What is a matrix? Matrix Operations Transposition Matrix Inverse Special matrices

Introduction to Matrix Algebra

J. Alexander Branham

Fall 2015

Scalars

- Let's start with something familiar, with a new word
- One number (12, for example) is referred to as a scalar
- This can be thought of as a 1x1 matrix
 - More on that in a bit...

$$[12] = c$$

Vectors

 We can put several scalars together to make a vector <- For example:

$$\begin{bmatrix} 12\\14\\15 \end{bmatrix} = b$$

Vectors

 We can put several scalars together to make a vector <- For example:

$$\begin{bmatrix} 12 \\ 14 \\ 15 \end{bmatrix} = b$$

• Since this is a column of numbers, we cleverly refer to it as a column vector

Row Vectors

If we take *b* and arrange it so that it it a row of numbers instead of a column, we refer to it as a *row vector*:

$$\begin{bmatrix} 12 & 14 & 15 \end{bmatrix} = d$$

Matrix

We can put multiple vectors together to get a matrix:

$$\begin{bmatrix} 12 & 14 & 15 \\ 115 & 22 & 127 \\ 193 & 29 & 219 \end{bmatrix} = A$$

Matrices, cntd

- We refer to the dimensions of matrices by row x column
- So A is a 3x3 matrix.
- Note that matrices are usually designated by capital letters
 - And sometimes bolded as well

Dimensions

ROW x COLUMN

• How do we refer to specific elements of the matrix???

- How do we refer to specific elements of the matrix???
- Solution: come up with a clever indexing scheme

- How do we refer to specific elements of the matrix???
- Solution: come up with a clever indexing scheme
- Matrix A is an $m \times n$ matrix where m = n = 3.

- How do we refer to specific elements of the matrix???
- Solution: come up with a clever indexing scheme
- Matrix A is an mxn matrix where m = n = 3.
- More generally, matrix B is an mxn matrix where the elements look like this:

$$B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1m} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2m} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ b_{n1} & b_{n2} & b_{n3} & \dots & b_{nm} \end{bmatrix}$$

Addition and subtraction are EASY!

- Requirement: Must have exactly the same dimensions
- To do the operation, just add or subtract each element with the corresponding element from the other matrix:

$$A \pm B$$

Addition and Subtraction

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \pm \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & a_{13} \pm b_{13} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} & a_{23} \pm b_{23} \\ a_{31} \pm b_{31} & a_{32} \pm b_{32} & a_{33} \pm b_{33} \end{bmatrix}$$

Scalar multiplication

Easy - just multiply each element of the matrix by the scalar

$$cA = \begin{bmatrix} ca_{11} & ca_{12} & ca_{13} \\ ca_{21} & ca_{22} & ca_{23} \\ ca_{31} & ca_{32} & ca_{33} \end{bmatrix}$$

Matrix multiplication

- Requirement: the two matrices must be conformable
- This means that the number of columns in the first matrix equals the number of rows in the second
- The resulting matrix will have the number of rows in the first, and the number of columns in the second!

Pop quiz

• Which can we multiply? What will the resulting dimensions be?

$$b = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 1 \end{bmatrix} M = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 4 \\ 2 & 3 & 2 \end{bmatrix} L = \begin{bmatrix} 6 & 5 & -1 \\ 1 & 4 & 3 \end{bmatrix}$$

Pop quiz

• Which can we multiply? What will the resulting dimensions be?

$$b = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 1 \end{bmatrix} M = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 4 \\ 2 & 3 & 2 \end{bmatrix} L = \begin{bmatrix} 6 & 5 & -1 \\ 1 & 4 & 3 \end{bmatrix}$$

ONLY LM and NOT ML

Pop quiz

• Which can we multiply? What will the resulting dimensions be?

$$b = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 1 \end{bmatrix} M = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 4 \\ 2 & 3 & 2 \end{bmatrix} L = \begin{bmatrix} 6 & 5 & -1 \\ 1 & 4 & 3 \end{bmatrix}$$

- ONLY LM and NOT ML
- The dimensions will be 2x3

• Multiply each row by each column

- Multiply each row by each column
- (Board examples)

- Multiply each row by each column
- (Board examples)

- Multiply each row by each column
- (Board examples)

```
## [,1] [,2] [,3]
## [1,] 9 7 30
## [2,] 11 17 24
```

Matrix Division

Matrix Division

HAHAHA... NOPE

Addition and subtraction

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$
- Multiplication

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$
- Multiplication
 - AB ≠ BA

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$
- Multiplication
 - AB ≠ BA
 - $\bullet \ A(BC) = (AB)C$

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$
- Multiplication
 - AB ≠ BA
 - A(BC) = (AB)C
 - $\bullet \ A(B+C) = AB + AC$

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$
- Multiplication
 - AB ≠ BA
 - A(BC) = (AB)C
 - $\bullet \ A(B+C) = AB + AC$
 - $\bullet (A+B)C = AC + BC$

Qu'est-ce que c'est?

- Switch the rows and columns
- So a nxm matrix becomes mxn
- Typically denoted L' or L^T

```
L
```

```
## [,1] [,2] [,3]
## [1,] 6 5 -1
## [2,] 1 4 3
```

```
## [,1] [,2]
## [1,] 6 1
## [2,] 5 4
```

Properties of transposing

• Matrix is *always* conformable for multiplication with its transpose in both directions

Properties of transposing

- Matrix is *always* conformable for multiplication with its transpose in both directions
- $(A \pm B)' = A' \pm B'$

Properties of transposing

- Matrix is *always* conformable for multiplication with its transpose in both directions
- $(A \pm B)' = A' \pm B'$
- A'' = A

Properties of transposing

- Matrix is *always* conformable for multiplication with its transpose in both directions
- $(A \pm B)' = A' \pm B'$
- A'' = A
- (AB)' = B'A'

Properties of transposing

- Matrix is always conformable for multiplication with its transpose in both directions
- $(A \pm B)' = A' \pm B'$
- A'' = A
- (AB)' = B'A'
- (cA)' = cA' where c is a scalar

Matrix Inverses

- I kinda lied when I said there isn't matrix division
- We use matrix inverses all the time
- If A is an nxn square matrix:

$$AB = BA = I_n$$

- Then B is said to be the *inverse* of A
 - This is usually denoted A^{-1}
- If B doesn't exist, then the matrix is singluar
- Finding inverses by hand is super hard (especially as n increases), so we let computers do this for us

Some properties

- Let A be nxn square matrix:
- If A^{-1} exists:
- A is full rank: rank(A) = n
- A' is also invertible
- $(A^{-1})^{-1} = A$
- $(kA)^{-1} = k^{-1}A^{-1}$ for nonzero scalar k
- $(a')^{-1} = (A^{-1})'$

Special types of matrices

Some matricies get more love than others

Square matrix

Any nxn matrix (same number rows and columns)

$$\begin{bmatrix}
1 & 0 & 2 \\
1 & 2 & 4 \\
2 & 3 & 2
\end{bmatrix}$$

Symmetric matrix

A square matrix that is the same as its transpose

Diagonal matrix

A symmetric matrix with zeros everywhere but the main diagonal

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

Scalar matrix

A diagonal matrix with the same number all along the diagonal

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Identity matrix

• A scalar matrix where the diagonal elements are 1.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Identity matrix

• A scalar matrix where the diagonal elements are 1.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Identity matrix

• A scalar matrix where the diagonal elements are 1.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- This is a super important type of matrix.
- It gets its own notation: I_n where n is the number of rows and columns
- Note that $I_n A = A$ and also $AI_n = A$

