Python for Data Science

Pandas

Outline

- Introduction
- 2 Data structures
- 3 Interactions I/O
- 4 Data Manipulation
- 5 Exercices

Introduction

Introduction

- Pandas is a toolkit to manipulate data
- It based on numpy and scipy for computations (faster)
- DataFrame is the key element (like in R)
- It became quickly the data manipulation and analysis standard over data ecosystem in Python

Introduction

 You need pandas when you work with tabular or structured data

- To:
 - import and clean data
 - explore data
 - process and prepare data
 - and analyse

Introduction: key features

- Fast and easy API to I/O in different formats
- Working with missing records
- Merging / joining (concat, join)
- Grouping
- Reshaping
- Powerful time series manipulation

2 Data structures: import

```
import pandas as pd
import numpy as np
```

- The pandas import is always simple as this
- We import np to have access to all numpy methods

```
s = pd.Series([0.2, 0.4, 0.8, 1.6])
s.index
# returns: Int64Index([0, 1, 2, 3], dtype="int64")
s.values
# returns: array([ 0.2, 0.4, 0.8, 1.6 ])
s[0] # to access data
s2 = pd.Series([0.2, 0.4, 0.8, 1.6], index=['a', 'c', 'b', 'd'])
```

- A Series is a one-dimensional array-like object containing an array of data
- We can access to values and indexes
- And so the data is indexed inside and can be accessible with: s [0]
- You can also create your own index => Series can be created from dictionaries

```
agedata = {"francois": 51, "angela": 51, "barack": 55}

s3 = pd.Series(agedata) # create from dict

s3[s3 > 52] # filtering

s3 * 2 # scalar multiplication
s3.mean()
s3.std() # standard deviation
s3.max()
s3.abs() # transform all values to absolute

np.exp(s3) # exponential

"angela" in s3 # boolean to find if a key is in

s3[["angela", "barack"]] # get several values
```

- Series can be created from dictionaries (keys will be sorted)
- On Series we can do filtering, scalar multiplication or math functions applying
- Determine if an index is in the series with in

```
agedata = {"francois": 51, "angela": 51, "barack": 55}
presidents = ["barack", "francois", "angela", "georges"]
                                                                   In [20]:
s4 = pd.Series(agedata, index=presidents)
                                                                   s4
                                                                   Out[20]:
# same
                                                                   barack
                                                                            55
pd.isnull(s4)
                                        In [25]:
                                                                   francois
                                                                            51
s4.isnull()
                                                                   angela
                                                                            51
                                         s3 + s4
                                                                   georges
                                                                           NaN
                                                                   dtype: float64
                                        Out[25]:
pd.notnull(s4)
                                                  102
                                        angela
                                        barack
                                                  110
                                        francois
                                                  102
s3 + s4
                                        georges
                                                  NaN
                                        dtype: float64
```

- NaN (Not a Number) is the null element in a Series object
- isnull and notnull returns if elements are nulls
- We can add 2 Series

```
s4.name = "presidents_ages"
s4.index.name = "name"

s4.index = ["Lula", "Cameron", "Renzi", "Putin"]
```

- An index can have a name
- Like a Series
- We can change the index afterwards

2 Data structures: DataFrame

```
data = {
     "city": ["Paris", "London", "Berlin"],
     "density": [3550, 5100, 3750],
     "area": [2723, 1623, 984],
     "population": [9645000, 8278000, 3675000],
                                                            In [55]:
df = pd.DataFrame(data)
                                                            Out[55]:
                                                              area city
                                                                      density population
                                                            0 2723 Paris
                                                                      3550
                                                                           9645000
                                                            1 | 1623 | London | 5100
                                                                           8278000
                                                            2 984
                                                                 Berlin
                                                                      3750
                                                                           3675000
```

- A dataframe is a tabular data structure, containing an ordered collection of columns, each of which can be a different value type (numeric, boolean, string, etc.)
- DataFrame has both rows and columns index

2 Data structures: DataFrame

```
columns = ["city", "area", "population", "density"]
df = pd.DataFrame(data, columns=columns)

df["area"]
df.area
# returns a Series object of the areas in the df

df.dtypes # to get the types of columns

df.info()
df.describe() # give stats on the df

df.values # numpy.ndarray
df.index

df = df.set_index("city")
```

- Columns can be specified
- We get a Series if we index a DataFrame

2 Data structures: DataFrame

```
df["population"] / df["area"]

df["real_density"] = df["population"] / df["area"]

df.ix["Paris"] # to get the row with index "Paris"

df.ix[["London", "Berlin"]]

df[df["real_density"] < 5000] # to filter by density

df.sort_index(by="real_density", ascending=True) # to sort</pre>
```

- Operations between columns are possible
- We can add new columns easily
- If we set index with ix[] rows are accessible

Data structures: DataFrame

Selecting the data

```
df["area"] # get the column
df.ix["Paris"] # get the row

# multiple columns
df[["area", "population"]]

# loc examples
df.loc["Paris", "area"] # will return the exact value
df.loc[df["density"] < 5000, ["population", "area"]]

# iloc example
df.iloc[1, 2]</pre>
```

- Be careful when getting column or row
- For advanced indexing we have:
 - loc: selecting by label
 - iloc: selecting by position

Data structures: DataFrame

Assigning the data

```
df.iloc[1, 2] = 10
df.iloc[1, :] = 10

df[df["density"] == 10] = 6000
```

• After selecting (with all different ways) the data we can assign them

Data structures: DataFrame

Creating and dropping columns

```
# creating and dropping columns

# create from python list or pandas series
df['new_column'] = [1,2,3]

# create as a transformation of other columns
df['density_diff'] = df['density'] - df["real_density"]

# drop columns and rows
df.drop(['density_diff'], axis=1, inplace=True)
df.drop(['London'], axis=0, inplace=True)
```

3 Interactions I/O

Read the data: text file

```
(comma as default delimiter)
df = pd.read csv("population.csv")
                                                                  load delimited data from a file, URL, of file-like object ('\t' as
                                                         read table
                                                                             default delimiter)
                                                          read fwf
                                                                         Read data in fixed-width column
# with parameters
                                                        read clipboard
                                                                          Read data from the clipboard
df1 = pd.read csv(filename,
     sep=",",
     header=None, # Row number to use as the column names
     names=[], # List of column names to use
     index col=[], # Column to use as the row labels of the DataFrame
     na values=[], # Additional strings to recognize as NA/NaN
```

read csv

- read_csv is the most useful function to read the data (because the data is often used as csv format)
- we can specified a lot of parameters to read_*

load delimited data from a file, URL, of file-like object

3 Interactions I/O

Read the data: database

```
import sqlite3
connexion = sqlite3.connect(':memory:')

df = pd.io.sql.read_frame("SELECT * FROM table", connexion)
```

• We can do the same with a MySQL python connector

3 Interactions I/O

Write the data

```
df.to_csv("output/population_out.csv", index=False)
```

• to_csv is like read_csv and has the same parameters

Data Manipulation

Sorting and manipulating index

4 Data Manipulation

Join

joining df on index

	Α	В
K0	A 0	B0
K1	A1	B1
K2	A2	B2

	C	D
K0	C0	D0
K2	C2	D2
K3	C3	D3

	Α	В	С	D
K0	A0	B0	C0	D0
K1	A1	B1	NaN	NaN
K2	A2	B2	C2	D2

Data Manipulation

Join

joining df on a column

```
left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'key': ['K0', 'K1', 'K0', 'K1']})
```

```
right = pd.DataFrame({'C': ['C0', 'C1'], 'D': ['D0', 'D1']}, index=['K0', 'K1'])
```

result = left.join(right, on='key', how='inner')
default join is left

Result

Α	В	key	С	D					
A0	В0	K0	co	D0					
Al	B1	кі	CI	D1					
A2	B2	KO	œ	D0					
A3	В3	K1	CI	D1					
	A0 A1 A2	A0 B0 A1 B1 A2 B2	A0 B0 K0 A1 B1 K1 A2 B2 K0	A0 B0 K0 C0 A1 B1 K1 C1 A2 B2 K0 C0					

4 Data Manipulation Merge

joining df with multiple columns

```
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'], 'key2': ['K0', 'K1', 'K0', 'K1'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']})
```

```
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'], 'key2': ['K0', 'K0', 'K0', 'K0'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']})
```

result = pd.merge(left, right, on=['key1', 'key2'])

	left						
	Α	В	key1	key2			
0	A0	В0	KO	КО			
1	Al	B1	KO	K1			
2	A2	B2	K1	КО			
3	А3	В3	K2	K1			

	right						
	С	D	key1	key2			
0	00	D0	KO	КО			
1	C1	Dl	K1	KO			
2	(2	D2	кі	KO			
3	C3	D3	K2	KO			

Result

	A	В	keyl	key2	C	D
0	A0	В0	KD	K0	co	D0
1	A2	B2	K1	К0	Cl	D1
2	A2	B2	K1	K0	C2	D2

Data Manipulation

Concat

concatenating df

```
df2 = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'], 'key2': ['K0', 'K1', 'K0', 'K1'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']})
```

df1 = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'], 'key2': ['K0', 'K0', 'K0', 'K0'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']})

new_df1 = pd.concat([df1, df2], axis=0)

new_df2 = pd.concat([df1, df2], axis=1)

right

	C	D	key1	key2
0	co	D0	КО	KO
1	Cl	D1	ΚI	KO
2	(2	D2	K1	KO
3	СЗ	D3	K2	KO

new_df1

	A	В	С	D	key1	key2
0	NaN	NaN	CO	D0	K0	K0
1	NaN	NaN	C1	D1	K1	K0
2	NaN	NaN	C2	D2	K1	K0
3	NaN	NaN	СЗ	D3	K2	K0
0	A0	B0	NaN	NaN	K0	K0
1	A1	B1	NaN	NaN	K0	K1
2	A2	B2	NaN	NaN	K1	K0
3	A3	B3	NaN	NaN	K2	K1

new df2

	С	D	key1	key2	A	В	key1	key2	
0	C0	D0	K0	K0	A0	B0	K0	K0	
1	C1	D1	K1	K0	A1	B1	K0	K1	
2	C2	D2	K1	K0	A2	B2	K1	K0	
3	C3	D3	K2	K0	A3	ВЗ	K2	K1	

Data Manipulation

Aggregations

aggregate df

population = pd.read_csv('population.csv')
population.groupby('Country').mean()

population.groupby('Country').max()

population.groupby('Country').first()

population.groupby('Country').count()

	Population	Land area	Density
Country			
Argentina	11200000.0	2266.0	4950.000000
Australia	2724000.0	1790.0	1516.666667
Austria	1550000.0	453.0	3400.000000
Azerbaijan	2100000.0	544.0	3850.000000
Belgium	1570000.0	712.0	2200.000000

	City / Urban area	Population	Land area	Density
Country				
Argentina	Buenos Aires	11200000	2266	4950
Australia	Sydney	3502000	2080	2100
Austria	Vienna	1550000	453	3400
Azerbaijan	Baku/Sumqayit	2100000	544	3850
Belgium	Brussels	1570000	712	2200

	City / Urban area	Population	Land area	Density
Country				
Argentina	Buenos Aires	11200000	2266	4950
Australia	Sydney	3502000	1687	2100
Austria	Vienna	1550000	453	3400
Azerbaijan	Baku/Sumqayit	2100000	544	3850
Belgium	Brussels	1570000	712	2200

	City / Urban area	Population	Land area	Density
Country				
Argentina	1	1	1	1
Australia	3	3	3	3
Austria	1	1	1	1
Azerbaijan	1	1	1	1
Belgium	1	1	1	1

4 Data Manipulation A simple plot

%matplotlib inline

```
# a quick viz ...
```

pop_series = population.set_index('City / Urban Area')['Population'].copy()
we must use copy() otherwise the columns is a view (reference)

pop_series.sort(inplace=True, ascending=False)
pop_series.head().plot(kind='bar')

4 Data Manipulation

```
# simple operations are executed directly on columns:

# population in millions
population['Population'] / 1000000

# concatenation of country and city
'Country: ' + population['country'] + ', City:' + population['City / Urban area']

# but some operations need to be executed on elements:

# convert column values to lowercase
population['country'].lower() # doesn't work
population['country'].apply(lambda x: x.lower())

# include condition in the transformation: if population is under 3 million replace value with '<3M'
'<3M' if population['Population'] < 3000000 else pass # doesn't work
population['Population'].apply(lambda x: '<3M' if x < 3000000 else x)
```

4 Data Manipulation

Other useful operations

```
population = pd.read_csv('population.csv')
# return unique values in column
population.Country.unique()
# return counts of unique values in column
population.Country.value counts()
population.rename(columns={'Country': 'country'}, inplace=True)
# return shape in format: (num rows, num cols)
population.shape
# transpose dataframe
population.T
```

5 Exercise 1

World population:

- 1. Calculate density_estimation from Population (hint: population / area)
- 2. Calculate error (substract density_estimation from real density)
- 3. Calculate **proportional_error** absolute error divided by real density
- 4. Sort dataframe by proportional_error and find in which city the **estimation is the worst** (highest proportional error)

5 Exercise 2

Movie Ratings:

Download the file http://files.grouplens.org/datasets/movielens/ml-1m.zip and save it in the data/ folder

- 1. Open data/ml-1m.zip and extract the data files users.dat, ratings.dat, movies.dat
- 2. **Load** files in Pandas (hint: you need to set the correct delimiter!).

Use the column names:

- users.dat: user id, gender, age, occupation code, zip
- ratings.dat: user id, movie id, rating, timestamp
- movies.dat: movie id, title, genre
- 3. **Join** the files to get a single table with all the data
- 4. The 5 movies with the most number of ratings
- 5. Create a list called active_titles that is made up of movies each having at least 250 ratings
- 6. For the subset of movies in the active_titles list compute the following:
 - a. The 3 movies with the highest average rating for females. Do the same for males.
 - b. The **10 movies men liked much more than women** and the 10 movies women liked more than men (use the difference in average ratings and sort ascending and descending).
 - c. The 5 movies that had the **highest standard deviation** in rating.

Thanks a lot!

kkarp@equancy.com

