Алгоритм определения правильности отрезка.

Входные данные: отрезок s, грань РСДС f, упорядоченное по полярному углу множество точек P_u , индексы i,j краевых точек s в P_u .

Выходные данные: «да», если s правильный. «нет», если s неправильный.

Алгоритм: если $i \neq (j \pm 1) \mod n - 1$, то ответ «нет». Иначе выбираем произвольную внутреннюю точку f (например середина прямой, соединяющей середины любых двух соседних ребер), находим ориентированную площадь треугольника qp_ip_j (Не умаляя общности, считаем что $i = (j-1) \mod n - 1$), если она положительна, то ответ «да», иначе ответ «нет».

Теорема. Статус не зависит от выбора точки внутри f

Доказательство. Статус - упорядоченные по полярному углу концы отрезков, правильность каждого отрезка.

- 1. Упорядочение не поменяется. Предположим противное, пусть в f существует две точки A_1, A_2 , для которых порядок в упорядоченном массиве отличается. Не умаляя общности, будем считать, что порядок отличается только для двух точек p_1, p_2 . Тогда в силу непрерывности значения полярного угла каждой точки $\exists t \in (0,1): A(t) = (1-t)A_1 + tA_2$ такая, что точки p_1, p_2 имеют одинаковый полярный угол относительно A(t). Получили противоречие.
- 2. Правильность отрезков. Заметим, что правильность отрезка может поменяться, только в двух случаях:
 - Точки поменялись местами в упорядоченном списке. Что невозможно по первому пункту.
 - Поменялся поворот угла, что возможно только при перешагивании ребра, построенного на точках одного отрезка.

Описание случаев поведения алгоритма в процессе «перешагивания» ребра

Содержание статуса:

- 1. Упорядоченные по полярному углу точки отрезков.
- 2. Информация о правильности всех отрезков.
- 3. Информация о порядке точек внутри отрезков.

На каждом шаге важным является константный доступ к затрагиваемым отрезкам, информации об их правильности, внутреннем порядке точек.

Не умаляя общности, рассмотрим случаи для ребра расположенного вертикально:

1. Точки p_i, p_j являются точками одного отрезка. Так как перешагивание отрезка исключено из рассмотрения, возможен только вариант представленный ниже, а также зеркальный к нему.

2. Точки p_i, p_j лежат на прямой с одной стороны относительно «перешагиваемого» ребра. Возможны варианты, изображенные ниже, а также зеркальные к ним. Выбор какую из точек выбрать за p_i неважен.

3. Точки p_i, p_j лежат на прямой по разные стороны относительно «Перешагиваемого» ребра. Возможны варианты, изображенные ниже, а также зеркальные к ним.

Таблицы изменений статуса для каждого случая.

Случаи разбиты на пары (по сути "до-после").

Последние 2 пары выделены отдельно. 6 пару можно определить однозначно только если держать в ребре информацию об относительном положении порождающих его точек (с одной стороны/с разных сторон).

Правильность: + - правильный, - - неправильный, ? - если точки рядом, то правильный.

номер	порядок в массиве	правильность	порядок в отрезке
1.1	\dots, p_j, p_i, \dots	+	p_j, p_i
1.2	\dots, p_i, p_j, \dots	+	p_i, p_j
2.1	$p_j,, p_i,, p_k,, p_m$?, –	$p_i, p_k : p_j, p_m$
2.2	$p_i,, p_j,, p_k,, p_m$	-, -	$p_i, p_k : p_j, p_m$
3.1	$p_j,, p_i,, p_m,, p_k$	-, -	$p_i, p_k : p_j, p_m$
3.2	$p_i, \dots, p_j, \dots, p_m, \dots, p_k$?, –	$p_i, p_k : p_j, p_m$
4.1	$p_j,,p_i,,p_m,,p_k$	_, _	$p_k, p_i: p_j, p_m$
4.2	$p_i,, p_j,, p_m,, p_k$?, ?	$p_k, p_i: p_j, p_m$
5.1	$p_j,, p_i,, p_k,, p_m$?, ?	$p_i, p_k: p_m, p_j$
5.2	$p_i,, p_j,, p_k,, p_m$	-, -	$p_i, p_k: p_m, p_j$

порядок в массиве	правильность	порядок в отрезке	
6.1	$p_j,, p_i,, p_k,, p_m$?, ?	$p_i, p_k: p_m, p_j$
6.2	$p_j,, p_i,, p_k,, p_m$?, ?	$p_i, p_k: p_m, p_j$
7.1	$p_j,, p_k,, p_i,, p_m$?, ?	$p_k, p_i: p_m, p_j$
7.2	$p_j,, p_k,, p_i,, p_m$?, ?	$p_k, p_i: p_m, p_j$

Для случаев 2-4 кажется важным вопрос о выборе точек (какая p_i , какая p_j), однако на самом деле изменение индексации приводит к тому, что случай начинает восприниматься как другой, но имеющий такую же реакцию. Это значит, что выбор точек во всех случаях может быть случаен, а из таблицы можно выкинуть две пары:

номер	порядок в массиве	правильность	порядок в отрезке
1.1	$, p_j, p_i,$	+	p_j, p_i
1.2	\dots, p_i, p_j, \dots	+	p_i, p_j
2.1	$p_j,, p_i,, p_m,, p_k$	_, _	$p_i, p_k : p_j, p_m$
2.2	$p_i,, p_j,, p_m,, p_k$?, –	$p_i, p_k: p_j, p_m$
3.1	$p_j,,p_i,,p_m,,p_k$	-, -	$p_k, p_i: p_j, p_m$
3.2	$p_i,, p_j,, p_m,, p_k$?, ?	$p_k, p_i: p_j, p_m$