Language Understanding Systems

Statistical Language Modeling

Evgeny A. Stepanov

SISL, DISI, UniTN stepanov@disi.unitn.it

Outline

- 1 Corpora and Counting
 - Lexicon
 - Word Counting
- 2 N-grams and N-gram Probabilities
 - N-grams
 - N-gram Probabilities
- 3 Language Models
 - OOV
 - Smoothing
 - Perplexity

Section 1

Corpora and Counting

Corpus

Data Set

- utterance-per-line
- tokenized

Ex: Create a lexicon file

Input

Text file

Output

List of word

Ex: Create a lexicon file

Input

Text file

Output

List of word

Algorithm

- ① Tokenize as token per line (tr, sed)
- 2 Sort (sort)
- 3 Remove duplicates (uniq)

Ex: Create a lexicon file

Input

Text file

Output

List of word

Algorithm

- ① Tokenize as token per line (tr, sed)
- 2 Sort (sort)
- 3 Remove duplicates (uniq)

cat train.txt | tr ', ', '\n' | sort | uniq

Input

Text file

Output

List of word with frequency counts

Input

Text file

Output

List of word with frequency counts

Algorithm

- ① Tokenize as token per line (tr, sed)
- 2 Sort (sort)
- 3 Count occurrences of each token (uniq -c)

Input

Text file

Output

List of word with frequency counts

Algorithm

- ① Tokenize as token per line (tr, sed)
- 2 Sort (sort)
- 3 Count occurrences of each token (uniq -c)

```
cat train.txt | tr ', '\n' | sort | uniq -c
```


Case insensitive count

Cut-off

- frequency:
 - most frequent
 - rare

Stop words

- Compare the list to the most frequent words
- Remove stop words

english.stop.txt

Section 2

N-grams and N-gram Probabilities

N-grams

N-gram

n-gram is a contiguous sequence of \boldsymbol{n} items from a given sequence of text or speech

- cat
- the cat is fat

Unit	1-gram	2-gram	3-gram
	unigram	bigram	trigram
Markov Order	0	1	2
character	c, a, t	ca, at	cat
word	the, cat, is, fat	the cat, cat is,	the cat is,

Ex: Counting Bigrams

Ex: Counting Bigrams

Algorithm

- 1 Tokenize as token per line
- ② Print $word_i$ and $word_{i+1}$ side by side
- 3 Count

Ex: Counting Bigrams

Algorithm

- 1 Tokenize as token per line
- ② Print $word_i$ and $word_{i+1}$ side by side
- 3 Count

Solution

```
cat $data | tr ' ' '\n' > word1
tail -n +2 word1 > word2
paste word1 word2 > bigrams
cat bigrams | sort | uniq -c | sort -gr
```


Ex: Counting Trigrams

Extend bigram counting to trigrams.

N-gram Probabilities

Probability of a Sequence: Chain Rule

$$p(w_1, ..., w_T) = p(w_1) \prod_{i=2}^{T} p(w_i | w_1, ..., w_{i-1}) = p(w_1) \prod_{i=2}^{T} p(w_i | h_i)$$
 (1)

$$h_i = \{w_1, ..., w_{i-1}\}$$
 (2)

N-gram Probabilities

Probability of a Sequence: Chain Rule

$$p(w_1, ..., w_T) = p(w_1) \prod_{i=2}^{T} p(w_i | w_1, ..., w_{i-1}) = p(w_1) \prod_{i=2}^{T} p(w_i | h_i)$$
 (1)

$$h_i = \{w_1, ..., w_{i-1}\} \tag{2}$$

N-gram History

Truncate history to length n-1:

$$p(w_i|w_1,...,w_{i-1}) = p(w_i|w_{i-n+1},...,w_{i-1})$$
(3)

N-gram Probabilities – 2

n-grams

- unigram : $p(w_i)$
- bigram : $p(w_i|w_{i-1})$
- trigram : $p(w_i|w_{i-2},w_{i-1})$

Estimating N-gram Probabilities

Maximum Likelihood Estimation

Count relative frequencies of the words in a corpus.

N – total number of words in a corpus;

c(x) – number of occurrences of x;

$$p(w_i) = \frac{c(w_i)}{N} \tag{4}$$

$$p(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$
(5)

Unigrams

Calculate (automatically) probability of each token in the corpus

Ex: Calculating Probabilities

Unigrams

Calculate (automatically) probability of each token in the corpus

Calculate N-gram probabilities of:

- p(the|of)
- p(the|is)
- \bullet p(play|the)
- all n-gram probabilities of words after 'italy', i.e. p(*|italy)

N-grams: Improvement

$For\ consistent\ probabilistic\ model$

- add beginning and end of sentence tags $(\langle s \rangle \& \langle /s \rangle)$
- treat them as other words

$$\langle s \rangle$$
 the cat is fat $\langle /s \rangle$

Ex: Sentence Tags

- Add sentence tags;
- Re-extract bigrams and re-calculate their probabilities (automatically).

Section 3

Language Models

Language Models

Grammars vs. Probabilistic LMs

- Grammars: boolean decision that string is legal
- LMs: probability that string is legal (more useful for NLP)

LM as Automaton

LM – a probabilistic automaton to generate sentences.

Algorithm (for Bigram Model)

- 2 while $w_i \neq \langle /s \rangle$
 - ① stochastically get new word w.r.t. $p(w_i|w_{i-1})$

Probability of a String (Examples)

The cat is fat

$$p(\langle s \rangle, the, cat, is, fat, \langle /s \rangle) =$$

$$= p(the|\langle s \rangle) * p(cat|the) * p(is|cat) * p(fat|is) * p(\langle /s \rangle|fat) =$$

$$= 0.25 * 0.10 * 0.20 * 0.05 * 0.15 = 0.0000375$$

The dog is fat

$$p(\langle s \rangle, the, dog, is, fat, \langle /s \rangle) =$$

$$= p(the|\langle s \rangle) * p(dog|the) * p(is|dog) * p(fat|is) * p(\langle /s \rangle|fat) =$$

$$= 0.25 * 0.08 * 0.16 * 0.05 * 0.15 = 0.000024$$

LM Problems

```
Unseen Words: 'cow' p(\langle s \rangle, the, cow, is, fat, \langle /s \rangle) = \\ = p(the|\langle s \rangle) * p(cow|the) * p(is|cow) * p(fat|is) * p(\langle /s \rangle|fat) = \\ = 0.25 * 0.00 * 0.00 * 0.05 * 0.15 = 0.00
```

Unseen N-grams

$$p(\langle s \rangle, the, cat, is, dog, \langle /s \rangle) =$$

$$= p(the|\langle s \rangle) * p(cat|the) * p(is|cat) * p(dog|is) * p(\langle /s \rangle|dog) =$$

$$= 0.25 * 0.10 * 0.20 * 0.00 * 0.00 = 0.00$$

Underflow Problem

Small Values

- Probabilities are usually small (< 0)
- Multiplying many of those may cause underflow problem

Underflow Problem

Small Values

- Probabilities are usually small (< 0)
- Multiplying many of those may cause underflow problem

Solution

- Use the sum of the probabilities' logs instead of product
- p(a) > p(b)
- log(p(a)) > log(p(b))
- log(a*b) = log(a) + log(b)
- $p(a) * p(b) \rightarrow log(p(a)) + log(p(b))$

Out-Of-Vocabulary (OOV) Rate

• OOV Rate: % of word tokens in test data that are not contained in the lexicon (vocabulary)

Out-Of-Vocabulary (OOV) Rate

- OOV Rate: % of word tokens in test data that are not contained in the lexicon (vocabulary)
- Empirically each OOV word results in 1.5 2 extra errors (> 1 due to the loss of contextual information)

Ex: Calculate OOV Rate

Calculate OOV Rate for test.txt

Out-Of-Vocabulary (OOV) Words

- How to handle words (in test set) that were never seen in the training data?
- Train a language model with specific token (e.g. 'UNK') for unknown words!

Approaches

- Define a vocabulary and replace all other words in training with 'UNK';
- 2 Replace the first occurrence of each word with 'UNK';

Data Sparseness

Problem

- Many rare, but possible combinations are not present in training data;
- They have 0 probability, thus
- Whole sequence gets 0 probability;

Data Sparseness

Problem

- Many rare, but possible combinations are not present in training data;
- They have 0 probability, thus
- Whole sequence gets 0 probability;

Solution: Smoothing

- Add some probability to unseen events;
- Remove some probability from seen events discounting;
- Joint probability distribution sums to 1!

Laplace (Add One) Smoothing

Imaginary training data: all possible n-gram combinations occur once.

 $Bigram: V - bigram \ vocabulary \ size$

$$p(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$
(6)

N-gram: V – total number of possible (N-1)-grams

$$p(w_i|w_{i-N+1}^{i-1}) = \frac{c(w_{i-N+1}^{i-1}, w_i) + 1}{c(w_{i-N+1}^{i-1}) + V}$$
(7)

Ex: OOV + Smoothing

Build LM, such that:

- 2-gram
- Case insensitive
- Beginning and end of sentence tags
- Unknown words
- Add-One Smoothing

Ex: OOV + Smoothing

Build LM, such that:

- 2-gram
- Case insensitive
- Beginning and end of sentence tags
- Unknown words
- Add-One Smoothing
- Calculate probabilities of sentences in:
- test.txt

$Add ext{-}One\ Smoothing-Cont.d$

$$p(w_i|w_{i-N+1}^{i-1}) = \frac{c(w_{i-N+1}^{i-1}, w_i) + 1}{c(w_{i-N+1}^{i-1}) + V}$$
(8)

Typically, we assume $V = \{w : c(w) > 0\} \cup \{UNK\}$

Add-One Smoothing – Cont.d

$$p(w_i|w_{i-N+1}^{i-1}) = \frac{c(w_{i-N+1}^{i-1}, w_i) + 1}{c(w_{i-N+1}^{i-1}) + V}$$
(8)

Typically, we assume $V = \{w : c(w) > 0\} \cup \{UNK\}$

Add-one smoothing is a worst choice

Smoothing Methods

- Additive smoothing
- Good-Turing estimate
- Jelinek-Mercer smoothing (interpolation)
- Katz smoothing (backoff)
- Witten-Bell smoothing
- Absolute discounting
- Kneser-Ney smoothing

Good Tutorial

http://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf

LM Evaluation: Perplexity

- Measures how well model fits test data:
- Probability of test data;
- Weighted average branching factor in predicting the next word (lower is better).

$$PPL = \sqrt[N]{\frac{1}{p(w_1, w_2, ..., w_N)}} = \sqrt[N]{\frac{1}{\prod_{i=1}^N p(w_i|w_{i-N+1})}}$$
(9)

• N – number of words in test set;

Ex: Calculate Perplexity (Optional)

Calculate Perplexity for test.txt

