Appendix: Cluster Analysis

More information can be found in Everitt, Landau & Leese, 2001. *Custer Analysis*. Oxford University Press

Similarity and Dissimilarity Metrics

• The similarity metric has to satisfy the properties:

```
Symmetry: s_{ij} = s_{ji} for all i, j \in \{1, 2, ..., n\}
Ordering: s_{ij} \le s_{ii} similarity of itself larger than else Self-similarity: s_{ii} = s_{jj}
```

o Notes:

- Correlations can be considered similarities on the scale $-1 \le r_{ij} \le 1$
- The topological spatial adjacency can be considered a similarity measure.
- Frequently it is assumed that the similarity $s_{ij} \ge 0$.
- There is no upper limit for the similarity unless the assumption is made that $s_{11} = \cdots = s_{nn} = 1$.
- The similarities among all *n*objects can be pooled into a similarity matrix $S_{n\times n}$.
- The dissimilarity metric has to satisfy the properties

Symmetry:
$$d_{ij} = d_{ji}$$
 for all $i, j \in \{1, 2, ..., n\}$

Ordering:
$$d_{ij} \geq 0$$
 and $d_{11} = \cdots = d_{nn} = 0$

- o Notes:
 - If a dissimilarity metric also satisfies the triangle equation $d_{ij} \le d_{ik} + d_{jk}$ then it has a geometric interpretation as a distance measure.
 - A dissimilarity metric has a natural lower bound of zero.
 - The dissimilarities among all *n*objects can be pooled into a dissimilarity matrix $\mathbf{D}_{n \times n}$.
- Possible transformations between both metrics:
 - An inverse relationship between both metrics exists $d_{ij} \approx \frac{1}{s_{ij}}$
 - For $0 \le s_{ij} \le 1$ the transformation becomes: $d_{ij} = 1 s_{ij}$
 - For $-1 \le s_{ij} \le 1$ the transformation becomes $d_{ij} = \frac{1}{2} \cdot (1 s_{ij})$
 - $\circ s_{ij} = 1 \frac{d_{ij}}{\max(d_{ij})}$

Nominal Scaled Variables

• Objects with *nominal* scaled features:

- Nominal scaled features with K factor levels must be encoded [a] using either the one-hot coding with K binary variables or the dummy coding with K − 1 binary variables (see Boehmke et al. pp 58-66). p should be k here
- o Let $\mathbf{x}_i = (b_{i1}, ..., b_{iP})^T$ and $\mathbf{x}_j = (b_{j1}, ..., b_{jP})^T$ where each object is characterized by P binary features $b_{ip} = \begin{cases} 1 & \text{if feature } p \text{ is present} \\ 0 & \text{otherwise} \end{cases}$ and analogue for b_{jp}
- Both feature vectors can be organized in a contingency table counting the concordant and discordant pairs of features:

	1	0	
1	c_{11}	c_{10}	$c_{11} + c_{10} = c_{1+}$
0	c ₀₁	c ₀₀	$c_{01} + c_{00} = c_{0+}$
	$c_{11} + c_{01} = c_{+1}$	$c_{10} + c_{00} = c_{+0}$	P

- The number of concordant pairs is $c_{11} + c_{00}$ and the number of discordant pairs is $c_{10} + c_{01}$
- Several similarity and dissimilarity metrics can be derived from this table. See
 help(dist) and the options binary:

```
> x <- c(0, 0, 1, 1, 1, 1)
> y <- c(1, 0, 1, 1, 0, 1)
> dist(rbind(x, y), method = "binary")
```

This is a *dissimilarity* measure because $d_{ij} = \frac{c_{01} + c_{10}}{c_{01} + c_{10} + c_{11}}$. Here missing feature pairs c_{00} are not counted because neither feature is at all present.

o A generic error rate similarity metric is

$$s_{ij} = \frac{\alpha \cdot (c_{11} + c_{00})}{\alpha \cdot (c_{11} + c_{00}) + (1 - \alpha) \cdot (c_{10} + c_{01})}$$

where $0 < \alpha < 1$ weights concordant and discordant pairs differently for $\alpha = 0.5$ we obtain the concordance rate $s_{ij} = (c_{11} + c_{00})/P$.

o A measure analog to a correlation coefficient between the pairs \mathbf{x}_i and \mathbf{x}_j can be obtained by

$$s_{ij} = \frac{c_{11} \cdot c_{00} - c_{10} \cdot c_{01}}{\sqrt{c_{1+} \cdot c_{0+} \cdot c_{+1} \cdot c_{+0}}}$$

Ordinal Scaled Variables

• For *ordinal* scaled features p similar coefficients can be calculated by recognizing the ranking of features includes lower ranked features. Let $p_1 < p_2 < p_3$ then

$$p_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $p_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $p_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Metric Variables

• For metrically scaled variables the generic *Minkowski* dissimilarity metric is

$$d_{ij}^{[q]} = \left(\sum_{p=1}^{P} |x_{ip} - x_{jp}|^{q}\right)^{1/q}$$

- \circ For q = 1 the Manhattan (city block) distance is obtained
- \circ For q = 2 the Euclidian distance is obtained
- For $q = \infty$ the maximum distance $\max_{p} |x_{ip} x_{jp}|$ is obtained.
- Only the Euclidian distance are rotation invariant.
- \circ The squared Euclidian distance d_{ij}^2 is closely related to variance around a centroid, such the within class heterogeneity measure.
- The *Mahalanobis* measures the Euclidian distance between objects based on their uniformly scaled principle component scores.

$$d_{ij}^{[M]} = (\mathbf{x}_i - \mathbf{x}_j)^T \cdot \mathbf{S}^{-1} \cdot (\mathbf{x}_i - \mathbf{x}_j)$$

with S^{-1} being the inverse covariance matrix an $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{iP})^T$ being the vector of the P features for the ith observation and analogue for the jth observation, or

$$d_{ij}^{[M]} = (\mathbf{z}_i - \mathbf{z}_j)^T \cdot \mathbf{R}^{-1} \cdot (\mathbf{z}_i - \mathbf{z}_j)$$

where \mathbf{z}_i and \mathbf{z}_j are based on z-transformed variables with $\mathbf{z}_i = (z(x_{i1}), z(x_{i2}), ..., z(x_{iP}))^T$ and \mathbf{R}^{-1} is the inverse correlation matrix among all variables (see script **Mahalanobis**.**R**).

- o Notes:
 - It standardized the variance of each variable.
 - It controls for the correlation among the features and removes data redundancy.
 - The Mahalanobis distance is based on all observations. Therefore, within a cluster the features may very well be correlated.

Mixture of Measurement Levels

• For objects based on a *mixture* of feature types, a similarity metric based on a linear combination can be derived

$$s_{ij} = \frac{\left| p^{nominal} \right| \cdot s_{ij}^{nominal} + \left| p^{ordinal} \right| \cdot s_{ij}^{ordinal} + \left| p^{metric} \right| \cdot s_{ij}^{metric}}{P}$$

with $P = |p^{nominal}| + |p^{ordinal}| + |p^{metric}|$ where | | is the number of features contributing to each similarity measure.

- The Gower option in **cluster::daisy(, metric='gower')** calculates a mixture dissimilarity measure for metric and nominal scaled features:
 - o For nominal scaled features it reports discordant pairs as 1 and concordant pairs as zero.

- \circ For metric or ordinal scaled features it reports the absolute difference for each feature and then it scales each d_{ij}^p for the feature p to d_{ij}^p in 0 to 1.
- o Finally, it adds the distances of all features together either as a mean or weighted mean:

$$\mathbf{D} = \frac{\sum_{p=1}^{P} w_p \cdot \mathbf{D}_p}{\sum_{p=1}^{P} w_p}$$

- Notes:
 - Hierarchical cluster analysis has the tendency to group objects with similar levels of nominal scaled features together.
 - o Principal component analysis and k nearest neighbors, kMeans are not well tailored using binary features. For instance, performing a *z*-transformation on binary features does not dissolve the binning around just two values.

Generic Hierarchically Cluster Analysis Equation

• If two classes $C_k \cup C_l$ are merged then the heterogeneity increase to any of the remaining classes C_s can be calculated *recursively* by

$$d(C_k \cup C_l, C_s) = \alpha_k \cdot d(C_k, C_s) + \alpha_l \cdot d(C_l, C_s) + \beta \cdot d(C_k, C_l) + \gamma \cdot |d(C_k, C_s) - d(C_l, C_s)|$$

• Depending on the selected parameters values α_k , α_l , β and γ the different heterogeneity update methods can be derived.

• Only if α_k , $\alpha_l \ge 0$ and $\alpha_k + \alpha_l + \beta \ge 1$ as well as $|\gamma| \le \alpha_k$, α_l then the heterogeneity of the clustering method is monotonically increasing and does not exhibit inversions.

• Parameters of recursive agglomerative cluster algorithms

Linkage	α_k	α_l	β	γ
Methods				
Single	1/2	1/2	0	-1/2
Complete	1/2	1/2	0	1/2
Average	$n_k/(n_k+n_s)$	$n_l/(n_l+n_s)$	0	0
Centroid	$n_k/(n_k+n_s)$	$n_l/(n_l+n_s)$	$-\frac{n_k \cdot n_l}{n_l}$	0
			$(n_k + n_l)^2$	
Ward	$n_k + n_s$	$n_l + n_s$	$-\frac{n_s}{}$	0
	$n_k + n_l + n_s$	$n_k + n_l + n_s$	$n_k + n_l + n_s$	
Median	1/2	1/2	-1/4	0
Flexible	$\varphi > 0$	φ	$1-2\cdot \varphi$	0
strategy				