INPHEST Development Journal

December 9, 2015

1 Simulation of Summary Statistics

1. Generate source host tree \bar{T} .

Inputs

- Sequence data.
- Divergence time calibration priors.

Outputs

• \bar{T} : time-calibrated phylogeny.

Procedure

- Use BEAST to generate sample from the posterior distribution of trees given the data, \mathcal{T} .
- Summarize \mathcal{T} using MCCT or other criteria to produce \bar{T} .
- 2. Generate samples of biogeographical history augmented host trees, \mathbf{T}^* .

Inputs

- \bar{T} : time-calibrated phylogeny.
- Labeling of tips on \bar{T} by geography (distributional range, specified as presence/absence over set of areas, for each tip).

Outputs

• **T***: samples of host tree augmented with biogeographical history.

Procedure

- Use BayArea or RevBayes to generate stochastic mapped samples.
- 3. Generate samples of schedule of host events, \mathbb{H} .

Inputs

• **T***: samples of host tree augmented with biogeographical history.

Outputs

• \mathbb{H} : samples of a schedule of host events, where each distinct element $\mathcal{H}_i, \mathcal{H}_i \in \mathbb{H}$ bijectively corresponds to a distinct tree from \mathbf{T}^* , and consists of a vector of ordered pairs of (τ, η) , where τ is the simulation time of an event and η is the event (host speciation, host extinction, host dispersal, etc.) that occurs at that time on the particular tree to which it corresponds.

4. For *each* simulation replicate:

- (a) Sample a schedule of host tree events, \mathcal{H}_i , from \mathbb{H} .
- (b) Simulate symbiont tree, ψ , conditioned on \mathcal{H} and other parameters.
- (c) Calculate summary statistics on the symbiont tree, ψ .

2 Event Dynamics

Host lineage speciation

- Daughter host lineages inherit parent symbiont load:
 - Both host daughters inherit full symbiont load of parent?
 - Some other scheme?

Host lineage extinction

• Symbiont lineages loses host. If this results in any symbiont lineage host set being reduced to the null set, the symbiont lineage goes extinct.

Host lineage area gain

No action (passive area gain by proxy by symbiont lineages associated with this host).

Host lineage area loss

- If host lineage does not go extinct (host lineage range not reduced to the null set): no action (passive area loss by proxy by symbiont lineages associated with this host).
- If host lineage goes extinct (host lineage range reduced to the null set): as with host lineage extinction (above).

Symbiont lineage speciation

- Daughter symbiont lineages inherit parent host set pseudoallopatrically: one daughter lineage inherits one host, other inherit remaining.
- Daughter symbiont lineages inherit parent host set pseudosubset-sympatrically: one daughter lineage inherits one host, other inherits entire host set.
- Daughter symbiont lineages inherit parent host set by random sampling with replacement.
- Daughter symbiont lineages partition parent host set (randomly).

Symbiont lineage extinction

• Symbiont lineage removed from tree.

Symbiont lineage host gain

- Symbiont lineage gains host.
- Note: potential (new) hosts restricted to hosts that share one or more biogeographical areas with a current host.

Symbiont lineage host loss

• Symbiont lineage loses host, going extinct if host set reduced to the null set.

Symbiont lineage host jumping

- Symbiont lineage gains host.
- Note: potential (new) hosts restricted to hosts that share one or more biogeographical areas with a current host.

3 Questions

- Should symbionts/parasites track geography independentally of hosts?
 - If so, then symbiont range would be restricted to a subset of the host range. Each host lineage would probably need to be modeled independently in each area wrt to parasite load.