Programación para Física y Astronomía

Departamento de Física.

Corodinadora: C Loyola

Profesores C Femenías / F Bugini / D Basantes

Primer Semestre 2025

Universidad Andrés Bello Departamento de Física y Astronomía

Resumen - Semana 10, Sesión 1 (Sesión 19)

Introducción y Contexto

Resumen de Contenidos Clave

Ejercicios de Repaso

Actividad en Clase

Conclusiones y Preparación

Introducción y Contexto

Introducción y Contexto ∈ Repaso de las Semanas 8 y 9

- · Semana 8:
 - POO básica (clases, atributos, métodos, __init__).
 - · Integración con NumPy/pandas para datos, problemas evaluados.
- · Semana 9:
 - · Herencia, métodos especiales (__str__, __repr__).
 - · Ejercicios sobre Body/Star, Particle/ChargedParticle, etc.
 - · También tuvimos evaluaciones parciales en grupos (POO + datos).
- Objetivo de hoy: Repasar de forma integral todos los contenidos recientes, resolver ejercicios previos a la Solemne II (próxima sesión).

Introducción y Contexto ∈ Objetivos de la Sesión 19

- · Revisar y ejercitar los conceptos clave:
 - · POO (clases, herencia, métodos).
 - · NumPy avanzado (manipulación de arreglos, linalg).
 - · Matplotlib (subplots, histogramas, 3D).
 - · pandas (lectura de CSV, manejo de DataFrame básico).
- · Resolver ejercicios integrales que unan estos temas.
- Prepararnos para la Solemne II (Semana 10, Sesión 2), revisando dudas y áreas de dificultad.

Resumen de Contenidos Clave

Resumen de Contenidos Clave ∈ POO: Claves a Recordar

- · Clases y Objetos: class Nombre: y obj = Nombre(...).
- __init__ (constructor) para inicializar atributos.
- · Herencia:
 class Derivada(BaseClass):...super().__init__.
- Métodos especiales: __str__, __repr__, etc.
- Ejemplos: Particle, ChargedParticle, Body, Star.

Resumen de Contenidos Clave ∈ NumPy: Claves a Recordar

- ndarray con creación (np.array), zeros, ones, arange, linspace.
- reshape, transpose, concatenate (hstack, vstack).
- np.random (valores aleatorios), np.linalg (inversa, determinante, eigenvalores).
- Broadcasting y operaciones vectorizadas (suma, resta, multiplicación, etc. sin bucles).

Resumen de Contenidos Clave ∈ Matplotlib: Claves a Recordar

- plt.plot(x, y), plt.scatter(), plt.hist(),
 plt.bar().
- subplots() para múltiples paneles (axs).
- · Gráficos 3D con Axes3D o subplots(projection='3d').
- Personalización: xlabel, ylabel, title, legend, colorbar.
- plt.tight_layout() para ajustar márgenes.

Resumen de Contenidos Clave ∈ pandas: Claves a Recordar

- · import pandas as pd.
- · Lectura de CSV: df = pd.read_csv("archivo.csv").
- df.head(), df.describe(), df.columns.
- · Selección de columnas: df['col'], df[['col1','col2']].
- · Iteración de filas: df.iterrows() o df.itertuples().
- Integración con **NumPy** y **Matplotlib** para análisis y graficación.

Ejercicios de Repaso

Ejercicios de Repaso ∈ Ejercicio 1: Clase y Matriz de Distancias

Enunciado

- · Crear una clase Point con atributos (name, x, y).
- Método distance(self, other) que devuelva $\sqrt{(x1-x2)^2+(y1-y2)^2}$.
- · Instanciar 5 objetos **Point** (pueden ser aleatorios).
- Crear np.zeros((5,5)) y rellenar con las distancias entre cada par de Point.
- Visualizar la matriz en plt.imshow con colorbar().

Objetivo: Reforzar **clase simple**, **distancia** y **matriz NxN** con NumPy + visualización.

Ejercicios de Repaso ∈ Ejercicio 2: Partículas con Herencia

Enunciado

- Crear clase base Particle con (mass, x, y) y método kinetic_energy(vx,vy).
- Crear clase derivada ChargedParticle con charge y método potential_energy(E_field).
- Instanciar 3-4 ChargedParticle con datos aleatorios (usando np.random).
- Graficar scatter en 2D (eje X, Y) coloreado según charge (p. ej. c=charge + colormap).
- · Mostrar title, xlabel, ylabel.

Objetivo: Reforzar **herencia**, uso de **np.random** y **scatter** con color mapping.

Ejercicios de Repaso ∈ Ejercicio 3: DataFrame, Análisis y Subplots

Enunciado

- Suponiendo un CSV (measurements.csv) con columnas name, value, category.
- · Cargar con pandas.read_csv.
- · Crear un subplot con 2 paneles:
 - · Panel 1: histograma de la columna value.
 - Panel 2: barra de value por name, separando o coloreando por category (si cabe).
- · Mostrar df.describe() para ver estadísticas rápidas.

Objetivo: Integrar **pandas** (lectura + describe) con **subplots** de Matplotlib.

Ejercicios de Repaso ∈ Ejercicio 4 (Opcional): Cargar Objetos desde CSV

Enunciado

- · CSV con name, mass, charge, x, y.
- · Clase ChargedParticle (hereda de Particle).
- Iterar filas del DF para instanciar objetos en una lista particles.
- Calcular la energía cinética total asumiendo vx, vy aleatorios o fijos.
- · Visualizar la distribución de charge en un histograma.

Objetivo: Profundizar la **creación masiva** de objetos con datos CSV, combinando **NumPy** y **Matplotlib**.

Actividad en Clase

Actividad en Clase ∈ Trabajen en Grupos

- · Parejas o tríos, elijan 2+ ejercicios o combínenlos.
- · Objetivo: Repasar antes de la Solemne II.
- Pueden usar **Colab** o local, comentando sus pasos y mostrando resultados (gráficas, matrices).
- · Comparen resultados y listas de **dudas** para plantearlas al final.

Actividad en Clase ∈ Sugerencias Prácticas

- Revisen módulos import ados: import numpy as np, import matplotlib.pyplot as plt, import pandas as pd.
- · Prueben logging básico o print debugging si algo sale mal.
- Usen **super()** y verifiquen si **__str__** es útil para imprimir objetos.
- Si hacen matrices NxN, consideren
 np.fill_diagonal(mat, 0) para poner ceros en la
 diagonal, si es relevante.

Actividad en Clase ∈ Espacio para Dudas Generales

- · ¿Preguntas sobre POO, herencia, métodos especiales?
- · ¿Dificultades con **np.linalg** o **numpy.random**?
- · ¿Matplotlib subplots, 3D, personalización?
- · pandas: df.describe, df.iterrows, merges, etc.

Levanten la mano para aclarar cualquier duda.

Conclusiones y Preparación

Conclusiones y Preparación ∈ Discusión de Soluciones

- Compartan cómo resolvieron distancias NxN, scatter con color, subplots, etc.
- Si usaron pandas, ¿cómo filtraron datos o manipularon columnas?
- · ¿Qué inconvenientes aparecieron en la parte POO?

Conclusiones y Preparación ∈ Conclusiones de la Sesión 19

- Repasamos de forma integral POO, NumPy, Matplotlib y pandas con ejercicios.
- · Identificamos dudas y resolvimos problemas típicos.
- Todo esto apunta a la Solemne II (próxima sesión), donde se evaluarán estos bloques de contenidos.

Conclusiones y Preparación ∈ Preparación para la Solemne II (Semana 10, Sesión 2)

- · Revisar apuntes y ejercicios hechos:
 - · Sintaxis de class, herencia, __init__, __str__.
 - · Principales funciones NumPy: reshape, random, linalg.
 - · Matplotlib: subplots, scatter, hist, 3D, personalización básica.
 - pandas para CSV y df.plot (opcional).
- · Practicar resolviendo miniproblemas con tiempo.
- Cualquier duda final, ¡pregunten vía foros o en la próxima clase (antes de la Solemne)!

Conclusiones y Preparación ∈ Recursos Adicionales

- Python Tutorial Clases (Repaso POO).
- NumPy Docs (subsecciones de random, linalg).
- Matplotlib Docs Ejemplos de subplots y 3D.
- · pandas Docs sección de 10 minutes to pandas.

uchas gracias y éxito en su prácti

- · Recuerden estudiar para la **Solemne II** (Semana 10, Sesión 2).
- · Cualquier duda, sigan participando en foros o consultas.
- · ¡Nos vemos en la próxima sesión con la evaluación!