COMBATING THE GROWING DEMAND OF THE WORKING AGE: A POPULATION AGING MODEL

CHEN ZIHAN, FENG EMILY, ZHAO ZHENYI

Building on this foundation, we formulate PATM with a system of three differential equations to describe the transition between the defined population age groups:

(1)
$$\frac{dB(t)}{dt} = rB(t) - \alpha B(t),$$

(2)
$$\frac{dW(t)}{dt} = \gamma W(t) - \beta W(t) + \alpha B(t),$$

(3)
$$\frac{dR(t)}{dt} = -\delta R(t) + \beta W(t),$$

where,

- B(t) is the number of individuals below working age,
- W(t) is the number of individuals of working age,
- R(t) is the number of individuals above working age (retired),
- $r, \alpha, \gamma, \beta, \delta$ are weighted factors that are defined as follows and are chosen because they significantly influence population inflows and outflows.

Parameter	Description
r	Growth rate of the population below working age
α	Proportion of individuals transitioning to working age per year
γ	Immigration factor of individuals per year
β	Proportion of individuals retiring per year
δ	Death rate factor of the retired population per year

1. Solution

To better understand the relationship between B(t) and R(t), we begin by solving the system of equations involving B(t), W(t), and R(t).

1.1. Evaluate B(t). According to Equation 1 in our system, we have:

$$\frac{dB(t)}{dt} = rB(t) - \alpha B(t),$$

which is a separable differential equation. Rearranging and integrating:

$$\int \frac{1}{B(t)} dB(t) = \int (r - \alpha) dt,$$

$$ln B(t) = (r - \alpha)t + C_B,$$

where C_B is a constant. Taking the exponential on both sides gives:

$$B(t) = e^{C_B} \cdot e^{(r-\alpha)t}.$$

Letting $B_0 = e^{C_B}$, the initial condition, we rewrite B(t) as:

$$B(t) = B_0 e^{(r-\alpha)t}.$$

Date: December 9, 2024.

In Ssection 3.1, we set $r \approx 0.05$ and $\alpha \approx 0.06$, which leads to:

$$B(t) = B_0 e^{-0.01t}$$

In 2023, there were 72.832 million¹ people aged 17 and under. Setting this as the initial state, $B_0 = 72.832$, we have:

$$B(t) = 72.832e^{-0.01t}$$

1.2. Evaluate W(t). According to Equation 2 in our system, we have:

$$\frac{dW(t)}{dt} = \gamma W(t) - \beta W(t) + \alpha B(t),$$

which simplifies to:

$$\frac{dW(t)}{dt} = (\gamma - \beta)W(t) + \alpha B(t).$$

Substituting $B(t) = B_0 e^{(r-\alpha)t}$ into the equation:

$$\frac{dW(t)}{dt} = (\gamma - \beta)W(t) + \alpha B_0 e^{(r-\alpha)t}.$$

The integrating factor is:

$$\mu(t) = e^{-\int (\gamma - \beta) dt} = e^{-(\gamma - \beta)t}.$$

Multiplying both sides by $\mu(t)$:

$$e^{-(\gamma-\beta)t}\frac{dW(t)}{dt} - (\gamma-\beta)e^{-(\gamma-\beta)t}W(t) = \alpha B_0 e^{(r-\alpha-(\gamma-\beta))t}.$$

Simplifying the left-hand side:

$$\frac{d}{dt}\left(e^{-(\gamma-\beta)t}W(t)\right) = \alpha B_0 e^{(r-\alpha-(\gamma-\beta))t}.$$

Integrating both sides with respect to t:

$$e^{-(\gamma-\beta)t}W(t) = \int \alpha B_0 e^{(r-\alpha-(\gamma-\beta))t} dt.$$

Evaluating the integral:

$$\int \alpha B_0 e^{(r-\alpha-(\gamma-\beta))t} dt = \frac{\alpha B_0}{r-\alpha-(\gamma-\beta)} e^{(r-\alpha-(\gamma-\beta))t}.$$

Thus, we have:

$$e^{-(\gamma-\beta)t}W(t) = \frac{\alpha B_0}{r - \alpha - (\gamma - \beta)}e^{(r - \alpha - (\gamma - \beta))t} + C_W,$$

where C_W is a constant. Multiplying both sides by $e^{(\gamma-\beta)t}$:

$$W(t) = \frac{\alpha B_0}{r - \alpha - (\gamma - \beta)} e^{(r - \alpha)t} + C_W e^{(\gamma - \beta)t}.$$

Based on the coefficients we chose in Section 3.1 and Section 3.2:

$$r - \alpha = -0.01$$
, $\gamma - \beta = -0.0056$,

¹Data based on 2023 US Census Data [2, 1]

$$r - \alpha - (\gamma - \beta) = -0.0044.$$

Thus, W(t) becomes:

$$W(t) = \frac{4.36992}{-0.0044}e^{-0.01t} + C_W e^{-0.0056t}.$$

In 2023, there were 211.52284 million people² aged between 18 and 66, setting it as the initial state W_0 , thus we have:

$$W(0) = \frac{4.36992}{-0.0044} + C_W = 211.52284$$

We solve for C_W :

$$C_W = 1204.69.$$

Thus, the solution for W(t) is:

$$W(t) = \frac{4.36992}{-0.0044}e^{-0.01t} + 1204.69e^{-0.0056t}.$$

1.3. Evaluate R(t). To make the process less complex, we substitute the coefficients before solving the equation. According to Equation 3 in our system, we have:

$$\frac{\mathrm{d}R(t)}{\mathrm{d}t} = 0.0193 \left(1204.69e^{-0.0056t} - 993.164e^{-0.01t}\right) - 0.041867754R(t),$$

Rewrite it as:

$$\frac{\mathrm{d}R(t)}{\mathrm{d}t} + 0.041867754R(t) = 23.2505e^{-0.0056t} - 19.1681e^{-0.01t}.$$

The integrating factor is:

$$\mu(t) = e^{\int 0.041867754 \, dt} = e^{0.041867754t}.$$

Multiplying both sides by $\mu(t)$:

$$e^{0.041867754t} \frac{\mathrm{d}R(t)}{\mathrm{d}t} + 0.041867754e^{0.041867754t} R(t) = e^{0.041867754t} \left(23.2505e^{-0.0056t} - 19.1681e^{-0.01t} \right).$$

Using the substitution $0.041867754e^{0.041867754t} = \frac{d}{dt} \left(e^{0.041867754t} \right)$, the left-hand side becomes:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(e^{0.041867754t} R(t) \right) = e^{0.041867754t} \left(23.2505 e^{-0.0056t} - 19.1681 e^{-0.01t} \right).$$

Integrating both sides with respect to t:

$$\int \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{0.041867754t} R(t) \right) \, \mathrm{d}t = \int e^{0.041867754t} \left(23.2505 e^{-0.0056t} - 19.1681 e^{-0.01t} \right) \, \mathrm{d}t.$$

Evaluating the integrals:

$$e^{0.041867754t}R(t) = 641.08e^{0.0362678t} - 601.488e^{0.0318678t} + C_R,$$

Finally, dividing both sides by $\mu(t) = e^{0.041867754t}$, we obtain:

$$R(t) = e^{-0.041867754t} \left(641.08e^{0.0362678t} - 601.488e^{0.0318678t} + C_R \right).$$

In 2023, there were 55.19152 million people³ aged above 66, setting it as the initial state R(0). We solve for C_R :

$$R(0) = e^{0} (641.08e^{0} - 601.488e^{0} + C_{R}) = 55.19152.$$

²Data based on 2023 US CENSUS Data [2]

³Data based on 2023 US CENSUS Data [2]

We solve for C_R :

$$C_R = 15.59952$$

Thus, the solution for R(t) is:

$$R(t) = e^{-0.041867754t} \left(641.08e^{0.0362678t} - 601.488e^{0.0318678t} + 15.59952 \right).$$

References

- [1] Data Commons. *United States of America*. Accessed November 29, 2024. 2024. URL: https://datacommons.org/place/country/USA?utmmedium=exploremprop=countpopt (visited on 11/29/2024).
- [2] U.S. Census Bureau. U.S. and World Population Clock. Accessed November 29, 2024. 2024. URL: https://www.census.gov/popclock/ (visited on 11/29/2024).

DEPARTMENT OF APPLIED MATHEMATICS, UNIVERSITY OF WASHINGTON