Ex 1 (消歧义问题) 假定 U 是 $\mathbb F$ 上的有限维线性空间.

(1) 称 $f:U imes U o \mathbb{F}$ 是双线性的, 当且仅当对任意向量与常数,

$$f(au+v,bx+y)=abf(u,x)+af(u,y)+bf(v,x)+f(v,y).$$

试证明: $\{f \mid f: U \times U \to \mathbb{F} \}$ 是双线性映射 是一个 \mathbb{F} -线性空间, 其对象是一些二元函数. 求其维度与基.

- (2) 依照集合的 Cartesian 积, 定义新的集合 $U \times U = \{(u_1,u_2) \mid u_1,u_2 \in U\}$. 试证明 $U \times U$ 也是线性空间, 并求其维度与基.
- (3) 试证明: $\{f\mid f:U\times U\to\mathbb{F}$ 是线性映射 $\}$ 是一个 \mathbb{F} -线性空间, 其对象是一些一元函数. 求其维度与基.

为避免记号上的混乱, 往后使用 $f:U\&U\to\mathbb{F}$ 表示双线性映射.

实对称矩阵的结构定理: A 是实对称矩阵, 当且仅当以下等价命题成立:

- igorup A 可对角化且特征空间两两垂直,
- $lacksymbol{\circ}$ 存在正交矩阵 Q 使得 Q^TAQ 是对角矩阵.

默认大家会证明这一命题.

- (1) 记 A 是实对称矩阵, 证明 A 的最大特征值是 $\sup_{x \neq 0} \frac{x^TAx}{x^Tx}$, 并考虑取达最大值的充要条件. 同时, 这也说明 \sup 可以改成 \max .
- **(2)** 记 A 是实对称矩阵,记最大特征值 λ_1 的重数为 1,相应的特征向量是 $Av=\lambda_1v$. 证明 A 的第二大特征值是 $\sup_{x\perp x_1,x\neq 0} \frac{x^TAx}{x^Tx}$. 此处, x_1 是使得上一问取达最大值的任意向量.
- (3) 假定 A 是实对称正定矩阵,证明 $\inf_{x \neq 0} rac{x^TA^{-1}x}{x^Tx}$ 和 $\sup_{x \neq 0} rac{x^TAx}{x^Tx}$ 互为倒数.
- (4) 记 $\{x_i\}_{i=1}^n$ 是实数, 满足 $x_1^2+\cdots+x_n^2=1$ 与 $x_1+\cdots+x_n=0$. 求

$$x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n + x_nx_1$$

的最大值. 可以使用 (2) 的结论.

Ex 3 中学时有个定理: 记 R 与 S 是两个三维空间的几何体. 定义

$$R+S:=\{(x_1+x_2,y_1+y_2,z_1+z_2)\mid (x_1,y_1,z_1)\in R, (x_2,y_2,z_2)\in S\}.$$

记 $|\cdot|$ 是体积, 则 $\sqrt[3]{|R|} + \sqrt[3]{|S|} \le \sqrt[3]{|R+S|}$ (无需证明这一命题).

我们可以将实对称正定矩阵 A 看作旋转后的长方体,作为线性映射,其功效是沿坐标轴的正向拉伸. 这一长方体的各边长即 $Q^TAQ=\Lambda$ 的对角元,体积即 $\det A$.

假定 A 与 B 是 n-阶实对称正定矩阵, 试证明:

$$(\det A)^{1/n} + (\det B)^{1/n} \le (\det(A+B))^{1/n}.$$

Hint: Consider $A=R^TR$. Without the loss of generality, set A=I.

Ex 4 正定与减法.

(1) 记 $A\in \mathrm{M}_n(\mathbb{R})$ 是实对称正定矩阵, $Q\in\mathbb{R}^{n imes m}$ 有标准正交的列向量. 证明 $Q^TA^{-1}Q-(Q^TAQ)^{-1}$ 半正定.

Hint: Take $Q=egin{pmatrix} I_m \\ O \end{pmatrix}$ (without the loss of generality), and just do it.

(2) 记 $A\in \mathrm{M}_n(\mathbb{R})$ 是正定矩阵, 的矩阵 $H\in \mathbb{R}^{m imes n}$. 证明: $A-H^TH$ 正定等价于 $I-HA^{-1}H^T$ 正定.

若 A 对称正定, 试证明之; 若 A 亚正定 (不必对称但 $x^TAx > 0$), 试给反例.

(3) (谢启鸿白皮书上的亚正定矩阵) 称实矩阵 A 是亚正定的, 当且仅当 $x^TAx>0$ 对一切 $x\neq 0$ 成立. 简单地看, 亚正定是少了对称约束的正定. 若 A 亚正定, B 对称, 且 A-B 亚正定, 试证明 $B^{-1}-A^{-1}$ 也是亚正定的.

亚正定矩阵 (包括亚半定矩阵) 的一般结论见谢启鸿博客 2015S12 与 2020S15.

亚正定矩阵的特征值实部为正, 故有且仅有一个平方根, 其特征根实部为正. 试问: 上述平方根仍是亚正定的吗?

Ex 5 (极分解) 以下仅谈论对称半正定实方阵.

- (1) 若 A 是对称半正定矩阵,则存在唯一的对称半正定矩阵 \sqrt{A} 使得 $\sqrt{A}^2=A$.
- (2) 任何矩阵 A 都是对称半正定矩阵与正交矩阵的乘积 (不妨假设 A=SQ). 若 A 对称正定, 则这一分解唯一.
- (3) 假定 S 实半正定, Q 正交. 若 $\det(xI-SQ)=\det(xI-S)$, 则 S=SQ.

Hint: SQ 在 $\mathbb R$ 中有 Jordan 型,从而可以被正交矩阵三角化. 考虑 $(SQ)(SQ)^T$.

这告诉我们: 当一个矩阵是正交的, 其上三角部分可以直接去掉.

(4) 证明两个半正定矩阵的乘积是可对角化的.

Ex 6 (正交相似的判定准则) 称矩阵对 (A,B) 与 (C,D) 同时相似, 当且仅当存在可逆矩阵 P 使得

$$P^{-1}AP = C, \quad P^{-1}BP = D.$$

(1) 若 (A,A^T) 与 (B,B^T) 同时相似,当且仅当 A 与 B 正交相似.

Hint: 对过渡矩阵 P 做极分解.

- (2) 对复矩阵而言, (A,A^H) 与 (B,B^H) 通过酉矩阵同时相似, 当且仅当 A 与 B 酉相似.
- (3) 证明: 实矩阵 A 与 B 通过酉矩阵相似, 当且仅当 A 与 B 通过正交矩阵相似.

类似的问题: A 与 B 相似, 当且仅当他们在某个扩域上相似.

思考: 假设两个 2×2 的实矩阵通过行列式为 1 的复矩阵相似, 那么它们一定通过某个行列式为 1 的实矩阵相似吗?

- (4) 若 $\begin{pmatrix} A & O \\ O & A \end{pmatrix}$ 与 $\begin{pmatrix} B & O \\ O & B \end{pmatrix}$ 正交相似, 证明 A 与 B 正交相似.
- (5) 若 A 和 B 既相似,又合同,则是否一定正交相似?

Hint: 王子涵会写, 可以问他.

Challenging Problems

(1) Assume $A,B\in \mathrm{M}_n(\mathbb{R})$ are symmetric and positive definite. Prove that

$$oxed{A \circ B}_{ ext{Hadamard Product}} := (a_{i,j} \cdot b_{i,j})_{n imes n}$$

is also positive definite. ($A\circ B$ is also known as Stupid Matrix Product.)

Real Challenge: Prove it within 20 words. Hint: Kronecker product.

(2) Find the largest real number C_n for each positive integer n, such that for any real numbers x_1, x_2, \ldots, x_n , the following inequality holds:

$$\sum_{i=1}^n \sum_{j=1}^n (n-|j-i|) x_i x_j \geq C_n \sum_{i=1}^n x_i^2.$$

Hint: Taking $y_k=x_1+\cdots+x_k$, it suffices to find the second largest eigenvalue Chebyshev matrix (逆矩阵-习题 8.) Another Hint: $\lim_{n\to\infty}C_n=\frac{1}{2}$.

(3) Find the largest real number C such that for any real numbers $x_1,x_2,\dots,x_{2^{2024}}$ with $\sum_{i=1}^{2^{2024}}x_i=0$, the following inequality holds:

$$\sum_{1 \leq i < j \leq n} \delta_{(j-i)} \cdot x_i x_j \leq C \sum_{i=1}^n x_i^2.$$

Here $\delta_{2^k}=1$, otherwise $\delta=0$.

Hint: How to characterise the associated matrix? Maybe you can solve it by induction...

(4) Prove that

$$\sum_{i=1}^n \sum_{j=1}^n rac{a_i a_j}{\left(p_i + p_j
ight)^c} \geq 0$$

holds for arbitrary reals a_1, a_2, \ldots, a_n , and positive numbers c, p_1, p_2, \ldots, p_n .

Hint: Let A(t) be symmetric positive definite with variable t, then so is $\int_I A(t) \, \mathrm{d} \, t$.

(5) Let f be continuous in $[0,+\infty)$, such that $\int_0^\infty (f(x))^2 \,\mathrm{d}\,x < \infty$. Suppose

$$\int_0^\infty e^{-kx} f(x) \,\mathrm{d}\, x = 1 \quad (orall k = 1, 2, \ldots, n).$$

Find $\inf \int_0^\infty (f(x))^2 \,\mathrm{d}\,x.$ (Neither ε nor δ appears in the solution.)

Hint: Use $\int_0^\infty fg \le \sqrt{\int_0^\infty f^2} \cdot \sqrt{\int_0^\infty g^2}$ (CS inequality). Set $g = \sum_{1 \le k \le n} c_k e^{-kx}$.

Fun Exercise: 2-Distance Set Problem

以下谈论的距离 (度量) 都是 \mathbb{R}^n 上的通常距离 (度量), 即, $\|x-y\|=\sqrt{\sum (x_i-y_i)^2}$.

1. 最多能在 \mathbb{R}^n 中找到几个点, 使得这些点是等距的?

换言之, 求极大的子集 $\{v_i\}_{i=1}^N\subset\mathbb{R}^n$, 使得对任意 $i\neq j$, 模长 $\|v_i-v_j\|$ 是非零常数.

2. 称有限点集 $S\subset\mathbb{R}^n$ 是巧妙的, 当且仅当存在正数 p,q>0, 使得

$$\|x-y\|\in\{p,q\}\quad (orall x,y\in S, x
eq y).$$

以下证明 $|S| \leq \frac{(n+1)(n+4)}{2}$. 在证明之前, 可以先自行尝试.

3.记 $\mathbb{R}[t_1,t_2\ldots,t_n]$ 是全体 n 元多项式. 记 $\|t\|^2=t_1^2+\cdots+t_n^2$, 试证明以下 $\frac{(n+1)(n+4)}{2}$ 个多项式是 \mathbb{R} -线性无关的:

$$\{(\|t\|^2)^2\} \cup \{t_i \cdot \|t\|^2\}_{i=1}^n \cup \{t_i \cdot t_j\}_{1 \le i < j \le n} \cup \{t_i\}_{i=1}^n \cup \{1\}.$$

4. 记巧妙集 $S=\{v_1,\ldots,v_m\}\subset\mathbb{R}^n$. 定义函数

$$f:\mathbb{R}^{2n} o\mathbb{R},\quad (x,y)\mapsto (\|x-y\|^2-p^2)\cdot (\|x-y\|^2-q^2).$$

写出矩阵 $(f(v_i, v_j))_{1 \le i,j \le m} \in \mathbf{M}_m(\mathbb{R})$.

- 5. 给定形如 $g(x,y)=g_1(x)\cdot g_2(y)$ 的函数, 证明 $(g(v_i,v_j))_{1\leq i,j\leq m}$ 的秩是 1.
- 6.使用 3., 4., 以及 5. 以证明 2..

Elementary Exercise: The Geometry of Hadamard Matrix

给定实向量空间 \mathbb{R}^n 及其有限子集 $S=\{v_i\}_{i=1}^k\subset\mathbb{R}^n$. 定义 Gram 矩阵

$$G(v_1,v_2,\ldots,v_k):=(x_i^T\cdot x_j)_{k imes k}\in \mathrm{M}_k(\mathbb{R}).$$

Gram 行列式 $\det(G(S))$ 是良定义的, 因为交换向量次序不改变行列式的值. 以下采用简便记号 $|S|_G:=\det(G(S))$.

- 1.证明 $|S|_G=0$ 当且仅当 S 是线性相关组.
- 2.证明向量 v 到子空间 $\mathrm{Span}(S)$ 的距离是 $\sqrt{\frac{|S \cup \{v\}|_G}{|S|_G}}$.

Hint: 使用唯一分解 $v=v_{\mathbb{P} \text{TT Span}(S)}+v_{\text{垂直T Span}(S)}.$

3. 使用 Gram 行列式定义向量组的模长, 以及子空间之间的夹角.

其结果应当与向量的模长, 以及方向之间的夹角统一.

$$4$$
.定义 $\sin_G(v,S):=rac{v\,rak P \operatorname{Span}(S)\,$ 的距离 $=\sqrt{rac{|S\cup\{v\}|_G}{|S|_G\cdot |\{v\}|_G}}$. 若 $S_1\subset S_2$,试证明 $\sin_G(v,S_1)\geq \sin_G(v,S_2)$.

5. 记 S 是 $A\in \mathrm{M}_n(\mathbb{R})$ 的 n 个列向量, 记 $S_{\leq i}=\{v_1,v_2,\ldots,v_i\}$. 证明,

$$|\det A| = \sqrt{|S|_G} = \underbrace{\|v_1\|\cdot\|v_2\|\cdots\|v_n\|}_{$$
模长 $} \cdot \underbrace{\sin_G(S_1,v_2)\cdot\sin_G(S_2,v_3)\cdots\sin_G(S_{n-1},v_n)}_{}$ 来角部分

6.证明 Hadamard 不等式

$$|\det A| \leq \left(\prod_{i=1}^n \|v_i\|
ight) \cdot \left(\prod_{1 \leq i < j \leq n} \sin^2(v_i,v_j)
ight).$$

并说明取等条件.