Document Number: 0010 Version: 0A 1

BMS: CAN BUS COMMUNICATION SPECIFICATION

1. Communication Specification

The principle for data link layer.

Communication speed for bus line: 500Kbps.

The provision for data link layer: Refer to the related regulation of CAN2.0B and J1939.

Use and redefine 29 identifiers of CAN extended frame. The distribution of 29 identifiers are listed below:

			IDE	NTIFII	ER ·	11BY	TES				S R R	R D IDENTIFIER EXTENSION 18BYTES																		
PF	RIORI	TY	R	DP		PDl	J FOF	RMAT	(PF)		S R R	I D E	Р	F			PDU	SPE	CIFIC	(PS)				so	URC	Ε ΑΓ	DRE	ESS(SA)	
3	2	1	1	1	8	7	6	5	4	3			2	1	8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1
28	27	26	25	24	23	22	21	20	19	18			17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Priority has 3 bits so there can be 8 priorities. R is generally 0. DP is fixed at 0. 8-bit PF is the code for the message. 8-bit PS refers to destination address. 8-bit SA refers to the source address.

CAN Network Address Distribution

Obtain the node address of CAN Bus from the definition of J1939 Standard:

Node Name		SOURCE ADDRESS(SA)
Motor Controller	239(0xEF)	
Battery Management System (BMS)	244(0xF4)	
Charger Control System (CCS)	229(0xE5)	Also available: E7, E8 and E9
Broadcast Address (BCA)	80(0x50)	

There is a name and an address for every node which accesses to the network. The name is used for nodes identification and address arbitration. The address is used for data communication to node.

Every node has at least one function. Multiple nodes might have the same function or one node might have multiple functions.

Message Format

Message1: (ID: 0x1806E5F4)

OUT	IN			ID		Cycle Time (ms)			
BMS	ccs	Р	R	DP	PF	1000			
DIVIO	CCS	6	0	0	6	1000			
			Data						
Position		Data Name							
BYTE1	Max Allowat	ole Charging Terminal \	Voltage High						
DITE		Byte(VOL_SET_H)		0.1V/byte offset:0 e.g. Vset=3201, its corresponding 32					
BYTE2	Max Allowable	Charging Terminal Vol	ltage Low Byte	0.1 V/byte offset.o e.g. V3et=3201, its corresponding 320.					
BTTLZ		(VOL_SET_L)							
BYTE3	Max Allow	able Charging Current	High Byte						
DITES		(VOL_SET_H)		0.1A/byte offset:0 e.g. Iset=582, its corresponding 58.2A					
BYTE4	Max Allow	able Charging Current	Low Byte						
DITE4		(VOL_SET_L)							
BYTE5		Control		0: Start charging					
BITLS		Control		1: Stop charging					
BYTE6 Reserved									
BYTE7 Reserved									
BYTE8 Reserved									

Message 2: (ID: 0x18FF50E5)

OUT	IN			ID			Cycle Time(ms)	
ccs	BCA	Р	R	DP 0		PF	1000	
003	BOA	6	0			0xFF	1000	
	Data							
Position	Position Data Name							
BYTE1	BYTE1 Output Voltage High Byte					e.g. Vout=3201, its co	rrosponding 220 1\/	
BYTE2		Output Voltage Low Byte	O. I V/byte ons	et.0	e.g. vout=3201, its coi	responding 320.1 v		
BYTE3		Output Current High Byt	0.1A/byte offs	set:0	e.g. lout=582, its corre	esponding 58.2A		

BYTE4	Output Current Low Byte	Max byte means mark. 0: charging; 1: discharging
BYTE5	Status Flags	
BYTE6	Reserved	
BYTE7	Reserved	
BYTE8	Reserved	

STATUS	Mark	Description
Bit 0	Hardware Failure	0: Normal. 1: Hardware Failure
Bit 1	Temperature of Charger	0: Normal. 1: Over temperature protection
Bit 2	Input Voltage	0: Input voltage is normal. 1. Input voltage is wrong, the charger will stop working.
Bit 3	Starting state	O: Charger detects battery voltage and starts charging. 1: Charger stays turned off (to prevent reverse polarity).
Bit 4	Communication State	0: Communication is normal. 1: Communication receive time-out.
Bit 5		
Bit 6		
Bit 7		

Operation Mode

- 1. BMS send operating information (Message 1) and (Message 10+Message 11+Message 12) to charger at fixed interval of 1s. After receiving the message, the charger will work under the Voltage and Current in Message. If the Message is not received within 5s, then it will enter into communication error state and the output will be closed.
- 2. The charger send broadcast message (Message 2) at intervals of 1s. The display meter can show the status of the charger according to up-to-date information.
- 3. The CAN module comes with a mating connector with CAN-L and CAN-L pins that connect to your BMS. No other connections to the BMS (such as ground or shield) are necessary or allowed. Pin 1 is CAN-L and pin 2 is CAN-H.