Credit Card Fraud Detection system

DONE BY: AASHKA VIJAPURA

Agenda

- Objective
- Background
- Key Insights
- Cost Benefit Analysis
- Appendix:
- o Data Attributes
- o Data Methodology

Objective

- Putting in place a system to detect credit card theft in order to reduce expenses
- A manual detection method for frauds result in significant costs

Background

- A machine learning algorithm was created to identify frauds quickly and reduce losses.
- •For its deployment, a cost-benefit analysis has been conducted.

- Transaction amount, category and gender are the most important variables
- Gas and transport, kids and pets, home are the top three categories
- Highly imbalanced dataset

	Varname	Imp
0	amt	0.876727
13	category_kids_pets	0.029171
8	category_gas_transport	0.023109
12	category_home	0.013885
19	category_travel	0.010977
18	category_shopping_pos	0.010669
10	category_grocery_pos	0.009082
15	category_misc_pos	0.008953
7	category_food_dining	0.005615
17	category_shopping_net	0.003883
1	gender	0.002981
3	age_at_trans	0.002070
2	city_pop	0.002070
11	category_health_fitness	0.000412
9	category_grocery_net	0.000194
14	category_misc_net	0.000098
4	lat_dist	0.000092
6	trans_month	0.000013
5	long_dist	0.000000
16	category_personal_care	0.000000

Current Incurred Losses

- 77,183 credit card transactions per month
- 402 fraudulent transactions per month
- \$ 530.66 amount per fraud transaction
- Total costs incurred from fraud transactions is \$ 213,392.22

After New Model Deployment

- 1720 fraudulent transactions detected by the model
- \$ 1.5 cost to provide customer support to these transactions that is \$ 2,580.38 in total
- 27 fraudulent transactions not detected by model which amounts to \$ 14,283.64 loss
- Total cost incurred after new model deployment is \$ 27410.51
- Final savings after new model deployment is \$185981.71 that is reduction in losses by $^{\sim}$ 87%

Appendix: Data Attributes

Snapshot of the data:

- Snapshot of the data:
 - index Unique Identifier for each row
 - transdatetrans_time Transaction DateTime
 - cc_num Credit Card Number of Customer
 - merchant Merchant Name
 - category Category of Merchant
 - amt Amount of Transaction
 - first First Name of Credit Card Holder
 - last Last Name of Credit Card Holder
 - gender Gender of Credit Card Holder
 - street Street Address of Credit Card Holder
 - city City of Credit Card Holder
 - state State of Credit Card Holder
 - zip Zip of Credit Card Holder
 - lat Latitude Location of Credit Card Holder
 - long Longitude Location of Credit Card Holder
 - city_pop Credit Card Holder's City Population
 - job Job of Credit Card Holder
 - dob Date of Birth of Credit Card Holder
 - trans_num Transaction Number
 - unix time UNIX Time of transaction
 - merch_lat Latitude Location of Merchant
 - merch_long Longitude Location of Merchant
 - is_fraud Fraud Flag <--- Target Class

Appendix: Data Methodology

- A random forest classifier built on top a Kaggle simulated dataset
- Class imbalance adjusted using Adaptive Synthetic (ADASYN) sampling method
- Manual hyperparameter tuning done due to extensive computational times when using Grid Search Cross Validation

THANK YOU