Train the model on IBM

Team ID	PNT2022TMID50507
Project Name	Machine Learning based Vehicle Performance Analyzer

Importing Libraries

```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.formula.api as smf
```

Importing Dataset

```
In [2]:
```

```
import os, types
import pandas as pd
from botocore.client import Config
import ibm boto3
def __iter__(self): return 0
# @hidden cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes your c
redentials.
# You might want to remove those credentials before you share the notebook.
cos client = ibm boto3.client(service name='s3',
    ibm api key id='Uede0uog DlYeHmTn0uQW3GYQhYgYHbY1kvWgQybaYM1',
    ibm auth endpoint="https://iam.cloud.ibm.com/oidc/token",
    config=Config(signature_version='oauth'),
   endpoint url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
bucket = 'vehicleperformanceprediction-donotdelete-pr-kj6qz2159y6996'
object key = 'car performance.csv'
body = cos client.get object(Bucket=bucket, Key=object key)['Body']
# add missing __iter_ method, so pandas accepts body as file-like object
if not hasattr(body, "__iter__"): body.__iter__ = types.MethodType( __iter__, body )
dataset = pd.read csv(body)
dataset.head()
```

Out[2]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

Finding missing data

False

```
In [3]:
```

cylinders

```
dataset.isnull().any()
Out[3]:
mpg         False
```

```
displacement False horsepower False weight False acceleration model year origin False car name false dtype: bool
```

There are no null characters in the columns but there is a special character '?' in the 'horsepower' column. So we we replaced '?' with nan and replaced nan values with mean of the column.

```
In [4]:
dataset['horsepower'] = dataset['horsepower'].replace('?', np.nan)
In [5]:
dataset['horsepower'].isnull().sum()
Out[5]:
In [6]:
dataset['horsepower'] = dataset['horsepower'].astype('float64')
In [7]:
dataset['horsepower'].fillna((dataset['horsepower'].mean()),inplace=True)
In [8]:
dataset.isnull().any()
Out[8]:
                False
mpg
                False
cylinders
displacement
                False
                False
horsepower
weight
                False
acceleration
                False
model year
                False
                False
origin
                False
car name
dtype: bool
In [9]:
dataset.info() #Pandas dataframe.info() function is used to get a quick overview of the d
ataset.
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
                  Non-Null Count Dtype
 #
    Column
    ----
                   _____
___
 0
                   398 non-null
                                   float64
    mpg
                   398 non-null
 1
    cylinders
                                   int64
 2
    displacement 398 non-null
                                   float64
 3
    horsepower
                   398 non-null
                                   float64
 4
                   398 non-null
                                   int64
    weight
 5
    acceleration 398 non-null
                                   float64
 6
    model year
                   398 non-null
                                   int64
 7
    origin
                   398 non-null
                                   int64
                  398 non-null
 8
                                   object
    car name
dtypes: float64(4), int64(4), object(1)
memory usage: 28.1+ KB
```

In [10]:

dataset.describe() #Pandas describe() is used to view some basic statistical details of a data frame or a series of numeric values.

Out[10]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	104.469388	2970.424623	15.568090	76.010050	1.572864
std	7.815984	1.701004	104.269838	38.199187	846.841774	2.757689	3.697627	0.802055
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000	1.000000
25%	17.500000	4.000000	104.250000	76.000000	2223.750000	13.825000	73.000000	1.000000
50%	23.000000	4.000000	148.500000	95.000000	2803.500000	15.500000	76.000000	1.000000
75%	29.000000	8.000000	262.000000	125.000000	3608.000000	17.175000	79.000000	2.000000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000	3.000000

There is no use with car name attribute so drop it

In [11]:

dataset=dataset.drop('car name',axis=1) #dropping the unwanted column.

In [12]:

 $corr_table=dataset.corr()$ #Pandas dataframe.corr() is used to find the pairwise correlation of all columns in the dataframe.

Out[12]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin
mpg	1.000000	-0.775396	-0.804203	-0.771437	-0.831741	0.420289	0.579267	0.563450
cylinders	-0.775396	1.000000	0.950721	0.838939	0.896017	-0.505419	-0.348746	-0.562543
displacement	-0.804203	0.950721	1.000000	0.893646	0.932824	-0.543684	-0.370164	-0.609409
horsepower	-0.771437	0.838939	0.893646	1.000000	0.860574	-0.684259	-0.411651	-0.453669
weight	-0.831741	0.896017	0.932824	0.860574	1.000000	-0.417457	-0.306564	-0.581024
acceleration	0.420289	-0.505419	-0.543684	-0.684259	-0.417457	1.000000	0.288137	0.205873
model year	0.579267	-0.348746	-0.370164	-0.411651	-0.306564	0.288137	1.000000	0.180662
origin	0.563450	-0.562543	-0.609409	-0.453669	-0.581024	0.205873	0.180662	1.000000

Data Visualizations

Heatmap: which represents correlation between attributes

In [13]:

sns.heatmap(dataset.corr(),annot=True,linecolor ='black', linewidths = 1) #Heatmap is a wa
y to show some sort of matrix plot,annot is used for correlation.
fig=plt.gcf()
fig.set_size_inches(8,8)

Visualizations of each attributes wiret rest of all attributes

In [14]:

sns.pairplot(dataset,diag_kind='kde') #pairplot represents pairwise relation across the e
ntire dataframe.
plt.show()

Regression plots/regulat/)) creates a regression line between 2 parameters and helps to visualize their linear relationships

In [15]:

```
sns.regplot(x="cylinders", y="mpg", data=dataset)
```

Out[15]:

<AxesSubplot:xlabel='cylinders', ylabel='mpg'>

In [16]:

```
sns.regplot(x="displacement", y="mpg", data=dataset)
```

Out[16]:

<AxesSubplot:xlabel='displacement', ylabel='mpg'>

In [17]:

```
sns.regplot(x="horsepower", y="mpg", data=dataset)
```

Out[17]:

<AxesSubplot:xlabel='horsepower', ylabel='mpg'>

In [18]:

```
sns.regplot(x="weight", y="mpg", data=dataset)
```

Out[18]:

<AxesSubplot:xlabel='weight', ylabel='mpg'>

In [19]:

```
\verb|sns.regplot(x="acceleration", y="mpg", data=dataset)|\\
```

Out[19]:

<AxesSubplot:xlabel='acceleration', ylabel='mpg'>

In [20]:

```
sns.regplot(x="model year", y="mpg", data=dataset)
```

Out[20]:

<AxesSubplot:xlabel='model year', ylabel='mpg'>

45 -

In [21]:

```
sns.regplot(x="origin", y="mpg", data=dataset)
```

Out[21]:

<AxesSubplot:xlabel='origin', ylabel='mpg'>

In [22]:

```
sns.set(style="whitegrid")
sns.boxplot(x=dataset["mpg"])
```

Out[22]:

<AxesSubplot:xlabel='mpg'>

Finding quartiles for man

The P-value is the probability value that the correlation between these two variables is statistically significant

Normally, we choose a significance level of 0.05, which means that we are 95% confident that the correlation between the variables is significant

By convention, when the

- n-value is < 0.001; we say there is strong evidence that the correlation is significant
- the n-value is < 0.05: there is moderate evidence that the correlation is significant
- the n-value is ~ 0.1 : there is weak evidence that the correlation is significant
- the n-value is > 0.1: there is no evidence that the correlation is significant.

```
In [23]:
```

```
from scipy import stats
```

Cylinders vs mna

Let's calculate the Pearson Correlation Coefficient and P-value of 'Cylinders' and 'mod'

```
In [24]:
```

```
pearson_coef, p_value = stats.pearsonr(dataset['cylinders'], dataset['mpg'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p
_value)
```

The Pearson Correlation Coefficient is -0.7753962854205542 with a P-value of P = 4.503992246177055e-81

Conclusion:

Since the n-value is < 0.001 the correlation between cylinders and mng is statistically significant, and the coefficient of ~ -0.775 shows that the relationship is negative and moderately strong

Displacement vs mng

Let's calculate the Pearson Correlation Coefficient and P-value of 'Displacement' and 'mnd'

```
In [25]:
```

```
pearson_coef, p_value = stats.pearsonr(dataset['displacement'], dataset['mpg'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p
_value)
```

The Pearson Correlation Coefficient is -0.8042028248058978 with a P-value of P = 1.6558889101930157e-91

Conclusion:

Since the n-value is < 0.1 the correlation between displacement and mnn is statistically significant, and the linear negative relationship is quite strong (~ 0.809 , close to ~ 1).

Horsenower vs mna

Let's calculate the Pearson Correlation Coefficient and P-value of 'horsenower' and 'mnd'

```
Tn [26]
```

```
pearson_coef, p_value = stats.pearsonr(dataset['horsepower'], dataset['mpg'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p
value)
```

The Pearson Correlation Coefficient is -0.7714371350025526 with a P-value of P = 9.255477533166725e-80

Conclusion:

Since the n-value is < 0.001 the correlation between horsenower and mng is statistically significant, and the coefficient of ~ -0.771 shows that the relationship is negative and moderately strong

Weaht vs mna

Let's calculate the Pearson Correlation Coefficient and P-value of 'weight' and 'mng'

In [27]:

```
pearson_coef, p_value = stats.pearsonr(dataset['weight'], dataset['mpg'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p
_value)
```

The Pearson Correlation Coefficient is -0.831740933244335 with a P-value of P = 2.9727995640500577e-103

Conclusion:

Since the n-value is < 0.001, the correlation between weight and mng is statistically significant, and the linear negative relationship is guite strong (\sim -0.831, close to -1)

Acceleration vs mng

Let's calculate the Pearson Correlation Coefficient and P-value of 'Acceleration' and 'mpg'.

In [28]:

```
pearson_coef, p_value = stats.pearsonr(dataset['acceleration'], dataset['mpg'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p
_value)
```

The Pearson Correlation Coefficient is 0.4202889121016507 with a P-value of P = 1.823091535078553e-18

Conclusion:

Since the n-value is > 0.1 the correlation between acceleration and mno is statistically significant, but the linear relationship is weak (~ 0.420)

Model year vs mng

Let's calculate the Pearson Correlation Coefficient and P-value of 'Model year' and 'mnd'

In [29]:

```
pearson_coef, p_value = stats.pearsonr(dataset['model year'], dataset['mpg'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p
_value)
```

The Pearson Correlation Coefficient is 0.5792671330833096 with a P-value of P = 4.844935813365483e-37

Conclusion:

Since the n-value is < 0.001 the correlation between model year and mnn is statistically significant, but the linear relationship is only moderate (< 0.579)

Oriain vs mna

Let's calculate the Pearson Correlation Coefficient and P-value of 'Origin' and 'mpg'.

```
In [30]:
```

```
pearson_coef, p_value = stats.pearsonr(dataset['origin'], dataset['mpg'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p
_value)
```

The Pearson Correlation Coefficient is 0.5634503597738431 with a P-value of P = 1.0114822102336483e-34

Conclusion:

Since the p-value is < 0.001, the correlation between origin and mpg is statistically significant, but the linear relationship is only moderate (\sim 0.563).

Ordinary Least Squares Statistics

In [31]:

```
\label{test-smf} test=smf.ols('mpg\sim cylinders+displacement+horsepower+weight+acceleration+origin', dataset). \\ fit() \\ test.summary()
```

Out[31]:

OLS Regression Results

Dep. Varial	ole:		mpg	R-	squared:	0.7	717
Мос	del:	OLS			Adj. R-squared:		
Meth	od: Le	Least Squares			statistic:	16	5.5
Da	ate: Sun,	13 Nov :	2022 P ı	ob (F-	statistic):	4.84e-1	04
Tir	ne:	15:1	7:17	Log-Lil	celihood:	-113	1.1
No. Observatio	ns:		398		AIC:	22	76.
Df Residua	als:		391		BIC:	23	04.
Df Mod	del:		6				
Covariance Ty	pe:	nonro	bust				
	and	std err	t	P>ltl	[0.025	0.9751	
	coei	sta err		P>IU	[0.025	0.975]	
Intercept	42.7111	2.693	15.861	0.000	37.417	48.005	
cylinders	-0.5256	0.404	-1.302	0.194	-1.320	0.268	
displacement	0.0106	0.009	1.133	0.258	-0.008	0.029	
horsepower	-0.0529	0.016	-3.277	0.001	-0.085	-0.021	
weight	-0.0051	0.001	-6.441	0.000	-0.007	-0.004	
acceleration	0.0043	0.120	0.036	0.972	-0.232	0.241	
origin	1.4269	0.345	4.136	0.000	0.749	2.105	
Omnibus	32.659	Durb	in-Wats	on:	0.886		
Prob(Omnibus)	: 0.000	Jarque	-Bera (J	B):	43.338		
Skew	. 0.624		Prob(J	B): 3	.88e-10		
Kurtosis	: 4.028		Cond. I	No. 3.	99e+04		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.99e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

Inference as in the above summary the p value of the accelaration is maximum(i.e 0.972) so we can remove the acc variable from the dataset

Seperating into Dependent and Independent variables

Independent variables

[28.], [25.], [25.], [19.],

```
In [32]:
x=dataset[['cylinders','displacement','horsepower','weight','model year','origin']].valu
Х
Out[32]:
array([[8.000e+00, 3.070e+02, 1.300e+02, 3.504e+03, 7.000e+01, 1.000e+00],
       [8.000e+00, 3.500e+02, 1.650e+02, 3.693e+03, 7.000e+01, 1.000e+00],
       [8.000e+00, 3.180e+02, 1.500e+02, 3.436e+03, 7.000e+01, 1.000e+00],
       [4.000e+00, 1.350e+02, 8.400e+01, 2.295e+03, 8.200e+01, 1.000e+00],
       [4.000e+00, 1.200e+02, 7.900e+01, 2.625e+03, 8.200e+01, 1.000e+00],
       [4.000e+00, 1.190e+02, 8.200e+01, 2.720e+03, 8.200e+01, 1.000e+00]])
Dependent variables
In [33]:
y=dataset.iloc[:,0:1].values
У
Out[33]:
array([[18.],
      [15.],
       [18.],
       [16.],
       [17.],
       [15.],
       [14.],
       [14.],
       [14.],
       [15.],
       [15.],
       [14.],
       [15.],
       [14.],
       [24.],
       [22.],
       [18.],
       [21.],
       [27.],
       [26.],
       [25.],
       [24.],
       [25.],
       [26.],
       [21.],
       [10.],
       [10.],
       [11.],
       [ 9. ],
       [27.],
```

```
[16.],
[17.],
[19.],
[18.],
[14.],
[14.],
[14.],
[14.],
[12.],
[13.],
[13.],
[18.],
[18.],
[22.],
[19.],
[18.],
[23.],
[28.],
[30.],
[30.],
[31.],
[35.],
[27.],
[26.],
[24.],
[25.],
[23.],
[20.],
[21.],
[13.],
[14.],
[15.],
[14.],
[17.],
[11.],
[11.],
[13.],
[12.],
[13.],
[19.],
[15.],
[13.],
[13.],
[14.],
[18.],
[22.],
[21.],
[26.],
[22.],
[28.],
[23.],
[23.],
[28.],
[27.],
[13.],
[14.],
[14.],
[15.],
[12.],
[13.],
[13.],
[14.],
[13.],
[12.],
[13.],
[18.],
[16.],
[18.],
[18.],
[23.],
[26.],
```

[11.], [12.], [13.],

```
[12.],
[18.],
[20.],
[21.],
[22.],
[18.],
[19.],
[21.],
[26.],
[15.],
[16.],
[29.],
[29.],
[24.],
[20.],
[19.],
[15.],
[24.],
[20.],
[11. ],
[20. ],
[21.],
[19.],
[15.],
[31.],
[26.],
[32.],
[25.],
[16.],
[16.],
[18.],
[16.],
[13.],
[14.],
[14.],
[14.],
[29.],
[26.],
[26.],
[31.],
[32.],
[28.],
[24.],
[26.],
[24.],
[26.],
[31.],
[19.],
[18.],
[15.],
[15.],

[15.],

[16.],

[16.],

[14.],

[17.],

[16.],
[15.],
[18.],
[21.],
[20.],
[13.],
[29.],
[23.],
[20.],
[23.],
[24.],
[25.],
[24.],
[18.],
```

[29.], [19.], [23.],

```
[23.],
[22.],
[25.],
[33.],
[28.],
[25.],
[25.],
[26.],
[27.],
[17.5],
[16.],
[15.5],
[14.5],
[22.],
[22.],
[22.5],
[29.],
[24.5],
[29.],
[33.],
[20.],
[18.],
[18.5],
[17.5],
[29.5],
[32.],
[28.],
[26.5],
[20.],
[13.],
[19.],
[19.],
[16.5],
[16.5],
[13.],
[13.],
[13.],
[31.5],
[30.],
[36.],
[25.5],
[33.5],
[17.5],
[17.],
[15.5],
[15.],
[17.5],
[20.5],
[19.],
[18.5],
[16.],
[15.5],
[15.5],
[16.],
[29.],
[24.5],
[26.],
[25.5],
[30.5],
[33.5],
[30.],
[30.5],
[22.],
[21.5],
[21.5],
[43.1],
[36.1],
[32.8],
```

[39.4], [36.1], [19.9],

```
[19.4],
[20.2],
[19.2],
[20.5],
[20.2],
[25.1],
[20.5],
[19.4],
[20.6],
[20.8],
[18.6],
[18.1],
[19.2],
[17.7],
[18.1],
[17.5],
[30.],
[27.5],
[27.2],
[30.9],
[21.1],
[23.2],
[23.8],
[23.9],
[20.3],
[17.],
[21.6],
[16.2],
[31.5],
[29.5],
[21.5],
[19.8],
[22.3],
[20.2],
[20.6],
[17.],
[17.6],
[16.5],
[18.2],
[16.9],
[15.5],
[19.2],
[18.5],
[31.9],
[34.1],
[35.7],
[27.4],
[25.4],
[23.],
[27.2],
[23.9],
[34.2],
[34.5],
[31.8],
[37.3],
[28.4],
[28.8],
[26.8],
[33.5],
[41.5],
[38.1],
[32.1],
[37.2],
[28.],
[26.4],
[24.3],
[19.1],
[34.3],
[29.8],
```

[31.3], [37.], [32.2],

```
[46.6],
[27.9],
[40.8],
[44.3],
[43.4],
[36.4],
[30.],
[44.6],
[40.9],
[33.8],
[29.8],
[32.7],
[23.7],
[35.],
[23.6],
[32.4],
[27.2],
[26.6],
[25.8],
[23.5],
[30.],
[39.1],
[39.],
[35.1],
[32.3],
[37.],
[37.7],
[34.1],
[34.7],
[34.4],
[29.9],
[33.],
[34.5],
[33.7],
[32.4],
[32.9],
[31.6],
[28.1],
[30.7],
[25.4],
[24.2],
[22.4],
[26.6],
[20.2],
[17.6],
[28.],
[27.],
[34.],
[31.],
[29.],
[27.],
[24.],
[23.],
[36.],
[37.],
[31.],
[38.],
[36.],
[36.],
[36.],
[34.],
[38.],
[32.],
[38.],
[25.],
[38.],
[26.],
[22.],
[32.],
```

[36.], [27.], [27.],

```
[44.],
[32.],
[28.],
[31.]])
```

Normalizina

```
In [34]:
```

```
from sklearn.preprocessing import StandardScaler
sd = StandardScaler()
x_train = sd.fit_transform(x_train)
x_test = sd.fit_transform(x_test)
y_train = sd.fit_transform(y_train)
y_test = sd.fit_transform(y_test)
x_train
```

Splitting into train and test data

```
In [35]:
from sklearn.model_selection import train_test_split

In [36]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
```

we are solitting as 90% train data and 10% test data

random forest regressor

In [40]:

```
In [37]:
from sklearn.ensemble import RandomForestRegressor

In [38]:
    rf= RandomForestRegressor(n_estimators=10)
    rf.fit(x_train,np.ravel(y_train))

Out[38]:
RandomForestRegressor(n_estimators=10)

In [39]:
    x_train.shape

Out[39]:
(318, 6)
```

```
!pip install ibm-watson-machine-learning
Requirement already satisfied: ibm-watson-machine-learning in /opt/conda/envs/Python-3.9/
lib/python3.9/site-packages (1.0.257)
Requirement already satisfied: certifi in /opt/conda/envs/Python-3.9/lib/python3.9/site-p
ackages (from ibm-watson-machine-learning) (2022.9.24)
Requirement already satisfied: importlib-metadata in /opt/conda/envs/Python-3.9/lib/pytho
n3.9/site-packages (from ibm-watson-machine-learning) (4.8.2)
Requirement already satisfied: pandas<1.5.0,>=0.24.2 in /opt/conda/envs/Python-3.9/lib/py
thon3.9/site-packages (from ibm-watson-machine-learning) (1.3.4)
Requirement already satisfied: urllib3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-p
ackages (from ibm-watson-machine-learning) (1.26.7)
Requirement already satisfied: lomond in /opt/conda/envs/Python-3.9/lib/python3.9/site-pa
ckages (from ibm-watson-machine-learning) (0.3.3)
Requirement already satisfied: requests in /opt/conda/envs/Python-
3.9/lib/python3.9/sitepackages (from ibm-watson-machine-learning) (2.26.0)
Requirement already satisfied: tabulate in /opt/conda/envs/Python-
3.9/lib/python3.9/sitepackages (from ibm-watson-machine-learning) (0.8.9)
Requirement already satisfied: packaging in /opt/conda/envs/Python-3.9/lib/python3.9/site
-packages (from ibm-watson-machine-learning) (21.3)
Requirement already satisfied: ibm-cos-sdk==2.11.* in /opt/conda/envs/Python-3.9/lib/pyth
on3.9/site-packages (from ibm-watson-machine-learning) (2.11.0)
Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /opt/conda/envs/Python-3.9/lib/p
ython3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm-watson-machine-learning) (0.10.0)
Requirement already satisfied: ibm-cos-sdk-s3transfer==2.11.0 in /opt/conda/envs/Python-
3 .9/lib/python3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm-watson-machine-learning)
(2.11.0)
Requirement already satisfied: ibm-cos-sdk-core==2.11.0 in /opt/conda/envs/Python-3.9/lib
/python3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm-watson-machine-learning) (2.11.0)
Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /opt/conda/envs/Python-
3.9/ lib/python3.9/site-packages (from ibm-cos-sdk-core==2.11.0->ibm-cos-sdk==2.11.*-
>ibm-wats on-machine-learning) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /opt/conda/envs/Python-3.9/lib/python3.9/s
ite-packages (from pandas<1.5.0,>=0.24.2->ibm-watson-machine-learning) (2021.3)
Requirement already satisfied: numpy>=1.17.3 in /opt/conda/envs/Python-3.9/lib/python3.9/
site-packages (from pandas<1.5.0,>=0.24.2->ibm-watson-machine-learning) (1.20.3)
Requirement already satisfied: six>=1.5 in /opt/conda/envs/Python-
3.9/lib/python3.9/sitepackages (from python-dateutil<3.0.0,>=2.1->ibm-cos-sdk-
core==2.11.0->ibm-cos-sdk==2.11.* ->ibm-watson-machine-learning) (1.15.0)
Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/Python-3.9/lib/python3.9/s
ite-packages (from requests->ibm-watson-machine-learning) (3.3)
Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/envs/Python-3.9/li
b/python3.9/site-packages (from requests->ibm-watson-machine-learning) (2.0.4)
Requirement already satisfied: zipp>=0.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site
-packages (from importlib-metadata->ibm-watson-machine-learning) (3.6.0)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/envs/Python-3.9/lib
/python3.9/site-packages (from packaging->ibm-watson-machine-learning) (3.0.4)
In [43]:
from ibm watson machine learning import APIClient
wml credentials = {
    "url": "https://us-south.ml.cloud.ibm.com",
    "apikey": "k0ToNjB4fREMsVxEr0C3pjHT0bNJzgZvVt1S0SikVpMJ",
} client = APIClient(wml credentials)
In [44]:
def guid from space name(client, space name):
    in space['resources'] if item['entity']["name"] == space n ame)['metadata']['id'])
In [45]:
space uid = guid from space name(client, 'models')
print("Space UID-" + space uid)
{'resources': [{'entity': {'compute': [{'crn': 'crn:v1:bluemix:public:pm-20:us-south:a/d1
{'resources': [{'entity': {'compute': [{'crn': 'crn:v1:bluemix:public:pm-20:us-
south:a/d1
```

```
2096019c744baabc99e2caa9c44ac5:dbc6da1f-aca8-4c0f-937f-da20bd5e08c6::', 'guid': 'dbc6da1f
-aca8-4c0f-937f-da20bd5e08c6', 'name': 'Watson Machine Learning-72', 'type':
'machine lea rning'}], 'description': '', 'name': 'models', 'scope': {'bss account id':
'd12096019c744 baabc99e2caa9c44ac5'}, 'stage': {'production': False}, 'status':
{'state': 'active'}, 'st orage': {'properties': {'bucket name': '2e6d79af-2319-41ef-
8bb1-13843958cd79', 'bucket re gion': 'us-south', 'credentials': {'admin':
{'access key id': 'e2dcdab6300f4292acfd3a9e99 fe8419', 'api key':
'Ccb36wfmVayFlvEWymudO7rYIVHUT18VXxjXXSf8wNVx', 'secret access key':
'09d27d5ba8570a63f8ecd4477903c61c66702acd0a8a0cb2', 'service id': 'ServiceId-113a7385-
0ac f-4aca-b0a4-f20ee5949b94'}, 'editor': {'access key id':
'0b31cfa63a054a40bbe5cbe6a1ddc189 ', 'api_key': 'Nrtr6aPyPH387B1YG2rJrcg3kiA1-
ZVXbGR3J7CZQK9e', 'resource_key_crn': 'crn:v1 :bluemix:public:cloud-object-
storage:global:a/d12096019c744baabc99e2caa9c44ac5:71972f87-6 ebf-4b35-907f-
5b09ff80a63a::', 'secret access key': '8db16c6ef99ec8799a31e00fa98d5952b212
f3198510de25', 'service id': 'ServiceId-48a7874c-09b6-4ba0-8c14-d4b63928000f'},
'viewer': {'access_key_id': '6a971a0391e947e7a10aa6d0a205eee2', 'api key':
'p RHNGsyVx7ybtSaRSn8Osq 2ZkOsOhj8PPAYQEdgGoLK', 'resource key crn':
'crn:v1:bluemix:public:cloud-object-storage:g
lobal:a/d12096019c744baabc99e2caa9c44ac5:71972f87-6ebf-4b35-907f-5b09ff80a63a::',
'secret access key': 'c530568f37883f9c765343301136c7eb763cc3ccf4197718', 'service id':
'ServiceI d-1a4e051b-6867-4ac8-acab-b942b7b43a75'}}, 'endpoint url': 'https://s3.us-
south.cloud-obj ect-storage.appdomain.cloud', 'guid': '71972f87-6ebf-4b35-907f-
5b09ff80a63a', 'resource c rn': 'crn:v1:bluemix:public:cloud-object-
storage:global:a/d12096019c744baabc99e2caa9c44ac 5:71972f87-6ebf-4b35-907f-
5b09ff80a63a::'}, 'type': 'bmcos_object_storage'}}, 'metadata': {'created_at': '2022-11-12T15:24:43.319Z', 'creator_id': 'IBMid-6640044ZX7', 'id': 'a7c26 d83-e37a-4e0b-b024-
7d3f1f77740b', 'updated at': '2022-11-12T15:25:03.183Z', 'url': '/v2/s paces/a7c26d83-
In [46]:
client.set.default space(space uid)
Out [46]:
'SUCCESS'
In [47]:
client.software specifications.list()
ASSET ID
                                      TYPE default py3.6
0062b8c9-8b7d-44a0-a9b9-46c416adcbd9 base kernel-spark3.2-scala2.12
020d69ce-7ac1-5e68-ac1a-31189867356a base pytorch-onnx 1.3-py3.7-edt
069ea134-3346-5748-b513-49120e15d288 base scikit-learn 0.20-py3.6
09c5ald0-9c1e-4473-a344-eb7b665ff687 base spark-mllib 3.0-scala 2.12
09f4cff0-90a7-5899-b9ed-1ef348aebdee base pytorch-onnx rt22.1-py3.9
0b848dd4-e681-5599-be41-b5f6fccc6471 base ai-function_0.1-py3.6
OcdbOfle-5376-4f4d-92dd-da3b69aa9bda base shiny-r3.6
0e6e79df-875e-4f24-8ae9-62dcc2148306 base tensorflow 2.4-py3.7-horovod
1092590a-307d-563d-9b62-4eb7d64b3f22 base pytorch 1.1-py3.6
10ac12d6-6b30-4ccd-8392-3e922c096a92 base tensorflow 1.15-py3.6-ddl
                                     base autoai-kb rt22.2-py3.10
111e41b3-de2d-5422-a4d6-bf776828c4b7
125b6d9a-5b1f-5e8d-972a-b251688ccf40 base runtime-22.1-py3.9
12b83a17-24d8-5082-900f-0ab31fbfd3cb
                                     base scikit-learn 0.22-py3.6
154010fa-5b3b-4ac1-82af-4d5ee5abbc85
                                     base default r3.6
1b70aec3-ab34-4b87-8aa0-a4a3c8296a36 base pytorch-onnx_1.3-py3.6
1bc6029a-cc97-56da-b8e0-39c3880dbbe7
                                     base kernel-spark3.3-r3.6
1c9e5454-f216-59dd-a20e-474a5cdf5988 base pytorch-onnx rt22.1-py3.9-edt
1d362186-7ad5-5b59-8b6c-9d0880bde37f base tensorflow 2.1-py3.6
                                     base spark-mllib 3.2
1eb25b84-d6ed-5dde-b6a5-3fbdf1665666
                                      base tensorflow_2.4-py3.8-horovod
20047f72-0a98-58c7-9ff5-a77b012eb8f5
217c16f6-178f-56bf-824a-b19f20564c49
                                      base runtime-22.1-py3.9-cuda
26215f05-08c3-5a41-a1b0-da66306ce658
                                     base do py3.8
295addb5-9ef9-547e-9bf4-92ae3563e720 base autoai-ts_3.8-py3.8
2aa0c932-798f-5ae9-abd6-15e0c2402fb5 base tensorflow 1.15-py3.6
```

2b73a275-7cbf-420b-a912-eae7f436e0bc base kernel-spark3.3-py3.9 2b7961e2-e3b1-5a8c-a491-482c8368839a base pytorch_1.2-py3.6 2c8ef57d-2687-4b7d-acce-01f94976dac1 base spark-mllib 2.3

2e51f700-bca0-4b0d-88dc-5c6791338875 base pytorch-onnx 1.1-py3.6-edt

```
32983cea-3f32-4400-8965-dde874a8d67e base spark-mllib 3.0-py37
36507ebe-8770-55ba-ab2a-eafe787600e9 base spark-mllib 2.4
390d21f8-e58b-4fac-9c55-d7ceda621326 base autoai-ts_rt22.2-py3.10
396b2e83-0953-5b86-9a55-7ce1628a406f base xgboost 0.82-py3.6
39e31acd-5f30-41dc-ae44-60233c80306e base pytorch-onnx 1.2-py3.6-edt
40589d0e-7019-4e28-8daa-fb03b6f4fe12 base pytorch-onnx_rt22.2-py3.10
40e73f55-783a-5535-b3fa-0c8b94291431 base default r36py38
41c247d3-45f8-5a71-b065-8580229facf0 base autoai-ts rt22.1-py3.9
4269d26e-07ba-5d40-8f66-2d495b0c71f7 base autoai-obm_3.0
42b92e18-d9ab-567f-988a-4240ba1ed5f7 \quad base \ pmml-3.0\_4.3
493bcb95-16f1-5bc5-bee8-81b8af80e9c7 base spark-mllib_2.4-r_3.6
49403dff-92e9-4c87-a3d7-a42d0021c095 base xgboost 0.90-py3.6
4ff8d6c2-1343-4c18-85e1-689c965304d3 base pytorch-onnx 1.1-py3.6
50f95b2a-bc16-43bb-bc94-b0bed208c60b base autoai-ts 3.9-py3.8
52c57136-80fa-572e-8728-a5e7cbb42cde base spark-mllib 2.4-scala 2.11
55a70f99-7320-4be5-9fb9-9edb5a443af5 base spark-mllib 3.0
5c1b0ca2-4977-5c2e-9439-ffd44ea8ffe9 base autoai-obm 2.0
5c2e37fa-80b8-5e77-840f-d912469614ee base spss-modeler_18.1
5c3cad7e-507f-4b2a-a9a3-ab53a21dee8b base cuda-py3.8
5d3232bf-c86b-5df4-a2cd-7bb870a1cd4e base autoai-kb_3.1-py3.7
632d4b22-10aa-5180-88f0-f52dfb6444d7 base pytorch-onnx 1.7-py3.8
634d3cdc-b562-5bf9-a2d4-ea90a478456b base -----
Note: Only first 50 records were displayed. To display more use 'limit' parameter.
In [55]:
software spec uid = client.software specifications.get uid by name("default py3.8")
software spec uid
Out[55]:
'ab9e1b80-f2ce-592c-a7d2-4f2344f77194'
In [60]:
!pip install -U pyspark==2.1.2.
Collecting pyspark==2.1.2.
  Downloading pyspark-2.1.2.tar.gz (181.3 MB)
         | 181.3 MB 36 kB/s s eta 0:00:0100:11
                                                 | 92.6 MB 92.0 MB/s eta 0:00:01
| 80.9 MB 92.0 MB/s eta 0:00:02
| 100.9 MB 92.0 MB/s eta 0:00:01
| 140.3 MB 92.0 MB/s eta 0:00:01
                                              | 154.9 MB 92.0 MB/s eta 0:00:01
Collecting py4j==0.10.4
  Downloading py4j-0.10.4-py2.py3-none-any.whl (186 kB)
                      | 186 kB 30.2 MB/s eta 0:00:01
Building wheels for collected packages: pyspark
  Building wheel for pyspark (setup.py) ... done
  Created wheel for pyspark: filename=pyspark-2.1.2-py2.py3-none-any.whl size=181625702 s
ha256=a221cb88d5b137507b757b773f7e777bbb5e48df1aa68852a5bd02e74a0a901e
  Stored in directory: /tmp/wsuser/.cache/pip/wheels/5a/33/84/b0060cb291650c5c52279bc5739
87c98609df6564f3290ccfa
Successfully built pyspark
Installing collected packages: py4j, pyspark
  Attempting uninstall: py4j
   Found existing installation: py4j 0.10.9.5
   Uninstalling py4j-0.10.9.5:
     Successfully uninstalled py4j-0.10.9.5
  Attempting uninstall: pyspark
   Found existing installation: pyspark 3.3.1
   Uninstalling pyspark-3.3.1:
     Successfully uninstalled pyspark-3.3.1
ERROR: pip's dependency resolver does not currently take into account all the packages th
at are installed. This behaviour is the source of the following dependency conflicts.
autoai-ts-libs 1.1.9 requires py4j<0.10.10, >=0.10.9, but you have py4j 0.10.4 which is in
compatible.
Successfully installed py4j-0.10.4 pyspark-2.1.2
```

In [58]:

```
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.1
99.110.133, 185.199.111.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com) |185.199.109.133|:443.
.. connected.
HTTP request sent, awaiting response... 200 OK
Length: 16506 (16K) [text/plain]
Saving to: 'additional feedback data.json'
additional feedback 100%[===========] 16.12K --.-KB/s
                                                                   in 0.001s
2022-11-13 15:30:12 (19.6 MB/s) - 'additional_feedback_data.json' saved [16506/16506]
In [72]:
sofware spec uid = client.software specifications.get id by name("runtime-22.1-py3.9")
metadata = {
            client.repository.ModelMetaNames.NAME: 'Gradient',
            client.repository.ModelMetaNames.TYPE: 'scikit-learn 1.0',
            client.repository.ModelMetaNames.SOFTWARE SPEC UID: sofware spec uid
published model = client.repository.store model(
    model=rf,
   meta props=metadata)
In [73]:
published model
Out[73]:
{'entity': {'hybrid pipeline software specs': [],
  'software spec': {'id': '12b83a17-24d8-5082-900f-0ab31fbfd3cb',
   'name': 'runtime-22.1-py3.9'},
  'type': 'scikit-learn_1.0'},
 'metadata': {'created at': '2022-11-13T15:47:35.584Z',
  'id': '34aa257f-40e9-4469-8d59-36d032d38a10',
  'modified at': '2022-11-13T15:47:39.066Z',
  'name': 'Gradient',
  'owner': 'IBMid-6640044ZX7',
  'resource key': '31d25942-962e-46a0-8ff9-4407d77716d0',
  'space id': 'a7c26d83-e37a-4e0b-b024-7d3f1f77740b'},
 'system': {'warnings': []}}
In [74]:
x train[0]
Out[74]:
array([4.000e+00, 1.210e+02, 7.600e+01, 2.511e+03, 7.200e+01, 2.000e+00])
In [75]:
rf.predict([[4.000e+00, 1.210e+02, 7.600e+01, 2.511e+03, 7.200e+01, 2.000e+00]])
Out [75]:
array([23.2])
In [ ]:
!wget https://raw.githubusercontent.com/IBM/monitor-wml-model-with-watson-openscale/mast
```

--2022-11-13 15:30:12-- https://raw.githubusercontent.com/IBM/monitor-wml-model-with-wat son-openscale/master/data/additional_feedback_data.json
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.1

er/data/additional feedback data.json