Appendici

A. Domini, campi, polinomi

In quest'appendice sono trattati alcuni argomenti di algebra che vengono utilizzati in questo testo. L'esposizione non sarà completa di tutte le dimostrazioni, per alcune delle quali rinvieremo a un testo di algebra.

Definizioni

Fra le strutture algebriche maggiormente usate in geometria troviamo quelle di "campo" e di "dominio".

Un *campo* è una terna $(K, +, \cdot)$ costituita da un insieme non vuoto K e da due operazioni binarie su K, cioè due applicazioni

$$+: K \times K \rightarrow K$$
 , $\cdot: K \times K \rightarrow K$

chiamate *somma* e *prodotto*, che associano ad ogni coppia $(a,b) \in K \times K$ un elemento $a+b \in K$ chiamato "somma di a più b" e un elemento ab, chiamato "prodotto di a per b", in modo che siano soddisfatti i seguenti assiomi:

- K1 (Commutatività della somma) a+b=b+a per ogni $a,b \in K$.
- K2 (Associatività della somma) a+(b+c)=(a+b)+c per ogni $a,b,c \in K$.
- K3 (*Esistenza dello zero*) Esiste un elemento $0 \in K$ tale che a+0=0+a=a, per ogni $a \in K$.
- K4 (Esistenza dell'opposto) Per ogni $a \in K$ esiste $a' \in K$ tale che a+a'=0.
- K5 (Commutatività del prodotto) ab=ba, per ogni $a,b \in K$.
- K6 (Associatività del prodotto) a(bc)=(ab)c, per ogni $a,b,c \in K$.
- K7 (*Esistenza dell'unità*) Esiste un elemento $1 \in K$ tale che al = 1a = a, per ogni $a \in K$.
- K8 (*Esistenza dell'inverso*) Per ogni $a \in K$, $a \ne 0$, esiste un elemento $a^* \in K$ tale che $aa^* = 1$.
- K9 (Distributività della somma rispetto al prodotto) a(b+c)=ab+ac, per ogni $a,b,c\in K$.
- K10 (Non-esistenza di divisori dello zero) Se ab=0 e $b\neq 0$, allora a=0 .

Se la terna $(K, +, \cdot)$ soddisfa gli assiomi K1, ..., K7, K9, K10 ma non necessariamente K8, essa si dice *dominio* (o *dominio d'integrità*).

Quando non vi sia possibilità di equivoco sulle operazioni che vi sono definite, il campo, o il dominio, $(K,+,\cdot)$ si denoterà semplicemente con la lettera K. Denoteremo il sottoinsieme $K\setminus\{0\}$ con K^* .