3 M I C T

НАУКА ТА ОСВІТА

М. В. Аніщенко, С. О. Альохін Створення кишенькових лабораторій на кафедрі «Автоматизовані електромеханічні системи НТУ «ХПІ»	4
О. П. Чорний, С. А. Сергієнко, О. М. Кравець, А. Л. Юдіна Оцінка ефективності відпрацювання	
студентами завдань на комп'ютерних тренажерних системах з електромеханіки	8
М. Ю. Воронцова, В. О. Котляров Застосування засобів проектування мехатронних пристроїв для складання програм навчальних курсів	13
ТЕОРЕТИЧНІ ПИТАННЯ АВТОМАТИЗОВАНОГО ЕЛЕКТРОПРИВОДУ	
Р. С. Волянський, О. В. Садовой, Ю. Ю. Шрамко, Ю. В. Сохіна, Н. В. Волянська Синтез цифрової системи керування лінійним електромеханічним об'єктом у канонічному фазовому просторі	18
М. Я. Островерхов, М. П. Бурик Робастне керування кутовою швидкістю ротора синхронного двигуна з постійними магнітами	24
В. В. Бушер Метод розрахунку дробових інтегралів з динамічною корекцією похибки для мікропроцесорних систем керування	28
Д. Й. Родькін, Т. В. Коренькова, В. Г. Ковальчук До теорії ідентифікації електромеханічних систем електромеханічних систем електромеханічних систем елергетичним методом	32
А. <i>С. Казурова</i> Порівняння динамічних характеристик спостережників вектора стану та невизначеності	43
В. В. Осадчий, Е. С. Назарова, Н. А. Олейников Дослідження позиційного електропривода двомасової системи з внутрішнім слідкуючим контуром	
М. А. Руденко, Ю. В. Зачепа Ідентифікація нелінійних параметрів асинхронного двигуна у пусковому режимі з живленням від електромеханічного накопичувача енергії	55
КОМПОНЕНТИ АВТОМАТИЗОВАНОГО ЕЛЕКТРОПРИВОДА	
Ю. П. Самчелєєв, Г. С. Бєлоха Однофазні джерела напруги і потужності з релейним керуванням	60
О. С. Назарова, В. В. Осадчий, І. А. Мелешко, М. О. Олєйніков Ідентифікація кутової швидкості при завадах в оптичній системі енкодера	65
ЕНЕРГОЕФЕКТИВНІСТЬ ЕЛЕКТРОМЕХАНІЧНИХ СИСТЕМ	
В. С. Петрушин, Ю. Р. Плоткін, Р. М. Єноктаєв, Бендахман Бухалфа Розробка енергоефективного асинхронного електроприводу для перемежованого режиму роботи	70
О. В. Набока, П. Д. Андриенко Підвищення енергоефективності живлення допоміжних електроприводів електропотягів ЕД9м	80
С. С. Михайков, Н. И. Муха, А. О. Дранкова Підвищення якості електроенергії в експлуатаційних режимах судової системи охолодження	85
А. В. Кипенський, Є. І. Король, М. І. Горових Поліпшення енергетичних показників трифазного тиристорного перетворювача для пристроїв електронагріву	90
СУЧАСНІ СИСТЕМИ АВТОМАТИЗОВАНОГО ЕЛЕКТРОПРИВОДА	
Ю. М. Кутовой, Т. Ю. Кунченко, І. В. Обруч, Я. О. Кириленко Дослідження пускових режимів	
частотно-регульованого електроприводу магістрального електровоза ДСЗ	95
І. З. Щур Система активного рульового керування в електронному диференціалі електромобіля з індивідуальним приводом двох передніх коліс	90

СОДЕРЖАНИЕ

НАУКА И ОБРАЗОВАНИЕ

Н. В. Анищенко, С. А. Алехин Создание карманных лабораторий на кафедре «Автоматизированные электромеханические системы» НТУ «ХПИ»
А. П. Черный, С. А. Сергиенко, А. М. Кравец, А. Л. Юдина Оценка эффективности выполнения
студентами заданий на компьютерных тренажерных системах по электромеханике
М. Ю. Воронцова, В. О. Котляров Применение средств проектирования мехатронных устройств для составления программ учебных курсов
ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА
Р. С. Волянский, А. В. Садовой, Ю. Ю. Шрамко, Ю. В. Сохина, Н. В. Волянская Синтез цифровой системы управления линейным электромеханическим объектом в каноническом фазовом пространстве18
Н. Я. Островерхов, Н. П. Бурик Робастное управление угловой скоростью ротора синхронного двигателя с постоянными магнитами24
В. В. Бушер Метод расчета дробных интегралов с динамической коррекцией ошибки для микропроцессорных систем управления
Д. И. Родькин, Т. В. Коренькова, В. Г. Ковальчук К теории идентификации электромеханических систем энергетическим методом
А. Е. Казурова Сравнение динамических характеристик наблюдателей вектора состояния и неопределённости
В. В. Осадчий, Е. С. Назарова, Н. А. Олейников Исследование позиционного электропривода двухмассовой системы с внутренним следящим контуром
Н. А. Руденко, Ю. В. Зачепа Идентификация нелинейных параметров асинхронных двигателей в пусковом режиме с питанием от электромеханического накопителя энергии
КОМПОНЕНТЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА
Ю. П. Самчелеев, Г. С. Белоха Однофазные источники напряжения и мощности с релейным управлением60
Е. С. Назарова, В. В. Осадчий, И. А. Мелешко, Н. А. Олейников Идентификация угловой скорости при помехах в оптической системе энкодера
ЭНЕРГОЭФФЕКТИВНОСТЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ
В. С. Петрушин, Ю. Р. Плоткин, Р. Н. Еноктаев, Бендахман Бухалфа Разработка энергоэффективного асинхронного электропривода для перемежающегося режима работы70
О. В. Набока, П. Д. Андриенко Повышение энергоэффективности питания вспомогательных электроприводов электропоездов ЭД9м80
С. С. Михайков, Н. И. Муха, А. О. Дранкова Повышение качества электроэнергии в эксплуатационных режимах судовой системы охлажденияя85
А. В. Кипенский, Е. И. Король, Н. И. Горовых Повышение энергетических показателей трехфазного тиристорного преобразователя для устройств электронагрева90
СОВРЕМЕННЫЕ СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА
Ю. Н. Кутовой, Т. Ю. Кунченко, И. В. Обруч, Я. А. Кириленко Исследование пусковых режимов
частотно-регулируемого электропривода магистрального электровоза ДСЗ
индивидуальным приводом двух передних колес

CONTENT

SCIENCE AND EDUCATION

M. V. Anishchenko, S. O. Alokhin Creation the pocket labs on the department of «Automated electromechanical systems» NTU «KhPI»	4
O. Chornyi, S. Serhiienko, O. Kravetc, A. Yudina Evaluation of the efficiency of the execute of students tasks on computer training systems in the subject «Electromechanics»	8
M. Yu. Vorontsova, V. O. Kotlyarov The use of mechatronic devices design tools for compiling programs of training courses	13
THEORETICAL ISSUES OF AUTOMATED ELECTRIC DRIVE	
R. S. Voliansky, A. V. Sadovoy, Yu. Yu. Shramko, Yu. V. Sokhina, N. V. Volianskaya Synthesis of a digital control system for a linear electromechanical object in canonical phase space	18
<i>M. Ostroverkhov, M. Buryk</i> Robust control the rotor mechanical angular speed of surface mounted permanent magnet synchronous motor	24
V. Busher The method of calculating the fractional integral with the dynamic error correction for microcontrollers	28
D. Rodkin, T. Korenkova, V. Kovalchuk To the theory of electromechanical systems identification by the energy method.	32
A. Y. Kazurova A comparison of the dynamic characteristics of the state vector and uncertainty observers	
V. V. Osadchyy, O. S. Nazarova, M. O. Oleinikov Research of positional electrical drive of the two-mass system with internal following contour.	47
N. A. Rudenko, Y. V. Zachepa Identification of nonlinear parameters of induction motor in the start-up powered supplied from electromechanical energy storage device	55
COMPONENTS OF AN AUTOMATED ELECTRIC DRIVE	
Yu. P. Samcheleev, H. S. Bielokha Single-phase voltage and power sources with relay control	60
O. S. Nazarova, V. V. Osadchyy, I. A. Meleshko, M. O. Oleinikov Identification of angular velocity at interferences in the optical encoder system	65
ENERGY EFFICIENCY OF ELECTROMECHANICAL SYSTEMS	
V. S. Petrushyn, J. R. Plotkin, R. N. Yenoktaiev, Bendahmane Boukhalfa Development of energy–efficient asynchronous electric drive for intermittent operation	70
O. V. Naboka, P. D. Andrienko Improving the energy efficiency of the power supply of auxiliary electric drives of ED9m electric trains	80
S. Mikhaykov, M. Mukha, A. Drankova Improving the electric energy quality in operation modes of ship's cooling system	85
A. Kipenskyi, I. Korol, N. Gorovykh Improvement the energy performance of a three-phase thyristor converter for electric heating devices	90
MODERN SYSTEMS OF AUTOMATED ELECTRIC DRIVE	
Yu. N. Kutovoj, T. Yu. Kunchenko, I. V. Obruch, Ya. A. Kyrylenko Study of the starting modes of the frequency-controlled electric drive of the main electric locomotive DS3	9 5
I. Z. Shchur Active power steering system in electronic differential of electric vehicle with individual drive of two front wheels	