Reverso de um número natural 4

Todo número natural estritamente positivo $n \in \mathbb{N}^*$ possui um *número reverso* correspondente. Por exemplo, considere que n seja escrito da seguinte maneira:

$$n = d_k d_{k-1} d_{k-2} \cdots d_2 d_1 d_0$$

onde $k \in \mathbb{N}^*$ corresponde ao número de dígitos significativos que formam n, ou seja, $d_k \in \{1, 2, 3, \dots, 9\}$ e $d_i \in \{0, 1, 2, \dots, 9\}, \text{ com } 0 \le i < k.$

O *número reverso* de n é $n^r = d_\ell d_{\ell-1} d_{\ell-2} \cdots d_{k-2} d_{k-1} d_k$, sendo d_ℓ o primeiro dígito não nulo, tomados nesta ordem, dentre $d_k d_{k-1} d_{k-2} \dots d_2 d_1 d_0$ do número original n.

Escreva uma função recursiva, em C, que seja capaz de determinar o número reverso de um certo número natural estritamente positivo *n* fornecido como entrada.

Entrada

A única linha da entrada contém um único número natural estritamente positivo, n, $1 \le n \le 10^6$.

Saída

Seu programa deve imprimir uma única linha com o valor de n^r , o número reverso de n.

Exemplos

	Entrada	Saída
411		114

Entrada	Saída
1230	321

Entrada	Saída
138000	831