Diseño de equipos electrónicos

HITO - 1

Inverter de Corriente Modular Multinivel

- Linares Gonzalo Ezequiel 61427
- Gullino Agustín Luís 61885
- Bustelo Windauer Nicolás 61431
- Sergi Damián Ezequiel 61467

Inverter de Corriente Modular Multinivel

Orientado al control de motores trifásicos

¿Por qué?

- Este dispositivo no requiere capacitores, contrario a los inverter de tensión. Esto implica un MTBF mucho mejor.
- Con los superconductores a temperatura ambiente estos dispositivos pueden alcanzar un tamaño reducido. Hoy en día el límite en la fabricación existe debido a la necesidad de inductores de gran tamaño.
- El control por corriente permite una alta confiabilidad, ya que ante una falla de cortocircuito del motor la corriente queda limitada por el controlador de forma nativa

Requerimientos del cliente:

ID	Descripción	Origen
REQ-01	El controlador del motor deberá manejar una tensión nominal de salida de 96V	Concreto
REQ-02	El controlador del motor no debe superar una potencia máxima de 1000W	Concreto
REQ-03	El controlador del motor deberá manejar una potencia nominal de al menos $500\mathrm{W}$	Concreto
REQ-04	La corriente de salida del controlador nunca podrá exceder la corriente pico máxima admisible del motor de 55A	Concreto
REQ-05	La corriente de salida del controlador no podrá exceder la corriente máxima de trabajo continuo del motor de 22A.	Concreto
REQ-06	Las dimensiones físicas máximas del controlador del motor no deberán superar 20cmx10cmx10cm.	Concreto

Requerimientos del cliente:

REQ-07	El controlador deberá realizar un control por torque				
REQ-08	El controlador deberá tener protecciones de sobrecorriente para la alimentación de la entrada.				
REQ-09	El controlador deberá tener protecciones de sobretensión para la alimentación de la entrada.	Concreto			
REQ-10	El montaje del controlador deberá proveer protección contra vibraciones.	Tácito			
REQ-11	El montaje del controlador deberá proveer protección contra aceleraciones inferiores a 2g.	Tácito			
REQ-12	El controlador deberá funcionar con un rango de tensión de entrada de entre 92V y 116V.	Concreto			
REQ-13	La comunicación entre el controlador de corriente y la interfaz externa se realizará utilizando el protocolo CAN	Concreto			

Especificaciones de diseño:

- 6.3. Especificaciones de Diseño
- 6.3.a. Especificaciones Funcionales

ID	Descripción	Origen
ESP-FUN-01	El dispositivo debe controlar al motor por corriente.	REQ-07
ESP-FUN-02	El dispositivo debe manejar una tensión de salida de 96V.	REQ-01
ESP-FUN-03	El dispositivo debe permitir que la corriente de salida llegue a un máximo de 10A.	REQ-01 REQ-04 REQ-05 REQ-02
ESP-FUN-04	El dispositivo debe manejar una corriente de salida de al menos 5A.	REQ-01 REQ-03
ESP-FUN-05	El controlador deberá funcionar con un rango de tensión de entrada de entre 90V y 120V.	REQ-12

Especificaciones de diseño:

6.3.b. Especificaciones de Interfaz

ID	Descripción	Origen
ESP-INT-01	El dispositivo debe poder comunicarse mediante el protocolo CAN.	REQ-13
ESP-INT-02	El dispositivo deberá actuar como esclavo dentro del bus de datos.	REQ-13

Cuadro 2: Especificaciones de interfaz

6.3.c. Especificaciones Dimensionales

ID	Descripción	Origen
ESP-DIM-01	El dispositivo debe tener dimensiones comprendidas entre	REQ-06
	20cmx10cmx10cm.	

Cuadro 3: Especificaciones dimensionales

Especificaciones de diseño:

6.3.d. Especificaciones de Implementación

ID	Descripción	Origen
ESP-IMP-01	El dispositivo debe estar protegido a tensiones de entrada mayores a 150V.	REQ-08
ESP-IMP-02	El dispositivo debe limitar a 12A la corriente máxima de entrada.	REQ-09
ESP-IMP-03	El montaje del dispositivo deberá protegerlo de las vibraciones del motor del Karting.	REQ-10
ESP-IMP-04	El dispositivo debe soportar aceleraciones de hasta 3g.	REQ-11

Cuadro 4: Especificaciones de implementación.

Solución Propuesta:

Productos similares:

~ Inverter de Tensión

Casa de Calidad: qués, cómos, relación

				Dirección de mejora	\Diamond	\Q			\Diamond	•	\Diamond	
Grafico de pesos	Pesos relativos	Importancia para el cliente	Relación máxima	Especificaciones funcionales	Protección contra efectos mecánicos	Protección ante Sobretensiones	Tensión de Salida por Fase	Corriente de Salida por Fase	Control por Corriente	Ташаñо	Protección ante Sobrecorrientes	Nivel de Integración
	23%	8	9	Potencia de Salida				•		∇		
	23%	8	9	Confiabilidad	•	•	∇	∇	0		•	
	26%	9	9	Control por Torque					•			
	9%	3	3	Rango de Tensiones de Funcionamiento			∇	∇				0
	9%	3	9	Eficiencia			0	0	•			0
	11%	4	9	Dimensiòn reducida						•		•

Casa de Calidad: relación entre qués

Casa de Calidad: análisis de los qués

	N	I	
Potencia de Salida	3	5	
Confiabilidad	5	4	
Control por Torque	5	2	
Rango de Tensiones de Funcionamiento		5	
Eficiencia	1	5	
Dimensiòn reducida	5	3	

Casa de Calidad: análisis de los cómos

Objetivo	38	150V	A96	10A	Si	20x10x10cm	12A	Moderado
Relación máxima	9	9	9	9	9	9	9	9
Importancia técnica	205.7	205.7	262.9	262.9	377.1	125.7	205.7	154.3
Pesos relativos	11%	11%	15%	15%	21%	7%	11%	9%
Grafico de pesos						=		
Nuestro producto	2	5	5	2	5	5	5	3
TM4: MI08-S-96/400	5	3	3	5	0	2	3	5
4 7	*		+	*		+	+	ж
က	/	*	*	/ /	(×	+
8	+			¥		×		
~					\/			
0					*			

Protección contra efectos mecánicos
Protección ante Sobretensiones
Tensión de Salida por Fase
Corriente de Salida por Fase
Control por Corriente
Tamaño
Protección ante Sobrecorrientes
Nivel de Integración

Validación: Bancos de Prueba

Banco	Descripción
BP-01	El dispositivo se conecta a una fuente de
	entrada de tensión variable, sin carga.
BP-02	El dispositivo se conecta a una fuente de
	tensión variable con una carga trifásica
	variable en el rango necesario para alcanzar
	los limites de funcionamiento.
BP-03	El dispositivo se conecta a un motor trifásico
	de características conocidas y se acciona
	mediante un ajuste manual temporal.
BP-04	El dispositivo se conecta a un motor trifásico
	de características conocidas, y a la entrada se
	le conecta un controlador maestro que lo
	acciones por BUS CAN.
BP-05	El dispositivo se montara sobre una base fija
	plana con un peso variable colgando de el.
BP-06	El dispositivo se montara en el Karting
	eléctrico del ITBA y se manejara el vehículo
	completando una serie de rectas con distintos
	perfiles de aceleración.

Validación: Tests

ID	Descripción	Dependencia	Banco de pruebas	
T-BASIC-01	Validación del programa del	2	BP-01	
	dispositivo.			
T-BASIC-02	Validación de encendido del	T-BASIC-01	BP-01	
	dispositivo.	8		
T-BASIC-03	Validación de señales de	T-BASIC-02	BP-01	
	comunicación internas.			
T-BASIC-04	Validación de salida correcta.	T-BASIC-03	BP-02	
T-FUNC-01	Validación de rango de corriente	T-BASIC-04	BP-02	
	de salida.			
T-FUNC-02	Validación de rango de tensión	T-BASIC-04	BP-02	
	de entrada.			
T-FUNC-03	Validación de control de motor.	T-BASIC-04	BP-03	
T-INT-01	Validación de comunicación por	T-BASIC-04	BP-04	
	protocolo CAN.			
T-DIM-01	Validación de dimensiones	€	BP-05	
	totales.			
T-MEC-01	Validación de sistema de agarre.	T-DIM-01	BP-05	
T-MEC-02	Validación de resistencia a	T-MEC-01	BP-06	
	vibraciones.			
T-MEC-03	Validación de resistencia a	T-MEC-01	BP-06	
	aceleraciones.			
T-ELEC-01	Validación de protecciones de	T-BASIC-04	BP-02	
	sobretension.			
T-ELEC-02	Validación de protecciones de	T-BASIC-04	BP-02	
	sobrecorriente.			

Inverter de Corriente Modular Multinivel

Validación: Tests Básicos

ID Aplicabilidad	Descripción	Criterio de aceptación
T-BASIC-01 P	 Conectar el dispositivo al ordenador. Verificar la correcta carga del programa. Observar las señales de control. 	Las señales de control deben cumplir con el funcionamiento programado.
T-BASIC-02 P-F	 Conectar el dispositivo a una fuente de tensión continua de 96V. Verificar el estado de los componentes. Asegurar el correcto estado de los dispositivos internos. 	El dispositivo debe poder estar alimentado y no exhibir ningún punto de falla.
T-BASIC-03 P	Colocar el instrumental necesario para medir las características eléctricas de la comunicación. Encender el dispositivo. Registrar que el funcionamiento de las comunicaciones internas se corrobore con su comportamiento externo.	La comunicación interna del dispositivo deberá corresponderse con su comportamiento externo.
T-BASIC-04 P-F	 Encender el dispositivo. Conectar el dispositivo al banco de cargas. Comprobar que la corriente de salida tiene la amplitud y forma correcta ante distintas cargas inductivas y resistivas. 	La señal de salida deberá mantenerse dentro de un rango aceptable de amplitud ante las distintas cargas utilizadas.

Inverter de Corriente Modular Multinivel

Validación: Tests Funcionales

ID	Descripción	Criterio de aceptación	
Aplicabilidad			
T-FUN-01	• Conectar el dispositivo a una fuente de	Para cada corriente de	
P-F	alimentación de tensión continua de $100\mathrm{Vdc}$	salida programada la	
	$\bullet \;$ Medir la amplitud de la corriente de salida	amplitud de la misma	
	• Programar el dispositivo para cambiar a	deberá corresponderse	
	una nueva corriente de salida y corroborar	con lo esperado.	
	que se corresponda con lo esperado.		
T-FUN-02	• Conectar al dispositivo a una fuente de	La variación en la	
P-F	alimentación de tensión continua variable.	alimentación de tensión	
	• Colocar una carga a la salida del	de entrada no deberá	
	dispositivo.	modificar la corriente de	
	$\bullet~$ Variar la tensión de alimentación de	salida programada en el	
	entrada del dispositivo entre $90\mathrm{V}$ y $120\mathrm{V}$	instante inicial.	
	verificando que la señal de corriente de salida		
	se mantenga invariante.	9	
T-FUN-03	Conectar el dispositivo a una fuente de	El dispositivo deberá	
P-F	tensión continua de $96\mathrm{Vdc}$	controlar al motor	
	$\bullet~$ Alimentar el motor AR-BLM-02 utilizando		
	el dispositivo.		
	• Verificar el movimiento del motor y medir		
	su rendimiento		

Inverter de Corriente Modular Multinivel

Validación: Tests de interfaz

ID	Descripción	Criterio de aceptación
Aplicabilidad		
T-INT-01	Alimentar al controlador con una tensión	Las señales de control
P-F	de 100Vdc y conectarlo a una carga que	deben cumplir con el
	emule correctamente al motor.	funcionamiento
	• Ubicar un espía de comunicación CAN	programado.
	entre el controlador y el dispositivo emulador	
	del karting.	
	• Validar que las condiciones eléctricas de la	
	comunicación cumplen las normativas del	
	protocolo CAN.	
	• Verificar el sentido lógico de los mensajes	
	enviados y recibidos	
	11111	

Validación: Tests dimensionales

ID	Descripción	Criterio de aceptación
Aplicabilidad		
T-DIM-01	Medir las dimensiones máximas del	Las dimensiones del
P-F	dispositivo	dispositivo deben ser
		menores a
		20cmx10cmx10cm

Validación: Tests mecánico

ID	Descripción	Criterio de aceptación
Aplicabilidad		
T-MEC-01 P-F	 Montar el dispositivo sobre la base de forma tal que se puedan agregar pesos al sistema. Agregar peso hasta alcanzar un peso equivalente a 3g teniendo en cuenta la masa 	El dispositivo debe poder soportar el peso correspondiente a una aceleración de 3g
T-MEC-02 P-F	 Montar el dispositivo en el Karting. Maniobrar el Karting de acuerdo a su uso general. 	Si el dispositivo completa correctamente la recta se considera apto.
T-MEC-03 P-F	 Montar el dispositivo en el Karting. Posicionar el Karting en un tramo recto. Realizar una aceleración total. 	Si el dispositivo completa correctamente la recta se considera apto.

Validación: Tests eléctricos

ID	Descripción	Criterio de aceptación
Aplicabilidad		
T-ELEC-01 P-F	 Conectar la fuente de alimentación variable. Elevar la tensión hasta el 90 % del umbral máximo esperado. Evaluar la zona de protección. 	El dispositivo sera aceptado si la protección soporta el test.
T-ELEC-02 P-F	 Configurar la protección de sobrecorriente para 5A. Elevar la corriente de salida hasta alcanzar los 5A. Lentamente elevar la corriente y evaluar que la protección funcione. 	El dispositivo sera aceptado si logra proteger frente al aumento de corriente.

Validación: Matriz de trazabilidad

Origen	Requerimiento	Especificación	Test
Concreto	REQ-01	ESP-FUN-02	T-BASIC-04
		ESP-FUN-03	
		ESP-FUN-04	
Concreto	REQ-02	ESP-FUN-03	T-FUNC-01
Concreto	REQ-03	ESP-FUN-04	T-FUNC-01
Concreto	REQ-04	ESP-FUN-03	T-FUNC-01
Concreto	REQ-05	ESP-FUN-03	T-FUNC-01
Concreto	REQ-06	ESP-DIM-01	T-DIM-01
Concreto	REQ-07	ESP-FUN-01	T-FUNC-03
Concreto	REQ-08	ESP-IMP-01	T-ELEC-02
Concreto	REQ-09	ESP-IMP-02	T-ELEC-01
Tácito	REQ-10	ESP-IMP-03	T-MEC-02
Tácito	REQ-11	ESP-IMP-04	T-MEC-03
Concreto	REQ-12	ESP-FUN-05	T-FUNC-02
Concreto	REQ-13	ESP-INT-01	T-INT-01
- C. LOCK - C.		ESP-INT-01	

PREGUNTAS

