Data Analysis(4)

Dept. of Mechanical System Design Engineering, Seoul National University of Science and Technology

Prof. Ju Yeon Lee (jylee@seoultech.ac.kr)

Imbalanced sampling

1. Under/Down Sampling

2. Over/Up Sampling

Imbalanced sampling

3. Combination Sampling : Under + Over

SMOTE

SMOTE(Synthetic Minority Over-Sampling Technique):

generate new data between neighboring minority classes from random minority class data

For numerical features

SMOTENC(Synthetic Minority Over-Sampling Technique for Nominal and Continuous):

For dataset containing numerical and categorical features

However, it is not designed to work with only categorical features

Confusion Matrix (혼합 행렬)

Accuracy (정확도)

Accuracy = (TP+TN) / (TP+TN+FP+FN)

Accurate prediction ratio to total

What about unbalanced classes?

Precision (정밀도)

Precision = TP / (TP + FP)

Actual Positive Ratio in Positive Prediction = Accuracy of positive prediction model

What if you predict that a defective product is a good product?

Recall (True Positive Rate, 재현율 / Sensitivity, 민감도)

Recall (TPR) = TP / (TP + FN)

The percentage of actual positive data predicted to be positive = Accuracy of positive data prediction

Specificity (특이성, True Negative Rate)

Proportion of predicting the actual negative data as negative = Accuracy of negative data prediction

Percentage of true negatives that are incorrectly predicted as positives

ROC Curve/AUC

ROC Curve:

A curve showing how the True Positive Rate (TPR) changes when the False Positive Rate (FPR) changes

AUC (Area Under Curve): Area value under the curve,

the closer to 1, the better, 0.5 for a diagonal straight line

Precision-Recall Curve

Precision-Recall Curve:

A plot of the precision (y-axis) and the recall (x-axis) for different thresholds

Trade-off between Precision and Recall

F1 Score

F1 Score = 2 * ((Precision * Recall) / (Precision + Recall))

Precision and Recall integrated into a single value through the harmonic average of two performance indicators

