ODPOWIEDZI I SCHEMAT PUNKTOWANIA – ZESTAW NR 2 POZIOM ROZSZERZONY

Nr zadania	Nr czynności	Etapy rozwiązania zadania	Liczba punktów	Uwagi
	1.1	Wprowadzenie oznaczeń: x , $3x$, y – poszukiwane liczby i zapisanie równania: $4x + y = 13$ lub: zapisanie poszukiwanych liczb z użyciem jednej zmiennej: x , $3x$, $13-4x$.	1	
	1.2	Zapisanie sumy kwadratów poszukiwanych liczb: $S = x^2 + (3x)^2 + y^2$ lub $S = x^2 + (3x)^2 + (13 - 4x)^2$	1	
1	1.3	Zapisanie sumy kwadratów szukanych liczb jako funkcji jednej zmiennej: $S(x) = 2x^2 - 8x + 13 \text{ gdy } x \in \left(0, \frac{13}{4}\right).$	1	Zdający nie musi wyznaczyć dziedziny funkcji, o ile przeprowadzi rozwiązanie do końca i otrzyma trzy dodatnie liczby.
	1.4	Obliczenie argumentu, dla którego funkcja S przyjmuje wartość najmniejszą: $x_w = 2$ i $x_w \in \left(0, \frac{13}{4}\right)$ więc funkcja S osiąga najmniejszą wartość dla $x = 2$.	1	
	1.5	Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.	1	

		Sporządzenie wykresu funkcji g.	
2	2.1	9 -8 -7 -6 -5 -4 -3 -2 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -5 -6 -6 -6 -7 -7	1
	2.2	Zapisanie podstawy <i>a</i> lub wzoru funkcji <i>f</i> : $a = \frac{1}{2}$ lub $f(x) = \left(\frac{1}{2}\right)^x$.	1
	2.3	Zapisanie wzoru funkcji g: $g(x) = \left(\frac{1}{2}\right)^{x-2} - 1$.	1
	2.4	Podanie wszystkich argumentów, dla których $g(x) > 0 : x \in (-\infty, 2)$.	1

	3.1	Wykorzystanie definicji rozwiązania równania lub twierdzenia o pierwiastkach wielomianu i zapisanie równania z niewiadomą $m: 1^3 + m^3 \cdot 1^2 - m^2 \cdot 1 - 1 = 0$.	1	
	3.2	Obliczenie wszystkich wartości m , dla których liczba 1 jest rozwiązaniem równania (pierwiastkiem wielomianu): $m = 0$ lub $m = 1$.	1	
	3.3	Uzasadnienie, że dla $m = 0$ równanie ma tylko jedno rozwiązanie $x = 1$ (wielomian ma tylko jeden pierwiastek), np. dla $m = 0$ równanie ma postać $x^3 - 1 = (x - 1)(x^2 + x + 1) = 0$, a trójmian $x^2 + x + 1$ nie ma pierwiastków.	1	
	3.4	Uzasadnienie, że dla $m = 1$ równanie ma więcej niż jedno rozwiązanie (wielomian ma więcej niż jeden pierwiastek), np. dla $m = 1$ równanie ma postać $(x+1)^2(x-1)=0$, co oznacza, że liczba (-1) też jest jego rozwiązaniem.	1	
3	3.1	II sposób rozwiązania: czynność 3.1, 3.2 Zapisanie równania w postaci iloczynu, np. $(x-1)(x^2+bx+c)=0$ i wykonanie mnożenia $x^3+(b-1)x^2+(c-b)x-c=0$.	1	
	3.2	Zastosowanie twierdzenia o równości wielomianów do zapisania układu warunków: $c=1$, $b=m^2+1$ i $b=m^3+1$ oraz rozwiązanie równania $m^3+1=m^2+1$: $m=0$ lub $m=1$.	1	
	3.1	III sposób rozwiązania: czynność 3.1, 3.2 Wykorzystanie twierdzenia o pierwiastkach wielomianu i wykonanie dzielenia wielomianu W przez dwumian $(x-1)$: $W(x) = (x-1)(x^2 + (m^3 + 1)x + m^3 - m^2 + 1) + (m^3 - m^2),$	1	
	3.2	Skorzystanie z twierdzenia o reszcie i obliczenie m : $m^3 - m^2 = 0$ stąd $m = 0$ lub $m = 1$.	1	

4	4.1	Wykorzystanie w analizie zadania własności: promień okręgu jest prostopadły do stycznej w punkcie styczności.	1	
	4.2	Wyznaczenie równania prostej przechodzącej przez punkt <i>B</i> i prostopadłej do prostej o równaniu $y = \frac{1}{2}x + 9$: $y = -2x - 1$.	1	
	4.3	Wyznaczenie równania prostej przechodzącej przez punkt A i prostopadłej do prostej o równaniu $y = 2x - 3$: $y = -\frac{1}{2}x + 2$.	1	
	4.4	Obliczenie współrzędnych punktu przecięcia prostych $y = -\frac{1}{2}x + 2$ i $y = -2x - 1$, który jest środkiem okręgu stycznego do danych prostych: $S = (-2,3)$.	1	
	4.5	Obliczenie promienia szukanego okręgu: $r = SA = SB = 2\sqrt{5}$.	1	Jeśli zdający nie zapisał w punkcie 4.1 własności: promień okręgu jest prostopadły do stycznej w punkcie styczności, ale z niej skorzystał w rozwiązaniu, to przyznajemy punkt w czynności 4.1.

	II sposób rozwiązania:	
4.1	Wykorzystanie własności – środek okręgu leży na symetralnej odcinka AB . Obliczenie współrzędnych punktów W – przecięcia się danych prostych oraz P – środka odcinka AB : W = (8,13), P = (-1,4).	1
4.2	Wyznaczenie równania prostej przechodzącej przez punkty W oraz P (symetralnej odcinka AB): $y = x + 5$.	1
4.3	Wyznaczenie równania prostej przechodzącej przez punkt B i prostopadłej do prostej, na której leży ten punkt (lub prostej przechodzącej przez punkt A i prostopadłej do prostej, na której leży ten punkt): $y = -2x - 1$ lub $y = -\frac{1}{2}x + 2$.	1
4.4	Obliczenie współrzędnych środka okręgu: $S = (-2,3)$.	1
4.5	Obliczenie promienia okręgu: $r = SA = SB = 2\sqrt{5}$.	1

	5.1	Zapisanie wzoru funkcji f w postaci : $f(x) = \begin{cases} x+2 & \text{dla } x \ge 1 \\ -x+4 & \text{dla } x < 1 \end{cases}$	1	
5	5.2	Sporządzenie wykresu funkcji f:	1	Jeśli zdający od razu poprawnie naszkicuje wykres funkcji f , to przyznajemy punkty w czynności 5.1 oraz 5.2.
	5.3	Podanie liczby rozwiązań równania $f(x) = m$: zero rozwiązań dla $m < 3$, jedno rozwiązanie dla $m = 3$, dwa rozwiązania dla $m > 3$.	1	
	6.1	Wprowadzenie oznaczeń, np.: x – liczba kupionych koszulek, y – cena koszulki oraz zapisanie równania: $x \cdot y = 720$.	1	
	6.2	Zapisanie równania: $(x+5)(y-2) = 720$.	1	
6	6.3	Zapisanie równania kwadratowego w zależności od jednej niewiadomej, np. $x^2 + 5x - 1800 = 0$ lub $y^2 - 2y - 288 = 0$.	1	
-	6.4	Rozwiązanie równania kwadratowego $x = 40$ lub $x = -45$ ($y = 18$ lub $y = -16$) i wybór właściwego rozwiązania, spełniającego warunki zadania.	1	
	6.5	Podanie odpowiedzi: $x = 40$, $y = 18$.	1	

	7.1	Obliczenie długości przekątnej <i>BD</i> (leżącej naprzeciw kąta <i>DAB</i>): $ BD = 2\sqrt{3}$.	1	
-	7.2	Obliczenie miary kąta C leżącego naprzeciw kąta A (wykorzystanie twierdzenia odwrotnego do twierdzenia Pitagorasa lub twierdzenia kosinusów): $ \ll BCD = 90^{\circ}$.	1	
7	7.3	Zapisanie pola P czworokąta $ABCD$ jako sumy pól dwóch trójkątów, np.: $P_{ABCD} = P_{ABD} + P_{BCD}.$	1	
-	7.4	Obliczenie pola czworokąta <i>ABCD</i> : $P = \frac{7\sqrt{3}}{2}$.	1	
8	8.1	Zaznaczenie na rysunku kata $\alpha=60^\circ$ – kąta nachylenia płaszczyzny przekroju do płaszczyzny podstawy graniastosłupa. Przyjęcie oznaczeń, np.: a – długość krawędzi podstawy graniastosłupa, w – wysokość trójkąta ABC , będącego rozważanym przekrojem graniastosłupa, h – wysokość graniastosłupa.	1	

	8.2	Wyznaczenie wysokości w z trójkąta prostokątnego CDE : $ DE = \frac{a}{2}$ i z własności trójkąta CDE $w = 2 \cdot DE $ stąd $w = a$.	1	
-	8.3	Obliczenie długości krawędzi podstawy graniastosłupa: $ AB = a\sqrt{3}$, $a = 4$.	1	
-	8.4	Obliczenie wysokości h graniastosłupa: $h = 2\sqrt{3}$.	1	
Ī	8.5	Obliczenie objętości V graniastosłupa: $V = 144$.	1	
9	9.1	Przyjęcie metody prowadzącej do wyznaczenia zależności między bokami AB i BC trójkąta ABC (np. zapisanie pola trójkąta ABC na dwa sposoby lub zapisanie, że $\Delta ADB \sim \Delta CEB$).	1	
-	9.2	Wyznaczenie zależności między bokami AB i BC trójkąt ABC : $ AB = a$,	1	
	<i>></i> . -	AC = BC = 2a lub $ BC = 2 AB $.		
	9.3	Obliczenie kosinusa kąta ABC , np. z trójkąta CEB : $\cos \angle ABC = \cos \angle CAB = \frac{1}{4}$.	1	Zdający nie musi zapisywać "podwójnej" równości. Wystarczy, że oznaczy tą samą literą kąty przy podstawie trójkąta.
	9.4	Wyznaczenie $ BD $ z trójkąta ADB : $\frac{ BD }{ AB } = \cos \ll ABD $ stąd $ BD = \frac{1}{4} \cdot AB $ oraz, $ CD = \frac{7}{4} AB $.	1	
	9.5	Obliczenie kosinusa kąta <i>BCA</i> z trójkąta <i>ADC</i> : $\cos \ll BCA = \frac{ CD }{ AC } = \frac{7}{8}$.	1	
	9.4	II sposób rozwiązania: (czynności 10.4, 10.5) Zapisanie długości boków trójkąta ABC w zależności od jednej zmiennej, np.: $ AB = a$, $ AC = BC = 2a$. Obliczenie z tw. Pitagorasa w trójkącie ACE wysokości CE : $ CE = \frac{a\sqrt{15}}{2}$, oraz $ AD = \frac{1}{2} \cdot CE = \frac{a\sqrt{15}}{4}$.	1	

	9.5	Obliczenie sinusa kąta DCA z trójkąta ADC : $\sin \not \triangleleft DCA = \frac{ AD }{ AC } = \frac{\sqrt{15}}{8}$.	1	
	9.4	III sposób rozwiązania: (czynności 10.4, 10.5) Przedstawienie metody pozwalającej obliczyć kosinus kąta przy wierzchołku C : np. z trójkąta prostokątnego ADC : $\cos \not \triangleleft DCA = \frac{ DC }{ AC } = \frac{ DC + DB - DB }{ DB + DC } = 1 - \frac{ DB }{ DB + DC } \text{ oraz wyznaczenie } BD \text{ z}$ $\text{trójkąta } ADB: BD = \frac{1}{4} \cdot AB .$	1	
-	9.5	Obliczenie kosinusa kąta DCA : $\cos \not < DCA = \frac{7}{8}$.	1	
	9.4	IV sposób rozwiązania: (czynności 10.4, 10.5) Zastosowanie twierdzenia kosinusów i zapisanie, że $ AB ^2 = AC ^2 + BC ^2 - 2 \cdot AC \cdot BC \cdot \cos \not \prec BCA $ $a^2 = (2a)^2 + (2a)^2 - 2 \cdot (2a) \cdot (2a) \cdot \cos \not \prec BCA .$	1	
	9.5	Obliczenie kosinusa kąta BCA : $\cos \angle BCA = \frac{7}{8}$.	1	
	10.1	Wyznaczenie wyrazu a_{n+1} : $a_{n+1} = 3^{-n}$.	1	
10	10.2	Obliczenie ilorazu ciągu (a_n) : $q = 3^{-1}$ lub $q = \frac{1}{3}$.	1	Jeśli zdający od razu poda prawidłowo iloraz ciągu to otrzymuje również punkt w czynności 10.1
	10.3	Zapisanie sumy logarytmów: $S_{100} = \log_3 1 + \log_3 (3)^{-1} + \log_3 3^{-2} + \dots + \log_3 3^{-99}$.	1	
	10.4	Zapisanie sumy logarytmów w postaci: $S_{100} = \log_3 3^{-(1+2+3+99)} = \log_3 3^{50\cdot(-99)}$.	1	
	10.5	Obliczenie sumy stu początkowych wyrazów ciągu: $S_{100} = -4950$.	1	

	11.1	Obliczenie mocy zbioru zdarzeń elementarnych: $ \Omega = 6^3$.		
	11.2	Obliczenie liczby zdarzeń elementarnych sprzyjających zdarzeniu A : $ A = 3^3$.	1	
	11.3	Obliczenie prawdopodobieństw zdarzenia A: $P(A) = \frac{3^3}{6^3} = \frac{1}{8}$,	1	
	11.4	Stwierdzenie, że suma kwadratów liczb wyrzuconych oczek będzie podzielna przez trzy wtedy, gdy każda z wyrzuconych liczb będzie podzielna przez trzy albo gdy żadna z nich nie jest podzielnych przez trzy.	1	
11	11.5	Obliczenie liczby zdarzeń elementarnych sprzyjających zdarzeniu $B: B = 2^3 + 4^3$ i prawdopodobieństwa tego zdarzenia $B: P(B) = \frac{2^3 + 4^3}{6^3} = \frac{72}{216} = \frac{1}{3}$.	1	Akceptujemy wynik w postaci ułamka skracalnego albo przybliżony, o ile tylko rozwiązanie zdającego wskazuje na poprawne obliczenie liczby B i poprawne zastosowanie definicji prawdopodobieństwa.