1015;
- The number of landing outcomes became as better as years passed.

#### Results

- Using interactive analytics was possible to identify that launch sites use to be in safety places, near sea, for example and have a good logistic infrastructure around.
- Most launches happens at east cost launch sites.







### Flight Number vs. Launch Site

- From the plot, we found that the larger the flight amount at a launch site, the greater the success rate at a launch site.
- According to the plot, it's possible to verify that the best launch site nowadays is CCAF5 SLC 40, where
  most of recent launches were successful;
- In second place VAFB SLC 4E and third place KSC LC 39A;
- It's also possible to see that the general success rate improved over time.



#### Payload vs. Launch Site



- Payloads over 9,000kg (about the weight of a school bus) have excellent success rate;
- Payloads over 12,000kg seems to be possible only on CCAFS SLC 40 and KSC LC 39A launch sites.

# Success Rate vs. Orbit Type

- The biggest success rates happens to orbits:
  - ES-L1;
  - GEO;
  - HEO; and
  - SSO.
- Followed by:
  - VLEO (above 80%); and
  - LFO (above 70%).



# Flight Number vs. Orbit Type

- Apparently, success rate improved over time to all orbits;
- VLEO orbit seems a new business opportunity, due to recent increase of its frequency.
- We observe that in the LEO orbit, success is related to the number of flights whereas in the GTO orbit, there is no relationship between flight number and the orbit.



# Payload vs. Orbit Type



- Apparently, there is no relation between payload and success rate to orbit GTO;
- ISS orbit has the widest range of payload and a good rate of success;
- There are few launches to the orbits SO and GEO.

# Launch Success Yearly Trend

- Success rate started increasing in 2013 and kept until 2020;
- It seems that the first three years were a period of adjusts and improvement of technology.



#### All Launch Site Names

• According to data, there are four launch sites:

| Launch_Sites |
|--------------|
| CCAFS LC-40  |
| VAFB SLC-4E  |
| KSC LC-39A   |
| CCAFS SLC-40 |

 They are obtained by selecting unique occurrences of "launch\_site" values from the dataset

# Launch Site Names Begin with 'CCA'

#### • 5 records where launch sites begin with `CCA`:

| Date       | Time(UTC) | Booster_Vers<br>ion | Launch_Site | Payload                                                                      | PAYLOAD_M<br>ASSKG_ | Orbit     | Customer           | Mission_Out come | Landing_Out come       |
|------------|-----------|---------------------|-------------|------------------------------------------------------------------------------|---------------------|-----------|--------------------|------------------|------------------------|
| 2010-06-04 | 18:45:00  | F9 v1.0<br>B0003    | CCAFS LC-40 | Dragon<br>Spacecraft<br>Qualification<br>Unit                                | 0                   | LEO       | SpaceX             | Success          | Failure<br>(parachute) |
| 2010-12-08 | 15:43:00  | F9 v1.0<br>B0004    | CCAFS LC-40 | Dragon demo<br>flight C1, two<br>CubeSats,<br>barrel of<br>Brouere<br>cheese | 0                   | LEO (ISS) | NASA (COTS)<br>NRO | Success          | Failure<br>(parachute) |
| 2012-05-22 | 07:44:00  | F9 v1.0<br>B0005    | CCAFS LC-40 | Dragon demo<br>flight C2                                                     | 525                 | LEO (ISS) | NASA (COTS)        | Success          | No attempt             |
| 2012-10-08 | 00:35:00  | F9 v1.0<br>B0006    | CCAFS LC-40 | SpaceX CRS-1                                                                 | 500                 | LEO (ISS) | NASA (CRS)         | Success          | No attempt             |
| 2013-03-01 | 15:10:00  | F9 v1.0<br>B0007    | CCAFS LC-40 | SpaceX CRS-2                                                                 | 677                 | LEO (ISS) | NASA (CRS)         | Success          | No attempt             |

# **Total Payload Mass**

Total payload carried by boosters from NASA:

| Total Payload Mass(Kgs) | Customer   |
|-------------------------|------------|
| 45596                   | NASA (CRS) |

• We calculated the total payload carried by boosters launched by NASA (CRS).

### Average Payload Mass by F9 v1.1

Average payload mass carried by booster version F9 v1.1:

| Booster_Version | Payload Mass Kgs |
|-----------------|------------------|
| F9 v1.1         | 2928.4           |

• Filtering data by the booster version above and calculating the average payload mass we obtained the value of 2928,4 kg.

### First Successful Ground Landing Date

• First successful landing outcome on ground pad:

MIN(Date) 2015-12-22

 We observed that the dates of the first successful landing outcome on ground pad was 22<sup>nd</sup> December 2015

#### Successful Drone Ship Landing with Payload between 4000 and 6000

 Boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

| Booster_Version | Payload               | PAYLOAD_MASSKG_ |
|-----------------|-----------------------|-----------------|
| F9 FT B1022     | JCSAT-14              | 4696            |
| F9 FT B1026     | JCSAT-16              | 4600            |
| F9 FT B1021.2   | SES-10                | 5300            |
| F9 FT B1031.2   | SES-11 / EchoStar 105 | 5200            |

• Selecting distinct booster versions according to the filters above, these 4 are the result.

#### Total Number of Successful and Failure Mission Outcomes

Number of successful and failure mission outcomes:

| Mission_Outcome                  | Total |
|----------------------------------|-------|
| Failure (in flight)              | 1     |
| Success                          | 98    |
| Success                          | 1     |
| Success (payload status unclear) | 1     |

• Grouping mission outcomes and counting records for each group led us to the summary above.

# **Boosters Carried Maximum Payload**

- Boosters which have carried the maximum payload mass
- We determined the booster that have carried the maximum payload using a subquery in the WHERE clause and the MAX() function.
- These are the boosters which have carried the maximum payload mass registered in the dataset.

| Booster_Version | Payload                                           | PAYLOAD_MASSKG_ |
|-----------------|---------------------------------------------------|-----------------|
| F9 B5 B1048.4   | Starlink 1 v1.0, SpaceX CRS-19                    | 15600           |
| F9 B5 B1049.4   | Starlink 2 v1.0, Crew Dragon in-flight abort test | 15600           |
| F9 B5 B1051.3   | Starlink 3 v1.0, Starlink 4 v1.0                  | 15600           |
| F9 B5 B1056.4   | Starlink 4 v1.0, SpaceX CRS-20                    | 15600           |
| F9 B5 B1048.5   | Starlink 5 v1.0, Starlink 6 v1.0                  | 15600           |
| F9 B5 B1051.4   | Starlink 6 v1.0, Crew Dragon Demo-2               | 15600           |
| F9 B5 B1049.5   | Starlink 7 v1.0, Starlink 8 v1.0                  | 15600           |
| F9 B5 B1060.2   | Starlink 11 v1.0, Starlink 12 v1.0                | 15600           |
| F9 B5 B1058.3   | Starlink 12 v1.0, Starlink 13 v1.0                | 15600           |
| F9 B5 B1051.6   | Starlink 13 v1.0, Starlink 14 v1.0                | 15600           |
| F9 B5 B1060.3   | Starlink 14 v1.0, GPS III-04                      | 15600           |
| F9 B5 B1049.7   | Starlink 15 v1.0, SpaceX CRS-21                   | 15600           |

#### 2015 Launch Records

- Failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015
- We used a combinations of the WHERE clause, AND, and BETWEEN conditions to filter for failed landing outcomes in drone ship, their booster versions, and launch site names for year 2015

| Year | Month | Landing_Outcome      | Booster_Version | Launch_Site |
|------|-------|----------------------|-----------------|-------------|
| 2015 | 01    | Failure (drone ship) | F9 v1.1 B1012   | CCAFS LC-40 |
| 2015 | 04    | Failure (drone ship) | F9 v1.1 B1015   | CCAFS LC-40 |

The list above has the only two occurrences.

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- Ranking of all landing outcomes between the date 2010-06-04 and 2017- 03-20:
- We selected Landing outcomes and the COUNT of landing outcomes from the data and used the WHERE clause to filter for landing outcomes BETWEEN 2010-06-04 to 2010-03-20.
- We applied the GROUP BY clause to group the landing outcomes and the ORDER BY clause to order the grouped landing outcome in descending order.
- This view of data alerts us that "No attempt" must be taken in account.

| Landing_Outcome        | TOTAL |
|------------------------|-------|
| No attempt             | 10    |
| Success (drone ship)   | 5     |
| Failure (drone ship)   | 5     |
| Success (ground pad)   | 3     |
| Controlled (ocean)     | 3     |
| Uncontrolled (ocean)   | 2     |
| Failure (parachute)    | 2     |
| Precluded (drone ship) | 1     |



### All launch sites global map markers



• Launch sites are near sea, probably by safety, but not too far from roads and railroads.

# Markers showing launch sites with color labels

Example of KSC LC-39A launch site launch outcomes



Green markers indicate successful and red ones indicate failure.

### Launch Site distance to landmarks



• Launch site CCAFS SLC-40 has good logistics aspects, being near railroad (1.28 Km) and highways (0.58 Km) and relatively far from inhabited areas (51.4 Km).



# Successful Launches by Site



• The place from where launches are done seems to be a very important factor of success of missions.

#### Launch Success Ratio for KSC LC-39A



• 76.9% of launches are successful in this site.

## Payload vs. Launch Outcome



• Payloads under 6,000kg and FT boosters are the most successful combination.

## Payload vs. Launch Outcome



• There's not enough data to estimate risk of launches over 7,000kg



## Classification Accuracy

• Four classification models were tested, and their accuracies are plotted beside;

• The model with the highest classification accuracy is Decision Tree Classifier, which has accuracies over than 87%.



#### **Confusion Matrix**



• Confusion matrix of Decision Tree Classifier proves its accuracy by showing the big numbers of true positive and true negative compared to the false ones.

#### **Conclusions**

- Different data sources were analyzed, refining conclusions along the process.
- The best launch site is KSC LC-39A.
- Launches above 7,000kg are less risky.
- Although most of mission outcomes are successful, successful landing outcomes seem to improve over time, according the evolution of processes and rockets.
- Decision Tree Classifier can be used to predict successful landings and increase profits.
- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 till 2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

