9.1 and 9.5 Likelihood Ratio Test

Recall our t-test example. We reject H_0 if $|U| = \left| \frac{\bar{X}_n - \mu_0}{\sigma' / \sqrt{n}} \right| \ge c$

Our test statistic: $U = \frac{\bar{X}_n - \mu_0}{\sigma' / \sqrt{n}} \sim t_{(n-1)}$ if $H_0: \mu = \mu_0$ is true.

But
$$U = \frac{\bar{X}_{n} - \mu_0}{\sigma'/\sqrt{n}} \sim t_{(n-1),\psi}$$
 if H_0 is false.

Where $\psi = \frac{\mu - \mu_0}{\sigma / \sqrt{n}}$ and μ is the true mean.

Is the one sample t-test optimal in any sense?

We covered many properties of parameter etimates/estimators that are desirable (maximum likelihood, sufficiecy, efficiency, unbiasedness, etc). Are there similar ways we can evaluate test-procedures?

Evaluating Test Procedures

Let's consider a general framework for suggesting and evaluating test procedures (minimize Type II for fixed Type I error).

$$H_0: \theta \in \Omega_0$$

$$H_A: \theta \in \Omega_1$$

The likelihood function is highest near true values of θ . We will consider tests based on the likelihood function $f_n(x|\theta)$.

So if the likelihood function is greater for values of θ under H_1 vis a via H_0 we should reject H_0 .

If $\sup_{\theta \in \Omega_1} f_n(x|\theta) > \sup_{\theta \in \Omega_0} f_n(x|\theta)$ then we should reject H_0 .

Likelihood Ratio Test Statistic (Def 9.1.11)

Alternatively, we can consider, $\sup_{\theta \in \Omega} f_n(x|\theta)$ rather than $\sup_{\theta \in \Omega_0} f_n(x|\theta)$.

The Likelihood Ratio Statistic is defined to be:

$$\Lambda(x) = \frac{\sup_{\theta \in \Omega_0} f_n(x|\theta)}{\sup_{\theta \in \Omega} f_n(x|\theta)}$$

Using the Likelihood Ratio Test Statistic $\Lambda(x)$ we reject H_0 if $\Lambda(x) \leq k$.

Intuitively, if the max likelihood under H_0 is far below the overall max then we should reject H_0 .

The t-test as a LRT: Setup

Consider once again $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$ where $X's \sim N(\mu, \sigma^2), \ \mu, \sigma^2$ both are unknown.

$$\Omega_0 = \{ (\mu, \sigma^2) : \mu = \mu_0, \sigma^2 > 0 \}$$

$$\Omega = \Omega_0 \cup \Omega_1 = \{ (\mu, \sigma^2) : \mu = (-\infty, \infty), \sigma^2 > 0 \}$$

$$f_n(x|\theta) = f_n(x|(\mu,\sigma^2)) = (2\pi\sigma^2)^{-n/2} \exp\{-\frac{1}{2}\sum \frac{(x_i\mu)^2}{\sigma^2}\}$$

In order to maximize our likelihood function we essentially want to find maximum likelihood estimators of μ and σ^2 (subject to contraints).

The t-test as a LRT

Under Ω_0 : $\hat{\mu}_0 = \mu_0$; to find $(\sigma)_0^2$ take deriative and set to zero $\rightarrow \hat{\sigma}_0^2 = \frac{1}{n} \sum (x_i - \mu_0)^2$

Under $\Omega: \hat{\mu}$ and $\hat{\sigma}^2$ are the usual MLEs:

$$\hat{\mu} = \bar{X}_n; \hat{\sigma}^2 = \frac{1}{n} \sum (x_i - \bar{X}_n)^2.$$

$$\Lambda(x) = \frac{f_n(x|\hat{\mu}_0, \hat{\sigma}_0^2)}{f_n(x|\hat{\mu}, \hat{\sigma}^2)}
= \frac{(2\pi \frac{1}{n} \sum (x_i - \mu_0)^2)^{-n/2} \exp\{-\frac{1}{2} \sum \frac{(x_i - \mu)^2}{\frac{1}{n} \sum (x_i - \mu_0)^2}\}}{(2\pi \frac{1}{n} \sum (x_i - \bar{X}_n)^2)^{-n/2} \exp\{-\frac{1}{2} \sum \frac{(x_i - \bar{X}_n)^2}{\frac{1}{n} \sum (x_i - \bar{X}_n)^2}\}}
= \left[\frac{\sum (x_i - \mu_0)^2}{\sum (x_i - \bar{X}_n)^2}\right]^{-n/2}$$

The t-test as LRT: Example 9.5.12

So Reject H_0 if $\Lambda(x) \leq k$,

$$\left[\frac{\sum (x_i - \mu_0)^2}{\sum (x_i - \bar{X}_n)^2}\right]^{-n/2} \le k$$

Is this something we recognize?

- Show that this LRT is equivalent to a one sided t-test. Follow set up on p584 – what do you need to fill in to show this is true?
- Exercise 9.5.17 Can also show this is the case for the two-sided hypothesis test.