Linear Algebra Notes

Martin Sig Nørbjerg

November 1, 2023

Contents

1	Introduction	1
2	Linear Systems	1
	2.1 Augmented matricies	1
3	Vector Spaces	1
4	Eigenvalues and Eigenvectors	1
	4.1 Computing Eigenvalues and Eigenvectors	2
5	Factorizations	2

1 Introduction

Throughout these notes we let \mathbb{F} denote a field, either $\mathbb{F} = \mathbb{R}$ (the field of real numbers) or $\mathbb{F} = \mathcal{C}$ (the field of complex numbers). However the most of the results of linear algebra generalizes to arbitrary fields.

I have tried to keep definitions to a minimum

2 Linear Systems

2.1 Augmented matricies

3 Vector Spaces

4 Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors are in my opinion the crown jewel's of linear algebra. They tie together every concept introduced so far.

Definition 4.1. Let $A \in \mathbb{F}^{n \times n}$, suppose that there exists $\lambda \in \mathbb{F}$ and a non-zero $\mathbf{v} \in \mathbb{F}^n$ then λ is called an *eigenvalue* and \mathbf{v} and *eigenvector* of A if and only if:

$$A\mathbf{v} = \lambda \mathbf{v} \tag{1}$$

Remark 4.2. It is important to note that $\mathbf{v} = \mathbf{0}$ is never an eigenvector, for technical reasons which will become apparent later. However it does obey Equation (1).

Example 4.3. Show that $v = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$ is an eigenvector of $A \neq A$ and find the corresponding eigenvalue λ .

Solution: \Box

4.1 Computing Eigenvalues and Eigenvectors

Let $A \in \mathbb{F}^{n \times n}$, suppose we want to find an Suppose \mathbf{v} is an eigenvector of A with eigenvalue λ , that is $A\mathbf{v} = \lambda \mathbf{v}$. Then:

$$\mathbf{0} = A\mathbf{v} - \lambda\mathbf{v} = A\mathbf{v} - \lambda I\mathbf{v} = (A - \lambda I)\mathbf{v}$$

If the matrix $A - \lambda I$ is invertible, then:

$$(A - \lambda I)^{-1} \mathbf{0} = \mathbf{v}$$

Hence we must have $\mathbf{v} = 0$ by Lemma ??. However for \succeq to be an eigenvector we must have $\succeq \neq \mathbf{0}$. Hence $(A - \lambda I)$ cannot be invertible and hence:

$$\det(A - \lambda I) = 0$$

This leads us to the following theorem:

Theorem 4.4. Let $A \in \mathbb{F}^{n \times n}$ be a matrix, then the characteristic polynomial of A is:

$$f(\lambda) = \det(A - \lambda I)$$

Furthermore $\lambda' \in \mathbb{F}$ is an eigenvalue of A if and only if $f(\lambda') = 0$.

After we have found an eigenvalue λ' using Theorem 4.4 we may obtain an eigenvector by solving the system:

$$(A - \lambda' I) \succsim = \nvdash$$

We will get a parametric solution. The basis of the solution space is a basis of the eigenspace associated with λ' .

Example 4.5. Consider the matrix $A = \begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix}$ find the eigenvalues of A and their associated eigenspaces.

 \square

5 Factorizations