Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Отчёт

По лабораторной работе №3

По дисциплине: прикладная математика

Факультет: ИТиП

Группа: М32001

Авторы:

Андреев Артём Русланович Слюсаренко Сергей Владимирович Шевченко Валерий Владимирович

Лабораторная работа #3

- Дана квадратная матрица. Требуется найти ее LU-разложение. Реализовать процедуру нахождения обратной матрицы с использованием LU-разложения. Реализовать методы решения системы с использованием LU- разложения. При этом матрица хранится в разреженно-строчном (разреженно-столцовом) формате (см. видео https://youtu.be/uCWNlhXKqQw). Элементы матрицы обрабатывать в порядке, соответствующем формату хранения. Для решения использовать метод Гаусса.
- 2. Протестировать разработанную программу.
- 3. Реализовать итерационный методы решения СЛАУ (Метод Зейделя, Якоби или верхней релаксации на выбор).
- 4. Провести исследование реализованных методов на матрицах, число обусловленности которых регулируется за счет изменения диагонального преобладания (т.е. оценить влияние увеличения числа обусловленности на точность решения). Для этого необходимо решить последовательность СЛАУ

$$A^k x^k = F^k, \quad k = 0, 1, 2, ...,$$

где матрицы A^k строятся следующим образом:

$$a_{ij} = \begin{cases} -\sum_{i \neq j} a_{ij}, i > 1, \\ -\sum_{i \neq j} a_{ij} + 10^{-k}, i > 1, \end{cases},$$

и $a_{ij} \in 0, -1, -2, -3, -4$ выбираются достаточно произвольно, а правая часть F_k получается умножение матрицы A^k на вектор x*=(1,...,n). Для каждого k, для которого система вычислительно разрешима, оценить погрешность найденного решения.

Провести аналогичные исследования на матрицах Гильберта различной размерности.

Матрицы Γ ильберта размерности k строится следующим образом:

$$a_{ij} = \frac{1}{i+j-1}, i, j = 1..k.$$

- 6. Сравните между собой прямой и итерационный методы. Для сравнения используйте матрицы разной размерности: $n=10,\,50,\,10^2,\,10^3,\,10^4,\,10^5,\,10^6$. Сделайте выводы, зависит ли эффективность метода от размерности матрицы. Если да, какая зависимость наблюдается?
- 7. Реализовать поиск обратной матрицы с использованием LU- разложения.

Реализация алгоритмов:

return upper(a, v)

https://github.com/JabaJabila/ITMO AppliedMath/tree/main/Lab3

LU разложение: from scipy import sparse import numpy as np def lu decomposition(a: sparse.csr matrix): n = a.shape[0]u = sparse.lil matrix(a) l = sparse.lil matrix(np.eye(n)) $iteration_counter = 0$ for i in range(0, n): for j in range(i, n): l[j, i] = u[j, i] / u[i, i]iteration counter += 1 for k in range (1, n): for i in range(k - 1, n): for j in range(i, n): l[j, i] = u[j, i] / u[i, i]iteration counter += 1 for i in range(k, n): for j in range(k - 1, n): u[i, j] = u[i, j] - l[i, k - 1] * u[k - 1, j]iteration counter += 1 return sparse.csr matrix(1), sparse.csr matrix(u), iteration counter Решение СЛАУ при помощи LU: import numpy as np from scipy import sparse from tools.luDecomposition import lu decomposition def linear equations system solve(a: sparse.csr matrix, v: sparse.csr matrix): 1, u, iteration count = lu decomposition(a) t, new iteration count = lower(1, v) iteration count += new iteration count answer, new iteration count = upper(u, t) return answer, iteration count + new iteration count def linear equations system solve triangle(a: sparse.csr matrix, v: sparse.csr_matrix, is lower: bool): if is lower: return lower(a, v) else:

```
def lower(a: sparse.csr matrix, v: sparse.csr matrix):
    x = []
    iteration counter = 0
    n = v.shape[1]
   m = v.shape[0]
    for k in range (0, m):
        vector v = v.getrow(k).toarray()[0]
        vector x = []
        for i in range(0, n):
            for j in range (0, i):
                iteration counter += 1
                vector v[i] = a[i, j] * vector x[j]
            iteration counter += 1
            vector x.append(vector v[i] / a[i, i])
        x.append(vector x)
    matrix x = sparse.csr matrix(x)
    return matrix x.transpose(), iteration counter
def upper(a: sparse.csr matrix, v: sparse.csr matrix):
    n = v.shape[0]
   m = v.shape[1]
    x = np.empty(m, dtype=np.dtype)
    iteration counter = 0
    for k in range (0, m):
        vector v = v.getcol(m - 1 - k).transpose().toarray()[0]
        vector x = np.empty(n, dtype=float)
        for i in range (0, n):
            for j in range(n - i, n):
                iteration counter += 1
                vector v[n-1-i] -= a[n-1-i, j] * vector x[j]
            iteration counter += 1
            vector x[n - 1 - i] = (vector v[n - 1 - i] / a[n - 1 - i, n - 1 - i]
i])
       x[m - 1 - k] = vector x
    matrix x = sparse.csr matrix(x.tolist())
    return matrix x.transpose(), iteration counter
Поиск обратной матрицы с помощью LU:
from scipy import sparse
from tools.luDecomposition import lu decomposition
from tools.linearEquationsSystemSolve import
linear equations system solve triangle
def inverse matrix(a: sparse.csr matrix):
   n = a.shape[0]
    e = get identity matrix(n)
    l, u, iteration count = lu decomposition(a)
    t, new iteration count = linear equations system solve triangle(1, e, True)
```

```
iteration count += new iteration count
    inverse, new iteration count = linear equations system solve triangle(u, t,
False)
    iteration count += new iteration count
    return inverse, iteration count
def get identity matrix(n: int):
    matrix = sparse.lil matrix((n, n))
    for i in range (0, n):
        matrix[i, i] = 1
    return matrix
Метод Зейделя:
import numpy as np
import copy
def is need to complete(x old, x new, eps):
    for i in range(len(x new)):
        if abs(x old[i] \overline{} x new[i]) > eps:
            return False
    return True
def seidel(A, B, eps):
    count = len(B)
    x = np.array([0.0] * count)
   number of iter = 0
    while number_of_iter < 100000:</pre>
        x prev = copy.deepcopy(x)
        for i in range(count):
            s = 0
            for j in range(count):
                number_of_iter += 1
                if j != i:
                    s = s + A[i, j] * x[j]
            x[i] = B[i] / A[i, i] - s / A[i, i]
        if is_need_to_complete(x_prev, x, eps):
            break
    return x, number_of_iter
Поиск числа обусловленности матрицы:
import numpy as np
from scipy import sparse
from tools.inverseMatrix import inverse matrix
```

def norm(A: sparse.csr matrix):

result = 0

```
k, n = A.shape
for i in range(k):
    for j in range(n):
        result += A[i, j] ** 2
return np.sqrt(result)

def get_conditional_number(a: sparse.csr_matrix):
    a_inverse = inverse_matrix(a)[0]
    return norm(a) * norm(a_inverse)
```

1. LU разложение

LU разложение — это представление матрицы A в виде произведения матриц LU, где L — нижняя треугольная матрица, а U — верхняя треугольная. Важно отметить, что все элементы на главной диагонали должны быть ненулевыми, и сама матрица A должна быть обратимой.

LU разложением можно воспользоваться для решения СЛАУ. Пусть у нас уравнение вида Ax = b, где A - наша матрица, x - искомый вектор и b - известный вектор. Заменим матрицу на её LU разложение. Получим LUx = b. Теперь, сначала решим уравнение Lt = b (где t = Ux), а затем уравнение Ux = t. Так как матрицы L и U треугольные, то нахождение векторов t и x является довольно простой задачей.

Также, пользуясь разложением, можно находить обратную матрицу к заданной матрице. Мы, по сути, снова решаем СЛАУ, но в уравнении Ax = b, вместо b ставится единичная матрица (то есть Ax = E). Теперь нам нужно k раз (где k — размерность матрицы) решить СЛАУ $Ax_i = E_i$, складывая получаемые x_i в одну матрицу. В результате, матрица x будет равна обратной матрице.

2. Пример работы

Исходная матрица А:

```
A:
[[1. 0. 0. 0. 1.]
[0. 2. 1. 8. 1.]
[0. 0. 9. 0. 0.]
[0. 7. 1. 3. 0.]
[3. 7. 0. 3. 2.]]
```

Матрица L:

L:						
]]	1.	0.	0.	0.	0.]
[0.	1.	0.	0.	0.]
[0.	0.	1.	0.	0.]
[0.	3.5	-0.27777778	1.	0.]
[3.	3.5	-0.38888889	1.	1.]]

Матрица U:

```
U:
[[
    1.
            0.
                   0.
                          Θ.
                                 1. ]
     0.
            2.
                   1.
                          8.
                                 1. 1
            0.
                          0.
 Γ
     0.
                   9.
                                 0.]
 [
                        -25.
                                -3.5]
     0.
            0.
                   0.
     0.
            0.
                   0.
                          0.
                                -1. ]]
```

Проверим, что при умножении L на U, получается матрица A:

```
L * U:

[[1. 0. 0. 0. 1.]

[0. 2. 1. 8. 1.]

[0. 0. 9. 0. 0.]

[0. 7. 1. 3. 0.]

[3. 7. 0. 3. 2.]]
```

Полученная матрица совпала с исходной. Для разложения понадобилось 89 итераций.

Найденная обратная матрица:

```
Inverse A:
[[-2.
                0.
                             0.11111111 -1.
                                                      1.
                            -0.01777778 0.22
                                                                 ]
 [ 0.18
               -0.06
                                                     -0.06
 [ 0.
                                                                 ]
                0.
                             0.11111111
                                         0.
                                                      Θ.
 [-0.42
                0.14
                             0.00444444 -0.18
                                                      0.14
 [ 3.
                0.
                            -0.11111111 1.
                                                     -1.
```

Проверим, что при умножении исходной матрицы на обратную, получается единичная матрица:

```
(Inverse A) * A:
[[ 1.0000000e+00
                                  0.0000000e+00 0.0000000e+00
                  0.00000000e+00
  0.00000000e+00]
 [-2.22044605e-16
                  1.00000000e+00
                                  0.00000000e+00 -6.66133815e-16
  -2.22044605e-16]
 [ 0.0000000e+00
                  0.00000000e+00
                                  1.00000000e+00
                                                  0.0000000e+00
  0.00000000e+00]
 [ 5.55111512e-17
                  1.11022302e-16
                                  0.0000000e+00
                                                  1.00000000e+00
  5.55111512e-17]
 [ 0.0000000e+00
                  0.00000000e+00
                                  0.00000000e+00
                                                  0.00000000e+00
  1.00000000e+00]]
```

Полученная матрица является единичной. Для нахождения обратной матрицы (включая LU разложение) понадобилось 239 итераций.

Решение СЛАУ при векторе b равном [1, 2, 3, 4, 5]:

```
Solution of system A with B vector [1, 2, 3, 4, 5] (lu method) [[-0.66666667 0.58666667 0.33333333 -0.14666667 1.66666667]]
```

При умножении исходной матрицы на полученный вектор получается вектор [1, 2, 3, 4, 5], значит метод работает правильно.

3. Метод Зейделя

Метод Зейделя — итерационный метод решения системы уравнений, для того чтобы описать этот метод, стоит для начала определить обычный итерационный метод, суть которого заключается в том, что мы выводим:

$$X_1^{(k+1)}$$
 ИЗ X_2^k , X_3^k ... X_n^k $X_2^{(k+1)}$ ИЗ X_1^k , X_3^k ... X_n^k ... X_n^k ... $X_n^{(k+1)}$ ИЗ X_1^k , X_2^k ... X_{n-1}^k

Такую систему не сложно составить и решить итерационно и будет выглядеть она след. образом:

$$x_i^{(k+1)} = rac{1}{a_{ii}}\left(b_i - \sum_{j
eq i} a_{ij}x_j^{(k)}
ight), \quad i=1,2,\ldots,n.$$

Этот метод можно модифицировать таким образом, что для подсчета x_i^k мы можем использовать уже полученные x_i^{k-n} , таким образом мы получаем метод Зейделя:

Метод Зейделя

Стоит заметить, что сходимость обоих методов равна сходимости геометрической прогрессии, только в случае с методом Зейделя константа будет меньше

Докажем сходимость итерационного метода, из сходимости итерационного метода следует сходимость метода Зейделя:

Суть итерационного метода заключается в представлении нашей системы в таком виде:

$$Ax = b \iff x = Sx + f$$
$$x^{k} = Sx^{k-1} + f$$

Рассмотрим вектор ошибки в таком случае:

$$e^{k} = (x^{k} - x) = S(x^{k-1} - x)$$

а через k итераций:

$$e^{k} = (x^{k} - x) = S(x^{k-1} - x) =$$

= $S^{k}(x^{0} - x) = S^{k}e^{0}$

т.е. можно сформулировать критерий сходимости, при котором вектор ошибок будет стремиться к 0

Критерий сходимости:

$$e^k \to 0 \iff S^k e^0 \to 0 \ \forall e^0 \iff \rho(S) < 1$$

4. Исследование методов на матрицах с разным числом обусловленности

Число обусловленности равно 3889308:

```
Diagonal matrix 5x5 #1
a = [[16.00001 -6. -2. -2. -6. ]
[-3. 14.00001 -3. -4. -4. ]
[-6. -2. 16.00001 -3. -5. ]
[-5. -1. -6. 15.00001 -3. ]
[-2. -2. -6. 0. 10.00001]]
[-6.
b = [-39.99999 -19.99998  1.00003  20.00004  26.00005]
Conditional number = 3889307.6976931565
Solution of system A with B vector (lu method)
[[1. 2. 3. 4. 5.]]
Iteration number
119
>-----<
Solution of system A with B vector (Seidel method)
[-3.0125295 -2.01252834 -1.01252723 -0.01252585 0.98747611]
Iteration number
175
>------\
Error for lu
9.39959687352353e-15
>------<
Error for Seidel
0.0001244038041889491
```

Число обусловленности равно 3553399:

```
Diagonal matrix 5x5 #2
a = [[11.00001 0. -3. -3. -5. ]

[-3. 19.00001 -4. -6. -6. ]

[-1. -1. 11.00001 -3. -6. ]
         -5. -2. 10.00001 -1. ]
-1. -3. -6. 10.00001]]
 [-2.
[ 0.
b = [-34.99999 -30.99998 -11.99997 17.00004 15.00005]
Conditional number = 3553398.6090532485
Solution of system A with B vector (lu method)
[[1. 2. 3. 4. 5.]]
Iteration number
119
>------
Solution of system A with B vector (Seidel method)
[-3.38786479 -2.38786442 -1.3878555 -0.387858 0.6121465 ]
Iteration number
150
Error for lu
8.702335715267317e-15
Error for Seidel
0.00023732038716445586
  ------
```

Число обусловленности равно 3332339:

Как можно заметить, число обусловленности не влияет на количество итераций у решения СЛАУ с помощью LU. А вот у метода Зейделя, уменьшение числа обусловленности ведёт к увеличению количество итераций, требуемых для решения СЛАУ.

5. Исследование методов на матрицах Гилберта разных размеров

N = 5

N = 10 N = 50

```
Gilbert matrix 50x50
Gilbert matrix 10x10
                                                     Solution of system A with B vector (lu method)
Solution of system A with B vector (lu method)
                                                     Iteration number
Iteration number
                                                     67574
714
                                                     Solution of system A with B vector (Seidel method)
Solution of system A with B vector (Seidel method)
Iteration number
                                                     Iteration number
                                                     100000
100000
                                                     Error for lu
Error for lu
3.076740298213702e-15
                                                     2.412185323914849e-13
                                                     Error for Seidel
Error for Seidel
                                                     0.6016989356720592
0.00032042282607448665
```

Как мы видим, метод Зейделя, довольно плохо справляется с матрицами Гилберта. Прежде всего, это вызвано большим числом обусловленности и полностью матриц, в случае с 10 и 50, Зейдель упирается в поставленное ограничение 1е6 и даже не доходит до требуемой точности. В то время как, LU метод всё-также работает за фиксированное, от размера матрицы, время.

6. Сравнение методов на матрицах разного размера

N = 10

Diagonal matrix 10x10
Solution of system A with B vector (lu method)
Iteration number
714
>
Solution of system A with B vector (Seidel method)
Iteration number
700
>
Error for lu
9.592326932761353e-14
>
Error for Seidel
9.876416618680956e-05

N = 50

```
Diagonal matrix 50x50

Solution of system A with B vector (lu method)

Iteration number

67574

>-----

Solution of system A with B vector (Seidel method)

Iteration number

20000

>-----

Error for lu

6.547241665279601e-12

>-----

Error for Seidel

0.0006073972725889583
```

N = 100

Уже видно, что метод Зейделя работает намного быстрее, чем LU. Это можно объяснить тем, что у LU асимптотика $O(n^3)$. Но стоит отметить, что LU находит точный ответ, а Зейдель только с заданной точностью.

Исследования работы алгоритмов на матрицах диагонального преобладания:

size n	epsilon	Cond(A)	LU iterations	Seidel iterations
5	0.01	3.129004e+06	119	100
10	0.01	9.223961e+11	714	500
50	0.01	1.499922e+17	67574	15000
100	0.01	1.242334e+17	520149	60000

Исследования работы алгоритмов на матрицах Гильберта:

size n	epsilon	Cond(A)	LU iterations	Seidel iterations
5	0.01	4.808491e+05	119	1375
10	0.01	1.633163e+13	714	16300
50	0.01	1.765061e+19	67574	100000
100	0.01	2.007829e+19	520149	100000

Исследования работы алгоритмов на рандомных матрицах:

size n	epsilon	Cond(A)	LU iterations	Seidel iterations
5	0.01	56.926044	119	23650
10	0.01	48.103055	714	15100
20	0.01	4538.432128	4829	53600
30	0.01	304.302476	15344	50400
40	0.01	3797.965538	35259	41600
50	0.01	694.598459	67574	100000
60	0.01	2001.536347	115289	100800
70	0.01	1506.864974	181404	102900
80	0.01	1398.620929	268919	102400
90	0.01	7886.013817	380834	105300
100	0.01	1693.847731	520149	100000

7. Вывод

Итоги сравнение двух методов решения СЛАУ, итерационного (Зейделя) и прямого (LU разложение) таковы: LU метод зависит от размера матрицы, поэтому большие матрицы он будет обрабатывать крайне долго, но зато не зависит от того, что находится внутри матрицы, а также ответ получается точным. Метод Зейделя же, сильно зависит от величины обусловленности матрицы. Отсюда, на больших матрицах метод Зейделя показывает себя лучше, а LU метод лучше применять на сравнительно небольших матрицах или если метод Зейделя не справляется с заданной матрицей.