	<u>Unedh</u>
Name :	(4)
Roll No.:	An Alasman Of Commission 2 and Excellent
Inviailator's Sianature:	

2012 CATALYSIS & CATALYTIC REACTOR DESIGN

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Log-log graph sheet & ordinary graph sheet, if required, will be provided by the institution.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) A reaction is of zero order when the rate of reaction is
 - a) independent of concentration of materials
 - b) independent of total pressure
 - c) dependent on partial pressure of reactants
 - d) dependent on total pressure.

6417 [Turn over

For irreversible reaction in series A – ii) where \Re_1 and \Re_2 are first order reaction rates constants the time at which the maximum concentration of $R(t_{max})$ occurs is

a)
$$\frac{\operatorname{In}\left(\mathfrak{R}_{2}-\mathfrak{R}_{1}\right)}{\mathfrak{R}_{2}/\mathfrak{R}_{1}}$$

b)
$$\frac{\operatorname{In}(\mathfrak{R}_2/\mathfrak{R}_1)}{\mathfrak{R}_2-\mathfrak{R}_1}$$

c)
$$\left(\frac{\mathfrak{R}_1}{\mathfrak{R}_2}\right)^{\mathfrak{R}_2/(\mathfrak{R}_2-\mathfrak{R}_1)}$$

d) None of these.

Thiele modulus for first order reaction is given by iii)

a)
$$\sqrt{\Re/D}$$

b)
$$L\sqrt{\Re/D}$$

c)
$$\sqrt{\frac{\Re L}{D}}$$

d)
$$\sqrt{\frac{\Re}{LD}}$$
.

Where \Re is reaction rate constant, D is diffusion coefficient and L is the length of the pore.

A catalyst is made into pellets. The mass of the pellet is iv) 3.0 gm and the volume is 3.5 cm³. The macropore volume of the pellet is 0.65 cm³. Then the macropore volume per gm is

Effectiveness Factor for a porous catalyst is given by v)

a)
$$\frac{\tanh mL}{mL}$$

b)
$$\frac{mL}{\tan h \ mL}$$

c)
$$\frac{\tan h \ mL}{1 + mL}$$

d)
$$\frac{1+mL}{\tan h \ mL}$$

- vi) In a porous catalyst, for surface kinetics, the rate of reaction of *A* may depend on
 - a) Adsorption of *A* on the the surface, reaction on the surface or desorption of product back into gas stream
 - b) Adsorption of *A* on the the surface, and desorption only
 - c) Adsorption of A on to the surface and chemical reaction only
 - d) None of these.
- vii) For small value of Thiele modulus (less than 0.4), the effectiveness factor is approximately equal to
 - a) 10

b) 1.0

c) 0.1

- d) 0.01.
- viii) Carrier in a catalyst increases its
 - a) surface area
- b) activity
- c) performance
- d) none of these.
- ix) The rate limiting step is
 - a) fastest step
 - b) slowest step
 - c) $\frac{1}{2}$ of the fastest step
 - d) average of fastest and slowest steps.

- x) Carbon particles accumulated on the catalyst used in the gas oil cracking lies in the category of
 - a) deposited poison
- b) chemisorbed poison
- c) selectivity poison
- d) stability poison.
- xi) A bidisperse catalyst contains
 - a) mesopores only
- b) micropores only
- c) macropores only
- d) both (b) and (c).
- xii) The main advantage of nano-sized catalyst is
 - a) high surface area
 - b) low cost
 - c) easy preparation process
 - d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Write short notes on the nitrogen desorption method for pore volume distribution measurement
- 3. Describe the activity of promoters and inhibitors in a reaction with examples.
- 4. Describe different catalyst poisoning with examples.

6417

- 5. Derive the Langmuir-Hinshelwood kinetics for a catalytic reaction.
- 6. Assumptions involved in deriving Langmuir isotherm equation.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. 9.12 gm sample of Glaucosil is studied with adsorption of N_2 at -195.8°C. The following data are obtained :

Pressure	6	25	140	230	285	320	430	505
mm Hg								
Volume adsorbed,	61	127	170	197	215	230	277	335
cm ³ (at								
0°C and								
1 atm).								

The vapour pressure of N_2 at -195.8° C is 1 atm and the density of N_2 at -195.8° C is 0.808 gm/cm³. Calculate the surface area in cm² of the sample.

8. Butyl acetate is produced from Butanol and acetic acid in a batch reactor at 100°C with small amount of sulphuric acid as homogeneous catalyst. Original feed contains 5.0 moles

Butanol/mole of acetic acid and the catalyst concentration is 0.03% by weight. The rate expression is given by $r_A = -\Re C_A^2$ When C_A is the concentration of acetic acid and \Re is 17.5 cm³/(g.mol) (min). The densities of mixtures of reactant and products can be assumed to be constant at 0.78 gm/cm³. Calculate the time required to obtain a conversion of 60%. Also determine the size of the reactor in order to produce Butyl acetate at an average rate of 50 kg/hour. Only one reactor will be used and this unit will be shut down 30 min between batches. Given molecular weight of butanol = 74, acetic acid = 60 and ester = 116.

9. Oxidation of NO is catalyzed by the active carbon according to the following rate of equation at 30°C.

Rate =
$$r = \frac{(p_{NO})^2 (p_{O_2})}{a + b (p_{NO})^2 + cp_{NO_2}}$$
 g.moles NO converted/

(gm catalyst) (hr)

p is the partial pressure, atm.

$$a = 1.619 \times 10^{-4}$$

$$b = 4.842$$

$$c = 1.52 \times 10^{-3}$$

6417

Find the volume of the flow reaction for converting 50 tons/day of NO_2 when using air – NO mixture containing 1.5 mole % NO and the conversion is 90%. Bulk sp. gravity of the catalyst is 0.48 and the total pressure is 3 atm.

10. a) At 700°C the rate of decomposition, $A \rightarrow 3R$, on a specific catalyst of given size is found to be

$$-r_{A}^{t} = -\frac{1}{W} \frac{\mathrm{d}N_{A}}{\mathrm{d}t} = 10 \frac{lit}{hr. \ gmcat.} C_{A} \left(\frac{mol}{lit}\right)$$

A pilot plant is to be built. This is to be a tubular packed bed 2 cm ID using 25% of these active catalyst pellets evenly mixed with 75% inert pellets to insure isothermal operations. For 400 mol/hr feed consisting of 50% A-50% inert gas at 8 atm. At 700°C what must be the length of reactor so that p_{Aout}/p_{Ain} = 0.111

Data:

Catalyst and inert pellets are porous, of diameter, d_p = 3mm; Particle density, ρ_S = 2/cm³

Bulk voidage of packed bed = 50%.

b) "A 3rd order catalytic reaction behaves like a reaction of 2nd order in the region of strong pore resistance."
 Justify the statement.

11. The catalytic reaction $A \to 4R$ is studied in a plug flow reactor using various amount of catalyst and 20 lit/hr of pure A feed at 3.2 atm and 117°C. The concentration of A in the effluent stream is recorded for the various runs as follows:

Runs	1	2	3	4	5
Catalyst used, kg	0.020	0.040	0.080	0.120	0.160
C _{Aout} , mol/lit	0.074	0.060	0.044	0.035	0.029

- a) Find the rate equation for this relation, using the integral method of analysis.
- b) Repeat part (a), using the differential method of analysis. 8+7

6417 8