Lecture 1 - DFAs

Eric A. Autry

Last time: Review Material

This time: Review of Graphs, DFAs

Next time: NFAs

Homework 1 will be assigned tonight through Sakai and due next Thursday in class.

- An undirected graph is a set of points with lines connecting some of them.
- ► The points are called the vertices, and the lines are called the edges.
- ► The number of edges at a particular vertex is the degree of that vertex.

- A path in a graph is a sequence of connected vertices.
- A simple path is a path that does not repeat vertices.
- ▶ A cycle is a path that starts and ends at the same vertex.
- A simple cycle is a cycle that contains at least three vertices, with the only repeated vertex being the first and last.

- ▶ A graph is connected if every two vertices have a path connecting them.
- A graph that is connected and contains no simple cycles is called a tree.
- A tree can contain a specially designated vertex called the root.
- ► The vertices of degree one in a tree, other than the root, are called leaves.

- A directed graph has arrows instead of lines to represent directed edges, where the connections are one-way.
- The outdegree of a vertex is the number of edges pointing out of the vertex.
- The indegree of a vertex is the number of edges pointing into the vertex.
- A path in which all the edges point in the same direction as its steps is called a directed path.
- ► A directed graph where every two vertices are connected by a directed path is called strongly connected.

Graphs - Notation

We can label the vertices in a graph (typically by numbering them), and can use these labels to create a mathematical representation of the graph:

- ▶ If a graph G contains vertices i and j, the pair (i,j) represents an edge connecting the two.
- ▶ In an undirected graph, the order of the pair does not matter, with (i,j) and (j,i) representing the same edge.
- In a directed path, the order of the pair matters: (i, j) is the edge pointing from i to j, while (j, i) is the edge pointing from j to i.
- ▶ If V is the set of vertices in a graph, and E is the set of edges, we say G = (V, E).

$$G = (\{1, 2, 3, 4\}, \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}).$$

Graphs - Subgraphs

We say that a graph H is a subgraph of a graph G if:

- ▶ The vertices in *H* are a subset of the vertices in *G*,
- ► The edges of *H* are the edges of *G* on the corresponding vertices.

Finite State Machines

aka

Finite Automata (singular: automaton)

Example: an automatic door

What if we want a one way door?

State Diagram of M_1

State Diagram of M_1

- ▶ This image is the state diagram of the automaton M_1 .
- ▶ M_1 has 5 states labeled q_0 , q_1 , q_2 , q_3 , and q_4 .
- ▶ The start state is q_0 as indicated by the wedge on the left.
- ▶ The accepting states are q_3 and q_4 as indicated by the double circle.
- The labeled arrows between states are transitions.

When a finite automaton is given an input string, it processes that string and produces an output: it either accepts or rejects the string.

Ex: 1001101

Let's experiment with some strings: ε , 0, 1, 00, 01, 11, 101

State Diagram of M_1

Start		an						
Otart		q_0	-	ε	-	q_0	-	Reject
1	\rightarrow	q_1		0		10	_	Reject
0	\rightarrow	q_1		U	_	q_2	_	-
				1	-	q_1	-	Reject
0	\rightarrow	q_1		00	_	q_4	-	Accept
1	\rightarrow	q_3				94		•
4		10		01	-	q_2	-	Reject
1	\rightarrow	q_3		11	_	q_3	_	Accept
0	\rightarrow	q_1				43		•
4		41		101	-	q_3	-	Accept
1	\rightarrow	q_3						•

Accept string 1001101 in state q_3 .

It accepts strings that being and end with the same symbol AND that are at least length 2.

Formal Definition

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set of symbols called the alphabet,
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function,
- 4. $q_0 \in Q$ is the start state,
- 5. $F \subseteq Q$ is the set of accepting states.

Formal Definition - Example

For our example machine M_1 , we have:

- 1. $Q = \{q_0, q_1, q_2, q_3, q_4\},\$
- 2. $\Sigma = \{0, 1\},\$
- 3. δ is defined by:

$$\delta(q_0, 0) = q_2, \quad \delta(q_0, 1) = q_1,$$
 $\delta(q_1, 0) = q_1, \quad \delta(q_1, 1) = q_3,$
 $\delta(q_2, 0) = q_4, \quad \delta(q_2, 1) = q_2,$
 $\delta(q_3, 0) = q_1, \quad \delta(q_3, 1) = q_3,$
 $\delta(q_4, 0) = q_4, \quad \delta(q_4, 1) = q_2.$

- 4. q_0 is given as the start state,
- 5. $F = \{q_3, q_4\}.$

Recognizing Languages

Recall: a language is a set of strings.

If A is the set of all strings that a machine M accepts, we say that A is the language of the machine M, and write L(M) = A.

We say that machine M recognizes language A.

It is also valid to say machine M accepts language A, but this terminology can get confusing.

Ex:

 $L(M_1) = \{w \mid w \text{ starts and ends with the same symbol and } |w| \ge 2\}$

Regular Languages

Definition:

A language is called a regular language if some finite automaton recognizes it.

1.
$$Q = \{q_0, q_1\},\$$

2.
$$\Sigma = \{0, 1\},\$$

3. δ is defined by:

	0	1
q_0	q_0	q_1
q_1	q_0	q_1

- 4. q_0 is given as the start state,
- 5. $F = \{q_1\}.$

ε	-	Reject	11	-	Accept
0	-	Reject	10	-	Reject
1	-	Accept	101	-	Accept
00	-	Reject	010	-	Reject
01	-	Accept	110	-	Reject

- $ightharpoonup q_0$ is the state 'empty or the last thing we saw was a 0'
- $ightharpoonup q_1$ is the state 'the last thing we saw was a 1'

Since we accept in state q_1 :

$$L(M_2) = \{ w \mid w \text{ ends in } 1 \}.$$

Example M₃

Swapped accepting states.

1.
$$Q = \{q_0, q_1\},\$$

2.
$$\Sigma = \{0, 1\},\$$

3. δ is defined by:

$$\begin{array}{c|cc} & 0 & 1 \\ \hline q_0 & q_0 & q_1 \\ q_1 & q_0 & q_1 \end{array}$$

4. q_0 is given as the start state,

5.
$$F = \{q_0\}.$$

Now:

$$L(M_3) = \{w \mid w = \varepsilon \text{ or } w \text{ ends in } 0\}.$$

Designing DFAs

How to create a DFA? Think like the machine:

- Step 1: What information do we need to store? What should our states be in order to store that information?
- Step 2: Which state is the starting state?
- Step 3: Which state(s) are the accepting state(s)?
- Step 4: Fill in the transitions one state at a time.

Create a DFA that recognizes the language:

 $L(M_4) = \{w \mid w \text{ has an even number of 1's}\}.$

- Step 1: What info?
 - Even 1's vs Odd 1's. Have two states.
- Step 2: Starting state?
 - ► Empty string has even number of 1's. Start in state *qEven*.
- Step 3: Accepting state(s)?
 - ▶ Want even number of 1's, so *qEven*.
- Step 4: Transitions?

Example M₅

Create a DFA that recognizes the language:

$$L(M_5) = \{w \mid w \text{ contains at least three 0's}\}.$$

- Step 1: What info?
 - Number of 0's: q₀, q₁, q₂, q₃+
- Step 2: Starting state?
 - ▶ Empty string has zero 0's. Start in state q_0 .
- Step 3: Accepting state(s)?
 - ▶ Want at least three 0's. So accept state q_{3+} .
- Step 4: Transitions?

What if we change the language to:

$$L(M_5) = \{w \mid w \text{ contains exactly three 0's}\}$$
?

Need a new state for more than three 0's seen: q_{4+} .

Consider the alphabet:

$$\Sigma = \{0, 1, 2\}.$$

Create a DFA that recognizes the language:

 $L(M_7) = \{w \mid \text{the sum of the digits of } w \text{ is divisible by } 3\}.$

- Step 1: What info?
 - ▶ Modulo 3: q₀, q₁, q₂
- Step 2: Starting state?
 - ▶ Empty string's digits sum to 0, so start in q_0 .
- Step 3: Accepting state(s)?
 - ▶ Multiples of 3 are 0 mod 3. So accept q₀.
- Step 4: Transitions?

Regular Operations

Let A and B be languages.

- ▶ Union: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$
- ▶ Concatenation: $A \circ B = \{w_1w_2 \mid w_1 \in A \text{ and } w_2 \in B\}$
- ▶ Star: $A^* = \{w_1w_2 \dots w_k \mid k \ge 0 \text{ and each } w_i \in A\}$
 - ▶ What if k=0?
 - $\epsilon \in A^*$

Regular Operations - Examples

- $\blacktriangleright \mathsf{Let}\, A = \{good,\ bad\}$
- $\blacktriangleright \mathsf{Let} B = \{dog, \ cat\}$

$$A \cup B = \{good, bad, dog, cat\}$$

$$A \circ B = \{gooddog, goodcat, baddog, badcat\}$$

 $A^* = \{ \varepsilon, good, bad, goodgood, badbad, goodbad, badgood, goodgoodgood, goodgoodbad, ... \}$

Union

Can we prove that regular languages are closed under the union operation?

In other words, can we prove that if A and B are regular languages, then $A \cup B$ is also a regular language?

Idea: Recall that a regular language is one that can be recognized by a finite automaton. So, let's build an automaton.

Union

Can we prove that if A and B are regular languages, then $A \cup B$ is also a regular language?

Since A and B are regular languages, we know that there must exist a machine M_1 that recognizes A and a machine M_2 that recognizes B.

Our goal is to create a machine M that recognizes $A \cup B$ using machines M_1 and M_2 .

Can we just run M_1 , see if that works, then run M_2 ?

Nope. We can't rewind the input!