二维卷积神经网络层

Conv2D(input, #张量输入

Filter,#卷积核参数

Strides,#步长

Padding,#卷积方式(边缘填充)

Use_cudnn_on_gpu =None,#使用 N 卡 GPU

Data_format = None,#数据格式,于步长参数配合,决定移动方式

Name = Nnoe#用于 tensorboard 图形显示时使用)

激活 (函数) 层

Activation(activation,#激活函数字符名

**kwargs#可以有 input_shape, 当作为网络的第一层时),

最大池化层

MaxPooling2D(pool_size,#池化窗口大小

Strides.#步长

Padding,#边缘填充

data format,#'channels first','channels last'

name# tensorboard

),

随机丢弃

Dropout(Rate,#丢弃率

Noise_shape=None,#一维整数张量,表示将与输入相乘的二进制丢失掩码的形状相同。

Seed=None,#用作随机种子的 python 整数

**kwargs 其他参数

),

全连接层

Dense(units,#输出空间的维数

Activation,

Use bias,#字面意思

Kernel_initialize,#核初始化

Bias_initialize,#B 初始化

Kernel_regularizer,#核的正则化函数

Bias_regularizer,#B的正则化函数

Activity_regularizer,#当前层的激活函数

Kernel_constraint,#核的矩阵约束

Bias_constraint,#B 的矩阵约束)

配置用于训练的模型

compile(optimizer,#优化器

loss,#目标函数

metircs, #评价标准
loss_weights=None,#
sample——weights=None,#
weights_metrics,#权重评价
target_tensors=None.
Distribute=None,
**kwargs),、

Evaluate——返回测试模式下模型的损失值和指标值

为了模型训练固定的 epochs 的迭代 fit(x=None,#配置训练的输入数据 y=None,#配置训练的标注数据 batch_size=None,#配置批大小 epoch=1,#epoch 数量 verbose=1,#训练信息的展示方式 callbacks=None,#断点续训 validation split,#划分验证集占训练集的比例 validation_data,#配置验证集 shuffle=True,#随机打乱数据 class_weights=None,# sample_weights, initial_epoch,#新的训练周期是从指定的 epoch 开始训练的。 steps_per_epoch,#配置每个 epoch 训练的步数 validation_steps, validation_freq max_queue_size, workers=1, use_multiprocessing,**kwargs)