Einführung in das Textsatzsystem Lag zweiter Tag

Moritz Brinkmann mail@latexkurs.de

Februar 2025

Inhalt

- Bibliografien
 biblatex/biber
- 2 Mathematiksatz
 Inline- und Displaymode
 Grundbefehle
 Nummerierung
- 3 Tabellen unterschiedliche Spaltenbreiten Schöne Tabellen
- 4 Umfangreiche Dokumente
- 5 Diagramme

Teil VII

Bibliografien

Bibliografie

- Bibliografie enthält Liste verwendeter Quellen und ggf. weiterführende Literatur.
- je nach Fachbereich unterschiedliche Zitierstile
- (grobes) Aussehen der Bibliografie wird von Dokumentenklasse bestimmt.
- zwei Möglichkeiten zur Erstellung der Bibliografie:
 - 1 manuelle Methode mit thebibliography-Umgebung
 - 2 automatische Methode mit BiBTEX/biber

manuelle Methode

Bestimmte Syntax zum Setzen der Bibliografie:

- Umbegung \begin{thebibliography}{\(\lambda nzah1\)\)}
- Aufzählung der Werke mittels \bibitem{\(Key \)} \(\tau Ext \)
- Zitieren eines Werks mit $\cite{\langle Key(s)\rangle}$ oder $\cite[\langle Seite\rangle]{\langle Key\rangle}$

```
\begin{thebibliography}{9}
\bibitem{frankfurt05} Harry G. Frankfurt:
\textit{On Bullshit}, Princeton University Press,
Princeton, New Jersey, 2005.
\end{thebibliography}
```

- manuelles Erstellen (und Sortieren) der Bibliografie ist sehr umständlich
- Einträge nicht sinnvoll wiederverwendbar
- ⇒ Programm biber übernimmt Sortierung und Verwaltung der Einträge

BibT_EX/biber-Idee

- Einträge liegen als Textdatei (.bib) in vorgegbener Syntax vor
- Referenz im Dokument mit \cite{mittelbach2004}
- Programm biber fügt referenzierte Quelle automatisch in Bibliografie ein
- · Aussehen der Referenz und Bibliografieeinträge vielfältig einstellbar
- Zugriff auf große Menge an verfügbaren Referenzen

Die .bib-Datei

Unterschiedliche Bib-Items für unterschiedliche Dokumenttypen:

• @article

• @collection

@proceedings

@book

• @manual

• @thesis

@mvbook@inbook

• @online

• @unpublished

@suppbook

@patent @periodical

• ...

Jedes Item hat verschiedene mandatorische und optionale Felder.

Syntax eines Eintrags

Die .bib-Datei

- Verwendung unintuitiv
- graphische Oberflächen erleichtern das Leben z.B. JabRef, BibSonomy, Citavi, EndNote, Mendeley, Zotero, ...
- direkte online-Suche z. B. bei UB oder Google Scholar

Syntax eines Eintrags

```
 \begin{array}{ll} @\langle \mathit{Item-Typ} \rangle \{\langle \mathit{Ref-Key} \rangle, \\ & \langle \mathit{Feld} \rangle &= \{\langle \mathit{Wert} \rangle\}, \\ & \langle \mathit{Feld} \rangle &= \{\langle \mathit{Wert} \rangle\}, \\ \} \end{array}
```

Erstellung der Bibliografie

im Dokument

```
\usepackage[style=authoryear]{biblatex}
\addbibresource{bibfile.bib}
\begin{document}
    Text ... \parencite{Tolkien54} ... text.
    \printbibliography
\end{document}
```

in der .bib-Datei

```
@book{Tolkien54,
  author ={Tolkien, John R. R.},
  title ={The Lord of the Rings},
  publisher ={Allen \& Unwin},
  place ={London},
  year ={1954},
}
```


Zitier- und Bibliografiestile

- biblatex unterstützt viele vordefinierte Stile:
- \usepackage[style= $\langle Stil \rangle$]{biblatex}

numeric Standard-Stil

numeric-comp Kompakte Version von numeric

alphabetic Abkürzungen von Autor und Jahr

authoryear Autor-Jahr-Stil

Jones 1995

authoryear-ibid Mehrfachnennungen auf einer Seite werden mit ebd. abgekürzt

- Bibliografiestil wird dem Zitierstil angepasst
- kann mit citestyle= und bibstyle= verändert werden

[1, 2, 4, 3, 7] [1-4, 7]

[Jon95] [JW86]

Zitieren

```
\label{eq:localization} $$ \erzeugt Referenz im Text: & van Mises (1962) $$ \operatorname{key}$ erzeugt Referenz am Satzanfang: & Van Mises (1962) $$ \operatorname{key}$ erzeugt Referenz in Klammern: & (van Mises 1962) $$
```

Optionale Argumente:

Arbeitsauftrag

Erstellen Sie eine .bib-Datei mit einigen Einträgen und versuchen Sie diese in einem Dokument zu referenzieren.

Erzeugen Sie Ihr Dokument und die Bibliografie durch Aufrufen von Lual\texts{TEX}, biber und Lual\texts{TEX}.

Teil VIII

Mathematiksatz

Inline- und Displaymode

Inlinemode

- Formeln, die direkt im Fließtext vorkommen
- kurze Formeln, Nennung von Variablen
- Elemente gehen nicht über die Zeilenhöhe hinaus
- Grenzen werden neben Integrale, Summen und Produkte gesetzt

Displaymode

- Auszeichnung wichtiger Formeln
- Darstelling langer Rechnungen
- komplexe Formeln
- mehrfach indizierte Größen
- geschachtelte Brüche
- ...

Inline- und Displaymode

Inline-Mathe: $E=mc^2$ kennt jedes Kind, aber kaum jemand kann wirklich mehr damit anfangen als mit $\int_{-\infty}^{\infty} \sum_{n=1}^{5} dx$, wobei diese Formel nun mal gar keinen Sinn ergibt, aber zeigt, wie Grenzen im TeX-Mathesatz aussehen. **Inline-Mathe mit Displaystyle:** $E=mc^2$ kennt jedes Kind, aber kaum jemand kann wirklich mehr damit anfangen als mit

 $\int_{-\infty}^{\infty} \sum_{n=1}^{3} dx$, wobei diese Formel nun mal gar keinen Sinn ergibt, aber zeigt, wie Grenzen im

 T_EX -Mathesatz aussehen. **Display-Mathe:** $E = mc^2$ kennt jedes Kind, aber kaum jemand kann wirklich mehr damit anfangen als mit

$$\int_{-\infty}^{\infty} \sum_{n=1}^{5} dx,$$

wobei diese zweite Formel nun mal gar keinen Sinn ergibt, aber zeigt, wie Grenzen im T_EX -Mathesatz aussehen.

Inline- und Displaymode

Inlinemode

\$\(\(Formel \)\$

Die Funktion K(x) modelliert K in Abhängigkeit von x.

Die Funktion K(x) modelliert K in Abhängigkeit von x.

Displaymode

\begin{equation}
 ⟨Formel⟩

\end{equation}

\begin{equation}
 K(x) = c \cdot x^{-a}
\end{equation}

$$K(x) = c \cdot x^{-a}$$

Mehrzeilige Formeln

Eine Reihe von untereinander ausgerichteten, zueinander angeordneten Gleichungen wird z. B. verwendet für:

- Herleitungen
- Übersichten
- Vergleich von Formeln

align-Umgebung aus dem amsmath-Paket.

```
\begin{align}
a &= b, &
c &= d,\\
abc &= d \\
&= r
\end{align}
```

$$a = b,$$
 $c = d,$ (2)

$$abc = d (3)$$

$$=r$$
 (4)

ohne Nummerierung: {align*}

Variablen und Zahlen

- Variablen werden kursiv gesetzt: \$a\$: a
- Schriftart abhängig von der Dokumentenklasse! (Groteske, Serifen etc.)
- Ziffern werden automatisch korrekt gesetzt: 12.2 statt 12.2

Paket siunitx erlaubt Satz von Größen und Einheiten

```
\num{3.14159+-0.00001} \\
\SI{95}{\kilo\joule} \\
\si{\milli\meter}

3.14159(1)
95 kJ
mm
```

(funktioniert im Mathemodus und im Textmodus)

Hoch- und Tiefstellung

- Zeichen mit besonderer Bedeutung: ^ und _
- Hochstellung: a^b
- Tiefstellung: a_b
- Gruppierungen sind möglich: a^{bc}, a_{bc}
- Kombination ist möglich: a_b^c
- Ohne vorhergehendes Zeichen: ^{235}U
- Schachtelung nur mit Gruppierung:

$$a_{b_{c_{d_{e_{f^g}}}}}^{h^{i^{j_k}}}$$

a_b_c produziert Fehler!

 a^b

 a_b

 a_{bc}

 a_{i}^{c}

 $^{235}\mathrm{U}$

 $b_{c_{d_e}}$

Operatoren

Operatorennamen werden aufrecht gesetzt und sind vordefiniert

• richtig: sin(x) falsch: sin(x)

 $\sin(x) \cos(y) \tan(2\pi) \lim \arctan$

 $\sin(x)\cos(y)\tan(2\pi)$ lim arctan

Paket amsopn bietet viele Definitionen:

\arccos \arcsin \arg \cos \cot \coth \deg \det
\exp \gcd \inf \injlim \lg \lim \limsup \ln
\max \min \projlim \sec \sinh \sup \tanh

Klammern

Klammerung von großen Ausdrücken kann Probleme bereiten:

$$(\frac{\int_{n=1}^{a} x dx}{\sum_{n=1}^{a} x})$$

Besser:

$$\left(\frac{\int_{0}^{a} x dx}{\sum_{n=1}^{a} x}\right)$$

Klammern

- \left und \right vor allem, was dehnbar ist
- \left(\right] funktioniert auch
- \left. \right) liefert angepasste rechte Klammer
- Hoch- und Tiefstellung werden angepasst:

```
\begin{displaymath}
  \left. \int_a^b f(x) \mathrm dx \right\vert_a^b
  \qquad
  \left\{ \int_a^b f(x) \mathrm dx \right]
\end{displaymath}
```

$$\int_{a}^{b} f(x) dx \bigg|_{a}^{b} \qquad \left\{ \int_{a}^{b} f(x) dx \right\}$$

Grenzen

- Grenzen per \limits angeben
- Mehrzeilige Grenzen mit \atop

```
\[
  \int_a^b
  \int\limits_a^b
  \sum_{n=1}^\infty
  \prod_{n = 1 \atop m = 2}
\]
```

$$\int_{a}^{b} \int_{a}^{b} \sum_{n=1}^{\infty} \prod_{n=1 \atop m=2}^{n=1}$$

Sonderzeichen

- · Viele Zeichen sind über ihren Namen ereichbar,
- genauso Griechische Groß- und Kleinbuchstaben

```
\begin{align*}
 \nabla \square \\
 \partial \infty \\
 \pm \mp \\
 \alpha \beta \gamma \\
 \rho \varrho \\
 \kappa \varkappa \\
 \epsilon \varepsilon \\
 \theta \vartheta \\
  A B \Gamma
\end{align*}
```


Wenn man ein Symbol sucht:

texdoc maths-symbols symbols-a4 oder Detexify

Wurzeln

```
\[
\sqrt{a_{n_{m_p}}}
\quad
\sqrt[3]{a}
\]
```

 $\sqrt{a_{n_{m_p}}}$ $\sqrt[3]{a}$

• zu tiefe Unterlängen sind unschön

$$\sqrt{a_{n_{m_p}}} \quad \sqrt{a_{n_{m_p}}}$$

Matrizen

```
1/
 \begin{matrix}
   a_{11} & a_{12}\\
   a_{21} & a_{22}
 \end{matrix}
 \left(
   \begin{matrix}
     a_{11} & a_{12}\\
     a_{21} & a_{22}
   \end{matrix}
 \right)
```

```
egin{array}{ccc} a_{11} & a_{12} \ a_{21} & a_{22} \end{array}
```

```
egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix}
```

Matrizen

Paket amsmath definiert weitere Matrixumgebungen:

Nummerierung von Fallunterscheidungen

Paket cases bietet Nummerierung von case-Konstrukten:

```
\begin{numcases}{E = mc^2}
  m \neq 0 & Masselose Teilchen\\
  m < 0 & Antiteilchen (?)\\
  m > 0 & normale Teilchen
\end{numcases}
```

$$E = mc^{2} \begin{cases} m \neq 0 & \text{Masselose Teilchen} \\ m < 0 & \text{Antiteilchen (?)} \\ m > 0 & \text{normale Teilchen} \end{cases}$$
 (5)

Anwendung

Arbeitsauftrag

Versuchen Sie das folgende Beispiel nachzubauen.

Die Maxwell-Gleichungen stellen die Verknüpfung zwischen dem elektrischen Feld \vec{E} und dem magnetischen Feld \vec{B} dar:

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \qquad \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \qquad \vec{\nabla} \times \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

Formel 8 addiert alle mit c_i gewichtete a_i .

$$\sum_{i=1}^{n} c_i \cdot a_i \tag{8}$$

Teil IX

Tabellen

Tabellenumgebung: tabular

```
\begin{tabular}{⟨Spalten-Spezifikation⟩}
```

```
\begin{tabular}{1lr}
erster & zweiter & dritter Eintrag \\
neue Zeile & & mit zwei Einträgen \\
dritte & Zeile
\end{tabular}
```

```
erster zweiter dritter Eintrag
neue Zeile mit zwei Einträgen
dritte Zeile
```


Spalten-Typen

```
1 linksbündige Spalte
c zentrierte Spalte
r rechtbündige Spalte
| vertikale Linie zwischen Spalten
|| doppelte Linie zwischen Spalten
p{\langle Breite \rangle} Spalte mit fester Breite
*{n}{\langle k\vec{u}rz \rangle} setzt n mal \langle k\vec{u}rz \rangle, z. B. *{3}{p{4cm}|}
```

tabular

```
\begin{tabular}{1|c||r|p{2cm}|c|}
links & mitte & rechts & vier & fünf\\hline\hline
links & mitte & & eine lange vierte Spalte, die umgebrochen wird\\hline
    & & & &
\end{tabular}
```

unterschiedliche Spaltenbreite

- Paket tabularray bietet vielfältige Gestaltungsmöglichkeiten für Tabellen.
- · klassiche Nutzung:

```
\begin{tblr}{\langle \textit{Spaltendefinitionen}\rangle}\\ \langle \textit{Tablleninhalt}\rangle\\ \begin{tblr}\\ \\ \end{tblr}\end{tblr}\\ \end{tblr}
```

• erweiterte Eingabemöglichkeiten:

```
\begin{tblr}{colspec={$\langle Spaltendef.\rangle$}, $\langle weitere\ Optionen\rangle$} \\ \langle Tablleninhalt\rangle \\ \begin{tblr}
```

Tabelle mit tabularray

```
\begin{tblr}{
   columns = {wd=2cm, halign=c},
   row{2-3} = {font=\itshape},
   vlines, hlines,
  }
  Alpha & Beta & Gamma & Delta \\
  Epsilon & Zeta & Eta & Theta \\
  Iota & Kappa & Lambda & Mu \\
\end{tblr}
```

Alpha	Beta	Gamma	Delta
Epsilon	Zeta	Eta	Theta
lota	Карра	Lambda	Mu

unterschiedliche Spaltenbreiten

Neuer Spaltentyp:

 $X[\langle Faktor \rangle, \langle Typ \rangle]$ (linksbündige) Spalte mit variabler Breite

Zur Verfügung stehende Breite wird gleichmäßig auf alle X-Spalten verteilt:

```
\left( \frac{1}{r} \right)
aa&bb&cc
\end{tblr}
\left( \frac{1}{X} \right)
aa&bb&cc
\end{tblr}
\begin{tblr}{|X[1]|X[2]|X[3]|}
aa&bb&cc
\end{tblr}
```



```
| a a | b b | c c |
```


Umbrüche in Zellen

Zeilen können mit { \\ } umgebrochen werden, wenn der Zellinhalt eingeklammert ist:

```
\begin{tblr}{|X[r]|X[2,c]|X|}
a a & {b b\\b b} & c c
\end{tblr}
```

aa bb cc bb	
----------------	--

vertikale Positionierung

Zeilentypen h, m und b{\(\text{H\"o}he\)\} richten Inhalt an Kopf, Mitte bzw. Fuß der Zeile aus.

aa	bb	cc ccc
		ссс
aa	bb bbb	сс
aa aaa	bb	сс

Zellen über mehrere Spalten/Zeilen

 $\ensuremath{\mbox{SetCell[r=(}\it{Zeilen)}, c=(}\ensuremath{\mbox{Spalten}})]{\ensuremath{\mbox{Ausrichtung}}\ensuremath{\mbox{vergr\"{o}}\ensuremath{\mbox{Gert}}} aktuelle Zelle}$

```
\begin{tblr}{|c|c|c|c|}
\hline
 \SetCell[r=2]{c} 2 Rows
 & \SetCell[c=2]{c} 2 Columns
    & \SetCell[r=2.c=2]{c} 2 Rows 2 Cols &
11
\hline
 & 2b & 2c & & \\
\hline
3a & 3b & 3c & 3d & 3e \\
\hline
\end{tblr}
```

2 Rows	2 Columns		2 Rows 2 Cols	
2 Rows	2b	2c	2 Rows 2 Cois	
3a	3b	3c	3d	3e

farbige Tabellen

```
\begin{tblr}{
 row{odd} = {bg=azure8},
 column{1} = {bg=azure4},
 row{1} = {
   bg=azure3, fg=white,
   font=\bfseries,
 Alpha & Beta & Gamma & Delta \\
 Epsilon & Zeta & Eta & Theta \\
 Iota & Kappa & Lambda & Mu \\
 Nu & Xi & Omicron & Pi \\
 Rho & Sigma & Tau & Ypsilon \\
\end{tblr}
```

Alpha	Beta	Gamma	Delta
Epsilon	Zeta	Eta	Theta
lota	Карра	Lambda	Mu
Nu	Xi	Omicron	Pi
Rho	Sigma	Tau	Ypsilon

Neben tabularray muss das Paket xcolor geladen sein.

Mathe in Tabellen

- X[\$/\$\$] startet inline-/display-Mathemodus automatisch in der ganzen Spalte
 - S wird automatisch am Dezimaltrennzeichen ausgerichtet benötigt \UseTblrLibrary{siunitx}

Text muss mit guard gekennzeichnet sein

```
\begin{tblr}{
  hlines,vlines,
  colspec={X[$]X[$$]SS[table-format=1.5]},
  row{1} = {guard},
}
  a·b·c & a·b·c & Zahlen & Zahlen \\
  \frac12 & \frac12 & 111 & 0.00001 \\
  \frac34 & \frac34 & 2.1 & 0.0001 \\
  \frac56 & \frac56 & 33.11 & 0.001 \\
\end{tblr}
```

$a \cdot b \cdot c$	$a \cdot b \cdot c$	Zahlen	Zahlen
$\frac{1}{2}$	$\frac{1}{2}$	111	0.000 01
$\frac{3}{4}$	$\frac{3}{4}$	2.1	0.0001
<u>5</u>	<u>5</u> 6	33.11	0.001

Fragwürdiges Layout

- Paket booktabs (Simon Fear) f
 ür hohe Qualit
 ät
- bei Nutzung von tabularray: \UseTblrLibrary{booktabs}
- Empfehlungen aus dem Paket:

- Never, ever use vertical rules.
- 2 *Never use double rules.*
- 3 Put the units in the column heading (not in the body of the table).
- 4 Always precede a decimal point by a digit; thus 0.1 not just .1.
- **6** Do not use "ditto" signs or any other such convention to repeat a previous value. In many circumstances a blank will serve just as well. If it won't, then repeat the value.

 booktabs-Dokumentation

ohne booktabs

```
\begin{tabular}{||1|r||} \hline

Mücken & Gramm & \$13.65 \\ \cline{2-3}
& je & .01 \\ \hline

Gnu & ausgestopft & 92.50 \\ \cline{1-1} \cline{3-3}

Emu & & 33.33 \\ \hline

Gürteltier & gefroren & 8.99 \\ \hline
\end{tabular}
```

Mücken	Gramm	\$13.65
	je	.01
Gnu	ausgestopft	92.50
Emu		33.33
Gürteltier	gefroren	8.99

mit booktabs

```
\begin{tblr}{1lS[table-format=3.2]} \toprule
\SetCell[c=2]{c} Artikel & & \\ \cmidrule[r]{1-2}

Tier & Beschreibung & {{{Preis (\$)}}}\\ \midrule

Mücke & pro Gramm & 13.65 \\
 & pro Stück & 0.01 \\

Gnu & ausgestopft & 92.50 \\

Emu & ausgestopft & 33.33 \\

Gürtetier & gefroren & 8.99 \\ \bottomrule

\end{tblr}
```

A		
Tier	Beschreibung	Preis (\$)
Mücke	pro Gramm	13.65
	pro Stück	0.01
Gnu	ausgestopft	92.50
Emu	ausgestopft	33.33
Gürtetier	gefroren	8.99

Nützlich beim Umgang mit Tabellen ...

 tabularray-Libraries binden bestehende Pakete in tblr-Syntax ein Laden mit \UseTblrLibrary{\langle library\rangle} (siehe Dokumentation)

amsmath Tabellen-Funktionen z.B. in Matrizen benutzen booktabs schöne Tabellen setzen diagbox ersten Zelle diagonal Teilen siunitx Daten in Tabellen am Dezimalpunkt ausrichten

- longtblr-Umgebung erlaubt Tabellen mit Fußnoten und Seitenumbrüchen
- Praktisches Online-Tool: Tables Generator https://www.tablesgenerator.com/

Anwendung

Arbeitsauftrag

Erstellen Sie in einer Gleitumgebung eine Tabelle mit dem folgenden Tabellenkopf. Ergänzen Sie eine Beschriftung (\caption).

Lfd. Nr.	Gegenstand	Anzahl	Beschreibung
1	Bleistift	13	absolute Premiumqualität, besonders spitz, handbemalt, Stärke HB
2			

Teil X

Umfangreiche Dokumente

Aufteilung

- Nachteil von TEX: lange Dokumente werden unübersichtlich
- Vorteil von TEX: Teile des Dokumentes können in externe Dateien ausgelagert werden
- geschickte Aufteilung und Verwaltung eines Dokumentes möglich

Aufteilung

- · eine Hauptdatei als leeres Gerüst
- eine header-Datei (evtl. weitere Datei(en) für spezielle Befehlsdefinitionen)
- · Inhalte in einem Unterordner
- Abbildungen und sonstige Materialien in weiteren Unterordnern

input & include

- \input und \include fügen externe Dateien am angegebenen Ort ein
- TEX "springt" aus dem aktuellen Dokument, liest woanders, und springt wieder zurück
- TEX-Version: \input liest den Code einfach ein, als gehöre er ins Hauptdokument
- LATEX-Version: \include erstellt eigene .aux-Datei (sinnvoll, wenn .aux benötigt)
- \includeonly{a.tex,b.tex} in der Präambel lässt nur die angegebenen Dateien für \include zu
- \excludeonly{b.tex,c.tex} lässt die angegebenen Dateien für \include nicht zu (benötigt Paket excludeonly)

root-Dokument

- nach Aufteilung muss immer das Hauptdokument kompiliert werden
- ⇒ ständiges Wechseln zwischen Dokumenten
 - gute Editoren nehmen die Arbeit ab:
 - · Definition von Hauptdokumenten möglich
 - Kompiliert automatisch das zugehörige Hauptdokument

```
TEXworks Setzen von magic comments:
```

```
TEXshop %_!TEX_root_=_\(\lambda\)Hauptdokument\\
TEXstudio

% !TEX root = ../Masterarbeit.tex
% !TEX program = lualatex
% !TEX encoding = utf8
% !TEX spellcheck = de_DE
```

Overleaf Menu → Main Document viele IDEs Festlegen einer "Projekt-Hauptdatei"

Beispiel-Hauptdokument

```
\input{header}
\includeonly{chapter1}
\excludeonly{anhang} % erfordert Paket excludeonly!
\begin{document}
 \include{chapter1}
 \include{chapter2}
 \appendix
 \include{anhang}
\end{document}
```

⇒ Nur chapter1 wird hier gesetzt, anhang explizit nie.

Header-Dokument

Einstellungen

- Satzspiegel
- Schriften (Brotschrift, Überschriften)
- · Formatierung von Formeln
- ...
- alles, was vor \begin{document} steht

Titelei

- · enthält alles bis zur ersten Inhaltsseite
- enthält Autor, Titel, etc.
- mit KOMA: Dokumentoption titlepage=true/false setzt eigene Seiten oder einen Titelkopf
- Umgebung \begin{titlepage} setzt eine frei gestaltbare Titelseite
- Befehl \maketitle setzt vordefinierte Titelei
- Angaben von \title, \author, \extratitle etc. nötig und möglich

Titeleibefehle im KOMA-Bundle

```
\documentclass{scrbook}
\begin{document}
 \titlehead{\Large Universität Schlauenheim}
 \subject{Masterarbeit}
 \title{Risikomanagement in Zeiten von Social Media}
 \subtitle{Design interaktiver Apps für Banken und
   Versicherungen}
 \author{cand.\.stup. Uli Ungenau}
 \date{30. Februar 2024}
 \publishers{Betreut durch Prof.\.Dr.\.rer.\.stup. Naseweis}
 \dedication{Für meine Mama.}
 \maketitle
\end{document}
```

\maketitle (in der Beamer-Klasse)

```
\title{Risikomanagement in Zeiten von Social Media}
\subtitle{Design interaktiver Apps für Banken und
   Versicherungen}
\author{cand.\,stup. Uli Ungenau}
\date{30. Februar 2024}
```

\maketitle

Risikomanagement in Zeiten von Social Media Design interaktiver Apps für Banken und Versicherungen

cand. stup. Uli Ungenau

abstract

- Umgebung abstract existiert für eine kurze Zusammenfassung des Dokuments
- mehrere Abstracts möglich (z. B. englisch / deutsch etc.)

\begin{abstract}
 Hier kommt eine kurze Zusammenfassung
 des Inhalts \dots
\end{abstract}

Und hier fängt das eigentlich Dokument an \dots

Zusammenfassung

Hier kommt eine kurze Zusammenfassung des Inhalts ...

Und hier fängt das eigentlich Dokument an

Die abstract-Umgebung steht in der scrbook/book-Klasse nicht zur Verfügung.

Verzeichnisse – TOC, LOF, LOT

- Verzeichnisse fassen strukturierte Elemente zusammen
- prinzipiell kann alles in ein eigenes Verzeichnis aufgenommen werden
- übliche Verzeichnisse:
 - Inhaltsverzeichnis
 - Abbildungsverzeichnis
 - Tabellenverzeichnis

\tableofcontents

\listoffigures

\listoftables

Aufnamhme der Verzeichnisse ins Inhaltsverzeichnis: \setuptoc{toc}{totoc}

Fußnoten, Randbemerkungen

zusätzlicher Text, der nicht ins Hauptdokument / in den Textfluss passt

• Fußnoten	
------------	--

• gleitende Randnotiz \marginpar

• Randbemerkung (Paket marginnote) \marginnote

Paket footmisc bietet vielfältige Möglichkeiten Aussehen von Fußnoten anzupassen

Zitate

Es gibt eigene Umgebungen für Zitate:

- quote für kurze Zitate
- quotation für längere Zitate
- · verse für Gedichte

Das Paket csquotes passt Feinheiten von Anführungszeichen für den nicht-englischen Satz an.

```
\begin{quote}
  alea iacta est \hfill\textit{Caesar}
\end{quote}
```

Verweise

- Elemente können mittels \label{} bezeichnet werden
- mögliche Elemente sind Überschriften (sections etc.), table, figure, Formeln, ...
- Referenzierung mit \ref{} oder \cref (Paket cleveref)

Links im Dokument

hyperref

- Paket hyperref macht Verweise im PDF anklickbar
- \ref und \cite wird automatisch verlinkt
- URLs können mit \url{\(\lambda URL\)\)} angegeben werden
- benannte Links mit \href{\langle URL \range} \{ \langle angezeigter Text \range} \}

Um Probleme zu vermeiden hyperref eher als letztes Paket laden!

```
\url{http://xkcd.com}\\
\href{mailto:mail@latexkurs.de}{\huge\
Letter}
```

```
http://xkcd.com
```

Vorspann / Anhang in scrbook

- Befehl \frontmatter schaltet auf römische Seitenzahlen
- \mainmatter auf normaler Nummerierung
- \backmatter auf Anhang in anderen Dokumentenklassen: nur \appendix
- Nummerierung startet neu (abhängig von Dokumentenklasse A, B, C, ...)
- Abschnitte im Anhang wie gewohnt mit \chapter, \section, etc.

\frontmatter \mainmatter \backmatter

Anwendung

Arbeitsauftrag

Ergänzen Sie Ihr Dokument um die folgenden Elemente:

- Titelseite
- Inhaltsverzeichnis
- Abbildungsverzeichnis
- Tabellenverzeichnis
- Anhang

Teil XI

Diagramme

Diagramme¹

- Ein Diagramm ist eine grafische Darstellung von Daten, Sachverhalten oder Informationen.
- Information sollte dabei im Vordergrund stehen
- Diagramme sollten sich in das Dokument einfügen
 - · passende Dimensionen
 - · Beschriftung in gleicher Schriftart

Empfehlung für Diagramme in ΔT_EX : pgfplots

pgfplots

Konfiguration mittels $pgfplotsset{\langle Optionen \rangle}$. Paketautor empfiehlt, für zukünftige Kompatbilität, die aktelle Version anzugeben.

```
\usepackage{pgfplots}
\pgfplotsset{compat=1.18}
```

pgfplots basiert auf TikZ/PGF und steht deshalb innerhalb einer tikzpicture:

```
\begin{tikzpicture}
  \begin{axis}
    ...
  \end{axis}
\end{tikzpicture}
```


Achsentypen

Verschiedene Achsentypen verfügbar:

```
\begin{\achsentyp\}[\langleOptionen\]
  \langle Inhalt \rangle
\end{\langle Achsentyp \rangle}
           axis
                   lineare Koordinatenachsen
                   x-Achse linear, y-Achse logarithmisch
 semilogvaxis
 semilogxaxis
                   x-Achse logarithmisch, y-Achse linear
                   beide Achsen logarithmisch
    loglogaxis
                   Polarkoordinaten*
     polaraxis
                   Smith-Diagramm<sup>†</sup>
    smithchart
                   Dreiecksdiagramm<sup>‡</sup>
  ternaryaxis
```

^{*}mit \usepgfplotslibrary{polar}

[‡]mit \usepgfplotslibrary{ternary}

Daten hinzufügen

```
\label{localization} $$ \addplot [\langle Optionen \rangle] {\langle Eingabedaten \rangle}; \\ addplot+[\langle Optionen \rangle] {\langle Eingabedaten \rangle}; \\
```

```
\begin{tikzpicture}
  \begin{axis}
   \addplot{sin deg(x)};
  \end{axis}
\end{tikzpicture}
```


Koordinaten Eingabe

\addplot [\langle Optionen \rangle] coordinates {\langle Koordinaten \rangle};

```
\begin{tikzpicture}
 \begin{loglogaxis}
    \addplot+[smooth]
    coordinates {
      (769, 1.6227e-04)
      (1793, 4.4425e-05)
      (4097, 1.2071e-05)
      (9217, 3.2610e-06)
      (2.2e5, 2.1E-6)
      (1e6, 0.00003341)
      (2.3e7, 0.00131415)
   };
 \end{loglogaxis}
\end{tikzpicture}
```


Daten-Tabellen

$\addplot [\langle Optionen \rangle] table [\langle Spalten-Auswahl \rangle] {\langle Tabelle \rangle};$

```
\begin{tikzpicture}
 \begin{axis}
   \addplot table [
     only marks,
               mvvalue
          ٧
     0.5 0.2
               0.25
     0.2 0.1
              1.5
     0.7 0.6 0.75
     0.35 0.4 0.125
     0.65 0.1 2
   };
 \end{axis}
\end{tikzpicture}
```


Daten in externen Dateien

 $\addplot [\langle Optionen \rangle] table [\langle Spalten-Ausw. \rangle] {\langle Dateipfad \rangle};$

```
\begin{tikzpicture}
  \begin{axis}
    \addplot [no markers]
      table
      [x=time, y=values]
      {data.dat};
  \end{axis}
\end{tikzpicture}
```


Paket pgfplotstable erlaubt das Nachbearbeiten vorhandener Tabellen (z. B. Einfügen einer Ausgleichsgerade).

Beschriftungen

Key	Values	Funktion
x/ymin/max	Text bel. Text Wert *, x, +, o, Liste Zahl	Titel über dem Diagramm Beschriftung der x- bzw. y-Achse schränkt Achse auf Bereich ein Koordinaten-Marker anpassen Koordinatenstriche explizit angeben Anzahl der Zwischenstriche
grid	major, minor	Gitter im Hintergrund einblenden

Lengenden

$\addlegendentry{\langle Beschreibung \rangle}$

```
\begin{tikzpicture}
\begin{axis}
  \addplot[smooth,mark=*,blue]
coordinates {
    (0,2)(1,3)(3,1)
 };
  \addlegendentry{Fall 1}
  \addplot[smooth,color=red,mark=x]
coordinates {
    (0.0) (1.1) (2.1) (3.2)
 };
  \addlegendentry{Fall 2}
\end{axis}
\end{tikzpicture}
```


Platzierung der Achsen

axis y line=\(\rangle Platzierung \rangle, axis x line=\(\rangle Platzierung \rangle \)

```
\begin{tikzpicture}
\begin{axis}[
minor tick num=3.
axis v line=center.
axis x line=middle.
xlabel=$x$.vlabel=$\sin x$
\addplot[smooth,blue,mark=none,
domain=-5:5.samples=40]
{sin(deg(x))};
\end{axis}
\end{tikzpicture}
```


Fehlerbalken

Fehler können mit den Optionen error bars/\(\langle Key \rangle = \langle Value \rangle\) gesetzt werden.

```
\begin{tikzpicture}
\begin{axis}
  \addplot+[
  error bars/y dir=both,
  error bars/y fixed relative=.1,
  ] table [x=x,y=y]
  {x
  32
          32
  64
          64
          128
   128
 };
\end{axis}
\end{tikzpicture}
```


Fehlerbalken

Individuelle Fehler konnen mit +- (symmetrisch) oder += und -= (asymmetrisch) angegeben werden:

```
\begin{tikzpicture}
\begin{axis}
 \addplot+[
   error bars/.cd,
   x dir=both.
   x explicit,
   v dir=both.
   y explicit,
 ] coordinates {
   (1,1) += (0.4,0.2)
          -= (0.1, 0.1)
   (3.2) = (1.0)
   (4,5) +- (0.3,0.2)
 };
\end{axis}
\end{tikzpicture}
```


Fehlerbalken

Fehler können auch aus einer Tabelle stammen:

```
\begin{tikzpicture}
 \begin{axis}
    \addplot [only marks, mark=x,
   error bars/.cd,
   y dir=both, y explicit,]
     table
      [x=time, y=values, y error=error]
      {data.dat};
 \end{axis}
\end{tikzpicture}
```


Histogramme

Histogramme mit Option hist={\(\lambda Histogram - Optionen\\rangle\)}

```
\begin{tikzpicture}
  \begin{axis}
    \addplot+[
      fill=blue!40!white,
      mark={},
      hist={
        data=y,
        bins=10
    ] table {data.dat};
  \end{axis}
\end{tikzpicture}
```


Interessante Optionen: cummulative für kummuliertes Histogram density normiert auf 1

Balkendiagramme |

Option xbar erzeug Balkendiagramm, ybar erzeugt Säulendiagramm

```
\begin{tikzpicture}
\begin{axis}[
xbar.
width=6cm, height=3.5cm,
enlarge v limits=0.5,
xlabel={Anzahl der Antworten},
symbolic y coords={Ja,Nein},
ytick=data,
\addplot coordinates
 {(3,Nein) (7,Ja)};
\end{axis}
\end{tikzpicture}
```


Balkendiagramme

Option xbar erzeug Balkendiagramm, ybar erzeugt Säulendiagramm

```
\begin{tikzpicture}
\begin{axis}[
ybar, enlargelimits=0.15,
symbolic x coords={a,b,c},xtick={a,b,c
\addplot coordinates
{(a,40) (b,50) (c,70)};
\addplot coordinates
{(a,43) (b,45) (c,65)}:
\addplot coordinates
{(a,13) (b,25) (c,35)};
\end{axis}
\end{tikzpicture}
```


Boxplots

\usepgfplotslibrary{statistics} erlaubt Satz von Boxplots:

```
\begin{tikzpicture}
 \begin{axis}
    \addplot+[
   boxplot prepared={
     median=4000,
     upper quartile=5500,
      lower quartile=3000.
     upper whisker=1200,
      lower whisker=15000.
   } ] coordinates {}:
 \end{axis}
\end{tikzpicture}
```


3D-Plots

 $\addplot3 [\langle Optionen \rangle] \{\langle Eingabedaten \rangle\};$

```
\begin{tikzpicture}
 \begin{axis}
    \addplot3[
      surf,
      domain=0:360.
      samples=40.
   {sin(x)*sin(y)};
 \end{axis}
\end{tikzpicture}
```


Weiterführende Literatur I

Herbert Voß.
"Mathematksatz mit LETEX".
Lehmanns Media, 2012.

American Mathematical Society. "User's Guide for the amsmath Package". texdoc amsmath

Jianrui Lyu. "Tabularray. Typeset Tabulars and Arrays with LaTeX3". texdoc tabularray

Weiterführende Literatur II

"Publication quality tables in LATEX".

texdoc booktabs

Herbert Voß.

"Tabellen mit LaTEX". Lehmanns Media, 2010.

Herbert Voß.

"Die wissenschaftliche Arbeit mit LaTeX. unter Verwendung von LuaTeX, KOMA-Script und Biber/BibLaTeX". Lehmanns Media, 2018.

Christian Feuersänger.
"Manual for Package pgfplots".

"Mariual for Package pgrpiots.

texdoc pgfplots

Lehrevaluation

Link: evasys.uni-mannheim.de

Losung: APAL6

Happy TEXing