Lecture 27: Physicsinformed deep neural networks

Professor Ilias Bilionis

Example: Sampling from the Exponential with random walk Metropolis

Problem definition

We want to sample from:

$$\pi(x) \propto e^{-10x}$$

using the proposal:

$$T(x_n, x) = \mathcal{N}(x|x_n, \sigma^2)$$

Let's try various sigma's.

We pick the initial point to be $x_0 = 10$.

Let's first try the "right" sigma

For sigma = 0.3, we take n=10,000 samples.

Of those, about 25% of the proposals are accepted.

Let's visualize them.

MCMC samples are correlated

- Ideally, you want independent samples.
- MCMC samples are correlated.
- Idea: Throw away some samples in between.
- This is called thinning.
- You can decide how much to thin by looking at the autocorrelation.

Autocorrelation of a Markov chain

After we burn and thin, we use in our chain:

$$X_{n_b+k^*}, X_{n_b+2k^*}, \dots$$

What if you pick a σ that is too small?

For $\sigma = 0.01$, 96% of the samples are accepted.

What if you pick a σ that is too big?

For $\sigma = 1$, 8% of the samples are accepted.

What if you pick a sigma that is too big?

For sigma = 1, 8% of the samples are accepted.

Is there a best σ ?

- Yes.
- You want to keep the acceptance rate between 30% and 60% (give or take).
- You do this by *tuning* σ .
- $\sigma\uparrow$ implies that acceptance rate \downarrow
- $\sigma \downarrow$ implies that acceptance rate \uparrow

