Optimization algorithms

latest submission grade 100%

1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?	1 / 1 point
	$\bigcirc \ a^{[8]\{7\}\{3)}$	
	$\bigcirc \ a^{[3]\{7\}\{8)}$	
	$\bigcirc \ a^{[8]\{3\}\{7)}$	
	(a) a(3){8}(7)	
	✓ Correct	
2.	Which of these statements about mini-batch gradient descent do you agree with?	1/1 point
	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).	
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.	
	 One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent. 	
	✓ Correct	
3.	Why is the best mini-batch size usually not 1 and not m, but instead something in-between?	1/1 point
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	
	✓ Correct	
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.	
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.	
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.	
	✓ Correct	

Which of the following do you agree with?

- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

✓ Correct

5. Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: $heta_1=10^oC$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$\bigcirc$$
 $v_2=7.5$, $v_2^{corrected}=10$

$$\bigcirc$$
 $v_2=7.5$, $v_2^{corrected}=7.5$

$$\bigcirc$$
 $v_2=10$, $v_2^{corrected}=10$

$$\bigcirc$$
 $v_2=10$, $v_2^{corrected}=7.5$

✓ Correct

1 / 1 point

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

1 / 1 point

- $\alpha = \frac{1}{\sqrt{t}}\alpha_0$
- $igotimes lpha = e^t lpha_0$
- $\bigcirc \ \ \alpha = 0.95^t \alpha_0$
- $\bigcirc \ \ lpha = rac{1}{1+2*t}lpha_0$
 - ✓ Correct
- 7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

1/1 point

- $\hfill \square$ Decreasing β will shift the red line slightly to the right.
- ightharpoonup Increasing β will shift the red line slightly to the right.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\) that is slightly shifted to the right.

igspace Decreasing eta will create more oscillation within the red line.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- \bigcirc (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- \bigcirc (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (a) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\dots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

1 / 1 point

- Try initializing all the weights to zero
- Try mini-batch gradient descent

✓ Correct

lacksquare Try tuning the learning rate lpha

Correct

Try using Adam

✓ Correct

▼ Try better random initialization for the weights

✓ Correct

10.	Which of the following statements about Adam is False?
	Adam combines the advantages of RMSProp and momentum
	igcap The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.
	\bigcirc We usually use "default" values for the hyperparameters eta_1 , eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)
	Adam should be used with batch gradient computations, not with mini-batches.

1/1 point

✓ Correct