Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic??</u>	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??	Yes	No	Yes (except auctions)	No

The environment type largely determines the agent design

The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Simple reflex agents

Example

```
function Reflex-Vacuum-Agent ([location, status]) returns an action
   {f if}\ status = Dirty\ {f then}\ {f return}\ Suck
   else if location = A then return Right
   else if location = B then return Left
(setq joe (make-agent :name 'joe :body (make-agent-body)
                         :program (make-reflex-vacuum-agent-program))
(defun make-reflex-vacuum-agent-program ()
 #'(lambda (percept)
      (let ((location (first percept)) (status (second percept)))
         (cond ((eq status 'dirty) 'Suck)
                ((eq location 'A) 'Right)
                ((eq location 'B) 'Left))))
```

Reflex agents with state

Example

```
function Reflex-Vacuum-Agent([location, status]) returns an action static: last\_A, \ last\_B, numbers, initially \infty
if status = Dirty then . . .
```

Goal-based agents

Utility-based agents

Learning agents

Summary

Agents interact with environments through actuators and sensors

The agent function describes what the agent does in all circumstances

The performance measure evaluates the environment sequence

A perfectly rational agent maximizes expected performance

Agent programs implement (some) agent functions

PEAS descriptions define task environments

Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?

Several basic agent architectures exist: reflex, reflex with state, goal-based, utility-based