HW 16-17

Imports

```
import warnings
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
warnings.filterwarnings("ignore")
```

HW 16

```
In [2]: # Setup: copied from HW 13
        data: np.ndarray = pd.read_csv("uspopulation.txt", delimiter=" ").values.ast
        years = data[:,0]
        pops = data[:,1]
In [3]: # A
        tau = np.linspace(-1, 1, len(years)+1)
        tau_pre = tau[:-1]
        tau_20 = tau[-1]
In [4]: # B
        # a design matrix is created as follows:
        def design_mat(k: int, vec) -> np.ndarray:
            """ copied from HW 13 """
            A = np.stack([np.polynomial.legendre.Legendre.basis(i)(vec) for i in rar
            return A
        # for example, the design matrix given our data and a monomial basis up to k
        des mat = design mat(11, tau pre)
        pd.DataFrame(des_mat)
```

Out[4]:		0	1	2	3	4	5	6	7
	0	1.0	-1.000000	1.000000	-1.000000	1.000000	-1.000000	1.000000	-1.000000
	1	1.0	-0.833333	0.541667	-0.196759	-0.119309	0.336372	-0.414476	0.353133
	2	1.0	-0.666667	0.166667	0.259259	-0.427469	0.305556	-0.017233	-0.240569
	3	1.0	-0.500000	-0.125000	0.437500	-0.289062	-0.089844	0.323242	-0.223145
	4	1.0	-0.333333	-0.333333	0.407407	0.012346	-0.333333	0.193416	0.16598′
	5	1.0	-0.166667	-0.458333	0.238426	0.274209	-0.273003	-0.145090	0.278912
	6	1.0	0.000000	-0.500000	0.000000	0.375000	0.000000	-0.312500	0.000000
	7	1.0	0.166667	-0.458333	-0.238426	0.274209	0.273003	-0.145090	-0.278912
	8	1.0	0.333333	-0.333333	-0.407407	0.012346	0.333333	0.193416	-0.16598′
	9	1.0	0.500000	-0.125000	-0.437500	-0.289062	0.089844	0.323242	0.223145
	10	1.0	0.666667	0.166667	-0.259259	-0.427469	-0.305556	-0.017233	0.240569
	11	1.0	0.833333	0.541667	0.196759	-0.119309	-0.336372	-0.414476	-0.353133

```
In [5]: # C: adapted from HW 13
        df = pd.DataFrame(
                  "K": [i+1 for i in range(11)],
                  "sum of squared error": [0 for i in range(11)],
                  "predicted population in 2020": [0 for i in range(11)],
                  "condition number": [0 for i in range(11)]
              }
        # Let's loop to solve
        for i, row in df.iterrows():
             k = row["K"]
             A = design_mat(k, tau_pre)
             theta_hat, sse, rank, s = np.linalg.lstsq(A, pops)
             df.loc[i, "sum of squared error"] = sse
             df.loc[i, "predicted population in 2020"] = design_mat(k, np.array([tau]))
             df.loc[i, "condition number"] = s[0]/s[-1]
        # Here are our results
        df
        ## What do you notice?
        # I notice that the predicted population for 2020 still fluctuates as in hom
```

Out[5]:		K	sum of squared error	predicted population in 2020	condition number
	0	1	64833.089851	177.340667	1.000000
	1	2	1211.729360	314.443621	1.756048
	2	3	106.477333	342.047136	2.432760
	3	4	105.948478	341.124798	3.311827
	4	5	86.107178	332.065503	4.625532
	5	6	65.260770	348.063864	6.922458
	6	7	64.757088	352.746326	11.415503
	7	8	27.127825	267.999303	21.459975
	8	9	20.248611	181.742205	47.127184
	9	10	7.605490	508.822167	124.648564
	10	11	0.504120	-345.904083	419.481914

HW 17

```
In [6]: # setup
        data: np.ndarray = pd.read_csv("bias-variance-trade.txt", delimiter=" ", hea
        x1 = data[:, 0]
        y1 = data[:, 1]
        x2 = data[:, 2]
        y2 = data[:, 3]
In [7]: # A
        # let's use the function and methods from HW 13 and 16 (copied/adapted from
        df = pd.DataFrame(
            {
                "K": [i+1 for i in range(11)],
                "sum of squared error": [0 for i in range(11)],
            }
        theta_holder_1 = {}
        # Let's loop to solve
        for i, row in df.iterrows():
            k = row["K"]
            A = design_mat(k, x1)
            theta_hat, sse, rank, s = np.linalg.lstsq(A, y1)
            df.loc[i, "sum of squared error"] = sse
            theta_holder_1[k] = theta_hat
        df
```

Out[7]:		K	sum of squared error
	0	1	3.041412
	1	2	3.040519
	2	3	3.040433
	3	4	3.040249
	4	5	2.952330
	5	6	2.952087
	6	7	2.778459
	7	8	2.750194
	8	9	0.994671
	9	10	0.923089
	10	11	0.142081

Out[8]:		K	sum of squared error
	0	1	1.331521
	1	2	1.301472
	2	3	1.239674
	3	4	1.225391
	4	5	1.110006
	5	6	1.103873
	6	7	1.025801
	7	8	0.864047
	8	9	0.479757
	9	10	0.477410
	10	11	0.165095

```
In [9]: # C
        plt.scatter(x1, y1, color = "b", marker="x")
        k1_{to_plot} = 11
        bfx1 = np.linspace(-1, 1, 100)
        ttp1 = theta_holder_1[k1_to_plot]
        atp1 = design_mat(k1_to_plot, bfx1)
        bfy1 = atp1@ttp1
        plt.plot(bfx1, bfy1, color="b")
        plt.scatter(x2, y2, color = "r", marker="x")
        k2_{to_plot} = 11
        bfx2 = np.linspace(-1, 1, 100)
        ttp2 = theta_holder_2[k2_to_plot]
        atp2 = design_mat(k2_to_plot, bfx2)
        bfy2 = atp2@ttp2
        plt.plot(bfx2, bfy2, color="r")
        plt.ylim(-1.5, 1.5)
        # How well does one model fit the data used to train the other model?
        # not well -- the models are specific to their datas
```

Out[9]: (-1.5, 1.5)

Acknowledgment

Work in this repository and with associated assignments and projects may be adapted or copied from similar files used in my prior academic and industry work (e.g., using a LaTeX file or Dockerfile as a starting point). Those files and any other work in this repository may have been developed with the help of LLM's like ChatGPT. For example, to provide context, answer questions, refine writing, understand function call syntax, and assist with repetitive tasks. In these cases, deliverables and associated work reflect my best efforts to optimize my learning and demonstrate my capacity, while using available resources and LLM's to facilitate the process.

ChatGPT Conversation