Restriction of Scalars Chabauty and $\mathbb{P}^1 \setminus \{0, 1, \infty\}$.

Nicholas Triantafillou

University of Georgia

20th June 2020 Chicago Number Theory Days

Chabauty-Coleman Method to Compute X(K)

- X/K = 'nice' curve, genus $g \ge 2$.
- p = prime of good reduction.

- J = Jacobian of X.
- $r = \operatorname{rank} J(K)$.

$$X(K) \subset J(K) \cap X(K_{\mathfrak{p}})$$

From Chabauty ...

Observation (Chabauty 1941):

$$X(K) \subset \overline{J(K)} \cap X(K_{\mathfrak{p}}).$$

	$\overline{J(K)}$	$X(K_{\mathfrak{p}})$	$J(K_{\mathfrak{p}})$	$\overline{J(K)} \cap X(K_{\mathfrak{p}})$
Exp. Dim.	r	1	g	r-(g-1)

Theorem (Chabauty)

If $r \leq g - 1$, R.H.S. is finite.

... to Restriction of Scalars Chabauty [RoS Chabauty]

Observation (Wetherell 2000):

$$X(K) = (\operatorname{\mathsf{Res}}_{K/\mathbb{Q}} X)(\mathbb{Q})$$

... to Restriction of Scalars Chabauty [RoS Chabauty]

Observation (Wetherell 2000):

$$X(K) = (\operatorname{Res}_{K/\mathbb{Q}} X)(\mathbb{Q}) \subset \overline{(\operatorname{Res}_{K/\mathbb{Q}} J)(\mathbb{Q})} \cap (\operatorname{Res}_{K/\mathbb{Q}} X)(\mathbb{Q}_p).$$

... to Restriction of Scalars Chabauty [RoS Chabauty]

Observation (Wetherell 2000):

$$X(K) = (\operatorname{\mathsf{Res}}_{K/\mathbb{Q}} X)(\mathbb{Q}) \subset \overline{(\operatorname{\mathsf{Res}}_{K/\mathbb{Q}} J)(\mathbb{Q})} \cap (\operatorname{\mathsf{Res}}_{K/\mathbb{Q}} X)(\mathbb{Q}_p).$$

	$\overline{\operatorname{Res} J(\mathbb{Q})}$	$\operatorname{Res} X(\mathbb{Q}_p)$	$\operatorname{Res} J(\mathbb{Q}_p)$	$\overline{\operatorname{Res} J(\mathbb{Q})} \cap \operatorname{Res} X(\mathbb{Q}_p)$
Exp. Dim.	r	d	dg	r-d(g-1)

Expectation/Hope:

If $r \leq d(g-1)$, then R.H.S. is finite.

Obstruction: Unlikely Intersections

Hope: $\overline{(\operatorname{Res}_{K/\mathbb{Q}} J)(\mathbb{Q})} \cap (\operatorname{Res}_{K/\mathbb{Q}} X)(\mathbb{Q}_p)$ is finite.

Obstructions: Bad abelian subvarieties $A \subset \operatorname{Res}_{K/\mathbb{Q}} J$

'Bad' means that both:

- 1. $\dim(A \cap \operatorname{Res} X) > 0$,
- 2. rank $A(\mathbb{Q})$ is large.

Large Intersections from Base Change

Say X/\mathbb{Q} . Try RoS Chabauty for X_K .

 $\Delta: J \hookrightarrow \operatorname{Res}_{K/\mathbb{O}} J_K$ diagonal embedding.

Lemma

If Chabauty fails for X then RoS Chabauty fails for X_K .

Large Intersections from Prym varieties

 $f: X \to Y \text{ over } K$.

 $f_*:J_X\to J_Y$

P := Prym(X/Y).

Lemma

Suppose the following hold:

- $A \subset \text{Res } Y \text{ is bad,}$
- rank P(K) is large,
- technical conditions.

Then $f_*^{-1}(A) \subset \operatorname{Res} X$ is bad.

RoS Chabauty and the *S*-unit equation.

BCP obstruction: Bad subgroup $A \subset \operatorname{Res}_{K/\mathbb{Q}} J$ constructed iteratively as in previous slides.

BCP obstructions explain all known examples where RoS Chabauty fails.

RoS Chabauty and the *S*-unit equation.

BCP obstruction: Bad subgroup $A \subset \operatorname{Res}_{K/\mathbb{Q}} J$ constructed iteratively as in previous slides.

BCP obstructions explain all known examples where RoS Chabauty fails.

Theorem

- K does not contain a CM subfield.
- S is a set of finite places of K.
- q a sufficiently large prime.

There is no BCP obstruction to RoS Chabuaty for $\mathbb{P}^1_{\mathcal{O}_K} \setminus \{x : x^q = \alpha\}$.

Corollary

Étale descent + RoS Chabauty 'should' give a p-adic algorithm to compute $(\mathbb{P}^1 \setminus \{0,1,\infty\})(\mathcal{O}_{K,S}) =$ solutions to S-unit equation.

The unit equation has no solutions in number fields of degree prime to 3 where 3 splits completely.

Theorem

See title of preprint/slide.

Unit equation: $x, y \in \mathcal{O}_K^{\times}$ such that x + y = 1.