Amazon Fine Food Reviews Analysis

Data Source: https://www.kaggle.com/snap/amazon-fine-food-reviews

EDA: https://nycdatascience.com/blog/student-works/amazon-fine-foods-visualization/

The Amazon Fine Food Reviews dataset consists of reviews of fine foods from Amazon.

Number of reviews: 568,454 Number of users: 256,059 Number of products: 74,258 Timespan: Oct 1999 - Oct 2012

Number of Attributes/Columns in data: 10

Attribute Information:

- 1 Id
- 2. ProductId unique identifier for the product
- 3. UserId unqiue identifier for the user
- 4 ProfileName
- 5. HelpfulnessNumerator number of users who found the review helpful
- 6. HelpfulnessDenominator number of users who indicated whether they found the review helpful or not
- 7. Score rating between 1 and 5
- 8. Time timestamp for the review
- 9. Summary brief summary of the review
- 10. Text text of the review

Objective:

Given a review, determine whether the review is positive (Rating of 4 or 5) or negative (rating of 1 or 2).

[Q] How to determine if a review is positive or negative?

[Ans] We could use the Score/Rating. A rating of 4 or 5 could be cosnidered a positive review. A review of 1 or 2 could be considered negative. A review of 3 is nuetral and ignored. This is an approximate and proxy way of determining the polarity (positivity/negativity) of a review.

Loading the data

The dataset is available in two forms

- 1. .csv file
- 2. SQLite Database

In order to load the data, We have used the SQLITE dataset as it easier to query the data and visualise the data efficiently.

Here as we only want to get the global sentiment of the recommendations (positive or negative), we will purposefully ignore all Scores equal to 3. If the score id above 3, then the recommendation will be set to "positive". Otherwise, it will be set to "negative".

In [44]:

```
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")

import sqlite3
import pandas as pd
import numpy as np
import nttk
import string
import string
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature extraction.text import TfidfVectorizer
```

```
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics import confusion_matrix
from sklearn import metrics
from sklearn.metrics import roc_curve, auc
from nltk.stem.porter import PorterStemmer
import re
# Tutorial about Python regular expressions: https://pymotw.com/2/re/
import string
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.stem.wordnet import WordNetLemmatizer
from gensim.models import Word2Vec
from gensim.models import KeyedVectors
import pickle
from tqdm import tqdm
import os
from sklearn.manifold import TSNE
from sklearn.preprocessing import StandardScaler
```

[1]. Reading Data

In [45]:

```
# using the SQLite Table to read data.
con = sqlite3.connect('database.sqlite')
#filtering only positive and negative reviews i.e.
# not taking into consideration those reviews with Score=3
# SELECT * FROM Reviews WHERE Score != 3 LIMIT 500000, will give top 500000 data points
# you can change the number to any other number based on your computing power
# filtered data = pd.read sql query(""" SELECT * FROM Reviews WHERE Score != 3 LIMIT 500000""", co
n)
# for tsne assignment you can take 5k data points
filtered_data = pd.read_sql_query(""" SELECT * FROM Reviews WHERE Score != 3 LIMIT 5000""", con)
# Give reviews with Score>3 a positive rating, and reviews with a score<3 a negative rating.
def partition(x):
    if x < 3:
       return 0
   return 1
#changing reviews with score less than 3 to be positive and vice-versa
actualScore = filtered_data['Score']
positiveNegative = actualScore.map(partition)
filtered data['Score'] = positiveNegative
print ("Number of data points in our data", filtered data.shape)
filtered data.head(3)
```

Number of data points in our data (5000, 10)

Out[45]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time
0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1	1	1303862400
1	2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0	0	1346976000

	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	
2	3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1	1	1219017600	
4									

In [46]:

```
display = pd.read_sql_query("""
SELECT UserId, ProductId, ProfileName, Time, Score, Text, COUNT(*)
FROM Reviews
GROUP BY UserId
HAVING COUNT(*)>1
""", con)
```

In [47]:

```
print(display.shape)
display.head()

(80668, 7)
```

Out[47]:

	Userld	ProductId	ProfileName	Time	Score	Text	COUNT(*)
0	#oc- R115TNMSPFT9I7	B007Y59HVM	Breyton	1331510400	2	Overall its just OK when considering the price	2
1	#oc- R11D9D7SHXIJB9	B005HG9ET0	Louis E. Emory "hoppy"	1342396800	5	My wife has recurring extreme muscle spasms, u	3
2	#oc- R11DNU2NBKQ23Z	B007Y59HVM	Kim Cieszykowski	1348531200	1	This coffee is horrible and unfortunately not	2
3	#oc- R11O5J5ZVQE25C	B005HG9ET0	Penguin Chick	1346889600	5	This will be the bottle that you grab from the	3
4	#oc- R12KPBODL2B5ZD	B007OSBE1U	Christopher P. Presta	1348617600	1	I didnt like this coffee. Instead of telling y	2

In [48]:

```
display[display['UserId'] == 'AZY10LLTJ71NX']
```

Out[48]:

	Userld	ProductId	ProfileName	Time	Score	7	Text	COUNT(*)
80638	AZY10LLTJ71NX	B006P7E5ZI	undertheshrine "undertheshrine"	1334707200	5	I was recommended to try green tea extract to		5

In [49]:

```
display['COUNT(*)'].sum()
```

Out[49]:

393063

Exploratory Data Analysis

[2] Data Cleaning: Deduplication

It is observed (as shown in the table below) that the reviews data had many duplicate entries. Hence it was necessary to remove duplicates in order to get unbiased results for the analysis of the data. Following is an example:

In [50]:

```
display= pd.read_sql_query("""
SELECT *
FROM Reviews
WHERE Score != 3 AND UserId="AR5J8UI46CURR"
ORDER BY ProductID
""", con)
display.head()
```

Out[50]:

	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Ti
0	78445	B000HDL1RQ	AR5J8UI46CURR	Geetha Krishnan	2	2	5	11995776
1	138317	B000HDOPYC	AR5J8UI46CURR	Geetha Krishnan	2	2	5	11995776
2	138277	В000НДОРҮМ	AR5J8UI46CURR	Geetha Krishnan	2	2	5	11995776
3	73791	B000HDOPZG	AR5J8UI46CURR	Geetha Krishnan	2	2	5	11995776
4	155049	B000PAQ75C	AR5J8UI46CURR	Geetha Krishnan	2	2	5	1199577€

As can be seen above the same user has multiple reviews of the with the same values for HelpfulnessNumerator, HelpfulnessDenominator, Score, Time, Summary and Text and on doing analysis it was found that

ProductId=B000HDOPZG was Loacker Quadratini Vanilla Wafer Cookies, 8.82-Ounce Packages (Pack of 8)

ProductId=B000HDL1RQ was Loacker Quadratini Lemon Wafer Cookies, 8.82-Ounce Packages (Pack of 8) and so on

It was inferred after analysis that reviews with same parameters other than Productld belonged to the same product just having different flavour or quantity. Hence in order to reduce redundancy it was decided to eliminate the rows having same parameters.

The method used for the same was that we first sort the data according to ProductId and then just keep the first similar product review and delelte the others. for eg. in the above just the review for ProductId=B000HDL1RQ remains. This method ensures that there is only one representative for each product and deduplication without sorting would lead to possibility of different representatives still existing for the same product.

In [51]:

```
#Sorting data according to ProductId in ascending order sorted_data=filtered_data.sort_values('ProductId', axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
```

```
In [52]:
```

```
#Deduplication of entries
final=sorted_data.drop_duplicates(subset={"UserId","ProfileName","Time","Text"}, keep='first', inpl
ace=False)
final.shape
```

Out[52]:

(4986, 10)

In [53]:

```
#Checking to see how much % of data still remains
(final['Id'].size*1.0)/(filtered_data['Id'].size*1.0)*100
```

Out[53]:

99.72

Observation:- It was also seen that in two rows given below the value of HelpfulnessNumerator is greater than HelpfulnessDenominator which is not practically possible hence these two rows too are removed from calcualtions

In [54]:

```
display= pd.read_sql_query("""
SELECT *
FROM Reviews
WHERE Score != 3 AND Id=44737 OR Id=64422
ORDER BY ProductID
""", con)
display.head()
```

Out[54]:

	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Ti		
0	64422	B000MIDROQ	A161DK06JJMCYF	J. E. Stephens "Jeanne"	3	1	5	12248928		
1	44737	B001EQ55RW	A2V0I904FH7ABY	Ram	3	2	4	12128832		
4	·									

In [55]

```
final=final[final.HelpfulnessNumerator<=final.HelpfulnessDenominator]
```

In [56]

```
#Before starting the next phase of preprocessing lets see the number of entries left print(final.shape)

#How many positive and negative reviews are present in our dataset?

final['Score'].value_counts()
```

(4986, 10)

```
Out[56]:

1 4178
0 808
Name: Score, dtype: int64
```

[3]. Text Preprocessing.

Now that we have finished deduplication our data requires some preprocessing before we go on further with analysis and making the prediction model.

Hence in the Preprocessing phase we do the following in the order below:-

- 1. Begin by removing the html tags
- 2. Remove any punctuations or limited set of special characters like, or . or # etc.
- 3. Check if the word is made up of english letters and is not alpha-numeric
- 4. Check to see if the length of the word is greater than 2 (as it was researched that there is no adjective in 2-letters)
- 5. Convert the word to lowercase
- 6. Remove Stopwords
- 7. Finally Snowball Stemming the word (it was observed to be better than Porter Stemming)

After which we collect the words used to describe positive and negative reviews

In [57]:

```
# printing some random reviews
sent_0 = final['Text'].values[0]
print(sent_0)
print("="*50)

sent_1000 = final['Text'].values[1000]
print(sent_1000)
print("="*50)

sent_1500 = final['Text'].values[1500]
print(sent_1500)
print(sent_1500)
print("="*50)

sent_4900 = final['Text'].values[4900]
print(sent_4900)
print(sent_4900)
print("="*50)
```

Why is this \$[...] when the same product is available for \$[...] here?

/>http://www.amazon.com/VICTOR-FLY-MAGNET-BAIT-REFILL/dp/B00004RBDY

br />traps are unreal, of course -- total fly genocide. Pretty stinky, but only right nearby.

I recently tried this flavor/brand and was surprised at how delicious these chips are. The best thing was that there were a lot of "brown" chips in the bsg (my favorite), so I bought some more the rough amazon and shared with family and friends. I am a little disappointed that there are not, so far, very many brown chips in these bags, but the flavor is still very good. I like them better than the yogurt and green onion flavor because they do not seem to be as salty, and the onion flavor is better. If you haven't eaten Kettle chips before, I recommend that you try a bag before buy ing bulk. They are thicker and crunchier than Lays but just as fresh out of the bag.

Wow. So far, two two-star reviews. One obviously had no idea what they were ordering; the other wants crispy cookies. Hey, I'm sorry; but these reviews do nobody any good beyond reminding us to look before ordering. Sor /> Chr /> These are chocolate-oatmeal cookies. If you don't like that combination, don't order this type of cookie. I find the combo quite nice, really. The oatmeal sort of "calms" the rich chocolate flavor and gives the cookie sort of a coconut-type consistency. Now let's also remember that tastes differ; so, I've given my opinion. Sor /> Chr /> Then, these are soft, chewy cookies -- as advertised. They are not "crispy" cookies, or the blurb would say "crispy," rather than "chewy." I happen to like raw cookie dough; however, I don't see where these taste like raw cookie dough. Both are soft, however, so is this the confusion? And, yes, they stick toge ther. Soft cookies tend to do that. They aren't individually wrapped, which would add to the cost. Oh yeah, chocolate chip cookies tend to be somewhat sweet. Sor /> Chr /> So, if you want something hard and crisp, I suggest Nabiso's Ginger Snaps. If you want a cookie that's soft, chew y and tastes like a combination of chocolate and oatmeal, give these a try. I'm here to place my

second order.

love to order my coffee on amazon. easy and shows up quickly. $\!\!\!$ '>This k cup is great coffee. d caf is very good as well

In [58]:

```
# remove urls from text python: https://stackoverflow.com/a/40823105/4084039
sent_0 = re.sub(r"http\S+", "", sent_0)
sent_1000 = re.sub(r"http\S+", "", sent_1000)
sent_150 = re.sub(r"http\S+", "", sent_1500)
sent_4900 = re.sub(r"http\S+", "", sent_4900)
print(sent_0)
```

Why is this [...] when the same product is available for [...] here?
br /> />
br />The Victor M3 80 and M502 traps are unreal, of course -- total fly genocide. Pretty stinky, but only right nearb v.

In [59]:

```
\# https://stackoverflow.com/questions/16206380/python-beautifulsoup-how-to-remove-all-tags-from-and-and-stackoverflow.com/questions/16206380/python-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow.com/questions/16206380/python-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow.com/questions/16206380/python-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautifulsoup-how-to-remove-all-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beautiful-tags-from-and-stackoverflow-beaut
from bs4 import BeautifulSoup
 soup = BeautifulSoup(sent 0, 'lxml')
 text = soup.get text()
print(text)
print("="*50)
 soup = BeautifulSoup(sent 1000, 'lxml')
 text = soup.get text()
 print(text)
print("="*50)
 soup = BeautifulSoup(sent 1500, 'lxml')
 text = soup.get text()
 print(text)
print("="*50)
 soup = BeautifulSoup(sent 4900, 'lxml')
 text = soup.get text()
print(text)
```

Why is this $\{[...]$ when the same product is available for $\{[...]$ here? />The Victor M380 and M502 traps are unreal, of course -- total fly genocide. Pretty stinky, but only right nearby.

I recently tried this flavor/brand and was surprised at how delicious these chips are. The best thing was that there were a lot of "brown" chips in the bsg (my favorite), so I bought some more the rough amazon and shared with family and friends. I am a little disappointed that there are not, so far, very many brown chips in these bags, but the flavor is still very good. I like them better than the yogurt and green onion flavor because they do not seem to be as salty, and the onion flavor is better. If you haven't eaten Kettle chips before, I recommend that you try a bag before buy ing bulk. They are thicker and crunchier than Lays but just as fresh out of the bag.

Wow. So far, two two-star reviews. One obviously had no idea what they were ordering; the other wants crispy cookies. Hey, I'm sorry; but these reviews do nobody any good beyond reminding us to look before ordering. These are chocolate-oatmeal cookies. If you don't like that combination, do n't order this type of cookie. I find the combo quite nice, really. The oatmeal sort of "calms" the rich chocolate flavor and gives the cookie sort of a coconut-type consistency. Now let's also remember that tastes differ; so, I've given my opinion. Then, these are soft, chewy cookies -- as advertised. They are not "crispy" cookies, or the blurb would say "crispy," rather than "chewy." I happen to like raw cookie dough; however, I don't see where these taste like raw cookie dough. Both are soft, however, so is this the confusion? And, yes, they stick together. Soft cookies te nd to do that. They aren't individually wrapped, which would add to the cost. Oh yeah, chocolate chip cookies tend to be somewhat sweet. So, if you want something hard and crisp, I suggest Nabiso's Ginger Snaps. If you want a cookie that's soft, chewy and tastes like a combination of chocolate and oatmeal, give these a try. I'm here to place my second order.

love to order my coffee on amazon. easy and shows up quickly. This k cup is great coffee. dcaf is very good as well

In [60]:

```
def decontracted(phrase):
    # specific
    phrase = re.sub(r"won't", "will not", phrase)
    phrase = re.sub(r"can\'t", "can not", phrase)

# general
    phrase = re.sub(r"\'re", " not", phrase)
    phrase = re.sub(r"\'re", " are", phrase)
    phrase = re.sub(r"\'s", " is", phrase)
    phrase = re.sub(r"\'d", " would", phrase)
    phrase = re.sub(r"\'ll", " will", phrase)
    phrase = re.sub(r"\'t", " not", phrase)
    phrase = re.sub(r"\'t", " have", phrase)
    phrase = re.sub(r"\'ve", " have", phrase)
    phrase = re.sub(r"\'m", " am", phrase)
    return phrase
```

In [61]:

```
sent_1500 = decontracted(sent_1500)
print(sent_1500)
print("="*50)
```

Wow. So far, two two-star reviews. One obviously had no idea what they were ordering; the other wants crispy cookies. Hey, I am sorry; but these reviews do nobody any good beyond reminding us to look before ordering. br /> cbr /> These are chocolate-oatmeal cookies. If you do not like that combination, do not order this type of cookie. I find the combo quite nice, really. The oatmeal sort of "calms" the rich chocolate flavor and gives the cookie sort of a coconut-type consistency. Now let is also remember that tastes differ; so, I have given my opinion. cbr /> cbr /> Then, these a re soft, chewy cookies -- as advertised. They are not "crispy" cookies, or the blurb would say "c rispy," rather than "chewy." I happen to like raw cookie dough; however, I do not see where these taste like raw cookie dough. Both are soft, however, so is this the confusion? And, yes, they st ick together. Soft cookies tend to do that. They are not individually wrapped, which would add to the cost. Oh yeah, chocolate chip cookies tend to be somewhat sweet. cbr /> cbr /> cbr /> So, if you want something hard and crisp, I suggest Nabiso is Ginger Snaps. If you want a cookie that is soft, ch ewy and tastes like a combination of chocolate and oatmeal, give these a try. I am here to place my second order.

In [62]:

```
#remove words with numbers python: https://stackoverflow.com/a/18082370/4084039
sent_0 = re.sub("\S*\d\S*", "", sent_0).strip()
print(sent_0)
```

Why is this [...] when the same product is available for [...] here? $\$ /> /> br />The Victor a nd traps are unreal, of course -- total fly genocide. Pretty stinky, but only right nearby.

In [63]:

```
#remove spacial character: https://stackoverflow.com/a/5843547/4084039
sent_1500 = re.sub('[^A-Za-z0-9]+', ' ', sent_1500)
print(sent_1500)
```

Wow So far two two star reviews One obviously had no idea what they were ordering the other wants crispy cookies Hey I am sorry but these reviews do nobody any good beyond reminding us to look bef ore ordering br br These are chocolate oatmeal cookies If you do not like that combination do not order this type of cookie I find the combo quite nice really The oatmeal sort of calms the rich ch ocolate flavor and gives the cookie sort of a coconut type consistency Now let is also remember th at tastes differ so I have given my opinion br br Then these are soft chewy cookies as advertised They are not crispy cookies or the blurb would say crispy rather than chewy I happen to like raw c ookie dough however I do not see where these taste like raw cookie dough Both are soft however so is this the confusion And yes they stick together Soft cookies tend to do that They are not individually wrapped which would add to the cost Oh yeah chocolate chip cookies tend to be somewhat sweet br br So if you want something hard and crisp I suggest Nabiso is Ginger Snaps If you want a cookie that is soft chewy and tastes like a combination of chocolate and oatmeal give these a try I am here to place my second order

In [64]:

```
# https://gist.github.com/sebleier/554280
# we are removing the words from the stop words list: 'no', 'nor', 'not'
```

```
# <br /><br /> ==> after the above steps, we are getting "br br"
# we are including them into stop words list
# instead of <br /> if we have <br/> these tags would have revmoved in the 1st step
stopwords= set(['br', 'the', 'i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "y
                          "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his',
'himself', \
                          'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them',
'their'.
                          'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll",
'these', 'those', \
                           'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having',
'do', 'does', \
                          'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', '
while', 'of', \
                          'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during',
'before', 'after',\
                          'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under'
, 'again', 'further',\
                           'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', '\( \)
ach', 'few', 'more',\
                           'most',
                                          'other', 'some', 'such', 'only', 'own', 'same', 'so', 'than', 'too', 'very', \
                          's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll'
, 'm', 'o', 're', \
                          've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn', "doesn',
esn't", 'hadn',\
                          "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn',
"mightn't", 'mustn',\
                          "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn',
"wasn't", 'weren', "weren't", \
                           'won', "won't", 'wouldn', "wouldn't"])
```

In [65]:

```
# Combining all the above stundents
from tqdm import tqdm
preprocessed_reviews = []
# tqdm is for printing the status bar
for sentance in tqdm(final['Text'].values):
    sentance = re.sub(r"http\S+", "", sentance)
    sentance = BeautifulSoup(sentance, 'lxml').get_text()
    sentance = decontracted(sentance)
    sentance = re.sub("\S*\d\S*", "", sentance).strip()
    sentance = re.sub('[^A-Za-z]+', ' ', sentance)
    # https://gist.github.com/sebleier/554280
    sentance = ' '.join(e.lower() for e in sentance.split() if e.lower() not in stopwords)
    preprocessed_reviews.append(sentance.strip())
```

[3.2] Preprocess Summary

In [66]:

```
## Similartly you can do preprocessing for review summary also.

# printing some random SUMMARY.....review
SUMMARY_0 = final['Summary'].values[0]
print(SUMMARY_0)
print("="*50)

SUMMARY_1000 = final['Summary'].values[1000]
print(SUMMARY_1000)
print("="*50)

SUMMARY_1500 = final['Summary'].values[1500]
print(SUMMARY_1500)
print("="*50)
```

. 1

```
thirty bucks?
Best sour cream & onion chip I've had
_____
Are We Reviewing Our Mistakes Or These Cookies?
In [67]:
#...MOST of the Summary ,contain special character .. following line of code will remove all those
special character.
SUMMARY 0 = re.sub('[^A-Za-z0-9]+', '', SUMMARY 0)
print(SUMMARY 0)
SUMMARY 1000 = re.sub('[^A-Za-z0-9]+', '', SUMMARY 1000)
print(SUMMARY 1000)
SUMMARY 1500 = re.sub('[^A-Za-z0-9]+', '', SUMMARY 1500)
print(SUMMARY 1500)
thirty bucks
Best sour cream onion chip I ve had
Are We Reviewing Our Mistakes Or These Cookies
In [68]:
from tqdm import tqdm
preprocessed SUMMARY = []
# tqdm is for printing the status bar
for sentance in tqdm(final['Summary'].values):
   sentance = re.sub(r"http\S+", "", sentance) #....remove urls from SUMMARY (IF any)
    sentance = BeautifulSoup(sentance, 'lxml').get text() #...-remove-all-tags-from-an-element
    sentance = decontracted(sentance)
   sentance = re.sub("\S*\d\S*", "", sentance).strip()
   sentance = re.sub('[^A-Za-z]+', ' ', sentance) #....remove all special character for ex.?,& @
etc. from summary.
    # https://gist.github.com/sebleier/554280
    sentance = ' '.join(e.lower() for e in sentance.split() if e.lower() not in stopwords)
    preprocessed_SUMMARY.append(sentance.strip())
100%|
         | 4986/4986 [00:07<00:00, 664.93it/s]
In [84]:
print(preprocessed SUMMARY[0])
print (preprocessed SUMMARY [1000])
print(preprocessed_SUMMARY[1500])
thirty bucks
best sour cream onion chip
reviewing mistakes cookies
```

[4] Featurization

[4.1] BAG OF WORDS

In [70]:

```
#BoW
count_vect = CountVectorizer() #in scikit-learn
count_vect.fit(preprocessed_reviews)
print("some feature names ", count_vect.get_feature_names()[:10])
print('='*50)

final_counts = count_vect.transform(preprocessed_reviews)
```

[4.2] Bi-Grams and n-Grams.

In [71]:

```
#bi-gram, tri-gram and n-gram

#removing stop words like "not" should be avoided before building n-grams
# count_vect = CountVectorizer(ngram_range=(1,2))
# please do read the CountVectorizer documentation http://scikit-
learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
# you can choose these numebrs min_df=10, max_features=5000, of your choice
count_vect = CountVectorizer(ngram_range=(1,2), min_df=10, max_features=5000)
final_bigram_counts = count_vect.fit_transform(preprocessed_reviews)
print("the type of count vectorizer ",type(final_bigram_counts))
print("the shape of out text BOW vectorizer ",final_bigram_counts.get_shape())
print("the number of unique words including both unigrams and bigrams ", final_bigram_counts.get_s
hape()[1])

the type of count vectorizer <class 'scipy.sparse.csr.csr_matrix'>
the shape of out text BOW vectorizer (4986, 3144)
the number of unique words including both unigrams and bigrams 3144
```

[4.3] TF-IDF

```
In [72]:
```

```
tf_idf_vect = TfidfVectorizer(ngram_range=(1,2), min_df=10)
tf_idf_vect.fit(preprocessed_reviews)
print("some sample features(unique words in the corpus)",tf_idf_vect.get_feature_names()[0:10])
print('='*50)

final_tf_idf = tf_idf_vect.transform(preprocessed_reviews)
print("the type of count vectorizer ",type(final_tf_idf))
print("the shape of out text TFIDF vectorizer ",final_tf_idf.get_shape())
print("the number of unique words including both unigrams and bigrams ", final_tf_idf.get_shape()[
1])

some sample features(unique words in the corpus) ['ability', 'able', 'able find', 'able get',
    'absolute', 'absolutely', 'absolutely delicious', 'absolutely love', 'absolutely no', 'according']

the type of count vectorizer <class 'scipy.sparse.csr.csr_matrix'>
the shape of out text TFIDF vectorizer (4986, 3144)
the number of unique words including both unigrams and bigrams 3144
```

[4.4] Word2Vec

```
In [73]:
```

```
# Train your own Word2Vec model using your own text corpus
i=0
list_of_sentance=[]
for sentance in preprocessed_reviews:
    list_of_sentance.append(sentance.split())
```

In [74]:

```
# Using Google News Word2Vectors
# in this project we are using a pretrained model by google
# its 3.3G file, once you load this into your memory
\# it occupies ~9Gb, so please do this step only if you have >12G of ram
# we will provide a pickle file wich contains a dict ,
# and it contains all our courpus words as keys and model[word] as values
# To use this code-snippet, download "GoogleNews-vectors-negative300.bin"
# from https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
# it's 1.9GB in size.
# http://kavita-ganesan.com/gensim-word2vec-tutorial-starter-code/#.W17SRFAzZPY
# you can comment this whole cell
# or change these varible according to your need
is your ram gt 16g=False
want_to_use_google_w2v = False
want to train w2v = True
if want to train w2v:
    # min count = 5 considers only words that occured atleast 5 times
    w2v_model=Word2Vec(list_of_sentance,min_count=5,size=50, workers=4)
    print(w2v_model.wv.most_similar('great'))
    print('='*50)
    print(w2v_model.wv.most_similar('worst'))
elif want to use google w2v and is your ram gt 16g:
    if os.path.isfile('GoogleNews-vectors-negative300.bin'):
        w2v model=KeyedVectors.load word2vec format('GoogleNews-vectors-negative300.bin', binary=Tr
        print(w2v_model.wv.most_similar('great'))
        print(w2v model.wv.most similar('worst'))
    else:
        print("you don't have gogole's word2vec file, keep want to train w2v = True, to train your
own w2v ")
[('bad', 0.9955491423606873), ('alternative', 0.9951686263084412), ('anything',
0.9948800802230835), ('ok', 0.9948180913925171), ('think', 0.9948176741600037), ('especially', 0.9
947620630264282), ('either', 0.9945737719535828), ('care', 0.9943347573280334), ('flavorful',
0.9943102598190308), ('though', 0.9942880272865295)]
[('except', 0.9994966983795166), ('normal', 0.9994308948516846), ('awful', 0.999403178691864),
('yes', 0.9993956089019775), ('major', 0.999386191368103), ('cafe', 0.9993854761123657),
('somewhat', 0.9993732571601868), ('type', 0.9993522763252258), ('lightly', 0.9993489980697632), (
'enjoyed', 0.999331533908844)]
In [75]:
w2v words = list(w2v model.wv.vocab)
print("number of words that occured minimum 5 times ",len(w2v words))
print("sample words ", w2v words[0:50])
number of words that occured minimum 5 times 3817
sample words ['product', 'available', 'course', 'total', 'pretty', 'stinky', 'right', 'nearby', '
used', 'ca', 'not', 'beat', 'great', 'received', 'shipment', 'could', 'hardly', 'wait', 'try', 'lo
ve', 'call', 'instead', 'removed', 'easily', 'daughter', 'designed', 'printed', 'use', 'car', 'win dows', 'beautifully', 'shop', 'program', 'going', 'lot', 'fun', 'everywhere', 'like', 'tv', 'computer', 'really', 'good', 'idea', 'final', 'outstanding', 'window', 'everybody', 'asks',
'bought', 'made']
```

[4.4.1] Converting text into vectors using wAvg W2V, TFIDF-W2V

[4.4.1.1] Avg W2v

```
In [76]:
```

```
# average Word2Vec
# compute average word2vec for each review.
sent_vectors = []; # the avg-w2v for each sentence/review is stored in this list
for sent in tqdm(list_of_sentance): # for each review/sentence
```

```
sent vec = np.zeros(50) # as word vectors are of zero length 50, you might need to change this
to 300 if you use google's w2v
    cnt words =0; # num of words with a valid vector in the sentence/review
    for word in sent: # for each word in a review/sentence
        if word in w2v words:
            vec = w2v model.wv[word]
            sent vec += vec
           cnt words += 1
    if cnt_words != 0:
       sent vec /= cnt words
    sent_vectors.append(sent_vec)
print(len(sent vectors))
print(len(sent vectors[0]))
100%|
            4986/4986 [00:23<00:00, 208.31it/s]
4986
50
```

[4.4.1.2] TFIDF weighted W2v

```
In [77]:
```

```
# S = ["abc def pqr", "def def def abc", "pqr pqr def"]
model = TfidfVectorizer()
model.fit(preprocessed_reviews)
# we are converting a dictionary with word as a key, and the idf as a value
dictionary = dict(zip(model.get_feature_names(), list(model.idf_)))
```

```
In [78]:
```

```
# TF-IDF weighted Word2Vec
tfidf feat = model.get feature names() # tfidf words/col-names
# final tf idf is the sparse matrix with row = sentence, col = word and cell val = tfidf
tfidf_sent_vectors = []; # the tfidf-w2v for each sentence/review is stored in this list
for sent in tqdm(list of sentance): # for each review/sentence
    sent_vec = np.zeros(50) # as word vectors are of zero length
    weight sum =0; # num of words with a valid vector in the sentence/review
    for word in sent: # for each word in a review/sentence
        if word in w2v words and word in tfidf feat:
            vec = w2v model.wv[word]
             tf_idf = tf_idf_matrix[row, tfidf_feat.index(word)]
            # to reduce the computation we are
            # dictionary[word] = idf value of word in whole courpus
            # sent.count(word) = tf valeus of word in this review
            tf idf = dictionary[word] * (sent.count(word) /len(sent))
            sent_vec += (vec * tf_idf)
            weight sum += tf idf
    if weight sum != 0:
       sent_vec /= weight_sum
    tfidf sent vectors.append(sent vec)
    row += 1
100%|
           | 4986/4986 [02:07<00:00, 57.99it/s]
```

[5] Applying TSNE

- 1. you need to plot 4 tsne plots with each of these feature set
 - A. Review text, preprocessed one converted into vectors using (BOW)
 - B. Review text, preprocessed one converted into vectors using (TFIDF)
 - C. Review text, preprocessed one converted into vectors using (AVG W2v)
 - D. Review text, preprocessed one converted into vectors using (TFIDF W2v)

- 2. Note 1: The TSNE accepts only dense matrices
- 3. Note 2: Consider only 5k to 6k data points

In [11]:

```
# https://github.com/pavlin-policar/fastTSNE you can try this also, this version is little faster
than sklearn
import numpy as np
from sklearn.manifold import TSNE
from sklearn import datasets
import pandas as pd
import matplotlib.pyplot as plt
iris = datasets.load iris()
x = iris['data']
y = iris['target']
tsne = TSNE(n components=2, perplexity=30, learning rate=200)
X embedding = tsne.fit transform(x)
\# if x is a sparse matrix you need to pass it as X embedding = tsne.fit transform(x.toarray()) , .
toarray() will convert the sparse matrix into dense matrix
for tsne = np.hstack((X embedding, y.reshape(-1,1)))
for tsne df = pd.DataFrame(data=for tsne, columns=['Dimension x','Dimension y','Score'])
colors = {0:'red', 1:'blue', 2:'green'}
plt.scatter(for_tsne_df['Dimension_x'], for_tsne_df['Dimension_y'], c=for_tsne_df['Score'].apply(la
mbda x: colors[x]))
plt.show()
```


[5.1] Applying TNSE on Text BOW vectors (default perplexity and iteration)

In [94]:

```
# please write all the code with proper documentation, and proper titles for each subsection
# when you plot any graph make sure you use
    # a. Title, that describes your plot, this will be very helpful to the reader
    # b. Legends if needed
    # c. X-axis label
    # d. Y-axis label

#......Conveting SPARSE matrix to DENSE matrix.....

STD_DATA = StandardScaler(with_mean = False).fit_transform(final_counts)
STD_DATA = STD_DATA.todense()
print(STD_DATA.shape)
print(type(STD_DATA))
#......Applying TSNE

SCORE = final['Score']
```

```
SCORE_4000 = SCORE[0:4000]

DATA_4000 = STD_DATA[0:4000,:]

model = TSNE(n_components = 2,random_state=0)

tsne_data = model.fit_transform(DATA_4000)

# configuring the parameteres
# the number of components = 2
# default perplexity = 30
# default learning rate = 200

tsne_data = np.vstack((tsne_data.T, SCORE_4000)).T

tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim_2", "Score"))

# Ploting the result of tsne
sns.FacetGrid(tsne_df, hue="Score", size=6).map(plt.scatter, 'Dim_1', 'Dim_2').add_legend()
plt.title('T-SNE_ON_4000_BOW_VECTORS',fontsize = 18)
plt.show()
```

(4986, 12997)
<class 'numpy.matrixlib.defmatrix.matrix'>

**Infernece:

- 1. Above T-SNE plot is plotted with peprlexity = 30, and default number of iteration = 1000.
- 2. Blue dots indicate -ve review and orange dot indicate +ve review, it is clearly visible that with above parameters data points is not being well seperated.
- 3. Now let'see ,tuning those parameters.

Applying T-SNE on text BOW vectors(perplexity =100, n_iter = 2000)

```
In [95]:
```

```
# please write all the code with proper documentation, and proper titles for each subsection
# when you plot any graph make sure you use
    # a. Title, that describes your plot, this will be very helpful to the reader
    # b. Legends if needed
    # c. X-axis label
    # d. Y-axis label
# ......Conveting SPARSE matrix to DENSE matrix......
STD DATA = StandardScaler(with mean = False) fit transform(final counts)
```

```
STD DATA = STD DATA.todense()
print(STD DATA.shape)
print(type(STD_DATA))
#.....Applying TSNE ......
SCORE = final['Score']
SCORE 4000 = SCORE [0:4000]
DATA 4000 = STD DATA[0:4000,:]
model = TSNE(n components = 2,random state=0,perplexity=100,n iter= 2000)
tsne_data = model.fit_transform(DATA_4000)
# configuring the parameteres
# the number of components = 2
# perplexity = 100
# default learning rate = 200
# number of iteration = 2000
tsne data = np.vstack((tsne data.T, SCORE 4000)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim_2", "Score"))
# Ploting the result of tsne
sns.FacetGrid(tsne df, hue="Score", size=6).map(plt.scatter, 'Dim 1', 'Dim 2').add legend()
plt.title('T-SNE ON 4000 BOW VECTORS', fontsize = 18)
```

(4986, 12997)
<class 'numpy.matrixlib.defmatrix.matrix'>

**INFERENCE: 1.Even after tuning parameters(with perplexity = 100 and iteration 2000) positive and negative review is not seperable in 2D.

[5.1] Applying TNSE on Text TFIDF vectors with perplexity = 50 and N_iter = 2000

```
In [109]:
```

```
# please write all the code with proper documentation, and proper titles for each subsection
# when you plot any graph make sure you use
# a. Title, that describes your plot, this will be very helpful to the reader
# b. Legends if needed
# c. X-axis label
# d. Y-axis label
```

```
#......Conveting SPARSE matrix to DENSE matrix.....
STD DATA tf idf = StandardScaler(with mean = False).fit transform(final tf idf)
STD DATA tf idf = STD DATA tf idf.todense()
print(STD_DATA_tf_idf.shape)
print(type(STD_DATA_tf_idf))
#.....Applying TSNE ......
SCORE = final['Score']
SCORE 4000 = SCORE [0:4000]
DATA_4000 = STD_DATA_tf_idf[0:4000,:]
model = TSNE(n components = 2,random state=0,perplexity=50,n iter = 2000)
tsne_data = model.fit_transform(DATA_4000)
# configuring the parameteres
# the number of components = 2
# perplexity = 50
# default learning rate = 200
# number of iteration = 2000
tsne data = np.vstack((tsne data.T, SCORE 4000)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim 2", "Score"))
# Ploting the result of tsne
sns.FacetGrid(tsne df, hue="Score", size=6).map(plt.scatter, 'Dim 1', 'Dim 2').add legend()
plt.title('T-SNE ON 4000 TF IDF VECTORS with perplexity = 50 and Number of iteration = 2000', fonts
ize = 18)
plt.show()
(4986, 3144)
```

T-SNE ON 4000 TF_IDF VECTORS with perplexity = 50 and Number of iteration = 2000

<class 'numpy.matrixlib.defmatrix.matrix'>

[5.1] Applying TNSE on Text TFIDF vectors with perplexity = 10 and N_iter = 5000

```
In [80]:
```

```
# please write all the code with proper documentation, and proper titles for each subsection
# when you plot any graph make sure you use
# a. Title, that describes your plot, this will be very helpful to the reader
# b. Legends if needed
```

```
# c. X-axis label
    # d. Y-axis label
#......Conveting SPARSE matrix to DENSE matrix.....
STD DATA tf idf = StandardScaler(with mean = False).fit transform(final tf idf)
STD DATA tf idf = STD DATA tf idf.todense()
print(STD DATA tf idf.shape)
print(type(STD_DATA_tf_idf))
#.....Applying TSNE ......
SCORE = final['Score']
SCORE 4000 = SCORE [0:4000]
DATA 4000 = STD DATA tf idf[0:4000,:]
model = TSNE(n_components = 2,random_state=0,perplexity=10,n_iter = 5000)
tsne_data = model.fit_transform(DATA_4000)
# configuring the parameteres
# the number of components = 2
  perplexity = 10
# default learning rate = 200
# number of iteration = 2000
tsne data = np.vstack((tsne data.T, SCORE 4000)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim_2", "Score"))
# Ploting the result of tsne
sns.FacetGrid(tsne_df, hue="Score", size=6).map(plt.scatter, 'Dim_1', 'Dim_2').add_legend()
plt.title('T-SNE ON 4000 TF_IDF VECTORS with perplexity = 10 and Number of iteration = 5000', fonts
plt.show()
(4986, 3144)
```

T-SNE ON 4000 TF IDF VECTORS with perplexity = 10 and Number of iteration = 5000

<class 'numpy.matrixlib.defmatrix.matrix'>

[5.1] Applying TNSE on Text TFIDF vectors with perplexity = 50 and N_iter = 5000

```
# please write all the code with proper documentation, and proper titles for each subsection
# when you plot any graph make sure you use
    # a. Title, that describes your plot, this will be very helpful to the reader
    # b. Legends if needed
    # c. X-axis label
    # d. Y-axis label
#......Conveting SPARSE matrix to DENSE matrix.....
#from sklearn.preprocessing import StandardScaler
STD DATA tf idf = StandardScaler(with mean = False).fit transform(final tf idf)
STD_DATA_tf_idf = STD_DATA_tf_idf.todense()
print(STD_DATA_tf_idf.shape)
print(type(STD DATA tf idf))
#......Applying TSNE ......
SCORE = final['Score']
SCORE 4000 = SCORE [0:4000]
DATA 4000 = STD_DATA_tf_idf[0:4000,:]
model = TSNE(n_components = 2,random_state=0,perplexity=50,n_iter = 5000)
tsne_data = model.fit_transform(DATA_4000)
\# configuring the parameteres
# the number of components = 2
 perplexity = 50
# default learning rate = 200
# number of iteration = 5000
tsne data = np.vstack((tsne data.T, SCORE 4000)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim 2", "Score"))
# Ploting the result of tsne
sns.FacetGrid(tsne_df, hue="Score", size=6).map(plt.scatter, 'Dim_1', 'Dim_2').add_legend()
plt.title('T-SNE ON 4000 TF IDF VECTORS with perplexity =50 and Number of iteration = 5000', fontsi
ze = 18)
plt.show()
(4986, 3144)
<class 'numpy.matrixlib.defmatrix.matrix'>
```

T-SNE ON 4000 TF_IDF VECTORS with perplexity =50 and Number of iteration = 5000

**Inference:

1. In Above two plots I have applied T-SNE on TF_IDF vectors with different perplexity and iteration vaues.

- 2. IN first case I took perplexity value = 50, number of iteration value is 2000
- 3. IN second case perplexity is 10 and number of iteration value is 5000.
- 4. In third case perplexity is 50 and 5000
- 5. With same perplexity value and different iteration in case 1 and 3 we are getting almost similar T-SNE plots.

[5.3] Applying TNSE on Text Avg W2V vectors with perplexity = 40 and N_iter= 2000

```
In [105]:
```

```
# please write all the code with proper documentation, and proper titles for each subsection
# when you plot any graph make sure you use
   # a. Title, that describes your plot, this will be very helpful to the reader
   # b. Legends if needed
   # c. X-axis label
    # d. Y-axis label
STD DATA avg vectors = StandardScaler(with mean = False).fit transform(sent vectors)
#STD DATA tf idf = STD DATA tf idf.todense()
print(STD_DATA_avg_vectors.shape)
print(type(STD_DATA_avg_vectors))
#.....Applying TSNE ......
SCORE = final['Score']
SCORE 4000 = SCORE [0:4000]
DATA_4000 = STD_DATA_avg_vectors[0:4000,:]
model = TSNE(n_components = 2,random_state=0,perplexity=40,n_iter = 2000)
tsne data = model.fit transform(DATA 4000)
# configuring the parameteres
# the number of components = 2
# perplexity = 40
# default learning rate = 200
# number of iteration = 2000
tsne data = np.vstack((tsne data.T, SCORE 4000)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim_2", "Score"))
# Ploting the result of tsne
d = {'color': ['b', 'r']}
sns.FacetGrid(tsne df, hue kws=d, hue="Score", size=6).map(plt.scatter, 'Dim 1', 'Dim 2').add legend
plt.title('T-SNE ON 4000 AVG w2v VECTORS with perplexity = 40 and Number of iteration = 2000', font
size = 18)
plt.show()
(4986, 50)
<class 'numpy.ndarray'>
```

T-SNE ON 4000 AVG w2v VECTORS with perplexity = 40 and Number of iteration = 2000

[5.3] Applying TNSE on Text Avg W2V vectors with perplexity = 50 and N_iter= 4000

In [106]:

<class 'numpy.ndarray'>

```
# please write all the code with proper documentation, and proper titles for each subsection
# when you plot any graph make sure you use
    # a. Title, that describes your plot, this will be very helpful to the reader
    # b. Legends if needed
   # c. X-axis label
    # d. Y-axis label
STD_DATA_avg_vectors = StandardScaler(with_mean = False).fit_transform(sent vectors)
\#STD\_DATA\_tf\_idf = STD\_DATA\_tf\_idf.todense()
print (STD DATA avg vectors.shape)
print(type(STD DATA avg vectors))
#.....Applying TSNE ......
SCORE = final['Score']
SCORE 4000 = SCORE[0:4000]
DATA 4000 = STD DATA avg vectors[0:4000,:]
model = TSNE(n components = 2,random state=0,perplexity=50,n iter = 4000)
tsne data = model.fit transform(DATA 4000)
# configuring the parameteres
# the number of components = 2
# perplexity = 50
# default learning rate = 200
# number of iteration = 4000
tsne data = np.vstack((tsne data.T, SCORE 4000)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim_2", "Score"))
# Ploting the result of tsne
d = {'color': ['b', 'r']}
sns.FacetGrid(tsne df,hue kws=d, hue="Score", size=6).map(plt.scatter, 'Dim 1', 'Dim 2').add legend
plt.title('T-SNE ON 4000 AVG w2v VECTORS with perplexity = 50 and Number of iteration = 4000', font
size = 18)
plt.show()
(4986, 50)
```

T-SNE ON 4000 AVG w2v VECTORS with perplexity = 50 and Number of iteration = 4000

**Inference: 1.In above plot I have applied T-SNE on average w2v vectors with different parameters. 2.In first case with perplexity is equal to 40 and number of iteration = 2000.

- 1. In second case with perplexity is equal to 50 and number of iteration is equal to 4000.
- 2. From both T-sne plot it is clearly visible that reviews are not being well sepearted.

[5.4] Applying TNSE on Text TFIDF weighted W2V vectors with perplexity 20 and N_iter = 2000

In [107]:

```
# please write all the code with proper documentation, and proper titles for each subsection
# when you plot any graph make sure you use
   # a. Title, that describes your plot, this will be very helpful to the reader
   # b. Legends if needed
   # c. X-axis label
    # d. Y-axis label
STD DATA weighted tfidf vectors = StandardScaler(with mean =
False).fit_transform(tfidf_sent_vectors)
print(STD DATA weighted tfidf vectors.shape)
print(type(STD DATA weighted tfidf vectors))
#......Applying TSNE ......
#from sklearn.manifold import TSNE
SCORE = final['Score']
SCORE 4000 = SCORE [0:4000]
DATA 4000 = STD DATA weighted tfidf vectors[0:4000,:]
model = TSNE(n_components = 2,random_state=0,perplexity=20,n_iter = 2000)
tsne_data = model.fit_transform(DATA_4000)
# configuring the parameteres
# the number of components = 2
# perplexity = 20
# default learning rate = 200
# number of iteration = 2000
tsne data = np.vstack((tsne data.T, SCORE 4000)).T
tsne df = pd.DataFrame(data=tsne data, columns=("Dim 1", "Dim 2", "Score"))
# Ploting the result of tsne
d = {'color': ['b', 'r']}
sns.FacetGrid(tsne_df,hue_kws=d, hue="Score", size=6).map(plt.scatter, 'Dim 1', 'Dim 2').add legend
plt.title('T-SNE ON 4000 Weighted TF IDF VECTORS with perplexity = 20 and Number of iteration = 20
00', fontsize = 18)
plt.show()
(4986, 50)
```

T-SNE ON 4000 Weighted TF_IDF VECTORS with perplexity = 20 and Number of iteration = 2000

<class 'numpy.ndarray'>

Score • 0.0 • 1.0

[5.4] Applying TNSE on Text TFIDF weighted W2V vectors with perplexity 50 and N_iter = 4000

```
In [108]:
```

```
# please write all the code with proper documentation, and proper titles for each subsection
# when you plot any graph make sure you use
   # a. Title, that describes your plot, this will be very helpful to the reader
    # b. Legends if needed
    # c. X-axis label
    # d. Y-axis label
#..... Conveting SPARSE matrix to DENSE matrix.....
STD_DATA_weighted_tfidf_vectors = StandardScaler(with_mean =
False).fit transform(tfidf sent vectors)
print(STD_DATA_weighted_tfidf_vectors.shape)
print(type(STD DATA weighted tfidf vectors))
#.....Applying TSNE ......
SCORE = final['Score']
SCORE 4000 = SCORE[0:4000]
DATA 4000 = STD DATA weighted tfidf vectors[0:4000,:]
model = TSNE(n components = 2,random state=0,perplexity=50,n iter = 4000)
tsne_data = model.fit_transform(DATA_4000)
# configuring the parameteres
# the number of components = 2
# perplexity = 50
# default learning rate = 200
# number of iteration = 4000
tsne data = np.vstack((tsne data.T, SCORE 4000)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim 2", "Score"))
# Ploting the result of tsne
d = {'color': ['b', 'r']}
sns.FacetGrid(tsne df, hue kws=d, hue="Score", size=6).map(plt.scatter, 'Dim 1', 'Dim 2').add legend
plt.title('T-SNE ON 4000 Weighted TF IDF VECTORS with perplexity = 50 and Number of iteration = 40
00', fontsize = 18)
plt.show()
(4986, 50)
<class 'numpy.ndarray'>
```


**Inference: 1.In above plot I have applied T-SNE on weightedtf_idf vectors with different parameters. 2.In first case with perplexity is equal to 20 and number of iteration = 2000.

- 1. In second case with perplexity is equal to 50 and number of iteration is equal to 4000.
- 2. From both T-sne plot it is clearly visible that reviews are not being well sepearted.

[6] Conclusions

**Write sentance about the results that you got and observation that you did from the analysis: => From above T-SNE plot it is clearly visible that even if we tune different perplexity values and number of iteration to our BOW,TF_idf,avg_w2v Vectors,weighted TF_idf vectorswe are not able to seperate positive and negative review.

**Refernece:https://www.kaggle.com/suman25m/tsne-visualization-on-the-amazon-fine-food-review#Amazon-Fine-Food-Reviews-Analysis