

# Teorija informacije

Entropijsko kodiranje

#### Kodiranje i kompresija



- Kodiranje: dodjela kodnih riječi simbolima poruke
- Kompresija: kodiranje koje smanjuje broj bitova potreban za izražavanje poruke
- U jasnom kontekstu, koristimo ove pojmove kao sinonime
- Kompresija se vrši u koderu informacije



#### Entropijsko kodiranje



- Uvod u kodiranje i kompresiju
  - Definicije, podjela metoda kompresije
  - Uvod u entropijsko kodiranje
- Karakteristike izvora informacije
  - Stacionarni izvor, ergodički izvor, izvori s memorijom (Markovljevi)
- Vrste kodova i njihova svojstva
  - Singularni, nesingularni, jednoznačno dekodabilni, prefiksni kodovi
- Optimalno kodiranje
- Metode entropijskog kodiranja
  - Shannon-Fanoovo kodiranje
  - Huffmanovo kodiranje
  - Aritmetičko kodiranje
  - Metode rječnika (LZ77, LZ78, LZW)
  - Metode skraćivanja niza (potiskivanje nula, slijedno kodiranje)

#### Osnovna svojstva kompresije



- Kompresija bez gubitaka
  - Komprimirani podaci mogu se dekomprimiranjem rekonstruirati bez gubitka informacije (*reverzibilno*)
  - Primjene: npr. tekst, medicinske slike, satelitske snimke
- Kompresija s gubicima
  - Cilj je ili dobiti najbolju vjernost rekonstruiranih podataka za zadanu brzinu (bit/s) ili postići najmanju brzinu za zadanu granicu vjernosti
  - Primjene: npr. govor, slika, video
- Važan parametar je omjer kompresije
  - Omjer veličine komprimiranih i originalnih podataka, npr. 1:10

#### Klasifikacija postupaka kodiranja





#### Uvod u entropijsko kodiranje



- Osnovna ideja: skraćeno zapisati višestruko ili često ponavljane simbole ili nizove simbola
- Zajedničko svim metodama entropijskog kodiranja:
  - temelje se direktno na teoriji informacije
  - kodiranje <u>bez</u> gubitaka
  - omjer kompresije ovisi samo o statističkim svojstvima izvora informacije
  - poruka se promatra isključivo kao niz niz slučajnih vrijednosti, ne uzimaju se u obzir svojstva medija (za razliku od izvornog kodiranja)



# Karakteristike izvora informacije







Zavod za telekomunikacije

- Izvor informacije promatramo kao stohastički proces, tj. niz slučajnih varijabli: X<sub>1</sub>, X<sub>2</sub>,... X<sub>t</sub>,...,X<sub>n</sub>
  - $A = \{\alpha_1, ..., \alpha_m\}$  abeceda izvora
  - Poruku od n znakova moguće je zapisati kao niz od n članova  $x = (a_1, a_2, ..., a_n); a_i \in A, i = 1, ..., n$ 
    - $x \in A^n$ ,  $A^n = \{(a_1, a_2, ..., a_n); a_i \in A, i = 1, ..., n\}$
    - skup A<sup>n</sup> (Kartezijev produkt skupa A) je skup svih poruka od n članova abecede A; njihov broj je m<sup>n</sup>
- Diskretni izvor (A, P) definiramo pomoću abecede
   A i razdiobe vjerojatnosti na skupu A<sup>n</sup>:

$$P(x) = P(X_1 = a_1, X_2 = a_2, ..., X_n = a_n)$$
,  $(a_1, a_2, ..., a_n) \in A^n$   
$$\sum_{x \in A^n} P(x) = 1$$

#### Osnovne karakteristike izvora



Zavod za telekomunikacije

- svaki simbol kojeg izvor generira ima određen stupanj neodređenosti (nepredvidivosti)
  - veća nepredvidivost slijeda znači i prijenos veće količine informacije po simbolu
  - ako izvor nametne određenu strukturu slijedu simbola, nepredvidivost se smanjuje, a s njom i količina informacije po simbolu
- izvor bez memorije
  - promatrano u različitim vremenskim trenucima nema korelacije između simbola na izlazu izvora
- izvori s memorijom
  - u bilo kojem trenutku simbol na izlazu izvora ovisi o jednom ili više simbola koji su generirani prije njega
  - primjer: markovljevi izvori



#### Stacionarni izvor



Statistička svojstva se ne mijenjaju s vremenom

$$P\{(X_1, X_2, ..., X_n) = (x_1, x_2, ..., x_n)\} = P\{(X_{1+l}, X_{2+l}, ..., X_{n+l}) = (x_1, x_2, ..., x_n)\},\$$

$$\forall l, (x_1, x_2, ..., x_n) \in X^n, n > 0$$

- Trivijalan primjer stacionarnog izvora: AEAEAEAEAEAEAE.....
- Trivijalan primjer nestacionarnog izvora: AEAAEEAAAEEEAAAAEEEEAAAAAEEEEE...

#### Ergodički izvor



- Izvor kao skup svih mogućih proizvedenih nizova
  - Prosjek po skupu: prosjek pojavljivanja simbola na nekom mjestu u nizu, gledano među svim nizovima
  - Prosjek po vremenu: učestalost pojavljivanja simbola unutar pojedinog niza
- Ergodičnost: prosjek po skupu = prosjek po vremenu
- Svaki proizvedeni niz ima ista svojstva i ona se ne mijenjaju u vremenu
- Za entropijsko kodiranje promatramo ergodičke izvore (aproksimacija stvarnih izvora)

#### Ergodičnost izvora - primjer



- Izvor počinje 1/3 sa A, 1/3 B i 1/3 E
  - Ako počne sa A ili B ponavlja ih izmjenično
  - Ako počne sa E, ponavlja samo E
  - Skup mogućih nizova:

Niz 1: ABABABABABAB...

Niz 2: BABABABABABA...

Niz 3: EEEEEEEEEEE...

| Simbol | Prosjek po<br>vremenu za niz 1 | Prosjek po<br>vremenu za niz 2 Prosjek po<br>vremenu za niz 3 |   | Prosjek po skupu |  |
|--------|--------------------------------|---------------------------------------------------------------|---|------------------|--|
| Α      | 1/2                            | 1/2                                                           | 0 | 1/3              |  |
| В      | 1/2                            | 1/2                                                           | 0 | 1/3              |  |
| E      | 0                              | 0                                                             | 1 | 1/3              |  |

#### Entropija diskretnog izvora informacije



Zavod za telekomunikacije

za n ≥ 1 moguće je definirati veličinu

$$H_n = \frac{1}{n} H(X_1, X_2, ..., X_n) = -\frac{1}{n} \sum_{x \in A^n} P(a_1, ..., a_n) \log P(a_1, ..., a_n)$$

• a za  $n \ge 2$ 

$$h_n = H(X_n | (X_1, X_2, ..., X_{n-1})) = -\sum_{x \in A^n} P(a_1, ..., a_n) \log P(a_n | (a_1, ..., a_{n-1}))$$

- u oba izraza vrijedi  $x = (a_1, a_2, ..., a_n) \in A^n$
- moguće interpretacije:
  - veličina H<sub>n</sub> je srednja vlastita informacija simbola u nčlanoj poruci
  - h<sub>n</sub> je uvjetna entropija n-tog simbola ako je poznato prethodnih n-1 simbola

#### Entropija diskretnog izvora informacije (2)



Zavod za telekomunikacije

#### Teorem:

- ako je niz  $h_n$  (n = 2, 3, ...) konvergentan,
- ako je niz  $H_n$  (n = 1, 2, ...) konvergentan,
- tada vrijedi:
- veličinu  $H_n \ge 0$  nazivamo **entropija** zadanog diskretnog stacionarnog **izvora informacije** 
  - prosječna informacija koju "nosi" svaki pojedini simbol poslan iz zadanog izvora informacije

#### Entropija izvora bez memorije



Zavod za telekomunikacije

• ako diskretni stacionarni izvor emitira simbole iz A s jednakom vjerojatnošću, tj.  $P(\alpha_i) = p_i \ge 0$  u bilo kojem trenutku  $t_k$  tada vrijedi  $\sum_{p_i=1}^{m} p_i = 1$ 

$$P(a_1,a_2,\ldots,a_n)=P(a_1)\cdot P(a_2)\cdot \ldots \cdot P(a_n)$$

- nadalje vrijedi:  $P(a_n | (a_1, a_2, ..., a_{n-1})) = \frac{P(a_1, a_2, ..., a_n)}{P(a_1, a_2, ..., a_{n-1})} = P(a_n)$
- ovakav se izvor naziva izvor bez memorije
  - slanje simbola u sadašnjem trenutku stohastički je neovisno o prethodno poslanim simbolima
- entropija izvora bez memorije

$$H_{n} = \frac{1}{n} \left[ H(X_{1}) + ... + H(X_{n}) \right] = H(X_{1}) = -\sum_{i=1}^{m} p_{i} \log(p_{i})$$

■ također vrijedi:  $h_n = H_n$ 



# Izvori s memorijom – primjer: markovljevi izvori

#### Markovljevi lanci



Zavod za telekomunikacije

- niz diskretnih slučajnih varijabli X<sub>0</sub>, X<sub>1</sub>, X<sub>2</sub>, ... naziva se stohastički lanac
- svaka varijabla opisuje stanje nekog sustava u trenucima
   t<sub>0</sub>, t<sub>1</sub>, t<sub>2</sub>, ...
- pretpostavka: S = {1, 2, 3, ...} je skup svih stanja u kojima se lanac može nalaziti
  - ovaj skup može biti konačan ili beskonačan
  - za modeliranje većine izvora pretpostavka je da je skup S konačan
- definicija markovljevog lanca
  - lanac  $X_0$ ,  $X_1$ ,  $X_2$ , ... je **markovljev** ako za sve izbore stanja  $i_1$ , ...,  $i_n$  vrijedi  $P(X_{n+1}=i_{n+1}|X_n=i_n,...,X_0=i_0)=P(X_{n+1}=i_{n+1}|X_n=i_n)$
  - $\blacksquare$   $t_n$  predstavlja sadašnjost
  - stanje u budućnosti ovisi samo o sadašnjem stanju, ali ne i o načinu na koji je slučajni proces došao u to stanje

#### Matrica prijelaznih vjerojatnosti



Zavod za telekomunikacije

- ako vrijedi:  $p_{ij} = P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i)$ 
  - lanac je **homogen**, tj. prijelazne vjerójatnosti ovise samó o stanjima *i* i *j*, a ne o trenutku prijelaza
- matrica prijelaznih vjerojatnosti daje vjerojatnosti prijelaza iz jednog stanja u drugo, u jednom koraku markovljevog lanca
- ako je skup stanja  $S = \{1, 2, ..., N\}$ , tada je matrica prijelaznih vjerojatnosti matrica dimenzije  $N \times N$

$$\Pi = \begin{bmatrix} P(1 \mid 1) & P(2 \mid 1) & \dots & P(N \mid 1) \\ P(1 \mid 2) & P(2 \mid 2) & \dots & P(N \mid 2) \\ \vdots & \vdots & \ddots & \vdots \\ P(1 \mid N) & P(2 \mid N) & \dots & P(N \mid N) \end{bmatrix} \xrightarrow{P(j \mid i) \geq 0} P(j \mid i) = 1, \forall i = 1, \dots, N$$

# Svojstva matrice prijelaznih vjerojatnosti



Zavod za telekomunikacije

- vjerojatnost da se izvor nalazi u nekom određenom stanju varira tijekom vremena
- vjerojatnost da sustav pređe iz stanja i u stanje j u m koraka

$$p_{ij}(m) = P(X_{n+m} = j | X_n = i)$$

- pri čemu vrijedi:  $p_{ij}(1) = p_{ij} = P(j|i)$  i  $\Pi(1) = \Pi$
- vjerojatnosti  $p_{ij}(m)$  zadovoljavaju Chapman-Kolmogorovljeve jednadžbe

$$p_{ij}(m) = \sum_{k} p_{ik}(r) p_{kj}(m-r), \forall r=1,2,...,m-1$$

• odnosno u matričnom obliku  $\Pi(m) = \Pi(r)\Pi(m-r)$   $\Pi(m) = \Pi^m$ 

#### Stanje izvora u nekom trenutku



Zavod za telekomunikacije

- označimo vjerojatnost da se izvor u trenutku  $t_n$  nalazi u stanju i kao  $p_i(n) := P(X_n = i)$
- tada je razdiobu tih vjerojatnosti moguće opisati vektorom

$$\mathbf{p}(n) = \left[ p_1(n), p_2(n), ..., p_N(n) \right] \qquad \sum_{i=1}^{N} p_i(n) = 1, \forall n \in \mathbf{N}$$

 ako je p(0) vektor početnih vjerojatnosti, tada se stanje izvora u trenutku t<sub>n</sub> može opisati kao

$$\mathbf{p}(n)=\mathbf{p}(0)\mathbf{\Pi}^n$$

• a vezu između dva uzastopna vremenska trenutka opisuje izraz  $\mathbf{p}(n) = \mathbf{p}(n-1)\mathbf{\Pi}$ 

# Stacionarne vjerojatnosti



Zavod za telekomunikacije

- ponekad je važno poznavati ponašanje izvora nakon duljeg vremenskog razdoblja
- teorem: ako postoji broj n takav da su svi elementi matrice Π<sup>n</sup> strogo pozitivni (to znači da se u n koraka može iz svakog stanja preći u bilo koje drugo stanje), tada za svaki j postoji (i ne ovisi o i)

$$\pi_{j} = \lim_{n \to \infty} p_{ij}(n)$$

- koji ne ovisi o i
  - $\blacksquare$   $\pi_i$  su stacionarne vjerojatnosti
    - predstavljaju vjerojatnosti da će izvor u nekom dalekom trenutku (kad nestane utjecaj početnog stanja) generirati simbol j
  - markovljev lanac za kojeg postoji gore navedeni limes naziva se ergodični ili regularan

# Određivanje stacionarnih vjerojatnosti



Zavod za telekomunikacije

• početne jednadžbe:  $\mathbf{p}(n) = \mathbf{p}(n-1)\mathbf{\Pi}$ 

$$p_{j}(n) = \sum_{k} p_{k}(n-1) p_{kj}$$

ako postoje stacionarne vjerojatnosti, onda vrijedi:

$$\pi_{j} = \lim_{n \to \infty} p_{j}, \quad \pi_{j} = \sum_{k} \pi_{k} p_{kj}, \forall j, \quad \sum_{k} \pi_{k} = 1$$
• ili u matričnom obliku:  $\mathbf{\Pi}^{T} \boldsymbol{\pi} = \boldsymbol{\pi}$ 

- primjer:
  - zadana je matrica

$$\Pi = \begin{bmatrix} 0,25 & 0,5 & 0,25 \\ 0,5 & 0,0 & 0,5 \\ 0,0 & 0,25 & 0,75 \end{bmatrix}$$

$$oldsymbol{\Pi}^{ ext{T}} egin{bmatrix} \pi_1 \ \pi_2 \ \pi_3 \end{bmatrix} = egin{bmatrix} \pi_1 \ \pi_2 \ \pi_3 \end{bmatrix}$$

zadana je matrica
$$\Pi = \begin{bmatrix} 0,25 & 0,5 & 0,0 \\ 0,5 & 0,0 & 0,25 \\ 0,5 & 0,0 & 0,5 \\ 0,0 & 0,25 & 0,75 \end{bmatrix}$$

$$\Pi^{T} \begin{bmatrix} \pi_{1} \\ \pi_{2} \\ \pi_{3} \end{bmatrix} = \begin{bmatrix} \pi_{1} \\ \pi_{2} \\ \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} 0,25 & 0,5 & 0,0 \\ 0,5 & 0,0 & 0,25 \\ 0,25 & 0,5 & 0,75 \end{bmatrix}
\begin{bmatrix} \pi_{1} \\ \pi_{2} \\ \pi_{3} \end{bmatrix} = \begin{bmatrix} \pi_{1} \\ \pi_{2} \\ \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} \pi_{1} \\ \pi_{2} \\ \pi_{3} \end{bmatrix} = \begin{bmatrix} 2/13 \\ 3/13 \\ 8/13 \end{bmatrix}$$

#### Markovljev izvor – primjer izvora s memorijom



Zavod za telekomunikacije

- markovljev izvor (A, P) modeliramo markovljevim lancom
  - pretpostavka: vjerojatnost slanja simbola  $a_n$  u trenutku  $t_n$  ovisi samo o prethodno slanom simbolu  $a_{n-1}$
  - proces generiranja informacije potpuno je određen ako su poznate
  - a) razdioba početnih vjerojatnosti p<sub>i</sub> = P(X<sub>i</sub> = α<sub>i</sub>) ≥ 0
     i = 1, 2, ..., N, ∑ p<sub>i</sub> = 1
  - b) matrica Π prijelaznih vjerojatnosti
    - čiji su elementi  $p_{ij} = P(X_k = \alpha_j | X_{k+1} = \alpha_i) \ge 0$ ;  $i, j = 1, 2, ..., N, \sum_{i} p_{ij} = 1$
  - ovako opisan izvor naziva se jednostavni markovljev izvor informacije

# Entropija jednostavnog markovljevog izvora



Zavod za telekomunikacije

- uzmimo n > 2 i napišimo  $P(a_n | (a_1,...,a_{n-1})) = \frac{P(a_1,...,a_{n-1},a_n)}{P(a_1,...,a_{n-1})}$
- pa za jednostavan markovljev izvor vrijedi

$$P(a_n|(a_1,...,a_{n-1}))=P(a_n|a_{n-1}),(a_1,...,a_n)\in A^n$$

- izvor ima memoriju prvog reda
  - izvor bez memorije ima memoriju nultog reda
- entropija jednostavnog markovljevog izvora

$$H = \lim_{n \to \infty} (h_n) = -\sum_{i=1}^{N} p_i \sum_{j=1}^{N} p_{ij} \log(p_{ij})$$

# Markovljev izvor s dva stanja



 $1 - \alpha$ 

zadane prijelazne vjerojatnosti:

$$\alpha = P(X_1 = 0 | X_0 = 0), \beta = P(X_1 = 1 | X_0 = 1)$$

■ 
$$0 < \alpha, \beta < 1$$

vrijedi:

$$0 < \alpha, \beta < 1$$

• stacionarne vjerojatnosti: 
$$\pi_1 = \frac{1-\beta}{2-\alpha-\beta}, \pi_2 = \frac{1-\alpha}{2-\alpha-\beta}$$

$$\Pi = \begin{bmatrix} \alpha & 1 - \alpha \\ 1 - \beta & \beta \end{bmatrix}$$

#### Prikaz markovljevog izvora grafom



- markovljev izvor određen je:
  - abecedom izvora, A,
  - $\blacksquare$  skupom stanja,  $\Sigma$ ,
  - skupom prijelaza između stanja,
  - skupom oznaka pridruženih prijelazima
    - te su oznake simboli iz abecede izvora
  - s dva skupa vjerojatnosti
    - prvi skup se odnosi na početnu razdiobu vjerojatnosti definiranu nad skupom stanja
    - drugi skup je skup vjerojatnosti pridruženih prijelazima između stanja za svaki par stanja  $\sigma_i$  i  $\sigma_j$  definirana je vjerojatnost prijelaza iz stanja  $\sigma_i$  u stanje  $\sigma_j$ , označena kao  $P(j|i) = P(X_{n+1} = j | X_n = i)$
  - stanja se u grafu prikazuju čvorovima, a prijelazi između stanja granama kojima su pridružene oznake

#### Primjer 1: graf markovljevog izvora



Zavod za telekomunikacije

- razmotrimo markovljev izvor definiran abecedom  $\{0, 1\}$  i skupom stanja  $\Sigma = \{\sigma_1, \sigma_2, \sigma_3\}$
- definirana su četiri prijelaza između stanja
  - $\sigma_1 \rightarrow \sigma_2$ , s oznakom 1 i vjerojatnošću P(2|1) = 1,0
  - $\sigma_2 \rightarrow \sigma_3$ , s oznakom 0 i vjerojatnošću P(3|2) = 1,0
  - $\sigma_3 \rightarrow \sigma_1$ , s oznakom 1 i vjerojatnošću P(1|3) = 0.6
  - $\sigma_3 \rightarrow \sigma_2$ , s oznakom 0 i vjerojatnošću P(2|3) = 0.4

■ razdioba početnih vjerojatnosti:

•  $P(\sigma_1) = P(\sigma_2) = P(\sigma_3) = 1/3$ 



# Primjer 2: pamćenje dva zadnja simbola



Zavod za telekomunikacije

 Vjerojatnost pojave simbola ovisi o dva prethodna simbola "zapamćena" u trenutnom stanju izvora



Stacionarne vjerojatnosti

$$P(00) = 0.4$$

$$P(01) = 0.3$$

$$P(10) = 0.2$$

$$P(11) = 0.1$$



# Kodiranje



#### Kodiranje



Dodjela kodnih riječi simbolima poruke

$$X = \{x_{1}, x_{2}, ..., x_{i}, ..., x_{n}\}$$

$$x_{i} \in X \xrightarrow{KODIRANJE} C(x_{i})$$

$$C(x_{i}) \in D^{*}, D = \{a_{1}, a_{2}, ..., a_{d}\},$$

- Kodiranje sa svojstvom sažimanja: kompresija
- U praksi gotovo uvijek binarna abeceda
  - $\mathbf{D} = d = 2$ ,  $D = \{0,1\}$
  - Izlaz kodera: struja bitova (engl. bitstream)



#### Prosječna duljina kodne riječi



- Duljina pojedine kodne riječi: l(x<sub>i</sub>), skraćeno l<sub>i</sub>
  - broj simbola koji čine tu kodnu riječ
- Prosječna duljina kodne riječi (prosječna duljina koda):  $L = \sum_{i=1}^{n} p(x_i) l(x_i) = \sum_{i=1}^{n} p_i l_i$

- Za dugačku poruku od N simbola, očekivana duljina kodirane poruke je NL
- L [bit/simbol] je mjera efikasnosti koda

# Primjer kodiranja 1



| SIMBOL (x <sub>i</sub> ) | VJEROJATNOST POJAVLJIVANJA $p(x_i) = p_i$ | KODNA RIJEČ (C <sub>i</sub> ) | DULJINA KODNE RIJEČI (I <sub>i</sub> ) |
|--------------------------|-------------------------------------------|-------------------------------|----------------------------------------|
| 1                        | 1/2                                       | 0                             | 1                                      |
| 2                        | 1/4                                       | 10                            | 2                                      |
| 3                        | 1/8                                       | 110                           | 3                                      |
| 4                        | 1/8                                       | 111                           | 3                                      |

#### Prosječna duljina kodne riječi:

$$L = \sum_{i=1}^{n} p_i l_i = 0.5 \cdot 1 + 0.25 \cdot 2 + 0.125 \cdot 3 + 0.125 \cdot 3 = 1.75 [bit / simbol] = H(X)$$

# Primjer kodiranja 2



|       |    | 4 1 |             |       |     | • • |     |    |
|-------|----|-----|-------------|-------|-----|-----|-----|----|
| Zavod | 72 | tΔl | <b>ek</b> c | m     | ıın | ık  | acı | 11 |
|       | Zu | CO  | CILC        | ,,,,, | чп  | 111 | uvi | ľ  |
|       |    |     |             |       |     |     |     |    |

| SIMBOL (x <sub>i</sub> ) | VJEROJATNOST POJAVLJIVANJA $p(x_i) = p_i$ | KODNA RIJEČ (C <sub>i</sub> ) | DULJINA KODNE RIJEČI (I <sub>i</sub> ) |
|--------------------------|-------------------------------------------|-------------------------------|----------------------------------------|
| 1                        | 1/3                                       | 0                             | 1                                      |
| 2                        | 1/3                                       | 10                            | 2                                      |
| 3                        | 1/3                                       | 11                            | 2                                      |

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i = -\log \frac{1}{3} = 1.58 \text{ [bit/simbol]},$$

$$L = \sum_{i=1}^{n} p_i l_i = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 2 = 1.66 \text{ [bit/simbol]}.$$

#### Vrste kodova







#### Nesingularni kodovi



 Kod je nesingularan ako svakom simbolu dodjeljuje drugačiju kodnu riječ

$$x_i \neq x_j \Longrightarrow C(x_i) \neq C(x_j)$$

- To nije garancija jednoznačnosti
- Primjer:
  - Simboli A, B, C; kod:
  - C(A) = 0, C(B) = 01 i C(C) = 1
  - "ABC" → "0011"
  - **■** "0011" → ?



#### Jednoznačno dekodabilni kodovi



$$x \xrightarrow{KOD} C(x)$$

$$x_1 x_2 ... x_n \xrightarrow{PROŠIRENIKOD} C(x_1 x_2 ... x_n) = C(x_1)C(x_2)...C(x_n)$$

- Kod jednoznačno dekodabilan ako je proširenje nesingularno
  - Različite poruke → različite kodirane poruke
- Primjer:
  - Simboli A, B, C; kod: C(A) = 0, C(B) = 01 i C(C) = 011
  - "ABC" → "001011" → "ABC"
  - **■** "001..." → ?
- Ne može se trenutno dekodirati



# Prefiksni (trenutni) kodovi



- Prefiksni kod je kod u kojem niti jedna kodna riječ nije prefiks neke druge kodne riječi
- Svaka kodna riječ se može trenutno dekodirati, bez znanja iduće kodne riječi
- U prethodnom primjeru, problem je upravo u tome što su kodne riječi jedna drugoj prefiks

# Vrste kodova: primjer



|                          | VRSTA KODA |              |                            |           |  |
|--------------------------|------------|--------------|----------------------------|-----------|--|
| SIMBOL (x <sub>i</sub> ) | SINGULARNI | NESINGULARNI | JEDINSTVENO<br>DEKODABILNI | PREFIKSNI |  |
| 1                        | 0          | 0            | 10                         | 0         |  |
| 2                        | 0          | 010          | 00                         | 10        |  |
| 3                        | 0          | 01           | 11                         | 110       |  |
| 4                        | 0          | 10           | 110                        | 111       |  |
| "1234" →                 | 0000       | 00100110     | 100011110                  | 010110111 |  |
| Dekodirano               | ?          | ?            | 1234                       | 1234      |  |
| Prvih 6 simbola          | ?          | ?            | ? (123 ili 124)            | 123       |  |



# Kraftova nejednakost



 Za svaki prefiksni kod sa abecedom od d simbola i duljinama kodnih riječi l<sub>1</sub>, l<sub>2</sub>, ..., l<sub>n</sub> vrijedi:

$$\sum_{i=i}^n d^{-l_i} \le 1$$

i obrnuto, za bilo koji skup duljina kodnih riječi *l*<sub>i</sub> koje zadovoljavaju ovu nejednakost, postoji prefiksni kod s takvim duljinama kodnih riječi.

 Određuje minimalne duljine kodnih riječi potrebne za prefiksni kod

# Kraftova nejednakost – primjeri



- 1. Prethodni primjer koda {0, 10, 110, 111}
  - Binarna abeceda, *d*=2

$$\sum_{i=i}^{n} 2^{-l_i} \le 1$$

$$2^{-1} + 2^{-2} + 2^{-3} + 2^{-3} = 1$$

- Nema kraćeg koda
- 2. Tražimo kod za tri simbola

$$2^{-1} + 2^{-2} + 2^{-2} = 1 = > mora postojati pref. kod duljina 1, 2, 2$$

# Optimalni kodovi (1/2)



- Općenito, više kodova zadovoljava K.N.; koji je optimalan?
  - npr: {0, 10, 110, 111}, {111, 0, 10, 110}...
- Optimalan kod: prefiksni kod sa najmanjom mogućom prosječnom duljinom kodne riječi

$$\min \left[ L = \sum_{i=1}^{n} p_i l_i \right] \text{ uz uvjet } \sum_{i=1}^{n} d^{l_i} \le 1$$

# Optimalni kodovi (2/2)



Minimum se dobiva za:

$$l_i^* = -\log_d p_i \Rightarrow L = -\sum_{i=1}^n p_i \log_d p_i = H(X)$$

 Ali l<sub>i</sub> moraju biti cijeli brojevi, pa se ne može uvijek postići L=H:

$$L \ge H(X)$$

- \* Za optimalni kod, prosječna duljina kodne riječi je unutar jednog bita od entropije:  $H(X) \le L < H(X) + 1$
- Efikasnost koda:  $\varepsilon = \frac{H(X)}{L}$

# Metode entropijskog kodiranja



- Shannon-Fanoovo kodiranje
- Huffmanovo kodiranje
  - optimalno kodiranje
  - binarno stablo
  - kraći zapis čestih znakova
- Aritmetičko kodiranje
  - poopćenje Huffmanovog kodiranja
  - cijela poruka se pretvara u jednu kodnu riječ
- Metode rječnika
  - isti rječnik kodnih riječi na strani pošiljatelja i primatelja
  - dinamička konstrukcija rječnika
  - Lempel-Ziv (LZ77, LZ78), Lempel-Ziv-Welch (LZW)
- Metode skraćivanja niza
  - potiskivanje nula, slijedno kodiranje

# Shannon-Fanoovo kodiranje



- Jedna je od prvih metoda kodiranja utemeljenih na teoriji informacije
- Ne daje uvijek optimalan kod
  - Vrlo rijetko se koristi
- Zasniva se na željenim svojstvima kôda:
  - Niti jedna kodna riječ ne smije biti prefiks neke druge kodne riječi;
  - Želimo da se u kodiranim porukama simboli 0 i 1 pojavljuju s podjednakom vjerojatnošću.

# Shannon-Fanoovo kodiranje: postupak



- Posložiti simbole po padajućim vjerojatnostima
- Podjela simbola u grupe
- Dodjela znamenke 0 jednoj, a 1 drugoj grupi
- Postupak se ponavlja dok se grupe ne svedu na 1 simbol

# Shannon-Fanoovo kodiranje: primjer



| <b>X</b> <sub>i</sub>           | $p(x_i)$ | KORAK 1 | KORAK 2 | KORAK 3 | KORAK 4 | KODNA RIJEČ | DULJINA<br>KODNE<br>RIJEČI |
|---------------------------------|----------|---------|---------|---------|---------|-------------|----------------------------|
| $x_1$                           | 0.25     | 0       | 0       |         |         | 00          | 2                          |
| $x_2$                           | 0.25     | 0       | 1       |         |         | 01          | 2                          |
| $x_3$                           | 0.125    | 1       | 0       | 0       |         | 100         | 3                          |
| $x_4$                           | 0.125    | 1       | 0       | 1       |         | 101         | 3                          |
| $x_5$                           | 0.0625   | 1       | 1       | 0       | 0       | 1100        | 4                          |
| $x_6$                           | 0.0625   | 1       | 1       | 0       | 1       | 1101        | 4                          |
| $x_7$                           | 0.0625   | 1       | 1       | 1       | 0       | 1110        | 4                          |
| $x_8$                           | 0.0625   | 1       | 1       | 1       | 1       | 1111        | 4                          |
| Prosječna duljina kodne riječi: |          |         |         |         | 2.75    |             |                            |

# SF kodiranje: kada je kod optimalan?



Zavod za telekomunikacije

• Kada su vjerojatnosi simbola raspoređene prema:

$$p(x_i) = 2^{-l_i}$$

- Gdje je I<sub>i</sub> duljina odgovarajuće kodne riječi
- Npr:

$$p(x_1) = 2^{-2} = \frac{1}{4} \qquad p(x_4) = 2^{-3} = \frac{1}{8}$$

$$p(x_2) = 2^{-2} = \frac{1}{4} \qquad p(x_5) = 2^{-4} = \frac{1}{16}$$

$$p(x_3) = 2^{-2} = \frac{1}{4} \qquad p(x_6) = 2^{-4} = \frac{1}{16}$$

# Huffmanovo kodiranje



- D. A. Huffman, 1952. godine
- Kodira pojedinačne simbole kodnim riječima promjenjive duljine, ovisno o (poznatim!) vjerojatnostima njihova pojavljivanja
- Temelji se na dvije jednostavne činjenice:
  - (1) U optimalnom kodu, simboli s većom vjerojatnošću pojavljivanja imaju kraće kodne riječi od onih s manjom vjerojatnošću
  - (2) U optimalnom kodu, dva simbola s najmanjim vjerojatnostima imaju kodne riječi jednake duljine (vrijedi za prefiksni kod)
- Ishod: sažetiji zapis (npr. tipičan tekst se sažima za 45%)

# Huffmanovo kodiranje – tvrdnja 2?



- (2) U optimalnom kodu, dva simbola s najmanjim vjerojatnostima imaju kodne riječi jednake duljine (vrijedi za prefiksni kod)
- Zamislimo da nemaju!
  - kodne riječi A i B
  - A ima k bitova više od B
  - prefiksni kod -> B sigurno nije prefiks od A
  - možemo ukloniti višak bitova (k) iz riječi A (A i B će ostati različiti)
  - uvjet: optimalni kod ostale riječi sigurno nisu duže od skraćenog A
    - slijedi: A sigurno nije niti prefiks neke druge kodne riječi
  - dakle: moguće je napraviti kraći kod koji je optimalan
    - tvrdnja 2 vrijedi!

# Huffmanovo kodiranje: postupak



- Algoritam stvaranja koda:
  - 1. Sortiraj simbole po padajućim vjerojatnostima
  - 2. Pronađi dva simbola s najmanjim vjerojatnostima
  - 3. Jednom od njih dodijeli simbol "0", drugom "1"
  - 4. Kombiniraj ta dva simbola u jedan nadsimbol (nadsimbol je novi simbol čija je vjerojatnost pojavljivanja jednaka zbroju vjerojatnosti pojavljivanja dvaju simbola od kojih je nastao) i zapiši ih kao dvije grane binarnog stabla, a nadsimbol kao račvanje iznad njih
  - 5. Ponavljaj 1-4 dok ne dobiješ samo jedan nadsimbol
  - 6. Povratkom kroz stablo očitaj kodove
- Podatkovna struktura algoritma je binarno stablo
- Algoritam dekodiranja koristi isti postupak za gradnju stabla
  - Dekoder mora znati vjerojatnosti pojavljivanja simbola

# Huffmanovo kodiranje: primjer



Zavod za telekomunikacije

- Skup simbola {A, B, C, D, E} s vjerojatnostima pojavljivanja
   p(A) = 0.16, p(B) = 0.51, p(C) = 0.09, p(D) = 0.13, p(E) = 0.11
- \* Za uniformni kod, prosječna duljina koda je **3 bit/simbol** (jer je  $2^2 \le 5 \le 2^3$ ).
- Entropija: 1.96 bit/simbol

B ... 1 
$$p(B) = 0.51$$
 — 0.51 — 0.51 — 0.51 — 1.00  
A ... 011  $p(A) = 0.16$  — 0.13 — 0.13 — 0.13 — 0.29 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0.20 — 0

Prosječna duljina dobivenog koda u našem slučaju je:

$$L = \sum_{x \in X} p_x l_x = 3 \times (0.09 + 0.11 + 0.13 + 16) + 0.51 = 1.98 \text{ bit/simbol}$$

### Huffmanovo kodiranje: svojstva



- kodiranje je idealno ako su vjerojatnosti 1/2, 1/4, ... ,1/2<sup>n</sup>
- u stvarnim slučajevima to obično nije slučaj, te rezultat ovisi o vjerojatnostima pojavljivanja simbola
- prednosti:
  - jednostavan za izvedbu
  - vrlo dobro kodiranje za "dobre" vjerojatnosti pojavljivanja simbola
- nedostaci:
  - vjerojatnosti pojavljivanja simbola moraju biti poznate; ovise o primjeni (tekst, slika)
  - za "loše raspoređene" vjerojatnosti pojavljivanja dobiju se izrazito loši kodovi
- dekoder mora poznavati tablicu tj. stablo (frekvencije simbola)!



# Huffman i Shanon-Fano

Primjer "Hello world"

# Primjer



- kodiramo frazu "HELLO WORLD"
- npr. ASCII?
  - **72** 69 76 76 79 32 87 79 82 76 68
  - - 88 bitova za 11 znakova!
- kompresija!

# Primjer



### "HELLO WORLD"

| SIMBOL   | POJAVLJIVANJA | p(xi) |
|----------|---------------|-------|
| Н        | 1             | 0.091 |
| E        | 1             | 0.091 |
| L        | 3             | 0.273 |
| 0        | 2             | 0.182 |
| (razmak) | 1             | 0.091 |
| W        | 1             | 0.091 |
| R        | 1             | 0.091 |
| D        | 1             | 0.091 |

## Shannon-Fano



| SIMBOL   | p(x <sub>i</sub> ) |       |   |       |   | 1     |   |   |
|----------|--------------------|-------|---|-------|---|-------|---|---|
| L        | 0.273              |       | 0 | 0.273 | 0 |       | , |   |
| 0        | 0.182              | 0.546 | 0 | 0.273 | 1 | 0     |   |   |
| (razmak) | 0.091              | 0     | 0 | 0.273 | 1 | 1     |   | _ |
| W        | 0.091              |       | 1 |       | 0 | 0.182 | 0 | 0 |
| R        | 0.091              |       | 1 | 0.273 | 0 | 0.182 | 0 | 1 |
| D        | 0.091              | 0.455 | 1 |       | 0 | 0.091 | 1 |   |
| Н        | 0.091              |       | 1 | 0.182 | 1 | 0     |   |   |
| Е        | 0.091              |       | 1 | 0.162 | 1 | 1     |   |   |

| C(x <sub>i</sub> ) |  |
|--------------------|--|
| 00                 |  |
| 010                |  |
| 011                |  |
| 1000               |  |
| 1001               |  |
| 101                |  |
| 110                |  |
| 111                |  |
|                    |  |

### Shannon – Fano vs ASCII



| Simbol | p(xi) | C(xi) |
|--------|-------|-------|
| L      | 0.273 | 00    |
| 0      | 0.182 | 010   |
| Е      | 0.091 | 111   |
| Н      | 0.091 | 110   |
| razmak | 0.091 | 011   |
| W      | 0.091 | 1000  |
| R      | 0.091 | 1001  |
| D      | 0.091 | 101   |

"HELLO WORLD"

■ 110 111 00 00 010 011 1000 010 1001 00 101 H E L L O \_ W O R L D

■ 32 bita naspram 88 bitova

### Shannon-Fano



| Simbol | p(xi) | C(xi) |
|--------|-------|-------|
| L      | 0.273 | 00    |
| 0      | 0.182 | 010   |
| Е      | 0.091 | 111   |
| Н      | 0.091 | 110   |
| razmak | 0.091 | 011   |
| W      | 0.091 | 1000  |
| R      | 0.091 | 1001  |
| D      | 0.091 | 101   |

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i = -(6 \cdot (0.091 \cdot \log 0.091) + 0.273 \cdot \log 0.273 + 0.182 \cdot \log 0.182 = 2.85 \text{ [bit/simbol]}$$

$$L = \sum_{i=1}^{8} p_i l_i = 0.273 \cdot 2 + 4 \cdot (0.091 \cdot 3) + 2 \cdot (0.091 \cdot 4) + 0.182 \cdot 3 = 2.912 \text{ [bit/simbol]}$$

$$L = \sum_{i=1}^{8} p_i l_i = 0.273 \cdot 2 + 4 \cdot (0.091 \cdot 3) + 2 \cdot (0.091 \cdot 4) + 0.182 \cdot 3 = 2.912 [\text{bit/simbol}]$$

## Huffman





| Simbol | p(xi) | C(xi) |
|--------|-------|-------|
| اــ    | 0.273 | 10    |
| 0      | 0.182 | 111   |
| E      | 0.091 | 000   |
| Н      | 0.091 | 001   |
| razmak | 0.091 | 1101  |
| W      | 0.091 | 1100  |
| R      | 0.091 | 011   |
| D      | 0.091 | 010   |

### Huffman



| Simbol | p(xi) | C(xi) |
|--------|-------|-------|
| L      | 0.273 | 10    |
| 0      | 0.182 | 111   |
| Е      | 0.091 | 000   |
| Н      | 0.091 | 001   |
| razmak | 0.091 | 1101  |
| W      | 0.091 | 1100  |
| R      | 0.091 | 011   |
| D      | 0.091 | 010   |

"HELLO WORLD"

- SF: 110 111 00 00 010 011 1000 010 1001 00 101

HELLO WORLD

- H: 001 000 10 10 111 1101 1100 111 011 10 010

### Huffman



| Simbol | p(xi) | C(xi) |
|--------|-------|-------|
| L      | 0.273 | 10    |
| 0      | 0.182 | 111   |
| E      | 0.091 | 000   |
| Н      | 0.091 | 001   |
| razmak | 0.091 | 1101  |
| W      | 0.091 | 1100  |
| R      | 0.091 | 011   |
| D      | 0.091 | 010   |

$$L = \sum_{i=1}^{8} p_i l_i = 0.273 \cdot 2 + 4 \cdot (0.091 \cdot 3) + 2 \cdot (0.091 \cdot 4) + 0.182 \cdot 3 = 2.912 [bit/simbol]$$

# Primjer lošeg koda



| Simbol         | Vjerojatnost | Kodna<br>riječ |
|----------------|--------------|----------------|
| a <sub>1</sub> | 0.95         | 1              |
| $a_2$          | 0.02         | 01             |
| $a_3$          | 0.03         | 00             |

- Entropija: 0.335 bit/simbol
- Prosječna duljina:1.05 bit/simbol: 213% više od entropije!!
- Problem: a<sub>1</sub> se često ponavlja Huffman "nema rješenje"
- Ipak: kod je optimalan

#### Prošireni Huffmanov kod



|                                             | PROŠIRENI KOD |             |  |  |
|---------------------------------------------|---------------|-------------|--|--|
| Simbol                                      | Vjerojatnost  | Kodna riječ |  |  |
| a <sub>1</sub> a <sub>1</sub>               | 0.9025        | 0           |  |  |
| a <sub>1</sub> a <sub>2</sub>               | 0.0190        | 111         |  |  |
| a <sub>1</sub> a <sub>3</sub>               | 0.0285        | 100         |  |  |
| a <sub>2</sub> a <sub>1</sub>               | 0.0190        | 1101        |  |  |
| $a_2a_2$                                    | 0.0004        | 110011      |  |  |
| $a_2a_3$                                    | 0.0006        | 110001      |  |  |
| a <sub>3</sub> a <sub>1</sub>               | 0.0285        | 101         |  |  |
| $a_3a_2$                                    | 0.0006        | 110010      |  |  |
| <b>a</b> <sub>3</sub> <b>a</b> <sub>3</sub> | 0.0009        | 110000      |  |  |

- Ideja: kombinacija više simbola
  - ukupno n<sup>m</sup> simbola
  - n=3, m=2 -> 9 simbola
- Prošireni kod: L=1.222
  - dijelimo s m=2 = 0.611 bit/simbol:72% više od entropije.
- Bolje je kodirati duže sekvence (blokove), ali tada broj kodnih riječi raste eksponencijalno
  - kompleksnije

# Huffmanovo kodiranje: primjene



Česta primjena unutar složenijih algoritama

- Primjeri:
  - standardi za telefaks (T.4, T.6)
  - standard za nepomičnu sliku JPEG
  - DEFLATE (ZIP)
  - mp3
- Jedan od razloga
  - "bolja" kodiranja patenti

# Aritmetičko kodiranje



- Autori Pasco & Rissanen (nezavisno), 1976. godine
- Djelomično princip proširenog Huffman kodiranja
- Algoritam uzima kao ulaz cijele nizove simbola ("poruke") i preslikava ih na realne brojeve, ovisno o (poznatim!) statističkim svojstvima
- Patenti (IBM)

# Aritmetičko kodiranje: postupak



- 1. Podijeli interval [0, 1) u n podintervala koji odgovaraju simbolima iz abecede; duljina svakog podintervala proporcionalna vjerojatnosti odgovarajućeg simbola
- 2. Iz promatranog skupa podintervala, odaberi podinterval koji odgovara sljedećem simbolu u poruci
- 3. Podijeli taj podinterval u n novih podintervala, proporcionalno vjerojatnostima pojavljivanja simbola iz abecede; tako nastaje novi skup podintervala koji promatramo
- 4. Ponavljaj korake 2 i 3 dok cijela poruka nije kodirana
- 5. Konačni kod za čitavu poruku je jedan broj iz intervala u binarnom obliku



# Aritmetičko kodiranje: primjer (1)



- M=2
- simboli: X, Y p(X) = 2/3p(Y) = 1/3
- poruka duljine 2
   (moguće poruke
   XX, XY, YX, YY)
   kodira se onim
   brojem bita
   dovoljnim za
   jedinstveno
   određivanje
   intervala
   (binarni razlomak!)



# Aritmetičko kodiranje: primjer (2)



- primjer za poruku duljine 3
- *M*=3
- simboli:

$$X, Y$$
 $p(X) = 2/3$ 
 $p(Y) = 1/3$ 



## Postupak dekodiranja



- Podijeli početni interval [0, 1) u podintervale po vjerojatnostima pojavljivanja simbola
- 2. Uzmi primljeni kod kao realni broj
- 3. Pronađi podinterval u kojem se nalazi broj (kod)
- 4. Zapiši simbol koji odgovara tom podintervalu
- Podijeli taj podinterval u n novih podintervala, proporcionalno vjerojatnostima pojavljivanja simbola iz abecede; tako nastaje novi skup podintervala koji promatramo
- 6. Ponavljaj korake 3-5 dok ne dođe kraj poruke

# Dekodiranje: primjer



primjer za poruku duljine 3

- *M*=3
- simboli:

X, Y  

$$p(X) = 2/3$$
  
 $p(Y) = 1/3$ 

Primljeni kod
 1111 tj. 15/16



#### Odabir koda



- Kojim brojem iz podintervala kodirati poruku?
- Može se uzeti bilo koja vrijednost iz podintervala
- Dovoljan broj znamenki:

$$l(x) = \left\lceil \log \frac{1}{P(x)} \right\rceil + 1 \text{ [bit]}$$

- P(x) duljina promatranog podintervala!
- Na ovakav način dobiva se uvijek prefiksni kod

# Primjer – praktičniji postupak (zbirka!)



- Definiramo granice D (donja) i G (gornja)
- Prvi simbol -> D=0, G=1
- Za svaki sljedeći simbol računamo prema:

$$D' = D + (G - D)D_s$$
  
$$G' = D + (G - D)G_s$$

- D<sub>s</sub> i G<sub>s</sub> donja i gornja granica pojedinog simbola
- Konačno: kada završimo sa svim simbolima poruke <D<sub>s</sub>, G<sub>s</sub>> predstavlja konačni interval

#### Implementacija



- Do sada opisani algoritam praktično neupotrebljiv
  - Neprihvatljivo čekanje do kraja poruke
  - Algoritam podrazumijeva beskonačnu preciznost realnih brojeva – na računalu prikaz s pomičnim zarezom
  - Operacije s realnim brojevima su "skupe"
- Potreban je algoritam koji:
  - Koristi operacije s cijelim brojevima
  - Koristi prikaz s fiksnim brojem bitova
  - Proizvodi simbole koda tokom postupka kodiranja, a ne na kraju

#### Aritmetičko kodiranje: praktičan postupak



Zavod za telekomunikacije

- Osnovni postupak podjele na podintervale je isti
- Koristi se fiksni broj znamenki za prikaz intervala
- Kada je prva znamenka u prikazu gornje i donje granice ista, interval se renormalizira:
  - Prvih n znamenki se šalje na izlaz kodera
  - Znamenke se pomiču ulijevo za jedno mjesto
  - Desno se dodaje znamenka: 0 na donju, 1 na gornju granicu intervala (ako su znamenke binarne)

# Renormalizacija: primjer



| X      | p(x) |
|--------|------|
| RAZMAK | 1/10 |
| A      | 1/10 |
| В      | 1/10 |
| Е      | 1/10 |
| G      | 1/10 |
| I      | 1/10 |
| L      | 2/10 |
| S      | 1/10 |
| Т      | 1/10 |

$$D' = D + (G-D) \cdot D_s$$

$$G' = D + (G-D) \cdot G_s$$

•D' i G' – nove granice podintervala •G-D - duljina promatranog podintervala

•Ds i Gs – donja i gornja granica kumulativnog podskupa za simbol

|                           | Zavod za telekomunikacije |                  |                      |                   |
|---------------------------|---------------------------|------------------|----------------------|-------------------|
|                           | GORNJA<br>GRANICA         | DONJA<br>GRANICA | DULJINA<br>INTERVALA | KUMULATIVNI IZLAZ |
| Početno stanje            | 99999                     | 00000            | 100000               |                   |
| Kodiraj B (0.2-0.3)       | 29999                     | 20000            |                      |                   |
| Renormalizacija, izlaz: 2 | 99999                     | 00000            | 100000               | .2                |
| Kodiraj I (0.5-0.6)       | 59999                     | 50000            |                      | .2                |
| Renormalizacija, izlaz: 5 | 99999                     | 00000            | 100000               | .25               |
| Kodiraj L (0.6-0.8)       | 79999                     | 60000            | 20000                | .25               |
| Kodiraj L (0.6-0.8)       | 75999                     | 72000            |                      | .25               |
| Renormalizacija, izlaz: 7 | 59999                     | 20000            | 40000                | .257              |
| Kodiraj RAZMAK (0.0-0.1)  | 23999                     | 20000            |                      | .257              |
| Renormalizacija, izlaz: 2 | 39999                     | 00000            | 40000                | .2572             |
| Kodiraj G (0.4-0.5)       | 19999                     | 16000            |                      | .2572             |
| Renormalizacija, izlaz: 1 | 99999                     | 60000            | 40000                | .25721            |
| Kodiraj A (0.1-0.2)       | 67999                     | 64000            |                      | .25721            |
| Renormalizacija, izlaz: 6 | 79999                     | 40000            | 40000                | .257216           |
| Kodiraj T (0.9-1.0)       | 79999                     | 76000            |                      | .257216           |
| Renormalizacija, izlaz: 7 | 99999                     | 60000            | 40000                | .2572167          |
| Kodiraj E (0.3-0.4)       | 75999                     | 72000            |                      | .2572167          |
| Renormalizacija, izlaz: 7 | 59999                     | 20000            | 40000                | .25721677         |
| Kodiraj S (0.8-0.9)       | 55999                     | 52000            |                      | .25721677         |
| Renormalizacija, izlaz: 5 | 59999                     | 20000            |                      | .257216775        |
| Renormalizacija, izlaz: 2 |                           |                  |                      | .2572167752       |
| Renormalizacija, izlaz: 0 |                           |                  |                      | .25721677520      |

# Usporedba aritmetičko - Huffman



| Huffman                                                     | Aritmetičko kodiranje                                   |
|-------------------------------------------------------------|---------------------------------------------------------|
| Kodira svaki simbol posebno                                 | Kodira cijelu poruku jednim kodom:<br>realni broj 0 - 1 |
| Minimalno 1 bit/simbol                                      | Moguće < 1 bit/simbol                                   |
| Duljina poruke nije važna                                   | Teoretski optimalno za dugačke poruke                   |
| Kodiranje niza simbola moguće samo proširenim Huffman kodom | Uvijek se kodira cijela poruka                          |
| Jednostavno za računanje                                    | Zahtjevnije za računanje                                |

#### Aritmetičko kodiranje: primjene



 Primjena kao komponente u raznim standardima i za razne vrste medija

- Dokumenti
  - JBIG (Joint Bi-level Image Processing Group)
- Slika
  - JPEG
- Sintetički sadržaji/animacija
  - MPEG-4 FBA (Face and Body Animation)

#### Metode rječnika



- Algoritmi kodiranja metodama rječnika uzimaju kao ulaz nizove simbola ("riječi") promjenjive duljine i kodiraju ih kodnim riječima stalne duljine iz rječnika
- Ne trebaju znati vjerojatnosti pojavljivanja simbola, nazivaju se i univerzalni koderi
- Koder i dekoder moraju imati isti rječnik
- Rječnik može biti statičan, no najčešće je prilagodljiv

#### Metode s prilagodljivim rječnikom



- Koder i dekoder dinamički grade rječnik
  - LZ77: Rječnik je posmični prozor
  - LZ78: riječi se grade dodavanjem slova na postojeće riječi (u početku rječnik je prazan)
  - Lempel-Ziv-Welch (LZW) algoritam
    - izvorni algoritam smislili Ziv i Lempel (1977 LZ77, 1978 -LZ78), a Welch ga je doradio i poboljšao 1984 (zato LZW)
    - algoritam relativno jednostavan, iako složeniji od Huffmanovog
    - izvorni LZW algoritam koristi rječnik s 4K riječi, s tim da su prvih 256 riječi standardni ASCII kodovi

#### Algoritam LZ77



- Rječnik je posmični prozor od N zadnjih simbola
  - u posmičnom prozoru (search buffer) se traže simboli iz "sljedećeg" prozora za kodiranje (look-ahead buffer)
- U svakom koraku traži se u rječniku najduži niz simbola jednak nadolazećim simbolima, te se kodira kao uređena trojka (pomak, duljina, sljedeći\_simbol)
- Nedostatak: "kratka" memorija

### LZ77: primjer kodiranja







### LZ77 – primjer (1/2)



 Koristeći algoritam LZ77 kodirajte poruku aacaacabcabaaac\* uzimajući pri tome da maksimalna duljina posmičnog prozora (PP) iznosi 4 simbola, a prozora za kodiranje (PZK) 6 simbola. Simbol "\*" označava kraj poruke.

### LZ77 – primjer (2/2)



izlaz(x,y,z)

#### ◆ PP=4, PZK=6

#### Postupak rješavanja:

#### ■ 1. korak $\underline{a a c a a c}$ a b c a b a a a c \* (0,0,a)

$$\blacksquare$$
 3. korak  $\underline{a} \underline{a} \underline{c} \underline{a} \underline{a} \underline{c} \underline{a} \underline{b} \underline{c}$  a b a a a c \* (3,4,b)

$$\blacksquare$$
 4. korak a a c a a c a b c a b a a a c \* (3,3,a)

■ 5. korak 
$$aacaacabcabaaac*$$
 (1,2,c)

■ 6. korak a a c a a c a b c a b 
$$\frac{a a a c}{a a c}$$
 (0,0,\*)

#### Kodirana poruka glasi:

$$(0,0,a)$$
  $(1,1,c)$   $(3,4,b)$   $(3,3,a)$   $(1,2,c)$   $(0,0,*)$ 

### Algoritmi LZ78 i LZW (1/2)



- Umjesto posmičnog prozora, zasebna memorija za rječnik
  - Rječnik je poredana lista riječi (nizova simbola)
  - Riječ se dohvaća pomoću indeksa (rednog broja)
- Prednost nad LZ77?
  - LZ77 gradi rječnik a LZ78 radi s gotovim riječnikom
    - (koji napravi prilikom kodiranja)
  - LZ78 i LZW mogu dekodirati bilo koji simbol u nizu, LZ77 mora početi od početka niza!

### Algoritmi LZ78 i LZW (2/2)



#### LZ78

- Rječnik u početku prazan
- U svakom koraku šalje se (indeks, idući simbol)
  - Indeks pokazuje na najdulju riječ u rječniku jednaku nadolazećem nizu simbola
  - Rječnik se nadopunjava novim riječima tijekom kodiranja
  - https://www.youtube.com/watch?v=3Bg8rN1R\_kw#t=0m49s

#### LZW

- Kao LZ78 ali počinje s gotovim rječnikom od n simbola
  - Tipično 256 simbola u koje su uključena sva slova i znakovi (+ 4k)
  - https://www.youtube.com/watch?v=rZ-JRCPv\_08#t=0m34s

#### Algoritam LZW



Algoritam kodiranja:

```
1. RadnaRiječ = slijedeći simbol sa ulaza
 2. WHILE (ima još simbola na ulazu) DO
      NoviSimbol = slijedeći simbol sa ulaza
 3.
 4.
      IF RadnaRiječ+NoviSimbol postoji u rječniku THEN
5.
         RadnaRiječ = RadnaRiječ+NoviSimbol
 6
     ELSE
 7.
         IZLAZ: kod za RadnaRiječ
8.
         dodaj RadnaRiječ+NoviSimbol u rječnik
9.
         RadnaRiječ = NoviSimbol
10.
     END IF
11. END WHILE
12. IZLAZ: kod za RadnaRiječ
```

https://www.youtube.com/watch?v=rZ-JRCPv\_08#t=0m34s

#### Kodiranje algoritmom LZW: primjer



Sadržaj rječnika na početku:

| kodna riječ | znak |
|-------------|------|
| (1)         | Α    |
| (2)         | В    |
| (3)         | C    |

Niz znakova koje treba kodirati:

Mjesto

Simbol A B B A B A C

LZW:

| korak | mjesto | sadržaj rječnika | izlaz iz kodera |
|-------|--------|------------------|-----------------|
| 1.    | 1      | (4) AB           | (1)             |
| 2.    | 2      | (5) BB           | (2)             |
| 3.    | 3      | (6) BA           | (2)             |
| 4.    | 4      | (7) ABA          | (4)             |
| 5.    | 6      | (8) ABAC         | (7)             |
| 6.    | 9      |                  | (3)             |

# LZW kodiranje: primjer dekodiranja



Zavod za telekomunikacije

| KORAK | RADNA<br>RIJEČ | ULAZ<br>DEKODERA | DEKODIRA<br>NI SIMBOLI | SADRŽAJ<br>RJEČNIKA |
|-------|----------------|------------------|------------------------|---------------------|
| 1     |                | (1)              | А                      |                     |
| 2     | А              | (2)              | В                      | (4) AB              |
| 3     | В              | (2)              | В                      | (5) BB              |
| 4     | В              | (4)              | AB                     | (6) BA              |
| 5     | AB             | (7)              | ABA                    | (7) ABA             |
| 6     | ABA            | (3)              | С                      |                     |

## Primjer – LZW (1/5)



 Uzimajući polazni rječnik D gdje je D[0] = a i D[1] = b dekodirajte kodiranu poruku 0 1 1 0 2 4 6 kodiranu algoritmom LZW.

### Primjer – LZW (2/5)



- dekodiramo prvi simbol koji je već poznat u rječniku, on ujedno postaje i radna riječ
- dekodiramo slijedeći simbol koji je poznat u rječniku i njega kombiniramo sa simbolom iz radne riječi
  - ako kombinacija ne postoji u rječniku zapisujemo ju u rječnik
  - ako kombinacija već postoji u rječniku kombiniramo ju sa sljedećim dekodiranim simbolom
- postupak ponavljamo dok ne dekodiramo cijelu poruku

# Primjer – LZW (3/5)



Zavod za telekomunikacije

• Ulaz: 0 1 1 0 2 4 6

• Izlaz: a b b a ab ba abb

| Rječnik    |
|------------|
| D[0] = a   |
| D[1] = b   |
| D[2] = ab  |
| D[3] = bb  |
| D[4] = ba  |
| D[5] = aa  |
| D[6] = abb |
| D[7] = baa |

# Primjer – LZW (4/5) – provjera kodiranjem



Zavod za telekomunikacije



◆ Izlaz: 0 1 1 0 2 4 6

| Rječnik    |
|------------|
| D[0] = a   |
| D[1] = b   |
| D[2] = ab  |
| D[3] = bb  |
| D[4] = ba  |
| D[5] = aa  |
| D[6] = abb |
| D[7] = baa |

### Primjer – LZW (5/5)



- Ulazna poruka: 0 1 1 0 2 4 6
- Dekodirana poruka: a b b a ab ba abb

#### Metode rječnika: primjene



- LZW
  - UNIX compress
  - GIF
  - Modem V.24 bis
- LZ77
  - ZIP

#### Metode skraćivanja niza



- potiskivanje ponavljanja (engl. repetition supression)
- zastavica (flag)
  koja označuje nule

  →

  894f32

  broj ponavljanja

- slijedno kodiranje (engl. run-length encoding)
- algoritam kodiranja temelji se na kraćem zapisu ponavljanih simbola pomoću specijalnog znaka (!)
- primjer: ABCCCCCCCDEFFFABC...

ABCCCCCCC DEFFFABC...
8 okteta 3 okteta

ABC!8 DEFFFABC... 3 okteta

← "isplati" se za 4+ znakova

Primjena: prva generacija telefaksa, unutar JPEG-a



# Teorija informacije

Entropijsko kodiranje – Sardinas-Pattersonov test

#### Sardinas-Pattersonov test



- skup pravila za određivanje jednoznačne dekodabilnosti koda:
  - neka je zadan kôd K čiji je skup polaznih kodnih riječi označen kao kup S<sub>0</sub>
  - iz skupa  $S_i$  (i = 0, 1, ...) treba stvoriti skup  $S_{i+1}$ , pravilom:
    - kodna riječ C(y) se dodaje u skup  $S_{i+1}$  ako i samo ako postoji kodna riječ C(x) iz skupa  $S_0$  takva da je kodna riječ C(x)C(y) element skupa  $S_i$  ili
      - ⇒ primjer: C(y) = 0,  $C(x) = 11 \rightarrow C(x)C(y) = 110$
    - ako postoji kodna riječ C(z) iz  $S_i$  takva da je C(z)C(y) kodna riječ iz skupa  $S_0$ 
      - » napomena: u prvom koraku testa vrijedi  $S_i = S_0$
  - kod je jednoznačno dekodabilan ako niti jedan skup S<sub>i</sub> (i ≥ 1) ne sadrži kodne riječi iz S<sub>0</sub> (osnovni uvjet!)

## Sardinas-Pattersonov test (2)



- dodatak na prethodno pravilo:
  - ako je  $S_{i+1}$  = {} ili za svaki sljedeći  $S_{i+1}$  vrijedi  $S_{i+1}$  =  $S_i$ , tada je jasno da u konačnom broju iteracija skup  $S_{i+1}$  neće sadržavati elemente iz skupa  $S_0$ , što također znači da je kod jednoznačno dekodabilan
    - primjer: ako skupovi  $S_1$ ,  $S_2$  i  $S_3$  ne sadrže elemente iz  $S_0$ , a  $S_4$  = {} ili vrijedi  $S_3$  =  $S_4$  =  $S_5$  = ..., kod je jednoznačno dekodabilan



### Primjer



zadano je pet kodova, A, B, C, D i E

| Simboli               | Kôd A | Kôd B  | Kôd C  | Kôd D | Kôd E |
|-----------------------|-------|--------|--------|-------|-------|
| <i>X</i> <sub>1</sub> | 000   | 0      | 0      | 0     | 0     |
| <i>X</i> <sub>2</sub> | 001   | 01     | 10     | 10    | 10    |
| <b>X</b> <sub>3</sub> | 010   | 011    | 110    | 110   | 1100  |
| <i>X</i> <sub>4</sub> | 011   | 0111   | 1110   | 1110  | 1101  |
| <b>X</b> <sub>5</sub> | 100   | 01111  | 11110  | 1011  | 1110  |
| <i>X</i> <sub>6</sub> | 101   | 011111 | 111110 | 1101  | 1111  |

 potrebno je odrediti da li su a) jednoznačno dekodabilni, b) prefiksni i c) nesingularni

#### Kôd A



- sve kodne riječi koda A su jednake duljine
- a) provjera jednoznačne dekodabilnosti
- polazni skup  $S_0 = \{000, 001, 010, 011, 100, 101\}$
- potrebno je kreirati skup S<sub>1</sub> tako da svaka kodna riječ C(y) iz tog skupa čini s nekom riječi C(x) iz skupa S<sub>0</sub> kodnu riječ C(x)C(y) koja također pripada skupu S<sub>0</sub>
  - vrijedi S<sub>1</sub> = {}
  - skup je prazan jer su sve riječi koda A jednake duljine
  - sukladno pravilima Sardinas-Pattersonovog testa zaključak je da je kôd A jednoznačno dekodabilan

# Kôd A (2)



- b) provjera prefiksnosti
  - pregledom kodnih riječi: niti jedna kodna riječ nije prefiks druge kodne riječi → kôd A je prefiksni
  - pomoću Kraftove nejednakosti
    - za kôd A vrijedi:  $I_i$  = 3,  $\forall i \in \{1, ..., 6\}$

$$\sum_{i=1}^{n} d^{-l_i} = \sum_{i=1}^{6} 2^{-l_i} = 6 \cdot 2^{-3} = \frac{6}{8} \le 1$$

- dakle, kôd A je prefiksni
- c) provjera nesingularnosti
  - **z**a sve simbole koda *A* vrijedi  $\forall x_i, x_j, i \in \{1, ..., 6\}, i \neq j \Rightarrow C(x_i) \neq C(x_j)$ 
    - za različite simbole x<sub>i</sub> kôd A daje različite riječi, dakle, kôd A je nesingularan

#### Kôd B



- a) provjera jednoznačne dekodabilnosti
- $S_0 = \{0, 01, 011, 0111, 01111, 011111\}$
- \*  $S_1 = \{1, 11, 111, 1111, 11111\}$ 
  - na primjer, u prvom koraku  $S_0 = S_0$ , C(y) = 1 i C(x) = 0 tvore C(x)C(y) = 01
- u drugom koraku tražimo  $S_2$  takav da  $C(y) \in S_2$ 
  - zajedno s C(x) iz  $S_0$  tvori kodnu riječ C(x)C(y) iz  $S_1$ , ili
  - zajedno s C(z) iz  $S_1$  tvori kodnu riječ C(z)C(y) iz  $S_0$
  - vrijedi  $S_2 = \{\}$
  - dakle, S<sub>1</sub> i S<sub>2</sub> ne sadržavaju kodne riječi iz S<sub>0</sub> → kôd B je jednoznačno dekodabilan

# Kôd B (2)



#### b) provjera prefiksnosti

- pregledom kodnih riječi: svaka kodna riječ je prefiks sljedeće kodne riječi (0 – 01, 01 – 011, ...) → kôd B nije prefiksni
- provjera: da li je s kodnim riječima čije su duljine jednake duljinama kodnih riječi koda B moguće konstruirati prefiksna kod?

• 
$$I_i = i, \forall i \in \{1,...,6\}$$
 
$$\sum_{i=1}^{n} 2^{-i} = 0,9844 \le 1$$

- Kraftova nejednakost je zadovoljena, s kodnim riječima takvih duljina moguće je sastaviti prefiksni kod
- c) provjera nesingularnosti
  - kôd *B* je **nesingularan** jer različitim simbolima pridružuje različite kodne riječi

#### Kôd C



- a) provjera jednoznačne dekodabilnosti
- $S_0 = \{0, 10, 110, 1110, 11110, 111110\}$
- $S_1 = \{\}$ 
  - nema kodnih riječi koje zajedno s kodnim riječima iz S<sub>0</sub> tvore kodne riječi iz S<sub>0</sub>
  - dakle, kôd C je jednoznačno dekodabilan
  - ◆ b) niti jedna kodna riječ nije prefiks druge kodne riječi
     → kôd C je prefiksni
  - sukladno kodu B, zadovoljena je Kraftova nejednakost zbog identičnih duljina kodnih riječi
- c) kôd C je nesingularan jer različitim simbolima pridružuje različite kodne riječi

#### Kôd D



- a)  $S_0 = \{0, 10, 110, 1110, 1011, 1101\}$
- prvi korak:
  - tražimo kodne riječi koje zajedno s kodnim riječima iz  $S_0$  tvore opet kodne riječi iz  $S_0$ :  $S_1 = \{1,11\}$ 
    - skup  $S_1$  ne sadrži simbole iz skupa  $S_0$
- drugi korak:
  - tražimo kodne riječi koje zajedno s kodnim riječima iz S<sub>0</sub> tvore kodne riječi iz S<sub>1</sub>: {}
  - ili kodne riječi koje zajedno s kodnim riječima iz S<sub>1</sub> tvore kodne riječi iz S<sub>0</sub>: {0, 10, 01, 110, 011, 101} = S<sub>2</sub>
  - skup S₂ sadrži simbole iz skupa S₀ (potcrtani) → kôd D nije jednoznačno dekodabilan

## Kôd D (2)



- primjer sljedova simbola koji će kreirati jednake poruke:
  - $x_2x_3 \rightarrow 10110 \text{ i } x_5x_1 \rightarrow 10110$
- b) kodna riječ 110 je prefiks kodnoj riječi 1101
  - kôd D nije prefiksni kôd
- nije zadovoljena Kraftova nejednakost

$$\sum_{i=1}^{6} 2^{-l_i} = 1,0625 > 1$$

- sa zadanim duljinama kodnih riječi nije moguće kreirati prefiksni kod!
- c) kôd D je nesingularan

#### Kôd E



- a)  $S_0 = \{0, 10, 1100, 1101, 1110, 1111\}$
- pri korak:
  - tražimo kodne riječi koje zajedno s kodnim riječima iz S₀ tvore opet kodne riječi iz S₀: S₁ = {}
  - kôd E je jednoznačno dekodabilan
  - ◆ b) niti jedna kodna riječ nije prefiks druge kodne riječi → kôd D je prefiksni kôd
- Kraftova nejednakost je zadovoljena  $\sum_{i=1}^{6} 2^{-l_i} = 1 \le 1$
- c) kôd E je nesingularan