Section 3.5 – Exponential and logarithmic Equations

Exponential Equations

$$b^{\mathbf{M}} = b^{\mathbf{N}} \iff \mathbf{M} = \mathbf{N} \text{ for any } b > 0, \neq 1$$

Example

Solve
$$5^{3x-6} = 125$$

Solution

$$5^{3x-6} = 5^3$$

$$3x - 6 = 3$$

$$3x = 9$$

$$x = 3$$

Example

Solve
$$8^{x+2} = 4^{x-3}$$

Solution

$$\left(2^3\right)^{x+2} = \left(2^2\right)^{x-3}$$

$$2^{3(x+2)} = 2^{2(x-3)}$$

$$3(x+2) = 2(x-3)$$

$$3x + 6 = 2x - 6$$

$$3x - 2x = -6 - 6$$

$$x = -12$$

Using Natural Logarithms

1. Isolate the exponential expression

2. Take the natural logarithm on both sides of the equation

3. Simplify using one of the following properties: $\ln b^x = x \ln b$ or $\ln e^x = x$

4. Solve for the variable

Example

Solve: $7e^{2x} - 5 = 58$

Solution

$$7e^{2x} - 5 = 58$$

$$7e^{2x} = 63$$

$$e^{2x} = 9$$

$$\ln e^{2x} = \ln 9$$

$$2x = \ln 9$$

$$x = \frac{\ln 9}{2} \approx 1.0986$$

Isolate the exponential expression

Divide by 7 both sides

Natural logarithm on both sides

Use inverse Property

Example

Solve the equation $3^x = 21$

Solution

1 st method		2 nd method	
$3^x = 21$	ln both sides	$3^x = 21 \Rightarrow x = \log_3 21$	Convert to log form
$\ln 3^x = \ln 21$		$x = \frac{\ln 21}{\ln 3}$	Change of base
$x \ln 3 = \ln 21$		ln 3	crowing of ourse
$x = \frac{\ln 21}{\ln 3}$			

Example

Solve:
$$3^{2x-1} = 7^{x+1}$$

Solution

$$\ln 3^{2x-1} = \ln 7^{x+1}$$

 $(2x-1)\ln 3 = (x+1)\ln 7$

$$2x \ln 3 - \ln 3 = x \ln 7 + \ln 7$$

$$2x\ln 3 - x\ln 7 = \ln 3 + \ln 7$$

$$x(2\ln 3 - \ln 7) = \ln 3 + \ln 7$$

$$x = \frac{\ln 3 + \ln 7}{2 \ln 3 - \ln 7} \quad \approx 12.1143$$

Natural logarithm on both sides

Power Rule

Example

Solve the equation
$$\frac{5^x - 5^{-x}}{2} = 3$$

Solution

$$5^{x} - 5^{-x} = 6$$

Multiply by 2 both sides

$$5^{x}5^{x} - 5^{-x}5^{x} = 65^{x}$$

 $5^x 5^x - 5^{-x} 5^x = 65^x$ Multiply by 5^x both sides

$$\left(5^{x}\right)^{2} - 1 = 6\left(5^{x}\right)$$

$$(5^x)^2 - 6(5^x) - 1 = 0$$

$$5^{x} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4(1)(-1)}}{2(1)} = \frac{6 \pm \sqrt{40}}{2} = \frac{6 \pm 2\sqrt{10}}{2} = \begin{cases} 3 + \sqrt{10} \\ 3 - \sqrt{10} < 0 \end{cases}$$

$$5^{x} = 3 + \sqrt{10}$$

$$\ln 5^{x} = \ln \left(3 + \sqrt{10}\right)$$

$$x\ln 5 = \ln\left(3 + \sqrt{10}\right)$$

$$x = \frac{\ln\left(3 + \sqrt{10}\right)}{\ln 5} \qquad \approx 1.13$$

Logarithmic Equations

- 1. Express the equation in the form $\log_b M = c$
- 2. Use the definition of a logarithm to rewrite the equation in exponential form:

$$\log_{\mathbf{b}} M = c \implies \mathbf{b}^{\mathbf{c}} = M$$

- 3. Solve for the variable
- 4. Check proposed solution in the original equation. Include only the set for M > 0

Example

Solve: $\log(x) + \log(x-3) = 1$

Solution

$$\log(x(x-3)) = 1$$

$$x(x-3) = 10^{1}$$

$$x^{2} - 3x = 10$$

$$x^{2} - 3x - 10 = 0$$

$$x = -2, 5$$
Product Rule

Convert to exponential form

Solve for x

Check:
$$x = -2 \Rightarrow \log(-2) \pm \log(x - 3) = 1$$

 $x = 5 \Rightarrow \log(5) + \log(5 - 3) = 1$

∴ *Solution*: $\underline{x = 5}$

Example

Solve: $\log_{6} (3x+2) + \log_{6} (x-1) = 1$

Solution

$$\log_{6} [(3x+2)(x-1)] = 1$$

$$(3x+2)(x-1) = 6^{1}$$

$$3x^{2} - x - 2 = 6$$
Product Rule

Convert to exponential form

$$x = \frac{1 - \sqrt{97}}{6} < 0$$
 $x = \frac{1 + \sqrt{97}}{6} > 1$

$$\therefore Solution: \ \underline{x = \frac{1 + \sqrt{97}}{6}}$$

 $3x^2 - x - 8 = 0$

Solve for x

Property of Logarithmic Equality

For any
$$M > 0$$
, $N > 0$, $b > 0$, $\neq 1$

$$log_h M = log_h N \implies M = N$$

Example

Solve:
$$\ln(x-3) = \ln(7x-23) - \ln(x+1)$$

Solution

$$\ln(x-3) = \ln\left(\frac{7x-23}{x+1}\right)$$
Quotient Rule
$$x-3 = \frac{7x-23}{x+1}$$

$$(x-3)(x+1) = 7x-23$$

$$x^2 - 2x - 3 = 7x - 23$$

$$x^2 - 9x + 20 = 0$$

$$x = 4, 5$$

Check:
$$x = 4 \Rightarrow \ln(4-3) = \ln(7(4)-23) - \ln(4+1)$$

 $x = 5 \Rightarrow \ln(5-3) = \ln(7(5)-23) - \ln(5+1)$

 \therefore Solution: x = 4, 5

Example

Solve:
$$\log(x+6) - \log(x+2) = \log x$$

Solution

$$\log \frac{x+6}{x+2} = \log x$$

$$\frac{x+6}{x+2} = x$$

$$x+6 = x(x+2)$$

$$x+6 = x^2 + 2x$$

$$x^2 + x - 6 = 0$$

$$x = -3, 2$$

$$\frac{x+6}{x+2} = x$$

$$x = -3 \Rightarrow \log(-3+6) - \log(-3+2) = \log(-3)$$

$$x = 2 \Rightarrow \log(2+6) - \log(2+2) = \log(2)$$
Or Domain

 \therefore *Solution*: x = 2

Exercises Section 3.5 – Exponential and logarithmic Equations

(1-114) Solve the equations

1.
$$2^x = 128$$

2.
$$3^x = 243$$

3.
$$5^x = 70$$

4.
$$6^{x} = 50$$

5.
$$5^x = 134$$

6.
$$7^x = 12$$

7.
$$9^x = \frac{1}{\sqrt[3]{3}}$$

8.
$$49^x = \frac{1}{343}$$

9.
$$2^{5x+3} = \frac{1}{16}$$

10.
$$\left(\frac{2}{5}\right)^x = \frac{8}{125}$$

11.
$$2^{3x-7} = 32$$

12.
$$4^{2x-1} = 64$$

13.
$$3^{1-x} = \frac{1}{27}$$

14.
$$2^{-x^2} = 5$$

15.
$$2^{-x} = 8$$

16.
$$\left(\frac{1}{3}\right)^x = 81$$

17.
$$3^{-x} = 120$$

18.
$$27 = 3^{5x} 9^{x^2}$$

19.
$$4^{x+3} = 3^{-x}$$

20.
$$2^{x+4} = 8^{x-6}$$

21.
$$8^{x+2} = 4^{x-3}$$

22.
$$7^x = 12$$

23.
$$5^{x+4} = 4^{x+5}$$

24.
$$5^{x+2} = 4^{1-x}$$

25.
$$3^{2x-1} = 0.4^{x+2}$$

26.
$$4^{3x-5} = 16$$

27.
$$4^{x+3} = 3^{-x}$$

28.
$$7^{2x+1} = 3^{x+2}$$

29.
$$3^{x-1} = 7^{2x+5}$$

30.
$$4^{x-2} = 2^{3x+3}$$

31.
$$3^{5x-8} = 9^{x+2}$$

32.
$$3^{x+4} = 2^{1-3x}$$

$$33. \quad 3^{2-3x} = 4^{2x+1}$$

34.
$$4^{x+3} = 3^{-x}$$

35.
$$7^{x+6} = 7^{3x-4}$$

36.
$$5^{2x+1} = 6^{x-2}$$

37.
$$2^{-100x} = (0.5)^{x-4}$$

38.
$$4^x \left(\frac{1}{2}\right)^{3-2x} = 8.\left(2^x\right)^2$$

39.
$$5^x + 125(5^{-x}) = 30$$

40.
$$4^x - 3(4^{-x}) = 8$$

41.
$$5^{3x-6} = 125$$

42.
$$e^{x} = 15$$

43.
$$e^{x+1} = 20$$

44.
$$9e^x = 107$$

45.
$$e^{x \ln 3} = 27$$

46.
$$e^{x^2} = e^{7x-12}$$

$$47. \quad f(x) = xe^x + e^x$$

48.
$$f(x) = x^3 (4e^{4x}) + 3x^2 e^{4x}$$

49.
$$e^{2x} - 2e^x - 3 = 0$$

50.
$$e^{0.08t} = 2500$$

51.
$$e^{x^2} = 200$$

52.
$$e^{2x+1} \cdot e^{-4x} = 3e^{-4x}$$

53.
$$e^{2x} - 8e^x + 7 = 0$$

54.
$$e^{2x} + 2e^x - 15 = 0$$

55.
$$e^x + e^{-x} - 6 = 0$$

56.
$$e^{1-3x} \cdot e^{5x} = 2e$$

57.
$$6 \ln(2x) = 30$$

58.
$$\log_5(x-7) = 2$$

59.
$$\log_{\Lambda} (5+x) = 3$$

60.
$$\log(4x-18)=1$$

61.
$$\log_3 x = -2$$

62.
$$\log(x^2 + 19) = 2$$

63.
$$\ln(x^2 - 12) = \ln x$$

64.
$$\log(2x^2 + 3x) = \log(10x + 30)$$

65.
$$\log_5(2x+3) = \log_5 11 + \log_5 3$$

66.
$$\log_3 x - \log_9 (x + 42) = 0$$

67.
$$\log_5 x + \log_5 (4x - 1) = 1$$

68.
$$\log x - \log(x+3) = 1$$

69.
$$\log x + \log (x - 9) = 1$$

70.
$$\log_2(x+1) + \log_2(x-1) = 3$$

71.
$$\log_{\aleph}(x+1) - \log_{\aleph}x = 2$$

72.
$$\ln(x+8) + \ln(x-1) = 2 \ln x$$

73.
$$\ln(4x+6) - \ln(x+5) = \ln x$$

74.
$$\ln(5+4x) - \ln(x+3) = \ln 3$$

$$75. \quad \ln \sqrt[4]{x} = \sqrt{\ln x}$$

$$76. \quad \sqrt{\ln x} = \ln \sqrt{x}$$

77.
$$\log x^2 = (\log x)^2$$

78.
$$\log x^3 = (\log x)^2$$

79.
$$\log(\log x) = 1$$

80.
$$\log(\log x) = 2$$

81.
$$\ln(\ln x) = 2$$

82.
$$\ln\left(e^{x^2}\right) = 64$$

83.
$$e^{\ln(x-1)} = 4$$

84.
$$10^{\log(2x+5)} = 9$$

85.
$$\log \sqrt{x^3 - 9} = 2$$

86.
$$\log \sqrt{x^3 - 17} = \frac{1}{2}$$

87.
$$\log_4 x = \log_4 (8 - x)$$

88.
$$\log_{7}(x-5) = \log_{7}(6x)$$

89.
$$\ln x^2 = \ln (12 - x)$$

90.
$$\log_2(x+7) + \log_2 x = 3$$

91.
$$\ln x = 1 - \ln (x + 2)$$

92.
$$\ln x = 1 + \ln (x+1)$$

93.
$$\log_6 (2x-3) = \log_6 12 - \log_6 3$$

94.
$$\log(3x+2) + \log(x-1) = 1$$

95.
$$\log_5(x+2) + \log_5(x-2) = 1$$

96.
$$\log_2 x + \log_2 (x - 4) = 2$$

97.
$$\log_3 x + \log_3 (x+6) = 3$$

99.
$$\ln x = \frac{1}{2} \ln \left(2x + \frac{5}{2} \right) + \frac{1}{2} \ln 2$$

98. $\log_3(x+3) + \log_3(x+5) = 1$

100.
$$\ln(-4-x) + \ln 3 = \ln(2-x)$$

101.
$$\log_A x + \log_A (x-2) = \log_A (15)$$

102.
$$\ln(x-5) - \ln(x+4) = \ln(x-1) - \ln(x+2)$$

103.
$$\ln(4-x) = \ln(x+8) + \ln(2x+13)$$

104.
$$\log(x^2+4) - \log(x+2) = 2 + \log(x-2)$$

105.
$$\log_3(x-2) = \log_3 27 - \log_3(x-4) - 5^{\log_5 1}$$

106.
$$\log_2(x+3) = \log_2(x-3) + \log_3 9 + 4^{\log_4 3}$$

$$107. \ \frac{10^x - 10^{-x}}{2} = 20$$

112.
$$\frac{e^x - e^{-x}}{2} = 15$$

$$108. \ \frac{10^x + 10^{-x}}{2} = 8$$

113.
$$\frac{1}{e^x - e^{-x}} = 4$$

109.
$$\frac{10^x + 10^{-x}}{10^x - 10^{-x}} = 5$$

114.
$$\frac{e^x + e^{-x}}{e^x - e^{-x}} = 3$$

110.
$$\frac{10^x + 10^{-x}}{10^x - 10^{-x}} = 2$$

115.
$$\frac{e^x - e^{-x}}{e^x + e^{-x}} = 6$$

111.
$$\frac{e^x + e^{-x}}{2} = 15$$

(170 - 173) Use common logarithms to solve for x in terms of y

116.
$$y = \frac{10^x + 10^{-x}}{2}$$

118.
$$y = \frac{e^x - e^{-x}}{2}$$

117.
$$y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$$

119.
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

120. Solve for *t* using logarithms with base *a*: $2a^{t/3} = 5$

121. Solve for *t* using logarithms with base *a*: $K = H - Ca^t$