Lecture 5

Xuanxi Zhang

1 Picture 1 and 2: Graphical Models and the Hammersley– Clifford Theorem

Dependency Graph Definition

- We have a probability distribution $p(x_1, x_2, \dots, x_n)$ over n variables in some set X^n .
- We draw a graph G on the vertex set $\{1, \ldots, n\}$. We place an edge between i and j if and only if x_i is not independent of x_j when conditioned on all remaining variables.

$$x_i \not\perp x_j \mid \{x_k : k \neq i, j\} \iff \text{edge } (i, j) \text{ in } G.$$

• The distribution p satisfies the (pairwise) Markov property w.r.t. this graph if whenever i and j are not connected by an edge, then

$$x_i \perp x_j \mid \{x_k : k \neq i, j\}.$$

Hammersley-Clifford Theorem (Informal Statement)

- Assume p(x) > 0 for all configurations x.
- Then p satisfies the Markov property w.r.t. a graph G if and only if there exist potential functions $\Psi_C(x_C)$ (one for each clique C of G) such that

$$p(x) = \prod_{C} \Psi_C(x_C),$$

where x_C is the sub-configuration $\{x_i : i \in C\}$.

2 Picture 3: Example of a Factorization

- Consider a small graph of five variables x_1, x_2, x_3, x_4, x_5 .
- Suppose the edges yield cliques: $\{1, 2, 3\}, \{2, 3, 4\}, \{4, 5\}.$
- The factorization of p then is:

$$p(x_1, x_2, x_3, x_4, x_5) = \Psi_{123}(x_1, x_2, x_3) \times \Psi_{234}(x_2, x_3, x_4) \times \Psi_{45}(x_4, x_5).$$

• Example of a conditional independence implied by the absence of edges:

$$x_2 \perp x_5 \mid (x_1, x_3, x_4).$$

3 Picture 4: Proof Sketch of Hammersley–Clifford

- 1. Factorization \implies Markov property: If $p(x) = \prod_C \Psi_C(x_C)$, one can check directly that if i and j are not in the same clique, then x_i and x_j become conditionally independent given the rest.
- 2. Markov property \implies Factorization:
 - One shows that

$$\log p(x) = \sum_{A \subset \{1,\dots,n\}} \Psi_A(x_A),$$

for some set of functions Ψ_A .

• Then by exploiting the conditional independence structure, one shows $\Psi_A = 0$ whenever A is not contained in a clique. So only clique-based terms remain.

4 Picture 5 and 6: Interacting Particles, Ising Model, and Boltzmann Distribution

Interacting Particles in Statistical Physics

- We have n particles (or sites), each in a discrete state space X.
- They interact via an energy function $E(x_1, \ldots, x_n)$, often written as a sum of pairwise or multi-wise potentials:

$$E(x) = \sum_{i,j} V(x_i, x_j)$$
 (for example).

Ising Model (Example)

- Each site i has a spin $x_i \in \{+1, -1\}$.
- A common Hamiltonian:

$$E(x) = -\sum_{\langle i,j\rangle} x_i x_j,$$

summing over neighboring pairs $\langle i, j \rangle$.

• Ground states $(T \to 0)$ are all spins up or all spins down.

Boltzmann (Gibbs) Distribution

• At temperature T, the probability of configuration x is:

$$p(x) = \frac{1}{Z} e^{-\beta E(x)}$$
 where $\beta = \frac{1}{T}$.

- The partition function is $Z = \sum_{x} e^{-\beta E(x)}$.
- As $T \to 0$, p concentrates on the configurations that minimize E (the ground states).

5 Picture 7 and 8: Typical Configurations and Phase Transitions

Typical Energies

- For large n, the number of configurations of a given energy can be huge, and that entropy factor can outweigh the Boltzmann factor for certain energy levels.
- In the thermodynamic limit $n \to \infty$, the system's energy distribution becomes sharply peaked around an *average* (or typical) energy.

Phase Transitions

- As β (inverse temperature) crosses a critical value β_c , we may observe a discontinuous change in certain order parameters (e.g., magnetization, energy).
- Example: In the Ising model, below a critical temperature T_c , the system "chooses" a magnetized state (mostly + or mostly -). Above T_c , it becomes disordered.

6 Organized Summary

- Graphical Models and Hammersley-Clifford: Distributions with conditional independences factorize over cliques of a graph.
- Interacting Particles / Ising: Systems in statistical physics can be seen as Markov random fields with an energy function.
- Boltzmann Distribution: $p(x) \propto e^{-\beta E(x)}$. As temperature goes to zero, the distribution concentrates on ground states.
- Phase Transitions: In large systems, typical states concentrate in energy "bands." Sudder changes (discontinuities) in observables at critical temperatures are phase transitions.