

STUDENT ID NO									
			4	J	e	0	3		

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

PPP0101 PRINCIPLES OF PHYSICS

(Foundation in Information Technology)

5 MARCH 2018 2.30 P.M. – 4.30 P.M. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 6 pages.
- 2. Answer all questions.
- 3. Write your answers in the Answer Booklet provided.
- 4. Show all relevant steps to obtain maximum marks.

QUESTION 1 (15 MARKS)

a) Consider the system shown in Figure Q1(a) below. Block A weighs 36.5 N, and block B weighs 20.5 N. Once block B is set into downward motion, it descends at a constant speed.

Figure Q1(a)

- (i) Calculate the coefficient of kinetic friction between block A and the tabletop.

 [3.5 marks]
- (ii) As block A moves to the right and block B moves downwards at a constant speed, a dog, also of weight 36.5 N, jumps on the top of block A. Calculate the acceleration of the system now (magnitude and direction). [4 marks]
- b) A 10.0 g marble slides to the left at a speed of 0.40 m/s on the frictionless, horizontal surface and has a head-on, elastic collision with a larger 30.0 g marble sliding to the right at a speed of 0.20 m/s.
 - (i) Find the velocity of each marble (magnitude and direction) after the collision.

 [5 marks]
 - (ii) Calculate the impulse for each marble. Compare the values for each marble. [2.5 marks]

QUESTION 2 (10 MARKS)

a) A 2.20 kg mass on a spring has displacement as a function of time given by

 $x(t) = (7.40cm) \sin[(4.16rad/s)t - 2.42]$

Calculate,

(i) the time for one complete vibration.

[1 mark]

(ii) the spring constant of the spring.

[1 mark]

(iii) the maximum speed of the mass.

[1 mark]

(iv) the position, speed, and acceleration of mass at t = 1.0 s.

[3 marks]

(v) the force on the mass at that time.

[1 mark]

b) Under Damped, Critically Damped, and Over Damped are three common cases of heavily damped systems. Explain briefly all the three cases. [3 marks]

QUESTION 3 (15 MARKS)

a) The graph of displacement against time and the graph of displacement against position of a travelling wave are shown in Figure Q3(a) and Q3(b) respectively.

Figure Q3

- (i) State the amplitude of the wave. [1 mark]
- (ii) State the period of the wave. [1 mark]
- (iii) State the wavelength of the wave. [I mark]
- (iv) Find the angular frequency of the wave. [2 marks]
- (v) Find the wave number of the wave. [2 marks]
- b) (i) Give one difference between loudness and pitch of sound. [2 marks]
 - (ii) Which one has a higher pitch: a dog's bark or a cat's meow? [1 mark]
- c) The power of a sound source is $15 \mu W$.
 - (i) What is the sound intensity 5 m from the source? [2 marks]
 - (ii) Your friend is standing at a distance of x from the source. Where should you stand so that the sound intensity you hear is one-third of your friend's? Express your answer in terms of x.

QUESTION 4 (10 MARKS)

a) Figure Q4(a) below shows a laser beam that is directed to point A on a mirror. Being reflected by the mirror, the beam then hits point B.

(i) Find the distance x.

[2 marks]

(ii) Find the angle of incidence of the laser beam when it hits point A.

[2 marks]

(iii) Find the angle α .

[2 marks]

- b) Two narrow slits 52 μm apart are illuminated with light of wavelength 500 nm.
 - (i) What is the angle of the second order bright fringe in degrees?

[2 marks]

(ii) What is the distance of the screen from the slits if the second order bright fringe is 6 mm from the central maximum? [2 marks]

APPENDIXES

LIST OF PHYSICAL CONSTANTS			
Electron mass,	m_e	=	9.11 x 10 ⁻³¹ kg
Proton mass,	m_p	=	1.67 x 10 ⁻²⁷ kg
Neutron mass,	m_n	=	$1.67 \times 10^{-27} \text{ kg}$
Magnitude of the electron charge,	. е	=	1.602 x 10 ⁻¹⁹ C
Universal gravitational constant,	G	=	6.67 x 10 ⁻¹¹ N.m ² kg ⁻²
Universal gas constant,	R	=	8.314 J/K.mol
Hydrogen ground state,	E_o	=	13.6 eV
Boltzmann's constant,	k_B	=	1.38×10^{-23} J/K
Compton wavelength,	λ_c	=	2.426 x 10 ⁻¹² m
Planck's constant,	h	=	6.63×10^{-34} J.s
		=	4.14 x 10 ⁻¹⁵ eV.s
Speed of light in vacuum,	c	=	$3.0 \times 10^{8} \text{ m/s}$
Rydberg constant,	R_H	=	$1.097 \times 10^7 \text{ m}^{-1}$
Acceleration due to gravity,	g	=	9.81 m s ⁻²
lunified atomic mass unit,	l u	=	931.5 MeV/c ²
		=	1.66 x 10 ⁻²⁷ kg
I electron volt,	1 eV	=	$1.60 \times 10^{-19} \text{ J}$
Avogadro's number,	N_A	=	6.023 x 10 ²³ mol ⁻¹
Threshold of intensity of hearing,	I_o	=	$1.0 \times 10^{-12} \text{ W m}^{-2}$
Coulomb constant,	$k = \frac{1}{4\pi\varepsilon_o}$	=	9.0 x 10 ⁹ Nm ² C ⁻²
Permittivity of free space,	\mathcal{E}_{o}	=	8.85 x 10 ⁻¹² C ² /N.m ⁻²
Permeability of free space,	μ_{o}	==	$4\pi \times 10^{-7} (T.m)/A$
1 atmosphere pressure,	1 atm	=	$1.0 \times 10^5 \text{N/m}^2$
• •			1.0 x 10 ⁵ Pa
Earth: Mass,	M_E	=	$5.97 \times 10^{24} \text{kg}$
Radius (mean),	R_{E}	=	$6.38 \times 10^3 \text{km}$
Moon: Mass,	$M_{\mathcal{M}}$	=	$7.35 \times 10^{22} \text{ kg}$
Radius (mean),	R_M	==	$1.74 \times 10^3 \text{km}$
Sun: Mass,	$M_{\mathcal{S}}$	=	1.99 x 10 ³⁰ kg
Radius (mean),	$R_{\mathcal{S}}$	=	6.96 x 10⁵ km
Earth-Sun distance (mean),		=	149.6 x 10 ⁶ km

Continued...

Earth-Sun distance (mean), Earth-Moon distance (mean), 149.6 x 10⁶ km

 $384 \times 10^{3} \text{ km}$

LIST OF FORMULA

Differential Rule	Trigonometric Identity					
$y = kx''$ $dy \qquad \qquad$	$\sin = \frac{opposite}{hypotenuse}$	$\cos = \frac{adjacent}{hypotenuse}$	$tan = \frac{opposite}{adjacent}$			
$\frac{dy}{dx} = knx^{n-1}$	$\sin \alpha + \sin \beta = 2\cos\left(\frac{\alpha - \beta}{2}\right)\sin\left(\frac{\alpha + \beta}{2}\right)$					
	$\sin(\alpha - \beta)$	$\beta) + \sin(\alpha + \beta) = 2\sin\alpha$	os eta			

NEWTONIAN MECHANICS

$$v = \frac{\Delta x}{\Delta t} \qquad a = \frac{\Delta v}{\Delta t} \qquad v = v_o + at \qquad x - x_o = v_o t + \frac{1}{2}at^2$$

$$v^2 = v_o^2 + 2a(x - x_o) \qquad x - x_o = \left(\frac{v_o + v}{2}\right)t$$

$$v = v_o + gt \qquad y - y_o = v_o t + \frac{1}{2}gt^2 \qquad v^2 = v_o^2 + 2g(y - y_o) \qquad y - y_o = \left(\frac{v_o + v}{2}\right)t$$

$$W = Fs \cos\theta \qquad W = mg \qquad \sum F = F_{net} = ma \qquad f_s \leq \mu_s F_N$$

$$f_k = \mu_K F_N \qquad p = mv \qquad \sum F = \frac{\Delta p}{\Delta t}$$

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2 \qquad m_1 u_1 + m_2 u_2 = (m_1 + m_2) \quad v \qquad P = \frac{W}{t} = \frac{E}{t} = \frac{Fd}{t} = Fv$$

$$K = \frac{1}{2}mv^2 \qquad PE_s = \frac{1}{2}kx^2 \qquad F_s = -kx \qquad PE_G = mgy$$

$$v_{circular} = \frac{2\pi r}{T} \qquad a_c = \frac{v^2}{r} \qquad F_g = G\frac{m_1 m_2}{r^2} \qquad U_g = -G\frac{m_1 m_2}{r}$$

$$T^2 = K_s r^3 \qquad T_s = 2\pi \sqrt{\frac{m}{k}}$$
Spring with mass, Simple pendulum,

$$\omega = \sqrt{\frac{k}{m}} \qquad \qquad \omega = \sqrt{\frac{g}{l}} \qquad \qquad T_p = 2\pi \sqrt{\frac{l}{g}} \qquad \qquad T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$x = A \cos \omega t \qquad x = A \sin \omega t$$
Cosine Wave: $v = -\omega A \sin \omega t \qquad \text{Sine Wave:} \qquad v = \omega A \cos \omega t$

$$a = -\omega^2 A \cos \omega t \qquad a = -\omega^2 A \sin \omega t$$

WAVES AND OPTICS

$$v = f\lambda \qquad \omega = 2\pi f \qquad n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\sin \theta_c = \frac{n_2}{n_1} \qquad \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \qquad M = -\frac{d_i}{d_o} = \frac{h_i}{h_o} \qquad f = \frac{R}{2}$$

$$d \sin \theta_{\text{max}} = m\lambda \qquad a \sin \theta_{\text{min}} = m\lambda \qquad d \sin \theta_{\text{min}} = (m + \frac{1}{2})\lambda$$

$$y_{\text{bright}} = \frac{m\lambda L}{d} \qquad y_{\text{dark}} = (m + \frac{1}{2})\frac{\lambda L}{d} \qquad I = \frac{P}{A} \qquad \beta = 10 \log_{10} \frac{I}{I_o}$$

$$f' = f\left(\frac{v \pm v_o}{v \mp v_s}\right) \qquad y(x,t) = A \sin(kx \pm \omega t + \phi)$$

Wave Type:

$$y(x,t) = 2A \cos\left(\frac{\phi}{2}\right) \sin\left(kx - \omega t - \frac{\phi}{2}\right)$$
$$y(x,t) = 2A \sin kx \cos \omega t$$

End of paper.