

Introduction to frequentist statistics and Bayesian inference

Joe Romano, Texas Tech University
Wednesday, 20 July 2022
(HUST GW Summer School 2022, Lecture 1)

References

- Romano and Cornish, Living Reviews in Relativity article, 2017 (section 3)
- Rover, Messenger, Prix, "Bayesian versus frequentist upper limits,"
 PHYSTAT 2011 workshop
- Gregory, "Bayesian Logical data analysis", 2005
- Howson and Urbach, "Scientific reasoning: the Bayesian approach", 2006
- Helstrom, "Statistical theory of signal detection", 1968
- Wainstein and Zubakov, "Extraction of signals from noise," 1971

Outline

- 1. Probabilistic inference (broadly defined)
- 2. Frequentist statistics
- 3. Bayesian inference
- 4. Exercises worked examples

• An astronomer measures the mass of a NS in a binary pulsar system to be $M=(1.39\pm0.02)M_{\odot}$ with 90% confidence. How do you interpret the quoted result?

- An astronomer measures the mass of a NS in a binary pulsar system to be $M=(1.39\pm0.02)M_{\odot}$ with 90% confidence. How do you interpret the quoted result?
- Answer 1: You are 90% confident that the true mass of the NS lies in the interval $[1.37 M_{\odot}, 1.41 M_{\odot}]$

- An astronomer measures the mass of a NS in a binary pulsar system to be $M=(1.39\pm0.02)M_{\odot}$ with 90% confidence. How do you interpret the quoted result?
- Answer 1: You are 90% confident that the true mass of the NS lies in the interval $[1.37 M_{\odot}, 1.41 M_{\odot}]$
- <u>Answer 2</u>: You interpret 90% as the long-term relative frequency with which the true mass of the NS lies in the set of intervals $\{[\hat{M}-0.02M_{\odot},\hat{M}+0.02M_{\odot}]\}$ where $\{\hat{M}\}$ is the set of measured masses.

Frequentist vs Bayesian "affiliation"

Frequentist vs Bayesian "affiliation"

• If you chose answer 1, then you are a Bayesian

Frequentist vs Bayesian "affiliation"

- If you chose answer 1, then you are a Bayesian
- If you chose answer 2, then you are a frequentist

- Observations are:
 - incomplete (problem of induction)
 - imprecise (measurement noise, quantum mechanics, ...)

==> conclusions are uncertain!!

- Observations are:
 - incomplete (problem of induction)
 - imprecise (measurement noise, quantum mechanics, ...)

==> conclusions are uncertain!!

• Probabilistic inference (aka "plausible inference", "statistical inference") is a way of dealing with uncertainty

- Observations are:
 - incomplete (problem of induction)
 - imprecise (measurement noise, quantum mechanics, ...)

==> conclusions are uncertain!!

- Probabilistic inference (aka "plausible inference", "statistical inference") is a way of dealing with uncertainty
- Different from mathematical deduction

I. Probabilistic inference

• Frequentist definition: Long-run relative frequency of occurrence of an event in a set of repeatable identical experiments

- Frequentist definition: Long-run relative frequency of occurrence of an event in a set of repeatable identical experiments
- Bayesian definition: Degree of belief (or confidence, plausibility) in any proposition

- Frequentist definition: Long-run relative frequency of occurrence of an event in a set of repeatable identical experiments
- Bayesian definition: Degree of belief (or confidence, plausibility) in any proposition

NOTE: For the frequentist definition, probabilities can only be assigned to propositions about outcomes of repeatable identical experiments (i.e., **random variables**), not to hypotheses or parameters describing the state of nature, which have fixed but unknown values

Possible values:

$$P(X = \text{true}) = 1$$

 $P(X = \text{false}) = 0$
 $0 < P(X = \text{not sure}) < 1$

Possible values:

$$P(X = \text{true}) = 1$$

$$P(X = false) = 0$$

$$0 < P(X = \text{not sure}) < 1$$

• Sum rule:

$$P(X) + P(\bar{X}) = 1$$

Possible values:

$$P(X = \text{true}) = 1$$

$$P(X = false) = 0$$

$$0 < P(X = \text{not sure}) < 1$$

• Sum rule:

$$P(X) + P(\bar{X}) = 1$$

Product rule:

$$P(X \mid Y)P(Y) = P(X, Y)$$

Possible values:

$$P(X = \text{true}) = 1$$

$$P(X = false) = 0$$

$$0 < P(X = \text{not sure}) < 1$$

• Sum rule:

$$P(X) + P(\bar{X}) = 1$$

• Product rule:

$$P(X|Y)P(Y) = P(X,Y)$$

• NOTE: P(X | Y) is the probability of X conditioned on Y (assuming Y is true)

Possible values:

$$P(X = \text{true}) = 1$$

 $P(X = \text{false}) = 0$
 $0 < P(X = \text{not sure}) < 1$

• Sum rule:

$$P(X) + P(\bar{X}) = 1$$

Product rule:

$$P(X|Y)P(Y) = P(X,Y)$$

- ullet NOTE: $P(X \mid Y)$ is the probability of X conditioned on Y (assuming Y is true)
- $P(X|Y) \neq P(Y|X)$ in general. Example X="person is pregnant", Y="person is female"

Bayes' theorem (a simple consequence of the product rule!!)

where
$$P(D) = P(D \mid H)P(H) + P(D \mid \overline{H})P(\overline{H})$$

10

Bayes' theorem (a simple consequence of the product rule!!)

posterior
$$P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D)}$$
 evidence

where
$$P(D) = P(D \mid H)P(H) + P(D \mid \overline{H})P(\overline{H})$$

"Learning from experience": the probability of H being true (in light of new data) increases by the ratio of the probability of obtaining the new data D when H is true to the probability of obtaining D in any case

HUST GW Summer School 2022

Bayes' theorem (for parameters associated with a given hypothesis or model)

$$p(a | d, H) = \frac{p(d | a, H)p(a | H)}{p(d | H)}$$

where
$$p(d|H) = \int da \, p(d|a, H) p(a|H)$$

"marginalization" over a

Comparing frequentist & Bayesian inference

Frequentist statistics	Bayesian infererence
Probabilities are long-run relative occurrences of outcomes of repeatable expts —> can't be assigned to hypotheses	Probabilities are degree of belief —> can be assigned to hypotheses
Usually start with a likelihood function p(d H)	Same as frequentist
Construct a statistic (some function of the data d) for parameter estimation or hypothesis testing	Need to specify priors for parameters and hypotheses
Calculate sampling distribution of the statistics (e.g., using time slide)	Use Bayes' theorem to update degree of belief in a parameter or hypothesis
Calculates confidence intervals (for parameter estimation) and p-values (for hypothesis testing)	Construct posteriors (for parameter estimation) and odds ratios (Bayes factors) (for hypothesis testing)

II. Frequentist statistics

ullet Construct a statistic (estimator) \hat{a} for the parameter you are interested in

- ullet Construct a statistic (estimator) \hat{a} for the parameter you are interested in
- Calculate the sampling distribution $p(\hat{a} \mid a, H_1)$ where $H_1 = \cup_{a>0} H_a$

- ullet Construct a statistic (estimator) \hat{a} for the parameter you are interested in
- Calculate the sampling distribution $p(\hat{a} \mid a, H_1)$ where $H_1 = \cup_{a>0} H_a$
- Statements like ${\rm Prob}(a-\Delta<\hat{a}< a+\Delta)$ make sense since \hat{a} is a random variable

14

- ullet Construct a statistic (estimator) \hat{a} for the parameter you are interested in
- Calculate the sampling distribution $p(\hat{a} \mid a, H_1)$ where $H_1 = \cup_{a>0} H_a$
- Statements like ${\rm Prob}(a-\Delta<\hat{a}< a+\Delta)$ make sense since \hat{a} is a random variable
- Statements like $a=\hat{a}\pm\Delta$ with 90% confidence must be interpreted as statements about the **randomness of the intervals**—i.e., 90% is the long-term relative frequency with which the true value of the parameter lies in the set of intervals $\{[\hat{a}-\Delta,\hat{a}+\Delta]\}$ where $\{\hat{a}\}$ is the set of measured parameter estimates

14

• Suppose you want to test a hypothesis H_1 that a GW signal with some fixed but unknown amplitude a>0 is present in the data ($H_1\equiv \cup_{a>0} H_a$)

- Suppose you want to test a hypothesis H_1 that a GW signal with some fixed but unknown amplitude a>0 is present in the data ($H_1\equiv \cup_{a>0} H_a$)
- Since you can't assign probabilities to hypotheses as a frequentist, you introduce the null hypothesis $H_0 = \bar{H}_1$ (for this example, a=0), and then argue for H_1 by arguing against H_0 (like proof by contradiction)

- Suppose you want to test a hypothesis H_1 that a GW signal with some fixed but unknown amplitude a>0 is present in the data ($H_1\equiv \cup_{a>0} H_a$)
- Since you can't assign probabilities to hypotheses as a frequentist, you introduce the null hypothesis $H_0 = \bar{H}_1$ (for this example, a=0), and then argue for H_1 by arguing against H_0 (like proof by contradiction)
- So you construct a **test statistic** Λ and calculate its sampling distributions $p(\Lambda \mid H_0)$ and $p(\Lambda \mid a, H_1)$ conditioned on H_0 and H_1

- Suppose you want to test a hypothesis H_1 that a GW signal with some fixed but unknown amplitude a>0 is present in the data ($H_1\equiv \cup_{a>0} H_a$)
- Since you can't assign probabilities to hypotheses as a frequentist, you introduce the null hypothesis $H_0 = \bar{H}_1$ (for this example, a=0), and then argue for H_1 by arguing against H_0 (like proof by contradiction)
- So you construct a **test statistic** Λ and calculate its sampling distributions $p(\Lambda \,|\, H_0)$ and $p(\Lambda \,|\, a, H_1)$ conditioned on H_0 and H_1
- If the observed value of Λ lies far out in the tail for the null distribution, $p(\Lambda \,|\, H_0)$, you reject H_0 (accept H_1) at the $p \times 100\,\%$ level where $p = \operatorname{Prob}(\Lambda > \Lambda_{\operatorname{obs}} \,|\, H_0)$ is the so-called p-value

Frequentist p-value

ullet The p value needed to reject the null hypothesis defines a **threshold** Λ_*

- ullet The p value needed to reject the null hypothesis defines a **threshold** Λ_*
- ullet There are **two types of errors** when using the test statistic Λ :
 - ullet False alarm: Reject the null hypothesis ($\Lambda_{
 m obs} > \Lambda_*$) when it is true
 - ullet False dismissal: Accept the null hypothesis ($\Lambda_{
 m obs} \leq \Lambda_*$) when it is false

- ullet The p value needed to reject the null hypothesis defines a **threshold** Λ_*
- ullet There are **two types of errors** when using the test statistic Λ :
 - ullet False alarm: Reject the null hypothesis ($\Lambda_{
 m obs} > \Lambda_*$) when it is true
 - \bullet False dismissal: Accept the null hypothesis ($\Lambda_{\mathrm{obs}} \leq \Lambda_*$) when it is false
- Different test statistics are judged according to their false alarm and false dismissal probabilities

- ullet The p value needed to reject the null hypothesis defines a **threshold** Λ_*
- ullet There are **two types of errors** when using the test statistic Λ :
 - ullet False alarm: Reject the null hypothesis ($\Lambda_{
 m obs} > \Lambda_*$) when it is true
 - \bullet False dismissal: Accept the null hypothesis ($\Lambda_{\mathrm{obs}} \leq \Lambda_*$) when it is false
- Different test statistics are judged according to their false alarm and false dismissal probabilities
- In GW data analysis, one typically sets the false alarm probability to some acceptably low level (e.g., 1 in 1000), then finds the test statistic that minimizes the false dismissal probability for fixed false alarm probability (called the **Neyman-Pearson criterion**)

ullet lpha is the false alarm probability (refers to H_0), e.g., 10%

- ullet lpha is the false alarm probability (refers to H_0)
- $\beta(a)$ is the false dismissal probability (refers to $H_1 \equiv \cup_{a>0} H_a$)

- ullet lpha is the false alarm probability (refers to H_0)
- $\beta(a)$ is the false dismissal probability (refers to $H_1 \equiv \bigcup_{a>0} H_a$)

Detection probability

• $\gamma(a) \equiv 1 - \beta(a)$ is the fraction of the time that the test statistic Λ correctly identifies the presence of a signal with amplitude a

Frequentist upper limits

- ullet If $\Lambda_{
 m obs} < \Lambda_*$ one often sets an UL on the amplitude a of the signal
- $a^{90\%, \text{UL}}$ is the value of a for which $\text{Prob}\left(\Lambda \geq \Lambda_{\text{obs}} \mid a = a^{90\%, \text{UL}}, H_1\right) = 0.90$

III. Bayesian inference

• Bayesian parameter estimation is via the **posterior** distribution $p(a \mid d, H)$

- Bayesian parameter estimation is via the **posterior** distribution $p(a \mid d, H)$
- The **posterior distributions contains all the information** about the parameter, but you can reduce it to a few numbers (e.g., mode, mean, stddev, ...)

- Bayesian parameter estimation is via the **posterior** distribution $p(a \mid d, H)$
- The **posterior distributions contains all the information** about the parameter, but you can reduce it to a few numbers (e.g., mode, mean, stddev, ...)
- If the posterior distribution depends on several parameters, you can obtain the posterior for one parameter by **marginalizing** over the others,

$$p(a | d, H) = \int db \, p(a, b | d, H) = \int db \, p(a | b, d, H) p(b | H)$$

- Bayesian parameter estimation is via the **posterior** distribution $p(a \mid d, H)$
- The **posterior distributions contains all the information** about the parameter, but you can reduce it to a few numbers (e.g., mode, mean, stddev, ...)
- If the posterior distribution depends on several parameters, you can obtain the posterior for one parameter by **marginalizing** over the others,

$$p(a | d, H) = \int db \, p(a, b | d, H) = \int db \, p(a | b, d, H) p(b | H)$$

• A Bayesian credible interval or upper limit defined in terms of the area under the posterior distribution

Bayesian credible interval

Bayesian credible upper limit

Bayesian hypothesis testing / model selection

Bayesian hypothesis testing / model selection

ullet Compare two hypotheses H_1 and H_0 by taking their posterior **odds ratio**:

Bayesian hypothesis testing / model selection

ullet Compare two hypotheses H_1 and H_0 by taking their posterior **odds ratio**:

• Calculation of the evidence (=likelihood of an hypothesis) usually involves marginalization over the parameters associated with the hypothesis/model:

$$p(d|H) = \int da \, p(d|a, H)p(a|H)$$

 Calculation of the evidence (=likelihood of an hypothesis) usually involves marginalization over the parameters associated with the hypothesis/model:

$$p(d|H) = \int da \, p(d|a, H)p(a|H)$$

• When the data are informative:

$$p(d|H) \simeq p(d|a_{\mathrm{ML}}, H)p(a_{\mathrm{ML}}|H)\Delta a = \mathcal{L}_{\mathrm{ML}}(d|H)\Delta V/V$$

Calculation of the evidence (=likelihood of an hypothesis) usually involves
 marginalization over the parameters associated with the hypothesis/model:

$$p(d|H) = \int da \, p(d|a, H)p(a|H)$$

• When the data are informative:

$$p(d|H) \simeq p(d|a_{\mathrm{ML}}, H)p(a_{\mathrm{ML}}|H)\Delta a = \mathcal{L}_{\mathrm{ML}}(d|H)\Delta V/V$$

Bayes factor:

$$\mathcal{B}_{10}(d) \equiv \frac{p(d|H_1)}{p(d|H_0)} = \frac{\int da_1 \, p(d|a_1, H_1) p(a_1|H_1)}{\int da_0 \, p(d|a_0, H_0) p(a_0|H_0)} \simeq \Lambda_{\text{ML}}(d) \frac{\Delta V_1/V_1}{\Delta V_0/V_0}$$

 Calculation of the evidence (=likelihood of an hypothesis) usually involves marginalization over the parameters associated with the hypothesis/model:

$$p(d|H) = \int da \, p(d|a, H)p(a|H)$$

• When the data are informative:

$$p(d|H) \simeq p(d|a_{\mathrm{ML}}, H)p(a_{\mathrm{ML}}|H)\Delta a = \mathcal{L}_{\mathrm{ML}}(d|H)\Delta V/V$$

Bayes factor:

$$\mathcal{B}_{10}(d) \equiv \frac{p(d|H_1)}{p(d|H_0)} = \frac{\int da_1 \, p(d|a_1, H_1) p(a_1|H_1)}{\int da_0 \, p(d|a_0, H_0) p(a_0|H_0)} \simeq \Lambda_{\text{ML}}(d) \frac{\Delta V_1/V_1}{\Delta V_0/V_0}$$

• The $\Delta V/V$ factors penalize hypotheses that uses more parameter space volume V than necessary to fit the data ΔV (Occam's penalty factor)

HUST GW Summer School 2022

Significance of Bayes factor values

approximately equal to the squared SNR of the data

$\mathcal{B}_{lphaeta}(d)$	$2 \ln \mathcal{B}_{\alpha\beta}(d)$	Evidence for model \mathcal{M}_{α} relative to \mathcal{M}_{β}
<1	<0	Negative (supports model \mathcal{M}_{β})
1–3	0–2	Not worth more than a bare mention
3–20	2–6	Positive
20–150	6–10	Strong
>150	>10	Very strong

Adapted from Kass and Raftery (1995)

IV. Exercises / worked examples

1. Practical application of Bayes' theorem

1. Practical application of Bayes' theorem

• Suppose on your last visit to the doctor's office you took a test for some rare disease. This type of disease occurs in only 1 out of 10,000 people, as determined by a random sample of the population. The test that you took is rather effective in that it can correctly identify the presence of the disease 95% of the time, but it gives false positives 1% of the time.

1. Practical application of Bayes' theorem

- Suppose on your last visit to the doctor's office you took a test for some rare disease. This type of disease occurs in only 1 out of 10,000 people, as determined by a random sample of the population. The test that you took is rather effective in that it can correctly identify the presence of the disease 95% of the time, but it gives false positives 1% of the time.
- Suppose the test came up positive. What is the probability that you have the disease?

H = have the disease; + = test positive

- H = have the disease; + = test positive
- Information:

$$P(H) = 0.0001$$
 $P(\bar{H}) = 0.9999$
 $P(+|H) = 0.95$ $P(+|\bar{H}) = 0.01$

- H = have the disease; + = test positive
- Information:

$$P(H) = 0.0001$$
 $P(\bar{H}) = 0.9999$
 $P(+|H) = 0.95$ $P(+|\bar{H}) = 0.01$

Calculate:

$$P(H|+) = \frac{P(+|H)P(H)}{P(+)}$$

$$= \frac{P(+|H)P(H) + P(+|\bar{H})P(\bar{H})}{P(+)}$$

$$= 0.95 \times 0.0001 + 0.01 \times 0.9999$$

$$\approx 0.01$$

- H = have the disease; + = test positive
- Information:

$$P(H) = 0.0001$$
 $P(\bar{H}) = 0.9999$
 $P(+|H) = 0.95$ $P(+|\bar{H}) = 0.01$

Calculate:

$$P(H|+) = \frac{P(+|H)P(H)}{P(+)}$$

$$= \frac{P(+|H)P(H) + P(+|H)P(H)}{P(+)}$$

$$= 0.95 \times 0.0001 + 0.01 \times 0.9999$$

$$\approx 0.01$$

• Final result:

$$P(H|+) \approx 0.0095 \approx 0.01$$

2. Comparing frequentist and Bayesian analyses for a constant amplitude signal in white noise

Key formulae

Likelihoods functions:

$$p(d \mid \mathcal{M}_0) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^N \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^N d_i^2\right]$$

$$p(d \mid a, \mathcal{M}_1) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^N \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^N (d_i - a)^2\right]$$

Prior:

$$p(a \mid \mathcal{M}_1) = \frac{1}{a_{\text{max}}}$$

Parameter choices:

$$N=100\,,\quad \sigma=1\,,\quad 0\leq a\leq a_{\max}\,,\quad a_0={\rm true}\ {\rm value}$$

Key formulae

Maximum-likelihood estimator:

$$\hat{a} \equiv a_{\text{ML}}(d) = \frac{1}{N} \sum_{i=1}^{N} d_i \equiv \bar{d} \qquad \qquad \sigma_{\hat{a}}^2 = \frac{\sigma^2}{N}$$

Useful identity:

$$\sum_{i=1}^{N} (d_i - a)^2 = \sum_{i} d_i^2 - N\hat{a}^2 + N(a - \hat{a})^2 = N\left(\text{Var}[d] + (a - \hat{a})^2\right)$$

Likelihood function (in terms of ML estimator):

$$p(d \mid a, \mathcal{M}_1) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^N \exp\left[-\frac{\operatorname{Var}[d]}{2\sigma_{\hat{a}}^2}\right] \exp\left[-\frac{(a-\hat{a})^2}{2\sigma_{\hat{a}}^2}\right]$$

Evidence:

$$p(d \mid \mathcal{M}_1) = \frac{\exp\left[-\frac{\operatorname{Var}[d]}{2\sigma_{\hat{a}}^2}\right] \left[\operatorname{erf}\left(\frac{a_{\max} - \hat{a}}{\sqrt{2}\sigma_{\hat{a}}}\right) + \operatorname{erf}\left(\frac{\hat{a}}{\sqrt{2}\sigma_{\hat{a}}}\right)\right]}{2a_{\max}\left(\sqrt{2\pi}\sigma\right)^{N-1}\sqrt{N}}$$

Posterior distribution:

$$p(a \mid d, \mathcal{M}_1) = \frac{1}{\sqrt{2\pi\sigma_{\hat{a}}}} \exp\left[-\frac{(a-\hat{a})^2}{2\sigma_{\hat{a}}^2}\right] 2 \left[\operatorname{erf}\left(\frac{a_{\max} - \hat{a}}{\sqrt{2}\sigma_{\hat{a}}}\right) + \operatorname{erf}\left(\frac{\hat{a}}{\sqrt{2}\sigma_{\hat{a}}}\right)\right]^{-1}$$

Key formulae

Bayes factor:

$$\mathcal{B}_{10}(d) = \exp\left[\frac{\hat{a}^2}{2\sigma_{\hat{a}}^2}\right] \left(\frac{\sqrt{2\pi}\sigma_{\hat{a}}}{a_{\max}}\right) \frac{1}{2} \left[\operatorname{erf}\left(\frac{a_{\max} - \hat{a}}{\sqrt{2}\sigma_{\hat{a}}}\right) + \operatorname{erf}\left(\frac{\hat{a}}{\sqrt{2}\sigma_{\hat{a}}}\right)\right] \simeq \exp\left[\frac{\hat{a}^2}{2\sigma_{\hat{a}}^2}\right] \left(\frac{\sqrt{2\pi}\sigma_{\hat{a}}}{a_{\max}}\right)$$

Maximum likelihood ratio statistic:

$$\Lambda_{\rm ML}(d) = \exp\left(\frac{\hat{a}^2}{2\sigma_{\hat{a}}^2}\right)$$

Frequentist test statistic:

$$\Lambda(d) \equiv 2 \ln \Lambda_{\rm ML}(d) = \frac{\hat{a}^2}{\sigma_{\hat{a}}^2} = \left(\frac{\sqrt{N}\bar{d}}{\sigma}\right)^2 \equiv \rho^2$$

Sampling distributions of the test statistic:

$$p(\Lambda \mid \mathcal{M}_0) = \frac{1}{\sqrt{2\pi\Lambda}} e^{-\Lambda/2}$$

$$p(\Lambda \mid a, \mathcal{M}_1) = \frac{1}{\sqrt{2\pi\Lambda}} \frac{1}{2} \left[e^{-\frac{1}{2}(\sqrt{\Lambda} - \sqrt{\lambda})^2} + e^{-\frac{1}{2}(\sqrt{\Lambda} + \sqrt{\lambda})^2} \right] \qquad \lambda = \langle \rho \rangle^2 = \frac{Na^2}{\sigma^2}$$

See romano_notes1.pdf and romano_code1.ipynb for solutions