conditional stability for
$$x < 1$$
, $Atc = \frac{\lambda^{-1}}{1 - 2\lambda}$

Reduce the gral case to scalar cases by a spectral (modal) decomposition.

EVP: $(B - \lambda A) q = 0$; $||q|| = 1$

N salns $(qr, \lambda r)$, $r = 1, ..., N$

Props: 1) $\lambda r > 0$ (from positive definitioness)

2) $qr A qs = Srs$
3) $[qr = 1, ..., N]$ forms a basis of R^N

Stye R^N $y = \sum_{r=1}^{N} y^r qr$ uniquely

 y^r : modal coordinates

 $y^r A qs = \left(\sum_{r=1}^{N} y^r qr\right)^r A qs = y^s$

Eigenprojections: $P_r = qr \otimes qr = qr qr$
 $r = qr qr$

Props:
$$)$$
 $P_r^T = P_r$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2 = Pr$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r 9r^2$
 $)$ $P_r^2 = (9r 9r^2)(9r 9r^2) = 9r^2$
 $)$ P

The services of A gs
$ y ^2 = \sum_{r=1}^{N} y^r ^2$ energy norm decouples mode by mode.
Traperoidal rule also decouples malle by mode
A $\frac{1}{\sqrt{n+1}-\frac{1}{\sqrt{n}}}$ + B $\left[\frac{(n-\alpha)}{\sqrt{n}}\right]$ = 0 Let $\frac{1}{\sqrt{n+1}}$ = $\frac{1}{\sqrt{n+1}}$ $\frac{1}{\sqrt{n}}$
Insert and multiply through by of, orthogonality Yni, - Yn + \(\lambda_s \igc[(1+i) \chi) \chi_s + \chi \chi \chi_n \chi_s \chi = 0 At
Commutative diagram: Yn = (OF)
Spectral decomp. Spectral spectral synthesi Yn > Yn+1

SUMMORY IVP	EVP
A \(\dot + B \(\dot = \) \\ \(\gamma(\phi) = \(\gamma_\phi \)	(B-λA) q=0 Pr= 90 890
Spectral decomposition: (i) $\rightarrow A\dot{y} + By = 0$ $\stackrel{\leq D}{=}$	y= \frac{1}{2} y \
e-ta-18 Pr = Pr e	_ta^8 propagator commutes with eigenprojections
etABPryo=PretAB	10 = Pr y(t) //

i.e.	F(DE) Pr = Pr F(DE)
Smpli	fication matrix commutes with Pr
F	(DE) Pr /n = Pr F(DE) /n
(iii) Ene	$18\lambda \text{ nown: } \ \lambda\ _{J} = \sum_{k=1}^{N} (\lambda_{k} _{J})$
Stability	condition // // // // //
⇒ N Fei	1 /nn 2 < 1 (/n 2 + /n)
.=1	Yn+1 < /n , r=1,, N
Since	$\gamma_{n+1}^{\Gamma} = \mu_{\Gamma}(\Delta t) \gamma_{n}^{\Gamma} \Longrightarrow \mu_{\Gamma}(\Delta t) < 1 , \Gamma = 1,, N$
L>1	onconditional stability
2<1/	2 -> conditional stability ->

Stability of Newmork's Algorithm.

IVP
$$M\ddot{x} + C\dot{x} + K \times = 0$$
 }

 $X(0) = X_0$, $\dot{X}(0) = V_0$ }

EVP: $(K - W^2 M) q = 0$ $W = eigenfrequencies$.

Spectral clec $X = \overset{\circ}{L} \times ^{\circ} q_{\Gamma}$

Assume C has some eigenvectors as K .

 $\ddot{X}^{\circ} + 25^{\circ}_{\Gamma} W^{\circ}_{\Gamma} \times ^{\circ} + W^{\circ}_{\Gamma} \times_{\Gamma} = 0$
 $\Rightarrow egns of evolution clecarple mode by mode.$
 $X^{\circ}(t) = e^{-5r} W_{\Gamma} + (G^{\circ}_{\Gamma} e^{iw_{0}t} + G^{\circ}_{\Gamma} e^{-iw_{0}t})$
 $W_{0} = W^{\circ}(1 - \overset{\circ}{5})$
 $X^{\circ}(t) = e^{-5r} W_{\Gamma} + (G^{\circ}_{\Gamma} e^{iw_{0}t} + G^{\circ}_{\Gamma} e^{-iw_{0}t})$
 $W_{0} = W^{\circ}(1 - \overset{\circ}{5})$
 $X^{\circ}(t) = e^{-5r} W_{\Gamma} + (G^{\circ}_{\Gamma} e^{iw_{0}t} + G^{\circ}_{\Gamma} e^{-iw_{0}t})$

$ F(\Delta t) < 1 \implies elgenvalues \mu_{n,n} < 1$	
$\mathcal{U}_{4,2} = A_1 \pm \sqrt{A_1^2 - A_2}$	
$\int A_1 = 1 - \left[\frac{1}{2} (8 + \frac{1}{2}) \Omega^2 + 5 \Omega \right] / D$	
$A_2 = 1 - [(8 - \frac{1}{2})D^2 + 25D]/D$	
D= 1+285 12 +/3 122	+
Classification of regimes:	+
i) A2 < A2 => 11.12 are complex conjugate	+
Express $\mu_{n,2} = e^{-\frac{\pi}{3}} \vec{\omega} dt$ = \vec{t} \vec{w} dt	
=> Yn = e-5wtn (Geiwstn+Ge-iustn)	
which has the some form as y(tn) but	
errors in $\overline{3}$, \overline{w} .	
3= - log Az /25	+

8>1/2 numerical dissipation damps more the higher modes.				
	(may be benefici			
	21 / - 21			
	$\frac{2\pi}{\omega_b} \neq T = \frac{2\pi}{\omega_b}$, Typically T>T (period elougation		
871 BY		cond stability		
B71-	$\frac{1}{4}\left(8+\frac{1}{2}\right)^2 \Rightarrow 0$	scillatory solution		
Otherwise	14 5(8-	1)+[4-5+52(8-1)2]1/2		
	1000	X - B)		
choice of				

