Introduction to Coding Theory - Spring 2025 Assignment 3

Submission Deadline: 7 March

1. Consider a binary linear block with a parity check matrix given by

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}.$$

Suppose a codeword is transmitted over BSC(p) and the received vector is \mathbf{y} . Use standard array decoding to estimate the transmitted codeword in the following cases:

- (a) $p = 0.2, \mathbf{y} = [0, 1, 0, 0, 1]$
- (b) p = 0.9, $\mathbf{y} = [1, 0, 1, 0, 1]$ (When p < 0.5, we find the closest codeword to the received vector. Is that a good strategy in this case?)
- 2. Consider an [n, k, d] linear code \mathcal{C} over \mathbb{F}_2 , with d = 2t + 1, for some $t \in \mathbb{N}$. Suppose that in the standard array corresponding to \mathcal{C} , there are no coset leaders of weight strictly larger than t. What, then, is the probability of error under standard array decoding, when \mathcal{C} is used over a BSC with cross-over probability p < 0.5?
- 3. Show that the only possibly binary MDS linear codes of length n are $\{0,1\}^n$, the repetition code, and the single parity-check code.

[Hint: Assume that the parity-check matrix H is of the form $[I_{n-k}|A]$, for some A. Use the fact that the minimum distance, d, is the largest integer such that every set of d-1 columns of H is linearly independent, to obtain the structure of A.]

- 4. It is desired to construct a [6,4] linear, binary block code having as large a minimum distance d as possible. Which of the two bounds, the Hamming bound or the Singleton bound, imposes the tighter restriction on d, i.e., which of the two bounds yields a smaller upper bound on d?
- 5. Use the bounds covered in class to determine the best upper and lower bounds on the maximum size of a binary block code of length n = 15 and minimum distance d = 7.
- 6. Prove that the minimum distance of a perfect code must be odd.

7. Let \mathcal{A} be any alphabet (i.e., a set of possible elements involved in the transmission) containing q elements. Let $\mathcal{B}_d(\mathbf{v})$ denote the set of all vectors in a Hamming ball of radius d around the vector \mathbf{v} , i.e.,

$$\mathcal{B}_d(\mathbf{v}) = {\mathbf{u} \in \mathcal{A}^n : d_H(\mathbf{v}, \mathbf{u}) \le d}.$$

Show that, there exists a code $\mathcal{C}^* \subseteq \mathcal{A}^n$, such that the following is true:

$$|\mathcal{C}^*| \ge \frac{q^n}{|\mathcal{B}_{t'}|},$$

where $t' = d_{\min}(\mathcal{C}^*) - 1$. [Hint: Consider \mathcal{C}^* to be the maximal (containing most codewords) code with minimum distance $d_{\min}(\mathcal{C})$. Draw balls of radius $d_{\min}(\mathcal{C}) - 1$ around all the codewords. Show that there will be a contradiction with the maximality of \mathcal{C}^* , if some vector lies outside the union of all these balls. Hence prove the result.]