1. Train

รถไฟ ณ เมืองๆหนึ่งมีสถานีเชื่อมต่อกันมากมาย หากต้องการเที่ยวชมเมือง โดยการไปให้ครบทุก สถานี ซึ่งจากสถานีไปยังอีกสถานีมีค่าใช่จ่ายต่างกัน จงหาวิธีไปยังทุกสถานีโดยมีค่าใช้จ่ายน้อยที่สุด (กำหนดให้ใช้วิธี Prim's Algorithm ในการหาคำตอบ)

ข้อมูลนำเข้า

บรรทัดที่ 1 input n แทนจำนวนสถานีทั้งหมด

บรรทัดที่ 2 input array n ตัว แทนค่าใช้จ่าย ของสถานีแรกไปยัง สถานีที่ n (สถานีที่ไม่เชื่อมถึงกันจะมี ค่าใช้จ่ายเป็น 0)

บรรทัดที่ 3-n+1 input array n ตัว แทนค่าใช้จ่าย ของสถานีถัดไป ไปยัง สถานีที่ n

ข้อมูลส่งออก

เส้นทางที่สั้นที่สุด ในการไปครบทุกสถานี และค่าใช้จ่าย

ข้อมูลนำเข้า	ข้อมูลส่งออก		
5	0 1 9		
0 9 75 0 0	1 3 19		
9 0 95 19 42	3 4 31		
75 95 0 51 66	3 2 51		
0 19 51 0 31			
0 42 66 31 0			
5	0 1 2		
0 2 0 6 0	1 2 3		
20385	1 4 5		
0 3 0 0 7	0 3 6		
68009			
05790			

2. ExpressWay

นาย ก. ต้องการเดินทางไปยังเมืองแห่งหนึ่งโดยเขาศึกษาเส้นทางไว้อย่างดีแล้วว่าต้องขึ้นทางด่วนที่ ไหนบ้าง แต่บังเอิญว่ามีเส้นทางด่วนแห่งหนึ่งเชื่อมต่อกันเป็นวงวน เลยทำให้นาย ก. สับสน ว่าทางด่วนเส้น ไหน เชื่อมต่อกับเส้นทางไหน เป็นเส้นทางที่เขาต้องใช้หรือไม่ จงเขียนโปรแกรมช่วยหาเส้นทางด่วนว่าเชื่อมต่อ กันหรือไม่เพื่อช่วยนาย ก.

INPUT	ОИТРИТ		
4	Yes		
1 2			
1 3			
2 3			
3 4			
5	No		
1 2			
1 3			
2 3			
3 4			
3 6			
6	No		
1 2			
2 5			
2 3			
3 4			
3 5			
5 1			

3. Transitive closure

จงเขียนโปรแกรมหาความสัมพันธ์ของ Vertex ในกราฟด้วยวิธี Transitive closure โดยที่ให้ กราฟ แสดงในรูปของ adjacency matrix โดยบอกว่า กราฟขนาด [V] [V] และให้กราฟ [i] [j] คือ 1 หาก จุดยอด i วิ่งไปถึงจุดยอด j หรือ i = j คือ 0 และแสดง Not Found หากไม่พบหรือกราฟไม่เชื่อมต่อ กัน

INPUT	OUTPUT		
1 1 0 1	1 1 1 1		
0 1 1 0	0 1 1 1		
0 0 1 1	0 0 1 1		
0 0 0 1	0 0 0 1		
1 0 0 1	Not Found		
0 0 1 1			
1 1 1 1			
0000			
1 1 1 1	1 1 1 1		
0 0 1 1	0 0 1 1		
0 0 1 1	0 0 1 1		
0 0 0 1	0 0 0 1		

4. FloydWarshall

จากรูปที่ให้มาจงเขียนโปรแกรมตรวจเช็คว่ากราฟใดๆต่อไปนี้เกิด Cycle หรือไม่

INPUT	OUTPUT
4 4	YES
0 1 1	
1 2 -1	
2 3 -1	
3 0 -1	
4 4	No
0 1 -1	
-1 2 -1	
-1 3 -1	
2 3 -1	
4 4	No
0 1 -1	
1 1 -1	
-1 2 -1	
-1 3 -1	