# Economics 101A (Lecture 22)

Stefano DellaVigna

April 13, 2017

#### Outline

- 1. Oligopoly: Cournot
- 2. Oligopoly: Bertrand
- 3. Second-price Auction
- 4. Auctions: eBay Evidence
- 5. Dynamic Games

### 1 Oligopoly: Cournot

- Nicholson, Ch. 15, pp. 534-540
- Back to oligopoly maximization problem
- Assume 2 firms, cost  $c_i(y_i) = cy_i$ , i = 1, 2
- ullet Firms choose simultaneously quantity  $y_i$
- Firm *i* maximizes:

$$\max_{y_i} p(y_i + y_{-i}) y_i - cy_i.$$

• First order condition with respect to  $y_i$ :

$$p_Y'(y_i^* + y_{-i}^*)y_i^* + p - c = 0, i = 1, 2.$$

- Nash equilibrium:
  - $y_1$  optimal given  $y_2$ ;
  - $y_2$  optimal given  $y_1$ .
- Solve equations:

$$p_Y'\left(y_1^*+y_2^*\right)y_1^*+p-c=\mathbf{0} \text{ and}$$
 
$$p_Y'\left(y_2^*+y_1^*\right)y_2^*+p-c=\mathbf{0}.$$

- Cournot -> Pricing above marginal cost
- Numerical example -> Problem set 5

### 2 Oligopoly: Bertrand

- Nicholson, Ch. 15, pp. 533-534
- Cournot oligopoly: firms choose quantities
- Bertrand oligopoly: firms first choose prices, and then produce quantity demanded by market
- Market demand function Y(p)
- 2 firms
- Profits:

$$\pi_{i}(p_{i}, p_{-i}) = \begin{cases} (p_{i} - c) Y(p_{i}) & \text{if } p_{i} < p_{-i} \\ (p_{i} - c) Y(p_{i}) / 2 & \text{if } p_{i} = p_{-i} \\ 0 & \text{if } p_{i} > p_{-i} \end{cases}$$

ullet First show that  $p_1=c=p_2$  is Nash Equilibrium

• Does any firm have a (strict) incentive to deviate?

• Check profits for Firm 1

• Symmetric argument for Firm 2

- Second, show that this equilibrium is unique.
- For each of the next 5 cases at least on firm has a profitable deviation
- Case 1.  $p_1 > p_2 > c$

• Case 2.  $p_1 = p_2 > c$ 

• Case 3.  $p_1 > c \ge p_2$ 

• Case 4.  $c > p_1 \ge p_2$ 

• Case 5.  $p_1 = c > p_2$ 

- ullet Only Case 6 remains:  $p_1=c=p_2,$  which is Nash Equilibrium
- It is unique!

• Notice:

- To show that something is an equilibrium -> Show that there is \*no\* profitable deviation
- To show that something is \*not\* an equilibrium ->
   Show that there is \*one\* profitable deviation

| • | Surprising result of Bertrand Competition              |
|---|--------------------------------------------------------|
| • | Marginal cost pricing                                  |
| • | Two firms are enough to guarantee perfect competition! |
| • | Realistic? Price wars between PC makers                |

### 3 Second-price Auction

- Nicholson, Ch. 18, pp. 669-676
- Sealed-bid auction
- Highest bidder wins object
- Price paid is second highest price

- Two individuals: I=2
- Strategy  $s_i$  is bid  $b_i$
- ullet Each individual knows value  $v_i$

ullet Payoff for individual i is

$$u_i(b_i, b_{-i}) = \begin{cases} v_i - b_{-i} & \text{if } b_i > b_{-i} \\ (v_i - b_{-i})/2 & \text{if } b_i = b_{-i} \\ 0 & \text{if } b_i < b_{-i} \end{cases}$$

- Show: weakly dominant to set  $b_i^* = v_i$
- To show:

$$u_i(v_i, b_{-i}) \ge u_i(b_i, b_{-i})$$

for all  $b_i$ , for all  $b_{-i}$ , and for i = 1, 2.

### 1. Assume $b_{-i} > v_i$

- $u_i(v_i, b_{-i}) = 0 = u_i(b_i, b_{-i})$  for any  $b_i < b_{-i}$
- $u_i(b_{-i}, b_{-i}) = (v_i b_{-i})/2 < 0$
- $u_i(b_i, b_{-i}) = (v_i b_{-i}) < 0$  for any  $b_i > b_{-i}$

### 2. Assume now $b_{-i} = v_i$

3. Assume now  $b_{-i} < v_i$ 

### 4 Auctions: Evidence from eBay

- In second-price auction, optimal strategy is to bid one's own value
- Is this true?
- eBay has proxy system: If you have highest bid, you pay bid of second-highest bidder
- eBay is essentially a second-price auction
- Two deviations:
  - 1. People bid multiple times they should not in this theory
  - 2. People may overbid

# An example: eBay Bidding for a Board Game

- Bidding environment with clear boundary for rational willingness to pay ("buy-it-now price").
- Empirical environment unaffected by common-value arguments (presumably bidding for private use; in addition "buy-it-now" price).
- Still non-negligible amount (\$100-\$200).
- → Is there evidence of overbidding?
- → If so, can we detect determinants of overbidding?

# The Object



### The Data

- Cashflow 101: board game with the purpose of finance/accounting education.
- Retail price: \$195 plus shipping cost (\$10.75) from manufacturer (<u>www.richdad.com</u>).
- Two ways to purchase Cashflow 101 on eBay
  - Auction (quasi-second price proxy bidding)
  - Buy-it-now
- Hand-collected data of all auctions and Buy-itnow transactions of Cashflow 101 on eBay from 2/19/2004 to 9/6/2004.

# Sample

- Listings
  - 206 by individuals (187 auctions only, 19 auctions with buy-it-now option)
  - 493 by two retailers (only buy-it-now)
- Remove non-US\$, terminated, unsold items and items without simultaneous *professional* buy-it-now listing.  $\rightarrow$  169 auctions
- Buy-it-now offers of the two retailers
  - Continuously present for all but six days. (Often individual buy-it-now offers present as well; they are often lower.)
  - 100% and 99.9% positive feedback scores.
  - Same prices \$129.95 until 07/31/2004; \$139.95 since 08/01/2004.
  - Shipping cost \$9.95; other retailer \$10.95.
  - New items (with bonus tapes/video).

## Listing Example (02/12/2004)

| Rich Dad's Cashflow Quadrant, Rich dad @          | \$12.50  | 4                  | 1d 00h 14m |  |
|---------------------------------------------------|----------|--------------------|------------|--|
| Rich Dad's Cashflow Quadrant by Robert T          | \$9.00   | 9                  | 1d 00h 43m |  |
| Real Estate Investment Cashflow Software \$\$\$!  | \$10.49  | 2                  | 1d 04h 36m |  |
| CASHFLOW® 101 202 Robert Kiyosaki Best Pak \$ 🔎   | \$207.96 | <i>∓Buy It Now</i> | 1d 06h 47m |  |
| TRY IT TODAY, WITH ABSOLUTELY NO RISK,            |          |                    |            |  |
| CASHFLOW® 101 Robert Kiyosaki Plus Bonuses!       | \$129.95 | ∓Buy It Now        | 1d 08h 02m |  |
| Your satisfaction is GUARANTEED, 100% \$ back     |          |                    |            |  |
| MINT Cashflow 101 *Robert Kiyosaki Game NR!       | \$140.00 | 13                 | 1d 08h 04m |  |
| It's easy to be rich. Brand New. Still sealed     |          |                    |            |  |
| cashflow Hard Money Funding 101 real estate &     | \$14.99  | ∓Buy It Now        | 1d 09h 28m |  |
|                                                   |          |                    |            |  |
|                                                   |          |                    |            |  |
| BRANDNEW RICHDAD CASHFLOW FOR KIDS E-             | \$20.00  | 1                  | 1d 13h 54m |  |
| GAME &                                            |          |                    |            |  |
|                                                   |          | - ***              |            |  |
| CASHFLOW® 101 Robert Kiyosaki Plus Bonuses!       | \$129.95 | ∓Buy It Now        | 1d 14h 17m |  |
| Your satisfaction is GUARANTEED, 100% \$ back     |          |                    |            |  |
| CASHFLOW® 101 202 Robert Kiyosaki Best Pak \$ 👂 🕏 | \$207.96 | ∓Buy It Now        | 1d 15h 47m |  |
| TRY IT TODAY, WITH ABSOLUTELY NO RISK,            |          |                    |            |  |
|                                                   |          |                    |            |  |

## <u>Listing Example – Magnified</u>



### Bidding history of an item



# **Hypotheses**

Given the information on the listing website:

- (H1) An auction should never end at a price above the concurrently available purchase price.
- (H2) Mentioning of higher outside prices should not affect bidding behavior.

Figure 1. Starting Price (startprice)

- → 45% below \$20; mean=\$46; SD=43.88
- → only 6 auctions with first bid (not price) above buy-it-now



Figure 2. Final Price (finalprice)

→ 41% are above "buy-it-now" (mean \$132; SD 16.83)



Figure 4. Total Price (incl. shipping cost)

51% are above "buy-it-now" plus its shipping c

→ 51% are above "buy-it-now" plus its shipping cost (mean=\$144.20; SD=15.00)



### 5 Dynamic Games

- Nicholson, Ch. 8, pp. 268-277
- Dynamic games: one player plays after the other
- Decision trees
  - Decision nodes
  - Strategy is a plan of action at each decision node

• Example: battle of the sexes game

$$\begin{array}{cccc} \text{She} \setminus \text{He} & \text{Ballet} & \text{Football} \\ & \text{Ballet} & 2,1 & 0,0 \\ & \text{Football} & 0,0 & 1,2 \end{array}$$

• Dynamic version: she plays first

- **Subgame-perfect equilibrium.** At each node of the tree, the player chooses the strategy with the highest payoff, given the other players' strategy
- Backward induction. Find optimal action in last period and then work backward
- Solution

• Example 2: Entry Game

$$\begin{array}{cccc} 1 \setminus 2 & \text{Enter} & \text{Do not Enter} \\ & \text{Enter} & -1, -1 & 10, 0 \\ \text{Do not Enter} & 0, 5 & 0, 0 \end{array}$$

• Exercise. Dynamic version.

• Coordination games solved if one player plays first

- Can use this to study finitely repeated games
- Suppose we play the prisoner's dilemma game ten times.

• What is the subgame perfect equilibrium?

- The result differs if infinite repetition with a probability of terminating
- Can have cooperation
- Strategy of repeated game:
  - Cooperate (ND) as long as opponent always cooperate
  - Defect (D) forever after first defection
- Theory of repeated games: Econ. 104

### 6 Next lecture

• General Equilibrium

Barter