CSE505 Homework#2

Chenglong Wang

1 Problem 1: Small-step Semantics

In the following context, we use symbol H for Heap, e for expressions, i for int values, x for variables, and l for lists of integers.

Heap we define the heap H as a map from variables to an pair of type (Int \times (list Int)). i.e. the heap H has the following type:

$$H: \mathsf{Var} \to \mathsf{Int} \times (\mathsf{list} \; \mathsf{Int})$$

Eval The function Eval(H, e) is the evaluation function for an expression, as defined in the lecture, Eval takes the current heap H and an expression e, the result is either a boolean or an integer depending on the type of e.

In the following rules, $H \mid s \to H' \mid s'$ can be pronounced as "Evaluate one step on the statement s under the current heap H will update the heap to H' and the statement is reduced to s'".

$$\frac{Eval(H,e) = n \quad H \ x = (i,l)}{H \mid \mathsf{Seq} \ \mathsf{Nop} \ s \to H \mid s} \text{ (Step-Nop)} \qquad \frac{Eval(H,e) = n \quad H \ x = (i,l)}{H \mid \mathsf{Assign} \ x \ e \to [x \mapsto (i,l)]H \mid \mathsf{Nop}} \text{ (Step-Assign)}$$

$$\frac{H \mid s_1 \to H_1 \mid s_1'}{H \mid \mathsf{Seq} \ s_1 \ s_2 \to H_1 \mid \mathsf{Seq} \ s_1' \ s_2} \text{ (Step-Seq)} \qquad \frac{Eval(H,e) = \mathsf{false}}{H \mid \mathsf{Cond} \ e \ s \to H \mid \mathsf{Nop}} \text{ (Step-Cond-F)}$$

$$\frac{Eval(H,e) = \mathsf{true}}{H \mid \mathsf{While} \ e \ s \to H \mid \mathsf{Nop}} \text{ (Step-While-F)}$$

$$\frac{Eval(H,e) = \mathsf{true}}{H \mid \mathsf{While} \ e \ s \to H \mid \mathsf{Nop}} \text{ (Step-While-T)}$$

$$\frac{Eval(H,e) = \mathsf{true}}{H \mid \mathsf{While} \ e \ s \to H \mid \mathsf{Seq} \ s \text{ (While} \ e \ s)} \text{ (Step-While-T)}$$

$$\frac{H \ x = (i,l)}{H \mid \mathsf{PushVar} \ x \to [x \mapsto (i,i::l)]H \mid \mathsf{Nop}} \text{ (Step-PushVar)}$$

$$\frac{H \ x = (i,[])}{H \mid \mathsf{PopVar} \ x \to \mathsf{Nop}} \text{ (Step-PopVar-E)}$$

$$\frac{H \ x = (i,i'::l)}{H \mid \mathsf{PopVar} \ x \to [x \mapsto (i',l)]H \mid \mathsf{Nop}} \text{ (Step-PopVar)}$$

2 Problem 2

Before proving the theorem, we first define the function nPushVar : Var \rightarrow Stmt \rightarrow Int.

```
\begin{array}{l} \operatorname{nPushVar} x \ \operatorname{Nop} := 0 \\ \operatorname{nPushVar} x \ (\operatorname{Assign} y \ e) := 0 \\ \operatorname{nPushVar} x \ (\operatorname{Seq} s_1 \ s_2) := \operatorname{nPushVar} x \ s_1 + \operatorname{nPushVar} x \ s_2 \\ \operatorname{nPushVar} x \ (\operatorname{Cond} e \ s) := \operatorname{nPushVar} x \ s \\ \operatorname{nPushVar} x \ (\operatorname{While} e \ s) := \operatorname{nPushVar} x \ s \\ \operatorname{nPushVar} x \ (\operatorname{PushVar} y) := \operatorname{if}(x \equiv y) \ \operatorname{then} \ 1 \ \operatorname{else} \ 0 \\ \operatorname{nPushVar} x \ (\operatorname{PopVar} y) := 0 \end{array}
```

Lemma 1. If a statement s has no While loops, starting from the heap H and $H \mid s \to H' \mid s'$, then for all x, length $(\operatorname{snd}(H'x)) + \operatorname{nPushVar} x s' \leq \operatorname{length}(\operatorname{snd}(Hx)) + \operatorname{nPushVar} x s$.

Proof. Proof by induction on s.

- Case s = Nop: In this case, no reduction of s can be derived, thus the property hold.
- Case $s = \text{Seq } s_1 \ s_2$: In this case, as $H \mid s \to H' \mid s'$, by the rule Step-Seq, there exists s_1' s.t.

$$H \mid s_1 \to H' \mid s_1' \tag{1}$$

and

$$s' = \operatorname{\mathsf{Seq}} s_1' \ s_2 \tag{2}$$

Thus, by induction and (1), we have the following property:

$$\mathsf{length}\;(\mathsf{snd}\;(H'\;x)) + \mathsf{nPushVar}\;x\;s_1' \leq \mathsf{length}\;(\mathsf{snd}\;(H\;x)) + \mathsf{nPushVar}\;x\;s_1 \tag{3}$$

According to the definition of nPushVar x s, we have that

$$\mathsf{nPushVar}\ x\ (\mathsf{Seq}\ s_1\ s_2) = \mathsf{nPushVar}\ x\ s_1 + \mathsf{nPushVar}\ x\ s_2 \tag{4}$$

and

$$nPushVar x (Seq s'_1 s_2) = nPushVar x s'_1 + nPushVar x s_2$$
 (5)

By substitution nPushVar x s'_1 and nPushVar x s_1 using 4 and 5, we have

$$length (snd (H' x)) + nPushVar x (Seq s'_1 s_2) \le length (snd (H x)) + nPushVar x (Seq s_1 s_2)$$
 (6)

Beside, as we have 2 and $s = \text{Seq } s_1 \ s_2$, replacing them in 6, we have

$$length (snd (H' x)) + nPushVar x s' < length (snd (H x)) + nPushVar x s$$
(7)

and then the case is proved.

- Case $s = \text{Cond } e \ s_1$. There are two subcases regarding to the value of e evaluated under H.
 - **Sub-Case** Eval H e = **false**: According to the rule Step-Cond-F, after evaluation, s' = Nop and H' = H. Thus

length (snd
$$(H x)$$
) + nPushVar $x s'$ = length (snd $(H x)$)

and

length (snd
$$(H x)$$
) \leq length (snd $(H' x)$) + nPushVar x s

So the property holds for this sub-case.

- **Sub-Case** Eval H e = **true** According to the rule Step-Cond-T, $s' = s_1$ and H' = H. By definition of nPushVar, we have nPushVar x (Cond e s_1) = nPushVar x s_1 . Thus we have

length (snd
$$(H'x)$$
) + nPushVar $x s'$ = length (snd (Hx))

and

$$\mathsf{length}\;(\mathsf{snd}\;(H\;x)) \leq \mathsf{length}\;(\mathsf{snd}\;(H\;x)) + \mathsf{nPushVar}\;x\;s$$

And the sub-case is proved.

With both of the subcase proved, we have the case proved.

- Case $s = \text{While } e \ s_1$. As we required that there is no While in s, this case does not exist.
- Case s = PushVar y. There are two subcases based on whether y is x or not.

- **Sub-case:** $y \equiv x$, in this case, length(H'x) = length(Hx) + 1, while nPushVar x = nPushVar x + 1. So we have

length (snd
$$(H'x)$$
) + nPushVar x s' = length (snd (Hx)) + nPushVar x s

and the sub-case is proved.

- Sub-case: $y \neq x$, in this case, after step-reduction, snd $(H \ x) = \text{snd} \ (H' \ x)$ and the number of $PushVar \ x$ stay unchanged, so the lemma still holds.

Thus in the case the lemma holds.

- Case s = PopVar y. Similar to the previous case, there are two subcases regarding to the equivalence
 of x and y.
 - $x \equiv y$, then the number of nPushVar x remain the same but the length of snd H x is reduced by 1, which means that

length (snd
$$(H'x)$$
) + nPushVar x s' = length (snd (Hx)) - 1 + nPushVar x s

and the lemma holds.

- $x \neq y$, then both snd $(H \ x) = \text{snd} \ (H' \ x)$ and the number of PushVar x stay unchanged, so the lemma holds.

Having these two sub-cases proved, the lemma holds in this case.

With all the case proved, the lemma hold for all s and H.

Lemma 2. If a statement s with heap H can step to s' with heap status H', then for all x, we have length $(\operatorname{snd}(H'x)) + \operatorname{nPushVar} x s' \leq \operatorname{length}(\operatorname{snd}(Hx)) + \operatorname{nPushVar} x s$.

Proof. By induction on the number of derivation steps n.

- n=1, the case is proved according to the Lemma 1.
- n = k + 1, by induction, s with H can step k steps to s_1 with H_1 , and

$$length (snd (H_1 x)) + nPushVar x s_1 \leq length (snd (H x)) + nPushVar x s.$$
 (8)

As we can step from s_1 with H_1 to s' with H' in one step, according to Lemma 1, we have

length (snd
$$(H'x)$$
) + nPushVar $x s' \le \text{length (snd } (H_1x)) + \text{nPushVar } x s_1$. (9)

By combining 8 with 8, we have

$$length (snd (H'x)) + nPushVar x s' \le length (snd (H x)) + nPushVar x s$$
 (10)

So that the case is proved.

Then we have the lemma proved.

Property 1. If a statement s has no While loops and from the empty heap s can step to heap h' and statement s', then for all variables x, the length of the stack for x in h' does not exceed the number of PushVar x statements in s (the original statement).

Proof. By applying Lemma 2 with $H = \{ \forall x.x \mapsto (0, []) \}$, we have:

length (snd (
$$x$$
)) + nPushVar $x s' \le 0$ + nPushVar $x s$

By reduction, we have

length (snd
$$(H'x)$$
) \leq nPushVar $x s -$ nPushVar $x s'$

as nPushVar $x \, s'$ is alway greater than 0, we have:

length (snd
$$(H'x)$$
) \leq nPushVar x s

So the property is proved.