ECG- Image Based Heartbeat Classification For Arrhythmia Detection Using IBM Watson Studio

Introduction:

1.1 Overview:

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the number one cause of death today. Over 17.7 million people died from CVDs in the year 2017 all over the world which is about 31% of all deaths, and over 75% of these deaths occur in low and middle-income countries. Arrhythmia is a representative type of CVD that refers to any irregular change from the normal heart rhythms. There are several types of arrhythmia including atrial fibrillation, premature contraction, ventricular fibrillation, and tachycardia. Although a single arrhythmia heartbeat may not have a serious impact on life, continuous arrhythmia beats can result in fatal circumstances. In this project, we build an effective electrocardiogram (ECG) arrhythmia classification method using a convolution al neural network (CNN), in which we classify ECG into seven categories, one being normal and the other six being different types of arrhythmia using deep two-dimensional CNN with grayscale ECG images. We are creating a web application where the user selects the image which is to be classified. The image is fed into the model that is trained and the cited class will be displayed on the webpage.

1.2 Purpose:

In the past few decades, Deep Learning has proved to be a compelling tool because of its ability to handle large amounts of data. The interest to use hidden layers has surpassed traditional techniques, especially in pattern recognition. One of the most popular deep neural networks is Convolution al Neural Networks.

In deep learning, a convolution al neural network (CNN/ConvNet) is a class of deep neural networks, most commonly applied to analyze visual imagery. Now when we think of a neural network we think about matrix multiplications but that is not the case with ConvNet. It uses a special technique called Convolution. Now in mathematics convolution is a mathematical operation on two functions that produces a third function that expresses how the shape of one is modified by the other.

Literature Survey:

2.1 Existing Problem:

Cardiovascular diseases (CVDs) are the number one cause of death today. Over 17.7 million people died from CVDs in the year 2017 all over the world which is about 31% of all deaths, and over 75% of these deaths occur in low and middle-income countries. Arrhythmia is a representative type of CVD that refers to any irregular change from the normal heart rhythms. There are several types of arrhythmia including atrial fibrillation, premature contraction, ventricular fibrillation, and tachycardia.

Cardiac arrhythmia

2.1 Proposed Solution:

An "ambulatory electrocardiogram" or an ECG) about the size of a postcard or digital camera that the patient will be using for 1 to 2 days, or up to 2 weeks. The test measures the movement of electrical signals or waves through the heart. These signals tell the heart to contract (squeeze) and pump blood. The patient will have electrodes taped to your skin. It's painless, although some people have mild skin irritation from the tape used to attach the electrodes to the chest. They can do everything but shower or bathe while wearing the electrodes. After the test period, patient will go back to see your doctor. They will be downloading the information. Theoretical Experience:

3.1 Block Diagram:

We will prepare the project by following the below steps:

- We will be working with Sequential type of modeling
- We will be working with Keras capabilities
- We will be working with image processing techniques
- We will build a web application using the Flask framework.
- Afterwards we will be training our dataset in the IBM cloud and building another model from IBM and we will also test it.

3.2 HARDWARE & SOFTWARE Desgining:

Hardware Components used:

Since we are using the IBM cloud as a platform to execute this project we don't need any hardware components other than our system.

Software Components Used:

We will be using Anaconda Navigator which is installed in our system and Watson studio from the IBM cloud to complete the project.

Anaconda Navigator

Anaconda Navigator is a free and open-source distribution of the Python and R programming languages for data science and machine learning related applications. It can be installed on Windows, Linux, and macOS.Conda is an open-source, crossplatform, package management system. Anaconda comes with so very nice tools like

JupyterLab, Jupyter Notebook,

QtConsole, Spyder, Glueviz, Orange, Rstudio, Visual Studio Code. For this project, we will be using Jupiter notebook and spyder

WATSON STUDIO:

Watson Studio is one of the core services in Cloud Pak for Data as a Service.

Watson Studio provides you with the environment and tools to solve your business problems by collaboratively working with data. You can choose the tools you need to analyze and visualize data, to cleanse and shape data, or to build machine learning models.

This illustration shows how the architecture of Watson Studio is centered around the project. A project is a workspace where you organize your resources and work with data.

Watson Studio projects fully integrate with the catalogs and deployment spaces:

• Deployment spaces are provided by the Watson Machine Learning service You can easily move assets between projects and deployment spaces.

Experimental Investigations:

In this project, we have deployed our training model using CNN on IBM Watson studio and in our local machine. We are deploying 4 types of CNN layers in a sequential manner, starting from:

- 1. **Convolutional layer 2D:**A 2-D convolutional layer applies sliding convolutional filters to 2-D input. The layer convolves the input by moving the filters along the input vertically and horizontally and computing the dot product of the weights and the input, and then adding a bias term.
- 2. **Pooling Layer :**Pooling layers are used to reduce the dimensions of the feature maps. Thus, it reduces the number of parameters to learn and the amount of computation performed in the network. The pooling layer summarises the features present in a region of the feature map generated by a convolution layer.
- 3. **Fully-Connected layer**: After extracting features from multiple convolution layers and pooling layers, the fully-connected layer is used to expand the connection of all features. Finally, the SoftMax layer makes a logistic regression classification. Fully-connected layer transfers the weighted sum of the output of the previous layer to the activation function.
- 4. **Dropout Layer**: There is usually a dropout layer before the fullyconnected layer. The dropout layer will temporarily disconnect some neurons from the network according to the certain probability during the training of the convolution neural network, which reduces the joint adaptability between neuron nodes, reduces overfitting, and enhances the generalization ability of the network.