## PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-338950

(43) Date of publication of application: 08.12.2000

(51)Int.CI.

G09G 5/06 G06T 1/00

G09G 5/00 H04N 1/60

H04N 1/46 H04N 9/64

(21)Application number: 11-146520

(71)Applicant: OLYMPUS OPTICAL CO LTD

(22)Date of filing:

26.05.1999

(72)Inventor: OSAWA TATEO

OOYAMA NAGAAKI YAMAGUCHI MASAHIRO

AJITO TAKEYUKI

#### (54) COLOR REPRODUCTION SYSTEM

#### (57)Abstract:

PROBLEM TO BE SOLVED: To provide a color reproduction system capable of executing accurate color reproduction in the whole color reproduction range.

SOLUTION: In this color reproduction system equipped with a color image display means (projector A (102–1), B (102–2), screen 103) having hour or more primary colors, and a color conversion means (image output device 101) for converting input tristimulus values into color image signals in each primary color of the color image display means, the color conversion means (image output device 101) is equipped with a region decision device for deciding a color conversion region, to which the input tristimulus values belong, in a three– dimensional color space, and a display signal calculation device for converting the input tristimulus values into the color image signals, based on a color conversion parameter corresponding to the color conversion region.



#### **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

#### \* NOTICES \*

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

#### **CLAIMS**

### [Claim(s)]

[Claim 1] It is the color reproduction system equipped with a color picture display means to have 4 or more primary colors, and a color conversion means to change input tristimulus values into the color picture signal of each primary color of the above-mentioned color picture display means. A field judging means to judge the color conversion field where input tristimulus values [ in / in the above-mentioned color conversion means / the color space of a three dimension ] belong, The color reproduction system characterized by providing a color picture signal calculation means to change the above-mentioned input tristimulus values into a color picture signal, based on the color conversion parameter corresponding to the color conversion field judged by this field judging means.

[Claim 2] The above-mentioned color conversion field corresponding to the input tristimulus values in the color gamut of the above-mentioned color picture display means is a color reproduction system according to claim 1 characterized by being six face pieces which consist of colors corresponding to three color picture signals which take maximum from 0, and other color picture signals which take 0 or maximum.

[Claim 3] The above-mentioned color conversion field is a color reproduction system according to claim 1 characterized by being the pyramid made from the predetermined tristimulus values in the color gamut of the above-mentioned color picture display means, and the top-most vertices which constitute a color-gamut front face.

[Claim 4] The above-mentioned color picture signal calculation means is the look-up table which memorizes the above-mentioned color picture signal by making the above-mentioned input tristimulus values into the address, claim 1 characterized by providing the color inverter which changes the above-mentioned input tristimulus values into a color picture signal with reference to this look-up table, or the color reproduction system of any one publication of three.

[Translation done.]

\* NOTICES \*

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

#### DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] Especially this invention relates to the color reproduction system which searches for the input color picture signal for displaying a desired color on a color picture display means to have 4 or more primary colors, about a color reproduction system.

[0002]

[Description of the Prior Art] For example, displays, such as a CRT display, a liquid crystal display, and a liquid crystal projector, are widely used as a means to reproduce the digital color picture inputted by the scanner, the digital camera, etc. These displays are usually reproducing various colors by the additive mixture of colors of R, G, and B three primary colors. In this case, the range of the color which can reproduce a display (color reproduction region) is restricted to the field expressed as the sum of a color vector in three primary colors in the color space of a three dimension, for example, in the CRT display which reproduces a color with R, G, and a B3 kind fluorescent substance If R, G, and X, Y and Z of CIE1931 color coordinate system at the time of the maximum luminescence of B fluorescent substance (XYZ color system) are set to (Xg, Yg, Zg), and (Xb, Yb, Zb), respectively (Xr, Yr, Zr) (0, 0, 0), (Xr, Yr, Zr), (Xg, Yg, Zg), (Xb, Yb, Zb), Six face pieces which make (Xr+Xg, Yr+Yg, Zr+Zg), (Xg+Xb, Yg+Yb, Zg+Zb), (Xb+Xr, Yb+Yr, Zb+Zr), and (Xr+Xg+Xb, Yr+Yg+Yb, Zr+Zg+Zb) top-most vertices serve as the color reproduction region. [0003] Drawing 11 is the mimetic diagram of the color reproduction region in the XYZ space of such a three-primarycolors display. When this is shown on xy chromaticity diagram, the interior of three square shapes surrounded by the chromaticity value of each primary color as shown in drawing 12 expresses a color reproduction region. On the display which made such additive mixture of colors in three primary colors the color reproduction principle, the relation between the inputs R and G to a display, X of the color displayed on B signal value and a display, Y, and Z value becomes settled uniquely in the area within color reproduction of a display. If the emission spectrum of each primary color assumes that it is independent of the output of other primary colors, and there is no relative spectrum distribution depending on luminescence reinforcement (that is, a chromaticity value does not change), X, Y, and Z of the foreground color corresponding to Inputs R and G and B value will be given by the degree type. [0004]

$$\begin{bmatrix} \mathbf{Equation 1} \\ \mathbf{X} \\ \mathbf{Y} \\ \mathbf{z} \end{bmatrix} = \begin{pmatrix} \mathbf{Xr} & \mathbf{Xg} & \mathbf{Xb} \\ \mathbf{Yr} & \mathbf{Yg} & \mathbf{Yb} \\ \mathbf{Zr} & \mathbf{Zg} & \mathbf{Zb} \end{pmatrix} \begin{pmatrix} \mathbf{R'} \\ \mathbf{G'} \\ \mathbf{B'} \end{pmatrix}$$

$$R' = \gamma_r(R) \tag{1}$$

$$G' = \gamma_g(G)$$

$$B' = \gamma_b(B)$$

[0005] Here, Xr, Xg, and Xb are X at the time of the maximum luminescence of R, G, and B, respectively, similarly, Yr, Yg, and Yb express Y at the time of the maximum luminescence of R, G, and B, and Zr, Zg, and Zb express Z at the time of the maximum luminescence of R, G, and B, respectively. moreover, gammar, gammag, and gammab respectively -- R -- G -- B -- an input signal -- a value -- an output -- brightness -- relation -- expressing -- a function -- it is -- R -- ' -- B -- ' -- B -- ' -- B -- max -- luminescence -- the time -- one -- becoming -- as -- normalizing --

having -- \*\*\* -- a thing -- \*\* -- carrying out. From this law of reciprocity, the inputs R and G for displaying X, desired Y, and desired Z and B value are calculated by the degree type.
[0006]

[Equation 2]

$$R = \gamma r^{-1}(R')$$

$$G = \gamma g^{-1}(G')$$

$$B = \gamma_b^{-1}(B^r)$$

(2)

$$\begin{pmatrix} R' \\ G' \\ B' \end{pmatrix} = \begin{pmatrix} Xr & Xg & Xb \\ Yr & Yg & Yb \\ Zr & Zg & Zb \end{pmatrix}^{-1} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

[0007] (2) In a formula, -1 expresses an inverse function (about a matrix, it is an inverse matrix). Thus, on the three-primary-colors display, modeling of the relation between X, Y, Z, R, G, and B value is easy, and generally the conversion approach by matrix conversion and gradation amendment is used as indicated by the color picture duplicate theory (Maruzen Co., Ltd. written by Tajima \*\* NI). the three primary colors -- a display -- setting -- X -- Y -- Z -- a display -- color reproduction -- outside the area -- it is -- a case -- \*\*\*\* -- (-- two --) -- a formula -- obtaining -- having had -- R -- '-- B -- '-- a value -- either -- negative or 1 -- size -- becoming.

[0008] In the display which makes the additive mixture of colors of primary color a color reproduction principle, the field surrounded by the chromaticity value of primary color as mentioned above turns into a color reproduction region. In order to expand a color reproduction region, it is possible to raise the saturation of each primary color or to increase the number of primary colors. The attempt which realizes a color reproduction region larger than the conventional three-primary-colors display is also made by considering as four primary colors as indicated by the NHK \*\*\*\* public presentation display data (NHK Science & Technical Research Laboratories, Tokyo (1995)). The color reproduction region in the XYZ space of 4 primary-color display and the color reproduction region on xy chromaticity diagram are shown in drawing 13 and drawing 14, respectively.

[0009] X, Y, and Z of the color as which it is displayed to a signal value also in the multi-primary color display which uses four or more N primary colors are obtained by the degree type which extended (1) type.
[0010]

[Equation 3]

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{x}\mathbf{c}\mathbf{1} & \mathbf{x}\mathbf{c}\mathbf{2} & \mathbf{x}\mathbf{c}\mathbf{3} & \dots & \mathbf{x}\mathbf{c}\mathbf{N} \\ \mathbf{y}\mathbf{c}\mathbf{1} & \mathbf{y}\mathbf{c}\mathbf{2} & \mathbf{y}\mathbf{c}\mathbf{3} & \dots & \mathbf{y}\mathbf{c}\mathbf{N} \\ \mathbf{z}\mathbf{c}\mathbf{1} & \mathbf{z}\mathbf{c}\mathbf{2} & \mathbf{z}\mathbf{c}\mathbf{3} & \dots & \mathbf{z}\mathbf{c}\mathbf{N} \end{pmatrix} \begin{pmatrix} \mathbf{c}\mathbf{1}' \\ \mathbf{c}\mathbf{2}' \\ \vdots \\ \mathbf{c}\mathbf{N}' \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{c}\mathbf{1}' = \gamma_{\mathbf{1}}(\mathbf{c}\mathbf{1}) \\ \mathbf{c}\mathbf{2}' = \gamma_{\mathbf{2}}(\mathbf{c}\mathbf{2}) \\ \mathbf{c}\mathbf{3}' = \gamma_{\mathbf{3}}(\mathbf{c}\mathbf{3}) \\ \vdots \\ \mathbf{c}\mathbf{N}' = \gamma_{\mathbf{N}}(\mathbf{c}\mathbf{N}) \end{pmatrix}$$

$$(3)$$

[0011] (3) Uniquely, the conversion to a signal value from X, Y, and Z which are given as a law of reciprocity of a formula does not become settled except for the front face of the color reproduction region of a multi-primary color display. Therefore, it is necessary to perform conversion which set the signal value corresponding to X, Y, and Z to a meaning based on some conditions. An example of the color conversion approach in a multi-primary color display is indicated by JP,6-261332,A. In the 1st example proposed in this official report, the linear combination in three primary colors chosen according to the chromaticity value of an input color is performing color reproduction. Moreover, in the 2nd example, it is indicating performing linear transformation which used all many primary colors.

[Problem(s) to be Solved by the Invention] By the color conversion approach by the 1st example indicated by above-mentioned JP,6-261332,A, although color reproduction exact about the range reproducible [ with the selected three primary colors ] is possible, since it is not taking into consideration to the color reproduction region of the brightness direction which a multi-primary color display originally has, it cannot respond to all the reproducible input colors. Moreover, by the color conversion approach by the 2nd example indicated by JP,6-261332,A, acquiring the solution from which the whole of each primary signal becomes forward is not guaranteed. For this reason, exact color reproduction may be unable to be performed to a reproducible input color.

[0013] The color conversion approach is expected for color reproduction exact in colorimetry to be possible. That is, input tristimulus values are changed into a color picture signal, and it becomes important by inputting into a display for input tristimulus values to be displayed on accuracy. Moreover, it is desirable for input tristimulus values and a color picture signal value to change continuously, and these conditions need to be further fulfilled over the whole color reproduction region of a display.

[0014] This invention is made paying attention to such a technical problem, and the place made into the purpose is to offer the color reproduction system which can perform exact color reproduction in the color reproduction region whole region.

[0015]

[Means for Solving the Problem] In order to attain the above-mentioned purpose, the color reproduction system concerning the 1st invention It is the color reproduction system equipped with a color picture display means to have 4 or more primary colors, and a color conversion means to change input tristimulus values into the color picture signal of each primary color of the above-mentioned color picture display means. A field judging means to judge the color conversion field where input tristimulus values [ in / in the above-mentioned color conversion means / the color space of a three dimension ] belong, Based on the color conversion parameter corresponding to the color conversion field judged by this field judging means, a color picture signal calculation means to change the above-mentioned input tristimulus values into a color picture signal is provided.

[0016] Moreover, the above-mentioned color conversion fields on the 1st invention and corresponding to the input tristimulus values in the color gamut of the above-mentioned color picture display means in the color reproduction system concerning the 2nd invention are six face pieces which consist of colors corresponding to three color picture signals which take maximum from 0, and other color picture signals which take 0 or maximum.

[0017] Moreover, the color reproduction system concerning the 3rd invention is set to the 1st invention, and the above-mentioned color conversion field is a pyramid made from the predetermined tristimulus values in the color gamut of the above-mentioned color picture display means, and the top-most vertices which constitute a color-gamut front face. [0018] moreover, the color reproduction system concerning the 4th invention -- the 1- in invention of any 3rd one publication, the above-mentioned color picture signal calculation means possesses the color inverter which changes the above-mentioned input tristimulus values into a color picture signal with reference to the look-up table which memorizes the above-mentioned color picture signal by making the above-mentioned input tristimulus values into the address, and this look-up table.

[0019]

[Embodiment of the Invention] With reference to a drawing, the gestalt of operation of this invention is explained to a detail below.

[0020] (Gestalt of the 1st operation) <u>Drawing 1</u> is drawing showing the outline configuration of the multi-primary color projector system as a color reproduction system concerning the gestalt of the 1st operation of this invention. The image data entry unit 100 changes the color picture data inputted by the digital camera, the color scanner, etc. into the image data (input tristimulus values) which each pixel becomes from X, Y, and Z of CIE1931 color coordinate system using data, such as the spectral sensitivity characteristic of the input device which incorporated color picture data, and illumination light at the time of an input, and outputs them to the image output unit 101.

[0021] The image output unit 101 changes X, Y, and Z data into the input signals C1 and C2 to Projector A (102-1), and the input signals C3 and C4 to Projector B (102-2), and inputs them into each projector. Projector A (102-1) and Projector B (102-2) project input signals C1 and C2 and the image according to C3 and C4 on a screen 103, respectively.

[0022] On a screen 103, the color picture of four primary colors reproduced with the projector based on the picture signal of C1, C2, C3, and C4 is reproduced. Projector A (102-1) and Projector B (102-2) shall have the same structure except for the spectrum of each primary color projected on a screen 103, and the location of the image projected on the screen 103 shall be beforehand adjusted so that it may be correctly in agreement.

[0023] <u>Drawing 2</u> is drawing showing typically the emission spectrum of the primary colors C1, C2, C3, and C4 of

Projector A (102-1) and Projector B (102-2). the emission spectrum of these four primary colors -- 380nm from -- 780nm It is distributed over the wavelength region of a visible region.

[0024] <u>Drawing 3</u> is drawing showing the configuration of the image output unit 101. Profile data storage 101A which has memorized the profile data of the projector A (102-1) with which the image output unit 101 was beforehand measured as shown in <u>drawing 3</u>, and Projector B (102-2), X and Y which were inputted, and field judging equipment 101C which asks for the field which specifies the conversion profile of Z data using this profile data, It consists of a multiplier of the primary signal as this field judging result, and status signal calculation equipment 101B changed into the input signal to Projectors A (102-1) and B (102-2) using profile data.

[0025] The gradation property data which give the relation between X at the time of the maximum luminescence of each primary color, Y, Z data, an input signal value, and luminescence brightness are memorized as profile data by profile data store 101A. As shown in <u>drawing 4</u>, these data display patch image 103A of a sample signal value for every primary color on a screen 103, and are obtained by measuring the X and Y, and Z value with a spectrometer (or colorimeter) 104 synchronizing with this. X as measurement data, Y, and Z value are incorporated by the image output unit 101, and after being changed into a predetermined format by the profile data listing device which is not illustrated in the image output unit 101, they are memorized by profile data storage 101A as profile data.

[0026] In field judging equipment 101C, the division field containing X and Y which were inputted among the division fields of the area within color reproduction currently beforehand divided into two or more six face pieces, and Z data is judged, and the multiplier of the status signal computed from X, Y, Z data, and the profile data according to a division field is outputted to status signal calculation equipment 101B.

[0027] The multiplier calculation approach of the field judging of X, Y, and Z data and a status signal is explained with reference to drawing 5 below at a detail. First, how to divide the color reproduction region of 4 primary-color display into four face pieces [six] beforehand is specified. Here, a color reproduction region as shown in drawing 5 (A) is assumed. Although the division approach does not become settled uniquely, it is divided into four face pieces [six] as shown in drawing 5 (B) - drawing 5 (E) here. In this example, the color reproduction region of 4 primary-color display The division field 1 (drawing 5 (B)) made when the three primary colors of others [primary color / 4] take 0 - maximum by 0, The division field 2 (drawing 5 (C)) made when the three primary colors of others [primary color / 2] take 0 - maximum by 0, The division field 3 (drawing 5 (D)) and primary color 1 which are made when the three primary colors of others [primary color / 3] take 0 - maximum are constituted from the division field 4 (drawing 5 (E)) made when other three primary colors take 0 - maximum by maximum.

[0028] In each division field, the three primary colors take the range of the maximum luminescence from 0 among four primary colors, and the one remaining primary colors serve as a constant value of either 0 or maximum. There is the other division approach which fulfills such conditions, and it may use any division approach. It sets to each division field and the criteria which judge to which division field X and Y which were inputted, and Z data are contained among these division fields are a degree type [0029].

[Equation 4]

$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ z_1 & z_2 & z_3 \end{pmatrix}^{-1} \begin{pmatrix} x - x_0 \\ x - x_0 \\ z - z_0 \end{pmatrix}$$

[0030] the multipliers alpha, beta, and gamma which are alike and are obtained more -- 0<= -- it is set to alpha, beta, and gamma<=1.

[0031] Here, it is X0, Y0, and Z0. It is X, Y, and Z of the maximum luminescence of X, Y, Z, 0 [i.e.,], or constant primary color of the constant primary color of a division field. X1, Y1, Z1, X2, Y2, Z2, X3, Y3, and Z3 It is X, Y, and Z of 1 of a division field, and the maximum luminescence of the 2 or 3rd primary color, respectively. When the above-mentioned conditions are judged about the different constant primary color and the 1-3rd different primary colors for every division field and it is judged with X, Y, and Z data being contained in a division field, the multipliers alpha, beta, and gamma of each primary color, a constant 0, or either of 1 is outputted to status signal calculation equipment 101B in order of predetermined primary color.

[0032] In addition, when X, Y, and Z data are contained to neither of the division fields (i.e., when X, Y, and Z data are the areas outside color reproduction), X, Y, and Z data are mapped at the intersection of the line and color reproduction region front face which connect X, Y, Z data, and a target color by making X, predetermined Y, and predetermined Z of the area within color reproduction into a target color, and the multiplier of the status signal is outputted to status signal calculation equipment 101B.

[0033] Status signal calculation equipment 101B consists of linearity signal calculation equipment 1101 and a gradation compensator 1102, as shown in <u>drawing 6</u>. With linearity signal calculation equipment 1101, a linearity signal is computed by applying each primary color maximum gradation value corresponding to the multiplier inputted from field judging equipment 101C. In the gradation compensator 1102, the input signal (C1, C2, C3, C4) to Projectors A (102-1) and B (102-2) is outputted, applying gradation amendment to each of the linearity signal (Q1, Q2, Q3, Q4) inputted from linearity signal calculation equipment 1101. Gradation amendment here is computed by the degree type using the law of reciprocity gamma-1 of the gradation property data which give the output brightness to an input signal.

[Equation 5]  $c1 = \gamma_1^{-1}(Q1)$ 

 $c2 = \gamma_2^{-1}(Q2)$ 

 $C3 = \gamma_3^{-1}(Q3)$ 

 $C4 = \gamma_4^{-1}(Q4)$ 

[0035] The gradation property data used at this time are inputted into the gradation compensator 1102 from profile data storage 101A. The above processing in which a status signal is searched for from X, Y, and Z data is performed about each pixel, and an input signal (C1, C2, C3, C4) is inputted into Projectors A (102-1) and B (102-2).

[0036] Thus, it becomes possible to perform color reproduction exact in colorimetry in the color reproduction region whole region.

[0037] (Gestalt of the 2nd operation) The gestalt of the 2nd operation of the color reproduction system of this invention is explained. With the gestalt of the 2nd operation, since the configuration of those other than an image output unit is the same as that of what was explained with the gestalt of the 1st operation, explanation is omitted. Image output unit 101' of the 2nd operation gestalt consists of look-up table listing-device 101D, look-up table 101E, interpolation multiplier calculation equipment 101F, and interpolation arithmetic unit 101G, as shown in drawing 7. X from the image data entry unit 100, Y, and Z data are inputted into look-up table 101E and interpolation multiplier calculation equipment 101F.

[0038] In look-up table 101E, the table data according to X and Y which were inputted, and Z data are outputted to interpolation arithmetic unit 101G. Moreover, in interpolation multiplier calculation equipment 101F, the interpolation multiplier according to data spacing of look-up table 101E is computed using X and Y which were inputted, and Z data, and it outputs to interpolation arithmetic unit 101G.

[0039] In interpolation arithmetic unit 101G, the input signals C1, C2, C3, and C4 from the table data according to X, Y, and Z data and a interpolation multiplier to Projectors A (102-1) and B (102-2) are computed, and it inputs into Projectors A (102-1) and B (102-2). The data in look-up table 101E are beforehand computed by look-up table listing-device 101D.

[0040] Next, the function of each part in image output unit 101' is explained to a detail. Look-up table listing-device 101D consists of the profile data store 1010, a test-data input unit 1013, field judging equipment 1012, and status signal calculation equipment 1011, as shown in <u>drawing 8</u>. The test-data input device 1013 computes X of predetermined spacing which should be sent to look-up table 101E, Y, and Z data, and carries out a sequential input at field judging equipment 1012.

[0041] With field judging equipment 1012, the field judging is performed from X and Y which were inputted from the test-data input device 1013, and Z data, the multiplier of a primary signal is computed, and it outputs to status signal calculation equipment 1011. Since the calculation approach of a multiplier is the same as the approach explained in the gestalt of the 1st operation, explanation here is omitted. When it is judged with the outside of a field in all fields to Inputs X and Y and Z data in this field judging (i.e., when X, Y, and Z data are the areas outside color reproduction of Projectors A (102-1) and B (102-2)), color-gamut compression which maps X, Y, and Z data in the color which can reproduce Projectors A (102-1) and B (102-2) is performed.

[0042] In color-gamut compression, X, Y, and Z data are transposed to the color of an intersection with the line which connects the color-gamut front face of Projectors A (102-1) and B (102-2), the target point in a color gamut, and Inputs X, Y, and Z.

[0043] Drawing 9 is the conceptual diagram of color-gamut compression. It is [0044], when a color-gamut front face is divided into three square shapes and (X0, Y0, Z0), and an input color are set [ the tristimulus values of each triangular top-most vertices ] to (X, Y, Z) for the tristimulus values of (X2, Y2, Z2), (X3, Y3 and Z3), and a target color, respectively (X1, Y1, and Z1).

[Equation 6]

[0045] It is [0046] when k1, k2, and k3 which are alike and are computed more fill k1  $\geq$ =0, k2  $\geq$ =0, and k3  $\geq$ =0.

[0047] It is alike, twist multipliers d1-d4 are computed, and it inputs into status signal calculation equipment 1011. Here, it is Pji. Qi j The signal value multiplier of eye watch is expressed.

[0048] With status signal calculation equipment 1011, the input signal from the profile data inputted from the multiplier and the profile data store 1010 of the signal value inputted from field judging equipment 1012 to Projectors A (102-1) and B (102-2) is computed, and it inputs into look-up table 101E.

[0049] Since it is the same as that of what was explained in the gestalt of the 1st operation about status signal calculation equipment 1011, explanation here is omitted. The above processing is performed about X, Y, and Z of all lookup table addresses. in order to change into the input signal to a projector X and Y which were inputted from the image data entry unit 100, and Z data, the sample status signal (C - (-j -) - one - C - (-j -) - two - C three -- C -- (-- j --) -- 4) (j=1-8) corresponding to eight samples X, Y, and Z surrounding it is inputted into interpolation arithmetic unit 101G from look-up table 101E. Moreover, at interpolation multiplier calculation equipment 101F, it is a interpolation multiplier from X, Y, Z data, and sample spacing of look-up table 101E. k (j) and (j = 1-8) are computed. [0050] interpolation arithmetic unit 101G -- a sample status signal (C -- (-i, -) -- one -- C -- (-i, -) -- two -- C -- (-i, -) ) -- three -- C -- (--i, --) -- 4) (i = 1-8) and interpolation multiplier The input signal (C1, C2, C3, C4) to a projector is computed by the degree type from k(j) (j = 1-8). [0051]

[Equation 8]  

$$c_1 = \sum_{j=1}^{8} \kappa^{(j)} c^{(j)} i$$

[0052] It is i=1-4 here. The above processing in which a status signal is searched for from X, Y, and Z is performed about each pixel, and an input signal (C1, C2, C3, C4) is inputted into Projectors A (102-1) and B (102-2). [0053] Thus, it becomes possible to perform color reproduction exact in colorimetry in the color reproduction region whole region.

[0054] (Gestalt of the 3rd operation) The gestalt of the 3rd operation of the color reproduction system of this invention is explained. With the gestalt of the 3rd operation, since it is the same as that of what was explained with the gestalt of the 1st operation except processing of field judging equipment 101C in the image output unit 101 of the gestalt of the 1st operation, and status signal calculation equipment 101B, explanation is omitted.

[0055] With the field judging equipment in the gestalt of the 3rd operation, the division field for changing Z data among [ X and Y ] the division fields of the area within color reproduction currently beforehand divided into two or more tetrahedrons is judged, and the linearity signal computed from X, Y, Z data, and the profile data according to a division field is outputted to the status signal calculation equipment in the gestalt of the 3rd operation. With status signal calculation equipment, gradation amendment of a linearity signal is performed and a status signal is computed. [0056] The calculation approach of the field judging of X, Y, and Z data and a status signal is explained more below at a detail. First, the color reproduction region of 4 primary-color display is beforehand divided into the tetrahedron of the number of flat surfaces which constitutes the front face of a color reproduction region. A tetrahedron is taken as the field surrounded by the flat surface which constitutes a predetermined target color and the front face of a color reproduction region, as shown in drawing 10. A target color is specified as X, Y, and Z corresponding to the predetermined color picture signal and it which were defined beforehand. It sets to each division field and the criteria which judge to which division field X, Y, and Z are contained are a degree type [0057]. [Equation 9]

$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} x_1 - x_0 & x_2 - x_0 & x_3 - x_0 \\ x_1 - x_0 & x_2 - x_0 & x_3 - x_0 \\ x_1 - x_0 & x_2 - x_0 & x_3 - x_0 \end{pmatrix}^{-1} \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - x_0 \end{pmatrix}$$

[0058] the multipliers alpha, beta, and gamma which are alike and are obtained more -- 0<= -- although it is set to alpha, beta, and gamma<=1, it shall change here using the same matrix also about the color of the area outside color reproduction Therefore, it is [0059] when the multiplier multipliers alpha, beta, and gamma fill 0<=alpha, and beta and gamma.

[0060] The linearity signals Q1-Q4 are computed more. Here, Qij expresses the j-th linearity signal of the i-th top-most vertices. When a linearity signal is negative, in an adult case, it clips rather than 0 and the maximum signal value at maximum. The linearity signal computed in field judging equipment is inputted into status signal calculation equipment, gradation amendment is performed, and a status signal is computed. The above processing in which a status signal is searched for from X, Y, and Z is performed about each pixel, and a status signal (C1, C2, C3, C4) is inputted into Projectors A and B.

[0061] Thus, it becomes possible to perform color reproduction exact in colorimetry in the color reproduction region whole region.

[0062] In addition, although the gestalt of this operation explained processing of triangular pyramids Q0, Q1, and Q2 and the color in Q3, since it becomes the matrix same also about triangular pyramids Q0, Q1, Q3, and Q4, it is good also considering the four-sided pyramids Q0, Q1, Q2, Q3, and Q4 as one division field. In this case, 4 primary-color display is constituted by the division field of 12.

[0063] In addition, invention of the following configurations is extracted from the above-mentioned gestalt of concrete operation.

[0064] It is the color reproduction system equipped with a color picture display means to have 1.4 or more primary colors of configurations, and a color conversion means to change input tristimulus values into the color picture signal of each primary color of the above-mentioned color picture display means. A field judging means to judge the color conversion field where input tristimulus values [ in / in the above-mentioned color conversion means / the color space of a three dimension ] belong, The color reproduction system characterized by providing a color picture signal calculation means to change the above-mentioned input tristimulus values into a color picture signal, based on the color conversion parameter corresponding to the color conversion field judged by this field judging means.

[0065] The above-mentioned color conversion field corresponding to the input tristimulus values in the color gamut of the configuration 2. above-mentioned color picture display means is a color reproduction system given in the configuration 1 characterized by being six face pieces which consist of colors corresponding to three color picture signals which take maximum from 0, and other color picture signals which take 0 or maximum.

[0066] (Gestalt of implementation of corresponding invention) Invention given in configurations 1 and 2 corresponds to the gestalt ( drawing 1 - drawing 6) of the 1st operation described above at least. a color picture display means -- Projectors A (102-1) and B (102-2) and a screen 103 -- a color conversion means -- the image output unit 101 -- in a field judging means, a color conversion parameter corresponds to profile data, and a color picture signal calculation means corresponds to field judging equipment 101C at status signal calculation equipment 101B, respectively. [0067] In addition, although the gestalt of the 1st operation explained the projector to the example as a color picture display means, it is applicable also to the display of the arbitration which is not restricted to this and makes color mixture of primary lights, such as a CRT display and a liquid crystal display, a color reproduction principle. Moreover, although 4 primary-color display was explained to the example, the number of primary colors is not restricted to this, and can be applied in the display of the number N of primary colors of arbitration. Moreover, although two projectors have realized 4 primary color displays with the gestalt of the 1st operation, it is also possible to use one projector in which 4 primary color displays are possible. Although the data inputted into an image output unit were used as X, Y, and Z data, X, Y, Z, R and G in known linear relation, and B data may be used. In this case, the data amended based on the relation between X, Y, Z, and R, G and B are used in an image output unit.

[0068] (Effectiveness) According to the configurations 1 or 2, the color reproduction system which can perform exact

color reproduction in the color reproduction region whole region can be offered. Moreover, input tristimulus values and a color picture signal value change continuously, and these conditions are further fulfilled over the whole color reproduction region of a display.

[0069] The configuration 3. above-mentioned color conversion field is a color reproduction system given in the configuration 1 characterized by being the pyramid made from the predetermined tristimulus values in the color gamut of the above-mentioned color picture display means, and the top-most vertices which constitute a color-gamut front face.

[0070] (Gestalt of implementation of corresponding invention) Invention given in a configuration 3 corresponds to the gestalt (<u>drawing 10</u>) of the 3rd operation described above at least. a color picture display means -- Projectors A (102-1) and B (102-2) and a screen 103 -- a color conversion means -- the image output unit 101 -- in a field judging means, a color conversion parameter corresponds to profile data, and a color picture signal calculation means corresponds to field judging equipment 101C at status signal calculation equipment 101B, respectively.

[0071] In addition, although the gestalt of this operation explained the projector to the example as a color picture display means, it is applicable also to the display of the arbitration which is not restricted to this and makes color mixture of primary lights, such as a CRT display and a liquid crystal display, a color reproduction principle. Moreover, although 4 primary-color display was explained to the example, the number of primary colors is not restricted to this, and can be applied in the display of the number N of primary colors of arbitration.

[0072] Moreover, although two projectors have realized 4 primary color displays with the gestalt of this operation, it is also possible to use one projector in which 4 primary color displays are possible. Although the data inputted into an image output unit were used as X, Y, and Z data, X, Y, Z, R and G in known linear relation, and B data may be used. In this case, the data amended based on the relation between X, Y, Z, and R, G and B are used in an image output unit. [0073] (Effectiveness) According to the configuration 3, the color reproduction system which can perform exact color reproduction in the color reproduction region whole region can be offered. Moreover, input tristimulus values and a color picture signal value change continuously, and these conditions are further fulfilled over the whole color reproduction region of a display. Moreover, it can map easily by using the matrix of the area within color reproduction also about the color of the area outside color reproduction.

[0074] The configuration 4 above-mentioned color picture signal calculation means is the color reproduction system of the configuration 1 characterized by providing the color inverter which changes the above-mentioned input tristimulus values into a color picture signal with reference to the look-up table which memorizes the above-mentioned color picture signal by making the above-mentioned input tristimulus values into the address, and this look-up table thru/or any one publication of three.

[0075] (Gestalt of implementation of corresponding invention) Invention given in a configuration 4 corresponds to the gestalt (drawing 7 - drawing 9) of the 2nd operation described above at least. a color picture display means -- Projectors A (102-1) and B (102-2) and a screen 103 -- a color conversion means -- image output unit 101' -- in a field judging means, a color conversion parameter corresponds to profile data, and a color picture signal calculation means corresponds to field judging equipment 1012 at status signal calculation equipment 1022, respectively.

[0076] In addition, with the gestalt of the 2nd operation of the above, although the projector was explained to the

example as a color picture display means, it is applicable also to the display of the arbitration which is not restricted to this and makes color mixture of primary lights, such as a CRT display and a liquid crystal display, a color reproduction principle. Moreover, although 4 primary-color display was explained to the example, the number of primary colors is not restricted to this, and can be applied in the display of the number N of primary colors of arbitration. Moreover, although two projectors have realized 4 primary color displays with this operation gestalt, it is also possible to use one projector in which 4 primary color displays are possible. The measurement size of a look-up table is arbitrary, and a interpolation operation can be excluded by having data of the look-up table for several data minutes of Inputs X, Y, and Z. Although this operation gestalt explained the interpolation approach using eight-point interpolation, other interpolation approaches, such as four-point interpolation, may be used. Although the data inputted into an image output unit were used as X, Y, and Z data, X, Y, Z, R and G in known linear relation, and B data may be used. In this case, the data amended based on the relation between X, Y, Z, and R, G and B are used in an image output unit.

[0077] (Effectiveness) According to the configuration 4, in addition to a configuration 1 or the effectiveness of 3, a color conversion result is memorized to the look-up table which makes input tristimulus values the address, and since reference of a look-up table performs color conversion, an output signal can be acquired more at a high speed. Moreover, since a conversion result is memorizable beforehand to a look-up table, it becomes possible to incorporate the color-gamut compression which needs nearby data-processing time amount about the color of the area outside color reproduction.

[0078]

[Effect of the Invention] According to this invention, the color reproduction system which can perform exact color reproduction in the color reproduction region whole region can be offered.

[Translation done.]

#### \* NOTICES \*

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

#### **DRAWINGS**













# [Drawing 6]















[Drawing 14]



[Translation done.]

# (19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-338950 (P2000 - 338950A)

(43)公開日 平成12年12月8日(2000.12.8)

| (51) Int.Cl. <sup>7</sup> |      | 識別配号  |      | FΙ           |       |    | <del>5</del> | -73-ド(参考) |
|---------------------------|------|-------|------|--------------|-------|----|--------------|-----------|
| G 0 9 G                   | 5/06 |       | •    | G 0 9 G      | 5/06  |    |              | 5B057     |
| GOST                      | 1/00 | •     | •    |              | 5/00  |    | 510M         | 5 C 0 6 6 |
| G09G                      | 5/00 | . 510 |      | H 0 4 N      | 9/64  |    | Z            | 5 C 0 7 7 |
| H04N                      | 1/60 |       |      | G06F         | 15/66 |    | 310          | 5 C 0 7 9 |
| 110411                    | 1/46 |       |      | H 0 4 N 1/40 | 1/40  |    | D            | 5 C 0 8 2 |
|                           | -,   |       | 審査請求 | 未請求 請求       | 表項の数4 | OL | (全 11 頁)     | 最終頁に続く    |
|                           |      |       |      | T            |       |    |              |           |

| (21) 出願番号 | <b>特願平11-146520</b>   | (71)出願人 000000376<br>オリンパス光学工業株式会社             |
|-----------|-----------------------|------------------------------------------------|
| (22)出願日   | 平成11年5月26日(1999.5.26) | 東京都渋谷区幡ヶ谷2丁目43番2号<br>(72)発明者 大澤 健郎             |
|           |                       | 東京都渋谷区幡ヶ谷2丁目43番2号 オリ<br>ンパス光学工業株式会社内           |
|           |                       | (72)発明者 大山 永昭<br>神奈川県横浜市緑区長津田町4259 東京工<br>衆大学内 |
|           |                       | (74)代理人 100058479<br>弁理士 鈴江 武彦 (外4名)           |

最終頁に続く

#### (54) 【発明の名称】 色再現システム

#### (57)【要約】

【課題】色再現域全域において正確な色再現が行なえる 色再現システムを提供することができる。

【解決手段】 4 原色以上を有するカラー画像表示手段 (プロジェクターA(102-1)、B(102-2)、スクリーン1 03)と、入力三刺激値をカラー画像表示手段の各原色 のカラー画像信号に変換する色変換手段(画像出力装置 101) とを備えた色再現システムであって、色変換手 - 段(画像出力装置101)は、3次元の色空間における 入力三刺激値の属する色変換領域を判定する領域判定装 置と、色変換領域に対応する色変換パラメータに基い て、入力三刺激値をカラー画像信号に変換する表示信号 算出装置とを具備する。



#### 【特許請求の範囲】

【請求項1】 4原色以上を有するカラー画像表示手段と、

入力三刺激値を上記カラー画像表示手段の各原色のカラー画像信号に変換する色変換手段とを備えた色再現システムであって、

#### 上記色変換手段は、

3次元の色空間における入力三刺激値の属する色変換領 域を判定する領域判定手段と、

この領域判定手段により判定された色変換領域に対応す 10 る色変換パラメータに基づいて、上記入力三刺激値をカラー画像信号に変換するカラー画像信号算出手段と、を具備することを特徴とする色再現システム。

【請求項2】 上記カラー画像表示手段の色域内の入力 三刺激値に対応する上記色変換領域は、0から最大値を とる3つのカラー画像信号と、0もしくは最大値をとる 他のカラー画像信号に対応する色から構成される6面体 であることを特徴とする請求項1記載の色再現システ

【請求項3】 上記色変換領域は、上記カラー画像表示 20 手段の色域内の所定の三刺激値と色域表面を構成する頂 点とから作られる角錐であることを特徴とする請求項1 記載の色再現システム。

【請求項4】 上記カラー画像信号算出手段は、

上記入力三刺激値をアドレスとして上記カラー画像信号 を記憶するルックアップテーブルと、

このルックアップテーブルを参照して上記入力三刺激値 をカラー画像信号に変換する色変換装置を具備すること を特徴とする請求項1乃至3のいずれか1つに記載の色 再現システム。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は色再現システムに関し、特に、所望の色を4原色以上を有するカラー画像表示手段に表示するための入力カラー画像信号を求める色再現システムに関する。

#### [0002]

【従来の技術】例えばスキャナーやデジタルカメラなどにより入力されたデジタルカラー画像を再現する手段としてCRTディスプレー、液晶ディスプレー、液晶プロジェクター等の表示装置が広く用いられている。これらの表示装置は、通常R,G,B3原色の加法混色によりさまざまな色を再現している。この場合、ディスプレーの再現

可能な色の範囲(色再現域)は、3次元の色空間で3原色の色ベクトルの和として表される領域に限られる。例えば、R,G,B3種類の蛍光体により色を再現するCRTディスプレーでは、R,G,B蛍光体の最大発光時のCIE1931表色系(XYZ表色系)のX,Y,Zをそれぞれ(Xr,Yr,Zr)、(Xg,Yg,Zg)、(Xb,Yb,Zb)とすると、(0,0,0)、(Xr,Yr,Zr)、(Xg,Yg,Zg)、(Xb,Yb,Zb)、(Xr+Xg,Yr+Yg,Zr+Zg)、(Xg+Xb,Yg+Yb,Zg+Zb)、(Xb+Xr,Yb+Yr,Z

b+Zr)、(Xr+Xg+Xb,Yr+Yg+Yb,Zr+Zg+Zb)を頂点と ) する6面体がその色再現域となる。

【0003】図11はこのような3原色ディスプレーの XYZ空間での色再現域の模式図である。これをxy色度図上に示すと、図12に示すように各原色の色度値により 囲まれる3角形の内部が色再現域を表す。このような3原色の加法混色を色再現原理としたディスプレーでは、ディスプレーへの入力R,G,B信号値とディスプレー上に表示される色のX,Y,Z値との関係は、ディスプレーの色 再現域内においては一意に定まる。各原色の発光スペクトルが他の原色の出力と独立であり、また、相対スペクトル分布が発光強度に依存しない(すなわち色度値が変化しない)と仮定すると、入力R,G,B値に対応する表示色のX,Y,Zは次式により与えられる。

[0004]

$$\begin{pmatrix}
\mathbf{X} \\
\mathbf{Y} \\
\mathbf{Z}
\end{pmatrix} = \begin{pmatrix}
\mathbf{X}\mathbf{Y} & \mathbf{X}\mathbf{G} & \mathbf{X}\mathbf{b} \\
\mathbf{Y}\mathbf{F} & \mathbf{Y}\mathbf{G} & \mathbf{Y}\mathbf{b} \\
\mathbf{Z}\mathbf{Y} & \mathbf{Z}\mathbf{G} & \mathbf{Z}\mathbf{b}
\end{pmatrix} \begin{pmatrix}
\mathbf{R}^{\mathbf{i}} \\
\mathbf{G}^{\mathbf{i}} \\
\mathbf{B}^{\mathbf{i}}
\end{pmatrix}$$

$$\mathbf{R}^{\circ} = \boldsymbol{\gamma}_{\mathbf{E}}(\mathbf{R})$$

$$\mathbf{G}^{\circ} = \boldsymbol{\gamma}_{\mathbf{G}}(\mathbf{G})$$

$$\mathbf{B}^{\circ} = \boldsymbol{\gamma}_{\mathbf{D}}(\mathbf{B})$$
(1)

【0005】ここで、Xr, Xg, XbはそれぞれR, G, Bの最大発光時のXであり、同様にYr, Yg, YbはR, G, Bの最大発光時のYを表し、Zr, Zg, ZbはそれぞれR, G, Bの最大発光時のZを表す。また、 $\gamma_r$ ,  $\gamma_g$ ,  $\gamma_b$  は、それぞれR, G, Bの入力信号値と出力輝度との関係を表す関数であり、R', G', B' はR, G, B最大発光時に 1となるように正規化されているものとする。この逆関係より、所望のX, Y, Zを表示するための入力R, G, B値は次式により求められる。

[0006]

【数2】

$$3$$

$$R = \gamma x^{-1}(R')$$

$$G = \gamma g^{-1}(G')$$

$$B = \gamma b^{-1}(E')$$

$$\begin{pmatrix} \mathbb{R}^{1} \\ \mathbb{G}^{1} \\ \mathbb{B}^{1} \end{pmatrix} = \begin{pmatrix} \mathbb{X}x & \mathbb{X}g & \mathbb{X}b \\ \mathbb{X}x & \mathbb{X}g & \mathbb{X}b \\ \mathbb{Z}x & \mathbb{Z}g & \mathbb{Z}b \end{pmatrix}^{-1} \begin{pmatrix} \mathbb{X} \\ \mathbb{Y} \\ \mathbb{Z} \end{pmatrix}$$

【0007】(2)式において、一1は逆関数(行列については逆行列)を表す。このように3原色ディスプレーではX,Y,ZとR,G,B値との関係のモデル化が容易であり、カラー画像複製論(田島譲二著 丸善株式会社)に開示されているようにマトリクス変換と階調補正による変換方法が一般に用いられている。3原色ディスプレーにおいてX,Y,Zがディスプレーの色再現域外の場合には、(2)式により得られたR',G',B'値のいずれかが負もしくは1より大となる。

【0008】原色の加法混色を色再現原理とする表示装置では、前述のように原色の色度値により囲まれる領域が色再現域となる。色再現域を拡大するためには各原色の彩度を高めるか、原色の数を増やすことが考えられる。NHK技研公開展示資料(NHK放送技術研究所,東京(1995))に開示されているように4原色とすることにより従来の3原色ディスプレーよりも広い色再現域を実現する試みもなされている。4原色ディスプレーのXYZ空間での色再現域およびxy色度図上の色再現域をそ

【0009】 4 つ以上のN原色を用いる多原色ディスプレーの場合も、信号値に対して表示される色のX, Y, Zは (1) 式を拡張した次式により得られる。

【0010】 【数3】

れぞれ図13、図14に示す。

$$\begin{pmatrix}
\mathbf{x} \\
\mathbf{x}
\end{pmatrix} = \begin{pmatrix}
\mathbf{x} \\
\mathbf{x}
\end{pmatrix} = \begin{pmatrix}
\mathbf{x} \\
\mathbf{x}
\end{pmatrix} = \begin{pmatrix}
\mathbf{x} \\
\mathbf{x} \\
\mathbf{x} \\
\mathbf{x}
\end{pmatrix} = \begin{pmatrix}
\mathbf{x}$$

【0011】(3)式の逆関係として与えられるX,Y,Z から信号値への変換は、多原色ディスプレーの色再現域 の表面を除いて一意には定まらない。そのため、何らか の条件に基づいてX,Y,Zに対応する信号値を一意に定め た変換を行う必要がある。多原色ディスプレーにおける 色変換方法の一例は、特開平6-261332号公報に 開示されている。この公報で提案されている第1の例で は、入力色の色度値に応じて選んだ3原色の線形和によ り色再現を行なっている。また、第2の例では多原色全 てを用いた線形変換を行なうことを開示している。

(2)

【0012】
【発明が解決しようとする課題】上記した特開平6-2
20 61332号公報に開示された第1の例による色変換方法では、選択した3原色により再現可能な範囲については正確な色再現が可能であるが、本来多原色ディスプレーのもつ輝度方向の色再現城まで考慮していないため、再現可能な入力色の全てに対応することができない。また、特開平6-261332号公報に開示された第2の例による色変換方法では各原色信号が全て正となる解を得ることが保証されていない。このため、再現可能な入力色に対しても正確な色再現を行なえない場合がある。【0013】色変換方法には、測色的に正確な色再現が30可能であることが望まれる。すなわち、入力三刺激値を

可能であることが望まれる。すなわち、入力三刺激値を カラー画像信号に変換し、表示装置に入力することによ り正確に入力三刺激値を表示可能であることが重要とな る。また、入力三刺激値とカラー画像信号値とが連続的 に変化することが望ましく、更にこれらの条件がディス プレーの色再現域全体にわたって満たされる必要があ る。

【0014】本発明はこのような課題に着目してなされたものであり、その目的とするところは、色再現域全域において正確な色再現が行なえる色再現システムを提供40 することにある。

#### [0015]

【課題を解決するための手段】上記の目的を達成するために、第1の発明に係る色再現システムは、4原色以上を有するカラー画像表示手段と、入力三刺激値を上記カラー画像表示手段の各原色のカラー画像信号に変換する色変換手段とを備えた色再現システムであって、上記色変換手段は、3次元の色空間における入力三刺激値の属する色変換領域を判定する領域判定手段と、この領域判定手段により判定された色変換領域に対応する色変換パ50 ラメータに基づいて、上記入力三刺激値をカラー画像信

. 30

5

号に変換するカラー画像信号算出手段とを具備する。 【0016】また、第2の発明に係る色再現システムは、第1の発明において、上記カラー画像表示手段の色域内の入力三刺激値に対応する上記色変換領域は、0から最大値をとる3つのカラー画像信号と、0もしくは最大値をとる他のカラー画像信号に対応する色から構成される6面体である。

【0017】また、第3の発明に係る色再現システムは、第1の発明において、上記色変換領域は、上記カラー画像表示手段の色域内の所定の三刺激値と色域表面を 10 構成する頂点とから作られる角錐である。

【0018】また、第4の発明に係る色再現システムは、第1~第3のいずれか1つに記載の発明において、上記カラー画像信号算出手段は、上記入力三刺激値をアドレスとして上記カラー画像信号を記憶するルックアップテーブルと、このルックアップテーブルを参照して上記入力三刺激値をカラー画像信号に変換する色変換装置を具備する。

[0019]

【発明の実施の形態】以下図面を参照して本発明の実施 の形態を詳細に説明する。

【0020】 (第1実施の形態) 図1は、本発明の第1 実施の形態に係る色再現システムとしての多原色プロジェクターシステムの概略構成を示す図である。 画像データ入力装置100は、デジタルカメラやカラースキャナー等により入力されたカラー画像データを、カラー画像データを取り込んだ入力装置の分光感度特性や入力時の照明光等のデータを用いて各画素がCIE1931表色系のX、Y、Zからなる画像データ(入力三刺激値)に変換して、画像出力装置101~出力する。

【0021】画像出力装置101は、X,Y,2データをプロジェクターA(102-1)への入力信号C1、C2およびプロジェクターB(102-2)への入力信号C3、C4に変換し、各プロジェクターに入力する。プロジェクターA(102-1)およびプロジェクターB(102-2)は、それぞれ入力信号C1、C2およびC3,C4に応じた画像をスクリーン103上に投影する。

【0022】スクリーン103上にはC1,C2,C3,C4の 画像信号に基づいてプロジェクターにより再現された4 原色のカラー画像が再現される。プロジェクターA(1 02-1)とプロジェクターB(102-2)は、スク リーン103に投影する各原色のスペクトルを除いて同 一の構造をしており、スクリーン103に投影された画 像の位置は正確に一致するように予め調整されているも のとする。

【0023】図2は、プロジェクターA(102-1)、プロジェクターB(102-2)の原色C1,C2,C3,C4の発光スペクトルを模式的に示す図である。この4原色の発光スペクトルは380nmから780nmの可視域の波長域に分布している。

6

【0024】図3は、画像出力装置101の構成を示す図である。図3に示すように画像出力装置101は、予め測定されたプロジェクターA(102-1)、プロジェクターB(102-2)のプロファイルデータを記憶しているプロファイルデータ記憶装置101Aと、入力されたX,Y,Zデータの変換プロファイルをこのプロファイルデータを用いて規定する領域を求める領域判定装置101Cと、この領域判定結果としての原色信号の係数とプロファイルデータを用いてプロジェクターA(102-1)、B(102-2)への入力信号に変換する表示信号算出装置101Bとから構成される。

【0025】プロファイルデータ記憶装置101Aには、各原色の最大発光時のX,Y,Zデータと入力信号値と発光輝度との関係を与える階調特性データがプロファイルデータとして記憶されている。これらのデータは図4に示すように、スクリーン103上に各原色ごとにサンブル信号値のパッチ画像103Aを表示し、これに同期して分光計(もしくは測色計)104によりそのX,Y,Z値を測定することにより得られる。測定データとしてのX,Y,Z値は画像出力装置101内の図示しないプロファイルデータ作成装置により所定のフォーマットに変換された後、プロファイルデータとしてプロファイルデータ記憶装置101Aに記憶される。

【0026】領域判定装置101Cでは、予め複数の6面体に分割されている色再現域内の分割領域のうち、入力されたX, Y, Zデータを含む分割領域を判定し、X, Y, Zデータと分割領域に応じたプロファイルデータとから算出した表示信号の係数を表示信号算出装置101Bに出力する。

【0027】以下にX,Y,Zデータの領域判定と表示信号の係数算出方法について図5を参照して詳細に説明する。まず、予め4原色ディスプレーの色再現域を4つの6面体に分割する方法を規定する。ここでは図5(A)に示すような色再現域を想定する。分割方法は一意には定まらないが、ここでは図5(B)~図5(E)に示すような4つの6面体に分割する。この例では、4原色ディスプレーの色再現域は、原色4が0で他の3原色が0~最大値をとることにより作られる分割領域1(図5

(B))、原色2が0で他の3原色が0~最大値をとることにより作られる分割領域2(図5 (C))、原色3が最大値で他の3原色が0~最大値をとることにより作られる分割領域3(図5 (D))、原色1が最大値で他の3原色が0~最大値をとることにより作られる分割領域4 (図5 (E))とから構成される。

【0028】各分割領域では4原色のうち3原色は0から最大発光の範囲をとり、残りの1原色は0もしくは最大値のいずれかの定数値となる。このような条件を満たす分割方法は他にもあり、どの分割方法を用いてもよい。入力されたX,Y,Zデータがこれらの分割領域のうち

7

どの分割領域に含まれるかを判定する判定条件は各分割 領域において次式

[0029]

【数4】

$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \end{pmatrix}^{-1} \begin{pmatrix} x - x_0 \\ x - x_0 \\ x - x_0 \end{pmatrix}$$

【0030】により得られる係数 $\alpha$ ,  $\beta$ ,  $\gamma$  が  $0 \le \alpha$ 、  $\beta$ 、  $\gamma \le 1$  となることである。

【0031】ここで、 $X_0$ ,  $Y_0$ ,  $Z_0$  は分割領域の定数原色のX, Y, Zすなわち0 もしくは定数原色の最大発光のX, Y, Zであり、 $X_1$ ,  $Y_1$ ,  $Z_1$ ,  $X_2$ ,  $Y_2$ ,  $Z_2$ ,  $X_3$ ,  $Y_3$ ,  $Z_3$  はそれぞれ分割領域の1,  $Z_1$ ,  $Z_2$ ,  $Z_2$ ,  $Z_3$ ,  $Z_3$ ,  $Z_3$  はそれぞれ分割領域では、 $Z_1$ ,  $Z_2$ ,  $Z_3$ ,  $Z_3$ ,  $Z_3$  はそれぞれ分割領域では、 $Z_1$ ,  $Z_2$ ,  $Z_3$ ,

【0032】なお、X,Y,Zデータがいずれの分割領域にも含まれない場合、すなわちX,Y,Zデータが色再現域外の場合には色再現域内の所定のX,Y,Zを目標色としてX,Y,Zデータと目標色とを結ぶ線と色再現域表面との交点にX,Y,Zデータをマッピングし、その表示信号の係数を表示信号算出装置101Bに出力する。

【0033】表示信号算出装置101Bは図6に示すように線形信号算出装置1101と階調補正装置1102とから構成されている。線形信号算出装置1101では、領域判定装置101Cから入力された係数に対応する各原色最大階調値を掛けることにより線形信号を算出する。階調補正装置1102では、線形信号算出装置1101より入力された線形信号(Q1,Q2,Q3,Q4)のそれぞれに階調補正をかけてプロジェクターA(102-1),B(102-2)への入力信号(C1,C2,C3,C4)を出力する。ここでの階調補正は、入力信号に対する出力輝度を与える階調特性データの逆関係 $\gamma^{-1}$ を用いて次式により算出される。

[0034]

【数5】

C1 
$$\simeq \gamma_1^{-1}(Q1)$$

$$C2 = \gamma_2^{-1}(92)$$

$$C3 = \gamma_3^{-1}(Q3)$$

$$C\delta = \gamma_0^{-1}(Q\delta)$$

【0035】このとき用いられる階調特性データはプロファイルデータ記憶装置101Aから階調補正装置1102に入力される。X,Y,Zデータから表示信号を求める以上の処理を各画素について行い、入力信号(C1,C2,C3,C4)をプロジェクターA(102-1)、B(10

2-2) に入力する。

【0036】このようにして色再現域全域において測色的に正確な色再現を行なうことが可能となる。

【0037】(第2実施の形態)本発明の色再現システムの第2実施の形態について説明する。第2実施の形態では、画像出力装置以外の構成は第1実施の形態で説明したものと同様なので説明は省略する。第2実施形態の画像出力装置101<sup>1</sup> は図7に示すように、ルックアップテーブル作成装置101Dと、ルックアップテーブル10 101Eと、補間係数算出装置101Fと、補間演算装置101Gとから構成される。画像データ入力装置100からのX,Y,Zデータはルックアップテーブル101Eと補間係数算出装置101Fとに入力される。

【0038】ルックアップテーブル101Eでは入力されたX,Y,Zデータに応じたテーブルデータを補間演算装置101Gに出力する。また、補間係数算出装置101Fでは入力されたX,Y,Zデータを用いてルックアップテーブル101Eのデータ間隔に応じた補間係数を算出して補間演算装置101Gに出力する。

20 【0039】補間演算装置101GではX,Y,2データに 応じたテーブルデータと補間係数とからプロジェクター A(102-1) およびB(102-2) への入力信号C 1,C2,C3,C4を算出し、プロジェクターA(102-1)、B(102-2) へ入力する。ルックアップテー ブル101E内のデータは予めルックアップテーブル作 成装置101Dにより算出されたものである。

【0040】次に画像出力装置101、内の各部の機能について詳細に説明する。ルックアップテーブル作成装置101Dは、図8に示すようにプロファイルデータ記憶装置1010と、テストデータ入力装置1013と、領域判定装置1012と、表示信号算出装置1011とから構成される。テストデータ入力装置1013はルックアップテーブル101Eに送るべき所定間隔のX,Y,Zデータを算出して領域判定装置1012に順次入力する。

【0041】領域判定装置1012ではテストデータ入力装置1013から入力されたX,Y,Zデータからその領域判定を行い原色信号の係数を算出して表示信号算出装置1011に出力する。係数の算出方法は第1実施の形態において説明した方法と同様なのでここでの説明は省略する。この領域判定において入力X,Y,Zデータに対して全ての領域で領域外と判定された場合、すなわちX,Y,ZデータがプロジェクターA(102-1)、B(102-2)の色再現域外の場合にはX,Y,ZデータをプロジェクターA(102-1)、B(102-2)の再現可能な色にマッピングする色域圧縮を行う。

【0042】色域圧縮ではX,Y,2データをプロジェクターA (102-1)、B (102-2)の色域表面と色域内の目標点と入力X,Y,Zを結ぶ線との交点の色に置き換

50 える。

9

【0043】図9は色域圧縮の概念図である。色域表面を3角形に分割し、三角形の各頂点の三刺激値をそれぞれ( $X_1$ , $Y_1$ , $Z_1$ )、( $X_2$ , $Y_2$ , $Z_2$ )、( $X_3$ , $Y_3$ , $Z_3$ )、目標色の三刺激値を( $X_0$ , $Y_0$ , $Z_0$ )、入力色を\*

\* (X, Y, Z) とすると、 【0044】 【数6】

$$\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{pmatrix}
x_1 - x_0 & x_2 - x_0 & x_3 - x_0 \\
x_1 - x_0 & x_2 - x_0 & x_3 - x_0 \\
x_1 - x_0 & x_2 - x_0 & x_3 - x_0
\end{pmatrix}^{-1} \begin{pmatrix}
x - x_0 \\
y - y_0 \\
x - x_0
\end{pmatrix}$$

【0045】により算出されるk1, k2, k3が

 $k1 \ge 0$ ,  $k2 \ge 0$ ,  $k3 \ge 0$ 

を満たす場合、

※【0046】 0 【数7】

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \\ p_{41} & p_{42} & p_{43} \end{pmatrix} \begin{pmatrix} x_1 / (x_1 + x_2 + x_3) \\ x_2 / (x_1 + x_2 + x_3) \\ x_3 / (x_1 + x_2 + x_3) \end{pmatrix}$$

【0047】により係数d1~d4を算出して表示信号算出装置1011へ入力する。ここで、Pji はQi のj番目の信号値係数を表す。

【0048】表示信号算出装置1011では、領域判定装置1012から入力した信号値の係数とプロファイルデータ記憶装置1010から入力したプロファイルデータとからプロジェクターA(102-1)、B(102-2)への入力信号を算出してルックアップテーブル101Eへ入力する。

【0049】表示信号算出装置1011については第1 実施の形態において説明したものと同様なのでここでの説明は省略する。以上の処理を全てのルックアップテーブルアドレスのX, Y, Zについて行なう。画像データ入力装置100から入力されたX, Y, Zデータをプロジェクターへの入力信号に変換するために、それを囲む8つのサンプルX, Y, Zに対応するサンプル表示信号 ( $C^{(j)}$ 1,  $C^{(j)}$ 2,  $C^{(j)}$ 3,  $C^{(j)}$ 4) (j=1 $\sim$ 8) をルックアップテーブル101Eから補間演算装置101Gに入力する。また、補間係数算出装置101Fでは、X, Y, Zデータとルックアップテーブル101Eのサンブル間隔とから補間係数  $K^{(j)}$  (j=1 $\sim$ 8) を算出する。

【0050】補間演算装置101Gでは、サンプル表示信号( $C^{(j)}1$ ,  $C^{(j)}2$ ,  $C^{(j)}3$ ,  $C^{(j)}4$ )( $j=1\sim8$ )と補間係数  $k^{(j)}$  ( $j=1\sim8$ ) とから次式によりプロジェクターへの入力信号(C1, C2, C3, C4)を算出する。

【0051】 【数8】

$$ci = \sum_{j=1}^{8} R^{(j)} c^{(j)} i$$

【0052】ここで $i=1\sim 4$ である。X,Y,Zから表示信号を求める以上の処理を各画素について行い、入力信号(C1,C2,C3,C4)をプロジェクターA(102-1)、B(102-2)に入力する。

【0053】このようにして色再現域全域において測色的に正確な色再現を行なうことが可能となる。

【0054】 (第3実施の形態) 本発明の色再現システムの第3実施の形態について説明する。第3実施の形態では、第1実施の形態の画像出力装置101内の領域判定装置101Cの処理と表示信号算出装置101B以外は第1実施の形態で説明したものと同様なので説明は省略する。

【0055】第3実施の形態における領域判定装置では、予め複数の4面体に分割されている色再現域内の分割領域のうちX,Y,Zデータを変換するための分割領域を判定し、X,Y,Zデータと分割領域に応じたプロファイルデータとから算出した線形信号を第3実施の形態における表示信号算出装置に出力する。表示信号算出装置では、線形信号の階調補正を行い表示信号を算出する。

【0056】以下にX,Y,Zデータの領域判定と表示信号の算出方法をより詳細に説明する。まず、予め4原色ディスプレーの色再現域を色再現域の表面を構成する平面数の4面体に分割する。4面体は図10に示すように所定の目標色と色再現域の表面を構成する平面に囲まれる領域とする。目標色は予め定めた所定のカラー画像信号とそれに対応するX,Y,Zとして規定する。X,Y,Zがどの分割領域に含まれるかを判定する判定条件は各分割領域において次式

[0057]

【数9】

11
$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} \pi_1 - \pi_0 & \pi_2 - \pi_0 & \pi_3 - \pi_0 \\ \pi_1 - \pi_0 & \pi_2 - \pi_0 & \pi_3 - \pi_0 \\ \pi_1 - \pi_0 & \pi_2 - \pi_0 & \pi_3 - \pi_0 \end{pmatrix}^{-1} \begin{pmatrix} \pi - \pi_0 \\ \gamma - \pi_0 \\ \pi - \pi_0 \end{pmatrix}$$

[0058]により得られる係数 $\alpha$ ,  $\beta$ ,  $\gamma$  が  $0 \le \alpha, \beta, \gamma \le 1$ 

となることであるが、ここでは色再現城外の色について も同一のマトリクスを用いて変換を行うものとする。よ  $*0 \leq \alpha, \beta, \gamma$ を満たす場合、 [0059] 【数10】

って、係数係数 α, β, γ が

$$\begin{pmatrix} Q1\\ Q2\\ Q3\\ Q31 - Q03 & Q32 - Q03 & Q33 - Q03\\ Q31 - Q03 & Q32 - Q03 & Q33 - Q03\\ Q31 - Q03 & Q32 - Q03 & Q33 - Q03\\ Q31 - Q04 & Q42 - Q04 & Q43 - Q04 \end{pmatrix} \begin{pmatrix} \alpha\\ \beta\\ \gamma \end{pmatrix} + \begin{pmatrix} Q01\\ Q02\\ Q03\\ Q03\\ Q04 \end{pmatrix}$$

30

【0060】より線形信号Q1~Q4を算出する。ここ で、Qijはi番目の頂点のj番目の線形信号を表す。線形 信号が負の場合 0、最大信号値よりも大の場合には最大 値にクリップする。領域判定装置において算出された線 形信号を表示信号算出装置に入力し、階調補正を行い表 示信号を算出する。X,Y,Zから表示信号を求める以上の 処理を各画素について行い、表示信号(C1,C2,C3,C 4) をプロジェクターA, Bに入力する。

【0061】このようにして色再現域全域において測色 的に正確な色再現を行なうことが可能となる。

【0062】なお本実施の形態では三角錐Q0,Q1,Q2,Q3 内の色の処理について説明したが、三角錐Q0, Q1, Q3, Q4 についても同一のマトリクスとなることから、4角錐Q 0, Q1, Q2, Q3, Q4を一つの分割領域としてもよい。この場 合4原色ディスプレーは12の分割領域により構成され る。

【0063】なお、上記した具体的実施の形態から以下 のような構成の発明が抽出される。

【0064】構成1. 4原色以上を有するカラー画像表 示手段と、入力三刺激値を上記カラー画像表示手段の各 原色のカラー画像信号に変換する色変換手段とを備えた 色再現システムであって、上記色変換手段は、3次元の 色空間における入力三刺激値の属する色変換領域を判定 する領域判定手段と、この領域判定手段により判定され た色変換領域に対応する色変換パラメータに基づいて、 上記入力三刺激値をカラー画像信号に変換するカラー画 40 像信号算出手段と、を具備することを特徴とする色再現 システム。

【0065】構成2. 上記カラー画像表示手段の色域内 の入力三刺激値に対応する上記色変換領域は、0から最 大値をとる3つのカラー画像信号と、0もしくは最大値 をとる他のカラー画像信号に対応する色から構成される 6面体であることを特徴とする構成1に記載の色再現シ ステム。

【0066】(対応する発明の実施の形態)構成1及び 2に記載の発明は、少なくとも上記した第1実施の形態

(図1~図6)に対応する。カラー画像表示手段はプロ ジェクターA (102-1)、B (102-2) およびス ・クリーン103に、色変換手段は画像出力装置101 に、領域判定手段は領域判定装置101Cに、色変換パ ラメータはプロファイルデータに、カラー画像信号算出 20 手段は表示信号算出装置101Bにそれぞれ対応する。 【0067】なお、第1実施の形態ではカラー画像表示 手段としてプロジェクターを例に説明したが、これに限 られるものではなくCRTディスプレー、液晶ディスプレ 一等原色光の混色を色再現原理とする任意のディスプレ ーに対しても適用可能である。また、4原色ディスプレ ーを例に説明したが、原色数はこれに限られるものでは なく任意の原色数Nのディスプレーにおいて適用可能で ある。また、第1実施の形態ではプロジェクター2台に より4原色表示を実現しているが、4原色表示が可能な 1台のプロジェクターを用いることも可能である。 画像 出力装置に入力されるデータはX,Y,Zデータとしたが、 X、Y、Zと既知の線形関係にあるR、G、Bデータを用いてもよ い。この場合、X,Y,ZとR,G,Bとの関係に基づいて補正さ れたデータが画像出力装置において用いられる。

【0068】(効果)構成1または2によれば、色再現 域全域において正確な色再現が行なえる色再現システム を提供することができる。また、入力三刺激値とカラー 画像信号値とが連続的に変化し、更にこれらの条件がデ ィスプレーの色再現域全体にわたって満たされる。

【0069】構成3. 上記色変換領域は、上記カラー画 像表示手段の色域内の所定の三刺激値と色域表面を構成 する頂点とから作られる角錐であることを特徴とする構 成1に記載の色再現システム。

【0070】(対応する発明の実施の形態)構成3に記 載の発明は、少なくとも上記した第3実施の形態(図1 0) に対応する。カラー画像表示手段はプロジェクター A (102-1)、B (102-2) およびスクリーン1 03に、色変換手段は画像出力装置101に、領域判定 手段は領域判定装置101Cに、色変換パラメータはプ ロファイルデータに、カラー画像信号算出手段は表示信 号算出装置101Bにそれぞれ対応する。

13

【0071】なお、本実施の形態ではカラー画像表示手 段としてプロジェクターを例に説明したが、これに限ら れるものではなくCRTディスプレー、液晶ディスプレー 等原色光の混色を色再現原理とする任意のディスプレー に対しても適用可能である。また、4原色ディスプレー を例に説明したが、原色数はこれに限られるものではな く任意の原色数Nのディスプレーにおいて適用可能であ

台により4原色表示を実現しているが、4原色表示が可 能な1台のプロジェクターを用いることも可能である。 画像出力装置に入力されるデータはX, Y, Zデータとした が、X,Y,Zと既知の線形関係にあるR,G,Bデータを用いて もよい。この場合、X,Y,ZとR,G,Bとの関係に基づいて補 正されたデータが画像出力装置において用いられる。

【0073】 (効果) 構成3によれば、色再現域全域に おいて正確な色再現が行なえる色再現システムを提供す ることができる。また、入力三刺激値とカラー画像信号 値とが連続的に変化し、更にこれらの条件がディスプレ 20 一の色再現域全体にわたって満たされる。また、色再現 域外の色についても色再現域内のマトリクスを用いるこ とでマッピングを容易に行うことができる。

#### 【0074】構成4

上記カラー画像信号算出手段は、上記入力三刺激値をア ドレスとして上記カラー画像信号を記憶するルックアッ プテーブルと、このルックアップテーブルを参照して上 記入力三刺激値をカラー画像信号に変換する色変換装置。 を具備することを特徴とする構成1乃至3のいずれか1 つに記載の色再現システム。

【0075】(対応する発明の実施の形態)構成4に記 戯の発明は、少なくとも上記した第2実施の形態(図7 ~図9) に対応する。カラー画像表示手段はプロジェク ターA (102-1)、B (102-2) およびスクリー ン103に、色変換手段は画像出力装置101'に、領 域判定手段は領域判定装置1012に、色変換パラメー タはプロファイルデータに、カラー画像信号算出手段は 表示信号算出装置1022にそれぞれ対応する。

【0076】なお、上記第2実施の形態では、カラー画 像表示手段としてプロジェクターを例に説明したが、こ れに限られるものではなくCRTディスプレー、液晶ディ スプレー等原色光の混色を色再現原理とする任意のディ スプレーに対しても適用可能である。また、4原色ディ スプレーを例に説明したが、原色数はこれに限られるも のではなく任意の原色数Nのディスプレーにおいて適用 可能である。また、本実施形態ではプロジェクター2台 により4原色表示を実現しているが、4原色表示が可能 な1台のプロジェクターを用いることも可能である。ル ックアップテーブルのサンプル数は任意であり、入力X, Y.Zのデータ数分のルックアップテーブルのデータをも

つことにより補間演算を省くことができる。補間方法は 本実施形態では8点補間を用いて説明したが、4点補間 等他の補間方法を用いてもよい。画像出力装置に入力さ れるデータはX, Y, Zデータとしたが、X, Y, Zと既知の線形 関係にあるR.G.Bデータを用いてもよい。この場合、X. Y, ZとR, G, Bとの関係に基づいて補正されたデータが画像 出力装置において用いられる。

【0077】(効果)構成4によれば、構成1又は3の 効果に加えて、入力三刺激値をアドレスとするルックア 【0072】また、本実施の形態ではプロジェクター2 10 ップテーブルに色変換結果を記憶し、ルックアップテー ブルの参照により色変換を行なうのでより高速に出力信 号を得ることができる。また、変換結果をルックアップ テーブルに予め記憶しておくことができるため、色再現 域外の色についてもより演算処理時間を必要とする色域 圧縮を組み込むことが可能となる。

#### [0078]

【発明の効果】本発明によれば、色再現域全域において 正確な色再現が行なえる色再現システムを提供すること ができる。

#### 【図面の簡単な説明】

【図1】本発明の第1実施の形態に係る色再現システム としての多原色プロジェクターシステムの概略構成を示 す図である。

【図2】プロジェクターA、プロジェクターBの原色C1、 C2、C3、C4の発光スペクトルを模式的に示す図であ

【図3】画像出力装置101の構成を示す図である。

【図4】スクリーン103上に表示された各原色ごとの サンプル信号値のパッチ画像103Aに同期して分光計 30 もしくは測色計によりそのX, Y, Zを測定する構成を示す 図である。

【図5】4原色ディスプレーの色再現域を4つの6面体 に分割する方法を説明するための図である。

【図6】表示信号算出装置101Bの構成を示す図であ る。

【図7】画像出力装置101'の構成を示す図である。

【図8】ルックアップテーブル作成装置101Dの構成 を示す図である。

【図9】色域圧縮の概念図である。

【図10】分割領域と入力X,Y,Zとの関係を示す図であ 40

【図11】3原色ディスプレーのXYZ空間での色再現域 の模式図である。

【図12】3原色ディスプレーのXY色度図上の色再現域 を示す図である。

【図13】4原色ディスプレーのXYZ空間での色再現域 を示す図である。

【図14】4原色ディスプレーのXY色度図上の色再現域 を示す図である。

#### 【符号の説明】 50

- 100…画像データ入力装置、
- 101、101、…画像出力装置、
- 101A…プロファイルデータ記憶装置、
- 101B…表示信号算出装置、
- 1010…領域判定装置、
- 101D…ルックアップテーブル作成装置、
- 101E…ルックアップテーブル、
- 101F…補間係数算出装置、
- 101G…補間演算装置、

-103 スクリーン

102-1…プロジェクターA、

102-2…プロジェクターB、

- 103…スクリーン、
- 103A…パッチ画像、
- 104…分光計、

(9)

- 1010…プロファイルデータ記憶装置、
- 1011…表示信号算出装置、
- 1012…領域判定装置、
- 1013…テストデータ入力装置、
- 1101…線形信号算出装置、
- 10 1102…階調補正装置。

【図1】

102-1

プロジェクタ プロジェクタ

102-2



[図4]



101

国象出力较富

100

[図5]





(E)



【図11】

4原色ディスプレーの色再現域 (A)

分割額減1 (B)

分割領域2 (C)

(D)

分割類域3



【図14】



#### フロントページの続き

(51) Int. Cl. 7

識別記号

H 0 4 N 9/64

(72) 発明者 山口 雅浩 神奈川県横浜市緑区長津田町4259 東京工

業大学内

(72)発明者 味戸 剛幸

神奈川県横浜市緑区長津田町4259 東京工

業大学内

FΙ

HO4N 1/46

テーマコード(参考)

Fターム(参考) 5B057 AA20 BA02 CA01 CA08 CA12

CA16 CB01 CB08 CB12 CB16

CE18 DA16 DB02 DB06 DB09

5C066 AA03 AA11 BA20 CA08 DD01

EA03 EA05 EA07 EC01 EE04

EE05 GA01 GA02 GA05 GB01

JA01 KA11 KD06 KE02 KE03

KE04 KE07 KE11 KF05 KM11

5C077 LL19 PP32

5C079 HB01 HB05 HB12 NA03 PA05

5C082 BA34 BA35 BB51 CA12 CA54

CA81 CB01 DA87 MM10