Future Directions for First-Order Decision-Theoretic Planning

Research Proposal Scott Sanner

ssanner@cs.toronto.edu

MDP Overview

- MDPs are *de facto* standard model for decision-theoretic planning problems
- But, traditional enum. state models are inadequate for representation / inference
- Thus, **MDP** research has focused on:
 - ◆ Algorithms that exploit MDP structure
 - ◆ MDP language extensions for succinct models

FOMDP Overview

- Addressing both issues, **first-order MDPs** (**FOMDPs**) **introduced** (BRP, 2001)
- Allows relational MDPs (RMDPs) to be solved independently of ground domain
- But, this **level of abstraction** has its **costs**:
 - **◆ Theorem proving** required for **compactness**
 - ◆ No upper bound on optimal value fn size!

Current and Future Directions

More research needed to make MDPs and FOMDPs practical for realistic applications:

- Structure exploitation in algorithms:
 - **Exploiting structure for exact/approx. solutions**
 - **Exploiting structure in basis function approaches**
- **■** Modeling language extensions:
 - ◆ Sum/count aggregators
 - Explicit quantity
 - ◆ Topological structure
 - Program constraints
 - Concurrent actions

1a) Exploiting CSI in Factored MDPs

■ Use **ADDs** to **exploit CSI** in **factored MDP** model:

- Value iteration (VI) for factored MDPs:
 - $V^{n+1}(x_1...x_i) = R(x_1...x_i) + \gamma \cdot max_a \sum_{x_1'...x_i'} \prod_{F_1...F_i} P_1(x_1'|_{...}a) ... Pi(x_i'|_{...}a) V^n(x_1'...x_i')$

■ SPUDD (HSHB, 1999): ADD-based VI

BKGD

1a) Is CSI enough for MDPs?

- **ADDs** exploit **CSI**, but more structure beyond CSI
- **Example 1: Additive reward/utility functions**

$$R(a,b,c) = R(a) + R(b) + R(c)$$

= $4a + 2b + c$

■ Example 2: Multiplicative value **functions**

$$V(a,b,c) = V(a) \cdot V(b) \cdot V(c)$$

$$= \gamma^{(4a+2b+c)}$$

1a) Exploiting CSI/Add/Mult in MDPs

PREV

- Replace ADDs with Affine ADDs (SM, 2005)
- **Example 1: Additive** reward/utility **functions**

•
$$R(a,b) = R(a) + R(b)$$
= $2a + b$

• $(2/3,1/3) < (0,1/3) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) < (0,0) <$

■ Example 2: Multiplicative value functions

$$V(a,b) = V(a) \cdot V(b)$$

$$= \gamma^{(2a+b)}; \gamma < 1$$

$$<0,0 > \sqrt{\frac{\gamma^2 - \gamma^3}{1 - \gamma^3}}$$

■ Up to exp→lin time/space reduct., never worse!

1a) Exploiting Prop. Structure in FOMDPs

■ FOMDP operations use case statements, e.g.

						∃x
∃x A(x)	10		∃ y A (y)	1		
¬∃ x A(x)	20	\oplus	- ∃ y A(y)	2	_	$\frac{\neg \exists x \ A(x) \ ^ \exists y \ A(y)}{\neg \exists x \ A(y)}$
						$\neg \exists x \ A(x) \ \neg \exists y \ A(y)$

■ Problem: Case ops yield **redundant formulae**

CURR | Solution: Extract prop. struct. & simplify, e.g.

Prop Var	FOL Mapping	_	а	10		а	1		a	11
α	∃ x A (x)	7	¬а	20	\oplus	¬a	2	_	¬a	22
Ь	∃x B(x)							•		

1a) Exploiting CSI/Add/Mult in FOMDPs

CURR

■ Propositional mapping also enables extension of case statements to first-order (affine) ADDs

Prop Var	FOL Mapping	a	þ	a
a	∃x A(x)		2 1	- b
b	$\exists x \ A(x)^B(x)$	20 10		22 11 12

- Use lexicographic relation ordering for vars
- Use ordered resolution for consistency check
- Replace FOMDP case and ops with FO(A)ADD ⇒ exploit logical, add, and mult structure!

1a) Structured Approximation Solutions

PREV

- APRICODD (SHB, 2000): Approx. VI w/ ADDs
 - At each VI step,
 prune value fn &
 replace w/ range
 - ◆ Err. contracts on VI
 - Can still converge!

FUTR

- Extend **APRICODD** to **AADDs** for **MDPs**
 - Prune nodes that minimize $max(|F(v, X) F(\neg v, X)|)$
 - ◆ Can perform explicit merges in node cache, or reduce precision at terminal (more difficult for AADDs)

FUTR

- Extend **APRICODD** to **FO(A)ADDs** for **FOMDPs**
 - ◆ Direct extension, or can we exploit structure better?

1b) Structured FO Basis Fn Solutions

Represent value fn as linear comb. of basis fns:

$$V(s) = w_1^{\bullet} \begin{bmatrix} \exists b,c \ BIn(b,c,s) & 1 \\ \neg \exists b,c \ BIn(b,c,s) & 0 \end{bmatrix} \oplus w_2^{\bullet} \begin{bmatrix} \exists t,c \ TIn(t,c,s) & 1 \\ \neg \exists t,c \ TIn(t,c,s) & 0 \end{bmatrix}$$

Reduces MDP solution to finding good weights

PREV

- FOALP (SB, 2005): Approx. LP for FOMDPs
 - ◆ Formulate as optimization of LP w/ FO constraints
 - ◆ Use a relational variant of var elim to efficiently find max violated constraint for constraint generation
 - ◆ Projection of value fn onto weights obviates need for simplification, only need to do consistency checking!

1b) More FO Basis Fn Research

FUTR

- **FO Approximate Policy Iteration (FOAPI):**
 - ◆ API typically yields lower error than ALP
 - **◆ Generalize API error bounds to FOAPI:**
 - ♦ API has much tighter err. bounds than ALP!

FUTR

- Additional research for FOALP / FOAPI:
 - ◆ Use of **FO**(A)**ADD** data structures
 - ◆ Can we automatically generate basis fns?
 - **◆ Techniques** for reducing approx. error:
 - ◆ Partition relevance reweighting (FOALP)
 - ♦ Bellman error-directed on-line search

2a) Sum/Count Aggregators

■ Often, reward scales with domain size:

SysAdmin Domain:
$$R(s) = \sum_{c} \frac{\text{running}(c,s)}{\neg \text{running}(c,s)} \frac{1}{0}$$

- Cannot repr. in current FOMDP formalism!
- Need sum/count aggregator language extension

CURR

- One solution approach: extension of FOALP
 - **♦** Basis fns w/ aggregators scale w/ domain size
 - **◆ Caveat:** leads to a **FO LP** with ∞ **constraints**
 - ♦ But, solve over-constrained LP, then relax active constraints
 - ◆ Scalable, near-optimal solution on SysAdmin

2b) Explicit Quantity

- Often, we want to represent quantity explicitly:
 - hasWater(Tank-A,25), hasMileage(Car-1,12.34)
- Fortunately, explicit quantity is easy to specify in first-order action theories, e.g.
 - ♦ hasWater(t,q,do(a,s)) = hasWater(t,q-y,s) \land a=fill(y) \land y \leq 20 \lor hasWater(t,q+y,s) \wedge a=drain(y) \vee hasWater(t,q,s) \land ($\neg \exists y$. $a=fill(y) \land y \le 20$) $\land \neg \exists y$. a=drain(y)
- Can apply standard solution techniques (1a,1b)
- Problem: simplification/inconsistency detection with arithmetic functions & inequalities

FUTR $\mid \blacksquare \Rightarrow$ Need to identify practical inference rules

2c) Topological Structure

■ Many problems have underlying topology, e.g.

■ Waste of computation to rely on MDP inference to perform graph-theoretic operations

FUTR

- Ideally, want to **compile out topological content:**
 - ◆ Precompute stochastic shortest paths between all node pairs
 - ◆ Use a combo of macro-actions and lookup tables during regression/max of actions

2d) Program Constraints

FUTR

- Have policy constraints in form of a program
- Goal: make opt. decision at non-det. choice pts
- Solution: Generalize HAM model (PR, 1998) to FOMDPs with GOLOG program constraints

2e) Concurrent Actions

- **FUTR** | Most **real-world problems** consist of **actions** executable in parallel
 - How to **deal** with **action interactions?**
 - **◆** Factored action effects
 - ◆ Basis function techniques, e.g. (GKGK, 2003)

Summary of Research Plan

Current directions to complete:

- ◆ (1a) Exact FOMDP solutions with FO(A)ADDs
- ◆ (2a) Sum/Count aggregators

■ Future directions:

- (1a) Approx. MDP solutions with AADDs
- ◆ (1a) Approx. FOMDP solutions with FO(A)ADDs
- ◆ (1b) FOAPI and FOALP/FOAPI enhancements
- (2b) Explicit quantity
- (2c) Topological structure
- (2d) Program constraints
- ◆ (2e) Concurrent actions

Bibliography

- (BRP, 2001) C. Boutilier, R. Reiter, and B. Price. (2001). *Symbolic Dynamic Programming for First-order MDPs*. IJCAI-01.
- (HSHB, 1999) J. Hoey, R. St. Aubin, A. Hu, and C. Boutilier. (1999). *SPUDD: Stochastic Planning using Decision Diagrams*. UAI-99.
- (SM, 2005) S. Sanner and D. McAllester. (2005). Affine Algebraic Decision Diagrams (AADDs) and their Application to Structured Probabilistic Inference. IJCAI-05.
- (SHB, 2000) R. St. Aubin, J. Hoey, and C. Boutilier. (2000).

 **APRICODD: Approximate Policy Construction using Decision Diagrams.

 NIPS-00.
- (SB, 2005) S. Sanner and C. Boutilier. (2005). *Approximate Linear Programming for First-order MDPs*. UAI-05.
- (PR, 1998) R. Parr and S. Russell. (1998). Reinforcement Learning with Hierarchies of Machines. NIPS-98.
- (GKGK, 2003) C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. (2003). Generalizing Plans to New Environments in Relational MDPs. IJCAI-03.