STAT 543 Homework 1

Yifan Zhu

January 18, 2017

1. (a)

$$\mu_1' = E(X) \Rightarrow \mu_1' = \frac{3(1-p)}{p}$$

Hence

$$p\mu_1' = 3(1-p) \Rightarrow p = \frac{3}{\mu_1' + 3} = \frac{3}{\frac{\sum_{i=1}^n X_i}{2} + 3}$$

(b)

$$\begin{split} \mu_1' &= E(X) = \mu \\ \mu_2' &= E(X^2) = (E(X))^2 + Var(X) = \mu^2 + 2\sigma^2 \end{split}$$

Hence

$$\mu = \mu_1' = \frac{\sum_{i=1}^n X_i}{n}$$

$$\sigma = \sqrt{\frac{\mu_2' - {\mu_1'}^2}{2}} = \sqrt{\frac{\sum_{i=1}^n X_i^2}{2n} - \frac{(\sum_{i=1}^n X_i)^2}{2n^2}}$$

2. For a given x, $\hat{\theta}$ maximize $f(x|\theta)$, thus

When x = 0, $\hat{\theta} = 1$.

When x = 1, $\hat{\theta} = 1$.

When $x = 2, \, \hat{\theta} = 2, 3.$

When x = 3, $\hat{\theta} = 3$.

When x = 4, $\hat{\theta} = 3$.

3. For two events A_1 and A_2 , $A_1 \cap A_2$ is true if and only if A_1 is true and A_2 is true. When at least one of A_1 and A_2 is false then $A_1 \cap A_2$ is false. Then When both of them are true, $I(A_1) = I(A_2) = 1$ and $I(A_1 \cap A_2) = 1 \Rightarrow I(A_1 \cap A_2) = I(A_1)I(A_2)$. When at least one of them is false, then $I(A_1)I(A_2) = 0$ and $I(A_1 \cap A_2) = 0$. Hence we have

$$I(A_1 \cap A_2) = I(A_1)I(A_2)$$

Thus,

$$I(B) = I(\bigcap_{i=1}^{n-1} A_i \cap A_n)$$

$$= I(\bigcap_{i=1}^{n-1} A_i)I(A_n)$$

$$= I(\bigcap_{i=1}^{n-2} A_i)I(A_{n-1})I(A_n)$$

$$= \cdots$$

$$= \prod_{i=1}^{n} I(A_i)$$

4. (a) $S_{\theta} = (0, +\infty)$ and $x_1, x_2, \dots, x_n > 0$, hence $I(x_1, x_2, \dots, x_n \in S_{\theta}) = 1$. Then

$$L(\theta) = \prod_{i=1}^{n} f(x_i | \theta) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-x_i / \theta} = \frac{1}{\theta^n} e^{-\sum_{i=1}^{n} x_i / \theta}$$

Then

$$\log L(\theta) = -n\log\theta - \frac{\sum_{i=1}^{n} x_i}{\theta}$$

Let

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \log L(\theta) \bigg|_{\theta = \hat{\theta}} = 0 \Rightarrow -\frac{n}{\theta} + \frac{\sum_{i=1}^{n} x_i}{\theta^2} \bigg|_{\theta = \hat{\theta}} = 0 \Rightarrow \hat{\theta} = \frac{\sum_{i=1}^{n} X_i}{n} = \bar{X}_n$$

(b) $S_{\theta} = (0, \theta]$. As $x_1, x_2, \dots, x_n > 0$, then $I(x_1, x_2, \dots, x_n \in S_{\theta}) = I(x_1, x_2, \dots, x_n \leq \theta) = I(\max_{1 \leq i \leq n} x_i \leq \theta)$. Hence

$$L(\theta) = \prod_{i=1}^{n} f(x_i | \theta) I(x_1, x_2, \dots, x_n \in S_{\theta})$$

$$= \prod_{i=1}^{n} \frac{2x_i}{\theta^2} I(\max_{1 \le i \le n} x_i \le \theta)$$

$$= \frac{2^n}{\theta^{2n}} \prod_{i=1}^{n} x_i I(\max_{1 \le i \le n} x_i \le \theta)$$

$$= \begin{cases} \frac{2^n}{\theta^{2n}} \prod_{i=1}^{n} x_i & , \theta \ge \max_{1 \le i \le n} x_i \\ 0 & , \theta < \max_{1 \le i \le n} x_i \end{cases}$$

We can see $L(\max_{1 \le i \le n} x_i) > 0$ and $L(\theta)$ goes down as θ increasing when θ is greater than $\max_{1 \le i \le n} x_i$, thus it is the point when $L(\theta)$ is the largest. Hence

$$\hat{\theta} = \max_{1 \le i \le n} X_i$$

5. (b) $S_{\theta} = [\theta, \infty)$. Then $I(x_1, x_2, \dots, x_n \in S_{\theta}) = I(x_1, x_2, \dots, x_n \geq \theta) = I(\min_{1 \leq i \leq n} x_i \geq \theta)$.

Hence

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta) I(x_1, x_2, \dots, x_n \in S_{\theta})$$

$$= \prod_{i=1}^{n} \theta x_i^{-2} I(\min_{1 \le i \le n} x_i \ge \theta)$$

$$= \theta^n (\prod_{i=1}^{n} x_i)^{-2} I(\min_{1 \le i \le n} x_i \ge \theta)$$

$$= \begin{cases} \theta^n (\prod_{i=1}^{n} x_i)^{-2} &, \theta \le \min_{1 \le i \le n} x_i \\ 0 &, \theta > \min_{1 \le i \le n} x_i \end{cases}$$

We can see $L(\min_{1 \le i \le n} x_i) > 0$ and $L(\theta)$ goes up as θ increasing when θ is less than $\min_{1 \le i \le n} x_i$, thus it is the point when $L(\theta)$ is the largest. Hence

$$\hat{\theta} = \min_{1 \le i \le n} X_i$$

(c)
$$E(X) = \int_{\theta}^{\infty} x \theta x^{-2} dx = \int_{\theta}^{\infty} \theta x^{-1} dx = \theta \log x \Big|_{\theta}^{\infty} = \infty$$

Hence the MME does not exist.