

Modeling Graphs with Vertex Replacement Grammars

Satyaki Sikdar, Justus Hibshman, Tim Weninger University of Notre Dame, IN, USA

November 10, 2019 bit.ly/graph_grammar

Production Rules

 $R_1:S \rightarrow \text{NPVP}$ $R_2:\text{NP} \rightarrow \text{the N}$ $R_3:\text{VP} \rightarrow \text{V NP}$ $R_4:\text{V} \rightarrow \text{sings}$ $R_5:\text{V} \rightarrow \text{eats}$ $R_6:\text{N} \rightarrow \text{cat}$ $R_7:\text{N} \rightarrow \text{song}$ $R_8:\text{N} \rightarrow \text{canary}$

Production Rules

 $\begin{array}{lll} R_1: \mathsf{S} & \rightarrow & \mathsf{NP} \, \mathsf{VP} \\ R_2: \mathsf{NP} & \rightarrow & \mathsf{the} \; \mathsf{N} \\ R_3: \mathsf{VP} & \rightarrow & \mathsf{V} \, \mathsf{NP} \\ R_4: \mathsf{V} & \rightarrow & \mathsf{sings} \\ R_5: \mathsf{V} & \rightarrow & \mathsf{eats} \\ R_6: \mathsf{N} & \rightarrow & \mathsf{cat} \\ R_7: \mathsf{N} & \rightarrow & \mathsf{song} \\ R_8: \mathsf{N} & \rightarrow & \mathsf{canary} \end{array}$

Deriving Strings

$$S \stackrel{R_1}{\Longrightarrow} NP VP$$
 $\stackrel{R_2}{\Longrightarrow} the N VP$
 $\stackrel{R_3}{\Longrightarrow} the cat VP$
 $\stackrel{R_3}{\Longrightarrow} the cat VNP$
 $\stackrel{R_4}{\Longrightarrow} the cat sings NP$
 $\stackrel{R_2}{\Longrightarrow} the cat sings the N$
 $\stackrel{R_7}{\Longrightarrow} the cat sings the song$

 $R_1: S \rightarrow NPVP$ $R_2: \mathsf{NP} \to \mathsf{the}\; \mathsf{N}$ $R_3: VP \rightarrow V NP$ $R_4:V \rightarrow sings$ $R_5: \overline{V} \rightarrow eats$ $R_6: \mathbb{N} \rightarrow \text{cat}$ $R_7: \mathbb{N} \to \text{song}$ $R_8: \mathbb{N} \rightarrow \text{canary}$

 $R_1: S \rightarrow NPVP$ $R_2: \mathsf{NP} \to \mathsf{the}\; \mathsf{N}$ $R_3: VP \rightarrow V NP$ $R_4:V \rightarrow sings$ $R_5: \overline{V} \rightarrow eats$ $R_6: \mathbb{N} \rightarrow \mathsf{cat}$ $R_7: \mathbb{N} \to \text{song}$ $R_8: \mathbb{N} \rightarrow \text{canary}$

$$S \stackrel{R_1}{\Longrightarrow} NP VP$$
 $\stackrel{R_2}{\Longrightarrow} the N VP$
 $\stackrel{R_3}{\Longrightarrow} the cat VP$
 $\stackrel{R_3}{\Longrightarrow} the cat VNP$
 $\stackrel{R_4}{\Longrightarrow} the cat sings NP$
 $\stackrel{R_2}{\Longrightarrow} the cat sings the N$
 $\stackrel{R_7}{\Longrightarrow} the cat sings the song$

Where did the production rules comes from? Can we learn them?

Key Questions

Key Questions

· Why is grammar important for language?

Key Questions

- · Why is grammar important for language?
- · Can we do the same for graphs?

Key Questions

- · Why is grammar important for language?
- Can we do the same for graphs?

Goals

Key Questions

- · Why is grammar important for language?
- Can we do the same for graphs?

Goals

· Identifying interesting topological structures in a graph

Key Questions

- · Why is grammar important for language?
- Can we do the same for graphs?

Goals

- · Identifying interesting topological structures in a graph
- · Finding the building blocks via graph grammar rules

Key Questions

- · Why is grammar important for language?
- Can we do the same for graphs?

Goals

- · Identifying interesting topological structures in a graph
- Finding the building blocks via graph grammar rules
- · Using the building blocks to generate similar graphs

Intuition

(a) Example Graph

Intuition

(a) Example Graph

(b) Example CNRG

Formal Definition: CNRG

Formal Definition: CNRG

Formal Definition: CNRG

Where did the production rules comes from? Can we learn them?

Extracting a CNRG: I $(\mu = 4)$

(a) Example graph *H* with 9 nodes and 16 edges

(b) An example dendrogram \mathcal{D}

Extracting a CNRG: II $(\mu=4)$

Extracting a CNRG: II $(\mu=4)$

(c) Extracted CNRG Rule

Extracting a CNRG: II $(\mu = 4)$

(c) Extracted CNRG Rule

Extracting a CNRG: III $(\mu=4)$

Extracting a CNRG: III $(\mu = 4)$

Extracting a CNRG: III $(\mu=4)$

(a) Updated Dendrogram \mathcal{D}'

(b) Updated Graph H'

(c) Extracted CNRG Rule

Extracting a CNRG: IV $(\mu=4)$

(a) Current Dendrogram ${\cal D}$

(b) Current Graph *H*

Extracting a CNRG: IV $(\mu=4)$

Extracting a CNRG: IV $(\mu=4)$

(a) Updated Dendrogram \mathcal{D}'

(b) Updated Graph H'

(c) Extracted CNRG Rule

Extracting a CNRG: $V(\mu=4)$

(a) Current Dendrogram ${\cal D}$

(b) Current Graph *H*

Extracting a CNRG: $V(\mu=4)$

Extracting a CNRG: V $(\mu=4)$

0

(a) Updated Dendrogram \mathcal{D}'

0

(b) Updated Graph H'

0

(c) Extracted CNRG Rule

Extracting a CNRG: V $(\mu=4)$

0

Extracted CNRG Rules

Generating Graphs from a CNRG: I

Generating Graphs from a CNRG: I

12

Generating Graphs from a CNRG: I

12

Generating Graphs from a CNRG: II

Current Graph H'

Extracted CNRG Rules

Isomorphic with $p = \frac{1}{2}!$

Isomorphic with $p = \frac{1}{2}!$

 $p = \frac{1}{4}$

Isomorphic with $p = \frac{1}{2}!$

$$p = \frac{1}{4}$$

$$p = \frac{1}{4}$$

Model Size Comparison

Datasets

Graph Generation Quality Comparison (Lighter Red is Better)

Main Takeaways

· Simple and compact formalism borrowed from formal language theory

Main Takeaways

- · Simple and compact formalism borrowed from formal language theory
- · Scalable to medium-large sized graphs

Main Takeaways

- · Simple and compact formalism borrowed from formal language theory
- · Scalable to medium-large sized graphs
- · Faithful graph generation

Main Takeaways

- · Simple and compact formalism borrowed from formal language theory
- · Scalable to medium-large sized graphs
- · Faithful graph generation

Main Takeaways

- · Simple and compact formalism borrowed from formal language theory
- · Scalable to medium-large sized graphs
- · Faithful graph generation

Key Questions

· Can we extract more meaningful rules?

Main Takeaways

- · Simple and compact formalism borrowed from formal language theory
- · Scalable to medium-large sized graphs
- · Faithful graph generation

- · Can we extract more meaningful rules?
- · Can we use CNRG as a null model for graphs?

Main Takeaways

- · Simple and compact formalism borrowed from formal language theory
- · Scalable to medium-large sized graphs
- · Faithful graph generation

- · Can we extract more meaningful rules?
- · Can we use CNRG as a null model for graphs?
- Can we adapt the formalism for attributed graphs?

Main Takeaways

- Simple and compact formalism borrowed from formal language theory
- · Scalable to medium-large sized graphs
- · Faithful graph generation

- Can we extract more meaningful rules?
- Can we use CNRG as a null model for graphs?
- · Can we adapt the formalism for attributed graphs?
- · Can we utilize a related formalism to study and track changes in dynamic graphs?

What's Next? Making Sense of Grammar Rules

Towards Interpretable Graph Modeling with Vertex Replacement Grammars, J. Hibshman, S. Sikdar, and T. Weninger, accepted at IEEE BigData 2019.

Thanks!

ssikdar@nd.edu

