Aprendizaje de Máquina

Menú

- Funciones de pérdida
- Evaluación de modelos
 - Algunas medidas
 - Tipos de errores
 - Curva ROC
- Cómo escoger los parámetros de un modelo

Funciones de pérdida

- Estas funciones se utilizan como las medidas de error que guían el ajuste de un modelo
- Regresión
 - Las suma de diferencias al cuadrado (norma L₂)
 - La suma de las diferencias absolutas (L₁)
- Clasificación
 - Cross-entropy $H(p,q) = -\sum_x p(x) \, \log q(x).$
 - Donde p y q son distribuciones de probabilidad, p es la real y q es el la estimada
 - Norma L₂
- El objetivo de la función de pérdida es proveer a los modelos con la mayor información para que se ajusten de mejor manera

- Normalmente un modelo busca minimizar el promedio de estas medidas para los datos de entrenamiento (y de prueba)
- Las medidas de error que discutiremos a continuación tienen que ver con lo que se reporta acerca del desempeño final de un modelo

Evaluación de Modelos

Regresión

 Por lo general la medida de error utilizada es el error cuadrático medio

$$Error_{Modelo}(Datos) = E((Modelo(X_i) - f(X_i))^2) = \frac{1}{N} \sum_{i=1}^{N} (Modelo(X_i) - f(X_i))^2$$

Clasificación

 La medida de error esta dada por el número de predicciones incorrectas entre el número de predicciones totales

$$Error_{Modelo}(Datos) = \frac{1}{N} \sum_{i=1}^{N} I(Modelo(X_i) \neq f(X_i))$$

Donde N es el número de datos, f(Xi) es el verdadero valor para el dato Xi y I es la función indicadora (vale 0 o 1)

Calidad de un Modelo

- Casi siempre necesitamos obtener un visión más fina del error para problemas de clasificación
 - Diferentes aplicaciones dan diferente importancia a en qué se equivoca el modelo
 - A cuántos clientes les doy mal servicio vs fraude que detecto
 - Cuántos créditos de alto monto apruebo vs cuantos declino
 - A cuánta gente le doy radiación innecesaria
 - A cuántos enfermos no les doy radiación

Error de Clasificación Matriz de Confusión

- Muchas veces es útil dividir el desempeño del sistema con respecto a la clase o acción final en:
 - Verdaderos Positivos, Falsos Positivos, Verdaderos Negativos y Falsos Negativos
- Un manera común de visualizar esto es hacer una matriz en donde:
 - Cada renglón tiene el número de instancias de cada clase (según los ejemplos de entrenamiento, la clase real)
 - Cada columna tiene el número de instancias por clase según el clasificador (para cierto valor del umbral)

Ejemplo de dos clases si y no :

Clasificamos como

- En rojo están los errores
- Para k clases es una matriz de k X k

- A partir de la matriz de confusión podemos derivar varias medidas de desempeño. Un medida común es para cada una de las i clases o categorías calcular:
 - Verdaderos positivos (Tp)
 - El número de instancias que clasificamos como de la categoría i que verdaderamente pertenecen a i
 - Falsos positivos (Fp)
 - El número de instancias que clasificamos como de la categoría i que verdaderamente pertenecen a otra categoría distinta de i
 - ¿Cuál es la clase positiva y cuál la negativa? Por lo general se etiqueta como positiva la que demanda una acción (dar radiación, declinar transacción,...) y/o la clase que tiene menos instancias

- Del ejemplo anterior, del los 12 ejemplos
 - Tp
 - De los 4 ejemplos de la categoría si, el modelo identifica 3. La proporción es:
 - Tp=3/4=0.75
 - Fp
 - De los 8 ejemplos de la categoría no, clasificamos 2 como si. La proporción es:
 - Fp=2/8=0.25

- TN
 - De los 8 ejemplos de la categoría no el modelo identifica 6. La proporción es:
 - TN=6/8=0.75
- FN
 - De los 4 ejemplos de la categoría si, el modelo falla en 1.La proporción es:
 - FN=1/4=0.25

- Para más de dos categorías tenemos una matriz de k
 X k (k el número de categorías)
 - La entrada i,j contiene el número de instancias pertenecientes a la categoría i pero que fueron clasificadas como pertenecientes a j
 - En este caso los falsos positivos son la suma de todos los elementes clasificados como i que pertenecen a una categoría distinta
 - Los falsos negativos son todos los elementos de la clase i que con clasificados como de otra clase

Otras Medidas de Bondad

- Accuracy
 - (TP+TN)/(TP+TN+FP+FN)
- Precision
 - TP/(TP+FP)
- Recall
 - TP/(TP+FN)
- Muchas veces es importante contar con un solo número para poder optimizar el modelo
 - F-measure
 - 2*(Precision*Recall)/(Precision+Recall)
 - Área bajo la curva ROC
- Entre otras.....
- Muchas veces es necesario crear medidas relevantes para el problema (e.g. dinero ahorrado,...)

Sensibilidad del Modelo Umbralización

- En ocasiones los modelos de clasificación dan una calificación (o probabilidad) de pertenencia a una clase y por tanto la pertenencia de clase depende de un punto de corte (de la umbralización)
- Por ejemplo
 - En la detección de fraudes por lo general se asigna una calificación entre cero y uno a cada transacción. El operador del sistema debe de decidir a partir de que valor se considera algo como fraude
 - En el caso de detección de fraude se debe definir a partir de que "probabilidad" se recomienda tratamiento
- Para cada umbral, entonces, se calcula la bondad del modelo

Sensibilidad del Modelo

- Para examinar el desempeño del modelo en cuanto a su sensibilidad se utiliza una curva ROC (Receiver Operating Characteristic)
 - El eje de las x representa el porcentaje (o proporción) de FPs y el eje de las y el porcentaje de TPs
 - Cada punto en el gráfico representa la proporción FPs y TPs para una calificación dada. Notese que es acumulativo.
- En base a esto podemos escoger el umbral

Curva ROC

Sensibilidad del Modelo

- Los paquetes que reportan una matriz de confusión reportan el desempeño en el punto óptimo del ROC
 - Óptimo desde el punto de vista de alguna medida de error no necesariamente de lo que importa al negocio
- Es importante enfatizar que la importancia del tipo de error (FP o FN) depende de la aplicación y esto debe incluirse en la evaluación del método
 - Detección de spam
 - Detección de desperfectos en maquinaria

Ejercicio Opcional

- Para los datos EjercicioROC.csv
- Genere una curva de ROC en Excel
- Calcule el punto de corte óptimo en cuanto a asertividad (accuracy) y en cuanto a precisión
- Repita el ejercicio pero usando sklearn de python con los paquetes
 - roc_curve
 - Calcule el área bajo la curva