Ejercicios de Autocomprobación

TEMA 2

- 1. Dada una m.a.s. $(X_1, X_2, ..., X_n)$ de una v.a. $\mathcal{U}(0, 1)$, decir cuáles de los siguientes estimadores de la media (a pesar de que en este caso es conocida) son insesgados y en caso contrario calcular su sesgo.
 - $a) \bar{X}$
 - $b) X_1$
 - c) máx $\{X_1, X_2, \ldots, X_n\}$
 - $d) \min\{X_1, X_2, \dots, X_n\}$
 - e) $(\max\{X_1, X_2, \dots, X_n\} + \min\{X_1, X_2, \dots, X_n\})/2$
- 2. Dada una m.a.s. (X_1, X_2, \dots, X_n) , calcular el estimador del parámetro θ por el método de los momentos en los siguientes casos:
 - a) $f_{\theta}(x) = e^{-x+\theta}, x \ge \theta \quad (\theta > 0)$
 - b) $f_{\theta}(x) = \theta(1/x)^{\theta+1}, x > 1 \quad (\theta > 1)$
 - $c) Exp(\theta)$
- 3. Sea una m.a.s. $(X_1, X_2, ..., X_n)$ de una distribución B(n, p). Estimar n y p por el método de los momentos.
- 4. Se ha obtenido la siguiente muestra de una distribución $\gamma(a, p)$: (1.5, 2, 0.75, 3, 0.25). Estimar a y p por el método de los momentos.
- 5. Si (X_1, X_2, \dots, X_n) es una m.a.s., encontrar el estimador de máxima verosimilitud para θ en los siguientes casos:
 - a) $f_{\theta}(x) = \theta \alpha x^{\alpha 1} e^{-\theta x^{\alpha}}, x > 0$ (\alpha conocido)
 - b) $f_{\theta}(x) = \theta(1-x)^{\theta-1}, \ 0 \le x \le 1 \quad (\theta \ge 1)$
- 6. Obtener el estimador por el método de los momentos de θ si (X_1, X_2, \dots, X_n) es una m.a.s. de una v.a. X cuya función de densidad es:

$$f_{\theta}(x) = \frac{\theta}{x_0} \left(\frac{x_0}{x}\right)^{\theta+1}, \ x \ge x_0 > 0 \quad (\theta > 1)$$

- 7. El número de errores en una hora de cierto proceso sigue una distribución de Poisson de parámetro λ desconocido. En lugar de observar el número de errores en cada hora, se ha observado el tiempo en horas entre errores consecutivos.
 - a) ¿Cómo puede ayudarnos esto a estimar el parámetro λ ?
 - b) Calcular, mediante el método de máxima verosimilitud, un estimador para λ acorde con este experimento.

1

c) Si los datos obtenidos en horas han sido

¿cuál es la estimación de λ ?

- 8. Comprobar que la familia gamma es conjugada respecto a la distribución de Poisson para el caso de n=1.
- 9. La variable aleatoria X tiene una distribución Binomial con parámetros n conocido y θ desconocido. Encuentra la función de densidad a posteriori de θ si se asume una distribución a priori:
 - $a) \ \pi(\theta) = 2\theta$ para $0 < \theta < 1$
 - $b) \ \pi(\theta) = 3\theta^2$ para $0 < \theta < 1$
 - c) $\pi(\theta) = 4\theta^3$ para $0 < \theta < 1$