

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления»

Кафедра «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «ДЛИННАЯ АРИФМЕТИКА»

по курсу «Типы и структуры данных»

Вариант 1

Студент: Писаренко Дмитрий Павлович				
Группа: ИУ7-34Б				
Студент		Писаренко Д.П.		
	подпись, дата	фамилия, и.о.		
_				
Преподаватель		<u>Рыбкин Ю.А.</u>		

подпись, дата

фамилия, и.о.

Условие задачи

Составить программу умножения или деления двух чисел, где порядок имеет до 5 знаков: от –99999 до +99999, а мантисса – до 30 знаков. Программа должна осуществлять ввод чисел и выдавать либо верный результат в указанном формате (при корректных данных), либо сообщение о невозможности произвести счет.

Смоделировать операцию деления действительного числа в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) — до 30 значащих цифр, а величина порядка K - до 5 цифр, на целое число длиной до 30 десятичных цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Техническое задание

Входные данные

Действительное число вида \pm m.nE \pm K. Суммарная длина строки — до 30 значащих цифр (m + n) + символ точки и знака. Величина порядка K — 5 цифр и символ знака.

Целое число вида ±d. Длина до 30 значащих цифр.

```
typedef struct
{
    char sign;
    int mantissa[MANTISSA_LEN + 1];
    int order;
} float_t;

typedef struct
{
    char sign;
    int digits[MANTISSA_LEN];
} integer_t;
```

```
char sign — знак числа
int mantissa[MANTISSA_LEN + 1] — массив цифр действительного числа
int order — порядок действительного числа
int digits[MANTISSA_LEN] — массив цифр целого числа
```

Onucaнue полей структур float tu integer t

Ограничения на входные данные

- Действительное число не более 30 значащих цифр
- Целое число не более 30 значащих цифр
- Порядок не более 5 значащих цифр
- Нельзя вводить пробелы до/после знаков, до порядка

Выходные данные

Действительное число вида $\pm 0.m1E\pm K1$, m1- до 30 значащих цифр, K1- до 5 значащих цифр.

Способ обращения к программе

```
make release
./app.exe
```

Алгоритм программы

- 1. Производится ввод действительного числа посимвольно через getchar(). В функции ввода действительного числа на блоки разделены: ввод знака, ввод мантиссы, ввод Е или е, ввод знака с порядком. При некорректном вводе какого-либо блока программа завершается с соответствующим ненулевым кодом возврата и выводит сообщение об ошибке на экран.
 - 2. Происходит нормализация действительного числа.
- 3. Производится ввод целого числа посимвольно через getchar(). В функции ввода целого числа на блоки разделены: ввод знака, ввод цифр. При некорректном вводе какого-либо блока программа завершается с соответствующим ненулевым кодом возврата и выводит сообщение об ошибке на экран. Также в этой функции проверяется деление на ноль.
- 4. Производится деление действительного числа на целое. Сначала в промежуточной функции pre_division считается, сколько раз можно вычесть из первого числа второе, затем происходит деление в столбик первого числа на второе.
- 5. Производится округление, и, соответственно, нормализация результата, если длина мантиссы стала равна 31 знаку.
 - 6. Результат выводится на экран.

Тестирование

Позитивные тесты

#	Входные данные	Выходные данные	
1	+123.123E+123	+0.23009344047841524948607736E+122	
	+5351		
2	-123.52	-0.11229090909090909090909090909E+2	
	+11		
3	+2	+0.1E+1	
	+2		
4	+100	-0.1E+2	
	-10		
5	+252.32E+99999	+0.191006813020439061317183951E+99999	
	+1321		
6	+752.32E+99999	+0.29944276389110014328928514E+99998	
	+25124		
7	-321	-0.1E+1	
	+321		
8	-15123.123E+15	-0.602514860557768924302788844E+17	
	+251		
9	+0000123.123E+123	+0.23009344047841524948607736E+122	
	+5351		
10	+123.123E+000123	+0.23009344047841524948607736E+122	
	+5351		
11	+0.0	-0.0E0	
	-12412		
12	+1123.411E+52	+0.2194162109375E+53	
	+512		
		l	

Негативные тесты

#	Входные данные	Выходные данные	Результат
1	122.123	Ошибка ввода: вначале	Код ошибки 2
		не был введен знак	
2	+123	Ошибка ввода: были	Код ошибки 5
	+123.12	введены не цифры	
3	\n	Пустой ввод	Код ошибки 1
4	+122.12E+FEffrr	Ошибка ввода: в	Код ошибки 6
		порядке были введены	
		не цифры	
5	+11111111111111111111111111111111111111	Произошло	Код ошибки 3
	111111111111111111111111111111111111111	переполнение	
6	+123.123.123	Ошибка ввода: было	Код ошибки 4
		введено более одной	
		точки	
7	+512.325E+150000	Порядок больше	Код ошибки 7
		критического значения	
8	+512.41E-953	Деление на ноль	Код ошибки 8
	+0	невозможно	

Контрольные вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

На это влияет тип чисел, размер выделенной для их хранения памяти и разрядность машины. Если переменная типа unsigned integer занимает 4 байта (32 бита), то диапазон значений будет от 0 до 2³2-1.

2. Какова возможная точность представления чисел?

Это зависит от количества памяти, выделенной для хранения мантиссы. В среднем под хранение выделяют 16-30 разрядов.

3. Какие стандартные операции возможны над числами?

Сложение, вычитание, умножение, деление, взятия остатка, сравнение.

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Структура.

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Путем последовательного выполнения операций над всеми цифрами, начиная с конца массива.

Вывод

В процессе выполнения лабораторной работы были изучены принципы работы длинной арифметики. Я узнал, как работать с числами, которые выходят за возможный диапазон значений каких-либо типов, представленных в ЯП.