☐ xmarek71 / Digital-electronics1

176 lines (140 sloc) 4.62 KB

Cvičenie 5

Truth table for common anode 7-segment display

Name	Port	Function
J15	SW	L=0V, H=3,3V
P17	RESET	L=0V, H=3,3V
T10	CA	А
R10	СВ	В
K16	CC	С
K13	CD	D
P15	CE	E
T11	CF	F
L18	CG	G

Name	Port	Function
J17	AN[0]	KAT 1
J18	AN[1]	KAT 2
Т9	AN[2]	KAT 3
J14	AN[3]	KAT 4
P14	AN[4]	KAT 5
T14	AN[5]	KAT 6
K2	AN[6]	KAT 7
U13	AN[7]	KAT 8

Table with calculated values

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200 000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400 000	x"6_1a80"	b"0110_0001_1010_1000_0000"
10 ms	1 000 000	x"f_4240"	b"1111_0100_0010_0100_0000"
250 ms	25 000 000	x"17d_7840"	b"0001_0111_1101_0111_1000_0100_0000"
500 ms	50 000 000	x"2fa_f080"	b"0010_1111_1010_1111_0000_1000_0000"
1 sec	100 000 000	x"5f5_e100"	b"0101_1111_0101_1110_0001_0000_0000"

Bidirectional counter

Listing of VHDL code of the process p_cnt_up_down

```
p_cnt_up_down : process(clk)
begin
    if rising_edge(clk) then
```

Listing of VHDL reset and stimulus processes from testbench file

```
p_reset_gen : process
begin
    s reset <= '0';
    wait for 12 ns;
     -- Reset activated
    s_reset <= '1';</pre>
    wait for 73 ns;
    s_reset <= '0';
    wait;
end process p_reset_gen;
p_stimulus : process
begin
     report "Stimulus process started" severity note;
     -- Enable counting
     s_en <= '1';
     -- Change counter direction
     s_cnt_up <= '1';
    wait for 230 ns;
     s_cnt_up <= '0';
    wait for 230 ns;
     -- Disable counting
     s_en <= '0';
     report "Stimulus process finished" severity note;
```

```
wait;
end process p_stimulus;
```

Simulated time waveforms

Top level

Listing of VHDL code from source file top.vhd with all instantiations for the 4-bit bidirectional counter

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity top is
    Port ( CLK100MHZ : in STD_LOGIC;
           BTNC : in STD LOGIC;
           SW : in STD_LOGIC_VECTOR (1-1 downto 0);
           LED : out STD_LOGIC_VECTOR (4-1 downto 0);
           CA : out STD_LOGIC;
           CB : out STD_LOGIC;
           CC : out STD_LOGIC;
           CD : out STD_LOGIC;
           CE : out STD_LOGIC;
           CF : out STD_LOGIC;
           CG : out STD LOGIC;
           AN : out STD_LOGIC_VECTOR (8 - 1 downto 0));
end top;
architecture Behavioral of top is
    -- Internal clock enable
    signal s_en : std_logic;
    -- Internal counter
    signal s_cnt : std_logic_vector(16 - 1 downto 0);
begin
```

```
clk_en0 : entity work.clock_enable
         generic map(
             g_MAX => 100000000
         )
         port map(
             clk
                   => CLK100MHZ,
             reset => BTNC,
             ce_o => s_en
         );
    bin_cnt0 : entity work.cnt_up_down
         generic map(
             g_CNT_WIDTH \Rightarrow 4
         )
         port map(
              clk
                     => CLK100MHZ,
             reset => BTNC,
             en_i => s_en,
             cnt_up_i \implies SW(0),
             cnt_o => s_cnt
         );
    LED(3 downto 0) <= s cnt;
    hex2seg : entity work.hex_7seg
         port map(
             hex_i => s_cnt,
             seg_o(6) \Rightarrow CA,
             seg_o(5) \Rightarrow CB,
             seg_o(4) \Rightarrow CC,
             seg_o(3) \Rightarrow CD,
             seg_o(2) \Rightarrow CE
             seg_o(1) \Rightarrow CF,
             seg_o(0) \Rightarrow CG
         );
    AN <= b"1111_1110";
end architecture Behavioral;
```

Image of the top layer including both counters, ie a 4-bit bidirectional counter from Part 4 and a 16-bit counter with a 10 ms time base

