Ćwiczenie 4. Konfiguracja i uruchomienie sieci przemysłowej PROFINET (SIEMENS)

Cel ćwiczenia

Celem ćwiczenia jest konfiguracja oraz uruchomienie rozproszonego systemu sterowania połączonego z użyciem sieci przemysłowej Profinet. Sterownik SIEMENS S7-1200 oraz HMI (panel operatorski), będzie wykorzystany do wizualizacji procesu automatycznej regulacji stanowiska do kontroli ciśnienia, wyposażonego w inny sterownik PLC tj. TURCK BL 20 PG EN V3. Wymiana danych pomiędzy systemami PLC będzie realizowana z wykorzystaniem sieci przemysłowej Profinet.

Proponowany sposób wykonania ćwiczenia:

- 1. Konfiguracja sprzętu
 - Uruchomić TIA, otworzyć nowy projekt pod dowolną nazwą.
 - Dokonać przykładowej konfiguracji sprzętu dla budowanej aplikacji zgodnie z konfiguracją rzeczywistą stanowiska. Konfiguracja jest podana w tabeli 4.1.

Tabela 4.1. Konfiguracja sprzetu

Slot nr	Funkcja modułu	Oznaczenie	Numer katalogowy	
			6ES7	
1	Jednostka centralna	CPU	212-1BE40-0XB0	
2	Panel operatorski	HMI	6AV2 123-2DB03-0AX0	
3	Wyjścia analogowe	AQ2x14BIT	232-4HB32-0XB0	
4.	Sterownik TURCK BL			
	20			
	Switch sieciowy	CSM 1277 SIMATIC	6GK7-277-1AA10-0AA0	
		NET		

UWAGA! Podczas wyboru każdego elementu zwracać uwagę na numer katalogowy bo tylko on jednoznacznie określa dany element!

Dokonać konfiguracji kolejno poszczególnych modułów:

Jednostka centralna (slot 1):

Konfiguracja portu sieciowego: Profinet Interface [X1]: dodać nową podsieć, wybrać opcję ustawienia adresu IP w projekcie wymagane jest ustawienie adresu IP dla sterownika S-1200 – IP: **192.168.1.45.**

Zaznaczyć opcję: generate Profinet device name automatically (plc 1)

Czas cyklu CPU: pozostawiamy domyślny 150 [ms].

Panel operatorski KTP 400

Na etapie konfiguracji sprzętu poza przypisaniem nr IP: **192.168.1.2** panel nie wymaga dodatkowych czynności konfiguracyjnych.

Switch sieciowy

Nie wymaga dodatkowych działań podczas konfiguracji sprzętu.

Po wprowadzeniu wszystkich elementów należy je połączyć w sieć zgodnie ze schematem (Rys.4.1).

Rys.4.1. Schemat połączenia urządzeń.

Sterownik TURCK BL 20

W katalogu sprzętu (Hardware catalog) szukamy urządzenia o nazwie "CODESYS3 generic PROFINET Device", o nazwie symbolicznej CDS3 PN DEVICE. Jeśli w środowisku nie znaleziono sterownika, wymagana jest instalacja plików konfiguracyjnych, tzw. GSDML. Pliki konfiguracyjne można pobrać ze strony producenta lub skorzystać z przygotowanej paczki danych tj. TURCK-BL20_PROFINET.zip udostępnionej na pulpicie). Instalację nowego sprzętu dokonujemy korzystając z opcji: Options/Manage general station description files (GSD).

Uwaga!: Podczas instalacji należy wskazać plik GSDML-V2.3-TURCK-CDS3_PN_Device-20151208-010322.xml znajdujący się w katalogu po rozpakowaniu archiwum.

Konfiguracja sieci Profinet (sterownik TURCK)

W sieci Profinet najważniejszym parametrem jest unikalna nazwa urządzenia oraz właściwy adres IP ("Assign device name/IP addres"). Dla bramy TURCK-cds3-pn-device, cechy te konfigurujemy w: Device configuration/General/ PROFINET interface [X1]/ Ethernet adresses: UWAGA! Dla sterownika TURCK należy ustawić następujący ades IP oraz nazwę:

IP: 192.168.1.12/ PROFINET device name: TURCK BL

Po skonfigurowaniu wszystkich elementów systemu, należy je połączyć w sieć zgodnie ze schematem (Rys.4.2) zakładka Network view.

Rys.4.2. Schemat połączeń urządzeń sieci PROFINET.

Wymiana danych w sieci Profinet

Sieć Profinet pozwala na transfer 1024 bajtów danych (512 dane wejściowe i 512 dane wyjściowe). W projekcie zdefiniowano wymianę danych w dwóch bajtach (BYTE) – sygnały statusowe, "liveBIT" ze sterownika s7 1200 do sterownika TURCK BL20, a także ze sterownika TURCK do S7 1200, oraz 3 słowach (WORD), dla sygnałów: wartość zadana, aktualna i stopień wysterowania zaworu regulacyjnego. Dane muszą zostać skonfigurowane w systemach które chcą je wymieniać, przeciwnie tzn. dane wejściowe ze środowiska Codesys są danymi

wyjściowymi w TIA. Zamieszczone poniżej rysunki (Rys. 4.3 i 4.4), przedstawiają skonfigurowane pakiety danych sieci Profinet w dwóch sterownikach.

Rys.4.3. Pakiety danych dla sterownika S7-1200 (TIA Portal V13)

Rys.4.4. Pakiety danych – sterownik TURCK BL-20 (Code SYS)

Aby zapewnić dostęp do danych ze sterownika TURCK, w środowisku TIA Portal, dla urządzenia sieciowego TURCK-CDS3_PN_Device należy, zainstalować odpowiednie moduły (przeciągając je z sąsiadującego okna katalogu sprzętu z podkatalogu *Module* - podkatalog sterownika CDS3 PN Device), zgodnie z tabelą 4.2.

Tabela 4. 2. Konfiguracja sprzętu dla sterownika TURCK

Module	Rack	Slot	I address	O address
OUT 1 BYTE_1	0	1		2
IN 1 BYTE_1	0	2	2	
IN 2 WORD_1	0	3	36	
IN 1 WORD_1	0	4	78	

Po wprowadzeniu konfiguracji – okno Device overview, dla sterownika TURCK-CDS3 PN Device, powinno wygladać jak na Rys.4.5.

Rys.4.5. Device overview, dla sterownika TURCK (TIA Portal V13)

2. Program sterujący

Koncepcja programu polega na stworzeniu funkcji (FC) odpowiedzialnej za komunikację ze sterownikiem TURCK. Blok będzie wywoływany w OB1, pętli głównej programu. Dostęp do zmiennych procesowych ma umożliwiać optymalizowany blok danych. W bloku tego typu to sterownik decyduje o alokacji zmiennych w pamięci, dostęp do danych odbywa się tylko poprzez symboliczne nazwy elementów bloku.

Sposób postępowania przy tworzeniu algorytmu sterowania

Otworzyć tabelę z nazwami symbolicznymi "PLC Tags" i zdefiniować nazwy zmiennych użytych do testów (tabela 4.3).

Tabela 4.3. Nazwy symboliczne (Tag-i) sterownika PLC S7-1200

Tag	Тур	Adres	Opis	
	zmiennej			
In0	Bool	%I2.0	bit statusowy - "liveBit" ze sterownika TURCK	
In1	Bool	%I2.1	bit statusowy - wartość aktualna nie jest równa wartości zadanej	
In2	Bool	%I2.2	bit statusowy - sterownik pracuje bez błędów	
In3	Bool	%I2.3	bit statusowy - wartość aktualna = wartość zadana	
In4	Bool	%I2.4	bit statusowy - stanowisko w trybie sterowania ręcznego	
In5	Bool	%I2.5		
In6	Bool	%I2.6		
In7	Bool	%I2.7		
Out0	Bool	%Q2.0	bit statusowy - "liveBit" ze sterownika S7-1200	
Out1	Bool	%Q2.1		
Out2	Bool	%Q2.2		
Out3	Bool	%Q2.3		
Out4	Bool	%Q2.4		
Out5	Bool	%Q2.5		
Out6	Bool	%Q2.6		
Out7	Bool	%Q2.7		
DQ0	Bool	%Q0.5	wyjście fizyczne sterownika S7-1200 wykorzystane jako indykator	
			komunikacji ze sterownikiem TURCK	
Pessure_PV	word	%IW3	wartość ciśnienia w zbiorniku	
Pessure_SP	word	%IW5	wartość ciśnienia zadanego (odczytanego z TURCK)	
Valve_PV	word	%IW7	stopień wysterowania zaworu w %	

Utworzyć blok danych (DB) przechowujący w pamięci (w strukturze TURCK) informacje o zmiennych procesowych i statusie sterownika TURCK, np.:

- TURCK.liveBit (bool),
- TURCK.mode(bool),
- TURCK.alarm(bool),
- TURCK.PV (real),
- TURCK.SP(real),
- TURCK.VALVE(real),
- etc.

Utworzyć funkcję (FC), której zadaniem jest alokacja zmiennych procesowych ze sterownika TURCK w pamięci sterownika S7-1200. Blok funkcyjny stworzyć z użyciem języka LAD lub FBD. Utworzona funkcja FC nie zwraca wartości (void). UWAGA! Dla poprawnego odczytu wartości ciśnienia aktualnego (PV) i zadanego (SP), należy dokonać konwersji (z użyciem instrukcji CALCULATE), zgodnie z zależnością: OUT:= (IN1*IN2)/IN3. Zakres wartość ciśnienia mierzonego to 0-6 [bar]. Stopień wysterowania zaworu wyrażamy w [%] (0-100).

3. Aplikacja SCADA na panelu operatorskim HMI KTP400 w środowisku TIA Portal Zadanie ma na celu sprawdzenie poprawności działania funkcji komunikacyjnych w oparciu o sieć Profinet, oraz wizualizację danych procesowych z "oddalonego" stanowiska kontroli ciśnienia.

Otworzyć tabelę z nazwami symbolicznymi "HMI Tags" i powiązać je z danymi procesowymi (struktura TURCK w bloku danych DB).

Dodać do projektu panel operatorski (HMI_1) i utworzyć domyślny ekran aplikacji (Home). Przykładowy panel startowy aplikacji został pokazany na Rys.4.6.

Rys.4.6. Przykład ekranu startowego HMI

Zdefiniować na tym ekranie możliwość wyboru pod-ekranów np. za pomocą przycisków funkcyjnych (Properties/Events/Press Key: Edit bits/ SetBit) umożliwić przejście do 2-ch pod-ekranów odpowiedzialnych za:

- a) podgląd wartości z procesu regulacji ciśnienia w zbiorniku np.: PV, SP, VALVE). W tym celu powiązać zmienne HMI_Tag z użyciem elementarnego pola I/O field ekran parametry (Rys. 4.7),
- b) obserwację przebiegów czasowych z wartości zmiennych procesowych (SP, PV). Ten krok wymaga dodania i skonfigurowania kontrolki *Trend View* ekran trend (Rys. 4.8).

Rys.4.7. Ekran parametry

Rys.4.8. Ekran trend.

Zakres wiadomości na kolokwium

Elementy organizacyjne oprogramowania dla sterowników PLC, wg normy: funkcje (FC) i bloki funkcyjne (FB) oraz charakterystyczne dla systemu SIEMENS: bloki organizacyjne (OB), Bloki Danych (DB) i Typy Danych PLC. Zasady adresacji danych w systemie SIEMENS. Typy danych i zmiennych w systemach PLC. Charakterystyka sieci komunikacyjnej na przykładzie przemysłowego standardu Profinet. Sposoby wymiany danych w sieci komunikacyjnej Profinet.

Sprawozdanie

Sprawozdanie powinno zawierać: schemat i opis konfiguracji sprzętu, dokładny opis realizacji zadań wymiany danych oraz alokacji zmiennych dla użytych sterowników PLC. Należy także udokumentować wygląd ekranów z utworzonego podczas ćwiczenia interfejsu użytkownika (HMI) oraz zaprezentować zarejestrowany przebieg czasowy dla wybranych zmiennych procesowych.

Literatura i dokumentacja techniczna

Tomasz Gilewski: "Podstawy programowania sterowników SIMATIC S7-1200 w języku SCL"