

L14: Formal Argumentation Structured argumentation

Dragan Doder

Methods in AI research

(based on slides of Henry Prakken and Floris Bex)

Universiteit Utrecht

Structured Argumentation

- Abstract argumentation
 - takes as given a set of arguments and attacks
 - provides semantics
- Structured argumentation
 - provides a model of the structure and origin of arguments and attacks
 - allows to construct/derive arguments (e.g. from a knowledge base using rules of inference)

- Arguments are reasons for conclusions
- Infer conclusions from premises using inference rules
- Example:

```
    - p, p → q
    - q (Modus Ponens)
    - p ∧ q
    - p (∧-Elim)
```

Syntax of arguments - ASPIC+

- Arguments are trees
 - Nodes are formulas of a logical language £
 - Links are applications of inference rules
 - $\mathcal{R}_s = \text{Strict rules } (\phi_1, ..., \phi_n \to \phi); \text{ or }$
 - \mathcal{R}_d = Defeasible rules $(\phi_1, ..., \phi_n \Rightarrow \phi)$
 - Reasoning starts from a knowledge base $\mathcal{K} \subseteq \mathcal{L}$

ASPIC+ Argumentation systems (with symmetric negation)

- An argumentation system is a triple $AS = (\mathcal{L}, \mathcal{R}, n)$ where:
 - \mathcal{L} is a logical language with negation (\neg)
 - $-\mathcal{R} = \mathcal{R}_s \cup \mathcal{R}_d$ is a set of strict $(\phi_1, ..., \phi_n \to \phi)$ and defeasible $(\phi_1, ..., \phi_n \Rightarrow \phi)$ inference rules
 - $n: \mathcal{R}_d \to \mathcal{L}$ is a naming convention for defeasible rules
- An argumentation theory is a pair $AT = (AS, \mathcal{K})$ where AS is an argumentation system and \mathcal{K} a knowledge base in AS.
 - A knowledge base in $AS = (\mathcal{L}, \mathcal{R}, n)$ is a set $\mathcal{K} \subseteq \mathcal{L}$ where \mathcal{K} is a partition $\mathcal{K}_n \cup \mathcal{K}_p$ with:
 - \mathcal{K}_n = necessary premises (axioms)
 - \mathcal{K}_{p} = ordinary premises ("assumptions")

Arguments

- An argument A on the basis of an argumentation theory is:
 - $-\phi$ if $\phi \in \mathcal{K}$ with
 - Prem(A) = $\{\phi\}$, Conc(A) = ϕ , Sub(A) = $\{\phi\}$, DefRules(A) = \emptyset
 - $-A_1, ..., A_n \rightarrow \phi$ if $A_1, ..., A_n$ are arguments such that there is a strict inference rule $Conc(A_1), ..., Conc(A_n) \rightarrow \phi$
 - Prem $(A) = \text{Prem}(A_1) \cup ... \cup \text{Prem}(A_n)$
 - Conc(A) = ϕ
 - A_1 , ..., $A_n \Rightarrow \phi$ if A_1 , ..., A_n are arguments such that there is a defeasible inference rule $Conc(A_1)$, ..., $Conc(A_n) \Rightarrow \phi$
 - $Prem(A) = Prem(A_1) \cup ... \cup Prem(A_n)$
 - Conc(A) = ϕ

Classical logical proof trees

 $oldsymbol{\mathsf{p}} oldsymbol{\mathsf{q}} oldsymbol{\mathcal{K}}$

• $(\supset is the classical logic implication <math>\rightarrow)$

 \mathcal{K}

 $p \wedge q$

Classical logical proof trees

Defeasible arguments

Increased productivity is good

 \mathcal{K}_p

Prof. P says that "Lower taxes increase productivity"

 \mathcal{K}_n

Defeasible arguments

Lower taxes increase productivity

Increased productivity is good

 \mathcal{K}_p

Professor P says $x \Rightarrow x$ is the case $\in \mathcal{R}_d$

Prof. P says that "Lower taxes increase productivity"

 \mathcal{K}_n

Defeasible arguments

Rules and exceptions

Rules are based on typical rules or generalizations we use in everyday reasoning

- Birds can (usually) fly
 - Except penguins or ostriches!
- If expert E says P, we can usually believe P
 - Unless the expert is biased, or E is not an expert in the domain that P is in

Types of attacks

- Undercutting: providing an exception to the rule
 - Attack the inference
- Undermining
 - Attack an ordinary premise ("assumption")
- Rebutting
 - Attack a conclusion

Attack

- A undermines B (on ϕ) if
 - Conc(A) = $\neg \phi$ for some $\phi \in \text{Prem}(B)$ and $\phi \in \mathcal{K}_p$;
- A rebuts B (on B') if
 - Conc(A) = ¬Conc(B') for some B' ∈ Sub(B) with a defeasible top rule
- A undercuts B (on B') if
 - Conc(A) = ¬n(r) for some B' ∈ Sub(B) with defeasible top rule r
- A <u>attacks</u> B iff A undermines or rebuts or undercuts B.

Rebuttal

Undermining

Undercutting

Undercutting

- Attacks the application of the inference rule by providing an exception
- I see a red ball so there is a red ball
- I see a blue ball so there is no red ball (rebut)
- The ball is illuminated by a red light (undercut)
 - The conclusion (ball = red) might still be true, but the premise
 (I see red ball) is not a good reason for this conclusion

Back to Abstract Argumentation

 we don't care what is inside the arguments, when we calculate the extensions

The National Police Lab AI

- a collaborative initiative of the Dutch Police, Utrecht University and the University of Amsterdam.
- Amsterdam: machine-learning techniques for extracting the right information from different sources (photos, text, video)
- <u>Utrecht</u>: models from *symbolic AI* (*argumentation*, *etc.*) that allow us to reason with and communicate this information

Types of questions for the exam

- ASPIC+: For a given KB \mathcal{K} and the ruleset $\mathcal{R} = \mathcal{R}_s \cup \mathcal{R}_d$
 - construct (some/all) arguments
 - indicate all (3 types of) attacks between them.
- Abstract argumentation: For a given argumentation graph
 - calculate all the extensions (for a given semantics)
 - determine all sceptically/credulously justified arguments

Exercise 1 (exam question 2019)

Take the knowledge base

$$\mathcal{K} = \{Bird, Penguin\}$$

and the rule-base

$$\mathcal{R}_d = \{r_1 : Bird \Rightarrow Flies, r_2 : Penguin \Rightarrow \neg Flies, r_3 : Penguin \Rightarrow \neg r_1\}.$$

- A. Construct all the arguments which can be built using this knowledge and rule base.
- B. Indicate which of these arguments attack each other, and what the type of each attack is (rebut/undercut/undermine).

Exercise 2 (advanced)

Take the knowledge base

```
\mathcal{K} = \{Bat, Baby\}
```

and the rule-base

$$\mathcal{R}_d = \{r_1: Bat \Rightarrow Flies, r_2: Baby \Rightarrow \neg Flies, r_3: Bat \rightarrow Mammal, r_4: Mammal \Rightarrow \neg Flies, r_5: Baby \Rightarrow \neg r_1, r_6: Bat \Rightarrow \neg r_4\}$$

- A. Construct all the arguments which can be built using this knowledge and rule base.
- B. Indicate which of these arguments attack each other, and what the type of each attack is (rebut/undercut/undermine).

Exercise 3 (exam question 2019)

What are the preferred extensions of the following argumentation frameworks?

a.

C.

h

<u>.</u> [

Exercise 1 - Solution A

The following five arguments can be constructed:

- A_1 : Bird
- $A_2: A_1 \Rightarrow Flies$
- B_1 : Penguin
- B_2 : Penguin $\Rightarrow \neg Flies$
- $C: B_1 \Rightarrow \neg r_1$

Exercise 1 - Solution B

- A_2 and B_2 attack each other: the type of the attacks is rebuttal
- C attacks A_2 : the type of attack is undercut

Exercise 2 - Solution A

The following five arguments can be constructed:

- A_1 : Bat
- $A_2: A_1 \Rightarrow Flies$
- $B_2: A_1 \rightarrow Mammal$
- $B_3: B_2 \Rightarrow \neg Flies$
- C_1 : Baby
- $C_2: C_1 \Rightarrow \neg Flies$
- $D: C_1 \Rightarrow \neg r_1$
- $E: A_1 \Rightarrow \neg r_4$

Exercise 2 - Solution B

- A_2 and B_3 attack each other: the type of the attacks is rebuttal
- A_2 and C_2 attack each other: the type of the attacks is rebuttal
- D attacks A_2 : the type of attack is undercut
- E attacks B_3 : the type of attack is undercut

Exercise 3 - Solution

- a. {A,C}
- b. {A,C}
- c. {A,C} and {A,D}
- d. {B}