Session Types Course [Exercise Class 1]

Sonia Marin & Matteo Acclavio

Notation: we use the symbol **0** to denote the process **inact** (*because I'm lazy*)

Definition A *prefix* is a process of one of the following forms

$$x[].P$$
 $x().P$ $x[y].P$ $x(y).P$ $x \triangleright \{\ell_i : P_i\}$ $x \triangleleft \ell_i : P_i$

A process P is in *canonical form* if $P = (vx_1y_1)...(vx_ny_n)(P_1 | \cdots | P_m)$ with P_i (called *thread*) a prefix, and x_i or y_i occurring in a P_i for all i and some j in $\{1, \ldots, m\}$.

Exercise 1. Prove that each process P is structurally equivalent to a process P' in canonical form.

Definition Let P and Q be processes. We say that P reduces to Q if there are P_1, \ldots, P_n such that $P \equiv P_1 \rightarrow \cdots \rightarrow P_n \equiv Q$ and that P is **reducible** if it reduces to a process Q.

Exercise 2. Check if the following processes reduce to 0.

- 1. x[u].x[].0 | y(v).y[].0
- 5. (vxy)(x[u].x[].0 | y[v].y[].0)
- 2. $(vxy)(x[u].x[].\mathbf{0} | y(v).y[].\mathbf{0})$ 6. $(vxy)(x[u].x(w).x[].\mathbf{0} | y(v).y(z).y[].\mathbf{0})$
- 3. $(vxy)(x[u].x(w).x[].0 \mid y(v).y[z].y[].0)$ 7. (vxy)(x(a).y[b].y().x[].0)
- 4. $(vxy)(x[u].x(w).0 \mid y(v).y[z].0)$ 8. (vxy)(x(a).x().0)
- 9. $(vxy)(x[u].x[].\mathbf{0} | y(v).y[].\mathbf{0} | a[b].a().\mathbf{0} | c(d).c[].)$
- 10. $(vx_1y_1)(vx_2y_2)(x_1[a].x_2(b).\mathbf{0} \mid y_2[c].y_1(d).\mathbf{0})$

Recall: a process is *linear* if each name occurs in at most a thread.

Exercise 3. Let P be a process. Prove that if P is linear, then if $P \to Q_1$ and $P \to Q_2$ with Q_1 and Q_2 irreducible, then $Q_1 \equiv Q_2$.

Definition A process *P* is *typable* if there is a typing derivation of a judgment of the

Exercise 4. Which of the processes in Exercise 2 are typable?

Processes			Structural Equivalence (Processes)
P,Q :=	0	inact	$P \mid 0 \equiv P$
	x[].P	close	$P \mid O \equiv O \mid P$
	x().P	wait	$P \mid (Q \mid R) \equiv (P \mid Q) \mid R$
	x[y].P	send (y through x)	$(vx_1x_2)(vy_1y_2)P \equiv (vy_1y_2)(vx_1x_2)P$
	x(y).P	receive $(y \text{ on } x)$	$(vxy)P_1 \mid P_2 \equiv (vxy)(P_1 \mid P_2)$
	(vxy)P	nu	with $x, y \in fv(P_2)$
	$P \mid Q$	parallel	with $x, y \in W(Y_2)$
Operational Semantics (Processes)			
Close: $(\nu xy)(x[].P \mid y().Q) \rightarrow (\nu xy)(P \mid Q)$			
Com: $(vxy)(a[x].P \mid b(y).Q) \rightarrow (vxy)(P \mid Q[a/b])$			
Par:	`	$P \mid Q \rightarrow P' \mid Q$	$P \to P'$
Res:		$(vxy)P \rightarrow (vxy)$	P' if $P \to P'$
Struct:		$P \rightarrow Q$	if $P \equiv P' \rightarrow Q' \equiv Q$

Figure 1: Syntax and semantics for processes

Figure 2: Types