Theoretische Informatik

Abgabetermin: 20. April 2015, 13 Uhr in die THEO Briefkästen

Hausaufgabe 1 (5 Punkte)

Mit (x, y) bezeichnen wir das 2-Tupel von Objekten x, y. Es gilt $(x_1, y_1) = (x_2, y_2)$ genau dann, wenn $x_1 = x_2$ und $y_1 = y_2$ gelten. Überdies wird Tupelbildung stets so verstanden, dass $x \neq (x, y)$ und $y \neq (x, y)$ für alle Objekte x und y gilt. Eine Menge U nennen wir abgeschlossen gegenüber 2-Tupelbildung, falls die folgende Implikation A2 gilt:

$$(A2) x, y \in U \Longrightarrow (x, y) \in U.$$

1. Sei F eine Menge (a.a. eine Familie) von Mengen, die abgeschlossen sind gegenüber 2-Tupelbildung. Zeigen Sie, dass dann auch der Durchschnitt aller Mengen aus F abgeschlossen ist gegenüber 2-Tupelbildung, d.h.

$$\bigcap_{U \in F} U$$
 ist abgeschlossen gegenüber 2-Tupelbildung.

Hinweis: Falls F endlich ist mit $F = \{U_1, U_2, \dots, U_n\}$, dann gilt

$$\bigcap_{U \in F} U = U_1 \cap U_2 \cap \ldots \cap U_n.$$

2. Sei M eine Menge. Wir definieren

(a)
$$S_0 := M$$
 und $S_{i+1} := S_i \cup (S_i \times S_i)$ für alle $i \in \mathbb{N}_0$,

(b)
$$M^{\times 2} := \bigcup_{i \in \mathbb{N}_0} S_i$$
.

Zeigen Sie: $M^{\times 2}$ ist die bezüglich Mengeninklusion kleinste, gegenüber 2-Tupelbildung abgeschlossene Menge U, die M umfasst, d.h., dass $M\subseteq U$ gilt.

Bemerkung: Man nennt $M^{\times 2}$ die gegenüber 2-Tupelbildung abgeschlossene Hülle von M. Sie besitzt zwei Darstellungen:

$$M^{\times 2} = \bigcap_{(U \supseteq M, U \text{ erfüllt } A2)} U = \bigcup_{i \in \mathbb{N}_0} S_i.$$
 (Def. S_i siehe 2a)

Wir setzen wie üblich voraus, dass das Universum der zugrundeliegenden Mengenlehre hinreichend groß ist.

Hausaufgabe 2 (5 Punkte)

Seien $\Sigma = \{a, b\}$ und Σ^* die Menge aller Wörter über Σ . Man zeige:

- 1. Die Menge Σ^* ist abzählbar.
- 2. Die Menge $F(\Sigma^*)$ aller $\{0,1\}$ -wertigen Funktionen $c:\Sigma^*\to\{0,1\}$ ist nicht abzählbar.

Hausaufgabe 3 (5 Punkte)

Wahr oder falsch? Begründen Sie Ihre Antwort!

- 1. $|\Sigma^n| = |\Sigma|^n$ für alle $n \in \mathbb{N}_0$ und endlichen Mengen Σ .
- 2. Für alle formalen Sprachen A, B, C gilt $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
- 3. Für alle formalen Sprachen A, B, C gilt $A(B \cap C) = (AB) \cap (AC)$.
- 4. Seien Σ ein Alphabet und $A \subseteq \Sigma^*$ mit $|A| = n \in \mathbb{N}$. Wir nehmen $\epsilon \in A$ an. Es gilt $|A \times A^2| < n(n^2 n + 1).$

Hausaufgabe 4 (5 Punkte)

Seien $\Sigma = \{a, b\}$ und $A = \{aa, b\}$. Geben Sie jeweils, wenn möglich, mindestens 3 Wörter an, die innerhalb bzw. außerhalb der folgenden Sprachen liegen. Man beachte $0 \notin \mathbb{N}$.

- 1. $L_1 = \{ w \in \Sigma^* ; \exists u \in A^2 : w = u^3 \}$.
- 2. $L_2 = \{(a^2b^n)^n ; n \in \mathbb{N}\}$.
- 3. $L_3 = \{ w \in \Sigma^* ; w^2 = w^4 \}$.
- 4. $L_4 = \{ w \in A^* ; |w| \le 2 \}$.
- 5. $L_5 = \{(ab)^m (bb)^n ; m, n \in \mathbb{N} \text{ und } n < m\}.$

Zusatzaufgabe 1 (Wird nicht korrigiert.)

Sei S eine beliebige nichtleere Menge. Man zeige:

1. Es gibt eine mengentheoretisch kleinste Äquivalenzrelation π über $S^{\times 2}$, so dass für alle $x,y,z\in S^{\times 2}$ gilt

$$(x,(y,z)) \equiv_{\pi} ((x,y),z).$$

2. Wir definieren $S^{\otimes}=\{[x]_{\pi}\,;\,x\in S^{\times 2}\}$ und die Operation \otimes über S^{\otimes} mit

$$[x]_{\pi} \otimes [y]_{\pi} = [(x,y)]_{\pi}$$
 für alle $x,y \in S^{\times 2}$.

Die Algebra (S^{\otimes}, \otimes) ist eine Halbgruppe und heißt <u>Tensorprodukt</u> über S.

Es darf vorausgesetzt werden, dass die Operation \otimes wohldefiniert ist.

3. Das Tensorprodukt $(\Sigma^{\otimes}, \otimes)$ über einem nichtleeren Alphabet Σ ist isomorph zur Halbgruppe (Σ^{+}, \circ) aller nichtleeren Wörter über Σ mit der Konkatenation \circ .

<u>Hinweis:</u> Definieren Sie eine (\otimes, \circ) -isomorphe Abbildung von Σ^{\otimes} auf Σ^{+} und begründen Sie Ihre Konstruktion!

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

- 1. Seien $A = \{\epsilon, a, ab\}$ und $B = \{a, ba\}$. Bestimmen Sie $|A^2|$, |AB| und |BA|.
- 2. Seien $A, B, C, D \subseteq \Sigma^*$ mit $A \subseteq C$ und $B \subseteq D$. Zeigen Sie

$$AB \subset CD$$
.

Erinnerung: Eine Teilmengenbeziehung $M \subseteq N$ zeigt man, indem man ein $w \in M$ annimmt und dann zeigt, dass $w \in N$ folgt.

Vorbereitung 2

Seien Σ ein Alphabet und $A,B,C\subseteq \Sigma^*$ formale Sprachen. Beweisen Sie die folgenden Aussagen:

 $1. \ \ (\mathrm{i}) \quad A(B\cap C)\subseteq AB\cap AC \, . \qquad \ \ (\mathrm{ii}) \quad B\subseteq C \Longrightarrow AB\subseteq AC \, .$

Hinweis: Es handelt sich hier um zwei äquivalente Monotonieeigenschaften.

- 2. $A \subseteq B \Longrightarrow A^n \subseteq B^n$ für alle $n \in \mathbb{N}_0$.
- $3. \ A\subseteq B \Longrightarrow A^*\subseteq B^* \, .$

Vorbereitung 3

In Lemma 1.7 der Vorlesung wurde gezeigt, dass Σ^* abzählbar ist. Ist dann jede Teilmenge von Σ^* ebenfalls abzählbar? Beweis!

Vorbereitung 4

Betrachten Sie die Phrasenstrukturgrammatik $G = (\{S\}, \{a, b, c\}, \{S \rightarrow ab, S \rightarrow aSb\}, S)$.

- 1. Geben Sie L(G) an.
- 2. Geben Sie eine Grammatik $G' = (V', \Sigma', P', S')$ mit L(G') = L(G) an, deren Regeln die Form $A \to x$ oder $A \to xB$ oder $A \to By$ haben, wobei $A, B \in V'$ und $x, y \in \Sigma'$ seien.
- 3. Beweisen Sie L(G') = L(G).

Tutoraufgabe 1 (Rechenregeln)

Sei Σ ein nichtleeres Alphabet. Beweisen oder widerlegen Sie die folgenden Aussagen:

- 1. Für alle $A \subseteq \Sigma^*$ gilt $|A \times A| = |AA|$.
- 2. Für alle $A \subseteq \Sigma^*$ gilt $A^*A^* = A^*$.

Tutoraufgabe 2 (Abzählbar viele Typ-0-Sprachen)

Wir schränken die Darstellung von Grammatiken vom Typ 0 ein, indem man, ähnlich wie bei der Definition der formalen Sprache der Prädikatenlogik, ein abzählbares Alphabet Σ_{∞} vorgibt, aus dem alle Zeichen zur Definition einer konkreten Grammatik entnommen werden. Offenbar kann man alle formalen Sprachen vom Typ 0 durch einfache Umbenennung der Elemente des Zeichenvorrats aus eingeschränkten Typ-0-Grammatiken gewinnen.

In der Vorlesung wurde nahegelegt, dass es formale Sprachen gibt, die nicht eine Sprache vom Typ 0 sind. Begründen Sie, dass die folgenden Aussagen gelten:

- 1. Jede formale Sprache ist abzählbar.
- 2. Es gibt eine formale Sprache, die nicht vom Typ 0 ist.

Tutoraufgabe 3 (Herstellung der Monotoniebedingung)

Sei $G = (V, \Sigma, P, S)$ eine Phrasenstrukturgrammatik, so dass für alle Regeln $\alpha \to \beta \in P$ gilt $\alpha \in V$ und $\beta \in \Sigma^* \cup \Sigma^* V$. Beweisen Sie, dass L(G) regulär ist.

<u>Hinweis:</u> Die Forderung $\beta \in \Sigma^* \cup \Sigma^* V$ lässt nullierbare Variablen $\neq S$ zu. Man kann die Grammatik G deshalb nullierbar regulär nennen.

Tutoraufgabe 4 (Monotonie und Kontextsensitivität)

Zeigen Sie, dass für jede (längen-)monotone Phrasenstrukturgrammatik $G=(V,\Sigma,P,S)$ die erzeugte Sprache L(G) kontextsensitiv ist.