Self-Sustained Penrose Excitation of Accretion Disks: A Spin-Regulated Mechanism for Super-Eddington Quasar Luminosities

Jun Wakabayashi¹

¹Independent Researcher, Japan

ABSTRACT

Quasars often radiate at several to ten times the Eddington limit of their central SMBHs. We propose a self-sustained, equatorial Penrose-like excitation that operates at the ISCO–ergoregion interface just outside the horizon as the spin approaches unity $(a_* \to 1)$. Even modest effective coupling $(\epsilon_{\text{coup}} \sim 10^{-2}-10^{-1})$ yields on average $2-3\times L_{\text{Edd}}$, with occasional $5-10\times$ episodes when the dissipation footprint is extended and transparent $(R_{\text{eff}} \sim 10^2-10^3 \, r_g)$. We adopt a phenomenological framework and do not fix the microphysics; the results depend on a small set of effective parameters (plotted luminosities are *isotropic-equivalent* unless noted). Crucially, the mechanism is confined to the ergoregion and equatorial disk—i.e., it is horizon-exterior and therefore empirically testable; we provide observational hooks and explicit falsification criteria.

Keywords: accretion, accretion disks — black hole physics — quasars: general