Tarea 10

Hecho por

DAVID GÓMEZ

VIGILADA MINEDUCACIÓN

UNIVERSIDAD

Estudiante de Matemáticas
Escuela Colombiana de Ingeniería Julio Garavito
Colombia
21 de octubre de 2022

UNIVERSIDAD

 $\mathbf{\acute{I}ndice}$

 $\acute{\rm Indice}$

1.	Seco	ción 5.3
	1.1.	Punto 5
		1.1.1. a
		1.1.2. b
		1.1.3. c
	1.2.	Punto 6
		1.2.1. a
		1.2.2. b
2 .	Seco	ción 5.4
	2.1.	Punto 8
		2.1.1. a
		2.1.2. b
		2.1.3. c
	2.2.	Punto 10
	2.3.	Punto 11
		2.3.1. a
		2.3.2. b
_	~	
3.		ción 5.5
		Punto 19
	3.2.	Punto 26
	3.3.	Punto 27

UNIVERSIDAD

1. Sección 5.3

1.1. Punto 5

1.1.1. a

$$\begin{array}{c} \phi \\ \Rightarrow & \langle \, \mathrm{Debilitamiento}(\vee) \, \rangle \\ \phi \vee \neg \psi \\ \equiv & \langle \, \mathrm{Conmutativa}(\vee) \, \rangle \\ \neg \psi \vee \phi \\ \equiv & \langle \, \mathrm{Teo} \, 4.28.1 \, \rangle \\ \psi \rightarrow \phi \end{array}$$
 Por MT 5.5.1 se demuestra que
$$\vdash_{\mathrm{DS}} \phi \rightarrow (\psi \rightarrow \phi)$$

1.1.2. b

$$\begin{array}{l} \vdash_{\mathrm{DS}} ((\phi \to \psi) \to \phi) \\ & (\phi \to \psi) \to \phi \\ & \equiv \langle \mathrm{Teo} \ 4.28.1 \, \rangle \\ & \neg (\phi \to \psi) \lor \phi \\ & \equiv \langle \mathrm{Dist}(\neg, \to), \mathrm{Leibniz}(\phi = p \lor \phi) \, \rangle \\ & (\phi \land \neg \psi) \lor \phi \\ & \equiv \langle \mathrm{Dist}(\lor, \land) \, \rangle \\ & (\phi \lor \phi) \land (\phi \lor \neg \psi) \\ & \equiv \langle \mathrm{Idempotencia}(\lor) \, \rangle \\ & \phi \land (\phi \lor \neg \psi) \\ & \Rightarrow \langle \mathrm{Debilitamiento}(\land) \, \rangle \\ & \phi \\ \end{array}$$

1.1.3. c

1 Sección 5.3

```
\vdash_{\mathrm{DS}} (\phi \to \psi) \to ((\psi \to \tau) \to (\phi \to \tau))
                                                            (\psi \to \tau) \to (\phi \to \tau)
                                                           \equiv \langle Teo 4.28.1 \rangle
                                                              \neg(\psi \to \tau) \lor (\phi \to \tau)
                                                           \equiv \langle \text{Teo } 4.28.1 \text{ Leibniz}(\phi = \neg(\psi \to \tau) \lor p) \rangle
                                                               \neg(\psi \to \tau) \lor (\neg \phi \lor \tau)
                                                          \equiv \langle \operatorname{Dist}(\neg, \rightarrow), \operatorname{Leibniz}(\phi = p \vee (\neg \phi \vee \tau)) \rangle
                                                              (\psi \land \neg \tau) \lor (\neg \phi \lor \tau)
                                                           \equiv \langle \operatorname{Dist}(\vee, \wedge) \rangle
                                                               (\neg \phi \lor \tau \lor \psi) \land (\neg \phi \lor \tau \lor \neg \tau)
                                                           \equiv \langle \text{Teo 4.19.1, Identidad}(\equiv), \text{Leibniz}(\phi = (\neg \phi \lor \tau \lor \psi) \land (\neg \phi \lor p)) \rangle
                                                              (\neg \phi \lor \tau \lor \psi) \land (\neg \phi \lor true)
                                                           \equiv \langle \text{Teo 4.19.1, Identidad}(\equiv), \text{Leibniz}(\phi = (\neg \phi \lor \tau \lor \psi) \land p) \rangle
                                                               (\neg \phi \lor \tau \lor \psi) \land true
                                                           \equiv \langle Teo 4.24.3 \rangle
                                                               \neg \phi \lor \tau \lor \psi
                                                          \Leftarrow \langle Debilitamiento(\vee) \rangle
                                                               \neg \phi \lor \psi
                                                           \equiv \langle Teo 4.28.1 \rangle
                                                               \phi \to \psi
   Por MT 5.5.2, y Def(\leftarrow) se demuestra que
  \vdash_{\mathrm{DS}} (\phi \to \psi) \to ((\psi \to \tau) \to (\phi \to \tau))
```

1.2. Punto 6

1.2.1. a

```
\vdash_{\mathrm{DS}} (\phi \to \psi) \to (\phi \lor \tau \to \psi \lor \tau)
                                                                               \phi \to \psi
                                                                           \equiv \langle \text{Teo } 4.28.1 \rangle
                                                                               \neg \phi \lor \psi
                                                                          \Rightarrow \langle Debilitamiento(\lor) \rangle
                                                                               \neg \phi \lor \psi \lor \tau
                                                                           \equiv \langle Teo 4.19.4 \rangle
                                                                               \phi \vee \psi \vee \tau \equiv \psi \vee \tau
                                                                           \equiv \langle \text{Idempotencia}(\vee), \text{Leibniz}(\phi = \phi \vee \psi \vee p \equiv \psi \vee \tau) \rangle
                                                                               \phi \lor \psi \lor \tau \lor \tau \equiv \psi \lor \tau
                                                                           \equiv \langle \text{Conmutativa}(\vee) \rangle
                                                                               \phi \lor \tau \lor \psi \lor \tau \equiv \psi \lor \tau
                                                                           \equiv \langle \operatorname{Def}(\to) \rangle
                                                                               \phi \lor \tau \to \psi \lor \tau
   Por MT 5.5.1 se demuestra que
   \vdash_{\mathrm{DS}} (\phi \to \psi) \to (\phi \lor \tau \to \psi \lor \tau)
```


1.2.2. b

```
\vdash_{\mathrm{DS}} (\phi \to \psi) \to (\phi \land \tau \to \psi \land \tau)
                                                                      (\phi \wedge \tau) \to (\psi \wedge \tau)
                                                                  \equiv \langle Teo 4.28.1 \rangle
                                                                      \neg(\phi \land \tau) \lor (\psi \land \tau)
                                                                  \equiv \langle \operatorname{Dist}(\neg, \wedge), \operatorname{Leibniz}(\phi = p \vee (\psi \wedge \tau)) \rangle
                                                                      \neg \phi \vee \neg \tau \vee (\psi \wedge \tau)
                                                                  \equiv \langle \operatorname{Dist}(\vee, \wedge), \operatorname{Leibniz}(\phi = \neg \phi \vee p) \rangle
                                                                      \neg \phi \lor ((\neg \tau \lor \psi) \land (\neg \tau \lor \tau))
                                                                  \equiv \langle \text{Teo 4.19.1, Identidad}(\equiv), \text{Leibniz}(\phi = \neg \phi \lor ((\neg \tau \lor \psi) \land p)) \rangle
                                                                       \neg \phi \lor ((\neg \tau \lor \psi) \land true)
                                                                  \equiv \langle \text{Teo } 4.24.3, \text{Leibniz}(\phi = \neg \phi \lor p) \rangle
                                                                       \neg \phi \vee \neg \tau \vee \psi
                                                                  \Leftarrow \langle Debilitamiento(\vee) \rangle
                                                                       \neg \phi \lor \psi
                                                                   \equiv \langle Teo 4.28.1 \rangle
                                                                       \phi \to \psi
   Por MT 5.5.2, Def(\leftarrow) se demuestra que
   \vdash_{\mathrm{DS}} (\phi \to \psi) \to (\phi \land \tau \to \psi \land \tau)
```

2. Sección 5.4

2.1. Punto 8

2.1.1. a

Si $\Gamma \vdash_{\mathrm{DS}} \phi$, entonces $\Gamma \vdash_{\mathrm{DS}} \phi \lor \psi$ $0. \ \Gamma \vdash_{\mathrm{DS}} \phi \qquad \text{Suposición}$ $1. \ \phi \to (\phi \lor \psi) \qquad \text{Def(Debilitamiento(\lor)$)}$ $2. \ \phi \lor \psi \qquad \text{Modus Ponens(p1, p0)}$ El uso de Modus Ponens requiere que ϕ se tenga, pero se sabe que $\Gamma \vdash_{\mathrm{DS}} \phi$, Por lo que, usando Transitividad(\to) $\Gamma \vdash_{\mathrm{DS}} \phi \lor \psi$

2.1.2. b

Si $\Gamma \vdash_{\mathrm{DS}} \phi \land \psi$, entonces $\Gamma \vdash_{\mathrm{DS}} \phi$ $0. \ \Gamma \vdash_{\mathrm{DS}} \phi \land \psi \quad \text{Suposición}$ $1. \ (\phi \land \psi) \to \phi \quad \text{Def}(\text{Debilitamiento}(\land))$ $2. \ \phi \qquad \qquad \text{Modus Ponens}(\text{p1, p0})$ El uso de Modus Ponens requiere que $\phi \land \psi$ se tenga, pero se sabe que $\Gamma \vdash_{\mathrm{DS}} \phi \land \psi$, Por lo que, usando Transitividad (\to) $\Gamma \vdash_{\mathrm{DS}} \phi$

Sección 5.4

2.1.3. c

Si $\Gamma \vdash_{DS} \phi$ y $\Gamma \vdash_{DS} \psi$, entonces $\Gamma \vdash_{DS} \phi \wedge \psi$

0. $\Gamma \vdash_{DS} \phi \ y \ \Gamma \vdash_{DS} \psi$ Suposición

1. $\Gamma \vDash \phi \ y \ \Gamma \vDash \psi$ Coherencia(p0)

2. $(\exists \mathbf{v} \mid \forall x \in \Gamma : \mathbf{v}[x] = \mathsf{T})$ Suposición (Γ es satisfacible)

3. $\mathbf{v}[\phi] = \mathsf{T} \ \mathsf{y} \ \mathbf{v}[\psi] = \mathsf{T}$ Def(p2)(p1)

4. $\mathbf{v}[\phi \wedge \psi] = \mathbf{T}$ MT $2.23(\land)(p3)$

5. $\Gamma \vDash \phi \land \psi$ (p4, p3)

6. $\Gamma \vdash_{DS} \phi \land \psi$ Completitud(p5)

2.2. Punto 10

 $\Gamma \vdash_{\mathrm{DS}} \phi$ sii $\Gamma \cup \{\neg \phi\}$ es insatisfacible

0. Γ es satisfacible

Suposición

1. Demostración 1

2. Demostración 2

3. $\Gamma \vdash_{DS} \phi$ sii $\Gamma \cup \{\neg \phi\}$ es insatisfacible

Demostración 1

Si $\Gamma \vdash_{\mathrm{DS}} \phi$, entonces $\Gamma \cup \{\neg \phi\}$ es insatisfacible

0. $\Gamma \vdash_{DS} \phi$

Coherencia(p0)

2. $(\exists \mathbf{v} \mid \forall x \in \Gamma : \mathbf{v}[x] = \mathsf{T})$

Def(p1)

3. $v[\phi] = T$

1. $\Gamma \vDash \phi$

(p2, p1)

4. $\mathbf{v}[\neg \phi] = \mathbf{F}$

MT $2.23(\neg)$

Suposición

5. Demostración 1.1

6. $\Gamma \cup \{\neg \phi\}$ es insatisfacible (p5)

Demostración 1.1

0. $\Gamma \cup \{\neg \phi\}$ es satisfacible

Suposición

1. Γ es satisfacible y $\{\neg \phi\}$ es satisfacible (p0)

2. $(\exists \mathbf{w} \mid \forall x \in \Gamma : \mathbf{w}[x] = T)$ Def(p1)

3. $(\exists \mathbf{w} \mid \forall x \in {\neg \phi} : \mathbf{w}[x] = \mathbf{T})$ Def(p1)

4. $\mathbf{w}[\phi] = T$ (p1 Demostración 1)

5. $\mathbf{w}[\neg \phi] = \mathbf{T}$ (p3)

6. $\mathbf{w}[\phi] = \mathbf{F}$ MT $2.23(\neg)(p5)$

7. $\mathbf{w}[\phi] = T \ y \ \mathbf{w}[\phi] = F$ Absurdo(p6, p4) David Gómez

Demostración 2

Si $\Gamma \cup \{\neg \phi\}$ es insatisfacible entonces $\Gamma \vdash_{DS} \phi$

0. $\Gamma \cup \{\neg \phi\}$ es insatisfacible Suposición

1. $(\forall \mathbf{v} : (\exists x \in \Gamma \mid \mathbf{v}[x] = \mathbf{F}))$ Def(p0)

2. Γ es satisfacible (p0 punto10)

3. $\{\neg\phi\}$ es insatisfacible (p2 ,p0)

 $4. \mathbf{v}[\neg \phi] = \mathbf{F} \tag{p3}$

5. $\mathbf{v}[\phi] = \mathbf{T}$ MT 2.23(¬)(p4)

6. $\Gamma \vDash \phi$ (p5, p2)

7. $\Gamma \vdash_{DS} \phi$ Completitud(p6)

2.3. Punto 11

2.3.1. a

Si $\Gamma \vdash_{\mathrm{DS}} \phi \lor \psi$, entonces $\Gamma \cup \{ \neg \phi \}$ o $\Gamma \cup \{ \neg \psi \}$ es satisfacible

0. Γ es satisfacible

1. $\Gamma \vdash_{\mathrm{DS}} \phi \lor \psi$ Suposición

2. $(\exists \mathbf{v} \mid \forall x \in \Gamma : \mathbf{v}[x] = T)$ Def.(p0)

3. $\Gamma \vDash \phi \lor \psi$ Coherencia(p1)

Suposición

4. $\mathbf{v}[\phi \lor \psi] = \mathsf{T}$ (p3, p2)

5. $\mathbf{v}[\phi] = \mathbf{T} \circ \mathbf{v}[\psi] = \mathbf{T}$

6. Suposición 1

7. Suposición 2

8. Suposición 3

9. $\Gamma \cup \{\neg \phi\}$ o $\Gamma \cup \{\neg \psi\}$ es insatisfacible

Suposición 1

0. $\mathbf{v}[\phi] = T \ \mathbf{v} \ \mathbf{v}[\psi] = T$

1. $\Gamma \cup \{\neg \phi\}$ es insatisfacible (p0, p3 Punto 11)

2. $\Gamma \cup \{\neg \psi\}$ es insatisfacible (p0, p3 Punto 11)

Suposición 2

0. $\mathbf{v}[\phi] = T \mathbf{y} \mathbf{v}[\psi] = F$

1. $\Gamma \cup \{\neg \phi\}$ es insatisfacible (p0, p3 Punto 11)

2. $\Gamma \cup \{\neg \psi\}$ es satisfacible (p0, p3 Punto 11)

Suposición 3

0. $\mathbf{v}[\phi] = \mathbf{F} \ \mathbf{v} \ \mathbf{v}[\psi] = \mathbf{T}$

1. $\Gamma \cup \{\neg \phi\}$ es satisfacible (p0, p3 Punto 11)

2. $\Gamma \cup \{\neg \psi\}$ es insatisfacible (p0, p3 Punto 11)

COLOMBIANA DE INGENIERÍA JULIO GARAVITO

UNIVERSIDAD 3 Sección 5.5

2.3.2. b

Si $\Gamma \vdash_{\mathrm{DS}} \neg (\phi \lor \psi)$, entonces $\Gamma \cup \{\neg \phi, \neg \psi\}$ es satisfacible	
0. Γ es satisfacible	Suposición
1. $\Gamma \vdash_{\mathrm{DS}} \neg (\phi \lor \psi)$	Suposición
2. $\Gamma \vDash \neg(\phi \lor \psi)$	Coherencia(p1)
3. $(\exists \mathbf{v} \mid \forall x \in \Gamma : \mathbf{v}[x] = T)$	$\mathrm{Def}(\mathrm{p}0)$
$4. \ \mathbf{v}[\neg(\phi \lor \psi)] = \mathtt{T}$	(p3, p2)
5. $\mathbf{v}[\neg \phi \wedge \neg \psi] = \mathtt{T}$	$Dist(\neg, \lor)(p4)$
6. $\mathbf{v}[\neg \phi] = T \ v \left[\neg \psi\right] = T$	MT $2.23(\land)(p5)$
7. $\Gamma \cup \{\neg \phi, \neg \psi\}$ es satisfacib	le (p4, p0)

3. Sección 5.5

3.1. Punto 19

$\vdash_{\mathrm{DS}} \psi \to \phi \text{ sii } \Gamma \vdash_{\mathrm{DS}} \psi$	<u> </u>	Cupacición		
	0. Γ es satisfacible	Suposición		
	1. Demostración 1			
	2. Demostración 2			
3. $\Gamma \vdash_{DS} \psi \rightarrow \phi \text{ sii } \Gamma \vdash_{DS} \psi \land \neg \phi \rightarrow \neg \psi$				
· · · ·				
Si $\Gamma \vdash_{\mathrm{DS}} \psi \to \phi$, ent	onces $\Gamma \vdash_{\mathrm{DS}} \psi \land \neg \phi \to \neg \psi$			
	0. $\Gamma \vdash_{\mathrm{DS}} \psi \to \phi$	Suposición		
	1. $\Gamma \vDash \psi \rightarrow \phi$	Coherencia(p0)		
	2. $(\exists \mathbf{v} \mid \forall x \in \Gamma : \mathbf{v}[x] = T)$	Def(p0 Punto 19)		
	3. $\mathbf{v}[\psi \to \phi] = \mathtt{T}$	(p2, p1)		
	4. $\mathbf{v}[\psi \land \neg \phi \to \neg \psi] = \mathbf{T}$	Lema $19.1.2(p3)$		
	5. $\Gamma \vDash \psi \land \neg \phi \rightarrow \neg \psi(p4, p0)$			
	6. $\Gamma \vdash_{DS} \psi \land \neg \phi \rightarrow \neg \psi$	Completitud(p5)		

```
Si \Gamma \vdash_{\mathrm{DS}} \psi \land \neg \phi \to \neg \psi, entonces \Gamma \vdash_{\mathrm{DS}} \psi \to \phi
                                                                    0. \Gamma \vdash_{\mathrm{DS}} \psi \land \neg \phi \rightarrow \neg \psi
                                                                                                                               Suposición
                                                                    1. \Gamma \vDash \psi \land \neg \phi \rightarrow \neg \psi
                                                                                                                               Coherencia(p0)
                                                                    2. (\exists \mathbf{v} \mid \forall x \in \Gamma : \mathbf{v}[x] = \mathsf{T})
                                                                                                                               Def(p0 Punto 19)
                                                                    3. \mathbf{v}[\psi \land \neg \phi \to \neg \psi] = \mathbf{T}
                                                                                                                                (p2, p1)
                                                                    4. \mathbf{v}[\psi \to \phi] = \mathbf{T}
                                                                                                                               Lema 19.1.1 (p3)
                                                                    5. \Gamma \vDash \psi \rightarrow \phi
                                                                                                                                (p4, p0)
                                                                    6. \Gamma \vdash_{\mathrm{DS}} \psi \to \phi
                                                                                                                               Completitud(p5)
```


Lema 19.1

$$\begin{array}{l} \psi \wedge \neg \phi \to \neg \psi \\ \equiv & \langle \; \mathrm{Dist}(\neg, \, \to) \; \rangle \\ \neg (\psi \to \phi) \to \neg \psi \\ \equiv & \langle \; \mathrm{Contrapositiva} \; \rangle \\ \psi \to (\psi \to \phi) \\ \equiv & \langle \; \mathrm{Teo} \; 4.31.5 \; \rangle \\ (\psi \wedge \psi) \to \phi \\ \equiv & \langle \; \mathrm{Teo} \; 4.24.5, \, \mathrm{Leibniz}(\phi = p \to \phi) \; \rangle \\ \psi \to \phi \end{array}$$

- .1 Por MT 4.21 se demuestra que $(\psi \land \neg \phi \rightarrow \neg \psi) \equiv (\psi \rightarrow \phi)$
- .2 Por Conmutativa(\equiv) se demuestra que $(\psi \to \phi) \equiv (\psi \land \neg \phi \to \neg \psi)$

3.2. Punto 26

26

"Si $a, b \in \mathbb{Z}$ son tales que par(ab), entonces al menos uno de a y b es par" Sea S_n el termino general de la sucesión que describe a los pares, se define el conjunto de los pares como:

$$\{S_n\} = \{2n, n \in \mathbb{Z}\}\$$

Sea U_n el termino general de la sucesión que describe a los impares, se define el conjunto de los impares como:

$$\{U_n\} = \{2n+1, n \in \mathbb{Z}\}\$$

 $0. \ a,b \in \mathbb{Z} \wedge ab \in \{S_n\}$ Suposición 1. $a, b \in \{U_n\}$ Suposición 2. $ab \in \{S_n\}$ Debilitamiento(\land)(p0) 3. $a, b \in \mathbb{Z}$ Debilitamiento(\land)(p0) 4. ab = 2n(paraalg'unnentero)(p2, p1)5. $a = 2c_0 + 1$ (p1) 6. $b = 2c_1 + 1$ (p1)7. $ab = (2c_0 + 1)(2c_1 + 1) = 2(2c_0c_1 + c_0 + c_1) + 1 = 2c_2 + 1$ (p6, p5)8. $ab \in \{U_n\}$ (p7)9. $ab \in \{U_n\} \land ab \in \{S_n\}$ Contradicción (p8, p2)

Por lo que se concluye $\neg(a, b \in \{U_n\})$, es decir $a \in \{S_n\} \lor b \in \{S_n\}$

3 Sección 5.5

UNIVERSIDAD

3.3. Punto 27

27

"Si $a, b \in \mathbb{Z}$ son tales que par(ab), entonces a y b son impares"

Sea U_n el termino general de la sucesión que describe a los impares, se define el conjunto de los impares como:

$$\{U_n\} = \{2n+1, n \in \mathbb{Z}\}\$$

0.
$$a, b \in \mathbb{Z} \land ab \in \{U_n\}$$
 Suposición

1.
$$a, b \in \{U_n\}$$
 Debilitamiento(\land)

2.
$$a = 2k_0 + 1$$
 (p1)
3. $b = 2k_1 + 1$ (p1)

4.
$$ab = (2k_0 + 1)(2k_1 + 1) = 2(2k_0k_1 + k_0 + k_1) + 1 = 2k_2 + 1$$
 (p3, p1)

5. $ab \in \{U_n\}$