(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-195072

(43)公開日 平成10年(1998) 7月28日

(51) Int.Cl. ⁶	識別記号	F I	
C 0 7 D 417/12	2 1 3	C 0 7 D 417/12	213
A 0 1 N 43/78		A 0 1 N 43/78	D
43/824		43/82	101C

審査請求 未請求 請求項の数2 OL (全 9 頁)

(21)出願番号	特贖平9-6192	(71)出願人 000002093
		住友化学工業株式会社
(22)出願日	平成9年(1997)1月17日	大阪府大阪市中央区北浜4丁目5番33号
		(72)発明者 杉原 輝一
		兵庫県宝塚市高司4丁目2番1号 住友化
		学工業株式会社内
		(72)発明者 土屋 亨
		兵庫県宝塚市高司4丁目2番1号 住友化
		学工業株式会社内
		(72)発明者 松尾 憲忠
		兵庫県宝塚市高司4丁目2番1号 住友化
		学工業株式会社内
		(74)代理人 弁理士 久保山 隆 (外1名)

(54) 【発明の名称】 ピリジン-3-カルボキサミド化合物またはその塩およびその用途

(57)【要約】

【課題】有害動物に対して優れた防除効力を示す化合物 を提供すること。

【解決手段】一般式 化1

【化1】

〔式中、Xは窒素原子または式C-R2 で示される基を 表し、 R_1 および R_2 は、同一または相異なり、水素原 子、ハロゲン原子、アルキル基、ハロアルキル基アルコ キシ基、アルキルチオ基またはニトロ基を表す。〕で示 されるピリジンー3ーカルボキサミド化合物またはその 塩。

【特許請求の範囲】

【請求項1】一般式 化1

【化1】

1

〔式中、Xは窒素原子または式C-R2 で示される基を 表し、 R_1 および R_2 は、同一または相異なり、水素原 子、ハロゲン原子、アルキル基、ハロアルキル基アルコ 10 キシ基、アルキルチオ基またはニトロ基を表す。〕で示 されるピリジンー3ーカルボキサミド化合物またはその

【請求項2】請求項1記載のピリジン-3-カルボキサ ミド化合物またはその塩を有効成分として含有すること を特徴とする有害動物防除剤。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明はピリジンー3ーカル ボキサミド化合物またはその塩およびその用途に関す

【発明が解決しようとする課題】本発明は有害動物に対 して優れた防除効力を示す化合物を提供することを課題 とする。

【課題を解決するための手段】本発明者らは、鋭意検討 した結果、下記一般式 化2で示されるピリジン-3-カルボキサミド化合物またはその塩が有害動物に対して 優れた防除効力を示すことを見出し、本発明に至った。 即ち、本発明は、一般式 化2

【化2】

〔式中、Xは窒素原子または式C-R2 で示される基を 表し、 R_1 および R_2 は、同一または相異なり、水素原 子、ハロゲン原子(塩素原子、臭素原子、フッ素原子 等)、アルキル基(例えば、メチル基、エチル基、イソ プロピル基、tert-ブチル基等のC1-C6アルキ ル基等)、ハロアルキル基(例えば、トリフルオロメチ ル基等のC1-C3ハロアルキル基等)、アルコキシ基 (例えば、メトキシ基、エトキシ基等のC1-C6アル コキシ基等)、アルキルチオ基(例えば、メチルチオ 基、エチルチオ基等のC1-C6アルキルチオ基等)ま たはニトロ基を表す。〕で示されるピリジンー3ーカル ボキサミド化合物またはその塩(以下、本発明化合物と 記す。) およびそれを有効成分として含有することを特 徴とする有害動物防除剤を提供するものである。本発明 化合物において、塩としては、例えば、塩酸塩、臭化水

酸付加塩が挙げられる。

[0002]

【発明の実施の形態】本発明化合物は、例えば、以下の 方法により製造することができる。4 – トリフルオロメ チルピリジンー3ーカルボン酸またはその反応性誘導体 と一般式 化3

【化3】

$$H_2N$$
 S R_1 $N-X$

〔式中、XおよびR1 は前記と同じ意味を表す。〕で示 されるアミン化合物とを反応させる方法。4-トリフル オロメチルピリジンー3ーカルボン酸そのものを反応に 用いる場合、反応においては、ジシクロヘキシルカルボ ジイミド、N,N'-カルボニルジイミダゾール、または1 -エチル-3-(3-ジメチルアミノプロピル)カルボ ジイミドなどの縮合剤が使用される。反応は、通常溶媒 中で行われ、溶媒としては、ジエチルエーテル、テトラ ヒドロフランなどのエーテル類、塩化メチレン、クロロ 20 ホルムなどのハロゲン化炭化水素類、ベンゼン、トルエ ンなどの芳香族炭化水素類、アセトニトリル、N,N'ージ メチルホルムアミドなどの非プロトン性極性溶媒など、 あるいは、これらの混合溶媒が挙げられる。反応温度 は、通常-20~110 ℃までの範囲であり、反応時間は通 常1~30時間の範囲である。用いられる反応剤の量比 は、4-トリフルオロメチルピリジン-3-カルボン酸 1モルに対し、一般式 化3で示されるアミン化合物は 通常1.0~1.3モルの割合であり、縮合剤は通常1~1. 5モルの割合である。 反応終了後は有機溶媒抽出、濃 30 縮、晶析などの通常の後処理をすることにより、目的と する本発明化合物を単離することができるが、必要に応 じて、再結晶、カラムクロマトグラフィー等によりさら に精製することもできる。4―トリフルオロメチルピリ ジン-3-カルボン酸の反応性誘導体〔対応する酸塩化 物、エステル(例えば、メチルエステル、エチルエステ ル等のC1-C4アルキルエステル等)、または酸無水 物等〕を反応に用いる場合、通常上記の溶媒中で必要に 応じて塩基の存在下に反応が行われる。塩基としては、 例えばトリメチルアミン、トリエチルアミン、ピリジン 40 などの第3級アミン、水酸化ナトリウム、水酸化カリウ ムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸 カリウムなどのアルカリ金属炭酸塩、ナトリウムメトキ シド、ナトリウムエトキシドなどのアルカリ金属のアル コキシドなどが挙げられる。反応温度は、一般に-20~ 110 ℃までの範囲をとりうるが、反応性誘導体が対応す る酸塩化物または酸無水物の場合は通常○~30℃までの 範囲であり、反応性誘導体が対応するエステルの場合に は、通常50~110 ℃までの範囲である。反応時間は通常 1~30時間の範囲である。用いられる反応剤の量比 素酸塩、リン酸塩、硫酸塩、硝酸塩などの無機酸等との 50 は、4-トリフルオロメチルピリジン-3-カルボン酸

の反応性誘導体1モルに対し、一般式 化3で示されるアミン化合物は通常1.0~1.2モルの割合であり、必要に応じて用いられる塩基は通常1.0~1.2モルの割合である。反応終了後は有機溶媒抽出、濃縮、晶析などの通常の後処理をすることにより、目的とする化合物を単離することができるが、必要に応じて、再結晶、カラムクロマトグラフィー等によりさらに精製することもできる。本発明化合物のうち塩は、本発明化合物のうち塩でないものと、例えば、塩酸、臭化水素酸、リン酸、硫酸、硝酸などの無機等の酸と反応させることにより得ることが出来る。4ートリフルオロメチルピリジンー3ーカルボン酸は公知化合物であり、例えば、市販のものを用いることができる。一般式 化3のアミン化合物のうち、Xが式C-R2で示される基であるもの、即ち、2*

*-アミノチアゾール誘導体は、例えば、J. Agric. Food Chem.,39,1652 -1657(1991)に記載の方法に準じてαーハロケトン誘導体とチオ尿素誘導体とから製造することができ、一般式 化3のアミン化合物のうち、Xが窒素原子であるもの、即ち、2 -アミノー1,3,4 -チアジアゾール誘導体は、例えば、J.Heterocyclic chem.,17,607-608(1980) に記載の方法に準じて製造することができる。

4

ないものと、例えば、塩酸、臭化水素酸、リン酸、硫 【0003】本発明化合物の例および一般式 化3で示酸、硝酸などの無機等の酸と反応させることにより得る 10 されるアミン化合物の例を表1に示す(一般式 化2でことが出来る。4ートリフルオロメチルピリジン-3- 示される化合物の各置換基の定義または一般式 化3で 示されるアミン化合物の各置換基の定義で示す)。

【表1】

R_1	x	
Н	С-Н	
Н	$C - CH_{a}$	
CH ₃	C-H	
CH ₃	$C - C H_8$	
C ₂ H ₅	C-H	
Н	$C-C_2$ H_5	
Н	$C-C F_a$	
C 1	$C-CF_8$	
Н	$C-C$ (CH_3) $_3$	
CH ₃	$C-CF_3$	
CH ₃	C-C1	
CF ₃	C-C1	
OCH3	C-H	
SCH ₃	C-H	
Н	$C - OCH_3$	
Н	$C-SCH_3$	
Н	N	
CH ₃	N	
C ₂ H ₅	N	
CF ₃	N	
OCH ₈	N	
SC ₂ H ₅	N	
C 1	N	

【 0 0 0 4 】本発明化合物が防除効力を示し得る有害動物としては、例えば下記の有害昆虫類、線虫類、ダニ類等があげられる。

半翅目害虫

ヒメトビウンカ($\underline{\text{Laodelphax}}$ striatellus)、トビイ $\underline{\text{m}}$)、 $\underline{\text{upbyb}}$ ($\underline{\text{Nilaparvata}}$ $\underline{\text{lugens}}$)、セジロウンカ($\underline{\text{So}}$ リーフ $\underline{\text{gatella}}$ $\underline{\text{furcifera}}$)などのウンカ類、ツマグロヨコ ジラミバイ($\underline{\text{Nephotettix}}$ $\underline{\text{cincticeps}}$)、タイワンツマグロ $\underline{\text{wpbyb}}$ 類など

※ヨコバイ(Nephotettix virescens)などのヨコバイ類、ワタアブラムシ(Aphis gossypii)、モモアカアブラムシ(Myzus persicae)などのアブラムシ類、カメムシ類、オンシツコナジラミ(Trialeurodes vaporariorum)、タバココナジラミ(Bemisia tabaci)、シルバーリーフコナジラミ(Bemisia argentifolli)などのコナジラミ類、カイガラムシ類、グンバイムシ類、キジラミ類など

鱗翅目害虫

ニカメイガ (Chilo suppressalis) 、コブノメイガ (Cnaphalocrocis medinalis)、ヨーロッピアンコー ンボーラー (Ostrinia nubilalis)、シバツトガ (Para pediasia teterrella)、ワタノメイガ (Notarcha de <u>rogata</u>)、ノシメマダラメイガ(<u>Plodia</u> <u>interpunctel</u> 1a) などのメイガ類、ハスモンヨトウ (Spodoptera 1i tura)、アワヨトウ (Pseudaletia separata)、ヨト ウガ (Mamestra brassicae) 、タマナヤガ (Agrotis ipsilon)、トリコプルシア属、ヘリオティス属、ヘ 10 リコベルパ属などのヤガ類、モンシロチョウ(Pieris rapae crucivora) などのシロチョウ類、アドキソフィ エス属、ナシヒメシンクイ(Grapholita molesta)、 コドリングモス (Cydia pomonella) などのハマキガ 類、モモシンクイガ (Carposina niponensis) などの シンクイガ類、リオネティア属などのハモグリガ類、リ マントリア属、ユープロクティス属などのドクガ類、コ ナガ (Plutella xylostella) などのスガ類、ワタアカ ミムシ (Pectinophora gossypiella) などのキバガ 類、アメリカシロヒトリ(<u>Hyphantria</u> <u>cunea</u>)などの 20 バチ(<u>Athalia</u> japonica)などのハバチ類など ヒトリガ類、イガ(<u>Tinea</u> <u>translucens</u>)、コイガ (Tineolabisselliella) などのヒロズコガ類など 双翅目害虫

アカイエカ (Culex pipiens pallens) 、コガタア カイエカ (Culex tritaeniorhynchus) などのイエカ 類、<u>Aedes</u> <u>aegypti</u>、<u>Aedes</u> <u>albopictus</u>などのエー デス属、Anopheles sinensisなどのアノフェレス属、 ユスリカ類、イエバエ (Musca domestica)、オオイ エバエ (Muscina stabulans) などのイエバエ類、ク ロバエ類、ニクバエ類、ヒメイエバエ類、タネバエ (De 30 ロアリ (Coptotermesformosanus)など <u>lia</u> platura)、タマネギバエ(Delia antiqua) などのハナバエ類、ミバエ類、ショウジョウバエ類、チ ョウバエ類、ブユ類、アブ類、サシバエ類、ハモグリバ エ類など

鞘翅目害虫

ウエスタンコーンルームワーム (Diabrotica virgifer a virgifera)、サザンコーンルートワーム (Diabroti ca undecimpunctata howardi) などのコーンルートワ ーム類、ドウガネブイブイ (Anomala cuprea) 、ヒメ コガネ (Anomala_ rufocuprea) などのコガネムシ類、 メイズウィービル(Sitophilus zeamais)、イネミズ ゾウムシ (Lissorhoptrus oryzophilus)、アルファ ルファタコゾウムシ(Hypera pastica)、アズキゾウ ムシ (Callosobruchuys chienensis)などのゾウムシ 類、チャイロコメノゴミムシダマシ (Tenebrio molito \underline{r}) 、コクヌストモドキ($\underline{Tribolium}$ castaneum)な どのゴミムシダマシ類、ウリハムシ (Aulacophora fe moralis)、キスジノミハムシ (Phyllotreta striol ata) 、コロラドハムシ (Leptinotarsa decemlineat a) などのハムシ類、シバンムシ類、ニジュウヤホシテ

ントウ (Epilachna vigintioctopunctata)などのエ ピラクナ類、ヒラタキクイムシ類、ナガシンクイムシ 類、カミキリムシ類、アオバアリガタハネカクシ (Paed erus <u>fuscipes</u>)など

直翅目網翅類害虫

チャバネゴキブリ(<u>Blattella</u> <u>germanica</u>)、クロゴ キブリ (Periplanetafuliginosa) 、ワモンゴキブリ (P eriplaneta americana)、トビイロゴキブリ (Perip laneta brunnea)、トウヨウゴキブリ (Blatta ori <u>entalis</u>) など

アザミウマ目害虫

ミナミキイロアザミウマ(Thrips palmi)、ネギアザ ミウマ (Thrips tabaci)、ハナアザミウマ (Thrips hawaiiensis) などのスリップス属、ヒラズハナアザミ ウマ (Frankliniella intonsa)、ミカンキイロアザミ ウマ (Frankliniella occidentalis) などのFranklinie 11a 属

膜翅目害虫

アリ類、スズメバチ類、アリガタバチ類、ニホンカブラ 直翅目害虫

ケラ類、バッタ類等

隠翅目害虫

ヒトノミ (Pulex_ irritans) 等 シラミ目害虫

コロモジラミ (Pediculus humanus corporis、ケジ ラミ (Phthirus pubis) など シロアリ目害虫

ヤマトシロアリ (Reticulitermes speratus)、イエシ

ダニ類

ナミハダニ(Tetranychus uriticae)、カンザワハダ ニ (Tetranychus kanzawai) 、ミカンハダニ (Panony chus citri)、リンゴハダニ (Panonychusulmi)、オ リゴニカス属などのハダニ類、ミカンサビダニ(Aculop s pelekassi)、チャノサビダニ (Calacarus cari natus) などのフシダニ類、チャノホコリダニ (Polyph agotarsonemus latus) などのホコリダニ類、ヒメハ ダニ類、ケナガハダニ類、Boophilus microplus など 40 のマダニ類、コナダニ類、Pyroglyphidae 、ツメダニ 類、ワクモ類などの室内塵性ダニ類など

線虫類

ハリセンチュウ目 (Tylenchida) プラティレンクス科 (Pratylenchidae) ミナミネグサレセンチュウ (Pratylenchus coffeae) キタネグサレセンチュウ (Pratylenchus fallax) チャネグサレセンチュウ (Pratylenchus loosi) クルミネグサレセンチュウ (Pratylenchus vulnus) ヘテロデラ科 (Heteroderidae)

50 ダイズシストセンチュウ (Heterodera glycines)

ジャガイモシストセンチュウ(<u>Globodera</u> <u>rostochien</u> sis)

メロイドギネ科 (Meloidogynidae) キタネコブセンチュウ (Meloidogyne hapla) サツマイモネコブセンチュウ (Meloidogyne incognit a)

また、本発明化合物は有機リン剤、カーバメート剤、ピレスロイド剤などの市販殺虫剤に抵抗性を示す上記有害昆虫類、線虫類、ダニ類に対しても有効である。

【〇〇〇5】本発明化合物を有害動物防除剤(殺虫、殺 線虫、殺ダニ剤等)の有効成分として用いる場合は、他 の何らの成分を加えず、そのまま使用してもよいが、通 常は、固体担体、液体担体、ガス状担体、餅等と混合 し、必要あれば界面活性剤、その他の製剤用補助剤を添 加して、油剤、乳剤、水和剤、水中懸濁剤・水中乳濁剤 等のフロアブル剤、粒剤、粉剤、エアゾール、自己燃焼 型燻煙剤・化学反応型燻煙剤・多孔セラミック板燻煙剤 等の加熱燻煙剤、ULV剤、毒餌等に製剤して使用す る。これらの製剤には、有効成分として本発明化合物 を、通常、重量比で0.01%~95%含有する。製剤化の 20 際に用いられる固体担体としては、たとえば粘土類(カ オリンクレー、珪藻土、合成含水酸化珪素、ベントナイ ト、フバサミクレー、酸性白土等)、タルク類、セラミ ック、その他の無機鉱物(セリサイト、石英、硫黄、活 性炭、炭酸カルシウム、水和シリカ等)、化学肥料(硫 安、燐安、硝安、尿素、塩安等)等の微粉末あるいは粒 状物等があげられ、液体担体としては、たとえば水、ア ルコール類(メタノール、エタノール等)、ケトン類 (アセトン、メチルエチルケトン等)、芳香族炭化水素 類(ベンゼン、トルエン、キシレン、エチルベンゼン、 メチルナフタレン等)、脂肪族炭化水素類(ヘキサン、 シクロヘキサン、灯油、軽油等)、エステル類(酢酸エ チル、酢酸ブチル等)、ニトリル類(アセトニトリル、 イソブチロニトリル等)、エーテル類(ジイソプロピル エーテル、ジオキサン等)、酸アミド類(N, N-ジメ チルホルムアミド、N, N-ジメチルアセトアミド 等)、ハロゲン化炭化水素類(ジクロロメタン、トリク ロロエタン、四塩化炭素等)、ジメチルスルホキシド、 大豆油、綿実油等の植物油等があげられ、ガス状担体、 すなわち噴射剤としては、たとえばフロンガス、ブタン ガス、LPG(液化石油ガス)、ジメチルエーテル、炭 酸ガス等があげられる。界面活性剤としては、たとえば アルキル硫酸エステル塩、アルキルスルホン酸塩、アル キルアリールスルホン酸塩、アルキルアリールエーテル 類およびそのポリオキシエチレン化物、ポリエチレング リコールエーテル類、多価アルコールエステル類、糖ア ルコール誘導体等があげられる。固着剤や分散剤等の製 剤用補助剤としては、たとえばカゼイン、ゼラチン、多 糖類(でんぷん粉、アラビアガム、セルロース誘導体、 アルギン酸等)、リグニン誘導体、ベントナイト、糖

R

類、合成水溶性高分子(ポリビニルアルコール、ポリビ ニルピロリドン、ポリアクリル酸類等)等があげられ、 安定剤としては、たとえばPAP(酸性りん酸イソプロ ピル)、BHT(2,6-ジーtert-ブチルー4-メチ ルフェノール)、BHA(2-tert-ブチルー4-メト キシフェノールと3-tert-ブチル-4-メトキシフェ ノールとの混合物)、植物油、鉱物油、界面活性剤、脂 肪酸またはそのエステル等があげられる。自己燃焼型燻 煙剤の基材としては、たとえば硝酸塩、亜硝酸塩、グア ニジン塩、塩素酸カリウム、ニトロセルロース、エチル セルロース、木粉などの燃焼発熱剤、アルカリ金属塩、 アルカリ土類金属塩、重クロム酸塩、クロム酸塩などの 熱分解刺激剤、硝酸カリウムなどの酸素供給剤、メラミ ン、小麦デンプンなどの支燃剤、硅藻土などの増量剤、 合成糊料などの結合剤等があげられる。化学反応型燻煙 剤の基材としては、たとえばアルカリ金属の硫化物、多 硫化物、水硫化物、含水塩、酸化カルシウム等の発熱 剤、炭素質物質、炭化鉄、活性白土などの触媒剤、アゾ ジカルボンアミド、ベンゼンスルホニルヒドラジド、ジ ニトロソペンタメチレンテトラミン、ポリスチレン、ポ リウレタン等の有機発泡材、天然繊維片、合成繊維片等 の充填剤等があげられる。毒餌の基材としては、たとえ ば穀物粉、植物油、糖、結晶セルロース等の餌成分、ジ ブチルヒドロキシトルエン、ノルジヒドログアイアレチ ン酸等の酸化防止剤、デヒドロ酢酸等の保存料、トウガ ラシ粉末等の誤食防止剤、チーズ香料、タマネギ香料、 ピーナッツオイルなどの誘引剤等があげられる。フロア ブル剤(水中懸濁剤または水中乳濁剤)の製剤は、一般 に1~75%の本発明化合物を0.5~15%の分散剤、 30 0.1~10%の懸濁助剤(たとえば、保護コロイドやチ クソトロピー性を付与する化合物)、O~10%の適当 な補助剤(たとえば、消泡剤、防錆剤、安定化剤、展着 剤、浸透助剤、凍結防止剤、防菌剤、防黴剤等)を含む 水中で微小に分散させることによって得られる。水の代 わりに化合物がほとんど溶解しない油を用いて油中懸濁 剤とすることも可能である。保護コロイドとしては、た とえばゼラチン、カゼイン、ガム類、セルロースエーテ ル、ポリビニルアルコール等が用いられる。チクソトロ ピー性を付与する化合物としては、たとえばベントナイ ト、アルミニウムマグネシウムシリケート、キサンタン ガム、ポリアクリル酸等があげられる。このようにして 得られる製剤は、そのままであるいは水等で希釈して用 いる。また、他の殺虫剤、殺線虫剤、殺ダニ剤、殺菌 剤、除草剤、植物生長調節剤、共力剤、肥料、土壌改良 剤、動物用飼料などと混合して、または混合せずに同時 に用いることもできる。

【0006】用いられる他の殺虫剤および/または殺ダニ剤および/または殺線虫剤としては、例えばフェニトロチオン〔〇,〇ージメチル 〇一(3-メチル-4-50 ニトロフェニル)ホスホロチオエート〕、フェニチオン

[O, O-ジメチル O-(3-メチル-4-(メチル チオ)フェニル) ホスホロチオエート〕、ダイアジノン 〔〇, 〇一ジエチルー〇一2一イソプロピルー6ーメチ ルピリミジンー4ーイルホスホロチオエート〕、クロル ピリホス〔〇, 〇ージエチルー〇一3, 5, 6ートリク ロロー2ーピリジルホスホロチオエート〕。 アセフェー ト [O, S-ジメチルアセチルホスホラミドチオエー ト〕、メチダチオン〔S-2,3-ジヒドロ-5-メト キシー2-オキソー1,3,4-チアジアゾールー3-イルメチル〇、〇一ジメチルホスホロジチオエート〕、 ジスルホトン〔〇, 〇-ジエチルS-2-エチルチオエ チルホスホロチオエート〕、DDVP〔2,2-ジクロ ロビニルジメチルホスフェート〕、スルプロホス〔〇一 エチル 〇-4-(メチルチオ)フェニル S-プロピ ルホスホロジチオエート〕、シアノホス〔〇-4-シア ノフェニル O. O−ジメチルホスホロチオエート]. ジオキサベンゾホス〔2-メトキシ-4H-1,3,2 ーベンゾジオキサホスフィニンー2ースルフィド〕、ジ メトエート〔〇, 〇ージメチルーS-(Nーメチルカル バモイルメチル) ジチオホスフェート〕、フェントエー 20 ト [エチル 2 ージメトキシホスフィノチオイルチオ (フェニル)アセテート]、マラチオン〔ジエチル(ジ メトキシホスフィノチオイルチオ) サクシネート〕、ト リクロルホン〔ジメチル 2,2,2-トリクロロー1 ーヒドロキシエチルホスホネート〕、アジンホスメチル [S-3, 4-i]ンゾトリアジン-3-イルメチル 〇,〇-ジメチルホ スホロジチオエート〕、モノクロトホス〔ジメチル (E) -1-メチル-2-(メチルカルバモイル)ビニ トラエチル S, S'ーメチレンビス(ホスホロジチオ エート)] ホスチアゼート[N-(O-メチル-S-se]c ーブチル) ホスホリルチアゾリンジー2ーオン〕等の 有機リン系化合物、BPMC(2-sec-ブチルフェニ ルメチルカルバメート〕、ベンフラカルブ〔エチル N -(2,3-ジヒドロー2,2-ジメチルベンゾフラン -7-イルオキシカルボニル(メチル)アミノチオ〕-N-4ソプロピル $-\beta-$ アラニネート]、プロポキスル 〔2-イソプロポキシフェニル N-メチルカルバメー ト〕、カルボスルファン〔2,3-ジヒドロ-2,2-ジメチルー7ーベンゾ〔b〕フラニル Nージブチルア ミノチオーNーメチルカーバメート〕、カルバリル〔1 ーナフチルーN-メチルカーバメート〕、メソミル〔S **-メチル-N-〔(メチルカルバモイル)オキシ〕チオ** アセトイミデート〕、エチオフェンカルブ〔2-(エチ ルチオメチル)フェニルメチルカーバメート〕、アルジ カルブ〔2-メチル-2-(メチルチオ)プロピオンア ルデヒド 〇-メチルカルバモイルオキシ〕、オキサミ ル[N, N-ジメチル-2-メチルカルバモイルオキシ

カルブ[S-4-フェノキシブチル)-N, N-ジメチルチオカーバメート等のカーバメート系化合物、エトフ ェンプロックス〔2-(4-エトキシフェニル)-2-メチルプロピルー3ーフェノキシベンジルエーテル〕、 フェンバレレート〔(RS) $-\alpha$ ーシアノー3ーフェノ キシベンジル(RS)-2-(4-クロロフェニル)-3-メチルブチレート〕、エスフェンバレレート $(S) - \alpha - \nu r / - 3 - \tau / + \nu \langle \nu \rangle \rangle (S)$ -2-(4-クロロフェニル)-3-メチルブチレー 10 ト)、フェンプロパトリン $((RS) - \alpha - \nu r) - 3$ -フェノキシベンジル2,2,3,3-テトラメチルシ クロプロパンカルボキシレート〕、シペルメトリン $(RS) - \alpha - \nu T / - 3 - \tau J + \nu \nabla \nu U$ RS, 3RS) - (1RS, 3RS) - 3 - (2, 2 - 3)ジクロロビニル)-2,2-ジメチルシクロプロパンカ ルボキシレート〕、ペルメトリン〔3-フェノキシベン ジル (1RS, 3RS) - (1RS, 3RS) -3-(2, 2-i)クロロビニル) - 2, 2-iメチルシクロプ ロパンカルボキシレート〕、シハロトリン〔(RS)- α -シアノ-3-フェノキシベンジル(Z)-(1R S, 3RS) - 3 - (2 - 2 - 2 - 2 - 3, 3, 3 - 5)ロオロプロペニル)-2,2-ジメチルシクロプロパン カルボキシレート〕、デルタメトリン〔(S) $-\alpha$ -シ アノーmーフェノキシベンジル(1R, 3R)-3-(2,2-ジブロモビニル)-2,2-ジメチルシクロ プロパンカルボキシレート〕、シクロプロスリン〔(R $S) - \alpha - \nu T / - 3 - \tau J + \nu \nabla \nu V (RS) - \tau$ 2, 2-ジクロロー1-(4-エトキシフェニル)シク ロプロパンカルボキシレート〕、フルバリネート(αー ルポスフェート〕、エチオン〔〇,〇,〇',〇'ーテ 30 シアノー3ーフェノキシベンジル N-(2-2) α , α , α - λ - λ ート)、ビフェンスリン(2-メチルビフェニル-3-イルメチル)(Z)-(1RS)-cis -3-(2-ク ロロー3, 3, 3ートリフルオロプロプー1ーエニル) -2,2-ジメチルシクロプロパンカルボキシラート、 アクリナスリン〔($1R-\{1\alpha(S^*), 3\alpha\}$ (Z)}]-2, 2- \forall x+ ν -3-[3-x+y-3 -(2,2,2-トリフルオロ-1-(トリフルオロメ チル) エトキシー1ープロペニル] シクロプロパンカル 40 ボン酸シアノ (3-フェノキシフェノル) メチルエステ ル)、2-メチル-2-(4-ブロモジフルオロメトキ シフェニル)プロピル(3-フェノキシベンジル)エー テル、トラロメスリン〔(1R, 3S)3〔(1'R S) (1', 1', 2', 2'-テトラブロモエチ (N)] -2 , 2 - \hat{y} \hat ル、シラフルオフェン〔4-エトキシフェニル(3-(4-フルオロ-3-フェノキシフェニル)プロピル〕 ジメチルシラン等のピレスロイド化合物、ブプロフェジ イミノー2-(メチルチオ)アセタミド〕、フェノチオ 50 ン(2-tert-ブチルイミノー3-イソプロピルー5-

フェニルー1、3、5ートリアジアジナンー4ーオン) 等のチアジアジン誘導体、イミダクロプリド(1-(6) ークロロー3ーピリジルメチル)ーNーニトロイミダゾ リジンー2-インデンアミン〕等のニトロイミダゾリジ ン誘導体、カルタップ(S,S'-(2-ジメチルアミ **ノトリメチレン)ビス(チオカーバメート)**〕、チオシ クラム [N, N-ジメチル-1, 2, 3-トリチアン-5-イルアミン〕、ベンスルタップ〔S, S'-2-ジ メチルアミノトリメチレン ジ(ベンゼンチオサルフォ ネート)〕等のネライストキシン誘導体、N-シアノー N'-メチル-N'-(6-クロロ-3-ピリジルメチ ル)アセトアミジン等のN-シアノアミジン誘導体、エ ンドスルファン〔6,7,8,9,10,10-ヘキサ クロロ-1, 5, 5a, 6, 9, 9a-ヘキサヒドロ-6,9-メタノ-2,4,3-ベンゾジオキサチエピン オキサイド]、 γ - BHC (1, 2, 3, 4, 5, 6-ヘキサクロロシクロヘキサン〕、1,1-ビス(クロロ フェニル)-2,2,2-トリクロロエタノール等の塩 素化炭化水素化合物、クロルフルアズロン〔1-(3, 5-ジクロロ-4-(3-クロロ-5-トリフルオロメ 20 等があげられる。 チルピリジン-2-イルオキシ)フェニル)-3-(2,6-ジフルオロベンゾイル)ウレア〕、テフルベ ンズロン〔1-(3,5-ジクロロ-2,4-ジフルオ ロフェニル)-3-(2,6-ジフルオロベンゾイル) ウレア〕、フルフェノクスロン〔1-(4-(2-クロ ロー4ートリフルオロメチルフェノキシ) -2-フルオ ロフェニル〕-3-(2,6-ジフルオロベンゾイル) ウレア〕等のベンゾイルフェニルウレア系化合物、アミ トラズ〔N, N'〔(メチルイミノ)ジメチリジン〕ジ ルメチニミダミド〕等のホルムアミジン誘導体、ジアフ ェンチウロン[N-(2,6-ジイソプロピル-4-フ ェノキシフェニル)-N'-tert-ブチルカルボジイミ ド〕等のチオ尿素誘導体、N-フェニルピラゾール誘導 体、テブフェノジド[N-tert-ブチル-N'-(4-エチルベンゾイル)-3,5-ジメチルベンゾヒドラジ ド)、4-プロモ-2-(4-クロロフェニル)-1-エトキシメチルー5ートリフルオロメチルピロールー3 ーカルボニトリル、ブロモプロピレート〔イソプロピル 40 4.4'-ジブロモベンジレート〕、テトラジホン 〔4-クロロフェニル 2,4,5-トリクロロフェニ ルスルホン〕、キノメチオネート〔S, S-6-メチル キノキサリン-2,3-ジイルジチオカルボネート〕、 プロパルゲイト[2-(4-tert-ブチルフェノキシ)]シクロヘキシル プロプー2ーイル スルファイト〕、 フェンブタティン オキシド〔ビス〔トリス(2-メチ ルー2-フェニルプロピル)ティン]オキシド]、ヘキ シチアゾクス〔(4RS, 5RS)-5-(4-クロロ フェニル)-N-クロロヘキシル-4-メチル-2-オ 50 カルボキサミド(本発明化合物2)の製造

1.2

キソー1,3ーチアゾリジン-3ーカルボキサミド〕、 クロフェンテジン〔3,6-ビス(2-クロロフェニ (1, 1, 2, 4, 5- r) テンプン、ピリダチオベン [2-tert-ブチルー5-(4-tert-ブチルベンジルチオ)-4-2ロロピリダジン-3(2H)-オン], フェンピロキシメート〔tertーブチル(E)-4-〔(1,3-ジメチル-5-フェノキシピラゾール-4 ーイル)メチレンアミノオキシメチル〕ベンゾエー ト〕、テブフェンピラド〔N-4-tert-ブチルベンジ 10 ル) -4-クロロ-3-エチル-1-メチル-5-ピラ ゾールカルボキサミド〕、ポリナクチンコンプレックス 〔テトラナクチン、ジナクチン、トリナクチン〕、ミル ベメクチン、アベルメクチン、イバーメクチン、アザジ ラクチン〔AΖΑD〕、ピリミジフェン〔5ークロロー $N = [2 - \{4 - (2 - x + 5) + 5) - 2, 3 - 5]$ メチルフェノキシ | エチル] -6-エチルピリミジン-4-アミン、ピメトロジン〔2,3,4,5-テトラヒ ドロー3ーオキソー4ー〔(ピリジンー3ーイル)ーメ チレンアミノ〕-6-メチル-1,2,4-トリアジン

【0007】本発明化合物を農園芸用有害動物防除剤と して用いる場合、その施用量は、10アールあたり、通 常1gから1000gであり、好ましくは10gから100 gであり、乳剤、水和剤、フロアブル剤等を水で希釈し て用いる場合は、その施用濃度は通常、10ppm ~1000 ppm であり、粒剤、粉剤等は何ら希釈することなく製剤 のままで施用する。本発明化合物を農園芸用有害動物防 除剤として用いる場合、これらの製剤を有害動物から保 護すべき作物等の植物に茎葉散布してもよいが、本発明 30 化合物は浸透移行性を示すことから、これらの製剤を土 壌に処理することにより、土壌に棲息する有害動物を防 除することができるとともに、作物等の植物の茎葉部の 有害動物をも同時に防除することができる。また、防疫 用有害動物防除剤として用いる場合には、乳剤、水和 剤、フロアブル剤等は、通常水で0.01ppm ~10000ppmに 希釈して施用し、油剤、エアゾール、燻煙剤、ULV 剤、毒餌等についてはそのまま施用する。これらの施用 量、施用濃度は、いずれも製剤の種類、施用時期、施用 場所、施用方法、有害動物の種類、被害程度等の状況に よって異なり、上記の範囲にかかわることなく増加させ たり、減少させたりすることができる。

[0008]

【実施例】以下、本発明を製造例、製剤例および試験例 等により、さらに詳しく説明するが、本発明はこれらの 例に限定されるものではない。まず、本発明化合物の製 造例を示す。なお、本発明化合物の番号は後記表2に記 載の化合物番号である。

製造例1 N-(4-トリフルオロメチル-チアゾール -2-イル)-4-トリフルオロメチルピリジン-3-

4ートリフルオロメチルピリジンー3ーカルボン酸0.57 *3g(3.00 mmol)をテトラヒドロフラン12 ml に溶解し、N,N'ーカルボニルジイミダゾール0.584g(3.60mmol)を加え30分室温で撹拌した。テトラヒドロフランを減圧下に留去し、2ーアミノー4ートリフルオロメチルチアゾール0.504g(3.00 mmol)及びトルエン10ml 加え、3 時間撹拌下に加熱還流した。トルエンを減圧下に留去し、クロロホルム50 ml と10%食塩水30 ml を加えて振とう分液した。さらに水層をクロロホルムで抽出し、集めたクロロホルム層を10%食塩水で洗浄した後、硫酸マグネ 10シウムで乾燥した。硫酸マグネシウムをろ別後、クロロホルム溶液を減圧下に濃縮し、ヘキサンークロロホルムからの晶析により標題化合物を淡黄色粉末として0.535g(収率52.3%)得た。

【0009】製造例2 N-(1,3,4 -チアジアゾール-2-イル)-4-トリフルオロメチルピリジン-3-カルボキサミド(本発明化合物6)の製造

14

*4ートリフルオロメチルピリジンー3ーカルボン酸1.34 g(7.00 mmol)をテトラヒドロフラン20 ml に溶解し、N, N'ーカルボニルジイミダゾール1.36g(8.40mmol)を加え30分室温で攪拌した。テトラヒドロフランを減圧下に留去し、2ーアミノー1,3,4 ーチアジアゾール0.745g(8.4 0mmol)及びトルエン20 ml 加え、10時間攪拌下に加熱還流した。トルエンを減圧下に留去し、酢酸エチル200 ml と10%食塩水50mlを加え振とう分液した。さらに水層を酢酸エチルで抽出し、集めた酢酸エチル層を10%食塩水で洗浄した後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、酢酸エチル溶液を減圧下に濃縮し、酢酸エチルからの晶析により標題化合物を白色粉末として0.623g(収率34.5%)得た。

【0010】本発明化合物の例を化合物番号および物性値と共に表2に示す。(一般式 化2で示される化合物の置換基の定義で示す。)

【表2】

化合物 番号	Rı	X	mp (℃)	¹H-NMR (CDCl; / TMS), δ (ppm)
1	Н	С-Н	229	10.5~10.2(bs,1H), 9.03(d,1H),9.01 (s,1H),7.74(d,1H), 6.91(d,1H), 6.26(d, 1H)
2	Н	C-CF ₃	179	10.5~10.1(bs,1H), 9.00 (d,1H), 8.95 (s,1H),7.71 (d,1H), 7.51 (s,1H)
3	Н	$C-C(CH_3)_3$	140	8. 98(s, 1H), 8. 94(d, 1H), 7. 68(d, 1H) 6. 65(s, 1H), 1. 30(s, 9H)
4	CI	$C-C L^3$	177	9.01(d,1H), 8.93(s,1H), 7.73(d, 1H)
5	Н	$C-CH^8$	13 1	8.95(d,1H), 8.91(s,1H), 7.67(d, 1H),6.56(d,1H), 1.91(d,3H)
6	Н	N	234	9. 10(s, 1H), 9. 02(d, 1H), 8. 76(s, 1H) 7. 71(d, 1H)

【0011】次に、一般式 化3で示されるアミン化合物の製造例を示す。

参考製造例1 2-アミノ-4-トリフルオロメチルチ アゾールの製造

チオ尿素3.04g(40.0 mmol)を水70 ml に溶解し、これに室温で3ープロモー1,1,1,トリフルオロアセトン7.64g(40.0 mmol)を滴下した。これらの混合物を3時間攪拌下に加熱還流した。クロロホルム100 mlを加え、さらに冷却下水酸化ナトリウム1.68g(40.0 mmol)を水20 ml に溶解したものを滴下した。分液後、水層をクロロホルムで抽出し、集めたクロロホルム層を10%食塩水で洗浄した。硫酸マグネシウムで乾燥後、濃縮し、標題化合物を黄色粉末として4.90g(収率72%)得た。

¹ H−NMR (CDC 1 ≈ /TMS), δ (ppm): 6.95%50 水酸化珪素微粉末 2 O 部および珪藻土 5 4 部を混合した

※ (s, 1H) 、5.54 (bs, 2H)

【0012】次に、製剤例を示す。なお、本発明化合物は表2に記載の化合物番号で示し、部は重量部を表わ 40 す。

製剤例1 乳剤

本発明化合物1~6の各々10部をキシレン35部およびジメチルホルムアミド35部に溶解し、ボリオキシエチレンスチリルフェニルエーテル14部およびドデシルベンゼンスルホン酸カルシウム6部を加え、よく攪拌混合して各々の10%乳剤を得る。

製剤例2 水和剤

本発明化合物1~6の各々20部をラウリル硫酸ナトリウム4部、リグニンスルホン酸カルシウム2部、合成含水酸化珪素微粉末20部以上び珪藻土54部を混合した

中に加え、ジュースミキサーで攪拌混合して各々の20 %水和剤を得る。

製剤例3 粒剤

本発明化合物1~6の各々5部にドデシルベンゼンスル ホン酸ナトリウム5部、ベントナイト30部およびクレ −60部を加え、充分攪拌混合する。次いで、これらの 混合物に適量の水を加え、さらに攪拌し、造粒機で製粒 し、通風乾燥して各々の5%粒剤を得る。

製剤例4 粉剤

溶解し、これに合成含水酸化珪素微粉末5部、PAP0. 3部およびクレー93.7部を加え、ジュースミキサーで攪 拌混合し、アセトンを蒸発除去して各々の1%粉剤を得

製剤例5 フロアブル剤(水中乳濁剤)

本発明化合物1~6の各々の10部をポリビニルアルコ ール6部を含む水溶液40部中に加え、ミキサーで攪拌 し、分散剤を得る。この中に、キサンタンガム0.05部お よびアルミニウムマグネシウムシリケート0.1部を含む 水溶液40部を加え、さらに、プロピレングリコール1 20 O部を加えて緩やかに攪拌混合して各々の10%水中乳 濁剤を得る。

製剤例6 油剤

本発明化合物1~6の各々の0.1部をキシレン5部およ びトリクロロエタン5部に溶解し、これを脱臭灯油89.9 部に混合して各々の0.1%油剤を得る。

製剤例7 油性エアゾール

本発明化合物1~6の各々の0.1部、テトラメスリン0. 2部、d-フェノスリン0.1部、トリクロロエタン10 部および脱臭灯油59.6部を混合溶解し、エアゾール容器 30 00を示した。 に充填し、バルブ部分を取り付けた後、該バルブ部分を 通じて噴射剤(液化石油ガス)30部を加圧充填して各 々の油性エアゾールを得る。

製剤例8 水性エアゾール

本発明化合物1~6の各々の0.2部、d-アレスリン0. 2部、d-フェノスリン0.2部、キシレン5部、脱臭灯 油3.4部および乳化剤 {アトモス300 (アトラスケミ 50部とをエアゾール容器に充填し、バルブ部分を取り 付け、該バルブ部分を通じて噴射剤(液化石油ガス)4 40 1.6

O部を加圧充填して各々の水性エアゾールを得る。

製剤例9 毒餌

本発明化合物1~6の各々10mgをアセトン0.5mlに溶 解し、この溶液を動物用固型飼料粉末(飼育繁殖用固型 飼料粉末CE-2, 日本クレア株式会社商品名) 5gに 処理し、均一に混合する。ついでアセトンを風乾し、各 々の0.5%毒餌を得る。

【0013】次に、本発明化合物が有害動物防除剤の有 効成分として有用であることを試験例により示す。な 本発明化合物1~6の各々の1部を適当量のアセトンに 10 お、本発明化合物は表2に記載の化合物番号で示す。

> 試験例1 ワタアブラムシに対する殺虫試験(茎葉散布 試験)

> 製剤例1に準じて得られた供試化合物の乳剤を、有効成 分濃度が500ppm になるように水で希釈した。第1本 葉が展開したポリエチレンカップ植えのキュウリの第1 本葉にワタアブラムシ無翅胎生成虫を5頭接種し、産卵 させた。その1日後、ワタアブラムシの寄生したカップ 植えのキュウリに該希釈液を20㎖/カップの割合で散 布した。散布6日後に、式数1により防除価を求めた。

【数1】

ここで、

Cb:無処理区の処理前の虫数 Cai:無処理区の観察時の虫数

Tb:実験区の処理前の虫数

Tai:実験区の観察時の虫数

である。その結果、本発明化合物1~6は各々防除価1

【0014】試験例2 ワタアブラムシに対する殺虫試 験(浸透移行性試験)

製剤例1に準じて得られた供試化合物の乳剤を、有効成 分濃度が500ppm になるように水で希釈した。ポリエ チレンカップ植えのキュウリの株元に、該希釈液を10 cc/1ポットの割合でかん注した。薬剤処理5日後に、 ワタアブラムシ成虫を5頭本葉上に放飼し、放飼6日後 に上記式数1により防除価を求めた。その結果、本発明 化合物1~6は各々防除価100を示した。