Formal Languages and Automata Theory, SS 2019. Homework 8 (due Week 11)

- 1. Prove that the following languages are not regular:
 - (a) $L = \{0^i | i \ge 1 \text{ is a perfect square}\};$
 - (b) $L = \{w | w \text{ is binary string with equal number of } 0's \text{ and } 1's\};$
 - (c) $L = \{w | w \text{ is binary string of the form } 0^m 1^n, m < n; m \ge 0, n \ge 0; m, n \text{ integer numbers}\};$
 - (d) $L = \{0^{2^n} | n \ge 1\};$
 - (e) $L = \{0^n | n \text{ is a prime numbers}\};$
 - (f) $L = \{0^m 1^n 0^{m+n} | m \ge 1, n \ge 1\}.$
- 2. Consider the DFA from Course 8 slide 20. Minimize it using the Table Filling Algorithm. Show all the steps of the algorithm.
- 3. Consider the following transition table for a DFA:

	0	1
$\rightarrow A$	B	\overline{A}
B	A	C
C	D	B
*D	D	A
E	D	F
F	G	E
G	F	G
H	G	D

Construct the minimum-state equivalent DFA.

4. Minimize the following DFA using state equivalence method:

	0	1
$\rightarrow A$	B	E
B	C	F
*C	D	H
D	$\mid E \mid$	H
E	F	I
*F	G	B
G	H	B
H	I	C
*I	A	E