Pymaceuticals Inc.

Resources Used- AskBCs, TA, Python Reading Materials.

Analysis

- Capomulin, Ramicane seems to be the most effective to reduce the tumorsize
- Sample Sizes are all fairly similiar
- Capomulin decrease the tumor size effectively but after 40 days the tumor size is incline to increase. (Longer Observation Data Set is Needed to see true effectiveness)
- The Higher the weight of the mouse, the larger the tumor size

```
In [1]: # Dependencies and Setup
   import matplotlib.pyplot as plt
   import pandas as pd
   import scipy.stats as st

# Study data files
   mouse_metadata_path = "data/Mouse_metadata.csv"
   study_results_path = "data/Study_results.csv"

# Read the mouse data and the study results
   mouse_metadata = pd.read_csv(mouse_metadata_path)
   study_results = pd.read_csv(study_results_path)

# Combine the data into a single DataFrame
   merged_data = pd.merge(mouse_metadata, study_results, how='outer')

# Display the data table for preview
   merged_data.head()
```

Out[1]:

]:		Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
	0	k403	Ramicane	Male	21	16	0	45.000000	0
	1	k403	Ramicane	Male	21	16	5	38.825898	0
	2	k403	Ramicane	Male	21	16	10	35.014271	1
	3	k403	Ramicane	Male	21	16	15	34.223992	1
	4	k403	Ramicane	Male	21	16	20	32.997729	1

```
In [2]: # Checking the number of mice.
mice=merged_data["Mouse ID"].value_counts()
```

```
number_of_mice=len(mice)
        number_of_mice
Out[2]: 249
In [3]: # Our data should be uniquely identified by Mouse ID and Timepoint
        # Get the duplicate mice by ID number that shows up for Mouse ID and Timepoint.
        unique_found = merged_data.loc[merged_data.duplicated(subset=['Mouse ID', 'Timepoin')
In [4]: # Optional: Get all the data for the duplicate mouse ID.
        all_unique=pd.DataFrame(unique_found)
        all_unique
Out[4]:
        0 q989
In [5]: # Create a clean DataFrame by dropping the duplicate mouse by its ID.
        # Removing any information that is false for the clean up
        clean_data = merged_data[merged_data['Mouse ID'].isin(all_unique)==False]
In [6]: # Checking the number of mice in the clean DataFrame.
        #Count nd_mice = no duplicates
        nd_mice=clean_data["Mouse ID"].value_counts()
        nd_mice_count=len(nd_mice)
        nd_mice
Out[6]: Mouse ID
        g989
                13
        k403
                10
         j365
                10
         j984
                10
        k210
                10
        v199
                1
        t573
        f932
        b447
                 1
        u153
                 1
        Name: count, Length: 249, dtype: int64
```

Summary Statistics

```
In [7]: # Generate a summary statistics table of mean, median, variance, standard deviation

means = clean_data.groupby("Drug Regimen")["Tumor Volume (mm3)"].mean()
    medians = clean_data.groupby("Drug Regimen")["Tumor Volume (mm3)"].war()
    variances = clean_data.groupby("Drug Regimen")["Tumor Volume (mm3)"].var()
    stds = clean_data.groupby("Drug Regimen")["Tumor Volume (mm3)"].std()
    sems = clean_data.groupby("Drug Regimen")["Tumor Volume (mm3)"].sem()

# Use groupby and summary statistical methods to calculate the following properties
# mean, median, variance, standard deviation, and SEM of the tumor volume.
```

```
# Assemble the resulting series into a single summary DataFrame.
summary_table = pd.DataFrame({
    "Mean Tumor Volume":means,
    "Median Tumor Volume":medians,
    "Tumor Volume Variance":variances,
    "Tumor Volume Std. Dev.":stds,
    "Tumor Volume Std. Err.":sems})
summary_table
```

Out[7]:

•		Mean Tumor Volume	Median Tumor Volume	Tumor Volume Variance	Tumor Volume Std. Dev.	Tumor Volume Std. Err.
	Drug Regimen					
	Capomulin	40.675741	41.557809	24.947764	4.994774	0.329346
	Ceftamin	52.591172	51.776157	39.290177	6.268188	0.469821
	Infubinol	52.884795	51.820584	43.128684	6.567243	0.492236
	Ketapril	55.235638	53.698743	68.553577	8.279709	0.603860
	Naftisol	54.331565	52.509285	66.173479	8.134708	0.596466
	Placebo	54.033581	52.288934	61.168083	7.821003	0.581331
	Propriva	52.322552	50.854632	42.351070	6.507770	0.512884
	Ramicane	40.216745	40.673236	23.486704	4.846308	0.320955
	Stelasyn	54.233149	52.431737	59.450562	7.710419	0.573111
	Zoniferol	53.236507	51.818479	48.533355	6.966589	0.516398

In [8]: # A more advanced method to generate a summary statistics table of mean, median, va
and SEM of the tumor volume for each regimen (only one method is required in the
Using the aggregation method, produce the same summary statistics in a single lin
summary_table_adv = clean_data.groupby("Drug Regimen").agg({"Tumor Volume (mm3)":["
summary_table_adv

Out[8]:

Tumor Volume (mm3)

	mean	median	var	std	sem
Drug Regimen					
Capomulin	40.675741	41.557809	24.947764	4.994774	0.329346
Ceftamin	52.591172	51.776157	39.290177	6.268188	0.469821
Infubinol	52.884795	51.820584	43.128684	6.567243	0.492236
Ketapril	55.235638	53.698743	68.553577	8.279709	0.603860
Naftisol	54.331565	52.509285	66.173479	8.134708	0.596466
Placebo	54.033581	52.288934	61.168083	7.821003	0.581331
Propriva	52.322552	50.854632	42.351070	6.507770	0.512884
Ramicane	40.216745	40.673236	23.486704	4.846308	0.320955
Stelasyn	54.233149	52.431737	59.450562	7.710419	0.573111
Zoniferol	53.236507	51.818479	48.533355	6.966589	0.516398

Bar and Pie Charts

```
In [9]: # Generate a bar plot showing the total number of rows (Mouse ID/Timepoints) for ea
    count_mice_treatment = clean_data.groupby(["Drug Regimen"]).count()["Mouse ID"]
    #Plot Using Pandas
    plot_pandas = count_mice_treatment.plot.bar(figsize=(10,5), color='r',fontsize = 6)
    #Create Bar Plot
    plt.xlabel("Drug Type",fontsize = 6)
    plt.ylabel("Number of Mice",fontsize = 6)
    plt.title("Mice per Treatment(Drug Type)",fontsize = 15)
    #Display
    plt.show()
```

Mice per Treatment(Drug Type)


```
In [10]: # Generate a bar plot showing the total number of rows (Mouse ID/Timepoints) for ea
drug_regimen_count = clean_data["Drug Regimen"].value_counts()
#Create pyplot
plt.bar(drug_regimen_count.index.values, drug_regimen_count.values)
plt.xticks(rotation=45)
plt.xlabel("Drug Regimen")
plt.ylabel("Number of Mice")
#Display
plt.show()
```



```
In [11]: # Generate a pie plot showing the distribution of female versus male mice using Pan
#Step 1 - Count
# Group by
groupby_gender = clean_data.groupby(["Mouse ID","Sex"])
groupby_gender
gender_df = pd.DataFrame(groupby_gender.size())

# Create Gender Count
gender = pd.DataFrame(gender_df.groupby(["Sex"]).count())
gender.columns = ["Total Count"]

# gender_df
gender
```

Out[11]: Total Count

Sex Female 124 Male 125

```
In [12]: #Step 2 - Create Pie Plot (Pandas)
    colors = ['red', 'blue']
    explode = (0.1, 0)
    plot = gender.plot.pie(y='Total Count',figsize=(5,5), colors = colors, startangle=6
```

```
plt.title('M VS FM Count',fontsize = 20)
plt.ylabel('Gender')
plt.show()
```

M VS FM Count


```
In [13]: # Generate a pie plot showing the distribution of female versus male mice using pyp
labels = ["Female", "Male"]
colors = ['red', 'blue']
sizes = [49.799197,50.200803]
plt.pie(sizes, labels=labels, colors=colors, autopct="%1.1f%%", startangle=60)
plt.title('M VS FM Count')
plt.ylabel('Gender')
```

Out[13]: Text(0, 0.5, 'Gender')

M VS FM Count

Quartiles, Outliers and Boxplots

```
In [14]: # Calculate the final tumor volume of each mouse across four of the treatment regim
# Capomulin, Ramicane, Infubinol, and Ceftamin
medication_list = ["Capomulin", "Ramicane", "Infubinol", "Ceftamin"]
medication = clean_data[clean_data["Drug Regimen"].isin(medication_list)]
# Start by getting the last (greatest) timepoint for each mouse
greatest_timepoint = medication.groupby(["Drug Regimen", "Mouse ID"]).agg(tumor_siz
greatest_timepoint = greatest_timepoint.stack(level=0).unstack(level=0)
# Merge this group df with the original DataFrame to get the tumor volume at the La
medication = clean_data[clean_data["Drug Regimen"].isin(medication_list)]
medication.head()
```

Out[14]:

•		Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
	0	k403	Ramicane	Male	21	16	0	45.000000	0
	1	k403	Ramicane	Male	21	16	5	38.825898	0
	2	k403	Ramicane	Male	21	16	10	35.014271	1
	3	k403	Ramicane	Male	21	16	15	34.223992	1
	4	k403	Ramicane	Male	21	16	20	32.997729	1

```
In [15]: # Put treatments into a list for for loop (and later for plot labels)
    treatment = 0
```

```
# Create empty list to fill with tumor vol data (for plotting)
tumor_vol_data = []
for medication in medication list:
   quartiles = greatest_timepoint[medication].quantile([.25,.5,.75]).round(2)
# Determine outliers using upper and lower bounds
   upperq = quartiles[0.75].round(2)
   lowerq = quartiles[0.25].round(2)
# Calculate the IQR and quantitatively determine if there are any potential outlier
   igr = round(upperg-lowerg,2)
   lower_bound = round(lowerq - (1.5*iqr),2)
   upper_bound = round(upperq + (1.5*iqr),2)
# Locate the rows which contain mice on each drug and get the tumor volumes
# add subset
   if treatment == 0:
       print(f"----")
   print(f"The upper quartile of {medication} treatments is: {upperq}")
   print(f"The lower quartile of {medication} treatments is: {lowerq}")
   print(f"The interquartile range of {medication} treatments is: {iqr}")
   print(f"Values below {lower_bound} could be {medication} outliers.")
   print(f"Values above {upper_bound} could be {medication} outliers.")
   print(f"-----")
   treatment+=1
```

The upper quartile of Capomulin treatments is: 40.16 The lower quartile of Capomulin treatments is: 32.38 The interquartile range of Capomulin treatments is: 7.78 Values below 20.71 could be Capomulin outliers. Values above 51.83 could be Capomulin outliers. ______ The upper quartile of Ramicane treatments is: 40.66 The lower quartile of Ramicane treatments is: 31.56 The interquartile range of Ramicane treatments is: 9.1 Values below 17.91 could be Ramicane outliers. Values above 54.31 could be Ramicane outliers. _____ The upper quartile of Infubinol treatments is: 65.53 The lower quartile of Infubinol treatments is: 54.05 The interquartile range of Infubinol treatments is: 11.48 Values below 36.83 could be Infubinol outliers. Values above 82.75 could be Infubinol outliers. The upper quartile of Ceftamin treatments is: 64.3 The lower quartile of Ceftamin treatments is: 48.72 The interquartile range of Ceftamin treatments is: 15.58 Values below 25.35 could be Ceftamin outliers. Values above 87.67 could be Ceftamin outliers.

Out[17]:

3

g288

g316

```
plt.xlabel("Regimen")
plt.ylabel("Tumor Volume")
plt.title("Tumor Volume by Drug Regimen")
plt.boxplot(tumor_vol_data, labels = medication_list)
plt.show()
```



```
In [17]: #Clarify Data for Capomulin
    Capomulin_df = clean_data.loc[clean_data["Drug Regimen"] == "Capomulin",:]
    Capomulin_last = Capomulin_df.groupby('Mouse ID').max()['Timepoint']
    Capomulin_vol = pd.DataFrame(Capomulin_last)
    Capomulin_merge = pd.merge(Capomulin_vol, clean_data, on=("Mouse ID","Timepoint"),h
    Capomulin_merge.head()
```

Juc[17].		Mouse ID	Timepoint	Drug Regimen	Sex	Age_months	Weight (g)	Volume (mm3)	Metastatic Sites
	0	b128	45	Capomulin	Female	9	22	38.982878	2
	1	b742	45	Capomulin	Male	7	21	38.939633	0
	2	f966	20	Capomulin	Male	16	17	30.485985	0

Male

22

Line and Scatter Plots

Capomulin

Capomulin Female

2

Tumor

37.074024

22 40.159220

```
In [18]: # Generate a line plot of tumor volume vs. time point for a single mouse treated wi
    line_df = Capomulin_df.loc[Capomulin_df["Mouse ID"] == "1509",:]
    line_df.head()
    x_axis = line_df["Timepoint"]
    tumsiz = line_df["Tumor Volume (mm3)"]

fig1, ax1 = plt.subplots()
    plt.title('Capomulin treatmeant')
    plt.plot(x_axis, tumsiz, markersize=20,color="blue")
    plt.xlabel('Timepoint (Days)')
    plt.ylabel('Tumor Volume (mm3)')
```

Out[18]: Text(0, 0.5, 'Tumor Volume (mm3)')


```
In [19]: # Generate a scatter plot of mouse weight vs. the average observed tumor volume for
#Capomulin Data Mean(Average)
avg_tumor_volume_capomulin = clean_data[clean_data["Drug Regimen"] == "Capomulin"].
#Merge Data
capomulin_data = pd.merge(avg_tumor_volume_capomulin, mouse_metadata, on="Mouse ID"
#Figure
plt.scatter(capomulin_data["Weight (g)"], capomulin_data["Tumor Volume (mm3)"], mar
plt.title("Mouse Weight vs. Average Tumor Volume for Capomulin Regimen")
plt.xlabel("Weight (g)")
plt.ylabel("Tumor Volume (mm3)")
plt.show()
```

Mouse Weight vs. Average Tumor Volume for Capomulin Regimen

Correlation and Regression

```
# Calculate the correlation coefficient and a linear regression model
In [20]:
         correlation = st.pearsonr(capomulin_data['Weight (g)'],capomulin_data['Tumor Volume
         print(f"The correlation between mouse weight and the average tumor volume is {round
         # for mouse weight and average observed tumor volume for the entire Capomulin regim
         (slope, intercept, rvalue, pvalue, stderr) = st.linregress(capomulin_data["Weight (g)
         regress_values=capomulin_data["Weight (g)"]* slope + intercept
         line_eq= f"y = {round(slope, 2)} x + {round(intercept, 2)}"
         #Figure
         plt.scatter(capomulin_data["Weight (g)"],capomulin_data["Tumor Volume (mm3)"],color
         plt.plot(capomulin_data["Weight (g)"], regress_values, color='red')
         plt.annotate(line_eq,(20,36), fontsize=14)
         plt.xlabel("Weight (g)")
         plt.ylabel("Tumor Volume (mm3)")
         plt.title("Weight vs Tumor Volume for Capomulin")
         print(f"The r-squared is: {round(rvalue**2,3)}")
         plt.show()
```

The correlation between mouse weight and the average tumor volume is 0.84 The r-squared is: 0.709

