

Mathématiques 1

MP C

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Fonctions arithmétiques multiplicatives et applications

La première partie établit des résultats utiles dans les parties suivantes, qui sont indépendantes entre elles.

Notations

On note $\lfloor x \rfloor$ la partie entière du nombre réel x, c'est-à-dire le plus grand nombre entier inférieur ou égal à x. On note $\mathcal P$ l'ensemble des nombres premiers.

On note $m \wedge n$ le plus grand commun diviseur (pgcd) des entiers naturels m et n.

Si a et b sont deux nombres entiers relatifs, on note $[a, b] = \{k \in \mathbb{Z} \mid a \leqslant k \leqslant b\}$.

L'ensemble des matrices carrées de taille n à coefficients dans $\mathbb C$ est noté $\mathcal M_n(\mathbb C)$.

La matrice identité de $\mathcal{M}_n(\mathbb{C})$ est notée I_n .

Le terme d'indice (i,j) d'une matrice $M \in \mathcal{M}_n(\mathbb{C})$ est noté m_{ij} et on note $M = (m_{ij})_{(i,j) \in [\![1,n]\!]^2}$, ou plus simplement $M = (m_{ij})$ lorsque la taille de M est implicite.

Pour $n \in \mathbb{N}^*$, on note \mathcal{D}_n l'ensemble des nombres entiers naturels divisant n et on écrit $\sum_{d|n} = \sum_{d \in \mathcal{D}_n}$ la somme

sur tous les nombres entiers naturels d divisant n.

Une fonction arithmétique est une fonction $f: \mathbb{N}^* \to \mathbb{C}$. L'ensemble des fonctions arithmétiques est noté \mathbb{A} . On dit qu'une fonction arithmétique $f \in \mathbb{A}$ est multiplicative si

$$\left\{ \begin{aligned} &f(1) \neq 0, \\ &\forall (m,n) \in (\mathbb{N}^*)^2 \quad m \wedge n = 1 \implies f(mn) = f(m)f(n). \end{aligned} \right.$$

On note M l'ensemble des fonctions arithmétiques multiplicatives.

On note 1, δ et I les fonctions arithmétiques

$$\mathbf{1}: \begin{vmatrix} \mathbb{N}^* \to \mathbb{C} \\ n \mapsto 1 \end{vmatrix} \qquad \delta: \begin{vmatrix} \mathbb{N}^* \to \mathbb{C} \\ n \mapsto \begin{cases} 1 & \text{si } n = 1 \\ 0 & \text{si } n \geqslant 2 \end{cases} \qquad \mathbf{I}: \begin{vmatrix} \mathbb{N}^* \to \mathbb{C} \\ n \mapsto n \end{vmatrix}$$

On remarque que ces trois fonctions arithmétiques sont multiplicatives.

Si f et g sont deux fonctions arithmétiques, le produit de convolution de f et g est la fonction arithmétique notée f * g définie par

$$\forall n \in \mathbb{N}^*, \quad (f * g)(n) = \sum_{d \mid n} f(d)g\left(\frac{n}{d}\right).$$

I Quelques résultats utiles

I.A - Propriétés générales de la loi *

Q 1. Vérifier que δ est un élément neutre pour la loi *.

Pour tout $n \in \mathbb{N}^*$, on note $\mathcal{C}_n = \{(d_1, d_2) \in (\mathbb{N}^*)^2 \mid d_1 d_2 = n\}$.

Q 2. Justifier que, pour tout $n \in \mathbb{N}^*$,

$$(f*g)(n)=\sum_{(d_1,d_2)\in\mathcal{C}_n}f(d_1)g(d_2).$$

Q 3. En déduire que * est commutative.

Q 4. De même, en exploitant l'ensemble $\mathcal{C}'_n=\{(d_1,d_2,d_3)\in(\mathbb{N}^*)^3\mid d_1d_2d_3=n\},$ montrer que * est associative.

Q 5. Que peut-on dire de $(\mathbb{A}, +, *)$?

I.B - Groupe des fonctions multiplicatives

Q 6. Soient f et g deux fonctions multiplicatives. Montrer que si

$$\forall p \in \mathcal{P}, \quad \forall k \in \mathbb{N}^*, \quad f(p^k) = g(p^k),$$

alors f = g.

 \mathbf{Q} 7. Soient m et n deux entiers naturels non nuls premiers entre eux. Montrer que l'application

$$\pi: \left| \begin{array}{l} \mathcal{D}_n \times \mathcal{D}_m \to \mathcal{D}_{mn} \\ (d_1, d_2) \mapsto d_1 d_2 \end{array} \right|$$

est bien définie et réalise une bijection entre $\mathcal{D}_n \times \mathcal{D}_m$ et $\mathcal{D}_{mn}.$

Q 8. En déduire que si f et g sont deux fonctions multiplicatives, alors f * g est encore multiplicative.

Q 9. Soit f une fonction multiplicative. Montrer qu'il existe une fonction multiplicative g telle que, pour tout $p \in \mathcal{P}$ et tout $k \in \mathbb{N}^*$,

$$g(p^k) = -\sum_{i=1}^k f(p^i)g(p^{k-i})$$

et qu'elle vérifie $f * g = \delta$.

Q 10. Que dire de l'ensemble \mathbb{M} muni de la loi *?

I.C - La fonction de Möbius

Soit μ la fonction arithmétique définie par

$$\mu(n) = \begin{cases} 1 & \text{si } n = 1 \\ (-1)^r & \text{si } n \text{ est le produit de } r \text{ nombres premiers distincts} \\ 0 & \text{sinon} \end{cases}$$

Q 11. Montrer que μ est multiplicative.

Q 12. Montrer que $\mu * \mathbf{1} = \delta$.

Q 13. Soit $f \in \mathbb{A}$, et soit $F \in \mathbb{A}$ telle que, pour tout $n \in \mathbb{N}^*$, $F(n) = \sum_{d|n} f(d)$. Montrer que, pour tout $n \in \mathbb{N}^*$,

$$f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right). \tag{I.1}$$

On note φ la fonction indicatrice d'Euler, définie par :

$$\forall n \in \mathbb{N}^*, \quad \varphi(n) = \operatorname{card}\{k \in [1, n] \mid k \land n = 1\}.$$

Q 14. Démontrer que $\varphi = \mu * \mathbf{I}$.

I.D - Déterminant de Smith

Soient f une fonction arithmétique, $n \in \mathbb{N}^*$ et $g = f * \mu$. On note $M = (m_{ij})$ la matrice de $\mathcal{M}_n(\mathbb{C})$ de terme général $m_{ij} = f(i \wedge j)$. On définit aussi la matrice des diviseurs $D = (d_{ij})$ par :

$$d_{ij} = \begin{cases} 1 & \text{si } j \text{ divise } i, \\ 0 & \text{sinon.} \end{cases}$$

Soit M' la matrice de terme général $m'_{ij} = \begin{cases} g(j) & \text{si } j \text{ divise } i, \\ 0 & \text{sinon.} \end{cases}$

Q 15. Montrer que $M = M'D^{\top}$, où D^{\top} est la transposée de D.

 \mathbf{Q} 16. En déduire que le déterminant de M vaut

$$\det M = \prod_{k=1}^{n} g(k). \tag{I.2}$$

I.E - Séries de Dirichlet

Soit f une fonction arithmétique. On définit, pour tout réel s tel que la série converge,

$$L_f(s) = \sum_{k=1}^{\infty} \frac{f(k)}{k^s}.$$

On appelle abscisse de convergence de L_f

$$A_c(f) = \inf\{s \in \mathbb{R} \mid \text{la s\'erie } \sum \frac{f(k)}{k^s} \text{ converge absolument}\}.$$

On convient que $A_c(f) = +\infty$ s'il n'existe pas de réel s tel que la série $\sum \frac{f(k)}{k^s}$ converge absolument.

Q 17. Montrer que si $s>A_c(f)$, alors la série $\sum \frac{f(k)}{k^s}$ converge absolument.

Q 18. Soient f et g deux fonctions arithmétiques d'abscisses de convergence finies. Montrer que si, pour tout $s > \max(A_c(f), A_c(g)), L_f(s) = L_g(s)$, alors f = g.

Q 19. Soient f et g deux fonctions multiplicatives d'abscisses de convergence finies. Montrer que, pour tout $s > \max(A_c(f), A_c(g))$,

$$L_{f*q}(s) = L_f(s)L_q(s). \tag{I.3}$$

II Matrices et endomorphismes de permutation

Dans cette partie n est un entier naturel non nul.

On note \mathfrak{S}_n le groupe des permutations de [1, n]. On notera la composition des permutations de manière multiplicative ; par exemple, si γ et σ sont deux permutations de \mathfrak{S}_n , $\gamma^3\sigma^2=\gamma\circ\gamma\circ\sigma\circ\sigma$.

On dit que deux permutations σ et τ de \mathfrak{S}_n sont conjuguées s'il existe une permutation $\rho \in \mathfrak{S}_n$ telle que $\tau = \rho \sigma \rho^{-1}$.

Pour $\ell \in [\![2,n]\!]$, on rappelle que, dans \mathfrak{S}_n , un cycle de longueur ℓ est une permutation $\gamma \in \mathfrak{S}_n$ pour laquelle il existe ℓ éléments deux à deux distincts $a_1, ..., a_\ell$ de $[\![1,n]\!]$ tels que

$$\gamma(x) = \begin{cases} x & \text{si } x \notin \{a_1, ..., a_\ell\}, \\ a_{i+1} & \text{si } x = a_i \text{ pour } i \leqslant \ell-1, \\ a_1 & \text{si } x = a_\ell. \end{cases}$$

L'ensemble $\operatorname{Supp}(\gamma)=\{a_1,...,a_\ell\}$ est appelé $\operatorname{support}$ du cycle γ et on note $\gamma=(a_1\ a_2\ \cdots\ a_\ell).$ On rappelle le résultat suivant qui pourra être utilisé sans démonstration.

Toute permutation $\sigma \in \mathfrak{S}_n$ se décompose de manière unique (à l'ordre des facteurs près) en produit de cycles $\gamma_1,...,\gamma_r$ à supports disjoints : $\sigma = \gamma_1 \cdots \gamma_r$.

À toute permutation $\sigma \in \mathfrak{S}_n$, on associe la matrice de permutation $P_{\sigma} = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$ où

$$a_{ij} = \begin{cases} 1 & \text{si } i = \sigma(j), \\ 0 & \text{sinon.} \end{cases}$$

II.A - Similitude de deux matrices de permutation

L'objectif de cette sous-partie est de démontrer la propriété (S) suivante.

Les matrices de permutations P_{σ} et P_{τ} sont semblables si et seulement si les permutations σ et τ sont conjuguées.

Q 20. Pour toutes permutations ρ , $\rho' \in \mathfrak{S}_n$, montrer que $P_{\rho\rho'} = P_{\rho}P_{\rho'}$. En déduire que, pour toutes permutations σ , $\tau \in \mathfrak{S}_n$, si σ et τ sont conjuguées alors P_{σ} et P_{τ} sont semblables.

Q 21. On considère, dans cette question uniquement, n=7 et les cycles $\gamma_1=(1\ 3\ 7)$ et $\gamma_2=(2\ 6\ 4)$. On considère également une permutation $\rho\in\mathfrak{S}_7$ telle que $\rho(1)=2,\ \rho(3)=6$ et $\rho(7)=4$. Vérifier que $\rho\gamma_1\rho^{-1}=\gamma_2$.

Q 22. Plus généralement, montrer que, dans \mathfrak{S}_n , deux cycles de même longueur sont conjugués.

Pour $\sigma \in \mathfrak{S}_n$ et $\ell \in [\![2,n]\!]$, on note $c_\ell(\sigma)$ le nombre de cycles de longueur ℓ dans la décomposition de σ en cycles à supports disjoints. On note $c_1(\sigma)$ le nombre de points fixes de σ :

$$c_1(\sigma) = \text{Card}\{j \in [1, n], \sigma(j) = j\}.$$

Q 23. Montrer que $\sigma \in \mathfrak{S}_n$ et $\tau \in \mathfrak{S}_n$ sont conjugués si et seulement si, pour tout $\ell \in [\![1,n]\!]$, $c_\ell(\sigma) = c_\ell(\tau)$. La matrice-ligne $T_\sigma = (c_1(\sigma) \ c_2(\sigma) \ \dots \ c_n(\sigma))$ s'appelle le type cyclique de σ . On vient donc de démontrer que deux permutations sont conjuguées si et seulement si elles ont le même type cyclique.

Pour tout $\sigma \in \mathfrak{S}_n$, on note χ_{σ} le polynôme caractéristique de la matrice $P_{\sigma}: \chi_{\sigma}(X) = \det(XI_n - P_{\sigma})$.

 $\mathbf{Q} \ \mathbf{24.} \quad \text{ Soit } \ell \in [\![2,n]\!] \text{ et soit } \gamma \in \mathfrak{S}_\ell \text{ un cycle de longueur } \ell. \text{ Montrer que } \chi_\gamma(X) = X^\ell - 1.$

On pourra se ramener au cas $\gamma = (1\ 2\ \cdots\ \ell)$ et considérer la matrice

$$\Gamma_{\ell} = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 & 1 \\ 1 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & 1 & \ddots & & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 1 & 0 & 0 \\ 0 & \cdots & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{\ell}(\mathbb{C}).$$

 $\mathbf{Q} \ \mathbf{25.} \quad \text{Montrer que si } \sigma \in \mathfrak{S}_n, \text{ alors } \chi_{\sigma}(X) = \prod_{\ell=1}^n (X^{\ell}-1)^{c_{\ell}(\sigma)}.$

On pourra justifier que P_{σ} est semblable à une matrice diagonale par blocs dont les blocs sont des matrices de la forme Γ_{ℓ} ($\ell \geqslant 1$), où Γ_{ℓ} est définie ci-dessus si $\ell \geqslant 2$ et où $\Gamma_{\ell} = (1)$ si $\ell = 1$.

Q 26. En raisonnant sur la multiplicité des racines de χ_{σ} et de χ_{τ} , montrer que si P_{σ} et P_{τ} sont semblables, alors, pour tout $q \in [1, n]$,

$$\sum_{\substack{\ell=1\\q|\ell}}^n c_\ell(\sigma) = \sum_{\substack{\ell=1\\q|\ell}}^n c_\ell(\tau).$$

(On somme sur les valeurs de ℓ multiples de q et appartenant à [1, n].)

Q 27. En déduire la propriété (S).

On pourra calculer $T_{\sigma}D$ où T_{σ} est le type cyclique de σ et D est la matrice des diviseurs définies au I.D.

II.B - Endomorphismes de permutation

Dans cette sous-partie, E est un \mathbb{C} -espace vectoriel de dimension $n \geqslant 1$. On dit qu'un endomorphisme u de E est un endomorphisme de permutation s'il existe une base $(e_1,...,e_n)$ de E et une permutation $\sigma \in \mathfrak{S}_n$ telles que $u(e_j) = e_{\sigma(j)}$ pour tout $j \in [\![1,n]\!]$.

On note Id_E l'identité de E.

On note $\mathrm{Tr}(u)$ la trace d'un endomorphisme u de E et χ_u son polynôme caractéristique.

Q 28. Montrer que u est un endomorphisme de permutation si et seulement s'il existe une base dans laquelle sa matrice est une matrice de permutation.

Q 29. Soit u un endomorphisme de permutation de E. Montrer que u est diagonalisable et que sa trace appartient à [0, n].

Q 30. Soient A, B deux matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$. Montrer que A et B sont semblables si et seulement si elles ont même polynôme caractéristique.

Q 31. Soit u un endomorphisme de E tel que $u^2 = \operatorname{Id}_E$. Montrer que u est un endomorphisme de permutation si et seulement si $\operatorname{Tr}(u)$ est un entier naturel.

Q 32. Étudier si l'équivalence de la question précédente subsiste lorsqu'on remplace l'hypothèse $u^2 = \operatorname{Id}_E$ par $u^k = \operatorname{Id}_E$ pour k = 3, puis pour k = 4.

 \mathbf{Q} 33. Soit u un endomorphisme de E. Montrer que u est un endomorphisme de permutation si et seulement s'il vérifie les deux conditions suivantes :

- (a) il existe des entiers naturels $c_1,...,c_n$ tels que $\chi_u = \prod_{\ell=1}^n (X^\ell-1)^{c_\ell}$;
- (b) il existe N tel que $u^N = \mathrm{Id}_E$.

Q 34. Soient u et v deux endomorphismes de E tels que, pour tout $k \in \mathbb{N}$, $\mathrm{Tr}(u^k) = \mathrm{Tr}(v^k)$. Montrer que u et v ont même polynôme caractéristique.

Q 35. Soit u un endomorphisme diagonalisable de E. Montrer que u est un endomorphisme de permutation si et seulement s'il existe des entiers naturels $c_1, ..., c_n$ tels que, pour tout $k \in \mathbb{N}$,

$$\operatorname{Tr}(u^k) = \sum_{\substack{\ell=1\\\ell \mid k}}^n \ell c_\ell.$$

(On somme sur les valeurs de ℓ divisant k et appartenant à $[\![1,n]\!]$.)

III Valeurs propres de la matrice de Redheffer

On définit la matrice de Redheffer par $H_n=(h_{ij})_{(i,j)\in [\![1,n]\!]^2}$ où

$$h_{ij} = \begin{cases} 1 & \text{si } j = 1, \\ 1 & \text{si } i \text{ divise } j \text{ et } j \neq 1, \\ 0 & \text{sinon.} \end{cases}$$

On définit également la fonction de Mertens M, en posant, pour tout $n \in \mathbb{N}^*$, $M(n) = \sum_{k=1}^n \mu(k)$ où μ est la fonction de Möbius définie au I.C.

Q 36. Soient $A_n = (a_{ij})_{(i,j) \in \mathbb{I}_1, n\mathbb{I}^2}$ la matrice de terme général

$$a_{ij} = \begin{cases} \mu(j) & \text{si } i = 1, \\ 1 & \text{si } i = j, \\ 0 & \text{sinon} \end{cases}$$

et $C_n = A_n H_n$. En calculant les coefficients de C_n , montrer que det $H_n = M(n)$.

Pour le calcul du terme d'indice (i,j) de C_n , on pourra distinguer le cas i=j=1, le cas i>1, j=1 et le cas i>1, j>1.

On note χ_n le polynôme caractéristique de H_n , de sorte que $\chi_n(\lambda) = \det(\lambda I_n - H_n)$ pour tout réel λ . Pour λ réel distinct de 1, on définit par récurrence la fonction arithmétique **b**, en posant $\mathbf{b}(1) = 1$ et, pour tout entier naturel $j \geq 2$,

$$\mathbf{b}(j) = \frac{1}{\lambda - 1} \sum_{d \mid j, d \neq j} \mathbf{b}(d).$$

On définit également la matrice $B_n(\lambda)=(b_{ij})_{(i,j)\in [\![1,n]\!]^2}$ de terme général

$$b_{ij} = \begin{cases} \mathbf{b}(j) & \text{si } i = 1, \\ 1 & \text{si } i = j, \\ 0 & \text{sinon.} \end{cases}$$

 ${\bf Q}$ 37. En calculant le produit $B_n(\lambda)(\lambda I_n-H_n),$ montrer que

$$\chi_n(\lambda) = (\lambda-1)^n - (\lambda-1)^{n-1} \sum_{j=2}^n \mathbf{b}(j).$$

Dans toute la suite du problème, on suppose que λ est un réel distinct de 1 et on pose $w = \frac{1}{\lambda - 1}$.

On pose de plus $\mathbf{f} = (1+w)\delta - w\mathbf{1}$.

Q 38. Montrer que $\mathbf{f} * \mathbf{b} = \delta$.

Q 39. En utilisant les notations des séries de Dirichlet données dans la sous-partie I.E, exprimer, pour des valeurs du réel s à préciser, $L_{\mathbf{f}}(s)$ en fonction de w et $L_{\mathbf{1}}(s)$.

On note \log_2 la fonction logarithme en base 2, définie par $\log_2(x) = \frac{\ln(x)}{\ln(2)}$ pour tout réel x > 0.

 \mathbf{Q} 40. Montrer que, pour s réel suffisamment grand,

$$\frac{1}{L_{\mathbf{f}}(s)} = 1 + \sum_{m=2}^{\infty} m^{-s} \sum_{k=1}^{\lfloor \log_2 m \rfloor} w^k D_k(m)$$

où $D_k(m)$ est le nombre de manières de décomposer l'entier m en un produit de k facteurs supérieurs ou égaux à 2, l'ordre de ces facteurs étant important.

Q 41. Pour $n \ge 1$, on pose $S_k(n) = \sum_{m=2}^n D_k(m)$. Déduire de la question précédente que

$$\chi_n(\lambda) = (\lambda-1)^n - \sum_{i=1}^{\lfloor \log_2 n \rfloor} (\lambda-1)^{n-k-1} S_k(n).$$

 ${f Q}$ 42. Montrer enfin que H_n possède 1 comme valeur propre et que sa multiplicité est exactement

$$n - \lfloor \log_2 n \rfloor - 1.$$