$12n_{0241} (K12n_{0241})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.03137 \times 10^{66} u^{36} + 6.98280 \times 10^{65} u^{35} + \dots + 2.95081 \times 10^{68} b - 1.06268 \times 10^{68}, \\ &3.77823 \times 10^{67} u^{36} - 2.87660 \times 10^{67} u^{35} + \dots + 2.36065 \times 10^{69} a + 2.08922 \times 10^{69}, \\ &u^{37} - u^{36} + \dots + 128 u + 256 \rangle \end{split}$$

$$I_1^v = \langle a, b-1, v^8 - v^7 - v^6 + 2v^5 + v^4 - 2v^3 + 2v - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 45 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.03 \times 10^{66} u^{36} + 6.98 \times 10^{65} u^{35} + \dots + 2.95 \times 10^{68} b - 1.06 \times 10^{68},\ 3.78 \times 10^{67} u^{36} - 2.88 \times 10^{67} u^{35} + \dots + 2.36 \times 10^{69} a + 2.09 \times 10^{69},\ u^{37} - u^{36} + \dots + 128 u + 256 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0160050u^{36} + 0.0121856u^{35} + \dots - 8.06518u - 0.885020 \\ 0.00349520u^{36} - 0.00236640u^{35} + \dots + 1.79889u + 0.360133 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0133199u^{36} + 0.0418348u^{35} + \dots + 0.507839u + 12.6265 \\ 0.00381941u^{36} - 0.0132824u^{35} + \dots + 0.836374u - 4.09729 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0160050u^{36} + 0.0121856u^{35} + \dots + 8.06518u - 0.885020 \\ 0.00596782u^{36} - 0.00520306u^{35} + \dots + 2.78728u + 0.617635 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0100372u^{36} + 0.00698258u^{35} + \dots + 2.78728u + 0.617635 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0154489u^{36} + 0.0231599u^{35} + \dots + 2.78728u + 0.617635 \\ -0.000302840u^{36} + 0.00840424u^{35} + \dots + 2.35144u + 2.54004 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0100372u^{36} + 0.00698258u^{35} + \dots + 5.27790u - 0.267385 \\ 0.0110751u^{36} - 0.00839995u^{35} + \dots + 5.74781u + 1.39963 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0440610u^{36} + 0.0081408u^{35} + \dots + 5.74781u + 1.39963 \\ 0.0221974u^{36} - 0.0147892u^{35} + \dots + 12.6696u + 3.48847 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0148066u^{36} + 0.00829427u^{35} + \dots + 1.4914u - 1.08615 \\ -0.00186082u^{36} + 0.00671544u^{35} + \dots + 3.81289u + 3.67874 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0751690u^{36} + 0.0952069u^{35} + \cdots 23.9143u + 7.79267$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{37} + 5u^{36} + \dots - 5u + 1$
c_2, c_4	$u^{37} - 9u^{36} + \dots - 7u + 1$
c_3, c_8	$u^{37} - u^{36} + \dots + 128u + 256$
c_5, c_7	$u^{37} + 6u^{36} + \dots + 35u + 5$
c_6, c_{10}, c_{11}	$u^{37} - 2u^{36} + \dots + 3u + 1$
<i>c</i> ₉	$u^{37} + 2u^{36} + \dots + 3u + 1$
c_{12}	$u^{37} - 8u^{36} + \dots + 2082719u - 154033$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{37} + 63y^{36} + \dots - y - 1$
c_2, c_4	$y^{37} - 5y^{36} + \dots - 5y - 1$
c_3, c_8	$y^{37} + 51y^{36} + \dots - 475136y - 65536$
c_5, c_7	$y^{37} + 16y^{36} + \dots + 735y - 25$
c_6, c_{10}, c_{11}	$y^{37} - 32y^{36} + \dots + 27y - 1$
c_9	$y^{37} - 48y^{36} + \dots + 27y - 1$
c_{12}	$y^{37} - 84y^{36} + \dots + 1848165923715y - 23726165089$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.878368 + 0.497461I		
a = 0.626443 + 0.343621I	-0.66892 + 2.27408I	1.99793 - 4.76069I
b = 0.227102 - 0.673098I		
u = -0.878368 - 0.497461I		
a = 0.626443 - 0.343621I	-0.66892 - 2.27408I	1.99793 + 4.76069I
b = 0.227102 + 0.673098I		
u = -0.756357 + 0.569885I		
a = 0.466384 - 0.081501I	0.61705 - 4.41139I	2.87485 + 3.50022I
b = 1.080620 + 0.363590I		
u = -0.756357 - 0.569885I		
a = 0.466384 + 0.081501I	0.61705 + 4.41139I	2.87485 - 3.50022I
b = 1.080620 - 0.363590I		
u = -0.491761 + 0.952107I		
a = 0.695040 + 0.682945I	6.82750 - 1.30632I	10.37535 + 1.68426I
b = -0.267990 - 0.719272I		
u = -0.491761 - 0.952107I		
a = 0.695040 - 0.682945I	6.82750 + 1.30632I	10.37535 - 1.68426I
b = -0.267990 + 0.719272I		
u = 0.886724 + 0.087993I		
a = 0.586081 - 0.184026I	2.29551 + 0.52381I	5.03075 + 0.94889I
b = 0.553122 + 0.487673I		
u = 0.886724 - 0.087993I		
a = 0.586081 + 0.184026I	2.29551 - 0.52381I	5.03075 - 0.94889I
b = 0.553122 - 0.487673I		
u = -0.366615 + 0.752594I		
a = 0.451654 - 0.034286I	0.11703 + 2.14687I	4.21868 - 4.14096I
b = 1.201400 + 0.167112I		
u = -0.366615 - 0.752594I		
a = 0.451654 + 0.034286I	0.11703 - 2.14687I	4.21868 + 4.14096I
b = 1.201400 - 0.167112I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.040136 + 0.830344I		
a = 1.19957 - 1.19424I	1.73939 + 7.30260I	6.40314 - 7.32057I
b = -0.581327 + 0.416814I		
u = 0.040136 - 0.830344I		
a = 1.19957 + 1.19424I	1.73939 - 7.30260I	6.40314 + 7.32057I
b = -0.581327 - 0.416814I		
u = 0.563224 + 0.605095I		
a = 0.466156 + 0.056547I	-3.61155 + 1.05730I	-2.65114 + 0.19593I
b = 1.114100 - 0.256450I		
u = 0.563224 - 0.605095I		
a = 0.466156 - 0.056547I	-3.61155 - 1.05730I	-2.65114 - 0.19593I
b = 1.114100 + 0.256450I		
u = 0.981996 + 0.654437I		
a = 0.572407 - 0.396675I	4.10036 - 5.71187I	7.23097 + 5.43034I
b = 0.180218 + 0.817886I		
u = 0.981996 - 0.654437I		
a = 0.572407 + 0.396675I	4.10036 + 5.71187I	7.23097 - 5.43034I
b = 0.180218 - 0.817886I		
u = -0.066568 + 0.771395I		
a = 1.33592 + 1.03307I	-2.71712 - 3.28265I	1.87410 + 4.96573I
b = -0.531570 - 0.362239I		
u = -0.066568 - 0.771395I		
a = 1.33592 - 1.03307I	-2.71712 + 3.28265I	1.87410 - 4.96573I
b = -0.531570 + 0.362239I		
u = 0.419103 + 0.595983I		
a = 0.910599 - 0.447643I	1.109940 + 0.478757I	7.85612 - 2.59030I
b = -0.115558 + 0.434784I		
u = 0.419103 - 0.595983I		
a = 0.910599 + 0.447643I	1.109940 - 0.478757I	7.85612 + 2.59030I
b = -0.115558 - 0.434784I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.077849 + 0.690240I		
a = 1.50612 - 0.77029I	0.539059 - 0.667337I	5.56096 - 0.61157I
b = -0.473705 + 0.269170I		
u = 0.077849 - 0.690240I		
a = 1.50612 + 0.77029I	0.539059 + 0.667337I	5.56096 + 0.61157I
b = -0.473705 - 0.269170I		
u = -0.407194		
a = 0.525318	-1.31151	-10.2650
b = 0.903607		
u = 0.39124 + 1.82665I		
a = -0.068005 + 0.975912I	9.29659 - 4.13983I	0
b = -1.07106 - 1.01973I		
u = 0.39124 - 1.82665I		
a = -0.068005 - 0.975912I	9.29659 + 4.13983I	0
b = -1.07106 + 1.01973I		
u = 0.24251 + 1.87487I		
a = 0.000094 + 0.931629I	9.54816 - 3.51968I	0
b = -0.99989 - 1.07339I		
u = 0.24251 - 1.87487I		
a = 0.000094 - 0.931629I	9.54816 + 3.51968I	0
b = -0.99989 + 1.07339I		
u = -0.48778 + 1.83564I		
a = -0.120525 - 0.976988I	6.99297 + 8.38148I	0
b = -1.12438 + 1.00821I		
u = -0.48778 - 1.83564I		
a = -0.120525 + 0.976988I	6.99297 - 8.38148I	0
b = -1.12438 - 1.00821I		
u = -0.13124 + 1.93107I		
a = 0.037828 - 0.886275I	7.58072 - 0.60625I	0
b = -0.95193 + 1.12627I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.13124 - 1.93107I		
a = 0.037828 + 0.886275I	7.58072 + 0.60625I	0
b = -0.95193 - 1.12627I		
u = 0.53822 + 1.86696I		
a = -0.147624 + 0.960917I	12.0430 - 12.4368I	0
b = -1.15619 - 1.01668I		
u = 0.53822 - 1.86696I		
a = -0.147624 - 0.960917I	12.0430 + 12.4368I	0
b = -1.15619 + 1.01668I		
u = 0.09684 + 2.00647I		
a = 0.036196 + 0.850721I	12.76300 + 4.48472I	0
b = -0.95008 - 1.17335I		
u = 0.09684 - 2.00647I		
a = 0.036196 - 0.850721I	12.76300 - 4.48472I	0
b = -0.95008 + 1.17335I		
u = -0.35556 + 2.00636I		
a = -0.066983 - 0.886854I	16.7972 + 4.0807I	0
b = -1.08468 + 1.12119I		
u = -0.35556 - 2.00636I		
a = -0.066983 + 0.886854I	16.7972 - 4.0807I	0
b = -1.08468 - 1.12119I		

II.
$$I_1^v = \langle a, b-1, v^8-v^7-v^6+2v^5+v^4-2v^3+2v-1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ -v \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -v^3 + v \\ v^3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v^2 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} v^4 \\ -v^2 + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} v^{4} \\ -v^{2} + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -v^{7} + v^{6} + 2v^{5} - v^{4} - 2v^{3} + 2v^{2} + 2v - 1 \\ v^{7} - 2v^{5} + 2v^{3} - 2v \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $6v^7 v^6 11v^5 + 7v^4 + 12v^3 6v^2 6v + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^8$
c_3, c_8	u^8
c_4	$(u+1)^8$
c_{5}, c_{7}	$u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$
	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$
c_9,c_{12}	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$
c_{10}, c_{11}	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^8$
c_3, c_8	y^8
c_5, c_7	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$
c_6, c_{10}, c_{11}	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$
c_9, c_{12}	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.570868 + 0.730671I		
a = 0	-0.604279 - 1.131230I	-1.074136 + 0.216470I
b = 1.00000		
v = 0.570868 - 0.730671I		
a = 0	-0.604279 + 1.131230I	-1.074136 - 0.216470I
b = 1.00000		
v = -0.855237 + 0.665892I		
a = 0	-3.80435 - 2.57849I	-3.22623 + 3.25417I
b = 1.00000		
v = -0.855237 - 0.665892I		
a = 0	-3.80435 + 2.57849I	-3.22623 - 3.25417I
b = 1.00000		
v = -1.09818		
a = 0	4.85780	7.89920
b = 1.00000		
v = 1.031810 + 0.655470I		
a = 0	0.73474 + 6.44354I	2.34782 - 4.54733I
b = 1.00000		
v = 1.031810 - 0.655470I		
a = 0	0.73474 - 6.44354I	2.34782 + 4.54733I
b = 1.00000		
v = 0.603304		
a = 0	-0.799899	7.00590
b = 1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^8)(u^{37} + 5u^{36} + \dots - 5u + 1)$
c_2	$((u-1)^8)(u^{37} - 9u^{36} + \dots - 7u + 1)$
c_3, c_8	$u^8(u^{37} - u^{36} + \dots + 128u + 256)$
c_4	$((u+1)^8)(u^{37} - 9u^{36} + \dots - 7u + 1)$
c_5, c_7	$(u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1)$ $\cdot (u^{37} + 6u^{36} + \dots + 35u + 5)$
c_6	$(u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1)(u^{37} - 2u^{36} + \dots + 3u + 1)$
<i>C</i> 9	$(u^8 - u^7 + \dots + 2u - 1)(u^{37} + 2u^{36} + \dots + 3u + 1)$
c_{10}, c_{11}	$(u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1)(u^{37} - 2u^{36} + \dots + 3u + 1)$
c_{12}	$(u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1)$ $\cdot (u^{37} - 8u^{36} + \dots + 2082719u - 154033)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^8)(y^{37}+63y^{36}+\cdots-y-1)$
c_2, c_4	$((y-1)^8)(y^{37}-5y^{36}+\cdots-5y-1)$
c_3, c_8	$y^8(y^{37} + 51y^{36} + \dots - 475136y - 65536)$
c_5, c_7	$(y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1)$ $\cdot (y^{37} + 16y^{36} + \dots + 735y - 25)$
c_6, c_{10}, c_{11}	$(y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1)$ $\cdot (y^{37} - 32y^{36} + \dots + 27y - 1)$
<i>c</i> ₉	$(y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1)$ $\cdot (y^{37} - 48y^{36} + \dots + 27y - 1)$
c_{12}	$(y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1)$ $\cdot (y^{37} - 84y^{36} + \dots + 1848165923715y - 23726165089)$