Guía de Laboratorio

Péndulo Simple

Un péndulo simple se define como una partícula de masa m suspendida desde un punto O por un hilo inextensible de longitud I y de masa despreciable.

Modelo péndulo simple para pequeñas oscilaciones (θ <15°)

$$T = 2\pi \sqrt{\frac{l}{g}}$$

T : Periodo

g : gravedad

Realizando el experimento y midiendo T y I podremos calcular el valor de la gravedad

Mediciones

Uno en el proceso de medición, no obtiene un único valor de la magnitud deseada. Sino que lo que obtiene es un intervalo.

Medición Valor medio

Error:

- Sistemático: Instrumental
- Aleatorio: Tratamiento estadístico

Intervalo $x = (\bar{x} - \Delta x; \bar{x} + \Delta x)$

Ejemplo: Largo de una birome

$$L = (16,3 \pm 0,1)cm$$
, entonces $L \in (16,2;16,4)cm$

Los errores suelen expresarse con 1 o 2 cifras significativas.

Uno puede elegir tanto redondear como truncar

Veamos algunos ejemplos:

$$Er \% = \frac{\Delta x}{\bar{x}} 100$$

•
$$0,0023418 \pm 0,0002345$$

$$0,00234 \pm 0,00023$$

En conclusión toda medición debe expresarse con su error y este con 1 o 2 cifras significativas

Mediciones indirectas

Cuando uno desea averiguar una magnitud y esta no puede ser medida en forma directa, es necesario saber como calcular el error asociado a ella

En general: Sea
$$f(x,y)$$

$$\Delta f(x,y) = \left| \frac{\partial f}{\partial x} \right| \cdot \Delta x + \left| \frac{\partial f}{\partial y} \right| \cdot \Delta y$$
b=(12,300±0,135)cm h=(55±5)cm

Ejemplo: Area
$$A(b, h) = b \cdot h$$

$$\Delta A(b,h) = \left| \frac{\partial A}{\partial b} \right| \cdot \Delta b + \left| \frac{\partial A}{\partial h} \right| \cdot \Delta h$$
$$\Delta A(b,h) = h \cdot \Delta b + b \cdot \Delta h$$

$$\Delta A = 55cm \cdot 0,135cm + 12,3cm \cdot 5cm$$

$$\Delta A = 7,425 \ cm^2 + 61,5cm^2 = 68,925 \ cm^2$$

$$A = (676 \pm 68) \text{ cm}^2$$

Materiales

- Cuerda Piolín Cordón
- Pesa Tuerca Objeto
- Cinta métrica Regla Metro
- Cronometro Celular Reloj

Realización del experimento

- Soltar desde un Angulo pequeño (Θ<15°)
- Ver que oscile en un plano
- Registrar el tiempo t de una oscilación completa.
- Medir la distancia l'entre el nudo y la masa

Como obtengo los errores

Longitud:

- Si es directa la medición (Metro)
 Error = Resolución del instrumento = 1mm
- Si es indirecta la medición (Regla):
 Error = Resolución del instrumento x N° veces usada

En mi caso l=(1,150±0,001)m

Tiempo:

• La resolución del cronometro es 0,01 segundos pero nuestro tiempo de reacción es mayor.

Debemos tratarlo como un Error Aleatorio

Como tratar los errores aleatorios: Estadística
Se deben tomar 100 mediciones del periodo del péndulo
Histograma

	Tiempo (s)	
t1	2.08	
t2	2.19	
t3	2.04	
t4	2.34	
t5	2.04	
t6	2.22	
t7	2.15	
t8	2.06	
t9	2.09	
t10	2.01	
ti		

Distribución Normal

Promedio
$$\bar{t} = \sum_{i=1}^{n} \frac{t_i}{n} = 2,1367s$$

Desviación estándar

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (t_i - \bar{t})^2} = 0.1307s$$

Error: $\frac{\sigma}{\sqrt{n}}$ + instrumental

$$0.0106s + 0.01s = 0.0206s$$

Tiempo= (2,137±0,020)s

Tratamiento de los datos

$$T = 2\pi \sqrt{\frac{l}{g}} \Rightarrow g(T, l) = \frac{4\pi^2}{T^2} \cdot l \qquad g = 9.9414 \frac{m}{s^2}$$

$$\Delta g(T, l) = \left| \frac{\partial g}{\partial T} \right| \cdot \Delta T + \left| \frac{\partial g}{\partial l} \right| \cdot \Delta l = \frac{8 \cdot \pi^2 \cdot l}{T^3} \cdot \Delta T + \frac{4 \cdot \pi^2}{T^2} \cdot \Delta l$$

Despreciable

$$\Delta g = 9,3040 \frac{m}{s^3} \cdot 0,020 \, s + 8.6447 \frac{1}{s^2} \cdot 0,001 \, m = 0,1860 \frac{m}{s^2} + 0,0086447 \frac{m}{s^2}$$

$$\Delta g = 0.19 \frac{m}{s^2}$$

$$g = (9,94 \pm 0,19) \frac{m}{s^2}$$

Que presentar en el informe

- Foto del dispositivo
- Valor de la longitud con su error
- Valor del tiempo con su error + Histograma de ocurrencias
- Calculo de g y calculo de su error

Todos los valores finales expresados con 2 cifras significativas en el error

Además, describir brevemente otro experimento de mecánica que permita medir g.

¿Que instrumentos utilizarías?

¿Que modelo físico tiene detrás?

Máximo tamaño del informe 2 carillas. Formato PDF