Chapitre 1

Révisions MP2

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou d'une matrice

Compléments d'algèbre linéaire

Lundi 1er septembre 2025

Table des matières

Chapitre 1

Révisions MP2

Rappels fondamentaux

Somme de sous-espace vectoriels

Matrices définies pa blocs

Éléments propres d'un endomorphisme ou d'une matrice Rappels fondamentaux

2 Somme de sous-espaces vectoriels

Matrices définies par blocs

4 Éléments propres d'un endomorphisme ou d'une matrice

Table des matières

Chapitre 1

Rappels fondamentaux

- Rappels fondamentaux

Chapitre 1

Rappels fondamentaux

Noyau et image d'une application

Théorème du

Projecteurs et

Somme de sous-espaces

Matrices définies pa

Éléments propres d'un endomorphisme ou

1. Rappels fondamentaux

1. Rappels fondamentaux

Chapitre 1

Rappels fondamentaux

Noyau et image d'une application linéaire

Théorème du rang Projecteurs et

Somme de sous-espaces

Matrices définies pa

Éléments propres d'un endomorphisme ou 1.1. Noyau et image d'une application linéaire

1.1. Noyau et image d'une application linéaire

Chapitre 1

Rappels fondamentaux Noyau et image

d'une application linéaire Théorème du rang Projecteurs et

Somme de sous-espaces vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou d'une matrice

Definition 1

Soit E et F deux espaces vectoriels et soit $f \in \mathcal{L}(E,F)$.

• On appelle *noyau* de *f* l'ensemble

$$\mathrm{Ker}(f) = \{x \in E \mid f(x) = 0\}$$

• On appelle *image* de *f* l'ensemble

$$Im(f) = \{ f(x), x \in E \} = \{ y \in F \mid \exists x \in E, y = f(x) \}$$

Remarques:

- Ker(f) est un sous-espace vectoriel de E.
- Im(f) est un sous-espace vectoriel de F.
- rg(f) = dim(Im(f)) est le rang de f.

1.1. Noyau et image d'une application linéaire

Chapitre 1

Kappels fondamentaux

Noyau et image d'une application linéaire

Théorème du rang Projecteurs et symétries

Somme de sous-espaces vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou d'une matrice

Proposition 1

Soit E et F deux espaces vectoriels et soit $f \in \mathcal{L}(E,F)$.

- f est injective si, et seulement si, $Ker(f) = \{0\}$.
- f est surjective si, et seulement si, Im(f) = F.

1. Rappels fondamentaux

Chapitre 1

fondamentaux

Théorème du rang

1.2. Théorème du rang

1.2. Théorème du rang

Chapitre 1

Rappels fondamentaux

Théorème du rang

Projecteurs e symétries

Somme de sous-espaces vectoriels

Matrices définies pa blocs

Éléments propres d'un endomorphisme ou d'une matric

Theoreme 1

(forme géométrique du théorème du rang) Soient E et F deux espaces vectoriels et soit $f \in \mathcal{L}(E,F)$. Pour tout supplémentaire H de $\mathrm{Ker}(f)$, $f_{|_H}$ réalise un isomorphisme de H sur $\mathrm{Im}(f)$.

Theoreme 2

(du rang) Si E est de dimension finie, alors $\dim(E) = \dim(\operatorname{Ker}(f)) + \operatorname{rg}(f)$.

1.2. Théorème du rang

Chapitre 1

Rappels fondamentaux

linéaire Théorème du rang

Projecteurs et symétries

Somme de sous-espaces vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou d'une matrice

Corollaire 1

Soient E et F deux espaces vectoriels de dimension finie tels que $\dim(E) = \dim(F)$ et soit $f \in \mathcal{L}(E, F)$. On a alors

f est injective \Leftrightarrow f est surjective \Leftrightarrow f est bijective

Corollaire 2

Soit E un espace vectoriel de dimension finie et soient $f,g \in \mathcal{L}(E)$ tels que $f \circ g = I_E$. Alors f et g sont inversibles et inverse l'une de l'autre.

1. Rappels fondamentaux

Chapitre 1

Rappels fondamentaux

Noyau et image

Théorème du

rang

Projecteurs et symétries

Somme de sous-espaces vectoriels

Matrices définies par

Éléments propres d'un endomorphisme ou 1.3. Projecteurs et symétries

1.3. Projecteurs et symétries

Chapitre 1

Rappels fondamentaux

d'une application linéaire Théorème du

Projecteurs et

symétries

Somme de sous-espaces vectoriels

Matrices définies pa blocs

Éléments propres d'un endomorphisme ou d'une matrice

Definition 2

Soit E un espace vectoriel et soient F et G deux sous-espaces supplémentaires de E. Tout vecteur $x \in E$ se décompose donc de façon unique $x = x_F + x_G$ avec $x_F \in F$ et $x_G \in G$.

ullet On appelle *projecteur* sur F et parallèlement à G l'application :

$$p: x = x_F + x_G \mapsto x_F$$

On appelle symétrie par rapport à F et parallèlement à G
 l'application :

$$s: x = x_F + x_G \mapsto x_F - x_G$$

1.3. Projecteurs et symétries

Chapitre 1

Rappels fondamentaux

Noyau et image d'une applicatio linéaire Théorème du rang Projecteurs et

symétries Somme de

Matrices définies par blocs

Éléments propres d'un endomorphisme ou d'une matrice

Proposition 2

Soient $p, s : E \rightarrow E$.

- a) Les deux assertions suivantes sont équivalentes :
 - (i) p est un projecteur de E;
 - (ii) $p \in \mathcal{L}(E)$ et $p^2 = p$.

Dans ces conditions, p est le projecteur sur Im(f) = Ker(f - Id) parallèlement à Ker(f).

- b) Les deux assertions suivantes sont équivalentes :
 - (i) s est une symétrie de E;
 - (ii) $s \in \mathcal{L}(E)$ et $s^2 = I_E$.

Dans ces conditions, s est la symétrie par rapport à Ker(f - Id) parallèlement à Ker(f + Id).

Table des matières

Chapitre 1

fondamentaux

Somme de sous-espaces vectoriels

Définition d'u

Somme direct

Décomposition e somme directe.

Somme et dimension finie. Bases adaptées.

Bases adaptées

Matrices

Éléments propres d'un endomorphisme ou Rappels fondamentaux

- 2 Somme de sous-espaces vectoriels
- 3 Matrices définies par blocs
- 4 Éléments propres d'un endomorphisme ou d'une matrice

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

vectoriels

Définition d'ur

somme .

Somme directe

Décomposition

Somme et

dimension finio

Bases adaptées.

Éléments propres d'un endomorphisme ou 2. Somme de sous-espaces vectoriels

2. Somme de sous-espaces vectoriels

Chapitre 1

Rappels fondamentaux

sous-espace vectoriels

vectoriels Définition d'une

somme

Somme directe

somme directe.

dimension finie

Bases adaptées

Matrices léfinies pa

Éléments propres d'un endomorphisme ou

2.1. Définition d'une somme

2.1. Définition d'une somme

Chapitre 1

Rappels fondamentaux

sous-espaces vectoriels Définition d'une

somme Somme directe

Décomposition en somme directe.

Bases adaptées.

Matrices
définies par

Éléments propres d'un endomorphisme ou

Definition 3

Soit un entier $q \ge 2$ et soient $(E_i)_{1 \le i \le q}$ une famille de sous-espaces vectoriels de E. On appelle somme de cette famille l'ensemble :

$$\sum_{i=1}^{q} E_{i} = \{x_{1} + \dots + x_{q}, (x_{1} \dots, x_{q}) \in E_{1} \times \dots \times E_{q}\}$$

$$= \{x \in E \mid \exists (x_{1} \dots, x_{q}) \in E_{1} \times \dots \times E_{q}, x = x_{1} + \dots + x_{q}\}$$

Proposition 3

Si E_1, \ldots, E_q sont des sous-espaces vectoriels de E, $\sum_{i=1}^{q} E_i$ est un sous-espace vectoriel de E.

2. Somme de sous-espaces vectoriels

Chapitre 1

Rappels fondamentaux

sous-espaces vectoriels Définition d'un

Somme directe

Décomposition o somme directe.

Somme et dimension finie.

Bases adaptées

Matrices définies par

Éléments propres d'un endomorphisme ou 2.2. Somme directe

2.2. Somme directe

Chapitre 1

Rappels fondamentaux

sous-espaces
vectoriels

Définition d'une

Somme directe

Décomposition e somme directe. Somme et dimension finie.

Bases adaptées.

Éléments propres d'un endomorphisme ou d'une matrice

Definition 4

La somme $E_1 + \cdots + E_q$ est dite *directe* lorsque :

$$\forall (x_1,\ldots,x_q) \in E_1 \times \cdots \times E_q, \quad \sum_{i=1}^q x_i = 0 \Rightarrow x_1 = \cdots = x_q = 0$$

On peut noter alors la somme $E_1 \oplus \cdots \oplus E_q$ ou encore $\bigoplus_i E_i$.

Remarque:

Injectivité de
$$S:(x_1,\ldots,x_q)\mapsto x_1+\cdots+x_q$$

2.2. Somme directe

Chapitre 1

fondamentaux

Somme directe

Matrices

phisme ou

Exercice 1

On suppose $E_i \neq \{0\}$ pour tout $i \in [1, q]$. Montrer que la somme $E_1 + \cdots + E_q$ est directe **ssi** pour tout $e_1 \in E_1, \dots, e_q \in E_q$ tous non nuls, la famille (e_1, \ldots, e_q) est libre.

Remarque:

F + G est directe **ssi** $F \cap G = \{0\}$. Peut-on généraliser?

$$\vec{u} + \vec{v} + \vec{w} = \vec{0}$$

2.2. Somme directe

Chapitre 1

Rappels fondamentaux

somme de sous-espaces vectoriels Définition d'une somme

Somme directe

Décomposition et somme directe. Somme et dimension finie.

Bases adaptées.

Éléments propres d'un endomorphisme ou

Proposition 4

La somme $E_1 + \cdots + E_q$ est directe si, et seulement si :

$$\forall i \in [1, q-1], (E_1 + \cdots + E_i) \cap E_{i+1} = \{0\}.$$

2. Somme de sous-espaces vectoriels

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

somme .

Somme directe

Décomposition en somme directe.

Somme et

Bases adaptées

Bases adaptées

Matrices

Éléments propres d'un endomorphisme ou 2.3. Décomposition en somme directe.

2.3. Décomposition en somme directe.

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels Définition d'une somme

Somme directe

Décomposition en

somme directe.

dimension finie.

Bases adaptées.

Matrices

Éléments propres d'un endomorphisme ou

Definition 5

Soient E_1, \ldots, E_q des sous-espaces vectoriels d'un espace vectoriel E. On dit qu'ils réalisent une décomposition en somme directe de E lorsque la somme $E_1 + \cdots + E_q$ est directe $\underline{\text{et}}\ E = E_1 + \cdots + E_q$.

Remarques:

- Notation $E = E_1 \oplus \cdots \oplus E_q$. Cas q = 2?
- Pour tout $x \in E$, existence et unicité d'une décomposition
- E et $E_1 \times \cdots \times E_q$ isomorphes.

2. Somme de sous-espaces vectoriels

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Somme

Somme directe

. Décomposition

Somme et dimension finie

Bases adaptées

Matrices

Éléments propres d'un endomor2.4. Somme et dimension finie.

Chapitre 1

fondamentaux

Somme et

dimension finie

Matrices

phisme ou

Proposition 5

Soient E_1, \ldots, E_q des sous-espaces vectoriels de dimension finie d'un espace vectoriel E. La somme $E_1 + \cdots + E_q$ est de dimension finie et :

$$\dim\left(\sum_{i=1}^q E_i\right) \leqslant \sum_{i=1}^q \dim(E_i),$$

avec égalité si, et seulement si, la somme est directe.

2.4. Somme et dimension finie.

Chapitre 1

Rappels fondamentaux

sous-espaces vectoriels Définition d'un

Somme directe

Décomposition

Somme et dimension finie.

Bases adaptées.

Éléments propres d'un endomorphisme ou

Corollaire 3

Supposons E de dimension finie et $\sum_{i=1}^{9} \dim E_i = \dim(E)$. On a alors :

$$\sum_{i=1}^{q} E_i \text{ est directe } \Leftrightarrow E = \sum_{i=1}^{q} E_i \Leftrightarrow E = \bigoplus_{i=1}^{q} E_i$$

2. Somme de sous-espaces vectoriels

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Definition d un

Somme directe

Décomposition somme directe.

Somme et dimension finio

Bases adaptées.

Matrices définies par

Éléments propres d'un endomorphisme ou 2.5. Bases adaptées.

2.5. Bases adaptées.

Chapitre 1

fondamentaux

Bases adaptées.

phisme ou

Definition 6

Soit E un espace vectoriel de dimension finie non nulle, et soit $F \neq \{0\}$ un sous-espace vectoriel de E. On dit qu'une base de E est adaptée à F si ses premiers éléments forment une base de F.

Remarque:

Plus explicitement avec $n = \dim(E)$ et $p = \dim(F)$?

2.5. Bases adaptées.

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels Définition d'une somme

Somme directe
Décomposition en
somme directe.

Bases adaptées.

Dases anaptees

Éléments propres d'un endomorphisme ou

Definition 7

Soit E_1,\ldots,E_q des sous-espaces vectoriels, non réduits à $\{0\}$, réalisant une décomposition en somme directe d'un espace E de dimension finie. On dit qu'une base de E est adaptée à cette décomposition lorsque ses éléments consécutifs forment successivement des bases des E_i , pour $1 \le i \le q$.

Remarque:

Plus explicitement avec $n_i = \dim(E_i)$?

2.5. Bases adaptées.

Chapitre 1

fondamentaux

Bases adaptées.

Matrices

phisme ou

Exemple:

$$\mathbb{K}^6 = E_1 \oplus E_2 \oplus E_3$$
 de base $\mathcal{B} = (e_1, e_2, e_3, e_4, e_5, e_6)$.
 $E_1 = \text{vect}(e_1, e_2), E_2 = \text{vect}(e_3), E_3 = \text{vect}(e_4, e_5, e_6)$.

$$\mathcal{B} = (\overbrace{e_1,e_2}^{\mathcal{B}_{\boldsymbol{1}}}, \overbrace{e_3}^{\mathcal{B}_{\boldsymbol{2}}}, \overbrace{e_4,e_5,e_6}^{\mathcal{B}_{\boldsymbol{3}}}).$$

Table des matières

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par blocs

Définition e

exemples

blocs Déterminant

d une matrice pa blocs

Transvection pa

Éléments propres d'un endomorphisme ou d'une matri

- Rappels fondamentaux
- 2 Somme de sous-espaces vectoriels
- Matrices définies par blocs
- 4 Éléments propres d'un endomorphisme ou d'une matrice

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par

blocs

exemples Opérations

les matrices pa blocs

Déterminant d'une matrice pa blocs

Transvection pa

Éléments propres d'un endomorphisme ou

3. Matrices définies par blocs

3. Matrices définies par blocs

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par

Définition et

exemples
Opérations s

blocs Déterminant

blocs

Transvection par blocs

Éléments propres d'un endomorphisme ou 3.1. Définition et exemples

3.1. Définition et exemples

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par blocs

Définition et

Opérations su les matrices p

Déterminant d'une matrice pa blocs

Transvection par

Éléments propres d'un endomorphisme ou d'une matrice

Definition 8

Soient $n, p \in \mathbb{N}^*$. Une matrice $M \in \mathcal{M}_{n,p}(\mathbb{K})$ est définie (ou présentée) par blocs, lorsqu'elle est écrite sous la forme :

$$M = \left(\begin{array}{ccc} M_{1,1} & \cdots & M_{1,s} \\ \vdots & \ddots & \vdots \\ M_{r,1} & \cdots & M_{r,s} \end{array}\right),$$

où les $M_{i,j}$ sont des matrices de dimensions inférieures, appelées blocs.

3.1. Définition et exemples

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par

Définition et

exemples

Déterminant d'une matrice pa

Transvection pa

Éléments propres d'un endomorphisme ou d'une matric

Exemple:

$$M = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \end{pmatrix} = \begin{pmatrix} (1) & (2) \\ (3) & (4) \end{pmatrix} = \begin{pmatrix} M_{1,1} & M_{1,2} \\ M_{2,1} & M_{2,2} \end{pmatrix}$$

$$M_{1,1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ M_{1,2} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}, \ M_{2,1} = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}, \ M_{2,2} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix}.$$

D'autres découpages sont possibles.

3. Matrices définies par blocs

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par

blocs

Opérations sur les matrices par

blocs
Déterminant

Transvection par

Éléments propres d'un endomorphisme ou 3.2. Opérations sur les matrices par blocs

bloce

Proposition 6

Soient M et M' définies par blocs :

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 et $M' = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$.

Alors, sous réserve que les dimensions soit adéquates :

•
$$M + \lambda M' = \begin{pmatrix} A + \lambda A' & B + \lambda B' \\ C + \lambda C' & D + \lambda D' \end{pmatrix}$$

•
$$MM' = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}$$
.

$$\bullet \ M^{\top} = \begin{pmatrix} A^{\top} & C^{\top} \\ B^{\top} & D^{\top} \end{pmatrix}$$

3. Matrices définies par blocs

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par

blocs

exemples
Opérations su

perations su s matrices pa locs

Déterminant d'une matrice par blocs

Transvection pa

Éléments propres d'un endomorphisme ou d'une motivie 3.3. Déterminant d'une matrice par blocs

3.3. Déterminant d'une matrice par blocs

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par blocs

Définition et exemples

les matrices par blocs

d'une matrice par blocs Transvection par

Éléments propres d'un endomorphisme ou d'une matrice

Proposition 7

Soit un entier $n \ge 2$ et soit $T \in \mathcal{M}_n(\mathbb{K})$ une matrice *triangulaire par blocs* de la forme :

$$T = \begin{pmatrix} A & (*) \\ (0) & B \end{pmatrix},$$

avec deux blocs diagonaux carrés $A \in \mathcal{M}_p(\mathbb{K})$ et $B \in \mathcal{M}_{n-p}(\mathbb{K})$, $1 \leq p \leq n-1$. On a alors :

$$det(T) = det(A) det(B)$$
.

Remarque:

Généralisation à un nombre quelconque de blocs diagonaux.

3. Matrices définies par blocs

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par

blocs

exemples

les matrices pa blocs

d'une matrice blocs

Transvection par

Éléments propres d'un endomorphisme ou 3.4. Transvection par blocs

3.4. Transvection par blocs

Chapitre 1

Rappels fondamentau:

Somme de sous-espaces vectoriels

Matrices définies par

blocs Définition

Opérations su les matrices p

Déterminant d'une matrice par blocs

Transvection par

Éléments propres d'un endomorphisme ou d'une matric

Exercice 2

Rappeler les trois types d'opérations élémentaires sur les lignes ou sur les colonnes d'une matrice, et le lien avec la multiplication à gauche ou à droite par une certaine matrice inversible.

3.4. Transvection par blocs

Chapitre 1

fondamentaux

Transvection par blocs

Definition 9

On appelle transvection par blocs sur une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ une opération de la forme :

- $L_i \leftarrow L_i + \lambda L_i$, avec L_i et L_i deux blocs disjoints de lignes consécutives de A et de même taille, et $\lambda \in \mathbb{K}$.
- $C_i \leftarrow C_i + \lambda C_i$, avec C_i et C_i deux blocs disjoints de colonnes consécutives de A et de même taille, et $\lambda \in \mathbb{K}$.

Proposition 8

Le rang et le déterminant d'une matrice est invariant lors de l'application d'une transvection par blocs.

Table des matières

Chapitre 1

- fondamentaux

- Éléments propres d'un endomorphisme ou d'une matrice

- Éléments propres d'un endomorphisme ou d'une matrice

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par

Éléments propres d'un endomorphisme ou d'une matrice

Sous-espace stable et endomorphisme

Vecteur propre valeur propre,

Sous-espaces

éléments propre

Éléments propre

4. Éléments propres d'un endomorphisme ou d'une matrice

4. Éléments propres d'un endomorphisme ou d'une matrice

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies pa blocs

Éléments propres d'un endomor-

Sous-espace stable et endomorphisme induit

Vecteur propre valeur propre,

Sous-espaces propres

Propriétés des éléments propr

Éléments propre d'une matrice

4.1. Sous-espace stable et endomorphisme induit

4.1. Sous-espace stable et endomorphisme induit

Chapitre 1

Rappels fondamentaux

Somme de sous-espace: vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou

Sous-espace stable et endomorphisme induit

Sous-espace

propres Propriétés des éléments propres Éléments propres d'une matrice

Definition 10

Soit $u \in \mathcal{L}(E)$. On dit qu'un sous-espace vectoriel F de E est stable par u lorsque $u(F) \subset F$, c'est-à-dire lorsque :

$$\forall x \in E, x \in F \Rightarrow u(x) \in F.$$

Exercice 3

Montrer qu'une droite vectorielle D de E est stable par $u \in \mathcal{L}(E)$ ssi $u_{|_D}$ est une homothétie, c'est-à-dire :

$$\exists \lambda \in \mathbb{K}, \ \forall x \in D, \ u(x) = \lambda x.$$

4.1. Sous-espace stable et endomorphisme induit

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies pa blocs

Éléments propres d'un endomorphisme ou d'une matric

Sous-espace stable et endomorphisme induit

Sous-espaces propres

Propriétés des éléments propres Éléments propres

Proposition 9

Soit E un espace vectoriel et $u \in \mathcal{L}(E)$. Alors pour tout $v \in \mathcal{L}(E)$ qui commute avec u, $\mathrm{Ker}(v)$ et $\mathrm{Im}(v)$ sont stables par u.

Definition 11

Soit E un espace vectoriel, $u \in \mathcal{L}(E)$, et F un sous-espace vectoriel stable par u. On appelle endomorphisme induit par u sur F, l'application :

$$u_F: \begin{array}{ccc} F & \longrightarrow & F \\ x & \longmapsto & u(x) \end{array}.$$

Remarque:

 $u_F \in \mathcal{L}(F)$, ne pas confondre avec $u_{|_F} \in \mathcal{L}(F, E)$.

4.1. Sous-espace stable et endomorphisme induit

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou

Sous-espace stable et endomorphisme induit

spectre
Sous-espace

propres

Propriétés des éléments propre
Éléments propre

Proposition 10

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$, $u \in \mathcal{L}(E)$, et \mathcal{B} une base de E adaptée à un sous-espace F de dimension $p \geqslant 1$. Alors F est stable par u ssi la matrice de u dans \mathcal{B} est de la forme :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} A & B \\ (0) & C \end{pmatrix}, \text{ avec } A \in M_p(\mathbb{K})$$

La matrice A représente l'endomorphisme induit par u sur F.

4. Éléments propres d'un endomorphisme ou d'une matrice

Chapitre 1

Rappels fondamentau:

Somme de sous-espace: vectoriels

Matrices définies pa blocs

Eléments propres d'un endomorphisme ou d'une matric

endomorphisme induit Vecteur propre et

valeur propre, spectre

Sous-espaces proprietés des éléments propre Éléments propre d'une matrice 4.2. Vecteur propre et valeur propre, spectre

4.2. Vecteur propre et valeur propre, spectre

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou

d'une matrice
Sous-espace

Vecteur propre et valeur propre, spectre

Sous-espac

propres

Propriétés des éléments propres
Éléments propre

Definition 12

Soit E un espace vectoriel, et $u \in \mathcal{L}(E)$. On dit que $x \in E$ est un vecteur propre lorsque x est non nul et colinéaire à u(x), ie. il existe $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$. Ce scalaire λ est appelé valeur propre associée à x.

Remarques:

- Un vecteur propre n'est jamais nul.
- Un vecteur propre → une seule valeur propre
- Une valeur propre → une infinité de vecteurs propres
- Équation aux éléments propres : $u(x) = \lambda x$.

4.2. Vecteur propre et valeur propre, spectre

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou

d'une matrice

induit
Vecteur propre et valeur propre,

spectre

Sous-espaces proprietés des éléments propre Éléments propre d'une matrice

Definition 13

Pour $u \in \mathcal{L}(E)$, avec E de dimension finie, on appelle *spectre* de u l'ensemble de ses valeurs propres. Il est noté $\mathrm{Sp}(u)$.

Exemples:

Homothéties, projecteurs, symétries.

Exercice 4

Déterminer les valeurs propres et les vecteurs propres de l'endomorphisme $D: f \mapsto f'$ de l'espace vectoriel $E = \mathcal{C}^{\infty}(\mathbb{R})$.

4. Éléments propres d'un endomorphisme ou d'une matrice

Chapitre 1

Rappels fondamentau:

Somme de sous-espace vectoriels

Matrices définies pa

Éléments propres d'un endomorphisme ou

Sous-espace stable et endomorphisme

Vecteur propre valeur propre.

Sous-espaces propres

Propriétés des éléments propre Éléments propre 4.3. Sous-espaces propres

4.3. Sous-espaces propres

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou

Sous-espace stable et endomorphisme induit

Sous-espaces propres

Propriétés des éléments propre Éléments propre

Proposition 11

Soit *E* un espace vectoriel, $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. On a :

 λ valeur propre de $u \Leftrightarrow \ker(u - \lambda I_E) \neq \{0\}$

Definition 14

Soit E un espace vectoriel et $u \in \mathcal{L}(E)$. Pour $\lambda \in \mathbb{K}$ valeur propre de u, on appelle sous-espace propre de u associé à λ l'ensemble :

$$E_{\lambda} = \ker(u - \lambda I_E).$$

Remarque:

 E_{λ} est un sev de E. C'est l'ensemble des vecteurs propres pour λ ??

4. Éléments propres d'un endomorphisme ou d'une matrice

Chapitre 1

Rappels fondamentau:

Somme de sous-espace vectoriels

Matrices définies pa blocs

propres d'un endomorphisme ou

Sous-espace stable et endomorphisme

Vecteur propre valeur propre, spectre

Sous-espace

Propriétés des éléments propres

Éléments propres d'une matrice 4.4. Propriétés des éléments propres

4.4. Propriétés des éléments propres

Chapitre 1

Rappels fondamentaux

Somme de sous-espace: vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou

Sous-espace stable et endomorphisme induit

spectre
Sous-espaces

propriétés des

Propriétés des éléments propres Éléments propres d'une matrice

Proposition 12

soient E un espace vectoriel et $u, v \in \mathcal{L}(E)$. Si u et v commutent, tout sous-espace propre de u est stable par v.

Proposition 13

Soient un entier $q \geqslant 2$ et soient $\lambda_1, \ldots, \lambda_q$ des valeurs propres distinctes deux à deux d'un endomorphisme $u \in \mathcal{L}(E)$. Alors leur sous-espaces propres associés E_1, \ldots, E_q sont en somme directe.

4.4. Propriétés des éléments propres

Chapitre 1

Rappels fondamentaux

Somme de sous-espace: vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou

phisme ou d'une matrice Sous-espace

Sous-espace stable et endomorphisme induit

Sous-espace

Propriétés des éléments propres

eléments propres Éléments propres l'une matrice

Corollaire 4

Toute famille de vecteurs propres associés à des valeurs propres distinctes est libre.

Corollaire 5

Si E est un espace vectoriel de <u>dimension finie</u> $n \in \mathbb{N}^*$, et si $u \in \mathcal{L}(E)$, le cardinal de $\mathrm{Sp}(u)$ est fini et inférieur ou égal à n.

4. Éléments propres d'un endomorphisme ou d'une matrice

Chapitre 1

Éléments propres d'une matrice

4.5. Éléments propres d'une matrice

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou d'une matric

stable et endomorphisme induit Vecteur propre

Sous-espaces propres

Propriétés des éléments propres Éléments propres d'une matrice

Definition 15

Soit $n \in \mathbb{N}^*$ et soit $M \in \mathcal{M}_n(\mathbb{K})$.

- On dit que X ∈ M_{n,1}(K) est un vecteur propre de M, s'il est non nul et s'il existe λ ∈ K (la valeur propre) telle que MX = λX.
- On dit que $\lambda \in \mathbb{K}$ est *valeur propre* de M, s'il existe $X \in \mathcal{M}_{n,1}(\mathbb{K})$ non nul (un vecteur propre) tel que $MX = \lambda X$;
- On appelle *spectre* de M, et on note $\mathrm{Sp}(M)$ l'ensemble des valeurs propres de M.

Remarque:

Équation aux éléments propres $MX = \lambda X$.

Chapitre 1

Proposition 14

fondamentaux

Éléments propres d'une matrice

Soit E un \mathbb{K} -espace vectoriel de dimension finie n > 0, muni d'une base \mathcal{B} , et soit $u \in \mathcal{L}(E)$ représenté par la matrice $M \in \mathcal{M}_n(\mathbb{K})$ dans B. Alors:

- $\lambda \in \mathbb{K}$ est valeur propre de u si, et seulement si, λ est valeur propre de M.
- $x \in E$ est vecteur propre de u si, et seulement si, sa représentation matricielle $X \in \mathcal{M}_{n,1}(\mathbb{K})$ dans \mathcal{B} est vecteur propre de M.

Corollaire 6

Deux matrices semblables ont même spectre.

Chapitre 1

Rappels fondamentaux

Somme de sous-espaces vectoriels

Matrices définies pa blocs

Éléments propres d'un endomorphisme ou

Sous-espace stable et endomorphisme induit

Sous-espaces propres

Propriétés des éléments propre

Éléments propres d'une matrice

Remarque :

Indentification de $\mathcal{M}_{n,1}(\mathbb{K})$ à \mathbb{K}^n .

Definition 16

Pour $\lambda \in \mathbb{K}$ valeur propre de $M \in \mathcal{M}_n(\mathbb{K})$, on appelle sous-espace propre de M associé à λ l'ensemble :

$$E_{\lambda} = \ker(M - \lambda I_n).$$

C'est un sous-espace vectoriel de \mathbb{K}^n , réunion de $\{0\}$ et de l'ensemble des vecteurs propres de M associés à λ .

Chapitre 1

Rappels fondamentaux

Somme de sous-espace: vectoriels

Matrices définies par blocs

Éléments propres d'un endomorphisme ou

Sous-espace stable et endomorphisme induit

Vecteur propre valeur propre, spectre

Sous-espaces propres

Éléments propres d'une matrice

Remarque:

On peut préciser le corps dans lequel on recherche les valeurs propres (typiquement les valeurs propres complexes d'une matrice réelle).

Proposition 15

Soit $M\in\mathcal{M}_n(\mathbb{K})$. Si \mathbb{K} est un sous-corps d'un corps \mathbb{K}' , le spectre $\operatorname{Sp}_{|_{\mathbb{K}'}}(M)$ de M dans \mathbb{K} est contenu dans le spectre $\operatorname{Sp}_{|_{\mathbb{K}'}}(M)$ de M dans \mathbb{K}' .