

Updates: cadCAD Implementation,
Parameter Selection Under Uncertainty

January 29, 2021 For Reflexer Labs

Outline

- 1. Status Updates
 - Code implementation (TWAP Oracle)
 - Code/Notebook Documentation
- 2. Parameter Selection Under Uncertainty
- 3. Parameter Sweeps and Monte Carlo

Parameter selection under uncertainty

- cadCAD workflow rests upon a standardized engineering template:
 - System goals are identified
 - Control parameters are identified
 - Environmental parameters (uncontrolled) are identified
 - Key performance indicators (KPIs) / metrics are identified
 - Simulations are conducted
 - Optimal parameters are selected

System Goals

- System goals ensure the cadCAD simulation parameters and metrics are aligned with the overall objective
- RAI project system goals are:
 - smoothing of secondary market price movements without assuming a redemption price peg
 - stability of the controller for a range of exogenous shocks
 - graceful startup and shutdown of controller in response to system events

Control parameters

- Control parameters specify critical features that can be selected by system designers to achieve system goals
- RAI project control parameters are:
 - controller-specific parameters:
 - K_p , K_i , leaky-integral anti-windup, controller period
 - debt market-specific parameters:
 - ullet Liquidation ratio $ar{L}$
 - TWAP Oracle parameters

Control Parameters Balance System Goals

- It is generally not possible to select control parameters that support every system goal
- For example, changes to control parameters can have countervailing
 effects on system goal achievement

Control Parameters Balance System Goals

- There typically exist ranges of parameter values (basins of attraction) that support one or more system goals across many simulations
- Can e.g. visualize relative frequency of simulations that find parameter values supporting system goals

Environmental parameters

- Environmental parameters specify features that are external to the system, but affect the achievement of the system goals
- RAI project environmental parameters are:
 - price of Ethereum
 - demand for liquidity in Uniswap pool
 - initial conditions of the debt market (e.g. initial injection of collateral)
 - bootstrapping of liquidity into secondary market (e.g. fraction of minted RAI sent to pool)

KPIs/Metrics

- Selection: given environmental parameters, control parameters are selected in response to KPIs/Metrics that reflect system goals
- RAI project KPIs/Metrics are (so far):
 - **stability metric**: relative frequency of stable vs. unstable paths across simulations [stability; grace]
 - volatility metric: statistical dispersion of secondary market price [smoothing]
 - liquidity metric: slippage in secondary market [grace]
 - responsiveness metric: arbitrageur and controller response times to different environmental parameter impulses [smoothing; stability]

Simulation Workflow

- Specify simulation scenarios to test against system goals
- **Specify** generating process(es) for environmental parameters: can be ranges, distribution assumptions, historical fit, etc.
- **Specify** sweep ranges for control parameters
- Perform simulations across sweep ranges, Monte Carlo (for stochastic draws)
- Build corpus of KPIs/Metrics for simulations

Simulation Workflow

- Assess KPIs/Metrics using e.g. ranking, ML, system goal landscape mapping, qualitative analysis
- Select optimal parameter values based upon KPI/Metric assessment
- Perform robustness assessment around optimal parameter values, fine-tuning parameters where needed
- **Deliver** final optimal parameter recommendations along with basin(s) of attraction / confidence intervals (if applicable)

