Machine Intelligence

Introduction to Machine Learning
Geron Chapter 1

Machine Learning

What society thinks I do.

What my friends thinks I do.

What computer scientists think I do.

What my boss thinks I do.

What I think I do.

What I really do.

Machine Learning has been around for awhile!

• Wikipedia to the rescue: https://en.wikipedia.org/wiki/Machine learning

• Definitions:

- Machine Learning is the science (and art) of programming computers so they can learn from data
- Slightly more general: Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed. (Arthur Samuel, 1959)
- Engineering oriented: A computer program is said to learn from experience E, with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E. (Tom Mitchell, 1997)

Spam filter example of machine learning

- A spam filter is a machine learning program that can learn to flag spam given examples of spam emails (e.g., flagged by users) and examples of regular emails.
- Training Set: The examples the system uses to learn
 - Training Instance (sample): Each training example the system uses to learn
- The task T is to flag spam for new emails.
 - The experience E is the training data
- Performance measure P needs to be defined
 - Example: The ratio of correctly classified emails this performance measure
 is called accuracy and is often used in classification tasks

- Consider how to write a spam filter with traditional programming techniques
 - First: look at what spam typically looks like. We notice certain words tend to show up (4U, credit card, free, amazing). Perhaps other patterns as well
 - **Second**: Write a detection algorithm for each of the patterns you noticed. Your program flags emails as spam if some number of these patterns are detected
 - Third: Test the program repeating steps 1 and 2 until it is good enough

 Since the problem is complex, our program is going to have a long list of rules – which will be difficult to maintain

- Compare to a machine learning program
 - The program automatically learns which words and phrases are good predictors of spam by detecting unusual patterns of words in the spam examples
 - The program is much shorter and easier to maintain – and likely more accurate
- And what if the spammers realize what is going on and start using different words?

 ML programs can automatically adjust to changes in word frequency in spam email

- Example: Statistical machine translation between languages
 - https://en.wikipedia.org/wiki /Statistical machine translati on

What is data mining?

 Applying ML techniques to dig into large amounts of data can help discover patterns that were not immediately apparent

Types of Machine Learning Systems

- Trained with human supervision?
- Can learn incrementally on the fly (online vs batch learning)
- Do they simply compare new data points to known data points, or instead detect patterns in the training data and build a predictive model
- These criteria are not exclusive. You can combine them any way you like

Supervised learning

- Supervised Learning: The training data includes the desired solutions
 - called labels
 - A typical supervised learning task is classification (spam filter a good example)
 - Another typical task is to predict a target numeric value, such as the price of a car, given a set of features (mileage, age, brand, etc.) called predictors. This is called a regression task
- Attribute: is a data type, e.g., mileage
- *Feature*: generally, means an attribute plus its value mileage = 15,000

Unsupervised learning

- The training data is unlabeled no answers provided in the training set
- Types of unsupervised learning:
 - *Clustering*: Detect groups of similar features
 - Visualization and dimensionality reduction: Feed them lots of complex and unlabeled data. They output a 2D or 3D representation of the data that can be plotted
 - Association rule learning: Dig into large amounts of data and discover interesting relations between attributes.

Semi-supervised learning

- Some algorithms can deal with partially labeled training data, usually a lot of unlabeled data and a bit of labeled data
- Google Photos is a good example of this.
 - It automatically recognizes the same person in different photos
 - Once you tell Google Photos who a person is, it labels that person in all the photos they are in

Reinforcement learning

• The *learning system is* called an agent. It observes the environment, selects and performs actions, and gets rewards in return (or penalties as negative rewards. It must learn by itself what is the best **strategy**, called a policy, to get the most reward over time.

Batch and Online learning

- Batch learning: The system is unable to learn incrementally
 - The system must learn everything first, then it runs in production without more learning – also called offline learning
 - To have the system "learn more" you must train a new version of the system
- *Online learning*: The system is trained incrementally by feeding it data instances sequentially.
 - Each learning step is fast and cheap, so the system can learn about new data as it arrives
 - Good example: Stock price predictors continuous flow of data
 - Learning rate: how fast should the system adapt to new data?

Online learning diagram

Instance-Based versus Model-Based Learning

- Another way to categorize machine learning systems is by how they generalize
- Most machine learning tasks are about making predictions
 - This means that given several training examples, the system needs to be able to generalize to examples it has never seen before
 - Having a good performance measure on the training data is good, but insufficient
 - The true goal is to perform well on new instances
- *Instance-Based Learning*: System learns the examples by heart, then generalizes to new cases using a similarity measure

Instance-Based Learning

- System learns the examples by heart, then generalizes to new cases using a similarity measure
 - Instead of just flagging emails identical to known spam emails, our spam filter would be programmed to also flag emails that are like known spam emails.
 - For instance, count the number of words in common

Model-Based Learning

 Another way is to build a model of these examples, then use that model to make predictions.

Model-Based Learning example

- Suppose you want to know if money makes people happy
 - Let's use a sample of the Better Life Index data from OECD's website (https://www.oecd.org/, Organization for Economic Cooperation and Development) and statistics about GDP per capita from IMF's website.
- Do you see a pattern?

Country	GDP per capita (USD) Life satisfaction	
Hungary	12,240	4.9
Korea	27,195	5.8
France	37,675	6.5
Australia	50,962	7.3
United States	55,805	7.2

Mode-Based Learning example continued

- It seems like the data increases linearly with GDP per capita
- This is called model selection we are choosing a linear model of our data

```
Equation 1-1. A simple linear model life_satisfaction = \theta_0 + \theta_1 \times \text{GDP\_per\_capita}
```

- Our model has two modal parameters, Θ_0 and Θ_1
- By tweaking those two parameters, we can make our model represent any linear function

Possible linear models

Model-Based Learning example continued

- But what is the best model? We need to specify a performance measure
 - We can define a utility function (or fitness function) that measures how good your model is
 - Or we can define a cost function that measures how bad it is
- For *linear regression problems*, people typically use a cost function that measures the distance between the linear model's predictions and the training example
 - *Objective*: Minimize this distance
 - Linear regression models to save the day

Best linear model

Main challenges of machine learning

- Two main problems: bad algorithm and/or bad data
- Insufficient Quantity of Training Data: We may need millions of training instances
- Non-representative Training Data: We train a model that is unlikely to make accurate predictions
- GDP per capita with more data
 - Dashed line is old model
 - Solid line is new model

Examples of bad data

- Poor Quality Data: We may need to clean up the data we have
 - Discard clear outliers
 - Some training instances are missing some features like age is missing
- Irrelevant Features: Garbage in garbage out. This involves feature engineering
 - Feature selection: selecting the most useful features to train on among existing features
 - Feature extraction: Combining features to produce a more useful one (dimensionality reduction)
 - Creating new features by gathering new data

Examples of bad algorithms

- Overfitting the training data: This means the model performs well on the training data, but does not generalize well
- The figure below is a high-degree polynomial life satisfaction model that strongly overfits the training data
 - Would you trust its predictions?

Examples of bad algorithms

- Underfitting the training data: Your model is too simple to learn the underlying structure of the data
 - A linear model of life satisfaction is prone to underfit. Reality is just more complex than the model.
 - How to solve this problem:
 - Select a more powerful model, with more parameters
 - Feeding better features to the learning algorithm (feature engineering)
 - Reducing the constraints on the model

Stepping Back

- Machine learning is about *making machines get better at some task* by *learning from data*, instead of having to explicitly code rules
- There are many different types of machine learning systems: supervised or not, batch or online, instance-based or model-based, etc.
- In a ML project you gather data in a training set, and you feed the training set to a learning algorithm
- The system will not perform well if your *training set is too small*, or if the *data is not representative*, *noisy*, *or polluted with irrelevant features*
- Lastly, your model needs to be neither too simple nor too complex

Testing and Validating

- The only way to know how well a model will generalize to new cases is to try it out on new cases
- We can put our model into production and see how it does
- Better idea: Split your training data into two sets the training set and the test set

Now to start learning the Scikit-Learn Library