Question Number	Answer		Mark
17(a)	Electron moves to a higher energy level	(1)	
	Then drops back (down, releasing a photon)	(1)	2
	(MP1 allow electron is excited. MP2 allow electron is de-excited)		
	(MP2 allow returns to ground state)		
17(b)(i)	Use of $v = f\lambda$ with $v = 3.00 \times 10^8 \mathrm{m s^{-1}}$	(1)	
	Use of $E = hf$	(1)	
	Conversion from J to eV	(1)	
	Photon energy = 5.7 eV	(1)	4
	Example of calculation		
	$v = f\lambda$, $f = 3.00 \times 10^8 \text{ m s}^{-1} / 218 \times 10^{-9} \text{ m} = 1.38 \times 10^{15} \text{ Hz}$		
	$E = hf = 6.63 \times 10^{-34} \text{ Js} \times 1.38 \times 10^{15} \text{ Hz} = 9.12 \times 10^{-19} \text{ J}$		
	$E (\text{in eV}) = 9.12 \times 10^{-19} \text{ J} / 1.60 \times 10^{-19} \text{ J eV}^{-1} = 5.70 \text{ eV}$		
17(b)(ii)	(Differences between) energy levels are discrete		
	Or only certain jumps/transitions are possible	(1)	
		, ,	
	No difference of 5.7 eV, so not possible (for this photon to be produced)	(1)	2
	(MP2 – allow comment consistent with their calculated value from b(i))		
17(c)(i)	Use of $hf = \Phi + \frac{1}{2} mv_{\text{max}}^2$	(1)	
	Use of $E_k = \frac{1}{2} mv^2$ with $m = 9.11 \times 10^{-31}$ kg	(1)	
	Maximum possible speed = $1.5 \times 10^6 \mathrm{m s^{-1}}$	(1)	3
	Everale of coloulation		
	Example of calculation $E_k = hf - \Phi = 1.63 \times 10^{-18} \text{ J} - 5.89 \times 10^{-19} \text{ J} = 1.04 \times 10^{-18} \text{ J}$		
	$E_{\rm k} = \frac{1}{2} m v^2$, $v = \sqrt{\frac{1.04 \times 10^{-18} \text{J}}{0.5 \times 9.11 \times 10^{-31} \text{kg}}} = 1.5 \times 10^6 \text{m s}^{-1}$		
17(c)(ii)	MAX 2 from:		
	There is a minimum/threshold frequency for electron release	(1)	
	Electrons are released instantaneously	(1)	
	Elections are released instantaneously	(-)	
	(Changing) intensity does not affect KE/speed/release of an electron	(1)	
	MAX 2 from:		
	The energy of a photon increases as frequency increases	(1)	
	Photon energy has to be greater than the work function	(1)	
	Each photon only interacts with one electron	(1)	3
	Total for question 17		14