Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №11.3.

по курсу общей физики на тему:

«Измерение контактной разности потенциалов в полупроводниках»

Работу выполнил: Баринов Леонид (группа Б02-827)

1. Аннотация

В работе будет определена контактная разность потенциалов (p-n)-перехода в полупроводниковом диоде по результатам измерений температурной зависимости его сопротивления.

2. Теоретические сведения

Приведем полупроводники p- и n- типа в соприкосновение, вызвав рекомбинацию электронов и дырок. При этом у границы перехода в n-области ионы донорной примеси образуют положительный пространственный заряд, а у границы перехода в p-области ионы акцепторной примеси — отрицательный. Таким образом в области (p-n)-перехода возникает обедненный носителями тока слой и соответствующая контактная разность потенциалов — барьер, препятствующий диффузии основных носителей. Равновесие возникает при совпадении уровней Ферми в p- и n-областях. Энергетическая схема перехода изображена на рисунке 1.

Рис. 1. Энергетическая схема (p-n)-перехода, находящегося в равновесии

На рисунке 1 E_c обозначена энергия, соответствующая дну зоны проводимости, μ — уровень Ферми. В этих обозначениях при обычных температурах концентрация электронов n_n в зоне проводимости и концентрация дырок n_p в валентной зоне равны соответственно:

$$n_n(n\text{-область}) = Q_n \exp\left(-\frac{E_c - \mu}{kT}\right)$$

$$n_p(p\text{-область}) = Q_p \exp\left(-\frac{\mu}{kT}\right)$$

Из-за наличия контактной разности потенциалов ΔV между концентрациями основных и неосновных носителей тока в области устанавливается следующее соотношение:

$$\frac{n_n(n\text{-область})}{n_n(p\text{-область})} = \frac{n_p(p\text{-область})}{n_p(n\text{-область})} = \exp\left(\frac{e\Delta V}{kT}\right)$$

Здесь индекс по-прежнему указывает на тип носителя, а в скобках стоит рассматриваемая область полупроводника.

Проходящий через переход ток I_0 пропорционален концентрации неосновного заряда в области:

$$I_0 \propto n_n(p ext{-}$$
область) = $n_n(n ext{-}$ область) $\cdot \exp\left(-rac{e\Delta V}{kT}
ight)$

Приложим теперь к (p-n)-переходу напряжение $V_{\rm ист}$ от внешнего источника, чтобы p-область заряжалась положительно относительно n-области (см. рисунок 2.a). Потенциальный барьер снижается в $\exp\left(\frac{eV_{\rm ист}}{kT}\right)$ раз, и ток, протекающий через переход слева направо, увеличивается в соответствующее количество раз. Ток справо налево остается неизменным и равен I_0 . Тогда полный ток I через барьер равен разности токов, текущих направо и налево:

$$I = I_0 \left(\exp \left(\frac{eV_{\text{\tiny MCT}}}{kT} \right) - 1 \right)$$

Аналогичное равенство справедливо и для тока, переносимого дырками.

При приложении обратного напряжения (см. рисунок 2.6)) полный ток также описывается формулой, данной выше.

Рис. 2. Схема (p-n)-перехода под внешним напряжением с положительным (а) и отрицательным (б) смещениями области перехода

Таким образом, при приложенном внешнем напряжении $V_{\rm uct}$ суммарный ток электронов и дырок равен:

$$\begin{split} I &= (I_{0,n} + I_{0,p}) \left(\exp\left(\frac{eV_{\text{ист}}}{kT}\right) - 1 \right) = \\ &= A(n_n(n\text{-область}) + n_p(p\text{-область})) \cdot \exp\left(-\frac{e\Delta V}{kT}\right) \left(\exp\left(\frac{eV_{\text{ист}}}{kT}\right) - 1 \right) = \\ &= C \exp\left(-\frac{e\Delta V}{kT}\right) \left(\exp\left(\frac{eV_{\text{ист}}}{kT}\right) - 1 \right) \quad (1) \end{split}$$

В последнем равенстве учтено, что концентрации электронов и дырок определяются концентрацией примесей и мало зависят от температуры.

При комнатных температурах справедливо приближение: $eV_{\text{ист}} \ll kT$. Тогда для полного тока через переход верно:

$$I = C \exp\left(-\frac{e\Delta V}{kT}\right) \cdot \frac{eV_{\text{\tiny MCT}}}{kT}$$

Из полученного выражение для тока I найдем сопротивление R (p-n)-перехода:

$$R = \frac{V_{\text{\tiny{MCT}}}}{I} = \frac{1}{C} \cdot \frac{kT}{e} \exp\left(\frac{e\Delta V}{kT}\right) \propto \exp\left(\frac{e\Delta V}{kT}\right)$$

При написании последнего равенства мы пренебрегли слабой зависимостью от температуры предэкспоненциального члена, которая мало заметна на фоне быстрой экспоненциальной зависимости.

Логарифмируя и дифференцируя последнее выражение, получим искомую формулу для нахождения контактной разности потенциалов:

$$\Delta V = \frac{k}{e} \cdot \frac{\Delta(\ln R)}{\Delta(1/T)} \tag{2}$$

3. Оборудование

Схема установки для измерения температурной зависимости контактной разности потенциалов $\Delta V(T)$ показана на рисунке 3. Она состоит из мостиковой схемы и термостата. Источником питания схемы служит генератор прямоугольных импульсов, а сигнал с балансируемого моста подается на независимые каналы осциллографа.

На схеме на рисунке 3 указаны также номиналы используемых резисторов. Сопротивление диода R выражается через сопротивление магазина R_M и сопротивления $R_1=910~{\rm Om},~R_2=9.1~{\rm kOm}$:

$$R = \frac{R_2}{R_1} R_M = 10 \cdot R_M$$

Рис. 3. Экспериментальная установка для определения контактной разности потенциалов (p-n)-перехода

4. Результаты измерений и обработка результатов

Измерения проводятся в интервале температур от комнатной до $\approx 80^{\circ}$ С. Температура образца измеряется медно-константановой термопарой, постоянная которой равна $\alpha = 41~\text{mkB/K}$.

Снимем зависимость сопротивления магазина R_M при сбалансированном мосте от напряжения на термопаре U. По R_M пересчитаем сопротивление диода $R=10R_M$. Зная константу термопары α , получим температуру образца T для соответствующего измерения напряжения:

$$T = T_0 + \frac{U}{\alpha}$$

Измерения и последующие вычисления содержатся в таблице 1.

Nº	U , мк $\mathrm B$	R, Ом	ΔR , Om	T, K	$1/T, \mathrm{K}^{-1}$	$\Delta 1/T, \mathrm{K}^{-1}$	$\ln R$	$\Delta \ln R$
1	80	230	5	300,95	3,323	0,83	5,44	0,02
2	180	180	5	303,39	3,296	0,37	5,19	0,03
3	270	160	5	305,59	3,272	0,24	5,08	0,03
4	390	123	4	308,51	3,241	0,17	4,81	0,03
5	500	93	3	311,20	3,213	0,13	4,53	0,03
6	620	80	3	314,12	3,183	0,10	4,38	0,04
7	700	70	4	316,07	3,164	0,09	4,25	0,06
8	800	63	3	318,51	3,140	0,08	4,14	0,05
9	900	55	4	320,95	3,116	0,07	4,01	0,07
10	1010	49	3	323,63	3,090	0,06	3,89	0,06
11	1140	37	2	326,80	3,060	0,05	3,61	0,05
12	1290	42	2	330,46	3,026	0,05	3,74	0,05
13	1440	27	2	334,12	2,993	0,04	3,30	0,07
14	1590	19	2	337,78	2,961	0,04	2,94	0,11
15	1730	16	2	341,20	2,931	0,03	2,77	0,13

Таблица 1. Результаты измерений

Рис. 4. График зависимости $\ln R$ от 1/T

Коэффицент наклона, полученные из аппроксимации:

$$k = (6.4 \pm 1.6) \cdot 10^3 \,\mathrm{K}^{-1}$$

Находим искомую контактную разность потенциалов (p-n)-перехода полупроводникового диода:

$$\Delta V = \frac{k_B}{e} \cdot k \approx (0.55 \pm 0.14) \text{ B}$$

5. Обсуждение результатов и выводы

Контактная разность потенциалов (p-n)-перехода в полупроводниковом диоде:

$$\Delta V = (0.55 \pm 0.14) \text{ B}$$

Большая погрешность обуслевлена трудностью визуального определения по-казаний осциллографа.