A journey into Alexandrov geometry: curvature bounded below

Vitali Kapovitch and Anton Petrunin and maybe Nina Lebedeva

Contents

1 Preliminaries	5
A. Prerequisites 5; B. Notations 6; C. Length spaces 6; D. Geodesics 7; E. Menger's lemma 8; F. Triangles and model triangles 9; G. Hinges and their angle measure 9; H. Triangle inequality for angles 10; I. Hausdorff convergence 11; J. Hausdorff metric 12; K. Gromov-Hausdorff convergence 12; L. Gromov-Hausdorff metric 13; M. Almost isometries 14; N. Remarks 16.	
2 Definitions	17
A. Four-point comparison 17; B. Alexandrov's lemma 18; C. Hinge comparison 20; D. Equivalent conditions 21; E. Function comparison 22; F. Remarks 24.	Ι.
3 Globalization	25
A. Globalization 25; B. General case 28; C. Remarks 30.	20
4 Calculus	31
A. Space of directions 31 ; B. Tangent space 32 ; C. Semiconcave functions 33 ; D. Differential 33 ; E. Gradient 34 .	
5 Gradient flow	39
A. Velocity of curve 39 ; B. Gradient curves 40 ; C. Distance estimates 41 ; D. Gradient flow 43 ; E. Gradient exponent 44 ; F. Remarks 45 .	
6 Line splitting	47
A. Busemann function 47 ; B. Splitting theorem 48 ; C. Anti-sum 50 ; D. Linear subspace 52 ; E. Remarks 54 .	71
7 Dimension and volume	57
A. Linear dimension 57 ; B. Space of directions 58 ; C. Right-inverse theorem 60 ; D. Distance chart 61 ; E. Volume 62 ; F. Other dimensions 63 ; G. Remarks 64 .	- •

2 CONTENTS

8 Limit spaces A. Survival of curvature bounds 65; B. Gromov's selection theorem 66; C. Controlled concavity 67; D. Liftings 69; E. Nerves 69; F. Homotopy stability 70; G. Remarks 72.	65
 9 Boundary A. Definition 75; B. Conic neighborhoods 76; C. Topology 76; D. Tangent space 78; E. Doubling 79; F. Remarks 83. 	75
10 Quotients A. Quotient space 87; B. Submetries 88; C. Hopf's conjecture 89; D. Erdős' problem rediscovered 91; E. Crystallographic actions 92; F. Remarks 93.	87
11 Surface theory A. Polyhedral surfaces 97; B. Approximation 98; C. Surface of polyhedrons and bodies 101; D. Uniqueness theorem 102; E. Existence theorem 104; F. Reformulation 104; G. About the proof of existence 106; H. Ambient space 108; I. Remarks 108.	97
Semisolutions	111
Bibliography	139

Preface

This book is similar to our "Invitation to Alexandrov geometry" written jointly with Stephanie Alexander [6]. We try to demonstrate the beauty and power of Alexandrov geometry by reaching interesting applications and theorems with minimal preparation. This time we do spaces with curvature bounded below in the sense of Alexandrov. We extensively use another book of us with Stephanie Alexander [7].

This subject is more technical; it takes more preparation, and we had to jump over some proofs. Namely, we do not prove the existence part in generalized Picard's theorem (5.3) and Perelman's theorem about conic neighborhoods (9.1); the rest is nearly rigorous. Several times, proofs of important statements are left as exercises, but all of them are solved at the end of the book; in all these cases, the statement is more important than its proof.

In Lecture 1, we discuss necessary preliminaries and fix notations. Lecture 2 introduces the main object of our study — spaces with curvature bounded below in the sense of Alexandrov.

In Lecture 3, we formulate and prove the globalization theorem that local Alexandrov condition implies global. To simplify the presentation we consider only the compact case, this case gives the main ideas of the proof but is less technical.

In Lecture 4, we do beginning of calculus — tangent space and space of directions, differential, and gradient.

Lecture 5 introduces gradient flow, which will be further used as the main technical tool.

Lecture 6 proves the line splitting theorem. Furthermore, we introduce and study linear subspaces of tangent spaces.

In Lecture 7, we introduce linear dimension and volume. Further, we prove the Bishop–Gromov inequality and the right-inverse theorem, introduce distance charts, and show that all reasonable types of dimension are the same for Alexandrov spaces.

In Lecture 8 we show that a lower curvature bound survives under Gromov–Hausdorff limits and prove Gromov's selection theorem. Fur4 CONTENTS

ther, we present Perelman's construction of strictly concave functions and apply it with Gromov's selection theorem to prove the homotopy finiteness theorem. This proof illustrates one of the main sources of applications of Alexandrov geometry.

In Lecture 9, we introduce the boundary of finite-dimensional Alexandrov spaces and prove the doubling theorem.

In Lecture 10, we show that quotients of Alexandrov spaces by isometric group action are Alexandrov spaces. This gives another source of applications of Alexandrov geometry, several examples are given.

In Lecture ??, we show that the surface of a convex body in Euclidean space is an Alexandrov space. This theorem was proved by Alexandrov himself and provides third (historically first) source of applications of Alexandrov geometry.

Finally, Appendix ?? sketches Alexandrov's embedding theorem of convex polyhedra. This theorem is the first remarkable result in Alexandrov geometry, dating back to 1941. The proof is very well written by Alexandrov, but we decided to include its sketch here due to its beauty and importance. This appendix was written by Nina Lebedeva and the second author for for a book about St. Petersburg mathematicians and their discoveries [62].

Let us give a list of available texts on Alexandrov spaces with curvature bounded below:

- ♦ The 2-dimensional theory is treated in the classical book of Alexandr Alexandrov [10].
- ♦ The first introduction to Alexandrov geometry of all dimensions is given in the original paper by Yuriy Burago, Michael Gromov, and Grigory Perelman [19] and its extension [79] written by Perelman.
- ♦ A brief and reader-friendly introduction was written by Katsuhiro Shiohama [104, Sections 1–8].
- ♦ Another reader-friendly introduction, written by Dmitri Burago, Yuriy Burago, and Sergei Ivanov [18, Chapter 10].
- ♦ Survey by Conrad Plaut [96].
- ♦ Survey by the second author [88].

Acknowledgments. Our notes were shaped in a number of lectures given by the authors on different occasions at Penn State, including the MASS program, at the Summer School "Algebra and Geometry" in Yaroslavl, at SPbSU, and the University of Toronto. We want to thank these institutions for hospitality and support.

We were partially supported by the following grants: Vitali Kapovitch — NSERC Discovery grants; Anton Petrunin — NSF grant DMS-2005279.

Lecture 1

Preliminaries

A Prerequisites

Most importantly, the reader should know and love elementary geometry, including convexity.

We also assume that the reader is familiar with the following topics in metric geometry:

- Compactness and proper metric spaces; recall that a metric space is proper if all its closed balls (of finite radius) are compact.
- ♦ Complete metric spaces and completion.
- ♦ Curves, semicontinuity of length and rectifiability.
- ♦ Hausdorff and Gromov–Hausdorff convergence. These are discussed briefly in 1I–1M. The definitions are there, but some prior familiarity with these concepts will be very helpful

All these topics are treated in detail in [18] and [93]. Occasionally, we use the Baire category theorem and Rademacher's theorem, but these could be used as black boxes.

We use some topology. An introductory text in algebraic topology should be sufficient most of the time. For some examples, we apply more advanced results, but these are used as black boxes.

Since most of the applications come from Riemannian geometry, it is beneficial to be familiar with the Toponogov comparison theorem and related topics. The classical book by Jeff Cheeger and David Ebin [22] contains more than one needs.

B Notations

The distance between two points x and y in a metric space \mathcal{X} will be denoted by |x-y| or $|x-y|_{\mathcal{X}}$. The latter notation is used if we need to emphasize that the distance is taken in the space \mathcal{X} .

Given radius $r \in [0, \infty]$ and center $x \in \mathcal{X}$, the sets

$$B(x,r) = \{ y \in \mathcal{X} : |x - y| < r \},$$
$$\overline{B}[x,r] = \{ y \in \mathcal{X} : |x - y| \le r \}$$

are called, respectively, the open and the closed balls. The notations $B(x,r)_{\mathcal{X}}$ and $\overline{B}[x,r]_{\mathcal{X}}$ might be used if we need to emphasize that these balls are taken in the metric space \mathcal{X} .

We will denote by \mathbb{S}^n , \mathbb{E}^n , and \mathbb{H}^n the *n*-dimensional sphere (with angle metric), the Euclidean space, and the Lobachevsky space respectively. More generally, $\mathbb{M}^n(\kappa)$ will denote the model *n*-space of curvature κ ; that is,

- \diamond if $\kappa > 0$, then $\mathbb{M}^n(\kappa)$ is the *n*-sphere of radius $\frac{1}{\sqrt{\kappa}}$, so $\mathbb{S}^n = \mathbb{M}^n(1)$
- $\diamond \mathbb{M}^n(0) = \mathbb{E}^n,$
- \diamond if $\kappa < 0$, then $\mathbb{M}^n(\kappa)$ is the Lobachevsky *n*-space \mathbb{H}^n rescaled by factor $\frac{1}{\sqrt{-\kappa}}$; in particular $\mathbb{M}^n(-1) = \mathbb{H}^n$.

C Length spaces

Let \mathcal{X} be a metric space. If for any $\varepsilon > 0$ and any pair of points $x, y \in \mathcal{X}$, there is a path α connecting x to y such that

length
$$\alpha < |x - y| + \varepsilon$$
,

then \mathcal{X} is called a length space and the metric on \mathcal{X} is called a length metric.

1.1. Exercise. Let \mathcal{X} be a complete length space. Show that for any compact subset $K \subset \mathcal{X}$ there is a compact path-connected subset $K' \subset \mathcal{X}$ that contains K.

Induced length metric. Directly from the definition, it follows that if $\alpha \colon [0,1] \to \mathcal{X}$ is a path from x to y (that is, $\alpha(0) = x$ and $\alpha(1) = y$), then

length
$$\alpha \geqslant |x - y|$$
.

Set

$$||x - y|| = \inf\{ \text{ length } \alpha \},$$

D. GEODESICS 7

where the greatest lower bound is taken for all paths from x to y. It is straightforward to check that $(x,y) \mapsto ||x-y||$ is an ∞ -metric; that is, $(x,y) \mapsto ||x-y||$ is a metric in the extended positive reals $[0,\infty]$. The metric ||*-*|| is called the induced length metric.

1.2. Exercise. Suppose $(\mathcal{X}, |*-*|)$ is a complete metric space. Show that $(\mathcal{X}, ||*-*||)$ is complete; that is, any Cauchy sequence of points in $(\mathcal{X}, ||*-*||)$ converges in $(\mathcal{X}, ||*-*||)$.

Let A be a subset of a metric space \mathcal{X} . Given two points $x, y \in A$, consider the value

$$|x-y|_A = \inf_{\alpha} \{ \operatorname{length} \alpha \},$$

where the greatest lower bound is taken for all paths α from x to y in A. In other words, $|*-*|_A$ denotes the induced length metric on the subspace A. (The notation $|*-*|_A$ conflicts with the previously defined notation for distance $|x-y|_{\mathcal{X}}$ in a metric space \mathcal{X} . However, most of the time we will work with ambient length spaces where the meaning will be unambiguous.)

D Geodesics

Let \mathcal{X} be a metric space, and let \mathbb{I} be a real interval. A distance-preserving map $\gamma \colon \mathbb{I} \to \mathcal{X}$ is called a geodesic¹; in other words, $\gamma \colon \mathbb{I} \to \mathcal{X}$ is a geodesic if

$$|\gamma(s) - \gamma(t)| = |s - t|$$

for any pair $s, t \in \mathbb{I}$.

If $\gamma \colon [a,b] \to \mathcal{X}$ is a geodesic such that $p = \gamma(a), q = \gamma(b)$, then we say that γ is a geodesic from p to q. In this case, the image of γ is denoted by [pq], and, with abuse of notations, we also call it a geodesic. We may write $[pq]_{\mathcal{X}}$ to emphasize that the geodesic [pq] lies in the space \mathcal{X} .

In general, a geodesic from p to q need not exist and if it exists, it need not be unique; for example, any meridian is a geodesic between poles on the sphere. However, once we write [pq] we assume that we have chosen such a geodesic.

A geodesic path is a geodesic with constant-speed parameterization by the unit interval [0,1].

¹Other texts may refer to geodesics in our sense of the word as *shortest path* or *minimizing geodesic*. Also, our meaning of the term *geodesic* is closely related, but different from what is used in Riemannian geometry.

A metric space is called geodesic if any pair of its points can be joined by a geodesic. A metric space $\mathcal X$ is called ℓ -geodesic if any two points $x,y\in\mathcal X$ such that $|x-y|<\ell$ can be connected by a geodesic. For instance, any geodesic space is ∞ -geodesic.

Evidently, any geodesic space is a length space.

1.3. Exercise. Show that any proper length space is geodesic.

E Menger's lemma

1.4. Lemma. Let \mathcal{X} be a complete metric space. Assume that for any pair of points $x, y \in \mathcal{X}$, there is a midpoint z. Then \mathcal{X} is a geodesic space.

This lemma is due to Karl Menger [71, Section 6].

Proof. Choose $x, y \in \mathcal{X}$; set $\gamma(0) = x$, and $\gamma(1) = y$.

$$x = \gamma(0) \qquad \gamma(\frac{1}{4}) \qquad \gamma(\frac{1}{2}) \qquad \gamma(\frac{3}{4}) \qquad \gamma(1) = y$$

Let $\gamma(\frac{1}{2})$ be a midpoint between $\gamma(0)$ and $\gamma(1)$. Further, let $\gamma(\frac{1}{4})$ and $\gamma(\frac{3}{4})$ be midpoints between the pairs $(\gamma(0),\gamma(\frac{1}{2}))$ and $(\gamma(\frac{1}{2}),\gamma(1))$ respectively. Applying the above procedure recursively, on the *n*-th step we define $\gamma(\frac{k}{2^n})$, for every odd integer k such that $0 < \frac{k}{2^n} < 1$, as a midpoint of the already defined $\gamma(\frac{k-1}{2^n})$ and $\gamma(\frac{k+1}{2^n})$.

This way we define $\gamma(t)$ for all dyadic rationals t in [0, 1]. Moreover, γ has Lipschitz constant |x - y|. Since \mathcal{X} is complete, the map γ can be extended continuously to [0, 1]. Moreover,

length
$$\gamma \leqslant |x - y|$$
.

Therefore γ is a geodesic path from x to y.

1.5. Exercise. Let \mathcal{X} be a complete metric space. Assume that for any pair of points $x, y \in \mathcal{X}$, there is an almost midpoint; that is, given $\varepsilon > 0$, there is a point z such that

$$|x-z| < \frac{1}{2} \cdot |x-y| + \varepsilon$$
 and $|y-z| < \frac{1}{2} \cdot |x-y| + \varepsilon$.

Show that \mathcal{X} is a length space.

F Triangles and model triangles

Triangles. Given a triple of points p, q, r in a metric space \mathcal{X} , a choice of geodesics ([qr], [rp], [pq]) will be called a triangle; we will use the short notation $[pqr] = [pqr]_{\mathcal{X}} = ([qr], [rp], [pq])$.

Given a triple $p,q,r \in \mathcal{X}$ there may be no triangle [pqr] simply because one of the pairs of these points cannot be joined by a geodesic. Also, many different triangles with these vertices may exist, any of which can be denoted by [pqr]. If we write [pqr], it means that we have chosen such a triangle.

Model triangles. Given three points p, q, r in a metric space \mathcal{X} , let us define the model triangle $[\tilde{p}\tilde{q}\tilde{r}]$ (briefly, $[\tilde{p}\tilde{q}\tilde{r}] = \tilde{\Delta}(pqr)_{\mathbb{E}^2}$) to be a triangle in the Euclidean plane \mathbb{E}^2 with the same sides; that is,

$$|\tilde{p}-\tilde{q}|_{\mathbb{E}^2}=|p-q|_{\mathcal{X}},\quad |\tilde{q}-\tilde{r}|_{\mathbb{E}^2}=|q-r|_{\mathcal{X}},\quad |\tilde{r}-\tilde{p}|_{\mathbb{E}^2}=|r-p|_{\mathcal{X}}.$$

In the same way, we can define the hyperbolic and the spherical model triangles $\tilde{\Delta}(pqr)_{\mathbb{H}^2}$, $\tilde{\Delta}(pqr)_{\mathbb{S}^2}$ in the Lobachevsky plane \mathbb{H}^2 and the unit sphere \mathbb{S}^2 . In the latter case, the model triangle is said to be defined if in addition

$$|p-q| + |q-r| + |r-p| < 2 \cdot \pi.$$

In this case, the model triangle again exists and is unique up to an isometry of \mathbb{S}^2 .

Model angles. If $[\tilde{p}\tilde{q}\tilde{r}] = \tilde{\triangle}(pqr)_{\mathbb{E}^2}$ and |p-q|, |p-r| > 0, the angle measure of $[\tilde{p}\tilde{q}\tilde{r}]$ at \tilde{p} will be called the model angle of the triple p, q, r and will be denoted by $\tilde{\angle}(p\frac{q}{r})_{\mathbb{E}^2}$.

For example, if |p-q| = |q-r| = |r-p|, then $\tilde{\measuredangle}(p_r^q)_{\mathbb{E}^2} = \frac{\pi}{3}$ regardless of existence and relative position of geodesics [pq] and [pr].

The same way we define $\tilde{\lambda}(p_r^q)_{\mathbb{M}^2(\kappa)}$; in particular, $\tilde{\lambda}(p_r^q)_{\mathbb{H}^2}$ and $\tilde{\lambda}(p_r^q)_{\mathbb{S}^2}$. We may use the notation $\tilde{\lambda}(p_r^q)$ if it is evident which of the model spaces is meant.

1.6. Exercise. Show that for any triple of point p, q, and r, the function

$$\kappa \mapsto \tilde{\measuredangle}(p_r^q)_{\mathbb{M}^2(\kappa)}$$

 $is \ nondecreasing \ in \ its \ domain \ of \ definition.$

G Hinges and their angle measure

Hinges. Let $p, x, y \in \mathcal{X}$ be a triple of points such that p is distinct from x and y. A pair of geodesics ([px], [py]) will be called a hinge and will be denoted by $[p \, ^x_y] = ([px], [py])$.

Angles. The angle measure of a hinge $[p_{\eta}^{x}]$ is defined as the following limit

$$\angle[p_y^x] = \lim_{\bar{x}, \bar{y} \to p} \tilde{\angle}(p_{\bar{y}}^{\bar{x}}),$$

where $\bar{x} \in [px]$ and $\bar{y} \in [py]$ (The angle is only defined if this limit exists).

If $\angle[p_y^x]$ is defined, then

$$0 \leqslant \angle[p_u^x] \leqslant \pi.$$

- 1.7. Exercise. Suppose that in the above definition, one uses spherical or hyperbolic model angles instead of Euclidean ones. Show that it does not change the value $\angle[p_{\eta}^x]$.
- **1.8. Exercise.** Give an example of a hinge $[p_y^x]$ in a metric space with an undefined angle measure $\angle[p_y^x]$.

\mathbf{H} Triangle inequality for angles

1.9. Proposition. Let $[px_1]$, $[px_2]$, and $[px_3]$ be three geodesics in a metric space. Suppose all the angle measures $\alpha_{i,j} = \angle[p_{x_i}^{x_i}]$ are defined. Then

$$\alpha_{1,3} \leqslant \alpha_{1,2} + \alpha_{2,3}.$$

Proof. Since $\alpha_{1,3} \leq \pi$, we can assume that $\alpha_{1,2} + \alpha_{2,3} < \pi$. Denote by γ_i the unit-speed parametrization of $[px_i]$ from p to x_i . Given any $\varepsilon > 0$, for all sufficiently small $t, \tau, s \in \mathbb{R}_{\geq 0}$ we have

$$|\gamma_1(t) - \gamma_3(\tau)| \leqslant |\gamma_1(t) - \gamma_2(t)| \leqslant |\gamma_1$$

$$\begin{split} |\gamma_1(t) - \gamma_3(\tau)| \leqslant |\gamma_1(t) - \gamma_2(s)| + |\gamma_2(s) - \gamma_3(\tau)| < \\ < \sqrt{t^2 + s^2 - 2 \cdot t \cdot s \cdot \cos(\alpha_{1,2} + \varepsilon)} + \\ + \sqrt{s^2 + \tau^2 - 2 \cdot s \cdot \tau \cdot \cos(\alpha_{2,3} + \varepsilon)} \leqslant \end{split}$$

Below we define $s(t,\tau)$ so that for $s=s(t,\tau)$, this chain of inequalities can be continued as fol-

$$\leq \sqrt{t^2 + \tau^2 - 2 \cdot t \cdot \tau \cdot \cos(\alpha_{1,2} + \alpha_{2,3} + 2 \cdot \varepsilon)}.$$

Thus for any $\varepsilon > 0$,

$$\alpha_{1,3} \leqslant \alpha_{1,2} + \alpha_{2,3} + 2 \cdot \varepsilon.$$

Hence the result follows.

To define $s(t,\tau)$, consider three half-lines $\tilde{\gamma}_1, \tilde{\gamma}_2, \tilde{\gamma}_3$ on a Euclidean plane starting at one point, such that $\mathcal{L}(\tilde{\gamma}_1, \tilde{\gamma}_2) = \alpha_{1,2} + \varepsilon$, $\mathcal{L}(\tilde{\gamma}_2, \tilde{\gamma}_3) = \alpha_{2,3} + \varepsilon$, and $\mathcal{L}(\tilde{\gamma}_1, \tilde{\gamma}_3) = \alpha_{1,2} + \alpha_{2,3} + 2 \cdot \varepsilon$. We parametrize each half-line by the distance from the starting point. Given two positive numbers $t, \tau \in \mathbb{R}_{\geqslant 0}$, let $s = s(t, \tau)$ be the number such that $\tilde{\gamma}_2(s) \in [\tilde{\gamma}_1(t) \ \tilde{\gamma}_3(\tau)]$. Clearly, $s \leq \max\{t, \tau\}$, so t, τ, s may be taken sufficiently small.

1.10. Exercise. Prove that the sum of adjacent angles is at least π . More precisely: suppose two hinges $[p_z^x]$ and $[p_z^y]$ are adjacent; that is, they share side [pz], and the union of two sides [px] and [py] forms a geodesic [xy]. Show that

$$\angle[p_z^x] + \angle[p_z^y] \geqslant \pi$$

whenever each angle on the left-hand side is defined.

Give an example showing that the inequality can be strict.

1.11. Exercise. Assume that the angle measure of $[q_x^p]$ is defined. Let γ be the unit speed parametrization of [qx] from q to x. Show that

$$|p - \gamma(t)| \le |q - p| - t \cdot \cos(\measuredangle[q_x^p]) + o(t).$$

I Hausdorff convergence

1.12. Definition. Let A_1, A_2, \ldots be a sequence of closed sets in a metric space \mathcal{X} . We say that the sequence A_n converges to a closed set A_{∞} in the sense of Hausdorff if, for any $x \in \mathcal{X}$, we have $\operatorname{dist}_{A_n}(x) \to \operatorname{dist}_{A_{\infty}}(x)$ as $n \to \infty$.

For example, suppose \mathcal{X} is the Euclidean plane and A_n is the circle with radius n and center at the point (0, n); it converges to the x-axis.

Further, consider the sequence of one-point sets $B_n = \{(n,0)\}$ in the Euclidean plane. It converges to the empty set; indeed, for any

point x we have $\operatorname{dist}_{B_n}(x) \to \infty$ as $n \to \infty$ and $\operatorname{dist}_{\varnothing}(x) = \infty$ for any x.

The following exercise is an extension of the so-called Blaschke selection theorem to our version of Hausdorff convergence.

1.13. Exercise. Show that any sequence of closed sets in a proper metric space has a convergent subsequence in the sense of Hausdorff.

J Hausdorff metric

1.14. Definition. Let A and B be two non-empty compact subsets of a metric space \mathcal{X} . Then the Hausdorff distance between A and B is defined as

$$|A - B|_{\operatorname{Haus} \mathcal{X}} := \sup_{x \in \mathcal{X}} \{ |\operatorname{dist}_A(x) - \operatorname{dist}_B(x)| \}.$$

The following observation gives a useful reformulation of the definition:

1.15. Observation. Suppose A and B be two compact subsets of a metric space \mathcal{X} . Then $|A - B|_{\text{Haus }\mathcal{X}} < R$ if and only if and only if B lies in an R-neighborhood of A, and A lies in an R-neighborhood of B.

The following exercise implies that Hausdorff convergence of compact subsets is the convergence in Hausdorff metric.

1.16. Exercise. Let A_1, A_2, \ldots , and A_{∞} be compact non-empty sets in a metric space \mathcal{X} . Show that $|A_n - A_{\infty}|_{\text{Haus }\mathcal{X}} \to 0$ as $n \to \infty$ if and only if $A_n \to A_{\infty}$ in the sense of Hausdorff.

K Gromov-Hausdorff convergence

Let $\mathcal{X}_1, \mathcal{X}_2, \ldots$, and \mathcal{X}_{∞} be a sequence of complete metric spaces. Suppose that there is a metric on the disjoint union

$$oldsymbol{X} = igsqcup_{n \in \mathbb{N} \cup \{\infty\}} \mathcal{X}_n$$

that satisfies the following property:

1.17. Property. The restriction of the metric on each \mathcal{X}_n and \mathcal{X}_{∞} coincides with its original metric, and $\mathcal{X}_n \to \mathcal{X}_{\infty}$ as subsets in X in the sense of Hausdorff.

In this case we say that the metric on X defines a convergence $\mathcal{X}_n \to \mathcal{X}_\infty$ in the sense of Gromov-Hausdorff. The metric on $\coprod \mathcal{X}_n$ makes it possible to talk about limits of sequences $x_n \in \mathcal{X}_n$ as $n \to \infty$, as well as weak limits of a sequence of Borel measures μ_n on \mathcal{X}_n and so on.

The limit space is not uniquely defined by the sequence. For example, if each space \mathcal{X}_n in the sequence is isometric to the half-line, then its limit might be isometric to the half-line or the whole line. The first convergence is evident and the second could be guessed from the picture above.

Any sequence of spaces has an empty space as its limit in some Gromov–Hausdorff convergence. Exercise 1.23 states that if the limit is non-empty and compact, then it is unique up to isometry.

1.18. Exercise. Let $\mathcal{X}_1, \mathcal{X}_2, \ldots$ be a sequence of geodesic metric spaces. Suppose $\mathcal{X}_n \to \mathcal{X}_{\infty}$ is a convergence in the sense of Gromov-Hausdorff. Assume \mathcal{X}_{∞} is proper, show that it is geodesic.

Pointed convergence. Often the isometry class of the limit can be fixed by marking a point p_n in each space \mathcal{X}_n . We say that (\mathcal{X}_n, p_n) converges to $(\mathcal{X}_{\infty}, p_{\infty})$ if there is a metric on X as in 1.17 such that $p_n \to p_{\infty}$. This is called pointed Gromov-Hausdorff convergence. For example, the sequence $(\mathcal{X}_n, p_n) = (\mathbb{R}_{\geq 0}, 0)$ converges to $(\mathbb{R}_{\geq 0}, 0)$, while $(\mathcal{X}_n, p_n) = (\mathbb{R}_{\geq 0}, n)$ converges to $(\mathbb{R}, 0)$ as $n \to \infty$.

L Gromov-Hausdorff metric

In this section we cook up a metric space out of all compact nonempty metric spaces that defines Gromov–Hausdorff convergence. We want to define the metric on the set of *isometry classes* of compact metric spaces. Further, the term *metric space* might also stand for its *isometry class*.

The obtained metric is called the Gromov–Hausdorff metric; the corresponding metric space will be denoted by GH. This distance is defined as the maximal metric such that the distance between subspaces

in a metric space is not greater than the Hausdorff distance between them. Here is a formal definition.

1.19. Definition. The Gromov-Hausdorff distance $|\mathcal{X} - \mathcal{Y}|_{GH}$ between compact metric spaces \mathcal{X} and \mathcal{Y} is defined by the following relation.

Given r>0, we have $|\mathcal{X}-\mathcal{Y}|_{GH}< r$ if and only if there exists a metric space \mathcal{W} and subspaces \mathcal{X}' and \mathcal{Y}' in \mathcal{W} that are isometric to \mathcal{X} and \mathcal{Y} , respectively, such that $|\mathcal{X}'-\mathcal{Y}'|_{Haus\,\mathcal{W}}< r$. (Here $|\mathcal{X}'-\mathcal{Y}'|_{Haus\,\mathcal{W}}$ denotes the Hausdorff distance between sets \mathcal{X}' and \mathcal{Y}' in \mathcal{W} .)

Gromov–Hausdorff convergence of compact spaces has particularly nice properties, which follow from the next exercise.

- **1.20. Exercise.** Let f be a distance noncontracting map from a compact metric space K to itself. Show that f is an isometry; that is, it is a distance-preserving bijection.
- **1.21. Exercise.** Show that any surjective non-expanding map from a compact metric space to itself is an isometry.

For the proof of the following statements we refer to [18] and [93].

1.22. Proposition. GH is a complete metric space.

This means in particular that if $|\mathcal{X} - \mathcal{Y}|_{GH} = 0$ for compact metric spaces X and Y, then they are isometric.

1.23. Exercise. Let $\mathcal{X}_1, \mathcal{X}_2, \ldots$ be a sequence of metric spaces. Suppose \mathcal{X}_{∞} and \mathcal{X}'_{∞} are non-empty limit spaces of \mathcal{X}_n for some Gromov-Hausdorff convergences. Assume \mathcal{X}_{∞} is compact, show that it is isometric to \mathcal{X}'_{∞} .

M Almost isometries

- **1.24. Definition.** Let \mathcal{X} and \mathcal{Y} be metric spaces. A map $f: \mathcal{X} \to \mathcal{Y}$ is called an ε -isometry if the following two conditions hold:
 - (a) $f(\mathcal{X})$ is an ε -net in \mathcal{Y} ; that is, for any $y \in \mathcal{Y}$ there is $x \in \mathcal{X}$ such that $|f(x) y|_{\mathcal{Y}} < \varepsilon$.
 - (b) $||f(x) f(x')|_{\mathcal{Y}} |x x'|_{\mathcal{X}}| \le \varepsilon \text{ for any } x, x' \in \mathcal{X}.$

When dealing with Gromov–Hausdorff convergence the following lemma allows to bypass constructing explicit metrics on the disjoint unions of $\mathcal{X}_1, \mathcal{X}_2, \ldots$, and \mathcal{X}_{∞}

1.25. Lemma. Let $\mathcal{X}_1, \mathcal{X}_2, \ldots$, and \mathcal{X}_{∞} be complete metric spaces, and let $\varepsilon_n \to 0+$ as $n \to \infty$. Suppose that either

- (a) for each n there is an ε_n -isometry $f_n: \mathcal{X}_n \to \mathcal{X}_{\infty}$, or
- (b) for each n there is an ε_n -isometry $h_n \colon \mathcal{X}_{\infty} \to \mathcal{X}_n$. Then there is a Gromov-Hausdorff convergence $\mathcal{X}_n \to \mathcal{X}_{\infty}$.

Furthermore, a partial converse also holds.

(c) Suppose we have a Gromov-Hausdorff convergence $\mathcal{X}_n \to \mathcal{X}_\infty$ and \mathcal{X}_∞ is compact. Then there exist $\varepsilon_n \to 0+$ as $n \to \infty$ and ε_n -isometries $f_n \colon \mathcal{X}_n \to \mathcal{X}_\infty$ (and $h_n \colon \mathcal{X}_\infty \to \mathcal{X}_n$) such that $x_n \in \mathcal{X}_n$ converges to $x_\infty \in \mathcal{X}_\infty$ with respect to the convergence $\mathcal{X}_n \to \mathcal{X}_\infty$ if and only if $f_n(x_n) \to x_\infty$ (respectively, $|h_n(x_\infty) - x_n|_{\mathcal{X}_\infty} \to 0$) as $n \to \infty$.

Proof. To prove part (a) let us construct a common space X for the spaces $\mathcal{X}_1, \mathcal{X}_2, \ldots$, and \mathcal{X}_{∞} by taking the metric ρ on the disjoint union $\mathcal{X}_{\infty} \sqcup \mathcal{X}_1 \sqcup \mathcal{X}_2 \sqcup \ldots$ that is defined the following way:

$$|x_{n} - y_{n}|_{\mathbf{X}} = |x_{n} - y_{n}|_{\mathcal{X}_{n}},$$

$$|x_{\infty} - y_{\infty}|_{\mathbf{X}} = |x_{\infty} - y_{\infty}|_{\mathcal{X}_{\infty}},$$

$$|x_{n} - x_{\infty}|_{\mathbf{X}} = \inf \left\{ |x_{n} - y_{n}|_{\mathcal{X}_{n}} + \varepsilon_{n} + |x_{\infty} - f(y_{n})|_{\mathcal{X}_{\infty}} : y_{n} \in \mathcal{X}_{n} \right\},$$

$$|x_{n} - x_{m}|_{\mathbf{X}} = \inf \left\{ |x_{n} - y_{\infty}|_{\mathbf{X}} + |x_{m} - y_{\infty}|_{\mathbf{X}} : y_{\infty} \in \mathcal{X}_{\infty} \right\},$$

where we assume that $x_{\infty}, y_{\infty} \in \mathcal{X}_{\infty}$, and $x_n, y_n \in \mathcal{X}_n$ for each n. It remains to observe that this indeed defines a metric on X, and $\mathcal{X}_n \to \mathcal{X}_{\infty}$ in the sense of Hausdorff.

The proof of the second part is analogous; one only needs to change one line in the definition of the metric to the following:

$$|x_n - x_\infty|_{\mathbf{X}} = \inf \left\{ |x_n - h(y_\infty)|_{\mathcal{X}_n} + \varepsilon_n + |x_\infty - y_\infty|_{\mathcal{X}_\infty} : y_\infty \in \mathcal{X}_\infty \right\}.$$
We leave part (c) as an exercise.

For two metric spaces \mathcal{X} and \mathcal{Y} , we write $\mathcal{X} \leq \mathcal{Y} + \varepsilon$ if there is a map $f: \mathcal{X} \to \mathcal{Y}$ such that

$$|x - x'|_{\mathcal{X}} \le |f(x) - f(x')|_{\mathcal{Y}} + \varepsilon$$

for any $x, x' \in \mathcal{X}$.

1.26. Exercise. Let $\mathcal{X}_1, \mathcal{X}_2, \ldots$, and \mathcal{X}_{∞} be compact metric spaces. Show that there is a Gromov-Hausdorff convergence $\mathcal{X}_n \to \mathcal{X}_{\infty}$ if and only if for some sequence $\varepsilon_n \to 0$, we have

$$\mathcal{X}_{\infty} \leqslant \mathcal{X}_n + \varepsilon_n \quad and \quad \mathcal{X}_n \leqslant \mathcal{X}_{\infty} + \varepsilon_n.$$

Lemma 1.25 has a natural analogue for pointed convergence. For simplicity we only state part (a) of the lemma. Parts (b) and (c) can

be rephrased similarly; in (c) we have to assume that the space is proper.

- **1.27. Lemma.** Let $(\mathcal{X}_1, p_1), (\mathcal{X}_2, p_2), \ldots$, let $(\mathcal{X}_{\infty}, p_{\infty})$ be pointed metric spaces, and let $\varepsilon(n, R) \to 0+$ as $n \to \infty$ for any fixed R > 0. Suppose that for each n there is a map $f_n \colon \mathcal{X}_n \to \mathcal{X}_{\infty}$ such that
 - (a) $f_n(p_n) \to p_\infty$
 - (b) $||f_n(x) f_n(x')|_{\mathcal{X}_{\infty}} |x x'|_{\mathcal{X}_n}| \leq \varepsilon(n, R) \text{ for any } x, x' \in B(p_n, R).$
 - (c) For any $x \in B(p_{\infty}, R)$ there is $x_n \in B(p_n, R)$ such that $|x f_n(x_n)| \le \varepsilon(n, R)$

Then there is a pointed Gromov-Hausdorff convergence $(\mathcal{X}_n, p_n) \to (\mathcal{X}_{\infty}, p_{\infty})$.

The proofs of 1.27 and 1.25 are analogous; we leave the former to the reader.

N Remarks

In principle, our definition of Gromov–Hausdorff distance works for complete metric spaces that are not necessarily compact. However, according to the following exercise, it only defines a semimetric; that is, zero Gromov–Hausdorff distance does not imply that the spaces are isometric. For that reason it is not in use.

1.28. Exercise.

- (a) Construct two nonisometric proper (noncompact) metric spaces with vanishing Gromov-Hausdorff distance.
- (b) Construct two nonisometric complete geodesic metric spaces of bounded diameter with vanishing Gromov-Hausdorff distance.

Lecture 2

Definitions

In this lecture we discuss several definitions of Alexandrov space. Alexandrov's lemma works as the main tool.

A Four-point comparison

Recall that $\tilde{\measuredangle}(p_y^x)$ denotes the model angle at p; see page 9.

Let p, x, y, z be a quadruple of points in a metric space. If the inequality

$$\tilde{\angle}(p_y^x)_{\mathbb{E}^2} + \tilde{\angle}(p_z^y)_{\mathbb{E}^2} + \tilde{\angle}(p_x^z)_{\mathbb{E}^2} \leqslant 2 \cdot \pi$$

holds, then we say that the quadruple meets \mathbb{E}^2 -comparison.

If instead of \mathbb{E}^2 , we use \mathbb{S}^2 or \mathbb{H}^2 , then we get the definition of \mathbb{S}^2 or \mathbb{H}^2 -comparisons. Recall that $\tilde{\lambda}(p_y^x)_{\mathbb{E}^2}$ and $\tilde{\lambda}(p_y^x)_{\mathbb{H}^2}$ are defined if $p \neq x, \ p \neq y$, but for $\tilde{\lambda}(p_y^x)_{\mathbb{S}^2}$ we require in addition that

$$|p-x| + |p-y| + |x-y| < 2 \cdot \pi;$$

if this does not hold for one of the angles, then we assume that \mathbb{S}^2 comparison holds for this quadruple.

More generally, one may apply this definition to $\mathbb{M}^2(\kappa)$ and define $\mathbb{M}^2(\kappa)$ -comparison for any real κ . However, if you see $\mathbb{M}^2(\kappa)$ -comparison, it is safe to assume that $\kappa = -1, 0$, or 1 (applying rescaling, the $\mathbb{M}^2(\kappa)$ -comparison can be reduced to these three cases).

2.1. Definition. A metric space \mathcal{X} has curvature $\geqslant \kappa$ in the sense of Alexandrov if $\mathbb{M}^2(\kappa)$ -comparison holds for any quadruple of points in \mathcal{X} .

While this definition can be applied to any metric space, we will use it mostly for geodesic spaces that are complete (and often compact or proper). If a complete geodesic space has curvature $\geq \kappa$ in the sense of Alexandrov, then it will be called an $\text{ALEX}(\kappa)$ space; here $\text{ALEX}(\kappa)$ is an adjective. An $\mathcal X$ is $\text{ALEX}(\kappa)$ for some κ , then we say that $\mathcal X$ is an Alexandrov space.

It is common practice in Alexandrov geometry to write proofs for nonnegative curvature and leave the general curvature bound as an exercise. These generalizations are usually straightforward. We will add notes when they are not. We will also often formulate statements just for $\kappa=0$ even when they admit straightforward generalizations to arbitrary curvature bounds; see [7] for a more formal tratment.

- **2.2. Exercise.** Show that \mathbb{E}^n is Alex(0).
- **2.3.** Exercise. Show that a metric space \mathcal{X} has nonnegative curvature in the sense of Alexandrov if and only if for any quadruple of points $p, x_1, x_2, x_3 \in \mathcal{X}$ there is a quadruple of points $q, y_1, y_2, y_3 \in \mathbb{E}^3$ such that

$$|p - x_i|_{\mathcal{X}} \geqslant |q - y_i|_{\mathbb{E}^2}$$
 and $|x_i - x_j|_{\mathcal{X}} \leqslant |y_i - y_j|_{\mathbb{E}^2}$

for all i and j.

B Alexandrov's lemma

Recall that [xy] denotes a geodesic from x to y; set

$$[xy] = [xy] \setminus \{x\}, \quad [xy] = [xy] \setminus \{y\}, \quad [xy] = [xy] \setminus \{x,y\}.$$

- **2.4. Lemma.** Let p, x, y, z be distinct points in a metric space such that $z \in]xy[$. Then the following expressions have the same sign:
 - (a) $\tilde{\measuredangle}(x_y^p) \tilde{\measuredangle}(x_z^p),$
 - (b) $\tilde{\angle}(z_x^p) + \tilde{\angle}(z_y^p) \pi$.

The same holds for the hyperbolic and spherical model angles, but in the latter case, one has to assume in addition that

$$|p-x| + |p-y| + |x-y| < 2 \cdot \pi.$$

In the proof we will apply the following statement from elementary geometry.

2.5. Angle monotonicity. Increasing the opposite side in a plane triangle increases the corresponding angle, and the other way around.

19

Moreover, the same statement holds for spherical and hyperbolic triangles.

Proof. Consider the model triangle $[\tilde{x}\tilde{p}\tilde{z}] = \tilde{\Delta}(xpz)$. Take a point \tilde{y} on the extension of $[\tilde{x}\tilde{z}]$ beyond \tilde{z} so that $|\tilde{x}-\tilde{y}|=|x-y|$ (and therefore $|\tilde{x} - \tilde{z}| = |x - z|$.

By the angle monotonicity (2.5), the following expressions have the same sign:

- (i) $\angle [\tilde{x}_{\tilde{y}}^{p}] \angle (x_{\tilde{y}}^{p}),$
- (ii) $|\tilde{p} \tilde{y}| |p y|$,
- (iii) $\angle [\tilde{z}_{\tilde{u}}^{\tilde{p}}] \tilde{\angle}(z_{\tilde{u}}^{p}).$

Since

$$\measuredangle[\tilde{x}_{\tilde{y}}^{\tilde{p}}] = \measuredangle[\tilde{x}_{\tilde{z}}^{\tilde{p}}] = \tilde{\measuredangle}(x_z^p)$$

and

$$\angle[\tilde{z}_{\tilde{y}}^{\tilde{p}}] = \pi - \angle[\tilde{z}_{\tilde{p}}^{\tilde{x}}] = \pi - \tilde{\angle}(z_{p}^{x}),$$

the statement follows.

The spherical and hyperbolic cases can be proved along the same lines.

2.6. Exercise. Assume p, x, y, z are as in Alexandrov's lemma. Show that

$$\tilde{\angle}(p_y^x) \geqslant \tilde{\angle}(p_z^x) + \tilde{\angle}(p_y^z),$$

with equality if and only if the expressions in (a) and (b) in 2.4 vanish.

Note that

$$p \in |xy| \implies \tilde{\lambda}(p_{y}^{x}) = \pi.$$

Applying it with Alexandrov's lemma and \mathbb{E}^2 -comparison, we get the following.

2.7. Claim. If p, x, y, z are points in an Alex(0) space. Suppose $p \in |xy|$, then

$$\tilde{\measuredangle}(x_{z}^{y})\leqslant \tilde{\measuredangle}(x_{z}^{p}).$$

2.8. Exercise. Let $[p_y^x]$ be a hinge in an ALEX(0) space. Consider the function

$$f: (|p-\bar{x}|, |p-\bar{y}|) \mapsto \tilde{\measuredangle}(p_{\bar{y}}^{\bar{x}}),$$

where $\bar{x} \in]px]$ and $\bar{y} \in]py]$. Show that f is nonincreasing in each argument.

This exercise implies the following.

2.9. Claim. The angle measure of any hinge in an ALEX(0) space is defined and is at least as large as the corresponding model angle; that is,

$$\measuredangle[p_{\,y}^{\,x}]\geqslant \tilde{\measuredangle}(p_{\,y}^{\,x})$$

for any hinge $[p_y^x]$ in an Alex(0).

2.10. Exercise. Let $[p_y^x]$ be a hinge in an ALEX(0) space. Suppose $\angle[p_y^x] = 0$; show that $[px] \subset [py]$ or $[py] \subset [px]$.

Conclude that geodesics in Alex(0) space cannot bifurcate; that is, if two geodesics [px] and [py] share a nontrivial arc with an end at p, then $[px] \subset [py]$ or $[py] \subset [px]$.

2.11. Exercise. Let [xy] be a geodesic in an Alex(0) space. Suppose $z \in]xy[$. Show that there is a unique geodesic [xz] and $[xz] \subset [xy]$.

Recall that adjacent hinges are defined in 1.10.

2.12. Exercise. Let $[p_z^x]$ and $[p_z^y]$ be adjacent hinges in an ALEX(0) space. Show that

$$\measuredangle[p_z^x] + \measuredangle[p_z^y] = \pi.$$

2.13. Exercise. Let A be an Alex(0) space. Show that

$$\tilde{\measuredangle}(x_{\,p}^{\,y}) = \tilde{\measuredangle}(x_{\,p}^{\,v}) \quad \Longleftrightarrow \quad \tilde{\measuredangle}(x_{\,p}^{\,y}) = \tilde{\measuredangle}(x_{\,p}^{\,w})$$

for any points p, x, y, v, w in A such that $v, w \in]xy[$.

2.14. Exercise. Let \mathcal{A} be an ALEX(0) space. Suppose hinges $[x_n \frac{y_n}{z_n}]$ in \mathcal{A} converge to a hinge $[x_\infty \frac{y_\infty}{z_\infty}]$; that is, geodesics $[x_n y_n]$ and $[x_n z_n]$ converge to the geodesics $[x_\infty y_\infty]$ and $[x_\infty z_\infty]$ in the Hausdorff sense. Show that

$$\underline{\lim_{n \to \infty}} \, \measuredangle[x_n \, {\textstyle \frac{y_n}{z_n}}] \geqslant \measuredangle[x_\infty \, {\textstyle \frac{y_\infty}{z_\infty}}].$$

The last inequality might be strict; for example, on the surface of convex polyhedron, which is a ALEX(0) space by 11.15.

C Hinge comparison

Let $[p \,_y^x]$ be a hinge in an Alex(0) space \mathcal{A} . By 2.8, the angle measure $\mathcal{A}[p \,_y^x]$ is defined and

$$\angle[p_y^x] \geqslant \tilde{\angle}(p_y^x).$$

Further, according to 2.12, we have

$$\angle[p_z^x] + \angle[p_z^y] = \pi$$

for adjacent hinges $[p_z^x]$ and $[p_z^y]$ in \mathcal{A} .

The following theorem implies that a geodesic space has nonnegative curvature in the sense of Alexandrov if the above conditions hold for all its hinges.

- **2.15. Theorem.** A complete geodesic space A is Alex(0) if the following conditions hold.
 - (a) For any hinge $[x_y^p]$ in A, the angle $\angle[x_y^p]$ is defined and

$$\angle[x_y^p] \geqslant \tilde{\angle}(x_y^p).$$

(b) For any two adjacent hinges $[p_z^x]$ and $[p_z^y]$ in A, we have

$$\measuredangle[p_z^x] + \measuredangle[p_z^y] \leqslant \pi.$$

Proof. Consider a point $w \in |pz|$ close to p. From (b), it follows that

$$\angle[w_z^x] + \angle[w_n^x] \leqslant \pi$$
 and $\angle[w_z^y] + \angle[w_n^y] \leqslant \pi$.

Since $\angle[w\,_y^x] \leqslant \angle[w\,_p^x] + \angle[w\,_p^y]$ (see 1.9), we get

$$\angle[w_z^x] + \angle[w_z^y] + \angle[w_u^x] \leqslant 2 \cdot \pi.$$

Applying (a),

$$\tilde{\measuredangle}(w_{z}^{\,x}) + \tilde{\measuredangle}(w_{z}^{\,y}) + \tilde{\measuredangle}(w_{y}^{\,y}) \leqslant 2 \cdot \pi.$$

Passing to the limits as $w \to p$, we have

$$\tilde{\measuredangle}(p_{z}^{\,x}) + \tilde{\measuredangle}(p_{z}^{\,y}) + \tilde{\measuredangle}(p_{y}^{\,x}) \leqslant 2 \cdot \pi.$$

D Equivalent conditions

The following theorem summarizes 2.7, 2.9, 2.12, and 2.15.

- **2.16. Theorem.** Let A be a complete geodesic space. Then the following conditions are equivalent.
 - (a) A is Alex(0).

(b) (adjacent angle comparison)

$$\tilde{\measuredangle}(z_{x}^{p}) + \tilde{\measuredangle}(z_{y}^{p}) \leqslant \pi$$

for any geodesic [xy] and point $z \in]xy[$, $z \neq p$ in A.

(c) (point-on-side comparison)

$$\tilde{\angle}(x_{u}^{p}) \leqslant \tilde{\angle}(x_{z}^{p})$$

for any geodesic [xy] and $z \in [xy]$ in A.

(d) (hinge comparison) the angle $\angle[x_y^p]$ is defined for any hinge $[x_y^p]$ in A. Moreover,

$$\measuredangle[x_{\,y}^{\,p}]\geqslant \tilde{\measuredangle}(x_{\,y}^{\,p})$$

for any hinge $[x_y^p]$, and

$$\angle[z_y^p] + \angle[z_x^p] \leqslant \pi$$

for any adjacent hinges $\begin{bmatrix} z \\ y \end{bmatrix}$ and $\begin{bmatrix} z \\ x \end{bmatrix}$.

Moreover, the implications $(a)\Rightarrow(b)\Rightarrow(c)\Rightarrow(d)$ hold in any space, not necessarily a geodesic one.

2.17. Advanced Exercise. Construct a complete geodesic space \mathcal{X} that is not Alex(0), but satisfies the following weaker version of the adjacent angle comparison 2.16b.

For any three points $p, x, y \in \mathcal{X}$ there is a geodesic [xy] such that for any $z \in]xy[$

$$\tilde{\measuredangle}(z_x^p) + \tilde{\measuredangle}(z_y^p) \leqslant \pi.$$

2.18. Exercise. Let W be \mathbb{R}^n with the metric induced by a norm. Show that if W is Alex(0), then W is isometric to the Euclidean space \mathbb{E}^n .

E Function comparison

Real-to-real functions. Choose $\lambda \in \mathbb{R}$. Let $s \colon \mathbb{I} \to \mathbb{R}$ be a locally Lipschitz function defined on an interval \mathbb{I} . The following statement are equivalent; if one (and therefore any) of them holds for s, then we say that s is λ -concave.

- \diamond We have inequality $s'' \leq \lambda$, where the second derivative s'' is understood in the sense of distributions.
- \diamond The function $t \mapsto s(t) \lambda \cdot \frac{t^2}{2}$ is concave.

The Jensen inequality

$$s(a \cdot t_0 + (1-a) \cdot t_1) \ge a \cdot s(t_0) + (1-a) \cdot s(t_1) + \frac{\lambda}{2} \cdot a \cdot (1-a) \cdot (t_1 - t_0)^2$$

holds for any $t_0, t_1 \in \mathbb{I}$ and $a \in [0, 1]$.

 \diamond for any $t_0 \in \mathbb{I}$ there is a quadratic polynomial $\ell = \frac{\lambda}{2} \cdot t^2 + a \cdot t + b$ (it is called a barrier) that supports (locally) s at t_0 from above; that is, $\ell(t_0) = s(t_0)$ and $\ell(t) \geqslant s(t)$ for any t (in a neighborhood of t_0)

To prove equivalence, approximate f by smooth functions taking a convolutions $f_n = f * k_n$ for a suitable sequence of kernels k_n . Note that all the conditions are equivalent for f_n ; passing to the limit we get the same for f.

We will also use that λ -concave functions are one-sided differentiable.

Also note that that since a concave function defined on an open interval is automatically locally Lipschitz, the requirement that a λ -concave function be locally Lipschitz is superfluous for open intervals.

Functions on metric spaces. A function on a metric space \mathcal{A} will usually mean a *locally Lipschitz real-valued function defined on an open subset of* \mathcal{A} . The domain of a function f will be denoted by Dom f.

We say that f is λ -concave (briefly $f'' \leq \lambda$) if for any unit-speed geodesic $\gamma \colon \mathbb{I} \to \mathrm{Dom}\, f$ the real-to-real function $t \mapsto f \circ \gamma(t)$ is λ -concave.

The following proposition is simple but conceptual — it reformulates a global geometric condition into an infinitesimal condition on distance functions.

2.19. Proposition. A complete geodesic space A is Alex(0) if and only if $f'' \leq 1$ for any function f of the form

$$f \colon x \mapsto \frac{1}{2} \cdot |p - x|^2$$
.

Proof. Choose a unit-speed geodesic γ in \mathcal{A} and two points $x = \gamma(t_0)$, $y = \gamma(t_1)$ for some $t_0 < t_1$. Consider the model triangle $[\tilde{p}\tilde{x}\tilde{y}] = \tilde{\Delta}(pxy)$. Let $\tilde{\gamma} : [t_0, t_1] \to \mathbb{E}^2$ be the unit-speed parametrization of $[\tilde{x}\tilde{y}]$ from \tilde{x} to \tilde{y} .

Set

$$\tilde{r}(t) := |\tilde{p} - \tilde{\gamma}(t)|, \qquad \qquad r(t) := |p - \gamma(t)|.$$

Clearly, $\tilde{r}(t_0) = r(t_0)$ and $\tilde{r}(t_1) = r(t_1)$. Note that the point-on-side comparison (2.16c) is equivalent to

$$\mathbf{0} \qquad \qquad t_0 \leqslant t \leqslant t_1 \qquad \Longrightarrow \qquad \tilde{r}(t) \leqslant r(t)$$

for any γ and $t_0 < t_1$.

Jensen's inequality for the function h is equivalent to \bullet . Hence the proposition follows.

F Remarks

Our 4-point comparison in Section 2A is closely related to the so-called CAT comparison, which defines an *upper* curvature bound in the sense of Alexandrov; this is the subject of our previous book [6].

In both comparisons we check certain conditions on the 6 distances between every pair of points in 4-point sets. Michael Gromov [37, Section 1.19_+] suggested considering other conditions of that type for n-point subsets; see [30, 38, 58–61, 63, 65, 91, 110] for the development of this idea.

In this text we have chosen complete geodesic spaces with curvature at least κ as the main object of study (the $Alex(\kappa)$ spaces). Instead of the geodesic condition, we could assume that they are length spaces. This condition is more natural and general, but many statements can be reduced to the geodesic case. In particular, suppose \mathcal{A} is a complete length space with curvature $\geq \kappa$, then \mathcal{A} can be isometrically embedded into an $Alex(\kappa)$ space — the ultrapower of \mathcal{A} ; see [7, 4.11+8.4]. Also, by Plaut's theorem, any point p in \mathcal{A} can be connected by geodesics to most of points in \mathcal{A} [7, 8.11]; compare to 6.18c.

All the discussed statements can be generalized to $Alex(\kappa)$ spaces. The proof are nearly the same, but the formulas are getting more complicated.

For example, the function comparison for ALEX(-1) spaces states that $f'' \leq f$ for any function of the type $f = \cosh \circ \operatorname{dist}_p$. (The inequality used here will be defined in Section 4C.)

Similarly, the function comparison for ALEX(1) states that for any point p, we have $f'' \leq -f$ for the function $f = -\cos \circ \operatorname{dist}_p$ defined in $B(p,\pi)$. The geometric meaning of these inequalities remains the same: distance functions are more concave than distance functions in $\mathbb{M}^2(\kappa)$.

Lecture 3

Globalization

The globalization theorem states that a locally Alexandrov space is globally Alexandrov. We prove it in the simplest meaningful case and indicate a way to extend the proof to the general case.

A Globalization

A complete geodesic metric space \mathcal{A} is locally ALEX(0) if any point $p \in \mathcal{A}$ admits a neighborhood $U \ni p$ such that the \mathbb{E}^2 -comparison holds for any quadruple of points in U.

3.1. Globalization theorem. Any compact locally Alex(0) space is Alex(0).

Proof modulo the key lemma (3.2). Note that condition 2.15b holds in \mathcal{A} (the proof is the same). It remains to check 2.15a; that is,

$$\angle[x_y^p] \geqslant \tilde{\angle}(x_y^p)$$

for any hinge $[x_y^p]$ in \mathcal{A} .

Inequality \bullet holds for hinges in a small neighborhood of any point; this can be proved the same way as 2.9 and 2.12, applying the local version of the \mathbb{E}^2 -comparison. Since \mathcal{A} is compact, there is $\varepsilon > 0$ such that \bullet holds if $|x-p|+|p-y|<\varepsilon$. Applying the key lemma several times we get that \bullet holds for any given hinge.

3.2. Key lemma. Let \mathcal{A} be a locally Alex(0) space. Assume that the comparison

$$\angle[x_q^p] \geqslant \tilde{\angle}(x_q^p)$$

holds for any hinge $[x_q^p]$ with $|x-y|+|x-q|<\frac{2}{3}\cdot \ell$. Then the comparison

$$\measuredangle[x_{q}^{\,p}]\geqslant \tilde{\measuredangle}(x_{q}^{\,p})$$

 $\label{eq:holds for any hinge } \text{$\left[x\,{}_{q}^{\,p}\right]$ with $|x-p|+|x-q|<\ell$.}$

Let $[x_q^p]$ be a hinge in \mathcal{A} . Denote by $\tilde{\Upsilon}[x_q^p]$ its model side; this is the opposite side in a flat triangle with the same angle and two adjacent sides as in $[x_q^p]$.

More precisely, consider the model hinge $[\tilde{x}_{\tilde{q}}^{\tilde{p}}]$ in \mathbb{E}^2 that is defined by

$$\begin{split} & \measuredangle [\tilde{x} \, \tilde{\bar{q}}]_{\mathbb{E}^2} = \measuredangle [x \, {}_q^p]_{\mathcal{A}}, \\ & |\tilde{x} - \tilde{p}|_{\mathbb{E}^2} = |x - p|_{\mathcal{A}}, \\ & |\tilde{x} - \tilde{q}|_{\mathbb{E}^2} = |x - q|_{\mathcal{A}}; \end{split}$$

then

$$\tilde{\Upsilon}[x_q^p]_{\mathcal{A}} := |\tilde{p} - \tilde{q}|_{\mathbb{E}^2}.$$

Note that

$$\tilde{\Upsilon}[x_q^p] \geqslant |p-q| \iff \angle[x_q^p] \geqslant \tilde{\angle}(x_q^p).$$

We will use it in the following proof.

Proof. Consider a hinge $[x_q^p]$ such that

$$\frac{2}{3} \cdot \ell \leqslant |p-x| + |x-q| < \ell.$$

It is sufficient to prove that

$$\tilde{\gamma}[x_q^p] \geqslant |p-q|$$

First, let us construct a new hinge $[x']_q^p$ with

$$|p-x| + |x-q| \geqslant |p-x'| + |x'-q|,$$

such that

$$\tilde{\Upsilon}[x_q^p] \geqslant \tilde{\Upsilon}[x_q']$$

Construction. Assume $|x-q| \ge |x-p|$; otherwise, switch the roles of p and q. Take $x' \in [xq]$ such that

$$|p - x| + 3 \cdot |x - x'| = \frac{2}{3} \cdot \ell.$$

Choose a geodesic [x'p] and consider the hinge $[x'{}_{q}^{p}]$ formed by [x'p] and $[x'q] \subset [xq]$. The triangle inequality implies **3**. Furthermore,

$$|p-x| + |x-x'| < \frac{2}{3} \cdot \ell,$$
 $|p-x'| + |x'-x| < \frac{2}{3} \cdot \ell.$

In particular, the assumption of the lemma implies that

Let $[\tilde{x}\tilde{x}'\tilde{p}] = \tilde{\triangle}(xx'p)$. Take \tilde{q} on the extension of $[\tilde{x}\tilde{x}']$ beyond x' such that $|\tilde{x} - \tilde{q}| = |x - q|$ (and therefore $|\tilde{x}' - \tilde{q}| = |x' - q|$). By \P ,

$$\angle[x_q^p] = \angle[x_{x'}^p] \geqslant \tilde{\angle}(x_{x'}^p) \quad \Rightarrow \quad \tilde{\curlyvee}[x_q^q] \geqslant |\tilde{p} - \tilde{q}|.$$

Hence

$$\begin{split} \measuredangle[\tilde{x}'_{\tilde{q}}^{\tilde{p}}] &= \pi - \tilde{\measuredangle}(x'_{x}^{p}) \geqslant \\ &\geqslant \pi - \measuredangle[x'_{x}^{p}] = \\ &= \measuredangle[x'_{q}^{p}], \end{split}$$

and **6** follows.

Let us continue the proof. Set $x_0 = x$. Let us apply inductively the above construction to get a sequence of hinges $[x_n {p \atop q}]$ with $x_{n+1} = x'_n$. From \bullet , we have that the sequence $s_n = \tilde{\gamma}[x_n {p \atop q}]$ is nonincreasing.

The sequence x_n terminates at some n if $|p-x_n|+|x_n-q|<\frac{2}{3}\cdot \ell$. In this case, by the assumptions of the lemma, $\tilde{\Upsilon}[x_n \stackrel{p}{q}] \geqslant |p-q|$. Since the sequence s_n is nonincreasing, inequality \bullet follows.

Now we can assume that the sequence x_n does not terminate. Let us prove the following claim.

9 The distances $|x_n - x_{n+1}|$, $|x_n - p|$, and $|x_n - q|$ are bounded away from zero for all large n.

Set

$$a_n = \min\{|p - x_n|, |q - x_n|\},\$$

$$b_n = \max\{|p - x_n|, |q - x_n|\},\$$

$$r_n = |p - x_n| + |x_n - q| = a_n + b_n.$$

By the triangle inequality, r_n is a nonincreasing sequence, and since x_n does not terminate, we have $\frac{2}{3} \cdot \ell \leqslant r_n < \ell$ for all n.

By $\mathbf{0}$, $|x_n - x_{n+1}| = \frac{1}{3} \cdot (\frac{2}{3} \cdot \ell - a_n)$. Since $a_n + b_n = r_n < l$ and $a_n \leq b_n$ it holds that $a_n \leq \frac{1}{2} \cdot \ell$. Hence

which proves the claim for $|x_n - x_{n+1}|$.

Note that

$$a_{n+1} = b_n - |x_n - x_{n+1}|$$
 or $b_{n+1} = b_n - |x_n - x_{n+1}|$

In the latter case,

$$a_{n+1} = r_{n+1} - b_{n+1} =$$

$$= (r_{n+1} - r_n) + (r_n - b_n) + |x_n - x_{n+1}|$$

$$= -(r_n - r_{n+1}) + a_n + |x_n - x_{n+1}|.$$

Since r_n does not increase, it must converge; so, $r_n - r_{n+1} \to 0$ as $n \to \infty$. Therefore, $r_n - r_{n+1} \leqslant \frac{1}{100} \cdot \ell$ for all large n. Observe that $b_n \geqslant \frac{1}{2} \cdot r_n$, and therefore $b_n \geqslant \frac{1}{3} \cdot \ell$. Taking **9** into account, we get that in both cases $a_{n+1} \geqslant \frac{1}{100} \cdot \ell$ for all large n, which finishes the proof of the claim.

Since $r_n - r_{n+1} \to 0$, **9** implies that $\tilde{\angle}(x_n \frac{p_n}{x_{n+1}}) \to \pi$, where $p_n = p$ if $x_{n+1} \in [x_n q]$, and otherwise $p_n = q$. Since $\angle[x_n \frac{p_n}{x_{n+1}}] \geqslant \tilde{\angle}(x_n \frac{p_n}{x_{n+1}})$, we have $\angle[x_n \frac{p_n}{x_{n+1}}] \to \pi$ as $n \to \infty$.

It follows that

$$r_n - s_n = |p - x_n| + |x_n - q| - \tilde{\Upsilon}[x_n \,_q^p] \to 0.$$

By the triangle inequality $r_n \geqslant |p-q|$; therefore,

$$\lim_{n \to \infty} s_n \geqslant |p - q|.$$

Finally, the monotonicity of the sequence $s_n = \tilde{\gamma}[x_n \frac{p}{q}]$ implies **3**. \square

B General case

The globalization theorem can be generalized to any curvature bound κ . The case $\kappa \leq 0$ is proved in the same way, but the case $\kappa > 0$ requires modifications.

The compactness condition in our version of the theorem can be traded for completeness. The proof uses the following statement where

29

r(x) measures the size of a neighborhood of x where the comparison holds.

3.3. Exercise. Let \mathcal{X} be a complete metric space. Suppose $r: \mathcal{X} \to \mathbb{R}$ is a positive continuous function. Show that for any $\varepsilon > 0$ there is a point $p \in \mathcal{X}$ such that

$$r(x) > (1 - \varepsilon) \cdot r(p)$$

for any $x \in \overline{B}[p, \frac{1}{\varepsilon} \cdot r(p)]$.

Applying this exercise, one can prove the following general version of the globalization theorem.

3.4. Theorem. Any locally $ALEX(\kappa)$ space is $ALEX(\kappa)$.

By 1.6, we have

$$\tilde{\measuredangle}(x_z^y)_{\mathbb{M}^2(\kappa)} \leqslant \tilde{\measuredangle}(x_z^y)_{\mathbb{M}^2(K)}$$

if $\kappa \leq K$ and the right-hand side is defined. It follows that an ALEX(K) space is *locally* ALEX(κ). Therefore, the globalization theorem implies the following.

3.5. Claim. If $K > \kappa$, then any ALEX(K) space is $ALEX(\kappa)$.

In other words the expression curvature bounded below by κ makes sense for geodesic spaces. However, by the following exercise, it does not make much sense in general.

3.6. Exercise. Let \mathcal{X} be the set $\{p, x_1, x_2, x_3\}$ with the metric defined by

$$|p - x_i| = \pi, \quad |x_i - x_j| = 2 \cdot \pi$$

for all $i \neq j$. Show that \mathcal{X} has curvature $\geqslant 1$, but does not have $curvature \geqslant 0$.

3.7. Exercise. Let p and q be points in an ALEX(1) space \mathcal{A} . Suppose $|p-q| > \pi$. Denote by m the midpoint of [pq]. Show that for any hinge $[m_p^x]$ we have either $\measuredangle[m_p^x] = 0$ or $\measuredangle[m_p^x] = \pi$.

Conclude that A is isometric to a line interval or a circle.

3.8. Exercise. Suppose \mathcal{A} is an Alex(1) and $diam \mathcal{A} \leqslant \pi$. Show that

$$|x - y| + |y - z| + |z - x| \leqslant 2 \cdot \pi$$

for any triple of points $x, y, z \in A$.

C Remarks

The condition (b) in 2.15 might be superfluous. This is a long-standing open problem possibly dating back to Alexandrov [18, footnote in 4.1.5]. Let us state it formally.

3.9. Open question. Let \mathcal{A} be a complete geodesic space (you can also assume that \mathcal{A} is homeomorphic to \mathbb{S}^2 or \mathbb{R}^2) such that for any hinge $[x \ ^p]$ in \mathcal{A} , the angle $\angle [x \ ^p]$ is defined and

$$\angle[x_y^p] \geqslant \tilde{\angle}(x_y^p).$$

Is it true that A is an Alexandrov space?

The globalization theorem is also known as the generalized Toponogov theorem. Its two-dimensional case was proved by Paolo Pizzetti [94]; later it was reproved independently by Alexandr Alexandrov [11]. Victor Toponogov [109] proved it for Riemannian manifolds of all dimensions. For Alexandrov spaces of all dimensions, the theorem first appears in the paper of Michael Gromov, Yuriy Burago, and Grigory Perelman [19]. They prove globalization complete length spaces. Another version for noncomplete, but geodesic spaces was proved by the second author [86].

We took the proof from our book [7], but reduced generality. This proof is based on simplifications obtained by Conrad Plaut [95] and Dmitry Burago, Yuriy Burago, and Sergei Ivanov [18]. The same proof was rediscovered independently by Urs Lang and Viktor Schroeder [56]. Another simplified argument was found by Katsuhiro Shiohama [104].

Lecture 4

Calculus

This lecture defines several notions related to the first-order derivatives in Alexandrov spaces; this includes space of directions, tangent space, differential, and gradient.

A Space of directions

Let \mathcal{A} be an Alexandrov space. By 2.8, the angle measure of any hinge in is defined. Given $p \in \mathcal{A}$, consider the set \mathfrak{S}_p of all nontrivial geodesics starting at p. By 1.9, the triangle inequality holds for \mathcal{L} on \mathfrak{S}_p , that is, $(\mathfrak{S}_p, \mathcal{L})$ forms a semimetric space; that is, \mathcal{L} behaves like a metric, but might vanish for distinct directions.

The metric space corresponding to $(\mathfrak{S}_p, \measuredangle)$ is called the space of geodesic directions at p, denoted by Σ'_p or $\Sigma'_p A$. The elements of Σ'_p are called geodesic directions at p. Each geodesic direction is formed by an equivalence class of geodesics starting from p for the equivalence relation

$$[px] \sim [py] \iff \measuredangle[p_y^x] = 0;$$

the direction of [px] is denoted by $\uparrow_{[px]}$. By 2.10,

$$[px] \sim [py] \iff [px] \subset [py] \text{ or } [px] \supset [py].$$

The completion of Σ'_p is called the space of directions at p and is denoted by Σ_p or $\Sigma_p \mathcal{A}$. The elements of Σ_p are called directions at p.

4.1. Exercise. Let \mathcal{A} be an Alexandrov space. Assume that a sequence of geodesics $[px_n]$ converge to a geodesic $[px_\infty]$ in the sense of Hausdorff, and $x_\infty \neq p$. Suppose Σ_p is compact. Show that $\uparrow_{[px_n]} \to \to \uparrow_{[px_\infty]}$ as $n \to \infty$.

B Tangent space

The Euclidean cone $\mathcal{V} = \operatorname{Cone} \mathcal{X}$ over a metric space \mathcal{X} is defined as the metric space whose underlying set consists of equivalence classes in $[0, \infty) \times \mathcal{X}$ with the equivalence relation " \sim " given by $(0, p) \sim (0, q)$ for any points $p, q \in \mathcal{X}$, and whose metric is given by the cosine rule

$$|(s,p) - (t,q)|_{\mathcal{V}} = \sqrt{s^2 + t^2 - 2 \cdot s \cdot t \cdot \cos \theta},$$

where $\theta = \min\{\pi, |p - q|_{\mathcal{X}}\}.$

The leading example is

Cone
$$\mathbb{S}^n \stackrel{iso}{=\!\!=\!\!=} \mathbb{E}^{n+1}$$
;

here " $\stackrel{iso}{=}$ " stands for "isometric to". Now let us extend several notions from Euclidean space to Euclidean cones.

The point in \mathcal{V} that corresponds $(t,x) \in [0,\infty) \times \mathcal{X}$ will be denoted by $t \cdot x$. The point in \mathcal{V} formed by the equivalence class of $\{0\} \times \mathcal{X}$ is called the origin of the cone and is denoted by 0 or $0_{\mathcal{V}}$. For $v \in \mathcal{V}$ the distance $|0-v|_{\mathcal{V}}$ is called the norm of v and is denoted by |v| or $|v|_{\mathcal{V}}$. The scalar product $\langle v, w \rangle$ of $v = s \cdot p$ and $w = t \cdot q$ is defined by

$$\langle v, w \rangle := |v| \cdot |w| \cdot \cos \theta$$

where $\theta = \min\{\pi, |p-q|_{\mathcal{X}}\}$. The value θ is undefined if v = 0 or w = 0; in these cases we set $\langle v, w \rangle := 0$.

4.2. Exercise. Show that Cone \mathcal{X} is geodesic if and only if \mathcal{X} is π -geodesic; that is, any two points $x, y \in \mathcal{X}$ such that $|x-y|_{\mathcal{X}} < \pi$ can be joined by a geodesic in \mathcal{X} .

Tangent space. The Euclidean cone Cone Σ_p over the space of directions Σ_p is called the tangent space at p and is denoted by T_p or $T_p \mathcal{A}$. The elements of $T_p \mathcal{A}$ will be called tangent vectors at p (despite that T_p is only a cone — not a vector space). The space of directions Σ_p can be (and will be) identified with the unit sphere in T_p ; that is, with the set $\{v \in T_p : |v| = 1\}$.

4.3. Proposition. Any tangent space to an Alexandrov space has nonnegative curvature in the sense of Alexandrov.

Halbeisen's example [7] shows that the tangent space T_p at some point of Alexandrov space might fail to be geodesic; in this case T_p is not ALEX(0).

Proof. Consider the tangent space $T_p = \operatorname{Cone} \Sigma_p$ of an Alexandrov space \mathcal{A} at a point p. We need to show that the \mathbb{E}^2 -comparison holds for a given quadruple $v_0, v_1, v_2, v_3 \in T_p$.

Recall that the space of geodesic directions Σ_p' is dense in Σ_p . It follows that the subcone $T_p' = \operatorname{Cone} \Sigma_p'$ is dense in T_p . Therefore, it is sufficient to consider the case $v_0, v_1, v_2, v_3 \in T_p'$.

For each i, choose a geodesic γ_i from p in the direction of v_i ; reparametrize each γ_i so that it has speed $|v_i|$. Since the angles are defined, we have

$$|\gamma_i(\varepsilon) - \gamma_j(\varepsilon)|_{\mathcal{A}} = \varepsilon \cdot |v_i - v_j|_{\mathbf{T}_p} + o(\varepsilon)$$

for $\varepsilon > 0$. The quadruple $\gamma_0(\varepsilon)$, $\gamma_1(\varepsilon)$, $\gamma_2(\varepsilon)$, $\gamma_3(\varepsilon)$ meets the $\mathbb{M}^2(\kappa)$ -comparison. After rescaling all the distances by $\frac{1}{\varepsilon}$, it becomes the $\mathbb{M}^2(\varepsilon^2 \cdot \kappa)$ -comparison. Passing to the limit as $\varepsilon \to 0$ and applying $\mathbf{0}$, we get the \mathbb{E}^2 -comparison for v_0 , v_1 , v_2 , v_3 .

4.4. Exercise. Let p be a point in an Alexandrov space A, and let $\lambda_n \to \infty$. Suppose Σ_p is compact. Show that there is a pointed Gromov-Hausdorff convergence $(\lambda_n \cdot A, p) \to (T_p, 0)$. Moreover, the convergence can be shoosen so that for any geodesic γ that starts at p, we have

$$\iota_n \circ \gamma(t/\lambda_n) \to t \cdot \gamma^+(0),$$

where ι_n sends a point in A to the corresponding point in $\lambda_n \cdot A$.

C Semiconcave functions

Recall that λ -concave functions were defined in Section 2E, and when we say function we usually mean a locally Lipschitz function defined on an open domain.

Let f be a locally Lipschitz real-valued function defined in an open subset Dom f of an Alexandrov space \mathcal{A} . Suppose φ is a continuous function defined in Dom f. We will write $f'' \leqslant \varphi$ if for any point $x \in \text{Dom } f$ and any $\varepsilon > 0$ there is a neighborhood $U \ni x$ such that the restriction $f|_U$ is $(\varphi(x) + \varepsilon)$ -concave.

If $f'' \leq \varphi$ for some continuous function φ , then f is called semiconcave.

4.5. Exercise. Let f be a distance function on an ALEX(0) space \mathcal{A} ; that is, $f(x) \equiv |p-x|$ for some $p \in \mathcal{A}$. Show that $f'' \leqslant \frac{1}{f}$. In particular, f is semiconcave in $\mathcal{A} \setminus \{p\}$.

D Differential

Let f be a semiconcave function on an Alexandrov space \mathcal{A} , and $p \in \text{Dom } f$. Choose a unit-speed geodesic γ that starts at p; let $\xi \in \Sigma_p$

be its direction. Define

$$(\boldsymbol{d}_p f)(\xi) := (f \circ \gamma)^+(0),$$

here $(f \circ \gamma)^+$ denotes the right derivative of $(f \circ \gamma)$; it is defined since f is semiconcave.

By the following exercise, the value $(d_p f)(\xi)$ is defined; that is, it does not depend on the choice of γ . Moreover, $d_p f$ is a Lipschitz function on Σ'_p . It follows that the function $d_p f \colon \Sigma'_p \to \mathbb{R}$ can be uniquely extended to a Lipschitz function $d_p f \colon \Sigma_p \to \mathbb{R}$. Further, we can extend it to the tangent space by setting

$$(\boldsymbol{d}_p f)(r \cdot \xi) := r \cdot (\boldsymbol{d}_p f)(\xi)$$

for any $r \geqslant 0$ and $\xi \in \Sigma_p$. The obtained function $\mathbf{d}_p f \colon T_p \to \mathbb{R}$ is Lipschitz; it is called the differential of f at p.

4.6. Exercise. Let f be a semiconcave function on an Alexandrov space. Suppose γ_1 and γ_2 are geodesics that start at $p \in \text{Dom } f$; denote by θ the angle between γ_1 and γ_2 at p. Show that

$$|(f \circ \gamma_1)^+(0) - (f \circ \gamma_2)^+(0)| \leqslant L \cdot \theta,$$

where L is the Lipschitz constant of f in a neighborhood of p.

- **4.7. Exercise (First variation formula).** Let p and q be distinct points in an Alexandrov space A. Show the following.
 - (a) $\mathbf{d}_p \operatorname{dist}_q(v) \leqslant -\langle \uparrow_{[pq]}, v \rangle$ for any $v \in T_p$.
 - (b) Suppose A is proper. Let \uparrow_p^q be the set of all direction of geodesics from p to q. Then

$$d_p \operatorname{dist}_q(v) = -\max_{\xi \in \uparrow_p^q} \langle \xi, v \rangle$$

for any $v \in T_p$.

E Gradient

The following definition generalizes the gradient to semiconcave functions on Alexandrov space. This generalization is not trivial even for concave functions on Euclidean space; we suggest keeping this example in mind while reading further.

4.8. Definition. Let f be a semiconcave function on an Alexandrov space. A tangent vector $g \in T_p$ is called a gradient of f at p (briefly, $g = \nabla_p f$) if

E. GRADIENT 35

(a)
$$(\mathbf{d}_p f)(w) \leq \langle g, w \rangle$$
 for any $w \in T_p$, and
(b) $(\mathbf{d}_p f)(g) = \langle g, g \rangle$.

The following exercise provides a property of gradients that will play a key role in the proof of the first distance estimate (5.6).

4.9. Exercise. Let f be a λ -concave function on an Alexandrov space. Suppose that gradients $\nabla_x f$ and $\nabla_y f$ are defined. Show that

$$\langle \uparrow_{[xy]}, \nabla_x f \rangle + \langle \uparrow_{[yx]}, \nabla_y f \rangle + \lambda \cdot |x - y| \ge 0.$$

4.10. Proposition. Suppose that a semiconcave function f is defined in a neighborhood of a point p in an Alexandrov space. Then the gradient $\nabla_p f$ is uniquely defined.

Moreover, if $\mathbf{d}_p f \leq 0$, then we have $\nabla_p f = 0$; otherwise, $\nabla_p f = s \cdot \overline{\xi}$, where $s = \mathbf{d}_p f(\overline{\xi})$ and $\overline{\xi} \in \Sigma_p$ is the direction that maximize the value $\mathbf{d}_p f(\xi)$ for $\xi \in \Sigma_p$.

4.11. Key lemma. Let f be a semiconcave function that is defined in a neighborhood of a point p in an Alexandrov space A. Then for any $u, v \in T_p$, we have

$$s \cdot \sqrt{|u|^2 + 2 \cdot \langle u, v \rangle + |v|^2} \geqslant (\boldsymbol{d}_p f)(u) + (\boldsymbol{d}_p f)(v),$$

where

$$s = \sup \{ (\boldsymbol{d}_p f)(\xi) : \xi \in \Sigma_p \}.$$

If $T_p \stackrel{iso}{=\!\!\!=\!\!\!=} \mathbb{E}^m$ and $\boldsymbol{d}_p f$ is a concave function, then

$$2 \cdot (\boldsymbol{d}_p f)(\frac{u+v}{2}) \geqslant (\boldsymbol{d}_p f)(u) + (\boldsymbol{d}_p f)(v).$$

The latter implies the statement since $|u+v| = \sqrt{|u|^2 + 2 \cdot \langle u, v \rangle + |v|^2}$. In general, T_p is not geodesic (and not even a length space), so concavity of $d_p f$ does not make sense. The key lemma however says that in a certain sense $d_p f$ behaves as a concave function.

Solving the following exercise should help to find an approach to the key lemma.

4.12. Exercise. Let p and q be distinct points in an Alexandrov space A. Suppose the geodesic [pq] can be extended beyond q.

Show that

$$\boldsymbol{d}_p \operatorname{dist}_q(v) = -\langle \uparrow_{[pq]}, v \rangle$$

for any $v \in T_p$.

Proof of 4.11. We will assume that \mathcal{A} is ALEX(0) and f is concave; the general case requires only minor modifications. We can assume that $v \neq 0$, $w \neq 0$, and $\alpha = \angle(u, v) > 0$; otherwise, the statement is trivial.

Consider a model configuration of five points: \tilde{p} , \tilde{u} , \tilde{v} , \tilde{q} , $\tilde{w} \in \mathbb{E}^2$ such that

- $\diamond \ \measuredangle [\tilde{p}_{\,\tilde{\tilde{v}}}^{\,\tilde{u}}] = \alpha,$
- $\diamond |\tilde{p} \tilde{u}| = |u|,$
- $\diamond |\tilde{p} \tilde{v}| = |v|,$

 $\diamond \ \tilde{w}$ is the midpoint between \tilde{u} and \tilde{v} .

Note that

$$|\tilde{p} - \tilde{w}| = \frac{1}{2} \cdot \sqrt{|u|^2 + 2 \cdot \langle u, v \rangle + |v|^2}.$$

Since the geodesic space of directions Σ'_p is dense in Σ_p , we can assume that there are geodesics in the directions of u and v. Choose such geodesics γ_u and γ_v and assume that they are parametrized with speed |u| and |v| respectively. For all small t>0, consider points $u_t, v_t, q_t, w_t \in \mathcal{A}$ such that

- $\diamond v_t = \gamma_v(t), \quad q_t = \gamma_v(2 \cdot t)$
- $\diamond u_t = \gamma_u(t).$
- $\diamond w_t$ is the midpoint of $[u_t v_t]$.

Clearly

$$|p-u_t|=t\cdot |u|, \qquad |p-v_t|=t\cdot |v|, \qquad |p-q_t|=2\cdot t\cdot |v|.$$

Since $\angle(u, v)$ is defined, we have

$$|u_t - v_t| = t \cdot |\tilde{u} - \tilde{v}| + o(t), \qquad |u_t - q_t| = t \cdot |\tilde{u} - \tilde{q}| + o(t).$$

From the point-on-side and hinge comparisons (2.16c+2.16d), we have

$$\tilde{\measuredangle}(v_t\,_{w_t}^p) \geqslant \tilde{\measuredangle}(v_t\,_{u_t}^p) \geqslant \measuredangle[\tilde{v}\,_{\tilde{u}}^{\tilde{p}}] + \tfrac{o(t)}{t}$$

and

$$\tilde{\measuredangle}(v_t\,{}^{q_t}_{w_t})\geqslant \tilde{\measuredangle}(v_t\,{}^{q_t}_{u_t})\geqslant \measuredangle[\tilde{v}\,{}^{\tilde{q}}_{\tilde{u}}]+\tfrac{o(t)}{t}.$$

E. GRADIENT 37

Clearly, $\angle[\tilde{v}_{\tilde{u}}^{\tilde{p}}] + \angle[\tilde{v}_{\tilde{u}}^{\tilde{q}}] = \pi$. From the adjacent angle comparison (2.16b), $\tilde{\angle}(v_t^p_{u_t}) + \tilde{\angle}(v_t^{u_t}) \leqslant \pi$. Hence $\tilde{\angle}(v_t^p_{w_t}) \to \angle[\tilde{v}_{\tilde{w}}^{\tilde{p}}]$ as $t \to 0+$ and thus

$$|p - w_t| = t \cdot |\tilde{p} - \tilde{w}| + o(t).$$

Without loss of generality, we can assume that f(p) = 0. Since f is concave, we have

$$2 \cdot f(w_t) \geqslant f(u_t) + f(v_t) =$$

= $t \cdot [(\boldsymbol{d}_p f)(u) + (\boldsymbol{d}_p f)(v)] + o(t).$

Applying concavity of f, we have

$$(\boldsymbol{d}_{p}f)(\uparrow_{[pw_{t}]}) \geqslant \frac{f(w_{t})}{|p-w_{t}|} \geqslant$$

$$\geqslant \frac{t \cdot [(\boldsymbol{d}_{p}f)(u) + (\boldsymbol{d}_{p}f)(v)] + o(t)}{2 \cdot t \cdot |\tilde{p} - \tilde{w}| + o(t)}.$$

By **1**, the key lemma follows.

Proof of 4.10; uniqueness. If $g, g' \in T_p$ are two gradients of f, then

$$\langle g, g \rangle = (\boldsymbol{d}_p f)(g) \leqslant \langle g, g' \rangle, \qquad \langle g', g' \rangle = (\boldsymbol{d}_p f)(g') \leqslant \langle g, g' \rangle.$$

Therefore,

$$|g - g'|^2 = \langle g, g \rangle - 2 \cdot \langle g, g' \rangle + \langle g', g' \rangle \leqslant 0.$$

It follows that g = g'.

Existence. If $\mathbf{d}_p f \leq 0$, then one can take $\nabla_p f = 0$.

Suppose $s = \sup \{ (d_p f)(\xi) : \xi \in \Sigma_p \} > 0$, it is sufficient to show that there is $\overline{\xi} \in \Sigma_p$ such that

$$(\boldsymbol{d}_{p}f)\left(\overline{\xi}\right) = s.$$

Indeed, suppose $\overline{\xi}$ exists. Applying 4.11 for $u=\overline{\xi},\ v=\varepsilon\cdot w$ with $\varepsilon\to 0+$, we get

$$(\boldsymbol{d}_p f)(w) \leqslant \langle w, s \cdot \overline{\xi} \rangle$$

for any $w \in T_p$; that is, $s \cdot \overline{\xi}$ is the gradient at p.

Take a sequence of directions $\xi_n \in \Sigma_p$, such that $(\mathbf{d}_p f)(\xi_n) \to s$. Applying 4.11 for $u = \xi_n$ and $v = \xi_m$, we get

$$s \geqslant \frac{(\boldsymbol{d}_p f)(\xi_n) + (\boldsymbol{d}_p f)(\xi_m)}{\sqrt{2 + 2 \cdot \cos \angle(\xi_n, \xi_m)}}.$$

Therefore $\angle(\xi_n, \xi_m) \to 0$ as $n, m \to \infty$; that is, ξ_1, ξ_2, \ldots is a Cauchy sequence. Clearly, $\overline{\xi} = \lim_n \xi_n$ meets **2**.

4.13. Exercise. Let f and g be locally Lipschitz semiconcave functions defined in a neighborhood of a point p in an Alexandrov space. Show that

$$|\nabla_p f - \nabla_p g|^2_{\mathbf{T}_p} \leqslant s \cdot (|\nabla_p f| + |\nabla_p g|),$$

where

$$s = \sup \left\{ \left| (\boldsymbol{d}_{p} f)(\xi) - (\boldsymbol{d}_{p} g)(\xi) \right| : \xi \in \Sigma_{p} \right\}.$$

Conclude that if the sequence of restrictions $d_p f_n|_{\Sigma_p}$ converges uniformly, then $\nabla_p f_n$ converges as $n \to \infty$. Here we assume that all functions f_1, f_2, \ldots are semiconcave and locally Lipschitz.

- **4.14. Exercise.** Let f be a locally Lipschitz λ -concave function on an Alexandrov space A.
 - (a) Suppose $s \ge 0$. Show that $|\nabla_x f| > s$ if and only if for some point y we have

$$f(y) - f(x) > s \cdot \ell + \lambda \cdot \frac{\ell^2}{2}$$

were $\ell = |x - y|$.

(b) Show that $x \mapsto |\nabla_x f|$ is lower semicontinuous; that is,

$$|\nabla_{x_{\infty}} f| \leqslant \lim_{x_n \to x_{\infty}} |\nabla_{x_n} f|.$$

Lecture 5

Gradient flow

Here we define the gradient flow of a semiconcave function and discuss its properties, most importantly the distance estimates.

A Velocity of curve

Let α be a curve in an Alexandrov space \mathcal{A} . If for any choice of geodesics $[p \alpha(t_0 + \varepsilon)]$ the vectors

$$\frac{1}{\varepsilon} \cdot |p - \alpha(t_0 + \varepsilon)| \cdot \uparrow_{[p\alpha(t_0 + \varepsilon)]}$$

converge as $\varepsilon \to 0+$, then their limit in T_p is called the right derivative of α at t_0 ; it will be denoted by $\alpha^+(t_0)$. In addition, $\alpha^+(t_0) := 0$ if $\frac{1}{\varepsilon} \cdot |p - \alpha(t_0 + \varepsilon)| \to 0$ as $\varepsilon \to 0+$.

The tangent vector $v = |p - x| \cdot \uparrow_{[px]}$ will be called the logarithm of x at p (briefly, $v = \log_p x$). The logarithm is a multivalued function from \mathcal{A} to T_p ; so, $v = \log_p x$ and $w = \log_p x$ does not mean v = w. Note that $\gamma^+(0) = \log_p x$ for a geodesic path γ from p to x.

5.1. Claim. Let α be a curve in an Alexandrov space A. Suppose f is a semiconcave Lipschitz function defined in a neighborhood of $p = \alpha(0)$, and $\alpha^+(0)$ is defined. Then $(f \circ \alpha)^+(0)$ exists and

$$(f \circ \alpha)^+(0) = (\boldsymbol{d}_p f)(\alpha^+(0)).$$

Proof. Without loss of generality, we can assume that f(p) = 0. Suppose f and therefore $\mathbf{d}_p f$ are L-Lipschitz.

Let γ be a geodesic with a constant-speed reparametrization that starts from p, and such that the distance $s = |\alpha^+(0) - \gamma^+(0)|_{T_p}$ is

small. By the definition of differential,

$$(f \circ \gamma)^+(0) = \boldsymbol{d}_p f(\gamma^+(0)).$$

By comparison and the definition of α^+ ,

$$|\alpha(\varepsilon) - \gamma(\varepsilon)|_A \leqslant s \cdot \varepsilon + o(\varepsilon)$$

for $\varepsilon > 0$. Therefore,

$$|f \circ \alpha(\varepsilon) - f \circ \gamma(\varepsilon)| \leqslant L \cdot s \cdot \varepsilon + o(\varepsilon).$$

Suppose $(f \circ \alpha)^+(0)$ is defined. Then

$$|(f \circ \alpha)^+(0) - (f \circ \gamma)^+(0)| \leqslant L \cdot s.$$

Since $d_p f$ is L-Lipschitz, we also get

$$|\boldsymbol{d}_p f(\alpha^+(0)) - \boldsymbol{d}_p f(\gamma^+(0))| \leq L \cdot s.$$

It follows that the needed identity holds up to error $2 \cdot L \cdot s$. The statement follows since s > 0 can be chosen arbitrarily.

The same argument is applicable if place of $(f \circ \alpha)^+(0)$ we use any limit of $\frac{1}{\varepsilon_n} \cdot [f \circ \alpha(\varepsilon_n) - f(p)]$ for a sequence $\varepsilon_n \to 0+$. It proves that all such limits coincide; in particular, $(f \circ \alpha)^+(0)$ is defined and equals to $(\mathbf{d}_p f)(\alpha^+(0))$.

B Gradient curves

5.2. Definition. Let f be a semiconcave function on an Alexandrov space A.

A locally Lipschitz curve $\alpha \colon [t_{\min}, t_{\max}) \to \text{Dom } f$ will be called an f-gradient curve if

$$\alpha^+ = \nabla_{\alpha} f;$$

that is, for any $t \in [t_{\min}, t_{\max})$, $\alpha^+(t)$ is defined and $\alpha^+(t) = \nabla_{\alpha(t)} f$.

A complete proof of the following theorem is given in [7]; it mimics the proof of the standard Picard theorem on the existence and uniqueness of solutions of ordinary differential equations. The uniqueness will follow from the first distance estimate (5.6) proved in the next section. We omit the proof of existence as it is rather lengthy.

5.3. Picard theorem. Let $f: \mathcal{A} \to \mathbb{R}$ be a locally Lipschitz and λ -concave function on an Alexandrov space \mathcal{A} . Then for any $p \in \mathrm{Dom}\, f$, there are unique $t_{\mathrm{max}} \in (0, \infty]$ and f-gradient curve $\alpha: [0, t_{\mathrm{max}}) \to \mathcal{A}$

with $\alpha(0) = p$ such that for any sequence $t_n \to t_{\text{max}}$, the sequence $\alpha(t_n)$ does not have a limit point in Dom f.

This theorem says that the future of a gradient curve is determined by its present, but it says nothing about its past.

Here is an example showing that the past is not determined by the present. Consider the function $f \colon x \mapsto -|x|$ on the real line \mathbb{R} . The tangent space $T_x\mathbb{R}$ can be identified with \mathbb{R} , and $\nabla_x f = -\operatorname{sgn} x$; that is,

$$\nabla_x f = \begin{cases} 1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x > 0. \end{cases}$$

So, the f-gradient curves go to the origin with unit speed and then stand there forever. In particular, if α is an f-gradient curve that starts at x, then $\alpha(t) = 0$ for any $t \ge |x|$.

Here is a slightly more interesting example; it shows that gradient curves can merge even in the region where $|\nabla f| \neq 0$.

5.4. Example. Consider the function $f:(x,y)\mapsto -|x|-|y|$ on the (x,y)-plane. It is concave, and its gradient field is sketched on the figure.

Let α be an f-gradient curve that starts at (x,y) for x>y>0. Then

$$\alpha(t) = \begin{cases} (x-t,y-t) & \textit{for} \quad 0 \leqslant t \leqslant x-y, \\ (x-t,0) & \textit{for} \quad x-y \leqslant t \leqslant x, \\ (0,0) & \textit{for} \quad x \leqslant t. \end{cases}$$

C Distance estimates

5.5. Lemma. Let α be a gradient curve of a λ -concave function f defined on an Alexandrov space. Choose a point p; let $\ell(t) := \operatorname{dist}_p \circ \alpha(t)$ and $q = \alpha(t_0)$. Then

$$\ell^+(t_0) \leqslant -\left(f(p) - f(q) - \frac{\lambda}{2} \cdot \ell^2(t_0)\right) / \ell(t_0)$$

Proof. Let γ be the unit-speed parametrization of [qp] from q to p, so

 $q = \gamma(0)$. Then

$$\ell^{+}(t_{0}) = (\mathbf{d}_{q} \operatorname{dist}_{p})(\nabla_{q} f) \leqslant \qquad \text{(by 5.1)}$$

$$\leqslant -\langle \uparrow_{[qp]}, \nabla_{q} f \rangle \leqslant \qquad \text{(by 4.7a)}$$

$$\leqslant -\mathbf{d}_{q} f(\uparrow_{[qp]}) = \qquad \text{(by 4.8)}$$

$$= -(f \circ \gamma)^{+}(0) \leqslant$$

$$\leqslant -\left(f(p) - f(q) - \frac{\lambda}{2} \cdot \ell^{2}(t_{0})\right) / \ell(t_{0})$$

The last two lines follow by the definition of differential, and the concavity of $t \mapsto f \circ \gamma(t) - \frac{\lambda}{2} \cdot t^2$.

The following estimate implies uniqueness in the Picard theorem (5.3).

5.6. First distance estimate. Let f be a λ -concave locally Lipschitz function defined on an Alexandrov space A. Then

$$|\alpha(t) - \beta(t)| \leq e^{\lambda \cdot t} \cdot |\alpha(0) - \beta(0)|$$

for any $t \ge 0$ and any two f-gradient curves α and β .

Moreover, the statement holds for a locally Lipschitz λ -concave function defined in an open domain if there is a geodesic $[\alpha(t) \beta(t)]$ in Dom f for any t.

Proof. Fix a choice of geodesic $[\alpha(t) \beta(t)]$ for each t. Let $\ell(t) = |\alpha(t) - \beta(t)|$. Note that

$$\ell^+(t) \leqslant -\langle \uparrow_{[\alpha(t)\beta(t)]}, \nabla_{\alpha(t)} f \rangle - \langle \uparrow_{[\beta(t)\alpha(t)]}, \nabla_{\beta(t)} f \rangle \leqslant \lambda \cdot \ell(t).$$

Here one has to apply 5.5 for distance to the midpoint m of $[\alpha(t) \beta(t)]$, then apply the triangle inequality and 4.9. Integrating, we get the result.

The following exercise describes a global geometric property of a gradient curve without direct reference to its function. It is based on the notion of self-contracting curves introduced by Aris Daniilidis, Olivier Ley, and Stéphane Sabourau [25].

5.7. Exercise. Let $f: A \to \mathbb{R}$ be a concave function on an Alexandrov space A. Then

$$|\alpha(t_1) - \alpha(t_3)|_{\mathcal{A}} \geqslant |\alpha(t_2) - \alpha(t_3)|_{\mathcal{A}}.$$

for any f-gradient curve α and $t_1 \leqslant t_2 \leqslant t_3$.

5.8. Exercise. Let f be a locally Lipschitz concave function defined on an Alexandrov space A. Suppose $\hat{\alpha} \colon [0,\ell] \to A$ is an arc-length reparametrization of an f-gradient curve. Show that $f \circ \hat{\alpha}$ is concave.

The following exercise implies that gradient curves for a uniformly converging sequence of λ -concave functions converge to the gradient curves of the limit function.

5.9. Exercise. Let f and g be λ -concave locally Lipschitz functions on an Alexandrov space \mathcal{A} . Suppose $\alpha, \beta \colon [0, t_{\max}) \to \mathcal{A}$ are respectively f- and g-gradient curves. Assume $|f - g| < \varepsilon$; let $\ell \colon t \mapsto |\alpha(t) - \beta(t)|$. Show that

$$\ell^+ \leqslant \lambda \cdot \ell + \frac{2 \cdot \varepsilon}{\ell}$$
.

Conclude that if $\alpha(0) = \beta(0)$ and $t_{max} < \infty$, then

$$|\alpha(t) - \beta(t)| \leqslant c \cdot \sqrt{\varepsilon \cdot t}$$

for some constant $c = c(t_{\text{max}}, \lambda)$.

D Gradient flow

Let f be a locally Lipschitz semiconcave function defined on an open subset of an Alexandrov space \mathcal{A} . If there is an f-gradient curve α such that $\alpha(0) = x$ and $\alpha(t) = y$, then we will write

$$\operatorname{Flow}_f^t(x) = y.$$

The partially defined map Flow_f^t from \mathcal{A} to itself is called the f-gradient flow for time t. Note that

$$\operatorname{Flow}_{f}^{t_1+t_2} = \operatorname{Flow}_{f}^{t_1} \circ \operatorname{Flow}_{f}^{t_2}.$$

In other words, the gradient flow is a partial action of the *semigroup* $(\mathbb{R}_{\geq 0}, +)$ on the space.

From the first distance estimate 5.6, it follows that for any $t \ge 0$, the domain of definition of Flow_f^t is an open subset of \mathcal{A} . For sufficiently nice functions, the gradient flow is globally defined. For example, if f is a λ -concave function and it is defined on the whole space \mathcal{A} , then $\operatorname{Flow}_f^t(x)$ is defined for all $x \in \mathcal{A}$ and $t \ge 0$; see [7, 16.19].

Now let us reformulate the statements about gradient curves obtained earlier using this new terminology. From the first distance estimate, we have the following.

5.10. Proposition. Let f be a semiconcave function defined on an Alexandrov space A. Then the map $x \mapsto \operatorname{Flow}_f^t(x)$ is locally Lipschitz.

Moreover, if f is λ -concave, then Flow_f^t is $e^{\lambda \cdot t}$ -Lipschitz.

The next proposition follows from 5.9.

5.11. Proposition. Let A be an Alexandrov space. Suppose $f_n : A \to \mathbb{R}$ is a sequence of λ -concave functions that uniformly converges to $f_{\infty} : A \to \mathbb{R}$. Then for any $x \in A$ and $t \geq 0$, we have

$$\operatorname{Flow}_{f_n}^t(x) \to \operatorname{Flow}_{f_\infty}^t(x)$$

as $n \to \infty$.

There is a more general version of this proposition for a converging sequence $\mathcal{A}_n \to \mathcal{A}_{\infty}$ of spaces and a converging sequence of functions $f_n \colon \mathcal{A}_n \to \mathbb{R}$; see [7, 16.21].

E Gradient exponent

One of the technical difficulties in Alexandrov geometry comes from nonextendability of geodesics. In particular, the exponential map, $\exp_p\colon T_p\to \mathcal{A}$, if defined in the usual way, can be undefined in an arbitrarily small neighborhood of the origin.

Next we construct the gradient exponential map

$$\operatorname{gexp}_p \colon \operatorname{T}_p \to \mathcal{A},$$

which essentially solves this problem. It shares many properties with the ordinary exponential map and is even better in certain respects, even in the Riemannian universe.

Let \mathcal{A} be an Alexandrov space of curvature ≥ 0 and $p \in \mathcal{A}$, consider the function $f = \operatorname{dist}_p^2/2$. Recall that Φ_f^t denotes the gradient flow. Let us define the gradient exponential map as the limit

$$\operatorname{gexp}_p(v) = \lim_{n \to \infty} \Phi_f^{t_n}(x_n),$$

where the sequences $x_n \in \mathcal{A}$ and $t_n \ge 0$ are chosen so that $t_n \to \infty$ and $e^{t_n} \cdot \log_p x_n \to v$ as $n \to \infty$.

More intuitively, suppose $i_{\lambda} : \lambda \cdot A \to A$ sends a point in the rescaled copy $\lambda \cdot A$ to the corresponding point in A. By the first distance estimate (5.6), the map

$$\Phi_f^t \circ i_{e^t} \colon e^t \cdot \mathcal{A} \to \mathcal{A}$$

is short for any $t \ge 0$. If we have a pointed Gromov–Hausdorff convergence $(e^{t_n} \cdot \mathcal{A}, p) \to (T_p, o_p)$, then $\text{gexp}_p \colon T_p \to \mathcal{A}$ is the limit of

F. REMARKS 45

 $\Phi_f^{tn} \circ i_{e^{t_n}}$. This way we get that gexp_p is short as a limit of short maps. This observation is generalized in the following proposition.

5.12. Proposition. Let \mathcal{A} be a proper Alex(0) space. Then for any $p \in \mathcal{A}$ the gradient exponent $gexp_p \colon T_p \to \mathcal{A}$ is uniquely defined. Moreover, $gexp_p$ is a short map and

$$\operatorname{gexp}_p(\gamma^+(0)) = \gamma(1)$$

for any geodesic path γ that starts at p.

The last statement implies that

$$\operatorname{gexp}_p \circ \log_p = \operatorname{id},$$

so it is appropriate to use term *exponent* for gexp.

Proof. Note that $f'' \leq 1$. Since the space is proper we can choose a limit in \bullet .

Let γ be a geodesic that stats at p. Observe that $t \mapsto \gamma \circ \ln(t)$ is an f-gradient curve. By the first distance estimate, we have that Φ_f^t is an e^t -Lipschitz. This implies that any limit in \bullet has the same value; that is, gexp_p is uniquely defined.

Again, since Φ_f^t is an e^t -Lipschitz, we get that gexp_p is short. \square

F Remarks

The idea to use gradient flows in Alexandrov geometry was inspired by the success of Sharafutdinov's retraction in comparison geometry [103]. Originally, the notion of gradient flows was developed to construct quasigeodesics with given initial data [78, 87, 88], but it turned out that gradient flow and gradient exponent are better tools than quiasigeodesics. These tools quickly found applications in other types of singular spaces [12, 49, 69, 70, 75, 102].

For a general lower curvature bound κ , the construction of gradient exponent has to be modified; it is denoted by gexp_p^{κ} [7, 16.36]. It is done by taking limits of appropriately reparameterized gradient curves of the modified distance function.

For $\kappa=-1$ we have that $\text{gexp}_p(\gamma^+(0))=\gamma(1)$ for any geodesic path γ that starts at p and

$$|\operatorname{gexp}_p^{-1} v - \operatorname{gexp}_p^{-1} w|_{\mathcal{A}} \leqslant \tilde{\Upsilon}[0_w^v]_{\mathbb{H}^2}.$$

In other words gexp_p is short if we equip T_p with the hyperbolic cone metric.

Similarly, for $\kappa=1$ we have $\text{gexp}_p(\gamma^+(0))=\gamma(1)$ for any geodesic path γ that starts at p and

$$|\operatorname{gexp}_{p}^{1} v - \operatorname{gexp}_{p}^{1} w|_{\mathcal{A}} \leqslant \tilde{\Upsilon}[0_{w}^{v}]_{\mathbb{S}^{2}},$$

but this time all this holds only if $|v|,|w|\leqslant \frac{\pi}{2}$ and length $\gamma\leqslant \frac{\pi}{2}.$

The gradient exponential map in a Riemannian manifold (M,g) coincides with the Riemannian exponential map before the cut locus of but is different from the Riemannian exponential after that. The following exercise is ment to show that this technique can prove something nontrivial even for Riemannian manifolds.

5.13. Exercise. Let (M,g) be a complete m-dimensional Riemannian with sectional curvature at least 1. Assume M is not homeomorphic to \mathbb{S}^m . Show that there is a short onto map $\mathbb{S}^m \to (M,g)$.

Lecture 6

Line splitting

In this lecture, we prove the line splitting theorem and apply it to study tangent spaces of Alexandrov spaces.

A Busemann function

A half-line is a distance-preserving map from $\mathbb{R}_{\geqslant 0} = [0, \infty)$ to a metric space. In other words, a half-line is a geodesic defined on the real half-line $\mathbb{R}_{\geqslant 0}$.

If $\gamma: [0,\infty) \to \mathcal{X}$ is a half-line, then the limit

$$\mathbf{0} \qquad \text{bus}_{\gamma}(x) = \lim_{t \to \infty} |\gamma(t) - x| - t$$

is called the Busemann function of γ . It mimics behavior of the distance function from the ideal point of γ .

6.1. Proposition. For any half-line γ in a metric space \mathcal{X} , its Busemann function $\operatorname{bus}_{\gamma} \colon \mathcal{X} \to \mathbb{R}$ is defined. Moreover, $\operatorname{bus}_{\gamma}$ is 1-Lipschitz and $\operatorname{bus}_{\gamma}(\gamma(t)) = -t$ for any t.

Proof. Since $t = |\gamma(0) - \gamma(t)|$, the triangle inequality implies that

$$t\mapsto |\gamma(t)-x|-t$$

is a nonincreasing function, and

$$|\gamma(t) - x| - t \geqslant -|\gamma(0) - x|$$

for any $x \in \mathcal{X}$. Therefore, the limit in \bullet is defined, and it has to be 1-Lipschitz as a limit of 1-Lipschitz functions. The last statement follows since $|\gamma(t) - \gamma(t_0)| = t - t_0$ for all large t.

6.2. Exercise. Show that any Busemann function on an Alex(0) space is concave.

B Splitting theorem

A line is a distance-preserving map from \mathbb{R} to a metric space. In other words, a line is a geodesic defined on the real line \mathbb{R} .

6.3. Exercise. Let γ be a line in a metric space \mathcal{X} . Show that for any point x we have

$$bus_{+}(x) + bus_{-}(x) \geqslant 0$$

where, bus₊ and bus₋, are the Busemann functions associated with half-lines $\gamma:[0,\infty)\to\mathcal{A}$ and $\gamma:(-\infty,0]\to\mathcal{A}$ respectively.

Let A and B be two subsets in a metric space \mathcal{X} . We say that \mathcal{X} is a direct sum of A and B, or briefly,

$$\mathcal{X} = A \oplus B$$

if there are retractions $\operatorname{proj}_A \colon \mathcal{X} \to A$ and $\operatorname{proj}_B \colon \mathcal{X} \to B$ such that

$$|x-y|^2 = |\operatorname{proj}_A(x) - \operatorname{proj}_A(y)|^2 + |\operatorname{proj}_B(x) - \operatorname{proj}_B(y)|^2$$

for any two points $x, y \in \mathcal{X}$.

Observe that if $\mathcal{X} = A \oplus B$, then

- \diamond A intersects B at a single point,
- \diamond both sets A and B are convex sets in \mathcal{X} ; the latter means that any geodesic with the endpoints in A (or B) lies in A (respectively B).
- **6.4. Line splitting theorem.** Let γ be a line in a ALEX(0) space \mathcal{A} . Then

$$\mathcal{A} = \mathcal{A}' \oplus \gamma(\mathbb{R})$$

for some subset $A' \subset A$.

6.5. Corollary. Any Alex(0) space A splits isometrically as

$$\mathcal{A} = \mathcal{A}' \oplus \mathcal{H}$$

where $H \subset \mathcal{A}$ is a subset isometric to a Hilbert space, and $\mathcal{A}' \subset \mathcal{A}$ is a convex subset that contains no lines.

The following lemma is closely related to the first distance estimate (5.6); it is also a limit case of 5.12. The proof follows similar lines.

6.6. Lemma. Suppose $f: A \to \mathbb{R}$ is a concave 1-Lipschitz function on an Alex(0) space A. Consider two f-gradient curves α and β . Then for any $t, s \ge 0$ we have

$$|\alpha(s) - \beta(t)|^2 \le |p - q|^2 + 2 \cdot (f(p) - f(q)) \cdot (s - t) + (s - t)^2,$$

where $p = \alpha(0)$ and $q = \beta(0)$.

Proof. Since f is 1-Lipschitz, $|\nabla f| \leq 1$. Therefore

$$f \circ \beta(t) \leqslant f(q) + t$$

for any $t \ge 0$.

Set $\ell(t) = |p - \beta(t)|$. Applying 5.5, we get

$$(\ell^2)^+(t) \leqslant 2 \cdot (f \circ \beta(t) - f(p)) \leqslant$$

$$\leqslant 2 \cdot (f(q) + t - f(p)).$$

Therefore

$$\ell^2(t) - \ell^2(0) \le 2 \cdot (f(q) - f(p)) \cdot t + t^2.$$

It proves the needed inequality in case s=0. Combining it with the first distance estimate (5.6), we get the result in case $s \leq t$. The case $s \geq t$ follows by switching the roles of s and t.

Proof of 6.4. Consider two Busemann functions, bus₊ and bus₋, associated with the half-lines $\gamma:[0,\infty)\to\mathcal{A}$ and $\gamma:(-\infty,0]\to\mathcal{A}$ respectively; that is,

$$bus_{\pm}(x) := \lim_{t \to \infty} |\gamma(\pm t) - x| - t.$$

According to 6.2, both bus₊ and bus₋ are concave.

By 6.3, bus₊(x) + bus₋ $(x) \ge 0$ for any $x \in \mathcal{A}$. On the other hand, by 2.19, $f(t) = \operatorname{dist}_x^2 \circ \gamma(t)$ is 2-concave. In particular, $f(t) \le t^2 + at + b$ for some constants $a, b \in \mathbb{R}$. Therefore, for all large t

$$|\gamma(t) - x| - t + |\gamma(-t) - x| - t \le \sqrt{t^2 + at + b} - t + \sqrt{t^2 - at + b} - t$$

Passing to the limit as $t \to \infty$, we get that $\text{bus}_+(x) + \text{bus}_-(x) \leq 0$. Hence

$$bus_{+}(x) + bus_{-}(x) = 0$$

for any $x \in \mathcal{A}$. In particular, the functions bus₊ and bus₋ are affine; that is, they are convex and concave at the same time.

For any x,

$$|\nabla_x \operatorname{bus}_{\pm}| = \sup \{ d_x \operatorname{bus}_{\pm}(\xi) : \xi \in \Sigma_x \} =$$

$$= \sup \{ -d_x \operatorname{bus}_{\mp}(\xi) : \xi \in \Sigma_x \} \equiv$$

$$\equiv 1.$$

A curve α is a bus_±-gradient curve if and only if α is a geodesic such that $(\text{bus}_{\pm} \circ \alpha)^+ = 1$. Indeed, if α is a geodesic, then $(\text{bus}_{\pm} \circ \alpha)^+ \leqslant 1$ and the equality holds only if $\nabla_{\alpha} \text{bus}_{\pm} = \alpha^+$. Now suppose $\nabla_{\alpha} \text{bus}_{\pm} = \alpha^+$. Then $|\alpha^+| \leqslant 1$ and $(\text{bus}_{\pm} \circ \alpha)^+ = 1$; therefore

$$|t_0 - t_1| \geqslant |\alpha(t_0) - \alpha(t_1)| \geqslant$$

$$\geqslant |\operatorname{bus}_{\pm} \circ \alpha(t_0) - \operatorname{bus}_{\pm} \circ \alpha(t_1)| =$$

= $|t_0 - t_1|$.

It follows that for any t > 0, the bus_±-gradient flows commute; that is,

$$\operatorname{Flow}_{\operatorname{bus}_{+}}^{t} \circ \operatorname{Flow}_{\operatorname{bus}_{-}}^{t} = \operatorname{id}_{\mathcal{A}}.$$

Setting

$$Flow^{t} = \begin{bmatrix} Flow_{bus_{+}}^{t} & \text{if } t \geq 0 \\ Flow_{bus_{-}}^{-t} & \text{if } t \leq 0 \end{bmatrix}$$

defines an \mathbb{R} -action on \mathcal{A} .

Consider the level set $\mathcal{A}' = \operatorname{bus}_+^{-1}(0) = \operatorname{bus}_-^{-1}(0)$; it is a closed convex subset of \mathcal{A} , and therefore forms an Alexandrov space. Consider the map $h \colon \mathcal{A}' \times \mathbb{R} \to \mathcal{A}$ defined by $h \colon (x,t) \mapsto \operatorname{Flow}^t(x)$. Note that h is onto. Applying 6.6 for $\operatorname{Flow}_{\operatorname{bus}_+}^t$ and $\operatorname{Flow}_{\operatorname{bus}_-}^t$ shows that h is distance non-expanding and non-contracting at the same time; that is, h is an isometry.

6.7. Exercise. Suppose \mathcal{X} is a complete geodesic space. Show that $\operatorname{Cone} \mathcal{X}$ is $\operatorname{ALEX}(0)$ if and only if \mathcal{X} is $\operatorname{ALEX}(1)$ and $\operatorname{diam} \mathcal{X} \leqslant \pi$.

Recall that according our definition any circle or closed real interval is ALEX(1). Therefore, the condition diam $\mathcal{X} \leq \pi$ is necessary. Nevertheless, according to 3.7, most of ALEX(1) spaces have diameter at most π .

C Anti-sum

Here we give a corollary of 4.13. It will be used to prove basic properties of tangent spaces.

C. ANTI-SUM 51

6.8. Anti-sum lemma. Let p be a point in an Alexandrov space A. Given two vectors $u, v \in T_p$, there is a unique vector $w \in T_p$ such that

$$\langle u, x \rangle + \langle v, x \rangle + \langle w, x \rangle \geqslant 0$$

for any $x \in T_p$, and

$$\langle u, w \rangle + \langle v, w \rangle + \langle w, w \rangle = 0.$$

6.9. Exercise. Suppose $u, v, w \in T_p$ are as in 6.8. Show that

$$|w|^2 \leqslant |u|^2 + |v|^2 + 2 \cdot \langle u, v \rangle.$$

If T_p were ALEX(0), then the lemma would follow from the existence of the gradient, applied to the function $T_p \to \mathbb{R}$ defined by $x \mapsto -(\langle u, x \rangle + \langle v, x \rangle)$, which is concave by 6.2. As you will see, a revision of this idea works in the general case, but it cannot work as is since T_p might fail to be geodesic; see Halbeisen's example [7].

Applying the above lemma for u = v, we have the following statement.

6.10. Existence of polar vector. Let \mathcal{A} be an Alexandrov space and $p \in \mathcal{A}$. Given a vector $u \in T_p$, there is a unique vector $u^* \in T_p$ such that $\langle u^*, u^* \rangle + \langle u, u^* \rangle = 0$ and u^* is polar to u; that is,

$$\langle u^*, x \rangle + \langle u, x \rangle \geqslant 0$$

for any $x \in T_p$.

Proof of 6.8. By 4.12, we can choose two sequences of points a_n, b_n such that

$$d_p \operatorname{dist}_{a_n}(w) = -\langle \uparrow_{\lceil pa_n \rceil}, w \rangle$$
 and $d_p \operatorname{dist}_{b_n}(w) = -\langle \uparrow_{\lceil pb_n \rceil}, w \rangle$

for any $w\in T_p$; furthemore, $\uparrow_{[pa_n]}\to u/|u|$ and $\uparrow_{[pb_n]}\to v/|v|$ as $n\to\infty$

Consider a sequence of functions

$$f_n = |u| \cdot \operatorname{dist}_{a_n} + |v| \cdot \operatorname{dist}_{b_n}.$$

Note that

$$(\boldsymbol{d}_p f_n)(x) = -|u| \cdot \langle \uparrow_{\lceil pa_n \rceil}, x \rangle - |v| \cdot \langle \uparrow_{\lceil pb_n \rceil}, x \rangle.$$

Thus we have the following uniform convergence for $x \in \Sigma_p$:

$$(\boldsymbol{d}_p f_n)(x) \to -\langle u, x \rangle - \langle v, x \rangle$$

as $n \to \infty$, According to 4.13, the sequence $\nabla_p f_n$ converges. Let

$$w = \lim_{n \to \infty} \nabla_p f_n.$$

By the definition of gradient,

$$\langle w, w \rangle = \lim_{n \to \infty} \langle \nabla_p f_n, \nabla_p f_n \rangle = \qquad \langle w, x \rangle = \lim_{n \to \infty} \langle \nabla_p f_n, x \rangle \geqslant$$

$$= \lim_{n \to \infty} (\mathbf{d}_p f_n) (\nabla_p f_n) = \qquad \geqslant \lim_{n \to \infty} (\mathbf{d}_p f_n) (x) =$$

$$= -\langle u, w \rangle - \langle v, w \rangle, \qquad = -\langle u, x \rangle - \langle v, x \rangle.$$

The proof of uniqueness is very similar to the proof of uniqueness of gradients and is left to the reader. \Box

D Linear subspace

6.11. Definition. Let \mathcal{A} be an Alexandrov space, $p \in \mathcal{A}$ and $u, v \in \mathbb{T}_p$. We say that vectors u and v are opposite to each other, (briefly, u + v = 0) if |u| = |v| = 0 or $\angle(u, v) = \pi$ and |u| = |v|. The subcone

$$\operatorname{Lin}_p = \{ v \in \mathcal{T}_p : \exists w \in \mathcal{T}_p \quad such \ that \quad w + v = 0 \}$$

will be called the linear subspace of T_p .

Soon we will introduce a natural linear structure on Lin_p .

- **6.12. Proposition.** Let A be an Alexandrov space and $p \in A$. Given two vectors $u, v \in T_p$, the following statements are equivalent:
 - (a) u + v = 0;
 - (b) $\langle u, x \rangle + \langle v, x \rangle = 0$ for any $x \in T_p$;
 - (c) $\langle u, \xi \rangle + \langle v, \xi \rangle = 0$ for any $\xi \in \Sigma_p$.

Proof. The equivalence $(b) \Leftrightarrow (c)$ is trivial.

The condition u + v = 0 is equivalent to $\langle u, u \rangle = -\langle u, v \rangle = \langle v, v \rangle$; thus, $(b) \Rightarrow (a)$.

Suppose (a) holds. Recall that T_p has nonnegative curvature. The hinges $[0 \, {}^u_x]$ and $[0 \, {}^v_x]$ are adjacent. By 2.12, $\angle [0 \, {}^u_x] + \angle [0 \, {}^v_x] = \pi$; hence $(a) \Rightarrow (b)$.

6.13. Exercise. Let A be an Alexandrov space and $p \in A$. Then for any three vectors $u, v, w \in T_p$, if u+v=0 and u+w=0 then v=w.

Let $u \in \text{Lin}_p$; that is, u + v = 0 for some $v \in T_p$. Given s < 0, let

$$s \cdot u := (-s) \cdot v.$$

So we can multiply any vector in Lin_p by any real number (positive and negative). By 6.13, this multiplication is uniquely defined. By 6.12, we have identity

$$\langle -v, x \rangle = -\langle v, x \rangle.$$

6.14. Exercise. Suppose $u, v, w \in T_p$ are as in 6.8. Show that

$$\langle u, x \rangle + \langle v, x \rangle + \langle w, x \rangle = 0$$

for any $x \in \operatorname{Lin}_p$.

6.15. Exercise. Let \mathcal{A} be an Alexandrov space, $p \in \mathcal{A}$ and $u \in T_p$. Suppose $u^* \in T_p$ is from 6.10; that is,

$$\langle u^*, u^* \rangle + \langle u, u^* \rangle = 0$$
 and $\langle u^*, x \rangle + \langle u, x \rangle \geqslant 0$

for any $x \in T_p$. Show that $u = -u^*$ if and only if $|u| = |u^*|$.

6.16. Theorem. Let p be a point in an Alexandrov space. Then Lin_p is isometric to a Hilbert space.

Proof. Lin_p is a closed subset of T_p ; in particular, it is complete.

If any two vectors in Lin_p can be connected by a geodesic in Lin_p , then the statement follows from the splitting theorem (6.4). By Menger's lemma (1.4), it is sufficient to show that for any two vectors $x, y \in \operatorname{Lin}_p$ there is a midpoint $w \in \operatorname{Lin}_p$.

Choose $w \in T_p$ to be the anti-sum of $u = -\frac{1}{2} \cdot x$ and $v = -\frac{1}{2} \cdot y$; see 6.8. By 6.9 and 6.14,

$$\begin{split} |w|^2 &\leqslant \frac{1}{4} \cdot |x|^2 + \frac{1}{4} \cdot |y|^2 + \frac{1}{2} \cdot \langle x, y \rangle, \\ \langle w, x \rangle &= \frac{1}{2} \cdot |x|^2 + \frac{1}{2} \cdot \langle x, y \rangle, \\ \langle w, y \rangle &= \frac{1}{2} \cdot |y|^2 + \frac{1}{2} \cdot \langle x, y \rangle. \end{split}$$

It follows that

$$|x - w|^2 = |x|^2 + |w|^2 - 2 \cdot \langle w, x \rangle \leqslant$$

$$\leqslant \frac{1}{4} \cdot |x|^2 + \frac{1}{4} \cdot |y|^2 - \frac{1}{2} \cdot \langle x, y \rangle =$$

$$= \frac{1}{4} \cdot |x - y|^2.$$

That is, $|x-w| \leq \frac{1}{2} \cdot |x-y|$. Similarly, we get $|y-w| \leq \frac{1}{2} \cdot |x-y|$. Therefore w is a midpoint of x and y. In addition, we get the equality

$$|w|^2 = \frac{1}{4} \cdot |x|^2 + \frac{1}{4} \cdot |y|^2 + \frac{1}{2} \cdot \langle x, y \rangle.$$

It remains to show that $w \in \operatorname{Lin}_p$. Let w^* be the polar vector provided by 6.10. Note that

$$|w^*| \leq |w|, \quad \langle w^*, x \rangle + \langle w, x \rangle = 0, \quad \text{and} \quad \langle w^*, y \rangle + \langle w, y \rangle = 0.$$

The same calculation as above shows that w^* is a midpoint of -x and -y and

$$|w^*|^2 = \frac{1}{4} \cdot |x|^2 + \frac{1}{4} \cdot |y|^2 + \frac{1}{2} \cdot \langle x, y \rangle = |w|^2.$$

By 6.15, $w = -w^*$; hence $w \in \operatorname{Lin}_p$.

6.17. Lemma. Given a point p in an Alexandrov space A, let $f = \operatorname{dist}_p$, and let S be the subset of points $x \in A$ such that $|\nabla_x f| = 1$. Then S is a dense G-delta set.

Proof. Let $S_n \subset \mathcal{A}$ be defined by inequality $|\nabla_x f| > 1 - \frac{1}{n}$. By 4.14a, S_n is open.

Choose a point $q \neq p$. Observe that $|\nabla_x f| = 1$ for any point $x \in]pq[$. It follows that S_n is dense in \mathcal{A} . Since $S = \bigcap_n S_n$, the lemma follows from the Baire category theorem.

- **6.18.** Exercise. Let p, f, and S be as in 6.17.
 - (a) Show that

$$\nabla_x f + \uparrow_{[xp]} = 0$$

for any $x \in S$; in particular, $\uparrow_{[xp]} \in \text{Lin}_x$.

- (b) Show that if $|\nabla_x f| = 1$, then $\mathbf{d}_x f(w) = \langle \nabla_x f, w \rangle$ for any $w \in T_x$.
- (c) Show that for any $x \in S$ there is a unique geodesic [px].

This exercise implies the following.

6.19. Corollary. Given a countable set of points X in an Alexandrov space A there is a G-delta dense set $S \subset A$ such that $\uparrow_{[sx]} \in \operatorname{Lin}_s$ for any $s \in S$ and $x \in X$.

E Remarks

The history of the splitting theorem starts with Stefan Cohn-Vossen [24], who proved its 2-dimensional case. For Riemannian manifolds of higher dimensions, it was proved by Victor Toponogov [109]. Then it was generalized by Anatoliy Milka [72] to Alexandrov spaces; it was

E. REMARKS 55

the first result about Alexandrov spaces of dimension higher than 2. Nearly the same proof is used in [18, 1.5]. Generalizations to Riemannian manifolds with nonnegative Ricci curvature were obtained by Jeff Cheeger and Detlef Gromoll [23]. This was further generalized by Jeff Cheeger and Toby Colding for the limits of Riemannian manifolds with almost nonnegative Ricci curvature [21]. Nicola Gigli generalized it further to the so-called RCD spaces (spaces with synthetically defined Ricci-curvature bound) [32, 33]. Jost-Hinrich Eschenburg obtained an analogous result for Lorentzian manifolds [29]; that is, pseudo-Riemannian manifolds of signature (1, n).

The presented proof is close in spirit to the proof given by Cheeger and Gromoll [23]; it is taken from our book [7].

6.20. Open question. Let p be a point in an Alexandrov space A. Suppose that $0 \neq v \in \text{Lin}_p$. Is it true that the tangent space T_p splits in the direction of v?

Halbeisen's example [7, 43] shows that compactness of space of directions is essential in the proof that space of directions is π -geodesic (see 7.5).

6.21. Open question. Let A be a proper Alexandrov space. Is it true that for any $p \in A$, the tangent space T_p is a length space?

Lecture 7

Dimension and volume

This lecture shows that several different notions of dimension are the same for Alexandrov spaces. Also, we introduce volume, prove the Bishop–Gromov inequality and the right-inverse theorem, and introduce distance charts.

A Linear dimension

Let \mathcal{A} be an Alexandrov space. We define its linear dimension LinDim \mathcal{A} as the least upper bound on integers m such that the Euclidean space \mathbb{E}^m is isometric to a subspace of the tangent space $T_p\mathcal{A}$ at some point $p \in \mathcal{A}$. If not stated otherwise, dimension of an Alexandrov space is its linear dimension.

In Section 7F, we will show that linear dimension of Alexandrov space coincides with all reasonable dimensions; after that, we will use $\dim \mathcal{A}$ for LinDim \mathcal{A} .

7.1. (n+1)-comparison. Let \mathcal{A} be an ALEX(0) space. Then for any finite set of points $p, x_1, \ldots, x_n \in \mathcal{A}$, there exist an integer m > 0 and a model configuration $\tilde{p}, \tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{E}^m$ such that

$$|\tilde{p} - \tilde{x}_i|_{\mathbb{E}^m} = |p - x_i|_{\mathcal{A}} \quad and \quad |\tilde{x}_i - \tilde{x}_j|_{\mathbb{E}^m} \geqslant |x_i - x_j|_{\mathcal{A}}$$

for any i and j. Moreover, we can assume that $m \leq \text{LinDim } A$.

Proof. By 6.19, we can choose a point p' arbitrarily close to p so that $\operatorname{Lin}_{p'} \ni \uparrow_{[p'x_i]}$ for any i. Let us identify \mathbb{E}^m with a subspace of $\operatorname{Lin}_{p'}$ spanned by $\uparrow_{[p'x_i]}, \ldots, \uparrow_{[p'x_i]}$. Note that $m \leq \operatorname{LinDim} A$.

spanned by $\uparrow_{[p'x_1]}, \dots, \uparrow_{[p'x_n]}$. Note that $m \leq \text{LinDim } \mathcal{A}$. Set $\tilde{p}' = 0 \in \mathbb{E}^m$ and $\tilde{x}_i = |p' - x_n| \cdot \uparrow_{[p'x_n]} \in \mathbb{E}^m$ for every i. Note that

$$|\tilde{p}' - \tilde{x}_i|_{\mathbb{E}^m} = |p' - x_i|_{\mathcal{A}}$$

for every i. Applying the comparison $\angle[p']_{x_j}^{x_i} \ge \tilde{\angle}(p']_{x_j}^{x_i}$, we get

$$|\tilde{x}_i - \tilde{x}_j|_{\mathbb{E}^m} \geqslant |x_i - x_j|_{\mathcal{A}}$$

for all i and j. Passing to a limit configuration as $p' \to p$ we get the result.

- **7.2. Exercise.** Let \mathcal{A} be an ALEX(0) space. Suppose $LinDim \mathcal{A} = m < \infty$. Show that $T_p \mathcal{A} \stackrel{iso}{=} \mathbb{E}^m$ for a G-delta dense set of points $p \in \mathcal{A}$.
- **7.3. Exercise.** Show that a 1-dimensional Alexandrov space is homeomorphic to a 1-dimensional manifold, possibly with non-empty boundary.
- **7.4. Exercise.** Let \mathcal{A} be an Alex(0) space. Show that $LinDim \mathcal{A} \geqslant m$ if and only if for some m+2 points $p, a_0, \ldots, a_m \in \mathcal{A}$ we have

$$\tilde{\measuredangle}(p_{a_i}^{a_i}) > \frac{\pi}{2}$$

for any pair $i \neq j$.

B Space of directions

Recall that a metric space \mathcal{X} is ℓ -geodesic if any two points $x,y\in\mathcal{X}$ such that $|x-y|<\ell$ can be connected by a geodesic.

7.5. Theorem. Let A be a finite-dimensional Alexandrov space. Then for any point $p \in A$, its space of directions Σ_p is a compact π -geodesic space.

By 4.4, this gives the following.

- **7.6. Corollary.** Let p be a point in a finite dimensional Alexandrov space A, and let $\lambda_n \to \infty$. Then there is a pointed Gromov-Hausdorff convergence $(\lambda_n \cdot A, p) \to (T_p, 0)$.
- **7.7. Exercise.** Let p be a point in a finite-dimensional Alexandrov space A. Prove the following.
 - (a) The tangent space T_p is a proper ALEX(0) space.
 - (b) $\operatorname{LinDim} \Sigma_p = \operatorname{LinDim} \mathcal{A} 1$.
 - (c) If LinDim A > 1, then Σ_p is geodesic.

Applying 7.7b, one can prove results for all finite-dimensional Alexandrov spaces via induction on dimension; for example, see 9.9.

Proof of 7.5. Choose $\varepsilon > 0$; suppose \mathcal{A} is m-dimensional. Assume we can choose n directions $\xi_1, \ldots, \xi_n \in \Sigma_p$ such that $\angle(\xi_i, \xi_j) > \varepsilon$ for any $i \neq j$. Without loss of generality, we may assume that each direction is geodesic; that is, there is a point $x_i \in \mathcal{A}$ such that $\xi_i = \uparrow_{[px_i]}$.

Choose $y_i \in [px_i]$ such that $|p - y_i| = r$ for each i and small fixed r > 0. Since r is small, we can assume that $\tilde{\mathcal{L}}(p_{y_j}^{y_i}) > \varepsilon$ if $i \neq j$. By 6.19, we can choose p' arbitrarily close to p such that $\uparrow_{[p'y_i]} \in \operatorname{Lin}_{p'}$ for any i. Since |p' - p| is small, $\tilde{\mathcal{L}}(p'_{y_i}^{y_i}) > \varepsilon$ if $i \neq j$. By comparison,

$$\angle[p'_{y_i}^{y_i}] > \varepsilon.$$

Therefore, $n \leq \operatorname{pack}_{\varepsilon} \mathbb{S}^{m-1}$, where $\operatorname{pack}_{\varepsilon} \mathcal{X}$ is the exact upper bound on the number of points $x_1, \ldots, x_k \in \mathcal{X}$ such that $|x_i - x_j| \geq \varepsilon$ if $i \neq j$.

on the number of points $x_1, \ldots, x_k \in \mathcal{X}$ such that $|x_i - x_j| \geqslant \varepsilon$ if $i \neq j$. Since \mathbb{S}^{m-1} is compact, $\operatorname{pack}_{\varepsilon} \mathbb{S}^{m-1} < \infty$. By the definition, the space of directions Σ_p is complete. Applying 8.5, we get that Σ_p is compact.

It remains to prove the following claim.

• If Σ_p is compact, then it is π -geodesic

Choose two geodesic directions $\xi = \uparrow_{[px]}$ and $\zeta = \uparrow_{[py]}$; let

$$\alpha = \frac{1}{2} \cdot \measuredangle[p_y^x] = \frac{1}{2} \cdot |\xi - \zeta|_{\Sigma_p}.$$

Suppose $\alpha < \frac{\pi}{2}$.

It is sufficient to construct an almost midpoint $\mu = \uparrow_{[pz]}$ of ξ and ζ in Σ_p ; that is, we need to show that for any $\varepsilon > 0$ there is a geodesic [pz] such that

$$\angle[p_z^x] \leqslant \alpha + \varepsilon$$
 and $\angle[p_z^y] \leqslant \alpha + \varepsilon$.

Indeed, once this is done, the compactness of Σ_p can be used to get an actual midpoint for any two directions in Σ_p , and Menger's lemma (1.4) finishes the proof.

Choose a sequence of small positive numbers $r_n \to 0$ Consider sequences $x_n \in [px]$ and $y_n \in [py]$ such that $|p - x_n| = |p - y_n| = r_n$. Let m_n be a midpoint of $[x_n y_n]$.

Since Σ_p is compact, we can pass to a subsequence of r_n such that $\uparrow_{[pm_n]}$ converges; denote its limit by μ . Choose a geodesic [pz] that runs at a small angle from μ . Let us show that $\uparrow_{[pz]}$ is the needed almost midpoint.

Evidently, $\tilde{\measuredangle}(p_{m_n}^{x_n}) = \tilde{\measuredangle}(p_{m_n}^{y_n})$. By 2.6, we have

$$\tilde{\angle}(p_{m_n}^{x_n}) + \tilde{\angle}(p_{m_n}^{y_n}) \leqslant \tilde{\angle}(p_{y_n}^{x_n}).$$

Let $z_n \in [pz]$ be the point such that $|p-z_n| = |p-m_n|$. By construction, for all large n, we have $\angle[p_{m_n}^z] \approx 0$ with arbitrary small given error. By comparison, the value $\frac{|z_n-m_n|}{|p-z_n|}$ can be assumed to be arbitrarily small for all large n. Applying this observation and the definition of angle measure, we also get that the following approximations

$$\begin{split} &\tilde{\measuredangle}(p_{y_n}^{x_n}) \approx \measuredangle[p_{y_n}^{x_n}], \\ &\tilde{\measuredangle}(p_{m_n}^{x_n}) \approx \tilde{\measuredangle}(p_{z_n}^{x_n}) \approx \measuredangle[p_{z_n}^{x_n}], \\ &\tilde{\measuredangle}(p_{y_n}^{m_n}) \approx \tilde{\measuredangle}(p_{y_n}^{z_n}) \approx \measuredangle[p_{y_n}^{z_n}], \end{split}$$

hold with arbitrary given error and all large n. It follows that $\uparrow_{[pz]}$ is an almost midpoint of $\uparrow_{[px]}$ and $\uparrow_{[py]}$, as required.

Remark. In the above proof, the angles $\angle[p^x_z]$ and $\angle[p^y_z]$ have lower bounds by the comparison, but we needed upper bounds. These were extracted from the definition of angle measure and the compactness of the space of directions. Halbeisen's example [7] shows that it cannot be done without the compactness condition.

C Right-inverse theorem

7.8. Theorem. Suppose p, a_0, \ldots, a_m be points in an Alexandrov space A such

$$\tilde{\measuredangle}(p_{a_i}^{a_i}) > \frac{\pi}{2}$$

for any $i \neq j$. Then the map $f: A \to \mathbb{R}^m$ defined by

$$f: x \mapsto (|a_1 - x|, \dots, |a_m - x|)$$

has a continuous right inverse defined in a neighborhood of f(p).

In the proof we construct a local right inverse Φ of f around f(p). The construction uses gradient flow for a suitably chosen family of functions. The structure of the proof can be seen in the following exercise; more details are given in the hints.

7.9. Exercise. Suppose $p, a_0, \ldots, a_m \in \mathcal{A}$ and $f : \mathcal{A} \to \mathbb{R}$ are as in 7.8. Assume $\varepsilon > 0$ is sufficiently small. Given $\mathbf{y} = (y_1, \ldots, y_m) \in \mathbb{R}^m$, consider the function on \mathcal{A} defined by

$$f_{\mathbf{y}}(x) = \min\{0, |a_1 - x| - y_1, \dots, |a_m - x| - y_m\} + \varepsilon \cdot |a_0 - x|.$$

61

- (a) Show that for some fixed r > 0 and λ , the function $f_{\mathbf{u}}$ is λ concave in B(p,r).
 - (i) $(\mathbf{d}_x \operatorname{dist}_{a_i})(\nabla_x f_{\mathbf{u}}) < -\varepsilon^2 \text{ if } |a_i x| > y_i \text{ and }$
 - (ii) $(\mathbf{d}_x \operatorname{dist}_{a_{\varepsilon}})(\nabla_x f_{\mathbf{u}}) > \varepsilon^2$ if

$$|a_i - x| - y_i = \min_j \{|a_j - x| - y_j\} < 0.$$

at any $x \in B(p,r)$.

(b) Let α_y be f_y -gradient curve that starts at p. Use (a) to show

$$\operatorname{dist}_{\boldsymbol{a}}[\alpha_{\boldsymbol{y}}(t_0)] = \boldsymbol{y}$$

 $\begin{array}{l} if \frac{1}{\varepsilon^2} \cdot |\mathrm{dist}_{\boldsymbol{a}} p - \boldsymbol{y}| \leqslant t_0 \leqslant \frac{r}{2}. \\ (c) \ \ Let \ t_0(\boldsymbol{y}) = \frac{1}{\varepsilon^2} \cdot \left| |\boldsymbol{a} - \boldsymbol{p}| - \boldsymbol{y} \right|. \ \ Use \ 5.9 \ to \ show \ that \ the \ map \end{array}$

$$\Phi \colon \boldsymbol{y} \mapsto \alpha_{\boldsymbol{y}} \circ t_0(\boldsymbol{y})$$

continuous (in fact Hölder) in $\Omega = \mathrm{B}(|\boldsymbol{a}-p|,\frac{\varepsilon^2}{2}\cdot r) \subset \mathbb{R}^m$ and $f \circ \Phi(\mathbf{y}) = \mathbf{y}$ for any $\mathbf{y} \in \Omega$. (This finishes the proof of 7.8.)

Distance chart D

7.10. Theorem. Suppose p, a_0, \ldots, a_m be points in an m-dimensional Alexandrov space A such

$$\tilde{\measuredangle}(p_{a_i}^{a_i}) > \frac{\pi}{2}$$

for any $i \neq j$. Then the map $f: A \to \mathbb{R}^m$ defined by

$$f \colon x \mapsto (|a_1 - x|, \dots, |a_m - x|)$$

gives a bi-Lipschitz embedding of a neighborhood Ω of p; the restriction $f|_{\Omega}$ is called a distance chart at p.

The following exercise guides you to prove the theorem.

7.11. Exercise. Suppose $p, a_0, \ldots, a_m \in \mathcal{A}$ and $f: \mathcal{A} \to \mathbb{R}$ are as in 7.8. Show that there is $\varepsilon > 0$ such that one of the inequalities holds in each of the following two strings of m inequalities

$$\begin{split} & \angle[x_{a_1}^y] < \frac{\pi}{2} - \varepsilon, \ \dots, \ \angle[x_{a_m}^y] < \frac{\pi}{2} - \varepsilon; \\ & \angle[y_{a_1}^x] < \frac{\pi}{2} - \varepsilon, \ \dots, \ \angle[y_{a_m}^x] < \frac{\pi}{2} - \varepsilon \end{split}$$

for any two points x, y in a sufficiently small neighborhood of p.

Use this together with the right-inverse theorem (7.8) to prove 7.10.

E Volume

Fix a positive integer m. The m-dimensional Hausdorff measure of a Borel set B in a metric space will be called its m-volume; it will be denoted by $\operatorname{vol}_m B$. We assume that the Hausdorff measure is calibrated so that the unit cube in \mathbb{E}^m has unit volume.

This definition will be applied mostly to subsets in m-dimensional Alexandrov spaces. In this case, we may write vol B instead of vol $_m B$.

7.12. Bishop–Gromov inequality. Let \mathcal{A} be an Alex(0) space. Suppose $\dim \mathcal{A} = m < \infty$. Then

$$\operatorname{vol} B(p,r) \leqslant \omega_m \cdot r^m$$
,

where ω_m denotes the volume of the unit ball in \mathbb{E}^m . Moreover, the function

$$r\mapsto \frac{\operatorname{vol} B(p,r)}{r^m}$$

is nonincreasing.

Proof. Given $x \in \mathcal{A}$ choose a geodesic path γ_x from p to x. Recall that $\log_p \colon \mathcal{A} \to T_p$ can be defined by $\log_p \colon x \mapsto \gamma_x^+(0)$. By comparison, \log_p is distance-noncontracting. Note that $\log_p \text{ maps B}(p, r)_{\mathcal{A}}$ to $B(0, r)_{T_p}$.

If $T_p \stackrel{iso}{=} \mathbb{E}^m$, then $vol B(0, r)_{T_p} = \omega_m \cdot r^m$, and the first statement follows.

If T_p is not isometric to \mathbb{E}^m , then by 7.2, we can find a point p' arbitrarily close to p such that $T_{p'} \stackrel{iso}{=} \mathbb{E}^m$. If $\varepsilon > |p-p'|$, then $B(p,r) \subset B(p',r+\varepsilon)$. Therefore,

$$\operatorname{vol} \mathbf{B}(p,r) \leqslant \omega_m \cdot (r+\varepsilon)^m$$

for any $\varepsilon > 0$. Hence the first statement follows.

$$|w(x) - w(y)| \geqslant \frac{r_1}{r_2} \cdot |x - y|.$$

Observe that $B(p, r_1) \supset w[B(p, r_2)]$. Therefore,

$$\operatorname{vol} B(p, r_1) \geqslant (\frac{r_1}{r_2})^m \cdot \operatorname{vol} B(p, r_2).$$

The following exercise generalizes the Bishop–Gromov inequality to ALEX(-1) case. It is sufficient for most applications, but a more exact statement will be given in 7.17 which also includes the case of ALEX(1) spaces.

7.13. Exercise. Let \mathcal{A} be an ALEX(-1) space. Suppose $\mathcal{A} = m < \infty$. Show that

$$\operatorname{vol} B(p,r) \leq \omega_m \cdot (\sinh r)^m$$
,

where ω_m denotes the volume of the unit ball in \mathbb{E}^m . Moreover, the function

$$r \mapsto \frac{\operatorname{vol} B(p, r)}{(\sinh r)^m}$$

is nonincreasing.

7.14. Exercise. Show that any finite-dimensional Alexandrov space is proper.

F Other dimensions

Next we want to show that all reasonable definitions of dimension give the same result for Alexandrov spaces. More precisely, we have the following theorem; compare to [7, 15.16]. We refer to [48] for definitions of Lebesgue covering dimension and Hausdorff dimension, which will be denoted by TopDim and HausDim, respectively.

7.15. Theorem. For any Alexandrov space A, we have

$$\operatorname{LinDim} \mathcal{A} = \operatorname{TopDim} \mathcal{A} = \operatorname{HausDim} \mathcal{A}.$$

Proof. Suppose LinDim $A = \infty$. By the right-inverse theorem (7.8), A contains a compact subset K with arbitrarily large TopDim K. In particular,

TopDim
$$A = \infty$$
.

By Szpilrajn's theorem, Haus Dim $K \geqslant \text{TopDim}\, K$. Thus we also have

HausDim
$$A = \infty$$
.

Now suppose LinDim $\mathcal{A} = m < \infty$. By the Bishop-Gromov inequality (7.12 and 7.13),

HausDim
$$A \leq m$$
.

П

Since A is proper (7.14), Szpilrajn's theorem, implies that

TopDim
$$\mathcal{A} \leq \text{HausDim } \mathcal{A} \leq m$$
.

Finally, the right-inverse theorem (7.8) implies that $m \leq \text{TopDim } \mathcal{A}$.

7.16. Exercise. Let Ω be an open subset of Alexandrov space \mathcal{A} . Show that

 $\operatorname{LinDim} A = \operatorname{LinDim} \Omega = \operatorname{TopDim} \Omega = \operatorname{HausDim} \Omega.$

G Remarks

Let us state a version of the Bishop–Gromov inequality for $Alex(\kappa)$ spaces. Its proof requires additionally the so-called *coarea formula* for Alexandrov spaces. The weaker inequality from 7.13 is sufficient for the sequel.

7.17. Bishop-Gromov inequality. Given a point p in an m-dimensional $ALEX(\kappa)$ space, consider the function $v(r) = vol_m B(p, r)$; denote by $\tilde{v}(r)$ the volume of r ball in $\mathbb{M}^m(\kappa)$. Then

$$v(r) \leqslant \tilde{v}(r)$$

for r > 0 and the function

$$r\mapsto \frac{v(r)}{\tilde{v}(r)}$$

is nonincreasing. If $\kappa > 0$, then one has to assume that $r < \frac{\pi}{\sqrt{\kappa}}$.

This inequality was originally proved for Riemannian manifolds with lower Ricci curvature. The first part is also called Bishop's inequality. It is due to Richard Bishop; see [16] and [15, Corollary 4, p. 256]. The second part is due to Michael Gromov [36].

Theorem 7.15, was essentially proved by Conrad Plaut [95]. At that time, it was not known whether

$$\operatorname{LinDim} \mathcal{A} = \infty \quad \Rightarrow \quad \operatorname{TopDim} \mathcal{A} = \infty$$

for any Alexandrov space \mathcal{A} . The latter implication was proved by Grigory Perelman and the second author [78].

Lecture 8

Limit spaces

In this lecture we show that lower curvature bound in the sense of Alexandrov survives under Gromov–Hausdorff limit and prove the Gromov selection theorem. This theorem is the main source of applications of Alexandrov geometry, as an illustration we prove the homotopy stability theorem (8.13) and deduce the homotopy finiteness theorem (8.14) from it.

A Survival of curvature bounds

8.1. Theorem. Let $\mathcal{X}_n \to \mathcal{X}_{\infty}$ be a convergence in the sense of Gromov-Hausdorff. Suppose that for each n, the space \mathcal{X}_n has curvature $\geq \kappa$ in the sense of Alexandrov. Then the same holds for \mathcal{X}_{∞} .

Proof. Choose a quadruple of points $p_{\infty}, x_{\infty}, y_{\infty}, z_{\infty} \in \mathcal{X}_{\infty}$.

By the definition of Gromov–Hausdorff convergence, we can choose points $p_n, x_n, y_n, z_n \in \mathcal{X}_n$ for each n that converge to $p_{\infty}, x_{\infty}, y_{\infty}, z_{\infty} \in \mathcal{X}_{\infty}$, respectively. In particular, each of the 6 distances between pairs of p_n, x_n, y_n, z_n converge to the distance between the corresponding pairs of $p_{\infty}, x_{\infty}, y_{\infty}, z_{\infty}$.

Since $\mathbb{M}^2(\kappa)$ -comparison holds for $p_n, x_n, y_n, z_n \in \mathcal{X}_n$, passing to the limit, we get the $\mathbb{M}^2(\kappa)$ -comparison for $p_{\infty}, x_{\infty}, y_{\infty}, z_{\infty}$.

8.2. Exercise. Suppose that a sequence A_1, A_2, \ldots of $Alex(\kappa)$ spaces converges to A_{∞} in the sense of Gromov-Hausdorff. Show that A_{∞} is $Alex(\kappa)$ and

$$\dim \mathcal{A}_{\infty} \leqslant \underline{\lim}_{n \to \infty} \dim \mathcal{A}_{n}.$$

B Gromov's selection theorem

8.3. Theorem. Let $D, \kappa \in \mathbb{R}$, and m be a positive integer. Then any sequence of m-dimensional $Alex(\kappa)$ spaces with diameters at most D has a converging subsequence in the sense of Gromov–Hausdorff.

Let X be a subset of a metric space \mathcal{W} . Recall that a set $Z \subset \mathcal{W}$ is called an ε -net of X if for any point $x \in X$, there is a point $z \in Z$ such that $|x - z| < \varepsilon$.

We will use the following characterization of compact sets.

- **8.4.** Exercise. Let X be a closed subset in a complete metric space.
 - (a) Show that X is compact if and only if it admits a finite ε -net for any $\varepsilon > 0$.
 - (b) Show that X is compact if and only if it admits a compact ε -net for any $\varepsilon > 0$.

Recall that $\operatorname{pack}_{\varepsilon} \mathcal{X}$ is the exact upper bound on the number of points $x_1, \ldots, x_n \in \mathcal{X}$ such that $|x_i - x_j| \ge \varepsilon$ if $i \ne j$.

If $n = \operatorname{pack}_{\varepsilon} \mathcal{X} < \infty$, then the collection of points x_1, \ldots, x_n is called a maximal ε -packing.

8.5. Exercise. Show that any maximal ε -packing x_1, \ldots, x_n is an ε -net. Conclude that a complete metric space \mathcal{X} is compact if and only if $\operatorname{pack}_{\varepsilon} \mathcal{X} < \infty$ for any $\varepsilon > 0$.

Proof of 8.3. Denote by K the set of isometry classes of ALEX(0) spaces with dimension $\leq m$ and diameter $\leq D$. By 8.2, K is a closed subset of GH.

Choose a space $A \in K$; suppose $x_1, \ldots, x_n \in A$ is a collection of points such that $|x_i - x_j| \ge \varepsilon$ for all $i \ne j$. Note that the balls $B_i = B(x_i, \frac{\varepsilon}{2})$ do not overlap.

By 7.8, vol $\mathcal{A} > 0$. By Bishop–Gromov inequality, vol $\mathcal{A} < \infty$, and if $\varepsilon < D$, then

$$\operatorname{vol} B_i \geqslant \left(\frac{\varepsilon}{2 \cdot D}\right)^m \cdot \operatorname{vol} \mathcal{A}$$

for any i. It follows that $n \leq (\frac{2 \cdot D}{\varepsilon})^m$; that is,

$$\operatorname{pack}_{\varepsilon} \mathcal{A} \leqslant N(\varepsilon) := (\frac{2 \cdot D}{\varepsilon})^m$$

for all small $\varepsilon > 0$.

Choose a maximal ε -packing $x_1, \ldots, x_n \in \mathcal{A}$. By 8.5, $\mathcal{F}_{\varepsilon} := \{x_1, \ldots, x_n\}$ is an ε -net of \mathcal{A} . Observe that $|\mathcal{F}_{\varepsilon} - \mathcal{A}|_{\mathrm{GH}} \leq \varepsilon$. Further, note that the set \mathbf{F}_{ε} of finite metric spaces with diameter $\leq D$ and at most $N(\varepsilon)$ points forms a compact subset in GH.

Summarizing, for any $\varepsilon > 0$ we can find a compact ε -net $\mathbf{F}_{\varepsilon} \subset \mathrm{GH}$ of \mathbf{K} . Since GH is complete (1.22), it remains to apply 8.4b.

Rescaling reduces $ALEX(\kappa)$ case to the ALEX(-1) case, which can be proved along the same lines, using 7.13 instead of 7.12.

8.6. Exercise.

(a) Let \mathcal{A} be an m-dimensional ALEX(0) space with diameter $\leq D$. Suppose $vol \mathcal{A} \geq v_0 > 0$. Show that

$$\operatorname{pack}_{\varepsilon} A \geqslant \frac{c}{\varepsilon^m}$$

for some constant $c = c(m, D, v_0) > 0$.

- (b) Conclude that if A_n is a sequence of m-dimensional ALEX(0) spaces with diameter $\leq D$, and volume $\geq v_0$, then its Gromov-Hausdorff limit A_{∞} (if it exists) has dimension m.
- **8.7. Exercise.** Let $(A_1, p_1), (A_2, p_2), \ldots$ be a sequence of m-dimensional $ALEX(\kappa)$ spaces with marked points. Show that it contains a subsequence pointed-converging in the sense of Gromov-Hausdorff.

C Controlled concavity

Alexandrov spaces have plenty of semiconcave functions; for instance, squared distance functions. The following theorem provides a source of strictly concave functions defined on small open sets of finite-dimensional Alexandrov spaces.

8.8. Theorem. Let A be a complete finite-dimensional Alexandrov space. Then for any point $p \in A$, there is a strictly concave function f defined in an open neighborhood of p.

Moreover, given $0 \neq v \in T_p$, the differential, $\mathbf{d}_p f$, can be chosen arbitrarily close to $x \mapsto -\langle v, x \rangle$.

Proof. Fix small r > 0 and large c; consider the real-to-real function

$$\varphi_{r,c}(x) = (x-r) - c \cdot (x-r)^2 / r,$$

so we have $\varphi_{r,c}(r)=0,\ \varphi'_{r,c}(r)=1,$ and $\varphi''_{r,c}(r)=-2c/r.$

Let γ be a unit-speed geodesic, fix a point q and let

$$\alpha(t) = \measuredangle(\gamma^+(t), \uparrow_{[\gamma(t)q]}).$$

Recall that r is small. If $|q - \gamma(t)|$ is sufficiently close to r, then direct calculations show that

$$(\varphi_{r,c} \circ \operatorname{dist}_q \circ \gamma)''(t) \leqslant \frac{3 - c \cdot \cos^2[\alpha(t)]}{r}.$$

(Since c is large, this inequality implies that $\varphi_{r,c} \circ \operatorname{dist}_q \circ \gamma$ is strictly concave at t unless $\alpha(t) \approx \frac{\pi}{2}$.)

Now, assume $\{q_1,\ldots,q_N\}$ is a finite set of points such that $|p-q_i|=r$ for any i. For a geodesic γ , set $\alpha_i(t)=\measuredangle(\gamma^+(t),\uparrow_{[\gamma(t)q_i]})$. Assume that

$$\max_{i} \{ |\alpha_i(t) - \frac{\pi}{2}| \} \geqslant \varepsilon > 0$$

for any geodesic γ in $B(p,\varepsilon)$. We can assume that $c > 3N/\cos^2 \varepsilon$; then the inequality above implies that the function

$$f = \sum_{i} \varphi_{r,c} \circ \operatorname{dist}_{q_i}$$

is strictly concave in $B(p, \varepsilon')$ for some positive $\varepsilon' < \varepsilon$.

The same argument as in 8.6 shows that for small r>0, one can choose $N\geqslant c/\delta^{m-1}$ points $\{q_i\}$ such that $|p-q_i|=r$ and $\tilde{\measuredangle}(p_{q_i}^{q_j})>\delta$ (here $c=c(\Sigma_p)>0$). On the other hand, suppose γ runs from x to y. If $|\alpha_i(t)-\frac{\pi}{2}|<\varepsilon\ll\delta$, then applying the (n+1)-point comparison to $\gamma(t),\ x,\ y$ and all $\{q_i\}$ we get that $N\leqslant c(m)/\delta^{m-2}$. Therefore, for small $\delta>0$ and yet smaller $\varepsilon>0$, the set $\{q_i\}$ forms the needed collection.

If r is small, then points q_i can be chosen so that all directions $\uparrow_{[pq_i]}$ will be ε -close to a given direction ξ and therefore the second property follows.

The function f in 8.8 can be chosen to have maximum value 0 at p, f(p) = 0 and with $\mathbf{d}_p f(x) \approx -|x|$. It can be constructed by taking the minimum of the functions in the theorem. Then the set $K = \{x \in \mathcal{A} : f(x) \geqslant -\varepsilon\}$ forms a closed convex neighborhood of p for any small $\varepsilon > 0$, so we get the following.

- **8.9.** Corollary. Any point p of a finite-dimensional Alexandrov space admits an arbitrarily small convex closed neighborhood K and a strictly concave function f defined in a neighborhood of K such that p is the maximum point of f and $f|_{\partial K} = 0$.
- **8.10. Exercise.** Construct an Alexandrov space A such that there is no open set $\Omega \subset A$ with strictly concave function $f: \Omega \to \mathbb{R}$.

D. LIFTINGS 69

D Liftings

Suppose that the Gromov–Haudorff distance $|\mathcal{A} - \mathcal{A}'|_{\mathrm{GH}}$ is sufficiently small, so we may think that both spaces \mathcal{A} and \mathcal{A}' lie at a small Hausdorff distance in an ambient metric space \mathcal{W} . In particular, we may choose a small $\varepsilon > 0$, so that for any point $p \in \mathcal{A}$, there is a point $p' \in \mathcal{A}'$ such that $|p - p'|_{\mathcal{W}} < \varepsilon$; the point p' will be called a lifting (or ε -lifting) of p in \mathcal{A}' . We may choose a lifting $p' \in \mathcal{A}'$ for every point $p \in \mathcal{A}$, in this case the map $p \mapsto p'$ is called a $(\varepsilon$ -)lifting map.

Let us emphasise that liftings are not uniquely defined, and the lifting map is not assumed to be continuous. Also, to talk about liftings, we have to choose that $\varepsilon > 0$, the inclusions $\mathcal{A}, \mathcal{A}' \hookrightarrow \mathcal{W}$.

Let \mathcal{A} be a compact m-dimensional Alexandrov space. Suppose \mathcal{A}' is another compact m-dimensional Alexandrov space such that $|\mathcal{A} - \mathcal{A}'|_{\mathrm{GH}}$ is sufficiently small — smaller than some $\varepsilon = \varepsilon(\mathcal{A}) > 0$. Then the construction in \mathcal{A} from the previous section can be repeated in \mathcal{A}' for the liftings of all points and the same function φ . It produces a strictly concave function defined in a controlled neighborhood of the lifting p' of p.

The results of this and related constructions will be also called liftings, say we can talk about a lifting from \mathcal{A} to \mathcal{A}' of a function provided by 8.8 (if the Gromov–Hausdorff distance $|\mathcal{A}-\mathcal{A}'|_{\mathrm{GH}}$ is small, then these liftings are strictly concave) and a lifting of a convex neighborhood from 8.9. Here one cannot use 8.8 and 8.9 as black boxes — one has to understand the construction, but it is straightforward.

8.11. Exercise. Give an example of Gromov-Hausdorff convergence of spaces $A_n \to A_\infty$ such that all A_n and A_∞ are compact finite-dimensional Alex(0) and for any small $\varepsilon > 0$ there is no continuous ε -lifting map $A_\infty \to A_n$ for any large n.

E Nerves

Let $\{\Omega_1, \ldots, \Omega_k\}$ be a finite open cover of a compact metric space \mathcal{X} . Consider an abstract simplicial complex \mathcal{N} , with one vertex v_i for each set Ω_i such that a simplex with vertices v_{i_1}, \ldots, v_{i_m} is included in \mathcal{N} if the intersection $\Omega_{i_1} \cap \cdots \cap \Omega_{i_m}$ is non-empty. The obtained simplicial complex \mathcal{N} is called the nerve of the covering $\{\Omega_i\}$. Evidently, \mathcal{N} is a finite simplicial complex — it is a subcomplex of a simplex with the vertices $\{v_1, \ldots, v_k\}$. Recall that $\operatorname{Star}_{v_i}$ denotes the union of all simplices in \mathcal{N} that share the vertex v_i .

The next statement follows from [45, 4G.3].

8.12. Nerve theorem. Let $\{\Omega_1, \ldots, \Omega_k\}$ be an open cover of a compact metric space \mathcal{X} and let \mathcal{N} be the corresponding nerve with vertices $\{v_1, \ldots, v_k\}$. Suppose that every non-empty finite intersection $\Omega_{\alpha_1} \cap \ldots \cap \Omega_{\alpha_k}$ is contractible. Then \mathcal{X} is homotopy equivalent to the nerve \mathcal{N} of the cover.

Moreover homotopy equivalences $a: \mathcal{X} \to \mathcal{N}$ and $b: \mathcal{N} \to \mathcal{X}$ can be chosen so that if $x \in \Omega_i$, then $a(x) \in \operatorname{Star}_{v_i}$, and if $y \in \mathcal{N}$ lies in the simplex with vertices v_{i_1}, \ldots, v_{i_m} , then $b(y) \in \Omega_{i_1} \cup \cdots \cup \Omega_{i_m}$.

F Homotopy stability

8.13. Theorem. Let A_1, A_2, \ldots , and A_{∞} be compact m-dimensional ALEX(κ) spaces, and $m < \infty$. Suppose $A_n \to A_{\infty}$ as $n \to \infty$ in the sense of Gromov-Hausdorff. Then A_{∞} is homotopy equivalent to A_n for all large n.

Moreover, given $\varepsilon > 0$ there are maps $h_n \colon \mathcal{A}_{\infty} \to \mathcal{A}_n$ that are homotopy equivalences and ε -liftings for all large n.

Applying this theorem with Gromov's selection theorem (8.3) and Exercise 8.6, we get the following.

8.14. Theorem. Given $\kappa \in \mathbb{R}$, D > 0, $v_0 > 0$ and a positive integer m, there are only finitely many homotopy types of m-dimensional $\text{ALEX}(\kappa)$ spaces with diameter $\leq D$, and volume $\geq v_0$.

Proof of 8.14 modulo 8.13. Assume the contrary, then we can choose a sequence of m-dimensional $Alex(\kappa)$ spaces $\mathcal{A}_1, \mathcal{A}_2, \ldots$ that have different homotopy types and satisfy the assumptions of the theorem. By Gromov's selection theorem, we can assume that \mathcal{A}_n converges to some spaces \mathcal{A}_{∞} in the sense of Gromov-Hausdorff.

By 8.6, dim $A_{\infty} = m$. It remains to apply 8.13.

Proof of 8.13. Since A_{∞} is compact, applying 8.9, we can find a finite open cover of A_{∞} by convex open sets $\Omega_1, \ldots, \Omega_k$ such that for each Ω_i

there is a strictly concave function f_i that is defined in a neighborhood of the closure $\bar{\Omega}_i$ and such that $f_i|_{\partial\Omega_i} = 0$.

Subtracting from functions f_i some small value $\varepsilon > 0$, we can ensure that $\bigcap_{i \in S} \Omega_i \neq \emptyset$ if and only if $\bigcap_{i \in S} \bar{\Omega}_i \neq \emptyset$.

Suppose that $W = \bigcap_{i \in S} \Omega_i \neq \emptyset$. Then W is contractible. Indeed, the function

$$f_S := \min_{i \in S} f_i$$

is strictly concave and it vanishes on the boundary of W. The f_S -gradient flow $(t,x)\mapsto \operatorname{Flow}_{f_S}^t(x)$ defines a homotopy $[0,\infty)\times W\to W$. By the first distance estimate (5.6), $\operatorname{Flow}_{f_S}^t(x)$ converges to the (necessarily unique) maximum point of f_S as $t\to\infty$. Therefore, in the obtained homotopy we can parametrize $[0,\infty)$ by [0,1) and extend the homotopy continuously to [0,1]; thus we get that W is contractible. In other words, the cover $\{\Omega_1,\ldots,\Omega_k\}$ meets the assumptions of the nerve theorem (8.12).

The functions f_i and sets Ω_i can be lifted to \mathcal{A}_n keeping their properties for all large n. More precisely, there are liftings $f_{i,n}$ of all f_i to \mathcal{A}_n which are strictly concave for all large n and such that $\bar{\Omega}_{i,n} = \{x \in \mathcal{A}_n : f_{i,n}(x) \geq 0\}$ is a compact convex set and $\Omega_{i,n} = \{x \in \mathcal{A}_n : f_{i,n}(x) > 0\}$ is an open convex set for each i.

Notice that $\{\Omega_{1,n},\ldots,\Omega_{k,n}\}$ is an open cover of \mathcal{A}_n for all large n. Indeed suppose we have $p_n \in \mathcal{A}_n \setminus (\Omega_{1,n} \cup \cdots \cup \Omega_{k,n})$ for arbitrary large n. Since \mathcal{A}_{∞} is compact, there is a limit point $p_{\infty} \in \mathcal{A}_{\infty}$ for a subsequence of p_n . But $p_{\infty} \in \Omega_i$ for some i and therefore $p_n \in \Omega_{i,n}$ for arbitrary large n— a contradiction.

In a similar fashion, we can show that if n is large, then any collection $\{\Omega_{i,n}\}_{i\in S}$ has a common point in \mathcal{A}_n if and only if $\{\Omega_i\}_{i\in S}$ has a common point in \mathcal{A}_{∞} . Here we have to use that $\bigcap_{i\in S}\Omega_i\neq\emptyset$ if and only if $\bigcap_{i\in S}\bar{\Omega}_i\neq\emptyset$.

It follows that for any large n the covers

- $\diamond \{\Omega_1, \ldots, \Omega_k\} \text{ of } \mathcal{A}_{\infty} \text{ and }$
- $\diamond \{\Omega_{1,n},\ldots,\Omega_{k,n}\} \text{ of } \mathcal{A}_n.$

have the same nerve. By the nerve theorem (8.12), A_n and A_{∞} are homotopy equivalent for all large n-a contradiction.

The proof above implies the following.

8.15. Theorem. Any compact finite-dimensional Alexandrov space is homotopy equivalent to a finite simplicial complex.

G Remarks

Originally, Gromov's selection theorem was proved for Riemannian manifolds with a lower bound on Ricci curvature [36]. It motivates the study of limits of manifolds with lower Ricci curvature bounds and their synthetic generalizations, the so-called CD(K, m) spaces; CD stands for curvature-dimension condition. This theory has significant applications in Alexandrov geometry; in particular, it provides a version of the Liouville theorem about phase-space volume of geodesic flow in Alexandrov space [17].

The construction of a strictly concave function (8.8) is due to Grigory Perelman [77, 80].

The homotopy-type finiteness theorem (8.14) illustrates the main source of applications of Alexandrov spaces: to prove a statement about m-dimensional manifolds with lower sectional curvature bound we argue by contradiction and assume that there is a sequence of such manifolds that violates our assumption, then pass to the limit — the limit must be an Alexandrov space and this can be used to arrive at a contradiction.

In principle, the same strategy might work for a sequence of Riemannian manifolds with dimension approaching infinity, but no applications of this kind were found. The following question can be attacked by this type of argument.

8.16. Question. Is it true that no simply connected closed manifold (of arbitrary large dimension) admits a Riemannian metric with sectional curvature and diameter bounded by a fixed positive sufficiently small value?

If the dimension is bounded, then Gromov's theorem [35] implies that such a manifold can be covered by a compact nil-manifold; in particular, the manifold cannot be simply connected. However, if the dimension is unbounded, then Riemannian manifolds with these conditions may not be covered by compact nil-manifolds; such examples were found by Galina Guzhvina [42].

Let us finish with a list of results that can be proved by applying Gromov's selection theorem in the same fashion as in the proof of homotopy-type finiteness theorem (8.14).

8.17. Betti-number theorem. For any $\kappa \in \mathbb{R}$, D > 0 and a positive integer m, there is a constant $c = c(m, D, \kappa)$ such that

$$\beta_0(M) + \dots + \beta_m(M) \leqslant c$$

for any closed m-dimensional Riemannian manifold M with sectional

G. REMARKS 73

curvature $\geqslant \kappa$ and diameter $\leqslant D$. Here $\beta_i(M)$ denotes i^{th} Betti number of M.

Gromov's original proof [34] of the Betti-number theorem did not use Alexandrov geometry directly; but it is quite natural to prove it via Gromov's selection theorem. The following result was proved by the second author [90], and it uses the same technique.

8.18. Scalar curvature bound. Given $\kappa \in \mathbb{R}, D > 0$ and a positive integer m, there is a constant $c = c(m, D, \kappa)$ such that

$$\int_{M} \operatorname{Sc} \leqslant c$$

for any closed m-dimensional Riemannian manifold M with sectional curvature $\geqslant \kappa$ and diameter $\leqslant D$. Here Sc denotes the scalar curvature.

The following theorem is a more exact version of 8.13. Its close relative (9.1) will play an important role in the following lecture.

8.19. Stability theorem. Let A_1, A_2, \ldots , and A_{∞} be compact m-dimensional $Alex(\kappa)$ spaces, and $m < \infty$. Suppose $A_n \to A_{\infty}$ as $n \to \infty$ in the sense of Gromov–Hausdorff. Then A_{∞} is homeomorphic to A_n for all large n.

Moreover, given $\varepsilon > 0$ there are maps $h_n \colon \mathcal{A}_{\infty} \to \mathcal{A}_n$ that are homeomorphisms and ε -liftings for all large n.

This theorem was proved by Grigory Perelman [79]; the proof was rewritten with more details by the first author [50]. In private conversations, Perelman claimed that the homeomorphisms in the theorem can be assumed to be bi-Lipschitz with constants that depend on \mathcal{A}_{∞} . Since no proof has been written, this statement should be considered as a conjecture; partial results in this direction were obtained by Mohammad Alattar [2].

Theorem 8.14 was originally proved by Karsten Grove and Peter Petersen [39]. Perelman's stability theorem (8.19) implies the following stronger statement.

8.20. Homeomorphism-type finiteness. For any $\kappa \in \mathbb{R}, D > 0, v > 0$ and a positive integer m, there are only finitely many homeomorphism types of closed m-dimensional manifolds that admit a Riemannian metric with sectional curvature $\geq \kappa$, volume $\geq v$, and diameter $\leq D$.

This statement can be improved to diffeomorphism-type finiteness in all dimensions $m \neq 4$. Indeed, for m = 4 a closed topological m-manifold admits only finitely many smooth structures; see [52] and [74, 108] for cases $m \geq 5$ and $m \leq 3$, respectively.

Lecture 9

Boundary

This lecture defines the boundary of a finite-dimensional Alexandrov space. After discussing its properties, we prove the doubling theorem (9.9d).

A Definition

Let us give an inductive definition of the boundary of finite-dimensional Alexandrov spaces.

Suppose \mathcal{A} is a 1-dimensional Alexandrov space. By 7.3, \mathcal{A} is homeomorphic to a 1-dimensional manifold (possibly with non-empty boundary). This allows us to define the boundary $\partial \mathcal{A} \subset \mathcal{A}$ as the boundary of the manifold.

Now assume that the notion of boundary is defined in dimensions $1, \ldots, m-1$. Suppose \mathcal{A} is m-dimensional Alexandrov space. We say that $p \in \mathcal{A}$ belongs to the boundary (briefly $p \in \partial \mathcal{A}$) if $\partial \Sigma_p \neq \emptyset$. By 7.5 and 7.7b, Σ_p is an (m-1)-dimensional Alexandrov space; therefore its boundary is already defined and hence this inductive definition makes sense.

It is instructive to check the following statements.

- \diamond For a closed convex set $K \subset \mathbb{E}^m$ with non-empty interior, the topological boundary of K as a subset of \mathbb{E}^m coincides with the boundary K described above.
- \diamond If $\mathcal{A} \stackrel{iso}{=\!\!\!=\!\!\!=\!\!\!=} \mathcal{A}_1 \times \mathcal{A}_2$ is a finite-dimensional Alexandrov space, then

$$\partial \mathcal{A} = (\partial \mathcal{A}_1 \times \mathcal{A}_2) \, \cup \, (\mathcal{A}_1 \times \partial \mathcal{A}_2)$$

 \diamond If Cone Σ is an Alex(0) space of dimensions $\geqslant 2$ (this implies that Σ is Alex(1)), then

$$\partial \operatorname{Cone} \Sigma = \operatorname{Cone} \partial \Sigma$$
,

where Cone $\partial \Sigma = \{ s \cdot \xi \in \text{Cone } \Sigma : \xi \in \partial \Sigma \}.$

B Conic neighborhoods

The following statement is a close relative of Perelman's stability theorem 8.19. We are going to use this result without proof. A proof can be found in [80].

Recall that the logarithm $\log_p x \colon \mathcal{A} \to T_p$ is defined on page 39.

9.1. Theorem. For any point p in a finite-dimensional Alexandrov space \mathcal{A} and all sufficiently small $\varepsilon > 0$ there is a homeomorphism $h_{\varepsilon} \colon \mathrm{B}(p,\varepsilon)_{\mathcal{A}} \to \mathrm{B}(0,\varepsilon)_{\mathrm{T}_p}$ such that $0 = h_{\varepsilon}(p)$.

Moreover, we may assume that

$$\sup_{x \in \mathcal{B}(p,\varepsilon)} \left\{ \frac{1}{\varepsilon} \cdot |\log_p x - h_{\varepsilon}(x)|_{\mathcal{T}_p} \right\} \to 0 \quad as \quad \varepsilon \to 0.$$

Note that the last condition automatically implies that h_{ε} as an $o(\varepsilon)$ -sometry.

The above theorem is often used together with the *uniqueness of* conic neighborhoods stated below.

Suppose that an open neighborhood U of a point x in a metric space \mathcal{X} admits a homeomorphism to Cone Σ such that x is mapped to the origin of the cone. In this case, we say that U has a conic neighborhood of x.

- **9.2.** Uniqueness of conic neighborhoods. Any two conic neighborhoods of a given point in a metric space are pointed homeomorphic; that is, there is a homeomorphism between neighborhoods that maps the origin of one cone to the origin of the other.
- 9.3. Advanced exercise. Prove 9.2 or read the proof in [55].
- **9.4. Exercise.** Suppose $x \mapsto x'$ is a homeomorphism between finite-dimensional Alexandrov spaces A and A'. Show that
 - (a) $T_x \cong T_{x'}$ (here and below \cong means homeomorphic)
 - (b) $\operatorname{Susp} \Sigma_x \cong \operatorname{Susp} \Sigma_{x'}$.
 - (c) but in general $\Sigma_x \ncong \Sigma_{x'}$.

C Topology

The following theorem states that boundary is a topological invariant, despite our definition having used geometry.

9.5. Theorem. Let A and A' be homeomorphic finite-dimensional Alexandrov spaces. Then $\dim A = \dim A'$ and

$$\partial \mathcal{A} \neq \emptyset \iff \partial \mathcal{A}' \neq \emptyset$$

While working on the proof, keep in mind that there are pairs of spaces \mathcal{K}_1 and \mathcal{K}_2 such that $\mathcal{K}_1 \ncong \mathcal{K}_2$, but $\mathbb{R} \times \mathcal{K}_1 \cong \mathbb{R} \times \mathcal{K}_2$. Suspension over the Poincaré homology sphere and \mathbb{S}^4 gives an example of such a pair; compare to 9.4c.

Let \mathcal{A} be an m-dimensional Alexandrov space and $m < \infty$. Define rank of \mathcal{A} (briefly, rank \mathcal{A}) as the minimal value k such that \mathcal{A} splits isometrically as $\mathbb{R}^{m-k} \times \mathcal{K}$; here \mathcal{K} is a k-dimensional Alexandrov space.

In the following proof we will apply induction on the rank of A.

Proof. The first statement follows from 7.15.

Suppose we have a counterexample, say $\partial A \neq \emptyset$, but $\partial A' = \emptyset$. Let $k := \operatorname{rank} A$ and $k' := \operatorname{rank} A'$. We can assume that the pair (k, k') is minimal in lexicographic order; in particular, k is minimal. Let $k \mapsto k'$ be a homeomorphism from k to k'.

Choose $x \in \partial \mathcal{A}$. Since $\partial \mathcal{A}' = \emptyset$, we have $x' \notin \partial \mathcal{A}'$. Note that

$$\operatorname{rank} T_x \leqslant k$$
 and $\operatorname{rank} T_{x'} \leqslant k'$,

By 9.4a, $T_x \cong T_{x'}$. Note that $\partial T_x \neq \emptyset$ and $\partial T_{x'} = \emptyset$. Therefore, we may assume that \mathcal{A} and \mathcal{A}' are Euclidean cones and the homeomorphism sends the origin to the origin. The remaining part of the proof is divided into three cases.

Case 1. Suppose k > 1. Let $\mathcal{A} \stackrel{iso}{\Longrightarrow} \mathbb{R}^{m-k} \times \mathcal{C}$, where \mathcal{C} a k-dimensional ALEX(0) cone. Observe that rank $T_y \leq \operatorname{rank} \mathcal{A}$ for any $y \in \mathcal{A}$ and the equality holds only if y projects to the origin of \mathcal{C} .

Since k > 1, we can choose $z \neq 0$ that lies in $\partial \mathcal{C}$. Choose y that projects to z; in particular, rank $T_y < \operatorname{rank} \mathcal{A}$. By 9.4a, $T_y \cong T_{y'}$, $\partial T_y \neq \varnothing$ and $\partial T_{y'} = \varnothing$. The latter contradicts the minimality of k.

Case 2. Suppose $k \leq 1$ and k' > 1. Since $\partial \mathcal{A} \neq \emptyset$, we get that k = 1; therefore, $\mathcal{A} = \mathbb{R}^{m-1} \times \mathbb{R}_{\geqslant 0}$.

Let $\mathcal{A}' \stackrel{iso}{=} \mathbb{R}^{m-k'} \times \mathcal{C}'$, where \mathcal{C}' a k'-dimensional ALEX(0) cone. Since $\partial \mathcal{A} \cong \mathbb{R}^{m-1}$, the image of $\partial \mathcal{A}$ in \mathcal{A}' does not lie in $\mathbb{R}^{m-k'} \times \{0\}$. In other words, we can choose $y \in \partial \mathcal{A}$ such that its image $y' \in \mathcal{A}'$ has a nonzero projection in \mathcal{C}' . Observe that $T_y \cong T_{y'}$,

$$\operatorname{rank} \mathbf{T}_y \leqslant k = 1, \quad \operatorname{rank} \mathbf{T}_{y'} < k', \quad \partial \mathbf{T}_y = \varnothing, \quad \operatorname{and} \quad \partial \mathbf{T}_{y'} \neq \varnothing$$

— a contradiction.

Case 3. Suppose $k \leq 1$ and $k' \leq 1$. Since $\partial \mathcal{A} \neq \emptyset$, we have k = 1. By 7.3, $\mathcal{A} \cong \mathbb{R}^{m-1} \times \mathbb{R}_{\geqslant 0}$. Therefore, $\mathcal{A}' \cong \mathbb{R}^m$, and $\mathcal{A} \ncong \mathcal{A}' - \mathbf{a}$ contradiction.

- **9.6. Exercise.** Let $x \mapsto x'$ be a homeomorphism $\Omega \to \Omega'$ between open subsets in finite-dimensional Alexandrov spaces A and A'. Show that $x \in \partial A$ if and only if $x' \in \partial A'$.
- **9.7. Exercise.** Show that boundary of a finite-dimensional Alexandrov space is a closed subset.

D Tangent space

Spaces of directions and tangent spaces of an Alexandrov space have already been defined in Lecture 4. Let us extend these definitions to subsets of an Alexandrov space.

Let X be a subset in a finite-dimensional Alexandrov space \mathcal{A} . Choose $p \in \mathcal{A}$ and $\xi \in \Sigma_p$. Suppose ξ is a limit of directions $\uparrow_{[px_n]}$ for a sequence $x_1, x_2, \ldots \in X$ that converges to p. Then we say that ξ is in the space of directions from p to X; briefly $\xi \in \Sigma_p X$.

Further, $\operatorname{Cone}(\Sigma_p X)$ will be called the tangent space to X at p; it will be denoted by $\operatorname{T}_p X$.

Note that $\Sigma_p X$ is a subset of Σ_p and $T_p X$ is a subcone in T_p .

9.8. Theorem. For any finite-dimensional Alexandrov space A, we have

$$\partial(\Sigma_p \mathcal{A}) = \Sigma_p(\partial \mathcal{A})$$
 and $\partial(\Gamma_p \mathcal{A}) = \Gamma_p(\partial \mathcal{A}).$

Proof. Choose a sequence $x_n \in \partial \mathcal{A}$ such that $x_n \to p$ and $\uparrow_{[px_n]} \to \xi$. Let $\varepsilon_n = 2 \cdot |p - x_n|$, and let $h_{\varepsilon_n} \colon \mathrm{B}(p, \varepsilon_n)_{\mathcal{A}} \to \mathrm{B}(0, \varepsilon_n)_{\mathrm{T}_p}$ be the homeomorphisms provided by 9.1; in particular, $\frac{2}{\varepsilon_n} \cdot h_{\varepsilon_n}(x_n) \to \xi$ as $n \to \infty$. By 9.6, $h_{\varepsilon_n}(x_n) \in \partial \mathrm{T}_p$. By 9.7, $\xi \in \partial \mathrm{T}_p$. Therefore,

$$\partial(\Sigma_p \mathcal{A}) \supset \Sigma_p(\partial \mathcal{A})$$
 and $\partial(\Gamma_p \mathcal{A}) \supset \Gamma_p(\partial \mathcal{A})$.

Similarly, choose $\xi \in \partial \Sigma_p$. Let $h_{\varepsilon_n} : \mathrm{B}(p, \varepsilon_n)_{\mathcal{A}} \to \mathrm{B}(0, \varepsilon_n)_{\mathrm{T}_p}$ be the homeomorphisms provided by 9.1 for a sequence $\varepsilon_n \to 0$ as $n \to \infty$. By 9.6, $x_n = h_{\varepsilon_n}^{-1}(\frac{\varepsilon_n}{2} \cdot \xi) \in \partial \mathcal{A}$. By 9.1, $\uparrow_{[px_n]} \to \xi$. Hence

$$\partial(\Sigma_p \mathcal{A}) \subset \Sigma_p(\partial \mathcal{A})$$
 and $\partial(\Gamma_p \mathcal{A}) \subset \Gamma_p(\partial \mathcal{A})$.

E. DOUBLING 79

E Doubling

Let A be a closed subset in a metric space \mathcal{X} . The doubling \mathcal{W} of \mathcal{X} across A is two copies of \mathcal{X} glued along A; more precisely, the underlying set of \mathcal{W} is the quotient $\mathcal{X} \times \{0,1\}/\sim$, where $(a,0) \sim (a,1)$ for any $a \in A$ and \mathcal{W} is equipped with the minimal metric such that both maps $\mathcal{X} \to \mathcal{W}$ defined by $x \mapsto (x,0)$ and $x \mapsto (x,1)$ are distance-preserving.

Alternatively, one may say that W is equipped with the maximal metric such that the projection proj: $W \to \mathcal{A}$ defined by $(x, i) \mapsto x$ is a short map. The metric on W can also be defined as

$$|(x,i) - (y,j)|_{\mathcal{W}} = \begin{cases} |x - y|_{\mathcal{X}} & \text{if } i = j.\\ \inf\{ |x - a|_{\mathcal{X}} + |y - a|_{\mathcal{X}} : a \in A \} & \text{if } i \neq j. \end{cases}$$

- **9.9. Theorem.** Let A be a finite-dimensional Alexandrov space with non-empty boundary. Suppose $f = \frac{1}{2} \cdot \operatorname{dist}_p^2$ for some $p \in A$. Then
 - (a) If dim $A \geqslant 2$, then dist $_{\partial \Sigma_x}(\xi) \leqslant \frac{\pi}{2}$ for any $x \in \partial A$ and $\xi \in \Sigma_x$. Moreover, if dist $_{\partial \Sigma_x}(\xi) = \frac{\pi}{2}$, then $\measuredangle(\xi, \zeta) \leqslant \frac{\pi}{2}$ for any $\zeta \in \Sigma_x$.
 - (b) $\nabla_x f \in \partial T_x$ for any $x \in \partial A$.
 - (c) If α is an f-gradient curve that starts at $x \in \partial \mathcal{A}$, then $\alpha(t) \in \partial \mathcal{A}$ for any t. Moreover, if $p \in \partial \mathcal{A}$, then $\operatorname{gexp}_p(v) \in \partial \mathcal{A}$ for any $v \in \partial T_p$.
 - (d) The doubling W of A across ∂A is an Alexandrov space with the same curvature bound.

Part (d) is called the doubling theorem.

Proof. We will denote by $(a)_m, \ldots, (d)_m$ the corresponding statement assuming $m = \dim A$.

The proof goes by induction on m. Statement $(d)_1$ follows from 7.3 — this is the base. The induction step is a combination of the implications below.

 $(d)_{m-1} \Rightarrow (a)_m$. Suppose m=2, then $\dim \Sigma_x = 1$; see 7.7b. By 7.3, Σ_x isometric to a line segment $[0,\ell]$; we need to show that $\ell \leqslant \pi$.

Assume $\ell > \pi$, then the tangent space $T_x = \operatorname{Cone} \Sigma_x$ has several different lines thru the origin. Recall that T_x is an Alexandrov space; see 7.7. By 6.5, T_x is isometric to the Euclidean plane; the latter contradicts that Σ_x is a line segment.

Now suppose m>2, so $\dim \Sigma_x>1$. Assume $\mathrm{dist}_{\partial \Sigma_x}(\xi)>\frac{\pi}{2}$ for some ξ . By $(d)_{m-1}$, the doubling Ξ of Σ_x is ALEX(1). Denote by ξ_0 and ξ_1 the points in Ξ that correspond to ξ . Observe that $|\xi_0-\xi_1|_{\Xi}>\pi$. The latter contradicts 3.7.

Finally, if $\operatorname{dist}_{\partial \Sigma_x}(\xi) = \frac{\pi}{2}$, then $|\xi_0 - \xi_1|_{\Xi} = \pi$. Therefore, Cone Ξ contains a line in the directions of ξ_0 and ξ_1 . By the splitting theorem (6.4) Cone Ξ is a direct product of the line with some subcone; in other words, Ξ is a spherical suspension with poles ξ_0 and ξ_1 . In particular, every point of Ξ lies on distance at most $\frac{\pi}{2}$ from ξ_0 or ξ_1 . The natural projection $\Xi \to \Sigma_x$ does not increase distances and sends both ξ_0 and ξ_1 to ξ . Therefore, the second statement of $(a)_m$ follows.

 $(d)_{m-1}+(a)_{m-1}+(a)_m \Rightarrow (b)_m$. We can assume that $s=\nabla_x f \neq 0$. By 4.10, $\nabla_x f=s \cdot \overline{\xi}$, where $s=d_x f(\overline{\xi})>0$ and $\overline{\xi} \in \Sigma_p$ is the direction that maximizes $d_x f(\overline{\xi})$.

Let $\zeta \in \partial \Sigma_x$ be a direction that minimizes the angle $\angle(\overline{\xi}, \zeta)$. It is sufficient to show that $\zeta = \overline{\xi}$.

Assume $\zeta \neq \overline{\xi}$; let $\eta = \uparrow_{[\zeta\overline{\xi}]_{\Sigma_x}}$. By $(a)_m$, $\angle(\overline{\xi},\zeta) \leqslant \frac{\pi}{2}$ and $(a)_{m-1}$ implies that

$$\angle(\eta,\nu) \leqslant \frac{\pi}{2}$$

for any $\nu \in \Sigma_{\zeta} \Sigma_x$ (if m = 2, then the last statement is evident).

Let $\varphi \colon \Sigma_x \to \mathbb{R}$ be restriction of $d_x f$ to Σ_x . Applying 4.7a and $\mathbf{0}$, we get that $d_{\overline{\xi}}\varphi(\eta) \leq 0$. Since $d_x f$ is concave, we have that $\varphi'' + \varphi \leq 0$. If $\varphi(\zeta) \leq 0$, then it implies that $\varphi(\overline{\xi}) \leq 0$ — a contradiction to the fact that s > 0. If $\varphi(\zeta) > 0$, then $\varphi(\overline{\xi}) < \varphi(\zeta)$ — a contradiction again.

 $(b)_m \Rightarrow (c)_m$. Let α be an f-gradient curve and $\ell(t) = \operatorname{dist}_{\partial \mathcal{A}} \alpha(t)$.

Choose t; let $x = \alpha(t)$ and $y \in \partial \mathcal{A}$ be a closest point to x. By $(b)_m$, we have that $\nabla_y f \in \partial \mathcal{T}_y$. Since the distance |x - y| is minimal, we get $\langle \uparrow_{[yx]}, v \rangle \leq 0$ for any $v \in \partial \mathcal{T}_y$. In particular,

$$\langle \uparrow_{[yx]}, \nabla_y f \rangle \leqslant 0$$

Applying 4.9 to x and y, we get

$$\ell'(t) \leqslant \ell(t)$$

if the left-hand side is defined. Since ℓ is Lipschitz, ℓ' is defined almost everywhere. Integrating the inequality, we get

$$\ell(t) \leqslant e^t \cdot \ell(0)$$

for any $t \ge 0$. In particular, if $\ell(0) = 0$, then $\ell(t) = 0$ for any $t \ge 0$. Since $\partial \mathcal{A}$ is closed (9.7), the statement follows.

 $(c)_m + (d)_{m-1} \Rightarrow (d)_m$. We will consider the case $\kappa = 0$; other cases can be done in the same way, but formulas get more complicated.

Denote by A_0 and A_1 the two copies of A in W; let us keep the notation ∂A for the common boundary of A_0 and A_1 .

2 Let γ be a geodesic in W. Then either γ has at most one interior point in ∂A or $\gamma \subset \partial A$.

E. DOUBLING 81

Indeed, assume γ shares at least two points with $\partial \mathcal{A}$, say $x = \gamma(t_1)$ and $y = \gamma(t_2)$ and these are not endpoints of γ . Remove from γ the set $\gamma \cap \mathcal{A}_1$

and exchange it to its reflection across ∂A ; denote the obtained curve by $\hat{\gamma}$.

Any arc of $\hat{\gamma}$ with one endpoint in $\partial \mathcal{A}$ is a geodesic in \mathcal{A}_0 . Since $x, y \in \partial \mathcal{A}$, the arc of $\hat{\gamma}$ behind y lies in the image of map $t \mapsto \operatorname{Flow}_{f_x}^t(y)$, where $f_x = \frac{1}{2} \cdot \operatorname{dist}_x^2$. By (c), this arc lies in $\partial \mathcal{A}$.

Now choose a point z on this arc, so $z \in \partial \mathcal{A}$. Applying the same argument, we get that the arc of $\hat{\gamma}$ before y lies in $\partial \mathcal{A}$. Hence the claim follows.

Choose a point p in \mathcal{W} ; let $f := \frac{1}{2} \cdot \operatorname{dist}_{p}^{2}$. It is sufficient to show that $(f \circ \gamma)'' \leqslant 1$ for any t. If $p \in \partial \mathcal{A}$, then the statement follows from function comparison in \mathcal{A}_{0} and \mathcal{A}_{1} . So, we can assume that $p \in \mathcal{A}_{0} \setminus \partial \mathcal{A}$. Also, we can assume that γ does not lie in $\partial \mathcal{A}$; otherwise, the inequality follows from the comparison in \mathcal{A}_{0} .

Choose $y = \gamma(t_0)$; without loss of generality we can assume that $t_0 = 0$.

If $y \in \mathcal{A}_0 \setminus \partial \mathcal{A}$, then $(f \circ \gamma)''(0) \leq 1$ in the barrier sense; it follows from the comparison in \mathcal{A}_0 .

Assume $y \in A_1 \setminus \partial A$. Suppose [py] crosses ∂A at x. Let

 Σ_x be the space of directions of \mathcal{A} at x, and let Ξ be its doubling. As before, we denote by Σ_0 and Σ_1 two copies of Σ_x in Ξ and keep notation $\partial \Sigma_x$ for their common boundary. By $(d)_{m-1}$, Ξ is ALEX(1).

The directions $\uparrow_{[xy]}$ and $\uparrow_{[xp]}$ lie on opposite sides from Ξ and

$$|\uparrow_{[xy]} - \uparrow_{[xp]}|_{\Xi} \geqslant \pi.$$

Otherwise, we could choose a direction $\xi \in \partial \Sigma$ such that

$$|\!\uparrow_{[xy]} - \xi|_\Xi + |\xi - \uparrow_{[xp]}|_\Xi < \pi.$$

Furthermore, we could consider the radial curve $\alpha(t) = \text{gexp}_x(t \cdot \xi)$. By $(c)_m$, α lies in $\partial \mathcal{A}$. By 5.12

$$|p - \alpha(s)|_{A_0} + |y - \alpha(s)|_{A_1} < |p - y|_{\mathcal{W}}$$

for small values s > 0 — a contradition.

Cone Ξ contains a line with directions $\uparrow_{[xy]}$ and $\uparrow_{[xp]}$. By the splitting theorem, Cone Ξ splits in these directions; in particular,

$$|\uparrow_{[xy]} - \xi| + |\xi - \uparrow_{[xp]}| = \pi.$$

for any $\xi \in \Xi$. It follows that for any $\xi \in \Xi$ there is $\xi' \in \partial \Sigma_x$ such that ξ and ξ' lie on some geodesic $[\uparrow_{[xy]} \uparrow_{[xp]}]_{\Xi}$.

Fix $t \approx 0$ such that $t \neq 0$; let $z = \gamma(t)$. Choose such ξ' for $\xi = \uparrow_{[xz]}$. Consider the radial curve $\alpha(s) := \operatorname{gexp}_x(s \cdot \xi')$. Let us show that

$$|p-z|_{\mathcal{W}} \leqslant |p-\alpha(s)|_{\mathcal{A}_0} + |\alpha(s)-z|_{\mathcal{A}_1} \leqslant \tilde{\Upsilon}[y_z^p].$$

for suitable value s.

The first inequality in \bullet is evident. Set $\varphi = \angle[x \frac{y}{z}]$ and $\psi = \angle(\uparrow_{[xp]}, \xi')$. The choice of s comes from the model configuration \tilde{p} , \tilde{x} , \tilde{y} , \tilde{w} , $\tilde{z} \in \mathbb{E}^2$ such that

$$\begin{split} &\tilde{x} \in [\tilde{p}\tilde{y}], \quad |\tilde{p} - \tilde{x}| = |p - x|, \quad |\tilde{p} - \tilde{y}| = |p - y|, \quad |\tilde{x} - \tilde{z}| = |x - z|, \\ &\tilde{w} \in [\tilde{p}\tilde{z}], \quad \angle[\tilde{x}\frac{\tilde{y}}{\tilde{z}}] = \varphi, \qquad \qquad \angle[\tilde{x}\frac{\tilde{v}}{\tilde{w}}] = \psi, \qquad \qquad s = |\tilde{x} - \tilde{w}|. \end{split}$$

By 5.12, we get

$$|p - \alpha(s)|_{\mathcal{A}_0} \le |\tilde{p} - \tilde{w}|,$$

 $|\alpha(s) - z|_{\mathcal{A}_1} \le |\tilde{w} - \tilde{z}|;$

by the comparison,

$$|\tilde{p} - \tilde{z}| \leqslant \tilde{\Upsilon}[y_z^p].$$

9.10. Exercise. Prove the last inequality.

Hence we get $(f \circ \gamma)''(0) \leq 1$ in the barrier sense. Finally if $\gamma(0) \in \partial \mathcal{A}$, then splitting argument shows that

$$(f \circ \gamma)^+(0) + (f \circ \gamma)^-(0) \le 0.$$

Summarizing, we get that $(f \circ \gamma)'' \leq 1$ on every arc of γ that lies entirely in \mathcal{A}_0 or \mathcal{A}_1 . If γ crosses $\partial \mathcal{A}$, then we know that it

F. REMARKS 83

happens only once and at the crossing moment t_0 we have $f \circ \gamma^+(t_0) + f \circ \gamma^-(t_0) \leq 0$. All this implies that $(f \circ \gamma)'' \leq 1$.

- **9.11. Exercise.** Let \mathcal{A} be a finite-dimensional ALEX(1) space of dimension ≥ 2 with non-empty boundary $\partial \mathcal{A}$. Show that $\partial \mathcal{A}$ is connected.
- **9.12. Exercise.** Let A be an finite-dimensional ALEX(0) space with non-empty boundary ∂A .
 - (a) Suppose a geodesic γ in \mathcal{A} has its interior point in $\partial \mathcal{A}$. Show that γ lies in $\partial \mathcal{A}$.
 - (b) Show that the distance function to the boundary is concave.
- **9.13. Exercise.** Let \mathcal{A} be a finite-dimensional ALEX(0) space with non-empty boundary $\partial \mathcal{A}$. Suppose γ is a geodesic in $\partial \mathcal{A}$ with the induced length metric. Show that the function $t \mapsto \frac{1}{2} \cdot \operatorname{dist}_p^2 \circ \gamma(t)$ is 1-concave for any point p.
- **9.14. Exercise.** Let $proj: W \to A$ be the natural projection to a finite-dimensional Alexandrov space A from its doubling W across the boundary. Suppose $f: A \to \mathbb{R}$ is a λ -concave function. Show that $f \circ \operatorname{proj}: W \to \mathbb{R}$ is λ -concave if and only if $\nabla_x f \in \partial T_x$ for any $x \in \partial A$.

F Remarks

The doubling theorem has several generalizations [31, 89] that allow to glue nonidentical spaces.

It easily follows by induction on dimension that the doubling of a finite-dimensional Alexandrov space across its boundary results in an Alexandrov space without boundary. This observation can often be used to reduce a statement about general finite-dimensional Alexandrov spaces to Alexandrov spaces without boundary.

For spaces without boundary the following tools become available.

9.15. Fundamental-class lemma. Any compact finite-dimensional Alexandrov space \mathcal{A} without boundary has a fundamental class with $\mathbb{Z}/2$ coefficients; that is, if \mathcal{A} is m-dimensional, then

$$H^m(\mathcal{A}, \mathbb{Z}/2) = \mathbb{Z}/2.$$

This lemma was proved by Karsten Grove and Peter Petersen [40]. Originally it was stated for Alexander–Spanier cohomology. We do not

make this distinction because for compact Alexandrov spaces it is the same as singular cohomology. Indeed, both cohomology theories are homotopy invariant [105, Chapter 6], compact Alexandrov spaces are homotopy equivalent to finite simplicial complexes 8.15 and for paracompact CW complexes Alexander—Spanier cohomology is isomorphic to Čech and singular cohomology [105, Chapter 6].

This lemma implies, for example, that on finite-dimensional Alexandrov spaces without boundary the gradient flow for a λ -concave function is an onto map; in other words, gradient curves can be extended into the past. It is also used in the proof of the following version of the domain invariance theorem [51, Theorem 3.2].

9.16. Domain invariance. Let A_1 and A_2 be two m-dimensional Alexandrov spaces with empty boundary; m is finite. Suppose Ω_1 is an open subset in A_1 and $f: \Omega_1 \to A_2$ is an injective continuous map. Then $f(\Omega_1)$ is open in A_2 .

Theorem 9.1 can be used to prove the following.

- **9.17. Topological stratification.** Any m-dimensional Alexandrov space with $m < \infty$ can be subdivided into topological manifolds S_0, \ldots, S_m such that for every i we have $\dim S_i = i$ or $S_i = \emptyset$. Moreover,
 - (a) the closure of S_{m-1} is the boundary of the space, and
 - (b) $S_{m-2} = \emptyset$.

This statement implies that a compact finite-dimensional Alexandrov space has the homotopy type of a finite CW complex, but it seems to be unknown if it has to be homeomorphic to a CW complex.

The stratification theorem 9.17 can be sharpened as follows.

- **9.18.** Boundary characterization. Let A be an m-dimensional Alexandrov space with $m < \infty$. Then the following statements are equivalent.
 - (a) $p \in \partial \mathcal{A}$;
 - (b) Σ_p is contractible;
 - (c) $\tilde{H}_{m-1}(\Sigma_p, \mathbb{Z}/2) = 0;$
 - (d) $H_m(\mathcal{A}, \mathcal{A} \setminus \{p\}, \mathbb{Z}/2) = 0;$

Let f be a semiconcave function. A point $p \in \text{Dom } f$ is called critical point of f if $d_p f \leq 0$; otherwise it is called regular.

The following statement plays a technical role in the proof of stability theorem, but it is also a useful technical tool on its own.

9.19. Morse lemma. Let f be a semiconcave function on a finite-dimensional Alexandrov space without boundary. Suppose K is a compact set of regular points of f in its level set f = a. Then an open

F. REMARKS 85

neighborhood Ω of K admits a homeomorphism $x \mapsto (h(x), f(x))$ to a product space $\Lambda \times (a - \varepsilon, a + \varepsilon)$.

Morse lemma was originally proved by Grigory Perelman in [80] for special kind of semiconcave functions made out of distance functions. For such functions it holds for all Alexandrov spaces without the requirement that they do not have boundary. For general semiconcave functions on spaces without boundary it follows from [81] where the technical tools from [80] (the notion of inner product between differentials of semiconcave functions and the notion of admissible maps) was generalized to include general semiconcave functions. With those definitions all the main Morse theory results of [80] follow by the same proof by using [81, 2.2] instead of [80, Lemma 1]. On Alexandrov spaces with boundary all the Morse theory results hold if one requires in addition that the semiconcave functions remain semiconcave when canonically extended to the doubling. This is automatic for the special type of semiconcave functions considered in [80] therefore this distinction is not made there.

Subsets in Alexandrov spaces that satisfy the condition in 9.9c are called extremal. More precisely, a subset E is extremal if for any $x \in E$ and f-gradient curve that starts in E remains in E; here f is arbitrary function of the form $\frac{1}{2} \cdot \operatorname{dist}_{p}^{2}$.

Extremal subsets were introduced by Grigory Perelman and the second author [77]. They will pop up in the next lecture.

The following conjecture is one of the oldest questions in Alexandrov geometry that remains open.

9.20. Conjecture. Let S be a component of the boundary of a finite-dimensional Alexandrov space. Then S equipped with the induced length metric is an Alexandrov space with the same curvature bound.

Lecture 10

Quotients

This lecture gives several applications of Alexandrov geometry to isometric group actions.

A Quotient space

Suppose that a group G acts isometrically on a metric space \mathcal{X} . Note that

$$|G \cdot x - G \cdot y|_{\mathcal{X}/G} := \inf \{ |x - g \cdot y|_{\mathcal{X}} : g \in G \}$$

defines a semimetric on the orbit space \mathcal{X}/G . Moreover, if the orbits of the action are closed, then it is a genuine metric.

10.1. Theorem. Suppose that a group G acts isometrically on a proper Alex(0) space A, and G has closed orbits. Then the quotient space A/G is Alex(0).

A more general formulation will be given in 10.5.

Proof. Denote by $\sigma \colon \mathcal{A} \to \mathcal{A}/G$ the quotient map.

Fix a quadruple of points $p, x_1, x_2, x_3 \in \mathcal{A}/G$. Choose $\hat{p} \in \mathcal{A}$ such that $\sigma(\hat{p}) = p$. Since \mathcal{A} is proper, we can choose points $\hat{x}_i \in \mathcal{A}$ such that $\sigma(\hat{x}_i) = x_i$ and

$$|p - x_i|_{\mathcal{A}/G} = |\hat{p} - \hat{x}_i|_{\mathcal{A}}$$

for all i.

Note that

$$|x_i - x_j|_{\mathcal{A}/G} \leqslant |\hat{x}_i - \hat{x}_j|_{\mathcal{A}}$$

for all i and j. Therefore

$$\tilde{\angle}(p_{x_j}^{x_i}) \leqslant \tilde{\angle}(\hat{p}_{\hat{x}_i}^{\hat{x}_i})$$

holds for all i and j.

By \mathbb{E}^2 -comparison in \mathcal{A} , we have

$$\tilde{\measuredangle}(\hat{p}_{\,\hat{x}_2}^{\,\hat{x}_1}) + \tilde{\measuredangle}(\hat{p}_{\,\hat{x}_3}^{\,\hat{x}_2}) + \tilde{\measuredangle}(\hat{p}_{\,\hat{x}_1}^{\,\hat{x}_3}) \leqslant 2 \!\cdot\! \pi.$$

Applying $\mathbf{0}$, we get

$$\tilde{\measuredangle}(p_{x_2}^{x_1}) + \tilde{\measuredangle}(p_{x_3}^{x_2}) + \tilde{\measuredangle}(p_{x_1}^{x_3}) \leqslant 2 \cdot \pi;$$

that is, the \mathbb{E}^2 -comparison holds for any quadruple in \mathcal{A}/G .

10.2. Very advanced exercise. Let G be a compact Lie group with a bi-invariant Riemannian metric. Show that G is isometric to a quotient of a Hilbert space by an isometric group action.

Conclude that G is Alex(0).

В Submetries

A map $\sigma: \mathcal{X} \to \mathcal{Y}$ between the metric spaces \mathcal{X} and \mathcal{Y} is called a submetry if

$$\sigma(B(p,r)_{\mathcal{X}}) = B(\sigma(p),r)_{\mathcal{Y}}$$

for any $p \in \mathcal{X}$ and $r \geqslant 0$.

Suppose G and A are as in 10.1. Observe that the quotient map $\sigma \colon \mathcal{A} \to \mathcal{A}/G$ is a submetry. The following two exercises show that this is not the only source of submetries.

- 10.3. Exercise. Construct submetries

(a) $\sigma_1 \colon \mathbb{S}^2 \to [0, \pi],$ (b) $\sigma_2 \colon \mathbb{S}^2 \to [0, \frac{\pi}{2}],$ (c) $\sigma_n \colon \mathbb{S}^2 \to [0, \frac{\pi}{n}]$ (for integer $n \ge 1$) such that the fibers $\sigma_n^{-1}\{x\}$ are connected for any x.

10.4. Exercise. Let $\sigma \colon \mathbb{E}^2 \to [0, \infty)$ be a submetry. Show that K = 0 $= \sigma^{-1}\{0\}$ is a closed convex set without interior points and $\sigma(x) =$ $= \operatorname{dist}_{K} x.$

The proof of 10.1 works for submetries; that is, if $\sigma: A \to B$ is a submetry and A is ALEX(0), then so is B. Theorem 10.1 admits a straightforward generalization to ALEX(-1) case.

In the Alex(1) case, the proof produces a slightly weaker statement — \mathbb{S}^2 -comparison holds for a quartuple p, x_1, x_2, x_3 in the quotient of Alex(1) if $|p-x_i| < \frac{\pi}{2}$ for each i. In particular, the quotient space is locally Alex(1). But since Alex(1) space is geodesic, then so is its quotient. Therefore, the globalization theorem implies that it is

89

globally ALEX(1). The same holds for the targets of submetries from an ALEX(1) space. With a bit of extra work, one can extend the statement to nonproper spaces; see [7, 8.34]. Thus, we have the following two statements.

10.5. Theorem. Let $\sigma: A \to B$ be a submetry. If A is $ALEX(\kappa)$ space, then so is B.

In particular, if G acts isometrically on an $ALEX(\kappa)$ space A, and G has closed orbits. Then the quotient space A/G is $ALEX(\kappa)$.

C Hopf's conjecture

Does $\mathbb{S}^2 \times \mathbb{S}^2$ admit a Riemannian metric with positive sectional curvature? Hopf's conjecture says that the answer should be negative. The following partial result towards the conjecture was obtained by Wu-Yi Hsiang and Bruce Kleiner [46]. The proof uses Alexandrov geometry and we present it here.

- **10.6. Theorem.** There is no Riemannian metric on $\mathbb{S}^2 \times \mathbb{S}^2$ with sectional curvature ≥ 1 and a nontrivial isometric \mathbb{S}^1 -action.
- **10.7. Key lemma.** Suppose $\mathbb{S}^1 \curvearrowright \mathbb{S}^3$ is an effective isometric action without fixed points and $\Sigma = \mathbb{S}^3/\mathbb{S}^1$ is its quotient space. Then there is a distance noncontracting map $\Sigma \to \frac{1}{2} \cdot \mathbb{S}^2$, where $\frac{1}{2} \cdot \mathbb{S}^2$ is the standard 2-sphere rescaled with a factor $\frac{1}{2}$.

The proof of the lemma is guided by the following exercise.

- **10.8. Exercise.** Suppose $\mathbb{S}^1 \curvearrowright \mathbb{S}^3$ is an isometric action without fixed points. Let us think of \mathbb{S}^3 as the unit sphere in \mathbb{R}^4 .
 - (a) Show that one can identify \mathbb{R}^4 with \mathbb{C}^2 so that the action is given by matrix multiplication

$$\begin{pmatrix} u^p & 0 \\ 0 & u^q \end{pmatrix},$$

where (p,q) is a pair of relatively prime positive integers and $u \in \mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$. In particular, our \mathbb{S}^1 is a subgroup of the torus that acts by matrix multiplication

$$\begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix},$$

where $v, w \in \mathbb{S}^1$.

Fix p and q as above. Let $\Sigma_{p,q} = \mathbb{S}^3/\mathbb{S}^1$ be the quotient space.

(b) Show that the $\Sigma_{p,q} = \mathbb{S}^3/\mathbb{S}^1$ is a topological sphere with \mathbb{S}^1 symmetry. This symmetry has two fixed points, north pole and
south pole, that correspond to the orbits of (1,0) and (0,1) in \mathbb{S}^3 .

Denote by S(r) the circle of radius r with the center at the north pole of $\Sigma_{p,q}$.

- (c) Show that the inverse image T(r) of S(r) in \mathbb{S}^3 is an orbit of the torus action. Conclude that $a(r) = \pi^2 \cdot \sin r \cdot \cos r$ is the area T(r).
- (d) Let $b_{p,q}(r)$ be the length of the \mathbb{S}^1 -orbit in \mathbb{S}^3 that corresponds to a point on S(r). Show that $b_{p,q} = \pi \cdot \sqrt{(p \cdot \sin r)^2 + (q \cdot \cos r)^2}$.
- (e) Let $c_{p,q}(r)$ be the length of S(r). Show that $a(r) = c_{p,q}(r) \cdot b_{p,q}(r)$.
- (f) Show that $c_{p,q}(r) \leqslant c_{1,1}(r)$ for any pair (p,q) of relatively prime positive integers. Use it to construct a distance noncontracting map $\Sigma_{p,q} \to \frac{1}{2} \cdot \mathbb{S}^2 \xrightarrow{iso} \Sigma_{1,1}$.

Proof of 10.6. Assume $\mathcal{B} = (\mathbb{S}^2 \times \mathbb{S}^2, g)$ is a counterexample. By the Toponogov theorem, \mathcal{B} is ALEX(1). By 10.1, the quotient space $\mathcal{A} = \mathcal{B}/\mathbb{S}^1$ is ALEX(1); evidently, \mathcal{A} is 3-dimensional.

Denote by $F \subset \mathcal{B}$ the fixed point set of the \mathbb{S}^1 -action. Then $\chi(\mathcal{B}) = \chi(F)$. Each connected component of F is either an isolated point or a 2-dimensional geodesic submanifold in \mathcal{B} ; the latter has to have positive curvature, and therefore it is homeomorphic to \mathbb{S}^2 or $\mathbb{R}P^2$. Notice that

- \diamond each isolated point contributes 1 to the Euler characteristic of \mathcal{B} ,
- \diamond each sphere contributes 2 to the Euler characteristic of \mathcal{B} , and
- \diamond each projective plane contributes 1 to the Euler characteristic of \mathcal{B} .

Since $\chi(\mathcal{B}) = 4$, we are in one of the following three cases:

- \diamond F has exactly 4 isolated points,
- \diamond F has one 2-dimensional submanifold and at least 2 isolated points,
- \diamond F has at least two 2-dimensional submanifolds.

In each case we will arrive at a contradiction.

Case 1. Suppose F has exactly 4 isolated points x_1 , x_2 , x_3 , and x_4 . Denote by y_1 , y_2 , y_3 , and y_4 the corresponding points in \mathcal{A} . Note that $\Sigma_{y_i}\mathcal{A}$ is isometric to a quotient of \mathbb{S}^3 by an isometric \mathbb{S}^1 -action without fixed points.

By 10.8, each angle $\angle[y_i^{y_j}] \leq \frac{\pi}{2}$ for any three distinct points y_i , y_j , y_k . In particular, all four triangles $[y_1y_2y_3]$, $[y_1y_2y_4]$, $[y_1y_3y_4]$, and $[y_2y_3y_4]$ are nondegenerate. By the comparison, the sum of angles in each triangle is strictly greater than π .

Denote by ω the sum of all 12 angles in the 4 triangles $[y_1y_2y_3]$, $[y_1y_2y_4]$, $[y_1y_3y_4]$, and $[y_2y_3y_4]$. From above,

$$\omega > 4 \cdot \pi$$
.

On the other hand, by 10.8 any triangle in $\Sigma_{y_1} \mathcal{A}$ has perimeter at most π . In particular,

$$\angle[y_1 \frac{y_2}{y_3}] + \angle[y_1 \frac{y_3}{y_4}] + \angle[y_1 \frac{y_4}{y_2}] \leqslant \pi.$$

Apply the same argument in $\Sigma_{y_2}\mathcal{A}$, $\Sigma_{y_3}\mathcal{A}$, and $\Sigma_{y_4}\mathcal{A}$; adding the results, we get

$$\omega \leqslant 4 \cdot \pi$$

— a contradiction.

Case 2. Suppose F contains one surface S. Then the projection of S to \mathcal{A} forms its boundary $\partial \mathcal{A}$. The doubling \mathcal{W} of \mathcal{A} across its boundary has at least 4 singular points — each singular point of \mathcal{A} corresponds to two singular points of \mathcal{W} .

By the doubling theorem, W is a ALEX(1) space. Therefore we arrive at a contradiction in the same way as in the first case.

D Erdős' problem rediscovered

A point p in an Alexandrov space is called extremal if $\angle[p_y^x] \leqslant \frac{\pi}{2}$ for any hinge $[p_y^x]$ with the vertex at p; equivalently, diam $\Sigma_p \leqslant \pi/2$.

10.9. Theorem. Let \mathcal{A} be a compact m-dimensional ALEX(0) space. Then it has at most 2^m extremal points.

The proof is a translation of the proof of the following classical problem in discrete geometry to Alexandrov's language.

10.10. Problem. Let F be a set of points in \mathbb{E}^m such that any triangle formed by three distinct points in F has no obtuse angles. Then $|F| \leq 2^m$. Moreover, if $|F| = 2^m$, then F consists of the vertices of an m-dimensional rectangle.

This problem was posed by Paul Erdős [28] and solved by Ludwig Danzer and Branko Grünbaum [26]. Grigory Perelman noticed that, after proper definitions, the same proof works in Alexandrov spaces [76]; thus, it proves 10.9.

Proof of 10.9. Let $\{p_1, \ldots, p_N\}$ be extremal points in \mathcal{A} . For each p_i consider its open Voronoi domain V_i ; that is,

$$V_i = \{ x \in \mathcal{A} : |p_i - x| < |p_j - x| \text{ for any } j \neq i \}.$$

Clearly $V_i \cap V_j = \emptyset$ if $i \neq j$.

Suppose $0 < \alpha \le 1$. Given a point $x \in \mathcal{A}$, choose a geodesic $[p_i x]$ and denote by x_i the point on $[p_i x]$ such that $|p_i - x_i| = \alpha \cdot |p_i - x|$; let $\Phi_i \colon x \to x_i$ be the corresponding map. By the comparison,

$$|x_i - y_i| \geqslant \alpha \cdot |x - y|$$

for any x, y, and i. Therefore

$$\operatorname{vol}(\Phi_i \mathcal{A}) \geqslant \alpha^m \cdot \operatorname{vol} \mathcal{A}.$$

Suppose $\alpha < \frac{1}{2}$. Then $x_i \in V_i$ for any $x \in \mathcal{A}$. Indeed, assume $x_i \notin V_i$, then there is p_j such that $|p_i - x_i| \ge |p_j - x_i|$. Then from the comparison, we have $\tilde{\mathcal{L}}(p_j \frac{p_i}{x})_{\mathbb{E}^2} > \frac{\pi}{2}$; that is, p_j is not an extremal point. It follows that $\operatorname{vol} V_i \ge \alpha^m \cdot \operatorname{vol} \mathcal{A}$ for any $0 < \alpha < \frac{1}{2}$; hence

$$\operatorname{vol} V_i \geqslant \frac{1}{2^m} \cdot \operatorname{vol} \mathcal{A} \quad \text{and} \quad N \leqslant 2^m.$$

Remark. Applying the above argument to the convex hull of F in 10.10 proves that $|F| \leq 2^m$; the case of equality requires more work.

E Crystallographic actions

An isometric action $\Gamma \curvearrowright \mathbb{E}^m$ is called crystallographic if it is properly discontinuous (that is, for any compact set $K \subset \mathbb{E}^m$ and $x \in \mathbb{E}^m$ there are only finitely many $g \in \Gamma$ such that $g \cdot x \in K$) and cocompact (that is, the quotient space $\mathcal{A} = \mathbb{E}^m/\Gamma$ is compact).

Let F be a maximal finite subgroup of Γ ; that is, if $F < H < \Gamma$ for a finite group H, then F = H. Denote by $\mathfrak{M}(\Gamma)$ the number of maximal finite subgroups of Γ up to conjugation.

10.11. Open question. Let $\Gamma \curvearrowright \mathbb{E}^m$ be a crystallographic action. Is it true that $\mathfrak{M}(\Gamma) \leqslant 2^m$?

Note that any finite subgroup F of Γ fixes an affine subspace A_F in \mathbb{E}^m . If F is maximal, then A_F completely describes F. Indeed, since the action is properly discontinuous, the subgroup of Γ that fix A_F has to be finite. This subgroup must contain F, but since F is maximal, it must coinside with F.

F. REMARKS 93

Denote by $\mathfrak{M}_k(\Gamma)$ the number of maximal finite subgroups $F < \Gamma$ (up to conjugation) such that dim $A_F = k$.

Choose a finite subgroup $F < \Gamma$; consider a conjugate subgroup $F' = g \cdot F \cdot g^{-1}$. Note that $A_{F'} = g \cdot A_F$. In particular, the subspaces A_F and $A_{F'}$ have the same image in the quotient space $\mathcal{A} = \mathbb{E}^m/\Gamma$. Therefore, to count subgroups up to conjugation, we need to count the images of their fixed sets. Therefore, by the lemma below (10.13), $\mathfrak{M}_0(\Gamma)$ cannot exceed the number of extremal points in $\mathcal{A} = \mathbb{E}^m/\Gamma$. Combining this observation with 10.9, we get the following.

10.12. Proposition. Let $\Gamma \curvearrowright \mathbb{E}^m$ be a crystallographic action. Then $\mathfrak{M}_0(\Gamma) \leqslant 2^m$.

10.13. Lemma. Let $\Gamma \curvearrowright \mathbb{E}^m$ be a crystallographic action and F be a maximal finite subgroup of Γ that fixes an isolated point p. Then the image of p in the quotient space $\mathcal{A} = \mathbb{E}^m/\Gamma$ is an extremal point.

Proof. Let q be the image of p. Suppose q is not extremal; that is, $\angle[q_{y_2}^{y_1}] > \frac{\pi}{2}$ for some hinge $[q_{y_2}^{y_1}]$ in A.

Choose the inverse images $x_1, x_2 \in \mathbb{E}^m$ of $y_1, y_2 \in \mathcal{A}$ such that $|p - x_i|_{\mathbb{E}^m} = |q - y_i|_{\mathcal{A}}$. Note that $\measuredangle[p_{x_2}^{x_1}] \geqslant \measuredangle[q_{y_2}^{y_1}] > \frac{\pi}{2}$. Moreover, since p is fixed by F, we have

for any $g \in F$.

Denote by z the barycenter of the orbit $F \cdot x_2$. Note that z is a fixed point of F. By $\mathbf{0}$, $z \neq p$; so F must fix the line pz. But p is an isolated fixed point of F — a contradiction.

10.14. Exercise. Let $\Gamma \curvearrowright \mathbb{E}^m$ be a crystallographic action. Show that

- (a) $\mathfrak{M}_{m-1}(\Gamma) \leqslant 2$, and
- (b) if $\mathfrak{M}_{m-1}(\Gamma) = 1$, then $\mathfrak{M}_0(\Gamma) \leqslant 2^{m-1}$.

Construct crystallographic actions with equalities in (a) and (b).

F Remarks

Submetries were introduced by Valerii Berestovskii [13] and have attracted attention in various contexts of differential and metric geometry.

A more general form of Theorem 10.6 was found by Karsten Grove and Burkhard Wilking [41]; it classifies isometric \mathbb{S}^1 actions on 4-dimensional manifolds with nonnegative sectional curvature. This

proof is as beautiful as the original work of Wu-Yi Hsiang and Bruce Kleiner.

It is expected that no ALEX(1) space with a nontrivial isometric \mathbb{S}^1 -action can be homeomorphic to $\mathbb{S}^2 \times \mathbb{S}^2$; so 10.6 holds for general ALEX(1) space. The proof of 10.6 would work if we had the following generalization of 10.7; see [44].

- **10.15. Open question.** Let Σ be an ALEX(1) space homeomorphic to \mathbb{S}^3 . Suppose \mathbb{S}^1 acts on Σ isometrically and without fixed points. Is it true that any triangle in Σ/\mathbb{S}^1 has perimeter at most π ? and, what about the existence of distance-noncontracting map $\Sigma/\mathbb{S}^1 \to \frac{1}{2} \cdot \mathbb{S}^2$?
- **10.16.** Advanced exercise. Suppose \mathbb{S}^1 acts isometrically on an ALEX(1) space \mathcal{A} that is homeomorphic to \mathbb{S}^3 . Assume its fixed-point set is a closed local geodesic γ . Show that length $\gamma \leqslant 2 \cdot \pi$.

The same question for a \mathbb{Z}_2 -action is open [83].

Compact m-dimensional ALEX(0) spaces with the maximal number of extremal points include m-dimensional rectangles and the quotients of flat tori by reflections across a point. (This action has 2^m isolated fixed points; each corresponds to an extremal point in the quotient space $\mathcal{A} = \mathbb{T}^m/\mathbb{Z}_2$.) Nina Lebedeva has proved [64] that every m-dimensional ALEX(0) space with 2^m extremal points is a quotient of Euclidean space by a crystallographic action.

The extremal subsets of Alexandrov space were brifly discussed in 9F. The following definition is more relevant to isometric group actions.

A closed subset E in a finite-dimensional Alexandrov space is called extremal if $\angle[p_y^x] \leqslant \frac{\pi}{2}$ for any $x \notin E$ and $p \in E$ such that |x-p| takes a minimal value. An extremal set is called minimal if it contains no proper extremal subsets.

For example, the whole space and the empty set are extremal. Also, every vertex, edge, or face (as well as their unions) of the cube is an extremal subset of the cube. Vertices of the cube are its only minimal extremal subsets.

Counting maximal finite subgroups in a crystallographic group Γ (up to conjugation) is equivalent to counting the minimal extremal subsets in the quotient space $\mathcal{A} = \mathbb{E}^m/\Gamma$. So, 10.12 would follow from the next conjecture.

10.17. Conjecture. Any m-dimensional compact Alex(0) space has at most 2^m minimal extremal subset.

Let us mention another related conjecture. An extremal set is called primitive if it contains no proper extremal subsets with non-empty relative interior. For example, each face of m-dimensional cube

F. REMARKS 95

is its primitive extremal subset; therefore the cube has exactly 3^m primitive extremal subset, including the empty set and the whole cube.

10.18. Conjecture. Any m-dimensional compact ALEX(0) space has at most 3^m minimal extremal subset.

Crude estimates on number of extremal subsets follow from the idea in Gromov's Betti number theorem 8.17.

Lecture 11

Surface theory

This lecture is less rigorous; it aims to demonstrate beauty of geometry of convex surfaces, which is the precursor of modern Alexandrov geometry. For a deeper dive into this theory, we recommend turning to the classic and brilliantly written books by Alexandrov [8, 10]. Also, the book by Alexay Pogorelov [98] is very recommended, despite being a challenge to read.

A Polyhedral surfaces

A polyhedral surface is defined as a 2-dimensional manifold (possibly with boundary) with a length metric that admits a finite triangulation such that each triangle is isometric to a solid plane triangle. A triangulation of a polyhedral surface will always be assumed to satisfy this condition.

Note that according to our definition, any polyhedral surface is compact.

Choose a point p on a polyhedral surface \mathcal{P} . We can assume that p is a vertex of a triangulation \mathcal{P} ; it can be achieved by subdividing the triangulation. Denote by θ_p the total angle around p; that is, the sum of all angles at p in all the triangles that have p as a vertex.

Note that θ_p does not depend on the choice of triangulation. If p is an interior point, then the value $2 \cdot \pi - \theta_p$ is called curvature at p. If p lies on the boundary of \mathcal{P} , then the value $\pi - \theta_p$ is called inner turn at p.

A point with nonvanishing curvature or inner turn will be called an essential vertex of the surface. Observe that an essential vertex is a vertex in any triangulation. 11.1. Exercise. Show that geodesics on a polyhedral surface with nonnegative curvatures and nonnegative inner turns may have essential vertices only at their endpoints.

The following statement is an analog of the Gauss–Bonnet formula.

11.2. Exercise. Let $K(\mathcal{P})$ and $T(\mathcal{P})$ denote the sum of curvatures of all interior points and the sum of all inner turns of the boundary points a polyhedral surface \mathcal{P} . Show that

$$K(\mathcal{P}) + T(\mathcal{P}) = 2 \cdot \pi \cdot \chi(\mathcal{P}),$$

where $\chi(\mathcal{P})$ denotes the Euler characteristic of \mathcal{P} .

The following proposition states that this new definition of curvature agrees with the Alex(0) comparison.

11.3. Proposition. A polyhedral surface is Alex(0) if and only if it has nonnegative curvature at every inner point and and nonnegative inner turn at each boundary point.

Proof. By 2.19, it is sufficient to check that $f = \frac{1}{2} \cdot \operatorname{dist}_p^2 \circ \gamma$ is 1-concave for any geodesic γ and any point p.

We can assume that p is not a vertex and the endpoints of γ are not vertices; the vertex case can be done by approximation. By 11.1, γ does not contain vertices.

Given a point $x = \gamma(t_0)$, choose a geodesic [px]. Again, by 11.1, [px] does not contain vertices. Therefore, a neighborhood $U \supset [px]$ can be unfolded on a plane; that is, there is an injective length-preserving map $z \mapsto \tilde{z}$ of U into the Euclidean plane. This way we map the part of γ in U to a line segment $\tilde{\gamma}$. Let

$$\tilde{f}(t) := \frac{1}{2} \cdot \operatorname{dist}_{\tilde{p}}^2 \circ \tilde{\gamma}(t).$$

Since the geodesic [px] maps to a line segment, we have $\tilde{f}(t_0) = f(t_0)$. Furthermore, since the unfolding $z \mapsto \tilde{z}$ preserves lengths of curves, we get $\tilde{f}(t) \ge f(t)$ if t is close to t_0 . That is, \tilde{f} is a local upper barrier of f at t_0 ; see 2E. Evidently, $\tilde{f}''(t) \equiv 1$. Therefore, f is 1-concave.

11.4. Exercise. The converse is left to the reader. \Box

B Approximation

The following theorem is the main extra tool available in Alexandrov geometry of surfaces. We will use this statement in the proof of 11.21

to reduce questions about Alex(0) surfaces to polyhedral surfaces with nonnegative curvature.

11.5. Theorem. Any closed Alex(0) surface is a Gromov-Hausdorff limit of homeomorphic polyhedral surfaces with nonnegative curvature.

The construction of polyhedral approximations is based on the following exercise.

- **11.6.** Exercise. Let \mathcal{P} be a closed Alex(0) surface.
 - (a) Show that any point p admits an arbitrary small closed convex polygonal neighborhood N; that is, N is convex and bounded by a broken geodesic.
 - (b) Given $\delta > 0$, show that \mathcal{P} admits a triangulation τ by convex triangles with positive inner turn at each vertex and diameter smaller than δ .
 - (c) Suppose that v is a vertex of a triangulation τ of \mathcal{P} by convex triangles. Let θ_v be the sum of angles at v in all the triangles of τ . Show that $\theta_v \leq 2 \cdot \pi$.

Construction. Let \mathcal{P} be a closed ALEX(0) surface. By part (b), we can triangulate \mathcal{P} by small convex triangles, say diameter of each triangle is less than given $\delta > 0$. Let us exchange each triangle of the triangulation by its model solid triangle; denote by $\tilde{\mathcal{P}}_{\delta}$ the obtained polyhedral surface. Note that $\tilde{\mathcal{P}}_{\delta}$ is homeomorphic to \mathcal{P} ; moreover, there is a homeomorphism $\mathcal{P} \to \tilde{\mathcal{P}}_{\delta}$ that sends a point $x \in \mathcal{P}$ to a point $\tilde{x} \in \tilde{\mathcal{P}}_{\delta}$ in the corresponding model triangle.

By the angle comparison (2.15a) and part (c) of the exercise, the total angle around each vertex in $\tilde{\mathcal{P}}_{\delta}$ cannot exceed $2 \cdot \pi$. That is, the obtained polyhedral space $\tilde{\mathcal{P}}_{\delta}$ has nonnegative curvature.

Observe that Theorem 11.5 follows from the following.

11.7. Claim. If $\tilde{\mathcal{P}}_{\delta}$ is provides by the construction, then $\tilde{\mathcal{P}}_{\delta} \to \mathcal{P}$ as $\delta \to 0$ in the sense of Gromov–Hausdorff.

This claim seems to be self-evident, but it is not; a very smart proof was given by Alexandrov [10, VII § 6]. We will indicate an alternative proof based on the following exercise and two theorems which will be stated without a proof. The first theorem is due to Yuri Burago, Mikhael Gromov, and Grigori Perelman [19, 10.8]; it is a generalization of Alexandrov's theorem for surfaces [10, X § 2]. The second theorem is due to Nan Li [67, Corollary 0.1].

11.8. Theorem. Let $\mathcal{X}_1, \mathcal{X}_2$ be a sequence of n-dimensional ALEX (κ) spaces that converges to \mathcal{X}_{∞} in the sense of Gromov–Hausdorff. Then the n-volume on \mathcal{X}_i weakly converges to the n-volume on \mathcal{X}_{∞} .

11.9. Theorem. Let \mathcal{X} be an Alexandrov space without boundary, and let \mathcal{Y} be an arbitrary Alexandrov space. Then any short volume-preserving map $\mathcal{X} \to \mathcal{Y}$ is an isometry.

Suppose a convex solid triangle Δ in an Alex(0) surface has angles α , β and γ . Let us define its excess by

$$excess \Delta = \alpha + \beta + \gamma - \pi.$$

Since the angles of a model triangle sum up to π , by the angle comparison (2.15a), the excess is nonnegative.

- **11.10. Exercise.** Let τ be a triangulation of a closed ALEX(0) surface \mathcal{P} by convex triangles $\Delta_1, \ldots, \Delta_n$.
 - (a) Show that

$$\operatorname{excess} \Delta_1 + \cdots + \operatorname{excess} \Delta_n \leq 2 \cdot \pi \cdot \chi(\mathcal{P}),$$

where $\chi(\mathcal{P})$ denotes the Euler characteristic of \mathcal{P} .

(b) Let x and y be points on the sides of a triangle Δ_i , and let \tilde{x} and \tilde{y} be the corresponding points in the corresponding triangle $\tilde{\Delta}$ in $\tilde{\mathcal{P}}$. Show that

$$|\tilde{x}-\tilde{y}|_{\tilde{\Delta}}\leqslant |x-y|_{\Delta}\leqslant |\tilde{x}-\tilde{y}|_{\tilde{\Delta}}+\operatorname{excess}\Delta\cdot\operatorname{diam}\Delta.$$

(c) Let Δ be a solid triangle in the triangulation τ of \mathcal{P} , and $\tilde{\Delta}$ — the corresponding triangle in $\tilde{\mathcal{P}}$. Show that

$$\operatorname{area} \tilde{\Delta} \leqslant \operatorname{area} \Delta \leqslant \operatorname{area} \tilde{\Delta} + \tfrac{1}{2} \cdot \operatorname{excess} \Delta \cdot (\operatorname{diam} \Delta)^2.$$

Note that part (a) implies that $\chi(\mathcal{P}) \geq 0$. Therefore, \mathcal{P} is homeomorphic to a sphere, projective plane, torus, or Klein bottle. In the latter two cases, the construction produces a flat surface $\tilde{\mathcal{P}}_{\delta}$, which has to be isometric to \mathcal{P} . Therefore the cases of sphere, projective plane are more interesting.

Proof of 11.7. Choose a sequence of positive numbers $\delta_n \to 0$; let $\tilde{\mathcal{P}}_{\delta_n}$ be polyhedral spaces provided by the construction and let τ_n be the corresponding triangulation.

According to part (b) of the exercise, the spaces $\tilde{\mathcal{P}}_{\delta_n}$ have bounded diameter. Therefore by Gromov's selection theorem, we can pass to a converging sequence of $\tilde{\mathcal{P}}_{\delta_n}$; denote its Gromov–Hausdorff limit by $\tilde{\mathcal{P}}$. Note that if $\tilde{\mathcal{P}}_{\delta}$ does not converge to \mathcal{P} , then we can assume that $\tilde{\mathcal{P}}$ is not isometric to \mathcal{P} .

Choose two points $x, y \in \mathcal{P}$, and connect them by a geodesic. Denote by s_1, \ldots, s_m the points of the geodesic on the sides of the triangulation τ_n ; we assume that these points appear in the same order on the geodesic. Denote by \tilde{x} , \tilde{y} , and $\tilde{s}_1, \ldots, \tilde{s}_m$ the corresponding points in $\tilde{\mathcal{P}}_{\delta_n}$. By part (b) of the exercise,

$$|\tilde{s}_{i-1} - \tilde{s}_i|_{\tilde{\mathcal{P}}_{\delta_n}} \leqslant |s_{i-1} - s_i|_{\mathcal{P}}.$$

Note also that

$$|\tilde{x} - \tilde{s}_1|_{\tilde{\mathcal{P}}_{\delta_n}} \leqslant \delta_n$$
 and $|\tilde{s}_m - \tilde{y}|_{\tilde{\mathcal{P}}_{\delta_n}} \leqslant \delta_n$

Therefore

$$|\tilde{x} - \tilde{y}|_{\tilde{\mathcal{P}}_{\delta_n}} \leq |x - y|_{\mathcal{P}} + 2 \cdot \delta_n.$$

Passing to the limit, we get a short onto map $\mathcal{P} \to \tilde{\mathcal{P}}$. On the other hand, applying parts (a) and (c), we get that

$$\operatorname{area} \mathcal{P} - \pi \cdot \chi(\mathcal{P}) \cdot \delta_n^2 \leqslant \operatorname{area} \tilde{\mathcal{P}}_{\delta_n} \leqslant \operatorname{area} \mathcal{P}$$

By Theorem 11.8, area $\mathcal{P} = \operatorname{area} \tilde{\mathcal{P}}$. Applying Theorem 11.9, we get that the short map $\mathcal{P} \to \tilde{\mathcal{P}}$ is an isometry — a contradiction.

Remark. The main difficulty in the proof comes from nonconvexity of triangles in the triangulation of $\tilde{\mathcal{P}}_{\delta}$. If these triangles would be convex, then the first estimate in parts (b) and (a) would imply that $\tilde{\mathcal{P}}_{\delta}$ is close to \mathcal{P} in the sense of Gromov–Hausdorff.

C Surface of polyhedrons and bodies

Let us define a convex body as a compact convex subset in \mathbb{E}^3 with a non-empty interior. The surface of a convex body is defined as its boundary equipped with the induced length metric.

11.11. Exercise. Show that the surface of a convex body is homeomorphic to the 2-dimensional sphere.

A convex polyhedron is a convex body with a finite number of extremal points, called its vertices.

Note that the surface of a convex polyhedron K is a closed polyhedral surface.

- 11.12. Exercise. Assume that the surface of a nondegenerate tetrahedron T has curvature π at each of its vertices. Show that
 - (a) all faces of T are congruent;
 - (b) the line containing the midpoints of opposite edges of T intersects these edges at right angles.

11.13. Claim. The surface \mathcal{P} of any convex polyhedron K has nonnegative curvature. Moreover, a point v is a vertex of K if and only if v is an essential vertex of \mathcal{P} .

A proof is given in Kiselyov's school textbook [53, \S 48]; one can also deduce it from 1.9.

11.14. Exercise. Let K_1, K_2, \ldots , and K_{∞} be convex bodies in \mathbb{E}^m . Denote by \mathcal{P}_n the surface of K_n . Suppose $K_n \to K_{\infty}$ in the sense of Hausdorff. Show that $\mathcal{P}_n \to \mathcal{P}_{\infty}$ in the sense of Gromov-Hausdorff.

Since any convex body is a Hausdorff limit of a sequence of convex polyhedrons, the next proposition follows from 11.3, 11.14, and 8.1.

11.15. Proposition. The surface of a convex body in \mathbb{E}^3 is Alex(0).

D Uniqueness theorem

11.16. Theorem. Any two convex polyhedrons in \mathbb{E}^3 with isometric surfaces are congruent.

Moreover, any isometry between the surfaces of convex polyhedrons can be extended to an isometry of the whole \mathbb{E}^3 .

If one assumes that the isometry between the surfaces is face-toface, then we get an equivalent reformulation of Cauchy's theorem. Cauchy's argument, with a small addition, proves 11.16.

First, let us remind Cauchy's proof, assuming the reader knows it. If not, then read it in one of the classical texts [1, 27, 106].

Sketch of Cauchy's proof. Suppose K and K' are convex polyhedrons in \mathbb{E}^3 ; denote their surfaces by \mathcal{P} and \mathcal{P}' . Suppose there is an isometry $\iota \colon \mathcal{P} \to \mathcal{P}'$ that sends each face of K to a face of K'.

Let us mark an edge of K with "+" (or "-") if the dihedral angle at this edge in K is smaller (respectively, bigger) than the corresponding angle in K'. Further, we consider the graph Γ that is formed by all marked edges. If Γ is empty, then Cauchy's theorem follows; assume the contrary.

The graph Γ is embedded into \mathcal{P} , which is homeomorphic to the sphere. In particular, the edges coming from one vertex have a natural cyclic order. Given a vertex v of Γ , we can count the *number of sign changes* around v; that is, the number of consequent pairs of edges with different signs.

We need to show two statements:

103

11.17. Local lemma. At any vertex of Γ , the number of sign changes is at least 4.

11.18. Global lemma. No (nonempty) planar graph meets the condition of the local lemma.

Once the lemmas are proved, Cauchy's theorem follows. \Box

Once more, the argument above is written only to make sure we are on the same page; it will not work without reading the actual proof.

Alexandrov's addition. We need to remove the assumption that the isometry $\iota \colon \mathcal{P} \to \mathcal{P}'$ is face-to-face. Mark in \mathcal{P} all the edges of K as we did above. In addition, if an edge in K' does not correspond to an edge of K, then mark its inverse image in K with "—"; these lines on K will be referred to as fake edges.

The marked lines divide \mathcal{P} into convex polygons, and the restriction of ι to each polygon is a rigid motion. These polygons should be used instead of faces in the Cauchy's argument.

A vertex of the obtained graph can be a vertex of K, or it can be a fake vertex; that is, it might be an intersection of an edge and a fake edge.

For a usual vertex, the local lemma can be proved the same way. For a fake vertex v, it is easy to see that both parts of the edge coming thru v are marked with minus while both of the fake edges at v are marked with plus. Therefore, we still have at least four sign changes at v. The remaining argument works as before.

Let us also state the following result of Alexey Pogorelov [97, chapter III]; an alternative proof was found by Yurii Volkov [112].

11.19. Theorem. Any two convex bodies in \mathbb{E}^3 with isometric surfaces are congruent.

Moreover, any isometry between surfaces of convex bodies can be extended to an isometry of the whole \mathbb{E}^3 .

At first glance, this theorem might look like a small improvement of Alexandrov's uniqueness, but this improvement is huge. The proof is quite hard. Let us just mention that it would follow if any two polyhedra K and K' with close surfaces in the sense of Gromov–Hausdorff

would be almost congruent; that is, there is a motion μ of \mathbb{E}^3 such that the Hausdorff distance from K to $\mu(K')$ is small.

E Existence theorem

By 11.3, 11.13, and 11.11, the surface of a convex polyhedron is an ALEX(0) and homeomorphic to the sphere. Alexandrov's theorem states that the converse holds if one includes in the consideration *twice covered polygons*. In other words, we have to consider a plane polygon as a degenerate polyhedron; in this case, its surface is defined as the doubling of the polygon across its boundary.

From now on, we assume that a polyhedron can degenerate to a plane polygon.

11.20. Theorem. A polyhedral metric on the two-sphere is isometric to the surface of a convex polyhedron (possibly degenerate) if and only if it has nonnegative curvature.

Applying the approximation theorem (11.5) and 11.14, we get the following statement. Here we again assume that a convex body can degenerate to a convex plane figure, and, in this case, its surface is defined as the doubling of the figure across its boundary.

11.21. Corollary. A metric on the two-sphere is Alex(0) if and only if it is isometric to the surface of a convex body (possibly degenerate).

The proof of the existence theorem will be discussed in the following two sections. It is instructive to solve the following exercise before going further.

- **11.22.** Exercise. Let \mathcal{P} be the 2-sphere equipped with a polyhedral metric with nonnegative curvature.
 - (a) Prove that P has at least 3 essential vertices.
 - (b) If \mathcal{P} has exactly 3 essential vertices u, v, and w, then it is isometric to the doubling of the solid model triangle $\tilde{\triangle}(uvw)$.
 - (c) If \mathcal{P} has exactly 4 essential vertices, then it is isometric to the surface of a tetrahedron (possibly degenerate to a quadrangle).

F Reformulation

In this section, we introduce several notions and use them to reformulate the existence theorem (11.23).

Space of polyhedrons. Let us denote by K the space of all convex polyhedrons in the Euclidean space, including polyhedrons that degenerate to a plane polygon. Polyhedrons in K will be considered up to a motion of the space; we will not distinguish between a convex polyhedron and its congruence class.

The space K will be considered with the topology induced by the Hausdorff metric up to a motion; that is, the distance between (equivalence classes of) polyhedrons K and L is defined by

$$|K-L|:=\inf_{\mu}\{|K-\mu(L)|_{\mathrm{Haus}}\},$$

where μ runs among all motions of \mathbb{E}^3 .

We say that a polyhedron K in K has no symmetries if $K \neq \mu(K)$ for any nontrivial motion μ of \mathbb{E}^3 . The set of all polyhedrons without symmetry in K will be denoted by K° . Observe that K° is an open set in K.

Further, denote by K_n the polyhedrons in K with exactly n vertices, and let $K_n^{\circ} = K_n \cap K^{\circ}$. Since any polyhedron has at least 3 vertices, the space K admits a subdivision into a countable number of subsets K_3, K_4, \ldots

Space of surfaces. The space of polyhedral surfaces with nonnegative curvature that are homeomorphic to the 2-sphere will be denoted by P. The surfaces in P will be considered up to an isometry, and the whole space P will be equipped with the natural topology induced by the Gromov–Hausdorff metric.

We say that a surface \mathcal{P} in \mathbf{P} has no symmetries if there is no nontrivial isometry $\mu \colon \mathcal{P} \to \mathcal{P}$. The set of all surfaces without symmetry in \mathbf{P} will be denoted by \mathbf{P}° . Observe that \mathbf{P}° is an open set in \mathbf{P} .

The subset of P of all surfaces with exactly n essential vertices will be denoted by P_n ; let $P_n^{\circ} = P_n \cap P^{\circ}$. By 11.22a, any surface in P has at least 3 essential vertices. Therefore P is subdivided into countably many subsets P_3, P_4, \ldots

From a polyhedron to its surface. Recall that the surface of a convex polyhedron is a sphere with nonnegative curvature. Therefore, passing from a polyhedron to its surface defines a map

$$\iota \colon \boldsymbol{K} \to \boldsymbol{P}$$
.

Note that the existence theorem (11.20) follows from the next statement.

11.23. Theorem. For any integer $n \ge 3$, the map ι is a bijection from K_n to P_n .

G About the proof of existence

By 11.14, the map $\iota \colon \mathbf{K} \to \mathbf{P}$ is continuous. Combining 11.13 with the uniqueness theorem (11.16), we get that $\iota(\mathbf{K}_n) \subset \mathbf{P}_n$ and the map $\iota \colon \mathbf{K}_n \to \mathbf{P}_n$ is injective. It remains to prove the following.

11.24. Claim. For any $n \ge 3$, the map $\iota : K_n \to P_n$ is surjective.

The proof is based on the construction of a one-parameter family of polyhedrons that starts at an arbitrary polyhedron and ends at a polyhedron with its surface isometric to the given surface \mathcal{P} . This type of argument is called the continuity method; it is often used in the theory of differential equations.

Now let us get into details. First, observe that the second part of the uniqueness theorem (11.16) implies that $\iota(\mathbf{K}_n^{\circ}) \subset \mathbf{P}_n^{\circ}$.

11.25. Lemma. For any integer $n \ge 4$, the space P_n° is connected and dense in P_n .

Note that $P_3^{\circ} = \emptyset$; indeed the surface of a triangle admits a reflection symmetry. The case n = 4 can be deduced from 11.22c; thus, we can assume that $n \ge 5$.

The second statement is proved by a general-position-type argument.

The proof of the first statement is not complicated, but it requires ingenuity; it can be done by the direct construction of a one-parameter family of surfaces in P_n° that connects two given surfaces. Such a family can be obtained as a sequence of the following deformations (direct or reversed).

Start with a surface \mathcal{P} from P_n° . Suppose v and w are essential vertices in \mathcal{P} . Let us cut \mathcal{P} along a shortest path from v to w. This way we obtain a sphere with a hole. The hole can be patched by a disc so that the obtained surface remains in P_n . In particular, the obtained surface has exactly n essential vertices; note that after the patching, the vertices v and w may become inessential. (There is a three-parameter family of such patches, so we have something to choose from.) Choosing a one-parameter family of such patches, we can get a deformation of \mathcal{P} .

Again, applying a general-position-type argument to the above construction, we get a path in P_n° , assuming that the starting and ending surfaces are in P_n° .

11.26. Lemma. The map $\iota \colon K_n^{\circ} \to P_n^{\circ}$ is open, that is, it maps any open set in K_n° to an open set in P_n° .

In particular, for any $n \ge 3$, the image $\iota(\mathbf{K}_n^{\circ})$ is open in \mathbf{P}_n° .

This statement follows from the so-called invariance of domain theorem, which states that a continuous injective map between manifolds of the same dimension is open.

Recall that ι defines a continuous and injective $\mathbf{K}_n^{\circ} \to \mathbf{P}_n^{\circ}$. It remains to check that both spaces \mathbf{K}_n° and \mathbf{P}_n° are $(3 \cdot n - 6)$ -dimensional manifolds.

Choose a polyhedron K in K_n . It is uniquely determined by the $3 \cdot n$ coordinates of its n vertices. We can assume that the first vertex is at the origin, the second has a positive x-coordinate and the remaining two coordinates vanish, and the third has a vanishing z-coordinate and a positive y-coordinate. Therefore, all polyhedrons in K_n that lie sufficiently close to K can be described by $3 \cdot n - 6$ parameters. If K has no symmetries, then this description is one-to-one; in this case, a neighborhood of K in K_n admits a parametrization by an open set in $\mathbb{R}^{3 \cdot n - 6}$.

The case of surfaces is analogous. We need to construct a subdivision of the sphere into plane triangles using only essential vertices. By Euler's formula, there are exactly $3 \cdot n - 6$ edges in this subdivision. The lengths of the edges completely describe the surface \mathcal{P} and any surface near by. If the surface has no symmetries, then this description is one-to-one, and a neighborhood of \mathcal{P} in \mathbf{P}_n admits a parametrization by an open set in $\mathbb{R}^{3 \cdot n - 6}$.

11.27. Lemma. The map $\iota \colon K_n \to P_n$ is closed; that is, the image of a closed set in K_n is closed in P_n .

In particular, for any $n \ge 3$, the set $\iota(\mathbf{K}_n)$ is closed in \mathbf{P}_n .

Choose a sequence of polyhedrons K_1, K_2, \ldots in K_n . Assume that the sequence $\mathcal{P}_i = \iota(K_n)$ converges in P_n as $i \to \infty$; denote its limit by \mathcal{P}_{∞} . We need to construct a polyhedron $K_{\infty} \in K_n$ such that $\iota(K_{\infty}) = \mathcal{P}_{\infty}$; let us do it.

Passing to a subsequence, we can assume that K_i converges in \mathbf{K} ; denote the limit polyhedron by K_{∞} . Since ι is continuous, $\iota(K_i)$ converges to $\iota(K_{\infty})$ in \mathbf{P} ; so, $\iota(K_{\infty}) = \mathcal{P}_{\infty}$. Recall that $\iota(\mathbf{K}_m) \subset \mathbf{P}_m$ for each m; therefore, $K_{\infty} \in \mathbf{K}_n$.

Proof of 11.24. The case $n \leq 4$ is already solved in 11.22; so we assume that $n \geq 5$. By 11.27 and 11.26, $\iota(\mathbf{K}_n^{\circ})$ is a non-empty closed and open set in \mathbf{P}_n° , and \mathbf{P}_n° is connected. Therefore, $\iota(\mathbf{K}_n^{\circ}) = \mathbf{P}_n^{\circ}$.

By 11.27, $\iota(\mathbf{K}_n)$ is closed in \mathbf{P}_n . By 11.25, \mathbf{P}_n° is dense in \mathbf{P}_n . Since $\iota(\mathbf{K}_n^{\circ}) = \mathbf{P}_n^{\circ}$, we have $\mathbf{P}_n^{\circ} \subset \iota(\mathbf{K}_n)$; therefore, $\iota(\mathbf{K}_n) = \mathbf{P}_n$; that is, $\iota \colon \mathbf{K}_n \to \mathbf{P}_n$ is surjective.

H Ambient space

On one hand the Alexandrov surface theory is simpler since it has extra tools, On the other hand, this tool comes with extra structure, which makes the theory more complicated. The following result of Joseph Liberman [68] gives an example.

11.28. Theorem. Any geodesic in the surface of a convex body is one-sided differentiable as a curve in \mathbb{E}^3 .

Proof. Let γ be a geodesic on the surface of a convex body K. Choose $p \in K$. By 9.13, the function $f_p \colon t \mapsto \operatorname{dist}_p \circ \gamma(t)$ is semiconcave for any $p \in K$. In particular, one-sided derivatives $f_p^+(t)$ are defined for every t.

Given $x = \gamma(t)$, choose three points $p_1, p_2, p_3 \in K$ in general position; that is, the four points x, p_1, p_2, p_3 do not lie in one plane. Observe that the distance functions $\operatorname{dist}_{p_i}$ give smooth coordinates in a neighborhood of x. From above the functions f_{p_i} have one-sided derivatives at t. Since the coordinates are smooth, we get that $\gamma^+(t)$ is defined as well.

11.29. Exercise. Suppose a plane Π cuts from the surface of a convex body K a disc Δ , and the reflection of Δ across Π lies in K. Show that Δ is a convex subset of the surface; that is, if a geodesic has endpoints in Δ , then it completely lies in Δ .

The following exercise gives a more exact version of comparison for convex surfaces; it is due to Anatolii Milka [73, Theorem 2].

11.30. Very advanced exercise. Let \mathcal{P} be the surface of a nondegenerate convex body $K \subset \mathbb{E}^3$, and let γ_1 and γ_2 be geodesic paths in \mathcal{P} that start at one point $p = \gamma_1(0) = \gamma_2(0)$. Suppose $x_i = \gamma_i(1)$, and $y_i = p + \gamma_i^+(0)$. Show that

$$|x_1 - x_2|_{\mathcal{P}} \leqslant |y_1 - y_2|_W,$$

where W is the complement to the interior of K.

I Remarks

The statement of Cauchy's theorem was conjectured by Adrien-Marie Legendre at the end of the 18th century; a formulation was given in the first edition of his geometry textbook [66]. It was motivated by a vague definition in Euclid's Elements, which could be interpreted as polyhedrons are equal if the same holds for their faces.

I. REMARKS 109

The local lemma was already known to Legendre. Legendre discussed this question with his colleague Joseph-Louis Lagrange, who suggested this problem to Augustin-Louis Cauchy in 1813; soon he solved it [20].

The key observation that the face-to-face condition can be removed was made by Alexandr Alexandrov in 1941; in the same paper he proved the uniqueness theorem [9]. A quite different proof was found by Yurii Volkov in his thesis [111]; it uses a deformation of three-dimensional polyhedral space. (Be aware that the proof of this theorem given in the book by Igor Pak contains an essential mistake [82].)

In Cauchy's proof [20], it was deducted from an analog of the following lemma. Cauchy made a small mistake in its proof that was fixed in a century [100]. Several proofs of the arm lemma can be found in the letters between Isaac Schoenberg and Stanisław Zaremba [101].

11.31. Arm lemma. Assume that $A = [a_0a_1 \dots a_n]$ is a convex polygon in \mathbb{E}^2 and $A' = [a'_0a'_1 \dots a'_n]$ is a polygonal line in \mathbb{E}^3 such that $|a_i - a_{i+1}| = |a'_i - a'_{i+1}|$ for any $i \in \{0, \dots, n-1\}$ and $\angle a_i \leq \angle a'_i$ for each $i \in \{1, \dots, n-1\}$. Then

$$|a_0 - a_n| \leqslant |a_0' - a_n'|$$

and equality holds if and only if A is congruent to A'.

The following variation of the arm lemma makes sense for nonconvex spherical polygons. It is due to Viktor Zalgaller [113]. It can be used instead of the standard arm lemma.

11.32. Another arm lemma. Let $A = [a_1 \dots a_n]$ and $A' = [a'_1 \dots a'_n]$ be two spherical n-gons (not necessarily convex). Assume that A lies in a half-sphere, the corresponding sides of A and A' are equal, and each angle of A is at least the corresponding angle in A'. Then A is congruent to A'.

Another close relative of the arm lemma is Reshetnyak's majorization theorem [99].

Alexandrov gave two proofs of the global lemma [8, 2.1.2 and 2.1.3]. The first is combinatorial, and the second is more visual. The argument in the second proof was reused by Anton Klyachko [54] in his car-crash lemma.

Proposition 11.15 generalizes to the boundaries of convex bodies in \mathbb{E}^m for any $m \geq 2$. It could be considered as a partial case of the conjecture about the boundary of Alexandrov space; see 9.20. Another partial case, for Riemannian manifolds with boundary, is proved by the authors and Stephanie Alexander [5].

According to the uniqueness theorem, a convex polyhedron is completely defined by the intrinsic metric of its surface. In particular, knowing the metric, we could find the position of the edges. However, in practice, it is not easy to do. For example, the surface glued from a rectangle,

as shown in the picture, defines a tetrahedron. Some of the glued lines appear inside the facets of the tetrahedron, and some edges (dashed lines) do not follow the sides of the rectangle.

Semisolutions

1.1. Choose a sequence of positive numbers $\varepsilon_n \to 0$ and a finite ε_n -net N_n of K for each n. We can assume that $\varepsilon_0 > \operatorname{diam} K$, and N_0 is a one-point set. If $|x-y| < \varepsilon_k$ for some $x \in N_{k+1}$ and $y \in N_k$, then connect them by a curve of length at most ε_k .

Let K' be the union of all these curves and K. Show that K' is compact and path-connected.

Source: This problem is due to Eugene Bilokopytov [14].

1.2. Choose a Cauchy sequence x_n in $(\mathcal{X}, \|*-*\|)$; it is sufficient to show that a subsequence of x_n converges.

Observe that the sequence x_n is Cauchy in $(\mathcal{X}, |*-*|)$; denote its limit by x_{∞} .

Passing to a subsequence, we can assume that $||x_n - x_{n+1}|| < \frac{1}{2^n}$ for each n. It follows that there is a 1-Lipschitz path γ in $(\mathcal{X}, ||*-*||)$ such that $x_n = \gamma(\frac{1}{2^n})$ for each n and $x_\infty = \gamma(0)$. Therefore,

$$||x_{\infty} - x_n|| \leq \operatorname{length} \gamma|_{[0, \frac{1}{2^n}]} \leq \frac{1}{2^n}.$$

In particular, x_n converges to x_∞ in $(\mathcal{X}, ||*-*||)$.

Source: [47, Corollary]; see also [84, Lemma 2.3].

1.3. Given a pair of points p and q, choose a sequence of paths γ_n from p to q such that

length
$$\gamma_n \to |p-q|$$
 as $n \to \infty$;

these paths exist since we are in a length space. We can assume that each γ_n is parametrized proportionally to the arc length; in particular, γ_n are equicontinuous. Show that paths γ_n lie in a closed ball, say $\overline{B}[p,r]$ of some radius $r<\infty$. Since the space is proper, $\overline{B}[p,r]$ is compact. By the Arzelà–Ascoli theorem, we can pass to a converging subsequence of γ_n . Show that its limit is a geodesic path from p to q.

- **1.5.** Choose a sequence $\varepsilon_n > 0$ that converges to zero very fast, say such that $\sum_n 10^n \cdot \varepsilon_n$ is small. Follow the argument in the proof of Menger's lemma, taking ε_n -midpoints at the $n^{\rm th}$ stage.
- **1.6.** Let us write the Riemannian metric on $\mathbb{M}^2(\kappa)$ in polar coordinates (θ, r) ; it has the form $\begin{pmatrix} h^2 & 0 \\ 0 & 1 \end{pmatrix}$, where $h = h(\kappa, r) \geqslant 0$. Calculate $h(\kappa, r)$. Show that for fixed r, the function $r \mapsto h(\kappa, r)$ is nonincreasing in the domain of definition. Suppose $\kappa < K$, consider the partially defined map $\mathbb{M}^2(\kappa) \to \mathbb{M}^2(K)$ that sends a point to the point with the same polar coordinates. Show that this map is short in its domain of definition. Use it to prove the statement in the exercise.
- **1.7.** Show and use that $\tilde{\angle}(p_y^x)_{\mathbb{S}^2} \tilde{\angle}(p_y^x)_{\mathbb{E}^2} = O(|p-x|^2 + |p-y|^2)$ and $\tilde{\angle}(p_y^x)_{\mathbb{E}^2} \tilde{\angle}(p_y^x)_{\mathbb{H}^2} = O(|p-x|^2 + |p-y|^2)$.
- **1.8.** Consider a hinge in the plane \mathbb{R}^2 with a metric defined by norm, say by the ℓ^{∞} -norm.
- **1.10.** Assume $\angle[p_z^x] + \angle[p_z^y] < \pi$. By 1.9, $\angle[p_y^x] < \pi$. Therefore, $\tilde{\angle}(p_{\bar{y}}) < \pi$ for some $\bar{x} \in]px]$ and $\bar{y} \in]py]$. Hence

$$|p - \bar{x}| + |\bar{y} - p| < |\bar{x} - \bar{y}|$$

- a contradiction.
- **1.11.** Denote by α the arc-length parametrization of [qp] from q to p. Choose $\varepsilon > 0$. Observe that

$$|\gamma(t) - \alpha(\frac{1}{\varepsilon} \cdot t)|^2 \leqslant t^2 \cdot (1 - \frac{2}{\varepsilon} \cdot \cos \varphi + \frac{1}{\varepsilon^2}) + o(t^2),$$

where $\varphi = \measuredangle[q_x^p]$. By the triangle inequality

$$|p - \gamma(t)| \leq |\gamma(t) - \alpha(\frac{1}{\varepsilon} \cdot t)| + |q - p| - \frac{1}{\varepsilon} \cdot t.$$

Conclude that

$$|p - \gamma(t)| \le |q - p| - t \cdot \cos \varphi + \delta(\varepsilon) \cdot t + o(t),$$

where $\delta(\varepsilon) \to 0$ as $\varepsilon \to 0$. The statement follows since $\varepsilon > 0$ is arbitrary.

1.13. Since the space is proper, it is separable; that is, we can choose an countable everywhere dense set $\{x_1, x_2, \dots\}$.

Let $A_1, A_2,...$ be a sequence of closed sets. Applying the diagonal procedure, we can pass to a subsequence such that for each i the sequence $\text{dist}_{A_n} x_i$ converges as $n \to \infty$; denote its limit by $f(x_i)$.

Since $dist_{A_n}$ is 1-Lipschitz for any n, we have

$$|f(x_i) - f(x_j)| \le |x_i - x_j|$$

for all i and j. Suppose $f(x_i) < \infty$ for some i, then the same holds for any i. Therefore, the function f can be extended to a continuous function defined on the ambient space. Show that $A_{\infty} = f^{-1}\{0\}$ is the limit of A_n in the sense of Hausdorff.

If $f(x_i) = \infty$ for some i, then the same holds for any i. Show that in this case $A_n \to \emptyset$ in the sense of Hausdorff.

- **1.16.** Apply the definition of Hausdorff distance (1.14).
- **1.18.** Given $x_{\infty}, y_{\infty} \in \mathcal{X}_{\infty}$, choose $x_n, y_n \in \mathcal{X}_n$ such that $x_n \to x_{\infty}$ and $y_n \to y_{\infty}$. Let z_n be the midpoint of $[x_n y_n]$. Since \mathcal{X}_{∞} is proper, we can choose a subsequence of z_m that converges to a point, say $z_{\infty} \in \mathcal{X}_{\infty}$. Note that z_{∞} is a midpoint of x_{∞} and y_{∞} , then apply Menger's lemma (1.4).
- **1.20.** Given a pair of points $x_0, y_0 \in \mathcal{K}$, consider two sequences x_0, x_1, \ldots and y_0, y_1, \ldots such that $x_{n+1} = f(x_n)$ and $y_{n+1} = f(y_n)$ for each n.

Since \mathcal{K} is compact, we can choose an increasing sequence of integers n_k such that both sequences $(x_{n_i})_{i=1}^{\infty}$ and $(y_{n_i})_{i=1}^{\infty}$ converge. In particular, both are Cauchy; that is,

$$|x_{n_i} - x_{n_j}|_{\mathcal{K}} \to 0$$
 and $|y_{n_i} - y_{n_j}|_{\mathcal{K}} \to 0$

as $\min\{i, j\} \to \infty$.

Since f is distance-noncontracting,

$$|x_0 - x_{|n_i - n_j|}| \le |x_{n_i} - x_{n_j}|$$

for any i and j. Therefore, there is a sequence $m_i \to \infty$ such that

(*)
$$x_{m_i} \to x_0 \text{ and } y_{m_i} \to y_0$$

as $i \to \infty$.

Since f is distance-noncontracting, the sequence $\ell_n = |x_n - y_n|_{\mathcal{K}}$ is nondecreasing. By (*), $\ell_{m_i} \to \ell_0$ as $m_i \to \infty$. It follows that

$$\ell_0 = \ell_1 = \dots$$

In particular,

$$|x_0 - y_0|_{\mathcal{K}} = \ell_0 = \ell_1 = |f(x_0) - f(y_0)|_{\mathcal{K}}$$

for any pair of points (x_0, y_0) in \mathcal{K} . That is, the map f is distance-preserving and hence injective. From (*), we also get that $f(\mathcal{K})$ is everywhere dense. Since \mathcal{K} is compact, f is surjective — hence the result.

Remarks. This is a basic lemma in the introduction to Gromov–Hausdorff distance [see 7.3.30 in 18]. The presented proof was suggested by Travis Morrison.

- **1.21.** Apply 1.20 to a left inverse of the map.
- **1.23.** Show and use that $|\mathcal{X}_{\infty} \mathcal{X}'_{\infty}|_{GH} < \varepsilon$ for any $\varepsilon > 0$.
- **1.26.** The only-if part is trivial. Let us prove the if part.

Let $f_n \colon \mathcal{X}_n \to \mathcal{X}_\infty$ and $h_n \colon \mathcal{X}_\infty \to \mathcal{X}_n$ be the maps in the definition of the inequalities $\mathcal{X}_n \leqslant \mathcal{X}_\infty + \varepsilon_n$ and $\mathcal{X}_\infty \leqslant \mathcal{X}_n + \varepsilon_n$, respectively. Apply 1.20, to show that any partial limit of $f_n \circ h_n$ is an isometry of \mathcal{X}_∞ . Conclude that f_n is an ε'_n -isometry for some converging-to-zero sequence ε'_n and apply 1.25.

1.28; (a) Consider the graphs of the following functions with the induced metric from \mathbb{R}^2 .

$$x \mapsto \cos x + \cos \frac{x}{\pi}$$
 and $x \mapsto \cos x + \sin \frac{x}{\pi}$.

(b) For every rational number $q \in [1, 2]$ consider an interval of length q. Let \mathcal{X} be obtained by identifying all endpoints of the intervals.

Let \mathcal{Y} be constructed in the same way but skipping the interval of length 1.5.

2.2. The 4-point comparison (2.1) reduces our question to the following. Any spherical triangle has perimeter at most $2 \cdot \pi$. Choose a spherical triangle [xyz]. Let x' be the antipode of x; that is x' = -x. The spherical triangle inequality (1.9 or ??) implies that

$$|x - z|_{\mathbb{S}^2} \le |y - x'|_{\mathbb{S}^2} + |x' - z|_{\mathbb{S}^2}.$$

Observe that

$$|x - y|_{\mathbb{S}^2} + |y - x'|_{\mathbb{S}^2} = \pi$$
, and $|x - z|_{\mathbb{S}^2} + |z - x'|_{\mathbb{S}^2} = \pi$.

Hence

$$|x-y|_{\mathbb{S}^2} + |x-z|_{\mathbb{S}^2} + |y-z|_{\mathbb{S}^2} \leqslant 2 \cdot \pi.$$

2.3. For the only-if part consider the following two cases.

If $\tilde{\measuredangle}(p_{x_2}^{x_1}) + \tilde{\measuredangle}(p_{x_3}^{x_2}) \geqslant \pi$, then choose two model triangles $[qy_1y_2] = \tilde{\triangle}(px_1x_2)$ and $[qy_2y_3] = \tilde{\triangle}(px_2x_3)$ that lie on the opposite sides of $[qy_2]$. By the comparison, $|y_1-y_3|\geqslant |x_1-x_3|$. Therefore the obtained configuration meets all the conditions.

If $\tilde{\lambda}(p_{x_2}^{x_1}) + \tilde{\lambda}(p_{x_3}^{x_2}) \geqslant \pi$, then choose a model triangle $[qy_1y_2] = \tilde{\Delta}(px_1x_2)$ and take y_3 on the extension of $[y_1q]$ behind q such that

 $|q-y_3|=|p-x_3|$. Then $\angle[q\frac{y_2}{y_3}]\geqslant \tilde{\angle}(p\frac{x_2}{x_3})$, therefore $|y_2-y_3|\geqslant |x_2-x_3|$. Further, $|y_2-y_3|=|x_2-p|+|p-x_3|\geqslant |x_2-x_3|$, and again, the obtained configuration meets all the conditions.

To prove the if part, choose a configuration q, y_1, y_2, y_3 that meets all the conditions and maximize the sum

$$|y_1 - y_2| + |y_2 - y_3| + |y_3 - y_1|.$$

Show that $|q - y_i| = |p - x_i|$ for each i and q lies in the solid triangle $y_1y_2y_3$; in particular

$$\measuredangle[q_{\ y_2}^{\ y_1}] + \measuredangle[q_{\ y_3}^{\ y_2}] + \measuredangle[q_{\ y_1}^{\ y_3}] = 2 \cdot \pi.$$

Applying the angle monotonicity (2.5), we get

$$\tilde{\measuredangle}(p_{x_2}^{x_1}) + \tilde{\measuredangle}(p_{x_3}^{x_2}) + \tilde{\measuredangle}(p_{x_1}^{x_3}) \leqslant 2 \cdot \pi.$$

2.6. Consider model triangles $[\tilde{p}\tilde{x}\tilde{z}] = \tilde{\triangle}(pxz)$ and $[\tilde{p}\tilde{y}\tilde{z}] = \tilde{\triangle}(pyz)$ that share side $[\tilde{p}\tilde{z}]$ and lie on its opposite sides. Note that

$$\begin{split} |\tilde{x} - \tilde{y}|_{\mathbb{E}^2} \geqslant |\tilde{x} - \tilde{y}|_{\mathbb{E}^2} + |\tilde{x} - \tilde{y}|_{\mathbb{E}^2} = \\ &= |x - z|_{\mathcal{X}} + |z - y|_{\mathcal{X}} = \\ &= |x - y|_{\mathcal{X}}, \end{split}$$

where \mathcal{X} is our metric space. It remains to apply the angle monotonicity (2.5).

- **2.8.** Apply 2.7.
- **2.10.** Without loss of generality, we can assume that $|p-x| \leq |p-y|$. Choose $\bar{x} \in [px]$; let $\bar{y} \in [px]$ be such that $|p-\bar{x}| = |p-\bar{y}|$. Apply 2.7 to show that $\bar{x} = \bar{y}$. Conclude that $[px] \subset [py]$.
- **2.11.** Assume that there are two distinct geodesics from z to x. Then we can choose distinct points p and q on these geodesics such that |z-p|=|z-q|. Observe that $\tilde{\measuredangle}(z^p_q)>0$. By comparison,

$$\tilde{\measuredangle}(z_{q}^{p}) + \tilde{\measuredangle}(z_{y}^{p}) + \tilde{\measuredangle}(z_{y}^{q}) \leqslant 2 \cdot \pi.$$

Therefore, one of the angles $\tilde{\mathcal{L}}(z_y^p)$ or $\tilde{\mathcal{L}}(z_y^q)$ is strictly less than π . The latter contradicts the triangle inequality.

2.12. By 1.10, we have

$$\angle[p_z^x] + \angle[p_z^y] \geqslant \pi.$$

Since $z \in]xy[$ we have

$$\tilde{\measuredangle}(z_{\bar{y}}^{\bar{x}}) = \pi$$

for any $\bar{x} \in [xz[$ and $\bar{y} \in]zy]$. By comparison, we have that

$$\tilde{\measuredangle}(z_{\bar{p}}^{\bar{x}}) + \tilde{\measuredangle}(z_{\bar{y}}^{\bar{p}}) \leqslant \pi$$

for any $\bar{p} \in]zp]$. Passing to the limit as $|z - \bar{x}| \to 0$, $|z - \bar{y}| \to 0$, and $|z - \bar{p}| \to 0$, we get

$$\angle[p_z^x] + \angle[p_z^y] \leqslant \pi.$$

2.13. Without loss of generality, we can assume that x, v, w, and y appear on [xy] in this order. By 2.7,

$$\tilde{\angle}(x_p^y) \geqslant \tilde{\angle}(x_p^w) \geqslant \tilde{\angle}(x_p^v).$$

Hence, \Rightarrow follows.

By Alexandrov's lemma,

$$\begin{split} \tilde{\measuredangle}(x_{p}^{y}) &= \tilde{\measuredangle}(x_{p}^{v}) &\iff \quad \tilde{\measuredangle}(y_{p}^{x}) &= \tilde{\measuredangle}(y_{p}^{v}), \\ \tilde{\measuredangle}(x_{p}^{y}) &= \tilde{\measuredangle}(x_{p}^{w}) &\iff \quad \tilde{\measuredangle}(y_{p}^{x}) &= \tilde{\measuredangle}(y_{p}^{w}). \end{split}$$

Whence, \Leftarrow follows.

2.14. Suppose $\angle[x_{\infty} \frac{y_{\infty}}{z_{\infty}}] > \alpha$. Then we can choose $\bar{y}_{\infty} \in]x_{\infty}y_{\infty}]$ and $\bar{z}_{\infty} \in]x_{\infty}z_{\infty}]$ such that $\tilde{\angle}(x_{\infty} \frac{\bar{y}_{\infty}}{\bar{z}_{\infty}}) > \alpha$. Now choose $\bar{y}_n \in]x_ny_n]$ and $\bar{y}_n \in]x_nz_n]$ such that $\bar{y}_n \to \bar{y}_{\infty}$ and $\bar{z}_n \to \bar{z}_{\infty}$. Observe that

$$\lim_{n \to \infty} \angle[x_n \, \substack{y_n \\ z_n}] \geqslant \lim_{n \to \infty} \tilde{\angle}(x_n \, \substack{\bar{y}_n \\ \bar{z}_n}) = \tilde{\angle}(x_\infty \, \substack{\bar{y}_\infty \\ \bar{z}_\infty}),$$

hence the result.

- **2.17.** The Urysohn space provides an example; see, for example, [93, Lecture 2].
- **2.18.** Choose a triangle [0vw]. Note that $m = \frac{1}{2}(v+w)$ is the midpoint of [vw].

Use comparison, to show that

$$2 \cdot \left| \frac{1}{2} (v+w) \right|^2 + 2 \cdot \left| \frac{1}{2} (v-w) \right|^2 \ge |v|^2 + |w|^2.$$

This inequality implies the opposite one; it follows if we rewrite it via $x = \frac{1}{2}(v+w)$ and $y = \frac{1}{2}(v-w)$. Hence we have

$$2 \cdot |\frac{1}{2}(v+w)|^2 + 2 \cdot |\frac{1}{2}(v-w)|^2 = |v|^2 + |w|^2$$

for any v, w. That is, the norm meets the parallelogram identity. It is well known that all such norms are quadratic, and the statement follows.

- **3.3.** Suppose such a point does not exist; that is, for any $p \in \mathcal{X}$ there is a point p' such that $r(p') \leq (1 \varepsilon) \cdot r(p)$ and $|p p'| < \frac{1}{\varepsilon} \cdot r(p)$. Construct a sequence of points p_0, p_1, \ldots such that $p_n = p'_{n-1}$ for any n. Show that this sequence is Cauchy; denote its limit by p_{∞} . Arrive at a contradiction by showing that $r(p_{\infty}) \leq 0$.
- **3.6.** The space \mathcal{X} has no defined spherical model angles; therefore it has curvature ≥ 1 .

However, \mathcal{X} does not have curvature ≥ 0 since

$$\tilde{\measuredangle}(p_{\,x_{2}}^{\,x_{1}})_{\mathbb{E}^{2}} = \tilde{\measuredangle}(p_{\,x_{3}}^{\,x_{2}})_{\mathbb{E}^{2}} = \tilde{\measuredangle}(p_{\,x_{3}}^{\,x_{1}})_{\mathbb{E}^{2}} = \pi.$$

3.7. Suppose $\angle[m_p^x] \neq 0$ and $\angle[m_p^x] \neq \pi$; equivalently, $\angle[m_p^x] \neq 0$ and $\angle[m_q^x] \neq 0$.

We can assume that |p-q| only slightly exceeds π , so $|p-m| < \pi$ and $|q-m| < \pi$. We can also assume that $|x-m| < \pi$. Use the comparison to show that

$$|p-x| + |q-x| < |p-q|$$

and arrive at a contradiction with the triangle inequality.

Extend [pq] to a maximal local geodesic γ . Argue as above to show that any point lies on γ . If γ is closed, then the space is isometric to a circle; otherwise, it is isometric to a line segment.

3.8. Arguing by contradiction, suppose

$$|p-q| + |q-r| + |r-p| > 2 \cdot \pi$$

for $p,q,r \in \mathcal{A}$. Rescaling the space slightly, we can assume that diam $\mathcal{A} < \pi$, but the inequality \bullet still holds. By 3.5, after rescaling \mathcal{A} is still ALEX(1).

Take $z_0 \in [qr]$ on maximal distance from p. Consider the following model configuration: two geodesics $[\tilde{p}\tilde{z}_0], [\tilde{q}\tilde{r}]$ in \mathbb{S}^2 such that

$$\begin{split} |\tilde{p} - \tilde{z}_0| &= |p - z_0|, \qquad |\tilde{q} - \tilde{r}| = |q - r|, \\ |\tilde{z}_0 - \tilde{q}| &= |z_0 - q|, \qquad |\tilde{z}_0 - \tilde{r}| = |z_0 - q|, \end{split}$$

and

$$\measuredangle[\tilde{z}_0\,{}^{\tilde{q}}_{\tilde{p}}]= \measuredangle[\tilde{z}_0\,{}^{\tilde{r}}_{\tilde{p}}]=\tfrac{\pi}{2}.$$

Choose $\tilde{z} \in [\tilde{q}\tilde{r}]$, and let $z \in [qr]$ be the corresponding point. By comparison, $|p-z| \leq |\tilde{p}-\tilde{z}|$ if z lies near z_0 . Moreover, this inequality holds as far as

$$|\tilde{p} - \tilde{z}_0| + |\tilde{z}_0 - \tilde{z}| + |\tilde{p} - \tilde{z}| < 2 \cdot \pi.$$

But this inequality holds for all \tilde{z} since $|\tilde{p} - \tilde{z}_0| < \pi$, $|\tilde{z}_0 - \tilde{q}| < \pi$, and $|\tilde{z}_0 - \tilde{r}| < \pi$. Hence $|p - q| \leq |\tilde{p} - \tilde{q}|$ and $|p - r| \leq |\tilde{p} - \tilde{r}|$. The latter contradicts \bullet .

4.1. Suppose $\uparrow_{[px_n]} \not\to \uparrow_{[px_\infty]}$. Since Σ_p is compact, we may pass to a converging subsequence of $\uparrow_{[px_n]}$; denote its limit by ξ . We may assume that $\angle(\uparrow_{[px_\infty]}, \xi) > 0$.

Denote by γ_n and γ_∞ the arc-length parametrization of $[px_n]$ and $[px_\infty]$ from p. For a geodesic α that starts from p and goes in a direction sufficiently close to ξ , we have

$$|\alpha(t) - \gamma_n(t)| < \varepsilon \cdot t$$
 and $|\alpha(t) - \gamma_\infty(t)| > a \cdot t$

for some $\varepsilon \ll a$, all large n and all sufficiently small t. These two inequalities imply that

$$|\gamma_n(t) - \gamma_\infty(t)| > \frac{a}{2} \cdot t$$

for all small t and all large n. On the other hand, by assumption, $|\gamma_n(t) - \gamma_\infty(t)| \to 0$ as $n \to \infty$ — a contradiction.

Comments. The compactness of Σ_p is necessary. A counterexample with noncompact Σ_p can be built using iterated warped product of line segments and applying [3, Theorem 1.2]. The space \mathcal{A} can be assumed to be compact.

4.2. Any point of Cone \mathcal{X} can be connected to the origin by a geodesic. Given a nonzero element $v \in \text{Cone } \mathcal{X}$, denote by v' its projection in \mathcal{X} ; so, $v = |v| \cdot v'$.

Suppose \mathcal{X} is π -geodesic. Choose two nonzero elements $v,w\in C$ cone \mathcal{X} ; let $\alpha=\angle(v,w)=|v'-w'|_{\mathcal{X}}$. If $\alpha\geqslant\pi$, then the product of geodesics [v0] and [0w] is a geodesic [vw]. If $\alpha<\pi$, there is a geodesic $\gamma\colon [0,\alpha]\to\mathcal{X}$ from v' to w'. Consider hinge $[\tilde{o}_{\tilde{w}}^{\tilde{v}}]$ in the plane such that $\angle[\tilde{o}_{\tilde{w}}^{\tilde{v}}]=\alpha$, $|\tilde{o}-\tilde{v}|=|v|$, and $|\tilde{o}-\tilde{w}|=|w|$. Let $t\mapsto (\varphi(t),r(t))$ be geodesic $[\tilde{v}\tilde{w}]$ written in polar coordinates with origin at \tilde{o} , so that $\varphi(0)=0$. Show that $t\mapsto r(t)\cdot\gamma\circ\varphi(t)$ is a geodesic from v to w; here we identify \mathcal{X} with the unit sphere in Cone \mathcal{X} .

To prove the converse, reverse the steps in the argument.

4.4. Let $A_n = \lambda_n \cdot A$. Note that for any n the space $\Sigma_p A$ is identical to $\Sigma_{\iota_n(p)} A_n$. In particular, we can identify isometrically $T_p A$ with

 $T_{\iota_n(p)}(\lambda \cdot A)$. So for any geodesic γ that starts at p, the vector $\gamma^+(0)$ corresponds to $\frac{1}{\lambda_n} \cdot (\iota_n \circ \gamma)^+(0)$.

Consider the logarithm maps $f_n = \log_{\iota_n(p)} : \mathcal{A}_n \to T_p \mathcal{A}$. We claim that this sequence of maps satisfies the assumptions in 1.27; the condition in (a) is evident.

It is sufficient to check the conditions in (b) and (c) only for R=1.

Choose $\varepsilon > 0$. By compactness of Σ_p we can find a finite ε -net ξ_1, \ldots, ξ_N in Σ_p . Moreover, without loss of generality we can assume that these directions are geodesic; that is, there exist geodesics $\gamma_1, \ldots, \gamma_N$ starting at p such that $\xi_i = \gamma_i^+(0)$ for each i.

Choose T > 0 such that all γ_i are defined on [0,T]. Show that for any $\lambda_n > \frac{1}{T}$ the image under f_n of the union $\bigcup_N \gamma_i([0,T])$ is an ε -net in $\mathrm{B}(0,1)_{T_p}$. This proves (c).

By comparison, we have that

$$|\xi_i - \xi_j|_{\Sigma_p} \geqslant \tilde{\measuredangle}(p_{\gamma_i(t_i)}^{\gamma_i(t_i)})$$

for all $i \neq j$ and any $t_i, t_j \in (0, T]$. By the definition of angle, we can assume that T has been chosen so that in addition

$$|\xi_i - \xi_j|_{\Sigma_p} \leqslant \tilde{\measuredangle}(p_{\gamma_j(t)}^{\gamma_i(t)}) + \varepsilon$$

for all $i \neq j$ and any $t \in (0, T]$.

By construction of the map f_n this implies that

$$\left| |x - x'|_{\mathcal{A}_n} - |f_n(x) - f_n(x')|_{\mathcal{T}_p} \right| < \varepsilon$$

for all $\lambda_n > \frac{1}{T}$ and all points x, x' in $\bigcup_N \gamma_i([0, \frac{1}{\lambda_n}]) \subset \mathrm{B}(p, 1)_{\mathcal{A}_n}$. Now hinge comparison and the triangle inequality imply that the

Now hinge comparison and the triangle inequality imply that the same holds for arbitrary points x, x' in $B(p, 1)_{A_n}$ with ε replaced by $3 \cdot \varepsilon$. This verifies (b).

- **4.5.** From 2.19, this inequality follows in the sense of distributions, and hence in any other sense.
- **4.6.** Since angles are defined, it follows that

$$|\gamma_1(t) - \gamma_2(t)| \leqslant \theta \cdot t$$

for all small t > 0. Since f is L-Lipschitz, we get

$$|f(\gamma_1(t)) - f(\gamma_2(t))| \le L \cdot \theta \cdot t,$$

and the statement follows.

4.7; (a) Show that we can assume there is a geodesic in the direction of v, and apply 1.11.

(b). By (a), $\mathbf{d}_p \mathrm{dist}_q(v) \leqslant -\max_{\xi \in \Uparrow_p^q} \langle \xi, v \rangle$. Suppose this inequality is strict for some v. We can assume that |v|=1 and there is a geodesic, say γ in the direction of v. Let $\mathbf{d}_p \mathrm{dist}_q(v) = -\cos \alpha_0$ for some $\alpha_0 \in [0, \pi]$. Note that any geodesic from p to q makes angle bigger than α_0 with γ .

The function $f = \operatorname{dist}_q \circ \gamma$ is Lipschitz. By Rademacher's theorem it is differentiable almost everywhere; moreover,

$$f(t) - f(0) = \int_{0}^{t} f'(t) \cdot dt.$$

Suppose f'(t) is defined. Use (a) to show that $f'(t) = -\cos \alpha(t)$, where $\alpha(t)$ is the angle between γ and any geodesic from $\gamma(t)$ to q. We can choose a sequence $t_n \to 0$ such that

$$\lim_{n \to \infty} \alpha(t_n) \leqslant \alpha_0.$$

Consider a sequence of geodsics $[p \gamma(t_n)]$. Since the space is proper, we can pass to its convergent subsequence. Its limit is a geodesic from p to q, denote it by [pq].

Use 2.14 to show that [pq] makes an angle at most α_0 with γ — a contradiction.

4.9. Let $\gamma: [0,\ell] \to \mathcal{A}$ be the geodesic [xy] parametrized from x to y, and let $\varphi = f \circ \gamma$. Observe that

$$\varphi'(0) = \mathbf{d}_x f(\uparrow_{[xy]}) \leqslant \langle \uparrow_{[xy]}, \nabla_x f \rangle.$$

The same way we get $-\varphi'(\ell) \leqslant \langle \uparrow_{[yx]}, \nabla_y f \rangle$. Since f is λ -concave, we have

$$f(y) \leqslant f(x) + \varphi'(0) \cdot \ell + \frac{\lambda}{2} \cdot \ell^2,$$

$$f(x) \leqslant f(y) - \varphi'(\ell) \cdot \ell + \frac{\lambda}{2} \cdot \ell^2.$$

Hence the statement follows.

4.12. If the space is proper, then the statement follows from (b) and 2.11.

To do the general case, let us argue by contradiction. By the assumption, we can shoose be a point z on the extension of [pq] behind q. We can assume that |v| = 1 and it is a direction of a geodesic, say [px].

Show that there is a sequence $x_n \in]px]$ such that $|p-x_n| \to 0$ and $\measuredangle[q^{x_n}] > \varepsilon$ for each n and some fixed $\varepsilon > 0$. Observe that $\measuredangle[q^{x_n}] < \pi - \varepsilon$; therefore

$$|z - x_n| < |x_n - q| + |q - z| - \delta$$

for each n and some fixed $\delta > 0$. Pass to the limit as $x_n \to p$ and arrive at a contradiction to the triangle inequality.

4.13. Note that $|(\boldsymbol{d}_p f)(v) - (\boldsymbol{d}_p g)(v)| \leq s \cdot |v|$ for any $v \in T_p$. From the definition of gradient (4.8) we have:

$$(\boldsymbol{d}_p f)(\nabla_p g) \leqslant \langle \nabla_p f, \nabla_p g \rangle, \qquad (\boldsymbol{d}_p g)(\nabla_p f) \leqslant \langle \nabla_p f, \nabla_p g \rangle,$$

$$(\boldsymbol{d}_p f)(\nabla_p f) = \langle \nabla_p f, \nabla_p f \rangle, \qquad (\boldsymbol{d}_p g)(\nabla_p g) = \langle \nabla_p g, \nabla_p g \rangle.$$

Therefore,

$$|\nabla_{p}f - \nabla_{p}g|^{2} = \langle \nabla_{p}f, \nabla_{p}f \rangle + \langle \nabla_{p}g, \nabla_{p}g \rangle - 2 \cdot \langle \nabla_{p}f, \nabla_{p}g \rangle \leqslant$$

$$\leqslant (\boldsymbol{d}_{p}f)(\nabla_{p}f) + (\boldsymbol{d}_{p}g)(\nabla_{p}g) - (\boldsymbol{d}_{p}f)(\nabla_{p}g) - (\boldsymbol{d}_{p}g)(\nabla_{p}f) \leqslant$$

$$\leqslant s \cdot (|\nabla_{p}f| + |\nabla_{p}g|).$$

4.14. Suppose $|\nabla_x f| > s$. Then we can choose a geodesic γ that starts at x such that $(f \circ \gamma)^+(0) > s$. In particular, there is $\varepsilon > 0$ such that

$$f \circ \gamma(t) > (s + \varepsilon) \cdot t + o(t),$$

and the only-if part follows.

Now suppose $f(y) - f(x) > s \cdot \ell + \lambda \cdot \frac{\ell^2}{2}$, were $\ell = |x - y|$. Let $\gamma \colon [0,\ell] \to \mathcal{A}$ be a geodesic from x to y. Since $f \circ \gamma$ is λ -concave, we have

$$f \circ \gamma(\ell) \leqslant f \circ \gamma(0) + (f \circ \gamma)^{+}(0) \cdot \ell + \lambda \cdot \frac{\ell^{2}}{2}$$
.

It follows that

$$\mathbf{d}_x(\uparrow_{[xy]}) = (f \circ \gamma)^+(0) > s,$$

and by 4.10, $|\nabla_x f| > s$.

5.7. Note that $f \circ \alpha$ is a nondecreasing function. Apply 4.7a and the definition of gradient to show that

$$-d_{\alpha(t)}\operatorname{dist}_{\alpha(t_3)}(\nabla_{\alpha(t)}f) \geqslant \langle \nabla_{\alpha(t)}, \uparrow_{[\alpha(t)\alpha(t_3)]} \rangle \geqslant d_{\alpha(t)}(\uparrow_{[\alpha(t)\alpha(t_3)]}) \geqslant 0$$

for any $t < t_3$. Conclude that the function $t \mapsto \operatorname{dist}_{\alpha(t_3)} \circ \alpha(t)$ is noncreasing for $t \leqslant t_3$.

5.8. Suppose $s > s_0$, then

$$(f \circ \hat{\alpha})^{+}(s_{0}) = |\nabla_{\hat{\alpha}(s_{0})} f| \geqslant$$

$$\geqslant (d_{\hat{\alpha}(s_{0})} f)(\uparrow_{[\hat{\alpha}(s_{0})\hat{\alpha}(s)]}) \geqslant$$

$$\geqslant \frac{f \circ \hat{\alpha}(s) - f \circ \hat{\alpha}(s_{0})}{|\hat{\alpha}(s) - \hat{\alpha}(s_{0})|}.$$

Since $s - s_0 \geqslant |\hat{\alpha}(s) - \hat{\alpha}(s_0)|$,

$$(f \circ \hat{\alpha})^+(s_0) \geqslant \frac{f \circ \hat{\alpha}(s) - f \circ \hat{\alpha}(s_0)}{s - s_0},$$

which implies the statement.

5.9. Fix t, and let $p = \alpha(t)$ and $q = \beta(t)$. Apply 5.5 to get

$$\begin{split} \ell^+ &\leqslant -\langle \uparrow_{[pq]}, \nabla_p f \rangle - \langle \uparrow_{[qp]}, \nabla_q g \rangle \leqslant \\ &\leqslant -\Big(f(q) - f(p) - \lambda \cdot \frac{\ell^2}{2}\Big) / \ell - \Big(g(p) - g(q) - \lambda \cdot \frac{\ell^2}{2}\Big) / \ell \leqslant \\ &\leqslant \lambda \cdot \ell + \frac{2 \cdot \varepsilon}{\ell}. \end{split}$$

Integrating this inequality, we get the second statement.

5.13. Choose a point $p \in M$. Observe that gexp_p^1 provides a short map from the unit hemisphere \mathbb{S}_+^m to $\operatorname{diam}(M,g)$. Composing this map with the quotient map $\mathbb{S}^m \to \mathbb{S}_+^m$ brings us a short map $s : \mathbb{S}^m \to \operatorname{diam}(M,g)$.

Since M is not homeomorphic to the sphere, the diameter sphere theorem, $\operatorname{diam}(M,g) \leqslant \frac{\pi}{2}$. Hence, the map s is onto.

- **6.2.** Apply 4.5.
- **6.3.** By the triangle inequality,

$$|\gamma(-t) - x| + |\gamma(t) - x| - 2 \cdot t \geqslant 0$$

for any $t \ge 0$. Passing to the limit as $t \to \infty$, we get the result.

6.7. Suppose Cone \mathcal{X} is ALEX(0). Observe that two half-lines in Cone \mathcal{X} that start from the origin and go into directions x and $y \in \mathcal{X}$ form a line if and only if $|x-y|_{\mathcal{X}} \geqslant \pi$. Apply the splitting theorem to show that for any $x \in \mathcal{X}$ there is at most one point y such that $|x-y|_{\mathcal{X}} \geqslant \pi$ and in this case we have equality. Conclude that diam $\mathcal{X} \leqslant \pi$.

Now choose a quadruple of points $p, x_1, x_2, x_3 \in \mathcal{X}$; we will identify \mathcal{X} with the unit sphere in $\operatorname{Cone} \mathcal{X}$. Suppose $|p - x_i| < \frac{\pi}{2}$ for any i. Consider the following points in the cone: $y_i = \frac{1}{\cos|p - x_i|_{\mathcal{X}}} \cdot x_i$, and q = p. Show that \mathbb{E}^2 -comparison for q, y_1, y_2, y_3 in $\operatorname{Cone} \mathcal{X}$ implies \mathbb{S}^2 -comparsion for p, x_1, x_2, x_3 in \mathcal{X} . Conclude that \mathcal{X} is locally $\operatorname{ALEX}(1)$. Apply the globalization theorem (3.4).

Now assume \mathcal{X} is Alex(1) and $\dim \mathcal{X} \leq \pi$. By 3.8, the perimeter of any triangle in \mathcal{X} is at most $2 \cdot \pi$. We need to check \mathbb{E}^2 -comparison for a given quadruple of points q, y_1, y_2, y_3 in Cone \mathcal{X} . We can assume that none of these points is the origin; otherwise perturb them a bit.

Set $x_i = y_i/|y_i|$ for each i and p = q/|q|; we can assume that p, x_1, x_2, x_3 are distinct in \mathcal{X} , which is the unit sphere in Cone \mathcal{X} .

Assume the model triangles $\triangle(px_1x_2)$, $\triangle(px_2x_3)$, and $\triangle(px_3x_1)$ are defined; that is, perimeters triangles $[px_1x_2]$, $[px_2x_3]$, and $[px_3x_1]$ are strictly less than $2 \cdot \pi$. Note that $\mathbb{E}^3 \stackrel{iso}{=} \operatorname{Cone} \mathbb{S}^2$. Use this together with the \mathbb{S}^2 -comparison for p, x_1, x_2, x_3 in \mathcal{X} to show that \mathbb{E}^2 -comparison holds for q, y_1, y_2, y_3 in $\operatorname{Cone} \mathcal{X}$.

Finally, if one of the model triangles is undefined, consider rescaling of \mathcal{X} with a coefficient λ slightly smaller than 1. Apply the argument above to show that the comparison holds for the corresponding points in $\operatorname{Cone}(\lambda \cdot \mathcal{X})$ and pass to the limit as $\lambda \to 1$.

Comment. The last part of the proof is close to the argument in 8.1.

6.9. Observe that

$$\langle u, u \rangle + \langle v, u \rangle + \langle w, u \rangle \geqslant 0,$$

$$\langle u, v \rangle + \langle v, v \rangle + \langle w, v \rangle \geqslant 0,$$

$$\langle u, w \rangle + \langle v, w \rangle + \langle w, w \rangle = 0.$$

Add the first two inequalities and subtract the last identity.

6.13. Apply 6.12 to show that $\langle v, v \rangle = \langle v, w \rangle = \langle w, w \rangle$, and use it.

6.14. Show and use that

$$\langle u, x \rangle + \langle v, x \rangle + \langle w, x \rangle \geqslant 0$$

and

$$\langle u, -x \rangle + \langle v, -x \rangle + \langle w, -x \rangle \geqslant 0.$$

6.15. Part \Rightarrow is evident. To prove part \Leftarrow , observe that

$$\langle u^*, u^* \rangle = -\langle u, u^* \rangle \leqslant \langle u, u \rangle$$

and since $|u| = |u^*|$, we have equality.

6.18. Apply 6.15.

7.2. By 7.14, \mathcal{A} is separable; that is, it contains a countable dense set of points. Apply 6.19 to this set.

7.3. Argue as in 3.7.

7.4. The only-if part is trivial. Suppose the configuration $p, a_0, \ldots, a_m \in \mathcal{A}$ meets the condition. By 6.18 the directions $\uparrow_{[qa_0]}, \ldots, \uparrow_{[qa_m]} \in \operatorname{Lin}_q$ for G-delta dense set of points $q \in \mathcal{A}$. If q is sufficiently close to p, then $\tilde{\mathcal{L}}(q_{a_j}^{a_i}) > \frac{\pi}{2}$, and therefore, $\mathcal{L}[q_{a_j}^{a_i}] > \frac{\pi}{2}$

for $i \neq j$. Conclude that $\dim \operatorname{Lin}_q \geqslant m$ in this case. To see this show and use that given m+1 vectors in \mathbb{R}^k making pairwise obtuse angles with each other any m of them must be linearly independent.

- **7.7**; (a). Apply 4.2, 4.3, and 7.5.
- (b). Apply 7.4 to show that LinDim $T_p = \text{LinDim } A$ (argue as in 4.3).
- (c). By 7.5 for any two points $\xi, \zeta \in \Sigma_p$ such that $|\xi \zeta|_{\Sigma_p} < \pi$ there is a geodesic $[\xi\zeta]_{\Sigma_p}$. Suppose $|\xi \zeta|_{\Sigma_p} \ge \pi$, then T_p contains a line thru the origin in the directions ξ and ζ . By (a) we can apply the splitting theorem (6.4) to T_p . We get that Σ_p is a spherical suspension with poles ξ and ζ . Hence, $|\xi \zeta| = \pi$ and there is a geodesic $[\xi\zeta]$.
- **7.9**; (a). By 4.5, each function $\operatorname{dist}_{a_i}$ is semiconcave in a small neighborhood of p. Therefore we can choose λ and r>0 so that $f_{\boldsymbol{y}}$ is λ -concave in $\mathrm{B}(p,r)$; further we will assume that r is sufficiently small. Choose $\alpha>0$ such that $\tilde{\measuredangle}(x_{a_i}^{a_i})>\frac{\pi}{2}+\alpha$ for all $i\neq j$; we may assume that $\alpha<\frac{1}{10}$; in particular,

$$(d_x \operatorname{dist}_{a_j})(\uparrow_{[xa_i]}) \geqslant -\cos \tilde{\lambda}(x_{a_j}^{a_i}) > \frac{\alpha}{2}$$

for $j \neq i$.

By the definition of gradient and 4.7a, we have

$$-(\boldsymbol{d}_x \mathrm{dist}_{a_i})(\nabla_x f_{\boldsymbol{y}}) \geqslant \langle \uparrow_{[xa_i]}, \nabla_x f_{\boldsymbol{y}} \rangle \geqslant$$

 $\geqslant (\boldsymbol{d}_x f_{\boldsymbol{y}})(\uparrow_{[xa_i]}).$

If $|a_i - x| > y_i$, then

$$\mathbf{d}_x f_{\mathbf{y}} = \sigma + \varepsilon \cdot \mathbf{d}_x \operatorname{dist}_{a_0},$$

where σ is a minimum of a subset of the following functions: 0, and $\mathbf{d}_x \operatorname{dist}_{a_j}$ for $0 \neq j \neq i$. By \mathbf{Q} ,

$$(\boldsymbol{d}_x \operatorname{dist}_{a_i})(\nabla_x f_{\boldsymbol{y}}) < -\frac{\alpha}{2} \cdot \varepsilon.$$

Hence (i) holds for all sufficiently small $\varepsilon > 0$.

Now assume that $|a_i - x| - y_i = \min_j \{|a_j - x| - y_j\} < 0$. Then

$$\begin{aligned} \boldsymbol{d}_{x}f_{\boldsymbol{y}} &= \min_{i \in S} \{ \, \boldsymbol{d}_{x} \mathrm{dist}_{a_{j}} \, \} + \varepsilon \cdot \boldsymbol{d}_{x} \mathrm{dist}_{a_{0}} \leqslant \\ &\leqslant \boldsymbol{d}_{x} \mathrm{dist}_{a_{i}} + \varepsilon \cdot (\boldsymbol{d}_{p} \mathrm{dist}_{a_{0}}), \end{aligned}$$

where $j \in S$ if and only if $|a_i - x| - y_i = |a_j - x| - y_j$. Applying **2**, we get

$$(\boldsymbol{d}_{x}\operatorname{dist}_{a_{i}})(\nabla_{x}f_{\boldsymbol{y}}) \geqslant \boldsymbol{d}_{x}f_{\boldsymbol{y}}(\nabla_{x}f_{\boldsymbol{y}}) - \varepsilon \cdot (\boldsymbol{d}_{x}\operatorname{dist}_{a_{0}})(\nabla_{x}f_{\boldsymbol{y}}) \geqslant$$

$$\geqslant \left[(\boldsymbol{d}_{x}f_{\boldsymbol{y}})(\uparrow_{[xa_{0}]})\right]^{2} - 2 \cdot \varepsilon \geqslant$$

$$\geqslant \left[\frac{\alpha}{2} - \varepsilon\right]^{2} - 2 \cdot \varepsilon.$$

Thus, (ii) holds for all sufficiently small $\varepsilon > 0$.

(b) Consider the following real-to-real functions:

$$\varphi(t) := \max_i \{|a_i - \alpha_{\boldsymbol{y}}(t)| - y_i\},$$

$$\psi(t) := \min_i \{|a_i - \alpha_{\boldsymbol{y}}(t)| - y_i\}.$$

Use (a), to show that for $t \in [0, t_0]$, we have $\varphi^+(t) < -\frac{1}{10} \cdot \varepsilon^2$ if $\varphi(t) > 0$ and $\psi^+(t) > \frac{1}{10} \cdot \varepsilon^2$ if $\psi(t) < 0$. Conclude that $\varphi(t_0) = \psi(t_0) = 0$; hence the result.

(c) A straightforward application of 5.9 and a reformulation of (b).

Remarks. By 5.9, that the constructed map Φ is bi-Hölder with the exponent $\frac{1}{2}$. In particular, if an infinite-dimensional Alexandrov space \mathcal{A} contains a bi-Hölder copy of Euclidean ball of arbitrary dimension. It seems plausible that \mathcal{A} should contain a bi-Lipschitz copy of Euclidean ball of arbitrary dimension, but this question is open.

7.11. Apply the (n+1)-comparison (7.1) to show that at least one of the inequalities

$$\angle[x_{a_0}^y] < \frac{\pi}{2} - \varepsilon, \ldots, \angle[x_{a_m}^y] < \frac{\pi}{2} - \varepsilon,$$

holds. Similarty, we get that at least one of the inequalities

$$\angle[y_{a_0}^x] < \frac{\pi}{2} - \varepsilon, \ldots, \angle[y_{a_m}^x] < \frac{\pi}{2} - \varepsilon,$$

holds.

Suppose our statement does not hold for x and y in a sufficiently small neighborhood of p. It follows that

Note that |x-y| is small compared to $|a_0-x|$ and $|a_0-y|$. Therefore, the comparison contradicts **4**.

By the construction, f is Lipschitz. From above, we can choose i > 0 so that $\angle[x \frac{y}{a_i}] < \frac{\pi}{2} - \varepsilon$ (if $\angle[y \frac{x}{a_i}] < \frac{\pi}{2} - \varepsilon$, then swap x and y). By comparison, there is c > 0 such that $|a_i - y| \le |a_i - x| + c \cdot |x - y|$. Hence f is bi-Lipschitz, and now 7.8 implies 7.10.

- **7.14.** Reuse the argument from the first part of the proof of Bishop–Gromov inequality.
- **7.13.** Follow the proof Bishop–Gromov inequality, plus prove the following two inequalities

$$\sinh r_2 \cdot |\log_p x - \log_p y|_{\mathcal{T}_p} \geqslant |x - y|_{\mathcal{A}}$$

$$\sinh r_2 \cdot |w(x) - w(y)|_{\mathcal{A}} \geqslant \sinh r_1 \cdot |x - y|_{\mathcal{A}}$$

for any $x, y \in B(p, r)$.

7.16. Suppose K is a compact set in \mathcal{A} such that HausDim $K \geqslant m$. Use the map w from the proof of the Bishop–Gromov inequality (7.12 and 7.13) to show that any open ball in \mathcal{A} contains a compact set K' such that HausDim $K' \geqslant m$.

Use this in addition to the arguments in 7.15.

- **8.2.** Apply 7.4.
- **8.4**; (a). Suppose X is compact. Then for any $\varepsilon > 0$ any cover of X by open ε -balls have a finite subcover. Note that the centers of these balls form an ε -net of X.

Now suppose X has a finite ε -net. Show that any sequence x_n of points in X has a subsequence such that all of its points lie in one ε -ball. Apply this statement for $\varepsilon = \frac{1}{n}$ together with the diagonal procedure.

- (b). Let Z be a compact ε -net of X. By (a), Z has a finite ε -net, say F. Note that F is a $2 \cdot \varepsilon$ -net of X. Since $\varepsilon > 0$ is arbitrary, we get the result.
- **8.5.** If x_1, \ldots, x_n is not an ε -net, then there is a point y such that $|x_i y| \ge \varepsilon$ for any i. Therefore x_1, \ldots, x_n is not a maximal packing a contradiction.
- **8.6**; (a) Apply the Bishop–Gromov inequality (7.12).
- (b) By 8.2, $\dim \mathcal{A}_{\infty} \leq m$. To show that $\dim \mathcal{A}_{\infty} \geq m$, apply 6.19 to a maximal packing and use the estimate in (a).

Comment. The following stronger statement holds

$$\operatorname{vol}_m \mathcal{A}_{\infty} = \lim_{n \to \infty} \operatorname{vol}_m \mathcal{A}_n.$$

In other words, if $K_m \subset GH$ denotes the set of isometry classes of all compact $Alex(\kappa)$ spaces with dimension $\leq m$, then the function $vol_m \colon K_m \to \mathbb{R}$ is continuous.

- **8.7.** Argue as in 8.3 to construct a Gromov–Hausdorff convergence of $\overline{\mathrm{B}}(p_n,R)_{\mathcal{A}_n}$ for given R>0, then apply the diagonal procedure to construct the needed convergence.
- **8.10.** Consider the infinite product $\mathbb{S}^1 \times (\frac{1}{2} \cdot \mathbb{S}^1) \times (\frac{1}{4} \cdot \mathbb{S}^1) \times \dots$
- **8.11.** Consider the canonical metric g on the round unit sphere \mathbb{S}^3 and the Hopf bundle $\mathbb{S}^3 \to \mathbb{S}^2$. Let g_n be obtained from g by rescaling the Hopf fibers by $\frac{1}{n}$. Then all (\mathbb{S}^3, g_n) have nonnegative curvature and this sequence converges to the round metric on \mathbb{S}^2 of radius $\frac{1}{2}$. Verify that this convergence provides the desired counterexample.

Comments.

9.3. Let V and W be two conic neighborhoods of a point p. Without loss of generality, we may assume that $V \subseteq W$; that is, the closure of V lies in W.

Construct a sequence of embeddings $f_n: V \to W$ such that

- \diamond For any compact set $K \subset V$ there is a positive integer $n = n_K$ such that $f_n(k) = f_m(k)$ for any $k \in K$ and $m, n \geqslant n_K$.
- \diamond For any point $w \in W$ there is a point $v \in V$ such that $f_n(v) = w$ for all large n.

Once such a sequence is constructed, $f: V \to W$ can be defined by $f(v) = f_n(v)$ for all large values of n gives the needed homeomorphism. The sequence f_n can be constructed recursively

$$f_{n+1} = \Psi_n \circ f_n \circ \Phi_n,$$

where $\Phi_n \colon V \to V$ and $\Psi_n \colon W \to W$ are homeomorphisms of the form

$$\Phi_n(x) = \varphi_n(x) * x$$
 and $\Phi_n(x) = \psi_n(x) * x$,

where $\varphi_n \colon V \to \mathbb{R}_{\geqslant 0}$, $\psi_n \colon W \to \mathbb{R}_{\geqslant 0}$ are suitable continuous functions; "*" and " \star " denote the multiplications in the cone structures of V and W respectively.

Comment. One may also read the original proof by Kyung Whan Kwun [55].

- **9.4**; (a). Apply 9.1 and 9.2.
- (b). Apply (a).
- (c). Recall that the Poincaré homology sphere can be obtained as a quotient space $\Sigma = \mathbb{S}^3/\Gamma$ by an isometric action of a finite group Γ —the so-called binary icosahedral group. By the double suspension theorem, $\operatorname{Susp}^2\Sigma\cong\mathbb{S}^5$. Note that $\operatorname{Susp}^2\Sigma$ is an Alexandrov space and it has a point with space of directions isometric to $\operatorname{Susp}\Sigma$. Observe that $\operatorname{Susp}\Sigma$ is not a manifold; in particular $\operatorname{Susp}\Sigma\not\cong\mathbb{S}^4$. Therefore the pair $\operatorname{Susp}^2\Sigma$ and \mathbb{S}^5 provides the needed example.
- **9.6.** Apply 9.1, 9.2, and 9.5.
- **9.7.** Let \mathcal{A} be a finite-dimensional Alexandrov space. Choose $x \in \mathcal{A}$. By 9.1, a neighborhood $U \ni x$ is homeomorphic to T_x . Therefore 9.6, implies that $U \cap \partial \mathcal{A} = \emptyset \Leftrightarrow x \notin \partial \mathcal{A}$; that is, the complement $\mathcal{A} \setminus \partial \mathcal{A}$ is open, and therefore, \mathcal{A} is closed.
- **9.10.** Consider the model triangle $[\tilde{x}\tilde{y}\tilde{z}'] = \tilde{\triangle}(xyz)$. Show that

$$|\tilde{p} - \tilde{z}| \leq |\tilde{p} - \tilde{z}'| \leq \tilde{\Upsilon}[y_z^p].$$

9.11. Assume that ∂A has at least two connected components, say A and B. Let γ be a geodesic that minimizes the distance from A to B. Consider two-sided infinite sequence of copies of A

$$\ldots, \mathcal{A}_{-1}, \mathcal{A}_0, \mathcal{A}_1, \ldots$$

Let us glue A_i to A_{i+1} along A if i is even and along B if i is odd.

By the doubling theorem, every point in the obtained space \mathcal{N} has a neighborhood that is isometric to a neighborhood of the corresponding point in \mathcal{A} or its doubling. By the globalization theorem, \mathcal{N} is Alex(1).

The copies of γ in \mathcal{A}_i form a line in \mathcal{N} . By the splitting theorem, \mathcal{N} is isometric to a product $\mathcal{N}' \oplus \mathbb{R}$. Since dim $\mathcal{N} > 1$, Exercise 7.3 implies that diam $\mathcal{N} \leqslant \pi$ — a contradiction.

- **9.12**; (a) Apply the gradient flow as in the proof of 9.9 (part $(c)_m + (d)_{m-1} \Rightarrow (d)_m$).
- (b). We can assume that $\dim A \geqslant 2$; otherwise the statement is tivial. Choose an interior point x on γ ; we can assume that $x = \gamma(0)$. Let $y \in \partial A$ be a closest point to x, and let $\alpha = \measuredangle(\uparrow_{[xy]}, \gamma^+(0))$.

By (a), we can assume that $x \notin \partial \mathcal{A}$. Show that $T_y = \mathbb{R}_{\geq 0} \times T_y \partial \mathcal{A}$ and $\uparrow_{[yx]} \perp T_y \partial \mathcal{A}$.

Given a vector $v \in T_y$, denote by \bar{v} its projection to $T_y \partial A$. Apply the comparison and 5.12 to show that

$$|\gamma(t) - \operatorname{gexp}_y(\overline{\log_x \gamma(t)})| \leqslant |x - y| + t \cdot \cos \alpha.$$

Conclude that $(\operatorname{dist}_{\partial \mathcal{A}} \circ \gamma)''(0) \leq 0$ in the barrier sense.

9.13. Suppose γ is defined on the interval $[0,\ell]$. Assume that the function $\rho \colon t \mapsto \frac{1}{2} \cdot \operatorname{dist}_p^2 \circ \gamma(t)$ is not 1-concave. Let $\bar{\rho} \colon [0,\ell] \to \mathbb{R}$ be the minimal 1-concave function such that $\bar{\rho} \geqslant \rho$. Note that $\bar{\rho} = \rho$ at the ends of $[0,\ell]$.

Consider the curve $\bar{\gamma}(t) := \operatorname{Flow}_f^{s(t)} \gamma(t)$; where $f = \frac{1}{2} \cdot \operatorname{dist}_p^2$ and $s(t) = \ln \circ \bar{\rho}(t) - \ln \circ \rho(t)$. Use the first distance estimate to show that length $\bar{\gamma} < \operatorname{length} \gamma$ and arrive at a contradiction.

Comment. This is the so-called Liberman's lemma; it was proved by Grigory Perelman and the second author [77] and generalizes a theorem of Joseph Liberman [68] about geodesics on convex surfaces. **9.14.** Choose a geodesic γ in W. Arguing as in the proof of 9.9d, we get that γ can cross the common boundary of two halves A_0 and A_1 of W at most once, or it lies in the common boundary.

In the later case λ -concavity of $f \circ \operatorname{proj} \circ \gamma$ follows from λ -concavity of f. In the former case the convexity has to be checked only at the point of crossing; we may assume that it happens at $x = \gamma(0)$. Since $\nabla_x f \in \partial T_x$ for any $x \in \partial A$ the f-gradient flows on A_0 and A_1 agree on the common boundary; so they induce a continuous flow on \mathcal{W} .

Assume $f \circ \operatorname{proj} \circ \gamma$ is not λ -concavity at 0. Apply the constructed flow on \mathcal{W} to shorten γ keeping its ends as in the proof of 9.13, and arrive at a contradiction.

- **10.2.** Read [107, Section 4] and/or the solution for "Quotient of the Hilbert space" in [92].
- **10.3**; (a). Choose an isometric \mathbb{S}^1 -action on \mathbb{S}^2 that fixes the poles of the sphere. Consider the projection to the quotient space $\sigma_1 \colon \mathbb{S}^2 \to \mathbb{S}^2/\mathbb{S}^1 = [0, \pi]$.
- (b). Take a half-circle γ on \mathbb{S}^2 and define $\sigma_2(x) := \operatorname{dist}_{\gamma}(x)_{\mathbb{S}^2}$.
- (c). Consider the subdivision of \mathbb{S}^2 into \mathbb{S}^1 -orbits of the action from (a). Cut \mathbb{S}^2 into two hemispheres by meridians rotate one hemisphere by an angle $\alpha = \pi/n$ and glue it back. Observe that there is a submetry σ_n such that the inverse image $\sigma_n^{-1}\{y\}$ is a union of the arcs from the original \mathbb{S}^1 -orbits.

Note that for n=2 we get the solution in (b).

- **10.4.** Show that for any $x \in \mathbb{E}^2$ there is a half-line $H \ni x$ such that the restriction $\sigma|_H$ is an isometry. Suppose such a half-line H starts at p and passes thru q. Show that $\langle x-p,q-p\rangle\leqslant 0$ for any $x\in\sigma^{-1}\{0\}$. Conclude that $\sigma^{-1}\{0\}$ is a convex closed set. Use the definition of submetry to show that $\sigma^{-1}\{0\}$ has no interior points. Make a conclusion.
- **10.8**; (a). Our \mathbb{S}^1 is a commutative subgroup of SO(3). Therefore it is a subgroup of a maximal torus in SO(3). Show that the described torus action is induced by a maximal torus in SO(3). Use that maximal tori in SO(3) are conjugate.
- (b). Cut \mathbb{S}^3 into by the Clifford torus $\frac{1}{\sqrt{2}} \cdot (\mathbb{S}^1 \times \mathbb{S}^1)$. Observe that the quotient of each half is a disc; conclude that $\Sigma_{p,q}$ is a sphere. The torus action on \mathbb{S}^3 induce the needed \mathbb{S}^1 -action on $\Sigma_{p,q}$.
- (c)+(d)+(e). Calculations.
- (f). Consider the map $\Sigma_{p,q} \to \Sigma_{1,1}$ that sends poles to poles, preserve the distance to the poles and respects the \mathbb{S}^1 -actions.

10.14; (a). Suppose $\mathfrak{M}_{m-1}(\Gamma) \geqslant 3$; that is, $\mathcal{A} = \mathbb{E}^m/\Gamma$ has at least 3 boundary components. Follow Case 3 in the proof 10.6 to glue a train-space from copies of \mathcal{A} using two of these components. Show that the obtained space splits and arrive at a contradiction.

(Alternatively, apply a similar construction to all components of the boundary. Show that the obtained space has exponential volume growth; that is, there is a > 1 such that $\operatorname{vol} B(p,r) > a^r$ for all large r. Arrive at a contradiction with the Bishop-Gromov inequality.)

- (b). Apply the doubling theorem as in Case 2 in the proof 10.6.
- **10.16.** Show that the quotient space $\Delta = \mathcal{A}/\mathbb{S}^1$ is an Alex(1) disc and γ projects isometrically to its boundary $\partial \Delta$. It remains to show that the perimeter of Δ cannot exceed $2 \cdot \pi$. The latter follows from the Lytchak's problem [88, 3.3.5]; it states that if Δ as an m-dimensional Alex(1) space, then $\operatorname{vol}_{m-1} \partial \Delta \leq \operatorname{vol}_{m-1} \partial \mathbb{S}^{m-1}$.
- **11.1.** Suppose a geodesic γ passes thru a vertex v. Denote by α and β the angles that γ cuts at v. Since v is essential, $\alpha + \beta < 2 \cdot \pi$. Therefore $\alpha < \pi$ or $\beta < \pi$. Arrive at a contradiction by showing that γ is not length-minimizing.
- **11.2.** Assume \mathcal{P} has no boundary. Denote by k, l, and m the number of vertices, edges, and triangles, respectively in a chosen triangulation of \mathcal{P} . Note that

$$2 \cdot l = 3 \cdot m$$
 and $k - l + m = \chi(\mathcal{P})$.

The first identity follows since each edge appears in two triangles and each triangle has 3 edges; the second identity is the Euler's formula.

Since each triangle contributes π to the total sum of angles, we get that total curvature is $2 \cdot \pi \cdot k - \pi \cdot m$. It remains to apply straightforward algebraic manipulations.

If \mathcal{P} has nonempty boundary, then pass to its doubling, apply the formula and rewrite the result using inner turns.

11.4. We need to show that if a polyhedral surface is ALEX(0), then the total angle θ at every vertex p it at most $2 \cdot \pi$.

Assume that $\theta > 2 \cdot \pi$, let $\varphi = \max\{\pi, \frac{1}{3} \cdot \theta\}$. We can choose three points x_1, x_2 , and x_3 close to p such that $\angle[p_{x_j}^{x_i}] = \varphi$ for $i \neq j$. Since the points x_i are close to p, we have $\angle[p_{x_j}^{x_i}] = \tilde{\angle}(p_{x_j}^{x_i})$. The latter contradicts \mathbb{E}^2 -comparison.

- **11.6.** (a). Apply 8.9.
- (b). Observe that any chord divides a convex figure on \mathcal{P} into two convex figure. Use it to show that union of two convex poygons can triangulated by convex triangles. Apply the last stattement recurrevely to a finite cove of \mathcal{P} by convex polygons.

- (c). By comparison, $\tilde{\mathcal{P}}$ has nonnegative curvature. It remains to apply 11.3.
- 11.10; (a). Show that the total angle around each vertex of the triangulation is at most $2 \cdot \pi$ and argue as in 11.2.
- (b). Apply the angle comparison.
- (c). The first inequality follows form the generalized vesion of Kiszbraun's theorem proved by Urs Lang and Viktor Schroeder [4, 7, 57]; we will not discuss its proof since this inequality is not used in the proof. In the proof of the second inequality, we use Alexandrov's idea $[10, X \S 1]$.

Suppose that a convex triangle Δ has vertices x, y, and z, with opposite side lengths a, b and c and angles α, β , and γ , respectively. Let $\tilde{\Delta}$ be its solid model triangle and let $\tilde{\alpha}, \tilde{\beta}$, and $\tilde{\gamma}$ the corresponding angles.

Use that \log_x is a noncontracting map to show that

$$\operatorname{area} \Delta - \operatorname{area} \tilde{\Delta} \leqslant \frac{1}{2} \cdot (\alpha - \tilde{\alpha}) \cdot (\operatorname{diam} \Delta)^2 + o(a).$$

Now let us subdivide Δ into triangles $\Delta_1, \ldots, \Delta_n$ with common vertex x and small opposite sides a_1, \ldots, a_n ; so, $a = a_1 + \cdots + a_n$. The model triangles $\tilde{\Delta}_1, \ldots, \tilde{\Delta}_n$ can be arranged on the plane with common corresponding sides. This way we get a convex triangle $\tilde{\Lambda}$ with two straight sides b amd c and a polygonal side of total length a. Summing up the above inequalities for $\Delta_1, \ldots, \Delta_n$, we get

$$\operatorname{area} \Delta - \operatorname{area} \tilde{\Lambda} \leqslant \frac{1}{2} \cdot (\alpha - \tilde{\alpha}) \cdot (\operatorname{diam} \Delta)^2 + o(a_1) + \dots + o(a_n).$$

It follows that given $\varepsilon > 0$, we can choose the subdivision so that

$$\operatorname{area} \Delta - \operatorname{area} \tilde{\Lambda} \leqslant \frac{1}{2} \cdot (\alpha - \tilde{\alpha}) \cdot (\operatorname{diam} \Delta)^2 + \varepsilon.$$

By the angle comparison, the angles adjacent to polygonal sides of $\tilde{\Lambda}$ do not exceed β and γ . It follows that

$$\operatorname{area} \tilde{\Lambda} - \operatorname{area} \tilde{\Delta} \leqslant \frac{1}{2} \cdot (\beta + \gamma - \tilde{\beta} - \tilde{\gamma}) \cdot \operatorname{diam}^2 \Delta.$$

Therefore

$$\operatorname{area}\Delta-\operatorname{area}\tilde{\Delta}\leqslant \tfrac{1}{2}\cdot\operatorname{excess}\Delta\cdot\operatorname{diam}^2\Delta+\varepsilon$$

for arbitrary $\varepsilon > 0$, hence the result.

11.11. We can assume that the origin lies in the interior of the convex body. Consider the central projection from its surface, say Σ , to the sphere \mathbb{S}^2 centered at the origin. Show that this projection $\Sigma \to \mathbb{S}^2$ is a homeomorphism.

11.12; (a). Cut the surface of T along three edges coming from one vertex v_1 and unfold the obtained surface onto the plane. Show that this way we get a triangle, the three vertices correspond to v_1 and the midpoints of sides correspond to the remaining three vertices. Make a conclusion.

(b). Let $v_1, v_2, v_3, v_4 \in \mathbb{R}^3$ be the vertices of T. From (a), we have that

$$|v_1 - v_2| = |v_3 - v_4|, \quad |v_1 - v_3| = |v_2 - v_4|, \quad |v_1 - v_4| = |v_2 - v_3|.$$

Use it to show that $\langle v_1 - v_2, v_1 + v_2 - v_3 - v_4 \rangle = 0$. Make a conclusion.

11.14. We will use that the closest-point projection from the Euclidean space to a convex body is short; that is, distance-nonexpanding [85, 13.3].

Assume K_{∞} is nondegenerate. Without loss of generality, we may assume that

$$\overline{\mathrm{B}}(0,r) \subset K_{\infty} \subset \overline{\mathrm{B}}(0,1)$$

for some r > 0. Then there is a sequence $\varepsilon_n \to 0$ such that

$$K_n \subset (1 + \varepsilon_n) \cdot K_\infty$$
 and $K_\infty \subset (1 + \varepsilon_n) \cdot K_n$

for each large n.

Given $x \in K_n$, denote by $g_n(x)$ the closest-point projection of $(1 + \varepsilon_n) \cdot x$ to K_{∞} . Similarly, given $x \in K_{\infty}$, denote by $h_n(x)$ the closest point projection of $(1 + \varepsilon_n) \cdot x$ to K_n . Note that

$$|g_n(x) - g_n(y)| \le (1 + \varepsilon_n) \cdot |x - y|$$

and

$$|h_n(x) - h_n(y)| \le (1 + \varepsilon_n) \cdot |x - y|.$$

Denote by Σ_{∞} and Σ_n the surface of K_{∞} and K_n respectively. The above inequalities imply

$$|g_n(x) - g_n(y)|_{\Sigma_{\infty}} \leq (1 + \varepsilon_n) \cdot |x - y|_{\Sigma_n}$$

for any $x, y \in \Sigma_n$, and

$$|h_n(x) - h_n(y)|_{\Sigma_n} \le (1 + \varepsilon_n) \cdot |x - y|_{\Sigma_\infty}.$$

for any $x, y \in \Sigma_{\infty}$.

By a degree argument the maps g_n and h_n are onto. Apply 1.26 and finish the proof.

Alternatively, since the closest-point projection cannot increase the length of curve, we also get

$$|x - h_n \circ g_n(x)|_{\Sigma_{\infty}} \le 10 \cdot \varepsilon_n$$
$$|y - g_n \circ h_n(y)|_{\Sigma_n} \le 10 \cdot \varepsilon_n.$$

for all large n. Therefore, g_n is a δ_n -isometry $\Sigma_n \to \Sigma_\infty$ for a sequence $\delta_n \to 0$.

Comments. More generally, if a sequence of m-dimensional $ALEX(\kappa)$ spaces $\mathcal{A}_1, \mathcal{A}_2, \ldots$ converges to \mathcal{A}_{∞} and $\dim \mathcal{A}_{\infty} = m < \infty$, then $\partial \mathcal{A}_n$ equipped with the induced length metrics converge to $\partial \mathcal{A}_{\infty}$. This statement is a partial case of the theorem about extremal subsets proved by the second author [89, 1.2].

- 11.22. (a). Observe that curvature of any essential vertes is less than $2 \cdot \pi$ and apply the Gauss–Bonnet formula 11.2.
- (b). Show that geodeiscs between essential vertices divide the surface into two flat triangles, which have to be isometric since their sides are equal. Make a conclusion.
- (c). Show that geodeiscs between the essential vertices can be shoosen so that they do not cross each other; that is, every pair of geodesics intersect only at the common vertex. In this case they divide the surfase into plane triangles.

Since the curvature is nonnegative, the sum of three angles of the triangles at each vertex is at most $2 \cdot \pi$. Show that these triangles form a faces of tetrhedron (possibly degenerate to a quadrangle) if the three angles at one (and therefore any) vertex satisfy the triangle inequality. In the latter case, the sum of angles at each vertex is less than π . Therefore the sum of all 12 angles of these 4 triangles has to be less than $4 \cdot \pi$.

On the other hand, the angles of each triangle sum up to π . Therefore the sum of all 12 angles has to be $4 \cdot \pi$ — a contradiction.

11.29. Assume the contrary, then there is a minimizing geodesic $\gamma \not\subset \Delta$ with ends p and q in Δ .

Without loss of generality, we may assume that only one arc of γ lies outside of Δ . Reflection of this arc with respect to Π together with the remaining part of γ forms another curve $\hat{\gamma}$ from p to q; it runs partly along surface and partly outside K, but does not get in the interior of K. Note that

length
$$\hat{\gamma} = \text{length } \gamma$$
.

Denote by $\bar{\gamma}$ the closest point projection of $\hat{\gamma}$ to K. Since K is convex, the projection decreases the length. Therefore the curve $\bar{\gamma}$ lies on the surface of K, it has the same ends as γ , and

length
$$\bar{\gamma} < \text{length } \gamma$$
.

This means that γ is not length-minimizing — a contradiction.

11.30. If the plane py_1y_2 supports K, then $\angle[p_{y_2}^{y_1}]_{\mathbb{E}^3} = \angle[p_{x_2}^{x_1}]_{\mathcal{P}}$. In this case, the statement follows from 11.15.

Now suppose that the line segment $[y_1y_2]_{\mathbb{E}^3}$ intersects K. Choose a geodesic $[y_1y_2]_W$; note that it contains a point of K, say z. Now consider the one-parameter family of points

$$y_i(t) := \gamma_i(t) + \gamma_i^+(t) \cdot (1 - t).$$

This family is not necessarily continuous; note that $y_i(0) = y_i$ and $y_i(1) = x_i$.

Show that for any point $q \in K$, the function $t \mapsto |q - y_i(t)|_{\mathbb{E}^3}$ is nonincreasing. Conclude that the function $t \mapsto |q - y_i(t)|_W$ is nonincreasing for any $q \in \mathcal{P}$. Therefore,

$$|y_1 - y_2|_W = |y_1(0) - y_2(0)|_W =$$

$$= |y_1(0) - z|_W + |y_2(0) - z|_W \geqslant$$

$$\geqslant |y_1(1) - z|_W + |y_2(1) - z|_W \geqslant$$

$$\geqslant |x_1 - x_2|_{\mathcal{P}}.$$

The last inequality follows since the closest point projection $W \to \mathcal{P}$ is short.

It remains to consider the case when the plane py_1y_2 does not support K, and $[y_1y_2]_{\mathbb{E}^3}$ does not intersect K. In this case the plane py_1y_2 intersects K along a convex figure F that lies in the solid triangle py_1y_2 and contains its vertex p.

Choose points $y_1' \in [py_1]_{\mathbb{E}^3}$ and $y_2' \in [py_2]_{\mathbb{E}^3}$ such that $[y_1'y_2']$ touches F. Denote by $x_1' \in$

 $[px_1]_{\mathcal{P}}$ and $x_2' \in [px_2]_{\mathcal{P}}$ the corresponding points; that is, $|p-y_1'|_{\mathbb{E}^3} = |p-x_1'|_{\mathcal{P}}$ and $|p-y_2'|_{\mathbb{E}^3} = |p-x_2'|_{\mathcal{P}}$. From above, we have that $|y_1'-y_2'|_{\mathbb{E}^3} \geqslant |x_1'-x_2'|_{\mathcal{P}}$; in other words,

$$\tilde{\measuredangle}(p_{y_2'}^{y_1'}) \geqslant \tilde{\measuredangle}(p_{x_2'}^{x_1'});$$

here we think of $[py_1'y_2']$ as a triangle in \mathbb{E}^3 , but $[px_1'x_2']$ as a triangle in \mathcal{P} . Note that

$$\tilde{\measuredangle}(p_{y_{2}'}^{y_{1}'}) = \tilde{\measuredangle}(p_{y_{2}}^{y_{1}}) \quad \text{and} \quad \tilde{\measuredangle}(p_{x_{2}}^{x_{1}}) \leqslant \tilde{\measuredangle}(p_{x_{2}'}^{x_{1}'});$$

the second inequality follows from 2.8. Hence the remaining case follows.

Index

$ x-y = x-y _{\mathcal{X}}$ (distance), 5	Busemann function, 47
$[pq] = [pq]_{\mathcal{X}} \text{ (geodesic)}, 7$ $[xy], [xy[,]xy[, 18]$ $[pqr] = [pqr]_{\mathcal{X}} \text{ (triangle)}, 8$ $[p_y^x] \text{ (hinge)}, 9$ $\nabla \text{ (gradient)}, 34$ $\tilde{\Delta} \text{ (model triangle)}, 9$ $\tilde{\gamma}[x_q^p] \text{ (model side)}, 26$ $\tilde{\mathcal{L}}(p_q^n) \text{ (model angle)}, 9$ $\uparrow_{[pq]} \text{ (direction)}, 31$ $\log_p x \text{ (logarithm)}, 39$ HausDim, 63 LinDim, 57 TopDim, 63 $\dim, 57$ $\text{pack}_{\varepsilon} \mathcal{X}, 59$ $\text{rank } \mathcal{A}, 77$ $\mathbb{I} \text{ (real interval)}, 7$ $\mathbb{S}^n, \mathbb{E}^n, \mathbb{H}^n, \text{ and } \mathbb{M}^n(\kappa), 6$ Cone, 32 $\Sigma_p \text{ (space of directions)}, 31, 78$	closed ball, 6 comparison, 17 adjacent angle comparison, 21 hinge comparison, 22 point-on-side comparison, 21 cone, 32 conic neighborhood, 76 continuity method, 103 convex body, 95 convex polyhedron, 95 convex set, 48 critical point, 84 crystallographic action, 92 curvature, 97 differential, 34 differential of a function, 33 direct sum, 48 direction, 31 doubling, 79
Σ_p' (geodesic directions), 31	doubling theorem, 79
T_p (tangent space), 32, 78 $A \oplus B$ (direct sum), 48 ℓ -geodesic space, 7, 32, 58 λ -concave function, 22, 23	essential vertex, 97, 103 extremal point, 91 extremal set, 85, 94
adjacent hinges, 11 affine function, 49 Alexandrov space, 18 Alexandrov's lemma, 18 almost midpoint, 8, 59	geodesic, 7 direction, 31 path, 7 space, 7 gradient, 34
barrier, 22	curve, 40 exponential map, 44

INDEX 137

flow, 43	origin, 32
Gromov–Hausdorff distance, 13	1
Gromov–Hausdorff limit, 12	pointed convergence, 13
half-line, 47	pointed homeomorphic, 76 polar vectors, 51
Hausdorff	polyhedral space, 101
dimension, 63	polyhedral surface, 95
distance, 12	primitive extremal set, 94
limit, 11	proper space, 5
hinge, 9	properly discontinuous, 92
comparison, 22	property discontinuous, 92
Hopf's conjecture, 89	rank, 77
hyperbolic model triangle, 9	regular point, 84
nyperbone moder triangle, 9	right derivative, 34, 39
induced length metric, 6	right derivative, 51, 50
invariance of domain, 104	scalar product, 32
isometry	self-contracting curves, 42
ε -isometry, 14	semiconcave function, 33
J 11 (J)	semimetric, 31
Jensen inequality, 22	Sharafutdinov's retraction, 45
	short map, 127
Lebesgue covering dimension, 63	space of directions, 31, 78
length metric, 6	space of geodesic directions, 31
length space, 6	spherical model triangles, 9
lifting, 69	submetry, 88
line, 48	surface, 95
linear dimension, 57	,
linear subspace, 52	tangent space, 32, 78
locally $Alex(0)$, 25	tangent vector, 32
logarithm, 39	triangle, 8
: 1 1: 00	triangulation, 96
maximal packing, 66	
model	vertex, 95
angle, 9	volume, 62
side, $\frac{26}{c}$	Voronoi domain, 92
space, 6	
triangle, 9	
nerve, 69	
ε -net, 14, 66	
norm, 32	
, 	
open ball, 6	
opposite vectors, 52	
orbifold, 104	

138 INDEX

Bibliography

- [1] M. Aigner and G. Ziegler. Proofs from the Book. Any edition.
- [2] M. Alattar. Deformations of Lipschitz Homeomorphisms. 2024. arXiv: 2409. 06170 [math.GT].
- [3] S. Alexander and R. Bishop. "Curvature bounds for warped products of metric spaces". Geom. Funct. Anal. 14.6 (2004), 1143–1181.
- [4] S. Alexander, V. Kapovitch, and A. Petrunin. "Alexandrov meets Kirsz-braun". Proceedings of the Gökova Geometry-Topology Conference 2010. 2011, 88–109.
- [5] S. Alexander, V. Kapovitch, and A. Petrunin. "An optimal lower curvature bound for convex hypersurfaces in Riemannian manifolds". *Illinois J. Math.* 52.3 (2008), 1031–1033.
- [6] S. Alexander, V. Kapovitch, and A. Petrunin. An invitation to Alexandrov geometry: CAT(0) spaces. SpringerBriefs in Mathematics. 2019.
- [7] S. Alexander, V. Kapovitch, and A. Petrunin. Alexandrov geometry: foundations. Vol. 236. Graduate Studies in Mathematics. 2024.
- [8] А. Д. Александров. Выпуклые многогранники. 1950. [English translation: Alexandrov, A. D., Convex polyhedra, 2005].
- [9] А. Д. Александров. «Существование выпуклого многогранника и выпуклой поверхности с заданной метрикой». Матем. сб. 11(53).1-2 (1942), 15—65.
- [10] А. Д. Александров. Внутренняя геометрия выпуклых поверхностей. 1948. [tranlated in A. D. Alexandrov. A. D. Alexandrov selected works. Part II.]
- [11] A. D. Alexandrow. "Über eine Verallgemeinerung der Riemannschen Geometrie". Schr. Forschungsinst. Math. 1 (1957), 33–84.
- [12] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures. Second. Lectures in Mathematics ETH Zürich. 2008.
- [13] В. Н. Берестовский. «Субметрии пространственных форм неотрицательной кривизны». Сиб. матем. эсурп. 28.4 (1987), 44—56. [English translation: V. N. Berestovskii. "Submetries of three-dimensional forms of nonnegative curvature". Sibirsk. Mat. Zh. 28.4 (1987), 552–562.]
- [14] E. Bilokopytov. *Is it possible to connect every compact set?* MathOverflow.eprint: https://mathoverflow.net/q/359390.

- [15] R. L. Bishop and R. J. Crittenden. Geometry of manifolds. Vol. Vol. XV. Pure and Applied Mathematics. 1964.
- [16] Richard L Bishop. "A relation between volume, mean curvature and diameter". Amer. Math. Soc. Not. 10 (1963), 364.
- [17] E. Bruè, A. Mondino, and D. Semola. "The metric measure boundary of spaces with Ricci curvature bounded below". Geom. Funct. Anal. 33.3 (2023), 593–636.
- [18] D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry. Vol. 33. Graduate Studies in Mathematics. 2001. [Русский перевод: Бураго Д. Ю., Бураго Ю. Д., Иванов С. В. «Курс метрической геометрии», 2004.]
- [19] Г. Я. Перельман Ю. Д. Бураго М. Л. Громов. «Пространства А. Д. Александрова с ограниченными снизу кривизнами». УМН 47.2(284) (1992), 3—51. [English translation: Yu. D. Burago, M. L. Gromov, G. Ya. Perelman, "A. D. Alexandrov spaces with curvature bounded below", Russian Math. Surveys, 47:2 (1992), 1–58].
- [20] A. Cauchy. "Sur les polygones et les polyèdres: second Mémoire". Journal de l'Ecole Polytechnique 16.9 (1813), 26–38.
- [21] J. Cheeger and T. Colding. "Lower bounds on Ricci curvature and the almost rigidity of warped products". Ann. of Math. (2) 144.1 (1996), 189– 237.
- [22] J. Cheeger and D. G. Ebin. Comparison theorems in Riemannian geometry. 2008.
- [23] J. Cheeger and D. Gromoll. "The splitting theorem for manifolds of non-negative Ricci curvature". J. Differential Geometry 6 (1971/72), 119–128.
- [24] S. Cohn-Vossen. "Totalkrümmung und geodätische Linien auf einfachzusammenhängenden offenen vollständigen Flächenstücken". Mat. Sb. 1(43).2 (1936).
- [25] A. Daniilidis, O. Ley, and S. Sabourau. "Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions". J. Math. Pures Appl. (9) 94.2 (2010), 183–199.
- [26] L. Danzer und B. Grünbaum. "Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee". Math. Z. 79 (1962), 95–99.
- [27] Н. П. Долбилин. Жемчужины теории многогранников. 2000.
- [28] P. Erdős. "Some unsolved problems". Michigan Math. J. 4 (1957), 291–300.
- [29] J.-H. Eschenburg. "The splitting theorem for space-times with strong energy condition". J. Differential Geom. 27.3 (1988), 477–491.
- [30] A. Eskenazis, M. Mendel, and A. Naor. "Nonpositive curvature is not coarsely universal". *Invent. Math.* 217.3 (2019), 833–886.
- [31] J. Ge and N. Li. "Gluing of multiple Alexandrov spaces". Adv. Math. 399 (2022), Paper No. 108248, 26.
- [32] N. Gigli. "An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature". Anal. Geom. Metr. Spaces 2.1 (2014), 169– 213
- [33] N. Gigli. The splitting theorem in non-smooth context. 2013. arXiv: 1302. 5555.
- [34] M. Gromov. "Curvature, diameter and Betti numbers". Commentarii Mathematici Helvetici 56 (1981), 179–195.

[35] M. Gromov. "Almost flat manifolds". J. Differential Geometry 13.2 (1978), 231–241.

- [36] M. Gromov. Structures métriques pour les variétés riemanniennes. Ed. by J. Lafontaine and P. Pansu. Vol. 1. Textes Mathématiques. 1981.
- [37] M. Gromov. Metric structures for Riemannian and non-Riemannian spaces. Vol. 152, 1999.
- [38] M. Gromov. "CAT(κ)-spaces: construction and concentration". Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), 100–140, 299–300.
- [39] K. Grove and P. Petersen. "Bounding homotopy types by geometry". Ann. of Math. (2) 128.1 (1988), 195–206.
- [40] K. Grove and P. Petersen. "A radius sphere theorem". Inventiones mathematicae 112.1 (1993), 577–583.
- [41] K. Grove and B. Wilking. "A knot characterization and 1-connected non-negatively curved 4-manifolds with circle symmetry". Geom. Topol. 18.5 (2014), 3091–3110.
- [42] G. Guzhvina. Gromov's pinching constant. 2008. arXiv: 0804.0201.
- [43] S. Halbeisen. "On tangent cones of Alexandrov spaces with curvature bounded below". *Manuscripta Math.* 103.2 (2000), 169–182.
- [44] J. Harvey and C. Searle. "Positively curved Riemannian orbifolds and Alexandrov spaces with circle symmetry in dimension 4". Doc. Math. 26 (2021), 1889–1927.
- [45] А. Hatcher. Algebraic topology. 2002. [Русский перевод: Хатчер А. «Алгебраическая топология», 2011.]
- [46] W.-Y. Hsiang and B. Kleiner. "On the topology of positively curved 4-manifolds with symmetry". J. Differential Geom. 29.3 (1989), 615–621.
- [47] T. Hu and W. A. Kirk. "Local contractions in metric spaces". Proc. Amer. Math. Soc. 68.1 (1978), 121–124.
- [48] W. Hurewicz and H. Wallman. Dimension Theory. Princeton Mathematical Series, v. 4. 1941.
- [49] J. Jost. "Nonlinear Dirichlet forms". New directions in Dirichlet forms. Vol. 8. AMS/IP Stud. Adv. Math. 1998, 1–47.
- [50] V. Kapovitch. "Perelman's stability theorem". Surveys in differential geometry. Vol. XI. Vol. 11. Surv. Differ. Geom. Int. Press, Somerville, MA, 2007, 103–136.
- [51] V. Kapovitch and X. Zhu. "On the intrinsic and extrinsic boundary for metric measure spaces with lower curvature bounds". Ann. Global Anal. Geom. 64.2 (2023), Paper No. 17, 18.
- [52] R. Kirby and L. Siebenmann. Foundational essays on topological manifolds, smoothings, and triangulations. Vol. No. 88. Annals of Mathematics Studies. With notes by John Milnor and Michael Atiyah. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1977, vii+355.
- [53] A. P. Kiselev. Kiselev's Geometry: Stereometry. 2008.
- [54] A. Klyachko. "A funny property of sphere and equations over groups". Comm. Algebra 21.7 (1993), 2555–2575.
- [55] K. W. Kwun. "Uniqueness of the open cone neighborhood". Proc. Amer. Math. Soc. 15.3 (1964), 476–479.

- [56] U. Lang and V. Schroeder. "On Toponogov's comparison theorem for Alexandrov spaces". Enseign. Math. 59.3-4 (2013), 325–336.
- [57] U. Lang and V. Schroeder. "Kirszbraun's theorem and metric spaces of bounded curvature". Geom. Funct. Anal. 7.3 (1997), 535–560.
- [58] N. Lebedeva, A. Petrunin, and V. Zolotov. "Bipolar comparison". Geom. Funct. Anal. 29.1 (2019), 258–282.
- [59] N. Lebedeva and A. Petrunin. "5-point CAT(0) spaces after Tetsu Toyoda". Anal. Geom. Metr. Spaces 9.1 (2021), 160–166.
- [60] Н. Д. Лебедева и А. М. Петрунин. «Граф-сравнения и условия Александрова». Сиб. матем. эсурп. 64.3 (2023), 579—584. [English translation: Lebedeva, N. and Petrunin, A., "Graph comparison meets Alexandrov" Sib. Math. J. 64.3 (2023) 624–628.]
- [61] N. Lebedeva and A. Petrunin. "Five-point Toponogov theorem". Int. Math. Res. Not. IMRN 5 (2024), 3601–3624.
- [62] N. Lebedeva and A. Petrunin. "Alexandrov's embedding theorem". St. Petersburg mathematicians and their discoveries. MCCME, 2024, 367–371.
- [63] N. Lebedeva and A. Petrunin. "Trees meet octahedron comparison". Journal of Topology and Analysis (July 2023), 1–5.
- [64] N. Lebedeva. "Alexandrov spaces with maximal number of extremal points". Geom. Topol. 19.3 (2015), 1493–1521.
- [65] N. Lebedeva. "On open flat sets in spaces with bipolar comparison". Geom. Dedicata 203 (2019), 347–351.
- [66] A.-M. Legendre. Eléments de géométrie. 1794.
- [67] N. Li. "Lipschitz-volume rigidity in Alexandrov geometry". Adv. Math. 275 (2015), 114–146.
- [68] И. М. Либерман. «Геодезические линии на выпуклых поверхностях». 32.2 (1941), 310—312.
- [69] A. Lytchak. "Open map theorem for metric spaces". St. Petersburg Math. J. 17.3 (2006), 477–491.
- [70] U. Mayer. "Gradient flows on nonpositively curved metric spaces and harmonic maps". Comm. Anal. Geom. 6.2 (1998), 199–253.
- [71] K. Menger. "Untersuchungen über allgemeine Metrik". Math. Ann. 100.1 (1928), 75–163.
- [72] А. Д. Милка. «Метрическое строение одного класса пространств, содержащих прямые линии». Укр. геометр, сб. 4 (1967), 43—48.
- [73] А. Д. Милка. «Геодезические и кратчайшие линии на выпуклых гиперповерхностях. I». Украин. геом. сб. 25 (1982), 95—110.
- [74] E. Moise. Geometric topology in dimensions 2 and 3. Vol. Vol. 47. Graduate Texts in Mathematics. 1977.
- [75] S. Ohta. "Gradient flows on Wasserstein spaces over compact Alexandrov spaces". Amer. J. Math. 131.2 (2009), 475–516.
- [76] G. Perelman. "Spaces with curvature bounded below". Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994). 1995, 517–525.

BIBLIOGRAPHY 143

[77] Г. Я. Перельман и А. М. Петрунин. «Экстремальные подмножества в пространствах Александрова и обобщенная теорема Либермана». Алебра и анализ 5.1 (1993), 242—256. [English translation: G. Perelman and A. Petrunin. "Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem". St. Petersburg Math. J., 5:1 (1993), 215—227.]

- [78] G. Perelman and A. Petrunin. Quasigeodesics and gradient curves in Alexandrov spaces. eprint: http://www.math.psu.edu/petrunin/.
- [79] G. Perelman. Alexandrov spaces with curvatures bounded from below II. 1991.
- [80] Г. Я. Перельман. «Начала теории Морса на пространствах Александрова». Алгебра и апализ 5.1 (1993), 232—241. [English translation: G. Ya. Perel'man, "Elements of Morse theory on Aleksandrov spaces", St. Petersburg Math. J., 5:1 (1994), 205—213].
- [81] G. Perelman. "DC Structure on Alexandrov Space (preliminary version)". preprint (1994).
- [82] A. Petrunin. Proof of Lemma 37.5 in Pak's Lectures on Discrete and Polyhedral Geometry. MathOverflow. eprint: https://mathoverflow.net/q/437971.
- [83] A. Petrunin. Involution of 3-sphere. MathOverflow. eprint: https://mathoverflow.net/q/471189.
- [84] A. Petrunin and S. Stadler. "Metric-minimizing surfaces revisited". Geom. Topol. 23.6 (2019), 3111–3139.
- [85] A. Petrunin and S. Zamora Barrera. What is differential geometry: curves and surfaces. 2021. arXiv: 2012.11814 [math.H0].
- [86] A. Petrunin. "A globalization for non-complete but geodesic spaces". Math. Ann. 366.1-2 (2016), 387–393.
- [87] A. Petrunin. Quasigeodesics in multidimensional Alexandrov spaces. Thesis (Ph.D.)—University of Illinois at Urbana-Champaign. ProQuest LLC, Ann Arbor, MI, 1995.
- [88] A. Petrunin. "Semiconcave functions in Alexandrov's geometry". Surveys in differential geometry. Vol. XI. Vol. 11. Surv. Differ. Geom. 2007, 137–201.
- [89] A. Petrunin. "Applications of quasigeodesics and gradient curves". Comparison geometry. 1997, 203–219.
- [90] А. М. Петрунин. "Верхняя оценка на интеграл кривизны". Алгебра и апализ 20.2 (2008), 134–148. [English translation: Petrunin, A. M., "An upper bound for the curvature integral", St. Petersburg Math. J.20(2009), no.2, 255–265.]
- [91] А. Петрунин. «В поисках пятиточечного условия Александровского типа». Алеебра и анализ 29.1 (2017), 296—298. [English translation: A. Petrunin. "In search of a five-point Aleksandrov type condition". St. Petersburg Math. J., 29:1 (2018), 223—225].
- [92] A. Petrunin. PIGTIKAL (puzzles in geometry that I know and love). Vol. 2. Assoc. Math. Res. Monogr. 2020.
- [93] A. Petrunin. Pure metric geometry. SpringerBriefs in Mathematics. 2023.
- [94] P. Pizzetti. "Paragone fra due triangoli a lati uguali". Atti della Reale Accademia dei Lincei, Rendiconti (5). Classe di Scienze Fisiche, Matematiche e Naturali 16.1 (1907), 6–11.

- [95] C. Plaut. "Spaces of Wald curvature bounded below". J. Geom. Anal. 6.1 (1996), 113–134.
- [96] C. Plaut. "Metric spaces of curvature ≥ k". Handbook of geometric topology. 2002, 819–898.
- [97] А. В. Погорелов. Однозначная определённость общих выпуклых поверхностей. Монографии института математики, вып. II. 1952.
- [98] А. В. Погорелов. Внешняя геометрия выпуклых поверхностей. 1969. [English translation: A. V. Pogorelov. Extrinsic geometry of convex surfaces. Vol. 35. Translations of Mathematical Monographs. 1973.]
- [99] Ю. Г. Решетняк. «К теории пространств кривизны, не большей К». Матем. сб. 52(94).3 (1960), 789—798.
- [100] I. Kh. Sabitov. "Around the proof of the Legendre-Cauchy lemma on convex polygons". Siberian Math. J. 45.4 (2004), 740-762.
- [101] I. J. Schoenberg and S. C. Zaremba. "On Cauchy's lemma concerning convex polygons". Canadian J. Math. 19 (1967), 1062–1071.
- [102] G. Savaré. "Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds". C. R. Math. Acad. Sci. Paris 345.3 (2007), 151– 154.
- [103] В. А. Шарафутдинов. «О выпуклых множествах в многообразии неотрицательной кривизны». *Mam. заметки* 26.1 (1979), 129—136. [English translation: V. A. Sharafutdinov, "Convex sets in a manifold of nonnegative curvature", *Math. Notes*, 26:1 (1979), 556–560].
- [104] K. Shiohama. An introduction to the geometry of Alexandrov spaces. Vol. 8. Lecture Notes Series. 1993.
- [105] Edwin H. Spanier. Algebraic topology. Corrected reprint. New York: Springer-Verlag, 1981, xvi+528.
- [106] D. Fuchs and S. Tabachnikov. Mathematical omnibus. Thirty lectures on classic mathematics. 2007. [Русский перевод: Табачников, С. Л., Фукс, Д. Б. «Математический дивертисмент» 2016].
- [107] C.-L. Terng and G. Thorbergsson. "Submanifold geometry in symmetric spaces". J. Differential Geom. 42.3 (1995), 665–718.
- [108] P. Thurston. "CAT(0) 4-manifolds possessing a single tame point are Euclidean". J. Geom. Anal. 6.3 (1996), 475–494 (1997).
- [109] В. А. Топоногов. «Римановы пространства кривизны, ограниченной снизу». Успехи математических наук 14.1 (85) (1959), 87—130.
- [110] T. Toyoda. "An intrinsic characterization of five points in a CAT(0) space". Anal. Geom. Metr. Spaces 8.1 (2020), 114–165.
- [111] Ю. А. Волков. «Существование многогранника с данной разверткой». $3an.\ nayun.\ cem.\ ПОМИ\ (2018),\ 50-78.$
- [112] Ю. А. Волков. «Оценка деформации выпуклой поверхности в зависимости от изменения ее внутренней метрики». Украин. геом. сб. 5-6 (1968), 44—69. [Translated in Alexandrov, A. D., Convex polyhedra, 2005].
- [113] В. А. Залгаллер. «О деформациях многоугольника на сфере». УМН 11.5(71) (1956), 177—178.