De which of the following are well-formed formulea?

$$avb \rightarrow c/$$
 $(anb) \rightarrow c$
 $(avb) \rightarrow c/$
 $(avb) \rightarrow c/$

$$\left((PNQ) \rightarrow (Q) \right]$$

$$[(PAQ) \rightarrow Q]$$

$$[PAQ \rightarrow Q]$$

Normal Forms: The standardization of given propositional formulea is known ar Normal Forms. It is very difficult to compare logical expressions like P and Q, when there are too many propositional variables. Normal forms are helpful to compare logical expressions either they tautology or contradiction or equivalent, etc. (PAGNON) V(~PAGNON) = P

Different types of normal forms are (canonical forms) INF CDISjunctive Normal Form) ii CNF (Conjunctive Normal Form) TIL PONF (Principle Disjunctive Normal Form) iv. PCNF. (Principle conjunctive Normal Form) Elementary Sum: Disjunction of propositional variables or their Negation's (P) ~P. (PV9) ~PV~9), ~PV9) (PV~9) Elementary product: conjunction of propositional variables or their negations

P, ~P. 9, ~9, (PA9) (~PA~9), (~PA9) (PA9A~91)

P = PVP = PNP = (PNP) V (PNP) = (PVP) A (PVP)

DNF: A logical expression expression is said to in disjunctive normal ACE form if it is a Sum of elementary product.

eg: P,

(Pnq) v (qnon),

(~Pnon) v (~qnon),

(Pn~q) v (Pn~n) v (qnon)

PDNF: A DNF is said to be PDNF iff It consists all propositional voriables in each term

eg: If there are three variables in given formula, (P,9,9)/

SOP () (PAQ) V(QAD): DNF, But NOT PDNF

() (PAQAD) V(~PA~QA~D): PDNF

(ii) (PAQAD) V(PAQAD) V(~PA~QAD): PDNF

(iv) (PAQAD) V(PAQAD) V (~PA~QAD) V (~PA~QAD)

CNF: A logical expression is said to be in conjunctive normal form,

If It is a product of elementary Sums

eg: P.

(PV9) 1 (~PV~9) , (PV9) 1 (PV0) 1 (9V~0) /

PCNF: A CNF is called as PCNF If It consists all propositional variables in every term of It's formula.

eg: If there are three variables, Then (Prqva) 1 (~Pr~qr~on) 1 (~Prqva)

obtain the DNF of the formula
$$P\Lambda(P=)Q$$
)

Sol $P\Lambda(P\rightarrow Q) \equiv P\Lambda(\sim PVQ)$
 $\equiv (P\Lambda\sim P)V(P\Lambda Q)$

Sum

O: obtain DNF of propositional formula $PA(P \rightarrow q)$ Sol $PA(P \rightarrow q) = PA(\sim PVq)$ $= (PA \sim P) \vee (PAq)$ Above formula is in the form of Sum of products

Above formula is in the form of $PA(P \rightarrow q)$ $PA(P \rightarrow q) = PA(\sim q \rightarrow \sim P)$ $PA(\sim PVq) = PA(\sim q \rightarrow \sim P)$ $PA(\sim PVq) = PA(\sim q \rightarrow \sim P)$

$$\underline{\underline{0}}$$
 obtain CNF of $PV(\sim P \land 0)$

Sol $PV(\sim P \land 0) \equiv (PV \sim P) \land (PV \otimes 0)$
 $\underline{\underline{1}}$
 \underline{PV}
 \underline

a obtain the CNF of PV(~PAB)

SOL PV (~PAB) = (PV~P) A (PVB)

= The above formula is in product of sums

It is orequired CNF.

@ obtain

SOL

in PDNF of the formula pn(qvor)

airen Pr(qvor) = (prq)v(pror)

Liven.		, ,,,,,		
P	2	n	2V2	PNCQVOL)
F	T	T	T	T.*
i	T	FJ	Tu	*
IT	F	T	Tu	*
-	-	F	E.	F
7				
F	T	T	T	F
F	T	F	T	F
F	F	T	T	F
F	F	F	F	F

 $= \frac{(P \wedge Q \wedge \sigma) \vee (P \wedge Q \wedge \sigma) \vee (P \wedge Q \wedge \sigma)}{(P \wedge Q \wedge \sigma) \vee (P \wedge Q \wedge \sigma)} \vee (P \wedge Q \wedge \sigma)$ $= \frac{(P \wedge Q \wedge \sigma) \vee (P \wedge Q \wedge \sigma)}{(P \wedge Q \wedge \sigma) \vee (P \wedge Q \wedge \sigma)} \vee (P \wedge Q \wedge \sigma)$

```
Method-II:
  airen: pn(qvoz)
       = (PA2) v (PAJ)
      Here we have two terms, In first
    term there is no or', In the Second term
   there is no 2
Take first term = (PA9)
              =(pnqnt)
              = [pngn (orvar)]
             =[(PN9NOZ)V(PN9N~OZ)]
```

Take Second term

$$(p \cap n)' = (p \cap n \cap t)$$
 $= (p \cap n \cap t) \cap ACE$
 $= (p \cap n \cap t) \cap ACE$

obtain PCNF of the formula pr(9101) $PV(9n\pi) \equiv (PV9) \Lambda(PV\pi)$ SOL

CHOINER	RINGAC
A Second	JOHN TO
V	
Sinc	o 1995
A	CE

P	2	π.	212	PV(QNJL)
T	T	T	T	T
T	T	F	F	T
T	F	T	F	T
T	F	F	F	T.
F	T	T	T	T
F	T	FV	F	*
F	F	T	F	E*
F	F	E	F	\mathcal{D}^*

Required PCNF is

(PV~qVor) 1 (PVqV~or) 1 (PVqVor)

Method-T: $pv(qnn) = (pvq) \wedge (pvn)$ $= (pvqvf) \wedge (pvnvf)$ $= [pvqv(on~n)] \wedge [pvnv(qn~q)]$ $= (pvqvn) \wedge (pvqv~n) \wedge (pvnvq) \wedge (pvnv~q)$ $= (pvqvn) \wedge (pvqv~n) \wedge (pvqv~n) \wedge (pvqv~n)$

Q: Find Disjunctive Normal form and conjunctive Normal form of formula f (P, O, R) defined as

P	O	R	f(P, a, R)
0	0	0	\mathcal{O}
0	0	1	
6	1	0	0/
10	1	1	0 /
1	0	0	\overline{Q}
. 1	0	1/	0 1
1	1	0	
1	1	1/	0 ~

The Required PDNF

(p'no'nr!) v (p'no'nr)

v (pno'nr!) v (pnonr!)

The Required PCNF is

(pvo'vr) n (pvo'vr!) A

CP'VQVR') 1CP'VQ'VR')

@ obtain DNF of formula:

$$P \rightarrow \left[(P \rightarrow 2) \land \sim (\sim 2 \lor \sim P) \right]$$

Obtain DNF of the formula
$$P \rightarrow \left[(P \rightarrow q) \land \sim (\sim q \lor \sim P) \right]$$

