Logarithme

Table des matières

1	Définition, Propriétés	1
2	Propriétés algébriques du logarithme	1
3	Fonction logarithme népérien	1

1 Définition, Propriétés

On a vu au chapitre précédent que, pour tout x>0, l'équation $e^x=y$ admet une unique solution dans $\mathbb R$.

Définition 1. Pour tout réel x>0, on appelle **logarithme népérien** de x, noté $\ln x$, l'unique solution dans $\mathbb R$ de l'équation $\exp y=x$.

On a ainsi:

$$y = \ln x \Leftrightarrow x = \exp y$$

Propriété 1.

- $\bullet \ln 1 = 0,$
- $\ln e = 1$,
- Pour tout x > 0, $e^{\ln x} = x$,
- Pour tout $y \in \mathbb{R}$, $\ln e^y = y$,

2 Propriétés algébriques du logarithme

Théorème 2. Pour tous réels strictement positifs a et b, on a : $\ln a + \ln b = \ln a \times b$.

Théorème 3. Pour tous réels strictement positifs a et b, et pour tout entier naturel n on a :

•
$$\ln\left(\frac{1}{a}\right) = -\ln a$$

• $\ln\left(\frac{a}{b}\right) = \ln a - \ln b$

• $\ln a^n = n \ln a$ Cette formule reste valable pour $n \in [0; +\infty[$

• $\ln\left(\sqrt{a}\right) = \frac{1}{2}\ln a$

3 Fonction logarithme népérien

3.1 Définition

Définition 2. On appelle fonction logarithme népérien, notée \ln la fonction :

$$\begin{array}{ccc} \ln: &]0; +\infty[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \ln x \end{array}$$

Propriété 4. • La fonction logarithme népérien est définie sur $]0; +\infty[$.

• La fonction logarithme népérien est *continue* et *dérivable* sur $]0; +\infty[$.

3.2 Dérivée

Théorème 5. Dérivée

La fonction logarithme népérien est dérivable sur $]0; +\infty[$ et on a pour tout x>0 :

$$(\ln x)' = \frac{1}{x}$$

Théorème 6. Variations

La fonction logarithme est strictement croissante sur $]0;+\infty[$ et on a :

3.3 Limites

Théorème 7. Limites

La fonction logarithme népérien admet les limites suivantes :

•
$$\lim_{x \to +\infty} \ln x = +\infty$$

$$\bullet \lim_{x \to 0} \ln x = -\infty$$

On dit que la courbe du logarithme népérien admet une asymptote verticale d'équation x=0.

Théorème 8. Croissances comparées

La fonction logarithme népérien admet les croissances comparées suivantes :

$$\bullet \lim_{x \to +\infty} \frac{\ln x}{x} = 0.$$

$$\bullet \lim_{x \to 0} x \ln x = 0$$

Remarque.

- Dans les limites précédentes, on peut remplacer x par x^a avec a>0 et conserver le même résultat.
- La fonction logarithme népérien croît très lentement vers $+\infty$.

Par exemple, pour qu'elle atteigne l'ordonnée 10, il vaut atteindre environ $22\ 026$ en abscisses ...

3.3.1 Courbe représentative

