PRÁCTICA II

Saul Andersson D'Angelo Rojas Coila Departamento de Ciencia de la Computación UCSP

Resolución de los ejercicios de la práctica.

1. Resolución

Ejercicio i): Dar una derivación más a la izquierda para la cadena "x + y; z (y ())" y arma el árbol de parseo.

Primera Tabla

Regla	Forma Sentencial	Entrada		
-	S	↑x + y ; z (y ())		
0	List	↑x + y ; z (y ())		
1	Expr ; List	1x + y; z(y())		
3	Expr + Term ; List	\frac{1}{2}x + y; z(y())		
4	Term + Term ; List	\frac{1}{2}x + y; z(y())		
5	<id,x> + Term ; List</id,x>	\frac{1}{2}x + y; z(y())		
\rightarrow	<id,x> + Term ; List</id,x>	x^ + y; z (y())		
\rightarrow	<id,x> + Term ; List</id,x>	x + \gamma y; z (y())		
5	<id,x> + <id,y> ; List</id,y></id,x>	x + y ; z (y ())		
\rightarrow	<id,x> + <id,y> ; List</id,y></id,x>	x + y↑; z (y ())		
\rightarrow	<id,x> + <id,y> ; List</id,y></id,x>	x + y ;		
1	<id,x> + <id,y> ; Expr ; List</id,y></id,x>	x + y ; ↑ z (y ())		
3	<id,x> + <id,y> ; Expr + Term ; List</id,y></id,x>	x + y ; ↑ z (y ())		
4	<id,x> + <id,y> ; Term + Term ; List</id,y></id,x>	x + y ; ↑ z (y ())		
5	<id,x> + <id,y> ; <id,x> + Term ; List</id,x></id,y></id,x>	x + y ; ↑ z (y ())		
\rightarrow	<id,x> + <id,y> ; <id,x> + Term ; List</id,x></id,y></id,x>	x + y ; z↑ (y ()) [backtrack!]		

Segunda Tabla

Regla	Forma Sentencial	Entrada		
-	S	\frac{1}{2}x + y; z(y())		
0	List	1x + y; z(y())		
1	Expr ; List	^x + y ; z (y ())		
3	Expr + Term ; List	\frac{1}{2}x + y; z(y())		
4	Term + Term ; List	↑x + y ; z (y())		
5	<id,x> + Term ; List</id,x>	↑x + y ; z (y())		
\rightarrow	<id,x> + Term ; List</id,x>	x^ + y; z (y())		
\rightarrow	<id,x> + Term ; List</id,x>	x + y ; z (y ())		
5	<id,x> + <id,y> ; List</id,y></id,x>	x + y ; z (y ())		
\rightarrow	<id,x> + <id,y> ; List</id,y></id,x>	x + y↑; z (y())		
\rightarrow	<id,x> + <id,y> ; List</id,y></id,x>	x + y ; † z (y ())		
2	<id,x> + <id,y> ; Expr</id,y></id,x>	x + y ; † z (y ())		
3	<id,x> + <id,y> ; Expr + Term</id,y></id,x>	x + y ; † z (y ())		
4	<id,x> + <id,y> ; Term + Term</id,y></id,x>	x + y ; ↑ z (y ())		
5	<id,x> + <id,y> ; <id,x> + Term</id,x></id,y></id,x>	x + y ; † z (y ())		
\rightarrow	<id,x> + <id,y> ; <id,x> + Term ; List</id,x></id,y></id,x>	x + y ; z↑ <mark>(</mark> y ()) [backtrack!]		

Tercera Tabla

Regla	rma Sentencial Entrada				
-	S	\frac{1}{2}x + y; z (y())			
0	List	^x + y ; z (y ())			
1	Expr ; List	↑x + y ; z (y ())			
3	Expr + Term ; List	^x + y ; z (y ())			
4	Term + Term ; List	^x + y ; z (y ())			
5	<id,x> + Term ; List</id,x>	^x + y ; z (y())			
\rightarrow	<id,x> + Term ; List</id,x>	x^ + y ; z (y ())			
\rightarrow	<id,x> + Term ; List</id,x>	x + y ; z (y ())			
5	$\langle id, x \rangle + \langle id, y \rangle$; List $x + \uparrow y$; $z(y())$				
\rightarrow	<id,x> + <id,y> ; List</id,y></id,x>	x + y↑; z (y())			
\rightarrow	<id,x> + <id,y> ; List</id,y></id,x>	x + y ; ↑ z (y ())			
2	<id,x> + <id,y> ; Expr</id,y></id,x>	x + y ; ↑ z (y ())			
4	<id,x> + <id,y> ; Term</id,y></id,x>	x + y ; z (y ())			
Evito incluir la producción 5 y 6 de la gramática, porque ambas dan backtracking, y no quiero extender muchas tablas					
7	<id,x> + <id,y> ; <id,z> (List)</id,z></id,y></id,x>	x + y ; † z (y ())			
\rightarrow	<id,x> + <id,y> ; <id,z> (List)</id,z></id,y></id,x>	x + y; z↑ (y())			
\rightarrow	<id,x> + <id,y> ; <id,z> (List)</id,z></id,y></id,x>	x + y ; z (↑ y ())			
Evito incluir la producción 1 de la gramática, porque me dará un backtracking					
2	$\langle id,x\rangle + \langle id,y\rangle ; \langle id,z\rangle (Expr)$ $x + y ; z (\uparrow y ())$				
4	<id,x> + <id,y> ; <id,z> (Term)</id,z></id,y></id,x>	x + y ; z (↑ y ())			
Me voy de frente a la producción 6, sin pasar por la 5, para acabar el algoritmo					
6	<id,x> + <id,y> ; <id,z> (<id,y> ())</id,y></id,z></id,y></id,x>	x + y; z (↑ y ())			
\rightarrow	<id,x> + <id,y> ; <id,z> (<id,y> ())</id,y></id,z></id,y></id,x>	x + y; z(y↑())			
\rightarrow	<id,x> + <id,y> ; <id,z> (<id,y> ())</id,y></id,z></id,y></id,x>	x + y; z (y(↑))			
\rightarrow	<id,x> + <id,y> ; <id,z> (<id,y> ())</id,y></id,z></id,y></id,x>	x + y ; z (y ()↑)			
\rightarrow	<id,x> + <id,y> ; <id,z> (<id,y> ()) x + y ; z (y ())↑ [Fin, ¡aceptado</id,y></id,z></id,y></id,x>				

Ejercicio ii): Transforma la gramática para que se pueda utilizar para construir un parser predictivo topdown con un símbolo de lookahead.

Dada la gramática

```
\begin{split} S &\rightarrow \text{List} \\ \text{List} &\rightarrow \text{Expr} \text{ ; List} \\ &\mid \text{Expr} \\ \text{Expr} &\rightarrow \text{Expr} + \text{Term} \\ &\mid \text{Term} \\ \text{Term} &\rightarrow \text{id} \\ &\mid \text{id} \text{ ( )} \\ &\mid \text{id} \text{ ( List )} \end{split}
```

Primero eliminamos la recursión a la izquierda: la única producción que posee la recursión a la izquierda es Expr → Expr + Term | Term, así que aplicamos el algoritmo y obtenemos la siguiente gramática.

```
\begin{split} S &\rightarrow List \\ List &\rightarrow Expr \; ; List \\ &\mid Expr \\ Expr &\rightarrow Term \; Expr_1 \\ Expr_1 &\rightarrow + \; Term \; Expr_1 \\ &\mid \epsilon \\ Term &\rightarrow id \\ &\mid id \; (\; ) \\ &\mid id \; (\; List \; ) \end{split}
```

```
Segundo debemos realizar la factorización por la izquierda, para convertirla a LL(1).
S \to List
List → Expr List'
\text{List'} \to \text{; List}
      3 |
Expr → Term Expr<sub>1</sub>
Expr₁ → + Term Expr₁
        3 |
Term \rightarrow id Term'
Term' \rightarrow ()
        (List)
Aún la producción Term' contiene prefijos similares, así que continuamos
factorizando.
S \to List \\
List → Expr List'
List' \rightarrow; List
      3 |
Expr → Term Expr<sub>1</sub>
Expr_1 \rightarrow + Term \ Expr_1
        3 |
Term \rightarrow id Term'
Term' \rightarrow ( G'
        3 |
G' \rightarrow )
    |List)
```

Ahora la gramática es LL(1).

2. Resolución: (())()

Iteration	State	Word	Stack	Hande	Action
1 2 3 4 5 6 7 B 9 10 11 12	- 0 3 6 10 5 8 2 1 1 7 4 1	(\$ 0 (3 \$ 0 (3 \$ 0 (3 (6) 10 \$ 0 (3 (6) 10 \$ 0 (3 Poir 5) 8 \$ 0 Poir 2 \$ 0 List 1 \$ 0 List 1 (3 \$ 0 List 1 Poir 4 \$ 0 List 1 Poir 4	- none none none none none - () - none - (Pair) - none none - () List Pair - none -	shift 3 shift 6 shift 8 reduce 5 shift 8 reduce 3 shift 3 shift 3 shift 3 shift 3 shift 3
1 Par	-	1 275+	Poie		

Nota: en la iteración 9, la variable state no tiene el valor 1, sino 3.