TCGA_LUAD Demographic Analysis

Hsiao-Yu Peng

2023-12-14

```
# Load data
lung_phe <- read_tsv("~/Desktop/methylation/lung/TCGA-LUAD.GDC_phenotype.tsv")</pre>
## Rows: 877 Columns: 125
## -- Column specification ---
## Delimiter: "\t"
## chr (78): submitter_id.samples, additional_pharmaceutical_therapy, additiona...
## dbl (41): age_at_initial_pathologic_diagnosis, day_of_dcc_upload, day_of_for...
## lgl (6): withdrawn, releasable.project, days_to_sample_procurement.samples,...
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
dim(lung_phe)
## [1] 877 125
head(lung_phe)
## # A tibble: 6 x 125
     submitter_id.samples additional_pharmaceutical_therapy additional_radiation_~1
     <chr>>
                          <chr>
                                                             <chr>>
## 1 TCGA-62-A46Y-01A
                          <NA>
                                                             <NA>
## 2 TCGA-55-7903-01A
                          <NA>
                                                             <NA>
## 3 TCGA-55-7903-11A
                          <NA>
                                                             <NA>
## 4 TCGA-97-8179-01A
                          <NA>
                                                             <NA>
## 5 TCGA-64-5774-01A
                                                             YES
## 6 TCGA-55-8092-01A
                          NO
                                                             NO
## # i abbreviated name: 1: additional_radiation_therapy
## # i 122 more variables: additional surgery locoregional procedure <chr>,
## #
       additional_surgery_metastatic_procedure <chr>,
       age_at_initial_pathologic_diagnosis <dbl>,
## #
       anatomic_neoplasm_subdivision_other <chr>, batch_number <chr>, bcr <chr>,
       bcr_followup_barcode <chr>, bcr_followup_uuid <chr>, submitter_id <chr>,
## #
       day_of_dcc_upload <dbl>, day_of_form_completion <dbl>, ...
```

Explore Data Analsyis

Gender Distribution

```
gender_dist <- lung_phe %>%
  group_by(gender.demographic) %>%
  summarize(number = n())
print(gender_dist)
## # A tibble: 3 x 2
     gender.demographic number
##
     <chr>
                         <int>
                           409
## 1 female
## 2 male
                           342
## 3 <NA>
                           126
ggplot(gender_dist, aes(x = gender.demographic, y = number, fill = gender.demographic)) +
  geom_bar(stat = "identity") +
  labs(title = "Gender Distribution",
       x = "Gender",
       y = "Number") +
  theme_classic()
```

Gender Distribution

TCGA_LUAD data set has more female individuals than male. Because we focus on studying female nonsmoker with LUAD, we select female for further investigation.

Smoking History Distribution

Select female and gropy by smoking history

```
smoking_dist <- lung_phe %>%
  filter(gender.demographic == "female") %>%
  group_by(tobacco_smoking_history) %>%
  summarize(number = n())
print(smoking_dist)
## # A tibble: 6 x 2
    tobacco_smoking_history number
                       <dbl> <int>
##
## 1
                                 79
                           1
## 2
                           2
                                 76
## 3
                           3
                                 93
## 4
                           4
                                150
## 5
                                  2
                           5
                                  9
## 6
                          NA
# Create bar plot
ggplot(smoking_dist, aes(x = tobacco_smoking_history, y = number, fill = tobacco_smoking_history)) +
  geom_bar(stat = "identity") +
  labs(title = "Female Smoking Distribution",
       x = "Smoking History",
       y = "Number") +
  theme_classic()
```

Warning: Removed 1 rows containing missing values ('position_stack()').

Category "1" of Smoking History means non-smokers, others are smokers. We continue to study race distribution of female nonsmokers and smokers

Race Distribution

```
ggplot(race_dist, aes(x = race.demographic, y = number, fill = race.demographic)) +
  geom_bar(stat = "identity") +
  labs(title = "Race Distribution of Nonsmokers") +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Race Distribution of Nonsmokers

race.demographic

```
## # A tibble: 5 x 2
##
     race.demographic
                                       number
                                        <int>
##
     <chr>
## 1 american indian or alaska native
                                            2
## 2 asian
                                            4
## 3 black or african american
                                           42
## 4 not reported
                                           21
## 5 white
                                          252
```

```
ggplot(race_dist, aes(x = race.demographic, y = number, fill = race.demographic)) +
  geom_bar(stat = "identity") +
  labs(title = "Race Distribution of Smokers") +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Race Distribution of Smokers

race.demographic

We only study race regarding Asian, Black or African American and White. Next step we explore age distribution.

Non-smoker Age Distribution

```
count = n())
## # A tibble: 4 x 3
                               age_range count
     race.demographic
                                          <int>
     <chr>>
                                <chr>
## 1 asian
                                60 - 60
## 2 black or african american 63 - 80
## 3 not reported
                                57 - 78
                                              7
                               45 - 84
## 4 white
                                             68
ggplot(nonsmokers\_age, aes(x = race.demographic, y = age\_at_index.demographic)) +
 geom_boxplot() +
 geom_jitter(position = position_jitter(width = 0.2, height = 0), alpha = 0.3) +
 labs(title = "Age Distribution by Race for Smokers")
```

Warning: Removed 4 rows containing non-finite values ('stat_boxplot()').

Warning: Removed 4 rows containing missing values ('geom_point()').

Age Distribution by Race for Smokers

Smokers Age Distribution

```
smokers_age <- lung_phe %>%
  filter(tobacco_smoking_history !=1,
         gender.demographic == "female",
         race.demographic %in% c("asian", "black or african american", "white")) %>%
  select(submitter_id.samples, age_at_index.demographic, gender.demographic,
         race.demographic, tobacco_smoking_history)
# Find smokers' age range
smokers_age %>%
  group_by(race.demographic) %>%
  summarize(age_range = paste(min(age_at_index.demographic, na.rm = T),
                              max(age_at_index.demographic, na.rm = T),
                              sep = " - "),
            count = n()
## # A tibble: 3 x 3
## race.demographic
                               age_range count
     <chr>
                                         <int>
##
                               <chr>
## 1 asian
                               48 - 78
## 2 black or african american 39 - 79
                                            42
## 3 white
                               33 - 87
                                           252
ggplot(smokers\_age, aes(x = race.demographic, y = age\_at\_index.demographic)) +
  geom_boxplot() +
  geom_jitter(position = position_jitter(width = 0.2, height = 0), alpha = 0.3) +
 labs(title = "Age Distribution by Race for Smokers")
```

Age Distribution by Race for Smokers

