Processos Estocásticos

Definição - Classificação

Bacharelado em Ciência da Computação

2012 - 2

Processos Estocásticos

Definição

Chamaremos de processos estocásticos a qualquer família de variáveis aleatórias X_t , com $t \in \mathbb{T}$ e sendo \mathbb{T} algum espaço de parâmetros.

Exemplo de um processo estocástico

- Considere a temperatura X de uma certa cidade ao meio dia. A temperatura X é uma v.a. e toma valores diferentes a cada dia. Para obter as estatísticas completas de X, precisamos armazenar valores de temperatura durante vários dias.
- Mas a temperatura é também função do tempo. À uma da tarde, por exemplo, a temperatura pode ter uma distribuição totalmente diferente daquela obtida para o meio dia.
- Então a v.a X é uma função do tempo.

- Para especificar uma v.a. X, repetimos um experimento várias vezes e a partir dos resultados, determinamos a sua função de probabilidade ou função densidade de probabilidade.
- Para especificar um processo estocástico X(t), fazemos a mesma coisa para cada valor de t.

- Considere a temperatura X de uma certa cidade ao meio dia. A temperatura X é uma v.a. e toma valores diferentes a cada dia. Para obter as estatísticas completas de X, precisamos armazenar valores de temperatura durante vários dias.
- Mas a temperatura é também função do tempo. À uma da tarde, por exemplo, a temperatura pode ter uma distribuição totalmente diferente daquela obtida para o meio dia.
- Então a v.a X é uma função do tempo.

- Precisamos armazenar temperaturas diárias para cada valor de t (cada hora do dia).
- Isto pode ser feito armazenando-se temperaturas a cada instante do dia.
- Este procedimento fornece uma forma de onda $X(t, \zeta_i)$ onde ζ_i indica o dia em que foi feita a medida.
- Precisamos repetir este procedimento todos os dias por um grande número de dias.

Figura: Um PE que representa a temperatura de uma cidade

Figura: Um PE que representa a temperatura de uma cidade

A coleção de todas as formas de onda possíveis é conhecida como o conjunto do processo estocástico X(t).

Figura: Um PE que representa a temperatura de uma cidade

Uma forma de onda nesta coleção é uma **função amostra** (ao invés de um ponto amostral) do processo estocástico.

Figura: Um PE que representa a temperatura de uma cidade

As amplitudes das funções amostra em algum instante $t=t_1$ são os valores que a v.a. $X(t_1)$ assume em várias tentativas.

Processos Estocásticos

Na maioria das situações reais, o espaço de parâmetros representa o tempo, mas nem sempre isto é assim.

Na aula anterior vimos um exemplo onde o parâmetro representa o número de produtos montados.

Um processo estocástico pode ser classificado segundo a natureza do conjunto $\mathbb{T}.$

Processos estocásticos a tempo discreto

Definição

Quando o espaço de parâmetros \mathbb{T} é um conjunto enumerável (ou discreto) diremos que o processo estocástico correspondente é a tempo discreto .

Processos estocásticos a tempo discreto

Os produtos finais de uma cadeia de montagem, após uma supervisão à que são submetidos, podem ser considerados defeituosos ou não.

- Se o n-ésimo produto não tiver defeito, fazemos $X_n = 1$, caso contrário $X_n = 0$.
- Neste exemplo, o parâmetro representa o número de produtos montados, logo T é um conjunto enumerável.

Processos estocásticos a tempo contínuo

Definição

Quando o espaço de parâmetros \mathbb{T} for um intervalo o processo estocástico será chamado a tempo contínuo .

Processos estocásticos a tempo contínuo

Número de chegadas a uma estação de serviço.

Trajetórias

Dependendo do espaço de parâmetros, um processo estocástico pode ter vários tipos de trajetórias.

Trajetórias

Figura: Trajetórias

Estados e espaços de estados

Definição

Os valores que tomam as variáveis do processo serão chamados de estados e o conjunto E destes valores será chamado de espaço de estados.

Definição

Os processos estocásticos podem ter espaços de estados discretos ou espaço de estados contínuos em correspondência com a natureza do conjunto E.

Classificação dos processos estocásticos

	E ENUMERÁVEL	E NÃO ENUMERÁVEL
T ENUMERÁVEL	Tempo discreto com espaço de estados discreto	Tempo discreto com espaço de estados contínuo
T INTERVALO	Tempo contínuo com espaço de estados discreto	Tempo contínuo com espaço de estados contínuo

Tempo discreto com espaço de estados discreto

Os produtos finais de uma cadeia de montagem, após uma supervisão à que são submetidos, podem ser considerados defeituosos ou não.

- Se o n-ésimo produto não tiver defeito, fazemos $X_n = 1$, caso contrário $X_n = 0$.
- Neste exemplo, o parâmetro representa o número de produtos montados, logo T é um conjunto enumerável.

Outro exemplo:

- X_n = número de caras ocorridas no n-ésimo lançamento de uma moeda.
- $\mathbb{T} = \mathbb{N} \ e \ E = \{0, 1\}$

Tempo discreto com espaço de estados contínuo

- Suponha que uma seguradora recebe c unidades monetárias (u.m.) pelo total dos prêmios que ela cobra dos segurados dentro de uma determinada carteira por período de tempo (mês, semestre).
- Assuma também que a seguradora coleta os prêmios regularmente e que as indenizações são pagas quando os sinistros ocorrem.
- Desconsideramos eventuais despesas administrativas, ganhos ou perdas por investimentos, etc.
- Então a reserva desta seguradora será afetada somente pela cobrança dos prêmios ou por pagamentos de indenizações.

Tempo discreto com espaço de estados contínuo

- O lucro da companhia no n-ésimo período será c Z_n u.m., sendo Z_n o valor total de indenizações pago pela seguradora nesse período.
- Se chamarmos de L_n ao lucro da seguradora desde que essa carteira começa a operar até o final do n-ésimo período, teremos que

$$L_n = c * n - \sum_{j=1}^n Z_j \tag{1}$$

• L_n é uma família de variáveis aleatórias onde $n \in \mathbb{N}$ e cujo espaço de estados é o conjunto \mathbb{R} .

Tempo discreto com espaço de estados contínuo

Outro exemplo:

- X_n = tempo de duração do n-ésimo apagão ocorrido em uma determinada cidade contados a partir de 1º de janeiro de 2000.
- $\mathbb{T} = \mathbb{N} \ \mathbf{e} \ E = \mathbb{R}^+$

Tempo contínuo com espaço de estados discreto

- X_t = número de mortes ocorridas em um hospital, desde a sua inauguração até o instante de tempo t.
- \bullet $\mathbb{T} = \mathbb{N}^*$ e $E = \mathbb{R}^+$

Tempo contínuo com espaço de estados contínuo

- X_t = nível das águas do Rio Amazonas no instante de tempo t num dado local pré-fixado.
- $\mathbb{T} = \mathbb{R}^+$ e $E = \mathbb{R}^+$

Uma definição mais formal

Definição

Seja $\mathbb T$ um conjunto de índices e $E \subset \mathbb R$. Um processo estocástico indexado por $\mathbb T$ com espaço de estados E é uma família de variáveis aleatórias $X = \{X_t | t \in \mathbb T\}$ definidas num espaço amostral Ω e tomando valores no conjunto E.

Uma definição mais formal

Definição

Podemos pensar um processo estocástico X como uma função:

$$egin{array}{cccc} m{X} : \mathbb{T} imes \Omega & \longmapsto & \mathbf{E} \ (m{t}, \omega) & \mapsto & m{X}(m{t}, \omega) \end{array}$$

Fixando um evento $\omega \in \Omega$, obtemos uma coleção de valores $\{X_t(\omega)|\ t \in \mathbb{T}\}$ que é chamada de **trajetória** deste processo.

Principais processos estocásticos

Processo de Poisson

Usualmente associa-se o processo de Poisson a um processo de contagem $\{N_t, t \geq 0\}$ em que N_t representa o número de ocorrências de um acontecimento num intervalo de tempo (0, t], sendo que os acontecimentos ocorrem de forma independente uns dos outros.

Figura: Simon Poisson

Principais processos estocásticos

Processo de Markov

O processo de Markov é um processo estocástico onde somente o valor atual da variável é relevante para predizer a evolução futura do processo, isto é, dado o presente do processo, o futuro é independente do seu passado.

Figura: Andrei Andreyevich Markov