Návod k programu ALMA Corrimag v1.4

Obsah

Correlate Element Maps	
Pearsonův korelační koeficient	
2D histogram	2
Instalace:	2
Použití:	
Vstup:	3
Zpracování:	3
Vٰystup:	3
Konfigurace:	3
Ukázka:	4
Prvkové mapy:	4
Výsledek:	5
Odkazy.	7

Adresa projektu:

https://github.com/almaavu/corrimag

Úvod:

Korelace MA-XRF or SEM-EDS prvkových map.

Program je určený pro obrazovou analýzu prvkových map získaných MA-XRF spektroskopií nebo SEM-EDS mikroskopií. Porovnává dvojice prvkových map a hledá míru jejich korelace - společného výskytu prvků, např. obsažených ve stejném pigmentu nebo materiálu podložky. Výsledky jsou uloženy do XLSX tabulky, která pro každou dvojici map uvádí Personův korelační koeficient, koeficient determinace a regresní koeficienty. [1]

Dalším výstupem je korelační matice zobrazující 2D histogramy dvojic prvkových map a překryvy map v RGB snímku.

Pearsonův korelační koeficient

Korelační koeficient vyjadřuje, nakolik jsou koncentrace dvou prvků provázané. Pokud jsou dva prvky součástní stejného pigmentu a nejsou-li obsaženy v další materiálech, např. Hg a S v rumělce, pak v místech s vysokou koncentrací rtuti je i vysoká koncentrace síry. Koncentrace prvků jsou pak do jisté míry lineárně závislé, lze je vyjádřit funkcí ve tvaru

$$c2 = m * c1 + b$$

kde c2, c1 jsou koncentrace prvků, m je směrnice a b je úsek regresní přímky.

2D histogram

Grafické zobrazení korelace pomocí 2D histogramu ukazuje míru korelace i rozložení koncentrace v případě, že jsou prvky obsaženy ve více sloučeninách. Využití je podobné, jako při hledání překryvu snímků metodou kolokalizace ve fluorescenční mikroskopii. [2]

Následující 2D histogram zobrazuje rozložení koncentrace arsenu a mědi v malbě, ve které jsou As a Cu přítomny ve formě svinibrodské zeleně a Cu je zároveň obsažena samostatně ve formě měděnky.

Instalace:

Instalace programovacího jazyka Python3

https://www.python.org/downloads/

Instalace programu ALMA Corrimag

```
python -m pip install git+https://github.com/almaavu/Corrimag.git
```

Instalace knihoven:

python -m pip install --upgrade requirements.txt

- numpy
- pandas
- matplotlib
- scipy
- scikit-image
- imageio

Použití:

```
python -m corrimag "d:/maps"
```

Skript je možné spustit i bez instalace:

```
python corrimag.py "d:/maps"
```

Vstup:

Cesta ke složce s prvkovými mapami.

Zpracování:

- Načtení dvojic prvkových map. Obrázky se načítají do cache pro urychlení zpracování stejného obrázku v dalších krocích.
- Redukce šumu Gaussovým filtrem
- Výpočet Pearsonova korelačního koeficientu.
- Zpracování výsledků ve formátu pandas DataFrame, řazení podle hodnoty r.
- Uložení do XLSX souboru.
- Zobrazení 2D histogramů a kombinací map v korelační matici.

Výstup:

- XLSX soubor s výsledky.
- · Korelační matice.

Konfigurace:

Parametry jsou uloženy v globální proměnné CFG.

- blur_sigma: míra redukce šumu.
- view_gamma: Gamma nastavení pro zobrazení map (úprava jasu a kontrastu)
- min_r2: minimální koeficient determinace pro výpočet regresních koeficientů
- in_file_mask: filtr souborů podle názvu nebo přípony
- excluded: ignorované názvy souborů

Výchozí konfigurace:

```
CFG = {
    'blur_sigma': 2,
    'view_gamma': .6,
    'min_r2': .1,
    'in_file_mask':'*.jpg',
    'excluded' : ("Video 1", "mosaic", "VIS"),
}
```

Ukázka:

Prvkové mapy:

Prvkové mapy použité na ukázku funkce programu. Soubory jsou uloženy ve složce "samples".

Výsledek:

	pair	r2	r	m	b
6	Cr Pb-LB	0.87	0.93	1.08	-0.06
1	Ca Hg	0.80	0.90	0.77	0.04
10	Hg S	0.43	0.66	0.56	-0.12
3	Ca S	0.21	0.45	0.33	-0.02
0	Ca Cr	0.01	0.12		
2	Ca Pb-LB	0.00	0.06		
8	Cr Zn-KB	0.00	0.03		
13	Pb-LB Zn-KB	0.00	0.01		
5	Cr Hg	0.00	-0.02		
9	Hg Pb-LB	0.00	-0.05		
4	Ca Zn-KB	0.00	-0.06		
12	Pb-LB S	0.00	-0.06		
7	Cr S	0.01	-0.08		
11	Hg Zn-KB	0.08	-0.29		
14	S Zn-KB	0.65	-0.81	-0.57	0.45

V tabulce je uveden symbol obou prvku, Personův korelační koeficient (r), koeficient determinace (r2) a regresní koeficienty (m, b).

V levé části matice jsou zobrazeny 2D histogramy dvojic prvků, v pravé části kombinace vzniklé spojením černobílých map do červeného a zeleného kanálu RGB obrázku. Místa s výskytem obou prvků v podobné koncentraci mají žluté zbarvení. V matici jsou dále uvedeny hodnoty Pearsonova korelačního koeficientu, velikost písma vychází z míry pozitivní korelace.

Výsledky ukazují na společný výskyt Hg + S (rumělka), Pb + Cr (chromová žluť) a Ca + Hg + S (směs rumělky a křídy).

Odkazy:

- [1] https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
- [2] https://en.wikipedia.org/wiki/Colocalization
- [3] A practical guide to evaluating colocalization in biological microscopy