QUADRIC SURFACES

name	equation in standard form	x = const cross—section	y = const cross-section	$z = \text{const} \\ \text{cross-section}$	sketch
plane	ax + by + cz = d	line	line	line	
elliptic cylinder	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	two lines	two lines	ellipse	
parabolic cylinder	$y = ax^2$	one line	two lines	parabola	
sphere	$x^2 + y^2 + z^2 = d^2$	circle	circle	circle	
ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	ellipse	ellipse	ellipse	
elliptic paraboloid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$	parabola	parabola	ellipse	9
elliptic cone	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$	two lines if $x = 0$ hyperbola if $x \neq 0$	two lines if $y = 0$ hyperbola if $y \neq 0$	ellipse	
hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	hyperbola	hyperbola	ellipse	
hyperboloid of two sheets	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$	hyperbola	hyperbola	ellipse	
hyperbolic paraboloid	$\frac{y^2}{b^2} - \frac{x^2}{a^2} = \frac{z}{c}$	parabola	parabola	hyperbola	AA

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1 \left| \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{a^2} = 1 \right| \frac{z^2}{a^2} - \frac{x^2}{b^2} = 1 \left| z^2 - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0 \right| z - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0 \left| z - \frac{y^2}{b^2} + \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0 \right| z - \frac{y^2}{b^2} + \frac{x^2}{a^2} = 0$ Equation One linear term; One linear term: Characteristic two quadratic two quadratic No minus signs One minus sign Two minus signs No linear terms terms with the terms with same sign opposite signs Hyperboloid Hyperboloid Classification Elliptic Hyperbolic Ellipsoid Elliptic cone of one sheet of two sheets paraboloid paraboloid

$$\rightarrow Ax + By + (2 = D) \rightarrow plane$$

Ex:
$$z = xy \Rightarrow (z = x^2 - y^2)$$
 rotated about the 2-axis by 45°

$$\Rightarrow \text{ given } x^2 + y^1 = a^2 \Rightarrow y = \pm \sqrt{a^2 - x^2}$$

$$\Rightarrow x = \pm \sqrt{a^2 - y^2}$$

$$= + \sqrt{a^2 - y^2}$$

$$= -\sqrt{a^2 - y^2}$$