Chapitre 15. Fiche-cours : décomposition en éléments simples des fractions fonctions rationnelles.

Le résultat au programme

Théorème: (Admis)

Supposons que l'on ait une fonction rationnelle $f: x \mapsto \frac{A(x)}{B(x)}$, avec A et B des polynômes à coefficients dans \mathbb{K} , de la forme suivante :

$$\forall x \in \mathbb{K} \setminus \{x_1, \dots, x_p\}, \quad f(x) = \frac{A(x)}{(x - x_1) \dots (x - x_p)}$$

Avec les conditions suivantes :

- les x_i sont deux à deux distincts (on dit que f est "à pôles simples");
- $\deg(A) < \deg(B) = p$.

Alors il <u>existe</u> un <u>unique</u> p-uplet de coefficients $(a_1, \ldots, a_p) \in \mathbb{K}^p$ tel que :

$$\forall x \in \mathbb{K} \setminus \{x_1, \dots, x_p\}, \ f(x) = \frac{a_1}{x - x_1} + \dots + \frac{a_p}{x - x_p}.$$

Remarque : on suppose donc ici que B est unitaire, mais c'est facile de se ramener à ce cas.

Et les autres situations?

 \rightarrow Si f est à pôles simples mais que $\deg(A) \ge \deg(B)$

On se ramène à la situation du théorème en effectuant la division euclidienne de A par B!

On obtient alors E et R tels que A = EB + R et $\deg(R) < \deg(B)$, donc, là où c'est défini :

$$f(x) = E(x) + \frac{R(x)}{B(x)}$$
 avec $\deg(R) < \deg(B)$

\rightarrow Si f n'est pas à pôles simples

Cela correspond aux cas où B a des racines multiples, et aux cas où $\mathbb{K} = \mathbb{R}$ et que B a des facteurs irréductibles de degré 2 dans sa factorisation sur \mathbb{R} ...

La forme de la décomposition en éléments simples n'est pas à connaître et doit être fournie par l'énoncé.

⚠ Soyez attentif à la formulation de l'énoncé : selon que l'on admette ou non l'existence de l'écriture voulue, il faut adapter votre raisonnement. Comparez par exemple :

On admet qu'il existe d'uniques réels a, b, c, d tels que pour tout $x \in \mathbb{R} \setminus \{1\}$,

$$\frac{3x-1}{(x-1)^2(x^2+1)} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{cx+d}{x^2+1}$$

Les déterminer.

Montrer qu'il existe d'uniques réels a,b,c,d, que l'on déterminera, tels que pour tout $x\in\mathbb{R}\backslash\{1\},$

$$\frac{3x-1}{(x-1)^2(x^2+1)} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{cx+d}{x^2+1}$$

Résolution d'un système (souvent fait au 1er semestre)
C'est fastidieux...

Apparition-disparition

Écrire le numérateur comme une combinaison linéaire des facteurs du dénominateur

Exemple 1:
$$f(x) = \frac{1}{(x-1)(x-2)}$$
:

Exemple 2:
$$f(x) = \frac{x}{(x-1)(x-2)}$$
:

Comment trouver les nombres a_1, \ldots, a_p ?

Nouvelle méthode rapide!

Multiplier l'égalité par $(x - x_k)$ puis "évaluer" en x_k : cela fournit la valeur de a_k !

Exemple avec
$$f(x) = \frac{3x-4}{(x-2)(x-3)(x+2)}$$
.

Pour plus de rigueur, au lieu d'évaluer en x_k , il faudrait faire tendre x vers x_k ... lorsque x_k est réel; on admet que la méthode est valide aussi pour les x_k complexes.

Autres méthodes en vrac

On peut obtenir des égalités vérifiées par les a_i , par exemple :

Évaluer l'égalité en un x bien choisi, différent des x_i (parfois 0 est une bonne idée) :

Multiplier l'égalité par x puis faire tendre x vers l'infini :

$3x^4$	$-8x^3 + 2x^2 + 8x - 6$	$\frac{x^{2}+8x-6}{x^{2}}$									
Exemple: $f: x \mapsto \frac{3x^4}{}$	$x^2 - 3x + 2$										

\rightarrow Si fn'est pas à pôles simples

Evemi	ole ·	On	admet	au'il	eviste	ď	unio	1165	réels	а	h	c	А	tels o	111e ·	nour	tout	r	$\subset \mathbb{R} \setminus$	[1]	ļ
Exem	Die.	O_{II}	admet	qu 11	GYIPIG	\mathbf{u}	umq	ues	16612	u,	o,	υ,	α	612	que	pour	tout	ι	$\subset \pi \pi I$	ŊΙ	ſ,

existe d'uniques réels
$$a, b, c, d$$
 tels que pour tou
$$\frac{3x-1}{(x-1)^2(x^2+1)} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{cx+d}{x^2+1}$$

Déterminer ces réels a, b, c, d .	