Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2.	Mark:					
Determine if	$\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix} $ can l	be writte	en as a linear combination of the vectors	$\begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix}$	and	$\begin{bmatrix} -1\\0\\1\\2 \end{bmatrix}$	

Solution:

$$RREF \left(\begin{bmatrix} 3 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since this system has a solution, $\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix}$ and

$$\begin{bmatrix} -1\\0\\1\\2 \end{bmatrix}, \text{ namely }$$

$$\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}.$$

Standard S1.

Mark:

Determine if the set of vectors $\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Solution:

$$RREF \left(\begin{bmatrix} 3 & 1 & 3 \\ -1 & 2 & -8 \\ 0 & -2 & 6 \\ 4 & 1 & 5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the reduced row echelon form has a nonpivot column, the vectors are linearly dependent.

Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$$
. Find a basis of W .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then
$$\left\{ \begin{bmatrix} 1\\-1\\3\\-3 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\1\\-7 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\-7 \end{bmatrix} \right\}$$
 is a basis for W .

Standard S4.

$$\begin{bmatrix} 2 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -8 \\ 1 \end{bmatrix}$$
Find the dimension of W .

Solution:

$$RREF \left(\begin{bmatrix} 2 & 3 & 0 \\ 0 & 1 & 2 \\ 2 & -1 & -8 \\ 1 & 1 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since it has two pivot columns, its dimension is 2.

Additional Notes/Marks