느라리버섯생산에서 견단백질물작용분해물로 쌀겨를 대용하기 위한 연구

정승주, 리영철, 정광명

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《전국도처에 마련해놓은 축산기지와 양어기지, 온실과 버섯생산기지들에서 생산을 정상화하여 인민들이 덕을 보게 하여야 합니다.》

원천량이 풍부하고 쉽게 얻을수 있는 여러가지 대용원료들을 적극 동원리용하는것은 버섯생산을 늘이기 위한 중요한 방도의 하나이다.

버섯재배에서 영양첨가제로 쓰이고있는 쌀겨[1]는 리용분야가 넓은 반면에 생산량이 제한되여있다. 이로부터 우리는 견직공업에서 부산물로 나오는 견단백질물작용분해물로 쌀겨를 대용하고 버섯페기질을 재리용하기 위한 연구를 하였다.

재료와 방법

재료 견단백질물작용분해물로는 제사공장에서 나오는 마른누에고치부산물에 농염산을 최종농도가 3%되게 넣고 151.95kPa(1.5기압)에서 40min간 처리하여 분해한것을 리용하였다. 견단백질에는 세리신과 피브로인이 25:75의 체적비(건물질합량)로 들어있다.

견단백질을 HCI용액으로 처리하면 견단백질의 세리신과 피브로인이 아미노산이나 저분자의 폴리펩티드로 분해되는데 이것은 버섯기질에서 질소원으로 된다. 세리신과 피브로인의 아미노산조성[3]을 쌀겨와 비교(표 1)하면 견단백질물작용분해물에는 시스테인을 제외한 모든 아미노산들이 다 들어있었으며 그 함량도 쌀겨와 비슷하거나 일부 아미노산들의 함량은 현저히 높았다.

The contract of the contract o									
No.	아미노산종류	세리신	피브로인	쌀겨	No.	아미노산종류	세리신	피브로인	쌀겨
1	리진	0.9~5.8	0.2		11	발린	_	6.2	5.31
2	히스티딘	1.1~2.8	0.4	2.24	12	메티오닌	0.1	0.03	2.34
3	아르기닌	4.2~6.1	1.0	6.10	13	이소로이신	$0.5 \sim 0.8$	1.1	3.82
4	아스파라긴산	10.4~17.0	3.8	4.88	14	로이신	$0.9 \sim 1.7$	0.9	5.45
5	글루타민산	1.9~10.1	2.2	0.55	15	티로신	3.8~5.5	5.1	2.40
6	트레오닌	2.4~2.9	1.6	2.22	16	페닐알라닌	$0.5 \sim 2.7$	3.4	3.73
7	세린	13.5~33.0	16.2	3.56	17	트립토판	$0.5 \sim 1.0$	0.6	4.50
8	프롤린	0.5~3.0	0.7	2.92	18	시스테인	_	_	1.18
9	글리신	4.1~8.8	42.8	3.84	19	시스틴	0.2~1.0	0.03	2.93
10	알라닌	3.5~11.9	23.5	4.20					

표 1. 견단백질물작용분해물과 쌀겨의 아미노산조성(%)

연구방법 느타리버섯재배기질로 강냉이속 80%, 쌀겨 20%, 소석회 3% 첨가한 배지를 리용[2]하였으며 쌀겨대신에 견단백질물작용분해물을 1.5, 2.0, 2.5, 3.0, 3.5, 4.0%로 첨가하

여 시험하였다.

강냉이속과 페기질의 섞음비률을 1:0.5, 1:1, 1:2, 1:3으로 하고 견단백질물작용분해물을 2.5, 3.5, 4.5, 5.5, 6.5%로 변화시키면서 페기질을 재리용할 때 견단백질물작용분해물의 쌀겨대용정도를 검토하였다.

온도 23~27℃, 습도 65%의 조건에서 균실배양을 하고 접종 25일부터는 온도 17~20℃, 습도 80~90%를 보장하면서 1, 2, 3차 수확성을 판정하여 종합하였다. 2kg 포장용기를 리용하였으며 매 시험에서 180kg의 마른 기질에 한하여 각이하게 혼합하려는 배양기질과 견단백질물작용분해물의 량을 정하고 반복시험을 4회 진행하였다.

버섯생육특성조사지표들로는 5일간 균실생장속도(cm/5d), 균실밀도, 첫버섯발생일수 (d), 버섯갓의 직경(cm), 수확량(kg/180kg), 수확률(%)을 정하였으며 조사는 선행방법[2, 4] 에 준하였다.

결과 및 론의

견단백질물작용분해물이 느타리버섯의 생육에 미치는 영향 쌀겨대신에 견단백질물작용분해물을 각이한 비률로 첨가하면서 느타리버섯의 생육특성과 1, 2, 3차 수확고를 조사하였다.(표 2)

견단백질	쌀겨	배양 5d균실	균실	첫버섯발생	갓너비.	수확량	/(kg·180	⁻¹ kg ⁻¹)	수확률
물작용분해물 첨가량/%	/%	생장속도 /(cm·5 ⁻¹ ·d ⁻¹)	밀도	일수/d	/cm	1차	2차	3차	/%
	20	5.3	_	35.1	10.6	67.3	49.7	29.3	81.3
1.5	_	4.9	_	28.1	10.8	62.9	42.9	28.5	74.6
2.0	_	5.3	_	26.2	12.3	77.6	49.6	31.0	87.9
2.5	_	6.3	_	25.4	12.1	79.7	53.9	33.2	92.2
3.0	_	5.9	_	25.8	11.7	77.1	50.1	38.6	92.1
3.5	_	6.2	_	26.2	11.9	75.3	54.1	36.0	91.9
4.0	_	5.6	_	26.3	11.9	73.2	56.6	33.3	90.6

표 2. 견단백질물작용분해물의 쌀겨대용효과

표 2에서 보는바와 같이 견단백질물작용분해물을 2.5% 첨가하였을 때 대조구에 비하여 버섯균실생장속도가 빠르고 수확량이 가장 높았으며 첫버섯발생일수가 거의 10일이나 앞당겨졌다. 견단백질물작용분해물의 첨가농도가 3%이상부터는 버섯생장에서 크게 차이가 없었다.

페기질의 섞음비와 견단백질물작용분해 물의 첨가량이 느라리버섯 균실생장속도에 미치는 영향 페기질의 섞음비와 견단백질 ⁻ 물작용분해물의 첨가량에 따르는 느타리 ⁻ 버섯균실생장속도를 조사하였다.(표 3)

표 3에서 보는바와 같이 강냉이속과 페기질의 섞음비가 1:1인 기질에 견단 백질분해물을 5.5% 첨가할 때 균실생장 속도가 제일 빠르고 그 이상의 농도에서 는 차이가 없었다.

표 3. 페기질의 섞음비와 견단백질물작용분해물의 첨가량에 따르는 균실생장속도(cm/5d)의 변화

강냉이속 : 페기질		1:0.5	1:1	1:2	1:3
대조구	3.8	3.1	2.5	1.9	
견단백질	2.5	4.2	3.3	2.8	2.2
선 년 백결 물작용	3.5	4.9	4.5	3.4	2.9
보여 등 부해물	4.5	5.5	4.8	4.3	3.1
군에 a 첨가량/%	5.5	5.9	6.2	5.4	4.3
тш / 1 76 / /0	6.5	6.2	6.2	5.2	4.4

대조구: 쌀겨 20%

페기질의 섞음비와 견단백질물작용분해물의 첨가량이 느라리버섯수확량에 미치는 영향 폐기질의 섞음비와 견단백질물작용분해물

의 첨가량에 따르는 느타리버섯수확량 을 조사하였다.(표 4)

표 4에서 보는바와 같이 폐기질을 -많이 섞을수록 수확량이 떨어졌으며 견단백질물작용분해물의 첨가량이 높 아지는데 따라 수확량이 증가하였는데 생산실천에서 견단백질물작용분해물 5.5%, 강냉이속과 폐기질의 섞음비가 -1:1인 때 생산효과성이 제일 높았다.

표 4. 페기질의 섞음비와 견단백질물작용분해물의 첨가량에 따르는 수확량(kg/180kg)의 변화

강냉이속: 5	페기질	1:0.5	1:1	1:2	1:3
대조구	-	54.1	45.7	36.9	30.5
견단백질	2.5	61.3	53.7	45.9	38.8
선인백결 물작용	3.5	66.2	58.7	53.9	40.5
물색공 분해물	4.5	69.7	63.4	56.8	44.2
눈에 흐 첨가량/%	5.5	73.1	73.8	65.8	52.2
音/下る//0	6.5	73.5	73.8	67.5	51.9

대조구: 쌀겨 20%

맺 는 말

- 1) 느타리버섯생산에서 쌀겨를 견단백질물작용분해물로 완전히 대용할수 있는데 수확량은 견단백질물작용분해물을 2.5% 첨가할 때 제일 높았다.
- 2) 느타리버섯생산에 페기질을 기초기질로 재리용할수 있는데 강냉이속과 페기질을 1:1로 섞고 여기에 견단백질물작용분해물을 5.5% 첨가하면 수확량을 73kg/180kg까지 높일수 있다.

참고문 헌

- [1] 백설희; 세계유용식물사전, 과학백과사전출판사, 1063~1085, 주체89(2000).
- [2] 리선화; 재배버섯, 농업출판사, 3~96, 주체103(2014).
- [3] M. Yuasa et al.; Journal of Insect Biotechnology and Sericology, 83, 1, 1001, 2014.
- [4] 任维民; 食用菌工厂化生产新技术问答, 中国农业出版社, 82~102, 2004.

주체106(2017)년 10월 5일 원고접수

Study on Using Silk Protein Degradation Compound instead of Rice Bran in Producing of *Pleurotus ostreatus*

Jong Sung Ju, Ri Yong Chol and Jong Kwang Myong

Silk protein degradation compound can be fully substituted for rice bran in producing *Pleurotus ostreatus* and a yield of a mushroom is the highest when 2.5% of that was added to the medium.

The waste dispositions could be reused to producing *Pleurotus ostreatus* using silk protein degradation compound and the yield is increased up to 73kg/180kg when 5.5% of the silk protein degradation compound was supplemented to the medium composed with corncob and waste dispositions at the ratio of 1:1.

Key words: *Pleurotus ostreatus*, silk protein degradation compound, rice bran