Transformers

- 1. A resistive load of 1.6Ω is connected across the secondary terminals of a 10kV/400V transformer. If $R_c = 50K\Omega$, $X_m = 10K\Omega$, $R_{1eq} = 50\Omega$ and $X_{1eq} = 80\Omega$ calculate:
 - i) The turns ratio
 - ii) The output current (I_s)
 - iii) The output voltage under load (V_s)
 - iv) The iron and copper loss
 - v) The magnetising current (I_m)
 - vi) The Input Current (I_P)
 - vii) The phasor diagram (include V_p , V_1 , V_{R1eq} , V_{X1eq} , I_p , I_1 , I_m) drawn to scale
- 2. Determine the % Voltage Regulation and Efficiency of the transformer in question 1.
- 3. Determine the necessary secondary load resistance such that the transformer in question 1 operates at its maximum efficiency point.
- 4. Open-circuit and short-circuit tests were conducted on a 230/110V 5KVA single-phase transformer and the following results were obtained:

Open-circuit Test:

$$V_1 = 230V$$
 $V_2 = 110V$ $I_1 = 2AP_{in} = 30W$

Short-circuit Test:

$$V_1 = 40V$$
 $I_1 = 22A$ $P_{in} = 200W$

Calculate the parameters for the approximate equivalent circuit.

5. For the single phase transformer shown on Figure 1 estimate the maximum input voltage and current at a 50Hz supply frequency given a maximum flux density (B) of 1.3T and a maximum current density (J) of 2A/mm².

Figure 1

6. A three phase 12KV/6.6KV transformer is connected in a $Y\Delta$. Determine the phase shift between the input and output line voltages and estimate the Bank Ratio and Phase Ratio for the transformer.