O Essential sobre Aprendizagem Automática

Seminários de Informática

Susana Nascimento
DI- FCT UNL

Aprendizagem Automática o que é?

Conjunto de Tarefas T Algoritmo de Performance P

Aprendizagem

Experiência E

Definição

[T. Mitchell, 1997]

Um programa <u>Aprende</u> a partir da experiência E no que respeita a um conjunto de <u>tarefas T</u> e uma <u>medidade de desempenho</u> <u>P</u>

Se sua *performanc*e medida por \underline{P} na tarefa \underline{T} num contexto \underline{Z} , aumentar com a experiência \underline{E} .

3

Aprendizagem e Adaptação

- "A learning machine, broadly defined is any device whose actions are influenced by past experiences." (Nilsson 1965)
- "Any change in a system that allows it to perform better the second time on repetition of the same task or on another task drawn from the same population." (Simon 1983)
- "Modification of a behavioral tendency by expertise." (Webster 1984)
- "An improvement in information processing ability that results from information processing activity." (Tanimoto 1990)
- "Self-constructing or self-modifying representations of what is being experienced for possible future use" (Michalski, 1990)

Exemplo de Aprendizagem

(1)

Jogo do Gamão

T: jogar do gamão

P: percentagem de jogos ganhos contra os opositores

E: experiência da prática de jogadas contra o próprio sistema.

- trained by playing 1.5 million games against itself
- now approximately equal to the best human player http://www.research.ibm.com/massive/tdl.html

5

Exemplo de Aprendizagem

(2)

- Classificação de texto
 - T: classificação de textos em alguma categoria.
 - P: percentagem de textos correctamente classificados.
 - E: base de dados com alguns textos onde é dada a classificação correcta dos mesmos.

Web Site Directory - Sites organized by subject Business & Economy B2B, Finance, Shopping, Jobs... Countries, Regions, US States... Computers & Internet Internet, WWW, Software, Games... Society & Culture People, Environment, Religion... News & Media **Education** Newspapers, TV, Radio... College and University, K-12... **Entertainment Arts & Humanities** Recreation & Sports Sports, Travel, Autos, Outdoors... Animals, Astronomy, Engineering... Social Science Diseases, Drugs, Fitness, Medicine... Languages, Archaeology, Psychology... Government Elections, Military, Law, Taxes... Phone Numbers, Dictionaries, Quotation

Exemplo de Aprendizagem

(3)

Condução de um veículo (ALVINN)

T: conduzir um veículo numa auto-estrada de 4 faixas utilizando sensores de visão.

P: distância média viajada antes de cometer um erro (analisado por um humano).

E: sequência de imagens e instruções de condução registados durante a observação de um condutor humano

7

Aplicações de Impacto

- Bio-Tecnologia
 - Predicção de estrutura de Proteínas
 - Micro-array gene expression
- Predicção de performance de Sistemas de Computadores
 - Sistema de seguraça informática
- Aplicações Bancárias Banking Applications
 - Aplicações de Crédito
 - Detecção de Fraudes de cartões de crédito
- Reconhecimento automático de Caracteres / Voz
 - (I.e. serviço de correio automático)
- Reconhecimento automático de Voz
 - sistema de assistência automática de telefones
- Diagnóstico Médico
 - detecção de tomores
- Aplicações Web
 - classificação de documentos
 - Assistência personalizada
 - Aprendizagem de preferências do Utilizador

Sistema de Aprendizagem

- Conhecimento a ser aprendido
 - função objectivo (alvo)
 - Representação da função objectivo
- Experiência de treino
- Processo de Aprendizagem
 - Algoritmo de aproximação da função
- Supervisionada versus não Supervisionada
 - http://en.wikipedia.org/wiki/Supervised learning
 - http://en.wikipedia.org/wiki/Unsupervised learning

Aprendizagem Supervisionada

Conhecimento é representado por conjunto de n exemplos

$$\{(\mathbf{x}_1, \mathbf{c}_1), (\mathbf{x}_2, \mathbf{c}_2), ..., (\mathbf{x}_n, \mathbf{c}_n)\}$$

- Em que o c_i corresponde à classe do exemplo
- Objectivo: minimizar o erro entre a resposta actual do sistema de aprendizagem, e a resposta 'objectivo'

Indução de Árvores de Decisão

- Dado: conjunto de exemplos
- Induzir uma decisão de classificação
 - Indução de regras decisão
- http://en.wikipedia.org/wiki/Decision_trees

Um Exemplo

Problema: decidir quando esperar por mesa no restaurante, com base nos seguintes atributos:

1.	Alternate: existe alguma alternativa próxima?	$\{T, F\}$
2.	Bar: existe alguma área de bar confortável para espera	r? {T, F}
3.	Fri/Sat: hoje é Sexta-feira ou Sábado?	$\{T, F\}$
4.	Hungry: Estamos com fome?	$\{T, F\}$
5.	Patrons : nº de pessoas no restaurante	{none, some, full}
6.	Price : gama de preços	{\$, \$\$, \$\$\$ }
7.	Raining: está a chover?	$\{T, F\}$
8.	Reservation : foi feita uma reserva?	$\{T, F\}$
9.	Type : tipo restaurante {French, Italian, Thai, B	urger}
10.	WaitEstimate: intervalo estimado de espera {(0-10, 10-30, 30-60, >60 ₁₂

Conjunto de Treino

- Exemplos s\(\tilde{a}\) o descritos por atributos / valores (booleano, discreto, cont\(\tilde{n}\)uo)
- Atributo classe 'wait' {T, F}

	Example	Attributes							Target			
		Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
Γ	X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
	X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
	X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
	X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
	X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
	X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
	X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
	X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
	X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
	X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
	X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
	X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

- Função de decisão a aprender: 'Wait' = {T, F}
- Classificação de exemplos é positiva (T) ou negativa (F)

13

Árvore: representação de hipóteses

Uma representação possível das hipóteses de decisão
 E.g., árvore final para decidir 'Wait' = {T, F}

Aprendizagem de Árvore de Decisão

Objectivo

encontrar uma árvore compacta, que seja consistente com os exemplos do conjunto de dados.

Procedimento

Escolher, recursivamente, o "melhor" atributo para classificar os exemplos, como folha da sub-árvore a expandir

15

Escolha de um "bom" Atributo

Ideia

Um "bom atributo" é aquele que (idealmente) divide o conjunto de exemplos nas classes distintas: "todas positivas" ou "todas negativas"

- O atributo 'Patrons' é uma boa escolha

Entropia e Ganho de Informação

Seja

- S uma amostra de exemplos de treino
- p₊ a proporção de exemplos positivos
- p a proporção de exemplos negativos

 $Entropia(S) = -p_+ log_2 p_+ - p_- log_2 p_-$

- A entropia é zero quando o conjunto é perfeitamente homogéneo.
- A entropia é um quando o conjunto é totalmente não homogéneo.

17

Conhecimento Aprendido

Árvore de Decisão aprendida a partir dos 12 exemplos

Regras de Indução extraídas

Wait $(r) \Leftrightarrow Patrons(r, 'some')$

- \vee Patrons(r, 'full') \wedge Hungry(r) \wedge Type(r, 'french')
- \vee Patrons(r, 'full') \wedge Hungry(r) \wedge Type(r, 'thai') \wedge Fri Sat(r)
- \vee Patrons(r, 'full') \wedge Hungry(r) \wedge Type(r, 'burguer').

Propriedades

- Aproxima funções
 - É capaz de representar qualquer função
 - o Booleana, Discreta, contínua
- É eficiente em grandes quantidades de dados
- É um dos métodos mais práticos e mais utilizados em AA
 - Interpretabilidade da Árvore
 - Fácil extrair regras de indução
- Utilizado com sucesso em grande diversidade de problemas
 - Diagnóstico médico, análise de risco de crédito, etc ...
 - Os peritos apreciam !!!

19

Redes Neuronais

Aprendizagem de Pesos para Aproximação de Funções de forma adaptativa

- <u>http://en.wikipedia.org/wiki/Artificial neural network</u>
- http://en.wikipedia.org/wiki/Perceptron

Motivação Biológica

Neurobiologia

Actividade do neurónio é activada/inibida através das ligações a outros neurónios

Números

Tempo de comutação: 10-3 segundo

Número de neurónios: 1011

Ligações por neurónio: 10⁴ (em média)
Tempo de reconhecimento: 10⁻¹ segundo

Processo altamente paralelo

Redes Neuronais

- Muitas unidades de comutação semelhantes aos neurónios.
- Muitas ligações (pesadas) entre unidades.
- Processo inerentemente paralelo / distribuído
- Ênfase no ajuste automático dos pesos

21

Perceptrão

Combinação linear de atributos + unidade de limiar

APRENDER um perceptrão significa encontrar os melhores valores para os pesos W.

O espaço de hipóteses de um perceptrão é o espaço de todos os vectores de pesos W.

Poder de Representação (1)

Um perceptrão só consegue aprender exemplos que sejam "linearmente separáveis": os que são perfeitamente separáveis por um hiperplano.

Fronteira de decisão $W_{\bullet}(x_1,x_2) = 0$

Linearmente separável

Não Linearmente separável

23

Poder de Representação (2)

- Representa funções booleanas
 - fronteira de decisão

XOR Não é linearmente separável

 $W_0 = 1.5$ $W_0 = 0.5$ $W_1 = 1$ $W_2 = 1$ AND OR

Exemplo com Múltiplas Unidades

Reconhecimento automático de algarismos manuscritos

10 classes : '0', '1', '2',..., '9'

Unidade correspondente a y₀ distingue entre "0"s e "não-0"s, segunda unidade entre "1"s e "não-1"s, etc.

Problema de Aprendizagem

Conhecimento a Aprender

- Vector de pesos W=(w₁, w₂,..., w_n)
 que faz o perceptrão produzir a
 saída correcta y=(±1) para os
 exemplos de treino X.
- Algoritmo Iterativo
- Afectar pesos aleatórios a cada entrada.
- Aplicar iterativamente o perceptrão a cada exemplo, modificando os pesos w sempre que o exemplo seja mal classificado.
- Repetir o processo até que o perceptrão classifique correctamente todos os exemplos.

Regra de Treino do Perceptrão

$$w_i \leftarrow w_i + \Delta w_i, \quad \Delta w_i = \eta (t - y) x_i$$

- $t = f(\mathbf{x})$ valor da função objectivo
- y valor de saída do perceptrão
- η ritmo de aprendizagem (i.e. $\eta = 0.1$)
- Regra de Treino Delta

Minimizar o erro quadrático de uma hipótese de treino

$$E(\mathbf{w}) = \frac{1}{2} \sum_{t=0}^{\infty} (t_d - y_d)^2$$

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}, \\ w_i \leftarrow w_i + \Delta w_i, \quad \Delta w_i = -\eta \sum_{d \in D} (t_d - y_d) \mathbf{x}_{id}$$

Treino de Rede Neuronal: 'AND'

- Dado conjunto de treino S de exemplos {x,t}
 - $-x=(x_1,x_2,...,x_d)$ é o vector de entrada
 - t é a função objectivo
 - Exemplo: \land lógico $S = \{(0,0),0\}, \{(0,1),0\}, \{(1,0),0\}, \{(1,1),1\}$

Processo iterativo

- 1. Apresentar exemplo de treino X,
- 2. comparar saída da rede y=g(x) com o valor original t
- 3. ajustar os pesos w_i e limiares θ

Regra de Aprendizagem

– Aprende conjunto de pesos w e limiares θ da rede, como uma função das entradas x, saída y e função objectivo t.

Rede Neuronal Multi-camada

Aprendizagem

- Fronteiras de decisão distinctas
- Fronteiras podem ser não lineares

Função logística ou sigmóide

$$\mathbf{y} = \sigma(\mathbf{w}.\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}.\mathbf{x}}}$$

28

Treino: Algoritmo de Back propagation

Processo iterativo

Passo *Forward* Propaga activação da camada de entrada para camada de saída

Cada unidade, começando nas de entrada calcula a sua função de activação e transmite-a a todas as unidades a que está ligada, propagando o sinal até às unidades de saída.

Passo *Forward* Propaga os erros da camada de saída para camada intermédia

Cada unidade de saída compara a sua activação com a saída desejada. O erro é propagado "para trás", para os nós directamente ligados à saída, ajustando os pesos das ligações com base no erro propagado.

29

Reconhecimento de Faces

• Funções a aprender

- direcção para onde olha {E, D, F, C}
- género (M, F)
- se usa óculos de sol (V, F)
- expressão da pessoa (C, T, Z, Neut.)

Rede $960 \times 3 \times 4$

- Treinada pelo backpropagation em 260 imagens
- precisão de classificação de 90% num conj. distincto.

Imagens de entrada típicas

32 imagens por pessoa Resolução 120 × 128 Cada pixel é um valor 0 –255 (escala de cinzentos)

Neural Networks for Face Recognition

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html

Sistema ALVINN

Condução Automática de veículo a 70 mph numa auto-estrada

Imagem De camara

Input: Grelha 30x32 pixeis de intensidade

Output: Direcção de viragem do veículo

30x32 weights into one out of four hidden unit

31

Poder expressivo de Rede Neuronal

Funções boolenas

 qualquer função booleana pode ser representada por uma rede com uma única camada escondida.

pode exigir um número exponencial de unidades.

Funções contínuas

 Qualquer função contínua limitada pode ser aproximada,com um erro arbitrariamente pequeno, por uma rede com uma camada escondida.

Funções Arbitrárias

 Qualquer função arbitrária pode ser aproximada por uma rede com duas camadas escondidas.

Propriedades das Redes Neuronais

- ✓ Os exemplos podem ser descritos por grande número de attributes (e.g., pixels de uma image).
- ✓ O valor de saída pode ser discreto, contínuo ou vector de valores discretos e contínuos
- ✓ Dados podem conter erros. Redes neuronais são robustas ao ruído.
- A fase de treino da rede é computacionalmente pesada (i.e. 1000-10000 iterações)
 - arquitectura das camadas escondidas não é fácil.
- ✓A avaliação da rede com novos exemplos é relativamente rápida.
- Uma rede neuronal é tratada como uma "caixa negra", pelo que a correspondente estrutura não é interpretável.

33

Aprendizagem não Supervisionada

- http://en.wikipedia.org/wiki/Unsupervised_learning
- http://en.wikipedia.org/wiki/Data clustering
 - http://en.wikipedia.org/wiki/Data_clustering#k-means_clustering

Apendizagem Não Supervisionada

- Aprendizagem auto-organizada
- Não considera um Tutor
- Objectivo: identificar regulariedades nos dados e descobrir grupos de forma automática.
- Aprendizagem competitiva

35

O que é Agrupamento?

Dado um conjunto de entidades, organizá-las em grupos (classes)

- forte similariedade dos elementos pertencentes a um mesmo grupo.
- fraca similariedade dos elementos pertencentes a grupos diferentes.

Aplicações: exemplos

- Agrupar (segmentar) uma base dados de consumidores, com base em padrões de consumo semelhantes.
 - Padrões de consumo diário de electricidade
- Criação de mapas temáticos de SIG, por identificação de grupos espaciais.
- Agrupar perfis de utilizadores de páginas Web, por identificação padrões de perferência de páginas.
- Agrupamento de dados Weblog para identificação de grupos de padrões de acesso.
- Genomics: identificar grupos de genes com expressões similares
- ... 37

Exemplo: Veículos

Veículo	Velocidade máxima (<i>km/h</i>)	Cor	Resistência Ar	Peso (Kg)
V1	220	vermelho	0.30	1300
V2	230	preto	0.32	1400
V3	260	vermelho	0.29	1500
V4	140	cinza	0.35	800
V5	155	azul	0.33	950
V6	130	branco	0.40	600
V7	100	preto	0.50	3000
V8	105	vermelho	0.60	2500
V9	110	cinza	0.55	3500

Agrupamento de Veículos

K= 3 grupos

39

Agrupamento vs. Classificação

- Não existe conhecimento à priori
 - Número de grupos
 - Significado dos grupos

Aprendizagem não Supervisionada

Distância entre Grupos

- É necessário definir uma medida de (di)similariedade entre elementos dos grupos.
- Distância Euclideana

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{|x_{i1} - x_{j1}|^{2} + |x_{i2} - x_{j2}|^{2} + ... + |x_{ip} - x_{jp}|^{2}}$$

- Existem outras medidas de dissimilariedade
- Distâncias podem ser pesadas

- 4

Agrupamento por Partição

- Definir o número de grupos, k.
- Definir uma distância entre grupos.
- Os k grupos são construídos iterativamente, passo a passo.
- Resulta num conjunto de grupos das entidades.

K-Médias (K-Means)

 Algoritmo Iterativo que minimiza a distância total das entidades aos centros dos grupos (protótipos).

- > Iterative distance-based clustering
- > Steps:
 - 1. Clusters the data into k groups where k is predefined
 - 2. Select k points at random as cluster centers
 - 3. Assign instances to their closest cluster center according to the Euclidean distance function
 - 4. Calculate the centroid or mean of all instances in each cluster (this is the *mean* part)
 - Goto the step 3. Continue until the same points are assigned to each cluster in consecutive rounds.

43

K-Médias

- Dado
 - Entidades $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$
 - Número de grupos K
 - Escolher aleatoriamente K protótipos $\{v_1, v_2, ..., v_k\}$
- Repetir
 - cada entidade \mathbf{x}_i (i=1, ...,n) afecta ao grupo C_k (k=1, ..., K) cujo protótipo \mathbf{v}_k está mais próximo.

$$C_k = \left\{ \mathbf{x}_1^k, \mathbf{x}_2^k, ..., \mathbf{x}_m^k \right\}$$

$$protótipo \quad \mathbf{v}_k = \frac{1}{m} \sum_{j=1}^m \mathbf{x}_j^k$$

 Até os K protótipos V_k (k=1, ..., K) não se alterarem entre duas iterações consecutivas.

Exemplo do Algoritmo K-Médias

- Dado:
 - {2,4,10,12,3,20,30,11,25}, K=2
- Escolher aleatoreamente protótipos: v₁=3,v₂=4
- Iterações
 - $\begin{array}{ccc} \text{(i)} & C_1 \!\!=\!\! \{2,\!3\} \\ & v_1 \!\!=\!\! 2.5, \end{array} \qquad \begin{array}{c} C_2 \!\!=\!\! \{4,\!10,\!12,\!20,\!30,\!11,\!25\}, \\ & v_2 \!\!=\!\! 16 \end{array}$
 - (ii) $C_1 = \{2,3,4\}$ $C_2 = \{10,12,20,30,11,25\},$ $v_1 = 3,$ $v_2 = 18$
 - (iii) $C_1 = \{2,3,4,10\},$ $C_2 = \{12,20,30,11,25\},$ $v_1 = 4.75,$ $v_2 = 19.6$
 - $\begin{array}{ll} \text{(iv)} \;\; C_1 \!\!=\!\! \{2,\!3,\!4,\!10,\!11,\!12\}, & C_2 \!\!=\!\! \{20,\!30,\!25\}, \\ v_1 \!\!=\!\! 7, & v_2 \!\!=\!\! 25 \end{array}$
 - $\begin{array}{ccc} v. & C_1 \!\!=\!\! \{2,3,4,10,\!11,\!12\}, & C_2 \!\!=\!\! \{20,\!30,\!25\}, \\ & v_1 \!\!=\!\! 7, & v_2 \!\!=\!\! 25 \end{array}$

iterações (iv) e (v) iguais!

45

Passos do Algoritmo K-Médias

Observações

Agrupamento por Partição

- Prático e computacionalmente eficiente (algoritmos do tipo Kmédias convergem rapidamente).
- Tendência para definir grupos com forma hiper-esférica (i.e. distância Euclideana).
- Os resultados podem variar significativamente com base na escolha dos protótipos iniciais.
 - Iterar muitas vezes a partir de protótipos iniciais distinctos.
- Os protótipos são elementos representativos do conceito associado ao grupo.
- A determinação do número de grupos é fundamental.

47

Para saber mais ...

Wikipedia

- http://en.wikipedia.org/wiki/Main Page
- <u>http://www.aaai.org/AITopics/html/machine.html</u>

<u>Does Machine Learning Really Work?</u> By Tom M. Mitchell. Al Magazine, 18(3): Fall 1997. (http://www.aaai.org/Library/Magazine/Vol18/18-03/vol18-03.html)

<u>Introduction to Machine Learning</u> - Draft of Incomplete Notes. By Nils J. Nilsson. (http://robotics.stanford.edu/people/nilsson/mlbook.html)

<u>Machine learns games 'like a human.'</u> By Will Knight. New Scientist News (January 24, 2005). (http://www.newscientist.com/article.ns?id=dn6914)