

MFEM Tutorial

Dohyun Kim

Appl. Math., Brown Univ.

APMA 2560 Feb 28, 2024

Table of Contents

- Weak Formulation
- Finite Element Formulation
- ullet Basic Structures for Linear Problem: $a_h(u,v)=b_h(v)$
- Technical Details
 - Mesh, Basis, Assembly, Quadrature rules,

Weak Formulation

Consider the Poisson equation with homogeneous Dirichlet BC

$$-\Delta u = f \qquad ext{in } \Omega, \ u = 0 \qquad ext{on } \partial \Omega.$$

The corresponding weak formulation is: Find $u\in H^1_0(\Omega)$ such that

$$a(u,v):=(
abla u,
abla v)=(f,v)=:b(v)\quad orall v\in H^1_0(\Omega).$$

Discrete Space

Let \mathcal{T}_h be a given mesh, and

$$V_h = \{v \in C^0(\Omega) : v|_T \in \mathbb{P}_p(T) \ orall T \in \mathcal{T}_h\}.$$

We impose the boundary condition by setting

$$V_h^g = \{v \in V_h : v|_e = \Pi_h^e g \ orall e \in \mathcal{E}_h \}$$

where Π_h^e is a projection onto $\mathbb{P}_p(e)$ and globally continuous if necessary.

Discrete Formulation

The corresponding discrete problem is: Find $u_h \in V_h^g$ such that

$$a_h(u_h,v):=\sum_{T\in\mathcal{T}_h}(
abla u_h,
abla v)_T=\sum_{T\in\mathcal{T}_h}(f,v)_T=:b_h(v)\quad orall v\in V_h^0.$$

Here, $a_h(\cdot,\cdot)$ is a bilinear form, and $b_h(\cdot)$ is a linear form so that

- $ullet a_h(u+w,cv)=ca_h(u,v)+ca_h(w,v)$ for all $u,w,v\in V_h$ and $c\in\mathbb{R}$,
- $ullet a_h(cu,v+w)=ca_h(u,v)+ca_h(u,w)$ for all $u,v,w\in V_h$ and $c\in\mathbb{R}$,
- $ullet b_h(cv+w)=cb_h(v)+b_h(w)$ for all $v,w\in V_h$ and $c\in\mathbb{R}$.
- Note that $a_h(\cdot,\cdot)=a(\cdot,\cdot),\ b_h(\cdot)=b(\cdot)$ for the most of conforming FEMs.
- But, $a_h(\cdot,\cdot) \neq a(\cdot,\cdot)$ when you consider, e.g., Discontinuous Galerkin method.

Basis of V_h

ullet Let $\{\phi_i\}_{i=1}^N$ be a basis of V_h . Then for given $v\in V_h$, there exists (c_1,\cdots,c_N) such that

$$v = \sum_{j=1}^N c_j \phi_i$$

ullet Then we can rewrite the equation as: Find $u_h=\sum_{j=1}^N c_j\phi_j$ or find $\{c_j\}_{j=1}^N$ such that

$$a_h(\sum_{j=1}^N c_j\phi_j,v)=\sum_{j=1}^N c_ja_h(\phi_j,v)=b_h(v)\quad orall v\in V_h.$$

• Since V_h is finite dimensional and $a_h(\cdot, \cdot)$ is a bilinear form, it is enough to test the equation against basis functions.

$$\sum_{j=1}^N c_j a_h(\phi_j,\phi_i) = b_h(\phi_i) \quad orall i \in 1,\cdots,N.$$

Linear System

Now we obtained a set of equations

$$\sum_{j=1}^N c_j a_h(\phi_j,\phi_i) = b_h(\phi_i) \quad orall i \in 1,\cdots,N.$$

This can be rewritten as

$$Ax = b$$

where

$$A_{ij}=a_h(\phi_j,\phi_i), x_i=c_i, b_i=b_h(\phi_i)$$

Summary

ullet For given finite element space V_h with $dim(V_h)=N$, we find solution $u_h\in V_h$ by

$$a_h(u_h,v) := \sum_{T \in \mathcal{T}_h} (
abla u_h,
abla v)_T = \sum_{T \in \mathcal{T}_h} (f,v)_T =: b_h(v) \quad orall v \in V_h$$

Using the basis representation, we obtain the corresponding linear system

$$Ax = b$$

where

$$A_{ij}=a_h(\phi_j,\phi_i),\ x_i=c_i,\ b_i=b_h(\phi_i)$$

Finite Element Space

Discrete Space

FiniteElementCollection

Mesh

FiniteElementSpace

GridFunction / Coefficient

Discrete Space

Recall that a finite space is defined by

$$V_h = \{v \in V : v|_T \in V_T \text{ for all } T \in \mathcal{T}_h\}.$$

- ullet We need three components to define V_h
 - \circ Local space: V_T
 - Polynomial space $P_k(T)$, Raviart-Thomas space $RT_k(T)$, etc.
 - \circ Mesh: \mathcal{T}_h
 - Triangular mesh, Quadrilateral mesh, Tetahedral mesh, etc.
 - $\circ\;$ Global continuity or regularity V
 - $L^2(\Omega)$, $C^0(\Omega)$, $C^1(\Omega)$, etc.
- The local space is FiniteElementCollection
- The mesh is (Par)Mesh
- Global continuity is encoded in FiniteElementCollection

FiniteElementCollection

- We use FiniteElementCollection to represent a local finite element space.
- Examples are: (P_k : Complete polynomial, Q_k : Tensor product polynomial)

```
\circ H1_FECollection - Continuous P_k/Q_k space
```

- \circ DG_FECollection/L2_FECollection Discontinuous P_k/Q_k space
- \circ RT_FECollection H(div)-conforming Raviart-Thomas space
- \circ ND_FECollection H(curl)-conforming Nedelec space
- see, FiniteElementCollection for exhaustive list.
- Code Example:

```
FiniteElementCollection *fec = new DG_FECollection(order, dim);
FiniteElementCollection *fec = new H1_FECollection(order, dim);
```

Mesh

- We use Mesh class to represent meshes.
- A Mesh object can be created either from a file

```
Mesh mesh("path/to/meshfile.mesh");
```

• or

```
Mesh mesh = Mesh::MakeCartesian2D(nx, ny, Element::QUADRILATERAL); // Uniform 2D rectangular mesh
```

You can also perform refinements or save the mesh

```
Mesh mesh = Mesh::MakeCartesian2D(nx, ny, Element::TRIANGLE);
mesh.UniformRefinement();  // Uniform refine
mesh.RefineByError(err, tol); // Refine where err > tol
mesh.Save("path/to/meshfile.mesh");
```

- It supports nonconforming and/or curved meshes.
- The mesh file can be created 1) manually, 2) Gmsh, and so on. See, this guide.

Finite Element Space

- ullet With FiniteElementCollection and Mesh , we can define a finite element space V_h .
- We use a FiniteElementSpace class to store the information
- ullet For example, P^1-C^0 finite element space associated with a uniform rectangular mesh

```
const int dim = 2;
const int order = 1;
const int nx = ny = 10;
FiniteElementCollection *fec = new H1_FECollection(order, dim);
Mesh mesh = Mesh::MakeCartesian2D(nx, ny, Element::QUADRILATERAL);
FiniteElementSpace fes(&mesh, fec); // P1-C0 Finite element space
```

- A vector finite element space can be constructed either
 - with vector FiniteElementCollection , e.g., RT_FECollection
 - with tensor product space with a scalar FiniteElementCollection

```
const int vdim = 2;
FiniteElementSpace vfes(&mesh, fec, vdim); // P1-C0 vector FE space
```

GridFunction

ullet A discrete function $u_h \in V_h$ can be created using

```
GridFunction u(&fes);
```

ullet For a discrete function $u_h \in V_h$, there exists a unique $\{c_i\}_{i=1}^N \subset \mathbb{R}$ such that

$$u_h(x) = \sum_{i=1}^N c_i \phi_i(x) ext{ where } V_h = ext{span}(\{\phi_i\}_{i=1}^N).$$

- ullet A GridFunction stores the primal vector, [c_1, c_2, ..., c_N] associated with u_h and V_h (fes).
- If we use nodal basis functions $\phi_i(x_j) = \delta_{ij}$, then $c_i = u_h(x_i)$ for each node x_i .

Summary

```
const int order = 2; // order of polynomial
const int nx = ny = 4; // number of elements in each axis

FiniteElementCollection *fec = new H1_FECollection(order, dim); // C0, Quadratic Polynomial
Mesh mesh = Mesh::MakeCartesian2D(nx, ny, Element::QUADRILATERAL); // Uniform quadrilateral mesh
const int dim = mesh.Dimension(); // spatial dimension, 2
// You can also define a vector FE space
const int vdim = 2; // vector dimension
FiniteElementSpace fespace(&mesh, fec, vdim); // [C0-Q2 space]^2
GridFunction u(&fespace);
```


V21	V22	V23	V24	V25
E13	E14	E15	E16	
V16	V17	V18	V19	V20
E9	E10	E11	E12	
V11	V12	V13	V14	V15
E5	E6	E7	E8	
V6	V7	V8	V9	V10
E1	E2	E3	E4	
V1	V2	V3	V4	V5

BilinearForm and LinearForm

BilinearForm

LinearForm

NonlinearForm

$$\sum_{T \in \mathcal{T}_h} (
abla u_h,
abla v)_T =: a_h(u_h, v) = b(v) := \sum_{T \in \mathcal{T}_h} (f, v)$$

Find
$$u_h \in V_h = \{v \in V : v|_T \in V_T, \ orall T \in \mathcal{T}_h\}$$
 such that

$$\sum_{T \in \mathcal{T}_h} (\nabla u_h, \nabla v)_T =: a_h(u_h, v) = b(v) := \sum_{T \in \mathcal{T}_h} (f, v)$$
 BilinearFormIntegrator

BilinearForm

- ullet We want to express our bilinear form $a_h(u,v)=\sum_{T\in T_h}a_T(u,v).$
- This operator is $a_h(\cdot,\cdot):V_h{ imes}V_h
 ightarrow\mathbb{R}.$
- We use BilinearForm to represent such operator

```
BilinearForm a_h(&fespace);
```

ullet If $a_h(\cdot,\cdot):V_h{ imes}W_h
ightarrow\mathbb{R}$, then

```
MixedBilinearForm a_h(&fespace1, &fespace2);
```

We can add local bilinear forms to populate our bilinear form a_h.

```
a_h.AddDomainIntegrator(new DiffusionIntegrator()); // a_h += (∇u, ∇v)
a_h.AddDomainIntegrator(new MassIntegrator()); // a_h += (u, v)
```

- DiffusionIntegrator and MassIntegrator are BilinearFormIntegrator
- ullet This corresponds to a local bilinear form $a_T(u,v)$. See, fem/bilininteg.hpp

LinearForm

- ullet Similarly, we have a linear form $b_h(v) = \sum_{T \in T_h} b_T(v)$.
- This operator is $b_h(\cdot):V_h o\mathbb{R}$.
- We use LinearForm to represent such operator

```
LinearForm b_h(&fespace);
```

• We can add local linear forms to populate our linear form b_h.

```
b_h.AddDomainIntegrator(new DomainLFIntegrator(f)); // b_h += (f,v)
b_h.AddBoundaryIntegrator(new BoundaryLFIntegrator(g_N));// b_h += (g_N, v)_e
```

- DomainLFIntegrator and BoundaryLFIntegrator are LinearFormIntegrator
- ullet This corresponds to a local linear form $b_T(v)$. See, fem/lininteg.hpp

Assembly

ullet With basis $\{\phi_i\}$ of V_h , $a_h(\cdot,\cdot)$ can be realized

$$a_h(\phi_i,\phi_j) = \sum_{T \in \mathcal{T}_h} a_T(\phi_i,\phi_j).$$

ullet For given T, we define

$$J_T = \{j \in \mathbb{N} : \phi_j|_T \neq 0\}$$

ullet If basis is local, $|J_T| \ll dim(V_h)$. Also, we have

$$a_T(\phi_i,\phi_j) = egin{cases} c & ext{if } i,j \in J_T, \ 0 & ext{otherwise.} \end{cases}$$

Similar condition holds for $b_T(\phi_j)$.

ullet This implies sparsity of A, and provides an assembly procedure.

Assembly

- R_T , P_T : Mapping between the global and local
 - \circ R_T*A = A(J_T, J_T) = A_loc
- B, Q: Mapping between basis and values at points.
 - B can be function value, derivative value, etc.
- D : Operation on quadrature values (dot products, weight, ...)
 - \circ D(U, Ux, Uy, V, Vx, Vy) = Ux*Vx + Uy*Vy

Assembly - Pseudocode

Algorithm 2 Matrix Assembly

```
1: for all T \in \mathcal{T}_h do
        J_T \leftarrow \text{local dofs related to } T
        for all a_T \in \texttt{BilinearForm} do
 3:
            for all x_q in quadtrature_points do
 4:
                 for all \phi_i, \phi_j with i, j \in J_T do
 5:
                     \triangleright a_T(u,v) = (L_1(u),L_2(v)) with some operators L_1,L_2
 6:
                     A_loc(i,j)+= w_a L_1(\phi_i(x_a)) L_2(\phi_i(x_a))
 7:
                 end for
 8:
            end for
 9:
        end for
10:
        A_glb(J_T, J_T) += A_loc
11:
12: end for
```

Assembly - Pseudocode

```
Algorithm 2 Matrix Assembly
 1: for all T \in \mathcal{T}_h do
        J_T \leftarrow \text{local dofs related to } T
 2:
        for all a_T \in \texttt{BilinearForm} do
 3:
           for all x_q in quadtrature_points do
 4:
                for all \phi_i, \phi_j with i, j \in J_T do
 5:
                    \triangleright a_T(u,v) = (L_1(u),L_2(v)) with some operators L_1,L_2
 6:
                    A_loc(i,j)+= w_q L_1(\phi_i(x_q)) L_2(\phi_i(x_q))
 7:
                end for
 8:
            end for
 9:
        end for
10:
                                           FormIntegrator::ElementAssemble(...)
        A_glb(J_T, J_T) += A_loc
11:
12: end for
```

How to write FormIntegrator

```
void MassIntegrator::AssembleElementMatrix(
    const FiniteElement &el, ElementTransformation &Trans, DenseMatrix &elmat)
   // INPUT el: Local finite element: basis, dof, ...
   // INPUT Trans: Local mesh information. e.g., element location, Jacobian
   // OUTPUT elmat: resulting (\phi_j, \phi_i) where 0 \le i, j \le nd is local dof
   int nd = el.GetDof(); // the number of basis related to current element
   double w; // store weight
   Vector shape; // store basis function values at an integration point
   shape.SetSize(nd);
   elmat.SetSize(nd); // set output size
   // Determine integration rule in the location
   const IntegrationRule *ir = IntRule ? IntRule : &GetRule(el, el, Trans);
   elmat = 0.0; // initialize with 0
   for (int i = 0; i < ir->GetNPoints(); i++) // for each integration point
      // Get current integration point (x i, w i)
      const IntegrationPoint &ip = ir->IntPoint(i);
      Trans.SetIntPoint (&ip);
      el.CalcPhysShape(Trans, shape);
      // update weight based on the element jacobian and integration weight
      w = Trans.Weight() * ip.weight:
      // elmat = elmat + w * (shape * shape^T)
      // Why? DIY
      AddMult a VVt(w, shape, elmat);
} // Also see, DiffusionIntegrator, MixedVectorDivergenceOperator, ...
```

Assembly Level

a_h.SetAssemblyLevel(AssemblyLevel::<LEVEL>)

- FULL (or LEGACY)
 - Construct global sparse matrix
- ELEMENT
 - Assemble only local matrices A_loc. Ax can be computed element-wisely,

$$\texttt{A*x} = \sum_T P_T * (\texttt{A_loc} * \texttt{x_loc})$$

- PARTIAL
 - Assemble only on a "reference" element, and other computations are done on-the-fly. See, here
- NONE
 - Store nothing, everything is on-the-fly.

Coefficient

Recall that we used f when we define local linear form

```
LinearForm b_h(&fespace);
b_h.AddDomainIntegrator(new DomainLFIntegrator(f)); // b_h += (f,v)
```

- Here, f is a Coefficient . More specifically, FunctionCoefficient .
- Coefficient represents a function

```
ConstantCoefficient one_cf(1.0);
FunctionCoefficient f([](Vector &x){return sin(pi*x[0])*sin(pi*x[1]);});
FunctionCoefficient g([](Vector &x, double t){return exp(-t)*sin(pi*x[0]);});
GridFunctionCoefficient u_cf(&u_h); // Use GridFunction as a function
u_h.ProjectCoefficient(f); // interpolate given function f
b_h.AddDomainIntegrator(new DomainLFIntegrator(f)); // b_h += (f,v)
```


Ax=b and Solve

Essential Boundary

FormLinearSystem

Solvers

RecoverFEMSolution

Visualization

$$a_h(u,v)=b_h(v)$$
 and $Ax=b$

- ullet Now we described our discrete problem $a_h(u,v)=b_h(v)$ in MFEM .
- Note that the essential BC has not been addressed yet.
- ullet Recall that for C^0 -finite element space, we impose Dirichlet boundary condition by $V_h^g=\{v\in V_h: v|_{\Gamma_D}=g_D\}$
- Degrees of freedom related to Γ_D are NOT unknowns.
- Therefore, we need to remove those degrees of freedom from the final linear system.

Essential Boundary

• In a mesh file, you can specify boundary attribute

```
# Mesh faces/edges on the boundary, e.g. triangles (2)
boundary
8 # 8 boundaries
1 1 0 1 # Bottom (1), Segment, vertex 0 - vertex 1
1 1 1 2 # Borrom (1), Segment, vertex 1 - vertex 2
2 1 2 4 # Right (2), Segment, vertex 2 - vertex 4
2 1 4 8 # Right (2), Segment, vertex 4 - vertex 8
...
```

Suppose that you want to specify Dirichlet BC at bottom.

```
Mesh mesh(mesh_file);
// create an integer array of size, the number of boundary attributes
Array<int> ess_bdr(mesh.bdr_attributes.Max()); // in this case, 4
ess_bdr = 0; // initialize with 0
ess_bdr[0] = 1; // first boundary, bottom, is essential boundary
// stores all degrees of freedom on the Dirichlet Boundary
Array<int> ess_tdof_list;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list); // Obtain related dofs
```

FormLinearSystem

• To obtain the linear system from BilinearForm a_h and LinarForm b_h, we can

```
OperatorPtr A;
Vector B, X;
a_h.FormLinearSystem(ess_tdof_list, u, b_h, A, X, B);
```

- Here,
 - o u: GridFunction, the solution with specified value on essential boundary
 - \circ A: OperatorPtr or SparseMatrix , the resulting matrix A
 - \circ B: Vector, the resulting load vector b (also called dual vector)
 - \circ X: Vector, the vector containing coefficient, x (also called primal vector)

Solve Linear System

- To solve a system, there are many solvers in MFEM.
- Direct Sparse Solvers: UMFPackSolver: General matrix from SuiteSparse
- Iterative Solvers:
 - o CG: (Preconditioned) Conjugate gradient method for SPD system

```
CGSolver cg();
cg.SetOperator(*A);
cg.Mult(B, X);
```

• GMRES: (Preconditioned) generalized minimal residual method for general system

```
GMRESSolver gmres();
gmres.SetOperator(*A);
gmres.Mult(B, X);
```

Recover Solution

- Now, your solution is saved in Vector X.
- You can convert it back to a GridFunction by using

```
a_h.RecoverFEMSolution(X, b, u);
```

Then you can save and visualize using

```
u.Save(solution.gf);
sout << "solution\n" << mesh << u; // plot solution
sout << "view 0 0\n"; // top view
sout << flush; // draw</pre>
```

- For more about visualization, see ex1.cpp and glvis.
- Note that you need to run glvis in the background!
- For 3D visualization or high-quality results, use ParaView.

Parallel Implementation

- make parallel Requires additional dependencies, see instruction.
- Usually, you can just put Par before types. See, ex0p.cpp.

```
Mpi::Init(); // Initialize MPI
H1_FECollection fec(order, dim);
ParMesh mesh(mesh_file); // Elements are distributed in each process

ParFiniteElementSpace fes(&mesh, &fec);
ParBilinearForm a_h(&fes);
ParLinearForm b_h(&fes);
ParGridFunction u_h(&fes);

a_h.AddDomainIntegrator(new DiffusionIntegrator());
ConstantCoefficient one_cf(1.0);
b_h.AddDomainIntegrator(new DomainLFIntegrator(one_cf));
...
```

• Run with mpirun -np <num_process> <file>

Questions

https://dohyun-cse.github.io/mfem-tutorial

Appendix

Mac OS need a patch and patchelf

```
brew install patchelf
git clone git@github.com:mfem/pymfem.git
git checkout rpath-patch
cd pymfem
python setup.py install ...
```

PyMFEM needs swig

```
brew install swig
python -m pip install swig
python -m pip install mfem
python setup.py install
```

PyMFEM with parallel

```
brew install open-mpi
python -m pip install mpi4py
python setup.py install --with-parallel
```