

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : A61K 37/02, 35/14, B05D 3/10, 7/00, C07K 7/06, 7/08, 7/10, 13/00, 17/02, C12N 15/00, C12P 21/02, G01N 33/543, 33/551, 33/544	A1	(11) International Publication Number: WO 94/25053 (43) International Publication Date: 10 November 1994 (10.11.94)		
(21) International Application Number: PCT/US94/04641		(74) Agent: WHITE, John, P.; Cooper & Dunham, 30 Rockefeller Plaza, New York, NY 10112 (US).		
(22) International Filing Date: 26 April 1994 (26.04.9	4)		

(30) Priority Data:

ŗ

08/053,451 26 April 1993 (26.04.93)

US

(60) Parent Application or Grant

(63) Related by Continuation

US Fil∞d on 08/053,451 (CIP) 26 April 1993 (26.04.93)

(71) Applicant (for all designated States except US): SCOTGEN BIOPHARMACEUTICALS, INC. [US/US]; 1014 Hamilton Court, Menlo Park, CA 94025 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DITLOW, Charles, C. [US/US]; 34562 Shenandoah Place, Fremont, CA 94555 (US). CHEN, Francis, W. [US/US]; 1821 Jones Street, San Francisco, CA 94109 (US). CALENOFF, Emanuel [US/US]; Apartment 3402, 750 North Rush Street, Chicago, IL 60611 (US)

(81) Designated States: AU, CA, IP, KR, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: ATHEROSCLEROTIC PLAQUE SPECIFIC ANTIGENS, ANTIBODIES THERETO, AND USES THEREOE

(57) Abstract

An antigen comprising 5,7 cholestadien-3 β -ol (7-dehydrocholesterol) or a compound baving a structure similar to 5,7 cholestadien-3 β -ol and a quaternary ammonium salt is provided. Also provided is a method of generating an antibody using the aforementioned antigen, as well as antibodies produced thereby and fragments of such antibodie. The invention also provides a rat myeloma cell line Z2D3 73/30 1D10 and a murine-human chimeric monoclonal antibody produced thereby. A CDR-grafted antibody comprising a CDR region amino acid sequence from hybridoma Z2D3 or hybridoma Z2D3/3E5 and framework and constant region amino acid sequences from a human immunoglobulin is further provided. Also provided are methods for imaging atherosclerotic plaque, ablating atherosclerotic plaque, detecting and quantitatively determining in a sample an antigen indicative of the presence of atherosclerotic plaque, reducing the amount of atherosclerotic plaque in a blood vessel, and treating atherosclerosis in a subject. The invention also provides peptides having amino acid sequences which are the same or substantially the same as those of the aforementioned murine-human chimeric monoclonal antibody, as well as isolated nucleic acid sequences encoding therefor.

BEST AVAILABLE COPY

289 +1

ATTORNEY DOCKET NUMBER:10177-191-999
SERIAL NUMBER: 10/603,115

REFERENCE: B158

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Austria	GB	United Kingdom	MR	Mauritania
Australia	GE	Georgia	MW	Malawi
Barbados	GN	Guinea	NE	Niger
Belgium	GR	Greece	NL	Netherlands
Burkina Paso	HU	Hungary	NO	Norway
Bulgaria	IE	Ireland	-	New Zealand
Benin	п	Italy		Poland
Brazil	JP	•	PT	Portugal
Belarus	KE			Romania
Canada	KG			Russian Federation
Central African Republic	KP			Sudan
Congo		of Korea		Sweden
Switzerland	KR		_	Slovenia
Côte d'Ivoire				Slovakia
Cameroon				Senegal
China				Chad
				Togo
				Tajikistan
•			_	Trinidad and Tobago
•	-			Ukraine
		•		United States of America
•	_	_		Uzbekistan
				Viet Nam
Gabor	11-04	***************************************	A14	7 No. 67 mile
	Australia Barbados Belgium Burkina Paso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Czechoslovakia Czech Republic Germany Demmark Spain Pinland France	Australia GE Barbados GN Belgium GR Burkina Faso HU Bulgaria IE Beain IT Brazil JP Belarus KE Canada KG Central African Republic KP Congo Switzerland KR Côte d'Ivoire KZ Cameroon LI Chins LK Czechoslovakia LU Czech Republic LV Germany MC Denmark MD Spain MG Finland ML France MN	Australia Barbados GN Guinea Belgium GR Greece Burkina Faso HU Hungary Bulgaria Benin IT Italy Brazil Belarus KE Kenya Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Câte d'Ivoire Câte d'Ivoire Câte d'Ivoire Canada Czechosłovakia LI Liecturatin China Czech Republic Compo LI Liecturatin China LK Sri Lanka Czechosłovakia LU Lunenbourg Czech Republic Cermany MC Monaco Demark MD Republic of Moldova Spain MG Madagascar Finland MI Maii France MN Mongolia	Australia GE Georgia MW Barbados GN Guinea NE Belgium GR Greece NL Burkina Faso HU Hungary NO Bulgaria IE Ireland NZ Benin IT Italy PL Brazil JP Japan PT Belarus KE Kenya RO Canada KG Kyrgystan RU Central African Republic KP Democratic People's Republic SD Congo of Korea SE Switzerland KE Republic of Korea SI Côte d'Ivoire KZ Kazakhstan SK Cameroon LI Llechterstein SN Chins LK Sri Lanks TD Czech Sepublic LV Latvia TJ Germany MC Moosco TT Demark MD Republic of Moldovs UA Spain MG Madagascar US Finland ML Maii UZ France MN Mongolia

30

35

ATHEROSCLEROTIC PLAQUE SPECIFIC ANTIGENS, ANTIBODIES THERETO, AND USES THEREOF

Background Of The Invention

This application is a continuation in part of U.S. Serial 5 08/053,451, filed April 26, 1993; which is a continuation in part of U.S. Serial No. 07/828,860, filed January 31, 1992; which is a continuation in part of U.S. 07/388,129, filed July 31, 1989, Serial No. abandoned; which was a continuation in part of U.S. 10 07/067,995, filed June 29, 1987, No. abandoned; which was a continuation in part of U.S. Serial No. 07/067,993, filed June 29. 1987, abandoned; which was a continuation in part of U.S. 07/067,986, filed June 29, 1987. Serial No. 15 abandoned; which was a continuation in part of U.S. 06/876,841, 1986, Serial No. filed June 20, abandoned; which was a continuation in part of U.S. Serial No. 06/871,811, filed June 6, 1986, now abandoned; which was a continuation in part of U.S. Serial No. 20 06/846,401, filed March 31, 1986, now abandoned.

Atherosclerosis is the progressive narrowing of the lumen (inner passageway) of arterial blood vessels by layers of plaque (fatty and fibrous tissues). Atherosclerosis can occur in any artery. In coronary arteries, it may result in heart attacks; in cerebral arteries it may result in strokes; and in peripheral arteries it may result in gangrene of the extremities. Atherosclerosis is the single largest medical problem currently facing the developed United States and other Approximately forty million people in the United States are at risk for atherosclerosis. However, only six million people in the United States show overt signs of The rest remain undiagnosed until the the disease. disease manifests itself symptomatically, in the worst case as heart attack or stroke. Heart attack and stroke, respectively, represent the first and third leading causes of death in the United States. Over five hundred

thousand people die of heart attacks every year, and a significant sub-group of these patients expire without warning. The endothelium is located between the blood and arterial tissue and serves as a barrier against the accumulation of blood components in the vascular wall. Formation of atherosclerotic lesions in the sub-endothelium is associated with major coronary artery disease and stroke. The causes and detection of such lesions have been intensely investigated.

10

15

20

25

30

35

Atherosclerosis is a complex process, and precisely how it begins or what causes it is not known. However, endothelial injury is believed to be an initial step in the formation of atherosclerotic lesions, and may be caused by hemodynamic strain, hypercholesterolemia, hypertension or immune complex disease. Endothelial injury leads to cholesterol and lipid accumulation, intimal thickening, smooth muscle cell proliferation, and formation of connective tissue fibers. Gradually, the build-up of fatty deposits and the proliferation of the smooth muscle cells lead to the formation of plaques which eventually narrow and block the artery.

Although atherosclerosis is generally a diffuse disease, human coronary atherosclerosis lends itself to bypass procedures because the major site of plaque formation is usually proximally distributed. As a result, direct coronary artery bypass has become the most frequently selected form of myocardial revascularization. aorta-coronary artery vein graft or the internal mammary artery graft have become technically standardized and These long-term have high, long-term patency rates. results, however, can be compromised by progressive atherosclerosis distal to the graft anastomosis. Other inoperable because of distal disease. cases are Previously, distal lesions have been ignored, or, in selected cases, treated by endarterectomy although

10

15

neither approach has proved entirely satisfactory.

Most existing procedures for the diagnosis and treatment of atherosclerosis are invasive, costly, and of limited effectiveness in a significant percentage of cases.

Prior to the subject invention, radioimaging of atherosclerotic plaque using an antibody which specifically binds to an atherosclerotic plaque-specific antigen was unknown, although radioimaging of aged venous thrombi with fibrin-specific monoclonal antibodies labeled with a radioactive moiety has been reported [Rosebrough, S. et al., Radiology 163: 575-577 (February, 1987)].

Radioimaging thrombi with radiolabeled monoclonal antibodies to platelets was first described by Peters, A., et al., [British Medical Journal, 293: 1525-1527 (December 1986)]. DTPA-coupled antibodies radiolabeled with metallic radionuclides has been described by

Hnatowich, D., et al., [Journal of Immunological Methods, 65: 147-157 (1983)].

NMRI, ultrasound and X-ray imaging with metal chelates are described in U.S. Patent 4,647,447. In addition, antibody coupling of metal chelates is mentioned at column 7, line 42. Monoclonal antibodies labeled with polymeric paramagnetic chelates and their use in NMRI methods have also been described [Shreve, P. et al., Magnetic Resonance in Medicine, Second Annual Meeting, Soc. of Magnetic Resonance in Medicine, Inc., San Francisco, p. 10 (1983), referenced by Koutcher, J., et al., J. Nucl. Med., 25: 506-513 (1984)].

35 U.S. Patent 4,343,734 (Lian, et al.) describes gammacarboxyglutamic acid (GLA) specific antibodies which can be labeled with fluorescein for immunofluorescence

10

staining of tissue to determine the presence therein of GLA. GLA specific antibodies bind with GLA present in advanced atherosclerotic plaque having calcium deposits. Lian et al. report that GLA is not found in uncalcified plaques and that GLA is found in cardiac valves and aortas, and in circulating proteins such as prothombin, clotting factors VII, IX and X, Protein C and Protein S. However, the GLA binding antibodies developed by Lian et al. do not selectively bind to atherosclerotic plaque. The atherosclerotic plaque antibodies of the subject invention bind to all stages of atherosclerotic plaque including non-calcified stages, and do not selectively bind to GLA.

- The concept of plaque enhancement by application of a 15 stain has been reported [Spears, J. et al., J. Clin. These stains mark the Invest., <u>71</u>:395-399 (1983)]. plaque surfaces with a fluorescent compound. Plaque photoactivation of hematoporphyrin destruction bv derivatives using an intraluminal laser-transmitting 20 optical fiber has been suggested [Abela, G. et al., Am. Moreover, 1199-1205 (1983)]. Cardio., 50: J. tetracycline stains have also been suggested. [Murphy-Chutorian, D. et al., Am. J. Cardio., 55: (1985)]. The above-identified stains were selected for 25 the components ability to bind their atherosclerotic plaque. In principal, the stain absorbs laser light concentrating the light at the stained surface. Some staining of healthy tissue occurs causing stain associated damage to the surrounding tissue. 30 Because laser light is monochromatic, chromophores having optimum absorption at the wavelength of the laser must be used to provide most controlled ablation.
- In recent years, lasers have been used increasingly in microsurgery, both as scalpels and as coagulating instruments. Because of their ability to produce

15

20

25

30

35

relatively bloodless incisions of great precision, as well as focal coagulation, they have been particularly useful in microsurgical procedures in the eye, central nervous system, nasal passages, cervix, gastrointestinal tract, skin, muscle, and even in small vessels.

Experiments with heart and arterial tissue from human cadavers have demonstrated the feasibility of vaporizing or etching away plaque on diseased surfaces. UVwavelengths were found to offer more precision. treatment of plaque in live animals was less precise, causing damage and perforation of surrounding healthy tissue. [Gerrity, R. et al., Jour. Thorac. Cardiovasc. 409-421 (1983); Lee, G. et al., Am. Heart Surg., 85: Jour., 105: 885-889 (1983); Lee, G. et al., Am. Heart Jour., pp 777-778 (Aug. 1984); Lee, G. et al., Am. Heart Jour., 108: 1577-1579 (1984); Lee, G. et al., Lasers in Surgery and Medicine, 4: 201-206 (1984); Abela, G. et al., Circulation, 71(2): 403-411 (1985); Prince, M. et al., Jour. Clin. Invest., 78: 295-302 (1986); and Srinivasan, R., Science, 234: 559-565 (1986)].

Recent reference has been made to monoclonal antibodies targeting differential antigens in atherosclerotic For example, oxidized or otherwise modified plaque. lipoproteins (Haberland, M.E., et al., Science, 241: 215 (1988). While concentrated within the plaque substance, these antigens have also been found in normal artery and/or other normal tissues. Some antigens and their corresponding monoclonal antibodies have shown early promise in the Watanabe rabbit model, but have not held up when applied to human lesions (Shih, I.L., et al, Proc. Nat'l. Acad. Sci., 87: 1436 (1990)), especially when diffuse markers of extracellular plaque tissue are being sought (Kimura J., et al., Virchows Arch., 410(2): 159 (1986)).

10

15

20

Summary Of The Invention

This invention provides an antigen comprising 5,7 cholestadien- 3β -ol (7-dehydrocholesterol) or a compound having a structure similar to 5,7 cholestadien- 3β -ol, and a quaternary ammonium salt.

This invention also provides methods for quantitatively determining in a sample the concentration of an antibody which specifically forms a complex with a plaque-indicative antigen, which methods comprise the use of the above-described antigen.

This invention also provides a method for coating a solid support with the above-described antigen.

This invention also provides a method of generating an antibody which is capable of specifically binding to atherosclerotic plaque, which method comprises administering the above-described antibody to an animal.

Further provided by this invention are an antibody produced by the above-described method, as well as a biologically active fragment of such an antibody.

25 This invention also provides reagents and pharmaceutical compositions comprising the above-described antibody or fragment.

This invention further provides methods for imaging atherosclerotic plaque which comprise the use of a reagent comprising the above-described antibody or fragment labeled with a detectable marker.

Also provided are methods for ablating atherosclerotic plaque which comprise the use of a reagent comprising the above-described antibody or fragment bound to a chromophore capable of absorbing radiation having a

plaque ablating wavelength.

This invention further provides methods for detecting in a sample and for quantitatively determining in a sample an antigen indicative of the presence of atherosclerotic plaque, which methods comprise the use of the abovedescribed antibody or fragment.

This invention further provides a method for reducing the amount of atherosclerotic plaque in a blood vessel, which method comprises the use of a reagent comprising the above-described antibody or fragment conjugated to an enzyme capable of digesting atherosclerotic plaque.

- This invention also provides a method for treating atherosclerosis in a subject, which method comprises administering to the subject a reagent comprising the above-described antibody or fragment thereof bound to a drug useful in treating atherosclerosis.
- This invention also provides a rat myeloma cell line designated Z2D3 73/30 1D10, having ATCC Accession Number CRL 11203.
- Also provided by this invention is a murine-human chimeric monoclonal antibody produced by the above-described rat myeloma cell line, as well as a biologically active fragment thereof.
- This invention also provides reagents and pharmaceutical compositions comprising the above-described chimeric monoclonal antibody or fragment.
- This invention further provides methods for imaging atherosclerotic plaque which comprise the use of a reagent comprising the above-described chimeric monoclonal antibody or fragment thereof labeled with a

detectable marker.

Also provided are methods for ablating atherosclerotic plaque which comprise the use of a reagent comprising the above-described chimeric monoclonal antibody or fragment thereof bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength.

This invention further provides methods for detecting in a sample and for quantitatively determining in a sample an antigen indicative of the presence of atherosclerotic plaque, which methods comprise the use of the abovedescribed chimeric monoclonal antibody or fragment thereof.

15

20

25

10

5

This invention further provides a method for reducing the amount of atherosclerotic plaque in a blood vessel, which method comprises the use of a reagent comprising the above-described chimeric monoclonal antibody or fragment thereof conjugated to an enzyme capable of digesting atherosclerotic plaque.

This invention also provides a method for treating atherosclerosis in a subject, which method comprises administering to the subject a reagent comprising the above-described chimeric monoclonal antibody or fragment thereof bound to a drug useful in treating atherosclerosis.

This invention also provides a CDR-grafted antibody comprising a CDR region amino acid sequence from hybridoma Z2D3 or hybridoma Z2D3/3E5 and framework and constant region amino acid sequences from a human immunoglobulin, as well as a biologically active fragment of such a CDR-grafted antibody.

This invention also provides reagents and pharmaceutical

PCT/US94/04641

5

20

25

30

35

compositions comprising the above-described CDR-grafted antibody or fragment.

This invention further provides methods for imaging atherosclerotic plaque which comprise the use of a reagent comprising the above-described CDR-grafted antibody or fragment labeled with a detectable marker.

Also provided are methods for ablating atherosclerotic plaque which comprise the use of a reagent comprising the above-described CDR-grafted antibody or fragment bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength.

This invention further provides methods for detecting in a sample and for quantitatively determining in a sample an antigen indicative of the presence of atherosclerotic plaque, which methods comprise the use of the above-described CDR-grafted antibody or fragment.

This invention further provides a method for reducing the amount of atherosclerotic plaque in a blood vessel, which method comprises the use of a reagent comprising the above-described CDR-grafted antibody or fragment conjugated to an enzyme capable of digesting atherosclerotic plaque.

This invention also provides a method for treating atherosclerosis in a subject, which method comprises administering to the subject a reagent comprising the above-described CDR-grafted antibody or fragment bound to a drug useful in treating atherosclerosis.

This invention also provides a peptide having an amino acid sequence which is the same or substantially the same as the amino acid sequence of the variable region of the heavy chain of the above-described chimeric monoclonal

10

antibody.

This invention also provides a peptide having an amino acid sequence which is the same or substantially the same as the amino acid sequence of the variable region of the light chain of the above-described amino acid sequence.

This invention also provides a peptide which comprises an amino acid sequence or combination of amino acid sequences, each of which amino acid sequences is the same or substantially the same as the amino acid sequence of a complimentarity determining region (CDR) of the above-described chimeric monoclonal antibody.

15 Finally, this invention provides isolated nucleic acid molecules having nucleotide sequences encoding for the above-described peptides.

Brief Description Of The Figures

Figure 1A.

Immunohistological staining with the Z2D3 IgM monoclonal antibody of a moderate atherosclerotic lesion; staining of a frozen human coronary artery section with the mouse Z2D3 IgM monoclonal antibody.

Figure 1B.

- Immunohistological staining with the Z2D3 IgM monoclonal antibody of a moderate atherosclerotic lesion; staining of a sequential section with a non specific mouse IgM monoclonal antibody.
- Immunohistological staining with the Z2D3 IgM monoclonal antibody of an advanced atherosclerotic lesion; staining of a frozen human coronary artery section with the mouse Z2D3 IgM monoclonal antibody.

Figure 2B.

20

25

Immunohistological staining with the Z2D3 IgM monoclonal antibody of an advanced atherosclerotic lesion; staining of a sequential section with a non specific mouse IgM monoclonal antibody.

Figure 3A.

Chemical structure of 5-Cholesten-3B-ol, Cholesterol.

- 30 Figure 3B.
 - ELISA activity of 5-cholesten-38-ol in combination with
 - X: Benzyldimethylhexadecylammonium chloride;
 - O: palmitoylcholine.
- 35 Figure 4A.

Chemical structure of

5, 7-Cholestadien-38-ol, 7-Dehydrocholesterol.

Figure 4B.

ELISA activity of 5, 7-Cholestadien-36-ol in combination with

X: Benzyldimethylhexadecylammonium chloride;

5 0: palmitoylcholine.

Figure 5A.

Chemical structure of

5, 24-Cholestadien-3B-ol, Desmosterol.

10

Figure 5B.

ELISA activity of

5, 24-Cholestadien-38-ol in combination with

X: Benzyldimethylhexadecylammonium chloride;

15 0: palmitoylcholine.

Figure 6A.

A: Chemical structure of

 5α -Cholest-7-en-3 β -ol, Lathosterol.

20

Figure 6B.

ELISA activity of

 5α -Cholest-7-en-3B-ol in combination with,

x: Benzyldimethylhexadecylammonium chloride;

25 0: palmitoylcholine.

Figure 7A.

Chemical structure of

 5α -Cholestane-3B-ol, Dihydrocholesterol.

30

Figure 7B.

ELISA activity of

5α-Cholestane-3β-ol in combination with,

X: Benzyldimethylhexadecylammonium chloride;

35 0: palmitoylcholine.

Figure 8A.

Chemical structure of 5-Cholesten-3-one.

Figure 8B.

- 5 ELISA activity of 5-Cholest-3-one in combination with,
 - X: Benzyldimethylhexadecylammonium chloride;
 - o: palmitoylcholine.
- 10 Figure 9A.

 Chemical structure of 5-Androsten-3 β -ol.

Figure 9B.

- ELISA activity of
 5-Androsten-3β-ol in combination with,
 X: Benzyldimethylhexadecylammonium chloride;
 O: palmitoylcholine.
- 20 Figure 10A.

 Chemical structure of
 5-Cholesten-3B-ol acetate, Cholesteryl Acetate.

Figure 10B.

- 30 Figure 11A.

 Chemical structure of
 5-Cholesten.

Figure 11B.

- ELISA activity of 5-Cholesten in combination with,X: Benzyldimethylhexadecylammonium chloride;
 - O: palmitoylcholine.

Figure 12A.
Chemical structure of
Cholecalciferol, Vitamin D3.

5 Figure 12B.

ELISA activity of

Cholecalciferol in combination with,

- x: Benzyldimethylhexadecylammonium chloride;
- O: palmitoylcholine.

. 10

15

Figure 13.

Biosynthesis and metabolism of cholesterol. Outline of a portion of the biological pathway of steroid metabolism showing the six most active steroid compounds in the surrogate antigen ELISA assay and their relationship to cholesterol. The enzymes which catalyze individual steps are in italics.

Figure 14.

- 20 ELISA activity of various choline esters in presence of 5-Cholesten-3B-ol, Cholesterol.
 - 0 = Lauroylcholine;
 - = = Myristoylcholine;
 - Δ = Palmitoylcholine; and
- 25 X = Stearoylcholine.

Figure 15.

ELISA activity of various choline esters in presence of 5,7-Cholestadien-38-ol, 7-Dehydrocholesterol.

- 30 0 = Lauroylcholine;
 - = = Myristoylcholine;
 - Δ = Palmitoylcholine; and
 - x = Stearoylcholine.
- 35 Figure 16.

Agarose gel analysis of amplified Z2D3 VH and VK DNA. Lane 1, ϕx 174 Hae III fragments;

lane 2, VH undigested;

lane 3, VH Pst I digest;

lane 4, VH Hind III digest;

lane 5, VK undigested;

5 lane 6, VK Hind III digest;

lane 7, VK Pvu II digest.

Figures 17A-17F.

Sequence determination from M13 clones containing Z2D3 VH

10 DNA. Gaps or dashes are used to maximize sequence homology. In the consensus sequence, underlining represents homology. In the consensus sequence, the following positions are underlined: 9-14; 16-19; 21-49; 51-77; 79-150; 152-219; 221-353; 357-375; 378-388.

Sequence VH1BACK (1,22) is SEQ ID NO:1.

Sequence Z2VH1 (1, 220)' is SEQ ID NO:2.

Sequence Z2VH12 (1,218)' is SEQ ID NO:3.

Sequence Z2VH7 (1,220)' is SEQ ID NO:4.

Sequence Z2VH9 (1, 218)' is SEQ ID NO:5.

20 Sequence Z2VH20A (1, 237) is SEQ ID NO:6.

Sequence Z2VH2 (1, 220) is SEQ ID NO:7.

Sequence Z2VH5 (1, 220) is SEQ ID NO:8.

Sequence Z2VH6 (1, 220) is SEQ ID NO:9.

Sequence Z2VH8 (1, 219) is SEQ ID NO:10.

Sequence Z2VH10 (1, 218) is SEQ ID NO:11.

Sequence Z2VH21 (1, 147) is SEQ ID NO:12.

Sequence Z2VH17 (1, 114)' IS SEQ ID NO:13.

Sequence CM1FOR (1, 34)' is SEQ ID NO:14.

Sequence consensus is SEQ ID NO:15.

30 Figures 18A-18G.

35

Z2D3 VH DNA and amino acid sequences. CDRs are boxed and oligonucleotides used in the PCR are underlined. Restriction endonuclease cleavage sites are identified by alpha-numeric code. CH1 identifies the beginning of the constant region of the antibody.

The first sequence, which begins "AGGTSMARCTG...", is SEQ

ID NO:16.

The second sequence, which begins "TCCASKTYGAC...", is SEQ ID NO:17.

The third sequence, which begins "v, k/q, l, q, e, s, g, g, g, l, v,...", is represented by SEQ ID NO:18 and SEQ ID NO:19; wherein SEQ ID NO:18 corresponds to "v, k, l, q, e, s, g, g, g, l, v,..."; and wherein SEQ ID NO:19 corresponds to "v, q, l, q, e, s, g, g, g, l, v,...". SEQ ID NO:20 corresponds to the first sequence within the

first box. 10

SEQ ID NO:21 corresponds to the second sequence within the first box.

SEQ ID NO:22 corresponds to the third sequence within the first box.

SEQ ID NO:23 corresponds to the first sequence within the 15

SEQ ID NO:24 corresponds to the second sequence within the second box.

SEQ ID NO:25 corresponds to the third sequence within the

second box. 20

SEQ ID NO:26 corresponds to the first sequence within the third box.

SEQ ID NO:27 corresponds to the second sequence within the third box.

SEQ ID NO:28 corresponds to the third sequence within the 25 third box.

Figure 19.

30

Comparison of the amino acid sequences of Z2D3 VH (top) and a consensus sequence from mouse subgroup IIIB (bottom). Invariant residues in mouse subgroup IIIB are highlighted (4). The center sequence indicates those Nearly all of the residues which are homologous. invariant mouse subgroup IIIB residues are homologous with the Z2D3 VH sequence. Gaps or dashes are used to 35 maximize sequence homology. CDRs are boxed. Sequence Z2D3MUVH is SEQ ID NO:29.

Sequence MUVHIIIB is SEQ ID NO:30.

SEQ ID NO:31 corresponds to Sequence Z2D3MUVH within the first box.

SEQ ID NO:32 corresponds to Sequence MUVHIIIB within the

5 first box.

SEQ ID NO:33 corresponds to Sequence Z2D3MUVH within the second box.

SEQ ID NO:34 corresponds to Sequence MUVHIIIB within the second box.

SEQ ID NO:35 corresponds to Sequence Z2D3MUVH within the third box.

SEQ ID NO:36 corresponds to Sequence MUVHIIIB within the third box.

15 Figures 20A-20H.

Sequence determination from M13 clones containing Z2D3 VK DNA. Gaps or dashes are used to maximize sequence homology. In the consensus sequence, underlining represents homology. In the consensus sequence, the

following positions are underlined: 10-27; 29-349; 351-360.

Sequence VK1BACK (1, 24) is SEQ ID NO:37.

Sequence Z2VK34 (1, 291)' is SEQ ID NO:38.

Sequence Z2VK10 (1, 140)' is SEQ ID NO:39.

25 Sequence Z2VK17 (1, 92)' is SEQ ID NO:40.

Sequence Z2VK23 (1, 152) is SEQ ID NO:41.

Sequence Z2VK3 (1, 141) is SEQ ID NO:42.

Sequence Z2VK11A (1, 84) is SEQ ID NO:43.

Sequence Z2VK7 (1, 140) is SEQ ID NO:44.

30 Sequence Z2VK8A (1, 140) is SEQ ID NO:45.

Sequence Z2VK28 (1, 265) is SEQ ID NO:46.

Sequence Z2VK29 (1, 265) is SEQ ID NO:47.

Sequence Z2VK30 (1, 265) is SEQ ID NO:48.

Sequence Z2VK31 (1, 264) is SEQ ID NO:49.

35 Sequence Z2VK32 (1, 264) is SEQ ID NO:50.

Sequence Z2VK36 (1, 263)' is SEQ ID NO:51.

Sequence Z2VK25 (1, 260) ' is SEQ ID NO:52.

Sequence Z2VK18B (1, 88)' is SEQ ID NO:53.

Sequence Z2VK19 (1, 203) is SEQ ID NO:54.

Sequence Z2VK20 (1, 204) is SEQ ID NO:55.

Sequence Z2VK16 (1, 175)' is SEQ ID NO:56.

Sequence Z2VK18A (1, 167)' is SEQ ID NO:57.

Sequence Z2VK8B (1, 154)' is SEQ ID NO:58.

Sequence CK2FOR (1, 32)' is SEQ ID NO:59.

Sequence consensus is SEQ ID NO:60.

Tigures 21A-21H.

Z2D3 VK DNA and amino acid sequences. CDRs are boxed and oligonucleotides used in the PCR are underlined. Restriction endonuclease cleavage sites are identified by alpha-numeric code. Gaps or dashes are used to maximize sequence homology. CK identifies the beginning of the constant region of the kappa light chain of the antibody. The first sequence, which begins "CTGCAGSAGTC...", is SEQ ID NO:61.

The second sequence, which begins "GACGTCSTCAG...", is

- The third sequence, which begins "m, r, a, p, a, q, f, f, g, i, 1,...", is SEQ ID NO:63.

 SEQ ID NO:64 corresponds to the first sequence within the first box.
- SEQ ID NO:65 corresponds to the second sequence within the first box.

 SEQ ID NO:66 corresponds to the third sequence within the first box.

 SEQ ID NO:67 corresponds to the first sequence within the
- second box.

 SEQ ID NO:68 corresponds to the second sequence within the second box.

 SEQ ID NO:69 corresponds to the third sequence within the second box.
- 35 SEQ ID NO:70 corresponds to the first sequence within the third box.
 SEQ ID NO:71 corresponds to the second sequence within

the third box.
SEQ ID NO:72 corresponds to the third sequence within the third box.

- Comparison of the amino acid sequence of Z2D3 VK and a consensus sequence from mouse family V. Invariant residues in the mouse family V sequence are highlighted (*). The center sequence indicates those residues which are homologous. All of the invariant mouse family V residues are homologous with the Z2D3 VK sequence. Gaps
- residues are homologous with the Z2D3 VK sequence. Gaps or dashes are used to maximize sequence homology. CDRs are boxed.

Sequence Z2D3MUVK is SEQ ID NO:73.

- Sequence MUVKV is SEQ ID NO:74.

 SEQ ID NO:75 corresponds to Sequence Z2D3MUVK within the first box.

 SEQ ID NO:76 corresponds to Sequence MUVKV within the
- first box.

 SEQ ID NO:77 corresponds to Sequence Z2D3MUVK within the second box.
 - SEQ ID NO:78 corresponds to Sequence MUVKV within the second box.
 - SEQ ID NO:79 corresponds to Sequence Z2D3MUVK within the
- 25 third box. SEQ ID NO:80 corresponds to Sequence MUVKV within the third box.

Figure 23.

- 30 Components and organization of the immunoglobulin heavy chain mammalian expression vector.
- Figure 24.

 Components and organization of the immunoglobulin kappa
 chain mammalian expression vector.

Figure 25.

ELISA showing binding of murine Z2D3 antibody and murine V/human IgG1, K chimeric antibody to atherosclerotic plaque antigen.

- 5 Figure 26A.

 Immunohistological staining of Z2D3 chimeric antibody with early atherosclerotic lesion; chimeric Z2D3 F(ab')₂; immunostaining of an unfixed 5 μ thick frozen tissue section of human coronary artery from a patient with early atherosclerosis, using biotinylated chimeric Z2D3 F(ab')₂ anti-human atherosclerotic plaque antibody. The tissue sections are stained using ABC immunoperoxidase method, and counterstained with hematoxylin.
- 15 Figure 26B.

 Immunohistological staining of Z2D3 chimeric antibody with early atherosclerotic lesion; non-specific human $F(ab')_2$; immunostaining of an unfixed 5 μ thick frozen tissue section of human coronary artery from a patient with early atherosclerosis, using biotinylated non-specific human IgG $F(ab')_2$. The tissue sections are stained using ABC immunoperoxidase method, and counterstained with hematoxylin.
- Figure 27A. 25 Immunohistological staining of Z2D3 chimeric antibody with moderate atherosclerotic lesion; chimeric Z2D3 $F(ab')_2$; immunostaining of an unfixed 5 μ thick frozen tissue section of human coronary artery from a patient using biotinylated · with moderate atherosclerosis, 30 chimeric Z2D3 F(ab')2 anti-human atherosclerotic plaque The tissue sections are stained using ABC antibody. and counterstained with immunoperoxidase method, hematoxylin.

Figure 27B.

Immunohistological staining of Z2D3 chimeric antibody

with moderate atherosclerotic lesion; non-specific human $F(ab')_2$; immunostaining of an unfixed 5 μ thick frozen tissue section of human coronary artery from a patient with moderate atherosclerosis, using biotinylated non-specific human IgG $F(ab')_2$. The tissue sections are stained using ABC immunoperoxidase method, and counterstained with hematoxylin.

Figure 28A.

- Immunohistological staining of Z2D3 chimeric antibody with advanced atherosclerotic lesion; chimeric Z2D3 F(ab')₂; immunostaining of an unfixed 5 μ thick frozen tissue section of human coronary artery from a patient with advanced atherosclerosis, using biotinylated chimeric Z2D3 F(ab')₂ anti-human atherosclerotic plaque antibody. The tissue sections are stained using ABC immunoperoxidase method, and counterstained with hematoxylin.
- Figure 28B.
 Immunohistological staining of Z2D3 chimeric antibody with advanced atherosclerotic lesion; non-specific human F(ab')₂; immunostaining of an unfixed 5 μ thick frozen tissue section of human coronary artery from a patient with advanced atherosclerosis, using biotinylated non-specific human IgG F(ab')₂. The tissue sections are stained using ABC immunoperoxidase method, and counterstained with hematoxylin.

35

Detailed Description of the Invention:

The subject invention provides an antigen indicative of the presence of atherosclerotic plaque which antigen comprises 5,7 cholestadien-3 β -ol (7-dehydrocholesterol) or a compound having a structure similar to 5,7 cholestadien-3 β -ol, and a quaternary ammonium salt.

The steroid compound may be 5,7-cholestadien-3β-ol (7-dehydrocholesterol); 5-cholesten-3β-ol (cholesterol); 5,24-cholestadien-3β-ol (desmosterol); 5α-cholest-7-en-3β-ol (lathosterol); 5α-cholestane-3β-ol (cholestanol or dihydrocholesterol), or 5-cholesten-3-one.

In one embodiment, the quaternary ammonium salt is a 15 In an embodiment wherein fatty acid ester of choline. the quaternary ammonium salt is a fatty acid ester of choline, the fatty acid ester of choline may comprise a chain of about 12 or more atoms in length. Examples of fatty acid esters of choline useful in the practice of 20 this invention include: dodecanoic acid choline ester tridecanoic acid choline (lauroylcholine); tetradecanoic acid choline ester (myristoylcholine); pentadecanoic acid choline ester; hexadecanoic acid choline ester (palmitoylcholine); heptadecanoic acid 25 ester choline octadecanoic acid choline ester; (stearoylcholine); nonadecanoic acid choline ester; (arachidylcholine); ester choline eicosanoic acid henicosanoic acid choline ester; docosanoic acid choline ester; tricosanoic acid choline ester; tetracosanoic acid 30 choline ester; or pentacosanoic acid choline ester.

In another embodiment, the quaternary ammonium salt may have a substituent chain comprising about 12 or more atoms in length.

In a further embodiment the quaternary ammonium salt may

be a cationic detergent. Examples of cationic detergents useful in the practice of this invention include:

benzyldimethyldodecylammonium salt; 5 benzyldimethyltridecylammonium salt; benzyldimethyltetradecylammonium salt; benzyldimethylpentadecylammonium salt; benzyldimethylhexadecylammonium salt; benzyldimethylheptadecylammonium salt; benzyldimethyloctadecylammonium salt; 10 benzyldimethylnonadecylammonium salt; benzyldimethyleicosylammonium salt; benzyldimethylhenicosylammonium salt; benzyldimethyldocosylammonium salt; benzyldimethyltricosylammonium salt; 15 benzyldimethyltetracosylammonium salt; benzyldimethylpentacosylammonium salt; trimethyltetradecylammonium salt; trimethylpentadecylammonium salt; trimethylhexadecylammonium salt; 20 trimethylhepadecylammonium salt; trimethyloctadecylammonium salt; trimethylnonadecylammonium salt; trimethyleicosylammonium salt; trimethylhenicosylammonium salt; 25 trimethyldocosylammonium salt; trimethyltricosylammonium salt; trimethyltetracosylammonium salt; trimethylpentacosylammonium salt; didodecyldimethylammonium salt; 30 N-dodecylpyridinium salt; N-tridecylpyridinium salt; N-tetradecylpyridinium salt; N-pentadecylpyridinium salt; N-hexadecylpyridinium salt; 35 N-heptadecylpyridinium salt; N-octadecylpyridinium salt;

N-nonadecylpyridinium salt; N-eicosylpyridinium salt; N-henicosylpyridinium salt; N-docosylpyridinium salt; N-tricosylpyridinium salt; 5 N-tetracosylpyridinium salt; N-pentacosylpyridinium salt; dodecyldimethylethylammonium salt; tridecyldimethylethlyammonium salt; tetradecyldimethylethylammonium salt; 10 pentadecyldimethylethylammonium salt; hexadecyldimethylethylammonium salt; heptadecyldimethylethylammonium salt; octadecyldimethylethylammonium salt; 15 nonadecyldimethylethylammonium salt; eicosyldimethylethylammonium salt; henicosyldimethylethylammonium salt; docosyldimethylethylammonium salt; tricosyldimethylethylammonium salt; tetracosyldimethylethylammonium salt; 20 pentacosyldimethylethylammonium salt; or benzalkonium salt.

In one embodiment, the above-described antigen specifically binds to a monoclonal antibody produced by hybridoma Z2D3 (ATCC Accession Number HB9840), Z2D3/3E5 (ATCC Accession Number HB10485), or Z2D3 73/30 1D10 (ATCC Accession Number CRL 11203).

In another embodiment of this invention the above-described antigen may be labeled with a detectable marker. The choice of marker used will vary depending upon the application. However, the choice of marker is readily apparent to one skilled in the art.

In the practice of this invention the detectable marker may be an enzyme such as horseradish peroxidase or

10

30

35

alkaline phosphatase, a paramagnetic ion, a chelate of a paramagnetic ion, biotin, a fluorophore, a chromophore, a heavy metal, a chelate of a heavy metal, a compound or element which is opaque to X-rays, a radioisotope, or a chelate of a radioisotope.

Radioisotopes useful as detectable markers include such isotopes as iodine-123, iodine-125, iodine-128, iodine-131, or a chelated metal ion of chromium-51, cobalt-57, gallium-67, indium-111, indium-113m, mercury-197, selenium-75, thallium-201, technetium-99m, lead-203, strontium-85, strontium-87, gallium-68, samarium-153, europium-157, ytterbium-169, zinc-62, or rhenium-188.

Paramagnetic ions useful as detectable markers include such ions as chromium (III), manganese (II), iron (III), iron (III), cobalt (II), nickel (II), copper (II), praseodymium (III), neodymium (III), samarium (III), gadolinium (III), terbium (III), dysprosium (III), holmium (III), erbium (III), or ytterbium (III).

In one embodiment the detectable marker may be iodine, an iodine complex, or a chelate of iodine.

- The present invention also provides a method for quantitatively determining in a sample the concentration of an antibody which specifically forms a complex with a plaque-indicative antigen, which comprises:
 - (a) contacting a solid support with an excess of the above described antigen under conditions permitting the antigen to attach to the surface of the solid support;
 - (b) removing unbound antigen;
 - (c) contacting the resulting solid support to which the antigen is bound with the sample under conditions such that any antibody present in the sample binds to the bound

- antigen and forms a complex therewith;
- (d) removing any antibody which is not bound to the complex;
- (e) contacting any complex so formed with an excess of a detectable reagent which specifically binds to any antibody present in the complex so as to form a second complex which includes the antigen, the antibody, and the detectable reagent;
- 10 (f) removing any detectable reagent which is not bound in the second complex;
 - (g) quantitatively determining the amount of detectable reagent present in the second complex; and
- (h) thereby quantitatively determining in the sample the concentration of an antibody which specifically forms a complex with a plaque-indicative antigen.
- In one embodiment of the method the detectable reagent comprises an antibody labeled with a detectable marker, wherein the antibody labeled with the detectable marker specifically binds to the complexed antibody in step (e).
- The subject invention also provides a method for quantitatively determining in a sample the concentration of an antibody which specifically forms a complex with an plaque-indicative antigen indicative of the presence of atherosclerotic plaque, which comprises:
- 30 (a) contacting a solid support with a predetermined amount of the above described antigen under conditions permitting the antigen to attach to the surface of the support;
- 35 (b) removing unbound antigen;
 - (c) contacting the resulting solid support to which the antigen is bound with a

10

15

20

25

30

35

predetermined amount of antibody labeled with a detectable marker and with the sample under conditions such that the labeled and sample antibodies competitively bind to the antigen bound to the solid support and form a complex therewith;

- (d) removing any labeled or sample antibody which is not bound to the complex;
- (e) quantitatively determining the amount of labeled antibody bound to the solid support; and
- (f) thereby quantitatively determining in the sample the concentration of an antibody which specifically forms a complex with a plaque-indicative antigen.

In the practice of the method step (e) may alternatively comprise quantitatively determining the amount of labeled antibody not bound to the solid support.

The subject invention also provides a method for quantitatively determining in a sample the concentration of antibody which specifically forms a complex with a plaque-indicative antigen, which comprises:

- (a) contacting a solid support with a predetermined amount of the above described antigen under conditions permitting the antigen to attach to the surface of the support;
- (b) removing any antigen which is not bound to the support;
 - (c) contacting the solid support to which the antigen is bound with the sample under conditions such that any antibody present in the sample binds to the bound antigen and forms a complex therewith;
 - (d) removing any antibody which is not bound to

15

25

35

the complex;

- (e) contacting the complex so formed with a predetermined amount of antibody labeled with a detectable marker under conditions such that the labeled antibody competes with the antibody in the sample for binding to the antigen;
- (f) removing any labeled and sample antibody which are not bound to the complex;
- 10 (g) quantitatively determining the amount of labeled antibody bound to the solid support; and
 - (h) thereby quantitatively determining in the sample the concentration of antibody which specifically forms a complex with a plaque-indicative antigen.

In the practice of the method step (g) may alternatively comprise quantitatively determining the amount of labeled antibody not bound to the solid support.

The subject invention, also provides the above described antigen bound to a solid support. In the practice of the subject invention the solid support may be an inert polymer, a microwell, or a porous membrane. In one embodiment the inert polymer is a polystyrene bead. The polystyrene bead may have a diameter from about 0.1 μ m to about 100 μ m.

- 30 The subject invention also provides method for coating a solid support with the above described antigen which comprises:
 - (a) forming a mixture by dissolving in an organic solvent the 5,7 cholestadien-3 β -ol or compound having the structure similar to 5,7 cholestadien-3 β -ol and the quaternary ammonium salt in a suitable molar ratio and in

.30

sufficient concentrations so as to coat the surface of the solid support after evaporation of the solvent, wherein the organic solvent does not react with the 5,7 cholestadien-3 β -ol or the compound having the structure similar to 5,7 cholestadien-3 β -ol, the quaternary ammonium salt, or the solid support;

- (b) contacting the mixture of step (a) with the surface of the solid support;
- 10 (c) evaporating the organic solvent of the mixture in step (b); and
 - (d) thereby coating onto the surface of the solid support the surrogate antigen.
- Examples of organic solvents useful in the practice of this method include ethanol, acetone, chloroform, ether, or benzene.

In the practice of this method the molar ratio of the 5,7 cholestadien- 3β -ol or compound having the structure similar to 5,7 cholestadien- 3β -ol to the quaternary ammonium salt ranges from about 0.1:1 to about 200:1. In a preferred embodiment the molar ratio of 5,7 cholestadien- 3β -ol or compound having the structure similar to 5,7 cholestadien- 3β -ol to the quaternary ammonium salt ranges from about 2:1 to about 64:1.

The subject invention also provides a method of generating an antibody which is capable of specifically binding to atherosclerotic plaque, which method comprises:

- (a) administering to an animal at least one time an amount of the above described antigen sufficient to generate the antibody;
- 35 (b) obtaining a serum from the animal;
 - (c) testing the serum for antibody capable of specifically binding to atherosclerotic

10

15

20

25

plaque;

(d) wherein if the test in step (c) is positive, thereby generating the antibody capable of specifically binding to atherosclerotic plague.

In a preferred embodiment of the above-described method step (a) comprises administering antigen coated onto the surface of a solid support. Solid supports useful in the above described method have been described above.

In one embodiment of the method the antigen comprises 5,7-cholestadien- 3β -ol and the quaternary ammonium salt is benzyldimethylhexadecylammonium chloride or palmitoylcholine.

In another embodiment of the method the antigen comprises 5-cholesten-3 β -ol and the quaternary ammonium salt is benzyldimethylhexadecylammonium chloride or palmitoylcholine.

In a further embodiment of the method the antigen comprises 5-cholesten-3-one and the quaternary ammonium salt is benzyldimethylhexadecylammonium chloride or palmitoylcholine.

In one embodiment of this method the solid support is a porous membrane, administered by implantation.

In the practice of this method the animal is a vertebrate such as a bird, or further is a mammal such as a rodent.

The subject invention also provides an antibody generated by the above-described method.

In one embodiment, the above-described antibody is capable of specifically binding to an antigen recognized

by a monoclonal antibody produced by hybridoma Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.

This invention further provides a method of generating a monoclonal antibody which is capable of specifically binding to atherosclerotic plaque, which method comprises:

- (a) administering to an animal at least one time an amount of the above antigen sufficient to generate the antibody;
- (b) obtaining a serum from the animal;
- (c) testing the serum for antibody capable of specifically binding to atherosclerotic plague;
- (d) obtaining an antibody producing cell from the animal with serum which tested positively in step (c);
- (e) fusing the antibody producing cell with a myeloma cell or a myeloma derivative to generate a hybridoma cell which produces an antibody capable of specifically binding to atherosclerotic plaque;
- (f) isolating hybridoma cells which secrete the antibody which is capable of specifically binding to atherosclerotic plague;
- (g) thereby generating a monoclonal antibody capable of specifically binding to atherosclerotic plaque.

In a preferred embodiment of the above-described method of generating a monoclonal antibody step (a) comprises administering antigen coated onto the surface of a solid support. Solid supports useful in the above described method have been described above.

In one embodiment of the method the antigen comprises

.

10

15

20

25

30

35

5,7-cholestadien-3 β -ol and the quaternary ammonium salt is benzyldimethylhexadecylammonium chloride or palmitoylcholine.

- In another embodiment of the method the antigen comprises 5-cholesten-3 β -ol and the quaternary ammonium salt is benzyldimethylhexadecylammonium chloride or palmitoylcholine.
- In a further embodiment of the method the antigen comprises 5-cholesten-3-one and the quaternary ammonium salt is benzyldimethylhexadecylammonium chloride or palmitoylcholine.
- In one embodiment of this method the solid support is a porous membrane, administered by implantation.

In the practice of this method the animal is a vertebrate such as a bird, or further is a mammal such as a rodent.

This invention also provides a monoclonal antibody generated by the above-described method.

In one embodiment, the above-described antibody is capable of specifically binding to an antigen recognized by a monoclonal antibody produced by hybridoma Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.

The subject invention also provides biologically active fragments of the above described monoclonal antibody. In separate embodiments the fragment may comprise the $F(ab')_2$, Fab', Fab, F_V , V_H , or V_L antibody fragment. In further embodiments, the fragments are capable of specifically binding to an antigen recognized by a monoclonal antibody produced by hybridoma Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.

The subject invention also provides the above described monoclonal antibody or fragment thereof labeled with a detectable marker. The choice of marker used will vary depending upon the application. However, the choice of marker is readily apparent to one skilled in the art. Examples of detectable markers useful in the practice of this invention have been described above.

The subject invention also provides the above described monoclonal antibody or fragment thereof bound to a solid support. Examples of solid supports useful in the practice of this invention have been described above.

The subject invention also provides a reagent for use in imaging atherosclerotic plaque, which comprises the above described monoclonal antibody or fragment thereof labeled with a detectable marker in an amount effective to image atherosclerotic plaque, and a physiologically acceptable carrier.

20

25

15

The subject invention further provides a method for imaging atherosclerotic plaque, which comprises:

- (a) contacting the atherosclerotic plaque to be imaged with the above described reagent under conditions such that the reagent binds to the atherosclerotic plaque; and
- (b) detecting the detectable marker labelling the antibody or fragment in the reagent bound to the atherosclerotic plaque;
- thereby imaging the atherosclerotic plaque.

In one embodiment the above described method can be used to image atherosclerotic plaque located in blood vessel walls of a subject.

35

The subject invention also provides a method for differentially imaging atherosclerotic plaque and normal

10

15

20

25

30

35

tissue in a lumen, which comprises:

- (a) contacting the lumen with an antibody which specifically binds to normal intima or media and which does not bind to atherosclerotic plaque, and which is labeled with a detectable marker;
- (b) contacting the lumen with the above described reagent under conditions such that the reagent binds to the atherosclerotic plaque;
- (c) detecting the detectable marker labeling the antibody of step (a) bound to the normal intima or media; and
- (d) detecting the detectable marker labeling the antibody or the fragment in the reagent of step (b) bound to the atherosclerotic plaque; wherein the detectable marker labeling the antibody which specifically binds to normal intima or media is different from the detectable marker labeling the antibody or fragment in the reagent, thereby differentially imaging the atherosclerotic plaque and the normal tissue in the lumen.

In a preferred embodiment of the above described method the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries. In a more preferred embodiment, the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.

The subject invention also provides the above described monoclonal antibody or fragment thereof bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength. In the practice of this invention the chromophore absorbs light having a wavelength from about 190 nm to about 1100 nm. Examples

20

25

30

35

of chromophores useful in the practice of this invention include fluorescein, rhodamine, tetracycline, hematoporphyrin, or β -carotene.

The subject invention provides a reagent for ablating atherosclerotic plaque comprising the above described monoclonal antibody or fragment thereof bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength in an amount effective to highlight the atherosclerotic plaque to be ablated and a physiologically acceptable carrier.

The subject invention further provides a method for ablating atherosclerotic plaque, which comprises:

- (a) contacting atherosclerotic plaque with an effective amount of the above described reagent so that the antibody or fragment thereof present in the reagent binds to the atherosclerotic plaque forming an atherosclerotic antibody complex;
- (b) exposing the resulting complex to radiation having a plaque ablating wavelength under conditions such that the radiation is absorbed by the chromophore at a sufficient energy to ablate the atherosclerotic plaque; and
- (c) thereby ablating the atherosclerotic plaque.

In the practice of this invention the atherosclerotic plaque to be ablated may be located in a blood vessel. In such an instance the above described method for ablating atherosclerotic plaque comprises:

- (a) contacting the normal lumen with an antibody which specifically binds to normal intima or media and has bound thereto a moiety capable of reflecting radiation of the plaque ablating wavelength;
- (b) contacting the atherosclerotic plaque with the

10

15

20

25

above described reagent;

- (c) exposing the atherosclerotic plaque to the radiation having plaque ablating wavelength; and
- (d) thereby ablating the atherosclerotic plaque present in a blood vessel.

In a preferred embodiment the above described method, the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries. In a more preferred embodiment the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.

The subject invention also provides a method for detecting in a sample an antigen indicative of the presence of atherosclerotic plaque, which comprises:

- (a) contacting the sample with the above described monoclonal antibody or fragment thereof under conditions such that the antibody or fragment binds to the antigen in the sample to form a detectable complex;
 - (b) detecting the complex so formed; and
 - (c) thereby detecting in the sample an antigen indicative of the presence of atherosclerotic plaque.
- The subject invention further provides a method for quantitatively determining in a sample the concentration of an antigen indicative of the presence of atherosclerotic plaque, which comprises:
- (a) contacting a solid support with an excess of the above described monoclonal antibody or fragment thereof under conditions permitting the antibody or fragment to attach to the

PCT/US94/04641

5

10

15

20

25

30

35

surface of the solid support;

- (b) removing unbound antibody or fragment;
- (c) contacting the resulting solid support to which the antibody or fragment is bound with the sample under conditions such that any antigen present in the sample binds to the bound antibody or fragment and forms a complex therewith;
- (d) removing any antigen which is not bound to the complex;
- (e) contacting any complex so formed with an excess of a detectable reagent which specifically binds to any antigen present in the complex so as to form a second complex which includes the antibody or fragment, the antigen, and the detectable reagent;
- (f) removing any detectable reagent which is not bound in the second complex;
 - (g) quantitatively determining the concentration of detectable reagent present in the second complex; and
 - (h) thereby quantitatively determining in the sample the concentration of an antigen indicative of the presence of atherosclerotic plaque.

The subject invention further provides the above described method wherein the detectable reagent comprises a monoclonal antibody or fragment thereof labeled with a detectable marker, wherein the monoclonal antibody is produced by hybridoma Z2D3 having ATCC Accession Number HB9840, hybridoma Z2D3/3E5 having ATCC Accession Number HB10485, rat myeloma cell line Z2D3 73/30 1D10 having ATCC Accession Number CRL 11203, or a CDR-grafted antibody comprising a CDR region from hybridoma Z2D3 or hybridoma Z2D3/3E5 and a framework and constant region from a human immunoglobulin.

15

20

The subject invention further provides a method for quantitatively determining in a sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque, which comprises:

- (a) contacting a solid support with a predetermined amount of the above described antibody or fragment thereof under conditions permitting the antibody or fragment to attach to the surface of the solid support;
- (b) removing any antibody or fragment not bound to the solid support;
 - (c) contacting the resulting solid support to which the antibody or fragment is bound with a predetermined amount of an antigen labeled with a detectable marker, and with the sample under such conditions that labeled and sample antigens competitively bind to the antibody or fragment bound to the solid support and form a complex therewith;
 - (d) removing any labeled and sample antigens which are not bound to the complex;
 - (e) quantitatively determining the amount of labeled antigen bound to the solid support; and
- 25 (f) thereby quantitatively determining in the sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque.
- In the practice of the above described method step (e) may alternatively comprise quantitatively determining the amount of labeled antigen not bound to the solid support.
- The subject invention also provides a method for quantitatively determining in a sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque, which comprises:

-39-

	(a)	contacting a solid support with a
	•	predetermined amount of the above described
		monoclonal antibody or fragment thereof under
		conditions permitting the antibody or fragment
5		to attach to the surface of the support;
J	· (b)	removing any antibody or fragment not bound to
	(2)	the solid support;
	(c)	contacting the resulting solid support to
	(-)	which the antibody or fragment is bound with
10 .		the sample under conditions such that any
10		antigen present in the sample binds to the
		bound antibody or fragment and forms a complex
		therewith;
	(d)	removing any antigen which is not bound to the
15		complex;
±	(e)	contacting the complex so formed with a
	(-,	predetermined amount of plaque antigen labeled
		with a detectable marker under conditions such
		that the labeled plaque antigen competes with
20		the antigen from the sample for binding to the
		antibody or fragment;
	(f)	removing any labeled and sample antigens which
		are not bound to the complex;
	(g)	quantitatively determining the amount of
25		labeled plaque antigen bound to the solid
		support; and
٠	(h) ·	thereby quantitatively determining in the
	÷	sample the concentration of an antigen which
		is indicative of the presence of
30		atherosclerotic plaque.
	In the pr	actice of the above described method step (g)

In the practice of the above described method step (g) may alternatively comprise quantitatively determining the amount of labeled antigen not bound to the solid support.

The subject invention also provides the above described monoclonal antibody or fragment thereof conjugated to an

enzyme capable of digesting a component of atherosclerotic plaque. In the practice of this invention the enzyme may be a proteinase, an elastase, a collagenase, or a saccharidase.

5

10

35

In a separate embodiment the enzyme is a proenzyme which, when activated, is converted to an enzyme capable of digesting a component of atherosclerotic plaque. Examples of proenzymes useful in the practice of this invention include a proenzyme form of fibroblastic collagenase, gelatinase, polymorphonuclear collagenase, granolocytic collagenase, stromelysin I, stromelysin II, or elastase.

- In the practice of this invention the above described monoclonal antibody or fragment thereof conjugated to an enzyme or proenzyme may be genetically engineered so as to be expressed as a single molecule.
- In a further preferred embodiment the above described monoclonal antibody or fragment thereof is a bifunctional antibody or fragment comprising a binding site specific for the enzyme and a binding site specific for an antigen indicative of atherosclerotic plaque. In the practice of this invention such a bifunctional antibody may be produced by a quadroma derived from the fusion of a hybridoma cell line Z2D3 having ATCC Accession Number HB9840, Z2D3/3E5 having ATCC Accession Number CRL 11203, with a hybridoma secreting a monoclonal antibody which specifically binds to the enzyme.

The subject invention also provides a pharmaceutical composition comprising the above described monoclonal antibody or fragment thereof bound to an enzyme or proenzyme in an amount effective to digest a component of atherosclerotic plaque, and a physiologically acceptable

10

carrier.

The subject invention further provides a method for reducing the amount of atherosclerotic plaque in a blood vessel, which comprises:

- (a) contacting the atherosclerotic plaque with a reagent comprising the antibody or fragment thereof bound to the enzyme or proenzyme under conditions and in an amount such that the reagent binds to, and digests, a component of the plaque; and
- (b) thereby reducing the amount of atherosclerotic plague in a blood vessel.
- In one embodiment the above described method further 15 comprises contacting the blood vessel with an antibody which specifically binds to normal tissue and has bound thereto an inhibitor of an enzyme capable of digesting a component of atherosclerotic plaque under conditions such that the antibody binds to the normal tissue. 20 preferred embodiment the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries. In a more 25 preferred embodiment the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.
- The subject invention also provides the above described monoclonal antibody or fragment thereof conjugated to cell growth inhibitors capable of preventing proliferation of atherosclerotic plaque.
- 35 The subject invention also provides a reagent for treating atherosclerosis, which comprises the above described monoclonal antibody or fragment thereof bound

30

35

to a drug useful in treating atherosclerosis.

The subject invention also provides a method of treating atherosclerosis in a subject, which comprises administering to the subject an amount of the above described reagent effective to treat atherosclerosis.

The subject invention also provides a rat myeloma cell line designated Z2D3 73/30 lDl0, having ATCC Accession Number CRL 11203. Hybridoma Z2D3 73/30 lDl0 was deposited pursuant to, and in satisfaction of, the requirements of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland, 20852.

The subject invention also provides a murine-human chimeric monoclonal antibody produced by the rat myeloma cell line designated Z2D3 73/30 1D10 having ATCC Accession Number CRL 11203.

The subject invention also provides biologically active fragments of the above described human-murine chimeric monoclonal antibody. In separate embodiments the fragment may comprise the $F(ab')_2$, Fab', Fab, F_V , V_H , or V_L antibody fragment. In further embodiments, the fragments are capable of specifically binding to an antigen recognized by a monoclonal antibody produced by hybridoma Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.

The subject invention also provides the above described antibody or fragment thereof labeled with a detectable marker. The choice of marker used will vary depending upon the application. However, the choice of marker is readily apparent to one skilled in the art. Examples of detectable markers useful in the practice of this

invention have been described above.

The subject invention also provides the above described chimeric antibody or fragment thereof bound to a solid support. Examples of solid supports useful in the practice of this invention have been described above.

The subject invention also provides a reagent for use in imaging atherosclerotic plaque, which comprises the above described chimeric antibody or fragment thereof labeled with a detectable marker in an amount effective to image atherosclerotic plaque, and a physiologically acceptable carrier.

- The subject invention further provides a method for imaging atherosclerotic plaque, which comprises:
 - (a) contacting the atherosclerotic plaque to be imaged with the above described reagent under conditions such that the reagent binds to the atherosclerotic plaque; and
 - (b) detecting the detectable marker labelling the antibody or fragment in the reagent bound to the atherosclerotic plaque;

thereby imaging the atherosclerotic plaque.

25

35

20

In one embodiment the above described method can be used to image atherosclerotic plaque located in blood vessel walls of a subject.

- 30 The subject invention also provides a method for differentially imaging atherosclerotic plaque and normal tissue in a lumen, which comprises:
 - (a) contacting the lumen with an antibody which specifically binds to normal intima or media and which does not bind to atherosclerotic plaque, and which is labeled with a detectable marker;

lumen.

- (b) contacting the lumen with the above described reagent under conditions such that the reagent binds to the atherosclerotic plaque;
- (c) detecting the detectable marker labeling the antibody of step (a) bound to the normal intima or media; and
- (d) detecting the detectable marker labeling the antibody or the fragment in the reagent of step (b) bound to the atherosclerotic plaque;

 wherein the detectable marker labeling the antibody which specifically binds to normal intima or media is different from the detectable marker labeling the antibody or fragment in the reagent, thereby differentially imaging the atherosclerotic plaque and the normal tissue in the

In a preferred embodiment of the above described method the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries. In a more preferred embodiment, the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.

The subject invention also provides the above described chimeric antibody or fragment thereof bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength. In the practice of this invention the chromophore absorbs light having a wavelength from about 190 nm to about 1100 nm. Examples of chromophores useful in the practice of this invention include fluorescein, rhodamine, tetracycline, hematoporphyrin, or β -carotene.

The subject invention provides a reagent for ablating atherosclerotic plaque comprising the above described

25

30

35

15

20

10

15

20

25

30

35

chimeric antibody or fragment thereof bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength in an amount effective to highlight the atherosclerotic plaque to be ablated and a physiologically acceptable carrier.

The subject invention further provides a method for ablating atherosclerotic plaque, which comprises:

- (a) contacting atherosclerotic plaque with an effective amount of the above described so that the chimeric monoclonal antibody or fragment thereof present in the reagent binds to the atherosclerotic plaque forming an atherosclerotic plaque-chimeric monoclonal antibody complex;
- (b) exposing the resulting complex to radiation having a plaque ablating wavelength under conditions such that the radiation is absorbed by the chromophore at a sufficient energy to ablate the atherosclerotic plaque; and
- (c) thereby ablating the atherosclerotic plaque.

In the practice of this invention the atherosclerotic plaque to be ablated may be located in a blood vessel. In such an instance the above described method for ablating atherosclerotic plaque comprises:

- (a) contacting the normal lumen with an antibody which specifically binds to normal intima or media and has bound thereto a moiety capable of reflecting radiation of the plaque ablating wavelength;
- (b) contacting the atherosclerotic plaque with the above described reagent;
- (c) exposing the atherosclerotic plaque to the radiation having plaque ablating wavelength; and
- (d) thereby ablating the atherosclerotic plaque

10

15

20

30

present in a blood vessel.

In a preferred embodiment the above described method, the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries. In a more preferred embodiment the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.

The subject invention also provides a method for detecting in a sample an antigen indicative of the presence of atherosclerotic plaque, which comprises:

- (a) contacting the sample with the above described chimeric antibody or fragment thereof under conditions such that the antibody or fragment binds to the antigen in the sample to form a detectable complex;
- (b) detecting the complex so formed; and
- (c) thereby detecting in the sample an antigen indicative of the presence of atherosclerotic plaque.
- The subject invention further provides a method for quantitatively determining in a sample the concentration of an antigen indicative of the presence of atherosclerotic plaque, which comprises:
 - (a) contacting a solid support with an excess of the above described chimeric antibody or fragment thereof under conditions permitting the antibody or fragment to attach to the surface of the solid support;
 - (b) removing unbound antibody or fragment;
- 35 (c) contacting the resulting solid support to which the antibody or fragment is bound with the sample under conditions such that any

10

15

20

25

30

antigen present in the sample binds to the bound antibody or fragment and forms a complex therewith;

- (d) removing any antigen which is not bound to the complex;
- (e) contacting any complex so formed with an excess of a detectable reagent which specifically binds to any antigen present in the complex so as to form a second complex which includes the antibody or fragment, the antigen, and the detectable reagent;
- (f) removing any detectable reagent which is not bound in the second complex;
- (g) quantitatively determining the concentration of detectable reagent present in the second complex; and
- (h) thereby quantitatively determining in the sample the concentration of an antigen indicative of the presence of atherosclerotic plaque.

The subject invention further provides the above-described method wherein the detectable reagent comprises a monoclonal antibody or fragment thereof labeled with a detectable marker, wherein the monoclonal antibody is produced by hybridoma Z2D3 having ATCC Accession Number HB9840, hybridoma Z2D3/3E5 having ATCC Accession Number HB10485, rat myeloma cell line Z2D3 73/30 1D10 having ATCC Accession Number CRL 11203, or a CDR-grafted antibody comprising a CDR region from hybridoma Z2D3 or hybridoma Z2D3/3E5 and a framework and constant region from a human immunoglobulin.

The subject invention further provides a method for quantitatively determining in a sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque, which comprises:

		•
	· (a)	contacting a solid support with a predetermined amount of the above described chimeric antibody or fragment thereof under
 5		conditions permitting the antibody or fragment to attach to the surface of the solid support;
	(b)	removing any antibody or fragment not bound to the solid support;
	(c)	contacting the resulting solid support to
10		predetermined amount of an antigen labeled with a detectable marker, and with the sample
		under such conditions that labeled and sample antigens competitively bind to the antibody or fragment bound to the solid support and forms
15	(d)	a complex therewith; removing any labeled and sample antigens which are not bound to the complex;
	(e)	quantitatively determining the amount of labeled antigen bound to the solid support
20	(f)	and thereby quantitatively determining in the sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque.
25	may alter	ractice of the above described method step (e natively comprise quantitatively determining the labeled antigen not bound to the solid support

30 The subject invention also provides a method for quantitatively determining in a sample the concentration

of an antigen which is indicative of the presence of atherosclerotic plaque, which comprises:

(a) contacting a solid support with a predetermined amount of the above described chimeric antibody or fragment thereof under conditions permitting the antibody or fragment

15

20

25

30

35

to attach to the surface of the support;

- (b) removing any antibody or fragment not bound to the solid support;
- (c) contacting the resulting solid support to which the antibody or fragment is bound with the sample under conditions such that any antigen present in the sample binds to the bound antibody or fragment and forms a complex therewith:
- (d) removing any antigen which is not bound to the complex;
 - (e) contacting the complex so formed with a predetermined amount of plaque antigen labeled with a detectable marker under conditions such that the labeled plaque antigen competes with the antigen from the sample for binding to the antibody or fragment;
 - (f) removing any labeled and sample antigens which are not bound to the complex;
 - (g) quantitatively determining the amount of labeled plaque antigen bound to the solid support; and
 - (h) thereby quantitatively determining in the sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque.

In the practice of the above described method step (g) may alternatively comprise quantitatively determining the amount of labeled antigen not bound to the solid support.

The subject invention also provides the above described chimeric antibody or fragment thereof conjugated to an enzyme capable of digesting a component of atherosclerotic plaque. In the practice of this invention the enzyme may be a proteinase, an elastase, a collagenase, or a saccharidase.

30

In a separate embodiment the enzyme is a proenzyme which, when activated, is converted to an enzyme capable of digesting a component of atherosclerotic plaque. Examples of proenzymes useful in the practice of this invention include a proenzyme form of fibroblastic collagenase, gelatinase, polymorphonuclear collagenase, granolocytic collagenase, stromelysin I, stromelysin II, or elastase.

- In the practice of this invention the above described chimeric antibody or fragment thereof conjugated to an enzyme or proenzyme may be genetically engineered so as to be expressed as a single molecule.
- In a further preferred embodiment the above described antibody or fragment thereof is a bifunctional antibody or fragment comprising a binding site specific for the enzyme and a binding site specific for an antigen indicative of atherosclerotic plaque. In the practice of this invention such a bifunctional antibody or fragment thereof may be produced by a quadroma derived from the fusion of a hybridoma cell line Z2D3 having ATCC Accession Number HB9840, Z2D3/3E5 having ATCC Accession Number HB10485, or Z2D3 73/30 1D10 having ATCC Accession Number CRL 11203, with a hybridoma secreting a monoclonal antibody which specifically binds to the enzyme.

The subject invention also provides a pharmaceutical composition comprising the above described chimeric antibody or fragment thereof bound to an enzyme or proenzyme in an amount effective to digest a component of atherosclerotic plaque, and a physiologically acceptable carrier.

35 The subject invention further provides a method for reducing the amount of atherosclerotic plaque in a blood vessel, which comprises:

- (a) contacting the atherosclerotic plaque with a reagent comprising the chimeric antibody or fragment thereof bound to the enzyme or proenzyme under conditions and in an amount such that the reagent binds to, and digests, a component of the plaque; and
- (b) thereby reducing the amount of atherosclerotic plaque in a blood vessel.
- In one embodiment the above described method further 10 comprises contacting the blood vessel with an antibody which specifically binds to normal tissue and has bound thereto an inhibitor of an enzyme capable of digesting a component of atherosclerotic plaque under conditions such that the antibody binds to the normal tissue. 15 preferred embodiment the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries. In a more 20 preferred embodiment the antibody is a monoclonal antibody produced by hybridoma Q10E7 having Accession Number 10188.
- The subject invention also provides the above described chimeric antibody or fragment thereof conjugated to cell growth inhibitors capable of preventing proliferation of atherosclerotic plaque.
- The subject invention also provides a reagent for treating atherosclerosis, which comprises the above described chimeric antibody or fragment thereof bound to a drug useful in treating atherosclerosis.
- The subject invention also provides a method of treating atherosclerosis in a subject, which comprises administering to the subject an amount of the above

described reagent effective to treat atherosclerosis.

The subject invention also provides a CDR-grafted antibody, comprising the complimentarity determining region (CDR) amino acid sequence from hybridoma Z2D3 having ATCC Accession Number HB9840, or hybridoma Z2D3/3E5 having ATCC Accession Number HB10485 and the framework and constant region amino acid sequences from a human immunoglobulin.

10

15

30

35

The subject invention also provides biologically active fragments of the above described CDR-grafted antibody. In separate embodiments the fragment may comprise the $F(ab')_2$, Fab', Fab, F_V , V_H , or V_L antibody fragment. In further embodiments, the fragments are capable of specifically binding to an antigen recognized by a monoclonal antibody produced by hybridoma Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.

The subject invention also provides the above described CDR-grafted antibody or fragment thereof labeled with a detectable marker. The choice of marker used will vary depending upon the application. However, the choice of marker is readily apparent to one skilled in the art.

25 Examples of detectable markers useful in the practice of this invention have been described above.

The subject invention also provides the above described CDR-grafted antibody or fragment thereof bound to a solid support. Examples of solid supports useful in the practice of this invention have been described above.

The subject invention also provides a reagent for use in imaging atherosclerotic plaque, which comprises the above described CDR-grafted antibody or fragment thereof labeled with a detectable marker in an amount effective to image atherosclerotic plaque, and a physiologically

10

20

25

30

acceptable carrier.

The subject invention further provides a method for imaging atherosclerotic plaque, which comprises:

- (a) contacting the atherosclerotic plaque to be imaged with the above described reagent under conditions such that the reagent binds to the atherosclerotic plaque; and
- (b) detecting the detectable marker labelling the antibody or fragment in the reagent bound to the atherosclerotic plaque;

thereby imaging the atherosclerotic plaque.

In one embodiment the above described method can be used to image atherosclerotic plaque located in blood vessel walls of a subject.

The subject invention also provides a method for differentially imaging atherosclerotic plaque and normal tissue in a lumen, which comprises:

- (a) contacting the lumen with an antibody which specifically binds to normal intima or media and which does not bind to atherosclerotic plaque, and which is labeled with a detectable marker;
- (b) contacting the lumen with the above described reagent under conditions such that the reagent binds to the atherosclerotic plaque;
- (c) detecting the detectable marker labeling the antibody of step (a) bound to the normal intima or media; and
- (d) detecting the detectable marker labeling the antibody or the fragment in the reagent of step (b) bound to the atherosclerotic plaque;
- wherein the detectable marker labeling the antibody which specifically binds to normal intima or media is different from the detectable marker labeling the antibody or

20

25

30

35

fragment in the reagent, thereby differentially imaging the atherosclerotic plaque and the normal tissue in the lumen.

In a preferred embodiment of the above described method the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries. In a more preferred embodiment, the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.

The subject invention also provides the above described CDR-grafted antibody or fragment thereof bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength. In the practice of this invention the chromophore absorbs light having a wavelength from about 190 nm to about 1100 nm. Examples of chromophores useful in the practice of this invention include fluorescein, rhodamine, tetracycline, hematoporphyrin, or β -carotene.

The subject invention provides a reagent for ablating atherosclerotic plaque comprising the above described CDR-grafted antibody or fragment thereof bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength in an amount effective to highlight the atherosclerotic plaque to be ablated and a physiologically acceptable carrier.

The subject invention further provides a method for ablating atherosclerotic plaque, which comprises:

(a) contacting atherosclerotic plaque with an effective amount of the above described so that the CDR-grafted monoclonal antibody or fragment thereof present in the reagent binds

10

15

20

30

35

- to the atherosclerotic plaque forming an atherosclerotic plaque-CDR-grafted monoclonal antibody complex;
- (b) exposing the resulting complex to radiation having a plaque ablating wavelength under conditions such that the radiation is absorbed by the chromophore at a sufficient energy to ablate the atherosclerotic plaque; and
- (c) thereby ablating the atherosclerotic plaque.

In the practice of this invention the atherosclerotic plaque to be ablated may be located in a blood vessel. In such an instance the above described method for ablating atherosclerotic plaque comprises:

- (a) contacting the normal lumen with an antibody which specifically binds to normal intima or media and has bound thereto a moiety capable of reflecting radiation of the plaque ablating wavelength;
- (b) contacting the atherosclerotic plaque with the above described reagent;
 - (c) exposing the atherosclerotic plaque to the radiation having plaque ablating wavelength; and
- 25 (d) thereby ablating the atherosclerotic plaque present in a blood vessel.

In a preferred embodiment the above described method, the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries. In a more preferred embodiment the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.

The subject invention also provides a method for

10

15

20

25

30

35

detecting in a sample an antigen indicative of the presence of atherosclerotic plaque, which comprises:

- (a) contacting the sample with the above described CDR-grafted antibody or fragment thereof under conditions such that the antibody or fragment binds to the antigen in the sample to form a detectable complex;
- (b) detecting the complex so formed; and
- (c) thereby detecting in the sample an antigen indicative of the presence of atherosclerotic plaque.

The subject invention further provides a method for quantitatively determining in a sample the concentration of an antigen indicative of the presence of atherosclerotic plaque, which comprises:

- (a) contacting a solid support with an excess of the above described CDR-grafted antibody or fragment thereof under conditions permitting the antibody or fragment to attach to the surface of the solid support;
- (b) removing unbound antibody or fragment;
- (c) contacting the resulting solid support to which the antibody or fragment is bound with the sample under conditions such that any antigen present in the sample binds to the bound antibody or fragment and forms a complex therewith;
- (d) removing any antigen which is not bound to the complex;
- (e) contacting any complex so formed with an excess of a detectable reagent which specifically binds to any antigen present in the complex so as to form a second complex which includes the antibody or fragment, the antigen, and the detectable reagent;
- (f) removing any detectable reagent which is not

PCT/US94/04641

5

. 25

30

35

bound in the second complex;

- (g) quantitatively determining the concentration of detectable reagent present in the second complex; and
- (h) thereby quantitatively determining in the sample the concentration of an antigen indicative of the presence of atherosclerotic plaque.
- The subject invention further provides the abovedescribed method wherein the detectable reagent comprises
 a monoclonal antibody or fragment thereof labeled with a
 detectable marker, wherein the monoclonal antibody is
 produced by hybridoma Z2D3 having ATCC Accession Number
 HB9840, hybridoma Z2D3/3E5 having ATCC Accession Number
 HB10485, rat myeloma cell line Z2D3 73/30 1D10 having
 ATCC Accession Number CRL 11203, or a CDR-grafted
 antibody comprising a CDR region from hybridoma Z2D3 or
 hybridoma Z2D3/3E5 and a framework and constant region
 from a human immunoglobulin.

The subject invention further provides a method for quantitatively determining in a sample the concentration atherosclerotic plaque, which comprises:

- (a) contacting a solid support with a predetermined amount of the above described CDR-grafted antibody or fragment thereof under conditions permitting the antibody or fragment to attach to the surface of the solid support;
- (b) removing any antibody or fragment not bound to the solid support;
- (c) contacting the resulting solid support to which the antibody or fragment is bound with a predetermined amount of an antigen labeled with a detectable marker, and with the sample under such conditions that labeled and sample antigens competitively bind to the antibody or

PCT/US94/04641

5

10

15

20

25

30"

35

fragment bound to the solid support and forms a complex therewith;

- (d) removing any labeled and sample antigens which are not bound to the complex;
- (e) quantitatively determining the amount of labeled antigen bound to the solid support; and
- (f) thereby quantitatively determining in the sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque.

In the practice of the above described method step (e) may alternatively comprise quantitatively determining the amount of labeled antigen not bound to the solid support.

The subject invention also provides a method for quantitatively determining in a sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque, which comprises:

- (a) contacting a solid support with a predetermined amount of the above described CDR-grafted antibody or fragment thereof under conditions permitting the antibody or fragment to attach to the surface of the support;
- (b) removing any antibody or fragment not bound to the solid support;
- (c) contacting the resulting solid support to which the antibody or fragment is bound with the sample under conditions such that any antigen present in the sample binds to the bound antibody or fragment and forms a complex therewith;
- (d) removing any antigen which is not bound to the complex;
- (e) contacting the complex so formed with a predetermined amount of plaque antigen labeled

25

30

with a detectable marker under conditions such that the labeled plaque antigen competes with the antigen from the sample for binding to the antibody or fragment;

- (f) removing any labeled and sample antigens which are not bound to the complex;
 - (g) quantitatively determining the amount of labeled plaque antigen bound to the solid support; and
- (h) thereby quantitatively determining in the sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque.
- In the practice of the above described method step (g) may alternatively comprise quantitatively determining the amount of labeled antigen not bound to the solid support.
- The subject invention also provides the above described CDR-grafted antibody or fragment thereof conjugated to an enzyme capable of digesting a component of atherosclerotic plaque. In the practice of this invention the enzyme may be a proteinase, an elastase, a collagenase, or a saccharidase.

In a separate embodiment the enzyme is a proenzyme which, when activated, is converted to an enzyme capable of digesting a component of atherosclerotic plaque. Examples of proenzymes useful in the practice of this invention include a proenzyme form of fibroblastic collagenase, gelatinase, polymorphonuclear collagenase, granolocytic collagenase, stromelysin I, stromelysin II, or elastase.

In the practice of this invention the above described CDR-grafted antibody or fragment thereof conjugated to an enzyme or proenzyme may be genetically engineered so as

15

20

to be expressed as a single molecule.

In a further preferred embodiment the above described antibody or fragment thereof is a bifunctional antibody or fragment comprising a binding site specific for the enzyme and a binding site specific for an antigen indicative of atherosclerotic plaque. In the practice of this invention such a bifunctional antibody may be produced by a quadroma derived from the fusion of a hybridoma cell line Z2D3 having ATCC Accession Number HB9840, Z2D3/3E5 having ATCC Accession Number HB10485, or Z2D3 73/30 1D10 having ATCC Accession Number CRL 11203, with a hybridoma secreting a monoclonal antibody which specifically binds to the enzyme.

The subject invention also provides a pharmaceutical composition comprising the above described CDR-grafted antibody or fragment thereof bound to an enzyme or proenzyme in an amount effective to digest a component of atherosclerotic plaque, and a physiologically acceptable carrier.

15

20

25

30

35

The subject invention further provides a method for reducing the amount of atherosclerotic plaque in a blood vessel, which comprises:

- (a) contacting the atherosclerotic plaque with a reagent comprising the CDR-grafted antibody or fragment thereof bound to the enzyme or proenzyme under conditions and in an amount such that the reagent binds to, and digests, a component of the plaque; and
- 10 (b) thereby reducing the amount of atherosclerotic plaque in a blood vessel.

In one embodiment the above described method further comprises contacting the blood vessel with an antibody which specifically binds to normal tissue and has bound thereto an inhibitor of an enzyme capable of digesting a component of atherosclerotic plaque under conditions such that the antibody binds to the normal tissue. In a preferred embodiment the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries. In a more preferred embodiment the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.

The subject invention also provides the above described CDR-grafted antibody or fragment thereof conjugated to cell growth inhibitors capable of preventing proliferation of atherosclerotic plaque.

The subject invention also provides a reagent for treating atherosclerosis, which comprises the above described CDR-grafted antibody or fragment thereof bound to a drug useful in treating atherosclerosis.

The subject invention also provides a method of treating atherosclerosis in a subject, which comprises administering to the subject an amount of the above described reagent effective to treat atherosclerosis.

5

10

The subject invention further provides a peptide having an amino acid sequence which is the same or substantially the same as the amino acid sequence of the variable region of the heavy chain of the above described murine-human chimeric monoclonal antibody. In one embodiment the peptide has the amino acid sequence of SEQ ID NO: 18. In another embodiment the peptide has the amino acid sequence of SEQ ID NO: 19.

The subject invention also provides a peptide having an amino acid sequence which is the same or substantially the same as the amino acid sequence of the variable region of the light chain of the above described human-murine chimeric monoclonal antibody. In one embodiment of the invention the peptide has the amino acid sequence of SEQ ID NO: 63.

The subject invention also provides a peptide which comprises an amino acid sequence or a combination of amino acid sequences, each of which amino acid sequences is the same or substantially the same as the amino acid sequence of a complimentarity determining region (CDR) of the above described human-murine chimeric monoclonal antibody.

30

25

In one embodiment of the peptide, the peptide comprises an amino acid sequence which is the same or substantially the same as the amino acid sequence of a complimentarity determining region of the variable region of the heavy chain of the chimeric monoclonal antibody. In separate embodiments the above described peptide has the amino acid sequence of SEQ ID NO: 22, SEQ ID NO: 25, or SEQ ID NO: 28.

40 In another embodiment of the peptide, the peptide

comprises an amino acid sequence which is the same or substantially the same as the complimentarity determining region of the variable region of the light chain of the chimeric monoclonal antibody. In separate embodiments the above described peptide has the amino acid sequence of SEQ ID NO: 66, SEQ ID NO: 69, or SEQ ID NO: 72.

63

The subject invention also provides the above-described peptide recombinantly produced. In one embodiment the above described recombinant peptide can be modified by site-directed mutagenesis. Preferably, any of the aforementioned peptides have the same binding specificity as antibodies produced by hybrodimoas Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.

15

20

25

30

40

10

The subject invention also provides an isolated nucleic acid molecule, having a nucleotide sequence encoding a peptide whose amino acid sequence is the same or substantially the same as the amino acid sequence of the variable region of the heavy chain of the above-described human-murine chimeric monoclonal antibody. The isolated nucleic acid molecule may be a RNA, DNA or cDNA molecule. In one embodiment the isolated nucleic acid molecule is a DNA molecule and may have the sequence of SEQ ID NO: 16 or SEQ ID NO: 17.

The subject invention also provides an isolated nucleic acid molecule having a nucleotide sequence encoding a peptide whose amino acid sequence is the same or substantially the same as the amino acid sequence of the variable region of the light chain of the above described human-murine chimeric monoclonal antibody. The isolated nucleic acid molecule may be a RNA, DNA or cDNA molecule. In one embodiment the isolated nucleic acid molecule is a DNA molecule and may have the sequence of SEQ ID NO: 61 or SEQ ID NO: 62.

The subject invention also provides an isolated nucleic acid molecule having a nucleotide sequence encoding an amino acid sequence which is the same or substantially

10

15

20

25

30

the same as the amino acid sequence of a complimentarity determining region of the above described human-murine chimeric monoclonal antibody. The isolated nucleic acid molecule may be a RNA, DNA or cDNA molecule.

In one embodiment the above described nucleic acid molecule encodes an amino acid sequence which is the same as or substantially the same as the amino acid sequence of a complimentarity determining region of the variable region of the heavy chain of the chimeric monoclonal antibody. In separate embodiments the above described nucleic acid molecule is a DNA molecule and has the sequence of SEQ ID NO: 20, SEQ ID NO: 23, SEQ ID NO: 26, SEQ ID NO: 21, SEQ ID NO: 24, or SEQ ID NO: 27.

In another embodiment the above described nucleic acid molecule encodes an amino acid sequence which is the same or substantially the same as the amino acid sequence of a complimentarity determining region of the variable region of the light chain of the chimeric monoclonal antibody. In separate embodiments the above described nucleic acid molecule is a DNA molecule and has the sequence of SEQ ID NO: 64, SEQ ID NO: 67, SEQ ID NO: 70, SEQ ID NO: 65, SEQ ID NO: 68, or SEQ ID NO: 71.

Preferably, any of the aforementioned nucleic acid molecules encode for peptides which have the same or substantially the same binding specificity as antibodies produced by hybridomas Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.

The invention is further illustrated in the Experimental Details section which follows. The Experimental Details section and Examples contained therein are set forth to aid in an understanding of the invention. This section is not intended, and should not be interpreted, to limit in any way the invention set forth in the claims which follow thereafter.

Experimental Details

The Experimental Details Section is organized as follows:

Atherosclerotic Anti-Human Development Of I. 5 Plaque Monoclonal Antibody, Z2D3 Anti-Human Atherosclerosis Of Development II. Plaque Monoclonal Antibody, Z2D3/3E5 10 Immunohistological Staining With The Z2D3 III. Monoclonal Antibody Atherosclerotic Human Of Characterization IV. Monoclonal By Recognized Plaque Antigen 15 Antibody Z2D3 Monoclonal Z2D3 Chimeric Development Of v. Antibody 20 Development Of Monoclonal Antibodies Using VI. Surrogate Antigens As The Immunogens Imaging Of Atherosclerotic Plaque VII. 25 Treatment Of Atherosclerotic Plaque VIII.

30

35 .

- Development Of Anti-Human Atherosclerotic Plaque Monoclonal Antibody, Z2D3
- I-I. Preparation Of Human Atherosclerotic Plaque Immunogen

Human arterial sections containing significant fibrofatty atherosclerotic plaque were harvested at autopsy within six hours of death and quickly frozen at -80 °C. At the time of processing, the arterial samples were 10 thawed at room temperature and washed three times with 10 mM phosphate buffered saline pH 7.3 (PBS) containing azide to remove blood and sodium 0.02 % The atherosclerotic plaque was carefully particulates. dissected from the surrounding normal-appearing artery, 15 and the artery discarded. Significant calcification was dissected away. The remaining fibro-fatty plaque was cut into 2 mm pieces and added to a two-fold volume of cold protease inhibitor the . 5 μM of phenylmethylsufonyl fluoride (PMSF), (Sigma Chemical Co., 20 St. Louis, MO), and 13 mM ethylenediaminetetraacetic acid (EDTA). This suspension was homogenized on ice in a (The Viritis Company, small Virtis • homogenizer Gardiner, NY) for 2 minutes. The homogenized suspension was passed through two layers of loose mesh gauze to 25 remove large particulates. It was then centrifuged at 30 minutes at 6 °C. The 40,000 x g for supernatant was carefully removed and the precipitate was discarded.

The protein content of the plaque supernatant was estimated spectrophotometrically using an extinction coefficient of 1.0 at 280 nm for a 1 mg/mL solution. In order to separate and identify molecular fractions possessing antigens which are highly specific for the atherosclerotic plaque, the plaque supernatant was fractionated by high performance liquid chromatography

15

35

(HPLC) on a 55 x 200 mm Bio-Gel * TSK DEAE 5 PW anion exchange column (Bio-Rad, Richmond, CA). The DEAE column was equilibrated with 20 mM sodium phosphate buffer, pH 7.2 at a flow rate of 6 mL/minute and the plaque supernatant, containing approximately 500 mg of total protein, was applied. After washing the column with equilibration buffer, the bound plaque components were eluted with a linear gradient of 0 to 500 mM sodium chloride in phosphate buffer in a total volume of 1.4 L. Fraction volume was 6 mL.

In order to determine which fractions contained specific atherosclerotic antigens, the fractions were assayed using an enzyme-linked immunosorbent assay (ELISA). For a review of ELISA techniques, see Voller, A., et al., ["The Enzyme-Linked Immunosorbent Assay (ELISA)", vols. 1 and 2, Micro Systems, Guernsey, U.K.].

The plaque antigen ELISA was performed as follows.

Duplicate aliquots, 100 μL each, were removed from each fraction and were applied to separate wells in black Immulon II microtiter plates (Dynatech, Chantilly, VA). The plates were covered and incubated overnight at 4 °C. The following morning, the aliquoted samples were removed and the plates blocked for one hour at room temperature with a 1 % solution of bovine serum albumin (BSA) (Sigma) in PBS. The plates were then washed four times, 200 μL per well, with PBS containing 0.1 % Triton-X-100 (Sigma) and 0.05 % TWEEN-20 (Polyoxyethylenesorbitan monolaurate)

(Sigma) (wash buffer).

Serum samples had previously been collected from approximately 100 patients with severe atherosclerotic disease. These sera were pooled and an aliquot was diluted 100-fold in PBS containing 5 % BSA. Aliquots of this solution, 100 μ L per well, were applied to one of the duplicate wells for each ion-exchange fraction. As

a control, a serum pool was collected from approximately 100 males and females under age 20. A 100-fold dilution of this pool was prepared in PBS containing 5 % BSA. A 100 μ L aliquot of this diluted normal serum pool was applied to the second of the duplicate wells for each ion-exchange fraction. The diluted sera were incubated in the wells for two hours at ambient temperature. The plates were then washed four times with wash buffer.

Alkaline phosphatase conjugated goat anti-human IgG 10 (Zymed, So. San Francisco, CA) was diluted 2000-fold in 2-amino-2-hydroxymethyl-1,3-propanediol chloride, 150 mM sodium chloride pH 7.5 containing 0.02 % sodium azide. This solution was applied to the ELISA plate, 100 μ L per well, and incubated for two hours at 15 The wells were then washed four ambient temperature. times with wash buffer and 100 μL of 4-methlyumbelliferyl phosphate substrate solution (3M Diagnostics, Santa Clara, CA) applied to each well. The plates were read at 96-well Fluorofast intervals with a five minute 20 Each pair of wells fluorometer (3M Diagnostics). corresponding to individual fractions from the ionexchange chromatography step above were evaluated for the ratio of fluorescent signal between the well having been incubated with pooled atherosclerotic patients and the .25 well incubated with pooled sera from young healthy individuals.

only one group of fractions was positive, exhibiting a signal ratio greater than 3:1. The contents of these tubes were pooled and dialyzed against PBS using 3500 MW cut-off Spectrapor * dialysis tubing (Spectrum Medical Industries, Los Angeles, CA). To obtain a more purified antigen fraction the dialyzed pool was reprocessed by ion-exchange chromatography as outlined above and the resulting fractions again assayed by ELISA. Those tubes whose contents possessed antigen activity with a signal

ration of 4:1 or greater were retained and their contents pooled. The pooled solution was dialyzed against PBS with PMSF and then concentrated in a Diaflo concentrating system with a 1000 MW cutoff filter (Amicon Div., W.R. Grace, Danwere, MA) to attain a protein content of approximately 1 mg/mL. This solution, extract I, was stored at 4 °C.

Monoclonal antibody 15H5 (ATCC Accession No. HB9839) is. specific for an extracellular atherosclerotic antigen. 10 The 15H5 antigen is, in part, responsible for the generation of autoantibodies during the development of atherosclerotic lesions. In order to further purify the antigen in extract I, the following procedure was performed. Purified 15H5 monoclonal antibody was coupled 15 to cyanogen bromide activated Sepharose * 4 B (Pharmacia LKB Biotechnology, Uppsala, Sweden) at a ratio of approximately 5 mg of antibody per mL of gel accordance with the manufacturers instructions ["Affinity Chromatography", Pharmacia]. A column was prepared with 20 this resin. A portion of extract I was applied to the column and the column washed with PBS. The bound antigen was eluted with potassium thiocyanate and the antigen dialyzed against PBS. The dialyzed solution, extract II, was stored at 4 °C. 25

I-2. Immunization Of Mice With Human Plaque Immunogen

Balb/c mice (Simonsen Labs, Gilroy, CA) seven weeks old were immunized over a six-month period with human plaque immunogen, extracts I and II, obtained as described in section I-1. At Day O, for each mouse, 100 μg of the antigen extract I were emulsified with Freund's Complete Adjuvant, (Difco Laboratories, Detroit, MI), and injected subcutaneously at multiple sites. At Day 16, 42 and 82, 50 μg of antigen extract I were emulsified in Freund's

30

35

Incomplete Adjuvant (Difco) and injected subcutaneously into each mouse. At days 153, 184, and 191, 50 μ g of antigen extract II were emulsified in Freund's Incomplete Adjuvant and injected subcutaneously into each mouse. At day 213, 50 μ g of extract II in saline was injected intravenously into mouse number 2. Three days later, the spleen of the mouse number 2 was taken for fusion.

10 I-3. Development Of Hybridoma Cell Line Producing Monoclonal Antibodies Targeted Against Human Plaque Antigen.

A fusion was carried out between SP2 cells (non-secreting fusion line SP2/01-Ag14, ATCC Accession No. CRL 8006) and 15 the mouse spleen from the above immunization protocol. A single cell suspension of the immunized spleen was prepared in 5 mL Dulbecco's Modified Eagle Medium (DMEM) (Gibco Laboratories, Grant Island, NY), containing 15 % fetal calf serum (FCS), using the frosted ends of two 20 glass slides. The total number of cells was 2.4×10^8 . SP, myeloma cells, 1.67 x 108 cells, in log phase growth The cells were washed once with DMEM were added. containing 15 % FCS (Hyclone Defined FCS, Hyclone Laboratories Inc., Logan, UT) and once with DMEM without 25 · FCS.

Polyethyleneglycol (PEG) (PEG 1450, J.T. Baker Inc. Phillipsburg, NJ), 2 mL, was added to the pellet. After gently resuspending the cells, they were centrifuged for six minutes at 230 x g and three minutes at 190 x g. The supernatant was removed and the cells were resuspended in 5 mL of DMEM without FCS. This suspension was centrifuged for seven minutes at 230 x g. The cells were resuspended in 240 mL DMEM with high glucose (DMEM with 4.5 g/L glucose, Gibco), containing 10^{-4} M hypoxanthine (Sigma), 2 μ g/mL azaserine (Sigma) and 20 % FCS

10

15

30

35

containing Pen strep (Gibco) and L-glutamine (Gibco). Twenty-four flat bottom 96-well tissue culture plates (Becton Dickinson Labware, Oxnard, CA) were previously filled with 150 μ L/well of the above resuspension medium. The fusion suspension was added to the plates, 100 μ L/well. The plates were incubated in a 7 % CO₂ humidified incubator at 37 °C.

Hybrids were detected on Day 5 and on Day 13, 150 μ L of the culture supernatant was collected from each well having a growing hybrid. This fusion was plated out to give no more than 20 % of the wells with growing hybrids. This allows for easier characterization of specific hybrids. The hybrids continued to grow in complete medium, the azaserine was discontinued after two weeks. As the hybrids were selected, they were expanded into flasks, then frozen in liquid Nitrogen. The supernatant collected from wells with growing hybrids were screened by the following ELISA method.

Black Immulon II microtiter plates (Dynatech) were coated with plaque antigen extract II (Section I-1), 0.1 µg of extracted protein in 100 µL PBS pH 8.5 per well. The plates were covered and incubated at 4 °C for 12 to 18 hours and then washed once with PBS containing 1 % BSA

(wash buffer). The plates were blocked with wash buffer for one hour at ambient temperature and then washed four times with buffer. The supernatants collected from wells with growing hybrids above were added to the antigen coated plates, $100~\mu\text{L/well}$. The plates were incubated for two hours at ambient temperature, then washed four times with wash buffer. Peroxidase conjugated goat antimouse IgM and IgG, heavy and light chain specific (Tago Inc., Burlingame, CA) diluted in 20 mM Tris chloride, 150 mM sodium chloride pH 7.5 containing 5 % BSA was added 100 $\mu\text{L/well}$, and the plates incubated for two hours

at ambient temperature.

The plates were washed four

20

25

30

35

times with wash buffer and 100 µL of 4-methylumbelliferyl phosphate substrate solution (3M Diagnostics) were added to each well. The plates were read at intervals in a Fluorofast 96-well fluorometer (3M Diagnostics). Clone Z2D3 was found to be positive in this assay.

Using a Hyclone Sub-Isotyping Kit, the Z2D3 monoclonal antibody was identified as an IgM. Using an ELISA format similar to that outlined above with human complement factors as the coated antigen, the Z2D3 monoclonal antibody was found not to bind to human complement factors Cl_q , C_3 or C_4 . Immunohistology using human atherosclerotic tissue sections (see section III) demonstrated that the Z2D3 monoclonal antibody binds specifically to the atherosclerotic lesion, and not to surrounding normal tissue.

II. Development Of Anti-Human Atherosclerotic Plaque Monoclonal Antibody, Z2D3/3E5

Hybridoma cell line Z2D3/3E5 (ATCC Accession No. HB10485) producing an IgG-class monoclonal antibody against the Z2D3 atherosclerotic antigen, was isolated as a result of sequential subcloning of the hybridoma cell line, Z2D3 (ATCC Accession No. HB9840). Z2D3 cells in DMEM medium, with 15 FCS, were plated in 96-well Falcon Tissue Culture plates (Becton Dickinson), 1000 cells/well, ten plates total. The cells were incubated in a 7 % CO₂ humidified incubator at 37 °C. At day 8, media samples were collected and tested for IgG using the following ELISA.

Black Immulon II microtiter plates (Dynatech) were coated overnight at 4 °C with $50\mu\text{L/well}$ goat antimouse IgG, gamma chain specific (Zymed). The plates were washed four times with PBS containing 0.05 % Tween-20 (Sigma) (wash buffer) and 50 μL of media from each well of the tissue culture plates above added to individual wells of

The plates were incubated for two the ELISA plates. The plates were washed hours at ambient temperature. four times with wash buffer and 50 μL of a 1000-fold dilution of alkaline phosphatase conjugated goat antimouse IgG, gamma chain specific (Zymed) in wash buffer were added to each well. The plates were incubated for two hours at ambient temperature. The plates were washed 100 μL of with wash buffer and times methylumbelliferyl phosphate substrate solution (Sigma) were added. After one hour at ambient temperature, the plates were read using a Fluorofast 96-well fluorometer (3M Diagnostics)

The sensitivity of the assay enabled one positive cell in 1000 to be detected easily. Three positive wells were detected. Well 8G2, which produced the highest signal, was further enriched by plating as follows:

The cells in well 8G2 were resuspended in 100 mL of DMEM medium containing 9 % FCS, and plated in five, 96-well plates at 200 μ L/well. Supernatants from these wells were tested as above, eight days later. Seventy percent of the wells were positive for IgG. The well (1A12) with the highest signal for IgG was chosen for additional subcloning. Cells in this well were suspended by pipetting and 20 μ L of the suspension was diluted into 100 mL of DMEM medium with 9 % FCS. The suspension was plated 200 μ L/well in five plates, yielding approximately 3 cells/well.

30

35

20

25

After eight days, the supernatants were tested for IgM and IgG using the ELISA protocol described above. To assay IgM, the plates were coated with goat anti-mouse IgM, μ chain specific (Tago), at 500 ng/well and alkaline phosphatase conjugated goat anti-mouse IgM, μ chain specific (Tago) was used as the conjugate. The three supernatants with the highest IgG signal were retested

10

using serial dilutions to more accurately determine amounts of μ and γ chains. Well 7D10 had the highest γ and the lowest μ . This well (7D10) was then subcloned at 0.5 cells/well in six plates for the final derivation of a cloned line.

Single clones were identified visually and tested with IgM and IgG reagents. Several γ producing clones were chosen, of which 3E5 was further grown and studied. This clone was designated Z2D3/3E5. The IgG class was confirmed and subclass determined using a Sub-Isotyping Kit (Hyclone). Monoclonal antibody Z2D3/3E5 is an IgG1.

The specificities of monoclonal antibodies Z2D3 IgM and means identical. By IqG are Z2D3/3E5 15 immunohistological staining (Section III) of sequential and rabbit human sections of tissue frozen atherosclerotic plaque, it was shown that these two antibodies exhibit identical localization in the lesions and give identical negative results in normal tissues. 20 In addition both antibodies bind to antigens coated on microtiter plates in an ELISA (Section IV-2-(c) and IV-2-(d)) whereas non-specific antibodies of the same class do not bind under identical conditions.

25

III. Immunohistological Staining With The Z2D3

Monoclonal Antibody

The binding of the Z2D3 monoclonal antibody to human atherosclerotic plaque sections was demonstrated by immunohistology. Unfixed frozen human atherosclerotic tissue sections, 5 μm thick, were mounted on glass slides. An appropriate dilution of the Z2D3 antibody, usually 10 to 100 μg/mL, in PBS containing 1 % BSA was applied to the sections and incubated for an appropriate time at ambient temperature. The sections were washed with PBS/BSA and then processed with a Vectostain ABC

Reagent Kit (Vector Laboratories, Burlingame, CA), an immunoperoxidase staining kit containing a biotinylated anti-mouse IgM conjugate, in accordance with the manufacturer's instructions. A precipitating peroxidase substrate, 3,3'-diaminobenzidine (Sigma) was used as instructed. The slides were washed with water and then counterstained with hematoxylin (Lerner Laboratories, Pittsburgh, PA). The Z2D3 monoclonal antibody gave extensive staining of the plaque matrix without staining the surrounding normal tissues, Figures 1 and 2.

The Z2D3 antibody was further screened on a variety of human tissues using 5 μm unfixed frozen tissue sections. The lesion areas of all diseased human coronary arteries and aortae tested were stained with the Z2D3 antibody. 15 All normal tissues with the exception of spleen fibromyocytes and focal cell clusters of ovary and sebaceous glands failed to stain with this antibody (Table 1). The staining in ovary and sebaceous tissue was confined to the cytosol without extracellular 20 In contrast, the vast portion of manifestations. staining within atherosclerotic plaque was extracellular, diffusely manifest throughout the connective tissue matrix in addition to staining the cytosol of the plaque smooth muscle cells. In fibrofatty lesions, areas of 25 macrophage involvement stained less strongly than areas with only connective tissue or smooth muscle cell involvement.

In addition to human atherosclerotic lesions, the Z2D3 antibody also stained the atherosclerotic lesions of all animal models studied, including macaque monkey, New Zealand white rabbit and pig. In the case of the macaque monkey tissues, several phases of lesion growth were studied. In monkeys that had been maintained on a 2 % cholesterol diet for a period exceeding one year the plaques stained strongly with the Z2D3 antibody. More

interesting, however, was the observation that beneath the early fatty streaks of monkeys that had been maintained on the cholesterol diet for only months, the Z2D3 antibody stained the cytoplasm and immediate pericellular regions of the medial smooth muscle cells located immediately beneath the elastic lamina of those areas of the artery wall that were thus involved. This appeared within the time sequence corresponding to the migration of both macrophages and lymphocytes to this early lesion [Rapacz, J., et al., Science 234: 1573 (1986)]. Slightly later in time, the smooth muscle cells were seen to penetrate the elastic lamina and migrate into the fatty streak area.

15 IV. Characterization Of Human Atherosclerotic Plaque Antigen Recognized By Monoclonal Antibody Z2D3

As outlined in Section III, the Z2D3 monoclonal antibody 20 binds to a specific antigen epitope present in atherosclerotic plaque. The chemical nature of this antigen has been partially determined.

- 25 IV-1. Modification Of The Immunohistological Staining Properties Of Monoclonal Antibody Z2D3 Antigen As A Result Of Various Pretreatments Of Atherosclerotic Tissue
- 30 IV-1-(a) Treatment Of Tissue Sections With Organic .
 Solvents

All of the immunohistological results outlined above were obtained using unfixed frozen tissue sections. In immunohistology, tissue sections are usually fixed prior to performing the staining procedure. Commonly used fixing agents include methanol, ethanol and acetone

20

(Hopwood, D., "Fixation and Fixatives" in <u>Theory and Practice of Histological Techniques</u>, Bancroft, J.D. and Stevens, A, Eds., 3rd Ed., 1990, Churchill Livingston, NY). However, when atherosclerotic plaque sections are fixed with organic solvents, such as those above, prior to performing immunohistology with the Z2D3 monoclonal antibody, no staining of the lesion is observed.

This loss of staining due to treatment with solvents has been interpreted as an indication that the Z2D3 antigen, or a portion thereof, is soluble in organic solvents. That is, the antigen is, at least in part, a lipid.

IV-1-(b) Treatment Of Tissue Sections With Enzymes

Unfixed frozen tissue sections of human atherosclerotic lesions have been treated with solutions of various enzymes just prior to performing immunohistology with the Z2D3 monoclonal antibody. From the known specificity of the individual enzymes and their effect on the binding of the Z2D3 antibody to the antigen in the lesion, conclusions can be drawn about the chemical nature of the antigen.

Proteases. Tissue sections were incubated in buffered solutions of trypsin, collagenase or dispase under conditions suitable for the respective enzymes. After washing the section to remove the enzyme, histology with the Z2D3 monoclonal antibody was performed as described in Section III. Under conditions where the enzyme did not cause significant visible damage to the tissue section, no diminution of lesion staining was observed. These results are interpreted as indicating a lack of protease labile bonds in the antigen molecule(s). That is, the antigen does not appear to be a protein.

Cholesterol Oxidase. Cholesterol oxidase [EC 1.1.36] is

a 59,000 MW enzyme which catalyzes the oxidation of cholesterol to 4-cholesten-3-one via the intermediate 5-cholesten-3-one. Cholesterol oxidase is most active with cholesterol, but will also oxidase several compounds with structures similar to cholesterol [Biochemica Information, Boehringer Manheim, Indianapolis, IN].

Human atherosclerotic tissue sections were incubated with a solution of cholesterol oxidase (Sigma), 2.8 mg/mL in 0.5 M potassium phosphate pH 7.5, for two hours. After washing the sections to remove the enzyme, histology with the Z2D3 monoclonal antibody was performed as in Section III. Under these conditions, the staining of the lesion was almost completely eliminated.

15

20

10

In order to confirm that this result was due to the enzymatic activity of cholesterol oxidase and not to the mere presence of the enzyme, cholesterol oxidase was preincubated with mercury (II) chloride (Sigma), a potent inhibitor of cholesterol oxidase. The enzyme was dissolved at 2.8 mg/mL in 0.5 M potassium phosphate buffer pH 7.5 containing 10 mM mercury (II) chloride. This enzyme solution, including the inhibitor, was then incubated on human atherosclerotic tissue sections for After washing the sections to remove the enzyme, histology was performed with the Z2D3 monoclonal Under these conditions, antibody as in Section III. significant staining of the lesion, about 90 % of that of the nonenzymatically treated control occurred.

30

35

Taken together, the results above strongly indicate that the Z2D3 antigen or a portion thereof is susceptible to degradation by cholesterol oxidase. Which, in turn, can be interpreted as an indication that the Z2D3 antigen or a portion thereof is cholesterol or a steroid similar in structure to cholesterol which can be oxidized by cholesterol oxidase.

Acetylcholinesterase. Acetylcholinesterase [EC 3.1.1.7] is a 230,000 MW protein which catalyzes the hydrolysis of acetylcholine. It is fairly specific for choline esters, but will hydrolyze the acetic acid esters of some other alcohols [Biochemica Information, Boehringer Manheim, Indianapolis, IN]. The active site of acetylcholinesterase binds to the acetic acid portion of its substrate. Propionic acid esters are hydrolysed slowly if at all. The esters of higher acids are not hydrolysed by acetylcholinesterase [Soreq H., Gnatt, A., Loewenstein, Y., and Neville, L.F., Trends Biochem Sci., 17; 353-358, 1992].

Human atherosclerotic tissue sections were incubated with a solution of acetylcholinesterase (Sigma), 0.32 mg/mL in 50 mM 2-amino-2-hydroxymethyl-1, 3-propanediol (Tris) chloride (U.S. Biochemical Corp., Cleveland, OH), pH 8.0, for two hours. After washing the sections to remove the enzyme, histology with the Z2D3 monoclonal antibody was performed as described in Section III. Under these conditions, the staining of the lesion was almost completely eliminated. The reduction in staining was uniform over the extent of the lesion.

In order to determine that these results were due to the enzymatic activity of the enzyme, acetylcholinesterase was preincubated in 5.7 µM PMSF (Sigma), a potent inhibitor of acetylcholinesterase, in Tris buffer. This enzyme solution including the inhibitor was then incubated on human atherosclerotic tissue sections for two hours. After washing the sections to remove the enzyme, histology was performed with the Z2D3 monoclonal antibody. Under these conditions, nearly complete recovery of the staining in advanced lesion areas was observed.

These results strongly suggest that the Z2D3 antigen in

atherosclerotic plaque contains an essential ester, possibly a choline ester, and that hydrolysis of this ester significantly reduces antigen recognition by the Z2D3 monoclonal antibody.

5

Butyryl Cholinesterase. Also known as serum cholinesterase, butyryl cholinesterase [EC 3.1.1.8] is a tetrameric glycoprotein with a molecular weight of approximately 110,000. Butyryl cholinesterase hydrolyzes butyrylcholine more rapidly than it does acetylcholine. However, butyryl cholinesterase is not specific for choline esters as it hydrolyses a variety of different esters [Merck Index, 11th Ed., entry 2211, Merck and Co., Rahway, NJ].

15

20

35

10

Human atherosclerotic tissue sections were incubated with a solution of butyryl cholinesterase 0.6 mg/mL in 50 mM Tris chloride pH 8.0, for two hours. After washing the section to remove the enzyme, normal histology with the Z2D3 monoclonal antibody was performed. Under these conditions, the staining of the lesion was not affected by the enzyme treatment.

These results indicate that the essential ester,
demonstrated by the effect of acetylcholinesterase on
human atherosclerotic lesions, is not hydrolysed by
butyryl cholinesterase. Given the known substrate
specificity of the two cholinesterases [Soreq, H., Gnatt,
A., Loewenstein, Y., and Neville, L.F., Trends Biochem
Sci. 17: 353-358, 1992], the essential ester would appear

to be an ester of acetic acid.

<u>Porcine Esterase</u>. Porcine esterase is a 165,000 molecular weight protein isolated from pork liver which hydrolyses a wide variety of esters.

Human atherosclerotic tissue sections were incubated with

esterase solutions in the concentration range of 10-100 μ g/mL in 50 mM Tris chloride pH 7.5. After washing the sections to remove the enzyme, normal histology with the Z2D3 monoclonal antibody was performed. Under these conditions the binding of the Z2D3 antibody was reduced in proportion to the concentration of esterase used. At high concentrations of esterase, the binding of the antibody was almost completely eliminated.

These results confirm the presence of an essential ester in the Z2D3 antigen found in human atherosclerotic plaque. The broad substrate specificity of porcine esterase does not permit any further definition of the exact chemical nature of this ester.

15

Phospholipases are a group of enzymes Phospholipases. which hydrolyse specific bonds of phosphoglycerides. which lipids complex are Phosphoglycerides components of major characteristically are membranes. Only very small amounts of phosphoglycerides occur elsewhere in cells. Human atherosclerotic tissue variety of treated with been sections have phospholipases to determine the enzymatic effects, if any, upon the binding of the Z2D3 monoclonal antibody.

25

30

35

20

Phospholipase A_2 . Phospholipase A_2 [EC 3.1.1.4] specifically hydrolyses the fatty acid from position 2 of phosphoglycerides. This enzyme is monomeric with at molecular weight of about 14,500 [Biochemica Information, Boehringer].

Phospholipase A_2 from Crotalus atrox (Sigma) was dissolved in 50 mM Tris chloride pH 8.9 as directed by the supplier. Human atherosclerotic tissue sections were incubated with solutions of phospholipase A_2 at concentrations in the range of 10-100 μ g/mL for two

hours. After washing the sections to remove the enzyme, normal histology with the Z2D3 monoclonal antibody was performed. Under these conditions no diminution of the binding of the Z2D3 monoclonal antibody was observed.

5

<u>Phospholipase B.</u> Phospholipase B [EC 3.1.1.5] is a mixture of phospholipases A_1 and A_2 which hydrolyses the fatty acid esters from positions 1 and 2 of phosphoglycerides.

10

Phospholipase B from Vibrio species (Sigma) was dissolved in 50 mM Tris chloride pH 8.0 as directed by the Human atherosclerotic tissue sections were supplier. phospholipase solutions of incubated with concentrations in the range of 4-30 μ g/mL for two hours. After washing the sections to remove the enzyme, normal antibody Z2D3 monoclonal the histology with performed. Under these conditions no diminution of the binding of the Z2D3 monoclonal antibody was observed.

20

25

15

3.1.4.31 Phospholipase [EC C Phospholipase C. specifically hydrolyses the bond between phosphoric acid and glycerol in phosphoglycerides. This enzyme is monomeric metalloenzyme with a molecular weight of about Phospholipase C is relatively specific for 22,500. phosphoglycerides other phosphatidylcholine, hydrolysed at much slower rates [Biochemica Information, Boehringer].

30

35

Phospholipase C from C. perfringens (Sigma) was dissolved in 50 mM Tris chloride pH 7.3 as directed by the supplier. Human atherosclerotic tissue sections were incubated with solutions of phospholipase C at concentrations in the range of $10-80~\mu g/mL$ for two hours. After washing the sections to remove the enzyme, normal histology with the Z2D3 monoclonal antibody was performed. Under these conditions the binding of the

WO 94/25053 PCT/US94/04641

5

10

15

20

25

30

Z2D3 monoclonal antibody to the atherosclerotic antigen was significantly reduced.

Phospholipase D. Phospholipase D [EC 3.1.4.4] specifically hydrolyses the bond between the polar head group and the phosphoric acid of phosphoglycerides. Two forms of this enzyme were used below, cabbage leaf phospholipase D has a molecular weight of about 112,500 while the Streptomyces chromofuscus enzyme has a molecular weight in the range of 50,000-57,000 [Biochemica Information, Boehringer].

Phospholipase D from cabbage leaf (Sigma) was dissolved in 50 mM Tris chloride pH 5.6 as directed by the supplier. Phospholipase D from Streptomyces chromofuscus (Sigma) was dissolved in 50 mM Tris pH 8.0 also as directed by the supplier. These enzymes were incubated separately on frozen human atherosclerotic tissue sections in the concentration range of 25-1000 μ g/mL for two hours. After washing the sections to remove the enzyme, normal histology with the Z2D3 monoclonal antibody was performed. Under these conditions no diminution of the binding of the Z2D3 monoclonal antibody was observed.

Sphingomyelinase [EC 3.1.4.12] Sphingomyelinase. sphingomyelin hydrolysis of the catalyzes phosphorylcholine and ceramide. Three forms of this enzyme, all monomers, were used below, Staphylococcus aureus sphingomyelinase, with a molecular weight of about sphingomyelinase, Streptomyces sp. molecular weight of about 36,000, and Bacillus cereus sphingomyelinase with a molecular weight of about 23,000 [Sigma Technical Service].

The sphingomyelinases (all from Sigma) were dissolved individually in 50 mM Tris pH 7.4 as directed by the

20

25

30

35

supplier. These enzymes were incubated separately on frozen human atherosclerotic tissue sections to remove the enzyme, normal histology with the Z2D3 monoclonal antibody was performed. Under these conditions no diminution of the binding of the Z2D3 monoclonal antibody was observed.

IV-1-(c) Summary Of Results With Enzymatic Treatment Of Atherosclerotic Plaque Lesions Prior To Immunohistological Staining With The Z2D3 Monoclonal Antibody

The lack of any diminution of staining in immunohistology sections treated with proteases indicates that the naturally occurring Z2D3 antigen is not a protein. efficacy of cholesterol oxidase, acetylcholinesterase, porcine esterase, and Phospholipase C in reducing the staining of atherosclerotic lesions with the Z2D3 antibody provides strong evidence that the naturally occurring Z2D3 antigen is comprised of several essential components. The first of these essential components is cholesterol or a steroid of similar structure which can be oxidized by cholesterol oxidase. A second of these essential components in the naturally occurring antigen is a phosphatidylcholine or another molecule whose chemical structure is subject to modification by the enzymatic action of phospholipase C. A third of these essential components is an ester whose hydrolysis is catalyzed by the actions of acetylcholinesterase or At present, it is unknown whether porcine esterase. these essential components of the naturally occurring antigen are found as portions of one or more separate molecules in atherosclerotic plaque. It is clear, however, that the naturally occurring antigen comprised of a combination of a steroid, whose structure permits oxidation by cholesterol oxidase, quaternary ammonium salt, probably a salt of choline,

either as an ester or as a polar head of a phosphoglyceride.

Further information regarding the structure of the Z2D3
antigen has been obtained using an ELISA assay system and
a surrogate, that is, model, antigen, comprised of a
steroid and a quaternary ammonium salt, section IV-2.
Finally, monoclonal antibodies with specificities
identical to that of the original murine Z2D3 monoclonal
IgM have been generated using the surrogate antigen as an
immunogen, section VI.

IV-2. Characterization Of The Atherosclerotic
Antigenic Epitope Recognized Z2D3 Monoclonal
Antibodies Using Enzyme-Linked Immunosorbent
Assay System With Model Compounds

IV-2-(a) Antibody-Antigen Interaction

The binding of an antibody to its antigen is a highly 20 specific reaction. This binding is also very tight, with binding constants in the range of 10-9 to 10-12 in many Yet the binding of an antibody to the antigen against which it is directed occurs without the formation Only such attractive of any covalent chemical bonds. 25 forces as charge interactions, hydrophobic interactions, These forces are only or hydrogen bonds are involved. The steric or efficacious over very short distances. structural fit of the antigen into the antibody binding site is therefore extremely important to the binding 30 That is, the antigen must fit precisely into the antibody binding site so that the various portions of both molecules involved in the binding reaction are brought close enough together for binding to occur. antigen must fit into the antibody binding site as a key 35 The exquisite specificity of fits into its lock. antibody-antigen binding is therefore a consequence of -86-

this fit. Even a slight modification of the chemical structure of an antigen can greatly reduce or even completely eliminate antibody binding. For an extensive discussion of the structural aspects of antibody-antigen interaction, see Pressman, D., and Grossburg, A.L. ["The Structural Basis of Antibody Specificity", W.A. Benjamin, NY]. The specificity of antibody-antigen binding can be exploited to elucidate precise structural information about the chemical nature of an antigen.

10

5

IV-2-(b) Surrogate Antigens For The Z2D3 Monoclonal Antibodies

monoclonal antibodies do not bind to Z2D3 atherosclerotic plaque sections which have been treated 15 with acetone or alcohol [Section IV-1-(a)]. This is an indication that the antigen or a portion thereof is a lipid molecule, for example, a sterol. Immunohistology of atherosclerotic plaque sections which were treated with various enzymes [Section IV-1-(b)], in particular 20 with cholesterol oxidase, acetylcholinesterase, phospholipase C, indicate that the antigen is, at least in part, comprised of cholesterol or a steroid of similar structure and a quaternary ammonium salt, which is probably a salt of choline, either as an ester or as a 25 Indeed, as will be polar head of a phosphoglyceride. explained further below, cholesterol and palmitoyl choline, a choline ester, when dried onto a microtiter wellplate, form a model or surrogate antigen to which the Z2D3 monoclonal antibodies, both the mouse IgM and the 30 chimeric mouse-human IgG and the F(ab'), fragment This binding is readily thereof, specifically bind. demonstrated by means of an enzyme-linked immunosorbent By varying the chemical nature of the assay (ELISA). components of the surrogate antigen, conclusions can be 35 drawn regarding the chemical structural requirements for Z2D3 monoclonal antibody binding. Because of the extreme

5.

10

15

20

25

30

35

structural specificity of the antibody binding reaction, conclusions drawn regarding the chemical structure of a surrogate antigen must also apply to the chemical structure of the Z2D3 antigen formed in vivo in atherosclerotic lesions.

IV-2-(c) Enzyme-linked Immunosorbent Assay System For Characterizing The Z2D3 Monoclonal Antibody Antigen Epitope

ELISA's can be developed in a variety of different configurations [Voller, A., et al., "The Enzyme-Linked and 2; (ELISA)", Vols. Assay Immunosorbent In the ELISA used to MicroSystems, Guernsey, U.K.]. study the Z2D3 antigen epitope, the chemical compound or compounds of choice are immobilized on polystyrene Immulon 2 microtiter plates (Dynatech, Chantilley, VA). The remainder of the assay is a non-competitive antibody capture ELISA format. The primary antibody is either the mouse monoclonal Z2D3 IgM or the chimeric mouse-human The secondary antibody is a peroxidase conjugated antibody appropriate for binding to the primary antibody. A colorimetric peroxidase substrate is used in the final step.

Color development in an ELISA indicates the presence of the conjugated secondary antibody which can only be present if it is bound to the primary antibody. The primary antibody can only be present if it is bound to one or a combination of the compounds originally coated in the well. Given the high degree of specificity of the antibody-antigen binding reaction [section IV-2-(a)], the primary Z2D3 monoclonal antibody can bind to the chemicals in the well only if the coated chemicals present a structure which the primary antibody "recognizes" as being very similar or possibly identical in structure to the human atherosclerotic plaque antigen

with which the Z2D3 monoclonal antibody was created. Thus, color in an ELISA well indicates that the compounds coated in that well function as a model or surrogate antigen for the Z2D3 monoclonal antibody.

5

10

Conversely, a lack of color development in an ELISA will indicate that the compounds coated in the well do not present a structure to which the primary Z2D3 monoclonal antibody can bind. Therefore, such compounds or combination of compounds do not function as surrogate Z2D3 antigens.

By varying the chemical nature of the compounds coated on ELISA plates, it can be determined which chemical structures are required for binding to the Z2D3 monoclonal antibody. Such chemical structures are extremely likely to be found in the Z2D3 atherosclerotic plaque antigen in vivo. Also, it can be determined which chemical structures prevent binding of the Z2D3 antibody. Such structures are extremely unlikely to be found in the Z2D3 antigen in vivo.

In addition, by varying the amounts or the ratio of the compounds coated on the ELISA plates, the relative strengths of the binding of the Z2D3 monoclonal antibody to the various surrogate antigens can be determined. Strong bonding is an indication of significant similarity of the surrogate antigen to the atherosclerotic plaque antigen.

30

25

IV-2-(d) ELISA Reagents And Procedure

All ELISA wash steps were performed with casein wash buffer (CWB) prepared as follows: 13 mM Tris-chloride (U.S. Biochemical Corp.), 154 mM sodium chloride (Sigma) and 0.5 mM Thimerosal (Sodium ethylmercurithiosalicylate)

25

30

(Sigma) were dissolved in purified water and the pH of the solution adjusted to 7.6 with reagent grade hydrochloric acid. Bovine casein (Sigma) 2 g/L or 0.2 %, was dissolved in the Tris buffer by gentle heating to 38-40 °C. After cooling slowly to ambient temperature, the pH was again adjusted to 7.6 with either reagent grade hydrochloric acid or reagent grade sodium hydroxide. After filtering through a medium grade fluted paper filter (Fisher Scientific, Pittsburgh, PA) the buffer is ready to use. CWB can also be prepared at four times the concentration given, and the concentrate be stored at 4 °C for up to six weeks.

The compound or compounds to be assayed were dissolved in absolute ethanol (Gold Shield Chemical Co., Hayward, CA) at the desired concentration [see section IV-2-(e)]. Aliquots of these solutions were applied to microtiter plate wells and the solvent removed by evaporation in a stream of air. Non-specific binding sites on the wells were blocked by incubating the plates in CWB for one hour at ambient temperature.

The Z2D3 monoclonal antibody was diluted in CWB to the desired concentration, generally in the range of 1 to $10~\mu g/mL$. All of the results shown in Figures 3-12, Figures 14 and 15, as well as in Tables 2 and 3, were obtained with an antibody concentration of $5~\mu g/mL$ in CWB. The antibody solution was added to the blocked microtiter plate wells, $100~\mu L$ per well and the plates covered with Parafilm * (American National Can, Greenwich, CT). The covered plates were incubated at 37 °C for one hour.

Suitable conjugated secondary antibodies from a variety of species are available from several commercial suppliers. All of the ELISA results discussed in this application were obtained with the following. For

15

20

30

35

ELISA's using the mouse monoclonal Z2D3 IgM as the primary antibody, the secondary antibody was horseradish peroxidase conjugated F(ab')2 fragment of rabbit antimouse IgM obtained from Zymed Laboratories, Inc., So. San Francisco, CA. This conjugate was diluted 500 fold in For ELISA's using the mouse-human CWB prior to use. chimeric monoclonal Z2D3 IgG as the primary antibody, the secondary antibody was horseradish peroxidase conjugated goat anti-human IgG, heavy and light chain specific, Laboratories, Biological Lampire from obtained Pipersville, PA. This conjugate was diluted 1000 fold in Conjugate performance was very CWB prior to use. consistent from these two suppliers. However, any given lot of conjugate may require a dilution adjustment for optimal performance. Such adjustments are obvious to one skilled in the art of ELISA.

The primary antibody solution was removed from the wells and the wells washed four times with CWB. The appropriate conjugate at a suitable dilution in CWB was added to the wells, 100 μ L per well. The plates were covered with Parafilm and incubated at 37 °C for one hour.

All ELISA results in this application were obtained with the tetramethylbenzidine peroxidase substrate system produced by Kirkegaard and Perry Laboratories, Inc. Gaithersburg, MD, mixed according to the suppliers instructions.

The secondary antibody solution was removed from the wells, and the wells washed five times with CWB. The substrate was added, 100 μ L per well, and the plates incubated at ambient temperature. Color development was monitored at 650 nm with a Vmax * microtiter plate reader (Molecular Devices, Palo Alto, CA). After 30 minutes, color development was stopped by the addition of 50 μ L

. 10

30

35

1 M hydrochloric acid and the plate read at 450 nm. Because of the greater range of sensitivity, the results obtained at 450 nm are used throughout this application.

5 IV-2-(e) Chemicals Used As The Surrogate Antigen In The ELISA Assay System

The binding of the Z2D3 monoclonal antibody, both the mouse IgM and the chimeric mouse-human IgG, to a wide variety of combinations of chemical compounds were examined by the ELISA method outlined in section IV-2-(c). These combinations include, but are not limited to, the various combinations discussed in this application.

Steroids, the highest grade available, were purchased 15 Sigma Chemical Co., St. from one of the following: Bayonne, NJ; Louis, MO; Research Plus, Inc., Steraloids, Inc., Wilton, NH. Unless otherwise directed by the supplier, steroids were stored desiccated over phosphorous pentoxide, (Aldrich Chemical Co., Milwaukee, 20 Unless otherwise stated, all steroids WI) at -20 °C. were dissolved in absolute ethanol at a concentration of 500 μ g/mL. In some cases, sonication in a Branson * 2200 sonicator (Branson Ultrasonics Corp., Danbury, CT) was required for complete dissolution. The steroid solutions 25 were pipetted into the microtiter plate wells, 50 μL per well, which is equivalent to 25 μg of steroid per well. Unless stated otherwise, all assays discussed in the applications were performed at 25 μg steroid per well.

Quaternary ammonium compounds, the highest grade available, were purchased from one of the following: Sigma Chemical Co., St. Louis, MO; Research Plus, Inc., Bayonne, NJ; Aldrich Chemical Co., Milwaukee, WI. These compounds were stored as directed by the supplier. The quaternary ammonium compounds were dissolved in absolute ethanol at a concentration of 500 μ g/mL. In some cases,

sonication was required for complete dissolution. Dilution series of the quaternary ammonium solutions were prepared in absolute ethanol. Aliquots, 50 µL per well, of the appropriate dilutions were applied to the appropriate microtiter plate wells. Generally, the steroid solution was applied to the wells first. The quaternary ammonium compound solution at the appropriate dilution was then added second. However, the order of addition has no effect on assay results. The wells were then dried and the ELISA performed as outlined in IV-2-(d).

IV-2-(f) ELISA Results With Surrogate Antigens

15 A variety of combinations of chemical compounds have been coated onto microtiter plates and the ELISA [IV-2-(d)] run to determine if the Z2D3 monoclonal antibodies would bind to the coated compounds. Two specific types of compound are required for binding of the Z2D3 monoclonal 20 The first of these is a steroid with a antibodies. structure very similar to cholesterol. The second is a quaternary ammonium compound with one of its substituents being a chain of at least twelve atoms in length. These are the minimal requirements for the formation of a 25 quaternary Not all surrogate antigen. compounds, and by no means all steroids, form functional model antigens when dried on microtiter plates. detailed requirements for surrogate antigen formations will be discussed below. 30

Steroid Component

35 Using the ELISA system, and the Z2D3 monoclonal antibodies, a wide variety of steroids and other components have been tested in the presence of one or

more quaternary ammonium salts. These results are outlined in Table 2.

Regarding Table 2, the following should be noted. All of the values given are activities relative to the activity of cholesterol with the quaternary ammonium salt at the head of the column. For example, the ELISA activity with 5,7-cholestadien-36-ol and benzalkonium chloride is twice that obtained with 5-cholesten-36-ol and benzalkonium chloride. Table 2 does not, however, indicate the relative ELISA activities of the three quaternary ammonium salts shown. The relative ELISA activities of quaternary ammonium compounds will be discussed below.

The chemical structure of many of the steroids in Table 15 2 are very similar. Although only the highest available grades of steroid were used, the question of purity becomes an issue due to the sensitivity of the ELISA. With some of the steroids tested, a slight ELISA activity was noted at high concentrations of quaternary ammonium 20 Such activity could be attributed to the steroid being tested. However, such low levels of activity could also be due to contamination with small amounts of one of the highly active steroids. Consequently, none of the steroids tested were assigned a value of zero reactivity. 25 Rather, non-reactive steroids are listed as exhibiting less than 5 % of the activity of cholesterol. cases, such activity was significantly less than 5 %. Also note that "nt" indicates that a given combination of steroid and quaternary ammonium salt has not been tested. 30

Results Of ELISA's With Steroid Compounds

None of the triglycerides or other non-steroid compounds tested exhibit any ELISA activity. Of the many steroids tested, only a small number exhibit significant ELISA

activity.

The chemical structures and ELISA activities of the six most active steroid compounds are shown in Figures 3-8. Of all steroids tested, 5,7-cholestadien-3ß-ol, Figure 4, exhibited the greatest ELISA activity in combination with nearly all of the quaternary ammonium salts tested. The chemical structures and ELISA activities of four non-reactive steroids are shown in Figures 9-12.

10

15

5.

The high degree of specificity of the Z2D3 monoclonal antibodies is seen by comparing these figures. For example, comparing Figures 3 and 9, 5-androsten-38-ol has exactly the same ring structure and hydroxy group positioning as 5-cholesten-38-ol (cholesterol) but lacks the aliphatic "tail" at position 17 on the D ring. This structural change results in the complete loss of ELISA reactivity indicating that the aliphatic tail is essential for Z2D3 monoclonal antibody binding.

20

25

30

35

Several steroids with ring structures identical to cholesterol, but with differences in the chemical structure of the tail at position 17 were tested. Of these, only two, 5,24-cholestadien-38-ol (Demosterol) with a double bond at position 24 in the tail and the non-mammalian sterol 5,24 (28)-stigmastedien-38-ol with an ethylene group attached to carbon 24, exhibit significant ELISA activity. All other variations of the cholesterol tail tested, such as double bond at carbon 22 (5,22-stigmastadien-38-ol), a hydroxy group at position 25 (5-cholesten-38, 25-diol) or a keto group at position 25 (5-cholesten-38-ol-25-one (27 nor)) show significantly reduced ELISA activity. Thus, the chemical structure of the aliphatic tail must meet certain conditions for binding of the Z2D3 monoclonal antibody to occur.

Again comparing Figure 3 to Figures 10 and 11,

10

esterification or removal of the 3 β hydroxy group completely eliminates ELISA activity. Several cholesterol esters are listed in Table 2, none exhibited activity in the ELISA. The 3 β hydroxy group is, however, not essential for Z2D3 monoclonal antibody binding since significant ELISA activity was observed with 5-cholesten-3-one, a 3-keto steroid and palmitoyl choline. Significant activity was also detected with 5-cholesten-3 α -ol (epicholesterol), a 3 α sterol, and palmitoyl choline.

Chemical modification, the breaking of the 9-10 bond, of 5,7-cholestadien-38-ol (7-dehydrocholesterol) (see Figure 4) by ultraviolet light to form cholecalciferol (vitamin D3), Figure 12, a process used by the human body, results in the loss of all ELISA activity. Several other steroids, which represent slight modifications of the structures of cholesterol, and which exhibit insignificant ELISA activity, are listed in Table 2.

20 Although each of the chemical structures of the six most active steroid compounds, Figures 3-8, are distinct form each of the other five, they are all closely related biochemically. Figure 13 shows a small portion of the biochemical pathway of cholesterol biosynthesis and 25 metabolism. All six of the highly active compounds in Table 2 are either immediate precursors or metabolites of cholesterol. All other commercially available precursors or metabolites of the six steroids in Figure 13 have been found to give insignificant activity in the ELISA. 30 appears, therefore, that the steroid component of the Z2D3 monoclonal antibody antigen is cholesterol, biological precursor or metabolite of cholesterol, for example, 5,7-cholestadien-38-ol, or a combination of 35 these.

Quaternary Ammonium Component. A number of quaternary ammonium salts have been tested in the presence of sterols using the ELISA assay and the Z2D3 monoclonal antibody. These results are outlined in Table 3.

5

10

15

30

The greatest ELISA activity is found with quaternary ammonium detergents, particularly the benzyldimethylalkyl detergents. A long chain substituent on the ammonium ion is required for ELISA activity. The degree of activity increases with the length of this chain.

Among the naturally occurring quaternary ammonium compounds tested, only choline esters exhibit any significant ELISA activity. A long chain substituent, in this case a fatty acid ester, is required for activity. The longer the fatty acid, the greater the ELISA activity, Figures 14 and 15.

These results, while demonstrating that a quaternary ammonium salt is essential for antibody binding, do not give a clear indication of the nature of the quaternary ammonium salt present in the naturally occurring antigen.

25 IV-2-(g) Summary Of Surrogate Antigen ELISA Results

The results of surrogate antigen ELISA studies with the Z2D3 monoclonal antibody have shown that this antibody binds selectively to a combination of a steroid and a quaternary ammonium salt. Both components must be present for antibody binding to occur. Only a very limited number of steroids function as surrogate antigens, that is, facilitate the binding of the Z2D3 monoclonal antibody to the coated ELISA plate. In order to function as a surrogate antigen, a steroid must be either cholesterol or an immediate biochemical precursor or metabolite of cholesterol, Figure 13. Of all steroids

tested, 5,7 cholestadien-3 β -ol (7-dehydrocholesterol), Figure 4, consistently exhibited the greatest ELISA activity. A number of quaternary ammonium salts can function as a surrogate antigen, the majority being quaternary ammonium detergents.

The structural specificity of the antibody binding reaction (see section IV-2-(a)), implies that structural features known to be present in a surrogate antigen are probably also present in the naturally occurring antigen as found in human atherosclerotic lesions. Thus, it is very likely that the naturally occurring atherosclerotic antigen is, at least in part, comprised of a combination of a steroid, with a structure similar to cholesterol, and a quaternary ammonium salt.

To date, the surrogate antigen ELISA studies have yielded little information about the exact chemical nature of the naturally occurring quaternary ammonium salt. However, as discussed above (section IV-1-(b)), the naturally occurring antigen in human atherosclerotic tissue 20 sections is destroyed or altered by the enzymatic action Phospholipase C hydrolyses phospholipase C. lipid ammonium quaternary phosphatidylcholine, a It is therefore component of animal cell membranes. 25 likely that phosphatidylcholine or a similar compound is involved in the formation of the naturally occurring antigen.

Phosphatidylcholine has not been found to function as the quaternary ammonium component of a surrogate antigen, Table 3. However, not all phosphatidylcholines have been tested. Antibody binding may be dependent upon one specific type of phosphatidylcholine. In addition, it may be that phosphatidylcholine is unable to bind properly to the ELISA plate so as to form a surrogate antigen. Therefore, the fact that phosphatidylcholine

-98-

does not function as a surrogate antigen does not exclude it as a candidate for the quaternary ammonium component of the naturally occurring antigen in human atherosclerotic lesions.

5

25

30

V. Development Of Chimeric Z2D3 Monoclonal Antibody

This section will describe the work performed to produce a chimeric version of the mouse Z2D3 IgM antibody. The work has included: establishment of the hybridoma Z2D3; RNA isolation; immunoglobulin variable (V) region cDNA synthesis and subsequent amplification; cloning and sequencing of $V_{\rm H}$ and $V_{\rm K}$ cDNAs. The V regions were cloned into vectors for the expression of a mouse V/human IgG1 chimeric antibody from the rat myeloma cell line YB2/0 (ATCC Accession No. CRL 1662).

20 V-1. Cells And RNA Isolation

The hybridoma Z2D3.2B12, a subclone of the original Z2D3 was established and stocks frozen in liquid nitrogen. Total cytoplasmic RNA (130 μ g) was isolated from approximately 10^7 cells in the late logarithmic phase of growth. The medium in which the cells were grown at the time of RNA isolation was assayed and the presence of an antibody of isotype IgM Kappa, was confirmed. Furthermore, the secreted antibody was shown to bind to atherosclerotic plaque antigen in an ELISA.

V-2. cDNA Synthesis

35 Ig V cDNAs were made from Z2D3 RNA via reverse transcription initiated from primers based on sequences at the 5' ends of the murine IgM and kappa constant

regions. The sequences of these primers, CM1FOR and CK2FOR, are shown in Table 4.

Amplification Of $V_{\rm H}$ And $V_{\rm K}$ cDNA

Ig VH and VK cDNAs were amplified by the polymerase chain 5 reaction (PCR) [Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Ehrlich, H.A. and Arnheim, N. (1988) Science, 239: 487-491.] [Orlandi, R., Gussow, D.H., Jones, P.T., and Winter, G. (1989) Pro. Nat'l. 10 The 3833-3837.] USA 86: Sci. Acad. oligonucleotides used for cDNA synthesis were used in conjunction with appropriate 5' oligonucleotides, VH1BACK ... and VK1BACK (Table 4), which are based on consensus sequences of relatively conserved regions at the 5' end 15 of each V region [Orlandi, R., Gussow, D.H., Jones, P.T., and Winter, G. (1989) Pro. Nat'l. Acad. Sci. USA 86: 3883-3837.] The product of amplification of VH DNA using VH1BACK and CM1FOR primers is shown in Figure 16 where a DNA species of the expected size (~ 400bp) can be seen. For cloning VH DNA into vectors for the expression of Fab 20 fragment or the chimeric antibody, another primer, VH1FOR (Table 4) in concert with VH1BACK, was used to introduce a BstEII site at the 3' end of the V region.

Figure 16 also shows amplified DNA obtained using VK1BACK and CK2FOR primers in a PCR. This fragment is of the anticipated size (~350bp). VK DNA was also amplified using VK4BACK and VK2FOR, or VK1BACK and VK1FOR to introduce restriction enzyme sites necessary for cloning 30 into bacterial Fab expression vectors or chimeric expression vectors respectively.

Cloning And Sequencing VH DNA V-4.

The primers used for the amplification of VH DNA contain 35 the restriction enzyme sites PstI and HindIII.

more internal PstI sites was found within the amplified VH DNA (Figure 16). The DNA was cloned as PstI-PstI and PstI-HindIII fragments in M13 mp18 and mp19. The resulting collection of clones were sequenced and the extent of sequence determined from each clone is shown in Figure 17. Apart from the occasional Taq polymerase-induced error, the sequences obtained were unambiguous. The contiguity of the two fragments was demonstrated after sequencing the entire VH region obtained after a partial PstI digest and cloned into the Fab bacterial expression vector.

The Z2D3 VH DNA sequence and its translation product are shown in Figure 18. It should be noted that the first eight amino acids are dictated by the oligonucleotides use in the PCR and are not necessarily identical to those 15 of the murine antibody. Computer-assisted comparisons indicate that Z2D3 VH is most closely related to Kabat subgroup IIIB [Kabat, E.A., Wu, T.T., Reid-Miller, M., Perry, H.M. and Gottesman, K.S. (1987) Sequences of proteins of immunological interest. U.S. Dept. of Health 20 & Human Services, U.S. Government Printing Office.] Four residues in framework 1 viz Arg18, (Figure 19). Gly19, Glu23, Gly24 are unusual for the positions. three CDRs are unique and have not been reported in any 25 other murine VH.

V-5. Cloning And Sequencing VK DNA

The primers used for the amplification of VK DNA contain the restriction enzyme sites PvuII and HindIII. One or more HindIII sites was found within the amplified VK DNA (Figure 16). The VK DNA was cloned as PvuII-HindIII and HindIII-HindIII fragments in M13 mp18 and VK2FOR (which introduce SacI and XhoI restriction sites) were also cloned and sequenced to ensure contiguity around the HindIII site. The extent of sequence determined from 18

10

30

35

-101-

clones is shown in Figure 20. Apart from a few errors arising during the PCR, the sequence obtained was unambiguous. No clones containing any other kappa chain sequence were found.

During the sequencing of VH clones, three clones were noted to contain framework 1 of VK together with a putative signal sequence. The likely explanation for this is that CM1FOR is quite similar in sequence to CDR1 of VK and with VH1BACK, which must have annealed in the 5'-untranslated region, amplified this part of the kappa chain gene.

Figure 21 shows the entire VK DNA sequence, including the signal sequence, and its translated product. Computer-assisted comparisons indicate that Z2D3 VK is a member of the Kabat family V [Kabat, E.A., Wu, T.T., Reid-Miller, M., Perry, H.M. and Gottesman, K.S. (1987) Sequences of proteins of immunological interest. U.S. Dept. of Health & Human Services, U.S. Government Printing Office.] Figure 22 shows a comparison between the Z2D3 VK and a family V consensus sequence. The only unusual residue is at position 42 (Kabat position 41) which is often glycine; there is no reported example of tryptophan at this position.

V-6. Z2D3 Chimeric Antibody

The Z2D3 VH and VK genes were first cloned as PstI-BstEII and PvuII-BgIII fragments into M13 vectors containing the heavy chain immunoglobulin promoter, signal sequence and appropriate splice sites. For VH this necessitated introduction of a BstEII site into the 3' end of VH and was accomplished by subjecting cDNA primed with CM1FOR to a second PCR using VH1FOR with VH1BACK. Similarly, a BgIII site was introduced into the 3' end of VK using VK1BACK in a second PCR. In retrospect, the use of

30

35

VH1BACK was not necessary as a naturally occurring BstEII site was present. However, the introduction of the BgIII site changed Leul06 to Ile in VK.

The VH and VK genes together with appropriate expression 5 elements were excised from their respective M13 vectors as HindIII-BamHI fragments and cloned into psvgpt and psVhyg [Orlandi, R., Gussow, D.H., Jones, P.T., and Winter, G. (1989) Pro. Nat'l. Acad. Sci. USA 86: 3883psvgpt contains an (Figures 23 and 24). 3837.] 10 immunoglobulin enhancer sequence, an SV40 origin of replication, the gpt gene for selection and genes for replication and selection in E.coli. Finally, a human IgGl constant region [Takahashi, N. Veda, S., Obatu, M., Nikaido, T., Nakai, S., and Honjo, T. (1982) Cell 29: 15 671-679] was added as a BamHI fragment. The pSVhyg vector for the expression of the light chain essentially the same, except that the gpt gene is replaced with the hygromycin resistance gene and a human kappa chain constant region was added [Heiter, P.A., Max, 20 E.E., Seidman, J.G., Meizel, J.V. Jr., and Leder, P. (1980) Cell <u>22</u>: 197-207.]

10 μ g of the heavy chain expression vector and 20 μ g of the kappa chain expression vector were digested with PvuI and cotransfected by electroporation into approximately 10 % YB2/0 rat myeloma cells (ATCC accession Number CRL 1662) [Kilmartin, J.W., Wright, B., and Milstein, C. 576-582]. After 48 hour (1982) Jour. Cell Biol. 93: recovery in non-selective medium, the cells were distributed into a 24-well plate and selective medium fetal calf serum, 10 % (DMEM, applied mycophenolic acid, 250 μ g/ml xanthine). After 3-4 days, medium and dead cells were removed and replaced with gpt+ transfects were visible fresh selective medium. with the naked eye 8-10 days later. Uptake of the kappa chain expression vector (resistance to hygromycin) was

not selected because of high proportion (50-100 %) of mycophenolic acid resistant clones were cotransfected with the kappa chain expression vector.

- The presence of chimeric antibody in the medium of wells containing transfected clones were measured by ELISA. Wells of a micro-titre plate were coated with goat antihuman IgG (gamma chain specific) antibodies. Culture medium was applied and any human antibody bound was detected with peroxidase conjugated goat anti-human IgG and peroxidase conjugated goat anti-human kappa chain antibodies. 24/24 wells were positive for human IgG and human CK.
- 15 Cells from wells showing the highest ELISA readings were expanded and antibody purified from culture medium by protein A affinity chromatography. The ability of the chimeric antibody to bind to antigen was measured by ELISA protocol. Figure 25 shows that the Z2D3 mouse/human IgG1 chimeric antibody is able to bind to antigen with similar efficiency to the progenitor Z2D3 mouse IgM antibody.
- V-7. Tissue Culture Production Of Z2D3 Chimeric Antibody

A subclone of the chimeric cell line Z2D3M Vh/M VK 73/30 identified as 1D10 was used for the production of the antibody in tissue culture. The cells $(3-4 \times 10^6 \text{ cells})$ per mL) were grown in RMPI 1640 medium (with L-glutamine) with a supplement of 1.5 % fetal calf serum at 36 \pm 1 °C in the presence of 5 % CO₂. After 6-8 days, the cells were removed from the medium by centrifugation and the supernatant was stored at 4 °C.

30

The tissue culture supernatant (Section V-7) tangential 100-fold þу about concentrated ultrafiltration using a Minitan Concentrator (Millipore, cut-off 30,000 MW Bedford, MA) equipped with a the resultant of The pH polysulfone membrane. concentrate was adjusted to 7.6 ± 0.1 with dilute sodium hydroxide, and centrifuged at 15,000 x g for 35 minutes to remove residual cells. The concentrate was then applied to a PBS-equilibrated Prosep A * column (Bioprocessing, Ltd., Consett Co., England) 1 mL of 10 Prosep A for each 50 mL of concentrate, at a flow rate of approximately 1 mL/minute. The column was washed with ten column volumes of PBS.

- The bound chimeric antibody was eluted from the column with 100 mM sodium citrate buffer, pH 4.0. Fractions of a suitable size were collected. The antibody containing fractions were identified by OD₂₈₀, pooled, and dialyzed against PBS at 4 °C. The antibody was then aseptically filtered and stored at 4 °C.
 - V-9. Preparation Of Immunologically Active F(ab')₂
 Fragments Of The Chimeric Z2D3 Antibody
- 25 Chimeric Z2D3 antibody, at a concentration of approximately 4 mg/mL, was dialyzed extensively against 25 mM sodium citrate buffer, pH 3.50. Porcine pepsin (Sigma) was added to a final ratio of 1 μg of pepsin for each 175 μg of antibody. This solution was incubated at 30 37 °C for 2 hours.

The pH of the reaction mixture was adjusted to 7.6 by the addition of 1 M Tris base. This solution was then applied to a Prosep A column (BioProcessing Ltd., Durham, England) to remove undigested whole antibody molecules. The column was washed with PBS. The flow through fractions containing the $F(ab')_2$ fragments were pooled

30

35

and concentrated to a small volume in a stir cell concentrator (Amicon Div., W.R. Grace, Beverly, MA). The $F(ab')_2$ fragments were separated from small peptides and other low MW reactants by size exclusion HPLC on a SEC-250 column (Bio-Rad) equilibrated in 100 mM potassium phosphate pH 7.0. The $F(ab')_2$ containing fractions were pooled and stored at 4 °C.

10 V-10. Immunohistological Staining With The Chimeric Z2D3 Monoclonal Antibody

Purified Z2D3 chimeric antibody in PBS was conjugated to biotin (sulfosuccinimidyl-6-(biotinamido) hexaneate, Pierce) in an ice-bath. Twenty micrograms of biotin (in dry DMSO (Dimethyl sulfoxide), at a concentration of 10 mg/mL) was added for each milligram of antibody. The reaction mixture was incubated at 0 °C for 2 hours with occasional mixing. Unreacted biotin was removed by extensive dialysis in PBS and the biotin-antibody conjugate was then filtered aseptically and stored at 4 °C.

The biotinylated Z2D3 chimeric antibody was used to stain unfixed, frozen human atherosclerotic tissue sections (5-6 µm thick) by immunohistology using a procedure similar to that of Section III. The tissue sections were incubated with the biotinylated antibody for 2 hours at ambient temperature in a humidified container. The sections were washed with PBS/BSA and endogenous peroxidases were blocked with 0.3 % hydrogen peroxide in methanol. The sections were then incubated with avidin-biotinylated horseradish peroxidase complex (Vectostain ABC reagent, Vector PK-6100) for 20 minutes; washed with PBS/BSA, incubated with a buffered solution of 3,3'-Diaminobenzidine, washed with water, and counter-stained with hematoxylin.

15

20

-106-

The Z2D3 chimeric antibody specifically stains atherosclerotic lesion and not any of the surrounding normal artery (see Figures 26, 27, 28) in exactly the same manner as the mouse Z2D3 monoclonal antibody. The chimeric antibody is highly specific for the lesion areas of atherosclerotic tissue sections and does not stain tissues from any other organs tested (see Table 5).

VI. <u>Development Of New Monoclonal Antibodies Using</u> <u>Surrogate Antigens As The Immunogen</u>

As outlined in section IV-2(b), an immunologically reactive model or surrogate of the Z2D3 antigen can be created by coating cholesterol or a related steroid and a specific type of quaternary ammonium compound onto polystyrene. Surrogate antigens have been used to generate new monoclonal antibodies with specificities very similar to the original Z2D3 monoclonal antibody.

VI-1. Preparation Of Polystyrene Beads Coated With The Surrogate Antigen

Polystyrene beads, average diameter 11.9 μm (Sigma cat.# LB-120) were washed and resuspended in absolute ethanol. The resulting suspension was separated into aliquots each containing approximately 4 μg of beads. Individual aliquots of beads were then coated with the surrogate antigens, each a combination of a steroid and a quaternary ammonium salt, listed below.

Surrogate Antigen Combination #1: 7-Dehydrocholesterol And Benzyldimethylhexadecylammonium Chloride.

Five hundred micrograms of 7-Dehydrocholesterol (Sigma) (250 μ L of a 2 mg/mL solution in ethanol) and 31 μ g of

25

Benzyldimethylhexadecylammonium chloride (Sigma) (31 μ L of a 1 mg/mL solution in ethanol) were added to each aliquot receiving this combination. Each aliquot was thoroughly mixed and the solvent was then allowed to evaporate at ambient temperature. The coated beads were stored at 4 °C until use.

Surrogate Antigen Combination #2: 7-Dehydrocholesterol And Palmitoylcholine.

Five hundred micrograms of 7-Dehydrocholesterol (Sigma) (250 μL of a 2 mg/mL solution in ethanol) and 15.5 μg palmitoylcholine (Sigma) (15.5 μL of a 1 mg/mL solution in ethanol) were added to each aliquot receiving this combination. The beads were processed and stored as for combination #1.

Surrogate Antigen Combination #3:
Cholesterol And Benzyldimethylhexadecylammonium Chloride.

Five hundred micrograms of cholesterol (Sigma) (250 μ L of a 2 mg/mL solution in ethanol) and 31 μ g of Benzyldimethylhexadecylammonium chloride (Sigma) (31 μ L of a 1 mg/mL solution in ethanol) were added to each aliquot receiving this combination. The beads were processed and stored as for combination #1.

30 Surrogate Antigen Combination #4: Cholesterol And Palmitoylcholine.

Five hundred micrograms of cholesterol (Sigma) (250 μ L of a 2 mg/mL solution in ethanol) and 15.5 μ g palmitoylcholine (Sigma) (15.5 μ L of a 1 mg/mL solution in ethanol) were added to each aliquot receiving this combination. The beads were processed and stored as for

10

-108-

combination #1.

Surrogate Antigen Combination #5: 5-Cholesten-3-one And Benzyldimethylhexadecylammonium Chloride.

Five hundred micrograms of 5-cholesten-3-one (Sigma) (250 μ L of a 2 mg/mL solution in ethanol) and 31 μ g of Benzyldimethylhexadecylammonium chloride (Sigma) (31 μ L of a 1 mg/mL solution in ethanol) were added to each aliquot receiving this combination. The beads were processed and stored as for combination #1.

15 Surrogate Antigen Combination #6: 5-Cholesten-3-one And Palmitoylcholine.

Five hundred micrograms of 5-cholesten-3-one (Sigma) (250 μ L of a 2 mg/mL solution in ethanol) and 15.5 μ g palmitoylcholine (Sigma) (15.5 μ L of a 1 mg/mL solution in ethanol) were added to each aliquot receiving this combination. The beads were processed and stored as for combination #1.

25

20

VI-2. <u>Immunization Of Mice With Surrogate Antigen</u> Coated On Polystyrene Beads

For each mouse to be immunized with a surrogate antigen, two aliquots, or about 8 μg of beads, were suspended in saline and emulsified in Freund's Complete Adjuvant (Difco). The emulsified beads were injected subcutaneously at multiple sites. Two weeks after the initial injections, each mouse was boosted. Two aliquots of beads were suspended in saline and emulsified in Freund's Incomplete Adjuvant (Difco). The emulsified

beads were injected subcutaneously. Two weeks after the first boost, each mouse was boosted again, receiving one aliquot of beads emulsified in Freund's Incomplete Adjuvant and injected intraperitoneally.

Using this method, six groups of mice, fourteen mice in all, were prepared. Three mice received surrogate antigen combination #1, three mice received surrogate antigen combinations #2, and two mice each received surrogate antigen combinations #3, 4, 5 and 6.

Seven days after the final boost, the mice were bled.

The resulting sera were tested by ELISA (Section IV-2).

All fourteen mice exhibited a strong IgM response to the immunizing antigen. None of the mice exhibited an IgG response. The sera were also tested by immunohistology as outlined in section III using a peroxidase conjugated anti-mouse IgM as the secondary antibody. Specific staining of human atherosclerotic lesions was observed with all fourteen sera at a 1:25 dilution.

One mouse, number R-2, was selected for fusion based on a higher titer in the ELISA and on a slightly more intense staining of the lesion areas with its serum. Mouse R-2 was immunized with surrogate antigen combination #1, 7-dehydrocholesterol and benzyldimethylhexadecylammonium chloride.

Nine days after the preliminary bleed, mouse R-2 was boosted again with 4 μ g of surrogate antigen-coated beads suspended in saline, injected interperitoneally. Three days later, the spleen was taken for fusion.

35 VI-3 Fusion Procedure

SP2 myeloma cells (non-secreting fusion line SP2/01-Ag

25

30

14, ATCC\ Accession No. CRL8006) were grown in RPMI medium (Gibco) with 15 % FCS (Hyclone) pen strep and L-glutamine (Gibco) in a 5 % carbon dioxide atmosphere. At least 5 x 10⁷ SP2 cells were collected in log phase from petri dishes and centrifuged at 230 x g for eight minutes. The pellet was resuspended in 40 mL RPMI medium and the suspension placed in a 50 mL polypropyline centrifuge tube.

10 A single cell suspension of the immunized spleen from mouse R-2 was prepared in 5 mL of RPMI medium by maceration with the frosted ends of two sterile glass slides. The cell suspension was transferred to a sterile 15 mL tube and any clumps allowed to settle for one minute. The cell suspension was then carefully removed from the settled clumps and transferred to the SP2 cells in the 50 mL tube. Hybridoma cloning factor (Igen) was then added to a final concentration of 10 %. This mixture was incubated at 37 °C for two hours.

The cell suspension was centrifuged at 275 x g for eight minutes. The supernatant was removed and 2 mL of 40 % PEG (pre-warmed to 37 °C) were added. The pellet was gently resuspended in the 40 % PEG. This suspension was centrifuged at 275 x g for six minutes. The supernatant was carefully removed and 6 mL of RPMI medium was added. The cells were gently mixed and centrifuged at 230 x g for six minutes. The supernatant was removed and 10 mL of growth medium, RPMI with 15 % FCS, was added. The cells were gently mixed without disrupting clumps. This suspension was incubated at 37 °C for 30 minutes to allow for completion of the fusion reaction.

Fusion medium was prepared as follows: 50 mL Hybridoma

Cloning Factor (Igen), 90 mL FCS (Hyclone), 5 mL of pen

strep (Gibco), 1.5 mL L-glutamine (Gibco) and 1 vial of

azaserine / hypoxanthine (Sigma) were combined. The

total volume was then adjusted to 500 mL with RPMI medium containing L-glutamine (Gibco).

Twenty-eight 96-well plates (Becton Dickinson Labware)

were labeled for identification. Freshly prepared fusion medium, 500 mL, was sterile filtered into a sterile 750 mL flask and warmed to 37 °C. The fused cells were transferred to the 750 mL flask containing sterile fusion medium and gently mixed. This suspension was transferred to the labeled 96-well plates, 200 µL per well. The plates were then incubated in an atmosphere of 5 % CO₂ at 37 °C.

Twelve days after the fusion, growing hybrids were identified by examining the plates with a microscope. When the growing hybrids had expended the nutrients in the medium, approximately 13-14 days after fusion, 200 μL of medium were removed from each well and saved for assay. The removed volume was replaced with Fusion Medium without Azaserine. As positive clones were identified by assay, the cells were harvested from the appropriate wells and expanded using standard cell culture techniques.

25

30

VI-4 Results

From the initial fusion of a surrogate antigen immunized mouse spleen described in the previous section, seven new monoclonal antibodies with specificities identical to the original Z2D3 monoclonal IgM have been identified. All seven of these clones produce IgM monoclonal antibodies.

Immunohistology with frozen atherosclerotic tissue sections, as in Section III, has demonstrated that each of the seven antibodies developed by surrogate antigen immunization binds specifically to the atherosclerotic

35

-112-

lesion area. No detectable binding to surrounding normal tissues was observed.

The binding properties of the seven new monoclonal antibodies have also been studied by ELISA (Section III). Twelve different combinations of steroid (Table 2) and quaternary ammonium compounds (Table 3) were coated on ELISA plates and the ELISA performed as in Section IV-2-(d). No significant differences between the original antibody developed with monoclonal Z2D3 10 atherosclerotic plaque extract and any of the seven monoclonal antibodies developed with the surrogate For example, the original Z2D3 antigen were observed. IgM binds to a combination of 5,7-cholestadien-38-ol and benzyldimethylhexadecylammonium chloride. Likewise, each 15 of the seven new monoclonal antibodies binds readily to The original Z2D3 does not bind to a this combination. acetate and 5-cholesten-38-ol of combination benzyldimethylhexadecylammonium chloride. None of the to monoclonal antibodies binds new seven 20 combination.

Finally, the binding specificity of the surrogate antigen monoclonal antibodies was studied by immunohistology using a competitive immunoassay format. Individual solutions of the surrogate antigen monoclonal antibodies were incubated on frozen human atherosclerotic tissue sections for 1 hour in a humidified atmosphere. The sections were then washed and a solution of biotinylated Z2D3 IgM monoclonal antibody was added. The remainder of the procedure was as described in section V-10.

Under these conditions, no staining of the human atherosclerotic lesions was observed. That is, the surrogate antigen antibodies competed effectively with the original murine Z2D3 monoclonal antibody for binding sites on the human atherosclerotic lesions.

The generation of immunologically active, highly specific, monoclonal antibodies by means of immunization with a surrogate antigen as defined in section IV-2 conclusively demonstrates that the immunogenic epitope presented by the surrogate antigen is structurally very similar, if not identical, to the naturally occurring epitope formed during the development of an atherosclerotic lesion.

10 VII. Imaging Of Atherosclerotic Plaque

The unique specificity of the Z2D3 monoclonal antibody for an epitope or epitopes localized in atherosclerotic lesions provides an opportunity to deliver defined agents directly to the site of the lesion in vivo. The Z2D3 antibody binds to atherosclerotic lesions during all stages of plaque development. As a consequence, the Z2D3 monoclonal antibody is superior to other antibodies which have been used in published imaging studies (see references in Background Of The Invention, above).

The Z2D3 monoclonal antibody or an immunologically active fragment thereof may be coupled to an imaging marker of choice by means of one of a variety of conjugation methods available to the protein chemist. The choice of marker would depend on the type of imaging technology to be employed but would be readily apparent to one skilled in the art of medical imaging.

Preliminary investigation of one imaging technique using radioisotope labeled Z2D3 antibody fragments is presently in progress. The radioisotope indium-111 was attached to the Z2D3 via the metal chelator diethylenetriaminepentaacetic acid. The results to date are reported below.

PCT/US94/04641

20

35

-114-

VII-1. Conjugation Of Chimeric Antibody To DTPA

The Z2D3 chimeric antibody or its F(ab')2 or Fab fragment, was dialyzed extensively against 100 mM HEPES [4-(2-Hydroxyethyl)-1-piperazineethanesulfonic 5 (U.S. Biochemical Corp.), 150 mM sodium chloride, pH 7.5. Diethylenetriaminepentaacetic acid anhydride (DTPA) chloroform suspended in dry was (Sigma) The desired quantity of concentration of 2 mg/mL. suspended DTPA-anhydride, usually a 25-fold molar excess 10 over the amount of antibody being conjugated, was The chloroform was transferred to a glass tube. evaporated under a stream of dry argon gas. The dialyzed antibody was added to the DTPA-anhydride residue in the 15 tube and thoroughly mixed. The mixture was incubated at 0 °C for 45 minutes with occasional stirring. Unbound removed by extensive dialysis, and the conjugated antibody was stored at 4 °C.

VI-2. In-Vivo Nuclear Imaging Of Atherosclerotic Rabbit

DTPA-Z2D3 F(ab')₂, prepared as in section VII-1 (0.25 mg in 0.15 mL), was mixed with 1 mCi indium-111 chloride in 0.15 mL of 1 M citrate buffer, pH 5.5. The reaction mixture was incubated at ambient temperature for 30 minutes, and the indium-labeled antibody fragment was separated from unbound indium by gel filtration on a Sephadex G-25 (Sigma) column in 0.15 M sodium chloride.

Z2D3 chimeric $F(ab')_2$ fragment labeled with Indium-III (-0.5 mCi/0.5 mg) was used to image experimental atheroma in rabbits (n=4) with de-endothelialized descending aorta, fed on 6 % peanut oil, 2 % cholesterol chow for 8-12 weeks. Uptake was compared to control human IgG1 $F(ab')_2$, prepared from human myeloma IgG (Calbiochem, San

Diego, CA), using the procedures developed for the chimeric Z2D3 antibody (section V-9).

Atherosclerotic lesions were visualized in 3 out of 4 rabbits with the chimeric Z2D3 F(ab')₂-DTPA. (One rabbit had minimal lesions.) Lesions were not visualized in rabbits injected with the control human IgG1 F(ab')₂. Mean % injected dose per gram in the lesions was as follows:

PCT/US94/04641

30

35

-116-

% Injected Dose/Gram (± SD)

	Sample	Normal Artery	<u>Lesion</u>
5	Chimeric Z2D3 F(ab') ₂	0.019 ± 0.006	0.112 ± 0.049
10	Human IgG1 F(ab') ₂	0.005	0.036

The uptake of the chimeric F(ab')₂ was significantly higher than the control and specific targeting was also demonstrated by macro-autoradiography.

VII-3 Other Imaging Techniques

The use of the Z2D3 monoclonal antibody or immunologically active fragments thereof conjugated to DTPA is not limited to radio imaging with indium-111. A wide variety of radioisotopes may be incorporated into the DTPA moieties. In addition, other chelating agents may be conjugated to the antibody.

Furthermore, Z2D3 monoclonal antibodies conjugated to chelating agents is not limited to use with radioisotopes. Paramagnetic ions may be incorporated for use with Magnetic Resonance Imaging (MRI). X-ray opaque ions could be used for X-ray imaging.

In principle, chelator conjugated Z2D3 monoclonal antibodies could be used to image atherosclerotic plaque using any imaging technology, whether presently available or to be developed in the future, which exploits the presence of a metal ion or ions as a means of detection.

15

-117-

Treatment Of Atherosclerotic Plaque VIII.

As noted in section VII, the Z2D3 monoclonal antibody provides a means of delivering an agent directly to the site of an atherosclerotic lesion in vivo. Such an agent could be therapeutic in nature. Any agent which would serve to dissolve, digest, break up or inhibit the growth of atherosclerotic plaque or otherwise ameliorate the progression of atherosclerosis could be used. Some methods are presented below.

Laser Angioplasty Ablation Of Atherosclerotic VIII-1. Plaque

The use and limitations of lasers in angioplasty have been discussed above (Background Of The Invention). Z2D3 monoclonal antibody can be conjugated to a dye whose absorption maximum corresponds to the maximum emission wavelength of the laser to be used for angioplasty. 20 Z2D3 antibody and the conjugated dye would bind to the During the ablation plaque and not to normal tissues. procedure, energy from the laser would be absorbed by the dye and thus be concentrated on the diseased areas. a consequence, the efficiency of ablation would be 25 increased while minimizing damage to surrounding normal tissues.

A wide variety of dyes fluorescent, are available for A number of methods for conjugation to proteins. 30 particular conjugating dyes to proteins, in and antibodies, have been published. The choice of dye and method of conjugation would be readily apparent to one skilled in the arts of laser angioplasty and protein chemistry. 35

One dye which may be useful in laser angioplasty is

-118-

rhodamine. Rhodamine is a fluorescent dye whose various derivatives absorb light at a wavelength of approximately In a preliminary study the Z2D3 antibody has been conjugated to lissamine rhodamine B.

5

10

VIII-1(a) Conjugation Of Chimeric Antibody To Rhodamine

The chimeric Z2D3 antibody or it F(ab')2 or Fab fragment at a concentration of 2-4 mg/mL was dialyzed against 50 mM sodium borate buffer, pH 8.2. A fresh solution of lissamine rhodamine B sulfonyl chloride (Molecular Probes, Inc. Eugene, OR) was prepared in dry acetone at 0.25 mg/mL. An aliquot of this solution representing a 6-fold molar excess of rhodamine over the amount of antibody to be conjugated was transferred to a glass tube. The acetone was evaporated under a stream of dry argon. The dialyzed antibody was added to the rhodamine residue in the tube. The tube was capped, covered with aluminum foil, and incubated at 4 °C for 3 hours with 20 constant shaking.

An aliquot of a 1.5 M hydroxylamine hydrochloride (Sigma) solution (pH 8.0) equal to 1/10 the volume of the antibody solution was added to the reaction mixture. This solution was incubated at 4 °C for 30 minutes with constant shaking. The reaction mixture was then dialyzed extensively against borate buffer in the dark. rhodamine-antibody conjugate was stored at 4 °C in the dark to avoid photo-bleaching of the dye.

VIII-1(b) Enhancement Of Laser Angioplasty Ablation With Antibody-Rhodamine Conjugate

35

25

30

Frozen sections of rabbit atherosclerotic aortae stained with the rhodamine-chimeric F(ab')2 demonstrated intense

fluorescent staining confined to the diseased intima of atherosclerotic arteries while control arteries were Isolated aortae segments or rings entirely negative. demonstrated rhodamine-F(ab')2 to exposed immunofluorescent staining of the luminal portion of the thickened intima during 1-24 hours of exposure. Thus, the Z2D3 antibody specifically delivers the dye to atherosclerotic lesions and not to normal tissues. With further development this approach of selectively labeling atherosclerotic lesions with dye-conjugated antibodies may allow the ablation of diseased areas by laser while 10 minimizing damage to normal tissue.

15 VIII-2 Enzymatic Digestion Of Atherosclerotic Plaque

The Z2D3 monoclonal antibody could be used to deliver enzymes specifically to the site of an atherosclerotic lesion. The enzyme could be any enzyme capable of digesting one or more components of the plaque. The enzyme or a combination of enzymes would be conjugated to the antibody by one of a variety of conjugation techniques known to one skilled in the art of protein chemistry.

25

30

35

20

In another approach, the Z2D3 antibody could be coupled to an inactive form of an enzyme, for example, a proenzyme or an enzyme-inhibitor complex. The advantage of this method would be that larger amounts of enzyme could be administered, thus delivering larger amounts of enzyme to the plaque while not causing any damage to normal tissues by the circulating conjugate. After the conjugate has bound to the plaque and unbound circulating conjugate has cleared, the enzyme could be activated so as to begin digestion of the plaque. Activation would involve specific cleavage of the proenzyme or removal of an enzyme inhibitor.

PCT/US94/04641

-120-

VIII-3 Drug Delivery By The Z2D3 Monoclonal Antibody

The Z2D3 monoclonal antibody could be conjugated to a variety of drugs useful in treating atherosclerosis. Of particular interest would be drugs which inhibit cell growth or which inhibit cell growth factors. The Z2D3 monoclonal antibody would specifically deliver a high concentration of the drug of choice directly to the atherosclerotic lesion.

10

5

VIII-4 Drugs Which Inhibit Or Prevent The Formation Of The Z2D3 Antigen Epitope

The Z2D3 monoclonal antibody binds to all stages of atherosclerotic plaque development as visualized by immunohistology (Section III). It is therefore likely that the Z2D3 antigen is an integral component of the atherosclerotic lesion.

20

25

Any compound or drug which inhibits or prevents the synthesis or formation of the Z2D3 atherosclerotic plaque-specific antigen may serve to inhibit, prevent or cure the disease. The formation of plaque antigen could be blocked in several ways. In one method, antigen formation could be blocked by inhibiting or inactivating the enzyme or enzymes responsible for the synthesis of the Z2D3 antigen.

Evidence presented above (section IV) suggests that the Z2D3 antigen is a complex comprised of at least two molecules, one of which is a steroid, and the other, a quaternary ammonium salt. Consequently, a second method of preventing plaque antigen formation would be the administration of a drug which blocks the formation of the antigen complex or which forms non-antigenic complexes with one or both of the antigen components.

VIII-4-(a). Inhibition Of The Surrogate Antigen ELISA

While studying the surrogate antigen ELISA (Section IV-2), it was discovered that certain chemical compounds, which, when added to the plate coating solution (Section IV-2-(e)), significantly reduce or completely eliminate the ELISA signal. Since these chemical compounds do not function as surrogate antigens, either alone or in combination with a suitable steroid or quaternary ammonium compound, this inhibition of the ELISA is not 10 due to competition for antibody binding. Inhibition of the ELISA is therefore attributed to the chemical's ability to block or inhibit the formation of the Thus, such chemicals could be of surrogate antigen. therapeutic value in the treatment of atherosclerosis. 15

<u>Materials</u>

Reagents and materials for ELISA assays were as presented in Section IV-2-(d) and (e). Chemicals being tested as inhibitors, the highest grade available, were purchased from one of the following: Sigma Chemical Company, St. Louis, MO; Aldrich Chemical Company, Milwaukee, WI; or Steraloids, Inc., Wilton, NH. Compounds were stored as directed by the supplier, generally desiccated over phosphorous pentoxide.

Procedure

A surrogate antigen solution containing 0.5 mg/mL of the steroid of choice and 31.25 μg/mL of the quaternary ammonium compound of choice was prepared in absolute ethanol. This solution was pipetted into microtiter plate wells, 50 μL per well, yielding 25 μg of steroid and 1.56 μg of quaternary ammonium compound per well. Negative control wells received no antigen solution.

10

Chemicals being tested as inhibitors were dissolved in absolute ethanol at 0.5 mg/mL. In some cases, sonication was required for complete dissolution. A two-fold dilution series of the chemical was prepared in absolute ethanol. Aliquots, 50 μ L per well, of the inhibitor at the appropriate dilutions were added to the microtiter plate wells containing the surrogate antigen solution. Positive control wells received no inhibitor. After all compounds were added to the wells, the ethanol was removed by evaporation in a stream of air. The remainder of the ELISA was performed as described in Section IV-2-(d).

Results

15

20

25

30

The chemical compounds which have been tested to-date for their ability to inhibit the Z2D3 surrogate antigen are shown in Table 6. Several compounds are potent inhibitors, requiring 5 nmol or less of the compound per well to reduce ELISA activity by 50 %. Several of these compounds will be tested for their ability to inhibit the formation of atherosclerotic lesions in-vivo.

Of the weak inhibitors, requiring more than 5 nmol of compound for 50 % inhibition, phosphatidylcholine is of Intravenous injection of phosphatidylcholine interest. reported to cause the regression atherosclerotic lesions in animal models [Byers, S.O. and Friedman, M., Journal Lipid Research, vol. 1 (4), pages 343-348, 1960; Stafford, W.W. and Day, C.E., Artery, vol. 1(2), pages 106-114, 1975]. The mechanism of this action possible that been explained. It is phosphatidylcholine functions as an inhibitor of the Z2D3 antigen.

- Table 1. Immunohistological Specificity Of Z2D3 IgM-Class Monoclonal Antibody.
- 5 Table 2. Sterol Or Sterol-Like Components -- ELISA Activity Relative To Cholesterol.
 - Table 3. Quaternary Ammonium Or Non-Sterol Component -- ELISA Activity Relative To BAC.
- 10
 - Table 4. PCR And cDNA Primers.
 - Table 5. Immunohistological Specificity Of Z2D3 Chimeric Antibody.
- Table 6. Chemicals Tested As Inhibitors Of The Z2D3
 Surrogate Antigen ELISA

-124-

Table 1.
Immunohistologic Screening

We have demonstrated that Mab Z2D3 is localized to the core of atherosclerotic plaque. It does not bind other arterial wall components or other tissues that would interfere with its use as an in-vivo targeting agent. The table below shows that the Z2D3 antigen is extracellular in the atherosclerosis lesions (that is, it is exposed) and is available for binding to its antibody. The antigen is present in three other sites (spleen, ovary, and lymph node) intracellularly (that is, it is not exposed), and will not be available for binding in vivo.

15

	Tissue	Staining
	Cerebellum	
	Cerebral cortex	· · · · · · · · · · · · · · · · · · ·
20	Medulla	
	Spinal cord	
	Dura	·
	Peripheral nerve	
25	Heart	
	Lung	
	Trachea	
	Bronchus	
	Breast	· .
30	Pectoral muscle	
	Esophagus	
	Diaphragm	
	Stomach	
35	Liver	
3.5	Spleen	3-4 fibromyocytes
	phree:	(intracellular)
	•	\

		220
	Table 1, Continued	
	Pancreas	
	Small bowel	
5	Colon	
	Ovary	1-2' luteal cells
		(intracellular)
	Uterus	
10	Kidney	
	Bladder	
•	Rectum	
	Psoas Muscle	
15	Lymph Node	
	Skin	1-3 sebaceous glands
		(intracellular)
		3-4* extracellular staining

-126-

Table 2
Sterol Or Sterol - Like Component
ELISA Activity Relative To Cholesterol

5	Compound	<u>Ouaternar</u>	y Ammonium C	omponent
10	Highly Active Compounds	Benzal- konium <u>Chloride</u>	Benzyldi- methyl Hexadecyl Ammonium Chloride	Palmitoyl Choline
15	5-Cholesten-38-ol (Cholesterol)	1	1	1
	5,7-Cholestadien-3ß-ol (7-Dehydrocholesterol)	2	4	8
20	5,24-Cholestadien-38-ol (Desmosterol)	1	1	1 .
25	5α-Cholestane-3β-ol (Dihydrocholesterol)	1	1	1
	5α-Cholest-7-en-3β-ol (Lathosterol)	nt	1 .	1
	5-Cholesten-3-one	nt .	0.1	2

30

WO 94/25053

-127-

Table	2,	Continued
-------	----	-----------

	Other Steroid Compounds			•
5	58-Cholanic acid	<0.05	nt	nt
	Cholecalciferol	nt	<0.05	<0.05
	(Vitamin D3)			1_
10	5α-Cholestane	<0.05	nt	nt
	58-Cholestane	٠.		
	(Coprostane)	<0.05	nt	nt
15	5α-Cholestane-	•	·	
•	3B-ol sulfate	<0.05	nt ·	nt
	58-Cholestane-			0.1
20	3B-ol (Corpostanol)	<0.05	<0.05	0.1
20	58-Cholestane-3-one	<0.05	nt	nt
	4-Cholesten-3α-ol	<0.05	nt	nt
25	4-Cholesten-38-ol			
	(Allocholesterol)	0.5	nt .	nt
	4-Cholesten-3-one	nt	<0.05	<0.05
30	5-Cholesten	nt	<0.05	<0.05
	5-Cholesten-3β,7α-diol			
	(7α-Hydroxycholesterol)	nt	0.1	0.3
35	5-Cholesten-38,78-diol		·	
	(7B-Hydroxycholesterol)	nt	<0.05	<0.05

-128-

Table 2, Continued

E	5-Cholesten-3B,19-diol (19-Hydroxycholesterol)	0.1	nt	nt
5	5-Cholesten-3B, 20α -diol (20α -Hydroxycholesterol)	nt	<0.05	<0.05
10	5-Cholesten-38, 25-diol (25-Hydroxycholesterol)	<0.05	nt .	nt
	5-Cholesten-3α-ol (Epicholesterol)	<0.05	nt	nt
15	5-Cholesten-38-ol acetate	<0.05	nt	nt
20	5-Cholesten-3ß-ol benzoate	<0.05	nt	nt
	5-Cholesten-3B-ol n-butyrate	<0.05	nt	nt
25	5-Cholesten-3ß-ol ethyl carbonate	<0.05	nt	nt
	5-Cholesten-38-ol n-palmitate	<0.05	nt	nt
30	Dihydrotachysterol	<0.05	nt	nt
,	3-Hydroxyandrost- 5-en-17-one	<0.05	nt	nt
35	8,24-Lanostadien- 38-ol (Lanosterol)	0.1	0.1	0.1

		-129-		
	Table 2, Continued			
5	5,22 Stigmastadien- 36-ol (Stigmasterol)	<0.05	nt	nt
	Tryclycerides:			
	Trilaurin	<0.05	nt	nt
10	Trimyristin Other Compounds:	<0.05	nt :	nt
	Decahydro-2-naphthol	<0.05	nt	nt
15	1,12-Dodecanediol	<0.05	nt	nt
	n-Dodecanoic acid	<0.05	nt	nt
20	Non-Mammalian Sterols:			
25	Spirosol-5-en-3B-ol (Solasodine)	<0.05	nt	nt
23	(25R) Sprost-5-en-38- ol (Diosgenin)	0.2	nt	nt
30	5,24 (28)-Sitmastadien- 38-ol (Fucosterol)	1	nt :	nt

-130-

Table 3.
Quaternary Ammonium Or Non-Sterol Component
ELISA Activity Relative To BAC

5		Steroid	Component
	Compound	<u>Cholesterol</u>	7-Dehydro- cholesterol
10	Ouaternary Ammonium Detergents:		
15	Benzalkonium chloride	1	1
	Dodecyltrimethyl		
	ammonium bromide	<0.05	<0.05
	Tetradecyltrimethyl		
20	ammonium bromide	<0.05	0.1
	Hexadecyltrimethyl		
	ammonium bromide	1	1
25	Benzyldimethyldodecyl		
	ammonium bromide	0.1	0.1
ar.	Benzyldimethyltetradecyl		
	ammonium chloride	1	4
30	Benzyldimethylhexadecyl		
	ammonium chloride	12	8
	damonada onadaad		•
	. Benzyldimethyloctadecyl		
35	ammonium chloride	16	8

-131-

	Table 3, Continued		
5	Benzyltrimethyl ammonium chloride	<0.05	nt
5	Benzyltriethyl ammonium chloride	<0.05	nt
10	Benzyltributyl ammonium chloride	<0.05	nt
	Didodecyldimethyl ammonium chloride	0.1	0.5
15	Hexadecyldimethylethyl ammonium chloride	4	4
20	Hexadecylpyridyl ammonium chloride	2	4
20	Naturally Occurring Ouaternary Ammonium Compounds:		
25	Butyryl choline	<0.05	<0.05
	Lauroyl choline	<0.05	0.2
.30	Myristoyl choline	<0.05	2
	Palmitoyl choline	0.2	4
	Stearoyl choline	0.2	4
35	Palmitoyl carnitine	<0.05	<0.05

_	1	2	า	
_	1	_	4	_

	Table 3, Continued		
5	n-Palmitoyl-D- sphingomyelin	<0.05	<0.05
	Phosphatidyl choline, hen's egg	<0.05	<0.05
10	Phosphatidyl choline, hen's egg, reduced	<0.05	<0.05
15	Phosphatidyl choline, Dipalmitoyl	<0.05	<0.05
13	Phosphatidyl choline, 1-Palmitoyl, 2-Acetyl	<0.05	<0.05
20	1-0-Hexadecyl-2-acetyl- sn-Glycero-3-phospho- (N,N,N-trimethyl) hexanolamine	<0.05	0.1
25 ₋	Other Compounds:		
	Polyethylene glycol	<0.05	<0.05
	Polyvinyl alcohol	<0.05	<0.05

-133-

Table 4.

PCR And cDNA Primers

Restriction Sites Are Underlined

5	CK2FOR 5'	-	GG <u>AAGCTT</u> GAAGATGGATACAGTTGGTGCAGC
	CM1FOR 5'	-	GG <u>AAGCTT</u> AAGACATTTGGGAAGGACTGACTCTC
	VH1BACK 5'	-	AGGTSMAR <u>CTGCAG</u> SAGTCWGG
10	VH1FOR 5'	-	TGAGGAGAC <u>GGTGACC</u> GTGGTCCCTTGGCCCCAG
	VK1BACK 5'	-	GACATT <u>CAGCTG</u> ACCCAGTCTCCA
15	VK4BACK 5'	-	GACATT <u>GAGCTC</u> ACCCAGTCTCCA
	VK1FOR 5'	-	GTT <u>AGATCT</u> CCAGCTTGGTCCC
20	VK2FOR 5'	-	GTTAGA <u>TCTGAG</u> CTTGGTCCC

Sequence CK2FOR 5' is SEQ ID NO:81.

Sequence CM1FOR 5' is SEQ ID NO:82.

Sequence VH1BACK 5' is SEQ ID NO:83.

25 Sequence VH1FOR 5' is SEQ ID NO:84.

Sequence VK1BACK 5' is SEQ ID NO:85.

Sequence VK4BACK 5' is SEQ ID NO:86.

Sequence VK1FOR 5' is SEQ ID NO:87.

Sequence VK2FOR 5' is SEQ ID NO:88.

Colon

Table 5. Immunohistologic Screening

We have demonstrated that the chimeric Z2D3 IgG antibody 5 is localized to the core of atherosclerotic plaque. does not bind other arterial wall components or other tissues that would interfere with its use as an in-vivo targeting agent. The table below shows that the Z2D3 antigen is specific to the atherosclerosis lesions only, and is not present in any other sites. 10

	Tissue	Staining
15	Coronary artery lesion	3-4+ extracellular staining
	Cerebellum	
	Cerebral cortex	_
	Medulla	
20	Spinal cord	
	Dura	 ,
	Peripheral nerve	
	Heart	
	Lung	-
25	Trachea	
	Bronchus	
	Breast	
	Pectoral muscle	
	Esophagus	
30	Diaphragm	
	Stomach	جانسپن <u>ي</u>
	Liver	
	Spleen	
•	Pancreas	-
35	Small bowel	

PCT/US94/04641

WO 94/25053

-135-

Table 5, Continued

	Ovary	
	Uterus	
5	Kidney	
	Bladder	
	Rectum	
	Psoas muscle	
	Lymph node	
10	Skin	

-136-

Table 6. Chemicals Tested As Inhibitors Of The Z2D3 Surrogate Antigen ELISA

5 Strong Inhibitors: Less than 5 nmol of the compound yields 50 % inhibition of the ELISA activity:

 5β -Cholanic Acid Arachidonic Acid Cardiolipin

10 5α-Cholestane-β-ol Sulfate
Lysophosphatidylcholine
Palmitic Acid

Phosphatidyl-N,N-Dimethylethanolamine Phosphatidylethanolamine

15 Phosphatidylglycerol Stearic Acid

Weak Inhibitors: Greater than 5 nmol of the compound required to yield 50 % inhibition of the ELISA activity:

20 Clofibric Acid
Eicosapentaenoic Acid
Phosphatidylinositol
Sodium Dodecylsulfate
Sphingomyelin
25 Sulfatides
Tween-20

Non-Inhibitors: 50 nmol of the compound yields no inhibition of the ELISA activity:

5α-Androstan-3α-ol-17-one Sulfate
5α-Androstan-3β-ol-17-one Sulfate
5α-Androstan-17β-ol-3-one Sulfate
5β-Androstan-3α-ol-17-one Sulfate
5-Androsten-3β-ol-17-one Sulfate

-137-

Table 6, Continued

5

Bezafibrate Danazol Hexadecanedioic Acid

Hexadecanedioic Acid
Probucol
Triglycerides
Triton X-100

Triton X-405

-138-

SEQUENCE LISTING

	•				
	(1) GENERAL	INFORMATION:		•	
5 ·	(i) APP	LICANT: Scotgen	Biopharmaceuticals, 1	inc.	
	(ii) TIT	TLE OF INVENTION:	ATHEROSCLEROTIC PLACE ANTIBODIES THERETO,	OUE SPECIFIC ANTIGER	NS,
10	·	HBER OF SEQUENCES		•	
15	() () ()	RRESPONDENCE ADDR A) ADDRESSEE: Joh B) STREET: 30 Roc C) CITY: New York D) STATE: New Yor E) COUNTRY: U.S.A	kefeller Plaza	Dunham .	
	1) (1	P) ZIP: 10112		•	
20	(1	MPUTER READABLE F A) HEDIUM TYPE: F B) COMPUTER: IBM C) OPERATING SYST	TODDA GTOV		
25		RRENT APPLICATION			
30	(.	RRENT APPLICATION NO B) PILING DATE: I C) CLASSIFICATION	erewith	: `	
30	•		DATA: NUMBER: US 08/053,4	51	
35	(TTORNEY/AGENT INFO (A) NAME: White E (B) REGISTRATION (C) REFERENCE/DOC		;9-K-PCT	
		ELECOMMUNICATION (A) TELEPHONE: (2) (B) TELEFAX: (212) (C) TELEX: 422523	664 0525		· .
45			NO. 1.		
		ATION FOR SEQ ID		••	
50		EQUENCE CHARACTER (A) LENGTH: 22 ba (B) TYPE: nucleic (C) STRANDEDNESS: (D) TOPOLOGY: unk	acid unknown	· .	•
55	(ii) H	OLECULE TYPE: DNA	(genomic)	, .	
		YPOTHETICAL: N	1		
60		nti-sense: N		•	
- ·				,	
	(xi) S	EQUENCE DESCRIPT	ION: SEQ ID NO:1:	•	

AGGTSHARCT GCAGSAGTCW GG

-139-

	(2) INFORMATION FOR SEQ ID NO.2:	
. 5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
	(iv) Anti-sense: N	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	60
20	CTGCAGGAGT CWGGAGGAGG CTTGGTGCAA CCTGGGGGGGT CACGGGGACT CTCTTGTGAA	.60
20	GGCTCAGGGT TTACTTTTAG TGGCTTCTGG ATGAGCTGGG TTCGACAGAC ACCTGGGAAG	120
	ACCCTGGAGT GGATTGGAGA CATTAATTCT GATGGCAGTG CAATAAACTA CGCACCATCC	180
25	ATANAGGATC GATTCACTAT CTTCAGAGAC AATGACAAGA	220
	(2) INFORMATION FOR SEQ ID NO:3:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 218 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	•
35	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
40	(iv) Anti-Sense: N	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
45	CTGCAGGAGT CWGGAGGAGG CTTGGTGCAA CCTGGGGGGT CACGGGGACT CTCTTGTGAA	60
	GGCTCAGGGT TTACTTTTAG TGGCTTCTGG ATGAGCTGGG TTCGACAGAC ACCTGGGAAG	120
	ACCCTGGAGT GGATTGGAGA CATTAATTCT GATGGCAGTG CAATAAACTA CGCACCATCC	180
50	ATANAGGATC GATTCACTAT CTTCAGAGAC AATGACAA	218
	(2) INFORMATION FOR SEQ ID NO:4:	_
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
60	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
65	(14) ANTI-SENSE: N	,

-140-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
5	CTGCAGGAGT CTGGAGGAGG CTTGGTGCAA CCTGGGGGGGT CGCGGGGACT CTCTTGTGAA	60
	GGCTCAGGGC TTACTTTTAG TGGCTTCTGG ATGAGCTGGG TTCGACAGAC ACCTGGGAAG	120
	ACCCTGGAGT GGATTGGAGA CATTAATTCT GATGGCAGTG CAATAAACTA CGCACCATCC	180
10	ATAAAGGATC GATTCACTAT CTTCAGAGAC AATGACAAGA	220
	(2) INFORMATION FOR SEQ ID NO:5:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 218 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
25	(iv) ANTI-SENSE: N	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
30	CTGCAGGAGT CAGGAGGAGG CTTGGTGCAA CCTGGGGGGT CACGGGGACT CTCTTGTGAA	60
	GGCTCAGGGT TTACTTTTAG TGGCTTCTGG ATGAGCTGGG TTCGACAGAC ACCTGGGAAG	120
35	ACCCTGGAGT GGATTGGAGA CATTAATTCT GATGGCAGTG CAATAAACTA CGCACCATCC	180
35	ATARAGGATC GATTCACTAT CTTCAGAGAC AATGACAA	218
	(2) INFORMATION FOR SEQ ID NO:6:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 237 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
50	(iv) ANTI-SENSE: N	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
33	CTGCAGGAGT CAGGAGGAGG CTTGGTGCAA CCTGGGGGGGT CACGGGGACT CTCTTGTGAA	60
	GGCTCAGGGT TTACTTTTAG TGGCTTCTGG ATGAGCTGGG TTCGACAGAC ACCTGGGAAG	120
60	ACCOTGGAGT GGATTGGAGA CACTARTTCT GATGGCAGTG CAATAAACTA CGCACCATCC	180
	ATAMAGGATC GATTCACTAT CTTCAGAGAC AATGACAAGA GCACCCTGTA CCTGCAG	231
65	(2) INFORMATION FOR SEQ ID NO:7:	
47	A CHANTAN CUADACTEDICTICS	

	(A) LENGTH: 220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
10	(iv) ANTI-SENSE: N	
	\cdot	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
15	AGGCTTGGTG CAACCTGGGG GGTCACGGGG ACTCTCTTGT GAAGGCTCAG GGTTTACTTT	60
	TAGTGGCTTC TGGATGAGCT GGGTTCGACA GACACCTGGG AAGACCCTGG AGTGGATTGG	120
20	AGACATTAAT TOTGATGGCA GTGCAATAAA CTACGCACCA TCCATAAAGG ATCGATTCAC	180
	TATCTTCAGA GACAATGACA AGAGCACCCT GTACCTGCAG	220
	(2) INFORMATION FOR SEQ ID NO:8:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 220 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
٠	(ii) HOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
35	(iv) Anti-Sense: N	·
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	AGGCTTGGTG CAACCTGGGG GGTCACGGGG ACTCTCTTGT GAAGGCTCAG GGTTTACTTT	60
45	TAGTGGCTTC TGGATGAGCT GGGTTCGACA GACACCTGGG AAGACCCTGG AGTGGATTGG	120
45	AGACATTAAT TCTGATGGCA GTGCAATAAA CTACGCACCA TCCATAAAGG ATCGATTCAC	180
	TATCTTCAGA GACAGTGACA AGAGCACCCT GTACCTGCAG	220
50	(2) INFORMATION FOR SEQ ID NO:9:	_
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
60	(iii) HYPOTHETICAL: N	
•	(iv) Anti-Sense: N	
65	(#1) SEQUENCE DESCRIPTION: SEQ ID NO:9:	

PCT/US94/04641

WO 94/25053

-142-

•	AGGCTTGGTG CAACCTGGGG GGTCACGGGG ACTCTCTTGT GAAGGCTCAG GGTTTACTTT	60
	TAGTGGCTTC TGGATGAGGT GGGTTCGACA GACACCTGGG AAGACCCTGG AGTGGATTGG	120
5	AGACATTAAT TCTGATGGCA GTGCAATAAA CTACGCACCA TCCATAAAGG ATCGATTCAC	180
	TATCTTCAGA GACAATGACA AGAGCACCCT GTACCTGCAG	220
	(2) INFORMATION FOR SEQ ID NO:10:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 219 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
20	(iv) ANTI-SENSE: N	•
25	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	GGCTTGGTGC AACCTGGGGG GTCACGGGGA CTCTCTTGTG AAGGCTCAGG GTTTACTTTT	60
	AGTGGCTTCT GGATGAGCTG GGTTCGACAG ACACCTGGGA AGACCCTGGA GTGGATTGGA	120
30	GACATTAATT CTGATGGCAG TGCAATAAAC TACGCACCAT CCATAAAGGA TCGATTCACT	180
	ATCTTCAGAG ACAATGACAA GAGCACCCTG TACCTGCAG	219
35	(2) INFORMATION FOR SEQ ID NO:11:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 218 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	·
	(ii) MOLECULE TYPE: DNA (genomic)	
45	(iii) HYPOTHETICAL: N	
	(iv) ANTI-SENSE: N	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	GCTTGGTGCA ACCTGGGGGG TCACGGGGAC TCTCTTGTGA AGGCTCAGGG TTTACTTTTA	— 60 [.]
	GTGGCTTCTG GATGAGCTGG GTTCGACAGA CACCTGGGAA GACCCTGGAG TGGATTGGAG	120
55	ACATTAATTC TGATGGCAGT GCAATAAACT ACGCACCATC CATAAAGGAT CGATTCACTA	180
	TOTTCAGAGA CAATGACAAG AGCACCCTGT ACCTGCAG	218
60	(2) INFORMATION FOR SEQ ID NO:12:	
65	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 147 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown	

-143-

	(D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
5	(iii) HYPOTHETICAL: N	
	(iv) ANTI-SENSE: N	
	·	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	60
	CTGCAGATGA GCAATGTGCG ATCTGAGGAC ACAGCCACGT ATTTCTGTAT GAGATATGAT	
15	GGTTACTACT GGTACTTCGA TGTCTGGGGC GCAGGGACCA CGGTCACCGT CTCCTCAGAG	120
	AGTCAGTCCT TCCCAAGTCT TAAGCTT	147
	(2) INFORMATION FOR SEQ ID NO:13:	
20 25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 114 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	•
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
30	(iv) ANTI-SENSE: N	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	CTGCAGATGA GCAATGTGCG ATCTGAGGAC ACAGCCACGT ATTTCTGTAT GAGATATGAT	114
40	GGTTACTACT GGTACTTCGA TGTCTGGGGC GCAGGGACCA CGGTCACCGT CTCC	114
40	(2) INFORMATION FOR SEQ ID NO:14:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
50	(111) HYPOTHETICAL: N	
	(iv) anti-sense: N	
55	No.14	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	34
60	GAGAGTCAGT CCTTCCCAAA TGTCTTAAGC TTCC	
	(2) INFORMATION FOR SEQ ID NO:15:	•
65	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 390 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown	

-144-

	(D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
5	(iii) HYPOTHETICAL: N	
	(iv) ANTI-SENSE: N	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
•	AGGTSMARCT GCAGGAGTCW GGAGGAGGCT TGGTGCAACC TGGGGGGGTCA CGGGGACTCT	60
15	CTTGTGAAGG CTCAGGGTTT ACTTTTAGTG GCTTCTGGAT GAGCTGGGTT CGACAGACAC	120
	CTGGGAAGAC CCTGGAGTGG ATTGGAGACA TTAATTCTGA TGGCAGTGCA ATAAACTACG	180
	CACCATCCAT ARAGGATCGA TTCACTATCT TCAGAGACAA TGACAAGAGC ACCCTGTACC	240
20	TGCAGATGAG CAATGTGCGA TCTGAGGACA CAGCCACGTA TTTCTGTATG AGATATGATG	300
	GTTACTACTG GTACTTCGAT GTCTGGGGCG CAGGGACCAC GGTCACCGTC TCCTCAGAGA	360
25	GTCAGTCCTT CCCAAATGTC TTAAGCTTCC	390
	(2) INFORMATION FOR SEQ ID NO:16:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 390 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	•
35	(ii) MOLECULE TYPE: DNA (genomic)	•
	(iii) HYPOTHETICAL: N	
40	(iv) ANTI-SENSE: N	
.40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	AGGTSHARCT GCAGGAGTCW GGAGGAGGCT TGGTGCAACC TGGGGGGTCA CGGGGACTCT	60
45	CITGTGAAGG CTCAGGGTTT ACTITTAGTG GCTTCTGGAT GAGCTGGGTT CGACAGACAC	120
	CTGGGAAGAC CCTGGAGTGG ATTGGAGACA TTAATTCTGA TGGCAGTGCA ATAAACTACG	180
50	CACCATCCAT ANAGGATCGA TTCACTATCT TCAGAGACAA TGACAAGAGC ACCCTGTACC	240
	TGCAGATGAG CAATGTGCGA TCTGAGGACA CAGCCACGTA TTTCTGTATG AGATATGATG	300
	GTTACTACTG GTACTTCGAT GTCTGGGGGC CAGGGACCAC GGTCACCGTC TCCTCAGAGA	360
55	GTCAGTCCTT CCCAAATGTC TTAAGCTTCC	390
	(2) INFORMATION FOR SEQ ID NO:17:	
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 390 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
65	(ii) MOLECULE TYPE: DNA (genomic)	

(iii) HYPOTHETICAL: N

-145-

	(iv) ANTI-SENSE: N	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
10	TCCASKTYGA CGTCCTCAGW CCTCCTCCGA ACCACGTTGG ACCCCCCAGT GCCCCTGAGA	60
	GAACACTICC GAGTCCCAAA TGAAAATCAC CGAAGACCTA CTCGACCCAA GCTGTCTGTG	120
	GACCCTTCTG GGACCTCACC TAACCTCTGT AATTAAGACT ACCGTCACGT TATTTGATGC	180
15	GTGGTAGGTA TTTCCTAGCT AAGTGATAGA AGTCTCTGTT ACTGTTCTCG TGGGACATGG	240
	ACGICTACTC GITACACGCT AGACTCCTGT GICGGIGCAI AAAGACATTT	300
	CAATGATGAC CATGAAGCTA CAGACCCCGC GTCCCTGGTG CCAGTGGCAG AGGAGTCTCT	360
20	CAGTCAGGAA GGGTTTACAG AATTCGAAGG	390
	(2) INFORMATION FOR SEQ ID NO:18:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 126 amino acids	
	(B) TYPE: amino acid (C) STRANDEDNESS: unknown	
20	(D) TOPOLOGY: unknown	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
35	(iv) ANTI-SENSE: N	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
	Val Lys Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser 1 5 10 15	
	Arg Gly Leu Ser Cys Glu Gly Ser Gly Phe Thr Phe Ser Gly Phe Trp	
45	Met Ser Trp Val Arg Gln Thr Pro Gly Lys Thr Leu Glu Trp Ile Gly	
	Het Ser Trp Val Arg Cin Ini 720 diy 372 111 45	
50	Asp Ile Asn Ser Asp Gly Ser Ala Ile Asn Tyr Ala Pro Ser Ile Lys	
	Asp Arg Phe Thr Ile Phe Arg Asp Asn Asp Lys Ser Thr Leu Tyr Leu 75 80	
55	65	
22	Gln Met Ser Asn Val Arg Ser Glu Asp Thr Ala Thr Tyr Phe Cys Met 85 90	
	Arg Tyr Asp Gly Tyr Tyr Trp Tyr Phe Asp Val Trp Gly Ala Gly Thr	
60	100	
,	Thr Val Thr Val Ser Ser Glu Ser Gln Ser Phe Pro Asn Val	
	(2) TUPORNATION FOR SEO ID NO:19:	

15

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 126 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	· ,
	(ii) MOLECULE TYPE: DNA (genomic)	•
	(iii) HYPOTHETICAL: N	
10	(iv) ANTI-SENSE: N	
15	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:19:	clu Sar
	Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly 1 10 5	
20	Arg Gly Leu Ser Cys Glu Gly Ser Gly Phe Thr Phe Ser Gly 20	
	Met Ser Trp Val Arg Gln Thr Pro Gly Lys Thr Leu Glu Trp 45 35	
25	Asp Ile Asn Ser Asp Gly Ser Ala Ile Asn Tyr Ala Pro Ser 50 55	
30	Asp Arg Phe Thr Ile Phe Arg Asp Asn Asp Lys Ser Thr Leu 75 65	
	Gln Met Ser Asn Val Arg Ser Glu Asp Thr Ala Thr Tyr Phe 85	
35	Arg Tyr Asp Gly Tyr Tyr Trp Tyr Phe Asp Val Trp Gly Ala	Gly Thr
	Thr Val Thr Val Ser Ser Glu Ser Gln Ser Phe Pro Asn Val 115 120 120	
40	(2) INFORMATION FOR SEQ ID NO:20:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
50	(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: N	
	(iv) Anti-Sense: N	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
	GGCTTCTGGA TGAGC	• .
60	(2) INFORMATION FOR SEQ ID NO:21:	
65	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown	

		(D) TOPOLOGY: unknown		•
	(ii)	MOLECULE TYPE: DNA (genomic)		
5	(iii)	HYPOTHETICAL: N		
	(iv)	ANTI-SENSE: N	•	
	,			
10	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:21:		
•	CCGAAGAC	CT ACTCG		15
15	(2) INFO	RMATION FOR SEQ ID NO:22:		•
20	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown		
•	(ii)	MOLECULE TYPE: DNA (genomic)		
25	(iii)	HYPOTHETICAL: N		
	(iv)	ANTI-SENSE: N		
20				
30	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:22:		
	Glý 1	Phe Trp Het Ser 5		•
35	(2) INFO	RMATION FOR SEQ ID NO:23:		
40	(±)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	·	
45	(ii)	MOLECULE TYPE: DNA (genomic)		
45	(iii)	HYPOTHETICAL: N	•	
	(iv)	ANTI-SENSE: N		
50	•			
		SEQUENCE DESCRIPTION: SEQ ID NO:23:		
55	•	TT CTGATGGCAG TGCAATAAAC TACGCACCAT CCATAAAGGA T		51
30		RMATION FOR SEQ ID NO:24:		
60	· (i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown		
c =	(ii)	MOLECULE TYPE: DNA (genomic)		
65	/iii)	HYPOTHETICAL: N		

(iv) ANTI-SENSE: N

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:			
5	CTGTAATTAA GACTACCGTC ACGTTATTTG ATGCGTGGTA GGTATTTCCT A		51	\$ •
10	(2) INFORMATION FOR SEQ ID NO: 25:			•
-	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids			
	(B) TYPE: amino acid (C) STRANDEDNESS: unknown	•		
15	(D) TOPOLOGY: unknown			
	(ii) MOLECULE TYPE: DNA (genomic)	•		
20	(iii) HYPOTHETICAL: N	•		
	(iv.) ANTI-SENSE: N			
	SEO ID NO:25:		•	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: Asp Ile Asn Ser Asp Gly Ser Ala Ile Asn Tyr Ala Pro Ser	Ile Lys	3 .	
	Asp Ile Asn Ser Asp Gly Ser All 110	15		
30	Авр	•		
3.0				
	(2) INFORMATION FOR SEQ ID NO:26:			
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs			
	(B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (C) STRANDEDNESS: unknown			
40	(D) TOPOLOGY: unknown			
	(ii) MOLECULE TYPE: DNA (genomic)			
	(iii) HYPOTHETICAL: N			
45	(iv) Anti-Sense: N			
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	•		
50			30	
	TATGATGGTT ACTACTGGTA CTTCGATGTC			
	(2) INFORMATION FOR SEQ ID NO: 27:			
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid			
	(A) CEDANDEDNESS! UILANOW.			**
60	(D) TOPOLOGY: unknown			
	(ii) MOLECULE TYPE: DNA (genomic)			•
•	(iii) HYPOTHETICAL: N			
65	(iv) ANTI-SENSE: N			

	(xi)	SEQUE	NCE	DESC	RIPT	: NOT:	250	, 15	1,012								3 (
	ATACTACCA	A TGA	TGAC	CAT	GAAG	CTAC	AG										٠,
5	(2) INFOR	MATIO	n fo	R SE	Q II) NO:	28:						• •				
10	(i)	SEQUE (A) (B) (C) (D)	LENG TYPE STRA	TH: : an NDEI	10 a nino NES	$m_{T}u_{c}$	i knov	Lus									
•	(ii)	HOLEC	ULE	TYPE	e: Di	NA (jenor	nic)									
15	(iii)	нүрот	HETI	CAL	: N												
	(iv)	ANTI-	SENS	E: 1	N												
20																	
	(xi)	SEQUE	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	28;							
25	Tyr 1	Asp (aly 7	yr '	Tyr 5	Trp '	Tyr	Phe	Asp '	Val							
	(2) INFOR) I TAM	ON FO	OR S	EQ I	סא ס	:29:										
30	(1)	(B)	LENG TYPI	STH: S: a: ANDE	121 mino DNES	ERIS ami aci s: u nkno	no a d nkno	Clus									
35	(ii)	MOLE	CULE	TYP	E: D	NA (geno	mic)	•								
•	(iii)	нүро	THET	ICAL	: N												
40	(iv)	ANTI	–sen	SB :	N				F								
	(xi)	SEQU	ence	DES	CRII	PTION	i: SE	Q II	NO:	29:	•						
45	Xaa 1	Val	Xaa	Leu	Gln 5	Glu	Ser	Gly	Gly	Gly 10							
		Arg		20					~ ~								
50		Met	35					40									-
55·		Asp 50						•						•			
	65	Asp				70								•			
60		Tyr			02	•											-
	Phe	Cys	Met	Arg 100	Tyr	Asp	ĠĴŸ	Tyr	Tyr 105	Trp	Tyr	Phe	Авр	110	Trp	CTA	
65	- •			7 -	Val	Thr	Val	Ser	Ser								

-150-

		1
•		1

		1	L15					120								
	(2) INFOR	MATIC	ON FO	OR SI	EQ II	ои о	:30:									
5		SEQUI (A) (B)	ENCE LENCE TYPE		RACTI 120 mino DNES	ERIS' ami: aci: 5: u	TICS no a d nkno	CTAD								
10	(ii)	MOLE	CULE	TYP	E: D	NA (geno	mic)								
•	(iii)	НУРО	THET	ICAL	: N											
15	(iv)	ANTI	-sen	SE:	N			•								
	(xi)	SEQU	ENCE	DES	CRIP	TION	ı: SE	Q IÉ	NO:	30:						
20	Glu 1	Val	Lys	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
25	Ser	Leu		20												
23		Met	35					40								
30		Glu 50					55									
	65	Leu				70										
35		Tyr			85								. •			
40	•	Сув		100							Phe	Ala	Tyr	Trp 110	Gly	
	Gln	Gly	Thr	Thr 115	Val	Thr	· Val	Ser	Ser 120							
45	(2) INFO												•			•
50	(i)	(B) LE ;) TY	E CH NGTH PE: RAND POLO	: 5 amin EDNE	amin o ac SS:	id unkr	Lus								
	(ii)	U) MOL						omic	:}							
55	(111)										•.				· .	
	•) ANI										•				
60 [°]	(xi) SEÇ	ONSUÇ	CE DI	escri	(PTI	ON:	SEQ :	ID NO):31	:					•
	G1	y Phe	e Tr	p Met	ses	•		•								

(2) INFORMATION FOR SEQ ID NO:32:

-151-

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown
J	(ii) MOLECULE TYPE: DNA (genomic)
	(iii) HYPOTHETICAL: N
10	(iv) ANTI-SENSE: N
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
	Arg Tyr Trp Met Ser
20	(2) INFORMATION FOR SEQ ID NO:33:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown
	(ii) MOLECULE TYPE: DNA (genomic)
30	(iii) HYPOTHETICAL: N
	(iv) Anti-sense: N
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33: Asp Ile Asn Ser Asp Gly Ser Ala Ile Asn Tyr Ala Pro Ser Ile 10 15
40	1
	Lys Asp
45	(2) INFORMATION FOR SEQ ID NO:34:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown
50	(D) TOPOLOGY: unknown
	(ii) MOLECULE TYPE: DNA (genomic)
55	(iii) HYPOTHETICAL: N
	(iv) ANTI-SENSE: N
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:
	Glu Ile Asn Pro Lys Ala Asp Ser Ser Thr Ile Asn Tyr Thr Pro Ser 10 15
65	Leu Lys Asp

	(2) INFORM	ATION FOR SEQ ID NO:35:	·
5.		EQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
10	(ii) M	OLECULE TYPE: DNA (genomic)	•
10	(iii) H	YPOTHETICAL: N	
	(iv) A	NTI-SENSE: N	
15			
		EQUENCE DESCRIPTION: SEQ ID NO:35:	
20	1	sp Gly Tyr Tyr Trp Tyr Phe Asp Val	
		ATION FOR SEQ ID NO:36:	
25	.(i) S	EQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
30	(ii) M	OLECULE TYPE: DNA (genomic)	
	(iii) H	YPOTHETICAL: N	
35	(iv) A	NTI-SENSE: N	
	(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO:36:	
40	Leu G 1	sly Tyr Tyr Gly Tyr Phe Ala Tyr	
Ω	(2) INFORM	MATION FOR SEQ ID NO:37:	¥1
45	(Ţ) <u>{</u>	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	•
50	/44× >	(O) TOPOZOGI: Chimicano	
		HYPOTHETICAL: N	
55	-	ANTI-SENSE: N	
•	(2-7		•
60	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:37:	•
	GACATTCAG	C TGACCCAGTC TCCA	24
	(2) INFOR	MATION FOR SEQ ID NO:38:	
65		CHAMBUCE CURPACTERISTICS:	·

-153-

	(A) LENGTH: 291 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
10	(iv) ANTI-SENSE: N	•
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	60
13	CTGACCCAGT CTCCATCCTC CATGTATGCA TCGCTGGGAG AGAGAGTCAC TATCACTTGC	•
	AAGGCGAGTC AGGACATTAA AAGCTATTTA AGCTGGTACC AGCAGAAACC ATGGAAATCT	120
20	CCTAAGACCC TGATCTATTA TGCAACAAGC TTGGCAGATG GGGTCCCATC AAGATTCAGT	180
	GGCAGTGGAT CTGGGCAAGA TTATTCTCTA ACCATCAGCA GCCTGGAGTC TGACGATACA	240
0.5	GCAACTTATT ACTGTCTACA GCATGGTGAG AGCCCGCTCA CGTTCGGTGC T	291
25	(2) INFORMATION FOR SEQ ID NO:39:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 140 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(iii) HYPOTHETICAL: N	
	(iv) ANTI-SENSE: N	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
	CTGACCCAGT CTCCATCCTC CATGTATGCA TCGCTGGGAG AGAGAGTCAC TATCACTTGC	60
45	ANGGCGAGTC AGGACATTAN ANGCTATTTN AGCTGGTACC AGCAGARACC ATGGARATCT	120
•	CCTANGACCC TGATCTATTA	140
50	(2) INFORMATION FOR SEQ ID NO:40:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
60	(iii) HYPOTHETICAL: N	
	(iv) ANTI-SENSE: N	
65	SPONENCE DESCRIPTION: SEQ ID NO: 40:	

-154-

	CTGACCCAGT CTCCATCCTC CATGTATGCA TCGCTGGGAG AGAGAGTCAC TATCACTTGC	80
	AAGGCGAGTC AGGACATTAA AAGCTATTTA AG	92
5	(2) INFORMATION FOR SEQ ID NO:41:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 152 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(iii) HYPOTHETICAL: N	•
	(iv) ANTI-SENSE: N	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
	CTGACCCAGT CTCCATCCTC CATGTATGCA TCGCTGGGAG AGAGAGTCAC TATCACTTGC	120
25	AAGGCGAGTC AGGACATTAA AAGCTATTTA AGCTGGTACC AGCAGAAACC ATGGAAATCT	
	CCTAAGACCC TGATCTATTA TGCAACAAGC TT	152
20	(2) INFORMATION FOR SEQ ID NO: 42:	
30 35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 141 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
40	(iii) HYPOTHETICAL: N (iv) ANTI-SENSE: N	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42: CTCCATCCTC CATGTATGCA TCGCTGGGAG AGAGAGTCAC TATCACTTGC AAGGCGAGTC	.60
	AGGREATTAN ARGETATITA AGETGGTACE AGERGANACE ATGGRANTET CETANGACEE	120
50	TGATCTATTA TGCAACAAGC T	141
	(2) INFORMATION FOR SEQ ID NO:43:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 84 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
60	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
65	(1V) ANTI-SENSE: N	
	•	

-155-

	(xi) SEQUENCE DESCRIPTION: SEQ 1D NO:43:	
	TCCATCCTCC ATGTATGCAT CGCTGGGAGA GAGAGTCACT ATCACTTGCA AGGCGAGTCA	60
5	GGACATTAAA AGCTATTTAA GCTG	84
	(2) INFORMATION FOR SEQ ID NO:44:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 140 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
20	(iv) ANTI-SENSE: N	
	•	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
25	TCCATCCCC ATGTATGCAT CGCTGGGAGA GAGAGTCACT ATCACTTGCA AGGCGAGTCA	60
	GGACATTAAA AGCTATTTAA GCTGGTACCA GCAGAAACCA TGGAAATCTC CTAAGACCCT	120
30	GATCTATTAT GCAACAAGCT	140
	(2) INFORMATION FOR SEQ ID NO:45:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 140 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
40	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
45	(iv) ANTI-SENSE: N	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	•
50	TCCATCCTCC ATGTATGCAT CGCTGGGAGA GAGAGTCACT ATCACTTGCA AGGCGAGTCA	60
	GGACATTANA AGCTATTTAN GCTGGTACCA GCAGANACCA TGGANATCTC CTANGACCCT	120
	GATCTATTAT GCAACAAGCT	140
55	(2) INFORMATION FOR SEQ ID NO:46:	
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 265 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
65	(ii) MOLECULE TYPE: DNA (genomic)	٠
US	(iii) HYPOTHETICAL: N	

-156-

(iv) ANTI-SENSE: N

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
J	TGCATCGCTG GGAGAGAGA TCACTATCAC TTGCAAGGCG AGTCAGGACA TTAAAAGCTA	60
	TTTAAGCTGG TACCAGCAGA AACCATGGAA ATCTCCTAAG ACCCTGATCT ATTATGCAAC	120
10	AAGCTTGGCA GATGGGGTCC CATCAAGATT CAGTGGCAGT GGATCTGGGC AAGATTATTC	180
	TCTAACCATC AGCAGCCTGG AGTCTGACGA TACAGCAACT TATTACTGTC TACAGCATGG	240
1 E	TGAGAGCCCG CTCACGTTCG GTGCT	265
15	(2) INFORMATION FOR SEQ ID NO:47:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(i) SEQUENCE CHARACTERIST (A) LENGTH: 265 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
25	(ii) MOLECULE TYPE: DNA (genomic)	•
	(iii) HYPOTHETICAL: N	
30	(iv) ANTI-SENSE: N	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
	TGCATCGCTG GGAGAGAGAG TCACTATCAC TTGCAAGGCG AGTCAGGACA TTAAAAGCTA	60.
35	TGCATCGCTG GGAGAGAGA TCACTATCAC TTOTALCAG ACCCTGATCT ATTATGCAAC	120
	TTTAAGCTGG TACCAGCAGA AACCATGGAA ATCTCCTAGTO TOOCGAGATTATTC AAGCTTGGCA GATGGGGTCC CATCAAGATT CAGTGGCAGT GGATCTGGGC AAGATTATTC	180
40	AAGCTTGGCA GATGGGGTCC CATCAAGAII CAGIGGCAACT TATTACTGTC TACAGCATGG TCTAACCATC AGCAGCCTGG AGTCTGACGA TACAGCAACT TATTACTGTC TACAGCATGG	240
,		265
	TGAGAGCCCG CTCACGTTCG GTGCT	
45	(2) INFORMATION FOR SEQ ID NO:48:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 265 base pairs	٠
50	(B) TYPE: nucleic acid	·· .
50	(D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
55	(iii) HYPOTHETICAL: N	
	(iv) ANTI-SENSE: N	,
60	and TD VOLAR	
- •	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	60
	TGCATCGCTG GGAGAGAGAG TCACTATCAC TTGCAAGGCG AGTCAGGACA TTAAAAGCTA	120
65	TTTARGETGG TACCAGCAGA AACCATGGAA ATCTCCTAAG ACCCTGATCT ATTATGCAAC	

-157-

	AAGCTTGGCA GATGGGGTCC CATCAAGATT CAGTGGCAGT GGATCTGGGC AAGATTATTC	180
	TCTAACCATC AGCAGCCTGG AGTCTGACGA TACAGCAACT TATTACTGTC TACAGCATGG	240
		265
5	TGAGAGCCCG CTCACGTTCG GTGCT	
	(2) INFORMATION FOR SEQ ID NO:49:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 264 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
20	(iv) Anti-Sense: N	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
25	GCATCGCTGG GAGAGAGAGT CACTATCACT TGCAAGGCGA GTCAGGACAT TAAAAGCTAT	60
23	TTAAGCTGGT ACCAGCAGAA ACCATGGAAA TCTCCTAAGA CCCTGATCTA TTATGCAACA	120
	AGCTTGGCAG ATGGGGTCCC ATCAAGATTC AGTGGCAGTG GATCTGGGCA AGATTATTCT	180
30	CTANCENTEN GENGECTGGN GTCTGNCGNT ACAGENACTT ATTACTGTCT ACAGENTGGT	240
	GAGAGCCCGC TCACGTTCGG TGCT	264
35	(2) INFORMATION FOR SEQ ID NO:50:	·
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 264 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
45	(iii) HYPOTHETICAL: N	
	(iv) Anti-Sense: N	•
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
	GCATCGCTGG GAGAGAGAGT CACTATCACT TGCAAGGCGA GTCAGGACAT TAAAAGCTAT	60
55	TTANGCTGGT ACCAGCAGAA ACCATGGAAA TCTCCTAAGA CCCTGATCTA TTATGCAACA	120
	AGCTTGGCAG ATGGGGTCCC ATCAAGATTC AGTGGCAGTG GATCTGGGCA AGATTATTCT	180
	CTAACCATCA GCAGCCTGGA GTCTGACGAT ACAGCAACTT ATTACTGTCT ACAGCATGGT	240
60	GAGAGCCCGC TCACGTTCGG TGCT	264
	(2) INFORMATION FOR SEQ ID NO:51:	
65	(i) SEQUENCE CHARACTERISTICS:	

-158-

	(B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
10	(iv) ANTI-SENSE: N	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
15	CATCGCTGGG AGAGAGAGTC ACTATCACTT GCAAGGCGAG TCAGGACATT AAAAGCTATT	60
	TAAGCTGGTA CCAGCAGAAA CCATGGAAAT CTCCTAAGAC CCTGATCTAT TATGCAACAA	120
	GCTTGGCAGA TGGGGTCCCA TCAAGATTCA GTGGCAGTGG ATCTGGGCAA GATTATTCTC	180
20	TARCCATCAG CAGCCTGGAG TCTGACGATA CAGCAACTTA TTACTGTCTA CAGCATGGTG	240
	AGAGCCCGCT CACGTTCGGT GCT	263
25	(2) INFORMATION FOR SEQ ID NO:52:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 260 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	·
35	(iii) HYPOTHETICAL: N	
	(iv) ANTI-SENSE: N	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
	CGCTGGGAGA GAGAGTCACT ATCACTTGCA AGGCGAGTCA GGACATTAAA AGCTATTTAA	60
45	GCTGGTACCA GCAGAAACCA TGGAAATCTC CTAAGACCCT GATCTATTAT GCAACAAGCT	120 180
	TGGCAGATGG GGTCCCATCA AGATTCAGTG GCAGTGGATC TGGGCAAGAT TATTCTCTAA	240
ΕO	CCATCAGCAG CCTGGAGTCT GACGATACAG CAACTTATTA CTGTCTACAG CATGGTGAGA	260
50	GCCCGCTCAC GTTCGGTGCT	200
	(2) INFORMATION FOR SEQ ID NO:53:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 88 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
60	(ii) MOLECULE TYPE: DNA (genomic)	•
	(iii) HYPOTHETICAL: N	
65	(iv) Anti-Sense: N	

-159-

	(X1) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
	AAGGCGAGTC AGGACATTAA AAGCTATTTA AGCTGGTACC AGCAGAAACC ATGGAAATCT	60
5	CCTAAGACCC TGATCTATTA TGCAACAA	. 88
	(2) INFORMATION FOR SEQ ID NO:54:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 203 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
20	(iv) ANTI-SENSE: N	•
		-
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
25	AGCTTGGCAG ATGGGGTCCC ATCAAGATTC AGTGGCAGTG GATCTGGGCA AGATTATTCT	60
	CTAACCATCA GCAGCCTGGA GTCTGACGAT ACAGCAACTT ATTACTGTCT ACAGCATGGT	120
30	GAGAGCCCGC TCACGTTCGG TGCTGGGACC AAGCTGGAGC TGAAACGGGC TGATGCTGCA	180
	CCAACTGTAT CCACTTCAAG CTT	203
	(2) INFORMATION FOR SEQ ID NO:55:	
35 40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 204 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
45	(iv) ANTI-SENSE: N	
	·	•
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
	AGCTTGGCAG ATGGGGTCCC ATCAAGATTC AGTGGCAGTG GATCTGGGCA AGATTATTCT	60
	CTAACCATCA GCAGCCTGGA GTCTGACGAT ACAGCAACTT ATTACTGTCT ACAGCATGGT	120
55	GAGAGECEGE TEACGTTEGG TGCTGGGACE AAGETGGAGE TGAAACGGGE TGATGETGEA	180
	CCAACTGTAT CCATCTTCAA GCTT	204
60	(2) INFORMATION FOR SEQ ID NO:56:	
65	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	

-160-

	(ii) MOLECULE TYPE: DNA (genomic)	•
	(iii) HYPOTHETICAL: N	
5	(iv) ANTI-SENSE: N	
•		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
10	AGCTTGGCAG ATGGGGTCCC ATCAAGATTC AGTGGCAGTG GATCTGGGCA AGATTATTCT	60
	CTAACCATCA GCAGCCTGGA GTCTGACGAT ACAGCAACTT ATTACTGTCT ACAGCATGGT	120
15	GAGAGCCCGC TCACGTTCGG TGCTGGGACC AAGCTGGAGC TGAAACGGGC TGATG	175
	(2) INFORMATION FOR SEQ ID NO:57:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 167 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
25	(ii) HOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
	(iv) ANTI-SENSE: N	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	-60
35	CTTGGCAGAT GGGGTCCCAT CAAGATTCAG TGGCAGTGGA TCTGGGCAAG ATTATTCTCT	120
	AACCATCAGC AGCCTGGAGT CTGACGATAC AGCAACTTAT TACTGTCTAC AGCATGGTGA	167
40	GAGCCCGCTC ACGTTCGGTG CTGGGACCAA GCTGGAGCTG AAACGGG	
40	(2) INFORMATION FOR SEQ ID NO:58:	·
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 154 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
50	(iii) HYPOTHETICAL: N	
	(iv) Anti-Sense: H	
55	·	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	60
	AAGATTATTC TCTAACCATC AGCAGCCTGG AGTCTGACGA TACAGCAACT TATTACTGTC	120
60	TACAGCATGG TGAGAGCCCG CTCACGTTCG GTGCTGGGAC CAAGCTGGAG CTGAAACGGG	154
	CTGATGCTGC ACCAACTGTA TCCATCTTCA AGCT	
65	(2) INFORMATION FOR SEQ ID NO:59:	

65

-161-

5	(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: N	
10	(iv)	ANTI-SENSE: N	
15		SEQUENCE DESCRIPTION: SEQ ID NO:59:	
	GCTGCACC	AA CTGTATCCAT CTTCAAGCTT CC	32
20	(2) INFO	RMATION FOR SEQ ID NO:60:	
25	(i).	SEQUENCE CHARACTERISTICS: (A) LENGTH: 362 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(14.)	MOLECULE TYPE: DNA (genomic)	
	•	HYPOTHETICAL: N	
30	•	ANTI-SENSE: N	
	•	•	
35	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:60:	
	GACATTCA	GC TGACCCAGTC TCCATCCTCC ATGTATGCAT CGCTGGGAGA GAGAGTCACT	60
	ATCACTTG	CA AGGCGAGTCA GGACATTANA AGCTATTTAN GCTGGTACCA GCAGANACCA	120
40	TGGAAATC	TO CTANGACCOT GATOTATTAT GCANCAAGOT TGGCAGATGG GGTCCCATCA	180
		TG GCAGTGGATC TGGGCAAGAT TATTCTCTAA CCATCAGCAG CCTGGAGTCT	240
45		AG CAACTTATTA CTGTCTACAG CATGGTGAGA GCCCGCTCAC GTTCGGTGCT	300
	GGGACCAA	GC. TGGAGCTGAA ACGGGCTGAT GCTGCACCAA CTGTATCCAT CTTCAAGCTT	360
	cc		362
50	(2) INFO	RMATION FOR SEQ ID NO:61:	
55	· (T)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 448 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
60	(ii)	MOLECULE TYPE: DNA (genomic)	-
60	(iii)	HYPOTHETICAL: N	
	(ŢA)	ANTI-SENSE: N	

-162-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	
	CTGCAGSAGT CWGGACTCAG CATGGACATG AGGGCCCCTG CTCAGTTTTT TGGGATCTTG	60
5	TTGCTCTGGT TTCCAGGTAT CAGATGTGAC ATCAAGATGA CCCAGTCTCC ATCCTCCATG	120
	TATGCATCGC TGGGAGAGAG AGTCACTATC ACTTGCAAGG CGAGTCAGGA CATTAAAAGC	180
	TATTTAAGCT GGTACCAGCA GAAACCATGG AAATCTCCTA AGACCCTGAT CTATTATGCA	240
10	ACAAGCTTGG CAGATGGGGT CCCATCAAGA TTCAGTGGCA GTGGATCTGG GCAAGATTAT	300
	TCTCTAACCA TCAGCAGCCT GGAGTCTGAC GATACAGCAA CTTATTACTG TCTACAGCAT	360
15	GGTGAGAGCC CGCTCACGTT CGGTGCTGGG ACCAAGCTGG AGCTGAAACG GGCTGATGCT	420
	GCACCAACTG TATCCATCTT CAAGCTTCC	448
••	(2) INFORMATION FOR SEQ ID NO:62:	
20 25	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 449 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
30	(iv) ANTI-SENSE: N	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	. 60
	GROSTOSTON GWOOTGAGTO GTACOTGTAC TOCOGGGGAC GRGTCANANA ACCOTAGANO	-
40	AACGAGACCA AAGGTCCATA GTCTACACTG TAGTTCTACT GGGTCAGAGG TAGGAGGTAC	120 180
40	ATACGTAGCG ACCCTCTCTC TCAGTGATAG TGAACGTTCC GCTCAGTCCT GTAATTTTCG	
	ATAAATTCGA CCATGGTCGT CTTTGGTACC TTTAGAGGAT TCTGGGACTA GATAATACGT	240
45	TGTTCGAACC GTCTACCCCA GGGTAGTTCT AAGTCACCGT CACCTAGACC CGTTCTAATA	300
	AGAGATTGGT AGTCGTCGGA CCTCAGACTG CTATGTCGTT GAATAATGAC AGATGTCGTA	360
	CCACTCTCGG GCGAGTGCAA GCCACGACCC TGGTTCGACC TCGACTTTGC CCGACTACGA	420
50	CGTGGTTGAC ATAGGTAGAA GTTCGAAGG	449
	(2) INFORMATION FOR SEQ ID NO:63:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 138 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
60	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: H	
	ILLA SURF-OFNOTA M	

65

	(xi)																
5	1	Arg			5		•			10							
	Gly	Ile	Arg	Сув 20	Авр	Ile	ГУB	Met	Thr 25	Gln	Ser	Pro	Ser	Ser 30	Met	Tyr	
10	Ala	Ser	Leu 35	Gly	Glu	Arg	Val	Thr 40	Ile	Thr	Сув	ГЛа	Ala 45	Ser	Gln	Asp	
	Ile	Lys 50	Ser	Tyr	Leu	Ser	Trp 55	Tyr	Gln	Gln	Lys	Pro 60	Trp	ГЛВ	Ser	Pro	
15	Lys 65	Thr	Leu	Ile	Tyr	Tyr 70	Ala	Thr	Ser	Leu	Ala 75	Asp	Gly	Val	Pro	Ser 80	
20	Arg	Phe	Ser	Gly	Ser 85	Gly	Ser	Gly	Gln	Авр 90	Tyr	Ser	Leu	Thr	Ile 95	Ser	
	Ser	Leu	Glu	Ser 100		Asp	Thr	Ala	Thr 105	Tyr	Tyr	Сув	Leu	Gln 110	HŢB	Gly	
25	Glu	Ser	Pro 115	Leu	Thr	Phe	Gly 	Ala 120	Gly	Thr	Lys	Leu	Glu 125	Leu	Lys	Àrg	
	Ala	Asp 130	λla	Ala	Pro	Thr	Val 135	Ser	Ile	Phe		•					
30				•													
	(2) INFO	RMAT:	ION :	FOR :	SEQ	ID N	0:64	:									
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown																
40	•	HOL					(gen	omic)								
	(TTT)					ı											
45	(iv)	ant	i–se	ns e :	N .		•						•	•		•	
		SEQ								:64:							33
50	ANGGCGAG	TC A	GGAC	ATTA	X XX	GCTA	KTTI.	AGC									J .
	(2) INFO	RHAT	ION	FOR	SEQ	ID N	0:65										
55		SEQ (A (B	UENC) LE) TY	e ch ngth pe: rand	ARAC 1: 33 nucl	TERI bas	STIC e pa acid unkn	s: irs		,							
60	(ii)	MOL	ECUL	E TY	PE:	DNA	(gen	omic	:)								

-164-

	(xi)	SEQUENCE DESCRIP	TION: SEQ ID	NO:65:				
	TTCCGCTC	G TECTGTAATT TTE	GATAAAT TCG				33	
5	(2) INFOR	MATION FOR SEQ I	D NO:66:					•
10		SEQUENCE CHARACT (A) LENGTH: 11 (B) TYPE: amino (C) STRANDEDNES (D) TOPOLOGY: u	ERISTICS: amino acids acid S: unknown					
	(ii)	MOLECULE TYPE: D	NA (genomic)					
15	(iii)	HYPOTHETICAL: N				• •	•	
	(iv)	ANTI-SENSE: N						
20	(xi)	SEQUENCE DESCRIP	TION: SEQ ID	NO:66:	٠.			
	Lys 1	Ala Ser Gln Asp	Ile Lys Ser	Tyr Leu S 10	Ser		•	
25	(2) INFO	rmation for seq I	D NO:67:					
30	(†)	SEQUENCE CHARACT (A) LENGTH: 21 (B) TYPE: nucle (C) STRANDEDNES (D) TOPOLOGY: u	pase pairs ic acid S: unknown				·. ·	
2.5	(ii)	HOLECULE TYPE: D	NA (genomic)				•	
35	(iii)	HYPOTHETICAL: N				•		
	(iv)	ANTI-SENSE: N						
40								
		SEQUENCE DESCRIE	PTION: SEQ II) NO:67:			21	
45		AA GCTTGGCAGA T						
		RMATION FOR SEQ 1			•			
50	(1)	(A) LENGTH: 21 (B) TYPE: nucle (C) STRANDEDNES (D) TOPOLOGY: U	base pairs sic acid ss: unknown					
	(ii)	MOLECULE TYPE: I	ONA (genomic))				
55	(iii)	HYPOTHETICAL: N						
	(1 _A)	anti-sense: N						
60		,						
	· (xi)	SEQUENCE DESCRIP	PTION: SEQ II	NO:68:		•	22	
4E	ATACGTTG	TT CGAACCGTCT A					21	
65	(2) INFO	RMATION FOR SEQ	ID NO:69:					

5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown		·		
	(ii)	MOLECULE TYPE: DNA (genomic)				
	(iii)	HYPOTHETICAL: N				
10 .	(iv)	ANTI-SENSE: N				
15	(xi)	SEQUENCE DESCRIPTION: SEQ ID N	10:69:			•
	Tyr 1	Ala Thr Ser Leu Ala Asp				
20	(2) INFO	RMATION FOR SEQ ID NO:70:				
25·	·(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown		•		
	(ii)	MOLECULE TYPE: DNA (genomic)	:			
30	(iii)	HYPOTHETICAL: N				
	(iv)	ANTI-SENSE: N			,	·,
35		SEQUENCE DESCRIPTION: SEQ ID N	10:70:			. 27
40	(2) INFO	RMATION FOR SEQ ID NO:71:				
45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown				·
•	(ii)	HOLECULE TYPE: DNA (genomic)			••	
50	(iii)	HYPOTHETICAL: N				
•	(IV)	ANTI-SENSE: N				
55	(xi)	SEQUENCE DESCRIPTION: SEQ ID N	0:71:		• •	
	GATGTCGT	AC CACTCTCGGG CGAGTGC				27
60	(2) INFO	RMATION FOR SEQ ID NO:72:				
65	(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown				

65

(iv) ANTI-SENSE: N

-166-

	(ii) MOLECULE TYPE: DNA (genomic)	
•	(iii) HYPOTHETICAL: N	
5	(iv) ANTI-SENSE: N	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	• .
10	•	
	Leu Gln His Gly Glu Ser Pro Leu Thr 1 5	
15	(2) INFORMATION FOR SEQ ID NO:73:	
. 20 _	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 107 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(iii) HYPOTHETICAL: N	:
	(iv) ANTI-SENSE: N	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
25	Asp Ile Gln Leu Thr Gln Ser Pro Ser Ser Met Tyr Ala Ser 1 5 10	
35	Glu Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Lys 20 25 30	
40	Leu Ser Trp Tyr Gln Gln Lys Pro Trp Lys Ser Pro Lys Th 35 40 45	
	Tyr Tyr Ala Thr Ser Leu Ala Asp Gly Val Pro Ser Arg Pho 50 55	
45	Ser Gly Ser Gly Gln Asp Tyr Ser Leu Thr Ile Ser Ser Le 65 70 75	
	Asp Asp Thr Ala Thr Tyr Tyr Cys Leu Gln His Gly Glu Se 85 90	r Pro Leu 95
50	Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 100 105	
	(2) INFORMATION FOR SEQ ID NO:74:	
55 60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 107 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
*	(ii) MOLECULE TYPE: DNA (genomic)	
	ALLE TANDOMNETICAL. N	

	(xi)	SEQUENC	e DES	SCRII	PTIO	l: SI	SQ II	NO:	74:						
5	1	Ile Gln		5					10					-	
	Авр	Arg Val	Thr 20	Ile	Thr	Сув	Arg	Ala 25	Ser	Gln	Asp	Ile	Ser 30	Asn	Tyr
10	Leu	Asn Trp	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gly	Thr	Pro	Lys 45	Leu	Leu	Ile
15	Tyr	Tyr Ala	Ser	Arg	Leu	His 55	Ser	Gly	Val	Pro	ser 60	Arg	Phe	Ser	Gly
	. Ser 65	Gly Ser	Gly	Thr	Asp 70	Tyr	Ser	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Gln 80
20	Glu	Asp Ile	Ala	Thr 85	Tyr	Phe	Сув	Gln	Gln 90	Gly	Asn	Ser	Leu	Pro 95	Arg
	Thr	Phe Gly	Gly 100		Thr	Lys	Leu	Ġlu 105	Ile	Lys	٠	•			
25	(2) INFO	RMATION	FOR a	SEQ :	ID N	0:75	:					• •	• •		
30	· (Ţ)	SEQUENC (A) LE (B) TY (C) ST (D) TO	ngth Pe: Rand	: 11 amin EDNE	ami: o ac: SS: 1	no a id unkn	CIGB	,	•						
	(ii)	MOLECUL	E TY	PE:	DNA	(gen	omic)							
35	(iii)	нуротне	TICA	L: N											
	(iv)	anti-se	nse:	N		•		٠							
40															
		SEQUENC													
45	Lys 1	Ala Ser	Gln	Asp 5	Ile	Lys	Ser	Tyr	Leu 10	Ser	÷	•			
	(2) INFO	RMATION	FOR	SEQ	ID N	0:76	:							•	
50	(±)	SEQUENC (A) LE (B) TY (C) ST (D) TO	ngth Pe: Rand	: 11 amin EDNE	ami o ac SS:	no a id unkn	cids								-
55	(ii)	MOLECUL	E TY	PE:	DNA	(gen	omic)		•					•
	(iii)	нуротне	TICA	L: N											
60 .	(iv)	anti-se	nse:	N										:	
	-	SEQUENC											٠.	,	
65	Arg	Ala Ser	Gln	Авр	Ile	Ser	Asn	Tyr	Leu	Asn					

-168-

	(2) INFORMATION FOR SEQ ID NO:77:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown
10	(ii) MOLECULE TYPE: DNA (genomic)
10	(iii) HYPOTHETICAL: N
	(iv) ANTI-SENSE: N
15	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:
20	Tyr Ala Thr Ser Leu Ala Asp
	(2) INFORMATION FOR SEQ ID NO:78:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown
30	(ii) MOLECULE TYPE: DNA (genomic)
	(iii) HYPOTHETICAL: N
35	(iv) ANTI-SENSE: N
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:
40	Tyr Ala Ser Arg Leu His Ser 1 5
	(2) INFORMATION FOR SEQ ID NO:79:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown
50	(D) TOPOLOGY: unknown
	(ii) MOLECULE TYPE: DNA (genomic)
	(iii) HYPOTHETICAL: N
55	(iv) ANTI-SENSE: N
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:
60	Leu Gln His Gly Glu Ser Pro Leu Thr
	1 5
65	(2) INFORMATION FOR SEQ ID NO:80:
	(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: N	
10	(iv) ANTI-SENSE: N	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:	
15	Gln Gln Gly Asn Ser Leu Pro Arg Thr 1 5	
20	(2) INFORMATION FOR SEQ ID NO:81:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
30	(iii) HYPOTHETICAL: N	
	(iv) ANTI-SENSE: N	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
	GGAAGCTTGA AGATGGATAC AGTTGGTGCA GC	•
40	(2) INFORMATION FOR SEQ ID NO:82:	·:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) HOLECULE TYPE: CDNA	
50	(iii) HYPOTHETICAL: N	
	(iv) Anti-Sense: N	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
	GGAAGCTTAA GACATTTGGG AAGGACTGAC TCTC	•
60	(2) INFORMATION FOR SEQ ID NO:83:	
65 ·	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	

-170-

	(ii)	MOLECULE TYPE: cDNA				
	(iii)	HYPOTHETICAL: N	•	•		
5	(iv)	ANTI-SENSE: N				
	•					
	(xi)	SEQUENCE DESCRIPTION: SEQ ID	NO:83:			
10	AGGTSMAR	CT GCAGSAGTCW GG		٠		22
	(2) INFO	RMATION FOR SEQ ID NO:84:				
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown				
20	(ii)	MOLECULE TYPE: cDNA			•	
	(iii)	HYPOTHETICAL: N				
25	(iv)	ANTI-SENSE: N				
30	(xi)	SEQUENCE DESCRIPTION: SEQ ID	NO:84:			
50	TGAGGAGA	CG GTGACCGTGG TCCCTTGGCC CCAG				34
	(2) INFO	RMATION FOR SEQ ID NO:85:				
35	(±)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown		. •	÷	-
40	(ii)	MOLECULE TYPE: CDNA				
	(iii)	HYPOTHETICAL: N				
45	(iv)	ANTI-SENSE: N				.•
50	(xi)	SEQUENCE DESCRIPTION: SEQ ID	NO:85:			
30	GACATTCA	GC TGACCCAGTC TCCA	•		*	24
	(2) INFO	RMATION FOR SEQ ID NO:86:	•	•		•
55	(±)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown		· · · · · · · · · · · · · · · · · · ·		•
60	(ii)	MOLECULE TYPE: cDNA				
	(iii)	HYPOTHETICAL: N				
65	/101	ANTI-SENSE: N				

-171-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:	
	GACATTGAGC TCACCCAGTC TCCA	2
5	(2) INFORMATION FOR SEQ ID NO:87:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
15	(iii) HYPOTHETICAL: N	
	(iv) ANTI-SENSE: N	•
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:	
	GTTAGATCTC CAGCTTGGTC CC	2
25	(2) INFORMATION FOR SEQ ID NO:88:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: CDNA	
35	(iii) HYPOTHETICAL: N	
	(iv) ANTI-SENSE: N	
40	·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:	
45	GTTAGATCTG AGCTTGGTCC C	2

10

15

What is claimed is:

- 1. An antigen comprising 5,7 cholestadien-3 β -ol (7-dehydrocholesterol) or a compound having a structure similar to 5,7 cholestadien-3 β -ol, and a quaternary ammonium salt.
- 2. The antigen of claim 1 wherein the compound having a structure similar to 5,7-cholestadien-3β-ol (7-dehydrocholesterol) comprises 5-cholesten-3β-ol (cholesterol), 5,24-cholestadien-3β-ol (desmosterol), 5α-cholest-7-en-3β-ol (lathosterol), 5α-cholestane-3β-ol (cholestanol or dihydrocholesterol), or 5-cholesten-3-one; and a quaternary ammonium salt.
 - 3. The antigen of claim 1, wherein the quaternary ammonium salt is a fatty acid ester of choline.
- The antigen of claim 3, wherein the fatty acid ester of choline is a salt of dodecanoic acid choline ester 20 (lauroylcholine), tridecanoic acid choline ester, tetradecanoic acid choline ester (myristoylcholine), pentadecanoic acid choline ester, hexadecanoic acid choline ester (palmitoylcholine), heptadecanoic acid choline ester, octadecanoic acid 25 choline (stearoylcholine), nonadecanoic acid choline ester, acid choline ester (arachidylcholine), eicosanoic henicosanoic acid choline ester; docosanoic acid choline ester, tricosanoic acid choline ester, tetracosanoic acid choline ester, or pentacosanoic acid choline ester. 30
 - 5. The antigen of claim 1, wherein the quaternary ammonium salt is a cationic detergent.
- 35 6. The antigen of claim 5, wherein the cationic detergent comprises: benzyldimethyldodecylammonium salt,

benzyldimethyltridecylammonium salt, benzyldimethyltetradecylammonium salt, benzyldimethylpentadecylammonium salt, benzyldimethylhexadecylammonium salt, benzyldimethylheptadecylammonium salt, benzyldimethyloctadecylammonium salt, benzyldimethylnonadecylammonium salt, benzyldimethyleicosylammonium salt, benzyldimethylhenicosylammonium salt, benzyldimethyldocosylammonium salt, 10 benzyldimethyltricosylammonium salt, benzyldimethyltetracosylammonium salt, benzyldimethylpentacosylammonium salt, trimethyltetradecylammonium salt, trimethylpentadecylammonium salt, 15 trimethylhexadecylammonium salt, trimethylhepadecylammonium salt, trimethyloctadecylammonium salt, trimethylnonadecylammonium salt, trimethyleicosylammonium salt, 20 trimethylhenicosylammonium salt, trimethyldocosylammonium salt, trimethyltricosylammonium salt, trimethyltetracosylammonium salt, trimethylpentacosylammonium salt, 25 didodecyldimethylammonium salt, N-dodecylpyridinium salt, . N-tridecylpyridinium salt, N-tetradecylpyridinium salt, N-pentadecylpyridinium salt, 30 N-hexadecylpyridinium salt, N-heptadecylpyridinium salt, N-octadecylpyridinium salt, N-nonadecylpyridinium salt, N-eicosylpyridinium..salt, 35 N-henicosylpyridinium salt, N-docosylpyridinium salt,

35

N-tricosylpyridinium salt, N-tetracosylpyridinium salt, N-pentacosylpyridinium salt, dodecyldimethylethylammonium salt, tridecyldimethylethlyammonium salt, 5 tetradecyldimethylethylammonium salt, pentadecyldimethylethylammonium salt, hexadecyldimethylethylammonium salt, heptadecyldimethylethylammonium salt, octadecyldimethylethylammonium salt, 10 nonadecyldimethylethylammonium salt, eicosyldimethylethylammonium salt, henicosyldimethylethylammonium salt, docosyldimethylethylammonium salt, tricosyldimethylethylammonium salt, 15 tetracosyldimethylethylammonium salt, pentacosyldimethylethylammonium salt, or benzalkonium salt.

- 7. The antigen of claim 1, wherein the quaternary ammonium salt comprises a chain of not less than about twelve atoms in length.
- 8. The antigen of claim 1, labeled with a detectable 25 marker.
 - 9. The antigen of claim 1, bound to a solid support.
- 10. A method for quantitatively determining in a sample the concentration of an antibody which specifically forms a complex with a plaque-indicative antigen, which comprises:
 - (a) contacting a solid support with an excess of the antigen of claim 1 under conditions permitting the antigen to attach to the surface of the solid support;
 - (b) removing unbound antigen;

WO 94/25053 PCT/US94/04641

5

10

15

20

-175-

- (c) contacting the resulting solid support to which the antigen is bound with the sample under conditions such that any antibody present in the sample binds to the bound antigen and forms a complex therewith;
- (d) removing any antibody which is not bound to the complex;
- (e) contacting any complex so formed with an excess of a detectable reagent which specifically binds to any antibody present in the complex so as to form a second complex which includes the antigen, the antibody, and the detectable reagent;
- (f) removing any detectable reagent which is not bound in the second complex;
 - (g) quantitatively determining the amount of detectable reagent present in the second complex; and
 - (h) thereby quantitatively determining in the sample the concentration of an antibody which specifically forms a complex with a plaqueindicative antigen.
- 11. The method of claim 10, wherein the detectable reagent comprises an antibody labeled with a detectable marker, wherein the antibody labeled with the detectable marker specifically binds to the complexed antibody in step (e).
- 12. A method for quantitatively determining in a sample the concentration of an antibody which specifically forms a complex with an plaque-indicative antigen indicative of the presence of atherosclerotic plaque, which comprises:
- (a) contacting a solid support with a predetermined amount of the antigen of claim 1 under conditions permitting the antigen to attach to the surface of the support;

5

15

30

35

-176-

- (b) removing unbound antigen;
- (c) contacting the resulting solid support to which the antigen is bound with a predetermined amount of antibody labeled with a detectable marker and with the sample under conditions such that the labeled and sample antibodies competitively bind to the antigen bound to the solid support and form a complex therewith;
- (d) removing any labeled or sample antibody which is not bound to the complex;
 - (e) quantitatively determining the amount of labeled antibody bound to the solid support; and
 - (f) thereby quantitatively determining in the sample the concentration of an antibody which specifically forms a complex with a plaqueindicative antigen.
- 20 13. The method of claim 12, wherein step (e) comprises quantitatively determining the amount of labeled antibody not bound to the solid support.
- 14. A method for quantitatively determining in a sample 25 the concentration of antibody which specifically forms a complex with a plaque-indicative antigen, which comprises:
 - (a) contacting a solid support with a predetermined amount of the antigen of claim 1 under conditions permitting the antigen to attach to the surface of the support;
 - (b) removing any antigen which is not bound to the support;
 - (c) contacting the solid support to which the antigen is bound with the sample under conditions such that any antibody present in the sample binds to the bound antigen and

5

30

35

forms a complex therewith;

- (d) removing any antibody which is not bound to the complex;
- (e) contacting the complex so formed with a predetermined amount of antibody labeled with a detectable marker under conditions such that the labeled antibody competes with the antibody in the sample for binding to the antigen;
- 10 (f) removing any labeled and sample antibody which are not bound to the complex;
 - (g) quantitatively determining the amount of labeled antibody bound to the solid support; and
- (h) thereby quantitatively determining in the sample the concentration of antibody which specifically forms a complex with a plaque-indicative antigen.
- 20 15. The method of claim 14, wherein step (g) comprises quantitatively determining the amount of labeled antibody not bound to the solid support.
- 16. A method for coating a solid support with the 25 antigen of claim 1, which comprises:
 - (a) forming a mixture by dissolving in an organic solvent the 5,7 cholestadien-3β-ol or compound having the structure similar to 5,7 cholestadien-3β-ol and the quaternary ammonium salt in a suitable molar ratio and in sufficient concentrations so as to coat the surface of the solid support after evaporation of the solvent, wherein the organic solvent does not react with the 5,7 cholestadien-3β-ol or the compound having the structure similar to 5,7 cholestadien-3β-ol, the quaternary ammonium salt, or the solid support;

5

35

-178-

- (b) contacting the mixture of step (a) with the surface of the solid support;
- (c) evaporating the organic solvent of the mixture in step (b); and
- (d) thereby coating onto the surface of the solid support the surrogate antigen.
 - 17. The method of claim 16, wherein the solid support is an inert polymer.
- 18. The method of claim 17, wherein the inert polymer is a bead.
- 19. The method of claim 18, wherein the bead is a polystyrene bead.
 - 20. The method of claim 19, wherein the polystyrene bead has a diameter from about 0.1 μm to about 100 μm .
- 20 21. The method of claim 16, wherein the solid support is a microwell or a porous membrane.
 - 22. The method of claim 16, wherein the organic solvent is ethanol, acetone, chloroform, ether, or benzene.
- 23. The method of claim 16, wherein the molar ratio of the 5,7 cholestadien-3β-ol or compound having the structure similar to 5,7 cholestadien-3β-ol to the quaternary ammonium salt ranges from about 0.1:1 to about 200:1.
 - 24. The method of claim 16, wherein the molar ratio of 5,7 cholestadien-3 β -ol or compound having the structure similar to 5,7 cholestadien-3 β -ol to the quaternary ammonium salt ranges from about 2:1 to about 64:1.
 - 25. A method of generating an antibody which is capable

of specifically binding to atherosclerotic plaque, which method comprises:

- (a) administering to an animal at least one time an amount of the antigen of claim 1 sufficient to generate the antibody;
- (b) obtaining a serum from the animal;
- (c) testing the serum for antibody capable of specifically binding to atherosclerotic plaque;
- 10 (d) wherein if the test in step (c) is positive, thereby generating the antibody capable of specifically binding to atherosclerotic plaque.
- 15 26. The method of claim 25, wherein the antigen comprises 5,7-cholestadien- 3β -ol and the quaternary ammonium salt is benzyldimethylhexadecylammonium chloride or palmitoylcholine.
- 20 27. The method of claim 25, wherein the antigen comprises 5-cholesten-3 β -ol and the quaternary ammonium salt is benzyldimethylhexadecylammonium chloride or palmitoylcholine.
- 25 28. The method of claim 25, wherein the antigen comprises 5-cholesten-3-one and the quaternary ammonium salt is benzyldimethylhexadecylammonium chloride or palmitoylcholine.
- 30 29. The method of claim 25, wherein the administering in step (a) comprises administering the antigen coated onto the surface of a solid support.
- 30. The method of claim 29, wherein the solid support is a porous membrane, administered by implantation.
 - 31. The method of claim 25, wherein the animal is a

20

25

30

35

vertebrate.

32.	The	method	of	claim	31,	wherein	the	vertebrate	is	a
bird.	•	•								

33. The method of claim 25, wherein the vertebrate is a mammal.

- 34. The method of claim 33, wherein the mammal is a 10 rodent.
 - 35. An antibody generated by the method of claim 25.
- 36. A method of generating a monoclonal antibody which is capable of specifically binding to atherosclerotic plaque, which method comprises:
 - (a) administering to an animal at least one time an amount of the antigen of claim 1 sufficient to generate the antibody;
 - (b) obtaining a serum from the animal;
 - (c) testing the serum for antibody capable of specifically binding to atherosclerotic plaque;
 - (d) obtaining an antibody producing cell from the animal with serum which tested positively in step (c);
 - (e) fusing the antibody producing cell with a myeloma cell or a myeloma derivative to generate a hybridoma cell which produces an antibody capable of specifically binding to atherosclerotic plaque;
 - (f) isolating hybridoma cells which secrete the antibody which is capable of specifically binding to atherosclerotic plaque;
 - (g) thereby generating a monoclonal antibody capable of specifically binding to

5

25

30

-181-

atherosclerotic plaque.

- 37. A monoclonal antibody produced by the method of claim 36.
- 38. A biologically active fragment of the monoclonal antibody of claim 37.
- 39. The monoclonal antibody of claim 37 labeled with a detectable marker.
 - 40. The fragment of claim 38 labeled with a detectable marker.
- 15 41. The monoclonal antibody of claim 37 bound to a solid support.
 - 42. The fragment of claim 38 bound to a solid support.
- 43. A reagent for use in imaging atherosclerotic plaque, which comprises the monoclonal antibody of claim 37 or the fragment of claim 38 labeled with a detectable marker, in an amount effective to image atherosclerotic plaque, and a physiologically acceptable carrier.
 - 44. A method for imaging atherosclerotic plaque, which comprises:
 - (a) contacting the atherosclerotic plaque to be imaged with the reagent of claim 43, under conditions such that the reagent binds to the atherosclerotic plaque; and
 - (b) detecting the detectable marker labelling the monoclonal antibody or fragment in the reagent bound to the atherosclerotic plaque;
- 35 thereby imaging the atherosclerotic plaque.
 - 45. A method for imaging atherosclerotic plaque in blood

5

15

20

30

35

vessel walls of a subject, which comprises:

- (a) contacting the blood vessel walls containing atherosclerotic plaque with the reagent of claim 43, under conditions such that the reagent binds to the atherosclerotic plaque;
- (b) detecting the detectable marker labelling the monoclonal antibody or fragment in the reagent bound to the atherosclerotic plaque;
- 10 thereby imaging the atherosclerotic plaque.
 - 46. A method for differentially imaging atherosclerotic plaque and normal tissue in a lumen, which comprises:
 - (a) contacting the lumen with an antibody which specifically binds to normal intima or media and which does not bind to atherosclerotic plaque, and which is labeled with a detectable marker;
 - (b) contacting the lumen with the reagent of claim 43 under conditions such that the reagent binds to the atherosclerotic plaque;
 - (c) detecting the detectable marker labeling the antibody of step (a) bound to the normal tissue; and
- 25 (d) detecting the detectable marker labeling the monoclonal antibody or the fragment in the reagent of step (b) bound to the atherosclerotic plaque;

wherein the detectable marker labeling the antibody which specifically binds to normal intima or media is different from the detectable marker labeling the monoclonal antibody or fragment in the reagent, thereby differentially imaging the atherosclerotic plaque and the normal tissue in the lumen.

47. The method of claim 46, wherein the antibody which specifically binds to normal intima or media is a

purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries.

- 5 48. The method of claim 47, wherein the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.
- 49. The monoclonal antibody of claim 37 bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength.
- 50. The fragment of claim 38 bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength.
 - 51. The antibody of claim 49 wherein the chromophore absorbs light having a wavelength from about 190 nm to about 1100 nm.
 - 52. The fragment of claim 50 wherein the chromophore absorbs light having a wavelength from about 190 nm to about 1100 nm.
- 53. The antibody of claim 51 wherein the chromophore is fluorescein, rhodamine, tetracycline, hematoporphyrin, or β-carotene.
- 54. The fragment of claim 52 wherein the chromophore is fluorescein, rhodamine, tetracycline, hematoporphyrin, or β-carotene.
- 55. A reagent for ablating atherosclerotic plaque comprising the antibody of claim 49 or the fragment of claim 50 in an amount effective to highlight the atherosclerotic plaque to be ablated and a physiologically acceptable carrier.

-184-

WO 94/25053

5

10

20

25

35

56. A method for ablating atherosclerotic plaque, which comprises:

- (a) contacting atherosclerotic plaque with an effective amount of the reagent of claim 55, so that the antibody present in the reagent binds to the atherosclerotic plaque forming an atherosclerotic plaque-antibody complex;
- (b) exposing the resulting complex to radiation having a plaque ablating wavelength under conditions such that the radiation is absorbed by the chromophore at a sufficient energy to ablate the atherosclerotic plaque; and
- (c) thereby ablating the atherosclerotic plaque.
- 15 57. A method for ablating atherosclerotic plaque in a blood vessel, which comprises:
 - (a) contacting the normal lumen with an antibody which specifically binds to normal intima or media and has bound thereto a moiety capable of reflecting radiation of the plaque ablating wavelength;
 - (b) contacting the atherosclerotic plaque with the reagent of claim 55;
 - (c) exposing the atherosclerotic plaque to the radiation having plaque ablating wavelength;
 - (d) thereby ablating the atherosclerotic plaque present in a blood vessel.
- 30 58. The method of claim 57, wherein the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries.
 - 59. The method of claim 58, wherein the antibody is a monoclonal antibody produced by hybridoma Q10E7 having

5

10

15

20

25

30

ATCC Accession Number 10188.

60. A method for detecting in a sample an antigen indicative of the presence of atherosclerotic plaque, which comprises:

- (a) contacting the sample with the monoclonal antibody of claim 37 or the fragment of claim 38, under conditions such that the monoclonal antibody or fragment binds to the antigen in the sample to form a detectable complex;
- (b) detecting the complex so formed; and
- (c) thereby detecting in the sample an antigen indicative of the presence of atherosclerotic plaque.

61. A method for quantitatively determining in a sample the concentration of an antigen indicative of the presence of atherosclerotic plaque, which comprises:

- (a) contacting a solid support with an excess of the monoclonal antibody of claim 37 or the fragment of claim 38, under conditions permitting the monoclonal antibody or fragment to attach to the surface of the solid support;
- (b) removing unbound monoclonal antibody or fragment;
- (c) contacting the resulting solid support to which the moncolonal antibody or fragment is bound with the sample under conditions such that any antigen present in the sample binds to the bound monoclonal antibody or fragment and forms a complex therewith;
- (d) removing any antigen which is not bound to the complex;
- (e) contacting any complex so formed with an excess of a detectable reagent which specifically binds to any antigen present in the complex so as to form a second complex

5

10

30

-186-

which includes the antibody or fragment, the antigen, and the detectable reagent;

- (f) removing any detectable reagent which is not bound in the second complex;
- (g) quantitatively determining the concentration of detectable reagent present in the second complex; and
- (h) thereby quantitatively determining in the sample the concentration of an antigen indicative of the presence of atherosclerotic plaque.
- 62. The method of claim 61, wherein the detectable reagent comprises a monoclonal antibody or fragment thereof labeled with a detectable marker, wherein the monoclonal antibody is produced by hybridoma Z2D3 having ATCC Accession Number HB9840, hybridoma Z2D3/3E5 having ATCC Accession Number HB10485, rat myeloma cell line Z2D3 73/30 1D10 having ATCC Accession Number CRL 11203, or a CDR-grafted antibody comprising a CDR region from hybridoma Z2D3 or hybridoma Z2D3/3E5 and a framework and constant region from a human immunoglobulin.
- 63. A method for quantitatively determining in a sample 25 the concentration of an antigen which is indicative of the presence of atherosclerotic plaque, which comprises:
 - (a) contacting a solid support with a predetermined amount of the monoclonal antibody of claim 37 or the fragment of claim 38, under conditions permitting the monoclonal antibody or fragment to attach to the surface of the solid support;
 - (b) removing any monoclonal antibody or fragment not bound to the solid support;
- 35 (c) contacting the resulting solid support to which the monoclonal antibody or fragment is bound with a predetermined amount of an

· 5

10

15

20

25

30

35

antigen labeled with a detectable marker, and with the sample under such conditions that labeled and sample antigens competitively bind to the monoclonal antibody or fragment bound to the solid support and form a complex therewith;

- (d) removing any labeled and sample antigens which are not bound to the complex;
- (e) quantitatively determining the amount of labeled antigen bound to the solid support; and
- (f) thereby quantitatively determining in the sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque.
- 64. The method of claim 63, wherein step (e) comprises quantitatively determining the amount of labeled antigen not bound to the solid support.
- 65. A method for quantitatively determining in a sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque, which comprises:
 - (a) contacting a solid support with a predetermined amount of the monoclonal antibody of claim 37 or the fragment of claim 38, under conditions permitting the monoclonal antibody or fragment to attach to the surface of the support;
 - (b) removing any monoclonal antibody or fragment not bound to the solid support;
- (c) contacting the resulting solid support to which the monoclonal antibody or fragment is bound with the sample under conditions such that any antigen present in the sample binds to the bound monoclonal antibody or fragment and forms a complex therewith;

5

10

15

35

-188-

- (d) removing any antigen which is not bound to the complex;
- (e) contacting the complex so formed with a predetermined amount of plaque antigen labeled with a detectable marker under conditions such that the labeled plaque antigen competes with the antigen from the sample for binding to the monoclonal antibody or fragment;
- (f) removing any labeled and sample antigens which are not bound to the complex;
- (g) quantitatively determining the amount of labeled plaque antigen bound to the solid support; and
- (h) thereby quantitatively determining in the sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque.
- 66. The method of claim 65, wherein step (g) comprises quantitatively determining the amount of labeled antigen not bound to the solid support.
- 67. The monoclonal antibody of claim 37, conjugated to an enzyme capable of digesting a component of atherosclerotic plaque.
 - 68. The fragment of claim 38, conjugated to an enzyme capable of digesting a component of atherosclerotic plaque.
- 69. The antibody of claim 67, wherein the enzyme is a proenzyme which, when activated, is converted to an enzyme capable of digesting a component of atherosclerotic plaque.
 - 70. The fragment of claim 68, wherein the enzyme is a proenzyme which, when activated, is converted to an

enzyme capable of digesting a component of atherosclerotic plaque.

- 71. The antibody of claim 67, wherein the antibody and 5 the enzyme comprise a single molecule.
 - 72. The fragment of claim 68, wherein the fragment and the enzyme comprise a single molecule.
- 10 73. The antibody of claim 67, wherein the antibody is a bifunctional antibody comprising a binding site specific for the enzyme and a binding site specific for the antigen.
- 15 74. The fragment of claim 68, wherein the fragment is a bifunctional fragment comprising a binding site specific for the enzyme and a binding site specific for the antigen.
- 75. The antibody of claim 73, wherein the antibody is produced by a quadroma derived from the fusion of a hybridoma cell line Z2D3 having ATCC Accession Number HB9840, Z2D3/3E5 having ATCC Accession Number HB10485, or Z2D3 73/30 1D10 having ATCC Accession Number CRL 11203, with a hybridoma secreting a monoclonal antibody which
- specifically binds to the enzyme.
- 76. The antibody of claim 67, wherein the enzyme is a proteinase, an elastase, a collagenase, or a saccharidase.
 - 77. The fragment of claim 68, wherein the enzyme is a proteinase, an elastase, a collagenase, or a saccharidase.
 - 78. The antibody of claim 67, wherein the proenzyme is a proenzyme form of fibroblastic collagenase, gelatinase,

15

30

polymorphonuclear collagenase, granolocytic collagenase, stromelysin I, stromelysin II, or elastase.

- 79. The fragment of claim 68, wherein the proenzyme is a proenzyme form of fibroblastic collagenase, gelatinase, polymorphonuclear collagenase, granolocytic collagenase, stromelysin I, stromelysin II, or elastase.
- 80. A method for reducing the amount of atherosclerotic plaque in a blood vessel, which comprises:
 - (a) contacting the atherosclerotic plaque with a reagent comprising the antibody of claim 67 or the fragment of claim 68 under conditions and in an amount such that the reagent binds to, and digests, a component of the plaque; and
 - (b) thereby reducing the amount of atherosclerotic plaque in a blood vessel.
- 81. The method of claim 80, further comprising contacting the blood vessel with an antibody which specifically binds to normal intima or media and has bound thereto an inhibitor of an enzyme capable of digesting a component of atherosclerotic plaque under conditions such that the antibody which specifically binds to normal intima or media binds to the normal intima or media in the blood vessel.
 - 82. The method of claim 81, wherein the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries.
- 83. The method of claim 82, wherein the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.

84. A pharmaceutical composition comprising the antibody of claim 67 in an amount effective to digest a component of atherosclerotic plaque, and a physiologically acceptable carrier.

5

85. A pharmaceutical composition comprising the fragment of claim 68 in an amount effective to digest a component of atherosclerotic plaque, and a physiologically acceptable carrier.

10

- 86. The monoclonal antibody of claim 37, conjugated to cell growth inhibitors capable of preventing proliferation of atherosclerotic plaque.
- 15 87. The fragment of claim 38, conjugated to cell growth inhibitors capable of preventing proliferation of atherosclerotic plaque.
- 88. A reagent for treating atherosclerosis, which comprises the monoclonal antibody of claim 37 or the fragment of claim 38 bound to a drug useful in treating atherosclerosis.
- 89. A method of treating atherosclerosis in a subject,
 25 which comprises administering to the subject an amount of
 the reagent of claim 88 effective to treat
 atherosclerosis.
- 90. A rat myeloma cell line designated Z2D3 73/30 1D10, and having ATCC Accession Number CRL 11203.
 - 91. A murine-human chimeric monoclonal antibody produced by a rat myeloma cell line of claim 90.
- 35 92. A biologically active fragment of the murine-human chimeric monoclonal antibody of claim 91.

15

20

25

30

- 93. The antibody of claim 91, labeled with a detectable marker.
- 94. The fragment of claim 92, labeled with a detectable marker.
 - 95. The antibody of claim 91 bound to a solid support.
 - 96. The fragment of claim 92, bound to solid support.
 - 97. A reagent for use in imaging atherosclerotic plaque, which comprises the antibody of claim 91 or the fragment of claim 92 labeled with a detectable marker, in an amount effective to image atherosclerotic plaque, and a physiologically acceptable carrier.
 - 98. A method for imaging atherosclerotic plaque, which comprises:
 - (a) contacting the atherosclerotic plaque to be imaged with the reagent of claim 97, under conditions such that the reagent binds to the atherosclerotic plaque; and
 - (b) detecting the detectable marker labelling the antibody or fragment in the reagent bound to the atherosclerotic plaque;

thereby imaging the atherosclerotic plaque.

- 99. A method for differentially imaging atherosclerotic plaque and normal tissue in a lumen, which comprises:
 - (a) contacting the lumen with an antibody which specifically binds to normal intima or media and which does not bind to atherosclerotic plaque, and which is labeled with a detectable marker;
- 35 (b) contacting the lumen with the reagent of claim 97 under conditions such that the reagent binds to the atherosclerotic plaque;

35

- (c) detecting the detectable marker labeling the antibody of step (a) bound to the normal intima or media; and
- (d) detecting the detectable marker labeling the antibody or the fragment in the reagent of step (b) bound to the atherosclerotic plaque; wherein the detectable marker labeling the antibody which specifically binds to normal intima or media is different from the detectable marker labeling the antibody or fragment in the reagent, thereby differentially imaging the atherosclerotic plaque and the normal tissue in the lumen.
- 100. The method of claim 99, wherein the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries.
- 20 101. The method of claim 100, wherein the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.
- 102. The antibody of claim 91, bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength.
- 103. The fragment of claim 92, bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength.
 - 104. The antibody of claim 102, wherein the chromophore absorbs light having a wavelength from about 190 nm to about 1100 nm.
 - 105. The fragment of claim 103, wherein the chromophore absorbs light having a wavelength from about 190 nm to

10

15

20

25

about 1100 nm.

106. The antibody of claim 104, wherein the chromophore is fluorescein, rhodamine, tetracycline, hematoporphyrin, or β -carotene.

107. The fragment of claim 105, wherein the chromophore is fluorescein, rhodamine, tetracycline, hematoporphyrin, or β -carotene.

108. A reagent for ablating atherosclerotic plaque comprising the antibody of claim 91 or the fragment of claim 92 bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength in an amount effective to highlight the atherosclerotic plaque to be ablated and a physiologically acceptable carrier.

- 109. A method for ablating atherosclerotic plaque, which comprises:
 - (a) contacting atherosclerotic plaque with an effective amount of the reagent of claim 108, so that the antibody present in the reagent binds to the atherosclerotic plaque forming an atherosclerotic plaque-antibody complex;
 - (b) exposing the resulting complex to radiation having a plaque ablating wavelength under conditions such that the radiation is absorbed by the chromophore at a sufficient energy to ablate the atherosclerotic plaque; and
- 30 (c) thereby ablating the atherosclerotic plaque.
 - 110. A method for ablating atherosclerotic plaque in a blood vessel, which comprises:
- (a) contacting the normal lumen with an antibody
 which specifically binds to normal intima or
 media and has bound thereto a molety capable
 of reflecting radiation of the plaque ablating

25

30

35

wavelength;

- (b) contacting the atherosclerotic plaque with the reagent of claim 108;
- (c) exposing the atherosclerotic plaque to the radiation having plaque ablating wavelength; and
- (d) thereby ablating the atherosclerotic plaque present in a blood vessel.
- 10 111. The method of claim 110, wherein the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries.
- 112. The method of claim 111, wherein the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.
- 20 113. A method for detecting in a sample an antigen indicative of the presence of atherosclerotic plaque, which comprises:
 - (a) contacting the sample with the antibody of claim 91 or the fragment of claim 92, under conditions such that the antibody or fragment binds to the antigen in the sample to form a detectable complex;
 - (b) detecting the complex so formed; and
 - (c) thereby detecting in the sample an antigen indicative of the presence of atherosclerotic plaque.
 - 114. A method for quantitatively determining in a sample the concentration of an antigen indicative of the presence of atherosclerotic plaque, which comprises:
 - (a) contacting a solid support with an excess of the antibody of claim 91 or the fragment of

5

10

15

20

25

-196-

claim 92, under conditions permitting the antibody or fragment to attach to the surface of the solid support;

- (b) removing unbound antibody or fragment;
- (c) contacting the resulting solid support to which the antibody or fragment is bound with the sample under conditions such that any antigen present in the sample binds to the bound antibody or fragment and forms a complex therewith;
- (d) removing any antigen which is not bound to the complex;
- (e) contacting any complex so formed with an excess of a detectable reagent which specifically binds to any antigen present in the complex so as to form a second complex which includes the antibody or fragment, the antigen, and the detectable reagent;
- (f) removing any detectable reagent which is not bound in the second complex;
- (g) quantitatively determining the concentration of detectable reagent present in the second complex; and
- (h) thereby quantitatively determining in the sample the concentration of an antigen indicative of the presence of atherosclerotic plaque.

reagent comprises a monoclonal antibody or fragment thereof labeled with a detectable marker, wherein the monoclonal antibody is produced by hybridoma Z2D3 having ATCC Accession Number HB9840, hybridoma Z2D3/3E5 having ATCC Accession Number HB10485, rat myeloma cell line Z2D3 73/30 1D10 having ATCC Accession Number CRL 11203, or a CDR-grafted antibody comprising a CDR region from hybridoma Z2D3 or hybridoma Z2D3/3E5 and a framework and

5

10

15

20

25

30

constant region from a human immunoglobulin.

116. A method for quantitatively determining in a sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque, which comprises:

- (a) contacting a solid support with a predetermined amount of the antibody of claim 91 or the fragment of claim 92, under conditions permitting the antibody or fragment to attach to the surface of the solid support;
- (b) removing any antibody or fragment not bound to the solid support;
- (c) contacting the resulting solid support to which the antibody or fragment is bound with a predetermined amount of an antigen labeled with a detectable marker, and with the sample under such conditions that labeled and sample antigens competitively bind to the antibody or fragment bound to the solid support and form a complex therewith;
- (d) removing any labeled and sample antigens which are not bound to the complex;
- (e) quantitatively determining the amount of labeled antigen bound to the solid support; and
- (f) thereby quantitatively determining in the sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque.
- 117. The method of claim 116, wherein step (e) comprises quantitatively determining the amount of labeled antigen not bound to the solid support.
- 118. A method for quantitatively determining in a sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque, which comprises:

35

-198-

	· (a)	contacting a solid support with a						
	•	predetermined amount of the antibody of claim						
		91 or the fragment of claim 92, under						
		conditions permitting the antibody or fragment						
5		to attach to the surface of the support;						
	(b)	removing any antibody or fragment not bound to						
	\ /	the solid support;						
	(c)	contacting the resulting solid support to						
		which the antibody or fragment is bound with						
10		the sample under conditions such that any						
		antigen present in the sample binds to the						
		bound antibody or fragment and forms a complex						
		therewith;						
	(d)	removing any antigen which is not bound to the						
15		complex;						
	. (e)	contacting the complex so formed with a						
		predetermined amount of plaque antigen labeled						
		with a detectable marker under conditions such						
		that the labeled plaque antigen competes with						
20		the antigen from the sample for binding to the						
		antibody or fragment;						
	(f)	removing any labeled and sample antigens which are not bound to the complex;						
	()	quantitatively determining the amount of						
25	(g)	labeled plaque antigen bound to the solid						
25		support; and						
	(h)	thereby quantitatively determining in the						
	(/	sample the concentration of an antigen which						
		is indicative of the presence of						
30		atherosclerotic plaque.						
		method of claim 118, wherein step (g) comprises						
	quantitatively determining the amount of labeled antigen							

120. The antibody of claim 91, conjugated to an enzyme capable of digesting a component of atherosclerotic

not bound to the solid support.

10

15

plaque.

121. The fragment of claim 92, conjugated to an enzyme capable of digesting a component of atherosclerotic plaque.

122. The antibody of claim 120, wherein the enzyme is a proenzyme which, when activated, is converted to an enzyme capable of digesting a component of atherosclerotic plaque.

123. The fragment of claim 121, wherein the enzyme is a proenzyme which, when activated, is converted to an enzyme capable of digesting a component of atherosclerotic plaque.

124. The antibody of claim 120, wherein the antibody and the enzyme comprise a single molecule.

20 125. The fragment of claim 121, wherein the fragment and the enzyme comprise a single molecule.

126. The antibody of claim 120, wherein the antibody is a bifunctional antibody comprising a binding site specific for the enzyme and a binding site specific for the antigen.

127. The fragment of claim 121, wherein the fragment is a bifunctional fragment comprising a binding site specific for the enzyme and a binding site specific for the antigen.

128. The antibody of claim 126, wherein the antibody is produced by a quadroma derived from the fusion of a hybridoma cell line Z2D3 having ATCC Accession Number HB9840, Z2D3/3E5 having ATCC Accession Number HB10485, or Z2D3 73/30 1D10 having ATCC Accession Number CRL 11203,

25

30

with a hybridoma secreting a monoclonal antibody which specifically binds to the enzyme.

- 5 129. The antibody of claim 120, wherein the enzyme is a proteinase, an elastase, a collagenase, or a saccharidase.
- 130. The fragment of claim 121, wherein the enzyme is a proteinase, an elastase, a collagenase, or a saccharidase.
- 131. The antibody of claim 122, wherein the proenzyme is a proenzyme form of fibroblastic collagenase, gelatinase, polymorphonuclear collagenase, granolocytic collagenase, stromelysin I, stromelysin II, or elastase.
- 132. The fragment of claim 123, wherein the proenzyme is a proenzyme form of fibroblastic collagenase, gelatinase, polymorphonuclear collagenase, granolocytic collagenase, stromelysin I, stromelysin II, or elastase.
 - 133. A method for reducing the amount of atherosclerotic plaque in a blood vessel, which comprises:
 - (a) contacting the atherosclerotic plaque with a reagent comprising the antibody of claim 120 or the fragment of claim 121 under conditions and in an amount such that the reagent binds to, and digests, a component of the plaque; and
 - (b) thereby reducing the amount of atherosclerotic plaque in a blood vessel.
- 134. The method of claim 133, further comprising contacting the blood vessel with an antibody which specifically binds to normal intima or media and has bound thereto an inhibitor of an enzyme capable of

digesting a component of atherosclerotic plaque under conditions such that the antibody which specifically binds to normal intima or media binds to the normal intima or media in the blood vessel.

5

135. The method of claim 134, wherein the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries.

136. The method of claim 135, wherein the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.

15

10

137. A pharmaceutical composition comprising the antibody of claim 120 or the fragment of claim 121, in an amount effective to digest a component of atherosclerotic plaque, and a physiologically acceptable carrier.

20

- 138. The antibody of claim 91, conjugated to cell growth inhibitors capable of preventing proliferation of atherosclerotic plaque.
- 25 139. The fragment of claim 92, conjugated to cell growth inhibitors capable of preventing proliferation of atherosclerotic plague.
 - 140. A reagent for treating atherosclerosis, which
 30 comprises the antibody of claim 91 or the fragment of
 claim 92 bound to a drug useful in treating
 atherosclerosis.
 - 141. A method of treating atherosclerosis in a subject,
 which comprises administering to the subject an amount of
 the reagent of claim 140 effective to treat
 atherosclerosis.

142. A CDR-grafted antibody comprising a CDR region amino acid sequence from hybridoma Z2D3 or hybridoma Z2D3/3E5 and framework and constant region amino acid sequences from a human immunoglobulin.

5

- 143. A biologically active fragment of the CDR-grafted antibody of claim 142.
- 144. The antibody of claim 142, labeled with a detectable marker.
 - 145. The fragment of claim 143, labeled with a detectable marker.
- 15 146. The antibody of claim 142, bound to a solid support.
 - 147. The fragment of claim 143, bound to a solid support.
- 148. A reagent for use in imaging atherosclerotic plaque,
 20 which comprises the antibody of claim 142 or the fragment
 of claim 143 labeled with a detectable marker, in an
 amount effective to image atherosclerotic plaque, and a
 physiologically acceptable carrier.
- 25 149. A method for imaging atherosclerotic plaque, which comprises:
 - (a) contacting the atherosclerotic plaque to be imaged with the reagent of claim 148, under conditions such that the reagent binds to the atherosclerotic plaque; and
 - (b) detecting the detectable marker labelling the antibody or fragment in the reagent bound to the atherosclerotic plaque;

thereby imaging the atherosclerotic plaque.

35

30

150. A method for differentially imaging atherosclerotic plaque and normal tissue in a lumen, which comprises:

5

10

25

30

35

-203-

- (a) contacting the lumen with an antibody which specifically binds to normal intima or media and which does not bind to atherosclerotic plaque, and which is labeled with a detectable marker;
- (b) contacting the lumen with the reagent of claim 148 under conditions such that the reagent binds to the atherosclerotic plaque;
- (c) detecting the detectable marker labeling the antibody of step (a) bound to the normal intima or media; and
- (d) detecting the detectable marker labeling the antibody or the fragment in the reagent of step (b) bound to the atherosclerotic plaque;
- wherein the detectable marker labeling the antibody which specifically binds to normal intima or media is different from the detectable marker labeling the antibody or fragment in the reagent, thereby differentially imaging the atherosclerotic plaque and the normal tissue in the lumen.
 - 151. The method of claim 150, wherein the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries.
 - 152. The method of claim 151, wherein the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.
 - 153. The antibody of claim 142, bound to a chromophore capable of absorbing radiation having a plaque ablating wavelength.
 - 154. The fragment of claim 143, bound to a chromophore capable of absorbing radiation having a plaque ablating

10

25

30

35

wavelength.

155. The antibody of claim 153, wherein the chromophore absorbs light having a wavelength from about 190 nm to about 1100 nm.

156. The fragment of claim 154, wherein the chromophore absorbs light having a wavelength from about 190 nm to about 1100 nm.

157. The antibody of claim 153, wherein the chromophore is fluorescein, rhodamine, tetracycline, hematoporphyrin, or β -carotene.

- 158. The fragment of claim 154, wherein the chromophore is fluorescein, rhodamine, tetracycline, hematoporphyrin, or β-carotene.
- comprising the antibody of claim 142 or the fragment of claim 143 bound to chromophore capable of absorbing radiation having a plaque ablating wavelength in an amount effective to highlight the atherosclerotic plaque to be ablated and a physiologically acceptable carrier.
 - 160. A method for ablating atherosclerotic plaque, which comprises:
 - (a) contacting atherosclerotic plaque with an effective amount of the reagent of claim 159, so that the antibody present in the reagent binds to the atherosclerotic plaque forming an atherosclerotic plaque-antibody complex;
 - (b) exposing the resulting complex to radiation having a plaque ablating wavelength under conditions such that the radiation is absorbed by the chromophore at a sufficient energy to ablate the atherosclerotic plaque; and

20

30

35

- (c) thereby ablating the atherosclerotic plaque.
- 161. A method for ablating atherosclerotic plaque in a blood vessel, which comprises:
 - (a) contacting the normal lumen with an antibody which specifically binds to normal intima or media and has bound thereto a moiety capable of reflecting radiation of the plaque ablating wavelength;
- (b) contacting the atherosclerotic plaque with the reagent of claim 159;
 - (c) exposing the atherosclerotic plaque to the radiation having plaque ablating wavelength;
 and
- (d) thereby ablating the atherosclerotic plaque present in a blood vessel.
 - 162. The method of claim 161, wherein the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries.
- 163. The method of claim 162, wherein the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.
 - 164. A method for detecting in a sample an antigen indicative of the presence of atherosclerotic plaque, which comprises:
 - (a) contacting the sample with the antibody of claim 142 or the fragment of claim 143, under conditions such that the antibody or fragment binds to the antigen in the sample to form a detectable complex;
 - (b) detecting the complex so formed; and
 - (c) thereby detecting in the sample an antigen

10

15

20

25

30

35

indicative of the presence of atherosclerotic plaque.

- 165. A method for quantitatively determining in a sample the concentration of an antigen indicative of the presence of atherosclerotic plaque, which comprises:
 - (a) contacting a solid support with an excess of the antibody of claim 142 or the fragment of claim 143, under conditions permitting the antibody or fragment to attach to the surface of the solid support;
 - (b) removing unbound antibody or fragment;
 - (c) contacting the resulting solid support to which the antibody or fragment is bound with the sample under conditions such that any antigen present in the sample binds to the bound antibody or fragment and forms a complex therewith;
 - (d) removing any antigen which is not bound to the complex;
 - (e) contacting any complex so formed with an excess of a detectable reagent which specifically binds to any antigen present in the complex so as to form a second complex which includes the antibody or fragment, the antigen, and the detectable reagent;
 - (f) removing any detectable reagent which is not bound in the second complex;
 - (g) quantitatively determining the concentration of detectable reagent present in the second complex; and
 - (h) thereby quantitatively determining in the sample the concentration of an antigen indicative of the presence of atherosclerotic plaque.
 - 166. The method of claim 165, wherein the detectable

reagent comprises a monoclonal antibody or fragment thereof labeled with a detectable marker, wherein the monoclonal antibody is produced by hybridoma Z2D3 having ATCC Accession Number HB9840, hybridoma Z2D3/3E5 having ATCC Accession Number HB10485, rat myeloma cell line Z2D3 73/30 1D10 having ATCC Accession Number CRL 11203, or a CDR-grafted antibody comprising a CDR region from hybridoma Z2D3 or hybridoma Z2D3/3E5 and a framework and constant region from a human immunoglobulin.

10

5

167. A method for quantitatively determining in a sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque, which comprises:

a solid support contacting predetermined amount of the antibody of claim 15 142 or the fragment of claim 143, under conditions permitting the antibody or fragment to attach to the surface of the solid support;

removing any antibody or fragment not bound to (b) the solid support;

contacting the resulting solid support to (c) which the antibody or fragment is bound with a predetermined amount of an antigen labeled with a detectable marker, and with the sample under such conditions such that labeled and sample antigens competitively bind to the antibody or fragment bound to the solid

removing any labeled and sample antigens which (d) are not bound to the complex;

support and form a complex therewith;

- quantitatively determining the amount (e) labeled antigen bound to the solid support; and
- thereby quantitatively determining (f) sample the concentration of an antigen which presence of indicative of the atherosclerotic plaque.

20

25

30

35

10

15

20

25

30

35

168. The method of claim 167, wherein step (e) comprises quantitatively determining the amount of labeled antigen not bound to the solid support.

- 5 169. A method for quantitatively determining in a sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque, which comprises:
 - (a) contacting a solid support with a predetermined amount of the antibody of claim 142 or the fragment of claim 143, under conditions permitting the antibody or fragment to attach to the surface of the support;
 - (b) removing any antibody or fragment not bound to the solid support;
 - (c) contacting the resulting solid support to which the antibody or fragment is bound with the sample under conditions such that any antigen present in the sample binds to the bound antibody or fragment and forms a complex therewith;
 - (d) removing any antigen which is not bound to the complex;
 - (e) contacting the complex so formed with a predetermined amount of plaque antigen labeled with a detectable marker under conditions such that the labeled plaque antigen competes with the antigen from the sample for binding to the antibody or fragment;
 - (f) removing any labeled and sample antigens which are not bound to the complex;
 - (g) quantitatively determining the amount of labeled plaque antigen bound to the solid support; and
 - (h) thereby quantitatively determining in the sample the concentration of an antigen which is indicative of the presence of atherosclerotic plaque.

- 170. The method of claim 169, wherein step (g) comprises quantitatively determining the amount of labeled antigen not bound to the solid support.
- 5 171. The antibody of claim 142, conjugated to an enzyme capable of digesting a component of atherosclerotic plague.
- 172. The fragment of claim 143, conjugated to an enzyme capable of digesting a component of atherosclerotic plaque.
- 173. The antibody of claim 171, wherein the enzyme is a proenzyme which, when activated, is converted to an enzyme capable of digesting a component of atherosclerotic plaque.
- 174. The fragment of claim 172, wherein the enzyme is a proenzyme which, when activated, is converted to an enzyme capable of digesting a component of atherosclerotic plaque.
 - 175. The antibody of claim 171, wherein the antibody and the enzyme comprise a single molecule.
 - 176. The fragment of claim 172, wherein the fragment and the enzyme comprise a single molecule.
- 177. The antibody of claim 171, wherein the antibody is a bifunctional antibody comprising a binding site specific for the enzyme and a binding site specific for the antigen.
- 178. The fragment of claim 172, wherein the antibody is a bifunctional fragment comprising a binding site specific for the enzyme and a binding site specific for the antigen.

25

30

179. The antibody of claim 177, wherein the antibody is produced by a quadroma derived from the fusion of a hybridoma cell line Z2D3 having ATCC Accession Number HB9840, Z2D3/3E5 having ATCC Accession Number HB10485, or Z2D3 73/30 1D10 having ATCC Accession Number CRL 11203, with a hybridoma secreting a monoclonal antibody which specifically binds to the enzyme.

180. The antibody of claim 171, wherein the enzyme is a proteinase, an elastase, a collagenase, or a saccharidase.

181. The fragment of claim 172, wherein the enzyme is a proteinase, an elastase, a collagenase, or a saccharidase.

182. The antibody of claim 173, wherein the proenzyme is a proenzyme form of fibroblastic collagenase, gelatinase, polymorphonuclear collagenase, granolocytic collagenase, stromelysin I, stromelysin II, or elastase.

183. The fragment of claim 174, wherein the proenzyme is a proenzyme form of fibroblastic collagenase, gelatinase, polymorphonuclear collagenase, granolocytic collagenase, stromelysin I, stromelysin II, or elastase.

184. A method for reducing the amount of atherosclerotic plaque in a blood vessel, which comprises:

- (a) contacting the atherosclerotic plaque with a reagent comprising the antibody of claim 171 or the fragment of claim 172 under conditions and in an amount such that the reagent binds to, and digests, a component of the plaque; and
- 35 (b) thereby reducing the amount of atherosclerotic plaque in a blood vessel.

185. The method of claim 184, further comprising contacting the blood vessel with an antibody which specifically binds to normal intima or media and has bound thereto an inhibitor of an enzyme capable of digesting a component of atherosclerotic plaque under conditions such that the antibody when specifically binds to normal intima or media binds to the normal intima or media in the blood vessel.

- 10 186. The method of claim 185, wherein the antibody which specifically binds to normal intima or media is a purified antibody which specifically binds to an antigen synthesized by or present in normal smooth muscle cells and normal connective tissue surrounding arteries.
- 187. The method of claim 186, wherein the antibody is a monoclonal antibody produced by hybridoma Q10E7 having ATCC Accession Number 10188.
- 20 188. A pharmaceutical composition comprising the antibody of claim 171 or the fragment of claim 172, in an amount effective to digest a component of atherosclerotic plaque, and a physiologically acceptable carrier.
- 25 189. The antibody of claim 142, conjugated to cell growth inhibitors capable of preventing proliferation of atherosclerotic plaque.
- 190. The fragment of claim 143, conjugated to cell growth 30 inhibitors capable of preventing proliferation of atherosclerotic plaque.
- 191. A reagent for treating atherosclerosis, which comprises the antibody of claim 142 or the fragment of claim 143 bound to a drug useful in treating atherosclerosis.

192. A method of treating atherosclerosis in a subject, which comprises administering to the subject an amount of the reagent of claim 191 effective to treat atherosclerosis.

5

193. A peptide having an amino acid sequence which is the same or substantially the same as the amino acid sequence of the variable region of the heavy chain of the chimeric monoclonal antibody of claim 91.

10

194. The peptide of claim 193, wherein the amino acid sequence is SEQ ID NO: 18 or SEQ ID NO: 19.

15

195. A peptide having an amino acid sequence which is the same or substantially the same as the amino acid sequence of the variable region of the light chain of the chimeric monoclonal antibody of claim 91.

20

196. The peptide of claim 195, wherein the amino acid sequence is SEQ ID NO: 63.

25

197. A peptide, which comprises an amino acid sequence or combination of amino acid sequences, each of which amino acid sequences is the same or substantially the same as the amino acid sequence of a complimentarity determining region (CDR) of the chimeric monoclonal antibody of claim 91.

30

198. The peptide of claim 197, comprising an amino acid sequence which is the same or substantially the same as the amino acid sequence of a complimentarity determining region of the variable region of the heavy chain of the chimeric monoclonal antibody.

35

199. The peptide of claim 198, comprising the amino acid sequence of SEQ ID NO: 22, SEQ ID NO: 25, or SEQ ID NO: 28.

25

30

200. The peptide of claim 197, comprising an amino acid sequence which is the same or substantially the same as the amino acid sequence of a complimentarity determining region of the variable region of the light chain of the chimeric monoclonal antibody.

201. The peptide of claim 200, comprising the amino acid sequence of SEQ ID NO: 66, SEQ ID NO: 69, or SEQ ID NO: 72.

10
202. The peptide of claim 197, wherein the peptide is a recombinant peptide.

203. The recombinant peptide of claim 202, modified by site-directed mutagenesis.

204. An isolated nucleic acid molecule, having a nucleotide sequence encoding a peptide whose amino acid sequence is the same or substantially the same as the amino acid sequence of the variable region of the heavy chain of the chimeric monoclonal antibody of claim 91.

205. The isolated nucleic acid molecule of claim 204, having the sequence of SEQ ID NO: 16 or SEQ ID NO: 17.

206. An isolated nucleic acid molecule, having a nucleotide sequence encoding a peptide whose amino acid sequence is the same or substantially the same as the amino acid sequence of the variable region of the light chain of the chimeric monoclonal antibody of claim 91.

207. The isolated nucleic acid molecule of claim 206, having the sequence of SEQ ID NO: 61 or SEQ ID NO: 62.

35 208. An isolated nucleic acid molecule, having a nucleotide sequence encoding an amino acid sequence which is the same or substantially the same as the amino acid

20

35

sequence of a complimentarity determining region of the chimeric monoclonal antibody of claim 91.

209. The isolated nucleic acid molecule of claim 208, having a nucleotide sequence encoding an amino acid sequence which is the same as or substantially the same as the amino acid sequence of a complimentarity determining region of the variable region of the heavy chain of the chimeric monoclonal antibody.

210. The isolated nucleic acid molecule of claim 209, having the sequence of SEQ ID NO: 20, SEQ ID NO: 23, SEQ ID NO: 26, SEQ ID NO: 21, SEQ ID NO: 24, or SEQ ID NO: 27.

211. The isolated nucleic acid molecule of claim 208, having a nucleotide sequence encoding an amino acid sequence which is the same or substantially the same as the amino acid sequence of a complimentarity determining region of the variable region of the light chain of the chimeric monoclonal antibody.

212. The isolated nucleic acid molecule of claim 211, having the sequence of SEQ ID NO: 64, SEQ ID NO: 67, SEQ ID NO: 70, SEQ ID NO: 65, SEQ ID NO: 68, or SEQ ID NO: 71.

213. The antigen of claim 1, wherein the antigen specifically binds to the monoclonal antibody produced by hybridoma Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.

214. The antibody of claim 35, wherein the antibody is capable of specifically binding to an antigen recognized by a monoclonal antibody produced by hybridoma Z2D3, Z2D3/3E5, or Z2D3.73/30 1D10.

215. The monoclonal antibody of claim 37, wherein the

monoclonal antibody is capable of specifically binding to an antigen recognized by a monoclonal antibody produced by hybridoma Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.

- 5 216. The fragment of claim 38, wherein the fragment is capable of specifically binding to an antigen recognized by a monoclonal antibody produced by hybridoma Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.
- 217. The fragment of claim 92, wherein the fragment is capable of specifically binding to an antigen recognized by a monoclonal antibody produced by hybridoma Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.
- 218. The fragment of claim 143, wherein the fragment is capable of specifically binding to an antigen recognized by a monoclonal antibody produced by hybridoma Z2D3, Z2D3/3E5, or Z2D3 73/30 1D10.

FIGURE 1A

FIGURE 1B

FIGURE 2A

FIGURE 2B

NON-SPECIFIC IgM MAb

5/68 FIGURE 3 a

Figure 3b

WO 94/25053 PCT/US94/04641

7/68 FIGURE 4 a

Figure 4b

μg QUATERNARY AMMONIUM COMPOUND/WELL

9/68 FIGURE 5 a

Figure 5b

μg QUATERNARY AMMONIUM COMPOUND/WELL

11/68 FIGURE 6 a

Figure 6b

 μ g QUATERNARY AMMONIUM COMPOUND/WELL

FIGURE 7 a

Figure 7b

μg QUATERNARY AMMONIUM COMPOUND/WELL

FIGURE 8A

16/68

Figure 8b

μg QUATERNARY AMMONIUM COMPOUND/WELL

WO 94/25053

17/68 FIGURE 9A

Figure 9b

μg QUATERNARY AMMONIUM COMPOUND/WELL

19/68 FIGURE 10 a

Figure 10b

μg QUATERNARY AMMONIUM COMPOUND/WELL

21/68 FIGURE 11 a

Figure 11b

μg QUATERNARY AMMONIUM COMPOUND/WELL

23/68 FIGURE 12 a

Figure 12b

μg QUATERNARY AMMONIUM COMPOUND/WELL

FIGURE 13

Figure 14

o = LAUROYLCHOLINE

= MYRISTOYLCHOLINE

 $\Delta = PALMITOYLCHOLINE$

 $\overline{X} = STEAROYLCHOLINE$

Figure 15

O = LAUROYLCHOLINE = MYRISTOYLCHOLINE

= PALMITOYLCHOLINE

X = STEAROYLCHOLINE

FIGURE 16

FIGURE 17A

204	GGGTCA	GGGTCA	CCCTCA	SCCTCA	SGGGTCA
404	CTGCAGGAGTCWGGAGGAGGCTTGGTGCAACCTGGGGGGTCA CTGCAGGAGTCWGGAGGAGGCTTGGTGCAACCTGGGGGGGTCA	CTGCAGGAGTCTGGAGGCTTGGTGCAACCTGGGGGGTCA CTGCAGGAGTCAGGAGGCTTGGTGCAACCTGGGGGGGTCA	CTGCAGGAGTCAGGAGGCTTGGTGCAACCTGGGGGGGTCA AGGCTTGGTGCAACCTGGGGGGGTCA	AGCTTGGTGCAACCTGGGGGGTCA	GCTTGGTGCAACCTGGGGGGTCA
300	AGGAGGCTTGG AGGAGGCTTGG	NGGAGGCTTGG NGGAGGCTTGG	AGGAGGCITIGG AGGCITIGG	AGGCTTGO	GCTTG
200	AGSAGTCHGG AGGAGTCHGG/ AGGAGTCHGG/	AGGAGTCTGG	:Aggagtcagg		
100	AGGTSHARCTGCAGSAGTCWGG CTGCAGGAGTCWGG	CTC	C160		

Consensus

AGGTSMARCTGCAGGAGTCWGGAGGAGGCTTGGTGCAACCTGGGGGGTCA

22VH2

FIGURE 17B

CGGGGACTCTTGTGAAGGCTCAGGGTTTACTTTTAGTGGCTTCTGGAT CGGGGACTCTCTGTGAAGGCTCAGGGTTTTACTTTTAGTGGCTTCTGGAT CGGGGACTCTCTGTGAAGGCTCAGGGFTTTACTTTTAGTGGCTTCTGGAT CGGGGACTCTCTGTGAAGGCTCAGGGTTTACTTTTAGTGGCTTCTGGAT CGGGGACICICITGIGAAGGCICAGGGITITACITITAGIGGCITCIGGAI CGGGGACTCTCTTGTGAAGGCTCAGGGTTTACTTTTAGTGGCTTCTGGAT **CGGGGACTCTCTTGTGAAGGCTCAGGGTTTAACTTTTAGTGGCTTCTGGAT CGGGGACTCTCTGTGAAGGCTCAGGGCTTACTTTTAGTGGCTTCTGGAT** <u>cgggaaticttttgaaggctcagggittaattttagtggcitttggaat</u> **CGGGGACTCTCTTGTGAAGGCTCAGGGTTTTACTTTTAGTGGCTTCTGGAT** >06

30/68

consensus

CGGGGACTCTTGTGAAGGCTCAGGGTTTAACTTTTAGTGGCTTTCTGGAT

Z2VH1(1,220)'
Z2VH12(1,218)'
Z2VH7(1,220)'
Z2VH2(1,218)'
Z2VH2(1,210)
Z2VH5(1,220)
Z2VH5(1,220)
Z2VH6(1,220)
Z2VH6(1,220)
Z2VH8(1,219)

gagctgggttcgacagacacctggaaagaccctggagtggattggagaca gagetgggttogacagacacetgggaagacetggagtggattggagaca <u> Gagctgggttcgacagacactgggaagaccctggagtggattggagaca</u> GAGCTGGGTTCGACAGACACCTGGGAAGACCCCTGGAGTGGATTGGAGACA GAGCTGGGTTCGACAGACACCTGGGAAGACCCTGGAGTGGATTGGAGACA GAGCTGGGTTCGACAGACACCTGGGAAGACCCTGGAGTGGATTGGAGACA gageteggettegacagacaceteggaagaceetegagtegattegagaca gageteggetegacagacacetgggaagacetegagtggategagaca ga*gcteggttcgacacacctcggaag*acc*ctggagtggattggagac*a gagetgegettogacagacacetgegaagacectgegagtgegattgeagaca

Consenses

GAGCTGGGTTCGACACACCTGGGAAGACCCTGGAGTGGATTGGAGACA

Z2VH10(1,218 **Z2VH8 (1.219 12VH20A**(**22VH12** 22VH6! 22VH2 (**22VH1 22VH7 22VH5 6HAZZ**

FIGURE 17

FIGURE 17D

FTAATTCTGATGGCAGTGCAATAAACTACGCACCATCCATAAAGGATCGA TAATTCTGATGGCAGTGCAATAAACTACGCACCATCCATAAAGGATCGA Taaticicatgecagtecaataaactacecaccatcataaaggatega **FTAATTCTGATGGCAGTGCAATAAACTACGCACCATCCATAAAGGAT**CGA **FTAATTCTGATGGCAGTGCAATAAACTACGCACCATCCATAAAGGAT**CGA **FTAATTCTGATGGCAGTGCAATAAACTACGCACCATCCATAAAGGATCGA** TAATTICTGATGGCAGTGCAATAAACTACGCACCATCCATAAAGGATCGA 1907 1807

consensus

Z2VH12(1,220)'
Z2VH12(1,218)'
Z2VH7(1,220)'
Z2VH2(1,218)'
Z2VH2(1,218)'
Z2VH5(1,220)
Z2VH6(1,220)
Z2VH6(1,220)
Z2VH8(1,219)

FIGURE 17E

250v		NTCAC
240	TTCACTATCTTCAGAGACAATGACAAGAGCACCCTGTACCTGCAG TTCACTATCTTCAGAGACAATGACAAGAGCACCCTGTACCTGCAG TTCACTATCTTCAGAGACAATGACAAGAGCACCCTGTACCTGCAG TTCACTATCTTCAGAGACAATGACAAGAGCACCCTGTACCTGCAG TTCACTATCTTCAGAGACAATGACAAGAGCACCCTGTACCTGCAG TTCACTATCTTCAGAGACAATGACAAGAGCACCCTGTACCTGCAG	CTGCAGATGAG
230V ICAAGA ICAA ICAAGA	CAAGAGCACC CAAGAGCACC CAAGAGCACC CAAGAGCACC CAAGAGCACC	
220v AGAGACAATGA AGAGACAATGA AGAGACAATGA	AGAGACAATGA AGAGACAATGA AGAGACAGTGA AGAGACAATGA AGAGACAATGA AGAGACAATGA	·
TTCACTATCTTCAGAGACAATGACAAGA TTCACTATCTTCAGAGACAATGACAA TTCACTATCTTCAGAGACAATGACAAGA TTCACTATCTTCAGAGACAATGACAAGA	TTCACTATCTTC TTCACTATCTTC TTCACTATCTTC TTCACTATCTTC TTCACTATCTTC TTCACTATCTTC	
•		

82VH20A(22VH2(1,

22VHS 22VH6 22VH8

22VH1(1, 22VH12()

Z2VH7 (1

22VH9

33/68

TTCACTATCTTCAGAGACAATGACAAGAGCACCCTGTACCTGCAGATGAG

Consensus

Z2VH17(1,114

Z2VH10 (

4004

3907

TCCTCAGAGACTCACTCCCAA--GTCTTAAGCTT

FIGURE 17F

	34	4/68	
260v 270v 280v 290v 300v 300v CAATGTGCGATCTGAGGACACACGTATTTCTGTATGAGATATGATG CAATGTGCGATCTGAGGACACACACGCACGTATTTCTGTATGAGATATGATG	CAATGTGCGATCTGAGGACACAGCCACGTATTTCTGTATGAGATATGATG	310v 320v 330v 340v 350v GTTACTACTGGTACTTCGATGTCTGGGGGGGGGGACCACGGTCACGTCGTCGGGGGGGG	GTTACTACTGGTACTTCGATGTCTGGGGCGCAGGGACCACGGTCACGTC
Z2VH21(1,147) Z2VH17(1,114)'	Consensus	Z2VH21(1,147) Z2VH17(1,114)'	Consensus

Tectcagagagacatectaccaaa egactaaagcatec

consensus

CHIFOR (1,34

GAGAGTCAGTCCTTCCCAAATGTCTTAAGCTTCC

90

FIGURE 18A

E HEL	٠.	たびみびロロ	Ë	۱,	ا ا	
N NNS	ч	CEPCSS	<	u	H	
TLF L	ELI ,	RCYRAA	M	ធា	z	
111 1	-	211133	m	-	1	
		111				
AGGTSMARCTGCAGGAGTC	:AGGAGTCWGGAGGAGGCTTGGTGCAACCTGGGGGGGTCACGGGGACTCT	GCAACCTGGG	CCCT	CACC	GGGACTCT	
	+==== . ====+==== . ===++==+=== . ===== . ====++==== .	+		+		
TCCASKTYGACGTCCTCAGWCCTCCTCCGAACCACGTTGGACCCCCCAGTGCCCCTGAGA	SWCCTCCTCCGAACCA	CGTTGGACCC	7777	GTCC	CCCTGAGA	

FIGURE 18B

		•				
ESBB	CESS	2157		rerere	th Dr	++++-
H	OA KQ	11	rggerrégae	ACCCAAGCTG	p	********
~	45	-1	GCTTCTGGATGAGG	ATGAMATCACCGAAGACCTACTCCACCCAAGCTGTCTGTG	8 A	
	0 M	-4	CTTGTGAAGGCTCAGGGTTTACTTTAGTGGCTTCGGATGAGGTGGGTTCGACAGACA	GAACACTTCCGAGTCCCAAATGAAATCAC	t .	+

FIGURE 18(

·	180	
₽ 0 ₩ -	CTGGGAAGACCCTGGAGTGGAGACATTAATTCTGATGGCAGTGCAATAAACTACG	again ya
SS EE	GACATTAATTCTC	dinsd
BNKW	TGGATTGG/ +	6
BSEBBEASMA SECBSCPCBL ACPSARYROW J111J21122	CTGGGAAGACCCTGGAGTGG	g k t 1 e v
ASB PCB 11 2	CTGGGAA GACCCTT	א

)	
C	X)	
٩	_	-	
L	1	J	
	1	_	
=	-	5	
7		'	
(1)	
Ĺ	ī	_	
	•	•	

				6	7		
~	S	«	1	CCTGTACC	GGACATGG	t 1 y 1	+
E	GS	IP	A2	ACAAGAGCAG	ATAGAAGTCTCTGTTACTGTTCTCGTGGG		-+
				GAGACAATG	creterrac	r d n d K	
æ	S	X	7	rcrrc	AGAAGT	THE STATE OF THE S	
~	.	3	7	CACTA	AAGTGAT	. h	•
ВИВОСТТИМ	IBPPLAFNB	NONNAQIFO	11112	dcgar	AGCTA	H	
BMDO	IBPP	NON	112111	AAAGGA	TTTCCT	ت بد	
.:				CACCATCCATAAAGGATCGATTCACTATCTTCAGAGACAATGACAAGAGCACCCTGTACC	GIGGIAGGIATTICCTAGCTAAGTGATAGAAGTCTCTGTTACTGTTCTCGTGGGACATGG	φ. Ω.	

FIGURE 18E

		300	
X	(៨៣	TATGATG + ATACTAC	у d д
		rgtatgaga +	E
× <	1	TGCAGATGAGCAATGTGCGATCTGAGGACACAGCCACGTATTTCTGTATGAGATATGATG ACGTCTACTCGTTACACGCTAGACTCCTGTGTCGGTGCATAAAGACATACTCTATACTAC	dtatyfchr
		ACACAGCC! +: TGTGTCGG	ָ מ
00) M H	VICTGAGG	
M MOON		ATGTGCGA	H
ø v) Q1 ~	TGCAGATGAGCAATGTGCG	e +
D , V) EI FI	TGCAG	g i

FIGURE 18F

H	360	
Z WF CH	CAGAGA GTCTCT	w +
BO NE	CGTCTCCI	5
ANAFDDSBBBMH VLSISSESSAP AAUNAACAATEH 2411111JJE31	GGGGCGCAGGACCACGGTCACCGTCTCCTCAGAGA +	agttvtvs
ANAFDO VLSISS AAUNAA 241111	AGGGACCA TCCCTGGT	g t t
HHKA	GTTACTACTGGTACTTCGATGTCTGGGGCGCAGGGACCACGGTCACCGTCTCCTCAGAGA CAATGATGACCATGAAGCTACAGACCCGCGTCCCTGGTGCCAGTGCCAGAGGAGTCTCT	9 a g
	GATGTC	> ;
# W W H	TACTTCG.	
	ACTGG1	>
	GTTACTACTGGTACT	X X X X

FIGURE 18G

L E LE N U

1 1 21 3 1

GTCAGTCCTTCCCAAATGTCTTAAGCTTCC

CAGTCAGGAAGGGTTTACAGAATTCGAAGG

q s g p n v

	_	•
٦	•	_
L	1	J
Ē	Ì	=
-	_)
	ſ	3
è		
٠	1	•

50v	LEWIGDI	LEWIG I	LEWIGEI	1000	YFCMRYD	X C R	YYCARL-	-100·					
400	MSWVRQTPGKT	MSWVRQ PGK	MSWVROAPGKG	106	MSNVRSEDTAT	D S INY PS KD F I RDN K TLYLQMS VRSEDTA Y C R	MSKVRSEDTAL	₩ ~06. ₩					
304	GSGFTFSGFW	SGF FS W	AASGFDFSRYW	804	RDNDKSTLYLQ	RDN K TLYLQ	RDNAKNTLYLO	80~~~					
20v	PGGSRGLSCI	PGGS LSC	PGGSLKLSC	700	SIKDRFTIF	S KD F I	SIKDKFIIS	¥ 7004 ¥		LTVTVSS	WG GTTVTVSS	LTVTVSS	120~
100	22D3MUVH XVXLQESGGGLVQPGGSRGLSCEGSGFTFSGFWMSWVRQTPGKTLEWIGDI	V L ESGGGLVQPGGS LSC SGF FS WMSWVRQ PGK LEWIG I	EVKLLESGGGLVOPGGSLKLSCAASGFDFSRYWMSWVROAPGKGLEWIGEI	09	22D3MUVH NSDGSAINYAPSIKDRFTIFRDNDKSTLYLQMSNVRSEDTATYFCMRND	N D S INY 1	MUVHIIIB NPKADSSTINYTPSLKDKFIISRDNAKNTLYLOMSKVRSEDTALYYCARL-	¥ ~09	1100	Z2D3MUVH GYYWYFDVWGAGTTVTVSS	GYY YF WG G	GYYGYFAYWGQG	11044 44 120~
	2203МUVН		MUVHIIIB		Z2D3MUVH		MUVHIIIB			Z2D3MUVH		MUVHIIIB GYYGYFA	

CATCGCTGGGAGA

CCCTCCCACA

FIGURE 20A

43/68

GCATCGCTGGGAGA GCATCGCTGGGAGA TCCATCCCTGGGAGA TGCATCGCTGGGAGA TCCATCCCCCATGTATGCATCGCTGGGAGA TCCATCCTCCATGTATGCATCGCTGGGAGA TGCATCGCTGGGAGA CTCCATCCTCCATGTATGCATCGCTGGGAGA TCCATCCTCCATGTATGCATCGCTGGGAGA 204 CTGACCCAGTCTCCATCCTGCATGTATGCATCGCTGGGAGA CTGACCCAGTCTCCTCCATGTATGCATCGCTGGGAGA CTGACCCAGTCTCCATCCTCCATGTATGCATCGCTGGGAGA CTGACCCAGTCTCCATCCATGTATGCATCGCTGGGAGA 404 304 GACATTCAGCTGACCCAGTCTCCA 204

GACATTCAGCTGACCCAGTCTCCATCCTCCATGTATGCATCGCTGGGAGA

consensus

VKIBACK 22VK34 (22VK10 22VK17

Z2VK11A Z2VKBA **22VK2**3 **22VK3 (** 22VK7 (

264 22VK32 22VK30 22VK31 22VK29 **22VK28**

22VK36

FIGURE 20B

44/68

80v 90v 100v	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	CAGGACATTAAAAGCTATTTAA	AAGGCGAGTCAGGACATTAAAAGCTATTTAA
8 200 200	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAGCTATTTAA	GAGACTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAAGCTATTTAA	GAGAGTCACTATCACTTGCAAGGCGAGTCAGGACATTAAAAGCTATTTAA	AAGGCGAGI
	22VK34(1.291)'	Z2VK10(1,140)	22VK17 (1.92)	Z2VK23(1,152)	22VK3 (1,141)	Z2VK11A(1,84)	·N	Z2VK8A(1,140)	Z2VK28 (1,265)	Z2VK29 (1,265)	22VK30(1,265)	22VK31(1,264)	22VK32(1,264)	Z2VK36(1,263)'	Z2VK25(1,260)'	Z2VK18B(1,88)'

GCTGGTACCAGCAAACCATGGAAATCTCCTAAGACCCTGATCTATTAT GCTGGTACCAGCAGAAACCATGGAAATCTCCTAAGACCCTGATCTATTA 130v 1200 1100

GCTGGTACCAGCAGAAACCATGGAAATCTCCTAAGACCCTGATCTATTAT GCTGGTACCAGCAGAAACCATGGAAAÎCTCCTAAGACCCTGATCTATTAT

GCTGGTACCAGCAAACCATGGAAATCTCCTAAGACCCTGATCTATTAT GCTGGTACCAGCAAACCATGGAAATCTCCTAAGACCCTGATCTATTAT GCTGGTACCAGCAGAACCATGGAAATCTCCTAAGACCCTGATCTATTAT

GCTGGTACCAGCAGAACCATGGAAATCTCCTAAGACCCTGATCTATTAT **GCTGGTACCAGCAAACCATGGAAATCTCCTAAGACCCTGATCTATTAT GCTGGTACCAGCAGAAACCATGGAAATCTCCTAAGACCCTGATCTATTAT**

gctggtaccagcagaaccatggaaatctcctaagaccctgatctattat **GCTGGTACCAGCAAACCATGGAAATCTCCTAAGACCCTGATCTATTAT SCTGGTACCAGCAGAAACCATGGAAATCTCCTAAGACCCTGATCTATTAT**

GCTGGTACCAGCAGAAACCATGGAAATCTCCTAAGACCCTGATCTATTAT

GCTGGTACCAGCAAACCATGGAAATCTCCTAAGACCCTGATCTATTAT

consensus

22VK17() 22VK10(

22VK34(

,265) 140) 265) 265 264 1,264 40) 22VK3 (1. 22VK11A(**Z2VK7 (1** Z2VKBA (22VK31 22VK28 22VX29 **22VK30**(22VK32

Z2VK25(1,260) 22VK36(1,263) Z2VK18B(1,88) Z2VK23 (

FIGURE 20C

GCAACAAGCTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC GCAACAAGCTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC GCAACAAGCTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC GCAACAAGCTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC GCAACAAGCTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC **SCAACAAGCTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGAT**C GCAACAAGCTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC GCAACAAGCTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC 1900 1800 1700 SCAACAAGCTT 160v CCAACAAGCT GCAACAAGCT SCAACAAGCT

2651

263

22VK32 22VK36 22VK25

265 265)

22VK28

22VK29 22VK30 22VK31

Z2VKBA

40

22VK7 **22VK3**

22VK34(

22VK23

AGCTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC CTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC agcitiggcagatiggggtccatcaagattcagtggcagtggatt <u> AGCTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC</u>

GCAACAAGCTTGGCAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC

consensus

, 203

Z2VK18B 22VK19 **Z2VK20** (

FIGURE 20D

TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG

47/68

TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG **AAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG** TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG TGGGCAAGATTATTCTCTAACCATCAGGAGCCTGGAGTCTGACGATACAG TGGGCAAGATTATTCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAG 2400 2300

consensus

260 65) 165 64 203 9 63 22 VK8B (1, 1 22VK18A(22VK16(22VK20 22VK30 22VK16 22VK25 22VK28 22VK29 22VK31 22VK32 61XA22

FIGURE 20E

2907

2807

FIGURE 20F

CAACTTATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT **PARCITATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT** CAACTTATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT **CAACTTATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT** CAACTTATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT CAACTTATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT CAACITATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT CAACTTATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT

<u>CAACTTATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT</u>

22VK30 22VK31 22VK32

22VK29 22VK28 **22VK34**

203 1,204 263 **22VK19** (**Z2VK20**(22VX36 22VK25

CAACTTATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT CAACTTATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT CAACTIATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT **CAACTTATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT** CAACTTATTACTGTCTACAGCATGGTGAGAGCCCGCTCACGTTCGGTGCT

> 22VK8B(1. **22VK18A 22VK16**

consensus

FIGURE 20G

350v 340v 350v	GGGACCAAGCTGGAGCTGAACGGGCTGATGCTGCACCAACTGTATCCAT	GGGACCAAGCTGGAGCTGAAACGGG GGGACCAAGCTGGAGCTGAAACGGGCTGATGCTGCACCAACTGTATCCAT GGGACCAAGCTGGAGCTGAAACGGGCTGATGCTGCACCAACTGTATCCAT
310v 320v	GGGACCAAGCTGGAGCTGAAACGGGGGGGGGGGGGGGGG	GGGACCAAGCTGGAGCTGAAACGGGG GGGACCAAGCTGGAGCTGAAACGGG

consensus

Z2VK16(1,175 Z2VK18A(1,16 Z2VK8B(1,154 CK2FOR(1,32)

22VK19 22VK20 GGGACCAAGCTGGAGCTGAAACGGGCTGATGCTGCACCAACTGTATCCAT

4004

780¢

160v CTTCAAGCTT CTTCAAGCTT CTTCAAGCT

Z2VK19(1,203 Z2VK20(1,204 Z2VK8B(1,154 CK2FOR(1,32)

CTTCAAGCTTCC

FIGURE 20H

consensus

		•
BXMDD IHBPP NOON	12121 /// papareces retre	NAAACCCTAGAAC
N DDAPBAPNNHAND L RRSSAPSLSASLD A AAUSNASAPEUAE	3 2211211423141	CTGCAGSAGTCWGGACTCAGCATGGACATGAGGGCCCCTGCTCAGTTTTTTGGATCTTCTCTCTGTACTCCGGGGACGAGTCAAAAAAACCCTAGAAC
Z L L	(E)	AGCATGGACA -+
HXF	l	CWGGACTC
日日日	1 H	AGSAGTCI + TCSTCAG
P N E	4 cd	Ctgcagsagtcwgg

	120		
ZIKM	ATG	e ·	- 1 1
とめてと	CCTCC	w	(
B o X o	TECTCTGGTTTCCAGGTATCAGATGACATCAAGATGACCCAGTCTCCATCCTCCATG AACGAGACCAAAGGTCCATAGTTCTACTGGGTCAGAGGTAGGAGGTAC	D.	
	AGTCI TCAGI	rodikatqs	
EEE	ACCC	ب ا	
FOXA	GATG	B	
	NTCA	×	•
	TGAC	♥.	
X < W m	SATG	U	
·	ST S	ы	
	TA TA	ન	
10 C K A	AGG TICC	D .	
R AS C PC 2 11	TCC AGG	Ω,	
MOHI	T+X	44	
	TIG SAC	> .	•
	Trgctctggtttccaggi Aacgagaccaaaggicc	-	
	EIZ	řН	

ζ)
Č	`	
۱	Ï	5
-	_)
(:	2
ī	į	_

				0				
4	'n	ם	ਜ	AAGC	TTCG	w.		
X A	L S	阿阿	근 근	ACATTA	TGTAAT	kasqd1 ks		
		ese.		AGTCAGG	TCAGTCC	ss G		•
×	Z	[24	H	TATGCATCGCTGGGAGAGAGTCACTATCACTTGGAAGGCGAGTCAGGACATTAAAAGC	ATACGTAGCGACCCTCTCTCAGTGATAGTGAACGTTCCGCTCAGTCCTGTAATTTTCG	м <u>ч</u>		
				CACTTG	GTGAAC	t O		
Δ,	.	M	H	CACTAT	TCATA	r v t 1 t c	(((•
五	KN	F	13	GAGAGT	CTCTCA	A		
ဟ	ß.	~	Z	GGGAGA	cccrcr	<u>م</u>		
NA	SV	IA	13	ATCGCT	TAGCGA	r d s 0	• • •	-
X	Z	H	ન	TATEC	ATACG	∀		•

FIGURE 21D

			•		240			
				TATGCA	+	AATACGT	ø	+
E MDD	C BPP	P ONN	1 121	TATTTAAGGTGGTACCAGCAGAAACCATGGAAATCTCCTAAGACCCTGATCTATTATGCA		Ataaattcgaccatggtcgtctttggtacctttagaggattctgggactagataatacgt	pkt 1 i y	+ + + + + + + + + + + + + + + + + + + +
۵	۵,	ы	ન	ATCTCCTAAG	+	TAGAGGATTC	1	+
DSNDSBBTN	STCSESSTL	AYOACAAHA	111117723	AAACCATGGAA	+	TTTGGTACCTT	k p v k	
BANRKE	ASLSPC	NPAAN1	114115	/ / / GGTACCAGCAG	-+	CCATGGTCGTC	ъ ъ х	*******************
4	h	ם	٠٠	AAGG	+	Trcd	Ø	
Σ	S	. [12]	. न	TATLL		ATAAA	ਜ ਨ	

FIGURE 21E

			000	,		
BXXIDD	NOON	12121	GTCCCATCAAGATTCAGTGGCAGTGGATCTGGGCAAGATTAT	CAGGGTAGTTCTAAGTCACCGTCACCTAGACCCGTTCTAATA	8 9 8 9 9 4 Y	+
TH	IF	11	AAGATTC	TTCTAAG	eu H	+
DNPPAANF	AAUSAUAN	24112141	GGGTCCCATC	CCCCAGGGTAG	8 Q > 5	
H A		਼ ਜ ਜ	ACAAGCTTGGCAGATGGG	TGTTCGAACCGTCTACCC	t s l a d	***********

FIGURE 21F

					_		
					360		4
				TCTCTAACCATCAGCAGCCTGGAGTCTGACGATACAGCAACTTATTACTGTCTACAGCAT	ACCTCAGACTGCTATGTCGTTGAATAATGACAGATGTCGTA	ц ъ	+
<	O	O	-	TGI	SACA		+
			•	TTA	AAT	>	į
				TTA	AAT	>	!
				MC	TTG	ħ	+
				.¥GC	TCG	•	
				TAC	ATG	ħ	i
<u>ρ</u> ,	h	M	-	VCG)	ည်	ರ	+
ø	Ø	>	 1	CTG	מאט	e sddtatyy c	
				AGT	֡֜֝֝֜֝֟֝֟֝֟֝֟֝֟֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟		ij
王	Z	P4	ન	9	100	•	
E AS		X	7	_ខ្ល		-	T
国际	C	U R	H 2	:AG) F	₩.	į
_			•	CAG	i H	10	
M	U	H	10	CATO	GTA(4	+
				MAC	TTG	بد	
				TCL	AGAGATTGGTAGTCGTCGG	ત .	•
	•••	•		TC	NG.	10	1

FIGURE 21G

	420	
FZDH	ACGA	e .
¥	GGGCTGA +	
A SB L FB U AV 1 N1	GGTGAGAGCCCGCTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGÁAACGGGGCTGATGCT 	fgagtklelkra
KUDH	CAAGCTGG	x 1 8
ANAF VLSI AAUN 2411	GCTGGGAC.	a g t
	drrcggr daagcca	5
ASCPT A NPIHH E 22112 2	CGCTCAC	- L
B Z Z N	GGTGAGAGCCCGCT	G 8
ZIKO	GGT	Б

FIGURE 21H

CGTGGTTGACATAGGTAGAAGTTCGAAGG GCACCAACTGTATCCATCTTCAAGCTTCC

FIGURE 22

	100	200	300	404	200	
Z2D3MUVK	Z2D3MUVK DIQLTQSPSSMYASLGERVTITCKASQDIKSYLSWYQQKPWKSPKTLIYYA	LGERVTITOK	ASQDIKSYLS	ŻWYQQKPWK	SPKTLIYYA	
	DIQ TQSPSS AS	SPSS ASLG RVTITG ASODI YL WYQQKP	ASQDI YL	WYQQKP	PK LIYYA	
MUVKV	DIOMTOSPSSLSASLGDRVTITCRASQDISNYLNWYQQKPGGTPKLLIYYA	LGDRVTITCR	ASQDISNYLA	WYQQKPGG	PPKLLI YYA	
	10^	₹ 20~ ₹	30~	40	4 50°	
	v09	700	804	706	1000	
Z2D3MUVK TSLADG	TSLADGVPSRFSGS	SVPSRFSGSGSGQDYSLTISSLESDDTATYYQLQHGESPLTFGAGT	SSLESDDTA	LYYOLQHGE	SPLTFGAGT	
٠	L CVPSRFSGS	SVPSRFSGSGSG DYSLTISSLE D ATY Q Q	SSLE D AT	ry d o	P TFG GT	
MUVKV	SRLHSCVPSRFSGSGSGTDYSLTISSLEQEDIATYFCQQGNSLPRTFGGGT	GSGTDYSLTI	SSLEQEDIA	ryfooggnsi	LPRTFGGGT	
	eb-44 4	70℃ ◆	80	4 90€	▲ 100~AA	

Z2D3MUVK KLELK KLE K MUVKV KLEIK

60/68

FIGURE 23

61/68 FIGURE 24

62/68

FIGURE 25

FIGURE 26A

CHIMERIC Z2D3 F(ab')₂

FIGURE 26B

NON-SPECIFIC HUMAN F(ab')2

FIGURE 27A CHIMERIC Z2D3 F(ab')₂

FIGURE 27B

NON-SPECIFIC HUMAN F(ab')2

FIGURE 28A CHIMERIC Z2D3 F(ab')₂

FIGURE 28B

NON-SPECIFIC HUMAN F(ab')2

Form PCT/(SA/210 (second sheet)(July 1992)*

International application No. PCT/US94/04641

A. CLASSIFICATION OF SUBJECT MATTER IPC(5) : Please See Extra Sheet.		•
US CL. :Please See Extra Sheet. According to International Patent Classification (IPC) or to both	th national classification and IPC	
B. FIELDS SEARCHED		
Minimum documentation searched (classification system follow	ved by classification symbols)	
U.S.: 427/212, 296; 435/7.1, 11, 70.21, 172.2; 436/518, 391.1, 391.3; 536/25.53, 23.4		8, 387.3, 387.9, 388.2,
Documentation searched other than minimum documentation to	the extent that such documents are included	in the fields searched
Electronic data base consulted during the international search (name of data base and, where practicable	, search terms used)
APS, MEDLINE, BIOSIS, EMBASE search terms: cholesterol, vitamin D3, dehydrocholest acid ester.	erol, atherosclerosis, plaque, quatem	ary ammonium, fatty
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
X Y US, A, 4,874,710 (PIRAN) 17 (21-57; col. 4, lines 14-35; col. 6		1,2,7-9 3-6,10-24, 213
Y US, A, 5,110,738 (TAKANO et a document.	il) 05 May 1992, see entire	25-40, 43-48, 90-94, 97-101, 142-145, 148- 152, 193-203, 213-218
Y US, A, 4,816,567 (CABILLY et entire document.	: al) 28 March 1989, see	142-145, 148- 152, 202, 203
Y US, A, 5,026,537 (DADDONA entire document.	et al) 25 June 1991, see	43-48, 97-101, 148-152
·		
		.]
X Further documents are listed in the continuation of Box	C. See patent family annex.	
Special categories of cited documents:	"T" later document published after the inter	national filing date or priority
A* document defining the general state of the art which is not considered to be of particular relevance	date and not in conflict with the applicat principle or theory underlying the inve	
E' earlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.	
L° document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	when the document is taken alone "Y" document of particular relevance; the	claimed invention cannot be
O' document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive a combined with one or more other such being obvious to a person skilled in the	documents, such combination
P° document published prior to the international filing date but later than the priority date claimed	"&" document member of the same patent for	
Date of the actual completion of the international search	Date of mailing of the international sear	ch report
02 AUGUST 1994	1 9 AUG 1994	1
lame and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT	Authorized officer NANCY J. PARSONS	75 fr
Washington, D.C. 20231	Telephone No. (703) 308-0196	′

International application No. PCT/US94/04641

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	EP, A, 0 267 690 (CALENOFF) 18 May 1988, see entire document.	25-40, 43-48, 90- 94, 97-101, 142- 145, 148-152, 193-203, 213-218
Y	J. NEUGEBAUER, "A GUIDE TO THE PROPERTIES AND USES OF DETERGENTS IN BIOLOGY AND BIOCHEMISTRY", published 1988 by CALBIOCHEM Corporation (California), pages 1-61, see entire document.	1-7, 26-28
		• • •
	*	
	*	•

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

International application No. PCT/US94/04641

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. X As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 1-40,43-48,90-94,97-101,142-145,148-152,193-203,213-218
1~0,43~40,30-34,71-101,142-143,140-132,133-203,213-210
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest
No protest accompanied the payment of additional search fees.

International application No. PCT/US94/04641

A. CLASSIFICATION OF SUBJECT MATTER: IPC (5):

A61K 37/02, 35/14; B05D 3/10, 7/00; C07K 7/06, 7/08, 7/10, 13/00, 17/02; C12N 15/00; C12P 21/02; G01N 33/543, 33/551, 33/544

A. CLASSIFICATION OF SUBJECT MATTER: US CL:

427/212, 296; 435/7.1, 11, 70.21, 172.2; 436/518, 524, 528, 548, 71; 530/324, 330, 326, 328, 387.3, 387.9, 388.2, 391.1, 391.3; 536/25.53, 23.4

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

- Claims 1-24 and 213, drawn to an antigen, method of coating the antigen on a solid support and method of using the antigen in an immunoassay, classified in Class 435, Subclass 7.1.
- II. Claims 25-40, 43-48, 90-94, 97-101, 142-145, 148-152, 193-203 and 214-218, drawn to antibodies, method of making the antibodies, and an imaging method using the antibodies, classified in Class 530, Subclass 388.2.
- III. Claims 25-38, 41, 42, 60-66, 90-92, 95, 96, 113-119, 142, 143, 146, 147, 164-170, 193-203 and 214-218, drawn to antibodies, method of making the antibodies and an immunoassay, classified in Class 435, Subclass 7.1.
- IV. Claims 25-38, 49-59, 90-92, 102-112, 142, 143, 153-163, 193-203 and 214-218, drawn to antibodies, method of making the antibodies and plaque ablating methods, classified in Class 424, Subclass 85.5.
- V. Claims 25-38, 67-85, 90-92, 120-137, 142, 143, 171-188, 193-203 and 214-218, drawn to antibodies, method of making the antibodies and plaque digesting methods, classified in Class 424, Subclass 85.5.
- VI. Claims 25-38, 86, 87, 90-92, 138, 139, 142, 143, 189, 190, 193-203 and 214-218, drawn to antibodies, method of making the antibodies and cell growth inhibition, classified in Class 424, Subclass 85.5.
- VII. Claims 25-38, 88, 88-92, 140-143, 191-203 and 214-218, drawn to antibodies, method of making the antibodies and atherosclerosis treatment, classified in Class 424, Subclass 85.5.
- VIII. Claims 204-212, drawn to nucleic acids, classified in Class 536, Subclass 23.53.

The inventions listed as Groups I-VIII do not meet the requirements for Unity of Invention for the following reasons: The antigen and methods of using it are not specifically related only to the antibodies and methods of using them in one inventive concept because the antigen composition has many other uses. The nucleic acids are not directly related to the inventive concept of the antibodies and methods of using the antibodies. The claims are not so linked by a special technical feature under PCT Rule 13.2 so as to form a single general inventive concept.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.