데이터 다듬기

문건웅

2017년 8월 26일

데이터 다듬기(Tidy Data)

"Happy families are all alike; every unhappy family is unhappy in its own way." — Leo Tolstoy

데이터 다듬기(Tidy Data)

"Happy families are all alike; every unhappy family is unhappy in its own way." — Leo Tolstoy

"Tidy datasets are all alike, but every messy dataset is messy in its own way." — Hadley Wickham

데이터 다듬기(Tidy Data)

"Happy families are all alike; every unhappy family is unhappy in its own way." — Leo Tolstoy

"Tidy datasets are all alike, but every messy dataset is messy in its own way." — Hadley Wickham

Program

Prerequisites

```
#install.packages("tidyverse")
library(tidyverse)
```

```
# A tibble: 6 x 4
     country year cases population
       <chr> <int> <int>
                               <int>
1 Afghanistan
              1999
                      745 19987071
2 Afghanistan
              2000
                   2666 20595360
3
      Brazil
              1999 37737
                           172006362
      Brazil
              2000
                    80488
                           174504898
4
5
       China
              1999 212258 1272915272
       China
6
              2000 213766 1280428583
```

```
# A tibble: 12 x 4
       country year
                           type
                                       count
         <chr> <int>
                           <chr>>
                                       <int>
               1999
 1 Afghanistan
                                         745
                           cases
 2 Afghanistan
                1999 population
                                   19987071
 3 Afghanistan
                2000
                                        2666
                           cases
 4 Afghanistan
               2000 population
                                   20595360
 5
        Brazil
                1999
                                       37737
                           cases
 6
        Brazil
                1999 population
                                  172006362
 7
        Brazil
                2000
                           cases
                                       80488
 8
        Brazil
                2000 population
                                  174504898
 9
         China
                1999
                                      212258
                           cases
10
         China
                1999 population 1272915272
         China
                2000
11
                           cases
                                      213766
12
         China
                2000 population 1280428583
```

```
# A tibble: 6 x 3
      country year
                                 rate
        <chr> <int>
                                 <chr>>
1 Afghanistan
               1999
                         745/19987071
2 Afghanistan
               2000
                        2666/20595360
3
       Brazil
                      37737/172006362
               1999
       Brazil
4
               2000
                      80488/174504898
5
        China
               1999 212258/1272915272
6
        China
               2000 213766/1280428583
```

table4a # cases

table4b # population

#	A tibble: 3	x 3	
	country	`1999`	`2000`
	<chr></chr>	<int></int>	<int></int>
1	Afghanistan	19987071	20595360
2	Brazil	172006362	174504898
3	China	1272915272	1280428583

Tidy data 란? 세 가지 규칙(Three rules)

- 1. 각 변수는 고유한 열에 위치(Each variable must have its own column)
- 2. 각 관찰치는 고유한 행에 위치(Each observation must have its own row)
- 3. 각 수치는 고유한 cell에 위치(Each value must have its own cell)

Tidy data 란? 세 가지 규칙(Three rules)

- 1. 각 변수는 고유한 열에 위치(Each variable must have its own column)
- 2. 각 관찰치는 고유한 행에 위치(Each observation must have its own row)
- 3. 각 수치는 고유한 cell에 위치(Each value must have its own cell)

Tidy data의 잇점

- 1.일관성 있는 데이터의 구조
- 2.변수가 열에 위치하고 있기 때문에 R의 장점인 벡터화된 연산이 가능하다.
- => 데이터 분석에 유용한 구조로 dplyr, ggplot2등 tidyverse 패키지들은 모두 tidy data에서 작동한다.

Tidy data의 잇점

1.일관성 있는 데이터의 구조

2.변수가 열에 위치하고 있기 때문에 R의 장점인 벡터화된 연산이 가능하다.

=> 데이터 분석에 유용한 구조로 dplyr, ggplot2등 tidyverse 패키지들은 모두 tidy data에서 작동한다.

예 1) 인구 만 명당 유병률

```
table1 %>%
  mutate(rate = cases/population * 10000)
```

```
# A tibble: 6 x 5
     country year cases population rate
       <chr> <int> <int>
                             <int> <dbl>
1 Afghanistan
             1999 745 19987071 0.372741
2 Afghanistan
             2000 2666 20595360 1.294466
      Brazil
3
             1999 37737 172006362 2.193930
      Brazil 2000 80488 174504898 4.612363
4
5
       China
             1999 212258 1272915272 1.667495
6
       China
             2000 213766 1280428583 1.669488
```

예 2) 년도별 환자수 총계

```
table1 %>%
  count(year,wt=cases)
```

예 3) 년도별 환자수 시각화

```
ggplot(table1,aes(year,cases,colour=country)) +
    geom_point() +
    geom_line()
```


Spreading 과 Gathering

- 실제 접할 수 있는 대부분의 데이터는 tidy data가 아니다. 그 이유는 크게 두 가지인데 첫째, 대부분의 사람들은 tidy data의 개념이 없으며 둘째, 데이터는 종종 분석 이외에 다른 목적에 맞게 구조화되어 있기 때문이다. 어떤 데이터는 입력하기 쉬운 구조로 되어 있다.
- 깔끔한 데이타를 만들기 위한 첫번째 단계는 변수와 관측치를 구별하는 일이다. 두번째는 다음과 같은 흔한 문제를 해결하는 것이다.
- 1. 한 변수가 여러 열에 분산되어 있는 경우
- 2. 한 관측치가 여러행에 흩어져 있는 경우
- => spread()와 gather()로 해결할 수 있다.

Gathering

```
table4a
```

table4a의 1999와 2000은 변수의 이름이 아니고 year 변수의 값이고 각 행은 하나의 관측치가 아니라 두개의 관측치이다.

country	year	cases	country	1999	2000
Afghanistan	1999	745	Afghanistan	7/15	2666
Afghanistan	2000	2666	Brazil	37737	80488
Brazil	1999	37737	China	212258	213766
Brazil	2000	80488			
China	1999	212258			
China	2000	213766		table4	

country	year	cases	country	1999	2000
Afghanistan	1999	745	Afghanistan	7/5	2666
Afghanistan	2000	2666	Brazil	37737	80488
Brazil	1999	37737	China	212258	213766
Brazil	2000	80488			
China	1999	212258			
China	2000	213766		table4	

```
table4a %>%
  gather(`1999`,`2000`,key="year",value="cases")
```

```
# A tibble: 6 x 3
     country year cases
        <chr> <chr> <int>
1 Afghanistan 1999
                      745
      Brazil
              1999
2
                    37737
3
       China
              1999 212258
4 Afghanistan
              2000
                     2666
5
      Brazil
              2000 80488
       China
              2000 213766
6
```

```
table4b
```

```
# A tibble: 3 \times 3
     country
             `1999`
                            `2000`
       <chr>
                  <int>
                             <int>
1 Afghanistan 19987071 20595360
      Brazil 172006362 174504898
2
3
       China 1272915272 1280428583
table4b %>%
  gather(`1999`, `2000`, key = "year", value = "population")
# A tibble: 6 x 3
     country year population
       <chr> <chr>
                        <int>
1 Afghanistan 1999 19987071
      Brazil 1999 172006362
2
              1999 1272915272
3
       China
4 Afghanistan
              2000 20595360
      Brazil
5
              2000 174504898
       China
6
              2000 1280428583
```

```
tidy4a <- table4a %>%
  gather(`1999`, `2000`, key = "year", value = "cases")
tidy4b <- table4b %>%
  gather(`1999`, `2000`, key = "year", value = "population")
left_join(tidy4a, tidy4b)
```

Spreading

table2

```
# A tibble: 12 x 4
       country year
                                     count
                          type
         <chr> <int>
                          <chr>
                                      <int>
 1 Afghanistan 1999
                                       745
                          cases
 2 Afghanistan 1999 population
                                  19987071
 3 Afghanistan 2000
                                       2666
                          cases
 4 Afghanistan 2000 population
                                 20595360
 5
        Brazil 1999
                          cases
                                     37737
 6
        Brazil
               1999 population
                                 172006362
        Brazil
                2000
                                     80488
                          cases
 8
        Brazil 2000 population
                                 174504898
 9
         China
                1999
                          cases
                                    212258
         China
10
                1999 population 1272915272
11
         China
                2000
                          cases
                                    213766
12
         China
                2000 population 1280428583
```

table2에는 하나의 관측치가 두개의 행에 나누어져 있다. 하나의 관측치는 한 나라, 한 해의 데이터인데 각 관측치가 두 행에 나뉘어져 있다. 이 경우 spread()함수로 데이터를 깔끔한 데이터로 만들 수 있다.

country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583
	ta	able2	

table2 %>% spread(key=type,value=count)

```
# A tibble: 6 x 4
                      cases population
      country year
        <chr> <int>
                                 <int>
                      <int>
1 Afghanistan
               1999
                        745
                             19987071
 Afghanistan
               2000
                       2666
                              20595360
3
       Brazil
               1999
                             172006362
                      37737
       Brazil
               2000
4
                      80488
                             174504898
        China
               1999 212258 1272915272
5
```

Exercise

다음 데이터를 깔끔하게 정리하라. spread 해야할까? gather해야할까?

Answer

```
preg %>% gather(key="sex",value="n",male,female)
# A tibble: 4 x 3
  pregnant
              sex
                      n
     <chr> <chr> <dbl>
           male
                     NA
1
       yes
2
             male
        no
                     20
3
       yes female
                   10
        no female
4
                     12
```

Separating과 uniting

Separate

```
table3
# A tibble: 6 x 3
      country year
                                  rate
        <chr> <int>
                                 <chr>
1 Afghanistan
               1999
                         745/19987071
2 Afghanistan
               2000
                        2666/20595360
3
       Brazil
               1999
                      37737/172006362
       Brazil
               2000
                      80488/174504898
4
5
        China
               1999 212258/1272915272
        China
               2000 213766/1280428583
```

table3에는 한 열(rate)에 두 개의 변수(cases와 population)가 포함되어 있다. 이 경우 separate()함수를 써서 분리할 수 있다.

tabl	le3
------	-----

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

```
table3 %>%
   separate(rate, into = c("cases", "population"))

# A tibble: 6 x 4
   country year cases population
   <chr> <int> <chr> <chr> <int> <chr> </chr>
```

	country	year	cases	population
	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>
1	Afghanistan	1999	745	19987071
2	Afghanistan	2000	2666	20595360
3	Brazil	1999	37737	172006362
4	Brazil	2000	80488	174504898
5	China	1999	212258	1272915272
6	China	2000	213766	1280428583

separate()

```
table3 %>%
    separate(rate,into = c("cases", "population"),sep="/",convert=TRL
# A tibble: 6 x 4
     country year cases population
       <chr> <int> <int> <int>
1 Afghanistan
             1999 745 19987071
2 Afghanistan 2000 2666 20595360
      Brazil 1999 37737 172006362
3
4
      Brazil
             2000 80488 174504898
5
      China
             1999 212258 1272915272
       China
              2000 213766 1280428583
```

- 디폴트 값으로 sep는 알파벳 또는 숫자가 아닌 값으로 되어 있으며 sep인수로 지정할 수 있다.
- 분리된 열의 데이터 타입은 현재의 데이터 타입으로 바뀌나 convert=TRUE로 지정해주면 가장 알맞는 데이터 타입으로 바뀐다.

• sep 인수에 숫자를 지정할 경우 분리할 위치로 해석한다. 양수는 문자의 왼쪽부터 시작하고 음수는 문자의 오른쪽에서 시작한다. 예를들어 연도를 century와 year로 분리하려면 다음과 같이 한다.

```
table3 %>%
  separate(year, into = c("century", "year"), sep = 2)
```

A tibble: 6 x 4

	country	century	year	rate
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
1	Afghanistan	19	99	745/19987071
2	Afghanistan	20	00	2666/20595360
3	Brazil	19	99	37737/172006362
4	Brazil	20	00	80488/174504898
5	China	19	99	212258/1272915272
6	China	20	00	213766/1280428583

unite

unite()함수는 separate()함수의 반대이다.

unite(data,col,...,sep="_",remove=TRUE)

```
# A tibble: 6 x 4
      country century year
                                          rate
        <chr>
               <chr> <chr>
                                          <chr>>
1 Afghanistan
                   19
                          99
                                  745/19987071
2 Afghanistan
                                 2666/20595360
                   20
                          00
3
       Brazil
                   19
                          99
                               37737/172006362
4
       Brazil
                   20
                          00
                               80488/174504898
5
        China
                   19
                          99 212258/1272915272
6
        China
                   20
                          00 213766/1280428583
table5 %>% unite(new, century, year)
```

```
# A tibble: 6 x 3
      country new
                                  rate
        <chr> <chr>
                                 <chr>
1 Afghanistan 19_99
                         745/19987071
2 Afghanistan 20_00
                        2666/20595360
3
       Brazil 19_99
                      37737/172006362
       Brazil 20 00
                      80488/174504898
4
        China 19_99 212258/1272915272
5
        China 20_00 213766/1280428583
```

```
table5 %>%
  unite(new, century, year, sep="")
```

```
# A tibble: 6 x 3
      country
                new
                                 rate
        <chr> <chr>
                                <chr>>
1 Afghanistan
               1999
                        745/19987071
2 Afghanistan
               2000
                        2666/20595360
       Brazil
3
               1999
                      37737/172006362
4
       Brazil
               2000
                      80488/174504898
5
       China
               1999 212258/1272915272
6
       China
               2000 213766/1280428583
```

Exercises

Exercises

separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE, convert = FALSE,
extra = "warn", fill = "warn", ...)

```
tbl %>% separate(x,c("one","two","three"))
# A tibble: 3 \times 3
   one two three
 <chr> <chr> <chr>
1
          b
     а
     d e f
2
3 h i
tbl %>% separate(x,c("one","two","three"),extra="merge")
# A tibble: 3 x 3
   one two three
 <chr> <chr> <chr>
          b
            С
     а
2
     d e f,g
3
   h
```

```
tbl2 %>% separate(x, c("one", "two", "three"))
# A tibble: 3 \times 3
   one two three
<chr> <chr> <chr>
1
 a b c
2 d e \langle NA \rangle
3 f g i
tbl2 %>% separate(x, c("one", "two", "three"),fill="left")
# A tibble: 3 x 3
   one two three
 <chr> <chr> <chr>
1 a b
2 < NA > d e
3 f g i
```

Missing Values

```
(stocks <- tibble(
  year = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
  qtr = c( 1,  2,  3,  4,  2,  3,  4),
  return = c(1.88, 0.59, 0.35,  NA, 0.92, 0.17, 2.66)
))</pre>
```

Missing Values

```
(stocks <- tibble(
  year = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
  qtr = c( 1,  2,  3,  4,  2,  3,  4),
  return = c(1.88, 0.59, 0.35,  NA, 0.92, 0.17, 2.66)
))</pre>
```

- 이 자료는 두 종류의 누락치가 있다.
 - 명시적인 누락: 2015년도 4분기 return이 누락되어 있다.
 - 암묵적인 누락: 2016년 1분기가 통째로 빠져있다.

```
stocks %>%
  spread(year, return)
```

```
stocks %>%
    spread(year, return)
# A tibble: 4 x 3
   gtr `2015` `2016`
  <dbl> <dbl>
              <dbl>
       1.88
                  NA
1
     1
2
     2 0.59
              0.92
3
     3 0.35 0.17
4
     4
                2.66
           NA
stocks %>%
    spread(year,return) %>%
    gather(year, return, -qtr)
# A tibble: 8 x 3
   gtr year return
  <dbl> <dbl> <dbl>
       2015 1.88
1
2
     2 2015 0.59
3
     3 2015
              0.35
       2015
               NA
4
     4
        2016
5
              NA
```

2016

2016

3 2016

6

8

0.92

0.17

2.66

```
stocks %>%
    spread(year,return) %>%
    gather(year, return, -qtr, na.rm=TRUE)
# A tibble: 6 x 3
   qtr year return
 <dbl> <dbl> <dbl>
     1 2015 1.88
1
2
     2 2015 0.59
3
     3 2015
              0.35
4
     2 2016 0.92
5
     3 2016 0.17
6
     4 2016
              2.66
```

```
stocks %>%
  complete(year,qtr)
```

```
# A tibble: 8 x 3
  year qtr return
 <dbl> <dbl> <dbl>
1 2015
          1 1.88
      2 0.59
2 2015
3 2015
            0.35
4 2015
            NA
5 2016
             NA
6 2016
          2 0.92
7 2016
            0.17
8 2016
          4 2.66
```

complete() 함수는 열이름들을 받아들여 모든 가능한 조합을 만들어 누락치가 있으면 명시적으로 NA를 표시해준다.

fill()

값의 중복을 피하기 위해 값이 바뀔 때만 기록한 자료가 있다.

treatment %>% fill(person)

```
treatment %>%
     fill(person)
# A tibble: 4 x 3
            person treatment response
             <chr>>
                       <dbl>
                                 <dbl>
1 Derrick Whitmore
2 Derrick Whitmore
                                    10
3 Derrick Whitmore
                                     9
4 Katherine Burke
                                     4
treatment %>%
     fill(person,.direction="up")
# A tibble: 4 x 3
            person treatment response
             <chr>
                        <dbl>
                                 <dbl>
1 Derrick Whitmore
                                     7
  Katherine Burke
                                    10
3 Katherine Burke
4 Katherine Burke
                                     4
```

Case Study

who

```
# A tibble: 7,240 x 60
       country iso2 iso3 year new_sp_m014 new_sp_m1524 new_sp_m2534
         <chr> <chr> <chr> <int>
                                         <int>
                                                       <int>
                                                                    <int>
 1 Afghanistan
                  ΑF
                        AFG
                             1980
                                            NA
                                                          NA
                                                                       NA
 2 Afghanistan
                  ΑF
                        AFG
                             1981
                                            NA
                                                          NA
                                                                       NA
 3 Afghanistan
                  ΑF
                        AFG
                             1982
                                            NA
                                                          NA
                                                                       NA
 4 Afghanistan
                  ΑF
                        AFG
                             1983
                                            NA
                                                          NA
                                                                       NA
 5 Afghanistan
                  ΑF
                       AFG
                             1984
                                            NA
                                                          NA
                                                                       NA
 6 Afghanistan
                  AF
                        AFG
                             1985
                                            NA
                                                          NA
                                                                       NA
 7 Afghanistan
                  ΑF
                        AFG
                             1986
                                            NA
                                                                       NA
                                                          NA
 8 Afghanistan
                  ΑF
                        AFG
                             1987
                                            NA
                                                          NA
                                                                       NA
 9 Afghanistan
                  ΑF
                        AFG
                                            NA
                             1988
                                                          NA
                                                                       NA
10 Afghanistan
                  ΑF
                        AFG
                             1989
                                            NA
                                                          NA
                                                                       NA
# ... with 7,230 more rows, and 53 more variables: new_sp_m3544 <int>,
    new_sp_m4554 <int>, new_sp_m5564 <int>, new_sp_m65 <int>,
#
#
    new_sp_f014 <int>, new_sp_f1524 <int>, new_sp_f2534 <int>,
    new_sp_f3544 <int>, new_sp_f4554 <int>, new_sp_f5564 <int>,
#
    new_sp_f65 <int>, new_sn_m014 <int>, new_sn_m1524 <int>,
#
    new_sn_m2534 <int>, new_sn_m3544 <int>, new_sn_m4554 <int>,
                                                                         38 / 46
    new_sn_m5564 <int>, new_sn_m65 <int>, new_sn_f014 <int>,
```

```
who1 <- who %>%
    gather(5:60,key="key",value="cases",na.rm=TRUE)
who1
# A tibble: 76,046 x 6
      country iso2 iso3 year
                                       kev cases
         <chr> <chr> <chr> <int>
                                      <chr> <int>
 1 Afghanistan
              AF AFG 1997 new_sp_m014
                                                0
 2 Afghanistan AF
                     AFG
                           1998 new_sp_m014
                                               30
 3 Afghanistan
                 ΑF
                     AFG
                           1999 new_sp_m014
                                                8
 4 Afghanistan
                 ΑF
                      AFG
                                               52
                           2000 new_sp_m014
 5 Afghanistan
                 ΑF
                      AFG
                           2001 new_sp_m014
                                              129
 6 Afghanistan
                 ΑF
                      AFG
                                               90
                           2002 new_sp_m014
 7 Afghanistan
                 ΑF
                      AFG
                           2003 new_sp_m014
                                              127
 8 Afghanistan
                 ΑF
                      AFG
                                              139
                           2004 new_sp_m014
```

AFG

AFG

2005 new_sp_m014

2006 new_sp_m014

151

193

ΑF

ΑF

... with 76,036 more rows

9 Afghanistan

10 Afghanistan

?who unique(who1\$key)

```
[1] "new_sp_m014" "new_sp_m1524" "new_sp_m2534" "new_sp_m3544"
[5] "new_sp_m4554" "new_sp_m5564" "new_sp_m65" "new_sp_f014"
[9] "new_sp_f1524" "new_sp_f2534" "new_sp_f3544" "new_sp_f4554"
[13] "new sp f5564" "new sp f65"
                                 [17] "new_sn_m2534" "new_sn_m3544" "new_sn_m4554" "new_sn_m5564"
[21] "new sn m65"
                  "new sn f014" "new_sn_f1524" "new_sn_f2534"
[25] "new sn f3544" "new sn f4554" "new sn f5564" "new sn f65"
[29] "new_ep_m014" "new_ep_m1524" "new_ep_m2534" "new_ep_m3544"
[33] "new ep m4554" "new ep m5564" "new ep m65" "new ep f014"
[37] "new_ep_f1524" "new_ep_f2534" "new_ep_f3544" "new_ep_f4554"
[41] "new ep f5564" "new ep f65"
                                 "newrel m014" "newrel m1524"
[45] "newrel_m2534" "newrel_m3544" "newrel_m4554" "newrel_m5564"
[49] "newrel m65" "newrel f014" "newrel f1524" "newrel f2534"
[53] "newrel f3544" "newrel f4554" "newrel f5564" "newrel f65"
```

```
who2 <- who1 %>%
    mutate(key=stringr::str_replace(key,"newrel","new_rel"))
unique(who2$key)
```

```
[1] "new_sp_m014"
                     "new_sp_m1524"
                                     "new_sp_m2534"
                                                      "new_sp_m3544"
                     "new sp m5564"
                                     "new_sp_m65"
                                                      "new_sp_f014"
    "new_sp_m4554"
[5]
                     "new sp f2534"
                                     "new sp f3544"
                                                      "new sp f4554"
[9]
    "new_sp_f1524"
                                     "new sn m014"
                                                      "new sn m1524"
[13] "new_sp_f5564"
                     "new sp f65"
[17]
    "new_sn_m2534"
                     "new_sn_m3544"
                                     "new sn m4554"
                                                      "new_sn_m5564"
[21]
    "new_sn_m65"
                     "new_sn_f014"
                                     "new sn f1524"
                                                      "new sn f2534"
[25] "new_sn_f3544"
                     "new sn f4554"
                                     "new sn f5564"
                                                      "new sn f65"
                     "new_ep_m1524"
                                     "new ep m2534"
                                                      "new_ep_m3544"
[29]
    "new_ep_m014"
                     "new ep m5564"
                                     "new_ep_m65"
                                                      "new_ep_f014"
[33] "new_ep_m4554"
[37]
    "new_ep_f1524"
                     "new_ep_f2534"
                                     "new_ep_f3544"
                                                      "new_ep_f4554"
[41] "new_ep_f5564"
                     "new_ep_f65"
                                     "new_rel_m014"
                                                      "new_rel_m1524"
[45] "new_rel_m2534" "new_rel_m3544" "new_rel_m4554" "new_rel_m5564"
                                     "new rel f1524" "new rel f2534"
[49] "new_rel_m65"
                     "new rel f014"
[53] "new_rel_f3544" "new_rel_f4554"
                                     "new rel f5564" "new rel f65"
```

```
who3 <- who2 %>%
     separate(key,c("new","type","sexage"))
who3
# A tibble: 76,046 x 8
       country iso2 iso3 year
                                     new
                                          type sexage cases
         <chr> <chr> <chr> <int> <chr> <chr>
                                                 <chr> <int>
 *
 1 Afghanistan
                   ΑF
                        AFG
                             1997
                                                  m014
                                                           0
                                     new
                                            sp
 2 Afghanistan
                   ΑF
                        AFG
                             1998
                                                  m014
                                                          30
                                            sp
                                     new
 3 Afghanistan
                   ΑF
                        AFG
                             1999
                                                  m014
                                                           8
                                     new
                                            sp
 4 Afghanistan
                   ΑF
                        AFG
                             2000
                                                  m014
                                                          52
                                     new
                                            sp
 5 Afghanistan
                   ΑF
                        AFG
                             2001
                                     new
                                            sp
                                                  m014
                                                         129
 6 Afghanistan
                   ΑF
                        AFG
                                                  m014
                                                          90
                             2002
                                     new
                                            sp
 7 Afghanistan
                   ΑF
                        AFG
                             2003
                                                  m014
                                                         127
                                             sp
                                     new
 8 Afghanistan
                   ΑF
                        AFG
                                                  m014
                             2004
                                                         139
                                     new
                                            sp
 9 Afghanistan
                   ΑF
                        AFG
                             2005
                                                  m014
                                                         151
                                     new
                                            sp
10 Afghanistan
                   ΑF
                        AFG
                             2006
                                            sp
                                                  m014
                                                         193
                                     new
# ... with 76,036 more rows
```

```
who5 <- who4 %>%
  separate(sexage, c("sex", "age"), sep = 1)
who5
```

```
# A tibble: 76,046 x 6
       country year type
                              sex
                                    age cases
         <chr> <int> <chr> <chr> <chr> <int>
 *
 1 Afghanistan
               1997
                                    014
                        sp
                                m
 2 Afghanistan
               1998
                                    014
                                           30
                        sp
                                m
 3 Afghanistan
                1999
                                    014
                                            8
                        sp
                                m
4 Afghanistan
                2000
                        sp
                                    014
                                           52
                                m
 5 Afghanistan
                2001
                                    014
                                          129
                        sp
                                m
6 Afghanistan
                2002
                                    014
                                           90
                        sp
                                m
 7 Afghanistan
                2003
                                    014
                                          127
                         sp
                                m
8 Afghanistan
                2004
                                    014
                                          139
                        sp
                                m
 9 Afghanistan
                2005
                        sp
                                    014
                                          151
                                m
10 Afghanistan 2006
                                    014
                                          193
                        sp
                                m
# ... with 76,036 more rows
```

```
who5 <-who %>%
  gather(code, value, new_sp_m014:newrel_f65, na.rm = TRUE) %>%
  mutate(code = stringr::str_replace(code, "newrel", "new_rel")) %>%
  separate(code, c("new", "var", "sexage")) %>%
  select(-new, -iso2, -iso3) %>%
  separate(sexage, c("sex", "age"), sep = 1)
who5
```

```
# A tibble: 76,046 x 6
       country year
                       var
                             sex
                                   age value
         <chr> <int> <chr> <chr> <chr> <int>
 1 Afghanistan 1997
                                   014
                        sp
                               m
 2 Afghanistan 1998
                        sp
                                   014
                                          30
                               m
 3 Afghanistan
              1999
                                   014
                                           8
                        sp
                               m
4 Afghanistan
              2000
                                   014
                                          52
                        sp
                               m
 5 Afghanistan 2001
                                   014
                                         129
                        sp
                               m
 6 Afghanistan 2002
                                          90
                        sp
                                   014
                               m
 7 Afghanistan
                2003
                                   014
                                         127
                        sp
                               m
 8 Afghanistan 2004
                                         139
                                   014
                        sp
                               m
 9 Afghanistan
                2005
                                         151
                        sp
                                   014
                               m
10 Afghanistan 2006
                                         193
                                   014
                        sp
                               m
# ... with 76,036 more rows
```

Exercises

각 나이, 성별로 결핵 환자 전체 수를 구하라

```
who5 %>%
   group_by(sex,age) %>%
   summarise(total=sum(value)) %>%
   ggplot(aes(age,total,fill=sex)) + geom_col()
```

