Math GR6262 Algebraic Geometry Assignment # 3

Benjamin Church

March 24, 2020

1 Problem 1

Let A be a Noetherian domain such that dim A = 1 with maximal ideal $\mathfrak{p} \subset A$. Let $K = \operatorname{Frac}(A)$ and take any $f \in \operatorname{Frac}(K)$ such that $f \notin A_{\mathfrak{p}}$ (e.g. p^{-1} for any $p \in \mathfrak{p}$). Consider the ideal

$$I = (A : f) = \{x \in A \mid xf \in A\}$$

Then if $x \in I$ we have $xf \in A$ so if $x \in A \setminus \mathfrak{p}$ then $f = \frac{xf}{x} \in A_{\mathfrak{p}}$. Since $f \notin A_{\mathfrak{p}}$ we must have $I \subset \mathfrak{p}$. Since A is Noetherian and I is proper it has a primary decomposition,

$$I = \mathfrak{q}_0 \cap \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n$$

such that \mathfrak{q}_i is \mathfrak{p}_i -primary. Therefore,

$$\sqrt{I} = \sqrt{\mathfrak{q}_0} \cap \cdots \cap \sqrt{\mathfrak{q}_n} = \mathfrak{p}_0 \cap \cdots \cap \mathfrak{p}_n$$

which implies that $\mathfrak{p}_0 \dots, \mathfrak{p}_n \in V(I)$. Furthermore, dim A = 1 so each prime \mathfrak{p}_i is maximal and thus $V(I) = \{\mathfrak{p}_0, \dots, \mathfrak{p}_n\}$ since if some prime $\mathfrak{q} \supset I$ then $\mathfrak{q} \supset \sqrt{I}$ and thus $\mathfrak{q} \supset \mathfrak{p}_0 \cap \dots \cap \mathfrak{p}_n$ but \mathfrak{q} is prime so $\mathfrak{q} \supset \mathfrak{p}_i$ for some but \mathfrak{p}_i is maximal so $\mathfrak{q} = \mathfrak{p}_i$. In particular there are a finite number of primes above I and since $\mathfrak{p} \in V(I)$ we can take $\mathfrak{p}_0 = \mathfrak{p}$ WLOG.

By prime avoidance $\mathfrak{p}_i \not\subset \bigcup_{j\neq i}\mathfrak{p}_j$ and thus there exist elements, $a_i \in \mathfrak{p}_i \setminus \bigcup_{j\neq i}\mathfrak{p}_j$. Then let $\tilde{a} = \prod_{i=1}^n a_i$ and thus $a_0\tilde{a} \in \mathfrak{p}_0 \cap \cdots \cap \mathfrak{p}_n = \sqrt{I}$ so $(a_0\tilde{a})^N \in I$ for some positive integer N. Consider $I' = (A : \tilde{a}^N f) \supset I$. Since $a_0^N \tilde{a}^N \in I$ we know that $a_0^N (\tilde{a}^N f) \in A$ so $a_0^N \in I'$. However, $a_0 \notin \mathfrak{p}_i$ for i > 0 and thus neither is a_0^N so $I' \not\subset \mathfrak{p}_i$ for i > 0. But since $I' \supset I$ we have $V(I') \supset V(I)$ so $V(I') = \{\mathfrak{p}\}$. Furthermore,

$$g \in A_{\mathfrak{q}} \iff \exists s \in A \setminus \mathfrak{q} : sf \in A \iff (A:g) \not\subset \mathfrak{q}$$

Therefore $a_0^N f \notin A_{\mathfrak{p}}$ but $a_0^N f \in A_{\mathfrak{q}}$ for each prime $\mathfrak{q} \neq \mathfrak{p}$.

2 Problem 2

Let A be a domain an M a torsion-free finite A-module. Take $K = \operatorname{Frac}(A)$ and consider the sequence,

$$0 \longrightarrow A \longrightarrow K \longrightarrow K/A \longrightarrow 0$$

Tensoring with $(-) \otimes_A M$ gives a long exact sequence,

$$\operatorname{Tor}_{1}^{R}(K,M) \longrightarrow \operatorname{Tor}_{1}^{R}(K/A,M) \longrightarrow A \otimes_{A} M \longrightarrow K \otimes_{A} M \longrightarrow K/A \otimes_{A} M \longrightarrow 0$$

However, $\operatorname{Tor}_{1}^{R}(K, M) = 0$ because K is flat. Thus we have,

$$0 \longrightarrow \operatorname{Tor}_{1}^{R}(K/A, M) \longrightarrow M \longrightarrow K \otimes_{A} M$$

However, $\operatorname{Tor}_1^R(K/A, M)$ is the torsion of M and thus vanishes since M is torsion free. Thus the map $M \to K \otimes_A M$ is an injection. Furthermore, $K \otimes_A M$ is a K-module and therefore free (since it is a vectorspace) as a K-module. Thus if m_1, \ldots, m_n generate the image of M in $K \otimes_A M$ then each m_i can be expressed in terms of a basis b_1, \ldots, b_k of $K \otimes_A M$. Choosing d large enough to clear all denominators we can write,

$$M \hookrightarrow d^{-1}(b_1 R \oplus \cdots \oplus b_k R) \subset K \otimes_A M$$

which is an inclusion into a free R-module.

$3 \quad 078S$

Consider the ring $A = k[x,y]/(y^2 - f(x))$ where k is a field with characteristic not 2 and,

$$f(x) = (x - t_1) \cdots (x - t_n)$$

with $t_1, \ldots, t_n \in k$ distict and $n \geq 3$ an odd integer. Take the ideal $I = (y, x - t_1) \subset A$. I claim that I is not a free A-module of rank 1. First, if I is not of rank 1 it cannot free because given a generating set f_1, \ldots, f_n then $f_2 \cdot f_1 - f_2 \cdot f_1 = 0$ is a nontrivial A-linear combination of the generators that gives zero so it cannot be an A-basis. I will complete the proof of this claim at the end.

We have dim k[x, y] = 2 since k is a field. Then,

$$\dim A = \dim k[x, y] - \mathbf{ht} \left((y^2 - f(x)) \right)$$

since these rings are f.g. k-algebras. However, there are strict inclusions,

$$(y, x - t_1) \supseteq (y^2 - f(x)) \supseteq (0)$$

so $\operatorname{ht}((y^2 - f(x))) = 1$ since its height cannot be 2 because it is not maximal and it cannot be 0 because it is not minimal. Therefore $\dim A = 1$ so any nonzero $\mathfrak{p} \in \operatorname{Spec}(A)$ must then be maximal. Therefore, every $\mathfrak{p} \in \operatorname{Spec}(A)$ corresponds to a closed point $\mathfrak{p} = (x - a, y - b)$ on the curve.

Now if $\mathfrak{p}=(x-a,y-b)$ with $b\neq 0$ then $y\notin \mathfrak{p}$. Thus, by Lemma 5.1, $I_y=A_y$ because $y\in I$. Furthermore, if $\mathfrak{p}=(x-a,y)$ then since \mathfrak{p} is a prime of A then \mathfrak{p} viewed as a prime of k[x,y] must lie above $(y^2-f(x))$. Thus, f(a)=0 so $a=t_i$ for some i. If $i\neq 1$ then take $g=(x-t_1)\notin \mathfrak{p}$. Since $g\in I$ then by Lemma 5.1 we have $I_g=A_g$. Finally, for $\mathfrak{p}=(x-t_1,y)=I$ we may take $g=(x-t_2)\cdots(x-t_n)$. Now consider the map,

$$\frac{x-t_1}{y}A_g \to I_g$$

given by sending,

$$\frac{x-t_1}{y} \to \frac{y}{q}$$

Since $g \notin \mathfrak{p}$ this map is clearly injective. We need to show that this map is surjective i.e. that yA_g and $(x - t_1)A_g$ are in the image. This is easily demonstated via noticing that,

$$g \cdot \frac{x - t_1}{y} \mapsto y$$

$$g \cdot \left(\frac{x - t_1}{y}\right)^2 \mapsto g\frac{y^2}{g^2} = \frac{y^2}{g} = \frac{(x - t_1) \cdots (x - t_n)}{(x - t_2) \cdots (x - t_n)} = x - t_1$$

so the map hits the generators of I_g and thus surjects.

Therefore, we have shown that I is locally free of rank 1 i.e. I is an invertable A-module. Thus, it suffices to show that I is not free of rank 1 and thus represents a nontrivial class of the Picard group. By using the relations in the ring A, we may write an arbitrary element as $\alpha + \beta y$ with $\alpha, \beta \in k[x]$. Consider the norm map, $N : \operatorname{Frac}(A) \to k(x)$ which is the multiplicative map given by sending,

$$\alpha + \beta y \mapsto (\alpha + \beta y)(\alpha - \beta y) = \alpha^2 - \beta^2 y^2 = \alpha^2 - \beta^2 f \in k(x)$$

The restriction of this map to A gives a map to k[x]. Suppose that $I = (\pi)$ some generator written as $\pi = \alpha + \beta y$. Since $(\pi) = (y, x - t_1)$ we must have $\pi \mid x - t_1$ and $\pi \mid y$ which implies, via the multiplicativity of the norm that,

$$N(\pi) \mid N(x - t_1) \implies \alpha^2 - \beta^2 f \mid (x - t_1)^2$$

 $N(\pi) \mid N(y) \implies \alpha^2 - \beta^2 f \mid f$

However, in k[x] the gcd of $(x-t_1)^2$ and f is $(x-t_1)$ since the roots of f are distinct. Therefore, $N(\pi) \mid (x-t_1)$. However, in order for $\alpha^2 - \beta^2 f$ to divide $x-t_1$ we must have $\deg(\alpha^2 - \beta^2 f) \leq 1$. But since $\deg f > 0$ either $\beta = 0$, in which case, $\alpha^2 \mid x-t_1$ which is impossible unless $\alpha \in k^{\times}$ because $x-t_1$ is not a square in k[x]. In that case $\pi = \alpha \in k^{\times}$ which cannot generate I since I is proper. Otherwise, for $\deg(\alpha^2 - \beta^2 f) \leq 1$ we must have the leading terms of α^2 and $\beta^2 f$ cancel which implies that they have equal degree. Thus,

$$2 \deg \alpha = 2 \deg \beta + \deg f$$

However, by hypothesis, $\deg f$ is odd and thus we reach a contradiction so I cannot be principal.

$4 \quad 02DU$

Let A be a ring.

4.1

Suppose that M a is finite locally free A-module and suppose that $\varphi: M \to M$ is an endomorphism. Let $X = \operatorname{Spec}(A)$ and consider the induced endomorphism of \mathcal{O}_X -modules, $\varphi_* : \tilde{M} \to \tilde{M}$. Because M is finite locally free, at each $\mathfrak{p} \in \operatorname{Spec}(A)$ there exists $f \in A$ such that $\mathfrak{p} \in D(f)$ (i.e. $f \notin \mathfrak{p}$) and $\tilde{M}(D(f)) = M_f$ is a free A_f -module. Therefore, $\tilde{\varphi} : \tilde{M}(D(f)) \to \tilde{M}(D(f))$ is a map of free A_f -modules which has a standard trace and determinant in $A_f = \mathcal{O}_X(D(f))$ computed via the matrix representation denoted by $\operatorname{tr}_f(\varphi) \in A_f$ and $\operatorname{det}_f(\varphi) \in A_f$. We need to show that these sections agree on overlaps. Choose a basis e_1, \ldots, e_n of M_f as an A_f -module so $M_f = e_1 A_f \oplus \cdots \oplus e_n A_f \cong A_f^{\oplus n}$. We have,

$$\widetilde{M}|_{D(f)} \cong \widetilde{M}_f \cong \widetilde{A_f^{\oplus n}} \cong \mathcal{O}_X|_{D(f)}^{\oplus n}$$

This gives a diagram,

$$\widetilde{M}(D(f)) \xrightarrow{\sim} \mathcal{O}_X(D(f))^{\oplus n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widetilde{M}(D(g)) \xrightarrow{\sim} \mathcal{O}_X(D(g))^{\oplus n}$$

Since the right restriction map sends an A_f basis to an A_g basis, the same must be true of the left restriction map. Then given $D(g) \subset D(f_1) \cap D(f_2)$ then we can write $\varphi(e_i^k) = \sum_{j=1}^n B_{ji}^k e_j^k$ for k = 1, 2 and we have $\operatorname{tr}_{f_k} = \sum_{i=1}^n B_{ii}^k$ as an element of A_{k_k} . Under restriction, both $\{e_i^k\}$ for k = 1, 2 are sent to a A_g -basis of M_g . Therefore, since we have the diagram,

$$\widetilde{M}(D(f)) \stackrel{\varphi}{\longrightarrow} \widetilde{M}(D(f))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widetilde{M}(D(g)) \stackrel{\varphi}{\longrightarrow} \widetilde{M}(D(f))$$

The matrix elements for $\varphi: M_g \to M_g$ in the restriction basis must be the restriction $(A_f \to A_g)$ of the matrix elements of $\varphi: M_f \to M_f$ since,

$$\operatorname{res}(\varphi(e_i^k)) = \operatorname{res}\left(\sum_{j=1}^n B_{ji}^k e_j^k\right) = \sum_{j=1}^n \operatorname{res}_A(B_{ji}^k) \operatorname{res}(e_j^k)$$

However, res $\circ \varphi = \varphi \circ \text{res}$ and res (e'_i) is also a basis with matrix B'^k_{ij} so we have,

$$\operatorname{res}(\varphi(e_i^k)) = \varphi(\operatorname{res}(e_i^k)) = \sum_{i=1}^n B_{ji}^{\prime k} \operatorname{res}(e_j^k)$$

proving the claim. Therefore, we can compute the trace and determinant in either basis $B_{ij}^{\prime k}$ which must be equal since they are coordinate independent,

$$\operatorname{tr}_g = \sum_{i=1}^n B_{ii}^{\prime k} = \sum_{i=1}^n \operatorname{res}_A(B_{ii}^k) = \operatorname{res}_A\left(\sum_{i=1}^n B_{ii}^k\right) = \operatorname{res}_A(\operatorname{tr}_{f_k})$$

where I simply used the fact that $\operatorname{res}_A:A_{f_k}\to A_g$ is a ring map. Similarly, expressing the determinant in either induced basis we find,

$$\det_g = \det B'^k = \det(\operatorname{res}_A(B^k)) = \operatorname{res}_A(\det B^k) = \operatorname{res}_A(\det_{f_k})$$

Therefore, both the determinant and trace agree when restricted to the overlap. Thus, we may glue to obtain unique global sections $\operatorname{tr}\varphi$ and $\operatorname{det}\varphi$.

Let M be a finite locally-free A module and N a finite locally-free B-module. Consider a ring map $r:A\to B$ and compatible module map $g:M\to N$ and two endomorphisms $\varphi:M\to M$ and $\psi:N\to N$ compatible with the module maps such that,

$$\begin{array}{ccc}
M & \xrightarrow{\varphi} & M \\
\downarrow g & & \downarrow g \\
N & \xrightarrow{\psi} & N
\end{array}$$

commutes. Viewing N as an A-module, the above commutes as a diagram of A-module maps. I am not sure what being functorial in this triple means for a section such as $\operatorname{tr} \varphi \in A$ since the sections $\operatorname{tr} \varphi$ and $\operatorname{tr} \psi$ are not, in general, equal (consider $M \subset N$ vectorspaces over A = k of different dimension and φ , ψ the corresponding identity maps which clearly make the square commute but have different traces).

4.2

Locally, the trace is computed standardly on maps of free modules. Given maps $\varphi: M \to N$ and $\psi: N \to M$ of finite locally free A-modules, about each point $\mathfrak{p} \in \operatorname{Spec}(A)$ choose a neighborhood D(f) such that both M_f and N_f are free. Then the localized maps $\varphi_f: M_f \to N_f$ and $\psi_f: N_f \to M_f$ satisfy $\operatorname{tr}(\varphi_f \circ \psi_f) = \operatorname{tr}(\psi_f \circ \varphi_f)$ and $\det(\varphi_f \circ \psi_f) = \det(\psi_f \circ \varphi_f)$ for standard linear algebra reasons. The global traces and determinants restrict uniquely to these local traces and determinants which forces $\operatorname{tr}(\varphi \circ \psi) = \operatorname{tr}(\psi \circ \varphi)$ and $\det(\varphi \circ \psi) = \det(\psi \circ \varphi)$ since both global sections restrict to the same local sections on some cover.

4.3

Let M be a finite locally-free A-module. Consider the map $\operatorname{tr}:\operatorname{End}_A(M)\to A$ defined above. Let $\varphi,\psi:M\to M$ be endomorphisms and $a,b\in A$. Then consider $\operatorname{tr}(a\varphi+b\psi)$. For each point $\mathfrak{p}\in\operatorname{Spec}(A)$ there exists an open neighborhood D(f) such that M_f is free. Furthermore, by construction, the trace $\operatorname{tr}(a\varphi+b\psi)$ restricts to $\operatorname{tr}_f(a\varphi+b\psi)$ which is the trace of the map $a\varphi+b\psi:M_f\to M_f$ which satisfies

$$\operatorname{tr}_f(a\varphi + b\psi) = a \operatorname{tr}_f \varphi + b \operatorname{tr}_f \psi$$

for standard linear algebra reasons on free modules. Thus, $a \operatorname{tr} \varphi + b \operatorname{tr} \psi$ restricts to the same local sections as $\operatorname{tr}(a\varphi + b\psi)$ on an open cover and thus they must be equal as global sections. The exact same argument shows that $\det(\varphi \circ \psi) = \det(\varphi)\det(\psi)$.

5 Lemmas

Lemma 5.1. Let $I \subset A$ be an ideal and $f \in I$ then $I_f = A_f$.

Proof. Consider the exact sequence of A-modules,

$$0 \longrightarrow I \longrightarrow A \longrightarrow A/I \longrightarrow 0$$

Since localization is an exact functor we get the exact sequence,

$$0 \longrightarrow I_f \longrightarrow A_f \longrightarrow (A/I)_f \longrightarrow 0$$

However, since $f \in I$ then [f] = 0 in A/I which implies that $(A/I)_f = 0$. Therefore the inclusion $I_f \to A_f$ is an isomorphism.