A mathematical theory of chance

* Preparation equivalent to a semester of calculus.

- * Preparation equivalent to a semester of calculus.
 - * Comfort with mathematical notation and the use of abstractions to describe concepts.

- * Preparation equivalent to a semester of calculus.
 - * Comfort with mathematical notation and the use of abstractions to describe concepts.
 - * Familiarity with: variables and functions; sequences and limits; convergent and divergent series.

A mathematical theory of chance

- * Preparation equivalent to a semester of calculus.
 - * Comfort with mathematical notation and the use of abstractions to describe concepts.
 - * Familiarity with: variables and functions; sequences and limits; convergent and divergent series.

n

A mathematical theory of chance

- * Preparation equivalent to a semester of calculus.
 - * Comfort with mathematical notation and the use of abstractions to describe concepts.
 - * Familiarity with: variables and functions; sequences and limits; convergent and divergent series.

n χ

A mathematical theory of chance

- * Preparation equivalent to a semester of calculus.
 - * Comfort with mathematical notation and the use of abstractions to describe concepts.
 - * Familiarity with: variables and functions; sequences and limits; convergent and divergent series.

 $\begin{array}{ccc} n & & x \\ & f(x) & & \end{array}$

- * Preparation equivalent to a semester of calculus.
 - * Comfort with mathematical notation and the use of abstractions to describe concepts.
 - * Familiarity with: variables and functions; sequences and limits; convergent and divergent series.

n
$$f(x)$$
$$\{x_1, x_2, x_3, \dots\}$$

- * Preparation equivalent to a semester of calculus.
 - * Comfort with mathematical notation and the use of abstractions to describe concepts.
 - * Familiarity with: variables and functions; sequences and limits; convergent and divergent series.

- * Preparation equivalent to a semester of calculus.
 - * Comfort with mathematical notation and the use of abstractions to describe concepts.
 - * Familiarity with: variables and functions; sequences and limits; convergent and divergent series.

- * Preparation equivalent to a semester of calculus.
 - * Comfort with mathematical notation and the use of abstractions to describe concepts.
 - * Familiarity with: variables and functions; sequences and limits; convergent and divergent series.
- * Elements of counting, a little set theory: review lectures available with the preview.

- * Preparation equivalent to a semester of calculus.
 - * Comfort with mathematical notation and the use of abstractions to describe concepts.
 - * Familiarity with: variables and functions; sequences and limits; convergent and divergent series.
- * Elements of counting, a little set theory: review lectures available with the preview.
 - * [Tableau 2.1, 2.2] Combinatorial elements: ordered samples; subpopulations; factorials; binomial coefficients.

- * Preparation equivalent to a semester of calculus.
 - * Comfort with mathematical notation and the use of abstractions to describe concepts.
 - * Familiarity with: variables and functions; sequences and limits; convergent and divergent series.
- * Elements of counting, a little set theory: review lectures available with the preview.
 - * [Tableau 2.1, 2.2] Combinatorial elements: ordered samples; subpopulations; factorials; binomial coefficients.
 - * [Tableau 4] Basic set theory: sets and subsets; set relations unions, intersections, complements, differences —; de Morgan's laws.

