

Capstone Project Partnering with Minerva Intelligence

Jon Chan, Millie Lou, Ruby Nguyen, Zhongyu Pan

Background Information

- Minerva Intelligence: knowledge engineering in earth-sciences domain
- The problem: information extraction from geology reports
- Objective: provide a system for information extraction

Sample Minfile Report

Vocabulary:

- Field
- Term
- Mention

Fields:

- 1. Commodity
- 2. Significant Mineral
- 3. Alteration Mineral
- 4. Deposit Character
- 5. Dominant Host Reck

General Approach

Task: to build 5 binary classification models

True (Term is Commodity)

- Two types of models:
 - Feature-based models
 - 2. Neural-based models
- **Evaluation metric:** precision vs. recall

(Term is not Commodity)

Build a Lexicon for Each Field

galena and tetrahedrite in a gangue of decomposed limestone, carcile and guartz.

SUMMARY

Lexicon:

Summary Help (2)

082N5 Ag2 NMI Name WAVERLEY (L.3597), MONTAGUE (L.3596), **Mining Division** Revelstoke WAVERLEY-TANGIER **BCGS Map** 082N041 **Developed Prospect** NTS Map 082N05W Status Latitude 051° 27' 00" UTM 11 (NAD 83) 117° 57' 35" 5700305 Longitude Northing Easting 433311 Commodities Lead, Silver, Gold, Zinc, Copper **Deposit Types** 105 : Polymetallic veins Ag-Pb-Zn+/-Au J01: Polymetallic manto Aq-Pb-Zn Kootenay, Ancestral North America **Tectonic Belt** Omineca Terrane Capsule The Waverlev occurrence is located on the western slope of Sorcerer Mountain, 1.75 kilometres southeast of the confluence of Geology Sorcerer and Holway creeks and approximately 52 kilometres northeast of Revelstoke. The Tangier occurrence (MINFILE 082N 015) lies 750 metres to the west. Average assays for samples taken from the main oreshoot on the Waverley claim were 5.8 per cent lead and 606.7 grams per tonne silver over an average width of 2 metres and a length of approximately 21 metres (Special Bulletin (1920), Report on Waverley-Tangier Property, by 3.B. Sanoway). A sample of ore from the No. 2 tunnel assayed 4.1 grams per tonne gold, 1588.1 grams per tonne silver, 2.1 per cent lead, 26 7 per cent zinc and 1.35 per cent copper (Geological Survey of Canada Summary Report 1928 Part A. page 179). The ore occurs in well-defined fissures, replaces dark grey or black fine-grained limestone and is found as irregular bodies more or less elongated along predominant shear and fault zones that trend approximately 320 degrees. Veins of guartz and calcite, striking more northerly than the main oreshoots, are barren in most places.

The or is highly oxidized and consists of limonite, anglesite cerussite, malachite, azurite, smithsonite and occasional nodules of

- Term = Lead
- Mentions = {'lead'}

H

Mineral Taxonomy

=

{'lead', 'anglesite', 'apatite', 'cerussite', 'galena', 'wulfenite'}

+

Morphology

=

{'lead', 'anglesite', 'apatite', 'cerussite', 'galena', 'wulfenite', 'leaded', 'leaden'}

Split Datasets

Image: https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7

Compile Sentences with Mentions and Label Terms

	MINFILNO	Term	Sentences	Original_Sents	Term_ID_Feature	Is_Labeled
0	092GSW015	germanium	[[it, is, a, fairly, plastic, clay, with, some	[[It, is, a, fairly, plastic, clay, with, some	$\hbox{\tt [[0,0,0,0,0,1,0,0,0,0]]}$	False
1	092GSW015	clay	[[it, is, a, fairly, plastic, clay, with, some	[[It, is, a, fairly, plastic, clay, with, some	$\hbox{\tt [[0,0,0,0,0,1,0,0,0,0]]}$	True
2	092L 366	aggregate	[[the, lot, 4, aggregate, occurrence, is, loca	[[The, Lot, 4, aggregate, occurrence, is, loca	$\hbox{\tt [[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]}$	True
3	082GNW079	quartzite	[[the, area, is, underlain, by, mid, proterozo	[[The, area, is, underlain, by, mid, Proterozo	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,}}$	False
4	082GNW079	argillite	[[the, area, is, underlain, by, mid, proterozo	[[The, area, is, underlain, by, mid, Proterozo	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,}}$	False

Understanding the Data

Field	No. of Terms		
Commodity	152		
Significant Mineral	371		
Alteration Mineral	195		
Deposit Character	15		
Dominant Host Rock	8		

Understanding the Data

Understanding the Data

Unmatched Terms

Field		Train		Validation	Test		
	(count, % of dataset)		(count, % of dataset)		(count, % of dataset)		
Commodity	1,558	5.46%	336	5.47%	321	5.3%	
Significant Mineral	2,125	7.52%	475	7.8%	446	7.39%	
Alteration Mineral	7,360	39.64%	1575	40.43%	1530	37.98%	
Deposit Character	6,012	40.97%	1242	40.16%	1284	41.37%	
Dominant Host Rock	1,625	16.16%	346	16.06%	343	15.89%	

Feature-based Model

LightGBM Classifier (LGBM)

- A gradient boosting model
- Tree based
- One for each field

Decision Tree Model for Car Mileage Prediction

Feature Set Generation

Example sentence for commodity field:

Fractures contain <u>electrum</u> with low <u>gold</u> values.

Term	gold		
Mention In Text	electrum		
Previous Word convert	sets are then ed into a		
Previous 2	epresentation		
Next Word	with		
Next 2 Words	With low		

Term	silver
Mention In Text	electrum
Previous Word	contain
Previous 2 Words	fractures contain
Next Word	with
Next 2 Words	with low
Position	3

Term	gold		
Mention In Text	Electrum, gold		
Previous Word	contain, low		
Previous 2 Words	fractures contain, with low		
Next Word	with, values		
Next 2 Words	with low, values <bd></bd>		
Position	3, 6		

Feature-based Model Tuning

Manual hyperparameter tuning

Field: Dominant Host Rock	Precision	Recall
LGBM Default	0.7681	0.5950
LGBM Manually Tuned	0.7805	0.6132

Optuna

Field: Commodity	Precision	Recall
LGBM Default	0.9195	0.9302
LGBM Optuna	0.9280	0.9393

Linguistic Features

10 features

- Term
- Mention
- N-gram
- Mention average position
- Mention count.
- Bag-of-words

```
{ 'term argillite': True,
 'mention argillites': True,
 'prev unigram and': True,
 'prev bigram greywackes and': True,
 'next unigram .': True,
 'next bigram . <BD>': True,
 'mentions count': 2,
 'avg position': 0.4375,
 'word b4 mention <BD>': True,
 'word b4 mention the': True,
 'word b4 mention area': True,
 'word b4 mention is': True,
 'word b4 mention underlain': True,
 'word b4 mention by': True,
 'word b4 mention mid': True,
```


Linguistic Features

Capital mention (e.g Gold Coast)

```
one sample ( rc 5 ) taken at this site assayed 2.04 per cent zinc , 0.16 per cent lead. 15.7 grams per tonne **silver** and 0.31 grams per tonne gold ( assessment report 17670 ) .

a strong northwest fault cuts diagonally across the skarn and localizes massive **chalcopyrite** with pods of chalcocite and **bornite** .

the company reports that about 7645 cubic metres ( 10,000 cubic yards ) of material were processed and 11,952 grams ( 421.6 ounces ) of gold were recovered and 1134 grams ( 40 sample w 1 assayed 0.265 grams per tonne gold (13.3 grams per tonne **silver** , 1.973 per cent copper and 11.069 per cent iron ( assessment report 16860 ) .

an average sample from the deposit found at the higher elevation , taken across 3.7 metres , assayed 0.8 per cent copper (13.71 grams per tonne **silver** and a trace of gold ( min
```

- Unit and amount : {unit_grams_per_tonne: 15.7}
 - Increase the precision

Feature Importances

- An attempt to understand whether certain features are more important
- Features are split into four categories Term, mention, n-grams, bag-of-words

Positive bag-of-words features (Commodity)	'word_b4_mention_assayed', 'word_b4_mention_pyrite', 'word_after_mention_occur' 'word_b4_mention_tonnes', 'word_b4_mention_grams',
Positive n-grams (Commodity)	'prev_unigram_tonne', 'prev_bigram_per_tonne', 'prev_bigram_per_tonne', 'prev_unigram_cent', 'next_unigram_mineralization'
Negative n-grams (Significant Minerals)	'prev_unigram_quartz', 'next_unigram_veins', 'prev_bigram_per_tonne', 'next_unigram_tonne',
Positive n-grams (Alteration Minerals)	'next_unigram_altered', 'next_bigram_carbonate_alteration', 'next_unigram_sericite', 'prev_unigram_sericite', 'next_unigram_zone'

Neural-based model

CNN Diagram

Word Embeddings

CNN Experiments

General Ideas

CNN only takes in numbers.

We need to convert data from text to numbers representation.

CNN learns the patterns between numbers representation and labels.

Classes	Labels		
Term is Commodity	1		
Term is not Commodity	0		

Using words and features information to **classify**.

Word Embeddings

- An embedding is just a vector,
- Embeddings of words with similar meanings are closer to each other.

CNN Experiments

* (Precision ,Recall) of Test Set for Commodity Field

CNN + Mentions Distance + Term Binary Feature (0.91, 0.93)

CNN + Mentions Distance Feature (0.90, 0.91)

CNN + Pre-trained Word Embeddings (0.78, 0.77)

Baseline CNN (0.76, 0.79)

Dummy Classifier (0.29, 0.29)

Final Evaluation and Analysis

	Validation Dataset				Test Dataset			
	Best LGBM		Best CNN		Best LGBM		Best CNN	
	Precision Recall Precision R		Recall	Precision	Recall	Precision	Recall	
Commodity	0.9251	0.9334	0.9119	0.9239	0.9280	0.9393	0.9132	0.9264
Significant Mineral	0.8740	0.9157	0.8017	0.9583	0.8842	0.9174	0.8085	0.9569
Alteration Mineral	0.7349	0.6902	0.6197	0.7062	0.7688	0.7162	0.6684	0.8078
Deposit Character	0.8233	0.8455	0.8118	0.8671	0.7991	0.8632	0.7767	0.8511
Dominant Host Rock	0.7788	0.6208	0.7118	0.6882	0.7805	0.6132	0.7344	0.6733

Note: Precision and Recall are for positive class only.

Future Works

- Deeper error analysis
- Expand lexicon
- Implement feature selection for individual feature model
- Deeper analysis for negation
- Using BERT
- Pre-train its own word embeddings for the geology domain
- Add features from feature-based model to neural-based model

Thank You!

Clinton Smyth

Anna Hicken

Julian Brooke

