Assignment 3: Projective Geometry

Computer Vision

National Taiwan University

Fall 2018

Part 1: Estimating Homography

Recap of Homography

Matrix form:

$$\begin{bmatrix} v_x \\ v_y \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} u_x \\ u_y \\ 1 \end{bmatrix}$$

Equations:

$$v_x = \frac{h_{11}u_x + h_{12}u_y + h_{13}}{h_{31}u_x + h_{32}u_y + h_{33}}$$
$$v_y = \frac{h_{21}u_x + h_{22}u_y + h_{23}}{h_{31}u_x + h_{32}u_y + h_{33}}$$

Recap of Homography

$$egin{bmatrix} v_x \ v_y \ 1 \end{bmatrix} \sim egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ h_{31} & h_{32} & h_{33} \end{bmatrix} egin{bmatrix} u_x \ u_y \ 1 \end{bmatrix}$$

- Degree of freedom
 - There are 9 numbers in H. Are there 9 DoF?
 - No. Note that we can multiply all h_{ij} by nonzero k without changing the equations:

$$v_{x} = \frac{kh_{11}u_{x} + kh_{12}u_{y} + kh_{13}}{kh_{31}u_{x} + kh_{32}u_{y} + kh_{33}}$$

$$v_{y} = \frac{kh_{21}u_{x} + kh_{22}u_{y} + kh_{23}}{kh_{31}u_{x} + kh_{32}u_{y} + kh_{33}}$$

$$v_{y} = \frac{h_{21}u_{x} + h_{22}u_{y} + h_{23}}{h_{31}u_{x} + kh_{32}u_{y} + kh_{33}}$$

$$v_{y} = \frac{h_{21}u_{x} + h_{22}u_{y} + h_{23}}{h_{31}u_{x} + h_{32}u_{y} + h_{33}}$$

Enforcing 8 DoF

• **Solution 1:** set $h_{33} = 1$

$$v_x = \frac{h_{11}u_x + h_{12}u_y + h_{13}}{h_{31}u_x + h_{32}u_y + 1}$$
$$v_y = \frac{h_{21}u_x + h_{22}u_y + h_{23}}{h_{31}u_x + h_{32}u_y + 1}$$

• Solution 2: impose unit vector constraint

$$v_x = \frac{h_{11}u_x + h_{12}u_y + h_{13}}{h_{31}u_x + h_{32}u_y + h_{33}}$$
$$v_y = \frac{h_{21}u_x + h_{22}u_y + h_{23}}{h_{31}u_x + h_{32}u_y + h_{33}}$$

Subject to

$$h_{11}^2 + \dots + h_{33}^2 = 1$$

Solution 1

• Set
$$h_{33}=1$$

$$v_x=\frac{h_{11}u_x+h_{12}u_y+h_{13}}{h_{31}u_x+h_{32}u_y+1}$$

$$v_y=\frac{h_{21}u_x+h_{22}u_y+h_{23}}{h_{31}u_x+h_{32}u_y+1}$$

Multiply by denominator

$$(h_{31}u_x + h_{32}u_y + 1)v_x = h_{11}u_x + h_{12}u_y + h_{13}$$
$$(h_{31}u_x + h_{32}u_y + 1)v_y = h_{21}u_x + h_{22}u_y + h_{23}$$

Rearrange

$$h_{11}u_x + h_{12}u_y + h_{13} - h_{31}u_xv_x - h_{32}u_yv_x = v_x$$

$$h_{21}u_x + h_{22}u_y + h_{23} - h_{31}u_xv_y - h_{32}u_yv_y = v_y$$

Solution 1 (cont.)

Solve linear system

					$2N \times$	8			8 × 1	$2N \times 1$
Point 1	$\begin{bmatrix} u_{x,1} \end{bmatrix}$	$u_{y,1}$	1	0	0	0	$-u_{x,1}v_{x,1}$	$-u_{y,1}v_{x,1}$	$\begin{bmatrix} h_{11} \\ h \end{bmatrix}$	$\begin{bmatrix} v_{x,1} \end{bmatrix}$
Point 2	$\begin{bmatrix} 0 \\ u_{x,2} \\ 0 \end{bmatrix}$	$0 \\ u_{y,2} \\ 0$	0 1 0	$u_{x,1} \\ 0 \\ u_{x,2}$	$u_{y,1} \\ 0 \\ u_{y,2}$	$1\\0\\1$	$-u_{x,1}v_{y,1} \\ -u_{x,2}v_{x,2} \\ -u_{x,2}v_{y,2}$	$ \begin{vmatrix} -u_{y,1}v_{y,1} \\ -u_{y,2}v_{x,2} \\ -u_{y,2}v_{y,2} \end{vmatrix} $	$\begin{vmatrix} h_{12} \\ h_{13} \\ h_{21} \end{vmatrix}$	$\left egin{array}{c} v_{y,1} \ v_{x,2} \ v_{y,2} \end{array} ight $
Point 3	$\begin{bmatrix} u_{x,3} \\ 0 \end{bmatrix}$	$\begin{array}{c} u_{y,3} \\ 0 \end{array}$	1 0	$\overset{x,2}{0}$ $u_{x,3}$	$\overset{g,2}{0}$ $u_{y,3}$	0 1	$-u_{x,3}v_{x,3} \\ -u_{x,3}v_{y,3}$	$ \begin{vmatrix} -u_{y,3}v_{x,3} \\ -u_{y,3}v_{y,3} \end{vmatrix} $	$\begin{vmatrix} h_{22} \\ h_{23} \end{vmatrix} =$	$= \begin{vmatrix} v_{x,3} \\ v_{y,3} \end{vmatrix}$
Point 4	$\begin{bmatrix} u_{x,4} \\ 0 \end{bmatrix}$	$u_{y,4} \\ 0$	1 0	$0 \\ u_{x,4}$	$0\\u_{y,4}$	0 1	$-u_{x,4}v_{x,4} \\ -u_{x,4}v_{y,4}$	$\begin{bmatrix} -u_{y,4}v_{x,4} \\ -u_{y,4}v_{y,4} \end{bmatrix}$	$\begin{bmatrix} h_{31} \\ h_{32} \end{bmatrix}$	$\begin{bmatrix} v_{x,4} \\ v_{y,4} \end{bmatrix}$
Additional points										

Solution 1 (cont.)

- What might be wrong with solution 1?
- If h_{33} is actually 0, we can not get the right answer

Solution 2

• A more general solution by confining $h_{11}^2 + ... + h_{33}^2 = 1$

$$v_x = \frac{h_{11}u_x + h_{12}u_y + h_{13}}{h_{31}u_x + h_{32}u_y + h_{33}}$$
$$v_y = \frac{h_{21}u_x + h_{22}u_y + h_{23}}{h_{31}u_x + h_{32}u_y + h_{33}}$$

Multiply by denominator

$$(h_{31}u_x + h_{32}u_y + h_{33})v_x = h_{11}u_x + h_{12}u_y + h_{13}$$
$$(h_{31}u_x + h_{32}u_y + h_{33})v_y = h_{21}u_x + h_{22}u_y + h_{23}$$

Rearrange

$$h_{11}u_x + h_{12}u_y + h_{13} - h_{31}u_xv_x - h_{32}u_yv_x - h_{33}v_x = 0$$

$$h_{21}u_x + h_{22}u_y + h_{23} - h_{31}u_xv_y - h_{32}u_yv_y - h_{33}v_y = 0$$

Solution 2

• Similarly, we have a linear system like this:

- Here, b is all zero, so above equation is a homogeneous system
- Solve:
 - Ah = 0
 - $A^{T}Ah = A^{T}0 = 0$
 - SVD of $A^TA = U\Sigma V^T$
 - Let h be the column of U (unit eigenvector) associated with the smallest eigenvalue in Σ

p3 of http://web.cs.iastate.edu/~cs577/handouts/svd.pdf

Part 2: Unwarp the Screen

Make the QR code frontal parallel

Backward Warping

- Why?
 - Prevent holes in output space
- Pixel value at sub-pixel location like (30.21, 22.74)?
 - Bilinear interpolation
 - Nearest neighbor

Part 3: Unwarp the 3D Illusion

• 3D illusion art

Part 3: Unwarp the 3D Illusion

• Input:

Part 3: Unwarp the 3D Illusion

Ground-truth top view:

Can you unwarp the input image to match the ground-truth top view?

Assignment Description

Part 1

- Implement solution 1 or 2 for estimating homography.
- Map 5 images of different people to the target surfaces (given in main.py). You can use whatever images you like. Include these images in your submission.
- Include the function solve_homography(u, v) in your report.

Part 2

- Choose the unwarp region yourself.
- The output image should contain the detectable QR code.
- Include the QR code and the decoded link in your report.

Part 3

- Unwarp the image to the top view.
- Can you get the parallel bars from the top view?
- If not, why? Discuss in your report.

Bonus (Optional)

- Simple AR
 - Given a short video (~6 sec) and a template
 - Paste an image (it's up to you) on the surface to stick to the marker
 - Include your algorithm in your report

Submission

- Code: main.py (Python 3.5+)
- Input images for part 1
- Output images
 - part1.png, part2.png, part3.png
- A PDF report, containing
 - Your student ID, name
 - Your answers to each part
 - (Optional) algorithm to the simple AR
- (Optional) Input image and output video of the bonus part
- Compress all above files in a zip file named StudentID.zip
 - e.g. R07654321.zip
- Submit to CEIBA
- Deadline: 12/4 11:00 pm