Entonces

$$A\mathbf{v} \cdot \mathbf{v} = \begin{bmatrix} 2 & 1 & 2 & -2 \\ 1 & -4 & 6 & 5 \\ 2 & 6 & 7 & -1 \\ -2 & 5 & -1 & 3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

$$= \begin{pmatrix} 2x_1 + x_2 + 2x_3 - 2x_4 \\ x_1 - 4x_2 + 6x_3 + 5x_4 \\ 2x_1 + 6x_2 + 7x_3 - x_4 \\ -2x_1 + 5x_2 - x_3 + 3x_4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

$$= 2x_1^2 + 2x_1x_2 - 4x_2^2 + 4x_1x_3 + 12x_2x_3 + 7x_3^2 - 4x_1x_4 + 10x_2x_4 - 2x_3x_4 + 3x_4^2$$

(después de simplificar).

Una matriz simétrica que corresponde a una forma cuadrática en cuatro variables

Encuentre la matriz simétrica A que corresponde a la forma cuadrática

$$5x_1^2 - 3x_1x_2 + 4x_2^2 + 8x_1x_3 - 9x_2x_3 + 2x_3^2 - x_1x_4 + 7x_2x_4 + 6x_3x_4 - 9x_4^2$$

SOLUCIÓN Si $A = (a_{ij})$, entonces, observando los ejemplos anteriores de esta sección, se ve que a_{ii} es el coeficiente del término x_i^2 y $a_{ij} + a_{ji}$ es el coeficiente del término $x_i x_j$. Como A es simétrica, $a_{ij} = a_{ji}$; así, $a_{ij} = a_{ji} = \frac{1}{2}$ (coeficientes del término $x_i x_j$). Uniendo todo esto se obtiene

$$A = \begin{pmatrix} 5 & \frac{3}{2} & 4 & -\frac{1}{2} \\ -\frac{3}{2} & 4 & -\frac{9}{2} & \frac{7}{2} \\ 4 & \frac{9}{2} & 2 & 3 \\ -\frac{1}{2} & \frac{7}{2} & 3 & 9 \end{pmatrix}$$

RESUMEN 8.5

• Ecuación cuadrática y forma cuadrática

Una ecuación cuadrática en dos variables sin término lineal es una expresión en la forma

$$ax^2 + bxy + cy^2 = d$$

donde $|a| + |b| + |c| \neq 0$ y a, b, c son números reales.

Una forma cuadrática en dos variables es una expresión en la forma

$$F(x, y) = ax^2 + bxy + cy^2$$

donde $|a| + |b| + |c| \neq 0$ y a, b, c son números reales.