Lines and planes: introduction

Warm up

Question: how can we describe the line of intersection of two planes?

Warm up

Simpler: what is the intersection of the planes x=0 and y=0

The enemy of my enemy...

- · What is a plane?
- The plane is perpendicular to the line that is perpendicular to it (?!?!!?!)

The enemy of my enemy...

- · What is a plane?
- The plane is perpendicular to the line that is perpendicular to it (?!?!!?!)

How can you tell if two vectors \boldsymbol{a} and \boldsymbol{b} are perpendicular?

How can you tell if two vectors \mathbf{a} and \mathbf{b} are perpendicular?

So how do you write the equation describing "the set of all endpoints of vectors \mathbf{b} that are perpendicular to a fixed vector \mathbf{a} "?

How can you tell if two vectors \mathbf{a} and \mathbf{b} are perpendicular?

So how do you write the equation describing "the set of all endpoints of vectors \mathbf{b} that are perpendicular to a fixed vector \mathbf{a} "?

Don't look at the next slide if you don't want to see the answer!

How can you tell if two vectors \mathbf{a} and \mathbf{b} are perpendicular?

So how do you write the equation describing "the set of all endpoints of vectors \mathbf{b} that are perpendicular to a fixed vector \mathbf{a} "?

If $\mathbf{a} = \langle \alpha, \beta, \gamma \rangle$ then the equation is

$$\alpha x + \beta y + \gamma z = 0.$$

How can you tell if two vectors \mathbf{a} and \mathbf{b} are perpendicular?

So how do you write the equation describing "the set of all endpoints of vectors \mathbf{b} that are perpendicular to a fixed vector \mathbf{a} "?

If $\mathbf{a} = \langle \alpha, \beta, \gamma \rangle$ then the equation is

$$\alpha x + \beta y + \gamma z = 0.$$

Example: if $\mathbf{a} = \langle 1, 2, -1 \rangle$, you get x + 2y - z = 0.

How can you tell if two vectors \mathbf{a} and \mathbf{b} are perpendicular?

So how do you write the equation describing "the set of all endpoints of vectors \mathbf{b} that are perpendicular to a fixed vector \mathbf{a} "?

If $\mathbf{a} = \langle \alpha, \beta, \gamma \rangle$ then the equation is

$$\alpha x + \beta y + \gamma z = 0.$$

Example: if $\mathbf{a} = \langle 1, 2, -1 \rangle$, you get x + 2y - z = 0.

What shape is that?

Piglet of calculus conjectures

Any plane is just the set of endpoints of vectors perpendicular to a fixed one! So just fix a vector ${\bf u}$ and let

$$P_{\mathbf{u}} = \{ \mathbf{v} \text{ such that } \mathbf{v} \cdot \mathbf{u} = 0 \}.$$

For example, the xy-plane is the set of endpoints of vectors perpendicular to $\langle 0,0,1\rangle$

Does it work? Can the piglet of calculus go to sleep now?

Conundrum: translation

- This is OK if the plane can be anchored like vectors can at (0,0,0).
- If not, we have to take what we just did and translate it in space (i.e., move it away from (0,0,0)).
- This is just like making the plane z=4 by translating the xy-plane up 4 units: the plane z=4 is not the set of endpoints of vectors perpendicular to \mathbf{k} , just a parallel translation of it.

