Examen final de SIN: Test del bloc 2 (1,75 punts)

ETSINF, Universitat Politècnica de València, 3 de febrer de 2021

Grup, cognoms i nom: TA-Blanc, 1,

Marca cada requadre amb una única opció. Puntuació: $\max(0, (\text{encerts} - \text{errors}/3) \cdot 1, 75/6)$.

- A) $\alpha_{13}(B_{1s})$ amb $B_{1a} = 0.2$ és menor que $\alpha_{13}(B_{1s})$ amb $B_{1a} = 0.4$.
- B) $\alpha_{13}(B_{1s})$ amb $B_{1a}=0.8$ és menor que $\alpha_{13}(B_{1s})$ amb $B_{1a}=0.7$.
- C) $\alpha_{13}(B_{1s})$ amb $B_{1a} = 0.5$ és menor que $\alpha_{13}(B_{1s})$ amb $B_{1a} = 0.4$.
- D) $\alpha_{13}(B_{1s})$ amb $B_{1a} = 0.4$ és menor que $\alpha_{13}(B_{1s})$ amb $B_{1a} = 0.5$.
- Siga $\mathbf{x} = (x_1, \dots, x_D)^t$, D > 1, un objecte representat mitjançant un vector de característiques D-dimensional a classificar en una de C classes. Indica quin dels següents classificadors no és (de risc) d'error mínim:
 - A) $c(\mathbf{x}) = \arg \max_{c=1,...,C} \log p(c \mid x_1) + \log p(x_2,...,x_D \mid x_1,c)$
 - B) $c(\mathbf{x}) = \arg \max_{c=1,...,C} p(c) p(x_1 \mid c) p(x_2,...,x_D \mid x_1,c)$
 - C) $c(\mathbf{x}) = \arg \max_{c=1,...,C} \log p(x_1, c) + \log p(x_2, ..., x_D \mid x_1, c)$
 - D) $c(\mathbf{x}) = \arg \max_{c=1,...,C} p(x_1 \mid c) p(x_2,...,x_D \mid x_1,c)$
- Suposeu que estem aplicant l'algorisme Perceptró, amb factor d'aprenentatge $\alpha=1$ i marge $\gamma=0.1$, a un conjunt de 4 mostres bidimensionals d'aprenentatge per a un problema de 4 classes, c=1,2,3,4. En un moment donat de l'execució de l'algorisme s'han obtés els vectors de pesos $\mathbf{w}_1=(-2,-1,-2)^t$, $\mathbf{w}_2=(-2,-7,-4)^t$, $\mathbf{w}_3=(-2,-3,-8)^t$, $\mathbf{w}_4=(-2,-7,-10)^t$. Suposant que a continuació es va a processar la mostra $(\mathbf{x},c)=((3,3)^t,3)$, quants vectors de pesos es modificaran?
 - A) 0
 - B) 2
 - C) 3
 - D) 4

Siga M un model de Markov de conjunt d'estats $Q=\{1,2,F\}$ i alfabet $\Sigma=\{a,b\}$. Durant l'aplicació d'una iteració de l'algorisme de reestimació per Viterbi, s'ha obtés un parell "(cadena, camí més probable)" per cada cadena d'entrenament. Seguidament, a partir de tots els parells obtinguts, s'han obtingut els comptes (freqüències absolutes) d'emissió de símbols en els estats mostrats en la taula a la dreta. La normalització correcta d'aquests comptes resultarà en la taula de probabilitats d'emissió de símbols en els estats:

B	a	b
1	2	4
2	3	4

	B	a	b
A)	1	$\frac{2}{6}$	$\frac{4}{6}$
	2	$\frac{3}{7}$	$\frac{4}{7}$

	B	a	b
B)	1	$\frac{2}{13}$	$\frac{4}{13}$
	2	$\frac{3}{13}$	$\frac{4}{13}$

	B	a	b
C)	1	$\frac{2}{5}$	$\frac{4}{8}$
	2	$\frac{3}{5}$	$\frac{4}{8}$

5 La figura següent mostra una partició de 6 punts bidimensionals en dos clústers, ullet i \circ :

La transferència del punt $(4,1)^t$ del clúster \bullet al clúster \circ produeix una variació de la suma d'errors quadràtics, ΔJ , tal que:

- A) $\Delta J < 0$, açò és, la transferència és profitosa.
- B) $0 < \Delta J < 1$.
- C) $1 \le \Delta J < 2$.
- D) $\Delta J \geq 2$.

Suposeu que estem aplicant l'algorisme d'aprenentatge d'arbres de classificació per a un problema de 4 classes, c=1,2,3,4. L'algorisme ha arribat a un node t que ha estat dividit en un node esquerre amb 2 mostres de la classe 1, 0 mostres de la classe 2, 4 mostres de la classe 3 i 2 mostres de la classe 4; i un node dret amb 0 mostres de la classe 1, 2 mostres de la classe 2, 0 mostres de la classe 3 i 0 mostres de la classe 4, quin decrement d'impuresa s'ha assolit amb esta partició?

- A) $0.00 \le \Delta \mathcal{I} < 0.25$.
- B) $0.25 \le \Delta \mathcal{I} < 0.50$.
- C) $0.50 \le \Delta \mathcal{I} < 0.75$.
- D) $0.75 \leq \Delta \mathcal{I}$.

Examen final de SIN: Problema del bloc 2 (2 punts)

ETSINF, Universitat Politècnica de València, 3 de febrer de 2021

Grup, cognoms i nom: TA-Blanc, 1,

Problema sobre Bayes

Es té un problema de classificació en dues classes, A i B, per a objectes representats mitjançant una única característica discreta, $x \in \{0, 1, ..., 10\}$. Se sap que les probabilitats a priori de las classes són P(A) = 0.9 i P(B) = 0.1. Així mateix, se sap que les funcions de probabilitat condicionals de las classes són:

Siga x = 5. Es demana:

- 1. (0.5 punts) Determina la probabilitat (incondicional) d'observar x.
- 2. (0.5 punts) Troba la probabilitat a posteriori de que x pertanya a la classe A.
- 3. (0.5 punts) Classifica x per mínim (risc d')error.
- 4. (0.5 punts) Calcula l'error de Bayes.