TE 1

Nom: Prénom:

• Durée : 90 minutes

• Les téléphones et les machines à calculer sont interdits.

Exercice 1 (4 pts). Simplifier chaque expression

a)
$$\frac{2x-1}{x^2+4x+4} - \frac{6x}{x^2-4} + \frac{3}{x-2}$$

b)
$$\frac{e^{-2\ln(x^3)}}{x^2}$$

Exercice 2 (6 pts). a) Vérifier que $x = \ln(2)$ est solution de l'équation

$$e^{3x} - 6e^{2x} + 9e^x - 2 = 0.$$

b) Déterminer toutes les autres solutions réelles de l'équation.

Exercice 3 (6 pts). Déterminer toutes les solutions réelles de chaque équation

a)
$$\ln(x) + \ln(x-1) = 2\ln(x+1)$$

b)
$$3\cos^2(x) + 2\sin^2(x) = \frac{11}{4}$$
 (avec $x \in [-\pi, \pi]$)

Exercice 4 (6 pts). Calculer, lorsqu'elle existe, la valeur de chaque limite:

a)
$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1} - x}{x + 1}$$

b)
$$\lim_{x \to 1/2} \frac{1 - 8x^3}{2x^2 + x - 1}$$

Exercice 5 (9 pts). Donner la valeur exacte de chaque expression

a)
$$\sin(-\frac{11\pi}{6})$$

d)
$$\operatorname{arccos}(-\frac{1}{2})$$

g)
$$\arccos(\cos(7))$$

b)
$$\cos(-\frac{9\pi}{4})$$

e)
$$\cos(\arctan(\frac{1}{\sqrt{3}}))$$

h)
$$\cos(\arcsin(-\frac{1}{\sqrt{2}}))$$

c)
$$\arcsin(-\frac{1}{2})$$

f)
$$\arcsin(\sin(-4))$$

i)
$$\sin(\arccos(\frac{1}{5}))$$