Department of Applied Mathematics and Humanities

S.V. National Institute of Technology, Surat, Gujarat

B.Tech.- I (Semester- I) Branch (All)

Subject: Mathematics -I (MA 101 S1)

Tutorial-06

Error and Approximations, Jacobians, Extreme values of functions of two variables, Lagrange's Method of undetermined multipliers

If $D = \frac{a^2}{b} + \frac{c^2}{2}$, find the percentage error in D if error in measuring a is $\frac{1}{2}$ % and in measuring a and a are 1% each.

Ans: $D = \frac{2bc^2}{2a^2 + bc^2}$

- If $z = 2xy^2 3x^2y$ and x increases at the rate of 2cm/s as it passes through x = 3 cm. Show that if y is passing through y = 1 cm, y must decrease at the rate of $\frac{32}{15}$ cm/s in order that z remains constant.
- A balloon is in the form of a right circular cylinder of radius $1.5\ m$ and height $4\ m$ and is surmounted by hemispherical ends. If the radius is increased by $0.01\ m$ and the height by $0.05\ m$, find the percentage change in the volume of the balloon.

Ans: 2.389%

Evaluate $(1.99)^2(3.01)^3(0.98)^{\frac{1}{10}}$ using approximation.

Ans: 107.784

- 5. Find the Jacobian for each of the following functions:
 - (a) $x = a \cosh\theta \cos\theta$, $y = a \sinh\theta \sin\theta$

 $Ans: \frac{a^2}{2} (cosh2\theta - cos2\emptyset)$

- (b)u = xyz, $v = x^2 + y^2 + z^2$, w = x + y + zAns: 2(y - z)(z - x)(y - x)
- **6.** Verify J * J' = 1 for the function x = u, $y = u \tan v$, z = w.
- If $u = e^x \cos y$, $v = e^x \sin y$, where x = lr + sm and y = mr ls, verify chain rule of Jacobians, l, m being constant.
- 8 Find the extreme values of the each of the following functions:

(a) $u = x^3 + y^3 - 63(x + y) + 12xy$.

Ans: $u_{max} = 2156$, $u_{min} = -216$.

 $(b) \sin x + \sin y + \sin(x + y)$

Ans: $f_{max} = \frac{3\sqrt{3}}{2}$

9. Find the stationary value of
$$xy(a-x-y)$$

Ans:
$$f_{extreme} = \frac{a^3}{27}$$

10. Find the points on the surface
$$z^2 = xy + 1$$
 nearest to the origin. Also find that distance. **Ans**: The points $(0,0,1)$ and $(0,0,-1)$ on the surface are nearest to the origin. Minimum distance = 1.

11. Find the point on the plane
$$ax + by + cz = p$$
 at which the function $f = x^2 + y^2 + z^2$ has a minimum value and find this minimum f.

Ans: The minimum value of
$$f = \frac{p^2}{a^2 + b^2 + c^2}$$

13. Find the maximum and minimum distances from the origin to the curve
$$3x^2 + 4xy + 6y^2 = 140$$
.

Ans: The maximum and minimum distances are
$$\sqrt{70}$$
, $\sqrt{20}$.

14. Use the method of Lagrange's multipliers to find volume of the largest rectangular parallelopiped that can be inscribed in the ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

Ans:
$$V = \frac{8abc}{3\sqrt{3}}$$