(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 August 2003 (07.08.2003)

PCT

(10) International Publication Number WO 03/064909 A1

- (51) International Patent Classification?: F16L 9/14, 11/00
- (21) International Application Number: PCT/US03/02019
- (22) International Filing Date: 23 January 2003 (23.01.2003)
- (25) Filing Language:

<u>.</u>1

English

(26) Publication Language:

English

(30) Priority Data:

60/351,916

25 January 2002 (25.01.2002) US

- (71) Applicant (for all designated States except US): NATVAR HOLDINGS, INC. [US/US]; 201 Industrial Parkway, Somerville, NJ 08876 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): DONOHUE, Robert, James [US/US]; 146 Alan Lane, Clayton, NC 27520 (US). COGGINS, George, III [US/US]; 6744 Walnut Cove Drive, Raleigh, NC 27603 (US). BENSON, Perry [US/US]; 6800 NC 50 North, Benson, NC 27504 (US). POPE, Libby [US/US]; 1795 NC Hwy. 222 West, Kenly, NC 27542 (US).

- (74) Agent: GULBIN, John, F.; Pitney, Hardin, Kipp & Szuch LLP, 685 Third Avenue, New York, NY 10017-4024 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CO-EXTRUDED TUBING

(57) Abstract: A co-extruded tubing for the administration of intravenous fluids has an outer layer (1) of a polyester. An inner fluid-contact layer (3) may be of a polyethylene or of an thermoplastic polyurethane. Where the inner fluid-contact layer is of polyethylene, an intermediate tie layer (2) of ethylene-vinyl acetate copolymer may be included to prevent delamination.

1/1

FIG.2

CO-EXTRUDED TUBING

FIELD OF THE INVENTION

[0001] The present invention is directed toward a coextruded tubing for the administration of intravenous fluids that eliminates the need for the inclusion of polyvinyl chloride and plasticizers.

BACKGROUND OF RELATED TECHNOLOGY

- 10 [0002] Plastic tubings are extensively employed in the field, particularly for patient analysis and treatment procedures. Various FDA-approved plastics and combinations thereof are used, depending upon the specific properties the intended application demands. The selection of desired plastic materials is further limited by the use of the tubing in the in vivo treatment of human patients, as the tubing may be used in the administration of intravenous fluids or itself may be introduced into the Thus, numerous factors must be considered ascertaining which materials to choose. 20
- [0003] Polyvinyl chloride (PVC) is material a previously used to make tubing, made with suitable plasticizers necessary to enhance flexibility and other However, such plasticizers or properties. additives have a tendency to migrate, causing hazardous 25 contamination with the fluid being transferred through the tubing. The contamination becomes more serious where the fluid is introduced into the body, as contamination of the blood may result. Moreover, plasticized PVC tubings have been shown to absorb nitroglycerin and insulin, and are 30 unsatisfactory for the administration of these thus

medicines. Much effort has been directed towards finding an alternative that does not suffer from the limitations of the plasticized PVC tubing.

[0004] Polyurethane has been used as an alternative to PVC in medical tubing, as in U.S. Patent No. 4,211,741 to Ostoich. Polyurethane may be used without plasticizers and other additives, because it is a relatively soft, flexible plastic. Therefore, the possibility of the migration of additives and subsequent contamination are eliminated. In addition, polyurethane exhibits good fluid-flow characteristics. However, the high cost of polyurethane has limited its use to only extraordinary applications.

Some grades of ethylene-vinyl acetate copolymer [0005] (EVA) are currently being used as an outer layer, together 15. with low-density polyethylene (LDPE) as an inner layer in forming composite tubing. Although this composite exhibits excellent peel strength, it lacks flexibility, clarity, and is easily scuffed or roughened. In addition, it cannot be solvent bonded. Since the tubing is the 20 connecting link between reservoir a of fluid (nitroglycerin, insulin, etc.) and the patient, the method of connecting the tubing is an important consideration. Where, as here, solvent bonding cannot be utilized, an expensive, less reliable mechanical means of assembly is 25 required, whereby a PVC layer must be pressure fit over the EVA-LDPE tubing to utilize the solvent-bondable characteristics of PVC. For these reasons, the EVA-LDPE product has proven to be unsatisfactory.

[0006] U.S. Patent No. 4,627,844 to Schmitt ("Schmitt") provides a well-received alternative that includes a tri-

layer tube. A commercially successful embodiment of U.S. Patent No. 4,627,844 is sold under the trademark "SUREPATH 151" by the Plastron/Natvar Division of Tekni-Plex, Inc. As disclosed in Schmitt, an outer layer of PVC and an inner fluid-contact layer of LDPE are co-extruded with an intermediate tie layer of EVA. However, while Schmitt greatly reduces the possibility for the migration of additives from the PVC to the fluid by providing an LDPE fluid-contact layer, the elimination of the PVC is preferred.

[0007] In addition to the potential migration problem of PVC additives into a fluid being transferred within a PVC tube, PVC production, use, and disposal are the subject of many regulatory concerns, particularly in Europe. For example, steps must be taken to reduce 15 introduction of vinyl chloride and additives into wastewater during production, and PVC must frequently be incinerated prior to introduction to a landfill. steps are recommended to prevent introduction of PVC and other additives to the environment due 20 to possible carcinogenic properties demonstrated by these compositions.

[0008] Therefore, there is a need for a co-extruded tubing that excludes PVC while providing the advantages of being solvent-bondable, EtO- and gamma-stable, and water-clear that may be used in the administration of nitroglycerin and insulin.

SUMMARY OF THE INVENTION

[0009] Accordingly, the present invention is a coextruded tubing which does not include PVC. In a first

embodiment, the co-extruded tubing has three layers which include an outer layer of a polyester. It also includes an inner fluid-contact layer, and an intermediate bonding layer of EVA. The inner fluid-contact layer may be of a polyethylene.

[0010] The second embodiment is a co-extruded tubing having two layers. As in the first embodiment, the co-extruded tubing includes an outer layer of a polyester, but it lacks an intermediate bonding layer. The co-extruded tubing of the second embodiment also includes an inner fluid-contact layer of a thermoplastic polyurethane.

[0011] The present invention will now be described in more complete detail with frequent reference being made to the following figures.

15

10

5

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Figure 1 is an isometric view of a tri-layered tubing of the invention with the outer layer and middle layer broken away in order to show the construction.

[0013] Figure 2 is an isometric view of a dual-layered tubing of the invention with the outer layer broken away in order to show the construction.

DETAILED DESCRIPTION OF THE INVENTION

[0014] Referring to Figure 1, one aspect of the present invention provides a co-extruded tri-layer tubing 10 that includes an outer layer 1 of a polyester, such as a copolyester thermoplastic elastomer (TPE), an inner fluid-contact layer 3, and an intermediate bonding layer 2 of EVA.

[0015] Referring to Figure 2, another aspect of the present invention provides a dual-layer tubing 20 that eliminates the need for an intermediate bonding layer. This dual-layer tubing 20 includes an outer layer 1 of a polyester, such as a copolyester thermoplastic elastomer (TPE), and an inner fluid-contact layer 3 of a thermoplastic polyurethane (TPU), such as an aromatic or aliphatic polyether-based TPU.

[0016] The polyester outer layer 1 has unexpectedly provided a tubing that is water-clear and flexible without 10 the addition of plasticizers and other additives. The polyester may be a copolyester ether TPE such as Ecdel Elastomer 9966, Ecdel Elastomer 9965, Ecdel Elastomer 9967, and Ecdel development polymer 24569 available from Eastman Chemical. These are copolyesters of alternating 15 hard poly-1,4-butanediol terephthalate and soft long-chain polyalkylene ether terephthalate block connected by ester and ether linkages. The thickness of the polyester outer layer 1 may be from about 0.001 in. (0.025 mm) to about 0.006 in. (0.152 mm). 20

[0017] The inner layer 3 provides a fluid-contact surface. The inner layer 3 may be either a polyethylene or a thermoplastic polyurethane elastomer (TPU). The thickness of the inner layer 3 may be from about 0.001 in. (0.025 mm) to about 0.030 in. (0.762 mm).

[0018] If the inner layer 3 is chosen to be a polyethylene, a variety of polyethylene materials are suitable. For example, polyethylene may be either a branched low-density polyethylene (LDPE), such as 808 Eastman LDPE, available from Eastman Chemical, or a linear high-density polyethylene (HDPE), such as 9506 Chevron

HDPE, 9406 Cheyron HDPE, and 9503 Chevron HDPE, available from Chevron Corporation.

[0019] Alternatively, a thermoplastic polyurethane elastomer (TPU) may be used as the inner fluid-contact layer 3. Generally, a TPU is the reaction product of a polyol and isocyanate and usually includes a combination of hard and soft segment domains. An aromatic polyether-based TPU or an aliphatic polyether-based TPU is desirable for use with the present invention. Useful TPU's include the Pellethane 2363-80 AE series available from Dow Chemical Company and the Tecothane series and the Tecoflex series available from Thermedics Polymer Products, a division of VIASYS Healthcare.

If a polyethylene is selected as the inner [0020] fluid-contact layer 3, it is desirable to include an 15 intermediate tie layer 2 to prevent delamination. The tie layer or bonding layer 2 is not necessary if the inner layer 3 is chosen to be a TPU. The intermediate bonding layer 2 may be ethylene-vinyl acetate copolymer (EVA). A vinyl acetate content of the EVA of approximately 28% 20 allows for maximum flexibility without losing the desired extrusion characteristics. One suitable EVA copolymer available from Equistar Chemical is UE 634-006. The thickness of the bonding layer 2 may be from about 0.001 in. (0.025 mm) to about 0.006 in. (0.152 mm). 25

[0021] The respective thickness of each layer of tubing 10,20 can be controlled by the extrusion tooling utilized, such as the "Tri Die" extrusion apparatus manufactured by the Genca Division of General Cable Company, Clearwater,

30 FL. This provides a uniform thickness of the layers both of the tri-layer tubing, including three layers 1,2,3, and

of the dual-layer tubing including two layers 1,2, which are co-extruded as is well-known in the art, resulting in the tri-layer tubing 10 and/or the dual-layer tubing 20 of the present invention.

5 [0022] The tubing of the subject invention has the advantages of not only being water-clear and flexible in the absence of PVC, but also is EtO- and gamma-stable. The tubing maintains its integrity (delamination does not occur) and clarity upon ethylene oxide (EtO) and gamma 10 irradiation sterilization processes. Another major advantage is that the tubing demonstrates solvent-bonding capability similar to that of PVC.

[0023] While there have been described what are presently believed to be the preferred embodiments of the invention, those skilled in the art will realize that changes and modifications may be made thereto without departing from the spirit of the invention, and it is intended to include all such changes and modifications as fall within the true scope of the invention.

20

WHAT IS CLAIMED IS:

1. A tubing comprising one or more layers, with at least one layer comprising polyester.

- 2. The tubing of claim 1, wherein said polyester is a copolyester thermoplastic elastomer.
- 3. The tubing of claim 1, further comprising an inner fluid-contact layer.
- 4. The tubing of claim 3, wherein said inner fluid-contact layer is selected from the group consisting of polyethylene and thermoplastic polyurethane elastomer.
- 5. The tubing of claim 3, further comprising an intermediate tie layer.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US03/02019

A. CLASSIFICATION OF SUBJECT MAT	TER .
IPC(7) :F16L 9/14, 11/00	
US CL: 138/140, 137 According to International Patent Classification (IPC) or to both national classification and IPC	
B. FIELDS SEARCHED	
Minimum documentation searched (classification system followed by classification symbols)	
U.S.: 138/140, 137, 141	
Documentation searched other than minimum documentation to the extent that such documents are included in the fields	
searched	
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)	
	•
C. DOCUMENTS CONSIDERED TO BE	DDI EXZANEE
C. DOCUMENTS CONSIDERED TO BE	RELE VAIVI
Category Citation of document, with indic	ation, where appropriate, of the relevant passages Relevant to claim No.
X US 6,230,749 B1 (KERTE	SZ) 15 May 2001, entire document. 1-5
A 05 0,250,745 D1 (RERTE	SZ) 15 May 2001, entire document. 1-5
X — US 5,570,711 A (WALSH)	05 November 1996, entire document. 1-3 and 5
	1-5 and 5
Further documents are listed in the continu	ation of Box C. See patent family annex.
Special categories of cited documents:	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand
"A" document defining the general state of the art considered to be of particular relevance	which is not the principle or theory underlying the invention
"E" earlier document published on or after the internation	onal filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
"L" document which may throw doubts on priority clain cited to establish the publication date of another ci	n(s) or which is when the document is taken alone
special reason (as specified)	document of particular relevance; the claimed invention cannot be
"O" document referring to an oral disclosure, use, exhi means	bition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art
"P" document published prior to the international filing	
Date of the actual completion of the international	
·	
30 APRIL 2003	16MAY 2003
Name and mailing address of the ISA/US	
Commissioner of Patents and Trademarks Box PCT	Authorized officer J. Huckey for PATRICK F. BRINSON
Washington, D.C. 20231	
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0861

Form PCT/ISA/210 (second sheet) (July 1998)*

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 August 2003 (07.08.2003)

PCT

(10) International Publication Number WO 03/064909 A1

- (51) International Patent Classification7: F16L 9/14, 11/00
- (21) International Application Number: PCT/US03/02019
- (22) International Filing Date: 23 January 2003 (23.01.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/351,916

25 January 2002 (25.01.2002) US

- (71) Applicant (for all designated States except US): NATVAR HOLDINGS, INC. [US/US]; 201 Industrial Parkway, Somerville, NJ 08876 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): DONOHUE, Robert, James [US/US]; 146 Alan Lane, Clayton, NC 27520 (US). COGGINS, George, III [US/US]; 6744 Walnut Cove Drive, Raleigh, NC 27603 (US). BENSON, Perry [US/US]; 6800 NC 50 North, Benson, NC 27504 (US). POPE, Libby [US/US]; 1795 NC Hwy. 222 West, Kenly, NC 27542 (US).
- (74) Agent: GULBIN, John, F.; Pitney, Hardin, Kipp & Szuch LLP, 685 Third Avenue, New York, NY 10017-4024 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- --- with international search report
- with amended claims

Date of publication of the amended claims: 16 October 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CO-EXTRUDED TUBING

(57) Abstract: A co-extruded tubing for the administration of intravenous fluids has an outer layer (1) of a polyester. An inner fluid-contact layer (3) may be of a polyethylene or of an thermoplastic polyurethane. Where the inner fluid-contact layer is of polyethylene, an intermediate tie layer (2) of ethylene-vinyl acetate copolymer may be included to prevent delamination.

AMENDED CLAIMS

[Received by the International Bureau on 11 July 2003 (11.07.03) original claims 1-5 replaced by new claims 1-15]

1. A co-extruded tubing for the transfer of fluids, said tubing having at least two layers comprising:

an outer layer, said outer layer being of a polyester; and

- 5 an inner fluid-contacting layer.
 - 2. A co-extruded tubing as claimed in claim 1 wherein said polyester is a copolyester thermoplastic elastomer (TPE).
 - 3. A co-extruded tubing as claimed in claim 2 wherein said copolyester thermoplastic elastomer (TPE) is a copolyester ether TPE.
- 4. A co-extruded tubing as claimed in claim 3 wherein said copolyester ether TPE is a copolyester of alternating hard poly-1,4-butanediol terephthalate and soft long-chain polyalkylene ether terephthalate block copolymers connected by ester and ether linkages.
 - 5. A co-extruded tubing as claimed in claim 1 wherein said outer layer has a thickness in a range from about 0.001 in (0.025 mm) to about 0.006 in (0.152 mm).
 - 6. A co-extruded tubing as claimed in claim 1 wherein said inner fluid-contacting layer is of a polyethylene.

1

- 7. A co-extruded tubing as claimed in claim 6 wherein said polyethylene is a branched low-density polyethylene (LDPE).
- 8. A co-extruded tubing as claimed in claim 6 wherein said polyethylene is a linear high-density polyethylene (HDPE).
- 9. A co-extruded tubing as claimed in claim 1 wherein said inner fluid-contacting layer is of a thermoplastic polyurethane elastomer (TPU).
- 10. A co-extruded tubing as claimed in claim 9 wherein said thermoplastic polyurethane elastomer (TPU) is an aromatic polyether-based TPU.
- 11. A co-extruded tubing as claimed in claim 9 wherein said thermoplastic polyurethane elastomer (TPU) is an aliphatic polyether-based TPU.
- 12. A co-extruded tubing as claimed in claim 1 wherein said inner fluid-contacting layer has a thickness in a range from about 0.001 in (0.025 mm) to about 0.030 in (0.762 mm).
- 13. A co-extruded tubing as claimed in claim 6 further comprising an intermediate bonding layer between said outer layer and said inner fluid-contacting layer.

- 14. A co-extruded tubing as claimed in claim 13 wherein said intermediate bonding layer is of an ethylene-vinyl acetate (EVA) copolymer.
- 15. A co-extruded tubing as claimed in claim 13 wherein said intermediate bonding layer has a thickness in a range from about 0.001 in (0.025 mm) to about 0.006 in (0.152 mm).