

WiFi Pineapple

PITM: Pineapple in the middle.

En este documento se presentan algunas fallas que da lugar a mecanismos de hacking, una demostración de la forma en que funcionan, probada en un ambiente controlado, junto a recomendaciones para evitar ser víctima de estos procedimientos.

Introducción

Como usuarios de internet estamos expuestos a una diversa cantidad de amenazas.

Ilustración 1

Ilustración 2

En una red encontraremos usuarios maliciosos, hackers, que intentaran acceder a nuestra información tomando ventaja de alguna vulnerabilidad en la red.

Ilustración 3

Se define PITM como un mecanismo que establece un Rogue AP (Rogue access point) brindando una conexión a usuarios para interceptar información que estos envian.

Usado junto a un WiFi deauthentication attack presenta una gran oportunidad para engañar usuarios de otro AP.

Ilustración 4

Por ejemplo, desconectar a los usuarios de una oficina para hacer que se conecten automaticamente a nuestro Rogue AP.

Una red WiFi, generalmente desplegada en contextos personales y profesionales, presenta fallos que pueden afectar la integridad y confidencialidad de la información.

> Debido a la gran importacia de la información en la actualidad, es necesario tener contramedidas para defenderse de usuarios malintencionados, hackers.

Hipótesis

Existen metodos para evitar un ataque PITM.

Ilustración 6

Objetivos

Alcanzables

Establecer un AP-Rogue en un ambiente controlado.

Determinar medidas contra ataques PITM.

No alcanzables

Establecer un ataque PITM en un ambiente comun, no controlado.

Clientes conectados en escenario preparado

Trafico
capturado en
pagina no
segura

View History - November 23 2018 21:36:36

```
Rq _t
4!<@
GET /cgi-olib?infile=user.glu&auth_this=y&style=user HTTP/1.1
Host: biblioteca2.
Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.3
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/appng,*/*;q=0.8
Referer: http://biblioteca2 // /cgi-olib?infile=reset.glue&style=reset
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: _ga=GA1.3.1590737981.1539386901; ezproxy=xAnWX4r7ouNBMDY; cX_S=jor9dpwvg8oauc5i; cX_P=jor9dpwxwzwnpxep; cX_G
40m@
extension-updates.opera.com
http/1.1
```

Close

Detalles del trafico de pagina no segura

Cierre del escenario preparado

ICESIDAD

Conclusiones

Contramedidas recomendadas:

Tener en cuenta desde el puesto de trabajo del usuario las redes inalámbricas existentes en la organización.

ICESI

Conclusiones

Contramedidas recomendadas:

No recordar las redes inalámbricas y no seleccionar la opción de conectarse automáticamente a dicha red.

Conclusiones

Contramedidas recomendadas:

Tener como norma nunca conectar a una red abierta, Pineapple genera las redes inalámbricas abiertas para que sus víctimas sean engañadas con facilidad.

Trabajo a futuro.

El trabajo adicional o a futuro comprenderá tres actividades a realizar b, en primer lugar, realizar un WiFi deauthentication attack para desconectar a

Referencias

- 1. Quintero Tamayo, J. *Hardware malicioso como herramienta de Pentesting orientado al puesto de trabajo*. España, Enero, 2016.
 - 2. C. Claure, X. Martin, J. F. Jean-David and P. Louis. Pineapple, Raspberry and WiFi. WiFi Man-in-the-Middle attacks.
- 3. E. Oliver, K. Philipp and T. Paul, Detection of Man-in-the-Middle Attacks on Industrial Control Networks.

Ilustraciones

- 1. https://pixabay.com/en/target-group-advertising-buyer-3460039/
- 2. https://pixabay.com/en/phishing-fraud-cyber-security-3390518/
 - 3. https://www.hak5.org/wp-content/uploads/2015/01/pineap.jpg
 - 4,5. Quintero Tamayo, J. Hardware malicioso como herramienta de Pentesting orientado al puesto de trabajo. España, Enero, 2016.
- 6. https://securityhacklabs.net/sites/default/files/styles/large/public/2018-04/14.png?itok=xmtH1NNO