Computer Graphics

Ocean rendering

資工大一 塗季芸 B08902071

資工大一 戴可葳 B08902080

1. Abstract

水是個高深莫測的物質,除了固態、液態、氣態上的外型變化外,更有折射、反射等特性,在 computer graphics 領域中,水的模擬是不斷被討論的問題,從電影鐵達尼號的海面到海底總動員中的海底世界,我們可以看見模擬技術不斷演進,能夠創造更為細緻、逼真的畫面。

關於水的模擬有許多種,有水滴、水柱、靜態水面、水底光線等,其中我們對有波浪的海面感到特別好奇,想了解其背後所用的技術,加上考量我們現在大一,尚未具備機器學習、硬體感測等能力,因此希望應用這學期在 ICG 課程中所學,結合 homework1 中使用的 shaders,針對海面及波浪,嘗試找出效果比較好的模擬方法。

本報告將解釋我們尋找方法及嘗試的過程,期間曾遇到的困難 與解決方式,並將著重於討論波浪的水面高度模擬及做成動畫的方 式,這個 project 是以 WebGL 實作完成。

2. Method

2.1 wave model

在閱讀相關資料時,我們發現現行模擬海面主要的 wave model 有兩種,第一個是根據 Tessendorf 所發表的論文,利用白噪音及 Fast Fourier Transform (FFT) 計算海面的高度及法向量,此方法雖然

能夠達到較好的視覺效果,實作上卻比較困難,運算量也相當龐大,第二個是 Gerstner wave,此方式能夠排除上述困難,也能套用在更多樣的水面型態,因此我們決定在這次 project 根據 Gerstner model 來實作。

2.2 Gerstner Wave

最簡單的波是 sin 波,但單純 sin 波通常無法模擬出海面的不規則性,且 sin 波曲線圓滑,但海波的波峰其實會略為陡峭(如下圖), sin 波在此時就不能模擬真實海面的情景。Gerstner Wave 正是產生較陡峭波峰的算法,其效率高也不複雜。

Gerstner Wave 計算出的波的位置:

$$\mathbf{P}(x, y, t) = \begin{bmatrix} x + \sum (Q_i A_i \times \mathbf{D}_i . x \times \cos(w_i \mathbf{D}_i \cdot (x, y) + \varphi_i t)), \\ y + \sum (Q_i A_i \times \mathbf{D}_i . y \times \cos(w_i \mathbf{D}_i \cdot (x, y) + \varphi_i t)), \\ \sum (A_i \sin(w_i \mathbf{D}_i \cdot (x, y) + \varphi_i t)) \end{bmatrix}.$$

波的 Normal:

$$\mathbf{N} = \begin{bmatrix} -\sum (\mathbf{D}_i.x \times WA \times C0), \\ -\sum (\mathbf{D}_i.y \times WA \times C0), \\ 1 - \sum (Q_i \times WA \times S0) \end{bmatrix},$$

其中,

$$WA = w_i \times A_i,$$

$$S(0) = \sin(w_i \times \mathbf{D}_i \cdot \mathbf{P} + \varphi_i t), \text{ and }$$

$$C(0) = \cos(w_i \times \mathbf{D}_i \cdot \mathbf{P} + \varphi_i t).$$

在真實世界中,海面也不會僅僅只有一種波構成,因此我們用很多 Gerstner Wave 來疊加出我們想要的波形(即算式中的sigma)。參數的決定則使用下列方法:

- □ Q_i: steepness。決定一個 steepness Q,則 Q_i=Q / (w_i A_i * numWaves)
- □ L: 波長(用於計算其他參數): 決定一個 median wavelength 後, random 選擇介於[median wavelength / 2, median wavelength * 2]間的數值
- \mathbb{U} w:頻率。 $w = \sqrt{g \times \frac{2\pi}{L}},$
- □ A:振幅。選擇一個 median amplitude,則 A_i = median amplitude / median wavelength * w_i

□ D:方向。選擇一個方向和角度,在這個角度之間 random 取方向的值。

而在我們的實作中,我們使用 6 個 Gerstner wave 疊加出我們的海面。

2.3 Real time?

我們曾在網路上看到一個 real time 的水面模擬,可以讓使用者創造漣漪及波浪,覺得這樣的效果相當好,原本希望能夠做出類似的 interactive interface,然而跟助教討論後,發現以我們的模擬方法,很難在 real time 下改動 model 的 vertex 跟 normal。於是改成事先做好 1000 個不同時間下的 model,在 webgl 的 animate function 中每一個 frame 都換成下一個時間點的 model,並且循環播放,創造波浪移動的效果。

3 Conclusion

在這份專題中,我們了解幾個海面模擬常用的 model,選擇運用 Gerstner wave model,疊加多個波來計算波浪位置,並且以不同 frame 套用不同 model 的方式形成連續動態的動畫,在 WebGL 實作 出海面的模擬。

4 Future works

我們希望未來能嘗試不同的 wave model,比較它們的波浪視覺效果,也希望能改善動畫實作方式,達到 real time。另外我們想更進一步研究一些特殊效果,如:風吹、漣漪,嘗試將其加入目前的模型中。

5 Result

6 Reference

Jerry Tessendorf, 'Simulating Ocean Water' http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.9102&rep=rep1&type=pdf

Damien Hinsinger, Fabrice Neyret, Marie-Paule Cani, 'Interactive Animation of Ocean Waves'

http://www-evasion.imag.fr/Publications/2002/HNC02/wavesSCA.pdf

Evan Wallace's work, WebGL water http://madebyevan.com/webgl-water/

Alan Fournier, William T Reeves, 'A Simple Model of Ocean Waves', SIGGRAPH'86

https://dl.acm.org/doi/epdf/10.1145/15886.15894

Effective Water Simulation from Physical Models https://developer.download.nvidia.com/books/HTML/gpugems/gpugems/ch01.html