Statistical analysis of RIC profiles

E.Seliunin¹

¹ Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.tecnico.ulisboa.pt

Outline

The data of X-mode reflectometry system (RIC) from shots #34100 - 34118 was lost.

The analysis is performed on the discharge #34290 with parameters, close to the conditions of the discharge #34103.

- Comparison of profiles, obtained from RIC, lithium beam (LIN) and Langmuir probes.
- Evidence of shoulder formation in RIC profiles.
- Statistical analysis of RIC profiles.

Shot #34290

05/17/2018 Statistical analysis of RIC profiles

MST1 21

3

RIC ant1, LIN and probe profiles

- RIC and LIN median profiles are in a good agreement with smoothed probe profile.
- RIC median ± 2std represents the impact of filamentary activity in plasma profiles.
- Large events seem not to have influence on RIC profiles

Gradient variation of RIC profiles

The profile flattening appears at n_e =3.34×10¹⁹ m⁻³, similar to the high density transition (HDT) density, reported in *Caralero et al, Nucl. Fusion 54 (2014) 123005.*

Profile variation

Reflectometry measures $\rho(n)$ rather than $n(\rho) \rightarrow \text{variation in } \rho$

To get accurate statistics on density variation, the proper position (ρ) should be chosen. ρ =1.04 is a good candidate for statistical analysis.

PDF of density

- The PDF of RIC profiles in density shows a good agreement with probe in low filamentary active plasma.
- In high filamentary active plasma the PDF of RIC is different from PDF of probe.

Standard deviation and fluctuation level

- The std start to rise at 2.2 sec, corresponding to HDT and to increase of filamentary activity.
- The std of RIC profiles rises faster, than the std of probe.
- The fluctuation level remains equal to 50-60% with changes in core density both in RIC and probe profiles.

Conclusions

Conclusions:

- RIC, LIN and probe profiles are in a good agreement.
- RIC profiles indicate the profile flattening at HDT.
- RIC does not see events with high amplitude.
- RIC profiles are strongly affected by filamentary activity and show faster growth of std than probes.
- The fluctuation level remains equal to 50-60% with changes in core density estimated both from RIC and probes.

<u>Future work:</u>

- For validation of the method more L-mode discharges with different parameters (I_p , B_T etc.) will be analyzed (more shots are required).
- The analysis will be extended to H-mode.

Auxiliary slides

Profile variation

