Question 1:

/*Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

Data type of all columns in the "customers" table.

Get the time range between which the orders were placed.

Count the Cities & States of customers who ordered during the given period.*/

select column_name, data_type from Business_Case_Target_SQL.INFORMATION_SCHEMA.COLUMNS

where table_name= 'customers';

Row	column_name ▼	data_type ▼
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

select min(order_purchase_timestamp) as min_time,

max(order_purchase_timestamp) as max_time,

date_diff(max(order_purchase_timestamp), min(order_purchase_timestamp),day) as time_range

from 'Business Case Target SQL.orders';

Row	min_time ▼	max_time ▼	time_range ▼
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC	772

select count(distinct c.customer_city) as city_count, count(distinct c.customer_state) as state_count from `Business_Case_Target_SQL.customers` as c inner join

`Business_Case_Target_SQL.orders` as o

on c.customer_id = o.customer_id;

Question 2:

/*In-depth Exploration:

Is there a growing trend in the no. of orders placed over the past years?

Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or

During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs : Dawn 7-12 hrs : Mornings 13-18 hrs : Afternoon 19-23 hrs : Night*/

select extract(month from order_purchase_timestamp) as order_month, extract(year from order_purchase_timestamp) as order_year ,count(order_id) as number_of_orders from `Business_Case_Target_SQL.orders`

group by order_month, order_year order by order month,order year;

Row	order_month ▼	order_year ▼	number_of_orders
1	1	2017	800
2	1	2018	7269
3	2	2017	1780
4	2	2018	6728
5	3	2017	2682
6	3	2018	7211
7	4	2017	2404
8	4	2018	6939
9	5	2017	3700
10	5	2018	6873
11	6	2017	3245
12	6	2018	6167
13	7	2017	4026

select extract(month from order_purchase_timestamp) as order_month,

count(order_id) as number_of_orders

from `Business_Case_Target_SQL.orders`

group by order_month

order by order month;

Row	order_month	- /	number_of_orders
1		1	8069
2		2	8508
3		3	9893
4		4	9343
5		5	10573
6		6	9412
7		7	10318
8		8	10843
9		9	4305
10		10	4959
11		11	7544
12		12	5674

select

case

when extract(hour from o.order_purchase_timestamp) between 0 and 6 then 'Dawn' when extract(hour from o.order_purchase_timestamp) between 7 and 12 then 'Mornings' when extract(hour from o.order_purchase_timestamp) between 13 and 18 then 'Afternoon' when extract(hour from o.order_purchase_timestamp) between 19 and 23 then 'Night' end as order_hour, count(o.order_id) as number_of_orders from `Business_Case_Target_SQL.orders` as o group by order_hour;

Row	order_hour ▼	number_of_orders /
1	Mornings	27733
2	Dawn	5242
3	Afternoon	38135
4	Night	28331

Question 3:

/*Evolution of E-commerce orders in the Brazil region: Get the month on month no. of orders placed in each state. How are the customers distributed across all the states?*/

select extract(month from o.order_purchase_timestamp) as order_month,
extract(year from o.order_purchase_timestamp) as order_year,
c.customer_state,

count(o.order_id) as number_of_orders
from `Business_Case_Target_SQL.orders` as o
inner join

`Business_Case_Target_SQL.customers` as c

on o.customer_id= c.customer_id

group by order_month, order_year, c.customer_state

order by order_month, order_year;

Row	order_month ▼	order_year ▼	customer_state ▼	number_of_orders
1	1	2017	PR	65
2	1	2017	MG	108
3	1	2017	SP	299
4	1	2017	RJ	97
5	1	2017	PA	12
6	1	2017	SC	31
7	1	2017	MA	9
8	1	2017	BA	25
9	1	2017	MT	11
10	1	2017	ES	12
11	1	2017	CE	9
12	1	2017	RS	54

from `Business_Case_Target_SQL.customers` group by customer_state;

Row	customer_state ▼	number_of_customer
1	RN	485
2	CE	1336
3	RS	5466
4	SC	3637
5	SP	41746
6	MG	11635
7	BA	3380
8	RJ	12852
9	GO	2020
10	MA	747
11	PE	1652
12	PB	536

Question 4:

/*Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only). You can use the "payment" value" column in the payments table to get the cost of orders.

Calculate the Total & Average value of order price for each state.

Calculate the Total & Average value of order freight for each state.*/

```
with cte1 as(
    select extract(year from o.order_purchase_timestamp) as year, extract(month from o.
    order_purchase_timestamp) as month, p.payment_value
    from `Business_Case_Target_SQL.orders` as o
    inner join
    `Business_Case_Target_SQL.payments` as p
    on o.order_id=p.order_id
    where extract(year from o.order_purchase_timestamp) between 2017 and 2018 and
    extract(month from o. order_purchase_timestamp) between 01 and 08
),
    cte2 as (
    select cte1.year,sum(payment_value) as cost
```

```
from cte1
group by cte1.year
)
select *,
(cost- lag(cost, 1)over(order by cte2.year))*100/lag(cost, 1)over(order by cte2.year) as Percentage_increase
from cte2
order by cte2.year;
```

Row	year ▼	11	cost ▼	Percentage_increase
1		2017	3669022.119999	null
2		2018	8694733.839999	136.9768716466

```
select c.customer_state, sum(oi.price) as total_price,avg(oi.price) as average_price from `Business_Case_Target_SQL.customers` as c inner join `Business_Case_Target_SQL.orders` as o on c.customer_id=o.customer_id inner join `Business_Case_Target_SQL.order_items` as oi on o.order_id= oi.order_id group by c.customer_state order by c.customer_state;
```

	_		
Row	customer_state ▼	total_price ▼	average_price ▼
1	AC	15982.94999999	173.7277173913
2	AL	80314.81	180.8892117117
3	AM	22356.84000000	135.4959999999
4	AP	13474.29999999	164.3207317073
5	BA	511349.9900000	134.6012082126
6	CE	227254.7099999	153.7582611637
7	DF	302603.9399999	125.7705486284
8	ES	275037.3099999	121.9137012411
9	GO	294591.9499999	126.2717316759
10	MA	119648.2199999	145.2041504854

```
select c.customer_state, sum(oi.freight_value) as total_freight,avg(oi.freight_value) as average_freight from `Business_Case_Target_SQL.customers` as c inner join `Business_Case_Target_SQL.orders` as o on c.customer_id=o.customer_id inner join `Business_Case_Target_SQL.order_items` as oi on o.order_id= oi.order_id group by c.customer_state;
```

Row	customer_state ▼	total_freight ▼	average_freight ▼
1	MT	29715.43000000	28.16628436018
2	MA	31523.77000000	38.25700242718
3	AL	15914.58999999	35.84367117117
4	SP	718723.0699999	15.14727539041
5	MG	270853.4600000	20.63016680630
6	PE	59449.65999999	32.91786267995
7	RJ	305589.3100000	20.96092393168
8	DF	50625.499999999	21.04135494596
9	RS	135522.7400000	21.73580433039
10	SE	14111.46999999	36.65316883116

Question 5:

/*Analysis based on sales, freight and delivery time.

Find the no. of days taken to deliver each order from the order's purchase date as delivery time. Also, calculate the difference (in days) between the estimated & actual delivery date of an order. Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

time_to_deliver = order_delivered_customer_date - order_purchase_timestamp
diff_estimated_delivery = order_estimated_delivery_date - order_delivered_customer_date

Find out the top 5 states with the highest & lowest average freight value.

Find out the top 5 states with the highest & lowest average delivery time.

Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery. You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.*/

select order_id, date_diff(order_delivered_customer_date, order_purchase_timestamp, day) as delivery_time, date_diff(order_estimated_delivery_date, order_delivered_customer_date, day) as estimated_delivery_time from `Business Case Target SQL.orders`;

Row	order_id ▼	delivery_time ▼	estimated_delivery_ti
1	1950d777989f6a877539f5379	30	-12
2	2c45c33d2f9cb8ff8b1c86cc28	30	28
3	65d1e226dfaeb8cdc42f66542	35	16
4	635c894d068ac37e6e03dc54e	30	1
5	3b97562c3aee8bdedcb5c2e45	32	0
,	CO[47[FO[O4-4-LC774F7O-[-	20	1

select a.customer_state,a.average_freight

from

(select c.customer_state,sum(oi.freight_value)/count(oi.order_id) as average_freight, row_number()over(order by sum(oi.freight_value)/count(oi.order_id) desc) as topfive,

row_number()over(order by sum(oi.freight_value)/count(oi.order_id)) as bottomfive

 $from `Business_Case_Target_SQL.order_items` \ as \ oi$

inner join

`Business_Case_Target_SQL.orders` as o

on oi.order id=o.order id

inner join

`Business_Case_Target_SQL.customers` as c

on o.customer_id= c.customer_id

group by c.customer state) as a

where a.topfive<=5 or a.bottomfive<=5:

Daw		
Row	customer_state ▼	average_freight ▼
1	SP	15.14727539041
2	PR	20.53165156794
3	MG	20.63016680630
4	RJ	20.96092393168
5	DF	21.04135494596
6	PI	39.14797047970
7	AC	40.07336956521
8	RO	41.06971223021
9	РВ	42.723803986711
10	RR	42.98442307692

select a.customer_state,a.avg_delivery_time

(select c.customer_state, sum(date_diff(order_delivered_customer_date, order_purchase_timestamp, day))/count(order_id) as avg_delivery_time,

row_number()over(order by sum(date_diff(order_delivered_customer_date, order_purchase_timestamp, day))/count(order_id)) as topfive,

row_number()over(order by sum(date_diff(order_delivered_customer_date, order_purchase_timestamp,
day))/count(order_id) desc) as bottomfive

from `Business_Case_Target_SQL.orders` as o

inner join

'Business Case Target SQL.customers' as c

on o.customer_id=c.customer_id

group by c.customer_state) as a

where a.topfive<=5 or a.bottomfive<=5;

Row	customer_state ▼	avg_delivery_time
1	AP	26.33823529411
2	RR	25.82608695652
3	AM	25.45945945945
4	AL	23.10895883777
5	PA	22.62256410256
6	SC	14.12125378058
7	DF	12.15841121495
8	MG	11.26600773528
9	PR	11.24796828543
10	SP	8.049393953911

```
select *, (a.estimated_delivery_time-a.delivery_time) as diff from (select c.customer_state, date_diff(order_delivered_customer_date, order_purchase_timestamp, day) as delivery_time, date_diff(order_estimated_delivery_date, order_delivered_customer_date, day) as estimated_delivery_time from `Business_Case_Target_SQL.orders` as o inner join `Business_Case_Target_SQL.customers` as c on o.customer_id=c.customer_id group by c.customer_state,order_delivered_customer_date, order_purchase_timestamp,order_estimated_delivery_date) as a where a.delivery_time<a.estimated_delivery_time order by diff desc limit 5;
```

Row	customer_state ▼	delivery_time ▼	estimated_delivery_t	diff ▼
1	SP	3	146	143
2	MA	6	139	133
3	RS	20	134	114
4	SP	16	123	107
5	RJ	7	108	101

Question 6:

```
/*Analysis based on the payments:
```

Find the month on month no. of orders placed using different payment types.

Find the no. of orders placed on the basis of the payment installments that have been paid.*/

```
select extract(month from o.order_purchase_timestamp) as month,extract(year from o.order_purchase_timestamp) as year, p.payment_type, count(o.order_id) as number_of_orders from `Business_Case_Target_SQL.payments` as p inner join
`Business_Case_Target_SQL.orders` as o
```

on p.order_id=o.order_id group by month,year, p.payment_type order by month, year, p.payment_type;

Row	month ▼	year ▼	11	payment_type ▼	number_of_orders
1	1	2	017	UPI	197
2	1	2	017	credit_card	583
3	1	2	017	debit_card	9
4	1	2	017	voucher	61
5	1	2	018	UPI	1518
6	1	2	018	credit_card	5520
7	1	2	018	debit_card	109
8	1	2	018	voucher	416
9	2	2	017	UPI	398
10	2	2	017	credit_card	1356
11	2	2	017	debit_card	13

select payment_installments, count(order_id) as number_of_orders from `Business_Case_Target_SQL.payments` group by payment_installments order by payment_installments;

Row	payment_installment	number_of_orders
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328