Foundations of Physics 2B/3C

2019-2020

Thermodynamics – Lecture 5 Recap

- Saw how the two statements of the Second Law of Thermodynamics are logically equivalent.
- Looked at a Carnot Cycle in more detail, and showed that the ratio of the heat interactions is the same as the temperatures of the reservoirs,

$$\frac{|Q_L|}{Q_H} = \frac{T_L}{T_H} \Rightarrow \eta_{Carnot} = 1 - \frac{T_L}{T_H} \; ; COP_{L\,Carnot} = \frac{T_L}{T_H - T_L} \; ; \; COP_{H\,Carnot} = \frac{T_H}{T_H - T_L}.$$

- Looked at the Carnot Principles, which tell us that no engine can be more efficient than a Carnot Cycle.
- Considered how real engines can be modelled, including an efficiency calculation.

Thermodynamics – Lecture 6 Aims

- To finish looking at real engine refrigeration cycles, including the Stirling Cycle.
- To consider the Clausius Inequality, and what it means from a thermodynamic perspective.
- To be introduced to the concept of entropy as a thermodynamic function of state.
- To see how to calculate entropy changes in standard thermodynamic processes.

Only nett external heat from isothern. Refrigeration cycles - Don't break and law, work is supplied to move heat from rold to hot Fridges - Remove heat from a cold place to hot environment Heat pump - Bilds heat to a hot place from a cold environment The Mork compresses gas until hotter than the environment

Throttle

Throttle

Heat rejected to the environment Heat rejected to the environment using the condenser Ti Exponetor 5 Using the condenser

Work Throttle the gas

(expansion) to coolit Gas temp T < To (lower than Andge) so heat taken by evaporation 12 Clausius Inequality. Mathematical representation of and Law, places a direction on a process. Helps us understand heat flow in cycles I SQ is the heat

Supplied rejected to the cycle's working substance] Integral of hect around the cycle A totally ruesble cycle $\int SO_{rev} = 0$ Schrev is healt added/removed reversibly

	Consider two engines operating between TH and TZ
G [A: Carnot, takes in heat $ Q_H $ Dues work $W = - W < O$ Rejects heat $- Q_2 < O$ B: Real [imperfect] engine, again (askes in heat $ Q_H $ To be less work than A $ W < W $; $W < O$ Reject more heat to cold $ Q_2 > Q_2 $; $ Q_2 < O$
	Reviolde 10/21 - TZ - 10/21 - OH TZ - TH
	$0 = \frac{Q_H}{T_H} - \frac{1Q_L}{T_L} \text{or} \frac{Q_H}{T_H} + \frac{Q_L}{T_L} = 0$ $T_H = \frac{1}{L} T_L = 0$ $T_H = \frac{1}{L} T_L = 0$ $T_H = \frac{1}{L} T_L = 0$ $T_L = 0$ T_L
	Real engine QH, TH, Te as before but 10/2/7/02
	· · · · · · · · · · · · · · · · · · ·
	Proof 13:1 generalise to many reservoirs & SQ TO

Thermodynamics - Handout 6

Figure 23: Heat entering through one part of an engine cycle.

Figure 14: Heats entering a cycle from a number of Carnot cycles that are all connected to a single hot reservoir

Generalise to any cycle, operating between many heat reservoirs. Differential heat δQ_i enters the cycle when interacts with reservoir at temperature T_i . The total cycle work (of left) is given by,

St law
$$dU = 80+8W$$

$$dU = 0 \text{ (y,le)}$$

$$\Delta W = \sum_{cycle} \delta Q_i \quad \text{worny closet Signs}$$

More generally, the heat into a cycle comes from the heat rejected by a number of Carnot cycles, which all share a common hot reservoir

Add arrows
$$\delta Q_i' = \delta Q_i + \delta W_i$$
; $\delta Q_j' = \delta Q_j + \delta W_j$.

one can current Differential heats so no signs?

Each Cournet $\frac{Q_H}{|Q_L|} = \frac{T_H}{T_L}$ $\frac{Q_{PH}}{T_H} = \frac{|Q_L|}{T_L}$

Heat from reservor at T = Heat rejected to reservor at T_i :

 $\frac{\delta Q_i'}{T} = \frac{\delta Q_i}{T_i'} \Rightarrow \frac{\delta Q_i'}{T_i'} + \frac{\delta Q_i'}{T_i'}$

SWi = $T \underline{\delta Q_i'} - \delta Q_i'$

As shown, engage on left bots little a kelum violator. Not allowed

Total Work
$$\leq 0$$
 to avoid violating holom

Total Work = Cycle Work + All Carnot Works

WT = $\Delta W + \sum_{cycle} \delta W \cdot \leq 0$

WT = $\sum_{cycle} \delta G \cdot + \sum_{cycle} \sum_{cycle}$

Example 13.1: Simple entropy calculations

Adiabatic Expansion:

$$\Delta S = \int \frac{\delta Q}{T} = 0.$$

Isothermal Expansion:

$$\Delta S = \int_A^B \frac{\delta Q_{rev}}{T} = \frac{1}{T_0} \int_A^B \delta Q_{rev} = \frac{(\Delta Q_{rev})}{T_0}.$$

Temperature change at constant volume:

$$S_B - S_A = \int dS = \int_A^B \frac{C_V dT}{T} = C_V \ln \left(\frac{T_B}{T_A}\right).$$

$\sim \frac{13}{2}$	Encropy
	For a cycle when heat added reversibly $\int \frac{80 \text{ ms}}{T} = 0$
	So rev must be a function of state lexant differential)
	and is called entropy, dentated S
	IT integrating factor of 800 to make it exact.
	Calculate the entropychange between two states, independent of the path
	$\frac{dS = SQ_{TW}}{T}, \Delta S = \int_{A}^{B} dS = S_{B} - S_{A} = \int_{A}^{B} SQ_{TW}$
× .	Temperature in Kelvin. Around cycle of dS = 0
	1st law concerned with total energy, U and law " entropy, S' [Quality of energy]
	Entropy describes energy quality (how much work is
	As Clause inequality (for heat interaction around cycle)
	becomes more n'egative, engre rejects more heat so
	As Clause inequality (for heat interactions around cycle) becomes more negative, engine rejects more heat so does less work. This corresponds to Universe entropy increase.
	Les Work => Lover efficiency => Smaller temp difference
	Reduced energy greatity [Better than disorder]

Example 13.1: Simple entropy calculations

Adiabatic Expansion:

$$\Delta S = \int \frac{\delta Q}{T} = 0$$
. Thermally isolated, $\delta Q = 0$

Isothermal Expansion: Constant temp, To

$$\Delta S = \int_{A}^{B} \frac{\delta Q_{rev}}{T} = \frac{1}{T_{0}} \int_{A}^{B} \delta Q_{rev} = \frac{(\Delta Q_{rev})}{T_{0}}.$$
Temperature change at constant volume:
$$C_{V} = \left(\frac{\partial Q}{\partial T}\right)_{V}, \quad \delta Q = C_{V} dT$$
Heat added/removed revealibly at constant temperature
$$C_{V} = \left(\frac{\partial Q}{\partial T}\right)_{V}, \quad \delta Q = C_{V} dT$$

$$C_{V} = \left(\frac{\partial Q}{\partial T}\right)_{V}, \quad \delta Q = C_{V} dT$$

$$C_V = \left(\frac{\partial Q}{\partial T}\right)_V$$
, $\delta Q = C_V dT$

$$S_B - S_A = \int_A^B dS = \int_A^B \frac{C_V dT}{T} = C_V \ln \left(\frac{T_B}{T_A}\right)$$
. Detive a function of temperature