PRODUCT USER MANUAL

PRODUCT USER MANUAL

for the Black Sea Waves Reanalysis Product BLKSEA_REANALYSIS_WAV_007_006

Issue: 1.0

Contributors: Arno Behrens, Joanna Staneva, Oliver Krueger, Rita Lecci

Approval Date: April 2019

Ref: CMEMS-BS-PUM-007-006

Date : Feb 16 2018

Issue : 1.0

CHANGE RECORD

Issue	Date	§	Description of Change Author		Validated By
1.0	04/02/2018	all	First version for V4 EIS	O. Krueger, A. Behrens, J. Staneva, S. Ciliberti	
1.1	21/01/2019	all	General revision and addition of static files description	R. Lecci, A. Behrens, J. Staneva	C. Derval

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

TABLE OF CONTENTS

I	Introduc	tion	8
I	.1 Summa	ry	8
1	.2 History	of changes	8
II	How to a	lownload a product	9
I	I.1 Downl	oad a product through the CMEMS Web Portal Subsetter Service	9
I	I.2 Downl	oad a product through the CMEMS Web Portal Ftp Service	9
I	I.3 Downl	oad a product through the CMEMS Web Portal Direct Get File Service	9
III	Descr	iption of the product specification	10
I	II.1 Gene	ral Information	10
I	II.2 Produ	ıction subsystem description	11
	III.2.1	Brief overview	11
	III.2.2	Detailed description	11
	III.2.3	Details of datasets	13
IV	Nome	nclature of files	14
1	V.1 Nome	enclature of files when downloaded through the CMEMS Web Portal Subsetter Service	e 14
I	V.2 Nome	enclature of files when downloaded through the CMEMS Web Portal FTP Service	14
1	V.3 Nome	enclature of files when downloaded through the CMEMS Web Portal DGF Service	16
I	V.4 Grid		17
I	V.5 Doma	in coverage	18
I	V.6 Verti	cal Levels	19
I	V.7 Upda	te Time	19
	IV.7.1	Mean Centre of Products	19
	IV.7.2	Missing Value	19
	IV.7.3	File Dimension	20
\boldsymbol{V}	File form	nat	21
•	V.1 Netcdf		21
•	V.2 Struct	ure and semantic of NetCDF maps files	21
•	7.3 Readir	ng software	29
VI	Rofor	oneos	30

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

LIST OF FIGURES

FIGURE 1: BLACK SEA DEPTH DISTRIBUTION	12
FIGURE 2: SPATIAL COVERAGE OF THE BLKSEA REANALYSIS WAV 007 00	6 PRODUCT
(BLUE ZONE)	19

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

LIST OF TABLES

TABLE 1	BLKSEA	_REANAL	_YSIS_W	/AV_007_006	PRODUCT SP	ECIF	ICATIC	N		10
TABLE 2	LIST OF	THE VAR	RIABLES	FOR EACH D	ATASET AND	THEI	R NAM	IES IN T	HE NETCD	F 13
TABLE 3				NOMENCLATU		_	_	_		_
TABLE 4	DESCR	IPTION O	F THE N	NOMENCLATU	JRE FOR BLK					
TABLE 5	DESCR	IPTION O	F GRID	AND SPATIAL	COVERAGE.					17
TABLE 6	NAMES	AND DIM	IENSION	S OF PU-WA	/ FILES					20
TABLE 7	NAMES	AND DIM	IENSION	IS OF 16-YEA	RS DATASETS	S				20
				VARIABLES			THE	FILES		OF

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

GLOSSARY AND ABBREVIATIONS

BS	Black Sea
CF	Climate Forecast (convention for NetCDF)
CLS	Collecte Localisation Satellites
СМАР	CPC Merged Analysis of <i>Precipitation</i>
CMEMS	Copernicus Marine Environment Monitoring Service
CTD	Conductivity Temperature Depth
DAC	Dynamic Atmospheric Correction
DGF	DirectGetFile
DirectGetFile	CMEMS service tool (FTP like) to download a NetCDF file
ECMWF	European Centre for Medium-Range Weather Forecasts
EOF	Empirical Orthogonal Function
FAQ	Frequently Asked Question
FTP	File Transfer Protocol
HZG	Helmholtz-Zentrum Geesthacht
Meridional Velocity	South to North component of the horizontal velocity vector
MFC	Monitoring and Forecasting Centre
NEMO	Nucleous for European Modelling of the Ocean
NetCDF	Network Common Data Form
NOAA	National Oceanic and Atmospheric Administration
OA	Objective Analyses
OCEANVAR	Oceanographic variational data assimilation scheme developed at INGV/CMCC.
ОССМ	Ocean General Circulation Model
OpenDAP	Open-Source Project for a Network Data Access Protocol. Protocol to download subset of data from a n-dimensional gridded dataset (ie: 4 dimensions: lon-lat,depth,time)

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

OSI	Ocean and Sea Ice
PU	Production Unit
Subsetter	CMEMS service tool to download a NetCDF file of a selected geographical box using values of longitude and latitude, and time range
TAC	Thematic Assembly Centre
WW3	WaveWatch-III
Zonal Velocity	West to East component of the horizontal velocity vector

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

I INTRODUCTION

I.1 Summary

This document is the user manual for the CMEMS reanalysis product **BLKSEA_REANALYSIS_WAV_007_006**. An archive of reanalysis since 01/01/2002 regularly updated (see product improvements pages http://marine.copernicus.eu/services-portfolio/product-improvements/) is available on the CMEMS server.

The wave products are the integrated parameters computed from the total wave spectrum (significant wave height, period, direction, Stokes drift,...etc), as well as the following partitions: the wind wave, the primary swell wave and the secondary swell wave.

The product is organised in 2 datasets:

- o **bs-hzg-wav-rean-h** containing hourly instantaneous values for all the variables;
- BLKSEA_REANALYSIS_WAV_007_006-statics containing the coordinates, mask and bathymetry

The product is published on the CMEMS dissemination server after automatic and human quality controls. Product is available on-line and disseminated through the CMEMS Information System. Files downloaded are in NetCDF format.

The reanalysis system is described in the Quality Information Document (QUID): http://marine.copernicus.eu/documents/QUID/CMEMS-BS-QUID-007-006.pdf.

More detailed information can be obtained from http://marine.copernicus.eu/services-portfolio/contact-us/. See also News flash.

I.2 History of changes

- V1.0 for the CMEMS V4 EIS (planned: Apr 2018)
- V1.1 for the CMEMS Q2/2019 EIS

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

II HOW TO DOWNLOAD A PRODUCT

II.1 Download a product through the CMEMS Web Portal Subsetter Service

You first need to register. Please find below the registration steps:

http://marine.copernicus.eu/web/34-products-and-services-faq.php

Once registered, the CMEMS FAQ http://marine.copernicus.eu/web/34-products-and-services-faq.php will guide you on how to download a product through the CMEMS Web Portal Subsetter Service.

II.2 Download a product through the CMEMS Web Portal Ftp Service

You first need to register. Please find below the registration steps:

http://marine.copernicus.eu/web/34-products-and-services-fag.php

Once registered, the CMEMS FAQ http://marine.copernicus.eu/web/34-products-and-services-faq.php will guide you on how to download a product through the CMEMS FTP Service.

II.3 Download a product through the CMEMS Web Portal Direct Get File Service

You first need to register. Please find below the registration steps:

http://marine.copernicus.eu/web/34-products-and-services-faq.php

Once registered, the CMEMS FAQ http://marine.copernicus.eu/web/34-products-and-services-faq.php will guide you on how to download a product through the CMEMS Web Portal Direct Get File (DGF) Service.

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

III DESCRIPTION OF THE PRODUCT SPECIFICATION

III.1 General Information

Table 1 provides information about forecast/analysis products.

Table 1 BLKSEA_REANALYSIS_WAV_007_006 Product Specification

Product Specification	BLKSEA_REANALYSIS_WAV_007_006
Geographical coverage	27.37°E → 41.96°E ; 40.86°N → 46.80°N
	Spectral significant wave height
	Spectral moments (-1,0) wave period
	Spectral moments (0,2) wave period
	Wave period at spectral peak / peak period
	Mean wave direction from
	Wave principal direction at spectral peak
	Stokes drift U
	Stokes drift V
	Spectral significant wind wave height
	Spectral moments (0,1) wind wave period
	Mean wind wave direction from
	Spectral significant primary swell wave height
	Spectral moments (0,1) primary swell wave period
	Mean primary swell wave direction from
	Spectral significant secondary swell wave height
	Spectral moments (0,1) secondary swell wave period
	Mean secondary swell wave direction from
Analysis	Yes
Available time series	From 2002
	Regularly updated (see product improvements pages http://marine.copernicus.eu/services-portfolio/product-improvements/)
Temporal resolution	1hr instantaneous field
Target delivery time	Once

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

Delivery mechanism	CMEMS Information System (Subsetter, CMEMS FTP, DGF)
Horizontal resolution	About 3 km (1/36° meridional resolution, 1/27° zonal resolution)
Number of vertical levels	surface only
Format	Netcdf 3.0 CF1.0

Detailed information on the systems and products are on CMEMS web site: http://marine.copernicus.eu/.

III.2 Production subsystem description

III.2.1 Brief overview

The third generation spectral wave model WAM Cycle 4.6 has been adapted to the Black Sea area und runs successfully on the Sun-Cluster at HZG. The shallow water version is implemented on a spherical grid with a spatial resolution of about 3 km (133 * 100 sec) with 24 directional and 30 frequency bins. The number of active wave model grid points is 44699. The model takes into account depth refraction and wave breaking and provides currently hindcast wave fields in hourly resolution outputted daily. The atmospheric forcing is taken from tessa.cmcc.it in NetCDF and locally (on ocean.hzg.de) transformed into WAM format forcing, following the PQWG metrics definitions. Detailed description.

III.2.2 Detailed description

The wave model used is the well-established advanced third generation spectral wave model WAM that runs successfully at many institutions worldwide. It is based on the spectral description of the wave conditions in frequency and directional space at each of the active model sea grid points of a certain model area. The energy balance equation, complemented with a suitable description of the relevant physical processes is used to follow the evolution of each wave spectral component. WAM computes the two dimensional wave variance spectrum through integration of the transport equation (1) in spherical coordinates:

$$\frac{\partial F}{\partial t} + (\cos \Phi)^{-1} \frac{\partial}{\partial \Phi} (\dot{\Phi} \cos \Phi F) + \frac{\partial}{\partial \lambda} (\dot{\lambda} F) + \sigma \frac{\partial}{\partial \sigma} (\dot{\sigma} \frac{F}{\sigma}) + \frac{\partial}{\partial \theta} (\dot{\theta} F) = S$$
 (1)

with:

$$F(\lambda,\phi,\sigma,\theta,t) \qquad \text{wave energy density spectrum} \qquad \dot{\phi} = (c_g \cos\theta + u_{North})/R \\ (\lambda,\phi) \qquad \qquad \log (1+i) + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta + u_{East})/(R\cos\phi) \\ \dot{\theta} = c_g \sin\theta + (c_g \sin\theta$$

The first term of (1) describes the local rate of change of energy density in time, the second and third ones the propagation in geographical space, the fourth one the shifting of the relative frequency due to variations in depths and currents and the last one on the left side of the equation the contribution

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

of the depth- and current-induced refraction. The source functions on the right of the transport equation comprise the contributions of wind input (Sin), nonlinear interaction (Snl), dissipation (Sdis), bottom friction (Sbf) and wave breaking (Sbr):

$$S = Sin + Snl + Sds + Sbf + Sbr$$

A detailed description is given by the WAMDI group (1988), Komen et al. (1994), Günther et al. (1992) and Janssen (2008). The WAM Cycle 4.5.4 that is used for the Black Sea wave hindcast is an update of the former WAM Cycle 4. The basic physics and numerics are kept in that new release. The source function integration scheme made by Hersbach and Janssen (1999), and the model updates by Bidlot et al. (2007) are incorporated.

The regional wave model for the semi-enclosed Black Sea runs in shallow water mode on a model grid situated between 40°51′36″ N to 046°48′16″ N and 27°22′12″ E to 41°57′45″ E, with a spatial resolution of about 3 km, also 100 seconds in latitude, respectively 133 seconds in longitude. The required bathymetry for the model grid is based upon the General Bathymetric Chart of the Oceans (GEBCO, http://www.gebco.net). The model area and the corresponding depth distribution are shown in Figure 1.

Figure 1: Black Sea depth distribution

WAM calculates the two-dimensional energy density spectrum at each of the 44699 active model grid points in the frequency and directional space. The solution of the energy balance equation is provided for 36 directional bands at 10° each, starting at 5° and measured clockwise with respect to true north, and 30 frequencies logarithmically spaced from 0.042 Hz to 0.66 Hz at intervals of $\Delta f/f = 0.1$.

The driving force for the wave model is the six-hourly analysed U10 wind from the ERA-Interim reanalysis provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). ERA-Interim is an atmospheric reanalysis from 1979 onwards, which is based on the Cy31r2 integrated forecasting system (IFS) run at T255 spherical-harmonical resolution (about 80 km) on 60 vertical levels from the surface up to 0.1 hPa. The system uses a 4-dimensional variational analysis

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

assimilation scheme with a 12-hourly analysis window, which produces 6-hourly analysis fields. A detailed description of the system is given in the official IFS documentation of the ECMWF (ECMWF, 2007).

Time dependent depth and current fields are not used in this version whereas depth refraction as well as wave breaking has been taken into account.

III.2.3 Details of datasets

Table 2 List of the variables for each dataset and their names in the NetCDF

BLKSEA_REANALYSIS_WAV_007_006				
DATASETS	DATASETS VARIABLES AND UNITS			
	Spectral significant wave height [m]	VHM0		
	Spectral moments (-1,0) wave period [s]	VTM10		
	Spectral moments (0,2) wave period [s]	VTM02		
	Wave period at spectral peak / peak period [s]	VTPK		
	Mean wave direction from [degree]	VMDR		
	Wave principal direction at spectral peak [degree]	VPED		
	Stokes drift U [ms-1]	VSDX		
	Stokes drift V [ms-1]	VSDY		
bs-hzg-wav-rean-h	Spectral significant wind wave height [m]	VHM0_WW		
	Spectral moments (0,1) wind wave period [s]	VTM01_WW		
	Mean wind wave direction from [degree]	VMDR_WW		
	Spectral significant primary swell wave height [m]	VHM0_SW1		
	Spectral moments (0,1) primary swell wave period [s]	VTM01_SW1		
	Mean primary swell wave direction from [degree]	VMDR_SW1		
	Spectral significant secondary swell wave height [m]	VHM0_SW2		
	Spectral moments (0,1) secondary swell wave period [s]	VTM01_SW2		
	Mean secondary swell wave direction from [degree]	VMDR_SW2		
	Cell dimension along X axis [m]	e1t		
BLKSEA_REANALYSIS_WAV	Cell dimension along Y axis [m]	e2t		
	Land-sea mask: 1 = sea ; 0 = land [1]	mask		
	Bathymetry [m]	deptho		

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

IV NOMENCLATURE OF FILES

The nomenclature of the downloaded files differs based on the chosen download mechanism **Subsetter**, **MFTP** or **DGF** service.

IV.1 Nomenclature of files when downloaded through the CMEMS Web Portal Subsetter Service

BLKSEA_REANALYSIS_WAV_007_006 files nomenclature when downloaded through the CMEMS Web Portal Subsetter is based on product dataset name and a numerical reference related to the request date on the CIS.

The scheme is: datasetname_nnnnnnnnnnn.nc

where:

- .datasetname is a character string within one of the following :
 - bs-hzg-wav-rean-h
- **. nnnnnnnnnnn**: 13 digit integer corresponding to the current time (download time) in milliseconds since January 1, 1970 midnight UTC.
- .nc: standard NetCDF filename extension.

The fields height/period/direction/ww/sw1/sw2 are referring to the variables of spectral significant wave height (VHM0), spectral moments (0,2) wave period (VTM10), spectral moments (-1,0) wave period (VTM02), wave period at spectral peak/peak period (VTPK), mean wave direction from (Mdir) (VMDR), wave principal direction at spectral peak (VPED), Stokes drift U (VSDX), Stokes drift V (VSDY), spectral significant wind wave height (VHM0_WW), spectral moments (0,1) wind wave period (VTM01_WW), mean wind wave direction from (VMDR_WW), spectral significant primary swell wave height (VHM0_SW1), spectral moments (0,1) primary swell wave period (VTM01_SW1), mean primary swell wave direction from (VMDR_SW1), spectral significant secondary swell wave height (VHM0_SW2), spectral moments (0,1) secondary swell wave period (VTM01_SW2), m and secondary swell wave direction from (VMDR_SW2).

Example for a file of significant wave height:

bs-hzg-wav-rean-h 1303461772348.nc

IV.2 Nomenclature of files when downloaded through the CMEMS Web Portal FTP Service

BLKSEA_REANALYSIS_WAV_007_006 files nomenclature when downloaded through CMEMS FTP is based as follows:

{valid date}_{freq flag}-{producer}--{parameter}-{config}-{region}-{bul date}_{producttype}-fv{file version}.nc

where

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

- valid date YYYYMMDD is the validity day of the data in the file
- freq flag is the frequency of data values in the file (h = hourly, d = daily)
- producer is a short version of the CMEMS production unit
- config identifies the producing system and configuration
- region is a two letter code for the region
- parameter is a four letter code for the parameter or parameter set from Standard BODC.
- **bul date** bYYYYMMDD is the bulletin date the product was produced
- **product type** is a two letter code for the product type, for example fc for forecast, an for analysis and sm for hindcast.
- **file version** is xx.yy where xx is the CMEMS version (06, 07 or 08) and yy is an incremental version number

Table 3 shows the nomenclature for the BLKSEA_REANALYSIS_WAV_007_006 products.

Table 3 Description of the nomenclature for BLKSEA_REANALYSIS_WAV_007_006

valid date	YYYYMMDD			
freq flag	h (hourly)			
producer	HZG			
config	BSeas3			
region	BS			
parameter	WAVES			
bul date	bYYYYYMMDD			
product type	re (reanalysis)			
file version	07.00			

Example for a forecast file of wave height:

20161001 h-HZG--WAVES-BSeas3-BS-b20180101 re-fv07.00.nc

This file contains the 24 hourly instantaneous fields of wave height, each one centered at 30' of every hour from noon (12:00 UTC) of the 30th September 2016 to noon (12:00 UTC) of the 1st October 2016 (see section IV.9).

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

IV.3 Nomenclature of files when downloaded through the CMEMS Web Portal DGF Service

BLKSEA_REANALYSIS_WAV_007_006 files nomenclature when downloaded through the CMEMS Web Portal DGF is based on product dataset name and a numerical reference related to the request date on the CIS.

The scheme is:

datasetname nnnnnnnnnnnn.zip

where:

.datasetname is a character string within one of the following :

bs-hzg-waves-rean-h

.nnnnnnnnnnn: 13 digit integer corresponding to the current time (download time) in milliseconds since January 1, 1970 midnight UTC.

The fields height/period/direction/ww/sw1/sw2 are referring to the variables of spectral significant wave height (VHM0), spectral moments (0,2) wave period (VTM10), spectral moments (-1,0) wave period (VTM02), wave period at spectral peak/peak period (VTPK), mean wave direction from (Mdir) (VMDR), wave principal direction at spectral peak (VPED), Stokes drift U (VSDX), Stokes drift V (VSDY), spectral significant wind wave height (VHM0_WW), spectral moments (0,1) wind wave period (VTM01_WW), mean wind wave direction from (VMDR_WW), spectral significant primary swell wave height (VHM0_SW1), spectral moments (0,1) primary swell wave period (VTM01_SW1), mean primary swell wave direction from (VMDR_SW1), spectral significant secondary swell wave height (VHM0_SW2), spectral moments (0,1) secondary swell wave period (VTM01_SW2), mean secondary swell wave direction from (VMDR_SW2).

Example:

bs-hzg-wav-rean-h 1303461772348.nc

The zip file contains one or more files, depending on the number of selected days, whose name is

{valid date}_{freq flag}-{producer}--{parameter}-{config}-{region}-{bul date}_{product type}-fv{file version}.nc

where

- valid date YYYYMMDD is the validity day of the data in the file
- **freq flag** is the frequency of data values in the file (d = daily, h= hourly)
- **producer** is a short version of the CMEMS production unit
- **config** identifies the producing system and configuration.
- **region** is a two letter code for the region
- **parameter** is a four letter code for the parameter or parameter set from Standard BODC
- **bul date** bYYYYMMDD is the bulletin date the product was produced
- **product type** is a two letter code for the product type, for example fc for forecast, an for analysis and sm for hindcast.
- **file version** is xx.yy where xx is the CMEMS version (06, 07 and 08) and yy is an incremental version number

Table 4 shows the nomenclature for the BLKSEA RENALYSIS WAV 007 006 products.

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

Table 4 Description of the nomenclature for BLKSEA_REANALYSIS_WAV_007_006

valid date	YYYYMMDD		
freq flag	h (hourly)		
producer	HZG		
config	BSeas3		
region	BS		
parameter	WAVES		
bul date	bYYYYYMMDD		
product type	re (reanalysis)		
file version	07.00		

Example for a reanalysis file of wave height:

20161001_h-HZG--WAVES-BSeas3-BS-b20180101_re-fv07.00.nc

This file contains the 24 hourly instantaneous fields of height, each one centered at 30' of every hour from noon (12:00 UTC) of the 30th September 2016 to noon (12:00 UTC) of the 1st October 2016 (see section IV.9).

IV.4 Grid

The horizontal grid step is regular in latitude and longitude with a resolution of $1/36 \times 1/27$ degrees (~3 Km).

In Table 5 there is the description of the grid and the spatial coverage for each variable for the BLKSEA REANALYSIS WAV 007 006 products.

Table 5: Description of grid and spatial coverage

BLKSEA_REANALYSIS_WAV_007_006								
VARIABLE	LON MIN	LON MAX	LAT MIN	LAT MAX	XPOINT	YPOINT	ZPOINT	
Spectral significant wave height (Hm0)	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1	
Spectral moments (-1,0) wave period (Tm-10)	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1	
Spectral moments (0,1) wave period	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1	

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

(Tm01)							
Spectral moments (0,2) wave period (Tm02)	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1
Wave period at spectral peak / peak period (Tp)	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1
Mean wave direction from (Mdir)	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1
Wave principal direction at spectral peak	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1
Stokes drift U	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1
Stokes drift V	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1
Spectral significant wind wave height	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1
Spectral moments (0,1) wind wave period	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1
Mean wind wave direction from	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1
Spectral significant primary swell wave height	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1
Spectral moments (0,1) primary swell wave period	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1
Mean primary swell wave direction from	27.37°E	41.96°E	40.86°N	46.80°N	215	395	1

IV.5 Domain coverage

The blue area in Figure 2 represents the spatial coverage of the BLKSEA_REANALYSIS_WAV_007_006 product.

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

Figure 2: Spatial coverage of the BLKSEA_REANALYSIS_WAV_007_006 product (blue zone)

Grid type is the following standard projection:

IV.6 Vertical Levels

N/A

IV.7 Update Time

BLKSEA_REANALYSIS_WAV_007_006 product is updated once, at the scheduled EIS (V4, April 2018).

IV.7.1 Mean Centre of Products

BLKSEA_REANALYSIS_WAV_007_006 hourly reanalysis product as instantaneous fields is centered at midnight (00:00 UTC) of J. The time series covers the period 01/01/2002-31/12/2017

IV.7.2 Missing Value

The missing value for the BLKSEA_REANALYSIS_WAV_007_006 product is 1e+20.

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

IV.7.3 File Dimension

Table 6 describes the dimensions of the files for analysis and forecast for one day. The compressed size may differ from day to day.

Table 6: Names and dimensions of PU-WAV files

DATASET NAME	NAME OF FILE	DIMENSION * [MB]
bs-hzg-wav-rean-h	{date1}_h-HZGWAVES -BSeas3-BS-b{date2}_sm-fv07.00.nc	133
BLKSEA_REANALYSI S_WAV_007_006- statics	BS-MFC_007_006_\${field}.nc	1

Table 7 Dimensions for **one day** of reanalysis.

Table 7 describes the dimensions of the entire time series of each dataset.

Table 7: Names and dimensions of 16-years datasets

DATASET NAME	DIMENSION [MB]		
bs-hzg-wav-rean-h	772549		
BLKSEA_REANALYSIS_WAV_007_006-statics	1		

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

V FILE FORMAT

V.1 Netcdf

The products are stored using the NetCDF format.

NetCDF (network Common Data Form) is an interface for array-oriented data access and a library that provides an implementation of the interface. The NetCDF library also defines a machine-independent format for representing scientific data. Together, the interface, library, and format support the creation, access, and sharing of scientific data. The NetCDF software was developed at the Unidata Program Center in Boulder, Colorado. The NetCDF libraries define a machine-independent format for representing scientific data.

Please see UnidataNetCDF pages for more information, and to retrieve NetCDF software package.

NetCDF data is:

- * Self-Describing. A NetCDF file includes information about the data it contains.
- * Architecture-independent. A NetCDF file is represented in a form that can be accessed by computers with different ways of storing integers, characters, and floating-point numbers.
- * Direct-access. A small subset of a large dataset may be accessed efficiently, without first reading through all the preceding data.
- * Appendable. Data can be appended to a NetCDF dataset along one dimension without copying the dataset or redefining its structure. The structure of a NetCDF dataset can be changed, though this sometimes causes the dataset to be copied.
 - * Sharable. One writer and multiple readers may simultaneously access the same NetCDF file.

V.2 Structure and semantic of NetCDF maps files

Table 8: Dimensions and variables included in the files NetCDF of BLKSEA_REANALYSIS_WAV_007_006

DIMENSIONS	VARIABLES		
lon=395	NAME	DIMENSIONS	TYPE
lat=215	Lon	lon	float
time=1	Lat	lat	float
	Time	time	int

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

VHM0	time, lat, lon	float
VTM10	time,lat,lon	float
VTM02	time,lat,lon	float
VTPK	time,lat,lon	float
VMDR	time,lat,lon	float
VPED	time,lat,lon	float
VSDX	time,lat,lon	float
VSDY	time,lat,lon	float
VHM0_WW	time,lat,lon	float
VTM01_WW	time,lat,lon	float
VMDR_WW	time,lat,lon	float
VHM0_SW1	time,lat,lon	float
VTM01_SW1	time,lat,lon	float
VMDR_SW1	time,lat,lon	float
VHM0_SW2	time,lat,lon	float
VTM01_SW2	time,lat,lon	float
VMDR_SW2	time,lat,lon	float

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

```
lon:standard name = "longitude";
               lon:long_name = "longitude";
               lon:units = "degrees_east";
               lon:axis = "X";
               lon:valid_max = 41.96229f;
               lon:valid_min = 27.37007f;
       float lat(lat);
               lat:standard_name = "latitude";
               lat:long_name = "latitude";
               lat:units = "degrees north";
               lat:axis = "Y";
               lat:valid_max = 46.80458f;
               lat:valid min = 40.86015f;
       double time(time);
               time:standard_name = "time";
               time:long_name = "time";
               time:units = "seconds since 1970-01-01 00:00:00";
               time:calendar = "standard";
               time:axis = "T";
       float VHM0(time, lat, lon);
               VHM0:standard_name = "sea_surface_wave_significant_height";
               VHM0:long_name = "Spectral significant wave height (Hm0)";
               VHM0:units = "m";
               VHM0:_FillValue = 1.e+20f;
               VHM0:valid_min = 0.f;
               VHM0:valid_max = 20.f;
               VHM0:missing_value = 1.e+20f;
               VHM0:Coordinates = "time lat lon";
       float VTPK(time, lat, lon);
               VTPK:standard name=
"sea_surface_wave_period_at_variance_spectral_density_maximum";
               VTPK:long_name = "Wave period at spectral peak / peak period (Tp)";
               VTPK:units = "s";
```

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

```
VTPK: FillValue = 1.e+20f;
              VTPK:valid_min = 1.f;
              VTPK:valid_max = 30.f;
              VTPK:missing_value = 1.e+20f;
              VTPK:Coordinates = "time lat lon";
       float VTM10(time, lat, lon);
              VTM10:standard_name=
"sea_surface_wave_mean_period_from_variance_spectral_density_inverse_frequency_moment";
              VTM10:long_name = "Spectral moments (-1,0) wave period (Tm-10)";
              VTM10:units = "s";
              VTM10: FillValue = 1.e+20f;
              VTM10:valid min = 1.f;
              VTM10:valid_max = 20.f;
              VTM10:missing_value = 1.e+20f;
              VTM10:Coordinates = "time lat lon";
       float VTM02(time, lat, lon);
              VTM02:standard_name=
"sea_surface_wave_mean_period_from_variance_spectral_density_second_frequency_moment";
              VTM02:long_name = "Spectral moments (0,2) wave period (Tm02)";
              VTM02:units = "s";
              VTM02: FillValue = 1.e+20f;
              VTM02:valid min = 1.f;
              VTM02:valid max = 20.f;
              VTM02:missing_value = 1.e+20f;
              VTM02:Coordinates = "time lat lon";
       float VMDR(time, lat, lon);
              VMDR:standard_name = "sea_surface_wave_from_direction" ;
              VMDR:long_name = "Mean wave direction from (Mdir)";
              VMDR:units = "degree";
              VMDR:_FillValue = 1.e+20f;
              VMDR:valid_min = 0.f;
              VMDR:valid max = 360.f;
              VMDR:missing_value = 1.e+20f;
```

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

```
VMDR:Coordinates = "time lat lon";
float VHM0_WW(time, lat, lon);
       VHMO_WW:standard_name = "sea_surface_wind_wave_significant_height";
       VHM0_WW:long_name = "Spectral significant wind wave height";
       VHM0 WW:units = "m";
       VHM0_WW:_FillValue = 1.e+20f;
       VHM0_WW:valid_min = 0.f;
       VHM0_WW:valid_max = 20.f;
       VHM0 WW:missing value = 1.e+20f;
       VHM0 WW:Coordinates = "time lat lon";
float VTM01_WW(time, lat, lon);
       VTM01_WW:standard_name = "sea_surface_wind_wave_mean_period";
       VTM01_WW:long_name = "Spectral moments (0,1) wind wave period";
       VTM01 WW:units = "s";
       VTM01_WW:_FillValue = 1.e+20f;
       VTM01_WW:valid_min = 1.f;
       VTM01_WW:valid_max = 20.f;
       VTM01 WW:missing value = 1.e+20f;
       VTM01 WW:Coordinates = "time lat lon";
float VMDR_WW(time, lat, lon);
       VMDR_WW:standard_name = "sea_surface_wind_wave_from_direction";
       VMDR WW:long name = "Mean wind wave direction from";
       VMDR WW:units = "degree";
       VMDR_WW:_FillValue = 1.e+20f;
       VMDR_WW:valid_min = 0.f;
       VMDR WW:valid max = 360.f;
       VMDR_WW:missing_value = 1.e+20f;
       VMDR_WW:Coordinates = "time lat lon";
float VPED(time, lat, lon);
       VPED:standard_name = "sea_surface_wave_from_direction_at_spectral_peak";
       VPED:long name = "Wave principal direction at spectral peak";
       VPED:units = "degree";
```

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

```
VPED: FillValue = 1.e+20f;
       VPED:valid_min = 0.f;
       VPED:valid_max = 360.f;
       VPED:missing_value = 1.e+20f;
       VPED:Coordinates = "time lat lon" ;
float VHM0_SW1(time, lat, lon);
       VHM0_SW1:standard_name = "sea_surface_primary_swell_wave_significant_height"
       VHM0_SW1:long_name = "Spectral significant primary swell wave height";
       VHM0 SW1:units = "m";
       VHM0 SW1: FillValue = 1.e+20f;
       VHM0 SW1:valid min = 0.f;
       VHM0 SW1:valid max = 20.f;
       VHM0_SW1:missing_value = 1.e+20f;
       VHM0_SW1:Coordinates = "time lat lon";
float VTM01 SW1(time, lat, lon);
       VTM01_SW1:standard_name = "sea_surface_primary_swell_wave_mean_period";
       VTM01_SW1:long_name = "Spectral moments (0,1) primary swell wave period";
       VTM01_SW1:units = "s";
       VTM01 SW1: FillValue = 1.e+20f;
       VTM01 SW1:valid min = 0.f;
       VTM01_SW1:valid_max = 30.f;
       VTM01 SW1:missing value = 1.e+20f;
       VTM01 SW1:Coordinates = "time lat lon";
float VMDR SW1(time, lat, lon);
       VMDR_SW1:standard_name = "sea_surface_primary_swell_wave_from_direction";
       VMDR_SW1:long_name = "Mean primary swell wave direction from";
       VMDR_SW1:units = "degree";
       VMDR_SW1:_FillValue = 1.e+20f;
       VMDR SW1:valid min = 0.f;
       VMDR_SW1:valid_max = 360.f;
       VMDR_SW1:missing_value = 1.e+20f;
       VMDR SW1:Coordinates = "time lat lon";
```

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

```
float VHM0 SW2(time, lat, lon);
              VHM0_SW2:standard_name=
"sea_surface_secondary_swell_wave_significant_height";
              VHM0_SW2:long_name = "Spectral significant secondary swell wave height";
              VHM0_SW2:units = "m";
              VHM0_SW2:_FillValue = 1.e+20f;
              VHM0_SW2:valid_min = 0.f;
              VHM0_SW2:valid_max = 20.f;
              VHM0_SW2:missing_value = 1.e+20f;
              VHM0 SW2:Coordinates = "time lat lon";
       float VTM01 SW2(time, lat, lon);
              VTM01 SW2:standard name = "sea surface secondary swell wave mean period"
              VTM01 SW2:long name = "Spectral moments (0,1) secondary swell wave period";
              VTM01_SW2:units = "s";
              VTM01_SW2:_FillValue = 1.e+20f;
              VTM01_SW2:valid_min = 0.f;
              VTM01_SW2:valid_max = 30.f;
              VTM01_SW2:missing_value = 1.e+20f;
              VTM01_SW2:Coordinates = "time lat lon";
       float VMDR_SW2(time, lat, lon);
              VMDR SW2:standard name = "sea surface secondary swell wave from direction"
              VMDR SW2:long name = "Mean secondary swell wave direction from";
              VMDR SW2:units = "degree";
              VMDR_SW2:_FillValue = 1.e+20f;
              VMDR_SW2:valid_min = 0.f;
              VMDR_SW2:valid_max = 360.f;
              VMDR_SW2:missing_value = 1.e+20f;
              VMDR_SW2:Coordinates = "time lat lon";
       float VSDX(time, lat, lon);
              VSDX:standard name = "sea surface wave stokes drift x velocity";
              VSDX:long_name = "Stokes drift U";
```

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

```
VSDX:units = "m/s";
               VSDX:_FillValue = 1.e+20f;
               VSDX:valid_min = -1.f;
               VSDX:valid_max = 1.f;
               VSDX:missing value = 1.e+20f;
               VSDX:Coordinates = "time lat lon";
       float VSDY(time, lat, lon);
               VSDY:standard_name = "sea_surface_wave_stokes_drift_y_velocity";
               VSDY:long name = "Stokes drift V";
               VSDY:units = "m/s";
               VSDY:_FillValue = 1.e+20f;
               VSDY:valid_min = -1.f;
               VSDY:valid_max = 1.f;
               VSDY:missing_value = 1.e+20f;
               VSDY:Coordinates = "time lat lon";
// global attributes:
               :bulletin type = "reanalysis";
               :institution = "Helmholtz Centre for Coastal Research - Geesthacht, Germany";
               :source = "WAM Cycle 4.6";
               :contact = "servicedesk.cmems@mercator-ocean.eu";
               :references = "Please check in CMEMS catalogue the INFO section for product
BLKSEA_REANALYSIS_WAV_007_006 - http://marine.copernicus.eu";
               :comment = "Please check in CMEMS catalogue the INFO section for product
BLKSEA_REANALYSIS_WAV_007_006 - http://marine.copernicus.eu";
               :conventions = "CF-1.0";
               :bulletin date = "20180101";
               :field_type = "hourly_instantaneous_at_time_field";
               :title = "Wave Products (2D) - Instantaneous Field";
               :NCO = "4.6.7";
}
```

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

V.3 Reading software

NetCDF data can be browsed and used through a number of software, like:

- ✓ ncBrowse: http://www.epic.noaa.gov/java/ncBrowse/,
 ✓ NetCDF Operator (NCO): http://nco.sourceforge.net/
 ✓ Net CDF Climata Data Operators (CDO): https://code.zmaw.de/projects/cdo

Ref: CMEMS-BS-PUM-007-006

Date : Jan 21 2019

Issue : 1.1

VI REFERENCES

Bidlot J-R, Janssen PAEM, Abdalla S (2007) A revised formulation for ocean wave dissipation and its model impact. ECMWF, Technical Memorandum Nr. 509.

ECMWF (2007) IFS Documentation CY31R1, Book Chapter, ECMWF.

Fradon B, Hauser D, Lefèvre J-M (2000): Comparison study of a second-generation and of a third-generation wave prediction model in the context of the SEMAPHORE Experiment. J. Atmos. Oceanic Technol., 17: 197–214.

Günther H, Hasselmann S, Janssen PAEM (1992) The WAM Model Cycle 4.0. User Manual. Technical Report No. 4, Deutsches Klimarechenzentrum, Hamburg, Germany. 102 pages.

Hersbach H, Janssen PAEM (1999) Improvements of the short fetch behaviour in the WAM model. J Atmos Oceanic Tech 16: 884-892.

Janssen PAEM (2008) Progress in ocean wave forecasting. J Comput Phys 227:3572-3594.

Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1994) Dynamics and Modelling of Ocean Waves, Cambridge University Press.

WAMDI group: Hasselmann S, Hasselmann K, Bauer E, Janssen PAEM, Komen GJ, Bertotti L, Guillaume A, Cardone VC, Greenwood JA, Reistad M, Zambreski L, Ewing J (1988) The WAM model – a third generation ocean wave prediction model, J Phys Oceanogr 18: 1775-1810