Числови редове - Теория 1

Март 2020г.

1 Основни сведения за числовите редове

Нека е дадена числова редица $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$. Под **числов ред** ще разбираме формалната сума:

$$\sum_{n=1}^{\infty} a_n$$

Да въведем понятието **частични (парциални) суми**. За всяко $n \in \mathbb{N}$ с S_n означваме сумата от първите n члена на редицата $\{a_n\}_{n=1}^{\infty}$ (оттам, парциални). По-точно, имаме:

$$\begin{cases} S_1 = a_1 \\ S_2 = a_1 + a_2 \\ S_3 = a_1 + a_2 + a_3 \\ \dots \\ S_n = a_1 + \dots + a_n = \sum_{k=1}^n a_k \end{cases}$$

За да изучаваме числовия ред, изучаваме редицата от парциалните му суми $\{S_n\}_{n=1}^{\infty} \subset \mathbb{R}$ и дефинираме:

$$S_n \xrightarrow[n \to \infty]{} S \iff \sum_{n=1}^{\infty} a_n = S$$

С други думи, сумата на даден числов ред е границата при $n \to \infty$ от парциалните суми S_n на реда.

По аналогия с несобствените интеграли, ако съществува границата на редицата от парциални суми:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\sum_{k=1}^n a_k \right),\,$$

то говорим за **сходящ** числов ред. Обратно, ако горната граница не съществува, то числовия ред наричаме **разходящ**. Накрая, ако $S_n \xrightarrow[n \to \infty]{} S$, то под **сума** на числовия ред ще разбираме именно числото S.

Примери

1. Геометрична прогресия - нека $x \in \mathbb{R}$ и разглеждаме числовия ред:

$$1 + x + x^2 + \dots + x^n + \dots = \sum_{n=1}^{\infty} x^n$$

Лесно се проверява, че за $x \neq 1$ парциалните суми са $S_n = \frac{1-x^{n+1}}{1-x}$. Тяхната граница при $n \to \infty$ съществува, ако $x \in (-1,1)$, като

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - \underbrace{\left(\frac{1}{1 - x} \cdot \lim_{n \to \infty} x^{n+1}\right)}_{0} = \frac{1}{1 - x} \Rightarrow \sum_{n=1}^{\infty} x^n = \frac{1}{1 - x}$$

Разбира се, ако $x \notin (-1,1)$, границата не съществува и редът е разходящ. В частност, за x=1 се получава, че $S_n=n$ и $S_n \xrightarrow[n \to \infty]{} \infty$.

2. От курса по ДИС 1 ни е известно, че неперовото число e е граница на

$$\lim_{n \to \infty} \left(\sum_{k=0}^{n} \frac{1}{k!} \right) = \sum_{n=0}^{\infty} \frac{1}{n!} = e$$

3. Хармоничен ред - твърдим, че следният ред е разходящ:

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Доказателство. За фиксирано $k \in \mathbb{N}$ разписваме 2^k -тата парциална сума:

$$H_{2^{k}} = 1 + \frac{1}{2} + \underbrace{\left(\frac{1}{3} + \frac{1}{4}\right)}_{\geq 2 \cdot \frac{1}{4} = \frac{1}{2}} + \underbrace{\left(\frac{1}{5} + \dots + \frac{1}{8}\right)}_{\geq 4 \cdot \frac{1}{8} = \frac{1}{2}} + \underbrace{\left(\frac{1}{9} + \dots + \frac{1}{16}\right)}_{\geq 8 \cdot \frac{1}{16} = \frac{1}{2}} + \dots + \underbrace{\left(\frac{1}{2^{k-1} + 1} + \frac{1}{2^{k-1} + 2} + \dots + \frac{1}{2^{k}}\right)}_{\geq 2^{k-1} \cdot \frac{1}{1^{k}} = \frac{1}{3}}$$

Следователно $H_{2^k} \geq \left(1+\frac{1}{2}k\right) \xrightarrow[k \to \infty]{} \infty$. Границата от парциалните суми е "безкрайност", т.е. по дефиниция хармоничният числов ред е разходящ.

2 Свойства на числовите редове

1. Необходимо условие за сходимост на ред:

$$S = \sum_{n=1}^{\infty} a_n$$
 е сходящ $\Rightarrow a_n \xrightarrow[n \to \infty]{} 0$

Необходимото условие в контрапозиция е критерий за проверка дали даден числов ред е разходящ; за целта е достатъчно да се убедим, че $a_n \not \xrightarrow[n \to \infty]{} 0$ - в такъв случай е невъзможно редът да е сходящ, тъй като е невъзможно редицата от парциални суми на реда да се схожда.

<u>Доказателство.</u> Дадено е, че редът е сходящ със сума S, т.е. по дефиниция $S_n \xrightarrow[n \to \infty]{} S$. Нека $n \ge 2$ и сравняваме парциалните суми S_n и S_{n-1} :

$$\ominus \begin{cases}
S_n = a_1 + a_2 + \dots + a_{n-1} + a_n \xrightarrow[n \to \infty]{} S \\
S_{n-1} = a_1 + a_2 + \dots + a_{n-1} \xrightarrow[n \to \infty]{} S
\end{cases}$$

Вадим S_{n-1} от S_n и получаваме, че $a_n = S_n - S_{n-1} \xrightarrow[n \to \infty]{} S - S = 0$, т.е. $a_n \xrightarrow[n \to \infty]{} 0$.

Забележка: Това е необходимо, но не и достатъчно условие за сходимост на числов ред. Възможно е общият член a_n да клони към 0 при $n \to \infty$, но редът да е разходящ. Като пример можем да посочим хармоничния ред.

2. Линейност - нека $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ са сходящи редове, а $\lambda \in \mathbb{R}$. Тогава:

•
$$\sum_{n=1}^{\infty} (a_n + b_n)$$
 е сходящ, като $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$

•
$$\sum_{n=1}^{\infty} (\lambda a_n)$$
 е сходящ, като $\sum_{n=1}^{\infty} (\lambda a_n) = \lambda \sum_{n=1}^{\infty} a_n$

3. Добавянето / Задраскването на краен брой членове на реда не влияе на неговата сходимост. Формално:

$$\sum_{n=1}^{\infty} a_n = \underbrace{\sum_{n=1}^{k-1} a_n}_{const} + \sum_{n=k}^{\infty} a_n$$

Ако изходният ред е сходящ, то той остава сходящ след премахване на краен брой членове. Същото остава вярно и за добавянето на краен брой нови членове. Сравнете с аналогичното свойство за сходимост при числовите редици.

3 Редове с неотрицателен общ член. Принцип за сравнение, следствие

От особен интерес са числовите редове с неотрицателни членове, т.е. редовете, за които е в сила $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ с $a_n \geq 0 \ \forall n \in \mathbb{N}$. Съобразете, че това ограничение налага редицата от парциални суми $\{S_n\}_{n=1}^{\infty} \subset \mathbb{R}$ да е растяща $(S_n - S_{n-1} = a_n \geq 0)$. По-долу, когато говорим за редове, ще разбираме редове с неотрицателен общ член.

Принцип за сравнение

Нека са дадени редовете $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ и освен това $0\leq a_n\leq b_n$ $\forall\,n\in\mathbb{N}.$ Тогава:

$$(i)$$
 Ако $\sum_{n=1}^{\infty}b_n$ е сходящ, то $\sum_{n=1}^{\infty}a_n$ също е сходящ.

$$(ii)$$
 Ако $\sum_{n=1}^{\infty}a_n$ е разходящ, то $\sum_{n=1}^{\infty}b_n$ също е разходящ.

Доказателство. Нека $S_n = a_1 + \dots + a_n$ и $\sigma_n = b_1 + \dots + b_n$ са съответно парциални суми за двата реда. Тъй като те са с неотрицателни общи членове, редиците $\{S_n\}_{n=1}^{\infty}$ и $\{\sigma_n\}_{n=1}^{\infty}$ са растящи.

$$(i)$$
 Ако $\sum_{n=1}^{\infty} b_n$ е сходящ, то е валидно неравенството $S_n \leq \sigma_n \leq \sigma$ където $\lim_{n \to \infty} \sigma_n = \sigma$.

Следователно $\{S_n\}_{n=1}^{\infty}$ е растяща и ограничена отгоре. Веднага можем да заключим, че редът $\sum_{n=1}^{\infty} a_n$ също е сходящ.

$$(ii)$$
 Ако $\sum_{n=1}^{\infty} a_n$ е разходящ, редицата от парциални суми $\{S_n\}_{n=1}^{\infty}$ не е ограничена отгоре.

Следователно и редицата $\{\sigma_n\}_{n=1}^{\infty}$ е неограничена. Няма как редът $\sum_{n=1}^{\infty} b_n$ да бъде сходящ в този случай.

Следствие (Гранична форма на принципа)

Нека при условията на приниципа за сравнение, ако $0 \le a_n \le b_n \ \forall \ n \in \mathbb{N}$ и допълнително $b_n > 0 \ \forall \ n \in \mathbb{N}$, съществува границата:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = l$$
, където $0 < l < +\infty$

Тогава редовете $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ са едновременно сходящи или разходящи.

<u>Доказателство.</u> Нека границата от условието на следстието същестува и $\frac{a_n}{b_n} \xrightarrow[n \to \infty]{} l$ за l>0 и $l<+\infty$. Разглеждаме околност $\left(\frac{l}{2},2l\right)$ на l. От теорията за граници на числови редици знаем:

 $\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \frac{a_n}{b_n} \in \left(\frac{l}{2}, 2l\right)$

Тъй като $b_n > 0 \ \forall n \in \mathbb{N}$, то неравенството приема вида $\frac{l}{2}$. $b_n \leq a_n \leq 2l$. b_n . Оттук нататък просто прилагаме критерия за сравнение.

3абележка: Обикновено се казва, че $\sum\limits_{n=1}^{\infty}b_n$ мажорира (ограничава отгоре) $\sum\limits_{n=1}^{\infty}a_n.$

Обратно, може да се каже, че $\sum_{n=1}^{\infty} a_n$ минорира (ограничава отдолу) $\sum_{n=1}^{\infty} b_n$.

Това трябва да ни напомня за принципа за сравнение. Например, по-нататък ще обсъждаме критериите на Даламбер и Коши; при тяхното доказателство използваме, че даден числов ред се мажорира от геометричната прогресия, за която вече се убедихме, че е сходящ ред. По силата на принципа за сравнение, това влече сходимост и на разглеждания ред.

4 Интегрален критерий на Коши-Маклорен

Нека $f:[1,+\infty]\to [0,+\infty)$ е монотонно намаляваща. Тогава:

$$\int\limits_{1}^{+\infty}f\left(x\right) \,dx$$
е сходящ $\iff \sum_{n=1}^{\infty}f\left(n\right)$ е сходящ.

Фигура 1: Сходимост и разходимост по критерия на Коши-Маклорен

Както при несобствените интеграли, можем да въведем *скала* за сходимост на числови редове. Тя се явява частен случай на интегралния критерий на Коши-Маклорен за функцията $f(x) = \frac{1}{x^{\lambda}}$.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\lambda}}$$
 е сходящ $\iff \int\limits_{1}^{+\infty} \frac{1}{x^{\lambda}}$ е сходящ

Доказателство. Нека $n \in \mathbb{N}$ и разглеждаме x в интервала [n, n+1], т.е $n \le x \le n+1$. Като използваме, че f е намаляваща, достигаме до неравенството $f(n) \ge f(x) \ge f(n+1)$. Интегрираме това неравенство в [n, n+1]:

$$f(n) \cdot 1 = \int_{n}^{n+1} f(n) \, dx \ge \int_{n}^{n+1} f(x) \, dx \ge \int_{n}^{n+1} f(n+1) \, dx = f(n+1) \cdot 1$$

Следователно:

$$f(n) \ge \int_{0}^{n+1} f(x) dx \ge f(n+1)$$

Фиксираме N - горна граница на сумиране (идеята ни е да разглеждаме парциални суми S_N). По-горе интегрирахме неравенството, нека сега сумираме горните двойни неравенства до N:

$$\sum_{n=1}^{N} f(n) \ge \sum_{n=1}^{N} \int_{n}^{n+1} f(x) dx \ge \sum_{n=1}^{N} f(n+1)$$

В последната сума за f(n+1) можем да сменим сумационния индекс n, така че тази сума да "прилича" на сумата за f(n). Нека положим n+1=m, тогава:

$$\sum_{n=1}^{N} f(n+1) = \sum_{m=2}^{N+1} f(m) = \sum_{m=1}^{N+1} f(m) - f(1) = \sum_{n=1}^{N+1} f(n) - f(1)$$

Накрая върнахме индекса n, тъй като изборът на сумационнен индекс не влияе на сумата. Да заместим в горното неравенство:

$$\sum_{n=1}^{N} f(n) \ge \sum_{n=1}^{N} \int_{x}^{n+1} f(x) \ dx = \int_{1}^{N} f(x) \ dx \ge \sum_{n=1}^{N+1} f(n) - f(1)$$

Връщаме се към условията на критерия.

$$(a) \underbrace{\int\limits_{1}^{+\infty} f\left(x\right) \, dx}_{=} \ge \int\limits_{1}^{N} f\left(x\right) \, dx \overset{\forall N \ge 2}{\ge} \sum\limits_{n=1}^{N} f\left(n\right) - f\left(1\right) \Longrightarrow \underbrace{\sum\limits_{n=1}^{\infty} f\left(n\right)}_{\text{CXOJSHIL}} \le \int\limits_{1}^{+\infty} f\left(x\right) \, dx + f\left(1\right)$$

$$(b) \ \underbrace{\sum_{n=1}^{\infty} f\left(n\right)}_{\text{сходящ}} \geq \sum_{n=1}^{N} f\left(n\right) \overset{\forall N \geq 2}{\geq} \int\limits_{1}^{N} f\left(x\right) \, dx \Longrightarrow \underbrace{\int\limits_{1}^{+\infty} f\left(x\right) \, dx}_{\text{сходящ}} \leq \sum_{n=1}^{\infty} f\left(n\right)$$

С други думи, в (a) заключаваме сходимост за реда, понеже той има неотрицателен общ член (редицата от парциални суми е растяща) и е ограничен отгоре (понеже имаме, че несобственият интеграл е сходящ). В (b) разсъждаваме аналогично - ако си спомним за F(p), дефинирана като функция на горната граница на интеграла от f(x), то F(p) расте $p \to \infty$, но функцията е ограничена отгоре, т.е. съществува граница и несобственият интеграл е сходящ.

Задача. С интегралния критерий на Коши-Маклорен скалата за числови редове е очевидна:

$$\sum_{n=1}^{\infty} rac{1}{n^{\lambda}}: egin{cases} ext{сходящ, за } \lambda > 1 \ ext{разходящ, за } \lambda \leq 1 \end{cases}$$

Както при несобствените интеграли, често в решаването на задачи е удобно да използваме релацията \sim за оценка на редове. Тя се използва по абсолютно същия начин, но при интегралите се налагаше да посочим граница на функции; тук границите са на числови редици. Например:

Изследвайте за сходимост числовия ред
$$\sum_{n=1}^{\infty} \frac{\sqrt{7n^5-3n}}{n^3+3}$$
.

Като приложим, че:

$$\frac{\sqrt{7n^5-3n}}{n^3+3} = \frac{n^{\frac{5}{2}}\sqrt{7-\frac{3}{n^4}}}{n^3\left(1+\frac{3}{n^3}\right)} = \frac{1}{\sqrt{n}} \cdot \frac{\sqrt{7-\frac{3}{n^4}}}{1+\frac{3}{n^3}} \text{ if } \lim_{n\to\infty} \frac{\sqrt{7-\frac{3}{n^4}}}{1+\frac{3}{n^3}} = \sqrt{7} > 0$$

получаваме асимптотичната еквивалентност $\frac{\sqrt{7n^5-3n}}{n^3+3}\sim \frac{1}{\sqrt{n}}$. Директно заместваме в реда и прилагаме скалата:

$$\sum_{n=1}^{\infty} \frac{\sqrt{7n^5-3n}}{n^3+3} \sim \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 - разходящ, т.к $\lambda = \frac{1}{2} < 1$

Забележска: Виждаме, че същестуват много прилики между теорията на несобствените интеграли и тази на числовите редове. Ето още една - в упражнението върху несобствени интеграли 1-ви род дадохме критерий, по който лесно можем да установим дали следните интеграли са сходящи или разходящи:

$$\int_{2}^{\infty} \frac{dx}{x^{\lambda} (\ln x)^{\mu}} \, \operatorname{Id} \int_{2}^{\infty} \frac{dx}{x^{\lambda} (\ln x)^{\mu} (\ln \ln x)^{\nu}} \, \operatorname{Id} \cdots$$

При редовете имаме същата закономерност - ако линейната част е на степен $\lambda>1$, не гледаме логаритмите и директно твърдим сходимост; ако $\lambda=1$, то поглеждаме към степента на $\ln x$ и отново проверяваме дали $\mu>1$ (сходимост) или $\mu=1$ (гледаме $\ln \ln x$) и т.н. Аналогията е полезна и се осмисля по-лесно синтактично:

$$\sum_{2}^{\infty} \frac{dx}{x^{\lambda} (\ln x)^{\mu}} \times \sum_{2}^{\infty} \frac{dx}{x^{\lambda} (\ln x)^{\mu} (\ln \ln x)^{\nu}} \times \cdots$$

Казано накратко, сходимостта е при едни и същи условия за интеграли и суми от горния вид.

5 Критерий на Даламбер

Критерият на Даламбер е приложим за числови редове с положителни членове и служи за установяване на сходимост или разходимост. Формално:

Даден е ред
$$\sum_{n=1}^{\infty} a_n$$
 с $a_n > 0 \ \forall n \in \mathbb{N}$. Разглеждаме редицата $\left\{ \frac{a_{n+1}}{a_n} \right\}_{n=1}^{\infty}$.

$$(i)$$
 Ако съществува $\mu < 1$, за което $\frac{a_{n+1}}{a_n} \le \mu \ (\forall \, n \ge n_0)$, то $\sum_{n=1}^\infty a_n$ е сходящ.

$$(ii)$$
 Ако $\frac{a_{n+1}}{a_n} \geq 1 \ (\forall \, n \geq n_0) \, , \, \, {
m To} \, \, \sum_{n=1}^\infty a_n \, \, {
m e} \, \, {
m pas}$ ходящ.

<u>Доказателство.</u> Последователно разглеждаме (i) и (ii). Нека първо съществува подходящо $\mu < 1$ и попадаме в условията на сходимостта - да я докажем:

$$\frac{a_{n+1}}{a_n} \le \mu < 1 \ \forall \ n \ge k \Rightarrow \left\{ \begin{array}{l} \frac{a_{k+1}}{a_k} \le \mu \\ \\ \frac{a_{k+2}}{a_{k+1}} \le \mu \\ \\ \cdots \\ \\ \frac{a_{k+n}}{a_{k+n-1}} \le \mu \end{array} \right\} \xrightarrow[a_{k+1}]{\underbrace{a_{k+2}}} \cdot \underbrace{a_{k+3}}_{a_{k+1}} \cdot \underbrace{a_{k+3}}_{a_{k+2}} \cdots \underbrace{a_{k+n}}_{a_{k+n-1}} \le \mu^n \Rightarrow \underbrace{a_{k+n}}_{a_k} \le \mu^n$$

От неравенството накрая извличаме $0 < a_{k+n} \le a_k \mu^n$. То издържа сумирането в ред, т.е. остава вярно:

$$0 < \sum_{n=1}^{\infty} a_{k+n} \le \sum_{n=1}^{\infty} a_k \mu^n = a_k \sum_{n=1}^{\infty} \mu^n$$

Последният ред е сходяща геометрична прогресия, която мажорира реда в условието на критерия. От принципа за сравнение получаваме, че той е сходящ.

Обратно, нака от известно място нататък ($\forall n \geq k$) се получава, че $a_{n+1} \geq a_n$. Разходимостта е почти очевидна - трябва само да забележим, че понеже сме наложили $a_n > 0$, то за всички достатъчно големи n е изпълнено, че $a_n \geq a_k > 0$. Общият член не клони към 0 - нарушава се необходимото условие! Следователно редът е разходящ.

На практика при решаването на задачи е полезна следната *гранична форма* на критерия на Даламбер:

Следствие (Гранична форма)

Нека при условията на критерия имаме още, че съществува границата:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l$$

Тогава:

$$(i)$$
 Ако $l<1,$ то $\displaystyle\sum_{n=1}^{\infty}a_n$ е сходящ.

$$(ii)$$
 Ако $l>1,\; {
m To}\; \sum_{n=1}^\infty a_n\; {
m e}\; {
m pasx}$ одящ.

Доказателство. Нека първо l < 1 и искаме да покажем сходимост. Ясно е, че можем да намерим $\mu < 1$, за което $l < \mu < 1$. Разглеждаме околност $(-\infty, \mu)$ на l и отново използваме, че от известен номер насетне всички членове на редицата $\{a_n\}_{n=1}^{\infty}$ попадат в тази околност. Следователно:

$$\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \frac{a_{n+1}}{a_n} < \mu \Rightarrow \$$
Прилагаме Даламбер, (i) .

Сега l>1, значи със сходни разсъждения се вижда, че след някой индекс всички членове на редицата изпълняват неравенството $a_{n+1}>a_n$, по-точно:

$$\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \frac{a_{n+1}}{a_n} > 1 \Rightarrow \$$
 Прилагаме Даламбер, (ii) .

Задача. Нека се опитаме с критерия на Даламбер да изследваме за сходимост реда:

$$\sum_{n=1}^{\infty} \frac{n!}{n^n} e^n$$

Ще приложим граничната форма:

$$\lim_{n\to\infty}\frac{\left(\frac{(n+1)!}{(n+1)^{n+1}}e^{n+1}\right)}{\left(\frac{n!}{n^n}e^n\right)}=\lim_{n\to\infty}\left(\frac{\varkappa!\cdot \ell^\varkappa\cdot e}{(n+1)^n}\cdot\frac{n^n}{\varkappa!\cdot \ell^\varkappa}\right)=e\lim_{n\to\infty}\frac{n^n}{(n+1)^n}=e\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{-n}=\frac{e}{e}$$

Получихме 1 и в такива случаи критерият на Даламбер не дава отговор на поставения въпрос. Това обаче е в случай, че се приближаваме към l=1 със стойности по-малки от 1, а тук не е така; наистина, да обърнем внимание, че:

$$\frac{e}{\left(1+\frac{1}{n}\right)^n}\geq 1\; \forall\, n\in\mathbb{N}\Rightarrow \sum_{n=1}^\infty \frac{n!}{n^n}e^n$$
 е разходящ.

Изводът е, че ако все пак получим l=1 с Даламбер, все пак можем да проверим дали тази граница се достига с по-малки или по-големи стойности. Ако се достига с по-големи стойности - редът е разходящ; ако се достига с по-малки - критерият не дава отговор.

6 Критерий на Коши

Критерият на Коши се използва за редове с неотрицателен общ член. Подобно на Даламбер, той се опитва да установи сходимост или разходимост на реда. Формално:

Даден е ред
$$\sum_{n=1}^{\infty} a_n$$
 с $a_n \ge 0$. Разглеждаме редицата $\{\sqrt[n]{a_n}\}_{n=1}^{\infty}$.

$$(i)$$
 Ако съществува $\mu < 1$, за което $\sqrt[n]{a_n} \le \mu \, (\forall \, n \ge n_0)$, то $\sum_{n=1}^\infty a_n$ е сходящ.

(ii) Ако съществува подредица $\left\{a_{n_k}\right\}_{k=1}^{\infty}\subset \left\{a_n\right\}_{n=1}^{\infty},$

такава че
$$\sqrt[n_k]{a_{n_k}} \ge 1$$
, то $\sum_{n=1}^{\infty} a_n$ е разходящ.

Доказателство. Да се съсредоточим върху първия случай, където съществува $\mu < 1$, за което е изпълнено $\sqrt[n]{a_n} \le \mu \ \forall n \ge n_0$. Повдигаме страните на n-та степен и получаваме $0 \le a_n \le \mu^n \ \forall n \ge n_0$. Неравенството издържа сумиране в ред, следователно:

$$0 \le \sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} \mu^n$$
 - сходящ

Както при Даламбер в случая на $\mu < 1$, имаме сходяща геометрична прогресия, която мажорира реда, който се изследва. Веднага заключаваме, че той е сходящ.

Сега, нека съществува подредица $\sqrt[n_k]{a_{n_k}}$, за която $a_{n_k} \ge 1 \ \forall \ k \ge k_0$. Както при Даламбер, общият член не клони към 0 - получихме разходимост на числовия ред.

Следствие (Гранична форма)

Нека при условията на критерия имаме още, че съществува границата:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = l$$

Тогава:

$$(i)$$
 Ако $l<1,$ то $\sum_{n=1}^{\infty}a_n$ е сходящ.

$$(ii)$$
 Ако $l>1,\;$ то $\sum_{n=1}^{\infty}a_n$ е разходящ.

<u>Доказателство</u>. Разсъжденията са аналогични на тези, които приложихме при следствието от критерия на Даламбер. Ако l < 1, взимаме $\mu < 1$, за което $l < \mu < 1$ и разглеждаме околност $(-\infty, \mu)$ на l. Тогава:

$$\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \sqrt[n]{a_n} < \mu \Rightarrow \$$
Прилагаме Коши, (i).

Ако l > 1, разглеждаме околност $(1, +\infty)$ на l:

$$\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \sqrt[n]{a_n} > 1 \Rightarrow \ \Pi$$
рилагаме Коши, (ii).

Задача. Да се изследва за сходимост реда:

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n+2} \right)^{n^2}$$

Удобно е да приложим Коши, понеже в общия член имаме степенуване. Наистина,

$$\sqrt[n]{\left(\frac{n+1}{n+2}\right)^{n^2}} = \left(\frac{n+1}{n+2}\right)^n = \left(1 + \frac{1}{n+1}\right)^{-n} \xrightarrow[n \to \infty]{} \frac{1}{e} < 1$$

С граничната форма на критерия на Коши установихме сходимост на горния ред.

Задача. Да се изследва за сходимост реда:

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n+2} \right)^n$$

Отново Коши:

$$\sqrt[n]{\left(\frac{n+1}{n+2}\right)^n} = \frac{n+1}{n+2} \xrightarrow[n \to \infty]{} 1$$

Клоним към граница 1 със стойности по-малки от 1 - критерият на Коши не дава отговор. Използвайте необходимото условие за сходимост и покажете, че $a_n \not \xrightarrow[n \to \infty]{} 0$. Редът се оказва разходящ.

<u>Пример.</u> Нека p,q>0 и разглеждаме числовия ред $p+pq+p^2q+p^2q^2+\cdots$. Не е трудно да се види, че за n=2k (четно) общият член е $a_n=p^kq^k$, а за n=2k+1 (нечетно) общият член е $a_n=p^{k+1}q^k$.

Да приложим критерия на Даламбер:

$$n = 2k + 1 \Rightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{k \to \infty} \frac{a_{2k+2}}{a_{2k+1}} = \lim_{k \to \infty} \frac{p^{k+1}q^{k+1}}{p^{k+1}q^k} = q$$

$$n = 2k \Rightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{k \to \infty} \frac{a_{2k+1}}{a_{2k}} = \lim_{k \to \infty} \frac{p^{k+1}q^k}{p^kq^k} = p$$

За да имаме сходимост по Даламбер, трявба да поискаме p < 1 и q < 1. Ако $p \ge 1$ и $q \ge 1$, то съгласно Даламбер, редът е разходящ.

Да видим дали тези наблюдения ще се потвърдят от критерия на Коши:

$$n = 2k + 1 \Rightarrow \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{k \to \infty} \sqrt[2k+1]{p^{k+1}q^k} = \lim_{k \to \infty} p^{\frac{k+1}{2k+1}} q^{\frac{k}{2k+1}} = p^{\frac{1}{2}} q^{\frac{1}{2}}$$

$$n = 2k \Rightarrow \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{k \to \infty} \sqrt[2k]{p^k q^k} = p^{\frac{1}{2}} q^{\frac{1}{2}}$$

Критерият на Коши ни дава сходимост при pq > 1 и разходимост при pq < 1. Съобразете, че ако pq = 1, то всички четни членове на редицата са 1 и от Коши, (ii) имаме разходимост.