Exercice:

$$F_1 = \left\{ (x,y,z) \in \mathbb{R}^3; \quad x + y - z = 0 \right\} \quad F_2 = \left\{ (x,y,z) \in \mathbb{R}^3; \quad x + y + z = 0 \right\} \quad F_3 = \left\{ (x,y,z) \in \mathbb{R}^3; \quad x = y = z \right\} \quad F_4 = \left\{ (x,y,z) \in \mathbb{R}^3; \quad x = y = -z \right\}$$

Les sommes F_1+F_2 , F_1+F_3 , F_3+F_4 sont-elles directes? supplémentairés de \mathbb{R}^3 ?

Exercice:

Considérons $(a, b) \in \mathbb{R}^2$ et les s.e.v

$$F_1 = \left\{ (x,y,0) \in \mathbb{R}^3; \quad (x,y) \in \mathbb{R}^2 \right\} \quad F_2 = \left\{ (\lambda a, \lambda b, \lambda) \in \mathbb{R}^3; \quad \lambda \in \mathbb{R} \right\}$$

- 1. Mq $\mathbb{R}^3 = F_1 \oplus F_2$.
- 2. Mq si $F_3 = \{(x, y, z) \in \mathbb{R}^3; \quad x + y + z = 0\}$ $F_4 = \{(\lambda, 2\lambda, \lambda); \quad \lambda \in \mathbb{R}\}$ alors $\mathbb{R}^3 = F_3 \oplus F_4$
- 3. Vérifier que $\mathbb{R}^3 = F_1 + F_3$ mais cette somme n'est pas directe.