

Structures of Function Morphemes Guide Mandarin-Learning 19-month-olds In Backward Syntactic Categorization

Yuanfan Ying^{1,3}, Xiaolu Yang¹, Rushen Shi²

¹Tsinghua University ²Université du Québec à Montréal ³University of Maryland

UQÀM

THE POINT

- 19-month-olds categorize words based on a following *function morpheme* (i.e., X←**f**)
- They infer syntactic categories of adjacent words from syntactic relations, not just bigram probabilities.

INTRODUCTION

Infants are sensitive to function morphemes from a young age [1, 2] Function morphemes = function words + affixes

Segmentation: 11mos (determiners in German, English, French) [3, 4, 5]
Tracking distribution: 12mos (in natural and artificial languages) [6, 7, 8]

They use function morphemes to infer syntactic categories [8, 9, 10, 11, 12]

Method	Language	Age/mo	Context	Category	Result
Mixed contexts (N & V)	English	12	the _ is to _ it	'the X_N is' 'to X_V it'	N: × V: √
		14-18	my _ can _	'my X _N ' 'can X _V '	N: √ V: √
	Mandarin	12	zhege _ ni bie _	'this-CI X _N ' 'You don't X _V '	N: √ V: √
Separate contexts (N / V)	German	14-16	ein _ sie _	'a X _N ' 'she X _V '	N: √ V: ×
	French	14	le _ je _	'the X _N '	N: √ V: ×

- General success with nouns but not with singled-out verbs
- Why failure in <u>using pronouns</u> for inferring following verbs in two-word sequences?

former account: bigram frequency

Q: Is syntactic relation at play?

HYPOTHESIS

Syntactic relations outrank sequence patterns in infants' category inferencing, and bigram order (fX or Xf) should not matter.

word-internal suffixes phrase-internal function words

subject-verb template
[TP She_{Pron} [VP ran_V]]

-ing_{Asp}, the_{Det}, can/will_{Aux}

■ *Test* — Mandarin

Prediction of categorization

syntactic relations vs. bigram probabilities

ye (focus particle) 4209 [FocP X _N yeFoc []] 0.957 1 le (aspect marker) 23422 [AspP X _V -leAsp []] 0.594 0.75	function morphemes	Frequency /million	Syntactic environment	Linear co-occurrence (bigram)	Linear co-occurrence (prosody-filtered bigram)
TASPI V ASP E 33	ye (focus particle)	4209	[FocP X _N yeFoc []]	0.957	1
/ (le (aspect marker)	23422	[AspP X _V -/e _{Asp} […]]	0.594	0.75
bu (negation marker) 22873 [TP X_N [NegP DU_{Neg}]] 0.429	bu (negation marker)	22873	[_{TP} X _N [_{NegP} bu _{Neg}]]	0.429	0.75

Where noise comes in and predictions diverge!

Note: The probability of 'le' following a noun is 0.18.

Tong's corpus, CHILDES (age 1;7-1;8, 5465 total word tokens) [13]

EXPERIMENTS

Participants. Mandarin-learning toddlers, n = 36 (19 male), mean age = 1;7;17 (range: 1;6;5-1;8;26), between-subject **Method.** Visual fixation procedure. (infant-controlled)

Design. Three conditions: ye, le, and bu.

- ① A lip-sync puppet uttered sentences where the target words were focused in the sequence to license only the intended parsing.
- 2 Nonce words were used. 3 Sentence prosodies were controlled.

Familiarization - X ye_{Foc} Y 'even $\mathbf{X_N}$ Y' $\parallel X$ le_{Asp} Y 'have $\mathbf{X_V}$ -ed Y' $\parallel X$ bu_{Neg} Y ' $\mathbf{X_N}$ doesn't Y'. Test - shi_{BE} $zhege_{Det}$ X 'It's this-Cl $\mathbf{X_N}$ ' $\parallel dou_{Adv}$ $keyi_{Aux}$ X 'all may $\mathbf{X_V}$ '.

RESULT

19-month-olds succeeded with *le* and *ye* but not with *bu*.

- Supported by syntactic relations, they categorized nonce words backwardly regardless of them being nouns or verbs.
- The results were predicted by syntactic relations, not bigram probabilities.

19-month-olds use function morphemes to categorize preceding nonce words despite constraints of working memory, [14, 15] but they only do this when the nonce words are structurally related to their following function morphemes.

SELECTED REFERENCES

[1] Christophe, A., Millotte, S., Bernal, S., & Lidz, J. (2008). Bootstrapping lexical and syntactic acquisition. Language and Speech. [2] Dye, C., Kedar, Y., & Lust, B. (2019). From lexical to functional categories: New foundations for the study of language development. First Language. [3] Höhle, B., & Weissenborn, J. (2000). The origins of syntactic knowledge: Recognition of determiners in one year old German children. In BUCLD 24 Proceedings. [4] Shi, R., Cutler, A., Werker, J. F., & Cruickshank, M. (2006). Frequency and form as determinants of functor sensitivity in English-acquiring infants. Journal of Acoustical Society of America. [5] Shi, R., & Lepage, M. (2008). The effect of functional morphemes on word segmentation in preverbal infants. Developmental Science. [6] Gerken, L., Wilson, R., & Lewis, W. (2005). Infants can use distributional cue to form syntactic categories. Journal of Child Language. [7] Gómez, R. L., & Lakusta, L. (2004). A first step in form-based category abstraction by 12-month-old infants. Developmental Science. [8] Mintz, T. H. (2003). Frequent frames as a cue for grammatical categories in child directed speech. Cognition. [9] Hicks, J. P. (2006). The impact of function words on the processing and acquisition of syntax. Doctoral dissertation. [10] Zhang, Z., Shi, R., & Li, A. (2014). Grammatical categorization in Mandarin-Chinese-learning infants. Language Acquisition. [11] Höhle, B., Weissenborn, J., Kiefer, D., Schmitz, M. (2004). Functional elements in fancy. [12] Shi, R., & Melançon, A. (2010). Syntactic categorization in French-learning infants. Infancy. [13] Deng, X., & Yip, V. (2018). A multimedia corpus of child Mandarin: The Tong corpus. Journal of Chinese Linguistics. [14] Newport, E. (1990). Maturational constraints on language learning. Cognitive Science. [15] Sundara, M. (2018). Why do children pay more attention to grammatical morphemes at the ends of sentences? Journal of Child Language.

Note: Our samples are all normally distributed according to the Shapiro-Wilk normality test.