

经典的数学规划问题(下)

原油采购与加工 例4

售价4800元/吨

售价5600元/吨

市场上可买到不超过1500吨的原油A:

- •购买量不超过500吨时的单价为10000元/吨;
- 购买量超过500吨但不超过1000吨时,超过500吨的部分8000元/吨;
- •购买量超过1000吨时,超过1000吨的部分6000元/吨。

应如何安排原油的采购和加工?

问题 • 利润:销售汽油的收入 - 购买原油A的支出

分析 · 难点: 原油A的购价与购买量的关系较复杂

决策 变量 原油A的购买量,原油A,B生产汽油甲,乙的数量

目标函数

利润(千元)

c(x) ~ 购买原油A的支出

$$Max z = 4.8(x_{11} + x_{21}) + 5.6(x_{12} + x_{22}) - c(x)$$

c(x)如何表述?

目标 函数

- · *x*≤500吨单价为10千元/吨;
- 500吨 $\leq x \leq 1000$ 吨,超过500吨的8千元/吨;
- •1000吨 $\leq x \leq 1500$ 吨,超过1000吨的6千元/吨。

$$c(x) = \begin{cases} 10x & (0 \le x \le 500) \\ 8x + 1000 & (500 \le x \le 1000) \\ 6x + 3000 & (1000 \le x \le 1500) \end{cases}$$

约束 条件

原油供应

$$x_{11} + x_{12} \le 500 + x$$

$$x_{21} + x_{22} \le 1000$$

$$x \le 1500$$

条件

汽油含原油A的比例限制

- \triangleright 目标函数中c(x)不是线性函数,是非线性规划;
- \triangleright 对于用分段函数定义的c(x),一般的非线性规划软 件也难以输入和求解;
- > 想办法将模型化简,用现成的软件求解。

模型求解

方法

 x_1, x_2, x_3 ~以价格10, 8, 6(千元/吨)采购A的吨数

$$x = x_1 + x_2 + x_3$$
, $c(x) = 10x_1 + 8x_2 + 6x_3$

$$Max z = 4.8(x_{11} + x_{21}) + 5.6(x_{12} + x_{22}) - (10x_1 + 8x_2 + 6x_3)$$

• 500吨 $\leq x \leq 1000$ 吨,超过500吨的8千元/吨

增加约束

只有当以10千元/吨的价格购买 $x_1=500$ (吨)时,才能以8

千元/吨的价格购买
$$x_2$$
 \Longrightarrow $(x_1 - 500)x_2 = 0$

$$(x_2 - 500)x_3 = 0$$
 $0 \le x_1, x_2, x_3 \le 500$

非线性规划模型,可以用LINGO求解

Model:

```
Max= 4.8*x11 + 4.8*x21 + 5.6*x12 + 5.6*x22 - 10*x1 - 8*x2 - 6*x3;
```

x11+x12 < x + 500;x21+x22 < 1000;

x11 - x21 > 0;

2*x12 - 3*x22 > 0;

x=x1+x2+x3;

(x1 - 500) * x2 = 0;

(x2 - 500) * x3=0;

x1 < 500;

 $x^2 < 500$;

x3 < 500;

x > 0;

x11 > 0;

x12 > 0;

x21 > 0;

x21 > 0, x22 > 0:

x1 > 0:

 $x^2 > 0$;

x3 > 0;

end

LINGO求解

Objective value: 4800.000

 Variable Value
 Reduced Cost

 X11 500.0000
 0.0000000E+00

 X21 500.0000
 0.0000000E+00

 X12 0.0000000E+00
 0.0000000E+00

 X22 0.0000000E+00
 0.0000000E+00

 X1 0.1021405E-13
 10.00000

 X2 0.0000000E+00
 8.000000

 X3 0.0000000E+00
 6.000000

X 0.000000E+00 0.000000E+00

用库存的500吨原油A、500吨原油B生产汽油甲,不购买新的原油A,利润为4,800千元。

LINGO得到的是局部最优解,还能得到更好的解吗?

例5选课策略

要求至少选两门数学课、三门运筹学课和两门计算机课 为了选修课程门数最少,应学习哪些课程? 选修课程最少,且学分尽量多,应学习哪些课程?

0-1规划模型

课	课名	所属类别
冒	微积分	数学
2	线性代数	数学
3	最优化方法	数学;运筹学
4	数据结构	数学;计算机
5	应用统计	数学;运筹学
6	计算机模拟	计算机;运筹学
7	计算机编程	计算机
8	预测理论	运筹学
9	数学实验	运筹学;计算机

约束条件

最少2门数学课, 3门运筹学课, 2门计算机课。

决策变量

 $x_i=1$ ~选修课号i 的 课程($x_i=0$ ~不选)

目标函数

选修课程总数最少

$$Min \quad Z = \sum_{i=1}^{9} x_i$$

$$x_1 + x_2 + x_3 + x_4 + x_5 \ge 2$$

$$x_3 + x_5 + x_6 + x_8 + x_9 \ge 3$$

$$x_4 + x_6 + x_7 + x_9 \ge 2$$

0-1规划模型

课号	课名	先修课要求
* 1	微积分	
* 2	线性代数	
* 3	最优化方法	微积分;线性代数
4	数据结构	计算机编程
5	应用统计	微积分;线性代数
* 6	计算机模拟	计算机编程
* 7	计算机编程	
8	预测理论	应用统计
* 9	数学实验	微积分;线性代数

模型求解(LINDO)

最优解: $x_1 = x_2 = x_3 = x_6 = x_7 = x_9 = 1$,

其它为0;6门课程,总学分21

约束条件

先修课程要求

$$x_3 = 1$$
必有 $x_1 = x_2 = 1$

$$2x_3 - x_1 - x_2 \le 0$$

$$x_4 \le x_7 \Longrightarrow x_4 - x_7 \le 0$$

$$2x_5 - x_1 - x_2 \le 0$$

$$x_6 - x_7 \le 0$$

$$x_8 - x_5 \le 0$$

$$2x_9 - x_1 - x_2 \le 0$$

完整课程请长按下方二维

讨论: 选修课程最少, 学分尽量多, 应学习哪些课程?

课程最少

学分最多

两目标(多目标)规划

 $Min \{Z, -W\}$

多目标优化的处理方法: 化成单目标优化。

- ·以课程最少为目标, 不管学分多少。

最优解如上,6门课 程,总学分21。

- ·以学分最多为目标, 不管课程多少。
- $\qquad \qquad \Box \rangle$

最优解显然是选修所 有9门课程。

選集権権 明 大 校 下 7 一 年

多目标规划

· 在课程最少的前提下 以学分最多为目标。

以学分最多为目标求解。

课号	课名	学分
* 1 *	微积分	5
* 2 *	线性代数	4
* 3 *	最优化方法	4
4	数据结构	3
5 *	应用统计	4
* 6	计算机模拟	3
* 7 *	计算机编程	2
8	预测理论	2
*9 *	数学实验	3

最优解: $x_1 = x_2 = x_3 = x_5 = x_7 = x_9 = 1$,

其它为0;总学分由21增至22。

注意:最优解不唯一!

可将 $x_9 = 1$ 易为 $x_6 = 1$

LINDO无法告诉优化 问题的解是否唯一。

整课程请长按下方二维

多目标规划

•对学分数和课程数加权形成一个目标,如三七开。

课号	课名	学分
1 *	微积分	5
2 *	线性代数	4
3 *	最优化方法	4
4 *	数据结构	3
5 *	应用统计	4
6 *	计算机模拟	3
7 *	计算机编程	2
8	预测理论	2
9 *	数学实验	3

$$Z = \sum_{i=1}^{9} x_i$$

$$W = 5x_1 + 4x_2 + 4x_3 + 3x_4 + 4x_5$$
$$+3x_6 + 2x_7 + 2x_8 + 3x_9$$

最优解:
$$x_1 = x_2 = x_3 = x_4 = x_5 =$$

$$x_6 = x_7 = x_9 = 1$$
,

其它为0;总学分28。

多目标规划

讨论与思考

$$Min Y = \lambda_1 Z - \lambda_2 W$$

$$\lambda_1 + \lambda_2 = 1$$
, $0 \le \lambda_1$, $\lambda_2 \le 1$

$$Z = \sum_{i=1}^{9} x_i$$

$$W = 5x_1 + 4x_2 + 4x_3 + 3x_4 + 4x_5$$
$$+3x_6 + 2x_7 + 2x_8 + 3x_9$$

$$\lambda_1 < 2/3$$

最优解与 $\lambda_1=0$, $\lambda_2=1$ 的结果相同——学分最多

$$\lambda_1 > 3/4$$

最优解与 $\lambda_1=1$, $\lambda_2=0$ 的结果相同——课程最少

例6 饮料厂的生产与检修计划

某种饮料4周的需求量、生产能力和成本

周次	需求量(千箱)	生产能力(千箱)	成本(千元/千箱)
1	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5
合计	100	135	

存贮费:每周每千箱饮料 0.2千元。

- •安排生产计划,满足每周的需求,使4周总费用最小。
- ·在4周内安排一次设备检修,占用当周15千箱生产能力,能使检修后每周增产5千箱,检修应排在哪一周?

问题分析

周次	需求	能力	成本
1	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5
合计	100	135	

- ·除第4周外每周的生产能力超过每周的需求;
- •生产成本逐周上升;
- •前几周应多生产一些。

模型假设

- •饮料厂在第1周开始时没有库存;
- 从费用最小考虑, 第4周末不能有库存;
- 周末有库存时需支出一周的存贮费;
- 每周末的库存量等于下周初的库存量。

を课程请长按下方二维の

模型建立

周	需求	能力	成本
次	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5

决策变量

存贮费:0.2 (千元/周•千箱)

目标函数

Min
$$z = 5.0x_1 + 5.1x_2 + 5.4x_3 + 5.5x_4 + 0.2(y_1 + y_2 + y_3)$$

产量、库存与需求平衡

能力限制

约束 条件

$$x_1 - y_1 = 15$$
$$x_2 + y_1 - y_2 = 25$$

$$x_3 + y_2 - y_3 = 35$$

$$x_4 + y_3 = 25$$

$$x_1 \le 30, x_2 \le 40$$

$$x_3 \le 45, x_4 \le 20$$

非负限制

$$x_1, x_2, x_3, x_4, y_1, y_2, y_3 \ge 0$$

模型求解

LINDO求解

最优解: $x_1 \sim x_4$: 15, 40, 25, 20;

 $y_1 \sim y_3$: 0, 15, 5.

周	需求	产量	库存	能力	成本
次	15	15	0	30	5.0
2	25	40	15	40	5.1
3	35	25	5	45	5.4
4	25	20	0	20	5.5

4周生产计划的总费用为528(千元)

检修计划

• 在4周内安排一次设备检修,占用当周15千箱生产能力,能使检修后每周增产5千箱,检修应排在哪一周?

周	需求	能力	成本
次	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5

检修安排在任一周均可

0-1变量w_t: w_t=1~ 检修安排在第t周(t=1,2,3,4)

约束条件

产量、库存 与需求平衡 条件不变

$$x_1 \le 30$$

$$x_1 + 15w_1 \le 30$$

$$x_2 \le 40$$

$$x_2 + 15w_2 \le 40 + 5w_1$$

$$x_3 \le 45$$

$$x_3 + 15w_3 \le 45 + 5w_2 + 5w_1$$

$$x_4 \le 20$$

$$x_4 + 15w_4 \le 20 + 5w_1 + 5w_2 + 5w_3$$

检修计划

目标函数不变

0-1变量 w_t : $w_t=1$ ~ 检修 增加约束条件: 检修1次

安排在第t周(t=1,2,3,4) $w_1 + w_2 + w_3 + w_4 = 1$

LINDO求解 最优解: $w_1=1, w_2, w_3, w_4=0$;

 $x_1 \sim x_4$: 15,45,15,25;

 $y_1 \sim y_3$: 0,20,0.

总费用由528千元降为527千元

检修所导致的生产能力提高的作用, 需要更长的时间才能得到充分体现。