Problem 29

Theorem 1.1. For every $k \in \mathbb{N}$ there exists a tree T_k with $\Gamma(T_k) = k$

Proof. In the following we will show how to construct T_k by induction. Additionally to $\Gamma(T_k) = k$, every T_k will have a greedy coloring so that the root of T_k is colored with color k.

- Base T_1 is just a single vertex without edges. Obviously $\Gamma(T_1) = 1$ and the color of the root of T_1 is 1.
- Induction step
 For any k > 1, T_k can be constructed by using one new vertex v and $T_1, T_2, ..., T_{k-1}$. By connecting the roots of $T_1, T_2, ..., T_{k-1}$ to v we ensure that there is a greedy coloring in which v has to have the color k. This greedy coloring can be achieved by first coloring $T_1, T_2, ..., T_{k+1}$ by induction so that the roots have the colors 1, 2, ..., k-1. Now we can color v with the color k because by construction all colors smaller than v are already taken by the nodes adjacent to v. Hence, we constructed T_k with a root node v which has color k and $\Gamma(T_k) = k$.

Finally, by using the proven theorem we know that $min\{k \in \mathbb{N} | \Gamma(T) \leq k \text{ for all trees } T\} = \infty$.

Theorem 1.2. For any Graph G $\Gamma(G) \leq max_{uv \in E(G)} min\{deg(u), deg(v)\} + 1$

Proof. For the sake of contradiction let's assume that there is a graph G with $\Gamma(G) = k$ and $k > \max_{uv \in E(G)} \min\{deg(u), deg(v)\} + 1$. Additionally, let G be colored with a greedy coloring using k colors which obviously has to exist if $\Gamma(G) = k$.

Let $v \in V(G)$ with c(v) = k be one of the vertices with the highest color. Now, $deg(v) \ge k - 1$ for c(v) = k to be possible in a greedy coloring, because v has to have at least k - 1 adjacent vertices which are colored in colors 1 through k - 1.

By assumption we know that for all neighbours u of v, $k > min\{deg(v), deg(u)\} + 1$. Now we easily see that deg(u) < deg(v) because else $k > min\{deg(v), deg(u)\} + 1 = deg(v) + 1$ but earlier we saw that $deg(v) \ge k - 1$. Hence, we know that for all neighbours u of v the following inequality holds: $k > min\{deg(u), deg(v)\} + 1 = deg(u) + 1 \Leftrightarrow deg(u) < k - 1$.

Now for c(v) = k to hold in a proper greedy coloring we need to find a neighbour u of v with c(u) = k - 1 which was colored before v. Because deg(u) > k - 1 u only has k - 2 neighbours which are not v. Hence if v is not already colored c(u) < k - 1 so it is impossible to greedy color v with the color k. This finally leads to a contradiction, hence $k > \max_{uv \in E(G)} \min\{deg(u), deg(v)\} + 1$ was a wrong assumption and for every graph $\Gamma(G) > \max_{uv \in E(G)} \min\{deg(u), deg(v)\} + 1$ holds.

Problem 31

Let $G = (V = \{v_1, ..., v_n\}, E)$ be a graph.

Lemma 2.0.1. $(A(G)^k)[i,j] = a_{i,j}^k$ represents the amount of v_i - v_j -paths of length k $(i,j \in \{1,...,n\}.$ proof Prove by induction over k.

- Base: k=1 $A(G)[i,j] = \{e \in E : e = v_i v_j\} = \{p path : p = (v_i, v_j)\} \in \{0,1\}$
- Step: $k \geq 1$ $(A(G)^k)[i,j] = (A(G)^{k-1}*A(G))[i,j] = (\sum_{a=1}^n \sum_{b=1}^n \sum_{d=1}^n (A(G)^{k-1})[a,d]*A(G)[d,b])[i,j] = \sum_{d=1}^n (A(G)^{k-1})[i,d]*A(G)[d,j].$ By induction $(A(G)^{k-1})[i,d]$ is the amount of v_i - v_d -paths of length k-1, and A(G)[d,j] indicates if there is a v_d - v_j -paths of length 1. So $(A(G)^{k-1})[i,d]*A(G)[d,j]$ is the amount of v_i - v_j -paths of length k containing v_dv_j as last edge. To get all paths of length k, all possible incident edges of v_j have to be checked. So all in all, $(A(G)^k)[i,j] = \sum_{d=1}^n (A(G)^{k-1})[i,d]*A(G)[d,j]$ is the amount of all v_i - v_j -paths of length k.
- (a) tr(A(G)) = 0Because G doesn't have any self-loops, $A(G)[i,i] = 0 \ \forall i \in \{1,...,n\}$. Therefore: $tr(A(G)) = \sum_{i=1}^n A[i,i] = \sum_{i=1}^n 0 = 0$
- (b) $tr(A(G)^2 \ equals$ twice the number of edges of G. $tr(A(G)^2) = \sum_{i=1}^n \sum_{k=1}^n A[i,k] * A[k,i] = \sum_{i=1}^n \sum_{k=1}^n A[k,i]^2 = \sum_{i=1}^n \sum_{k=1}^n A[i,k] = \sum_{i=1}^n d(v_n) = 2 * |E|.$
- (c)tr(A(G)³) equals six times the number of triangles in G.
 As proven in Lemma 2.0.1, (A(G)³)[i, i] is the amount of all v_i-v_i-paths of length 3.
 Because a closed path of length 3 is a triangle, (A(G)^k)[i, i] is the amount of triangles containing v_i.
 Moreover, a triangle t = (v_i, v_j, v_k, v_i) can be interpreted as two different paths starting/ending at v_i: p₁ = v_iv_jv_kv_i and p₂ = v_iv_kv_jv_i. Thus, for each triangle there are two paths.
 All in all, let t be a triangle in G. Then for each vertex in t there are two paths of length 3. This makes 3 * 2 = 6 paths in tr(A(G)³) for each triangle in G.
 Because tr(A(G)³) is the amount of all closed paths of length 3 (v ∈ V(G)), and a triangle is a closed path of length 3, tr(A(G)³) = ∑_{i=1}ⁿ(2 * |{t triangle in G : t contains v_i}|) is exactly six times the amount of all triangles in G.

Problem 32

Theorem 3.1. The adjacency matrix of any d-regular graph has an eigenvalue of d.

Proof. Let G = (V, E) be a d-regular graph and let $A(G) = (a_{ij})_{i,j=1,...,n}$ $(n \in \mathbb{N})$ denote it's adjacency matrix. We show that

$$A(G) \cdot (1, \dots, 1)^{\top} = (d, \dots, d)^{\top} = d \cdot (1, \dots, 1)^{\top}$$

and thereby that d is an eigenvalue of G. Since G is d-regular, every row sum equals exactly d:

$$\forall i \in [1, \dots, n] : \sum_{i=1}^{n} a_{ij} = d$$

Trivially,

$$A(G) \cdot (1, \dots, 1)^{\top} = (\sum_{j=1}^{n} a_{1j}, \dots, \sum_{j=1}^{n} a_{nj})^{\top} = (d, \dots, d)^{\top} = d \cdot (1, \dots, 1)^{\top}$$

Theorem 3.2. The adjacency matrix of any bipartite, d-regular graph has an eigenvalue of -d.

Proof. Let G = (V, E) be a bipartite, d-regular graph and let $A(G) = (a_{ij})_{i,j=1,...,n}$ $(n \in \mathbb{N})$ denote it's adjacency matrix.

For all of G's vertices $v_1, ..., v_n$ $(n \in \mathbb{N})$, let $\sigma(v_i)$ denote a selection function that assigns each vertex it's partition:

$$\sigma(v) = \begin{cases} -1 & \text{if } v \text{ in partition } \#1\\ 1 & \text{if } v \text{ in partition } \#2 \end{cases}$$

Let x denote

$$A(G) \cdot (\sigma(v_1), \dots, \sigma(v_n))^{\top} = \mathbf{x} = (x_1, \dots, x_n)^{\top}$$

We will prove that $(\sigma(v_1), \ldots, \sigma(v_n))^{\top}$ is an eigenvector for the eigenvalue -d by showing that $\mathbf{x} = (-d \cdot \sigma(v_1), \ldots, -d \cdot \sigma(v_n))$.

For any $i \in \{1, \ldots, n\}$,

$$x_i := \sum_{j=1}^n a_{ij} \cdot \sigma(v_j)$$

Since v_i is only adjacent to vertices which are not in it's partition and $\sigma(v_i) = -\sigma(v_j)$ if i, j are in different partitions.

$$x_i := \sum_{i=1}^n a_{ij} \cdot -\sigma(v_i)$$

Moreover, G is d-regular. Thus,

$$x_i := \sum_{i=1}^{d} 1 \cdot -\sigma(v_i) = -d \cdot \sigma(v_i)$$

Hence, $A(G) \cdot (\sigma(v_1), \dots, \sigma(v_n))^{\top} = \mathbf{x} = -d \cdot (\sigma(v_1), \dots, \sigma(v_n))^{\top}$ and thereby, -d is an eigenvalue of G. \square