

SCHOOL OF APPLIED SCIENCE & HUMANITIES **DEPARTMENT OF MATHEMATICS**

Subject: Foundations of Engineering Mathematics Subject Code: 25MT101 Academic Year: 2025-2026

Sem. : Pre-Semester Section: 20,26,31,32 Regulation: R25

Instructor: D Bhanu Prakash, Department of Mathematics and Statistics

Unit 3: Matrices Tutorial Quiz

1. If
$$\begin{bmatrix} x-2 & x+y \\ z-3 & 12 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ 4 & 12 \end{bmatrix}$$
 then $x = \dots, y = \dots, z = \dots$

2. If
$$\begin{bmatrix} 2x - y & x + y \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 5 & 0 \end{bmatrix}$$
 then $x = \dots, y = \dots$

(a)
$$\frac{4}{3}, -\frac{5}{3}$$

(b)
$$-\frac{4}{3}, \frac{5}{3}$$

(c)
$$\frac{4}{3}, \frac{3}{3}$$

$$\frac{4}{3}, -\frac{5}{3}$$
 (b) $-\frac{4}{3}, \frac{5}{3}$ (c) $\frac{4}{3}, \frac{5}{3}$ (d) $-\frac{4}{3}, -\frac{5}{3}$

$$A - B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ and } A + B = \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix} \text{ then } AB = \dots$$

$$\begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
(a)
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 \\ -2 \end{bmatrix} \text{ then } AB = \dots$$

$$\begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -3 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} -3 \\ 2 \end{bmatrix} \qquad \qquad \begin{bmatrix} -3 \\ -2 \end{bmatrix} \qquad \qquad \begin{bmatrix} 3 \\ 2 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

5. If
$$A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$
 then $(A-2I)(A-3I) = \dots$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
(a)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad (d)$$

$$B = \begin{bmatrix} 4 & 9 \\ 6 & 3 \\ 8 & 0 \end{bmatrix}$$
 then $AB = \dots$

(a)
$$[40 \ 15]$$
 (b) $[15 \ 40]$ (c) $\begin{bmatrix} 15 \ 40 \end{bmatrix}$ (d) $\begin{bmatrix} 40 \ 15 \end{bmatrix}$

$$B = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
7. If $A = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$ and then $AB = \dots$

$$\begin{bmatrix} 1 \\ 23 \\ 12 \end{bmatrix}$$
(a)
$$\begin{bmatrix} 12 \\ 10 \end{bmatrix}$$
(b)
$$\begin{bmatrix} 12 \\ 10 \end{bmatrix}$$
(c)
$$\begin{bmatrix} 23 & 12 \end{bmatrix}$$
(d)
$$\begin{bmatrix} 30 \end{bmatrix}$$

8. The inverse of the matrix
$$\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$
 is......

(a)
$$\begin{bmatrix} 6 & 3 \\ 2 & 1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} -1 & 3 \\ 2 & -6 \end{bmatrix}$$
 (d) None

9. A square matrix $A = [a_{ij}]$ is called a symmetric matrix if

(a)
$$A^{T} = A$$
 (b) $A^{T} = -A$ (c) $A^{T}A = I$ (d) $A^{T}A = O$

11. If
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$
 then $A.adj(A) = \dots$

(a)
$$\begin{bmatrix} 0 & 10 \\ 10 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & -10 \\ 10 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ (d) $\begin{bmatrix} -10 & 0 \\ 0 & -10 \end{bmatrix}$

12. The inverse of the matrix
$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$
 is......

(a)
$$\begin{bmatrix} -1 & -3 \\ 2 & -5 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -5 & 3 \\ 2 & -1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 3 & -1 \\ 5 & 2 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 3 & -1 \\ 5 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
 is

14. The determinant of an orthogonal matrix is......

(a) 1 (b) 0 (c) -1 (d)
$$\pm 1$$

15. The matrix
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
is......

- (a) Symmetric (b) Skew-symmetric (c) Orthogonal (d) None
- 16. The matrix is orthogonal if

(a)
$$A^{T} = A$$
 (b) $A^{T} = -A$ (c) $A^{T} A = I$ (d) $A^{T} A = O$

17. If
$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 then $A^2 =$

(a)
$$2A$$
 (b) $3A$ (c) $4A$ (d) O

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \text{ then } AA^{T} = \dots$$

(a) 0 (b) 1 (c)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (d) None

$$\begin{vmatrix} 3 & 2 & 1 \\ 4 & 1 & -7 \\ 0 & 3 & 4 \end{vmatrix}$$
 is

(a) 50	(b) 51	(c) 54	(d) 55
--------	--------	--------	--------

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
is

20. The rank of the matrix $\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$ is......

- (a) 1 (b) 2 (c) 3 (d) 0
- 21. The rank of 3×3 matrix whose elements are all 2 is......
- (a) 1 (b) 2 (c) 3 (d) 0
- 22. The maximum value of the rank of a 4×5 matrix is
- (a) 3 (b) 4 (c) 5 (d) None

$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$ then $AB = \dots$

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 3 & 0 & -3 \\ 4 & 0 & -4 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 4 & 0 & -4 \end{bmatrix} \qquad \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}$$

- 24. If A, B and C are any three comparable matrices of the same type, then (A+B)+C=
 - (a) $(A+B)+C^T$ (b) $(AB)+C^T$ (c) A+(B+C) (d) $A+(B+C^T)$
- 25. Two matrices A and B are equal if
 - (a) Orders of A and B are not equal (b) Orders of A and B are equal
 - (c) Orders of A and B are equal and corresponding elements equal (d) None

$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ then } AB = \dots$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad \qquad \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \qquad \qquad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
(a)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

27. The additive identi	ity of a matrix A is		
(a) O	(b) A	(c) -A	(d) None
28. The additive invers	se of a matrix A is		

29. Which of the following is a scalar matrix is

(a) O

(b) A

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad \qquad \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \qquad \qquad \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}, k \neq 0$$
(a) (b)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \qquad (c)$$

(c) -A

(d) None

30. If A is any matrix then $(A^T)^T = \dots$

(a)
$$A^T$$
 (b) $-A$ (c) A (d) $-A^T$