实验二、基尔霍夫定律的研究

一、实验目的

- 1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。
- 2、进一步学会使用常见的实验仪器。

二、实验原理

基本霍夫定律是电路的基本定律。

- 1) 基本霍夫电流定律 对电路中任意节点,流入、流出该节点的代数和为零。即 $\Sigma I=0$
- 2) 基本霍夫电压定律 在电路中任一闭合回路,电压降的代数和为零。 即 Σ U=0

三、实验设备

序号	名 称	型号与规格	数量	备注
1	可调直流稳压电源	0∼30V	1	
2	数字万用表		1	
3	面包板		1	

四、实验内容

实验线路如图 2-1 所示

图 2-1

- 1、实验前先任意设定三条支路的电流参考方向,
- 2、按原理图的要求,分别将两路直流稳压电源接入电路。
- 3、用**数字万用表**的直流电压档分别测量两路电源及电元件上的电压值,记录表中。
- 4、验证 KVL, **计算电流**验证 KCL(计算电流时,请测量该支路上电阻的

阻值)

	I	R ₁₌	R_2	=	R ₃ =	_ <i>R</i> 4=_	$\underline{\hspace{1cm}}$ R_5	=		
被测量	E ₁	E2	Ufa	Uab	Uad	Ucd	Ude	I1FA	I ₂ BA	I3AD
	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(mA)	(mA)	(mA)
计算(分析)值	6	12								
仿真值	6	12								
测量值										
相对误差										

KVL 方程 1:

KVL 方程 2:

KCL 方程:

5、将 R_3 电阻替换成二极管 1N4148,A 端接正极,D 端接负极,连接电路并完成下面的数据记录。

			$R_1 = \underline{\hspace{1cm}}$	$R_2=$		$R_4=$	$R_5=$			
被测量	Eı	E2	Ufa	Uab	Uad	Ucd	Ude	I1FA	I2BA	I3AD
	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(mA)	(mA)	(mA)
计算值	6	12								
仿真值										
测量值										
相对误差										

(二极管导通吗?)

KVL 方程 1:

KVL 方程 2:

KCL 方程:

6、将 R_3 电阻替换成二极管 1N4148,A 端接负极,D 端接正极,连接电路并完成下面的数据记录。

			$R_1 = \underline{}$	R_2	=	$R_4=\underline{}$	$R_{5}=$			
被测量	E1	E2	Ufa	Uab	Uad	Ucd	Ude	I1FA	I2BA	I3AD
	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(mA)	(mA)	(mA)
计算值	6	12								
仿真值										
测量值										
相对误差										

(二极管导通吗?)

KVL 方程 1:

KVL 方程 2:

KCL 方程:

五、基尔霍夫定律的计算值:

六、相对误差的计算:

七、实验数据分析

八、误差分析

九、实验结论