GaSvm Software Manual

Daniel Babiak Daniel.Babiak@polsl.pl
Dariusz Kuchta Dariusz.Kuchta@polsl.pl
Grzegorz Mrukwa Grzegorz.Mrukwa@polsl.pl
Maciej Gamrat Maciej.Gamrat@polsl.pl
Michal Gallus Michal.Gallus@polsl.pl
Michal Wolny Michal.Wolny@polsl.pl
Roman Lisak Roman.Lisak@polsl.pl
Sebastian Pustelnik Sebastian.Pustelnik@polsl.pl
Wojciech Wilgierz Wojciech.Wilgierz@polsl.pl

26.10.2017

Abstract

GaSvm is a software for launching Genetic Algorithm for training set selection in Support Vector Machines classifier training.

Contents

Installation	1
Usage	2
Input specification	2
Output specification	3
Parameters	3
Final notes	3
References	3

Installation

GaSvm software itself needs no installation. Once the files are unpacked from the .zip archive, it can be used without further delay.

Usage

Interface of the application allows to provide all the options that are *available* to be used with GaSvm. Default settings comprise configuration representing pipeline used for MALDI IMS data processing that can potentially serve as a starting point for performing initial experiments.

Input specification

Input file is a text file constructed as follows:

- 1. Row with global metadata it can contain anything (unused for now).
- 2. Row with global m/z axis data has to be resampled before usage.
- 3. Data of each spectra, each consisting of two lines:
 - 1. Spatial coordinates of a spectrum (X, Y, and Z, separated with spaces). Please note, that Z coordinate is currently not used. Therefore each Z value can be safely set to zero.
 - 2. Intensity values for each m/z value specified above, separated with spaces. Their number **must** be equal to the number of elements in m/z axis. This is similar to imzML format in processed form.

Artificial test data (only for demonstration of this structure):

```
in this line are global metadata, which is discarded for now
899.99 902.58 912.04
1 1 0
12 20 0
2 1 0
9 18 13
1 2 0
5 10 20
2 2 0
14 2 19
```

This data cannot be used for testing the program itself; it is just a reference, how to format data file.

Sample **real** data file is available here. The same data set was used in G. Mrukwa, G. Drazek, M. Pietrowska, P. Widlak and J. Polanska, "A Novel Divisive iK-Means Algorithm with Region-Driven Feature Selection as a Tool for Automated Detection of Tumour Heterogeneity in MALDI IMS Experiments," in International Conference on Bioinformatics and Biomedical Engineering, 2016.

Output specification

This section is under construction.

Parameters

- 1. **Destination path** prefix of the experiment result files.
- 2. Input path location of the input dataset.
- 3. -TrainingSetSplitRate (Default: 0.7) training set split rate
- 4. -MutationRate (Default: 0.1) mutation rate
- 5. -BitSwapRate (Default: 0.1) rate of bit swaps
- 6. **–PreservationRate** (Default: 0.3) percentage of individuals treated as elite
- 7. -GenerationsNumber (Default: 50) number of generations
- 8. -NumberOfRestarts (Default: 30) number of time the experiment is repeated
- 9. -Seed (Default: 0) seed for the RNG
- 10. -PopulationSizes (Default: 10) population sizes used in the experiment
- 11. -InitialFillups (Default: 4) number of observations considered at the beginning of the experiment.
- 12. **-help** display help with the same informations

Final notes

In case of any questions, do not hesitate to contact us by mail.

References

This software is part of contribution made by Data Mining Group of Silesian University of Technology, rest of which is published here.

- Marczyk M, Polanska J, Polanski A: Comparison of Algorithms for Profile-Based Alignment of Low Resolution MALDI-ToF Spectra. In Advances in Intelligent Systems and Computing, Vol. 242 of Man-Machine Interactions 3, Gruca A, Czachorski T, Kozielski S, editors. Springer Berlin Heidelberg 2014, p. 193-201 (ISBN: 978-3-319-02308-3), ICMMI 2013, 22-25.10.2013 Brenna, Poland
- P. Widlak, G. Mrukwa, M. Kalinowska, M. Pietrowska, M. Chekan, J. Wierzgon, M. Gawin, G. Drazek and J. Polanska, "Detection of molecular

- signatures of oral squamous cell carcinoma and normal epithelium application of a novel methodology for unsupervised segmentation of imaging mass spectrometry data," Proteomics, vol. 16, no. 11-12, pp. 1613-21, 2016
- M. Pietrowska, H. C. Diehl, G. Mrukwa, M. Kalinowska-Herok, M. Gawin, M. Chekan, J. Elm, G. Drazek, A. Krawczyk, D. Lange, H. E. Meyer, J. Polanska, C. Henkel, P. Widlak, "Molecular profiles of thyroid cancer subtypes: Classification based on features of tissue revealed by mass spectrometry imaging," Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2016
- G. Mrukwa, G. Drazek, M. Pietrowska, P. Widlak and J. Polanska, "A Novel Divisive iK-Means Algorithm with Region-Driven Feature Selection as a Tool for Automated Detection of Tumour Heterogeneity in MALDI IMS Experiments," in International Conference on Bioinformatics and Biomedical Engineering, 2016
- A. Polanski, M. Marczyk, M. Pietrowska, P. Widlak and J. Polanska, "Signal partitioning algorithm for highly efficient Gaussian mixture modeling in mass spectrometry," PloS one, vol. 10, no. 7, p. e0134256, 2015