BULK RNA-SEQ: UPSTREAM ANALYSIS

Presenter: Duy Dao

TABLE OF CONTENTS

RNA SEQ: UPSTREAM ANALYSIS

- 01 INTRODUCTION
- 02 RAW DATA PROCESSING
- 03 ALIGNMENT
- 04 MAPPED READS POST-PROCESSING
- 05 ALIGNMENT DATA: QUALITY CONTROL

INTRODUCTION

RAW DATA PROCESSING

SEQUENCE QUALITY CONTROL (FASTQC)

> FASTQC Summary

"FASTQC is a useful tool to check sequences quality."

Measure	Value						
Filename	NIST7035_TAAGGCGA_L001_R1_001.fastq.gz						
File type	Conventional base calls						
Encoding	Sanger / Illumina 1.9						
Total Sequences	20203002						
Total Bases	2 Gbp						
Sequences flagged as poor quality	0						
Sequence length	101						
%GC	49						

RAW DATA PROCESSING

READ TRIMMING & FILTERING

This program does adaptive quality trimming, head and tail crop, and adaptor removal.

Check QC → Trim → Check QC again.

Trimming:

- Quality trimming
- Adapter trimming.

RAW DATA PROCESSING

Quality problems

- Quality problems typically originate either in the sequencing itself or in the preceding library preparation.
- They include low-confidence bases, sequence-specific bias, 3'/5' positional bias, polymerase chain reaction (PCR) artifacts, untrimmed adapters, and sequence contamination.
- These problems can seriously affect mapping to reference, assembly, and expression estimates, but luckily many of them can be corrected for by filtering, trimming, error correction, or bias correction.
- Some problems cannot be corrected for, but you should at least be aware of them when interpreting results.

ALIGNMENT

ALIGNMENT

Workflow for a RNA-seq analysis.

Basic alignment (Contiguous Alignment / Non-spliced Alignment)

In contiguous alignment, sequences are aligned continuously without any gaps or interruptions.

Problem when using basic alignment to map RNA-seq data

- Unmapped reads due to intron splicing.

Contiguos Alignment vs Splice-Aware Alignment

- Contiguous Aligners: BWA, Bowtie2,...
- Spliced Aligners: HiSAT2, TopHat, STAR,...

Compare the Alignment of DNA-seq and RNA-seq

Compare the Alignment of DNA-seq and RNA-seq

Spliced-aware alignment algorithms employ various strategies to handle splice junctions, such as:

- Split reads: Allows for precise alignment across the splice junctions.
- Novel splice junction detection: Detect previously unknown splicing events, providing insights
 into alternative splicing patterns and transcriptome complexity.
- **Splice junction annotation:** Aligners may utilize existing splice junction annotations, such as those obtained from databases or previous studies, to guide the alignment process.

alexdobin/STAR

RNA-seq aligner

৪২ 36

Contributors

637

₩ 44

앟 442

Forks

Issues

Discussions

Stars

☆ 2k

STAR (Spliced Transcripts Alignment to a Reference)

STAR alignment strategy

Seed searching...

Clustering, stitching, and scoring

Alignment statistics & Utilities for manipulating alignment files.

	Started job on	Jun 18 14:12:08	
	Started mapping on	Jun 18 14:12:13	
	Finished on	Jun 18 14:12:43	
	Mapping speed, Million of reads per hour	666.81	
	Number of input reads	5556750	
	Average input read length	124	
	UNIQUE READS:		
	Uniquely mapped reads number	4987609	
	Uniquely mapped reads %	89.76%	
	Average mapped length	124.32	
	Number of splices: Total	244266	
	Number of splices: Annotated (sjdb)	236101	
	Number of splices: GT/AG	243487	
	Number of splices: GC/AG	63	
	Number of splices: AT/AC	11	
	Number of splices: Non-canonical	705	
	Mismatch rate per base, %	0.08%	
	Deletion rate per base	0.01%	
	Deletion average length	1.35	
	Insertion rate per base	0.00%	
	Insertion average length	1.07	
	MULTI-MAPPING READS:		
	Number of reads mapped to multiple loci	270940	
	% of reads mapped to multiple loci	4.88%	
	Number of reads mapped to too many loci	30963	
	% of reads mapped to too many loci	0.56%	
	UNMAPPED READS:		
	Number of reads unmapped: too many mismatches	0	
	% of reads unmapped: too many mismatches	0.00%	
	Number of reads unmapped: too short	266450	
	% of reads unmapped: too short	4.80%	
	Number of reads unmapped: other	788	
	% of reads unmapped: other	0.01%	
ı	CHIMERIC READS:		

			;	SJ.out	.tab			
chrI	12728	12823	1	1	0	0	1	13
chrI	87388	87500	1	1	1	70	0	32
chrI	128525	129021	2	2	0	1	0	26
chrI	142254	142619	1	1	1	1820	0	32
chrI	142254	143349	1	1	0	1	0	22
chrI	151007	151096	2	2	1	4	0	32
chrI	206383	206517	1	1	0	2	1	25
chrII	5120	5335	2	2	0	0	1	30
chrII	45645	45977	1	1	0	1087	2	31
chrII	47059	47146	2	2	1	11	0	23
chrII	60194	60697	2	2	1	2960	0	32
chrII	89133	89440	2	2	0	81	0	31
chrII	110421	110505	2	2	1	88	0	32
chrII	110880	110948	1	1	1	23	0	32
chrII	125155	125270	1	1	1	67	0	32
chrII	142750	142846	2	2	1	181	0	32
chrII	142754	142846	2	2	0	1	0	26
chrII	167650	230011	2	2	0	0	17	12
chrII	168425	168808	1	1	1	308	0	31
chrII	170621	170804	1	1	0	6	0	27
chrII	170677	170804	1	1	1	82	0	32

The SJ.out.tab contains filtered splice junctions detected in the mapping

Alignment statistics & Utilities for manipulating alignment files.

Alignment statistics & Utilities for manipulating alignment files.

SAM format

Alignment statistics & Utilities for manipulating alignment files.

CIGAR string with "N"

The "N" in the CIGAR string represents a stretch of skipped reference bases (also known as introns or gaps) in a sequence alignment.

It indicates that the read aligns to the reference genome, but there is a region of the reference sequence that is not covered by the read.

Splicing:

Alignment statistics & Utilities for manipulating alignment files.

ALIGNMENT QUALITY CONTROL

Alignment quality metrics:

- Coverage uniformity along transcripts
- Saturation of sequencing depth
- Ribosomal RNA content (rRNA)
- Read distribution between exons, introns & intergenic regions.
- ..

RSeQC: Genebody Coverage

- \rightarrow Used to assess the sequencing depth and coverage across the entire length of genes
 - Gene expression quantification
 - Transcript isoform analysis
 - Detection of gene expression biases
 - Assessing RNA integrity and sample quality

RSeQC: Junction Annotation

The junction-annotation command:

- Search an RNA-Seq bam file for splice junctions.
- 2. Compare them to a gene model.
- 3. Output whether the found junctions are novel, partially novel, or already annotated in a gene model.

RSeQC: Junction Annotation

RSeQC: Junction Saturation

A sample that reaches a plateau before getting to 100% data indicates that all junctions in the library have been detected, and that further sequencing will not yield more observations.

Junction Saturation Analysis

- Evaluates the depth of sequencing coverage at splice junctions.
- It helps determine if sufficient sequencing depth has been achieved to capture the full diversity of splice junctions.
- → Guides decisions on whether additional sequencing is needed to achieve more comprehensive coverage.
- → Ensures confidence in downstream analyses (alternative splicing analysis, isoform discovery).

RSeQC: Read Distribution

Calculate how mapped reads were distributed over genome feature (like CDS exon, 5'UTR exon, 3' UTR exon, Intron, Intergenic regions).

Biotypes Count

featureCounts Biotypes

- A good RNAseq sample should have a large portion of the reads coming from protein coding genes.
- This plot can help you spot problems with your library such as incomplete rRNA depletion.

QUANTIFICATION

Quantification - Read Count

Count how many reads have mapped to each gene.

→Using the **featureCounts** tool to get the gene counts

Input: BAM + GTF

Output: Number of reads (counts) associated with each feature of interest (genes, exons, transcript, etc.).

Counting reads with featureCounts

- Accurate, fast and is relatively easy to use
- Counts reads that map to a single location (uniquely mapping) and follows the scheme in the figure below for assigning reads to a gene/exon.

aligned read:

start: 113217600 end: 113217650

GTF

```
chrl unknown exon 113217048 113217252 . + . gene_id "MOV10";p_id "P5535";transcript_id "NM_001130079" chrl unknown exon 113217048 113217351 . + . gene_id "MOV10";p_id "P5535";transcript_id "NM_020963" chrl unknown exon 113217470 113217671 . + . gene_id "MOV10";p_id "P5535";transcript_id "NM_001130079" chrl unknown CDS 113217535 113217671 . + 0 gene_id "MOV10";p_id "P5535";transcript_id "NM_001130079" chrl unknown start_codon 113217535 113217537 . + gene_id "MOV10";p_id "P5535";transcript_id "NM_001130079"
```


Counting reads using featureCounts

- A read is said to overlap a feature if at least one read base is found to overlap the feature.
- For paired-end data, a fragment (or template) is said to overlap a feature if any of the two reads from that fragment is found to overlap the feature.
- If strandedness is specified, then in addition to considering the genomic coordinates it will also take the strand into account for counting.

Example of a featureCounts Assignment.

Counting reads using featureCounts

gene	Location	St	rand	Length				ount						
gene	Location	30	iana	Length			,	ount						
# 0	 	0 2.	C	1.116	- 6	" - " "	- 11 11 /	1 d a + 1 D a T	A /DD0756	T (DNA -	/	-2161-	+	
# Progra	Start	V2.0.2; End	Strand						WT E 2			rz/rer/a	innotation/s	acCer3.ensG
YDL248W	1802	2953	+	1152	164	132	148	337	94	378				
YDL248W	chrIV	3762	3836	+	75	0	0	3	0	0	6			
YDL247W	5985	7814	+	1830	0	0	1	0	0	4	O			
YDL247W	8683	9756	7	1074	0	0	2	0	0	6				
YDL245C	11657	13360	-	1704	14	2	6	38	6	12				
YDL243C	16204	17226	+	1023	14	6	6	39	19	27				
YDL244W	17577	18566	т.	990	115	94	100	292	142	215				
YDL243C	18959	19312	+	354	5	13	9	16	4	26				
YDL242W	20635	21006	+	372	89	46	60	16	2	13				
YDL241W	chrIV	22471	22608	-	138	5	1	1	1	2	2			
YDL240U	22823	25876	+	3054	191	166	245	112	27	200	2			
YDL239C	26403	28775	7	2373	82	146	128	409	136	506				
YDL239C	28985	30454	-	1470	101	79	92	555	91	346				
YDL237W	30657	31829	+	1173	553	381	536	827	322	1330				
YDL236W	32296	33234	+	939	1886	1855	1661	3095	459	1820				
YDL235C	33415	33918	-	504	1306	1405	900	1364	385	965				
YDL234C	34237	36477	-	2241	648	601	881	2822	1148	2386				
YDL233W	36797	38173	+	1377	132	158	147	391	193	463				
YDL232W	38487	38597	+	111	545	533	443	353	153	429				
YDL231C	38867	42244		3378	681	565	552	586	139	451				
YDL230W	42700	43707	+	1008	398	429	411	590	460	1119				
YDL229W	44065	45906	+	1842	6625	4502	4656	2168	124	744				
YDL228C	45277	45918	-	642	31	28	34	12	1	1				
YDL227C	46271	48031		1761	1006	837	556	97	8	102				
YDL226C	51115	52173		1059	1264	1219	1326	1657	603	1801				
YDL225W	52445	54100	+	1656	1116	1061	1044	1430	366	1444				
YDL224C	54397	56346	-	1950	310	174	264	272	183	584				
YDL223C	57265	60405	-	3141	124	104	92	1487	845	3016				
YDL222C	60872	61801	-	930	17	15	51	101	303	1036				
YDL221W	62011	62562	+	552	27	28	13	35	24	39				
YDL220C	62244	65018	-	2775	63	34	64	110	36	107				
YDL219W		65242;6		65306;6		+;+	453	697	834	610	512	189	509	
YDL218W	66493	67446	+	954	28	21	16	51	32	84	312	109	307	
YDL217C	67983	68606	-	624	287	247	295	392	91	344				
VDI 2160	68007	78310	1000 C	1323	170	127	203	215	13/	100				

Output: Raw counts

These are the "raw" counts will be used in statistical programs downstream for differential gene expression.

Counting reads using featureCounts

	gene				Co	unt		
Geneid		gene name	WT C 2	WT C 1	WT E 1	WT C 3	WT E 2	WT E 3
YDL2460		SOR2	0	0	0	2	0	6
YDL2430		AAD4	104	109	275	109	328	206
YDR3870		CIN10	263	274	747	492	695	810
YDL0940		NA	7	4	8	1	8	3
YDR438W		THI74	72	102	140	126	144	161
YDR5230		SPS1	39	30	27	61	31	12
YDR542W	J	PAU10	0	1	0	1	0	0
YDR492W	l :	IZH1	420	619	2850	338	1651	749
YDR0180	: 1	NA	21	19	160	50	359	455
YDL189W	1 1	RBS1	380	405	376	518	408	515
YDR5080		GNP1	1661	2365	767	2126	972	1417
YDR462W	1 1	MRPL28	307	304	850	360	1081	700
YDR1750		RSM24	528	577	1456	617	1304	903
YDR1860		SND1	730	868	2061	681	1658	1643
YDR150W	1 1	NUM1	474	420	772	535	831	724
YDR2430		PRP28	189	176	282	192	147	232
YDL182W	1	LYS20	2163	2953	500	3361	318	710
YDR3620		TFC6	323	360	558	350	536	461
YDR232W	1 1	HEM1	616	579	845	642	542	452
YDR158W	1 1	HOM2	12602	14504	4521	14868	4053	5727
YDR439W	1	LRS4	93	136	163	113	197	202
YDL206W	1 1	NA	177	215	369	315	633	653
YDR1250		ECM18	82	87	111	93	145	228
YDR3380		NA	204	245	226	259	289	265
YDR5260	: 1	NA	0	2	0	4	1	0
YDR5330	: 1	HSP31	3469	3665	24999	1677	30821	22425
YDR272W	1 (GL02	1591	1329	5826	1413	6536	7377
YDR197W	1 (CBS2	329	393	573	380	732	648
YDR5120		EMI1	783	588	2009	670	2625	2619

A table of counts

Don't need information about the genomic coordinates, length

→ Cleaning up the featureCounts matrix

Final output:

A count matrix, with genes as rows and samples are columns

EXAMPLE DATA

"Effect of the lysphosphatidylcholine analogue edelfosine on gene expression in *Saccharomyces cerevisiae*"

https://www.ncbi.nlm.nih.gov/geo/query/acc.cg i?acc=GSE227381

EXAMPLE DATA

Comparative gene expression profiling analysis of RNA-seq data for S. cerevisiae cells treated with edelfosine for 60 minutes.

Edelfosine treatment (X3)

Bulk RNA-seq Analysis

THANK YOU