ОДМ 1 курс 1 семестр 2017.

- I. Знать определения. Необходимо знать определения перечисленных понятий, уметь ими оперировать и приводить соответствующие примеры.
 - (1) Прямое произведение множеств.
 - (2) Функция (отображение).
 - (3) Инъективное, сюръективное, биективное отображение.
 - (4) Тождественное отображение; обратное отображение.
 - (5) Характеристическая функция подмножества.
 - (6) Композиция отображений.
 - (7) Счетное множество.
 - (8) Несчетное множество.
 - (9) Отношение.
- (10) Отношение эквивалентности. Классы эквивалентности.
- (11) Отношение порядка.
- (12) Перестановки из n элементов.
- (13) Умножение (композиция) перестановок.
- (14) Два способа записи перестановок.
- (15) Цикловый тип перестановки.
- (16) Порядок перестановки.
- (17) Четность перестановки.
- (18) Деление целых чисел с остатком.
- (19) Сравнимость целых чисел по модулю n.
- (20) Множество остатков (вычетов по модулю n) \mathbb{Z}_n .
- (21) Определение операций сложения и умножения в \mathbb{Z}_n .
- (22) Обратимый элемент в \mathbb{Z}_n .
- (23) Делитель нуля в \mathbb{Z}_n .
- (24) Нильпотентный и идемпотентный элемент в \mathbb{Z}_n .
- (25) Бинарная операция на множестве.
- (26) Определение группы, абелевой группы, кольца. Коммутативное ассоциативное кольцо с единицей.
- (27) Прямое произведение колец.
- (28) Обратимые элементы, делители нуля, нильпотентные и и идемпотентные элементы в коммутативном ассоциативном кольце с единицей.

- (29) Понятие изоморфизма колец.
- (30) Порядок элемента в \mathbb{Z}_n по сложению и по умножению.
- (31) Функция Эйлера.
- (32) Символ Лежандра.
- (33) Число сочетаний C_n^k количество k-элементных подмножеств множества из n элементов.

II. Уметь.

- (1) Приводить примеры ко всем понятиям части "Знать".
- (2) Доказывать различные утверждения методом полной математической индукции.
- (3) Доказывать свойства операций над множествами (объединение, пересечение, дополнение, разность) и проверять аналогичные тождества с использованием этих операций.
- (4) Устанавливать взаимно однозначное соответствие между различными счетными множествами (\mathbb{N} , \mathbb{Z} , $\mathbb{Z} \times \mathbb{Z}$, \mathbb{Q} и т.д.).
- (5) Перемножать перестановки.
- (6) Представлять перестановку в виде произведения независимых циклов, определять ее четность и порядок.
- (7) Производить вычисления в арифметике остатков \mathbb{Z}_n .
- (8) Перечислять обратимые элементы в \mathbb{Z}_n и вычислять обратные к ним.
- (9) Вычислять значения функции Эйлера.
- (10) Находить порядки элементов в \mathbb{Z}_n по сложению и (для обратимых элементов) по умножению.
- (11) Находить идемпотентные элементы в \mathbb{Z}_n .
- (12) Пользоваться китайской теоремой об остатках, т.е. явно выписывать формулы изоморфизма \mathbb{Z}_{mn} прямому произведению колец \mathbb{Z}_m и \mathbb{Z}_n и обратного изоморфизма.
- (13) Решать простейшие комбинаторные задачи.
- III. Результаты. Необходимо знать формулировки перечисленных перечисленных результатов и уметь ими пользоваться при решении задач. Для получения оценки выше "уд" необходимо также уметь эти результаты доказывать.
 - (1) Композиция двух сюръективных/инъективных/биективных отображений также является сюръективным/инъективным/биективным отображением.
 - (2) Необходимое и достаточное условие существования обратного отображения.
 - (3) Задание отношения эквивалентности на множестве равносильно заданию разбиения его на непересекающиеся подмножества. Классы эквивалентности.
 - (4) Биекция между множеством подмножеств множества Ω и множеством характеристических функций на Ω .

- (5) Характеристические функции пересечения, дополнения и объединения множеств. $(\chi_{A\cap B} = \chi_A \cdot \chi_B, \, \chi_{\Omega \setminus A} = 1 \chi_A, \, \chi_{A\cup B} = \chi_A + \chi_B \chi_A \cdot \chi_B.)$
- (6) Формула включений-исключений.
- (7) Мощность множества отображений из множества X в множество, Y, если |X|=n и |Y|=m.
- (8) Мощность множества инъективных отображений из множества X в множество, Y, если |X|=n и |Y|=m и $n\leq m$.
- (9) Мощность множества S(X) биективных отображений из множества X в себя, если |X| = n.
- (10) Множество бесконечно тогда и только тогда, когда оно равномощно своему собственному подмножеству.
- (11) Любое бесконечное множество содержит счетное подмножество.
- (12) Любое бесконечное подмножество счетного множества счетно.
- (13) Прямое произведение счетных множеств счетно.
- (14) Объединение любого бесконечного множества со счетным равномощно ему самому.
- (15) Множество конечных слов в конечном алфавите счетно.
- (16) Множество последовательностей из 0 и 1 несчетно.
- (17) ℚ счетно.
- (18) ℝ несчетно.
- (19) Множество подмножеств множества Ω не равномощно Ω .
- (20) Теорема Кантора-Бернштейна (без доказательства).
- (21) Представление перестановки в виде произведения независимых циклов. Перестановочность независимых циклов.
- (22) Представление перестановки в виде произведения транспозиций.
- (23) При умножении на транспозицию четность перестановки меняется.
- (24) Число четных перестановок равно числу нечетных.
- (25) Представление цикла в виде произведения транспозиций. Четность цикла в зависимости от его длины.
- (26) Определение четности перестановки по ее цикловому типу.
- (27) Сопоставление перестановке матрицы, доказательство согласованности этого сопоставления с умножением матриц и перестановок; интерпретация четнности перестановки как определителя сопоставляемой матрицы.
- (28) Вычитание в арифметике остатков \mathbb{Z}_n .
- (29) Диофантово уравнение ax + by = c. Необходимое и достаточное условие существования решения. Общее решение. Сведение к случаю уравнения ax + by = 1.

- (30) Необходимое и достаточное условие обратимости остатка $\bar{a} \in \mathbb{Z}_n$.
- (31) Необходимое и достаточное условие того, что остаток $\bar{a} \in \mathbb{Z}_n$ является делителем нуля.
- (32) Доказательство корректности определения порядка элемента $\bar{a} \in \mathbb{Z}_n$ по сложению: если в последовательности $\bar{0}$, \bar{a} , $\bar{a} + \bar{a}$, $\bar{a} + \bar{a} + \bar{a}$, ..., $\bar{a} + \bar{a} + \ldots + \bar{a}$ все элементы различны, k-1 слагаемое а $\bar{a} + \bar{a} + \ldots + \bar{a}$ совпадает с одним из предыдущих, то $\bar{a} + \bar{a} + \ldots + \bar{a} = \bar{0}$.
- (33) Если для $\bar{a} \in \mathbb{Z}_n$ $\underline{\bar{a} + \bar{a} + \ldots + \bar{a}} = \bar{0}$, то k делится на порядок остатка \bar{a} по сложению.
- (34) Порядок по сложению остатка $\bar{a} \in \mathbb{Z}_n$ является делителем n.
- (35) Доказательство корректности определения порядка элемента $\bar{a} \in \mathbb{Z}_n^*$ по умножению: если в последовательности $\bar{1}, \bar{a}, \bar{a}^2, \bar{a}^3, \ldots, \bar{a}^{k-1}$ все элементы различны, а \bar{a}^k совпадает с одним из предыдущих, то $\bar{a}^k = \bar{1}$.
- (36) Если для $\bar{a} \in \mathbb{Z}_n$ $\bar{a}^k = \bar{1}$, то k делится на порядок остатка \bar{a} по умножению.
- (37) Малая теорема Ферма.
- (38) Теорема Эйлера.
- (39) Теорема Вильсона.
- (40) Порядок по умножению обратимого остатка $\bar{a} \in \mathbb{Z}_n$ является делителем значения функции Эйлера $\varphi(n)$.
- (41) Китайская теорема об остатках.
- (42) Нахождение идемпотентных остатков с помощью решения диофантова уравнения ax + by = 1.
- (43) Число идемпотентных остатков в \mathbb{Z}_n , где $n=p_1^{k_1}p_2^{k_2}\dots n=p_s^{k_s},\ p_1,\dots,p_s$ различные простые числа.
- (44) Явная формула для биекции в китайской теореме об остатках (через идемпотентные остатки).
- (45) Условия представимости кольца остатков \mathbb{Z}_n в виде прямого произведения колец.
- (46) Кольцо изоморфно прямому произведению колец тогда и только тогда, когда оно содержит идемпотентые элементы. (Доказательство только в одну сторону.)
- (47) Кольцо \mathbb{Z}_{p^m} нельзя представить в виде прямого произведения колец (p простое число).
- (48) Решение уравнения $x^2=1$ в кольце $\mathbb{Z}_{p^m},$ где p простое число. (p=2 надо рассмотреть отдельно!)
- (49) Описание множества решений уравнения $x^2 = 1$ прямом произведения колец. Решения этого уравнения в \mathbb{Z}_n .
- (50) Описание обратимых элементов прямого произведения колец и вывод мультипликативности функции Эйлера.
- (51) Мультипликативность функции Эйлера.

- (52) Вычисление значения функции Эйлера $\varphi(p^m)$, где p простое число.
- (53) Формула для символа Лежандра $\binom{a}{p} = \bar{a}^{\frac{p-1}{2}}$. Мультипликативность символа Лежандра. (p нечетное простое число.)
- (54) При каких простых значениях p остаток $-\bar{1}$ является квадратом в \mathbb{Z}_p ?
- (55) Доказательство формулы $C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$.
- (56) Бином Ньютона.
- (57) Свойства треугольника Паскаля.
- (58) Формула для вычисления биномиальных коэффициентов C_n^k .

(59)
$$C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^{n-11} + C_n^n = 2^n$$
.

(60)
$$C_n^0 - C_n^1 + C_n^2 - \ldots + (-1)^n C_n^n = 0.$$

(61)
$$C_n^0 + C_{n+1}^1 + C_{n+2}^2 + \ldots + C_{n+k}^k = C_{n+k+1}^k$$
.

- (62) Число разбиений натурального числа n в сумму k целых неотрицательных слагаемых.
- (63) Число разбиений натурального числа n в сумму k натуральных слагаемых.