Selected Solutions to Cox, Little, and O'Shea's Ideals, Varieties, and Algorithms

Tushar Muralidharan

February 20 2023

Contents

Chapt	er 1. Geometry, Algebra, and Algorithms
§2.	Affine Varieties
§3.	Parametrizations of Affine Varieties
$\S 4.$	Ideals
§5.	Polynomials of One Variable
Chapt	er 2. Gröbner Bases
§2.	Orderings on the Monomials in $k[x_1,\ldots,x_n]$
§3.	A Division Algorithm in $k[x_1, \ldots, x_n]$
$\S 4.$	Monomial Ideals and Dickson's Lemma
§5.	The Hilbert Basis Theorem and Gröbner Bases

Chapter 1

Geometry, Algebra, and Algorithms

§2 Affine Varieties

2. (Tushar) The polynomial vanishes when $y^2 = x(x-1)(x-2)$. There are two possible values for y whenever $x(x-1)(x-2) \ge 0$. The curve is symmetric about the x-axis since the corresponding values for y are $\pm \sqrt{x(x-1)(x-2)}$.

Figure 1.1: Plot of $\mathbf{V}(y^2 - x(x-1)(x-2))$

6. (Tushar)

a. We can force each x_i to equal a_i by including the equation $x_i - a_i = 0$. Hence the single point $(a_1, \ldots, a_n) \in k^n$ is the affine variety defined by $\mathbf{V}(x_1 - a_1, \ldots, x_n - a_n)$.

- b. We proceed by induction on the cardinality of the subset. The base case is proved by part (a). Assume that any finite subset of k^n with cardinality n is an affine variety. Then for any finite subset A of k^n with cardinality n+1, choose a point $(a_1,\ldots,a_n)\in k$. The induction hypothesis gives that $A\setminus(a_1,\ldots,a_n)$ is an affine variety. By part (a), the single point (a_1,\ldots,a_n) is also an affine variety. Then Lemma 2 shows that the union $(A\setminus(a_1,\ldots,a_n))\cup(a_1,\ldots,a_n)=A$ is also an affine variety.
- 8. (Tushar) We know in the proof of Proposition 5 of §1 that a nonzero polynomial in k[x] of degree m has at most m distinct roots. Moreover, we have that g(t) = f(t,t) = 0 for all $t \neq 1$. Since $g \in \mathbb{R}[t]$ and \mathbb{R} is infinite, this means that g has infinitely many distinct roots. But this implies that g is the zero polynomial and so g(1) = f(1,1) = 0, as required.

§3 Parametrizations of Affine Varieties

- 4. (Tushar)
 - a. Solving for t in the first equation gives

$$t = \frac{x}{1 - x}.$$

Substituting this into the second equation then gives

$$y = 1 - \left(\frac{1-x}{x}\right)^2 = \frac{x^2 - (1-x)^2}{x^2} = \frac{2x-1}{x^2}.$$

This defines the affine variety $\mathbf{V}(x^2y - 2x + 1)$.

- b. We want to show that for all $(x,y) \neq (1,1)$ satisfying $x^2y 2x + 1 = 0$, there exists t such that $x = \frac{t}{1+t}$ and $y = 1 \frac{1}{t^2}$. If x = 1, then the equation $x^2y 2x + 1 = 0$ forces y = 1, which we are disregarding. Assuming $x \neq 1$, we can take $t = \frac{x}{1-x}$, and it can easily be checked that this t satisfied the required properties.
- 6. (Tushar)
 - a. The line connecting the north pole, which has z=1, and any other point on the sphere, which must have z<1, must cross the plane z=0 at some point (u,v,0). On the other hand, the line connecting any point (u,v,0) and the north pole can be parameterized by x=u+at, y=v+bt, z=ct and substituting this into the equation of the sphere shows that there are at most two possible solutions for t.

Figure 1.2: Parameterization of the sphere $x^2 + y^2 = z^2 = 1$

- b. The line passes through both (0,0,1) and (u,v,0) at t=0 and t=1, respectively. It is clear that the function is a line from the form of the parameterization.
- c. Substituting gives $t^2u^2 + t^2v^2 + 1 2t + t^2 = 1$. This yields $(u^2 + v^2 + 1)t^2 2t = 0$, so we obtain the solutions t = 0 and $t = \frac{2}{u^2 + v^2 + 1}$. Since the point at t = 0 is the north pole, we are looking for the other point, where $t = \frac{2}{u^2 + v^2 + 1}$. Thus we obtain

$$x = tu = \frac{2u}{u^2 + v^2 + 1}$$
$$y = tv = \frac{2v}{u^2 + v^2 + 1}$$
$$z = 1 - t = \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}.$$

8.

- 9. (Tushar)
 - a. Note that $a^2 x^2 = a^2 a^2 \sin^2 t = a^2 \cos^2 t$. Hence

$$y = a \tan t (1 + \sin t) = \frac{a \sin t}{a \cos t} (a + a \sin t) = \frac{x}{\pm \sqrt{a^2 - x^2}} (a + x).$$

Squaring both sides eliminates the plus-or-minus sign, which gives

$$y^2 = \frac{x^2(a+x)^2}{a^2 - x^2}.$$

This expression causes y to be undefined when x = -a. Thus we must eliminate the removable discontinuity:

$$y^{2} = \frac{x^{2}(a+x)^{2}}{a^{2} - x^{2}} = \frac{x^{2}(a+x)^{2}}{(a+x)(a-x)} = \frac{x^{2}(a+x)}{a-x}$$

so that the final equation is

$$(a-x)y^2 = x^2(a+x).$$

b. Consider the line y = tx for various values of t. This line intersects the strophoid when $(a-x)t^2x^2 = x^2(a+x)$. At the intersection point where $x \neq 0$, we have $(a-x)t^2 = a+x$. Solving for x and using the equation for y then yields the parameterization

$$x = a\frac{t^2 - 1}{t^2 + 1}$$
$$y = tx = ta\frac{t^2 - 1}{t^2 + 1}.$$

§4 Ideals

- 7. (Tushar) We note that $\mathbf{V}(x^n, y^m) = \{(0,0)\}$. Thus we aim to show that $\mathbf{I}(\{(0,0)\}) = \langle x, y \rangle$. Any polynomial of the form f(x,y)x + g(x,y)y vanishes at (0,0). This shows that $\langle x,y \rangle \subset \mathbf{I}(\{(0,0)\})$. Now suppose that $f = \sum_{i,j} a_{ij} x^i y^j$ vanishes at (0,0). Then $a_{00} = f(0,0) = 0$, and we can factor a y out of the monomials with y only, and an x out of the remaining monomials so that $f \in \langle x, y \rangle$. This proves that $\mathbf{I}(\{(0,0)\}) \subset \langle x, y \rangle$.
- 8. (Tushar)
 - a. Suppose that $(a_1, \ldots, a_n) \in V$ for some variety $V \subset k^n$ and field k. If $f^m \in \mathbf{I}(V)$, then $(f(a_1, \ldots, a_m))^m = 0$. Since k is a field, this implies that $f(a_1, \ldots, a_m) = 0$. Since $(a_1, \ldots, a_n) \in V$ was arbitrary, we must have that f vanishes on all of V and hence $f \in \mathbf{I}(V)$.
 - b. We have that $x^2 \in \langle x^2, y^2 \rangle$ but $x \notin \langle x^2, y^2 \rangle$ since for polynomials of the form $h_1(x, y)x^2 + h_2(x, y)y^2$, every monomial has total degree at least two. Thus $\langle x^2, y^2 \rangle$ is not a radical ideal.
- 12. (Tushar)
- 15. (Tushar)

§5 Polynomials of One Variable

- 5.
- 8.
- 11. (Tushar)
- 12. (Tushar)
- 14. (Tushar)
- 17.

Chapter 2

Gröbner Bases

§2 Orderings on the Monomials in $k[x_1, \ldots, x_n]$ 11.

§3 A Division Algorithm in $k[x_1, \ldots, x_n]$ 10.

§4 Monomial Ideals and Dickson's Lemma
8.

§5 The Hilbert Basis Theorem and Gröbner Bases
3. (Tushar)
10.
15.
17.