Ohmscher Trik: $R = \frac{U}{I} [R] = 1\Omega \frac{V}{I}$ Leitwert: $G = \frac{1}{D} [G]^2 = 1S$ Reihe Widerstände: I konst. $U_{ges} = U_1 + U_2 + ... + U_n$ Spannungsteiler: $\frac{\overline{U}_1}{U_2} = \frac{R_1}{R_2}$ oder

 $U_2 = U * \frac{R_2}{R_1 + R_2}$

Parallel Widerstände:

$$\begin{split} &I_{ges} = I_1 + I_2 + \ldots + I_n \text{ , U konstant} \\ &\frac{1}{R_{ges}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots \right. \\ &+ \frac{1}{R_n} \\ &\text{Stromteiler: } \frac{I_1}{I_2} = \frac{R_2}{R_1} \text{ , } I_2 = I * \frac{R_1}{R_1 + R_2} \end{split}$$

Gesamtwiderstand kleiner dem kleinsten Einzelwiderstand!

Elektrische Leistung: P = U * I, $P = \frac{W_{gs}}{T}$. [P] = 1W = 1VA

Elektrische Arbeit: $W_{al} = U * I * t$,

 $W_{cl} = U * O \text{ (weil } O = I * t \text{)}$

Maschensaas: Die Summe der Spannungen einer Masche ist 0

Knotensaas: Die Summe der Ströme in

einem Knoten ist 0

Maschenstromverfahren: Maschen wählen, sodass gesuchtes nur in einer Masche ist, dann LGS lösen. Ax = B mit x als Vektor mit I und B als

Vektor mit den Maschenspannungen

Grundstromk.: Klemmspannung U_0 ,

passiver Zweipol ist Verbraucher, aktiver ist Quelle.

Leitungen:

Lettingen:
$$U_h(0,t) = k_o * U_{q1}(t) \text{ (0 Anfang der Leitung)}$$

$$U_1(t) = k_a * U_1(s1,t) \text{ (nach dem auskoppeln, zb vor Gatter)}$$

$$U_h(s1,t) = U_h(0,t-\Delta t) = k_0 * U_{q1}(t-\Delta t) \text{ (Ende der Leitung)}$$

Elektrisches Feeeef:

$$\begin{split} E &= \frac{U}{d} \text{ (homogenes Feld)} \\ F &= \mathcal{Q}*E \text{ (homog. Kraft auf Ladung)} \\ E &= \frac{D}{\varepsilon} = \frac{\mathcal{Q}}{\varepsilon A} \\ \text{Feldlinien pos->neg, E bestimmt Dichte} \\ E &= \frac{\mathcal{Q}}{4\pi\varepsilon r_{p}^{2}} \text{ (Feld um Punktladung)} \end{split}$$

$$U_{AB} = \int_{A}^{B} E * ds = \frac{W_{AB}}{Q}$$
 (Spannung, el.

Potential)

Strömungsfeld:

 $D = \varepsilon * E$ (Verschiebungsflussdichte) Feldlinien pos->neg, abh. von Q und A $S = \kappa E$ (Stromdichte), κ Leitfähigkeit $S = \frac{I}{4}$ $v = \frac{S}{P} = \frac{1}{0*A}$ (Elektronen im Leiter)

Magnetfeld:

 $H = \frac{I}{2 \cdot \pi \cdot r}$ (Eindrahtleitung, Feldstärke) $B = \mu * H$ (Magnetische Flussdichte) $[B] = 1 \frac{kg}{4s^2} = 1 \frac{N}{4m} = 1 \frac{Vs}{m^2} = 1T$ $B = \mu * N * \frac{I}{I}$ (Spulenflussdichte) $\frac{U_2}{II_1} = \frac{N_2}{N_1} \text{(Trafo)}$ $Q = \rho * V$ (Ladung pro Volumen) F = O * v * B (Kraft auf Leiter)

Schwingkreis:

 $f_0 = \frac{1}{2\pi\sqrt{LC}}$ (Spule und Kondensator)

Wellenwiderstand:

Verhältnis Strom-/

Spannungsausbreitung, $R_W = \sqrt{\frac{L'}{C'}}$

Koaxialkabel:

$$D = \frac{Q}{2 \cdot \pi r \cdot l}$$

$$C' = \frac{C}{S} = \frac{2\pi \epsilon_0 \epsilon_r}{ln(\frac{da}{d_i})} \quad L' = \frac{L}{a}$$

$$c_m = \frac{1}{\sqrt{L'C'}} = \frac{c_0}{\sqrt{\epsilon_R \mu_R}} \Rightarrow \sqrt{L'} = \frac{\sqrt{\epsilon_R \mu_R}}{c_0 \sqrt{C'}}$$

$$R_W = \frac{\sqrt{\epsilon_R \mu_R}}{c_0 \cdot C'} = \frac{\sqrt{\mu_R \cdot ln(\frac{da}{d_i})}}{2c_0 \cdot \pi \cdot \epsilon_0 \cdot \sqrt{\epsilon_R}}$$

$$E(r) = \frac{Q}{2 \cdot \pi \cdot r \cdot l \cdot \epsilon}$$

$$U = \frac{Q}{2 \cdot \pi \cdot r \cdot l \cdot \epsilon} ln \frac{r_2}{r_1}, \epsilon = \epsilon_0 \epsilon_r$$

Matrix invertieren:

$$A^{-1} = \frac{1}{\det(A)} * A^{T}$$

Kondensator:

Kapazität:

$$C = \frac{Q}{U}$$
, $[C] = F = \frac{1As}{1V}$

Feld: $E = \frac{1}{2} * C * U^2$ (Plattenkond.) Q = D * A (Für eine Platte mit Q. A)

Strom:
$$I = C * \frac{dUc}{dt}$$

Wenn eingeschwungen: $I_c = 0$

$$U_c(t) = K_1 + K_2 * e^{\frac{-(t-t_0)}{\tau}}$$

$$U_c(t_0) = K_1 + K_2$$

$$U_c(\infty) = K_1$$

Bei konstantem Strom (Stromguelle): $U_c(t) = \frac{1}{C} * I * (t - t_0) + U_c(t_0);$ $t \sim 3\tau$ (~ Auflade / Entladezeit)

$$W_R = \int P_R(t)dt \operatorname{mit} P_r(t) = U_R^2/R$$

Auf-/ Entladung über R1:

$$R_{1,U_{R1}}(t) = U_b * e^{-t/\tau}$$

$$W_{R1} = \int_{0}^{\infty} \frac{U_{R1(t)}^{2}}{R_{1}} dt = \frac{1}{2}C * U_{b}^{2}$$

Zyklus (Auf UND Entladung) dann das * 2, d. h. $W_{ges} = C * U_h^2$ Verlustleistung:

$\overline{P} = W_{ges}/T = \widetilde{C} * U_h^2 * f$

Hochpass:

Bei Tiefpass R und C vertaushiit

Optische Leitung:

 $c = \lambda * f$, Lichtleistung:

$$L_p(\lambda) = 10 * lg(\frac{P_e}{P_a})(dB)$$

$$L_u(\lambda) = 20 * lg(\frac{Ue}{Ua})(dB)$$

$$P_a = \frac{P_e}{10^{\frac{L_p(\lambda)}{10dB}}}, L_p(\lambda) = \alpha * s$$

Elektrische Leitung:

Leitungseinkopplung:

$$k_0 = \frac{R_w}{R_w + R_i}$$
 - Anpassung: $R_i = R_w$

Leitungsauskopplung:
$$k_a = 1 + r_a = 1 + \frac{R_a - R_w}{R_a + R_w}$$

Mosfeef:

N-Kanal sperrt bei: $U_{GS} < U_t$,

P-Kanal sperrt bei:

 $U_{GS} > U_t$ N-Kanal: T.

Stromrichtung Drain -> Source, $U_{SD} < 0$

P-Kanal: Source ->

Drain, $U_{SD} > 0$

 I_{E} (Eingangsstrom am Gate) IMMER 0!

Subthreshold / Sperrbereich (n):

 $I_D = 0, \ U_{GS} < U_t$

Aktiver Bereich (n-Kanal):

$$I_D = \beta * ((U_{GS} - U_t) * U_{DS} - \frac{1}{2} * U^2_{DS})$$

$$U_{DS} \le U_{GS} - U_t$$

Pinch-off-Bereich (Einschnürbereich,

N-Kanal):

$$I_D = \frac{1}{2} * \beta * (U_{GS} - U_t)^2, \ U_{DS} > U_{GS} - U_t$$
 Bei P-Mos Negativ davor.

Erst Pinch-Off testen! Sperrend n-Kanal:

Konstante: $\beta = \frac{b}{l}$ (Kanalbreite / Läng)

Periodendauer: $T = 2 * (t_1 - t_0)$

Mealey-Automat: Mit Ein- und Ausgabe pro Kante, Moore-Automat: Nur Eingabezeichen pro Kante, Ausgabe hängt nur vom Zustand ab sonst Autonomer Autom.

Nichtinvertierender OPV:

$$V_u = \frac{R_1 + R_2}{R_1} = 1 + \frac{R_2}{R_1}$$

 $V_u = \frac{U_a}{U_E} \ge 1$; $R_i \sim \infty$, $R_a = 0$

Invertierender OPV:

p-Kanal

Impedanzwandler bei $R_2 = R_1 = 0\Omega$ S = virtuelle Masse; $U_s = 0V$ Ideal: $V_D = \infty$, $V_G = 0$, $R_a = 0$

$$V_u = \frac{U_a}{U_e} = -\left(\frac{R_2}{R_1}\right)$$

Eingangswiderstand: $R_e = \frac{U_e}{I_e} = R_1$ (ideal: unendlich)

Addierer:

Schmitt-Triager:

Entgegenwirken von Dispersion, Entprellen von Schaltern

De-Morgan:

$$\overline{AB} = \overline{A} + \overline{B}, \overline{A+B} = \overline{A} * \overline{B}$$

$$ab = \overline{A+B}, a+b = \overline{A} * \overline{B}$$

DNF zu KNF durch ablesen der Terme bei v = 0 und einmalige Negation Bei KV Diagramm Potenzen von 2 zusammenfassen

$$I_C(t) = C \frac{dU_C(t)}{dt}$$

$$U_A(t) = U_A(t_0) - \frac{1}{R \cdot C} \int_{t_0}^t U_E(\tau) d\tau$$

Differenzier-Schaltung (invertierend)

$$U_A(t) = -R \cdot C \frac{dU_E(t)}{dt}$$

Mealy-Automat:

Moore-Automat:

Substrahier-Schaltung

$$U_A = \frac{1}{2} \cdot (U_{E2} - U_{E1})$$

Schmitt-Trigger (invertierend)

$$U_A = \left\{ \begin{array}{ll} U_{Amax} & \textit{für} & U_E < U_{SL} & = & \frac{R_1}{R_1 + R_2} \cdot U_{Amin} \\ \\ U_{Amin} & \textit{für} & U_E > U_{SH} & = & \frac{R_1}{R_1 + R_2} \cdot U_{Amax} \end{array} \right.$$

Aufladung Kondensator:
$$U_a(t) = k_1 + k_2(1 - e^{\frac{-t-t_0}{R*C}}) \, \text{k1 start, k2 d(max)}$$

$$U_a(t) = (e^{\frac{-t-t_0}{R*C}}) \, \text{k2 Startzustand}$$

Übergang		SR-FF		JK-FF		D-FF	T-FF
Q -	$\rightarrow Q^+$	S	R	J	K	D	T
0	0	0	\boldsymbol{X}	0	X	0	0
0	1	1	0	1	X	1	1
1	0	0	1	X	1	0	1
1	1	X	0	X	0	1	0

RS-Basisflipflop (NAND, NOR), Asynchron:

Taktzustandsgesteuert / -1-Flanken:

Wahrheitstabelle (taktflankengesteuertes JK-Flip-Flop)

С	K	J	Q ₁	Q ₂	Funktion
0 > 1	0	0	n	n	Speichern
0 > 1	0	1	1	0	Setzen
0 > 1	1	0	0	1	Rücksetzen
0 > 1	1	1	Х	X	Wechseln (Toggeln)

Dispersion: Zerstreuung - Wellen unterschiedlicher Wellenlängen breiten sich auf Leitungen unterschiedlich schnell aus (hohe Frequenz -> langsamer). Rechtecksignal - Zusammengesetzt aus Sinussignalen -> Bei Dispersion unterschiedlich schnell

Dämpfung: Minderung der Signalenergie beim Durchlaufen der Leitung (hohe f -> hohe Dämpfung)

Kurzzeichen	Name	Potenz
G	Giga	10 ⁹
М	Mega	10 ⁶
k	Kilo	10 ³
d	Dezi	10-1
С	Centi	10-2
m	Milli	10^{-3}
μ	Mikro	10^{-6}
n	Nano	10^{-9}
Р	Pico	10-12

Dreieck am Clock: Taktflankengesteuert Schalttabelle: Eingabe, FlipFlop-Werte und FlipFlop-Parameter links, rechts Ausgabe und neue FlipFlop-Zustände

Maßeinheiten:

Physikalische Größe	Formelzeichen	Maßeinheit	
Frequenz	f, ν	$\frac{1}{s} = Hz$	Hertz
Kreisfrequenz	ω	rad	
Geschwindigkeit	v	$\frac{\vec{m}}{s}$	
Beschleunigung	a	m -2	
Kraft	\boldsymbol{F}	$kg \cdot \frac{m}{s^2} = N$	Newton
Druck	p	$rac{\overset{}{kg}}{ms^2} = \overset{s^*}{m^2} = Pa$ $kg \cdot \frac{m^2}{s_2^2} = Nm = J$	Pascal
Arbeit, Energie	W, E	$kg \cdot \frac{m^2}{s^2} = Nm = J$	Joule
Leistung	P	$kg \cdot \frac{m^2}{s^3} = W$	Watt
Wärme	Q	$kg \cdot \frac{m^2}{r^2} = Nm = J$	Joule
elektrische Ladung	Q_e	$A \cdot s = C$	Coulomb
elektrische Spannung	U	$\frac{kgm^2}{\Lambda s^3} = \frac{W}{\Lambda} = V$	Volt
elektrischer Widerstand	R	kgm² V O	Ohm
Kapazität	C	$\frac{s^4 A^2}{kom^2} = \frac{C}{V} = F$	Farad
magnetische Induktion	\boldsymbol{B}	$\frac{\kappa g}{4\pi^2} = T$	Tesla
Induktivität	L	$\frac{\frac{kgm^2}{s^2A^2}}{H} = H$	Henry
Lichtstärke	L	cd	Candela
Energiedosis	D	$\frac{m^2}{\epsilon^2} = Gy$	Gray
Aktivität	A	$\frac{f}{s} = Bq$	Bequerel

Konstanten:

$$\begin{split} c &= 2,998*10^{8}\frac{m}{s} \text{(Vakuum, Leitung ca. 2*...)} \\ e &= 1,602*10^{-19} As \text{ (Elementarladung)} \\ h &= 6,626*10^{-34} Js \text{(Plancksches Quantum)} \\ \varepsilon_0 &= 8,854*10^{-12} \frac{As}{Vm} \text{(Elektrische Feldk.)} \\ \mu_0 &= 4*\pi*10^{-7} \frac{Vs}{Am} \text{ (Magnetische Feldk.)} \end{split}$$