

Kap. 4: Grundlagen der Codierung

- 4.1 Einführung
- 4.2 Blockcodes
- 4.3 Codes variierender Länge
- 4.4 Komprimierende Codes
- 4.5 Fehlererkennende und -korrigierende Codes

***** G

Quellen

- M. Broy: "Informatik Eine grundlegende Einführung", Teil II, Springer-Verlag, 1992 (Kap. 1)
- U. Rembold, P. Levi: "Einführung in die Informatik für Naturwissenschaftler und Ingenieure", 3. Auflage, Hanser-Verlag, 1999 (Kap. 2.1.)
- D. Werner u.a.: "Taschenbuch der Informatik", Fachbuchverlag Leipzig, 1995 (Kap. 2.2)
- F. Mayer-Lindenberg: "Konstruktion digitaler Systeme", Vieweg-Verlag, 1998 (Kap. 2)
- J. Plate: "Modem-Technik", Skript FH München, 1998
- H. Dispert, H.-G. Heuck: "Einführung in die Technische Informatik und Digitaltechnik", Vorlesungsskript FH Kiel, © 1995 (Kap. 8.7), http://www.e-technik.fh-kiel.de/~dispert/digital/digital/dig0_00.htm
- W. Görke: "Fehlertolerante Rechensysteme", Oldenbourg Verlag, 1989 (Kap. 4.1)

4.1 Einführung

Wiederholung (Kap. 2.4):

- Codes oder Codierungen sind Abbildungen c:A→B oder c:A^{*}→B^{*}
 zwischen Zeichenvorräten A und B oder zwischen Wörtern über
 Zeichenvorräten.
- Die Bildmenge {b∈B | b=c(a), a∈A} unter c, d.h. die Menge der Codewörter von c, wird ebenfalls Code genannt.
- Die Ausgangszeichen heißen auch Klarzeichen, die Zielelemente Codezeichen und Codewörter.
- Besteht der Definitionsbereich einer Codierung aus Einzelzeichen, so heißt die Codierung auch *Chiffrierung* und die Bildmenge auch *Chiffren*.
- Eine Codierung erlaubt für dieselbe betrachtete Information den Übergang von Zeichen und Wörtern eines gegebenen Repräsentationssystems zu Zeichen und Wörtern eines neuen Repräsentationssystems.

Weitere Begriffe

 In der Regel ist die Abbildung eines Codes injektiv, d.h. verschiedene Zeichen oder Wörter werden auf verschiedene Codewörter abgebildet. Damit ist die auf der Bildmenge umkehrbare Codierung beschrieben durch eine Abbildung

d:
$$\{b \in B \mid b=c(a), a \in A\} \rightarrow A$$
,

die *Decodierung* genannt wird.

- Codierung wird auch als Verschlüsselung, Decodierung als Entschlüsselung bezeichnet.
- Für die Informationsdarstellung in Rechensystemen werden fast ausschließlich Binär-Codierungen (Binär-Codes) von Alphabeten betrachtet. Dies sind Codierungen der Form c:A→{0,1}*,

wobei A ein vorgegebenes Alphabet ist.

Beispiele (vgl. Kap. 3):
 Codierung ganzer Zahlen, Gleitkommazahlen, Text/Zeichenketten

Ziele von Codierungen

Funktionalität

- Repräsentationssysteme zur Speicherung, Verarbeitung und Übertragung von Information
- Umkehrbarkeit (Decodierbarkeit)
- Ordnungserhaltung nach Codierung (z.B. für Sortierung)
- Änderung an nur einer Stelle beim Übergang zum nächsten Zahlenwert (Korrektheit bei Messwerterfassung)

Effizienz

- übersichtliche und wenig aufwändige Codierungsfunktion
- einfache und wirtschaftliche Verarbeitung in der neuen Repräsentierung
- einfache Komplementbildung (für Arithmetik)
- einfache Realisierung arithmetischer Operationen
- möglichst kurze Codewörter; Reduktion von Speicherbedarf, Übertragungszeit, Energiekosten usw.

Ziele von Codierungen (2)

- Effizienz (Forts.)
 - Beispiele:
 - Codierung und Arithmetik ganzer Zahlen (vgl. Kap. 3.3)
 - UTF-8-Codierung von Unicode-Zeichen (vgl. Kap. 3.4.6)
- Sicherung gegen Verfälschung
 - Fehler können zu Veränderungen der Repräsentierung von Information während der Speicherung und Übertragung führen (Störung)!
 - Erkennen von Fehlern in "geringfügig" gestörten Codewörtern
 - Erkennen von Verarbeitungsfehlern
 - automatische Korrektur fehlerhafter Codewörter ohne Informationsverlust (korrekte Decodierung)
 - Maßnahmen konkurrieren mit Effizienz
- Geheimhaltung von Information
 - Verschlüsselung (kryptographische Methoden)

Codebaum

- Jeder Binär-Code kann graphisch durch einen binären Codebaum dargestellt werden:
 - jeder Stelle im Codewort wird eine Schicht im Baum zugeordnet
 - jedem Binärwert wird ein linker und ein rechter Unterbaum zugeordnet
- Beispiel (Codebaum des BCD-Codes):

4.2 Blockcodes

- Ein Code c:A→Bⁿ, dessen Codewörter alle die gleiche Länge n besitzen, heißt *(n-stelliger)* Blockcode.
- Die Anzahl der möglichen Codewörter eines Blockcodes c:A→Bⁿ beträgt |B/ⁿ.
- Ein n-stelliger Blockcode c:A→Bⁿ heißt dicht, wenn c surjektiv ist, d.h. wenn alle b∈ Bⁿ Codewörter unter c darstellen.
- Binäre Blockcodes c:A→{0,1}ⁿ sind für Rechensysteme besonders geeignet, da die Codewörter n-Bit-Maschinenwörtern entsprechen.
- Ist |A|=m, d.h. A besteht aus m Zeichen, so benötigt man für einen binären Blockcode c:A→{0,1}ⁿ mindestens n = \[\log_2 m \] Stellen. (\[\rac{1}{2} \] bedeutet "kleinste ganze Zahl größer gleich x".)

Beispiele

- Die Codierung ganzer Zahlen in 2er-Komplement-Darstellung in n-Bit-Maschinenwörtern (vgl. Kap. 3.3.3) stellt einen binären, dichten Blockcode dar.
- Der ASCII-Code ist ein dichter 7-Bit Blockcode.
- Die BCD-Codierung von Dezimalziffern in 4-Bit Nibbles (vgl. Kap. 3.3.4) ist nicht dicht.
- Die Anzahl der möglichen Codewörter in einem n-Bit-Maschinenwort beträgt 2ⁿ.
- Zur Codierung der 10 Dezimalziffern in einem binären Blockcode benötigt man mindestens $n = \lceil \log_2 10 \rceil = 4$ Stellen.

Gewichtete Codes

Ein binärer Blockcode c:A→{0,1}ⁿ zur Codierung von Zahlen heißt *gewichtet* oder *bewertbar*, wenn den Stellen der Codewörter Gewichte W_i zugeordnet sind und sich der Wert der dargestellten Zahl z ergibt zu

 $z = \sum_{i=1}^{n} b_i W_i ,$

wobei $b_i \in \{0,1\}$, i=1,...,n die den Gewichten in der Codierung von zugeordneten binären Ziffern entsprechen.

Andernfalls heißt der Code *Anordnungscode*.

Beispiele: gewichtete BCD-Codes

üblicher BCD-Code				51111- Code					
W_{i}	2 ³	2 2	2 ¹	2 ⁰	5	1	1	1	1
0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	1
2	0	0	1	0	0	0	0	1	1
2 3	0	0	1	1	0	0	1	1	1
4	0	1	0	0	0	1	1	1	1
5	0	1	0	1	1	0	0	0	0
6	0	1	1	0	1	1	0	0	0
7	0	1	1	1	1	1	1	0	0
8	1	0	0	0	1	1	1	1	0
9	1	0	0	1	1	1	1	1	1

Beispiele: gewichtete BCD-Codes (2)

Aiken- Code	
W _i 2 4 2 1	
0 0 0 0 0 1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 1 0 1 1 6 1 1 0 0 7 1 1 0 1 8 1 1 1 1 9 1 1 1 1	 Pseudotetraden liegen in der Mitte selbstkomplementierend (Vertauschen 0-1 ergibt Komplement) monoton wachsend Rundungserkennung (>=5, <5) am vordersten Bit Übertrag stimmt mit Dezimalübertrag überein

Beispiele: gewichtete BCD-Codes (3)

2-aus-5-Code

```
W<sub>i</sub> 7 4 2 1 0

0 1 1 0 0 0
1 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 1 0 0 0 1
8 1 0 0 1 0
9 1 0 1 0 0
```

- bis auf die Null monoton wachsend
- fehlererkennend (für alle 1-Bit-Fehler)
- Einsatz: Strichcode
 (5 Striche: 3 schmal, 2 breit)
 (Postleitzahlencodierung)

Beispiele: gewichtete BCD-Codes (4)

	1-aus-10- Ring-Code		
W_{i}	9876543210		
0	000000001 000000010	_	monoton wachsend
2	000000100	_	sehr übersichtlich
3 4	0000001000 0000010000	_	großer Aufwand
5	0000100000	_	Einsatz: Anzeigen, numerische
6	0001000000 001000000		Tastaturen
-	0.010000000		

010000000 100000000

Gray-Code

- Sei A ein Alphabet. (Damit ist eine lineare Ordnung auf A definiert.) Ein binärer Blockcode c:A→{0,1}ⁿ heißt *Gray-Code* oder *einschrittiger Code*, wenn sich die Codierungen zweier in der Ordnung aufeinander folgender Zeichen in A stets in genau einer Bit-Stelle unterscheiden.
- Unterscheiden sich die Kodierung des ersten und des letzten Zeichens von A ebenfalls nur in einer Stelle, so spricht man von einem zyklischen Gray-Code.
- Gray-Codes besitzen wegen ihrer Einschrittigkeit eine hohe Bedeutung bei der Messwerterfassung, z.B. bei der Analog/Digital-Wandlung in Drehwinkelgebern, da sie inkorrekte Messergebnisse vermeiden.

Beispiele

Bildung des n-stelligen Gray-Codes

- Bildungsgesetz (rekursiv):
 - 0 und 1 werden mit den Dualzahlen 0 und 1 codiert.
 - Wenn eine neue Stelle gebraucht wird, wird sie mit 1 besetzt.

In den folgenden Stellen wird die bisherige Codierung rückwärts

Blockcodes für spezielle Aufgaben

Beispiel: 7-Segment-Code für Dezimalziffern-Anzeigen:

0	1	1	1	1	1	1	0
1	0	1	1	0	0	0	0
2	1	1	0	1	1	0	1
3	1	1	1	1	0	0	1
4	0	1	1	0	0	1	1
5	1	0	1	1	0	1	1
6	1	0	1	1	1	1	1
7	1	1	1	0	0	0	0
8	1	1	1	1	1	1	1
9	1	1	1	1	0	1	1

abcdefg

4.3 Codes variierender Länge

- Ein Code c:A→B*, dessen Codewörter verschiedene Längen besitzen können, heißt *variabel langer Code* oder *Code variierender Länge*.
- Beispiel (Impulswahlverfahren des Fernsprechsystems):
 c:{0, ..., 9}→{O,L}*

Ziffer	Code
1	LO
2	LLO
3	LLLO
4	LLLLO
5	LLLLLO
6	LLLLLO
7	LLLLLLO
8	LLLLLLLO
9	LLLLLLLLO
0	LLLLLLLLO

Codes variierender Länge in Rechensystemen

 In heutigen Rechensystemen sind Codes variierender Länge für elementare Datentypen aufgrund der Maschinenwort-Struktur nicht sehr gebräuchlich.

Beispiele:

- Codierung von Maschinenbefehlen
 - z.B. 2, 4 oder 6 Bytes lange Befehle in IBM /360-Architektur
 - Bit-variabel lange Befehle im Prozessor Intel iAPX 432
- UTF-8-Codierung von Unicode-Zeichen in 1, 2, ..., 6 Bytes (vgl. Kap. 3.4.6)
- Bitstream-Codierung in Abstract Syntax Notation One (ASN.1)
 - ASN.1: Eine formale Sprache zur abstrakten Beschreibung von Nachrichten für den Austausch zwischen Anwendungen.
 - Siehe auch http://www.itu.int/ITU-T/asn1/
 - Plattform-unabhängig, kompakt, schnell und grundlegend.

Beispiel: Morse-Code

Ausschnitt als Codebaum:

Häufig vorkommende Schriftzeichen besitzen kurze Codewörter.

Zur korrekten Decodierung wurde zur Trennung der Codewörter ein drittes Codezeichen "Pause" (□) eingeführt.

Beispiel:

• □ - : e t

• □ • • □ - - □ • □ • - • □: e i m e r

Fano-Bedingung

- Vorteil von Codes variierender Länge:
 Häufig vorkommende Zeichen aus A können durch kurze
 Codewörter dargestellt werden.
- Problem:
 Trennen der Codewörter voneinander ist schwieriger.

Die Eindeutigkeit der Decodierung eines Codes variierender Länge ist gegeben, wenn der Code die sogenannte *Fano-Bedingung* erfüllt: <u>Kein Codewort ist Präfix</u> (Anfangsstück) <u>eines anderen Codewortes</u>.

- Bemerkungen:
 - Die Fano-Bedingung ist gleichbedeutend damit, dass <u>im Code-</u>
 <u>baum zu codierende Zeichen nur als Blätter</u> des Baumes auftreten.
 - Codes mit erfüllter Fano-Bedingung heißen auch präfixfrei.

Beispiel

Huffman-Code für das engl. Alphabet als präfixfreier Binär-Code variierender Länge

E

Beispiel (2)

 Jeder Blockcode der Länge n erfüllt die Fano-Bedingung automatisch. Zur Decodierung werden jeweils Blöcke von n Codezeichen gebildet und decodiert.

Beispiel: BCD-Codierung der dezimalen Ziffern in Tetraden.

Der Morse-Code erfüllt die Fano-Bedingung <u>nicht</u>.
 Zur sicheren Decodierung verwendet er ein Trennzeichen zwischen Codewörtern.

4.4 Komprimierende Codes

- Ziele komprimierender Codes
 - Reduktion der Länge der Repräsentierung von Information durch Kompression
 - Kostenersparnis
- Anwendungsbereich:
 Speicherung und Übertragung von Information.
- Hier besprochen:

 Verlustfreie Codierungen, die eine vollständige und korrekte
 Decodierung ermöglichen (z.B. für Text, Programme usw. notwendig)
- Überblick
 - Lauflängenkodierung (Run Length Encoding, RLE)
 - Wörterbuch-Kompression
 - Huffmann-Codierung
 - Shannon/Fano-Codierung

Lauflängenkodierung

- (engl.: *Run Length Encoding*, RLE)
- Viele Daten enthalten <u>Läufe</u>, d.h. Folgen identischer Zeichen.
- Idee: Folge identischer Zeichen durch (Anzahl, Zeichen) codieren.
- Problem:
 Unterscheidung des Zählers von Daten gleicher Repräsentierung
- RLE codiert Läufe beliebiger Zeichen typischerweise durch
 - (Zeichen, Marker, Anzahl)
 - Marker in Daten codiert durch (Marker, Marker)

Lauflängenkodierung (2)

- Beispiel:
 - Marker: #
 - "ABBBBBBBCDEEEEEEEEEEEF#34777777" (31 Zeichen)
 - komprimiert: "AB#7CDE#11F##347#6" (18 Zeichen)
- Vereinfachung in Sonderfällen möglich,
 z.B. bei 7-Bit-Zeichen ⇒ MSB als Markierung des Zählers
- Anwendungsspezialfall: Null-Unterdrückung

Wörterbuchkompression (Lempel-Ziv)

- Wörterbuch mit Tupeln (Phrase, Codewort) wird schrittweise erzeugt
 - Phrase: Folgen von Eingabezeichen
 - erzeugte Codewörter enthalten Verweise in das Wörterbuch

Vorteile

- adaptiv (selbstanpassend)
- optimal, wenn Tabelle beliebig groß und Eingabe unendlich lang sind
- Problem: Datenstruktur f
 ür das W
 örterbuch
 - Tabelle, Baum, Hash-Funktion (vgl. 2. Semester: Datenstrukturen)

Verfahren:

- LZ77 (Lempel, Ziv, 1977), neuere Varianten pkzip, gzip
- LZ78 (Lempel, Ziv, 1978), Baum statt Tabelle als Basis
- LZW (Lempel, Ziv, Welch, 1984), komplexeres Tabellenverfahren,
 Basis von compress und dem Bildformat gif

Eingabe: AAABAABAABAABB...

(1) AAABAABAABAABB...

 $\hat{\mathbb{I}}$

Wörterbuch und erzeugter Code:

Eintrag #

Phrase A

Codewort (0,A)

(2) AAABAABAABAABB...

Wörterbuch und erzeugter Code:

Eintrag # 1 2

Phrase A AA

Codewort (0,A) (1,A)

3 AAABAABAABAABB...

Wörterbuch und erzeugter Code:

Eintrag # 1 2 3

Phrase A AA B

Codewort (0,A) (1,A) (0,B)

4 AAABAABAABA...

Wörterbuch und erzeugter Code:

Eintrag # 1 2 3 4

Phrase A AA B AAB

Codewort (0,A) (1,A) (0,B) (2,B)

Beispiel (3)

(5) AAABAABAABAABB...

Wörterbuch und erzeugter Code:

Eintrag # 1 2 3 4 5

Phrase A AA B AAB AABA

Codewort (0,A) (1,A) (0,B) (2,B) (4,A)

6 AAABAABAABAABB...

Wörterbuch und erzeugter Code:

Eintrag # 1 2 3 4 5 6

Phrase A AA B AAB AABA AABB

Codewort (0,A) (1,A) (0,B) (2,B) (4,A) (4,B)

Häufigkeitsabhängige Codierungen

 Ein Code c:A→B* mit variierender Länge kann ebenfalls zur Komprimierung von Worten w∈ A* genutzt werden.

Annahmen:

- $A = \{ a_1, a_2, ..., a_m \}.$
- Die relative Häufigkeit p_i jedes Zeichens a_i∈ A in w sei bekannt.
- Abhängigkeiten zwischen Zeichen werden nicht betrachtet, d.h.: zu jedem Zeitpunkt entspricht die Wahrscheinlichkeit für ein neu zu kodierendes Zeichen genau der relativen Häufigkeit p_i des Zeichens (in der Informationstheorie als stochastische Quelle bezeichnet).
- Es darf durch die Codierung kein Informationsverlust auftreten.

Häufigkeitsabhängige Codierungen (2)

Aufgabe:

Gesucht ist ein Binärcode c: $A \rightarrow \{0,1\}^*$ zur Codierung von $w \in A^*$, sodass die Gesamtlänge L = |c(w)| des codierten Wortes minimal ist.

Idee:

- Häufiger vorkommende Zeichen werden durch kurze Codewörter dargestellt, weniger wahrscheinliche durch längere.
- ⇒ Die Gesamtlänge zur Repräsentation verkleinert sich.

Anmerkung

Die Aufgabenstellung entspricht einem Optimierungsproblem:

Sei I_i die Länge des unbekannten Codeworts für a_i∈ A, N_i die Anzahl der Vorkommen von a_i in w, N=|w|

Dann ist:

$$L = |c(w)| = N_1 I_1 + N_2 I_2 + ... N_m I_m = min$$

Division durch N liefert:

$$dI = L/N = \sum_{i=1}^{m} p_i I_i = min$$

ist zu

Die Aufgabenstellung ist also gleichbedeutend mit der Minimierung der durchschnittlichen Länge dI der Codewörter.

Huffman-Codierung

- Die Huffman-Codierung generiert anhand der relativen Häufigkeiten einen optimalen Code, der die mittlere Codewortlänge minimiert.
- Verfahren zur Konstruktion des Codebaums:
 - (1) Ordne jedem Zeichen einen isolierten Knoten mit dem Gewicht der relativen Häufigkeit des Zeichens zu.
 - (2) Suche die beiden Zeichen/Teilbäume mit dem geringsten Gewicht.
 - (3) Gruppierung:
 - Bilde einen binären Teilbaum mit diesen Zeichen/Teilbäumen.
 - Ordne den beiden neuen Kanten die Codierungen 0 und 1 frei zu.
 - Ordne dem Teilbaum die Summe der Gewichte der beiden Zeichen/Teilbäume als Gewicht zu.
 - (4) Wiederhole (2) und (3) so lange, bis ein einziger binärer Baum mit dem Gewicht 1 existiert.

Beispiel

- A = { a, b, c, d, e, f }
- Gegebene relative Häufigkeiten: (0.1, 0.15, 0.25, 0.05, 0.2, 0.25)
- Entwicklung des Codebaums:

Beispiel (2)

Beispiel (3)

endgültiger Codebaum

Bestimmung der mittleren Codewortlänge:

 \Rightarrow mittl. Codewortlänge dI = 0.4 + 0.45 + 0.5 + 0.2 + 0.4 + 0.5 = 2.45 Bit Unter Verwendung eines Blockcodes wären $\lceil \log_2 6 \rceil$ = 3 Bit notwendig

Beispiel (4)

 Bei Wahl der anderen Alternative am Ende von Schritt 2 hätte sich der folgende Codebaum ergeben :

... und damit die gleiche mittlere Codewortlänge.

Shannon/Fano-Codierung

- Die Shannon/Fano-Codierung entwickelt den Codebaum im Gegensatz zur Huffman-Codierung top-down.
- Verfahren zur Konstruktion des Codebaums:
 - (1) Bilde die Wurzel des Baumes bestehend aus der Menge aller Zeichen und dem Gewicht aus der Summe aller relativen Häufigkeiten (1).
 - (2) Wähle ein Blatt des Baumes, dessen zugeordnete Menge M von Zeichen nicht einelementig ist.
 - (3) Teilung:
 - Teile M in zwei möglichst gleichgewichtige Teilmengen M₀ und M₁.
 - Ordne M als linkes und rechtes Kind M₀ und M₁ zu sowie den neuen Kanten die Codierungen 0 und 1 zu.
 - (4) Wiederhole (2) und (3) so lange, bis alle Blätter des Baumes einelementig sind.

Beispiel

- A = { a, b, c, d, e, f }
- Gegebene relative Häufigkeiten: (0.1, 0.15, 0.25, 0.05, 0.2, 0.25)
- Entwicklung des Codebaums:

Beispiel (2)

Beispiel (3)

Beispiel (4)

Beispiel (5)

Beispiel (6)

Endgültiger Codebaum:

Bestimmung der mittleren Codewortlänge:

Zeichen a b c d e f rel. Häufigkeit p
$$_i$$
 0.1 0.15 0.25 0.05 0.2 0.25 Länge l $_i$ 3 3 2 3 3 2

 \Rightarrow mittl. Codewortlänge dl = 0.3 + 0.45 + 0.5 + 0.15 + 0.6 + 0.5 = 2.5 Bit

Anmerkungen

- Die Suche nach optimalen Codes wird im Rahmen der Vorlesung "Informations- und Systemtheorie" (2. Semester) auf eine informationstheoretische Basis gestellt.
- Das dort besprochene Codierungstheorem von Shannon besagt,
 - dass es eine <u>untere Grenze für die mittlere Codewortlänge dl</u> gibt, die durch den mittleren "Informationsgehalt" der Nachrichtenquelle bestimmt ist.
 Diese wird als <u>Entropie H</u> bezeichnet und in Bit gemessen.

H bestimmt sich für die hier betrachtete gedächtnislose Quelle mit den Zeichenwahrscheinlichkeiten $p_1, p_2, ..., p_m$ zu

$$H = -\sum_{i=1}^{m} p_i * \log_2 p_i$$

Formal kann dann der Begriff der Code-Redundanz R als R = dI - H bzw. der relativen Code-Redundanz r als r = R / dI = 1 - H/dI eingeführt werden.

- dass sich jede Nachrichtenquelle so codieren lässt, dass die Redundanz des Codes beliebig klein wird.
- Komprimierende Codes verkleinern also die Code-Redundanz.

Anmerkungen (2)

 Eine weitere Verkleinerung der mittleren Codewortlänge dl gegenüber der Huffman- oder der Shannon/Fano-Codierung kann erreicht werden, indem nicht einzelne Zeichen aus A codiert werden, sondern Gruppen von k aufeinander folgenden Zeichen.

(In der Informationstheorie lässt sich zeigen, dass mit wachsendem k die mittlere Codewortlänge bezogen auf ein Zeichen gegen die Entropie konvergiert).

Anwendungsbeispiel

Fax-Komprimierung CCITT T4

- Das Scannen eines Seite führt zu Zeilen aus 1728 einzelnen schwarzen und weißen Punkten (Pixeln) (bei 3,85 oder 7,7 Zeilen/mm (fein)).
- Für jede Bildzeile werden die Längen der Folgen von schwarzen und weißen Pixeln bestimmt (Lauflängenbestimmung).
- Die Zahlenfolge wird durch speziellen Huffman-Code komprimiert:

weiß:	Länge	Codewort	schwarz:	Länge	Codewort
	0	00110101		0	0000110111
	1	000111		1	010
	2	0111		2	11
	3	1000		3	10
	4	1011		4	011
	5	1100		5	0011
	6	1110		6	0010
	7	1111		7	00011
	8	10011		8	000101
	9	10100		9	000100
	10	00111		10	0000100
	11	01000		11	0000101
	12	001000		12	0000111

Nicht verlustfreie Codierungen

- Nicht verlustfreie Codierungen nehmen einen Informationsverlust in Kauf, um einen höheren Komprimierungsgrad zu erreichen.
- Typische Anwendungsbereiche:
 - Audio-Daten
 - Bilddaten
- Typische Kompressionsverfahren:
 - MPEG-Audio
 - Verlustminimierung auf Basis eines psycho-akustischen Modells
 - Lauflängenkodierung
 - Huffman-Codierung der Lauflängenbeschreibung
 - MP3 für Audio-Daten
 - JPEG (Joint Photographic Expert Group) für Bilddaten
 - dem Auge angepasste Bildtransformationen (Informationsverlust)
 - Lauflängenkodierung von quantisierten Werten
 - Huffman-Codierung der Lauflängenbeschreibung
 - JPEG2000: Basis "Wavelet"-Transformation
 - MPEG/MPEG2 Videostrom-Kompression

4.5 Fehlererkennende und -korrigierende Codes

Überblick

- 1. Einführung
- 2. Fehlererkennende Codes
- 3. Fehlerkorrigierende Codes
- 4. Zyklische Codes zur Fehlererkennung

4.5.1 Einführung

 Bei der Eingabe, Verarbeitung, Übertragung und Speicherung von Informationen können Fehler auftreten, die zu Störungen in der Repräsentierung führen.

Ein *Bitfehler* eines binären Signals ist seine Umkehrung $(0\rightarrow 1, 1\rightarrow 0)$.

- typisches Maß: Bitfehler-Wahrscheinlichkeit
- Beispiel: Für ISDN semipermanente Verbindungen wird eine Bitfehler-Wahrscheinlichkeit von 10⁻⁷ angegeben.
- Störungen führen zur Verfälschung von Codewörtern.
- Fehlererkennung ist nur möglich, wenn die durch Bitfehler entstehenden Binärwörter keine gültigen Codewörter sind.
- Bitfehler, die ein Codewort in ein anderes gültiges Codewort verfälschen, sind nicht erkennbar.
- Codesicherung beinhaltet alle Maßnahmen der Erkennung oder Korrektur von Bitfehlern in Codewörtern oder Blöcken von Codewörtern.

Beispiele

- bei Eingabe durch den Menschen:
 - vertauschte Zeichen ("Zahlendreher")
 - ausgelassene oder verdoppelte Zeichen
- bei Übertragung:
 - Übertragungsstörung kann zu einzelnen oder mehreren aufeinander folgenden fehlerhaften Bits (Burst-Fehler oder Bündel-Fehler) führen.
- bei Speicherung:
 - "Umkippen" von einzelnen Datenbits eines Maschinenworts im Hauptspeicher durch fehlerhaften Speicherchip oder Strahlung
 - DRAM: Entladung des Speicherkondensators durch ionisierende Strahlung, insb. Alphateilchen.
 - Mängel in der Magnetisierung einer Plattenoberfläche können zu Burst-Fehlern führen.

Redundanz

Unter Code-Redundanz soll im folgenden jeglicher
 Zusatzaufwand in einem Code verstanden werden, der über die reine Darstellung der gewünschten Codewörter hinausgeht.

Beispiele:

- Im BCD-Code stellen nur 10 der 16 möglichen Tetraden gültige Codewörter dar.
- Die gesprochene deutsche Sprache enthält etwa 80% Redundanz.
- Das Vorhandensein von Redundanz kann benutzt werden, um aufgetretene Fehler zu erkennen und evtl. sogar zu korrigieren.
- Zusätzliche Redundanz entsteht z.B., wenn einem Code zusätzliche Bitstellen hinzugefügt werden.
- Kompression und Fehlererkennung konkurrieren miteinander!
 Bei der Festlegung von Codierungen ist zu prüfen, inwieweit Redundanz wünschenswert oder erforderlich ist.

Konsequenzen bei der Decodierung

- Je nach Umfang der Störung und der vorhandenen Redundanz sind unterschiedliche Fälle bei der Decodierung möglich:
 - keine Störung ⇒ fehlerfreie Decodierung
 - "geringe" Störung ⇒
 Decodierung der ursprünglichen Nachricht ist möglich,
 der aufgetretene Fehler wird *maskiert* (d.h. tritt nach außen nicht in Erscheinung).
 - "stärkere" Störung ⇒
 Decodierung der ursprünglichen Nachricht ist nicht möglich, aber Vorhandensein eines Fehlers wird erkannt.
 - "sehr starke" Störung ⇒
 Decodierung führt zu einer fehlerhaften ursprünglichen Nachricht (Katastrophe).

Hamming-Gewicht, Hamming-Abstand

Sei c:A→{0,1}* ein binärer Code. Das *Hamming-Gewicht* g(w) eines Codewortes w∈ {0,1}* ist die Anzahl der Stellen des Codeworts mit dem Wert "1".

- Beispiel: g(01000101) = 3
- Seien a,b∈ {0,1}ⁿ zwei n-stellige Codewörter. Der *Hamming-Abstand* oder die *Hamming-Distanz* h(a,b) von a und b gibt die Anzahl der Stellen an, in denen sich die Codewörter a und b unterscheiden.

 01000101
 - Beispiel: h(01000101, 00010111) = 3
- Sei c:A→{0,1}ⁿ ein binärer Blockcode. Der Hamming-Abstand des Codes c ist als der <u>kleinste</u> Hamming-Abstand h(a,b) zwischen zwei verschiedenen Codewörtern a und b definiert.

00010111

Hamming-Abstand von Codes

Beispiele (Hamming-Abstand von Codes):

— ASCII-Code: 1

jeder dichte Code

BCD-Code
 1 , auch wenn Redundanz vorhanden.

— 2-aus-5-Code 2

4.5.2 Fehlererkennende Codes

- Satz:

 Hat ein Code den Hamming-Abstand d, so können alle Störungen, die höchstens d-1 Bits betreffen, sicher erkannt werden.
- Beispiel: d = 3

- ⇒ Dichte Codes mit Hamming-Abstand 1 können keine Fehler erkennen.
- ⇒ Zur Erkennung von 1-Bit-Fehlern ist mindestens ein Hamming-Abstand von d=2 erforderlich.

Beispiel: 2-aus-5-Code

Hamming-Abstand: d=2

	7	4	2	1	0						
0	1	1	0	0	0	2	0	0	1	0	1
1	0	0	0	1	1						
	0	0	1	0	1						\downarrow
3	0	0	1	1	0	X	0	0	1	0	0
2 3 4 5 6	0	1	0	0	1	/			_	•	
5	0	1	0	1	0					T	
6	0	1	1	0	0		_		_	*	_
7	1	0	0	0	1	3	0	0	1	1	0
8	1	0	0	1	0						
9	1	0	1	0	0						

⇒ 1-Bit-Fehler werden sicher erkannt

Paritätsbit

- Ein ungesicherter Code (d=1) kann durch die Hinzunahme eines Prüfbits (Paritätsbit, parity bit) auf d=2 erweitert werden. Diese Erweiterung eines Codewortes wird auch Querparität oder Zeichenparität genannt.
 - ⇒ 1-Bit-Fehler werden erkannt.
- Alternativen zur Festlegung des Paritätsbits:
 - gerade Parität (even parity): Das Codewort wird auf ein gerades
 Gewicht (gerade Anzahl von 1-Bits) erweitert.
 - ungerade Parität (odd parity): Das Codewort wird auf ein ungerades
 Gewicht (ungerade Anzahl von 1-Bits) erweitert.

Paritätsbit (2)

- Fehlererkennung durch Paritätsprüfung auf Empfängerseite (parity check):
 - Bildung der Quersumme modulo 2 über das gesamte Datenwort einschließlich Paritätsbit.
 - Dabei Addition modulo 2 (Restklassenaddition):
 0+0=0, 0+1=1, 1+0=1, 1+1=0 (XOR)
 - ⇒ Jede ungeradzahlige Anzahl von 1-Bit-Fehlern wird erkannt, keine geradzahlige Anzahl von Bitfehlern wird erkannt.

- ASCII-Code (vgl. Kap. 3.4.2)
 - 7-Bit-Zeichen
 - MSB zur Speicherung des Paritätsbits
 - gerade oder ungerade Parität möglich
 - Beispiel (gerade Parität):

Codewort: "A": 1000001 "W": 1010111
 Paritätsbit: 0 1
 Erweit. Codewort: 01000001 11010111

- Arbeitsspeicher mit Parität
 - je Byte ein Parity-Bit
 - gerade oder ungerade Parität möglich
 - bei PCs für den Massenmarkt aus Kostengründen häufig weggelassen, Fehlererkennung als nebensächlich angesehen.

Allgemeine Prüfziffern

- Praxisproblem: Ziffernvertauschungen bei Eingabe können durch einfache Quersummenbildung nicht erkannt werden.
- Abhilfe: Quersummenbildung mit gewichtetem Code
- Beispiel (Internationale ISBN-Buchnummern):

Werner et al: Taschenbuch der Informatik, Fachbuchverlag Leipzig

- Prüfziffernbestimmung:
 - Wichtung der Stellen von rechts beginnend mit 1, 2, 3, ...
 - Prüfziffer: gewichtete Quersumme modulo 11 = 0
 - Der mögliche Rest 10 wird codiert durch die Prüfziffer X.
- Probe:

```
3 3 4 3 0 0 8 9 2 3
10 9 8 7 6 5 4 3 2 1 Gewichte
```

3*10+3*9+4*8+3*7+0*6+0*5+8*4+9*3+2*2+3 = 176 176:11 = 16 Rest 0 \Rightarrow gültig!

Allgemeine Prüfziffern (2)

Beispiel GTIN (Global Trade Item Number, früher "EAN"):

- Prüfziffernbestimmung:
 - Wichtung der Stellen von rechts beginnend mit 1, 3, 1, 3, 1, ...
 - Prüfziffer: gewichtete Quersumme modulo 10 = 0
- Probe: 4 3 8 8 4 4 0 0 4 1 3 2 3
 1 3 1 3 1 3 1 3 1 3 1 3 1 Gewichte
 4 9 8 4 4 2 0 0 4 3 3 6 3 Produkte modulo 10

4+9+8+4+4+2+0+0+4+3+3+6+3=50. 50:10=5 Rest $0 \Rightarrow g \ddot{u}$ g \ddot{u}

Codewort-Verdopplung

- Ein Code mit Hamming-Abstand d wird durch Verdoppeln der Codewörter (w→w||w) zu einem Code mit Hamming-Abstand 2*d.
 - ⇒ Für d=1 werden damit 1-Bit-Fehler erkannt.
- Bemerkungen:
 - Anwendungsbeispiel: Wiederholung von Zahlen in Telegrammen.
 - In Rechensystemen relativ unüblich, bei der Verarbeitung von Information als Zeitredundanz (zweimalige Nacheinanderausführung) vorkommend.
 - Einfach, aber u.U. verschwenderisch

4.5.3 Fehlerkorrigierende Codes

<u>Satz</u>:
 Hat ein Code den Hamming-Abstand d = 2*k+1, so können alle Störungen, die höchstens k Bits betreffen, sicher korrigiert werden.

- ⇒ Zur Korrektur von 1-Bit-Fehlern ist ein Hamming-Abstand von d=3 notwendig.
- Der Hamming-Abstand 2*k+1 ist minimal zur Korrektur von k-Bit-Fehlern.

Fehlerkorrigierende Codes (2)

Visualisierung am n-Würfel

- Beispiel: Die Code-Wörter des Code c:A→{0,1}ⁿ für n=3 entsprechen den Ecken eines Würfels.
- Liegt zwischen je zwei Codewörtern (blau) jeweils mindestens eine "ungenutzte" Ecke, so gilt d=2 und (d-1=) 1-Bit-Fehler lassen sich erkennen.
- Liegen mindestens <u>zwei</u> ungenutzte Ecken zwischen den Codewörtern (rot), gilt d=3 = 2*k+1 für k=1, also: 1-Bit-Fehler lassen sich korrigieren:

Binärer Rechteck-Code

- Rechteck-Code:
 - Binärer Block-Code als Ausgangsbasis
 - Paritätsbit je Codewort (Querparität) wie bisher
 - Paritätsbit je Spalte für einen Block von Codewörtern (z.B. 16 oder 64) (Längsparität)

- Hamming-Abstand für einen Codewort-Block wird auf 3 erhöht.
- ⇒ 1-Bit-Fehler für den Codewort-Block können korrigiert werden.

(1) Gesendet werde:

 0100101
 1

 1000100
 0

 0100101
 1

 1010010
 1

1101001 0

2 Empfangen werde:

0100101 | 1 1000100 | 0 0110101 | 1 1010010 | 1

1101001 | 0

3 Kontrollbestimmung der Quer- und Längsparität:

0100101 1000100 0110101 1010010 1 verschiedener Wert

verschiedener Wert

Wergleich: gesendet - empfangen

4 Rückschluss auf verfälschte Bitstelle und

06.12.2018

Beispiel (2)

(1) Gesendet werde:

0100101	1
1000100	0
0100101	1
1010010	

1101001 0

2 Empfangen werde:

1
0
0
1

1101001

0

3 Kontrollbestimmung der Quer- und Längsparität:

Alle Längsparitäten stimmen!

Vergleich: gesendet - empfangen

4 Rückschluss auf verfälschte Bitstelle und Korrektur: 0100101

Beispiel (3)

(1) Gesendet werde:

0100101		1
1000100		0
0100101		1
1010010		1
	L	

1101001 0

2 Empfangen werde:

0100101	1
1000100	0
0100101	1
1010010	1

1101011

0

3 Kontrollbestimmung der Quer- und Längsparität:

Verschiedene Werte

Wergleich: gesendet - empfangen

4) Rückschluss auf verfälschte Bitstelle und

Lineare Codes, systematische Codes

- Es seien ausschließlich Binär-Codes betrachtet. Ein *linearer* Code oder *Gruppencode* ist ein Blockcode der Länge n, der 2^m, m≤n, Codewörter besitzt.
- Lineare Algebra als Math. Grundlage
 - hier naiverer Zugang
- Systematische lineare Codes sind solche, bei denen jede der n Codewortstellen eindeutig als eine der m Informationsstellen oder als eine der r:=n-m Prüfstellen identifiziert werden kann.
- Systematische lineare Codes werden auch als (n,m,d)-Codes mit d als Hamming-Distanz des Codes bezeichnet.

Hamming-Code

Ein *Hamming-Code* ist ein systematischer linearer Code, der k Bit-Fehler bei minimaler Redundanz korrigieren kann. Im engeren Sinne sind Hamming-Codes solche, die 1-Bit-Fehler korrigieren können.

Grundidee:

- Den m Datenbits eines Codeworts werden r Prüfbits zugeordnet.
 ⇒ Codewortlänge: n=m+r Bits. Bedingung für r: 2^{r-1} < m+r < 2^r
- Prüfbits werden an den Positionen 1=2⁰, 2=2¹, 4=2², ..., 2^{r-1}
 angenommen, Datenbits dazwischen und danach.
- Jedes Prüfbit enthält damit in der dualen Darstellung seiner Position genau eine 1.
- Jedes Prüfbit ist das Paritätsbit (gerade Parität, Addition modulo 2) für alle Datenbits, deren Position an dieser Stelle eine 1 besitzt.

Vorteil:

Aufwand für Prüfbits wächst nur logarithmisch!

Details am Beispiel

- (7,4,3)-Hamming Code
 - 4 Daten- und 3 Prüfbits, Hamming-Abstand = 3
 - betrachtetes Datenwort sei 1011

_ P	Р		Р			
001	010	011	100	101	110	111
		1		0	1	1

Bestimmung der Prüfbits

$$- P_{100} = D_{101} + D_{110} + D_{111} = 0 + 1 + 1 = 0$$

$$- P_{010} = D_{011} + D_{110} + D_{111} = 1 + 1 + 1 = 1$$

$$P_{001} = D_{011} + D_{101} + D_{111} = 1+0+1 = 0$$

Р	Р		Р			
001	010	011	100	101	110	111
0	1	1	0	0	1	1

Details am Beispiel (2)

- Störung führe zu verfälschtem Codewort (Fehler in Datenbit)
 - 1-Bit-Fehler an Stelle 110

P	Р		Р			
001	010	011	100	101	110	111
0	1	1	0	0	0	1
			-		1	

 Bestimmung des Fehlersyndroms aus Prüfbit und zugehörigen Datenbits (Quersumme modulo 2) nach Auslesen/Übertragung

$$- S_{100} = P_{100} + D_{101} + D_{110} + D_{111} = 0 + 0 + 0 + 1 = 1$$

$$- S_{010} = P_{010} + D_{011} + D_{110} + D_{111} = 1 + 1 + 0 + 1 = 1$$

$$- S_{001} = P_{001} + D_{011} + D_{101} + D_{111} = 0 + 1 + 0 + 1 = 0$$

- Entscheidung:
 - Ist das Fehlersyndrom $(S_{100}S_{010}S_{001})=000$, liegt kein Fehler vor.
 - Andernfalls gibt $(S_{100}S_{010}S_{001})_2$ als Dualzahl die verfälschte Stelle an.
 - Hier: 110₂ ist die verfälschte Stelle.

Details am Beispiel (3)

- Störung führe zu verfälschtem Codewort (Fehler in Prüfbit)
 - 1-Bit-Fehler an Stelle 010

P	Р		Р			
001	010	011	100	101	110	111
0	0	1	0	0	1	1
	1					

Bestimmung des Fehlersyndroms

$$- S_{100} = P_{100} + D_{101} + D_{110} + D_{111} = 0 + 0 + 1 + 1 = 0$$

$$- S_{010} = P_{010} + D_{011} + D_{110} + D_{111} = 0 + 1 + 1 + 1 = 1$$

$$- S_{001} = P_{001} + D_{011} + D_{101} + D_{111} = 0 + 1 + 0 + 1 = 0$$

- Entscheidung:
 - Gleiches Verfahren.
 - 010₂ ist die verfälschte Stelle.

Optimalität des Hamming-Codes

- Satz: Für einen Block-Code mit m Datenbits und r Prüfbits und Hamming-Distanz d ≥ 3 gilt: m+r+1 ≤ 2^r.
- Da der Hamming-Code die Bedingung erfüllt (m+r < 2^r), stellt er einen optimalen Code mit minimal notwendiger Anzahl von Prüfbits für die Korrektur von 1-Bit-Fehlern dar.
- Satz ist einsichtig, denn:
 - Codewortlänge: n=m+r Bits
 - 2^m Datenwörter, eingebettet in 2^{m+r} Codewörter
 - Jedes Datenwort hat m+r Nachbarn mit Hamming-Abstand 1.
 Keiner dieser Nachbarn kann Nachbar eines anderen Datenworts sein (sonst g\u00e4be es Codeworte mit Hamming-Distanz kleiner als 3).
 - Also belegt jedes Datenwort mit seinen Nachbarn m+r+1
 Codeworte.
 - Also insgesamt für die Anzahl der Datenworte:
 2^m (m+r+1) ≤ 2^{m+r} und damit m+r+1 ≤ 2^r

SEC/DED-Codes

- SEC/DED: Single Error Correction / Double Error Detection
- Erweiterung von Hamming-Codes auf Hamming-Distanz d=4 durch weiteres Paritätsbit P über alle Stellen.
- ⇒ Korrektur aller 1-Bit-Fehler und Erkennung aller 2-Bit-Fehler.
- Unterscheidung in der Decodierung
 - Syndrom und P korrekt ⇒ kein Fehler
 - Syndrom und P falsch ⇒ 1-Bit-Fehler korrigierbar
 - Syndrom falsch und P korrekt ⇒ 2-Bit-Fehler erkannt, nicht korrigieren.
- Anwendung:
 - Basis für betriebssichere Arbeitsspeicher von Rechensystemen

Maintenance (M)-Codes

- Varianten von SEC/DED-Hamming-Codes
- zusätzliche Ziele:
 - möglichst geringer technischer Aufwand, z.B. möglichst wenige
 Stellen nehmen an der Quersummenprüfung teil.
 - Überprüfung der korrekten Funktion der Erzeugung der Prüfbits.
 - Erweiterbarkeit auf verschiedene Maschinenwortlängen (Kaskadierbarkeit der Logik-Schaltkreise).
- Basis des k\u00e4uflichen ECC Memory (Error Correcting Code) f\u00fcr hochverf\u00fcgbare Rechensysteme
- Typische M-Codes (n,m,d) für die üblichen Maschinenwortlängen:

Überführung von k-Bit-Fehler in 1-Bit-Fehler

- Hamming-Codes sind unbrauchbar zur Behandlung von Burst-Fehlern, wie sie z.B. bei der Datenübertragung auftreten.
- Idee: Vertauschung der Übertragungsreihenfolge
 - k Worte werden mit Hamming-Codierung für 1-Bit-Fehler-Korrektur zeilenweise in eine Tabelle geschrieben.
 - Die Tabelle wird <u>spaltenweise gesendet</u>.
 - Tritt während der Übertragung ein k-Burst-Fehler auf (der k aufeinander folgende Bits betrifft), so liegt in jeder Zeile nur ein 1-Bit-Fehler vor.
 - Aufgrund des Hamming-Codes ist eine vollständige Korrektur aller k Worte beim Empfänger möglich.

4.5.4 Zyklische Codes

- Die in 4.5.3 besprochenen Codes erkennen und korrigieren Einzelfehler oder eine geringe Anzahl von Fehlern (z.B. SEC/DED).
- In bestimmten Anwendungsbereichen, wie
 - Datenübertragung durch serielle Bitströme (z.B. Modem, LAN),
 - serielle Datenspeicherung auf magnetisierten Oberflächen (z.B. Diskette, Festplatte),
 - treten im Falle einer Störung aber <u>Burst-Fehler</u>, d.h. Folgen verfälschter Bitstellen, auf.
- Zur Sicherung gegenüber solchen Fehlern werden zyklische Codes eingesetzt (auch Polynom-Codes genannt).
- Zyklische Codes sind die Basis der zyklischen Blocksicherung CRC (Cyclic Redundancy Check).
- Einfache technische Realisierung mittels
 Schieberegisterschaltungen (vgl. LV Digitaltechnik) möglich.

Grundlage: Polynomdivision

- Die n Bits eines Datenblocks B der Länge n werden als Koeffizienten eines Polynoms P(x) vom Grad ≤ n-1 interpretiert.
- Beispiel:

$$B=1011$$
 $P(x) = 1*x^3 + 0*x^2 + 1*x^1 + 1*x^0 = x^3+x+1$

- Polynom-Addition modulo 2
 - Addition der Koeffizienten gleicher Exponenten modulo 2
 - Rechenregeln: 0+0=0, 0+1=1, 1+0=1, 1+1=0 (XOR)
 - Subtraktion entspricht hier Addition (!)
- Beispiel:

B=1011 P(x) =
$$1*x^3 + 0*x^2 + 1*x^1 + 1*x^0 = x^3 + x+1$$

C=1101 Q(x) = $1*x^3 + 1*x^2 + 0*x^1 + 1*x^0 = x^3+x^2 + 1$
 $\sum = 0110$
P(x)+Q(x) = $0*x^3 + 1*x^2 + 1*x^1 + 0*x^0 = x^2+x$

Grundlage: Polynomdivision (2)

Polynom-Division modulo 2

- $P(x) = D(x)^*Q(x) + R(x)$
- Restpolynom R(x) besitzt einen Grad, der kleiner als der von Q(x) ist
- Für CRC interessiert nur R(x), nicht D(x)

Beispiel:

$$P(x) = 1*x^5 + 0*x^4 + 1*x^3 + 1*x^2 + 0*x^1 + 1*x^0 = x^5 + x^3 + x^2 + 1$$

 $Q(x) = 1*x^3 + 1*x^2 + 0*x^1 + 1*x^0 = x^3 + x^2 + 1$

$$P(x):Q(x) = (x^5 + x^3 + x^2 + 1) : (x^3 + x^2 + 1) = x^2 + x$$
 $x^5 + x^4 + x^2$
 $---- x^4 + x^3$
 $x^4 + x^3 + x$
 $---- x+1$

$$\Rightarrow$$
 D(x) = x²+x, R(x) = x+1

06.12.2018

Vorgehensweise

 Ein zyklischer Code mit m Datenbits und r CRC-Prüfbits wird durch ein Generator-Polynom G(x) vom Grad r festgelegt.

Codierung:

- Der Nutzdatenblock definiert ein Polynom M(x) vom Grad \leq m-1
- An die Nutzinformation werden r Nullbits angehängt. Die Nachricht einschließlich CRC-Feld ist dann n=m+r Bits lang und entspricht dem Polynom $x^r * M(x)$.
- Dieses Polynom wird durch das Generator-Polynom G(x) dividiert.
 Es entsteht ein Restpolynom R(x) vom Grad ≤ r-1, das die
 Gleichung

$$x^r * M(x) = D(x) * G(x) + R(x)$$
 erfüllt.

- Die Koeffizienten von R(x) werden in das CRC-Feld eingetragen.
 Das gesendete Codewort aus Nutzdatenblock und CRC-Feld entspricht damit dem Polynom P(x) = $x^r * M(x) + R(x)$.
- P(x) ist nach Konstruktion durch G(x) ohne Rest teilbar! (Beachte: $x^r * M(x) + R(x) = x^r * M(x) - R(x)$ wg. Addition modulo 2).

Vorgehensweise (2)

- Überprüfung/Fehlererkennung:
 - Auf Empfängerseite wird P(x) wieder durch G(x) mit Rest R'(x) dividiert.
 - Fehlerfreiheit ⇔ Restpolynom R'(x)=0

Beispiel

- Generator-Polynom $G(x)=x^3+1$ vom Grad r=3
- Datenblock mit m=4: 0110, d.h. $M(x)=x^2+x$

	Da	ten	CRC	;	
0	1	1	0		

- $x^r * M(x) = x^5 + x^4$
- $x^r * M(x) : G(x)$

$$(x^{5}+x^{4})$$
 x^{5}
 $+x^{2}$
 $--- x^{4}$
 $+x^{2}$
 x^{4}
 $+x$
 $--- x^{2}+x$

$$\Rightarrow$$
 R(x) = x²+x

: $(x^3 +1) = x^2+x$

Beispiel (2)

Überprüfung beim Empfänger: (a) ohne Verfälschung

	Da	ten		CRC	;	
0	1	1	0	1	1	0

•
$$P(x) : G(x)$$

 $(x^5+x^4 + x^2+x) : (x^3 +1) = x^2+x$

R(x) = 0 ⇒ Daten unverfälscht.

Beispiel (3)

Überprüfung beim Empfänger: (b) mit Verfälschung

Daten					CRC	;
0	1	0	0	1	1	0
		1				

• P(x) : G(x)

$$x^{5}$$
 $+x^{2}+x$: x^{3} $+1 = x^{2}$
 x^{5} $+x^{2}$

R(x) = x ≠ 0 ⇒ Fehler erkannt. Daten verfälscht!

Anmerkungen

Erkannte Fehler:

- Sei F(x) ein Fehlerpolynom, und P'(x) = P(x) + F(x) werde empfangen. Der zyklische Code mit Generator-Polynom G(x) erkennt einen Fehler genau dann, wenn G(x) das Fehlerwort F(x) nicht ohne Rest teilt.
- Wenn der Grad des Fehlerpolynoms kleiner ist als der Grad r des erzeugenden Polynoms G(x), ist G(x) kein Teiler von F(x).
- \Rightarrow Eine beliebige Störung im CRC-Feld wird erkannt, da der Grad des Restpolynoms R(x) \le r-1 ist.
- ⇒ Bei einem r-Bit-CRC werden (r-1)-Burst-Fehler immer erkannt, längere Fehler können bei geeigneter Wahl des Generator-Polynoms mit hoher Wahrscheinlichkeit erkannt werden.

Standardisierte Generator-Polynome

• CRC-16: $x^{16}+x^{15}+x^2+1$

• CRC-CCITT: $x^{16}+x^{12}+x^5+1$ (auch ISO 2111, ISO 3309)

• CRC-32: $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$ (Ethernet)