Comparison between two forms of Cauchy-Schwarz inequality

Miaoyan Wang, July 2, 2020

We have proposed two choices of function classes:

Case 1. bounded features + low rank coefficients

$$\mathcal{F}_1 = \mathcal{F}(r, M, G) = \{ f \colon \mathbf{X} \mapsto \langle \mathbf{B}, \mathbf{X} \rangle \mid \mathbf{B}, \mathbf{X}, \in \mathbb{R}^{d_1 \times d_2}, \ \operatorname{rank}(\mathbf{B}) \le r, \|\mathbf{B}\|_{\operatorname{sp}} \le M, \|\mathbf{X}\|_F \le G \}.$$

Case 2. unbounded, random features + low rank coefficients

$$\mathcal{F}_2 = \mathcal{F}(r, M) = \{ f \colon \mathbf{X} \mapsto \langle \mathbf{B}, \mathbf{X} \rangle \mid \mathbf{B}, \mathbf{X} \in \mathbb{R}^{d_1 \times d_2}, \, \text{rank}(\mathbf{B}) \leq r, \|\mathbf{B}\|_F \leq M, \mathbf{X} \sim \mathcal{MN}(\mathbf{0}_{d_1 \times d_2}, \mathbf{I}, \mathbf{I}) \}.$$

Question: Can we provide a common approach to obtain sharp bounds for both cases?

Recall that the key step in the Rademacher bound is the Cauchy-Schwarz inequality,

$$\langle \boldsymbol{B}, \boldsymbol{S}_n \rangle \leq \|\boldsymbol{B}\|_p \|\boldsymbol{S}_n\|_q$$
, for any $p, q \geq 0$ satisfying $\frac{1}{p} + \frac{1}{q} = 1$,

where $S_n = \sum_{i=1}^n \sigma_i X_i$ is a stochastically-weighted sum of feature matrices.

Approach 1 uses p = q = 2; i.e., F-norm for both **B** and S_n .

Approach 2 uses $p = 0, q = \infty$; i.e., nuclear norm for **B** and spectral norm for S_n .

Claim 1. Approach 2 is always no worse than approach 1. In particular, both approaches give the same bounds in Case 1, and Approach 2 gives better bound in Case 2.

Recall that, in Case 2, we have seen substantially different results based on Approach 1 vs. 2.

• Applying Approach 1 to Case 2 gives polynomial growth in d:

$$\mathcal{R}_n(\mathcal{F}_2) \leq \frac{\|\boldsymbol{B}\|_F}{\sqrt{n}} \max_i \|\boldsymbol{X}_i\|_F \asymp \mathcal{O}\left(\sqrt{\frac{d_1 d_2}{n}}\right).$$

• Applying Approach 2 to Case 2 gives linear growth in d:

$$\mathcal{R}_n(\mathcal{F}_2) \leq \frac{1}{n} \|\boldsymbol{B}\|_* \mathbb{E} \|\boldsymbol{S}_n\|_{\mathrm{sp}} \approx \mathcal{O}\left(\sqrt{\frac{r(d_1+d_2)}{n}}\right), \text{ much sharper than Approach 1.}$$

It remains to show that, in Case 1, similar bounds are obtained based on Approaches 1 vs. 2.

• Applying Approach 1 to Case 1:

$$\mathcal{R}_n(\mathcal{F}_1) = \frac{\|\boldsymbol{B}\|_F}{\sqrt{n}} \max_i \|\boldsymbol{X}_i\|_F.$$
 (1)

• Applying Approach 2 to Case 1:

$$\mathcal{R}'_{n}(\mathcal{F}_{1}) \leq \frac{1}{n} \|\boldsymbol{B}\|_{*} \mathbb{E} \|\boldsymbol{S}_{n}\|_{\mathrm{sp}}$$

$$\leq 2 \left(\sqrt{\frac{r}{n}} \log(d_{1} + d_{2}) + \sqrt{\log(d_{1} + d_{2})} \right) \frac{\|\boldsymbol{B}\|_{F}}{\sqrt{n}} \max_{i} \|\boldsymbol{X}_{i}\|_{\mathrm{sp}}, \tag{2}$$

where the expectation is taken over i.i.d. Rademacher sequence $\sigma_i \sim_{\text{i.i.d}} \text{Bernoulli}(\frac{1}{2})$, and the second line comes from the matrix Bernstein inequality (c.f. Lemma 1).

Consider the high-dimensional regime as $n, d_1, d_2 \to \infty$ while holding r fixed. Note that the log term is smaller than any polynomial term, $\log(d_1 + d_2) \le o(d^{\alpha})$ for any $\alpha > 0$. Henceforth, the bound (2) is no worse than (1),

$$\mathcal{R}'_n(\mathcal{F}_1) \ll o(d^{0.001}) \frac{\|\boldsymbol{B}\|_F}{\sqrt{n}} \max_i \|\boldsymbol{X}_i\|_{\text{sp}} \leq \text{or} \ll \frac{\|\boldsymbol{B}\|_F}{\sqrt{n}} \max_i \|\boldsymbol{X}_i\|_F = \mathcal{R}_n(\mathcal{F}_1).$$

The gap in the last inequality can be substantially (e.g., by a factor of $\mathcal{O}(\sqrt{d})$) when X_i are approximately full rank. As a conclusion, we favor Approach 2 over Approach 1 in both cases.

Lemma 1 (Matrix Bernstein, Theorem 1.6.2 in Ref. [1]). Let Y_1, \ldots, Y_n be independent, centered random matrices with common dimension $d_1 \times d_1$, and assume that each one is uniformly bounded,

$$\mathbb{E}Y_i = \mathbf{0}$$
 and $\|Y_i\|_{sp} \leq L$ for all $i \in [n]$.

Define the sum $S_n = \sum_{i=1}^n Y_i$, and let $v(S_n)$ denote the matrix variance statistic of the sum:

$$v(\boldsymbol{S}_n) = \max \left\{ \| \sum_{i=1}^n \mathbb{E}(\boldsymbol{Y}_i \boldsymbol{Y}_i^T) \|_{sp}, \| \sum_{i=1}^n \mathbb{E}(\boldsymbol{Y}_i^T \boldsymbol{Y}_i) \|_{sp} \right\}.$$

Then

$$\mathbb{E}\|\mathbf{S}_n\|_{sp} \le \sqrt{2v(\mathbf{S}_n)\log(d_1 + d_2)} + \frac{1}{3}L\log(d_1 + d_2). \tag{3}$$

Remark 1. In light of matrix Bernstein inequality, we probably do not need the Gaussian random feature assumption in the previous note.

Proof of bound (2). We apply Bernstein inequality to $Y_i = \sigma_i X_i$, where X_i is a deterministic matrix and $\sigma_i \sim_{\text{i.i.d.}} \text{Ber}(1/2)$, for all $i \in [n]$. It is easy to verify that Y_i are independent, centered random

matrix with spectral norm bounded by $L = \max_i ||X_i||_{\text{sp}}$. Furthermore, the matrix variance statistic

$$v(\boldsymbol{S}_{n}) = \max \left\{ \| \sum_{i=1}^{n} \mathbb{E}\sigma_{i}^{2}(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{T}) \|_{\mathrm{sp}}, \| \sum_{i=1}^{n} \mathbb{E}\sigma_{i}^{2}(\boldsymbol{X}_{i}\boldsymbol{X}_{i}^{T}) \|_{\mathrm{sp}} \right\}$$

$$= \max \left\{ \| \sum_{i=1}^{n} \boldsymbol{X}_{i}\boldsymbol{X}_{i}^{T} \mathbb{E}\sigma_{i}^{2} \|_{\mathrm{sp}}, \| \sum_{i=1}^{n} \boldsymbol{X}_{i}\boldsymbol{X}_{i}^{T} \mathbb{E}\sigma_{i}^{2} \|_{\mathrm{sp}} \right\}$$

$$= \max \left\{ \| \sum_{i=1}^{n} \boldsymbol{X}_{i}\boldsymbol{X}_{i}^{T} \|_{\mathrm{sp}}, \| \sum_{i=1}^{n} \boldsymbol{X}_{i}^{T}\boldsymbol{X}_{i} \|_{\mathrm{sp}} \right\}$$

$$\leq n \max_{i} \| \boldsymbol{X}_{i} \|_{\mathrm{sp}}^{2}. \tag{4}$$

Combining (4) into (3) gives

$$\mathbb{E}\|S_n\|_{\text{sp}} \le 2\max_i \|X_i\|_{\text{sp}} \left(\sqrt{n\log(d_1 + d_2)} + \log(d_1 + d_2)\right). \tag{5}$$

The final conclusion (2) follows by plugging (5) and $\|B\|_* \le \sqrt{r} \|B\|_F$ into the first line of (2). \square

References

[1] Joel A Tropp. An introduction to matrix concentration inequalities. arXiv preprint arXiv:1501.01571, 2015.