ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 7

Cap. 2.1 – Gramáticas Livres de Contexto (cont.) Cap. 2.2 – Autômato com Pilha

Profa. Ariane Machado Lima ariane.machado@usp.br

Hierarquia de Chomsky

 $\alpha \rightarrow \beta$

Gramáticas Livres de Contexto

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Por exemplo, a gramática G_1 gera a cadeia 000#111.

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

Árvore sintática ou Árvore de derivação

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle | \langle EXPR \rangle \times \langle EXPR \rangle | (\langle EXPR \rangle) | a$$

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle | \langle EXPR \rangle \times \langle EXPR \rangle | (\langle EXPR \rangle) | a$$

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle | \langle EXPR \rangle \times \langle EXPR \rangle | (\langle EXPR \rangle) | a$$

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle | \langle EXPR \rangle \times \langle EXPR \rangle | (\langle EXPR \rangle) | a$$

Duas árvores sintáticas distintas para a mesma cadeia!!!!

Ambiguidade

DEFINIÇÃO 2.7

Uma cadeia w é derivada *ambiguamente* na gramática livre-docontexto G se ela tem duas ou mais derivações mais à esquerda diferentes. A gramática G é *ambigua* se ela gera alguma cadeia ambiguamente.

Ambiguidade

DEFINIÇÃO 2.7

Uma cadeia w é derivada *ambiguamente* na gramática livre-docontexto G se ela tem duas ou mais derivações mais à esquerda diferentes. A gramática G é *ambigua* se ela gera alguma cadeia ambiguamente.

- Algumas gramáticas ambíguas podem ser convertidas em não-ambíguas
- Algumas linguagens são inerentemente ambíguas (só podem ser descritas por gramáticas ambíguas)
 - Eu vi o menino com uma luneta

Expressões aritméticas sem ambiguidade

EXEMPLO 2.4

```
Considere a gramática G_4 = (V, \Sigma, R, \langle \text{EXPR} \rangle).

V \in \{\langle \text{EXPR} \rangle, \langle \text{TERM} \rangle, \langle \text{FACTOR} \rangle \} \in \Sigma \in \{\text{a}, +, \times, (,) \}. As regras são \langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \mid \langle \text{TERM} \rangle \langle \text{TERM} \rangle \rightarrow \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle \mid \langle \text{FACTOR} \rangle \langle \text{FACTOR} \rangle \rightarrow (\langle \text{EXPR} \rangle) \mid \text{a}
```

Expressões aritméticas sem ambiguidade

EXEMPLO 2.4

```
Considere a gramática G_4 = (V, \Sigma, R, \langle \text{EXPR} \rangle).

V \in \{\langle \text{EXPR} \rangle, \langle \text{TERM} \rangle, \langle \text{FACTOR} \rangle \} \in \Sigma \in \{\text{a}, +, \times, (,) \}. As regras são \langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \mid \langle \text{TERM} \rangle \langle \text{TERM} \rangle \rightarrow \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle \mid \langle \text{FACTOR} \rangle \langle \text{FACTOR} \rangle \rightarrow \langle \langle \text{EXPR} \rangle \rangle \mid \text{a}
```


O caso if then else

```
<prog> \rightarrow ... <com> ...

<com> \rightarrow ...

<com> \rightarrow <cond>

<cond> \rightarrow if <exp> then <com>

<cond> \rightarrow if <exp> then <com> else <com>

<exp> \rightarrow ...
```

if <exp> then if <com> then <com> else <com>

O caso if then else

```
<prog> \rightarrow ... <com> ...

<com> \rightarrow ...

<com> \rightarrow <cond>

<cond> \rightarrow if <exp> then <com>

<cond> \rightarrow if <exp> then <com> else <com>

<exp> \rightarrow ...
```

if <exp> then if <com> then <com> else <com>

O caso if then else

```
<com> → ...
<com> \rightarrow <cond>
<cond> → if <exp> then <com> endif
<cond> → if <exp> then <com> else <com> endif
<exp> → ...
    if <exp> then if <com> then <com> endif else <com> endif
                              OU
    if <exp> then if <com> then <com> else <com> endif endif
                                           14
                 SEM AMBIGUIDADE!!!
```

Forma Normal de Chomsky

DEFINIÇÃO 2.8

Uma gramática livre-do-contexto está na forma normal de Chomsky se toda regra é da forma

$$\begin{array}{c} A \to BC \\ A \to a \end{array}$$

onde a é qualquer terminal e A, B e C são quaisquer variáveis — exceto que B e C não podem ser a variável inicial. Adicionalmente, permitimos a regra $S \to \varepsilon$, onde S é a variável inicial.

Forma Normal de Chomsky

DEFINIÇÃO 2.8

Uma gramática livre-do-contexto está na forma normal de Chomsky se toda regra é da forma

$$\begin{array}{c} A \to BC \\ A \to a \end{array}$$

onde a é qualquer terminal e A, B e C são quaisquer variáveis — exceto que B e C não podem ser a variável inicial. Adicionalmente, permitimos a regra $S \to \varepsilon$, onde S é a variável inicial.

TEOREMA 2.9

Qualquer linguagem livre-do-contexto é gerada por uma gramática livre-do-contexto na forma normal de Chomsky.

 (S não pode aparecer do lado direito de nenhuma regra)

• Novo símbolo inicial S_0 e nova regra $S_0 \rightarrow S$

•

•

•

- Novo símbolo inicial S₀ e nova regra S₀ → S
- Para toda regra A → ε, A ≠ S,
 - Remove a regra $A \rightarrow \epsilon$
 - Se existe $R \rightarrow \alpha A \beta$,
 - Se existe $R \rightarrow A$,

•

•

•

, α , $\beta \in (V \cup \Sigma)^*$

- Novo símbolo inicial S₀ e nova regra S₀ → S
- Para toda regra A → ε, A ≠ S,
 - Remove a regra $A \rightarrow \epsilon$
 - Se existe $R \to \alpha A \beta$, acrescenta $R \to \alpha \beta$, α , $\beta \in (V \cup \Sigma)^*$
 - Se existe $R \to A$, acrescenta $R \to \epsilon$

•

- Novo símbolo inicial S₀ e nova regra S₀ → S
- Para toda regra A → ε, A ≠ S,
 - Remove a regra A → ε
 - Se existe $R \to \alpha A \beta$, acrescenta $R \to \alpha \beta$, α , $\beta \in (V \cup \Sigma)^*$
 - Se existe $R \to A$, acrescenta $R \to \epsilon$
- Para toda regra A → B
 - Remove a regra A → B
 - Se existe B $\rightarrow \alpha$, acrescenta , $\alpha \in (V \cup \Sigma)^*$

- Novo símbolo inicial S₀ e nova regra S₀ → S
- Para toda regra A → ε, A ≠ S,
 - Remove a regra A → ε
 - Se existe $R \to \alpha A \beta$, acrescenta $R \to \alpha \beta$, α , $\beta \in (V \cup \Sigma)^*$
 - Se existe $R \to A$, acrescenta $R \to \epsilon$
- Para toda regra A → B
 - Remove a regra A → B
 - Se existe B $\rightarrow \alpha$, acrescenta A $\rightarrow \alpha$, $\alpha \in (V \cup \Sigma)^*$

- Novo símbolo inicial S₀ e nova regra S₀ → S
- Para toda regra A → ε, A ≠ S,
 - Remove a regra $A \rightarrow \epsilon$
 - Se existe $R \to \alpha A \beta$, acrescenta $R \to \alpha \beta$, α , $\beta \in (V \cup \Sigma)^*$
 - Se existe $R \to A$, acrescenta $R \to \epsilon$
- Para toda regra A → B
 - Remove a regra A → B
 - Se existe B $\rightarrow \alpha$, acrescenta A $\rightarrow \alpha$, $\alpha \in (V \cup \Sigma)^*$
- Substitui cada regra A → u₁u₂..uk , ui ∈ (V U Σ) por
 - $A \rightarrow u_1 A_1$, $A_1 \rightarrow u_2 A_2$, ... $A_{k-2} \rightarrow u_{k-1} u_k$, se $k \ge 3$
 - $A \rightarrow U_1 U_2$, $U_1 \rightarrow u_1$, $U_2 \rightarrow u_2$ se k = 2 e $u_i \in \Sigma$

1. A GLC original G_6 é mostrada à esquerda. O resultado de se aplicar o primeiro passo para introduzir uma nova variável inicial aparece à direita.

$$S \to ASA \mid aB$$

$$A \to B \mid S$$

$$B \to b \mid \varepsilon$$

$$egin{aligned} oldsymbol{S_0} &
ightarrow oldsymbol{S} \ S &
ightarrow ASA \mid \mathtt{a}B \ A &
ightarrow B \mid S \ B &
ightarrow \mathtt{b} \mid oldsymbol{arepsilon} \end{aligned}$$

2. Remova as regras ε $B \to \varepsilon$, mostrado à esquerda, e $A \to \varepsilon$, mostrado à direita.

$$S_0 o S$$

 $S o ASA \mid aB \mid a$
 $A o B \mid S \mid \varepsilon$
 $B o b \mid \varepsilon$

$$S_0 o S$$
 $S o ASA \mid aB \mid a$ $S o ASA \mid aB \mid a \mid SA \mid AS \mid S$ $A o B \mid S \mid \varepsilon$ $A o B \mid S \mid \varepsilon$ $A o B \mid S \mid \varepsilon$ $B o b \mid \varepsilon$

3a. Remova regras unitárias $S \to S$, mostrado à esquerda, e $S_0 \to S$, mostrado à direita.

$$S_0 \to S \\ S \to ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \mid S \\ A \to B \mid S \\ B \to \mathtt{b}$$

$$S_0 \to S \mid ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \\ S \to ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \\ A \to B \mid S \\ B \to \mathtt{b}$$

$$S \to ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \\ A \to B \mid S \\ B \to \mathtt{b}$$

3b. Remova as regras unitárias $A \to B$ e $A \to S$.

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS \qquad S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\ S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \qquad S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\ A \rightarrow B \mid S \mid \mathbf{b} \qquad A \rightarrow S \mid \mathbf{b} \mid ASA \mid \mathbf{a}B \mid \mathbf{a} \mid SA \mid AS \\ B \rightarrow \mathbf{b} \qquad B \rightarrow \mathbf{b}$$

$$S_0
ightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S
ightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A
ightarrow S \mid b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $B
ightarrow b$

4. Converta as regras remanescentes para a forma apropriada acrescentando variáveis e regras adicionais. A gramática final em forma normal de Chomsky, a seguir, é equivalente a G_6 . (Na realidade, o procedimento dado no Teorema 2.9 produz diversas variáveis U_i juntamente com várias regras $U_i \rightarrow a$. Simplificamos a gramática resultante usando uma única variável U e a regra $U \rightarrow a$.)

$$S_0
ightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$

 $S
ightarrow AA_1 \mid UB \mid a \mid SA \mid AS$
 $A
ightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS$
 $A_1
ightarrow SA$
 $U
ightarrow a$
 $B
ightarrow b$

Cap 2.2 – Autômato com pilha (AP)

Cap 2.2 – Autômato com pilha (AP)

 Autômato finito com uma memória adicional (leitura e escrita DO TOPO da pilha)

• Lembram de B = $\{0^n1^n \mid n >= 0\}$?

Cap 2.2 – Autômato com pilha (AP)

Determinísticos e não-determinísticos

- NÃO são equivalentes
 - Autômatos a pilha não determinísticos reconhecem mais linguagens
- Autômatos a pilha não-determinísticos são equivalentes a gramáticas livres de contexto

Definição formal

DEFINIÇÃO 2.13

Um autômato com pilha é uma 6-upla $(Q, \Sigma, \Gamma, \delta, q_0, F)$, onde Q, Σ , Γ e F são todos conjuntos finitos, e

- 1. Q é o conjunto de estados,
- 2. Σ é o alfabeto de entrada,
- 3. Γ é o alfabeto de pilha,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ é a função de transição,
- 5. $q_0 \in Q$ é o estado inicial, e
- **6.** $F \subseteq Q$ é o conjunto de estados de aceitação.

Computação com um AP

Um autômato com pilha $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ computa da seguinte maneira. Ele aceita a entrada w se w puder ser escrita como $w=w_1w_2\cdots w_m$, onde cada $w_i\in\Sigma_\varepsilon$, e existem uma seqüência de estados $r_0,r_1,\ldots,r_m\in Q$ e cadeias $s_0,s_1,\ldots,s_m\in\Gamma^*$ que satisfazem as três condições a seguir. As cadeias s_i representam a seqüência de conteúdo da pilha que M tem no ramo de aceitação da computação.

- 1. $r_0 = q_0$ e $s_0 = \varepsilon$. Essa condição significa que M inicia apropriadamente, no estado inicial e com uma pilha vazia.
- **2.** Para $i=0,\ldots,m-1$, temos $(r_{i+1},b)\in \delta(r_i,w_{i+1},a)$, onde $s_i=at$ e $s_{i+1}=bt$ para algum $a,b\in \Gamma_\varepsilon$ e $t\in \Gamma^*$. Essa condição afirma que M se move apropriadamente, conforme o estado, a pilha e o próximo símbolo de entrada.
- 3. $r_m \in F$. Essa condição afirma que um estado de aceitação ocorre ao final da entrada.

 $\{0^n 1^n | n \geq 0\}$. Suponha que M_1 seja $(Q, \Sigma, \Gamma, \delta, q_1, F)$

 $\{0^n 1^n | n \geq 0\}$. Suponha que M_1 seja $(Q, \Sigma, \Gamma, \delta, q_1, F)$

 $\{0^n 1^n | n \geq 0\}$. Suponha que M_1 seja $(Q, \Sigma, \Gamma, \delta, q_1, F)$

$$Q = \{q_1, q_2, q_3, q_4\},\,$$

$$\Sigma = \{0,1\},\,$$

$$\Gamma = \{0, \$\},$$

$$F = \{q_1, q_4\}, e$$

 δ é dada pela tabela abaixo, na qual entradas em branco significam \emptyset .

Entrada:	0			1			ϵ		
Pilha:	0	\$	ε	0	\$	ε	0	\$	ε
$\overline{}q_1$			•						$\{(q_2,\$)\}$
q_2			$\{(q_2,\mathtt{0})\}$	$\{(q_3,\boldsymbol{\varepsilon})\}$					
q_3				$\{(q_3, \boldsymbol{\varepsilon})\}$				$\{(q_4, oldsymbol{arepsilon})\}$	
q_4									