```
In [1]: import numpy as np
   import math as math
   import random
   import csv
   import matplotlib.pyplot as plt

%matplotlib inline
```

8.Линейная регрессия. Задача 2.

Условие: Пусть $X_i=\beta_1+i\beta_2+\varepsilon_0+\ldots+\varepsilon_i$, где $i=0,1,\ldots,n$ -- расстояния, которое проехал трамвай за i секунд по показанию датчика. Здесь β_1 - начальное раастояние, β_2 - скорость трамвая, ε_0 - ошибка начального показания датчика. Трамвай едет с постоянной скоростью, и через каждую секунду датчик фиксирует расстояние, которое проехал трамвай. Отсчет времени идет от предыдущего замера, причем отсчет идет с ошибкой. Для $i=0,1,\ldots,n$ величина ε_i , есть ошибка приращения растояния, то есть $\varepsilon_i=\varepsilon_i^t\beta_2$, где ε_i^t - ошибка отсчета времени. Все ошибки ε_i независимы и распределены по закону $N(0,\sigma^2)$.

Сведите задачу к линейной модели и найдите оценки наименьших квадратов для начального расстояния β_1 и скорости β_2 , а также несмещенную оценку для σ^2 , из которой выразите оценку дисперсии отсчета времени.

Данные возьмите из файла Regression.csv. Сделайте выводы.

Из теоретической задачи 8.2.

$$egin{aligned} \widehat{eta_1} &= X_0 \ \widehat{eta_2} &= rac{X_n - X_0}{n} \ \widehat{\sigma^2} &= rac{1}{n-2} \sum_{i=1}^n \left(X_i - X_{i-1} - rac{X_n - X_0}{n}
ight)^2 \end{aligned}$$

Оценим дисперсию отсчета времени:

$$arepsilon_i \sim N(0,\sigma^2),$$
 $arepsilon_i^t = rac{arepsilon_i}{eta_2^2}, \,\,$ значит, $\,\,arepsilon_i^t \sim N(0,rac{\sigma^2}{eta_2^2})$ $\hat{\sigma_t^2} = rac{\hat{\sigma^2}}{\hat{eta_2^2}}$

- In [2]: #Считаем данные
 with open('Regression.csv', 'r') as file:
 data = list(map(float, file))
 n = len(data) 1
- In [3]: #Оценки начального расстояния и скорости из теор.задачи
 beta_1 = data[0]
 beta_2 = (data[n] data[0]) / n

 sigma = 0
 for i in range(1, len(data)):
 sigma += (data[i] data[i 1] (data[n] data[0])/n)**2
 sigma_t = sigma / (beta_2**2)
- In [4]: print("beta_1: ", beta_1)
 print("beta_2: ", beta_2)
 print("sigma: ", sigma)
 print("sigma_t: ", sigma_t)

beta_1: 82.0053 beta_2: 11.970782982982982 sigma: 1.5267747059886494 sigma_t: 0.01065442069716372

Вывод:

Результаты показывают, что линейная модель подходит для данной выборки. Это можно объяснить тем, что движение трамвая близко к равномерному, и скорость β_2 можно оценить. Видно, что показания датчика довольно точные (дисперсия мала), а потому линейная модель дает хорошее приближение.