Mechatronische Systeme KIS WS 2017/18 Klausur am 08. Feb. 2018

Name:_____ Matrikel-Nr:_____

Bildschirmtest (90 min)

Das dynamische Verhalten des Feder-Masse-Dämpfer-Systems im Bild soll analysiert werden. Die Modellbildung ist auf Basis der Bewegungsgleichungen für m_1

$$m_1 \cdot \ddot{z}_1 + c_2 \cdot (z_1 - z_2) + d_2 \cdot (\dot{z}_1 - \dot{z}_2) + c_1 \cdot (z_1 - z_h) = 0$$
 (1)

und für m_2

$$m_2 \cdot \ddot{z}_2 - c_2 \cdot (z_1 - z_2) - d_2 \cdot (\dot{z}_1 - \dot{z}_2) + c_P \cdot (z_P - z_h) = 0$$
 (2)

sowie mittels der Kräftebilanz im Punkt P

$$d_P \cdot (\dot{z}_P - \dot{z}_2) + c_P \cdot (z_P - z_h) = 0$$

(3) möglich.

m_1	= 30	kg	Masse
m_2	= 250	kgm ²	Masse
c_1	= 120	N/mm	Federrate
c_2	= 20	N/mm	Federrate
c_{P}	= 0,5	N/mm	Federrate
d_2	= 0,5	Ns/mm	Dämpfungskonstante
d_{P}	= 0,1	Ns/mm	Dämpfungskonstante
$\mathcal{Z}_{\mathbf{h}}$	= 10	cm	Amplitude

Eingangsgröße: die vertikale Position $z_h(t)$.

1. Eingabedaten in m-file mit Ihrem Nachname. Erstellen Sie nach den Systemgleichungen ein Modell mit Simulink im Zeitbereich, (beginnend vom unten angegebenen Bild):

b) Chirp Signal:

Initial frequency: 0.01; Target time: 20; Frequency at target time: 20

Wählen Sie die Amplitude $z_{\rm h}(t)$ als Systemeingang jeweils a) und b) (mit Manual Switch), simulieren Sie die Federkraft $F_2=c_2(\ z_2(t)-z_1(t)\)$ und den relativen Weg $z_2(t)-z_{\rm P}(t)$.

Simulation time für a) 10 sec, für b) 20 sec mit Fixed-step 0.01.

Mechatronische Systeme KIS WS 2017/18 Klausur am 08. Feb. 2018

Name:	_
Matrikel-Nr:	_

2.	Leiten Sie anhand der mechanischen Systemgleichungen einen formelmäßigen Ausdruck in
	A. B. C. D Matrizen her.

Systemeingänge: $z_h(t)$;

Ausgänge: die Federkraft $F_2 = c_2(z_2(t) - z_1(t))$ und der relativer Weg $z_2(t) - z_P(t)$

Zustandsgrößen: $\begin{bmatrix} z_1 & z_2 & \dot{z}_1 & \dot{z}_2 & z_P \end{bmatrix}^T = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}^T$

$$B = \begin{bmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{bmatrix}$$

$$C = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

$$D = \begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$$

A =

B =	C=	D=

3. Verwenden Sie dazu ein m-file, in das Sie die gegebenen Parameter eingegeben und ihre Matrizen *A*, *B*, *C*, *D* mit den Parameter erstellt haben. Berechnen Sie die Eigenwerte des Systems.

+	F	
±	Ŀ	
<u>+</u>	Ŀ	

Tragen Sie die Eigenwerte des Systems in die komplexe Ebene ein.

Mechatronische Systeme KIS WS 2017/18 Klausur am 08. Feb. 2018

Name:_____ Matrikel-Nr:_____

Ist das mechanische System stabil? Begründung!

Berechnen Sie die ungedämpfte, gedämpfte Eigenfrequenzen und Dämpfungsgrad:

Ungedämpfte f_0 (Hz)	gedämpfte $f_{\rm d}$ (Hz)	Dämpfungsgrad ξ	

- 4. Polten Sie die Übertragungsfunktion $\left|\frac{F_F}{z_h}\right|$ und Phasenwinkel bis $f=20~\mathrm{Hz}$ in einer Figure (Bodediagramm) mit dem Titel "Übertragungsfunktion".
- 5. Speichern Sie m-File und mdl-File mit Ihrem Nachnamen plus Aufgabennummer ab! (Beispiel: wang_mfile.m und wang_modell.mdl)

<u>Anmerkung:</u> Senden Sie die Dateien per Email an: xiaofeng.wang@hs-rm.de Viel Erfolg!

Name:_____ Matrikel-Nr:_____

Musterlösung:

Eigenwerte =	f_0 (Hz)	$f_{\rm d}\left({\rm Hz}\right)$	ξ(-)
-8.6009 ± 67.666i	1.3353	1.3294	0.0941
0.0002	10.856	10.7691	0.1261
-0.7898 ± 8.3528i			
-4.8853 + 0i (in rad/s)			

20

15

-0.2

0

5

10 Time

Time