Fluid flow through a tube with a static magnetic field. A liquid of conductivity σ flows with a constant velocity $\mathbf{v}=v\mathbf{a}_x$ through a tube of width d, in which a uniform time-invariant magnetic field of flux density $\mathbf{B}=B\mathbf{a}_y$ is applied, as depicted in Fig. Q6.10. The induced electric field intensity vector, \mathbf{E}_{ind} , and the field intensity vector due to excess charge, \mathbf{E}_q , in the liquid are given by

- (A) $\mathbf{E}_{\mathrm{ind}} = vBd\mathbf{a}_z$ and $\mathbf{E}_q = 0$.
- (B) $\mathbf{E}_{\text{ind}} = E_q = vBd\mathbf{a}_z$.
- (C) $\mathbf{E}_{\text{ind}} = \mathbf{E}_q = vB\mathbf{a}_z$.
- (D) $\mathbf{E}_{\mathrm{ind}} = vB\mathbf{a}_z$ and $\mathbf{E}_q = 0$.
- (E) $\mathbf{E}_{\mathrm{ind}} = vB\mathbf{a}_z$ and $\mathbf{E}_q = -vB\mathbf{a}_z$.
- (F) $\mathbf{E}_{\text{ind}} = \mathbf{E}_q = 0$.

Figure Q6.10 Conducting fluid flow through a tube with a time-constant magnetic field; for Question 6.22.

Solution: (E) Answer: (E)