## Университет ИТМО

# Лабораторная работа №2 по дисциплине «Тестирование программного обеспечения» Вариант 618

Выполнила: Студента группы Р3410 Нгу Фыонг Ань Преподаватель: Исаев Илья Владимирович

# 1. Задание

Провести интеграционное тестирование программы, осуществляющей вычисление системы функций (в соответствии с вариантом).

#### Вариант 650

$$\begin{cases} \left( \left( \left( \left( \left( \left( \left( \sec(x)^2 \right) + \csc(x) \right) + \cos(x) \right) \cdot \cos(x) \right)^2 \right) & \text{if } x \leq 0 \\ \left( \frac{\frac{\left( (\log_5(x) - \log_3(x)) - \log_3(x) \right)^2}{\ln(x)^3}}{\log_5(x)} \right) & \text{if } x > 0 \\ x <= 0 : \left( \left( \left( \left( (\sec(x) \land 2) + \csc(x) \right) + \cos(x) \right) \land \cos(x) \right) \land 2 \right) \\ x > 0 : \left( \left( \left( \left( (\log_5(x) \land 2) + \csc(x) \right) + \cos(x) \right) \land 2 \right) / \left( \ln(x) \land 3 \right) \right) / \log_5(x) \right) \end{cases}$$



# 2. Анализ эквивалентности

# 1. TrigoFunc(x) for x<=0



Периодическая функция с периодом 2рі. Функция состоит из 4-ех частей, каждая часть которой уходит в бесконечность.

Для тестирования были проверены все граничные точки и точки в каждом классе эквивалентности и проверена периодичность функций.

### 2.LogarFunc(x) for x>0



Функция состоит из 2-ех частей: первая часть уходит из 0 в бесконечность при х из 0 в 1, вторая часть уходит из бесконечность в асимптотику 0. Для второй части мы проведем тест по 2 частям: х принадлежит диапазону (1; 4), потому что на этом интервале значение функции сильно колеблется, поэтому его нужно тестировать с небольшим шагом, а х принадлежит (4; 100) с большим шагом.

Для тестирования были проверены все граничные точки и точки в каждом классе эквивалентности.

#### 3. Basic function tests

#### 1. Sin(x)







#### 3. Sec(x)



#### 4. Csc(x)



Периодическая функция  $\sin(x)$ ,  $\cos(x)$ ,  $\sec(x)$ ,  $\csc(c)$  с периодом 2рі. Для тестирования были проверены все граничные точки и точки в каждом классе эквивалентности и проверена периодичность функций.

5. Ln(x),  $log_3(x)$ ,  $log_5(x)$ 



Для ln(x),  $log_3(x)$ ,  $log_5(x)$  мы проведем тест по 2 частям: х принадлежит диапазону (1; 5), потому что на этом интервале значение функции сильно колеблется, поэтому его нужно тестировать с небольшим шагом, а х принадлежит (5; 100) с большим шагом. Для тестирования были проверены все граничные точки и точки в каждом классе эквивалентности.

# 3. Структура кода



# 4. Исходный код

https://github.com/phanydi/TPO/tree/master/test2/src

# 5. CSV файл

| X     | Value    | sin(x)   | cos(x)   | sec(x)   | csc(x)   | ln(x) | $log_3(x)$ | $log_5(x)$ |
|-------|----------|----------|----------|----------|----------|-------|------------|------------|
| -10   | 4.12132  | 0.544021 | -0.83907 | -1.19179 | 1.838164 |       |            |            |
| -9.99 | 4.193141 | 0.535603 | -0.84447 | -1.18418 | 1.867053 |       |            |            |
| -9.98 | 4.271361 | 0.527132 | -0.84978 | -1.17677 | 1.897058 |       |            |            |
| -9.97 | 4.356387 | 0.518608 | -0.85501 | -1.16957 | 1.928239 |       |            |            |
| -9.96 | 4.448668 | 0.510032 | -0.86016 | -1.16258 | 1.960661 |       |            |            |
| -9.95 | 4.548701 | 0.501405 | -0.86521 | -1.15579 | 1.994395 |       |            |            |
| -9.94 | 4.657033 | 0.492728 | -0.87018 | -1.14918 | 2.029517 |       |            |            |
| -9.93 | 4.774271 | 0.484002 | -0.87507 | -1.14277 | 2.066108 |       |            |            |
| -9.92 | 4.901086 | 0.475227 | -0.87986 | -1.13654 | 2.104257 |       |            |            |
| -9 91 | 5 038224 | 0.466405 | -0 88457 | -1 13049 | 2 14406  |       |            |            |

# 6. Графики функций, полученные из экспериментальных данных





# 7. Ход работы

При тестировании были написаны тесты для проверки значений во всех классах эквивалентности, разобраны значения в граничных точках, точках экстремумов, разрывов первого и второго родов.

Тестирование проходило в 3 уровней: на первом уровне производилась проверка функции f1(x) и f2(x). На втором уровне заглушки устанавливались на все тригонометрические и логарифмические функции. На третьем уровне - на "базовые" функции sin, ln.

По полученным результатам были построены графики.

# 8. Вывод

В ходе выполнения лабораторной работы было проведено и изучено интеграционное тестирование функции, были изучены основные принципы интеграционного тестирования, при помощи которого создавались табличные заглушки в ходе выполнения лабораторной работы