RL: Policy Search

The Big Picture

Marius Lindauer

Winter Term 2021

Policy-Based Reinforcement Learning

ightharpoonup In the last lecture we approximated the value or action-value function using parameters \vec{w}_i

$$V_{\vec{w}}(s) \approx V^{\pi}(s)$$

$$Q_{\vec{w}}(s,a) \approx Q^{\pi}(s,a)$$

- ► A policy was generated directly from the value function
 - e.g., using ϵ -greedy
- lacktriangle Now, we will directly parametrize the policy, and will typically use heta to show parameterization:

$$\pi_{\theta}(s,a) = \mathbb{P}[a \mid s; \theta]$$

- ▶ Goal is to find a policy π with the highest value function V^{π}
- ▶ We will focus again on model-free reinforcement learning

Value-Based and Policy-Based RL

- Value-based
 - ► Learn Value function
 - ▶ implicit policy (e.g., ϵ -greedy)
- Policy-based
 - ► No explicit value function
 - learnt policy
- ► Actor-Critic
 - Learn Value Function
 - Learn Policy

Types of Policies to Search Over

- ▶ So far have focused on deterministic policies
- Now we are thinking about direct policy search in RL, will focus heavily on stochastic policies

Lindauer RL: Big Picture, Winter Term 2021 4

Example: Rock-Paper-Scissors

- ► Two-player game of rock-paper-scissors
 - Scissors beats paper
 - Rock beats scissors
 - Paper beats rock
- Let state be history of prior actions (rock, paper and scissors) and if won or lost
- ▶ Is deterministic policy optimal? Why or why not?

Lindauer RL: Big Picture, Winter Term 2021 5

Example: Rock-Paper-Scissors

- ► Two-player game of rock-paper-scissors
 - Scissors beats paper
 - ► Rock beats scissors
 - Paper beats rock
- Let state be history of prior actions (rock, paper and scissors) and if won or lost
- ▶ Is deterministic policy optimal? Why or why not?
- → stochastic (random) policy is the Nash equilibrium

Lindauer RL: Big Picture, Winter Term 2021 5

Example: Aliased Gridword (1)

Consider features of the following form (for all N, E, S, W)

$$\phi(s,a)=1$$
(s="wall to N", a = "move E")

- State representation is not Markov
- ► The agent cannot differentiate the gray states
- ▶ Compare value-based RL, using an approximate value function

$$Q_{\theta}(s, a) = f(\phi(s, a); \theta)$$

Example: Aliased Gridworld (2)

- ▶ Under aliasing, an optimal deterministic policy will either
 - ► Move W in both gray states
 - ► Move E in both gray states
- ▶ Either way, it can get stuck and never reach the money
- ▶ Value-based RL learns a near-deterministic policy
- ► So it will traverse the corridor for a long time

Example: Aliased Gridworld (3)

► An optimal stochastic policy will randomly move E or W in grey states

 $\pi_{ heta}$ (wall to N and S, move E) = 0.5

 $\pi_{ heta}({
m wall} \ {
m to} \ {
m N} \ {
m and} \ {
m S, move} \ {
m W}) = 0.5$

- ▶ It will reach the goal state in a few steps with high probability
- ▶ Policy-based RL can learn the optimal stochastic policy

Policy Objective Functions

- ▶ Goal: given a policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ^*
- lacktriangle But how do we measure the quality for a policy $\pi_{ heta}$
- \blacktriangleright In episodic environments, we can use policy value at start state $V(s_0,\theta)$
- ► For simplicity, we will mostly discuss the episodic case

indauer RL: Big Picture, Winter Term 2021