1 Counting

Ordered Sampling with replacement	n^k
Ordered Sampling without replacement	${}^{n}P_{k} = \frac{n!}{(n-k)!}$
Unordered Sampling with replacement	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$
Unordered Sampling with replacement	$\binom{n+k-1}{k} = \binom{n+k-1}{n-1}$
The Binomial Theorem	$(x+y)^n = \sum \binom{n}{k} x^k y^{n-k}$
The Multinomial Theorem	$(x_1 + x_2 + \dots + x_r)^n = \sum_{(n_1, n_2, \dots n_r): \frac{n!}{n_1! n_2! \dots n_r!} x_1^{n_1} x_2^{n_2} \dots x_r^{n_r}$
	(n_1,n_2,n_r) : $n_1++n_r=n$

There are $\binom{n+k-1}{k-1}$ distinct nonnegative integer-valued vectors $\langle x_1, ..., x_r \rangle$ satisfying $x_1 + ... + x_k = n$

2 Probability

Probability Rules

$\left(\bigcup_{i=1}^{n} E_i\right)^c = \bigcap_{i=1}^{n} E_i$	$\left(\bigcap_{i=1}^{n} E_i\right)^c = \bigcup_{i=1}^{n} E_i$	$P(E^c) = 1 - P(E)$	$P(E \cup F) = P(E) + P(F) - P(EF)$	$P(E F) = \frac{P(EF)}{P(F)}$

P(E) = P(EF) + P($EF^{c}) = P(F)P(E F) + P(F^{c})P(E F^{c}) = P(F)P(E F) + (1 - P(F))P(E F^{c})$
Bayes' Theorem	Suppose that F_1, F_2, F_n are mutually exclusive events such that $\bigcup_{i=1}^n F_i = S$ (Sample Space),
	then $P(F_j E) = \frac{P(EF_j)}{P(E)} = \frac{P(E F_j)P(F_j)}{\sum_{i=1}^n P(E F_i)P(F_i)}$
Independent Events	

3 Discrete Random Variable

Probability Mass Function (PMF)	$p_X(a) = P\{X = a\}$
Cumulative Distribution Function (CDF) of X	$F_X(a) = P\{X \le a\} = \sum_{x \le a} p_X(a)$
Expected Value	$E[X] = \sum_{x} x p_X(x)$
For any function of g	$E[g(X)] = \sum_{x} g(x)p_X(x)$
$Var(X) = E[X^2] - (E[X])^2$	$SD(X) = \sqrt{Var(X)}$
	$Var(aX+b) = a^2 Var(X)$

Distributions

ns -	Name	PMF	Mean	Variance
	Bernoulli(p)	$P\{X = 1\} = p, P\{X = 0\} = 1 - p$	p	p((1 - p)
	Binomial(n,p)	$P\{X = k\} = \binom{n}{k} p^k (1-p)^{n-k}, k = 0,, n$	np	np((1-p)
	Geometric(p)	$P{X = n} = p(1-p)^{n-1}, n = 0, 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	$Poisson(\lambda)$	$P\{X = n\} = e^{\lambda} \frac{\lambda^n}{n!}, n = 0, 1,$	λ	λ
	negbinomial(r,p)	$P\{X=r\} = \binom{n-1}{r-1}p^r(1-p)^{n-r}, n=r, r+1, \dots$	$\frac{r}{p}$	$r rac{(1-p)}{p^2}$
	hypergeometric	$P\{X=i\} = \frac{\binom{m}{i}\binom{N-m}{n-i}}{\binom{N}{n}}, i = 0, 1, 2,, min(n, m)$	$\frac{nm}{N}$	$\frac{N-n}{N-1}np(1-p)wherep = m/N$

4 Continuous Random Variables

Probability	Mass Function (PMF)	$f_X(a) = \frac{1}{\epsilon} P\{a - \frac{\epsilon}{2} \le X \le a + \frac{\epsilon}{2}\}$		
Cumulative Distribution Function (CDF) of X		$F_X(a) = P\{X \le a\} = \int_{-\infty}^a p_X(a) dx$		
$P\{X \in B\} = \int Bf_X(x)dx$		$f_X(x) = \frac{d}{dx} F_X(x)$		
Expected Value		$E[X] = \int_{-\infty}^{\infty} x f_X(x)$		
For any function of g		$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x)$		
$Var(X) = E[X^{2}] - (E[X])^{2}$		$SD(X) = \sqrt{Var(X)}$		
		$Var(aX+b) = a^2 Var(X)$		
Name	PMF	CDF	Mean	Variance
uniform(a,b)	$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{othewrise} \end{cases}$	$F(x) = \begin{cases} 0 & x <= a \\ \frac{x-a}{b-a} & \text{if } a < x < b \\ 1 & x >= a \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x >= 0\\ 0 & \text{othewrise} \end{cases}$	$F(x) = 1 - e^{-\lambda x} \text{ if } a >= 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$Normal(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$	$\phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$ *Use normal table	μ	σ^2

For any normal random variable X with parameters (μ, σ^2) , $Z = \frac{X - \mu}{\sigma}$ is the standardized normal random variable. DeMoivere-Laplace Limit Theorem: If S_n denotes the number of successes that occur when n independent trials, each resulting in a in asuccess with probability p, are performed then, for any a i b, $P\{a <= \frac{S_n - np}{\sqrt{np(1-p)}} <= b\} - > \phi(b) - \phi(a)$ Distribution of a Function of a RV: $f_Y(y) = f_X[g^{-1}(y)]|\frac{d}{dy}g^{-1}(y)|$ if y = g(x) for some x

5 Jointly Distributed Random Variables

Note: Replace summation with integration for continuous

Joint CDF	$f_{XY}(a,b) = P\{.$	$X = a, Y = b\}$	Joint CDF	$F_{XY}(a,$	P(X < b) = P(X < b)	$= a, Y \le b$	
Marginal PMF of X	$p_X(a) = \sum_{l}$	$p_{XY}(a,b)$	Marginal PMF of Y	Y p	$Y(b) = \sum_{a} p_{\lambda}$	$\chi_Y(a,b)$	
Marginal CDF of X	$F_{XY}(a) = I$	$F_{XY}(a,\infty)$	Marginal CDF of Y	I = F	$F_X Y(b) = F_{XY}$	$Y(\infty,b)$	
Conditional PMF	$p_{X Y}(x y) =$	$= P\{X = x Y =$	$=y$ = $\frac{P\{X=x,Y=y\}}{P\{Y=y\}}$ =	$= \frac{p_{XY}(x,y)}{p_Y(y)}$			
Conditional CDF	$F_{X Y}(x y)$	$= P\{X \le x \mid x \le x \mid x \le x \le x \le x \le x \le x \le x$	$Y <= y\} = \sum_{a <= x} p$	$\rho_{X Y}(a y)$			
Given Function $g(X, X)$	′		$(x,y)p_{XY}(x,y)$				
Joint MGF	$M_{XY}(t,t)$	$E') = E[e^{tX + T'Y}]$	$[] = \sum_{y} \sum x e^{tx + t'y} p_x$	$_{XY}(x,y)$	Conditional	Jointly Distrib	outed RV
Conditional Expectati		E[X Y=y] =	$= \sum_{x} x p_{X Y}(x,y)$				
		$\mathbb{E}[g(X) Y=y] =$	$= \sum_{x} g(x) p_{X Y}(x,y)$				
Expectation of X		$\sum_{y} E[X Y]$	$=y]P\{Y=y\}$]		
$F_{X A}(x) = \frac{F_X(x) - F_X(a)}{F_X(b) - F_X(a)}$			$f(x) = \frac{f_X(x)}{P(A)}$	$f_{X Y}(x,y)$	$=\frac{f_{XY}(x,y)}{f_{Y}(y)}$		
$E[X A] = \int_{-\infty}^{\infty} x$	$f_{X A}(x)dx$	E[g(X) A] = 0	$\int_{-\infty}^{\infty} g(x) f_{X A}(x) dx$				

Independent Random Variables: Two random variables X and Y are said to be independent if for every a and b we have $f_{XY}(a,b) = f_X(a)f_Y(b).$

6 Expectation