

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA CURSO DE MATEMÁTICA INDUSTRIAL

CURSO MODELAGEM MATEMÁTICA NA QUARENTENA

Módulo 1: Métodos de Quadrados Mínimos

Nome: Fillipe Rafael Bianek Pierin GRR: 20204093

Curso: Matemática Industrial

1 Introdução

Relatório do módulo 1 do curso Modelagem Matemática na Quarentena. Neste módulo aplicam-se os métodos de mínimos quadrados em um conjunto de dados real, e a um exemplo obtido de livro acadêmico, ajustando os dados das duas bases de dados aos métodos de quadrados mínimos: linear, exponencial, quadrático e exponencial de uma quadrática.

Para as análises foi usada à programação Python versão 3.8.3. no Google Colab, e verificou-se o uso tanto da forma algébrica quanto da matricial no ajuste dos modelos. A programação da modelagem com seu detalhamento, implementações e análise dos dados pode ser encontrado no GitHub, https://github.com/fillipepierin/Curso_Modelagem_na_Quarentena.

2 Análise I - Dados da população brasileira

2.1 Base de dados

A base de dados de dados reais é constituída por dados da população brasileira por anos desde 1500 a 2020. Esta base de dados foi obtida da combinação dos dados dos

seguintes sites: IBGE 500 Anos [3], IBGE Censo [2], countrymeters [1]. Ajustam-se os modelos de quadrados mínimos, após faz-se a estimação da população após 2020. Os dados podem serem visto no Anexo.

2.2 Ajuste dos dados

Nesta seção ajustam-se os dados aos modelos de quadrados mínimos. Mostram-se os resultados dos ajustes dos dados, o modelo e o erro relativo referente ao modelo.

2.2.1 Modelo Linear

No gráfico 1 tem-se o ajuste do mínimos quadrados linear, cujo modelo obtido foi

$$f(x) = (-8,5265e^8) + (4,9511e^5) x.$$

Figura 1: Modelo linear ajustado aos dados da população brasileira.

Deste modelo, temos que o erro encontrado usando a fórmula

$$E = \sum_{i=1}^{m} (f(x_i) - y_i)^2,$$
 (1)

foi $1.8e^{17}$. Mas, usando erro relativo

$$E_{rel} = \frac{\sqrt{\sum_{i=1}^{m} (f(x_i) - y_i)^2}}{\sqrt{\sum_{i=1}^{m} (y_i)^2}}$$
 (2)

obtém-se o erro de 0,3486.

2.2.2 Modelo Exponencial

Agora se ajusta o modelo de quadrados mínimos exponencial, figura 2. O modelo obtido neste ajuste foi o seguinte

$$f(x) = (3,8966e^{-10})e^{0,0203x}.$$

Figura 2: Modelo exponencial ajustado aos dados da população brasileira.

Neste modelo o erro E e o erro E_{rel} , equações 1 e 2, foram $8.8e^{15}$ e 0,0775.

2.2.3 Modelo Quadrático

Neste passo modelou-se o modelo quadrático aos dados em questão. Para tal obtevese o seguinte modelo

$$f(x) = (8,9441e^9) - (1,0369e^7)x + (2,9881e^3)x^2$$

cujo ajuste vê-se na figura 3.

Figura 3: Modelo quadrático ajustado aos dados da população brasileira.

Para este modelo os valores do erro E e do erro relativo E_{rel} , equações 1 e 2, foram $4.8e^{16}$ e 0,1805.

2.2.4 Modelo Exponencial de uma Quadrática

No último caso, modelaram-se os dados ao modelo de mínimos quadrados exponencial de uma quadrática. Na figura 4 mostra-se o ajuste do modelo aos dados, cujo modelo decorrente foi o seguinte

$$f(x) = e^{(-1,7177e^1) + (1,5321e^{-2})x + (1,368e^{-6})x^2}.$$

Figura 4: Modelo exponencial de uma quadrática ajustado aos dados da população brasileira.

Os erros nesta modelagem, equações 1 e 2, encontrados foram $E=1.0e^{16}$ e $E_{rel}=0.0843.$

2.3 Resultados da análise I

Nesta seção busca-se fazer a comparação entre os ajuste, para saber qual o melhor modelo ajustado aos dados da população brasileira de 1500 a 2020. Para esta análise têm-se os resultados dos erros na tabela 1.

Comparando os resultados da tabela 1, verifica-se que o modelo que melhor se ajustou aos dados é o modelo exponencial com erro relativo de 0,0775, sendo que o modelo exponencial de uma quadrática se aproximou do modelo exponencial.

Com o modelo o melhor modelo de mínimos quadrados da população brasileira, previuse as populações dos próximos anos. Os resultados da previsão pode ser vista na figura 5. Por exemplo, em 2021 a população do Brasil será de 254.725.870, em 2030

Modelo	Erro (E)	Erro Relativo
linear	$1,7883e^{17}$	0,3486
exponencial	$8,8277e^{15}$	0,0775
quadrático	$4,7932e^{16}$	0,1805
exponencial de quadrática	$1,0453e^{16}$	0,0843

Tabela 1: Erros dos ajustes dos modelos aos dados populacionais.

de 305.780.124 e em 2040 de 374.593.800.

Figura 5: Modelo exponencial de uma quadrática ajustado aos dados da população brasileira.

3 Análise II - Crescimento de Bactérias

3.1 Base de dados

Base de dados retirada de exemplo, foi obtida do livro [5], e refere-se aos dados de crescimento de bactérias. As bactérias se reproduzem por fissão binária, ou seja, se dividindo ao meio. O tempo entre as divisões na maioria das espécies de bactérias é cerca de uma hora. Os resultados podem ser dramáticos, por exemplo, 24 ciclos de divisão em um dia (em cada ciclo um bactéria produz 2000 bactérias), o que mostra que essa população teria crescido de 1.000 para 16.000.000 [4].

Também se aplicam esses dados aos quatro modelos de mínimos quadrados. Os dados podem ser visto no Anexo.

3.2 Ajuste dos dados

A partir da análise e modelagem dos dados de crescimento de bactérias obteve-se os resultados dos ajustes dos modelos de quadrados mínimos nos dados, tabela 2. Nesta tabela mostram-se os modelos obtidos em cada ajuste e os erros em cada ajuste. Além disso, tem-se na figura 7 os gráficos dos ajustes dos modelos aos dados.

Modelo	f(x)	Erro (E)	Erro Relativo
linear	3.0714 + 38.6430x	$4,1324e^3$	0,1688
exponencial	$32.147e^{0.35555x}$	$1,8142e^{1}$	0,0111
quadrático	$37.3570 - 2.5000x + 6.8571x^2$	$1,8271e^2$	0,0355
exponencial de quadrática	$e^{3.4795+0.3446x+0.0018x^2}$	3,5700	0,0050

Tabela 2: Dados com relação ao crescimento de bactérias.

3.3 Resultado da análise II

Comparando os resultados da tabela 2, conclui-se que o modelo que melhor se ajusta aos dados de crescimento de bactérias é o modelo exponencial de uma quadrática, porque neste ajuste obteve-se o menor erro relativo (0,0050).

Figura 6: Ajustes dos modelos de mínimos quadrados aos dados de crescimento de bactéria.

Com o melhor modelo para ajustar os dados em questão, previu-se o número de bactérias por volume mínimo para mais que seis horas. Neste caso para em 7 horas tem-se 396 bactérias, em 10 horas, 1222 bactérias e em 15 horas, 8603 bactérias.

Figura 7: Previsão do número de bactérias.

4 Considerações Finais

Os modelos de ajustados foram: exponencial para os dados populacionais e exponencial de uma quadrática para dos dados de crescimento de bactérias. Sendo, que no modelo para bactérias os dados se ajustaram melhor. No modelo populacional, podese verificar visualmente um bom ajuste nos dados, apesar do erro estar um pouco grande, por esse motivo buscou-se usar o erro relativo para fazer as comparações.

Com essas análises do módulo 1 do curso de modelagem na quarentena, pode-se aprender e/ou recordar do modelo de mínimos quadrados. Por em prática os conhecimentos de programação em Python. Além disso, teve-se que ter uma percepção de quais bases de dados mais se ajustava aos modelos apresentados, que neste caso são modelos da área da saúde e modelos de crescimento, como os apresentados nas análises deste relatório.

Referências

- [1] countrymeters (2020) Brazil Population. https://countrymeters.info/en/Brazil. Acessado em: 17.mai.2020.
- [2] Instituto Brasileiro de Geografia e Estatística (2010) Censo Demográfico Séries históricas. https://www.ibge.gov.br/estatisticas/sociais/populacao/9662-censo-demografico-2010.html?=&t=series-historicas. Acessado em: 16.mai.2020.
- [3] Instituto Brasileiro de Geografia e Estatística (1999) Estatísticas do Povoamento. https://brasil500anos.ibge.gov.br/estatisticas-do-povoamento/evolucao-da-populacao-brasileira.html. Acessado em: 16.mai.2020.
- [4] Khan Academy (1998) Crescimento exponencial e logístico. https://pt.khanacademy.org/science/biology/ecology/population-growth-and-regulation/a/exponential-logistic-growth. Acessado em: 19.mai.2020.
- [5] Ruggiero, MAG, Lopes, VLR (1997) Cálculo numérico: aspectos teóricos e computacionais. Makron Books do Brasil.

Anexo

Neste anexo têm-se as duas bases de dados utilizadas nas análises. Sendo que a tabela 3 refere-se a dados da população brasileira de 1500-2020 e a tabela 4 refere-se a dados de crescimento de bactéria.

Λ 10 0	Donulosão	Λ 10 0	Donulosão				
Ano	População	Ano	População	Ano	População	Ano	População
1550	15.000	1954	59.946.025	1977	112.426.265	1999	171.834.774
1576	17.100	1955	61.747.383	1978	115.154.310	2000	169.590.693
1583	57.000	1956	63.581.429	1979	117.936.799	2001	177.102.919
1600	100.000	1957	65.453.618	1980	121.150.573	2002	179.732.494
1660	184.000	1958	67.375.687	1981	123.653.552	2002	182.336.466
1690	242.000	1959	69.363.982	1982		2003	
1700	300.000	1960	70.992.343		126.581.070		184.871.851
1800	3250.000	1961	73.600.237	1983	129.534.547	2005	187.297.802
1808	4051.000	1962	75.857.219	1984	132.482.444	2006	189.588.741
1810	4000.000	1963	78.188.001	1985	135.393.490	2007	191.741.381
1815	2860.525	1964	80.560.128	1986	138.250.534	2008	193.777.109
1823	5025.000	1965	82.940.932	1987	141.051.059	2009	195.735.497
				1988	143.793.974	2010	190.755.799
1850	8000.000	1966	85.312.524	1989	146.476.142	2011	199.565.896
1869	1.0415.000	1967	87.674.333	1990	149.097.480	2012	201.459.584
1872	9.930.478	1968	90.033.344	1991	151.654.998	2013	203.330.481
1890	14.333.915	1969	92.399.378	1992	154.147.931	2014	205.168.638
1900	17.438.434	1970	94.508.583	1993	156.595.615	2015	206.962.713
1920	30.635.605	1971	97.192.327	1994	159.036.364	2016	208.846.074
1940	41.236.315	1972	99.623.296				
1950	51.944.397	1973	102.082.589	1995	161.507.781	2017	210.746.573
1951	54.790.134	1974	104.583.531	1996	164.029.105	2018	212.664.367
1952	56.455.157	1975	107.138.779	1997	166.598.495	2019	214.599.613
1953	58.179.020	1976	109.753.674	1998	169.205.159	2020	216.552.469
. 555	55.175.020		. 55.7 55.57				

Tabela 3: Dados referentes a população brasileira de 1550 a 2020.

nº de horas (x)	nº de bactérias por volume unitário (y)
0	32
1	47
2	65
3	92
4	132
5	190
6	275

Tabela 4: Resultados do ajuste de mínimo quadrados: modelo e erros de ajuste.