COMMUTATIVE ALGEBRA HOMEWORK IV

HOJIN LEE 2021-11045

Problem 1. Let (a,b) be a regular sequence in a domain A. Show ax - b generates a prime in A[x].

Proof. Since (a,b) is a regular sequence in A, it means that a is a non zerodivisor in A, and b is a non zerodivisor in A/(a). We show that (ax - b) is prime by showing that this is the kernel of the A-algebra homomorphism $\varphi: A[x] \to A_a$ given by $x \mapsto b/a$. Since the codomain is an integral domain, the result from this is immediate. First, we obviously have $(ax - b) \subset \ker \varphi$. Assume by contradiction that $(ax-b) \subseteq \ker \varphi$, i.e. there exists some $g \in \ker \varphi - (ax-b)$. Take g to be of minimal degree among such q. Note that q cannot be a constant since a is not a zerodivisor. Thus we may write $g = c_n x^n + \cdots + c_0$ for n > 0. Now, c_n cannot be in (a) since otherwise, $d := c_n b/a$ is an element of A since a is a non zerodivisor, and $0 = g(b/a) = c_n(b/a)^n + c_{n-1}(b/a)^{n-1} + \dots + c_0 = (d+c_{n-1})(b/a)^{n-1} + \dots + c_0.$ This implies that $(d+c_{n-1})x^{n-1}+\cdots+c_0$ is in $\ker \varphi$ of degree smaller than that of g, so $h \in (ax - b)$ by assumption. This would imply $g = h + c_n x^n - dx^{n-1} =$ $h+(c_n/a)x^{n-1}(ax-b)\in (ax-b)$, a contradiction. But from $0=c_n(b/a)^n+\cdots+c_0$ we have $-c_n b^n = c_{n-1} b^{n-1} a + \cdots + c_0 a^n \in (a)$, and since b is a non zerodivisor in A/(a), we also have b^n a non zerodivisor in A/(a), so it follows that $c_n \in (a)$, which is a contradiction to what we have just shown above. Hence $\ker \varphi = (ax - b)$, thus (ax - b) is prime in A[x].

Problem 2. Let A be noetherian. Show TFAE:

- (1) A is reduced.
- (2) The following hold:
 - (a) localization of A at primes of height 0 are regular.
 - (b) all associated primes of A have height 0.
- (3) (R_0) and (S_1) hold for A.

Proof. Suppose A is reduced. Consider the localization of A at a prime $\mathfrak p$ of height 0. This $A_{\mathfrak p}$ has a unique prime ideal. Suppose we have $a/s \in \mathfrak p A_{\mathfrak p}$ a nilpotent. Then $a^n/s^n=0$, i.e. $a^ns'=0$ for some n>0 and some $s'\in A-\mathfrak p$. It follows that as' is nilpotent in A, hence must be zero. Thus a/s=0/1 in $A_{\mathfrak p}$, so we have $\mathfrak p A_{\mathfrak p}=0$, i.e. $A_{\mathfrak p}$ is a field, thus regular. Now suppose $\mathfrak p \in \mathrm{Ass}(A)$, say $\mathfrak p = \mathrm{Ann}(a)$. Suppose $\mathfrak q \subseteq \mathfrak p$. Since $a\mathfrak p = (0) \subset \mathfrak q$ and there exists some element in $\mathfrak p - \mathfrak q$, it follows that $a\in \mathfrak q$. But then $a\in \mathfrak p$, so $a^2=0$ which is nonsense since A is reduced. Hence associated primes of A are of height 0.

Assume (a) and (b) hold. We want to show that $A_{\mathfrak{p}}$ is a regular local ring for all \mathfrak{p} of height 0. This is just (a). Now we want to show that depth $A_{\mathfrak{p}} \geq \min\{1, \operatorname{ht}(\mathfrak{p})\}$ for any \mathfrak{p} . For primes of height 0, this is obvious. If $\operatorname{ht}(\mathfrak{p}) \geq 1$, then by (b) we have \mathfrak{p} non-associated, so there exists at least one non-zerodivisor in \mathfrak{p} . This is because

Date: May 22, 2024.

if \mathfrak{p} consists of only zerodivisors, then it would be contained in some minimal prime by prime avoidance. By (b), this cannot happen. Hence depth $A_{\mathfrak{p}} \geq 1$.

Now suppose (R_0) and (S_1) hold for A. Again, as in the previous homework, we will use the fact that being reduced is a local property (Atiyah & Macdonald). Thus it is enough to showing $A_{\mathfrak{p}}$ being reduced for all primes \mathfrak{p} . We use induction on the height of \mathfrak{p} . For height 0 primes, this is immediate by R_0 . Suppose $\mathrm{ht}(\mathfrak{p}) \geq 1$, and the result holds for every prime of height less than \mathfrak{p} . Then by S_1 , we have depth $A_{\mathfrak{p}} \geq 1$, i.e. there is a non-zerodivisor $f \in \mathfrak{p}A_{\mathfrak{p}}$. Hence the localization map $A_{\mathfrak{p}} \to (A_{\mathfrak{p}})_f$ is injective. For an arbitrary ring R, we have $R \to \prod_{\mathfrak{p}} R_{\mathfrak{p}}$ injective, since being zero is a local property. Thus $(A_{\mathfrak{p}})_f$ is a subring of the product of localizations at prime ideals. The prime ideals of $(A_{\mathfrak{p}})_f$ correspond to prime ideals of $A_{\mathfrak{p}}$ not containing f, i.e. prime ideals of A contained in \mathfrak{p} not containing f. (We are abusing notation for f, but the choices for f are obvious.) By induction hypothesis, the localizations of $(A_{\mathfrak{p}})_f$ are reduced, hence its product, hence $A_{\mathfrak{p}}$. End of proof.

Problem 3. Let $(A, \mathfrak{m}, \kappa)$ a regular local ring of dimension $d \geq 0$. Let x_1, \ldots, x_d a regular system of parameters for A.

(1) Let $f \in \mathfrak{m}$. Let $a_1 \dots, a_d \in A$ s...t $f = \sum_{j=1}^d a_j x_j$ for some $a_i \in A$. Show that

 $(a_1 \operatorname{mod} \mathfrak{m}, \ldots, a_d \operatorname{mod} \mathfrak{m}) \in \kappa^d$

is uniquely determined.

(2) Let $1 \leq n \leq d$ and let $f_1, \ldots, f_n \in \mathfrak{m}$. Choose $a_{ij} \in A$ for $1 \leq i \leq n$ and $1 \leq j \leq d$ such that $f_i = \sum_j a_{ij}x_j$. Show that $A/(f_1, \ldots, f_n)$ is a regular local ring iff the matrix $(a_{ij} \mod \mathfrak{m}) \in \operatorname{Mat}_{n \times d}(\kappa)$ has rank $d - \dim A/(f_1, \ldots, f_n)$.

Proof. (1) Since A is regular local, we have $\mathfrak{m}/\mathfrak{m}^2 \cong \kappa^d$. Since $(x_1,\ldots,x_d)=\mathfrak{m}$, and the dimension of $\mathfrak{m}/\mathfrak{m}^2$ is d, the images $\overline{x_1},\ldots,\overline{x_d}$ span $\mathfrak{m}/\mathfrak{m}^2$ hence form a basis for the d-dimensional κ -vector space $\mathfrak{m}/\mathfrak{m}^2$. Now consider $\overline{f} \in \mathfrak{m}/\mathfrak{m}^2$. Then \overline{f} can be written uniquely as a κ -linear combination of the $\overline{x_i}$, say $\sum_i k_i \overline{x_i}$ with $k_i \in \kappa \cong A/\mathfrak{m}$. Hence if f can be written as $\sum_j a_j x_j$, then the coefficients a_j are determined uniquely up to modulo \mathfrak{m} .

Proof. (2) By Bruns & Herzog, Proposition 2.2.4, $A/(f_1, \ldots, f_n)$ is a regular local ring if and only if (f_1, \ldots, f_n) is generated by a subset of a regular system of parameters. Hence, we may assume $(f_1, \ldots, f_n) = (x_{s_1}, \ldots, x_{s_k})$ for some distinct $s_k \in \{1, \ldots, n\}, k \leq n$. Then since the x_i map to basis elements of the d-dimensional κ -vector space under the projection, it follows that the rank of the matrix $(a_{ij} \mod \mathfrak{m})$ is just equal to k. But note that since the x_{s_i} form a subsequence of the regular sequence x_i , they too are regular, and the dimension of $A/(f_1, \ldots, f_n) = A/(x_{s_1}, \ldots, x_{s_k})$ is just dim A - k = d - k. Hence d - (d - k) = k, which shows the forward direction. Conversely, if we denote dim $A/(f_1, \ldots, f_n) = d - k$, the matrix has rank k so we may find k elements of the x_i that span the image (f_1, \ldots, f_n) in $\mathfrak{m}/\mathfrak{m}^2$. Thus (f_1, \ldots, f_n) is generated by a subset of the x_i of k elements, which implies that $A/(f_1, \ldots, f_n)$ is a regular local ring by the proposition mentioned.

Problem 4. (A, \mathfrak{m}) is a noetherian local ring. Prove or disprove:

(1) If $\dim A = 0$ then A is CM.

Proof. Let $A = k[[x,y]]/(x^2,xy)$. A is a noetherian local ring since k[[x,y]] is.

Since \overline{x} and \overline{y} are both nonzero in A, and $\overline{xy} = 0$, \overline{y} is a zerodivisor in A. Since modding out by nilpotents do not change the dimension, and \overline{x} is nilpotent, we have dim $A = \dim A/(\overline{x}) = \dim k[[y]] = 1$. But $A/(\overline{y}) = k[[x]]/(x^2)$, and again by modding out nilpotents we have dim $A/(y) = \dim k[[x]]/(x) = \dim k = 0$. Taking $f = \overline{y}$, we have dim $A/f = \dim A - 1$.