Cleveland Clinic - Medical Resource Optimization Mathematical Formulation

April 22, 2020

Dimensions

 $r \in Resources$: set of resources

 $f \in Facilities$: set of facilities

 $sl \in Servicelines$: set of service lines

 $ss \in Sub - services$: set of sub-services

 $d \in Days$: set of days

Data Parameters: Model Coefficients

 $capacity_{f,sl,ss,r}$ is the capacity of resource r at facility f, service line sl, sub-service ss $revenue_{f,sl,ss}$ is the revenue per patient at facility f, service line sl, sub-service ss $margin_{f,sl,ss}$ is the margin per patient at facility f, service line sl, sub-service ss $demand_{f,sl,ss,d}$ is the maximum demand of facility f, service line sl, sub-service ss, and day d $losMean_{f,sl,ss}$ is the mean hospitalization time of facility f, service line sl, sub-service ss minday is the minimum day among the set $d \in Days$, $\min_{d \in Days} d$

Decision Variables

 $NewPatients_{f,sl,ss,d} \ge 0$ is the number of patients accepted in facility f, service line sl, sub-service ss, on day ds $OpenFlg_{f,sl,ss} \in \{0,1\}$ is the binary variable indicating if facility f, service line sl, sub-service ss is open

Variables

 $TotalPatients_{f,sl,ss,d}$ is the total number of patients accepted in facility f, service line sl, subservice ss, cumulative for day d where,

$$Total Patients_{f,sl,ss,d} = \sum_{\substack{d1 \in d \text{ and} \\ \max\{[d-losMean_{f,sl,ss}+1], \\ minday\} \leq d1 \leq d}} New Patients_{f,sl,ss,d1} \quad \forall f, sl, ss, d$$

Objective Functions

 $max \quad Total Revenue = \sum_{f,sl,ss,d} New Patients_{f,sl,ss,d} \ revenue_{f,sl,ss}$

 $max \quad TotalMargin = \sum_{f,sl,ss,d} New Patients_{f,sl,ss,d} \ margin_{f,sl,ss}$

Constraints

Maximum demand constraint: Number of patients accepted for f, sl, ss should be less than the maximum demand for day d.

$$NewPatients_{f,sl,ss,d} \le demand_{f,sl,ss,d} \ OpenFlg_{f,sl,ss} \ \ \forall f,sl,ss,d$$
 (1)

Capacity constraint: Total number of patients for f, sl, ss on day d should be less than equal to available capacity of resource r for f, sl, ss. Capacity of resource r is normalized per patient.

$$TotalPatients_{f,sl,ss,d} \le capacity_{f,sl,ss,r} \quad \forall f, sl, ss, d, r$$
 (2)