四川轻化工大学试卷(2020至 2021学年第二学期期末)

课程名称: 高等数学 B2(A卷)

命题教师: 李红 沂

适用班级: 20级文科本科班

考试	(考查):	: 考证	ţ,		2021年	:	月	日	共	6 页
题号	_	二	11	四	五.	六	七	八	总分	评阅(统分) 教 师
得										
分										

注意事项:

- 1、满分100分。要求卷面整洁、字迹工整、无错别字。
- 2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则 视为废卷。
- 3、考生必须在签到单上签到,若出现遗漏,后果自负。
- 4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分 别一同交回, 否则不给分。

试 颞

得分	评阅教师

- 一、单选题(请将正确答案的编号填在对应括号内,每小题 4 分,6 个题共 24 分)
 - 1. 函数 $z = \frac{\sqrt{4x y^2}}{\ln(1 x^2 y^2)}$ 的定义域是().

 - (A) $\{(x,y)|4x \ge y^2, x^2 + y^2 \le 1\}$ (B) $\{(x,y)|4x \ge y^2, 0 < x^2 + y^2 < 1\}$

 - (C) $\{(x,y)|4x \ge y^2, x^2 + y^2 < 1\}$ (D) $\{(x,y)|4x \ge y^2, 0 \le x^2 + y^2 < 1\}$
 - 2. 改变 $\int_0^1 dx \int_x^{\sqrt{x}} \frac{\sin y}{y} dy$ 的积分次序为().
 - (A) $\int_0^1 dy \int_0^1 \frac{\sin y}{y} dx;$
- (B) $\int_0^1 dy \int_x^{\sqrt{x}} \frac{\sin y}{y} dx;$

(C)
$$\int_0^1 dy \int_{y^2}^y \frac{\sin y}{y} dx$$
 (D)
$$\int_0^1 dy \int_y^{y^2} \frac{\sin y}{y} dx$$

$$(D) \int_0^1 dy \int_y^{y^2} \frac{\sin y}{y} dx$$

3. 己知
$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, (-1 < x \le 1)$$
 ,则函数 $\ln(a+x) = ($) .

(A)
$$\ln a + \sum_{n=1}^{\infty} \frac{(-1)^n}{a^{n+1}} \frac{x^{n+1}}{n+1}, (-a < x \le a)$$

(A)
$$\ln a + \sum_{n=0}^{\infty} \frac{(-1)^n}{a^{n+1}} \frac{x^{n+1}}{n+1}, (-a < x \le a)$$
 (B) $\ln a + \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, (-1 < x \le 1)$

(C)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, (-a < x \le a)$$

(C)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, (-a < x \le a)$$
 (D) $\ln a + \sum_{n=0}^{\infty} \frac{(-1)^n}{a^{n+1}} \frac{x^{n+1}}{n+1}, (-a < x < a)$

- 4. 下列说法正确的是(
 - (A) 若 y_1, y_2 是某个二阶线性齐次微分方程的解,则 $C_1y_1 + C_2y_2$ (C_1, C_2 为任意常 数)一定是该方程的通解:
 - (B) 函数 z = f(x, y) 的两个二阶混合偏导数在区域 D 内存在且连续,则在该区域内 这两个混合偏导相等;
 - (C) 多元函数的偏导连续是函数可微的必要非充分条件;
 - (D) 多元函数在某点连续,则在该点一定可微;

5. 判断级数
$$\sum_{n=1}^{\infty} \left(\frac{\left(-1\right)^n}{n^2} + \frac{1}{\sqrt{n}} \right)$$
的敛散性是 ()

- (A) 绝对收敛 (B) 条件收敛

- (C) 发散 (D) 不确定
- 6. 已知 $y_1 = e^{3x}$, $y_2 = xe^{3x}$ 是某二阶常系数齐次线性微分方程的 2 个线性无关的特解,

该微分方程为()

(A)
$$y'' + 6y' + 9y = 0$$
;

(B)
$$y'' - y' - 9y = 0$$

(C)
$$y'' - 3y = 0$$
;

(D)
$$y'' - 6y' + 9y = 0$$

得分	评阅教师

二、填空题(请将正确的结果填在横线上.每空 4 分,6 个题共 24 分)

1. 极限
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)^2} = \underline{\hspace{1cm}}$$

- 2. 设函数 $z = x^y$, 在 x = e, y = 1 时的全微分 $dz = x^y$
- 3. 计算积分 $I = \iint_{D} (2+x+y) dx dy$, 其中 $D: x^2 + y^2 \le 4$, 则 I =_______.

- 6. 已知二阶常系数非齐次线性微分方程: y'' y' = x的一个特解为 $-x \frac{x^2}{2}$,则该方程 的通解为___

ı	1 -	
姓名	线	
李号		晶
班		田
级	裲	K
201		Ŧ
小 争		本
		ķ
M	例	
学	秘書	

得分	评阅教师

三、设函数 $z = f(x^2 - y^2, e^{xy})$, 其中 f 可微, 求 $\frac{\partial z}{\partial x}$ 与 $\frac{\partial z}{\partial y}$ 。 (8分)

得分	评阅教师

四、二元函数 z = z(x, y) 由方程 $z^3 - 3xyz = a^3$ 确定,试求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$. (8分)

得分	评阅教师

五、已知直角三角形两直角边分别为x,y,求斜边为2时,直角三角形的最大周长. (8分)

得分	评阅教师

六、计算二重积分 $\iint_D \frac{1}{1+x^2+y^2} dxdy$,其中 D 是由 $1 \le x^2+y^2 \le 4$ 所确定的区域。(要求画 出积分区域)。(8 分)

姓名	袋	
李号		盟
111		₩ ₩
班	本	14
級		T.
		44
		++
熈	例	於
- 李院	松田	
	ĺ	

七、求方程 $y' = \frac{1-y}{1+x}$ 的通解. (10 分)

得分	评阅教师

八、求级数 $\sum_{n=1}^{\infty} (2n+1)x^{n-1}$ 的收敛域与和函数. (10 分)