Mathematical Theory of Neural Network Models

Lecture 4: Reproducing Kernel Hilbert Space

July 9

Lecturer: Lei Wu Scribe: Zhonglin Xie, Yuxuan Zhang

1 Reproducing Kernel Hilbert Space (RKHS)

Kernel ridge regression: Given a set of data $\{(x_i, y_i)\}_{i=1}^n$, our aim is to learn a function $f(x) = \sum_{i=1}^n \alpha_i k(x_i, x)$ which can best fit the target function f^* where $y_i = f^*(x_i)$.

Then what kind of target function is suitable for kernel ridge regression?

Example 1.1. Assume that k is a linear kernel, such as $k(x, x') = \langle x, x' \rangle$. Then function f generated by kernel k can only represent linear functions.

Example 1.2. Assume that k is a polynomial kernel, such as $k(x, x') = (\langle x, x' \rangle + 1)^n$. Then function f generated by kernel k can represent all n-degree polynomials.

When we specify a kernel k, the functions generated by k are only suitable for a certain kind of function. These functions form a space called Reproducing Kernel Hilbert Space(RKHS).

Definition 1.3. Let \mathcal{H} be a Hilbert space, \mathcal{H} is of function $\mathcal{X} \to \mathbb{R}$. \mathcal{H} is said to be an RKHS if there exists a function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which satisfies:

- $\forall x \in \mathcal{X}, k(\cdot, x) \in \mathcal{H}$
- (reproducing property) $\forall x \in \mathcal{X}, f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle = f(x)$

k is called a **reproducing kernel**.

The reproducing property is corresponding to the re-definition of value-taking operator.

Definition 1.4. A bi-variate function k is said to be a **positive definite function(PD function)** if it satisfies:

- $\bullet \ k(x, x') = k(x', x)$
- $\sum_{1 \le i,j \le n} \alpha_i \alpha_j k(x_i, x_j) \ge 0$

Definition 1.5. A bi-variate function k is said to be a **kernel** if there exists $\phi : \mathcal{X} \to \mathcal{H}$ where \mathcal{H} is a Hilbert space, s.t. $k(x, x') = \langle \phi(x), \phi(x') \rangle$. ϕ is called the feature map.

We should notice that a kernel must be a PD function. But is a PD function equivalent to a kernel?

Claim 1.6. A reproducing kernel is a kernel.

Proof. If k is a reproducing kernel, from the reproducing property, we get: $\langle k(\cdot, x'), k(\cdot, x) \rangle = k(x', x)$.

Then $k(\cdot, \cdot)$ could be the feature map of k. k is a kernel.

Claim 1.7. A kernel \Leftrightarrow a reproducing kernel \Leftrightarrow a PD function.

To make this correct, we need to claim that a PD function is a reproducing kernel, which will be proved in next section.

2 Moore-Aronszajn Theorem

Given a PD function k, could we define an RKHS from k?

In fact, if we let $\mathcal{H}_0 = \{f(x) = \sum_{i=1}^n \alpha_i k(x_i, x), n \in \mathbb{N}_+\}$, then \mathcal{H}_0 is the set of functions which can fit kernel k. We hope there is a well-defined inner product in \mathcal{H}_0 .

Theorem 2.1. Let $f, g \in \mathcal{H}_i$, $f = \sum_{i=1}^n \alpha_i k(x_i, x), g = \sum_{j=1}^n \beta_j k(\tilde{x_j}, x)$, the inner product of f and g can be defined as:

$$\langle f, g \rangle = \sum_{i,j} \alpha_i \beta_j k(x_i, \tilde{x_j})$$
 (1)

Proof. The most essential thing is to prove that the norm induced by this inner product is positive definite(i.e. $||f||_2 = 0 \Rightarrow f = 0$). Because k is a PD function, we have that:

$$||f||_2^2 = \langle f, f \rangle = \sum_{i,j} \alpha_i \alpha_j k(x_i, x_j) = \alpha^T K \alpha \ge 0$$
 (2)

We want to prove that if $||f||_2 = 0$, then $\forall x \in \mathcal{X}, f(x) = 0$.

Let $\tilde{f} = \sum_{i=1}^{n} \alpha_i k(x_i, \cdot) + tk(x, \cdot)$, then we have:

$$\|\tilde{f}\|_{2}^{2} = \sum_{1 \leq i,j \leq n} \alpha_{i} \alpha_{j} k(x_{i}, x_{j}) + 2t \sum_{i=1}^{n} \alpha_{i} \langle k(x_{i}, \cdot), k(x, \cdot) \rangle + t^{2} \langle k(x, \cdot), k(x, \cdot) \rangle$$

$$= \|f\|_{2}^{2} + 2t \sum_{i=1}^{n} \alpha_{i} k(x_{i}, x) + t^{2} k(x, x) \qquad (reproducing property)$$

$$\geq 2t \sum_{i=1}^{n} \alpha_i k(x_i, x) + t^2 k(x, x) \tag{||f||_2^2 \geq 0}$$

$$=2tf(x)+t^2k(x,x)\geq 0, \forall t\in\mathbb{R}$$
 $(k(x,x)\geq 0)$

Next, let's discuss it in two cases:

- if k(x, x) = 0, then obviously we have f(x) = 0.
- if k(x, x) > 0, then we have:

$$2tf(x) + t^{2}k(x,x) = k(x,x)\left[t + \frac{f(x)}{k(x,x)}\right]^{2} - \frac{f^{2}(x)}{k(x,x)} \ge 0$$
(3)

then:

$$-\frac{f^2(x)}{k(x,x)} \ge 0 \tag{4}$$

Because $f^2(x) \ge 0$ and $k(x, x) \ge 0$, there must be f(x) = 0.

So \mathcal{H} is an inner product space, but it's incomplete, so it's not a Hilbert space. Let $\mathcal{H}_k = \overline{\mathcal{H}_0}$, then \mathcal{H}_k is a complete Hilbert space.

Our question is that, is \mathcal{H}_k an RKHS?

Claim 2.2. \mathcal{H}_k is an RKHS, k is the reproducing kernel of \mathcal{H}_k .

Proof. To explain that \mathcal{H}_k is an RKHS, we should prove that H_k satisfies the two conditions in 1.3:

- Because $\mathcal{H}_0 = \{ f = \sum_{i=1}^n \alpha_i k(x_i, \cdot), n \in \mathbb{N}_+ \}$, then obviously $k(\cdot, x) \in \mathcal{H}$.
- We have that:

$$\langle f, k(\cdot, x) \rangle = \lim_{n \to +\infty} \langle \sum_{i=1}^{n} \alpha_i k(\cdot, x_i), k(\cdot, x) \rangle$$
 (5)

$$= \lim_{n \to +\infty} \sum_{i=1}^{n} \alpha_i \langle k(\cdot, x_i), k(\cdot, x) \rangle$$
 (6)

$$= \lim_{n \to +\infty} \sum_{i=1}^{n} \alpha_i k(x_i, x) \tag{7}$$

$$= f(x) \tag{8}$$

To prove that equation (7) to (8) holds, we should notice that the **norm** operator is a bounded continuous operator on the definition of Hilbert space, and use the property:

$$\lim_{n \to +\infty} \|f(x) - \sum_{i=1}^{n} \alpha_i k(x_i, x)\| = 0$$
(9)

You can refer to the reading materials for more infomation.

So we also prove that a PD function is a reproducing kernel. That is to say we prove 1.7. A natural question is that, is there any other RKHS whose reproducing kernel is also k?

Theorem 2.3. Given a PD function k, there exists an only RKHS \mathcal{H}_k whose reproducing kernel is k.

Proof. Existence has been proved before. So here we only prove the uniqueness. If there exists \mathcal{H}'_k and k is the reproducing kernel of \mathcal{H}'_k , then we have $\mathcal{H}_0 \subseteq \mathcal{H}'_k$. And we already have $\mathcal{H}_k = \overline{\mathcal{H}_0}$, so $\overline{\mathcal{H}_0} = \mathcal{H}_k = \mathcal{H}'_k$.

This method is graceful but too abstract. How to intuitively understand the definition of norm in RKHS?

3 Merce representation of RKHS

To simplify the problem, we add two constraints:

- \mathcal{X} is compact.
- k(x, x') is continuous.

So we have $\sup_{x,x'} k(x,x') < \infty$.

Definition 3.1. Let T_k be an integral operator:

$$T_k: L_2(\mathcal{X}, \mu) \to L_2(\mathcal{X}, \mu)$$

$$T_k \circ f(x) = \int k(x, x') f(x') d\mu(x')$$
(10)

where $L_2(\mathcal{X}, \mu) = \{f | \int f^2(x) d\mu(x) < \infty \}$, and $\mu(x)$ is a probability measure.

We can see that T_k is a compact operator and L_2 is a Hilbert space. And we have the spectral decomposition of T_k :

$$T_k \circ f = \sum_{j=1}^{\infty} \lambda_j \langle f, e_j \rangle e_j \tag{11}$$

where $\{e_j\}$ is a set of orthonormal basis of $L_2(\mathcal{X}, \mu)$.

To better understand this, we can regard this spectral decomposition as eigenvalue decomposition of an infinite-dimension matrix, where T_k is an infinite-dimension matrix and f is an infinite-dimension vector.

So for every kernel k, we also have a decomposition:

$$k(x, x') = \sum_{j=1}^{\infty} \lambda_j e_j(x) e_j(x')$$
(12)

From this decomposition, we can get the feature map:

$$\phi: x \to \begin{pmatrix} \sqrt{\lambda_1} e_1(x) \\ \sqrt{\lambda_2} e_2(x) \\ \dots \\ \sqrt{\lambda_n} e_n(x) \\ \dots \end{pmatrix} \in l^2$$
(13)

Thus we have that:

$$k(x, x') = \langle \phi(x), \phi(x') \rangle \tag{14}$$

Note that given a kernel k, the feature map of k is not unique. To better understand this, you can regard ϕ as a set of orthonormal basis, and the basis of a space is not unique.

The method in section 2 is to take $\{k(\cdot, x_i)\}$ as basis. Moreover, we can define a space \mathcal{H} as follows:

Definition 3.2. Let kernel $k(x,x') = \sum_{j=1}^{\infty} \lambda_j e_j(x) e_j(x')$, we have:

$$\mathcal{H} = \{ \sum_{j=1}^{\infty} \alpha_j e_j | \sum_{j=1}^{\infty} \frac{\alpha_j^2}{\lambda_j} < \infty \}$$
 (15)

And

$$f = \sum_{j=1}^{\infty} \alpha_j e_j, g = \sum_{j=1}^{\infty} \beta_j e_j$$

$$\langle f, g \rangle = \sum_{j=1}^{\infty} \frac{\alpha_j \beta_j}{\lambda_j}$$
(16)

Claim 3.3. $\mathcal{H} = \mathcal{H}_k$

Proof. To explain that $\mathcal{H} = \mathcal{H}_k$, we should prove that k is the reproducing kernel of \mathcal{H} , using the uniqueness of RKHS, we obtain the result:

• Because $k(\cdot, x) = \sum_{i} \lambda_{i} e_{i}(x) e_{i}(\cdot)$

$$||k(\cdot,x)||^2 = \sum_j \frac{(\lambda_j e_j(x))^2}{\lambda_j} = \sum_j \lambda_j e_j(x) e_j(x) = k(x,x) < \infty,$$

then $k(\cdot, x) \in \mathcal{H}$.

• Suppose $f = \sum_{j} a_{j} e_{j}$, We have

$$\langle f, k(\cdot, x) \rangle = \sum_{j} \frac{a_{j} \lambda_{j} e_{j}(x)}{\lambda_{j}}$$

$$= \sum_{j} a_{j} e_{j}(x)$$

$$= f(x).$$

The advantage of 3.2 is its intuitive. $||f||_{\mathcal{H}_k}^2 = \sum_j \frac{a_j^2}{\lambda_j}$ is similar to weighted L_2 norm. The role of introducing a kernel is to weight the basis, different e_j have different weight λ_j . The bigger the λ_j , the more important the e_j .

Theorem 3.4. Consider the abstract KRR problem

$$\hat{h}_n = \underset{h \in \mathcal{H}_k}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^n l(h(x_i), y_i) + \lambda ||h||_{\mathcal{H}_k}^2,$$

This infinite dimensional optimization can be reduced to a finite dimension optimization, the solution is

$$\hat{h}_n(x) = \sum_{i=1}^n \alpha_i k(x_i, x).$$

Proof. Review the problem in Lecture 1,

$$\hat{\beta}_n = \underset{\beta \in \mathbb{R}^m}{\operatorname{arg\,min}} \|\Phi\beta - y\| + \lambda \|\beta\|^2 \tag{17}$$

We have

$$\hat{\beta}_n = \sum_{i=1}^n \alpha_i \phi(x_i),$$

Theorem 3.5 is similar to 17, we omit the details. Consider another problem which can't be solved in this method. \Box

Theorem 3.5. (Representer Theorem) Consider the abstract KRR problem

$$\hat{h}_n = \underset{h \in \mathcal{H}_k}{\arg\min} \frac{1}{n} \sum_{i=1}^n l(h(x_i), y_i) + \lambda G(\|h\|_{\mathcal{H}_k}),$$

This infinite dimensional optimization can be reduced to a finite dimension optimization. The solution can be written as

$$\hat{h}_n(x) = \sum_{i=1}^n \alpha_i k(x_i, x)$$

. Where $G(\cdot)$ is an increasing function, α_i relay on G.

Proof. Consider decomposition

$$h = h^{\perp} + h^{//},$$

Where $h^{//} \in span(\{k(x_i, x)\}_{i=1}^n), \langle h^{\perp}, k(x_i, x) \rangle = 0$, then

$$h(x_i) = \langle h, k(\cdot, x_i) \rangle = \langle h^{\perp} + h^{\prime \prime}, k(\cdot, x_i) \rangle = \langle h^{\prime \prime}, k(\cdot, x_i) \rangle = h^{\prime \prime}(x_i)$$

then optimal solution belong to $span(\{k(x_i, x)\}_{i=1}^n)$.

4 Error analysis of kernel methods

In Random Feature Model, we use

$$f(x;a) = \frac{1}{m} \sum_{i=1}^{m} a_i \phi(x; b_i^0) \quad b_i^0 \sim \pi(\cdot)$$
 (18)

to approch the target function, where ϕ is randomly generated, the variable to learn is a. Consider the Empirical Risk

$$J_{\lambda}(a) = L_n(a) + \lambda ||a||^2$$
$$\hat{a}_{n,\lambda} = \arg\min J_{\lambda}(a)$$

Then we have the priori estimate of population risk

$$L(\hat{a})_n, \lambda) \lesssim \frac{\|f^*\|_1}{n^\alpha} + \frac{\|f^*\|_2}{m^\beta}$$

m is the number of features, when $m \to \infty$, $f(x;a) = \int a(\omega)\phi(x;\omega)\,\mathrm{d}\pi(\omega)$, we can use 18 to approching f(x;a).

Definition 4.1.

$$\mathcal{H} = \{ f = \int a(\omega)\phi(x;\omega) \, d\pi(\omega) | \int a^2(\omega) \, d\pi(\omega) < \infty \}$$
$$\langle f, g \rangle = \int a_f(\omega) a_g(\omega) \, d\pi(\omega)$$

Then \mathcal{H} is a RKHS, and $k(x,x') = \int \phi(x,\omega)\phi(x',\omega)\,\mathrm{d}\pi(\omega)$ is the reproducing kernel of \mathcal{H} , where ϕ is bounded.

Proof. We verify that \mathcal{H} satisfies 1.3.

• $k(x,\cdot) = \int \phi(x,\omega)\phi(x,\omega) d\pi(\omega)$, then

$$\int \phi^2(x,\omega) \, \mathrm{d}\pi(\omega) < \infty.$$

• $\langle f, k(x, \cdot) \rangle = \int a(x, \omega) \phi(x, \omega) d\pi(\omega) = f(x).$

Thus
$$\mathcal{H} = \mathcal{H}_k$$
.

We know

 $generalization\ error = approximation\ error + estimate\ error,$

and approximation property: $\forall f \in \mathcal{H}_k, \delta > 0$, with probability $1 - \delta$ over the sampling of feature there exists $a \in \mathbb{R}^m$, s.t.

$$\mathbb{E}_{x}(\frac{1}{m}\sum_{k=1}^{m}a_{k}\phi(x;\omega_{k}^{0})-f(x))^{2} \lesssim \frac{\|f^{*}\|_{\mathcal{H}_{k}}}{m}+\frac{\sqrt{\log(1/\delta)}}{m}.$$

Claim 4.2. If we calculate the expectations of ω_k^0 , we have

$$\mathbb{E}_{\omega_k^0} \mathbb{E}_x(\frac{1}{m} \sum_{k=1}^m a_k \phi(x; \omega_k^0) - f(x))^2 \lesssim \frac{\|f^*\|_{\mathcal{H}_k}}{m}.$$

Proof. We remeber $\omega^0 = \{\omega_k^0\}_{k=1}^m$, and

$$Z(\omega^{0}) = \sqrt{\mathbb{E}_{x}(\frac{1}{m}\sum_{k=1}^{m}a_{k}\phi(x;\omega_{k}^{0}) - f(x))^{2}}.$$

Then

$$\mathbb{E}_{\omega^{0}}(Z^{2}(\omega^{0})) = \mathbb{E}_{\omega^{0}}\mathbb{E}_{x}(\frac{1}{m}\sum_{k=1}^{m}a_{k}\phi(x;\omega_{k}^{0}) - f(x))^{2},$$

We know $f(x)=\mathbb{E}_{\omega_k^0}(a(\omega_k^0)\phi(x;\omega_k^0)),$ we remember $\triangle_k^0(x)=a_k\phi(x;\omega_k^0)-f(x),$ then

$$\mathbb{E}_{\omega^0}(Z^2(\omega^0)) = \mathbb{E}_{\omega^0} \mathbb{E}_x (\frac{1}{m} \sum_{k=1}^m \triangle_k^0)^2 = \mathbb{E}_x \mathbb{E}_{\omega^0} (\frac{1}{m} \sum_{k=1}^m \triangle_k^0)^2,$$

since $\mathbb{E}_{\omega^0}(\triangle_k^0) = 0$, we write

$$\mathbb{E}_x \mathbb{E}_{\omega^0} \left(\frac{1}{m} \sum_{k=1}^m \triangle_k^0 \right)^2 = \mathbb{E}_x \mathbb{E}_{\omega^0} \left(\frac{1}{m^2} \sum_{i,j=1}^m \triangle_i^0 \triangle_j^0 \right) = \frac{1}{m} \mathbb{E}_x \mathbb{E}_{\omega_k^0} (\triangle_k^0)^2,$$

we have

$$\mathbb{E}_{\omega_k^0}(\triangle_k^0)^2 = a_k^2(\omega_k^0)\phi^2(x;\omega_k^0) - f^2(x),$$

then

$$\frac{1}{m} \mathbb{E}_x \mathbb{E}_{\omega_k^0}(\Delta_k^0)^2 \le \frac{1}{m} \mathbb{E}_x \mathbb{E}_{\omega_k^0}(a_k^2 \phi^2(x; \omega_k^0)),$$

sppouse $|\phi| < B$, we get

$$\frac{1}{m} \mathbb{E}_x \mathbb{E}_{\omega_k^0}(a_k^2 \phi^2(x; \omega_k^0)) \lesssim \frac{1}{m} \mathbb{E}_{\omega_k^0} a_k^2(\omega_k^0) = \frac{\|f^*\|_{\mathcal{H}_k}^2}{m}.$$

It's easy to verify $Z(\omega^0)$ is a continous function of ω^0 when a is bounded. By McDiamid's inequality, with probability $\geq 1-\delta$

$$Z(\omega^0) \le \mathbb{E}_{\omega^0}(Z(\omega^0)) + \sqrt{\frac{\log(1/\delta)}{m}}$$
(19)

$$\leq \sqrt{\mathbb{E}_{\omega^0} Z^2(\omega^0)} + \sqrt{\frac{\log(1/\delta)}{m}} \tag{20}$$

$$=\frac{\|f\|_{\mathcal{H}_k}}{\sqrt{m}} + \sqrt{\frac{\log(1/\delta)}{m}}.$$
 (21)

Claim 4.3. Consider estimation error, with probability $\geq 1 - \delta$

$$|L(\hat{a}_n) - L_n(\hat{a}_n)| \le \sup_{\|a\| \le C} |L(a) - L_n(a)| \le 2Rad(\mathcal{F}_C) + \sqrt{\frac{\log(1/\delta)}{n}},$$
 (22)

where $\mathcal{F}_C = \{\frac{1}{m} \sum_{k=1}^m a_k \phi(\cdot; \omega_k^0) | ||a|| \leq C\}$, and

$$Rad(\mathcal{F}_C) \lesssim \frac{1}{\sqrt{n}}.$$
 (23)

Proof. The proof of 22 is established in previous lecture, we will focus on 23, suppose $|\phi| \leq B$

$$nRad(\mathcal{F}_C) = \mathbb{E}_{\xi} \sup_{\|a\| \le C} \sum_{i=1}^n \xi_i \sum_{k=1}^m a_k \phi(x; \omega_k^0)$$
 (24)

$$= \mathbb{E}_{\xi} \sup_{\|a\| \le C} \left\langle a, \sum_{i=1}^{n} \xi_i \phi(x; \omega_k^0) \right\rangle$$
 (25)

$$\leq \mathbb{E}_{\xi} \sqrt{\sum_{k=1}^{m} a_k^2 \sqrt{(\sum_{i=1}^{n} \xi_i \phi(x; \omega_k^0))^2}}$$

$$(26)$$

$$\leq C \sqrt{\mathbb{E}_{\xi}\left(\sqrt{\left(\sum_{i=1}^{n} \xi_{i} \phi(x; \omega_{k}^{0})\right)^{2}}\right)}$$
 (27)

$$= C\sqrt{\mathbb{E}_{\xi}(\sum_{i=1}^{n} \xi_i \phi(x; \omega_k^0))^2}$$
(28)

$$\leq C\sqrt{nB^2\mathbb{E}_{\xi_i}\xi_i^2}
\tag{29}$$

$$= CB\sqrt{n}. (30)$$

References