

PARUL UNIVERSITY
FACULTY OF ENGINEERING AND
TECHNOLOGY
DEPARTMENT OF APPLIED SCIENCE AND
HUMANITIES
4th SEMESTER B. TECH PROGRAMME
PROBABILITY, STATISTICS AND
NUMERICAL METHODS (303191251)
ACADEMIC YEAR 2024-25

Tutorial: Finite Differences and Interpolation

1	Write forward difference table if											
	x: 10	20	30 40)								
	y: 1.1	2.0	4.4 7.	9								
2	With the usual notations, show that											
	(i) $\nabla = 1 - e^{-hD}$ (ii) $(1 + \Delta)(1 - \nabla) = 1$											
3	Given $\sin 45^\circ = 0.7071$, $\sin 50^\circ = 0.7660$, $\sin 55^\circ = 0.8192$, $\sin 60^\circ = 0.8660$. Find $\sin 52^\circ$ using Newton's forward formula.											
4	Find f(22) from the following data using Newton's backward formula											
	X	X 20		25			35 40)	45		
	f(x)	354	1	332	29	1	260	23	1	204		
5	Construct Newton's forward interpolation polynomial for the fol								ing data	:		
	X		4		6		8		10			
	Υ	1		3		8	16					
	Hence evaluate y for x=5.										·	
6	Use Gauss's forward formula to evaluate y_{30} , given that y_{21} =18.4708, y_{25} =17.8144, y_{29} =17.10											
	y ₃₃ =16.3432 and y ₃₇ =15.5154.											
7	7 Using Gauss backward difference formula, find y(8) from the following											
	х	0	5		10	1	5	20		25		
	У	7	11	1 14		1	18			32		
8	Find the polynomial f(x) by using Lagrange's formula and hence find f(3) for											
	x:	0	1	2	5							
	f(x):	2	3	12	147							
9	Use Lagrange's formula to find the form of f(x), given											
	x:	0	2	3	6	j						
	f(x):	648	704	72	9 7	'92						
10	Using Newton's divided difference formula, evaluate f(8) and f(15) given:											
	x:	4	5	7	10	11		13				
	f(x):	48	100	294	900	121	0	2028				