Leger Remi Note: 5/20 (score total : 5/20)

+114/1/50+

QCM THLR 4

1 / -	orenom, lisibles :	Identifiant (de haut en bas):
Legel	I Rémi	
0		2 □1 □2 □3 □4 □5 □6 □7 □8 □9
	• • • • • • • • • • • • • • • • • • • •	
plutôt que sieurs répo plus restri pas possib incorrecte	e cocher. Renseigner les champs d'ident onses justes. Toutes les autres n'en ont d ictive (par exemple s'il est demandé si (ple de corriger une erreur, mais vous po es pénalisent; les blanches et réponses m	ni dans les éventuels cadres grisés « 🏖 ». Noircir les cases tité. Les questions marquées par « 🗶 » peuvent avoir pluqu'une; si plusieurs réponses sont valides, sélectionner la D est <i>nul, non nul, positif,</i> ou <i>négatif,</i> cocher <i>nul</i>). Il n'est puvez utiliser un crayon. Les réponses justes créditent; les nultiples valent 0. Implet: les 3 entêtes sont +114/1/xx+···+114/3/xx+.
Q.2 Les	s logins de votre promo constituent un la	angage
	non reconnaissable par un	issable par un automate fini nondéterministe automate fini à transitions spontanées oar un automate fini déterministe
Q.3 L'er	nsemble des mots du petit Robert (éditio	on 1975) est
	non reconnaissable p	issable par un automate fini nondéterministe par un automate fini déterministe até par une expression rationnelle
Q.4 Qu	els langages ne vérifient pas le lemme d	e pompage?
	☐ Tous les langages reconnus par DFA Certains langages non reconnus par DFA	
Q.5 Un	automate fini qui a des transitions spor	ntanées
a	ccepte ε n'accepte pas ε	
Q.6 Si <i>I</i>	$L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:	
1	L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ L_1, L_2	\square L_1 est rationnel \square L_2 est rationnel L_2 sont rationnels
Q.7 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):		
	n+1 Il n'exis	te pas. \square 2^n \square $\frac{n(n+1)}{2}$
Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):		

0/2 \square Il n'existe pas. \square 4^n \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \boxtimes 2^n

2/2

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

2/2

- \Box $T(Det(T(Det(T(\mathscr{A})))))$
- \bigcirc $Det(T(Det(T(\mathcal{A}))))$ \Box $T(Det(T(Det(\mathcal{A}))))$
- \square $Det(T(Det(T(Det(\mathscr{A})))))$
- Fin de l'épreuve.

