

CS/IS F214 Logic in Computer Science

MODULE: PROPOSITIONAL LOGIC

Completeness of Propositional Logic

09-09-2018 Sundar B. CS&IS, BITS Pilani 0

Completeness

Definition:

- A proof system for a logic is said to be *complete* if all true statements in the logic are provable using the proof system.
- A logic is said to be *complete* if it admits a complete proof system.

Completeness of Propositional Logic

- Theorem (Completeness of Propositional Logic):
 - Let \square_1 , \square_2 , ... \square_n and \square be propositional logic formulas.

If \square_1 , \square_2 , ... \square_n |= \square holds then \square_1 , \square_2 , ... \square_n |- \square is valid. i.e.

- if a propositional logic formula is true given a set of premises
- then the formula is provable from those premises (using Natural Deduction)

Outline of the Proof

- Outline of the proof of completeness of propositional logic:
 - Assume \square_1 , \square_2 , ... \square_n $| = \square$.
 - The proof proceeds in three steps:
 - 1. Show that $|= \square_1 --> (\square_2 --> (\square_3 --> (... \square n --> \square)...)))$ holds
 - 2. Show that $|-\square_1 --> (\square_2 --> (\square_3 --> (... \square n --> \square)...))$ is valid (<u>assuming 1</u>).
 - 3. Show that $\square_1, \square_2, ... \square_n$ |- \square is valid <u>assuming 2</u>

Proof of Completeness – Step 1

Given

$$\square_1$$
, \square_2 , ... \square_n |= \square

show that

$$|= \square_1 \longrightarrow (\square_2 \longrightarrow (\square_3 \longrightarrow (\dots \square_n \longrightarrow \square)\dots)))$$

Proof of Completeness – Proof of Step 1

Given

$$\square_1$$
, \square_2 , ... $\square_n \mid = \square$

show that

$$|= \square_1 \longrightarrow (\square_2 \longrightarrow (\square_3 \longrightarrow (\dots \square_n \longrightarrow \square)\dots)))$$

- Proof:
 - If $\square_1 \mid = \square_2$ then when \square_1 is true \square_2 is also true. i.e. $\square_1 \longrightarrow \square_2$ is true (by truth table).
 - By repeated application of the above step:

• if
$$\square_1$$
, \square_2 , ... \square_n |= \square

- then $|= \square_1 \longrightarrow (\square_2 \longrightarrow (\square_3 \longrightarrow (... \square_n \longrightarrow \square)...)))$
 - i.e. $\square_1 \longrightarrow (\square_2 \longrightarrow (\square_3 \longrightarrow (... \square_n \longrightarrow \square)...)))$ is a *tautology*, which means it is true under all evaluations.

Proof of Completeness – Step 2

- Theorem T-T:
 - Every tautology (in propositional logic) is a theorem (i.e. it is provable):
 - i.e. if $| = \square$ holds then $| \square$ holds.
- Applying Theorem T-T on the tautology from Step 1:
 - Since $|= \square_1 --> (\square_2 --> (\square_3 --> (... \square_n --> \square)...)))$ holds $|-\square_1 --> (\square_2 --> (\square_3 --> (... \square n --> \square)...)))$ is valid

[Caveat: We have to prove Theorem T-T. End of Caveat]

Proof of Completeness – Step 3

Given

•
$$|-\square_1 --> (\square_2 --> (\square_3 --> (... \square n --> \square)...)))$$
 is valid

show that

	1,	21	•••	n	-	i	is v	alid	d
	17	Z	•••	n ı	'			••••	•

Proof of Completeness – Proof of Step 3

Given

•
$$|-\square_1 --> (\square_2 --> (\square_3 --> (... \square n --> \square)...)))$$
 is valid

show that

•
$$\square_1$$
, \square_2 , ... \square_n |- \square is valid.

• Proof:

- Consider the proof for the sequent: $|-\square 1 --> \square 2$
 - Prefix the proof with $\square 1$ as a premise.
 - Apply --> e to conclude \square **2.**
 - This is a proof of the sequent $\square 1 \mid \square 2$
- Repeated application of the previous step on the proof of

will yield a proof of

