

Newton - Cotes Cerradas y Abiertas

Los métodos de integración numérica que se obtienen al integrar las fórmulas de interpolación de Newton reciben el nombre de fórmulas de Newton – Cotes.

La regla del trapecio o trapezoidal y las dos reglas de Simpson son casos de las fórmulas de Newton – Cotes, las cuales se dividen en fórmulas cerradas y abiertas.

La ecuación recibe el nombre de fórmula cerrada, debido a que el dominio de integración está cerrado por el primer y último dato.

$$I = \alpha h \sum_{i=0}^{n} wi f(a + ih)$$
 $h = \underline{b-a}$

Las fórmulas abiertas de Newton - Cotes se obtienen al extender la integración hasta un intervalo a la izquierda del primer dato y un intervalo a la derecha del último dato.

$$I = \alpha h \sum_{i=0}^{n+2} wi f(a+ih)$$

$$h = \frac{b-a}{n+2}$$

Ventajas de las fórmulas

Utilizan puntos con igual operación. Se dispone de fórmulas abiertas y cerradas.

Desventajas.

Las fórmulas de orden superior no necesariamente son precisas.

Newton - Cotes (Cerradas)

$$I = \alpha h \sum_{i=0}^{n} wi f(a + ih)$$
 $h = \frac{b-a}{n}$

Newton - Cotes (Abiertas)

$$I = \alpha h \sum_{i=0}^{n+2} wi f(a+ih) \qquad h = \frac{b-a}{n+2}$$

Ejemplo.- Newton Cotes (Abiertas).

$$\int_{2}^{2} (3 x^{3} - 10) dx \qquad n = 4$$

Entonces a = -2 y b = 2

1 = - 40

Nota. Resolver este mismo ejemplo por el método de Newton Cotes Cerradas.

Constantes para las fórmulas Cerradas de Newton - Cotes

n	α	i = 0	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7	i = 8	i = 9	i = 10
1	1/2	1	1									
2	1/3	1	4	1					í.			
3	3/8	1	3	3	1							
4	2/45	7	32	12	32	7						
5	5/288	19	75	50	50	75	19					
6	1/140	41	216	27	272	27	216	41				
7	7/17280	751	3577	1323	2989	2989	1323	3577	751			
8	14/14175	989	5888	-928	10946	-4540	10946	-928	5888	989		
9	9/89600	2857	15741	1080	19344	5788	5788	19344	1080	15741	2857	
10	5/299376	16067	106300	- 48525	272400	-260550	427368	-260550	272400	-48525	106300	16067

Constantes para las fórmulas Abiertas de Newton - Cotes

n	α	i = 0	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7	i = 8
1	3/2	0	1	1	0					
2	4/3	0	2	-1	2	0]	
3	5/24	0	11	1	1	11	0			
4	6/20	0	11	-14	26	-14	11	0		
5	7/1440	0	611	-453	562	562	-453	611	0	
6	8/945	0	460	-954	2196	-2459	2196	-954	460	0