

ACM ICPC 2013

Contest: THAILAND

DEPARTMENT OF COMPUTER ENGINEERING
FACULTY OF ENGINEERING – CHULALONGKORN UNIVERSITY

SEPTEMBER 8, 2013

J

Magic Graphs

INPUT	STANDARD INPUT
OUTPUT	STANDARD OUTPUT

A k-partite graph is a graph whose vertices can be partitioned into K disjoint sets so that no two vertices within the same set are adjacent. In this problem we consider a special version of a k-partite graph in which each disjoint set contains exactly two vertices. Let us call this graph magic graph. In what follows we characterize such magic graphs.

Let **P** be a set of positive labels $\{1, 2, 3, 4, ...\}$ and **N** be a set of negative labels $\{1', 2', 3', 4', ...\}$. Also let $\mathbf{L} = \mathbf{P} \cup \mathbf{N}$. A magic graph is a k-partite graph G = (V, E), where **V** is a set of vertices and E is a set of edges. We define $V = V_1 \cup V_2 \cup V_3 \cup ... \cup V_k$, where each $\mathbf{V_i} \subset \mathbf{L}$ and $|V_i| = 2$. There is an edge $\{l_1, l_2\}$ in G if and only if l_1 and l_2 are in different vertex sets and l_1 and l_2 are not positive and negative labels of the same number. For instance, the following graph is a magic graph.

This graph is a tripartite magic graph. V_1 is $\{1, 2\}$. V_2 is $\{1', 2'\}$. V_3 is $\{1, 2'\}$. Be noted that multiple nodes may have the same label. For example, the node labeled 1 in V_1 is a not the same node as the node labeled 1 in V_3 . The edges follow the rule above. For example, there are edges $\{1, 1\}$ and $\{1, 2'\}$ because the labels are in different vertex sets and they are not positive and negative labels of the same number. Observe that edge $\{1, 1'\}$ does not exist because the two labels are positive and negative labels of the same number.

ACM ICPC 2013

Contest: THAILAND

DEPARTMENT OF COMPUTER ENGINEERING
FACULTY OF ENGINEERING – CHULALONGKORN UNIVERSITY

SEPTEMBER 8, 2013

Given a k-partite magic graph G, your job is to find whether there exists a k-clique in G.

INPUT

First line of input is a number of test cases $T \le 10$.

The format of each test case is as follow.

- The first line contains the integer K (2 ≤ K ≤ 24 000).
- The following K lines describe set V_i , one per line. For each line, there are two labels separated by a blank space. A positive label is represented by a positive number and a negative label by a minus sign and a positive number.

OUTPUT

The output file contains **only** one line of strings of length T in $\{Y, N\}^*$. That is, for each test case, if a given magic graph G has a k-clique, print Y, otherwise, print N.

EXAMPLE

Input	Output	
2	YN	
3 1 2		
1 2 -1 -2		
1 -2		
4		
1 -2		
1 2 -1 2		
-1		