I/O-Algorithms

Lars Arge

Fall 2015

September 29, 2015

Parameters

N = # elements in problem instance

B = # elements that fits in disk block

M = # elements that fits in main memory

T = # output size in searching problem

- We often assume that $M>B^2$
- I/O: Movement of block between memory and disk

Fundamental Bounds

Internal

• Scanning: N

• Sorting:
$$N \log N$$

• Permuting N

• Searching:
$$\log_2 N$$

External

$$\frac{N}{B}$$

$$\frac{N}{B}\log_{M_B}\frac{N}{B}$$

$$\min\{N, \frac{N}{B}\log_{M_B}\frac{N}{B}\}$$

$$\log_B N$$

Fundamental Data Structures

- B-trees: Node degree $\Theta(B) \Rightarrow$ queries in $O(\log_B N + T/B)$
 - Rebalancing using split/fuse \Rightarrow updates in $O(\log_R N)$
- Weight-balanced B-tress: Weight rather than degree constraint
 - $\Rightarrow \Omega(w(v))$ updates below v between rebalancing operations on v
- Persistent B-trees:
 - Update in current version in $O(\log_B N)$
 - Search in all previous versions in $O(\log_B N + T/B)$
- Buffer trees
 - Batching of operations to obtain $O(\frac{1}{B}\log_{M/B} \frac{N}{B})$ bounds
 - $\Rightarrow O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ construction algorithms

Interval Management

- Problem:
 - Maintain N intervals with unique endpoints dynamically such that stabbing query with point x can be answered efficiently

- As in (one-dimensional) B-tree case we are interested in
 - $-O(\frac{N}{B})$ space
 - $-O(\log_B N)$ update
 - $-O(\log_B N + T/B)$ query

Interval Management: Static Solution

- Sweep from left to right maintaining persistent B-tree
 - Insert interval when left endpoint is reached
 - Delete interval when right endpoint is reached

- Query x answered by reporting all intervals in B-tree at "time" x
 - $-O(\sqrt[N]{B})$ space
 - $-O(\log_B N + T/B)$ query
 - $-O(\frac{N}{B}\log_{M_R}\frac{N}{B})$ construction using buffer technique

- Base tree on endpoints "slab" X_v associated with each node v
- Interval stored in highest node v where it contains midpoint of X_v
- Intervals I_v associated with v stored in
 - Left slab list sorted by left endpoint (search tree)
 - Right slab list sorted by right endpoint (search tree)
 - \Rightarrow Linear space and $O(\log N)$ update (assuming fixed endpoint set)

- Query with x on left side of midpoint of X_{root}
 - Search left slab list left-right until finding non-stabbed interval
 - Recurse in left child
- $\Rightarrow O(\log N + T)$ query bound

Externalizing Interval Tree

- Natural idea:
 - Block tree
 - Use B-tree for slab lists
- Number of stabbed intervals in large slab list may be small (or zero)
 - We can be forced to do I/O in each of $O(\log N)$ nodes

Externalizing Interval Tree

• Idea:

- Decrease fan-out to $\Theta(\sqrt{B}) \Rightarrow$ height remains $O(\log_B N)$
- $-\Theta(\sqrt{B})$ slabs define $\Theta(B)$ multislabs
- Interval stored in two slab lists (as before) and one multislab list
- Intervals in small multislab lists collected in underflow structure
- Query answered in v by looking at 2 slab lists and not $O(\log B)$

- Base tree: Weight-balanced B-tree with branching parameter $\frac{1}{4}\sqrt{B}$ and leaf parameter B on endpoints
 - Interval stored in highest node v where it contains slab boundary
- Each internal node *v* contains:
 - Left slab list for each of $\Theta(\sqrt{B})$ slabs
 - Right slab lists for each of $\Theta(\sqrt{B})$ slabs
 - $-\Theta(B)$ multislab lists
 - Underflow structure

- Left slab list of slab containing left endpoint
- Right slab list of slab containing right endpoint
- Widest multislab list it spans
- If < B intervals in multislab list they are instead stored in underflow structure (\Rightarrow contains $\le B^2$ intervals)

- Each leaf contains < B/2 intervals (unique endpoint assumption)
 - Stored in one block
- Slab lists implemented using B-trees
 - $-O(1+\frac{T_{\nu}}{B})$ query
 - Linear space
 - * We may "wasted" a block for each of the $\Theta(\sqrt{B})$ lists in node
 - * But only $\Theta(\frac{N}{B\sqrt{B}})$ internal nodes
- Underflow structure implemented using static structure

$$-O(\log_B B^2 + \frac{T_v}{B}) = O(1 + \frac{T_v}{B})$$
 query

Linear space

• Linear space

- Query with *x*
 - Search down tree for x while in node v reporting all intervals in I_v stabbed by x

- In node v
 - Query two slab lists
 - Report all intervals in relevant multislab lists
 - Query underflow structure

- Analysis:
 - Visit $O(\log_B N)$ nodes
 - Query slab lists
 - Query multislab lists
 - Query underflow structure

$$O(1+\frac{T_{\nu}}{B}) \Rightarrow O(\log_B N + \frac{T}{B})$$

- Update ignoring base tree update/rebalancing:
 - Search for relevant node
 - Update two slab lists
- $O(\log_B N)$
- Update multislab list or underflow structure

- Update of underflow structure in O(1) I/Os amortized:
 - Maintain update block with $\leq B$ updates
 - Check of update block adds O(1) I/Os to query bound
 - Rebuild structure when *B* updates have been collected using $O(\frac{B^2}{B}\log_B B^2) = O(B)$ I/Os (Global rebuilding)

Update in $O(\log_B N)$ I/Os amortized

• Note:

- Insert may increase number of intervals in underflow structure for some multislab to B
- Delete may decrease number of intervals in multislab to B

Need to move B intervals to/from multislab/underflow structure

- We only move
 - Intervals from multislab list when decreasing to size B/2
 - Intervals to multislab list when increasing to size B

O(1) I/Os amortized used to move intervals

Base Tree Update

• Before inserting new interval we insert new endpoints in base tree

using $O(\log_B N)$ I/Os

Leads to rebalancing using splits

Boundary in *v* becomes boundary

in *parent*(v)

Intervals need to be moved

- Move intervals (update secondary structures) in O(w(v)) I/Os
 - \Rightarrow O(1) amortized split bound (weight balanced B-tree)
 - $\Rightarrow O(\log_R N)$ amortized insert bound

Splitting Interval Tree Node

- When v splits we may need to move O(w(v)) intervals
 - Intervals in *v* containing boundary
 - Intervals in parent(v) with endpoints in X_v containing boundary

Intervals move to two new slab and multislab lists in parent(v)

Splitting Interval Tree Node

- Moving intervals in v in O(w(v)) I/Os
 - Collect in left order (and remove) by scanning left slab lists
 - Collect in right order (and remove) by scanning right slab lists
 - Remove multislab lists containing boundary
 - Remove from underflow structure by rebuilding it
 - Construct lists and underflow structure for v' and v'' similarly

Splitting Interval Tree Node

- Moving intervals in parent(v) in O(w(v)) I/Os
 - Collect in left order by scanning left slab list
 - Collect in right order by scanning right slab list
 - Merge with intervals collected in $v \Rightarrow$ two new slab lists
 - Construct new multislab lists by splitting relevant multislab list
 - Insert intervals in small multislab lists in underflow structure

- Split in O(1) I/Os amortized
 - Space: O(N/B)
 - Query: $O(\log_B N + T/B)$
 - Insert: $O(\log_R N)$ I/Os amortized

- Deletes in $O(\log_R N)$ I/Os amortized using global rebuilding:
 - Delete interval as previously using $O(\log_B N)$ I/Os
 - Mark relevant endpoint as deleted
 - Rebuild structure in $O(N \log_B N)$ after N/2 deletes

Note: Deletes can also be handled using fuse operations

- External interval tree
 - Space: O(N/B)
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_R N)$ I/Os amortized

- Removing amortization:
 - Moving intervals to/from underflow structure
 - Delete global rebuilding
 - Underflow structure update
 - Base node tree splits

- Interference
- Queries

Summary/Conclusion: Interval Management

- Interval management corresponds to simple form of 2d range search
 - Diagonal corner queries
- We obtained the same bounds as for the 1d case
 - Space: O(N/B)
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$ I/Os

Summary/Conclusion: Interval Management

- Main problem in designing structure:
 - Binary \rightarrow large fan-out
- Large fan-out resulted in the need for
 - Multislabs and multislab lists
 - Underflow structure to avoid O(B)-cost in each node
- General solution techniques:
 - Filtering: Charge part of query cost to output
 - Bootstrapping:
 - * Use $O(B^2)$ size structure in each internal node
 - * Constructed using persistence
 - * Dynamic using global rebuilding
 - Weight-balanced B-tree: Split/fuse in amortized O(1)

Three-Sided Range Queries

• Interval management: "1.5 dimensional" search

- More general 2d problem: Dynamic 3-sidede range searching
 - Maintain set of points in plane such that given query (q_1, q_2, q_3) , all points (x,y) with $q_1 \le x \le q_2$ and $y \ge q_3$ can be found efficiently

Three-Sided Range Queries

- Report all points (x,y) with $q_1 \le x \le q_2$ and $y \ge q_3$
- Static solution:
 - Sweep top-down insertingx in persistent B-tree at (x,y)
 - Answer query by performing range query with $[q_1,q_2]$ in B-tree at q_3

- -O(N/B) space
- $-O(\log_B N + T/B)$ query
- $-O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ construction
- Dynamic? ... in internal memory: priority search tree

- Base tree on x-coordinates with nodes augmented with points
- Heap on *y*-coordinates
 - Decreasing y values on root-leaf path
 - -(x,y) on path from root to leaf holding x
 - If v holds point then parent(v) holds point

- Linear space
- Insert of (x,y) (assuming fixed x-coordinate set):
 - Compare y with y-coordinate in root
 - Smaller: Recursively insert (x,y) in subtree on path to x
 - Bigger: Insert in root and recursively insert old point in subtree

 $\Rightarrow O(\log N)$ update

- Query with (q_1, q_2, q_3) starting at root v:
 - Report point in v if satisfying query
 - Visit both children of v if point reported
 - Always visit child(s) of v on path(s) to q_1 and q_2

 $\Rightarrow O(\log N + T)$ query

- Natural idea: Block tree
- Problem:
 - $-O(\log_B N)$ I/Os to follow paths to to q_1 and q_2
 - But O(T) I/Os may be used to visit other nodes ("overshooting")
 - $\Rightarrow O(\log_B N + T)$ query

- Solution idea:
 - Store B points in each node \Rightarrow
 - * $O(B^2)$ points stored in each supernode
 - * B output points can pay for "overshooting"
 - Bootstrapping:
 - * Store $O(B^2)$ points in each supernode in static structure

- Base tree: Weight-balanced B-tree with branching parameter *B/4* and leaf parameter *B* on *x*-coordinates
- Points in "heap order":
 - Root stores B top points for each of the $\Theta(B)$ child slabs
 - Remaining points stored recursively
- Points in each node stored in "B²-structure"
 - Persistent B-tree structure for static problem

 $\downarrow \downarrow$

Linear space

- Query with (q_1, q_2, q_3) starting at root v:
 - Query B^2 -structure and report points satisfying query
 - Visit child *v* if
 - * v on path to q_1 or q_2
 - * All points corresponding to v satisfy query

• Analysis:

- $-O(\log_B B^2 + \frac{T_v}{B}) = O(1 + \frac{T_v}{B})$ I/Os used to visit node v
- $-O(\log_B N)$ nodes on path to q_1 or q_2
- For each node v not on path to q_1 or q_2 visited, B points reported in parent(v)

$$O(\log_B N + T/B)$$
 query

- Insert (x,y) (ignoring insert in base tree rebalancing):
 - Find relevant node *u*:
 - * Query B^2 -structure to find B points in root corresponding to node u on path to x
 - * If y smaller than y-coordinates of all B points then recursively search in u

- Insert (x,y) in B^2 -structure of v
- If B^2 -structure contains >B points for child u, remove lowest point and insert recursively in u
- Delete: Similarly

• Analysis:

- Update visits $O(\log_B N)$ nodes
- $-B^2$ -structure queried/updated in each node
 - * One query
 - * One insert and one delete
- B^2 -structure analysis:
 - Query: $O(\log_B B^2 + B/B) = O(1)$
 - Update: O(1) using global rebuilding
 - * Store updates in update block

 \downarrow

 $O(\log_B N)$ I/O updates

Dynamic Base Tree

• Deletion:

- Delete point as previously
- Delete *x*-coordinate from base tree using global rebuilding
- $\Rightarrow O(\log_B N)$ I/Os amortized

• Insertion:

- Insert *x*-coordinate in base tree
 and rebalance (using splits)
- Insert point as previously

• Split: Boundary in v becomes boundary in parent(v)

Dynamic Base Tree

- Split: When v splits B new points needed in parent(v)
- One point obtained from v'(v'') using "bubble-up" operation:
 - Find top point p in v'
 - Insert p in B^2 -structure
 - Remove p from B^2 -structure of v'
 - Recursively bubble-up point to v'
- Bubble-up in $O(\log_B w(v))$ I/Os
 - Follow one path from v to leaf
 - Uses O(1) I/O in each node

Split in $O(B \log_B w(v)) = O(w(v))$ I/Os

Dynamic Base Tree

- O(1) amortized split cost:
 - Cost: O(w(v))
 - Weight balanced base tree: $\Omega(w(v))$ inserts below v between splits

 \downarrow

- External Priority Search Tree
 - Space: O(N/B)
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$ I/Os amortized

- Amortization can be removed from update bound in several ways
 - Utilizing lazy rebuilding

Summary/Conclusion: Priority Search Tree

- We have now discussed structures for special cases of two-dimensional range searching
 - Space: O(N/B)
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$

- Cannot be obtained for general (4-sided) 2d range searching:
 - $-O(\log_B^c N)$ query requires $\Omega(\frac{N}{B} \frac{\log_B N}{\log_B \log_B N})$ space
 - $-O(\frac{N}{B})$ space requires $\Omega(\sqrt{N/B})$ query

References

• External Memory Geometric Data Structures

Lecture notes by Lars Arge.

- Section 6-7