Lecture II

Integer Multiplication

CPSC 275
Introduction to Computer Systems

Multiplication

- Computing <u>exact</u> product of w-bit numbers, x and y (either signed or unsigned) gives the following ranges:
 - Unsigned:

$$0 \le x * y \le (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$$

• 2's comp:

min:

$$x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$$

max:

$$x * y \le (-2^{w-1})^2 = 2^{2w-2}$$

Require up to 2w bits

Unsigned Multiplication

Implements modular arithmetic:

$$UMult_w(u, v) = (u \cdot v) \mod 2^w$$

```
1010 * 0110 = ?
```

```
1010 * 0110 = 00111100 (overflow)

10 * 6 = 12 (?)
```

Signed Multiplication

- Ignores high order w bits
- Different interpretation for signed vs. unsigned multiplication
- Lower bits are the same

Signed Multiplication in Practice

- Method I: Sign-Magnitude (indirect)
 - Find the magnitude of the two multiplicands
 - Multiply them together
 - Determine the sign
 - Same sign → positive
 - Different sign → negative
- Method 2: Sign-Extension (direct)
 - Sign-extend the two multiplicands to the product width
 - Multiply them together
 - Extract low w bits

$$||| \times 0|| = ?$$

$$-| \times 3$$

$$111 \times 100 = ?$$

$$-1 \times -4$$

$$| 111 \times 100 = 000100 \text{ (overflow)}$$

-| $\times -4 = -4 \text{ (?)}$

Power-of-2 Multiply with Shift

Operation

$$\mathbf{u} \ll \mathbf{k}$$
 gives $\mathbf{u} * 2^k$

for both signed and unsigned

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
- Examples

Dividing by Powers of 2

- Integer division is much slower than multiplication
- Dividing by 2^k can be done by a right shift by k.
 - logical right shift
 - arithmetic right shift
- Integer division always rounds toward zero,

e.g.,
$$7/3 = 2$$
, $-7/3 = -2$

Unsigned Power-of-2 Divide with Shift

- Quotient of unsigned by power of 2
 u >> k gives [u / 2^k]
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Divide with Shift

- Quotient of signed by power of 2
 u >> k gives [u / 2^k]
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0 (round down!)

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

- Quotient of negative number by power of 2
 - Want $\lceil x \mid 2^k \rceil$ (round toward 0)
- Use the property (from CPSC 203)

• Compute $\lceil x \mid 2^k \rceil$ as $\lfloor (x + 2^k - 1) \mid 2^k \rfloor$

In C:

$$(x + (1 << k) - 1) >> k$$

