Pabna Cadet College Test Examination - 2021

Class: XII

Subject: Statistics First Paper (Creative)

Time: 2 hours & 25 minutes Subject Code: 129 Full Marks: 50

Answer five questions taking at least 2 (two) from each group. Figures in the right indicate full marks.

$\mathbf{Group}\ \mathbf{A}$

1. It is observed that in a college, there are 100 students, of whom 30 play football, 40 play cricket, and 20 play both.	
(a) What is a sample space?	1
(b) What is the relationship between independence and mutual excluvity?	2
(c) Are the probabilities of playing cricket and that of football independent? Prove.	3
(d) If a student is selected randomly, and if he plays cricket, what is the probability that he does not play football?	4
2. The probability density function of a continuous random variable is	
$f(x) = \begin{cases} kx^2 + kx + \frac{1}{8}, & 0 \le x \le 2\\ 0, & otherwise \end{cases}$	
(a) What is a random variable?	1
(b) Find the value of k	2
(c) Find the probability that the values of x would lie between 0 and 1.	3
(d) Is $f(x)$ a probability density function? Justify.	4
3. For a lottery, 9 red and 7 white balls are placed in a box. Different combinations of balls are then picked up from the box.	
(a) What is the probability of an impossible event?	1
(b) If a ball is drawn, what is the probability the ball not white?	2
(c) If 6 balls are picked randomly, what is the probability that 3 balls are red and 3 balls are white?	3
(d) When two balls are drawn without replacement, what is the probability that none is red? If this task is repeated a hundred times, approximately how many times would we get all-non-red balls?	4
4. A statistician of a customer care center investigates the calls received and finds that the call center receives 5 calls per hour on average.	
(a) What is a Poisson process?	1
(b) Prove that the summation of probability of all possible values of a Poisson distribution is 1.	2
(c) What is the probability that no less than three calls would be received in an hour?	3
(d) Is the probability of receiving one call greater than that of receiving no calls? Justify mathematically and logically.	4
Group B	
5. In an industry, 3% products are found to be defective. A quality control officer collects a sample of 20 items.	
(a) What is Bernoulli trial?	1
(b) What is the relationship between Bernoulli and Binomial distribution?	2
(c) Determine the probability that at least 3 items are defective.	3
(d) Find the probability that no. of defective items would be less than the mean.	4

X	-3	-2	-1	0	1	2
P(x)	k	2k	3k	2k	4k	0.4

6. Probability distribution of a random variable is shown on the table:

	(a)	What is the formula of variance in terms of expectation?	1
	(b)	Prove expected value is equal to arithmetic mean.	2
	(c)	Find the value of k and $P(-3 \le X \le 0)$.	3
	(d)	Determine the $E(X)$ and $V(X)$.	4
7.		vinter, the probability that it rains on a particular day is 0.015. An analyst observes winter days.	
	(a)	What is an experiment?	1
	(b)	When can the Poisson distribution be approximated by the Binomial distribution?	2
	(c)	Find, using Binomial distribution, the probability that it would not rain at all on the observed days.	3
	(d)	Find the probability in 3(c) using Poisson distribution.	4
8.	geoi	projection of population in a future time period, demographers use simple, metric or exponential growth technique. Each method has its advantages and dvantages.	
	(a)	For projection of population in a future time period, demographers use simple, geometric or exponential growth technique. Each method has its advantages and disadvantages.	1
	(b)	In geometric growth method, obtain the formula for time required for the population to get doubled [denote rate as r].	2
	(c)	In exponential method, how much unit of time is required for the population to get tripled?	3
	(d)	For projecting (predicting future values), is geometric growth method better than the exponential method? Justify.	4