Questão 1 (2.5 pontos).

a) Escreva as seguintes quantidades com apenas 1 (um) algarismo significativo na incerteza. Lembre-se de aplicar os corretos critérios de arredondamento:

Quantidade	Incerteza	Resposta
0,0961	0,027	0.10 ± 0.03
2,72850	0,0055	2,728 ± 0,006
24,9287	0,0113	24,93 ± 0,01

b) Resolva as seguintes operações respeitando o correto número de algarismos significativos:

Operação	Resposta
27,8 m + 1,326 m + 0,66 m	= 29,8 m
3,27251 cm × 1,32 cm	$= 4,32 \text{ cm}^2$
63,72 cm ÷ 23,1 s	= 2,76 cm/s

c) A partir dos valores numéricos de distância e tempo dados na seguinte tabela, construa um gráfico (vide próxima página) para encontrar o coeficiente angular médio, sua incerteza e seu significado físico.

Eixo Y (m)	Eixo X (s)
15,3 ± 6,1	$0,29 \pm 0,01$
35,7 ± 7,2	$0,83 \pm 0,01$
53,8 ± 7,9	1,36 ± 0,01
77,2 ± 8,1	2,03 ± 0,01

O coeficiente angular representa a velocidade e tem um valor aproximado de (36 ± 2) m/s.

Questão 2 (2.5 pontos): Um objeto gira em uma circunferência de raio 2,0 m em um plano horizontal a 5,0 m acima do chão. Supondo que o objeto seja lançado pela tangente, atingindo o chão a 10 m de distância, responda (para $g = 10 \text{ m/s}^2$):

- a) Com que velocidade escalar o objeto é lançado? 10 m/s
- b) Qual a aceleração radial do objeto enquanto estava em movimento circular uniforme? 50 m/s²

Questão 3 (2.5 pontos): Dois blocos retangulares estão em contato, ambos apoiados sobre um mesmo plano horizontal sem atrito. O bloco do lado esquerdo tem massa M_E e o do lado direito tem massa M_D . O bloco de massa M_E é empurrado para a direita por uma força horizontal **F** que atua sobre seu lado esquerdo. Encontre:

- a) a aceleração do sistema; $\mathbf{a} = \mathbf{F} / (M_D + M_E)$
- b) a força de contato exercida sobre o bloco de massa M_E devida ao bloco de massa M_D . $F_C = -M_D F / (M_D + M_E)$
 - Suponha agora que o sentido de \mathbf{F} seja exatamente invertido e que ela atue sobre o lado direito do bloco de massa M_D . Sob estas novas condições, encontre:
- c) a nova aceleração do sistema; $\mathbf{a}_N = -\mathbf{F} / (M_D + M_E)$
- d) a nova força de contato exercida sobre o bloco de massa M_E devida ao bloco de massa M_D . $F_{CN} = -M_E F / (M_D + M_E)$

Questão 4 (2.5 pontos): Um bloco de massa 10 kg desliza em uma rampa com θ = 20° de inclinação, 8,0 m de comprimento, partindo do repouso em uma superfície sem atrito. Considere a gravidade de 9,8 m/s².

- a) Qual o trabalho realizado pela força da gravidade? 268,1 J
- b) Qual a velocidade da caixa no final da rampa? 7.3 m/s
- c) Considerando que ao final da rampa o plano tenha um coeficiente de atrito de 0,50, qual será o deslocamento máximo da caixa no plano antes de parar? 5,5 m

