Unit 3

The Relational Model

<e.g.> Supplier-and-Parts Database

S	S#	SNAME	STATUS	CITY
	S1	Smith	20	London
	S2	Jones	10	Paris
	S3	Blake	30	Paris
	S4	Clark	20	London
	S5	Adams	30	Athens

Р	P #	PNAME	COLOR	WEIGHT	CITY
	P1	Nut	Red	12	London
	P2	Bolt	Green	17	Paris
	Р3	Screw	Blue	17	Rome
	P4	Screw	Red	14	London
	P5	Cam	Blue	12	Paris
	P6	Cog	Red	19	London

)	S#	P #	QTY
	S1	P1	300
	S1	P2	200
	S1	Р3	400
	S1	P4	200
	S1	P5	100
	S1	P6	100
	S2	P1	300
	S2	P2	400
	S3	P2	200
	S4	P2	200
	S4	P4	300
	S4	P5	400

Outline

- □ 3.1 Introduction
- □ 3.2 Relational Data Structure
- □ 3.3 Relational Integrity Rules
- □ 3.4 Relational Algebra
- □ 3.5 Relational Calculus

3.1 Introduction

Relational Model [Codd, 1970]

- A way of looking at data
- A prescription for
 - representing data: by means of tables
 - manipulating that representation: by select, join, ...

<e.g.> Supplier-and-Parts Database

S#	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens
	S1	S1 Smith S2 Jones S3 Blake S4 Clark	S1 Smith 20 S2 Jones 10 S3 Blake 30 S4 Clark 20

P	P #	PNAME	COLOR	WEIGHT	CITY
	P1	Nut	Red	12	London
	P2	Bolt	Green	17	Paris
	P3	Screw	Blue	17	Rome
	P4	Screw	Red	14	London
	P5	Cam	Blue	12	Paris
	P6	Cog	Red	19	London

SP	S#	P#	QTY
	S1	P1	300
	S1	P2	200
	S1	P3	400
	S1	P4	200
	S1	P5	100
	S1	P6	100
	S2	P1	300
	S2	P2	400
	S3	P2	200
	S4	P2	200
	S4	P4	300
	S4	P5	400

Relational Model (cont.)

- Concerned with three aspects of data:
 - 1. Data structure: tables
 - 2. <u>Data integrity</u>: primary key rule, foreign key rule
 - 3. <u>Data manipulation:</u> (Relational Operators):
 - Relational Algebra (See Section 3.4)
 - Relational Calculus (See Section 3.5)
- Basic idea: relationship expressed in data values, not in link structure.

<e.g.> <u>Entity</u> <u>Relationship</u> <u>Entity</u>

Mark Works_in Math_Dept

Name	Dept
Mark	Math_Dept

Terminologies

• Relation : so far corresponds to a table.

Tuple : a row of such a table.

• Attribute : a column of such a table.

Cardinality : number of tuples.

Degree : number of attributes.

Primary key: an attribute or attribute combination that uniquely identify a tuple.

Domain : a pool of legal values.

3.2 Relational Data Structure

Three aspects of Relational Model:

- 1. Data structure: Tables
- 2. <u>Data integrity</u>: Primary key rule, Foreign key rule
- 3. <u>Data manipulation:</u> Relational Operators

Relations

• Definition : A relation on domains D_1 , D_2 , ..., D_n (not necessarily all distinct) consists of a *heading* and a <u>body</u>.

heading body

S#	SNAME	STATUS	CITY
S 1	Smith	20	London
S4	Clark	20	London

- *Heading*: a fixed set of attributes $A_1,...,A_n$ such that A_j underlying domain D_j (j=1...n).
- **Body:** a <u>time-varying</u> set of tuples.
- *Tuple:* a set of attribute-value pairs.

$$\{A_1:Vi_1,\ A_2:Vi_2,...,\ A_n:Vi_n\},\ where\ I=1...m$$

or

$$\{t_{1}, t_{2}, t_{3}, ...t_{m}\}$$

Domain

- Domain: a set of scalar values with the same type.
- Scalar: the smallest semantic unit of data, atomic, nondecomposable.
- **Domain-Constrained Comparisons**: two attributes defined on the same domain, then comparisons and hence joins, union, etc. will make sense.

A system that supports domain will prevent users from making <u>silly</u> mistakes.

Domain (cont.)

<e.g.>

Domain should be specified as part of the database definition.

SP

<e.g.> Supplier-and-Parts Database

S#	SNAME	STATUS	CITY
S 1	Smith	20	London
S2	Jones	10	Paris
S 3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

S

P#	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12	London
P2	Bolt	Green	17	Paris
P3	Screw	Blue	17	Rome
P4	Screw	Red	14	London
P5	Cam	Blue	12	Paris
P6	Cog	Red	19	London

S#	P#	QTY
S 1	P1	300
S 1	P2	200
S 1	P3	400
S 1	P4	200
S 1	P5	100
S 1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

CREATE	DOMAIN	<u>S#</u>	CHAR(5)
CREATE	DOMAIN	NAME	CHAR(20)
CREATE	DOMAIN	STATUS	SMALLIN
CREATE	DOMAIN	CITY	CHAR(15)
CREATE	DOMAIN	P#	CHAR(6)
CREATE	TABLE S		
	(S# <u>D</u>	OMAIN (S#) N	Not Null
	SNAME D	OMAIN (NAMI	Ξ),
	•		
	•		
CREATE	TABLE P		
	(P#	DOMAIN (P	#) Not Null,
	PNAME	DOMAIN (N	IAME).
	•		

DOMAIN (S#) Not Null, DOMAIN (P#) Not Null,

CHAR(5) CHAR(20) SMALLINT; CHAR(15) CHAR(6)

Properties of Relations

- There are no duplicate tuples: since relation is a mathematical set.
 - *Corollary*: the primary key always exists. (at least the combination of all attributes of the relation has the uniqueness property.)

	Tuples	are	unord	ered.
--	--------	-----	-------	-------

- Attributes are unordered.
- All attribute values are <u>atomic</u>.
 - i.e. There is only one value, not a list of values at every row-and-column position within the table.
 - i.e. Relations do not contain repeating groups.
 - i.e. Relations are *normalized*.

S#	SNAME	STATUS	CITY
S 1	Smith	20	London
S 2	Jones	10	Paris
	Blake	30	Paris
S4	Clark	20	London
S 5	Adams	30	Athens

Properties of Relations (cont.)

Normalization

S#	PQ
S1	{ (P1,300),
	(P2, 200),
	(P3, 400),
	(P4, 200),
	(P5, 100),
	(P6, 100) }
S2	{ (P1, 300),
	(P2, 400) }
S3	{ (P2, 200) }
S4	{ (P2, 200),
	(P4, 300),
	(P5, 400) }

S#	P#	QTY
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

- **degree** : 2
- domains:

$$S\# = \{S1, S2, S3, S4\}$$

$$PQ = \{ \langle p,q \rangle \mid p \in \{P1, P2, ..., P6\} \}$$

$$q \in \{x \mid 0 \le x \le 1000\} \}$$

- a mathematical relation

- degree: 3
- domains:

$$S# = \{S1, S2, S3, S4\}$$

$$P# = \{P1, P2, ..., P6\}$$

$$QTY = \{x | 0 \le x \le 1000\}\}$$

- a mathematical relation

Reason for normalizing a relation: Simplicity!!

Un-normalized

S#	P#	QTY
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

Normalized

<e.g.> Consider two transactions T1, T2:

Transaction T1: insert ('S5', 'P6', 500)

Transaction T2: insert ('S4', 'P6', 500)

There are difference:

- Un-normalized: <u>two</u> operations (one insert, one append)
- Normalized: <u>one</u> operation (insert)

Kinds of Relations

- Base Relations (Real Relations): a named, atomic relation; a direct part of the database. e.g. S, P
- **Views (Virtual Relations):** a named, derived relation; purely represented by its definition in terms of other named relations.
- Snapshots: a named, derived relation with its own stored data.

<e.g.>
 CREATE SNAPSHOT SC
 AS SELECT S#, CITY
 FROM S
 REFRESH EVERY DAY;

- A read-only relation.
- Periodically refreshed

- Query Results: may or may not be named, no persistent existence within the database.
- Intermediate Results: result of subquery, typically unnamed.
- **Temporary Relations:** a named relation, automatically destroyed at some appropriate time.

LS

View

Base table

Relational Databases

- Definition: A **Relational Database** is a database that is <u>perceived by the users</u> as a collection of *time-varying*, <u>normalized</u> relations.
 - Perceived by the users: the relational model apply at the external and conceptual levels.
 - *Time-varying:* the set of tuples changes with time.
 - *Normalized:* contains no repeating group (only contains atomic value).
- The **relational model** represents a database system at a <u>level of abstraction</u> that removed from the details of the underlying machine, like **high-level language**.

3.3 Relational Integrity Rules

Purpose:

to inform the DBMS of certain constraints in the real world.

Keys

- Candidate keys: Let R be a relation with attributes $A_1, A_2, ..., A_n$. The set of attributes K $(A_i, A_j, ..., A_m)$ of R is said to be a candidate key iff it satisfies:
 - *Uniqueness:* At any time, no two tuples of R have the same value for K.
 - *Minimum:* none of A_i , A_j , ... A_k can be discarded from K without destroying the uniqueness property.

Primary key: one of the candidate keys.

• Alternate keys: candidate keys which are not the primary key.

<e.g.> S#, SNAME: both are candidate keys S#: primary key SNAME: alternate key.

Note: Every relation has at least one candidate key.

S#	SNAME	STATUS	CITY
S1	Smith	20	London
S 2	Jones	10	Paris
	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

S#	P#	QTY
S 1	P1	300
S 1	P2	200
S 1	P3	400
S 1	P4	200
S 1	P5	100
S 1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

SP

Foreign keys (p.261 of C. J. Date)

- *Foreign keys*: Attribute FK (possibly composite) of base relation R2 is a foreign keys iff it satisfies:
 - 1. There exists a base relation R1 with a candidate key CK, and
 - 2. For all time, each value of FK is identical to the value of CK in some tuple in the current value of R1.

Two Integrity Rules of Relational Model

Rule 1: Entity Integrity Rule

No component of the primary key of a base relation is allowed to accept nulls.

Rule 2: Referential Integrity Rule

The database must not contain any <u>unmatched</u> <u>foreign key values</u>.

Note: Additional rules which is specific to the database can be given.

$$\langle \mathbf{e.g.} \rangle$$
 QTY = { $0 \sim 1000$ }

However, they are outside the scope of the relational model.

5	S#	SNAME	STATUS	CITY
	S1	Smith	20	London
	S2	Jones	10	Paris
	S 3	Blake	30	Paris
	S4	Clark	20	London
	S5	Adams	30	Athens

SP	S#	P#	QTY
	S 1	P1	300
	S 1	P2	200
	S 1	P3	400
	S 1	P4	200
	S 1	P5	100
	S 1	P6	100
	S2	P1	300
	S2	P2	400
	S3	P2	200
	S4	P2	200
	S4	P4	300
	S4	P5	400

Foreign Key Statement

Descriptive statements:

FOREIGN KEY (foreign key) REFERENCES target
NULLS [NOT] ALLOWED

DELETE OF target effect

UPDATE OF target-primary-key effect;

effect: one of {RESTRICTED, CASCADES, NULLIFIES}

<e.g.1> (p.269)

CREATE TABLE SP

(S# S# NOT NULL, P# P# NOT NULL,

QTY QTY NOT NULL,

PRIMARY KEY (S#, P#),

FOREIGN KEY (S#) REFERENCE S

ON DELETE CASCADE

ON UPDATE CASCADE,

FOREIGN KEY (P#) REFERENCE P

ON DELETE CASCADE

ON UPDATE CASCADE,

CHECK (QTY>0 AND QTY<5001));

How to avoid against the referential Integrity Rule?

- Delete rule: what should happen on an attempt to delete/update target of a foreign key reference
 - RESTRICTED
 - **CASCADES**
 - **NULLIFIES**

FOREIGN KEY (S#) REFERENCE S ON DELETE CASCADE ON UPDATE CASCADE. S# | SNAME STATUS S1 | Smith 20 London S2 Jones 10 Paris S3 Blake 30 **Paris** S4 | Clark 20 London S5 | Adams 30 Athens

S# P# QTY P1 **S**1 300 P2 **S**1 200 P3 S1400 P4 200 **S**1 P5 S1100 **S**1 P6 100 **S**2 P1 300 400 P2 200 **S**3 **S**4 200 **S**4 P4 300

P5

400

S4

SP

 $\langle e.g. \rangle$

User issues:

DELETE FROM S WHERE S#='S1'

System performs:

Reject!

Restricted:

Cascades:

DELETE FROM **SP** WHERE S#='S1'

Nullifies:

UPDATE SP SET S#=Null WHERE S#='S1'

3.4 Relational Algebra

Three aspects of Relational Model:

- 1. Data structure: Tables
- 2. <u>Data integrity</u>: Primary key rule, Foreign key rule
- 3. Data manipulation: Relational Operators
 - Relational Algebra
 - Relational Calculus

3.4.1 Introduction to Relational Algebra

 The relational algebra consists of a collection of eight high-level operators that operate on relations [defined by Codd, 1970]

Traditional set operations:

- Union (\cup)
- Intersection (∩)
- Difference (–)
- Cartesian Product / Times (x)

Special relational operations:

- Restrict (σ) or Selection
- Project (Π)
- Join (⋈)
- Divide (÷)

<e.g.> Supplier-and-Parts Database

S	S#	SNAME	STATUS	CITY
	S 1	Smith	20	London
	S 2	Jones	10	Paris
	S 3	Blake	30	Paris
	S 4	Clark	20	London
	S5	Adams	30	Athens

۱ ۱	P#	PNAME	COLOR	WEIGHT	CITY
	P1	Nut	Red	12	London
	P2	Bolt	Green	17	Paris
	P3	Screw	Blue	17	Rome
	P4	Screw	Red	14	London
	P5	Cam	Blue	12	Paris
	P6	Cog	Red	19	London

SP	S#	P#	QTY
	S 1	P1	300
	S 1	P2	200
	S 1	Р3	400
	S 1	P4	200
	S 1	P5	100
	S 1	P6	100
	S2	P1	300
	S2	P2	400
	S 3	P2	200
	S 4	P2	200
	S4	P4	300
	S4	P5	400

Relational Operators

Relational Operators (cont.)

Cartesian Product / Times (x)
$$\frac{x}{a_1} \quad \frac{y}{b_1} \quad \frac{z}{b_1} \quad \frac{w}{c_1}$$

$$a_1 \quad b_1 \quad b_2 \quad c_2$$

$$a_1 \quad b_1 \quad b_3 \quad c_3$$

$$a_2 \quad b_1 \quad b_1 \quad c_1$$

$$\vdots \quad \vdots \quad \vdots$$

$$R_1 \times R_2$$

Relational Algebra: property of closure

- The relational algebra consists of a collection of <u>eight high-level operators</u> that **operate on relations**.
- Each operator takes relations (one or two) as operands and <u>produce a</u> relation as result.
 - the important property of closure.
 - nested relational expression is possible.

$$R3 = \sigma(R1 \bowtie R2)$$

$$T_1 \leftarrow R_1 \text{ join } R_2$$

$$R_3 \leftarrow T_1 \text{ selection}$$

 $(OP_1(OP_1(A)) OP_3 B)$

SQL vs. Relational Operators

A SQL SELECT contains several relational operators.

SQL: SELECT S#, SNAME

FROM S, SP

WHERE S.S# = SP.S#

AND CITY = 'London'

AND QTY > 200

$$1> S\bowtie_{S\#} SP$$

$$2 > \mathbf{O}_{\text{CITY} = \text{'London'}, \text{QTY} > 200}$$

3> $\Pi_{\text{S\#,SNAME}}$

$$= |\Pi_{\text{S\#, SNAME}} (\sigma_{\text{CITY='London', QTY>200}} (S \bowtie_{\text{S\#}} SP))$$

3.4.2 Traditional Set Operations

- *Union Compatibility*: two relations are union compatible iff they have identical headings.
 - i.e.: 1. they have same set of attribute name.
 - 2. corresponding attributes are defined on the same domain.
 - objective: ensure the result is still a relation.

Union (\cup), Intersection (\cap) and Difference (–) require *Union Compatibility*, while Cartesian Product (X) don't.

S#	SNAME	STATUS	CITY
S 1	Smith	20	London
S 4	Clark	20	London

3	S#	SNAME	STATUS	CITY
	S 1	Smith	20	London
	S2	Jones	10	Paris

Traditional Set Operations: UNION

A, B: two <u>union-compatible</u> relations.

$$A:(X_1,...,X_m)$$

$$B:(X_1,...,X_m)$$

- A UNION B:
 - **Heading:** $(X_1,...,X_m)$
 - **Body:** the set of all tuples t belonging to either A or B (or both).
- Association:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

Commutative:

$$A \cup B = B \cup A$$

В	S#	SNAME	STATUS	CITY
	S 1	Smith	20	London
	S2	Jones	10	Paris

Traditional Set Operations: INTERSECTION

A, B: two <u>union-compatible</u> relations.

$$A:(X_1,...,X_m)$$

$$B:(X_1,...,X_m)$$

- A INTERSECT B:
 - Heading: $(X_1,...,X_m)$
 - **Body:** the set of all tuples t belonging to **both** A and B.
- **Association:**

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Commutative:

$$A \cap B = B \cap A$$

S#	SNAME	STATUS	CITY
S 1	Smith	20	London
S4	Clark	20	London

3	S#	SNAME	STATUS	CITY
	S 1	Smith	20	London
	S2	Jones	10	Paris

20

London

Traditional Set Operations: DIFFERENCE

• A, B: two <u>union-compatible</u> relations.

$$A:(X_1,...,X_m)$$

$$B:(X_1,...,X_m)$$

- A MINUS B:
 - **Heading:** $(X_1,...,X_m)$
 - **Body:** the set of all tuples t belonging to A and not to B.
- **Association:** No!

$$(A - B) - C \neq A - (B - C)$$

• Commutative: No!

$$A - B \neq B - A$$

S#	SNAME	STATUS	CITY
S 1	Smith	20	London
S 4	Clark	20	London

В	S#	SNAME	STATUS	CITY
	S 1	Smith	20	London
	S2	Jones	10	Paris

B - A	S#	SNAME	STATUS	CITY
	S 2	Jones	20	London

Traditional Set Operations: TIMES

Extended Cartesian Product (x):

Given:

A = {
$$a \mid a = (a_1,...,a_m)$$
}
B = { $b \mid b = (b_1,...,b_n)$ }

• Mathematical Cartesian product:

A x B = {
$$t \mid t = ((a_1,...,a_m),(b_1,...,b_n))$$
 }

• Extended Cartesian Product:

A x B = { t | t=
$$(a_1,...,a_m,b_1,...,b_n)$$
}
Coalescing

• **Product Compatibility:** two relations are product-compatible iff their *headings are disjoint*.

A x B (S#, SNAME, P#, PNAME, COLOR)

A and B are product compatible!

math.

 $A = \{x, y\}$ $B = \{y, z\}$

 $A \times B = \{(x,y),(x,z),(y,y),(y,z)\}$

Traditional Set Operations: TIMES (cont.)

<e.g.2> S (S#, SNAME, STATUS, CITY)
P (P#, PNAME, COLOR, WEIGHT, CITY)

S and P are *not* product compatible!

P RENAME CITY AS **PCITY**;

S x P (S#, ..., CITY, ..., **PCITY**)

Traditional Set Operations: TIMES (cont.)

• A, B: two product-compatible relations.

A:
$$(X_1,...,X_m)$$
, A = { a | a = $(a_1,...,a_m)$ }
B: $(Y_1,...,Y_n)$, B = { b | b = $(b_1,...,b_n)$ }

- A TIMES B: (A x B)
 - **Heading:** $(X_1,...,X_m,Y_1,...,Y_n)$
 - **Body:** { $c \mid c = (a_1,...,a_m,b_1,...,b_n)$ }
- Association:

$$(A \times B) \times C = A \times (B \times C)$$

Commutative:

$$A \times B = B \times A$$

S#_	P#
S1	P1
S1	P2
S1	P3
S1	P4
S1	P5
S1	P6
S2	P1
:	1:1
	.
S2	P6
S3	P1
	:
S3	P6
S4	P1
.	'.'
:	1:1
S4	P6
S5	P1
.	•
:	:
S5	P6

AXB

3.4.3 Special Relational Operations

- **Restriction:** a unary operator or monadic
 - Consider: A: a relation, X,Y: attributes or literal
 - **theta-restriction** (or abbreviate to just 'restriction'):

A WHERE X theta Y or
$$\mathbf{O}_{X \text{ theta Y}}(A)$$
(By Date) (θ) (By Ullman)

theta:=, <>, >, >=, <, <=, etc.

• The restriction condition (X theta Y) can be extended to be any Boolean combination by including the following equivalences:

$$(1) \ \sigma_{\text{C1 and C2}}(A) = \sigma_{\text{C1}}(A) \ \cap \ \sigma_{\text{C2}}(A); \quad (2) \ \sigma_{\text{C1 or C2}}(A) = \sigma_{\text{C1}}(A) \ \cup \ \sigma_{\text{C2}}(A); \quad (3) \ \sigma_{\text{not C}}(A) = A - \sigma_{\text{C}}(A)$$

• <e.g.> S WHERE CITY='London'? or $\sigma_{CITY='London'}(S)$

S	S#	SNAME	STATUS	CITY
	S1	Smith	20	London
	S2	Jones	10	Paris
	S 3	Blake	30	Paris
	S4	Clark	20	London
	S5	Adams	30	Athens

Special Relational Operations: Projection

- **Projection**: a unary operator.
 - Consider:

A : a relation

X,Y,Z: attributes

- A[X,Y,Z] or $\prod_{X,Y,Z}(A)$
- Identity projection:

$$A = A$$
 or $\Pi(A) = A$

• Nullity projection:

A[] =
$$\varnothing$$
 or $\Pi_{\varnothing}(A) = \varnothing$

<e.g.> P[COLOR,CITY]

COLOR	CITY	
Red	London	
Green	Paris	
Blue	Rome	
Blue	Paris	

Special Relational Operations: Natural Join

- Natural Join: a binary operator.
 - Consider:

A:
$$(X_1,...,X_m, Y_1,...,Y_n)$$

B: $(Y_1,...,Y_n, Z_1,...,Z_p)$

- A JOIN B (or A \bowtie B): <u>common attributes appear only once</u>. e.g. CITY $(X_1,...,X_m, Y_1,...,Y_n, Z_1,...,Z_p);$
- Association:

$$(A\bowtie B)\bowtie C = A\bowtie (B\bowtie C)$$

Commutative:

$$A \bowtie B = B \bowtie A$$

• if A and B have no attribute in common, then

$$A \bowtie B = A \times B$$

Special Relational Operations: Natural Join (cont.)

Special Relational Operations: Theta Join

- **A, B:** product-compatible relations, A: $(X_1,...,X_m)$, B: $(Y_1,...,Y_n)$
- theta : =, <>, <, >,.....
- $A \bowtie B = \mathbf{O}_{X \text{ theta } Y}(A \times B)$
- If theta is '=', the join is called *equijoin*.

 $\sigma_{\text{CITY} > PCITY}(S \ x \ (P \ RENAME \ CITY \ AS \ PCITY))$

S#	SNAME	STATUS	CITY	P#	PNAME	COLOR	WEIGHT	PCITY
S2	Jones	10	Paris	P1	Nut	Red	12	London
S2	Jones	10	Paris	P4	Screw	Red	14	London
S2	Jones	10	Paris	P6	Cog	Red	19	London
S3	Blake	30	Paris	P1	Nut	Red	12	London
S3	Blake	30	Paris	P4	Screw	Red	14	London
S3	Blake	30	Paris	P6	Cog	Red	19	London

Special Relational Operations: Division

Division:

• **A, B:** two relations.

$$A:(X_1,...,X_m, Y_1,...,Y_n)$$

$$B:(Y_1,...,Y_n)$$

- A DIVIDEBY B (or $A \div B$):
 - Heading: $(X_1,...,X_m)$
 - **Body:** all (X:x) s.t. (X:x,Y:y) in A for all (Y:y) in B

<e.g.> "Get supplier numbers for suppliers who supply all parts."

Special Relational Operations: primitive

- Which of the eight relational operators are <u>primitive</u>?
 - 1. UNION
 - 2. DIFFERENCE
 - 3. CARTESIAN PRODUCT
 - 4. RESTRICT
 - 5. PROJECT
- How to define the non-primitive operators by those primitive operators?
 - 1. Natural Join: $S \bowtie P$ s.city = p.city

 $\Pi_{S\#,SNAME,STATUS,CITY,P\#,PNAME,COLOR,WEIGHT}(\sigma_{CITY=PCITY}(S~X~(P~RENAME~CITY~AS~PCITY)))$

Special Relational Operations: primitive (cont.)

2. INTERSECT: $A \cap B = A - (A - B)$

Special Relational Operations: primitive (cont.)

3. DIVIDE: $A \div B = A[X] - (A[X] \times B - A)[X]$

3.4.4 BNF Grammars for Relational Operator

- 1. expression ::= monadic-expression | dyadic-expression
- 2. monadic-expression ::= renaming | restriction | projection
- 3. renaming ::= term RENAME attribute AS attribute
- 4. term ::= relation | (expression)
- 5. restriction ::= term WHERE condition
- 6. Projection ::= attribute | term [attribute-commalist]
- 7. dyadic-expression ::= projection dyadic-operation expression
- 8. dyadic-operation ::= UNION | INTERSECT | MINUS | TIMES | JOIN | DIVIDEBY

BNF Grammars for Relational Operator (cont.)

Relational Algebra v.s. Database Language:

- Example : Get supplier name for suppliers who supply part P2.
 - **SQL**:

SELECT S.SNAME FROM S, SP WHERE S.S# = SP.S# AND SP.P# = 'P2'

						1
S#	SNAME	STATUS	CITY	S#	P#	QTY
S 1	Smith	20	London	S 1	P1	300
S 1	Smith	20	London	S 1	P2	200
S 1	Smith	20	London	S 1	P3	400
S 1	Smith	20	London	S 1	P4	200
S 1	Smith	20	London	S 1	P5	100
S 1	Smith	20	London	S 1	P6	100
S2	Jones	10	Paris	S2	P1	300
S2	Jones	10	Paris	S2	P2	400
S 3	Blake	30	Paris	S 3	P2	200
S4	Clark	20	London	S4	P2	200
S4	Clark	20	London	S 4	P4	300
S4	Clark	20	London	S4	P5	400

• Relational algebra:

((S JOIN SP) WHERE
$$P# = 'P2'$$
) [SNAME]

or

$$\Pi_{\text{SNAME}} \left(\sigma_{\text{P\#='P2'}} \left(S \bowtie SP \right) \right)$$

What is the Algebra for?

- (1) Allow writing of expressions which serve as a high-level (SQL) and symbolic representation of the users intend.
- (2) Symbolic transformation rules are possible.

A convenient basis for optimization!

Back to p.3-61

3.5 Relational Calculus

Three aspects of Relational Model:

- 1. Data structure: Tables
- 2. <u>Data integrity</u>: Primary key rule, Foreign key rule
- 3. <u>Data manipulation:</u> Relational Operators
 - Relational Algebra
 - Relational Calculus

3.5.1 Introduction to Relational Calculus

- Based on first order predicate calculus (a branch of mathematical logic).
 - Originated by Kuhn for database language (1967).
 - Proposed by Codd for relational database (1972)
 - ALPHA: a language based on calculus, never be implemented.
 - QUEL: query language of INGRES, influenced by ALPHA.
- Two forms:
 - *Tuple calculus:* by Codd..
 - *Domain calculus:* by Lacroix and Pirotte.

Tuple Calculus

BNF Grammar:

<e.g.> "Get supplier number for suppliers in Paris with status > 20"

S	S#	SNAME	STATUS	CITY
	S 1	Smith	20	London
	S2	Jones	10	Paris
	S 3	Blake	30	Paris
	S4	Clark	20	London
	S5	Adams	30	Athens

Tuple calculus expression:

SX.S# WHERE SX.CITY='Paris' and SX.STATUS>20

tuple attribute WFF (Well-Formed Formula) variable

Tuple Calculus (cont.)

- **Tuple variable** (or Range variable):
 - A variable that "range over" some named relation.

In QUEL: (Ingres)

- RANGE OF SX IS S;
- RETRIEVE (SX.S#) WHERE SX.CITY = "London"

Tuple Calculus (cont.)

• Implicit tuple variable:

```
<e.g.>
    In SQL:
    SELECT S.S# FROM S WHERE S.CITY = 'London'
    In QUEL:
    RETRIEVE (SX.S#) WHERE SX.CITY='London'
```

Tuple Calculus: BNF

```
1. range-definition
  ::= RANGE OF variable IS range-item-commalist
2. range-item
  ::= relation | expression
3. expression
   ::= (target-item-commalist) [WHERE wff]
4. target-item
   ::= variable | variable . attribute [ AS attribute ]
5. wff
   ::= condition
       NOT wff
       condition AND wff
       condition OR wff
       IF condition THEN wff
       EXISTS variable (wff)
       FORALL variable (wff)
       (wff)
```

Tuple Calculus: BNF - Well-Formed Formula (WFF)

- (a) Simple comparisons:
 - SX.S# = 'S1'
 - SX.S# = SPX.S#
 - SPX.P# <> PX.P#
- (b) Boolean WFFs:
 - NOT SX.CITY='London'
 - SX.S#=SPX.S# AND SPX.P#<>PX.P#
- (c) Quantified WFFs:
 - **EXISTS:** existential quantifier

i.e. There exists an SP tuple with S# value equals to the value of SX.S# and P# value equals to 'P2'

• **FORALL:** universal quantifier

i.e. For all P tuples, the color is red.

<Note>: $FORALL\ x(f) = NOT\ EXISTS\ X\ (NOT\ f)$

[Example 1]: Get Supplier numbers for suppliers in Paris with status > 20

• SQL:

SELECT S#
FROM S
WHERE CITY = 'Paris' AND STATUS >20

STATUS S# | SNAME **CITY** S1 | Smith 20 London 10 Paris Jones S3 | Blake 30 Paris S4 | Clark 20 London S5 | Adams 30 Athens

• Tuple calculus:

Algebra:

$$\prod_{S\#} \left(\mathbf{O}_{CITY='Paris', \text{ and } STATUS>20}(S) \right)$$

[Example 2]: Get all pairs of supplier numbers such that the two suppliers are located in the same city.

Rename S FIRST, SECOND

• SQL:

$$(S.S\#)$$
 $(S.S\#)$

SELECT FIRST.S#, SECOND.S# FROM S FIRST, S SECOND

WHERE FIRST.CITY = SECOND.CITY AND FIRST.S# < SECOND.S#:

Tuple calculus:

Algebra:

$$\begin{split} &\Pi_{\text{FIRSTS\#,SECONDS\#}}\left(\boldsymbol{\mathsf{O}}_{\text{FIRSTS\#$$

{S1, S1}

{S1, S4}

{S4, S1}

 $[\{S4, S4]$

Output:

S# | SNAME |

Smith

S2 Jones

S3 Blake

S4 | Clark

S5 | Adams

STATUS

20

10

30

20

30

CITY

London

London

Athens

Paris

Paris

{S1,S4}{S2,S3}

[Example 3]: Get supplier names for suppliers who supply all parts.

• SQL:

SELECT SNAME
FROM S
WHERE NOT EXISTS

(SELECT * FROM P
WHERE NOT EXISTS
(SELECT * FROM SP
WHERE S# = S.S# AND P# = P.P#));

SX
S1 Smith

S# S1

Tuple calculus:

SX.SNAME
WHERE FORALL PX
(EXISTS SPX

 $P1, P2, ..., P6 \in PX$

(P3-43)

XISTS SPX S1

(SPX.S# = SX.S# AND SPX.P# = PX.P#))

Algebra:

 $\Pi_{\text{SNAME}} \left(\left(\left(\Pi_{\text{S\#,P\#}} \text{SP} \right) \div \left(\Pi_{\text{P\#}} \text{P} \right) \right) \bowtie S \right)$ $\begin{array}{c} \text{S1} \\ \end{array}$

<u> </u>		
P#		
P1		

D

S# P# QTY S1 P1

[参考用]

[Example 4]: Get part numbers for parts that either weigh more than 16 pounds or are supplied by supplier S2, or both.

• SQL:

```
SELECT P# FROM P
WHERE WEIGHT > 16
UNION
SELECT P# FROM SP
WHERE S# = 'S2'
```

Tuple calculus:

```
RANGE OF PU IS
(PX.P# WHERE PX.WEIGHT>16),
(SPX.P# WHERE SPX.S#='S2');
PU.P#;
```

• Algebra:

$$(\Pi_{P\#}(\mathbf{O}_{WEIGHT>16}P)) \cup (\Pi_{P\#}(\mathbf{O}_{S\#=S2}SP))$$

3.5.2 Relational Calculus v.s. Relational Algebra.

Calculus Only provide a notation for <i>formulate</i> the definition of that desired relation in terms of those given relation.
ppliers who supply part P2.
SX.S#, SX.CITY WHERE EXISTS SPX (SPX.S#=SX.S# AND SPX.P#= 'P2')
descriptive (what ?) non-procedural

("expressive power")

Relational Calculus = Relational Algebra

- Codd's reduction algorithm:
 - 1. Show that any calculus expression can be reduced to an algebraic equivalent.

 \bigcirc

Algebra \supseteq Calculus

2. show that any algebraic expression can be reduced to a calculus equivalent

Calculus \supseteq Algebra

 $Algebra \equiv Calculus$

Concluding Remarks

• Relational <u>algebra</u> provide a convenient target language as a vehicle for a possible implementation of the <u>calculus</u>.

Query in a calculus-based language.

e.g. SQL, QUEL, QBE, ...

Codd reduction algorithm

Equivalent algebraic expression

Optimization

More efficient algebraic expression

Evaluated by the already implemented algebraic operations

Result