Pop Quiz 1

Section 1 - Time: 50 min

Show your work for full credit. Please read the questions carefully!

n-channel MOSFET

$$i_D = K_n (v_{GS} - V_{Tn})^2$$
 SAT
 $i_D = K_n [2(v_{GS} - V_{Tn})v_{DS} - v_{DS}^2]$ NON-SAT

p-channel MOSFET

$$i_{D} = K_{p} (v_{SG} + V_{Tp})^{2}$$
 SAT

$$i_{D} = K_{p} [2(v_{SG} + V_{Tp})v_{SD} - v_{SD}^{2}]$$
 NON-SAT

1. (20 points) Express the type of the transistors shown below. What is the sign of the threshold voltage? What are the conditions for the following operating states?

			(
TYPE	n-channel Enhancemen	1 P-channel Depletion	on (Zpoints)
V_{TH}	Vτι >0	V _{Th} > 0	
OFF	Vos & VTh	V56 ≤ - VTh	
SAT	Vos > Vos - VTh	Van > Vac + VTh	
NON- SAT	VDS ≤ VGS - VTh	VSD < VSG + VTh	

2. (40 points) Find the Q-point (operating point) values of I_{DS} and V_{DS} of the

3. (40 points) In the circuit shown below, the field effect transistors have threshold voltages, $V_{TH} = 1V$. The transistors' conductance parameters are $K_{n1} = 4K_{n2} = 4mA/V^2$. Determine V_{GS1} , V_{GS2} , V_0 , I_D . Show your work!

assume M, and Mz in SAT
$$I_{D_1} = I_{D_2} (KCL) (5 points)$$

$$K_{n_4} \left(V_{GS_1} - V_{Th} \right)^2 = K_{n_2} \left(V_{GS_2} - V_{Th} \right)^2$$
 (5 points)

$$2(V_{DS_1}-1) = (V_{DS_2}-1)$$

 $2V_{DS_1}-1 = V_{DS_2}$ (5 points)

from (*)
$$V_{DS}$$
, $+ V_{DS}z = 8^{\circ}$ (10 points)
 $3V_{DS}$, $= 9^{\circ}$ =) V_{DS} , $= 3^{\circ}$ $\Rightarrow V_{DS}z = 5^{\circ}$
 $V_{CS}z = 5^{\circ}$

$$I_{D_1} = I_{D_2} = 4 \frac{mA}{V^2} (3-1)^2 = 16 mA (5 pcints)$$