1 Allgemein

1.1 Potenzen und Wurzeln

$$-a^1 = a - a^0 = 1$$

$$\bullet \ a^{-n} = \frac{1}{a^n}$$

•
$$-a^{\frac{1}{n}} = \sqrt[n]{a} - a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

$$\bullet \ a^m a^n = a^{m+n}$$

•
$$\frac{a^m}{a^n} = a^{m-n}$$

$$\bullet \ (a^m)^n = a^{mn}$$

$$\bullet \ a^n b^n = (ab)^n$$

$$\bullet \ a^b = e^{b \ln a}$$

$$\bullet \ e^{a \ln b} = b^a$$

$$\bullet \ e^{a+b} = e^a \cdot e^b$$

•
$$e^0 = 1$$

1.2 Logarithmen

$$y = \log_a x \iff a^x = x$$

$$\bullet \ a^{\log_a x} = x$$

•
$$\log_a a^x = x$$

$$-\log_a a = 1 - \log_a 1 = 0$$

•
$$\log(uv) = \log(u) + \log(v)$$

•
$$\log(\frac{u}{v}) = \log(u) - \log(v)$$

- $\log(u^r) = r \log(u)$
- $\log_a x = \frac{\log_b x}{\log_b a}$
- $\ln(a \cdot b) = \ln(a) + \ln(b)$
- $\ln(1) = 0$

1.3 Trigonometrische Funktionen

Sinussatz:
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r$$

Cosinussatz:
$$a^2 = b^2 + c^2 - 2ab\cos\alpha$$

Tangens:
$$\tan(z) := \frac{\sin(z)}{\cos(z)}, z \notin \{\frac{\pi}{2} + \pi k\}$$

Cotangens:
$$\cot(z) := \frac{\cos(z)}{\sin(z)}, z \notin \{\pi k\}$$

$$\bullet \exp(iz) = \cos(x) + i\sin(z)$$

$$-\cos(z) = \cos(-z) - \sin(-z) = -\sin(z)$$

•
$$-\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} - \cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

$$-\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$$

$$-\cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w)$$

•
$$\cos(z)^2 + \sin(z)^2 = 1$$

$$-\sin(2z) = 2\sin(z)\cos(z)$$

$$-\cos(2z) = \cos(z)^2 - \sin(z)^2 = 1 - 2\sin^2(z) = 2\cos^2(z) - 1$$

- $\tan a = \frac{\sin a}{\cos a}$ $1 + \tan^2 a = \frac{1}{\cos^2 a}$

1.3.1 Komposition

$$\sin(\arccos(x)) = \sqrt{1 - x^2} \begin{vmatrix} \sin(\arctan(x)) = \frac{x}{\sqrt{1 + x^2}} \\ \cos(\arctan(x)) = \frac{1}{\sqrt{1 + x^2}} \\ \tan(\arcsin(x)) = \frac{x}{\sqrt{1 - x^2}} \end{vmatrix} \cos(\arcsin(x)) = \frac{x}{\sqrt{1 - x^2}}$$

1.3.2 Hyperbolisch

- $-\sinh = \frac{e^x e^{-x}}{2} \cosh = \frac{e^x + e^{-x}}{2} \tanh = \frac{\sinh(x)}{\cosh(x)}$
- $\cosh^2(x) \sinh^2(x) = 1$
- $\sinh(a+b) = \sinh(a)\cosh(b) + \cosh(a)\sinh(b)$
- $\cosh(a+b) = \cosh(a)\cosh(b) + \sinh(a)\sinh(b)$

1.3.3 Winkel

\deg	rad	\sin	\cos	\deg	rad	\sin	\cos
0	0	0	1	30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
90	$\frac{\pi}{2}$	1	0	120	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{-1}{2}$
135	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{-\sqrt{2}}{2}$	150	$\frac{2\pi}{3}$ $\frac{5\pi}{6}$ $\frac{7\pi}{6}$	$\frac{1}{2}$	$\frac{-\sqrt{3}}{2}$
180	π	0	-1	210	$\frac{7\pi}{6}$	$\frac{-1}{2}$	$\frac{-\sqrt{3}}{2}$
225	$\frac{5\pi}{4}$	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{2}}{2}$	240	$\frac{4\pi}{3}$	$\frac{-\sqrt{3}}{2}$	$\frac{-1}{2}$
270	$\frac{3\pi}{2}$	-1	0	300	$\frac{5\pi}{3}$	$\frac{-\sqrt{3}}{2}$	$\frac{1}{2}$
315	$\frac{7\pi}{4}$	$\frac{-\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	330	$\frac{11\pi}{6}$	$\frac{-1}{2}$	$\frac{\sqrt{3}}{2}$

• $\arccos(x) = \frac{\pi}{2} - \arcsin(x)$

1.3.4 Reduktion

$\sin\frac{\pi}{2} - a = \cos a$	$\cos \frac{\pi}{2} - a = \sin a$	$ \tan \frac{\pi}{2} - a = \frac{1}{\tan a} $
$\sin\frac{\pi}{2} + a = \cos a$	$\cos\frac{\pi}{2} - a = \sin a$ $\cos\frac{\pi}{2} + a = -\sin a$	$\tan \frac{\pi}{2} + a = \frac{-1}{\tan a}$
$\sin \pi - a = \sin a$	$\cos \pi - a = -\cos a$	$\tan \pi - a = -\tan a$
$\sin \pi + a = -\sin a$	$\cos \pi + a = -\cos a$	$\tan \pi + a = \tan a$
$\sin 2\pi - a = -\sin a$	$\cos 2\pi - a = \cos a$	$\tan 2\pi - a = -\tan a$
$\sin -a = -\sin a$	$\cos -a = \cos a$	$ \tan -a = -\tan a $
	_	

1.4 Sonstiges

Mitternacht:
$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$-\sqrt{i} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

Ellipse Gleichung: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Ellipse Volumen: πab

1.5 Komplexe Zahlen

Imaginary Number: $i, i^2 = -1$

Complex Number: $z, z = x + iy, x, y \in \mathbb{R}$

Set: $\mathbb{C} = \{x + iy | x, y \in \mathbb{R}\}$

Konjugate: $\overline{z} = x - iy$, z = x + iy

- $z \cdot \overline{z} = x^2 \cdot y^2 = |z|^2$
- $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$
- \bullet $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

Betrag: |z| Distanz zwischen z und Origin

- $|z| = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$
- $|z| = |\overline{z}|$
- $|z_1 + z_2| \le |z_1| + |z_2|$
- $|z_1 \cdot z_2| = |z_1||z_2|$
- $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$

Euler: $e^{i\gamma} = \cos \gamma + i \sin \gamma$

 $\bullet |e^{i\gamma}| = 1$

1.5.1 Arithmetic

Für $z_1 = a + ib = re^{i\gamma}, z_2 = b + id = se^{i\delta}$:

- $z_1 + z_2 = (a + ib) + (c + id) = (a + c) + i(b + d)$
- $z_1 \cdot z_2 = (a+ib) \cdot (c+id) = (ac-bd) + i(ad+bc)$ $-z_1z_2=rse^{i(\gamma+\delta)}$
- $\bullet \ \underline{z_1}_{z_2} = \underline{z_1 \cdot \overline{z_2}}_{z_2 \cdot \overline{z_2}} = \underline{z_1 \cdot \overline{z_2}}_{|z_2|}$ $-\frac{z_1}{z_2} = \frac{r}{2}e^{i(\gamma-\delta)}$
- $\sqrt[n]{z_1} = z_2 \implies z_1 = z_2^n = r^n e^{in\delta} \stackrel{!}{=} re^{i\gamma}$ $-s=\sqrt[n]{r}$ $-n\gamma = \gamma + 2\pi k, k = 0\dots n-1$

1.5.2 Polar Coordinates

 $z = x + iy \iff z = r(\cos \gamma + i \sin \gamma) \stackrel{Euler}{=} z = re^{i\gamma}$

- $-x = r \cos \gamma y = r \sin \gamma$
- $\gamma = \arccos \frac{x}{r} = \arcsin \frac{y}{r}$

• $\arg z = |z| \in [0, 2\pi[\implies r \text{ ist eindeutig bestimmt}]$

1.6 Rechenregeln Ableitung

 $\mathbf{f} + \mathbf{g} \colon (f+g)'(x_0) = f'(x_0) + g'(x_0).$ $\mathbf{f} \cdot \mathbf{g} \colon (f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$ $\frac{\mathbf{f}}{\mathbf{g}} \colon \left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}, \ g(x_0) \neq 0.$ $\mathbf{g} \circ \mathbf{f} \colon (g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$

1.7 Rechenregel Integral

Partiell: $\int_a^b f(x)g'(x)dx = f(x)g(x)|_a^b - \int_a^b f'(x)g(x)dx$ Substitution: $\int_{\phi(a)}^{\phi(b)} f(x)dx = \int_a^b f(\phi(t))\phi'(t)dt$

1.8 Bekannte Reihen

Reihe	Wert	konv.	div.	
Geometrische Reih	$q \in \mathbb{C}$			
$\sum_{k=0}^{\infty} aq^k$	a + aq +	$\frac{a}{1-q}$	g < 1	$ q \ge 1$
$\sum_{k=0}^{\infty} (k+1)q^k$	1 + 2q +	$\frac{1}{(1-q)^2}$		
Harmonische Reihe	Э			
$\sum_{k=1}^{\infty} \frac{1}{k}$		∞		
$\sum_{k=1}^{\infty} \frac{1}{k^2}$		$\frac{\frac{\pi^2}{6}}{\frac{\pi^4}{90}}$		
$\sum_{k=1}^{\infty} \frac{1}{k^4}$		$\frac{\pi^4}{90}$		
$\frac{\sum_{k=1}^{k=1} \frac{\overline{k^4}}{\overline{k^4}}}{\sum_{k=1}^{\infty} \frac{1}{\overline{k^a}}}$			a > 1	$a \leq 1$
Alternierende Harr	mon. Reihe			
$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$		ln 2		
$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2}$		$\frac{\pi^2}{12}$		
$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^4}$		$\frac{\pi^4}{720}$		
$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$	$1 - \frac{1}{3} + \frac{1}{5} -$	$\frac{\pi}{4}$		
Teleskopreihe				
$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$		1		
Exponentialfunktion	Exponential funktion $z \in \mathbb{C}$, konv.			
$\sum_{k=0}^{\infty} \frac{z^k}{k!}$	$1+z+\frac{z^2}{2!}+$	$\exp z$		
$\sum_{k=0}^{\infty} \frac{(-a)^k}{k!}$		$\frac{1}{e^a}$		
$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} -$	$\sin x$		
$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$	$1 - \frac{x^2}{2} + \frac{x^4}{4!} -$	$\cos x$		
$\frac{\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}}{\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}}$	$x + \frac{x^3}{3!} + \frac{x^5}{5!} +$	$\sinh x$		
$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$	$1 + \frac{x^2}{2} + \frac{x^4}{4!} +$	$\cosh x$		

1.9 Spezielle Summen

$\sum_{k=1}^{n} k$	$1+2+\cdots+n$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$1+4+\cdots+n^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$1+8+\dots n^3$	$\left(\sum_{k=1}^{\infty} k\right)^2$
$\sum_{k=1}^{n} (2k-1)$	$1+3+\cdots+(2n-1)$	n^2
$\sum_{k=1}^{n} (2k-1)^2$	$1+\cdots+(2n-1)^2$	$\frac{n(2n-1)(2n+1)}{3}$
$\sum_{k=0}^{n-1} q^k$	$1 + q + \dots = \frac{q^n - 1}{q - 1}$	$\frac{1-q^n}{1-q}, \ q \notin \{0,1\}$

1.10 Funktionen und deren Grenzwert

Funktion	Grenzwert	Bedingung
$\lim_{n\to\infty} a^n$	0	a < 1
$\lim_{n\to\infty} \sqrt[n]{a}$	1	a > 0
$\lim_{n\to\infty} \sqrt[n]{n^a}$	1	a > 0
$\lim_{n\to\infty} \sqrt[n]{n}$	1	
$\lim_{n\to\infty} \frac{\log_a n}{n}$	0	a > 1
$\lim_{n\to\infty} \frac{n^k}{a^n}$	0	a > 1
$\lim_{n\to\infty}\frac{a}{n!}$	0	
$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k}$	∞	
$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$	e	
$\lim_{n\to\infty} \left(1+\frac{a}{n}\right)^n$	e^a	
$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$	$\frac{1}{e}$	
$\lim_{n\to 0} \frac{\sin n}{n}$	1	
$\lim_{n\to 1} \frac{\ln n}{n-1}$	1	
$\lim_{n\to\infty} \frac{n^m}{\exp(an)}$	0	$m \in \mathbb{R}, a > 0$
$\lim_{n\to 0} \frac{\exp(n)-1}{n}$	1	
$\lim_{n\to 0} \frac{\ln(1+n)}{n}$	1	
$\frac{\lim_{n\to\infty}\frac{\ln n}{n^a}}{\lim_{n\to\infty}\frac{a^n-1}{n^a}}$	0	a > 0
$\lim_{n\to 0} \frac{a^{n-1}}{n}$	$\ln a$	a > 0
$\overline{\lim_{n\to 0}(n^a \ln n)}$	0	a > 0

1.11 Auf- und Ableitungen

	f'(x)	f(x)	F(x)
	sax^{s-1}	ax^s	$\frac{a}{s+1}x^{s+1}$
	$\frac{1}{x}$	$\ln(ax)$	$x \ln(ax) - x$
	$\frac{\frac{1}{x}}{\frac{1}{x+a}}$	$\ln(x+a)$	$x \ln(ax) - x$ $(x+a) \ln(x+a) + x$ $\frac{1}{a}e^{ax}$
	ae^{ax}	e^{ax}	$\frac{1}{a}e^{ax}$
	$\frac{-a}{x^2}$	$\frac{a}{x}$	$a \ln(x)$
	$\ln(a)ba^{bx}$		$\left \frac{a^{bx}}{\ln(a)b} \right $
I	` /	l	$1^{\ln(a)b}$ 2

	$\frac{1}{2\sqrt{x}}$	\sqrt{x}	$\frac{2}{3}x^{3/2}$
	$\frac{1}{x \ln(a)}$	$\log_a(x)$	$\frac{x(\ln(x)-1)}{\ln(a)}$
	$\cos(x)$	$\sin(x)$	$-\cos(x)$
_	$\frac{1}{x \ln(a)}$	$\log_a(x)$	$\frac{x(\ln(x)-1)}{\ln(a)}$
	$\cos(x)$	$\sin(x)$	$-\cos(x)$
_	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	$x \arcsin(x) + \sqrt{1 - x^2}$
-	$2\sin(x)\cos(x)$	$\sin^2(x)$	$\frac{x-\sin(x)\cos(x)}{2}$
<u></u>	$-\sin(x)$	$\cos(x)$	$\left \sin(x)\right ^2$
	$\frac{-1}{\sqrt{1-x^2}}$	$\arccos(x)$	$x \arccos(x) - \sqrt{1 - x^2}$
	$-2\sin(x)\cos(x)$	$\cos^2(x)$	$\frac{x+\sin(x)\cos(x)}{2}$
	$\frac{1}{\cos^2(x)} =$	$\tan(x)$	$-\ln(\cos(x))$
	$1 + \tan^2(x)$		
	$\frac{1}{1+x^2}$	$\arctan(x)$	$x \arctan(x) - \frac{\ln(x^2+1)}{2}$
	$2a(\cos(ax))^2 - a$	$\sin(ax)\cos(ax)$	$-\frac{1}{4a}\cos(2ax) =$
			$\frac{-(\cos^2(ax))}{2a}$
		$\sin(x)\sin^2(x)$	$\frac{\frac{2a}{-\sin^2(x)-2}}{3}\cos(x)$
		$\cos(x)\cos^2(x)$	$\frac{\sin(x)\cos^2(x)+2\sin(x)}{3}$
		$\sin(x)\cos^2(x)$	$\frac{-\cos^3(x)}{\sin^3(x)}$
		$\sin^2(x)\cos(x)$	$\frac{\sin^3(x)}{2}$
		$\sin(x)\sin(2x)$	$\frac{3}{-\sin(3x)+3\sin(x)}$
		$\cos(x)\cos(2x)$	$\frac{\sin(3x) + 3\sin(x)}{6}$
	$\frac{2x}{(x^2+1)^2}$	$\frac{x^2}{x^2+1}$	$x - \arctan(x)$
	$\frac{(x+1)}{-4x}$ $\frac{-4x}{(x^2+1)^3}$		$\frac{x}{2x^2+2} + \frac{\arctan(x)}{2}$
	$(x^2+1)^3$	$\begin{vmatrix} \frac{1}{(1+x^2)^2} \\ \frac{u'(x)}{u(x)} \end{vmatrix}$	$\frac{2x^2+2}{\ln u(x) }$
		$u^{(x)} \\ u'(x) \cdot u(x)$	$1(u(x)^2)$
		. , . ,	$\frac{\frac{1}{2}(u(x))}{\frac{a^2\arcsin(\frac{x}{ a })+x\sqrt{a^2-x^2}}{2}}$
	$\frac{-x}{\sqrt{a^2 - x^2}}$	$\sqrt{a^2-x^2}$	
	$\frac{x}{\sqrt{x^2+a^2}}$	$\sqrt{a^2 + x^2}$	$\frac{a^2 \ln(\sqrt{x^2 + a^2} + x) + x\sqrt{a^2 + x}}{2}$
	$x^x(1+\ln x)$	x^x	
	$e^{\ln x }(\ln(x)+1)$	$ x _1^x = e^{x \ln x}$	_1
	$\frac{-2}{(x+a)^3}$	$\frac{1}{(x+a)^2}$	$\left \frac{-1}{x+a} \right $
	$ \cosh(x) $	$\sinh(x)$	$\cosh(x)$
	$\frac{1}{\sqrt{1+x^2}}$	$\operatorname{arcsinh}(x)$	-:1- ()
	$ \frac{\sinh(x)}{1} $	$ \cosh(x) $ $ \operatorname{arccosh}(x) $	$\sinh(x)$
	$\frac{\frac{1}{\sqrt{x-1}\sqrt{x+1}}}{\frac{1}{\cosh^2(x)}} =$	$\tanh(x)$	$\ln(e^{2x} + 1) - x$
	$\frac{\cosh^2(x)}{\cosh^2(x)}$	vaim(x)	$\lim_{t \to \infty} (\varepsilon + 1) - x$
	$ \frac{1 - \tanh^2(x)}{\frac{1}{2x+2} - \frac{1}{2x-2}} $	$\operatorname{arctanh}(x)$	
	$2\overline{x+2} - \overline{2x-2}$	$\operatorname{arctann}(x)$	

2 Ordinary Differential Equations (ODE)

Equation where the unknown is a function y = f(x) and the equation relates values of y and its derivatives $y', y'' \dots$ at a single point x.

2.1 Properties

Order: Highest derivative appearing in the DE.

2.2 Linear Differential Equations

A linear ODE of order k is a DE of the form $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_1y' + a_0y = b$ where a_i, b, y are functions on $I \subset \mathbb{K}$. Meaning, all terms $y, y' \dots$ appear linearly.

2.2.1 Types

Homogenous Linear ODE: RHS b = 0Inhomogenous Linear ODE: RHS $b \neq 0$

2.2.2 Solutions

The general solution to a inhomogeneous linear ODE is $y = y_h + y_p$. The solutions set is $S_b = \{y_h + y_p\}$.

 $\mathbf{y_h}$: General solution to the homogeneous linear DE. S_0 is the solution set.

• S_0 is a vector space with dimension equal to the order of the DE

y_p: A particular solution the inhomogeneous linear DE.

Construction of Solutions The following follows from the linearity of the DE:

- If y_1 and y_2 are two different solutions to an inhomogeneous linear DE, then $y = c_1 \cdot y_1 + c_2 \cdot c_2$ is also a solution.
- Superposition: If y_1 solves the linear DE for RHS b_1 and y_2 solves the linear DE for RHS b_2 , then $y_1 + y_2$ solves the linear DE for RHS $b_1 + b_2$.

2.2.3 Initial Value Problem

For any DE of order k the initial condition is a set of k equations $y^{(i)}(x_0) = y_i, 1 \le i \le k$ at some initial point x_0 . For any k initial conditions there exists a unique solution y (valid for homogeneous and inhomogeneous).

R: Solve y' + ay = b

- 1. Compute $\int a dx = A(x)$
- 2. Formulate $y_h = ze^{-A(x)}$ for $z \in C$.
- 3. Calculate $y_p = (\int b(x)e^{A(x)}dx)e^{-A(x)}$.
- 4. Form general solution $y = y_h + y_p$.
- 5. If initial condition is given, solve for z.

2.3 Linear ODE With Constant Coefficients

Equivalent to regular linear ODE with the difference that $a_i \in \mathbb{C}$.

2.3.1 Characteristic Polynomial

For lin. ODE with constant coefficients $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_1y' + a_0y = 0$ the characteristic polynomial is $P(\lambda) = \lambda^k + a_{k-1}\lambda^{k-1} + \cdots + a_0$.

The k zeros of $P(\lambda)$ are the eigenvalues.

2.3.2 Solution

Any general solution is again of the form $y = y_h + y_p$.

Homogeneous y_h

- For district eigenvalues $\lambda_1, \ldots, \lambda_r$ with multiplicity m_1, \ldots, m_r the function $f_{j,l}, x \mapsto x^l e^{\lambda_j x}, \quad 1 \leq j \leq r, 0 \leq l < m_j$ gives a system of solutions. I.e. all terms are multiplied with a constant z_i and summed up.
- If $\lambda_i = \beta + i\gamma$ is a EV then so is $\bar{\lambda}_i = \beta i\gamma$.
- If a root λ_i is complex, i.e. $\lambda_i = \beta_i \pm i\gamma_i$, with multiplicity m_i then they contribute the system $x^l e^{\beta_i x} (\cos(\gamma_i x) + i \sin(\gamma_i x))$ to the solution.
- For complex roots $\beta + i\gamma$, which are part of a solution system, the following transformation is useful: $z_1 e^{(\beta+i\gamma)x} + z_2 e^{(\beta-i\gamma)x} = \tilde{z_1} e^{\beta x} \cos(\gamma x) + \tilde{z_2} e^{\beta x} \sin(\gamma x)$.

Inhomogeneous y_p

Method of Undetermined Coefficients/Ansatz Solution will be similar to disturbance function b(x).

b(x)	Ansatz
\overline{a}	b
$P_n(x)$	$Q_n(x)$
$P_n e^{\alpha x}$	$Q_n e^{lpha x}$
$P_n \sin(\beta x)$	$Q_n \sin(\beta x) + R_n \cos(\beta x)$
$P_n \cos(\beta x)$	$Q_n \sin(\beta x) + R_n \cos(\beta x)$
$P_n \cos(\beta x)$	$Q_n \sin(\beta x) + R_n \cos(\beta x)$
$P_n \sin(\beta x) + G_n \cos(\beta x)$	$Q_n \sin(\beta x) + R_n \cos(\beta x)$
$ae^{\alpha x}\sin(\beta x)$	$e^{\alpha x}(c\sin(\beta x) + d\cos(\beta x))$
$be^{\alpha x}\cos(\beta x)$	
$P_n(x)e^{\alpha x}$	$R_n(x)e^{\alpha x}$
$P_n(x)e^{\alpha x}\sin(\beta x)$	$e^{\alpha x}(R_n(x)\sin(\beta x) + S_n(x)\cos(\beta x))$
$Q_n(x)e^{\alpha x}\cos(\beta x)$	

- If b(x) is a lin. combination of functions we try Lin. comb. of Ansatz functions Superposition
- If λ_i is a EW with multiplicity m_i then we multiply the Ansatz by x^{m_i} .
- If a Ansatz is equal to solution of the homogeneous equation we have to multiply the Ansatz by x.

R: Solve using Ansatz

- 1. Select a suitable Ansatz and set y_p = chosen Ansatz (check special cases listed above).
- 2. Calculate required derivatives $y_p^{(i)}$.
- 3. Insert y_p and derivatives into the ODE.
- 4. Solve for the constant in the Ansatz.
- 5. y_p is equal the Ansatz with replaces constant.

Variation of Constants Assume k = 2, i.e. $y'' + a_1 y' + a_0 y = b$ and a homogeneous solution $y_h = z_1 f_1 + z_2 + f_2$, where f_1, f_2 are independent solutions.

For y_p we try $y_p = z_1(x)f_1 + z_2(x)f_2$. To determine the unknown functions $z_1(x), z_2(x)$ we try:

$$z'_1 f_1 + z'_2(x) f_2 = 0$$

 $z'_1 f_1 + z'_2(x) f_2 = b$

$$\underbrace{\begin{pmatrix} f_1 & f_2 \\ f_1' & f_2' \end{pmatrix}}_{-A} \begin{pmatrix} z_1'(x) \\ z_2'(x) \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix} \implies \begin{pmatrix} z_1'(x) \\ z_2'(x) \end{pmatrix} = A^{-1} \begin{pmatrix} 0 \\ b \end{pmatrix}$$

Which gives the particular solution $y_p = z_1(x)f_1 + z_2(x)f_2$.

2.4 Separation of Variables

A ODE is separable if it is of the form y' = b(x)g(y).

We can separate the variables x, y.

$$\frac{dy}{dx} = b(x)g(y) \implies \frac{dy}{g(y)} = b(x)dx \implies \int \frac{1}{g(y)} dy = \int b(x) dx$$

3 Differential Calculus in \mathbb{R}^n

3.1 Basics

3.1.1 Norm

For $x \in \mathbb{R}^n$ we use the norm $|x| = \sqrt{x_1^2 + \dots + x_n^2}$, which satisfies

 $\bullet \ |x| > 0 \quad \forall x \neq 0 \bullet |tx| = |t||x| \bullet |x+y| \leq |x| + |y|$

3.1.2 Set Properties

Subset $X \subset \mathbb{R}^n$ is:

Bounded: if $\{|x||x \in X\}$ is bounded.

Closed: if every sequence (x_k) in X for which $\lim_{k\to a}(x_k)=y,y\in\mathbb{R}^n$ we have $x\in X$.

Compact: if closed and bounded.

Open: if $\forall x \in X, \exists r > 0$ s.t. $\{y \in \mathbb{R}^n | |y - x| < r\} \subset X$.

- Equivalently, if its complements $\mathbb{R}^n \setminus X$ is closed.
- If $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ are bounded (or closed or compact or open), then $X \times Y = \{(x,y) \in \mathbb{R}^{n+m} | x \in X, y \in Y\}$ is bounded (or closed or compact or open).
- For $f: \mathbb{R}^n \to \mathbb{R}^m$ continuous, $\forall Y \subset \mathbb{R}^m$ closed, the set $f^{-1}(y) = \{x \in \mathbb{R}^n | f(x) \in Y\} \subset \mathbb{R}^n$ is closed. I.e. the inverse image of a closed set under a continuous map is closed.

3.1.3 Sequences

For sequence $(x_k)_k, x_k \in \mathbb{R}^n = (x_{k,1}, \dots x_{k,n})$ and $y \in \mathbb{R}^n = (y_1, \dots y_n), x_k$ converges to y as $k \to \infty$ if $\forall \epsilon > 0, \exists N \geq 1, \text{ s.t. } \forall n \geq N, |x_k - y| < \epsilon.$

We write $x_k \to y$ or $\lim_{k \to \infty} x_k = y$.

I.e. $\lim_{k\to\infty} x_k = y$, if one of the following holds:

- $\forall 1 \leq i \leq n$, the sequence $(a_{k,i})$ converges to y_i .
- $\lim_{k\to\infty} |x_k y| = 0.$

3.1.4 Limit of f

Function $f: X \subset \mathbb{R}^n \to \mathbb{R}^m$ has limit $y \in \mathbb{R}^m$ if for $x \to x_0, x_0 \in X$, $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall x \in X, x \neq x_0$, s.t. $|x - x_0| < \epsilon \implies |f(x) - y| < \delta$. In that case $\lim_{x \to x_0} f(x) = y$.

I.e. $\lim_{x\to x_0} f(x) = y \iff \forall \text{ sequences } (x_k) \text{ in } X, \text{ where } \lim_{k\to\infty} x_k = x_0, \text{ the sequence } \lim_{k\to\infty} f(x_k) = y.$

3.1.5 Min-Max-Theorem

For $X \subset \mathbb{R}^n$ compact and non-empty and for $f: X \to \mathbb{R}$ continuous. Then f is bounded and achieves a maximum $x^+, f(x^+) = \sup_{x \in X} f(x)$ and minimum $x^-, f(x^-) = \inf_{x \in X} f(x)$.

3.2 Continuity

at $\mathbf{x_0}$: for $f: X \subset \mathbb{R}^n \to \mathbb{R}^m, x_0 \in X$ if $\forall \epsilon > 0, \exists \delta > 0$ s.t. for $x \in X$ satisfies $|x - x_0| < \delta \implies |f(x) - f_0(x)| < \epsilon$.

on X: for $f: X \subset \mathbb{R}^n \to \mathbb{R}^m$ if x_0 continuous $\forall x_0 \in X$.

Function $f: X \subset \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $x_0 \in X \iff \forall$ sequences (x_k) in X, where $\lim_{k\to\infty} (a_k) = x_0$, the sequence $(f(x_k))$ in \mathbb{R}^m converges to $f(x_0)$. I.e. $\lim_{k\to\infty} f(x_k) = f(\lim_{k\to\infty} a_k)$.

3.2.1 Rules

If f, g are continuous then $f + g, f \cdot g, \frac{f}{g}, f \circ g$ are continuous.

3.2.2 Sandwich Lemma

If $f, g, h : \mathbb{R}^n \to \mathbb{R}$, where $f(x) < g(x) < h(x) \quad \forall x \in \mathbb{R}^n$ and for some $a \in \mathbb{R}^n$, $\lim_{y \to a} f(x) = \lim_{x \to a} h(x) = L$ then $\lim_{x \to a} g(x) = L$.

R: Polar Coordinates Trick

For $f: \mathbb{R}^2 \to \mathbb{R}$ check if continuous at 0. Let $f(x,y) = f(r\cos\delta, r\sin\delta)$. If $\lim_{(x,y)\to 0} f(x,y) = \lim_{r\to 0}$ is depen-

dant on $\delta \implies$ limes does not exists \implies not continuous at 0.

3.3 Partial Derivatives

For $X \subset \mathbb{R}^n$ open, the function $f: X \to \mathbb{R}^m$ has a partial derivative on X with respect to the $1 \leq i \leq n$ -th variable if $\forall x_0 = (x_{0,1}, \dots x_{0,n}) \in X$ the function $g_i(t) := f(x_{0,1}, \dots x_{0,i-1}, t, x_{0,i+1}, \dots x_{0,n})$ on the set $I = \{t \in \mathbb{R} | (x_{0,1}, \dots x_{0,i-1}, t, x_{0,i+1}, \dots x_{0,n}) \in X\}$ is differentiable at $t = x_{0,i}$. The derivative $g'(x_{0,i})$ is denoted as $\frac{\partial f}{\partial x_i}(x_0) = \partial x_i f(x_0) = \partial_i f(x_0)$.

• A partial derivative $\partial_i f$ can be derived again $\partial_{x_j}(\partial_{x_i} f) = \partial_{x_i,x_j} f = \frac{\partial^2 f}{\partial x_i \partial x_j}$. Or for repeated variables $\partial_{x_i}(\partial_{x_i}(f)) = \partial_{x_i^2} f = \frac{\partial^2 f}{\partial x_i^2}$.

3.3.1 Properties

For $X \subset \mathbb{R}^n$ open and $f, g: X \to \mathbb{R}^m$ and $1 \le i \le n$:

- If $\partial_i(f)$ and $\partial_i(g)$ exist, then $\partial_i(f+g) = \partial_i(f) + \partial_i(g)$.
- If m = 1 and if $\partial_i(f)$ and $\partial_i(g)$ exist, then $\partial_i(fg) = \partial_i(f)g + f\partial_i(g)$.
- If m = 1, if $\partial_i(f)$ and $\partial_i(g)$ exist and if $g(x) \neq 0 \forall x \in X$, then $\partial_i(\frac{f}{g}) = \frac{\partial_i(f)g f\partial_i(g)}{g^2}$.

3.3.2 Jacobi Matrix

For $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R}^m$ with partial derivatives on X, $f(x) = f_1(x), \dots f_m(x)$, the matrix $J_f(x) =$

$$(\partial_{j} f_{i}(x))_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} = \begin{pmatrix} \partial_{1} f_{1} & \partial_{2} f_{1} & \dots & \partial_{n} f_{1} \\ \partial_{1} f_{2} & \partial_{2} f_{2} & \dots & \partial_{n} f_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{1} f_{m} & \partial_{2} f_{m} & \dots & \partial_{n} f_{m} \end{pmatrix} \quad \forall x \in$$

X with m rows and n columns is the Jacobi matrix of f at x.

• $\det J_f(x)$ tells when the linear map f is invertible and when not.

3.3.3 Gradient

For $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R}$ with partial derivatives on X, the column vector $= (J_f(x_0))^T$ is

the gradient of f at x_0 denoted as $\nabla f(x_0)$.

• Slop is maximal in the direction of the gradient.

3.4 Differentiability

For $X \subset \mathbb{R}^n$ open, $x_0 \in X$ and $f: X \to \mathbb{R}^m$. f is differentiable at x_0 with differential $u: \mathbb{R}^n \to \mathbb{R}^m$ if $\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{1}{|x - x_0|} (f(x) - f(x_0) - u(x - x_0)) = \frac{R(x, x_0)}{|x - x_0|} = 0.$

- The linear map u is called **total differential** of fat x_0 and is denoted as $df(x_0)$ or $d_{x_0}f$.
- If f is differentiable $\forall x_0 \in X$ then f is differentiable on X.
- The map $df(x_0)$ can be represented as a $m \times n$ matrix $Df(x_0)$.
- $f(x) = f(x_0) + u(x x_0) + E(f, x, x_0)$, where
 - $-f(x_0) + u(x-x_0)$ is a linear affine function.

3.4.1 Properties

For $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R}^m$. f is differentiable at x_0 :

- f is continuous on x_0
 - if f is differentiable on X, then f is continuous on X
- f has all partial derivatives at x_0
- $df(x_0)$ is given by $Df(x_0) = J_f(x_0)$
 - if m = 1, then $df(x_0) = J_f(x_0) =$ $(\partial_i f(x_0), \dots \partial_n f(x_0))$

For $X \subset \mathbb{R}^n$ open and $f, g: X \to \mathbb{R}^m$ differentiable on X:

- f + g is differentiable and $d(f + g)(x_0) = df(x_0) +$ $dq(x_0)$.
- if m=1, then $f \cdot g$ is differentiable

• if m=1 and $f(x)\neq 0 \quad \forall x\in X$, then $\frac{f}{g}$ is differentiable

Chain Rule For $X \subset \mathbb{R}^n$ open, $Y \subset \mathbb{R}^m$ open and $f: X \to Y$ differentiable on X and $g: Y \to \mathbb{R}^p$ differentiable on Y. Then $g \circ f : X \to \mathbb{R}^p$ is differentiable and $d(g \circ f)(x_0) = dg(f(x_0)) \cdot df(x_0).$

• The Jacobi satisfies $J_{q \circ f}(x_0) = J_q(f(x_0))J_f(x_0)$

3.4.2 Condition

For $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R}^m$. If f has all partial derivatives and they are continuous on X, then f is differentiable in X.

- $df(x_0) = J_f(x_0)$.
- This implies that most functions are differentiable.

3.4.3 Tangent Space

For $X \subset \mathbb{R}^n$ open, $f: X \to \mathbb{R}^m$ differentiable on X and $x_0 \in X$, the differential $u = df(x_0)$. The graph of the affine linear approximation $g: \mathbb{R}^n \to \mathbb{R}^m, g(x) =$ $f(x_0) + u(x - x_0)$ is the tangent space of f.

- The pts of the tangent space are in $\{(x,y)\in$ $\mathbb{R}^n \times \mathbb{R}^m | y = f(x_0) + u(x - x_0) \}.$
- If m = 1 then $u(x x_0) = df(x_0)(x x_0) =$ $\nabla f(x_0) \cdot (x - x_0)$.

R: Calculate Tangent Space

Given function $f: \mathbb{R}^2 \to \mathbb{R}$, calculate the tangent space at pt (x_0, y_0) .

- 1. Calculate $\partial_x f$ and $\partial_u f$.
- 2. Calculate $f(x_0, y_0)$.
- 3. Form $z = f(x_0, y_0) + \partial_x f(x_0, y_0) \cdot (x x_0) +$ $\partial_y f(x_0, y_0) \cdot (y - y_0).$

3.4.4 Directional Derivative

For $X \subset \mathbb{R}^n$ open, $f: X \to \mathbb{R}^m$, $v \in \mathbb{R}^n$ a non-zero vector and $x_0 \in X$. f has a directional partial derivative $w \in \mathbb{R}^m$ in the direction v, if $q(t) = f(x_0 + tv)$, defined on $\{t \in \mathbb{R} | x_0 + tv \in X\}$, holds g'(0) = w.

- I.e. $w = \lim_{\substack{t \to 0 \\ t \neq 0}} \frac{f(x_0 + tv) f(x_0)}{t} = \lim_{\substack{t \to 0 \\ t \neq 0}} \frac{g(t) g(0)}{t} =$ q'(0).
- Different notations: $w = df(x_0)(v)$

For $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R}^m$ differentiable. Then $\forall x \in X \text{ and } \forall v \in \mathbb{R}^n \text{ non-zero, } f \text{ has directional par-}$ tial derivative at x_0 in the direction v and is equal to $df(x_0)(v) = J_f(x_0)(v).$

- If m = 1 and |v| = 1, then $df(x_0)(v) = J_f(x_0)(v) =$ $\langle \nabla f(x_0), v \rangle = |\nabla f(x_0)| |v| \cos(\theta).$
 - This is maximal if we maximize $\cos \theta$ which is the case for $\theta = 0$.

• partial derivatives exist + partial derivatives are continuous $\implies f$ is differentiable. R: Calculate Directional Derivative in Direction v

Given $f: \mathbb{R}^n \to \mathbb{R}$ differentiable, vector v and pt (x_0, y_0) . Calculate $df(x_0, y_0)(v)$.

- 1. Calculate all partial derivatives of order 1.
- 2. Form $J_f(x,y)$.
- 3. Normalize $\tilde{v} = \frac{v}{|v|}$
- 4. Calculate $J_f(x_0, y_0) \cdot \tilde{v}$

3.4.5 Special Coordinates

Polar Coordinates • $f: [0,\infty) \times [0,2\pi) \rightarrow \mathbb{R}^2$ • $(r,\theta) \mapsto (x,y) = (r\cos\theta, r\sin\theta)$ • $J_f(x_0) =$ $\frac{\frac{\partial f_1}{\partial \theta}}{\frac{\partial f_2}{\partial \theta}} = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} \bullet \det J_f(r, \theta) = r$

Cylindrical Coordinates

• $f:[0,\infty)\times[0,2\pi)\times\mathbb{R}\to\mathbb{R}^3$

•
$$(0, \theta, z) \mapsto \begin{pmatrix} r \cos \theta \\ r \sin \theta \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Spherical Coordinates

• $f: [0, \infty) \times [0, 2\pi) \times [0, \pi) \to \mathbb{R}^3$

•
$$(r, \theta, \varnothing) \mapsto \begin{pmatrix} r \cos \theta \sin \varnothing \\ r \sin \theta \sin \varnothing \\ r \cos \varnothing \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

 $/\cos\theta\sin\varnothing$ $-r\sin\theta\sin\varnothing$ • $J_f(r,\theta,\varnothing) = \int \sin\theta \sin\varnothing$ $r\cos\theta\sin\varnothing$

• det $J_f = -r^2 \sin \varnothing$

3.5 Change of Variable

For $X \subset \mathbb{R}^n$ open, $f: X \to \mathbb{R}^m$ differentiable and $x_0 \in X$. f is a change of variable around x_0 if \exists radius r > 0 s.t. the restaction of f to the ball $B = \{x \in$ $\mathbb{R}^n ||x-x_0| < r\}$ of radius r and center x_0 has the property that the image Y = f(B) is open in \mathbb{R}^n and \exists differentiable $f: Y \to B$ s.t. $f \circ g = \mathrm{Id}_Y$ and $g \circ f = \mathrm{Id}_B$.

• I.e. $f|_{B_r(x_0)}$ is a bijection to the image with a inverse f is also differentiable.

3.5.1 Inverse Function Theorem

For $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R}^m$ differentiable. If $\exists x_0 \in X \text{ s.t. } J_f(x_0) \neq 0 \text{ the } f \text{ is a change of variable}$ around x_0 .

- The Jacobi of g at x_0 is $J_q(f(x_0)) = J_f(x_0)^{-1}$.
- det $J_f(x_0) \neq 0 \iff$ Jacobi matrix of f at x_0 is invertible.
- If $f \in C^k$ then $g \in C^k$.

3.6 Higher Derivatives

For $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R}^m$

- $f \in C^1$ if f is differentiable on X and all its partial derivatives are continuous.
- For $k \geq 2$, $f \in C^k$ is f is differentiable and each $\partial_i f: X \to \mathbb{R}^m \in C^{k-1}$.
- If $f \in C^k$ $\forall k \ge 1$ then $f \in C^{\infty}$ is smooth.
- The set of function $g:X\to\mathbb{R}^m\in C^k$ is $C^k(X; \mathbb{R}^m)$.

3.6.1 Notation

For derivative $\frac{\partial^k}{\partial x_1^{m_1}...\partial x_n^{m_n}}$ of order $k \leq n$ of $f: \mathbb{R}^n \to \mathbb{R}$,

number of derivatives for each partial derivative. $\bullet |m| :=$ $m_1 + \cdots + m_n \bullet x^n := (x_1^{m_1}, \dots, x_n^{m_n} \bullet m! := m_1! \dots m_n!$

$r\cos\theta\cos\theta$ Mixed Derivates Commute

 $r \sin \theta \cos \mathcal{B}$ of $X \subset \mathbb{R}^n$ open, $f: X \to \mathbb{R}^m \in C^k$ and $k \geq 2$. The de- $-r\sin\phi$ riyatives of order k are independent of the order in which the partial derivatives are taken.

• I.e. $\partial_{x,y} f = \partial_{y,x} f$

3.6.3 Hessian

For $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R}^m \in C^2$. The Hessian matrix of x is $\operatorname{Hess}_f(x) = H_f(x) = (\partial_{x_i,x_j}f)_{1 \leq i,j \leq n} =$ $\partial_{x_1^2} f \qquad \partial_{x_1,x_2} f \qquad \dots \qquad \partial_{x_1,x_n} f$

$$\begin{pmatrix} \lambda_1 & \lambda_1, \lambda_2 & \lambda_1, \lambda_2 \\ \partial_{x_2, x_1} f & \partial_{x_2^2} f & \dots & \partial_{x_2, x_n} f \\ \vdots & & \ddots & \vdots \\ \partial_{x_n, x_1} f & \partial_{x_n, x_2} f & \dots & \partial_{x_n^2} f \end{pmatrix}$$

• If partial derivatives commute, then $H_f(x)$ is symmetric, square, $n \times n$.

3.7 Taylor Approximation

3.7.1 Order 1

For $f: \mathbb{R}^n \to \mathbb{R}$, the Taylor Polynom of f at x_0 of degree 1 is $T_1 f(y; x_0) := f(x_0) + \nabla f(x_0) \cdot y$.

For a point x_0 close to x the approximation of x by a affine linear polynomial is $T_1(x-x_0;x_0)$.

• T_1 is equivalent to the affine linear approximation of f we have seen before.

3.7.2 Order k

For $X \subset \mathbb{R}^n, x_0 \in X, f : X \to \mathbb{R}, f \in$ C^k , the k-th Taylor polynomial of f at x_0 is $T_k(y;x_0) = f(x_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_0)y_i + \cdots +$ $\sum_{m_1+\cdots+m_n=k} \frac{1}{m_1!\ldots m_n!} \frac{\partial^k f}{\partial x_1^{m_1}\ldots \partial x_n^{m_n}} (x_0) y_1^{m_1}\ldots y_n^{m_n}$ $\sum_{|m| < k} \frac{1}{m!} \partial_x^m f(x_0) y^m$. Where $y^m := (y_1^{m_1}, \dots, y_n^{m_n})$.

3.7.3 Approximation

For $f \in C^k(X;\mathbb{R}), x_0 \in X$. T_k is approximation of f at we write $\frac{\partial^{|m|}}{\partial x^m}f$, with: \bullet $m=(m_1,\ldots m_n)$ the vector of |x| with x_0 : $f(x)=T_kf(x-x_0;x_0)+E_k(f,x,x_0)$. For the

error E_k it holds $\lim_{x\to x_0} \frac{E_k(f,x,x_0)}{|x-x_0|^k} = 0$.

R: Taylor Polynom for $f: \mathbb{R}^2 \to \mathbb{R}$

Give Taylor of order $k \in \{1, 2, 3\}$ of $f(x, y) : \mathbb{R}^2 \to \mathbb{R}$ for a pt (x_0, y_0) .

- Computer all parietal derivatives of order up to k.
- Form Taylor according to:
- $T_1 f((\alpha, \beta); (x_0, y_0)) = f(x_0, y_0) + \frac{\partial f(x_0, y_0)}{\partial x} \cdot \alpha +$ $\frac{\partial f(x_0,y_0)}{\partial x_0}\cdot \beta$
- $T_2 f((\alpha, \beta); (x_0, y_0)) = T_1 f((\alpha, \beta); (x_0, y_0)) +$ $\frac{1}{2} \frac{\partial^2 f(x_0, y_0)}{\partial x \partial x} \cdot \alpha^2 + \frac{1}{2} \frac{\partial^2 f(x_0, y_0)}{\partial y \partial y} \cdot \beta^2 + \frac{\partial^2 f(x_0, y_0)}{\partial x \partial y} \cdot \alpha \beta$ • $T_3 f((\alpha, \beta); (x_0, y_0)) = T_2 f((\alpha, \beta); (x_0, y_0)) +$
- $\frac{1}{6} \frac{\partial^3 f(x_0, y_0)}{\partial^3 x} \alpha^3 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial^2 x \partial y} \alpha^2 \beta + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial^2 y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial y} \alpha \beta^2 + \frac{1}{2} \frac{\partial^3 f(x_0, y_0)}{\partial x \partial y} \alpha \beta^2$ $\frac{1}{6} \frac{\partial^3 f(x_0, y_0)}{\partial^3 y} \beta^3$

R: Approximate $f: \mathbb{R}^2 \to \mathbb{R}$

Given $f: \mathbb{R}^2 \to \mathbb{R}$ and pt (x,y). Approximate f(x,y)using Taylor.

- Find pt $(x_0, y_0) \approx (x, y)$ which approximates (x, y)and is easy to evaluate.
- Form Taylor $T_k((x-x_0,y-y_0);(x_0,y_0))$ of desired order k.

3.8 Critical Points

3.8.1 Extrema

For $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R}$ differentiable. We define a neighbourhood of x_0 as $B_r(x_0) = \{x \in \mathbb{R}^n | |x - x_0| < 0\}$ r $\subset X$. If $x_0 \in X$:

Local Maximum: at x_0 is $f(x) \leq f(x_0) \ \forall x \in$ $B_r(x_0)$.

Local Minimum: at x_0 is $f(x) \ge f(x_0)$ $\forall x \in R_r(x_0)$.

In that case: $\bullet df(x_0) = 0 \bullet \nabla f(x_0) = 0 \bullet \frac{\partial f}{\partial x_i}(x_0) = 0$ $0, 1 \le i \le n$

3.8.2 Critical Point

For $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R}$ differentiable. $x_0 \in X$, $\nabla f(x_0) = 0$ is a critical point.

• Critical points are candidates for local extrema.

• Critical points which are not a local extrema are saddle points.

3.8.3 Global Extrema

For $\bar{X} = \operatorname{innerPart}(X) \cup \operatorname{boundary}(X) \subset \mathbb{R}^n$ compact (closed and bounded) and $f: \bar{X} \to \mathbb{R}$ differentiable. A global extrema exists and it is either at a critical point $(\in \operatorname{innterPart}(X))$ or on the boundary $(\in \operatorname{boundary}(X))$ of \bar{X} .

3.8.4 Non-Degenerate Critical Point

For $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R} \in C^2$. A critical point $x_0 \in X$ is called non-degenerate if det $\mathrm{Hess}_f(x) \neq 0$.

3.8.5 Definite/Indefinite

A symmetric matrix $A = (a_{i,j}) \in \mathbb{R}^{n \times n}$, with det $A \neq 0$ is:

Positive Definite (A > 0): iff $xAx^t > 0 \forall x \in \mathbb{R}^n \setminus \{0\}$

• All eigenvalues are positive.

Neg. Definite (A < 0): iff $xAx^t < 0 \forall x \in \mathbb{R}^n \setminus \{0\}$

• All eigenvalues are negative.

Indefinite: otherwise

• Mixed eigenvalues.

Criteria A is positive definite \iff det $A_j > 0 \quad \forall 1 \le j \le n$ and $A_j = (a_{k,l})_{\substack{1 \le k \le j \\ 1 \le l \le j}}$

3.8.6 Local Min/Max

For $X \subset \mathbb{R}^n$ open, $f: X \to \mathbb{R} \in C^2$ and $x_0 \in X$ a non-degenerate critical point of $f(\nabla f(x_0)) = 0$, det $\text{Hess}_f(x_0) \neq 0$. Then:

- If $\operatorname{Hess}_f(x_0) > 0 \implies x_0$ is a local minimum.
- If $\operatorname{Hess}_f(x_0) < 0 \implies x_0$ is a local maximum.
- If $\operatorname{Hess}_f(x_0)$ is indefinite $\implies x_0$ is saddle point.

In case that $\operatorname{Hess}_f(x_0) = 0$ (i.e. x_0 is degenerate) we cannot use this criteria.

R: Extreme Pts using 2nd Derivative Method (open)

Given $f: \mathbb{R}^n \to \mathbb{R}$ find extreme points and determine if they are max/min/saddle.

1. Calculate all partial derivatives up to order two.

- 2. Form $df(x) = (\partial_{x_1} f, \dots \partial_{x_n} f)$
- 3. Find all zeros x_0 of $df(x_0)$. They are the critical pts.
- 4. If $X \subset \mathbb{R}^n$, check boundary for max/min pts.
- 5. Form $\operatorname{Hess}_f(x)$
- 6. Calculate det $\operatorname{Hess}_f(x)$
- 7. Insert all x_0 into det $\operatorname{Hess}_f(x_0)$ and evaluate.
- 8. If det $\operatorname{Hess}_f(x_0) = 0 \implies$ this method does not work.
- 9. Use previous theorem to determine if x_0 is $\min/\max/\text{saddle}$.

R: Extreme Pts using 2nd Derivative Method (closed)

As before, but $f: X \to \mathbb{R}$.

- 1. Follow previous recipe
- 2. Evaluate all corners and record their value.
- 3. For site i:
 - (a) Find parametrisation $\gamma_i(t)$.
 - (b) Calculate $\frac{d\gamma_i}{dt}$.
 - (c) Find t_0 for which $\frac{d\gamma_i}{dt} = 0$.
 - (d) Calculate $f(\gamma_i(t_0))$ and record their values.
- 4. Compare all evaluated points and determine the min/max/saddle pts.

R: $\det A$ with Sarrus

Given matrix $A: 3 \times 3$ calculate det A.

 $\begin{vmatrix} \det A = A_{1,1}A_{2,2}A_{3,3} + A_{2,1}A_{3,2}A_{1,3} + A_{3,1}A_{1,2}A_{2,3} - A_{1,3}A_{2,2}A_{3,1} - A_{1,2}A_{2,1}A_{3,3} - A_{1,1}A_{2,3}A_{3,2} \end{vmatrix}$

R: Eigenwerte

Given square matrix A. Find the eigenvalues of A.

- 1. Form characteristic polynomial det $(A \lambda I)$.
- 2. Find zeros of the characteristic polynomial. They are the eigenvalues.

4 Integration in \mathbb{R}^n

For $I = [a, b] \subset \mathbb{R}$ compact and $f : I \to \mathbb{R}^n$, $f(t) = (f_1(t), \dots, f_n(t))$ continuous ($\Longrightarrow f_i$ continuous $\forall 1 \le i \le n$). Then $\int_a^b f(t) dt = (\int_a^b f_1(t) dt, \dots, \int_a^b f_n(t) dt)$.

For $f, g: [a, b] \to \mathbb{R}^n$:

- $\int_a^b (f(t) + g(t)) dt = \int_a^b f(t) dt + \int_a^b g(t) dt$
- $\int_a^b f(t) dt = -\int_b^a f(t) dt$

4.1 Vector Field

For $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^n$. f is a vector fields which sends each $x \in X$ to a vector $v \in \mathbb{R}^n$.

4.2 Parametrized Curve

For a curve (represented by a map) $\gamma:[a,b]\to\mathbb{R}^n$ continuous and piecewise $\in C^1$. γ is a parametrized curve between $\gamma(a)$ and $\gamma(b)$.

- $\gamma: [0, 2\pi] \to (a\cos t, b\sin t)$ is a parametrisation of a ellipse.
 - If a = b is a circle of radius a.
 - If t is replaced by $2\pi t$, the ellipse turns in opposite direction.
- If $a = (a_1, a_2, a_3), b = (b_1, b_2, b_3)$ and $\gamma : [0, 1] \to \mathbb{R}^3, t \mapsto (a_1 + b_1t, a_2 + b_2t, a_3 + b_3t)$ is the parametrisation of the line segment between vector a and a + b.
- For $f:[a,b]\to\mathbb{R}\in C^1$, the normal graphs we are used to are a parametrisation of $\gamma:[0,1]\to\mathbb{R}^2, t\mapsto (t,f(t)).$

4.3 Line Integral

For $\gamma:[a,b]\to\mathbb{R}^n$ parametrised curve, $X\subset\mathbb{R}^n$ containing the image of γ and $f:X\to\mathbb{R}^n$ continuous. The integral $\int_a^b f(\gamma(t))\cdot\gamma'(t)\mathrm{d}t\in\mathbb{R}$ of f along γ .

• Denoted as $\int_{\gamma} f(s) \cdot ds$

4.3.1 Properties

Independent of Oriented Reparametrisation For $\gamma:[a,b]\to\mathbb{R}^n$ parametrized curve and $\delta:[c,d]\to[a,b]$ with: $\bullet\in C^1$ \bullet differentiable on]c,d[\bullet strictly increasing \bullet $\delta(a)=c,\delta(b)=d$ An orientation reparametrisation of γ is $\sigma:[c,d]\to\mathbb{R}^n,\sigma=\gamma\circ\delta$.

For $X \subset \mathbb{R}^n$ containing the image of γ and $f: X \to \mathbb{R}^n \in C^1$, $\int_{\gamma} f ds = \int_{\sigma} f ds$.

Connecting Paths For $\gamma_1 : [a, b] \to \mathbb{R}^n, \gamma_2 : [c, d] \to \mathbb{R}^n$ parametrized paths, with $\gamma_1(b) = \gamma_2(c)$. For the paths

formed by connecting to two paths, it holds $\int_{\gamma_1+\gamma_2}f\mathrm{d}s=\int_{\gamma_1}f\mathrm{d}s+\int_{\gamma_2}f\mathrm{d}s.$

Reverse Path For $\gamma:[a,b]\to\mathbb{R}^n$ parametrized path and $-\gamma:[a,b]\to\mathbb{R}^n$ the same path traced in opposite direction, then $\int_{-\gamma}f\mathrm{d}s=-\int_{\gamma}f\mathrm{d}s$.

Independent of Path For $X \subset \mathbb{R}^n$, vector field $f: X \to \mathbb{R}^n, g: X \to \mathbb{R} \in C^1$ s.t. $\nabla g = f$ and parametrized curve $\gamma: [a,b] \to \mathbb{R}^n, \gamma([a,b]) \subset X$ then: $\int_{\gamma} f \mathrm{d}t = \int_a^b f(\gamma(t)) \cdot \gamma'(t) \mathrm{d}t = \int_a^b \nabla g(\gamma(t)) \cdot \gamma'(t) \mathrm{d}t = \int_a^b \frac{d}{dt} (g \circ \gamma) \mathrm{d}t = (g \circ \gamma)(b) - (g \circ \gamma)(a)$. I.e. the integral only depends on the endpoints of the curve.

4.3.2 Potential

For $X \subset \mathbb{R}^n$, vector field $V: X \to \mathbb{R}^n$ and $f: X \to \mathbb{R}$, where $\nabla f = V$, then f is a potential for V.

- Does always exists for n = 1 and is equivalent to the primitive (Aufleitung) of f.
- Necessary condition for existence of $g: \partial_j f_i = \partial_i f_j \quad \forall 1 \leq i \neq j \leq n.$
 - If X is star-shapend, then this condition is sufficient.

R: Find Potential for Given Vector Field

Given vector field $V=(v_1,v_2,v_3):\mathbb{R}^3\to\mathbb{R}^3$ find $f(x,y,z):\mathbb{R}^3\to\mathbb{R}$ with $\nabla f=V$.

1. Check necessary condition $\partial_j f_i = \partial_i f_j \quad \forall 1 \leq i \neq j \leq n$.

f will be of the form f(x, y, z) = a(x, y, z) + b(y, z) + c(z)

- 1. Calculate $a(x, y, z) = \int v_1 dx$.
- 2. Using $v_2 \stackrel{!}{=} \partial_y a(x, y, z) + \partial_y b(y, z) + \partial_y H(z)$ find b(y, z).
- 3. Using $v_3 \stackrel{!}{=} \partial_z a(x, y, z) + \partial_z b(y, z) + \partial_z c(z)$ find c(z).

4.3.3 Conservative

For $X \subset \mathbb{R}^n$, vector field $f: X \to \mathbb{R}^n \in C^1$. If for any $x_1, x_2 \in X$, the integral $\int_{\gamma} f ds$ is independent of the curve from x_1, x_2 then the vector field f is conservative.

• f is conservative $\iff \int_{\gamma} f(s) ds = 0$ for all closed

- $(\gamma(a) = \gamma(b))$ parametrized curves in X.
- if f is conservative, then $\partial_j f_i = \partial_i f_j \quad \forall 1 \leq i \neq j \leq n$.
 - if f is in addition star-shaped, this condition holds in both directions.
 - $-\implies$ its Jacobian matrix is symmetric.

R: Lineintegral of Conservative Vector Field

Given conservative vector field $V: \mathbb{R}^n \to \mathbb{R}^n$ and curve γ , $a \leq t \leq b$. Calculate $\int_{\gamma} f ds$.

- Calculate potential g with $\nabla g = V$.
- Calculate boundaries $(a, \gamma(a))$ and $(b, \gamma(b))$
- Calculate $g(b, \gamma(b)) g(a, \gamma(a))$

4.3.4 Path Connected

For $X \subset \mathbb{R}^n$ open. X is path connected if $\forall x_1, x_2 \in X \quad \exists \gamma : (0,1] \to X \text{ with } \gamma(0) = x, \gamma(1) = y.$

If X is path connected and $f: X \to \mathbb{R}^n \in C^1$ then:

- f is gradient of $g: X \to \mathbb{R}$. I.e. $f = \nabla g$, g is potential for f.
- The line integral of f is independent of the path between any two points. I.e. f is conservative.
- the line integral of any closed curve is 0.

4.3.5 Star Shaped

 $X \subset \mathbb{R}^n$ is star shaped if $\exists x_0 \in X \text{ s.t. } \forall x \in X \text{ the line segment connecting } x \text{ and } x_0 \text{ is in } X.$

• \mathbb{R}^n is star-shaped.

4.3.6 curl

For $X \in \mathbb{R}^3$ open, $f: X \to \mathbb{R}^3 \in C^1$ vector field. Then $\operatorname{curl} f = \begin{pmatrix} \partial_y f_3 - \partial_z f_2 \\ \partial_z f_1 - \partial_x f_3 \\ \partial_x f_2 - \partial_y f_1 \end{pmatrix} = \det \begin{vmatrix} e_1 & e_2 & e_3 \\ \partial_x & \partial_y & \partial_z \\ f_1 & f_2 & f_3 \end{vmatrix} \text{ is a vector field.}$ field.

- curl f is continuous
- curl $f = 0 \implies \partial_j f_i = \partial_i f_j \quad \forall 1 \le i \ne j \le n \implies f$ is conservative.
- $\operatorname{curl}(\nabla f) = 0$

4.4 Riemann Integral

4.4.1 Partition

For $Q = I_1 \times \cdots \times I_n$, $I_k = [a_k, b_k]$. A partition P if Q is a sub-collection of rectangular boxes Q_1, \ldots, Q_k , s.t.: $Q = \bigcup_{i=1}^k Q_i \bullet \text{ int } Q_i \cap \text{int } Q_i \neq 0, i \neq j$

ullet Q is compact.

Volume $\operatorname{vol}(Q) = \prod_{i=1}^{n} (b_i - a_i) = \mu(Q)$

Norm Norm $(P) = \delta_p := \max_{j=1}^k (\operatorname{diameter}(Q_j))$

4.4.2 Riemann Sum

For each Q_j we choose a $\xi_i \in Q_j$. The Riemann sum of f for partition P and intermediate point $\{\xi\}$ is $R(f,P,\xi) := \sum_{j=1}^k f(\xi_i) \operatorname{vol}(Q_j)$.

Lower R. Sum: $L_f(P) = \sum_{j=1}^k \inf_{x \in Q_j} (f(x)) \operatorname{vol}(Q_j)$ Upper R. Sum: $U_f(P) = \sum_{j=1}^k \sup_{x \in Q_j} (f(x)) \operatorname{vol}(Q_j)$

4.4.3 Riemann Integral

Lower R. Integral: $\underline{I}(f) = \int_{\underline{Q}} f dx = \sup\{L_f(P) | \forall \text{ partitions } P \text{ of } Q\}$

Upper R. Integral: $\bar{I}(f) = \int_Q^- f dx = \inf\{U_f(P)|\forall \text{ partitions } P \text{ of } Q\}$

f is integrable: if $\underline{I}(f) = \overline{I}(f)$

• it is denoted as $\int_A f(x) dx$

For $f: \mathbb{R}^n \to \mathbb{R}$ continuous on rectangular box $Q \in \mathbb{R}^n$ then f is integrable.

4.4.4 Properties

For $X\subset\mathbb{R}^n$ compact, $f,g:Q\to\mathbb{R}$ integrable (continuous) and $\alpha,\beta\in\mathbb{R}$. Then:

- $\int_X \alpha f + \beta g dx = \alpha \int_X f(x) dx + \beta \int_X g(x) dx$
- If $f(x) \le g(x)$ $\forall x \in Q$ then $\int_X f(x) dx \le \int_X g(x) dx$.
- If $f(x) \ge 0$ then $\int_{Y} f(x) dx \ge 0$
- $\left| \int_X f(x) dx \right| < \int_X |f| dx \le (\sup_X |f|) \operatorname{vol}(X)$.
- $\left| \int_X f(x) + g(x) dx \right| < \int_X |f| dx + \int_X |g(x)| dx$.
- Fubini: If $Q = I_1 \times \cdots \times I_n$ and f continuous on Q then $\int_Q f(x_1, \dots x_n) dx_1, \dots, x_n = \int_{a_1}^{b_1} \int_{a_2}^{b_2} \cdots \int_{a_n}^{b_n} f(x_n) dx_n \dots dx_2 dx_1$.

• If f = 1 then $\int_X 1 dx = \text{vol}(X)$

 $y \leq f(x)$).

4.4.5 Fubini

For $X \subset \mathbb{R}^n$ compact, $f: X \to \mathbb{R}, n = n_1 + n_2, n_i \ge 1$. Let $x_1 \in \mathbb{R}^{n_1}$, then $X_{x_1} = \{x_2 \in \mathbb{R}^{n_2} | (x_1, x_2) \in X\}$. Let $X_1 = \{x_1 \in \mathbb{R}^{n_1} | X_{x_1} \neq \emptyset\}$. The in general X_1 is compact in \mathbb{R}^{n_1} and X_{x_1} is compact in \mathbb{R}^{n_2} $\forall x_1 \in X_1$.

If $g(x_1)$:= $\int_{X_1} f(x_1, x_2) dx_2$ continuous on X_1 then $\int_X f(x_1, x_2) dx = \int_{X_1} g(x_1) dx_1$ $\int_{X_1} \int_{X_{x_1}} f(x_1, x_2) dx_2 dx_1.$

Switching x_1 and x_2 we have $\int_{Y} f(x_1, x_2) dx =$ $\int_{X_2} \int_{X_{x_2}} f(x_1, x_2) dx_1 dx_2.$

 $\mathbf{n} = \mathbf{2}$: $n_1 = n_2 = 1$:

- $D_1 := \{(x, y) | a < x < b, g(x) < y < h(x) \}$ $-\int_{D_1} f dx dy = \int_a^b \int_{a(x)}^{h(x)} f(x, y) dy dx$
- $D_2 := \{(x, y) | c \le y \le d, G(y) < x < H(y) \}$ $-\int_{D_2} f dx dy = \int_c^d \int_{G(x)}^{H(x)} f(x, y) dy dx$ $\mathbf{n} = \mathbf{3} : \bullet n_1 = 1, n_2 = 2 \bullet n_1 = 2, n_2 = 1$

n = 4: • $n_1 = 1, n_2 = 3$ • $n_1 = 2, n_2 = 2$ • $n_1 = 3, n_2 = 3$

- If the lines cross, we have to integrate two regions separately.
- Sometimes we are required to change the order or integration to be able to determine a certain integral.
- If $g(x_1)$ is not continuous on X_1 we have to split in into continuous parts and apply Frobini on them.

4.4.6 Domain Additivity

For $X = A_1 \cup A_2$ where $A_1, A_2 \subset \mathbb{R}^n$ are compact, and $f: X \to \mathbb{R}$ continuous on X then $\int_{X=A_1 \cup A_2} f(x) dx +$ $\int_{A_1 \cap A_2} f(x) dx = \int_{A_1} f(x) dx + \int_{A_2} f(x) dx.$

- If $A_1 \cap A_2 = \emptyset$ then $\int_{A_1 \cup A_2} f(x) dx = \int_{A_1} f(x) dx +$ $\int_{A_2} f(x) dx$.
- If $\operatorname{vol}_n(A_1 \cap A_2) = 0$ then $\int_{A_1 \cap A_2} f(x) dx = 0 \quad \forall f$.

4.4.7 Parametrized m-Set

For $1 \leq m \leq n$. The function $\gamma: [a_1, b_1] \times \cdots \times [a_m, b_m] \rightarrow$ \mathbb{R}^n is a parametrized m-set.

- γ is continuous.
- $\gamma \in C^1$ for $(a_1, b_1) \times \cdots \times (a_m, b_m)$.

4.4.8 Negligible Sets in \mathbb{R}^{n}

 $Y \subset \mathbb{R}^n$ is negligible if \exists finitely many $\gamma_i : X_i \to \mathbb{R}^n$ parametrized m_i -sets with $m_i < n$, s.t. $Y \subset \bigcup \gamma_i(x_i)$.

For example:

 $\mathbf{n} = \mathbf{1}$: $Y \subset \text{union of finitely many points.}$

 $\mathbf{n} = \mathbf{2}$: $Y \subset \text{union of finitely many images of parametri$ zed curves.

If $Y \subset \mathbb{R}^n$ closed and negligible then $\int_V f(x) dx = 0 \quad \forall f$.

4.5 Improper Integrals

For $X \subset \mathbb{R}^n$ non-compact and $f : X \to \mathbb{R}$ s.t $\int_{K} f(x) dx \quad \forall K \subset X \text{ where } K \text{ is compact. For a se-}$ quence of regions $X_k, k = 1, \dots$ s.t.: • x_k is compact $\forall k \bullet x_k \subset x_{x+1} \bullet \bigcup_{k=1}^{\infty} x_k = X$. Then $\int_X f(x) dx =$ $\lim_{n\to\infty} \int_{X_n} f(x) dx$ if the limit exists.

4.6 Change of Variables

For $X = X_0 \cup A, Y = Y_0 \cup B$ where: $\bullet X, Y \subset \mathbb{R}^n$ • X, Y compact • X_0, Y_0 open • A, B negligible . Let $\gamma: X \to Y \in C^1$ bijective and det $J_p(x) \neq 0 \quad \forall x \in X_0$. Let $Y = \gamma(X)$ and suppose $f: Y \to \mathbb{R}$ continuous. Then $\int_{Y} f(y) dy = \int_{X} f(\gamma(x)) |\det J_{p}(x)| dx.$

4.6.1 Special Coordinates

Polar Coordinates • $f: [0,\infty) \times [0,2\pi) \rightarrow \mathbb{R}^2$ • $(r,\theta) \mapsto (r\cos\theta, r\sin\theta)$ • $\det J_f(r,\theta) = r$ • $\mathrm{d}x\mathrm{d}y =$ $r dr d\theta$

Cylindrical Coordinates

• $dxdyz = rdrd\theta dz$

Spherical Coordinates

- $f:[0,\infty)\times[0,2\pi)\times[0,\pi)\to\mathbb{R}^3$
- $(r, \theta, \varnothing) \mapsto \begin{pmatrix} r \cos \theta \sin \varphi \\ r \sin \theta \sin \varnothing \\ r \cos \varnothing \end{pmatrix}$
- det $J_f = -r^2 \sin \varnothing$
- $dxdyz = r^2 \sin(\varnothing) dr d\theta z \varnothing$

4.6.2 Area in n = 3

Given a surface in $S = \{(x, y, z) \in$ by $f: \mathbb{R}^2 \to \mathbb{R}$, then $\operatorname{Area}(S) = \iint \sqrt{1 + (\partial_x f(x,y))^2 + (\partial_y f(x,y))^2} dxdy$ for $X \subset \mathbb{R}^2$.

• Can also be used to calculate the length of the arc of a curve.

R: Calculate Arc Length of γ

Given curve $\gamma[a,b] \to \mathbb{R}$, calculate its length.

- 1. Calculate $\gamma'(t)$
- 2. Evaluate $int_a^b \sqrt{1+|\gamma'(t)|^2 dt}$

4.7 Green's Formula

For:

- 1. $X \subset \mathbb{R}^2$:
 - X is compact
 - X is always on the left hand side of the target vector to the boundary
- 2. Curve $\gamma:[a,b]\to\mathbb{R}^2$ forming the boundary (denoted as ∂X) of X:
 - γ is closed: $\gamma(a) = \gamma(b)$
 - γ is simple: $\exists a < s < t < b \text{ s.t. } \gamma(s) = \gamma(t)$ (i.e. γ has no cycles)
- 3. Vector field $f: X \to \mathbb{R}^2$:
 - $f \in C^1$
 - $f = (f_1, f_2)$ has components f_1, f_2 .
 - $\partial_x i, \partial_y i, i = 1, 2$ exist and are continuous $(\implies \text{curl } f \text{ exists and is continuous}).$

Then
$$\iint_X (\underbrace{\partial_x f_2 - \partial_y f_1}_{\text{curl } f}) dx dy = \int_{\gamma} f ds.$$

- A region can be the union of k simple closed curves: $\gamma = \bigcup_{i=1}^k \gamma_i$
 - Then $\iint_X \operatorname{curl} f dx dy = \sum_{k=1}^k \int_{\gamma_i} f ds$.

Usage

- 1. Calculate area of a region as a line integral.
- 2. Calculate line integral if the double integral of $\operatorname{curl} f$ looks simpler.

R: Calculate line integral as double integral

Given $f = (f_1, f_2) : X \to \mathbb{R}^2 \in C^1$ for which both partial derivatives exists and curve $\gamma : [a, b] \to \mathbb{R}^2$ which forms the boundary of X and is closed and simple.

Goal, calculate $\int_{\gamma} f ds$

- 1. Check if X lies on the left of γ . If it is not, make it do that.
- 2. Calculate partial derivatives $\partial_x f_2$ and $\partial_y f_1$.
- 3. Calculate curl $f = \partial_x f_2 \partial_y f_1$
- 4. Calculate $\iint_X \operatorname{curl} f dx dy$

R: Calculate area enclosed by curve

Given curve $\gamma:[a,b]\to\mathbb{R}^2$ which is closed and simple.

Goal, find the area of X which is enclosed by the curve.

- 1. Select f = (0, x) or f = (-y, 0) or anything else with curl f = 1.
- 2. Area $(X) = \int_{\partial X} f(x) dx = \int \int_X 1 dxy$.

R: Curve goes in wrong direction

Given curve $\gamma:[a,b]\to\mathbb{R}^2$ which is closed and simple but the enclosed area is on the right.

- If curve is symmetric w.r.t. x-axis
 - $-\gamma$ parametrizes curve in opposite direction.
 - $-\int_{-\infty} f ds = -\int_{\infty} f ds$

Other cases:

• Given a two dimensional integral $\int \int_X g(x,y) dxy$ which we want to evaluate. If we can find $f = (f_1, f_2)$ with curl f = g then we can use $\int \int_X g dx dy = \int \int_X \text{curl } f dxy = \int_{\partial X = \gamma} f dx$