

Публикации

Новости

Пользователи

Хабы

Компании

Песочница

Войти

Регистрация

winger 12 августа 2009 в 21:01

Структуры данных: бинарные деревья. Часть 2: обзор сбалансированных деревьев

Алгоритмы

Первая статья цикла

Интро

Во второй статье я приведу обзор характеристик различных сбалансированных деревьев. Под характеристикой я подразумеваю основной принцип работы (без описания реализации операций), скорость работы и дополнительный расход памяти по сравнению с несбаланчированным деревом, различные интересные факты, а так же ссылки на дополнительные материалы.

Красно-черное дерево

Другие названия: Red-black tree, RB tree.

В этой структуре баланс достигается за счет поддержания раскраски вершин в два цвета (красный и черный, как видно из названия:), подчиняющейся следующим правилам:

- 1. Красная вершина не может быть сыном красной вершины
- 2. Черная глубина любого листа одинакова (черной глубиной называют количество черных вершин на пути из корня)
- 3. Корень дерева черный

Здесь мы несколько меняем определение листа, и называем так специальные null-вершины, которые замещают отсутствующих сыновей. Будем считать такие вершины черными.

Пример:

Давайте посмотрим, какой может быть максимальная глубина корректного красно-черного дерева с n вершинами. Возьмем самый глубокий лист. Пусть он находится на глубине h. Из-за правила 1, как минимум половина вершин на пути из корня будет черными, то есть черная высота дерева будет не меньше h/2. Можно показать, что в таком дереве будет не менее 2^(h/2)-1 черных вершин (так как у каждой черной вершины с черной глубиной k, если она не лист, должно быть как минимум два потомка с черной глубиной k+1). Тогда 2^(h/2)-1 <= n или h <= 2*log2(n+1).

Все основные операции с красно-черным деревом можно реализовать за O(h), то есть O(log n) по доказанному выше.

Классическая реализация основана на разборе большого количества случаев и довольно трудна для восприятия. Существуют более простые и понятные варианты, например в статье Криса Окасаки. К сожалению, в ней описана только операция вставки в дерево. Простота по сравнению с классической реализацией получается за счет ориентации на понятность, а не на оптимизацию количества элементарных модификаций дерева (вращений).

Для реализации этого вида сбаласированных деревьев, нужно в каждой вершине хранить дополнительно 1 бит информации (цвет). Иногда это вызывает большой overhead из-за выравнивания. В таких случаях предпочтительно использовать структуры без дополнительных требований к памяти.

Красно-черные деревья широко используются — реализация set/map в стандартных библиотеках, различные применения в ядре Linux (для организации очередей запросов, в ext3 etc.), вероятно во многих других системах для аналогичных нужд.

Красно-черные деревья тесно связаны с В-деревьями. Можно сказать, что они идентичны В-деревьям порядка 4 (или 2-3-4 деревьям). Более подробно об этом можно прочитать в статье на википедии или в книге «Алгоритмы: построение и анализ», упомянутой в прошлой статье.

Статья в википедии Статья в английской википедии (с описанием операций) визуализатор красно-черных деревьев

АА-дерево

Модификация красно-черного дерева, в которой накладывается дополнительное ограничение: красная вершина может быть только правым сыном. Если красно-черное дерово изоморфно 2-3-4 дереву, то АА-дерево изоморфно 2-3 дереву.

Из-за дополнительного ограничения операции реализуются проще чем у красно-черного дерева (за счет уменьшения количества разбираемых случаев). Оценка на высоту деревьев остается прежней, 2*log2(n). Эффективность по времени у них примерно одинаковая, но так как в реализации вместо цвета обычно хранят другую характеристику («уровень» вершины), overhead по памяти достигает байта.

Статья в английской википедии

АВЛ-дерево

Названо так по фамилиям придумавших его советских математиков: Г.М. Адельсон-Вельского и Е.М. Ландиса.

Реализация, как и у красно-черного дерева, основана на разборе случаев и достаточно сложна для понимания (хотя имхо проще красно-черного) и имеет сложность O(log(n)) на все основные операции. Для работы необходимо хранить в каждой вершине разницу между высотами левого и правого поддеревьев. Так как она не превосходит 1, достаточно использовать 2 бита на вершину.

Подробное описание можно найти в книге Н. Вирта «Алгоритмы + структуры данных = программы» или в книге А. Шеня «Программирование: теоремы и задачи»

Статья в википедии

Декартово дерево

Другие названия: Cartesian tree, treap (tree+heap), дуча (дерево+куча).

Если рисовать дерево на плоскости, ключ будет соответствовать x-координате вершины (за счет упорядоченности). Тогда можно ввести и y-координату (назавем ее высотой), которая будет обладать следующим свойством: высота вершины больше высоты детей (такое же свойство имеют значения в другой структуре данных на основе двоичных деревьев — куче (heap). Отсюда второй

вариант названия той структуры)

Оказывается, если высоты выбирать случайным образом, высота дерева, удовлетворяющего свойству кучи наиболее вероятно будет O(log(n)). Численные эксперименты показывают, что высота получается примерно 3*log(n).

Реализация операций проста и логична, за счет этого структура очень любима в спортивном программировании). По результатам тестирования, признана наиболее эффективной по времени (среди красно-черных, АА и АВЛ — деревьев, а так же skip-list'ов (структура, не являющаяся двоичным деревом, но с аналогичной областью применения) и radix-деревьев). К сожалению, обладает достаточно большим overheadom по памяти (2-4 байта на вершину, на хранение высоты) и неприминима там, где требуется гарантированная производительность (например в ядре ОС).

Splay-дерево

Эта структура данных сильно отличается от всех перечисленных до этого. Дело в том, что оно не накладывает никаких ограничений на структуру дерева. Более того, в процессе работы дерево может оказаться полностью разбалансированным!

Основа splay-дерева — операция splay. Она находит нужную вершину (или ближайшую к ней при отсутствии) и «вытягивает» ее в корень особой последовательностью элементарных вращений (локальная операция над деревом, сохраняющая свойство порядка, но меняющая структуру). Через нее можно легко выразить все оснавные операции с деревом. Последовательность операций в splay подобрана так, чтобы дерево «магически» работало быстро.

Зная магию операции splay, эти деревья реализуются не легко, а очень легко, поэтому они тоже очень популярны в ACM ICPC, Topcoder etc.

Ясно, что в таком дереве нельзя гарантировать сложность операций O(log(n)) (вдруг нас попросят найти глубоко залегшую вершину в несбалансированном на данный момент дереве?). Вместо этого, гарантирается амортизированная сложность операции O(log(n)), то есть любая последовательность из m операций с деревом размера n работает за O((n+m)*log(n)). Более того, splay-дерево обладает некоторыми магическими свойствами, за счет которого оно на практике может оказаться намного эффективнее остальных вариантов. Например, вершины, к которым обращались недавно, оказываются ближе к корню и доступ к

ним ускоряется. Более того, доказано что если вероятности обращения к элементам фиксированы, то splay-дерево будет работать асимптотически не медленней любой другой реализации бинарных деревьев. Еще одно преимущество в том, что отсутствует overhead по памяти, так как не нужно хранить никакой дополнительной информации.

В отличие от других вариантов, операция поиска в дереве модифицирует само дерево, поэтому в случае равномерного обращения к элементам splay-дерево будет работать медленней. Однако на практике оно часто дает ощутимый прирост производительности. Тесты это подтверждают — в тестах, полученных на основе Firefox'a, VMWare и Squid'a, splay-дерево показывает прирост производительности в 1.5-2 раза по сравнению с красно-черными и АВЛ- деревьями. В тоже время, на синтетических тестах splay-деревья работают в 1.5 раза медленней. К сожалению, из-за отсутствия гарантий на производительность отдельных операций, splay-деревья неприминимы в realtime-системах (например в ядре ОС, garbage-collector'ax), а так же в библиотеках общего назначения.

Статья в английской википедии Оригинальная статья Р. Тарьяна и Д. Слейтора

Scapegoat-дерево

Это дерево похоже на предыдущее тем, что у него отсутствует overhead по памяти. Однако это дерево является в полной мере сбалансированным. Более того, коэффициент 0 < alpha < 0.5 «жесткости» дерева можно задавать произвольно и высота дерева будет ограничена сверху значением k*log(n)+1, где k=log2(1/alpha). К сожалению, операции модификации будут амортизированными как и у прошлого дерева.

Коэффициент жесткости сильно влияет на баланс производительности: чем «жестче» дерево, тем меньше у него будет высота и тем быстрее будет работать поиск, но тем сложнее будет поддерживать порядок в операциях модификации. Например, так как АВЛ-дерево «жестче» красно-черного, поиск в нем работает быстрее, а модификация медленней. Если же пользоваться scapegoat-деревом, баланс между этими операциями можно выбирать в зависимости от специфики применения дерева.

Статья в английской википедии

Еще пара слов

Два последних дерева сильно отличаются от своих конкурентов. Например, только они могут использоваться в эффективной реализации структуры данных link/cut tree, использующейся в основе наиболее быстрого известного алгоритма поиска потока в графе. С другой стороны из-за их амортизационной сути они не могут использоваться во многих алгоритмах, в частности для построения горез. Свойства этих деревьев, особенно splay-дерева, в настоящее время активно изучаются теоретиками.

Кроме сбалансированных деревьев, можно использовать следующий трюк: реализовать обычное бинарное дерево и в процессе работы периодически делать ребалансировку. Для этого существует несколько алгоритмов, например DSW algorithm, работающий за O(n)

В следующей серии

Я расскажу более подробно про декартовы деревья и их реализацию

Общие ссылки

визуализатор деревьев (умеет визуализировать все деревья из обзора)

Теги: структуры данных, алгоритмы, двоичные деревья

Владислав Исенбаев @winger