CS231n Quiz Review

Quiz 1. Attention & Self Attention

Attention

: 하나의 입력과 다른 입력과의 관계를 바탕으로 중요한 정 보에 attention하는 메커니즘

Self Attention

: 단일 입력 내에서 모든 요소들 간의 관계를 학습

Quiz 2. ResNet

- 58. Residual networks (ResNets) always help mitigate the degradation problem in deep neural networks by allowing training of substantially deeper models. 0/1 POINT
 - True
 - False

1. Residual Block

Figure 2. Residual learning: a building block.

$$F(x) + x$$

입력을 출력에 더해줌으로써 기울기가 직접 전달될 수 있게 하여 Gradient Vanishing 문제 완화

Batch Normalization과 ReLU 위치에 따른 성능 평가 지표

ReLU weight weight weight ReLU weight ReLU ReLU ReLU BN weight weight weight weight ReLU addition BN ReLU weight ReLU addition BN weight ReLU ReLU addition addition addition (d) ReLU-only (b) BN after (c) ReLU before (a) original (e) full pre-activation pre-activation addition addition error: 8.17% error: 7.84% error: 6.71%

3. Bottleneck

error: 6.37%

2. Pre-Activation

error: 6.61%

Quiz 3. Batch Normalization

Batch normalization can have an implicit regularizing effect, especially with smaller minibatches.

0/1 POINT

- True
- F False

Layer Normalization

Lei Ba, Jimmy, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." *ArXiv e-prints* (2016): arXiv-1607.

Introduction

긴 학습 시간 소요

Normalization

Covariate Shift

Batch Normalization

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

- 1. Sequence Length Variability in Recurrent Neural Networks (RNNs)
- 2. Limitations in Online Learning and Large Distributed Models

Layer Normalization

$$\bar{a}_i^l = \frac{g_i^l}{\sigma_i^l} \left(a_i^l - \mu_i^l \right)$$

$$\mathbf{h}^{t} = f\left[\frac{\mathbf{g}}{\sigma^{t}} \odot \left(\mathbf{a}^{t} - \mu^{t}\right) + \mathbf{b}\right]$$

Layer Norm

Feed-forward neural network

RNN

Experimental results

6.2 Teaching machines to read and comprehend

Figure 2: Validation curves for the attentive reader model. BN results are taken from [Cooijmans et al., 2016].

6.7 Convolutional Networks

Quiz 3. Normalization

Batch normalization can have an implicit regularizing effect, especially with smaller minibatches.

0/1 POINT

- "regularizing effect"
- batch마다 달라지는 통곗값
- shift 파라미터로 인한 정규화 값의 위치 조정

Scaled Dot-Product Attention

* Scaled Dot-Product Attention

Attention
$$(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Scaled Dot-Product Attention

Query, Key 백리의 차원을 Ok, Q, K의 (1)들이 당한 Q, 분기인 목당적인 관업변수과 가정

$$Q \cdot K = \int_{\bar{x}=1}^{d_{k}} g_{\bar{x}} K_{\bar{x}}$$

* TICHIZE

$$E[Q \cdot k] = \frac{d_k}{\sqrt{2}} E[Q_{\bar{n}}k_{\bar{n}}] = 0$$

$$Var(g_{\bar{k}}k_{\bar{k}}) = Var(g_{\bar{k}}) \cdot Var(k_{\bar{k}}) = 1$$

$$Var(Q \cdot k) = Var(\frac{d_{\bar{k}}}{2}g_{\bar{k}}k_{\bar{k}}) = \frac{d_{\bar{k}}}{2} Var(g_{\bar{k}}k_{\bar{k}}) = d_{\bar{k}}$$

$$Uar(\frac{d_{\bar{k}}}{2}g_{\bar{k}}k_{\bar{k}}) = \frac{d_{\bar{k}}}{2} Var(g_{\bar{k}}k_{\bar{k}}) = d_{\bar{k}}$$

$$Uar(\frac{Q \cdot k}{2}) = \frac{d_{\bar{k}}}{2} Uar(\frac{Q \cdot k}{2}) = 0$$

$$Uar(\frac{Q \cdot k}{2}) = 0$$

$$Uar(\frac{Q \cdot k}{2}) = 0$$

$$Uar(\frac{Q \cdot k}{2}) = 0$$

-> 대학자의 본분 1로 맞추기 위해
$$\sqrt{d_k}$$
 Scaling
$$\frac{Q \cdot k}{\sqrt{d_k}} = \frac{\frac{d}{d_k} g_{x,k}}{\sqrt{d_k}}$$

된 성실에 의하여
$$Var(\frac{Q \cdot k}{\sqrt{d_k}}) = \frac{Var(Q \cdot k)}{d_k} = \frac{d_k}{d_k} = 1$$
Scaling을 부행하면 내적 팔라의 본반 101됨

차원이 증가하더라도 내적값의 크기가 적절한 범위로 유지되므로, Attention weight가 특정 위치로 치우치는 현상을 방지할 수 있다.