Университет ИТМО Факультет ПИиКТ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

I CEMECTP

Лектор: Екатерина Станиславовна Трифанова

Автор: Александр Калиев Проект на GitHub

Содержание

1	202	3-09-05	2
	1.1	Введение	2
	1.2	Sets and relations	2
	1.3	Defining a set	2
	1.4	Проблемы и парадоксы теории множеств	3
	1.5	Operations between sets	3
	1.6	Dechart multiplication	4
	1.7	Binary relations	4
	1.8	Binary and n-ary relations	4
	1.9	Properties of relations	5
2	2023-09-12		
	2.1	Order relation	5
	2.2	Relation of linear order	6
	2.3	Mappings and functions	6
	2.4	Injection, surjection and biection	6
	2.5	Composition of relations	7
	2.6	Reverse cryteria	7
	2.7	finite sets	7
	2.8	Finite sets, a number of subsets	8
	2.9	Finite sets: a number of relations	8
	2.10	Finite sets: permutations and размещения	8
	2.11	Countable sets	9
	2.12	Countability of multiplication	9
	2.13	No more that a countable set	10
	2.14	A union of no-more-than-countable sets	11
3	202	3-09-26	12

1 2023-09-05

1.1 Введение

Пастор – прочие элементы дискретной математики, в большинстве – комбинаторика Карпов – теория графов

1.2 Sets and relations

Reading materials (about sets theory)

- 1. Senpinsky (med)
- 2. Vilenkin (easy)
- 3. Yekh (hard, 6th semester)

Slides

Определение 1.1 (Sets). множество — это группа объектов (неформально)

- ▷ objects of a set are its elements
- ▷ any object can be an element of a set
- $\triangleright x \in Y$ means «x is an element of a set Y»
- $\triangleright \varnothing$ is a set that has 0 elements
- ▶ it's really hard to define set **formally**
 - formally, sets are also elements of another sets
 - other objects have to be interpreted using any sets

We are learning naive sets theory

1.3 Defining a set

⊳ Перечисление

Пример.
$$Y = \{1,3,7,19,2021\}$$

▶ Defining a set using condition

$$Y = \{x \in X | condition \}$$

Пример.
$$Y = \left\{ n \in Z | n \stackrel{.}{:} 2 \right\}$$

 \triangleright If all elements of Y are in X, then Y is an subset of X. $Y \subset X$

Замечание. $\mathcal{P}(X)$ – множество всех подмножеств множества X

Замечание. We can also use $Y = \{x | condition\}$, but we call it a class!

$$X = \{1, 2\} Y = \{0, \{1, 2\}, \{3\}\} x \in Y, \ but \neg (x \subset Y)$$

1.4 Проблемы и парадоксы теории множеств

- ▷ Can a set be an item of itself?
- \triangleright Russel's paradox (1901): let $Y = \{x | x \notin x\}$
 - is $Y \in Y$?
 - this question is neither true of false.
- \triangleright in formal sets theory, $x \in x$ is forbidden (regularity axiom)
- \triangleright class Y in Russel's paradox is not a set.
- \triangleright class of every possible set (U) is not a set

1.5 Operations between sets

Let A, B be sets. Then:

$$\triangleright A \cap B = ^{def} \{x \in A | x \in B\}$$
 – intersection

$$\triangleright A \cup B = ^{def} \{x | (x \in A \lor x \in B)\}$$
 – union

$${\,\vartriangleright\,} A \backslash B = ^{def} \{x \in A | x \not\in B\} - \text{difference}$$

$$\,\rhd\,\, A\triangle B=^{def}\{(A\cup B)\backslash (A\cap B)\}$$
 – symmetrical difference

 \triangleleft Complemention. Let U be an universum, a set that contains every set. then

$$\triangleleft A =^{def} \{ x \in U | x \notin A \}$$

Упорядоченные пары элементов х у

$$(x,y) = \{(x), (x,y), (y)\}$$

1.6 Dechart multiplication

Определение 1.2. $A \times B = ^{def} \{(x,y) \mid (x \in A \& y \in B)\}$

Пример. let $X = \{1,2,3\}, Y = \{1,2,3,4,5\}$. Then we got a matrix:

$$\begin{pmatrix} (x_1, y_1) & (x_1, y_2) & \dots & (x_1, y_5) \\ (x_2, y_1) & (x_2, y_2) & \dots & (x_2, y_5) \\ (x_3, y_1) & (x_3, y_2) & \dots & (x_3, y_5) \end{pmatrix}$$

Аналогично мы можем определить умножение для n множеств. (можно сделать индукцией)

$$A_1 \times A_2 \times \cdots \times A_n = \{(x_1, x_2, \dots, x_n | (x_1 \in A_1 \& \dots \& x_n \in A_n))\}$$

We assume that $A^1 = A$

If it's not a multiset, then $\{3,3\} = \{3\}$

1.7 Binary relations

Let $R \subset X \times Y$

If X = Y, then R is a binary relation on X.

Lets call a pair $(x,y): x \in X \& y \in Y$, appropriate

An appropriate pair (x,y) is written: xRy.

Замечание. Binary relation is either true or false (R is a set of pairs, for which the statement $x \in X \& y \in Y$ is true)

Замечание. Binary relation can be interpreted as an oriented graph: elements of a set is it's vertices, and edges is drawn only if xRy.

1.8 Binary and n-ary relations

Similarly, $R \subset X_1 \times \cdots \times X_n$. If $X_1 = X_2 = \cdots = X_n$, then R is an n-ary relation on X.

Пример. 1. Equality (a = b) – binary relation or \mathbb{R}

- 2. divisibility (a:b) binary relation on \mathbb{Z}
- 3. let G = (V, E), then:
 - \triangleright смежность графа на V.
 - \triangleright инцидентность между V, E.
- 4. A,B,C form a line 3-ary relation on a plain

1.9 Properties of relations

Определение 1.3. Binary relation is called:

- \triangleright reflexive, if xRx is true $\forall x \in X$
- \triangleright irreflexive, if xRx is false $\forall x \in X$
- \triangleright symmetrical, if $xRy \Rightarrow yRx$
- \triangleright antisymmetrical, if $xRy\&yRx \Rightarrow x = y$.
- \triangleright transitive, if $xRy, yRz \Rightarrow xRz$

Определение 1.4. Binary relation is relation of identity if it's reflexive, symmetrical and transitive

Замечание. Relation of identity splits the set to **identity classes**, so for any 2 elements of 1 class are equal, and 2 elements from different classes aren't

Examples:

- $\triangleright a = b$
- $\triangleright a||b$
- $\triangleright a \sim b$
- ▶ division of polygons by amount of vertices.

2 2023-09-12

2.1 Order relation

 \triangleright

Определение 2.1. Binary relation \prec on X is called a relation of частичного order, if it's antisymmetrical ond transitive

- \triangleright If \prec is irreflexive, then it's called an relation of strict order
- ▷ If it's reflexive it's called an unstrict relation of particular order
 - As usual, for unstrict relation we use $\geqslant and \leqslant$.
- ▶ A set is particularly sorted if the order relation is defined.
 - Formally, a set of sorted order is sorted pair (<, X), where X is a set and < is order relation.
 - In particularly sorted set some pairs are *uncompareable*. Then can $\exists a,b \in X$, such that every expression a = b, b < a, a < b is false.

2.2 Relation of linear order

Определение 2.2. Binary relation < on X is called an relation of linear order, if it's a relation of particular order and $\forall a,b \in X : a = b \lor a < b \lor b < a$.

In this case, a pair (X, <) is called linearly sorted set

Пример. 1. a < b (on \mathbb{R})

- 2. $a:b \text{ (on } \mathbb{N})$
- 3. let X be a set. Then, $A \subset B$ is a particular orderly relation on $\mathcal{P}(X)$

2.3 Mappings and functions

Not formally, a mapping from X to Y is a rule f such that: $\forall x \in X \exists ! y \in Y : f(x) = y$

Определение 2.3. ightharpoonup A binary relation $f \subset X \times Y$ is mapping from $X \mapsto Y$, if $\forall x \in X \exists ! y \in Y$, such that only one pair $(x, y) \in f$ exists.

- \triangleright Notation: $f: X \mapsto Y$
- \triangleright Second element of pair is denoted as f(x) and it's called an image of element x for mapping f.
- \triangleright if y = f(x), then x is prototype of y
- ▶ Different to the image, a prototype is not guaranteed to exist, and prototype can be not the only one

2.4 Injection, surjection and biection

Определение 2.4. A mapping $f: X \mapsto Y$ is called:

- \triangleright an injection, if $\forall x_1, x_2 \in X : x_1 \neq x_2 : f(x_1) \neq f(x_2)$
- \triangleright a surjection, if $\forall y \in Y \exists x \in X : f(x) = y$.
- ▶ a biection, if it's an injection and a surjection.

Замечание. \triangleright A biection is a one-to-one correspondence between $X,Y: \forall x \in X \exists ! y \in Y \land \forall y \in Y \exists ! x \in X$.

 \triangleright in particular, if X, Y are not endless sets and \exists biection, then |X| = |Y|

2.5 Composition of relations

Определение 2.5. A composition of mappings $f: X \mapsto Y \& g: Y \mapsto Z$ is mapping $g \circ f: X \mapsto Z$, that is defined by formula $(g \circ f)(x) = g(f(x))$

A mapping is called **reversible**.

 \triangleright

Определение 2.6. A mapping $g: Y \mapsto X$ is called reverse mapping, if both $f \circ g$ and $g \circ f$ are equal

ightharpoonup Then, $g(f(x)) = x \forall x \in X$, and $f(g(y)) = y \forall y \in Y$.

2.6 Reverse cryteria

Теорема 2.1. A relation $f: X \mapsto Y$ is reversible $\Leftrightarrow f$ is a biection.

Доказательство. $\Leftarrow: \forall y \in Y$ we denote $f^{-1}(y)$ – the only one prototype of y.

Then, $f^{-1}: Y \mapsto X$ – is reverse mapping to f.

 \Rightarrow : Let f^{-1} is reverse mapping to f.

f is a injection, because of $f(x) = f(y) \Rightarrow x = f^{-1}(f(x)) = y = f^{-1}(f(y)) \Rightarrow x = y$ f is a surjection, because $\forall y \in Y$ we have: $y = f^{-1}(f(y))$

2.7 finite sets

 \triangleright Let X be a finite set. A number of it's elements we denote as |X|.

 \triangleright We already know that $|X| = |Y| \Leftrightarrow$ we can set a biection between X, Y.

Лемма 2.1. If |X| = m and |Y| = n, then $|X \times Y| = mn$

Доказательство. Every m elements are in n pairs with Y set.

Следствие. if $|X_i| = m$, where $i \in [1..k]$, then $|X_1 \times X_2 \times \cdots \times X_k| = m_1 \cdot m_2 \cdot \cdots \cdot m_k$.

Упражнение. Proof using induction

2.8 Finite sets, a number of subsets

Теорема 2.2. If |X| = m, then $\mathcal{P}(X) = 2^m$

Доказательство. Trivial.

Замечание. We have literally built a bisection between $\mathcal{P}, \{0,1\}^m$

 $\triangleleft A \subset X$ corresponds to $(a_1, \ldots, a_m) \in \{0, 1\}^m$, where:

$$a_i = \begin{cases} 1, & \text{if } x_i \in A \\ 0, & \text{if } x_i \notin A \end{cases}$$

2.9 Finite sets: a number of relations

Teopema 2.3. Let |X| = k, |Y| = n, then

- 1. A number of mappings is n^k
- 2. A number of injections $f: X \mapsto Y$ is $n(n-1) \dots (n-k+1)$

Доказательство. 1. $\forall x \in X$ we can choose an image by only n choices

2. An image x_1 can be chosen by n choices. Then -(n-1), and so on.

Замечание. For $n \geqslant K$ we have: $n(n-1) \dots (n-k+1) = \frac{n!}{(n-k)!}$

Упражнение. What is the number of surjections from X to Y?

2.10 Finite sets: permutations and размещения

Определение 2.7 (Permutation). A permutation is any biection $\sigma: X \mapsto X$.

Следствие. If |X| = n, then n! is number of permutations.

Определение 2.8. \triangleright A number of injections $f:[1..k]\mapsto [1..n]$ is called an accommodation, from n elements on k and denoted A_n^k .

- \triangleright A number of mappings $f:[1..k]\mapsto [1..n]$ is called a number of accommodations with repetitons and denoted as \overline{A}_n^k
- 1. A_n^k

2.11 Countable sets

Определение 2.9. A set is called **countable** if $\exists f: X \mapsto \mathbb{N}$ (biection)

Замечание. \triangleright That means, that we can numerate X using natural numbers.

 \triangleright It's elements can be written as: $X = \{x_1, x_2, \dots\}$, where $x_k = f^{-1}(k)$

Пример. $\triangleright 2\mathbb{N} = \{2n | n \in \mathbb{N}\}$ is a set of every even number

 $\triangleright \mathbb{Z}$ is a set of every целых чисел

2.12 Countability of multiplication

Теорема 2.4. $\mathbb{N} \times \mathbb{N}$ is countable.

Доказательство. A function $f(x,y) = \frac{(x+y-1)(x+y-2)}{2} + y$ – biection from $\mathbb{N} \times N$ to \mathbb{N} .

Замечание.

- ▶ This function is naming a cells of infinite table «by diagonals»
- \triangleright Another example of biection: $g(x.y) = 2^{x-1}(2y-1)$

Следствие. Let X_1, X_2, \ldots, X_n be countable sets. Then $X_1 \times X_2 \times X_3 \times \cdots \times X_n$ is countable too.

Доказательство. Proof using induction.

Teopema 2.5. An infinite subset of countable set is countable.

Доказательство. Let X be a countable set and $A \subset X$ is it's infinite subset.

- \triangleright Consider biection $f: X \mapsto \mathbb{N}$
- \triangleright Then $g(x) = ^{def} | \{a \in A | f(a) \leq f(x)\} |$ biection from A to N

2.13 No more that a countable set

Определение 2.10. $\triangleright X$ is no more than countable, if X is either finite or countable

 $\triangleright X$ is uncountable, if it's neither finite or countable.

Теорема 2.6. Let $X \neq \emptyset$. Then:

- 1. X is no more than countable.
- 2. $\exists f: X \mapsto \mathbb{N} \ (injection)$
- 3. $\exists q : \mathbb{N} \mapsto X \ (surjection)$

Доказательство. $1 \Rightarrow 3$. Let X be no more than countable.

- \triangleright If X is infinite, then it's countable.
 - Then $\exists f: X \mapsto \mathbb{N}$ (injection)
 - Then, $\exists f^{-1} : \mathbb{N} \mapsto X$ (surjection)

if X is finite, then |X| = n

 \triangleright Then, a biection exists: $f: X \mapsto [1..n]$

$$\triangleright \text{ Let } g(y) = \begin{cases} f^{-1}(y), y \leqslant n \\ f^{-1}(n), y > n \end{cases}$$

It's easy to see that g(y) is a surjection.

- $3 \Rightarrow 2$. Let $g : \mathbb{N} \mapsto X$ surjection.
- $\triangleright \ \forall x \in X \text{ it has a prototype.}$
- ▷ Select the least prototype.
- \triangleright Let $f(x) = min\{y \in \mathbb{N} | g(y) = x\}$
- \triangleright Easy to see, that $f: X \mapsto \mathbb{N}$ is an injection.
 - $2 \Rightarrow 1$. Let $f: X \mapsto \mathbb{N}$ be an injection.
 - Consider a set $f(X) = \{f(x) | x \in X\}$
 - Then $f: X \mapsto f(X)$ is a biection
 - Because of $f(X) \subset \mathbb{N}$, an f(X) is no more than countable.
 - If f(X) is finite, the X is finite too.
 - If f(X) is countable, then X is countable too.

Следствие. If $f: X \mapsto Y$ is an injection and Y is countable, then X is no more than countable.

Доказательство. \triangleright Let $g: Y \mapsto \mathbb{N}$ be a biection

 \triangleright Then $g \circ f : X \mapsto \mathbb{N}$ – injection

Следствие. If $g: Y \mapsto X$ is a surjection and Y is countable, then X is no more than countable.

Доказательство. \triangleright Let $f: \mathbb{N} \mapsto Y$ – biection

 \triangleright Then $g \circ f : \mathbb{N} \mapsto X$ – surjection.

Теорема 2.7. \mathbb{Q} *is countable.*

Доказательство. Consider a mapping $g: \mathbb{Z} \times \mathbb{N} \mapsto \mathbb{Q}$, set by formula $g(a,b) = \frac{a}{b}$

- \triangleright Obviously, g is a surjection.
- \triangleright Then, \mathbb{Q} is no more than countable.
- \triangleright But \mathbb{Q} is infinite.
- \triangleright Then, \mathbb{Q} is countable.

Teopema 2.8. A union of one no more than countable set of no more than countable sets is no more, than countable

Замечание. That means if we are given infinite последовательность of sets A_1, A_2, \ldots , each of them is no more than countable, then a set $B = \bigcup_i A_i$ is also no more than countable.

2.14 A union of no-more-than-countable sets

Доказательство. Let $f_i: A_i \mapsto \mathbb{N}$ be an injection.

- $\forall x \in B \text{ let } s(x) = \min \{ n \in \mathbb{N} | x \in A_n \}$
- \triangleright Consider a mapping $h: B \mapsto \mathbb{N} \times \mathbb{N}$, defined by a formula

$$h(x) = (s(x), f_{s(x)}(x))$$

 \triangleright Obviously, h is an injection.

 \triangleright Then, B is no-more-than-countable.

Замечание (Will be on practice). In particular, an union of any finite or countable set of countable sets is always countable.

Определение 2.11. \triangleright a real number α is called **algebraic**, if α is a root of non-zero polynomial, with \mathbb{Q} coefficients

 \triangleright Else, α is transcendent.

Упражнение. A set of all algebraic numbers is countable.

3 2023-09-26

Not going to note this because i figured everything out idk (sorry use presentations)