ADEPT METHODOLOGY

A. D. E. P.T.

A Ē Т

ANALOGY DIAGRAM

ANALOGY DIAGRAM EXAMPLE

ANALOGY DIAGRAM EXAMPLE PLAIN ENGLISH

ANALOGY DIAGRAM EXAMPLE PLAIN ENGLISH TECHNICAL

USING A.D.E.P.T. FOR

BAYESIAN STATISTICS

AN INTERVIEW

ANALOGY DIAGRAM

ANALOGY DIAGRAM

ANALOGY DIAGRAM EXAMPLE

A REAL-LIFE EXAMPLE

- 1% of women have breast cancer (and therefore 99% of women do not)
- 80% of mammograms detect breast cancer when it is there (and therefore 20% miss it)
- 9.6% mammograms detect breast cancer when it is **not** there (and therefore 90.4% correctly return a negative result)

	Cancer (1%)	No Cancer (99%)
Testing Positive	80%	9.6%
Testing Negative	20%	90.4%

Now suppose we get a **positive** test result.

What are the chances that the test results are correct?

Cancer (1%)

No Cancer (99%)

Testing Positive

True Positive

False Positive $(1\% \times 80\% = 0.008) \quad (99\% \times 9.6\% = 0.095)$

Testing Negative

False Negative

True Negative $(1\% \times 20\% = 0.002) (99\% \times 90.4\% = 0.894)$ Cancer (1%)

No Cancer (99%)

Testing Positive

True Positive False Positive $(1\% \times 80\% = 0.008)$ $(99\% \times 9.6\% = 0.095)$

Testing Negative

False Negative True Negative $(1\% \times 20\% = 0.002)$ $(99\% \times 90.4\% = 0.894)$

P(Cancer | Test is Positive) =
$$\frac{0.008}{(0.008 + 0.0954)}$$
 = 0.773

ANALOGY DIAGRAM EXAMPLE

ANALOGY DIAGRAM EXAMPLE PLAIN ENGLISH

BAYESIAN STATISTICS IN A NUTSHELL

- When we add prior knowledge to existing data, our outcome changes
- Also, our inferences stand a chance to improve

ANALOGY DIAGRAM EXAMPLE PLAIN ENGLISH

ANALOGY DIAGRAM EXAMPLE PLAIN ENGLISH TECHNICAL

BAYES THEOREM

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

BAYES THEOREM

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Which is equivalent to:

$$P(A|B) = \frac{P(B|A)P(A)}{\sum_{i} P(B|A_i)P(A_i)}$$

ANALOGY DIAGRAM EXAMPLE PLAIN ENGLISH TECHNICAL

BLURRY-TO-SHARP APPROACH

TUIC	MAC	DOCC	IDIE	TLLAN	II/C -	$\Gamma \cap$
ІПІЭ	VVAS	POSS	IDLC	1AHT	vn5	IU:

https://betterexplained.com/articles/adept-method/