Распределение тепла в пластине Метод Якоби

Игорь Степанов, ФРТК, 213 $15~{\rm Mas}~2015~{\rm r}.$

1 Постановка задачи

Для уравнения

$$\Delta U = -f(x,y), f(x,y) = -2(x^2 + y^2) + 2(x+y), U|_{\delta\Omega} = 0$$
 (1)

в области $\Omega=[0,1]\cap[0,1]$ найти распределение тепла в пластине численно. При решении СЛАУ использовать итерационный метод Якоби для равномерной сетки с шагом по обоим направлениям $h\in\{10^{-1},10^{-2},\ldots,10^{-7}\}$ Точное решение имеет вид:

$$U(x,y) = xy(1-x)(1-y)$$
 (2)

2 Метод Якоби

Для метода Якоби используется разностная схема:

$$U_{i,j}^{(k+1)} = \frac{1}{4} \left(U_{i-1,j}^{(k)} + U_{i+1,j}^{(k)} + U_{i,j-1}^{(k)} + U_{i,j+1}^{(k)} - h^2 f_{i,j} \right)$$
(3)

3 Результат

Шаг h	Точность ε	Кол-во итераций N	Ошибка err
0.1	0.1	1	0.05771015319824219
0.01	0.01	1977	0.009993698168278047
0.001	0.001	-	-
0.0001	0.0001	-	-

Рис. 1: Шаг h = 0.1

Рис. 2: Шаг h=0.01

4 Заключение

Из графиков видно, что метод Якоби хорошо приближает к точному решению. В моей имплиментации использовался язык программирования Python с библиотекой MatPlotLib для построения графиков. В программе можно сохранить результат в файл на диск, напечатать в терминале или же построить графики для самого метода и для точного решения задачи.

Однако данный метод слишком ресурсоемкий, т.к. для шагов h=0.001 и h=0.0001 результаты получить более чем за 12 часов не удалось. Возможно проблема в неоптимальном алгоритме и нехватки мощности компьютера. Так например для шага h=0.001 требовалось более 3 Гб оперативной памяти.