信号解析基礎 ~フーリエ変換の性質と公式~

明治大学 森勢将雅

前半の内訳

- 序論(聴覚,正弦波,信号処理分野の概観)
- 線形システムと畳み込み
- フーリエ級数とフーリエ展開
- フーリエ変換
- フーリエ変換の性質と公式
- デルタ関数と窓関数
- ラプラス変換と伝達関数

フーリエ変換に関する公式

- 色々あるが主要なものに絞って紹介
 - 線形性に関する公式
 - 時間領域シフト
 - 周波数領域シフト
 - 畳み込み定理
- これらの公式を活用し、より複雑なフーリ 工変換の公式を理解する
- 以下簡単のためにフーリエ変換 逆変換を
 - $-X(\omega) = \mathcal{F}[x(t)], x(t) = \mathcal{F}^{-1}[X(\omega)]$
 - と表記する

Wordで数式を打つためのメモ

- テキストボックス内で「Alt+;」と打てば数 式モードにできる
- 内部ではLaTeXに近い方法で数式を打てる
- フーリエ変換の記号は「¥scriptF」と打ち スペースを押せばOK

Wordで数式

- 数式モードではLaTeXに近い書式が可能
 - ¥omega で ω を出せる。他の記号も対応。
 - $-a_0$ で a_0 を出せる
 - $-a^2$ で a^2 を出せる
 - -1/2で $\frac{1}{2}$ を出せる
 - ¥leqで≤を出せる(等号などを出す記号)
 - cosやsinやlogなどはそのまま入力しスペースを押せば良い(たまにイタリックで記載する人がいるが、それは間違いです)

線形性の説明

- フーリエ変換は線形の演算である
- $\mathcal{F}[\alpha x(t) + \beta y(t)] = \alpha X(\omega) + \beta Y(\omega)$
- 定数倍については以下で導ける

$$-\int_{-\infty}^{\infty} \alpha x(t)e^{-j\omega t}dt = \alpha \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

- 2関数の和についても以下のとおり
 - $-\int_{-\infty}^{\infty} (x(t) + y(t))e^{-j\omega t}dt \mathcal{D} \mathcal{D}$
 - $-\int_{-\infty}^{\infty} x(t)e^{-j\omega t} + y(t)e^{-j\omega t} dt$
 - $-\int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt + \int_{-\infty}^{\infty} y(t)e^{-j\omega t}dt$

時間領域シフト

- $\mathcal{F}[x(t-\tau)] = e^{-j\tau\omega}X(\omega)$
 - 導出してみよう (制限時間7分)
 - ヒント:置換積分を利用する

周波数領域シフト

- $\mathcal{F}[e^{i\omega_0 t}x(t)] = X(\omega \omega_0)$
- ・ 導出してみよう (制限時間3分)
 - ヒント:時間領域シフトの逆パターン

畳み込み定理

- $\mathcal{F}[x(t) * h(t)] = X(\omega)H(\omega)$
 - 時間領域の畳み込みは周波数領域での積になる
 - この定理はディジタル信号処理において革命的 な意味を持つ
 - 導出してみよう (制限時間10分)
 - ヒント:フーリエ変換のexp関数に着目.

畳み込みに関する公式の説明

- ・ 2回目講義の内容の再掲
 - 交換律: x(t) * h(t) = h(t) * x(t)
 - 結合律: (x(t) * h(t)) * y(t) = x(t) * (h(t) * y(t))
 - 分配律:x(t)*(h(t)+y(t)) = x(t)*h(t)+x(t)*y(t)
 - -スカラー倍:<math>a(x(t)*h(t)) = ax(t)*h(t) = x(t)*ah(t)
- 周波数領域に置き換えれば一目瞭然

これらの定義を活用した問題

• 先週やった問題の別法

$$-x(t) = \begin{cases} t+1, & -1 < t < 0 \\ -t+1, & 0 \le t < 1 \\ 0, & \text{otherwise} \end{cases}$$

- 上記のスペクトルX(ω)を計算してみよう (制限時間5分)
- x(t)は矩形波y(t)同士の畳み込みである。

$$-y(t) = \begin{cases} 1, & |t| < 0.5 \\ 0, & \text{otherwise} \end{cases}$$

問題の解答

• 当日やります.

もう1問

•
$$x(t) = \begin{cases} 1, & 0 < t < 1 \\ 0, & \text{otherwise} \end{cases}$$

上記のスペクトルX(ω)を計算してみよう (制限時間5分)

• 以下の式の時間シフトとして計算可能

$$-x(t) = \begin{cases} 1, & |t| < 0.5 \\ 0, & \text{otherwise} \end{cases}$$

問題の解答

• 当日やります.

本日のまとめ

- フーリエ変換に関する特性と計算力の強化
 - 特に畳み込み定理と正弦波のフーリエ変換周辺の知識は、ディジタル領域の演算をする際にも重要な意味を担う
- 次回予告
 - デルタ関数と窓関数
 - デルタ関数は前回説明したとおり
 - 窓関数を用いることで時系列信号の解析への応 用範囲が大幅に広がる