Chapter 26: Independent Continuous RVs

Meike Niederhausen and Nicky Wakim

2023-11-15

Table of contents

- Learning Objectives
- How do we represent independent continuous RVs in a joint pdf?
- Constructing a joint pmf from two independent, continuous RVs
- Constructing a joint pmf from two independent, continuous RVs
- Showing independence from joint pmf
- Showing independence from joint pmf
- Example
- Final statement on independence

Learning Objectives

- 1. Show that a joint pdf consists of two independent, continuous RVs.
- 2. Combine two independent RVs into one joint pdf or CDF.

How do we represent independent continuous RVs in a joint pdf?

What do we know about independence for events and discrete RVs?

For events: If $A \perp B$

$$P(A \cap B) = P(A)P(B)$$

$$P(A|B) = P(A)$$

For discrete RVs: If $X \perp Y$

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

$$p_{X|Y}(x|y) = p_X(x)$$

$$p_{Y|X}(y|x) = p_Y(y)$$

What does it mean for continuous r.v.'s to be independent?

For continuous RVs: If $X \perp Y$

Constructing a joint pmf from two independent, continuous RVs

Example 1.1

Let X and Y be independent r.v.'s with $f_X(x) = \frac{1}{2}$, for $0 \le x \le 2$ and $f_Y(y) = 3y^2$, for $0 \le y \le 1$.

1. Find $f_{X,Y}(x,y)$.

Constructing a joint pmf from two independent, continuous RVs

Example 1.2

Let X and Y be independent r.v.'s with $f_X(x) = \frac{1}{2}$, for $0 \le x \le 2$ and $f_Y(y) = 3y^2$, for $0 \le y \le 1$.

2. Find

$$\mathbb{P}(0 \le X \le 1, 0 \le Y \le \frac{1}{2}).$$

Showing independence from joint pmf

Example 2.1

Let
$$f_{X,Y}(x,y) = 18x^2y^5$$
, for $0 \le x \le 1$, $0 \le y \le 1$.

1. Are X and Y independent?

Showing independence from joint pmf

Example 2.2

Let
$$f_{X,Y}(x,y) = 18x^2y^5$$
, for $0 \le x \le 1$, $0 \le y \le 1$.

2. Find $F_{X,Y}(x,y)$.

Example

Do this problem at home for extra practice. The solution is available in Meike's video!

Example 3

Let
$$f_{X,Y}(x,y) = 2e^{-(x+y)}$$
, for $0 \le x \le y$. Are X and Y independent?

Final statement on independence

- 1. If $f_{X,Y}(x,y) = g(x)h(y)$, where g(x) and h(y) are pdf's, then X and Y are independent.
 - The domain of the joint pdf needs to be independent as well!!

- 2. If $F_{X,Y}(x,y) = G(x)H(y)$, where G(x) and H(y) are cdf's, then X and Y are independent.
 - The domain of the joint CDF needs to be independent as well!!