Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів » Варіант 12

Виконала студентка _	ІП-15 Коваленко Марія Олександрівна	
•	(шифр, прізвище, ім'я, по батькові)	
Перевірила		
	(прізвище, ім'я, по батькові)	

Лабораторна робота 3 Дослідження ітераційних циклічних алгоритмів

Мета –дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання

Варіант 12

Завдання

12.

Із заданою точністю обчислити значення функції sin х

$$\sin x = x - \frac{x^3}{1 \cdot 2 \cdot 3} + \frac{x^5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} - \dots + (-1)^n \frac{x^{2n+1}}{1 \cdot 2 \cdot \dots \cdot (2n+1)} + \dots$$

Постановка задачі

Задати змінні х, ерѕ для позначення початкових даних.

Задати початкові значення n, temp, sinx.

Обчислити значення функції sin x

Задана точність буде реалізована за допомогою зупинки циклу, коли член ряду буде менше eps. eps будемо визначати за рекурентною формулою (-(x*x)/((n+1)*(n+2)))*temp

Вивести результат.

Побудова математичної моделі

Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
X	Дійсне	X	Початкові дані
Точність	Дійсне	eps	Початкові дані
Номер члена ряду	Натуральне	n	Проміжні дані

Основи програмування – 1. Алгоритми та структури даних

Член ряду	Дійсне	temp	Проміжні дані
Синус х	Дійсне	sinx	Проміжні дані, вихідні дані

Проміжне значення члену ряду будемо визначати за рекурентною формулою (-(x*x)/((n+1)*(n+2)))*temp

В лабораторній будемо використовувати знак модуля - |x|. Модуль числа — абсолютна велична числа, число з додатнім знаком.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії;

Крок 2. Обчислюємо значення функції синус х

Крок 3. Виведемо відповідь

Псевдокод

Крок 1

початок

введення х, ерѕ

обчислення синусу кута з заданою точністю

виведення sinx

кінепь

Крок 2

початок

введення х, ерѕ

Основи програмування – 1. Алгоритми та структури даних

```
term :=x sinx := term n := 1 поки |term| > eps повторити term := term*(-(x*x)/((n+1)*(n+2))) sinx := sinx + term n := n+1
```

виведення sinx

кінець

Блок-схеми

Крок 1

Крок 2

Випробування:

випробування:	
	Початок
1	x=3 eps=0,01
2	term=3 sinx=3 n=1
3	term=-1,5 sinx=1,5 n=2
4	term=0,675 sinx=2,175 n=3
5	term=-0.2025 sinx=1,9725 n=4
6	term=0,0433928571 sinx=2,406428571 n=5
7	term=-0,006973852 sinx=2,399454719 n=6
17	Виведення sinx
	Кінець

Висновок:

Ми дослідили подання операторів повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій.

В результаті виконання лабораторної роботи ми отримали алгоритм знаходження синусу кута з заданою точністю. Для цього задачу розділили на 3

Основи програмування – 1. Алгоритми та структури даних

кроки: визначення основних дій, обчислення значення функції синус x, виведення відповіді.

В процесі випробування ми розглянули один з випадків x=3 eps=0,01 та отримали відповідь $\sin x=2,399454719$