Национальный исследовательский университет "МЭИ"

Кафедра РЗиАЭ

ЛАБОРАТОРНАЯ РАБОТА №1 АНАЛИЗ ТИПОВЫХ ЗВЕНЬЕВ АСУ

Выполнил:	Трошин А.И.			
Группа:	Э-13м-23			
Вариант	15			
Проверил:	Дегтярев Д.А.			

Москва2023

Введение

Типовое звено – это звено, которое выполняет определенную функцию в системе регулирования и математически описывает типовой физический процесс в системе регулирования.

В предварительном отчете представлено исследование типовых звеньев по переходным/импульсным характеристикам, АЧХ, ФЧХ, АФЧХ, ЛАЧХ в зависимости от коэффициента k и T. Сделаны выводы по каждому звену.

Пункт 1.

Табл.1 коэффициенты для каждого из звеньев

№ Bap.	1	2		3		4		5	
15	k	k	T, c	k,	T, c	k, c	T,c	k, c	T,c
				1/c					
	5	4	1	3	-	5	ı	1	3

Пункт 2.

Таблица 2 - W(p) по условию пункта(k, T) по табл 1)

№ Звена	Название звена	W(p)
1	Безынерционное	W(p) = 5
2	Апериодическое	$W(p) = \frac{4}{p+1}$
3	Интегрирующее	$W(p) = \frac{3}{p}$
4	Идеальное дифф-е	W(p) = 5p
5	Реальное дифф-е	$W(p) = \frac{p}{3p+1}$

Пункт 3.

Пример для пропорционального звена(№1):

$$h(t) = 5$$
 – переходная характеристика(обратный Лаплас от W(p))* 1/p)

$$w(t) = 5 * \delta(t)$$
 – импульсная характеристика(обратный Лаплас от п W(p)))

$$A(w) = 5 - AYX(действительная часть W(jw))$$

$$\varphi(w) = 0 - \Phi \Psi X(arctg(\frac{Q}{p}))$$

$$L(w) = 20 \lg(A(w)) = 20 \lg(5)$$

Пункт 4

Таблица 3 - W(p) по условию пункта(k увел в 2 p., T уменьш в 2 раза)

№ звена	W(p)
1	W(p) = 10
2	$W(p) = \frac{8}{0.5p + 1}$
3	$W(p) = \frac{6}{p}$
4	W(p) = 10p
5	$W(p) = \frac{2p}{1.5p + 1}$

Табл.4 – результаты по пункту 4

№ h(t)	w(t)	A(w)	φ(w)	L(w)	P+jQ
---------------	------	------	------	------	------

Пункт 5.

- 1)С увеличением k просто усиливается сигнал на входе и, соответственно, на выходе. При этом, амплитуда и фаза от частоты не зависят.
- 2)Т.к. Т уменьшилось, то время переходы системы к уст. Режиму тоже уменьшилось. Это видно по переходной характеристике h(t) и импульсной характеристике w(t). Также появился более сильный сдвиг по фазе. Это видно по $\phi(w)$ и годографу. Увеличение коэффициента k просто усилило амплитуду.
- 3)Чем больше k, тем быстрее переход к уст. Режиму. ЛАЧХ при w=k обращается в нуль. Фаза постоянна.
- 4) Чем больше k, тем быстрее увеличивается амплитуда в зависимости от частоты, то есть коэффициент k усиливает сигнал пропорционально частоте, в отличии от безынерционного звена.
- 5) По сути это последовательное соединение идеального дифф-го и апериодического звеньев, так что увеличение к дает прирост амплитуда в зависимости от частоты, уменьшение Т уменьшает инерционность и переход к уст. режиму идет быстрее. Сдвиг по фазе замедляется, так как Т уменьшает.

Рис.1 – безынерционное звено(1)

Рис.2 – безынерционное звено(1)

Рис.3 – безынерционное звено(2)

В сравнении с результатами предварительного отчета изменений не обнаружено. Возникли трудности в построении импульсной характеристики, так как она представляет из себя функцию Хевисайда.

Рис.5-апериодическое звено(1)

Рис.6-апериодическое звено(1)

В сравнении с результатами предварительного отчета изменений не обнаружено.

Рис.9-интегрирующее звено(1)

Рис.10-интегрирующее звено(1)

Рис.11-интегрирующее звено(2)

Рис.12-интегрирующее звено(2)

В сравнении с результатами предварительного отчета изменений не обнаружено. Некорректно изображается АФХ. При частоте 0, АЧХ уходит в бесконечность, так как $A(w) = \frac{k}{w}$

Рис.14-ИД звено(2)

В сравнении с результатами предварительного отчета изменения заметны в импульсной характеристике, так она идет из минуса в нуль, а не из нуля в плюс. АФХ отображена корректно.

Рис.17-РД звено(1)

Рис.19-РД звено(2)

В сравнении с результатами предварительного отчета изменений не обнаружено.

Заключение

В предварительное исследование типовых звеньев было включено:

- Вывод функций для каждой из характеристик;
- Построение характеристик;
- Изменение коэффициентов и выводы о том, как они влияют на характеристики звена.

В основной части лабораторной работы проведено сравнение полученных характеристик с предварительным отчетом.