MTH 312 HW 6

Brandyn Tucknott

25 February 2025

- **7.4.3.** Decide which of the following conjectures is true, and supply a short proof. For those that are not, give a counter example.
- (a) If |f| is integrable on [a, b], then f is also integrable on this set.

Proof. Suppose $f:[0,1]\to\mathbb{R}$ is defined as

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ -1, & x \notin \mathbb{Q} \end{cases}$$

Then |f| = 1 on [0, 1], so |f| is integrable on [0, 1]. However, by theorem 7.4.2, $g(x) = \frac{1}{2}(f(x) + 1)$ should be integrable on [0, 1]. But g is Dirichlet's function, which we know to be un-integrable from [0, 1]. Since in this instance, the integrability of |f| and f are different, we conclude this statement in false.

(b) Assume g is integrable and $g(x) \ge 0$ on [a, b]. If g(x) > 0 for an infinite number of points $x \in [a, b]$, then $\int_a^b g > 0$.

Proof. Consider $g:[0,1] \to [0,1]$ defined as

$$g(x) = \begin{cases} 1, & x = \frac{1}{n}, n \in \mathbb{N} \\ 0, \text{ otherwise} \end{cases}$$

In HW 5 we computed $\int_0^1 g = 0$. There are clearly an infinite number of points of the form $\frac{1}{n} > 0 \in [0, 1]$, but $\int_0^1 g = 0$. We conclude this statement is false.

(c) If g is continuous on [a,b] and $g(x) \ge 0$ with $g(y_0) > 0$ for at least one point $y_0 \in [a,b]$, then $\int_a^b g > 0$.

Proof. If there exists y_0 s.t. $g(y_0) > 0$, then there exists $\delta > 0$ s.t. if we define $I = [a, b] \cap [y_0 - \delta, y_0 + \delta]$, then $x \in I \longrightarrow g(x) > 0$. In particular, for $\epsilon = \frac{g(y_0)}{2} > 0$,

$$g(x) \in [g(y_0) - \epsilon, g(y_0) + \epsilon] \longrightarrow g(x) > g(y_0) - \epsilon = \frac{g(y_0)}{2} = \epsilon > 0$$

Let $c = \inf I$, $d = \sup I$. By theorem 7.4.1,

$$\int_a^b g = \int_a^c g + \int_c^d g + \int_d^b g$$

Since $g \ge 0$, by theorem 7.4.2 we have that $\int_a^c g$, $\int_d^b g \ge 0$, and also $\int_c^d g \ge \epsilon (d-c) > 0$ We conclude this statement is true.

7.4.8. For each $n \in \mathbb{N}$, let

$$h_n(x) = \begin{cases} \frac{1}{2^n}, & \text{if } \frac{1}{2^n} < x \le 1\\ 0, & \text{if } 0 \le x \le \frac{1}{2^n} \end{cases}$$

Set $H(x) = \sum_{n=1}^{\infty} h_n(x)$. Show H is integrable and compute $\int_0^1 H$.

Proof. Let $N \in \mathbb{N}$, let $H_N : [0,1] \to \mathbb{R}$ be the N^{th} partial sum of H. Then

$$H_N(x) = \begin{cases} 0, & \text{if } x \in \left[0, \frac{1}{2^N}\right] \\ \frac{2^k - 1}{2^N}, & \text{if } x \in \left(\frac{1}{2^{N-k+1}}, \frac{1}{2^{N-k}}\right] \end{cases}$$

for $k \in [1, N]$. Observe that each H_N is piecewise constant, thus by theorem 7.4.1 it is integrable. To explicitly compute the integral on [0, 1],

$$\begin{split} \int_0^1 H_N &= \sum_{k=1}^N \int_{2^{-(N-k+1)}}^{2^{N-k}} H_N \\ &= \sum_{k=1}^N \left(\frac{2^k-1}{2^N}\right) \left(\frac{1}{2^{N-k}} - \frac{1}{2^{N-k+1}}\right) \\ &= \frac{2}{3} - \frac{1}{6 \cdot 4^{N-1}} - \frac{1}{4^N} + \frac{1}{2^{N+1}} \end{split}$$

Thus

$$\int_0^1 H_N = \lim_{N \to \infty} \int_0^1 H_N = \frac{2}{3}$$

7.5.2. Decide whether each statement is true or false, providing a short justification for each conclusion.

(a) If g = h' for some h on [a, b] then g is continuous on [a, b].

Solution

This statement is false, and is apparent when we consider the function

$$h(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$$

Here, h is differentiable, but h' is not continuous.

(b) If g is continuous on [a, b], then g = h' for some h on [a, b].

Solution.

Since g is continuous on [a, b], g is integrable on [a, b], so we define $h(x) = \int_a^x g$, and by the Fundamental Theorem of Calculus, we have that h' = g. We conclude this statement is true.

(c) If $H(x) = \int_a^x h$ is differentiable at $c \in [a, b]$, then h is continuous at c. Solution.

If we consider

$$h(x) = \begin{cases} 0, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

Then $\int_a^x h = 0$, everywhere and thus differentiable, but h is not continuous at c = 0. We conclude this statement is false.