Mehryar Mohri Introduction to Machine Learning Courant Institute of Mathematical Sciences Midterm exam October 5th, 2011.

A. Perceptron algorithm

In class, we saw that when the training sample S is linearly separable with a maximum margin $\rho > 0$, then the Perceptron algorithm run cyclically over S is guaranteed to converge after at most R^2/ρ^2 updates, where R is the radius of the sphere containing the sample points.

This does not guarantee however that the hyperplane solution of the Perceptron achieves a margin close to ρ . Suppose we modify the Perceptron algorithm to ensure that the margin of the hyperplane solution is at least $\rho/2$ by updating the weight vector not only when the prediction is incorrect but also when the margin $\frac{y_t \mathbf{w}_t \cdot \mathbf{x}_t}{\|\mathbf{w}_t\|}$ on point \mathbf{x}_t is less than $\rho/2$. Figure 1 gives the pseudocode of the resulting algorithm, MPerceptron.

The objective of this problem is to show that the algorithm MPerceptron converges after at most $16R^2/\rho^2$. Let I denote the set of times $t \in [1,T]$ at which the algorithm makes an update and let M=|I| be the total number of updates made.

1. Using an analysis similar to the one given in class for the Perceptron algorithm, show that $M\rho \leq \|\mathbf{w}_{T+1}\|$. Conclude that if $\|\mathbf{w}_{T+1}\| < \frac{4R^2}{\rho}$, then $M < 4R^2/\rho^2$. In what follows, we will assume that $\|\mathbf{w}_{T+1}\| \geq \frac{4R^2}{\rho}$.

Solution: By assumption, there exists $\mathbf{v} \in \mathbb{R}^N$ such that for all $t \in [1,T]$, $\rho \leq \frac{y_t(\mathbf{v} \cdot \mathbf{x}_t)}{\|\mathbf{v}\|}$, where ρ is the maximum margin achievable on S. Summing up these inequalities gives

$$M
ho \leq \frac{\mathbf{v} \cdot \sum_{t \in I} y_t \mathbf{x}_t}{\|\mathbf{v}\|} \leq \left\| \sum_{t \in I} y_t \mathbf{x}_t \right\|$$
 (Cauchy-Schwarz inequality)
$$= \left\| \sum_{t \in I} (\mathbf{w}_{t+1} - \mathbf{w}_t) \right\|$$
 (definition of updates)
$$= \|\mathbf{w}_{T+1}\|$$
 (telescoping sum, $\mathbf{w}_0 = 0$).

2. Show that for any $t \in I$ (including t = 0), the following holds:

$$\|\mathbf{w}_{t+1}\|^2 \le (\|\mathbf{w}_t\| + \rho/2)^2 + R^2.$$

Solution: For any $t \in I$, by definition of the update, $\mathbf{w}_{t+1} = \mathbf{w}_t + y_t \mathbf{x}_t$, thus

$$\|\mathbf{w}_{t+1}\|^{2} = \|\mathbf{w}_{t}\|^{2} + \|\mathbf{x}_{t}\|^{2} + 2y_{t}\mathbf{w}_{t} \cdot \mathbf{x}_{t}$$

$$\leq \|\mathbf{w}_{t}\|^{2} + \|\mathbf{x}_{t}\|^{2} + \|\mathbf{w}_{t}\|\rho \qquad \text{(def. of update condition)}$$

$$\leq \|\mathbf{w}_{t}\|^{2} + R^{2} + \|\mathbf{w}_{t}\|\rho + \rho^{2}/4$$

$$= (\|\mathbf{w}_{t}\| + \rho/2)^{2} + R^{2}.$$

3. Infer from that that for any $t \in I$, we have

$$\|\mathbf{w}_{t+1}\| \le \|\mathbf{w}_t\| + \rho/2 + \frac{R^2}{\|\mathbf{w}_t\| + \|\mathbf{w}_{t+1}\| + \rho/2}$$

Solution: In view of the previous result, $\|\mathbf{w}_{t+1}\|^2 - (\|\mathbf{w}_t\| + \rho/2)^2 = R^2$, that is

$$(\|\mathbf{w}_{t+1}\| - \|\mathbf{w}_t\| + \rho/2)(\|\mathbf{w}_{t+1}\| + \|\mathbf{w}_t\| + \rho/2) \le R^2$$

$$\implies (\|\mathbf{w}_{t+1}\| - \|\mathbf{w}_t\| + \rho/2) \le \frac{R^2}{\|\mathbf{w}_{t+1}\| + \|\mathbf{w}_t\| + \rho/2}$$

$$\implies \|\mathbf{w}_{t+1}\| \le \|\mathbf{w}_t\| + \rho/2 + \frac{R^2}{\|\mathbf{w}_{t+1}\| + \|\mathbf{w}_t\| + \rho/2}.$$

4. Using the previous question, show that for any $t \in I$ such that either $\|\mathbf{w}_t\| \ge \frac{4R^2}{\rho}$ or $\|\mathbf{w}_{t+1}\| \ge \frac{4R^2}{\rho}$, we have

$$\|\mathbf{w}_{t+1}\| \le \|\mathbf{w}_t\| + \frac{3}{4}\rho.$$

Solution: If $\|\mathbf{w}_t\| \ge \frac{4R^2}{\rho}$ or $\|\mathbf{w}_{t+1}\| \ge \frac{4R^2}{\rho}$, then $\|\mathbf{w}_{t+1}\| + \|\mathbf{w}_t\| + \rho/2 \ge \frac{4R^2}{\rho}$, thus

$$\frac{R^2}{\|\mathbf{w}_{t+1}\| + \|\mathbf{w}_t\| + \rho/2} \le \frac{R^2}{4R^2/\rho} = \frac{\rho}{4}.$$

In view of this, the inequality of the previous question implies

$$\|\mathbf{w}_{t+1}\| \le \|\mathbf{w}_t\| + \rho/2 + \frac{R^2}{\|\mathbf{w}_{t+1}\| + \|\mathbf{w}_t\| + \rho/2}$$

$$\implies \|\mathbf{w}_{t+1}\| \le \|\mathbf{w}_t\| + \rho/2 + \frac{\rho}{4} = \|\mathbf{w}_t\| + \frac{3}{4}\rho.$$

5. Show that $\|\mathbf{w}_1\| \le R \le 4R^2/\rho$. Since by assumption we have $\|\mathbf{w}_{T+1}\| \ge \frac{4R^2}{\rho}$, conclude that there must exist a largest time $t_0 \in I$ such that $\|\mathbf{w}_{t_0}\| \le \frac{4R^2}{\rho}$ and $\|\mathbf{w}_{t_0+1}\| \ge \frac{4R^2}{\rho}$.

Solution: Since $\mathbf{w}_1 = y_1\mathbf{x}_1$, $\|\mathbf{w}_1\| = \|\mathbf{x}_1\| \le R$. The margin ρ is at most twice the radius R, thus, $\rho \le 2R$ and $2R/\rho \ge 1$. This implies that $\|\mathbf{w}_1\| \le R \le 2R^2/\rho$. Since $\|\mathbf{w}_1\| \le 2R^2/\rho$ and $\|\mathbf{w}_{T+1}\| \ge \frac{4R^2}{\rho}$, there must exist at least one update time $t \in I$ at which $\|\mathbf{w}_t\| \le \frac{4R^2}{\rho}$ and $\|\mathbf{w}_{t+1}\| \ge \frac{4R^2}{\rho}$. The set of such times t is non empty and thus admits a largest element t_0 .

6. Show that $\|\mathbf{w}_{T+1}\| \leq \|\mathbf{w}_{t_0}\| + \frac{3}{4}M\rho$. Conclude that $M \leq 16R^2/\rho^2$.

Solution: By definition of t_0 , for any $t \geq t_0$, $\|\mathbf{w}_{t+1}\| \geq \frac{4R^2}{\rho}$. Thus, by the inequality of question 4, the following holds for any $t \geq t_0$,

$$\|\mathbf{w}_{t+1}\| \le \|\mathbf{w}_t\| + \frac{3}{4}\rho.$$

This implies that

$$\|\mathbf{w}_{T+1}\| \le \|\mathbf{w}_{t_0}\| + \left| [t_0, T + 1] \cap I \right| \frac{3}{4} \rho$$

$$\le \|\mathbf{w}_{t_0}\| + M \frac{3}{4} \rho$$

$$\le \frac{4R^2}{\rho} + M \frac{3}{4} \rho.$$

By the first question $M\rho \leq \|\mathbf{w}_{T+1}\|$, therefore

$$M\rho \le \frac{4R^2}{\rho} + M\frac{3}{4}\rho \iff M\rho/4 \le 4R^2/\rho \iff M \le 16R^2/\rho^2.$$

B. Nearest-neighbor algorithm

Consider a learning task where the input space \mathcal{X} is one-dimensional: $\mathcal{X} = \mathbb{R}$. There are n > 1 classes, $\mathcal{Y} = \{y_1, \dots, y_n\}$, all equally probable: $\Pr[y_i] = 1/n$ for all $i \in [1, n]$. Let r be a positive real number with $r < \frac{n-1}{n}$. Let I_0 be the interval

$$I_0 = [0, \eta[$$

where $\eta = \frac{nr}{n-1}$ and, for any $i \in [1, n]$, let I_i be the interval of length $1 - \eta$ defined by

$$I_i = [2i - 1 - 2(i - 1)\eta, 2i - (2i - 1)\eta].$$

```
MPERCEPTRON()
           \mathbf{w}_1 \leftarrow \mathbf{0}
   2
           for t \leftarrow 1 to T do
   3
                      RECEIVE(\mathbf{x}_t)
   4
                      RECEIVE(y_t)
                     if (\mathbf{w}_t = 0) or (\frac{y_t \mathbf{w}_t \cdot \mathbf{x}_t}{\|\mathbf{w}_t\|} < \frac{\rho}{2}) then
   5
   6
                                 \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_t \mathbf{x}_t
   7
                      else \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t
   8
          return \mathbf{w}_{T+1}
```

Figure 1: MPerceptron algorithm.

The conditional probability for each class y_i , $i \in [1, n]$, is defined by the following:

$$\Pr [x \in I_0 \mid y_i] = \eta$$

$$\Pr [x \in I_i \mid y_i] = 1 - \eta$$

$$\Pr [x \notin (I_0 \cup I_i) \mid y_i] = 0.$$

1. Show that the Bayes error R^* is equal to r.

Solution: A Bayes classifier h^* can be defined by $h^*(x) = y_i$ for $x \in I_i$, $i \ge 1$, which guarantees zero error on these intervals. For I_0 , since all classes are equiprobable, we can just choose one class: $h^*(x) = y_1$ for $x \in I_0$. Its error is then $(n-1)/n \cdot nr/(n-1) = r$ over this interval. Thus, the overall error of h^* is $R^* = r$.

2. Suppose we have a training sample S containing at least one point falling in each of the intervals I_i , $i \in [1, n]$. What is the error rate of the nearest-neighbor algorithm trained on S? Justify your answer.

Solution: First observe that for $x \in I_i$, $i \in [0, n]$, no point $x' \in I_j$, $j \neq i$ is closer to x than a point x'' in I_i . Thus, the nearest neighbor rule labels I_i with the label of the points falling in I_i for i > 0. Since at least one point falls in each of these intervals, the nearest neighbor algorithm labels them all correctly. For i = 0, regardless of the labeling, since all classes are equiprobable, its error is r. Thus, the nearest-neighbor algorithm's overall error rate is $R^* = r$, which is optimal.