પ્રશ્ન 1(અ) [3 ગુણ]

POP પ્રોટોકોલની કામગીરી સમજાવો.

જવાબ:

POP (Post Office Protocol) એ ઈમેલ પુનઃપ્રાપ્તિ પ્રોટોકોલ છે જે સર્વરથી ક્લાયન્ટ ડિવાઇસ પર ઈમેલ્સ ડાઉનલોડ કરે છે.

કામગીરીની પ્રક્રિયા:

પગલું	ક્રિયા	น _ย ์ -
1	કનેક્શન	ક્લાયન્ટ POP સર્વર સાથે પોર્ટ 110 પર જોડાય છે
2	ઓથેન્ટિકેશન	વપરાશકર્તા યુઝરનેમ અને પાસવર્ડ આપે છે
3	ડાઉનલોડ	ઈમેલ્સ લોકલ ડિવાઇસ પર ડાઉનલોડ થાય છે
4	ડિલીશન	ડાઉનલોડ પછી સર્વરથી ઈમેલ્સ ડિલીટ થાય છે

• ડાઉનલોડ-આધારિત: ઈમેલ્સ ક્લાયન્ટ ડિવાઇસ પર સ્થાનિક રીતે સંગ્રહિત થાય છે

• ઓફલાઇન એક્સેસ: ઈન્ટરનેટ કનેક્શન વગર ઈમેલ્સ વાંચી શકાય છે

• સિંગલ ડિવાઇસ: એક જ ડિવાઇસ એક્સેસ માટે શ્રેષ્ઠ

મેમરી ટ્રીક: "POP ડાઉનલોડ કરે અને કાયમ માટે"

પ્રશ્ન 1(બ) [4 ગુણ]

OSI મોડલની TCP/IP મોડલ સાથે સરખામણી કરો.

જવાબ:

OSI અને TCP/IP નેટવર્કિંગ મોડલ્સ વચ્ચેની સરખામણી:

પાસું	OSI મોડલ	TCP/IP મોડલ
લેચર્સ	7 લેયર્સ	4 લેયર્સ
અભિગમ	સૈદ્ધાંતિક મોડલ	વ્યવહારિક અમલીકરણ
વિકાસ	ISO સ્ટાન્ડર્ડ	DARPA પ્રોજેક્ટ
જટિલતા	વધુ જટિલ	સરળ બંધારણ

મુખ્ય તફાવતો:

• લેયર કાઉન્ટ: OSI માં 7 લેયર્સ છે જ્યારે TCP/IP માં 4 લેયર્સ છે

• **વાસ્તવિક વપરાશ**: TCP/IP વ્યાપકપણે અમલમાં છે, OSI મોટે ભાગે સૈદ્ધાંતિક

• **પ્રોટોકોલ સ્વતંત્રતા**: OSI પ્રોટોકોલ-સ્વતંત્ર છે, TCP/IP પ્રોટોકોલ-વિશિષ્ટ છે

• હેડર ઓવરહેડ: વધારાની લેચર્સને કારણે OSI માં વધુ ઓવરહેડ છે

મેમરી ટ્રીક: "OSI સાત સૈદ્ધાંતિક, TCP ચાર વ્યવહારિક"

પ્રશ્ન 1(ક) [7 ગુણ]

TCP/IP મોડલના દરેક લેયરના પ્રોટોકોલ્સની કામગીરી સમજાવો.

જવાબ:

TCP/IP મોડલમાં 4 લેચર્સ છે જેમાં દરેક લેચર પર વિશિષ્ટ પ્રોટોકોલ્સ છે:

લેચર મુજબ પ્રોટોકોલ કાર્યો:

લેયર	પ્રોટોકોલ્સ	รเน้
Application	HTTP, FTP, SMTP, DNS	વપરાશકર્તા ઈન્ટરફેસ અને સેવાઓ
Transport	TCP, UDP	અંત-થી-અંત સંદેશાવ્યવહાર
Internet	IP, ICMP, ARP	રાઉટિંગ અને એડ્રેસિંગ
Network Access	Ethernet, WiFi	ભૌતિક ટ્રાન્સમિશન

પ્રોટોકોલ વિગતો:

• HTTP/HTTPS: વેબ કમ્યુનિકેશન અને સુરક્ષિત વેબ કમ્યુનિકેશન

• TCP: વિશ્વસનીય, કનેક્શન-ઓરિએન્ટેડ ડેટા ટ્રાન્સફર

• UDP: ઝડપી, કનેક્શન-રહિત ડેટા ટ્રાન્સફર

• **IP**: પેકેટ રાઉટિંગ અને એડ્રેસિંગ

• ARP: IP એડ્રેસને MAC એડ્રેસ સાથે મેપ કરે છે

મેમરી ટ્રીક: "એપ્લિકેશન ટ્રાન્સપોર્ટ ઈન્ટરનેટ નેટવર્ક હંમેશા"

પ્રશ્ન 1(ક અથવા) [7 ગુણ]

OSI મોડલ તેની દરેક લેયર અને દરેક લેયરની કામગીરી સાથે સંક્ષિપ્તમાં સમજાવો.

જવાબ:

OSI (Open Systems Interconnection) મોડલમાં નેટવર્ક કમ્યુનિકેશન માટે 7 લેચર્સ છે:

લેયર કાર્યો:

લેચર	नाम	รเช้	પ્રોટોકોલ્સ
7	Application	વપરાશકર્તા ઈન્ટરફેસ	HTTP, FTP, SMTP
6	Presentation	ડેટા ફોર્મેટિંગ, એન્ક્રિપ્શન	SSL, JPEG, MPEG
5	Session	સેશન મેનેજમેન્ટ	NetBIOS, RPC
4	Transport	અંત-થી-અંત ડિલિવરી	TCP, UDP
3	Network	રાઉટિંગ	IP, ICMP
2	Data Link	ફ્રેમ ટ્રાન્સમિશન	Ethernet, PPP
1	Physical	બિટ ટ્રાન્સમિશન	કેબલ્સ, રેડિયો તરંગો

મુખ્ય લક્ષણો:

• મોક્યુલર ડિઝાઇન: દરેક લેયરની વિશિષ્ટ જવાબદારીઓ છે

• પ્રોટોકોલ સ્વતંત્રતા: લેયર્સ વિવિધ પ્રોટોકોલ્સ વાપરી શકે છે

• માનકીકરણ: સાર્વત્રિક નેટવર્કિંગ સંદર્ભ મોડલ

મેમરી ટ્રીક: "બધા લોકો સેશન ટ્રાન્સપોર્ટ નેટવર્ક ડેટા પ્રોસેસિંગ કરે"

પ્રશ્ન 2(અ) [3 ગુણ]

ARP અને RARP પ્રોટોકોલ્સ વચ્ચેનો તફાવત લખો.

જવાબ:

ARP અને RARP વિપરીત કાર્યો સાથે એડ્રેસ રિઝોલ્યુશન પ્રોટોકોલ્સ છે:

પાસું	ARP	RARP
પૂરું નામ	Address Resolution Protocol	Reverse Address Resolution Protocol
હેતુ	IP થી MAC એડ્રેસ મેપિંગ	MAC થી IP એડ્રેસ મેપિંગ
દિશા	લોજિકલ થી ફિઝિકલ	ફિઝિકલ થી લોજિકલ
વપરાશ	સામાન્ય નેટવર્ક કમ્યુનિકેશન	ડિસ્ક-રહિત વર્કસ્ટેશન્સ

કામગીરીની પ્રક્રિયા:

• ARP: "મને IP એડ્રેસ ખબર છે, MAC એડ્રેસની જરૂર છે"

• RARP: "મને MAC એડ્રેસ ખબર છે, IP એડ્રેસની જરૂર છે"

• કેશ: બંને કાર્યક્ષમતા માટે એડ્રેસ ટેબલ મેઇન્ટેઇન કરે છે

મેમરી ટ્રીક: "ARP પૂછે ફિઝિકલ, RARP રિક્વેસ્ટ કરે IP"

પ્રશ્ન 2(બ) [4 ગુણ]

IMAP પ્રોટોકોલની કામગીરી સમજાવો.

જવાબ:

IMAP (Internet Message Access Protocol) મલ્ટિપલ ડિવાઇસ એક્સેસ માટે સર્વર પર ઈમેલ્સનું મેનેજમેન્ટ કરે છે.

કામગીરીની પ્રક્રિયા:

પગલું	ક્રિયા	વર્ણન
1	કનેક્શન	ક્લાયન્ટ IMAP સર્વર સાથે જોડાય છે (પોર્ટ 143/993)
2	ઓથેન્ટિકેશન	ક્રેડેન્શિયલ્સ સાથે લોગિન
3	ફોલ્ડર એક્સેસ	સર્વર પર ઈમેલ ફોલ્ડર્સ બ્રાઉઝ કરો
4	સિંકોનાઇઝેશન	બધા ડિવાઇસેસ પર બદલાવો સિંક થાય છે

મુખ્ય લક્ષણો:

• સર્વર-આદ્યારિત: ઈમેલ્સ સર્વર પર રહે છે

• મલ્ટિ-ડિવાઇસ: અનેક ડિવાઇસેસથી એક્સેસ

• સિંકોનાઇઝેશન: બદલાવો બધે પ્રતિબિંબિત થાય છે

• સિલેક્ટિવ ડાઉનલોડ: માત્ર જરૂરી ઈમેલ્સ ડાઉનલોડ કરો

ફાયદાઓ:

• સ્ટોરેજ કાર્યક્ષમતા: સર્વર સ્ટોરેજનું મેનેજમેન્ટ કરે છે

• એક્સેસિબિલિટી: ગમે ત્યાંથી એક્સેસ કરો

• બેકઅપ: સર્વર આપોઆપ બેકઅપ પ્રદાન કરે છે

મેમરી ટ્રીક: "IMAP ઈન્ટરનેટ મેસેજેસ હંમેશા હાજર"

પ્રશ્ન 2(ક) [7 ગુણ]

Mobile computing નું Three-tier આર્કિટેક્ચર યોગ્ય ડાયગ્રામ સાથે સમજાવો.

જવાબ:

Three-tier આર્કિટેક્ચર મોબાઇલ કમ્પ્યુટિંગને અલગ લેયર્સમાં વિભાજિત કરે છે:

ટાયર વિગતો:

ટાયર	ઘટકો	જવાબદારીઓ
Presentation	મોબાઇલ ડિવાઇસેસ, UI	વપરાશકર્તા ઈન્ટરફેસ અને ઇન્ટરેક્શન
Application	એપ્લિકેશન સર્વર્સ, મિડલવેર	બિઝનેસ લોજિક અને પ્રોસેસિંગ
Data	ડેટાબેસેસ, સ્ટોરેજ	ડેટા મેનેજમેન્ટ અને સ્ટોરેજ

આર્કિટેક્ચરના ફાયદાઓ:

• સ્કેલેબિલિટી: દરેક ટાયર સ્વતંત્ર રીતે સ્કેલ કરી શકાય છે

• મેઇન્ટેનેબિલિટી: સરળ અપડેટ્સ માટે અલગ કાયદાઓ

• સિક્યોરિટી: ટાયર સેપરેશન દ્વારા ડેટા પ્રોટેક્શન

• પરફોર્મન્સ: વિતરિત પ્રોસેસિંગ લોડ ઘટાડે છે

કમ્યુનિકેશન ફ્લો:

• રેસ્પોન્સ: Data → Application → Presentation

• પ્રોસેસિંગ: એપ્લિકેશન ટાયર બિઝનેસ લોજિક હેન્ડલ કરે છે

મેમરી ટીક: "પ્રેઝન્ટેશન એપ્લાય કરે ડેટા પ્રોસેસિંગ"

પ્રશ્ન 2(અ અથવા) [3 ગુણ]

Stop-and-wait data link લેયર પ્રોટોકોલની મર્યાદાઓ સમજાવો.

જવાબ:

Stop-and-wait પ્રોટોકોલમાં કેટલીક પરફોર્મન્સ મર્યાદાઓ છે:

મુખ્ય મર્યાદાઓ:

મર્યાદા	વર્ણન	પ્રભાવ
નીચી કાર્યક્ષમતા	આગલા ફ્રેમ પહેલાં ACK ની રાહ જુએ છે	ખરાબ બેન્ડવિડ્થ ઉપયોગ
વધુ વિલંબ	દરેક ફ્રેમ માટે રાઉન્ડ-ટ્રિપ વિલંબ	ધીમું ડેટા ટ્રાન્સમિશન
એરર સેન્સિટિવિટી	એક જ એરર ટ્રાન્સમિશન અટકાવે છે	ઘટતી વિશ્વસનીયતા

પરફોર્મન્સ સમસ્યાઓ:

• **બેન્ડવિડ્થ વેસ્ટ**: રાહ જોવાના સમય દરમિયાન લિંક નિષ્ક્રિય રહે છે

• **ટાઇમઆઉટ પ્રોબ્લેમ્સ**: ખોવાયેલ ACK બિનજરૂરી પુન:ટ્રાન્સમિશન લાવે છે

• સિક્વેન્શિયલ પ્રોસેસિંગ: એકસાથે મલ્ટિપલ ફ્રેમ્સ મોકલી શકાતા નથી

મેમરી ટ્રીક: "સ્ટોપ રાહ જુએ, બેન્ડવિડ્થ વેસ્ટ કરે"

પ્રશ્ન 2(બ અથવા) [4 ગુણ]

જૂની IPV4 એડ્રેસિંગ સ્ક્રીમ પર IPV6 ના ફાયદાઓ સમજાવો.

જવાબ:

IPv6 એ IPv4 પર નોંધપાત્ર સુધારાઓ પ્રદાન કરે છે:

મુખ્ય ફાયદાઓ:

લક્ષણ	IPv4	IPv6
એડ્રેસ સ્પેસ	32-bit (4.3 બિલિયન)	128-bit (340 અનડેસિલિયન)
હેડર	વેરિયેબલ લેન્થ	ફિક્સ્ડ 40 બાઇટ્સ
સિક્યોરિટી	વૈકલ્પિક IPSec	બિલ્ટ-ઇન IPSec
કોન્ફિગરેશન	મેન્ચુઅલ/DHCP	ઓટો-કોન્ફિગરેશન

મુખ્ય ફાયદાઓ:

• અનલિમિટેડ એડ્રેસેસ: એડ્રેસ એક્ઝોસ્થન પ્રોબ્લેમ ઉકેલે છે

• બેહતર પરફોર્મન્સ: સરળ હેડર પ્રોસેસિંગ

• એન્હાન્સ્ક સિક્યોરિટી: ફરજિયાત એન્ક્રિપ્શન સપોર્ટ

• મોબિલિટી સપોર્ટ: બેહતર મોબાઇલ ડિવાઇસ કનેક્ટિવિટી

વધારાની લક્ષણો:

• ક્વોલિટી ઓફ સર્વિસ: બિલ્ટ-ઇન QoS સપોર્ટ

• મલ્ટિકાસ્ટ: સુધારેલ મલ્ટિકાસ્ટ ક્ષમતાઓ

• નો ફ્રેગમેન્ટેશન: રાઉટર્સ પેકેટ્સને ફ્રેગમેન્ટ કરતા નથી

મેમરી ટ્રીક: "IPv6 સુધારે પરફોર્મન્સ, સિક્યોરિટી, એડ્રેસેસ"

પ્રશ્ન 2(ક અથવા) [7 ગુણ]

Mobile computing માં ઉપલબ્ધ નેટવર્કના નામ આપો. તેમાંથી કોઈપણ એકને વિસ્તારથી સમજાવો.

જવાબ:

મોબાઇલ નેટવર્કના પ્રકારો:

જનરેશન	ટેક્નોલોજી	સ્પીડ	લક્ષણો
2G	GSM, CDMA	64 Kbps	વૉઇસ + SMS
3 G	UMTS, CDMA2000	2 Mbps	ડેટા સેવાઓ
4G	LTE, WIMAX	100 Mbps	હાઇ-સ્પીડ ઇન્ટરનેટ
5G	New Radio (NR)	10 Gbps	અલ્ટ્રા-લો લેટન્સી

વિગતવાર: 4G LTE નેટવર્ક

4G LTE લક્ષણો:

- **હાઇ સ્પીડ**: 100 Mbps ડાઉનલોડ, 50 Mbps અપલોડ સુધી
- **લો લેટન્સી**: રિચલ-ટાઇમ એપ્લિકેશન્સ માટે 10ms કરતાં ઓછું
- **ઓલ-IP નેટવર્ક**: પેકેટ-સ્વિચ્ડ આર્કિટેક્ચર
- **એડવાન્સ્ક એન્ટેના**: બેહતર કવરેજ માટે MIMO ટેક્નોલોજી

આર્કિટેક્ચર ઘટકો:

- **eNodeB**: એડવાન્સ્ડ લક્ષણો સાથે એન્હાન્સ્ડ બેસ સ્ટેશન
- MME: મોબિલિટી અને ઓથેન્ટિકેશન મેનેજ કરે છે
- ગેટવેઝ: ડેટા રાઉટિંગ અને એક્સટર્નલ કનેક્ટિવિટી હેન્ડલ કરે છે

એપ્લિકેશન્સ: વિડિયો સ્ટ્રીમિંગ, ઓનલાઇન ગેમિંગ, IoT કનેક્ટિવિટી

મેમરી ટ્રીક: "4G LTE: લોંગ ટર્મ એવોલ્યુશન"

પ્રશ્ન 3(અ) [3 ગુણ]

Routing ના પ્રકાર સમજાવો.

જવાલ:

રાઉટિંગ નેટવર્ક્સ પર ડેટા પેકેટ્સ માટે પાથ નિર્ધારિત કરે છે:

રાઉટિંગના પ્રકારો:

уѕіг	นย์า	ઉદાહરણ
Static	મેન્યુઅલ રાઉટ કોન્ફિગરેશન	એડમિનિસ્ટ્રેટિવ સેટઅપ
Dynamic	ઓટોમેટિક રાઉટ ડિસ્કવરી	RIP, OSPF પ્રોટોકોલ્સ
Default	અજાણ્યા ડેસ્ટિનેશન્સ માટે ફોલબેક રાઉટ	ગેટવે ઓફ લાસ્ટ રિસોર્ટ

રાઉટિંગ કેટેગરીઝ:

• Distance Vector: હોપ કાઉન્ટ વાપરે છે (RIP)

• Link State: નેટવર્ક ટોપોલોજી વાપરે છે (OSPF)

• **Hybrid**: બંને અભિગમો જોડે છે (EIGRP)

સિલેક્શન ક્રાઇટેરિયા:

• Shortest path: મિનિમમ હોપ્સ અથવા ડિસ્ટન્સ

• Load balancing: ટ્રાફિક સમાન રીતે વિતરિત કરો

• Fault tolerance: નિષ્ફળતાઓ માટે વૈકલ્પિક રાઉટ્સ

મેમરી ટ્રીક: "સ્ટેટિક ડાયનેમિક ડિફોલ્ટ રાઉટ્સ"

પ્રશ્ન 3(બ) [4 ગુણ]

Subnetting અને supernetting શું છે?

જવાબ:

સબનેટિંગ અને સુપરનેટિંગ IP એડ્રેસ એલોકેશનને કાર્યક્ષમ રીતે મેનેજ કરે છે:

સરખામણી:

પાસું	સબનેટિંગ	સુપરનેટિંગ
હેતુ	મોટા નેટવર્કને વિભાજિત કરો	નાના નેટવકર્સને જોડો
દિશા	ટોપ-ડાઉન અભિગમ	બોટમ-અપ અભિગમ
માસ્ક	લાંબો સબનેટ માસ્ક	ટૂંકો સબનેટ માસ્ક
પરિણામ	અનેક નાના સબનેટ્સ	એક જ મોટું નેટવર્ક

સબનેટિંગ પ્રક્રિયા:

• બિટ્સ ઉધાર લેવા: હોસ્ટ ભાગમાંથી બિટ્સ લો

• સબનેટ્સ બનાવો: અનેક નેટવર્ક સેગમેન્ટ્સ

• બ્રોડકાસ્ટ ઘટાડો: નાના બ્રોડકાસ્ટ ડોમેન્સ

સુપરનેટિંગ પ્રક્રિયા:

• નેટવર્ક્સ જોડો: આડીને આવેલા નેટવર્ક્સને મર્જ કરો

• રાઉટ એગ્રિગેશન: સિંગલ રાઉટિંગ એન્ટ્રી

• રાઉટિંગ ટેબલ ઘટાડો: ઓછી રાઉટિંગ એન્ટ્રીઝ

કાયદાઓ:

• સબનેટિંગ: બેહતર નેટવર્ક મેનેજમેન્ટ, સિક્યોરિટી

• સુપરનેટિંગ: સરળ રાઉટિંગ, ઘટેલ ઓવરહેડ

મેમરી ટ્રીક: "સબનેટિંગ સ્પ્લિટ્સ, સુપરનેટિંગ સમ્સ"

પ્રશ્ન 3(ક) [7 ગુણ]

IPV6 એડ્રેસિંગ સમજાવો. IPV6 સ્થળાંતરની જરૂરિયાત કેમ છે?

જવાબ:

IPv6 એડ્રેસિંગ IPv4 મર્યાદાઓ ઉકેલવા માટે 128-bit એડ્રેસેસ વાપરે છે:

IPv6 એડ્રેસ સ્ટુક્ચર:

+++	-++	++-	+++	-++
Global Routin	g Prefix	Subnet	Interface Id	lentifier
(48 bits)	(16)	(64 bits)	

એડ્રેસ ફોર્મેટ:

ยรร	સાઇઝ	હેતુ
Global Prefix	48 bits	ISP એલોકેશન
Subnet ID	16 bits	સંસ્થાના સબનેટ્સ
Interface ID	64 bits	ડિવાઇસ આઇડેન્ટિફિકેશન

એડ્રેસના પ્રકારો:

• Unicast: એક-થી-એક કમ્યુનિકેશન

• Multicast: એક-થી-અનેક કમ્યુનિકેશન

• Anycast: એક-થી-નજીકના કમ્યુનિકેશન

IPv6 સ્થળાંતરની જરૂરિયાત:

ગંભીર સમસ્યાઓ:

સમસ્યા	IPv4	IPv6 સોલ્યુશન
એડ્રેસ એક્ઝોસ્ચન	4.3 બિલિયન એડ્રેસેસ	340 અનડેસિલિયન એડ્રેસેસ
NAT જટિલતા	કનેક્ટિવિટી માટે જરૂરી	એન્ડ-ટુ-એન્ડ કનેક્ટિવિટી
સિક્યોરિટી	એડ-ઓન લક્ષણ	બિલ્ટ-ઇન IPSec
મોબાઇલ સપોર્ટ	મર્યાદિત	નેટિવ મોબિલિટી

સ્થળાંતરના ફાયદાઓ:

• અનલિમિટેડ ગ્રોથ: IoT વિસ્તરણને સપોર્ટ કરે છે

• સરળ કોન્ફિગરેશન: ઓટો-કોન્ફિગરેશન લક્ષણો

• બેહતર પરફોર્મન્સ: ઓપ્ટિમાઇઝ્ડ હેડર સ્ટ્રક્ચર

• એન્હાન્સ્ડ સિક્યોરિટી: ફરજિયાત એન્ક્રિપ્શન

સ્થળાંતરના પડકારો:

• **ક્યુઅલ-સ્ટેક**: IPv4 અને IPv6 બંને ચલાવવું

• **ટ્રાન્સલેશન**: IPv4-IPv6 ઇન્ટરઓપેરેબિલિટી

• ટ્રેનિંગ: સ્ટાફ શિક્ષણની જરૂરિયાતો

મેમરી ટ્રીક: "IPv6 અનંત શક્યતાઓ, એન્હાન્સ્ડ સિક્યોરિટી"

પ્રશ્ન 3(અ અથવા) [3 ગુણ]

નીચેનામાંથી માન્ય IPv4 એડ્રેસ શોધો. જો તે માન્ય IPv4 એડ્રેસ હોય તો તેના class, Network ID અને Host ID શોધો. જો તે માન્ય IPv4 એડ્રેસ ન હોય તો તેનું કારણ આપો.

અ. 192.108.102.101

GI. 80.54.256.14

જવાબ:

વિશ્લેષણ:

એડ્રેસ	માન્યતા	ક્લાસ	Network ID	Host ID	કારણ
192.108.102.101	માન્ય	ક્લાસ C	192.108.102.0	0.0.0.101	બધા ઓક્ટેટ્સ ≤ 255
80.54.256.14	અમાન્ય	-	-	-	ત્રીજો ઓક્ટેટ = 256 > 255

એડ્રેસ અ: 192.108.102.101

• માન્ય: બધા ઓક્ટેટ્સ રેન્જમાં છે (0-255)

• **કલાસ C**: પ્રથમ ઓક્ટેટ 192 (192-223 રેન્જ)

• ડિફોલ્ટ માસ્ક: 255.255.255.0 (/24)

એડ્રેસ બ: 80.54.256.14

• અમાન્ય: ત્રીજો ઓક્ટેટ 256 છે

• **નિયમ ઉલ્લંઘન**: દરેક ઓક્ટેટ 0-255 હોવો જોઈએ

• સુધારો: 256 ને માન્ય વેલ્યુ (0-255) સાથે બદલો

મેમરી ટ્રીક: "દરેક ઓક્ટેટ મહત્તમ 255"

પ્રશ્ન 3(બ અથવા) [4 ગુણ]

Network Address Translation પર ટૂંક નોંધ લખો.

જવાબ:

NAT ઇન્ટરનેટ એક્સેસ માટે પ્રાઇવેટ IP એડ્રેસેસને પબ્લિક IP એડ્રેસેસમાં ટ્રાન્સલેટ કરે છે:

NAT પ્રક્રિયા:

પગલું	દિશા	ટ્રાન્સલેશન
આઉટબાઉન્ડ	પ્રાઇવેટ → પબ્લિક	ઇન્ટર્નલ IP પબ્લિક IP સાથે મેપ થાય છે
ઇનબાઉન્ડ	પબ્લિક → પ્રાઇવેટ	પબ્લિક IP ઇન્ટર્નલ IP સાથે મેપ થાય છે

NAT પ્રકારો:

NAT Types

--- Static NAT (1:1 mapping)

--- Dynamic NAT (Pool mapping)

--- PAT/NAPT (Port translation)

કાયદાઓ:

• **IP બચત**: અનેક ડિવાઇસેસ એક પબ્લિક IP શેર કરે છે

• સિક્યોરિટી: ઇન્ટર્નલ નેટવર્ક સ્ટ્રક્ચર છુપાવે છે

• **કોસ્ટ રિડક્શન**: ઓછા પબ્લિક IP એડ્રેસેસની જરૂર

• લવચીકતા: સરળ ઇન્ટર્નલ નેટવર્ક બદલાવ

મર્યાદાઓ:

• એન્ડ-ટુ-એન્ડ કનેક્ટિવિટી: ડાયરેક્ટ કમ્યુનિકેશન તોડે છે

• **પ્રોટોકોલ સમસ્યાઓ**: કેટલાક પ્રોટોકોલ્સ NAT મારફતે કામ કરતા નથી

• પરકોર્મન્સ: અતિરિક્ત પ્રોસેસિંગ ઓવરહેડ

મેમરી ટ્રીક: "NAT નેટવર્ક્સ એડ્રેસ ટ્રાન્સલેશન"

પ્રશ્ન 3(ક અથવા) [7 ગુણ]

IPV4 Datagram Header વિસ્તારથી સમજાવો.

જવાબ:

IPv4 હેડરમાં પેકેટ રાઉટિંગ માટે જરૂરી માહિતી છે:

```
0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
|Version| IHL |Type of Service|
            Total Length
Identification | Flags |
              Fragment Offset
Time to Live | Protocol |
              Header Checksum
Source Address
Destination Address
Options
```

હેડર ફીલ્ડ્સ:

ફીલ્ડ	સાઇઝ	હેતુ
Version	4 bits	IP વર્ઝન (IPv4 માટે 4)
IHL	4 bits	32-bit શબ્દોમાં હેડર લેન્થ
Type of Service	8 bits	સેવાની ગુણવત્તા
Total Length	16 bits	કુલ પેકેટ સાઇઝ
Identification	16 bits	ફ્રેગમેન્ટ આઇડેન્ટિફિકેશન
Flags	3 bits	ફ્રેગમેન્ટેશન કંટ્રોલ
Fragment Offset	13 bits	ફ્રેગમેન્ટ પોઝિશન
TTL	8 bits	ડિસ્કાર્ડ પહેલાં મહત્તમ હોપ્સ
Protocol	8 bits	આગલી લેયર પ્રોટોકોલ
Checksum	16 bits	હેડર એરર ડિટેક્શન
Source Address	32 bits	મોકલનારનું IP એડ્રેસ
Destination	32 bits	મેળવનારનું IP એડ્રેસ

મુખ્ય કાર્યો:

• રાઉટિંગ: સોર્સ અને ડેસ્ટિનેશન એડ્રેસેસ

• ફ્રેગમેન્ટેશન: મોટા પેકેટ્સ હેન્ડલ કરવા

• એરર ડિટેક્શન: હેડર ચેકસમ

• ક્વોલિટી કંટ્રોલ: ટાઇપ ઓફ સર્વિસ ફીલ્ડ

મહત્વપૂર્ણ વેલ્યુઝ:

• Protocol: TCP=6, UDP=17, ICMP=1

• Flags: Don't Fragment, More Fragments

• TTL: અનંત લૂપ્સ અટકાવે છે

મેમરી ટ્રીક: "વર્ઝન IHL સર્વિસ લેન્થ આઇડેન્ટિફાઇ ફ્રેગમેન્ટ TTL પ્રોટોકોલ ચેક સોર્સ ડેસ્ટિનેશન"

પ્રશ્ન 4(અ) [3 ગુણ]

Indirect TCP ની કામગીરી સમજાવો.

જવાબ:

Indirect TCP મોબાઇલ નેટવર્ક પડકારોને હેન્ડલ કરવા માટે TCP કનેક્શનને વિભાજિત કરે છે:

આર્કિટેક્ચર:

ยรร	ભૂમિકા	સ્થાન
Mobile Host	TCP ક્લાયન્ટ	મોબાઇલ નેટવર્ક
Base Station	TCP પ્રોક્સી	ફિક્સ્ડ નેટવર્ક
Fixed Host	TCP સર્વર	વાયર્ડ નેટવર્ક

કનેક્શન સ્પ્લિટ:

• ราระเา 1: Mobile Host ↔ Base Station

• รารยาง 2: Base Station ↔ Fixed Host

• **પ્રોક્સી કંક્શન**: બેસ સ્ટેશન TCP પ્રોક્સી તરીકે કામ કરે છે

કામગીરીની પ્રક્રિયા:

• **SZI SGI**: Mobile → Base Station → Fixed Host

• ACK હેન્કલિંગ: બેસ સ્ટેશન એકનોલેજમેન્ટ્સ મેનેજ કરે છે

• હેન્ડઓવર: હલનચલન દરમિયાન કનેક્શન જાળવાય છે

ફાયદાઓ:

• વાયરલેસ ઓપ્ટિમાઇઝેશન: વાયરલેસ લિંક સમસ્યાઓ હેન્ડલ કરે છે

• મોબિલિટી સપોર્ટ: સીમલેસ હેન્ડઓવર ક્ષમતા

• એરર રિકવરી: વાયરલેસ એરર્સનું બેહતર હેન્ડલિંગ

મેમરી ટ્રીક: "Indirect TCP પ્રોક્સી મારફતે"

પ્રશ્ન 4(બ) [4 ગુણ]

Stop and Wait ARQ પ્રોટોકોલ પર ટૂંક નોંધ લખો.

જવાબ:

Stop and Wait ARQ એરર ડિટેક્શન અને કરેક્શન સાથે વિશ્વસનીય ડેટા ટ્રાન્સમિશન સુનિશ્ચિત કરે છે:

પ્રોટોકોલ ઓપરેશન:

પગલું	ક્રિયા	હેતુ
Send	સિક્વન્સ નંબર સાથે ફ્રેમ ટ્રાન્સમિટ કરો	ડેટા ડિલિવરી
Wait	એકનોલેજમેન્ટની રાહ જુઓ	રસીદની પુષ્ટિ
Timeout	કોઈ ACK ન મળે તો પુન:ટ્રાન્સમિટ	ખોવાયેલા ફ્રેમ્સ હેન્ડલ કરો
ACK	પ્રાપ્ત ફ્રેમ માટે એકનોલેજમેન્ટ મોકલો	ડિલિવરીની પુષ્ટિ

એરર હેન્ડલિંગ:

Sender	Rece	eiver
> Frame	0>	
	-	> ACK 0
< ACK 0	<	
> Frame	1>	(Lost)
Timeout,	Retransmit	
> Frame	1>	
	-	> ACK 1
< ACK 1	<	

લક્ષણો:

• સિક્વન્સ નંબર્સ: 0 અને 1 નું અલ્ટરનેશન

• **ટાઇમઆઉટ મેકેનિઝમ**: ખોવાયેલા ફ્રેમ્સ/ACKs હેન્ડલ કરે છે

• ડુપ્લિકેટ ડિટેક્શન: ડુપ્લિકેટ સ્વીકારવું અટકાવે છે

• ફ્લો કંટ્રોલ: રિસીવર ટ્રાન્સમિશન રેટ કંટ્રોલ કરે છે

મર્યાદાઓ:

• નીચી કાર્યક્ષમતા: ટ્રાન્ઝિટમાં માત્ર એક જ ફ્રેમ

• બેન્ડવિડ્થ વેસ્ટ: રાહ જોવા દરમિયાન નિષ્ક્રિય સમય

મેમરી ટ્રીક: "સ્ટોપ સેન્ડ, વેઇટ ACK, રિપીટ"

પ્રશ્ન 4(ક) [7 ગુણ]

Communication Middleware વિસ્તારથી સમજાવો.

જવાબ:

Communication middleware એપ્લિકેશન્સ અને નેટવર્ક સેવાઓ વચ્ચે એબ્સ્ટ્રેક્શન લેયર પ્રદાન કરે છે:

મિડલવેર પ્રકારો:

уѕіг	รเช้	ઉદાહરણ
Message-Oriented	એસિંક્રોનસ મેસેજિંગ	Message queues
RPC-based	રિમોટ પ્રોસીજર કોલ્સ	CORBA, RMI
Event-driven	ઇવેન્ટ નોટિફિકેશન્સ	Publish-subscribe
Stream-oriented	સતત ડેટા ફ્લો	મલ્ટીમીડિયા સ્ટ્રીમ્સ

કોર સેવાઓ:

કમ્યુનિકેશન સેવાઓ:

• Message routing: કાર્યક્ષમ મેસેજ ડિલિવરી

• Protocol conversion: વિવિધ પ્રોટોકોલ હેન્ડલિંગ

• Buffering: અસ્થાયી મેસેજ સ્ટોરેજ

• Synchronization: સંકલિત સંદેશાવ્યવહાર

વિશ્વસનીયતા સેવાઓ:

• Error detection: મેસેજ અખંડતા ચકાસણી

• Retransmission: નિષ્ફળ મેસેજ રિકવરી

• Duplicate elimination: મેસેજ ડુપ્લિકેશન અટકાવો

• Ordering: મેસેજ સિક્વન્સ જાળવો

મોબાઇલ-સ્પેસિફિક લક્ષણો:

• Location transparency: એપ્લિકેશન્સથી મોબિલિટી છુપાવો

• Disconnection handling: નેટવર્ક વિક્ષેપો મેનેજ કરો

• Bandwidth adaptation: નેટવર્ક પરિસ્થિતિઓ પ્રમાણે એડજસ્ટ કરો

• Power management: બેટરી વપરાશ ઓપ્ટિમાઇઝ કરો

આર્કિટેક્ચરના ફાયદાઓ:

• Abstraction: નેટવર્ક જટિલતા છુપાવો

• Portability: નેટવર્કથી એપ્લિકેશન સ્વતંત્રતા

• Scalability: વધતા ડિવાઇસેસને સપોર્ટ કરો

• Interoperability: વિવિધ સિસ્ટમ કમ્યુનિકેશન

ઉદાહરણો:

• CORBA: વિતરિત ઓબ્જેક્ટ કમ્યુનિકેશન

• Message Queues: એસિંક્રોનસ મેસેજિંગ

• Web Services: HTTP-આધારિત કમ્યુનિકેશન

મેમરી ટ્રીક: "મિડલવેર મેનેજે મોબાઇલ કમ્યુનિકેશન"

પ્રશ્ન 4(અ અથવા) [3 ગુણ]

Mobile IP માં Handover management સમજાવો.

જવાબ:

Handover management મોબાઇલ ડિવાઇસ નેટવર્ક્સ વચ્ચે ફરે ત્યારે કનેક્ટિવિટી જાળવે છે:

હેન્ડઓવર પ્રક્રિયા:

તબક્કો	ક્રિયા	હેતુ
Detection	સિગ્નલ સ્ટ્રેન્થ મોનિટર કરો	હેન્ડઓવરની જરૂરિયાત ઓળખો
Decision	ટાર્ગેટ નેટવર્ક પસંદ કરો	શ્રેષ્ઠ નેટવર્ક પસંદ કરો
Execution	નવા નેટવર્ક પર સ્વિચ કરો	હેન્ડઓવર પૂર્ણ કરો

હેન્ડઓવરના પ્રકારો:

• Horizontal: સમાન ટેક્નોલોજી નેટવર્ક્સ

• Vertical: વિવિધ ટેકનોલોજી નેટવર્ક્સ

• Hard: Break-before-make

• **Soft**: Make-before-break

મેનેજમેન્ટ ઘટકો:

• Signal monitoring: સતત સિગ્નલ મૂલ્યાંકન

• Network discovery: ઉપલબ્ધ નેટવર્ક ઓળખ

• Decision algorithm: શ્રેષ્ઠ નેટવર્ક પસંદગી

પરકોર્મન્સ મેટિક્સ:

• Handover delay: સ્વિથ પૂર્ણ કરવાનો સમય

• Packet loss: હેન્ડઓવર દરમિયાન ખોવાયેલ ડેટા

• Signaling overhead: કંટ્રોલ મેસેજ કોસ્ટ

મેમરી ટ્રીક: "હેન્ડઓવર હેલ્પ મેઇન્ટેઇન મોબિલિટી"

પ્રશ્ન 4(બ અથવા) [4 ગુણ]

Communication Gateways ના મુખ્ય કાર્યો સમજાવો.

જવાબ:

Communication gateways વિવિધ નેટવર્ક સિસ્ટમ્સ વચ્ચે ઇન્ટરઓપેરેબિલિટી સક્ષમ કરે છે:

મુખ્ય કાર્યો:

รเน้	વર્ણન	ફાયદો
Protocol Translation	પ્રોટોકોલ્સ વચ્ચે રૂપાંતર	ઇન્ટરઓપેરેબિલિટી
Data Format Conversion	ડેટા ફોર્મેટ્સ રૂપાંતરિત કરો	સુસંગતતા
Security Enforcement	સિક્યોરિટી પોલિસીઓ લાગુ કરો	સુરક્ષા
Load Balancing	ટ્રાફિક વિતરિત કરો	પરફોર્મન્સ

ગેટવે સેવાઓ:

પ્રોટોકોલ સેવાઓ:

• Multi-protocol support: વિવિધ પ્રોટોકોલ્સ હેન્ડલ કરે છે

• Translation efficiency: ઝડપી પ્રોટોકોલ રૂપાંતર

• Standards compliance: પ્રોટોકોલ સ્પેસિફિકેશન્સ અનુસરે છે

સિક્યોરિટી સેવાઓ:

• Authentication: વપરાશકર્તા ઓળખ ચકાસો

• Authorization: એક્સેસ પરમિશન્સ નિયંત્રિત કરો

• Encryption: ડેટા ટ્રાન્સમિશન સુરક્ષિત કરો

• Firewall: દુષ્ટ ટ્રાફિક ફિલ્ટર કરો

પરફોર્મન્સ સેવાઓ:

• Caching: વારંવાર એક્સેસ થતા ડેટાને સ્ટોર કરો

• Compression: ડેટા સાઇઝ ઘટાડો

• Traffic shaping: બેન્ડવિડ્થ વપરાશ મેનેજ કરો

• Quality of Service: જટિલ ટ્રાફિકને પ્રાથમિકતા આપો

મેનેજમેન્ટ લક્ષણો:

• Monitoring: ગેટવે પરફોર્મન્સ ટ્રેક કરો

• Configuration: લવચીક સેટઅપ વિકલ્પો

• Logging: પ્રવૃત્તિ અને એરર્સ રેકોર્ડ કરો

મેમરી ટ્રીક: "ગેટવેઝ ગ્રાન્ટ પ્રોટોકોલ ઇન્ટરઓપેરેબિલિટી"

પ્રશ્ન 4(ક અથવા) [7 ગુણ]

Mobile IP ની સમગ્ર પ્રક્રિયા સમજાવો.

જવાબ:

Mobile IP IP કનેક્ટિવિટી જાળવી રાખીને ડિવાઇસ મોબિલિટી સક્ષમ કરે છે:

Mobile IP ยรร):

ยรร	ભૂમિકા	รเช่
Mobile Node	ચલિત ડિવાઇસ	કનેક્ટિવિટી જાળવે છે
Home Agent	હોમ નેટવર્ક રાઉટર	પેકેટ્સ ફોરવર્ડ કરે છે
Foreign Agent	મુલાકાતી નેટવર્ક રાઉટર	સ્થાનિક ડિલિવરી
Care-of Address	અસ્થાયી એડ્રેસ	વર્તમાન સ્થાન

રેજિસ્ટ્રેશન પ્રક્રિયા:

તબક્કો 1: એજન્ટ ડિસ્કવરી

• Advertisement: એજન્ટ્સ ઉપલબ્ધતા બ્રોડકાસ્ટ કરે છે

• Solicitation: મોબાઇલ નોડ એજન્ટ માહિતી માંગે છે

• Selection: યોગ્ય ફોરેન એજન્ટ પસંદ કરો

તબક્કો 2: રેજિસ્ટેશન

• Request: મોબાઇલ નોડ હોમ એજન્ટ સાથે રેજિસ્ટર થાય છે

• Authentication: મોબાઇલ નોડ ઓળખ ચકાસો

• Binding: care-of address બાઇન્ડિંગ બનાવો

• Confirmation: રેજિસ્ટ્રેશન પુષ્ટિ

તબક્કો 3: પેકેટ ડિલિવરી

• Interception: હોમ એજન્ટ પેકેટ્સ ઇન્ટરસેપ્ટ કરે છે

• Tunneling: પેકેટ્સ એન્કેપ્સુલેટ અને ફોરવર્ડ કરે છે

• Decapsulation: ફોરેન એજન્ટ પેકેટ્સ એક્સટ્રેક્ટ કરે છે

• Local delivery: મોબાઇલ નોડને ફોરવર્ડ કરો

ટનલિંગ મેકેનિઝમ:

Original Packet: [IP Header | Data]

Dest: Home Address

Tunneled Packet: [New IP Header | Original Packet]

Dest: Care-of Address

મુખ્ય લક્ષણો:

• Transparency: એપ્લિકેશન્સ મોબિલિટીથી અજાણ

• Triangle routing: પરોક્ષ પેકેટ ડિલિવરી

• Location privacy: વાસ્તવિક સ્થાન છુપાવો

• Seamless handover: કનેક્શન્સ જાળવો

પડકારો:

• Triangle routing: બિનકાર્યક્ષમ પેકેટ પાથ

• Ingress filtering: ફાયરવોલ સુસંગતતા

• Security: ઓથેન્ટિકેશન અને એન્ક્રિપ્શન

મેમરી ટ્રીક: "Mobile IP: ડિસ્કવર રેજિસ્ટર ટનલ ડિલિવર"

પ્રશ્ન 5(અ) [3 ગુણ]

WPANs ના ફાયદાઓની યાદી બનાવો.

જવાબ:

WPAN (Wireless Personal Area Network) ટૂંકા-અંતરની કનેક્ટિવિટીના ફાયદાઓ પ્રદાન કરે છે:

મુખ્ય ફાયદાઓ:

ફાયદો	વર્ણન	ફાયદો
લો પાવર	ન્યૂનતમ બેટરી વપરાશ	લંબાવેલ ડિવાઇસ જીવન
લો કોસ્ટ	સસ્તું અમલીકરણ	કિફાયતી ડિપ્લોયમેન્ટ
ઈઝી સેટઅપ	સરળ કોન્ફિગરેશન	વપરાશકર્તા-મૈત્રીપૂર્ણ

ટેકનિકલ ફાયદાઓ:

• શોર્ટ રેન્જ: 10-30 ફૂટ કવરેજ હસ્તક્ષેપ ઘટાડે છે

• Ad-hoc networking: ઈન્ફ્રાસ્ટ્રક્ચરની જરૂર નથી

• ડિવાઇસ મોબિલિટી: રેન્જમાં મુક્તપણે ફરો

• **ઓટોમેટિક ડિસ્કવરી**: ડિવાઇસેસ એકબીજાને આપોઆપ શોધે છે

એપ્લિકેશન કાયદાઓ:

• પર્સનલ ડિવાઇસેસ: ફોન્સ, ટેબલેટ્સ, હેડફોન્સ કનેક્ટ કરો

• **IoT ઇન્ટિગ્રેશન**: સ્માર્ટ હોમ ડિવાઇસ કનેક્ટિવિટી

• કાઇલ શેરિંગ: ડિવાઇસેસ વચ્ચે ઝડપી ડેટા ટ્રાન્સફર

• પેરિફેરલ કનેક્શન: વાયરલેસ કીબોર્ડ્સ, માઉસ

સિક્યોરિટી કાયદાઓ:

• લિમિટેડ રેન્જ: ઈવસ્ડ્રોપિંગ રિસ્ક ઘટાડવું

• એન્ક્રિપ્શન: બિલ્ટ-ઇન સિક્યોરિટી પ્રોટોકોલ્સ

• પેરિંગ: ઓથેન્ટિકેટેડ ડિવાઇસ કનેક્શન્સ

મેમરી ટ્રીક: "WPANs: વાયરલેસ પર્સનલ એરિયા નેટવર્ક્સ"

પ્રશ્ન 5(બ) [4 ગુણ]

Mobile IP માં packet delivery ના steps સમજાવો.

જવાબ:

Mobile IP માં પેકેટ ડિલિવરીમાં મોબાઇલ ડિવાઇસેસ સુધી પહોંચવા માટે અનેક પગલાં સામેલ છે:

પેકેટ ડિલિવરીના પગલાં:

પગલું	પ્રક્રિયા	સ્થાન
1. ટ્રાન્સમિશન	હોમ એડ્રેસ પર પેકેટ મોકલો	Correspondent Node
2. ઇન્ટરસેપ્શન	મોબાઇલ નોડ માટે પેકેટ કેપ્યર કરો	Home Agent
3. ટનલિંગ	એન્કેપ્સુલેટ અને ફોરવર્ડ કરો	Home to Foreign Agent
4. ડિલિવરી	પેકેટ એક્સટ્રેક્ટ અને ડિલિવર કરો	Foreign Agent to Mobile

વિગતવાર પ્રક્રિયા:

```
CN ----> HA ----> FA ----> MN

(1) (2,3) (4)

Step 1: હોમ નેટવર્ક પર સામાન્ય IP રાઉટિંગ

Step 2: Home Agent પેકેટ ઇન્ટરસેપ્ટ કરે છે

Step 3: care-of address પર પેકેટ ટનલ કરે છે

Step 4: Foreign Agent મોબાઇલ નોડને ડિલિવર કરે છે
```

ટનલિંગ મેકેનિઝમ:

• એન્કેપ્સુલેશન: care-of address સાથે નવો IP હેડર ઉમેરો

• ફોરવર્ડિંગ: ઇન્ટરનેટ મારફતે ફોરેન નેટવર્ક પર રાઉટ કરો

• ડીકેપ્સુલેશન: ફોરેન એજન્ટ પર ટનલ હેડર હટાવો

• લોકલ ડિલિવરી: મોબાઇલ નોડને સ્ટાન્ડર્ડ ડિલિવરી

મેમરી ટ્રીક: "કોરેસ્પોન્ડન્ટ હોમ ફોરેન મોબાઇલ"

પ્રશ્ન 5(ક) [7 ગુણ]

WLAN નું આર્કિટેક્ચર આકૃતિ સાથે સમજાવો.

જવાબ:

WLAN (Wireless Local Area Network) આર્કિટેક્ચર સ્થાનિક વિસ્તારમાં વાયરલેસ કનેક્ટિવિટી પ્રદાન કરે છે:

WLAN ઘટકો:

ยรร	รเช่	કવરેજ
Station (STA)	વાયરલેસ ડિવાઇસ	વ્યક્તિગત ડિવાઇસ
Access Point (AP)	વાયરલેસ હબ	Basic Service Set
Basic Service Set (BSS)	સિંગલ AP કવરેજ	સ્થાનિક વિસ્તાર
Extended Service Set (ESS)	મલ્ટિપલ BSS	મોટો વિસ્તાર

આર્કિટેક્ચરના પ્રકારો:

Ad-hoc મોડ:

• Independent BSS: એક્સેસ પોઈન્ટની જરૂર નથી

• Peer-to-peer: ડાયરેક્ટ સ્ટેશન કમ્યુનિકેશન

• લિમિટેડ રેન્જ: સિંગલ હોપ કમ્યુનિકેશન

• ટેમ્પરરી નેટવર્ક્સ: કોન્ફરન્સ, મીટિંગ રૂમ્સ

Infrastructure मोऽ:

• Access Point: કેન્દ્રીય સંકલન

• **Distribution System**: અનેક APs કનેક્ટ કરે છે

• **રોમિંગ સપોર્ટ**: BSS વિસ્તારો વચ્ચે ફરવું

• ઇન્ટરનેટ કનેક્ટિવિટી: બાહ્યુ નેટવર્ક્સ માટે ગેટવે

મુખ્ય લક્ષણો:

• મોબિલિટી: કવરેજ વિસ્તારમાં ફરવું

• સ્કેલેબિલિટી: વધુ એક્સેસ પોઈન્ટ્સ ઉમેરો

• **ઇન્ટરઓપેરેબિલિટી**: IEEE 802.11 સ્ટાન્ડર્ડ્સ

• **સિક્યોરિટી**: WPA/WPA2 એન્ક્રિપ્શન

પ્રદાન કરવામાં આવતી સેવાઓ:

• Association: એક્સેસ પોઈન્ટ સાથે કનેક્ટ થવું

• Authentication: વપરાશકર્તા ક્રેડેન્શિયલ્સ યકાસવા

• Data delivery: વિશ્વસનીય ફ્રેમ ટ્રાન્સમિશન

• Power management: બેટરી ઓપ્ટિમાઇઝેશન

સ્ટાન્ડર્ડ્સ:

• **802.11a**: 5 GHz, 54 Mbps

• **802.11b**: 2.4 GHz, 11 Mbps

• **802.11g**: 2.4 GHz, 54 Mbps

• 802.11n: MIMO, 600 Mbps

• **802.11ac**: 5 GHz, 1 Gbps+

મેમરી ટ્રીક: "WLAN: વાયરલેસ લોકલ એરિયા નેટવર્ક"

પ્રશ્ન 5(અ અથવા) [3 ગુણ]

5G mobile network ની વિશેષતાઓ લખો.

જવાબ:

5G ક્રાંતિકારી મોબાઇલ નેટવર્ક ક્ષમતાઓ પ્રદાન કરે છે:

મુખ્ય લક્ષણો:

લક્ષણ	સ્પેસિફિકેશન	ફાયદો
સ્પીડ	10 Gbps સુધી	અલ્ટ્રા-ફાસ્ટ ડાઉનલોડ્સ
લેટન્સી	1ms કરતાં ઓછું	રિયલ-ટાઇમ એપ્લિકેશન્સ
ડેન્સિટી	1M devices/km²	મેસિવ IoT સપોર્ટ

ટેકનિકલ ક્ષમતાઓ:

• Enhanced Mobile Broadband: હાઇ-સ્પીડ ઇન્ટરનેટ એક્સેસ

• Ultra-Reliable Low Latency: જટિલ એપ્લિકેશન્સ

• Massive Machine Communication: IoT ડિવાઇસ કનેક્ટિવિટી

એડવાન્સ્ડ ટેક્નોલોજીઝ:

• Millimeter waves: ઉચ્ચ ફ્રીક્વન્સી બેન્ડ્સ

• MIMO: મલ્ટિપલ એન્ટેના સિસ્ટમ્સ

• Network slicing: વર્ચ્યુઅલ નેટવર્ક પાર્ટીશન્સ

• Edge computing: વિતરિત પ્રોસેસિંગ

એપ્લિકેશન્સ:

• ઓટોનોમસ વાહનો: રિયલ-ટાઇમ કંટ્રોલ

• સ્માર્ટ સિટીઝ: કનેક્ટેડ ઇન્ફ્રાસ્ટ્રક્થર

• ઇન્ડસ્ટ્રિયલ IoT: ફેક્ટરી ઓટોમેશન

મેમરી ટ્રીક: "5G: ફિફ્થ જનરેશન ગ્રેટ સ્પીડ"

પ્રશ્ન 5(બ અથવા) [4 ગુણ]

Mobile network ના સંદર્ભમાં DHCP કેવી રીતે કામ કરે છે તે સમજાવો.

જવાબ:

DHCP (Dynamic Host Configuration Protocol) મોબાઇલ નેટવર્ક્સમાં આપોઆપ IP એડ્રેસેસ સોંપે છે:

મોબાઇલ નેટવર્ક્સમાં DHCP પ્રક્રિયા:

પગલું	મેસેજ	હેતુ	દિશા
1	DHCP Discover	DHCP સર્વર શોધો	Client → Broadcast
2	DHCP Offer	IP એડ્રેસ ઓફર કરો	Server → Client
3	DHCP Request	વિશિષ્ટ IP રિક્વેસ્ટ કરો	Client → Server
4	DHCP ACK	એસાઇનમેન્ટ કન્ફર્મ કરો	Server → Client

મોબાઇલ નેટવર્ક પડકારો:

મોબાઇલ-સ્પેસિફિક લક્ષણો:

- **કાસ્ટ હેન્ડઓવર**: હલનચલન દરમિયાન ઝડપી IP એસાઇનમેન્ટ
- **લીઝ રિન્ચૂઅલ**: IP એડ્રેસ માન્યતા લંબાવવી
- ક્રોન્ફિલક્ટ રિઝોલ્યુશન: ડુપ્લિકેટ એડ્રેસેસ હેન્ડલ કરવા
- લોકેશન અપડેટ: ડિવાઇસ લોકેશનની નેટવર્કને જાણ કરવી

કોન્ફિગરેશન માહિતી:

• IP એડ્રેસ: અનન્ય નેટવર્ક આઇડેન્ટિફાયર

• સબનેટ માસ્ક: નેટવર્ક બાઉન્ડરી ડેફિનિશન

• ડિફોલ્ટ ગેટવે: બાહ્ય કમ્યુનિકેશન માટે રાઉટર

• DNS સર્વર્સ: ડોમેન નેમ રિઝોલ્યુશન

મોબાઇલ કોન્ટેક્સ્ટમાં ફાયદાઓ:

• ઓટોમેટિક કોન્ફિંગરેશન: મેન્યુઅલ સેટઅપની જરૂર નથી

• એડ્રેસ કન્ઝર્વેશન: એડ્રેસેસનો કાર્યક્ષમ પુનઃઉપયોગ

• મોબિલિટી સપોર્ટ: સીમલેસ નેટવર્ક ટ્રાન્ઝિશન

મેમરી ટીક: "DHCP: ડિસ્કવર ઓફર રિક્વેસ્ટ ACK"

પ્રશ્ન 5(ક અથવા) [7 ગુણ]

Bluetooth technology તેના protocol stack ની સ્વચ્છ આકૃતિ સાથે સમજાવો.

જવાબ:

Bluetooth પર્સનલ ડિવાઇસેસ માટે ટૂંકા-અંતરની વાયરલેસ કમ્યુનિકેશન પ્રદાન કરે છે:

પ્રોટોકોલ સ્ટેક લેયર્સ:

લેચર	รเช่	હેતુ
Radio	ભૌતિક ટ્રાન્સમિશન	2.4 GHz ISM બેન્ડ
Baseband	મીડિયા એક્સેસ કંટ્રોલ	ટાઇમ ડિવિઝન ડુપ્લેક્સ
LMP	લિંક મેનેજમેન્ટ	કનેક્શન સ્થાપના
нсі	હોસ્ટ-કંટ્રોલર ઇન્ટરફેસ	હાર્ડવેર એબ્સ્ટ્રેક્શન
L2CAP	લોજિકલ લિંક કંટ્રોલ	પેકેટ સેગમેન્ટેશન
Applications વપરાશકર્તા સેવાઓ		ફાઇલ ટ્રાન્સફર, ઓડિયો

તકનીકી સ્પેસિફિકેશન્સ:

ફિઝિકલ લેયર:

• **ફ્રીક્વન્સી**: 2.4 GHz ISM બેન્ડ

• હોપિંગ: 79 ફ્રીક્વન્સી ચેનલ્સ

• **મોક્યુલેશન**: ફ્રીક્વન્સી શિફ્ટ કીઇંગ

• **પાવર ક્લાસેસ**: 1mW થી 100mW

નેટવર્ક ટોપોલોજી:

```
Bluetooth Piconet:

[Slave 1]

[Slave 2]---[Master]---[Slave 3]

[Slave 4]

[Slave 4]

[ਪੈsìਜੇਟ દੀઠ મહત્તમ 8 ડિવાઇસેસ
માસ્ટર કમ્યુનિકેશન કંટ્રોલ કરે છે
```

કનેક્શનના પ્રકારો:

• SCO: સિંક્રોનસ કનેક્શન-ઓરિએન્ટેડ (વૉઇસ)

• ACL: એસિંક્રોનસ કનેક્શન-લેસ (ડેટા)

• **eSCO**: એન્હાન્સ્ડ SCO (સુધારેલ વૉઇસ)

સિક્યોરિટી લક્ષણો:

• Authentication: ડિવાઇસ ઓળખ ચકાસણી

• Authorization: સર્વિસ એક્સેસ કંટ્રોલ

• Encryption: ડેટા પ્રોટેક્શન (E0 આલ્ગોરિધમ)

• Key management: સિક્યોરિટી કી એક્સચેન્જ

Bluetooth વર્ઝન્સ:

વર્ઝન	સ્પીડ	રેન્જ	લક્ષણો
1.x	1 Mbps	10m	બેસિક કનેક્ટિવિટી
2.x	3 Mbps	10m	એન્હાન્સ્ડ ડેટા રેટ
3.x	24 Mbps	10m	હાઇ-સ્પીડ ઓપ્શન
4.x	1 Mbps	50m	લો એનર્જી (BLE)
5.x	2 Mbps	240m	સુધારેલ રેન્જ/સ્પીડ

એપ્લિકેશન્સ:

• ઓડિયો સ્ટ્રીમિંગ: હેડફોન્સ, સ્પીકર્સ

• ફાઇલ ટ્રાન્સફર: ડોક્યુમેન્ટ્સ, ફોટોઝ

• ઇનપુટ ડિવાઇસેસ: કીબોર્ડ્સ, માઉસ

• હેલ્થ મોનિટરિંગ: ફિટનેસ ટ્રેકર્સ

ફાયદાઓ:

• લો પાવર: બેટરી-ફ્રેન્ડલી ઓપરેશન

• ઈઝી પેરિંગ: સરળ ડિવાઇસ કનેક્શન

• ઇન્ટરઓપેરેબિલિટી: યુનિવર્સલ સ્ટાન્ડર્ડ

• **કોસ્ટ-ઇફેક્ટિવ**: સસ્તું અમલીકરણ

મેમરી ટીક: "Bluetooth: રેડિયો બેસબેન્ડ LMP HCI L2CAP એપ્લિકેશન્સ"