Data Visualization: Script and Graphs

1. CO2 Data visualization:

R script:

>library(ggplot2)

#Scatter plot

>qplot(conc,uptake,data = CO2,geom = "point",color=Treatment,xlab = "Concentration of Co2",main="Co2 uptakein Green Plants")

Scatter plot: with different treatment distinguished by color

>qplot(conc,uptake,data = CO2,geom = c("point","smooth"),color=Treatment,xlab = "Concentration of Co2",main="Co2 uptakein Green Plants")

Co2 uptakein Green Plants

Smooth fitting curve

>qplot(conc,uptake,data = CO2,geom = c("point","smooth"),method='lm',color=Treatment,xlab = "Concentration of Co2",main="Co2 uptakein Green Plants")

linear regression fitting line:

>qplot(conc,uptake,data = CO2,geom = c("line"),color=Treatment,shape=Treatment,xlab = "Concentration of Co2",main="Co2 uptakein Green Plants")
Line plot :

Co2 uptakein Green Plants

>qplot(uptake,data = CO2,geom = "density",colour=Treatment)
Density function plot of uptake groups of chilled and non chilled are distinguished by colour

>qplot(uptake,data = CO2,geom = "density",colour=Plant)

Density function plot of uptake groups of plant types are distinguished by colour

>qplot(conc,uptake,data = CO2,geom = "point",color=Plant,xlab = "Concentration of Co2",main="Co2 uptakein Green Plants")

scatter plot of uptake vs conc for different plants distinguished by colour of dots

>qplot(conc,uptake,data = CO2,geom = c("point","smooth"),color=Plant,xlab = "Concentration of Co2",main="Co2 uptakein Green Plants")

smooth regression:

>qplot(conc,uptake,data = CO2,geom = c("point","smooth"),method='lm',color=Plant,xlab = "Concentration of Co2",main="Co2 uptakein Green Plants")

linear regression:

>qplot(conc,uptake,data = CO2,geom = c("line"),color=Plant,shape=Plant,xlab = "Concentration of Co2",main="Co2 uptakein Green Plants")

line plot for uptake vs conc for different plants

2. IPL POINTS TABLE VISUALISATION:

>library(ggplot2) >library(rvest)

>download.file(url = "https://en.wikipedia.org/wiki/2017_Indian_Premier_League",destfile = "D://dc++//workspace" 2//Data Visualization//ipl.html")

>ipl_nodes <- html_nodes(read_html("D://dc++//workspace 2//Data Visualization//ipl.html"),'.wikitable')

>iplTable <- html_table(ipl_nodes[2])

>pointsTable <- iplTable[[1]]

>pointsTable\$NRR <- as.numeric(pointsTable\$NRR)

>names(pointsTable)[1] <- "Team"

>qplot(Pld,Pts,data = pointsTable,geom = 'boxplot')

boxplot for points gained vs matches played:

>qplot(Pts,data = pointsTable,geom = 'bar',fill=Team)

Bar diagram of points of different teams distinguished by colour

3 .Titanic Deaths mosaic plot:

- >library(rvest)
- >library(vcd)
- >library(ggplot2)

>download.file(url = "https://en.wikipedia.org/wiki/Mosaic_plot", destfile = "D:\\dc++\\workspace 2\\Data Visualization\\mosaic.html")

- >Deathread <- read_html("D:\\dc++\\workspace 2\\Data Visualization\\mosaic.html")
- >deathNodes <- html_nodes(Deathread, 'table.wikitable')
- >DeathTable <- html_table(deathNodes[1])
- >DeathTable <- DeathTable[[1]]
- >mosaicdata <- table(DeathTable\$Gender,DeathTable\$Survived,DeathTable\$Crew)
- >mosaicplot(mosaicdata,color = c(2,3))

Mosaic plot showing Gender vs survival vs class

mosaicdata

4 . Advanced_plots_NBA:

- >library(rvest)
- >library(ggplot2)
- >library(tidyr)
- >library(scatterplot3d)
- >library(corrgram)

>NBA <- read.csv("http://datasets.flowingdata.com/ppg2008.csv",sep=",")

>NBAlong <-

NBA %>% gather(key = Metrics, value = Performance, G:PF) ## Joining all the metrics into a single var]

>ggplot(data = NBAlong,aes(x=Metrics,y=Name))+geom_tile(aes(fill=Performance))+ggtitle("NBA PLAYERS AND THEIR PERFORMANCE MEASURES")

Heat map of Different players vs performance with respect to different Metrics :

>scatterplot3d(NBA\$G,NBA\$MIN,NBA\$PTS,axis = T,grid = T,box=T,zlab = "points",ylab = "Time Played",xlab = "G")

3D scatter plot showing 3 variable relation ships of 50 players :

>corrgram(NBA)

Correlogram showing the correlation patterns of different metrics of 50 NBA players :

