UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

Campus Chapecó

DISTRIBUIÇÕES DE PROBABILIDADE

Disciplina: Probabilidade e Estatística

Curso: Ciência da Computação Professor: Leandro Bordin

Contextualizando...

- ✓ Distribuições de probabilidade
- √ Uma distribuição de probabilidades é uma distribuição de frequências (relativas) para os resultados de um espaço amostral (isto é, para os resultados de uma variável aleatória)

A variável aleatória é uma variável que tem um valor único (determinado aleatoriamente) para cada resultado de um experimento; a palavra aleatória indica que em geral só conhecemos aquele valor depois do experimento ser realizado

√ Mostra a proporção (probabilidade) das vezes em que a variável tende a assumir cada um dos diversos valores

√ Contextualizando...

- √ Distribuições de probabilidade
- √ Isso porque além de identificar os valores de uma variável aleatória, frequentemente é possível atribuir uma probabilidade a cada um desses valores
- ✓ Quando se conhece todos os valores de uma variável aleatória juntamente com suas respectivas probabilidades, tem-se uma distribuição de probabilidades

✓ Contextualizando...

- ✓ Distribuições de probabilidade
 - √ Ex: considerar a variável aleatória "número de caras em duas jogadas de uma moeda"

Resultado	Valores da variável aleatória (número de caras)	
СС	0	— K = cara
CK	1	C = coroa
KC	1	C = coroa
KK	2	

√ Contextualizando...

✓ Distribuições de probabilidade

√ Ex: ...

√Se a moeda é equilibrada a P(k) = P(C) = 1/2

Resultado	Probabilidade do resultado	Valores da variável aleatória (número de caras)	P (x)
CC	$\frac{1}{2}(\frac{1}{2}) = \frac{1}{4}$	0	0,25
CK	$\frac{1}{2}(\frac{1}{2}) = \frac{1}{4}$	1	0,50
KC	$\frac{1}{2}(\frac{1}{2}) = \frac{1}{4}$		
KK	$\frac{1}{2}(\frac{1}{2}) = \frac{1}{4}$	2	0,25

✓ Contextualizando...

✓ Distribuições de probabilidade

√ Ex: ...

√ Assim a distribuição de probabilidades para o número de caras em duas jogadas de uma moeda é

Número de	P(x)
caras	
0	0,25
1	0,50
2	0,25
	1,00

DISTRIBUIÇÃO BINOMIAL

✓ Distribuição Binomial

- ✓ Conceituação
 - √ Usa-se o termo binomial para designar situações em que os resultados de uma variável aleatória podem ser agrupados em duas classes ou categorias
 - ✓ Respostas de um teste: V ou F
 - √ Respostas do tipo SIM ou Não em um questionário
 - √ Produtos classificados como perfeitos ou defeituosos
 - √ Testes em que os alunos são Aprovados ou Reprovados

✓ Distribuição Binomial

- ✓ Conceituação
 - √ Além disso, variáveis com resultados múltiplos podem frequentemente ser tratadas como binomiais , quando apenas um dos resultados tem interesse
 - √ Respostas de um teste de múltipla escolha podem ser do tipo correta ou incorreta
 - √ Pode haver cinco candidatos à uma vaga de emprego e o resultado pode ser dado em termos de contratado ou não contratado

✓ Distribuição Binomial

- ✓ Conceituação
 - √ É comum referir-se às duas categorias de uma distribuição binomial como "sucesso" ou "falha"
 - √ A distribuição binomial é útil para determinar a probabilidade de certo número de sucessos num conjunto de observações

✓ Distribuição Binomial

- ✓ Conceituação
 - √ Hipóteses/Condições
 - √ Há n observações (provas) idênticas
 - √ Cada resultado tem dois resultados possíveis, um chamado de "sucesso" e o outro de "falha"
 - √ As probabilidades p de sucesso e 1-p (=q) de falha permanecem constantes em todas as observações
 - ✓ Os resultados das observações são independentes uns dos outros

✓ Distribuição Binomial

- ✓ A Fórmula Binomial
 - ✓ Para calcular uma probabilidade binomial é preciso especificar n (número de observações ou provas), x (número de sucessos) e p (probabilidade de sucesso em cada observação)

✓ Distribuição Binomial

- ✓ A Fórmula Binomial
 - √ Considerar que p = 0,80 (probabilidade de sucesso) e que se queira calcular a probabilidade de 3 sucessos e uma falha em quatro observações

Disposição	Probabilidade
SSSF	(0,8)(0,8)(0,8)(0,20) = 0,1024
SSFS	(0,8)(0,8) (0,20) (0,8) = 0,1024
SFSS	(0,8)(0,20)(0,8)(0,8) = 0,1024
FSSS	(0,20)(0,8)(0,8)(0,8) = 0,1024
	Total = 0,4096

n = 4 – número de observações x = 3 - número especificado de sucesso

✓ Distribuição Binomial

√ A Fórmula Binomial

√ A distribuição binomial caracteriza-se pela seguinte função:

$$P(x)=(C_{n,x})[P(sucesso)]^{x}[P(falha)]^{n-x}$$

$$P(x) = (C_{n,x})(p)^{x}(q)^{n-x}$$

As probabilidades dos resultados binomiais podem ser determinados levando em consideração o número de maneiras como a situação pode ocorrer e a probabilidade de uma dessas maneiras

✓ Distribuição Binomial

✓ A Fórmula Binomial

✓ Exemplo

- 1. Um fabricante de dispositivos eletrônicos estima que 5% de seus produtos apresentam algum defeito. Determinar a probabilidade de que numa amostra de 10 dispositivos eletrônicos:
- a) Haja 2 defeituosos
- b) Não haja nenhum defeituoso
- c) Haja no máximo 1 defeituoso

Exemplo

1.

c) Haja no máximo 1 defeituoso

 $\begin{array}{l} P(x{<}{=}1) = P(x{=}0) + P(x{=}1) \\ P(x{<}{=}1) = 59,87\% + C_{10,1}(0,05)^1 (0,95)^9 \\ P(x{<}{=}1) = 59,87\% + 10 (0,05)^1 (0,95)^9 \\ P(x{<}{=}1) = 59,87\% + 31,87\% \\ P(x{<}{=}1) = 91,38\% \end{array}$

✓ Distribuição Binomial

- √ Tabelas Binomiais
 - √ Probabilidades Binomiais Individuais
 - ✓ Para usar a tabela de probabilidades binomiais individuais são necessários três dados:
 - √ n número de observações
 - √ p probabilidade de sucesso
 - \checkmark x = número especificado de sucesso

✓ Distribuição Binomial

- √ Tabelas Binomiais
 - ✓ Probabilidades Binomiais Individuais
 - √ Os valores de p aparecem no topo da tabela e crescem em intervalos de 0,05
 - √ Na coluna esquerda estão os tamanhos n das amostras
 - √ Para cada valor de n relaciona-se o numero de x de sucessos (0 a n)

✓ Distribuição Binomial

- √ Tabelas Binomiais
 - ✓ Probabilidades Binomiais Individuais
 - ✓ Exemplo
 - √ Calcular a probabilidade de 5 sucessos (x=5) em 8 observações (n=8), quando a probabilidade de sucesso é 0,30

✓ Distribuição Binomial

- √ Tabelas Binomiais
 - ✓ Probabilidades Binomiais Individuais

				0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60
(8)	0,6634	0,4305	0,2725	0,1678	0,1001	0,0576	0,0319	0,0168	0,0084	0,0039	0,0017	0,0007
TI	0,2793	0,3826	0,3847	0,3355	0,2670	0,1977	0,1373	0,0896	0,0548	0,0312	0,0164	0,0079
2	0,0515	0,1488	0,2376	0,2936	0,3115	0,2965	0,2587	0,2090	0,1569	0,1094	0,0703	0,0413
3	0,0054	0,0331	0,0839	0,1468	0,2076	0,2541	0,2786	0,2787	0,2568	0,2188	0,1719	0,1239
4	0,0004	0,0046	0,0185	0,0459	0,0865	0,1361	0,1875	0,2322	0,2627	0,2734	0,2627	0,2322
-5	0,0000	0,0004	0,0026	0,0092	0,0231	0,0467	0,0808	0,1239	0,1719	0,2188	0,2568	0,2787
6	0,0000	0,0000	0,0002	0,0011	0,0038	0,0100	0,0217	0,0413	0,0703	0,1094	0,1569	0,2090
7	0,0000	0,0000	0,0000	0,0001	0,0004	0,0012	0,0033	0,0079	0,0164	0,0312	0,0548	0,0896
8	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0002	0,0007	0,0017	0,0039	0,0084	0,0168

✓ Distribuição Binomial

- √ Tabelas Binomiais
 - ✓ Probabilidades Binomiais Individuais
 - ✓ Exemplo
 - √ Calcular a probabilidade de 5 sucessos (x=5) em 8 observações (n=8), quando a probabilidade de sucesso é 0,30

P(x=5) = 0,0467

- √ Tabelas Binomiais
 - √ Probabilidades Binomiais Individuais

✓ Exemplo

Número de observações (n)	Probabilidade de sucesso (p)	X	P(x)
5	0,20	0	
8	0,60	3	
11	0,30	5	

- √ Tabelas Binomiais
 - √ Probabilidades Binomiais Individuais

✓ Exemplo

Número de observações (n)	Probabilidade de sucesso (p)	X	P(x)
5	0,20	0	0,3277
8	0,60	3	0,1239
11	0.30	5	0.1321

✓ Distribuição Binomial

- √ Tabelas Binomiais
 - ✓ Probabilidades Binomiais Individuais
 - Exemplo
 - 1. Um fabricante de dispositivos eletrônicos estima que 5% de seus produtos apresentam algum defeito. Determinar a probabilidade de que numa amostra de 10 dispositivos eletrônicos:
 - a) Haja 2 defeituosos
 - b) Não haja nenhum defeituoso
 - c) Haja no máximo 1 defeituoso

✓ Distribuição Binomial

- √ Tabelas Binomiais
 - ✓ Probabilidades Binomiais Individuais
 - Exemplo
 - **1.** p = 5% = 0,05; n = 10
 - a) Haja 2 defeituosos

P(x=2) = 0,0746 P(x=2) = 7,46%

✓ Distribuição Binomial

- √ Tabelas Binomiais
 - ✓ Probabilidades Binomiais Individuais
 - · Exemplo
 - **1.** p = 5% = 0,05; n = 10
 - b) Não haja nenhum defeituoso

P(x=0) = 0,5987 P(x=2) = 59,87%

c) Haja no máximo 1 defeituoso

P(x<=1) = P(x=0) + P(x=1) P(x<=1) = 59,87% + 31,87% P(x<=1) = 91,38% ✓ Distribuição Binomial

√ Tabelas Binomiais

✓ Embora as tabelas constituem um método mais simples e prático para determinação de probabilidades há casos em que é conveniente usar a fórmula binomial umas vez que na tabela a variação de probabilidade [P(sucesso)] varia em intervalos de 0,05

- √ Características da Distribuição Binomial
 - √ A média de uma distribuição binomial é a média a longo prazo, ou valor esperado, de uma variável binomial
 - ✓ O desvio padrão de uma distribuição binomial indica até que ponto os valores amostrais tendem a se afastar da média da distribuição

Média=
$$\overline{x}$$
= μ = $n.p$
Desvio $_{padrão}$ = S = σ = $\sqrt{np(1-p)}$

✓ Distribuição Binomial

✓ Características da Distribuição Binomial

✓ Exemplo

✓ Um fabricante de dispositivos eletrônicos estima que 5% de seus produtos apresentam algum defeito. Qual a média e o desvio padrão de peças inutilizadas em 5000 unidades?

 μ = n.p = 5000x0,05 = 250 dispositivos

 σ = raiz(n.p.q) = raiz(5000x0,05x0,95) = 15,41 dispositivos

✓ Distribuição Binomial

- √ Características da Distribuição Binomial
 - √ A distribuição binomial tem dois parâmetros: p, a probabilidade de sucesso e n, o número de observações ou provas
 - √ Cada para (p,n) caracteriza uma única distribuição ou um único espaço amostral

✓ Distribuição Binomial

- √ Características da Distribuição Binomial
 - ✓ Para qualquer distribuição amostral n, a distribuição binomial será sempre simétrica se p=0,50, será assimétrica à direita se p>0,50 e assimétrica à esquerda se p<0,50

√ Distribuição Binomial

- ✓ Exercícios
 - 1. Determinar a probabilidade de obtermos 4 vezes o número 3 ao lançarmos um dado 7 vezes. (R.: 1,56%)
 - 2. Considerar 10 doadores escolhidos aleatoriamente de uma população onde a probabilidade de tipo A é 0,40? Determinar a probabilidade de pelo menos 5 doadores terem sangue do tipo A. (R.: 36,70%)

✓ Distribuição Binomial

- ✓ Exercícios
 - 3. Uma amostra aleatória de 20 pessoas é obtida de uma população em que 40% têm uma determinada posição política. Determinar a probabilidade de exatamente 6 indivíduos na amostra ter essa determinada posição política. (R.: 12,44%)

Distribuição Binomial

✓ Exercícios

- 4. A probabilidade de uma máquina produzir um item defeituoso 0,20. Se uma amostra aleatória de 6 itens é obtida desta máquina, determinar a probabilidade de haver: a) 2 itens defeituosos na amostra; (R.:
- b) 5 ou mais itens defeituosos na amostra. (R.: 0,16%)

✓ Distribuição Binomial

✓ Exercícios

- 5. Uma firma exploradora de petróleo acha que 5% dos poços que perfura acusam depósito de gás natural. Se ela perfurar 6 poços, determinar probabilidade de:
- a) pelo menos um apresentar resultado positivo; (R.: 26,48%)
- b) no máximo 2 apresentar resultado positivo. (R.: 99,77%)

Distribuição Binomial

✓ Exercícios

6. Acredita-se que 20% dos moradores das proximidades de uma grande indústria siderúrgica tem alergia aos poluentes lançados ao ar. Admitindo que este percentual de alérgicos é real (correto), calcular a probabilidade de que pelo menos 4 moradores tenham alergia entre 13 selecionados ao acaso. (R.: 25,26%)

Distribuição Binomial

✓ Exercícios

- 7. Três em cada quatro alunos de uma universidade fizeram cursinho antes de prestar vestibular. Se 15 alunos são selecionados ao acaso, determinar a probabilidade de que:
- a) pelo menos 12 tenham feito cursinho; (R.: 46,13%)
- b) no máximo 13 tenham feito cursinho; (R.: 91,98%)
- c) exatamente 10 tenham feito cursinho; (R.: 16,51%)
- c) em um grupo de 80 alunos selecionados ao acaso, qual é o número esperado (média) de alunos que fizeram cursinho? E o desvio padrão? (R.: 60: 3.87)

Distribuição Binomial

✓ Exercícios

8. Uma máquina inutiliza uma peça a cada 20. (a) Qual a chance de uma amostra de 5 unidades apresentar 3 úteis? (R.: 2,14%); (b) Qual a média e o desvio padrão de inúteis em 5000 itens? (R.: 250; 15,41)

✓ Distribuição Binomial

✓ Exercícios

- 9. Um grande varejista compra certo tipo de equipamento eletrônico de um fabricante. O fabricante indica que a taxa de equipamentos com defeito é de 5%.
- a) O inspetor da rede seleciona 12 itens de um carregamento. Determinar a probabilidade de que haja pelo menos um item defeituoso entre esses 12; (R.: 45,96%)
- b) Suponha que a rede varejista receba 10 carregamentos por mês e o inspetor seleciona aleatoriamente 12 equipamentos de cada carregamento. Determinar a probabilidade de que haja 3 carregamentos com pelo menos um item defeituoso. (R.: 15,68%)

DISTRIBUIÇÃO NORMAL

Distribuição Normal

- ✓ Conceituação
 - A distribuição normal é uma distribuição contínua de probabilidade de uma variável aleatória "x", e ocupa posição proeminente tanto na estatística teórica como na aplicada
 - √ Isso se deve ao fato da distribuição normal representar, com aproximação, as distribuições de frequência observadas em muitos fenômenos naturais e físicos

Distribuição Normal

- ✓ Conceituação
 - √ Também, as distribuições tanto das médias como das proporções em grandes amostras tendem a ser distribuídas normalmente, o que tem relevante implicação na teoria a amostragem

Distribuição Normal

✓ Propriedades da distribuição normal

Distribuição Normal ✓ Propriedades da distribuição normal

- a) sua representação gráfica tem a forma de um sino simétrico em relação ao eixo que passa pela média da distribuição (50% dos valores são inferiores a média e 50% dos valores são superiores a média)
- b) A curva se prolonga indefinidamente em qualquer das direções a partir da média $(-\infty/+\infty)$
- c) a área total sob a curva é considerada 1 (100%)

✓ Distribuição Normal

- ✓ Propriedades da distribuição normal
 - d) cada distribuição normal completamente definida por sua média (μ) e seu desvio padrão (σ)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Função densidade

✓ Distribuição Normal

- ✓ Propriedades da distribuição normal
 - e) a área sob a curva entre dois pontos é a probabilidade de uma variável normalmente distribuída tomar um valor entre esses pontos

$$A = P(a \le x \le b) = \int f(x) dx$$

✓ Distribuição Normal

- ✓ Propriedades da distribuição normal
 - f) como há um número ilimitado de valores entre ∞ e + ∞ , a probabilidade de uma variável aleatória tomar exatamente determinado valor é zero. Assim, as probabilidades se referem sempre a intervalos de valores

✓ Distribuição Normal

- ✓ Propriedades da distribuição normal
 - g) a área sob a curva entre a média e um ponto arbitrário é função do número de desvios padrões e aquele ponto

OBS: em termos probabilísticos pode-se dizer que a probabilidade aumenta à medida que, na linha da base, nos afastamos da média em ambos os sentidos

√ Distribuição Normal

- √ Distribuição normal padronizada
 - √Considerando a existência de infinitas curvas normais (para as diferentes combinações de média e desvio padrão) convencionou-se, para facilitar os cálculos, trabalhar com valores relativos ao invés de reais
 - √ Isto equivale a tomar a média como ponto de referência (origem) e o desvio padrão como medida de afastamento a contar daquele ponto

✓ Distribuição Normal

- ✓ Distribuição normal padronizada
 - √ Essa nova escala é conhecida com escala z

✓ Distribuição Normal

- ✓ Distribuição normal padronizada
 - √ Um valor na escala z representa a quantos desvios padrões o correspondente valor de x está da média da distribuição, de um lado ou de outro
 - √ A mudança de escala, que transforma as unidades da escala original (x), em unidades padronizadas, é feita por meio da seguinte expressão

$$z = \frac{x - \mu}{\sigma}$$

✓ Distribuição normal padronizada

$$z = \frac{x - \mu}{\sigma}$$

✓ z = número de desvios padrões a contar da média

√ x = valor arbitrário

 \checkmark μ = média da distribuição normal

√ σ = desvio padrão

✓ Distribuição Normal

- ✓ Distribuição normal padronizada
 - √ Se uma variável tem distribuição normal, 68,26% de seus valores estarão no intervalo de um desvio padrão a contar de cada lado da média, 95,44% no intervalo de dois desvios padrões a contar da média e 99,72% dentre de três desvios padrões a contar da média
 - √ Isto é verdade para quaisquer que sejam a média e o desvio padrão, ou seja, é válido para todas as distribuições normais

✓ Distribuição Normal

✓ Distribuição normal padronizada

✓ Distribuição Normal

- √ Tabela normal padronizada
 - ✓ Após fazer a conversão da escala original (x) para a escala em termos de desvios padrões (z), as áreas sob a curva de qualquer distribuição normal podem ser achadas utilizando-se uma tabela normal padronizada (não havendo necessidade de cálculo)
 - √ A tabela fornece a área sob a curva, ou seja, a probabilidade de um determinado valor estar no intervalo considerado

✓ Distribuição Normal

- √ Tabela normal padronizada
 - √ Como a distribuição normal é simétrica em torno da média, a metade esquerda da área sob a curva é imagem reflexa da metade direita
 - √ Em razão de tal simetria, costuma-se encontrar apenas a metade da distribuição numa tabela
 - √ A área sob a curva entre a média e +z
 é igual a área sob a curva entre a média
 e -z

Distribuição Normal

Tabe	la Áre	as para a D	istribuição	Normal Pa	dronizada				0 :
z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0.0239	0.0279	0.0319
0,1	0,0398	0,0438	0,0478	0,0517	0.0557	0,0596	0,0636	0,0675	0,0714
0,2	0,0793	0,0832	0,0871	0,0910	0.0948	0.0987	0.1026	0.1064	0.1103
0,3	0,1179	0,1217	0,1255	0,1293	0.1331	0.1368	0.1406	0.1443	0.1480
0,4	0,1554	0,1591	0,1628	0,1664	0.1700	0,1736	0.1772	0.1808	0.1844
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0.2123	0.2157	0.2190
0,6	0,2257	0,2291	0,2324	0.2357	0.2389	0,2422	0,2454	0,2486	0,2518
0,7	0,2580	0,2612	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0.3023	0.3051	0,3078	0,3106
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0.3810
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0.4147	0,4162
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0.4625
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854
2,2	0,4861	0,4864	0,4868	0.4871	0,4875	0,4878	0,4881	0,4884	0,4887
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0.4971	0,4972	0,4973
2,8	0,4974	0,4975	0,4976	0,4977	0.4977	0,4978	0,4979	0.4979	0,4980
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0.4985	0,4985	0,4986
3,0	0,4986	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990
0.5	0,49997								

✓ Distribuição Normal

✓ Exercícios

- 4. Sabe-se que a vida útil de um componente elétrico segue uma distribuição normal com média μ = 2000 horas e desvio padrão σ = 200 horas. Qual a probabilidade de um componente aleatoriamente selecionado durar:
- a) entre 2000 e 2400 horas; (R.: 47,72%)
- b) mais de 2200 horas. (R.: 15,87%)

✓ Distribuição Normal

✓ Exercícios

- 5. Os pesos de 600 estudantes são normalmente distribuídos com média μ = 65,3 Kg e desvio padrão σ = 5,5 Kg. Determinar o número de estudantes que pesam:
- a) entre 60 e 70Kg; (R.: 380 estudantes)
- b) mais de 63,2 Kg; (R.: 389 estudantes)
- c) menos de 68Kg. (R.: 413 estudantes%)

✓ Distribuição Normal

✓ Exercícios

- 6. A duração de um certo componente elétrico tem média de 850 dias e desvio padrão de 40 dias. Sabendo que a duração é normalmente distribuída, determinar a probabilidade desse componente durar:
- a) entre 700 e 1000 dias; (R.: ≈ 100%)
- b) mais de 800 dias; (R.: 89,44%)
- c) menos de 750 dias. (R.: 0,62%)

✓ Distribuição Normal

✓ Exercícios

- 7. O tempo necessário para o atendimento de uma pessoa num guichê de um banco tem distribuição normal com média de 130 segundos e desvio padrão de 45 segundos. Determinar a probabilidade de um indivíduo aleatoriamente selecionado:
- a) requerer menos de 100 segundos para terminar suas transações; (R.: 25,14%)
- b) gastar entre 2 e 3 minutos no guichê. (R.: 45,36%)

✓ Distribuição Normal

✓ Exercícios

- 8. Os depósitos efetuados em um banco durante o mês de Janeiro são normalmente distribuídos com média de R\$10.000,00 e desvio padrão de R\$1.500,00. Um depósito é selecionado ao acaso. Determinar a probabilidade de que o depósito seja:
- a) R\$10.000,00 ou menos; (R.: 50%)
- b) um valor entre R\$12.000,00 e R\$14.000,00; (R.: 8,8%)
- c) maior que R\$20.000,00. (R.: ≈ 0%)

✓ Distribuição Normal

✓ Exercícios

9. O tempo necessário em uma oficina para o conserto da transmissão de um tipo de automóvel é normalmente distribuído com μ = 45 minutos e desvio padrão σ = 8 minutos. O mecânico planeja começar o conserto do carro de um cliente 10 minutos após o carro ter sido deixado na oficina, comunicando ao cliente que o carro estará pronto em um tempo total de uma hora. Determinar a probabilidade de que o mecânico esteja errado. (R.: 26,43%)