

Logik

Anmerkung. Mit * versehene Aufgaben, machen Sie bitte vorab. Diese werden in der Vorlesung sofort vorgetragen (ohne eigene Bearbeitungszeit).

Fragen?

Formalisieren.

- 1. * "Hans spielt Tennis, aber er läuft nicht gern."
- 2. Vor einer Wirtschaft steht auf einem Schild: "Dienstag ist Ruhetag".
 - a) * Wie verstehen Sie das (im Alltag)?
 - b) Wie würden sie das Formalisieren? D: Es ist Dienstag, R: Es ist Ruhetag
 - i. $D \Rightarrow R$
 - ii. $R \Rightarrow D$
 - iii. $D \Leftrightarrow R$
- 3. * "Es gibt einen Studenten, der programmieren kann."
- 4. "Zu jedem Schloss passt ein Schlüssel."
- 5. Negieren Sie 1., 3. und 4.

Lösung.

H: "Hans spielt Terriss"

L: "Hans laight gerne"

H 1 - L

- 2. a) Dienstag geschlossen, soust offen!
 - b) i) D ⇒ R: Am Di & Ruhdag V

Über Mi- Mo ist heine dusage getroffen: is konnte offen oder geschlossen sein (ex folso quadliset) X

n) R ⇒ D: Nur der Di kann ein Ruhetay sein ✓

Di muss aber kein Ruhehag sein X

$$\frac{R \mid D \mid R \Rightarrow D}{O \mid A \mid A \mid R \Rightarrow D} \text{ widerspricht } R \Rightarrow D \text{ widerspricht } R \Rightarrow D \text{ wider}$$

 \ddot{u}) $(R \Rightarrow D) \Leftrightarrow (D \Rightarrow R) \land (R \Rightarrow D)$

(=> Dienstag ist Ruheteg A Nur Di kaum Eulistag sein, kein anderer

3. S = Mouse aller Studenten $P(x) : _{11} \times \text{ kaun programmlesu}^{11}$

∃x∈S: P(x).

4. K = Menge aller Schlisser L = Menge aller Schlösser P(X, Y) : "Y passt in X"Eigener Lösungsversuch.

5. 7(HATL) (>) TH V TTL (>) TH V L "Hans spielt will Tennis oder er lauft gern"

Besirden!

- (JxES P(x)) (=> YxES, -P(x) Kain Fludent harm Programming

- (∀x eL ∃yek: P(x,y)) ⇒ ∃xeL ∀yek: -1P(x,y) Es jibt ein Schlass, wo kein Schlüssel passt!

Wahrheitstafeln.

- 1. * Kontraposition. Zeigen Sie: $(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$ ist eine Tautologie.
- 2. Negation von " \Leftrightarrow ". Bestimmen Sie eine zu $\neg(P \Leftrightarrow Q)$ äquivalente Aussage (Hinweis: Machen Sie eine Wahrheitstafel).

WIEDERHOLUNG NEGATION:

a)
$$\neg (P \land Q) \iff \neg P \lor \neg Q$$

b) $\neg (P \lor Q) \iff \neg P \land \neg Q$
c) $\neg (P \Rightarrow Q) \iff P \land \neg Q$
d) $\neg (\neg P) \iff P$
e) Fehlt noch: $\neg (P \Leftrightarrow Q) \iff P \oplus Q$
f) Fehlt noch: $\neg (P \oplus Q) \iff P \Leftrightarrow Q$

b)
$$\neg (P \lor Q) \iff \neg P \land \neg Q$$

Lös	Sung. P Q O A A O A A	A A A A A A A A A A A A A A A A A A A	2 ¬Q ¬¬ Λ	1	1P A⇔B 1 1 1 1 1 1 1 1 1	. uma wal	hr, clos Tautoles	fie
2.	P Q 0 0 0 0	POQ	7 (P⊜Q) 0 1	P@Q 0	-1/20/2/(Pva)	(7)=Q 0 1	P=7Q 0 1	
	^ 0	\ 0	1 1	Λ	Λ	Λ Ι	Λ	

Eigener Lösungsversuch.

Barbier-Paradoxon. Der Barbier eines Dorfes rasiert all jene und nur jene Dorfbewohner, die sich nicht selbst rasieren. Rasiert sich der Barbier selbst?

Lösung.

Fall 1. Er rasiert sich selbst & zur Aussage: er rasiert nur jene, die sich nicht sellst rasieren

Fall 2. Er rasissert sich nicht sethst & er rasiert all jene, die sich nichtsethst rasieren.

-> Paradoxon (typ: Russell'sche Intimonie)

Lösung des Paradoxons mit Pradikaten Epik:

D: Marge aller Oarfbewolner, R(x,y): x rooiert y

d.h. die Aussaye ist falsch, d.h. Negation ist walr:

- (]xE)) jet wals, d.h. es gibt beeinen solchen Bartier!

Eigener Lösungsversuch.