Bilgisayar Mimarisi Bölüm 1 Sayısal Mantık Devreleri

Dr. Emre Ünsal

Cumhuriyet Üniversitesi

Yazılım Mühendisliği Bölümü

İçerik

- Sayı Sistemleri
- Temel Mantık Kapıları
- Boole Cebri
- De-Morgan Teoremi
- Karnaugh Haritaları
- Toplayıcılar
- Yaz-Bozlar(Flip-Flop)

- Onluk (Decimal) Sayı sistemi:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- İkili (Binary) Sayı Sistemi:
 - 0, 1
- Sekizli (Octal) Sayı Sistemi
 - 0, 1, 2, 3, 4, 5, 6, 7
- Onaltılık (Hexadecimal) Sayı Sistemi
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Onluk Sistem	İkilik Sistem	Onaltılık Sistem
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

- Sayı Sistemlerini Birbirine Dönüştürülmesi:
- Bir sayı sisteminde sayıyı S, taban değeri R ve katsayıyı da d ile gösterirsek tam sayı sistemi,

$$S = d_n R^n + d_{n-1} R^{n-1} + d_{n-2} R^{n-2} + \dots + d_0 R^0$$

- formülü ile gösterilir.
- Kesirli sayıları ifade etmek için,

$$S = d_n R^n + d_{n-1} R^{n-1} + \dots + d_1 R^1 + d_0 R^0 + d_{-1} R^{-1} + d_{-2} R^{-2} + \dots$$

- Formülü kullanılır.
- Burada d_{max}=R-1 olur.

• Onluk tabandaki bir Sayıyı İkilik tabana dönüştürelim:

- Kesirli onlu sayılar ikili sayılara dönüştürülürken kesir kısmı 2 ile çarpılır. tam kısmı kaydedilir.
- ÖRN: $(41.6875)_{10}$ sayısını ikili sisteme çeviriniz.
- Tamsayı kısmı

```
41 / 2 = 20, kalan = 1

20 / 2 = 10, kalan = 0

10 / 2 = 5, kalan = 0

5 / 2 = 2, kalan = 1

2 / 2 = 1, kalan = 0

1 / 2 = 1, kalan = 1
```

Kalan kolonu aşağıdan yukarıya doğru sıralanırsa:

$$(41)_{10} = (101001)_2$$

Kesirli kısım:

```
0.6875 *2 = 1.3750 tamsayı = 1
```

$$0.3750 *2 = 0.7500$$
tamsayı = 0

$$0.7500 *2 = 1.5000 tamsayı = 1$$

$$0.5000 *2 = 1.0000 tamsayı = 1$$

Kesirli kısım için sıralama yukarıdan aşağıya doğrudur.

$$(0.6875)_{10} = (1011)_2$$

 $(41.6875)_{10} = (101001.1011)_2$

- \bullet ÖRN: $(12A)_{16}$ sayısının onluk ve ikilik sayı tabanlarındaki değerini hesaplayınız
- Sayının onluk tabandaki karşılığı:

$$(12A)_{16} = 1 * 16^2 + 2 * 16^1 + 10 * 16^0 = 298$$

Sayının ikilik tabandaki karşılığı:

$$(12A)_{16} = (100101010)_2$$

Sayısal Tasarım Özeti – Temel Mantık Kapıları

Sayısal Tasarım Özeti – Temel Mantık Kapıları

Sayısal Tasarım Özeti – Temel Mantık Kapıları

Sayısal Tasarım Özeti – Boole Cebri

$$1.A + 0 = A$$

$$2.A + 1 = 1$$

$$3. A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

$$5.A + A = A$$

$$6. A + A = 1$$

7.
$$A \cdot A = A$$

$$8. A \cdot \overline{A} = 0$$

9.
$$\overline{A} = A$$

10.
$$A + AB = A$$

11.
$$A + AB = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

Sayısal Tasarım Özeti – DeMorgan Teoremi

- DeMorgan Teoremi:
- X ve Y nin değili:

$$(XY)' = X' + Y'$$

• Şeklinde yazılabilir. X veya Y nin değili ise,

$$(X+Y)'=X'Y'$$

- şeklinde ifade edilebilir.
- Bu teoreme **DeMorgan Teoremi** denir.

Sayısal Tasarım Özeti – DeMorgan Teoremi

• ÖRN: Aşağıdaki ifadenin tümleyenini alınız:

$$F = AB + C'D' + B'D$$

• Bu ifadenin tümleyeni:

$$F' = (A'+B')(C+D)(B+D')$$

olarak elde edilir.

- Bazı durumlarda mantık şeması karmaşık olabilir.
- Devreyi sadeleştirmek için Doğruluk çizelgesinde sistemin çıkışını 1 ve Oyapan durumlar Karnaugh haritasına yerleştirilir.
- Karnaugh haritası üzerinde sistemin çıkışını 1 yapan durumlar birleştirilerek sadeleştirme yapılabilir.

Karnaugh Haritaları

• ÖRN:

$$F(A,B,C) = \sum (3,4,6,7)$$

• İfadesinin en sade halini hesaplayınız:

- ÖRN: $F(P, Q, R, S) = \sum (0,2,5,7,8,10,13,15)$
- İfadesinin en sade halini hesaplayınız

- Yeşil kısım sadeleştiğinde: Q'S'
- Kırmızı kısım sadeleştiğinde: QS
- Elde edilir. Sonuç olarak ifademiz:

$$F = QS+Q'S'$$

Sayısal Tasarım Özeti – Birleşik Devreler

- Yarı-Toplayıcı:
- En temel sayısal aritmetik devredir. İki tane ikili rakamı toplayabilir.

٠	Α	В	S	C _{out}
	0	0	0	0
	0	1	1	0
	1	0	1	0
	1	1	0	1

$$S = A'B + AB' = A \oplus B$$
$$C_{out} = AB$$

Sayısal Tasarım Özeti – Tam Toplayıcı

GİRİŞ	LER	38	ÇIKIŞLAR	
А	В	Carry in	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sayısal Tasarım Özeti – Tam Toplayıcı

GİRİŞ	LER	34 3	ÇIKIŞLAR	
А	В	Carry in	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

• RS Flip-Flop

СР	S	R	Q	Q
↓	x	X	Q _n	$\overline{\mathbb{Q}_n}$
1	0	0	Qn	Qn
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

Değişim yok
Değişim yok
Silme
Kurma
Tanımsız

D Flip-Flop

JK Flip-Flop

Değişim yok Değişim yok Tümleyen

• T(Toggle) Flip-Flop

Flip-Flop'larda Asenkron Girişler

S	R	СР	¬	K	Q _{n+1}	$\overline{Q}_n + 1$
1	0	X	X	X	0	1
0	1	X	X	X	1	0
1	1	↑	X	X	Qn	$\overline{Q_n}$
1	1	\rightarrow	0	0	Qn	Qn
1	1		0	1	0	1
1	1	↓	1	0	1	0
1	1	↓	1	1	Qn	Qn

Flip-Flop Durum Geçiş Tabloları

Q_n	Q _{n+1}	Ø	R
0	0	0	Х
0	1	1	0
1	0	0	1
1	1	Х	0

Qn	Q_{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

RS FF Durum Geçiş Tablosu

D FF Durum Geçiş Tablosu

• Flip-Flop Durum Geçiş Tabloları

Qn	Q _{n+1}	J	K
0	0	0	X
0	1	1	Х
1	0	Х	1
1	1	Х	0

JK FF Durum Geçiş Tablosu

Qn	Q _{n+1}	Т
0	0	0
0	1	1
1	0	1
1	1	0

T FF Durum Geçiş Tablosu

Sorularınız?