Are Transformers Effective for Time Series Forecasting?

Воробьев Дмитрий

<u>paper</u>

О чем статья

1) В задаче долгосрочного прогнозирования временных рядов трансформеры иногда показывают себя сильно хуже линейных моделей.

2) Ставится под сомнение способность трансформеров учитывать позиционную информацию между токенами. Позиционных эмбеддингов бывает недостаточно, когда порядок токенов очень важен.

LTSF: long-term time series forecasting

input:
$$\{X_1^t, \dots, X_C^t\}_{t=1}^L$$

output :
$$\{X_1^t, \dots, X_C^t\}_{t=L+1}^{L+T}$$

Рассматривается задача долгосрочного прогнозирования, то есть Т >> 1.

Используется DMS (direct multi step): сразу предсказываем Т точек.

He используется (почти) IMS (iterative multi step): итеративно предсказываем по одной точке.

Как применяют трансформеры к TS.

Зачем модифицировать трансформеры:

- Квадратичная сложность классического self-attention
- Тяжелый вход, не обязательно обрабатывать весь.
- Последовательное генерирование токенов способствует накоплению ошибки
- Переменная длина выхода

Figure 1. The pipeline of existing Transformer-based TSF solutions. In (a) and (b), the solid boxes are essential operations, and the dotted boxes are applied optionally. (c) and (d) are distinct for different methods [16, 18, 28, 30, 31].

Ключевые особенности трансформеров

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

- ProbSparse Self-attention Mechanism: эффективная обработка длинных последовательностей данных, снижает вычислительную нагрузку и увеличивая диапазон внимания модели. Делает возможным более широкий обзор временных данных и прогнозирование на несколько вперед.
- **Distilling Operation**: Позволяет избирательно переносить информацию между слоями и сокращать размерность данных без значительной потери информативности.

<u>Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series</u> <u>Forecasting</u>

• **Auto-correlation with decomposition**: замена полноценного self-attention блока на блок автокорреляции, который извлекает информацию опираясь на предположении о том, что временной ряд есть смесь переодических и тренда.

Ключевые особенности трансформеров

Pyraformer: Low-complexity pyramidal attention for long-range time series modeling...

• **Pyramidal attention**: несколько уровней "внимания", позволяет модели обращать внимание на короткие, средние и длинные зависимости в данных. Экономит вычисления за счет применения self-attention сразу к отрезкам ряда, а не к каждой точек по отдельности.

<u>FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series</u> <u>Forecasting</u>

- **Преобразование входных данных**: Временной ряд трансформируется из временной в частотную область с помощью FFT.
- **Frequency attention**: помогает модели акцентировать внимание на определенных частотах, которые могут быть более значимыми для выполнения прогнозирования.

Лиейные бейзлайны

Оказывается, что трансформеры довольно часто проигрывают простым линейным моделям.

Figure 2. Illustration of the basic linear model.

DLinear:

- 1) Удаление тренда
- 2) Линейный слой
- 3) Добавление тренда

NLinear:

- 1) Вычитаем предыдущее значение
- 2) Линейный слой
- 3) Кумулятивно прибавляем предыдущее значение

Данные

- 1) Electricity Transformer Temperature (ETTh1, ETTh2, ETTm1, ETTm2)
- 2) Traffic
- 3) Electricity
- 4) Weather
- 5) ILI (грипп)
- 6) Exchange-Rate

Datasets	ETTh1&ETTh2	ETTm1 &ETTm2	Traffic	Electricity	Exchange-Rate	Weather	ILI
Variates	7	7	862	321	8	21	7
Timesteps	17,420	69,680	17,544	26,304	7,588	52,696	966
Granularity	1hour	5min	1hour	1hour	1day	10min	1week

Table 1. The statistics of the nine popular datasets for the LTSF problem.

Me	thods	IMP.	Lin	ear*	NLir	near*	DLi	near*	FEDf	ormer	Autof	ormer	Info	rmer	Pyrafo	ormer*	Log	Γrans	Rep	eat*
Me	etric	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ity	96	27.40%	0.140	0.237	0.141	0.237	0.140	0.237	0.193	0.308	0.201	0.317	0.274	0.368	0.386	0.449	0.258	0.357	1.588	0.946
ric	192	23.88%	0.153	0.250	0.154	0.248	0.153	0.249	0.201	0.315	0.222	0.334	0.296	0.386	0.386	0.443	0.266	0.368	1.595	0.950
Electricity	336	21.02%	0.169	0.268	0.171	0.265	0.169	0.267	0.214	0.329	0.231	0.338	0.300	0.394	0.378	0.443	0.280	0.380	1.617	0.961
Ξ	720	17.47%	0.203	0.301	0.210	0.297	0.203	0.301	0.246	0.355	0.254	0.361	0.373	0.439	0.376	0.445	0.283	0.376	1.647	0.975
ge	96	45.27%	0.082	0.207	0.089	0.208	0.081	0.203	0.148	0.278	0.197	0.323	0.847	0.752	0.376	1.105	0.968	0.812	0.081	0.196
anî	192	42.06%	0.167	0.304	0.180	0.300	0.157	0.293	0.271	0.380	0.300	0.369	1.204	0.895	1.748	1.151	1.040	0.851	0.167	0.289
Exchange	336	33.69%	0.328	0.432	0.331	0.415	0.305	0.414	0.460	0.500	0.509	0.524	1.672	1.036	1.874	1.172	1.659	1.081	0.305	0.396
斑	720	46.19%	0.964	0.750	1.033	0.780	0.643	0.601	1.195	0.841	1.447	0.941	2.478	1.310	1.943	1.206	1.941	1.127	0.823	0.681
	96	30.15%	0.410	0.282	0.410	0.279	0.410	0.282	0.587	0.366	0.613	0.388	0.719	0.391	2.085	0.468	0.684	0.384	2.723	1.079
Traffic	192	29.96%	0.423	0.287	0.423	0.284	0.423	0.287	0.604	0.373	0.616	0.382	0.696	0.379	0.867	0.467	0.685	0.390	2.756	1.087
Ira	336	29.95%	0.436	0.295	0.435	0.290	0.436	0.296	0.621	0.383	0.622	0.337	0.777	0.420	0.869	0.469	0.734	0.408	2.791	1.095
	720	25.87%	0.466	0.315	0.464	0.307	0.466	0.315	0.626	0.382	0.660	0.408	0.864	0.472	0.881	0.473	0.717	0.396	2.811	1.097
	96	18.89%	0.176	0.236	0.182	0.232	0.176	0.237	0.217	0.296	0.266	0.336	0.300	0.384	0.896	0.556	0.458	0.490	0.259	0.254
Weather	192	21.01%	0.218	0.276	0.225	0.269	0.220	0.282	0.276	0.336	0.307	0.367	0.598	0.544	0.622	0.624	0.658	0.589	0.309	0.292
Vea	336	22.71%	0.262	0.312	0.271	0.301	0.265	0.319	0.339	0.380	0.359	0.395	0.578	0.523	0.739	0.753	0.797	0.652	0.377	0.338
>	720	19.85%	0.326	0.365	0.338	0.348	0.323	0.362	0.403	0.428	0.419	0.428	1.059	0.741	1.004	0.934	0.869	0.675	0.465	0.394
	24	47.86%	1.947	0.985	1.683	0.858	2.215	1.081	3.228	1.260	3.483	1.287	5.764	1.677	1.420	2.012	4.480	1.444	6.587	1.701
ILI	36	36.43%	2.182	1.036	1.703	0.859	1.963	0.963	2.679	1.080	3.103	1.148	4.755	1.467	7.394	2.031	4.799	1.467	7.130	1.884
	48	34.43%	2.256	1.060	1.719	0.884	2.130	1.024	2.622	1.078	2.669	1.085	4.763	1.469	7.551	2.057	4.800	1.468	6.575	1.798
	60	34.33%	2.390	1.104	1.819	0.917	2.368	1.096	2.857	1.157	2.770	1.125	5.264	1.564	7.662	2.100	5.278	1.560	5.893	1.677
-	96	0.80%	0.375	0.397	0.374	0.394	0.375	0.399	0.376	0.419	0.449	0.459	0.865	0.713	0.664	0.612	0.878	0.740	1.295	0.713
ETTh1	192	3.57%	0.418	0.429	0.408	0.415	0.405	0.416	0.420	0.448	0.500	0.482	1.008	0.792	0.790	0.681	1.037	0.824	1.325	0.733
	336	6.54%	0.479	0.476	0.429	0.427	0.439	0.443	0.459	0.465	0.521	0.496	1.107	0.809	0.891	0.738	1.238	0.932	1.323	0.744
_	720	13.04%	0.624	0.592	0.440	0.453	0.472	0.490	0.506	0.507	0.514	0.512	1.181	0.865	0.963	0.782	1.135	0.852	1.339	0.756
	96	19.94%	0.288	0.352	0.277	0.338	0.289	0.353	0.346	0.388	0.358	0.397	3.755	1.525	0.645	0.597	2.116	1.197	0.432	0.422
<u>F</u>	192	19.81%	0.377	0.413	0.344	0.381	0.383	0.418	0.429	0.439	0.456	0.452	5.602	1.931	0.788	0.683	4.315	1.635	0.534	0.473
ETTh2	336	25.93%	0.452	0.461	0.357	0.400	0.448	0.465	0.496	0.487	0.482	0.486	4.721	1.835	0.907	0.747	1.124	1.604	0.591	0.508
_	720	14.25%	0.698	0.595	0.394	0.436	0.605	0.551	0.463	0.474	0.515	0.511	3.647	1.625	0.963	0.783	3.188	1.540	0.588	0.517
_	96	21.10%	0.308	0.352	0.306	0.348	0.299	0.343	0.379	0.419	0.505	0.475	0.672	0.571	0.543	0.510	0.600	0.546	1.214	0.665
Ę	192	21.36%	0.340	0.369	0.349	0.375	0.335	0.365	0.426	0.441	0.553	0.496	0.795	0.669	0.557	0.537	0.837	0.700	1.261	0.690
ETTm1	336	17.07%	0.376	0.393	0.375	0.388	0.369	0.386	0.445	0.459	0.621	0.537	1.212	0.871	0.754	0.655	1.124	0.832	1.283	0.707
Н	720	21.73%	0.440	0.435	0.433	0.422	0.425	0.421	0.543	0.490	0.671	0.561	1.166	0.823	0.908	0.724	1.153	0.820	1.319	0.729
	96	17.73%	0.168	0.262	0.167	0.255	0.167	0.260	0.203	0.287	0.255	0.339	0.365	0.453	0.435	0.507	0.768	0.642	0.266	0.328
Ĭ,	192	17.84%	0.232	0.308	0.221	0.293	0.224	0.303	0.269	0.328	0.281	0.340	0.533	0.563	0.730	0.673	0.989	0.757	0.340	0.371
ETTm2	336	15.69%	0.320	0.373	0.274	0.327	0.281	0.342	0.325	0.366	0.339	0.372	1.363	0.887	1.201	0.845	1.334	0.872	0.412	0.410
Н	720	12.58%	0.413	0.435	0.368	0.384	0.397	0.421	0.421	0.415	0.433	0.432	3.379	1.338	3.625	1.451	3.048	1.328	0.521	0.465
_		200 1000				1997/23 - 193	500000000000000000000000000000000000000				2001 000	2702 174		200-0-6			22.15.21	1777	1	

Долгосрочное прогнозирование

Methods	FEDf	ormer	Autoformer		
Input	Close	Far	Close	Far	
Electricity	0.251	0.265	0.255	0.287	
Traffic	0.631	0.645	0.677	0.675	

Table 3. Comparison of different input sequences under the MSE metric to explore what LTSF-Transformers depend on. If the input is *Close*, we use the $96_{th}, ..., 191_{th}$ time steps as the input sequence. If the input is *Far*, we use the $0_{th}, ..., 95_{th}$ time steps. Both of them forecast the $192_{th}, ..., (192 + 720)_{th}$ time steps.

Долгосрочное прогнозирование

Figure 4. The MSE results (Y-axis) of models with different look-back window sizes (X-axis) of long-term forecasting (T=720) on the Traffic and Electricity datasets.

Трансформеры лишь переусложняют

Met	hods	Informer	AttLinear	Embed + Linear	Linear
ge	96	0.847	1.003	0.173	0.084
an	192	1.204	0.979	0.443	0.155
Exchange	336	1.672	1.498	1.288	0.301
田	720	2.478	2.102	2.026	0.763
	96	0.865	0.613	0.454	0.400
Th1	192	1.008	0.759	0.686	0.438
EŢ	336	1.107	0.921	0.821	0.479
_	720	1.181	0.902	1.051	0.515

Table 4. The MSE comparisons of gradually transforming Informer to a Linear from the left to right columns. *Att.-Linear* is a structure that replaces each attention layer with a linear layer. *Embed* + *Linear* is to drop other designs and only keeps embedding layers and a linear layer. The look-back window size is 96.

Насколько эффективно учитывается порядок.

19	Methods	Linear			FEDformer			Autoformer			Informer		
P	redict Length	Ori.	Shuf.	Half-Ex.	Ori.	Shuf.	Half-Ex.	Ori.	Shuf.	Half-Ex.	Ori.	Shuf.	Half-Ex.
ge	96	0.080	0.133	0.169	0.161	0.160	0.162	0.152	0.158	0.160	0.952	1.004	0.959
ıan	192	0.162	0.208	0.243	0.274	0.275	0.275	0.278	0.271	0.277	1.012	1.023	1.014
Exchange	336	0.286	0.320	0.345	0.439	0.439	0.439	0.435	0.430	0.435	1.177	1.181	1.177
田	720	0.806	0.819	0.836	1.122	1.122	1.122	1.113	1.113	1.113	1.198	1.210	1.196
150 3	Average Drop	N/A	27.26%	46.81%	N/A	-0.09%	0.20%	N/A	0.09%	1.12%	N/A	-0.12%	-0.18%
	96	0.395	0.824	0.431	0.376	0.753	0.405	0.455	0.838	0.458	0.974	0.971	0.971
Th1	192	0.447	0.824	0.471	0.419	0.730	0.436	0.486	0.774	0.491	1.233	1.232	1.231
ET	336	0.490	0.825	0.505	0.447	0.736	0.453	0.496	0.752	0.497	1.693	1.693	1.691
	720	0.520	0.846	0.528	0.468	0.720	0.470	0.525	0.696	0.524	2.720	2.716	2.715
	Average Drop	N/A	81.06%	4.78%	N/A	73.28%	3.44%	N/A	56.91%	0.46%	N/A	1.98%	0.18%

Table 5. The MSE comparisons of models when shuffling the raw input sequence. *Shuf.* randomly shuffles the input sequence. *Half-EX*. randomly exchanges the first half of the input sequences with the second half. Average Drop is the average performance drop under all forecasting lengths after shuffling. All results are the average test MSE of five runs.

Различные эмбеддинги

wo/Pos: without positional embeddings

wo/Temp: without timestamp embeddings

Methods	Emphaddina	Traffic						
Methods	Embedding	96	192	336	720			
	All	0.597	0.606	0.627	0.649			
FEDformer	wo/Pos.	0.587	0.604	0.621	0.626			
reprofile	wo/Temp.	0.613	0.623	0.650	0.677			
	wo/PosTemp.	0.613	0.622	0.648	0.663			
	All	0.629	0.647	0.676	0.638			
Autoformer	wo/Pos.	0.613	0.616	0.622	0.660			
Autorornier	wo/Temp.	0.681	0.665	0.908	0.769			
	wo/PosTemp.	0.672	0.811	1.133	1.300			
	All	0.719	0.696	0.777	0.864			
Informer	wo/Pos.	1.035	1.186	1.307	1.472			
mormer	wo/Temp.	0.754	0.780	0.903	1.259			
2	wo/PosTemp.	1.038	1.351	1.491	1.512			

Table 6. The MSE comparisons of different embedding strategies on Transformer-based methods with look-back window size 96 and forecasting lengths {96, 192, 336, 720}.

Размер обучающей выборки

Methods	FEDf	ormer	Autoformer		
Dataset	Ori.	Short	Ori.	Short	
96	0.587	0.568	0.613	0.594	
192	0.604	0.584	0.616	0.621	
336	0.621	0.601	0.622	0.621	
720	0.626	0.608	0.660	0.650	

Table 7. The MSE comparison of two training data sizes.

Ori: 100% of Traffic dataset
Short: 50% of Traffic dataset

Время работы

Method	MACs	Parameter	Time	Memory
DLinear	0.04G	139.7K	0.4ms	687MiB
Transformer×	4.03G	13.61M	26.8ms	6091MiB
Informer	3.93G	14.39M	49.3ms	3869MiB
Autoformer	4.41G	14.91M	164.1ms	7607MiB
Pyraformer	0.80G	241.4M*	3.4ms	7017MiB
FEDformer	4.41G	20.68M	40.5ms	4143MiB

^{- ×} is modified into the same one-step decoder, which is implemented in the source code from Autoformer.

Table 8. Comparison of practical efficiency of LTSF-Transformers under L=96 and T=720 on the Electricity. MACs are the number of multiply-accumulate operations. We use Dlinear for comparison since it has the double cost in *LTSF-Linear*. The inference time averages 5 runs.

^{- * 236.7}M parameters of Pyraformer come from its linear decoder.

Заключение

- 1) Трансформеры кажутся очень уместной архитектурой для временных рядов, однако существующие методы не позволяют извлечь из ряда достаточно много информации для эффективного прогнозирования.
- 2) Показанные результаты не говорят о том, что для временных рядов надо использовать линейные модели, они показывают, что трансформеры часто можно побить простыми архитектурами.
- 3) В анализе временных рядов позиционные эмбеддинги не работают или работают плохо.