Data	Questão / Solução
2015-11-06 1ªF - Mª Clara Grácio & José Ribeiro & Luís Bicho	• $\lim_{n \to +\infty} \frac{(-1)^n n^2}{n^2 + 4}$ ∴ Não existe • $\lim_{n \to +\infty} \frac{3 + \cos(e^{-n})}{n! + \sqrt{n}} = 0$ ∴ "Infinitéssimo x limitada" • $\lim_{n \to +\infty} \sum_{k=1}^n \frac{2n}{3n^2 + k} = \frac{2}{3}$ ∴ Usar "enquadradas" • $\lim_{n \to +\infty} (n^2)^{\frac{n^2}{2}} (1 + n^2)^{\frac{n^2}{2}} = \frac{1}{\sqrt{e}}$ ∴ Usar exponencial de e • Sucessão definida por recorrência $u_n = \begin{cases} u_1 = e^e \\ u_{n+1} = \frac{2u_n + 3}{3}, n \ge 2 \end{cases}$ • Provar por indução matemática $u_n > 3, \forall n \in \mathbb{N}$. • Estudar a monotonia. ∴ Decrescente • Analisar a convergência. ∴ O limite é 3.
2015-07-01 Exame - Luís Bicho & Jorge Salazar	♦ Sucessão definida por recorrência $u_n = \begin{cases} u_1 = 1 \\ u_{n+1} = 1 - \frac{1}{1 + u_n}, n \ge 2 \end{cases}$ • Provar por indução matemática $u_n > 0, \forall n \in \mathbb{N}$. • Estudar a monotonia. ∴ Decrescente • Analisar a convergência. ∴ 0 limite é 0 .
2015-06-17 Exame - Luís Bicho & Jorge Salazar	$ \oint_{n \to +\infty} \frac{\sqrt{1 + 4n^2 + 4n^4} - n^2}{n^2 + 4n + 1} = 1 \therefore \text{ Usar o "conjugado"} $
2015-04-08 1ªF - Luís Bicho & Jorge Salazar	$ \oint_{n \to +\infty} (1 + 2n)^{1/n} = 1 \therefore \text{ Usar } \lim_{n \to +\infty} \sqrt[n]{u_n} $ $ \oint_{n \to +\infty} \left(1 - \frac{1}{2n}\right)^{n^2} \therefore \text{ Usar exponencial de } \mathbf{e} $
2015-03-28 1ªF - Luís Bicho & Jorge Salazar	$ \oint \lim_{n \to +\infty} \frac{1 - n^2}{1 + n + n^2} = -1 $ $ \oint \lim_{n \to +\infty} n - \sqrt{n + n^2} = -\frac{1}{2} \therefore \text{ Usar o "conjugado"} $
2015-01-05 Exame - Mª Clara Grácio & Feliz Minhós & Luís Bicho	$ \oint \lim_{n \to +\infty} \sqrt[n]{2^n + 3^n} = 3 \qquad \therefore \text{ Usar } \lim_{n \to +\infty} \sqrt[n]{u_n} $ $ \oint \lim_{n \to +\infty} \left(\frac{n^2 + 1}{n^2 - n + 3} \right)^{2n} = e^2 \qquad \therefore \text{ Usar exponencial de } \mathbf{e} $
2014-11-07 1ªF - Mª Clara Grácio & Feliz Minhós & Luís Bicho	♦ Sucessão definida por recorrência $u_n = \begin{cases} u_1 = 3 \\ u_{n+1} = \frac{3u_n - 2}{u_n}, n \ge 2 \end{cases}$ • Provar por indução matemática $u_n > 2, \forall n \in \mathbb{N}$. • Estudar a monotonia. ∴ Decrescente • Analisar a convergência. ∴ O limite é 2. • $\lim_{n \to +\infty} \frac{5 + \sin(n^2 + 1)}{n^2 + 1} = 0$ ∴ "Infinitéssimo x limitada"

Data	Questão / Solução
	$ \oint \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{\cos^2 n}{2n^2 + k} = 0 \therefore \text{ Usar enquadradas} $
2014-01-06 Exame - Mª Clara Grácio & Feliz Minhós & Luís Bicho	♦ Considere a sucessão $u_n = \sum_{k=1}^n \frac{1}{k^2}$
	• Calcule $u_3 - u_2 = \frac{1}{9}$
	$ullet$ Classifique u_n quanto à monotonia. \therefore Crescente
	• Prove que u_n é convergente. $\therefore \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \sum_{k=1}^n \frac{1}{k^2} = \sum_{k=1}^{+\infty} \frac{1}{k^2}$
	Esta é uma série de Dirichlet com α =2> 1 que é convergente. Assim a sucessão
	também é convergente pois o limite existe, é um número real.
	$ullet$ Justifique que u_n é limitada. Como a sucessão é crescente, todos os termos são
	superiores ao primeiro (um minorante). Por ser convergente e crescente, todos os
	termos são inferiores ao seu limite, digamos L. $1 \le u_n \le L$
2013-11-02 1ªF - Mª Clara Grácio & Feliz Minhós & Luís Bicho	♦ Provar por indução matemática que $\frac{2n}{3n+5} < \frac{2}{3}$, $\forall n \in \mathbb{N}$
	$ \oint \lim_{n \to +\infty} \left(\sqrt{n^4 + n^2 + 1} - (n^2 + 1) \right) = -\frac{1}{2} \therefore \text{ Usar o "conjugado"} $
	$ \oint \lim_{n \to +\infty} \sqrt[n]{\frac{n(n+1)}{4n^2 + n + 1}} = 1 \therefore \text{ Usar } \lim_{n \to +\infty} \sqrt[n]{u_n} $
	$ \oint \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{n}{n^2 + k} = 1 \therefore \text{ Usar enquadradas} $