Simplificação de Expressões Booleanas e Circuitos Lógicos

Margrit Reni Krug Julho/2002

Tópicos

- Revisão Álgebra Booleana
- Revisão portas lógicas
- Circuitos lógicos
 - soma de produtos
 - produto de somas
- Simplificação por postulado da Álgebra
- Simplificação por mapa de Karnaugh

Álgebra Booleana

- Variáveis só podem assumir 1 entre 2 valores
- Uso de tabelas (tabela verdade) para listar combinações de valores de entrada e os correspondentes valores de saída

Álgebra Booleana

- Proposição todo enunciado que pode se afirmar ser verdadeiro ou falso.
- Exemplo
 - Amanhã vai chover não constitui uma proposição, pois existe mais de duas respostas possiveis: Sim, Talvez e Não
 - Lisboa é a capital de Portugal é uma proposição

Principios da Álgebra Booleana

- Não contradição: uma proposição não pode ser simultaneamente verdadeira e falsa
- Terceiro excluído: uma proposição só pode tomar um dos dois valores possíveis, ou é verdadeira ou falsa, não sendo possível terceira hipótese.

Álgebra Booleana

• Operações Básicas

- OU - Adição Lógica F = X + Y

X	Y	F
0 0	0 1	0 1
1	0 1	1

Álgebra Booleana

- Operações Básicas
 - -E Multiplicação Lógica F = X . Y

Álgebra Booleana

- Operações Básicas
 - Não Complemento (Negação) F = X' ou F = \overline{X}

X	F
0 1	1 0

Tabela Verdade

- Cada entrada = 1 coluna
- Cada saída = 1 coluna
- Combinações de valores que entradas podem assumir = 2ⁿ, onde n =quantidade de variáveis de entrada

Tabela Verdade

$$S = A + B \cdot \overline{C}$$

Portas Lógicas

Porta AND (Função Multiplicação Lógica (E))

Portas Lógicas

 Portas lógicas são dispositivos ou circuitos lógicos que operam um ou mais sinais lógicos de entrada para produzir uma e somente uma saída, a qual é dependente da função implementada no circuito.

Portas Lógicas

• Um computador é constituído por uma infinidade de circuitos lógicos, que executam as seguintes funções básicas:

a.realizam operações matemáticasb.controlam o fluxo dos sinaisc.armazenam dados

Portas Lógicas

• Naturalmente, a cada operação lógica estudada na Álgebra de Boole está associada a respectiva porta lógica.

Portas Lógicas

Porta OR (Função Adição Lógica (OU))

$$F = A + B$$

Portas Lógicas

Porta NOT (Função Negação Lógica (Complemento))

$$F = \overline{A}$$

Circuitos Lógicos

Definição de uma função booleana através de uma tabela-verdade

Expressão algébrica da função

- Representação
 - Produto de Somas
 - lista todas as combinações das variáveis de entrada para as quais a função de saída vale 0
 - Soma de Produtos
 - lista todas as combinações das variáveis de entrada para as quais a função de saída vale 1

Soma de Produtos

Mintermo = termo-produto no qual cada variável aparece exatamente 1 vez, complementada (se bit da tabela = 0) ou não (se bit da tabela = 1)

X	Y	Z	Termo-produto	mintermo
0	0	0	XYZ	m0
0	0	1	XYZ	m1
0	1	0	XYZ	m2
0	1	1	XYZ	m3
1	0	0	\overline{XYZ}	m4
1	0	1	XYZ	m5
1	1	0	XYZ	m6
1	1	1	XYZ	m7

Produto de Somas

Maxtermo = termo-soma no qual cada variável aparece exatamente 1 vez, complementada (se bit da tabela = 1) ou não (se bit da tabela = 0)

X	Y	Z	Termo-soma	maxtermo
0	0	0	X + Y + Z	M 0
0	0	1	$X + Y + \overline{Z}$	M1
0	1	0	$X + \overline{Y} + Z$	M2
0	1	1	$X + \overline{Y} + \overline{Z}$	M3
1	0	0	$\overline{X} + Y + Z$	M4
1	0	1	$\overline{X} + Y + \overline{Z}$	M5
1	1	0	$\overline{X} + \overline{Y} + Z$	M6
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M7

Notações

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Soma de Produtos

 $F = \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ} = m0 + m2 + m5 + m7 = \Sigma m (0,2,5,7)$

Produto de Somas

 $F = (X + Y + \overline{Z}) (X + \overline{Y} + \overline{Z}) (\overline{X} + Y + \overline{Z}) (\overline{X} + \overline{Y} + \overline{Z}) = M1 . M3 . M4 . M6 = \Pi M(1,3,4,6)$

Simplificação de Expressões Booleanas

- Usada para economizar componentes, tornar o circuito mais rápido, mais simples de fabricar e de manutenir, além de diminuir seu tamanho.
- Tipos:
 - Postulados da Álgebra Booleana
 - Mapas de Karnaugh

Postulados da Álgebra Booleana

• Identidades Booleanas

$$A + 0 = A \ 1$$
 $A \cdot 0 = 0 \ 5$ $\overline{\overline{A}} = A \ 9$ $A + 1 = 1 \ 2$ $A \cdot 1 = A \ 6$ $A + \overline{A} = 1 \ 3$ $A \cdot \overline{A} = 0 \ 7$ $A + A = A \ 4$ $A \cdot A = A \ 8$

• Propriedade Comutativa

$$A + B = B + A 10$$
 $A \cdot B = B \cdot A 11$

Postulados da Álgebra Booleana

• Propriedade Associativa

$$(A + B) + C = A + (B + C)$$
 12 $(A. B) . C = (B. C) . A 13$

• Propriedade Distributiva

$$A \cdot (B + C) = A \cdot B + A \cdot C \cdot 14$$

• Teorema de De Morgan

$$\overline{A \cdot B \dots} = \overline{A} + \overline{B} + \dots$$

$$\overline{A + B + ...} = \overline{A} \cdot \overline{B} ...$$

Expressões Auxiliares

Simplificação pelos Postulados da Álgebra Booleana

$$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$Pela prop. (14), A \cdot (B + C) = A \cdot B + A \cdot C$$

$$F = \overline{AB(C + C)} + \overline{ABC} + \overline{ABC}$$

$$Pela prop. (4), \overline{C} + C = 1$$

$$F = \overline{AB \cdot 1} + \overline{ABC} + \overline{ABC}$$

$$Pela prop. (6), \overline{AB \cdot 1} = \overline{AB}$$

$$F = \overline{AB} + \overline{ABC} + \overline{ABC}$$

$$Soma de Produtos simplificada$$

Simplificação pelos Postulados da Álgebra Booleana

O termo \overline{ABC} poderia ter sido simplificado com o termo $AB\overline{C}$

$$F = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

Utilizando a propriedade (3), que permite a seguinte manipulação:

$$\overline{A}B\overline{C} = \overline{A}B\overline{C} + \overline{A}B\overline{C}$$

Simplificação pelos Postulados da Álgebra Booleana

Circuito Lógico

Circuito Lógico Expressão Simplificada

Simplificação por Mapa de Karnaugh

- Cada célula corresponde a um mintermo
- Representa a função como soma de produtos

- Simplificação algébrica é de difícilautomatização
- Simplificação por mapa fornece uma maneira "visual" para a simplificação
- Baseia-se na identificação de produtos vizinhos

Simplificação por Mapa de Karnaugh

Junta-se 2ⁿ posições

$$2^0 = 1$$
 $2^3 = 8$

 $2^1 = 2$

 $2^2 = 4$

• Mapa com 3 variáveis

YZ	00	01	11	10
0	m 0	m1	m3	m2
1	m4	m5	m7	m6

Concatenar bit da linha com bits da coluna para identificar mintermo

- Mintermos não seguem a ordem crescente => útil para simplificação
- 2 células vizinhas (adjacentes): mintermos diferem por uma variável

Simplificação por Mapa de Karnaugh

• Atenção para a vizinhança entre bordas

• Região com 2 células adjacentes termo com 2 literais...

·Exemplo de simplificação

$$F = \sum m(2,3,4,5)$$
$$F = \overline{X}Y + X\overline{Y}$$

$$F = \Sigma m(3,4,6,7)$$
$$F = YZ + X\overline{Z}$$

Simplificação por Mapa de Karnaugh

• Mapa com 4 variáveis

· Notar adjacências através das bordas

$$m0 \longleftrightarrow m8$$
 $m0 \longleftrightarrow m2$ $m1 \longleftrightarrow m9$ $m4 \longleftrightarrow m6$

Simplificação por Mapa de Karnaugh

• Mapas com mais de 4 variáveis tornam-se difíceis de manipular

Don't Cares

- Saída :não importa o valor da saída gerado por determinada combinação de entradas
- Entrada: é indiferente o valor da entrada para determinar um valor na saída

Funções com Saídas não Especificadas

Simplificação com Don't Cares

• X pode ser 0 ou 1 => o que for mais conveniente para simplificar a função

$$\mathbf{F} = \overline{\mathbf{C}}\overline{\mathbf{D}} + \mathbf{C}\mathbf{D}$$