Hinman, Fundamentals of Mathematical Logic 解答

鴎海

(最終更新日: 2024年6月8日)

本稿では、以下の書籍の演習問題の解答を与えます.

Hinman, P. G. (2005). Fundamentals of Mathematical Logic. A K Peters.

その他,同書で証明が省略されていたり,注意が必要と思われるような箇所についても,補足的に掲載します. また,正誤表も本稿の末尾に掲載します.

本稿の pdf ファイルおよび TpX ソースファイルの最新版は、GitHub の該当リポジトリから入手できます。

目次

1	Propositional Logic and Other Fundamentals	1
1.1	The propositional language	1
	注意: 命題 1.1.5 の補題 (4) の証明	1
	演習 1.1.10	1
	演習 1.1.11	3
	演習 1.1.12	3
	演習 1.1.13	4
1.2	Induction and recursion	5
	注意: 定義 1.2.1	5
	系 1.2.4	5
	命題 1.2.7	6
		_
正誤表		7
第1章		7

Propositional Logic and Other Fundamentals

1.1 The propositional language

訳語対応

一意可読性 unique readability

原子命題論理式 atomic sentence

真の始切片 proper initial segment

命題記号 sentence symbol

命題論理式 sentence

命題論理式の帰納法 sentence induction

注意: 命題 1.1.5 の補題 (4) の証明

補題 (4) の証明は, $\phi_0 \dots \phi_k$ の長さに関する帰納法に基づいていますが,帰納法の basis である,長さが 1 の場合に (4) が正しいことの証明が省略されています. これは次のように証明できます. $\phi_0 \dots \phi_k$ と $\psi_0 \dots \psi_l$ の長さに関して 1>k,l であるため,k=l=0 でしかありえず,したがって $\phi_0=\psi_0$ となります.

演習 1.1.10

以下のように定義する.

定義 1 (中置記法での L-命題論理式の集合)

- (i) Sent₀ := L-原子命題論理式の集合
- (ii) 任意の $n \in \omega$ に対して,

$$\mathsf{Sent}_{n+1} \coloneqq \mathsf{Sent}_n \cup \{ (\neg \phi) : \phi \in \mathsf{Sent}_n \}$$

$$\cup \ \{ (\phi \bullet \psi) : \phi, \psi \in \mathsf{Sent}_n, \bullet \ \& \lor, \land, \to, \leftrightarrow \mathit{O}$$
いずれか}

$${\rm (iii)}\ {\sf Sent}_L \coloneqq \bigcup_{n \in \omega} {\sf Sent}_n$$

次は補題 1.1.3 および命題 1.1.4 と全く同じ方法で証明できる.

命題 2 (L-命題論理式の帰納法による証明)

L-表現に関する任意の性質 P に対して,

(i) 任意の L-原子命題論理式について \mathcal{P} が成り立ち、かつ

(ii) 任意の L-命題論理式 ϕ , ψ に対し、 ϕ , ψ について \mathcal{P} が成り立つならば、 $(\neg \phi)$ 、 $(\phi \lor \psi)$ 、 $(\phi \land \psi)$ 、 $(\phi \to \psi)$ 、 $(\phi \leftrightarrow \psi)$ についても \mathcal{P} が成り立つ

ならば、任意の L-命題論理式に対して P が成り立つ.

次を証明する.

命題3(一意可読件)-

任意の L-命題論理式 θ に対して、以下のちょうど 1 つが成り立つ。

- (i) θ は L-原子命題論理式である.
- (ii) $\theta = (\neg \phi)$ なる L-命題論理式 ϕ が存在する.
- (iii) $\theta = (\phi \lor \psi)$ なる L-命題論理式 ϕ, ψ がそれぞれ一意に存在する.
- (iv) $\theta = (\phi \wedge \psi)$ なる L-命題論理式 ϕ, ψ がそれぞれ一意に存在する.
- (v) $\theta = (\phi \rightarrow \psi)$ なる L-命題論理式 ϕ, ψ がそれぞれ一意に存在する.
- (vi) $\theta = (\phi \leftrightarrow \psi)$ なる L-命題論理式 ϕ, ψ がそれぞれ一意に存在する.

そのために次を証明する. 以下, • は \lor , \land , \rightarrow , \leftrightarrow のいずれかとする.

補題 4 -

- (i) L-命題論理式に含まれる(の個数と)の個数は同じである.
- (ii) L-命題論理式の真の始切片 a に含まれる(の個数は)の個数より多い.
- (iii) L-命題論理式の真の始切片は L-命題論理式ではない.
- (iv) \bullet' は \lor , \land , \rightarrow , \leftrightarrow のいずれかとし, ϕ , ψ , ϕ' , ψ' は L-命題論理式とする. $(\phi \bullet \psi) = (\phi' \bullet' \psi')$ ならば, $\phi = \phi'$, $\bullet = \bullet'$, $\psi = \psi'$ である.

a 演習 1.1.11 参照.

- (i) ϕ に対してこれが成り立つことを $\mathcal{P}(\phi)$ と書く. 任意の L-命題論理式 ϕ に対して $\mathcal{P}(\phi)$ をL-命題論理式の帰納法で示す.
 - (1) ϕ が L-原始命題論理式の場合, (と) は含まれないので, $\mathcal{P}(\phi)$ である.
 - (2) L-命題論理式 ϕ, ψ を任意に取り、 $\mathcal{P}(\phi)$ と $\mathcal{P}(\psi)$ を仮定する. 仮定より、 $\mathcal{P}((\neg \phi))$ 、 $\mathcal{P}(\phi \bullet \psi)$ であることは明らかである.
- (ii) ϕ に対してこれが成り立つことを $\mathcal{P}(\phi)$ と書く. 任意の L-命題論理式 ϕ に対して $\mathcal{P}(\phi)$ をL-命題論理式の帰納法で示す.
 - (1) ϕ が L-原始命題論理式の場合,真の始切片が存在しないので, $\mathcal{P}(\phi)$ である.
 - (2) L-命題論理式 ϕ, ψ を任意に取り, $\mathcal{P}(\phi)$ と $\mathcal{P}(\psi)$ を仮定する。 $(\neg \phi)$, $(\phi \bullet \psi)$ のいずれについても,その真の始切片は右端の)を持たず,従って(i) より,そこに含まれる(の個数は) の個数より多い.つまり, $\mathcal{P}((\neg \phi))$, $\mathcal{P}((\phi \bullet \psi))$ である.
- (iii) (i)と(ii)から従う.
- (iv) $(\phi \bullet \psi) = (\phi' \bullet' \psi')$ であれば, $\phi \bullet \psi) = \phi' \bullet' \psi'$ であり,(iii)より, ϕ と ϕ' の一方は他方の真の始切片になりえないので, $\phi = \phi'$ である.よって, $\bullet = \bullet'$,次いで $\psi = \psi'$ が従う.

命題3を証明する.

(i)-(vi) のちょうど 1 つが θ について成り立つことを $\mathcal{P}(\theta)$ と書く.任意の L-命題論理式 θ に対して $\mathcal{P}(\theta)$ をL-命題論理式の帰納法で示す.

(1) θ が L-原始命題論理式の場合、(i) のみが成り立つので、 $\mathcal{P}(\theta)$ である.

L-命題論理式 θ , θ' を任意に取り、 $\mathcal{P}(\theta)$ と $\mathcal{P}(\theta')$ を仮定する.

- (2) $(\neg \theta) = (\neg \phi)$ なる L-命題論理式 ϕ は一意に存在するので,(ii) が成り立ち,また左端から 2 番目の記号が \neg であるのは (ii) の場合だけである.よって $\mathcal{P}((\neg \theta))$ である.
- (3) $(\theta \lor \theta') = (\phi \lor \psi)$ なる L-命題論理式 ϕ, ψ の存在は明らかである (θ, θ') 自身). また, $(\theta \lor \theta')$ について,(1),(2)と同様の理由で,(i) と (ii) は成り立たない.また補題 4(iv)より,(iii)-(vi) のうち (iii) のみが成り立つ.よって $\mathcal{P}((\theta \lor \theta'))$ である.
- (4) (3)と同様に、 $\mathcal{P}((\theta \wedge \theta'))$ 、 $\mathcal{P}((\theta \rightarrow \theta'))$ 、 $\mathcal{P}((\theta \leftrightarrow \theta'))$ である.

演習 1.1.11

長さn の任意のL—命題論理式 ϕ に対し、その真の始切片がL—命題論理式でないことを $\mathcal{P}(n)$ と書く、任意のnに対して $\mathcal{P}(n)$ を帰納法で示す、

(1) n=1 の場合, 真の始切片が存在しないので, $\mathcal{P}(1)$ である.

任意の $1 \le i \le n$ に対して $\mathcal{P}(i)$ を仮定し、長さ n+1 の L-命題論理式 ϕ を任意に取る(もしそのような ϕ が存在しなければ、自明に $\mathcal{P}(n+1)$ である)。 命題 1.1.5 の証明の (1) と (2) より、 ϕ について (i)-(vi) のちょうど 1 つが成り立つ。

- (2) ϕ が L-原始命題論理式の場合, 真の始切片が存在しないので, $\mathcal{P}(n+1)$ である.
- (3) $\phi = \neg \psi$ の場合,その真の始切片は \neg か $\neg S$ の形である(S は ψ の真の始切片).前者は L-命題論理式ではない。後者は,帰納法の仮定より S は L-命題論理式ではないので,命題 1.1.5(ii) が成り立たず,また 左端の記号が異なるので,(ii) 以外も成り立たない.よって, ϕ の真の始切片は L-命題論理式ではないので, $\mathcal{P}(n+1)$ である.
- (4) $\phi = \lor \psi \psi'$ の場合,その真の始切片は以下のいずれかの形であり,仮にそれが L-命題論理式であれば,命題 1.1.5(iii) が成り立つはずである.
 - (4.1) V. これは L-命題論理式ではない.
 - (4.2) $\forall S$ (S は ψ の真の始切片). 帰納法の仮定より, S は L-命題論理式ではないので, 命題 1.1.5(iii) は成り立たない. よって, これは L-命題論理式ではない.
 - (4.3) $\lor \psi$. 帰納法の仮定より、 ψ の真の始切片 χ は L-命題論理式ではない. したがって、 $\lor \psi = \lor \chi \chi'$ なる L-命題論理式 χ, χ' は存在しないので、命題 1.1.5(iii) は成り立たない.よって、これは L-命題論理式ではない.
 - (4.4) $\lor\psi S$ (S は ψ' の真の始切片). L-命題論理式 χ の長さが n 未満であれば,帰納法の仮定より, ψ と χ の一方が他方の真の始切片になることはない. したがって, $\lor\psi S = \lor\chi\chi'$ なる L-命題論理式 χ,χ' は存在しないので,命題 1.1.5(iii) は成り立たない. よって,これは L-命題論理式ではない.

以上より, $\mathcal{P}(n+1)$ である.

(5) $\phi = \bullet \psi \psi'$ ($\bullet = \land, \rightarrow, \leftrightarrow$) の場合も, (4)と同様にして $\mathcal{P}(n+1)$ を証明できる.

証明は以上である.

この結果が補題 (4) の代わりになることは次のようにして分かる. $\bullet \phi \psi = \bullet \phi' \psi'$ であるとする. ϕ と ϕ' の一方が他方の真の始切片になることはないので, $\phi = \phi'$ であり, したがって $\psi = \psi'$ である.

演習 1.1.12

任意の $\phi \in Sent_{n+1} \sim Sent_n$ に対し、定義 1.1.2 と一意可読性より、以下のいずれかちょうど 1 つが成り立つ.

(i) $\phi = \neg \psi$ なる $\psi \in \mathsf{Sent}_n$ が一意に存在する.

- (ii) $\phi = \forall \psi \psi'$ なる $\psi, \psi' \in \mathsf{Sent}_n$ がそれぞれ一意に存在する.
- (iii) $\phi = \wedge \psi \psi'$ なる $\psi, \psi' \in \mathsf{Sent}_n$ がそれぞれ一意に存在する.
- (iv) $\phi = \rightarrow \psi \psi'$ なる $\psi, \psi' \in \mathsf{Sent}_n$ がそれぞれ一意に存在する.
- (v) $\phi = \leftrightarrow \psi \psi'$ なる $\psi, \psi' \in \mathsf{Sent}_n$ がそれぞれ一意に存在する.

したがって、任意の $n \in \omega$ に対し、関数 F_{n+1} : Sent_n $\to Z$ を以下のように再帰的に定義できる.

$$\begin{split} F_{n+1}(\phi) &= F_n(\phi) & \text{if } \phi \in \mathsf{Sent}_n \\ F_{n+1}(\neg \phi) &= G_{\neg}(F_n(\phi)) & \text{if } \neg \phi \in \mathsf{Sent}_{n+1} \sim \mathsf{Sent}_n \\ F_{n+1}(\bullet \phi \psi) &= G_{\bullet}(F_n(\phi), F_n(\psi)) & \text{if } \bullet \phi \psi \in \mathsf{Sent}_{n+1} \sim \mathsf{Sent}_n \end{split}$$

 i_{ϕ} を $\phi \in \mathsf{Sent}_n$ なる最小の $n \in \omega$ とし,関数 $F \colon \mathsf{Sent}_L \to Z$ を $F(\phi) = F_{i_{\phi}}(\phi)$ によって定義すると,任意の $\phi \in \mathsf{Sent}_n$ なる n,つまり $n \geq i_{\phi}$ に対して, $F(\phi) = F_{i_{\phi}}(\phi) = F_{i_{\phi}+1}(\phi) = \cdots = F_n(\phi)$ である.よって,

- (1) $\phi \in \mathsf{Sent}_0$ に対して $F(\phi) = F_0(\phi)$ であるから,F は F_0 の拡張である.
- (2) 任意の $\phi \in Sent_L$ に対して、適当な $n \in \omega$ が存在して、

$$\begin{split} F(\neg\phi) &= F_{n+1}(\neg\phi) = G_\neg(F_n(\phi)) = G_\neg(F(\phi)) \\ F(\bullet\phi\psi) &= F_{n+1}(\bullet\phi\psi) = G_\bullet(F_n(\phi), F_n(\psi)) = G_\bullet(F(\phi), F(\psi)) \end{split}$$

となる. よって,

$$F(\neg \phi) = G_{\neg}(F(\phi))$$
$$F(\bullet \phi \psi) = G_{\bullet}(F(\phi), F(\psi))$$

である.

F の一意性を示す. いま、関数 F': Sent_L \rightarrow Z も F_0 の拡張であり、かつ

$$\begin{split} F'(\neg\phi) &= G_\neg(F'(\phi)) \\ F'(\bullet\phi\psi) &= G_\bullet(F'(\phi),F'(\psi)) \end{split}$$

を満たすとする.任意の $\phi\in \mathsf{Sent}_L$ に対して $F(\phi)=F'(\phi)$ が成り立ち,したがって F=F' が成り立つことを, L—命題論理式の帰納法で示す.

(1) $\phi \in \mathsf{Sent}_0$ の場合, $F(\phi) = F_0(\phi) = F'(\phi)$ である.

 $\phi,\psi\in \mathsf{Sent}_L$ を任意に取り、 $F(\phi)=F'(\phi)$ 、 $F(\psi)=F'(\psi)$ を仮定する.

(2) 仮定より,

$$F(\neg \phi) = G_{\neg}(F(\phi)) = G_{\neg}(F'(\phi)) = F'(\neg \phi)$$

(3) 仮定より,

$$F(\bullet\phi\psi) = G_{\bullet}(F(\phi), F(\psi)) = G_{\bullet}(F'(\phi), F'(\psi)) = F'(\bullet\phi\psi)$$

証明は以上である.

命題 1.1.9 において, $Z=\{\mathsf{T},\mathsf{F}\}$, $F_0=V_0$ とし, 関数 $G_\neg\colon\{\mathsf{T},\mathsf{F}\}\to\{\mathsf{T},\mathsf{F}\}$ と $G_\bullet\colon\{\mathsf{T},\mathsf{F}\}\times\{\mathsf{T},\mathsf{F}\}\to\{\mathsf{T},\mathsf{F}\}$ を

$$G_{\neg} \colon \begin{matrix} \mathsf{T} \mapsto \mathsf{F} \\ \mathsf{F} \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{T},\mathsf{T}) \mapsto \mathsf{T} \\ (\mathsf{T},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{T},\mathsf{T}) \mapsto \mathsf{T} \\ (\mathsf{T},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \quad \begin{matrix} (\mathsf{T},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{T}) \mapsto \mathsf{F} \end{matrix} \quad \begin{matrix} (\mathsf{T},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \end{matrix} \quad \begin{matrix} (\mathsf{F},\mathsf$$

と定めれば、定理 1.1.7 を得る.

演習 1.1.13

- (i) $\neg((\neg p_1) \lor p_2)$
- (ii) 仮にこれが Lー命題論理式であるとする.命題 1.1.5 より, $\wedge p_1p_2 \neg p_3 = \wedge \phi \psi$ なる Lー命題論理式 ϕ, ψ が一意に存在する.よって, p_1 は Lー命題論理式であるから, $p_2 \neg p_3$ は Lー命題論理式である.しかし, $p_2 \neg p_3$ は命題 1.1.5 のいずれの場合も満たさないので,Lー命題論理式ではない.矛盾.ゆえに $\wedge p_1p_2 \neg p_3$ は Lー命題論理式ではない.
- (iii) $(p_1 \wedge p_2) \rightarrow (((\neg p_3) \vee p_8) \leftrightarrow p_3)$

1.2 Induction and recursion

訳語対応 --

 \mathcal{X} -帰納法 \mathcal{X} -induction

 \mathcal{X} -導出 \mathcal{X} -derivation

 \mathcal{X} -閉である \mathcal{X} -closed

帰納的系 inductive system

帰納的閉包 inductive closure

注意: 定義 1.2.1

pp. 25–26 にも書かれていますが,このような X_n の再帰的定義は定理 1.2.12 によって正当化されます.もし $\mathcal{X}=(X,X_0,\mathcal{H})$ が帰納的系であれば, $X_0\in\wp(X)$ が成り立ちます.そこで定理 1.2.12 において

$$Z = \wp(X)$$
$$z_0 = X_0$$

 $G\colon \wp(X)\times\omega\ni (x,n)\mapsto x\cup\{H(x_0,\dots,x_{k_H-1})\in X:H\in\mathcal{H},\ x_0,\dots,x_{k_H-1}\in x\}\in\wp(X)$

とすれば、 $F(0) = X_0$ かつ任意の $n \in \omega$ に対して

$$F(n+1) = F(n) \cup \{H(x_0, \dots, x_{k_H-1}) : H \in \mathcal{H}, \ x_0, \dots, x_{k_H-1} \in F(n)\}$$

であるような関数 $F:\omega\to\wp(X)$ が一意に存在することが言えます. この唯一の F に対する F(n) が, X_n (正確には X_n)と書かれているのです.

系 1.2.4

- (i) $\overline{X} \subseteq \bigcap \{Y \subseteq X : Y \ \text{は} \ \mathcal{X}\text{-閉である}\}$
- (ii) $\overline{X} \supseteq \bigcap \{Y \subseteq X : Y \text{ は } \mathcal{X}\text{-閉である}\}$

を示す.

(i) 命題 1.2.3(ii) より,

$$\{Y \subseteq X : Y \ \ \ \ \ \ \mathcal{X}$$
-閉である $\} \subseteq \{Y \subseteq X : \overline{X} \subseteq Y\}$

よって,

$$\overline{X} = \bigcap \{Y \subseteq X : \overline{X} \subseteq Y\} \subseteq \bigcap \{Y \subseteq X : Y$$
 は X-閉である}

(ii) $\overline{X} \subset X$ および命題 1.2.3(i) より、

$$\overline{X} \in \{Y \subseteq X : Y \ \text{ta} \ \mathcal{X}$$
-閉である}

よって,

$$\overline{X} \supseteq \bigcap \{Y \subseteq X : Y$$
は \mathcal{X} -閉である $\}$

命題 1.2.7

- \Rightarrow を示す. 任意の $z \in \overline{X}$ に対して, z の \mathcal{X} -導出が存在することを \mathcal{X} -帰納法で示す.
- (1) $z \in X_0$ の場合, (z) は z の \mathcal{X} -導出である.
- (2) $H\in\mathcal{H}$ と $z_0,\dots,z_{k_H-1}\in X$ を任意に取り, z_0,\dots,z_{k_H-1} の \mathcal{X} -導出が存在すると仮定する. それらをそれぞれ

$$\begin{aligned} (x_0^0,\dots,x_0^{n_0},z_0) \\ & \vdots \\ (x_{k_H-1}^0,\dots,x_{k_H-1}^{n_{k_H-1}},z_{k_H-1}) \end{aligned}$$

とすると、これらの連結に $H(z_0,\dots,z_{k_H-1})$ を追加した列

$$(x_0^0,\dots,x_0^{n_0},z_0,\\ \dots,\\ x_{k_H-1}^0,\dots,x_{k_H-1}^{n_{k_H-1}},z_{k_H-1},\\ H(z_0,\dots,z_{k_H-1}))$$

は $H(z_0,\dots,z_{k_H-1})$ の \mathcal{X} -導出である。なぜなら,この列の $H(z_0,\dots,z_{k_H-1})$ 以外の項は,仮定より定義 1.2.6(i) または (ii) を満たし,また $H(z_0,\dots,z_{k_H-1})$ は定義 1.2.6(ii) を満たすからである.

 \Leftarrow を示す. (x_0,\dots,x_n) が x_n の \mathcal{X} -導出であれば $x_n\in\overline{X}$ であることを $\mathcal{P}(n)$ と書き,これを n に関する帰納法で示す.

- (1) n=0 の場合, x_0 について定義 1.2.6(ii) は成り立たないので、(i) $x_n \in X_0$ が成り立つ. よって、 $\mathcal{P}(n)$ である.
- (2) 任意の $0 \leq i \leq n$ に対して $\mathcal{P}(i)$ を仮定する. (x_0,\dots,x_{n+1}) は x_{n+1} の \mathcal{X} -導出であるとすると,定義 1.2.6(i) または (ii) が成り立つ. (i) の場合, $\mathcal{P}(n+1)$ である. (ii) の場合,仮定より, $x_{j_0},\dots,x_{j_{k_H-1}} \in \overline{X}$ であるから,命題 1.2.3(i) より, $x_{n+1} = H(x_{j_0},\dots,x_{j_{k_H-1}}) \in \overline{X}$ である. よって, $\mathcal{P}(n+1)$ である.

以上より,任意の $n\in\omega$ に対して $\mathcal{P}(n)$ である.よって, (x_0,\dots,x_n) が z の \mathcal{X} -導出であれば, $z=x_n\in\overline{X}$ である.

正誤表

第1章

修正箇所	誤	正
p. 21, ↑ 1	$H(x_0,\dots,x_{k_h-1})\in Y$	$H(x_0, \dots, x_{k_{\mathbf{H}}-1}) \in Y$
p. 22, ↑ 10	x_0, \dots, x_{k_h-1}	x_0, \dots, x_{k_H-1}
″, ↑ 8	$\mathcal{P}(H(x_0,\dots,x_{k_h-1}))$	$\mathcal{P}(H(x_0,\dots,x_{k_H-1}))$