Simultaneous Multithreading: Multiplying Alpha Performance

Dr. Joel Emer
Principal Member Technical Staff
Alpha Development Group
Compaq Computer Corporation

COMPAQ

www.compaq.com

Outline

- Alpha Processor Roadmap
- Motivation for Introducing SMT
- Implementation of an SMT CPU
- Performance Estimates
- Architectural Abstraction

COMPAQ

EV8 Technology Overview

- ◆ Leading edge process technology 1.2-2.0GHz
 - 0.125µm CMOS
 - SOI-compatible
 - Cu interconnect
 - low-k dielectrics
- Chip characteristics
 - ~1.2V Vdd
 - ~250 Million transistors
 - ~1100 signal pins in flip chip packaging

COMPAQ

EV8 Architecture Overview

- Enhanced out-of-order execution
- 8-wide superscalar
- Large on-chip L2 cache
- Direct RAMBUS interface
- On-chip router for system interconnect
- Glueless, directory-based, ccNUMA for up to 512-way SMP
- 4-way simultaneous multithreading (SMT)

COMPAQ

www.compaq.com

Goals

- Leadership single stream performance
- Extra multistream performance with multithreading
 - Without major architectural changes
 - Without significant additional cost

COMPAQ

Changes for SMT

- Basic pipeline unchanged
- Replicated resources
 - Program counters
 - Register maps
- Shared resources
 - Register file (size increased)
 - Instruction queue
 - First and second level caches
 - Translation buffers
 - Branch predictor

COMPAQ

Architectural Abstraction

- ◆1 CPU with 4 Thread Processing Units (TPUs)
- Shared hardware resources

COMPAQ

Quiescing Idle Threads

Problem:

Spin looping thread consumes resources

Solution:

Provide quiescing operation that allows a TPU to sleep until a memory location changes

COMPAQ

www.compaq.com

Summary

- Alpha will maintain single stream performance leadership
- SMT will significantly enhance multistream performance
 - · Across a wide range of applications,
 - Without significant hardware cost, and
 - Without major architectural changes

COMPAQ

References

- "Simultaneous Multithreading: Maximizing On-Chip Parallelism" by Tullsen, Eggers and Levy in ISCA95.
- "Exploiting Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multithreaded Processor" by Tullsen, Eggers, Emer, Levy, Lo and Stamm in ISCA96.
- "Converting Thread-Level Parallelism to Instruction-Level Parallelism via Simultaneous Multithreading" by Lo, Eggers, Emer, Levy, Stamm and Tullsen in ACM Transactions on Computer Systems, August 1997.
- "Simultaneous Multithreading: A Platform for Next-Generation Prcoessors" by Eggers, Emer, Levy, Lo, Stamm and Tullsen in IEEE Micro, October, 1997.

COMPAQ