Unsupervised Learning

George Konidaris gdk@cs.duke.edu

Spring 2015

Machine Learning

DUKE COMPUTER SCIENCE

Subfield of AI concerned with learning from data.

Broadly, using:

- Experience
- To Improve Performance
- On Some Task

(Tom Mitchell, 1997)

Unsupervised Learning

Input:

$$X = \{x_1, ..., x_n\}$$
 inputs

Try to understand the structure of the data.

E.g., how many types of cars? How can they vary?

Clustering

One particular type of unsupervised learning:

- · Split the data into discrete clusters.
- · Assign new data points to each cluster.
- · Clusters can be thought of as types.

Formal definition

Given:

• Data points $X = \{x_1, ..., x_n\},\$

Find:

- Number of clusters k
- Assignment function $f(x) = \{1, ..., k\}$

Clustering

k-Means

One approach:

- Pick k
- Place k points ("means") in the data
- · Assign new point to ith cluster if nearest to ith "mean".

k-Means

Major question:

• Where to put the "means"?

Very simple algorithm:

- Place k "means" $\{\mu_1,...,\mu_k\}$ at random.
- Assign all points in the data to each "mean" $f(x_j)=i$ such that $d(x_j,\mu_i)\leq d(x_j,\mu_l) \forall l\neq i$
- · Move "mean" to mean of assigned data.

$$\mu_i = \sum_{v \in C_i} \frac{x_v}{|C_i|}$$

k-Means

DUKE COMPUTER SCIENCE

Remaining questions ...

How to choose *k*?

What about bad initializations?

Broadly:

- Use a quality metric.
- Look through *k*.
- · Random restart initial position.

Density Estimation

Clustering: can answer which cluster, but not does this belong?

Density Estimation

Estimate the distribution the data is drawn from.

This allows us to evaluate the probability that a new point is drawn from the same distribution as the old data.

Formal definition

Given:

• Data points $X = \{x_1, ..., x_n\},\$

Find:

• PDF P(X)

GMM

Simple approach:

· Model the data as a mixture of Gaussians.

Each Gaussian has its own mean and variance. Each has its own weight (sum to 1).

Weighted sum of Gaussians still a PDF.

GMM

Algorithm - broadly as before:

- Place k "means" $\{\mu_1,...,\mu_k\}$ at random.
- Set variances to be high.
- · Assign all points to highest probability distribution.

$$C_i = \{x_v | N(x_v | \mu_i, \sigma_i^2) > N(x_v | \mu_j, \sigma_j^2), \forall j\}$$

• Set mean, variance to match assigned data.

$$\mu_i = \sum_{v \in C_i} \frac{x_v}{|C_i|}$$
 $\sigma_i^2 = \text{variance}(C_i)$ $w_i = \frac{|C_i|}{\sum_j |C_j|}$

Application: Novelty Detection

Intrusion detection - when is a user behaving unusually?

First proposed by Prof. Dorothy Denning in 1986. (1995 ACM Fellow)

GMM

Major issue:

- · How to decide between two GMMs?
- How to choose *k*?

General statistical question: model selection. Several good answers for this.

Simple example: **Bayesian information criterion (BIC).** Trades off model complexity (k) with fit (likelihood).

