Autonomous and Mobile Robotics M

22 December 2023 - Theory

Some questions may have more than one correct answers: for each question, indicate all the correct answers.

- 1. Given the constraints matrix equation in Pfaffian form $A(q)\dot{q}=0$, the admissible robot speed:
 - \bigotimes is generated by a matrix G(q) such that $\mathrm{Im}(G(q))=\mathrm{Ker}(A(q)), \forall q$
 - \bigcirc is generated by a matrix G(q) such that $\operatorname{Ker}(G(q)) = \operatorname{Im}(A(q)), \forall q$
 - \bigcirc is generated by a matrix G(q) such that $G(q) = A(q)^T, \forall q$
- 2. For a unicycle robot, given the geometric trajectory x(s), y(s), $\theta(s)$, it is possible to write the steering input $\omega(s)$ as:
 - $\bigcirc \ \omega(s) = (\theta''(s)x'(s) \theta''(s)y'(s))/(x'(s)^2 + y'(s)^2)$
 - $\bigotimes \omega(s) = (y''(s)x'(s) x''(s)y'(s))/(x'(s)^2 + y'(s)^2)$
 - $\bigcirc \ \omega(s) = (y''(s)\theta'(s) x''(s)\theta'(s))/(x'(s)^2 y'(s)^2)$
- 3. Consider Odometry for WMR:
 - 🛇 it represents a reliable estimation of the robot position over a single evaluation step
 - \bigcirc it presents an exact estimation for the x and y variables if the precise reconstruction method is used
 - O the precise reconstruction method is not affected by changes of the steering angle over a single step
- 4. Examples of map-based navigation algorithms are:
 - \bigotimes distance transform planning;
 - \bigotimes A* and D*;
 - O bug algorithms.
- 5. A process satisfies the Markov property if:
 - the agent state is the same as the environment state
 - \bigotimes one can make predictions for the future of the process based solely on its present state
 - O one can make predictions for the future of the process only based on the process full history
- 6. The Bellman optimality equation for the state value function can be written as
 - $\bigcirc v_*(s) = \max v_\pi(s)$
 - $\bigotimes v_*(s) = \max_{a \in \mathcal{A}} q_*(s, a)$
 - $\bigotimes v_*(s) = \max_{a \in \mathcal{A}} \mathbb{E}_*[G_t | S_t = s, A_t = a]$
- 7. The relative probability of the trajectory obtained following a target policy π w.r.t. the behavior policy μ is:
 - $\bigcap \rho_t^T = \prod_{k=t}^{T-1} \pi(A_k | S_k) \prod_{k=t}^{T-1} \mu(A_k | S_k)$
 - $\bigotimes \rho_t^T = \prod_{k=t}^{T-1} \pi(A_k | S_k) / \prod_{k=t}^{T-1} \mu(A_k | S_k)$
 - $\bigcap \rho_t^T = \prod_{k=t}^{T-1} \mu(A_k|S_k) / \prod_{k=t}^{T-1} \pi(A_k|S_k)$
- 8. The λ -return is defined as:
 - $\bigcirc G_t^{\lambda} = \sum_{k=0}^{\infty} \lambda^k R_{t+k+1}$
 - $\bigcirc G_t^{\lambda} = R_{t+1} + \lambda V(S_{t+1})$
 - $\bigotimes G_t^{\lambda} = (1 \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$
- 9. In value function approximation by stochastic gradient descent, the parameter vector update is defined as:
 - $\bigcirc \Delta \mathbf{w} = -\frac{1}{2}\alpha \nabla_{\mathbf{w}} J(\mathbf{w})$
- 10. Given two tasks $a \in^{m_a}$ and $b \in^{m_b}$ which Jacobian matrices with respect to the robot configuration are J_a and J_b , a and b are said:
 - \bigotimes orthogonal if $J_a J_b^\# = 0_{m_a \times m_b}$, where $^\#$ represents the matrix pseudoinverse;
 - \bigotimes dependent if rank (J_a^T) + rank (J_b^T) > rank $([J_a^T \ J_b^T])$;
 - $\bigcirc \ \ independent \ {\rm if} \ {\rm rank}(J_a^T) + {\rm rank}(J_b^T) < {\rm rank}([J_a^T \ J_b^T]);$

Autonomous and Mobile Robotics M

22 December 2023 - Exercise

The student is asked to solve the following problem.

Let us consider a fully observable environment with 5 states $s_{\{1,\ldots,5\}}$.

0.	0.0	0.0	0.	0-
1 31	3.2	- 33	1 34	35
1 -	_		1 -	9

- Action set : {TryLeft, TryRight}
- Rewards:
 - +1 in state s_1
 - -1 in state s_3
 - -+2 in state s_5
 - 0 in all other states
- Transition model:
 - $-p(s_1|s_1, \text{TryLeft}) = p(s_5|s_5, \text{TryRight}) = 1$
 - $p(s_1|s_1, \text{TryRight}) = p(s_2|s_1, \text{TryRight}) = 0.5$
 - $-p(s_1|s_2, \text{TryLeft}) = p(s_2|s_2, \text{TryLeft}) = 0.5$
 - $-p(s_2|s_2, \text{TryRight}) = p(s_3|s_2, \text{TryRight}) = 0.5$

_

- Policy: $\pi(\text{TryLeft}|s_{\{1,...,5\}}) = \pi(\text{TryRight}|s_{\{1,...,5\}}) = 0.5$
- Discount factor $\gamma = 1$

Starting from an arbitrary initialisation of the state value function, compute the first iteration of the state value function evaluation provided by a Dynamic Programming algorithm with asyncronous backup assuming the random policy π .

$v_{\pi}(s_1)$	$v_{\pi}(s_2)$	$v_{\pi}(s_3)$	$v_{\pi}(s_4)$	$v_{\pi}(s_5)$

Solution:

The state value function is initialized to 0 for all the states.

$v_{\pi}(s_1)$	$v_{\pi}(s_2)$	$v_{\pi}(s_3)$	$v_{\pi}(s_4)$	$v_{\pi}(s_5)$
0.75	0.1875	-0.4531	0.1367	1.5342