Lecture 7: Identification of Causal Effects Under Treatment Ignorability

Outline of Next 3 Lectures:

- Bias in observational regression
- Discussion of treatment ignorability assumption
- Examples with simulated data
- Identification of ATE under treatment ignorability
- Application: effect of ITQ adoption on the probability of fishery collapse
- Readings: A&P Chapter 3 (especially sections 3.2 and 3.3),
 I&W Lecture 1

Recall the Rubin Causal Model

- $Y_i(0)$ = potential outcome for unit i if untreated $Y_i(1)$ = potential outcome for unit i if treated $T_i = 1$ if unit i treated, 0 if not
- We observe (Y_i, T_i) , where Y_i is the observed outcome:

$$Y_{i} = Y_{i}(1)T_{i} + Y_{i}(0)(1 - T_{i})$$

$$= E[Y_{i}(0)] + [Y_{i}(1) - Y_{i}(0)]T_{i} + [Y_{i}(0) - E(Y_{i}(0))]$$

$$= \beta_{0} + \beta_{1i}T_{i} + u_{i}$$

OLS regression in an observational study

$$Y_i = \beta_0 + \beta_1 T_i + u_i$$
 When T_i not randomly assigned, it is potentially correlated with $\hat{\beta}_1 \xrightarrow{p} E[Y_i \mid T_i = 1] - E[Y_i \mid T_i = 0]$
$$= E[Y_i(1) \mid T_i = 1] - E[Y_i(0) \mid T_i = 0] \qquad \pm E[Y_i(0) \mid T_i = 1]$$
 we cannot pull T_i from expectations

$$= E[Y_i(1) - Y_i(0) | T_i = 1] + \{E[Y_i(0) | T_i = 1] - E[Y_i(0) | T_i = 0]\}$$

$$= ATT + bias$$

- □ Observational regression of Y on T converge to ATT + bias
- Bias term arises because treated individuals differ from nontreated individuals in the non-treated state of the world
 - Ex: the wage of college dropouts is not a good counterfactual for wage of college grads if they had not gone to college

Identification of causal effects under "treatment ignorability" assumption

- Assumption of "treatment ignorability" conditional on <u>pre-treatment</u> characteristics X_i (Rubin and Rosenbaum 1983)
 - Sometimes labeled "conditional independence assumption" or "unconfoundedness" or "selection on observables"):

$$T_i \perp (Y_i(0), Y_i(1)) | X_i$$

- Combined with a <u>common support assumption</u>, we can identify
 ATE and ATT under assumption of treatment ignorability
- Most of the empirical literature falls under this assumption
 - Treatment ignorability is a strong assumption in most cases, and not always a realistic assumption, but often there is no better alternative

Interpretation of treatment ignorability

- Conditional on the vector of baseline (<u>pre-treatment</u>)
 covariates X_i, T_i is statistically independent of potential outcomes
 - "T_i ≈ randomly assigned conditional on X_i"
 - Put another way, the distribution of the potential outcomes (Y_{0i},Y_{1i}) is the same across levels of the treatment variable T_i once we condition on X_i
- The key will be to determine if "treatment ignorability" is credible, on an application-by-application basis
 - ■1: Do we know the selection/treatment assignment rule?
 - 2: Do we have all the relevant pre-treatment covariates?
 - ** Often there is no treatment assignment rule per se (ex: MPA designation), so how do we chose the covariates then?
 - ■3: Is there overlap in X distribution over T=1 and T=0?
 - ■4: How do we adjust for X? Linear regression, matching, blocking

Simple model of treatment ignorability

Consider the following treatment assignment rule as a function of some pre-treatment covariates X_{1i} and X_{2i}

$$T_{i}^{*} = X_{1i}\pi_{1} + X_{2i}\pi_{2} + v_{i}$$
$$T_{i} = 1(T_{i}^{*} > 0)$$

- □ ⇒ The treatment is ignorable if v_i is independent of potential outcomes $(Y_i(0), Y_i(1))$
- Importance of v_i : without it there is no "experiment", i.e. conditional on X_{1i} and X_{2i} , random variable v_i is what randomly assigns units to $T_i=0$ or $T_i=1$
- □ What is v_i in your application of treatment ignorability?

Example: Simulated data

To help illustrate some of the methods, we use this simple model of potential outcomes and pre-treatment covariates:

$$N = 30,000$$

 $X_i = \{1,2,3,4,5\}$, each with 20% probability

$$Y_i(0) = \mu_0(X_i) + \varepsilon_{0i}$$

$$Y_i(1) = \mu_1(X_i) + \varepsilon_{1i}$$

Assume $(\varepsilon_{0i}, \varepsilon_{1i}) \sim \text{Bivariate Normal}(0,0,1,1,0.8)$

$$\mu_0(X_i) = 0.5*1(X=1) + 1*1(X=2) + 1.5*1(X=3) + 2*1(X=4) + 2.5*1(X=5)$$

$$\mu_1(X_i) = 1*1(X=1) + 2*1(X=2) + 3*1(X=3) + 4*1(X=4) + 5*1(X=5)$$

$$\Rightarrow E[Y_i(0)] = 1.5 \text{ and } E[Y_i(1)] = 3 \text{ so ATE} = 1.5$$

Benchmark: Random assignment

- \Box T_i is randomly assigned, with $Pr(T_i=1)=0.5$
- Uncover 3 results:
- 1. T_i uncorrelated with potential outcomes
 - \bullet (p-values = 0.40 and = 0.79)
- 2. Simple regression of Y_i on T_i identifies ATE
 - (estimated beta1 = 1.49 (std error = 0.02))
- 3. Distribution of X_i balanced across treatment / control group:

•	table	х,	c(sum	T_rct	sum C_rct);
		х 	sum(5	 [_rct)	sum(C_rct)
		1	i I	2960	2945
		2	1	2998	2964
		3	1	3070	3077
		4	1	3025	2977
		5	1	3038	2946

Covariate balance generally fails when treatment selected in part based on X

That is the source of bias we can eliminate with selection on observable methods

Now suppose treatment ignorable conditional on X

Suppose everything same as before, but:

$$T_i = 1(-2*1(X=1) - 1*1(X=2) + 1*1(X=4) + 2*1(X=5) + V_i) > 0)$$

- □ Where $v_i \sim N(0,1)$
- Importantly v_i independent of $(\varepsilon_{0i}, \varepsilon_{1i})$ and X_i

Result 1: Distribution of X no longer balanced

. table	Х,	c(sum T_soo	sum C_soo);
	х	sum(T_soo)	sum (C_soo)
	1 2	898	5781 5064
	3 4 5	3119 5003 5849	3028 999 135

... Due to treatment assignment mechanism (previous page), observations with larger values of \boldsymbol{X}_i more likely to be in treatment group

Result 2: OLS estimator no longer consistent for ATE

. regress Y soo T soo, robust; Linear regression Number of obs = 30000F(1, 29998) =43832.88 Prob > F = 0.0000R-squared = 0.5937 Root MSE = 1.2535Robust Coef. Std. Err. t P>|t| [95% Conf. Interval] Y soo | 3.030628 .0144755 209.36 0.000 T soo 3.002256 3.059001 1.004894 .0090492 111.05 0.000 .9871572 1.022631

- \square Recall ATE = 1.5, so we are off by 100%
- How can we correct this?

Normalized difference in pre-treatment covariates

The normalized difference in a covariate X is defined as:

$$ND(X) = \frac{\overline{X}_{1} - \overline{X}_{0}}{\sqrt{(V_{\overline{X}_{1}} + V_{\overline{X}_{0}})/2}}$$

- That is, the ratio of the difference in the sample means of covariate X by T=1 and T=0, divided by square root of sum of sample variances of X by T=1 and T=0
- This is an easy to compute statistic to assess overlap / balance in distribution of X by treatment status
- □ Similar to a t-statistic, but independent of sample size
 Olivier Deschenes, UCSB, ESM 296, Winter 2018

Normalized difference in pre-treatment covariates

In the simulated data:

A rule of thumb: if the normalized difference in one or more pre-treatment covariate exceeds 0.25, linear regression methods tend to be sensitive to the specification

Identification of causal effects under treatment ignorability

- 1. Multivariate matching approach ("exact" matching)
- 2. Traditional (linear) regression methods
- 3. Propensity score methods (including matching)
- □ ⇒ If treatment ignorability and overlap assumptions are satisfied, choice of estimator is not so important
- □ ⇒ Evidence of variability in estimates across estimation methods 1-3 may be indicative of failure of treatment ignorability assumption (or lack of overlap)

Identification of causal effects under treatment ignorability (ctd)

There is a common structure to all methods to solve the identification problem: find suitable counterfactuals Y_i(0) (for the treated) and Y_i(1) (for the non-treated)

Some notation:

$$\hat{Y}_i(0) = \text{counterfactual for } Y_i(0) \text{ for } T_i = 1$$

$$\hat{Y}_i(1) = \text{counterfactual for } Y_i(1) \text{ for } T_i = 0$$

The various methods (matching, linear regression, propensity score) use different approaches to "fill in" the counterfactuals (or their means)

Olivier Deschenes, UCSB, ESM 296, Winter 2018

Counterfactuals construction:

- **Matching**: Construct $\hat{Y}_i(0)$ and $\hat{Y}_i(1)$ from observations with the "closest" value of the <u>vector</u> of pre-treatment characteristics X_i
 - Impute $Y_i(0)$ for the treated using $Y_i = Y_i(0)$ of <u>non-treated</u> observations with "closest" X_i
 - Impute $Y_i(1)$ for the non-treated using $Y_i = Y_i(1)$ of <u>treated</u> observations with "closest" X_i
- Propensity score methods: Construct $\hat{Y}_i(0)$ and $\hat{Y}_i(1)$ from observations with the "closest" value of the scalar variable $p(X_i)$, the propensity score, which is the probability of receiving the treatment, conditional on pretreatment characteristics X_i ($Pr(T_i = 1) | X_i$)
 - Similar approach to matching. Next lecture

Counterfactuals construction (ctd)

Linear regression: use a linear function of X_i to impute the counterfactual means:

$$E[\hat{Y}_{i}(0) | T_{i} = 1] = \overline{Y}_{0} + \hat{\gamma}_{0}(\overline{X}_{1} - \overline{X}_{0})$$

$$E[\hat{Y}_i(1) | T_i = 0] = \overline{Y}_1 + \hat{\gamma}_1(\overline{X}_0 - \overline{X}_1)$$

Linearity assumption is key to result here. Also note how the linear regression solves the overlap problem

1. Multivariate/Exact matching

Consider the following contrast for the vector X_i=x

$$\Delta(x) \equiv E[Y_i \mid T_i = 1, X_i = x] - E[Y_i \mid T_i = 0, X_i = x]$$

$$= E[Y_i(1) \mid T_i = 1, X_i = x] - E[Y_i(0) \mid T_i = 0, X_i = x]$$

$$= E[Y_i(1) \mid X_i = x] - E[Y_i(0) \mid X_i = x] = ATE(X_i = x)$$

- Simply a difference in mean outcome for those with the same vector of covariates, by treatment/control status
- For a given vector X_i=x, ATE and ATT are the same (since conditional on X_i=x, treatment and potential outcomes are independent)
 - ⇒ Unconditional ATE and ATT differ since the distribution of X_i in the overall population and the T_i =1 population may differ

Estimation of unconditional ATE and ATT

$$\hat{\Delta}(x) = \overline{Y}_1(x) - \overline{Y}_0(x)$$

$$A\hat{T}E = \sum_{x} w_{ATE}(x)\hat{\Delta}(x), \quad A\hat{T}T = \sum_{x} w_{ATT}(x)\hat{\Delta}(x)$$

- $\square \Rightarrow \text{Weighted sum of ATE}(x), ATT(x)$
- Applications in Angrist (Econometrica, 1998), Card and Sullivan (Econometrica, 1988).
- □ Issue: small cells, no common support
 - Solution: nearest neighbor matching (Abadie & Imbens)
 - Solution: propensity score matching to come
 Olivier Deschenes, UCSB, ESM 296, Winter 2018

Multivariate matching with simulated data

X	N(T=1)	N(T=0)	$\hat{\Delta}(x)$	$W_{ATE}(x)$	$W_{ATT}(x)$
1	124	5,781	0.65	0.2	0.01
2	898	5,064	0.97	0.2	0.06
3	3,119	3,028	1.48	0.2	0.21
4	5,003	999	1.98	0.2	0.33
5	5,849	135	2.39	0.2	0.39

- □ Estimated ATE = 1.50 (multiply columns 4 and 5 and sum)
- Estimated ATT = 1.96 (multiply columns 4 and 6 and sum)

Multivariate matching as regression estimator

Angrist (1998) shows that the multivariate matching estimator can be obtained by the following regression:

$$Y_i = \beta_0 + \beta_1 T_i + \sum_{x \in X} d_{xi} \gamma_x + u_i$$
$$d_{xi} = 1(X_i = x)$$

- □ d_{xi} defined over set of all possible "permutations" of vector X_i (i.e. all values of X_i for which we compute $\Delta(X_i=x)$ in prior case)
- This can lead to a high-dimensional regression. In Angrist's (1998) application: X_i=age (17-22), schooling (1-20), AFQT score (1-100)
 - Then the full set is 6*20*100 = 12,000 variables d_{xi} ! Olivier Deschenes, UCSB, ESM 296, Winter 2018

Multivariate matching as regression estimator with simulated data

Root MSE = 1.011

 Y_soo	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
T soo	1.493656	.0182623	81.79	0.000	1.457861	1.529451
X2	. 4350547	.0187044	23.26	0.000	. 3983932	.4717162
хз	1.005929	.0204649	49.15	0.000	.9658172	1.046041
X4	1.935344	.0240678	80.41	0.000	1.88817	1.982518
X5	2.976642	.0258754	115.04	0.000	2.925926	3.027359
_cons	.4995081	.0131929	37.86	0.000	. 4736495	.5253668

Note: simple set of control are dummy variables for all value of $X_i = \{1,2,3,4,5\}$. Real applications will necessarily be more computational demanding

Olivier Deschenes, UCSB, ESM 296, Winter 2018

Matching estimator in practice: Measuring the effect of college selectivity on earnings

- Influential study by S. Dale and A. Krueger (Quarterly Journal of Economics, 2002)
- Q: What is the economic return to attending a highly selective college?
 - Sample: top private universities (Princeton, Yale), top liberal arts colleges (Swarthmore, Williams), strong public universities (Michigan, Penn State), and others (all pretty selective)
 - The average (1978) SAT scores at these schools ranged from a low of 1,020 at Tulane to a high of 1,370 at Bryn Mawr. In 1976, tuition rates were as low as \$540 at the University of North Carolina and as high as \$3,850 at Tufts
- A: Combine data on college attended (mid 1970s) with earnings data from the mid 1990s

Identification problem:

- Selectivity of college attended is not randomly assigned
 - On average, more talented students are more likely to attend more selective college
- Observational regression measure of the college selectivity wage premium may reflect unmeasured individual ability (in addition to the causal effect of college selectivity)
- Recall that the observational regression bias arises because treated individuals differ from non-treated individuals in the non-treated state of the world
 - Ex: the wage of a Canyon State U grad is not a good counterfactual for the wage of a UCSB Gaucho if he/she did not attend UCSB

Research strategy: match individuals who applied to the same colleges, were admitted by the same colleges, but attended different colleges (exact matching)

TABLE 2.1
The college matching matrix

		Private			75			
Applicant group	Student	Ivy	Leafy	Smart	All State	Tall State	Altered State	1996 earnings
A	1		Reject	Admit	ii II	Admit		110,000
	2		Reject	Admit		Admit		100,000
	3		Reject	Admit		Admit		110,000
В	4	Admit			Admit		Admit	60,000
	5	Admit			Admit		Admit	30,000
С	6		Admit					115,000
	7		Admit					75,000
D	8	Reject			Admit	Admit		90,000
	9	Reject			Admit	Admit		60,000

Olivier Deschenes, UCSB, ESM 296, Winter 2018

Log earnings regression:

"Private" is intended to mean "more selective"

o mean "more		No selection controls			Sel	ection con	itrols	
elective"		(1)	(2)	(3)	(4)	(5)	(6)	
	Private school	.135 (.055)	.095 (.052)	.086 (.034)	.007 (.038)	.003 (.039)	.013 (.025)	
	Own SAT score ÷ 100		.048 (.009)	.016 (.007)		.033 (.007)	.001 (.007)	
	Log parental income			.219 (.022)			.190 (.023)	
	Female			403 (.018)			395 (.021)	
	Black			.005 (.041)			040 (.042)	
	Hispanic			.062 (.072)			.032 (.070)	
	Asian			.170 (.074)			.145 (.068)	
	Other/missing race			074 (.157)			079 (.156)	
	High school top 10%			.095 (.027)			.082 (.028)	
	High school rank missing			.019 (.033)			.015 (.037)	
	Athlete			.123 (.025)			.115 (.027)	
	→ Selectivity-group dummies	No	No	No	Yes	Yes	Yes	

These indicator variables form an equivalent to the high-dimensional exact matching regression estimator

Other multivariate matching estimators

- There exist other matching estimators, using different criteria for defining "closeness" between 2 matches
- Requiring exact matches typically creates empty cells (no treatment and control observations with the same vector X)
- Instead some methods use mathematical definitions of distance between 2 vectors to form the matches. The most prominent is the <u>Mahalanobis distance</u>:

$$||X_i, X_j|| = (X_i - X_j)'\Omega_X^{-1}(X_i - X_j)$$

See Abadie & Imbens 2006 for the method

Causal effects with linear regression

MY HOBBY: EXTRAPOLATING

$$E[\hat{Y}_{i}(0) | T_{i} = 1] = \overline{Y}_{0} + \hat{\gamma}_{0}(\overline{X}_{1} - \overline{X}_{0})$$

$$E[\hat{Y}_i(1) | T_i = 0] = \overline{Y}_1 + \hat{\gamma}_1(\overline{X}_0 - \overline{X}_1)$$

Linear regression

- Very common approach to estimate ATE with assumption of treatment ignorability
- Important to note that linear regression makes functional form assumption in addition to treatment ignorability conditional on X_i

■ Model:

$$Y_i(0) = m_0 + \epsilon_{0i}$$

 $Y_i(1) = m_1 + \epsilon_{1i}$

Observed outcomes:

$$\begin{aligned} Y_i &= m_0 + \beta_{1i} T_i + \epsilon_{0i} \\ Y_i &= m_0 + \beta_1 T_i + T_i [(\epsilon_{1i} - \epsilon_{0i})] + \epsilon_{0i} \quad \text{where } \beta_1 = m_1 - m_0 = \text{ATE} \end{aligned}$$

What is the implied regression function E[Y_i |T_i, X_i]?

Assumption: CEFs for potential outcomes linear in X

Suppose:

$$\begin{split} & E \big[\epsilon_{0i} \big| \, X_i \big] \, = \, \alpha_0 \, + \, X_i{}' \gamma_0 \\ & E \big[\epsilon_{1i} \big| \, X_i \big] \, = \, \alpha_1 \, + \, X_i{}' \gamma_1 \end{split} \qquad \begin{array}{l} \text{Scale the X_i so that they have mean} \\ & 0 \Rightarrow \alpha_0 = \alpha_1 = 0 \end{split}$$

Implied linear regression function:

$$Y_{i} = m_{0} + \beta_{1}T_{i} + (X_{i} - \overline{X})'\gamma_{0} + T_{i}(X_{i} - \overline{X})'(\gamma_{1} - \gamma_{0}) + u_{i}$$

- □ ⇒ ATE identified by linear regression of outcome on treatment status indicator, controls for X, and interactions between treatment indicator status and X
- Other functional forms could be used for control functions
 - •Quadratics, interactions
 - Exact matching "high-dimensional" indicator variable modeling

Linear regression estimator with simulated data

. regress Y_soo T_soo X TX, robust;

```
Number of obs = 30000
Linear regression
                                            F(3, 29996) = 26542.43
                                            Prob > F = 0.0000
                                            R-squared = 0.7275
                                            Root MSE = 1.0266
                     Robust
            Coef. Std. Err. t P>|t| [95% Conf. Interval]
     Y soo |
            1.619511 .0169724 95.42
                                      0.000 1.586244
                                                        1.652778
     T soo |
            .4633827 .0081726 56.70 0.000 .4473641 .4794013
        ΧΙ
       TX | .4450819 .0118523 37.55 0.000 .4218509
                                                        .4683129
            1.481247 .0117056 126.54 0.000 1.458303 1.50419
     cons
```

□ Linear regression does an "OK" job, but it is clearly off from the ATE of 1.5 (equality rejected at <1% level)</p>