epiworld

0.0-1

Generated by Doxygen 1.9.1

1 Main Page	1
1.1 epiworld	. 1
1.1.1 Hello world	. 1
1.1.2 Simulation Steps	. 2
1.1.3 Agents	. 3
1.1.4 Contagion	. 3
2 Class Index	5
2.1 Class List	. 5
3 Class Documentation	7
3.1 Action < TSeq > Struct Template Reference	. 7
3.1.1 Detailed Description	. 8
3.1.2 Constructor & Destructor Documentation	. 8
3.1.2.1 Action()	. 8
3.2 AdjList Class Reference	. 9
3.2.1 Constructor & Destructor Documentation	. 9
3.2.1.1 AdjList()	. 9
3.2.2 Member Function Documentation	. 9
3.2.2.1 read_edgelist()	. 10
3.3 Agent < TSeq > Class Template Reference	. 10
3.3.1 Detailed Description	
3.4 DataBase < TSeq > Class Template Reference	. 12
3.4.1 Detailed Description	. 13
3.4.2 Member Function Documentation	. 14
3.4.2.1 record_variant()	. 14
3.4.2.2 reproductive_number()	. 14
3.5 Entity < TSeq > Class Template Reference	. 14
3.6 LFMCMC< TData > Class Template Reference	. 15
3.6.1 Detailed Description	
3.7 Model < TSeq > Class Template Reference	. 16
3.7.1 Detailed Description	. 22
3.7.2 Member Function Documentation	. 22
3.7.2.1 add_global_action()	. 22
3.7.2.2 reset()	. 22
3.7.2.3 run_multiple()	
3.7.2.4 write_data()	
3.8 PersonTools< TSeq > Class Template Reference	
3.9 Progress Class Reference	. 24
3.9.1 Detailed Description	
3.10 Queue < TSeq > Class Template Reference	
3.10.1 Detailed Description	
3.11 RandGraph Class Reference	

3.	12 Iool < I Seq > Class Template Reference	25
	3.12.1 Detailed Description	26
3.	13 Tools < TSeq > Class Template Reference	27
	3.13.1 Detailed Description	27
3.	14 Tools_const < TSeq > Class Template Reference	27
	3.14.1 Detailed Description	28
3.	15 UserData < TSeq > Class Template Reference	28
	3.15.1 Detailed Description	29
	3.15.2 Constructor & Destructor Documentation	29
	3.15.2.1 UserData()	29
3.	16 vecHasher < T > Struct Template Reference	30
	3.16.1 Detailed Description	30
3.	17 Virus< TSeq > Class Template Reference	30
	3.17.1 Detailed Description	32
3.	18 Viruses < TSeq > Class Template Reference	32
	3.18.1 Detailed Description	33
3.	19 Viruses_const< TSeq > Class Template Reference	33
	3.19.1 Detailed Description	33
Index		35

Chapter 1

Main Page

1.1 epiworld

This C++ library provides a general framework for epidemiologic simulation. The core principle of epiworld is fast epidemiological prototyping for building complex models quickly. Here are some of its main features:

- It only depends on the standard library (C++11 required.)
- · It is a template library.
- It is header-only (single file).
- · Models can have an arbitrary set of states.
- Viruses and tools (e.g., vaccines, mask-wearing) can be designed to have arbitrary features.
- Multiple tools and viruses can live in the same simulation.
- It is FAST: About 7.5 Million person/day simulations per second (see example below).

Various examples can be found in the [examples] (examples) folder.

1.1.1 Hello world

Here is a simple SIR model implemented with <code>epiworld</code>. The source code can be found <code>here</code>, and you can compile the code as follows:

```
g++ -std=c++17 -O2 readme.cpp -o readme.o
```

As you can see in readme.cpp, to use epiworld you only need to incorporate the single header file

```
epiworld.hpp:
#include "epiworld.hpp"
using namespace epiworld;
int main()
{
    // Creating a model with three statuses:
    // - Susceptible: Status 0
    // - Infected: Status 1
    // - Recovered: Status 2
    Model<> model;
```

2 Main Page

```
model.add_status("Susceptible", default_update_susceptible<>);
model.add_status("Infected", default_update_exposed<>);
model.add_status("Recovered");
// Desgining a virus: This virus will:  
// - Have a 90% transmission rate
// - Have a 50% recovery rate
// - Infected individuals become "Infected" (status 1)
// - Recovered individuals become "Recovered"
// Only five individuals will have the virus from the beginning.
Virus<> virus("covid 19");
virus.set_prob_infecting(.9);
virus.set_prob_recover(.5);
virus.set_status(1, 2);
model.add_virus_n(virus, 5);
// Generating a random pop from a smallworld network
model.population_smallworld(100000);
// Initializing setting days and seed
model.init(100, 123);
// Running the model
model.run();
model.print();
```

And you should get something like the following:

Running the model...

|||||| done.

```
SIMULATION STUDY
                      : 100000
Population size
Days (duration)
                      : 100 (of 100)
Number of variants : 1
Last run elapsed t : 134.00ms
Rewiring
                      : off
Virus(es):
  - covid 19 (baseline prevalence: 5 seeds)
Tool(s):
Model parameters:
 (none)
Distribution of the population at time 100:
- (0) Total Susceptible: 9995 -> 95466

- (1) Total Infected: 5 -> 70

- (2) Total Recovered: 0 -> 4464
- (1) Total Infected
- (2) Total Recovered
```

Which took about 0.134 seconds (\sim 7.5 million ppl x day / second).

1.1.2 Simulation Steps

The core logic of the model relies on user-defined statuses and their corresponding update functions. In particular, the model does not have a predefined set of statuses, e.g., susceptible, infected, recovered; it is the user who establishes them. This provides a great deal of flexibility as models in epiworld can have an arbitrary set of statuses.

Like most other ABM, <code>epiworld</code> simulates the evolution of a system in discrete steps. Each step represents a day in the system, and changes are reflected at the beginning of the following day. Therefore, agents can become recovered and transmit a virus on the same day. A single step of <code>epiworld</code> features the following procedures:

- 1. Status update: Agents are updated according to the status they are at.
- 2. (optional) **Execute global actions**: A call of user-defined functions affecting the system. These can make any type of change in the system.
- 3. (optional) **Apply rewiring algorithm**: When specified, the network is rewired according to a user-defined function.
- 4. **Lock the results**: The current date is incremented in one unit and the changes (exposition, new infections, recoveries, etc.) are recorded in the database.

1.1 epiworld 3

5. (optional) Mutate Variants: When defined, variants can mutate, with the new variants appearing the next day.

To speed up computations, <code>epiworld</code> uses by default a queuing system that decides which agents will be active during each step and which will not. Agents are active when either they or at least one of their neighbors has a virus active. Agents' updates are triggered only for those who are in the queue, which in most cases accelerates the completion of the current step.

1.1.3 Agents

Agents carry two sets of important information: viruses and tools. Each agent can have multiple instances of them, meaning that multiple viruses and tools can coexist in a model. At each step of the simulation, an agent can face the following changes:

- **Acquire a virus (add_virus())**: Become exposed to a particular virus+host.
- **Lose a virus (rm_virus())**: Removing a virus from the agent. Losing a virus triggers a call to the virus's postrecovery() function, which can, for example, result in gaining immunity to that variant.
- **Change status (change_status ()) **: An arbitrary change in the status of the agent. Examples of this are moving from "exposed" to "infected," from "infected" to "ICU," etc.
- **Become removed (rm_agent_by_virus())**: An agent becomes inactive after its condition becoming worse. In such a case, all viruses attached to the agent are removed as well.

Any action in the model can trigger a change in its queuing system. By default, becoming exposed makes the agent (and its neighbors) active in the queuing system. Likewise, losing all viruses could make the agent and its neighbors inactive.

1.1.4 Contagion

Susceptible individuals can acquire a virus from any of their infected connections. The probability that susceptible individual i gets the virus v from individual j depends on how three things:

- 1. The transmissibility of the virus, ,
- 2. The contagion reduction factor of i, , and
- 3. The host's transmission reduction factor, .

The last two are computed from and 's tools. Ultimately, the probability of getting virus \$v\$ from equals:

Nonetheless, the default behavior of the simulation model is to assume that individuals can acquire only one disease at a time, if any. This way, the actual probability is:

The latter is calculated using Bayes' rule

Where

This way, viruses with higher transmissibility will be more likely to be acquired when competing with other variants.

4 Main Page

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Action< TSeq >
Action data for update an agent
AdjList
Agent< TSeq >
Agent (agents)
DataBase < TSeq >
Statistical data about the process
Entity < TSeq >
LFMCMC< TData >
Likelihood-Free Markov Chain Monte Carlo
Model < TSeq >
Core class of epiworld
PersonTools < TSeq >
Progress
A simple progress bar
Queue < TSeq >
Controls which agents are verified at each step
RandGraph
Tool < TSeq >
Tools for defending the agent against the virus
Tools < TSeq >
Set of tools (useful for building iterators)
Tools_const< TSeq >
Set of Tools (const) (useful for iterators)
UserData < TSeq >
Personalized data by the user
vecHasher< T >
Vector hasher
Virus< TSeq >
Virus
Viruses< TSeq >
Set of viruses (useful for building iterators)
Viruses_const< TSeq >
Set of Viruses (const) (useful for iterators)

6 Class Index

Chapter 3

Class Documentation

3.1 Action < TSeq > Struct Template Reference

Action data for update an agent.

```
#include <config.hpp>
```

Collaboration diagram for Action < TSeq >:

Public Member Functions

Action (Agent < TSeq > *agent_, VirusPtr < TSeq > virus_, ToolPtr < TSeq > tool_, epiworld_fast_int new ←
 status, epiworld_fast_int queue_, ActionFun < TSeq > call_)
 Construct a new Action object.

Public Attributes

- Agent < TSeq > * agent
- VirusPtr< TSeq > virus
- ToolPtr< TSeq > tool
- epiworld_fast_int new_status
- epiworld_fast_int queue
- $\bullet \ \ \mathsf{ActionFun} < \mathsf{TSeq} > \mathbf{call}$

3.1.1 Detailed Description

```
template < typename TSeq > struct Action < TSeq >
```

Action data for update an agent.

Template Parameters

```
TSeq
```

3.1.2 Constructor & Destructor Documentation

3.1.2.1 Action()

Construct a new Action object.

All the parameters are rather optional.

Parameters

agent_	Agent over who the action will happen
virus_	Virus to add
tool_	Tool to add
virus_idx	Index of virus to be removed (if needed)
tool_idx	Index of tool to be removed (if needed)
new_←	Next status
status_	
queue_	Efect on the queue
call_	The action call (if needed)

The documentation for this struct was generated from the following files:

- include/epiworld/agent-bones.hpp
- · include/epiworld/config.hpp

3.2 AdjList Class Reference

Public Member Functions

AdjList (const std::vector< unsigned int > &source, const std::vector< unsigned int > &target, int size, bool directed)

Construct a new Adj List object.

- void read_edgelist (std::string fn, int size, int skip=0, bool directed=true)
 - Read an edgelist.
- std::map< unsigned int, unsigned int > operator() (unsigned int i) const
- void print (unsigned int limit=20u) const
- size_t vcount () const

Number of vertices/nodes in the network.

• size_t ecount () const

Number of edges/arcs/ties in the network.

- std::vector< std::map< unsigned int, unsigned int > > & get_dat ()
- · bool is directed () const

true if the network is directed.

3.2.1 Constructor & Destructor Documentation

3.2.1.1 AdjList()

Construct a new Adj List object.

Ids in the network are assume to range from 0 to size - 1.

Parameters

source	Unsigned int vector with the source
target	Unsigned int vector with the target
size	Number of vertices in the network.
directed	Bool true if the network is directed

3.2.2 Member Function Documentation

3.2.2.1 read_edgelist()

```
void AdjList::read_edgelist (
    std::string fn,
    int size,
    int skip = 0,
    bool directed = true ) [inline]
```

Read an edgelist.

Ids in the network are assume to range from 0 to size - 1.

Parameters

fn	Path to the file
skip	Number of lines to skip (e.g., 1 if there's a header)
directed	true if the network is directed
size	Number of vertices in the network.

The documentation for this class was generated from the following files:

- include/epiworld/adjlist-bones.hpp
- include/epiworld/adjlist-meat.hpp

3.3 Agent < TSeq > Class Template Reference

```
Agent (agents)
```

```
#include <agent-bones.hpp>
```

Public Member Functions

```
    Agent (const Agent < TSeq > &p)
```

int get_id () const

Id of the individual.

- std::mt19937 * get_rand_endgine ()
- Model < TSeq > * get_model ()
- VirusPtr < TSeq > & get_virus (int i)
- Viruses < TSeq > get_viruses ()
- const $Viruses_const < TSeq > get_viruses$ () const
- size_t get_n_viruses () const noexcept
- ToolPtr< TSeq > & get_tool (int i)
- Tools < TSeq > get_tools ()
- const Tools_const < TSeq > get_tools () const
- size_t get_n_tools () const noexcept
- void mutate_variant ()
- void add_neighbor (Agent < TSeq > *p, bool check_source=true, bool check_target=true)
- std::vector< Agent< TSeq > * > & get_neighbors ()
- void **change_status** (epiworld_fast_uint new_status, epiworld_fast_int queue=0)
- const epiworld_fast_uint & get_status () const

- · void reset ()
- bool has_tool (unsigned int t) const
- · bool has tool (std::string name) const
- · bool has_virus (unsigned int t) const
- · bool has virus (std::string name) const

Add/Remove Virus/Tool

Any of these is ultimately reflected at the end of the iteration.

Parameters

tool	Tool to add
virus	Virus to add
status_new	Status after the change
queue	

- void add tool (ToolPtr< TSeg > tool, epiworld fast int status new=-99, epiworld fast int queue=-99)
- void add tool (Tool < TSeq > tool, epiworld fast int status new=-99, epiworld fast int gueue=-99)
- void add_virus (VirusPtr< TSeq > virus, epiworld_fast_int status_new=-99, epiworld_fast_int queue=-99)
- void add virus (Virus < TSeq > virus, epiworld fast int status new=-99, epiworld fast int queue=-99)
- void **rm_tool** (epiworld_fast_uint tool_idx, epiworld_fast_int status_new=-99, epiworld_fast_int queue=-99)
- void rm_tool (ToolPtr< TSeq > &tool, epiworld_fast_int status_new=-99, epiworld_fast_int queue=-99)
- void rm_virus (epiworld_fast_uint virus_idx, epiworld_fast_int status_new=-99, epiworld_fast_int queue=-99)
- void rm_virus (VirusPtr< TSeq > &virus, epiworld_fast_int status_new=-99, epiworld_fast_int queue=-99)
- void rm_agent_by_virus (epiworld_fast_uint virus_idx, epiworld_fast_int status_new=-99, epiworld_fast
 _int queue=-99)

Agent removed by virus.

void rm_agent_by_virus (VirusPtr< TSeq > &virus, epiworld_fast_int status_new=-99, epiworld_fast_int queue=-99)

Agent removed by virus.

Get the rates (multipliers) for the agent

Parameters

v A pointer to a virus.

Returns

epiworld_double

- epiworld_double get_susceptibility_reduction (VirusPtr< TSeq > v)
- epiworld_double get_transmission_reduction (VirusPtr< TSeq > v)
- epiworld_double get_recovery_enhancer (VirusPtr< TSeq > v)
- epiworld_double get_death_reduction (VirusPtr< TSeq > v)

Friends

- class Model < TSeq >
- class Virus < TSeq >

- class Viruses < TSeq >
- class Viruses_const< TSeq >
- class Tool < TSeq >
- class Tools < TSeq >
- class Queue < TSeq >
- void default_add_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_add_tool (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_tool (Action< TSeq > &a, Model< TSeq > *m)

3.3.1 Detailed Description

```
template<typename TSeq = int> class Agent< TSeq >
```

Agent (agents)

Template Parameters

TSeq | Sequence type (should match TSeq across the model)

The documentation for this class was generated from the following file:

• include/epiworld/agent-bones.hpp

3.4 DataBase < TSeq > Class Template Reference

Statistical data about the process.

#include <database-bones.hpp>

Public Member Functions

- DataBase (Model < TSeq > &m)
- void record_variant (Virus < TSeq > &v)

Registering a new variant.

- void record_tool (Tool < TSeq > &t)
- void set_seq_hasher (std::function< std::vector< int >(TSeq)> fun)
- void set_model (Model < TSeq > &m)
- Model < TSeq > * get_model ()
- void record ()
- const std::vector< TSeq > & get_sequence () const
- const std::vector< int > & get_nexposed () const
- size_t size () const
- void write_data (std::string fn_variant_info, std::string fn_variant_hist, std::string fn_tool_info, std::string fn_tool_hist, std::string fn_transmission, std::string fn_transition) const
- void record_transmission (int i, int j, int variant, int i_expo_date)
- size_t get_n_variants () const

- size_t get_n_tools () const
- · void reset ()
- void set user_data (std::vector< std::string > names)
- void add_user_data (std::vector< epiworld_double > x)
- void add user data (unsigned int j, epiworld double x)
- UserData < TSeq > & get_user_data ()

Get recorded information from the model

Parameters

```
what std::string, The status, e.g., 0, 1, 2, ...
```

Returns

```
In get_today_total, the current counts of what.

In get_today_variant, the current counts of what for each variant.

In get_hist_total, the time series of what

In get_hist_variant, the time series of what for each variant.

In get_hist_total_date and get_hist_variant_date the corresponding dates
```

- int get_today_total (std::string what) const
- int **get_today_total** (epiworld_fast_uint what) const
- void get today total (std::vector < std::string > *status=nullptr, std::vector < int > *counts=nullptr) const
- void get_today_variant (std::vector< std::string > &status, std::vector< int > &id, std::vector< int > &counts) const
- void get_hist_total (std::vector< int > *date, std::vector< std::string > *status, std::vector< int > *counts) const
- void get_hist_variant (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &status, std::vector< int > &counts) const
- MapVec_type< int, int > reproductive_number () const
 Computes the reproductive number of each case.
- void reproductive_number (std::string fn) const

Friends

- class Model < TSeq >
- void default_add_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_add_tool (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_tool (Action< TSeq > &a, Model< TSeq > *m)

3.4.1 Detailed Description

```
template < typename TSeq> class DataBase < TSeq >
```

Statistical data about the process.

Template Parameters

3.4.2 Member Function Documentation

3.4.2.1 record_variant()

Registering a new variant.

Parameters

Pointer to the new variant. Since variants are originated in the agent, the numbers simply move around.
 From the parent variant to the new variant. And the total number of infected does not change.

3.4.2.2 reproductive number()

```
template<typename TSeq >
MapVec_type< int, int > DataBase< TSeq >::reproductive_number [inline]
```

Computes the reproductive number of each case.

Parameters

fn File where to write out the reproductive number.

The documentation for this class was generated from the following files:

- · include/epiworld/database-bones.hpp
- include/epiworld/database-meat.hpp

3.5 Entity < TSeq > Class Template Reference

Public Member Functions

void add_agent (Agent < TSeq > &p)

- void add_agent (Agent < TSeq > *p)
- void rm_agent (size_t idx)
- size_t size () const noexcept
- void set_location (std::vector< epiworld_double > loc)
- std::vector< epiworld_double > & get_location ()
- std::vector< Agent< TSeq > * >::iterator begin ()
- std::vector< Agent< TSeq > * >::iterator end ()
- std::vector< Agent< TSeq > * >::const_iterator begin () const
- std::vector< Agent< TSeq > * >::const_iterator end () const

The documentation for this class was generated from the following file:

• include/epiworld/entity-bones.hpp

3.6 LFMCMC< TData > Class Template Reference

Likelihood-Free Markov Chain Monte Carlo.

```
#include <lfmcmc.hpp>
```

Public Member Functions

- void run (VEC(epiworld_double) param_init, size_t n_samples_, epiworld_double epsilon_)
- LFMCMC (TData &observed_data_)
- void set observed data (TData &observed data)
- void set_proposal_fun (FUN< void(VEC(epiworld_double)&, LFMCMC< TData > *)> fun)
- void set_simulation_fun (FUN< TData(VEC(epiworld_double)&, LFMCMC< TData > *)> fun)
- void set summary fun (FUN< VEC(epiworld double)(TData &, LFMCMC< TData > *)> fun)
- void set_kernel_fun (FUN< epiworld_double(VEC(epiworld_double)&, epiworld_double, LFMCMC< TData > *)> fun)
- const size_t get_n_samples ()
- const size_t get_n_statistics ()
- const size_t get_n_parameters ()
- const epiworld_double get_epsilon ()
- const VEC (epiworld_double) &get_params_now()
- const VEC (epiworld_double) &get_params_prev()
- const VEC (epiworld_double) &get_params_init()
- const VEC (epiworld_double) &get_statistics_obs()
- const VEC (epiworld_double) &get_statistics_hist()
- const **VEC** (bool) &get_statistics_accepted()
- const **VEC** (epiworld_double) &get_posterior_lf_prob()
- const VEC (epiworld_double) &get_acceptance_prob()
- const VEC (epiworld_double) &get_drawn_prob()
- VEC (TData) *get_sampled_data()

Random number generation

Parameters

eng

- void set_rand_engine (std::mt19937 &eng)
- std::mt19937 * get_rand_endgine ()
- void seed (unsigned int s)
- void **set_rand_gamma** (epiworld_double alpha, epiworld_double beta)
- epiworld double runif ()
- epiworld double rnorm ()
- epiworld double **rnorm** (epiworld double mean, epiworld double sd)
- epiworld double rgamma ()
- epiworld_double rgamma (epiworld_double alpha, epiworld_double beta)

3.6.1 Detailed Description

```
template < typename TData > class LFMCMC < TData >
```

Likelihood-Free Markov Chain Monte Carlo.

Template Parameters

```
TData Type of data that is generated
```

The documentation for this class was generated from the following file:

• include/epiworld/math/lfmcmc.hpp

3.7 Model < TSeq > Class Template Reference

Core class of epiworld.

```
#include <model-bones.hpp>
```

Public Member Functions

- DataBase< TSeq > & get_db ()
- epiworld_double & operator() (std::string pname)
- size_t size () const
- size t get n variants () const
- · size_t get_n_tools () const
- unsigned int get_ndays () const
- unsigned int get_n_replicates () const
- void set_ndays (unsigned int ndays)
- bool get_verbose () const
- void verbose_off ()
- void verbose_on ()
- int today () const

The current time of the model.

void write_data (std::string fn_variant_info, std::string fn_variant_hist, std::string fn_tool_info, std::string fn_tool_hist, std::string fn_transmission, std::string fn_transition) const

Wrapper of DataBase::write_data

- std::map< std::string, epiworld_double > & params ()
- · void reset ()

Reset the model.

- · void print () const
- Model < TSeq > && clone () const
- void **get_elapsed** (std::string unit="auto", epiworld_double *last_elapsed=nullptr, epiworld_double *total_←
 elapsed=nullptr, std::string *unit_abbr=nullptr, bool print=true) const
- void add_global_action (std::function< void(Model< TSeq > *)> fun, int date=-99)

Set a global action.

- void run_global_actions ()
- void clear status set ()
- const std::vector< VirusPtr< TSeq >> & get_viruses () const
- const std::vector< ToolPtr< TSeq > > & get tools () const

Set the backup object

backup can be used to restore the entire object after a run. This can be useful if the user wishes to have individuals start with the same network from the beginning.

- void set_backup ()
- void restore_backup ()

Random number generation

Parameters

eng	Random number generator
S	Seed

- void set_rand_engine (std::mt19937 &eng)
- std::mt19937 * **get_rand_endgine** ()
- void **seed** (unsigned int s)
- void set_rand_gamma (epiworld_double alpha, epiworld_double beta)
- epiworld double runif ()
- epiworld_double rnorm ()
- epiworld_double **rnorm** (epiworld_double mean, epiworld_double sd)
- epiworld double rgamma ()
- epiworld_double **rgamma** (epiworld_double alpha, epiworld_double beta)

Add Virus/Tool to the model

This is done before the model has been initialized.

Parameters

V	Virus to be added
t	Tool to be added
preval	Initial prevalence (initial state.) It can be specified as a proportion (between zero and one,) or an integer indicating number of individuals.

- void add_virus (Virus < TSeq > v, epiworld_double preval)
- void add_virus_n (Virus < TSeq > v, unsigned int preval)
- void add_tool (Tool < TSeq > t, epiworld_double preval)
- void add_tool_n (Tool < TSeq > t, unsigned int preval)

Accessing population of the model

Parameters

fn	std::string Filename of the edgelist file.
skip	int Number of lines to skip in fn.
directed	bool Whether the graph is directed or not.
size	Size of the network.
al	AdjList to read into the model.

- void agents_from_adjlist (std::string fn, int size, int skip=0, bool directed=false)
- void agents_from_adjlist (AdjList al)
- · bool is_directed () const
- std::vector< Agent< TSeq > > * get_agents ()
- void agents_smallworld (unsigned int n=1000, unsigned int k=5, bool d=false, epiworld_double p=.01)

Functions to run the model

Parameters

seed	Seed to be used for Pseudo-RNG.	
ndays	Number of days (steps) of the simulation.	
fun	In the case of run_multiple, a function that is called after each experiment.	

- · void init (unsigned int ndays, unsigned int seed)
- void update_status ()
- void mutate_variant ()
- void next ()
- void run ()

Runs the simulation (after initialization)

void run_multiple (unsigned int nexperiments, std::function< void(size_t, Model< TSeq > *)> fun=save ←
 _run< TSeq >(), bool reset=true, bool verbose=true)

Rewire the network preserving the degree sequence.

This implementation assumes an undirected network, thus if $\{(i,j), (k,l)\} \rightarrow \{(i,l), (k,j)\}$, the reciprocal is also true, i.e., $\{(j,i), (l,k)\} \rightarrow \{(j,k), (l,i)\}$.

Parameters

	proportion	Proportion of ties to be rewired.
--	------------	-----------------------------------

Returns

A rewired version of the network.

- void set_rewire_fun (std::function< void(std::vector< Agent< TSeq >> *, Model< TSeq > *, epiworld double)> fun)
- void set_rewire_prop (epiworld_double prop)
- epiworld_double get_rewire_prop () const
- · void rewire ()

Export the network data in edgelist form

Parameters

fn	std::string. File name.
source	Integer vector
target	Integer vector

When passing the source and target, the function will write the edgelist on those.

- · void write edgelist (std::string fn) const
- void write_edgelist (std::vector< unsigned int > &source, std::vector< unsigned int > &target) const

Manage status (states) in the model

The functions get_status return the current values for the statuses included in the model.

Parameters

```
lab | std::string Name of the status.
```

Returns

add_status* returns nothing.
get_status_* returns a vector of pairs with the statuses and their labels.

- void add_status (std::string lab, UpdateFun< TSeq > fun=nullptr)
- const std::vector< std::string > & get status () const
- const std::vector< UpdateFun< TSeq > > & get_status_fun () const
- void print_status_codes () const

Set the user data object

Parameters

names	string vector with the names of the variables.

- void set_user_data (std::vector< std::string > names)
 [@
- void add_user_data (unsigned int j, epiworld_double x)
- void add_user_data (std::vector< epiworld_double > x)
- UserData< TSeq > & get_user_data ()

Queuing system

When queueing is on, the model will keep track of which agents are either in risk of exposure or exposed. This then is used at each step to act only on the aforementioned agents.

void queuing_on ()

Activates the queuing system (default.)

void queuing_off ()

Deactivates the queuing system.

bool is_queuing_on () const

Query if the queuing system is on.

Queue < TSeq > & get_queue ()

Retrieve the Queue object.

Get the susceptibility reduction object

Parameters

V

Returns

epiworld double

- void set_susceptibility_reduction_mixer (MixerFun< TSeq > fun)
- void set transmission_reduction_mixer (MixerFun < TSeq > fun)
- void set_recovery_enhancer_mixer (MixerFun< TSeq > fun)
- void set_death_reduction_mixer (MixerFun< TSeq > fun)

Friends

- class Agent < TSeq >
- class DataBase < TSeq >
- class Queue < TSeq >

Tool Mixers

These functions combine the effects tools have to deliver a single effect. For example, wearing a mask, been vaccinated, and the immune system combine together to jointly reduce the susceptibility for a given virus.

- std::vector< epiworld_double > array_double_tmp
- std::vector< Virus< TSeq > * > array_virus_tmp
- · Model ()
- Model (const Model < TSeq > &m)
- Model (Model < TSeq > &&m)
- Model < TSeq > & operator= (const Model < TSeq > &m)
- void clone_population (const Model < TSeq > &m)

Setting and accessing parameters from the model

Tools can incorporate parameters included in the model. Internally, parameters in the tool are stored as pointers to an std::map<> of parameters in the model. Using the unsigned int method directly fetches the parameters in the order these were added to the tool. Accessing parameters via the std::string method involves searching the parameter directly in the std::map<> member of the model (so it is not recommended.)

The function set_param() can be used when the parameter already exists in the model.

The par() function members are aliases for get_param().

Parameters

initial_val	
pname	Name of the parameter to add or to fetch

Returns

The current value of the parameter in the model.

- epiworld double * p0
- epiworld double * p1
- epiworld_double * p2
- epiworld double * p3
- epiworld_double * p4
- epiworld_double * p5
- epiworld double * p6
- epiworld double * p7
- epiworld double * p8
- epiworld_double * p9
- epiworld_double * p10
- epiworld double * p11
- epiworld_double * p12
- epiworld_double * p13
- epiworld double * p14
- epiworld_double * p15
- epiworld_double * p16
- epiworld_double * p17
- epiworld double * p18
- epiworld double * p19
- epiworld_double * p20
- epiworld_double * p21
- epiworld_double * p22
- epiworld_double * p23
- epiworld_double * p24
- epiworld_double * p25epiworld_double * p26
- epiworld_double * p27
- epiworld_double * p28
- epiworld double * p29
- epiworld_double * p30
- epiworld_double * p31
- epiworld double * p32
- epiworld double * p33
- epiworld_double * p34
- epiworld_double * p35
- epiworld_double * p36
- epiworld_double * p37
- epiworld double * p38
- epiworld double * p39
- unsigned int **npar_used** = 0u
- epiworld_double add_param (epiworld_double initial_val, std::string pname)
- epiworld_double set_param (std::string pname)
- epiworld double **get_param** (unsigned int k)
- epiworld_double get_param (std::string pname)
- epiworld_double **par** (unsigned int k)
- epiworld_double **par** (std::string pname)

3.7.1 Detailed Description

```
template < typename TSeq = int > class Model < TSeq >
```

Core class of epiworld.

The model class provides the wrapper that puts together Agent, Virus, and Tools.

Template Parameters

TSeq	Type of sequence. In principle, users can build models in which virus and human sequence is
	represented as numeric vectors (if needed.)

3.7.2 Member Function Documentation

3.7.2.1 add_global_action()

Set a global action.

Parameters

fun	A function to be called on the prescribed dates
date	Integer indicating when the function is called (see details)

When date is less than zero, then the function is called at the end of every day. Otherwise, the function will be called only at the end of the indicated date.

3.7.2.2 reset()

```
template<typename TSeq = int>
void Model< TSeq >::reset ( )
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set_backup() was called before)

- · re-distribute tools
- · re-distribute viruses
- set the date to 0

3.7.2.3 run_multiple()

Parameters

nexperiments	Multiple runs of the simulation	
--------------	---------------------------------	--

3.7.2.4 write_data()

```
template<typename TSeq = int>
void Model < TSeq >::write_data (
    std::string fn_variant_info,
    std::string fn_tool_info,
    std::string fn_tool_hist,
    std::string fn_total_hist,
    std::string fn_transmission,
    std::string fn_transition ) const
```

Wrapper of DataBase::write_data

Parameters

fn_variant_info	Filename. Information about the variant.
fn_variant_hist	Filename. History of the variant.
fn_tool_info	Filename. Information about the tool.
fn_tool_hist	Filename. History of the tool.
fn_total_hist	Filename. Aggregated history (status)
fn_transmission	Filename. Transmission history.
fn_transition	Filename. Markov transition history.

The documentation for this class was generated from the following files:

- include/epiworld/agent-meat-status.hpp
- include/epiworld/model-bones.hpp

3.8 PersonTools < TSeq > Class Template Reference

The documentation for this class was generated from the following file:

· include/epiworld/config.hpp

3.9 Progress Class Reference

A simple progress bar.

```
#include progress.hpp>
```

Public Member Functions

- Progress (int n_, int width_)
- · void start ()
- void next ()
- void end ()

3.9.1 Detailed Description

A simple progress bar.

The documentation for this class was generated from the following file:

• include/epiworld/progress.hpp

3.10 Queue < TSeq > Class Template Reference

Controls which agents are verified at each step.

```
#include <queue-bones.hpp>
```

Public Member Functions

- void operator+= (Agent < TSeq > *p)
- void operator-= (Agent < TSeq > *p)
- epiworld_fast_int operator[] (unsigned int i) const
- void set_model (Model < TSeq > *m)

3.10.1 Detailed Description

```
template<typename TSeq = int> class Queue< TSeq >
```

Controls which agents are verified at each step.

The idea is that only agents who are either in an infected state or have an infected neighbor should be checked. Otherwise it makes no sense (no chance to recover or capture the disease).

Template Parameters

TSeq	
,	

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- · include/epiworld/queue-bones.hpp

3.11 RandGraph Class Reference

Public Member Functions

- RandGraph (int N)
- void init (int s)
- void set_rand_engine (std::mt19937 &e)
- epiworld_double runif ()

The documentation for this class was generated from the following file:

include/epiworld/random_graph.hpp

3.12 Tool < TSeq > Class Template Reference

Tools for defending the agent against the virus.

```
#include <tool-bones.hpp>
```

Public Member Functions

- Tool (std::string name="unknown tool")
- void set_sequence (TSeq d)
- void set sequence unique (TSeq d)
- void set_sequence (std::shared_ptr< TSeq > d)
- std::shared_ptr< TSeq > get_sequence ()
- TSeq & get_sequence_unique ()
- void set_name (std::string name)
- std::string get_name () const
- Agent < TSeq > * get_agent ()
- int get_id () const
- void set_id (int id)
- void set_date (int d)
- int get_date () const
- void **set_status** (epiworld_fast_int init, epiworld_fast_int post)
- void set_queue (epiworld_fast_int init, epiworld_fast_int post)
- void **get_status** (epiworld_fast_int *init, epiworld_fast_int *post)
- void **get_queue** (epiworld_fast_int *init, epiworld_fast_int *post)

Get and set the tool functions

Parameters

V	The virus over which to operate
fun	the function to be used

Returns

epiworld_double

- epiworld double get_susceptibility_reduction (VirusPtr< TSeq > v)
- epiworld double **get transmission reduction** (VirusPtr< TSeg > v)
- epiworld double get recovery enhancer (VirusPtr< TSeg > v)
- epiworld_double get_death_reduction (VirusPtr< TSeq > v)
- void set_susceptibility_reduction_fun (ToolFun < TSeq > fun)
- void set_transmission_reduction_fun (ToolFun < TSeq > fun)
- void set_recovery_enhancer_fun (ToolFun < TSeq > fun)
- void set_death_reduction_fun (ToolFun< TSeq > fun)
- void set_susceptibility_reduction (epiworld_double *prob)
- void set_transmission_reduction (epiworld double *prob)
- void set_recovery_enhancer (epiworld_double *prob)
- void set death reduction (epiworld double *prob)
- void set susceptibility reduction (epiworld double prob)
- void set transmission reduction (epiworld double prob)
- void set recovery enhancer (epiworld double prob)
- void set_death_reduction (epiworld_double prob)

Friends

- class Agent < TSeq >
- class Model < TSeq >
- void default_add_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_add_tool (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_tool (Action< TSeq > &a, Model< TSeq > *m)

3.12.1 Detailed Description

template < typename TSeq = int > class Tool < TSeq >

Tools for defending the agent against the virus.

Template Parameters

TSeq Type of sequence

The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/tool-bones.hpp
- include/epiworld/tool-meat.hpp

3.13 Tools < TSeq > Class Template Reference

Set of tools (useful for building iterators)

#include <tools-bones.hpp>

Public Member Functions

- Tools (Agent < TSeq > &p)
- std::vector< TOOLPTR >::iterator begin ()
- std::vector< TOOLPTR >::iterator end ()
- TOOLPTR & operator() (size t i)
- TOOLPTR & operator[] (size_t i)
- size_t size () const noexcept

Friends

- class Tool < TSeq >
- class Agent < TSeq >

3.13.1 Detailed Description

template<typename TSeq> class Tools< TSeq >

Set of tools (useful for building iterators)

Template Parameters

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/tools-bones.hpp

3.14 Tools_const< TSeq > Class Template Reference

Set of Tools (const) (useful for iterators)

#include <tools-bones.hpp>

Public Member Functions

- Tools_const (const Agent < TSeq > &p)
- std::vector < TOOLPTR >::const_iterator begin ()
- std::vector< TOOLPTR >::const iterator end ()
- const TOOLPTR & operator() (size t i)
- const TOOLPTR & operator[] (size_t i)
- size_t size () const noexcept

Friends

- class Tool < TSeq >
- class Agent < TSeq >

3.14.1 Detailed Description

```
template<typename TSeq> class Tools_const< TSeq>
```

Set of Tools (const) (useful for iterators)

Template Parameters

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/tools-bones.hpp

3.15 UserData < TSeq > Class Template Reference

Personalized data by the user.

```
#include <userdata-bones.hpp>
```

Public Member Functions

- UserData (Model < TSeq > &m)
- UserData (std::vector< std::string > names)

Construct a new User Data object.

- $std::vector < std::string > \& \ensuremath{\mbox{get_names}}$ ()
- std::vector< int > & get_dates ()
- std::vector< epiworld_double > & get_data ()
- void **get_all** (std::vector< std::string > *names=nullptr, std::vector< int > *date=nullptr, std::vector< epiworld_double > *data=nullptr)
- · unsigned int nrow () const
- unsigned int ncol () const
- void write (std::string fn)
- · void print () const

Append data

Parameters

Х	A vector of length ncol() (if vector), otherwise a epiworld_double.
j	Index of the data point, from 0 to ncol () - 1.

- void add (std::vector< epiworld_double > x)
- void **add** (unsigned int j, epiworld_double x)

Access data

Parameters

i	Row (0 through ndays - 1.)
j	Column (0 through ncols()).

Returns

epiworld_double&

- epiworld_double & operator() (unsigned int i, unsigned int j)
- epiworld_double & **operator()** (unsigned int i, std::string name)

Friends

- class Model < TSeq >
- class DataBase< TSeq >

3.15.1 Detailed Description

```
template<typename TSeq> class UserData< TSeq>
```

Personalized data by the user.

Template Parameters

TSeq

3.15.2 Constructor & Destructor Documentation

3.15.2.1 UserData()

Construct a new User Data object.

Parameters

names A vector of names. The length of the vector sets the number of columns to record.

The documentation for this class was generated from the following files:

- · include/epiworld/database-bones.hpp
- include/epiworld/userdata-bones.hpp
- include/epiworld/userdata-meat.hpp

3.16 vecHasher < T > Struct Template Reference

Vector hasher.

```
#include <misc.hpp>
```

Public Member Functions

std::size_t operator() (std::vector< T > const &dat) const noexcept

3.16.1 Detailed Description

$$\label{template} \begin{split} & \text{template}\!<\!\text{typename T}\!> \\ & \text{struct vecHasher}\!<\!\text{T}> \end{split}$$

Vector hasher.

Template Parameters

The documentation for this struct was generated from the following file:

· include/epiworld/misc.hpp

3.17 Virus < TSeq > Class Template Reference

Virus.

```
#include <virus-bones.hpp>
```

Public Member Functions

- Virus (std::string name="unknown virus")
- · void mutate ()
- void set_mutation (MutFun< TSeq > fun)
- const TSeq * get_sequence ()
- void set_sequence (TSeq sequence)

- Agent < TSeq > * get_agent ()
- void set_agent (Agent < TSeq > *p, epiworld_fast_uint idx)
- Model < TSeq > * get_model ()
- · void set date (int d)
- int get_date () const
- void set_id (int idx)
- int get_id () const
- void set_name (std::string name)
- · std::string get name () const
- std::vector< epiworld double > & get_data ()

Get and set the tool functions

Parameters

V	The virus over which to operate
fun	the function to be used

Returns

epiworld_double

- · epiworld double get_prob_infecting ()
- epiworld double get_prob_recovery ()
- epiworld_double get_prob_death ()
- void post_recovery ()
- void set_post_recovery (PostRecoveryFun< TSeq > fun)
- void set_post_immunity (epiworld_double prob)
- void set_post_immunity (epiworld_double *prob)
- void set_prob_infecting_fun (VirusFun< TSeq > fun)
- void set_prob_recovery_fun (VirusFun < TSeq > fun)
- void set_prob_death_fun (VirusFun < TSeq > fun)
- void set_prob_infecting (epiworld_double *prob)
- void set_prob_recovery (epiworld_double *prob)
- void set prob death (epiworld double *prob)
- void set_prob_infecting (epiworld_double prob)
- void set_prob_recovery (epiworld_double prob)
- void set_prob_death (epiworld_double prob)

Get and set the status and queue

After applied, viruses can change the status and affect the queue of agents. These function sets the default values, which are retrieved when adding or removing a virus does not specify a change in status or in queue.

Parameters

init	After the virus/tool is added to the agent.
end	After the virus/tool is removed.
removed	After the agent (Agent) is removed.

- void **set_status** (epiworld_fast_int init, epiworld_fast_int end, epiworld_fast_int removed=-99)
- void **set_queue** (epiworld_fast_int init, epiworld_fast_int end, epiworld_fast_int removed=-99)
- void get_status (epiworld_fast_int *init, epiworld_fast_int *end, epiworld_fast_int *removed=-99)
- void get_queue (epiworld_fast_int *init, epiworld_fast_int *end, epiworld_fast_int *removed=-99)

Friends

- class Agent < TSeq >
- class Model < TSeq >
- class DataBase< TSeq >
- void default_add_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_add_tool (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_virus (Action < TSeq > &a, Model < TSeq > *m)
- void default_rm_tool (Action< TSeq > &a, Model< TSeq > *m)

3.17.1 Detailed Description

```
template<typename TSeq = int> class Virus< TSeq >
```

Virus.

Template Parameters

Raw transmisibility of a virus should be a function of its genetic sequence. Nonetheless, transmisibility can be reduced as a result of having one or more tools to fight the virus. Because of this, transmisibility should be a function of the agent.

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/virus-bones.hpp
- · include/epiworld/virus-meat.hpp

3.18 Viruses < TSeq > Class Template Reference

Set of viruses (useful for building iterators)

```
#include <viruses-bones.hpp>
```

Public Member Functions

- Viruses (Agent < TSeq > &p)
- std::vector< VIRUSPTR >::iterator begin ()
- std::vector< VIRUSPTR >::iterator end ()
- VIRUSPTR & operator() (size t i)
- VIRUSPTR & operator[] (size_t i)
- size_t size () const noexcept

Friends

- class Virus < TSeq >
- class Agent < TSeq >

3.18.1 Detailed Description

```
template<typename TSeq> class Viruses< TSeq>
```

Set of viruses (useful for building iterators)

Template Parameters

TSeq	

The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/viruses-bones.hpp

3.19 Viruses_const< TSeq > Class Template Reference

Set of Viruses (const) (useful for iterators)

```
#include <viruses-bones.hpp>
```

Public Member Functions

- Viruses_const (const Agent < TSeq > &p)
- std::vector< VIRUSPTR >::const_iterator begin ()
- std::vector< VIRUSPTR >::const_iterator end ()
- const VIRUSPTR & operator() (size_t i)
- const VIRUSPTR & operator[] (size_t i)
- size_t size () const noexcept

Friends

- class Virus < TSeq >
- class Agent < TSeq >

3.19.1 Detailed Description

```
template<typename TSeq> class Viruses_const< TSeq>
```

Set of Viruses (const) (useful for iterators)

	Para	

TSeq	

The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/viruses-bones.hpp

Index

```
Action
    Action < TSeq >, 8
Action < TSeq >, 7
    Action, 8
add_global_action
    Model < TSeq >, 22
AdjList, 9
    AdjList, 9
    read_edgelist, 9
Agent < TSeq >, 10
DataBase < TSeq >, 12
    record_variant, 14
    reproductive_number, 14
Entity< TSeq >, 14
LFMCMC< TData >, 15
Model < TSeq >, 16
    add global action, 22
    reset, 22
    run_multiple, 23
    write_data, 23
PersonTools < TSeq >, 24
Progress, 24
Queue < TSeq >, 24
RandGraph, 25
read_edgelist
    AdjList, 9
record_variant
     DataBase < TSeq >, 14
reproductive_number
    DataBase < TSeq >, 14
reset
    Model < TSeq >, 22
run multiple
    Model < TSeq >, 23
Tool < TSeq >, 25
Tools < TSeq >, 27
Tools_const< TSeq >, 27
UserData
     UserData < TSeq >, 29
UserData < TSeq >, 28
    UserData, 29
```

vecHasher< T>, 30