SMART INDIA HACKATHON 2024

SMART INDIA HACKATHON 2024

- Problem Statement ID: 1711
- Problem Statement Title : Enhancing Rail Madad
 with Al-powered Complaint Management
- Theme Smart Automation
- PS Category- Software
- Team ID: 48148 Team
- Name : Neuratech

Transforming Rail Madad: Al-Powered Smart Complaint Management

• Proposed Solution (Describe your Idea/Solution/Prototype)

Solution

Automated Categorization, Prioritization & Smart Routing

A **CNN model** processes complaint text and images, extracting features to classify, prioritize, and route complaints.

Predicting Recurring Issue

An **LSTM model** analyzes historical complaint data to detect patterns, predicting recurring issues and allowing proactive maintenance. Helps in preventing problems before they become widespread

API - Integration with Rail Madad

Creating APIs to connect the AI system with Rail Madad, enabling seamless data exchange. This ensures real-time updates and automated workflows across the complaint management system.

Sentiment Analysis - Feedback Management

Sentiment analysis uses NLP models to assess emotional tone of complaints, urgent responses to negative feedback. Improves customer satisfaction by addressing critical issues faster.

Uniqueness

Complaint Source Integration

Aggregates complaints from diverse sources like **social media** and **news** into one system, automatically categorizing and routing them for efficient handling.

Cross-Department Collaboration

Facilitates collaboration by allowing shared access to complaints, creating a dedicated space for departments to work together on **multi-category issues**.

Complaint Recommendation

When users submit a complaint, the system shows similar **past complaints** and their **resolutions**. This helps users see how **similar issues** were handled and potentially resolve their concerns faster

Emergency Live Video Complaint/SOS

Introduces **real-time** video-based complaint reporting for emergencies, enabling **instant verification** and **prioritization**. Adds a new level of immediacy to critical situations.

for Text Extraction

TECHNICAL APPROACH

Application Layer

Prioritization

LLM Based Chatbot

Sentiment Analysis

Complaint Registration and

User Feedback

& Chartjs for Analytics

Auth & Storage

Rail Madad VS Rail Sahayta

Rail Madad	Rail Sahayata	
1. Manual Categorization	1. Auto Categorization	
2. Upload file limit 5 MB	2. Auto compression file limit 5 MB	
3. No suggestion	3. Complaint suggestion	
4. Manual feedback rating	4. Auto (Smart) feedback rating [Time of completion, sentiment analysis]	
5. Poor complaint tracking (ref. no. required)	5. Organised complaint section for tracking	
6. Time consuming for registering complaint (select category, time & date, sub-category, etc)	6. Not time consuming for registering complaint (Auto category, time & date, sub-category, etc)	

7. There is provision to reopen the	
complaint if the complainant is not	
satisfied by the resolution provided	
by Railways	
(by accessing complain history)	
8. One can see their history of the	
lodged complaints	
9. Al model to predict recurring	
issues	
10. Auto performance monitoring	
and analytics	
11. Personalized staff training	
_	
12. Prioritization on basis of	
severity	

API Architecture

API Architecture

Database Model

Use Case Diagram

Business Model

ш

2

S

BUSINE

Α

ΉV

S

4

2

KEY ACTIVITIES

- Al-Based Complaint Categorization and Resolution:
- Integration with Rail Madad Platform:
- Real-Time Issue Tracking:
- Predictive
 Maintenance:
- Partnership Management:

CUSTOMER SEGMENTS

- Primary Users
- Railway Staff and Managemant
- Railway Authorities
- Indian Railway
 Partenrs

KEY PARTNERS

- Indian Railways
- Ai Technology Provider
- Maintanance and Service Vendors
- Goverment Digital
 Initiatives

VALUE PROPOSITIONS

- Faster and Efficient
 Complaint Resolution
- Predictive Maintenance
- Increased Operational Efficiency
- Real Time Emergency
 Handling
- Transperency and Accountability

KEY RESOURCES

- AI & ML Models
- Skilled Personnel
- Data Infrastructure
- Complaint And Feedback Database

CHANNELS

- Mobile and Web Application
- SMS and Chatbot Integration
- Social Media
 Aggregation

CUSTOMER RELATIONSHIP

- Automated
 Acknowledgenmt
 and Followups
- Personalized
 Feedback Collection
- Al Driven Insights
- Helpdesk Support

COST STRUCTURE

- · Data Storage and Processing
- Model Training and Updates
- Maintanance and Support
- Marketing and Awareness Campaigns

REVENUE STREAM

- Service Contracts with Third Party Vendors
- Subscription Fees for Advanced Analytics
- Cost Saving through Automation

FEASIBILITY AND VIABILITY

Operational Feasibility

Automated Response & Routing: All chatbots and smart routing algorithms streamline complaint handling and ensure timely resolution by directing complaints to the correct departments.

Predictive Maintenance: Machine learning models for predictive analytics forecast recurring issues, enabling proactive maintenance and reducing future complaints.

Feedback and Continuous Improvement: Sentiment analysis and performance monitoring drive ongoing improvements in the complaint resolution process.

Technical Feasibility

Integration with Existing Systems: Requires complex API development and data synchronization for seamless functionality.

Real-Time Processing: Needs efficient processing pipelines and low-latency infrastructure for timely analysis.

Scalability and Performance: Must optimize algorithms and use cloud solutions to handle large data volumes and varying loads.

Economic Feasibility

Cost of Al Integration: High initial investment in AI technologies and system integration but offers long-term efficiency gains.

Resource Allocation: Al-driven optimization can lead to cost savings by dynamically adjusting staffing and resources.

Maintenance and Updates: Ongoing costs for system maintenance & updates are balanced by improved resolution speed and accuracy.

Model Accuracy

Human-In-Loop Approach

Data Preprocessing & Cleaning

Manual Labelling & Annotation

Data Augmentation

Validation

Scalibility Issues

Distributed Systems Data Prioritization

Cloud Based Solutions

Handling Multimodal Data (Text, Image & Videos)

Cultural Resistance (staff)

Data Fusion

Multimodal Frameworks

Provide Training & Support

Rewarding & Rankings

RESEARCH AND REFERENCES

CNN for image categorization & prioritization	CNNs excel at image categorization by learning hierarchical features from raw data, while the final softmax layer provides confidence scores that can prioritize complaints based on classification certainty.	https://www.tensorflow.org/tuto rials/images/cnn
LSTM Model for Predicting Recurring Issue	LSTM models effectively capture temporal dependencies and long-term patterns in time-series data, making them ideal for predicting recurring issues by learning from historical trends and mitigating the vanishing gradient problem.	https://github.com/jaungiers/LSTM- Neural-Network-for-Time-Series- Prediction/tree/master
Sentiment Analysis using NLTK for User Feedback	NLTK (Natural Language Toolkit) effectively classifies sentiment in user feedback by analyzing text data and extracting sentiment scores, providing insights into user opinions and satisfaction levels.	<u>https://www.kaggle.com/code/</u> <u>jonathanoheix/sentiment-</u> <u>analysis-with-hotel-reviews</u>
OpenCV for Image Preprocessing	OpenCV provides robust tools for image preprocessing, including techniques like filtering, resizing, and normalization, which enhance and prepare images for further analysis.	https://docs.opencv.org/4.x/d2/d 96/tutorial_py_table_of_contents _imgproc.html
Flask API for Integration	Flask enables the creation of RESTful APIs for integrating various components by providing tools for routing, request handling, and CRUD operations.	<u>https://medium.com/@dennisivy/flask-restful-crud-api-c13c7d82c6e5text</u>
Tesseract for OCR Text Extraction	Tesseract, accessed via the pytesseract library, provides powerful Optical Character Recognition (OCR) capabilities for extracting text from images.	- <u>https://pypi.org/project</u> - <u>/pytesseract/</u>
LLM Fine Tuning for Chatbot	Fine-tuning large language models (LLMs) allows for advanced chatbot development by adapting the model to specific conversational contexts and user interactions.	_ <u>https://wandb.ai/mostafaibrahim17/ml-</u> _ <u>articles/reports/Fine-Tuning-Llama-2-for-Advanced-</u> _ <u>Chatbot-Development</u> _ <u>Vmlldzo2NTY3ODUwparagraph text</u>