Khôlles de Mathématiques - Semaine 30

Hugo Vangilluwen, George Ober 22 juin 2024

1 Inégalité de Cauchy-Schwartz dans un espace préhilbertien réel, cas d'égalité

$$\forall (x,y) \in E^2, \ |\langle x|y\rangle| \leqslant ||x|| ||y|| \tag{1}$$

Il y a égalité si et seulement si x et y sont liés.

Démonstration. Soit E un \mathbb{R} -espace vectoriel, et $\langle \cdot | \cdot \rangle$ un produit scalaire sur E. Soient $(x,y) \in E^2$

- 1. \star Si y=0, l'inégalité est une égalité et est évidente
 - * Sinon, posons

$$P: \left| \begin{array}{ll} \mathbb{R} & \to \mathbb{R} \\ t & \mapsto \langle x+t.y|x+t.y \rangle = t^2 \|y\|^2 + 2t \, \langle x|y \rangle + \|x\|^2 \end{array} \right|$$

Puisque $\|y\|^2 \neq 0$, P est un polynôme de degré 2 à coefficients réels et positif d'après le caractère positif du produit scalaire (on a donc $\forall t \in \mathbb{R}, P(t) \geqslant 0$) Le discriminant de cette fonction polynômiale est $\Delta = 4 \langle x|y\rangle^2 - 4\|x\|^2\|y\|^2$, qui est obligatoirement négatif ou nul puisque P admet au mieux une racine double. Donc $\langle x|y\rangle^2 - \|x\|^2\|y\|^2 \leqslant 0$ donc en prenant la racine carrée $|\langle x|y\rangle| \leqslant \|x\| \|y\|$.

2. \star Supposons que (x, y) est liée, sans perte de généralité, supposons $y = \lambda x$ alors

$$|\langle x|\lambda.x\rangle| = |\lambda| \langle x|x\rangle = |\lambda| ||x||^2 = ||x|| ||\lambda.x||$$

Donc l'inégalité est une égalité.

- * Réciproquement, supposons que $|\langle x|y\rangle| = ||x|| ||y||$
 - Si y = 0 alors (x, y) est liée
 - Sinon, $\Delta = 4(\langle x|y\rangle^2 ||x||||y||) = 0$ P est un polynôme de degré 2 de discriminant nul : il admet une racine double λ Ainsi

$$P(\lambda) = 0 \implies \langle x + \lambda . y | x + \lambda . y \rangle = 0$$

Donc $x + \lambda . y = 0_E$ d'après le caractère défini du produit scalaire.

2 Isomorphisme entre un espace euclidien et l'espace de ses formes linéaires (Théorème de représentation de Riesz)

L'application

$$\chi \left| \begin{array}{ccc} E & \to E^* \\ x & \mapsto \left(\begin{array}{ccc} E & \to \mathbb{R} \\ y & \mapsto \langle x|y \rangle \end{array} \right) \right.$$
(2)

est un isomorphisme d'espaces vectoriels. χ est appelé l'isomorphisme canonique entre un espace vectoriel euclidien et son espace dual.

 $\begin{array}{ll} \textit{D\'{e}monstration.} & \star & \chi \text{ est bien d\'{e}finie car, } \forall x \in E, \text{ par lin\'earit\'e du produit scalaire en sa seconde} \\ & \text{variable, } \chi(x) : \left| \begin{array}{cc} E & \to \mathbb{R} \\ y & \mapsto \langle x|y \rangle \end{array} \right. \text{ est une forme linaire sur } E. \end{array}$

 \star Soient $(x, x') \in E^2$ et $\lambda \in \mathbb{R}$ fixés quelconques

$$\forall y \in E, \chi(x + \lambda.x')(y) = \langle x + \lambda.x'|y \rangle$$

$$= \langle x|y \rangle + \lambda \times \langle x'|y \rangle$$

$$= \chi(x)(y) + \lambda \times \chi(x')(y)$$

$$= (\chi(x) + \lambda.\chi(x'))(y)$$

Donc $\chi(x + \lambda x') = \chi(x) + \lambda \cdot \chi(x')$, donc χ est linéaire.

 \star Soit $x \in \ker \chi$ fixé quelconque. Alors $\chi(x) = 0_{E^*}$

$$\forall y \in E, \langle x | y \rangle = 0$$

Donc $x \in E^{\perp} = \{0_E\}$ donc $x = 0_E$ Donc χ est injective, or E et E^* sont de même dimension, donc χ est bijective. Donc χ est un isomorphisme.

3 Si F est un sous-espace vectoriel de dimension finie d'un espace préhilbertien réel, F^{\perp} est son supplémentaire orthogonal

Démonstration. Soient $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien réel, et F un sous espace vectoriel de dimension finie. Alors F et F^{\perp} sont supplémentaires orthogonaux, i.e.

$$E = F \stackrel{\perp}{\oplus} F^{\perp} \tag{3}$$

En notant $r = \dim F$, fixons une base orthonormale (e_1, \ldots, e_r) de F, possible car F est un espace euclidien (dimension finie et muni du produit scalaire induit par E).

♦ Analyse

Soit $x \in E$ fixé quelconque, supposons que $\exists (x_{/\!\!/}, x_{\perp}) \in F \times F^{\perp} = x_{/\!\!/} + x_{\perp}$ D'abord

$$x_{/\!\!/} \in F \implies \exists (\lambda_1, \dots, \lambda_r) \in \mathbb{R}^r : x_{/\!\!/} = \sum_{i=1}^r \lambda_i . e_i$$

Soit $j \in [1, r]$ fixé quelconque

$$\langle x|e_j\rangle = \left\langle \sum_{i=1}^r \lambda_i . e_i + x_\perp \middle| e_j \right\rangle$$

$$= \sum_{i=1}^r \lambda_i \times \underbrace{\langle e_i|e_j\rangle}_{\delta_{ij}} + \underbrace{\langle x_\perp \middle| e_j\rangle}_{\in F^\perp}$$

$$= \lambda_j$$

Ainsi,

$$\begin{cases} x_{\#} = \sum_{i=1}^{r} \lambda_{i}.e_{i} = \sum_{i=1}^{r} \langle x | e_{i} \rangle .e_{i} \\ x_{\perp} = x - x_{\#} \end{cases}$$

♦ Synthèse

Posons donc

$$\begin{cases} x_{/\!\!/} &= \sum_{i=1}^r \langle x | e_i \rangle . e_i \\ x_{\perp} &= x - x_{/\!\!/} \end{cases}$$

 \star (e_1,\ldots,e_r) est une base de F donc $x_{/\!\!/}\in F$

$$\star x_{/\!/} + x_{\perp} = x_{/\!/} + (x - x_{/\!/}) = x$$

* Soit $j \in [1, r]$ fixé quelconque. Calculons $\langle x_{\perp} | e_j \rangle$

$$\begin{split} \langle x_{\perp}|e_{j}\rangle &= \langle x|e_{j}\rangle - \left\langle \sum_{i=0}^{r} \langle x|e_{i}\rangle .e_{i} \middle| e_{j} \right\rangle \\ &= \langle x|e_{j}\rangle - \sum_{i=0}^{r} \langle x|e_{i}\rangle \underbrace{\langle e_{i}|e_{j}\rangle}_{\delta_{ij}} \\ &= \langle x|e_{j}\rangle - \langle x|e_{j}\rangle = 0 \end{split}$$

 $\mbox{Donc } x_\perp \in \{e_1,\ldots,e_r\}^\perp \mbox{ Donc } x_\perp \in \mbox{Vect}\{e_1,\ldots,e_r\}^\perp = F^\perp \mbox{Ainsi}, \ F \mbox{ et } F^\perp \mbox{ sont supplémentaires orthogonaux}.$

De plus

$$\forall x \in E, x = \underbrace{\sum_{i=1}^{r} \left\langle x | e_i \right\rangle . e_i}_{\in F} + \underbrace{x - \sum_{i=1}^{r} \left\langle x | e_i \right\rangle . e_i}_{\in F^{\perp}}$$

Donc

$$p_F^{\perp}(x) = \sum_{i=1}^r \langle x | e_i \rangle . e_i$$

4 Orthonormalisation de la base canonique de $\mathbb{R}_2[X]$

On utilisera le produit scalaire

$$\langle P|Q\rangle = \int_0^1 P(u)Q(u)\,\mathrm{d}u$$

Démonstration. Partons de la base canonique de $\mathbb{R}_2[X]$.

- $\star P_1 = X^0$ est un vecteur unitaire avec ce produit scalaire
- \star Calcul du second vecteur

$$P_2' = X - \langle X|1\rangle . 1 = X - \left(\int_0^1 u \, du\right) . 1 = X - \frac{1}{2}$$

$$P_2 = \frac{P_2'}{\|P_2'\|} = \frac{P_2'}{\sqrt{\langle P_2'|P_2'\rangle}} = \frac{P_2'}{\sqrt{\int_0^1 \left(u - \frac{1}{2}\right)^2 du}} = \frac{P_2'}{\sqrt{\frac{1}{12}}} = \sqrt{12}P_2'$$

Ce qui donne

$$P_2' = 2\sqrt{3}X - \sqrt{3}$$

* Enfin,

$$\begin{split} P_3' &= X^2 - \left\langle X^2 | 2\sqrt{3}X - \sqrt{3} \right\rangle . (2\sqrt{3}X - \sqrt{3}) - \left\langle X^2 | 1 \right\rangle . 1 \\ &= X^2 - \left(\int_0^1 2\sqrt{3}u^3 - \sqrt{3}u^2 \, \mathrm{d}u \right) . (2\sqrt{3}X - \sqrt{3}) - \left(\int_0^1 u^2 \, \mathrm{d}u \right) . 1 \\ &= X^2 - \frac{\sqrt{3}}{6} (2\sqrt{3}X - \sqrt{3}) - \frac{1}{3} \\ &= X^2 - X + \frac{1}{6} \end{split}$$

$$P_3 = \frac{P_3'}{\|P_3'\|} = \frac{P_3'}{\sqrt{\langle P_3 | P_3 \rangle}} = \frac{P_3'}{\sqrt{\int_0^1 \left(u^2 - u + \frac{1}{6}\right)^2 du}} = \frac{P_3'}{\sqrt{\frac{1}{180}}} = 6\sqrt{5}P_3' = 6\sqrt{5}\left(X^2 - X + \frac{1}{6}\right)$$

Donc une base orthonormée de $\mathbb{R}_2[X]$ muni de ce produit scalaire est

$$\left(1, \ 2\sqrt{3}X - \sqrt{3}, \ 6\sqrt{5}\left(X^2 - X + \frac{1}{6}\right)\right)$$

FIGURE 1 – Orthonormalisation de $(1, X, X^2)$ pour ce produit. Ces vecteurs ne sont ni orthogonaux, ni unitaires pour ce produit scalaire, mais engendrent bien $\mathbb{R}_2[X]$. En soustrayant leurs composantes respectives, on crée une base orthogonale que l'on peut ensuite normer.

5 Distance d'un vecteur à un sous-espace vectoriel de dimension finie

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien Réel. Soient F un sous espace vectoriel de dimension finie de E, et $x \in E$.

L'ensemble $\{||x-z|| \mid z \in F\}$ admet une borne inférieure appelée distance de x à F et notée d(x,F), qui est un plus petit élément, atteinte uniquement pour pour $z=p_F^{\perp}(x)$

Démonstration. $\{\|x-z\| \mid z \in F\}$ est une partie de \mathbb{R} , non vide car elle contient $\|x\|$ pour $z \leftarrow 0_F$ d'éléments positifs ou nuls. Elle admet donc une borne inférieure

E est un espace euclidien, donc $E=F\stackrel{\perp}{\oplus} F^\perp$ donc x se décompose selon ces supplémentaires orthogonaux

$$x = \underbrace{p_F^{\perp}(x)}_{\in F} + \underbrace{x - p_F^{\perp}(x)}_{\in F^{\perp}}$$

si bien que, pour tout $z \in F$

$$\begin{split} \|x-z\|^2 &= \|p_F^{\perp}(x) - z + x - p_F^{\perp}(x)\|^2 \\ &= \|p_F^{\perp}(x) - z\|^2 + \|x - p_F^{\perp}(x)\|^2 \text{ d'après le théorème de Pythagore} \\ &\geqslant \|x - p_F^{\perp}(x)\|^2 \end{split}$$

En prenant la racine carrée,

$$\forall z \in F, \|x - z\| \geqslant \|x - p_F^{\perp}(x)\|$$

D'où $||x-p_F^{\perp}(x)||$ minore $\{||x-z|| \mid z \in F\}$ et donc sa borne inférieure.

Or, en remonant le calcul précédent, il y a égalité pour $z=p_F^{\perp}(x)$ si bien que la borne inférieure est un plus petit élément, et vaut $d(x,F) = ||x-p_F^{\perp}(x)||$

De plus, si $z' \in F$ atteint ce plus petit élément on a

$$||x - z'||^2 = ||p_F^{\perp}(x) - z' + x - p_F^{\perp}(x)||^2$$
$$||x - p_F^{\perp}(x)||^2 = ||p_F^{\perp}(x) - z'||^2 + ||x - p_F^{\perp}(x)||^2$$
$$0 = ||p_F^{\perp}(x) - z'||^2$$

Si bien que $p_F^{\perp}(x) - z' = 0_E$ d'après le caractère défini du produit scalaire. Donc le plus petit élément $d(x, F) = \min\{||x - z|| \mid z \in F\}$ est uniquement atteint pour $z = p_F^{\perp}(x)$.

Distance à un sous-espace affine 6

Soit $(E,\langle\cdot|\cdot\rangle)$ un espace vectoriel euclidien, $\mathcal{B}=(e_1,\ldots,e_n)$ une base orthonormée de E. Soit $u = \sum_{i=1}^n u_i.e_i$ un vecteur de E. Soient $(a_1,\ldots,a_n) \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}, \ \alpha \in \mathbb{R}$ et H_α l'hyperplan affine d'équation

$$\sum_{i=1}^{n} a_i x_i = \alpha$$

Démonstration. Posons $a = \sum_{i=1}^{n} a_i \cdot e_i H_0$ est un hyperplan vectoriel et, $H_0 = a^{\perp}$ et $H_0^{\perp} = \text{Vect}\{a\}$ Introduisons $h_{\alpha} \in a^{\perp}$ tel que $H_{\alpha} = h_{\alpha} + H_0$ et souvenons nous que $h_{\alpha} = \frac{\alpha}{\|a\|^2} a$.

Observons que l'égalité $H_{\alpha} = h_{\alpha} + H_0$ donne

$$\{\|u - z\| \mid z \in H_{\alpha}\} = \{\|u - (h_{\alpha} + z')\| \mid z' \in H_0\} = \{\|(u - h_{\alpha}) - z'\| \mid z' \in H_0\}$$

or, d'après la caractérisation de la distance à un sous-espace quelconque, on a

- \star L'ensemble $\{\|(u-h_\alpha)-z'\|\mid z'\in H_0\}$ admet une borne inférieure donc $\{\|u-z\|\mid z\in H_\alpha\}$ aussi qui vaut $d(u - h_{\alpha}, H_0)$, ce qui prouve que $d(u, H_{\alpha})$ est bien définie
- \star inf $\{\|(u-h_{\alpha})-z'\| \mid z' \in H_0\}$ est un plus petit élément atteint pour l'unique valeur z'= $p_{H_0}^{\perp}(u - h_{\alpha}) = p_{H_0}^{\perp}(u) \operatorname{car} h_{\alpha} \in H_0^{\perp} = \ker p_{H_0}^{\perp}, \operatorname{donc} d(u, H_{\alpha}) = \inf\{\|u - z\| \mid z \in H_{\alpha}\} \text{ est un}$ plus petit élément atteint pour l'unique valeur $z = h_{\alpha} + p_{H_0}^{\perp}(u - h_{\alpha}) = h_{\alpha} + p_{H_0}^{\perp}(u)$

$$d(u, H_{\alpha}) = \|u - h_{\alpha} - p_{H_0}^{\perp}(u)\|$$

Or $u-p_{H_0}^\perp(u)=(\operatorname{Id}-p_{H_0}^\perp)(u)=p_{H_0^\perp}^\perp(u)=\left\langle u|\frac{a}{\|a\|}\right\rangle.\frac{a}{\|a\|}$ car $H_0^\perp=\operatorname{Vect}\{a\}$ d'où, sachant aussi que $h_{\alpha} = \frac{\alpha}{\|a\|^2} . a$

$$d(u, H_{\alpha}) = \|p_{H_0^{\perp}}^{\perp}(u) - h_{\alpha}\| = \left\| \left\langle a | \frac{a}{\|a\|} \right\rangle \cdot \frac{a}{\|a\|} - \frac{\alpha}{\|a\|^2} \cdot a \right\|$$

Dénombrement des surjections de [1; n] dans [1; 2] et dans 7 [1;3]

Démonstration. Soit $n \in \mathbb{N}^*$. Il y a $|[1;2]|^{|[1;n]|} = 2^n$ applications de [1;n] dans [1;2]. Seules les applications constantes $\widetilde{1}$ et $\widetilde{2}$ ne sont pas surjectives. Il y a donc $2^n - 2$ surjections de [1; n] dans [1; 2].

Il y a $|[1;3]|^{|[1;n]|} = 3^n$ applications de [1;n] dans [1;3]. Les applications non surjectives sont celles dont l'image n'est pas [1; 3]. C'est-à-dire, celles dont l'image est de cardinal 1 (les fonctions constantes 1, 2 et 3) et celles dont l'image est de cardinal 2. Ces dernières sont les surjections de [1;n] dans [1;2], $\{1;3\}$ et $\{2;3\}$. Comme ces trois ensembles ont la même taille, il y a $3\times(2^n-2)$ (voir résultat précédent) applications de [1; n] dans [1; 3] dont l'image est de cardinal 2. Ainsi, le nombre de surjections de [1; n] dans [1; 3] est $3^n - 3 - 3(2^n - 2) = 3^n - 3 \times 2^n + 3$.

8 Lemme des bergers

Soient E, F deux ensembles finis non vides et $f: E \to F$ telle que tout élément de F possède le même nombre $k \in \mathbb{N}^*$ d'antécédents par f. Alors $|F| = \frac{|E|}{k}$

"Pour compter les moutons, il faut compter les pattes puis diviser par quatre."

 $D\acute{e}monstration$. Considérons la relation binaire définie sur E par :

$$\forall (x,y) \in E^2, x \sim y \iff f(x) = f(y)$$

Elle est réflexive, transitive et symétrique donc c'est bien une relation d'équivalence. Donc les classes d'équivalence réalise une partition de E. Nous avons $E = \bigsqcup_{C \in E/\sim} C$ donc, en passant aux

$$\text{cardinaux, } |E| = \sum_{C \in {}^E/{\sim}} |C|.$$

Soit $x \in E$ fixé quelconque. Alors $\bar{x} = \{y \in E \mid f(x) = f(y)\} = f^{-1}(f(\{x\}))$. Par hypothèse, tous les éléments de F ont le même nombre k d'antécédents, or f(x) est un singleton d'élément de F donc $|\bar{x}| = k$. Ainsi $\forall C \in E/\sim, |C| = k$.

Posons $\varphi \mid \stackrel{E/\sim}{C} \mapsto \stackrel{F}{\to} F$ $C \to f(x)$ où $x \in C$. φ est bien défini car si $(x,y) \in E$ vérifie $\bar{x} = \bar{y}$ alors f(x) = f(y) donc l'image par φ ne dépend pas du représentant de classe choisi. φ est surjective car soit $z \in F$, f est surjective donc $\exists x_z \in E : f(x_z) = z$ et alors $\varphi(\bar{x_z}) = f(x_z) = z$. φ est injective car soient $(C, C') \in (E/\sim)^2$, $\varphi(C) = \varphi(C')$ alors $\exists (x, x') \in C \times C' : x \sim x'$, comme deux classes d'équivalence sont confondues ou disjointes, C = C'. Ainsi φ est une bijection donc $|F| = |E/\sim|$.

Ainsi
$$|E| = \sum_{C \in E/\sim} |C| = \sum_{C \in E/\sim} k = |E/\sim| k = |F| k.$$

FIGURE 2 – Représentation schématique du lemme des bergers. Les classes d'équivalence de \sim sont les ovales qui contiennent des éléments qui ont la même image par f. Le lemme s'applique ici car tous les éléments de F ont le même nombre d'antécédents par f.