COMCAST TELECOM CONSUMER COMPLAINTS ANALYSIS

DESCRIPTION

Comcast is an American global telecommunication company. The firm has been providing terrible customer service. They continue to fall short despite repeated promises to improve. Only last month (October 2016) the authority fined them a \$2.3 million, after receiving over 1000 consumer complaints. The existing database will serve as a repository of public customer complaints filed against Comcast. It will help to pin down what is wrong with Comcast's customer service.

Data Dictionary

Ticket #: Ticket number assigned to each complaint Customer Complaint: Description of complaint Date: Date of complaint Time: Time of complaint Received Via: Mode of communication of the complaint City: Customer city State: Customer state Zipcode: Customer zip Status: Status of complaint Filing on behalf of someone Analysis Task

To perform these tasks, you can use any of the different Python libraries such as NumPy, SciPy, Pandas, scikit-learn, matplotlib, and BeautifulSoup.

- Import data into Python environment.
- Provide the trend chart for the number of complaints at monthly and daily granularity levels.
- Provide a table with the frequency of complaint types.

Which complaint types are maximum i.e., around internet, network issues, or across any other domains.

- Create a new categorical variable with value as Open and Closed. Open & Pending is to be categorized as Open and Closed & Solved is to be categorized as Closed.
- Provide state wise status of complaints in a stacked bar chart. Use the categorized variable from Q3. Provide insights on:

Which state has the maximum complaints Which state has the highest percentage of unresolved complaints

 Provide the percentage of complaints resolved till date, which were received through the Internet and customer care calls.

The analysis results to be provided with insights wherever applicable.

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline
```

In [3]: df = pd.read_csv('C:/Users/admin/Documents/Data Science with python projects/Come
In [4]: df.head()

Out[4]:

	Customer Complaint	Date	Date_month_year	Time	Received Via	City	State	Zip code	Statu
Ticket #									
250635	Comcast Cable Internet Speeds	22- 04- 15	22-Apr-15	3:53:50 PM	Customer Care Call	Abingdon	Maryland	21009	Close
223441	Payment disappear - service got disconnected	04- 08- 15	04-Aug-15	10:22:56 AM	Internet	Acworth	Georgia	30102	Close
242732	Speed and Service	18- 04- 15	18-Apr-15	9:55:47 AM	Internet	Acworth	Georgia	30101	Close
277946	Comcast Imposed a New Usage Cap of 300GB that 	05- 07- 15	05-Jul-15	11:59:35 AM	Internet	Acworth	Georgia	30101	Ope
307175	Comcast not working and no service to boot	26- 05- 15	26-May-15	1:25:26 PM	Internet	Acworth	Georgia	30101	Solve
4									•

In [5]: df[df.isnull()].count()

Out[5]: Customer Complaint 0 Date 0 0 Date_month_year 0 Time Received Via 0 City 0 State 0 Zip code 0 Status 0 Filing on Behalf of Someone 0 dtype: int64

In [6]: df.describe(include='all')

Out[6]:

	Customer Complaint	Date	Date_month_year	Time	Received Via	City	State	Zip code	Statı
count	2224	2224	2224	2224	2224	2224	2224	2224.000000	222
unique	1841	91	91	2190	2	928	43	NaN	
top	Comcast	24- 06- 15	24-Jun-15	2:13:31 PM	Customer Care Call	Atlanta	Georgia	NaN	Solv€
freq	83	218	218	2	1119	63	288	NaN	97
mean	NaN	NaN	NaN	NaN	NaN	NaN	NaN	47994.393435	Na
std	NaN	NaN	NaN	NaN	NaN	NaN	NaN	28885.279427	Na
min	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1075.000000	Na
25%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	30056.500000	Na
50%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	37211.000000	Na
75%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	77058.750000	Na
max	NaN	NaN	NaN	NaN	NaN	NaN	NaN	99223.000000	Na

EDA and Cleanup the data set

```
In [7]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
Index: 2224 entries, 250635 to 363614

Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Customer Complaint	2224 non-null	object
1	Date	2224 non-null	object
2	Date_month_year	2224 non-null	object
3	Time	2224 non-null	object
4	Received Via	2224 non-null	object
5	City	2224 non-null	object
6	State	2224 non-null	object
7	Zip code	2224 non-null	int64
8	Status	2224 non-null	object
9	Filing on Behalf of Someone	2224 non-null	object

dtypes: int64(1), object(9)
memory usage: 191.1+ KB

```
In [8]: | df['Date month year'] = pd.to datetime(df['Date month year'])
        df['Created_Month'] = df['Date_month_year'].apply(lambda x: x.month)
        df['Created_Day'] = df['Date_month_year'].apply(lambda x: x.day)
        df['Created_Day of Week'] = df['Date_month_year'].apply(lambda x: x.dayofweek)
In [9]: dmap = {0:'Mon',1:'Tue',2:'Wed',3:'Thur',4:'Fri',5:'Sat',6:'Sun'}
        df['Created Day of Week']=df['Created Day of Week'].map(dmap)
        df.head(5)
∩u+[9]:
```

U	u	τ	Ŀ	ر ر	1

	Customer Complaint	Date	Date_month_year	Time	Received Via	City	State	Zip code	Statu
Ticket #									
250635	Comcast Cable Internet Speeds	22- 04- 15	2015-04-22	3:53:50 PM	Customer Care Call	Abingdon	Maryland	21009	Close
223441	Payment disappear - service got disconnected	04- 08- 15	2015-08-04	10:22:56 AM	Internet	Acworth	Georgia	30102	Close
242732	Speed and Service	18- 04- 15	2015-04-18	9:55:47 AM	Internet	Acworth	Georgia	30101	Close
277946	Comcast Imposed a New Usage Cap of 300GB that	05- 07- 15	2015-07-05	11:59:35 AM	Internet	Acworth	Georgia	30101	Ope
307175	Comcast not working and no service to boot	26- 05- 15	2015-05-26	1:25:26 PM	Internet	Acworth	Georgia	30101	Solve
4									•

number of complaints monthly

Out[10]: Text(0.8, 0.85, 'Max complaints in Jun')

number of complaints Daily

```
In [11]: plt.figure(figsize=(18,6))
    byday = df.groupby('Created_Day').count().reset_index()
    lp = sns.lineplot(x='Created_Day', y= 'Customer Complaint', data = byday, sort=Fa
    ax = lp.axes
    ax.set_xlim(0,32)
```

Out[11]: (0.0, 32.0)


```
In [12]: #number of complaints based on created day of the week
sns.countplot(x='Created_Day of Week', data = df, order=df['Created_Day of Week']
#More number of complaints on Tuesday and wednesday
```

Out[12]: <AxesSubplot:xlabel='Created_Day of Week', ylabel='count'>

TASK 2 - Provide a table with the frequency of complaint types.

```
In [13]: df['Customer Complaint'] = df['Customer Complaint'].str.title()
         CT freq = df['Customer Complaint'].value counts()
         CT freq
Out[13]: Comcast
                                                           102
         Comcast Data Cap
                                                            30
                                                            29
         Comcast Internet
         Comcast Data Caps
                                                            21
         Comcast Billing
                                                            18
         Comcast- Internet
                                                             1
         Data Capping And Lack Of Options In Tucson Az
                                                             1
         Comcast Lied About Pricing And Installation
                                                             1
         Comcast Not Honoring Agreement
                                                             1
         Misleading Sales Practice And Advertising
                                                             1
         Name: Customer Complaint, Length: 1740, dtype: int64
In [14]: import nltk
         %pip install wordcloud
         Collecting wordcloud
           Downloading wordcloud-1.8.1-cp38-cp38-win amd64.whl (155 kB)
         Requirement already satisfied: matplotlib in c:\programdata\anaconda3\lib\site-
         packages (from wordcloud) (3.3.2)
         Requirement already satisfied: numpy>=1.6.1 in c:\programdata\anaconda3\lib\sit
         e-packages (from wordcloud) (1.19.2)
         Requirement already satisfied: pillow in c:\programdata\anaconda3\lib\site-pack
         ages (from wordcloud) (8.0.1)
         Requirement already satisfied: cycler>=0.10 in c:\programdata\anaconda3\lib\sit
         e-packages (from matplotlib->wordcloud) (0.10.0)
         Requirement already satisfied: kiwisolver>=1.0.1 in c:\programdata\anaconda3\li
         b\site-packages (from matplotlib->wordcloud) (1.3.0)
         Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\p
         rogramdata\anaconda3\lib\site-packages (from matplotlib->wordcloud) (2.4.7)
         Requirement already satisfied: certifi>=2020.06.20 in c:\programdata\anaconda3
         \lib\site-packages (from matplotlib->wordcloud) (2020.6.20)
         Requirement already satisfied: python-dateutil>=2.1 in c:\programdata\anaconda3
         \lib\site-packages (from matplotlib->wordcloud) (2.8.1)
         Requirement already satisfied: six in c:\programdata\anaconda3\lib\site-package
         s (from cycler>=0.10->matplotlib->wordcloud) (1.15.0)
         Installing collected packages: wordcloud
         Successfully installed wordcloud-1.8.1
         Note: you may need to restart the kernel to use updated packages.
```

```
In [15]: from wordcloud import WordCloud, STOPWORDS
    common_complaints = df['Customer Complaint'].dropna().tolist()
    common_complaints = ''.join(common_complaints).lower()

list_stops = ('Comcast','Now','Company','Day','Someone','Thing','Also','Got','Way

for word in list_stops:
    STOPWORDS.add(word)
```

```
In [16]: wordcloud = WordCloud(stopwords=STOPWORDS,
                                background color='white',
                                width=1200,
                                height=1000).generate(common complaints)
In [16]: plt.figure( figsize=(10,12) )
         plt.imshow(wordcloud)
         plt.title('Frequent words for customer complaints')
         plt.axis('off')
         plt.show()
         #Internet complaints are Maximum
                               Frequent words for customer complaints
                                         husinessphone
                                                      chargescomcas
                                           email
                                          advertised
              month
                                                                          usage
                                          speedcomcas
In [28]:
         from nltk.corpus import stopwords
         from nltk.stem.wordnet import WordNetLemmatizer
         import string
         nltk.download("stopwords")
         stop = set(stopwords.words('english'))
         exclude = set(string.punctuation)
         lemma = WordNetLemmatizer()
         [nltk data] Downloading package stopwords to
         [nltk_data]
                          C:\Users\admin\AppData\Roaming\nltk_data...
         [nltk_data]
                       Unzipping corpora\stopwords.zip.
In [21]: |nltk.download('wordnet')
         [nltk data] Downloading package wordnet to
         [nltk data]
                          C:\Users\admin\AppData\Roaming\nltk data...
         [nltk_data]
                       Unzipping corpora\wordnet.zip.
Out[21]: True
```

```
Comcast telecom Consumer complaints analysis - Jupyter Notebook
In [29]: def clean(doc):
             stop free = " ".join([i for i in doc.lower().split() if i not in stop])
             punc free = "".join([ch for ch in stop free if ch not in exclude])
             normalized = " ".join(lemma.lemmatize(word) for word in punc_free.split())
             return normalized
In [30]: |doc_complete = df['Customer Complaint'].tolist()
         doc clean = [clean(doc).split() for doc in doc complete]
In [35]: pip install gensim==4.0.1
         Collecting gensim==4.0.1
           Downloading gensim-4.0.1-cp38-cp38-win amd64.whl (23.9 MB)
         Requirement already satisfied: Cython==0.29.21 in c:\programdata\anaconda3\lib
         \site-packages (from gensim==4.0.1) (0.29.21)
         Collecting smart-open>=1.8.1
           Downloading smart open-5.1.0-py3-none-any.whl (57 kB)
         Requirement already satisfied: numpy>=1.11.3 in c:\programdata\anaconda3\lib\si
         te-packages (from gensim==4.0.1) (1.19.2)
         Requirement already satisfied: scipy>=0.18.1 in c:\programdata\anaconda3\lib\si
         te-packages (from gensim==4.0.1) (1.5.2)
         Installing collected packages: smart-open, gensim
         Successfully installed gensim-4.0.1 smart-open-5.1.0
         Note: you may need to restart the kernel to use updated packages.
In [36]: import gensim
         from gensim import corpora
         C:\ProgramData\Anaconda3\lib\site-packages\gensim\similarities\ init .py:15:
```

C:\ProgramData\Anaconda3\lib\site-packages\gensim\similarities__init__.py:15:
UserWarning: The gensim.similarities.levenshtein submodule is disabled, because
the optional Levenshtein package https://pypi.org/project/python-Levenshtein/
is unavailable. Install Levenhstein (e.g. `pip install python-Levenshtein`) to
suppress this warning.
warnings.warn(msg)

```
In [37]: dictionary = corpora.Dictionary(doc_clean)
dictionary
```

Out[37]: <gensim.corpora.dictionary.Dictionary at 0x25ae2b8a370>

```
In [44]: | doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean]
         doc term matrix
          [(259, 1), (447, 1), (448, 1), (449, 1)],
          [(1, 1), (155, 1)],
          [(199, 1), (252, 1), (432, 1), (450, 1), (451, 1)],
          [(1, 1), (57, 1), (384, 1)],
          [(1, 1), (2, 1), (225, 1), (452, 1)],
          [(95, 1), (103, 1), (225, 1), (453, 1), (454, 1)],
          [(1, 1), (455, 1), (456, 1), (457, 1), (458, 1), (459, 1)],
          [(38, 1), (112, 1)],
          [(1, 1), (57, 1)],
          [(1, 1)],
          [(2, 1), (3, 1), (299, 1)],
          [(1, 1), (52, 1), (115, 1), (460, 1)],
          [(1, 1), (82, 1), (86, 1)],
          [(1, 1), (2, 1)],
          [(1, 1)],
          [(1, 1), (8, 1), (72, 1), (210, 1), (461, 1), (462, 1)],
          [(1, 1), (463, 1), (464, 1)],
          [(1, 1), (2, 1)],
          [(8, 1), (66, 1), (199, 1), (465, 1), (466, 1), (467, 1)],
          [(2, 1), (8, 1), (38, 1), (57, 1), (72, 1), (97, 1), (210, 1)],
```

In [45]: from gensim.models import LdaModel

```
In [46]: num_topic = 9
ldamodel = LdaModel(doc_term_matrix,num_topics=num_topic,id2word = dictionary,pas
```

```
In [47]: | topics = ldamodel.show topics()
         for topic in topics:
             print(topic)
             print()
         (0, '0.203*"comcast" + 0.120*"complaint" + 0.046*"bill" + 0.033*"charged" + 0.0
         26*"without" + 0.022*"lack" + 0.018*"credit" + 0.017*"phone" + 0.016*"signal" +
         0.014*"option"')
         (1, '0.226*"service" + 0.157*"comcast" + 0.078*"internet" + 0.040*"customer" +
         0.022*"poor" + 0.013*"terrible" + 0.011*"2" + 0.011*"problem" + 0.008*"broadban
         d" + 0.008*"misleading"')
         (2, '0.050*"comcast" + 0.049*"get" + 0.046*"service" + 0.030*"unreliable" + 0.0
         28*"email" + 0.020*"pay" + 0.019*"refusal" + 0.019*"10" + 0.018*"disconnection"
         + 0.017*"improper"')
         (3, '0.117*"speed" + 0.089*"comcast" + 0.062*"charge" + 0.062*"internet" + 0.02
         6*"paying" + 0.022*"service" + 0.020*"fee" + 0.018*"without" + 0.018*"promised"
         + 0.015*"cramming"')
         (4, '0.135*"comcast" + 0.132*"data" + 0.107*"cap" + 0.059*"issue" + 0.044*"inte
         rnet" + 0.029*"cable" + 0.025*"usage" + 0.023*"throttling" + 0.016*"bill" + 0.0
         15*"xfinity"')
         (5, '0.057*"false" + 0.045*"switch" + 0.041*"contract" + 0.040*"account" + 0.03
         6*"payment" + 0.032*"advertising" + 0.030*"bait" + 0.023*"comcast" + 0.019*"mon
         th" + 0.016*"check"')
         (6, '0.191*"internet" + 0.126*"comcast" + 0.047*"slow" + 0.033*"speed" + 0.026
         *"xfinity" + 0.025*"connection" + 0.023*"deceptive" + 0.018*"monopoly" + 0.018
         *"business" + 0.016*"high"')
         (7, '0.211*"billing" + 0.089*"comcast" + 0.079*"practice" + 0.063*"unfair" + 0.
         048*"pricing" + 0.028*"comcastxfinity" + 0.025*"day" + 0.021*"monopolistic" +
         0.020*"back" + 0.020*"show"')
         (8, '0.074*"comcast" + 0.060*"billing" + 0.034*"service" + 0.030*"help" + 0.027
         *"failure" + 0.025*"price" + 0.024*"year" + 0.022*"incorrect" + 0.021*"refund"
         + 0.020*"contract"')
In [48]: word dict = {}
         for i in range(num topic):
             words = ldamodel.show topic(i,topn = 20)
             word dict['Topic '+"{}".format(i)]=[i[0] for i in words]
```

In [49]: pd.DataFrame(word_dict)

Out[49]:

	Topic 0	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	
0	comcast	service	comcast	speed	comcast	false	internet	
1	complaint	comcast	get	comcast	data	switch	comcast	(
2	bill	internet	service	charge	сар	contract	slow	
3	charged	customer	unreliable	internet	issue	account	speed	
4	without	poor	email	paying	internet	payment	xfinity	
5	lack	terrible	pay	service	cable	advertising	connection	comca
6	credit	2	refusal	fee	usage	bait	deceptive	
7	phone	problem	10	without	throttling	comcast	monopoly	mon
8	signal	broadband	disconnection	promised	bill	month	business	
9	option	misleading	improper	cramming	xfinity	check	high	
10	rate	please	inability	installation	connectivity	continues	home	аррс
11	throttled	bad	area	modem	limit	extortion	price	
12	change	horrible	streaming	12	billed	att	charge	ag
13	outage	price	inconsistent	shitty	monthly	monopolistic	intermittent	СС
14	notice	quality	paid	low	xfinitycomcast	egregious	service	
15	request	xfinity	power	throttling	increased	person	sale	
16	isp	access	neighborhood	unauthorized	several	advertisingbait	bill	
17	transfer	overcharge	monopolist	equipment	mb	breach	plan	
18	consent	claim	transferred	ps4	charging	bullying	loss	1
19	higher	hbo	subsequent	hbogo	overage	terminating	outage	

TASK 3 - Create a new categorical variable with value as Open and Closed. Open & Pending is to be categorized as Open and Closed & Solved is to be categorized as Closed.

```
In [63]: df['Highlevel_Status'] = ["Open" if Status=="Open" or Status=="Pending" else "Clo
In [64]: df['Highlevel_Status'].unique()
Out[64]: array(['Closed', 'Open'], dtype=object)
```

TASK 4 - Provide state wise status of complaints in a stacked bar chart. Use the categorized variable from Q3.

```
In [65]: df['State'] = df['State'].str.title()
st_cmp = df.groupby(['State','Highlevel_Status']).size().unstack().fillna(0)
```

In [66]: st_cmp

Out[66]:

Highlevel_Status	Closed	Open
State		
Alabama	17.0	9.0
Arizona	14.0	6.0
Arkansas	6.0	0.0
California	159.0	61.0
Colorado	58.0	22.0
Connecticut	9.0	3.0
Delaware	8.0	4.0
District Of Columbia	15.0	2.0
Florida	201.0	39.0
Georgia	208.0	80.0
Illinois	135.0	29.0
Indiana	50.0	9.0
lowa	1.0	0.0
Kansas	1.0	1.0
Kentucky	4.0	3.0
Louisiana	12.0	1.0
Maine	3.0	2.0
Maryland	63.0	15.0
Massachusetts	50.0	11.0
Michigan	92.0	23.0
Minnesota	29.0	4.0
Mississippi	23.0	16.0
Missouri	3.0	1.0
Montana	1.0	0.0
Nevada	1.0	0.0
New Hampshire	8.0	4.0
New Jersey	56.0	19.0
New Mexico	11.0	4.0
New York	6.0	0.0
North Carolina	3.0	0.0
Ohio	3.0	0.0
Oregon	36.0	13.0
Pennsylvania	110.0	20.0

Highlevel_Status	Closed	Open
State		
Rhode Island	1.0	0.0
South Carolina	15.0	3.0
Tennessee	96.0	47.0
Texas	49.0	22.0
Utah	16.0	6.0
Vermont	2.0	1.0
Virginia	49.0	11.0
Washington	75.0	23.0
West Virginia	8.0	3.0

TASK 5 - Which state has the maximum complaints Which state has the highest percentage of unresolved complaints

In [67]: df.groupby(["State"]).size().sort_values(ascending=False).to_frame().rename({0: '#Georgia has highest complaints

Out[67]:

Complaint count

State	
Georgia	288

```
In [68]: CT = df.groupby(["State","Highlevel_Status"]).size().unstack().fillna(0)
    CT.sort_values('Closed',axis = 0,ascending=False)[:1]
Out[68]:
Highlevel Status Closed Open
```

Highlevel_Status Closed Open
State
Georgia 208.0 80.0

TASK 6 --- Provide the percentage of complaints resolved till date, which were received through the Internet and customer care calls.