第一章

数字系统设计概述

目录 CONTENTS

集成电路发展现状

2 数字系统概念

3 数字系统的实现方法

4 基于HDL和EDA工具的设计流程

集成电路制造过程

点石成金

集成电路发展现状-产业特点

- □ 集成电路产品周期比较短
 - 电子产品更新换代非常快
 - 先进的设计方法学
- □ 设计与制造分开
 - Fabless公司
 - 加工、封装、测试
 - 联发科

1997年05月: 聯發科成立於新竹科學工業園區

1998年: 推出全球最快速的48X CD-ROM晶片組

1999年: 推出全球最快速12X DVD-ROM晶片組

2000年: 推出CD-ROM單晶片解決方案

2003年:全球第一套Combo單晶片解決方案

2006年: GSM手机Turn-Key解决方案

目录 CONTENTS

集成电路发展现状

2 数字系统概念

3 数字系统的实现方法

4 基于HDL和EDA工具的设计流程

- 功能级电路

- 由各种逻辑器件构成的能够实现某种单一特定功能的电路称为功能 部件级电路
- 例如:加法器、比较器、译码器、数据选择器、计数器、移位寄存器、存储器等

Inputs				Outputs								
Enable		Select		1								
G1	G2 (Note 1)	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	н	X	X	X	н	н	н	н	н	Н	н	Н
L	×	x	X	X	н	н	н	н	н	н	H	Н
Н	L	L	L	L	L	н	н	н	н	н	H	н
Н	L	L	L	н	н	L	Н	н	н	н	н	Н
Н	L	L	Н	L	н	Н	L	Н	Н	Н	H	Н
Н	L	L	н	н	н	н	н	L	н	н	н	н
Н	L	н	L	L	н	н	н	н	L	н	H	Н
Н	L	н	L	н	н	Н	н	н	н	L	Н	Н
н	L	н	н	L	н	H	н	н	н	H	L	Н
н	L	н	н	н	н	н	н	н	н	н	н	L

□ 系统

- 钱学森:由相互作用相互依赖的若干组成部分结合而成的,具有特定功能的有机整体
- 而且这个有机整体又是它从属的更大系统的组成部分。
- 计算机
 - 软件系统
 - 硬件系统
 - 运算子系统
 - 存储子系统

- □ 数字系统 (Digital System)
 - 由若干数字电路和逻辑部件构成的、能够实现数据存储、传送和处理等复杂功能的数字电子系统
 - 通用处理器: CPU
 - 专用数字系统: GPU、存储器、调制解调器等

- 数字系统主要处理离散信号:数字、文字、图像、视频、 声音等
- 数字系统在处理模拟信号之前,要对模拟信号进行量化(数字化)处理。

数字系统在结构上分为数据处理单元和控制单元

数字系统内部所传输处理的对象均为基本数字逻辑变量

目录 CONTENTS

集成电路发展现状

2 数字系统概念

3 数字系统的实现方法

4 基于HDL和EDA工具的设计流程

数字系统的实现方法

- ASSP (Application Specific Standard Product) 专用
 功能标准产品
- □ PLD (Programmable Logic Device) 可编程逻辑器件
- ASIC (Application Specific Integrated Circuit)

专用集成电路

数字系统的实现方法-ASSP

□ 专用功能标准产品

- 具备特定功能的芯片: 74系列、4000系列
- 反相器、或门、或非门、与或非门、比较器、译码器

- 非常通用
- 功能相对简单
- 适合设计小规模系统

8输入与非门

74LS30

数字系统的实现方法-ASSP

- □ 纯手工搭建CPU
 - 2009年世界创意大会, Steve
 - Big Mass Of Wires

用ASSP搭建系统

□ 纯手工搭建CPU

数字系统的实现方法-PLD

□ 可编程逻辑器件

一分类

■ 复杂可编程逻辑器件(Complex Programmab Logic Device, CPLD) – 小规模

■ 现场可编程门阵列 (Field - Programmable Gate Array, FPGA) – 大型系统

- 特点

■ 灵活

■ 规模:几百-上千万门

■ 价格: 几十-几万人民币

■ FPGA接口丰富

■ 设计开发周期短、设计制造成本低

■ 适用于非批量生产应用

Cyclone IV

可编程逻辑器件 (PLD)

基于乘积项技术的PLD (CPLD) 与阵列固定,或阵列可编程

与阵列、或阵列均可编程

与阵列可编程,或阵列固定

基于查找表技术的PLD (FPGA)

基于查找表技术的PLD—FPGA

下图是一个4输入与门的例子:

实际逻辑印	电路	LUT的实现方式				
	out out	地址线 a b c d	16x1 RAM -	輸出		
a, b, c, d 输入	逻辑输出	地址	RAMP存储的内容			
0000	0	0000	0			
0001	0	0001	0			
(* * * *)	0		0			
1111	1	1111	1			

CPLD与FPGA的对比

	CPLD	FPGA				
内部结构	Product-term	Look—up Table				
程序存储	内部EEPROM	SRAM,外挂EEPROM				
资源类型	组合电路资源丰富	触发器资源丰富				
集成度	低	高				
使用场合	完成控制逻辑	能完成比较复杂的算法				
速度	慢	快				
其他资源		EAB,锁相环				
保密性	可加密	一般不能保密				

数字系统的实现方法-PLD

□ 可编程逻辑器件

一分类

■ 复杂可编程逻辑器件(Complex Programmab Logic Device, CPLD) – 小规模

■ 现场可编程门阵列 (Field - Programmable Gate Array, FPGA) – 大型系统

- 特点

■ 灵活

■ 规模:几百-上千万门

■ 价格: 几十-几万人民币

■ FPGA接口丰富

■ 设计开发周期短、设计制造成本低

■ 适用于非批量生产应用

Cyclone IV

数字系统的实现方法-ASIC

- 专用集成电路

- 针对某一电路系统的要求专门设计
- 具有特定电路功能,通常市场上买不到
- 性价比好
 - 体积小、低功耗
 - 可靠性
- 应用广泛

全定制

- 主要设计思想

利用集成电路的最基本设计方法(不使用现有库单元),对集成 电路中所有的元器件进行精工细作的设计方法

设计特点

■ 精工细作,设计要求高、周期长,设计成本昂贵。

- 适用范围

- 该方法尤其适宜于模拟电路,数模混合电路。
- 以及对速度、功耗、管芯面积、其它器件特性(如线性度、对称性、电流容量、耐压等)有特殊要求的场合;
- 在没有现成元件库的场合。

基于标准单元的设计

□ 基于标准单元的设计方法

将预先设计好的称为标准单元的逻辑单元,如与门,或门,多路开关,触发器等,按照某种特定的规则排列,通常按照等高不等宽的原则排列,留出宽度可调的布线通道

- 优缺点

- 用标准单元库,省时、省钱、少风险地完成ASIC设计任务
- 标准单元可以置放于芯片的任何位置
- 可内嵌定制的功能单元
- 开发周期较短,开发成本低于全定制
- 需要花钱购买或自己设计标准单元库

有线数字电视接收系统测试平台

目录 CONTENTS

1 集成电路发展现状

2 数字系统概念

3 数字系统的实现方法

4 基于HDL和EDA工具的设计流程

传统的设计方法

- 以组合逻辑电路设计为例
 - 任意时刻的输出仅取决于该时刻电路的输入,与过去的输入无关
- 电路特点
 - 由逻辑门电路组成,无记忆器件
 - 信号是单向传输的,无反馈回路

传统的设计方法

- 1. 确定输入信号和输出信号
- 2. 确定输入和输出的逻辑状态关系
 - 逻辑函数
 - 真值表
- 3. 优化逻辑状态表达式
 - 卡诺图化简等
- 4. 实现电路

第3、4部可以 交给计算机自 动完成

y1 = a and b or c

y2 = d + e

车	俞入	输出	
A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

新的组合逻辑电路的设计步骤

- 1. 确定输入信号和输出信号
- 2. 确定输入和输出的逻辑状态关系
- 3. 用HDL (硬件描述语言) 正确描述电路功能

	车	俞入	输出		
5	A	B	C	Y	
	0	0	0	0	
	0	0	1	0	
	0	1	0	0	
	0	1	1	0	
	9	0		0	
		0 1 0	1		
路		0	1		
 -			1	1	

module aa(y,a,b,c)

让计算机软件优化并生成电路

endmodule

基于HDL的数字系统设计方法

D 关键要素

- 数字系统设计EDA工具
- Top-down设计思想
- 层次化设计方法
- 硬件描述语言 (HDL)

层次化设计方法 - 设计抽象

- 层次式设计方法的核心思想是通过设计抽象。
- 合层次的设计由若干模块或单元组成。在进行某一层次的设计时,我们只需考虑模块的整体外部行为特性,而不必考虑内部组成。
- 这样模块被抽象成为一个隐藏了内部细节的黑箱 , 其外部特性的描述构成该模块的模型。

层次化设计方法 -设计层次

- 每一层次处理的模块或单元数量是有限的。因此高度复杂的大规模数字设计就通过这样多层次、模块化的分割解决了
- 数字电路与系统通常分为如下层次

层次式设计

Bottom-up设计

- 传统的设计是自底向上的设计方法。如设计一个数字系统,必须首先决定使用的器件(如74系列的器件,不同类别的RAM、ROM、CPU等),然后构成各个功能模块(如数据采集、处理、通信接口等模块),最后合成整个系统。
- 主要问题是在进行底层设计时缺乏对系统总体性能的把握,在合成整个系统后,可能发现无法达到要求的功能或性能,难以保证一次设计的成功率。
- 因此自底向上的设计方法效率低,不能满足大规模 系统的设计需要。

Top-down设计

- 。自顶向下设计方法得以实施的前提是:
- 各层次、各类模块功能与性能的精确定义与描述方法(建模)
- 各层次的仿真及综合工具
- 底层精确的工艺库支持
- 这就是EDA技术要解决的主要问题。因此只有在EDA技术 发展逐步成熟以后,自顶向下的设计才成为可能

Top-down基本设计流程

- 系统设计
 - 系统需求定义
 - 软硬件设计划分
 - 算法设计
 - 体系结构设计
- 。 逻辑设计
 - 逻辑综合
 - 逻辑优化
- □ 物理设计 (不同)
 - 布局规划 (Floorplanning)
 - 布局 (Placement)
 - 布线 (Routing)

系统要求 (Specification)

逻辑设计

- 主要通过硬件描述语言的行为描述实现
- 寄存器传输级
 - 设计者编写的代码描述的是每一个clock下,触发器集合A的旧值 进行逻辑运算,产生新值,存入触发器集合B的过程。
 - 可综合得到电路实现

□ 依靠逻辑综合,之后的设计基本可由EDA工具自动完成

Top-down设计的优点

- □ Top-down设计方法可在系统级完成整个系统的模拟和性能分析,一开始就掌握实现目标系统的性能状况
- 随着设计层次向下进行,系统逐步细化,每一层次的设计都经过仿真验证,性能得到保证,从而保证了最后设计结果的正确性,设计成功率高
- 当规模越大时,这种方法的优越性越明显

EDA支持下基于标准单元的ASIC设计流程

