Transition metal Chemistry:

Organometallic compounds
&
Catalysis

Transition metal organometallic compounds & Catalysis

Which one is organometallic?

Ni(CO)₄ or NaCN?

Metal-carbon bond should be present.

Stabilizing Low Oxidation State: CO Can Do the Job

 1σ and 3σ are essentially nonbonding and bond order is 3.

CO-M sigma bond

M to CO pi backbonding

Ni(CO)₄], [Fe(CO)₅], [Cr(CO)₆], [Mn₂(CO)₁₀], [Co₂(CO)₈], Na₂[Fe(CO)₄], Na[Mn(CO)₅]

Organometallic Compound: Looking closer

Ligand Name	Bonding Type
Molecular Hydrogen: H ₂	H M ← H
Hydride H ⁻	M-H
Phosphine: PR ₃	M-PR ₃
Carbonyl: C≡O	M-C=0
Alkyl, Aryl	M-CR M-Ph
Alkene	M
	$H_2C \stackrel{\cdot}{=} CH_2$

18 electron rule

1920

British Chemist

Sidgwick

Organic compounds – Octet rule Organometallic – 18 electron rule

•18 valance electron – inert gas configuration

18 electron rule

- Stable low oxidation state complexes are found to have a total of 18 bonding electrons
 - metal electrons plus lone pairs from ligands
- Ni(CO)₄ 4s²3d⁸ and 4 lone pairs
- Fe(CO)₅ 4s²3d⁶ and 5 lone pairs
- Cr(CO)₆ 4s²3d⁴ and 6 lone pairs
- The stability of these 18 electron species can be explained using MO theory
 - Corresponds to filling all the molecular bonding orbitals and none of the antibonding orbitals
- However, the 18 electron rule only works for species with metals in a low oxidation state NOT FOR MOST COMPLEXES

To determine the 18 VE count for a metal complex: Neutral Atom method

- Find out the total number of valence electrons (s and d only) the group number plus the number of electrons donated by ligands as per the table.
- For anionic complex, add that many number of electrons equal to the negative charge.
- For cationic complex, subtract that many number of electrons equal to the positive charge.
- For every M-M single bond, add one electron to the count of each metal atom.

Neutral Atom method versus oxidation method (not following)

Counting the number of electrons

Ligand Name	Bonding Type	Formal Charge	Electrons donated
Molecular Hydrogen: H ₂	H M ← H	0	2
Hydride H ⁻	M-H	-1	1
Halide X ⁻	M-X	-1	1
Amine, phosphine, arsine: NR ₃ , PR ₃ , AsR ₃	M-NR3 M-PR3	0	2
Carbonyl: C≡O	M-C=O	0	2
Alkyl, Aryl	M-CR ₃ M-Ph	-1	1
Alkene	$H_2C \xrightarrow{M} CH_2$	0	2

	Neutral atom electron count	Oxidation state electron count
M-CO	2	2
M-CS	2	2
M-PR3	2	2
M-NR3	2	2
M-N≡N	2	2
dihydrogen C M— H	2	2
alkene $M-II$	2	2
Alkyne*	2	2
Isocyanide M-CNR	2	2
Nitrosyl, bent, M-N	1	2
Nitrosyl, linear, M−N≡O	3	2
M-X (halogen)	1	2
М-Н	1	2
M-R	1	2

	Neutral atom electron count	Oxidation state electron count
M-COR	1	2
M-Ph	1	2
M-NR ₂	1	2
M-PR ₂	1	2
M-OR	1	2
M-SR	1	2
Carbene =alkylidene M=CR ₂	2	4
Carbyne =alkylidyne M≡CR	3	6
η^1 -allyl, $M-C$	1	2
η^3 -allyl, M	3	4
η^2 -enyl, $M = \int_{-\infty}^{C}$	3	4
η^1 -cyclopentadienyl, M	1	2
η ⁵ -cyclopentadienyl,	5	6
M		

	Neutral atom electron count	Oxidation state electron count
η ⁶ -benzene	6	6
 M	1	2
η ⁷ -cycloheptatrienyl	7	6
M	1	2
η ⁷ -cyclooctatetraenyl	8	10
	1	2
M-CO-M	2	2
M-X-M	3	4
M-H-M	2	2
M -(CR_3)- M	2	2
$M-(NR_2)-M$	3	4
$M-(PR_2)-M$	3	4
M-(OR)-M	3	4
С М— — М	4	4
Ċ		

Fe is
$$4s^2 3d^6 = 8e$$

each CO donates 2 e = 10e

Rh is
$$s^1 d^8 = 9e$$

since Cl is -1, Rh is +1 (the complex is neutral)

$$9e - 1e + 8e = 16e$$

4 ligands x
$$2e$$
 each $= 8e$

therefore coordinately unsaturated

Cr(CO) ₆	Fe(CO) ₄ (PPh ₃)	Mn(CO) ₅	Co(CO) ₄
Cr = 6 e 6CO = 12 e 18 VE	Fe = 8 e 4CO = 8 e $Ph_3P = 2 e$	Mn = 7 e 5CO = 10 e charge = 1e	Co = 9 e 4CO = 8 e charge = 1e
	18 VE	18 VE	 18 VE

$$Mn_2(CO)_{10}$$
 $Co_2(CO)_8$
 $2Mn = 14 e$ $2Co = 18 e$
 $10CO = 20 e$ $8CO = 16 e$
 $Mn-Mn = 2 e$ $Co-Co = 2 e$
 $36 VE$ $36 VE$
 $36/2 = 18 VE/Mn$ $36/2 = 18 VE/Co$

(CO)₅Mn——

 $-Mn(CO)_5$

terminal or briding CO 2 e donor only

16 VE

$$HMn(CO)_5$$
 $Mn = 7 e$
 $5CO = 10 e$
 $Mn^+ = 6 e$
 $H = 1 e$
 $5CO = 10 e$
 $H^- = 2 e$
 $18 VE$

16 VE

$$2Rh = 18 e$$
 $4CO = 8 e$
 $2Rh^{+} = 16 e$
 $2Cl(bridging) = 6 e$
 $32 VE$
 $32 VE$
 $32 VE$
 $32 VE$
 $32 VE$

or 16 VE/Rh

Oxidation sate

C₅H₅⁻ cyclopentadienyl anion

Hapticity as η^x – as the number of contiguous ligand atoms simultaneously bound to a metal center

21	22	23	24	25	26	27	28	29
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper
39	40	41	42	43	44	45	46	47
Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag
Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenum	Rhodium	Palladium	Silver
57	72	73	74	75	76	77	78	79
La	Hf	Ta	W	Re	Os	Ir	Pt	Au
Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold

Early Transition Metals

16e and sub-16e configurations are common

Coordination geometries higher than 6

Middle Transition
Metals

18e configurations are common

Coordination geometries of 6 are common

Late Transition Metals

16e and sub-16e configurations are common

Coordination geometries of 5 or lower

Basic reactions in Organometallics

(1) Ligand substitution reactions

$$Ni(CO)_4 \xrightarrow{L} Ni(CO)_3L \xrightarrow{L} Ni(CO)_2L_2 \xrightarrow{L} Ni(CO)L_3 \xrightarrow{L} NiL_4$$

$$W(CO)_5(THF) + PR_3 \longrightarrow W(CO)_5PR_3 + THF$$

2. Oxidative addition and Reductive elimination

- 1. Two vacant coordination sites 16 VE, coordinatively unsaturated
- 2. Suitable orbitals containing nonbonding electrons.
- 3. Electron rich low valent metal with stable oxidation states separated by two units.
- 4. governed by the overall thermodynamics: relative stability of 4 CN versus 5 or 6 CN and by the strength of new bonds (M-X and M-Y) formed versus the bond broken (X-Y)

-occurs when a complex behaves simultaneously as a Lewis base and a Lewis acid

Concerted Additions

$$L_nM + A-B$$

$$L_nM - A$$

$$B$$

$$16 e$$

$$M(0)$$

$$18 e, M(0)$$

$$18 e, M(II)$$

Nonpolar reagents such as H₂, O₂, C-H, Si-H bonds

Step a the associative step, sigma complex; Step b, transfer of electron to σ^* of A-B bond cis product

(II)
$$PtCl_{2}$$

$$PtCl_{2}$$

$$PtCl_{2}$$

$$Pt(py)_{2}Cl_{2}$$

$$+ \frac{2 PPh_{3}}{-2 COD}$$

$$+ \frac{2 COD}{-2 COD}$$

$$+ \frac{2 PPh_{3}}{-2 COD}$$

$$+ \frac{2 PPh_{3}}{-2 COD}$$

$$+ \frac{2 PPh_{3}}{-2 COD}$$

PPh₃

S_N2 Reactions

With a polar substract, both cis and trans isomers possible.

R-Br + Mg
$$\longrightarrow$$
 Me-Mg-Br Cl-Cl + PCl₃ \longrightarrow PCl₅

Reductive Elimination

$$L_nMRH$$
 \longrightarrow $L_nM + R-H$

$$L_nMR_2 \longrightarrow L_nM + R-R$$

$$L_nMH(COR)$$
 \longrightarrow $L_nM + R-CHO$

$$L_nMR(COR)$$
 \longrightarrow $L_nM + R_2CO$

$$L_nMR(SiMe_3)$$
 \longrightarrow $L_nM + R-SiMe_3$

three center T.S.

Reductive elimination

(c) Insertion or migration Migration of alkyl and hydride ligands

(d) Nucleophilic attack

$$\begin{array}{ccc}
& O \\
& \downarrow \\
& L_5M - C - OH - \downarrow \\
& + & + \\
& & CO_2
\end{array}$$

Catalysis

 $A + B \stackrel{Catalyst}{\longrightarrow} C$

A catalyst is a substance that increases the rate of the reaction but is not itself consumed.

Introduces new pathways with lower Gibbs energies of activation, $\Delta^{\#}G$.

It does not change the thermodynamics

Catalysis: Why?

Heterogeneous

Homogeneous

Synthesis of chemicals... pharmaceutical, agricultural

Catalytic converter ... environmental

Biology: Enzymes

Biological system – efficient catalyst

Organometallic compounds, metals etc.

Catalytic Converter

How to select an efficient catalyst?

$$A + B \longrightarrow P$$

Activity: related to rate of reaction v = d[P]/dt

efficient catalyst: good activity

Turnover frequency N = v/[Q]

Large turnover frequency – efficient catalyst

Selectivity: Byproducts should be minimized

Lifetime: It is costly to replace the catalyst frequently

Cost: The acceptable cost depends upon the catalyst lifetime, product value lifetime and product value

Poisoning: decomposition of catalyst, adsorption of reactant/product

Coordination compounds in catalysis Nobel Prizes

2005	Yves Chauvin,Robert H. Grubbs
	and Richard R. Schrock.
2001	KNOWLES, NOYORI, SHARPLESS
1973	WILKINSON
1963	ZIEGLER, NATTA
1918	HABER
1909	OSTWALD

Hydrogenation of Unsaturated Hydrocarbons

-CH=CH- +
$$\frac{H}{H_2} \rightarrow -CH-CH-$$

NOBEL: 1973

The most common catalyst

Wilkinson's Catalyst, [RhCl(PPh₃)₃]

Wilkinson's Catalyst (WC)

Chlorotris(triphenylphosphine)rhodium(I)

square planar d⁸ configuration

Geoffrey Wilkinson

- Born July 14, 1921, Yorkshire, England
- Ph.D from Cal Berkeley studying with Glenn Seaborg
- First published compound in 1965 in Journal of the Chemical Society *Chemical Communications*
- •Nobel Prize in Chemistry 1973 (shared with Ernst Otto Fischer) for their pioneering work, performed independently, on the chemistry of the organometallic, so called sandwich compounds.

Organometallic compounds prepared by Wilkinson in display at Harvard Univ.

Synthesis of WC

Commercially available

Hydrogenation of Unsaturated Hydrocarbons

-CH=CH- +
$$H_2 \rightarrow$$
 -CH-CH-

$$\Delta H^0 = -136 \text{ kJ/mol}; \Delta G^0 = -101 \text{ kJ/mol}$$

Though thermodynamically favorable, at r.t. and pressure, does not take place.

In the presence of metals such as Ni, Cu, Pd or Pt, The reaction is fast –heterogeneous.

(1) Oxidative addition

(2) Ligand Dissociation

(3) Ligand Association

(4) Migration/Insertion

(5) Ligand association

(6) Reductive elimination

(note: regeneration of the catalyst)

Turnover number is the number of cycles for which a catalyst survives.

WC in alkene Hydrogenation: Additional Notes

Rate of the reaction decreases as the alkyl substitution increases Highly sensitive to the nature of the phosphine ligand Analogous complexes with alkylphosphine ligands are inactive Highly selective for C=C over C=O

Applications

- * Laboratory scale organic synthesis
- * Production of fine chemicals

Alkene Hydrogenation & Chirality

Chiral phosphine ligands have been developed to synthesize optically active products.

Synthesis of L-DOPA (Used in the treatment of Parkinson's diseases)
Synthetic route was developed by Knowles & co-workers at Monsanto

Dr. William S. Knowles received Nobel prize in chemistry 2001 along with other two scientists.

This reaction, developed by Knowles, Vineyard, and Sabacky, was used at Monsanto as a commercial route to the Parkinson's drug L-DOPA.

Acetic Acid

- > Acetic acid is an important industrial chemical
- ➤ Over 8 million tonnes is produced all over the world annually

Synthesis of Acetic Acid

The traditional synthesis involves aerobic bacterial action on dilute aqueous ethanol to give vinegar, acetic acid.

$$C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$$

 $C_2H_5OH + O_2 \rightarrow CH_3COOH + H_2O$

This is uneconomical and not supplying concentrated ethanoic acid for industry.

Industrial acetic acid synthesis involves carbonylation of methanol in the presence of metal catalyst.

$$RhCl_3.3H_2O$$
, HI
 $CH_3OH + CO$
 \longrightarrow
 CH_3COOH
 $180 C$, $30-40 atm$.

catalyzed by all three members of Group 9 (Co, Rh and Ir) complexes.

Relatively low pressure with Rh complex developed at Monsanto - called Monsanto process. Rh(III) is reduced to the active Rh(I) catalyst [Rh(CO)₂I₂] by CO –homogeneous catalysis

Methanol carbonylation (Monsanto Process)

Carbonylation reactions

Carbonylation of alcohols:

Carbonylation of alkenes and alkynes:

$$R-CH=CH_2 + CO + H_2O \longrightarrow R-CH_2-CH_2-COOH$$

$$R-CH=CH_2 + CO + H_2 \longrightarrow R-CH_2-CH_2-CH_0$$

Prior to 1970, acetic acid was made using cobalt catalysts (BASF process)

In 1970 Monsanto commercialized a rhodium carbonyl iodide catalyst that is commonly called the Monsanto Acetic Acid Process

Precatalyst: [Rh(CO)₂l₂]₋AsPh₄₊

For the reaction to be possible the source of I_z should exist (usually HI)

Mechanism of "Monsanto" carbonylation:

1. CH₃I generation:

$$CH_3OH + HI \longrightarrow CH_3I + H_2O$$

2. Oxidative addition of CH₃I to the Rh^I-complex

This is the slowest stage of the process

3. Migration insertion of CO (plus new CO addition to the coordination

Reductive elimination of CH₃COI

5. Formation of acetic acid through the following processes:

$$CH_3COI + H_2O \longrightarrow CH_3COOH + HI$$
 $CH_3COI + CH_3OH \longrightarrow CH_3COOH + CH_3I$

The catalytic cycle

