Math Review Notes—Stochastic Processes

Gregory Faletto

G. Faletto

Contents

1	Stochastic Processes		
	1.1	Poisson Processes	3
	1.2	Martingales	4
	1 3	Brownian Motion	1

Last updated December 11, 2018

1 Stochastic Processes

These notes are based on my notes from *Time Series and Panel Data Econometrics* (1st edition) by M. Hashem Pesaran and coursework for Economics 613: Economic and Financial Time Series I at USC, as well as notes from *Probability and Random Processes* by Grimmett and Stirzaker.

1.1 Poisson Processes

Definition 1.1. A Poisson process with intensity λ is a process $N = \{N(t) : t \ge 0\}$ taking values in $S = \{0, 1, 2, ...\}$ such that

(a) N(0) = 0; if s < t then $N(s) \le N(t)$.

(b)
$$\Pr(N(t+h) = n+m \mid N(t) = n) = \begin{cases} \lambda h + o(h) & \text{if } m = 1, \\ o(h) & \text{if } m > 1; \\ 1 - \lambda h + o(h) & \text{if } m = 0 \end{cases}$$

(c) If s < t, the number N(t) - N(s) of emissions in the interval (s, t] is independent of the times of emissions during [0, s].

Remark. λ can be interpreted as the average or long-run frequency of the Poisson process.

Theorem 1. (Grimmett and Stirzaker theorem 6.8.2.) Let N(t) be a Poisson process with intensity λ . Then N(t) has the Poisson distribution with parameter λt ; that is,

$$\Pr(N(t) = j) = \frac{(\lambda t)^j \exp(-\lambda t)}{j!}, \ j = 0, 1, 2, \dots$$

Proof. See Grimmett and Stirzaker section 6.8.2, page 247.

Definition 1.2. Let N(t) be a Poisson process with intensity λ . Let T_0, T_1, \ldots be given by

$$T_0 = 0, T_n = \inf\{t : N(t) = n\}$$
(1)

so that T_n is the time of the *n*th arrival. The **interarrival times** are the random variables X_1, X_2, \ldots given by

$$X_n = T_n - T_{n-1}. (2)$$

Remark. From knowledge of N, we can find the values of X_1, X_2, \ldots by (1) and (2). Conversely, we can construct N from knowledge of the X_i by

$$T_n = \sum_{i=1}^n X_i, \quad N(t) = \max\{n : T_n \le t\}$$
 (3)

Theorem 2. (Grimmett and Stirzaker theorem 6.8.10.) Let N(t) be a Poisson process with intensity λ . Let T_0, T_1, \ldots be given by (1) and let X_n be given by (2). Then then random variables $\{X_n\}$ are independent, each having an exponential distribution with parameter λ .

Proof. See Grimmett and Stirzaker section 6.8.2, page 249.

Corollary 3. Let N(t) be a Poisson process with intensity λ . Let T_0, T_1, \ldots be given by (1). Then $T_n \sim \text{Gamma}(n, \lambda^{-1})$.

Proof. By (3), $T_n = \sum_{i=1}^n X_i$. $X_i \sim \text{Exponential}(\lambda)$ by Theorem 2, which means $X_i \sim \text{Gamma}(1, \lambda^{-1})$. Then by Proposition ??, $T_n \sim \text{Gamma}(n, \lambda^{-1})$.

1.2 Martingales

Definition. Let $\{y_t\}_{t=0}^{\infty}$ be a sequence of random variables, and let Ω_t denote the information set available at date t, which at least contains $\{y_t, y_{t-1}, y_{t-2}, \ldots\}$. If $\mathbb{E}(y_t \mid \Omega_{t-1}) = y_{t-1}$ holds then $\{y_t\}$ is a martingale process with respect to Ω_t .

Definition. Let $\{y_t\}_{t=1}^{\infty}$ be a sequence of random variables, and let Ω_t denote the information set available at date t, which at least contains $\{y_t, y_{t-1}, y_{t-2}, \ldots\}$. If $\mathbb{E}(y_t \mid \Omega_{t-1}) = 0$, then $\{y_t\}$ is a martingale difference process with respect to Ω_t .

1.3 Brownian Motion

Appendix B.13, Brownian motion. A standard Brownian motion $b(\cdot)$ is a continuous-time stochastic process associating each date $a \in [0,1]$ with the scalar b(a) such that

- (i) b(0) = 0
- (ii) For any dates $0 \le a_1 \le a_2 \le \ldots \le a_k \le 1$ the changes $[b(a_2) b(a_1)], [b(a_3) b(a_2)], \ldots, [b(a_k) b(a_k 1)]$ are independent multivariate Gaussian with $b(a) b(s) \sim \mathcal{N}(0, a s)$.
- (iii) For any given realization, b(a) is continuous in a with probability 1.

Other continuous time processes can be generated from the standard Brownian motion. For example, a Brownian motion with variance σ^2 can be obtained as

$$w(a) = \sigma b(a)$$

where b(a) is a standard Brownian motion.

The continuous time process

$$\boldsymbol{w}(a) = \boldsymbol{\Sigma}^{1/2} \boldsymbol{b}(a)$$

is a Brownian motion with covariance matrix Σ .

Definition 26 (Wiener process). Let $\Delta w(t)$ be the change in w(t) during the time interval dt. Then w(t) is said to follow a Wiener process if

$$\Delta w(t) = \epsilon_t \sqrt{dt}, \quad \epsilon_t \sim IID(0,1)$$

and w(t) denotes the value of the $w(\cdot)$ at date t. Clearly,

$$\mathbb{E}[\Delta w(t)] = 0$$
, and $\operatorname{Var}[\Delta w(t)] = dt$

Theorem 4. Donsker's Theorem, Theorem 43, p.335, Section 15.6.3. Let $a \in [0, 1), t \in [0, T]$, and suppose $(J - 1)/T \le a < J/T, J = 1, 2, ..., T$. Define

$$R_T(a) = \frac{1}{\sqrt{T}} s_{[Ta]}$$

where

$$s_{\lceil Ta \rceil} = \epsilon_1 + \epsilon_2 + \ldots + \epsilon_{\lceil Ta \rceil}$$

[Ta] denotes the largest integer part of Ta and $s_{[Ta]} = 0$ if [Ta] = 0. Then $R_T(a)$ weakly converges to w(a), i.e.,

$$R_T(a) \to w(a)$$

where w(a) is a Wiener process. Note that when a = 1, $R_T(1) = 1/\sqrt{T} \cdot S_{T} = 1/\sqrt{T} \cdot (\epsilon_1 + \epsilon_2 + \ldots + \epsilon_T)$. Since ϵ_t 's are IID, by the central limit theorem, $R_T(1) \to \mathcal{N}(0,1)$.

Similar (Theorem 2.1 in Phillips and Durlaf (1986)): Let $\{u_t\}$ be a sequence satisfying $\mathbb{E}(u_t) = 0$, $\gamma(0) = \mathbb{E}(T^{-1}S_t^2) \to \sigma^2 < \infty$ as $T \to \infty$, $\{u_t\}$ is square summable, $\sup_t \{\mathbb{E}(|u_t|^\beta)\} < \infty$ for some $2 \le \beta < \infty$ and all t, $\gamma(h) = \mathbb{E}(T^{-1}(y_t - y_{t-h})^2) \to K_h < \infty$ as $\min\{h, T\} \to \infty$. Then $X_T(t) \Longrightarrow W(t)$ as $T \to \infty$, where W(t) is a Wiener process.

Theorem 5. Continuous Mapping Theorem (Theorem 44 of Pesaran in 15.6.3). Let $a \in [0,1)$, $i \in [0,n]$, and suppose $(J-1)/n \le a < J/n, J = 1,2,\ldots,n$. Define $R_n(a) = n^{-1/2}S_{[n\cdot a]}$. If $f(\cdot)$ is continuous over [0,1), then

$$f[R_n(a)] \xrightarrow{d} f[w(a)]$$