

Fluorosilicone grease - includes a fluorosilicone oil base oil, a fluorine-containing tackifier compound and a sorbitan fatty acid ester corrosion-preventing agent Patent Assignee: DOW CORNING KK

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week Type
JP 11029785		,,	JP 97183327	A	19970709	199915 B

Priority Applications (Number Kind Date): JP 97183327 A (19970709)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
JP 11029785	A		6	C10M-169/00	

Abstract:

JP 11029785 A

The fluorosilicone grease includes (1) a base oil composed of a fluorosilicone oil, (2) a tackifier composed of a fluorine-containing compound, and (3) a corrosion-preventing agent composed of a sorbitan fatty acid ester.

USE - The fluorosilicone grease is used to give lubricating performance and corrosion-preventing performance.

ADVANTAGE - Since the sorbitan fatty acid ester is incorporated into the fluorosilicone grease as the corrosion-preventing agent, extremely excellent corrosion-preventing performance can be obtained although the base oil is the fluorosilicone oil.

Dwg.0/1

Derwent World Patents Index © 2002 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 12369710

⑩ 日本国特許庁(JP)

⑪ 特許出願公開

⑩ 公 開 特 許 公 報 (A)

平1-129785

@Int_Cl.4

識別記号

庁内整理番号

匈公開 平成1年(1989)5月23日

H 02 N 10/00 F 03 G 7/00

ZAA

7052 - 5HC - 6706 - 3G

審査請求 未請求 発明の数 1 (全4頁)

図発明の名称

熱エネルギーを力学的エネルギーに変換する方法及び熱機関

②特 昭62-286196

昭62(1987)11月12日 23出

明 ⑫発 中 者 \blacksquare

東京都西多摩郡羽村町神明台2丁目4番地の1 強

ション羽村104

の出 願 人 田 中 東京都西多摩郡羽村町神明台2丁目4番地の1 ション羽村104

明細書

」、発明の名称

熱エネルギーを力学的エネルギーに変換す る方法及び烈機関

- 2、特許請求の範囲
 - 磁場中における磁性体(!)に、温度差を与え ることにより、磁性体(1)、または磁場を形 成する磁石(2)、あるいはコイル(2)を移動さ せる。

以上の如くの、熱エネルヤーを力学的エネ n シニレ本協オスセキスが軌機関

特許請求の範囲第1項記載の熱エネルギー を力学的エネルギーに変換する方法及び烈 機関.

3、発明の詳細な説明

(産業上の利用分野)

本発明は、磁気力を利用して、熱エネルギ - を力学的エネルギーに変換する方法及び熱 機関に関するものである。

(従来の技術)

従来、熱エネルヤーを力学的エネルギーに変換 する方法及び熱機関として、代表的なものに. 蒕 **気機関がある。**

近年、外燃機関として、スターリンエンジンが 開発途上にある。

これらの熱機関は、液体または気体の熱膨張を 利用したものであり、一般的に大きな熱機関とな る。

(発明が解決しようとする問題点)

太承旧は 上記のゆるものしい 大牛Rが堪立

- に変換する方法及び熱機関を、提供する目的か ら発明されたものである。

(問題を解決するにめの手段)

- 1 磁場中における磁性体(1)に、温度差を与える ことにより、磁性体(1)、または磁場を形成す る磁石(2)、あるいはコイル(2)を移動させる。
- 2 磁性体(1)のがわりに、超伝導体(1)を用いる。

本発明は、以上のように磁性体(I)、または超伝 導体(I)に、温度差と磁界を与えて、熱エネルギー を力学的エネルギーに変換する方法及び熱機関で ある。

(作用)

本発明は、た、Co、Ni等の強磁性体および、これらの化合物が、ある温度で(キューリー温度)以下では、磁石によくつき、ある温度で以上ではほとんど磁石につかなくなる特性、また超伝導体では、ある温度で(臨界温度)以下になると、磁石に反発する特性に着眼して、発明されたものである。

磁性体における動作原理を、図をもって説明すると、第1図に示すように、磁石(2)、あるいはコイル(2)で磁場を作り、この中に磁性体(1)を置き、磁性体(1)が移動できる機構とする。

常温では、磁性体(I)は磁場中で安定しており、 動くことはない。

第1 図において、磁石(2)。あるいはコイル(2)の 右側の加熱器(3)等で、磁性体(1)を、ある温度で以

バランスをくずすことによる.

第1回において、磁石(2)、あるいはコイル(2)の右側の冷却器(4)等で、超伝導体(1)を臨界温度下以下に冷却すると、冷却された部分は完全反磁性を示すため、磁場に反発し、超伝導体(1)は右側に移動する。

冷却を継続すると、超伝導体(II)を右側に連続して移動できる。

従って、

イ、磁石(2)、あるいはコイル(2)を、固定した場合 は 磁性体(1) または部分道体(1)を連続して

□、磁性体(I)、まには超伝導体(I')を、固定した場合は、磁石(Z)、あるいはコイル(Z)を連続して 移動できる。

(実施例)

本発明の熱機関の実施例を、以下記載する。

第3図は、磁石(Z)を固定し、磁性体(I)、または 超伝導体(I)をベルト状として、移動できる機構と した実施例の断面図である。 上に加熱すると、加熱された部分は磁気分極を失い、磁場中における磁気分極のバランスがくずれる。

磁性体(I)は、磁場中において、最も安定した状態をとるために、右側に移動する。

加熱温度は、磁性体(I)の熱伝導により、右側から左側に伝導するので、加熱を連続すると、磁性体(I)を右側に連続して移動できる。

磁性体(I)の磁化率Jと温度Tの関係が、第2回の実線で示すような特性であれば、熱エネルギーを効率良く、力学的エネルギーに変換できる。

しかし、実在する磁性体(I)では、破線で示す特性であるため、熱エネルギーの一部は、力学的エネルギーに変換できない。

この場合、熱回収器(5)等により、熱エネルギー を再利用することによって、エネルギー損失を少 なくでき、熱効率の高い熱機関を構成できる。

超伝導体(I)の動作原理は、磁場中における超伝 導体(I)に、温度差を与えることにより、臨界温度 Te以下で生じる完全反磁性(マイスナー効果)の

磁石(2)の両端に、加熱器(3)、冷却器(4)を設けると、磁性体(1)、または超伝導体(1)の移動方向を、容易に変えることができる。

また、左右の加熱、冷却を交互に繰り<u>返</u>すと、 往復運動をする熱機関となる。

第4図は、磁性体(I)、または超伝導体(I')をリング状とした場合の構成図である。

- イ. 磁石(2). あるいはコイル(2)を複数個とする。
- 口、加熱器(3)、あるいは冷却器(4)を複数個とする。
- ハ. 磁性体(I). または超伝導体(I)のリングを複数 個とする。

成できる。

このように、磁性体(I)、または超伝導体(I)を、リング状、ベルト状、ドラム状、円板状にすると回転運動をする熱機関を構成できる。

第5回は、磁性体(1)、または超伝導体(1)を固定し、磁石(2)、あるいはコイル(2)を移動できる機構として、車輌、運搬具に応用した実施例である。 磁性体(1)、超伝導体(1)を測温して、最適温度に

特開平1-129785 (3)

コントロールすると、熱効率を向上させることが できる。

磁性体(I)、超伝導体(I')が、液体や粉体の場合は容器に収容したり、バインターで固めることにより使用できる。

なお、本発明の実施態様として、次の如きがで きる。

- (1) 磁場中における磁性体(I)に、温度差を与える ことにより、磁性体(I)、または磁場を形成す る磁石(2)、あるいはコイル(2)を移動させる。
- (D) 磁性体(I)に温度差を与え、磁場を作用させることにより、磁性体(I)、まには磁場を形成する磁石(2)、あるいはコイル(2)を移動させる。
- い) 磁性体(1)のかわりに、超伝導体(1)を用いる。
- (二) 磁性体(1), 超伝導体(1)をベルド状とする。
- (ホ) 磁性体(1)、超伝導体(1)をリング状とする。
- (へ) 磁性体(1)、超伝導体(1)を円筒状とする。
- (ト) 磁性体(I)、超伝導体(I)を円板状とする。
- (チ) 加熱器(3)、または冷却器(4)を設ける。
- (ツ) 磁性体(リ)、超伝導体(リ)を測温して、温度差を

4. 図面の簡単な説明

第1図は本発明の原理図

第2図は磁化率丁と温度丁の関係図

第 3 図は本発明の実施例の断面図

第4図は本発明の他の実施例の構成図

第5図は本発明の他の実施例の構成図

(1)は磁性体

(1)は超伝導体

(2)は磁石

(2)はコイル

(3)は加熱器

(4)は冷却器

(5)は熱回収器 (6)は回転軸

特許出願人 田中强

コントロールする。

(3) 然回収器(5)等により、然エネルギーを、再利 用する。

(発明の効果)

本発明は、磁性体や超伝導体に、温度差と磁 場を与えることにより、磁気の吸引力、反発力 を利用しながらも、連続的な直線運動、回転運 動を可能としたものである。

構成が極めて簡単であり、加熱源としては、 あらゆる燃料を使用できる。

将来において、キューリー点が常温前後にある強磁性体や、常温超伝導体が開発されると、 太陽熱を有効に利用できる。

磁場中における、温度差を与えられた磁性体、 超伝導体の移動原理は、「あらゆる自然現象は 一般的に、その与えられた場において、最も安 定した状態に移行する。」という、自然科学の 法則を満足するものである。

图面

第5図

