O PyTorch

什么是梯度

主讲人: 龙良曲

Clarification

■ 导数, derivate

• 偏微分, partial derivate

■ 梯度, gradient

$$abla f = \left(\frac{\partial f}{\partial x_1}; \frac{\partial f}{\partial x_2}; \ldots; \frac{\partial f}{\partial x_n} \right)$$

$$z = y^{2} - x$$

$$\frac{\partial z}{\partial x} = -2x$$

$$\frac{\partial z}{\partial y} = 2y$$

What does grad mean?

How to search for minima?

$$\theta_{t+1} = \theta_t - \alpha_t \nabla f(\theta_t) .$$

Function:

$$J(\theta_1, \theta_2) = \theta_1^2 + \theta_2^2$$

Objective:

$$\min_{\theta_1,\,\theta_2} J(\theta_1,\,\theta_2)$$

Update rules:

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1, \theta_2)$$
$$\theta_2 \coloneqq \theta_2 - \alpha \frac{d}{d\theta_2} J(\theta_1, \theta_2)$$

Derivatives:

$$\frac{d}{d\theta_1}J(\theta_1,\theta_2) = \frac{d}{d\theta_1}{\theta_1}^2 + \frac{d}{d\theta_1}{\theta_2}^2 = 2\theta_1$$

$$\frac{d}{d\theta_2}J(\theta_1,\theta_2) = \frac{d}{d\theta_2}{\theta_1}^2 + \frac{d}{d\theta_2}{\theta_2}^2 = 2\theta_2$$

Learning process-1

Learning process-2

Convex function

Local Minima

ResNet-56

Saddle point

https://www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-derivatives/optimizing-multivariable-functions-videos/v/saddle-points

Optimizer Performance

initialization status

learning rate

momentum

etc.

Initialization

Initialization

Learning rate

Escape minima

下一课时

常见函数梯度

Thank You.