

# Jianghai Wang

Nationality: Chinese Date of birth: 16 Aug 2000 Gender: Male

**Career Services** Phone number: (+86) 18030166587

• Work: 37 Xueyuan Road, Haidian District, Beijing, P.R. China. H1012, New Main Building, 100191 Beijing (China)

#### **ABOUT ME**

Computational Materials Science, First principles calculation, crystal structure prediction, Machine learning

#### **EDUCATION AND TRAINING**

## Master's degree

Beihang University [ Sep 2022 – Jan 2025 ]

City: Beijing | Country: China | Website: www.buaa.edu.cn | Field(s) of study: Computational Materials

Science | Final grade: 3.55/4.00

## **Bachelor's degree**

Xiamen University [ Sep 2018 – Jun 2022 ]

City: Xiamen | Country: China | Website: www.xmu.edu.cn | Field(s) of study: Material Science and

Engineering | Final grade: 3.25/4.00

## **PROJECTS**

[ Aug 2023 - Aug 2024 ]

## **Crystal Structure Prediction of Ge-Sb-Te System**

- 1. Utilizing a combination of *genetic algorithms* and *first-principles methods*, I conducted crystal structure prediction studies on the Ge-Sb-Te system, a pivotal phase change material system, to uncover its inherent complexities and expand our knowledge of its configuration space. In this work, *crossover* and a variety of *mutation* operators are used to improve the sampling efficiency of the algorithm. The energy above hull is used as **Fitness function** for population iteration. After iterations, the candidates then further validated with a carefully considered screening criteria.
- 2. Given the extensive crystal material database, we can search for new materials through **element substitution** based on **structural prototypes**. I adopted this strategy for the impressive **GeTe-Sb2Te3 pseudo-binary line** of the Ge-Sb-Te system, due to the large number of phase-change storage materials found along it. The overall process is similar to the above work, with a more stringent energy screening criterion due to the prevalence of metastable cubic phases in structures along pseudo-binary line.

The works above is expected to enhance comprehension of this intriguing system and potentially identify novel structures or compositions conducive to phase-change storage applications.

[ Jan 2024 – Sep 2024 ]

Machine learning potential accelerates crystal structure prediction In this work, I have developed a framework combining genetic algorithm and pre-trained potential, which can effectively locate the ground-state or meta-stable states of the relatively large/complex systems. Utilizing machine learning potentials (e.g., general pre-training potentials DPA-2, CHGNet, MACE, etc.) as energy evaluators instead of first principles methods can significantly expedite the process of crystal structure prediction and more effectively probe the potential energy surface.

#### **HONOURS AND AWARDS**

[ Oct 2023 ] Beihang University

**Excellent Student Cadre** 

[ Aug 2023 ] Beihang University

**Academic scholarship** 

[ Aug 2022 ] Beihang University

Freshman scholarship

[ May 2022 ] Xiamen University

Academic scholarship

#### **DIGITAL SKILLS**

## **Programming**

Python / Bash / LaTeX

## **DFT**

VASP / Materials Studio / Pymatgen

#### MD

LAMMPS / ASE / VMD / OVITO

#### **CSP**

USPEX / CALYPSO

### **Others**

ATAT / VESTA / Atomate2 / Phonopy / Origin

# **RECOMMENDATIONS**

Name: Prof. Zhimei Sun | group leader

The administrator of ICME **Email:** <u>zmsun@buaa.edu.cn</u>

Name: Dr. Linggang Zhu | supervisor Master's thesis supervisor in ICME

Email: lgzhu7@buaa.edu.cn