學號:R06921084 系級: 電機碩一 姓名:陳治言

1. (1%)請比較有無 normalize(rating)的差別。並說明如何 normalize。 在 latent dimension 為 120, 使用 35 個 epoch, validation_split 採 用 0.1, dropout_rate 為 0.2 的情况之下:

mathred matrred matrred mathred matrred matr

使用(rating-mean)÷std:Public → 0.86216 Private → 0.86983

使用 rating÷5: Public \rightarrow 0.87354 Private \rightarrow 0.87590

感覺只對 rating 做 normalize 並無太大差別。

2. (1%)比較不同的 latent dimension 的結果。

使用 35 個 epoch, validation_split 採用 0.1, dropout_rate 為 0.2 的情况之下:

120: Public \rightarrow 0.86507 Private \rightarrow 0.86750

240: Public \rightarrow 0.86877 Private \rightarrow 0.87178

360: Public → 0.89038 Private → 0.88971

可以發現到, latent dimension 落在 100 至 200 之間,效果最佳。

3. (1%)比較有無 bias 的結果。

在 latent dimension 為 120, 使用 35 個 epoch, validation_split 採用 0.1, dropout_rate 為 0.2 的情況之下:

使用 bias: Public \rightarrow 0.86507 Private \rightarrow 0.86750

不用 bias: Public \rightarrow 0.91505 Private \rightarrow 0.91441

可以發現到, bias 所占的比重其實非常大, 如果沒有 bias 的存在, 容易導致訓練發生 underfitting 的情況。

4. (1%)請試著用 DNN 來解決這個問題,並且說明實做的方法(方法不限)。並比較 MF 和 NN 的結果,討論結果的差異。

在 latent dimension 為 120, 使用 35 個 epoch, validation_split 採用 0.1, dropout_rate 為 0.2 的情況之下, 預測結果會比 MF model 好,

二者的原理不太相同, MF 是使用 dot 來變成純量, 而 NN 則是使用 dense 來 歸化成純量,不過,如同老師上課所述,NN 的效果是可以贏過 MF 的。

	DNN model	MF model
Public	0.86171	0.86507
Private	0.86508	0.86750

DNN model

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 1)	0
input_2 (InputLayer)	(None, 1)	0
embedding_1 (Embedding)	(None, 1, 120)	724800
embedding_2 (Embedding)	(None, 1, 120)	474240
flatten_1 (Flatten)	(None, 120)	0
flatten_2 (Flatten)	(None, 120)	0
concatenate_1 (Concatenate)	(None, 240)	0
dropout_1 (Dropout)	(None, 240)	0
dense_1 (Dense)	(None, 120)	28920
dropout_2 (Dropout)	(None, 120)	0
dense_2 (Dense)	(None, 1)	121
Total params: 1,228,081 Trainable params: 1,228,081 Non-trainable params: 0		

MF model

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 1)	0
input_2 (InputLayer)	(None, 1)	0
embedding_1 (Embedding)	(None, 1, 120)	724800
embedding_2 (Embedding)	(None, 1, 120)	474240
flatten_1 (Flatten)	(None, 120)	0
flatten_2 (Flatten)	(None, 120)	0
dot_1 (Dot)	(None, 1)	0
Total params: 1,199,040 Trainable params: 1,199,040 Non-trainable params: 0		=======

5. (1%)請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來作圖。

使用下面的分類來做圖:

Drama,Musical	1
Thriller,Horror,Crime,Film-Noir	2
Adventure,Animation,Children	3
Comedy	4
Romance	5
Action,War	6
Mystery,Sci-Fi,Fantasy	7
Documentary	8
Western	9
No label	10

6. (BONUS)(1%)試著使用除了 rating 以外的 feature, 並說明你的作法和結 果, 結果好壞不會影響評分。

在 latent dimension 為 180, 使用 35 個 epoch, validation_split 採 用 0.1, dropout_rate 為 0.2 的情況, 並採用性別以及年齡, 並加上先前的 使用者以及電影共 4 個 embedding array, 將他們全部 concatenate 之 後, 丟到二層的神經網路之中訓練, 並分別使用 relu 以及 linear 來做 acti vation.

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 1)	0
input_2 (InputLayer)	(None, 1)	0
embedding_1 (Embedding)	(None, 1, 180)	1087200
embedding_2 (Embedding)	(None, 1, 180)	711360
input_3 (InputLayer)	(None, 1)	0
flatten_1 (Flatten)	(None, 180)	0
flatten_2 (Flatten)	(None, 180)	0
embedding_3 (Embedding)	(None, 1, 180)	360
input_4 (InputLayer)	(None, 1)	0
concatenate_1 (Concatenate)	(None, 360)	0
flatten_3 (Flatten)	(None, 180)	0
embedding_4 (Embedding)	(None, 1, 180)	2160
concatenate_2 (Concatenate)	(None, 540)	0
flatten_4 (Flatten)	(None, 180)	0
concatenate_3 (Concatenate)	(None, 720)	0
dropout_1 (Dropout)	(None, 720)	0
dense_1 (Dense)	(None, 180)	129780
dropout_2 (Dropout)	(None, 180)	0
dense_2 (Dense)	(None, 1)	181
Total params: 1,931,041 Trainable params: 1,931,041 Non-trainable params: 0		