On the properties $\alpha - z$ Rényi divergences on general von Neumann algebras

Fumio Hiai and Anna Jenčová

February 26, 2024

1 Introduction

2 Preliminaries

2.1 Basic definitions

Let \mathcal{M} be a von Neumann algebra and let \mathcal{M}^+ be the cone of positive elements in \mathcal{M} . We denote the predual by \mathcal{M}_* , its positive part by \mathcal{M}_*^+ and the set of normal states by $\mathfrak{S}_*(\mathcal{M})$. For $\psi \in \mathcal{M}_*^+$, we will denote by $s(\psi)$ the support projection of ψ .

For $0 , let <math>L_p(\mathcal{M})$ be the Haagerup L_p -space over \mathcal{M} and let $L_p(\mathcal{M})$ its positive cone, [4]. We will use the identifications $\mathcal{M} \simeq L_\infty(\mathcal{M})$, $\mathcal{M}_* \ni \psi \leftrightarrow h_\psi \in L_1(\mathcal{M})$ and the notation $\operatorname{Tr} h_\psi = \psi(1)$ for the trace in $L_1(\mathcal{M})$. It this way, \mathcal{M}_*^+ is identified with the positive cone $L_1(\mathcal{M})^+$ and $\mathfrak{S}_*(\mathcal{M})$ with subset of elements in $L_1(\mathcal{M})^+$ with unit trace. Precise definitions and further details on the spaces $L_p(\mathcal{M})$ can be found in the notes [16].

2.2 The $\alpha - z$ -Rényi divergences

In [10, 11], the $\alpha - z$ -Rényi divergence for $\psi, \varphi \in \mathcal{M}_*^+$ was defined as follows:

Definition 2.1. Let $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$ and let $\alpha, z > 0$, $\alpha \neq 1$. The $\alpha - z$ -Rényi divergence is defined as

$$D_{\alpha,z}(\psi||\varphi) := \frac{1}{\alpha - 1} \log \frac{Q_{\alpha,z}(\psi||\varphi)}{\psi(1)},$$

where

$$Q_{\alpha,z} = \begin{cases} \operatorname{Tr} \left(h_{\varphi}^{\frac{1-\alpha}{2z}} h_{\psi}^{\frac{\alpha}{z}} h_{\varphi}^{\frac{1-\alpha}{2z}} \right)^{z}, & \text{if } 0 < \alpha < 1 \\ \|x\|_{z}^{z}, & \text{if } \alpha > 1 \text{ and} \\ h_{\psi}^{\frac{\alpha}{z}} = h_{\varphi}^{\frac{\alpha-1}{2z}} x h_{\varphi}^{\frac{\alpha-1}{2z}}, & \text{with } x \in s(\varphi) L_{z}(\mathcal{M}) s(\varphi) \\ \infty & \text{otherwise.} \end{cases}$$

In the case $\alpha > 1$, the following alternative form will be useful.

Lemma 2.2. [10, Lemma 7] Let $\alpha > 1$ and $\psi, \varphi \in \mathcal{M}_*^+$. Then $Q_{\alpha,z}(\psi \| \varphi) < \infty$ if and only if there is some $y \in L_{2z}(\mathcal{M})s(\varphi)$ such that

$$h_{\psi}^{\frac{\alpha}{2z}} = y h_{\varphi}^{\frac{\alpha-1}{2z}}.$$

Moreover, in this case, such y is unique and we have $Q_{\alpha,z}(\psi \| \varphi) = \|y\|_{2z}^{2z}$.

The standard Rényi divergence [5, 6, 13] is contained in this range as $D_{\alpha}(\psi \| \varphi) = D_{\alpha,1}(\psi \| \varphi)$. The sandwiched Rényi divergence is obtained as $\tilde{D}_{\alpha}(\psi \| \varphi) = D_{\alpha,\alpha}(\psi \| \varphi)$, see [1, 6–8] for some alternative definitions and properties of \tilde{D}_{α} . The definition in [7] and [8] is based on the Kosaki interpolation spaces $L_p(\mathcal{M}, \varphi)$ with respect to a state [12]. These spaces and complex interpolation method will be used frequently also in the present work.

Many of the properties of $D_{\alpha,z}(\psi||\varphi)$ were extended from the finite dimensional case in [10]. In particular, a variational expression for $Q_{\alpha,z}$ in the case $0 < \alpha < 1$ was proved there, see part (i) in the theorem below. We will prove a similar variational expression also in the case when $\alpha > 1$.

Theorem 2.3 (Variational expressions). Let $\psi, \varphi \in \mathcal{M}_*^+, \psi \neq 0$.

(i) Let $0 < \alpha < 1$ and $\max{\{\alpha, 1 - \alpha\}} \le z$. Then

$$Q_{\alpha,z}(\psi \| \varphi) = \inf_{a \in \mathcal{M}^{++}} \left\{ \alpha \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha}} \right) + (1 - \alpha) \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\varphi}^{\frac{1 - \alpha}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{1 - \alpha}} \right) \right\}.$$

(ii) Let $1 < \alpha$, $\max\{\frac{\alpha}{2}, \alpha - 1\} \le z$. Then

$$Q_{\alpha,z}(\psi \| \varphi) = \sup_{a \in \mathcal{M}_+} \left\{ \alpha \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha - 1}} \right) \right\}.$$

Proof. For part (i) see [10, Theorem 1 (vi)]. The inequality \geq in part (ii) holds for all α and z and was proved in [10, Theorem 2 (vi)]. We now prove the opposite inequality.

Assume first that $Q_{\alpha,z}(\psi||\varphi) < \infty$, so that there is some $x \in s(\varphi)L_z(\mathcal{M})^+s(\varphi)$ such that $h_{\psi}^{\frac{\alpha}{z}} = h_{\varphi}^{\frac{\alpha-1}{2z}}xh_{\varphi}^{\frac{\alpha-1}{2z}}$. Plugging this into the right hand side, we obtain

$$\begin{split} \sup_{a \in \mathcal{M}_+} \left\{ & \alpha \mathrm{Tr} \, \left((a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \, \left((a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}})^{\frac{z}{\alpha - 1}} \right) \right\} \\ &= \sup_{a \in \mathcal{M}_+} \left\{ & \alpha \mathrm{Tr} \, \left((a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} x h_{\varphi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \, \left((a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}})^{\frac{z}{\alpha - 1}} \right) \right\} \\ &= \sup_{a \in \mathcal{M}_+} \left\{ & \alpha \mathrm{Tr} \, \left((x^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} a h_{\varphi}^{\frac{\alpha - 1}{2z}} x^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \, \left((h_{\varphi}^{\frac{\alpha - 1}{2z}} a h_{\varphi}^{\frac{\alpha - 1}{2z}})^{\frac{z}{\alpha - 1}} \right) \right\} \\ &= \sup_{w \in L_{\frac{\alpha - 1}{2z - 1}}} (\mathcal{M})^{+} \left\{ & \alpha \mathrm{Tr} \, \left((x^{\frac{1}{2}} w x^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \, \left(w^{\frac{z}{\alpha - 1}} \right) \right\}, \end{split}$$

where we used the fact that Tr $((h^*h)^p)$ = Tr $((hh^*)^p)$ for p > 0 and $h \in L_{\frac{p}{2}}(\mathcal{M})$, and Lemma A.1. Putting $w = x^{\alpha-1}$ we get

$$\sup_{w \in L_{\frac{z}{\alpha-1}}(\mathcal{M})^+} \left\{ \alpha \operatorname{Tr} \left((x^{\frac{1}{2}} w x^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr} \left(w^{\frac{z}{\alpha-1}} \right) \right\} \ge \operatorname{Tr} (x^z) = \|x\|_z^z = Q_{\alpha,z}(\psi \| \varphi).$$

This finishes the proof in the case that $Q_{\alpha,z}(\psi||\varphi) < \infty$. Note that this holds if $\psi \leq \lambda \varphi$ for some $\lambda > 0$. Indeed, since $\frac{\alpha}{2z} \in (0,1]$ by the assumption, we then have

$$h_{\psi}^{\frac{\alpha}{2z}} \le \lambda^{\frac{\alpha}{2z}} h_{\varphi}^{\frac{\alpha}{2z}},$$

hence by [6, Lemma A.58] there is some $b \in \mathcal{M}$ such that

$$h_{\psi}^{\frac{\alpha}{2z}} = bh_{\varphi}^{\frac{\alpha}{2z}} = yh_{\varphi}^{\frac{\alpha-1}{2z}},$$

where $y = bh_{\varphi}^{\frac{1}{2z}} \in L_{2z}(\mathcal{M})$. By Lemma 2.2 we get $Q_{\alpha,z}(\psi \| \varphi) = \|y\|_{2z}^{2z} < \infty$.

In the general case, the variational expression holds for $Q_{\alpha,z}(\psi \| \varphi + \epsilon \psi)$ for all $\epsilon > 0$, so that we have

$$Q_{\alpha,z}(\psi \| \varphi + \epsilon \psi) = \sup_{a \in \mathcal{M}_+} \left\{ \alpha \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\varphi + \epsilon \psi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha - 1}} \right) \right\}$$

$$\leq \sup_{a \in \mathcal{M}_+} \left\{ \alpha \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha - 1}} \right) \right\},$$

where the inequality above follows by Lemma A.2. Therefore, since lower semicontinuity [10, Theorem 2 (iv)] gives

$$Q_{\alpha,z}(\psi \| \varphi) \le \liminf_{\epsilon \searrow 0} Q_{\alpha,z}(\psi \| \varphi + \epsilon \psi)$$

the desired inequality follows.

Lemma 2.4. Assume that $\lambda^{-1}\varphi \leq \psi \leq \lambda \varphi$ for some $\lambda > 0$. Then the infimum in the variational expression in Theorem 2.3(i) is attained at a unique element $\bar{a} \in \mathcal{M}^{++}$. This element satisfies

$$h_{\psi}^{\frac{\alpha}{2z}} a h_{\psi}^{\frac{\alpha}{2z}} = \left(h_{\psi}^{\frac{\alpha z}{z}} h_{\varphi}^{\frac{1-\alpha}{z}} h_{\psi}^{\frac{\alpha}{2z}} \right)^{\alpha} \tag{1}$$

$$h_{\varphi}^{\frac{1-\alpha}{2z}} a^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} = \left(h_{\varphi}^{\frac{1-\alpha}{2z}} h_{\psi}^{\frac{\alpha}{z}} h_{\varphi}^{\frac{1-\alpha}{2z}} \right)^{1-\alpha}. \tag{2}$$

Proof. We may assume that φ and hence also ψ is faithful. Following the proof of [10, Theorem 1 (vi)], we may use the assumptions and [6, Lemma A.58] to show that there are $b, c \in \mathcal{M}$ such that

$$h_{\varphi}^{\frac{1-\alpha}{2z}} = b \left(h_{\varphi}^{\frac{1-\alpha}{2z}} h_{\psi}^{\frac{\alpha}{z}} h_{\varphi}^{\frac{1-\alpha}{2z}} \right)^{\frac{1-\alpha}{2}}, \qquad \left(h_{\varphi}^{\frac{1-\alpha}{2z}} h_{\psi}^{\frac{\alpha}{z}} h_{\varphi}^{\frac{1-\alpha}{2z}} \right)^{\frac{1-\alpha}{2}} = c h_{\varphi}^{\frac{1-\alpha}{2z}}. \tag{3}$$

Put $\bar{a} := bb^* \in \mathcal{M}^{++}$, then we have $\bar{a}^{-1} = c^*c$ and \bar{a} is indeed a minimizer of

$$Q_{\alpha,z}(\psi\|\varphi) = \inf_{a \in \mathcal{M}^{++}} \left\{ \alpha \left\| h_{\psi}^{\frac{\alpha}{2z}} a h_{\psi}^{\frac{\alpha}{2z}} \right\|_{\frac{z}{\alpha}}^{\frac{z}{\alpha}} + (1 - \alpha) \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} a^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}}^{\frac{z}{1-\alpha}} \right\}.$$
 (4)

We next observe that such minimizer is unique. Indeed, suppose that the infimum is attained at some $a_1, a_2 \in \mathcal{M}^{++}$. Let $a_0 := (a_1 + a_2)/2$. Since the map $L^p(\mathcal{M}) \ni k \mapsto ||k||_p^p$ is convex for any $p \ge 1$ and $a_0^{-1} \le (a_1^{-1} + a_2^{-1})/2$, we have

$$\begin{split} \left\| h_{\psi}^{\frac{\alpha}{2z}} a_0 h_{\psi}^{\frac{\alpha}{2z}} \right\|_{\frac{z}{\alpha}}^{\frac{z}{\alpha}} &\leq \frac{1}{2} \left\{ \left\| h_{\psi}^{\frac{\alpha}{2z}} a_1 h_{\psi}^{\frac{\alpha}{2z}} \right\|_{\frac{z}{\alpha}}^{\frac{z}{\alpha}} + \left\| h_{\psi}^{\frac{\alpha}{2z}} a_2 h_{\psi}^{\frac{\alpha}{2z}} \right\|_{\frac{z}{\alpha}}^{\frac{z}{\alpha}} \right\}, \\ \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} a_0^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}}^{\frac{z}{1-\alpha}} &\leq \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} \left(\frac{a_1^{-1} + a_2^{-1}}{2} \right) h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}}^{\frac{z}{1-\alpha}} \\ &\leq \frac{1}{2} \left\{ \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} a_1^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}}^{\frac{z}{1-\alpha}} + \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} a_2^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}}^{\frac{z}{1-\alpha}} \right\}. \end{split}$$

Hence we have

$$\left\| h_{\varphi}^{\frac{1-\alpha}{2z}} a_0^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}} = \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} \left(\frac{a_1^{-1} + a_2^{-1}}{2} \right) h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}},$$

which implies that $a_0^{-1} = \frac{a_1^{-1} + a_2^{-1}}{2}$, as easily verified. From this we easily have $a_1 = a_2$. The equality (2) is obvious from the second equality in (3) and $\bar{a}^{-1} = c^*c$. Since $Q_{\alpha,z}(\psi \| \varphi) = 0$

The equality (2) is obvious from the second equality in (3) and $\bar{a}^{-1} = c^*c$. Since $Q_{\alpha,z}(\psi||\varphi) = Q_{1-\alpha,z}(\varphi||\psi)$, we see by uniqueness that the minimizer of the infimum expression for $Q_{1-\alpha,z}(\varphi||\psi)$ (instead of (4)) is \bar{a}^{-1} (instead of \bar{a}). This says that (1) is the equality corresponding to (2) when ψ, φ, α are replaced with $\varphi, \psi, 1-\alpha$, respectively.

3 Data processing inequality and reversibility of channels

Let $\gamma: \mathcal{N} \to \mathcal{M}$ be a normal positive unital map. Then the predual of γ defines a positive linear map $\gamma_*: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ that preserves the trace, acting as

$$L_1(\mathcal{M}) \ni h_{\rho} \mapsto h_{\rho \circ \gamma} \in L_1(\mathcal{N}).$$

The support of γ will be denoted by $s(\gamma)$, recall that this is defined as the largest projection $p \in \mathcal{N}$ such that $\gamma(p) = 1$. For any $\rho \in \mathcal{M}_{*}^{+}$ we clearly have $s(\rho \circ \gamma) \leq s(\gamma)$, with equality if ρ is faithful. It follows that γ_{*} maps $L_{1}(\mathcal{M})$ to $s(\gamma)L_{1}(\mathcal{N})s(\gamma) \equiv L_{1}(s(\gamma)\mathcal{N}s(\gamma))$. For any $\rho \in \mathcal{M}_{+}^{*}$, $\rho \neq 0$, the map

$$s(\gamma)\mathcal{N}s(\gamma) \to s(\rho)\mathcal{M}s(\rho), \qquad a \mapsto s(\rho)\gamma(a)s(\rho)$$

is a faithful normal positive unital map, so using such restrictions we may always assume that both ρ and $\rho \circ \gamma$ are faithful.

The Petz dual of γ with respect to a faithful $\rho \in \mathcal{M}_*^+$ is a map $\gamma_\rho^* : \mathcal{M} \to \mathcal{N}$, introduced in [15]. It was proved that it is again normal, positive and unital, in addition, it is *n*-positive whenever γ is. As explained in [7] γ_ρ^* is determined by the equality

$$(\gamma_{\rho}^*)_* (h_{\rho \circ \gamma}^{\frac{1}{2}} b h_{\rho \circ \gamma}^{\frac{1}{2}}) = h_{\rho}^{\frac{1}{2}} \gamma(b) h_{\rho}^{\frac{1}{2}}, \tag{5}$$

for all $b \in \mathcal{N}^+$, here $(\gamma_{\rho}^*)_*$ is the predual map of γ_{ρ}^* . We also have

$$(\gamma_{\rho}^*)_*(h_{\rho\circ\gamma}) = (\gamma_{\rho}^*)_* \circ \gamma_*(h_{\rho}) = h_{\rho}$$

and $(\gamma_{\rho}^*)_{\rho \circ \gamma}^* = \gamma$.

3.1 Data processing inequality

In this paragraph we prove the data processing inequality (DPI) for $D_{\alpha,z}$ with respect to normal positive unital maps. In the case of the sandwiched divergences \tilde{D}_{α} with $1/2 \leq \alpha \neq 1$, DPI was proved in [7, 8], see also [1] for an alternative proof in the case when the maps are also completely positive.

Lemma 3.1. Let $\gamma: \mathcal{N} \to \mathcal{M}$ be a normal positive unital map and let $\rho \in \mathcal{M}_*^+$, $b \in \mathcal{N}^+$.

(i) If
$$p \in [1/2, 1)$$
, then

$$\|h_{\rho \circ \gamma}^{\frac{1}{2p}} b h_{\rho \circ \gamma}^{\frac{1}{2p}}\|_{p} \leq \|h_{\rho}^{\frac{1}{2p}} \gamma(b) h_{\rho}^{\frac{1}{2p}}\|_{p}.$$

(ii) If $p \in [1, \infty]$, the inequality reverses.

Proof. Let us denote $\beta := \gamma_{\rho}^*$ and let $\omega \in \mathcal{M}_*^+$ be such that $h_{\omega} := h_{\rho \circ \gamma}^{\frac{1}{2}} b h_{\rho \circ \gamma}^{\frac{1}{2}} \in L_1(\mathcal{N})^+$. Then β is a normal positive unital map and we have

$$\beta_*(h_\omega) = h_\rho^{\frac{1}{2}} \gamma(b) h_\rho^{\frac{1}{2}}, \qquad \beta_*(h_{\rho \circ \gamma}) = h_\rho.$$

Let $p \in [1/2, 1)$, then

$$\begin{split} \|h_{\rho}^{\frac{1}{2p}}\gamma(b)h_{\rho}^{\frac{1}{2p}}\|_{p}^{p} &= \|h_{\rho}^{\frac{1-p}{2p}}\beta_{*}(h_{\omega})h_{\rho}^{\frac{1-p}{2p}}\|_{p}^{p} = Q_{p,p}(\beta_{*}(h_{\omega})\|h_{\rho}) = Q_{p,p}(\beta_{*}(h_{\omega})\|\beta_{*}(h_{\rho\circ\gamma})) \\ &\geq Q_{p,p}(h_{\omega}\|h_{\rho\circ\gamma}) = \|h_{\rho\circ\gamma}^{\frac{1-p}{2p}}h_{\omega}h_{\rho\circ\gamma}^{\frac{1-p}{2p}}\|_{p}^{p} = \|h_{\rho\circ\gamma}^{\frac{1}{2p}}bh_{\rho\circ\gamma}^{\frac{1}{2p}}\|_{p}^{p}. \end{split}$$

Here we have used the DPI for the sandwiched Rényi divergence $D_{\alpha,\alpha}$ for $\alpha \in [1/2, 1)$, [8, Theorem 4.1]. This proves (i). The case (ii) was proved in [10] (see Eq. (22) therein), using the relation of the sandwiched Rényi divergence to the Kosaki L_p norms. In our setting, the proof can be written as

$$\|h_{\rho}^{\frac{1}{2p}}\gamma(b)h_{\rho}^{\frac{1}{2p}}\|_{p}^{p} = Q_{p,p}(h_{\rho}^{\frac{1}{2}}\gamma(b)h_{\rho}^{\frac{1}{2}}\|h_{\rho}) = Q_{p,p}(\beta_{*}(h_{\omega})\|\beta_{*}(h_{\rho\circ\gamma}))$$

$$\leq Q_{p,p}(h_{\omega}\|h_{\rho\circ\gamma}) = \|h_{\rho\circ\gamma}^{\frac{1}{2p}}bh_{\rho\circ\gamma}^{\frac{1}{2p}}\|_{p}^{p},$$

here the inequality follows from the DPI for sandwiched Rényi divergence $D_{\alpha,\alpha}$ with $\alpha > 1$, [7].

Theorem 3.2 (DPI). Let $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$ and let $\gamma : \mathcal{N} \to \mathcal{M}$ be a normal positive unital map. Assume either of the following conditions:

- (i) $0 < \alpha < 1$, $\max{\alpha, 1 \alpha} \le z$
- (ii) $\alpha > 1$, $\max{\{\alpha/2, \alpha 1\}} \le z \le \alpha$.

Then we have

$$D_{\alpha,z}(\psi \circ \gamma \| \varphi \circ \gamma) \le D_{\alpha,z}(\psi \| \varphi).$$

Proof. Under the conditions (i), the DPI was proved in [10, Theorem 1 (viii)]. Since parts of this proof will be used below, we repeat it here.

Assume the conditions in (i) and put $p := \frac{z}{\alpha}$, $r := \frac{z}{1-\alpha}$, so that $p, r \ge 1$. For any $b \in \mathcal{N}^{++}$, we have by the Choi inequality [2] that $\gamma(b)^{-1} \le \gamma(b^{-1})$, so that

$$\|h_{\varphi}^{\frac{1}{2r}}\gamma(b)^{-1}\varphi^{\frac{1}{2r}}\|_{r} \leq \|h_{\varphi}^{\frac{1}{2r}}\gamma(b^{-1})\varphi^{\frac{1}{2r}}\|_{r}.$$

Using the variational expression in Theorem 2.3 (i), we have

$$Q_{\alpha,z}(\psi \| \varphi) \le \alpha \|h_{\psi}^{\frac{1}{2p}} \gamma(b) h_{\psi}^{\frac{1}{2p}} \|_{p}^{p} + (1 - \alpha) \|h_{\varphi}^{\frac{1}{2r}} \gamma(b)^{-1} h_{\varphi}^{\frac{1}{2r}} \|_{r}^{r}$$

$$(6)$$

$$\leq \alpha \|h_{\psi}^{\frac{1}{2p}} \gamma(b) h_{\psi}^{\frac{1}{2p}} \|_{p}^{p} + (1 - \alpha) \|h_{\varphi}^{\frac{1}{2r}} \gamma(b^{-1}) h_{\varphi}^{\frac{1}{2r}} \|_{r}^{r} \tag{7}$$

$$\alpha \|h_{\psi \circ \gamma}^{\frac{1}{2p}} b h_{\psi \circ \gamma}^{\frac{1}{2p}} \|_{p}^{p} + (1 - \alpha) \|h_{\varphi \circ \gamma}^{\frac{1}{2r}} b^{-1} h_{\varphi \circ \gamma}^{\frac{1}{2r}} \|_{r}^{r}, \tag{8}$$

here we used Lemma 3.1 (ii) for the last inequality. Since this holds for all $b \in \mathcal{N}^++$, it follows that $Q_{\alpha,z}(\psi \| \varphi) \leq Q_{\alpha}(\psi \circ \gamma \| \varphi \circ \gamma)$, which proves the DPI in this case.

Assume next the condition (ii), and put $p := \frac{z}{\alpha}$, $q := \frac{z}{\alpha-1}$, so that $p \in [1/2, 1)$ and $q \ge 1$. Using Theorem 2.3 (ii), we get for any $b \in \mathcal{N}^+$,

$$Q_{\alpha,z}(\psi \| \varphi) \ge \alpha \|h_{\psi}^{\frac{1}{2p}} \gamma(b) h_{\psi}^{\frac{1}{2p}} \|_{p}^{p} - (\alpha - 1) \|h_{\varphi}^{\frac{1}{2q}} \gamma(b) h_{\varphi}^{\frac{1}{2q}} \|_{q}^{q}$$

$$\ge \alpha \|h_{\psi \circ \gamma}^{\frac{1}{2p}} b h_{\psi \circ \gamma}^{\frac{1}{2p}} \|_{p}^{p} - (\alpha - 1) \|h_{\varphi \circ \gamma}^{\frac{1}{2r}} b h_{\varphi \circ \gamma}^{\frac{1}{2q}} \|_{q}^{q},$$

here we used both (i) and (ii) in Lemma 3.1. Again, since this holds for all $b \in \mathcal{N}^+$, we get the desired inequality.

3.2 Martingale convergence

3.3 Equality in DPI and reversibility of channels

In what follows, a channel is a normal 2-positive unital map $\gamma: \mathcal{N} \to \mathcal{M}$.

Definition 3.3. Let $\gamma : \mathcal{N} \to \mathcal{M}$ be a channel and let $\mathcal{S} \subset \mathcal{M}_*^+$. We say that γ is reversible (or sufficient) with respect to \mathcal{S} if there exists a channel $\beta : \mathcal{M} \to \mathcal{N}$ such that

$$\rho \circ \gamma \circ \beta = \rho, \qquad \forall \rho \in \mathcal{S}.$$

The notion of sufficient channels was introduced by Petz [14, 15], who also obtained a number of conditions characterizing this situation. It particular, it was proved in [15] that sufficient channels can be characterized by equality in DPI for the relative entropy $D(\psi \| \varphi)$: if $D(\psi \| \varphi) < \infty$, then a channel γ is sufficient with respect to $\{\psi, \varphi\}$ if and only if

$$D(\psi \circ \gamma \| \varphi \circ \gamma) = D(\psi \| \varphi).$$

This result has been proved for a number of other divergence measures, including the standard Rényi divergences $D_{\alpha,1}$ with $0 < \alpha < 2$ ([]) and the sandwiched Rényi divergences $D_{\alpha,\alpha}$ for $\alpha > 1/2$ ([7, 8]). Our aim in this section is to prove that a similar statement holds for $D_{\alpha,z}$ for values of the parameters strictly contained in the DPI bounds of Theorem 3.2.

Throughout this section, we will assume that $\psi, \varphi \in \mathcal{M}_*^+$ are such that $s(\psi) \leq s(\varphi)$. As noted above, we may replace the channel γ by its restriction so that we may assume that both φ and $\varphi_0 := \varphi \circ \gamma$ are faithful.

Another important result of [15] shows that the Petz dual γ_{φ}^* is a universal recovery map, in the sense given in the proposition below.

Proposition 1. Let $\varphi \in \mathcal{M}_*^+$ be faithful and let $\gamma : \mathcal{N} \to \mathcal{M}$ be a faithful channel. Then for any $\psi \in \mathcal{M}_*^+$, γ is reversible with respect to $\{\psi, \varphi\}$ if and only if $\psi \circ \gamma \circ \gamma_{\varphi}^* = \psi$.

Consequently, there is a faithful normal conditional expectation \mathcal{E} on \mathcal{M} such that $\varphi \circ \mathcal{E} = \varphi$ and γ is sufficient with respect to $\{\psi, \varphi\}$ if and only if also $\psi \circ \mathcal{E} = \psi$.

Note that the range of the conditional expectation \mathcal{E} in the above proposition is the set of fixed points of the channel $\gamma \circ \gamma_{\varphi}^*$.

3.3.1 The case $\alpha \in (0,1)$

Theorem 3.4. Let $0 < \alpha < 1$ and $\alpha, 1 - \alpha \leq z$ where at least one of the inequalities is strict. Let $\psi, \varphi \in \mathcal{M}_*^+$ be such that $s(\psi) \leq s(\varphi)$. Then γ is reversible with respect to $\{\psi, \varphi\}$ if and only if

$$D_{\alpha,z}(\psi\|\varphi) = D_{\alpha,z}(\psi \circ \gamma\|\varphi \circ \gamma).$$

Proof. Let us denote $\psi_0 := \psi \circ \gamma$, $\varphi_0 := \varphi \circ \gamma$. Using restrictions as before, we may assume that both φ and φ_0 are faithful.

We first treat the case when $\lambda^{-1}\varphi \leq \psi \leq \lambda \varphi$ for some $\lambda > 0$, then ψ_0 and φ_0 also satisfy this condition an all the states $\psi, \varphi, \psi_0, \varphi_0$ are faithful. By Theorem 2.3 (i), there are some $\bar{a} \in \mathcal{M}^{++}$ and $\bar{a}_0 \in \mathcal{N}^{++}$ such that the infimum in the variational formula for $D_{\alpha,z}(\psi \| \varphi)$ resp. $D_{\alpha,z}(\psi_0 \| \varphi_0)$ is attained. Using the inequalities in (6) - (8), we obtain

$$Q_{\alpha,z}(\psi \| \varphi) \leq \alpha \|h_{\psi}^{\frac{1}{2p}} \gamma(\bar{a}_0) h_{\psi}^{\frac{1}{2p}} \|_p^p + (1-\alpha) \|h_{\varphi}^{\frac{1}{2r}} \gamma(\bar{a}_0)^{-1} h_{\varphi}^{\frac{1}{2r}} \|_r^r$$

$$\leq \alpha \|h_{\psi_0}^{\frac{1}{2p}} \bar{a}_0 h_{\psi_0}^{\frac{1}{2p}} \|_p^p + (1-\alpha) \|h_{\varphi_0}^{\frac{1}{2r}} \bar{a}_0^{-1} h_{\varphi_0}^{\frac{1}{2r}} \|_r^r$$

$$= Q_{\alpha,z}(\psi_0 \| \varphi_0),$$

where we again put $p = \frac{z}{\alpha}$, $r = \frac{z}{1-\alpha}$. Assume $D_{\alpha,z}(\psi \| \varphi) = D_{\alpha,z}(\psi_0 \| \varphi_0)$, then all the above inequalities must be equalities.

This has several consequences. First, by uniqueness of \bar{a} in Theorem 2.3 (i), we have $\gamma(\bar{a}_0) = \bar{a}$. Furthermore, by Lemma 3.1 (ii), we obtain that

$$\|h_{\psi}^{\frac{1}{2p}}\gamma(\bar{a}_0)h_{\psi}^{\frac{1}{2p}}\|_p^p = \|h_{\psi_0}^{\frac{1}{2p}}\bar{a}_0h_{\psi_0}^{\frac{1}{2p}}\|_p^p, \qquad \|h_{\varphi}^{\frac{1}{2r}}\gamma(\bar{a}_0)^{-1}h_{\varphi}^{\frac{1}{2r}}\|_r^r = \|h_{\varphi_0}^{\frac{1}{2r}}\bar{a}_0^{-1}h_{\varphi_0}^{\frac{1}{2r}}\|_r^r.$$

By the assumptions, at least one of p and r must be strictly larger than 1. Assume that r>1 (the case p>1 is similar, even slightly easier). Since $h_{\varphi}^{\frac{1}{2r}}\gamma(\bar{a}_0)^{-1}h_{\varphi}^{\frac{1}{2r}}\leq h_{\varphi}^{\frac{1}{2r}}\gamma(\bar{a}_0^{-1})h_{\varphi}^{\frac{1}{2r}}$, Lemma 3.1 and the equality above imply that

$$\|h_{\varphi}^{\frac{1}{2r}}\gamma(\bar{a}_0)^{-1}h_{\varphi}^{\frac{1}{2r}}\|_r^r = \|h_{\varphi}^{\frac{1}{2r}}\gamma(\bar{a}_0^{-1})h_{\varphi}^{\frac{1}{2r}}\|_r^r = \|h_{\varphi}^{\frac{1}{2r}}\bar{a}_0^{-1}h_{\varphi}^{\frac{1}{2r}}\|_r^r. \tag{9}$$

Using [3, Lemma 5.1], this shows that we must have

$$h_{\varphi}^{\frac{1}{2r}}\bar{a}^{-1}h_{\varphi}^{\frac{1}{2r}}=h_{\varphi}^{\frac{1}{2r}}\gamma(\bar{a}_0)^{-1}h_{\varphi}^{\frac{1}{2r}}=h_{\varphi}^{\frac{1}{2r}}\gamma(\bar{a}_0^{-1})h_{\varphi}^{\frac{1}{2r}}.$$

Put $h_{\omega} := h_{\varphi}^{\frac{1}{2}} \bar{a}^{-1} h_{\varphi}^{\frac{1}{2}}, h_{\omega_0} := h_{\varphi_0}^{\frac{1}{2}} \bar{a}_0^{-1} h_{\varphi_0}^{\frac{1}{2}}$. Then we have

$$(\gamma_{\varphi}^*)_*(h_{\omega_0}) = h_{\varphi}^{\frac{1}{2}} \gamma(\bar{a}_0^{-1}) h_{\varphi}^{\frac{1}{2}} = h_{\varphi}^{\frac{1}{2}} \gamma(\bar{a}_0)^{-1} h_{\varphi}^{\frac{1}{2}} = h_{\varphi}^{\frac{1}{2}} \bar{a}^{-1} h_{\varphi}^{\frac{1}{2}} = h_{\omega}.$$
 (10)

Using (9), we obtain

$$Q_{r,r}((\gamma_{\varphi}^*)_*(h_{\omega_0})\|(\gamma_{\varphi}^*)_*(h_{\varphi_0})) = \|h_{\varphi}^{\frac{1}{2r}}\gamma(\bar{a}_0^{-1})h_{\varphi}^{\frac{1}{2r}}\|_r^r = \|h_{\varphi_0}^{\frac{1}{2r}}\bar{a}_0^{-1}h_{\varphi_0}^{\frac{1}{2r}}\|_r^r = Q_{r,r}(h_{\omega_0}\|h_{\varphi_0}),$$

which by the properties of the sandwiched Rényi divergence [7, Thm.] implies that γ_{φ}^* is sufficient with respect to $\{\omega_0, \varphi_0\}$. By Proposition 1 and the fact that the Petz dual $(\gamma_{\varphi}^*)_{\varphi_0}^*$ is γ itself, this is equivalent to

$$\gamma_* \circ (\gamma_{\varphi}^*)_*(h_{\omega_0}) = h_{\omega_0},$$

so that by (10),

$$(\gamma_{\varphi}^*)_* \circ \gamma_*(h_{\omega}) = (\gamma_{\varphi}^*)_* \circ \gamma_* \circ (\gamma_{\varphi}^*)_*(h_{\omega_0}) = (\gamma_{\varphi}^*)_*(h_{\omega_0}) = h_{\omega}.$$

Hence γ is sufficient with respect to $\{\omega, \varphi\}$. Let \mathcal{E} be the faithful normal conditional expectation as in Proposition 1. Then \mathcal{E} preserves both h_{ω} and h_{φ} , which by [9] implies that

$$h_{\omega} = \mathcal{E}_*(h_{\omega}) = h_{\varphi}^{\frac{1}{2}} \mathcal{E}(\bar{a}^{-1}) h_{\varphi}^{\frac{1}{2}},$$

so that $\mathcal{E}(\bar{a}^{-1}) = \bar{a}^{-1}$. It follows that

$$\left(h_{\varphi}^{\frac{1}{2r}}h_{\psi}^{\frac{1}{p}}h_{\varphi}^{\frac{1}{2r}}\right)^{1-\alpha} = h_{\varphi}^{\frac{1}{2r}}\bar{a}^{-1}h_{\varphi}^{\frac{1}{2r}} \in L_r(\mathcal{E}(\mathcal{M}))$$

and consequently $|h_{\psi}^{\frac{1}{2p}}h_{\varphi}^{\frac{1}{2r}}| \in L_{2z}(\mathcal{E}(\mathcal{M}))$. Note that by the assumptions 2z > 1, so that we may use the multiplicativity properties of the extension of \mathcal{E} [9]. Let

$$h_{\psi}^{\frac{1}{2p}} h_{\varphi}^{\frac{1}{2r}} = u |h_{\psi}^{\frac{1}{2p}} h_{\varphi}^{\frac{1}{2r}}|$$

be the polar decomposition in $L_{2z}(\mathcal{M})$, then we have

$$u^* h_{\psi}^{\frac{1}{2p}} h_{\varphi}^{\frac{1}{2r}} = \mathcal{E}_{2z} (u^* h_{\psi}^{\frac{1}{2p}} h_{\varphi}^{\frac{1}{2r}}) = \mathcal{E}_{2p} (u^* h_{\psi}^{\frac{1}{2p}}) h_{\varphi}^{\frac{1}{2r}},$$

which implies that

$$\mathcal{E}_p(h_{\psi}^{\frac{1}{p}}) = \mathcal{E}_p(h_{\psi}^{\frac{1}{2p}}uu^*h_{\psi}^{\frac{1}{2p}}) = h_{\psi}^{\frac{1}{2p}}uu^*h_{\psi}^{\frac{1}{2p}} = h_{\psi}^{\frac{1}{p}}$$

Consequently, $\psi \circ \mathcal{E} = \psi$ and γ is sufficient with respect to $\{\psi, \varphi\}$.

3.3.2 The case $\alpha > 1$

A Haagerup L_p -spaces

The following lemmas are well known, proofs are given for completeness.

Lemma A.1. For any $0 and <math>\varphi \in \mathcal{M}_*^+$, $h_{\varphi}^{\frac{1}{2p}} \mathcal{M}^+ h_{\varphi}^{\frac{1}{2p}}$ is dense in $L_p(\mathcal{M})^+$ with respect to the (quasi)-norm $\|\cdot\|_p$.

Proof. We may assume that φ is faithful. By [9, Lemma 1.1], $\mathcal{M}h_{\varphi}^{\frac{1}{2p}}$ is dense in $L_{2p}(\mathcal{M})$ for any $0 . Let <math>y \in L_p(\mathcal{M})^+$, then $y^{\frac{1}{2}} \in L_{2p}(\mathcal{M})$, hence there is a sequence $a_n \in \mathcal{M}$ such that $\|a_n h_{\varphi}^{\frac{1}{2p}} - y^{\frac{1}{2}}\|_{2p} \to 0$. Then also

$$\|h_{\varphi}^{\frac{1}{2p}}a_n^* - y^{\frac{1}{2}}\|_p = \|(a_n h_{\varphi}^{\frac{1}{2p}} - y^{\frac{1}{2}})^*\|_p = \|a_n h_{\varphi}^{\frac{1}{2p}} - y^{\frac{1}{2}}\|_p \to 0$$

and

$$\|h_{\varphi}^{\frac{1}{2p}}a_{n}^{*}a_{n}h_{\varphi}^{\frac{1}{2p}}-y\|_{p}=\|(h_{\varphi}^{\frac{1}{2p}}a_{n}^{*}-y^{\frac{1}{2}})a_{n}h_{\varphi}^{\frac{1}{2p}}+y^{\frac{1}{2}}(a_{n}h_{\varphi}^{\frac{1}{2p}}-y^{\frac{1}{2}})\|_{p}$$

Since $\|\cdot\|_p$ is a (quasi)-norm, the above expression goes to 0 by the Hölder inequality.

Lemma A.2. Let $\psi, \varphi \in \mathcal{M}_*^+$ with $\psi \leq \varphi$. Then for any $a \in \mathcal{M}$ and $p \in [1, \infty)$,

$$\operatorname{Tr}\left((a^*h_{\psi}^{\frac{1}{p}}a)^p\right) \le \operatorname{Tr}\left((a^*h_{\varphi}^{\frac{1}{p}}a)^p\right)$$

Proof. Since $1/p \in (p,1]$, it follows (see [6, Lemma B.7] and [?, Lemma 3.2]) that $h_{\psi}^{1/p} \leq h_{\varphi}^{1/p}$ as τ -measurable operators affiliated with $\mathcal{M} \rtimes_{\sigma^{\phi}} \mathbb{R}$ (in which $L_p(\mathcal{M})$ lives). Hence $a^*h_{\psi}^{1/p}a \leq a^*h_{\varphi}^{1/p}a$ in the same sense. Therefore, by [3, Lemma 2.5 (iii), Lemma 4.8], we have the statement.

References

- [1] M. Berta, V. B. Scholz, and M. Tomamichel. Rényi divergences as weighted non-commutative vector valued L_p -spaces. Annales Henri Poincaré, 19:1843–1867, 2018. doi:https://doi.org/10.48550/arXiv.1608.05317.
- [2] M.-D. Choi. A Schwarz inequality for positive linear maps on C*-algebras. *Illinois Journal of Mathematics*, 18(4):565–574, 1974. doi:10.1215/ijm/1256051007.
- [3] T. Fack and H. Kosaki. Generalized s-numbers of τ -measurable operators. Pacific Journal of Mathematics, 123(2):269 300, 1986.
- [4] U. Haagerup. L_p -spaces associated with an arbitrary von Neumann algebra. In Algebras d'opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), volume 274, pages 175–184, 1979.
- [5] F. Hiai. Quantum f-divergences in von Neumann algebras. I. Standard f-divergences. Journal of Mathematical Physics, 59(10):102202, 2018.
- [6] F. Hiai. Quantum f-Divergences in von Neumann Algebras: Reversibility of Quantum Operations. Mathematical Physics Studies. Springer, Singapore, 2021. ISBN 9789813341999. doi:10.1007/978-981-33-4199-9.
- [7] A. Jenčová. Rényi relative entropies and noncommutative L_p -spaces. Annales Henri Poincaré, 19:2513–2542, 2018. doi:10.1007/s00023-018-0683-5.
- [8] A. Jenčová. Rényi relative entropies and noncommutative L_p -spaces II. Annales Henri Poincaré, 22:3235–3254, 2021. doi:10.1007/s00023-021-01074-9.
- [9] M. Junge and Q. Xu. Noncommutative Burkholder/Rosenthal inequalities. *The Annals of Probability*, 31(2):948–995, 2003.
- [10] S. Kato. On α -z-Rényi divergence in the von Neumann algebra setting. arXiv preprint arXiv:2311.01748, 2023.
- [11] S. Kato and Y. Ueda. A remark on non-commutative L^p -spaces. $arXiv\ preprint\ arXiv:2307.01790,\ 2023.$
- [12] H. Kosaki. Applications of the complex interpolation method to a von Neumann algebra: Non-commutative L_p -spaces. J. Funct. Anal., 56:26–78, 1984. doi:https://doi.org/10.1016/0022-1236(84)90025-9.

- [13] D. Petz. Quasi-entropies for states of a von Neumann algebra. *Publications of the Research Institute for Mathematical Sciences*, 21(4):787–800, 1985. doi:10.2977/prims/1195178929.
- [14] D. Petz. Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Communications in Mathematical Physics, 105(1):123–131, 1986. doi:10.1007/BF01212345.
- [15] D. Petz. Sufficiency of channels over von Neumann algebras. The Quarterly Journal of Mathematics, 39(1):97–108, 1988. doi:10.1093/qmath/39.1.97.
- [16] M. Terp. L_p -spaces associated with von Neumann algebras. Notes, Copenhagen University, 1981.