Problem 4

(a) Checking the stable condition with $u_1 = 1$. $u_r = 0$. The domain is [-5, 5]. Time is [0,1]. $u_1 = 1$. $u_r = 0$.

Plotting x from [-1, 1], Time from [0,1].

When the stable condition is violated (Hx = 0.01 Ht = 0.02), we cannot see shocks appearing (only red and blue colors in 3D plot). When the stable condition is valid, we can see shocks appearing (rainbow colors in 3D plot). In x-t plot, we can conclude the shocking is traveling at $v = 0.5 = 0.5*(u_l + u_r)$.

Problem 4

(b) Investigating the speed of shock.

The domain is [-5, 5]. Time is [0,1]. $h_x = 0.01$. $h_t = 0.005$.

Plotting x from [-1, 1], Time from [0,1].

This shows $v = 0.5*(u_1 + u_r)$.

Problem 4: Plots of all 3 different u₀. T in [0,1] (u: Initial Condition; V: Speed of Shock)

For u_3 of Question 1(b), we plot another x-t picture until T=2:

The shock appears at t=1, the speed is 0.5. The x-axis of shock (depending on time t) is x=0.5*(t+1).