

Total Pass + Polijúnior:

Construção de um modelo de Machine Learning para a previsão de Churn Rate

Entregas da Poli Júnior

- 'RelatorioPoliJunior.pdf'
- 'Clusterizacao.ipynb
- 'AnaliseClusterizacao.ipynb'
- 'Tabelas Poli Júnior'
- 'Regressor.ipynb'
- 'AnaliseRegressor.ipynb'

https://drive.google.com/drive/folder s/1UYzDJZRai-5fr6G8USkP4EDk0 nGGjafn?usp=sharing

Sun	nário	1
1 Int	rodução	3
1.1	Entregas do Projeto	3
1.2	Bases Utilizadas	3
2 En	genharia de Features	4
2.1		4
	2.1.1 Age	4
	2.1.2 Tendência de Utilização	4
	2.1.3 Status da Academia	5
	2.1.4 Modalidade Preferida	5
	2.1.5 Número de Academias Distintas	6
	2.1.6 Usos por Semana	6
	2.1.7 Horário Mais Frequente	6
2.2		6
	2.2.1 Payment Source	6
	2.2.2 Type Mapped	6
	2.2.3 Gender Mapped	7
	2.2.4 Binário Fee	7
	2.2.5 Fee	7
	2.2.6 Num Gyms Within Radius	7
	2.2.7 Num Gyms Near Company	7
	2.2.8 Distância Cliente Empresa	8
3 Cl	usterização	9
3.1	Processamento dos Dados	9
3.2	K-Means	11
3.3	Análise dos Clusters	13
	3.3.1 Conclusão	19
4 Re	gressor de Churn	20
4.1	Introdução Teórica	20
4.2	Pipeline Geral	22
4.3		24
4.4	Modelo Clusterizado	27
4.5	Análise dos Modelos	27
5 Co	nclusão	33

Aprofundamento no contexto do projeto

Análise Exploratória da Base de Clientes

Determinação de Modelos e Pipeline Geral

Teste de modelos e tuning de algoritmos

Aprofundamento no contexto do projeto

Aprofundamento no contexto do projeto

Análise Exploratória da Base de Clientes

Determinação de 3. Modelos e Pipeline Geral

Teste de modelos e tuning de algoritmos

Análise exploratória da base de clientes e tratamento de dados

```
df_subscriptions['created_at'] = pd.to_datetime(df_subscriptions['created_at'], format="%Y-%m-%dT%H:%M:%S.%fZ")
df_subscriptions['started_at'] = pd.to_datetime(df_subscriptions['started_at'], format="%Y-%m-%dT%H:%M:%S.%fZ")
df_subscriptions['suspended_at'] = pd.to_datetime(df_subscriptions['suspended_at'], format="%Y-%m-%dT%H:%M:%S.%fZ")
df_subscriptions['canceled_at'] = pd.to_datetime(df_subscriptions['canceled_at'], format="%Y-%m-%dT%H:%M:%S.%fZ")
df_subscriptions
```


Engenharia de Features

- 1°- Determinação das métricas mais importantes e úteis para a realização do projeto;
- 2°- Criação e refinamento das features;
 - Tendência de utilização;
 - Distância dentro de um raio de 5km entre endereço do cliente e academia.
- 3°- Funcionalização para o uso no regressor.

Aprofundamento no contexto do projeto

Análise Exploratória da Base de Clientes

Determinação de Modelos e Pipeline Geral

Teste de modelos e tuning de algoritmos

Clusterização

Análise das Componentes Principais (PCA)

Determinação do Número Ideal de Clusters

Projeção T-SNE para a Clusterização

Balanceamento da Clusterização

Introdução ao Cut Off Date do Regressor

Introdução ao Cut Off Date do Regressor

Pipeline Geral do Regressor

Aprofundamento no contexto do projeto

Análise Exploratória da Base de Clientes

Determinação de Modelos e Pipeline Geral

Teste de modelos e tuning de algoritmos

Teste de modelos e tuning de algoritmos

 $X_{scaled} = (X - X_{min})/(X_{min} - X_{max})$

$$X_{scaled} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Acurácia: 0.6987160346372051 [[591 616] [393 1749]]							
	precision	recall	f1-score	support			
0.0	0.60	0.49	0.54	1207			
1.0	0.74	0.82	0.78	2142			
accuracy			0.70	3349			
macro avg	0.67	0.65	0.66	3349			
weighted ave	0.69	0.70	0.69	3349			

======================================							
[[862							
[788 13	[788 1354]]						
Relatório	o de Cl	assificação:					
		precision	recall	f1-score	support		
	0.0	0.52	0.71	0.60	1207		
	1.0	0.80	0.63	0.71	2142		
accui	racy			0.66	3349		
macro	avg	0.66	0.67	0.65	3349		
weighted	avg	0.70	0.66	0.67	3349		

======================================							
Acurácia: 0.6906539265452374							
Matriz de	Matriz de Confusão:						
[[668	539]						
[497 16	[497 1645]]						
Relatório de Classificação:							
		precision	recall	f1-score	support		
	0.0	0.57	0.55	0.56	1207		
	1.0	0.75	0.77	0.76	2142		
accur	acy			0.69	3349		
macro	avg	0.66	0.66	0.66	3349		
weighted	avg	0.69	0.69	0.69	3349		

======================================						
594 1	[594 1548]]					
Relatório	Relatório de Classificação:					
		precision	recall	f1-score	support	
	0.0	0.55	0.61	0.58	1207	
	1.0	0.76	0.72	0.74	2142	
accur	racy			0.68	3349	
macro	avg	0.66	0.66	0.66	3349	
weighted	avg	0.69	0.68	0.68	3349	

Aprofundamento no contexto do projeto

Análise Exploratória da Base de Clientes

Determinação de Modelos e Pipeline Geral

Teste de modelos e tuning de algoritmos

Determinação de Métricas de Avaliação

- Verdadeiros positivos: Clientes que cancelaram e o modelo previu cancelamento. Nessa situação, a Total Pass teria a possibilidade de evitar o cancelamento.
- Falsos positivos: Clientes que não cancelaram e o modelo previu cancelamento. Nessa situação, a Total Pass perderia capital, atuando sobre um cliente que não cancelaria.
- Verdadeiros negativos: Clientes que não cancelaram e o modelo previu não cancelamento. Nessa situação, a Total Pass não gasta capital desnecessariamente.
- Falsos negativos: Clientes que cancelaram e o modelo previu não cancelamento. Nessa situação, a Total Pass perdeu a chance de investir na retenção desses clientes.

 $recall = \dfrac{verdadeiros\ positivos}{verdadeiros\ positivos + falsos\ negativos}$ $precisao = \dfrac{verdadeiros\ positivos}{verdadeiros\ positivos + falsos\ positivos}$

Exemplo de cluster balanceado

Exemplo de cluster desbalanceado

Como definir a Porcentagem de Confiança escolhida?

1°- Custo da ação.

2°- Perda em reter um falso positivo.

3°- Tempo de duração da ação.