RUHR-UNIVERSITÄT BOCHUM

Eingebettete Prozessoren *SS 2013*

Übung 12: ADC

Dipl.-Ing. Thomas Pöppelmann

Arbeitsgruppe Sichere Hardware Horst Görtz Institut für IT-Sicherheit

11.07.2013

Agenda

- 1. Besprechung Übung 11
- 2. ADC

2. Konfiguration des ADC

ADC Wiederholung

- Der ADC quantisiert ein analoges Eingangssignal und gibt den Messwert als digitalen n-Bitvektor zurück.
 - Eingangsspannung wird in digitalen Wert umgewandelt
 - Vergleich der Messspannung mit einer Referenzspannung
- Abtasttheorem muss beachtet werden
 - $-f_A \ge 2(f_{max} f_{min})$
 - Unterabtastung ist zu vermeiden (Fehler)
 - Überabtastung ebenfalls (Ressourcenverbrauch)
- Sample & Hold System verhindert Abweichungen durch Signaländerung während der Laufzeit des ADC
- Im AVR ist der ADC eine separate Hardwareeinheit die unabhängig von der CPU agieren kann

Der ADC im ATMega8

- 10-Bit Auflösung (Wertebereich 0 bis 1023)
 - Minimum: GND
 - Maximum: ~AREF (Referenzspannung)

$$- ADC = \frac{V_{IN} \cdot 1024}{V_{REF}}$$

- Interne/Externe Referenzspannung
- Einmaliges Auslösen einer Messung oder wiederholte (frei laufende) Messung
- Signalisierung über Flags und Interrupts
- 6-8 Eingangskanäle (Hardware Multiplexer)
- Rauschen ist normal besonders in den niederwertigen Bits
 - Abfrage MESSUNG==x schlängt meistens fehl
 - Besser einen Bereich y<MESSUNG<=x testen
- Messung dauert (successive approximation)
 - Nach Initialisierung: 25 Zyklen (ADC)
 - Normal: 13 Zyklen (ADC)

ADC-Betriebsmodi

Zusammenfassung der Betriebsmodi des ADC:

- Single conversion: Eine Messung wird gestartet (ADSC)
- Free running: Kontinuierliche Messung (ADFR)

Interaktion/Signalisierung der CPU:

- Bit-clear: Ein Bit (ADSC) wird von der ADC-Hardware gelöscht, sobald eine Messung abgeschlossen ist
- Interrupt: Sobald eine Messung abgeschlossen ist, wird ein Interrupt ausgelöst
- Benutzung:
 - Im Single conversion Modus wird meistens über ein Flag signalisiert (ADIF is set/ADSC cleared)
 - Im Free running Modus wird meistens mit Interrupts gearbeitet (ADIE bit und I-bit in SREG gesetzt)
- Hinweis:
 - ADIF: ADC Interrupt Flag vs. ADIE: ADC Interrupt Enable

ADC Benutzen

- Auslösen einer Messung (Polling/ohne Interrupts)
 - Konfiguration im Vorfeld
 - ADC aktivieren: ADEN in ADCSRA setzen
 - Prescaler (ADC) auswählen (z.B. CLK/64): ADPS2:0 in ADCSRA entsprechend setzen
 - Referenzspannung auswählen (z.B. AV_{cc} mit ext. Kapazität): REFS1:0 in ADMUX setzen (Tabelle 74 im Datenblatt)
 - Messen eines Eingangspins
 - Eingangspin auswählen: MUX3:0 in ADMUX setzen (Tabelle 75)
 - ADC starten: ADCSC in ADCSRA setzen
 - Warten bis Konvertierung beendet ist: ADCSC wird wieder auf Null gesetzt
 - Auslesen des Ergebnisses (Reihenfolge beachten): erst ADCL und dann ADCH
 - Kann den ADC blockieren keine neuen Messwerte
 - Wenn das Ergebnis linksbündig in ADCH:ADCL geschrieben wird muss nur ADCH ausgelesen werden

Übung

- 2 Gruppenaufgaben (Fototransistor + Kollisionstaster)
 - Zusammen 100%
- 2 Einzelaufgaben (Sonderpunkte)
 - Klausurrelevant
 - Gruppenaufgaben umfangreich, aus diesem Grund gibt es Sonderpunkte

Anwendung: Fototransistoren (Gruppenaufgabe 1)

- Leuchtdiode erzeugt Licht welches von der Strecke reflektiert und von den Phototransistoren gemessen wird
- Kann zur Linienverfolgung benutzt werden
- Prinzip: Differenz aus linker und rechter Diode bilden: Diff=ADC(Links)-ADC(Rechts)
 - Differenz unter bestimmten Scheitelwert=> Gleich hell
 - Differenz größer als Scheitelwerts => Links heller
 - Differenz kleiner als negativer Scheitelwerts => Rechts heller
- Messungen können ungenau sein. Sehr stark abhängig vom Licht und dem Lichteinfallwinkel.

Anwendung: Fototransistoren (Gruppenaufgabe 1)

- T9 ist an ADC3 angeschlossen
- T10 ist an ADC2 angeschlossen

Anwendung: Kollisionstaster (Gruppenaufgabe 2)

- Bisher konnten wir nur ermitteln, ob ein Taster gedrückt wurde
- Per ADC Messung wird die am Pin anliegende Spannung gemessen
- Spannung ist abhängig vom zum Taster gehörigen Widerstand (Werte in Übung gegeben)
- RC Glied zur Glättung (siehe Übung)

Anwendung: Kollisionstaster (Gruppenaufgabe 2)

 Falls das Messen der Kollisionstaster nicht funktioniert bitte einmal die angegeben Werte ausprobieren:

CPI TMPH, 180 BRLO KEYO CPI TMPH, 210 **BRLO KFY1 CPI TMPH, 235 BRLO KEY2** CPI TMPH, 244 BRLO KEY3 CPI TMPH, 250 **BRLO KFY4** CPI TMPH,254 **BRLO KEY5** RJMP NOKEY

Weitere Informationen

- Skript
- Datenblatt
- ADC Tutorial:

http://www.mikrocontroller.net/articles/AVR-

Tutorial: ADC