Parts and Assemblies Engineering Lab 2

- 1. Task variant and Maximum Tensile Load
- 2. Materials of stringers, pad and skin
- 3. Diameter of rivet
- 4. Tensile Stress
- 5. Coefficient of safety
- 6. Requirable Number of Rivets
- 7. Bearing Stringer
- 8. Coefficient of safety
- 9. Edge Distance
- 10. Actual shear stress
- 11. Analysis of Pad
- 12. Tension Failure of A-A
- 13. Tension Failure of B-B
- 14. Length of the rivet
- 15. The Sketch

Parts and Assemblies Engineering Lab 2

Student Name: Zhichao Wang

Student Email: hansen wong@sjtu.edu.cn

Varient №: 5

Unit System: Si unit (mm)

1. Task variant and Maximum Tensile Load

Type of stringers: 420069

P, N: **2700**

 $P_{max\ str}=35100\,\mathrm{N}$

Dimensions:

Туре	Dimensions, [mm]					Cross- section area, $[mm^2]$
420069	Н	В	S	S1	R	82
	20	30	1.5	2.0	2.0	02

2. Materials of stringers, pad and skin

Material	Ultimate tensile	Proof strength	Shear strength*	Modulus of	Shear modulus	Density,
	strength	σ_{02} , MPa	$\tau_{\mathrm{B}}, \tau_{\mathrm{02}}$ (% of	elasticity	G, GPa	ρ g/cm^3
	$\sigma_{\rm B}$, MPa	027	tensile strength)	E,GPa		37
			suchgui			
30ХГСА	1100	850	63	210	78	7,85
Д16Т	450	300	50	72	28	2,8
BT20	1000	910	50	110	44	4,5

^{* -} ultimate shear strength and proof strength are approximated by taking the denoted percentage of tensile ultimate and proof strength respectively

In this task I choose the **BT20** as the materials of stringers, pad and skin.

3. Diameter of rivet

$$d_{rivet}=2\sqrt{t_{str}+t_{skin}+t_{pad}}=2\sqrt{1.5+1.5+1.5}=4.243
ightarrow 5$$
 mm

4. Tensile Stress

$$\begin{split} &\sigma=P_{max_str}/A_{str_without_rivet}=35100/(82-5\cdot1.5)=471.14\,\mathrm{MPa}.\\ &[\sigma]=0.8\cdot\sigma_{B,str}=0.8\cdot1000=800\,\mathrm{MPa}.\\ &\sigma\leq[\sigma]\,\mathrm{is}\,\mathbf{True}. \end{split}$$

5. Coefficient of safety

$$\eta = [\sigma]/\sigma = 1.7$$

6. Requirable Number of Rivets

According to OST 1 34104-80, the rivet shear force for double-sided riveting made of steel 12X18H9T with a diameter of 5 mm is 9810 N.

$$n_{rivet} = P_{max_str}/P_{max_riv} = 35100/9810 = 3.58$$

To increase the margin of safety, we choose the number of rivets n = 5.

7. Bearing Stringer

$$\sigma=P_{max_riv}/(d_{rivet}\cdot t_{str})=9810/(5\cdot 1.5)=1308$$
 MPa $\leq 1.5\sigma_{B,str}=1500$ MPa.

8. Coefficient of safety

$$\eta = [\sigma]/\sigma_{bearing} = 1500/1308 = 1.15$$

9. Edge Distance

$$2 \cdot d_{rivet} = 10 \ \mathrm{mm}$$

$$2 \cdot d_{rivet} + 2 = 12 \ \mathsf{mm}$$

Set the edge distance a=12 mm.

10. Actual shear stress

$$au_{act} = rac{P_{max,riv}}{2at_{str}} = rac{9810}{2\cdot 12\cdot 1.5} = 272.5 \ ext{MPa} < au_B = 500 \ ext{MPa}.$$

11. Analysis of Pad

$$\sigma_{bearing,pad}=rac{P_{max,riv}}{d_{rivet}\cdot t_{str}}=9810/(5\cdot 1.5)=1308$$
 MPa $\leq 1.5\sigma_{B,pad}=1500$ MPa.

12. Tension Failure of A-A

$$b_{min,A-A} = rac{k\cdot P_{max_riv}}{t_{pad}\cdot\sigma_{B_pad}} + n_{rivet,A-A}\cdot d_{rivet} = rac{1.2\cdot9810}{1.5\cdot1000} + 1\cdot 5 = 12.85$$
 mm.

$$\sigma_{A-A} = P_{str}/[t_{pad} \cdot (b_{min} - n_{rivet,A-A} \cdot d_{rivet})] = 596.18 \ ext{MPa} \leq [\sigma]_{bear} = 1500 \ ext{MPa}.$$

However, due to that the overlay should not be narrower than the stringer, which is 30 mm in width, the value is rounded to $b_{A-A}=32$ mm.

13. Tension Failure of B-B

$$b_{min,B-B} = rac{k \cdot P_{max_riv}}{t_{pad} \cdot \sigma_{B_pad}} + n_{rivet,B-B} \cdot d_{rivet} = rac{1.2 \cdot 9810}{1.5 \cdot 1000} + 1 \cdot 5 = 12.85$$
 mm.

$$\sigma_{B-B} = P_{str}/[t_{pad}\cdot(b_{min}-n_{rivet,B-B}\cdot d_{rivet})] = 2675.16~ ext{MPa} > [\sigma]_{bear} = 1500~ ext{MPa}.$$

The value is rounded to $b_{B-B}=35$ mm so that $\sigma_{B-B}=700$ MPa is less than $[\sigma]_{bear}$.

14. Length of the rivet

$$t_{stringer_skin} = t_{str} + t_{skin} = 1.5 + 1.5 = 3 \, \mathrm{mm}.$$

$$t_{total} = t_{str} + t_{skin} + t_{pad} = 1.5 + 1.5 + 1.5 = 4.5 \ \mathrm{mm}.$$

Типо- размер	d	S	h	D	L	L1
1	3.5	От 2,0 до 3,5	1,2	6,7	6,5	11,4
2		3,5-5,0			8,0	14,4
3		5,0-6,5]		9,5	17,4
4	4,0	2,0-3,5	1,3	7,5	7,0	12,3
5		3,5-5,0			8,5	15,3
6		5,0-6,5]		10,0	18,3
7	5,0	2,5-3,5	1,5	9,3	7,5	13,4
8		3,5-5,0			9,0	16,4
9		5,0-6,5			10,5	19,4
10		6,5-8,0]		12,0	22,4
11	18)	8,0-9,5			13,5	25,4

Пример обозначения заклёпки типоразмера 7 Заклёпка 7-ОСТ1 10642-72

According to the table, for the first case, the 10-OCT1 10642-72 rivet with the length of 6.5-8.0 mm. For the second case, the 11-OCT1 10642-72 rivet with the length of 8.0-9.5 mm.

15. The Sketch

