$$1.(a)\overline{\overline{A}\cdot B(\overline{C}+\overline{D})}=\overline{\overline{A}\cdot B}+\overline{\overline{C}+\overline{D}}=\overline{\overline{A}}+\overline{B}+\overline{\overline{C}}\cdot\overline{\overline{D}}=A+\overline{B}+C\cdot\overline{\overline{D}}$$

(b)
$$\overline{A \cdot B(C \cdot D + E \cdot F)} = \overline{A \cdot B} + \overline{C \cdot D + E \cdot F} = \overline{A} + \overline{B} + (\overline{C \cdot D})(\overline{E \cdot F}) = \overline{A} + \overline{B} + (\overline{C} + \overline{D})(\overline{E} + \overline{F})$$

$$\text{(c)}\ \overline{(A+B+\overline{C}+D)} + \overline{A\cdot\overline{B}\cdot C\cdot D} = \overline{A}\cdot\overline{B}\cdot\overline{\overline{C}}\cdot\overline{D} + \overline{A} + \overline{\overline{B}} + \overline{C} + \overline{D} = \overline{A}\cdot\overline{B}\cdot C\cdot\overline{D} + \overline{A} + B + \overline{C} + \overline{D}$$

(d)
$$\overline{(A+B+\overline{C}+D)(A\cdot\overline{B}\cdot C\cdot D)} = \overline{(A+B+\overline{C}+D)} + \overline{(A\cdot\overline{B}\cdot C\cdot D)} = A+B+\overline{C}+D+A\cdot\overline{B}\cdot C\cdot D$$

(e) $\overline{A \cdot B}(C \cdot D + E \cdot \overline{F})(\overline{A \cdot B} + \overline{C \cdot D}) = \overline{A \cdot B} + \overline{C \cdot D} + \overline{E \cdot F} + \overline{A \cdot B} + \overline{C \cdot D} = A \cdot B + (\overline{C \cdot D})(\overline{E \cdot F}) + (\overline{A \cdot B})(\overline{C \cdot D}) = A \cdot B + (\overline{C} + \overline{D})(\overline{E} + F) + A \cdot B \cdot C \cdot D$

2.(a)

	Inputs		
Α	В	С	X
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

(b)

	Inputs		
Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

(c)

	Inputs		
Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

	13
10	
10	١.

	Inputs		
Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1_	0	1
1	1	1	1

(e)

Inputs			Outputs
Α	В	С	Х
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

3.(a)B·C+D·E(B·C+D·E)=B·C+(D·E)(B·C)+(D·E)(D·E)=B·C+D·E

 $(b)B \cdot C(\overline{C} \cdot D + C \cdot E) = B \cdot (C \cdot \overline{C}) \cdot D + B \cdot (C \cdot C) \cdot E = B \cdot 0 \cdot D + B \cdot C \cdot E = B \cdot C \cdot E$

 $C \cdot E$

4.(a)

		ı.		
AB CD	00	01	11	10
00			/1)	
01			1	1
11	1	1	1	**
10	F	1	1	1

from the Karnaugh map, the minimum SOP form is A+C·D+B·C

(b)

(2)				
CD AB	00	01	11	10
00	,			
01	(1	1)		
11			U	
10				

from the Karnaugh map, the minimum SOP form is $\overline{A} \cdot B \cdot \overline{C} + A \cdot B \cdot C$

 $(c) (\overline{A} \cdot \overline{B} + A \cdot \overline{B}) (C \cdot D + C \cdot \overline{D}) = \overline{A} \cdot \overline{B} \cdot C \cdot D + A \cdot \overline{B} \cdot C \cdot D + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot \overline{D}$

CD AB	00	01	11	10
00			Ų	1/
01				
11				
10			/1	1

from the Karnaugh map, the minimum SOP form is $\overline{B} \cdot C$

(d)

CD AB	00	01	11	10
00	1	1	1	12
01	1			1
11	1			1
10	1/	1	1	1

from the Karnaugh map, the minimum SOP form is $\overline{D} + \overline{B}$

(e)
$$\overline{A} \cdot B(\overline{C} \cdot \overline{D} + \overline{C} \cdot D) + A \cdot B(\overline{C} \cdot \overline{D} + \overline{C} \cdot D) + A \cdot \overline{B} \cdot \overline{C} \cdot D = \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot \overline{C} \cdot D + A \cdot B \cdot \overline{C} \cdot \overline{D} + A \cdot B \cdot \overline{C} \cdot D + A \cdot \overline{C}$$

CD AB	00	01	11	10
00				
01	$\sqrt{1}$	1		
11	1	(1)		
10		1		

from the Karnaugh map, the minimum SOP form is $B \cdot \overline{C} + A \cdot \overline{C} \cdot D$

5.(a)

C AB	0	1
00	0	0
01		
11		0
10		

from the Karnaugh map, the minimum POS form is $(A + B)(\overline{A} + \overline{B} + \overline{C})$

(b)

C AB	0	1
00		-
01)S	0)
11	10	
10	(0)	

from the Karnaugh map, the minimum POS form is $(\overline{A} + C)(A + \overline{B})$

(c)

С	0	1
00	X	X
01	0	0)
11	0	
10	Ø	9

10

<u>(1</u>

1

from the Karnaugh map, the minimum POS form is A · B · C

6.(a)
$$\overline{A} + \overline{A} \cdot B + A \cdot C$$
 (b) $\overline{A} \cdot B + \overline{A} \cdot C \cdot D + D \cdot B \cdot \overline{D}$

from the Karnaugh map, the minimum SOP form is $A \cdot B + CD + CB$

