Probability 2

Exercise sheet nb. 13

Raul Penaguiao - Mailbox in J floor

Due until: 17th December at 5 p.m.

Exercise 1 (1 point). Consider a one dimensional Brownian motion $\{B_t\}_{t\geq 0}$, and let $p,q\in\mathbb{R}^+$. Show that $\mathrm{Cov}(B_p,B_q)=p\wedge q$.

Exercise 2 (3 points). We are given a one dimensional Brownian motion $\{B_t\}_{t\geq 0}$, and consider the process

$$X_t := B_t - tB_1 + t(y - x) + x.$$

Note that, a.s., $X_0 = x$ and $X_1 = y$. The process $(X_t)_{0 \le t \le 1}$ is called Brownian bridge between $x, y \in \mathbb{R}$.

- 1. Fix $t \in (0,1)$. What is the distribution of X_t ?
- 2. Let $0 < t_1 < \dots < t_n < 1$. Prove that $(X_{t_1}, \dots, X_{t_n})$ is a Gaussian vector and find its covariance matrix. (Hint: Consider $Y_i = B_{t_{i+1}} B_{t_i}$ and find an expression of X_{t_n} using these)

Exercise 3 (5 points). Let $\{B_u\}_{u>0}$ be a one dimensional Brownian motion.

- 1. Let $f:[0,1]\to\mathbb{R}$ be a function, which we assume to be differentiable at some point x in (0,1). Show that we can find N such that for any $n\geq N$ there exists i=i(n) such that all the following assertions hold:
 - $|f\left(\frac{i+1}{n}\right) f\left(\frac{i}{n}\right)| \le n^{-0.9}$,
 - $|f\left(\frac{i+2}{n}\right) f\left(\frac{i+1}{n}\right)| \le n^{-0.9}$,
 - $|f\left(\frac{i+3}{n}\right) f\left(\frac{i+2}{n}\right)| \le n^{-0.9}$.

(Hint: Take an appropriate interval around x where f is approximated by a linear function.)

2. Let i < n be two positive integers, show that

$$\mathbb{P}[|B_{(i+1)/n} - B_{i/n}| \le n^{-0.9}] \le \sqrt{\frac{2}{\pi}} n^{-0.4}.$$

3. Assume that $i \leq n-3$. Find an upper bound for the probability of the event

$$E_i^{(n)} = \{ |B_{(i+1)/n} - B_{i/n}| \le n^{-0.9} \} \cap \{ |B_{(i+2)/n} - B_{(i+1)/n}| \le n^{-0.9} \}$$
$$\cap \{ |B_{(i+3)/n} - B_{(i+2)/n}| \le n^{-0.9} \}.$$

Conclude that $\lim_{n\to\infty} \mathbb{P}\left[\bigcup_{i=0}^{n-3} E_i\right] = 0.$

4. Show that, a.s., the function $t\mapsto B_t$ is nowhere differentiable in (0,1).

Note: This is a result due to Paley, Wiener and Zygmund from 1933.