Fragenblatt für 2. Test NAWI/ 3 EL

(multiple choice, Nr. 329)

- 1. Zu den organischen Säuren gehört die
 - a) Ameisensäure mit 2-C-Atomen
 - b) Essigsäure mit einem C-Atom
 - c) Milchsäure mit 3 C-Atomen
 - d) Zitronensäure mit 6 C-Atomen
- 2. Punsch benötigt als Inhaltsstoff unbedingt
 - a) Obstler
 - b) Tee
 - c) Alkohol
 - d) Gewürze
- 3. Fette sind
 - a) Ester aus kurzkettigen Carbonsäuren und Alkoholen
 - b) Ester aus langkettigen Carbonsäuren und langkettigen Alkoholen
 - c) Ester aus langkettigen Carbonsäuren und dem dreiwertigen Alkohol Glycerol
 - d) Ester zwischen mehrwertigen Carbonsäuren und mehrwertigen Alkoholen
- 4. Wachse sind
 - a) Ester aus kurzkettigen Carbonsäuren und Alkoholen
 - b) Ester aus langkettigen Carbonsäuren und langkettigen Alkoholen
 - c) Ester aus langkettigen Carbonsäuren und dem dreiwertigen Alkohol Glycerol
 - d) Ester zwischen mehrwertigen Carbonsäuren und mehrwertigen Alkoholen
- 5. Zu den Alkaloiden gehören
 - a) Nikotin
 - b) Koffein
 - c) Atropin
 - d) Protein
- 6. Alkaloide sind in wässriger Lösung
 - a) alkalisch
 - b) neutral
 - c) Schiff'sche Basen
 - d) sauer
- 7. Amide sind entstehen durch eine Verbindung von
 - a) einem Amin und einer Nitrogruppe
 - b) einer organischen Säure und einem Amin
 - c) einem Alkaloid mit einem Alkohol
 - d) einem Amin und einem Aldehyd
- 8. Eine Aminosäure besitzt immer mindestens
 - a) eine -COOH Gruppe
 - b) eine -CH₂-OH Gruppe
 - c) eine -NH₂ Gruppe
 - d) ein N-Atom
- 9. Das funktionale C-Atom in Methanol hat die Oxidationszahl
 - a) -III
 - b) -II
 - c) -I
 - d) 0
- 10. Das funktionale C-Atom in Methanal hat die Oxidationszahl
 - a) -III
 - b) -II
 - c) -I
 - d) 0

11. Das funktionale C-Atom in Methansäure hat die Oxidationszah	1
a) +III b) +II	
b) +II c) +I	
d) 0	
12. Harnstoff wird aus folgenden Rohstoffen synthetisiert	
a) Kohlensäure und Wasser	
b) Kohlendioxid und Ammoniak	
c) Harnsäure und Kohlendioxid	
d) Ammoniak und Wasser	
13. Deflagrierende Stoffe haben eine Verbrennungsgeschwindigke	it
a) bis 300 m/s	
b) von 300 - 3.000 m/s	
c) über 3.000 m/sd) die größer ist als die von detonierenden Stoffen	
a) the grower ist all the von determinent stories	
14. Detonierende Stoffe haben eine Verbrennungsgeschwindigkeit	
a) bis 300 m/s b) von 300 - 3.000 m/s	
c) über 3.000 m/s	
d) die größer ist als die von explodierenden Stoffen	
15. Das funktionale C-Atom in Methan hat die Oxidationszahl	
a) -IV	
b) -III	
c) -II	
d) -I	
16. Das funktionale C-Atom in Ethan hat die Oxidationszahl	
a) -III	
b) -II c) -I	
d) 0	
,	
17. Das funktionale C-Atom in Ethanol hat die Oxidationszahl a) -III	
a) -III b) -II	
c) -I	
d) 0	
18. Das funktionale C-Atom in Ethanal hat die Oxidationszahl	
a) -III	
b) -II	
c) -I d) 0	
d) 0	
19. Das funktionale C-Atom in Ethansäure hat die Oxidationszahl	
a) +III b) +II	
c) +I	
d) 0	
20. Eine Essigmutter bildet sich beim	
a) Submersverfahren	
b) Immersverfahren	
c) Orleansverfahren	
d) Marseilleverfahren	