Sheaves in Geometry and Logic — Solutions

zin 3724

Chapter 1

$1.7 \quad zin 3724$

Let G be the Lie group $S^1 := \{\mathbb{R} \mod 2\pi, +\}$. Then each θ induces a map $S^1 \xrightarrow{+\theta} S^1$ as G-spaces, given by

$$+\theta(\omega) = \omega + \theta \mod 2\pi$$

for all $\omega \in S^1$. Here, G acts by left multiplication in both cases. The equalizer of $\{+\theta \mid \theta \in [0, 2\pi)\}$ in the category of G-spaces is $S^1 \xrightarrow{\mathrm{id}_{S^1}}$, but each nonzero $+\theta$ has no fixed points, so in **Sets**, the equalizer is \emptyset , which isn't the underlying set of the G-set S^1 , so we have a counterexample to the claim that the forgetful functor $U \colon \mathbf{B}G \to \mathbf{Sets}$ preserves limits.

$1.8 \quad zin 3724$

This is almost exactly the same as the proof of Proposition 1.6.1 on pp. 46-47. Note that D_B is the forgetful functor from \mathbb{C}/B to \mathbb{C} that takes each object in \mathbb{C}/B to its domain.

Suppose ϕ is a natural transformation in $\widehat{\mathbf{C}}(R \times P, Q)$, then we define for each $B \in \mathrm{obj}(\mathbf{C})$ the component ϕ_B' such that for each $u \in R(B)$, the image $\phi_B'(u) \in \widehat{\mathbf{C}/B}(P_B, Q_B)$ has its component at each $(C \xrightarrow{f} B) \in \mathrm{obj}(\mathbf{C}/B)$, defined by

$$(\phi_B'(u))_f: P(C) \to Q(C): y \mapsto \phi_C(u \cdot f, y) = \phi_C(R(f)(u), y)$$

Now, we define the evaluation map ev from $\widehat{\mathbf{C}/(-)}(P_{(-)}, Q_{(-)}) \times P$ to Q, by defining for each $B \in \mathrm{obj}(\mathbf{C})$, its component as

$$(ev)_B:\widehat{\mathbf{C}/B}(P_B,Q_B)\times P(B)\to Q(B):(\alpha,w)\mapsto \alpha_{1_B}(w)$$

so as an example, for $(u, w) \in R(B) \times P(B)$, we have

$$(ev)_B(\phi'_B(u), w) = (\phi'_B(u))_{1_B}(w) = \phi_B(u \cdot 1_B, w) = \phi_B(R(1_B)(u), w)$$
$$= \phi_B(1_{R(B)}(u), w) = \phi_B(u, w)$$

hence each $\phi \in \widehat{\mathbf{C}}(R \times P, Q)$ factors through ev. Now, it follows from the way we constructed each ϕ'_B and the constraint that ϕ' has to be a natural transformation from R to $\widehat{\mathbf{C}/(-)}(P_{(-)}, Q_{(-)})$, that ϕ factors uniquely through ev, so $\widehat{\mathbf{C}/(-)}(P_{(-)}, Q_{(-)})$ can be regarded as the exponential Q^P in $\widehat{\mathbf{C}}$.