Correction TD entraînement

${f I} \mid {f Chute\ sur\ corde\ en\ escalade}$

- 1) Pendant la chute libre, la grimpeuse ne subit que l'action du poids, qui est conservatif. On peut donc utiliser le TEM, avec :
 - \diamond Au début de la chute libre : z = h, $v = 0 \Rightarrow \mathcal{E}_{p,p} = mgh$ et $\mathcal{E}_c = 0$
 - \diamond À la fin de la chute libre : $z=0,\ v=v\Rightarrow \mathcal{E}_{p,p}=0$ et $\mathcal{E}_c=mv^2/2$. D'où

$$\frac{1}{2}mv^2 = mgh \Leftrightarrow \boxed{v = \sqrt{2gh}} \quad \text{avec} \quad \begin{cases} g = 10 \,\text{m s}^{-2} \\ h = 5 \,\text{m} \end{cases}$$
A.N. : $\boxed{v = 10 \,\text{m s}^{-1}}$

- 2) On peut utiliser le TEM entre le point tout en haut et le point le plus bas, ou entre le point O et le point le plus bas. Faisons le premier cas :
 - \diamond Au début de la chute libre : $z=h,\,v=0\Rightarrow\mathcal{E}_{p,p}=mgh$ et $\mathcal{E}_c=0$
 - \diamond À la fin de la chute amortie : $z = -\Delta l, \ v = 0 \Rightarrow \mathcal{E}_{p,p} = -mg\Delta l, \ \boxed{\mathcal{E}_{p,el} = k\Delta l^2/2}$ et $\mathcal{E}_c = 0$.

Ainsi,

$$mgh = \frac{1}{2}k\Delta l^2 + mg(-\Delta l) \Leftrightarrow mg(h + \underbrace{\Delta l}_{\ll h}) = \frac{1}{2}k\Delta l^2 \Leftrightarrow \boxed{\Delta l = \sqrt{\frac{2mgh}{k}}}$$

La solution trouvée est plausible : homogène, augmente avec m, h et g mais diminue avec k.

3) En norme, une force de rappel s'exprime $F = k(\ell - \ell_0)$, soit ici

$$F_{\text{max}} = k\Delta l = \sqrt{2mgh \, k} = \sqrt{2mgh \frac{\alpha}{L_0}}$$

$$\Leftrightarrow \boxed{F_{\text{max}} = \sqrt{2mg\alpha f}}$$

4) On fait l'application numérique :

avec
$$\begin{cases} m = 50 \,\mathrm{kg} \\ g = 10 \,\mathrm{m \, s^{-2}} \\ \alpha = 5.0 \times 10^4 \,\mathrm{N} \\ f = 1 \end{cases}$$
 A.N. :
$$\boxed{F_{\mathrm{max}} = 10 \,\mathrm{kN}}$$

Il n'y a donc pas de risque aggravé pour la grimpeuse avec cette chute.

5) Dans le premier cas, $f_1 = 2$; dans le second, $f_2 = 0.5$. Or, F_{max} évolue en \sqrt{f} , donc plus f augmente plus la force subie augmente : le premier cas est donc 2 fois plus dangereux que le premier!

II Pendule électrique

1) Pour exprimer la distance AM, on la décompose par des vecteurs connus et on pourra prendre la norme du vecteur \overrightarrow{AM} avec $\sqrt{x_{AM}^2 + y_{AM}^2}$, ou $\sqrt{\overrightarrow{AM} \cdot \overrightarrow{AM}}$. Notamment, $\overrightarrow{AM} = \overrightarrow{AO} + \overrightarrow{OM}$.

FIGURE 4.1 – Détermination de AM

Il faut donc décomposer \overrightarrow{AO} et \overrightarrow{OM} sur la même base, comme on le fait pour le poids sur un plan incliné. En effet,

$$\overrightarrow{AO} = 2R\overrightarrow{u_z}$$

$$\overrightarrow{OM} = R\overrightarrow{u_z}$$

mais on ne peut pas sommer les deux dans des bases différentes. Décomposons $\overrightarrow{u_r}$ sur $(\overrightarrow{u_x}, \overrightarrow{u_z})$: on trouve

$$\overrightarrow{u_r} = \sin\theta \overrightarrow{u_x} - \cos\theta \overrightarrow{u_z}$$

Ainsi,
$$\overrightarrow{AM} = \overrightarrow{AO} + \overrightarrow{OM}$$

$$\Leftrightarrow \overrightarrow{AM} = \begin{pmatrix} R \sin \theta \\ 2R - R \cos \theta \end{pmatrix}$$

$$\Rightarrow \|\overrightarrow{AM}\| = \sqrt{R^2 \sin^2 \theta + (2R - R \cos \theta)^2}$$

$$\Leftrightarrow AM = \sqrt{R^2 \sin^2 \theta + 4R^2 - 2R^2 \cos \theta + R^2 \cos^2 \theta}$$

$$\Leftrightarrow AM = \sqrt{5R^2 - 2R^2 \cos \theta} \quad \text{avec} \quad \cos^2 \theta + \sin^2 \theta = 1$$

$$\Leftrightarrow \overrightarrow{AM} = R\sqrt{5 - 2 \cos \theta}$$

2) Une force est conservative si son travail élémentaire s'exprime sous la forme $-d\mathcal{E}_p$. Calculons son travail élémentaire :

$$\delta W(\vec{F}_e) = \vec{F}_e \cdot d\vec{A}\vec{M}$$

$$\Leftrightarrow \delta W(\vec{F}_e) = \frac{k}{AM^3} \vec{A}\vec{M} \cdot d\vec{A}\vec{M}$$

$$\Leftrightarrow \delta W(\vec{F}_e) = \frac{k}{AM^3} ||\vec{A}\vec{M}|| ||d\vec{A}\vec{M}|| \cos(\vec{A}\vec{M}, d\vec{A}\vec{M})$$

$$= AM ||\vec{A}\vec{M}|| ||d\vec{A}\vec{M}|| \cos(\vec{A}\vec{M}, d\vec{A}\vec{M})$$

$$\Leftrightarrow \delta W(\vec{F}_e) = \frac{k}{AM^2} ||\vec{A}\vec{M}|| dAM ||\vec{F}_e|| = -k d(\frac{1}{AM})$$

$$\Leftrightarrow \delta W(\vec{F}_e) = -k d(\frac{1}{AM})$$

$$\Leftrightarrow \delta W(\vec{F}_e) = -d\mathcal{E}_{p,e}$$
avec
$$\mathcal{E}_{p,e} = \frac{k}{AM} = \frac{k}{R\sqrt{5 - 4\cos\theta}}$$

3) La boule M a également une énergie potentielle de pesanteur. En prenant O comme origine de l'altitude, l'altitude de la boule M $z(\theta)$ s'exprime

$$z(\theta) = -R\cos\theta$$

Ainsi,

$$\mathcal{E}_{p}(\theta) = \mathcal{E}_{p,p}(\theta) + \mathcal{E}_{p,e}(\theta)$$

$$\Leftrightarrow \boxed{\mathcal{E}_{p}(\theta) = \frac{k}{R\sqrt{5 - 4\cos\theta}} - mgR\cos\theta}$$

4) On observe en tout 5 positions d'équilibres : deux stables dans les puits de potentiel vers ± 1 rad, et trois instables (maxima locaux d'énergie potentielle) en $-\pi$, 0 et π .

III. Recul d'un canon 3

5) Le mouvement du pendule ne se fait que dans les zones du graphique où $\mathcal{E}_p < \mathcal{E}_m$. On distingue donc 4 cas :

```
0 \, \mathrm{J} < \mathcal{E}_m < 3.5 \times 10^{-2} \, \mathrm{J} \Rightarrow \mathrm{pas} \ \mathrm{de} \ \mathrm{mouvement}
Cas 1
                      3.5\times 10^{-2}\,\mathrm{J} < \mathcal{E}_m < 4.4\times 10^{-2}\,\mathrm{J} \Rightarrow \mathrm{oscillations} \approx \mathrm{position} stable
Cas 2
                     4.4 \times 10^{-2} \,\mathrm{J} < \mathcal{E}_m < 5.4 \times 10^{-2} \,\mathrm{J} \Rightarrow \mathrm{mouvement} périodique entre \mathcal{E}_{p,\,\mathrm{max}} 5.4 \times 10^{-2} \,\mathrm{J} < \mathcal{E}_m < +\infty \Rightarrow \mathrm{mouvement} révolutif : tours à l'infin
Cas 3
Cas 4
                                                                                                       ⇒ mouvement révolutif : tours à l'infini
```


FIGURE 4.2 – Mouvement selon \mathcal{E}_m

III Recul d'un canon

- 1) Au repos, la tension du ressort est nulle, donc $\ell = L_0$.
- 2) \diamond Système : {canon}, repéré par G de masse M
 - \diamond **Référentiel** : \mathcal{R}_{sol} , supposé galiléen
 - \diamond Repère: mouvement horizontal donc cartésien, $(O, \overrightarrow{u_x}, \overrightarrow{u_z})$ avec $\overrightarrow{u_z}$ vertical ascendant
 - ♦ Repérage :

$$\overrightarrow{OG} = x\overrightarrow{u_x}$$

$$\overrightarrow{v} = \dot{x}\overrightarrow{u_x}$$

$$\overrightarrow{a} = \ddot{x}\overrightarrow{u_x}$$

⋄ BDF:

$$\begin{array}{ll} \mathbf{Poids} & \overrightarrow{P} = -mg\overrightarrow{u_z} \\ \mathbf{R\acute{e}action} & \overrightarrow{N} = N\overrightarrow{u_z} \\ \mathbf{Ressort} & \overrightarrow{F} = -k_1(x-L_0)\overrightarrow{u_x} \end{array}$$

Le poids et la tension du ressort sont conservatives, et la réaction du sol ne travaille pas : on a donc un système conservatif, et on applique simplement le TEM :

- ♦ Au moment du tir : $v = v_c$, $x = L_0 \Rightarrow \mathcal{E}_{c,0} = M v_c^2/2$ et $\mathcal{E}_{p,el} = k_1 (L_0 L_0)^2/2 = 0$ ♦ Après le recul : v = 0, $x = L_0 d \Rightarrow \mathcal{E}_{c,f} = 0$ et $\mathcal{E}_{p,el} = k_1 d^2/2$
- \diamond **TEM**:

$$\frac{1}{2}k_1d^2 = \frac{1}{2}M \underbrace{v_c}_{=mv_0/M}^2$$

$$\Leftrightarrow d^{2} = \frac{m^{2}}{k_{1}M}v_{0}^{2}$$

$$\Leftrightarrow d = \frac{m}{\sqrt{k_{1}M}}v_{0}$$

$$\Leftrightarrow k_{1} = \frac{m^{2}v_{0}^{2}}{d^{2}M} \quad \text{avec} \quad \begin{cases} m = 2.0 \text{ kg} \\ M = 800 \text{ kg} \\ v_{0} = 600 \text{ m s}^{-1} \\ d = 1.0 \text{ m} \end{cases}$$

$$\vdots \quad k_{1} = 1800 \text{ N m}^{-1}$$

3) Avec le **PFD** et en projetant sur $\overrightarrow{u_x}$ (on a N = mg sur $\overrightarrow{u_z}$):

$$M\ddot{x} = -k_1(x - L_0)$$

$$\Leftrightarrow \ddot{x} + {\omega_0}^2 x = {\omega_0}^2 L_0 \quad \text{avec} \quad \omega_0 = \sqrt{\frac{k_1}{M}}$$

$$\Rightarrow x(t) = A\cos(\omega_0 t + \varphi) + L_0$$

Or,

$$x(t=0) = L_0 \Rightarrow A\cos\varphi = 0$$

On choisit $\varphi = -\pi/2$, et ainsi

$$x(t) = A\sin(\omega_0 t) + L_0$$

$$\Rightarrow \dot{x}(t) = A\omega_0\cos(\omega_0 t)$$

Or,

$$\dot{x}(t=0) = -\frac{m}{M}v_0$$

$$\Rightarrow A = -\frac{m}{M}\frac{v_0}{\omega_0}$$

$$\Rightarrow x(t) = -\frac{mv_0}{\sqrt{k_1 M}}\sin(\omega_0 t) + L_0$$

On obtient alors d comme étant l'amplitude du sinus, c'est-à-dire le résultat précédent.

- 4) On vient donc de démontrer qu'avec un seul ressort, le canon va osciller et donc après le recul, il va repartir vers l'avant. L'amplitude va diminuer petit à petit à cause des frottements inéluctables, mais le temps avant immobilisation sera important : on a donc intérêt à ajouter une force de frottements visqueux.
- 5) Le système n'est plus conservatif, et la variation d'énergie mécanique est maintenant égale à l'énergie absorbée par le dispositif de freinage, c'est-à-dire

$$\Delta \mathcal{E}_m = \mathcal{E}_{m,f} - \mathcal{E}_{m,i} = -\mathcal{E}_a$$

puisque l'énergie cinétique doit décroître et que \mathcal{E}_a est positive. Or, initialement et finalement,

$$\mathcal{E}_{m,i} = \mathcal{E}_c = \frac{1}{2} M v_c^2$$
 et $\mathcal{E}_{m,f} = \mathcal{E}_p = \frac{1}{2} k_2 d^2$

Soit

$$\frac{1}{2}k_2d^2 - \frac{1}{2}Mv_c^2 = -\mathcal{E}_a$$

$$\Leftrightarrow k_2 = \frac{1}{d^2}\left(Mv_c^2 - 2\mathcal{E}_a\right)$$

$$\Leftrightarrow k_2 = \frac{1}{d^2}\left(\frac{m^2}{M}v_0^2 - 2\mathcal{E}_a\right)$$
avec
$$\begin{cases} m = 2.0 \text{ kg} \\ M = 800 \text{ kg} \\ v_0 = 600 \text{ m s}^{-1} \\ \mathcal{E}_a = 778 \text{ J} \end{cases}$$

III. Recul d'un canon 5

A.N. :
$$k_2 = 244 \,\mathrm{N \, m^{-1}}$$

De plus, $\omega_0 = \sqrt{\frac{k_2}{M}}$ avec $\begin{cases} k_2 = 244 \,\mathrm{N \, m^{-1}} \\ M = 800 \,\mathrm{kg} \end{cases}$
A.N. : $\omega_0 = 0.55 \,\mathrm{rad \, s^{-1}}$

6) On reprend la question 3) mais avec la force de frottements, pour obtenir l'équation d'un oscillateur amorti :

$$\ddot{x} + \frac{\lambda}{M}\dot{x} + \omega_0^2 x = \omega_0^2 L_0$$

Le discriminant de l'équation caractéristique associée est

$$\Delta = \left(\frac{\lambda}{M}\right)^2 - 4\omega_0^2$$

et on a un régime critique quand ce discriminant est nul; soit

$$\lambda = 2M\omega_0 \quad \text{avec} \quad \begin{cases} M = 800 \,\text{kg} \\ \omega_0 = 0,55 \,\text{rad}\,\text{s}^{-1} \end{cases}$$
 A.N. :
$$\lambda = 884 \,\text{kg}\,\text{s}^{-1}$$

7) Avec le régime critique, on a

$$x(t) = (At + B) \exp\left(-\frac{\lambda t}{2M}\right) + L_0$$

Or,

$$x(0) = 0 \Rightarrow \boxed{B = 0}$$

 $\Rightarrow \dot{x}(t) = A \exp\left(-\frac{\lambda t}{2M}\right) \left(1 - \frac{\lambda}{2M}t\right)$

Or,

$$\dot{x}(0) = v_c \Rightarrow \boxed{A = v_c}$$

$$\Rightarrow \boxed{\dot{x}(t) = -\frac{m}{M} \exp\left(-\frac{\lambda t}{2M}\right) \left(1 - \frac{\lambda}{2M}t\right)}$$
et
$$\boxed{x(t) = -\frac{m}{M} v_0 t \exp\left(-\frac{\lambda t}{2M}\right) + L_0}$$

Le recul est maximal quand la vitesse s'annule, soit

$$t_m = \frac{2M}{\lambda} = 1.8 \,\mathrm{s}$$

On calcule $x(t_m)$, sachant qu'on a par définition $x(t_m) = L_0 - d$:

$$x(t_m) = -\frac{m}{M}v_0\frac{2M}{\lambda}e^{-1} + L_0$$

$$\Leftrightarrow L_0 - d = L_0 - \frac{2mv_0}{\lambda e}$$

$$\Leftrightarrow d = \frac{2mv_0}{\lambda e}$$

et l'application numérique donne

$$d = 1.0 \, \text{m}$$

On retrouve bien la distance de recul précédente, mais cette fois il n'y a pas d'oscillation! Cahier des charges rempli.

Positions d'équilibre d'un anneau sur un cercle

Figure 4.3 – Détermination de ℓ

On peut réutiliser la relation de CHASLES pour écrire $\overrightarrow{AM} = \overrightarrow{AO} + \overrightarrow{OM}$ et déterminer la distance en prenant la norme, mais ici une simple utilisation du théorème de PYTHAGORE suffit. On projette M sur l'axe x pour avoir

$$\ell^{2} = (R + R\cos\theta)^{2} + (R\sin\theta)^{2}$$

$$\Leftrightarrow \ell^{2} = R^{2} + 2R^{2}\cos\theta + R^{2}(\cos^{2}\theta + \sin^{2}\theta)$$

$$\Leftrightarrow \ell^{2} = 2R^{2}(1 + \cos\theta)$$

$$\Leftrightarrow \ell = R\sqrt{2(1 + \cos\theta)}$$

2) L'énergie potentielle totale \mathcal{E}_p est constituée de l'énergie potentielle de pesanteur de l'anneau et de l'énergie potentielle élastique du ressort. Pour $\mathcal{E}_{p,p}$ avec origine en O, on a une altitude $R \sin \theta$; pour $\mathcal{E}_{p,el}$ on a la différence de longueur à a vide $\ell - \ell_0$ avec $\ell_0 = 0$, d'où

$$\mathcal{E}_{p} = \mathcal{E}_{p,p} + \mathcal{E}_{p,el}$$

$$\Leftrightarrow \mathcal{E}_{p} = mgR\sin\theta + \frac{k}{2}\ell^{2}$$

$$\Leftrightarrow \mathcal{E}_{p} = mgR\sin\theta + kR^{2}(1+\cos\theta)$$

3) On trouve les positions d'équilibre de l'anneau en trouvant les angles θ_{eq} tels que la dérivée de \mathcal{E}_p s'annule, soit

$$\frac{\mathrm{d}\mathcal{E}_p}{\mathrm{d}\theta}\bigg|_{\theta_{\mathrm{eq}}} = -kR^2 \sin\theta_{\mathrm{eq}} + mgR\cos\theta_{\mathrm{eq}} = 0$$

$$\Leftrightarrow \sin\theta_{\mathrm{eq}} = \frac{mg\mathcal{K}}{kR^2}\cos\theta_{\mathrm{eq}}$$

$$\Leftrightarrow \tan\theta_{\mathrm{eq}} = \frac{mg}{kR}$$

$$\Leftrightarrow \theta_{\mathrm{eq},1} = \arctan\left(\frac{mg}{kR}\right)$$
et
$$\theta_{\mathrm{eq},2} = \pi + \arctan\left(\frac{mg}{kR}\right)$$

avec $\theta_{\text{eq},1}$ compris entre 0 et 90°, et $\theta_{\text{eq},2}$ compris entre 180 et 270°.

4) On étudie la stabilité des positions en évaluant la dérivée seconde de \mathcal{E}_p en ce point et en vérifiant son signe. On obtient

$$\frac{\mathrm{d}^{2}\mathcal{E}_{p}}{\mathrm{d}\theta^{2}}\bigg|_{\theta_{\mathrm{eq}}} = -kR^{2}\cos\theta_{\mathrm{eq}} - mgR\sin\theta_{\mathrm{eq}}$$

$$\Leftrightarrow \frac{\mathrm{d}^{2}\mathcal{E}_{p}}{\mathrm{d}\theta^{2}}\bigg|_{\theta_{\mathrm{eq}}} = -\left(kR^{2} + \frac{m^{2}g^{2}}{k}\right)\cos\theta_{\mathrm{eq}}$$

en utilisant les résultats précédents sur la dérivée première de \mathcal{E}_p . L'intérieur de la parenthèse étant positif, le signe de cette dérivée seconde est opposé à celui du cosinus de la position d'équilibre. Or, $\cos \theta_{\text{eq},1} > 0$ et $\cos \theta_{\text{eq},2} < 0$, donc

$$\left[\frac{\mathrm{d}^2 \mathcal{E}_p}{\mathrm{d}\theta^2} \Big|_{\theta_{\mathrm{eq},1}} < 0 \right] \quad \text{et} \quad \left[\frac{\mathrm{d}^2 \mathcal{E}_p}{\mathrm{d}\theta^2} \Big|_{\theta_{\mathrm{eq},2}} > 0 \right]$$

La première position est donc instable, et la seconde stable.

FIGURE 4.4 - Positions d'équilibre du système

Oscillateur de LANDAU

1) Comme l'anneau est contraint de se déplacer sur une ligne horizontale, son énergie potentielle de pesanteur est constante. Ainsi, la seule contribution à l'énergie potentielle est d'origine élastique,

$$\mathcal{E}_p(x) = \frac{1}{2}k(AM - \ell_0)^2$$

La longueur AM s'exprime à partir du théorème de Pythagore,

$$AM^2 = a^2 + x^2$$
 d'où $\mathcal{E}_p(x) = \frac{1}{2}k\left(\sqrt{a^2 + x^2} - \ell_0\right)^2$

2) Qualitativement, il est assez simple de comprendre pourquoi certaines courbes font apparaître deux minima et d'autre un seul. Si $a < \ell_0$, alors deux positions de M, symétriques par rapport à O sont telles que AM = ℓ_0 . Dans ce cas, l'énergie potentielle élastique est nulle. Au contraire, si $a > \ell_0$, le ressort est toujours étiré et l'énergie potentielle élastique jamais nulle.

Ce raisonnement se retrouve tout à fait sur l'expression mathématique de \mathcal{E}_p !

Ainsi on peut identifier la courbe en **pointillés violets au cas \mathbf{a_4} = 3\ell_0.** La courbe en **points verts** ne fait apparaître qu'un seul minimum, mais son énergie potentielle est nulle : elle correspond au cas $\mathbf{a_3} = \ell_0$. Enfin, il reste à identifier les deux dernières courbes, ce qui peut se faire à partir de la valeur de l'énergie potentielle en x = 0. Elle est plus élevée sur la courbe bleue que sur la courbe rouge, signe que le ressort est davantage comprimé. On en déduit que la **courbe bleue** est celle du cas $\mathbf{a_1} = \ell_0/10$ alors que la courbe **rouge** correspond à $\mathbf{a_2} = \ell_0/3$.

- 3) Quelles que soient les conditions initiales, le mouvement est borné car \mathcal{E}_p diverge en $\pm \infty$, et il est donc périodique. Dans le cas $a \leq \ell_0$, si les conditions initiales sont telles que $\mathcal{E}_m < \mathcal{E}_p(x=0)$, alors le mouvement est restreint à un côté x < 0 ou x > 0 car l'anneau n'a pas assez d'énergie pour franchir la barrière de potentiel en x = 0. Si les conditions initiales sont en revanche telles que $\mathcal{E}_m > \mathcal{E}_p(x=0)$, le mouvement a lieu de part et d'autre de la barrière, et il est symétrique car le profil d'énergie potentielle l'est. C'est également le cas si $a > \ell_0$, et ce quelles que soient les conditions initiales.
- 4) La condition initiale est très simple à déterminer : c'est le seul point commun à toutes les trajectoires de phase. Compte tenu de la symétrie des portraits de phase et des profils d'énergie potentielle, seule la norme de la vitesse peut être déterminée. On trouve

$$x_0 = 0.4\ell_0$$
 et $\dot{x}_0 = 0.5\ell_0 \sqrt{\frac{k}{m}}$

Seule la trajectoire de phase représentée en **bleu** n'est pas symétrique par rapport à x = 0. Elle correspond donc au cas où la barrière de potentiel centrale est la plus élevée, donc **le cas**

 $\mathbf{a_1} = \ell_0/10$. La trajectoire de phase représentée en **rouge** montre une réduction de vitesse en x=0: elle correspond donc au cas où il y a une barrière de potentiel, mais moins élevée, c'est-à-dire le cas $\mathbf{a_2} = \ell_0/3$. Enfin, la trajectoire de phase **verte** est plus aplatie que la trajectoire de phase violette. Cet aplatissement se retrouve dans les courbes d'énergie potentielle : la courbe verte correspond au cas $\mathbf{a_3} = \ell_0$ et la courbe **violette** au cas $\mathbf{a_4} = 3\ell_0$.