

Team Name	NPCompete			
Participant Name	Institute	Degree	Year	Branch
Anuprava Chatterjee	IIT Kharagpur	B.Tech	2017-2021	Electrical Engineering
Prabhpreet Singh Sodhi	IIT Kharagpur	B.Tech	2017-2021	Computer Science
Prashant Shishodia	IIT Kharagpur	B.Tech	2017-2021	Computer Science

KSHITIJ 2019 – IIT KGP

SIEMENS PLM

NX Teamcenter Simcenter Tecnomatix Mindsphere PLM Components Polarion Mentor Manufactuing OperationsCenter Solid Edge TIA Portal

Problem Statement - 01

Problem as we understood:

- Necrosis during Hip Arthroplasty, is caused when temperature around the cells go above 55 degrees. This causes pain, and may lead to further complications.
- So our goal is to make appropriate predictions based on datasets, about safe values of RPM, and predict temperature from sensor data.

KSHITIJ 2019 – IIT KGP

SIEMENS PLM

Project HARNEAS: Hip Arthroplasty Necrosis Avoidance Device

Salient Features

- Temperature predictions based on parameters, learned from previous executions.
- Appropriate notifications and alerts, based on both expected and received data.
- Includes a detailed analysis of **approximate allowable parameters** under different conditions as a pre-operation instruction to the medical professional.

Basic Technicalities

- Machine Learning Model, based on mathematical regression and anomaly detection techniques
- WebApp, based on VanillaJS, HTML, CSS frameworks, FileUploader API and JSON management, POSTMAN
- Mindsphere tools: Time Series API, Cloud Foundry, cfd cli
- And, our favourite, Git!

Prediction Accuracy: 97.8%

Datasets given to us

Business Utility and Applications

- Makes surgeries painless, hence improving customer satisfaction.
- Reduces the probability of doctors committing accidental errors, and hence increasing reputation
- Highly cost-effective, since it doesn't need any servers, or memory space. Everything is in frontend.
- Easy to operate. Hence, no special training required, even for amateurs.

Further Scope for Improvement

- Personalised prediction based on user's demography and past operation records (if any)
- Reinforcement Learning (RL) based models which responds dynamically to new data received on the go
- Incorporating larger and more versatile datasets
- Real-time integration with the sensors of acetabular reamer, with an efficient feed-back mechanism

Limitations

- Since its a machine learning model, outcome depends on how large the datasets are, and the technology used.
- Prone to errors for the situations of unseen outliers.

THANK YOU !!