[19]中华人民共和国专利局

[51]Int.Cl6

C22B 1/242

[12] 发明专利申请公开说明书

[21] 申请号 95119560.3

[43]公开日 1997年7月2日

[]]] 公开号 CN II53218A

[22]申请日 95.12.27

[71]申请人 北京科技大学

地址 100083北京市学院路30号

|72|发明人 吳德兰 孔令坛

|74||专利代理机构 北京科技大学专利代理事务所 代理人 杨玲莉

权利要求书 1 页 说明书 5 页 附图页数 0 页

[54]发明名称 铁矿球团复合添加剂 [57]摘要

一种适用于炼铁原料高温氧化固结球团矿,作为生产高温氧化固结球团矿的一种复合添加剂,含有膨润土、羧甲基纤维素、硼酸、硼泥、水泥和长石。该复合添加剂可以减少原料中非铁料配量,提高球团矿的含铁品位,改善铁精矿粉的造球性能,提高生球的质量保证干球的性能指标,在不改善现有设备的条件下,得到具有优良冶金性能的成品球团矿。

(BJ)第 1456 号

- 1、一种生产球团矿所用的复合添加剂,其特征在于复合添加剂所用原料为膨润土、羧甲基-纤维素、硼酸、水泥、硼泥和长石,复合添加剂中各成分的配比为,膨润土 1-95%,羧甲基纤维素 0.1-10%,硼酸 0.1-50%,水泥 1-60%,硼泥 0.1-10%,长石 0.1-10%,复合添加剂成分为任意两种或两种以上原料配合使用,含水总量 (重量百分比)1-15%。
- 2、根据权利要求 | 所述的复合添加剂, 其特征在于复合添加剂的粒度小于 200 网目 (0.074mm) 大于 90%, 其中任何一种原料粒度小于 200 网目 (0.074mm) 约90%以上。
- 3、一种生产球团矿所用的复合添加剂, 其特征在于适用于磁铁矿、赤铁矿、褐铁矿、氧化铁皮和炼钢炉尘中一种或两种以上原料混合, 或加入石灰、石灰石、白云石和萤石中的一种或两种以上材料, 生产高温氧化固结球团。

铁矿球团复合添加剂

本发明属于冶金的炼铁领域,适用于一种炼铁原料高温氧化固结球团矿,作为生产高温氧化固结球团矿的一种复合添加剂。

在球团矿的生产过程中,用精矿粉和添加剂混合,在造球盘内进行造球,生产出 | 0 - | 5mm 的生球团,然后把生球团在焙烧设备内进行干燥、预热、焙烧、冷却后成为成品球团矿。

目前,球团矿的生产多以膨润土作为添加剂,而膨润土的主要成分为 \$102 和 A1201,按一般经验,配加 1%的膨润土,球团矿的含 Fe 品位下降 10.6%。我国球团厂平均配加 4%膨润土,多达 7-8%,少者也不低于 2.5%,从而使球团矿含铁品位下降,影响高炉冶炼的能耗和产量。

《第五届国际造块会议论文集》发表一篇"使用有机粘结剂改善酸性、橄榄石和白云石熔剂性铁矿球团的质量"文章,介绍了使用佩利多一一种有机的纤维素粘结剂,在铁矿球团生产中取代膨润土。但添加佩利多的球团强度较膨润土球团低。这是因为球团含有的渣粘结健较少。此外,佩利多的价格昂贵,以致于它的应用尚有局限。

另外,《烧结球团》1991年第一期发表"使用含硼添加剂降低球团矿烧结温度的研究"文章,提出球团矿中添加1%的硼泥,降低球团矿的焙烧温度,可以使成品球团矿的强度得到改善,但是硼泥降低生球的爆裂温度和干球强度,影响生球的性能。

《烧结球团》1995年第六期发表"球团、烧结用KLP粘结剂的研究开发和应用"文章,介绍了KLP在球团矿中的应用,虽然价格贵,但配料量少,然而带来的困难是不易混匀,同时要求改造现场配料设

备。

本发明的目的是提供一种高效的复合添加剂,球团生产中加入复合添加剂,与配加膨润土比较,可以减少球团原料中非铁料配量,提高球团矿的含铁品位,改善铁精矿粉的造球性能,提高生球的质量,保证干球的性能指标,在不改变现有设备条件下,得到具有优良冶金性能的成品球团矿。

本发明所设计的复合添加剂所用原料为膨润土、羧甲基纤维素、硼酸、水泥、硼泥和长石,其中任意两种或两种以上原料配合。使用原料的成分范围(重量%)膨润土1-95%,羧甲基-纤维素 0.1-10%,硼酸 0.1-50%,水泥1-60%,硼泥 0.1-10%,长石 0.1-10%,因铁精矿粉的性质不同配比各异。复合添加剂的粒度小于 200 网目 (0.074mm) 大于90%,其中任何一种原料粒度小于 200 网目 (0.074mm) 均在 90%以上。复合添加剂烧损总量(重量百分比)1-25%。复合添加剂的含水总量为1-15%。可适用于铁矿粉为磁铁矿、赤铁矿、褐铁矿、氧化铁皮和炼钢炉尘中一种或两种以上原料混合造球,或加入石灰、石灰石、白云石和钛磁铁矿中的一种或两种以上材料。

生产球团矿的铁精矿粉中配入复合添加剂,配量为0.1-6%。进行人工或机械混匀,闷料0-0.5小时,球团混合料水份1-15%,采用园盘或圆筒造球机造球,生球的粒度为9-15mm。将造好的生球进行水份、抗压强度、落下强度和爆裂温度的测定。采用自然干燥或烘干,测定

干球的抗压强度和抗磨强度。抗磨强度的测定方法: 称取 500g 干球、装入 150 标准 Φ130×200mm 小转鼓,以 30转/分的转速转10分钟,倒出过0.5mm的园孔标准筛,抗磨强度用下列式子表示:

式中:W0为原试样重量, g。

W+0.5为大于0.5mm的筛上试样重量,g。

将生球装进竖炉、链篦机—回转窑、带式焙烧机中任何一种设备,进行干燥、预热、焙烧、均热和冷却,生产出质量优良的成品球团矿。

本发明的复合添加剂吸水性强, 粘度大, 成球快, 可以改善铁矿粉的造球。提高干球的强度。在焙烧过程中, 降低焙烧温度 10-50℃, 节约能源, 延长设备使用寿命。复合添加剂使球团矿液相增加, 促使Fe 203发育更加完善。使球团矿中微孔增加, 提高球团矿的强度和还原性。

使用本发明的复合添加剂,可以在较低配量的条件下,完全取代,膨润土。球团矿的性能可以达到如下指标:

- 1、生球抗压强度可达到12N/个球。
- 2、生球落下强度 (0.5m) 大于7次/个球。
- 3、爆裂温度大于500℃。
- 4、干球抗压强度大于50N/个球。
- 5、干球抗磨强度+0.5mm达到80%。
- 6、成品球抗压强度大于1000N/个球。
- 7、还原性达到75%。

实施例:原料条件

表1、原料的化学成分

原料名称	TFe	FeO	CaO	SiO2	. Al203	Man	Na20	K20	沒扳	其他
2301 2547	!	! ************************************				1790	, Kazo			#.E
磁構好粉	67-1	28-6	0.44	3.82	0.5	0.37	-		-	-
 	2-42	_	0.43	69. 32	11.5:	1.66	0-37	0.75	12.55	10-83
复合添加剂 . 3.8% 袋甲基纤维素 . 19.2% 硼酸 . 76.9% 膨润土	0.:9		.89	53-84	8.90	0.03	0.29	0.58	20-47	98
复合添加剂2 6%羧甲基纤维素 80%硼尼 : 4%醇润土	0.93		3-03	28-75	6-45	. 24- 4	:-!6	0.!;	, 34-77	
复合添加剂3 6%羧甲基纤维素 94%膨润土	2.27	;	0.35	60.16	9-83	50	_		17.82	8-07
复合添加剂4 6%羧甲基纤维素 %水泥 89%膨润土	2-30		3. !0	37-50	7-93	22.7			21.70	
复合添加剂5 10%数甲基纤维素 50%助润土 40%长石	1.2:	- !	0-24	48-08	9. 33	0-83	0- !9	0-38	30- ! 5	30- ::

表! 生球的性能

蜗号	铁精矿类型	添加剂种类	添加剂配量	抗压强度	落下强度	爆製温度	干球抗压	干球抗磨
			j _k	N./个球	次/个球	r	N!个球	5
	包头精矿粉	复合添加剂(0. 7	16. 30	10. 7	700	62. 31	81. 99
1	迁安精矿铅	复合添加剂(0. 5	11.96	11. 6	. 150	86. 81	82. 10
} .	迁安精矿粉	复合添加剂?	1. \$	13. 13	8. 9	800	105. 94	1\$. 10
1	茶钢精矿粉	复合添加剂}	1. 2	13. 73	7. 5	650	60. 76	\$9.77
5	鞍钢精矿粉	复合添加剂;	0. 1	12.38	12. 6	750	82, 45	17.55
8	迁安精矿粉	膨润土	4	13. 13	9. 2	700	1. 22	81. 17

表1成品球抗压强度

编号	铁精矿类型	添加剂种类	添加剂配量	成品球抗压强度	焙烧温度
		·	%	N/个球	ů
1	包头精矿粉	复合添加剂4	0. 7	2581. 32	1200
2	迁安精矿粉	复合添加剂し	0. \$	3014.48	1150
3	迁安精矿粉	复合添加剂?	1. 5	2282. 42	1150
4	莱钢精矿粉	复合添加剂)	1. 2	220.94	1200
5	鞍钢精矿粉	复合添加剂5	0. 7	2560.74	1150
6	迁安精矿粉	膨润土	4	2145. 22	1200

		·	÷	
		ţ		
·				
				,