Elektronikpraktikum Auswertung: Versuch 2

Gruppe 1 Patrick Heuer Benjamin Lotter

- Bestimmung des Widerstands durch Messung von Strom und Spannung
- Strommessung = Spannungsmessung and bekanntem Widerstand

Aufgabe 1 Bestimmung von komplexem Widerstand und Phase

• Problem: Erdschleife

Aufgabe 1 Bestimmung von komplexem Widerstand und Phase

- Problem: Erdschleife
- Lösung: Erdungen aufeinander legen
- Abfall über Bauteil: "Math function 1 2"

Aufgabe 1 Kondensator

	/	U	φ
Kondensator	$113\mu A$	167 <i>mV</i>	_87°

Aufgabe 1

	1	U	φ
Kondensator	$113\mu A$	167 <i>mV</i>	−87°
Spule	$139\mu A$	95 <i>mV</i>	72°

Aufgabe 1 Widerstand

	1	U	φ
Kondensator	$113\mu A$	167 <i>mV</i>	_87°
Spule	$139\mu A$	95 <i>mV</i>	72°
Widerstand	$104\mu A$	100 <i>mV</i>	4°

Aufgabe 1 Auswertung

• Komplexer Widerstand: $Z = \frac{U}{I}(\cos(\varphi) + i\sin(\varphi))$

$$Z_C \approx 77.35 - i475.85\Omega$$

 $Z_L \approx 211.20 - i650.00\Omega$
 $Z_R \approx 968.51 - i67.72\Omega$

Aufgabe 1 Auswertung

• Komplexer Widerstand: $Z = \frac{U}{I}(\cos(\varphi) + i\sin(\varphi))$

$$Z_C \approx 77.35 - i475.85\Omega$$

 $Z_L \approx 211.20 - i650.00\Omega$
 $Z_R \approx 968.51 - i67.72\Omega$

•
$$C = -i\frac{1}{2\pi f Z_C}$$
 und $L = \frac{Z_L}{i2\pi f}$:

$$C \approx 108 - i5.64 nF$$

 $L \approx 103.45 - i33.61 mH$

	Theorie	Messung
$\varphi_{\mathcal{C}}$	−90°	-87°
φ_{L}	90°	72°
φ_R	0°	4°

- Gründe für Abweichung:
 - ohmscher Widerstand der Bauteile
 - Widerstand in Messgeräten
 - Messungenauigkeit

Aufgabe 2 Bode Diagramm

- Bode Diagramm: Auftragung Amplitude über Frequenz
- Visualisierung von Dämpfung

- Hoch-, Tief-, Bandpassfilter
- Unterdrückung von Frequenzbereichen
- Ordnung gibt an wie stark die Dämpfung ausfällt: 1. Ordnung: 6db pro Oktave, 2. Ordnung 12dB pro Okatave etc.
- nichtlineares Verhalten

- 3dB-Frequenz: Abfall des Signals $\frac{U_{in}}{U_{out}} = \frac{1}{\sqrt{2}}$
- Grenzfrequenz

Aufgabe 2 Tiefpass 1. Ordnung

Aufgabe 2 Tiefpass 1. Ordnung

Aufgabe 2 Tiefpass 1. Ordnung

Aufgabe 2 AC-Modus des Oszilloskops

- Testsignal: Dreiecksspannung + Sinussignal
- Problem: Schwierigkeit bei automatischer Bestimmung der Amplitude - Sinus ist "schräg" und wandert

Aufgabe 2 AC-Modus des Oszilloskops

- Lösung 1: Vorschaltung eines Hochpassfilters
- \bullet Dreickspannung ist niedrigfrequentes Signal \to wird herausgefilter

Aufgabe 2 Ac-Modes des Oszilloskops

- Lösung 2: Eingang auf AC-Modus
- eingebauter Hochpassfilter
- Verwendung zum Filtern niedrigfrequenter Störungen

Aufgabe 4

 Durch kompliziertere Schaltungen können schärfere Frequenztrennungen erreicht werden

Aufgabe 4 Tiefpass 2. Ordnung

• Einbau von Spule

$$\frac{U_{out}}{U_{in}} = \frac{1}{1 - \omega^2 LC}$$