

Suites de fonctions numériques

Je me s			
Cours		3	
1	Quelques exemples	3	
2	Convergence simple	3	
	2.1 Définition	3	
	2.2 Propriétés	4	
3	Interlude: la norme infinie	4	
4	Convergence uniforme	5	
	4.1 Propriétés	6	
	4.2 Convergence uniforme sur tout segment	6	
5	Transfert de continuité par convergence uniforme	7	
6	Théorème de la double limite	7	
7	Intégration	8	
•	7.1 Intégration sur un segment/primitivation et convergence uniforme	8	
	7.2 Intégration sur un intervalle quelconque – Convergence dominée	9	
8	Dérivation	9	
Ü	8.1 Limite d'une suite de fonctions de classe C^1	9	
		10	
9	Théorèmes d'approximation uniforme		
Ü	9.1 Approximation par des fonctions en escalier		
	9.2 Approximation par des fonctions polynomiales		
F		12	
Exercic			
EXE	ercices et résultats classiques à connaître		
	Étude et utilisation de la convergence uniforme		
	Utiliser le non transfert de continuité pour montrer la non convergence uniforme		
т.	Utiliser le théorème d'approximation de Weierstrass		
	ercices du CCINP		
	ercices		
Pet	its problèmes d'entrainement	14	

Je me souviens

- 1. Que signifie « f est continue par morceaux sur [a,b] » ?
- 2. Que signifie « g est en escalier sur [a,b] » ?
- 3. Selon les valeurs de x réel, que peut-on dire de la suite $\left(\frac{1-x^{2n}}{1+x^{2n}}\right)_n$?
- 4. Y a-t-il une différence entre

$$\forall x \in [0, 1[, \forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ t.q. } \forall n \geqslant n_0, |x^n| \leqslant \varepsilon$$

et

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ \text{t.q.} \ \forall x \in [0, 1[, \ \forall n \geqslant n_0, \ |x^n| \leqslant \varepsilon ?]$$

5. Que vaut
$$\lim_{x \to 1} \left(\lim_{n \to +\infty} (x^n) \right)$$
? et $\lim_{n \to +\infty} \left(\lim_{x \to 1} (x^n) \right)$?

1 Quelques exemples

Exemple. Pour $n \in \mathbb{N}$, on pose :

$$\begin{array}{ccc} f_n : [0,1] & \to & \mathbb{R} \\ x & \mapsto & x^n \end{array}$$

- 1. Représenter quelques fonctions f_n .
- 2. Est-ce que $(f_n(x))_n$ admet une limite?
- 3. Continuité?

Exemple. Pour $n \in \mathbb{N}$, on pose :

$$f_n: [0,1] \rightarrow \mathbb{R}$$

 $x \mapsto n^2 x (1-x^2)^n$

- 1. Représenter quelques fonctions f_n .
- 2. Est-ce que $(f_n(x))_n$ admet une limite?
- 3. Intégrale sur [0,1]?

Exemple. Pour $n \in \mathbb{N}$, on pose :

$$f_n: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{\sin(nx)}{\sqrt{n}}$$

- 1. Est-ce que $(f_n(x))_n$ admet une limite?
- 2. Dérivées?

Remarque. La convergence « point à point » des suites de fonctions ne permet pas le passage à la limite dans la continuité, le calcul d'intégrales, la dérivation.

2 Convergence simple

2.1 Définition

Définition. Soit $(f_n)_n$ une suite de fonctions définies sur I, à valeurs dans \mathbb{K} et $f: I \to \mathbb{K}$ une fonction. On dit que $(f_n)_n$ converge simplement sur I vers f si et seulement si, pour tout $x \in I$ fixé, la suite numérique $(f_n(x))_n$ converge vers f(x). La fonction f s'appelle alors la **limite simple** de la suite de fonctions $(f_n)_n$.

Remarque.

- $(f_n)_n$ converge simplement sur I si et seulement s'il existe f telle que $(f_n)_n$ converge simplement vers f.
- Étudier la convergence simple de $(f_n)_n$, c'est étudier la convergence de la suite $(f_n(x))_n$ à x fixé.
- On trouve parfois la notation $f_n \xrightarrow[n \to +\infty]{\text{CS}} f$.
- On peut quantifier la proposition « $(f_n)_n$ converge simplement vers f » :

$$\forall x \in I, \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ t.q. \ \forall n \geqslant N, \ |f_n(x) - f(x)| \leqslant \varepsilon$$

Dans cette quantification, l'indice N à partir duquel $f_n(x)$ approche f(x) à ε près dépend de x.

Interprétation graphique.

Exemple. Étudier la convergence simple des suites de fonctions définies par :

1.
$$f_n: [0,1] \to \mathbb{R}$$
 où $f_n(x) = x^n$

2.
$$g_n: \mathbb{R}_+ \to \mathbb{R} \text{ où } g_n(x) = \frac{1}{n+x^2}$$

3.
$$h_n: \mathbb{R} \to \mathbb{R}$$
 où $h_n(x) = \begin{cases} n^2 x & \text{si } |x| \leqslant \frac{1}{n} \\ \frac{1}{x} & \text{si } |x| > \frac{1}{n} \end{cases}$

2.2 Propriétés

<u>Proposition.</u> Si $B \subset I$ et si la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge simplement vers f sur I, alors $(f_n)_{n \in \mathbb{N}}$ converge simplement vers $f_{|B}$ sur B.

Proposition. Si les suites de fonctions $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ convergent simplement vers f et g sur I et si $\lambda, \mu \in \mathbb{K}$, alors la suite de fonctions $(\lambda f_n + \mu g_n)_{n\in\mathbb{N}}$ converge simplement vers $\lambda f + \mu g$ sur I.

3 Interlude : la norme infinie

L'étude plus systèmatique des normes sera faite dans un chapitre dédié. On peut déjà donner la définition, où E désigne un \mathbb{K} -espace vectoriel :

Définition. On appelle **norme** sur E une application $N: E \to \mathbb{R}$ vérifiant :

• $\forall x \in E, \ N(x) \geqslant 0$ positivité

• $\forall x \in E, \ \forall \lambda \in \mathbb{K}, \ N(\lambda x) = |\lambda| N(x)$ homogénéité

• $\forall x, y \in E, N(x+y) \leq N(x) + N(y)$ inégalité triangulaire

• $\forall x n E, N(x) = 0 \implies x = 0$ séparation

Pour A partie non vide de \mathbb{R} , l'ensemble $\mathcal{B}(A,\mathbb{K})$ des fonctions $A \to \mathbb{K}$ bornées est un espace vectoriel, que l'on peut munir d'une norme en définissant :

Définition. Pour $f \in \mathcal{B}(A, \mathbb{K})$, on note :

$$||f||_{\infty} = \sup_{x \in A} |f(x)|$$

Proposition. $\|\cdot\|_{\infty}$ est une norme.

Preuve.

Remarque. Il importe de savoir rédiger l'inégalité triangulaire.

Corollaire. $\|\cdot\|_{\infty}$ est aussi une norme sur l'espace $\mathcal{C}^0([a,b],\mathbb{K})$ des fonctions continues sur le segment [a,b].

Preuve. Par le théorème des bornes atteintes (fonctions continues sur un segment), $C^0([a,b],\mathbb{K}) \subset \mathcal{B}([a,b],\mathbb{K})$.

4 Convergence uniforme

<u>Définition.</u> Soit $(f_n)_n$ une suite de fonctions définies sur I, à valeurs dans \mathbb{K} et $f: I \to \mathbb{K}$ une fonction. On dit que $(f_n)_n$ converge uniformément sur I vers f si et seulement si la suite numérique $(\|f_n - f\|_{\infty})_n$ converge vers 0. La fonction f est alors appelée **limite uniforme** de $(f_n)_n$.

Remarque.

- Pour que cette définition ait un sens, on doit naturellement supposer que, au moins à partir d'un certain rang, la fonction $f f_n$ soit bornée sur I.
- On trouve parfois la notation $f_n \xrightarrow[n \to +\infty]{\text{CU}} f$.
- On peut quantifier la proposition « $(f_n)_n$ converge uniformément vers f »:

$$\forall \varepsilon > 0, \exists n \in \mathbb{N} \ t.q. \ \forall n \geqslant N, \ \forall x \in I, \ |f_n(x) - f(x)| \leqslant \varepsilon$$

Dans cette quantification, l'indice N à partir duquel $f_n(x)$ approche f(x) à ε près est indépendant de x. C'est le même pour tout x, on dit qu'il est uniforme, ce qui donne son nom à ce mode de convergence de la suite de fonctions.

Interprétation graphique.

Théorème.

La convergence uniforme implique la convergence simple.

Remarque.

- La réciproque est fausse.
- Si une suite de fonctions $(f_n)_n$ converge uniformément, sa limite uniforme coïncide avec sa limite simple.

2024-2025 http://mpi.lamartin.fr **5/16**

Étude pratique pour montrer la convergence uniforme.

- On commence par déterminer la limite simple de $(f_n)_n$, notée f. Une représentation graphique peut aider.
- On cherche à majorer $|f_n(x) f(x)|$ indépendamment de x par une suite qui converge vers 0.
- La recherche précise de $||f_n f||_{\infty}$ peut se faire par l'étude des variations de $|f_n f|$.

Étude pratique pour montrer la non-convergence uniforme.

- On commence par déterminer la limite simple de $(f_n)_n$, notée f. Une représentation graphique peut aider.
- S'il n'existe pas de rang à partir duquel $f_n f$ est bornée, la convergence ne peut pas être uniforme.
- On peut montrer le non-transfert à la limite d'une propriété (voir § 5 et § 7).
- On exhibe une suite $(x_n)_n$ d'éléments de I telle que la suite $(f_n(x_n) f(x_n))_n$ ne converge pas vers 0.

Exemple. Étudier la convergence uniforme des trois suites de fonctions :

1.
$$f_n: [0,1] \to \mathbb{R}$$
 où $f_n(x) = x^n$

2.
$$g_n: \mathbb{R}_+ \to \mathbb{R} \text{ où } g_n(x) = \frac{1}{n+x^2}$$

3.
$$h_n: \mathbb{R} \to \mathbb{R}$$
 où $h_n(x) = \begin{cases} n^2 x & \text{si } |x| \leqslant \frac{1}{n} \\ \frac{1}{x} & \text{si } |x| > \frac{1}{n} \end{cases}$

4.1 Propriétés

Proposition. Si $B \subset I$ et si la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur I, alors $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur B.

Proposition. Si les suites de fonctions $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ convergent uniformément vers f et g sur I et si $\lambda, \mu \in \mathbb{K}$, alors la suite de fonctions $(\lambda f_n + \mu g_n)_{n\in\mathbb{N}}$ converge uniformément vers $\lambda f + \mu g$ sur I.

4.2 Convergence uniforme sur tout segment

<u>Définition.</u> Soit I un intervalle de \mathbb{R} et $(f_n)_n$ une suite de fonctions $I: \mathbb{K}$ et $f: I \to \mathbb{K}$. On dit que $(f_n)_n$ converge vers f uniformément sur tout segment de I si et seulement si pour tout segment $[a,b] \subset I$, $(f_{n|[a,b]})_n$ converge uniformément vers $f_{|[a,b]}$ sur [a,b].

Exemple. Étudier la convergence uniforme sur tout segment des trois suites de fonctions :

1.
$$f_n :]0,1[\to \mathbb{R} \text{ où } f_n(x) = x^n$$

2.
$$g_n: \mathbb{R}_+ \to \mathbb{R} \text{ où } g_n(x) = \frac{1}{n+x^2}$$

3.
$$h_n: \mathbb{R} \to \mathbb{R}$$
 où $h_n(x) = \begin{cases} n^2 x & \text{si } |x| \leqslant \frac{1}{n} \\ \frac{1}{x} & \text{si } |x| > \frac{1}{n} \end{cases}$

Remarque. La convergence uniforme sur tout segment de I n'est pas équivalente à la convergence uniforme sur I. C'est une notion plus faible, mais on verra qu'elle pourra suffire à transmettre à la limite certaines propriétés.

Exemple.

- 1. Utiliser la formule de Taylor avec reste-intégral pour montrer : $t \frac{t^2}{2} \le \ln(1+t) \le t$ pour tout $t \ge 0$.
- 2. Étudier la convergence uniforme sur tout segment de \mathbb{R}_+^* de la suite de fonctions définies par :

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n$$

5 Transfert de continuité par convergence uniforme

Théorème.

Soit $(f_n)_n$ une suite de fonctions définies sur I.

Si:

- pour tout n, f_n est continue sur I,
- $(f_n)_n$ converge uniformément sur I vers f,

alors:

 \circ f est continue sur I.

Remarque.

- La convergence simple ne suffit pas pour justifier la continuité de f, comme le montre l'exemple des fonctions $f_n: x \in [0,1] \mapsto x^n$.
- La continuité des f_n et de f ne suffit pas à justifier la convergence uniforme, comme le montre l'exemple des fonctions $f_n: x \in [0,1] \mapsto n^2 x (1-x^2)^n$.

Corollaire. Si $(f_n)_n$ converge simplement sur I vers f, que les f_n sont continues sur I mais que f n'est pas continue sur I, alors la convergence n'est pas uniforme sur I.

Raisonnement classique. Si $(f_n)_n$ converge simplement sur I vers f, que les f_n sont continues sur I et qu'il y a convergence uniforme sur tout segment [a,b] de I, alors f est continue sur tout $[a,b] \subset I$ donc sur I.

Remarque. Ce résultat, qui exploite le caractère local de la continuité, s'adapte aussi lorsque la convergence uniforme est vérifiée sur une famille d'intervalles adaptés à la situation.

6 Théorème de la double limite

Théorème de la double limite.

Soit $(f_n)_n$ une suite de fonctions définies sur I et a un point de I ou une extrémité éventuellement infinie de I.

Si:

- pour tout n, $f_n(x)$ admet une limite finie ℓ_n lorsque $x \to a$,
- $(f_n)_n$ converge uniformément vers f sur I,

alors:

- la suite $(\ell_n)_n$ converge vers $\ell \in \mathbb{R}$,
- f(x) admet une limite lorsque $x \to a$,
- \circ cette limite est égale à ℓ .

 $\label{eq:preuve.} Preuve. \ \ \text{La démonstration est hors programme.}$

Remarque. On peut symboliser la conclusion de ce théorème par :

$$\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites envisagées et de mode de convergence de la suite de fonctions.

Exemple. On considère la suite de fonctions $(f_n)_n$ définie par :

$$f_n(x) = \frac{nx^2 e^{-nx}}{1 - e^{-x^2}}$$

- 1. Déterminer la limite de f_n en 0.
- 2. Étudier la convergence simple de $(f_n)_n$ sur \mathbb{R}_+^* .
- 3. Utiliser le théorème de la double limite pour montrer qu'il n'y a pas convergence uniforme sur \mathbb{R}_+^* .
- 4. Étudier la convergence uniforme de $(f_n)_n$ sur tout $[a, +\infty[, a > 0.$

7 Intégration

7.1 Intégration sur un segment/primitivation et convergence uniforme

<u>Lemme.</u> Soit $(f_n)_n$ une suite de fonctions définies sur un intervalle I et $a \in I$.

- $(f_n)_n$ converge uniformément vers f sur tout segment $K \subset I$,
- les f_n sont continues.

alors, en notant $F_n(x) = \int_a^x f_n(t) dt$ et $F(x) = \int_a^x f(t) dt$,

• $(F_n)_n$ converge uniformément vers F sur tout segment de I.

Preuve.

Remarque. Ainsi, la convergence uniforme sur tout segment se transmet par primitivation, à condition de prendre les primitives qui s'annulent toutes en un même point a donné.

Théorème d'interversion limite-intégrale par cv uniforme sur un segment.

Soit $(f_n)_n$ une suite de fonctions définies sur un segment [a, b].

- $(f_n)_n$ converge uniformément vers f sur [a,b],
- [a, b] est un segment,
- les f_n sont continues.

alors:

• la suite
$$\left(\int_a^b f_n(t) dt\right)_a$$
 converge,

$$\circ \int_a^b f_n(t) dt \xrightarrow[n \to +\infty]{} \int_a^b f(t) dt$$

Remarque. On peut symboliser la conclusion de ce théorème par :

$$\lim_{n \to +\infty} \int_a^b f_n(t) dt = \int_a^b \lim_{n \to +\infty} f_n(t) dt$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites envisagées et de mode de convergence de la suite de fonctions.

8/16 http://mpi.lamartin.fr **2024-2025**

Remarque. Le théorème de convergence dominée étudié au § 7.2 fournit un autre critère pour intégrer la limite d'une suite de fonctions, y compris lorsque l'intégrale est généralisée.

Exemple. Étudier la convergence de la suite de terme général :

$$u_n = \int_0^1 \frac{\mathrm{d}t}{n\sin\left(\frac{t^2}{n}\right) + 1}$$

On donne l'encadrement $x - \frac{x^3}{6} \leqslant \sin x \leqslant x$.

7.2 Intégration sur un intervalle quelconque - Convergence dominée

Remarque. On verra plus tard le théorème suivant, après avoir défini l'intégration sur un intervalle quelconque.

Théorème de convergence dominée.

Soit $(f_n)_n$ une suite de fonctions définies sur un intervalle I. Si :

- $(f_n)_n$ converge simplement vers f sur I;
- $(f_n)_n$ satisfait l'hypothèse de domination : il existe φ telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in I, \ |f_n(x)| \leqslant \varphi(x)$$

où φ indépendante de n et **intégrable** sur I;

• les fonctions f_n et f sont continues par morceaux sur I.

alors:

- les fonctions f_n et f sont intégrables sur I,
- la suite $\left(\int_I f_n(t) dt\right)_n$ converge,

$$\circ \int_{I} f_n(t) dt \xrightarrow[n \to +\infty]{} \int_{I} f(t) dt.$$

8 Dérivation

8.1 Limite d'une suite de fonctions de classe C^1

Théorème de dérivabilité de la limite d'une suite de fonctions.

Soit $(f_n)_n$ une suite de fonctions définies sur I intervalle.

- Si:
 - pour tout n, f_n est de classe C^1 sur I,
 - $(f_n)_n$ converge simplement sur I vers f,
 - la suite des fonctions dérivées $(f'_n)_n$ converge uniformément sur I vers une fonction g,

alors:

- f est de classe C^1 sur I,
- \circ f'=g.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\frac{\mathrm{d}}{\mathrm{d}x} f_n(x) \right)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites et dérivées envisagées.

- La convergence uniforme de $(f_n)_n$ n'entraı̂ne pas la dérivabilité de la limite.
- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I de $(f'_n)_n$ par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles adaptés à la situation.

Exemple. Étudier la convergence et la dérivabilité de la limite de la suite de fonctions définies par :

$$f_n(x) = \sqrt{x^2 + \frac{1}{n}}$$

8.2 Extension aux fonctions de classe C^k

Théorème.

Soit $(f_n)_n$ une suite de fonctions définie sur I intervalle, et $k \in \mathbb{N}^*$.

- pour tout n, f_n est de classe C^k sur I,
- pour tout $0 \le j \le k-1$, $(f_n^{(j)})_n$ converge simplement sur I vers une fonction g_i ,
- la suite $(f_n^{(k)})_n$ converge uniformément sur I vers une fonction g_k ,

alors

- la limite simple g_0 de $(f_n)_n$ est de classe \mathcal{C}^k sur I
- pour tout $1 \leq j \leq k$, $g_0^{(j)} = g_i$.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\frac{\mathrm{d}^k}{\mathrm{d}x^k} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\frac{\mathrm{d}^k}{\mathrm{d}x^k} f_n(x) \right)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites et dérivées envisagées.

- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I des $(f_n^{(k)})_n$ par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles adaptés à la situation.
- Pour montrer que g_0 est de classe C^{∞} , on montre la convergence simple de $(f_n)_n$ et la convergence uniforme de toutes les $(f_n^{(j)})_n$, pour $j \ge 1$.

9 Théorèmes d'approximation uniforme

9.1 Approximation par des fonctions en escalier

Théorème.

Toute fonction continue (par morceaux) sur un segment est limite uniforme sur ce segment d'une suite de fonctions en escalier.

9.2 Approximation par des fonctions polynomiales

Théorème de Weierstrass.

Toute fonction continue sur un segment est limite uniforme sur ce segment d'une suite de fonctions polynomiales.

Remarque. On parle ici de fonctions numériques (à valeurs dans \mathbb{R} ou \mathbb{C}). L'hypothèse de continuité est importante, celle de segment aussi.

Exercices et résultats classiques à connaître

Étude et utilisation de la convergence uniforme

53.1

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose :

$$f_n(x) = x(1 + e^{-nx})$$

- (a) Sur quelle partie D de \mathbb{R} la suite $(f_n)_{n\in\mathbb{R}}$ converge simplement?
- (b) La convergence est-elle uniforme sur D?
- (c) Déterminer la limite, pour $n \to +\infty$, de $\int_0^1 f_n(t) \, \mathrm{d}t$.

Utiliser le non transfert de continuité pour montrer la non convergence uniforme

53.2

Pour $n \in \mathbb{N}$ et $x \in [0, 1]$, on pose :

$$f_n(x) = x^n$$

- (a) Représenter quelques fonctions f_n .
- (b) Étudier la convergence simple et uniforme de $(f_n)_n$ sur [0,1].

Utiliser le théorème d'approximation de Weierstrass

53.3

Soit $f\,:\,[0,1]\to\mathbb{R}$ continue telle que, pour tout $n\in\mathbb{N}$:

$$\int_0^1 t^n f(t) \, \mathrm{d}t = 0$$

Montrer que f est la fonction nulle.

http://mpi.lamartin.fr

Exercices du CCINP

53.4

GNP 9

1. Soit X un ensemble, (g_n) une suite de fonctions de X dans \mathbb{C} et g une fonction de X dans \mathbb{C} .

Donner la définition de la convergence uniforme sur X de la suite de functions (q_n) vers la fonction q.

- 2. On pose $f_n(x) = \frac{n+2}{n+1} e^{-nx^2} \cos(\sqrt{nx})$.
 - (a) Étudier la convergence simple de la suite de fonctions (f_n) .
 - (b) La suite de fonctions (f_n) converge-t-elle uniformément sur
 - (c) Soit a > 0. La suite de fonctions (f_n) converge-t-elle uniformément sur $[a, +\infty[?]$
 - (d) La suite de fonctions (f_n) converge-t-elle uniformément sur $]0,+\infty[?]$

53.5

On pose $f_n(x) = (x^2 + 1) \frac{ne^x + xe^{-x}}{n+x}$.

- 1. Démontrer que la suite de fonctions (f_n) converge uniformément sur [0,1].
- 2. Calcular $\lim_{n \to +\infty} \int (x^2 + 1) \frac{ne^x + xe^{-x}}{n+x} dx$.

53.6

1. Soit X une partie de \mathbb{R} , (f_n) une suite de fonctions de X dans \mathbb{R} convergeant simplement vers une fonction f.

On suppose qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de X telle que la suite $(f_n(x_n) - f(x_n))_{n \in \mathbb{N}}$ ne tende pas vers 0.

Démontrer que la suite de fonctions (f_n) ne converge pas uniformément vers $f \operatorname{sur} X$.

- 2. Pour tout $x \in \mathbb{R}$, on pose $f_n(x) = \frac{\sin(nx)}{1 + n^2 x^2}$.
 - (a) Étudier la convergence simple de la suite (f_n) .
 - (b) Étudier la convergence uniforme de la suite (f_n) sur $[a, +\infty]$ (avec a > 0), puis sur $]0, +\infty[$.

53.7

GNP 12

1. Soit (f_n) une suite de fonctions de [a,b] dans \mathbb{R} .

On suppose que la suite de fonctions (f_n) converge uniformément sur [a,b] vers une fonction f, et que, pour tout $n \in \mathbb{N}$, f_n est continue en x_0 , avec $x_0 \in [a, b]$.

Démontrer que f est continue en x_0 .

2. On pose : $\forall n \in \mathbb{N}^*, \forall x \in [0, 1], g_n(x) = x^n$. La suite de fonctions $(g_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément sur [0;1]?

53.8

 $C^{0}([0,1],\mathbb{R})$ désigne l'espace vectoriel des fonctions continues sur [0,1] à valeurs dans \mathbb{R} .

Soit $f \in C^{0}([0,1], \mathbb{R})$ telle que : $\forall n \in \mathbb{N}, \int_{0}^{1} t^{n} f(t) dt = 0.$

- 1. Énoncer le théorème de Weierstrass d'approximation par des fonctions polynomiales.
- 2. Soit (P_n) une suite de fonctions polynomiales convergeant uniformément sur le segment [0,1] vers f.
 - (a) Montrer que la suite de fonctions $(P_n f)$ converge uniformément sur le segment [0,1] vers f^2 .
 - (b) Démontrer que $\int_0^1 f^2(t) dt = \lim_{n \to +\infty} \int_0^1 P_n(t)f(t)dt$.
 - (c) Calculer $\int_{0}^{1} P_{n}(t) f(t) dt$.
- 3. En déduire que f est la fonction nulle sur le segment [0,1].

53.9

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose :

$$f_n(x) = \frac{n}{n+1}x$$

- (a) Étudier la convergence simple de $(f_n)_{n\in\mathbb{R}}$ sur \mathbb{R} .
- (b) Montrer que $(f_n)_{n\in\mathbb{R}}$ ne converge pas uniformément sur \mathbb{R} .
- (c) Montrer que $(f_n)_{n\in\mathbb{R}}$ converge uniformément sur tout segment [a,b].

53.10

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose :

$$f_n(x) = \begin{cases} 1 + x^2 \sin\left(\frac{1}{nx}\right) & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

- (a) Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment de \mathbb{R} .
- (b) La convergence est-elle uniforme sur \mathbb{R} ?

53.11

Étudier la convergence de la suite de fonctions

$$f_n: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{2^n x}{1 + n2^n x^2}$$

53.12

Étudier la convergence de la suite de fonctions

$$h_n: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \sin(nx)e^{-nx^2}$

Étudier la convergence de la suite de fonctions

$$f_n: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sin\left(\frac{n+1}{n}x\right)$$

53.14

On pose $f_n(x) = \frac{x^n}{1 + x + \dots + x^n}$ pour $x \ge 0$. Donner l'allure du graphe de f_n . Étudier la convergence simple et la convergence uniforme de la suite (f_n) .

53.15

Soit f continue sur \mathbb{R} , étudier la convergence de la suite de fonctions $(f_n)_n$ où :

$$f_n: x \mapsto \sqrt{f(x)^2 + \frac{1}{n}}$$

Petits problèmes d'entrainement

53.16

Soit (f_n) la suite de fonctions définie par : $\forall n \geq 1$,

$$f_n: \mathbb{R}_+ \to \mathbb{R}$$

$$x \mapsto \frac{1+x^{2n+1}}{1+x^{2n}}$$

- (a) Étudier la convergence simple de (f_n) sur \mathbb{R}_+ .
- (b) Étudier la convergence uniforme de (f_n) sur \mathbb{R}_+ .

53.17

On s'intéresse à l'équation fonctionnelle :

$$f(2x) = 2f(x) - 2f(x)^2$$
 (E)

(a) Quelles sont les solutions constantes sur \mathbb{R} ?

(b) Pour $h: \mathbb{R} \to \mathbb{R}$, on pose, pour tout x, f(x) = xh(x). À quelle condition sur h la fonction f est-elle solution de (E)?

On définit par récurrence une suite de fonctions de $\mathbb R$ dans $\mathbb R$ en posant :

$$h_0: x \mapsto 1$$

et, pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$:

$$h_{n+1}(x) = h_n\left(\frac{x}{2}\right) - \frac{x}{2}\left(h_n\left(\frac{x}{2}\right)\right)^2$$

Pour $x \in [0,1]$, on définit $T_x: y \mapsto y - \frac{xy^2}{2}$.

- (c) Montrer que T_x est 1-lipschitzienne sur [0,1], et que [0,1] est stable par T_x .
- (d) Montrer que $(h_n)_n$ converge uniformément sur [0,1].
- (e) Montrer que (E) admet une solution continue, non constante, sur [0,1]
- (f) Montrer que (E) admet une solution continue, non constante, sur \mathbb{R}_+ .

53.18

Étudier les convergences simple, uniforme, uniforme sur tout segment pour la suite de fonctions :

- (a) $f_n: [0,1] \rightarrow \mathbb{R}$ $x \mapsto (x(1-x))^n$
- (b) $f_n: [0, +\infty[\rightarrow \mathbb{R}$ $x \mapsto \frac{nx^3}{1 + n^2x}$
- (c) $f_n : [0,1[\rightarrow \mathbb{R} \\ x \mapsto \operatorname{Min}\left(n,\frac{1}{\sqrt{1-x}}\right)]$

53.19

Soit $(f_n)_n$ la suite de fonction définie sur \mathbb{R}_+ par :

$$f_0(x) = x$$
 et $f_{n+1}(x) = \frac{x}{2 + f_n(x)}$ pour $n \in \mathbb{N}$

Étudier la convergence simple et uniforme de la suite $(f_n)_n$ sur \mathbb{R}_+ .

53.20

Soit $f_0: \mathbb{R} \to \mathbb{R}$, une fonction positive et bornée. Étudier la convergence simple et la convergence uniforme de la suite de fonctions $(f_n)_n$ définie par :

$$\forall n, \forall x, f_{n+1}(x) = \ln(1 + f_n(x))$$

53.21

Pour $n \in \mathbb{N}^*$ et $x \ge 0$, on pose :

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n$$

- (a) Étudier la convergence simple de $(f_n)_{n\in\mathbb{N}^*}$ sur $[0,+\infty[$
- (b) Montrer que, pour tout $n \in \mathbb{N}^*$ et tout $x \ge 0$, $0 \le f_n(x) \le e^x$.
- (c) Pour a > 0, montrer que $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément sur [0, a].
- (d) La convergence est-elle uniforme sur $[0, +\infty[$?

53.22

Pour $n \in \mathbb{N}$ et x > 0, on pose :

$$f_n(x) = \operatorname{Arctan}\left(\frac{n+x}{x}\right)$$

- (a) Étudier la limite simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$.
- (b) Utiliser le théorème de la double limite pour montrer que la convergence n'est pas uniforme sur $]0, +\infty[$.
- (c) Montrer qu'il y a convergence uniforme sur tout $]0, a] \subset]0, +\infty[$.

53.23

Existe-t-il une suite de polynômes convergeant uniformément sur $\mathbb R$ vers exp ?

53.24

On définit $(u_n)_n$ suite de fonctions définies sur [0,1] par :

$$u_0(x) = 1$$
 et $u_{n+1}(x) = 1 + \int_0^x u_n(t-t^2) dt$

(a) Montrer que, pour tout $x \in [0,1]$:

$$0 \le u_{n+1}(x) - u_n(x) \le \frac{x^{n+1}}{(n+1)!}$$

- (b) En déduire, pour tout $x \in [0,1]$, la convergence de la suite $(u_n(x))_n$.
- (c) Établir que la suite $(u_n)_n$ converge uniformément vers une fonction u non nulle, vérifiant :

$$u'(x) = u(x - x^2)$$

53.25

Soit a < b deux réels et $(f_n)_n$ une suite de fonctions numériques continues, qui converge uniformément sur [a, b]. Étudier la suite de terme général :

$$M_n = \operatorname*{Max}_{x \in [a,b]} f_n(x)$$

53.26

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction uniformément continue. Pour $n \in \mathbb{N}^*$, on définit :

$$f_n: x \mapsto n \int_x^{x+\frac{1}{n}} f(t) dt$$

Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément vers f sur \mathbb{R} .

53.27

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies et continues sur [a,b] segment, qui converge simplement vers la fonction nulle. On suppose que, pour tout $x\in [a,b]$ fixé, la suite $(f_n(x))_{n\in\mathbb{N}}$ est décroissante. On veut montrer que la convergence de la suite de fonctions est en fait uniforme sur [a,b]. On introduit :

$$||f_n||_{\infty} = \sup_{x \in [a,b]} |f_n(x)|$$

(a) Justifier que, pour tout $n \in \mathbb{N}$, il existe $x_n \in [a, b]$ tel que :

$$||f_n||_{\infty} = f_n(x_n)$$

- (b) Justifier la convergence de la suite $(\|f_n\|_{\infty})_n$.
- (c) En observant que, pour tout $p \leq n$, $f_n(x_n) \leq f_p(x_n)$, montrer que :

$$||f_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$$

53.28

Soit $f:[0,1] \rightarrow [0,1]$ et f_n l'itérée d'ordre n de $f:x \rightarrow 2x(1-x)$

$$f_n = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ facteurs}}$$

- (a) Étudier la convergence simple de la suite de fonctions $(f_n)_n$ sur [0,1].
- (b) Sur quels segments inclus dans [0, 1] la convergence est-elle uniforme?

53.29

Soit $(P_n)_n$ une suite de fonctions polynomiales dont tous les degrés sont majorés par $d \in \mathbb{N}$, définies sur I intervalle. On suppose que $(P_n)_n$ converge simplement vers f sur I.

- (a) Montrer que f est un fonction polynomiale de degré au plus d. On pourra utilise les polynômes d'interpolation de Lagrange.
- (b) Montrer que $(P_n)_n$ converge uniformément vers f sur tout segment inclus dans I.
- (c) Si I est un segment, est-ce que ce la contredit le théorème d'approximation de Weierstrass ?
- (d) On suppose que I est borné et que la convergence de $(P_n)_n$ est uniforme sur I. Montrer qu'il existe $(c_n)_n$ une suite de réels, de limite nulle, telle que :

$$P_n = f + c_n$$
 pour n assez grand

Suites de fonctions numériques – convergence dominée

ours	
7	Intégration
	7.1 Intégration sur un segment/primitivation et convergence uniforme
	7.2 Intégration sur un intervalle quelconque – Convergence dominée
8	Annexes
	8.1 Annexe : démonstration du théorème de convergence dominée dans un cas particulier
ercice	
Exe	cices et résultats classiques à connaître
	Convergence dominée avec domination par cas
	Se ramener au théorème de convergence dominée
Exe	cices du CCINP
Exe	iices
	roblèmes d'antrainement

7 Intégration

7.1 Intégration sur un segment/primitivation et convergence uniforme

Théorème d'interversion limite-intégrale par cv uniforme sur un segment.

Soit $(f_n)_n$ une suite de fonctions définies sur un segment [a,b]. Si :

- $(f_n)_n$ converge uniformément vers f sur [a,b],
- [a, b] est un segment,
- les f_n sont continues.

alors:

• la suite
$$\left(\int_a^b f_n(t) dt\right)_n$$
 converge,

$$\circ \int_a^b f_n(t) dt \xrightarrow[n \to +\infty]{} \int_a^b f(t) dt$$

7.2 Intégration sur un intervalle quelconque – Convergence dominée

Théorème de convergence dominée.

Soit $(f_n)_n$ une suite de fonctions définies sur un intervalle I. Si :

- $(f_n)_n$ converge simplement vers f sur I;
- $(f_n)_n$ satisfait l'hypothèse de domination : il existe φ telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in I, \ |f_n(x)| \leqslant \varphi(x)$$

où φ indépendante de n et **intégrable** sur I;

• les fonctions f_n et f sont continues par morceaux sur I.

alors:

- les fonctions f_n et f sont intégrables sur I,
- la suite $\left(\int_I f_n(t) dt\right)_n$ converge,

$$\circ \int_I f_n(t) dt \xrightarrow[n \to +\infty]{} \int_I f(t) dt.$$

Remarque.

- La 3^e hypothèse, de régularité, n'a pas l'importance de l'hypothèse de domination, qu'il faut nommer et sur laquelle il faut insister lors de l'utilisation de ce théorème.
- La fonction dominante φ est bien-sûr positive (elle majore $|f_n|$) et continue par morceaux (elle est intégrable). C'est sur son intégrabilité qu'il faut insister.
- Lorsque I est un segment, on peut prendre une fonction dominante constante.
- Il est fréquent que, à t fixé, $(f_n(t))_n$ soit positive et monotone.
 - Lorsqu'elle décroît, f_1 peut être choisie comme fonction dominante;
 - Lorsqu'elle croît, la limite f peut être choisie comme fonction dominante.

Exemple. Déterminer la limite de la suite de terme général $I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$.

Exemple. Montrer que :

$$\int_{-\infty}^{+\infty} \left(1 + \frac{x^2}{n} \right)^{-n} dx \xrightarrow[n \to +\infty]{} \int_{-\infty}^{+\infty} e^{-x^2} dx$$

Remarque. On peut connaître la valeur $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$

Exemple. Mettre en évidence l'importance de l'hypothèse de domination en considérant la suite de fonctions définie par :

$$f_n(x) = \begin{cases} n^2 x & \text{si } 0 \leqslant x \leqslant \frac{1}{n} \\ n(2 - nx) & \text{si } \frac{1}{n} \leqslant x \leqslant \frac{2}{n} \\ 0 & \text{sinon} \end{cases}$$

8 Annexes

8.1 Annexe : démonstration du théorème de convergence dominée dans un cas particulier

Théorème de convergence dominée.

Soit $(f_n)_n$ une suite de fonctions définies sur un intervalle I.

Si:

- $(f_n)_n$ converge simplement vers f sur I;
- $(f_n)_n$ satisfait l'hypothèse de domination : il existe φ telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in I, \ |f_n(x)| \leqslant \varphi(x)$$

où φ indépendante de n et **intégrable** sur I ;

• les fonctions f_n et f sont continues par morceaux sur I.

alors:

- les fonctions f_n et f sont intégrables sur I,
- la suite $\left(\int_I f_n(t) dt\right)_n$ converge,
- $\circ \int_{I} f_n(t) dt \xrightarrow[n \to +\infty]{} \int_{I} f(t) dt.$

Preuve. On ajoute l'hypothèse que la suite de fonctions $(f_n)_n$ converge uniformément sur tout segment inclus dans I.

- À n fixé, pour tout x, $|f_n(x)| \leq \varphi(x)$ où φ est intégrable sur I. Ainsi, les f_n sont intégrables sur I par majoration.
- À x fixé, pour tout n, $|f_n(x)| \leq \varphi(x)$. Par passage à la limite dans les inégalités larges, par convergence simple

de $(f_n)_n$ vers f, on en déduit que $|f(x)| \leq \varphi(x)$. Ainsi, f est intégrable sur I par majoration.

On revient à la définition de la limite avec ε.
 Fixons donc ε > 0.
 Par définition de l'intégrale, il existe un segment J inclus dans I tel que:

$$\left| \int_{I} \varphi(t) \, \mathrm{d}t - \int_{J} \varphi(t) \, \mathrm{d}t \right| \leqslant \frac{\varepsilon}{4}$$

Alors, pour tout n:

$$\begin{split} &|\int_{I} f(t) \, \mathrm{d}t - \int_{I} f_{n}(t) \, \mathrm{d}t| \\ &\leqslant \int_{I} |f_{n}(t) - f(t)| \, \mathrm{d}t \\ &= \int_{J} |f_{n}(t) - f(t)| \, \mathrm{d}t + \int_{I \smallsetminus J} |f_{n}(t) - f(t)| \, \mathrm{d}t \\ &\leqslant \int_{J} |f_{n}(t) - f(t)| \, \mathrm{d}t + \int_{I \smallsetminus J} |f_{n}(t)| + |f(t)| \, \mathrm{d}t \\ &\leqslant \int_{J} |f_{n}(t) - f(t)| \, \mathrm{d}t + 2 \int_{I \smallsetminus J} |\varphi(t)| \, \mathrm{d}t \\ &\leqslant \int_{J} |f_{n}(t) - f(t)| \, \mathrm{d}t + 2 \int_{I \smallsetminus J} |\varphi(t)| \, \mathrm{d}t \\ &\leqslant \int_{J} |f_{n}(t) - f(t)| \, \mathrm{d}t + \frac{\varepsilon}{2} \\ &\leqslant \int_{J} ||f_{n} - f||_{\infty}^{J} \, \mathrm{d}t + \frac{\varepsilon}{2} \\ &\leqslant ||f_{n} - f||_{\infty}^{J} d + \frac{\varepsilon}{2} \end{split}$$

où d = Max(J) - Min(J).

Comme $(f_n)_n$ converge uniformément vers f sur J, il existe $N \in \mathbb{N}$ tel que, pour tout $n \geqslant N$, $||f_n - f||_{\infty}^J \leqslant \frac{\varepsilon}{2d}$. Il reste, pour $n \geqslant N$:

$$\big| \int_I f(t) \, \mathrm{d}t - \int_I f_n(t) \, \mathrm{d}t \big| \leqslant \varepsilon$$

On a montré, en revenant à la définition de la limite, que $\int_I f_n(t)\,\mathrm{d}t \xrightarrow[n\to+\infty]{} \int_I f(t)\,\mathrm{d}t.$

2024-2025 http://mpi.lamartin.fr 3/7

Exercices et résultats classiques à connaître

Convergence dominée avec domination par cas

53.30

Déterminer la limite de :

$$\int_0^{+\infty} \frac{\sin nt}{nt + t^2} \, \mathrm{d}t$$

Se ramener au théorème de convergence dominée

53.31

Déterminer la limite, pour $n \to +\infty$, de :

$$\int_0^n \left(1 - \frac{x}{n}\right)^n \, \mathrm{d}x$$

53.32

Déterminer un équivalent de :

$$\int_0^n \sqrt{1 + \left(1 - \frac{x}{n}\right)^n} \, \mathrm{d}x$$

53.33

GNP 25

1. Démontrer que, pour tout entier naturel n, la fonction $t \mapsto$ $\frac{1}{1+t^2+t^ne^{-t}}$ est intégrable sur $[0,+\infty[$.

2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^2 + t^n e^{-t}}$. Calculer $\lim_{n \to +\infty} u_n$.

53.34

Pour tout entier $n \ge 1$, on pose $I_n = \int_0^{+\infty} \frac{1}{(1+t^2)^n} dt$.

- 1. Justifier que I_n est bien définie.
- 2. (a) Étudier la monotonie de la suite $(I_n)_{n\in\mathbb{N}^*}$.
 - (b) Déterminer la limite de la suite $(I_n)_{n\in\mathbb{N}^*}$.
- 3. La série $\sum_{n\geqslant 1} (-1)^n I_n$ est-elle convergente?

53.35

Pour tout $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{e^{-x}}{1 + n^2 x^2}$ et $u_n = \int_0^1 f_n(x) dx$.

- 1. Étudier la convergence simple de la suite de fonctions (f_n) sur [0,1].
- 2. Soit $a \in [0,1[$. La suite de fonctions (f_n) converge-t-elle uniformément $\operatorname{sur}\left[a,1\right]$?
- 3. La suite de fonctions (f_n) converge-t-elle uniformément sur [0,1]?
- 4. Trouver la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$.

53.36

Déterminer la limite, pour $n \to +\infty$, de :

$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^n + \mathrm{e}^x}$$

53.37

Pour $n \in \mathbb{N}^*$, on note :

$$u_n = \int_0^{+\infty} \frac{1}{\operatorname{ch}^n(x)} \, \mathrm{d}x$$

- (a) Montrer l'existence de u_n , pour tout $n \in \mathbb{N}^*$.
- (b) Montrer la convergence de $(u_n)_n$, et déterminer sa limite.

53.38

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue. Étudier la limite, pour $n\to+\infty$, de:

$$\int_0^1 f(t^n) \, \mathrm{d}t$$

53.39

Prouver l'existence et déterminer les limites suivantes :

(a)
$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{e^{-\frac{x}{n}}}{1+x^2} dx$$

(a)
$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{e^{-\frac{x}{n}}}{1+x^2} dx$$
 (c) $\lim_{n \to +\infty} \int_0^{+\infty} \frac{e^{\sin(x/n)}}{1+x^2} dx$

(b)
$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^4)^n}$$

(b)
$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^4)^n}$$
 (d) $\lim_{n \to +\infty} \int_0^{\pi/4} \tan^n(x) \mathrm{d}x$

53.40

Déterminer $\lim_{n \to +\infty} \int_0^1 \frac{\mathrm{d}x}{1 + x + \dots + x^n}$.

53. Suites de fonctions numériques – convergence dominée

Pour $n \in \mathbb{N}^*$, on note $I_n = \int_0^{+\infty} \frac{e^{-x^n}}{\sqrt{x}} dx$.

- (a) Montrer que, pour tout n, I_n existe.
- (b) Déterminer $\lim_{n\to+\infty} I_n$.

53.42

Pour $n \in \mathbb{N}^*$, on pose :

$$f_n(x) = \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0, n] \\ 0 & \text{si } x > n \end{cases}$$

- (a) Montrer que $(f_n)_n$ converge uniformément sur $[0, +\infty[$ vers la fonction $f: x \mapsto e^{-x}$.
- (b) À l'aide de la suite $(f_n)_n$, calculer l'intégrale de Gauss :

$$\int_0^{+\infty} e^{-x^2} dx$$

53.43

On pose :

$$u_n = (-1)^n \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n}$$

Étudier la nature de la série de terme général u_n .

53.44

Pour $n \in \mathbb{N}^*$ et x > 0, on pose :

$$f_n(x) = \frac{\sin(nx)}{nx + x^2}$$

(a) Montrer que pour tout $n \in \mathbb{N}^*$, f_n est prolongeable par continuité en 0.

Dans la suite, on considère les f_n ainsi prolongées en 0.

- (b) Montrer que, pour tout $n \in \mathbb{N}^*$, f_n est intégrable sur $[0, +\infty[$.
- (c) On note $u_n = \int_0^{+\infty} f_n(x) dx$. Montrer que $(u_n)_n$ converge et déterminer sa limite.

53.45

Déterminer la limite de :

$$\int_0^{+\infty} e^{-t} \sin^n t \, dt$$

53.46

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on note :

$$f_n(x) = \frac{n^2 x^2 e^{-n^2 x^2}}{1 + x^2}$$

(a) Montrer que f_n est intégrable sur $]-\infty,0]$, pour tout n.

On pose $I_n = \int_{-\infty}^0 f_n(x) dx$.

- (b) Montrer que $I_n \xrightarrow[n \to +\infty]{} 0$.
- (c) Montrer qu'il existe un réel $\alpha > 0$ tel que $I_n \underset{n \to +\infty}{\sim} \frac{\alpha}{n}$.

53.47

Soit a, b deux réels tels que 0 < a < 1 < b, et f de classe C^1 sur [a, b].

- (a) Montrer que la suite de terme général $\int_a^b \frac{f(x)}{1+x^n} dx$ converge vers $\int_a^1 f(x) dx$.
- (b) Montrer que:

$$\int_a^b \frac{f(x)x^n}{1+x^n} dx \underset{n \to +\infty}{\sim} \frac{1}{n} f(1) \ln(2)$$

53.48

Pour $n \in \mathbb{N}^*$, on note :

$$I_n = \int_0^{+\infty} \frac{\operatorname{Arctan}(n+x)}{\sqrt{x}(n+x)} \, \mathrm{d}x$$

- (a) Justifier l'existence de I_n , pour tout $n \in \mathbb{N}^*$.
- (b) Déterminer le limite de $(I_n)_n$.
- (c) Cacluler, pour tout $n \in \mathbb{N}^*$, l'intégrale $\int_0^{+\infty} \frac{1}{\sqrt{x}(n+x)} dx$.
- (d) Déterminer un équivalent simple de I_n .

53.49

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction continue et intégrable. Étudier la limite, pour $n\to+\infty$, de :

$$n \int_0^1 \frac{f(nt)}{1+t} \, \mathrm{d}t$$

53.50

On donne:

$$\int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = \sqrt{2\pi} \text{ et } \int_{0}^{+\infty} t^n e^{-t} dt = n! \text{ pour tout } n$$

- (a) Calculer $\int_{-n}^{+\infty} \left(1 + \frac{t}{n}\right)^n e^{-t} dt$.
- (b) Déterminer la limite, pour $n \to +\infty$, de $\frac{1}{\sqrt{n}} \int_{n}^{+\infty} \left(1 + \frac{t}{n}\right)^{n} e^{-t} dt$.
- (c) Calculer la limite, pour $n \to +\infty$, de $\frac{1}{\sqrt{n}} \int_{-n}^{n} \left(1 + \frac{t}{n}\right)^n e^{-t} dt$.
- (d) Retrouver la formule de Stirling.

53.51

On définit, pour x réel :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

- (a) Justifier que Γ est définie sur $]0, +\infty[$.
- (b) Pour s réel, justifier que $\left(1 + \frac{s}{n}\right)^n \xrightarrow[n \to +\infty]{} e^s$.
- (c) Calculer, à l'aide d'intégrations par parties :

$$\int_0^n t^{x-1} \left(1 - \frac{t}{n}\right)^n \, \mathrm{d}t$$

(d) En déduire la formule d'Euler :

$$\forall x > 0, \ \Gamma(x) = \lim_{n \to +\infty} \frac{n^x \cdot n!}{x(x+1)\dots(x+n)}$$

53.52

Soit $f: [0, +\infty[\to \mathbb{R} \text{ une fonction de classe } \mathcal{C}^1, \text{ intégrable sur } [0, +\infty[, à dérivée intégrable sur } [0, +\infty[$.

(a) Pour x > 0, déterminer la limite de :

$$u_n(x) = \int_0^{+\infty} n\cos t \sin^n t f(xt) dt$$

(b) Préciser le mode de convergence.

53.53

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose :

$$f_n(x) = \frac{n}{\sqrt{\pi}} \left(1 - \frac{x^2}{2n^2} \right)^{2n^4}$$

et on considère g une fonction continue sur \mathbb{R} , nulle en dehors d'un segment [a,b].

Montrer que:

$$\int_{\mathbb{R}} f_n(x)g(x) \, \mathrm{d}x \xrightarrow[n \to +\infty]{} g(0)$$