Advanced Optics (PHYS690)

HEEDEUK SHIN

POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY, KOREA

Laser

Light
Amplification by
Stimulated
Emission of
Radiation

Laser history

Gain media

Light atom interaction

Einstein coefficient

Pumping

- Laser: a devices that produce intense beams of light.
- Monochromatic (pure color or wavelength)
- Coherent (fixed phase relationship)
- Highly collimated (low divergence)
- Small spot with a brightness which exceeds that of the sun.
- The first amplifier based on discrete energy levels (quantum amplifier) was the MASER (Microwave Amplification by Stimulated Emission of Radiation), which was invented by Gordon, Townes and Zeiger 1954.
- •The basic operating principles of the laser were put forth by Charles Tow nes and Arthur Schalow from the Bell Telephone Laboratories in 1958, a nd the first actual laser, based on a pink ruby crystal, was demonstrated in 1960 by Theodor Maiman at Hughes Research Laboratories.

World's first working lasers sity of SCIENCE AND TECHNOLOGY

Ruby laser, 1960

GaAs semiconductor diode laser, 1962

HeNe laser, 1961 First gas & cw laser

Optical fiber laser, 1961

- Laser medium
- Pumping
- Resonator: laser oscillator or cavity

Laser Gain Media

Important characteristics of laser gain media

Solid, a gas or liquid

How population inversion can be achieved? (pumping schemes)

What the spectroscopic parameters are?

i.e. upperstate lifetime, T_1 , and linewdith $\Delta f_{\rm FWHM} = \frac{2}{T_2}$

What is the cross-section for stimulated emission?

Light-matter interaction

- Consider an atom and consider two of its energy levels to be E_1 and E_2 (assume $E_1 < E_2$).
- Chose v_0 such that

$$hv_0 = E_2 - E_1$$

the photon energy matches the energy-level difference.

• Three types of mechanism are possible:

- Spontaneous emission

Absorption

Stimulated emission

- Measure of the probability of absorption or emission of light by an atom
- The Einstein A coefficient: the rate of spontaneous emission of light
- The Einstein B coefficients: the absorption and stimulated emission of light

Einstein coefficients I

Spontaneous emission

- Atom is initially in "excited" state E2
- Atom decays spontaneously and add the energy hv to the optical mode.
- The process is independent of the number of photon already in the optical mode, but dependent on the number of excited atoms.
- The number of atoms of the upper level: N_2
- The number of atoms of the lower level: N_1

$$\mathrm{d}N_2 = -A_{21}N_2\mathrm{d}t$$

 A_{21} is the *Einstein coefficient of spontaneous emission*.

The population of the upper level decays exponentially

$$N_2(t) = N_2(0) e^{-A_{21}t} = N_2(0) e^{-t/\tau_{sp}}$$

 $au_{
m sp}$ spontaneous lifetime

$$A_{21} = 1/\tau_{\rm sp}$$

Einstein coefficients II

Absorption

- Atom is initially in state E1.
- Process is induced by a photon: the photon is annihilated and the atom go into excited state E2.
- The change $d N_1$ of the ground state within a time interval dt

$$dN_1 = -B_{12}\rho(v_0)N_1dt$$

where B_{12} is the Einstein coefficient of absorption and ρ is the spectral energy density of radiation at frequencies around v_0 .

Einstein coefficients III

- Stimulated emission

- Atom is initially in "excited" state E2.
- The optical mode contains a photon.

- Atom may be induced to emit another photon into the same mode.
- This is the inverse of the absorption process.
- The presence of a photon in the mode stimulates the emission of a "clo ne" photon.
- •The change $d N_2$ of N_2 within a time interval dt

$$dN_2 = -B_{21}\rho(v_0)N_2dt$$

where B_{21} is the Einstein coefficient of stimulated emission.

Einstein coefficients IV

The Einstein Relations

• The rate of change of the population N_1 due to absorption is given by $(\mathrm{d}N_1/\mathrm{d}t)_{\mathrm{abs}} = -B_{12} \, \rho(\nu_0) \, N_1$

• The rate of change of the population N_2 due to stimulated emission is given by

$$(dN_2/dt)_{\text{stim}} = -B_{21} \rho(v_0) N_2$$

• The rate of change of the population N_2 due to spontaneous emission is given by $(\mathrm{d}N_2/\mathrm{d}t)_\mathrm{sp} = -A_{21}N_2$

Einstein coefficients V

- In thermal equilibrium
- The ratio N_2/N_1 is a constant.
- The absorption rate has to be equal to the emission rate.

$$(dN_1/dt)_{abs} = (dN_2/dt)_{sp} + (dN_2/dt)_{stim}$$

$$B_{12}\rho(\nu_0)N_1 = A_{21}N_2 + B_{21}\rho(\nu_0)N_2$$

From this equation, we can determine the spectral energy density

$$\rho(\nu_0) = \frac{A_{21}/B_{21}}{(B_{21}/B_{12})N_1/N_2 - 1}$$

• The ratio N_1/N_2 can be determined by the Boltzmann factor.

$$N_2/N_1 = e^{-h\nu_0/kT}$$

Planck' s radiation law

$$\rho(v) = \frac{8\pi v^2}{c^3} \frac{hv}{e^{hv/kT} - 1}$$

$$B_{21}=B_{12},$$

$$A_{21} = \frac{8\pi v^2}{c^3} h v B_{21}$$

$B_{21} = B_{12}$

The probability density of spontaneous emission of an atom is

$$p_{sp} = \frac{c}{V}\sigma(v)$$

• The process of absorption is governed by same law as in spontaneous emission with n photons in the optical mode.

$$P_{ab} = \frac{nc}{V}\sigma(v)$$

This is the probability of absorption of one photon from a mode with n photons.

 The probability density of stimulated emission is same law that governs spontaneous emission and absorption

$$P_{st} = \frac{nc}{V}\sigma(v)$$

$$P_{ab} = P_{st}$$
 $B_{21} = B_{12}$

Gain coefficient I

- Consider an atom located in an optical field of flux φ . The probability of stimula ted emission is $W_i = \varphi \sigma(v)$
- If N_1 and N_2 are respectively the number of atoms in the lower and upper energy level then
- The average density of absorbed photons (number of photon per unit time per unit volume) is N_1W_i
- The average density of stimulated photons is N_2W_i
- The net number of photon gained is

$$N = (N_2 - N_1)W_i$$

N is the population density difference.

- N>0 population inversion (more atoms in excited states): medium can act as an amplifier.
- N<0 medium act as an absorber.
- -N=0 medium is transparent.

Population inversion

- Under thermal equilibrium conditions, the lower energy levels are populated first, and are always more populated than the higher levels.
- If the laser really was a simple two level system, what could you
 deduce about the "colour" of the absorbed and the stimulated photons?

- Under thermal equilibrium conditions, the lower energy levels are populated first, and are always more populated than the higher levels.
- If the laser really was a simple two level system, what could you
 deduce about the "colour" of the absorbed and the stimulated photons?

Pumping

- To provide N > 0 (Population inversion), we need an external pump that excites the atom.
- External pumping is achieved via radiative or non radiative effects:
- Optical pump,
- Chemical reaction
- Electrical process

• Pump should provide pumping to excite the needed state (directly or in directly). N_2

 N_1 N_0

• Pumping dynamics is described by the rate equations: which provide the change of population densities N_1 and N_2 .

Pumping - rate equation Siniversity of Science AND TECHNOLOGY

When pumping is provided the rate of increase of population densities is

$$\frac{dN_2}{dt} = R_2 - \frac{N_2}{\tau_2}$$

$$\frac{dN_1}{dt} = -R_1 - \frac{N_1}{\tau_1} + \frac{N_2}{\tau_{21}}$$

R1: rate of pumping atoms out of state 1 R2: rate of pumping atoms into state 2 "rate" are per unit volume per second

Steady-state condition is

$$N_0 = R_2 \tau_2 \left(1 - \frac{\tau_1}{\tau_{21}}\right) + R_1 \tau_1$$

Steady-state population difference

- To have a large gain
- Large R1 and R2
- Long τ2
- Short $\tau 1$ if R1 $<\tau 2/\tau 21$ R2

- Upper level should be pumped strongly and d ecay slowly.
- Lower state should be depumped strongly so it quickly disposes its population.

Pumping schemes

Four level pumping

Three level pumping

HW: Why cannot two-level system be used for a gain medium?

Stimulated Emission in a Mirrored Laser Cavity

Light

Amplification by

Stimulated

Emission of

Radiation

- Laser gain medium
- Pumping

Resonator: laser oscillator or cavity

$$B_{21} = B_{12},$$

$$A_{21} = \frac{8\pi v^2}{2} h v B_2$$

- Spontaneous emission
- Absorption
- Stimulated emission
- •The Einstein A coefficient: the rate of spontaneous emission of light
- The Einstein B coefficients: the absorption and stimulated emission of light

population inversion (more at oms in excited states): medium can act as an amplifier.

- Upper level should be pumped strongly and d ecay slowly.
- Lower state should be depumped strongly so it quickly disposes its population.

$$I = \frac{I_0}{|1 - h|^2} = \frac{I_0}{1 + |r|^2 - 2|r|\cos\phi} \qquad I = \frac{I_{max}}{1 + (2\mathcal{F}/\pi)^2 \sin^2(\phi/2)}$$

$$I = \frac{I_{max}}{1 + (2\mathcal{F}/\pi)^2 \sin^2(\phi/2)}$$

$$\mathcal{F} \equiv \frac{\pi\sqrt{|r|}}{1-|r|}.$$

$$\mathcal{F} \equiv rac{\pi \sqrt{|r|}}{1-|r|}. \qquad I_{max} \equiv rac{I_0}{(1-|r|)^2}.$$

$$Q \stackrel{\text{def}}{=} \frac{f_r}{\Delta f} = \frac{\omega_r}{\Delta \omega},$$

$$Q\stackrel{ ext{def}}{=}rac{f_r}{\Delta f}=rac{\omega_r}{\Delta \omega}, \hspace{1cm} \mathcal{F}\equivrac{v_{FSR}}{\Delta v}=rac{\lambda_{FSR}}{\Delta \lambda}$$

$$Q = v_0 T_{rt} \frac{2\pi}{\eta}$$