CSc 3102: Huffman Trees

Encoding Data

• Huffman Codes

1 Introduction

Finding a binary tree of minimum weighted leaf path length has many important applications including Huffman codes and merge patterns. In this lecture, we focus on merge codes. Let λ_i denote the length of the path in T from the root to the leaf node corresponding to some symbol α_i , $i=1,\ldots,n$. The expected length of the coded symbols determined by T is closely related to a generalization of the leaf path length called the weighted leaf path length $\Pi_{wl}(T)$ of T, defined by

$$\Pi_{wl}(T) = \sum_{i=1}^{n} \lambda_i f_i$$

From information theory, entropy is the lower bound on the average number of bits required to encode the symbols in a source. The entropy, denoted H, of the codes for a source is given by the formula below, where w_i is the weight or relative frequency of each of its n distinct symbols:

$$H = -\sum_{i=1}^{n} w_i \lg w_i$$

Note: lg denotes log_2 and $w_i = \frac{f_i}{\sum\limits_{i=1}^n f_i}$.

2 Algorithm

```
ALGORITHM: Huffman(A, Freq, hc)
Input: Freq[1:n] - an array of non-negative frequencies:
        Freq[i] = fi
Output: hc[1:n] - an array of binary strings for Huffman
         code. hc[i] is the binary string encoding symbol
         ai, i=1,...,n.
for i \leftarrow 1 to n do
   AllocateNode(P)
   P.symbolIndex <- i
   P.frequency <- Freq[i]</pre>
   P.left <- NULL
   P.right <- NULL
   leaf[i] <- P</pre>
CreatePQueue(Leaf,Q)
for i <-1 to n-1 do
   RemovePQueue(Q,L)
   RemovePQueue(Q,R)
   AllocateNode(root)
   root.left <- L</pre>
   root.right <- R</pre>
   root.frequency <- L.frequency + R.frequency</pre>
   InsertPQueue(Q,Root)
root.BinaryString <- " "</pre>
GenerateCode(root,hc)
```

Proposition 1. Given a set of frequencies f_i , i = 1, ..., n, the Huffman tree T constructed by *Huffman* has minimal weighted Π_{wl} over all 2-trees whose edges are weighted by these frequencies.

Suppose a text to be encoded using Huffman encoding has frequencies of its characters (symbols) as shown in Table 1: $a\rightarrow 9$, $b\rightarrow 8$, $c\rightarrow 5$, $d\rightarrow 3$, $e\rightarrow 15$ and $f\rightarrow 2$. We now trace the action of the Huffman encoding algorithm, showing the initial forest (contents of the min-priority-queue) and its contents during each stage of the algorithm.

Figure 1: Action of Huffman for the frequencies shown in Table 1

Figure 2: Action of Huffman for the frequencies shown in Table 1 continues

Symbol	Frequency	Codeword
a	9	01
b	8	00
c	5	100
d	3	1011
e	15	11
f	2	1010

Table 1: Frequency table of symbols

$$\Pi_{wl}(T) = \sum_{i=1}^{n} \lambda_i f_i = (2)(9) + (2)(8) + (3)(5) + (4)(3) + (2)(15) + (4)(2) = 99$$

Problem 1.

- 1. What is the weighted leaf path length of the tree?
- 2. How many bits are required to encode the text with the frequency table given in Table 1?
- 3. What is the average code length?
- 4. Using the codes in Table 1, give the encoding for the phrase *bed face*, leaving a white space between the code for each symbol.
- 5. Using the codes in Table 1, calculate the entropy of the text. How does the entropy compare to the average code length?