实验名称 用惠斯通电桥测电阻

一. 实验目的

利用息斯通电桥测试线性元件的阻值及电桥灵敏度.

二. 实验预习

绘制惠斯通电桥电路图,并说明平衡时满足条件。

三. 实验现象及数据记录

1.惠斯通电桥测量电阻

电阻(阻值)	N	R_s (Ω)	$R_x(\Omega)$	$\Delta R_s (\Omega)$	Δn (格)	S(格)
1 ΚΩ	1	989.2	989.2	4	7	1731-1
(οο 1 0 Κ Ω	1	99.7	99.7	2	8	398.8

2.惠斯通电桥灵敏度测量

N	$R_s(\Omega)$	$R_x(\Omega)$	$\Delta R_s (\Omega)$	Δn (格)	S(格)
0.01	98918.4	989-184	3000	5	164.864
0.1	9891-7	989.17	50	5	989.17
1	989.2	989.2	Ψ	7	1731-1
10	98.7	987	1	9	888.3
100	9.8	980	0.6	8	130-67

教师	姓名
签字	和分

四. 实验结论及现象分析

对比不能比N值下,惠斯通电桥灵敏度变化,并分析其他可能影响惠斯通电桥灵敏度参量

答: N=1左在时,惠思通电桥灵敏度较高. N 大于1和小于1时,灵敏度均降低.

行测电阻阻值,导线的电阻等.

五. 讨论问题

- 1.电桥测电阻为什么不能测量小于1Ω的电阻?
- 2.用什么方法保护电流计,不至于因电流过大而损坏?
- 3. 当电桥平衡后, 若互换电源和检流计位置, 电桥是否仍然平衡? 并证明。

答·1.电阻小于1九,导线面电阻对其阻值测量影响较大。

2. 优先使用较小灵敏度测量, 点按开关。

左: Rx = Rs

仍然干读了

 $rac{Rx}{\Gamma x} = rac{Rs}{\Gamma R}$