## Description Logics

Natalie Parde UIC CS 421

# Description Logics

- How to add increased structure to semantics defined by models so far?
  - Description Logics: Different logical approaches that correspond to subsets of first-order logic
- More specific constraints make it possible to model more specific forms of inference

### **Description Logics**

- Represent knowledge about:
  - Categories
  - Individuals who belong to those categories
  - Relationships that can hold among those individuals
- Terminology: The set of categories comprising a given application domain
- TBox: The portion of the knowledge base containing the terminology
- ABox: The portion of the knowledge base containing facts about individuals
- Ontology: Hierarchical representation of subset/superset relations among categories

#### Representation



## Hierarchical Structure

- Can be directly specified using subsumption relations between concepts
  - Subsumption: All members of category C are also members of category D, or  $C \sqsubseteq D$



### **Category Membership**

- Coverage or disjointness can be further specified using logical operators
  - Italian Restaurant 

     NOT Greek Restaurant
  - Restaurant ⊑
     OR (Italian Restaurant, Greek Restaurant, Mediterranean Restaurant)

### **Category Membership**

- Relations provide further information about category membership
  - Italian Cuisine 

    □ Cuisine
  - Italian Restaurant  $\square$  Bestaurant  $\square$  Bhas Cuisine. Italian Cuisine  $\neg$  VxItalian Restaurant  $\neg$  Restaurant  $\neg$  N ( $\exists y \text{Serves}(x, y) \land \text{Italian Cuisine}(y)$ )

#### **Hierarchical Structure**

- Relations also allow us to explicitly define necessary and sufficient conditions for categories
  - Italian Restaurant 

    □ Bestaurant □ BhasCuisine.ItalianCuisine
  - Greek Restaurant 

    ☐ BhasCuisine.GreekCuisine

#### Inference

- Subsumption as a form of inference
  - Based on the facts in our terminology, does a superset/subset relationship exist between two concepts?

