

Lógica Matemática Aula 07

Prof.^a Msc. Cassiana Fagundes da Silva E-mail: cassiana.silva@sistemafiep.org.bi

Objetivo da Aula

• Entender os fundamentos da Equivalência Lógica

Equivalência Lógica

Definição

- Uma proposição P(p,q,r,...) é equivalente a uma proposição Q(p,q,r,...) se as tabelas verdade dessas duas proposições são idênticas.
- Notação:

$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$$

Exemplo:

p	q	$\mathbf{p} \rightarrow \mathbf{q}$	~p ∨ q
V	V	V	V
V	F	F	F
F	V	V	V
F	F	V	V

Obtém-se:

$$p \rightarrow q \Leftrightarrow \sim p \vee q$$

Propriedades

- A relação da Equivalência Lógica possui as propriedades:
 - Reflexiva:

$$P(p,q,r,...) \Leftrightarrow P(p,q,r,...)$$
 $P \Leftrightarrow P$

- Simétrica:

Se P(p,q,r,...)
$$\Leftrightarrow$$
 Q(p,q,r,...), então Q(p,q,r,...) \Leftrightarrow P(p,q,r,...)
Se $P \Leftrightarrow Q$, então Q $\Leftrightarrow P$

Transitiva:

Se
$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$$
 e
$$Q(p,q,r,...) \Leftrightarrow R(p,q,r,...)$$
 então $P(p,q,r,...) \Leftrightarrow R(p,q,r,...)$ Se $P \Leftrightarrow Q \in Q \Leftrightarrow R$, então $P \Leftrightarrow R$

Prove que as seguintes proposições são equivalentes:

- 1. $p e \neg \neg p$;
- 2. $\mathbf{p} \in \neg \mathbf{p} \rightarrow \mathbf{p}$;
- 3. $\mathbf{p} \rightarrow \mathbf{p} \wedge \mathbf{q}$ e $\mathbf{p} \rightarrow \mathbf{q}$; (Regra de absorção)
- 4. $\mathbf{p} \rightarrow \mathbf{q} \ \mathbf{e} \ \neg \mathbf{p} \vee \mathbf{q}$;
- 5. $p \leftrightarrow q e (p \rightarrow q) \land (q \rightarrow p)$;
- 6. $p \leftrightarrow q e (p \land q) \lor (\neg p \land \neg q)$.

1. p e ~~p (Regra da dupla negação)

р	~ p	~~p
V	F	V
F	V	F

2. $p e^p \rightarrow p$ (Regra de Calvius)

р	~ p	~p → p
V	F	V
F	V	F

3. p \rightarrow p $^{\wedge}$ q e p \rightarrow q (Regra de absorção)

q	p ^ q	p → p ^ q	p→p
V	V	V	V
F	F	F	F
V	F	V	V
F	F	V	V
	V F V F	VV	q p ^ q p → p ^ q V V V F F F V F V F F V

4. $p \rightarrow q e^p v q$

р	q	~ p	~p v q	p → p
V	V	F	V	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

5.
$$p \leftrightarrow q e (p \rightarrow q) \land (q \rightarrow p)$$

р	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge (q \rightarrow p)$
V	V	V	V	V	V
V	F	F	F	V	F
F	V	V	V	F	F
F	F	V	V	V	V

6. $p \leftrightarrow q e (p ^ q) v (^p ^ ~q)$

р	q	~ p	~q	$p \leftrightarrow q$	(p ^ q)	(~p ^ ~q)	(p ^ q) v (~p ^ ~q)
V	V	F	F	V	V	V	V
V	F	F	V	F	F	F	F
F	V	V	F	V	V	F	V
F	F	V	V	V	V	V	V

Tautologias e Equivalências Lógicas

$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$$

se e somente se
 $P(p,q,r,...) \leftrightarrow Q(p,q,r,...)$
é tautológica.

Demonstre isso para o item 4 do exercício anterior:

4.
$$\mathbf{p} \rightarrow \mathbf{q} \ \mathbf{e} \ \neg \mathbf{p} \lor \mathbf{q}$$
;

Dica: faça mais uma coluna com a seguinte sentença:

$$p \rightarrow q \leftrightarrow \neg p \lor q$$

Tautologias e Equivalências Lógicas

 Tem-se o Corolário (afirmação deduzida de uma verdade já demonstrada):

Se
$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$$
,
então também é válido que
 $Q(p,q,r,...) \Leftrightarrow P(p,q,r,...)$

- Observe que:
 - → indica uma operação lógica entre as proposições.
 - Ex.: das proposições p e q, dá-se a nova proposição p ↔ q.
 - ⇔ indica uma relação.
 - Ex.: estabelece que a bicondicional P ↔ Q é tautológica.

 Indique quais das seguintes proposições são equivalentes:

- (p ∧ ~q → c) ↔ (p → q), onde V(c) = F
 (Método de demonstração do absurdo)
- (p ∧ q → r) ↔ (p → (q → r))
 (Regra de Exportação-Importação)
- 3. $p \vee \sim q e \sim (q \wedge p)$

1. $(p \land \neg q \rightarrow c) \leftrightarrow (p \rightarrow q)$, onde V(c) = F(Método de demonstração do absurdo)

р	q	~q	С	(p ^ ~q)	(p ^ ~q) → c)	$p \rightarrow q$	$(p \land \neg q \rightarrow c) \leftrightarrow (p \rightarrow q)$
V	V	F	F	F	V	V	V
V	F	V	F	V	F	F	V
F	V	F	F	F	V	V	V
F	F	V	F	F	V	V	V

2. $(p \land q \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$

(Regra da Exportação - Importação)

р	q	r	(p ^ q)	$(p \land q) \rightarrow r)$	$q \rightarrow r$	$(p \rightarrow (q \rightarrow r)$	$(p \land q \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	V	V	V	V
V	F	F	F	V	V	V	V
F	V	V	F	V	V	V	V
F	V	F	F	V	F	V	V
F	F	V	F	V	V	V	V
F	F	F	F	V	V	V	V

3. $p \vee q \leftrightarrow (q \wedge p)$

р	q	~q	(p v ~q)	(q ^ q)	~(q ^ p)	p v ~q ↔ ~(q ^p)
V	V	F	V	V	F	F
V	F	V	V	F	V	V
F	V	F	F	F	V	F
F	F	V	V	F	V	V

 Mostrar que as proposições p e q são equivalentes (p q q) em cada um dos seguintes casos:

- (a) p:1+3=4; $q:(1+3)^2=16$
- (b) $p : sen0^0 = 1$; $q : cos0^0 = 0$
- (c) $p:2^0=1$; $q:\pi<4$
- (d) $p: x = y; q: x + z = y + z (x, y, z \in R)$
- (e) $p: x \in par; q: x+1 \in impar(x \in Z)$
- (f) p:O triangulo ABC é isósceles (AB = AC); q:Os angulos B e C são iguais
- (g) p:alb; q:bla
- (h) p:a||b; q:b||a
- (i) p:O triângulo ABC e retângulo em A; $q:a^2=b^2+c^2$
- (j) $p: x \in \{a\}$; q: x = a

Demonstrar por tabelas-verdade as seguintes equivalências:

(a)
$$p \land (p \lor q) \Longleftrightarrow p$$

(b)
$$p \lor (p \land q) \iff p$$

(c)
$$p \longleftrightarrow p \land q \Longleftrightarrow p \rightarrow q$$

(d)
$$q \leftrightarrow p \lor q \Leftrightarrow p \rightarrow q$$

(e)
$$(p \rightarrow q) \land (p \rightarrow r) \iff p \rightarrow q \land r$$

(f)
$$(p \rightarrow q) \lor (p-r) \Longleftrightarrow p-q \lor r$$

(g)
$$(p \rightarrow q) \rightarrow 1 \Leftrightarrow p \land \sim 1 \rightarrow \sim q$$

Sistema FIEP SESI FIED SENAI IEL

nosso i é de indústria.