Departamento de Estadística y Matemáticas Facultad de Ciencias Económicas Estadística II Parcial I

Nombre:	Cédula:

1. (1.5 punto) Sea X_1, X_2, \ldots, X_n una muestra aleatoria iid de una distribución de Wald con parámetro desconocido μ , función de probabilidad dada por

$$f(x) = \frac{\mu}{\sqrt{2\pi x^3}} e^{-\frac{(x-\mu)^2}{2x}}$$
 para $x > 0; \mu > 0$

y función generadora de momentos dada por

$$M_x(t) = e^{\mu \left(1 - \sqrt{1 - 2t}\right)}$$

Demuestre cuál es el valor del primer momento asociado a la población y con éste, encuentre el estimador por el método de los momentos para el parámetro desconocido μ .

2. (1.5 punto) Sea X_1, X_2, \ldots, X_n una muestra aleatoria iid de una distribución de Wald con parámetro desconocido μ y función de probabilidad dada por

$$f(x) = \frac{\mu}{\sqrt{2\pi x^3}} e^{-\frac{(x-\mu)^2}{2x}}$$
 para $x > 0; \mu > 0$

Encuentre el estimador por el método de máxima verosimilitud para el parámetro desconocido μ , y demuestre si este estimador maximiza efectivamente la función de verosimilitud.

3. (1 punto) Sea X_1, X_2, \ldots, X_n una muestra aleatoria iid de una distribución de Pareto, con parámetro α conocido, parámetro β desconocido, función de distribución dada por

$$f(x) = \frac{\alpha \beta^{\alpha}}{x^{\alpha+1}}$$
 para $\beta \le x \le \infty; \alpha > 2; \beta > 0$

esperanza matemática y varianza dadas por

$$\mathbb{E}(X) = \frac{\alpha\beta}{\alpha - 1}$$

$$Var(X) = \frac{\alpha\beta^2}{(\alpha - 1)^2(\alpha - 2)}$$

Pruebe si el estimador

$$\hat{\beta} = \bar{X} - \frac{\bar{X}}{\alpha} - 5$$

Es un estimador consistente para el parámetor β .

4. (1 punto) Sea X_1, X_2, \ldots, X_n una muestra aleatoria *iid* de una distribución de probabilidad, con media $\mathbb{E}(X) = \alpha^3$ y varianza $Var(X) = \alpha^4 \beta^3$. Demuestre cuál de los dos estimadores planteados a continuación es más eficiente para el parámetro α , tal que

$$\hat{\mu}_1 = \frac{1}{n^2} \sum_{i=1}^{n-4} \left[x_i + 7 \right]$$

$$\hat{\mu}_2 = \frac{1}{n-1} \sum_{i=1}^{n-3} x_i$$