

⑫ 実用新案公報 (Y1) 昭 55-52538

⑬ Int.CI.³
G 07 D 7/00識別記号 庁内整理番号
7536-3 E

⑭ ⑮ 公告 昭和 55 年(1980)12 月 5 日

(全 2 頁)

⑯ 紙幣鑑別装置

審 判 昭 51-12921

⑰ 実 願 昭 49-154761

⑱ 出 願 昭 45(1970)8 月 18 日
(前特許出願日援用)

⑲ 考 案 者 佐藤 仁紀

宇都宮市平出工業団地 11 番地日本信号株式会社宇都宮工場内

⑳ 考 案 者 斎田 真

宇都宮市平出工業団地 11 番地日本信号株式会社宇都宮工場内

㉑ 考 案 者 望月 嶽

宇都宮市平出工業団地 11 番地日本信号株式会社宇都宮工場内

㉒ 考 案 者 佐々木 三郎

宇都宮市平出工業団地 11 番地日本信号株式会社宇都宮工場内

㉓ 出 願 人 日本信号株式会社

東京都千代田区丸の内 3 丁目 3 番 1 号

㉔ 代 理 人 弁理士 野村 滋衛

㉕ 実用新案登録請求の範囲

鑑別すべき紙幣の表面の朱印部分とこの朱印部分に近接した周辺の下地部分とに同一光量の光線を照射する光源と、前記朱印部分および下地部分からの反射光中の赤色光を除去するフィルタと、このフィルタを通過した前記反射光を別々に受光する受光素子と、各受光素子の出力信号を比較して両信号の差に対応する信号を出力する比較回路と、この比較回路の出力信号があらかじめ定められた許容範囲内であるか否かを判定して許容範囲内のとき真紙幣である旨の信号を出力する判定手段とを備えたことを特徴とする紙幣鑑別装置。

㉖ 考案の詳細な説明

本考案は、自動販売機や紙幣を硬貨に両替する

両替機等に用いられる紙幣鑑別装置に関し、特に紙幣の朱印部分とその周辺の下地部分とを検出することにより主として単色コピーによるにせ紙幣と区別しようとするものである。

5 自動販売機や両替機では簡単に作れることから単色コピー（ゼロックス、青写真等）または単色コピーに色をぬつて作つたにせ紙幣が使用される可能性が多い。従来紙幣の数箇所の反射光を測定してその濃度差により紙幣を判別する方式が知られているが、従来方式では単色コピーに真紙幣と似せた色をぬつたにせ紙幣を使用した場合、真紙幣と明確に区別ができないことがあつた。

10 本考案は上述の点に着目してなされたもので、単色コピーまたは単色コピーに色をぬつたにせ紙幣を正確に識別できる紙幣鑑別装置を提供するものである。

15 次に本考案の実施例を図面と共に説明する。鑑別すべき紙幣 B の朱印部分 P とこの朱印部分 P くごく近くの周辺にある下地部分 Q を選び、各々の部分 P, Q に對し同一の光量分布をもつように光を光源として照射する。しかして朱印部分 P と下地部分 Q の各々に視野をもつ光学系 S₁, S₂ を配置し、朱印部分 P 及び下地部分 Q を光源として同一照度になる様に照明し、各々からの反射光を入射させる。光学系 S₁, S₂ はフィルタ F₁, F₂ と、受光素子 E₁, E₂ で構成されており、各々の受光素子 E₁, E₂ は差動増幅器のような比較回路 D に接続される。C₁ は該比較回路 D の出力信号を入力とする判別回路で上限判別回路 C₁ と下限判別回路 C₂ を備えている。A₁ はアンド回路で、上限、下限判別回路 C₁, C₂ の出力を入力とし、これより識別信号を出すようになつてゐる。前記フィルタ F₁, F₂ は赤色光除去フィルタが用いられる。

20 いま、各受光素子 E₁, E₂ の受光出力を各々 V₁, V₂ とすると、比較回路 D の出力として V₁ - V₂ が得られる。この出力の上限及び下限

3

を上限判別回路 C_1 と下限判別回路 C_2 で判別し、これがあらかじめ設定された範囲内であるときアンド回路 A が動作して識別信号を出すものである。

当該朱印部分 P は朱印 P' と下地 P' とを含む領域であり、周辺の下地 Q は朱印部分 P 内の下地 P' と同一部分を選ぶものとする。(第3図参照)したがつて真紙幣の場合は赤色光除去フィルタ F_1 によって朱印 P' の赤色光が除去されて下地 P' の反射光のみが受光素子 E₁ に入力される。この下地 P' と周辺の下地 Q は同一であるから E₁, E₂ の受光量はほぼ等しくなり、したがつて $V_1 - V_2 \neq 0$ (よごれ、しわ等によつては完全に 0 とならない場合もある) となる。また真紙幣の単色コピーで作つた偽紙幣の場合は朱印 P' は濃い黒色または青色となつてゐるためこの黒色または青色の反射光がフィルタ F_1 を透過する。一方、朱印部分 P の下地 P' および周辺の下地部分 Q は白色に近い色彩となるため、E₁, E₂ の受光量は大きく異なる。単出コピーの朱印 P' の上を赤鉛筆や赤インク等でぬつた場合は、この赤色はフィルタ F_1 で除去されるが、下層の濃い黒色または青色の反射光はそのままフィルタ F_1 を透過するため同様に E₁, E₂ の受光量は大きく異なる。したがつていづれの場合も $V_1 - V_2 \neq 0$ となる。

上記 $V_1 - V_2$ の範囲はあらかじめ識別すべき

4

紙幣と同種類の真紙幣について多數測定しておき他種紙幣や偽紙幣と明確に区別できる範囲内でその上限 V_{max} 、下限 V_{min} を定めておく。そして下記の条件が満足したときアンド回路より識別信号が出されるものである。

判定条件

$$V_{min} < V_1 - V_2 < V_{max}$$

本考案によれば上述のように紙幣の朱印部分とその周辺の下地部分との反射光を赤色除去フィルタを通して受光し、この受光出力の差を判別するようにしたので真紙幣の場合は赤色が除去されて受光出力の差がほとんど 0 になり単色コピーまたは単色コピーの朱印部分に赤色を施した偽紙幣では受光出力の差が大きくなり、これにより真紙幣とコピーによる偽紙幣とが明瞭に区別できる。また紙幣のチエック部分に朱印部分のはかに周辺の下地部分を選んでいるため、仮に朱印部分は真紙幣と同じように偽造しても下地部分は真紙幣と全く同一に偽造することが困難であり、したがつて偽紙幣の発見の精度はそれだけ向上するという利点がある。

図面の簡単な説明

第1図は本考案に係る紙幣鑑別方式の1実施例を示すブロック線図、第2図は同上紙幣のチエック部分の説明図、第3図は同上のチエック部分の拡大図である。

第1図

第3図

第2図

