

Art of Problem Solving 2008 China Girls Math Olympiad

China Girls Math Olympiad 2008

Day 1	
1	 (a) Determine if the set {1,2,,96} can be partitioned into 32 sets of equal size and equal sum. (b) Determine if the set {1,2,,99} can be partitioned into 33 sets of equal size and equal sum.
2	Let $\varphi(x) = ax^3 + bx^2 + cx + d$ be a polynomial with real coefficients. Given that $\varphi(x)$ has three positive real roots and that $\varphi(0) < 0$, prove that
	$2b^3 + 9a^2d - 7abc \le 0.$
3	Determine the least real number a greater than 1 such that for any point P in the interior of the square $ABCD$, the area ratio between two of the triangles PAB , PBC , PCD , PDA lies in the interval $\left[\frac{1}{a}, a\right]$.
4	Equilateral triangles ABQ , BCR , CDS , DAP are erected outside of the convex quadrilateral $ABCD$. Let X , Y , Z , W be the midpoints of the segments PQ , QR , RS , SP , respectively. Determine the maximum value of
	$\frac{XZ + YW}{AC + BD}.$

Day 2	
5	In convex quadrilateral $ABCD$, $AB = BC$ and $AD = DC$. Point E lies on segment AB and point F lies on segment AD such that B , E , F , D lie on a circle. Point P is such that triangles DPE and ADC are similar and the corresponding vertices are in the same orientation (clockwise or counterclockwise). Point Q is such that triangles BQF and ABC are similar and the corresponding vertices are in the same orientation. Prove that points A , P , Q are collinear.
6	Let (x_1, x_2, \dots) be a sequence of positive numbers such that $(8x_2 - 7x_1)x_1^7 = 8$ and $x_{k+1}x_{k-1} - x_k^2 = \frac{x_{k-1}^8 - x_k^8}{x_k^7 x_{k-1}^7}$ for $k = 2, 3, \dots$

www.artofproblemsolving.com/community/c3673

Contributors: orl

Art of Problem Solving 2008 China Girls Math Olympiad

	Determine real number a such that if $x_1 > a$, then the sequence is monotonically decreasing, and if $0 < x_1 < a$, then the sequence is not monotonic.
7	On a given 2008×2008 chessboard, each unit square is colored in a different color. Every unit square is filled with one of the letters C, G, M, O. The resulting board is called <i>harmonic</i> if every 2×2 subsquare contains all four different letters. How many harmonic boards are there?
8	For positive integers n , $f_n = \lfloor 2^n \sqrt{2008} \rfloor + \lfloor 2^n \sqrt{2009} \rfloor$. Prove there are infinitely many odd numbers and infinitely many even numbers in the sequence f_1, f_2, \ldots

Contributors: orl