

TABLA DE ECUACIONES CANÓNICAS DE LA ELIPSE Y SUS ELEMENTOS

ECUACIONES	CENTRO	COORD.VÉRTICE MAYOR	FOCOS	COORD.VÉRTICE MENOR	FORMA	EXCENTRICIDAD	EJES	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		$A(\pm a,0)$	$F(\pm c,0)$	$B(0,\pm b)$			Eje mayor = 2a Eje menor = 2b Eje Focal = 2c	
$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$	C(0,0)	$A(0,\pm a)$	$F(0,\pm c)$	$B(\pm b,0)$		$e = \frac{c}{a}$		
$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$		$A(h \pm a, k)$	$F(h \pm c, k)$	$B(h, k \pm b)$	10	0 < e < 1		
$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$	C(h, k)	$A(h, k \pm a)$	$F(h, k \pm c)$	$B(h \pm b, k)$				
Relación entre los parámetros $a^2 = b^2 + c^2$ $a > c$; $a > b$								

$$a^2 = b^2 + c^2$$

TABLA DE ECUACIONES CANÓNICAS DE LA HIPÉRBOLA Y SUS ELEMENTOS

ECUACIONES	CENTRO	COORD.VÉRT REALES	FOCOS	COORD.VÉRTICES IMAGINARIOS	FORMA	ASÍNTOTAS	EXC	EJES
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	C(0,0)	$A(\pm a,0)$	$F(\pm c,0)$	$B(0,\pm b)$		$y = \pm \frac{b}{a}x$		yor = 2a nor = 2b cal = 2c
$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$		$A(0,\pm a)$	$F(0,\pm c)$	$B(\pm b,0)$		$y = \pm \frac{a}{b}x$	$e = \frac{c}{a}$ $e > 1$ Eje mayor = 2a	
$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$		$A(h \pm a, k)$	$F(h \pm c, k)$	$B(h, k \pm b)$		$y - k = \pm \frac{b}{a}(x - h)$		Eje mayor = 2 Eje menor = 3 Eje Focal = 2
$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	C(h, k)	$A(h, k \pm a)$	$F(h, k \pm c)$	$B(h\pm b,k)$		$y - k = \pm \frac{a}{b}(x - h)$		
Relación entre los parámetros $c^2 = a^2 + b^2$ $c > a$								

TABLA DE ECUACIONES CANÓNICAS DE LA PARÁBOLA Y SUS ELEMENTOS

		FOCO	DIRECTRIZ	EJE DE SIMETRIA	FORMA p > 0	FORMA p < 0
$x^2 = 2py$		$Si \ p > 0 => F(0, \frac{p}{2})$ $Si \ p < 0 => F(0, -\frac{p}{2})$	Si $p > 0 => y = -\frac{p}{2}$ Si $p < 0 => y = \frac{p}{2}$	" Y "		
$y^2 = 2px$	V(0,0)	$Si \ p > 0 => F(\frac{p}{2}, 0)$ $Si \ p < 0 => F(-\frac{p}{2}, 0)$	$Si \ p > 0 \Longrightarrow x = -\frac{p}{2}$ $Si \ p < 0 \Longrightarrow x = \frac{p}{2}$	"X"		
$(x-h)^2 = 2p(y-k)$		$F(h, k \pm \frac{p}{2})$	$y = k \pm \frac{p}{2}$	Paralelo al eje "Y"		
$(y-k)^2 = 2p(x-h)$	V(h,k)	$F\left(h\pm\frac{p}{2},k\right)$	$x = h \pm \frac{p}{2}$	Paralelo al eje "X"		

EXCENTRICIDAD: e = 1

R = 2p

Observación: "p" es la distancia entre el foco y la directriz. Es decir que $\frac{p}{2}$ es la distancia entre el vértice y foco, igual que la distancia entre el vértice y la directriz.

Hay autores que consideran a "p" como la distancia entre el vértice y foco, que es la misma distancia entre el vértice y la directriz, por ese motivo aparece la ecuación canónica con "4p"; por ejemplo: $x^2 = 4py$ o $y^2 = 4px$