

Solution Review: Problem Challenge 1

Quadruple Sum to Target (medium)

Given an array of unsorted numbers and a target number, find all **unique quadruplets** in it, whose **sum is equal to the target number**.

Example 1:

```
Input: [4, 1, 2, -1, 1, -3], target=1
Output: [-3, -1, 1, 4], [-3, 1, 1, 2]
Explanation: Both the quadruplets add up to the target.
```

Example 2:

```
Input: [2, 0, -1, 1, -2, 2], target=2
Output: [-2, 0, 2, 2], [-1, 0, 1, 2]
Explanation: Both the quadruplets add up to the target.
```

Solution

This problem follows the Two Pointers pattern and shares similarities with Triplet Sum to Zero.

We can follow a similar approach to iterate through the array, taking one number at a time. At every step during the iteration, we will search for the quadruplets similar to Triplet Sum to Zero whose sum is equal to the given target.

Code

Here is what our algorithm will look like:

```
def search_quadruplets(arr, target):
    arr.sort()
    quadruplets = []
    for i in range(0, len(arr)-3):
    # skip same element to avoid duplicate quadruplets
    if i > 0 and arr[i] == arr[i - 1]:
        continue
    for j in range(i + 1, len(arr)-2):
        # skip same element to avoid duplicate quadruplets
    if j > i + 1 and arr[j] == arr[j - 1]:
        | continue
        search_pairs(arr, target, i, j, quadruplets)
    return quadruplets

def search_pairs(arr, target_sum, first, second, quadruplets):
    left = second + 1
    right = len(arr) - 1
    while (left < right):
        quad_sum = arr[first] + arr[second] + arr[left] + arr[right]
    if quad_sum = arr[first] + arr[second] + arr[left]
    if quad_sum = arr[first] + arr[second] + arr[left]</pre>
```

Time complexity

Sorting the array will take O(N * log N). Overall searchQuadruplets() will take $O(N * log N + N^3)$, which is asymptotically equivalent to $O(N^3)$.

Space complexity

The space complexity of the above algorithm will be O(N) which is required for sorting.

