In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
```

In [2]:

```
dataset = pd.read_excel("Linear Regression.xlsx",sheet_name=0)
```

In [3]:

dataset.head(10)

Out[3]:

	price	sqft_living	bedrooms	bathrooms	floors
0	221900	1180	3	1.00	1.0
1	538000	2570	3	2.25	2.0
2	180000	770	2	1.00	1.0
3	604000	1960	4	3.00	1.0
4	510000	1680	3	2.00	1.0
5	1225000	5420	4	4.50	1.0
6	257500	1715	3	2.25	2.0
7	291850	1060	3	1.50	1.0
8	229500	1780	3	1.00	1.0
9	323000	1890	3	2.50	2.0

1. Independent Variable(sqft_living) & dependent Variable(price)

0.493

In [4]:

```
y = dataset.price
x = dataset.sqft_living
x1 = sm.add_constant(x)
simple = sm.OLS(y,x1)
result = simple.fit()
result.summary()

## change in independent variable (x)-(sqft_living) value of dependent variable(y)-(price)
## change in one varaible 49.3 % changes in another variable.
## If P value is less than 0.05 means Null Value is rejected and Alternative value is accep
## If P value is more than 0.05 means Null value is accepted and Alternative Value is rejec
## In this case P value is less than 0.05 so Null value is rejected and Alternative value i
## There is a Clausal effect relationship between dependent variable and independent variab
```

R-squared:

Out[4]:

OLS Regression Results

Dep. Variable:

P	Model:		(OLS	Adj.	R-squa	ared:		0.493
Me	ethod:	L	east Squ	ares		F-stati	stic:	2.10	00e+04
	Date:	Wed,	31 Mar 2	021	Prob	(F-statis	stic):		0.00
	Time:		12:4	4:21	Log	-Likelih	ood:	-3.002	27e+05
No. Observa	itions:		21	613			AIC:	6.00)5e+05
Df Resi	duals:		21	611			BIC:	6.00)6e+05
Df N	Model:			1					
Covariance	Type:		nonro	oust					
		e	-4-1	_		D> 141		0.005	0.0751
		coef	std er	r	t	P> t	ı	0.025	0.975]
const	-4.358	e+04	4402.690)	-9.899	0.000	-5.22	2e+04	-3.5e+04
sqft_living	280.	6236	1.936	3 14	44.920	0.000	27	6.828	284.419
Omnibus: 14832.490 Durbin-Watson: 1.983									
Prob(Omnib	Prob(Omnibus): 0.000 Jarque-Bera (JB): 546444.709								
Sk	(ew:	2.8	324		Prob(JI	В):	0	.00	
Kurto	sis:	26.9	977	(Cond. N	lo.	5.63e+	-03	

price

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

2. Independent variable(sqft_living) & dependent variable(bathroom)

In [5]:

```
y = dataset.bathrooms
x = dataset.sqft_living
x1 = sm.add_constant(x)
simple = sm.OLS(y,x1)
result = simple.fit()
result.summary()

## change in independent variable (x)-(sqft_living) value of dependent variable(y)-(bathroo ## change in one varaible 57 % changes in another variable.
## If P value is less than 0.05 means Null Value is rejected and Alternative value is accep ## If P value is more than 0.05 means Null value is accepted and Alternative Value is rejec ## In this case P value is less than 0.05 so Null value is rejected and Alternative value i ## There is a Clausal effect relationship between dependent variable and independent variab
```

Out[5]:

OLS Regression Results

Dep. Variable:		bathrooms		R-squared:		0.570
Model:			OLS	Adj. R-squared:		0.569
Method:		Least S	Squares	F-statistic:		2.859e+04
	Date:	Wed, 31 M	ar 2021	Prob (F	-statistic):	0.00
	Time:	1	2:44:22	Log-Likelihood:		-15914.
No. Observa	ations:		21613		AIC:	3.183e+04
Df Residuals:		21611			BIC	3.185e+04
Df Model:			1			
Covariance Type:		no	nrobust			
	coef	std err	t	P> t	[0.025	0.975]
const	0.7985	0.009	93.843	0.000	0.782	0.815
sqft_living	0.0006	3.74e-06	169.089	0.000	0.001	0.001
Omnibus: 774.429 Durbin-Watson: 1.876						
Prob(Omnib	ous):	0.000 Ja	rque-Bera	a (JB):	1445.779	
SI	kew:	0.282	Pro	b(JB):	0.00	
Kurto	osis:	4.134	Con	d. No.	5.63e+03	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

3. independent variable(sqft_living) & dependent variable(bedrooms)

In [6]:

```
y = dataset.bedrooms
x = dataset.sqft_living
x1 = sm.add_constant(x)
simple = sm.OLS(y,x1)
result = simple.fit()
result.summary()
## change in independent variable (x)-(sqft_living) value of dependent variable(y)-(bedroom_live)
## change in one varaible 33.3% changes in another variable.
## If P value is less than 0.05 means Null Value is rejected and Alternative value is accep
## If P value is more than 0.05 means Null value is accepted and Alternative Value is rejec
## In this case P value is less than 0.05 so Null value is rejected and Alternative value i
## There is a Clausal effect relationship between dependent variable and independent variab
```

Out[6]:

OLS Regression Results

Dep. Variable:		bedrooms		R-squared:		: 0	0.333
Model:			OLS	Adj. R-squared:		: 0	0.333
М	Method:		Squares	F-statistic:		: 1.077	e+04
	Date:	Wed, 31 M	ar 2021	Prob (F-s	statistic)	:	0.00
	Time:	1	2:44:22	Log-Lik	celihood	: -24	1731.
No. Observa	ations:		21613		AIC	: 4.947	e+04
Df Resi	iduals:		21611		BIC	: 4.948	e+04
Df	Model:		1				
Covariance Type:		no	nrobust				
	coef	std err	t	P> t	[0.025	0.975]	
const	2.1562	0.013	168.517	0.000	2.131	2.181	
sqft_living	0.0006	5.63e-06	103.766	0.000	0.001	0.001	
Omni	bus: 19	9263.322	Durbin-	Watson:		1.964	
Prob(Omnik	ous):	0.000	Jarque-B	era (JB):	115358	342.412	
S	kew:	3.289	P	rob(JB):		0.00	
Kurto	osis:	115.990	C	ond. No.	5.0	63e+03	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

4. independent variable(sqrt_living & dependent variable(floors)

In [7]:

```
y = dataset.floors
x = dataset.sqft_living
x1 = sm.add_constant(x)
simple = sm.OLS(y,x1)
result = simple.fit()
result.summary()

## change in independent variable (x)-(sqft_living) value of dependent variable(y)-(floors)
## change in one varaible 12.5% changes in another variable.
## If P value is less than 0.05 means Null Value is rejected and Alternative value is accep
## If P value is more than 0.05 means Null value is accepted and Alternative Value is rejec
## In this case P value is less than 0.05 so Null value is rejected and Alternative value i
## There is a Clausal effect relationship between dependent variable and independent variab
```

Out[7]:

OLS Regression Results

Dep. Variable:		floors		R-squared:		: 0.125
Model:			OLS	Adj. R-squared:		: 0.125
Method:		Least S	Squares	F	-statistic	3095.
	Date:	Wed, 31 M	ar 2021	Prob (F-	statistic)	: 0.00
	Time:	1	2:44:22	Log-Li	kelihood	: -15902.
No. Observa	ations:		21613		AIC	: 3.181e+04
Df Resi	iduals:	21611			ВІС	: 3.182e+04
Df Model:			1			
Covariance Type:		no	nrobust			
	coef	std err	t	P> t	[0.025	0.975]
const	1.0615	0.009	124.812	0.000	1.045	1.078
sqft_living	0.0002	3.74e-06	55.634	0.000	0.000	0.000
Omni	bus: 2	258.231	Durbin-V	Vatson:	1.73	8
Prob(Omnibus):		0.000 J	00 Jarque-Bera (JB):		3129.66	8
S	kew:	0.837	Prob(JB):		0.0	0
Kurto	osis:	3.821	Cond. No.		5.63e+0	3

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Multiple Regression

5. Independent Variable (sqft_living,bathrooms,bedrooms,floors) & dependent variable(Price)

In [8]:

```
y = dataset.price
x = dataset[['sqft_living','bedrooms','bathrooms','floors']]
x1 = sm.add_constant(x)
multiple = sm.OLS(y,x1)
result=multiple.fit()
result.summary()

## change in independent variable (x)-(sqft_living,bedrooms,bathrooms,floors) value of depe
## change in one varaible 50.7% changes in another variable.

## If P value is less than 0.05 means Null Value is rejected and Alternative value is accep
## If P value is more than 0.05 means Null value is accepted and Alternative Value is rejec
## In this case P value is less than 0.05 so Null value is rejected and Alternative value i
## There is a Clausal effect relationship between dependent variable(price) and independent
## Floors is a independent variable P value is more than 0.05 means Null value is accepted
## change in independent variable in floor doesnot have clause effect on dependent variable
```

Out[8]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.507
Model:	OLS	Adj. R-squared:	0.507
Method:	Least Squares	F-statistic:	5554.
Date:	Wed, 31 Mar 2021	Prob (F-statistic):	0.00
Time:	12:44:22	Log-Likelihood:	-2.9996e+05
No. Observations:	21613	AIC:	5.999e+05
Df Residuals:	21608	BIC:	6.000e+05
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	7.467e+04	7679.122	9.724	0.000	5.96e+04	8.97e+04
sqft_living	309.3932	3.087	100.228	0.000	303.343	315.444
bedrooms	-5.785e+04	2347.323	-24.644	0.000	-6.24e+04	-5.32e+04
bathrooms	7853.5235	3814.223	2.059	0.040	377.365	1.53e+04
floors	200.4943	3775.505	0.053	0.958	-7199.774	7600.763

 Omnibus:
 14450.413
 Durbin-Watson:
 1.985

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 494760.938

 Skew:
 2.739
 Prob(JB):
 0.00

 Kurtosis:
 25.790
 Cond. No.
 1.04e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.04e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In [9]:

```
plt.hist(dataset.sqft_living)
```

Out[9]:

In [10]:

```
plt.hist(dataset.bedrooms)
```

Out[10]:

In [11]:

```
plt.hist(dataset.bathrooms)
```

Out[11]:

In [13]:

```
plt.hist(dataset.floors)
```

Out[13]:


```
In [15]:
```

from scipy.stats import pearsonr

In [16]:

stats,p=pearsonr(dataset.price,dataset.sqft_living)

In [17]:

print(stats,p)

0.7020350524336835 0.0

In [18]:

stats,p=pearsonr(dataset.price,dataset.bedrooms)
print(stats,p)

0.30834959788482247 0.0

In [19]:

stats,p=pearsonr(dataset.price,dataset.bathrooms)
print(stats,p)

0.5251375045796025 0.0

In [20]:

stats,p=pearsonr(dataset.price,dataset.floors)
print(stats,p)

0.256793884063341 1.6e-322

All this combination of dependnt and indepedent varaible is passed this is autocorreated

In [21]:

dataset.corr()

Out[21]:

	price	sqft_living	bedrooms	bathrooms	floors
price	1.000000	0.702035	0.308350	0.525138	0.256794
sqft_living	0.702035	1.000000	0.576671	0.754665	0.353949
bedrooms	0.308350	0.576671	1.000000	0.515884	0.175429
bathrooms	0.525138	0.754665	0.515884	1.000000	0.500653
floors	0.256794	0.353949	0.175429	0.500653	1.000000

In this project dependent variable (sqft_living,bedrooms,bathrooms) are significant to dependent variable(price)

Floors are not significant to dependent variable.

In []:		