Introductory Bioinformatic Course to Sequencing Data Processing

16S metagenomics

Overview

- Applications of metagenomics
- Amplicon (16S) Approach
- Shotgun Approach
 - Meta-genomics
 - Meta-transcriptomics
 - Meta-proteomics
 - ...

Application

- Environmental Studies
- Medical / veterinary analysis

Humans / Fish are full of microorganisms affecting health, drug efficacy, etc.

Amplicon

- Targetted approach (e.g. 16S/18S rRNA gene)
- Amplifies bacteria, not host or environmental fungi, plants, etc.

Amplicon

- Highly conserved gene: easy to target across all bacteria
- With variable regions: distinguish between genus

Amplicon

Pros

- Well-established
- Inexpensive (€50/sample)

Cons

- V-region choice can bias results
- Is based on a very well conserved gene, making it hard to resolve species and strains
- Requires good reference 16S

Shotgun meta- genomic/transcriptomic

Aims to sequence the "whole" meta-genome/transcriptome

Pros:

- Not biased by amplicon primer set
- Not limited by conservation of the amplicon
- Can also provide functional information

Cons:

- Environmental contamination, including host
- More expensive (€500/sample)
- Complex data analysis
- Requires high performance computing, high memory, high compute capacity
- Requires very good reference genomes

End-to-End

Every step in this process can have serious impact on the results

Analysis pipelines

OTU Clustering

Cluster on 97% sequence similarity for genus-level differentiation

Search marker database and taxonomy assignment

Homology with reference databases

Amplicon

- Berkeley lab
- August 2013
- 202,421 entries

- Max Planck Institute
- July 2015

172,418 entries

- Shotgun: MetaPhlAn2 database
 - ~1M unique clade-specific marker genes
 - ~17,000 reference genomes (bacterial and archaeal, viral and eukaryotic)

Accuracy depends on quality and completeness of database used Databases are inevitable incomplete

Results: OTU table

	Α	В	C	D	E	F	G	Н
1	OTU	Reads	Taxonomy					
2	Otu0001	342	Bacteria	Firmicutes	Bacilli	Bacillales	Staphylococcaceae	Staphylococcus
3	Otu0002	265	Bacteria	Firmicutes	Bacilli	Bacillales	Listeriaceae	Listeria
4	Otu0003	222	Bacteria	Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus
5	Otu0004	191	Bacteria	Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus
6	Otu0005	184	Bacteria	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus
7	Otu0006	170	Bacteria	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium
8	Otu0007	157	Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	unclassified
9	Otu0008	152	Bacteria	Actinobacteria	Actinobacteria	Propionibacteriales	Propionibacteriaceae	Propionibacterium
0	Otu0009	144	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides
1	Otu0010	143	Bacteria	Proteobacteria	Betaproteobacteria	Neisseriales	Neisseriaceae	Neisseria
2	Otu0011	139	Bacteria	Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Escherichia-Shigell
3	Otu0012	125	Bacteria	Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus
4	Otu0013	112	Bacteria	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus
5	Otu0014	94	Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter
6	Otu0015	77	Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Rhodobacter
7	Otu0016	67	Bacteria	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Actinomyces
8	Otu0017	44	Bacteria	Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus
9	Otu0018	41	Bacteria	Proteobacteria	Epsilonproteobacteria	Campylobacterales	Helicobacteraceae	Helicobacter
0	Otu0019	7	Bacteria	Deinococcus-Thermus	Deinococci	Deinococcales	Deinococcaceae	Deinococcus
1	Otu0020	1	Bacteria	Firmicutes	Bacilli	Bacillales	Staphylococcaceae	Staphylococcus
2	Otu0021	1	Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	unclassified
3	Otu0022	1	Bacteria	Firmicutes	Bacilli	Bacillales	Staphylococcaceae	Staphylococcus
4	Otu0023	1	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides
5	Otu0024	1	Bacteria	Firmicutes	Bacilli	Bacillales	Staphylococcaceae	Staphylococcus
26	Otu0025	1	Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	unclassified
7								

Results: Visualisations

• Krona interactive exploration of sample taxonomy

Results: Visualisations

- Phinch
 - BIOM file input
 - various visualizations
 - multi-sample data

Tutorial