Gene*Taq*™ 2 × Colorless Master Mix

Size:

Cat.#	Size
BG10104S	20 R(50 μL vol)
BG10104M	100 R(50 μL vol)
BG10104L	500 R(50 μL vol)

Source: *E.coli* strain with a cloned pol gene from Thermus aquaticus YT1.

Storage temperature: -20° C Exp.: 12 months(-15° C $\sim -25^{\circ}$ C)

Applications:

- 1. Routine PCR amplification of DNA fragments up to 5 kb.
- 2. PCR product for TA cloning.
- 3. Colony PCR.

www.syngen.tech

Description:

Gene Taq^{TM} 2 × Colorless Master Mix contains Gene Taq^{TM} DNA Polymerase, dNTPs, other buffer components and stabilizers. Gene Taq^{TM} DNA polymerase is a highly thermostable DNA polymerase, that possesses $5' \rightarrow 3'$ polymerase activity, $5' \rightarrow 3'$ exonuclease activity, but no detectable $3' \rightarrow 5'$ exonuclease (proofreading) activity. Gene Taq^{TM} DNA Polymerase is extremely sensitive and able to amplify trace amounts of DNA in the sample reaction.

Reagent supplied:

Cat.#	Size	Quantity	Nuclease-Free Water
BG10104S	20 R(50 μL vol)	0.5 mL	1.5 mL
BG10104M	100 R(50 μL vol)	5 × 0.5 mL	2×1.5 mL
BG10104L	500 R(50 μL vol)	$25 \times 0.5 \text{ mL}$	10 × 1.5 mL

Quality control:

- 1. Amplification Ability: 25 cycles of PCR amplification of 5 ng Lambda DNA in the expected 5 kb product.
- 2. Nuclease Activity: No contaminating endonuclease or exonuclease activity has been detected.
- 3. Protein Purity (SDS-PAGE): Gene *Taq*™DNA Polymerase has >99% pure judged by SDS-PAGE.
- 4.qPCR for DNA Contamination(*E.coli* Genome): A minimum of 5μL of Gene *Taq*TM DNA Polymerase is screened for the presence of *E.coli* genomic DNA using qPCR with Taqman Probe specific for *E.coli* 16S rRNA. The measured level of *E.coli* genomic DNA contamination is less than 10 copies of *E.coli* genome.

Protocol:

To prepare several parallel reactions with minimized pipetting errors, prepare a PCR master mix by mixing Nuclease-Free water, primers and $\text{Gene} \textit{Taq}^{\text{TM}} \ 2\times \ \text{Master}$ Mix. Prepare sufficient master mix for the number of reactions plus one extra. Aliquot the master mix into individual PCR tubes and then add template DNA.

- 1. Gently vortex and briefly centrifuge all solutions after thawing.
- 2. Place a thin-walled PCR tube on ice and add the following component for each 25 μL or 50 μL reaction:

Component	25 μL reaction	50 μL reaction	Final concentration
10 μM forward primer	0.5 μL	1 μL	200 nM
10 μM reverse primer	0.5 μL	1 μL	200 nM
Template DNA	variable	variable	0.1-100 ng
GeneTaq™ 2×Colorless Master Mix	12.5 µL	25 μL	1×
Nuclease-Free water	to 25 μL	to 50 μL	-

- 3. Gently vortex the samples and spin down.
- 4.Perform PCR using recommended thermal cycling conditions:

Step	Temperature	Time	Number of cycles
Initial Denaturation	94°C	2-5 min	1
Denaturation	94°C	15-30 s	
Annealing	Tm-5°C	10-30 s	25-40
Extension	68°C	10-60 s/kb	
Final Extension	68°C	5-15 min	1

General guidelines:

1. Template:

High quality, purified DNA templates greatly enhances the success of PCR reaction. Recommended amounts of DNA template for a 50 μ L reaction are as follows:

DNA	Amount
Genomic DNA	1 ng-1 μg
Plasmid or Viral DNA	1 pg-1 μg

2 Primers:

Oligonucleotide primers are generally 20-40 nucleotides in length and ideally have a GC content of 40-60%. Software such as Oligo 7 can be used to design or analyze primers. The final concentration of each primer in a PCR reaction may be 0.05-1 $\mu M,$ typically 0.1-0.5 $\mu M.$

Denaturation:

An initial denaturation of 2 min at 94°C is sufficient for most amplicons from pure DNA templates. For difficult templates such as GC-rich sequences or crude samples, a longer denaturation of 2-8 min at 94°C is recommended prior to PCR cycling to fully denature the template. With colony PCR, an initial 2-5 min denaturation at 94°C is recommended.

4. Annealing:

The annealing step is typically 15-60 s. Annealing temperature is based on the Tm of the primer pair and is typically 45-68°C. Annealing temperatures can be optimized by doing a temperature gradient PCR starting at 5°C below the

calculated Tm.

5. Extension:

The recommended extension temperature is 68°C. Extension time are generally 20-30 s/kb for complex, genomic samples, but can be reduced to 10 s/kb for simple templates (plasmid, virus). To determine specific extension time, we recommend 1 min/kb and reduce the extension time until 10 s/kb. 2 min/kb is recommended for crude samples. A final extension of 5 min at 68°C is recommended

6. Cycle number:

Generally, 25-35 cycles yields sufficient product. Up to 45 cycles may be required to detect low-copy-number templates.

7. PCR product:

The PCR products generated by Gene Taq™ DNA Polymerase contain dA overhangs at the 3' end, therefore can be ligated to dT/dU-overhang vectors.

References

- 1. Chien A, Edgar D B, Trela J M. Deoxyribonucleic-acid polymerase from extreme thermophile Thermus-aquaticus[J]. *Journal of Bacteriology*, 1976, 127.
- 2. Kaledin A S, Sliusarenko A G, Gorodetski S I. Isolation and properties of DNA polymerase from extreme thermophylic bacteria Thermus aquaticus YT-1[J]. *Biokhimiia*, 1980, 45(4): 644-651.

Research only, not for therapeutic or diagnostic purposes.

V1.0.2 © 13-14 Beijing SyngenTech Co., Ltd. All rights reserved

Gene *Taq*[™] 2 × Colorless Master Mix 使用说明书

【产品规格】

货号	规格
BG10104S	20 R(50 μL vol)
BG10104M	100 R(50 μL vol)
BG10104L	500 R(50 μL vol)

【产品来源】重组表达栖热水生菌 DNA 聚合酶基因的大肠杆菌 【储存条件】-20 ℃

【保质期】12个月(-15℃~-25℃)

【应用范围】

1. 常规 PCR 扩增 5 kb 以内的 DNA 片段

- 2. 生成用于 TA 克隆的 PCR 产物
- 3. 菌落 PCR

【产品说明】

Gene Taq^{TM} 2 × Colorless Master Mix 是一种加入了 Gene Taq^{TM} DNA 聚合酶,dNTPs,其它一些缓冲液组分和 PCR 稳定剂的 预混液。合生基因的 Gene Taq^{TM} DNA 聚合酶对微量的 DNA 样品具有很好的扩增能力。Gene Taq^{TM} DNA 聚合酶是热稳定的 Taq DNA 聚合酶,具有 5' → 3' 端 DNA 聚合酶活性和 5' → 3' 端核酸外切酶活性,无 3' → 5' 端核酸外切酶活性,无 3' → 5' 端核酸外切酶活性,无 3' → 5' 端核酸外切酶活性。

【随酶提供试剂】

货号	规格	数量	无核酸酶水
BG10104S	20 R	0.5 mL	1.5 mL
BG10104M	100 R	5×0.5 mL	2 × 1.5 mL
BG10104L	500 R	25×0.5 mL	10 × 1.5 mL

【质量控制】

- 扩增能力: 5 ng 的 λ DNA 经过 25 个循环的扩增得到预期 的 5 kb PCR 产物。
- 2. 核酸酶活性检测:没有检测到外源的核酸内切酶和核酸外切酶活性。
- 3. 蛋白纯度(SDS-PAGE): SDS-PAGE 检测纯度 >99%
- 4. qPCR 检测 DNA 污染(大肠杆菌基因组): 通过 Taqman 探针 qPCR 法检测大肠杆菌 16S rRNA 位点,用至少 $5~\mu$ L 的 Gene Taq^{TM} DNA 聚合酶来检测,结果显示大肠杆菌基因组 DNA 的污染水平小于 10~个大肠杆菌基因组。

【操作指南】

如果要同时进行几个平行反应,混合无核酸酶水,反应缓冲液,引物和 Gene Taq^{TM} 2×Colorless Master Mix 制备 PCR 混合液,为减少加样误差的影响,制备的反应混合液要在需要的反应数量上添加上一个额外反应,分装母液到单个的 PCR 管中,然后加入模板 DNA。

- 1. 温和震荡后, 快速离心解冻后的所有溶液。
- 2. 加入 25 μL 或者 50 μL 的组份(见下表)到冰上的薄壁 PCR 管中。

成分	25 μL 反应	50 μL 反应	终浓度
10 μM 正向引物	0.5 μL	1 μL	200 nM
10 μM 反向引物	0.5 μL	1 μL	200 nM
模板 DNA	可变量	可变量	0.1-100 ng
Gene <i>Taq</i> ™ 2 × Colorless Master Mix	12.5 μL	25 μL	1×
无核酸酶水	至 25 μL	至 50 μL	-

- 3. 温和震荡并短暂离心。
- 4. 使用推荐的热循环条件进行 PCR:

步骤	温度	时间	循环数
预变性	94℃	2-5 min	1
变性	94℃	15-30 s	
退火	Tm-5℃	10-30 s	25-40
延伸	68℃	10-60 s/kb	
最后延伸	68℃	5-15 min	1

【使用说明】

1. 模板: 高质量、纯化的 DNA 模板会大幅提升 PCR 反应的成功率。对于一个 50 μL 反应体系,推荐量的 DNA 模板如下:

DNA	用量	
基因组	1 ng-1 μg	
质粒或病毒	1 pg-1 ng	

- 2. 引物: 寡核苷酸引物一般长度在 20-40 nt, GC 含量为 40-60%。如 Oligo 7 软件可被用来设计或分析引物。在 PCR 反应中每个引物的终浓度范围是 0.05-1 μM, 通常为 0.1-0.5 μM。
- 3. 变性: 94℃ 2 min 预变性即可满足于大部分纯化的 DNA 模板的扩增。对于高 GC 含量序列或者粗样品,推荐使用 2-8 min 的变性时间来完全变性模板。对于菌落 PCR,推荐使用 2-5 min 的预变性时间。
- 4. 退火: 退火时间通常为 15-60 s,退火温度基于引物的 Tm 值,一般在 45℃到 68℃之间。退火温度可以通过低于 Tm-5℃的温度梯度 PCR 进行优化。
- 5. 延伸:推荐的延伸温度为68℃。复杂或基因组样品的延伸时间一般为20-30 s/kb。简单模板(质粒,病毒)可以为10 s/kb。为确定具体的延伸时间,我们推荐从1 min/kb 开始降低延伸时间直到10 s/kb。粗样品推荐使用2 min/kb。68℃最终延伸时间推荐使用5 min。

- 6. 循环数: 一般来说, 25 到 35 个循环即可以产生足够的 PCR 产物。最高到 45 个循环可用于检测低拷贝模板。
- 7. PCR 产物:使用 $Gene Taq^{TM}$ DNA 聚合酶产生的 PCR 产物在 3' 端会含有 dA 突出,因此,PCR 产物可以连接到 dT/dU 粘性末端载体上。

【参考文献】

- 1. Chien A, Edgar D B, Trela J M. Deoxyribonucleic-acid polymerase from extreme thermophile Thermus-aquaticus[J]. *Journal of Bacteriology*. 1976. 127.
- 2. Kaledin A S, Sliusarenko A G, Gorodetski S I. Isolation and properties of DNA polymerase from extreme thermophylic bacteria Thermus aquaticus YT-1[J]. *Biokhimiia*, 1980, 45(4): 644-651

【温馨提示】本品仅限于科学研究,不可用于临床治疗。 V1.0.2 © 13-14 Beijing SyngenTech Co., Ltd. All rights reserved