DES: Data Encryption Standard

INE5429 - Segurança em Computação

Caique Rodrigues Marques c.r.marques@grad.ufsc.br

Nota: As imagens usadas foram retiradas do livro-texto[2].

- 3.2 Devido ao algoritmo de key scheduler apenas copiar os primeiros 8 rounds nos rounds de 9 a 16, na ordem inversa, é possível notar que o ciframento e o deciframento do cifrador de Feistel são iguais. Assim, para conseguir a mensagem m basta que o oráculo cifre c, assim o texto cifrado retornado vai ser o texto c decifrado, logo, a mensagem m.
- 3.7 A estrutura do DES constitui do uso da função de Feistel que é inversível, a partir disto é possível mostrar que o decifrador DES é o inverso do cifrador DES. Definindo uma função de Feistel F e a entrada composta por (L_1, R_1) , o primeiro round do cifrador é definido como:

$$L_2 = R_1 \oplus F(L_1)$$
$$R_2 = L1,$$

onde L_2 e R_2 compõem a saída cifrada resultante. Supondo que o cifrador possua apenas um round, é possível conseguir a entrada original apenas com a função F e a saída cifrada:

$$L_1 = R_2$$

$$R_1 = L_2 \oplus F(L_1).$$

Isso é possível devido a dois pontos:

- (a) Parte da entrada é carregada ao fim de cada round;
- (b) A operação de ⊕ entre quaisquer dois elementos garante a inversibilidade, assim,
 - $A \oplus B = C$:
 - $A \oplus C = B$;
 - $B \oplus C = A$.

Tais propriedades são válidas porque o conjunto D, munido da operação de \oplus entre dois elementos a e b quaisquer pertencentes a D, é um grupo abeliano.¹

Portanto, a função de Feistel F é inversível.

Resta apenas as funções $IP ext{ e } IP^{-1}$. Ambas as funções são de permutações, logo, apenas rearranja os bits e, por definicão, IP^{-1} é o inverso de IP. Para ciframento:

- O texto original é entrada da função IP, resultando na saída composta por (L,R);
- A saída do item anterior é entrada da função de Feistel, resultando em (X,Y);
- Por fim, a saída do item anterior é entrada para a função IP^{-1} , resultando no texto cifrado c.

Para deciframento:

- O texto cifrado c é entrada da função IP, resultando na saída composta por (X,Y);
- A saída do item anterior é entrada da função de Feistel, resultando em (L, R);
- Por fim, a saída do item anterior é entrada para a função IP^{-1} , resultando no texto original.

Portanto, o deciframento DES é o inverso do ciframento DES.

3.12 Dadas as duas tabelas abaixo, a única coisa notável é que as tabelas são bem parecidas, a exceção está na *Permuted Choice One* que possui um bit a menos que a tabela de *Initial Permution* - ainda é possível notar alguns padrões de posicionamento entre ambas (começando pelo 57 em ambas, por exemplo), o que pode permitir alguma implementação similar da tabela *IP* na *PC-1*. De resto, não há mais nada de especial.

¹Para ser classificado como um grupo abeliano é necessário satisfazer cinco axiomas.

(a) Initial Permutation (IP)

50	42	34	26	18	10	2
52	44	36	28	20	12	4
54	46	38	30	22	14	6
56	48	40	32	24	16	8
49	41	33	25	17	9	1
51	43	35	27	19	11	3
53	45	37	29	21	13	5
55	47	39	31	23	15	7
	52 54 56 49 51 53	52 44 54 46 56 48 49 41 51 43 53 45	52 44 36 54 46 38 56 48 40 49 41 33 51 43 35 53 45 37	52 44 36 28 54 46 38 30 56 48 40 32 49 41 33 25 51 43 35 27 53 45 37 29	52 44 36 28 20 54 46 38 30 22 56 48 40 32 24 49 41 33 25 17 51 43 35 27 19 53 45 37 29 21	52 44 36 28 20 12 54 46 38 30 22 14 56 48 40 32 24 16 49 41 33 25 17 9 51 43 35 27 19 11 53 45 37 29 21 13

(b) Permuted Choice One (PC-1)

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

3.13 Durante o deciframento, rounds com um 1 bit rotacionados são 2, 9 e 16, enquanto o restante (exceto o round 1) são rotacionados 2 bits.

Número do round	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bits rotacionados	0	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

- 3.16 (a) Em questão de segurança, o permutador de 10 bits não é tão forte. Como ele apenas rearranja os 10 bits, então há 2^{10} possibilidades de chave, assim, com um computador atual é relativamente simples conseguir decifrar a entrada partindo-se da saída.
 - (b) Considerando a simplicidade da função citada na alternativa anterior, a função que faz deslocamento circular de 1 bit à esquerda também não adiciona muita segurança, além de ser ainda mais simples de deduzir a entrada.
- 3.17 Dadas as tabelas correspondentes às duas S-boxes do simplified DES:

$$S0 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 0 & 2 & 1 & 3 \\ 3 & 1 & 3 & 2 \end{bmatrix}$$

$$S1 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 3 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 & 3 \end{bmatrix}$$

Sendo wxyz uma entrada, os valores de w e z correspondem à linha do S-box, enquanto x e y correspondem à coluna. Por exemplo, sendo a entrada da S-box a sequência 0001, então wz = 01 e xy = 00, assim, o resultado está na linha de número um e coluna número zero da matriz S1, resultando em 2, que em binário é 10, portanto, s = 1 e t = 0. Montando toda essa relação em uma tabela verdade:

		i	ı	ı	
W	X	У	\mathbf{z}	S	t
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	1	0
0	1	0	1	0	1
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	1	1

Com a tabela verdade acima, é possível montar um mapa de Karnaugh[1] e dele derivar as equações para s e t, porém, o resultado estará na forma normal disjuntiva. Segue as equações para as variáveis s e t:

$$\begin{split} s &= \overline{xy}z + \overline{w}x\overline{z} + xyz + w\overline{xy}, \\ t &= \overline{w}y\overline{z} + \overline{w}xz + w\overline{yz} + wyz. \end{split}$$

3.18 Dado o texto cifrado c=10100010 e a chave k=01111111101, iremos decifrar a mensagem c usando o simplifified DES. Dada a estrutura do SDES, começando pela parte de geração de chaves:

2

- (a) **Permutação de 10 bits**: Ao aplicar a função de permutação de 10 bits na chave: P10(k) = 1111110011;
- (b) **Deslocamento circular de 1 bit à esquerda**: Aplicando deslocamento circular de 1 bit nas partições 11111 e 10011:

```
LS1(11111) = 111111 e LS1(10011) = 001111;
```

(c) **Permutação de 8 bits**: A função de permutação de 8 bits nas duas partições anteriores e resultando na subchave k_1 :

```
P8_a(11111,00111) = 010111111;
```

(d) **Deslocamento circular de 2 bits à esquerda**: As duas partições 11111 e 10011 têm os 2 bits deslocados à esquerda:

```
LS2(11111) = 111111 e LS2(10011) = 001111;
```

(e) **Permutação de 8 bits**: Por fim, ambas as partições do item anterior são concatenadas e permutadas, resultado na subchave k_2 :

```
P8_b(11111,00111) = 111111100.
```

Seguindo com a estrutura do SDES:

(a) **Permutação inicial**: O texto cifrado c de 8 bits é entrada da função IP que realiza a permutação inicial:

```
IP(c) = 00110001;
```

- (b) Expansão e permutação: Os 4 bits menos significativos do resultado da permutação de c do item anterior é entrada da função E/P, que realiza a expansão para 8 bits e permuta-os: E/P(0001) = 10000010;
- (c) **XOR**: Realizando a operação de ou-exclusivo (XOR) com o resultado do item anterior e a subchave k_2 :

```
10000010 \oplus k_2 = 011111110;
```

- (d) **S-boxes**: Os bits mais e menos significativos do resultado da operação XOR anterior são entradas para as funções S0 e S1, respectivamente. Dos quatro bits, o quarto e o primeiro bits correspondem à linha da S-box, enquanto os dois bits do meio restantes correspondem à coluna: S0(01,11) = 00 e S1(10,11) = 00;
- (e) **Permutação de 4 bits**: Os quatro bits resultantes do passo anterior são concatenados e permutados: P4(00,00) = 0000;
- (f) **XOR**: Por fim, há a operação de ou-exclusivo (XOR) entre os quatro bits do passo anterior e o os quatro bits mais significativos resultantes da permutação inicial do texto cifrado c: $0011 \oplus 0000 = 0011$.

A função Switch recebe o resultado final da última operação XOR e os 4 bits menos significativos resultantes da permutação inicial do texto cifrado c. Nesta função os 4 bits menos significativos passam a ser os mais significativos e vice-versa:

```
SW(0011,0001) = 00010011
```

Seguindo a estrutura final do SDES:

(a) **Expansão e permutação**: Os 4 bits menos significativos do resultado da função **Switch** são entradas desta função:

```
E/P(0011) = 10010110;
```

(b) **XOR**: Realizando a operação de ou-exclusivo (XOR) entre a subchave k_1 e o resultado do passo anterior:

```
10010110 \oplus k_2 = 11001001;
```

- (c) **S-Boxes**: Os bits mais e menos significativos do resultado da operação XOR anterior são entradas para as funções S0 e S1, respectivamente. Dos quatro bits, o quarto e o primeiro bits correspondem à linha da S-box, enquanto os dois bits do meio restantes correspondem à coluna: S0(10, 10) = 01 e S1(11, 00) = 10;
- (d) **Permutação de 4 bits**: Os quatro bits resultantes do passo anterior são concatenados e permutados: P4(0110) = 1010
- (e) **XOR**: Há a operação de ou-exclusivo (XOR) entre os quatro bits do passo anterior e o os quatro bits mais significativos resultantes da função Switch: $0001 \oplus 1010 = 1011$

(f) IP^{-1} : Por fim, é realizado a inversa da permutação inicial com a concatenação do resultado anterior e com os 4 bits menos significativos resultantes da função Switch: $IP^{-1}(1011,0011) = 11101010$.

O texto decifrado é 11101010, sendo que a cada quatro bits corresponde a uma codificação a uma letra do alfabeto, assim, 1110 corresponde à letra O e 1010 corresponde à letra K. Portanto o texto final decifrado é OK.

Referências

- [1] Karnaugh, M. The map method for synthesis of combinational logic circuits. *Transactions of the American Institute of Electrical Engineers*, 72 (November 1953).
- [2] Stallings, W. Cryptography and Network Security: Principles and Practice, 6th ed. Pearson, 2014.