INTRODUCTION TO STATISTICAL

CATCH AT AGE

ASSESSMENT MODELING

FAS XXXX: Advanced Quantitative Fisheries Stock Assessment

Dr. Zachary Siders

OBJECTIVES

- 1. Understand how adding age changes a stock assessment model's design/structure
- 2. Compare forward and backward projecting model structures and assumptions
- 3. Modify components of a stock assessment to include age
- 4. Learn where we will change or relax assumptions in the future sessions

POP. MODEL

POP. MODEL

Numbers dynamic model:

Leading parameters:

- M (natural mortality)
- κ (compensation ratio)
- R_0 (starting recruitment)
- F_{CUR} (Current fishing mortality)
- σ (Error rate)

Derived/Intermediate parameters:

- a, b (Beverton-Holt stock-recruitment θ)
- N_0 (starting population size)
- q (catchability)

Time Catch per Catch per Catch Effort estimate Number Fishing Total Predicted Catch I Recruits Number Fishing Total Predicted I Recruits Number Fishin

Numbers dynamic model:

Leading parameters:

- M (natural mortality)
- κ (compensation ratio)
- R_0 (starting recruitment)
- F_{CUR} (Current fishing mortality)
- σ (Error rate)

- a, b (Beverton-Holt stock-recruitment θ)
- N_0 (starting population size)
- q (catchability)

Numbers dynamic model:

Leading parameters:

- M (natural mortality)
- κ (compensation ratio)
- R_0 (starting recruitment)
- F_{CUR} (Current fishing mortality)
- σ (Error rate)

- a, b (Beverton-Holt stock-recruitment θ)
- N_0 (starting population size)
- q (catchability)

Numbers dynamic model:

Leading parameters:

- M (natural mortality)
- κ (compensation ratio)
- R_0 (starting recruitment)
- F_{CUR} (Current fishing mortality)
- σ (Error rate)

- a, b (Beverton-Holt stock-recruitment θ)
- N_0 (starting population size)
- q (catchability)

Numbers dynamic model:

Leading parameters:

- M (natural mortality)
- κ (compensation ratio)
- R_0 (starting recruitment)
- F_{CUR} (Current fishing mortality)
- σ (Error rate)

- a, b (Beverton-Holt stock-recruitment θ)
- N_0 (starting population size)
- q (catchability)

Numbers dynamic model:

Leading parameters:

- M (natural mortality)
- κ (compensation ratio)
- R_0 (starting recruitment)
- F_{CUR} (Current fishing mortality)
- σ (Error rate)

- a, b (Beverton-Holt stock-recruitment θ)
- N_0 (starting population size)
- q (catchability)

$$F_t = qE_t^*; Z_t = F_t + M$$

Numbers dynamic model:

Leading parameters:

- M (natural mortality)
- κ (compensation ratio)
- R_0 (starting recruitment)
- F_{CUR} (Current fishing mortality)
- σ (Error rate)

- a, b (Beverton-Holt stock-recruitment θ)
- N_0 (starting population size)
- q (catchability)

Catch at Age Data

catell at Age Data										
Age-0	Age-1	Age-2	•••	A						
	Age-0	Age-0 Age-1	Age-0 Age-1 Age-2	Age-0 Age-1 Age-2						

Catch at Age Data

Virtual Population Analysis

Catch at Age Data

Time	Age-0	Age-1	Age-2	•••	Age-A
1					
2					

Virtual Population Analysis

- Assumes catch-at-age has minimal error
- Needs full coverage of catch-at-age
- Needs relative abundance index
- Backward projection
 - Uses completed cohorts & catch to project the abundance at age at *a-1*, *t-1*
- Estimates terminal fishing mortality (F_T) to determine current stock size
- Calculates selectivity/vulnerability over time

Catch at Age Data

Time	Age-0	Age-1	Age-2	•••	Age-A
1					
2					

Virtual Population Analysis

- Assumes catch-at-age has minimal error
- Needs full coverage of catch-at-age
- Needs relative abundance index
- Backward projection
 - Uses completed cohorts & catch to project the abundance at age at *a-1*, *t-1*
- Estimates terminal fishing mortality (F_T) to determine current stock size
- Calculates selectivity/vulnerability over time

- Likelihood compares obs. and pred. catch
- Does not need full coverage of catch-at-age
- Needs relative abundance index
- Forward projection
 - Estimates initial abundance and fishing mortalities (and others θ 's) needed to generate the catch
- Simple version assumes constant selectivity/vulnerability over time

Catch at Age Data

Virtual Population Analysis

Time	Age-0	Age-1	Age-2	Age-3	Age-4
1	_				
2					
3					
4	*				
5	*				
6	*				
⁷ Esti	mates F_{i}	r for un	complet	ed coho	rts

Catch at Age Data

Virtual Population Analysis

Time	Age-0	Age-1	Age-2	Age-3	Age-4
1					
2	-				
3					
4	*				
5	*				
6	*				
⁷ Estir	mates F_{7}	for und	complet	ed coho	rts

Numbers dynamic model

COMPARISON

Numbers dynamic model

Leading parameters:

M, $F_{CUR} >>$ constant mortality

 κ , $R_0 >>$ recruitment

 $\sigma >>$ likelihood

N_t >> abundance

 $C_t >>$ catch

$oldsymbol{ heta}$	Age-0	Age-1	Age-2	•••	Age-A
Length					
Weight					
Fecundity					
Survivorship					
Vulnerability					

Time	Age-0	Age-1	Age-2	•••	Age-A	
1	Time	Age-0	Age-1	Age-2		Age-A
2	1					
3	2					
4	3					
5	4					
	5					

COMPARISON

Numbers dynamic model

Leading parameters:

M, $F_{CUR} >>$ constant mortality

 κ , $R_0>>$ recruitment

 $\sigma >>$ likelihood

N_t >> abundance

 $C_t >>$ catch

$oldsymbol{ heta}$	Age-0	Age-1	Age-2	•••	Age-A
Length					
Weight					
Fecundity					
Survivorship					
Vulnerability					

Time	Age-0	Age-1	Age-2	•••	Age-A	
1	Time	Age-0	Age-1	Age-2		Age-A
2	1					
3	2					
4	3					
5	4					
	5					

Excel Example - Sheet 'LH' -

LEADING PARAMETERS

Recruitment: h, R_0

Fishing Mortality: \overline{F}

Variability:

 σ_C , σ_F , σ_{CPUE}

 $VBGF: L_{\infty}, L_{0}, k$

L-W: a, b

Fecundity: W_{mat}

Natural Mortality: M

$oldsymbol{ heta}$	Age-0	•••	Age-A
Length			
Weight			
Fecundity			
Survivorship			
Vulnerability			

Time	Age-0	•••	Age-A	Time	Age-0	•••	Age-A	Time	Age-0	•••	Age-A	Time	Age-0	•••	Age-A
1		_		1				1				1			
2	Observ	ved		2	Num	bers		² To	tal M	ortali	itv	2 Dr	edicte	ad Ca	tch
3	Catch	at		3				.3	at tim			3			
4	time,	age		4	at tim	e,ayı	5	4	at tiiii	e,ay	5	4	at tim	ie,ay	3
5				5				5				5			

LEADING DAI	DAMETEDC)	$oldsymbol{ heta}$	Age-0	•••	Age-A
LEADING PAI			Length			
Recruitment: h, R ₀	$VBGF: L_{\infty}, L_{0}, k$,	Weight			
_	L-W: a, b		Fecundity			
Fishing Mortality: $ar{F}$ Variability:	Fecundity: W _{mat}	•	Survivorship			
,	Natural Mortality: M —		Vulnerability			
$\sigma_C, \sigma_F, \sigma_{CPUE}$	Vulnerability: L_{50} , σ_{50}					

Time	Age-0	•••	Age-A	Time	Age-0	•••	Age-A	Time	Age-0	•••	Age-A	Time	Age-0	•••	Age-A
1		_		1				1				1			
2	Obse			2	Num	bers		² To	tal M	ortali	itv	2 Pr	edicte	nd Cat	tch
3	Catc	h at		3	at tim			2	at tim			3	at tim		
4	time	,age		4	at tiiii	c,ay	5	4	at tiiii	e,ayı	5	4	at tiiii	e,ay	5
5				5				5				5			

LEADING PARAMETERS

Recruitment: h, R_0

Fishing Mortality: \overline{F}

Variability:

 σ_C , σ_F , σ_{CPUE}

 $VBGF: L_{\infty}, L_{0}, k$

L-W: a, b

Fecundity: W_{mat}

Natural Mortality: M

$oldsymbol{ heta}$	Age-0	•••	Age-A
Length			
Weight			
Fecundity			
Survivorship			
Vulnerability			

Time	Age-A	Time	Age-0	•••	Age-A	Time	$\sigma_{F,t}$	$\boldsymbol{F_t}$	$\boldsymbol{Z_t}$	Time	Age-0	•••	Age-A
			(αF		•	~ · X	I(n a	-)				
			_	aE_t	$N_{a=1}$	O I	F , $t^{\sim}I$	I(0 , 0)	'F)	ĺ	$\widehat{C}_{t,a} =$	$=\left(\frac{F_{t,0}}{2}\right)$	$(\underline{a})*$
L_t	,a	$N_{t+1,a}$	$= \{ \ \ \}$	$\overline{1+bE_t}$	u-1		$Z_{t,a} =$	= M -	+		t,a	$\langle Z_{t,c} \rangle$	a_
		ŕ	lλ	$I_{t,a}e^{-Z_{t,a}}$	$N_{\alpha > 1}$		•	$\sigma_{F,t}$)1		N	$t_{\cdot a}(1)$	$-e^{-}$	$(Z_{t,a})$
				i,u	u/1	C		'F,t)	a				

LEADING PARAMETERS

Recruitment: h, R_0

Fishing Mortality: \overline{F}

Variability:

 $\sigma_C, \sigma_F, \sigma_{CPUE}$

 $VBGF: L_{\infty}, L_{0}, k$

L-W: a, b

Fecundity: W_{mat}

Natural Mortality: M

$\boldsymbol{\theta}$	Age-0	•••	Age-A
Length			
Weight			
Fecundity			
Survivorship			
Vulnerability			

Time	e Age	e-A	Time	Age-0	•••	Age-A	Time	$\sigma_{F,t}$	$\boldsymbol{F_t}$	\boldsymbol{Z}_t	Time	Age-0	•••	Age-A
				(aE_t		σ_F	$_{i,t}\sim N$	$(0, \sigma$	(\mathbf{F})			/F.	
	$C_{t,a}$		$N_{t+1,a}$	$= \begin{cases} \frac{1}{1} \end{cases}$	$\frac{aE_t}{+bE_t}$	$N_{a=1}$		$Z_{t,a} =$				$\hat{C}_{t,a} =$	$=\left(\frac{T_{t,0}}{Z_{t,0}}\right)$	$\binom{a}{a}$ *
			<i>ι</i> Τ 1 , <i>α</i>	N_t	$_{a}e^{-Z_{t,a}}$	$N_{a>1}$		$\overline{F} + \sigma$			N	t,a(1	$-e^{-}$	$(Z_{t,a})$
					u	u>1	(-		r,t)	a				

LEADING PARAMETERS

Recruitment: h, R_0

Fishing Mortality: \overline{F}

Variability:

 σ_C , σ_F , σ_{CPUE}

 $VBGF: L_{\infty}, L_{0}, k$

L-W: a, b

Fecundity: W_{mat}

Natural Mortality: M

$oldsymbol{ heta}$	Age-0	•••	Age-A
Length			
Weight			
Fecundity			
Survivorship			
Vulnerability			

Time	Age-A
C_t	,a

Time	Age-0	•••	Age-A
	(aE_t	
N.T			$N_{a=1}$
$N_{t+1,a}$		$+bE_t$	
	(N)	$_{t,a}e^{-Z_{t,a}}$	$N_{a>1}$

Time	$\sigma_{F,t}$	F_t	Z_t	Time	Age-0	•••	Age-A
σ_l	r,t~N	(0, o	(\mathbf{r}_{F})	7	$\hat{C}_{t,a} =$	$-\left(\frac{F_{t,0}}{F_{t,0}}\right)$	<u>a</u>)*
7	$Z_{t,a} =$	= M -	+		t,a –	$\langle Z_{t,a} \rangle$	a_
	$\overline{F} + c$	$= M - \sigma_{F,t}$	² a	N;	t,a(1	$-e^{-}$	$(Z_{t,a})$

Excel Example

- Sheet 'Data' -

LEADING PARAMETERS

Recruitment: h, R_0

Fishing Mortality: \overline{F}

Variability:

 σ_C , σ_F , σ_{CPUE}

 $VBGF: L_{\infty}, L_{0}, k$

L-W: a, b

Fecundity: W_{mat}

Natural Mortality: M

$oldsymbol{ heta}$	Age-0	•••	Age-A
Length			
Weight			
Fecundity			
Survivorship			
Vulnerability			

Time	Age-A	Time	Age-0	•••	Age-A
				a F	
C				$\frac{aE_t}{aE_t}$	$N_{a=1}$
C_t	,a	$N_{t+1,a}$	$= \{ 1$	$+bE_t$	
			(N	$_{t,a}e^{-Z_{t,a}}$	$N_{a>1}$

Time	$\sigma_{F,t}$	$\boldsymbol{F_t}$	$\boldsymbol{Z_t}$
σ_{i}	$r \sim N$	$I(0, \sigma$	(\mathbf{r}_{E})
Ž	$L_{t,a} =$	= M -	+
	$\overline{F} + \epsilon$	$\sigma_{F,t}$) ι	2 ~
(,		r,t)	a

Time	Age-0	•••	Age-A
1	$\hat{S}_{t,a} =$	$= \left(\frac{F_{t,o}}{Z_{t,o}}\right)$	<u>a</u> *
	t,a	$\langle Z_{t,c} \rangle$	<u>.</u>]
N_{i}	t,a(1	$-e^{-}$	$(Z_{t,a})$

Excel Example - Sheet 'Mortality' -

LEADING PARAMETERS

Recruitment: h, R_0

Fishing Mortality: \overline{F}

Variability:

 σ_C , σ_F , σ_{CPUE}

 $VBGF: L_{\infty}, L_{0}, k$

L-W: a, b

Fecundity: W_{mat}

Natural Mortality: M

$oldsymbol{ heta}$	Age-0	•••	Age-A
Length			
Weight			
Fecundity			
Survivorship			
Vulnerability			

Time	Age-A
C	
C_t	,a

Time	Age-0	•••	Age-A		
		a F			
		$\frac{aE_t}{}$	$N_{a=1}$		
$N_{t+1,a}$	$= \{ 1 \}$	$+bE_t$	-u=1		
,	N_{+}	$_{a}e^{-Z_{t,a}}$	$N_{a>1}$		
	(',	u	u>1		

Time	$\sigma_{F,t}$	F_t	Z_t	Time	Age-0	•••	Age-A
σ	$r_{i,t}\sim N$	I(0, a)	(F)			/ 57	
	,			ĺ	$\hat{C}_{t,\alpha} =$	$=\left(\frac{F_{t,0}}{-}\right)$	$\left(\frac{a}{a}\right)*$
2	$Z_{t,a} =$	= M -	+		t,u	$\langle Z_{t,c} \rangle$	a)
	$Z_{t,a} = \overline{F} + c$	T E +)1	2 ~	N_{i}	t,a(1	$-e^{-}$	$(\mathbf{Z}_{t,a})$
(,		r,t)·	r u				

Excel Example - Sheet 'Abundance' -

LEADING PARAMETERS

Recruitment: h, R_0

Fishing Mortality: \overline{F}

Variability:

 σ_C , σ_F , σ_{CPUE}

 $VBGF: L_{\infty}, L_{0}, k$

L-W: a, b

Fecundity: W_{mat}

Natural Mortality: M

$\boldsymbol{\theta}$	Age-0	•••	Age-A
Length			
Weight			
Fecundity			
Survivorship			
Vulnerability			

Time	Age-A	Time	Age-0	•••	Age-A	Time	$\sigma_{F,t}$	$\boldsymbol{F_t}$	$\boldsymbol{Z_t}$	Time	Age-0	•••	Age-A
				aE_{+}		σ_1	$r_{i,t}\sim N$	$I(0, \mathbf{\sigma})$	$(\mathbf{r}_{\mathbf{E}})$			/ E	
C_t	. a	$N_{t+1,a}$	$=$ $\frac{1}{1}$	$+bE_t$	$N_{a=1}$		$Z_{t,a} =$				$\widehat{C}_{t,a} =$	$=\left(\frac{r_{t,0}}{Z_{t,0}}\right)$	$(z_{t,a})^*$
	,,,,	t+1,a		$_{a}e^{-Z_{t,a}}$	$N_{a>1}$		$\frac{F}{F} + c$			N	$_{t.a}(1$	$-e^{-}$	$(Z_{t,a})$
			$(\mathcal{L},\mathcal{L},\mathcal{L},\mathcal{L},\mathcal{L},\mathcal{L},\mathcal{L},\mathcal{L},$	a •	<i>a></i> 1	(,		$(F,t)^{\bullet}$	a		-,		

Excel Example - Sheet 'CC Likelihood' -

LEADING PARAMETERS

Recruitment: h, R_0

Fishing Mortality: \overline{F}

Variability: σ_C , σ_F

VBGF: L_{∞} , L_{0} , k

L-W: a, b

Fecundity: W_{mat}

Natural Mortality: M

$oldsymbol{ heta}$	Age-0	•••	Age-A
Length			
Weight			
Fecundity			
Survivorship			
Vulnerability			

Time	Age-0	•••	Age-A	Time	Age-0	•••	Age-A	Time	Age-0	•••	Age-A	Time	Age-0	•••	Age-A
1		_		1				1				1			
2	Observ			2	Num	bers		² To	tal M	ortal	itv	² Pr	edicte	ad Ca	tch
3	Catch	at		3	at tim			. 7	at tim			3	at tim		
4	time,a	ge		4	at tiiii	e,ay	5	4	at tiiii	ie,ay	5	4	at tiiii	ic,ay	5
5				5				5				5			

WHAT'S NEXT?

LEADING PARAMETERS

Recruitment: h, R_0

Natural Mortality: M

Vulnerability: L_{50} , σ_{50}

Age-varying mortality: e.g., Lorenzen mortality Time-varying mortality

Dome-shaped vulnerability: double logistic,

Gaussian

Estimating vulnerability

Estimating recruitment deviations

Time Age-0 ... Age-A

Subsamples &

proportions
Catch at length

Time Age-A Time

Alternative parameterizations

Time Age-A

Alternative likelihoods

Other facets

Deriving reference points
Uncertainty in parameters
CPUE Abundance
Move to R-ADMB

BEFORE NEXT CLASS...

- -Review the Excel sheet to thoroughly understand the-SCA structure
- -Review the YPR-Shiny module if you need a refresheron the life history parameters

IN NEXT CLASS...

We will build the SCA and estimate its parameters from scratch in Excel