Compiler Construction

ARNOLD MEIJSTER
A.MEIJSTER@RUG.NL

LL Grammar Restriction 1

2

Grammar Restriction 1:

An LL grammar contains no left-recursive rules.

LL Grammar Restriction 2

3)

Grammar Restriction 2:

The First sets of all alternatives/choices for the same LHS must be different (so we know which path to take upon seeing the next terminal symbol/token).

LL Grammar Restriction 3

4)

Grammar Restriction 3:

If a nonterminal may occur zero times (i.e. is optional), its First and Follow sets must be different (so we know whether to parse it or skip it on seeing a terminal symbol/token).

Recursive Descent Parsing

- Massage grammar to meet the LL(1) conditions
 - Remove left recursion
 - Left factor, where possible

- Define a procedure for each non-terminal
 - Implement a case for each right-hand side
 - o Call procedures for non-terminals
 - o Add extra code, as needed

Table-driven approach LL(1)

- Encode grammar in a table
 - Row for each non-terminal
 - Column for each terminal symbolTable[NT, symbol] = rule

	+	*	number
expr2	+ term expr2	Error (?)	Error (?)
term2	Error (?)	* factor term2	Error (?)
factor	error	error	number

How to Construct Parse Tables?

- Consider a production $X \rightarrow \beta$
- Add $\rightarrow \beta$ to the X row for each symbol in FIRST(β)
- If β can derive ϵ , add $\rightarrow \epsilon$ for each symbol in Follow(X)

$$S \rightarrow E S'$$

 $S' \rightarrow \varepsilon \mid + S$
 $E \rightarrow \text{num} \mid (S)$

```
First(S) = {num, (}
First(S') = {\epsilon, +}
First(E) = { num, (}
```

	num	+	()	\$
S	ES'		ES'		
S'		+ S		3	3
E	num		(S)		

Table driven LL(1) parser code

```
push EOF and the start symbol onto Stack
top \leftarrow top of Stack
loop forever
  if top = EOF and token = EOF then break & report success
  if top is a terminal then
     if top matches token then
        pop Stack
                                            /* recognized top */
        token \leftarrow next\_token()
     else
        syntax error
  else
                                            /* top is a non-terminal */
     if TABLE[top,token] is B<sub>1</sub>B<sub>2</sub>...B<sub>k</sub> then
        pop Stack
                                            /* get rid of non-terminal (lhs) */
        push Bk, Bk-1, ..., B1
                                            /* in that order */
  top \leftarrow top of Stack
```

Example of table driven LL(1) Parsing

Problematic grammars

- Sometimes, it is impossible to convert a grammar into an equivalent grammar that is LL(1).
- Consider the following grammar:

$$S \rightarrow a B c S T | d$$

 $T \rightarrow e S | \epsilon$
 $B \rightarrow b$

Consider the input: a b c a b c d e d

Problematic grammars

$$S \rightarrow a B c S T | d$$

 $T \rightarrow e S | \varepsilon$
 $B \rightarrow b$

We can derive "a b c a b c d e d" as follows:

- $\underline{S} \rightarrow a \underline{B} c S T$
 - \rightarrow a b c \underline{S} T
 - \rightarrow a b c a \underline{B} c S T T
 - \rightarrow a b c a b c \underline{S} T T
 - \rightarrow a b c a b c d T T

The next input token is an 'e'. Now, we have two continuations: $a b c a b c d \underline{T} T \rightarrow a b c a b c d e \underline{S} T \rightarrow a b c a b c d e d \underline{T} \rightarrow a b c a b c d e d$ $a b c a b c d T T \rightarrow a b c a b c d T \rightarrow a b c a b c d e d$

No matter how hard you try, you will not be able to convert this grammar into an unambiguous LL(1) equivalent.

Problematic grammars: parse table

- $S \rightarrow a B c S T \mid d$
- $T \rightarrow e S \mid \epsilon$
- $B \rightarrow b$

	a	b	С	d	е
S	ABcST	error	error	d	error
T	error	error	error	error	e S ε
В	error	b	error	error	error

• 'Solutions':

- o #1: table[T,e] = e S
- \circ #2: table[T,e]= ε
- These 'solutions' implement a preference.
 - Note that 'solution' #2 changes the accepted language ('e' is never accepted)

Dangling-else problem

 $cmd \rightarrow if \text{ (bool)}$ then cmd else cmd | if (bool) cmd

Grammar can be left-factored (but stays problematic):
 cmd → if (bool) then cmd elsePart
 elsePart → else cmd | ε

Problem: if <bool> then if <bool> then <cmd> else <cmd>

Standard 'solution':

table[elsePart,else] = else cmd

which corresponds with the convention to pair the **else** with the closest **if**.

LL(k) solves our problems?

- Sometimes, it is possible to resolve problems using more than one symbol look-ahead.
 - o LL(k): k symbols look-ahead
- Consider the grammar:

1: $S \rightarrow Ab$

 $2: S \rightarrow Bb$

 $3: A \rightarrow aa$

4: *B*→*aaa*

- It can only produce *aab* or *aaab*.
- The grammar is not LL(1), nor is it LL(2).
 - It is LL(3) though.

LL(k) solves our problems?

• However, in general it does not work. For example, it is not hard to see that there does not exist any LL(k)-grammar accepting the following grammar.

- \circ S -> A | B
- \circ A -> a A b | ϵ
- \circ B -> a B b b | ϵ

Bottum up parsing

Example (LR parsing)

1: $S \rightarrow Ab$

 $2: S \rightarrow Bb$

Input = aaab

3: *A*→*aa* 4: *B*→*aaa*

- We use 1 token lookahead, and use knowledge of everything we have seen so far.
- Initially, we only know that the input string starts with an *a*.
- This tells us nothing about whether we are in rule 1 or 2.
- We skip over the *a* , *remember it*, and look at the next token. This is another *a*.
- We have seen *aa*, which still tells us nothing about whether we are in rule 1 or 2.
- Again, we skip over the a, and remember it.
- We now *look* at the third token and find it is again an *a*.
- We now can decide whether the aa we saw earlier is derived from an A. As an A is always followed by a b, we decide this is not the case since the 3^{rd} token is an a.

Example

1: $S \rightarrow Ab$

 $2: S \rightarrow Bb$

Input = aaab

3: *A*→*aa*

4: *B*→*aaa*

- Reading the a, we know we are definitely in case 2 (assuming correct input).
- Our lookahead becomes a *b*, which is precisely what we expect. We therefore decide that the *aaa* we have seen so far results from a *B*.
- Note that at this point, we no longer need to 'remember' that we have seen aaa: all we need to know is that we've seen a B.
- This is effectively the same situation we would be in if we would have had *Bb* as input, and would have read *B*.
- So, it is enough to remember just that, which corresponds to a *reduce* action of an *LR* parser.
- Finally, we read the *b*, find that we are at the end of the input, decide that the lhs must be an *S* and decide that the input is accepted.

Leftmost and Rightmost derivations

$$\begin{array}{ccc}
E & \rightarrow & E+T \\
E & \rightarrow & T \\
T & \rightarrow & id
\end{array}$$

Derivations for id + id:

$$E \Rightarrow E+T \qquad E \Rightarrow E+T$$

$$\Rightarrow T+T \qquad \Rightarrow E+id$$

$$\Rightarrow id+T \qquad \Rightarrow T+id$$

$$\Rightarrow id+id \qquad \Rightarrow id+id$$

$$LEFTMOST \qquad RIGHTMOST$$

Bottom-up Parsing

• A bottom-up parse corresponds to the construction of a parse tree for an input string beginning at the leaves (bottom) and working up towards the root (top).

Derivation in reverse:

$$E \Rightarrow T \Rightarrow T^*F \Rightarrow T^*id \Rightarrow F^*id \Rightarrow id^*id$$

RIGHTMOST DERIVATION

Bottom-up Parsing

Given a stream of tokens w, reduce it to the start symbol.

$$\begin{array}{ccc}
E & \rightarrow & E+T \\
E & \rightarrow & T \\
T & \rightarrow & id
\end{array}$$

Parse input stream id + id:

Bottom-Up LR

- Construct parse tree in a bottom-up manner
- Scan the input Left to right
- Find the Rightmost derivation in a reverse order

- Often more powerful than top-down parsing
 - Left recursion does not cause problems

Bottom-up Parsing

- Bottom-up parsing: the process of "reducing" the input string to the start symbol of the grammar.
- At each *reduction* step, a specific substring matching the rhs (body) of a production is replaced by the nonterminal at the lhs of this production.
- Key decisions to make:
 - when to reduce
 - which production rule to use.
- Use explicit parse stack
 - LR: on the stack is what has been *accepted*!
 - LL(k): on the stack is what is *expected*!

Shift-Reduce parsing (example)

$$\begin{array}{ccc} E & \rightarrow & E+T \\ E & \rightarrow & T \\ T & \rightarrow & id \end{array}$$

Left to Right Scan of input Rightmost Derivation in reverse.

stack	input stream	action
Stack	input stream	action
\$	id + id \$	shift
\$ id	+ id \$	reduce by $T \rightarrow id$
\$ <i>T</i>	+ id \$	reduce by $E \rightarrow T$
\$ <i>E</i>	+ id \$	shift
\$ E +	id \$	shift
\$ <i>E</i> + id	\$	reduce by $T \rightarrow id$
\$ E + T	\$	reduce by $E \rightarrow E + T$
\$ <i>E</i>	\$	ACCEPT

Informal Example(1)

stack tree input

\$ i + i \$

shift

stack tree input

i + i \$

Informal Example(2)

Informal Example(3)

Informal Example(4)

Informal Example(5)

Informal Example(6)

Informal Example(7)

Informal Example(8)

Informal Example(9)

reduce $S \rightarrow E$ \$

Informal Example(10)

ACCEPT

Informal Example

reduce $S \rightarrow E$ \$

reduce $E \rightarrow E + T$

reduce $T \rightarrow i$

reduce $E \rightarrow T$

reduce $T \rightarrow i$

Informal Example(7')

The Problems

Deciding between

- shift and reduce
- reduce and reduce

Even more complicated with epsilon rules

Grammar

 $S' \rightarrow S\$$ $S \rightarrow (S)S \mid \varepsilon$

Stack	Input	Action
\$	(())\$	shift
\$ (())\$	shift
\$ (())\$	reduce $S \rightarrow \varepsilon$
\$ ((S))\$	shift
\$((S))\$	reduce $S \rightarrow \varepsilon$
\$((S)S)\$	reduce $S \rightarrow (S) S$
\$ (S)\$	shift
\$(S)	\$	reduce $S \rightarrow \varepsilon$
\$(S)S	\$	reduce $S \rightarrow (S) S$
\$ S	\$	reduce
\$ S'	\$	ACCEPT

```
Reverse of
rightmost
derivation
(())
(())
((S))
((S))
((S)S)
(S)
(S)
(S)S
S'
```

Shift-reduce parsers

- The parse stack contains symbols already parsed.
- The stack, concatenated with the remaining input always represents a right sentential form.
 - o produced via a rightmost derivation
- Tokens are shifted onto the stack until the top of the stack contains a handle
- Then the handle is reduced by replacing it on the parse stack with the corresponding nonterminal.
- The decision whether to shift or to reduce is based on *a parse table*.
- The parsing is successful when the input has all been consumed and the stack contains only the goal symbol.

Shift-Reduce parsing

- Four operations:
 - Shift: Construct leftmost handle on top of stack
 - Reduce: Identify handle and replace by corresponding LHS
 - Accept: Stack reduced to start symbol and input token stream is empty
 - Error: Signal parse error if no handle is found.

Problem: How to identify a handle?

- Top of stack is the *rightmost* end of the handle. What is the leftmost end?
- If there are multiple productions with the handle on the RHS, which one to choose?

Solution:

Construct a parsing table, just as in the case of table driven LL(1) parsing.

A Simple Example of LR Parsing

$$\begin{array}{ccc} S & \rightarrow & B C \\ B & \rightarrow & \mathbf{a} \\ C & \rightarrow & \mathbf{a} \end{array}$$

Stack	Input Stream	Action
\$	a a \$	shift
\$ \$ a	a \$	reduce by $B \rightarrow a$
\$ <i>B</i>	a \$	shift
\$ B a		reduce by $C \rightarrow a$
\$ <i>B C</i>	\$	reduce by $S \rightarrow BC$
\$ S	\$	ACCEPT

Why did we reduce to B in step 2, while we reduced to C in step 4?

LR(o) Items

Item: A production with "•" somewhere on the RHS.

- o Grammar symbols <u>before</u> the "∙" are on stack;
- o grammar symbols <u>after</u> the "•" represent symbols in the input stream.

input
$$T \rightarrow \alpha \cdot \beta$$

already matched α

expecting to match β

Item set: A set of items; corresponds to a state of the parser

Stack	Input	State	Action
\$	a a \$	S' → • S	

Stack	Input	State	Action
\$	a a \$	$S' \rightarrow \cdot S$	
		$S \rightarrow \bullet BC$	
		$B \rightarrow \bullet a$	

Stack	Input	State	Action
\$	a a \$	$S' \rightarrow \cdot S$ $S \rightarrow \cdot BC$ $B \rightarrow \cdot a$	shift
\$ a	a \$		

Stack	Input	State	Action
\$	a a \$	$S' \rightarrow \cdot S$ $S \rightarrow \cdot BC$ $B \rightarrow \cdot a$	shift
\$ a	a \$	$B \rightarrow a^{\bullet}$	

Stack	Input	State	Action
\$	a a \$	$S^{\prime} \rightarrow \bullet S$	shift
		$S \rightarrow \bullet BC$	
		$B \rightarrow \bullet a$	
\$ a	a \$	$B \rightarrow a^{\bullet}$	reduce by 3
\$ a \$ B	a \$		

Stack	Input	State	Action
\$	a a \$	$S' \rightarrow \cdot S$	shift
		$S \rightarrow BC$	
		$B \rightarrow \bullet a$	
\$ a	a \$	$B \rightarrow a^{\bullet}$	reduce by 3
\$ B	a \$	$S \rightarrow B \cdot C$	

Stack	Input	State	Action
\$	a a \$	$S' \rightarrow \cdot S$	shift
		$S \rightarrow \cdot BC$	
		$B \rightarrow \bullet a$	
\$ a	a \$	$B \rightarrow a^{\bullet}$	reduce by 3
\$ B	a \$	$S \rightarrow B \cdot C$	
		$C \rightarrow \bullet a$	

		0.4	A 41
Stack	Input	State	Action
\$	a a \$	$S^{\prime} \rightarrow \cdot S$	shift
,	'	$S \rightarrow \bullet BC$	
		$B \rightarrow \bullet a$	
\$ a	a \$	$B \rightarrow a^{\bullet}$	reduce by 3
\$ B	a \$	$S \rightarrow B \cdot C$	shift
		$C \rightarrow \bullet a$	
\$ B a	\$		

· · · · · · · · · · · · · · · · · · · 			
Stack	Input	State	Action
\$	a a \$	$S^{\prime} \rightarrow \bullet S$	shift
		$S \rightarrow \bullet BC$	
		$B \rightarrow \bullet a$	
\$ a	a \$	$B \rightarrow a^{\bullet}$	reduce by 3
\$ B	a \$	$S \rightarrow B \cdot C$	shift
		$C \rightarrow \bullet a$	
\$ B a	\$	$C \rightarrow a^{\bullet}$	

Stack	Input	State	Action
\$	a a \$	$S' \rightarrow \cdot S$	shift
		$S \rightarrow \bullet BC$	
		$B \rightarrow \bullet a$	
\$ a	a \$	$B \rightarrow a^{\bullet}$	reduce by 3
\$ B	a \$	$S \rightarrow B \cdot C$	shift
		$C \rightarrow \bullet a$	
\$ B a	\$	$C \rightarrow a^{\bullet}$	reduce by 4
\$ B C	\$		

Stack	Input	State	Action
\$	a a \$	$S' \rightarrow \cdot S$	shift
		$S \rightarrow \bullet BC$	
		$B \rightarrow \bullet a$	
\$ a	a \$	$B \rightarrow a^{\bullet}$	reduce by 3
\$ B	a \$	$S \rightarrow B \cdot C$	shift
		$C \rightarrow \bullet a$	
\$ B a	\$	$C \rightarrow a^{\bullet}$	reduce by 4
\$ B C	\$	$S \rightarrow BC \bullet$	

S'	\rightarrow	S
S	\rightarrow	ВС
В	\longrightarrow	a
C	\rightarrow	a

Stack	Input	State	Action
\$	a a \$	$S' \rightarrow \cdot S$	shift
		$S \rightarrow \bullet BC$	
		$B \rightarrow \bullet a$	
\$ a \$ B	a \$	$B \rightarrow a^{\bullet}$	reduce by 3
\$ <i>B</i>	a \$	$S \rightarrow B \cdot C$	shift
		$C \rightarrow \bullet a$	
\$ B a	\$	$C \rightarrow a^{\bullet}$	reduce by 4
\$ B C	\$	$S \rightarrow BC \bullet$	reduce by 2
\$ S	\$		

Stack	Input	State	Action
\$	a a \$	$S' \rightarrow \cdot S$	shift
		$S \rightarrow \bullet BC$	
		$B \rightarrow \bullet a$	
\$ a	a \$	$B \rightarrow a^{\bullet}$	reduce by 3
\$ B	a \$	$S \rightarrow B \cdot C$	shift
		$C \rightarrow \bullet a$	
\$ B a	\$	$C \rightarrow a^{\bullet}$	reduce by 4
\$ B C	\$	$S \rightarrow BC \bullet$	reduce by 2
\$ S	\$	$S' \rightarrow S^{\bullet}$	

S'	\rightarrow	S
S	\rightarrow	ВС
В	\rightarrow	a
C	\longrightarrow	a

Stack	Input	State	Action
\$	a a \$	$S' \rightarrow \cdot S$	shift
		$S \rightarrow \bullet BC$	
		$B \rightarrow \bullet a$	
\$ a	a \$	$B \rightarrow a^{\bullet}$	reduce by 3
\$ B	a \$	$S \rightarrow B \cdot C$	shift
		$C \rightarrow \bullet a$	
\$ B a	\$	$C \rightarrow a^{\bullet}$	reduce by 4
\$ B C	\$	$S \rightarrow BC \bullet$	reduce by 2
\$ S	\$	$S^I \rightarrow S^{\bullet}$	ACCEPT

LR parsing: another example

Ε'	\rightarrow	Ε
Ε	\rightarrow	E+T
Ε	\rightarrow	T
T	\rightarrow	id

Stack	Input	State	Action
\$	id + id \$	$E' \rightarrow \bullet E$	shift
		$E \rightarrow \bullet E + T$	
		$E \rightarrow \bullet T$	
		$T \rightarrow \bullet id$	
\$ id	+ id \$	$T \rightarrow id$	reduce by 4
\$ T	+ id \$	$E \rightarrow T$.	reduce by 3
\$ <i>E</i>	+ id \$	$E' \rightarrow E \bullet$	shift
		$E \rightarrow E^{\bullet} + T$	
\$ E +	id \$	$E \rightarrow E + T$	shift
		$T \rightarrow \bullet id$	
\$ E + id	\$	$T \rightarrow id$	reduce by 4
\$E + T	\$	$E \rightarrow E + T \cdot$	reduce by 2
\$ <i>E</i>	\$		ACCEPT
		$E' \rightarrow E^{\bullet}$	

States of an LR parser

The states of an LR parser are sets of items

$$E' \rightarrow E$$
 $E \rightarrow E+T$
 $E \rightarrow T$
 $T \rightarrow id$
 $Initial State$
 $E \rightarrow E+T$
 $E \rightarrow T$
 $E \rightarrow T$

Closure:

What other items are "equivalent" to a given item? Given an item $A \rightarrow \alpha \cdot B \beta$, $closure(A \rightarrow \alpha \cdot B \beta)$ is the smallest set that contains

- the item $A \rightarrow \alpha \bullet BB$, and
- every item in $closure(B \rightarrow \bullet \gamma)$ for every production $B \rightarrow \gamma \in G$

States of an LR parser (contd.)

10	$E^{I} \rightarrow \cdot E$ $E \rightarrow \cdot E + T$ $E \rightarrow \cdot T$ $T \rightarrow \cdot id$	Initial State = $closure(\{E^l \rightarrow \bullet E\})$
13	$T \rightarrow id$ •	$= goto(I_0, id)$

Goto:

goto(I, X) specifies the next state to visit.

X is a terminal: when the next symbol on input stream is X.

X is a nonterminal: when the last reduction was to X.

goto(I, X) contains all items in $closure(A \rightarrow \alpha X \cdot \beta)$ for every item $A \rightarrow \alpha \cdot X \beta \in I$.

State sets construction

10	$= closure(\{E^I \rightarrow \bullet E\})$	$E^{I} \rightarrow \bullet E$ $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet id$
<i>I</i> ₁	$= goto(I_0, E)$	$E^{I} \rightarrow \bullet $
12	$= goto(I_0, T)$	$E \rightarrow T^{\bullet}$
<i>I</i> ₃	$= goto(I_0, id)$	$T \rightarrow id$
14	$= goto(I_1, +)$	$E \to E + \bullet T$ $T \to \bullet id$
1 ₅	$= goto(I_4, T)$	$E \rightarrow E + T \bullet$

LR Action and goto tables

1	•	F		F
ı	•	L		L

$$3: E \rightarrow T$$

2:
$$E \rightarrow E + T$$
 4: $T \rightarrow id$

4:
$$T \rightarrow id$$

10	$= closure(\{E^I \rightarrow \bullet E\})$	$E^{I} \rightarrow \bullet E$ $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet id$
<i>I</i> ₁	$= goto(I_0, E)$	$E' \to E \bullet $ $E \to E \bullet + T$
12	$= goto(I_0, T)$	$E \rightarrow T^{\bullet}$
13	$= goto(I_0, id)$	$T \rightarrow id$
14	$= goto(I_1, +)$	$E \to E + \bullet T$ $T \to \bullet id$
15	$= goto(I_4, T)$	$E \rightarrow E + T \bullet$

Action table

	id	+	\$
0	5,3		
1		5,4	Acc
2	<i>R</i> 3	<i>R</i> 3	<i>R</i> 3
3	R4	<i>R</i> 4	<i>R</i> 4
4	5,3		
5	R2	<i>R</i> 2	<i>R</i> 2

Goto table

	Ε	T
0	1	2
1		
2		
3		
4		5
5		

LR parsing push down automaton

LR parsing algorithm

```
Loop forever
 switch action(state stack.top(), current token)
     case shift s<sup>1</sup>:
       symbol stack.push(current token);
       state stack.push(s1);
       next token();
     case reduce A \rightarrow \beta:
       pop |6 | symbols from symbol stack;
       symbol stack.push(A);
       pop state stack;
       state stack.push(goto(state stack.top(), A));
     case accept: return;
     default: error;
```

Final LR parser: states and transitions

Action Table:

	id	+	\$
0	<i>S</i> , 3		
1		S, 4	Α
2	<i>R</i> 3	<i>R</i> 3	<i>R</i> 3
3	<i>R</i> 4	<i>R</i> 4	<i>R</i> 4
4	<i>S</i> , 3		
5	<i>R</i> 2	<i>R</i> 2	<i>R</i> 2

Goto Table:

	Ε	T
0	1	2
1		
2		
3		
4		5
5		

1: E ¹ → E	3: <i>E</i> → <i>T</i>
2: $E \rightarrow E + T$	4: $T \rightarrow id$

State stack	Symbol stack	Input	Action
\$ 0	\$	id + id \$	shift, 3
\$ 0 3	\$ id	+ id \$	reduce by 4
\$02	\$ T	+ id \$	reduce by 3
\$01	\$ <i>E</i>	+ id \$	shift, 4
\$014	\$ E +	id \$	shift, 3
\$0143	\$ E + id	\$	reduce by 4
\$0145	\$ E + T	\$	reduce by 2
\$ 0 1	\$ <i>E</i>	\$	ACCEPT

LR parsing summary

Table-driven shift reduce parsing:

Shift Move terminal symbols from input stream to stack.

Reduce Replace top elements of stack that form an instance of the RHS of a production with the corresponding LHS

Accept Stack top is the start symbol when the input stream is exhausted

Table constructed using LR(0) Item Sets.

Try yourself!

 $S \rightarrow E$

 $E \rightarrow T$

 $T \rightarrow i$

 $T \rightarrow (E)$

 $E \rightarrow E + T$

LR(0) items	()	i	+	\$	Т	Е	Reduce
1: $S \rightarrow \bullet E \$$ $E \rightarrow \bullet T$ $E \rightarrow \bullet E + T$ $T \rightarrow \bullet i$ $T \rightarrow \bullet (E)$	s 5		s4			3	2	
2: $S \rightarrow E \bullet \$$ $E \rightarrow E \bullet + T$				s6	Acc			
3: E → T •								r
4: T → i •								r
5: $T \rightarrow (\bullet E)$ $E \rightarrow \bullet T$ $E \rightarrow \bullet E + T$ $T \rightarrow \bullet i$ $T \rightarrow \bullet (E)$	s5		s4			3	7	
6: $E \rightarrow E + \bullet T$ $T \rightarrow \bullet i$ $T \rightarrow \bullet (E)$	s5		s4			8		
7: $T \rightarrow (E \bullet)$ $E \rightarrow E \bullet + T$		s9		s6				
8: E → E + T •								r
9: T → (E) •								r

Warning: states have been renumbered in comparison with previous slide!

Nice web site for grammar analysis

http://mdaines.github.io/grammophone

Conflicts in Parsing table

$I_0 = closure(\{S' \rightarrow \bullet S \$\}):$ $S' \rightarrow \bullet S$ \$ $S \rightarrow \bullet a S$ $S \rightarrow \bullet$ $I_1 = goto(I_0,S)$: $5' \rightarrow 5 \cdot \$$ $I_2 = goto(I_0, \mathbf{a})$: $S \rightarrow a \cdot S$ $S \rightarrow \bullet a S$ $S \rightarrow \bullet$ $I_3 = \text{goto}(I_2, S)$:

 $S \rightarrow a S \bullet$

Grammar:

Grammar:

 $3: S \rightarrow$

 $1:SS' \longrightarrow 5S$

 $2: S \rightarrow aS$

Action Table:

	la _c	\$
0	R'3	
		R 3
1	C 2	Accept
2	R'3	R 3
3	R 2	R 2

2 Shift-Reduce Conflicts

Idea: Choose **shift** because **a** is not in Follow(S)

SLR(1) Parsing

SLR(1) parsing makes a reduction by $A\rightarrow\alpha$ in state i if the current token is a and:

 $A \rightarrow \alpha$. in I_i

a is in Follow(A)

Simple LR (SLR) Parsing

Construct Action Table *action*, indexed by *states* × *terminals*, and Goto Table *goto*, indexed by *states* × *nonterminals*:

Construct $\{0, I_1, ..., I_n\}$, the set of LR(0) item sets of the grammar. For each i, $0 \le i \le n$, do the following:

- If $A \to \alpha \cdot a\theta \in I_i$ and $goto(I_i, a) = I_j$ then set action[i, a] = shift j
- If $A \to \gamma \bullet \in I_i$ (A is not the start symbol) then for each a $\in FOLLOW(A)$, set $action[i, a] = reduce A \to \gamma$
- If $S' \to S \cdot \$ \in I_i$ then set action[i, \$] = accept
- If $goto(I_i, A) = I_j$ (A is a nonterminal) then set goto[i, A] = j

SLR(1) parsing table

$$S' \rightarrow S \ S \ S \rightarrow a \ S \ S \rightarrow$$

Item Sets:

$\overline{I_0}$	$= closure(\{S' \rightarrow \bullet S\})$	S' → • S
		$S \rightarrow \bullet a S$
		S → •
<i>I</i> ₁	$= goto(I_0, S)$	S' → S•
12	$= goto(I_0, \mathbf{a})$	$S \rightarrow a \cdot S$
		$S \rightarrow \bullet a S$
		S → •
<i>I</i> ₃	$= goto(I_2, S)$	$S \rightarrow a S \cdot$

a	\$
R' 3	
	R 3
6.2	Accept
∑'3 R'3	R 3
R 2	R 2
	S' 2 R' 3

$$FOLLOW(S) = \{ \}$$

SLR Action Table:

	a	\$
0	S, 2	R 3
1		Acc
2	S, 2	R 3
3		R 2

Another example: SLR(1) Parsing

Is this an LR(0) Grammar?

The grammar is not LR(o):

See states 7,11

Follow(E)= $\{\$,+,\}$

So, the grammar is SLR(1):

In these states, shift if the lookahead is *, otherwise reduce.

Example: SLR(1) Parsing

S
$$\rightarrow$$
E \$
E \rightarrow E + T | T
T \rightarrow T * P | P
P \rightarrow id | (E)

State	Lookahead						
	+	*	ID	()	\$	
0			S	S			
1	S					Α	
2							
3			S	S			
4	R5	R5			R5	R5	
5	R6	R6			R6	R6	
6			S	S			
7 (R3	S)		R3	R3	
8			S	S			
9	R4	R4			R4	R4	
10	R7	R7			R7	R7	
11 (R2	S			R2	R2	
12	S				S		

Exercise

Consider the following grammar:

$$o: S \to E$$

1: $E \rightarrow 1 E$

2: $E \rightarrow 1$

Show that the grammar can be parsed by an SLR parser but not by an LR(o) parser.