Activity 18 Ai ((71...100) 8007 yi = sign EgiTwg? because where are lots of features; some of whem are unimportant. We better choose U\$ 550. n a) [~ 1] [W1] = 1 = 4. (7.0) Vank(X)=1 < dim(w)=> > no unique b) f(m) = || 4 - (7m|+ mx) || 2 D 114- (2W1+W2) 1 2 0 4- WION, = Q 3 W2 7 4 - XW1 @ 4-2WI-W2=1 73-21-W2 4-1W1-W2=1 7 5-7W1=W2 11. HWHT MUST = WWI+3-2WI9

$$W' = \begin{bmatrix} 0, 8 - 0, 2 \\ 0, 4 - 0, 2 \end{bmatrix} > \begin{bmatrix} 0, 6 \\ 0, 7 \end{bmatrix}$$

$$\overline{z}' = \begin{bmatrix} 0, 6 \\ 0, 7 \end{bmatrix} - 0, 1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} (\begin{bmatrix} 1 \\ 1 \end{bmatrix}) \begin{bmatrix} 0, 6 \\ 0, 7 \end{bmatrix} - 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix})$$

$$= \begin{bmatrix} 0, 6 \\ 0, 7 \end{bmatrix} + \begin{bmatrix} 0, 67 \\ 0, 76 \end{bmatrix} = \begin{bmatrix} 0, 1/2 \\ 0, 46 \end{bmatrix} > 0, 2$$

$$\overline{z}' = \begin{bmatrix} 0, 92 \\ 0, 46 > 0, 7 \end{bmatrix} = \begin{bmatrix} 0, 92 \\ 0, 76 \end{bmatrix}$$

$$\overline{z}' = \begin{bmatrix} 0, 92 \\ 0, 46 > 0, 7 \end{bmatrix} = \begin{bmatrix} 0, 92 \\ 0, 76 \end{bmatrix}$$

Activity 18

Setup

```
In [21]: import numpy as np
         import matplotlib.pyplot as plt
In [22]: def prxgraddescent_l1(X,y,tau,lam,w_init,it):
         ## compute it iterations of L2 proximal gradient descent starting at w1
         ## w_{k+1} = (w_k - tau^*X'^*(X^*w_k - y)/(1+lam^*tau)
         ## step size tau
             W = np.zeros((w_init.shape[0], it+1))
             Z = np.zeros((w_init.shape[0], it+1))
             W[:,[0]] = w_init
             for k in range(it):
                 Z[:,[k+1]] = W[:,[k]] - tau * X.T @ (X @ W[:,[k]] - y);
                 W[:,[k+1]] = np.sign(Z[:,[k+1]])* np.clip(np.abs(Z[:,[k+1]])-lam*tau/2,\ell
             return W,Z
In [23]: ## Proximal gradient descent trajectories
         ## Least Squares Problem
         X = np.array([[2, 1]])
         y = np.array([[4]])
         ### Find values of f(w), the contour plot surface for
         w1 = np.arange(-1,3,.1)
         w2 = np.arange(-1,3,.1)
         fw = np.zeros((len(w1), len(w2)))
         for i in range(len(w2)):
             for j in range(len(w1)):
                 w = np.array([ [w1[j]], [w2[i]] ])
                 fw[i,j] = (X @ w - y)**2
        C:\Users\ftstc\AppData\Local\Temp\ipykernel_11780\3461163016.py:13: DeprecationWa
        rning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will e
        rror in future. Ensure you extract a single element from your array before perfor
        ming this operation. (Deprecated NumPy 1.25.)
          fw[i,j] = (X @ w - y)**2
```

Question 3a) How many iterations does it take for the algorithm to converge to the solution?

What is the converged value for w?

```
In [24]: ## Find and display weights generated by gradient descent
         w_init = np.array([[0],[0]])
         lam = 4;
         it = 5
         tau = 0.25
         W,Z = prxgraddescent_l1(X,y,tau,lam,w_init,it)
         # Concatenate gradient and regularization steps to display trajectory
         G = np.zeros((2,0))
         for i in range(it):
             G = np.hstack((G,np.hstack((W[:,[i]],Z[:,[i+1]]))))
         plt.figure(figsize=(9,9))
         plt.contour(w1,w2,fw,20)
         plt.plot(Z[0,1::],Z[1,1:],'bx',linewidth=2, label="Gradient Descent Step")
         plt.plot(W[0,:],W[1,:],'ro',linewidth=2, label="Regularization Step")
         plt.plot(G[0,:],G[1,:],'-c',linewidth=2)
         plt.legend()
         plt.xlabel('w_1')
         plt.ylabel('w_2')
         plt.title('$\\tau = $'+str(.5)+', $\lambda = $'+str(lam));
```



```
In [25]: print(W)
W[:,-1]

[[0.     1.5     1.25     1.4375     1.5     ]
        [0.     0.5     0.125     0.      0.      ]]

Out[25]: array([1.5, 0. ])
```

Question 3b) Change to $\lambda = 2$. How many iterations does it take for the algorithm to converge

to the solution? What is the converged value for w?

The iterations are 8 to converge. w is [1.75, 0.].

```
In [26]: ## Find and display weights generated by gradient descent
         w_init = np.array([[0],[0]])
         lam = 2;
         it = 10
         tau = 0.25
         W,Z = prxgraddescent_l1(X,y,tau,lam,w_init,it)
         # Concatenate gradient and regularization steps to display trajectory
         G = np.zeros((2,0))
         for i in range(it):
             G = np.hstack((G,np.hstack((W[:,[i]],Z[:,[i+1]]))))
         plt.figure(figsize=(9,9))
         plt.contour(w1,w2,fw,20)
         plt.plot(Z[0,1::],Z[1,1:],'bx',linewidth=2, label="Gradient Descent Step")
         plt.plot(W[0,:],W[1,:],'ro',linewidth=2, label="Regularization Step")
         plt.plot(G[0,:],G[1,:],'-c',linewidth=2)
         plt.legend()
         plt.xlabel('w 1')
         plt.ylabel('w_2')
         plt.title('$\\tau = $'+str(.5)+', $\lambda = $'+str(lam));
```


Question 3c) Explain what happens to the weights in the regularization step.

When the lamda becomes smaller, the weights become bigger.

Question 4a) What is the maximum value for the step size in the negative gradient direction, τ ?

 τ is 1/5.

```
In [31]: U, s, VT = np.linalg.svd(X, full_matrices=True)
    print(s)
    s2 = s**(2)
    print(s2)
    [2.23606798]
    [5.]

In []: 9

In []:
In []:
```