Started on Saturday, 10 May 2025, 10:33 AM

State Finished

Completed on Saturday, 10 May 2025, 11:13 AM

 Time taken
 40 mins 11 secs

 Grade
 100.00 out of 100.00

```
Question 1
Correct
Mark 20.00 out of 20.00
```

Create a python program to find Minimum number of jumps to reach end of the array using naive method(recursion)

For example:

Input	Result
10	Minimum number of jumps to reach end is 4
1	
3	
6	
3	
2	
3	
6	
8	
9	
5	
	10 1 3 6 3 2 3 6 8 9

Answer: (penalty regime: 0 %)

```
Reset answer
```

```
1 def minJumps(arr, 1, h):
 2 🔻
        if(1==h):
 3
            return 0
        elif(arr[1]==0):
 4
 5
            return 0
        min=float('inf')
 6
 7
        for i in range(l+1,h+1):
 8 ,
            if(i<l+arr[l]+1):</pre>
                jump=minJumps(arr,i,h)
 9
10 🔻
            if(jump!=min and jump+1<min):</pre>
                min=jump+1
11
        return min
12
13
14
15
   arr = []
   n = int(input())
16
17 → for i in range(n):
18
        arr.append(int(input()))
19
   print('Minimum number of jumps to reach', 'end is', minJumps(arr, 0, n-1))
20
```

	Test	Input	Expected	Got	
~	minJumps(arr, 0, n-	10	Minimum number of jumps to reach end	Minimum number of jumps to reach end	~
	1)	1	is 4	is 4	
		3			
		6			
		3			
		2			
		3			
		6			
		8			
		9			
		5			

	Test	Input	Expected	Got	
~	minJumps(arr, 0, n-	7	Minimum number of jumps to reach end	Minimum number of jumps to reach end	~
	1)	3	is 2	is 2	
		2			
		5			
		9			
		4			
		1			
		6			

Passed all tests! 🗸

Question **2**Correct

Mark 20.00 out of 20.00

Write a Python program using A Naive recursive implementation of Minimum Cost Path Problem.

For example:

Input	Result
3	8
3	

Answer: (penalty regime: 0 %)

```
Reset answer
```

```
R = int(input())
   C = int(input())
 2
 3
   import sys
    def minCost(cost, m, n):
 4 🔻
 5
        dp=[[0 for x in range(R)]for x in range(C)]
 6
        dp[0][0]=cost[0][0]
 7
        for i in range(1,m+1):
            dp[i][0]=dp[i-1][0]+cost[i][0]
 8
 9 ,
        for j in range(1,n+1):
10
            dp[0][j]=dp[0][j-1]+cost[0][j]
11 🔻
        for i in range(1,m+1):
12 🔻
            for j in range(1,n+1):
                dp[i][j] = min(dp[i-1][0], dp[j-1][0], dp[i-1][j-1]) + cost[i][j]
13
        return dp[i][j]
14
    def min(x, y, z):
15
16
        if (x < y):
17
            return x if (x < z) else z
18
19
            return y if (y < z) else z
20
    cost= [ [1, 2, 3],
            [4, 8, 2],
21
22
            [1, 5, 3]]
```

	Input	Expected	Got	
~	3	8	8	~

Passed all tests! ✓

Marks for this submission: 20.00/20.00.

Create a Python Function to find the total number of distinct ways to get a change of 'target' from an unlimited supply of coins in set 'S'.

For example:

Test	Input	Result
<pre>count(S, len(S) - 1, target)</pre>	3	The total number of ways to get the desired change is 4
	4	
	1	
	2	
	3	

Answer: (penalty regime: 0 %)

Reset answer

```
1 🔻
   def count(S, n, target):
2 🔻
       if(target==0):
3
           return 1
4
       if(target<0 or n<0):</pre>
5
           return 0
6
       incl=count(S,n,target-S[n])
7
       excl=count(S,n-1,target)
8
       return incl+excl
9
10
       11
12
13
14
15
   if __name__ == '__main__':
    S = []#[1, 2, 3]
16 •
17
       n=int(input())
18
19
       target = int(input())
20 •
       for i in range(n):
21
           S.append(int(input()))
       print('The total number of ways to get the desired change is',
22
```

	Test	Input	Expected	Got	
•	<pre>count(S, len(S) - 1, target)</pre>	3 4 1 2 3	The total number of ways to get the desired change is 4	The total number of ways to get the desired change is 4	~
~	<pre>count(S, len(S) - 1, target)</pre>	3 11 1 2 5	The total number of ways to get the desired change is 11	The total number of ways to get the desired change is 11	~

Passed all tests! 🗸

Correct

Mark 20.00 out of 20.00

SUBSET SUM PROBLEM

Given a set of positive integers, and a value sum, determine that the sum of the subset of a given set is equal to the given sum.

Write the program for subset sum problem.

INPUT

1.no of elements

2.Input the given elements

3.Get the target sum

OUTPUT

True, if subset with required sum is found

False, if subset with required sum is not found

For example:

Result
4
16
5
23
12
True, subset found

Answer: (penalty regime: 0 %)

Reset answer

```
def SubsetSum(a,i,sum,target,n):
 1 🔻
 2 🔻
        if(i==n):
 3
            return sum==target
        elif(sum>target):
 4
 5
            return False
 6 ,
        elif(sum==target):
 7
            return True
 8 ,
            return SubsetSum(a,i+1,sum,target,n) or SubsetSum(a,i+1,sum+a[i],target,n)
 9
10
11
    a=[]
12
    size=int(input())
13
    for i in range(size):
14
        x=int(input())
15
        a.append(x)
16
    target=int(input())
17
18
   n=len(a)
19 | if(SubsetSum(a,0,0,target,n)==True):
20 ▼
        for i in range(size):
            print(a[i])
21
        print("True, subset found")
22
```

	Input	Expected	Got	
~	5 4 16 5 23 12 9	4 16 5 23 12 True,subset found	4 16 5 23 12 True, subset found	~
~	4 1 2 3 4 11	1 2 3 4 False, subset not found	1 2 3 4 False, subset not found	~
*	7 10 7 5 18 12 20 15 35	10 7 5 18 12 20 15 True, subset found	10 7 5 18 12 20 15 True, subset found	~

Passed all tests! ✓

Marks for this submission: 20.00/20.00.

```
Question 5

Correct

Mark 20.00 out of 20.00
```

Write a python program to find the maximum contiguous subarray on the given float array using kadane's algorithm.

For example:

Test	Input	Result
s.maxSubArray(A)	5 -9.6 -3.5 6.3 8.31 9.2	The sum of contiguous sublist with the largest sum is 23.8

Answer: (penalty regime: 0 %)

```
Reset answer
```

```
1 - class Solution:
 2 🔻
        def maxSubArray(self,A):
 3
            max=A[0]
 4
            sum=0
 5
            for i in range(0,n):
                sum=sum+A[i]
 6
 7
                if(sum<0):</pre>
 8
                    sum=0
 9 .
                elif(sum>max):
10
                    max=sum
11
            return max
12
13
    A =[]
14
   n=int(input())
15 v for i in range(n):
16
        A.append(float(input()))
17
    s=Solution()
   print("The sum of contiguous sublist with the largest sum is {:.1f}".format(s.maxSubArray(A)))
18
```

	Test	Input	Expected	Got	
~	s.maxSubArray(A)	5 -9.6 -3.5 6.3 8.31 9.2	The sum of contiguous sublist with the largest sum is 23.8	The sum of contiguous sublist with the largest sum is 23.8	~
~	s.maxSubArray(A)	7 2.3 6.5 4.6 -7.8 -2.8 -1.6 9.8	The sum of contiguous sublist with the largest sum is 13.4	The sum of contiguous sublist with the largest sum is 13.4	~

Passed all tests! 🗸

Marks for this submission: 20.00/20.00.