

KHÓA HỌC LẬP TRÌNH VI ĐIỀU KHIỂN

Giảng viên NGUYỄN HUỲNH NHẬT THƯƠNG LỊCH HỌC:

Tại Đà Nẵng: 19h30 - 22h30 thứ 2 và thứ 6

ĐỊA ĐIỂM:

Online qua nền tảng Zoom

MODULE 10

- ADC
- ADC POLLING
- ADC INTERRUPT, DMA
- PHÂN TÍCH DỰ ÁN THỰC TÉ

ADC introduction (SAR type)

Analog to Digital Converter

Tổng quan về cảm biến

Cảm biến có ngõ ra tương tự analog

- Điện áp (0v-5v, 0v-10v)
- + Dòng điện (0/4-20/24mA)

Cảm biến có ngõ ra số digital

- Logic High, Logic Low (mach so sánh)
- + Các chuẩn giao tiếp UART/ I2C/ SPI
- + Xung (Pulse)

STM32F303RE ADC

Figure 1. STM32F303xD/E block diagram

Ref Datasheet: https://www.st.com/resource/en/datasheet/stm32f303re.pdf

ADC CHANNEL

Each ADC has up to 19 multiplexed channels

External Channel

ADC external channels mapping:

Device	ADC1	ADC2	ADC3	ADC4	
STM32F303xD/E	11	13	15	13	

Internal Channel

Table 86. ADC internal channels summary

Product	ADC1	ADC2	ADC3	ADC4	Total of internal ADC channels
STM32F303xB/C/D/E, STM32F358 and STM32F398xE	 1 channel connected to temperature sensor. 1 channel connected to VBAT/2 1 channel connected to VREFINT 1 channel connected to VREFINT 1 channel connected to OPAMP1 reference voltage output (VREFOPAMP1). 	 1 channel connected to VREFINT. 1 channel connected to OPAMP2 reference voltage output (VREFOPA MP2). 	 1 channel connected to VREFINT. 1 channel connected to OPAMP3 reference voltage output (VREFOPAMP 3). 	 1 channel connected to VREFINT. 1 channel connected to OPAMP4 reference voltage output (VREFOPAM P4). 	7

Reference Manual:

https://www.st.com/resource/en/reference_manual/dm00043574-stm32f303xb-c-d-e-stm32f328x8-stm32f358xc-stm32f398xe-advanced-arm-based-mcus-stmicroelectronics.p

ADC CHANNEL INPUT MODE

ADC channel inputs can be configured in single-ended or differential mode

Single-ended mode (thường sử dụng)

A single-ended ADC designed to be connected to the same ground level as the microcontroller and to provide their measurement result as an analog voltage signal on a single wire referenced to this common ground

Differential mode

A differential ADC measures the voltage difference two inputsbetween.

Ref Differential and Single-Ended ADC:

https://ww1.microchip.com/downloads/en/DeviceDoc/Differential-and-Single-Ended-ADC-WhitePaper-DS00003197A.pdf

Ref STM32F30x ADC modes and application:

https://www.st.com/resource/en/application_note/dm00069390-stm32f30x-adc-modes-and-application-stmicroelectronics.pdf

https://www.st.com/resource/en/application_note/cd00211314-how-to-get-the-best-adc-accuracy-in-stm32-microcontrollers-stmicroelectronics.pdf

ADC RESOLUTION

12, 10, 8 or 6-bit configurable resolution

$$V_{IN} = V_{REF-} \longrightarrow N_{ADC} = 0$$

$$V_{IN} = V_{REF+} \longrightarrow N_{ADC} = 2^{12} - 1$$

$$V_{REF-} \le V_{IN} \le V_{REF+} \longrightarrow 0 \le N_{ADC} \le 2^{12} - 1$$

$$N_{ADC} = (2^{12} - 1) \times \frac{V_{IN} - V_{REF}}{V_{RFF} - V_{RFF}}$$
 $V_{IN} = \frac{N_{ADC} \times VDD}{4095}$

^{*16}bit data register -> DataAlignment (right alignment)

Bài 1:

ADC: 12 bit

Vref+ = VDDA = VDD = 3.3v

Vref- = VSSA = VSS = Ov

Biết kết quả chuyển đổi nADC = 0x1FF

Tính điện áp ngõ vào trên ADC Input channel?

Bài 2:

ADC: 10 bit

Vref+ = VDDA = VDD = 3.3v

Vref- = VSSA = VSS = 0v

Biết kết quả chuyển đổi nADC = 511

Tính điện áp ngõ vào trên ADC Input channel?

STM32F30x ADC modes

Independent modes

Regular conversion mode Injected conversion mode

Dual modes

Dual injected simultaneous mode Dual regular simultaneous mode Dual interleaved mode Dual alternate trigger mode

STM32F30x ADC modes

Independent modes

Regular conversion mode

Multichannel/single, single conversion mode

STM32F30x ADC modes

Independent modes

Regular conversion mode

Multichannel/Single, continuous mode

ADC CONVERSION TIME

The elapsed time between the start of a conversion and the end of conversion is the sum of the configured sampling time plus the successive approximation time depending on data resolution:

$$T_{ADC} = T_{SMPL} + T_{SAR} = [1.5_{|min} + 12.5_{|12bit}] \times T_{ADC_CLK}$$

 $T_{ADC} = T_{SMPL} + T_{SAR} = 20.83 \text{ ns}_{|min} + 173.6 \text{ ns}_{|12bit} = 194.4 \text{ ns} \text{ (for } F_{ADC_CLK} = 72 \text{ MHz)}$

Ref manual:

ADC SAMPLING TIME

ADC SAR

https://www.allaboutcircuits.com/technical-articles/understanding-analog-to-digital-converters-the-successive-approximation-reg/

Vref = 3.3V

6 bit

1 V.

Get ADC Value

Polling

```
HAL_ADC_Start(ADC_HandleTypeDef* hadc)
HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout) uint32_t
HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
```

 Interrupt generation at End of Conversion, End of Injected HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
 HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)

HAL ADC GetValue...

DMA request generation during regular channel conversion
 HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
 HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
 void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
 {

Tính toán số mẫu / 1 giây ADC

- 1. Xác định tần số cấp cho ngoại vi ADC block diagram datasheet, xác định bus? clock config ở giao diện cubemx, xem tần số bus bao nhiêu?
- 1. Xác định thời gian lấy mẫu Ts Xem cấu hình adc, chỗ rank, sampling time.
- Xác định thời gian giữ và chuyến đối mẫu Tc (12bit)
- 2. T1 = Ts + Tc
- 3. **1/T1**

Tính toán số mẫu / 1 giây ADC

- 1. Xác định tần số cấp cho ngoại vi ADC 16MHz
- 2. Xác định thời gian lấy mẫu Ts 601,5 C
- 3. Xác định thời gian giữ và chuyển đổi mẫu Tc 12.5
- 4. T1 = Ts + Tc (601.5 + 12.5) *1/(16.10^6)
- 5. 1/T1 ~26ksps

ADC Poll lab

How to setup ADC in poll in CubeMX and Generate Code How to Generate Code in CubeMX and use HAL functions

Use ADC in polling mode

HAL_ADC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel)
HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)

Use ADC in polling mode

```
/* USER CODE BEGIN PV */
   uint32 t value adc;
/* USER CODE END PV */
/* USER CODE BEGIN 3 */
 /* Infinite loop */
while (1)
    HAL ADC Start(&hadc1);
    HAL ADC PollForConversion(&hadc1,10);
    value_adc=HAL_ADC_GetValue(&hadc1);
    HAL Delay(1000);
/* USER CODE END 3 */
```

=>Debug

Tính toán giá trị điện áp trên chân ngõ vào ADC In giá trị nADC In giá trị Vin lên serial UART.

Và nếu điện áp <1V: Tắt đèn trên mạch Nếu điện áp >2V: Bật đèn

Trong vi điều khiển stm32 có cảm biến nhiệt độ tích hợp sẵn. Thực hiện:

- 1. Xác định ngoại vi ADC nào (ADC1, ADC2, ...) có cảm biến nhiệt độ.
- 2. Cảm biến nhiệt độ được thiết kế ở Input channel mấy?
- 3. Xác định công thức tính nhiệt độ từ nADC.
- 4. Cấu hình, viết code, debug để xem mcu đang có nhiệt độ là bao nhiêu.

Tài liệu cần tham khảo:

STM32... reference manual

STM32... datasheet.

ADC Interrupt lab

How to setup ADC in interrupt in CubeMX and Generate Code How to Generate Code in CubeMX and use HAL functions

HAL Library ADC with IT flow

For ADC start use function

HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc, uint32_t Channel)

ADC complete callback function

- HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
 - HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)


```
/* USER CODE BEGIN PV */
    uint32 t value adc;
    uint32 t value dac=0;
/* USER CODE END PV *
/* USER CODE BEGIN 2 */
     HAL ADC Start IT(&hadc1);
/* USER CODE END 2 */
/* USER CODE BEGIN 4 */
void HAL_ADC_ConvCpltCallback(ADC HandleTypeDef* hadc)
    value adc=HAL ADC GetValue(&hadc1);
    HAL ADC Start IT(&hadc1);
/* USER CODE END 4 */
```


- B1. Xác định ADC nào có cảm biến nhiệt độ nội (internal input channel, temperature sensor)
- B2. TempSensor nằm ở INput channel nào? Cấu hình chọn làm ngõ vào của ADC
- B3. Cài đặt ADC liên tục, ngắt để đọc giá trị nadc từ kênh cảm biến nhiệt độ
- B4. Tính toán giá trị nhiệt độ từ giá trị nadc. (Dựa vào tài liệu của hãng)
- B5. Debug xem kết quả.
- B6. Nhắn kết quả vào phần khung chat.

Nhiều kênh

BTVN: Có 3 kênh ngõ vào ADC.

Thực hiện 2 project chuyển đổi 3 kênh liên tục (scanmode - cont..) ở chế độ polling và chế độ Interrupt. Lưu kết quả vào 1 mảng có 3 phần tử (hoặc 3 biến khác nhau), tương ứng với 3 kênh.

Thử kết quả bằng cách lần lượt để 2 kênh hở mạch và 1 kênh nối GND/VCC?

Hướng dẫn cấu hình:

Chọn 3 kênh ngõ vào (single ended), cấu hình number of conversion:3, cấu hình cho từng rank thứ tự chuyển đổi các kênh khác nhau, sampling time max.)

KHÓA HỌC LẬP TRÌNH VI ĐIỀU KHIỂN

Giảng viên NGUYỄN HUỲNH NHẬT TRẦN THỤY NGỢCHẨNG LỊCH HỌC:

Tại Đà Nẵng: 18h30 - 22h00 thứ 2 và thứ 4

ĐỊA ĐIỂM:

Tại Đà Nẵng: Số 32 Hòa Minh 16, Q. Liên Chiểu

MODULE 7

- DMA
- ADC DMA
- PHÂN TÍCH DỰ ÁN THỰC TÉ

DMA

Direct Memory Access

DMA

1	Các thông số:				
		Địa chỉ nguồn, địa chỉ đích			
		Kiểu dữ liệu của mỗi lần truyền (data width): byte, half-word, word			
		Lượng dữ liệu truyền (transfer size)			
		Kiểu truyền dữ liệu (transfer types): Normal mode hoặc Circular mode (ring buffer)			
		Tự động tăng địa chỉ nguồn/địa chỉ đích hoặc cả 2 sau mỗi lần truyền dữ liệu			
		Yêu cầu ngắt: Half-transfer hoặc Transfer complete (double buffering)			

DMA

- Ưu điểm
 - DMA truyền dữ liệu nhanh hơn CPU
 - Nâng cao hiệu suất của vi điều khiển
 - DMA có khả năng tự động tăng địa chỉ lưu trữ dữ liêu
 - Tiết kiệm năng lượng tiêu thụ với các ứng dụng truyền nhận một lượng lớn dữ liệu
- Nhược điểm
 - □ Phần cứng VĐK phải hỗ trợ DMA (STM32 all)
 - Sử dụng DMA không phù hợp thì có khả năng tăng năng lượng tiêu thụ

https://www.st.com/resource/en/application_note/dm00046011-using-the-stm32f2-stm32f4-and-stm32f7-series-dma-controller-stmicroelectronics.pdf

CÁC CHẾ ĐỘ HOẠT ĐỘNG CỦA DMA

Khi DMA dừng hoạt động, cần gọi lại lệnh bắt đầu DMA để tiếp tục truyền dữ liệu lại từ đầu

CÁC CHẾ ĐỘ HOẠT ĐỘNG CỦA DMA

1. Chế độ Circular

CÁC CHẾ ĐỘ HOẠT ĐỘNG CỦA DMA

1. Chế độ Circular

ADC DMA Poll lab

How to setup ADC DMA in CubeMX and Generate Code How to Generate Code in CubeMX and use HAL functions

CẤU HÌNH DMA QUA GIAO DIỆN CUBEMX

- ADC: Multichannel (2 channel), continous mode Lưu mẫu mới nhất vào địa chỉ một cách tự động bằng DMA

CẤU HÌNH DMA QUA GIAO DIỆN CUBEMX

- ADC: Rank number, Sampling Time

CẤU HÌNH DMA QUA GIAO DIỆN CUBEMX

- DMA: Mode Circular, Data width: Half-word

Use ADC in DMA mode

```
HAL ADC Start DMA(ADC HandleTypeDef* hadc, uint32 t* pData, uint32 t Length)
HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
/* USER CODE BEGIN PV */
    uint16 t adc value[2] = \{0\};
/* USER CODE END PV */
 MX DMA Init();
 MX ADC1 Init();
/* USER CODE BEGIN 2 */
HAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_value, 2);
 /* Infinite loop */
while (1)
/* USER CODE END 3 */
```

Tài liệu How to get the best ADC accuracy in STM32 microcontrollers

https://www.st.com/resource/en/application_n ote/cd00211314-how-to-get-the-best-adc-accur acy-in-stm32-microcontrollers-stmicroelectronic s.pdf

PHÂN TÍCH DỰ ÁN THỰC TẾ

KTTV - DATALOGGER

Hardware Block Diagram

Yêu cầu dự án

- □ Cứ tròn 10 phút thiết bị sẽ thu thập và tổng hợp các số liệu sau và gửi lên Server:
 - Giá trị mực nước đo được từ cảm biến siêu âm, tín hiệu analog current
 - Giá trị lượng mưa đo được từ cảm biến đo mưa kiểu chao lật, tín hiệu xung
 - Giá trị điện áp cung cấp cho hệ thống, tín hiệu analog voltage
 - Trạng thái của cảm biến: OK hoặc ERROR
- Báo hiệu trạng thái của hệ thống thông qua LED STATUS trên thiết bị
 - LED nhấp nháy 10 giây 1 lần: Hệ thống hoạt động bình thường
 - LED nhấp nháy 3 giây 1 lần: Thiết bị không kết nối được Internet
 - LED nhấp nháy 1 giây 1 lần: Lỗi cảm biến
- □ Khởi động lại thiết bị từ xa thông qua tin nhắn SMS
- ☐ Khởi động lại thiết bị vào lúc 0h4p hằng ngày
- □ Tiết kiệm năng lượng tiêu thụ của hệ thống:
 - Đưa Module SIM về trạng thái Sleep Mode
 - Tắt nguồn cung cấp cho các cảm biến (Relay, FET)

NHỮNG TÍNH NĂNG LIÊN QUAN ĐẾN NGOẠI VI ADC

ĐỌC GIÁ TRỊ ĐIỆN ÁP CUNG CẤP

ĐỘC GIÁ TRỊ CẨM BIẾN ANALOG 4-20mA

- 1. Nguồn cung cấp
- 2. Nguồn dòng 4-20mA
- 3. Trở đóng vai trò chuyển đổi dòng qua áp
- 4. Trở đóng vai trò là dây dẫn

ĐỘC GIÁ TRỊ CẨM BIẾN ANALOG 4-20mA

Giá trị mực nước đo được từ cảm biến siêu âm, tín

hiệu analog curren<mark>t</mark>

PHƯƠNG PHÁP NỘI SUY

Sử dụng phương pháp nội suy để hiệu chỉnh giá trị Analog đo được

Instructor

Eng. Nguyen Huynh Nhat Thuong

Eng. Tran Thuy Ngoc Hang

Mảng 10 phần tử Chuyển 10 dữ liệu Chuyển 1 byte Circular

Dùng Hercules:

Gửi từng phần tử. Đến phần tử ½ thì sẽ có ngắt Đến phần tử 9. thì sẽ có ngắt.

Ring buffer Double buffer