Robot Control Learning Platform for Automation Engineers

Overview

Nobot Microcontroller Design

03 Laboratory

Library Design Laboratories **Robot Design** (COM + MCU)Research + Design function **Version 1** Design first draft Design Robot - Hardware Design - Basic Control **Version 2** - Circuit Design Form + Content - Wi-Fi - Testing Complete - Simulation **Version 3** Laboratory Sheets - Node.js

Robot

Text-Base Program

Framework Feature

Basic I/O Control

Graphical Program

02 Robot Microcontroller Design

Robot Design

Design 1

Disadvantages

- Too big
- Fixed kind of robot
- Battery is too big and too much current
- Use a lot of motor
- Have specific function

Design 2

Disadvantages

- Not flexible to work
- There are still specific function

Design 3

Advantages

- Any robot can be use
- Microcontroller board will support all type of robot

Microcontroller Design

PCB Design Version 1

PCB Design Version 2

FT232

MCU ESP32

ST Driver

Panel

PCB Design Version 3

DC Driver

MCU ESP32

Bluetooth

LED indicator (Status green, Internet connection blue)

Full Bridge 4 channels DC Motor Driver

4 Channels Stepper Motor Driver

Current 350 mA/channel

Bidirectional Stepper Motor Drive

> Voltage range 3.5V – 55V

USB to serial adapter converter

Front Panel (User Interface)

Laboratory

Lab Simulation

