Human Computer Systems

Lecture 2

HCI - When things go wrong – Bad Designs!

Cognitive Psychology Intro

HCI - When things go wrong! Bad Designs

- Three Mile Island nuclear disaster (ref: Preece)
 - experts blamed combination of operator error and bad interface design
 - interface problems
 - light indicated valve was shut when it wasn't
 - light indicator was covered by tag to another controller
 - audible & visual controls for >1500 faults. One button silenced all alarms at same time, but was not used because operators knew they would lose information if they switched off the alarm

HCI - When things go wrong!

- Indian Airlines Flight 605 Airbus disaster
 - 98 people killed
 - Report in Flight International magazine "undoubtedly derives from poor understanding between the machine and the pilot pilots not adapting to automation"
- China Airlines Flight 006 plunged 32,000 ft in 2 minutes, damaging tail & landing gear
 - comment "crew's role is reduced to one of monitoring performance of boring, reliable systems - to perform well, humans need to be ... giving commands, controlling inputs etc an feeling the result"

- Iranian Airbus shot down by mistake
 - 290 people killed
 - US Navy investigators concluded "Aegis (sophisticated on-board computer) had provided accurate information - the crew had misinterpreted it
 - radar image of airbus was on one screen, other vital info was on another. Crew had to keep moving attention between screens

HCI - When things go wrong! Bad Designs

- http://www.baddesigns.com/
- Scrapbook of examples worth a look!

Examples from Baddesigns

How fast?

Examples from Baddesigns

How to work the lift?

Mouse where?

Design Principles

- Donald Norman: The Design of Everyday Things
 - Visibility
 - Feedback
 - Constraints
 - Mapping
 - Consistency
 - Affordance

- Main factors that should be taken into account in HCl design are shown below:
- Organisational
 - training, job design, politics, roles, work organisation
- Environmental
 - noise, heating, lighting, ventilation
- Health & Safety
 - stress, headaches, muscular/skeletal disorders

- Cognitive processes & capabilities of users
 - motivation, enjoyment, satisfaction, personality, experience level

Comfort

seating, equipment, layout

User Interface

 input devices, output displays, dialogue structures, use of colour, icons, commands, graphics, natural language, 3-D, user support materials, multimedia

Tasks

 easy, complex, novel, task allocation, repetitive, monitoring, skills, components

Constraints

 costs, timescales, budgets, staff, equipment, building structure

System Functionality

hardware, software, applications

Productivity

 increase output, increase quality, decrease costs, decrease labour requirements, decrease production time, increase creative and innovative ideas leading to new products

Disciplines involved in HCI

Computer Science

- A major contributor to HCI
- provide knowledge about capability of technology and how to harness potential
- techniques for software design, development & maintenance
- object-oriented languages, user interface management systems (UIMS), user interface design environments (UIDEs), debugging tools multimedia, virtual reality, prototyping tools etc

Cognitive Psychology

- Understanding human behaviour & underlying mental processes
- perception, attention, memory, learning, thinking, problem solving
- aim to characterise these in terms of capabilities and limitations
- guidelines, use of models to predict human performance, methods to test systems

Social & Organisational Psychology

- Nature & causes of human behaviour in a <u>social</u> <u>context</u>. 4 main concerns:
 - influence of one individual on another's attitudes & behaviour
 - impact of a group on it's members attitudes & behaviour
 - impact on a member on a group's activities & structure
 - relationship between the structure & activities of different groups
- structure & function of organisations in terms of:
 - authority, power, size, complexity, information flow etc

Ergonomics (human factors)

- Design to suit the capabilities of users eg car seat, computer system
- objective maximise operator safety, efficiency & reliability, make task easier, increase satisfaction & comfort
- major input on workstation design, readability of info on VDU, repetitive strain injury, VDU radiation etc

Linguistics

- Scientific study of language
- early work on syntax of languages eg del fred <u>or</u> fred del
- understanding the structure (syntax) and meaning (semantics) is important in developing natural language interfaces, also conversational analysis
- internationalisation eliminate cultural aspects of software (split words, dates etc from product which can then be generic)
- localisation opposite, infuse cultural context

Artificial Intelligence

- Design of intelligent computer systems to simulate aspects of intelligent human behaviour
- representing knowledge used in problem solving
- expert systems, systems which can justify their reasoning, intelligent user interfaces, ICAL...etc
- natural language & speech for communication
- intelligent agents to support user navigation & reduce menial tasks

Philosophy, Sociology & Anthropology

- "Soft Sciences" more indirect influence eg technology transfer effects
- How to make sense of what is going on when people communicate with each other and computers
- Implications of introduction of IT to society
- computer supported cooperative working (CSCW)
 sharing software & hardware among a group of people working together eg groupware

Engineering & Design

- Model building & empirical testing
- design contributes creative skills & knowledge to this process eg graphic design, 2-D, 3-D modelling, CAD, CAE

HCI Model

- Role of HCI in system design is to enhance the quality of the interaction between humans and computer systems
- apply knowledge about human goals, capabilities and limitations with knowledge about computer capabilities and limitations
- relate this knowledge to understanding the social, organisational and physical aspects of the work environment of the user

HCI Model...

- Make the transition between what can be done (functionality) to ... How it can be done to match the users' needs (usability) in the work environment. How?
 - Select most appropriate input device (keyboard, mouse, pen etc)
 - select output devices (video, speech, text, graphics etc)
 - select best style of interaction (eg forms, natural language, GUI, virtual reality etc)

HCI Model...

Cognitive Aspects

- Cognitive models of users
- Distributed cognition -
 - central concern is to re-embody cognitive processes in a real-world context
 - instead of conceptualising an individual's cognitive tasks when interacting with an individual computer, characterise cognitive activities of a group of people working together in a given setting

Cognitive Aspects...

- Cognition
 - processes by which we become acquainted with things, ie gain knowledge
 - understanding, remembering, reasoning, being aware, acquiring new skills, creating new ideas
- Main objective in HCI has been :
 - to understand & represent how humans interact with computers in terms of how knowledge is transmitted between the two
- explain how humans achieve goals

More advanced model...

Wickens (1984)

Cognitive Example

ATM Machine:

- users generally come to the task with a substantial amount of knowledge
- assumed to be able to read and to understand the mapping between instructions printed on the display and the actions they are to take

Attention & Memory

- Cognition has been extended to include:
 - how information is perceived
 - how that information is attended to
 - how that information is processed and stored in memory

w

HIP Model

HIP Model

Multi-Store Model of Memory

- Sensory Store
 - hold information for a very brief period of time (e few tenths of a second)
- Short-Term Memory Store
 - short period of time (few seconds)
- Permanent Long-term Memory Store
 - hold info, indefinitely

м

Multi-Store Model of Memory

HIP Model

- Sensory System
 - time-limited with a limited capacity
 - performs 2 classes of operations:
 - momentarily holding (buffering)
 - feature extraction beginning to organise input e.g. in terms of perception things like enhancing contours, centering the figure and isolating from background
- Each sense has own separate store for preliminary analysis and buffering
- only in memory system that info can be integrated and compared

Short Term or Working Memory

- Linked to long term memory
- Where cognitive processing of sensory input occurs
- Bower (1975) identifies:
 - info is temporary & subject to inference from new information
 - limited capacity (7 + or 2 chunks number of chunks we can remember at a time) - chunking can increase capacity - interference reduces capacity
 - fast access to items in short term memory

Short Term or Working Memory

- If a goal requires more info than short term memory can handle the system will fail - central processor would have to break down goal into a number of manageable sub-goals to reduce cognitive load on short term memory
- probably several STMs

Permanent/ Long Term Memory

- Largest structure in the model- stores all knowledge. Information includes:
 - Visual images, sound sequences, motor programs
 - abstract concepts & relationships
 - propositions, values & attitudes
 - programs for processing information

Permanent/ Long Term Memory

- Research has attempted to classify info
- Semantic memory
 - facts about world in general
 - abstract concepts
- Episodic Memory
 - memory about particular episodes or events
- Searching long term memory is based on
 - feature analysis of sensory input
 - contextual information

Permanent/ Long Term Memory

- Much of info stored is in a visual representation of abstract concepts -
 - we remember what cars look like, forgetting most of the specific cars that we have seen
- Long term memory has 2 main mechanisms:
 - Storage of information
 - Retrieval of information

Storage of Information

- How info is stored, coded, classified and organised
- even if info is adequately stored and coded it can become inaccessible or lost entirely - could be as a result of new information affecting old information
 - inteference
 - merging of information

Retrieval of Information

- How long term memory is searched & info is located
- types of retrieval
 - effortless (automatic)
 - effortful
- retrieval effected by:
 - time/ decay
 - incomplete / ambiguous info
 - context

Information Processing & HCI

- Model Human Processor
 - one of the earliest models
 - 3 interactive systems : <u>perceptual</u>, <u>motor & cognitive</u>
 - each has its own memory & processor
 - viewed as series of processing stages

Information Processing & HCI

- recent attention on:
 - how knowledge is represented
 - how mental models develop & are used in HCI
 - how users learn to interact and become experienced in systems
- recent research into:
 - interface metaphors (GUIs that are electronic counterparts to physical objects in real world)
 - conceptual models (ways in which systems are understood by different users) to help design interfaces

Recent Developments in Cognitive Psychology

- Since 1980's has been a move away from models of information processing and reduced importance of model human processor
- Move to computational and connectionist approaches

Computational Approaches

- Emphasis on modelling human performance in terms of what is involved when information is processed rather than when & how much
- concerned with goals, planning and action involved in task performance
- includes modelling: how info. is organised & classified, retrieved, what decisions are made etc in terms of how to deal with new info.

Connectionist Approach

- Neural networks or parallel distributed processing (PDP)
- simulate behaviour through programming models
- adopts the "brain" metaphor- cognition is represented at the level of neural network consisting of interconnected nodes
- all cognitive processes viewed as activations of the nodes in the network and the connections between them, rather than the processing & manipulation of information

Distributed Cognition

- Primarily concerned with describing cognition as it is distributed across individuals and in the setting in which it takes place
- the collection of people, computers systems and other technology and their relations to each other in the environmental setting in which they are situated - referred to as "<u>functional systems</u>" eg ship navigation, air traffic control etc

Distributed Cognition

- Main goal is to analyse how different components are coordinated
 - how is information propagated through the system in terms of technological, cognitive, social and organisational aspects
 - focus on way information moves and transforms eg air traffic controller verbally passes information (eg giving clearance to fly at particular altitude) to another (pilot) - on receiving this the person responds, which may have consequences for someone else etc...)

Distributed Cognition

- Situation Awareness
 - silent communication that is shared among a group eg watching and overhearing
- A main concern of distributed cognition is to map out how the various states are coordinated across time, location and objects
- can be breakdowns eg pilot misunderstands gesture of captain - knock-on effect etc.. - must analyse & explain, and suggest solutions