Лабораторная работа №6

Арифметические операции в NASM

Глушенок Анна

Содержание

1	Цель работы		
2	Ход в	выполнения работы	6
	2.1	Задание 1	6
	2.2	Задание 2	11
	2.3	Ответы на вопросы	16
	2.4	Задания для самостоятельной работы	17
3	Выво	рды	20

Список иллюстраций

Z.1	Создание фаила для работы	6
2.2	Программа вывода значения регистра еах	7
2.3	Результат работы программы	7
2.4	Внесение изменений в программу	8
2.5	Результат работы программы	8
2.6	Создание файла для работы	9
2.7	Программа вывода значения регистра еах	9
2.8	Результат работы программы	10
2.9	Замена символов на числа	10
2.10	Результат программы с iprintLF	11
	Результат программы с iprint	11
2.12	Создание файла	12
2.13	Программа вычисления выражения $f(x)=(5*2+3)/3$	12
2.14	Результат работы программы	13
2.15	Программа вычисления выражения $f(x)=(4*6+2)/5$	13
2.16	Результат работы программы	14
2.17	Создание файла для работы	14
2.18	Программа вычисления варианта по номеру студ билета	15
2.19	Результат работы программы	15
2.20	Проверка результата программы	16
	Создание программы	18
	Проверка работы программы	19

Список таблиц

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM.

2 Ход выполнения работы

2.1 Задание 1

1. Создайте каталог для программам лабораторной работы № 6, перейдите в него и создайте файл lab6-1.asm.

Создаем указанный каталог, используя команду mkdir, переходим в него и с помощью команды touch создаем нужный файл.

```
aaglushenok@fedora:~/work/arch-pc/lab06

aaglushenok@fedora:~$ mkdir ~/work/arch-pc/lab06
aaglushenok@fedora:~$ cd ~/work/arch-pc/lab06
aaglushenok@fedora:~/work/arch-pc/lab06$ touch lab6-1.asm
aaglushenok@fedora:~/work/arch-pc/lab06$ ls
lab6-1.asm
aaglushenok@fedora:~/work/arch-pc/lab06$
```

Рис. 2.1: Создание файла для работы

2. Введите в файл lab6-1.asm текст программы из листинга 6.1. (Программа вывода значения регистра eax). Создайте исполняемый файл и запустите ero.

Вводим текст листинга 6.1., создаем исполняемый файл, и в результате его работы получаем символ "j".

Рис. 2.2: Программа вывода значения регистра еах

Рис. 2.3: Результат работы программы

3. Внесите изменения в текст программы: вместо символов запишите в регистры числа. Создайте исполняемый файл и запустите его. Пользуясь таблицей ASCII определите какому символу соответствует код 10.

Вносим изменения в программу: убирая кавычки возле символов, превращаем их в числа. Создаем исполняемый файл, и в результате его работы получаем 2 пустых строки. Так происходит из-за того, что коду 10 в таблице ASCII соответствует символ переноса строки (сама строка остается пустой).

Рис. 2.4: Внесение изменений в программу

Рис. 2.5: Результат работы программы

4. Преобразуйте текст программы из Листинга 6.1 с использованием функций преобразования символов в числа и обратно. Создайте файл lab6-2.asm и введите в него текст программы из листинга 6.2. Создайте исполняемый файл и запустите его.

В указанном каталоге с помощью команды touch создаем файл lab6-2.asm, вводим текст из листинга 6.2. (Программа вывода значения регистра eax). Создаем

исполняемый файл и запускаем его. в результате работы программы выводится число 106, вывести которое позволяет функция iprintLF.

Рис. 2.6: Создание файла для работы

Рис. 2.7: Программа вывода значения регистра еах

Рис. 2.8: Результат работы программы

 Аналогично предыдущему примеру измените символы на числа. Создайте исполняемый файл и запустите его. Замените функцию iprintLF на iprint. Создайте исполняемый файл и запустите его.

Заменяем символы на числа, убирая кавычки возле них. Создаем исполняемый файл, и в результате работы программы получаем число 10, то есть верный ответ на исходную задачу (4+6). В результате замены функции iprintLF на iprint мы так же получаем число 10, но уже переноса строки.

Рис. 2.9: Замена символов на числа

Рис. 2.10: Результат программы с iprintLF

Рис. 2.11: Результат программы с iprint

2.2 Задание 2

6. Создайте файл lab6-3.asm, введите в него текст из листинга 6.3. Создайте исполняемый файл и запустите его. Измените текст программы для вычисления выражения f(x) = (4*6+2)/5. Создайте исполняемый файл и проверьте его работу.

С помощью команды touch создаем указанный файл, вводим в него текст листинга 6.3.(Программа вычисления выражения f(x)=(5*2+3)/3). Создаем исполняемый файл, запускаем его. В результате работы программы получаем частное и остаток заданного выражения. Вносим изменения в программу, и в ответе, аналогично, получаем частное и остаток от второго выражения.

```
aaglushenok@fedora:~/work/arch-pc/lab06 Q ≡ ×

mc [aaglushenok@fedora]:~/work... × aaglushenok@fedora:~/work/arch... ×

aaglushenok@fedora:~/work/arch-pc/lab06$ touch lab6-3.asm
aaglushenok@fedora:~/work/arch-pc/lab06$ ls
in_out.asm lab6-1.asm lab6-2 lab6-2.o
lab6-1 lab6-1.o lab6-2.asm lab6-3.asm
aaglushenok@fedora:~/work/arch-pc/lab06$ □
```

Рис. 2.12: Создание файла

Рис. 2.13: Программа вычисления выражения f(x)=(5*2+3)/3

Рис. 2.14: Результат работы программы

```
\oplus
                    mc [aaglushenok@fedora]:~/work/arch-pc/lab06
                                                                    Q
                                                                          \equiv
   mc [aaglushenok@fedora]:~/work... × aaglushenok@fedora:~/work/arch...
                   /home/aaglushenok/work/arch-pc/lab06/lab6-3.asm
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data
div: DB 'Результат: ',0
rem: DB 'Остаток от деления: ',0
SECTION .text
GLOBAL _start
_start:
; ---- Вычисление выражения
mov eax,4 ; EAX=4
mov ebx,6 ; EBX=6
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+2
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,5; EBX=5
div ebx ; EAX=EAX/5, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF ; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
 G Справка
Х Выход
                Записать
                             Поиск
                                           Вырезать
                                                        Выполнить ^С Позиция
                                                        Выровнять ^/ К строке
                ЧитФайл
                                           Вставить
                              Замена
```

Рис. 2.15: Программа вычисления выражения f(x)=(4*6+2)/5

Рис. 2.16: Результат работы программы

7. Рассмотрите программу вычисления варианта задания по номеру студенческого билета (запрос номера билета, вычисление варианта по формуле, вывод номера варианта). Создайте файл variant.asm, введите в него текст листинга 6.4. Создайте исполняемый файл и запустите его. Проверьте результат работы программы вычислив номер варианта.

Для реализации данной программы создаем файл variant.asm и вводим в него текст листинга 6.2. (Программа вычисления варианта задания по номеру студенческого билета). Создаем исполняемый файл. В результате его работы получаем запрос на ввод номера студ билета, и после ввода номера получаем цифру, соответствующую варианту. Проверяем результат работы программы с помощью калькулятора.

Рис. 2.17: Создание файла для работы

Рис. 2.18: Программа вычисления варианта по номеру студ билета

Рис. 2.19: Результат работы программы

Рис. 2.20: Проверка результата программы

2.3 Ответы на вопросы

- 1. Какие строки листинга 6.4 отвечают за вывод на экран сообщения 'Ваш вариант:'? ОТВЕТ: За вывод на экран сообщения 'Ваш вариант:' отвечает строка "mov eax,rem" и строка "call sprint".
- 2. Для чего используется следующие инструкции? mov ecx, x mov edx, 80 call sread OTBET: Иструкции используются для чтения строки с вводом данных от пользователя. Начальный адрес строки сохраняется в регистре ecx, а максимальное количество считываемых символов строки в регистре edx. Затем вызывается процедура sread, которая выполняет чтение строки.
- 3. Для чего используется инструкция "call atoi"? ОТВЕТ: Инструкция "call atoi" используется для преобразования строки в целое число. Она принимает адрес строки в регистре еах и возвращает полученное число в нем же.

- 4. Какие строки листинга 6.4 отвечают за вычисление варианта? ОТВЕТ: Строка "хог edx,edx" обнуляет регистр edx перед выполнением деления. Строка "mov ebx,20" загружает значение 20 в регистр ebx. Строка "div ebx" выполняет деление регистра eax на значение регистра ebx с сохранением частного в регистре eax и остатка в регистре edx.
- 5. В какой регистр записывается остаток от деления при выполнении инструкции "div ebx"? ОТВЕТ: Остаток от деления записывается в регистр edx.
- 6. Для чего используется инструкция "inc edx"? ОТВЕТ: Инструкция "inc edx" используется для увеличения значения в регистре edx на 1. В данном случае, она увеличивает остаток от деления на 1
- 7. Какие строки листинга 6.4 отвечают за вывод на экран результата вычислений? ОТВЕТ: Строка "mov eax,edx" передает значение остатка от деления в регистр eax. Строка "call iprintLF" вызывает процедуру iprintLF для вывода значения на экран вместе с переводом строки.

2.4 Задания для самостоятельной работы

Написать программу вычисления выражения y = f(x), где f(x) = (9x - 8)/8 (вариант 5), проверить правильность работы программы для x = 8 и x = 64.

Аналогично предшествующим программам, создаем новую программу для вычисления значения функции. Затем создаем исполняемый файл. Программа запрашивает у пользователя ввести значение x, дает возможность ввода, после чего вычисляет и выводит значение функции при заданном пользователем значении x.

```
GNU nano 7.2
%include 'in_out.asm'
SECTION .data
msg: DB 'Введите х:', 0
div: DB 'Результат: ', 0
SECTION .bss
rez: RESB 80
x RESB 80
SECTION .text
global _start
_start:
; Запрос ввода значения х
mov eax, msg
call sprintLF
; Чтение значения х
mov ecx, x
mov edx, 80
call sread
; Преобразование строки в целое число
mov eax, x
call atoi
; Умножаем х на 9
                 ; сохраняем х в ebx
mov ebx, eax
mov ecx, 9
               ; eax = 9 * x
imul eax, ecx
; Вычитаем 8
                 ; eax = 9 * x - 8
sub eax, 8
; Делим на 8
mov ebx, 8
                  ; расширяем еах в edx:eax для деления
cdq
idiv ebx
                 ; eax = (9 * x - 8) / 8
; Сохраняем результат в `rez`
mov [rez], eax
; Выводим результат
mov eax, div
call sprint
mov eax, [rez]
call iprintLF
; Завершаем программу
call quit
^G Справн
^X Выход
   Справка
                                     W Поиск
                                                         Вырезать
                                                                            Выполниты
                     Записать
                                    ^∖ Замена
                                                       ^U Вставить
                     ЧитФайл
                                                                           Выровнять
```

Рис. 2.21: Создание программы

Рис. 2.22: Проверка работы программы

3 Выводы

В ходе выполнения лабораторной работы мне удалось освоить арифметические инструкции языка ассемблера NASM.