

Universidad Nacional de Colombia

FACULTAD DE CIENCIAS DEPARTAMENTO DE ESTADÍSTICA

Analisis de Redes Sociales

Taller 5: Redes de Colaboración entre profesores

Alejandro Urrego López - aurrego@unal.edu.co Cesar Augusto Prieto Sarmiento - ceprieto@gmail.com

Introduccion

Para este estudio, se han utilizado los archivos proporcionados por el sistema HORUS, una plataforma avanzada diseñada para integrar y visualizar la información de productividad científica y tecnológica de los docentes. Nos enfocamos en los departamentos de Física, Estadística, Matemáticas, Química, Biología, Geociencias y Farmacia de la Facultad de Ciencias. El objetivo principal es identificar y analizar las redes de trabajo de los profesores en función de las tematicas en las que han colaborado, ya sea de manera conjunta o individul.

A partir de los datos extraídos de HORUS, se procesaron los archivos de cada departamento para construir una base de datos detallada de las publicaciones y colaboraciones de los docentes. Se aplicaron técnicas de análisis de redes para descubrir patrones de coautoría y temáticas comunes en las investigaciones. Este enfoque permite no solo visualizar las relaciones existnetes entre los profesores, sino también detectar oportunidades para futuras colaboraciones y fortalecer las areas de investigación conjunta.

El análisis se desarrolló en varias etapas. Primero, se extrajeron y limpiaron los datos de las publicaciones de cada departamento. A continuación, se analizaron estas redes para identificar clústeres de colaboración y áreas de investigación predominants. Finalmente, se generaron visualizaciones que permiten interpretar y comunicar los resultados de manera efectiva.

Este estudio proporciona una vision comprensiva de las redes de trabajo académico dentro de la Facultad de Ciencias, destacando las sinergias existentes y ofreciendo una base sólida para futuras investigaciones colaborativas.

Tratamiento de datos

Para el tratamiento de datos, se utilizaron las librerías jsonlite, dplyr, igraph, knitr y RColorBrewer de R. Primero, se cargaron estas librerías esenciales para la manipulación y visualización de datos. Se estableció el directorio de trabajo y se definió la ruta de la carpeta que contenia los archivos JSON. A continuación, se listaron todos los archivos JSON en la carpeta especificada y se extrajeron los nombres de los departamentos de los nombres de archivo. Posteriormente, se crearon data frames para cada departamento, extrayendo los datos de los archivos JSON correspondientes.

Para facilitar la visualización, se definió una paleta de colores específica para cada departamento. Además, se creó una función para abreviar los nombres, lo cual resultó útil para las gráficas.

En el caso del departamento de Estadística, se procedió a filtrar los nodos eliminando aquellos de tipo *uab*. Asimismo, se filtraron los enlaces para eliminar aquellos cuyo origen o destino era un nodo específico. Se añadió una columna booleana *type bool* para identificar si un nodo era un *author*.

Luego, se unieron los enlaces con los nodos para obtener información detallada, filtrando las relaciones autortema. Se crearon tablas separadas para las relaciones autor-tema y se unieron en una sola. Además, se creó un data frame con IDs únicos para cada tema y se unieron las tablas de relaciones autor-tema con los IDs únicos de los temas.

Finalmente, se creó un vector de tipos para los nodos del grafo (autores y temas) y se generó el grafo a partir del data frame de relaciones, asignando los atributos 'type' a los vértices del grafo. Este proceso permitió completar el tratamiento de datos para el análisis de la matriz de proyección correspondiente a los profesores.

Análisis Departamento de Estadistica

Gráfico de la red

GRAFO DE LA RED DE INTERACCION ENTRE PROFESORES DEL DEP DE ESTADISTICA

Figura 1: Red de profesores del Departamento de Estadística - sede Bogotá

Para la red de profesores del Departamento de Estadística - sede Bogotá, se puede observar que cuenta con 44 nodos y 706 enlaces. Además, al ser una red que proviene de la proyección de la matriz de adyacencia asociada a una red bipartita, esta red es ponderada. Los pesos representan el número de veces que dos profesores han coincidido con un tema en común al momento de publicar un artículo.

Caracterización de vértices

	Nombre Completo	Grado
1	Vanegas Penagos Luis Hernando	40
2	Gonzalez Garcia Luz Mery	39
3	Trujillo Oyola Leonardo	39
4	Rondon Poveda Luz Marina	39
5	Arunachalam Viswanathan	39

Tabla 1: Tabla de Grado del Departamento

ſ		Nombre Completo	Fuerza
	1	Trujillo Oyola Leonardo	301
	2	Giraldo Henao Ramon	293
	3	Cepeda Cuervo Edilberto	279
	4	Melo Martinez Oscar Orlando	279
	5	Pardo Turriago Campo Elias	279

Tabla 2: Tabla de Fuerza del Departamento

Al hacer las tablas del grado de cada profesor, es decir, el número de aristas que inciden en el nodo, y compararlo con la fuerza de cada profesor, es decir, la suma de los pesos de cada arista incidente con el nodo correspondiente, se puede observar que las posiciones cambian. El grado se puede ver como el número de profesores con los que se coincide en un tema trabajado en alguna publicación, y la fuerza como el número total de temas que coinciden en total en las publicaciones.

Figura 2: Distribución del Gardo

Figura 3: Distribución de la Fuerza

Ahora al momento de caracterizar los nodos mas importantes de la red con las diferentes medidas de centralidad se encuentra que:

Nombre	Centralidad	
Completo	por Cercanía	
Gomez Torres	0.300	
Emilse	0.300	
Guevara Gonzalez	0.298	
Ruben Dario	0.298	
Ortiz Pinilla	0.298	
Jorge Eduardo	0.296	
Zarate Solano	0.298	
Hector Manuel	0.298	
Calderon Villanueva	0.296	
Sergio Alejandro	0.290	

Tabla 3: Centralidad por Cercanía

Nombre	Centralidad	
Completo	por Intermediación	
Vanegas Penagos	0.080	
Luis Hernando	0.000	
Arunachalam	0.073	
Viswanathan	0.073	
Rondon Poveda	0.070	
Luz Marina	0.070	
Martínez Martínez	0.059	
Sergio Daniel	0.059	
Diaz Monroy	0.048	
Luis Guillermo	0.040	

Tabla 4: Centralidad por Intermediación

Nombre	Centralidad	
Completo	Propia	
Trujillo Oyola	1.000	
Leonardo	1.000	
Giraldo Henao	0.973	
Ramon	0.913	
Pardo Turriago	0.937	
Campo Elias	0.551	
Cepeda Cuervo	0.937	
Edilberto	0.931	
Vargas Navas	0.879	
Jose Alberto	0.019	

Tabla 5: Centralidad Propia

Bajo este contexto, la centralidad por cercanía se puede interpretar como una medida que representa si el profesor ha compartido varios temas en común con otros profesores al momento de publicar, o si las personas con las que comparte temas en común al publicar tienen conexiones con varias personas en la red. La centralidad por cercanía busca resaltar la importancia de un nodo si está cerca de muchos otros bajo la noción de distancia geodésica. Mientras tanto, la centralidad por intermediación se puede interpretar como la importancia del profesor al momento de conectar a dos profesores que no tengan un tema en común en algún artículo en la red de publicaciones, ya que resalta la importancia de los nodos que se encuentran entre varios pares de vértices. Por último, la centralidad propia se puede interpretar como una medida que muestra si los profesores con los que se tiene una conexión son centrales en la red.

Caracterización de conectividad

Para caracterizar la conectividad, en primer lugar se calculó el número de clan, que es el subgrupo de la red que es completo, es decir, todos los nodos están conectados. Así, el número de clanes es de 36, y dado que en la red hay 44 nodos, esto denota una alta conectividad. Ahora, al calcular la densidad de la red, que se define como la frecuencia relativa de las aristas observadas respecto al potencial de aristas, se obtiene un valor de 0.746, mostrando una alta propensión a formar enlaces en la red. Finalmente, al calcular la transitividad global, que caracteriza la propensión con la que las tríadas forman triángulos, se obtiene un valor de 0.925, lo que indica una propensión a tener temas en común con autores que también tienen temas en común.

Agrupamiento

Para realizar el agrupamiento, se tomó la componente gigante del grafo y se escogió el método que proporcionara una mayor modularidad. La modularidad indica qué tan buena es la división o qué tan separados están los diferentes tipos de vértices entre sí. De esta manera, se obtuvo un agrupamiento con 4 conglomerados, con una modularidad de 0.2767 mediante el método Louvain, aclarando un poco más el comportamiento de la publicación de artículos en el departamento de estadística.

SUBGRAFO CON AGRUPAMIENTO PARA EL DEP DE ESTADISTICA kc_louvain - Mod = 0.2767

Figura 4: Agrupamiento profesores del Departamento de Estadística

Asortatividad

Finalmente, para caracterizar la asortatividad de la red, es decir, qué tan propensos son los nodos a crear vínculos con nodos con características similares, se obtuvo lo siguiente: respecto al grado y la fuerza de cada nodo, el coeficiente de asortatividad fue de -0.007 y -0.055, respectivamente. Esto indica que los profesores tienen temas en común con otros profesores, independientemente de si estos tienen el mismo número de profesores o el número total de temas en común con todos los autores al momento de publicar.

1. Analisis de otros departamentos

1.1. Departamento de Fisica

Ahora, realizando el mismo desarrollo anterior para el departamento de Fisica de la facultad de ciencias de la sede Bogota de la Universidad Nacional de Colombia.

1.1.1. Gráfico de la red

GRAFO DE LA RED DE INTERACCION ENTRE PROFESORES DEL DEP DE FISICA

Figura 5: Red de profesores del Departamento de Fisica - sede Bogotá

Para la red de profesores del Departamento de Fisica, se puede observar que cuenta con 84 nodos y 2607 enlaces.

Caracterización de vértices

	Nombre Completo	Grado
1	Dussan Cuenca Anderson	76
2	Martinez Martinez Roberto Enrique	75
3	Barba Ortega José José	75
4	Lopez Carreño Luis Demetrio	75
5	Cardona Javier Fernando	74

Tabla 6: Tabla de Grado del Departamento

	Nombre Completo	Fuerza
1	Calderon Triana Clara Lilia	779
2	Cardona Cardona Ramiro	750
3	Landinez Tellez David Arsenio	740
4	Roa Rojas Jairo	740
5	Rodriguez Martinez Jairo Arbey	724

Tabla 7: Tabla de Fuerza del Departamento

Figura 6: Distribución del Gardo

Figura 7: Distribución de la Fuerza

Al observar la distribución del grado, se puede notar que la mayoría de los profesores coinciden en los temas tratados en sus artículos con el mismo número de autores. Mientras que al analizar la distribución de la fuerza, se puede apreciar la gran cantidad de temas en común en total que tienen los profesores con todos los autores en la facultad.

Nombre	Centralidad	
Completo	por Cercanía	
Granes Sellares	0.885	
Jose	0.000	
Amezquita Orozco	0.0.837	
Ricardo	0.0.037	
Bautista Romero	0.802	
Edgar	0.002	
Martinez Tamayo	0.770	
Gustavo	0.770	
Viviescas Ramirez	0.700	
Carlos Leonardo	0.700	

Tabla 8: Centralidad por Cercanía

Nombre Completo	Centralidad por Intermediación
Granes Sellares Jose	0.086
Amezquita Orozco Ricardo	0.075
Martinez Tamayo Gustavo	0.069
Bautista Romero Edgar	0.064
Viviescas Ramirez Carlos Leonardo	0.032

Tabla 9: Centralidad por Intermediación

Nombre Completo	Centralidad Propia
Calderon Triana Clara Lilia	1.000
Cardona Cardona Ramiro	0.968
Landinez Tellez David Arsenio	0.955
Roa Rojas Jairo	0.943
Rincon Joya Miryam	0.924

Tabla 10: Centralidad Propia

El número de clan es de 69, y dado que en la red hay 84 nodos, esto denota una alta conectividad. Ahora, al calcular la densidad de la red, que se define como la frecuencia relativa de las aristas observadas respecto al potencial de aristas, se obtiene un valor de 0.747, mostrando una alta propensión a formar enlaces en la red. Finalmente, al calcular la transitividad global, que caracteriza la propensión con la que las tríadas forman triángulos, se obtiene un valor de 0.957. lo que indica una propensión a tener temas en común con autores que también tienen temas en común.

Agrupamiento

Para realizar el agrupamiento, se realizo de manera similar a la anterior. De esta manera, se obtuvo un agrupamiento con 4 conglomerados, con una modularidad de 0.2171 mediante el método Louvain, aclarando un poco más el comportamiento de la publicación de artículos en el departamento de Fisica.

SUBGRAFO CON AGRUPAMIENTO PARA EL DEP DE FISICA kc_louvain - Mod = 0.2171

Figura 8: Agrupamiento profesores del Departamento de Fisica

Asortatividad

Finalmente, para caracterizar la asortatividad de la red, es decir, qué tan propensos son los nodos a crear vínculos con nodos con características similares, se obtuvo lo siguiente: respecto al grado y la fuerza de cada nodo, el coeficiente de asortatividad fue de 0.032 y -0.001, respectivamente. Esto indica que los profesores tienen temas en común con otros profesores, independientemente de si estos tienen el mismo número de profesores o el número total de temas en común con todos los autores al momento de publicar.

1.2. Departamento de Biologia

Ahora, realizando el mismo desarrollo anterior para el departamento de Biologia de la facultad de ciencias de la sede Bogota de la Universidad Nacional de Colombia.

1.2.1. Gráfico de la red

GRAFO DE LA RED DE INTERACCION ENTRE PROFESORES DEL DEP DE BIOLOGIA

Figura 9: Red de profesores del Departamento de Biologia - sede Bogotá

Para la red de profesores del Departamento de Biologia, se puede observar que cuenta con 63 nodos y 1584 enlaces.

	Nombre Completo	Grado
1	Caro Quintero Alejandro	60
2	Muñoz Duran Joao Victor	60
3	Melgarejo Muñoz Luz Marina	60
4	Zerda Ordoñez Enrique De Jesus	58
5	Armenteras Pascual Dolors	58

Tabla 11: Tabla de Grado del Departamento

	Nombre Completo	Fuerza
1	Bonilla Gómez María Argenis	550
2	Zerda Ordoñez Enrique De Jesus	518
3	Armenteras Pascual Dolors	518
4	Romero Angulo Hernan Mauricio	514
5	Muñoz Duran Joao Victor	491

Tabla 12: Tabla de Fuerza del Departamento

Figura 10: Distribución del Gardo

Figura 11: Distribución de la Fuerza

Nombre	Centralidad	
Completo	por Cercanía	
Marquez Calle	0.870	
German Eugenio	0.870	
Chaib De Mares	0.750	
Maryam		
Spinel Gomez	0.723	
Clara Matilde	0.123	
Montenegro Ruiz	0.723	
Luis Carlos	0.123	
Galvis Vergara	0.714	
German	0.714	

Tabla 13: Centralidad por Cercanía

Nombre	Centralidad
Completo	por Intermediación
Marquez Calle	0.060
German Eugenio	0.000
Spinel Gomez	0.039
Clara Matilde	0.059
Reyes Blandon	0.039
Carmen	0.039
Matta Camacho	0.029
Nubia Estela	
Chaib De Mares	0.027
Maryam	

Tabla 14: Centralidad por Intermediación

Nombre	Centralidad	
Completo	Propia	
Bonilla Gómez	1.000	
María Argenis	1.000	
Zerda Ordoñez	0.966	
Enrique De Jesus	0.900	
Armenteras Pascual	0.966	
Dolors	0.900	
Muñoz Duran	0.930	
Joao Victor	0.930	
Garcia Conde	0.909	
Mary Ruth	0.909	

Tabla 15: Centralidad Propia

El número clan es de 53, y dado que en la red hay 63 nodos, esto denota una alta conectividad. Ahora, al calcular la densidad de la red, que se define como la frecuencia relativa de las aristas observadas respecto al potencial de aristas, se obtiene un valor de 0.811, mostrando una alta propensión a formar enlaces en la red. Finalmente, al calcular la transitividad global, que caracteriza la propensión con la que las tríadas forman triángulos, se obtiene un valor de 0.936, lo que indica una propensión a tener temas en común con autores que también tienen temas en común.

Agrupamiento

Para realizar el agrupamiento, se realizo de manera similar a la anterior. De esta manera, se obtuvo un agrupamiento con 3 conglomerados, con una modularidad de 0.2743 mediante el método Leading Eigen, aclarando un poco más el comportamiento de la publicación de artículos en el departamento de Biologia.

Figura 12: Agrupamiento profesores del Departamento de Biologia

Asortatividad

Finalmente, para caracterizar la asortatividad de la red, es decir, qué tan propensos son los nodos a crear vínculos con nodos con características similares, se obtuvo lo siguiente: respecto al grado y la fuerza de cada nodo, el coeficiente de asortatividad fue de -0.026 y -0.029, respectivamente. Esto indica que los profesores tienen temas en común con otros profesores, independientemente de si estos tienen el mismo número de profesores o el número total de temas en común con todos los autores al momento de publicar.

1.3. Departamento de Matematicas

Ahora, realizando el mismo desarrollo anterior para el departamento de Matematicas de la facultad de ciencias de la sede Bogota de la Universidad Nacional de Colombia.

1.3.1. Gráfico de la red

GRAFO DE LA RED DE INTERACCION ENTRE PROFESORES DEL DEP DE MATEMATICAS

Figura 13: Red de profesores del Departamento de Matematicas - sede Bogotá

Para la red de profesores del Departamento de Matematicas, se puede observar que cuenta con 88 nodos y 2148 enlaces.

	Nombre Completo	Grado
1	Nuñez Alarcon Daniel	71
2	Rojas Santana Edixon Manuel	71
3	Acosta Gempeler Lorenzo Maria	71
4	Bogoya Lopez Mauricio	70
5	Serrano Rodriguez Diana Marcela	69

Tabla 16: Tabla de Grado del Departamento de Matemáticas

	Nombre Completo	Fuerza
1	Estrada Bustos Hernan	627
2	Rendon Arbelaez Leonardo	600
3	Nuñez Alarcon Daniel	574
4	Sarria Zapata Humberto	571
5	Pinzon Cortes Natalia Camila	570

Tabla 17: Tabla de Fuerza del Departamento de Matemáticas

Figura 14: Distribución del Gardo

Figura 15: Distribución de la Fuerza

Nombre	Centralidad
Completo	por Cercanía
Guarin Lopez	1.000
Alexander	1.000
Ramos Vargas	1.000
Juan De La Rosa	1.000
Berenstein Opscholtens	0.515
Alexander Jonathan	0.515
Gaitan Orjuela	0.503
Hernando	0.505
Moreno Penagos	0.491
Martha Cecilia	0.491

Tabla 18: Centralidad por Cercanía

Nombre	Centralidad	
Completo	por Intermediación	
Huerfano Belisamon	0.212	
Ruth Stella	0.212	
Berenstein Opscholtens	0.167	
Alexander Jonathan	0.107	
Moreno Penagos	0.157	
Martha Cecilia	0.157	
Gaitan Orjuela	0.128	
Hernando	0.128	
Velasco Muñoz	0.062	
Antonio	0.002	

Tabla 19: Centralidad por Intermediación

Nombre	Centralidad	
Completo	Propia	
Estrada Bustos	1.000	
Hernan	1.000	
Sarria Zapata	0.929	
Humberto	0.929	
Pinzon Cortes	0.891	
Natalia Camila	0.091	
Rendon Arbelaez	0.884	
Leonardo	0.004	
Nuñez Alarcon	0.875	
Daniel	0.675	

Tabla 20: Centralidad Propia

El número clan es de 56, y dado que en la red hay 88 nodos, esto denota una alta conectividad. Ahora, al calcular la densidad de la red, que se define como la frecuencia relativa de las aristas observadas respecto al potencial de aristas, se obtiene un valor de 0.561, mostrando una alta propensión a formar enlaces en la red. Finalmente, al calcular la transitividad global, que caracteriza la propensión con la que las tríadas forman triángulos, se obtiene un valor de 0.872. lo que indica una propensión a tener temas en común con autores que también tienen temas en común.

Agrupamiento

Para realizar el agrupamiento, se realizo de manera similar a la anterior. De esta manera, se obtuvo un agrupamiento con 6 conglomerados, con una modularidad de 0.2603 mediante el método Louvain, aclarando un poco más el comportamiento de la publicación de artículos en el departamento de Matematicas.

SUBGRAFO CON AGRUPAMIENTO PARA EL DEP DE MATEMATICAS kc louvain - Mod = 0.2603

Figura 16: Agrupamiento profesores del Departamento de Matematicas

Asortatividad

Finalmente, para caracterizar la asortatividad de la red, es decir, qué tan propensos son los nodos a crear vínculos con nodos con características similares, se obtuvo lo siguiente: respecto al grado y la fuerza de cada nodo, el coeficiente de asortatividad fue de 0.077 y 0, respectivamente. Esto indica que los profesores tienen temas en común con otros profesores, independientemente de si estos tienen el mismo número de profesores o el número total de temas en común con todos los autores al momento de publicar.

1.4. Departamento de Farmacia

Ahora, realizando el mismo desarrollo anterior para el departamento de Farmacia de la facultad de ciencias de la sede Bogota de la Universidad Nacional de Colombia.

1.4.1. Gráfico de la red

GRAFO DE LA RED DE INTERACCION ENTRE PROFESORES DEL DEP DE FARMACIA

Figura 17: Red de profesores del Departamento de Farmacia - sede Bogotá

Para la red de profesores del Departamento de Farmacia, se puede observar que cuenta con 51 nodos y 1031 enlaces.

	Nombre Completo	Grado
1	Ospina Giraldo Luis Fernando	47
2	Pinzon Serrano Roberto	47
3	Rincon Velandia Javier	47
4	Guerrero Pabon Mario Francisco	47
5	Marin Loaiza Juan Camilo	47

	Nombre Completo	Fuerza
1	Aragon Novoa Diana Marcela	539
2	Gomez Alegria Claudio Jaime	526
3	Ospina Giraldo Luis Fernando	523
4	Garavito Cardenas Giovanny	513
5	Suesca Quintero Edward Baudilio	506

Tabla 21: Tabla de Grado del Departamento de Farmacia

Tabla 22: Tabla de Fuerza del Departamento de Farmacia

Figura 18: Distribución del Gardo

Figura 19: Distribución de la Fuerza

Nombre	Centralidad	
Completo	por Cercanía	
Plazas Bonilla	0.431	
Clara Eugenia	0.431	
Vallejo Diaz Bibiana	0.379	
Margarita Rosa	0.519	
Becerra Camargo	0.376	
Jesus	0.370	
Ospina Sanchez	0.370	
Sonia Amparo	0.370	
Martinez Rodriguez	0.370	
Fleming	0.370	

Tabla 23: Centralidad por Cercanía

Nombre	Centralidad
Completo	por Intermediación
Plazas Bonilla	0.145
Clara Eugenia	0.140
Vallejo Diaz Bibiana	0.106
Margarita Rosa	0.100
Silva Gomez	0.076
Edelberto	0.070
Becerra Camargo	0.075
Jesus	
Martinez Rodriguez	0.074
Fleming	

Tabla 24: Centralidad por Intermediación

Nombre	Centralidad
Completo	Propia
Aragon Novoa	1.000
Diana Marcela	1.000
Gomez Alegria	0.979
Claudio Jaime	0.979
Ospina Giraldo	0.973
Luis Fernando	0.913
Garavito Cardenas	0.934
Giovanny	0.994
Melendez Mejia	0.927
Adelina Del Pilar	0.921

Tabla 25: Centralidad Propia

El número clan es de 42, y dado que en la red hay 84 nodos, esto denota una alta conectividad. Ahora, al calcular la densidad de la red, que se define como la frecuencia relativa de las aristas observadas respecto al potencial de aristas, se obtiene un valor de 0.808, mostrando una alta propensión a formar enlaces en la red. Finalmente, al calcular la transitividad global, que caracteriza la propensión con la que las tríadas forman triángulos, se obtiene un valor de 0.930, lo que indica una propensión a tener temas en común con autores que también tienen temas en común.

Agrupamiento

Para realizar el agrupamiento, se realizo de manera similar a la anterior. De esta manera, se obtuvo un agrupamiento con 4 conglomerados, con una modularidad de 0.2328 mediante el método Louvain, aclarando un poco más el comportamiento de la publicación de artículos en el departamento de Farmacia.

SUBGRAFO CON AGRUPAMIENTO PARA EL DEP DE FARMACIA kc_louvain - Mod = 0.2328

Figura 20: Agrupamiento profesores del Departamento de Farmacia

Asortatividad

Finalmente, para caracterizar la asortatividad de la red, es decir, qué tan propensos son los nodos a crear vínculos con nodos con características similares, se obtuvo lo siguiente: respecto al grado y la fuerza de cada nodo, el coeficiente de asortatividad fue de -0.025 y 0, respectivamente. Esto indica que los profesores tienen temas en común con otros profesores, independientemente de si estos tienen el mismo número de profesores o el número total de temas en común con todos los autores al momento de publicar.

1.5. Departamento de Geociencias

Ahora, realizando el mismo desarrollo anterior para el departamento de Geociencias de la facultad de ciencias de la sede Bogota de la Universidad Nacional de Colombia.

1.5.1. Gráfico de la red

GRAFO DE LA RED DE INTERACCION ENTRE PROFESORES DEL DEP DE GEOCIENCIAS

Figura 21: Red de profesores del Departamento de Geociencias - sede Bogotá

Para la red de profesores del Departamento de Geociencias, se puede observar que cuenta con 42 nodos y 510 enlaces.

	Nombre Completo	Grado
1	Sarmiento Perez Gustavo Adolfo	36
2	Hernandez Pardo Orlando	34
3	Sanchez Quiñonez Carlos Alberto	34
4	Tchegliakova Nadejda	34
5	Molano Mendoza Juan Carlos	34

Tabla 26:	Tabla de	Grado	del	Departam	$_{ m iento}$	de	Geoc	ien-
cias								

	Nombre Completo	Fuerza
1	Gómez González Clemencia	381
2	Zuluaga Castrillon Carlos Augusto	375
3	Concha Perdomo Ana Elena	369
4	Pardo Villaveces Natalia	365
5	Guerrero Diaz Javier	362

Tabla 27: Tabla de Fuerza del Departamento de Geociencias

Figura 22: Distribución del Gardo

Figura 23: Distribución de la Fuerza

Nombre	Centralidad
Completo	por Cercanía
Etayo Serna	0.623
Fernando	0.023
Vergara Streinesberger	0.623
Luis Eduardo	0.025
Moreno Murillo	0.576
Juan Manuel	0.570
Ochoa Gutierrez	0.543
Luis Hernan	0.045
Paramo Fonseca	0.535
Maria Euridice	0.000

Tabla 28: Centralidad por Cercanía

Nombre	Centralidad
Completo	por Intermediación
Moreno Murillo	0.141
Juan Manuel	0.141
Etayo Serna	0.107
Fernando	0.107
Vergara Streinesberger	0.107
Luis Eduardo	0.107
Cadena Sanchez	0.081
Ariel Oswaldo	0.001
Leon Aristizabal	0.073
Gloria Esperanza	0.075

Tabla 29: Centralidad por Intermediación

Nombre	Centralidad
Completo	Propia
Zuluaga Castrillon	1.000
Carlos Augusto	1.000
Gómez González	0.989
Clemencia	0.909
Pardo Villaveces	0.971
Natalia	0.971
Concha Perdomo	0.963
Ana Elena	0.905
Guerrero Diaz	0.954
Javier	0.334

Tabla 30: Centralidad Propia

El número clan es de 25, y dado que en la red hay 84 nodos, esto denota una alta conectividad. Ahora, al calcular la densidad de la red, que se define como la frecuencia relativa de las aristas observadas respecto al potencial de aristas, se obtiene un valor de 0.592, mostrando una alta propensión a formar enlaces en la red. Finalmente, al calcular la transitividad global, que caracteriza la propensión con la que las tríadas forman triángulos, se obtiene un valor de 0.862, lo que indica una propensión a tener temas en común con autores que también tienen temas en común.

Agrupamiento

Para realizar el agrupamiento, se realizo de manera similar a la anterior. De esta manera, se obtuvo un agrupamiento con 4 conglomerados, con una modularidad de 0.1976 mediante el método Louvain, aclarando un poco más el comportamiento de la publicación de artículos en el departamento de Geociencias.

SUBGRAFO CON AGRUPAMIENTO PARA EL DEP DE GEOCIENCIAS kc louvain - Mod = 0.1976

Figura 24: Agrupamiento profesores del Departamento de Geociencias

Asortatividad

Finalmente, para caracterizar la asortatividad de la red, es decir, qué tan propensos son los nodos a crear vínculos con nodos con características similares, se obtuvo lo siguiente: respecto al grado y la fuerza de cada nodo, el coeficiente de asortatividad fue de 0.022 y 0, respectivamente. Esto indica que los profesores tienen temas en común con otros profesores, independientemente de si estos tienen el mismo número de profesores o el número total de temas en común con todos los autores al momento de publicar.

1.6. Departamento de Quimica

Ahora, realizando el mismo desarrollo anterior para el departamento de Quimica de la facultad de ciencias de la sede Bogota de la Universidad Nacional de Colombia.

1.6.1. Gráfico de la red

GRAFO DE LA RED DE INTERACCION ENTRE PROFESORES DEL DEP DE QUIMICA

Figura 25: Red de profesores del Departamento de Quimica - sede Bogotá

Para la red de profesores del Departamento de Quimica, se puede observar que cuenta con 119 nodos y 6237 enlaces.

	Nombre Completo	Grado
1	Alí Torres Jorge Isaac	115
2	Avila Murillo Monica Constanza	114
3	Rojas Araque Jose Leopoldo	114
4	Rodriguez Angulo Ricaurte	114
5	Moreno Guaqueta Sonia	114

	Nombre Completo	Fuerza
1	Cuca Suarez Luis Enrique	1445
2	Velasquez Marquez León Mauricio	1437
3	Maldonado Villamil Mauricio	1436
4	Fierro Medina Ricardo	1428
5	Daza Velasquez Carlos Enrique	1420

Tabla 31: Tabla de Grado del Departamento de Química Tabla 32: Tabla de Fuerza del Departamento de Química

Figura 26: Distribución del Gardo

Figura 27: Distribución de la Fuerza

1500

Al observar la distribución del grado, se puede notar que la mayoría de los profesores coinciden en los temas tratados en sus artículos con el mismo número de autores. Mientras que al analizar la distribución de la fuerza, se puede apreciar la gran cantidad de temas en común en total que tienen los profesores con todos los autores en la facultad.

Nombre	Centralidad
Completo	por Cercanía
Farias Camero	0.483
Diana Maria	0.465
Moreno Dominguez	0.483
Fausto Camilo	0.465
Torres Rodriguez	0.445
Angela Graciela	0.440
Suarez Mendieta	0.445
Margoth	0.445
Avellaneda Torres	0.438
Lizeth Manuela	0.430

Tabla 33: Centralidad por Cercanía

Nombre	Centralidad
Completo	por Intermediación
Osorno Reyes	0.127
Oscar Eduardo	0.127
Farias Camero	0.078
Diana Maria	0.076
Moreno Dominguez	0.078
Fausto Camilo	0.078
Trujillo Carlos	0.075
Alexander	0.079
Suarez Mendieta	0.060
Margoth	0.000

Tabla 34: Centralidad por Intermediación

Nombre	Centralidad
Completo	Propia
Cuca Suarez	1.000
Luis Enrique	1.000
Maldonado Villamil	0.999
Mauricio	0.999
Velasquez Marquez	0.995
León Mauricio	0.995
Daza Velasquez	0.994
Carlos Enrique	0.994
Fierro Medina	0.985
Ricardo	0.909

Tabla 35: Centralidad Propia

El número clan es de 106, y dado que en la red hay 119 nodos, esto denota una alta conectividad. Ahora, al calcular la densidad de la red, que se define como la frecuencia relativa de las aristas observadas respecto al potencial de aristas, se obtiene un valor de 0.888, mostrando una alta propensión a formar enlaces en la red. Finalmente, al calcular la transitividad global, que caracteriza la propensión con la que las tríadas forman triángulos, se obtiene un valor de 0.972, lo que indica una propensión a tener temas en común con autores que también tienen temas en común.

Agrupamiento

Para realizar el agrupamiento, se realizo de manera similar a la anterior. De esta manera, se obtuvo un agrupamiento con 3 conglomerados, con una modularidad de 0.1681 mediante el método Louvain, aclarando un poco más el comportamiento de la publicación de artículos en el departamento de Quimica.

SUBGRAFO CON AGRUPAMIENTO PARA EL DEP DE QUIMICA kc louvain - Mod = 0.1681

Figura 28: Agrupamiento profesores del Departamento de Quimica

Asortatividad

Finalmente, para caracterizar la asortatividad de la red, es decir, qué tan propensos son los nodos a crear vínculos con nodos con características similares, se obtuvo lo siguiente: respecto al grado y la fuerza de cada nodo, el coeficiente de asortatividad fue de -0.027 y 0, respectivamente. Esto indica que los profesores tienen temas en común con otros profesores, independientemente de si estos tienen el mismo número de profesores o el número total de temas en común con todos los autores al momento de publicar.

2. Comparativa entre Departamentos

Para comprender mejor las dinámicas de colaboración en la Facultad de Ciencias, se ha realizado una comparación entre los departamentos de Física, Estadística, Química, Biología, Matemáticas, Farmacia y Geociencias.

A continuación, se presentan las principales diferencias y similitudes observadas en los análisis de redes de cada departamento.

2.1. Estructura de la Red

Departamento	Nodos	Enlaces	Densidad
Estadística	44	706	0.746
Física	84	2607	0.747
Química	119	6237	0.888
Biología	63	1584	0.811
Matemáticas	88	2148	0.561
Farmacia	51	1031	0.808
Geociencias	42	510	0.592

Tabla 36: Comparación de la estructura de la red

La red del departamento de Química muestra una mayor densidad comparada con los demás departamentos, indicando una mayor frecuencia relativa de conexiones entre profesores. Esto sugiere una colaboración más estrecha en Química.

2.2. Caracterización de Vértices

En términos de grado y fuerza de los vértices, las tablas comparativas muestran que:

Departamento	Máximo Grado	Máxima Fuerza
Estadística	40	301
Física	76	779
Química	115	1445
Biología	60	550
Matemáticas	71	627
Farmacia	47	539
Geociencias	36	381

Tabla 37: Comparación de grado y fuerza

Los profesores de Química no solo tienen temas en común con mayor frecuencia (máximo grado), sino que también tienen un mayor número total de temas en común (máxima fuerza), lo cual resalta su intensa actividad colaborativa.

2.3. Centralidad

Las medidas de centralidad destacan cómo se distribuyen las colaboraciones dentro de los departamentos:

Departamento	Cercanía (máxima)	Intermediación (máxima)	Propia (máxima)
Estadística	0.300	0.080	1.000
Física	0.885	0.086	1.000
Química	0.483	0.127	1.000
Biología	0.870	0.060	1.000
Matemáticas	1.000	0.212	1.000
Farmacia	0.431	0.145	1.000
Geociencias	0.623	0.141	1.000

Tabla 38: Comparación de centralidades

La centralidad por cercanía es mayor en Matemáticas y Física, indicando que los profesores están mejor conectados a través de caminos cortos, facilitando la rápida difusión de información. Por otro lado, la centralidad por interme-

diación es mayor en Matemáticas y Química, sugiriendo que algunos profesores actúan como puentes cruciales en la red.

2.4. Conectividad y Agrupamiento

Departamento	Número de clanes	Densidad	Modularidad
Estadística	36	0.746	0.2767
Física	69	0.747	0.2171
Química	106	0.888	0.1681
Biología	53	0.811	0.2743
Matemáticas	56	0.561	0.2603
Farmacia	42	0.808	0.2328
Geociencias	25	0.592	0.1976

Tabla 39: Comparación de conectividad y agrupamiento

Química presenta el número clan mayor, lo que denota una alta conectividad. Sin embargo, su modularidad es la más baja, indicando que sus subgrupos no están tan bien separados como en otros departamentos. Estadística y Biología muestran una estructura más modular, permitiendo una clara identificación de subgrupos colaborativos.

2.5. Asortatividad

Departamento	Grado	Fuerza
Estadística	-0.007	-0.055
Física	0.032	-0.001
Química	-0.027	0.000
Biología	-0.026	-0.029
Matemáticas	0.077	0.000
Farmacia	-0.025	0.000
Geociencias	0.022	0.000

Tabla 40: Comparación de asortatividad

La asortatividad muestra cómo los nodos tienden a conectar con nodos similares. Matemáticas presenta una ligera tendencia positiva en cuanto al grado, sugiriendo que los profesores con un número similar de conexiones tienden a colaborar entre sí. En contraste, Estadística, Biología y Química muestran tendencias negativas o neutras, indicando que la colaboración no depende del número de conexiones.

3. Conclusiones Comparativas

La comparación revela diferencias significativas en las redes de colaboración de los departamentos estudiados. Química destaca por su alta densidad y fuerte interconexión, mientras que Matemáticas y Física muestran redes más cohesivas con alta cercanía entre nodos. Estadística y Biología, aunque con menor densidad, tienen estructuras más modulares que permiten una clara identificación de subgrupos colaborativos. Estas diferencias ofrecen una visión integral de cómo las dinámicas de colaboración varían entre disciplinas, proporcionando una base para futuras estrategias de fortalecimiento de redes académicas.