Trabajo práctico Latex

Kevin Frachtenberg, Ruslan Sobol Sanmartin, Celeste Rodriguez Junio 2017

1 Ejercicio 1

$$\begin{array}{l} X_1,...,X_n=\text{m.a. iid U[0,b]} \\ 1)\ b_{mom}\colon \frac{\sum_{i=1}^n X_i}{n}=E[X]=\frac{b}{2}. \iff X_n=\frac{b}{2} \iff b_{mom}=2X_n \end{array}$$

2)
$$b_{mv}$$
: L(b) = $\prod_{i=1}^{n} \frac{1}{b-0} \mathbb{I}_{[0,b]}(x_i)$

$$L(b) = \begin{cases} \prod_{i=1}^{n} \frac{1}{b} & \text{si } \max(x_i) \le b \\ 0 & \text{si no} \end{cases} = \begin{cases} (\frac{1}{b})^n & \text{si } \max(x_i) \le b \\ 0 & \text{si no} \end{cases}$$

Vemos que L(b) es decreciente si b mayor o igual que el máximo de los x_i y es constantemente 0 en caso contrario. Por lo tanto, encontramos que $b_{mv}=max(x_i)$

2 Ejercicio 3

 $b_{mom}=1.098693,\,b_{mv}=0.9682335,\,b_{med}=0.5823368.$ Los errores respectivamente son 0.0986929, 0.03176648, 0.4176632

3 Ejercicio 6

En este gráfico, los puntos azules representan el estimador de mediana, mientras que los verdes al de momentos y los negros al de máxima verosimilitud. Observamos que el de máxima verosimilitud tiene menor error. Por lo tanto elegiríamos ese.

4 Ejercicio 7

En este segundo gráfico, cada color representa al mismo estimador que en el Ejercicio 6. Observamos que nuevamente el b_mv es el que tiene menor ECM. Nos llama la atención que b_med tenga un comportamiento tan distinto a los otros dos estimadores. Elegimos nuevamente b_mv . En todos los casos, pero particularmente en b_mv y b_mom , observamos que el estimador se acerca al valor estimado mientras más grande es el n.

5 Ejercicio 8

La diferencia que hay entre cada uno. Entendemos que se debe al outlier 20.1

6 Ejercicio 9

Table 1: Tabla comparativa

	MOM	MV	MED
Sesgo	-0.3987829	-2.958498	0.5050361
Varianza	3.405211	187.7026	0.01528604
ECM	3.564239	196.4554	0.2703475

En este caso, preferimo el b_{med} , ya que es el que más se acerca al valor real.