

වයඹ පළාත් අධ්නාපන දෙපාර්තමේන්තුව

තෙවන වාර පරීක්ෂණය 2020

10 ශූේණිය විදනව I

කාලය පැය 01 යි

නම/	විභාග	අංකය:
U J U /		

- පුශ්න සියල්ලටම පිළිතුරු සපයන්න.
- අංක 1 සිට 40 තෙක් පුශ්නවලට , දී ඇති 1,2,3,4 උත්තර වලින් නිවැරදි හෝ වඩාත් ගැළපෙන හෝ පිළිතුරට අදාළ වරණය තෝරා ගන්න.
- ඔබට සැපයෙන පිළිතුරු පතුයේ එක් එක් පුශ්නය සඳහා ඔබ තෝරාගත් වරණයෙහි අංකයට සැසදෙන කවය තුළ (X) ලකුණ යොදන්න.
- 01. සෛලයේ හෝ දේහයේ රසායනික පුතිකිුයා උත්පේරණය කරන පුෝටීන හඳුන්වනු ලබන්නේ,
 - 1) අධි පුෝටීන ලෙස ය.

2) ඇමයිනෝ අම්ල ලෙස ය.

3) එන්සයිම ලෙස ය.

- 4) පුතිදේහ ලෙස ය.
- 02. දව කඳක් මගින් ඇති කෙරෙන පීඩනය කෙරෙහි බලපාන සාධක මොනවා ද?
 - 1) දුව කලෙහි සිරස් උස, දුවයේ ඝනත්වය හා ගුරුත්වජ ත්වරණය.
 - 2) දුව කඳෙහි පරිමාව, දුවයේ ඝනත්වය හා ගුරුත්වජ ත්වරණය.
 - 3) දුවයේ ඝනත්වය, ගුරුත්වජ ත්වරණය හා දුව පරිමාවේ බර.
 - 4) දුව කඳෙහි සිරස් උස, දුවයේ ඝනත්වය හා උඩුකුරු තෙරපුම.
- 03. ආවර්තිතා වගුවේ පළමු මූලදුවා 20 හි M ශක්ති මට්ටමේ තිබිය හැකි උපරිම ඉලෙක්ටුා්න සංඛ්‍යාව කොපමණ ද?
 - 1) 2
- 2) 8
- 3) 18
- 4) 32
- 04. A හා B රූප මගින් දක්වෙන්නේ සිසුන් නිර්මාණය කළ දර්ශීය සෛලයක ඇති ඉන්දියිකා දෙකක ආකෘති වේ. එම ආකෘති මගින් නිරූපණය කරන්නේ,
 - 1) ගොල්ගිදේහ හා මයිටොකොන්ඩුයා වේ.
 - 2) හරිතලව හා අන්තඃප්ලාස්මීය ජාලිකා වේ.
 - 3) අන්තඃප්ලාස්මීය ජාලිකා හා ගොල්ගිදේහ වේ.
 - 4) මයිටොකොන්ඩුයා හා හරිතලව වේ.
- A

- 05. නටුවෙන් ගිලිහුණු ඵලයක් බිමට වැටීමේ දී චලිත ස්වභාවය වන්නේ,
 - 1) ඒකාකාර පුවේගයකි.
 - 2) ඒකාකාර මන්දනයකි.
 - 3) ඒකාකාර ත්වරණයකි.
 - 4) කුමයෙන් වැඩිවන ත්වරණයකි.
- 06. බැක්ටීරියාවක් නිසා ලිංගිකව සම්පේෂණය වන රෝගය මින් කුමක් ද?
 - 1) ඒඩ්ස්
- 2) ගොනෝරියාව
- 3) ලිංගික ඉන්නන්
- 4) හර්පීස්

- 07. ඌනන විභාජනය සම්බන්ධයෙන් නිවැරදි පුකාශය කුමක් ද? ඒක ගුණ මෙන්ම ද්වි ගුණ සෛලවල ද සිදු වීම. 2) එක් මාතෘ සෛලයකින් දුහිතෘ සෛල දෙකක් සෑදීම. දුහිතෘ සෛල මාතෘ සෛලයට සෑම අතින්ම සමාන වීම. 3) මාතෘ සෛලයේ වර්ණදේහ සංඛ්‍යාවෙන් අඩක් දුහිතෘ සෛලයට ලැබීම. 4) $CO(NH_2)$, අණුවෙහි සාපේක්ෂ අණුක ස්කන්ධය කොපමණ ද?(C=12,H=1,O=16,N=14)1) 33 2) 58 3) 60 4) 88 $09.\ \ 2\,\mathrm{kg}$ ස්කන්ධයෙන් යුතු වස්තුවකට $20\,\mathrm{N}$ බලයක් යෙදූ විට අත්කර ගන්නා ත්වරණය කොපමණ ද? 1) $0.1 \,\mathrm{m \, s^{-2}}$ 2) $10 \,\mathrm{m \, s^{-2}}$ 3) $20 \,\mathrm{m \, s^{-2}}$ $22\,\mathrm{m\,s}^{-2}$ 4) 10. ජීවීන්ගේ ලාක්ෂණිකයක් ලෙස සෛල \longrightarrow පටක \longrightarrow අවයව \longrightarrow පද්ධති \longrightarrow ජීවියා ලෙස සෛලීය සංවිධානයක් <u>නොමැති ජීවියා</u> කවරහු ද? 1) ඇමීබා 2) ගැඩවිලා 3) ගොළුබෙල්ලා 11. ජීවීන් හෝ අජීවී වස්තු ලෙස වෙන් කර හඳුනා ගැනීමට අපහසු ලක්ෂණ සහිත ජීවී ස්වරූප වන්නේ, බැක්ටීරියා, වෛරස හා යීස්ට් ය. 2) වෛරස්, යීස්ට් හා එවුග්ලීනා ය. 3) යීස්ට්, ඇමීබා හා මුහුදු මල ය. 4) ඇමීබා, මුහුදු මල හා බැක්ටීරියා ය. 12. රූපයේ දැක්වෙන ජීවියා අයත්වන ජීව කාණ්ඩය වනුයේ, 1) පිස්කේස් ය. 2) ඇම්පිබියා ය. The second second 3) රෙප්ටීලියා ය. 4) ආවේස් ය. 13. තනුක HCl අම්ලයෙන් හයිඩ්රජන් විස්ථාපනය කළ හැකි මූලදුවා පමණක් අඩංගු වරණය කුමක් ද? 1) Mg, Zn, Cu හා K 2) Mg, Zn, Hg හා K 3) Na, Zn, Au හා Fe 4) Mg, Zn, Fe හා Na 14. චලිතවන වස්තුවක් කෙරෙහි ස්පර්ශ පෘෂ්ඨ මගින් ඝර්ෂණ බලය කිුිියාකරන විට, 1) ස්ථිතික ඝර්ෂණ බලය නියත අගයක් ගනියි. 2) ගතික ඝර්ෂණ බලය නියත අගයක් ගනියි. සීමාකාරී ඝර්ෂණ බලයට වඩා ගතික ඝර්ෂණ බලය සුළු වශයෙන් වැඩි අගයක් ගනියි. සර්ෂණ බලය අවම අගයක් ගනු ලබන්නේ සීමාකාරී අවස්ථාවේ දී ය.
 - 15. පුතිකිුයා ශීඝුතාවය අවම වන්නේ පහත කුමන ආකාරයට පුතිකිුයා කළ විට ද?
 - 1) Mg පටියක් තනුක HCl අම්ලය සමග පුතිකිුයා කිරීම.
 - 2) Mg පටියක් සාන්දු HCl අම්ලය සමග පුතිකිුයා කිරීම.
 - 3) Mg පටිය කැබලි බවට පත් කොට තනුක HCl අම්ලය සමග පුතිකිුයා කිරීම.
 - 4) Mg පටිය උණු ජල බඳුනක තැබූ තනුක HCl අම්ලය සමග පුතිකිුිිිියා කිරීම.
 - 16. දෙහික වර්ණදේහයක ඇති හිමොග්ලොබින් නිෂ්පාදනයට බලපාන ජානයක් විකෘති වීමෙන් ඇතිවන තත්ත්වය මින් කුමක් ද?
 - 1) තැලසීමියාව.

2) හිමෝෆිලීයාව

3) ඇලි බව

4) රතු කොළ වර්ණ අන්ධතාවය

- 17. ලිංගික පුජනනය ලෙස හඳුන්වන්නේ,
 - 1) සතුන් අතර සිදුවන පුජනන කියාවලිය යි.
 - 2) ශාක අතර සිදුවන පුජනන කිුයාවලිය යි.
 - 3) ජන්මාණු සංසේචනයෙන් නව ජීවියෙකු ඇති වීමයි.
 - 4) බීජාණු මගින් නව ජනිතයෙකු බිහිවීමයි.
- 18. සර්ෂණ බලය සම්බන්ධයෙන් නිවැරදි පුකාශය කුමක් ද?
 - 1) මාර්ගයක ඇති ඝර්ෂණ බලය සෑම විටම චලිතයට බාධා පමුණුවයි.
 - 2) මාර්ගයේ ඒකාකාර පුවේගයකින් ගමන් කරන විට ඝර්ෂණ බලය ශූනා වේ.
 - 3) පා පැදියක් පැද යන විට රෝද දෙකෙන්ම ඝර්ෂණ බලය කිුයාකරන්නේ පිටුපසට ය.
 - 4) ඒකාකාර පුවේගයකින් ගමන් කරන විට, එන්ජිම චලිතයට යොදන බලය ඝර්ෂණ බලයට සමාන වේ.
- 19. අයනික බන්ධනයක් සෑදීමේ දී,
 - 1) ඉලෙක්ටුෝන පුදානය කිරීම පමණක් සිදුවේ.
 - 2) ඉලෙක්ටෝන ලබා ගැනීම පමණක් සිදු වේ.
 - 3) ඉලෙක්ටුෝන පුදානය කිරීමක් හා ලබා ගැනීමක් සිදුවිය යුතුය.
 - 4) ඉලෙක්ටෝන හවුලේ තබා ගැනීම සිදුවිය යුතු අතර ධැවීකරණය විය යුතුය.
- 20. මිනිසුන් තුළ දුකිය හැකි ආවේණික ලක්ෂණ තුනක් පහත දුක් වේ.
 - A. සිනාසෙන විට කම්මුල් වල ගැසීම.
 - B. හුරු අත දකුණ හෝ වම වීම.
 - C. බද්ධ අංගුලිතාවය හා බහු අංගුලිතාවය.

ඒවායින් කලාතුරකින් දක්නට ලැබෙන ආවේණික ලක්ෂණ වන්නේ,

- 1) A හා B පමණි.
- 2) B හා C පමණි.
- 3) Aහා C පමණි.
- 4) C පමණි.
- 21. ¦H ලෙස සම්මත නිරූපණයෙන් දක්වා ඇත්තේ හයිඩ්රජන්වල සමස්ථානිකයක් වන පුෝටියම් ය. පුෝටියම්වල නාෳෂ්ටියෙහි ඇති නියුටුෝන සංඛාාව කොපමණ ද?
 - 1) 0

2)

3) 2

- 4) 3
- 22. පරිපථයක සමක පුතිරෝධය සම්බන්ධයෙන් පහත පුකාශ සලකන්න.
 - A. සමාන පුතිරෝධක ශේණි ගත කළ විට සමක පුතිරෝධය වැඩිවේ.
 - B. සමාන පුතිරෝධක සමාන්තරගතව සම්බන්ධ කළ විට සමක පුතිරෝධය අඩුවේ.
 - C. අසමාන පුතිරෝධක ශ්‍රේණිගත කළ විට සමක පුතිරෝධය අඩු වේ.

ඒවායින් නිවැරදි වන්නේ,

- 1) A හා B පමණි.
- 2) B හා C පමණි.
- 3) A හා Cපමණි.
- 4) A, B හා C පමණි.
- 23. රූපයේ ආකාරයට මිනිසුන් දෙදෙනෙකු බිම තබා ඇති වස්තුවක් මත බල යොදයි. වස්තුව මත යෙදෙන සම්පුයුක්ත බලය කොපමණ ද? (මිනිසුන් දෙදෙනාගේ ම බල යෙදෙන්නේ එකම කිුියා රේඛාවක යයි උපකල්පනය කරන්න.)
 - 1) 0 N
 - 2) 100 N
 - 3) 400 N
 - 4) 700 N

- 24. $m NH_3$ සංයෝගයේ $17\,
 m g$ ක ඇති පරමාණු සම්බන්ධයෙන් නිවැරදි පුකාශය කුමක් ද?
 - 1) N පරමාණු වැඩි සංඛ්යාවක් ඇත.
- 2) N පරමාණු මෙන් තුන් ගුණයක් H පරමාණු සහිතය.
- 3) N හා H පරමාණු සමාන සංඛාහ සහිත ය. 4) H පරමාණු මෙන් තුන් ගුණයක් N පරමාණු සහිතය.
- 25. $^{40}_{20}\mathrm{Ca}$ පරමාණුවක් ඉලෙක්ටුෝන දෙකක් පිට කර Ca^{2^+} ලෙස අයනයක් සාදයි. එම අයනයේ ඇති පුෝටෝන, නියුටෝන හා ඉලෙක්ටෝන සංඛ්‍යා පිළිවෙලින් කොපමණ ද?
 - 20, 20 හා 40 වේ. 1)
- 2) 20, 20 හා 38 වේ. 3) 20, 20 හා 20 වේ.
- 4) 20, 20 හා 18 වේ.
- 26. ක්ලෝරීන් පරමාණු ඉලෙක්ටෝන හවුලේ තබා ගන්නා ආකාරය පහත සටහන මගින් දක්වා ඇත. එමගින් නිරූපණය වන්නේ.
 - ක්ලෝරීන් බන්ධන සාදන ආකාරය රූපසටහනකින් දක්වීම ය.
 - 2) ක්ලෝරීන් අණුවේ තිත් කතිර සටහන යි.
 - 3) ක්ලොරීන් අණුවේ ලිවිස් තිත් වනුහය යි.
 - ක්ලෝරීන් අණුවේ ලුවිස් වනුහය යි.

- 27. රූපයේ දුක්වෙන්නේ ධාරා ඌෂ්මකයකි. එහි සිදුවන වියෝජන පුතිකිුයාව මින් කුමක් ද?
 - 1) $C + O_2 \longrightarrow CO_2$
 - 2) $CaCO_3 \longrightarrow CaO + CO_2$
 - 3) $Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$
 - 4) $2KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_3$

- 28. බල දෙකක් සමතුලිතව පැවතීමට ඉටු විය යුතු තත්ත්ව සම්බන්ධ පහත පුකාශ සලකන්න.
 - A. බල දෙක විශාලත්වයෙන් සමාන විය යුතුය.
 - B. බල දෙකෙහි කියා රේඛා සමාන්තර විය යුතු ය.
 - C. බල දෙක දිශාවෙන් පුතිවිරුද්ධ විය යුතුය. ඒවායින් නිවැරදි වන්නේ,
 - Aහා B ය. 1)
- 2) B හා C ය.
- 3) Aහා Cය. 4) A,B හා C සියල්ලමය.
- 29. රූපයේ දූක්වෙන්නේ CaCO, ස්කන්ධයක් ලොකු කැබලි සහ කුඩා කැබලි ලෙස අවස්ථා දෙකකදී තනුක HCl සමග පුතිකිුයාකර CO_{2} නිපදවීමට යොදා ගත් ඇටවූමකි. එහි දී සිදුවන පුතිකිුයාවේ ශීසුතාවය පුමාණවත්ව මැනීමට වඩාත් සුදුසු කුමය කුමක් ද?
 - නියත කාලයක දී වැය වූ CaCO3 ස්කන්ධ සැසඳීම.
 - නියත කාලයක දී වැය වූ HCl අම්ල පරිමාව ස්කන්ධය සැසඳීම. 2)
 - නියත කාලයක දී එකතු වූ CO, වායු පරිමා සැසඳීම. 3)
 - නියත කාලයක දී ඉතිරි වූ CaCO, සැසඳීම. 4)

- $30.~~6~\Omega$ බැගින් වූ සර්ව සම පුතිරෝධක පහක් රූපයේ ආකාරයට සම්බන්ධ කර ඇත. A හා B අතර සමක පුතිරෝධය කොපමණ ද?
 - 1) 6Ω

 $2) 18 \Omega$

 $14\,\Omega$ 3)

4) $30\,\Omega$

- වස්තුවක චලිතයට අදාල පුවේග කාල පුස්තාරයක් පහත දක්වේ. 31, 32 හා 33 පුශ්න සඳහා එම පුස්තාරය උපයෝගී කර ගන්න.
- 31. වස්තුව ඒකාකාර පුවේගයකින් ගමන් කර ඇති කාලය කොපමණ ද?

- 32. වස්තුවේ චලිතය පිළිබඳව ඉදිරිපත් කර ඇති පහත පුකාශ සලකන්න.
 - A. වස්තුව නිශ්චලතාවයෙන් ගමන් අරඹා ඒකාකාර ත්වරණයකින් හා ඒකාකාර පුවේගයකින් ගමන් කර ඇත.
 - B. පුස්තාරික නිරූපණයට යොදා ගෙන ඇත්තේ 16 m s⁻¹ පුවේගය අත්කර ගත්තාට පසු චලිතය පමණි.
 - C. තත්පර 10 අවසන් විට වස්තුව නිශ්චලතාවයට පත්ව ඇත.
 - D. වස්තුව 1 m s $^{-2}$ ත්වරණයකින් ගමන් කර 20 m s $^{-1}$ ඒකාකාර පුවේගයකින් ගමන් කර ඇත. එම පුකාශ අතුරින් නිවැරදි වන්නේ,
 - 1) A හා C පමණි.
- 2) B හා C පමණි.
- 3) A හා D පමණි.
- 4) B හා D පමණි.

- 33. වස්තුව චලිතයේ දී සිදු කර ඇති විස්ථාපනය කොපමණ ද?
 - 1) 72 m
- 2) 120 m
- 3) 160 m
- 4) 192 m
- 34. රූපයේ ආකාරයට ළමුන් දෙදෙනෙකු සැහැල්ලු ගෝලයක් මත බල යොදයි.
 - A) ළමුන් දෙදෙනා යොදන බල විශාලත්වයෙන් සමාන නම් ගෝලය නිශ්චලව පවතී.

- B) එක් ළමයෙකු යොදන බලය අනෙක් බලයට වඩා වැඩි වුවහොත් වැඩි බලය යෙදෙන දිශාවට ගෝලය චලනය වේ.
- C) බල දෙකෙහි කිුයා රේඛා සමාන්තර වුව හොත් භුමණ ආචරණයක් ඇති විය හැකි ය. ඒවායින් නිවැරදි වන්නේ,
- 1) A හා B ය.
- 2) B හා C ය.
- 3) A හා C ය.
- 4) A, B හා C ය.
- 35. රූපයේ ආකාරයට මිනිසුන් දෙදෙනෙකු සම දුරින් සීසෝවක් මත සිටියි. සීසෝව චලනය නොවී පවතී.
 - A) P මිනිසාගේ ස්කන්ධය Q මිනිසාට වඩා වැඩි ය.
 - B) P මිනිසා R දෙසට ගමන් කළ විට දක්ෂිණාවර්තව භුමණ ආචරණයක් සිදු විය හැකි ය.
 - C) මිනිසුන් දෙදෙනා සිටින විට සීසෝව තිරස්ව සමතුලිතව පවතී නම් R ට වඩා ළඟින් සිටින්නේ Q මිනිසා ය.

ඒවායින් නිවැරදි වන්නේ,

- 1) A හා B ය.
- 2) B හා C ය.
- 3) A හා C ය.
- 4) A, B හා C ය.
- 36. ජීවීන් වර්ගීකරණයේ දී උපයෝගී කර ගත් ලක්ෂණ තුනක් පහත දුක් වේ.
 - A. පුතිජීවක මගින් විනාශ කළ හැකි වීම.
 - B. ආන්තික පරිසරවල ජීවත්වීම.
 - C. සූ නාෂ්ටික වීම .

ආකියා, බැක්ටීරියා හා ඉයුකැරියා ලෙස අධිරාජධානිවලට වර්ගීකරණය කිරීමට යොදා ගත හැකි ලක්ෂණ පිළිවෙලින් දක් වූ විට,

- 1) A, B හා C වේ.
- 2) B, Aහා C වේ.
- 3) A, C හා B වේ.
- 4) C, A හා B වේ.

- 37. හයිඩ්රජන් පිරවූ බැලූනයක් ඉහළට ගමන් කරයි. ඒ සම්බන්ධයෙන් වූ පහත දක්වෙන පුකාශ දෙක සලකන්න.
 - A) බැලුනයෙන් ඇති කෙරෙන බරට වඩා වාතයෙන් ඇති කෙරෙන උඩුකුරු තෙරපුම වැඩිය.
 - B) සම්පූයුක්ත බලය යෙදෙන්නේ ඉහළ දිශාවට ය.මෙම පුකාශ දෙක අතුරින් ,
 - 1) A සතා වන අතර B අසතා වේ.
- 2) Bසතා වන අතර Aඅසතා වේ.
- 3) Aහා B පුකාශ දෙකම සතා වේ.
- 4) Aහා B පුකාශ දෙකම අසතා වේ.
- 38. මිනිසෙකු $500~\mathrm{N}$ ක අඛණ්ඩ බලයක් යොදමින් ති්රස් මාර්ගයක විල්බැරෝවක් $~10~\mathrm{m}$ දුරක් තල්ලු කරයි. මිනිසා විසින් කරනු ලබන කාර්ය පුමාණය කොපමණ ද?
 - 1) 0 J
 - 2) 0.02 J
 - 3) 50 J
 - 4) 5000 J

- 39. ජලයෙහි පවත්තා ගුණ කිහිපයක් පහත දක්වේ.
 - A. ජලයෙහි බොහෝ දුවා දියවීම.
 - B. අයිස් ජලය මත පාවීම.
 - C. දව ජලය ට වායු බවට පත්වීමට වැඩි තාප පුමාණයක් ලබා ගත යුතු වීම. මේවායින් ජීවීන්ගේ ජීවය පවත්වා ගැනීමට දායක වන ගුණ වන්නේ,
 - 1) A හා B පමණි.

2) B හා C පමණි.

3) A හා C පමණි.

- 4) A, B හා C සියල්ලම ය.
- 40. Covid 19 වසංගතය සම්බන්ධයෙන් ඉදිරිපත් කර ඇති පහත පුකාශ සලකන්න.
 - A. වීදුරු වසා ඇති මෝටර් රථයක තනි පුද්ගලයෙකු ගමන් කරන විට මුව ආවරණ පැළඳීම වැදගත් නොවේ.
 - B. පාසල නිමා වී ශිෂායා පාසලෙන් බැහැර වනවිට අත් සෝදා ගෙන පිටව යා යුතු ය.
 - C. සෙම්පුතිශාාව වැළඳුන විට හෝ වැළඳුන රෝගියෙකු අසල සිටින විට මුව ආවරණ පැළඳිය යුතුය. මෙම පුකාශ අතුරින් Covid 19 වසංගතයෙන් ආරක්ෂා වීමට ගත යුතු නිවැරදි කිුයා මාර්ග වන්නේ,
 - 1) A හා B පමණි.

2) Bහා Cපමණි.

3) A හා C පමණි.

A, B හා C සියල්ලමය.

වයඹ පළාත් අධනාපන දෙපාර්තමේන්තුව

තෙවන වාර පරීක්ෂණය 2020 විදහාව – II

10 ශුේණිය

කාලය පැය 3 යි

නම/ විභාග අංකයඃ

පිළිතුරු සැපයීම සඳහා උපදෙස්

පැහැදිලි අත් අකුරින් පිළිතුරු ලියන්න.

🗛 කොටසේ පුශ්න හතරටම මෙම පතුයේ ම පිළිතුරු ලියන්න.

 ${f B}$ කොටසේ ඇති පුශ්න පහෙන් තුනකට පමණක් පිළිතුරු සපයන්න. ඒ සඳහා වෙනම කඩදාසි භාවිත කරන්න.

පිළිතුරු සපයා අවසානයේ ${f A}$ කොටස හා ${f B}$ කොටසේ පිළිතුරු පතු එකට අමුණා භාරදෙන්න.

A කොටස - වුපුනගත රචනා

01. ශ්වසනය ජීවීබවෙහි එක් ලාක්ෂණිකයක් ලෙස හැඳින්විය හැකිය. ජීවීන්ගේ ශ්වසනයේ දී පිටවන එක් වායුමය ඵලයක් හඳුනා ගැනීමට සකස් කළ ඇටවුමක් පහත රූපයේ දක්වේ.

ii. ජිවීන් ශක්තිය නිපදවීමට යොදා ගන්නා වායුමය සහ ඝන පදාර්ථ දෙක පිළිවෙලින් නම් කරන්න. (ල. 02)

iii. E බඳුනට සම්බන්ධ කරාමය විවෘත කළ විට P කෙළවරින් වාතය ඇතුලු වී A,B,C, හා D බඳුන් තුළින් ගමන් කරයි. A බඳුනෙහි KOH දාවණයක් අඩංගු වන අතර B හා D බඳුන් තුළ හුනු දියරය අඩංගු වේ. A,B හා D බඳුන් තුළ මෙම දාවණ යෙදීමෙන් සිදු කෙරෙන කාර්යය කුමක් දැයි පහත වගුවේ දක්වන්න.(c.03)

බඳුන	අඩංගු දුවය	ඉටු කෙරෙන කාර්යය
A	КОН	
В	හුනු දියරය	
D	හුනු දියරය	

B හා D බඳුන් තුළ හුනු දියරය තුළින් වාතය බූබූලනය වීමේ දී නිරීක්ෂණ හා ඊට හේතු සඳහන් කරන්න.

බඳුන	නිරීක්ෂණය	නිරීක්ෂණයට හේතුව
В		
D		

v.	ල් බැඳුනෙන් මැඩයෙකු නොදෙත්ව ඉහත් ආකාරයටම සකස කළ ඇටවුමක් B හා D බ හුනු දියරය තුළින් වාතය බුබුලනය වීමේ දී නිරීක්ෂණ කුමක් විය හැකි ද?	_	තුළ 02)
		•••••	•••••
vi.	ශ්වසන කිුයාවලියෙන් ශක්තිය නිපදවන ඉන්දියිකාව කුමක් ද?	(c.	01)

vii.	Aබඳුනෙහි දිය කළ KOH පුමාණය මවුල 0.1 ක් නම් දිය කළ KOH ස්කන්ධය කොපමණ ද?	
	(K=39, O=16, H=1)	(c. 02)

.....

02. A. රූපයේ දක්වෙන්නේ දර්ශීය පුෂ්පයක දික්කඩකි.

i.	පුෂ්පයේ පෘ	ගත අක්ෂර	මගින්	දක්වා	ඇති
	කොටස් නම්) කරන්න.		(c.	03)

ii. පරාග හෙවත් පුං ජන්මාණු නිපදවන වූහය නම් කර ඇති අක්ෂරය කුමක් ද?(c. 01)

iii. පරාගණයට ලක් වූ පරාගයක පුං නාාෂ්ටි සංසේචනය වීම දක්වා ගමන් කරන මාර්ගය රූපයේ අක්ෂර භාවිතයෙන් ලියන්න.(ල. 01)

iv. කෘමීන් මගින් පරාගණය සිදුවීමට E හි ඇති අනුවර්තනයක් ලියන්න. (0.01)

 ${
m G}$ මගින් පුෂ්පයට ලැබෙන පුයෝජනය කුමක් ද?(ල. 01) v.

vi. මෙම පුෂ්පය පර-පරාගණය වීමට අනුවර්තන දක්වයි නම් විය හැකි අනුවර්තනයක් දක්වන්න. (c. 02)

В.			ායෙන් පසු බීජ ාා්පකාරී වේ.	සහිත ඵල හ	ට ගනියි. එම	ඵල සහ බීජ	වාහාප්තිය සි	දුවීම ශාකයේ
	i.	අඹ, හොර	ර, රබර්, ශාකව <u>ල</u>	_ී බීජ ව ා ප්තිය	ට දක්වන අනු	වර්තනය බැරි	ගින් ලියන්න.	(c. 03)
		a. අ	ଭ					
		b. ©	හාර					
		c. ර	බර්					
	ii.	බීජ පුරෝ	iහණයට අත _{ෂා} ණ	වශා සාධක හෘ	තර සඳහන් කං	රත්ත.		(c. 02)
	iii.	-	ශියට අවශා ස බලපාන කරුණ	•	පුරෝහණය ෙ	නොවීමේ තස	ත්ත්වය හෙවත	් සුප්තතාවය (ල. 01)
01	_		තාරතුරු පහත මේ දී <u>එම අක්ෂ</u>	- "		ා ක්ත සෑබෑ t	සංකේත නො	වන
	96	දුවාසය	P	Q	R	S	Т	U
8	 රමාණු	 ක කුමාංකය	s 3	5	6	8	9	11
i. ii.			ව් එකම කාණ් ෝවන ආවර්තය			•		(c. 01)
iii.	T සහ	ා U මූලදුව	ාූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූ	වීමෙන් සාදන	ා සංයෝගයේ	ි සූතුය ලියන	න්	(c. 01)
iv.	වගුණ ලියන		ා මූලදුවා අතුරි	ත්, ලෝහයක්,	ලෝහාලෝහ	යක්, හා අලෙ	ලා්හමය මූලදුදි)ාායක් බැගින් (ල. 03)
	ලෝෂ	റെය ഃ	©C	ා්හාලෝහයඃ		අලෝහමය	ඃ සැපදුවමූ	
V.		-	පරමාණුවක ස්¤ ද නම් U මූලදුව		_			කකයේ අගය (ල. 02)
vi.	Sමූල	දුවහයේ ස	ාපේක්ෂ පරමා ﴿	ණුක ස්කන්ධය	16 නම්, S මූල	දුවායේ,		
	a.	මවුලික ස	[§] කන්ධය කොප	මණ ද?				(c. 01)
	b.	මවුල දෙ	කක ස්කන්ධය ශ	තොපමණ ද?				(c. 01)
	c.	මවුල තුන	ාක අඩංගු පරම	ාණු සංඛ්යාව මෙ	කාපමණ ද?			(c. 01)

	a.	ඉම	ලක්ටෝන ගණන :		
	b.	ඉම	ලක්ටුෝන විනහාසය :		
	c.	ඉම	ලක්ටුෝන හවුලේ තබා ගනිමින් සාදන	ා බන්ධනයේ ස්වභාවය දක්වීමට,	
		L			
			තිත් කතිර සටහන	ලුවිස් වනුහය	15
0.4	0.50	- D	, C b b b b b		
04. A.			;නු තරාදියක ලෝහ ගෝලයක් එල්ලා ක ගිල්වා ඇති අවස්ථාවක් පහත රූප	ඇති අවස්ථාවක් හා එම ලෝහ ගෝලය 2 ය් දුක් වේ.	<u>න</u> ුමාංකත
	(ජල	_ ඉය් ස	නත්වය = 1000 kg m ⁻³ / 1 g cm ⁻³)		
	i.			$00\mathrm{cm}^3$ කින් පාඨාංකය ඉහළ ගියේ නම්,	
		a.	ඉහළ ගිය ජල පරිමාවේ ස්කන්ධය g 8		9
			දක්වන්න		A PARTICIPAL OF THE PARTICIPAL
		b.	එම ජල පරිමාවේ බර කොපමණ ද?		Name of the last o
		0.	•	(@ 02) \$	\$
			2 ch		Ċ
		c.	ලෝහ ගෝලය කෙරෙහි ජලයෙන් ඇ		
			කොපමණ ද?		
	ii.			රිමාවක් පොල්තෙල් යොදා ලෝහ ගෝල: ායන්ට සාපේක්ෂව අඩුවේ ද, වැඩිවේ ද, න	
			නසක් නොවේ ද යන බව දක්වන්න.		(c. 03)
		a.	ඉහළ යන පොල්තෙල් පරිමාව :		
		b.	නිව්ටන් තරාදියේ පාඨාංකය :		
		c.	පොල්තෙල් මගින් ඇති කරන උඩුකුග	රු තෙරපුම :	
	iii.	ඉහ	ත අවස්ථා තුනෙහි දී නිව්ටන් තරාදියෙ	නේ ලබා ගත් පාඨාංක තුනක් පහත දැක්වේ.	
			4 N 4.1	N 5 N	
			4.1	311	
		මිත	ත් ලෝහ ගෝලයේ බර විය හැක්කේ කු®	වන අගය ද?	(c. 01)

(c. 04)

vii. S මූලදුවාසය සම්බන්ධයෙන් පහත තොරතුරු දක්වන්න.

04. B. වස්තුවක් මත බල යොදන අවස්ථා දෙකක් පහත A හා B රූප මගින් දැක්වේ.

- A- 500 N ක බලයක් යොදයි. චලනයක් සිදු නොවේ.
- B- $600\,\mathrm{N}$ ක බලයක් යොදයි. යන්තමින් චලනය ආරම්භ වේ.
- i. මෙම අවස්ථා දෙකෙහි දී කිුයාත්මක වන ඝර්ෂණ බලය ස්ථිතික, ගතික හා සීමාකාරී යන අවස්ථාවලින් කුමන අවස්ථා ලෙස හැඳින්විය හැකි ද? (ල. 02)
 - A
 - B
- ii. ඉහත අවස්ථා දෙකෙහි දී යෙදූ බලය, ඊට එරෙහිව කිුයාත්මක වූ ඝර්ෂණ බලයට වඩා අඩුවේ ද? වැඩිවේ ද? නැතහොත් සමාන වේ ද? (ල. 02)
 - A අවස්ථාවේ දී ඃ
 - B අවස්ථාවේ දී ඃ.....
- iii. B අවස්ථාවේ එක් මිනිසෙකු යෙදූ බලය $500~{
 m N}$ වේ නම් අනෙක් මිනිසා යෙදූ බලය කොපමණ ද?

.....

 ${
m iv.}$ A අවස්ථාවේ දී මිනිසා විසින් බලය යොදන විට ඝර්ෂණ බලය කුියාත්මක වන ආකාරය A රූපයෙහි ඊතල සටහනක් මගින් ඇඳ පෙන්වන්න. (ල. 01)

10 ශුේණිය විදහාව - II පතුය

B කොටස - රචනා

05. A. සජිව පදාර්ථය නිර්මාණය වී ඇති කාබනික රසායනික සංයෝග ලෙස කාබෝහයිඩ්රේට්, පුෝටීන්, ලිපිඩ හා නියුක්ලෙයික් අම්ල දැක්විය හැකි ය. මෙම සංයෝග පිළිබඳව තොරතුරු කිහිපයක් පහත වගුවේ දක්වේ.

සංයෝගය	අන්තර්ගත මූලදුවා	තැනුම් ඒකකය	
කාබෝහයිඩ්රේට්	කාබන්, හයිඩ්රජන්	A	ග්ලූකෝස්
පුෝටීන්	කාබන්, හයිඩ්රජන් , ඔක්සිජන්	В	Q
ලිපිඩ	A, C, D	-	R
නියුක්ලෙයික් අම්ල	කාබන්, හයිඩ්රජන් , ඔක්සිජන්	B, E	S

i. A,B,C,D හා E මූලදවා නිවැරදිව දක්වන්න.

(c. 03)

ii. Q,R සහ S තැනුම් ඒකක මොනවාදයි ලියන්න.

(0.03)

- iii. පහත සඳහන් සංයෝග හඳුනාගැනීමට භාවිත කරන පුතිකාරක සඳහන් කර එම සංයෝග ඇතිවිට ලැබෙන නිරීක්ෂණ දක්වන්න. (ල. 06)
 - a. පිෂ්ටය
 - b. පුෝටීන්
 - c. ලිපිඩ

B. පහත රූප මගින් දැක්වෙන ජීවීන් පිළිබඳ අවධානය යොමු කරන්න. පිළිතුරු ලිවීමේ දී මෙම ජීවීන් පමණක් යොදා ගන්න.

තිලාපියා

ගෝනුස්සා

හයිඩුා

ගැඩවිලා

i. ඉහත ජීවීත් පෘෂ්ඨවංශීත් හා අපෘෂ්ඨවංශීත් ලෙස වර්ගීකරණය කරත්ත.

(c. 02)

ii. ද්විපුස්තර ජීවියා කවරහු ද?

(c. 01)

iii. මෙම ජීවීන් හතර දෙනා අයත්වන ජීවී කාණ්ඩ වෙන වෙනම ලියා දක්වන්න.

(c. 04)

iv. අනෙක් ජීවීන් තිදෙනා සතු නොවන ගෝනුස්සා අයත් ජීවී කාණ්ඩයේ පමණක් ඇති ලක්ෂණයක් ලියන්න. (ල. 01)

(මුළු ලකුණු 20)

06. A. පහත සඳහන් මූලදුවා 20 සලකන්න. මෙම මූලදුවා භාවිතයෙන් පහත පුශ්නවලට පිළිතුරු ලියන්න.

He, B, H, Na, Mg, C, Li, N, Ca, S, Ar, K, Si, P, Be, O, Al, F, Ne, Cl,

i. මෙම මූලදුවා 20 පරමාණුක කුමාංකය 1 සිට 20 දක්වා අනුපිළිවෙලට සකස් කර ලියන්න. (ල. 02)

ii. සංයුජතාවය 2 වන මූලදුවා සියල්ල ලියන්න.

(c. 02)

iii. Mg සමග Cl හා O සාදන සංයෝගවල සූතු ලියන්න.

(c. 02)

iv. විදයුත් ඍණතාවය උපරිම මූලදුවාය කුමක් ද?

(c. 01)

(- 01)

v. පළමුවන අයනීකරණ ශක්තිය උපරිම මූලදුවෳය තෝරා ලියන්න.

(c. 01)

vi. ස්වභාවිකව ද්වි පරමාණුක අණු ලෙස පවතින මූලදුවා දෙකක් ලියන්න.

(c. 02)

B. ශිෂා කණ්ඩායමක් අයනික හා සහසංයුජ සංයෝගවල බන්ධන ස්වභාවය හඳුනා ගැනීමට කියාකාරකමක් සැලසුම් කළෝය. එහි දී A, B, C හා D ලෙස සංයෝග හතරක් යොදා ගන්නා ලදී. A සන්නායක කම්බි සහ B සංයෝග ඝන අවස්ථාවේ පැවැති අතර C හා D සංයෝග දුව අවස්ථාවේ පැවතිණි.

- i. පදාර්ථය පවතින භෞතික අවස්ථාව සලකමින් සහසංයුජ සංයෝග ලෙස තීරණය කළ හැකි සංයෝග දෙක කුමක් ද? (ල. 02)
- ii. A සහ B සංයෝගවල ජලීය දුාවණවල විදුහුත් සන්නායකතාවය පරීක්ෂා කිරීමට පහත ආකාරයේ ඇටවුමක් යොදා ගන්නා ලදී.

ජලීය දුාවණය ලෙස Aසංයෝගය යොදා ගත් විට බාහිර පරිපථයේ බල්බය දුල්වුණ අතර,

ජලීය දාවණය ලෙස $oldsymbol{B}$ සංයෝගය යොදා ගත් විට බාහිර පරිපථයේ බල්බය තොදුල්වුණි.

- a. A සහ B සංයෝග අතුරින් අයනික බන්ධන සහිත සංයෝගය හා සහසංයුජ බන්ධන සහිත සංයෝගය දක්වන්න. (ල. 02)
- b. ජලීය දාවණය වෙනුවට A සංයෝගයේ විලීන දවය යොදාගත්තේ නම් බල්බයේ දල්වීම පිළිබඳව නිරීක්ෂණය කුමක් විය හැකි ද? (ල. 01)
- c. A සහ B සංයෝගවල ඝන අවස්ථාවේ විදුලිය සන්නයනය වන්නේ ද? නොවන්නේ ද? යන බව වෙන වෙනම දක්වන්න. (ල. 02)
- ${
 m d.}$ ${
 m C}$ සහ ${
 m D}$ සංයෝග යොදා ගත් විට බල්බයේ දැල්වීම පිළිබඳ නිරීක්ෂණ වෙන වෙනම සඳහන් කරන්න. (ල. 02)
- e. මෙම කියාකාරකම සඳහා කාබන් ඉලෙක්ටෝඩ යොදා ගැනීමට හේතුවක් ලියන්න.(ල. 01)
- 07. A. වස්තුවක් මත බලයක් යෙදීමෙන් භුමණ ආචරණයක් සිදුකළ හැකිය. ඒ සඳහා යෙදිය යුතු බලය තීරණය වන්නේ වස්තුව කරකැවෙන අක්ෂයේ සිට (භුමණ අක්ෂයේ සිට) බලය කිුිිියාත්මක කෙරෙන කිුියා රේඛාවට ඇති දුර අනුව ය.
 - i. පහත රූපයේ දක්වෙන්නේ දොරක් කරකැවීමට බලය යෙදූ අවස්ථාවක බලය යෙදූ ස්ථාන තුනකි. දොර කරකැවීමට වැඩිම බලයක් යෙදිය යුත්තේ කුමන ලක්ෂායෙන් බලය යෙදූ විට ද? (ල. 01)

- ii. දොර සවි කර ඇති අසව් දෙකෙහි භුමණ අක්ෂයේ සිට A ලක්ෂායට ඇති ලම්බක දුර $90~{\rm cm}$ වේ. දොර කරකැවීමට A ලක්ෂායෙන් යෙදිය යුතු අවම බලය $5~{
 m N}$ ක් ද වේ නම් දොර කරකැවීමේ දී බල සූර්ණය ගණනය කරන්න. (ල. 03)
- f B ලක්ෂායට භුමණ අක්ෂයේ සිට ඇති ලම්බක දුර f 45~cm නම් දොර කරකැවීම සඳහා f B ලක්ෂායෙන් යෙදිය යුතු අවම බලය ගණනය කරන්න. (ල. f 02)
- iv. දොර ඇරීම හා වැසීම සඳහා දොරට අල්ලුවක් සවිකිරීමට සුදුසු වන්නේ A,B හා C ලක්ෂා වලින් කුමන ලක්ෂාය ද? ඊට හේතුව දක්වන්න. (ල. 02)
- v. බල සූර්ණයක් කිුියාත්මක වන පහත අවස්ථාවල බල යුග්මයක් කිුියාත්මකවේ ද? නොවේ ද? යන බව සඳහන් කරන්න.
 - a. පා පැදීයේ පාදිකය (පැඩලය) කරකැවීම.
 - b. පාපැදියේ හැඩලය දෑතින් හැරවීම.
 - c. වාහනයක සුක්කානම එක් අතකින් හැරවීම. (ල. 03)

B. වස්තුවක් මත බල යෙදෙන විට එම වස්තුව නිශ්චලතාවයේ පවතින්නේ නම් එම වස්තුව කෙරෙහි කියාත්මක වන බාහිර බල සමතුලිතව ඇතැයි කියනු ලැබේ. පහත රූපයේ දක්වෙන්නේ එවැනි අවස්ථාවකි.

- i. මිනිසුන් විසින් බල යොදන නමුත් කඹය නිශ්චලව පැවතීමට මෙහි ඉටුවිය යුතු තත්ත්ව තුනක් ලියන්න. (ල. 03)
- ii. A පැත්තේ මිනිසුන් යොදන සම්පුයුක්ත බලය $1500\,\mathrm{N}\,\mathrm{m}$ ද, B පැත්තේ සෑම මිනිසෙක්ම සමාන බලයක් යොදයි ද නම්,
 - a. B පැත්තේ මිනිසුන් විසින් යොදන සම්පුයුක්ත බලය කොපමණ ද? (ල. 02)
 - b. B පැත්තේ එක් මිනිසෙකු විසින් යොදන බලය කොපමණ ද? (ල. 01)
- iii. ළමයෙකු ඔන්චිල්ලාවක් මත නිශ්චලව සිටින ආකාරය රූපයේ දක්වේ.
 - a. ඔන්චිල්ලාව කෙරෙහි කිුයාත්මක සම්පුයුක්ත බලය කොපමණ ද? (ල. 01)
 - b. ළමයාගේ ස්කන්ධය ගණනය කරන්න. (ල. 02)

- 08. A. මානව පුජනන කිුයාවලියේ දී පුං ජන්මාණු ජායා ජන්මාණු සමග සංසේචනය සිදුවීම ස්තී් පුජනක පද්ධතිය තුළ දී සිදු වේ.
 - i. මානව පුං ජන්මාණු හා ජායා ජන්මාණු හඳුන්වන නම් පිළිවෙලින් ලියන්න. (ල. 02)
 - ii. පුං ජන්මාණුවක්, ජායා ජන්මාණුවක් සමග සංසේචනය සිදුවන්නේ ස්තී පුජනක පද්ධතියේ කුමන ස්ථානයක දී ද? (ල. 01)
 - iii. සංසේචනය හා අධිරෝපණය යන පද සරලව පහදන්න. (ල. 02)
 - iv. මානව පුං ජන්මාණුවක් සතු වර්ණදේහ සංඛ්‍යාව 23 ක් නම් ජායා ජන්මාණුවක් හා යුක්තානුවක් සතුවන වර්ණදේහ සංඛ්‍යා කොපමණදයි වෙන වෙනම ලියන්න. (ල. 02)
 - v. ඌනන විභාජනය මානව පුජනන කිුයාවලියට වැදගත් වන්නේ කෙසේදයි සරලව පැහැදිලි කරන්න. (ල. 02)
 - vi. ස්තීන්ගේ ආර්තව චකුය යාමනයට දායකවන හෝර්මෝනයක් සඳහන් කරන්න. (ල. 01)
 - B. රූපයේ A හා B මගින් දක්වෙන්නේ 40~kg ස්කන්ධයෙන් යුතු ළමයෙකු ඔන්චිල්ලාවක් පැදීමේ දී පසු කළ පිහිටුම් දෙකකි. ($g=10~ms^{-2}$)

පොළොවේ සිට A පිහිටුමට සිරස් උස 2m වන අතර පොළොවේ සිට B පිහිටුමට සිරස් උස 1m වේ.

- i. A පිහිටුමෙහි දී ළමයා සතු වන විභව ශක්තිය කොපමණ ද? (ල. 03)
- ii. B පිහිටුමෙහි දී ළමයා සතු වන විභව ශක්තිය කොපමණ ද? (ල. 01)
- iii. A හා B අතුරින් ළමයා ගේ චාලක ශක්තිය උපරිම හා අවම පිහිටුම් මොනවා ද? (ල. 02)

- C. $5\,\mathrm{m}$ උස ගසක තිබූ $250\,\mathrm{g}$ ස්කන්ධයෙන් යුතු ඉදුණු ඵලයක් නටුවෙන් ගිලිහී බිමට වැටෙයි.
 - i. පොළොවට පතිත වන මොහොතේ ඵලය සතුවන චාලක ශක්තිය කොපමණ ද? (ල. 02)
 - ii. ඵලය පොළොවට පතිත වන මොහොතේ එය අත්කර ගන්නා පුවේගය කොපමණ ද? (ල. 02)

(ලකුණු 20)

09. A. විදාහගාරයේ හයිඩ්රජන් වායුව නිපදවීමට යොදා ගත් ඇටවුමක් රූපයේ දැක්වේ.

- i. හයිඩ්රජන් නිපදවීමට අදාලව පුතිකිුයක සහ ඵල සඳහන් කරන්න. (ල. 02)
- ii. සිදුවන පුතිකිුයාවට අදාල තුලිත රසායනික සමීකරණය ලියන්න. (ල. 02)
- iii. පුතිකියක සහ නිපදවෙන ඵල අනුව මෙම පුතිකියාව කුමන වර්ගයට අයත් වේ ද? (ල. 01)
- iv. පුතිකිුයාව සිදුවීමේ දී දක්නට ලැබෙන නිරීක්ෂණ දෙකක් ලියන්න. (ල. 02)
- v. හයිඩ්රජන් වායුව සතු ගුණ දෙකක් සඳහන් කරන්න. (ල. 02)
- vi. නිපදවුන වායුව හයිඩ්රජන් බව හඳුනා ගන්නා ආකාරය කෙටියෙන් දක්වන්න. (ල. 01)
- B. වියලි කෝෂ දෙකක්, බල්බයක්, ඇමීටරයක් හා වෝල්ට් මීටරයක් සන්නායක රැහැන් මගින් සම්බන්ධ කර ඇති ආකාරය රූපයේ දැක්වේ.
 - i. පරිපථයට සම්බන්ධ කර ඇති A හා B උපකරණ නම් කරන්න. (ල. 02)
 - ii. පරිපථයේ A හා B උපකරණ හඳුනා ගැනීමට ඔබ යොදා ගත් පදනම කුමක් ද? (ල. 02)
 - iii. පරිපථයට වියලි කෝෂ සම්බන්ධ කර ඇති ආකාරය කෙසේ හැඳින්විය හැකි ද? (ල. 01)
 - iv. ඇමීටරයේ පාඨාංකය 0.2 A ලෙසත්, චෝල්ට් මීටරයේ පාඨාංකය 2V ලෙසත් සඳහන් විය. බල්බයේ සූතිකාවේ පුතිරෝධය ගණනය කරන්න. (e.03)
 - v. පරිපථය තුළින් ගලන ධාරාවත්, විභව අන්තරයත් අතර ඇති සම්බන්ධය කුමක් ද? (ල. 01)
 - vi. පරිපථයට සම්බන්ධ කර ඇති බල්බයට සමාන තවත් බල්බයක් ශේණීගතව සම්බන්ධ කළේ නම් බල්බවල දීප්තියෙහි නිරීක්ෂණ සඳහන් කරන්න. (ල. 01)

(ලකුණු 20)

වයඹ පළාත් අධාාපන දෙපාර්තමේන්තුව

තෙවන වාර පරීක්ෂණය 2020

විදහාව ${f I}$

10ලේණිය			_			කාලය පැ	ය එකයි
පුශ්න	පිළිතුරු	පුශ්න	පිළිතුරු	පුශ්න	පිළිතුරු	පුශ්න	පිළිතුරු
අංකය	අංකය	අංකය	අංකය	අංකය	අංකය	අංකය	අංකය
1	3	11	1	21	1	31	2
2	1	12	3	22	1	32	4
3	2	13	4	23	4	33	4
4	1	14	2	24	2	34	4
5	3	15	1	25	4	35	1
6	2	16	1	26	2	36	2
7	4	17	3	27	2	37	3
8	3	18	4	28	3	38	4
9	2	19	3	29	3	39	4
10	1	20	4	30	3	40	2

විදහාව II

A කොටස - වාුුහගත රචනා

01				
A	i	කාබන් ඩයොක්සයිඩ් වායුව/ CO_2	01	
	ii	ඔක්සිජන් (01) , ග්ලූකෝස් (01) (පිළිවෙල නිවැරදි විය යුතුය)	02	
	iii	බඳුන A – ඇතුළුවන වාතයේ ඇති කාබන් ඩයොක්සයිඩ් වායුව ඉවත් කිරීම(01) බඳුන B - ඇතුළුවන වාතයේ කාබන් ඩයොක් සයිඩ් නොමැති බව තහවුරු කිරීම. (01) බඳුන C – ගෙම්බාගේ ශ්වසනයෙන් කාබන් ඩයොක් සයිඩ් වායුව පිටවන්නේ දයි හඳුනා ගැනීම (01)	03	
	iv	B – වර්ණ විපර්යාසයක් නැත/ හුනු දියර කිරිපාට නොවේ.(01) - ඇතුළුවන වාතයේ කාබන් ඩයොක් සයිඩ් නොමැත. (01) D - හුනුදියරය කිරිපාට වේ. (01) බුබුලනය වන වාතයේ කාබන් ඩයොක්සයිඩ් තිබේ. (01)		
	V	B හා D බඳුන් දෙකෙහිම (01) හුනුදියරය කිරි පාට නොවේ/ වර්ණ විපර්යාසයක් දක්නට නොලැබේ.(01)		
	vi	මයිටොකොන්ඩුයා		
	vii	KOH වල සාපේක්ෂ අණුක ස්කන්ධය 56 සොයා ගැනීමට (01) 1 mol = 56 g නිසා 0.1 mol = 5.6 g (01)	02	
	I.		15	
02				
A	i	A- කලංකය කොටස් 6 ම නිවැරදිව නම් කර ඇත්නම් ලකුණු 03 B- කීලය කොටස් 4 - 5 නිවැරදිව නම් කර ඇත්නම් ලකුණු 02 C- පරාගධානිය කොටස් 2 - 3 නිවැරදිව නම් කර ඇත්නම් ලකුණු 01 D- සූතිකාව කොටස් 1 ක් පමණක් නිවැරදිව නම් කර ඇත්නම් E- දළ පතු ලකුණු නැත.	03	
	ii	С	01	
	iii	A, B, F (අක්ෂර තුනම නිවැරදි නම්)	01	
	iv	වර්ණවත් වීම/ පුමාණයෙන් විශාල වීම/සුවඳවත් වීම.	01	
	V	ළපටි පුෂ්පයේ කොටස් ආරක්ෂා කිරීම.	01	
	vi	ස්වචන්ධානාව හෝ අසම පරිනතිය	02	

В	i	a. ආහාරයට ගත හැකි දෙයක් /මාංසල කොටස් තිබීම. (01)	
Б	1	a. දින්නට්ට ගින් හැක් දෙයක් / මෙසේල කොටස් නික්ම. (01) b. පියාපත් තටු වැනි පුසර දරීම (01)	
		c. වියලීමේ දී පුපුරා යාම/ ස්ඓෝටනය සිදු වීම (01)	03
	ii	ජීවාතාවය , ඔක්සිජන් (වාතය), ජලය හා පුශස්ථ උෂ්ණත්වය (සාධක දෙකක් නිවැරදි නම් ලකුණු 01 බැගින්	02
	iii	කලලය පරිණත නොවී තිබීම./ඔක්සිජන් හෝ ජලය සඳහා බීජාවරණ අපාරගමා වීම.	01
			15
)3.	i	P හා U (අක්ෂර දෙකම නිවැරදි නම් පමණක්)	01
	ii	3 හා 01 (පිළිතුරු දෙකම නිවැරදි නම් පමණක්)	01
	iii	UT	01
	iv	ලෝහයක් - L, U (01)	
		ලෝහාලෝහය - Q (01)	03
		අලෝහයක් - R, S, F (01)	
	v	සා.ප.ස් = <u>ප.ස්</u> = 3.818×10^{-23} (01) ප.ස්.ඒ 1.66×10^{-24}	
		ප.ස්.ඒ	02
		= 23 (01)	
	vi	a. 16 g mol ⁻¹ (01)	
		b. 32 g (01)	03
		c. $3 \times 6.022 \times 10^{23}$ (01)	
	v	a. 8 (01)	
		b. 2,6 (01)	
		c. S අක්ෂරය යොදා ගනිමින් නිවැරදි තිත් කතිර සටහනට (01) නිවැරදිව ලුවිස්	04
		වහුහය ඇඳීමට (01) $ { m O} $ අක්ෂරය යොදා ගනිමින් සටහන් ඇඳ ඇති විට ලකුණු	
		තැත.	
)4		<u> </u>	15
<u>Э4</u> А	i	a. 100 g (01) 0.1 kg (01)	02
	_	b. 1 (01) N (01)	02
		c. 1N	01
	ii	a. වෙනසක් නොවේ. (01)	
		b. වැඩිවේ (01)	03
		c. අඩුවේ (01)	
	iii.	5 N	01
В	i	A- ස්ථිතික (01)	02
		B- සීමාකාරී (01)	02
	ii	A – සමාන වේ.	02
		B – සමාන වේ. (01)	
	iii	100 N	01
	iv		
		GWR S	
		GWR GWR	
		GWR GWR	01
		GWR GWR	01
		එක් රෝදයක හෝ රෝද දෙකෙහිම නිවැරදිව චලිත දිශාවට විරුද්ධ දිශාවට ඊතල	01
		GWR GWR	01
		එක් රෝදයක හෝ රෝද දෙකෙහිම නිවැරදිව චලිත දිශාවට විරුද්ධ දිශාවට ඊතල	01
		එක් රෝදයක හෝ රෝද දෙකෙහිම නිවැරදිව චලිත දිශාවට විරුද්ධ දිශාවට ඊතල	

		B කොටස	
05			
A	i	A – ඔක්සිජන් / O B – නයිට්රජන් / N C හා D සඳහා - කාබන් / C හෝ හයිඩ්රජන් /H E – පොස්ෆරස්	03
	ii	Q – ඇමයිනෝ අම්ල (01) R - මේද අම්ල හා ග්ලිසරෝල් (01) S – නියුක්ලියොටයිඩ (01)	03
, n	iii	a. අයඩින් දාවණය (අයඩින් පමණක් ලියා ඇත්නම් ලකුණු නැත)(01) - දමු විට නිල්පාට/දම්පාට වේ.(01) b. සෝඩියම් හයිඩ්රොක්සයිඩ් / NaOH හා කොපර් සල්ෆේට්/ CuSO4(01) මිශුණය තද දම් පාටක් ලබා දේ.(01) c. සුඩාන් III (01) - රතු පැහැති ගෝලිකා දක්නට ලැබීම.(01) පෘෂ්ඨ වංශීන් - තිලාපියා පමණක් සඳහන්ව ඇත්නම් (01)	06
В	i	අපෘෂ්ඨ වංශීන් ී ගෝනුස්සා, හයිඩුා, ගැඩවිලා යන ජීවීන් තිදෙනා පමණක් ලියා ඇත්නම් (01)	02
	ii	හයිඩා	01
	iii	තිලාපියා- පිස්කේස් (01) ගෝනුස්සා - ආතොපෝඩා (01) හයිඩුා- සිලෙන්ටරේටා / නිඩාරියා(01) ගැඩවිලා -ඇනෙලිඩා (01)	04
	iv	දේහය ඛණ්ඩනය වී තිබීම/ සන්ධි සහිත උපාංග දරිම/ දේහය මතුපිට කයිටීන් උච්චර්මයක් දරීම.	01
06			20
06 A	i	H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca පළමූලදුවා 10 තිවැරදි අනුපිළිවෙලට ලකුණු (01) දෙවන මූලදුවා 10 නිවැරදි අනුපිළිවෙලට ලකුණු Cl හා Ca ලිවීමේදී ඉංගීසි කැපිටල් හා සිම්පල් අක්ෂර නිවැරදි විය යුතුය. (01)	02
	ii	Be, O, Mg, S, Ca (මූලදුවා 5 ම නිවැරදිනම් ලකුණු 02, මූලදුවා 3/4 නිවැරදි නම් ලකුණු 01 මූලදුවා 10හා 2 පමණක් නිවැරදි නම් ලකුණු නැත.	02
	iii	MgCl ₂ (01) , MgO (01) Cl හා O ලිවීමේදී ඉංගුීසි කැපිටල් හා සිම්පල් අක්ෂර නිවැරදි විය යුතුය	02
	iv	F	01
	V	He	01
	vi ·	H/ N/ O/ F/ Cl එක් මූලදුවායක් සඳහා ලකුණු 01 බැගින් (H ₂ / N ₂ / O ₂ / F ₂ / Cl ₂ අණු ලෙස ලියා ඇත්නම් ලකුණු නැත	02
В	i	C හා D ලකුණු 01 බැගින්	02
	ii	a. අයනික - A (01) සහසංයුජ - B (01) b. බල්බය දැල්වේ (01) c. A – විදුලිය සන්නයනය නොවේ. (01) B – විදුලිය සන්නයනය නොවේ. (01) d. C – විදුලිය සන්නයනය නොවේ. (01) D – විදුලිය සන්නයනය නොවේ. (01) e. විදුලිය සන්නයනය වීම/අඛ්ය ඉලෙක්ටෝඩයක් වීම/ ජලීය දාවණය සමග පුතිකියා නොකිරීම (01)	08
			20
07 A	i		01
	ii	A බල සූර්ණය = බලයේ විශාලත්වය x බලයේ කිුියා රේඛාවට ඇති ලම්බ දුර (01) = 0.9 x 5 (01) = 4.5 N m (01) ඒකකනැත්නම් මෙම ලකුණ නැත	03
	iii	_ 4.5 N III (01) එක්කනැත්නම මෙම ලකුණ නැත බල සූර්ණය = බලයේ විශාලත්වය x බලයේ කුියා රේඛාවට ඇති ලම්බ දුර 4.5 = බලය x 0.45 (01) = 10 N (01)	02

iv a. නොවේ (01) b. කියාත්මක වේ. (01) c. නොවේ (01) B i දෙපසට යෙදෙනෙ A හා B බලයන්හි සම්පුයුක්තයන් සමාන වීම (01) බල සියල්ල ඒක රේබීය වීම (01) A හා B බල එක්නෙකට පුතිවිරුද්ධ වීම (01) ii a. 1500 N (02) ඒකක නොමැති නම් ලතුණු 01 b. 300 N (01) ඒකක නොමැති නම් ලතුණු නැත iii a. 0 N (01) ඒකක තිබීම අවශා නැත b. බර = ස්කන්ධය x ගුරුක්වජ ත්වරණය / W = m g හෝ 600 = m x 10 (01) m = 60 kg (01)	02 03 03 03
b. කියාත්මක වේ. (01) c. නොවේ (01) B i දෙපසට යෙදෙනෙ A හා B බලයන්හි සම්පුයුක්තයන් සමාන වීම (01) බල සියල්ල ඒක රේඛීය වීම (01) A හා B බල එක්නෙකට පුතිවිරුද්ධ වීම (01) ii a. 1500 N (02) ඒකක නොමැති නම් ලතුණු 01 b. 300 N (01) ඒකක නොමැති නම් ලතුණු නැත iii a. 0 N (01) ඒකක තිබීම අවශා නැත b. බර = ස්කන්ධය x ගුරුක්වජ ත්වරණය / W = m g හෝ 600 = m x 10 (01) m = 60 kg (01)	03 03 03
$c.$ නොවේ (01) B i දෙපසට යෙදෙනෙ A හා B බලයන්හි සම්පුයුක්තයන් සමාන වීම (01) බල සියල්ල ඒක රේඛීය වීම (01) A හා B බල එක්නෙකට පුතිවිරුද්ධ වීම (01) ii $a.$ 1500 N (02) ඒකක නොමැති නම් ලකුණු 01 $b.$ 300 N (01) ඒකක නොමැති නම් ලකුණු නැත iii $a.$ 0 N (01) ඒකක තිබීම අවශා නැත $b.$ බර = ස්කන්ධය x ගුරුක්වජ ත්වරණය $/$ $W = m$ g හෝ $600 = m \times 10$ (01) $m = 60$ kg (01)	03 03 03
බල සියල්ල ඒක රේඛීය වීම (01) A හා B බල එක්නෙකට පුතිවිරුද්ධ වීම (01) ii a. 1500 N (02) ඒකක නොමැති නම් ලතුණු 01 b. 300 N (01) ඒකක නොමැති නම් ලතුණු නැත iii a. 0 N (01) ඒකක තිබීම අවශා නැත b. බර = ස්කන්ධය x ගුරුක්වජ ත්වරණය / W = m g හෝ 600 = m x 10 (01) m = 60 kg (01)	03
A හා B බල එක්නෙකට පුතිවිරුද්ධ වීම (01) ii a. 1500 N (02) ඒකක නොමැති නම් ලතුණු 01 b. 300 N (01) ඒකක නොමැති නම් ලතුණු නැත iii a. 0 N (01) ඒකක තිබීම අවශා නැත b. බර = ස්කන්ධය x ගුරුක්වජ ත්වරණය / W = m g හෝ 600 = m x 10 (01) m = 60 kg (01)	03
ii a. 1500 N (02) ඒකක නොමැති නම් ලතුණු 01 b. 300 N (01) ඒකක නොමැති නම් ලතුණු නැත iii a. 0 N (01) ඒකක තිබීම අවශා නැත b. බර = ස්කන්ධය x ගුරුක්වජ ත්වරණය / W = m g හෝ 600 = m x 10 (01) m = 60 kg (01)	03
b. 300 N (01) ඒකක නොමැති නම් ලතුණු නැත iii a. 0 N (01) ඒකක තිබීම අවශා නැත b. බර = ස්කන්ධය x ගුරුක්වජ ත්වරණය / W = m g හෝ 600 = m x 10 (01) m = 60 kg (01)	03
b. 300 N (01) ඒකක නොමැති නම් ලතුණු නැත iii a. 0 N (01) ඒකක තිබීම අවශා නැත b. බර = ස්කන්ධය x ගුරුක්වජ ත්වරණය / W = m g හෝ 600 = m x 10 (01) m = 60 kg (01)	03
${ m b.}$ බර $=$ ස්කන්ධය ${ m x}$ ගුරුක්වජ ත්වරණය $/$ $W=m$ g හෝ $600={ m m}~{ m x}~10~(01)$ ${ m m}=60~{ m kg}~(01)$	
$600 = m \times 10 (01)$ $m = 60 \text{ kg} (01)$	
m = 60 kg (01)	
	20
08	20
	02
	01
iii සංසේචනය - ඩිම්බ සෛලයේ හා ශුකුාණු සෛලයේ නාෂ්ටික දුවා එකතු වීම (01)	
අධිරෝපණය - මොරුලාව ගර්භාෂ බින්ති පටක විඛාදනය කරමින් ගිලී එහි තැන්පත් වීම	02
වැනි අදහසක් (01)	
	02
	02
<u> </u>	01
B i $E_p = mgh$ (01)	02
	03
$=800~ m J~(01)$ ඒකක නොමැති නම් ලතුණු නැත $E_p=mgh$	
$E_p = mgn$ $= 40 ext{ x } 10 ext{ x } 1 = 400 ext{ J } (01) $ ඒකක නොමැති නම් ලකුණු නැත	01
	02
C i ගුලපති කිරිය දී විභව ගත්තිය – ලපාලපාවට පතිත වන ලමාලහාලත් චාලන ගත්තිය(01)	00
$mgh = 0.250\mathrm{x}10\mathrm{x}5 = 12.5\mathrm{J}(01)$ ඒකක නොමැති නම් ලතුණු නැත	02
ii $E_k = 1/2 mv^2 (01)$	
$12.5 = 1/2 \times 0.25 \times v^2$	
	02
$100 = v^2$	
$ u = 10 \mathrm{m s}^{-1} \; (01) \;$ ඒකක නොමැති නම් ලතුණු නැත	20
	20
09 A i පුතිකියක : Zn හා HCl (01)	
A i පුතිකියක : Zn හා HCl (01) ඵල : Zn Cl ₂ හා H ₂ (01)	02
	2/00
	01
;v වාය බබළු පිටවීම / පින්න් නැබලි න්ෂය වීම / වාය පුරාමව ජල මට්ටම පුනළ යාම වැනි	
පිළිතුරක් සඳහා ලකුණු 01 බැගින්	02
	02
	01
B i A – වෝල්ට් මීටරය (01)	02
${f B} -$ ඇමීටරය (01) ${f ii}$ ${f A}$ සමාන්තුර ගතුව සම්බන්ධ කර තිබීම (01) ${f B}$ ශේණීගතුව සම්බන්ධ කර තිබීම (01)	02
	02
iv V = IR (01)	01
$\begin{vmatrix} 1V & V - IK & (01) \\ 2 = 0.2 & R & (01) \end{vmatrix}$	03
$R=10~\Omega~(01)$ ඒකක නොමැති නම් ලතුණු නැත	
	01
vi බල්බවල දීප්තිය සාපේක්ෂව අඩුවේ.	01
	20

බහුවරණ පුශ්න පතුය සඳහා ලකුණු 2 x 40	80	
$f A$ කොටස ලකුණු $15 \ x \ 4 = 60$ සහ $f B$ කොටස $20 \ x \ 3 = 60$ බැගින්	120	
එකතුව ලකුණු 200 / 2		

සැලකිය යුතුයි:

- පිළිතුරු පතුයේ සඳහන් නොවුවද නිවැරදි පිළිතුරු ලියා ඇත්නම් (පුශ්නයට අදාල සංකල්පය තහවුරු කරගෙන පිළිතුර ලියා ඇති විට) අදාල ලකුණු පුදානය කරන්න.
- අවසන් පිළිතුර සදහා ඒකකය සමඟ පිළිතුර දක්විය යුතු අවස්ථාවල ඒකකය නොමැති විට ලකුණු පුදානය නොකරන්න.
- ලකුණු පුදානය කිරීමේ දී හා පසුව පිළිතුරු සිසුන් සමඟ සාකච්ඡා කිරීමේ දී අ.පො.ස (සා/පළ) විභාගයට සිසුන් හුරු කිරීමක් ලෙස සලකා කටයුතු කරන්න.