

School of Science & Technology

www.city.ac.uk

## **Systems Architecture**

IN1006



—Dr H. Asad



### **Positional Number Systems**

- Numbers can be represented in any base
- Humans are used to base 10
  - The digits used in base 10 are: 0,1,2,3,4,5,6,7,8 and 9
- We can analyse numbers based on position and powers of 10

### Example

$$3245 = 3 \times 10^{3} + 2 \times 10^{2} + 4 \times 10^{1} + 5 \times 10^{0}$$

$$= 3 \times 1000 + 2 \times 100 + 4 \times 10 + 5 \times 1$$

$$= 3000 + 200 + 40 + 5$$



# Similarly, we can write:

| 7896 | Thousand | Hundred | Ten | Units |
|------|----------|---------|-----|-------|
| 1000 | 7        | 8       | 9   | 6     |

$$7896 = 7 \times 1000 + 8 \times 100 + 9 \times 10 + 6 \times 1$$

$$7896 = 7 \times 10^3 + 8 \times 10^2 + 9 \times 10^1 + 6 \times 10^0$$

→ This can be applied to any base, not just 10.



## Indicating the base

- We should subscript numbers with their base (e.g., decimal numbers with ten and binary numbers with two)
  - 0011<sub>2</sub> or 0011<sub>two</sub> or 0011<sub>b</sub> (which equals 3<sub>10</sub> or 3<sub>d</sub>)
  - 11<sub>10</sub> or 11<sub>ten</sub> or 11<sub>d</sub> (which equals 1011<sub>2</sub>)

ten, d and 10 in the above alternative representations indicate base 10



## Positional Numbers and Base (a systematic approach)

In any number base, the value of the i th digit d in a number can be written as:

d x base i

where i starts at position 0 of the number and

increases to the left.

In 1247<sub>10</sub> what is represented by 2?

- The position *i* of 2 is 2 (as the position starts from right to left and the first position is 0)
- The digit d is 2
- Hence, the value represented by the 2 digit in the second position is
- $2 \times 10^2 = 200$



### **Binary Numbers**

- Base 2 is usually used in computers (Binary)
  - This is because of the natural correspondence between high/low signals and 1/0, respectively
  - The digits used in this base are 0 and 1
- A single binary digit is known as a bit
  - bit = binary digit
- Example, binary numbers with two bits:
  - $00 \rightarrow 0$  (decimal)
  - 01 → 1 (decimal)
  - 10 → 2 (decimal)
  - 11 → 3 (decimal)



# **Example: Decimal Number vs Binary Number**

Consider the number 13<sub>10.</sub>

We can write this in the 10-base as:

$$13_{10} = 1 \times 10^{1} + 3 \times 10^{0}$$
(as  $1 \times 10^{1} + 3 \times 10^{0} = 1 \times 10 + 3 \times 1 = 13$ )

And in the 2-base, following the formula d x base i, as



# Decimal Number to Binary Number conversion

- Step 1: Divide the given decimal number by 2 and note down the remainder.
- Step 2: Divide the obtained quotient by 2, and note the remainder again.
- Step 3: Repeat the above step until you get 0 as the quotient.
- Step 4: Write the remainders in such a way that the last remainder is written first, followed by the rest in the reverse order.
- Step 5: Result number is the binary value of the given decimal number.



# Decimal Number to Binary Number conversion

#### **Decimal to Binary Conversion**



Step 1: Divide the given number 13 repeatedly by 2 until you get '0' as the quotient

```
13 ÷ 2 = 6 (Remainder 1)

6 ÷ 2 = 3 (Remainder 0)

3 ÷ 2 = 1 (Remainder 1)

1 ÷ 2 = 0 (Remainder 1)
```

Step 2: Write the remainders in the reverse 1 1 0 1

$$13_{10} = 1101_2$$
 (Decimal) (Binary)



### Hexadecimal

- Long Binary numbers are hard to read!
- One Hexadecimal (base 16) digit can represent 4 bits

| Hexadecimal      | Binary              | Hexadecimal      | Binary              | Hexadecimal      | Binary              | Hexadecimal      | Binary              |
|------------------|---------------------|------------------|---------------------|------------------|---------------------|------------------|---------------------|
| O <sub>hex</sub> | 0000 <sub>two</sub> | 4 <sub>hex</sub> | 0100 <sub>two</sub> | 8 <sub>hex</sub> | 1000 <sub>two</sub> | C <sub>hex</sub> | 1100 <sub>two</sub> |
| 1 <sub>hex</sub> | 0001 <sub>two</sub> | 5 <sub>hex</sub> | 0101 <sub>two</sub> | 9 <sub>hex</sub> | 1001 <sub>two</sub> | d <sub>hex</sub> | 1101 <sub>two</sub> |
| 2 <sub>hex</sub> | 0010 <sub>two</sub> | 6 <sub>hex</sub> | 0110 <sub>two</sub> | a <sub>hex</sub> | 1010 <sub>two</sub> | e <sub>hex</sub> | 1110 <sub>two</sub> |
| 3 <sub>hex</sub> | 0011 <sub>two</sub> | 7 <sub>hex</sub> | 0111 <sub>two</sub> | b <sub>hex</sub> | 1011 <sub>two</sub> | f <sub>hex</sub> | 1111 <sub>two</sub> |



## Hexadecimal (cont'd)

 Uses the characters 0123456789ABCDEF to represent the numbers 0 .. 15 corresponding to the 4-bit binary values 0000 .. 1111

 $1357 \ 9 \text{BDF}_{\text{hex}} \\ 0001 \ 0011 \ 0101 \ 0111 \ 1001 \ 1011 \ 1101 \ 1111_{\text{two}}$ 

| Hexadecimal      | Binary              | Hexadecimal      | Binary              | Hexadecimal      | Binary              | Hexadecimal      | Binary              |
|------------------|---------------------|------------------|---------------------|------------------|---------------------|------------------|---------------------|
| O <sub>hex</sub> | 0000 <sub>two</sub> | 4 <sub>hex</sub> | 0100 <sub>two</sub> | 8 <sub>hex</sub> | 1000 <sub>two</sub> | C <sub>hex</sub> | 1100 <sub>two</sub> |
| 1 <sub>hex</sub> | 0001 <sub>two</sub> | 5 <sub>hex</sub> | 0101 <sub>two</sub> | 9 <sub>hex</sub> | 1001 <sub>two</sub> | d <sub>hex</sub> | 1101 <sub>two</sub> |
| 2 <sub>hex</sub> | 0010 <sub>two</sub> | 6 <sub>hex</sub> | 0110 <sub>two</sub> | a <sub>hex</sub> | 1010 <sub>two</sub> | e <sub>hex</sub> | 1110 <sub>two</sub> |
| 3 <sub>hex</sub> | 0011 <sub>two</sub> | 7 <sub>hex</sub> | 0111 <sub>two</sub> | b <sub>hex</sub> | 1011 <sub>two</sub> | f <sub>hex</sub> | 1111 <sub>two</sub> |



### **Octal**

- Octal is a number representation system with base 8
- The octal representation uses the characters: 0 1 2 3 4 5 6 7
- Each Octal character corresponds to three bits in binary

What is 27<sub>ten</sub> in Octal?

#### **Answer:**

- 1.  $27/8 \rightarrow 24 = 3 \times 8$  and the remainder is 3
- 2.  $3/8 \rightarrow 0$  and the remainder is 3, we stop
- 3. Write the remainders from bottom to top: 338
  - $33_8 = 3 \times 8^1 + 3 \times 8^0$



### **Exercises**

- Convert 27<sub>10</sub> into binary, octal and hexadecimal
   Hint:
  - Divide by the base of the target representation
  - Compose number as sequence of remainders
- Convert 100111101101 hexadecimal

#### Hint:

- transform subsequences of three bits for octal
- transform subsequences of four bits for hexadecimal



| DECIMAL | BINARY | OCTAL    | HEXADECIMAL |
|---------|--------|----------|-------------|
| 0       | 0      | 0        | 0           |
| 1       | 1      | 1        | 1           |
| 2       | 10     | 2        | 2           |
| 3       | 11     | 3        | 3           |
| 4       | 100    | 4        | 4           |
|         |        |          |             |
| 5       | 101    | 5        | 5           |
| 6       | 110    | 6        | 6           |
| 7       | 111    | 7        | 7           |
| 8       | 1000   | 10       | 8           |
| 9       | 1001   | 11       | 9           |
| 10      | 1010   | 12       | Α           |
| 11      | 1011   | 13       | В           |
| 12      | 1100   | 14       | С           |
| 13      | 1101   | 15       | D           |
| 14      | 1110   | 16       | E           |
| 15      | 1111   | 17       | F           |
| 16      | 10000  | 20       | 10          |
| 17      | 10001  | 21       | 11          |
| 18      | 10010  | 22       | 12          |
| 19      | 10011  | 23       | 13          |
| 20      | 10100  | 24       | 14          |
| 21      | 10101  | 25       | 15          |
| 22      | 10110  | 26       | 16          |
| 23      | 10111  | 27       | 17          |
| 24      | 11000  | 30       | 18          |
| 25      | 11001  | 31       | 19          |
| 26      | 11010  | 32       | 1A          |
| 27      | 11011  | 33       | 1B          |
| 28      | 11100  | 34       | 1C          |
| 29      | 11101  | 35       | 1D          |
| 30      | 11110  | 36       | 1E          |
| 31      | 11111  | 37       | 1F          |
| 32      | 100000 | 37<br>40 | 20          |
|         |        |          |             |





School of Science & Technology

www.city.ac.uk

## **Systems Architecture**

IN1006

Signed & Unsigned no representation



—Dr H. Asad

### Bits, Bytes and Words

- Bit: (binary digit) the most basic unit of information in a digital computer
  - e.g. 1101 4 bits (also called a nibble) are used
- Byte: a collection of 8 bits
  - e.g. 11010001
  - Word: two or more adjacent bytes that are addressed and handled collectively
  - E.g. 11010001 11110000 is a word with two bytes or 16-bits
- The word size represents the data size that is handled more efficiently by a particular architecture
- The number of bits we use to represent a number defines the largest number we can store
- In contemporary computers, words with 32 bits (i.e., 4 bytes of 8 bits each) or 64 bits (i.e., 8 bytes of 8 bits each) are usual



### Representing Positive Integers

Binary numbers (32 bits)



- Least significant bit (LSB) is the "smallest" bit in a word, i.e., the bit at position 0 (representing the number: LSB x 2°, which may be the decimal 1 or 0)
- Most significant bit (MSB) is the "biggest" bit in a word, i.e. the bit at position 31 (representing the number: LSB x 2<sup>31</sup>, which may be the decimal<sub>13</sub> number 2,147,483,648 or ???)





School of Science & Technology

www.city.ac.uk

## **Systems Architecture**

IN1006

Floating point and Non-Numeric Data Representation

—Dr H. Asad

### **Endianness**

- To identify the order in which bytes that constitute words are stored in memory
- Endianness defines this (i.e., the order in which bytes are arranged in memory)
- When programming at a low level, it is important to know what your machine supports!

| Endian | First Byte           | Last Byte         | Mnemonic                      | Example computers            |
|--------|----------------------|-------------------|-------------------------------|------------------------------|
| Big    | Most Significant     | Least Significant | Normal way of writing numbers | M68000,<br>IBM/360,motorolla |
| Little | Least<br>Significant | Most Significant  | Arithmetic calculation order  | X86, Z80,intel               |





Some computers are bi-endian (ARM, PowerPC)



## Representing Positive Integers: The simple pattern

**Question:** Assume that we have a hypothetical 3-bit word, how many different patterns of 0s and 1s can we have?

#### Answer:

We can represent 2<sup>3</sup> different 3-bit patterns, i.e.,

000 001 010 011 100 101 110 111

This represents numbers from 0 to 7 (7 =  $2^3 - 1$ )

n-bits can represent 2<sup>n</sup> different numbers from 0 to 2<sup>n</sup> - 1

**Question:** If we have a 32-bit word, how many different patterns of 0s and 1s can we have?

**Answer:** We can represent  $2^{32}$  different 32-bit patterns. This represents numbers from 0 to  $(2^{32} - 1)$ , i.e., 0 to 4,294,967,296 - 1 (or to  $4,294,967,295_{10}$ )



## Representing Positive Integers (cont'd)

32-bit word, how many different patterns of 0s and 1s can we have ?

```
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000_{two} = 0_{ten}
```

$$0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{two} = 1_{ten}$$

0000 0000 0000 0000 0000 0000 0010<sub>two</sub> = 
$$2_{ten}$$

$$0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0011_{two} = 3_{ten}$$

0000 0000 0000 0000 0000 0000 0100<sub>two</sub> = 
$$4_{ten}$$

... ...

1111 1111 1111 1111 1111 1111 1110 
$$two = 4,294,967,294_{ten}$$



### Representing Positive Integers (the general case)

- A 32 binary number of the form: n=x<sub>31</sub>x<sub>30</sub>x<sub>29</sub>...x<sub>1</sub>x<sub>0</sub>
   can be represented as the bit value times a power of 2
- The general formula:

$$(x_{31} * 2^{31})+(x_{30} * 2^{30})+(x_{29} * 2^{29})+...+(x_1 * 2^1)+(x_0 * 2^0)$$

(x<sub>i</sub> means the i th bit of n)

Example:

0000 0000 0000 0000 0000 0000 0010<sub>two</sub> =  $2_{ten}$ 

 $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0011_{two} = 3_{ten}$ 



### **Representing Negative Integers**

- So far have involved only unsigned integer numbers
- They cannot represent negative integer numbers
- To represent negative and positive integer numbers, we need to have signed integer numbers.
- Signed binary integer numbers may be expressed by:
  - Signed magnitude
  - One's complement
  - Two's complement



### **Signed-Magnitude Representation**

- Assign one bit to represent the sign (typically the left most digit is used)
- Use the rest of the bits to represent magnitude (value)

**Example:** Assume that 1 represents "-" and 0 represents "+" Then consider 8-bit words:

- o -1 is 1 000 0001
- +1 is **0** 000 0001
- What is the range of numbers we can represent with N bits?  $-(2^{(N-1)}-1)$  to  $2^{(N-1)}-1$
- This representation has some disadvantages:
  - Using a special sign bit means that we can represent fewer numbers
  - Both +0 (e.g. 0000 0000) and -0 (e.g. 1000 0000) are valid, leading to programmer headaches
  - Arithmetic circuits are complicated by the calculation of sign (as we will see later)





School of Science & Technology

www.city.ac.uk

## **Systems Architecture**

IN1006

**Arithmetic Operation Part 1** 



—Dr H. Asad

## **1-bit Binary Addition**

two 1-bit values gives four cases:



The simplicity of this system makes it possible for digital circuits to carry out arithmetic operations.



## Binary Addition: how the "carry out" bit is propagated?

2 bits show all possibilities:





## **Binary Addition: an Example**

• **Example:** using signed magnitude binary arithmetic, find the sum of 75 and 46.



### **Binary Addition: an Example**

- **Example:** using signed magnitude binary arithmetic, find the sum of 75 and 46.
- Solution:
  - 1) convert 75 and 46 to binary, and arrange as a sum, but separate the (positive) sign bits from the magnitude bits.
  - 2) Just as in decimal arithmetic, we find the sum starting with the rightmost bit and work left.
  - 3) In the second bit, we have a "carry" bit, so we note it above the third bit.
  - 4) The third and fourth bits also give us "carries".
  - 5) Once we have worked our way through all eight bits, we are done.

sign bit is separated





### **Binary Addition: Example**

 Example: Using signed magnitude binary arithmetic, find the sum of 107 and 46.

Overflow bit



- We see that the carry from the seventh bit overflows and is discarded
- BUT then the addition gives us an erroneous result: 107 + 46 = 25.



### **Overflow**

- It occurs if the result of "add" (or any other arithmetic operation) cannot be represented by the available hardware bits.
- While we can't always prevent overflow, we can always <u>detect</u> overflow.
- Note: This is physical overflow.
- What happens to the bits that "fall off the left end" is dependant on implementation



### **Binary Addition for Negative Numbers**

- Example: Using signed magnitude binary arithmetic, find the sum of
   46 and 25.
- Because the signs are the same, all we do is add the numbers and supply the negative sign when we are done.

sign bit is separated





# Binary subtraction (at the basic bit level)

four cases:

 1
 0
 1
 0

 1
 1
 0
 0

 0
 1\*
 1
 0



\* But requires borrowing a digit from a higher position (left bit)

# Binary subtraction: Examples with whole numbers

- Determine which operand has the largest magnitude
- The sign of the result gets the sign of the number that is larger
- The magnitude is obtained by subtracting the smaller one from the larger one
  - It might require borrowing from the next non zero bit (to the left) or two, three etc. bit to the left (until we find a non zero bit)
  - When we borrow from a higher bit to the next lower position, we borrow "2" and reduce the bit that we borrowed from by "1"







### **Binary subtraction:**

 Example: Using signed magnitude binary arithmetic, find the sum of 46 and – 25.







School of Science & Technology

www.city.ac.uk

## **Systems Architecture**

IN1006

### **Arithmetic Operation Part 2**



—Dr H. Asad

## Complement based representation (rationale)

- Signed magnitude representation easy for people to understand, but requires complicated computer hardware.
- Another disadvantage of signed magnitude is that it allows two different representations for zero: positive zero and negative zero
- → For these reasons (among others) computer systems employ **complement** systems for numeric value representation.



### Two's complement (what is it?)

Two's complement is the radix complement of the binary system:

the radix complement of a non-zero number N in base r with d digits is  $r^d - N$  for N  $\neq 0$ , and 0 for N = 0.



## Two's complement (what is it?)

- Makes the hardware simple
- MSB is regarded as sign bit (0:+ve, 1:-ve)

#### **Examples:**

 Radix complement of 2 in base 10 with 3 digits (or 10's complement of 2 with 3 digits)

is: 
$$10^3 - 2 = 1000 - 2 = 998$$

2's complement of 4-bit number 0011<sub>2</sub>
 is: 2<sup>4</sup> - 0011<sub>2</sub> = 10000<sub>2</sub> - 0011<sub>2</sub> = 1101<sub>2</sub>





### Visualize two's complement numbers on a 4 bit number

To express a value in two's complement representation:

- 1) If the number is positive, just convert it to binary and you're done.
- 2) If the number is negative, flip bits and then add 1.





### Visualize two's complement numbers on a 4 bit number

Number 4<sub>10</sub> is 0100<sub>2</sub>

Number -4<sub>10</sub> would be represented using 2's complement as follows

| Binary number         | 0100 |
|-----------------------|------|
| Inverse               | 1011 |
|                       |      |
| Add 1                 | 1011 |
|                       | +1   |
| 2's complement for -4 | 1100 |





<sup>- 4&</sup>lt;sub>10</sub> is 1100<sub>2</sub> on two's complement system

# Two's complement (some simple examples)

| Decimal value | Binary value       | 1s complement | 2's complement                |
|---------------|--------------------|---------------|-------------------------------|
| 3             | 00000011           |               | 00000011                      |
|               |                    |               | No change as it is a          |
|               |                    |               | positive number               |
| -3            | 00000011           | 11111100      | 11111101                      |
|               | In 8-bit binary, 3 | (flip bits)   | (add 1)                       |
|               |                    |               | Adding 1 gives us -3 in two's |
|               |                    |               | complement                    |



## Two's complement (some more complex examples)



### Two's complement shortcut

- Negation: find the negative of a Positive binary number: invert (flip) the bits and add one
- Transforming a negative decimal number into 2's complement: write the binary of the magnitude and invert (flip) the bits and add one
- 3. Transforming a **negative two's complement number** into decimal: invert (flip) the bits and add one. Calculate the decimal number from the binary and add (-)



# Two's complement shortcut (example)

Example: find the negative number of the decimal number 2.

```
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010 = 2
```

#### Invert the bits and add one

```
1111
          1111
                  1111
                          1111
                                  1111
                                          1111
                                                 1111
                                                        1101
+ 0000
          0000
                  0000
                                          0000
                                                        0001
                          0000
                                  0000
                                                 0000
  1111
          1111
                  1111
                          1111
                                  1111
                                          1111
                                                 1111
                                                        1110 = -2
```



# Two's complement shortcut (example)

Example: find the decimal number of the two's complement above (don't forget the sign -2)

invert the bits and add one BUT going in the other direction

```
0000
           0000
                    0000
                             0000
                                      0000
                                               0000
                                                      0000
                                                              0001
+ 0000
           0000
                    0000
                             0000
                                      0000
                                               0000
                                                      0000
                                                              0001
                                                      0000 \quad 0010 = 2 \text{ (adding the sign -> result = -2)}
  0000
           0000
                    0000
                             0000
                                      0000
                                               0000
```



#### **Exercise**

- Convert the two's complement number into decimal 1111 1111 1111 1111 1010<sub>2</sub>
- 1. Flip the bits:

0000 0000 0000 0000 0000 0101

2. Add 1:

0000 0000 0000 0000 0000 0001

0000 0000 0000 0000 0000 0110

$$=6_{10}$$

3. Check the **left-most bit of the original number** is 1 and so it's a negative number:



# Two's complement: some noteworthy points

- the positive half of the numbers, from 0 to 2,147,483,647<sub>ten</sub> (2<sup>31</sup>-1), are as before
- The pattern 1000...0000<sub>two</sub> represents the most negative number -2,147,483,648<sub>ten</sub> (-2<sup>31</sup>)
- This is followed by a declining set of negative numbers (1000...0001<sub>two</sub>) down to (1111...1111<sub>two</sub>)
- The number –2,147,483,648<sub>ten</sub> (-2<sup>31</sup>) has no corresponding positive number 2<sup>31</sup>



### Binary addition and subtraction

Subtracting  $6_{ten}$  from  $7_{ten}$  is (7-6)=1:

```
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0111_{two} = 7_{ten}
```

- 0000 0000 0000 0000 0000 0000 0110<sub>two</sub> =  $6_{ten}$
- =  $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{two} = 1_{ten}$

#### Or via addition using the two's complement (7 + (-6)):

(this requires very simple hardware!)



# Arithmetic in 2's Complement

#### **Example:**

- Using two's complement binary arithmetic, find the sum of 23 and -9.
- We see that there is carry into the sign bit and a carry out. The final result is correct: 23 + (-9) = 14.



### **Overflow in 2's Complement**

- It may occur but it does not introduce erroneous results
- Rule for detecting signed 2's complement overflow:
  - When the "carry in" and the "carry out" of the sign bit differ, overflow has occurred
  - If the carry into the sign bit equals the carry out of the sign bit, no overflow has occurred.
- Two positive numbers are added and the result is negative. Two negative numbers are added and the result is positive.





School of Science & Technology

www.city.ac.uk

### **Systems Architecture**

IN1006

Floating point and Non-Numeric Data Representation

—Dr H. Asad

### **Floating Point Numbers**

- So far we have represented positive and negative numbers using N bits
- How do we represent?
  - Very large numbers: 9,349,398,989,787,762,244,859,087,678
  - Very small numbers: 0.0000000000000000000000045691
  - Rational numbers: 2/3
  - Irrational numbers:  $\sqrt{2}$



#### **Recall Scientific Notation**

- Computers use a form of scientific notation for floating-point representation
- Numbers written in scientific notation have three components:





## Single precision FP Representation

- Floating point numbers are of the form:
- where: S = sign, F = significand field (mantissa),

$$E = exponent$$

$$(-1)^S \times F \times 2^E$$





## Single precision FP Representation

- These must be packed into a word of bits, in general:
  - For example:

| 31   | 30                     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| S    | s exponent significand |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| 1 bi | bit 8 bits 23 bits     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

- The size of the exponent field determines the range of values that can be represented.
- The size of the significand determines the precision of the representation.



### **Double precision FP Numbers**

- Bits allocated to the exponent and the significant:
  - Increasing the bits for the exponent increases the range.
  - Increasing the bits for the significand increases the accuracy.
- Double precision floating point numbers:

11 bits





significand (continued)

### Non numerical data: Characters

- ASCII and UNICODE
- To use '1's and '0's to represent text and characters



### **ASCII and UNICODE**



### Non-numerical data: Bitmaps



### **Summary**

- 1) Binary
- 2) Positive and Negative Integers
- 3) Addition and subtraction
- 4) Floating Point Numbers
- 5) Hexadecimal
- 6) Character Data
- 7) Bitmaps



School of Science & Technology

City, University of London Northampton Square London EC1V 0HB United Kingdom

T: +44 (0)20 7040 5060 E: SST-ug@city.ac.uk www.city.ac.uk/department

**Acknowledgement:** Prof George Spanoudakis



