DATA STRUCTURES LECTURE 7

Lect. PhD. Oneț-Marian Zsuzsanna

Babeş - Bolyai University Computer Science and Mathematics Faculty

2020 - 2021

In Lecture 6...

- Linked Lists
- Sorted Linked List
- ADT List

Today

Linked List on Array

- What if we need a linked list, but we are working in a programming language that does not offer pointers (or references)?
- We can still implement linked data structures, without the explicit use of pointers or memory addresses, simulating them using arrays and array indexes.

- Usually, when we work with arrays, we store the elements in the array starting from the leftmost position and place them one after the other (no empty spaces in the middle of the list are allowed).
- The order of the elements is given by the order in which they are placed in the array.

elems	46	78	11	6	59	19				
-------	----	----	----	---	----	----	--	--	--	--

Order of the elements: 46, 78, 11, 6, 59, 19

 We can define a linked data structure on an array, if we consider that the order of the elements is not given by their relative positions in the array, but by an integer number associated with each element, which shows the index of the next element in the array (thus we have a singly linked list).

elems	46	78	11	6	59	19		
next	5	6	1	-1	2	4		

head = 3

• Order of the elements: 11, 46, 59, 78, 19, 6

 Now, if we want to delete the number 46 (which is actually the second element of the list), we do not have to move every other element to the left of the array, we just need to modify the links:

elems	78	11	6	59	19		
next	6	5	-1	2	4		

head = 3

Order of the elements: 11, 59, 78, 19, 6

• If we want to insert a new element, for example 44, at the 3rd position in the list, we can put the element anywhere in the array, the important part is setting the links correctly:

elems	78	11	6	59	19	44	
next	6	5	-1	8	4	2	

head = 3

• Order of the elements: 11, 59, 44, 78, 19, 6

• When a new element needs to be inserted, it can be put to any empty position in the array. However, finding an empty position has O(n) complexity, which will make the complexity of any insert operation (anywhere in the list) O(n). In order to avoid this, we will keep a linked list of the empty positions as well.

elems		78	11	6	59	19		44		
next	7	6	5	-1	8	4	9	2	10	-1

head = 3

firstEmpty = 1

- In a more formal way, we can simulate a singly linked list on an array with the following:
 - an array in which we will store the elements.
 - an array in which we will store the links (indexes to the next elements).
 - the capacity of the arrays (the two arrays have the same capacity, so we need only one value).
 - an index to tell where the head of the list is.
 - an index to tell where the first empty position in the array is.

SLL on Array - Representation

• The representation of a singly linked list on an array is the following:

SLLA:

elems: TElem[]
next: Integer[]
cap: Integer
head: Integer
firstEmpty: Integer

SLLA - Operations

- We can implement for a SLLA any operation that we can implement for a SLL:
 - insert at the beginning, end, at a position, before/after a given value
 - delete from the beginning, end, from a position, a given element
 - search for an element
 - get an element from a position

SLLA - Init

```
subalgorithm init(slla) is:
//pre: true; post: slla is an empty SLLA
  slla.cap \leftarrow INIT\_CAPACITY
```

SLLA - Init

```
subalgorithm init(slla) is:
//pre: true; post: slla is an empty SLLA
  slla.cap \leftarrow INIT\_CAPACITY
  slla.elems ← @an array with slla.cap positions
  slla.next \leftarrow @an array with slla.cap positions
  slla.head \leftarrow -1
  for i \leftarrow 1, slla.cap-1 execute
     slla.next[i] \leftarrow i + 1
  end-for
  slla.next[slla.cap] \leftarrow -1
  slla.firstEmpty \leftarrow 1
end-subalgorithm
```

Complexity:

SLLA - Init

```
subalgorithm init(slla) is:
//pre: true; post: slla is an empty SLLA
  slla.cap \leftarrow INIT\_CAPACITY
  slla.elems ← @an array with slla.cap positions
  slla.next \leftarrow @an array with slla.cap positions
  slla.head \leftarrow -1
  for i \leftarrow 1, slla.cap-1 execute
     slla.next[i] \leftarrow i + 1
  end-for
  slla.next[slla.cap] \leftarrow -1
  slla.firstEmpty \leftarrow 1
end-subalgorithm
```

• Complexity: $\Theta(n)$ -where n is the initial capacity

SLLA - Search

```
function search (slla, elem) is:
//pre: slla is a SLLA, elem is a TElem
//post: return True is elem is in slla, False otherwise
  current ← slla.head
  while current \neq -1 and slla.elems[current] \neq elem execute
     current ← slla.next[current]
  end-while
  if current \neq -1 then
     search ← True
  else
     search ← False
  end-if
end-function
```

Complexity:

SLLA - Search

```
function search (slla, elem) is:
//pre: slla is a SLLA, elem is a TElem
//post: return True is elem is in slla, False otherwise
  current ← slla.head
  while current \neq -1 and slla.elems[current] \neq elem execute
     current ← slla.next[current]
  end-while
  if current \neq -1 then
     search ← True
  else
     search ← False
  end-if
end-function
```

Complexity: O(n)

SLLA - Search

- From the search function we can see how we can go through the elements of a SLLA (and how similar this traversal is to the one done for a SLL):
 - We need a current element used for traversal, which is initialized to the index of the head of the list.
 - We stop the traversal when the value of current becomes -1
 - We go to the next element with the instruction: current ← slla.next[current].

SLLA - InsertFirst

```
subalgoritm insertFirst(slla, elem) is:
//pre: slla is an SLLA, elem is a TElem
//post: the element elem is added at the beginning of slla
  if slla.firstEmpty = -1 then
     newElems ← @an array with slla.cap * 2 positions
     newNext \leftarrow @an array with slla.cap * 2 positions
     for i \leftarrow 1, slla.cap execute
        newElems[i] \leftarrow slla.elems[i]
        newNext[i] \leftarrow slla.next[i]
     end-for
     for i \leftarrow slla.cap + 1, slla.cap*2 - 1 execute
        newNext[i] \leftarrow i + 1
     end-for
     newNext[slla.cap*2] \leftarrow -1
//continued on the next slide...
```

SLLA - InsertFirst

```
//free slla.elems and slla.next if necessary
      slla.elems \leftarrow newElems
      slla.next \leftarrow newNext
      slla.firstEmpty \leftarrow slla.cap+1
      slla.cap \leftarrow slla.cap * 2
   end-if
   newPosition \leftarrow slla.firstEmpty
   slla.elems[newPosition] \leftarrow elem
  slla.firstEmpty \leftarrow slla.next[slla.firstEmpty]
   slla.next[newPosition] \leftarrow slla.head
   slla.head \leftarrow newPosition
end-subalgorithm
```

Complexity:

SLLA - InsertFirst

```
//free slla.elems and slla.next if necessary
      slla.elems \leftarrow newElems
      slla.next \leftarrow newNext
      slla.firstEmpty \leftarrow slla.cap+1
      slla.cap \leftarrow slla.cap * 2
   end-if
   newPosition \leftarrow slla.firstEmpty
   slla.elems[newPosition] \leftarrow elem
  slla.firstEmpty \leftarrow slla.next[slla.firstEmpty]
   slla.next[newPosition] \leftarrow slla.head
   slla.head \leftarrow newPosition
end-subalgorithm
```

• Complexity: $\Theta(1)$ amortized

```
subalgorithm insertPosition(slla, elem, poz) is:
//pre: slla is an SLLA, elem is a TElem, poz is an integer number
//post: the element elem is inserted into slla at position pos
  if (pos < 1) then
     @error, invalid position
  end-if
  if slla.firstEmpty = -1 then
     Oresize
  end-if
  if poz = 1 then
     insertFirst(slla, elem)
  else
     pozCurrent \leftarrow 1
     nodCurrent \leftarrow slla.head
//continued on the next slide...
```

```
while nodCurrent \neq -1 and pozCurrent < poz - 1 execute
        pozCurrent \leftarrow pozCurrent + 1
        nodCurrent \leftarrow slla.next[nodCurrent]
     end-while
     if nodCurrent \neq -1 atunci
        newElem \leftarrow slla.firstEmpty
        slla.firstEmpty \leftarrow slla.next[firstEmpty]
        slla.elems[newElem] \leftarrow elem
        slla.next[newElem] \leftarrow slla.next[nodCurrent]
        slla.next[nodCurrent] \leftarrow newElem
     else
//continued on the next slide...
```

```
@error, invalid position
  end-if
  end-subalgorithm
```

Complexity:

```
@error, invalid position
  end-if
  end-subalgorithm
```

• Complexity: O(n)

- Observations regarding the *insertPosition* subalgorithm
 - Similar to the SLL, we iterate through the list until we find the element after which we insert (denoted in the code by nodCurrent - which is an index in the array).
 - We treat as a special case the situation when we insert at the first position (no node to insert after).
 - Since it is an operation which takes as parameter a position we need to check if it is a valid position
 - Since the elements are stored in an array, we need to see at every add operation if we still have space or if we need to do a resize. And if we do a resize, the extra positions have to be added in the list of empty positions.

SLLA - DeleteElement

```
subalgorithm deleteElement(slla, elem) is:
//pre: slla is a SLLA; elem is a TElem
//post: the element elem is deleted from SLLA
   nodC ← slla head
   prevNode \leftarrow -1
   while nodC \neq -1 and slla.elems[nodC] \neq elem execute
      prevNode \leftarrow nodC
      nodC \leftarrow slla.next[nodC]
   end-while
  if nodC \neq -1 then
      if nodC = slla.head then
         slla.head ← slla.next[slla.head]
      else
         slla.next[prevNode] \leftarrow slla.next[nodC]
      end-if
//continued on the next slide...
```

SLLA - DeleteElement

```
//add the nodC position to the list of empty spaces
slla.next[nodC] ← slla.firstEmpty
slla.firstEmpty ← nodC
else
@the element does not exist
end-if
end-subalgorithm
```

• Complexity: O(n)

SLLA - Iterator

- Iterator for a SSLA is a combination of an iterator for an array and of an iterator for a singly linked list:
- Since the elements are stored in an array, the currentElement will be an index from the array.
- But since we have a linked list, going to the next element will not be done by incrementing the *currentElement* by one; we have to follow the *next* links.
- Also, initialization will be done with the position of the head, not position 1.

DLLA

- Obviously, we can define a doubly linked list as well without pointers, using arrays.
- For the DLLA we will see another way of representing a linked list on arrays:
 - The main idea is the same, we will use array indexes as links between elements
 - We are using the same information, but we are going to structure it differently
 - However, we can make it look more similar to linked lists with dynamic allocation

DLLA - Node

- Linked Lists with dynamic allocation are made of nodes. We can define a structure to represent a node, even if we are working with arrays.
- A node (for a doubly linked list) contains the information and links towards the previous and the next nodes:

DLLANode:

info: TElem next: Integer prev: Integer

DLLA

- Having defined the DLLANode structure, we only need one array, which will contain DLLANodes.
- Since it is a doubly linked list, we keep both the head and the tail of the list.

DLLA:

nodes: DLLANode[]

cap: Integer head: Integer tail: Integer

firstEmpty: Integer

size: Integer //it is not mandatory, but useful

DLLA - Allocate and free

 To make the representation and implementation even more similar to a dynamically allocated linked list, we can define the allocate and free functions as well.

```
function allocate(dlla) is:
//pre: dlla is a DLLA
//post: a new element will be allocated and its position returned
   newElem \leftarrow dlla.firstEmpty
   if newElem \neq -1 then
      dlla.firstEmpty \leftarrow dlla.nodes[dlla.firstEmpty].next
      if dlla.firstEmpty \neq -1 then
         dlla.nodes[dlla.firstEmpty].prev \leftarrow -1
      end-if
      dlla.nodes[newElem].next \leftarrow -1
      dlla.nodes[newElem].prev \leftarrow -1
   end-if
   allocate ← newElem
end-function
```

DLLA - Allocate and free

```
subalgorithm free (dlla, poz) is:
//pre: dlla is a DLLA, poz is an integer number
//post: the position poz was freed
  dlla.nodes[poz].next \leftarrow dlla.firstEmpty
  dlla.nodes[poz].prev \leftarrow -1
  if dlla.firstEmpty \neq -1 then
     dlla.nodes[dlla.firstEmpty].prev \leftarrow poz
  end-if
  dlla.firstEmpty \leftarrow poz
end-subalgorithm
```