Laboratory 5 Superposition

(Round your calculation and simulation results to 2 decimal places if necessary)

Objectives

• Study and verify the principle of superposition.

Equipment and components

- A computer/laptop
- Matlab software

Preliminary

- 1. Read section 4.13 of the textbook.
- 2. Calculate the theoretical results related to this lab and fill in Table 1, 2, and 3.

Procedure

- 1. Open Matlab and create a Simulink model of the circuit shown below. Measure the voltage across the 10 Ω resistor.
- 2. Fill in your simulation results in Table 1.

Table 1

	Theorical Results (V)	Simulation Results (V)
Both sources are in place		
110 V voltage source is in place		

4 A current source is in place	
·	

What can you conclude given the above results?

- 3. Add a diode in the circuit as shown below and create a Simulink model in Matlab. Measure the voltage across the diode and 10 Ω resistor.
- 4. Fill in the simulation results in Table 2.

Table 2

14516 2			
	Simulation Results (V)		
Both sources are in place			
110 V voltage source is in place			
4 A current source is in place			

What do you observe? Is the sum of voltages in Row 2 and 3 equal to the voltage in Row 1? Does the superposition principle still hold for this circuit? Please research diodes and explain why.

- 5. Create a Simulink model for the following circuit. Learn how to add dependent sources in the Simulink model. Measure the voltage across the 20 k Ω resistor.
- 6. Fill in your simulation results in Table 3.

Table 3

	Theorical Results (v)	Simulation Results (v)
Both sources are in place		
35 V voltage source is in place		
7 mA current source is in place		

What can you conclude given the above results?

Questions and conclusions

• Summarize your findings and explanations in response to the questions posed in this lab.