

FIG. 1

FIG. 2

3/9

FIG. 3

FIG. 4

4/9

60 ROWS OF SEGMENTS, TOP SEGMENT IS FIVE LINES HIGH, REST ARE SIX LINES HIGH, EACH ROW OVERLAPS THE NEXT BY TWO LINES

#1	#61	#121	
#2	#62	#122	
#3			
#4			
#5	#65	#125	
	•	•	•
	•	•	•
	•	•	•
	•	•	•
	•	•	•
#60	#120	#180	

SEGMENT LOADING SEQUENCE

FIG. 5

60 ROWS OF BLOCKS, TOP AND BOTTOM BLOCKS ARE FIVE LINES HIGH, REST ARE SIX LINES HIGH
 $3 + (58 \times 2) + (59 \times 2) + 3 = 240$

45 COLUMNS OF BLOCKS, LEFTMOST AND RIGHTMOST BLOCKS ARE EIGHTEEN WIDE, THE REST OF TWENTY WIDE
 $14 + (43 \times 12) + (44 \times 4) + 14 = 720$

LAYOUT OF BLOCKS IN A FIELD

FIG. 6

5/9

FIG. 7A

FIG. 7B

BLOCKS IN A SEGMENT IN THE RIGHT COLUMN

FIG. 7C

FIG. 8

IN A BLOCK:

$P_{i,j}$ IS A LUMINANCE VALUE AT THE i th ROW AND j th COLUMN IN A BLOCK OF FIELD (t-1)

$Q_{i,j}$ IS A LUMINANCE VALUE AT THE i th ROW AND j th COLUMN IN THE BLOCK AT THE SAME POSITION OF FIELD (t+1)

$$i \in [0, \text{BLOCK_WIDTH}]$$

$$j \in [0, \text{BLOCK_HEIGHT}]$$

$$\text{SUM} = \sum_{j=0}^{\text{BLOCK_HEIGHT} - 1} \sum_{i=0}^{\text{BLOCK_WIDTH} - 1} \frac{(P_{i,j} + Q_{i,j})}{2}$$

$$\text{DIFF} = \sum_{j=0}^{\text{BLOCK_HEIGHT}} \sum_{i=0}^{\text{BLOCK_WIDTH}} |P_{i,j} - Q_{i,j}|$$

```

IF ( DIFF > SUM * THRESHOLD_RATIO )
  THEN { THERE IS MOTION ;
    MOTION_SIGNAL = 1 ;
    USE SPATIAL INTERPOLATION RESULTS ; }
  ELSE { THERE IS NO MOTION ;
    MOTION_SIGNAL = 0 ;
    INTERPOLATE USING THE AVERAGE OF FIELD(t-1) AND FIELD(t+1) ; }
FINAL_RESULT = MOTION_SIGNAL | CORRESPONDENT MOTION HISTORY BIT ;
CORRESPONDENT MOTION HISTORY BIT = MOTION_SIGNAL ;

```

BLOCK-BASED MOTION DETECTION

FIG. 9

FIG. 10

$$\text{VERT_GRAD} = \frac{A - D + 2 * (B - E) + C - F}{4}$$

$$\text{HORI_GRAD} = \frac{A - C + D - F}{2}$$

IF $(| \text{VERT_GRAD} | + | \text{HORI_GRAD} | < \text{THRESHOLD})$ THEN

$$X_L = \frac{B + E}{2} ; \quad X_C = \frac{B + E}{2}$$

ELSE IF $\left\{ \begin{array}{l} \left| \text{VERT_GRAD} \right| > \tan(68^\circ) \\ \left| \text{HORI_GRAD} \right| \end{array} \right\}$ OR $\left\{ \begin{array}{l} \left| \text{VERT_GRAD} \right| < \tan(23^\circ) \\ \left| \text{HORI_GRAD} \right| \end{array} \right\}$ THEN

$$X_L = \frac{B + E}{2} ; \quad X_C = \frac{B + E}{2} ;$$

WHERE

ELSE IF $\left\{ \frac{\text{VERT_GRAD}}{\text{HORI_GRAD}} < 0 \right\}$ THEN (LEFT TILT): X_L IS LUMINANCE
 X_C IS CHROMINANCE

$$X_L = \frac{A + F}{2} ; \quad X_C = \frac{P + S}{2} ;$$

ELSE (RIGHT TILT):

$$X_L = \frac{D + C}{2} ; \quad X_C = \frac{Q + R}{2} ;$$

HIGH ANGLE SPATIAL INTERPOLATION

FIG. 11

SYMBOL	DESCRIPTION
☒	PIXEL TO BE GENERATED - HIGH ANGLE SPATIAL INTERPOLATION CAN BE APPLIED, BUT LOW ANGLE SPATIAL INTERPOLATION CANNOT.
☒	PIXEL TO BE GENERATED - NEITHER HIGH ANGLE NOR LOW ANGLE SPATIAL INTERPOLATION CAN BE APPLIED - USE TEMPORAL INTERPOLATION.
■	PIXEL TO BE GENERATED - LOW OR HIGH ANGLE SPATIAL INTERPOLATION CAN BE APPLIED.
□	ORIGINAL PIXEL.

FIG. 12