Tobin Magle, PhD
tobin.magle@colostate.edu
Data Management Specialist
Morgan Library
Colorado State University

Outline

- What is reproducible research?
- Why would I do that?
- How? (in R Studio)
 - Automation
 - Git
 - R Markdown

The research cycle

The research cycle

is the practice of distributing all <u>data</u>, <u>software source code</u>, <u>and tools</u> required to reproduce the results discussed in a research publication.

https://www.ctspedia.org/do/view/CTSpedia/ReproducibleResearchStandards

Data (with metadata)

+

Code/Software

Transparency

Replication vs. Reproducibility

- Replication: Same conclusion new study (gold standard)
- "Again, and Again, and Again ..." BR Jasny et. al. Science, 2011. 334(6060) pp. 1225 DOI: 10.1126/science.334.6060.1225
- Replication isn't always feasible: too big, too costly, too time consuming, one time event, rare samples
- Reproducibility: Same results from same data and code (minimum standard for validity)
- "Reproducible Research in Computational Science". RD Peng Science, 2011. 334 (6060) pp. 1226-1227 DOI: 10.1126/science.1213847

Reproducibility spectrum

[&]quot;Reproducible Research in Computational Science". RD Peng Science, 2011. 334 (6060) pp. 1226-1227 DOI: 10.1126/science.1213847

Using markdown and version control in R Studio:

Reproducible research checklist

- Think about the entire pipeline: are all the pieces reproducible?
- Is your cleaning/analysis process automated?— guarantees reproducibility
 - Are you doing things "by hand"? editing tables/figures; splitting/reformatting data
 - Does your software support log files or scripts?
 - If no, do you have a detailed description of your process?
- Are you using version control?
- Are you keeping track of your software?
 - Computer architecture;
 - OS/Software/tool/add ons (libraries/packages)/external databases
 - version numbers for everything (when available)
- Are you saving the right files?: if it's not reproducible, it's not worth saving
 - Save the data and the code
 - Data + Code = Output
- Are your reports human and machine readable?

Adapted from: https://github.com/DataScienceSpecialization/courses/blob/master/05 ReproducibleResearch/Checklist/Reproducible%20Research%20Checklist.pdf

Write instructions

- Optimal: the instructions should be an automated script file (ie, "code")
- Minimum: Written instructions that allow for the <u>complete</u> reproduction of your analysis

Research is repetitive

- Replication
- Same assay, different samples
- Longitudinal experiments

http://xkcd.com/242/

Doing things by hand is...

- Slow
- Hard to document
- Hard to repeat

Example: Making graphs

Describe how to make a bar graph in excel

Automation

- Fast
- Easy to document
- Easy to repeat
- Write scripts or save log files

Example: Making graphs

• Use a script

```
#download the file
download.file(url = "http://libguides.colostate.edu/ld.php?content_id=27156359",
              destfile = "ex1.csv",
              method="libcurl")
#Load the data from the file into an R variable
height<-read.csv("ex1.csv", row.names="Country")
#Now let's plot the data:
counts<-t(as.matrix(height)) #converts the variable height to a format that
#can be plotted
counts<-counts-145
                              #transforms the data so it looks like the excel plot
barplot(counts,
                             #the height of the bar
        beside = TRUE,
                              #put cols next to eachother
        main="Height by country in males and females", #plot title
                                #X axis label
       xlab="Country",
       ylab="Height (cm)",
                                #Y axis label
        col=c("blue", "red"),
                               #bar colors
                                #shifts the axis to make it look like excel
       offset=145,
       ylim=c(145,190),
                                #y axis limits
       las=1)
                                #horizontal text
axis(side=2,
                                #marks on the left of axis
     at=c(145,150,155,160,165,170,175,180,185), #where you want ticks
    las=1) #horizontal text
legend(x=0, y=190, #coordinates of where you want the legend to go
      legend=c("Males", "Females"), #legend text label
      col=c("blue", "red"),
                                     #colors
      pch=15)
                                     #shape of legend
```

Height by country in males and females

Details to record for processing/analysis

- What software was used? (R Studio, script)
- Does it support log files/scripts? (yes!)
- What version # and settings were used? (R version 3.3.2)
- What else does the software need to run?
 - Computer architecture
 - OS/Software/tool/add ons (libraries/packages)
 - External databases

In R: the sessionInfo() command

Intuitive version control

http://phdcomics.com/comics.php?f=1531

"FINAL".doc

FINAL.doc!

FINAL_rev.2.doc

FINAL_rev.6.COMMENTS.doc

FINAL_rev.8.comments5. CORRECTIONS.doc

JORGE CHAM @ 2012

FINAL_rev.18.comments7.

FINAL_rev.22.comments49. corrections 9. MORE. 30. doc corrections. 10. #@\$%WHYDID ICOMETOGRADSCHOOL????.doc

WWW.PHDCOMICS.COM

Version Control

- A system that records changes to a file or set of files over time so that you can recall specific versions later
 - https://git-scm.com/doc
 - Saves EVERYTHING
 - Records who made what change
 - Identifies conflicting changes
- Not just for code

Make an empty GitHub

• Github.com

Create a new repository

Tell R Studio where git is

*if you don't' know where git is installed, try

• Mac terminal: which git

PC: where git.exe

Make a new version control project

^{*}auto-recognizes version control if you select an existing directory

Select git, select options

Clone

Remote

Local

Add files

- Check boxes to add files to the "staging area"
 - Gets them ready to be added (committed) to the repository

Staging area vs. repository

Commit files

- Click "commit"
- Write a commit message
- Click "commit"
 - Adds the changes to the repository

Staging area vs. repository

Push to remote

Push

Limitation:

- Can't play with history other than a simple revert
- Can access the command line

Literate programming

=
human readable (text)
+
machine readable (code)

R markdown

R Markdown

- Open
- Write
- Embed
- Render

learn more at rmarkdown.rstudio.com

rmarkdown 0.2.50 Updated: 8/14

https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf

Install knitr and markdown packages

- Tools > install packages
- Enter the package name (will autocomplete)
 - Knitr
 - Markdown
 - TeX (if you want to knit to PDF)
- OR install.packages("knitr")

Open/Create a markdown document

Write: useful syntax

- Plain text
- *italics* -> italics
- **bold** -> bold
- #Header -> Header (more # decreases size)
- · Can also draw:
 - Insert pictures
 - Ordered and unordered list
 - Tables

Embed code

- Inline Use variables in the human readable text
 - `r 2 + 2`
- Code chunks Include working code that generates output
 - ```{r}
 - #Code goes here
 - • •
- Display Options –

option	default	effect
eval	TRUE	Whether to evaluate the code and include its results
echo	TRUE	Whether to display code along with its results
warning	TRUE	Whether to display warnings
error	FALSE	Whether to display errors
message	TRUE	Whether to display messages
tidy	FALSE	Whether to reformat code in a tidy way when displaying it
results	"markup"	"markup", "asis", "hold", or "hide"
cache	FALSE	Whether to cache results for future renders
comment	"##"	Comment character to preface results with
fig.width	7	Width in inches for plots created in chunk
fig.height	7	Height in inches for plots created in chunk

For more details visit <u>yihui.name/knitr/</u>

Render

- Won't render unless the code runs with no errors
 - You know it should be reproducible
- Render using the knit function
- Output Formats
 - Knit HTML
 - Knit PDF requires TeX
 - Knit Word

```
Untitled1 *

| ABC | ? | Knit HTML |

| title: "Untitled"
| author: "C. Tobin Magle"
| date: "April 21, 2016"
| output: html_document
| 6 - ---
```


Reproducible research checklist

- Think about the entire pipeline: are all the pieces reproducible?
- Is your cleaning/analysis process automated?— guarantees reproducibility
 - Are you doing things "by hand"? editing tables/figures; splitting/reformatting data
 - Does your software support log files or scripts?
 - If no, do you have a detailed description of your process?
- Are you using version control?
- Are you keeping track of your software?
 - Computer architecture;
 - OS/Software/tool/add ons (libraries/packages)/external databases
 - version numbers for everything (when available)
- Are you saving the right files?: if it's not reproducible, it's not worth saving
 - Save the data and the code
 - Data + Code = Output
- Are your reports human and machine readable?

Adapted from: https://github.com/DataScienceSpecialization/courses/blob/master/05 ReproducibleResearch/Checklist/Reproducible%20Research%20Checklist.pdf