Introduction to Data Science

Lecture 03; January 31st, 2013

Ernst Henle

ErnstHe@UW.edu

Skype: ernst.predixion

Agenda

- Social Interactions
 - LinkedIn (UW Data Science)
 - Homework. I encourage you to collaborate on homework assignments
 - Last week some students organized an after class social meeting
- Homework and Review
 - R
- Cleaning Data
- Methods for Cleaning
- Predixion Install; Please notify me if you haven't been able to install Predixion Insight.
- Predictive Analytics
 - Terminology
 - Supervised vs. Unsupervised
- MATLAB (GNU-Octave)
 - K-means
- AWS codes (you should have received a code for \$100.00 of AWS time)

Homework Review (R, Data Cleaning)

- Remove aberrant values
 - Coerce a character vector or a factor to a numeric vector

```
as.numeric(x) # convert a character vector
as.numeric(levels(x)[x]) # convert a factor
```

Remove the NAs:

```
v1 <- v1[complete.cases(v1)] # remove NAs from a vector
df <- df[complete.cases(df),] # remove Nas from a dataframe
```

- Remove Outliers
 - Reset values that are outside of normal distribution
 - Set to limits: Low values are set to lowest allowed value; high values are set to highest allowed value
 - Set to average
 - Set to NA
 - Remove values that are outside of set limits

IntroductionToR3.R

K-means clustering: Algorithm

- Pre-requisites
 - 1. Get points in multi-dimensional space.
 - table, matrix, rectangular dataset
 - 2. Specify the number of clusters
 - Weakest point in algorithm (makes algorithm non-deterministic)
 - 3. Get a random center for each cluster
 - Another weak point in the algorithm
- Repeat until convergence:
 - For each point, determine its closest cluster center and assign that point to that cluster
 - 2. Determine the centroid (mean) of the cluster

K-means clustering: Points

K-means clustering: Cluster Centers (Guess at Centroids)

K-means clustering: Cluster Assignments

K-means clustering: Determine Cluster Centroids

K-means clustering: Converged

Converged in 3 iterations. Cluster #1 has 25 points; Cluster #2 has 20 points; Cluster #3 has 38 points;

GNU-Octave (1)

- Assignments
 - a = 17; % simple assignment of a scalar
 - a % without the semicolon, the result appears in the console
 - a = [11, 19, 23]; % create a vector using[]
 - a
 - a(2) % index using ()
 - a = 'Hello World'; % assignment of characters
 - a % simplest Hello World
 - a(7:9) % 'Hello World' is a character array
 - [a(7:9) a(11)]
- In Octave all variables are matrices
 - a = 19;
 - size(a)
 - a
 - a(3,2) = 11; %
 - a'

GNU-Octave (2)

- Create a 1D matrix (aka vector)
 - x = -3:0.1,3;
 - $y = \exp(-x.*x);$
 - plot(x, y)
- Some common operator symbols are for matrix algebra
 - '*' matrix multiplication; Use ".*" for element-by-element multiplication
 - '^' matrix power; Use".^" for element-by-element power
 - '/' matrix right division; Use "./" for element-by-element division

Predictive Analytics

- Predictive Analytics (Police and Amazon.com)
 - http://www.youtube.com/watch?v=brGfLspBAj8
- Trendologist L. Vaughan Spencer on BizIntelligence.TV
 - http://www.youtube.com/watch?v=w4mISkvMZY&feature=youtu.be
- Why DFD's should be kept simple (Dilbert)
 - http://www.youtube.com/watch?v= HOUs9cF5uo
- Colbert on Predictive Analytics
 - http://www.colbertnation.com/the-colbert-reportvideos/408981/february-22-2012/the-word---surrender-to-abuyer-power

Rectangular Data (1)

- The data set has columns and rows. Each cell has a value or is null.
- A Rectangular dataset is often called a matrix, data frame, or table.
- Example usage: classifications and estimations

Rectangular Data (2)

- Columns have descriptive headers like: Name, Age, Height, Weight of each student.
- Columns are also called attributes and fields.
- All values within a column have the same data type

Rectangular Data (3)

- Rows generally do not have names. If a row has a name, then the names could be considered another column.
- Rows are also called observations or cases
- The number of rows in a category is called support.

Rectangular Data (4)

<u>ID</u>	<u>IQ</u>	<u>Parent</u> <u>Income</u>	Moral Support	<u>Gender</u>	<u>College</u> <u>Plans</u>
835	107	40,000	Yes	Female	Applied
016	99	53,000	Yes	Male	Applied
490	105	60,000	No	Male	Did not apply

Terminology and Concepts (1)

Data

- Dataset is a set of Data. A set implies a commonality. The commonality is expressed as a type or a relation.
- A data type provides structure and meaning to the data. Just like there is no such thing as un-structured data, there is no such thing as un-typed data. Data can be insufficiently typed and structured.

Rectangular Data

- Datasets are often 2D matrices, which are organized into rows and columns. The column and row order is not important.
- Columns are named with a header; A columns may be also referred to as an attribute or field. The number of columns is often called the dimensionality of the data.
- Rows are not named. A rows is often referred to as a case or observation.
 Number of rows in a category is called support.

Data dimensionality

- A data frame or a table can be considered a sparse multi-dimensional matrix
- The dimensionality for un-supervised learning is #columns
- The dimensionality for supervised learning is #columns 1 because one column represents the value and not the dimension. This structure is very similar to a star schema

Terminology and Concepts (2)

- Algorithm
 - Numerical recipe; A procedure; Set of instructions;
- Hypothesis
 - A statement. Predicts an outcome (not always correctly). An untested guess.
- Theory
 - A theory is a hypothesis that has been tested and verified. A theory correctly accounts for the available observations.
- Model
 - A hypothesis that explains some observations. A theory based on a subset of data

Terminology and Concepts (3)

- Predictive Analytics (Machine Learning)
 - Supervised Learning: The model needs to be trained. In other words, you have to tell the machine the results in a training set. Then, the machine will learn apply the same pattern to data that do not contain the results.
 - Classification
 - Estimation
 - Unsupervised Learning: The model does not need to be trained.
 In other words, you don't have to tell the machine the results
 - Clustering
 - Association
 - Market-basket analysis
 - Anomaly detection

Assignment

- 1. If you did not do this last week then explain:
 - Why is normalization important in K-means clustering? Provide an example that shows how non-normalized data will lead to errors.
 - How do you encode categorical data in a K-means clustering? E.g. consider an attribute with 2 categories like "Female" and "Male". Consider an attribute with 4 categories like "Bellevue", "Capitol Hill", "Tacoma", "Sam Mateo"
 - Why is clustering un-supervised learning as opposed to supervised learning?
- 2. Octave: Add code to simpleKMeans that normalizes the input by range (min max)
 - Normalization by range works like this:

(x - min(x))/(max(x) - min(x))

- Add similar code to simpleKMeans.m to normalize the points
- Normalization is based on points but is applied to both points and centroids. Apply the normalization to the centroids too.
- When the clustering is complete, you have cluster centroids that are in normalized space. Add code to the end of simpleKMeans.m that will de-normalize these centroids to their original space. (Undo the normalization)
- 3. Figure out how to create a Windows 2008 R2 virtual machine with SQL Server 2008 R2
 - http://aws.amazon.com/windows/
 - http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Welcome.html
 - http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-wg.pdf
 - http://www.youtube.com/watch?v=uNuhyumosOA1
 - http://www.youtube.com/watch?v=PpWwruWPInY
 - http://www.youtube.com/watch?v=3xEge7Sfzfg
 - https://aws.amazon.com/amis?platform=Windows&selection=platform
- 4. Submit the completed assignment in Catalyst by Sunday evening.

Preview

- Relational Algebra and Calculus
- Relational Model and Associate Model
- http://sentences.com/docs/amd.pdf
- http://en.wikipedia.org/wiki/Relational model
- http://www.youtube.com/watch?v=NvrpuBAMddw