

MT7915DAN Datasheet

802.11ax Wi-Fi 2x2 Dual-band Con-current + Bluetooth v5.1 Baseband Chip

Version: 1.2

Release date: 2019-12-19

Specifications are subject to change without notice.

Document Revision History

Revision	Date	Author	Description
1.0	2019-11-01	CH Hung	Formal version
1.1	2019-11-06	CH Hung	Update 4.1/4.2/4.3
1.2	2019-12-19	CH Hung	 Update 2.2.2 Chip power on sequence Update 3.1 and 3.2 Update 4.1 and 4.2

Table of Contents

Do	cument	Revision History	2
Tak	ole of C	ontents	3
1	Svst	em overview	5
	1.1	General Description	F
	1.2	Features.	5
		Features	5
		1.2.2 Power management and clock source	5
		1.2.3 Platform	5
		1.2.4 WLAN	
		1.2.5 Bluetooth	
		1.2.6 Miscellaneous	6
	1.3	Block Diagram	6
2	Fund	ctional Description	7
	2.1	Overview	7
	2.2	Chip architecture	
		2.2.1 Chip power plan	
		2.2.2 Chip power on sequence	8
		2.2.3 Digital power domain	
		2.2.4 Clock	8
		2.2.5 Reset	g
	2.3	32-bit RISC MCU subsystem	g
		2.3.1 WiFi MCU subsystem	g
		2.3.2 Bluetooth MCU subsystem	g
	2.4	Host interface subsystem	9
		2.4.1 PCle interface	9
		2.4.2 UART interface	10
	2.5	Wi-Fi subsystem	10
		2.5.1 Wi-Fi MAC	10
		2.5.2 WLAN Baseband	11
	2.6	Bluetooth subsystem	11
		2.6,1 Feature set	11
3	Elec	trical Characteristics	13
	3.1	Absolute maximum rating	13
1	3.2	Recommended operating range	13
	3.3	DC characteristics	13
	3.4	XTAL oscillator	14
	3.5	PMU Characteristics	14
	3.6	Thermal characteristics	14
4	Pacl	age specification	15
	4.1	Pin Layout	15

MT7915DAN Datasheet

	4.2	Pin Description	15
	4.3	Bootstrap	19
	4.4	Package information	20
	4.5	Ordering Information	22
	4.6	Top marking	22
		Tables and Figures	
Table	1 Ab	solute maximum ratingcommended operating range	13
Table	2 Re	commended operating range	13
Table	3 DC	characteristics of 3 3V application	13
Table	4 XT	AL oscillator requirement	14
Table	5 PM	IU electrical characteristic	14
Table	6 The	ermal characteristics	14
Table	7 MT	7915DAN pin descriptions	19
Table	8 Bo	otstrap option – XTAL clock mode	19
Table	9 Bo	otstrap option – Chip modedering information	20
Table	10 Or	dering information	22
Figure	e 1 M	Г7915DAN block diagram	6
Figure	e 2 Ch	nip power on sequence	8
		old reset sequence	
Figure	e 4 PE	RST N sequence	10
Figure	e 5 M	Г7915DAN Pin Layout	15
Figure	9 6 Pa	ckage outline drawing	21
Figure	e 7 M	Г7915DAN Top Marking	22
_			

1 System overview

1.1 General Description

The MT7915DAN is a highly integrated Wi-Fi A/D chip which supports 573+1201 Mbps PHY rate and Bluetooth combo. It fully complies with IEEE 802.11ax and backward compatible with IEEE 802.11 a/b/g/n/ac standards, offering feature-rich wireless connectivity at high standards, and delivering reliable, cost-effective throughput from an extended distance.

Optimized RF architecture and baseband algorithms provide superb performance and low power consumption. Intelligent MAC design deploys a high efficient offload engine and hardware data processing accelerators which fully offloads WiFi task of the host processor. The MT7915DAN is designed to support standard based features in the areas of security, quality of service and international regulations, giving end users the greatest performance any time and in any circumstance.

1.2 Features

1.2.1 Technology and package

■ 12x12 DR-QFN 164 pins package

1.2.2 Power management and clock source

■ MT7915DAN support 40MHz crystal clock with low power operation in idle mode

1.2.3 Platform

- 32-bit RISC MCU for Wi-Fi/Bluetooth protocols
- Embedded SRAM/ROM
- UART interface with hardware flow control
- PCle device fully compliant to PCle v2.1 specification

1.2.4 WLAN

- IEEE 802.11 a/b/g/n/ac/ax compliant
- Support 20/40M bandwidth in 2.4G band and 20/40/80M bandwidth in 5G band
- 2T2R in 2.4G+2T2R in 5G with support of up to 573+1201Mbps PHY rate
- Support MU-MIMO TX/RX
- Support MU-OFDMA TX/RX
- Support STBC, LDPC, TX Beamformer and RX Beamformee
- Greenfield, mixed mode, legacy modes support
- Security support for WFA WPA/WPA2 personal, WPS2.0, WAPI
- QoS support of WFA WMM, WMM PS
- Integrated LNA, PA, and T/R switch
- Optional external LNA and PA support.

1.2.5 Bluetooth

Supports Bluetooth 5 dual mode for 2x the speed

- Integrated BALUN and PA with 13dBm(class 1) transmit power
- RX sensitivity: GFSK -95dBm, DQPSK -94dBm, 8-DPSK -88dBm, BLE1Mbps -98dBm, BLE2Mbps -95dBm, BLR 500Kbps -101dBm, BLR 125Kbps -104dBm
- Supports BT/Wi-Fi coexistence
- Supports 7 BT links and 16 BLE link
- Supports SCO and eSCO link with re-transmission
- Supports wide-band speech
- Supports mSBC and SBC including mono and stereo
- Supports Packet Loss Concealment (PLC) function for better voice quality
- Supports secure connection with AES128 and ECC256
- Channel quality driven data rate adaptation
- Channel assessment and WB RSSI for AFH

1.2.6 Miscellaneous

- Integrate 4096bits efuse to store device specific information.
- Advanced FDD mode Wi-Fi/Bluetooth coexistence scheme

1.3 Block Diagram

Figure 1 MT7915DAN block diagram

2 Functional Description

2.1 Overview

MT7915DAN is designed to support high data throughput over Wi-Fi. The host interface PCIe are integrated to provide stable bandwidth between the host platform and MT7915DAN. The clock rate of the internal bus fabric can also support the throughput the requirement. The clock rate of MCU is also configurable for different kinds of scenarios.

MT7915DAN supports low power requirement. Multiple power domains are implemented on chip. It defines a deep sleep mode, in which only the AON domain is powered on, while other OFF domains are shut off by the power switches integrated on chip. In deep sleep mode, the PMU could be further configured to be in a low power state to save the power consumption. The power, clock, and reset schemes of MT7915DAN are described in 2.2.

MT7915DAN has two separate CPU subsystem. There are both 32-bit RISC MCU subsystem. The CPU has its local memory. They also have common memory space for MEMORY and memory-mapped hardware engine. There are several options of clock frequency to provide the optimal performance with the best power consumption. The 32-bit RISC MCU is used to do clock control, power management, and host interface configuration. One is used to handles Wi-Fi MAC operations, and another is for Bluetooth LC operations and audio functions. PDMA (packet DMA) engines are integrated to support on-the-fly data buffer management. The architecture of 32-bit RISC MCU subsystem is described in 2.3.

MT7915DAN features PCle2.1 for the host interface. The configuration and the feature set of the interface are described in 2.4.

MT7915DAN has the Wi-Fi MAC and BBP subsystem and use with MT7975DN together, which provide the best-in-class radio and low power performance. The architecture of Wi-Fi subsystem is described in 2.5.

MT7915DAN has the Bluetooth LC/BB and use with MT7975DN together. The architecture of Bluetooth subsystem is described in 2.6.

2.2 Chip architecture

The section describes the power, clock, and reset schemes in MT7915DAN.

2.2.1 Chip power plan

The external power source can be directly supplied to the Power Management Unit, digital IOs, PCIe PHY and digital circuit on MT7915DAN. The on-chip Power Management Unit contains a number of LDOs. It converts the 3.3V input to other power rails.

PMU:

- 3.3V to 1.05V by PHYLDO for PCIe PHY circuit.
- 3.3V to lower voltage by ELDO for EFuse write operation.

Figure 2 Chip power on sequence

2.2.3 Digital power domain

The digital circuit is separated into AON (always-on), MCU, Wi-Fi MAC, Wi-Fi baseband, Bluetooth, and PCIE power domains. Except AON, each power domain can be turned off individually for different sleep scenarios.

2.2.4 Clock

2.2.4.1 Clock scheme

MT7915DAN use external clock source from MT7975DN as the single clock source of the whole system. MT7915DAN clock source only support 40MHz only.

There are 3 major PLLs, MCU PLL, BT PLL, and WF PLL that generate the clocks for the digital circuit. The clocks can be gated to save power when it's not used.

MediaTek Confidential © 2019 MediaTek Inc. Page 8 of 22

2.2.5 **Reset**

2.2.5.1 Global reset

MT7915DAN has 2 global resets as follows:

- Cold reset by AVDD33 PMU, AVDD33 PHYLDO Whole chip reset.
- System reset by SYSRST B Reset digital circuit, include strapping and XTAL controller.

Figure 3 Cold reset sequence

2.3 32-bit RISC MCU subsystem

2.3.1 WiFi MCU subsystem

The WiFi MCU subsystem is built upon a multi-layer AXI bus fabric infrastructure. There is 256KB ROM and 640KB RAM in local memory.

2.3.2 Bluetooth MCU subsystem

The Bluetooth MCU subsystem is built upon a multi-layer AHB bus fabric infrastructure. There is 224KB ROM and 704KB RAM in local instruction memory, and 224KB RAM in local data memory.

2.4 Host interface subsystem

2.4.1 PCle interface

MT7915DAN supports PCI Express End Point which is fully compliant with the PCI Express Base Specification Revision 2.0. It supports PCI Express Gen1 (2.5Gbps) and PCIE Express Gen2 (5.0Gbps) differential bus speed.

MT7915DAN supports PCI Express low power operations such as ASPM L1.0, ASPM L1.CLK_PM, ASPM L1.SS (L1.1 and L1.2), and PCI PM L2 state. It also supports WAKE_N for device wakeup host scenario, as well as remote wake-up signaling.

The PCI Express interface is only used for Wi-Fi operations. The DMA ring and the data structure are controlled by the descriptor-based PDMA engine over PCI Express interface.

MediaTek Confidential © 2019 MediaTek Inc. Page 9 of 22

2.4.1.1 PERST_N

Fundamental reset is triggered when PERST_N is asserted with power already applied to the device and SYSRST_B have been asserted.

Figure 4 PERST_N sequence

2.4.2 UART interface

MT7915DAN supports 5-pins UART (GND/TX/RX/CTS/RTS) and H4 HCI for Bluetooth host control interface, and the maximum UART baud rate is 4Mbps.

The UART default configuration is 115200bps baud rate without hardware flow control function (CTS/RTS disabled).

2.5 Wi-Fi subsystem

2.5.1 Wi-Fi MAC

2.5.1.1 Features

Wi-Fi MAC supports the following features:

- Support all date rates of 802.11a/g including 6, 9, 12, 18, 24, 36, 48, and 54Mbps
- Support short GI and all data rates of 802.11n including MCS0 to MCS7
- Support 802.11ac MCS0 to MCS9
- Support 802.11ax MCS0 to MCS11
- AMPDU/AMSDU RX (de-aggregation) and TX (aggregation) support
- TX beamformer and RX beamformee
- TX rate adaptation
- TX power control
- Security
 - 64-bit WEP (WEP-40) and 128-bit WEP (WEP-104) encryption with hardware TKIP and CKIP processing
 - AES-CCMP hardware processing

MediaTek Confidential

© 2019 MediaTek Inc.

Page 10 of 22

- GCMP hardware processing
- SMS4-WPI (WAPI) hardware processing
- Low power beacon filtering
- Management/control frame filtering

2.5.2 WLAN Baseband

2.5.2.1 Features

Wi-Fi baseband supports the following features:

- 20/40/80 MHz channels
- HE MCS0-11 BW20/40/80MHz with Nss=1~2
- Short Guard Interval
- Space-time block code (STBC)
- Low Density Parity check (LDPC)
- Support digital pre-distortion to enhance PA performance
- Smoothing (channel estimation) extension to MIMO case
- DFS radar detection
- Beamformer (explicit/implicit)
 - Decoded BW20/40/80 up to 2x2 BF matrix apply
- Beamformee
 - Decoded BW20/40/80 up to 4x2 MU matrix feedback
- MU-MIMO RX

2.6 Bluetooth subsystem

2.6.1 Feature set

MT7915DAN Bluetooth supports the following features:

- Bluetooth 5.1
 - BLE 2Mbps
 - BLE Long Range
 - BLE Advertising Extension
 - BLE high duty cycle non-connectable ADV
 - BLE Channel Selection#2
- Compatible Bluetooth 4.2
 - LE privacy 1.2
 - Data length extension
 - LE security connection
- Single-ended, RF port with integrated Balun and T/R switch
- Integrated high efficiency PA and TSSI
- Baseband and radio BDR and EDR packet types: 1Mbps (GFSK), 2Mbps (π /4-DQPSK), and 3Mbps (8PSK).

MediaTek Confidential © 2019 MediaTek Inc. Page 11 of 22

- Fully functional Bluetooth baseband: AFH, forward error correction, header error control, access code correlation, CRC, whitening.
- Standard pairing, authentication, link key, and encryption operation.
- Standard power saving mechanisms: sniff mode and sniff-subrating.
- Interlaced scan for faster connection setup
- Up to 7 simultaneous active ACL connections with background inquiry and page scan
- Up to 16 BLE links
- Scatternet support
- Channel quality driven data rate control
- WB RSSI support. Monitor environment air condition to select good channel for AFH

The Bluetooth baseband subsystem of MT7915DAN contains a baseband processor which supports timing control, bit stream processing, encryption, frequency hopping and modulation/demodulation. The baseband processor supports Bluetooth 5 dual mode for 4x the range, 2x the speed and 8x the broadcasting message capacity, and contains the voice codec, PCM interface controller, WLAN coexistence interface controller and a sleep mode controller. It also supports SCO over I2S, and can function as I2S master or slave. The I2S interface signals share the pins of PCM interface. MT7915DAN Bluetooth enhances BT and BLE encryption with AES-128.

One hardware accelerator is added to implement packet loss concealment function. The packet loss concealment (PLC) function is used to improve the voice quality in a noisy environment. Deep sleep mode function and PLL idle mode function are implemented in MT7915DAN to reduce the power consumption in the scan mode.

3 Electrical Characteristics

3.1 Absolute maximum rating

Symbol	Parameters	Maximum rating	Unit
VDD33	3.3V Supply Voltage	-0.3 to 3.63	V
VDD18	1.8V Supply Voltage	-0.3 to 1.98	V
DVDD	1.0V Supply Voltage	-0.3 to 1.1	V
T_{STG}	Storage Temperature	-40 to +125	°C
VESD	ESD protection (HBM)	2000	V

Table 1 Absolute maximum rating

3.2 Recommended operating range

Symbol	Rating	MIN	TYP	MAX	Unit
VDD33	3.3V Supply Voltage	2.97	3.3	3.63	V
VDD18	1.8V Supply voltage	1.7	1.8	1.9	V
DVDD	1.0V Supply voltage	0.9	1.0	1.1	V
TAMBIENT	Ambient Temperature	-10	-	70	°C

Table 2 Recommended operating range

3.3 DC characteristics

The digital IO supports VDD33 or VDD18 application.

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit
V _{IL}	Input Low Voltage	Input voltage				V
		 VDD33 	-0.3	-	0.8	
		• VDD18	-0.3		0.58	
V_{IH}	Input High Voltage	Input voltage				V
		 VDD33 	2.0	-	VDD33+0.3	
		 VDD18 	1.27		VDD18+0.3	
		Input voltage				
W.	Output Low	• VDD33	-0.3		0.4	V
V_{OL}	Voltage	VDD18	-0.3	-	0.2	\ \ \
		I _{OL} = 4~16 mA				
		Input voltage				
V _{OH}	Output High	• VDD33	VDD33-0.4		VDD33+0.3	V
VOH	Voltage	 VDD18 	VDD18-0.2		VDD18+0.3	•
		I _{OH} = 4~16 mA				
		Input voltage				
R _{PU}	Input Pull-Up	 VDD33 	40	75	190	ΚΩ
търи	Resistance	 VDD18 	10	50	100	1/22
Y		PU=high, PD=low				
	7	Input voltage				
R _{PD}	Input Pull-Down	 VDD33 	40	75	190	ΚΩ
LAD	Resistance	 VDD18 	10	50	100	1/22
		PU=low, PD=high				

Table 3 DC characteristics of 3.3V application

3.4 XTAL oscillator

The table below lists the requirement for the XTAL.

Parameter		Value
Frequency	40MHz	AV S
Frequency stability		±10 ppm @ 25°℃

Table 4 XTAL oscillator requirement

3.5 PMU Characteristics

PARAMETER	CONDITIONS	PERFORMANCE					
TANAMETER	CONDITIONS	MIN	TYP	MAX	Unit		
PHY LDO							
Input voltage		2.97	3.3	3.63	V		
Output voltage			1.05		V		
Output current			-	60	mA		
Quiescent current		S -	40	50	uA		

Table 5 PMU electrical characteristic

3.6 Thermal characteristics

 Θ_{JC} assumes that all the heat is dissipated through the top of the package, while Ψ_{Jt} assumes that the heat is dissipated through the top, sides, and the bottom of the package. Thus it's suggested to use Ψ_{Jt} to estimate the junction temperature.

Symbol Description	Description	Performance		
Syllibol	yrribor Description		Unit	
TJ	Maximum Junction Temperature (Plastic Package)	125	°C	
Θ_{JA}	Junction to ambient temperature thermal resistance	16.7	°C/W	
Θ _{JC}	Junction to case temperature thermal resistance	4.39	°C/W	
Ψ_{Jt}	Junction to the package thermal resistance	0.95	°C/W	

Note: JEDEC 51-7 system FR4 PCB size: 76.2x114.3mm (3"x4.5"), 4 layer.

Table 6 Thermal characteristics

4 Package specification

4.1 Pin Layout

MT7915DAN uses DR-QFN package of with 12mm x 12mm dimension.

Figure 5 MT7915DAN Pin Layout

4.2 Pin Description

The section describes the pin functionality of MT7915DAN chip.

QFN	Pin Name	Pin description	PU/PD	I/O	Supply domain
Reset ar	nd clocks				
90	SYSRST_B	External system reset active low	PU	Input	DVDDIO
115	PAD_XIN_WBG	40MHz Clock input	N/A	Input	
4	PAD_COCLK_IN	Co-Clock input	N/A	Input	

59	PAD_COCLK_OUT	Co-Clock output	N/A	Output	1
To RF-Die I	igital Interface	·		<u>-</u>	
2	PAD_TOP_DATA		PU/PD	In/out	DVDDIO_INN18
3	PAD_TOP_CLK		PU/PD	In/out	DVDDIO_INN18
5	PAD_SLP_CLK	4	PU/PD	In/out	DVDDIO_INN18
6	PAD_XO_REQ		PU/PD	In/out	DVDDIO_INN18
7	PAD_DIG_RESETB		PU/PD	In/out	DVDDIO_INN18
8	PAD_CBA_RESETB		PU/PD	In/out	DVDDIO_INN18
116	PAD_WF_HB1		PU/PD	In/out	DVDDIO_INN18
117	PAD_WF_HB0	(S)	PU/PD	In/out	DVDDIO_INN18
118	PAD_WF_HB2		PU/PD	In/out	DVDDIO_INN18
119	PAD_WF_HB3		PU/PD	In/out	DVDDIO_INN18
120	PAD_WF_HB4		PU/PD	In/out	DVDDIO_INN18
121	PAD_WF_HB5		PU/PD	In/out	DVDDIO_INN18
122	PAD_WF_HB6		PU/PD	In/out	DVDDIO_INN18
123	PAD_WF_HB7		PU/PD	In/out	DVDDIO_INN18
129	PAD_WF_HB8		PU/PD	In/out	DVDDIO_INN18
161	PAD_BT_DATA		PU/PD	In/out	DVDDIO_INN18
164	PAD_BT_CLK		PU/PD	In/out	DVDDIO_INN18
To RF-Die A	Analog Interface	1			
133	PAD_DFS_IP		N/A	Analog	
134	PAD_DFS_IN	Y	N/A	Analog	
135	PAD_DFS_QP		N/A	Analog	
136	PAD_DFS_QN		N/A	Analog	
137	PAD_WF3_IP		N/A	Analog	
138	PAD_WF3_IN		N/A	Analog	
139	PAD_WF3_QP	W.	N/A	Analog	
140	PAD_WF3_QN		N/A	Analog	
141	PAD_WF2_IP		N/A	Analog	
142	PAD_WF2_IN		N/A	Analog	
143	PAD_WF2_QP		N/A	Analog	
144	PAD_WF2_QN		N/A	Analog	
145	PAD_WF1_IP		N/A	Analog	
146	PAD_WF1_IN		N/A	Analog	
147	PAD_WF1_QP		N/A	Analog	
148	PAD_WF1_QN		N/A	Analog	
149	PAD_WF0_IP		N/A	Analog	

			1	ı	Á
150	PAD_WF0_IN		N/A	Analog	
151	PAD_WF0_QP		N/A	Analog	
152	PAD_WF0_QN		N/A	Analog	
153	PAD_BT_IP		N/A	Analog	
154	PAD_BT_IN	_	N/A	Analog	
155	PAD_BT_QP		N/A	Analog	Y
156	PAD_BT_QN		N/A	Analog	
PMU			7		
76	AVDD33_PMU	PMU 3.3V supply	N/A	Input	
77	PAD_VCORE_SENSE	DVDD 1.0V voltage sense	N/A	Input	
78	PAD_VIO18_SENSE	DVDDIO18 1.8V voltage sense	N/A	Input	
79	PAD_TMOUT	PMU monitor	N/A	Output	
80	PAD_VREF		N/A	Output	
81	PAD_PMU_POR	Power ready indicator	N/A	Output	
82	PAD_PMU_POR_B	Power ready indicator	N/A	Output	
83	AVDD33_PHYLDO	PHY LDO 3.3V supply	N/A	Input	
84	PAD_PHYLDO10	PHY LDO 1.05V output	N/A	Output	
Miscellane	ous	7			
108	LNA_EN_G3	External component control	N/A	Output	DVDDIO
107	PA_EN_G3	External component control	N/A	Output	DVDDIO
106	LNA_EN_A3	External component control	N/A	Output	DVDDIO
105	PA_EN_A3	External component control	N/A	Output	DVDDIO
104	PA_EN_A2	External component control	N/A	Output	DVDDIO
102	LNA_EN_A2	External component control	N/A	Output	DVDDIO
101	TRSW_N_BAND0	External component control	N/A	Output	DVDDIO
100	LNA_EN_A1	External component control	N/A	Output	DVDDIO
99	LNA_EN_A0	External component control	N/A	Output	DVDDIO
98	PA_EN_A1	External component control	N/A	Output	DVDDIO
97	PA_EN_A0	External component control	N/A	Output	DVDDIO
96	TRSW_N_BAND1	External component control	N/A	Output	DVDDIO
61	BT: UART_RXD	BT UART Interface	PU	Input	DVDDIO
58	BT:UART_TXD	BT UART Interface	N/A	Output	DVDDIO
57	BT:UART_CTS	BT UART Interface	PD	Input	DVDDIO
56	BT:UART_RTS	BT UART Interface	N/A	Output	DVDDIO
55	STRAP0	Bootstrap Pin	N/A	Output	DVDDIO
54	Reserved	Reserved Pin	N/A	Output	DVDDIO
			1	1	1

					,
51	STRAP1	Bootstrap Pin	N/A	Output	DVDDIO
50	LED_WPS	LED control		Output	DVDDIO
49	PERST_2_N	Reserved Pin	N/A	Output	DVDDIO
47	STRAP6	Bootstrap Pin	N/A	Output	DVDDIO
46	STRAP7	Bootstrap Pin	N/A	Output	DVDDIO
45	PERST_N	PCle functional reset		Input	DVDDIO
43	LED_BT	LED control		Output	DVDDIO
42	LED_WLAN_5G	LED control		Output	DVDDIO
10	LNA_EN_G0	External component control	N/A	Output	DVDDIO
11	LNA_EN_G1	External component control	N/A	Output	DVDDIO
12	PA_EN_G0	External component control	N/A	Output	DVDDIO
13	PA_EN_G1	External component control	N/A	Output	DVDDIO
17	LNA_EN_G2	External component control	N/A	Output	DVDDIO
18	PA_EN_G2	External component control	N/A	Output	DVDDIO
19	Reserved	Reserved Pin	N/A	Output	DVDDIO
95	GPIO36	SW ANT diversity control	N/A	Output	DVDDIO
94	GPIO37	SW ANT diversity control	N/A	Output	DVDDIO
93	GPIO38	SW ANT diversity control	N/A	Output	DVDDIO
92	GPIO39	SW ANT diversity control	N/A	Output	DVDDIO
65	Reserved	Reserved Pin	N/A	Output	DVDDIO
64	Reserved	Reserved Pin	N/A	Output	DVDDIO
63	Reserved	Reserved Pin	N/A	Output	DVDDIO
62	Reserved	Reserved Pin	N/A	Output	DVDDIO
67	Reserved	Reserved Pin	PD	Input	DVDDIO
power supp	lies				
16,53,103	DVDDIO	Digital IO power input	N/A	Power	
1,124	DVDDIO_INN18	Digital A/D-Die IO power input	N/A	Power	
48	DVDDIO18	Digital IO power input	N/A	Power	
9,14,15,20, 21,22,44,6 0,66,68- 75,85- 89,91,109- 113,125- 128,131,15 9,160,162,	DVDD	Digital CORE power input	N/A	Power	
24,33,114	GND	Ground	N/A	Ground	
23	AVDD18_PLLGP	MCU PLL power supply N/A Power			
130,158	AVDD18_WBG	ADC/DAC power supply N/A Power			
132,157	AVSS18_WBG	ADC/DAC ground	N/A	Ground	

PCIE ii	nterface			
34	PCIE_CKRXP_P0	PCIe differential reference clock	N/A	Analog
35	PCIE_CKRXN_P0	PCIe differential reference clock	N/A	Analog
36	AVDD18_PCIE_P0	PCIe 1.8V power supply	N/A	Power
37	PCIE_TXP_P0	PCIe transmit differential pair	N/A	Analog
38	PCIE_TXN_P0	PCIe transmit differential pair	N/A	Analog
39	AVDD10_PCIE_P0	PCIe 1.05V power supply	N/A	Power
40	PCIE_RXN_P0	PCIe receive differential pair	N/A	Analog
41	PCIE_RXP_P0	PCIe receive differential pair	N/A	Analog
32	PCIE_CKRXP_P1	PCIe differential reference clock	N/A	Analog
31	PCIE_CKRXN_P1	PCIe differential reference clock	N/A	Analog
30	AVDD18_PCIE_P1	PCIe 1.8V power supply	N/A	Power
29	PCIE_TXP_P1	PCIe transmit differential pair	N/A	Analog
28	PCIE_TXN_P1	PCle transmit differential pair	N/A	Analog
27	AVDD10_PCIE_P1	PCIe 1.05V power supply	N/A	Power
26	PCIE_RXN_P1	PCIe receive differential pair	N/A	Analog
25	PCIE_RXP_P1	PCIe receive differential pair	N/A	Analog

Table 7 MT7915DAN pin descriptions

4.3 Bootstrap

The section describes the bootstrap function. The chip modes are sensed from the device pin during power up. After chip reset, the pull configuration are stored in a register and determine the device operation mode.

XTAL mode	STRAP7	STRAP6	STRAP1	XO_IN	XO_out_A	XO_out_B	Description
OSC	Pull-up	Pull-down	Pull-down	40MHz	40MHz	40MHz	Uses 40M XTAL
Buffer	Pull-up	Pull-down	Pull-up	40MHz	40MHz	40MHz	From MT7975DN
osc	Pull-up	Pull-up	Pull-down	40MHz	40MHz	80MHz	Uses 40M XTAL
Buffer	Pull-up	Pull-up	Pull-up	80MHz	40MHz	40MHz	From MT7975DN

Note 1: No external pull-down resistor is required because internal pull-down is active during power up.

Note2: XTAL mode is defined for MT7975DN RF chip

Table 8 Bootstrap option – XTAL clock mode

MediaTek Confidential

© 2019 MediaTek Inc.

Chip mode	STRAP0	Description
Normal mode	Pull-down ⁽¹⁾	Chip operates in normal mode.
Test mode	Pull-up	Chip operates in test mode.

Note 1: No external pull-down resistor is required because internal pull-down is active during power up.

Table 9 Bootstrap option - Chip mode

Pins STRAP0, STRAP1, STRAP6 and STRAP7 are used for bootstrap. The system design should follow the following guideline:

- Those pins shall not be used as input functions because the signals from other device might affect the values sensed.
- Those pins shall not be used as an open-drain function because the pull-up resistor would affect the values sensed.

4.4 Package information

MediaTek Confidential © 2019 MediaTek Inc. Page 20 of 22

Figure 6 Package outline drawing

4.5 Ordering Information

Part number	Package	Operational temperature range
MT7915DAN	12x12x0.9 mm 164L DR-QFN	-10~70°C

Table 10 Ordering information

4.6 Top marking

MEDIATEK

MT7915DAN DDDD-#### BBBBBBB

BBBBBBB

MT7915DAN : Part number DDDD : Date code

: Internal control code

BBBBBBB : Lot number

Figure 7 MT7915DAN Top Marking

ESD CAUTION

MT7915DAN is ESD (electrostatic discharge) sensitive device and may be damaged with ESD or spike voltage. Although MT7915DAN is with built-in ESD protection circuitry, please handle with care to avoid the permanent malfunction or the performance degradation.