

500 mA very low drop voltage regulator

Datasheet - production data

Features

- Input voltage from 2.5 to 16 V
- Very low dropout voltage (300 mV max. at 500 mA load)
- Low quiescent current (200 μA typ. @ 500 mA load)
- Available in 1% precision in PPAK and DFN6 packages, 2% in DPAK
- 500 mA guaranteed output current
- Wide range of output voltages available on request: adjustable from 0.8 V, fixed up to 12 V in 100 mV steps
- Logic-controlled electronic shutdown
- Power Good (PPAK and DFN packages)
- Fast dynamic response to line and load changes
- Internal current and thermal protection
- Temperature range: 40 °C to 125 °C

Applications

- PCs and laptop computers
- Battery-powered equipment
- Industrial and medical equipment
- Portable equipment

Description

The LDFM is a fast, very low drop linear regulator which operates from an input supply voltage in the range of 2.5 V to 16 V.

It is available in fixed and adjustable output voltage versions, from 0.8 V to 12 V.

The LDFM features high output precision, very low dropout voltage, low noise, and low quiescent current, therefore suitable for low voltage microprocessors and memory applications.

Enable logic control pin and Power Good output are featured on PPAK/DFN packages.

Current and thermal protection are provided.

C	$\boldsymbol{\wedge}$	n	+	Δ	n	+	c
	L J			_			-

1	Block d	iagram		3
2	Pin con	figuration	1	4
3	Typical	application	on	5
4			ım ratings	
5			teristics	
6			mation	
	6.1		capacitors	
		6.1.1	Input capacitor	
		6.1.2	Output capacitor	11
	6.2	Enable p	in operation	11
	6.3	Power Go	ood	11
7	Typical	performa	nce characteristics	12
8	Package	e informa	tion	16
	8.1	PPAK pa	ckage information	17
	8.2		cking information	
	8.3	DPAK (T	O-252) package information	21
	8.4		O-252) packing information	
	8.5	-	x2) package information	
	8.6		x2) packing information	
	8.7	•	x3) package information	
	8.8	-	x3) packing information	
9	Orderin	`	tion	
10		•		
. •	11011310			

LDFM Block diagram

1 Block diagram

Figure 1: Block diagram (generic version)

Pin configuration LDFM

2 Pin configuration

Figure 2: Pin connection (top view)

Table 1: Pin description DPAK, PPAK

Pin n°		Symbol	Function		
PPAK	DPAK	Symbol	Function		
5	1	ADJ/PG	For adjustable versions: error amplifier input pin. For fixed version: Power Good output		
2	1	Vin	Input voltage		
4	3	Vouт	Output voltage		
1	-	EN	Enable pin logic input: Low = shutdown, High = active		
3	2	GND	Ground		
TAB	TAB	GND	Ground		

Table 2: Pin description DFN6-2x2 and 3x3

Pin n°	Symbol	Function
2	ADJ/NC	For adjustable versions: error amplifier input pin. For fixed version: not connected
6	Vin	Input voltage
1	Vouт	Output Voltage
5	EN	Enable pin logic input: low = shutdown, high = active
3	PG	Power good output
4	GND	Ground
exposed pad	GND	Ground

LDFM Typical application

3 Typical application

Figure 3: Fixed versions

Figure 4: Adjustable version (PPAK and DFN6 packages only)

4 Absolute maximum ratings

Table 3: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vin	DC input voltage	- 0.3 to 20	V
V _{OUT}	DC output voltage	- 0.3 to V _{IN} + 0.3	V
V _{EN}	Enable input voltage	- 0.3 to V _{IN} + 0.3	V
V _{ADJ}	Adjust pin voltage	- 0.3 to 2	V
V_{PG}	Power Good pin voltage	- 0.3 to V _{IN} + 0.3	V
ILOAD	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	- 65 to 150	°C
T _{OP}	Operating junction temperature range	- 40 to 125	°C

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 4: Thermal data

Symbol	Parameter		Unit				
Symbol	Farameter	PPAK	DPAK	DFN6-2x2	DFN6-3x3	Unit	
RthJA	Thermal resistance junction-ambient	100	100	65	55	°C/W	
RthJC	Thermal resistance junction-case	8	8	6.5	10	°C/W	

5 Electrical characteristics

 $T_J=25~^{\circ}C,~V_{IN}=V_{OUT(NOM)}+1~V^a,~C_{IN}=1~\mu F,~C_{OUT}=2.2~\mu F,~I_{LOAD}=10~mA,~V_{EN}=2~V,~unless~otherwise~specified.$

Table 5: Electrical characteristics for LDFM (fixed versions)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage		2.5		16	V
.,,	Vout accuracy,	$V_{OUT}+1 \ V \le V_{IN} \le 16 \ V^{(1)}$ $I_{LOAD} = 10 \ mA$	-1		1	%
Vouт	PPAK and DFN6 versions	10 mA ≤ I _{LOAD} ≤ 500 mA T _J = -40 to 125 °C	-1.5		1.5	%
V	V _{оит} ассигасу,	$V_{OUT}+1 \ V^{(1)} \le V_{IN} \le 16 \ V$ $I_{LOAD} = 10 \ mA$	-2		2	%
Vоит	DPAK version	10 mA ≤ I _{LOAD} ≤ 500 mA T _J = -40 to 125 °C	-3		3	%
		$V_{OUT}+1 \ V^{(1)} \le V_{IN} \le 16 \ V$		0.01		
ΔV оит	Static line regulation	$V_{OUT}+1 \ V^{(1)} \le V_{IN} \le 16 \ V,$ $T_{J} = -40 \ to \ 125 \ ^{\circ}C$			0.04	%/V
		10 mA ≤ I _{LOAD} ≤ 500 mA		0.1		
ΔVουτ	Static load regulation	10 mA ≤ I _{LOAD} ≤ 500 mA, T _J = -40 to 125 °C		0.15	0.4	%/A
Δνουί	AVOUT Static load regulation	10 mA \leq I _{LOAD} \leq 500 mA, T _J = -40 to 125 °C DFN6 version			10	mV
V _{DROP}	Dropout voltage (2)	I _{LOAD} = 500 mA, -40 °C < T _J < 125 °C		125	300	mV
		ON mode: $V_{EN} = 2 \text{ V}$ $I_{LOAD} = 10 \text{ mA to } 500 \text{ mA},$ $T_{J} = -40 \text{ to } 125 \text{ °C}$		200	800	
ΙQ	Quiescent current	OFF Mode:V _{EN} = GND, PPAK and DFN versions		30		μΑ
		OFF Mode:V _{EN} = GND, PPAK and DFN versions, -40 °C < T _J < 125 °C			120	
Isc	Short-circuit current			0.8		Α
V _{EN}	Enable input logic low	V _{IN} = 2.5 V to 16 V,			0.8	V
V EN	Enable input logic high	-40 °C <tj<125 td="" °c<=""><td>2</td><td></td><td></td><td>V</td></tj<125>	2			V
I _{EN}	Enable pin input current	V _{EN} = V _{IN}		5	10	μΑ
PG	Power Good output threshold	Rising edge		0.92* Vouт		V

 $^{^{\}rm a}$ For Vout < 1.5 V; V_{IN} = 2.5 V.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		Falling edge		0.8* V _{OUT}		
	Power Good output voltage low	I _{SINK} = 6 mA, open drain output		0.4		
C)/D	Cumply valtage raiseties	V _{IN} = 6 V +/- 0.5 V _{RIPPLE} Freq. = 120 Hz, V _{OUT} = 5 V		60		J.
SVR	Supply voltage rejection	V _{IN} = 6 V +/- 0.5 V _{RIPPLE} Freq. = 10 kHz, V _{OUT} = 5 V		52		dB
en	Output noise voltage	Bw = 10 Hz to 100 kHz, I _{LOAD} = 100 mA. C _{OUT} = 2.2 μF		45		μV _{RMS} / V _{OUT}
T	Thermal shutdown			170		°C
Tshdn	Hysteresis			10		

Notes:

 $^{^{(1)}}$ For Vout < 1.5 V; Vin = 2.5 V.

 $^{^{(2)}}$ Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply for output voltages below 1.5 V.

LDFM Electrical characteristics

 T_{J} = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 1 V^{a} , C_{IN} = 1 μ F, C_{OUT} = 2.2 μ F, I_{LOAD} = 10 mA, V_{EN} = 2 V, unless otherwise specified.

Table 6: Electrical characteristics for LDFM (adjustable version)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VIN	Operating input voltage		2.5		16	V
	Reference voltage	V _{IN} = V _{OUT} +1 V ⁽¹⁾		0.8		V
V _{ADJ}	Reference voltage	$V_{OUT}+1 \ V^{(1)} \le V_{IN} \le 16 \ V$ $I_{LOAD} = 10 \ mA$	-1		1	0/
	tolerance	10 mA ≤ I _{LOAD} ≤ 500 mA T _J = -40 to 125 °C	-1.5		1.5	- %
		V _{OUT} +1 V ⁽¹⁾ ≤ V _{IN} ≤ 16 V		0.01		
ΔV_{OUT}	Static line regulation	$V_{OUT}+1 \ V^{(1)} \le V_{IN} \le 16 \ V,$ $T_J = -40 \ to \ 125 \ ^{\circ}C$			0.04	%/V
		10 mA ≤ I _{LOAD} ≤ 500 mA		0.06		
ΔV_OUT	Static load regulation	10 mA ≤ I _{LOAD} ≤ 500 mA, T _J = -40 to 125 °C		0.2	0.4	%/A
ΔΨΟΟΙ	Static load regulation	10 mA ≤ I _{LOAD} ≤ 500 mA, T _J = -40 to 125 °C DFN6 version			10	
V_{DROP}	Dropout voltage (2)	V _{OUT} fixed to 2.5 V, I _{LOAD} = 500 mA, -40 °C < T _J < 125 °C		125	300	mV
		ON mode: $V_{EN} = 2 \text{ V}$ $I_{LOAD} = 10 \text{ mA to } 500 \text{ mA},$ $T_J = -40 \text{ to } 125 \text{ °C}$		200	800	
lq	Quiescent current	OFF Mode:V _{EN} = GND, PPAK and DFN versions		30		μA
		OFF Mode:V _{EN} = GND, PPAK and DFN versions, -40 °C < T _J < 125 °C			120	
Isc	Short-circuit current			0.8		Α
	Enable input logic low	V _{IN} = 2.5 V to 16 V,			0.8	
VEN	Enable input logic high	-40 °C < T _J < 125 °C	2			V
I _{EN}	Enable pin input current	VEN = VIN		5	10	μA
	Power Good output	Rising edge		0.92* V _{ADJ}		
PG	threshold	Falling edge		0.8* V _{ADJ}		V
	Power Good output voltage low	I _{SINK} = 6 mA, open drain output		0.4		

^a For $V_{OUT} < 1.5 \text{ V}$; $V_{IN} = 2.5 \text{ V}$.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
CVD	Supply voltage	V _{IN} = V _{OUT} +1 V +/- 0.5 V _{RIPPLE} Freq. = 120 Hz, V _{OUT} = 0.8 V		62		٩D
SVR	rejection	V _{IN} = V _{OUT} +1 V +/- 0.5 V _{RIPPLE} Freq. = 10 kHz, V _{OUT} = 0.8 V		55		dB
en	Output noise voltage	$Bw = 10 \text{ Hz to } 100 \text{ kHz},$ $I_{LOAD} = 100 \text{ mA}.$ $C_{OUT} = 2.2 \mu\text{F}$		50		µV _{RMS} / Vout
_	Thermal shutdown			170		°C
T _{SHDN}	Hysteresis			10		

Notes:

 $^{^{(1)}}$ For V_{OUT} < 1.5 V; V_{IN} = 2.5 V.

 $^{^{(2)}}$ Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply for output voltages below 1.5 V.

6 Application information

6.1 External capacitors

The LDFM requires external capacitors for regulator stability. These capacitors must be selected to meet the requirements of minimum capacitance and equivalent series resistance (see *Figure 25: "Stability plane adj (Cout, ESR)"* and *Figure 26: "Stability plane 3.3 V (Cout, ESR)"*). It is advisable to locate the input/output capacitors as close as possible to the relative pins.

6.1.1 Input capacitor

An input capacitor with a minimum value of 1 μ F is required with the LDFM. This capacitor must be located a distance of not more than 0.5" from the input pin of the device and returned to a clean analog ground. Any good quality ceramic capacitors can be used for this capacitor.

6.1.2 Output capacitor

It is possible to use ceramic capacitors but the output capacitor must meet the requirements for minimum amount of capacitance and E.S.R. (equivalent series resistance) value.

A minimum capacitance of 2.2 μ F is a good choice to guarantee the stability of the regulator. However, other C_{OUT} values can be used according to *Figure 25: "Stability plane adj (C_{OUT}, ESR)"* and *Figure 26: "Stability plane 3.3 V (C_{OUT}, ESR)"*, showing the allowable ESR range as a function of the output capacitance.

The output capacitor must maintain its ESR in the stable region over the full operating temperature range to assure stability. Also, capacitor tolerance and variation with temperature must be kept in consideration in order to assure the minimum amount of capacitance at all times.

6.2 Enable pin operation

The Enable pin can be used to turn OFF the regulator when pulled down, so drastically reducing the current consumption. When the enable feature is not used, this pin must be tied to V_{IN} to keep the regulator output ON at all times. To assure proper operation, the signal source used to drive the Enable pin must be able to swing above and below the specified thresholds listed in the electrical characteristics section (V_{EN}). The Enable pin must not be left floating because it is not internally pulled down/up.

6.3 Power Good

The LDFM features an open drain Power Good (PG) pin to sequence external supplies or loads and to provide fault detection. This pin requires an external resistor (R_{PG}) to pull PG high when the output is within the PG tolerance window. Typical values for this resistor range from 10 k Ω to 100 k Ω .

7 Typical performance characteristics

 $C_{IN} = C_{OUT} = 1 \mu F$, $V_{IN} = V_{OUT} + 1 V$, V_{EN} to V_{IN} , $I_{OUT} = 10 mA$, unless otherwise specified.

47/

12/36

Package information LDFM

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

LDFM Package information

8.1 PPAK package information

Figure 27: PPAK package outline

Table 7: PPAK mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	2.2		2.4
A1	0.9		1.1
A2	0.03		0.23
В	0.4		0.6
B2	5.2		5.4
С	0.45		0.6
C2	0.48		0.6
D	6		6.2
D1		5.1	
E	6.4		6.6
E1		4.7	
е		1.27	
G	4.9		5.25
G1	2.38		2.7
Н	9.35		10.1
L2		0.8	1
L4	0.6		1
L5	1		
L6		2.8	
R		0.20	
V2	0°		8°

LDFM Package information

8.2 PPAK packing information

Figure 28: PPAK tape outline

Package information LDFM

Figure 29: PPAK reel outline

Table 8: PPAK tape and reel mechanical data

	Таре			Reel	
Dim.	n	nm	Dim.	n	nm
DIM.	Min.	Max.	Jim.	Min.	Max.
A0	6.8	7	А		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Bas	se qty.	2500
P1	7.9	8.1	Bu	k qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

LDFM Package information

8.3 DPAK (TO-252) package information

Figure 30: DPAK (TO-252) package outline

Table 9: DPAK (TO-252) mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		5.20	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

LDFM Package information

Figure 31: DPAK (TO-252) recommended footprint (dimensions are in mm)

Package information LDFM

8.4 DPAK (TO-252) packing information

Figure 32: DPAK (TO-252) tape outline

40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min. width

Figure 33: DPAK (TO-252) reel outline

Table 10: DPAK (TO-252) tape and reel mechanical data

Таре			Reel		
Dim	n	ım	Dim.	1	nm
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	А		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Bas	e qty.	2500
P1	7.9	8.1	Bul	k qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

AM06038v1

8.5 DFN6 (2x2) package information

Figure 34: DFN6 (2x2) package outline

Table 11: DFN6 (2x2) mechanical data

mm			
Dim.			
	Min.	Тур.	Max.
A	0.80	0.90	1.00
A1	0.00	0.02	0.05
b	0.25	0.30	0.35
D		2.00 BSC	
Е		2.00 BSC	
е	0.65 BSC		
D2	1.45		1.70
E2	0.85		1.10
L	0.20		0.30
K	0.15		
aaa	0.05		
bbb	0.10		
ccc	0.10		
ddd	0.05		
eee	0.08		
N	6		

LDFM **Package information**

Figure 35: DFN6 (2x2) recommended footprint

Notes:

- 1) This footprint is able to ensure insulation up to 60 Vrms (according to CEI IEC 664-1)

8518828_B

LDFM Package information

8.6 DFN6 (2x2) packing information

Figure 36: DFN6 (2x2) reel outline

Table 12: DFN6 (2x2) tape and reel mechanical data

Dim.	mm		
	Min.	Тур.	Max.
А			180
С	12.8		13.2
D	20.2		
N	60		
Т			14.4
A0		2.4	
В0		2.4	
K0		1.3	
P0		4	
Р		4	

Package information LDFM

8.7 DFN6 (3x3) package information

Figure 37: DFN6 (3x3) package outline

Table 13: DFN6 (3x3) mechanical data

Dim.	mm		
	Min.	Тур.	Max.
A	0.80		1
A1	0	0.02	0.05
A3		0.20	
b	0.23		0.45
D	2.90	3	3.10
D2	2.23		2.50
Е	2.90	3	3.10
E2	1.50		1.75
е		0.95	
L	0.30	0.40	0.50

Figure 38: DFN6 (3x3) recommended footprint

8.8 DFN6 (3x3) packing information

Figure 39: DFN6 (3x3) tape outline

ø20.2 Min. +0.3 +0.5 0.2 ø13 ø330 (13") 18.4 Mc (Measured at hi 2.2 (Measured at hub) 12.4

Figure 40: DFN6 (3x3 mm) reel outline

Table 14: DFN6 (3x3) tape and reel mechanical data

Dim	mm		
Dim.	Min.	Тур.	Max.
A0	3.20	3.30	3.40
В0	3.20	3.30	3.40
K0	1	1.10	1.20

7875978_N

Ordering information LDFM

9 Ordering information

Table 15: Order code

Order code	Package	Output voltage
LDFMPT-TR	PPAK	
LDFMPUR	DFN6-3x3	Adjustable from 0.8 V
LDFMPVR	DFN6-2x2	
LDFM33PUR	DFN6-3x3	2.2.1/
LDFM33PVR	DFN6-2x2	3.3 V
LDFM50DT-TR	DPAK	5 V
LDFM50PT-TR	PPAK	υν

LDFM Revision history

10 Revision history

Table 16: Document revision history

Date	Revision	Changes
28-Aug-2012	1	Initial release.
		Part numbers LDFM and LDFM50 have been unified under LDFM.
		Updated the Features and the Description in cover page.
		Cancelled Table1: Device summary.
22-Nov-2013	2	Updated Section 2: Pin configuration, Section 3: Typical application, Section 4: Absolute maximum ratings, Section 5: Electrical characteristics and Section 8: Package information.
		Added Section 8.7: DFN6 (3 x 3 mm) packing information and Section 9: Order code.
		Minor text changes.
15-Jun-2015	3	Updated Table 5: Electrical characteristics for LDFM (fixed versions) and Table 6: Electrical characteristics for LDFM (adjustable version).
	Minor text changes.	
		Updated Section 9: "Ordering information".
05-Sep-2016	4	Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

