Entropy for Data Science

Charlie Edelson, Caleb Dowdy, Chris Leonard, Nicole Navarro, Aaron Niskin, Lance Price

12/4/2017

Outline

- History
 - Statistical Mechanics
- Shannon Entropy
 - Uniform Distribution
 - Normal Distribution
 - Tsallis Entropy
- Entropy for Data Science

History

Statistical Mechanics

Consider a box with ${\it N}$ particles of a monatomic gas

How would you model this?

Statistical Mechanics - State Variables?

ullet We can talk about state variables: P, T, N, and V

Statistical Mechanics - State Variables?

- We can talk about state variables: P, T, N, and V
 - ▶ Ideal Gas Law

$$PV = nRT \tag{1}$$

Statistical Mechanics - State Variables?

- We can talk about state variables: P, T, N, and V
 - ▶ Ideal Gas Law

$$PV = nRT \tag{1}$$

Characterize System Behaviors

Statistical Mechanics - Ensemble Statistics

Assume each particle obeys Newton's Law

- v_0 and x_0 determines system
- Impractical for large N

Statistical Mechanics - Ensemble Statistics

Assume each particle obeys Newton's Law

- v_0 and x_0 determines system
- Impractical for large N

James Maxwell's Kinetic Theory of Gases

Consider Ensemble Statistics

$$PV = \frac{Nmv^2}{3} \tag{2}$$

Statistical Mechanics Entropy

Average Behavior → Macroscopic Properties

Statistical Mechanics Entropy

 $\mathsf{Average}\ \mathsf{Behavior} \to \mathsf{Macroscopic}\ \mathsf{Properties}$

Ludwig Boltzmann's statistical mechanical entropy (1877)

$$S = k_b \ln(\Omega) \tag{3}$$

 Ω is the multiplicity of a given macrostate

Consider non-interacting paramagnet with 3 dipoles

Consider non-interacting paramagnet with 3 dipoles

• Macrostate - 2 Up, 1 Down

Consider non-interacting paramagnet with 3 dipoles

- Macrostate 2 Up, 1 Down
- Microstate ↑, ↓, ↑

Consider non-interacting paramagnet with 3 dipoles

- Macrostate 2 Up, 1 Down
- Microstate ↑, ↓, ↑

Entropy of 100 Dipole Paramagnet

Interpretation

Features of paramagnet entropy

- ullet Minimum at 0 and 100
 ightarrow 1 microstate each
- Maximum at $50 \rightarrow 10^{29}$ microstates!

Interpretation

Features of paramagnet entropy

- ullet Minimum at 0 and 100
 ightarrow 1 microstate each
- Maximum at $50 \rightarrow 10^{29}$ microstates!

Measure of "mixed-up-ness" of a physical system

- Higher entropy → more mixing (randomness)
- ullet Lower entropy o less mixing

Shannon Entropy

Telephone Line Information Loss

Claude Shannon at Bell Telephone (1939)

- Quantify "lost information" in phone-line signals
- "Information Uncertainty"

$$H = -K \sum_{i=1}^{k} p(i) \log(p(i))$$
(4)

Difficult time naming H...

Naming "Information Uncertainty"

... until he visited John von Neumann

My greatest concern was what to call it. I thought of calling it 'information', but the word was overly used, so I decided to call it 'uncertainty'. When I discussed it with John von Neumann, he had a better idea. Von Neumann told me, 'You should call it entropy, for two reasons: In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, nobody knows what entropy really is, so in a debate you will always have the advantage.

Same properties as statistical mechanic entropy

- Low entropy \rightarrow low randomness
- High entropy \rightarrow high randomness

Same properties as statistical mechanic entropy

- Low entropy \rightarrow low randomness
- ullet High entropy o high randomness

Directly related to information content of random variable X

- Unpredictability of state
- Average information content

Same properties as statistical mechanic entropy

- Low entropy \rightarrow low randomness
- ullet High entropy o high randomness

Directly related to information content of random variable X

- Unpredictability of state
- Average information content

$$H(X) = E[-\ln(X)] \tag{5}$$

Shannon Entropy - Uniform Distribution

- Maximum Entropy
 - $H(X) = \ln(N)$
- Boltzmann Statistical Mechanics Entropy
 - $ightharpoonup S = k_b \ln(\Omega)$

Shannon Entropy - Normal Distribution

- Maximum Entropy for fixed mean and variance
 - $H(X) = \frac{1}{2} \log(2\pi e \sigma^2)$
- Part of the reason why the normal distribution

Tsallis Entropy

Attempt to generalize statistical mechanics

$$S_q(p_i) = \frac{k}{q-1} \left(1 - \sum_i p_i^q \right) \tag{6}$$

- q is entropic-index
 - $q \rightarrow 1$, recover Shannon Entropy
- Experimental Verification
 - Physical significant still debated

Entropy for Data Science

Entropy for Data Science

Anamoly Detection

- Entropy for detecting changes in "randomness"
 - Machine Learning and Metric Entropy

Figure 1: Nychis et. al. 2008

Anamoly Detection - Tsallis Entropy

- Similar work with Tsallis Entropy
 - q values for specific anamolies

Anamoly Detection - Tsallis Entropy

- Similar work with Tsallis Entropy
 - q values for specific anamolies

Currently in the works with Akamai!

Summary

- Entropy from Statistical Mechanics
 - ▶ Measure of "mixedness" or macrostate
- ullet Adopted by Shannon o Infromation Loss
 - Average Information of State
 - Unpredictability
- Applications in Anamoly Detection