1 Raízes de equações de grau 2 (++)

Desenvolver um programa que leia os coeficientes (a, b e c) de uma equação de segundo grau e calcule as raízes da equação. O programa deve mostrar a classificação das raízes, e, quando possível, o valor das raízes calculadas.

Seu programa deve criar uma função raizes Eq2Grau que tenta computar as raízes de uma equação do segundo grau. A função deve retornar 2 se existir duas raízes reais distintas entre si, ou 1 se existir uma única raiz real, ou ainda, zero se as raízes são imaginárias. A função deve ter como parâmetros de entrada os coeficientes a,b,c de uma equação de segundo grau e deve ter dois parâmetros de saída, correspondendo às raízes da equação. No caso em que a função retorna 0 (raízes imaginarias) os parâmetros de saída não são utilizados pelo seu programa.

Entrada

O programa deve ler três valores reais na entrada. O primeiro valor corresponde ao valor do coeficiente a, o segundo, do coeficiente b e o terceiro, do coeficiente c, de uma equação de segundo grau. Os três valores ocorrem em uma única linha na entrada, separados entre si por um espaço.

Saída

O programa deve imprimir uma linha contendo uma das seguintes frases, conforme for o resultado do cálculo das raízes da equação: RAIZES DISTINTAS, ou RAIZ UNICA, ou RAIZES IMAGINARIAS. No primeiro caso o programa deve imprimir uma outra linha contendo a frase $X1 = x_1$, onde x_1 é o valor da menor raiz encontrada para a equação. Ainda no primeiro caso, o programa deve imprimir uma terceira linha com a frase $X2 = x_2$, onde x_2 corresponde ao valor da segunda raiz. No segundo caso, o programa deve imprimir uma frase $X1 = x_1$, onde x_1 é o valor da única raiz da equação. O terceiro caso não há o que imprimir pois as raízes são imaginárias.

Observações

Dada uma equação do segundo grau do tipo $ax^2 + bx + c$, Δ (delta) $= b^2 - 4ac$. Se $\Delta = 0$, a raiz da equação é ÚNICA. Se $\Delta < 0$. As raízes da equação são IMAGINÁRIAS. Se $\Delta > 0$, então há duas RAÍZES DISTINTAS para a equação. A fórmula geral para computar as raízes de uma equação do segundo grau é a fórmula de Báskara, dada por:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

Exemplo

A seguir são mostrados três exemplos distintos de entrada, e suas correspondentes saídas, entretanto, existe apenas uma linha de entrada para esse problema.

	1		
Entrada			
2	12 10		
Sa	ída		
RA	AIZES DISTINTAS		
X1	= -1.00		
X2	2 = -5.00		

Entrada				
2	12	18		
Sa	ída			
R.F	AIZ	UNICA		
X1	_ =	-3.00		

Entrada				
15 17 8	39			
Saída				
RAIZES	IMAGINARIAS			