Poročilo o projektu: C^2 kubični Bezierjev zlepek

Timotej Stibilj Fakulteta za matematiko in fiziko Oddelek za matematiko

8. julij 2023

1 Cilj

Naj bodo danih N interpolacijskih točk, delilne točke in tangentna vektorja v prvi in zadnji od teh točk. Konstruiramo C2 kubični Bezierjev zlepek, ki interpolira dane podatke. Obravnavamo tudi Besselov zlepek, ko tangentni v krajiščih nista podani. Na zgledu prikažemo vpliv izbire različnih α -parametrizacij na obliko interpolanta.

2 Ozadje problema

Predstavimo matematično ozadje problema. Večino lastnosti je zgolj navedenih, dokaze lahko najdemo denimo v [1].

2.1 Bezierjeve krivulje

Bezierjeve krivulje so polinomske parametrične krivulje, s katerimi lahko hitro in učinkovito modeliramo in so zato koristne pri računalniškem oblikovanju. Bezierjeva krivulja $b^n: [0,1] \to R^n$ je natanko določena z danimi kontrolnimi točkami $b_j, j=0,1,\ldots,n$ in jo dobimo s pomočjo deCasteljaujevega algoritma:

Definiramo: $b_j^{(0)} = b_j, j = 0, 1, \dots, n$.

$$b_j^{(k)}(t) = (1-t) \cdot b_j^{(k-1)}(t) + t \cdot b_{j+1}^{(k-1)}(t), k = 1, 2, \dots, n, j = 0, 1, \dots, n-k.$$

Izhod: $b^n(t) = b_0^{(n)}(t)$ je točka pri parametrutna Bézierovi krivulji b^n .

Od zdaj naprej bomo zaradi preglednosti in možnosti grafičnega prikaza gledali Bezierjeve krivulje v ravnini, tj. $b_n : [0,1] \to R^2$. Vse lastnosti Bezierjevih krivulj in postopki pri reševanju zastavljenega problema se lahko brez novih premislekov posplošijo na Bezierjeve krivulje v R^n .

Decastaljauov algoritem je primeren za računalniško implementacijo, za izpeljavo matematičnih lastnosti pa je primernejši ekvivalentni zapis z Bernsteinovimi polinomi. Bezierjevo krivuljo $b^n:[0,1]\to R^n$ na danih kontrolnih točkah $b_i,\ j=0,1,\ldots,n$ zapišemo kot:

$$b^n(t) = \sum_{j=0}^n B_j^n(t) \cdot b_j.$$

Pri tem je $B_j^n(t) = \binom{n}{j} t^j \cdot (1-t)^{n-j}$ j-ti Bernsteinov polinom n-te stopnje. S pomočjo zapisa z Bernsteinovimi polinomi lahko izpeljemo formulo za odvod Bezierjeve krivulje

$$\frac{d^r}{dt^r} = n(n-1)\cdots(n-r+1)\sum_{j=0}^{n-r} \Delta^r b_j B_j^{n-r}(t), \quad r = 1, 2, \dots, n.$$

Pri tem je

$$\Delta b_i := b_{i+1} - b_i$$
 in $\Delta^r b_i = \Delta(\Delta^{r-1} b_i)$.

V nadaljevanju bo koristno poznati posebne primere:

- $\bullet \quad \frac{db^n}{dt}(0) = n \cdot (b_1 b_0),$
- $\frac{db^n}{dt}(1) = n \cdot (b_n b_{n-1}),$
- $\frac{d^2b^n}{dt^2}(0) = n(n-1)(b_2 2b_1 + b_0),$
- $\frac{d^2b^n}{dt^2}(1) = n(n-1)(b_n 2b_{n-1} + b_{n-2}),$

2.2 Zlepki Bezierjevih krivulj

Pri modeliranju krivulj kompleksnih oblik bi potrebovali Bezierjeve krivulje visokih stopenj, kar predstavlja večjo nestabilnost. Pri tem Bezierjeva krivulja interpolira zgolj robni točki. Obeh problemov se lotimo z zlepki Bezierjevih krivulj.

Recimo, da imamo danih N+1 interpolacijskih točk. Ideja je v tem, da skozi vsaki dve zaporedni interpolacijski napeljemo Bezierjevo krivuljo. Natančneje:

Definicija 1 Naj bo dano naraščajoče zaporedje N+1 delilnih točk:

$$u_0 < u_1 < \ldots < u_N$$
.

Parametrična polinomska krivulja $s:[u_0,u_N]\to R^2$ je interpolacijski Bezierjev zlepek stopnje n, če velja:

- Odsek zlepka $s_j := s|_{[u_j,u_{j+1}]}, \ j = 0, 1, \ldots, N-1, \ je$ Bezierova krivulja stopnje n.
- $s_j(u_{j+1}) = s_{j+1}(u_{j+1})$ za vsak j = 0, 1, ..., N-1.

Možnih variant Bezierjevih zlepkov je veliko. Najmanj kar zahtevamo že v definiciji je, da interpolira dane interpolacijske točke. Če zahtevamo zgolj to, je zelo verjetno, da se posamezni odseki v interpolacijskih točkah oz. stičnih točkah ne zlepijo lepo. Natančneje, skrbi nas odvedljivost krivulje s v delilnih točkah (v notranjosti je seveda odvedljiva, celo gladka, saj je na tem odseku Bezierjeva krivulja). Naslednji korak je torej to, da zahtevamo zvezno odvedljivost - C^1 ali pa dvakrat zvezno odvedljivost - C^2 krivulje s.

Poleg tega še nismo določili kakšen naj bo n tj. stopnja Bezierjevih krivulj s_j na posameznih odsekih. Kvadratne in kubične Bezierjeve krivulje so najpogostejši kompromis med stabilnostjo in možnostjo modeliranja kompleksnih krivulj. Tu se bomo osredotočili na C^2 Bezierjev zlepek, kjer je vsaka Bezierjeva krivulja s_j kubična, torej določena s 4 kontrolnimi točkami.

2.2.1 Globalni parameter

Krivulja s je parametrizirana s t.i. globalnim parametrom $u \in [u_0, u_N]$. Na odsekih $[u_j, u_{j+1}]$ imamo definirane Bezierjeve krivulje s_j , ki jih po definiciji parametriziramo s parametrom $t \in [0, 1]$. Za njihovo obravnavo za vsako Bezierjevo krivuljo s_i , $i = 0, \ldots N-1$ definiramo lokalni parameter

$$t_i = \frac{u - u_i}{u_{i+1} - u_i} \in [0, 1].$$

Za krajši zapis označimo še $\Delta u_i = u_{i+1} - u_i$. Ker gre za afino transformacijo parametra na katero so Bezierjeve krivulje invariantne, velja:

$$s|_{[u_j,u_{j+1}]}(u) = s_j(t_j).$$

Če želimo C^2 zlepek mora poleg zahtev iz definicije 1 veljati še: $\frac{d^2s}{du^2}(u_j-0)=\frac{d^2s}{du^2}(u_j+0) \text{ in } \frac{ds}{du}(u_j-0)=\frac{ds}{du}(u_j+0), \text{ kar simbolizira ujemanje levih in desnih prvih/drugih odvodov krivulje } s \text{ v stičnih oz. interpolacijskih točkah.}$

Uporabno je, da znamo izraziti odvod krivulje s z lokalnim parametrom, saj o tem že nekaj vemo (glej 2.1). Po verižnem pravilu za $u \in [u_i, u_{i+1}]$ velja:

$$\frac{d}{du}s(u) = \frac{d}{dt_i}s_i(t) \cdot \frac{dt_i}{du} = \frac{1}{\Delta u_i}\frac{d}{dt_i}s_i(t).$$

3 Opis reševanja

3.0.1 Osnovni primer

Naj bodo danih N+1 interpolacijskih točk $p_0, \ldots, p_N, N+1$ delilnih točk u_0, \ldots, u_N in tangentna vektorja v_0, v_N v prvi in zadnji od teh točk. Konstruiramo C2 kubični Bezierjev zlepek s, ki interpolira dane interpolacijske točke. Na vsakem izmed intervalov $[u_j, u_{j+1}], j=0,1,\ldots N-1$ bomo imeli kubično Bezierjevo krivuljo s_j . Označimo tangetne vektorje na krivuljo s v delilnih točkah z $v_i = s'(u_i), i = 0,\ldots, N$.

Kakšen naj bo zapis posamezne Bezierjeve krivulje $s_j, j = 0, ..., N-1$, da bomo dobili kubični C^2 interpolacijski Bezierjev zlepek? Splošna kubična Bezierjeva krivulja bo določena s 4 kontrolnimi točkami in bo oblike:

$$s_j(t_j) = \sum_{i=0}^3 B_i^n(t_j) \cdot b_{ji}.$$

Pri tem je t_j lokalni parameter, b_{ji} pa i-ta kontrolna točka na j-ti Bezierjevi krivulji.

Iz zapisa Bezierjeve krivulje z Bernsteinovimi polinomi takoj sledi, da Bezierjeva krivulja interpolira začetno in zadnjo točko. V našem primeru zlepka s to pomeni, da za začetno in končno kontrolno točko na vsaki Bezierjevi krivulji vzamemo kar interpolacijski točki. Natančneje: $b_{j0} = p_j$ in $b_{j3} = p_{j+1}$. To zagotavlja interpolacijo in C^0 zveznost zlepka s. Naslednji korak je zagotovitev C^1 zveznosti. Kratek račun z uporabo zapisa za odvode iz 2.1 nam da pogoje C^1 zveznost interpolacijske Bezierjeve krivulje s_j na kontrolnih točkah $b_{3j}, \ldots b_{3j+3}$:

$$b_{3j+1} = p_j + \frac{1}{3} \cdot \Delta u_j v_j, \quad j = 0, 1, \dots, N - 1,$$

$$b_{3j-1} = p_j - \frac{1}{3} \Delta u_{j-1} v_j, \quad j = 1, 2, \dots, N.$$

V našem primeru lahko potem z upoštevanje C^0 in C^1 , vsako Bezierjevo krivuljo $s_j, j=0,\ldots N-1$ v lokalnem parametru t_j zapišemo kot:

$$s_{j}(t_{j}) = p_{j} \cdot B_{0}^{3}(t_{j}) + (p_{j} + \frac{1}{3}v_{j}\Delta u_{j}) \cdot B_{1}^{3}(t_{j}) + (p_{j+1} - \frac{1}{3}v_{j+1}\Delta u_{j}) \cdot B_{2}^{2}(t_{j}) + p_{j+1} \cdot B_{3}^{3}(t_{j}).$$

$$(1)$$

Opomba 1 Do zdaj so tangentni vektorji v_i splošni oziroma nedoločeni. Izjema sta začetni in končni tangetni vektor, ki sta podana. Preostale vektorje določimo z zahtevo po C^2 zveznosti krivulje/zlepka s.

Opomba 2 V 3.0.1 smo videli, da bomo poznali vse kontrolne točke, brž ko poznamo vse tangentne vektorje.

Določimo tangentne vektorje v_i , $i=1,\ldots v_{N-1}$ tako, da bo zlepek C^2 . Za vsak $j=1,2,\ldots,N-1$ mora veljati:

$$\frac{d^2s}{du^2}(u_j - 0) = \frac{d^2s}{du^2}(u_j + 0).$$

Zapišimo levi odvod:

$$\frac{d^2}{du^2}s(u_j - 0) = \frac{d^2}{du^2}s_{j-1}(u_j) = \left(\frac{dt}{du}\right)^2 \cdot \frac{d^2s_{j-1}}{dt_{j-1}^2}(1) = \frac{1}{(\Delta u_{j-1})^2} \cdot \frac{d^2s_{j-1}}{dt_{j-1}^2}(1). \tag{2}$$

Sedaj uporabimo zapis 1 za s_{j-1} in izražavo drugih odvodov kot v 2.1 da dobimo:

$$\frac{d^2}{du^2}s(u_j - 0) = \frac{6}{(\Delta u_{j-1})^2} \cdot ((p_{j-1} + \frac{1}{3}v_{j-1}\Delta u_{j-1}) - 2 \cdot (p_j - \frac{1}{3}v_j\Delta u_{j-1}) + p_j)$$
(3)

$$= \frac{6}{(\Delta u_{j-1})^2} \cdot (\frac{1}{3}v_{j-1}\Delta u_{j-1} + \frac{2}{3}v_j\Delta u_{j-1} - \Delta p_{j-1}) \tag{4}$$

Pri tem smo vpeljali novo oznako za razliko dveh zaporednih interpolacijskih točk $\Delta p_j = p_{j+1} - p_j$.

Na podoben način dobimo tudi drugi desni odvod v delilni točki u_i :

$$\frac{d^2}{du^2}s(u_j+0) = \frac{6}{(\Delta u_j)^2} \cdot (\Delta p_j - \frac{2}{3}v_j \Delta u_j - \frac{1}{3}v_{j+1} \Delta u_j).$$

Sedaj desni in levi drugi odvod enačimo in po kratkem računu dobimo, da mora za tangentne vektorje $v_j, j = 1, \dots, N-1$ veljati:

$$v_{j-1} \cdot \frac{\Delta u_j}{\Delta u_j + \Delta u_{j-1}} + 2v_j + v_{j+1} \cdot \frac{\Delta u_{j-1}}{\Delta u_j + \Delta u_{j-1}} = \frac{3}{\Delta u_j + \Delta u_{j-1}} (\frac{\Delta p_j \Delta u_{j-1}}{\Delta u_j} + \frac{\Delta p_{j-1} \Delta u_j}{\Delta u_{j-1}})$$

To je sistem N-1 linearnih enačb za vektorje v_j . V osnovnem primeru smo predpostavili, da imamo podana v_0 in v_N , kar sedaj upoštevamo in zapišemo sistem v matrični obliki AV=B. Pri tem je A tridiagonalna matrika z N-1 dvojkami na diagonali, vektorjem a= $\left[\frac{\Delta u_j}{\Delta u_j + \Delta u_{j-1}}\right]$, $j=2,\ldots,N-1$ na

poddiagonali in vektorjem $c = \left[\frac{\Delta u_{j-1}}{\Delta u_j + \Delta u_{j-1}}\right], j = 1, \ldots, N-2$ na naddiagonali; V je matrika, ki jo po vrsticah zapišemo kot $[v_{ix}v_{iy}], i = 1, \ldots, N-1$ in B' vektor $\left[\frac{3}{\Delta u_j + \Delta u_{j-1}}\left(\frac{\Delta p_j \Delta u_{j-1}}{\Delta u_j} + \frac{\Delta p_{j-1} \Delta u_j}{\Delta u_{j-1}}\right)\right], j = 1, \ldots, N-1$. Vektor B dobimo tako, da popravimo prvo in zadnjo vrstico vektorja B' z upoštevanjem poznanih v_0 in v_N . Z matlab sintakso bo potem $B(1,1:2) = \frac{3}{\Delta u_1 + \Delta u_0}\left(\frac{\Delta p_1 \Delta u_0}{\Delta u_1} + \frac{\Delta p_0 \Delta u_1}{\Delta u_0}\right) - v_0 \frac{\Delta u_1}{\Delta u_1 + \Delta u_0}$. Podobno popravimo $B(N-1,1:2) = B'(N-1,1:2) - v_N \frac{\Delta u_{N-2}}{\Delta u_{N-1} + \Delta u_{N-2}}$.

Tak sistem bi lahko rešili recimo z LU-razcepom, kar pa lahko zaradi tridiagonalnosti sistema izboljšamo s Thomasovim algoritmom. To ni nič drugega kot Gaussova eliminacija prilagojena za tridiagonalne sisteme in deluje v linearnem času. Nato uporabimo še obratno substitucijo. Matrika A bo strogo diagonalno dominantna in zato obrnljiva, kar je znano dejstvo, katerega dokaz spuščamo. Posledično bo rešitev ena sama in jo bo Thomasov algoritem tudi našel.

A je res strogo diagonalno dominantna, saj je $\frac{\Delta u_j}{\Delta u_j + \Delta u_{j-1}} + \frac{\Delta u_{j-1}}{\Delta u_j + \Delta u_{j+-1}} = 1 < 2, \ \frac{\Delta u_2}{\Delta u_2 + \Delta u_1} < 1 < 2 \ \text{in} \ \frac{\Delta u_{N-1}}{\Delta u_{N-2} + \Delta u_{N-1}} < 1 < 2.$ Od tod dobimo tangentne vektorje v notranjih delilnih točkah, s čimer so posledično določene vse kontrolne točke, če za Bezierjevo krivuljo s_j na kontrolnih točkah $p_j, b_{3j+1}, b_{3(j+1)-1}, p_{j+1}$ uporabimo:

$$b_{3j+1} = p_j + \frac{1}{3} \cdot \Delta u_j v_j, \quad j = 0, 1, \dots, N - 1,$$

$$b_{3j-1} = p_j - \frac{1}{3} \Delta u_{j-1} v_j, \quad j = 1, 2, \dots, N.$$

S tem je konstrukcija zlepka končana.

3.0.2 Besselov zlepek

Poglejmo si še primer konstrukcije zlepka, ko tangentna vektorja v_0 in v_N nista podana. Sistemu iz osnovnega primera dodamo enačbi: $v_0 = \frac{2}{\Delta u_0} \Delta p_0 - v_1$ in $v_N = \frac{2}{\Delta u_{N-1}} \Delta p_{N-1} - v_{N-1}$. Dobimo sistem $A_2V_2 = B_2$. Pri tem je $A_2(2:N-1,2:N-1) = A$, kjer je A matrika iz osnovnega primera, $A_2(1,:) = [1,1,0,\ldots,0], \ A_2(N+1,:) = [0,0,\ldots,0,1,1], \ A_2(2:1) = \frac{\Delta u_1}{\Delta u_1 + \Delta u_0}$ in $A_2(N+1,N) = \frac{\Delta u_{N-1}}{\Delta u_{N-1} + \Delta u_{N-2}}$. Matrika tangentnih vektorjev je tokrat $V \in \mathbb{R}^{(N+1)\times 2}$. Vektor B_2 je tudi N+1 dimenzionalen in velja $B_2(2:N) = B'$, $B(1) = \frac{2\Delta p_0}{\Delta u_0}, \ B(N+1) = \frac{2\Delta p_{N-1}}{\Delta u_{N-1}}$, kar smo dobili iz dodatnih 2 enačb za v_0 in v_N . Matrika A_2 je prav tako strogo diagonalno dominantna, zato zdaj lahko nadaljujemo s Thomasovim algoritmom kot v osnovnem primeru. Tudi tu dobimo rešitev v linearnem času.

3.0.3 Izbira delilnih točk

Kot je razvidno iz do zdaj povedanega, je oblika zlepka odvisna tudi od izbire delilnih točk. Do zdaj smo imeli delilne točke podane. V praksi pogosto to ni res in ni jasno kakšna izbira delilnih točk je optimalna, saj pojem optimalnosti niti ni dobro definiran, ampak je lahko subjektiven glede na potrebe oblikovalca.

Definicija 2 Delilne točke lahko izberemo na sledeč način: $u_0 = 0, u_i = u_{i-1} + ||p_i - p_{i-1}||_2^{\alpha}, \quad i = 1, \dots, N, \quad \alpha \in [0, 1].$ Temu pravimo, da smo izbrali α -parametrizacijo.

Za nekatere vrednosti α dobimo parametrizacijo, ki je dovolj pomembna, da si zasluži svoje ime.

- Pri $\alpha = 0$ imamo ekvidistančne točke, čemur pravimo enakomerna parametrizacija,
- centripetalna parametrizacija je pri $\alpha = \frac{1}{2}$,
- $tetivna\ parametrizacija\ je\ pri\ \alpha=1.$

4 Primeri

Za zgled vzemimo interpolacijske točke p = [1, 2, 3, 4, 5, 6; 1, 5, 0, 3, 0, 6]. Recimo, da je podana parametrizacija enakomerna na [1, 6]. Vzemimo še $v_0 = [1, 0]$ in $v_N = [-0.5, -1]$, kar uporabimo na prvem grafu, drugi pa naj bo Besselov zlepek. Dobimo sledeča 2 kubična Bezierjeva C^2 zlepka.

Interpolacijske točke so pobarvane z rdečo, tangentna vektorja v_0 in v_N v krajiščih pa s prekinjeno modro črto.

Poglejmo si še primer različne α -parametrizacije na Besselovem zlepku z interpolacijskimi točkami: p=[1,2,3,4,5;0,5,1,6,2].

Razlike med izbiro delilnih točk so v tem primeru skromne, a kljub temu prisotne.

Literatura

- [1] G. Farin: Curves and surfaces for CAGD, A Practical Guide, 5th ed., Morgan Kaufmann, 2002,
- [2] Emil Žagar: Interpolacija s parametričnimi polinomskimi krivuljami, 2009.