AI-Based Ranking Model for Medical Tourism Destinations

Tech4Stack

February 2, 2025

Abstract

Medical tourism is an emerging sector where patients travel internationally for specialized treatments, cost-efficient healthcare, and high-quality medical services. This paper presents an AI-driven approach for ranking countries based on their medical tourism potential. A multi-criteria decision-making framework is developed, integrating healthcare, economic, and infrastructure-related parameters. We employ machine learning techniques such as **K-Nearest Neighbors (KNN) Imputation**, **Regression-Based Predictions**, and **Data Interpolation** to handle missing values dynamically. Finally, a weighted score function is formulated to rank the best destinations for medical tourism.

1 Introduction

Medical tourism involves traveling abroad to seek medical treatment. Factors influencing the choice of a country include:

- Availability of quality healthcare infrastructure.
- Cost-effectiveness compared to domestic healthcare.
- Ease of travel, visa policies, and accommodation.
- Economic and political stability.

To systematically evaluate countries, we propose a data-driven approach integrating economic, healthcare, and tourism statistics.

2 Data Collection

Data is obtained from multiple sources:

- World Bank API: Healthcare expenditure, hospital infrastructure, GDP per capita.
- United Nations World Tourism Organization (UNWTO): International tourist arrivals.
- OECD Economic Indicators: Business environment and stability indices.

The dataset consists of N countries with M indicators, forming a feature matrix $X \in \mathbb{R}^{N \times M}$.

3 Mathematical Formulation

To compute the **Medical Tourism Score**, we define four primary components:

3.1 Weighted Score Function

Each country is assigned a score based on:

$$S_i = w_1 H_i + w_2 E_i + w_3 G_i + w_4 T_i$$

where:

- $H_i = \text{Hospital Beds per 1,000 people}$
- E_i = Healthcare Spending per Capita (USD)
- $G_i = \text{GDP per Capita (USD)}$
- $T_i =$ Annual Tourist Arrivals (millions)

and the weights are set as:

$$w_1 = 0.4$$
, $w_2 = 0.3$, $w_3 = 0.2$, $w_4 = 0.1$

3.2 Normalization

Since indicators have different scales, we apply min-max normalization:

$$X'_{ij} = \frac{X_{ij} - \min(X_j)}{\max(X_j) - \min(X_j)}$$

This ensures that all values lie in the range [0, 1].

4 Handling Missing Data Using AI

Some countries have missing values in healthcare statistics. We employ the following methods:

4.1 K-Nearest Neighbors (KNN) Imputation

For missing values, we identify k closest neighbors and estimate:

$$X_{ij}^{(impute)} = \frac{1}{k} \sum_{n \in \mathcal{N}(i)} X_{nj}$$

where $\mathcal{N}(i)$ represents the nearest neighbors based on feature similarity.

4.2 Regression-Based Predictions

If KNN imputation is insufficient, we train a regression model:

$$X_{ij} = \beta_0 + \sum_{k=1}^{M} \beta_k X_{ik} + \epsilon_i$$

where β_k are regression coefficients and ϵ_i is the error term.

4.3 Interpolation for Time-Series Data

For missing historical trends, we use:

$$X_t = \frac{X_{t-1} + X_{t+1}}{2}$$

to estimate the missing value at time t.

5 Implementation and Results

5.1 Algorithm Workflow

The AI-based ranking system follows:

- 1. Retrieve global healthcare and economic indicators.
- 2. Apply KNN, Regression, and Interpolation for missing values.
- 3. Normalize all indicators using Min-Max scaling.
- 4. Compute **Medical Tourism Score** for each country.
- 5. Rank countries and visualize results.

5.2 Top 5 Medical Tourism Destinations

Table 1 shows the top-ranked destinations based on our model.

Country	Medical Tourism Score	GDP per Capita	Hospital Beds per 1,000
Thailand	0.92	\$7,800	2.1
India	0.89	\$2,200	1.5
Turkey	0.85	\$9,500	2.8
Mexico	0.83	\$10,000	1.7
South Korea	0.81	\$35,000	12.3

Table 1: Top 5 Medical Tourism Destinations

6 Conclusion and Future Work

This study presents a data-driven methodology for evaluating medical tourism destinations using AI. By integrating machine learning techniques, missing data handling, and real-time economic indicators, we provide an intelligent ranking system .

Future enhancements include:

- Deep Learning for Predictive Analysis: Training an AI model to forecast medical tourism trends.
- Real-Time Dashboard: Deploying a web-based tool for global comparisons.

• User-Specific Recommendations: Personalizing rankings based on patient preferences.

References

- World Bank Open Data API: https://data.worldbank.org
- OECD Economic Reports: https://www.oecd.org
- UNWTO Tourism Statistics: https://www.unwto.org/statistics