HOMEWORK SET #10Based on lectures 17 - 19

- 1. Assume that X_1, \ldots, X_n are i.i.d. Uniform $(a_1, b_1), Y_1, \ldots, Y_m$ are i.i.d. Uniform (a_2, b_2) , and the X's are independent of the Y's. We will be testing $\mathcal{H}_0: a_1 = a_2, b_1 = b_2$.
 - (a) Find the likelihood ratio $\lambda(X)$.
 - (b) Prove that under the null hypothesis the distribution of $\lambda(\mathbb{X})$ does not depend on the parameters.
 - (c) Describe the likelihood ratio test of size α .
- 2. Let X_1, \ldots, X_n be i.i.d. $N(\mu, 1)$. Consider a hypothesis $\mathcal{H}: 1 < \mu < 2$, and a test {Reject \mathcal{H} if either $\bar{X}_n < 1 2/\sqrt{n}$ or $\bar{X}_n > 2 + 2/\sqrt{n}$ }.
 - (a) What is the function $\delta(X)$?
 - (b) Find the power $\beta(\mu)$ and sketch it.
 - (c) What is the size of this test?
- 3. Assume X_1, \ldots, X_{20} are i.i.d. Bernoulli(p). We want to test $\mathcal{H}_0: p = .8$ versus $\mathcal{H}_1: p = .6$. Find the most powerful test of \mathcal{H}_0 vs. \mathcal{H}_1 of size $\alpha = .1$.
- 4. Assume that X_1, \ldots, X_n are i.i.d. $N(\mu, \sigma^2)$ and consider testing the hypotheses $\mathcal{H}_0: \mu = \mu_0, \sigma^2 = \sigma_0^2$ versus $\mathcal{H}_1: \mu = \mu_1, \sigma^2 = \sigma_1^2$.
 - (a) Find the most powerful test of \mathcal{H}_0 vs. \mathcal{H}_1 of size α if $\mu_0 < \mu_1$ and $\sigma_0^2 = \sigma_1^2$.
 - (b) For the previous part, find the rejection region if n=25, $\mu_0=0$, $\mu_1=10$, $\sigma_0^2=\sigma_1^2=25$, and $\alpha=.05$. (Hint: You will need to use normal tables.)
 - (c) Find the most powerful test of \mathcal{H}_0 vs. \mathcal{H}_1 of size α if $\mu_0 = \mu_1$ and $\sigma_0^2 < \sigma_1^2$.
 - (d) For the previous part, find the rejection region if n=25, $\mu_0=\mu_1=10$, $\sigma_0^2=9$, $\sigma_1^2=25$, and $\alpha=.05$. (Hint: You will need to use chi-squared tables.)

- (e) Find the most powerful test of \mathcal{H}_0 vs. \mathcal{H}_1 of size α if $\mu_0 < \mu_1$ and $\sigma_0^2 < \sigma_1^2$.
- (f) For the previous part, find the rejection region if $n=25, \mu_0=0, \mu_1=10, \sigma_0^2=9, \sigma_1^2=25, \text{ and } \alpha=.05.$ (Hint: You may need to use non-central chi-square tables.)
- 5. From the book: 8.8, 8.17.