Control de un rabat movil Con el µL ESP32

tallerrobotica.fi@gmail.com

DÍA 2: **GPIO, SENSORES EXTERNOS**

Contenido:

- GPIO
 - Entradas y salidas digitales
 - Entradas y salidas analógicas
- Sensores externos
 - Resistivos
 - Analógicos
 - Digitales

GPIO

General Purpose Input/Output

Entrada/Salida de Propósito General

ocumentation/esp32-wroom-32 datasheet en.pdf

Tech Explorations

from the lecture page.

General Purpose Input/Output Entrada/Salida de Propósito General

Salidas digitales

Salidas digitales

Ejemplo 1: KITT


```
pinMode(pin, OUTPUT);
```

```
digitalWrite(pin, HIGH);
digitalWrite(pin, LOW);
```

Salidas digitales: PWM

- Todos los GPIO pueden utilizarse.
- Se tienen máximo 16 canales.
- Se puede modificar la frecuencia y la resolución.

ledcSetup(canal, frecuencia, bits de resolución);

- Canal: 0-15
- Frecuencia hasta 12 kHz
- bits hasta 12

ledcWrite(canal, brillo);

Ejemplos:

D2_02_Digital_output_PWM
D2_03_Digital_output_PWM_4_LEDs
D2_04_Digital_output_PWM_RGB

• Todos los GPIO pueden utilizarse.

```
pinMode(pin, INPUT);
digitalRead(pin);
```

Ejemplos:D2 05 Digital input h

D2_05_Digital_input_button

Entradas analógicas

Entradas analógicas (ADC)

- Se pueden usar 18 canales
 - ADC1 con 8 canales (GPIO 32 39)
 - ADC2 con 10 canales (GPIO 0, 2, 4, 12 15 y 25 - 27)
- Si se usa WiFi, no se puede utilizar ADC2
- Resolución 12 bits (0 4095)

analogRead(pin);

Ejemplos:

D2_06_Analog_input_pot D2_07_Analog_input_pot_LED

Salidas analógicas (DAC)

- 2 pines tipo Convertidor Digital a Analógico
- 8 bits de resolución

dacWrite(25 - 26, 0 - 255);

Ejemplos:

D2_08_DAC D2_09_Pot_DAC

Sensores

Un sensor es un objeto capaz de variar una propiedad ante magnitudes físicas o químicas, llamadas variables de instrumentación, y transformarlas con un transductor en variables eléctricas.

Variables eléctricas

- Resistencia eléctrica
- Capacitancia
- Diferencia de potencial
- Corriente eléctrica

Sensor de señal Analógica

Sensor infrarrojo de proximidad Sharp

DATASHEET

Ejemplo arduin

Fig.5 Analog Output Voltage vs. Distance to Reflective Object

CARACTERÍSTICAS

Se alimenta a 5V la salida va hasta 3.1V

/	signal name
1	Vo
2	GND
3	Voc

Connector:

Shenglan Technology Co.,Ltd (JCTC) 12001W90-3P-HF

Materials

Lens :Acrylic acid resin

(Visible light cut-off resin)

Case :Carbonic ABS (Conductive resin)

PWB :Paper phenol