Universitá di Napoli "Federico II" Analisi Matematica I - Informatica - 8/1/2020

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	6	
	TOTALE	

1. (12 punti) Tracciare il grafico della seguente funzione

$$f(x) = \log\left(\frac{x^2 - 3x + 4}{x^2 - 4x + 4}\right),\,$$

determinando dominio, limiti, asintoti, monotonia e convessitá.

2. (4 punti) Calcolare il seguente limite

$$\lim_{x \to 1} \frac{(x-1)\cos(x-1) - \sin(x-1)}{(\sqrt{x} - 1)\log^2(x)}.$$

3. (4 punti) Calcolare il seguente limite

$$\lim_{x \to -\infty} \left(\frac{x^2 - \sin^2(x)}{x^2 + \cos^2(x)} \right)^{x^2}.$$

4. (4 punti) Calcolare il seguente integrale

$$\int_0^4 (2+\sqrt{x})e^{\sqrt{x}}\,dx$$

5. (4 punti) Calcolare il seguente integrale

$$\int \frac{3x^2 + 2x + 1}{x^3 - 4x^2 + 4x} \, dx$$

6. (4 punti) Studiare il comportamento della seguente serie

$$\sum_{n=1}^{\infty} \frac{3^n + n!}{4^n + n^n}$$

Universitá di Napoli "Federico II" Analisi Matematica I - Informatica - 5/2/2020

	ESERCIZI	PUNTEGGIO
Nome e Cognome:	1	
Nome e Cognome.	2	
Matricola:	3	
Matricola.	4	
	5	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \arcsin\left(\log_2\left(\frac{x+1}{x-1}\right)\right)$$

2. Tracciare il grafico della seguente funzione

$$f(x) = \frac{x^2}{\sqrt{x^2 - 2}},$$

determinando dominio, limiti, asintoti e monotonia.

3. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{\sin^2(x) + \log(\cos^2(x))}{(1 - e^{-x^2})^2}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{4e^{2x} - 9e^x}{e^{2x} - 6e^x + 10} \, dx$$

5. Studiare il comportamento della seguente serie

$$\sum_{n=2}^{\infty} \frac{(n+1)^n - n\cos(n)}{(3n)^n + n^2\log n}$$

Universitá di Napoli "Federico II" Analisi Matematica I - Informatica - 4/3/2020

	ESERCIZI	PUNTEGGIO
Nome e Cognome:	1	
Nome e Cognome.	2	
Matricola:	3	
Watt Cola.	4	
	5	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \log_4\left(\sqrt{\frac{x+2}{x-2}} - 3\right)$$

2. Tracciare il grafico della seguente funzione

$$f(x) = (x^2 + 1) e^{\frac{1}{x}},$$

determinando dominio, limiti, asintoti e monotonia.

3. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{\sqrt{1 + 2x + x^2} - \sin x - \cos x}{\log(1 + x) + \log(1 - x)}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{x - 2\sqrt{x} - 4}{(x - \sqrt{x})(x - 4)} \, dx$$

5. Studiare il comportamento della seguente serie

$$\sum_{n=1}^{\infty} \frac{n^2 - n}{2n + 2} (1 - e^{-\frac{1}{n^2}})$$

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 5/10/2020

	ESERCIZI	PUNTEGGIO
Nome e Cognome:	1	
Nome e Cognome.	2	
Matricola:	3	
Wati Koia.	4	
	5	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \arccos\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-1\right)$$

2. Tracciare il grafico della seguente funzione

$$f(x) = x + \log\left(\frac{e^x}{e^x - 1}\right),\,$$

determinando dominio, limiti, asintoti, monotonia, estremi locali.

3. Calcolare il seguente limite

$$\lim_{x \to 0} \frac{e^{\sqrt{x}} - \sqrt{x} - \cos\sqrt{x}}{\log(1 - 2\tan x)}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{1 - \log x}{(x+1)^2} \, dx$$

5. Studiare il comportamento della seguente serie

$$\sum_{n=1}^{\infty} \left(\frac{1}{3n} - \frac{1}{3n+5} \right)$$

Universitá di Napoli Federico II Analisi Matematica I - Informatica -

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \log_2\left(\frac{x^2 - 2x - 1}{1 - x^2}\right) + \frac{1}{\sqrt{\ln(x+1)}}$$

2. Studiare la seguente funzione

$$f(x) = |x - 1| + \frac{x}{x + 1}.$$

3. Calcolare i seguenti limiti

$$\lim_{x \to 1} \frac{\ln(x) - \cos(x - 1) + 1}{\sqrt{x - 1}\sin(\sqrt{x - 1})}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{\arctan\sqrt{x}}{\sqrt{x}} \, dx$$

5. Studiare la convergenza della seguente serie

$$\sum_{n\geq 1} \sin\left(\frac{n^2+3^n}{\log n+4^n}\right)$$

Teoria: Svolgere due dei seguenti quesiti a scelta.

- 1. Dimostrare che una funzione derivabile é continua. Fornire un esempio di funzione continua che non sia derivabile.
- 2. Dimostrare che ogni successione monotona ammette limite e che non é vero il viceversa.
- 3. Enunciare la formula per la derivata della funzione composta e della funzione inversa. Applicarla per trovare la derivata del logaritmo naturale e dell' arcotangente.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 14/1/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \log_3\left(\frac{x+2}{x-1}\right) + \sqrt[4]{e^{2x} - 3e^x + 2}$$

2. Tracciare il grafico della seguente funzione

$$f(x) = (1 - x^2)e^{-|x|},$$

determinando dominio, limiti, asintoti, monotonia, estremi locali, convessitá, flessi.

3. Calcolare il seguente limite

$$\lim_{x \to 1} \frac{\sqrt{x} - e^{\frac{x-1}{2}}}{1 - \cos^2(x-1)}.$$

4. Calcolare il seguente integrale indefinito

$$\int \log\left(\frac{x^2 - 4}{x}\right) \, dx$$

5. Studiare il comportamento della seguente serie

$$\sum_{n=1}^{\infty} \left(\frac{n^2 - 1}{n^2} \right)^{n^3}$$

Teoria: Svolgere almeno due delle seguenti domande teoriche a scelta:

- 1. Enunciare e dimostrare il Teorema di Lagrange.
- 2. Enunciare il Teorema degli zeri e dei valori intermedi. L'equazione $x+e^x=0$ ammette soluzioni?
- 3. Enunciare e dimostrare il Teorema della media integrale.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 03/02/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare e disegnare l'insieme di definizione della seguente funzione:

$$f(x) = \sqrt{\frac{x|x|-1}{x}} + \frac{1}{\log_{1/2}(2^x - 1)}$$

2. Data

$$f(x) = \begin{cases} \frac{\log(x)}{x-1} + 1, & \text{se } x > 1, \\ axe^{x-1}, & \text{se } x \le 1. \end{cases}$$

Dopo aver trovato il valore di $a \in \mathbb{R}$ tale per cui f sia continua, tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali, convessitá, flessi.

3. Calcolare il seguente limite

$$\lim_{x \to 0^+} \left(\frac{x^3 + 3x^2 + 2x}{2x^2 + 2x} \right)^{\frac{2x+2}{x^2 + 2x}}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{\sin(x)\cos(x)}{\sin^3(x) + 2\sin^2(x) + 5\sin(x)} dx$$

5. Studiare il carattere della seguente serie

$$\sum_{k=1}^{\infty} \log \left(\frac{k^4 + 2k^2 + k}{k^4 + k} \right)^k$$

Teoria: Svolgere almeno due delle seguenti domande teoriche a scelta:

- 1. Enunciare e dimostrare il Teorema di Fermat. Fornire un esempio di una funzione che ammette un punto stazionario/critico che non sia massimo o minimo.
- 2. Enunciare e dimostrare il Teorema fondamentale del calcolo integrale. Cosa si può dire sulla monotonia di

$$F(x) = \int_{2}^{x} \sin^{2}(t) dt$$

3. Dimostrare che la convergenza assoluta di una serie implica la sua convergenza semplice. Fornire un esempio di serie che non converge assolutamente ma converge semplicemente.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 03/03/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \sqrt{\frac{|x^2 - 2x|}{3x - 4x^2 + x^3}}$$

2. Data la funzione

$$f(x) = \log(e^{2x} - 5e^x + 6)$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali, convessitá, flessi.

3. Calcolare il seguente limite

$$\lim_{x\to -\infty}\frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{1-e^{\frac{1}{x}}}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{\tan x + 2}{\cos^2(x)(1 - \tan^2(x))} \, dx$$

5. Studiare il carattere della seguente serie

$$\sum_{n=0}^{\infty} \frac{5^n + (-1)^n}{3^{2n} + 2^{3n}}$$

Teoria: Svolgere almeno una delle seguenti domande teoriche a scelta:

- 1. Dimostrare che ogni successione monotona ammette limite. Questa condizione é anche necessaria?
- 2. Enunciare e dimostrare la formula di Taylor con il resto di Peano nel caso di una funzione di classe C^2 . Determinare tale formula per $f(x) = x^2 + \cos(x)$ per $x = \frac{\pi}{2}$.
- 3. Definire l'integrale di Riemann ed indicare le sue proprietá principali.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 17/06/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \sqrt{\frac{|x^2 - 2x|}{3x - 4x^2 + x^3}}$$

2. Data la funzione

$$f(x) = \log(e^{2x} - 5e^x + 6)$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali, convessitá, flessi.

3. Calcolare il seguente limite

$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}{1 - e^{\frac{1}{x}}}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{\tan x + 2}{\cos^2(x)(1 - \tan^2(x))} \, dx$$

5. Studiare il carattere della seguente serie

$$\sum_{n=0}^{\infty} \frac{5^n + (-1)^n}{3^{2n} + 2^{3n}}$$

Teoria: Svolgere almeno una delle seguenti domande teoriche a scelta:

- 1. Dimostrare che ogni successione monotona ammette limite. Questa condizione é anche necessaria?
- 2. Enunciare e dimostrare la formula di Taylor con il resto di Peano nel caso di una funzione di classe C^2 . Determinare tale formula per $f(x) = x^2 + \cos(x)$ per $x = \frac{\pi}{2}$.
- 3. Definire l'integrale di Riemann ed indicare le sue proprietá principali.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 6/7/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \frac{\sqrt[4]{\log^2(x) - 1}}{x^2 - 5x + 6}$$

2. Data la funzione

$$f(x) = 1 + \exp\left(\frac{x^2}{|x| - 2}\right)$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali. Non occorre lo studio della derivata seconda.

3. Calcolare il seguente limite

$$\lim_{x \to 3} \frac{\tan^2(x-3)}{\sqrt{x^2 - 6x + 10} - 1}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{1}{x^4} \cos\left(\frac{1}{x}\right) \, dx$$

5. Studiare il carattere della seguente serie

$$\sum_{n=0}^{\infty} \frac{4^n + n!}{5^n + (n+2)!}$$

Teoria: Svolgere almeno una delle seguenti domande teoriche a scelta:

- 1. Dimostrare che ogni successione convergente é limitata. É vero anche il viceversa?
- 2. Enunciare e dimostrare il Teorema di Rolle. Esibire almeno un esempio di come le ipotesi di tale teorema siano ottimali.
- 3. Dare una definizione di primitiva di una funzione. Data f(x) continua, come si determinano tutte le sue primitive?

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 3/9/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \log(\log(x)) + \sqrt{e^{2x} - 3e^x + 2}$$

2. Data la funzione

$$f(x) = \frac{\log(x) + 2}{x}$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali, convessitá, flessi.

3. Calcolare il seguente limite

$$\lim_{x \to 2} \frac{3(\sqrt{x^2 - 4x + 5} - 1)}{(x - 2)\sin(x - 2)}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{\sqrt{x} + 2}{x + 4} \, dx$$

5. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{n=1}^{\infty} \cos(n\pi) \log \left(1 + \frac{1}{n}\right)$$

Teoria: Rispondere ad almeno una tra le seguenti domande teoriche:

- 1. Dare la definizione di punto di massimo relativo e assoluto per una funzione f(x). Enunciare il Teorema di Weierstrass e enunciare e dimostrare il Teorema di Fermat. I punti di massimo assoluto per una funzione continua f sono unici? (dimostrarlo o fornire un controesempio).
- 2. Dare la definizione di derivata e discuterne il significato geometrico. Dimostrare che ogni funzione derivabile é continua in un punto. Si puó affermare che ogni funzione continua è derivabile? (dimostrarlo o fornire un controesempio).
- 3. Dimostrare la convergenza di una serie geometrica di ragione x tale che -1 < x < 1. Dimostrare inoltre che la serie armonica é divergente.

Universitá di Napoli Federico II Analisi Matematica I - Informatica - 5/10/2021

	ESERCIZI	PUNTEGGIO
	1	
Nome e Cognome:	2	
	3	
Matricola:	4	
	5	
	TEORIA	
	TOTALE	

1. Determinare l'insieme di definizione della seguente funzione:

$$f(x) = \arccos\left(\frac{x^2}{x^2 - 4}\right)$$

2. Data la funzione

$$f(x) = \frac{e^{2x} + 1}{e^x - 1}$$

tracciarne il grafico determinando dominio, limiti, asintoti, monotonia, estremi locali.

3. Calcolare il seguente limite

$$\lim_{x \to -1} \frac{\tan^2(x+1)}{1 + x - \log(x+2)}.$$

4. Calcolare il seguente integrale indefinito

$$\int \frac{2\sin x \cos x}{\cos^2(x) + 4\cos x + 4} \, dx$$

5. Studiare convergenza assoluta e semplice della seguente serie

$$\sum_{n=1}^{\infty} (-1)^n \left(\sqrt{1 + \frac{1}{n}} - 1 \right)$$

Teoria: Rispondere ad almeno una tra le seguenti domande teoriche:

- 1. Enunciare e dimostrare la formula di Taylor con resto di Peano.
- 2. Dare la definizione di integrale definito e di integrale indefinito per una funzione continua f definita su un intervallo [a,b]. Enunciare e dimostrare la formula di integrazione per parti.
- 3. Dimostrare che la successione $a_n = \left(1 + \frac{1}{n}\right)^n$ ammette limite provando che è una successione monotona crescente e limitata. Una successione monotona (non necessariamente limitata) ammette sempre limite? Una successione limitata (ma non necessariamente monotona) ammette sempre limite? Motivare le risposte.

ESERCIZIO 1: Risolvere le seguenti disequazioni algebriche su \mathbb{R} :

1.
$$(x-1)(x^3-x^2-2x) > 0;$$
 2. $\frac{x^2-4}{x^2-1} \le 0;$

$$2. \quad \frac{x^2 - 4}{x - 1} \le 0;$$

$$3. \quad 2^{2x+1} < 4^{x^2};$$

4.
$$\left(\frac{1}{2}\right)^{2x+1} < \left(\frac{1}{2}\right)^{\frac{x^2}{x-1}};$$
 5. $\log_{\frac{1}{2}}\left(\frac{x^2-1}{x}\right) > 0;$

$$5. \quad \log_{\frac{1}{2}}\left(\frac{x^2-1}{x}\right) > 0$$

6.
$$2\log(3x) < \log(3x+2);$$

7.
$$\sqrt{x^2+4-4x} > x-3$$
;

8.
$$\sqrt{x-1} + \sqrt{x+1} > \sqrt{3x}$$
; 9. $\sqrt[3]{x^2 + x} < x$;

9.
$$\sqrt[3]{x^2 + x} < x$$
;

10.
$$\sqrt{x+4} < x+3$$
;

11.
$$3^{-2x} - 4 \cdot 3^{-x} + 5 \le 0;$$
 12. $|x^2 + 5x + 3| > 3;$

12.
$$|x^2 + 5x + 3| > 3$$
;

ESERCIZIO 2: Determinare e disegnare i domini delle seguenti funzioni:

1.
$$f(x) = \arccos\left(\frac{x^2 - 2}{x}\right);$$

$$2. \quad f(x) = \log(\sin(x));$$

2.
$$f(x) = \log(\sin(x));$$
 3. $f(x) = \sqrt[4]{\frac{|x|x-1}{x}};$

4.
$$f(x) = \sqrt{\log_2(x) - 2} + \frac{1}{|x - 7|};$$
 5. $f(x) = \tan\left(x + \frac{\pi}{2}\right);$ 6. $f(x) = \sqrt{\log\left(1 + \frac{1}{x}\right)};$

5.
$$f(x) = \tan(x + \frac{\pi}{2});$$

6.
$$f(x) = \sqrt{\log\left(1 + \frac{1}{x}\right)}$$

7.
$$f(x) = \sqrt{\frac{x-2}{2x+1}} + \log(\sqrt{x} - 1);$$

ESERCIZIO 3: Calcolare sup e inf e, se esistono, max e min dei seguenti insiemi:

$$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\};$$

$$B = \left\{ \frac{2n}{n^2 + 1} : n \in \mathbb{N} \right\};$$

$$C = \left\{ \frac{n^2 + 1}{n} : n \in \mathbb{N} \right\};$$

$$D = \left\{ 2^{-n} : n \in \mathbb{N} \right\};$$

$$E = \left\{ \frac{n - 3}{n^2} : n \in \mathbb{N} \right\} \cup (0, 2);$$

$$F = \left\{ \frac{n - 1}{n + 1} : n \in \mathbb{N} \right\};$$

$$G = \left\{ \frac{(-1)^n n}{n^2 + 1} : n \in \mathbb{N} \right\};$$

$$H = \left\{ 2\log(n) - \frac{1}{4}\log(n^2) : n \in \mathbb{N} \right\};$$

$$I = \left\{ -\frac{n^2}{n + 1} : n \in \mathbb{N} \right\};$$

$$L = \left\{ \frac{n^2 + (-1)^n}{n} : n \in \mathbb{N} \right\};$$

$$\begin{split} M &= \left\{ \frac{(-1)^n + 1}{n} : n \in \mathbb{N} \right\}; \\ N &= \left\{ \frac{n! + 1}{(n+1)!} : n \in \mathbb{N} \right\}; \\ O &= \left\{ \sqrt{n+1} - \sqrt{n} : n \in \mathbb{N} \right\}; \\ P &= \left\{ x \in \mathbb{R} : |2x^2 - 1| < \frac{1}{|x|} \right\}; \\ Q &= \left\{ x \in \mathbb{R} : \log_{\frac{1}{2}}^3(x) - \log_{\frac{1}{2}}(x) > 0 \right\}; \\ R &= \left\{ x \in \mathbb{R} : x^2 - 4x - 3 \ge 0 \land x \le 4 \right\}; \\ S &= \left\{ x \in \mathbb{R} : \sqrt{|x-1|} < x \right\}; \\ T &= \left\{ x \in \mathbb{R} : \frac{1}{|x-2|} \le \frac{1}{|x-3|} \right\}. \end{split}$$

ESERCIZIO: Calcolare i seguenti limiti:

1.
$$\lim_{n \to \infty} \frac{3n^3 + n^2 + 1}{5n^3 + n};$$

2.
$$\lim_{n \to \infty} \frac{n^2 + \sqrt{n^4} + n}{e^{2\log(n)} + 4n};$$

3.
$$\lim_{n \to \infty} \frac{4^n + \left(\frac{1}{4}\right)^n + 3 \cdot 2^{2n}}{\left(\frac{1}{7}\right)^n + \left(\frac{1}{4}\right)^{\frac{n}{2}} + 16^{\frac{n}{2}}};$$

4.
$$\lim_{n \to \infty} \frac{\frac{1}{\sqrt{n}} + (\frac{1}{n})^2 + n^{-3}}{3\frac{\sqrt{n}}{n} + n^{-4}};$$

5.
$$\lim_{n \to \infty} \frac{\log(n^3) + 2n^2 + n}{e^{2\log(n)} + \frac{3}{n^{-2}} + 1};$$

6.
$$\lim_{n \to \infty} \frac{n \sin(\frac{3}{n^3})}{e^{-2\log(n)}};$$

7.
$$\lim_{n \to \infty} \frac{e^{n \log(n)} + n!}{4^n + \sqrt[n]{n^{2n}} + 1};$$

8.
$$\lim_{n \to \infty} \frac{1}{\log(n)\sin(\frac{1}{n})};$$

9.
$$\lim_{n \to \infty} \left(\sqrt{n^3 + 1} - \sqrt{n^3 - 1} \right) \sqrt{n^3};$$

10.
$$\lim_{n \to \infty} \left(1 - \cos^2 \left(\frac{1}{n} \right) \right) \frac{n^3 + 1}{n};$$
 11.
$$\lim_{n \to \infty} \frac{\log(\frac{n+1}{n})}{\sin(\frac{4}{n})};$$

11.
$$\lim_{n \to \infty} \frac{\log(\frac{n+1}{n})}{\sin(\frac{4}{n})};$$

12.
$$\lim_{n \to \infty} \frac{n! e^n n}{n^{n+1} \sin(\frac{1}{\sqrt{n}})};$$

13.
$$\lim_{n \to \infty} \frac{\log(1 + e^n)}{\sqrt{2n^2 + n + 1}};$$

14.
$$\lim_{n\to\infty} \left(1+\sin\left(\frac{1}{n}\right)\right)^{2n}$$
;

15.
$$\lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n;$$

16.
$$\lim_{n\to\infty} \left(\frac{n+2}{n+1}\right)^{n^2};$$

17.
$$\lim_{n \to \infty} \log(\sqrt{n} + 5^n) \frac{n^n}{(n+1)^{n+1}};$$
 18. $\lim_{n \to \infty} \left(\frac{n^2 + n}{n^2 - 2n - 1}\right)^n;$

18.
$$\lim_{n \to \infty} \left(\frac{n^2 + n}{n^2 - 2n - 1} \right)^n$$

19.
$$\lim_{n \to \infty} \frac{3(n!) - 4e^{n \log(n+3)}}{n^n}$$
;

20.
$$\lim_{n\to\infty} \sqrt{n^2 + 3n + 2} - \sqrt{n^2 + 1}$$
;

ESERCIZIO 1: Partendo dai grafici delle funzioni elementari, tracciare il grafico delle seguenti funzioni:

1.
$$f(x) = e^{-|x|} + 1$$

2.
$$f(x) = |\arctan(x+1)|;$$
 3. $f(x) = |\sin(x) - 1|;$

3.
$$f(x) = |\sin(x) - 1|$$
;

4.
$$f(x) = \sqrt{x+1} - 1;$$

5.
$$f(x) = \log(x+1) - 1$$
;

4.
$$f(x) = \sqrt{x+1} - 1;$$
 5. $f(x) = \log(x+1) - 1;$ 6. $f(x) = \left(\frac{1}{2}\right)^{x+1}$

ESERCIZIO 2: Calcolare, se esistono, i seguenti limiti:
1.
$$\lim_{x \to -\infty} \frac{x^4 + 3x^3 + x}{4x^4 + 2x^2 + 7x}$$
; 2. $\lim_{x \to 0} \frac{x^3 + 2x}{x^2 + 3x}$;

2.
$$\lim_{x \to 0} \frac{x^3 + 2x}{x^2 + 3x}$$

3.
$$\lim_{x\to 0^+} \frac{x^2-2x}{x^4+2x^3}$$
;

4.
$$\lim_{x \to 2} \frac{x^3 - 8 - 6x^2 + 12x}{2x^2 - 8x + 8};$$

4.
$$\lim_{x \to 2} \frac{x^3 - 8 - 6x^2 + 12x}{2x^2 - 8x + 8}$$
; 5. $\lim_{x \to \infty} \frac{\log(x) + e^{x-1} + (x-1)^2}{(x-1)^2 + 4e^x}$; 6. $\lim_{x \to 0} x \sin(e^x)$;

6.
$$\lim_{x \to 0} x \sin(e^x);$$

7.
$$\lim_{x \to \infty} \sin(x) (e^{\frac{x}{x+1}} + 2);$$
 8. $\lim_{x \to 0} (1+x) \sin(x^{-1});$

8.
$$\lim_{x\to 0} (1+x)\sin(x^{-1});$$

9.
$$\lim_{x \to \infty} \cos(x) \left(\frac{x^2 + 2x}{2x^2 - 1} - \frac{1}{2} \right);$$

10.
$$\lim_{x \to 0} \frac{\sin(2x)\log(1+x)}{\sin^2(3x)}$$
;

11.
$$\lim_{x \to 0} \frac{x^x(1+x)}{\sin^2(x)(2e^{\frac{x^2}{x+1}}-2)};$$

10.
$$\lim_{x \to 0} \frac{\sin(2x)\log(1+x)}{\sin^2(3x)};$$
 11. $\lim_{x \to 0} \frac{x^x(1+x)}{\sin^2(x)(2e^{\frac{x^2}{x+1}}-2)};$ 12. $\lim_{x \to 1} \frac{\tan^2(x-1)}{(x+1)(1-\cos(x-1))};$

13.
$$\lim_{x \to 0^+} \left(\frac{2x^3 + x^2 + x}{2x^2 + x} \right)^{\frac{1}{x}}$$

13.
$$\lim_{x \to 0^+} \left(\frac{2x^3 + x^2 + x}{2x^2 + x} \right)^{\frac{1}{x}}$$
; 14. $\lim_{x \to \infty} \left(1 + \sin\left(\frac{1}{x}\right) \right)^{7(x+1)}$; 15. $\lim_{x \to 1^-} \frac{\sin(1 - x^2)(e^{x^2 - 1} - 1)}{(x^2 - 1)^3}$.

15.
$$\lim_{x \to 1^{-}} \frac{\sin(1-x^2)(e^{x^2-1}-1)}{(x^2-1)^3}$$

ESERCIZIO 3: Trovare $a, b \in \mathbb{R}$ tali per cui le seguenti funzioni siano continue:

1)

$$f(x) = \begin{cases} \frac{e^{x-1} - 1}{x^2 - 1}, & -1 < x < 1, \\ ax^2, & x \ge 1. \end{cases}$$

Se $a=5,\,f$ che tipo di discontinuità presenta in x=1?

$$f(x) = \begin{cases} \frac{b(x^2 + x)}{(x - 1)^2 - 1}, & x < 0, \\ 2, & x = 0, \\ \frac{a(\log(1 + x)\sin(x))}{1 - \cos(x)}, & x > 0. \end{cases}$$

1

ESERCIZIO 4: Determinare dominio e studiare gli asintoti delle seguenti funzioni:

1.
$$f(x) = \frac{x^2 + x + 2}{x + 1}$$

1.
$$f(x) = \frac{x^2 + x + 2}{x + 1}$$
 2. $f(x) = \frac{e^x + \log(x)}{x^2 + 6e^x}$; 3. $f(x) = \sqrt{x^2 + x} - x^2$;

3.
$$f(x) = \sqrt{x^2 + x} - x^2$$
;

$$4. \quad f(x) = x + \frac{\cos(x)}{x}$$

5.
$$f(x) = xe^{\frac{x^2}{2x^2+1}} + \frac{1}{x};$$

4.
$$f(x) = x + \frac{\cos(x)}{x}$$
; 5. $f(x) = xe^{\frac{x^2}{2x^2+1}} + \frac{1}{x}$; 6. $f(x) = \arctan\left(\frac{x+1}{x+2}\right) - \log\left(\frac{x+2}{x}\right)$.

ESERCIZIO 1: Calcolare le derivate delle seguenti funzioni:

$$1. \quad f(x) = \frac{x^3 e^x}{x+1}$$

1.
$$f(x) = \frac{x^3 e^x}{x+1}$$
 2. $f(x) = \log\left(\frac{x^2}{x+1}\right)$; 3. $f(x) = \sqrt{e^{x^2} - 1}$;

3.
$$f(x) = \sqrt{e^{x^2} - 1}$$

4.
$$f(x) = 2^x \log(x^2);$$

$$5. \quad f(x) = \arccos(x^2 + x);$$

4.
$$f(x) = 2^x \log(x^2);$$
 5. $f(x) = \arccos(x^2 + x);$ 6. $f(x) = \arctan\left(\frac{4}{x^2}\right);$

7.
$$f(x) = \sin(\cos(x^2));$$

8.
$$f(x) = \cos(x)^{\sin(x)};$$

7.
$$f(x) = \sin(\cos(x^2));$$
 8. $f(x) = \cos(x)^{\sin(x)};$ 9. $f(x) = \tan(x^2 + 1);$

10.
$$f(x) = e^{\sin^2(x) + x}$$
;

11.
$$f(x) = \arccos^3(x^2);$$

10.
$$f(x) = e^{\sin^2(x) + x}$$
; 11. $f(x) = \arccos^3(x^2)$; 12. $f(x) = \log(\cos^2(x^2))$.

ESERCIZIO 2: Determinare, se esiste, la retta tangente al grafico di f(x) nel punto x_0 :

1.
$$f(x) = \log(x^2) + 1$$
, $x_0 = e$;

2.
$$f(x) = (x+1)^{\frac{4}{3}} + 1$$
, $x_0 = -1$;

3.
$$f(x) = \arctan(x^2 + 1) + 3x$$
, $x_0 = 0$; 4. $f(x) = |x|^3$, $x_0 = 0$.

4.
$$f(x) = |x|^3$$
, $x_0 = 0$

ESERCIZIO 3: Determinare, se esistono, minimo e massimo assoluto di f(x):

1.
$$f(x) = x^3 + x^2 - x$$
, $x \in [-2, 3]$

1.
$$f(x) = x^3 + x^2 - x$$
, $x \in [-2, 3]$; 2. $f(x) = \log(x^2 - 2x + 3)$, $x \in [-1, 2]$;

3.
$$f(x) = |x^2 - x - 2|$$
, $x \in \left[0, \frac{5}{2}\right]$; 4. $f(x) = \begin{cases} \sin(x), & -\pi \le x < 0, \\ -x + 1, & 0 \le x \le 1 \end{cases}$

4.
$$f(x) = \begin{cases} \sin(x), & -\pi \le x < 0 \\ -x + 1, & 0 \le x \le 1 \end{cases}$$

ESERCIZIO 4: Determinare la derivata di f(x) stabilendo la natura degli eventuali punti di non derivabilità (punto angoloso, a tangente verticale o cuspide):

1)

$$f(x) = |x^2 - 1|e^x;$$

2)

$$f(x) = |\log(x)| + (x-2)^{\frac{1}{3}} + x^2;$$

3)

$$f(x) = \begin{cases} \log(x^2 + 1), & 0 \le x < 1, \\ x^2 + 1, & 1 \le x < 2, \\ 2e^{2x - 4} + 3, & 2 \le x < 3; \end{cases}$$

ESERCIZIO 5: Determinare $a, b \in \mathbb{R}$ tali che f(x) sia derivabile

1)

$$f(x) = \begin{cases} 2e^{x^2 - 1}, & 0 < x < 1, \\ 2, & x = 1, \\ a\log(x^2) + b, & 1 \le x < 2; \end{cases}$$

2)

$$f(x) = \begin{cases} e^{x^2} + \log^2(x), & 0 < x < 1, \\ ax^2 + b, & 1 \le x < 2. \end{cases}$$

ESERCIZIO 1: Studiare le seguenti funzioni:

$$1. \quad f(x) = x \log(|x|)$$

$$2. \quad f(x) = \arccos(e^x);$$

1.
$$f(x) = x \log(|x|)$$
 2. $f(x) = \arccos(e^x);$ 3. $f(x) = \arctan(x^2 - 1);$

4.
$$f(x) = \frac{2x^2 + 3}{x^2 - 1}$$

5.
$$f(x) = \frac{x^2 - 4x + 3}{x + 4}$$

4.
$$f(x) = \frac{2x^2 + 3}{x^2 - 1};$$
 5. $f(x) = \frac{x^2 - 4x + 3}{x + 4};$ 6. $f(x) = \log\left(\frac{x}{x + 1}\right) - x;$

$$7. \quad f(x) = \left| \frac{x^2}{x^2 - 1} \right|$$

8.
$$f(x) = e^{-|x|}|x - 1|$$
;

7.
$$f(x) = \left| \frac{x^2}{x^2 - 1} \right|$$
; 8. $f(x) = e^{-|x|}|x - 1|$; 9. $f(x) = \sqrt{(x - 1)}|x - 2|$;

ESERCIZIO 2: Determinare dominio, asintoti, continuità, derivabilità, monotonia e natura degli eventuali punti stazionari delle seguenti funzioni:

1.
$$f(x) = \arctan\left(\frac{x^2 - 4}{x + 3}\right);$$
 2. $f(x) = e^{-|x|\sqrt{x + 1}};$

2.
$$f(x) = e^{-|x|\sqrt{x+1}}$$
;

3.
$$f(x) = \log\left(\frac{x^2 + 3x - 4}{x + 2}\right);$$
 4. $f(x) = \arccos(x^2 - 1);$

$$4. \quad f(x) = \arccos(x^2 - 1)$$

$$5. \quad f(x) = \log\left(\frac{1}{3}x^3 - x\right);$$

5.
$$f(x) = \log\left(\frac{1}{3}x^3 - x\right);$$
 6. $f(x) = \sqrt{\log\left(x^2 - \frac{1}{2}\right)};$

ESERCIZIO 3: Determinare dominio, asintoti, continuità, derivabilità, monotonia e natura degli eventuali punti stazionari delle seguenti funzioni::

1)

$$f(x) = \begin{cases} \frac{1}{2x}, & x \ge 1, \\ e^{\frac{x^2}{2x^2+1}}, & 0 \le x < 1, \\ \log(1+x) + 1, & x < 0; \end{cases}$$

2)

$$f(x) = \begin{cases} \frac{e^{x-1}-1}{x^2-1}, & x > 1, \\ \frac{1}{2x}, & -1 \le x \le 1, \\ \frac{3}{2}\log(2-x) + \frac{3}{2}, & x < -1; \end{cases}$$

(1) Calcolare i seguenti integrali indefiniti.

1.
$$\int x\sqrt{x^2-1} \ dx$$

$$2. \quad \int x(\cos x + \sin x) \ dx$$

3.
$$\int (x^3+1)^3 x^2 dx$$

4.
$$\int xe^{x^2} dx$$

5.
$$\int \cos(x^2)x \ dx$$

$$6. \quad \int \frac{e^x}{e^x + 1} \ dx$$

$$7. \quad \int \frac{x^3}{\sqrt{1-x^4}} \ dx$$

8.
$$\int \frac{1}{\sqrt[3]{x+1}} dx$$

9.
$$\int \frac{1}{(2x+1)^2 + 2} \ dx$$

10.
$$\int \frac{x}{\sqrt{x^2 - 1}} dx$$

11.
$$\int \frac{1}{x\sqrt{x^2-1}} dx$$

$$12. \quad \int \frac{1}{x \log(x)} \ dx$$

13.
$$\int \frac{\log(x)}{(x+1)^2} dx$$

14.
$$\int \tan^2(x) dx$$

15.
$$\int \frac{x+3}{x+1} dx$$

16.
$$\int 3\sin^2(x) \ dx$$

17.
$$\int \frac{\sin^2(x)\cos(x)}{3\sin(x)+1} dx$$

$$18. \quad \int \frac{\cos^3(x)}{\sin(x) + 1} \ dx$$

$$19. \quad \int \frac{\cos^2(x)}{1 + \sin(x)} \ dx$$

20.
$$\int \frac{x^4 + x^3 + x^2 + x + 1}{x^2 + 1} \ dx$$

21.
$$\int \frac{x^5 + x^4 + 2x^3 + x^2 + 2x + 3}{x^2 + x + 2} \ dx$$

$$22. \quad \int \frac{x^4}{x-1} \ dx$$

$$23. \quad \int \frac{2x-1}{2+x} \ dx$$

24.
$$\int \frac{2}{4x^2 + 2} dx$$

25.
$$\int \frac{3x+1}{3x^2+2x+4} \ dx$$

26.
$$\int \frac{13x+1}{x^2-2x+1} \ dx$$

$$27. \quad \int \frac{x}{x^2 + 2x + 3} \ dx$$

$$28. \int \log\left(\frac{x^2+1}{x}\right) dx$$

$$29. \quad \int (x^2 + 1)e^x \ dx$$

$$30. \quad \int \frac{x+1}{4x^2+4x+5} \ dx$$

31.
$$\int e^x \sin(x) \ dx$$

$$32. \quad \int x \tan^2(x) \ dx$$

33.
$$\int x^3 \cos(x) \ dx$$

34.
$$\int \cos(x) \log(\cos(x)) dx$$

35.
$$\int \log(1+\cos(x))\cos(x)\sin(x) dx$$

36.
$$\int x \log^2(x) \ dx$$

37.
$$\int \frac{1}{\arcsin(x)\sqrt{1-x^2}} dx$$

$$38. \quad \int \frac{1}{\cos(x)} \ dx$$

$$39. \quad \int \frac{1}{\sin(x)\cos(x)} \ dx$$

$$40. \quad \int \sqrt{3-x^2} \ dx$$

$$\mathbf{41.} \quad \int \frac{\sqrt{x}+1}{x+3} \ dx$$

42.
$$\int \frac{1}{1+\sqrt{x+2}} \ dx$$

43.
$$\int e^{\sqrt{x}} \sqrt{x} \ dx$$

44.
$$\int (x+1)\arctan(x) \ dx$$

45.
$$\int \arcsin(x) \ dx$$

46.
$$\int \frac{5x - 12}{x^2 - 5x + 6} \ dx$$

47.
$$\int \frac{3e^x}{e^{2x} - 4e^x + 3} \ dx$$

48.
$$\int \frac{2x}{x^2 + 4x + 4} \ dx$$

$$49. \quad \int \frac{x}{x^2 + 4x + 6} \ dx$$

50.
$$\int \frac{5x-1}{x^2-1} dx$$

$$51. \quad \int \frac{x+3}{2x^2+4x+6} \ dx$$

$$52. \quad \int \frac{2x - 8}{(x - 2)^2} \ dx$$

53.
$$\int \frac{x \tan(x)}{\sin^2(x) \cot(x)} dx$$

54.
$$\int \frac{1}{\tan^2(x) + 1} \ dx$$

55.
$$\int \frac{2 - x^2}{\sqrt{1 - x^2}} \ dx$$

$$56. \int \frac{\cos(x)\sin(x)}{2\sin(x) + \sin^2(x) + 1} dx$$

57.
$$\int \frac{x}{\sqrt{x}+2} \ dx$$

$$58. \quad \int \frac{1}{\sqrt{x} + x^{\frac{1}{3}}} \ dx$$

$$59. \quad \int \frac{\sqrt{x}(x-1)}{x+2} \ dx$$

60.
$$\int \frac{e^{2x}}{e^{2x} - 2e^x + 2} \ dx$$

61.
$$\int \frac{3x^3 + 8x^2 + 15x + 8}{x^2 + 2x + 3} \ dx$$

62.
$$\int \frac{1}{x^2 - 4x + 6} dx$$

63.
$$\int \arccos(x) \ dx$$

(2) Calcolare i seguenti integrali definiti

1.
$$\int_{0}^{1} \sqrt{2-x^2} dx$$
 2. $\int_{1}^{16} e^{-\sqrt{x}} dx$

2.
$$\int_{1}^{16} e^{-\sqrt{x}} dx$$

$$3. \quad \int_1^e \frac{\log(x)}{(\log(x) + 2)x} \ dx$$

$$4. \quad \int_{\frac{1}{2}}^{1} \sqrt{\frac{1-x^2}{x^4}} \ dx$$

4.
$$\int_{\frac{1}{2}}^{1} \sqrt{\frac{1-x^2}{x^4}} dx$$
 5. $\int_{0}^{\frac{\pi}{2}} \frac{\sin(x)}{\sqrt{\cos(x)+1}} dx$ 6. $\int_{0}^{1} 3x\sqrt{1-x^2} dx$

6.
$$\int_0^1 3x\sqrt{1-x^2} \ dx$$

7.
$$\int_{1}^{e} \log(x) \ dx$$

7.
$$\int_{1}^{e} \log(x) dx$$
 8. $\int_{0}^{1} e^{x} \log(e^{x} + 1) dx$ 9. $\int_{0}^{1} \sqrt{1 - x^{2}} dx$

9.
$$\int_0^1 \sqrt{1-x^2} \ dx$$

10.
$$\int_0^4 \frac{\sqrt{x}+1}{x+3} dx$$

10.
$$\int_0^4 \frac{\sqrt{x+1}}{x+3} dx$$
 11. $\int_0^2 \frac{1}{1+\sqrt{x+2}} dx$ 12. $\int_1^e x^2 \log(x) dx$

12.
$$\int_{1}^{e} x^{2} \log(x) dx$$

(3) Calcolare le seguenti aree tramite calcolo integrale

- i) L'area della zona compresa tra il grafico di cos(x) e l'asse x dove x varia tra 0 e π .
- ii) L'area del triangolo di vertici (0,0), (1,1) e (2,0).
- iii) L'area del triangolo di vertici (0,1), (1,2) e (2,1).
- iv) L'area della zona che si trova al di sotto della bisettrice del primo e del terzo quadrante e sopra la parabola $y = x^2$.
- v) L'area del triangolo di vertici (0,0), (2,2) e (1,2).
- vi) L'area del quadrilatero di vertici (0,1), (1,2), (1,3) e (2,1).
- vii) L'area della zona compresa tra il grafico di

$$f(x) = \begin{cases} x - 1, & x \le 2, \\ -x + 3, & x > 2. \end{cases}$$

viii) L'area della zona compresa tra il grafico di $f(x) = x^2 + 1$ e g(x) = $e^{-\sqrt{x}}$.

ESERCIZIO: Studiare le seguenti serie. In particolare stabilire il carattere per le serie a termini non negativi e convergenza assoluta e semplice per serie a segno variabile:

1.
$$\sum_{k=1}^{\infty} \frac{\log(2)3^k k!}{k^k}$$
;

2.
$$\sum_{k=1}^{\infty} \left(e^{\frac{2k^2+1}{2k^2+k+2}} - e \right);$$

3.
$$\sum_{k=1}^{\infty} \log \left(\frac{k^2 + k}{k^2 + k - 1} \right)^{\frac{1}{k}};$$

4.
$$\sum_{k=1}^{\infty} \log(k) \sin\left(\frac{1}{k}\right) \log\left(\frac{k^2 + k}{k^2 + 1}\right);$$
 5. $\sum_{k=1}^{\infty} \frac{(-1)^k k}{k^2 + 1};$

5.
$$\sum_{k=1}^{\infty} \frac{(-1)^k k}{k^2 + 1};$$

6.
$$\sum_{k=1}^{\infty} \frac{k+1}{(k^2+k)\log^k(k+1)}$$

$$7. \quad \sum_{k=1}^{\infty} \frac{k \cos(k\pi)}{k^2 + k};$$

8.
$$\sum_{k=1}^{\infty} \sin(k) \log \left(\frac{1+k^2}{k^2} \right) (e^{\frac{1}{k}} - 1);$$
 9.
$$\sum_{k=1}^{\infty} \left(\sqrt{1 + \frac{1}{k^2}} - 1 \right) (k+2);$$

9.
$$\sum_{k=1}^{\infty} \left(\sqrt{1 + \frac{1}{k^2}} - 1 \right) (k+2)$$

10.
$$\sum_{k=1}^{\infty} (-1)^k \frac{4^{k+2}}{5^k};$$