

Trabalho 3: Projeto prático - Adaline

Um sistema de gerenciamento automático de duas válvulas, situado a 500m de distância de um processo industrial, envia um sinal codificado constituído de quatro grandezas $x_1, x_2, x_3 e x_4$, que controlam seu acionamento. Uma mesma via de comunicação é utilizada para acionar ambas as válvulas, sendo utilizado um comutador para decidir se o sinal é para a válvula A ou B.

Entretanto, durante a comunicação, os sinais sofrem interferências que alteram o conteúdo das informações originalmente transmitidas. Para contornar esse problema, foi proposta a utilização de uma rede Adaline para classificar os sinais ruidosos, cujo objetivo é garantir ao sistema comutador se os dados devem ser encaminhados para o comando de ajuste da válvula A ou B.

Figura 1: Rede Adaline proposta. Adaptado de Silva, Spatti e Flauzino (2016)

Assim, fundamentado nas medições de alguns sinais já com ruídos, compilou-se o conjunto de treinamento que está disponível no Connect. Considera-se o valor -1 para os sinais da válvula A e +1 para a válvula B. A estrutura da rede Adaline necessária para essa aplicação é mostrada na figura abaixo.

Figura 2: Rede Adaline proposta. Adaptado de Silva, Spatti e Flauzino (2016)

Utilizando como método de treinamento a regra Delta, um valor de taxa de aprendizado η de 0,0025 e uma precisão desejada ϵ de 10^{-6} , pede-se:

- 1. Implemente o código da rede Adaline conforme as características do problema, utilizando sua linguagem de preferência.
- 2. Execute cinco treinamentos para a rede, iniciando o vetor de pesos sinápticos com diferentes valores aleatórios entre zero e um.

- 3. Registre os dados obtidos na Tabela 1.
- 4. Compare os pesos sinápticos finais obtidos nos diferentes treinamentos.
- 5. Use a rede Adaline já treinada para classificar os dados de teste disponíveis no Connect, e preencha a Tabela 2.

Tabela 1: Resultado dos treinamentos

Treinamento	Pesos iniciais				Pesos finais				Épocas	
	ω_0	ω_1	ω_2	ω_3	ω_0	ω_1	ω_2	ω_3	Бросав	
$1^{a} (t1)$										
$2^{a} (t2)$										
$3^{a} (t3)$										
$4^{a} (t4)$										
$5^{a} (t5)$										

Tabela 2: Amostras de óleo para a validação da rede

Amostra	x_1	x_2	x_3	x_4	y (t1)	y (t2)	y (t3)	y (t4)	y (t5)
1	0,9694	0,6909	0,4334	3,4965					
2	0,5427	1,3832	0,6390	4,0352					
3	0,6081	-0,9196	0,5925	0,1016					
4	-0,1618	0,4694	0,2030	3,0117					
5	0,1870	-0,2578	0,6124	1,7749					
6	0,4891	-0,5276	0,4378	0,6439					
7	0,3777	2,0149	0,7423	3,3932					
8	1,1498	-0,4067	0,2469	1,5866					
9	0,9325	1,0950	1,0359	3,3591					
10	0,5060	1,3317	0,9222	3,7174					
11	0,0497	-2,0656	0,6124	-0,6585					
12	0,4004	3,5369	0,9766	5,3532					
13	-0,1874	1,3343	0,5374	3,2189					
14	0,5060	1,3317	0,9222	3,7174					
15	1,6375	-0,7911	0,7537	0,5515					

Instruções: Deve ser entregue um relatório individual onde conste o código implementado, as tabelas preenchidas com os dados obtidos e as análises solicitadas, além de outras informações que vocês julgarem coerentes.

Créditos: Esse projeto prático é proposto por Silva, Spatti e Flauzino (2016).

Fontes para consulta:

- 1. Material didático da disciplina de Redes Neurais 1º semestre de 2023, Unisagrado.
- 2. Silva, Spatti e Flauzino. Redes Neurais Artificiais para Engenheria e Ciências Aplicadas. Editora Alibert, São Paulo, 2016.