Session 5.1 Scaling up Interactive Data Analysis in Jupyter Lab: From Laptop to HPC

SDSC Summer Institute 2024

Peter Rose (pwrose@ucsd.edu)
Director, Structural Bioinformatics Lab

COMPUTING WITHOUT BOUNDARIES

EXPANSE

SAN DIEGO SUPERCOMPUTER CENTER

UNIVERSITY OF CALIFORNIA SAN DIEGO

Outline

- When to run on Expanse
- Setup a portable and reproducible software environment
- Scale up calculations on CPU/GPU using Dataframes
- Run Jupyter Lab in Batch
- Get ready to use Expanse: accounts, allocations
- Best Practices for Authoring Jupyter Notebooks

When to run on Expanse

Laptop/Desktop

- Coding
- Exploratory phase
- Small datasets
- Run on single or few cores

Expanse

- Scaling up to
 - large datasets
 - long runtimes
- Run on many cores
- Run on GPUs

Expanse Nodes

128 CPU cores/node

4 GPUs, 40 CPU cores/node

	Compute Nodes		GPU Nodes
CPU Type	AMD EPYC 7742	GPU Type	NVIDIA V100 SMX2
Nodes	728	Nodes	52
Sockets	2	GPUs/node	4
		CPU Type	Xeon Gold 6248
Cores/socket	64	Cores/socket	20
Clock speed	2.25 GHz	Sockets	2
Flop speed	4608 GFlop/s	Clock speed	2.5 GHz
Memory capacity	* 256 GB DDR4 DRAM	Flop speed	34.4 TFlop/s
, , , , , , , , ,		Memory capacity	*384 GB DDR4 DRAM
Local Storage	1TB Intel P4510 NVMe PCle SSD	Local Storage	1.6TB Samsung PM1745b NVMe PCle SSD
Max CPU Memory bandwidth	409.5 GB/s	Max CPU Memory bandwidth	281.6 GB/s

	Partition Name	Max Walltime	Max Nodes/Job	Max Running Jobs	Max Running + Queued Jobs	Charge Factor	Notes
	compute	48 hrs	32	32	64	1	Exclusive access to regular compute nodes; limit applies per group
_	ind- compute	48 hrs	32	32	64	1	Exclusive access to Industry compute nodes; limit applies per group
Jupyter Notebook (CPU) ———	shared	48 hrs	1	4096	4096	1	Single-node jobs using fewer than 128 cores
	ind-shared	48 hrs	1	32	64	1	Single-node Industry jobs using fewer than 128 cores
	gpu	48 hrs	4	4	8 (32 Tres GPU)	1	Used for exclusive access to the GPU nodes
	ind-gpu	48 hrs	4	4	8 (32 Tres GPU)	1	Exclusive access to the Industry GPU nodes
Jupyter Notebook (GPU)	gpu-shared	48 hrs	1	24	24 (24 Tres GPU)	1	Single-node job using fewer than 4 GPUs
	ind-gpu- shared	48 hrs	1	24	24 (24 Tres GPU)	1	Single-node job using fewer than 4 Industry GPUs
	large- shared	48 hrs	1	1	4	1	Single-node jobs using large memory up to 2 TB (minimum memory required 256G)
Testing (CPU)	debug	30 min	2	1	2	1	Priority access to shared nodes set aside for testing of jobs with short walltime and limited resources
Testing (GPU) ———	gpu-debug	30 min	2	1	2	1	Priority access to gpu-shared nodes set aside for testing of jobs with short walltime and limited resources; max two gpus per job
	preempt	7 days	32		128	.8	Non-refundable discounted jobs to run on free nodes that can be pre-empted by jobs submitted to any other queue
	gpu- preempt	7 days	1		24 (24 Tres GPU)	.8	Non-refundable discounted jobs to run on unallocated nodes that can be pre-empted by higher priority queues

Setup a portable and reproducible software environment

Reproducibility*

obtaining consistent results using

same input data or parameters

same computational steps, methods, and code

same analysis conditions

Reusability

obtaining **new** results using

different input data or parameters

same computational steps, methods, and code

same analysis conditions

Scalability

obtaining **new** results using

large input data or parameter sets

same computational steps, methods, and code

same analysis conditions

^{*} L. Barba, https://figshare.com/articles/Next_in_Reproducibility_standards_policies_infrastructure_and_human_factors/8194328/1

Tools and Infrastructure

Computational notebooks: combine documentation, code, and results

Version-control system source code

Source code

Open-source package and environment management system

Container that packages software and OS in a portable way

Scalable compute infrastructure

Reproducible Environments

CONDA

- Beginner
- Experience with Conda
- Exploratory development
- Frequently changing dependencies
- Easy to compose an environment with many dependencies
- Run on single node on Expanse
- Supported on Linux, Mac, Windows
- Run on native OS

- Advanced user
- Experience with containers
- Production environment
- Often setup for a single tool
- Optimized containers for Expanse
 - pytorch, tensorflow, ...
 - support for multi-node
- Supported on Linux
- Mac, Windows requires a VM
- Run on packaged OS, e.g. Ubuntu

Analysis 1	Analysis 2	Analysis 3			
conda env. 1 conda env. 2 conda env. 3					
Docker Container					
Laptop, server, cloud instance					

Data Science Development

Data Science Deployment

Source: https://medium.com/@patrickmichelberger/getting-started-with-anaconda-docker-b50a2c482139

Package management system

 Conda installs, runs, and updates open source packages (e.g., NumPy, Pandas) and their dependencies, while checking compatibility with all preexisting packages.

Environment management system

- Conda allows you to create, save, load and switch between multiple environments on your local computer, as well as share instructions for how to recreate that environment on a different computer.
- Multi-platform (Windows, MacOS, and Linux)
- Multi-language (Python, R, Ruby, Scala, Java, JavaScript, C/ C++, etc.)

Why Conda Environments?

pip install pandas pip install scikit-learn

Or

conda install pandas

conda install scikit-learn

Directly installing packages into your base environment will lead to version conflicts, errors, and non-reproducible results.

environment 1

python=3.7 pandas=0.25.0 scikit-learn=0.20.0 environment 2

python=3.9 pandas=1.2.4 scikit-learn=0.24.2

By creating conda environments, multiple versions of software packages can co-exists without interference.

Conda environments are portable and can be installed on multiple platforms.

Define a Conda Environment

Create an **environment.yml** file in the top level of a Git Repository (https://github.com/sbl-sdsc/df-parallel)

name: df-parallel Use the same name as your Git repository channels: conda-forge anaconda Specify the channels where to look for packages. Order matters! dependencies: The conda-forge channel has newer versions than anaconda. - python=3.10 - jupyterlab=4.0.1 - ipywidgets=8.0.6 - matplotlib=3.7.1 Specify ("pin") version number to ensure reproducibility and - seaborn=0.12.2 - papermill=2.3.4 compatibility. - dask=2023.3.2 - pyspark=3.4.0 - pyarrow=10.0.1 - openjdk=17.0.3 Specify non-Python packages (e.g., Java). variables: # SPARK conf directory with logging configuration SPARK_CONF_DIR: ../conf SPARK_DRIVER_MEMORY: 16G SPARK DRIVER MAXRESULTSIZE: 4G Set environment variables (e.g., configuration options). SPARK WORKER MEMORY: 4G

Define a Conda Environment with ChatGPT

Create a Conda environment.yml file for Python 3.10 and Jupyter Lab. Include the following packages: Pandas, Dask, cuDF, Dask-cuDF. Include any dependencies and channels required to run this

Tip:

on an NVIDIA GPU

If there are any errors, paste the error message into ChatGPT. It will try to correct its mistake. You may need to iterate a few times. Here is the `environment.yml` file for creating a Conda environment with Python 3.10 and Jupyter Lab, including the specified packages and dependencies for an NVIDIA GPU:

Create a Conda Environment

Prerequisite: Miniconda3 (light-weight, preferred) or Anaconda3 installed

https://docs.conda.io/en/latest/miniconda.html

Create a Conda environment

conda env create -f environment.yml
 or
mamba env create -f environment.yml (faster)

Activate a Conda environment

conda activate <environment_name>

Run Jupyter Lab

jupyter lab

Deactivate conda environment

conda deactivate

Example of using a Conda Environment on Expanse

Clone the Git repo

```
git clone https://github.com/sbl-sdsc/df-parallel.git
cd df-parallel
```

Run on CPU (Pandas, Dask, Spark dataframes)

```
galyleo launch --account <account_number> --partition shared --cpus 10 --memory 20
--time-limit 01:00:00 --conda-env df-parallel --conda-yml environment.yml --mamba
```

Run on GPU (cuDF, Dask-cuDF dataframes)

```
galyleo launch --account <account_number> --partition gpu-shared --cpus 10
--memory 92 --gpus 1 --time-limit 01:00:00 --conda-env df-parallel-gpu
--conda-yml environment-gpu.yml --mamba
```

1 GPU + 10 CPUs + 92 GB = 1/4 of a GPU node

Task 1 - Launch Jupyter Lab on Expanse using a Conda environment

- Clone df-parallel Git repository
- Start galyleo on a GPU node
- Paste the URL for your Jupyter Lab session into your browser

Follow the instructions for Task 1

Scale up Calculations on CPU/GPU using Dataframes

Processing large Datasets on CPU

Processing large Datasets on GPU

Example Notebooks

https://github.com/sbl-sdsc/df-parallel

Dataframe Library	Parallel	Out-of-core	CPU/GPU	Evaluation
Pandas	no	no [1]	CPU	eager
Dask	yes	yes	CPU	lazy
Spark	yes	yes	CPU	lazy
cuDF	yes	no	GPU	eager
Dask-cuDF	yes	yes	GPU	lazy

[1] Pandas can read data in chunks, but they have to be processed independently.

Efficient File Formats

Columnar Storage Format - Parquet

@EmrgencyKittens

Query and space efficient file format (default: Snappy compression)

Vertical partitioning (projection push down)

 a
 b
 c

 a1
 b1
 c1

 a2
 b2
 c2

 a3
 b3
 c3

 a4
 b4
 c4

b5

+ Horizontal partitioning (predicate push down)

а	b	С
a1	b1	c1
a2	b2	c2
аЗ	b3	сЗ
a4	b4	с4
a5	b5	с5

Read only the data you need!

a	b	C
a1	b1	c1
a2	b2	c2
аЗ	b3	сЗ
a4	b4	с4
a5	b5	c5

Horizontal partitioning uses column min/max statistics from Parquet metadata.

https://www.slideshare.net/julienledem/if-you-have-your-own-columnar-format-stop-now-and-use-parquet

Creating Parquet "Files" with Dask

```
genes = dd.read_csv(input, dtype=str, sep="\t")
genes.to_parquet(output, write_index=False,
write_metadata_file=True, engine="pyarrow")
```

```
genes = dd.read_csv(input, dtype=str, sep="\t")
genes.to_parquet(output, write_index=False,
write_metadata_file=True, engine="pyarrow",
partition_on=["type_of_gene"])
```

```
[xdtr104@login02 ~]$ ls -lh gene_info.parquet/
total 1.2G
-rw-r--r-- 1 xdtr104 uic157
         20M Aug 4 10:14 part.12.parquet
4 10:14 part.15.parquet
-rw-r--r-- 1 xdtr104 uic157 18M Aug
-rw-r--r-- 1 xdtr104 uic157  20M Aug  4 10:14 part.16.parquet
         21M Aug 4 10:14 part.17.parquet
-rw-r--r-- 1 xdtr104 uic157
```

```
[xdtrl04@login02 ~]$ is -in gene_info.parquet/
total 698K
4 Aug 4 16:16 'type of gene=biological-region
drwxr-xr-x 2 xdtr104 uic157
                          68 Aug 4 16:15 'type of gene=miscRNA'
drwxr-xr-x 2 xdtr104 uic157
drwxr-xr-x 2 xdtr104 uic157
                          87 Aug
                                 4 16:15 'type of gene=ncRNA'
drwxr-xr-x 2 xdtr104 uic157
                                4 16:15 'type of gene=other'
                                4 16:15 'type of gene=protein-coding'
drwxr-xr-x 2 xdtr104 uic157
drwxr-xr-x 2 xdtr104 uic157
                                 4 16:15 'type of gene=pseudo'
                                 4 16:15 'type_of_gene=rRNA'
drwxr-xr-x 2 xdtr104 uic157
drwxr-xr-x 2 xdtr104 uic157
                           5 Aug 4 16:16 'type of gene=scRNA'
drwxr-xr-x 2 xdtr104 uic157
                                 4 16:15 'type of gene=snRNA'
                                 4 16:16 'type of gene=snoRNA'
drwxr-xr-x 2 xdtr104 uic157
drwxr-xr-x 2 xdtr104 uic157
                                 4 16:15 'type of gene=tRNA'
                                4 16:16 'type of gene=unknown'
drwxr-xr-x 2 xdtr104 uic157
```

Parquet files are typically directories of files.

 Parquet files can be partitioned by one or more columns for query efficiency.

Vertical & Horizontal Partitioning

```
# vertical partitioning
column names = ["GeneID", "Symbol", "Synonyms", "description", "type of gene", "#tax id", "chromosome"]
# horizontal partitioning (conditions can be nested for complex filters)
filters=[[("type_of_gene", "==", "protein-coding")]]
# Pandas
genes = pd.read parquet(filename, columns=column names, filters=filters)
# Dask
genes = dd.read parquet(filename, columns=column names, filters=filters)
# cuDF
genes = cudf.read parquet(filename, columns=column names, filters=filters)
# Dask-cuDF
genes = dask_cudf.read_parquet(filename, columns=column names, filters=filters)
# Spark
genes = spark.read.parquet(filename)
genes = genes.select(column names)
genes = genes.filter("type of gene == 'protein-coding'")
```


Benchmark Dataframe Libraries

TASK 2: Benchmark Dataframe Libraries using a csv Input File

 TASK 3: Benchmark Dataframe Libraries using a Parquet Input File

TASK 4: Measure Parallel Efficiency

Dataframe Benchmark

Results for running on SDSC Expanse GPU node with 10 CPU cores (Intel Xeon Gold 6248 2.5 GHz), 1 GPU (NVIDIA V100 SMX2), and 92 GB of memory (DDR4 DRAM), local storage (1.6 TB Samsung PM1745b NVMe PCle SSD).

Datafile size (gene_info.tsv):

• Dataset 1: 5.4 GB (18 GB in Pandas)

• Dataset 2: 21.4 GB (4 x Dataset 1) (62.4 GB in Pandas)

Dataset 3: 43.7 GB (8 x Dataset 1)

Dataframe Library	time(5.4 GB) (s)	time(21.4 GB) (s)	time(43.7 GB) (s)	Parallel	Out- of- core	CPU/GPU
Pandas	56.3	222.4	[2]	no	no	CPU
Dask	15.7	42.1	121.8	yes	yes	CPU
Spark	14.2	31.2	56.5	yes	yes	CPU
cuDF	3.2	[2]	[2]	yes	no	GPU
Dask-cuDF	7.3	11.9	19.0	yes	yes	GPU

[2] out of memory

Scaling for Dask Dataframe

Runtime as function of dataset size and number of cores

Batch benchmark: slurm script: <u>benchmark.sb</u> notebook: <u>8-BenchmarkSummary.ipynb</u>

Run Jupyter Lab in Batch

Run Jupyter Lab in Batch

Example batch file

https://github.com/sbl-sdsc/df-parallel/blob/main/solution.sh

Submit job sbatch solution.sh

Papermill (https://papermill.readthedocs.io/en/latest/)

execute notebook on the command line
 papermill input.ipynb output.ipynb

execute notebook in Python

```
import papermill as pm
pm.execute_notebook("input.ipynb", "output.ipynb")
```

parameterize notebook (pass arguments to Jupyter Notebooks)

papermill input.ipynb output.ipynb -p variable1 value1 -p variable2 value2

Get ready to use Expanse: accounts, allocations

Expanse Allocation

- Trial allocation: 100 GPU and/or 1000 CPU hours consult@sdsc.edu
- Apply for allocations through <u>ACCESS</u>
 - **EXPLORE** (400K) Great for resource evaluation, graduate student projects, small classes and training events, benchmarking, code development and porting, and similar small-scale uses.
 - DISCOVER (1.5M) Designed for research grants with modest resource needs, Campus
 Champions, large classes and training events, NSF graduate fellowships, benchmarking and code testing at scale, and gateway development.
 - ACCELERATE (3M) Best for experienced users with mid-scale resource needs, consolidating multi-grant programs, collaborative projects, preparing for Maximize ACCESS requests, and gateways with growing communities.
 - MAXIMIZE (>3M) The choice for large-scale research activities that need more resources than the limit for Accelerate ACCESS projects.

Best Practices for Authoring Jupyter Notebooks

advanced search

OPEN ACCESS

EDITORIAL

Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks

Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas, Shih-Cheng Huang, Rob Knight, Niema Moshiri, Mai H. Nguyen, Sara Brin Rosenthal, Fernando Pérez, Peter W. Rose

Published: July 25, 2019 • https://doi.org/10.1371/journal.pcbi.1007007

Paper:	https://doi.org/	<u>/10.1371/</u>	<u>journal.pcbi</u>	<u>.1007007</u>
•				

Git repo: https://github.com/jupyter-quide/ten-rules-jupyter

331	78
Save	Citation
53,861	987
View	Share

Tools to Support Reproducible Workflows

Organizing and Documenting

- Rule 1: Tell a Story for an Audience
 - Beginning introduce topic
 - Middle describe steps
 - End interprets results
 - Describe not just what you did, by why you did it, how the steps are connected, and what it all means.
 - Adjust your description depending on the intended audience
- Rule 2: Document the process, not just the results
 - Add descriptive notes, e.g., why a particular parameter was chosen
- Rule 3: Use cell divisions to make steps clear
 - Avoid long cells
 - Limit each cell to one meaningful step
 - Split long notebooks into a series of notebooks
 - Keep a top-level index notebook with links to the individual notebooks

Working with Code

Record Working with code

Simplified Notebook Cycle

Organizing and documenting

Read, Run, Explore

- Rule 4: Modularize Code
 - Use functions instead of duplicating code cells
- Rule 5: Record Dependencies
 - Manage your dependencies explicitly from the start using a tool such as
 - Conda's environment.yml
 - pip's requirements.txt
- Rule 6: Use Version Control
 - Consider using a public repository from the beginning of a project
 - Tie research results to specific software versions
- Rule 7: Build a Pipeline
 - Design notebooks with reuse in mind (different input data and parameters)
 - Define key input data and parameters at the top of each notebook
 - Break long notebooks into smaller notebooks that focus on one or a few analysis steps.

Sharing, explaining

- Rule 8: Share and Explain Your Data
 - Share your data in a repository with a persistent identifier, e.g., DOI
 - Bio repositories, e.g., NCBI, Ensemble, PDB
 - General repositories, e.g., Zenodo https://zenodo.org/
 - Small datasets can be stored in GitHub with your source code (< 50MB)
 - E.g., in a /data folder
 - Very large datasets
 - Consider using a sample of the data and a link to the original data
 - Save intermediate data after data processing
 - E.g., in /intermediate_data folder
 - Can be used to verify each step in a workflow

Sharing, explaining cont

- Rule 9: Design your notebooks to be read, run, and explored
 - Git repository
 - Add a descriptive README file
 - Add a LICENCE file (liberal licence, e.g., MIT, Apache 2)
 - Add a static HTML/PDF file of your notebooks for long-term preservation
 - Add Binder badge/link to launch notebooks in the cloud (https://mybinder.org/)
 - Consider using ipywidgets to add menus or sliders to enable interactive exploration of parameters

Sharing, explaining cont.

- Rule 10: Advocate for open research
 - Apply what you learned in this tutorial in your own research and be an advocate for open and reproducible research in your lab or workplace
 - Publish a fully reproducible paper! Create all figures, data tables, and all other computational results using Jupyter Notebook and deposit in Github.

Our lab's moving to this model: publish "static PDF" papers as expected, but also a shadow, interactive @ProjectJupyter version alongside that has all code to process, analyze, and visualize data.

"The Scientific Paper Is Obsolete" featuring @fperez_org

The Scientific Paper Is Obsolete

Here's what's next.

theatlantic.com

Summary

- When to run on Expanse
- Setup a portable and reproducible software environment
- Scale up calculations on CPU/GPU using Dataframes
- Run Jupyter Lab in Batch
- Get ready to use Expanse: accounts, allocations
- Best Practices for Authoring Jupyter Notebooks

Acknowledgements

Marty Kandes
Mary Thomas
Scott Sakai
Robert Sinkovitz

Funding: NSF Award Number 2017767

CyberTraining: Implementation: Small: Developing a Best Practices Training Program in Cyberinfrastructure-Enabled Machine Learning Research

