筆答専門試験科目(午前)

2 9 大修

数学系

時間 9:00~11:30

注意事項

- 1. 試験開始時刻まではこの問題冊子を開いてはならない.
- 2. 以下の問題5題すべてに解答せよ.
- 3. 解答は1題毎に別々の解答用紙に記入せよ.
- 4. 各解答用紙毎に必ず問題番号および受験番号を記入せよ.
- 5. この問題冊子はこの表紙を入れて全体で3ページからなる.
- 6. 口頭試問を代数分野,幾何分野,解析分野のどれで受けることを希望するかを解答用紙の 1ページ目の受験番号の下に書くこと.

記号について: ℝ は実数全体を表す.

[1] V を 3 次実正方行列全体のなす実ベクトル空間とし,

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

とする.また,通常の行列の積に関してAと可換なVの元全体をWとする.

- (1) W は V の部分空間であることを示せ.
- (2) A を対角化せよ.
- (3) W の任意の元は A の実数係数の多項式として表されることを示し, W の次元を求めよ.
- [2] n 次複素正方行列 A に対し , $\operatorname{rank} A^n = \operatorname{rank} A^{n+1}$ であることを示せ .

[3] $a \in \mathbb{R}, r \geq 0$ に対し, \mathbb{R} の部分集合

$$U(a;r) = (-a - r, -a + r) \cup (a - r, a + r)$$

を考える.ただし, $U(a;0)=\emptyset$ とする.

- (1) $\mathcal{B}=\{U(a;r)\,|\,a\in\mathbb{R},\,r\geqq0\}$ は \mathbb{R} のある位相 \mathcal{O} の開基(開集合系の基底)となることを示せ.
- (2) 位相空間 $(\mathbb{R}, \mathcal{O})$ はハウスドルフ空間ではないことを示せ.
- (3) 位相空間 $(\mathbb{R}, \mathcal{O})$ は連結であることを示せ.
- (4) [0,1] は (\mathbb{R},\mathcal{O}) のコンパクト集合であるが閉集合ではないことを示せ.

- [4] (1) 無限級数 $\sum_{n=2}^{\infty} rac{1}{n^p \log n}$ が収束する実数 p の範囲を求めよ.
 - (2) \mathbb{R} 上の実数値関数の列 $\{f_n\}$ がある関数 f に \mathbb{R} 上で一様収束している.各 n について f_n が多項式であるとき,f もまた多項式であることを示せ.
- $[\mathbf{5}]$ f は区間 [0,1) 上で連続な実数値関数とする .
 - (1) 左極限

$$\lim_{x \to 1-0} f(x)$$

が有限の値ならば,fは[0,1)上で一様連続であることを示せ.

(2) 不等式

$$\limsup_{x\to 1-0} f(x) > \liminf_{x\to 1-0} f(x)$$

が成り立つならば,fは[0,1)上で一様連続ではないことを示せ.

(3) f は [0,1) 上で微分可能で,導関数 f' は [0,1) 上で連続とする.ある $\alpha\in(0,1)$ に対して,

$$\lim_{x \to 1-0} (1-x)^{\alpha} f'(x)$$

が有限の値ならば,fは[0,1)上で一様連続であることを示せ.

筆答専門試験科目(午後)

2 9 大修

数学系

時間 13:00~15:00

注意事項

- 1. 試験開始時刻まではこの問題冊子を開いてはならない.
- 2. 以下の問題のうち2題を選択して解答せよ.
- 3. 解答は1題毎に別々の解答用紙に記入せよ.
- 4. 各解答用紙毎に必ず問題番号および受験番号を記入せよ.
- 5. この問題冊子はこの表紙を入れて全体で5ページからなる.
- 6. 口頭試問を代数分野,幾何分野,解析分野のどれで受けることを希望するかを解答用紙の 1ページ目の受験番号の下に書くこと(午前と同じ分野を書くこと)

記号について:

- № は正の整数全体を表す.
- ℤ は整数全体を表す.
- ◎ は有理数全体を表す.
- ℝ は実数全体を表す.
- ℂ は複素数全体を表す.

- [1] $f(x) = x^4 1$ とする.
 - (1) 剰余環 $\mathbb{C}[x]/(f(x))$ の素イデアルをすべて求めよ.
 - (2) 剰余環 $\mathbb{R}[x]/(f(x))$ の素イデアルと極大イデアルをすべて求めよ.
 - (3) 剰余環 $\mathbb{Z}[x]/(5, f(x))$ の素イデアルをすべて求めよ.
- [2] (1) G,H を 2 つの群とし, $\varphi:H\to \mathrm{Aut}(G)$ を群準同型とする.直積集合 $G\times H$ に次のような積 * を考える: $(g_1,h_1),(g_2,h_2)\in G\times H$ に対して,

$$(g_1, h_1) * (g_2, h_2) = (g_1 \varphi(h_1)(g_2), h_1 h_2).$$

このとき , $G\times H$ はこの積に関して群になることを示せ . また , φ が自明でないなら , この群はアーベル群ではないことを示せ . ただし , $\mathrm{Aut}(G)$ は G の自己同型群を表し , $\varphi\colon H\to\mathrm{Aut}(G)$ が自明でないとは $\varphi(h)$ が G の恒等写像とならないような $h\in H$ が存在することである .

- (2) p を素数とし,n を 3 以上の自然数とするとき,位数 p^n の群でアーベル群ではないものが存在することを示せ.
- [3] ζ を 1 の原始 9 乗根 $e^{2\pi\sqrt{-1}/9}$ とするとき , $\mathbb{Q}(\zeta)$ の部分体をすべて求めよ .
- [4] n を 2 以上の自然数とし, \mathbb{C}^n の部分集合 M を次で定める.

$$M = \left\{ (z_1, z_2, \dots, z_n) \in \mathbb{C}^n \, \middle| \, \sum_{i=1}^n z_i^2 = 1 \right\}.$$

- (1) $\mathbb{C}^n=\mathbb{R}^{2n}$ とみなすとき,M は \mathbb{R}^{2n} の部分多様体であることを示せ.
- (2) 写像 $p: \mathbb{C}^n \to \mathbb{R}^n$ を

$$p(z_1, z_2, \dots, z_n) = (\text{Re } z_1, \text{Re } z_2, \dots, \text{Re } z_n)$$

で定め,p を M に制限して得られる写像を $f\colon M\to\mathbb{R}^n$ とする.f の臨界点と臨界値をすべて求めよ.ただし, $\operatorname{Re} z$ は複素数 z の実部を表す.

(3) M は (n-1) 次元球面とホモトピー同値であることを示せ.

[5] 5 次元ユークリッド空間 $\mathbb{R}^5=\{(t,x_1,y_1,x_2,y_2)\,|\,t,x_1,y_1,x_2,y_2\in\mathbb{R}\}$ 上の 1 次微分形式 $\eta=\{\eta_p\}_{p\in\mathbb{R}^5}$ を

$$\eta = dt - y_1 dx_1 - y_2 dx_2$$

で定義する.

- (1) $d\eta$ および $\eta \wedge d\eta \wedge d\eta$ を求めよ.
- (2) 各点 $p\in\mathbb{R}^5$ において, $\ker\eta_p$ の 1 組の基底とその次元 $\dim\left(\ker\eta_p\right)$ を求めよ.
- (3) \mathbb{R}^5 内の k 次元可微分部分多様体 M^k で ,

$$(*) T_p M^k \subset \operatorname{Ker} \eta_p \quad (p \in M^k)$$

を満たすものを考える.このとき, $d\eta$ の M^k への制限 $d\eta|_{M^k}$ に関して

$$d\eta|_{M^k} = 0$$

が成立することを示せ.ここで T_pM^k は $p\in M^k$ における M^k の接空間を表す.

- (4) (3) の条件 (*) を満たす M^k が存在するとき , $k \leq 2$ であることを示せ .
- [6] \mathbb{R}^3 内の互いに接する半径1の3つの球面 S_1, S_2, S_3 を

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid (x - 1)^2 + y^2 + z^2 = 1\},$$

$$S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid (x + 1)^2 + y^2 + z^2 = 1\},$$

$$S_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + (y - \sqrt{3})^2 + z^2 = 1\}$$

とし, $I = \{(x,0,0) \in \mathbb{R}^3 \mid 0 \le x \le 2\}$ とする.

- (1) $X = S_1 \cup I$ の整係数ホモロジー群を求めよ.
- (2) $Y = S_1 \cup S_2 \cup S_3$ の整係数ホモロジー群を求めよ.

[7] 正の実数 R > 0 に対して,

$$D(R) = \{ z \in \mathbb{C} \mid |z| < R \}$$

とおく.複素関数 f は D(R) で正則で, $f(0)=0,\,f'(0)\neq 0$ とする.さらに 0<|z|< R において $f(z)\neq 0$ であるとする.このとき,0< r< R に対して,

$$g(w) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{\zeta f'(\zeta)}{f(\zeta) - w} d\zeta$$

とおく.

- $(1)\ m = \inf\{|f(z)|\ |\ z \in \partial D(r)\}$ とするとき , g(w) は |w| < m において正則であることを示せ .
- (2) |w| < m である任意の $w \in \mathbb{C}$ に対して,

$$f(z(w)) = w, \quad |z(w)| < r$$

を満たす $z(w) \in \mathbb{C}$ が唯一つ存在することを示せ.

- (3) (2) における w, z(w) について , z(w)=g(w) であることを示せ .
- [8] λ を \mathbb{R} 上の 1 次元ルベーグ測度とし $,g:\mathbb{R}\to [0,\infty)$ を可積分関数とする .
 - (1) r > 0 に対して \mathbb{R} 上の可測関数 g_r を

$$g_r(x) = \min \{g(x), r\}$$

で定める.

$$\lim_{r \to \infty} \int_{\mathbb{R}} g_r \, d\lambda = \int_{\mathbb{R}} g \, d\lambda$$

および

$$\lim_{r \to +0} \int_{\mathbb{R}} g_r \, d\lambda = 0$$

を示せ.

(2) 任意の $\varepsilon > 0$ に対して, $\delta > 0$ で,

$$\lambda(A)<\delta$$
 なる任意の可測集合 $A\subset\mathbb{R}$ に対して $\int_A g\,d\lambda$

を満たすものが存在することを示せ.

(3) $f_n \colon \mathbb{R} \to \mathbb{R}$ $(n \in \mathbb{N})$ および $f \colon \mathbb{R} \to \mathbb{R}$ を $|f_n| \le g$ $(n \in \mathbb{N})$ および $|f| \le g$ を満たす可積分 関数とする.さらに,各 $\varepsilon > 0$ に対して,

$$\lim_{n \to \infty} \lambda(\{x \in \mathbb{R} \mid |f_n(x) - f(x)| > \varepsilon\}) = 0$$

が成り立つとする.このとき,

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n \, d\lambda = \int_{\mathbb{R}} f \, d\lambda$$

を示せ.

[9] C(I) を I=[0,1] 上の実数値連続関数全体とし,C(I) 上にノルムを

$$||x|| = \max_{t \in I} |x(t)|$$

で定める . $\alpha \in \mathbb{R}$, $A \in C(I)$ とし , $S \colon C(I) \to C(I)$ を

$$(Sx)(t) = \alpha + \int_0^{t^2} A(s)x(s) ds$$

で定める.また,帰納的に $S^{m+1}x = S(S^mx) \; (m \in \mathbb{N})$ と定める.

(1) ある定数 M > 0 に対し,

$$||Sx - Sy|| \le M||x - y||$$

が任意の $x, y \in C(I)$ で成り立つことを示せ.

(2) m が十分に大きければ , 任意の $x,y\in C(I)$ に対して ,

$$||S^m x - S^m y|| \le \frac{1}{2} ||x - y||$$

が成り立つことを示せ.

(3) Sx=x となる $x\in C(I)$ が唯一つ存在することを示せ.ただし,C(I) が完備であることは用いてよい.