1.

a. the size of shamt is determined by the size of the memory over the number of registers.

Since shamt is 6 bits, shamt = $log_2(x) = 6$ bits, x = 64

So, 2KB / number of registers = 64bits, 16384 / 64 = 256

Number of registers = 256

b. For R-type, rs + rd + rt = 64bits - (opcode + shamt + fucnt) = 64 - (10 + 6 + 24) = 24So, It has 24 / 3 = 8 bit for each, rs, rt, rd.

For I-type, there are opcode, rs, rt, and immediate.

So I-type has 38 bits for immediate.

Since 2's complement form is used, the range is $[-2^{37}, 2^{37}-1]$

c. To get the maximum number of instructions, it needs to add up all three R-type, I-type, I-type instructions.

opcode is 0X0 for R-type and fucnt has 24 bit on the graph, so it has $2^{24} = 16,777,216$ instructions.

For J and I type has 10bit for opcode 2^{10} - 1 = 1023 instructions So, **16,778,239** instructions in total.

d. Since memory has 32GB, $(1GB = 2^{30} \text{ byte})$

 $32 \text{ GB} = 32 * 2^{30} \text{ byte} = 34359738368 \text{ byte} * (8 \text{ bit/1byte}) = 274877906944 \text{ bit}$

274877906944 /32 = 8589934592 address buckets.

 $\log_2(8589934592) = 33$

It has 33 address ports.

- e. Since the memory is running with 1.2 GHz clock, the processor's clock period T = 1/frequency = 1 / 1.2 GHz = 0.833*10-9 sec = 0.833 ns.
- f. Since Write transaction is 25% with 10 % of write operation right after read operation,
- 4 million * 0.75 = 3 million of read transaction
- 4 million * 0.25 * 0.9 = 0.9 million of write transaction
- 4 million * 0.25 * 0.1 = 0.1 million of write/read transaction

Since this memory need one cycle to complete read and write request and need another one more cycle for read/write request,

3 million * 1 cycle = 3 million cycle

0.9 million * 1 cycle = 0.9 million cycle

0.1 million * 2 cycle = 0.2 million cycle

Total clock cycle is 4.1 million cycle

4.2 million clock cycle * (0.833 ns / 1 clock cycle) * $(1*10^{-6} \text{ ms} / 1 \text{ ns}) = 3.4153 \text{ms}$ But, since 4 million 64 bit data transaction 3.4153 ms * 2 = 6.8306 ms 2.

a. TiLaSoDoReMiFa =
$$(6540123)_7$$

= $(6*7^6 + 5*7^5 + 4*7^4 + 0*7^3 + 1*7^2 + 2*7^1 + 3*7^0) = (799599)_{10}$

Divide by	Quotient	Remainder	
7	1546781		
7	220968	5(La)	
7	31566	6(Ti)	
7	4509	3(Fa)	
7	644	1(Re)	
7	92	0(Do)	
7	13	1(Re)	
7	1	5(La)	
	0	1(Re)	

b. $(1546781)_{10}$ = LaTiFaReDoReLaRe

a.
$$F(x, y, z) = x'z + xy = x'z(y + y') + xy$$

 $= x'y'z + x'yz + xy$
 $= x'y'z + y(x'z + x)$
 $= x'y'z + y((x+x')(x+z)$
 $= x'y'z + y(x+z)$
 $= x'y'z + yz + xy$

c.

X	Y	Z	x'z + xy	x'y'z + yz + xy
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

d.

a	b	c	d	a'b'c'd' + a'b'cd + a'b'cd' + ab'c'd' + ab'cd' + ab'cd' +	b'(c+d')
0	0	0	0	1	1
0	0	0	1	0	0
0	0	1	0	1	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	1	1
1	0	0	1	1	0
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

4.

- a. $f(A,B,C,D)=\sum m(0,5,7,8,10,12,14,15)$
 - Prime implicants = ad' + a'bd + bc'd' + bcd + abc
 - Essential prime implicants = ad' + a'bd + bc'd' + bcd

OR

$$ad' + a'bd + bc'd' + abc$$

b.
$$f(w, x, y, z) = \sum_{x} m(1,3,4,7,11) + d(5, 12, 13, 14, 15)$$

- Prime implicants = yz + w'z + xy'
- Essential prime implicants = yz + w`z + xy`

W	X	Y	Z	Decimal	output
0	0	0	0	0	1
0	0	0	1	1	1
0	0	1	0	2	1
0	0	1	1	3	1
0	1	0	0	4	0
0	1	0	1	5	0
0	1	1	0	6	1
0	1	1	1	7	0
1	0	0	0	8	0
1	0	0	1	9	1
1	0	1	0	10	0
1	0	1	1	11	0
1	1	0	0	12	1
1	1	0	1	13	1
1	1	1	0	14	1
1	1	1	1	15	1

So, $f(w, x, y, z) = \sum m(0, 1, 2, 3, 6, 9, 12, 13, 14, 15) = w'x' + w'yz' + wx + wy'z$

