Bayesian Basics for True Effect Size Post

Nathan (Nat) Goodman September 15, 2019

Bayesian details

The snippet of math below is Bayes's formula for example at hand. An important nuance is that the "probabilities" are *probability densities* - think R's dnorm.

$$P(d_{true} \mid d_{obs}) = \frac{P(d_{true}) \times P(d_{obs} \mid d_{true})}{P(d_{obs})}$$

- * The term on the left hand side is what we're trying to compute, namely, the posterior probability distribution of d_{true} for a given value of d_{obs} (0.5 in the running example).
 - The first term on the right hand side, $P(d_{true})$, is the prior. For the normal prior in Figures 2 and 3, this is R's dnorm with mean = 0.3 and sd = 0.2.
 - The next term, $P(d_{obs} | d_{true})$, is the probability distribution of d_{obs} for a given d_{true} . For the running example, this is a noncentral t-distribution.
 - The denominator, $P(d_{obs})$, is the probability of a given value of d_{obs} across all values of d_{true} . To compute this, you integrate the numerator for d_{true} ranging from $-\infty$ to ∞ .

Below is R code to compute the posterior for the examples in this post.

```
## Compute the posterior probability density of d.true given d.obs for the examples in this post
     d.true, d.obs are standardized effect sizes
##
     n is the sample size per group
     prior is a function giving the prior probability density of d.true; see examples below
posterior=function(d.true,d.obs,n,prior) {
  ## probability of d.obs given d.true for the examples at hand
       d d2t is my function for probability density of the noncentral t in terms of sample size, d.true
       see code in https://natgoodman.github.io/repwr/stats.stable.html
  P_obsGIVENtrue=function(d.true) d_d2t(n=n,d0=d.true,d=d.obs);
  ## numerator in Bayes formula
  numerator=function(d.true) prior(d.true)*P_obsGIVENtrue(d.true);
  ## denominator in Bayes formula
  P_obs=integrate(function(d.true) numerator(d.true),-Inf,Inf)$value;
  ## final answer
  numerator(d.true)/P_obs;
}
## example priors
## uniform centered on d0
prior_unif=function(d0,u) {
  span=u/2;
  lim=d.obs+c(-span,span);
  function(d.true) dunif(d.true,d0-span,d0+span);
## normal with given mean and sd
prior_norm=function(mean.prior,sd.prior)
  function(d.pop) dnorm(d.pop,mean=mean.prior,sd=sd.prior);
```

```
## Example
posterior(d.true=seq(0,1,by=0.2),d.obs=0.5,n=20,prior=prior_norm(mean=0.3,sd=0.2));
## [1] 0.258453797 1.534427917 2.274534502 0.841955050 0.077840115 0.001797645
```

Comments Please!

Please post comments on Twitter or Facebook, or contact me by email natg@shore.net.