Tema : Algoritmos Divide y Vencerás.

Algorítmica

CCIA

Departamento de Ciencias de la Computación e I. A. Grado en Informática
E.T.S.I. Informática y de Telecomunicaciones
Universidad de Granada

Divide y Vencerás

- La técnica Divide y Vencerás (DV) consiste en:
 - Descomponer (dividir) el caso a resolver de un problema en un cierto número de subcasos más pequeños del mismo problema.
 - Resolver (vencer) sucesiva e independientemente todos estos subcasos.
 - Combinar las soluciones obtenidas para obtener la solución del caso original.
- Este enfoque, sobre todo cuando se utiliza recursivamente, a menudo proporciona soluciones eficientes de los problemas.
- Las ecuaciones recurrentes serán naturales en este método.

DyV: Cuestiones clave

- ¿Cómo descomponer el problema en subproblemas?
- ¿Cómo resolver los subproblemas?
- ¿Cómo combinar las soluciones?
- ¿Merece la pena hacer esto?

DyV: Justificación

 Supongamos un problema P, de tamaño n, que sabemos puede resolverse con un algoritmo (básico) A

$$t_A(n) \leq cn^2$$

- Dividimos P en 3 subproblemas de tamaños n/2, siendo cada uno de ellos del mismo tipo que A, y consumiendo un tiempo lineal la combinación de sus soluciones: $t(n) \le dn$.
- Tenemos un nuevo algoritmo B, Divide y Vencerás, que consumirá un tiempo:

$$t_B(n) = 3t_A(n/2) + t(n) \le 3t_A(n/2) + dn \le (3c/4)n^2 + dn$$

 B tiene un tiempo de ejecución mejor que el algoritmo A, ya que disminuye la constante oculta.

 Pero si cada subproblema se resuelve de nuevo con Divide y Vencerás, podemos hacer un tercer algoritmo C, recursivo, que tendría un tiempo:

$$t_C(n) = \begin{cases} t_A(n) & \text{si } n \leq n_0 \\ 3t_C(n/2) + t(n) & \text{si } n > n_0 \end{cases}$$

- C es mejor en eficiencia que los algoritmos A y B $(t_C(n) \le bn^{1.58})$
- Al valor n₀ se le denomina umbral y es fundamental para que funcione bien la técnica.

Algoritmo Divide y Vencerás

- I es el número de subcasos.
- Si l=1 hablamos de reducción o simplificación.
- ad hoc(x) es un algoritmo básico.

Ejemplo: Las Torres de Hanoi

- Problema: Mover los n discos de la aguja A a la B usando la aguja C como aguja intermedia temporal
- Enfoque Divide y Vencerás:
 - Dos subproblemas de tamaño n-1:
 - (1) Mover los n-1 discos más pequeños de A a C usando B como intermedia
 - (*) Mover el disco que queda de A a B
 - (2) Mover los n-1 discos más pequeños de C a B usando A como intermedia
 - El movimiento de los n-1 discos más pequeños se hace con la aplicación recursiva del metodo

Requisitos para usar DyV

- El problema tiene que poder descomponerse en subproblemas, más sencillos de resolver que el original.
- Los subproblemas deben ser del mismo tipo entre ellos y con el original.
- Los subproblemas se resuelven independientemente (casi siempre).
- No existe solapamiento entre subproblemas.
- Ha de tener sentido combinar las soluciones de los subproblemas para obtener la solución final.

Condiciones para que DyV sea ventajoso

- Selección cuidadosa de cuándo utilizar el algoritmo ad hoc (calcular el umbral de recursividad).
- Poder descomponer el problema en subproblemas y recombinar de forma bastante eficiente a partir de las soluciones parciales.
- el número / de subproblemas debe ser razonablemente pequeño.
- Los subproblemas deben tener aproximadamente el mismo tamaño.
 Los succesario pero megora de eficiencia
- Los subproblemas deben de ser del menor tamaño posible.

Análisis de algoritmos DyV

- Cuando un algoritmo contiene una llamada recursiva a sí mismo, generalmente su tiempo de ejecución puede describirse por una recurrencia que da el tiempo de ejecución para un caso de tamaño n en función de inputs de menor tamaño.
- En el caso de DyV nos encontraremos recurrencias como:

$$T(n) = \begin{cases} t(n) & \text{si } n \leq n_0 \\ T(n/b) + G(n) & \text{si } n > n_0 \\ & \text{Table Security} \end{cases}$$

- donde / es el numero de subproblemas y n/b el tamaño de estos.
- G(n) = D(n) + C(n), y D(n) es el tiempo de dividir el problema en los subproblemas y C(n) el tiempo de combinación de las soluciones de los subproblemas.

Fórmula maestra

$$T(n) = IT(n/b) + G(n)$$

Si $G(n) \in \Theta(n^k)$, entonces T(n) es de orden:

- $\Theta(n^k)$ si $l < b^k$
- $\Theta(n^k \log n)$ si $l = b^k$

El orden de eficiencia depende de la relación entre el número de subproblemas (I), el tamaño de los subproblemas (b) y la dificultad de dividir y combinar (b).

La importancia de las condiciones

El número de subproblemas importa mucho

$$t(n) = 2t(n/2) + c \Longrightarrow t(n) \in O(n^{\log_2 2}) = O(n)$$

 $t(n) = 4t(n/2) + c \Longrightarrow t(n) \in O(n^{\log_2 4}) = O(n^2)$
 $t(n) = 8t(n/2) + c \Longrightarrow t(n) \in O(n^{\log_2 8}) = O(n^3)$

La eficiencia en combinar las soluciones importa mucho

$$t(n) = 2t(n/2) + c \Longrightarrow t(n) \in O(n^{\log_2 2}) = O(n)$$

$$t(n) = 2t(n/2) + n \Longrightarrow t(n) \in O(n \log n)$$

$$t(n) = 2t(n/2) + n^2 \Longrightarrow t(n) \in O(n^2)$$

La importancia de las condiciones 2

 Que los problemas sean aprox. del mismo tamaño importa mucho

$$t(n) = 2t(n/2) + n \Longrightarrow t(n) \in O(n \log n)$$

$$t(n) = t(1) + t(n-1) + n \Longrightarrow t(n) \in O(n^2)$$

El tamaño de los subproblemas importa mucho

$$t(n) = 2t(n/4) + c \Longrightarrow t(n) \in O(n^{\log_4 2}) = O(n^{0.5}) = O(\sqrt{n})$$

 $t(n) = 2t(n/2) + c \Longrightarrow t(n) \in O(n^{\log_2 2}) = O(n)$
 $t(n) = 2t(n-1) + c \Longrightarrow t(n) \in O(2^n)$

Ejemplo: Valor máximo

- Problema: Dado un vector de elementos, determinar la posición que ocupa el valor máximo del mismo.
- ¿Se puede aplicar DyV para resolver este problema?
- ¿Resuelve nuestro algoritmo el problema?
- Lo hace suficientemente bien?

Ejemplo: Picos y valles

- Dada una secuencia de números, se define pico al valor i tal que x[i-1] < x[i] > x[i+1] y valle al valor j tal que x[j-1] > x[j] < x[j+1].
- Un pico i es consecutivo a un valle j si ningún valor entre i y j es pico o valle.

Problema: Diseñar un algoritmo que permita encontrar la mayor diferencia entre un pico y un valle consecutivos.

Ejemplo: Selección de puntos de parada

- Un camión va desde Granada a Moscú siguiendo una ruta predeterminada.
- La capacidad del tanque de combustible es C, y conocemos el consumo por Km. del camión
- Conocemos las gasolineras que se encuentran en la ruta (y la distancia entre ellas).

Problema: Minimizar el número de paradas que hace el conductor.

Ejemplo: Multiplicación de Enteros Grandes

- Chequear si un número es primo requiere muchas multiplicaciones de enteros grandes (desde dos a millones de digitos). Útil en criptografía.
- Para resolver este problema debemos implementar algoritmos eficientes capaces de trabajar con estos valores.
 - Método clásico (escuela)
 - Método basado en Divide y Vencerás

Algoritmo clásico

Tamaño: n = número dígitos

- Algoritmo clásico: 1234*5678=
 1234* [5*1000 + 6*100+7*10+8]=
- Operaciones básicas:
 - Multiplicaciones de dígitos O(1)
 - Sumas de dígitos O(1)
 - Desplazamientos O(1)
- Eficiencia algoritmo: O(n²)

Algoritmo DyV

- Para aplicar DyV debemos de poder obtener la solución en base a problemas de tamaño menor
- Truco:
 - 5632 = 56*100 + 32 y 3427 = 34*100 + 27
 - (56*100 + 32) * (34*100 + 27) =
 Se reduce la multiplicación de 4 cifras a cuatro multiplicaciones de 2 cifras, más tres sumas y varios desplazamientos
 56*34*10000 + (56*27 + 32*34)*100 + (32*27)

$$56*34*10000 + (56*27 + 32*34)*100 + (32*27)$$

Dividir

X=12345678

•
$$X = xi^*10^4 + xd$$

$$Y = 24680135$$

•
$$Y=yi*10^4 + yd$$

Combinar

$$X \times Y = (xi * 10^4 + xd)(yi * 10^4 + yd) =$$

 $xi * yi * 10^8 + (xi * yd + xd * yi) * 10^4 + xd * yd$

En general

- $X = xi * 10^{n/2} + xd$
- $Y = yi * 10^{n/2} + yd$
- $X * Y = (xi * yi) * 10^n + (xi * yd + xd * yi) * 10^{n/2} + xd * yd$

```
Función DVbásico (X,Y,n) {
if P es pequeño return X*Y;
else {
  Obtener xi, xd, yi, yd;
                                        //DIVIDIR
  z1 = DVbásico (xi, yi, n/2);
  z2 = DVbásico (xi, yd, n/2);
  z3 = DVbásico (xd, yi, n/2);
  z4 = DVbásico (xd, yd, n/2);
  aux= Sumar(z2,z3);
                                     //COMBINAR
  z1 = DesplazarDcha(z1,n);
  aux = DesplazarDcha(aux, n/2);
  z = Sumar(z1, aux, z4);
  return z;
```

• Eficiencia:

- T(n) = 4T(n/2) + cn
- Como $l = 4 > b^k = 2^1 = 2$, T(n) está en el orden $O(n^{\log_2 4}) = O(n^2)$
- El cuello de botella está en el número de multiplicaciones de tamaño n/2: 4
- Para mejorar la eficiencia necesitamos reducir el número de multiplicaciones que hacemos.

Algoritmo DyV mejorado

- Sean
 - r = (xi + xd) * (yi + yd) = (xi*yi) + (xi*yd+xd*yi) + xd*yd
 - p=xi*yi
 - q=xd*yd
 - Luego xi*yd+xd*yi = r-p-q
- Podemos calcular

$$X * Y = p * 10^{n} + (r - p - q) * 10^{n/2} + q$$

 1 multiplicación tamaño n ⇒ 3 multiplicaciones de tamaño n/2

```
Función DV (X,Y,n) {
if P es pequeño return X*Y;
else {
  Obtener xi, xd, yi, yd;
                                         //DIVIDIR
  s1 = Sumar(xi, xd);
  s2 = Sumar(yi, yd);
  p = DV (xi, yi, n/2);
  q = DV (xd, yd, n/2);
  r = DV (s1.s2.n/2);
  aux = Sumar(r, -p, -q);
                                          //COMBINAR
      = DesplazarDcha(p,n);
  aux = DesplazarDcha(aux, n/2);
  z = Sumar(p, aux, q);
  return z;
```

eficiencia

•
$$T(n) = 3T(n/2) + O(n)$$

• $T(n) \in O(n^{\log_2 3}) = O(n^{1,585})$

• Ejemplo de diferencias de tiempo:

n	n ²	$n^{1,585}$
10	100	38.46
100	10000	1479.11
1000	1000000	56885.29
10000	100000000	2187751.62

Determinación del umbral

- Es difícil hablar del umbral no si no tratamos con implementaciones, ya que gracias a ellas conocemos las constantes ocultas que nos permitirán afinar el cálculo de dicho valor.
- El umbral no es único, pero si lo es en cada implementación.
- En principio no hay restricciones sobre el valor que puede tomar n_0 , por tanto variará entre uno e infinito.
 - Un umbral de valor infinito supone no aplicar nunca DyV de forma efectiva, porque estaríamos resolviendo con el algoritmo básico siempre.
 - Si n₀ = 1, entonces estaríamos en el caso opuesto, ya que el algoritmo básico sólo actúa una vez, y se aplica la recursividad continuamente.

Umbral: ejemplo para enteros grandes

$$t(n) = \begin{cases} cn^2 & \text{si } n \le n_0 \\ 3t(n/2) + dn & \text{si } n > n_0 \end{cases}$$

- Para una implementación hipotética en la que c = 1 y d = 16 (ms), y un caso de tamaño n = 1024
- Las dos posibilidades extremas nos llevan a
 - Si $n_0 = 1$, t(1024) ≈ 32 m
 - Si $n_0 = +\infty$, t(1024) ≈ 17 m
 - Si $n_0 = 64$, t(1024) ≈ 8 m
- Si puede haber tan grandes diferencias, ¿cómo podremos determinar el valor óptimo del umbral?

Umbral: ejemplo para enteros grandes

Con una implementación real:

- Si umbral es igual a 1, entonces
 - DyV (5.000 cifras) ⇒ 41 seg.
 - Clásico (5.000 cifras) ⇒ 25 seg
 - A partir de 32.789 cifras es mejor DyV (15 minutos !!!)
- Si umbral es igual a 64
 - DyV (5.000 cifras) ⇒ 6 seg.
 - DyV(32.789 cifras) ⇒ 2 minutos !!

La selección del umbral es problemática:

- No afecta al orden del algoritmo DyV pero sí a las constantes ocultas.
- Depende del algoritmo y de la implementación.
- Se estima empíricamente.

Joba: Pouto de corte autre el frempo de jeuxidu de 9,0 y bru te force

Umbral: Método experimental

- Implementamos el algoritmo básico (AB) y el algoritmo DyV
- Resolvemos para distintos valores de n con ambos algoritmos
- Hay que esperar que conforme n aumente, el tiempo del algoritmo básico vaya aumentando más deprisa que el del DyV.

Umbral: Método teórico

 Comparar el tiempo del algoritmo básico con el del DyV usando sólo un nivel de recursividad

$$t(n) = \begin{cases} h(n) & \text{si } n \leq n_0 \\ 3t(n/2) + g(n) & \text{si } n > n_0 \end{cases}$$

Determinar el valor de n para el que los tiempos coinciden

$$h(n) = t(n) = 3h(n/2) + g(n)$$

• Para una implementación concreta (por ejemplo, la anterior, $h(n) = n^2$ y g(n) = 16n (ms))

$$n^2 = 3(n/2)^2 + 16n = 3/4n^2 + 16n \Longrightarrow n = 3/4n + 16$$

$$n_0 = 64$$

Umbral: Método híbrido

- Calculamos las constantes ocultas utilizando un enfoque empírico.
- Calculamos el umbral, igualando los tiempos del algoritmo básico y el DyV.
- Probamos valores alrededor del umbral teórico (umbrales de tanteo) para determinar el umbral óptimo.

Búsqueda binaria

- En esencia es el algoritmo que se emplea para buscar una palabra en un diccionario o un nombre en un directorio telefónico.
- Es tal vez la aplicación más sencilla de DyV. Realmente es un caso de reducción o simplificación: la solución de todo caso se reduce a un único caso más pequeño (concretamente de tamaño mitad).
- Sea V[1..n] un vector ordenado en orden no decreciente (V[i] ≤ V[j] para 1 ≤ i ≤ j ≤ n) y sea x un elemento a buscar.
- Formalmente se quiere encontrar el índice i tal que $1 \le i \le n+1$ y $V[i-1] < x \le V[i]$ (con la convención lógica de que $V[0] = -\infty$ y $V[n+1] = +\infty$.

Búsqueda. Ejemplo

0	$-\infty$
1	3
2	7
3	25
4	41
5	53
6	∞

```
Si x = 25 entonces i = 3
Si x = 15 entonces i = 3
Si x = 67 entonces i = 6
Si x = 2 entonces i = 1.
```

Búsqueda secuencial

 La forma simple de resolver el problema es hacer una búsqueda secuencial hasta que lleguemos al final o encontremos un elemento que no sea menor que x

```
funcion secuencial(V[1..n],x) {
   for i=1 to n
      if V[i] >= x return i;
   return n+1;
}
```

• El orden de eficiencia es O(n).

Búsqueda binaria: fundamento

- Para acelerar la búsqueda, podemos buscar x bien en la primera mitad del vector o bien en la segunda.
- Para averiguar cuál de esas búsquedas es la correcta comparamos x con un elemento del vector, k = n/2.
- Si $x \le V[k]$ podemos restringir la búsqueda a V[1..k]; en otro caso buscamos en V[k+1..n].
- Eficiencia:
 - Si n es el tamaño del vector
 - T(n) = T(n/2) + c
 - Como $I = 1 = b^k = 2^0$, entonces $T(n) = O(\log n)$

Búsqueda binaria: algoritmo

```
Funcion BuscaBin(V[1..n])
  if n = 0 or x > V[n]
  then return n+1;
  return Binrec (V[1..n],x);
Funcion Binrec(V[i..;],x)
  if i = j then return i;
  k = (i + j) \operatorname{div} 2;
  if x \le V[k]
  then return Binrec (V[i..k],x);
  else return Binrec (V[k+1,j],x);
```

Se puede transformar fácilmente en un método iterativo en vez de recursivo.

Multiplicación de Matrices

- Si tenemos dos matrices A y B cuadradas del mismo tamaño (n x n), se trata de multiplicar A y B para obtener una nueva matriz C.
- La multiplicación de matrices se realiza mediante

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

- Esta fórmula corresponde a la multiplicación normal de matrices, que consiste en tres bucles anidados, por lo que es O(n³).
- Para aplicar la técnica DyV, vamos a proceder como con la multiplicación de enteros, con la intención de obtener un algoritmo más eficiente para multiplicar matrices.

La multiplicacion puede hacerse como sigue:

$$\begin{pmatrix} r & s \\ t & u \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & g \\ f & h \end{pmatrix} = \begin{pmatrix} ae + bf & ag + bh \\ ce + df & cg + dh \end{pmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad B$$

- Esta formulación divide una matriz $n \times n$ en cuatro matrices de tamaños $n/2 \times n/2$, con lo que divide el problema en 8 subproblemas de tamaños n/2.
- n se usa como tamaño del caso aunque la dimensión de la matriz es n²

Este enfoque da lugar a la siguiente recurrencia:

$$T(n) = 8T(n/2) + cn^2$$

- Como $l = 8 > b^k = 2^2 = 4$, entonces T(n) es de orden $O(n^{\log_2 8}) = O(n^3)$.
- Pero, basándonos en el enfoque DyV que empleamos para multiplicar enteros, la multiplicación de matrices también puede calcularse de forma más eficiente.

Algoritmo de Strassen

Es evidente que sólo se necesitan 7 multiplicaciones y 18 adiciones/substracciones, en lugar de las anteriores 8.

Algoritmo de Strassen: eficiencia

• Eficiencia:

$$T(n) = 7T(n/2) + cn^2$$

Luego T(n) es de orden $O(n^{\log_2 7}) = O(n^{2,81})$.

- Se conocen mejoras del algoritmo, pero las rebajas que consiguen son a costa de grandes aumentos en los valores de las correspondientes constantes ocultas, y no mejoran en la práctica el algoritmo de Strassen.
- Las matrices cuadradas cuyo tamaño no sea potencia de 2 se pueden tratar añadiéndoles filas y columnas de ceros, doblando como mucho su tamaño.

Algoritmos de Ordenación

- La ordenación es una de las tareas más frecuentemente realizadas.
- Los algoritmos de ordenación recibirán una colección de registros a ordenar. Cada registro contendrá un campo clave por el que se ordenarán los registros.
- La clave puede ser de cualquier tipo (numérica, alfanumérica, ...) para el que exista una función de comparación.
- El problema de la ordenación es fijar un conjunto de registros de forma que los valores de sus claves estén en orden no decreciente.
- Esta definición permite la existencia de valores clave repetidos. Cuando existen valores clave repetidos puede ser interesante mantener el orden relativo en que ocurren en la colección de entrada.

Diferentes algoritmos de ordenación

- Lentos $\Theta(n^2)$ (ordenación por cambio)
 - Ordenación de la burbuja
 - Ordenación por inserción
 - Ordenación por selección
 - son algoritmos sencillos
 - se comportan mal cuando la entrada es muy grande
- Rápidos $\Theta(n \log n)$
 - Ordenación por montículo (Heapsort)
 - Ordenación por fusión o mezcla (Mergesort)
 - Ordenación de Shell (Shellsort)
 - Ordenación rápida (Quicksort)
 - son algoritmos más complejos
 - se comportan muy bien cuando la entrada es muy grande.

Ordenación por mezcla

- Si n = 1 terminar (toda lista de 1 elemento está ordenada)
- Si n > 1,
 - partir la lista de elementos en dos o más sublistas;
 - ordenar cada una de ellas;
 - combinar en una sola lista.

Pero,

- ¿Cómo hacer la partición?
- ¿Cómo combinar las sublistas?

Mezcla: Cómo hacer la partición (mal)

- Primeros n 1 elementos en el conjunto A, último elemento en B.
- Ordenar A utilizando este esquema de división recursivamente (B está ordenado)
- Combinar A y B utilizando el método Inserta() (= insertar en un array ordenado)
- Llegamos a una version recursiva del algoritmo de Insercion()
- Número de comparaciones: $t(n) = t(n-1) + n \Longrightarrow O(n^2)$

Mezcla: Cómo hacer la partición (bien)

- Intentemos repartir los elementos de forma equitativa entre los dos conjuntos.
- A toma n/k, B el resto (habitualmente k = 2).
- Ordenar A y B recursivamente.
- Combinar A y B utilizando el proceso de mezcla, que combina las dos listas ordenadas en una.

Mezcla: ejemplo

Se va dividiendo la lista en otras dos de tamaño n/2:

Mezcla: ejemplo

La operación de mezcla produce:

Mezcla: Código

```
void mergeSort(vector<tipo> a, int left, int right)
 // sort a[left:right]
 if (left < right)</pre>
  {// al menos dos elementos
   int mid = (left+right)/2; //punto medio
   copy(u, a, left, mid);//copia a en u
   copy(v, a, mid+1, right);//copia a en v
   mergeSort(u, left, mid);
   mergeSort(v, mid + 1, right);
   merge(a, u, v, left, mid, right);//mezcla en a
```

REQUIERE O(n) espacio adicional!!

Mezcla: Código de la Combinación

```
void merge(a, u, v, left, mid, right)
  j = left;
  k = mid+1;
  for (i = left; i < right; i++) {
      if (u[i] < v[k]) {
        a[i] = u[i];
        j++;
      else{
        a[i] = v[k];
        k++;
```

Necesita un pequeño ajuste al llegar al final de un vector.

Mezcla: Eficiencia

Suponemos que n es potencia de 2

$$T(n) = \begin{cases} c_1 & \text{si } n = 1 \\ 2T(n/2) + c_2 n & \text{si } n > 1, \ n = 2^k \end{cases}$$

Podemos intentar la solucion por expansión:

$$T(n) = 2T(n/2) + c_2 n;$$
 $T(n/2) = 2T(n/4) + c_2 n/2$
 $T(n) = 4T(n/4) + 2c_2 n;$ $T(n) = 8T(n/8) + 3c_2 n$

En general,

$$T(n) = 2^i T(n/2^i) + ic_2 n$$

Mezcla: Eficiencia

$$T(n) = 2^i T(n/2^i) + ic_2 n$$

Tomando $n = 2^k$, la expansion termina cuando llegamos a T(1) en el lado de la derecha, lo que ocurre cuando i = k

$$T(n) = 2^k T(1) + kc_2 n$$

Como $2^k = n$, entonces $k = \log n$; Como además $T(1) = c_1$, tenemos

$$T(n) = c_1 n + c_2 n \log n$$

Por tanto el tiempo para el algoritmo de ordenación por mezcla es $O(n \log n)$

Ordenación: Quicksort

- Propuesto por C.A.R. Hoare en 1962.
- Es el algoritmo de ordenación general más eficiente.
 Aprox. el doble de rápido que mergesort.
- Ordena "en el vector" (como inserción o heapsort, pero no como mergesort).
- Muy práctico (con ajustes)
 - Ordena en $O(n \lg n)$ en caso promedio
 - Ordena en $O(n^2)$ en el peor caso

Quicksort: planteamiento

- Ordena el vector eligiendo un valor clave p entre sus elementos, que actua como pivote.
- Organiza tres secciones: izquierda, pivote, derecha.
- Todos los elementos en la izquierda son menores o iguales que el pivote, todos los elementos en la derecha son mayores que el pivote.
- Ordena los elementos en la izquierda y en la derecha, sin requerir ninguna mezcla para combinarlos (a diferencia de mergesort, que divide fácilmente pero luego gasta esfuerzo en combinar).
- Lo ideal sería que el pivote se colocara en la mediana para que la parte izquierda y la derecha tuvieran el mismo tamaño.

Quicksort: pseudocódigo

```
Algoritmo QUICKSORT(S)
IF TAMAÑO(S) \leq umbral THEN Insercion(S)
ELSE
```

Elegir un elemento p del array como pivote Partir S en (S_i, p, S_d) de modo que

1.
$$\forall x \in S_i, z \in S_d$$
 se verifique $x \leq p < z$

2.
$$size(S_i) < size(S)$$
 y $size(S_d) < size(S)$

QUICKSORT(S_i) // ordena recursivamente parte izda QUICKSORT(S_d) // ordena recursivamente parte dcha Combinacion: $T = S_i + p + S_d$

End Algoritmo

Quicksort: elección del pivote

- Cada uno puede diseñar su propio algoritmo Quicksort (otra cosa es que funcione mejor que los que ya hay...): La elección del pivote condiciona el tiempo de ejecución.
- El pivote puede ser cualquier elemento en el dominio, pero no necesariamente tiene que estar en S
 - Podría ser la media de los elementos seleccionados en S.
 - Podría elegirse aleatoriamente (pero la funcion RAND() consume tiempo, que habria que añadírselo al tiempo total del algoritmo).
- Pivotes usuales son la mediana de un mínimo de tres elementos, o el elemento medio de S.

Quicksort: elección del pivote

- El empleo de la mediana de tres elementos no tiene justificación teórica.
- Si queremos usar el concepto de mediana, deberíamos escoger como pivote la mediana del array porque lo divide en dos sub-arrays de igual tamaño
 - mediana = (n/2)^o mayor elemento
 - elegir tres elementos al azar y escoger su mediana; esto suele reducir el tiempo de ejecución aproximadamente en un 5 %
- La elección más rápida es escoger como pivote, entre los dos primeros elementos del array, el mayor de ellos.

Quicksort: ejemplo de partición

¿Cómo conseguir realizar eficientemente la partición, es decir colocar todos los menores o iguales que el pivote a su izquierda y todos los mayores a su derecha?

Quicksort: partición

- Es fácil crear un algoritmo de partición con tiempo lineal.
- Es importante que la constante oculta sea lo más pequeña posible, para que quicksort sea competitivo.
- Podemos explorar el vector una sola vez, pero empezando por los dos extremos.

Quicksort: pivoteo lineal

- Sea p = T[i] el pivote (el primer elemento del subvector).
- Una buena forma de pivotear consiste en explorar el subvector T[i..j] solo una vez, pero comenzando desde ambos extremos:
- Los punteros k y l se inicializan en i y j + 1 respectivamente.
- El puntero k se incrementa entonces hasta que T[k] > p,
 y el puntero l se disminuye hasta que T[l] ≤ p.
- Ahora se intercambian T[k] y T[l]. Este proceso continua mientras que k < l.
- Finalmente, T[i] y T[l] se intercambian para poner el pivote en su posicion correcta.

Quicksort: Algoritmo de pivoteo

Permuta los elementos en el vector T[i...j] de tal forma que al final $i \le l \le j$, los elementos de T[i...l-1] no son mayores que p, T[l] = p, y los elementos de T[l+1...j] son mayores que p, donde p es el valor inicial de T[i].

```
Procedimiento pivote (T[i..j],1)
   p=T[i]
   k=i; l=j+1;
   repetir k=k+1 hasta T[k]>p o k>=j
   repetir l=l-1 hasta T[l]<=p
   mientras k<l hacer
       intercambiar T[k] y T[l]
       repetir k=k+1 hasta T[k]>p
       repetir l=l-1 hasta T[l] <=p
   intercambiar T[i] y T[l]
```

Ejemplo de pivoteo

Otro ejemplo de pivoteo

Los punteros se han cruzado (el elemento superrayado está a la izquierda del subrayado): se intercambia el pivote con el elemento superrayado.

2 1 3 1 3 9 5 6 5 4 5 8 9

La partición ya está completada Se ordenan recursivamente las submatrices a cada lado del pivote

Algoritmo Quicksort

```
Procedimiento quicksort (T[i..j])
  // ordena un array T[i..j] en orden creciente
Si j-i es pequeño entonces Insercion(T[i..j])
  en caso contrario
    pivote (T[i..j], 1)
    // tras el pivoteo, si i<=k<1, T[k]<=T[l]
    // y si l<k<=j, T[k]>T[l]
    quicksort (T[i..l-1])
    quicksort (T[l+1..j])
```

Quicksort: eficiencia, peor caso

- Si admitimos que
 - El procedimiento de pivoteo es lineal,
 - Quicksort lo llamamos para T[0..n-1], y
 - Elegimos como peor caso que el pivote sea el primer elemento del vector,
- Entonces el tiempo del algoritmo es

$$T(n) = T(1) + T(n-1) + an$$

- Que evidentemente proporciona un tiempo cuadrático.
- En el peor caso quicksort es tan malo como el peor caso del metodo de inserción (y también de selección).
- Sin embargo, en la práctica quicksort es el mejor algoritmo de ordenación que se conoce...
- ¿Qué pasará con el tiempo del caso promedio?

Quicksort: eficiencia, caso promedio

- Suponemos que el vector está dado en orden aleatorio.
- Suponemos que todos los posibles órdenes del vector son igualmente probables (esto puede ser erróneo en algunas aplicaciones, p.e. para ordenar vectores que ya están casi ordenados).
- El pivote puede ser cualquier elemento.
- Puede demostrarse que en el caso promedio quicksort tiene un tiempo $T(n) = 2n \ln n + O(n)$, que se debe al número de comparaciones que hace en promedio en un vector de n elementos.
- Quicksort tiene un tiempo promedio $O(n \log n)$