Physics

Lecture 11 Work and Potential Energy

Today's Contents

Principle of work and energy (review)

Conservative forces and potential energy

Conservation of mechanical energy

Principle of Work and Energy

Statement

$$\sum U_{1-2} = \frac{1}{2}m(v_2^2 - v_1^2)$$

$$=T_2-T_1$$

Only forces that DO work need be considered!

Few Important Points Related to Work Energy Method

- Work of a force is a scalar quantity (positive, negative or zero) that is associated with the change in the position of the point of application
- Sometimes (for some specific forces) work can be calculated without integration; But in general integration of elementary work along a given path (*line integral*) is required
- Kinetic energy is a scalar quantity (always positive) associated with the speed of a particle at a given instant of time.

Conservative Force and Potential Energy

Conservative force

A force is said to be conservative if its work is a function of the initial and final positions of its point of application

In other words, the work done by a conservative force does not depend on the path (along which work is calculated)

Potential energy (V)

Capacity of conservative force to do work

Positive work diminishes the potential for further work, and negative work increases the potential

Characteristic of Conservative Force

Work of a conservative forceDecrease in potential energy

$$U_{1-2} = \int_{r_1}^{r_2} \mathbf{F} \bullet d\mathbf{r} = -\nabla V$$

Conservative force is a negative gradient of its potential function (V)

$$F_x = -\frac{\partial V}{\partial x}, \quad F_y = -\frac{\partial V}{\partial y}, \quad F_z = -\frac{\partial V}{\partial z}.$$

Conservative Force Test

Given a force

$$\boldsymbol{F} = F_{x} \, \boldsymbol{i} + F_{y} \, \boldsymbol{j} + F_{z} \, \boldsymbol{k}$$

> with components

$$F_x = F_x(x, y, z), \quad F_y = F_y(x, y, z), \quad F_z = F_z(x, y, z)$$

> the force F is conservative if and only if

$$\frac{\partial F_{x}}{\partial y} = \frac{\partial F_{y}}{\partial x}, \quad \frac{\partial F_{x}}{\partial z} = \frac{\partial F_{z}}{\partial x}, \quad \frac{\partial F_{y}}{\partial z} = \frac{\partial F_{z}}{\partial y}.$$

Energy Principles

Principle of conservation of energy

For a closed system sum of all forms of energy remains constant

Principle of conservation of mechanical energy

If all forces acting on a particle, body, or closed system of bodies are conservative, mechanical energy (E) is conserved

Example of Conservation of Mechanical Energy

Potential Energy (max) Kinetic Energy (zero)

Potential Energy and Kinetic Energy

Potential Energy (zero) Kinetic Energy (max)

Computation of Potential Energy

Potential energies of conservative forces

1. Constant force	2. Weight	3. Spring	4. Gravity
d Datum	h W Datum	L_0	R F m_B
$V_f = -Fd$	$V_g = Wh$	$V_e = \frac{1}{2}k\delta^2$	$V_g = -\frac{Gm_A m_B}{R}$