Models of bites as a function of travel times

Commune (Moramanga)

$$\mu_j = exp(\beta_t T_j + \beta_0) \times pop_j$$

 μ_j = the mean number of bites in commune j

• We then estimate the likelihood of observing the bites at the commune level at the Moramanga clinic where bites are a poisson distribution around the mean μ_j

District (Mada)

$$\mu_d = \sum_{j=1}^{j} exp(\beta_t T_j + \beta_0) \times pop_j$$

 μ_d is the mean number of bites in district which is the sum of bites at the commune level given **commune level travel times** d We then estimate the likelihood of observing the bites at the district level where bites are a poisson distribution around the mean μ

District (Mada)

Commune (Moramanga)

Observed mean bites at commune (Moramanga)

Predicted incidence per 100k

Travel time coefficient

Intercept

Model of proportion rabid by travel time from Moramanga Data

