## Project 16

# **UAV Ground Scanning System**

Human detection with deep learning

Xiaxin Shen, Haeun Ko, Hyonjun Kang, Jihyeon Noh, Taeuk Gwak, Yeji Gong

#### Contents

- 1. Introduction
  - 1-1. Problem statement & project goal
  - 1-2. Abstract of paper
- 2. Body
  - 2-1. Machine Learning
  - 2-2. Dataset
  - 2-3. Sensors
- 3. Conclusion
- 4. QnA

## Introduction

#### Problem statement

- People find more practical uses for UAV ground scanning system.
- Several drawbacks for consumer's surveillance cameras.
- Lack of night vision (i.e. infrared imaging), and mobility



#### Problem statement

- Felonies occurred more during night time than daytime(TheSleepJudge)
- Tracking people by the UAV during the night can help increase the rate of the solved criminal cases



https://www.thesleepjudge.com/crimes-that-happen-while-you-sleep/

## Project goal

"Build a system one UAV that will use infrared camera to detect humans on the ground and track them using GPS location"

#### Main use:

- 1. security
- 2. potential anti-terrorism app

## Project goal

- Raspberry pi, GPS sensor, and infrared imaging camera
- Once the camera detects the shape of a human being, it will take an infrared image of the person and utilize the GPS sensor to provide the exact location of the culprit.
- This paper presents a deep learning-based convolutional neural network (CNN) for images taken from a high-altitude downward angle





#### Abstract

- the infrared dataset made by the research team is introduced
- Both YOLO and SSD algorithms are utilized in this research
- YOLOv3 and SSD mobile net are used in the phase of transfer learning.
- The system is expected to be deployed and push warning messages with GPS information when human are detected when searching or rescuing events are operated.



# Body



#### Dataset

Data collecting

Due to the UAV policy of Seoul, the dataset were collected by photographs from rooftops or high stories of buildings



#### Dataset

Image preprocessing

Labeled images with Labeling tool, and got data of xml files of bounding boxes





```
<annotation>
<folder>dataset</folder>
<filename>057.JPG</filename>
<path>/Users/gwak2837/Python/UAV/Model/dataset/057.JPG</path>
         <database>Unknown</database>
</source>
<size>
         <width>5184</width>
         <height>3456</height>
         <depth>3</depth>
</size>
<segmented>0</segmented>
         <name>person</name>
         <pose>Unspecified</pose>
         <truncated>0</truncated>
         <difficult>0</difficult>
         <hndbox>
                 <xmin>2132</xmin>
                 <ymin>1940
                 <xmax>2402</xmax>
                 <ymax>2300</ymax>
         </bndbox>
 </object>
 <object>
```

| filename 🌌 | width ▼        | height T | class T | xmin T | ymin ▼ | xmax 🔻 | ymax ₹ |
|------------|----------------|----------|---------|--------|--------|--------|--------|
| 032.JPG    | 5184           | 3456     | person  | 151    | 395    | 566    | 975    |
| 032.JPG    | 5184           | 3456     | person  | 2117   | 1      | 2322   | 475    |
| 032.JPG    | 5184           | 3456     | person  | 4462   | 185    | 4892   | 765    |
| 033.JPG    | 5184           | 3456     | person  | 2137   | 1      | 2352   | 440    |
| 033.JPG    | 5184           | 3456     | person  | 4472   | 160    | 4897   | 730    |
| 033.JPG    | 5184           | 3456     | person  | 2792   | 2830   | 3192   | 3350   |
| 033.JPG    | 5184           | 3456     | person  | 3117   | 2530   | 3467   | 3075   |
| 034.JPG    | 5184           | 3456     | person  | 2342   | 1655   | 2617   | 2215   |
| 034.JPG    | 5184           | 3456     | person  | 2042   | 1975   | 2467   | 2545   |
| 034.JPG    | 5184           | 3456     | person  | 2157   | 1      | 2337   | 375    |
| 034.JPG    | 5184           | 3456     | person  | 4517   | 105    | 4957   | 675    |
| USE IDG    | F19 <i>/</i> I | 3/156    | nareon  | 1027   | 1225   | 21/12  | 1765   |

## Machine learning

- Dataset annotation: YOLO & VOC
- Utilizing pre-trained model:
  - detection / customized code with GPS info with YOLOv3 tf1
  - detection with SSD using TensorFlow Lite
- Training Phase Loss



#### Sensors

- Images will be tagged with the exact GPS location the picture was taken.
- The image will then be sent to the host computer and stored for further review.



# Demo



```
| 10820 01:58:59.068197 | 140093502216064 | cipython-input-45-e152923b5823>:67 | classes loaded | classes | classes
```





# Conclusion

#### Conclusion

- Novel human sensing method based on deep CNN.
  - combine deep learning model and IoT devices
  - tracks objects at dark conditions => infrared rays
- Dataset
  - both day and night infrared image set were generated in high downward angles
  - ADH dataset was used in training weights of YOLO v3 and SSD mobile networks

## Future plans

- Additional training on own datasets
- The model should converted to a version of TensorFlow Lite that is compatible with Raspberry Pi's 32-bit operating system.
- Demo video with actual UAVs in live will be recorded after distribution.

# QnA

# THANK YOU