Device Modeling Report

COMPONENTS: MOSFET: OPERATIONAL AMPLIFIER

PART NUMBER:NJM2737

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

Spice Model


```
*$
* PART NUMBER: NJM2737
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM2737 OUT1 -IN1 +IN1 V- +IN2 -IN2 OUT2 V+
X U1
       +IN1 -IN1 V+ V- OUT1 NJM2737_ME
X U2
       +IN2 -IN2 V+ V- OUT2 NJM2737_ME
.ends NJM2737
.subckt NJM2737 ME 1 2 3 4 5
 c1 11 12 100.00E-15
 c2 6 7 21.1E-12
 cee 10 99 3.600E-9
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 1.7153E6 -1E3 1E3 1E6 -1E6
 ga 6 0 11 12 414.69E-6
 gcm 0 6 10 99 131.14E-9
 iee 3 10 dc 22.298E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 4 11 2.4114E3
 rc2 4 12 2.4114E3
 re1 13 10 48.532
 re2 14 10 48.532
 ree 10 99 8.9694E6
 ro1 8 5 50
 ro2 7 99 25
 rp 3 4 50.011
 vb 9 0 dc 0
 vc 3 53 dc .945
 ve 54 4 dc .948
 vlim 7 8 dc 0
 vlp 91 0 dc 20
 vln 0 92 dc 20
.model dx D(ls=800.00E-18)
.model dy D(ls=800.00E-18 Rs=1m Cjo=10p)
.model gx1 PNP(Is=800.00E-18 Bf=53.087)
.model qx2 PNP(Is=851.0500E-18 Bf=57.850)
.ends
*$
```

Output Voltage Swing

Simulation result

Evaluation circuit

Output Voltage Swing	Measurement	Simulation	%Error
V он (V)	4.85	4.8504	0.008
Vol (V)	0.15	0.1492	-0.533

Input Offset Voltage

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Vos (mV)	1	1.012	1.2

Slew Rate

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Slew Rate(v/us)	0.7	0.702	0.289

Input current

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
lb (nA)	200.000	199.416	-0.292
Ibos (nA)	5.000	5.0469	0.938

Open Loop Voltage Gain vs. Frequency

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
f-0dB(MHz)	3.100	3.1046	0.148
Av-dc(dB)	85.000	84.759	-0.284

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

CMRR=20*LOG(17098.185/(3.3436/0.6)) = 69.737 dB

	Measurement	Simulation	%Error
CMRR(dB)	70	69.737	-0.376

Remark Output Voltage Swing

Before

Remark Input Offset Voltage

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain vs. Frequency

Before

Remark Common-Mode Rejection Voltage gain

Before

