CURS 6

SERII DE PUTERI

DEZVOLTARI IN SERII TAYLOR

A) SERII DE PUTERI

Definitia 1. Se numeste serie de puteri in jurul punctului $x_0 \in \mathbb{R}$ seria de functii $\sum_{n=0}^{\infty} f_n$, unde functia $f_n: \mathbb{R} \to \mathbb{R}$ este definita prin $f_0(x) = a_0 \forall x \in \mathbb{R}$, $f_n(x) = a_n (x - x_0)^n \forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*$.

Notatie. $\sum_{n=0}^{\infty} f_n = \sum_{n=0}^{\infty} a_n (x - x_0)^n$

Notatie.
$$\sum_{n=0}^{\infty} f_n = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Definitia 2. a) Numarul $R = \sup \{r \ge 0 | \sum_{n=0}^{\infty} |a_n| r^n \text{ serie convergenta} \} \in \mathbb{R}$

- $[0, \pm \infty]$ se numeste raza de convergenta a seriei de puteri $\sum_{n=0}^{\infty} a_n (x x_0)^n$
- b) Intervalul $(x_0 R, x_0 + R) \subseteq \mathbb{R}$ se numeste intervalul de convergenta al seriei de puteri $\sum_{n=0}^{\infty} a_n (x - x_0)^n.$
- c) Multimea $A = \{x \in \mathbb{R} | \sum_{n=0}^{\infty} a_n (x x_0)^n \text{ serie convergenta} \} \subseteq \mathbb{R}$ se
- numeste multimea de convergenta a seriei de puteri $\sum_{n=0}^{\infty} a_n (x x_0)^n$.

 d) Functia $f: A \to \mathbb{R}$ definita prin $f(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n \forall x \in A$ se numeste suma seriei de puteri $\sum_{n=0}^{\infty} a_n (x - x_0)^n$.

Observatie. 1) $x_0 \in A$

2) $f(x_0) = a_0$.

Teorema Cauchy-Hadamard. Se considera seria de puteri $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ si numarul $l = \limsup_{n \to \infty} \sqrt[n]{|a_n|} \in [0, +\infty]$. Raza de convergenta a seriei de puteri este data de formula

$$R = \begin{cases} \frac{1}{l}, l \in (0, +\infty) \\ +\infty, l = 0 \\ 0, l = +\infty \end{cases}$$

Teorema lui Abel. Se conseidera seria de puteri $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ si R raza sa de convergenta. Atunci:

- a) $\forall x \in (x_0 R, x_0 + R)$ seria de numere reale $\sum_{n=0}^{\infty} a_n (x x_0)^n$ este absolut convergenta;
- b) $\forall x \in \mathbb{R} \setminus [x_0 R, x_0 + R]$ seria de numere reale $\sum_{n=0}^{\infty} a_n (x x_0)^n$ este divergenta;

1

c) Daca R > 0, pentru orice numar real $r \in (0, R)$ seria de functii $\sum_{n=0}^{\infty} a_n (x - x_0)^n$

este absolut si uniform convergenta pe $[x_0 - r, x_0 + r]$.

Corolar. a) Sunt adevarate incluziunile $A \subseteq \mathbb{R}$ si $(x_0 - R, x_0 + R) \subseteq A \subseteq$ $[x_0 - R, x_0 + R].$

- b) Daca $R = +\infty$, atunci $A = \mathbb{R}$.
- c) Daca R = 0, atunci $A = \{x_0\}$.

Teorema 1. Se considera seria de puteri $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ cu R>0 si $f:A\to\mathbb{R}$ suma seriei de puteri. Atunci:

a) $f\mid_{(x_0-R,x_0+R)}$ este functie de clasa C^{∞} pe $(x_0-R,x_0+R).$ In plus,

$$f^{(k)}(x) = \sum_{n=0}^{\infty} (a_n (x - x_0)^n)^{(k)} \, \forall x \in (x_0 - R, x_0 + R)$$
$$\int f(x) dx = \sum_{n=0}^{\infty} \int a_n (x - x_0)^n.$$

b) f este functie continua pe A.

B) DEZVOTARI IN SERIE TAYLOR

Se considera $I \subseteq \mathbb{R}$ un interval nedegenerat si $f: I \to \mathbb{R}$ o functie de clasa C^{∞} pe intervalul I.

Definitia 3. Seria de puteri $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ se numeste seria Taylor asociata functiei f in jurul punctului x_0 .

Teorema 2. Fie $a < b \in \mathbb{R}, I = [a, b]$ sau I = (a, b) sau I = [a, b) sau I = [a, b] $[a,b], x_0 \in I \text{ si } f:I \to \mathbb{R}$ o functie de clasa C^{∞} pe intervalul I pentru care $\exists M > 0$ astfel incat $|f^{(n)}(x)| \leq M \ \forall x \in I, \forall n \in \mathbb{N}$. Atunci seria Taylor asociata functiei f in jurul punctului x_0 este uniform convergenta pe I si f(x)

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \ \forall x \in I$$

 $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \ \forall x \in I.$ $\underbrace{\begin{array}{c} \text{Dezvotari in serie Taylor in jurul punctului} \\ 1) \ f: \mathbb{R} \to \mathbb{R}, f(x) = e^x \end{array}}_{\text{possible}}$

1)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = e^x = \sum_{n=1}^{\infty} \frac{x^n}{n!} \ \forall x \in \mathbb{R}$$

2)
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = \sin x$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \quad \forall x \in \mathbb{R}$$

3)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x$$

1)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = e^{-x}$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \ \forall x \in \mathbb{R}$$
2) $f: \mathbb{R} \to \mathbb{R}, f(x) = \sin x$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} \ \forall x \in \mathbb{R}$$
3) $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} \ \forall x \in \mathbb{R}$$
4) $f: (-1, 1) \to \mathbb{R}, f(x) = \frac{1}{1-x}$

4)
$$f: (-1,1) \to \mathbb{R}, f(x) = \frac{1}{1-x}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \ \forall x \in (-1, 1)$$
5) $f: (-1, 1) \to \mathbb{R}, f(x) = \frac{1}{1+x}$

5)
$$f: (-1,1) \to \mathbb{R}, f(x) = \frac{1}{1+x}$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n \ \forall x \in (-1, 1)$$

