Particle spectrograph

Wave operator and propagator

SO(3) irreps Fundamental fields Multipliciti $r_0^{\mu_1^2} = 0$ $\partial_{\rho}\partial_{\alpha}r^{\alpha\beta} = 0$ 1 $r_0^{\mu_1^2} = 0$ $\partial_{\rho}\partial_{\alpha}r^{\alpha\beta} = 0$ 1 $r_1^{\mu_1^2} = 0$ $\partial_{\rho}\partial_{\alpha}r^{\alpha\beta} = 0$ 1 $r_1^{\mu_1^2} = 0$ $\partial_{\rho}\partial_{\alpha}r^{\alpha\beta} + 0$ 3 $r_1^{\mu_1^2} = 0$ $\partial_{\lambda}\partial_{\beta}\partial_{\alpha}r^{\beta} + 0$ 3 $r_1^{\mu_1^2} = 0$ $\partial_{\lambda}\partial_{\alpha}\partial_{\alpha}r^{\beta} + 0$ 3 $r_1^{\mu_1^2} = 0$ $\partial_{\lambda}\partial_{\alpha}\partial_{\alpha}r^{\beta} + 0$ 3 $r_1^{\mu_1^2} = 0$ $\partial_{\lambda}\partial_{\alpha}r^{\beta} + 0$ 3 $r_1^{\mu_1^2} = 0$ $r_1^{\mu_1^2} = 0$ $r_1^{\mu_1^2} = 0$	Source constraints		
== 0 $ \partial_{\beta} \partial_{\alpha} T^{\alpha \beta} == 0 $ == 0 $ \partial_{\beta} \partial_{\alpha} T^{\alpha \beta} == \partial_{\beta} \partial^{\beta} T^{\alpha}_{\alpha} $ $ = 2 \left(\partial_{\alpha} \partial^{\beta} \partial_{\alpha} A^{\beta} A^{\beta} + \partial_{\alpha} \partial^{\beta} A^{\beta} A^{\alpha} A^{\beta} B^{\beta} + \partial_{\alpha} \partial^{\beta} A^{\beta} A^{\alpha} A^{\beta} B^{\beta} + \partial_{\alpha} \partial^{\beta} A^{\beta} A^{\alpha} A^{\beta} B^{\beta} + \partial_{\alpha} \partial^{\beta} A^{\beta} A^{\alpha} B^{\beta} B^{\beta} + \partial_{\alpha} \partial^{\beta} A^{\beta} A^{\alpha} B^{\beta} B^{\beta} + \partial_{\alpha} \partial^{\beta} A^{\beta} A^{\alpha} B^{\beta} B^{\beta} + \partial_{\alpha} \partial^{\beta} A^{\beta} B^{\beta} B^$	SO(3) irreps	Fundamental fields	Multiplicities
= 0 $ \partial_{\beta}\partial_{\alpha} T^{\alpha\beta} == \partial_{\beta}\partial^{\beta} T^{\alpha}_{\alpha} $ $ = 2 \left(\partial_{\alpha}\partial^{\beta}\partial_{\alpha} \varphi^{\alpha} - \partial^{\beta}X_{\beta} - \partial_{\alpha}\partial^{\beta}\partial_{\alpha} \partial^{\alpha}X_{\beta} + \partial_{\alpha}\partial^{\beta}X_{\beta} - \partial_{\alpha}\partial^{\beta}\partial_{\alpha}\partial^{\beta}X_{\beta} - \partial_{\alpha}\partial^{\beta}\partial_{\alpha}\partial^{\beta}X_{\beta} + \partial_{\alpha}\partial^{\beta}X_{\beta} - \partial_{\alpha}\partial^{\beta}\partial_{\alpha}\partial^{\beta}X_{\beta} + \partial_{\alpha}\partial^{\beta}X_{\beta} - \partial_{\alpha}\partial^{\beta}\partial_{\alpha}\partial^{\beta}X_{\beta} - \partial_{\alpha}\partial^{\beta}\partial_{\alpha}\partial^{\beta}X_{\beta} + \partial_{\alpha}\partial^{\beta}X_{\beta} - \partial_{\alpha}\partial^{\beta}\partial^{\beta}X_{\beta} - \partial_{\alpha}\partial^{\beta}\partial^{\beta}\partial^{\beta}X_{\beta} - \partial_{\alpha}\partial^{\beta}\partial^{\beta}X_{\beta} - \partial_{\alpha}\partial^{\beta}X_{\beta} - \partial_{\alpha}\partial$	$\tau_{0}^{#2} = 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$a_{\alpha}\beta_{X}_{\beta} - \partial_{\alpha}\partial^{\delta}\partial_{x}\partial_{\beta} \sigma^{a\beta X} +$ $a_{\alpha}\beta_{X}_{\beta} - \partial_{\alpha}\partial^{\delta}\partial_{x}\partial_{\beta} \sigma^{a\beta X} +$ $a_{\alpha}\beta_{\beta}\tau^{\beta}a$ $a_{\alpha}\beta_{\beta}\tau^{\beta}a$ $a_{\alpha}\beta_{\beta}\tau^{\beta}a$ $a_{\alpha}\beta_{\beta}\tau^{\beta}a$ $a_{\alpha}\beta_{\beta}\tau^{\beta}a$ $a_{\alpha}\beta_{\gamma}\tau^{\alpha}a^{\beta} +$ $a_{\alpha}\beta_{\gamma}\tau^{\alpha}a^{\beta} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\alpha}b^{\gamma}a^{\gamma}a^{\beta} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\alpha}b^{\gamma}a^{\gamma}a^{\gamma}a^{\beta} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\alpha}b^{\gamma}a^{\gamma}a^{\gamma}a^{\beta} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\alpha}b^{\gamma}a^{\gamma}a^{\gamma}a^{\beta} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\alpha}b^{\gamma}a^{\gamma}a^{\gamma}a^{\beta} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\alpha}b^{\gamma}a^{\gamma}a^{\gamma}a^{\beta} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\alpha}b^{\gamma}a^{\gamma}a^{\beta} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\alpha}b^{\gamma}a^{\gamma}a^{\beta} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\beta}a^{\alpha}\sigma^{\delta}b^{\gamma}a^{\gamma}a^{\beta} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\beta}\sigma^{\alpha}a^{\gamma}b^{\beta} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\beta}\sigma^{\alpha}a^{\gamma}b^{\gamma} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\beta}\sigma^{\gamma}a^{\gamma}b^{\gamma} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\beta}\sigma^{\gamma}a^{\gamma}b^{\gamma} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\beta}\sigma^{\gamma}a^{\gamma}b^{\gamma} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\beta}\sigma^{\gamma}a^{\gamma}b^{\gamma} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\beta}\sigma^{\gamma}a^{\gamma}b^{\gamma} +$ $a_{\alpha}\beta_{\gamma}\sigma^{\gamma}\sigma^{\gamma}b^{\gamma} +$ $a_{\alpha}\beta_$	$\tau_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$^{a}\sigma^{\beta\chi}_{\beta} - \partial_{\delta}\partial^{\delta}\partial_{\lambda}\partial_{\beta}\sigma^{\alpha\beta\chi} +$ $^{5}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\beta}) == \partial_{\chi}\partial^{\chi}\partial_{\beta}r^{\alpha\beta}$ $^{3}\partial^{\chi}\partial^{\alpha}r^{\beta\alpha}$ $^{3}\partial^{\lambda}\partial_{\beta}r^{\beta\alpha}$ $^{3}\nabla^{\alpha\beta}_{\beta} == 0$ $^{1}\nabla^{\chi}\partial_{\gamma}\partial^{\alpha}r^{\alpha\beta} +$ $^{2}\partial_{\delta}\partial^{\chi}\partial^{\alpha}\sigma^{\alpha\beta} ==$ $^{3}\partial^{\xi}r^{\alpha\chi} +$ $^{3}\partial^{\xi}\partial^{\zeta}\partial^{\alpha}r^{\chi}^{\beta} +$ $^{3}\partial^{\xi}\partial^{\zeta}\partial^{\alpha}r^{\zeta}^{\beta} +$ $^{3}\partial_{\xi}\partial^{\xi}\partial^{\alpha}r^{\zeta}^{\beta} +$ $^{3}\partial_{\xi}\partial^{\xi}\partial^{\zeta}\partial^{\alpha}r^{\zeta}^{\beta} +$ $^{3}\partial_{\xi}\partial^{\xi}\partial^{\zeta}\partial^{\zeta}r^{\zeta}^{\gamma} +$ $^{3}\partial_{\xi}\partial^{\xi}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta}r^{\zeta}^{\gamma} +$ $^{3}\partial_{\xi}\partial^{\xi}\partial^{\zeta}\partial^{\zeta}r^{\zeta}^{\gamma} +$ $^{3}\partial_{\xi}\partial^{\xi}\partial^{\zeta}\partial^{\zeta}r^{\zeta}^{\gamma} +$ $^{3}\partial_{\xi}\partial^{\xi}\partial^{\zeta}\partial^{\zeta}r^{\zeta}^{\gamma} +$ $^{3}\partial_{\xi}\partial^{\xi}\partial^{\zeta}\partial^{\zeta}r^{\zeta}^{\gamma} +$ $^{3}\partial_{\xi}\partial^{\xi}\partial^{\zeta}\partial^{\zeta}r^{\zeta}^{\gamma} +$ $^{3}\partial_{\xi}\partial^{\xi}\partial^{\zeta}\partial^{\zeta}r^{\zeta}^{\gamma} +$ $^{3}\partial_{\xi}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta}r^{\zeta}^{\gamma} +$ $^{3}\partial_{\zeta}\partial^{\zeta}\partial^{\zeta}\partial^{\zeta}r^{\zeta}^{\gamma} +$ $^$		$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}+$	3
$^{5}\partial_{x}\partial^{x}\sigma^{\alpha\beta}_{\beta}) = ^{2}\partial_{x}\partial^{x}\partial_{\beta}t^{\alpha\beta}$ $\partial^{x}\partial_{\beta}t^{\beta\alpha}$ $^{x}\sigma^{\alpha\beta}_{\beta} = 0$ $^{x}\nabla^{\alpha\beta}_{\beta} = 0$ $^{x}\nabla^{\alpha\beta}_{\beta} = 0$ $^{x}\nabla^{\alpha\beta}_{\gamma} + 2 \partial_{\alpha}\partial^{\alpha}\partial_{x}\nabla^{\alpha\beta}_{\gamma} = 0$ $^{x}\nabla^{\alpha}_{\gamma} + 2 \partial_{\alpha}\partial^{\beta}\partial_{x}\nabla^{x}_{\gamma} - 0$ $^{x}\nabla^{\beta}_{\gamma} + 2 \partial_{\alpha}\partial^{\beta}\partial_{x}\nabla^{x}_{\gamma} - 0$ $^{x}\nabla^{\beta}_{\gamma} + 2 \partial_{\alpha}\partial^{\beta}\partial^{\alpha}\nabla^{x}_{\gamma} - 0$ $^{x}\nabla^{\beta}_{\gamma} + 2 \partial_{\alpha}\partial^{\alpha}\partial^{\alpha}\nabla^{x}_{\gamma} - 0$ $^{x}\nabla^{\beta}_{\gamma} + 2 \partial_{\alpha}\partial^{\alpha}\partial^{\alpha}\nabla^{x}_{\gamma} - 0$ $^{x}\nabla^{\beta}_{\gamma} + 2 \partial_{\alpha}\partial^{\alpha}\partial^{\alpha}\nabla^{x}_{\gamma} - 0$ $^{x}\nabla^{\beta}_{\gamma} + 2 \partial_{\alpha}\partial^{\alpha}\partial^{\alpha}\nabla^{x}_{\gamma}$		$2 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi} - \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi} + \right)$	
$ \frac{\partial^{\chi}\partial_{\beta} t^{\beta} \alpha}{\partial^{\chi} \partial^{\chi} b^{\beta}} = 0 $ $ \frac{\partial^{\chi}\partial_{\beta} t^{\beta} \alpha}{\partial^{\chi} \partial^{\chi} b^{\gamma} b^{\gamma}} + \frac{\partial^{\chi}\partial^{\chi} t^{\alpha} b^{\beta}}{\partial^{\chi} \partial^{\chi} \partial^{\chi} b^{\gamma}} = 0 $ $ \frac{\partial^{\chi}\partial_{\gamma} b^{\gamma} \partial^{\chi} b^{\gamma} \partial^{\chi} b^{\gamma}}{\partial^{\chi} \partial^{\chi} \partial^{\chi} b^{\gamma} \partial^{\chi} b^{\gamma}} + \frac{\partial^{\chi}\partial_{\gamma} \partial^{\chi} b^{\gamma} \partial^{\chi} b^{\gamma}}{\partial^{\chi} \partial^{\chi} b^{\gamma} \partial^{\chi} b^{\gamma}} + \frac{\partial^{\chi}\partial_{\gamma} \partial^{\chi} b^{\gamma} \partial^{\chi} b^{\gamma}}{\partial^{\chi} \partial^{\chi} b^{\gamma} \partial^{\chi} b^{\gamma}} + \frac{\partial^{\chi}\partial_{\gamma} \partial^{\chi} b^{\gamma} \partial^{\chi} b^{\gamma}}{\partial^{\chi} \partial^{\chi} b^{\gamma} \partial^{\chi} b^{\gamma}} + \frac{\partial^{\chi}\partial_{\gamma} \partial^{\chi} b^{\gamma} \partial^{\chi} b^{\gamma}}{\partial^{\chi} \partial^{\chi} \partial^{\chi} \partial^{\chi} b^{\gamma}} + \frac{\partial^{\chi}\partial_{\gamma} \partial^{\chi} \partial^{\chi} \partial^{\chi} b^{\gamma}}{\partial^{\chi} \partial^{\chi} \partial^{\chi} \partial^{\chi} \partial^{\chi} b^{\gamma}} + \frac{\partial^{\chi}\partial_{\gamma} \partial^{\chi} \partial^{\chi} \partial^{\chi} \partial^{\chi} b^{\gamma}}{\partial^{\chi} \partial^{\chi} \partial^{\chi} \partial^{\chi} \partial^{\chi} b^{\gamma}} + \frac{\partial^{\chi}\partial_{\gamma} \partial^{\chi} \partial^{\chi} \partial^{\chi} \partial^{\chi} b^{\gamma}}{\partial^{\chi} \partial^{\chi} \partial^{\chi} \partial^{\chi} \partial^{\chi} \partial^{\chi} b^{\gamma}} + \frac{\partial^{\chi}\partial_{\gamma} \partial^{\chi} \partial^{\chi} \partial^{\chi} \partial^{\chi} b^{\gamma}}{\partial^{\chi} \partial^{\chi} \partial^$		$\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$x_{\sigma}\alpha^{\beta}_{\beta} == 0$ $r^{X\alpha} + \partial_{\chi}\partial^{X}r^{\alpha\beta} +$ $3x^{\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} ==$ $3\beta^{\delta}r^{\alpha\chi} +$ $2\partial_{\delta}\partial_{\chi}\partial^{\delta}\sigma^{\alpha\chi\delta}$ $x^{\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}r^{\chi}^{\chi} -$ $2\partial_{\delta}\partial_{\chi}\partial^{\beta}r^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}r^{\chi\beta} -$ $\partial_{\chi}\partial^{\alpha}r^{\beta\chi} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}r^{\chi\beta} -$ $\partial_{\chi}\partial^{\alpha}r^{\beta\chi} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}r^{\chi\beta} -$ $\partial_{\epsilon}\partial_{\chi}\partial^{\beta}r^{\alpha\chi} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}r^{\beta} +$ $\partial_{\epsilon}\partial_{\delta}\partial_{\chi}r^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}r^{\beta} +$ $\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}r^{\beta} -$ $\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}r^{\beta} +$ $\partial_{\epsilon}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}r^{\chi} +$ $\partial_{\epsilon}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}r^{\chi} +$ $\partial_{\epsilon}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}r^{\chi} +$ $\partial_{\epsilon}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}r^{\chi} +$ $\partial_{\epsilon}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}r^{\chi} +$ $\partial_{\epsilon}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}r^{\chi} -$ $\partial_{\epsilon}\partial_{\epsilon}\partial_{\delta}\partial_{\lambda}r^{\chi} -$		$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$r^{X\alpha} + \partial_{\chi} \partial^{\chi} t^{\alpha\beta} +$ $3x^{5} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha\beta X} = =$ $3^{\beta} t^{\alpha X} +$ $2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha X^{5}}$ $2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha X^{5}}$ $2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha X^{5}} -$ $3 \partial_{\delta} \partial^{\delta} \partial^{\beta} \sigma^{\alpha X^{5}} -$ $3 \partial_{\lambda} \partial^{\beta} \tau^{\alpha X} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{X^{5}} -$ $3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \sigma^{X^{5}} -$ $3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \sigma^{X^{5}} -$ $3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \sigma^{\delta} \partial^{\delta} -$ $3 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \partial^{\delta} -$ $3 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \partial^{\delta} -$ $3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \sigma^{\delta} \partial^{\delta} \partial^$	H	$\partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} + \partial_{\chi} \partial^{\chi} \sigma^{\alpha \beta}_{\beta} == 0$	3
$3x^{5} + 2 \partial_{\phi}\partial^{\phi}\partial_{\chi}\sigma^{\alpha\beta\chi} ==$ $9^{\beta} \tau^{\alpha\chi} +$ $2 \partial_{\phi}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi}\delta$ $x^{5} + 2 \partial_{\phi}\partial^{\phi}\partial^{\alpha}\tau^{\chi}$ $x^{5} + 2 \partial_{\phi}\partial^{\phi}\partial^{\alpha}\sigma^{\chi}\chi^{-}$ $\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} - 3 \partial_{\phi}\partial^{\phi}\partial_{\chi}\partial^{\alpha}\tau^{\chi}\delta^{-}$ $\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} - 3 \partial_{\phi}\partial^{\phi}\partial_{\chi}\partial^{\alpha}\tau^{\chi}\delta^{-}$ $\partial_{\phi}\partial^{\beta}\tau^{\alpha\chi} - 3 \partial_{\phi}\partial^{\phi}\partial_{\chi}\partial^{\chi}\tau^{\alpha} +$ $\partial_{\phi}\partial^{\beta}\tau^{\alpha\chi} - 3 \partial_{\phi}\partial^{\phi}\partial_{\chi}\partial^{\chi}\tau^{\alpha} +$ $\partial_{\phi}\partial^{\beta}\sigma^{\alpha}\sigma^{\beta}\delta^{\epsilon} -$ $\partial_{\phi}\partial_{\phi}\partial^{\alpha}\sigma^{\beta}\delta^{\epsilon} -$ $\partial_{\phi}\partial_{\phi}\partial_{\chi}\sigma^{\alpha}\delta^{\epsilon} +$ $\partial_{\phi}\partial_{\phi}\partial_{\chi}\tau^{\chi}\delta^{\epsilon} +$ $\partial_{\phi}\partial_{\phi}\partial_{\chi}\sigma^{\beta}\delta^{\alpha} -$ $\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\chi}\tau^{\chi}\delta^{-} +$ $\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\chi}\tau^{\chi}\delta^{-} +$ $\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\chi}\tau^{\chi}\delta^{-} +$ $\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\chi}\tau^{\chi}\delta^{-} -$ $\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\chi}\tau^{\chi}\delta^{-} -$ $\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\chi}\tau^{\chi}\delta^{-} -$ $\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\phi}\partial_{\phi}$		$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
$2 \partial_{\delta} \tau^{\alpha \chi} +$ $2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta}$ $x^{\delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} -$ $\partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$ $\partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$ $\partial_{\zeta} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$ $\partial_{\zeta} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta} +$ $\partial_{\zeta} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \varepsilon -$ $\partial_{\zeta} \partial_{\zeta} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \varepsilon -$ $\partial_{\zeta} \partial_{\zeta} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \varepsilon +$ $\partial_{\zeta} \partial_{\zeta} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \varepsilon -$ $\partial_{\zeta} \partial_{\zeta} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \varepsilon -$ $\partial_{\zeta} \partial_{\zeta} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \varepsilon -$ $\partial_{\zeta} \partial_{\zeta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \varepsilon -$ $\partial_{\zeta} \partial_{\zeta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \varepsilon -$ $\partial_{\zeta} \partial_{\zeta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} $		$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
$2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta}$ $x^{\delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} T^{\chi} -$ $\partial_{\chi} \partial^{\alpha} T^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} T^{\chi \beta} -$ $\partial_{\chi} \partial^{\alpha} T^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} T^{\chi \beta} -$ $\partial_{\chi} \partial^{\beta} T^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} T^{\chi \alpha} +$ $\partial_{\epsilon} \partial_{\chi} \partial^{\beta} T^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\gamma} T^{\beta \alpha} +$ $\partial_{\epsilon} \partial_{\lambda} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \delta^{\epsilon} -$ $\partial_{\epsilon} \partial_{\delta} \partial_{\chi} \nabla^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\epsilon} \delta^{\epsilon} -$ $\partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \delta^{\epsilon} -$ $\partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \delta^{\epsilon} +$ $\partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \nabla^{\lambda} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\epsilon} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^$		$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
$x^{\delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} t^{\chi}_{\chi} -$ $\partial_{\chi} \partial^{\alpha} t^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} -$ $\partial_{\chi} \partial^{\beta} t^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} t^{\chi \alpha} +$ $\partial_{\chi} \partial^{\beta} t^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} t^{\chi \alpha} +$ $\partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} d^{\delta \epsilon} -$ $\partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} d^{\delta \epsilon} -$ $\partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} d^{\delta \epsilon} -$ $\partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} d^{\delta \epsilon} +$ $\partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi \delta} +$ $\partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi \delta} +$ $\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi \delta} +$ $\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} d^{\delta} \partial^{\beta} -$ $\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} d^{\delta} \partial^{\alpha} -$ $\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\lambda} d^{\delta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} -$ $\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\lambda} d^{\delta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta$		$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$ \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\phi} \partial^{\phi} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} - \\ \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\phi} \partial^{\phi} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + \\ \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\phi} \partial^{\phi} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} + \\ \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon} - \\ \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} - \\ \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} - \\ \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta} + \\ \partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi \delta} + \\ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\lambda} \sigma^{\beta \delta} \partial_{\alpha} - \\ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\lambda} \partial^{\beta} \partial_{\alpha} - \\ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\lambda} \partial^{\beta} \partial_{\alpha} \partial^{\beta} \partial_{\alpha} - \\ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\lambda} \partial^{\beta} \partial_{\alpha} \partial^{\beta} \partial_{\alpha} \partial^{\beta} \partial_{\alpha} \partial^{\beta} \partial_{\alpha} \partial^{\beta} \partial_{\alpha} \partial^{\beta} \partial^{$	$-2ik \sigma_{2+}^{\#1\alpha\beta} == 0$	$-i (4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} -$	5
$ \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} - 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta} \tau^{\chi\alpha} + \\ \partial_{\chi}\partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi} \tau^{\beta\alpha} + \\ \partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha} \sigma^{\delta\epsilon} - \\ \partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha} \sigma^{\beta\delta\epsilon} - \\ \partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha} \sigma^{\beta\delta\epsilon} + \\ \partial_{\epsilon}\partial_{\epsilon}\partial_{\delta}\partial_{\chi} \tau^{\chi\delta} + \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi} \tau^{\chi\delta} - \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\lambda} \sigma^{\delta\delta} - \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\lambda}\partial_{\lambda} \sigma^{\delta\delta} - \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda} - \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda} - \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda} - \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda} - \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda} - \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda} - \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda}\partial_{\lambda$			
$ \partial_{\chi}\partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi} \tau^{\beta\alpha} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi} \tau^{\beta\alpha} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi} \tau^{\beta\alpha} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi} \tau^{\beta\alpha} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\sigma}\partial^{\alpha}\partial^{\delta} \tau^{\beta} - 3 \partial_{\sigma}\partial^{\delta}\partial_{\sigma}\partial^{\alpha}\partial^{\beta} \tau^{\gamma} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\partial^{\beta} \tau^{\gamma} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\partial^{\beta} \tau^{\gamma} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\partial^{\beta} \tau^{\gamma} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\partial^{\beta} \tau^{\gamma} - 3 \partial_{\sigma}\partial^{\delta}\partial^{\delta}\partial^{\gamma}\partial^{\gamma} \tau^{\gamma} - 3 \partial_{\sigma}\partial^{\delta}\partial^{\delta}\partial^{\gamma}\partial^{\gamma} \tau^{\gamma} - 3 \partial_{\sigma}\partial^{\delta}\partial^{\delta}\partial^{\gamma}\partial^{\gamma}\partial^{\delta} \tau^{\gamma} + 3 \partial_{\sigma}\partial^{\delta}\partial^{\delta}\partial^{\gamma}\partial^{\gamma}\partial^{\delta} \tau^{\gamma} - 3 \partial_{\sigma}\partial^{\delta}\partial^{\beta}\partial^{\gamma}\partial^{\gamma}\partial^{\gamma}\partial^{\delta} \tau^{\gamma} - 3 \partial_{\sigma}\partial^{\beta}\partial^{\gamma}\partial^{\gamma}\partial^{\gamma}\partial^{\gamma}\partial^{\gamma}\partial^{\gamma}\partial^{\gamma}\partial^{\gamma$		$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
$\partial_{\xi}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\xi}_{\xi} -$ $\partial_{\xi}\partial_{\zeta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\delta\xi}_{\xi} -$ $\partial_{\xi}\partial_{\xi}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\delta\xi}_{\xi} +$ $\partial_{\xi}\partial_{\xi}\partial_{\chi}\tau^{\chi\delta} +$ $\partial_{\xi}\partial^{\xi}\partial_{\delta}\partial_{\chi}\tau^{\chi\delta} +$ $\partial_{\xi}\partial^{\xi}\partial_{\delta}\partial_{\chi}\tau^{\chi\delta} +$ $\partial_{\xi}\partial^{\xi}\partial_{\delta}\partial_{\chi}\tau^{\chi\delta} +$ $\partial_{\xi}\partial^{\xi}\partial_{\delta}\partial_{\chi}\tau^{\chi\delta} -$ $\partial_{\xi}\partial^{\xi}\partial_{\delta}\partial_{\chi}\tau^{\chi} -$ $\partial_{\xi}\partial^{\xi}\partial_{\delta}\partial_{\zeta}\tau^{\chi} -$ $\partial_{\xi}\partial^{\xi}\partial_{\delta}\partial_{\zeta}\partial_{\zeta} -$ $\partial_{\xi}\partial^{\xi}\partial_{\delta}\partial_{\zeta}\partial_{\zeta} -$ $\partial_{\xi}\partial_{\xi}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta} -$ $\partial_{\xi}\partial_{\xi}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta} -$ $\partial_{\xi}\partial_{\xi}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta} -$ $\partial_{\xi}\partial_{\xi}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta} -$ $\partial_{\xi}\partial_{\xi}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta} -$ $\partial_{\xi}\partial_{\xi}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta} -$ $\partial_{\xi}\partial_{\xi}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta} -$ $\partial_{\xi}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta}\partial_{\zeta$		$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
$\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta}\delta^{\epsilon} -$ $\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha}\delta^{\epsilon} +$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}t^{\chi\delta} +$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau^{\chi\delta} +$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha}\delta^{\beta} +$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha}\delta^{\beta} +$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\beta}\delta^{\alpha} -$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau^{\chi} -$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau^{\chi} -$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau^{\chi} -$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\partial_{\epsilon}\partial_{\chi}\sigma^{\delta}\delta^{\epsilon} -$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\delta}\partial_{\tau}\partial_{\tau}\partial_{\tau}\partial_{\tau}\partial_{\tau}\partial_{\tau}\partial_{\tau}\partial_{\tau$		$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta}$ -	
$\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\delta\epsilon} + \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}t^{\chi\delta} + \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\delta\beta} + \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\delta\beta} + \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\beta\delta\alpha} - \\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\delta}\tau^{\chi} - \\ \partial_{\epsilon}\lambda^{\kappa}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\chi}\sigma^{\delta\epsilon} = 0$		$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
$\partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} t^{\chi \delta} +$ $\partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$ $\partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$ $\partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\delta} t^{\chi} -$ $\partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\delta} t^{\chi} -$ $\partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\delta} \partial_{\varepsilon} \partial_{\chi} \sigma^{\delta \varepsilon} = 0$		$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
$\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} + \\ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} - \\ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\delta} \partial^{\chi} \chi^{\lambda} - \\ \beta^{\kappa} \chi^{\kappa} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon} \partial_{\delta} = 0$		$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
$\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$ $\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi} -$ $\beta_{\kappa} \chi^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon}_{\delta}) = 0$		$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
$\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \iota^{\chi}_{\chi} - \beta_{\epsilon} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \partial^{\delta \epsilon} \partial_{\delta} = 0$		$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{eta \delta lpha}$ -	
$^{\beta} \ k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon}{}_{\delta}) == 0$		$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$ -	
		$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
	Total constraints/gaug	ge generators:	19

Quadratic (free) action $S = \iiint \{\frac{1}{6} (2t_1 \mathcal{A}^{\alpha l} \mathcal{A}_{\beta} + 6 f^{\alpha \beta} t_{\alpha \beta} + 6 \mathcal{A}^{\alpha \beta X} \sigma_{\alpha \beta X} - 4t_1 \mathcal{A}_{\alpha}^{\ \theta} \partial_{\beta} f^{\alpha l} + 4t_1 \mathcal{A}_{\beta}^{\ \theta} \partial_{\beta} f^{\alpha} - 2t_1 \partial_{\beta} f^{\theta} \partial_{\beta} f^{\alpha} - 24t_3 \partial_{\beta} \mathcal{A}_{\beta}^{\ \theta} \partial_{\beta} \mathcal{A}_{\alpha}^{\ \theta} - 2t_1 \partial_{\beta} f^{\alpha} \partial_{\beta} f^{\alpha} - 24t_3 \partial_{\beta} \mathcal{A}_{\beta}^{\ \theta} \partial_{\beta} \mathcal{A}_{\alpha}^{\ \theta} - 2t_1 \partial_{\beta} f^{\alpha} \partial_{\beta} f^{\alpha} \partial_{\beta} f^{\alpha} + 48t_1 \partial_{\beta} f^{\alpha} \partial_{\beta} \mathcal{A}_{\alpha}^{\ \theta} \partial_{\beta} \mathcal{A}_{\alpha}^{\ \theta} - 2t_1 \partial_{\beta} f^{\alpha} \partial_{\beta} f^{\alpha} \partial_{\beta} f^{\alpha} \partial_{\beta} f^{\alpha} + 48t_1 \partial_{\beta} f^{\alpha} \partial_{\beta} f^$	$4 r_2 \sigma_ heta \mathcal{H}_{lpha Ieta} \sigma^st \mathcal{H}^{-r-})$ ار, $lpha$, $lpha$, $lpha$ اظام المراقبة ال
---	---

$\tau_{1^-}^{\#2}\alpha$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	f#2
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	$f_{1}^{\#1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$	A#2
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0	\mathcal{A}_{i}^{*1}
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0	$\mathcal{A}_{1}^{#1}$ $\mathcal{A}_{1}^{#2}$ $\mathcal{A}_{1}^{#1}$ $\mathcal{A}_{1}^{#1}$
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	$\mathcal{A}_{1}^{\#1}$
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} + ^{lpha}$	$\sigma_1^{\#2} + \alpha$	$\tau_1^{\#_1} +^\alpha$	$ au_1^{\#2} +^{lpha}$	

0	0	0	0	0	0												
0	0	$\frac{t_1}{3\sqrt{2}}$	<u>£1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	_	$\mathcal{A}_{0}^{\#1}$	$f_{0+}^{#1}$.	f ₀ ^{#2}	$\mathcal{A}_0^{\sharp 1}$		<i>"</i> 1	$\sigma_{0}^{#1}$			$\sigma_0^{\sharp 1}$	
0	0	6 6	$\frac{t_1}{\sqrt{2}}$	0	ikt_1		$6 k^2 r_3$		0	0		$\sigma_{0^{+}}^{#1}$ †	$\frac{1}{6k^2r_3}$	0	0	0	
			lω		3 3	$f_{0}^{#1}$ †	0	0	0	0		$\tau_{0^{+}}^{\#1}$ †	0	0	0	0	
0	0	0	0	0	0	$f_{0}^{#2}$ †	0	0	0	0		$\tau_{0}^{\#2}$ †	0	0	0	0	
						$\mathcal{A}_{0^{-}}^{\sharp 1}$ †	0	0	0	$k^2 r_2 - t_1$		$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$	
0	0	0	0	0	0			#1 2 ⁺ αβ			$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$				•	$_{lphaeta}^{k^{2}} \mathcal{F}_{2}^{-t_{1}}$	
$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	$\sigma_{2}^{\#1} \dagger^{\alpha}$			(1	$\frac{2i\sqrt{2}k}{1+2k^2)^2t_1}$	0	$\mathcal{A}_2^{\#1}$		$\frac{t_1}{2}$	$-\frac{ikt}{\sqrt{2}}$		
$+^{\alpha\beta}$	$f_{1+}^{#1} + \alpha \beta$	$\mathcal{A}_{1}^{\#1} \dagger^{lpha}$	$\mathcal{A}_{1}^{\#2} +^{\alpha}$	$f_{1}^{#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$	$\tau_{2}^{\#1} + ^{\alpha}$		$\frac{\sqrt{2} k}{(k^2)^2 t_1}$	(1	$\frac{4k^2}{+2k^2)^2t_1}$	0	$f_{2^{+}}^{#1}$		<u>ikt</u> 1 √2	$k^2 t$	1 ()
$\mathcal{A}_1^{\#_2} + ^{lphaeta}$	$f_1^{\#1}$	$\mathcal{H}_{1}^{\#}$	$\mathcal{A}_1^{\#}$	$f_1^{\#}$	f_1^*	$\sigma_2^{\sharp 1} \dagger^{\alpha \beta}$	BX	0		0	$\frac{2}{t_1}$	$\mathcal{A}_2^{\sharp 1}$ †	αβχ	0	0	<u>t:</u>	<u>L</u>

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $\frac{t_1}{r_2} > 0$
Spin: 0
Parity: Odd

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$