

日本国特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

35.C 14627 4/ CF014627 US / 09/612, 565

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 7月16日

出願番号 Application Number:

平成11年特許願第202710号

出 願 人
Applicant(s):

キャノン株式会社

RECHIVED

001 26 2000

TC 2700 MAIL ROOM

CERTIFIED COPY OF PRIORITY DOCUMENT

2000年 8月

特許庁長官 Commissioner, Patent Office

特平11-202710

【書類名】 特許願

【整理番号】 4006044

【提出日】 平成11年 7月16日

【あて先】 特許庁長官殿

【国際特許分類】 HO4N 5/00

【発明の名称】 情報処理装置、ネットワークシステム、デバイス検索方

法、及び記憶媒体

【請求項の数】 15

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】 牧 伸彦

【発明者】

【発明者】

s In frai

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】 落合 将人

【特許出願人】

【識別番号】 000001007

【氏名又は名称】 キヤノン株式会社

【代理人】

【識別番号】 100090273

【弁理士】

【氏名又は名称】 國分 孝悦

【電話番号】 03-3590-8901

【手数料の表示】

【予納台帳番号】 035493

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

特平11-202710

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9705348

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 情報処理装置、ネットワークシステム、デバイス検索方法、及び記憶媒体

【特許請求の範囲】

【請求項1】 ネットワーク上に接続されるデバイスの位置に関する情報を 階層的に表したロケーション情報の各階層に対応するマップを表すマップ情報を 保持する第1の保持手段と、

任意のデバイスの検索条件を指定するための検索条件指定手段と、

上記ネットワーク上に接続されたサーバに対して、上記検索条件指定手段によって指定された検索条件に対応するデバイスの検索を要求する検索要求手段と、

上記検索要求手段での検索要求により上記サーバから送られてくる上記検索の 結果により示される上記ネットワーク上に接続されたデバイスに対して、当該デ バイスでの状態変化発生時に当該状態変化の通知を要求する状態変化通知要求手 段と、

上記検索要求手段での検索要求により上記サーバから送られてくる上記検索の結果に応じて対応するマップ情報を上記第1の保持手段の中から選択し、その選択したマップ情報と、上記状態変化通知要求手段での状態変化通知要求により上記デバイスから通知されてくる情報に含まれる当該デバイスの状態変化を表す状態情報とを重ねて出力する出力手段とを備えることを特徴とする情報処理装置。

【請求項2】 上記出力手段は、情報の表示出力機能を有することを特徴とする請求項1記載の情報処理装置。

【請求項3】 ネットワーク上の自己の位置を表す階層的なロケーション情報及び自己の属性情報を保持する第2の保持手段と、

自己の複数の状態を表す複数の状態情報を保持する第3の保持手段と、

上記第2の保持手段にて保持された情報を上記ネットワーク上のサーバへ登録 する情報登録手段と、

外部から送られてくる状態変化通知要求を保持する第4の保持手段と、

上記第4の保持手段の中の情報に基づいて、自己の状態変化発生時に当該状態 変化を上記状態変化通知要求により示される通知先に対して通知する状態変化通 知手段とを備え、

上記状態変化通知手段は、上記状態変化に応じて対応する状態情報を上記第3 の保持手段の中から選択し、その選択した状態情報を上記通知の情報に含めることを特徴とする情報処理装置。

【請求項4】 上記状態情報は、アイコンを含むことを特徴とする請求項1 又は3記載の情報処理装置。

【請求項5】 ネットワーク上に接続されるデバイスの位置に関する情報を 階層的に表したロケーション情報及びデバイスの属性情報を管理する管理手段と

外部から送られてくるデバイスの検索要求に基づいて、当該検索要求に対応するデバイスを上記管理手段の中の情報により検索する検索手段と、

上記検索要求の発行元に対して、上記検索手段での検索により検出されたデバイスに対応する情報を上記管理手段の中から取得して送信する検索結果送信手段とを備えることを特徴とする情報処理装置。

【請求項6】 上記管理手段は、上記デバイスから送られてくる上記ロケーション情報及び上記属性情報を管理することを特徴とする請求項5記載の情報処理装置。

【請求項7】 ネットワーク上に接続されたクライアント、サーバ、及びデバイスを含むネットワークシステムであって、

上記クライアント、サーバ、及びデバイスの少なくとも何れかは、請求項1~6の何れかに記載の情報処理装置の機能を有することを特徴とするネットワークシステム。

【請求項8】 ネットワーク上にクライアント、サーバ、及びデバイスを接続して構成されるネットワークシステムであって、

上記クライアントは、

上記ネットワーク上に接続されるデバイスの位置に関する情報を階層的に表したロケーション情報の各階層に対応するマップを表すマップ情報を保持する第1 の保持手段と、

任意のデバイスの検索条件を指定するための検索条件指定手段と、

上記サーバに対して、上記検索条件指定手段によって指定された検索条件に対応するデバイスの検索を要求する検索要求手段と、

上記検索要求手段での検索要求により上記サーバから送られてくる上記検索の結果により示される上記ネットワーク上に接続されたデバイスに対して、当該デバイスでの状態変化発生時に当該状態変化の通知を要求する状態変化通知要求手段と、

上記検索要求手段での検索要求により上記サーバから送られてくる上記検索の結果に応じて対応するマップ情報を上記第1の保持手段の中から選択し、その選択したマップ情報と、上記状態変化通知要求手段での状態変化通知要求により上記デバイスから通知されてくる情報に含まれる当該デバイスの状態変化を表す状態情報とを重ねて出力する出力手段とを備え、

上記サーバは、

上記ネットワーク上に接続されるデバイスの位置に関する情報を階層的に表し たロケーション情報及びデバイスの属性情報を管理する管理手段と、

上記クライアントから送られてくるデバイスの検索要求に基づいて、当該検索 要求に対応するデバイスを上記管理手段の中の情報により検索する検索手段と、

上記検索要求の発行元のクライアントに対して、上記検索手段での検索により 検出されたデバイスに対応する情報を上記管理手段の中から取得して送信する検 索結果送信手段とを備え、

上記デバイスは、

上記ネットワーク上の自己の位置を表す階層的なロケーション情報及び自己の 属性情報を保持する第2の保持手段と、

自己の複数の状態を表す複数の状態情報を保持する第3の保持手段と、

上記第2の保持手段にて保持された情報を上記サーバの上記管理手段へ登録する情報登録手段と、

上記クライアントから送られてくる状態変化通知要求を保持する第4の保持手段と、

上記第4の保持手段の中の情報に基づいて、自己の状態変化発生時に当該状態 変化を上記状態変化通知要求により示される通知先のクライアントに対して通知 する状態変化通知手段とを備え、

上記デバイスの状態変化通知手段は、上記状態変化に応じて対応する状態情報を上記第3の保持手段の中から選択し、その選択した状態情報を上記通知の情報に含めることを特徴とするネットワークシステム。

【請求項9】 上記クライアントの上記出力手段は、情報の表示出力機能を 有することを特徴とする請求項8記載のネットワークシステム。

【請求項10】 上記状態情報は、アイコンを含むことを特徴とする請求項8記載のネットワークシステム。

【請求項11】 クライアント、サーバ、及びデバイスが接続されたネット ワーク上において、サーバがクライアントからのデバイス検索要求に基づいてデ バイスの検索を行い、その検索結果をクライアントが取得して出力するためのデ バイス検索方法であって、

上記デバイスが、上記ネットワーク上の自己の位置を表す階層的なロケーション情報及び自己の属性情報を含む情報を上記サーバへ登録する登録ステップと、

上記サーバが、上記登録ステップによる上記デバイスからの情報を管理する管理ステップと、

上記デバイスが、自己の複数の状態を表す複数の状態情報を保持する状態情報 保持ステップと、

上記クライアントが、上記ロケーション情報の各階層に対応するマップを表す マップ情報を保持するマップ保持ステップと、

上記クライアントが、ユーザから指定入力されたデバイスの検索条件に対応するデバイスの検索を上記サーバに対して要求する検索要求ステップと、

上記サーバが、上記クライアントからのデバイスの検索要求に基づいて当該検索要求に対応するデバイスを上記管理ステップによる管理情報から検索し、その検索により検出したデバイスに対応する情報を上記管理ステップによる管理情報の中から取得して上記検索要求の発行元のクライアントに対して返送する検索ステップと、

上記クライアントが、上記サーバから返送されてきた管理情報により示される 上記ネットワーク上に接続されたデバイスに対して当該デバイスの状態変化発生 時の当該状態変化の通知を要求する状態変化通知要求ステップと、

上記デバイスが、上記クライアントからの状態変化通知要求を保持し、当該保持情報に基づいて、自己の状態変化発生時に当該状態変化に応じて対応する状態情報を上記状態情報保持ステップによる保持情報の中から選択し、その選択した状態情報を含む通知情報を上記状態変化通知要求により示される通知先のクライアントに対して送信する状態変化通知ステップと、

上記クライアントが、上記サーバから返送されてきた管理情報に応じて対応するマップ情報を上記マップ保持ステップによる保持情報の中から選択し、その選択したマップ情報と、上記デバイスから送られてくる通知情報に含まれる状態情報とを重ねて出力する出力ステップとを含むことを特徴とするデバイス検索方法

【請求項12】 上記出力ステップは、情報を画面表示出力するステップを含むことを特徴とする請求項11記載のデバイス検索方法。

【請求項13】 上記状態情報は、アイコンを含むことを特徴とする請求項 11記載のデバイス検索方法。

【請求項14】 請求項1~10の何れか1項に記載の各手段として、コンピュータを機能させるためのプログラムを記録したことを特徴とするコンピュータ読み取り可能な記憶媒体。

【請求項15】 請求項11~13の何れかに記載のデバイス検索方法の処理ステップを、コンピュータが読出可能に格納したことを特徴とする記憶媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、例えば、ネットワーク上のサーバ、クライアント、プリンタやコピー機等のデバイスに適用される情報処理装置、ネットワークシステム、デバイス検索方法、及びそれを実施するための処理ステップをコンピュータが読出可能に格納した記憶媒体に関し、特に、クライアントが任意のデバイスを利用する際に、そのデバイスをネットワーク上から検索するための技術に関するものである。

[0002]

【従来の技術】

従来より例えば、ネットワーク上の各種の資源(プリンタ、サーバ、スキャナ等、以下、「デバイス」とも言う)を効率的に発見し、それを利用するために、 LDAP (Lightweight Directory AccessProtocol) 等のディレクトリサービス と呼ばれるものが提供されている。このディレクトリサービスとは、いわゆるネットワークに関する電話帳の機能を果たすものであり、そのための様々な情報を 管理して提供するサービスである。

[0003]

したがって、上述のようなディレクトリサービスを利用して、ネットワークに 接続されているデバイスを検索することで、ネットワーク上で利用可能なデバイ スのネットワークアドレスの一覧を得ることができる。

[0004]

尚、上記LDAPでの規定については、IETFから発行されているRFC1777に記載されており、また、解説書としては、例えば、株式会社プレンティスホールより、「LDAPインターネットディレクトリアプリケーションプログラミング」が1997年11月1日に発行されている。

[0005]

【発明が解決しようとする課題】

しかしながら、上述したようなディレクトリサービス等による従来のデバイス 検索方法では、ネットワーク上で利用可能なデバイスが実際に存在する位置情報 や、そのデバイスの現在状態を取得することができなかった。

[0006]

具体的には例えば、あるクライアント側のユーザがプリント出力のために、ディレクトリサービスによってネットワーク上のプリンタを検索した場合、クライアント側の装置(パーソナルコンピュータ等の情報処理装置)には、ネットワーク上の利用可能なプリンタのネットワークアドレスが単に文字列で表示されるだけであった。

このため、ユーザは、プリント出力する前にプリント出力したいプリンタの位置を確認したり、プリント出力後にそのプリント出力を行ったプリンタが自分の

フロア或いは他の階のフロア等、実際にどの場所にあるかを探し出す必要があった。また、カラープリント出力したい場合、実際にプリント出力した後でしか、そのプリント出力を行ったプリンタがカラープリンタであるかどうかを知ることができなかった。さらに、プリント出力に用いるプリンタが現在どのような状態 (稼働状態、エラー発生状態等)であるかは、実際にプリント出力を行うときまで知ることができなかった。

[0007]

上述のように、従来のデバイス検索方法では、「自分のフロアにおいて、自分の場所に一番近いプリンタはどこにあるのか」、「カラー画像を出力できるプリンタは、その建物の中のどの場所にあるのか」等といった、デバイスの位置情報やデバイスの属性を取得することができなかった。また、デバイスの現在状態が稼働状態であるか、エラー発生状態であるかといったデバイス状態は、実際にデバイスを使用するときまでわからなかった。これは、ユーザにとって非常に不便であり、プリント出力等の作業効率が悪くなる、といった問題につながる。

[0008]

そこで、本発明は、上記の欠点を除去するために成されたもので、ネットワーク上の所望するデバイスの位置、属性、及び状態を視覚的に分かりやすく把握できるようにすることで、ネットワーク上の各種のデバイスを用いた作業効率を向上させることができる、情報処理装置、ネットワークシステム、デバイス検索方法、及びそれを実施するための処理ステップをコンピュータが読出可能に格納した記憶媒体を提供することを目的とする。

[0009]

【課題を解決するための手段】

斯かる目的下において、第1の発明は、ネットワーク上に接続されるデバイスの位置に関する情報を階層的に表したロケーション情報の各階層に対応するマップを表すマップ情報を保持する第1の保持手段と、任意のデバイスの検索条件を指定するための検索条件指定手段と、上記ネットワーク上に接続されたサーバに対して、上記検索条件指定手段によって指定された検索条件に対応するデバイスの検索を要求する検索要求手段と、上記検索要求手段での検索要求により上記サ

一バから送られてくる上記検索の結果により示される上記ネットワーク上に接続されたデバイスに対して、当該デバイスでの状態変化発生時に当該状態変化の通知を要求する状態変化通知要求手段と、上記検索要求手段での検索要求により上記サーバから送られてくる上記検索の結果に応じて対応するマップ情報を上記第1の保持手段の中から選択し、その選択したマップ情報と、上記状態変化通知要求手段での状態変化通知要求により上記デバイスから通知されてくる情報に含まれる当該デバイスの状態変化を表す状態情報とを重ねて出力する出力手段とを備えることを特徴とする。

[0010]

第2の発明は、上記第1の発明において、上記出力手段は、情報の表示出力機 能を有することを特徴とする。

[0011]

第3の発明は、ネットワーク上の自己の位置を表す階層的なロケーション情報 及び自己の属性情報を保持する第2の保持手段と、自己の複数の状態を表す複数 の状態情報を保持する第3の保持手段と、上記第2の保持手段にて保持された情 報を上記ネットワーク上のサーバへ登録する情報登録手段と、外部から送られて くる状態変化通知要求を保持する第4の保持手段と、上記第4の保持手段の中の 情報に基づいて、自己の状態変化発生時に当該状態変化を上記状態変化通知要求 により示される通知先に対して通知する状態変化通知手段とを備え、上記状態変 化通知手段は、上記状態変化に応じて対応する状態情報を上記第3の保持手段の 中から選択し、その選択した状態情報を上記通知の情報に含めることを特徴とす る。

[0012]

第4の発明は、上記第1又は3の発明において、上記状態情報は、アイコンを 含むことを特徴とする。

[0013]

第5の発明は、ネットワーク上に接続されるデバイスの位置に関する情報を階層的に表したロケーション情報及びデバイスの属性情報を管理する管理手段と、 外部から送られてくるデバイスの検索要求に基づいて、当該検索要求に対応する デバイスを上記管理手段の中の情報により検索する検索手段と、上記検索要求の発行元に対して、上記検索手段での検索により検出されたデバイスに対応する情報を上記管理手段の中から取得して送信する検索結果送信手段とを備えることを特徴とする。

[0014]

第6の発明は、上記第5の発明において、上記管理手段は、上記デバイスから 送られてくる上記ロケーション情報及び上記属性情報を管理することを特徴とす る。

[0015]

第7の発明は、ネットワーク上に接続されたクライアント、サーバ、及びデバイスを含むネットワークシステムであって、上記クライアント、サーバ、及びデバイスの少なくとも何れかは、請求項1~6の何れかに記載の情報処理装置の機能を有することを特徴とする。

[0016]

第8の発明は、ネットワーク上にクライアント、サーバ、及びデバイスを接続して構成されるネットワークシステムであって、上記クライアントは、上記ネットワーク上に接続されるデバイスの位置に関する情報を階層的に表したロケーション情報の各階層に対応するマップを表すマップ情報を保持する第1の保持手段と、任意のデバイスの検索条件を指定するための検索条件指定手段と、上記サーバに対して、上記検索条件指定手段によって指定された検索条件に対応するデバイスの検索を要求する検索要求手段と、上記検索要求手段での検索要求により上記サーバから送られてくる上記検索の結果により示される上記ネットワーク上に接続されたデバイスに対して、当該デバイスでの状態変化発生時に当該状態変化の通知を要求する状態変化通知要求手段と、上記検索要求手段での検索要求により上記サーバから送られてくる上記検索の結果に応じて対応するマップ情報を上記第1の保持手段の中から選択し、その選択したマップ情報と、上記状態変化通知要求手段での状態変化通知要求により上記デバイスから通知されてくる情報に含まれる当該デバイスの状態変化を表す状態情報とを重ねて出力する出力手段とを備え、上記サーバは、上記ネットワーク上に接続されるデバイスの位置に関す

る情報を階層的に表したロケーション情報及びデバイスの属性情報を管理する管理手段と、上記クライアントから送られてくるデバイスの検索要求に基づいて、当該検索要求に対応するデバイスを上記管理手段の中の情報により検索する検索手段と、上記検索要求の発行元のクライアントに対して、上記検索手段での検索により検出されたデバイスに対応する情報を上記管理手段の中から取得して送信する検索結果送信手段とを備え、上記デバイスは、上記ネットワーク上の自己の位置を表す階層的なロケーション情報及び自己の属性情報を保持する第2の保持手段と、自己の複数の状態を表す複数の状態情報を保持する第3の保持手段と、上記第2の保持手段にて保持された情報を上記サーバの上記管理手段へ登録する情報登録手段と、上記クライアントから送られてくる状態変化通知要求を保持する第4の保持手段と、上記第4の保持手段の中の情報に基づいて、自己の状態変化発生時に当該状態変化を上記状態変化通知要求により示される通知先のクライアントに対して通知する状態変化通知手段とを備え、上記デバイスの状態変化通知手段は、上記状態変化に応じて対応する状態情報を上記第3の保持手段の中から選択し、その選択した状態情報を上記通知の情報に含めることを特徴とする。

[0017]

第9の発明は、上記第8の発明において、上記クライアントの上記出力手段は 、情報の表示出力機能を有することを特徴とする。

[0018]

第10の発明は、上記第8の発明において、上記状態情報は、アイコンを含む ことを特徴とする。

[0019]

第11の発明は、クライアント、サーバ、及びデバイスが接続されたネットワーク上において、サーバがクライアントからのデバイス検索要求に基づいてデバイスの検索を行い、その検索結果をクライアントが取得して出力するためのデバイス検索方法であって、上記デバイスが、上記ネットワーク上の自己の位置を表す階層的なロケーション情報及び自己の属性情報を含む情報を上記サーバへ登録する登録ステップと、上記サーバが、上記登録ステップによる上記デバイスからの情報を管理する管理ステップと、上記デバイスが、自己の複数の状態を表す複

数の状態情報を保持する状態情報保持ステップと、上記クライアントが、上記ロ ケーション情報の各階層に対応するマップを表すマップ情報を保持するマップ保 持ステップと、上記クライアントが、ユーザから指定入力されたデバイスの検索 条件に対応するデバイスの検索を上記サーバに対して要求する検索要求ステップ と、上記サーバが、上記クライアントからのデバイスの検索要求に基づいて当該 検索要求に対応するデバイスを上記管理ステップによる管理情報から検索し、そ の検索により検出したデバイスに対応する情報を上記管理ステップによる管理情 報の中から取得して上記検索要求の発行元のクライアントに対して返送する検索 ステップと、上記クライアントが、上記サーバから返送されてきた管理情報によ り示される上記ネットワーク上に接続されたデバイスに対して当該デバイスの状 態変化発生時の当該状態変化の通知を要求する状態変化通知要求ステップと、上 記デバイスが、上記クライアントからの状態変化通知要求を保持し、当該保持情 報に基づいて、自己の状態変化発生時に当該状態変化に応じて対応する状態情報 を上記状態情報保持ステップによる保持情報の中から選択し、その選択した状態 情報を含む通知情報を上記状態変化通知要求により示される通知先のクライアン トに対して送信する状態変化通知ステップと、上記クライアントが、上記サーバ から返送されてきた管理情報に応じて対応するマップ情報を上記マップ保持ステ ップによる保持情報の中から選択し、その選択したマップ情報と、上記デバイス から送られてくる通知情報に含まれる状態情報とを重ねて出力する出力ステップ とを含むことを特徴とする。

[0020]

第12の発明は、上記第11の発明において、上記出力ステップは、情報を画面表示出力するステップを含むことを特徴とする。

[0021]

第13の発明は、上記第11の発明において、上記状態情報は、アイコンを含むことを特徴とする。

[0022]

第14の発明は、請求項1~10の何れか1項に記載の各手段として、コンピュータを機能させるためのプログラムを記録したコンピュータ読み取り可能な記

億媒体であることを特徴とする。

[0023]

第15の発明は、請求項11~13の何れかに記載のデバイス検索方法の処理 ステップを、コンピュータが読出可能に格納した記憶媒体であることを特徴とす る。

[0024]

【発明の実施の形態】

以下、本発明の実施の形態について図面を用いて説明する。

[0025]

(第1の実施の形態)

本発明は、例えば、図1に示すようなネットワークシステム100に適用される。

このネットワークシステム100は、1階フロアと2階フロアを含むオフィスフロア等で用いられるものであり、上記図1に示すように、クライアント側の情報処理装置としてのパーソナルコンピュータ(PC)111,113と、サーバ側の情報処理装置としてのパーソナルコンピュータ(PC)112と、各種デバイス101~105とが、LAN150によって互いに通信可能に接続された構成としている。

[0026]

クライアント側の情報処理装置としてのPC(クライアント端末装置、以下、単に「クライアント」と言う)111,113はそれぞれ、本実施の形態におけるネットワークデバイス検索クライアントのプログラムが実行可能なPCであり、サーバ側の情報処理装置としてのPC(以下、サーバ端末装置、単に「サーバ」と言う)112に対して、所望の条件を満たすデバイスに関する問い合わせ情報を発行すると共に、それにより得られた検索結果を表示するようになされている。

また、ここでは一例として、クライアント111をデスクトップ型のPCで構成し、クライアント113をノート型のPCで構成している。

[0027]

サーバ112は、本実施の形態におけるネットワークデバイス検索サーバのプログラムが実行可能なPCであり、本システム100のデバイス101~105 や、他のネットワークシステム140の各種デバイス(ネットワークデバイス)に関する情報が格納されており、クライアント111,113からのデバイス検索の問い合わせを受け付け、その検索結果を返送するようになされている。

[0028]

上述のようなクライアント111,113及びサーバ112として用いるPC はそれぞれ同様の構成としており、例えば、図2に示すような構成により、ネットワークデバイス検索クライアントソフトウェア、或いはネットワークデバイス検索サーバソフトウェア(以下、これらをまとめて「ネットワークデバイス検索 ソフトウェア」とも言う)を稼動するようになされている。

[0029]

すなわち、ここでのPC200は、上記図2に示すように、PC全体の動作制 御を司るCPU202と、CPU202での動作制御のための各種プログラムや データ等が格納されるROM203と、CPU202の主メモリや作業用エリア 等を含むRAM204と、マウス(MS)214と、マウス(MS)214から の指示入力を制御するマウスコントローラ(MC)213と、キーボード(KB)209と、キーボード(KB)209やポインティングデバイス(図示せず) からの指示入力を制御するキーボードコントローラ(KBC)205と、CRT ディスプレイ210と、CRTディスプレイ210の表示を制御するCRTコン トローラ (CRTC) 206と、各種プログラムやデータ (ブートプログラム、 種々のアプリケーション、編集ファイル、ユーザファイル、ネットワーク管理プ ログラム等)を記憶するためのハードディスクドライブ(HDD)211及びフ ロッピーディスクドライブ(FDD)212と、ハードディスクドライブ(HD D) 211及びフロッピーディスクドライブ (FDD) 212とのアクセスを制 御するディスクコントローラ(DKC)207と、LAN150を介してデバイ ス101~105や他のPC或いは他のネットワークシステム140(上記図1 参照)と双方向にデータをやりとりするためのネットワークインターフェースカ ード(NIC)208とを備えており、これらの各構成部は、システムバス20 1を介して互いに通信可能なように接続されている。

[0030]

したがって、上述のネットワークデバイス検索ソフトウェアは、ROM203 又はハードディスクドライブ(HDD)211、或いはフロッピーディスクドライブ212のFDに予め格納されており、CPU202によって読み出され実行されることで、後述するような本システム100における動作が実現される。

[0031]

一方、デバイス101~105はそれぞれ、カラープリンタやコピー機等から 構成される。

ここでは、例えば、デバイス101は、カラープリンタ(カラーLBP)であり、デバイス102は、コピー機能とプリンタ機能を共に兼ね備えたMFP(Multi Function Peripheral)である。また、デバイス103及び104はそれぞれ、モノクロプリンタであり、デバイス105は、スキャナである。

[0032]

これらのデバイス101~105の主なる構成はそれぞれ同様であり、例えば、図3に示すように、デバイス全体の動作制御を司るCPU2302と、CPU2302での動作制御のための各種プログラムやデータ等が格納されるROM2303と、CPU2302の主メモリや作業用エリア等を含むRAM2304と、デバイス機能(プリンタ機能やコピー機能等)のエンジン2309と、エンジン2309の駆動を制御するエンジンコントローラ(EC)2305と、ユーザから各種操作指示を受け付けたり種々の情報を表示するパネル(PANEL)2310と、パネル(PANEL)2310での入出力をコントロールしたりパネル(PANEL)2310を管理するパネルコントローラ(PC)2306と、ハードディスクドライブ(HDD)2211と、ハードディスクドライブ(HDD)2211と、ハードディスクドライブ(HDD)2211と、ハードディスクドライブ(HDD)2211と、ハードディスクドライブ(HDD)2211とのアクセスを制御するディスクコントローラ(DKC)2307と、不揮発性RAM(NVRAM)2312と、LAN150を介してサーバ112やクライアント111、113(上記図1参照)と双方向にデータをやりとりするためのネットワークインターフェースカード(NIC)2308とを備えており、これらの各構成部は、システムバス2301を介して互いに通信可能な

ように接続されている。

[0033]

尚、上記図3に示したデバイスが、例えば、カラーLBP101である場合、エンジン2309は、プリンタ出力動作等のためのLBPエンジン(LBPEngine)となり、ハードディスク(HDD)2211には、必要に応じて、印刷データ等が一時的にスプールされたりすることになる。

[0034]

上述のようなネットワークシステム100において、クライアント111、ザーバ112、カラープリンタ101、MFP102、及びモノクロプリンタ103はそれぞれ、2階フロアに設置されており、モノクロプリンタ104、スキャナ105、及びクライアント113はそれぞれ、1階フロアに設置されている。

[0035]

また、ネットワークシステム100は、ファイアウォール120を介してインターネット130に接続可能であり、そのインターネット130を介して他のネットワークシステム140とも接続可能に構成されている。

[0036]

尚、クライアント113は、ノート型のPCとしているため、上記図1では、 1階フロアからLAN130に接続している状態を示しているが、LAN150から取り外されることもあり、また、2階フロアからLAN150に接続される場合もある。

[0037]

ここで、本実施の形態では、クライアント111,113が、サーバ112から返送されてくるデバイス検索の結果に基づいて、対象デバイスがどの場所に、どういった属性を持って、現在どのような状態で存在するかを、ユーザが視覚的に把握できるように、1階フロアや2階フロア等の対象デバイスの存在位置に対応したレイアウトビットマップ上に、対象デバイスのビットマップアイコン(以下、単に「アイコン」とも言う)を表示する。特に、レイアウトビットマップ上に表示した対象デバイスのアイコンを、対象デバイスの状態に応じて変更する。この構成が本実施の形態での最も特徴とする構成としている。

[0038]

このため、ネットワークシステム100は、例えば、図4に示すような機能的 な構成を有している。

この図4に示す機能的な構成は、上記図2及び図3にそれぞれ示したCPU2 02,2302において、ネットワークデバイス検索ソフトウェア等の所定の処 理プログラムが実行されることで実現される。

[0039]

サーバ112は、クライアント111, 113からのデバイス検索の問い合わ せ要求 (デバイス検索要求)を受信する検索要求受信部411と、それぞれのデ バイスからのデバイス情報 (ロケーション情報及び属性情報)を管理するデバイ ス情報管理部412と、検索要求受信部411にて受信されたデバイス検索要求 に基づいてデバイス情報管理部413の管理情報から該当するデバイスを検索す るデバイス検索部413と、デバイス検索部413での検索により検出されたデ バイスに対応するデバイス情報をデバイス情報管理部413から取得して検索結 果として上記デバイス検索要求元のクライアントへ返送する検索結果返送部41 4とを備えている。

[0040]

クライアント111及びクライアント113はそれぞれ同様の機能を有しており、例えば、クライアント111は、キーボード209やマウス214(上記図2参照)等の操作によるユーザからの検索条件を受け付ける検索条件指定部421と、検索条件指定部421にて受け付けられた検索条件に基づいてサーバ112に対してデバイス検索要求を発行する間合部422と、間合部422によるデバイス検索要求に対するサーバ112からの検索結果を受信する検索結果受信部423と、検索結果受信部423にて受信された検索結果に対応するデバイスに対してイベント通知先登録要求を発行するイベント通知先登録要求部424と、イベント通知先登録要求部424によるイベント通知先登録要求の発行先のデバイスからのイベント通知を受信するイベント通知先登録要求の発行先のデバイスからのイベント通知を受信するイベント情報受信部425と、レイアウトビットマップ情報(以下、「MAP情報」と言う)を保持するMAP保持部426と、検索結果受信部423にて受信された情報、MAP保持部426の情報、及

びイベント情報受信部425にて受信された情報に基づいてCRT210 (上記図2参照)による画面表示を行なう表示部427とを備えている。

[0041]

それぞれのデバイス(本システムのデバイス101~105や他のネットワークシステム140のデバイス等)はそれぞれ同様の機能を有しており、例えば、デバイス101は、自デバイスのロケーション情報及び属性情報を含むデバイス情報を不揮発性RAM(NVRAM)2312(上記図3参照)へ保持するデバイス情報保持部431と、デバイス情報保持部431により保持されたデバイス情報をサーバ112に登録するためのデバイス情報登録部432と、クライアント111、113からのイベント通知先登録要求を受信するイベント通知先登録受信部433と、イベント通知先登録受信部433にて受信されたイベント通知先登録要求の情報を保持するイベント通知先保持部434と、自デバイスの様々な状態に対応した複数のアイコン情報を保持するアイコン情報保持部436と、自デバイスでイベントが発生した場合にそのイベント及び該イベントに対応するアイコン情報をアイコン情報保持部436から取得してイベント通知先保持部434の情報により示されるクライアントへ通知するイベント通知部435とを備えている。

[0042]

そこで、まず、上述のような構成によるネットワークシステム100の一連の 動作の概要を説明する。

[0043]

先ず、それぞれのデバイスにおいて、デバイス情報保持部431は、自デバイスのロケーション情報(2階フロア等の現在自デバイスが存在している位置を後述する階層的構造に従って示した情報)、及び属性情報(カラー入出力が可能であるか否か等)を含むデバイス情報を不揮発性RAM(NVRAM)2312(上記図3)によって保持している。これにより、自デバイスのデバイス情報を、自デバイスの電源が遮断されてもそのまま保持することができる。

また、アイコン情報保持部436は、自デバイスの現在状態(稼働中状態や紙 詰まり発生状態等)を視覚的に示すための様々なデバイス状態に対応した複数の アイコン情報を保持している。

[0044]

デバイス情報登録部432は、自デバイスが電源ONされると、デバイス情報保持部431により保持されているデバイス情報を、サーバ112に対して送信する。

[0045]

サーバ112のデバイス情報管理部412は、それぞれのデバイスからのデバイス情報を管理する。

[0046]

このとき、例えば、クライアント111において、問合部422は、検索条件 指定部421によりユーザから入力された検索条件の情報に基づいて、デバイス 検索要求をサーバ112に対して発行する。

[0047]

サーバ112において、検索要求受信部411は、クライアント111からのデバイス検索要求を受信する。

デバイス検索部413は、後述する階層的構造のロケーション情報を用いて、 検索要求受信部411にて受信されたデバイス検索要求により示される検索条件 に合致したデバイスを検索する。

検索結果返送部414は、デバイス検索部413での検索により検出されたデバイスに対応したデバイス情報を検索結果として、デバイス情報管理部412にて管理されている各デバイスのデバイス情報から取得し、それを検索要求受信部411にて受信されたデバイス検索要求の発行元のクライアント(ここでは、クライアント111)に対して送信する。

[0048]

クライアント111において、検索結果受信部423は、サーバ112からの 検索結果を受信する。

これと同時に、イベント通知先登録要求部424は、検索結果受信部423に て受信された検索結果に含まれるロケーション情報によって示されるデバイスに 対して、該デバイス側でイベントが発生した場合の通知先(自クライアント11 1のアドレス等)を登録する要求(イベント通知先登録要求)を発行する。

[0049]

クライアント111からのイベント通知先登録要求を受けたデバイスにおいて、イベント通知先保持部434は、イベント通知先登録要求受信部433により受信された上記イベント通知先登録要求により示されるクライアントの情報(イベント通知先であるクライアント111のアドレス等)を保持する。

[0050]

そして、イベント通知部435は、上記イベント通知先登録要求の応答(登録終了を示す応答)として、例えば、アイコン情報保持部436に保持されている各種アイコン情報のうちの応答時(その時点)の状態を示すアイコン情報をクライアント111に対して返送する。

[0051]

その後、イベント通知部435は、自デバイスでイベントが発生した場合に、 そのイベントを、イベント通知先保持部434にて保持されているクライアント の情報に基づいて、該当するクライアント(ここでは、クライアント111)へ と通知する。このとき、イベント通知部435は、クライアント111へのイベ ント通知に、アイコン情報保持部436に保持されている各種アイコン情報のう ち、現在発生しているイベントに対応するアイコン情報を含ませるようにする。

これにより、ここでのデバイスが、例えば、カラーLBP101である場合、カラーLBP101にて紙詰まり(ジャム)が発生すると、カラーLBP101からクライアント111へは、ジャム発生を示すアイコン情報を含むイベント通知がなされることになる。

[0052]

クライアント111において、表示部427は、検索結果受信部423にて受信された検索結果に含まれるロケーション情報に対応するMAP情報をMAP情報保持部426から取得し、そのMAP情報(レイアウトビットマップ)上に、イベント通知先登録要求時にその応答(登録終了)としてデバイスから返送されてきたアイコン情報を合成して、CRT210に表示する。

[0053]

その後、イベント情報受信部425が、イベント通知先登録要求部424によるイベント通知先登録要求の発行先のデバイスからのイベント通知を受信した場合、すなわち上記デバイスでイベントが発生した場合、表示部427は、そのイベント通知に含まれるアイコン情報で、現在CRT210に表示しているレイアウトビットマップ上のアイコンを変更する。

例えば、ジャム発生を示すイベント通知がなされた場合、そのイベント通知に 含まれるジャム発生に対応したアイコンで、現在レイアウトビットマップ上に合 成して表示しているアイコンを変更する。

[0054]

上述のように、クライアント111のCRT210では、ユーザから入力された検索条件を満たすデバイスが存在する場所のレイアウトビットマップ上に該デバイスがアイコン表示され、さらに、そのアイコン表示が該デバイスの状態に応じて変化することになる。

[0055]

以上が、ネットワークシステム100の一連の動作の概要である。

以下、ネットワークシステム100の構成及び全体動作について、具体的に説明する。

[0056]

[サーバ112で管理する各デバイスのロケーション情報]

それぞれのデバイスのロケーション(Location)情報は、図5に示すような階層的構造によって、サーバ112にて管理される。

[0057]

上記図5では、例えば、デバイス名(nm)「LBP1110」で示されるカ ラーLBP101のロケーション情報は、"301"~"308"に示すように

(C = JP (501)、o = ABC商事(502)、

BR=東京支店(503)、op=extend(504)、

BU = AAUV (505), fl = 2F (506),

BL=2-1 (507), dv=printer (508))

として指定される。

[0058]

それぞれのエントリC, O, BR, OP, BU, FL, BL, DV, UM, MAPは、

C : 国名を示す("JP"は日本、"US"はアメリカ等)

〇 : 組織名を示す("ABC商事"、"XYZ物産"等)

BR : 支店や支部等を示す("東京支店"、"大阪支店"等)

OP :オプション情報があることを示す ("extend"拡張)

BU: 建物の名前を示す("AAビル"、"BBビル"等)

FL : フロアの階数を示す ("1F"、"2F"等)

BL:フロアのブロックを示す("1-1"、"2-1"等)

DV:デバイスを示す("printer"、"MFP"等)

UM :デバイス名を示す

("LBP1110"、"LBP3310"等)

MAP:デバイスの後述するMAP上での座標を示す

("10X+10Y"等)

であり、それぞれのエントリの属性は、それぞれ決まった範囲(値)の属性値を 有するようになされている。

[0059]

本実施の形態では、上述のようなロケーション情報の階層的構造によって、ネットワーク上のデバイス(検索対象となる本システム100のデバイス101~105や他のネットワークシステム140のデバイス)のロケーション情報を管理することで、デバイスの位置を特定し、ユーザが所望するデバイスを該ユーザに分かりやすくアイコン表示し、さらに、そのアイコン表示をデバイスの状態に応じて変化させる。

[0060]

サーバ112が上記図5に示したロケーション情報の階層的構造(以下、「階層型ロケーション情報」とも言う)に従って各デバイスのロケーション情報を管理するために、上述したように、それぞれのデバイスが電源ONされると、サー

バ112に対して各デバイスのデバイス情報が与えられる。このデバイス情報は、例えば、図6に示すようなデータフォーマットとしている。

すなわち、それぞれのデバイスは、上記図6に示すデータフォーマットに従った自デバイスのデバイス情報をデバイス情報保持部431により保持しており、このデバイス情報をデバイス情報登録部432によりサーバ112に登録する(上記図4参照)。

[0061]

上記図6に示すように、ここでのデバイス情報は、上記図5に示した階層型ロケーション情報に従った自デバイスの位置を示すためのロケーション情報902~903と、自デバイスの属性を示すための属性情報913,914とを含んでいる。

また、ロケーション情報902~903の先頭にはロケーション情報TAG9 01が、属性情報913,914の先頭にはデバイス属性情報TAG912がそれぞれ付加されており、これにより、このデバイス情報の受信側(サーバ112)で、該デバイス情報に含まれる各種情報を識別できるようになされている。

[0062]

上記図6では、本システム100のカラーLBP101が保持しているデバイス情報を一例として示しており、ここでのデバイス情報には、カラーLBP101は、

デバイス名NM=LBP1110

レイアウトビットマップ上での座標MAP=10X+10Y

デバイスDV = printer(プリンタ)

であり、上記図5に示した階層型ロケーション情報に従って、

設置されているフロアのブロックBL=2-1

上記フロアの階数FL=2F

上記フロアの建物の名前BU=AAビル

オプション情報の有無OP=extend有り

支店名BR=東京支店

組織名O=ABC商事

国名C=JP(日本)

で示される場所に存在することを示すロケーション情報 9 0 2 ~ 9 1 1 が設定されている。

また、属性情報 9 1 3 , 9 1 4 としては、カラー入出力が可能であるか否かを示すための c o 1 o r 属性 9 1 3 と、ネットワークアドレスを示す I Pアドレス 9 1 4 とが設定されており、ここでは c o 1 o r 属性 9 1 3 が"OK"、すなわち"デバイス(カラーLBP)101はカラー入出力が可能"が設定されている

[0063]

したがって、上述のようなデバイス情報が、それぞれのデバイスからサーバ1 12へと与えられると、サーバ112において(上記図4参照)、デバイス情報 管理部412は、図7に示すようなテーブルによって、各デバイスのデバイス情 報を管理する。

尚、上記図7では、一例として、本システム100のデバイス101~105 の5つのデバイスのデバイス情報を管理した状態を示している。

[0064]

そして、デバイス検索部413は、デバイス情報管理部412により管理されている上記図7のテーブルから、クライアント111, 113からのデバイス検索要求に基づいたデバイス(ユーザから入力された検索条件に合致したデバイス)を検索する。この検索により得られたデバイス情報(検索結果)は、検索結果返送部414により、上記デバイス検索要求元のクライアントへ返送される。

[0065]

尚、本実施の形態にて扱う属性情報としては、上記図6及び図7に示した属性 情報913,914に限られることはなく、その他の様々な属性情報を持たせる ようにしてもよい。

[0066]

[デバイスが保持するアイコン情報]

それぞれのデバイスは、自デバイスで発生するであろう様々なイベントを表す ためのアイコン情報を、アイコン情報保持部436によって保持している。 [0067]

例えば、カラーLBP101は、図8に示すような、稼働中状態(redy)であることを示すためのアイコン情報、紙切れ状態(no paper)であることを示すためのアイコン情報、及びジャム発生状態(paper jammed)であることを示すためのアイコン情報を保持している。

また、MFP102は、図9に示すような、稼働中状態(redy)であることを示すためのアイコン情報、紙切れ状態(no paper)であることを示すためのアイコン情報、及びジャム発生状態(paper jammed)であることを示すためのアイコン情報を保持している。

その他の各デバイスにおいても、自デバイスの状態を示すための各種アイコン 情報を保持している。

[0068]

したがって、それぞれのデバイスにて何らかのイベントが発生した場合には、そのイベント通知部435によって、現在発生しているイベントを示すためのアイコン情報がアイコン情報保持部436の中から取得され、この取得されたアイコン情報を含むイベント通知が、イベント通知先保持部434に登録されているクライアント(イベント通知を行うべきクライアント)に対して送信されることになる。

[0069]

尚、デバイスが保持するアイコン情報としては、上記図8や図9に示したようなアイコン情報に限られることはなく、例えば、デバイスが使用中であることを示すアイコンや、デバイスに設けられたハードディスク等における読み込み/書き込みエラー発生を示すアイコン、また、デバイスがFAXである場合には、送信中/受信中であることを示すアイコンを設けたりするようにしてもよい。さらに、認証エラー発生を示すアイコンを設けるようにすれば、これがクライアント側でMAP上に表示出力されることで、該クライアント側でデバイスでの認証エラー発生を即に認識することができるようになるため、不正侵入等を遠隔地から監視すること等が可能となる。

[0070]

[クライアント111, 113での検索条件入力操作]

図10は、クライアント111, 113にてユーザが所望するデバイスを検索するための条件を入力するための画面(検索条件入力画面)を示したものである。この画面は、例えば、CRT210に表示され、マウス214やキーボード209によって(上記図2参照)、様々な検索条件が入力できるようになされている。

[0071]

上記図10において、"1001a","1001b","1001c"にて示す入力部分は、検索対象デバイスのエントリを入力する部分である。ここでは、直接エントリを入力も可能であるが、入力部分の右端部(黒三角印部分)を操作することで、プルダウンメニューが表示され、そのメニューの中から所望するエントリを選択することも可能である。

[0072]

"1002a","1002b","1002c"にて示す入力部分は、それぞれの入力部分1001a,1001b,1001cに入力したエントリに対応する属性情報を入力する部分である。

これらの入力部分1002a, 1002b, 1002cについても、入力部分1001a, 1001b, 1001cと同様に、直接入力、及びプルダウンメニューからの入力の何れも可能である。例えば、入力部分1001aにて入力したエントリが"デバイス"である場合、入力部分1002aの右端部を操作すれば、デバイス属性情報としてのプリンタ(printer)、MFP(MFP)、及びスキャナ(scanner)のプルダウンメニューが表示される。したがって、このプルダウンメニューの中から所望する属性情報を選択すれば、その選択属性情報が入力部分1002aに設定されることになる。

[0073]

"1003a"及び"1003b"にて示す部分は、入力部分1001a~100c,1002a~1002cに入力した各情報を、"AND(かつ)"で関係させることを指定する部分であり、"1004a"及び"1004b"で示す部分は、それぞれの入力部分1001a~100c,1002a~1002cに

入力した各情報を、"OR(または)"で関係させることを指定する部分である

[0074]

" 1005"で示す部分は、検索開始ボタンである。この検索開始ボタン1005を操作することで、入力部分1001a~100c, 1002a~1002cへの入力、及び指定部分1003a, 1003b, 1004a, 1004bによる指定に基づいた、サーバ112でのデバイス検索が開始されることになる。

[0075]

図11は、上記図10に示した検索条件入力画面での入力例を示したものである。

この図11では、"検索対象デバイスがプリンタ"、かつ、"カラー出力が可能なプリンタ"が、検索条件として入力されている。

[0076]

尚、検索条件としては、例えば、"設置フロアが2階であるプリンタ"(上記図11の入力部分1001c及び1002c参照)等というような、設置場所の条件や、その他の様々な条件をさらに加えることも可能である。ここでは、説明の簡単のため、"検索対象デバイスがプリンタ"かつ"カラー出力が可能なプリンタ"を入力された検索条件として説明する。

[0077]

そこで、例えば、クライアント111において、上記図11に示したように、 "検索対象デバイスがプリンタ"かつ"カラー出力が可能なプリンタ"の検索条件が入力され、この入力状態で検索開始ボタン1005が押下された場合、検索条件指定部421(上記図4参照)は、上記検索条件を、図12に示すような検索条件式として取得する。この図12に示すように、ここでの検索条件式としては、上記図11に示した検索条件に対応して、検索対象デバイス(DV)がプリンタ(printer)でカラー出力(color)が可能(OK)である条件を示している。

問合部422は、検索条件指定部421により得られた上記図12の検索条件 式を含むデバイス検索要求をサーバ112へと発行する。 [0078]

サーバ112において、デバイス検索部413は、上記図12の検索条件式に合致するデバイスを、上記図7に示したテーブルの中から検索する。例えば、このテーブルにて示されるデバイス101~105の中から、カラー出力可能なプリンタであるデバイスを検索する。ここでは、デバイス101(カラーLBP)のみがこれに該当することになる。 したがって、検索結果返送部414は、デバイス検索部413の検索結果としての図13に示すようなカラーLBP101のデバイス情報(ロケーション情報及び属性情報)を、クライアント111へと返送する。

[0079]

[クライアント111, 113での検索結果表示]

[0080]

まず、クライアント111, 113はそれぞれ、MAP情報保持部426(上記図4参照)により、上記図5に示したロケーション情報の階層的構造により示されるデバイスが設置されるであろう様々な場所のMAP情報(レイアウトビットマップ情報)を保持している。

[0081]

図14~図18は、MAP情報保持部426で保持しているMAP情報の一例 として、C=JP(日本)、O=ABC商事、BR=東京支店、BU=AAビル 内の1階フロア及び2階フロアのMAP情報を示したものである。

ここでのMAP情報は、各フロア内の実際の机の並びやパーティションの様子が予めビットマップとして設定されている。

[0082]

図14は、1階フロアの1ブロックのMAP情報MP1-1であり、図15は、1階フロアの2ブロックのMAP情報MP1-2であり、図16は、2階フロアの1ブロックのMAP情報MP2-1であり、図17は、2階フロアの2ブロックのMAP情報MP2-2である。

[0083]

図18については、例えば、サーバ112からの検索結果に含まれるロケーシ

ョン情報に対応するMAP情報をMAP情報保持部426が保持していない場合 (属性値を持たない場合) や、サーバ112で検索されたデバイスのデバイス情報中にロケーション情報が無い場合 (デバイスがロケーション情報を保持していない場合)、或いはサーバ112にて該当するデバイスが検索されなかった場合 等に用いるMAP (unknownMAP) 情報UMPである。

この図18に示すMAP情報UMPでは、"1901"の部分には、MAP情報がないことを示すメッセージが表示され、"1902"の部分には、サーバ112にて検索できたがロケーション情報を持たないデバイス、或いは検索できなかった検索対象デバイスのアイコンが表示される。

[0084]

上記図14~図18に示したようなMAP情報MP1-1~2-2及びUMPは、MAP情報保持部426において、例えば、図19の"1402"及び"1403"に示すように、1階フロア及び2階フロアの各ブロック1-1~2-2、及びその他に対応して管理されている。

[0085]

したがって、表示部427は、MAP情報保持部426から該当するMAP情報を、サーバ112からの検索結果(上記図13参照)に含まれる上記図19の "1401"に示すようなロケーション情報に基づいて取得し、それをCRT210にて表示する。

[0086]

また、表示部427は、CRT210に表示するMAP上において、サーバ112からの検索結果のロケーション情報(MAP上の座標情報("10X+10Y"))により示される位置に、デバイスからのアイコン情報("稼働中状態"を示すアイコン等)を表示する。

これにより、所望するデバイスが、どのフロアのどのブロックのどの位置にあるかを明示的に示すことができる。

[0087]

図20~図23は、上述したような表示部427によるCRT210での画面 表示の一例を示したものである。 これらの図20〜図23に示すように、所望するデバイス、或いはサーバや他のクライアントが、どのフロアのどのブロックのどの位置に設置されているかが、一目で確実に把握することができる。

[0088]

ここで、上述のように、クライアント111, 113において、サーバ112 にて検索されたデバイスをMAP上にアイコンとして表示するが、ここではさら に、このアイコンをデバイスの現在状態に応じて変更する。

[0089]

具体的には例えば、クライアント111において(上記図4参照)、イベント 通知先登録要求部424は、サーバ112から検索結果が送られてくると、その 検索結果により示されるデバイスに対してイベント通知先登録要求を発行する。

[0090]

イベント通知先登録要求部424により発行されるイベント通知先登録要求は、例えば、図24に示すようなフォーマットに従った情報からなり、どのようなイベントが発生した場合にイベント通知を行うかを示すための通知条件情報と、その通知先を示すためのイベント通知先情報とを含んでいる。

ここでは、説明の簡単のために、上記イベント通知先登録要求の発行先(サーバ112からの検索結果により示されるデバイス)をカラーLBP101としている。このため、その一例として、通知条件情報には"紙切れ"及び"紙詰まり"を設定し、イベント通知先情報には自クライアント(クライアント111)を示すIPアドレスを設定している。

[0091]

したがって、上記図24に示したようなイベント通知先登録要求は、カラーL BP101でイベント通知先登録要求受信部433で受信される。

[0092]

カラーLBP101において、イベント通知先保持部434は、クライアント 111からのイベント通知先登録要求、或いは他のクライアントから同様にして 発行されてきたイベント通知先登録要求を、例えば、図25に示すようなイベン ト通知先情報として保持(登録)する。 [0093]

その後、イベント通知部435は、イベント通知先保持部434でのイベント 通知先の登録が終了した対応するクライアントに対して、図26に示すようなイ ベント通知先登録の応答(登録終了)を返送する。これにより、登録終了したク ライアントでは、アイコン表示の初期状態(デバイスからの最初のイベント通知 がなされるまでの間)として、その時点での状態を示すアイコンが表示されるこ とになる。

[0094]

そこで、カラーLBP101において、例えば、紙切れが発生すると、イベント通知部435は、イベント通知先保持部434で保持しているイベント通知先の中からイベント通知を行うべきクライアントの情報(イベント通知先情報等)を取得し、そのクライアント(ここでは、クライアント111とする)に対して、例えば、図27に示すようなイベント通知を発行する。

ここでのイベント通知には、上記図27に示すように、自デバイスで発生した イベントに対応するアイコン情報(紙切れ発生を示すアイコン情報)と、自デバ イスのロケーション情報とを含んでいる。

[0095]

クライアント111において、イベント情報受信部425が上記図27に示したようなイベント通知を受信すると、表示部427は、そのイベント通知に含まれるアイコン情報で、MAP上に現在表示中のアイコンを変更する。

これにより、デバイスが、どのフロアのどのブロックのどの位置にあるかだけ でなく、現在状態をも常に明示的に示すことができる。

[0096]

図28は、上述のようにしてMAP上にデバイスの状態に応じたアイコンを重ねて表示する際、そのアイコンのMAP上での配置を示したものである。

ここでは、サーバ112での検索の結果、2階フロアのブロック2-1に設置されているカラーLBP101が検索され、そのロケーション情報に含まれるMAP上での座標MAPが、"10X+10Y"であり、さらに、カラーLBP101で紙切れが発生した場合を示している。

したがって、上記図28に示したような紙切れ状態を示すアイコンが、上記図 14に示したようなMAP情報MP2-1 (2階フロアのブロック2-1のMAP情報)上に、その座標10X+10Yに重ねて配置されることで、CRT210の画面は、図29に示すような表示となる。

[0097]

上述のことにより、例えば、上記図22の画面が表示された場合には、カラーLBP101が2Fフロアのブロック2-1の入り口に近いテーブル付近に設置されていることが分かり、上記図29の画面が表示された場合には、カラーLBP101が2Fフロアのブロック2-1の入り口に近いテーブル付近に設置されているが、このカラーLBP101は紙切れのため使用不可であることが分かる。また、上記図22の画面上のカラーLBP101のアイコンが、上記図29の画面上のアイコンに変化した場合には、カラーLBP101で紙切れが発生したことを即に知ることができる。

[0098]

[サーバ112、クライアント111, 113、及びそれぞれのデバイスでの処理の流れ]

図30~図38は、サーバ112、クライアント111, 113、及びそれぞれのデバイスでの上述したような各動作をフローチャートによって示したものである。

[0099]

尚、図30~図38のフローチャートは、サーバ112、クライアント111 , 113、及びそれぞれのデバイスにおいて実行される処理プログラムに対応し ている。すなわち、図30~図38のフローチャートに従った処理プログラムが 、サーバ112、クライアント111, 113、及びそれぞれのデバイスのCP U(201, 2302)によって実行されることで、上記図4に示した機能によ る以下に説明するような動作が実現される。

[0100]

(1) デバイスのロケーション情報の登録動作:図36参照

ここでは説明の簡単のために、各種デバイスのうちのカラーLBP101に着

目して、そのロケーション情報の登録動作について説明する。

[0101]

カラーLBP101におて、デバイス情報保持部431は、ロケーション情報 及び属性情報を含むデバイス情報を、不揮発性RAM2312に保持している。

CPU2302は、電源が投入されると、サーバ112との接続を行う(ステップS3001)。

[0102]

サーバ112との接続が確立すると、デバイス情報登録部432は、デバイス情報保持部431により不揮発性RAM2312に保持されているデバイス情報を取得し、それを、上記図6に示したようなフォーマットに従って、サーバ112に登録する(ステップS3002)。

[0103]

サーバ112への上記登録終了後、CPU2302は、サーバ112との接続 を解放する(ステップS3003)。

[0104]

上述のようにして、カラーLBP101を含むそれぞれのデバイスは、電源投入後、自デバイスのデバイス情報の登録をサーバ112に対して行う。

[0105]

(2) サーバ112の全体動作:図30参照

サーバ112において実行される処理プログラムは、イベント駆動型のプログ ラムで構成されており、あるイベントが発生すると、そのイベントを解析して、 対応する処理を実行するようになされている。

尚、ここでは説明の簡単のため、サーバ112で実行される種々の処理のうち、主に、デバイス検索処理及びデバイス情報登録処理に着目して説明する。

[0106]

サーバ112において、CPU202は、電源が投入されると、受信ポートを オープンし(ステップS2401)、イベントを取得する(ステップS2402)。

そして、CPU202は、ステップS2402にて取得したイベントが終了コ

マンドであるか否かを判別する(ステップS2403)。

[0107]

ステップS2403での判別の結果、取得イベントが終了コマンドの場合、CPU202は、ステップS2401でオープンした受信ポートをクローズして(S2404)、本処理を終了する。

[0108]

ステップS2403での判別の結果、取得イベントが終了コマンドでない場合 、CPU202は、取得イベントが、クライアントからのデバイス検索要求(問 合要求)であるか否かを判別する(ステップS2405)。

[0109]

ステップS2403の判別の結果、取得イベントがデバイス検索要求である場合、CPU202は、デバイス検索処理を実行する(ステップS2406)。その後、ステップS2402へと戻り、以降の処理ステップを繰り返し実行する。

尚、ステップS2406の処理についての詳細は後述する。

[0110]

ステップS2403の判別の結果、取得イベントがデバイス検索要求でない場合、CPU202は、デバイスからのデバイス情報の登録要求であると見なし、 そのためのデバイス情報登録処理を実行する(ステップS2407)。

すなわち、デバイス情報管理部412は、それぞれのデバイスからのデバイス 情報を、上記図7に示したようなテーブルによって保持する(データベースへの 登録)。このテーブル情報は、ハードディスク(HDD)211に格納される。

[0111]

(2-1) デバイス検索処理 (ステップS2406):図31参照

本処理は、上記図7に登録されているデバイス情報に対して、クライアント(ここでは、クライアント111とする)からのデバイス検索要求に含まれる全て の検索条件に対する処理が終了するまで繰り返し実行される。

[0112]

サーバ112において、先ず、CPU202は、クライアント111からのデバイス検索要求(受信パケット)内の全ての検索条件に対して、デバイス検索部

4 1 3 によるステップ S 2 5 0 3 からの処理を実行し終えたか否かを判別する (ステップ S 2 5 0 1)。

[0113]

ステップS2501の判別の結果、全ての検索条件に対する処理を終了した場合、検索結果返送部414は、デバイス検索部413で得られた検索により検出されたデバイスに対応するデバイス情報(ロケーション情報及び属性情報)を検索結果として、デバイス検索要求の発行元であるクライアント111へ返送する(ステップS2502)。

本ステップS2502の処理終了後、本処理終了となる。

[0114]

一方、ステップS 2 5 0 1 の判別の結果、全ての検索条件に対する処理を未だ 終了していない場合、デバイス検索部 4 1 3 は、デバイス検索要求に含まれる検 索条件を順に取り出す(ステップS 2 5 0 3)。

[0115]

そして、デバイス検索部413は、ステップS2503で取り出した検索条件 に合致するデバイス情報を取得するために、上記図7に登録されている全てのデ バイス情報に対して検索を行ったか否かを判別する(ステップS2504)。

[0116]

ステップS2504の判別の結果、全てのデバイス情報に対する検索が終えた 場合、これを認識したCPU202は、次の検索条件に対する処理を実行するた めに、ステップS2501へと戻り、以降の処理ステップを繰り返し実行する。

[0117]

ステップS2504の判別の結果、全てのデバイス情報に対する検索が未だ終えていない場合、デバイス検索部413は、全てのデバイス情報を順に検索するためのカウンタnにより示されるデバイス情報を、上記図7に登録されているデバイス情報から取得する(ステップS2505)。

[0118]

デバイス検索部413は、ステップS2505にて取得したデバイス情報が、 対象検索条件と合致するか否かを判別する(ステップS2506)。 [0119]

ステップS2506の判別の結果、対象デバイス情報と対象検索条件が合致しない場合、デバイス検索部413は、上記カウンタnをカウントアップした後、 次のデバイス情報に対する処理を実行するために、ステップS2504へと戻り 、以降の処理ステップを繰り返し実行する。

[0120]

ステップS2506の判別の結果、対象デバイス情報と対象検索条件が合致した場合、検索結果返送部414は、その対象デバイス情報をデバイス情報管理部412から取得して(ステップS2507)、ステップS2502にてクライアント111へ送信する検索結果に追加する(ステップS2508)。

その後、デバイス検索部413は、上記カウンタnをカウントアップした後、 次のデバイス情報に対する処理を実行するために、ステップS2504へと戻り 、以降の処理ステップを繰り返し実行する。

[0121]

尚、ステップS2508では、個々の検索条件を満たすデバイス情報が検索結果として得られることになるが、例えば、個々の検索条件が"AND"で結ばれていた場合、ステップS2502において、ステップS2508にて得られたデバイス情報のうち、全ての検索条件を満足するデバイス情報のみを、最終的にクライアント111へ送信するようにする。

[0122]

(3) クライアント111, 113の全体動作:図32参照

クライアント111, 113において実行される処理プログラムは、イベント 駆動型のプログラムで構成されており、あるイベントが発生すると、そのイベン トを解析して、対応する処理を実行するようになされている。

尚、説明の簡単のため、ここではクライアント111に着目して、その動作に ついて説明する。

[0123]

クライアント111において、CPU202は、イベントの取得を行う(ステップS2601)。

そして、CPU202は、ステップS2601で取得したイベントが終了コマンドであるか否かを判別する(ステップS2602)。

[0124]

ステップS2602の判別の結果、取得イベントが終了コマンドである場合、 CPU202は、本処理を終了する。

[0125]

ステップS2602の判別の結果、取得イベントが終了コマンドでない場合、 CPU202は、取得コマンドがユーザからのデバイス検索コマンドであるか否 かを判別する(ステップS2603)。

このときのデバイス検索コマンドは、上記図10に図示したような検索条件入力画面より、ユーザから検索条件が入力され、検索開始ボタン1005が操作(クリック)されることによって発生する。

[0126]

ステップS2603の判別の結果、取得イベントがデバイス検索コマンドである場合、CPU202は、検索条件指定部421や問合部421により、サーバ112に対してデバイス検索要求を発行するための処理等を含むデバイス検索要求発行処理を実行する(ステップS2604)。

その後、CPU202は、ステップS2061へと戻り、以降の処理ステップを繰り返し実行する。

尚、ステップS2604の処理についての詳細は後述する。

[0127]

ステップS2603の判別の結果、取得イベントがデバイス検索コマンドでない場合、CPU202は、取得イベントがサーバ112からの検索結果(ステップS2604での上記デバイス検索要求に対する結果:上記図11参照)であるか否かを判別する(ステップS2605)。

[0128]

ステップS2605の判別の結果、取得イベントが検索結果である場合、CP U202は、検索結果受信部423や、表示部427、イベント通知先登録要求 部424により、検索結果をCRT210へ表示するための処理や、デバイスへ のイベント通知先登録要求を発行するための処理等を含む検索結果処理を実行する(ステップS2606)。

その後、CPU202は、ステップS2061へと戻り、以降の処理ステップを繰り返し実行する。

尚、ステップS2606の処理についての詳細は後述する。

[0129]

ステップS2605の判別の結果、取得イベントが検索結果受信でない場合、 CPU202は、取得イベントがデバイスからのイベント通知(ステップS26 06での上記イベント通知先登録要求に対する通知)であるか否かを判別する(ステップS2607)。

[0130]

ステップS2607の判別の結果、取得イベントがイベント通知である場合、 CPU202は、イベント情報受信部425や表示部427により、CRT21 0に表示されているMAP上のアイコンを変更するための処理等を含むイベント 通知受信処理を実行する(ステップS2608)。

その後、CPU202は、ステップS2061へと戻り、以降の処理ステップを繰り返し実行する。

尚、ステップS2608の処理についての詳細は後述する。

[0131]

ステップS2607の判別の結果、取得イベントがイベント通知でない場合、 すなわち取得イベントが終了コマンド、デバイス検索コマンド、デバイス検索結 果、及びイベント通知の何れでもない場合、CPU202は、このときの取得イ ベントに対応した処理を実行する(ステップS2609)。

その後、CPU202は、ステップS2061へと戻り、以降の処理ステップを繰り返し実行する。

[0132]

(3-1) デバイス検索要求発行処理(ステップS2604): 図33参照

[0133]

先ず、検索条件指定部421は、上記図8に図示したような検索条件入力画面

よりユーザから入力された検索条件を取得する(ステップS2701)。

[0134]

そして、問合部422は、検索条件指定部421で取得された検索条件を、上記図12に示したような検索条件式の形式に変換し、さらに、該検索条件式を含む検索要求パケットを生成し、それをデバイス検索要求としてサーバ112に対して発行する(ステップS2702)。

[0135]

尚、ステップS2702において取得された検索条件式をハードディスク21 1に保存し、この検索条件式を次回の検索時に用いるようにすれば、ユーザから の検索条件の再入力を省くことが可能となる。

[0136]

(3-2) 検索結果処理 (ステップ S 2 6 0 6) : 図3 4 参照

[0137]

先ず、検索結果受信部423は、サーバ112からの検索結果により、1つ以上のデバイスが発見されたか否かを判別する(ステップS2801)。

[0138]

ステップS2801の判別の結果、デバイスが発見されなかった場合、表示部427は、そのことを示すためのメッセージ等をCRT210上に表示する(ステップS2815)。

その後、本処理終了となる。

[0139]

ステップS2801の判別の結果、デバイスが発見された場合、検索結果受信部423は、上記検索結果をハードディスク(HDD)211へ保持する(ステップS2802)。これにより、例えば、上記図13に示したような検索結果がハードディスク(HDD)211へ保存されることなる。

その後、ハードディスク (HDD) 2 1 1 へ保存された検索結果のそれぞれに対して、以降の処理ステップ S 2 8 0 3 からの処理が実行されることになる。

[0140]

すなわち、先ず、CPU202は、ステップS2802においてハードディス

ク (HDD) 211に保持された全ての検索結果に対して、ステップS2804 からの処理が実行されたか否かを判別する(ステップS2803)。

この判別の結果、全ての検索結果に対する処理が実行し終えている場合には本 処理終了となり、そうでない場合には次のステップS2804からの処理が引き 続き実行される。

[0141]

イベント通知先登録要求部424は、ハードディスク(HDD)211内の未 処理の検索結果から1つのデバイスに対応するデバイス情報を取得する(ステップS2804)。

[0142]

イベント通知先登録要求部424は、ステップS2804にて取得したデバイス情報のIPアドレスを宛先として、上記図24に示したようなイベント通知先登録要求 (イベント通知先登録パケット)を送信する (ステップS2805)。

例えば、上記図14に示したようなデバイス情報に対する処理である場合、そのIPアドレスは「192.1.2.1」であるため、このアドレス宛に上記イベント通知先登録パケットが送信されることになる。

その後、上記イベント通知先登録パケットの送信先に対応したデバイスからの 、上記図26に示したようなイベント通知先登録の応答(登録終了)パケット待 ち状態となる。

[0143]

イベント情報受信部425が、上記イベント通知先登録の応答パケットを受信すると(ステップS2806)、表示部427は、そのパケットに含まれるアイコン情報を取得する(ステップS2807)。

[0144]

そして、表示部247は、上記デバイス情報の"BL"によって示される情報 (上記図13参照)に対応したMAP情報が、MAP情報保持部426によって 保持されているか否かを判別する(ステップS2808)。

具体的には例えば、MAP情報保持部426によって管理されている、上記図19の"1402"及び"1403"に示したような情報テーブルを参照し、同

図の"1401"に示したようなC,O,BR,OP,BU,BL情報に対応したMAP情報が存在するか否かを判別することで、MAP表示可能であるか否かを判別する。

尚、ここでは、上記デバイス情報中のロケーション情報が、上記図19の"1 401"に示した各情報を含む場合に、MAP表示可能と判別される。

[0145]

ステップS2808の判別の結果、MAP表示可能である場合、表示部427 は、そのMAPを現在CRT210に表示している状態であるか否かを判別する (ステップS2809)。

[0146]

ステップS2809の判別の結果、CRT210にMAPを表示中である場合、表示部427は、そのMAP上にステップS2807にて取得したアイコンを、上記デバイス情報の座標情報MAPにより示される位置に重ねて表示する(ステップS2811)。

これにより、例えば、上記図13に示したようなデバイス情報に対する処理である場合、BL情報は「2-1」であるため、CRT210にはMAPとし上記図16に示したようなMAP情報MP2-1が表示され、そのMAP上に、座標情報MAP(=10X+10Y)により示される位置に稼働中状態を表すアイコンが表示されることになる。

その後、次の検索結果に対する処理を実行するために、ステップS2803へ と戻り、以降の処理ステップを繰り返し実行する。

[0147]

ステップS2809の判別の結果、CRT210にMAPを表示中でない場合 、表示部427は、そのMAPをCRT210に表示する(ステップS2810)。

その後、上述のステップS2811へと進み、アイコンを上記MAP上へ重ねて表示するための処理を実行する。

[0148]

ステップS2808の判別の結果、MAP表示可能でない場合、表示部427

は、上記図18に示したようなunknownMAP情報を、現在CRT210 に表示している状態であるか否かを判別する(ステップS2812)。

[0149]

ステップS2812の判別の結果、CRT210にunknownMAPを表示中である場合、表示部427は、そのunknownMAP上のデバイス欄(上記図18の"2902"部分)に、ステップS2807にて取得したアイコンを表示する(ステップS2814)。この結果、unknownMAP上のデバイス欄には、ロケーション情報が未だ登録されていないデバイスのアイコン等が表示されることになる。

その後、次の検索結果に対する処理を実行するために、ステップS2803へ と戻り、以降の処理ステップを繰り返し実行する。

[0150]

ステップS2812の判別の結果、CRT210にunknownMAPを表示中でない場合、表示部427は、そのunknownMAPをCRT210に表示する(ステップS2813)。

その後、上述のステップS2814へと進み、アイコンを上記MAPのアイコン欄へ表示するための処理を実行する。

[0151]

(3-3) イベント通知受信処理(ステップ S 2 6 0 8): 図 3 5 参照

[0152]

先ず、イベント情報受信部425は、上記図34のステップS2805及びS2806の処理によってイベント通知先登録が行われたデバイスからのイベント通知(上記図27参照)を受信すると、そのイベント通知に含まれるアイコン情報を取得する(ステップS2901)。

[0153]

また、イベント情報受信部425は、上記イベント通知に含まれる上記デバイスのロケーション情報を取得する(ステップS2902)。

[0154]

そして、イベント情報受信部425は、上記図34のステップS2802の処

理によってハードディスク (HDD) 211へ保持された検索結果 (サーバ112からの検索結果) の中に、ステップS2902にて取得したロケーション情報と一致する情報を有するデバイス情報が存在するか否かを判別する (ステップS2903)。

この判別の結果、一致するデバイス情報が存在しない場合には、そのまま本処理終了となり、一致するデバイス情報が存在した場合に、次のステップS2903の処理が実行される。

[0155]

ステップS2903の判別の結果、一致するデバイス情報が存在した場合、表示部427は、ステップS2902にて取得したロケーション情報に基づいて、ステップS2901にて取得したアイコン情報で、対応するMAP上のアイコンを変更する(ステップS2904)。

これにより、例えば、上記図22に示したような画面が表示されている状態中に、カラーLBP101にて紙切れが発生した場合、上記図22の画面中のカラーLBP101のアイコンは、上記図29に示したようなアイコンに変更されて表示されることになる。

その後、本処理終了となる。

[0156]

(4) デバイスのイベント通知先登録動作:図37参照

ここでは説明の簡単のために、各種デバイスのうちのカラーLBP101に着目して、そのイベント通知先登録動作について説明する。

[0157]

カラーLBP101において、先ず、CPU2302は、自デバイスに電源が 投入されると、クライアント111, 113からのイベント通知先登録要求(状態取得要求、上記図24参照)を受信するために、受信ポートをオープンし、受 信可能状態とする(ステップS3101)。

[0158]

ステップS3101での処理により、イベント通知先登録要求受信部433が 、あるクライアントからのイベント通知先登録要求を受信すると(ステップS3 102)、イベント通知先保持部434は、そのイベント通知先登録要求に含まれる通知条件や通知先の情報を、上記図25に示したようなテーブル(イベント通知先テーブル)で管理する(ステップS3103)。

[0159]

そこで、CPU2302は、自デバイスの状態を調査して、現在の状態を示す アイコンを選択し(ステップS3104)、その現在状態をクライアントへ通知 するために応答パケット(上記図26参照)を作成する(ステップS3105) 。そして、その応答パケットをクライアントへ送信する(ステップS3106)

その後、ステップS3102へと戻り、以降の処理ステップを繰り返し実行する。

[0160]

(4-1) イベント通知処理: 図38参照

[0161]

先ず、イベント通知部435は、自デバイスの状態変化のイベント発生を把握 する(ステップS3201)。

尚、状態変化のイベント発生が検知されるまで、本ステップに処理がとどまる

[0162]

次に、イベント通知部435は、上記図37のステップS3103により保持 されている通知条件やイベント通知先を参照し、イベント通知を送信すべきクラ イアント、すなわち現在発生しているイベントを通知すべきクライアントを把握 する(ステップS3202)。

[0163]

そして、イベント通知部435は、ステップS3202の処理の結果、通知すべきクライアントが存在するか否かを判別する(ステップS3203)。

この判別の結果、通知すべきクライアントが存在しない場合には、本処理終了 となり、通知すべきクライアントが存在する場合に、次のステップS3204を 実行する。 [0164]

ステップS3203の判別の結果、通知すべきクライアントが存在する場合、イベント通知部435は、イベント情報を含めたイベント通知パケット(上記図27参照)を作成する(ステップS3204)。そして、その通知すべきクライアントの全てに対して、ステップS3204にて作成したイベント通知を送信する(ステップS3105)。

その後、本処理終了となる。

[0165]

上述のように、本実施の形態では、クライアント111, 113において、ユーザから指定された検索条件に一致したデバイスの位置情報を取得し、そのデバイスのアイコンをMAP上に表示することによって、どのデバイスが、どの位置にあるかをユーザに容易に理解させることができる。

特に、本実施の形態では、MAP上のアイコンを、それに対応するデバイスの 状態(稼働中、紙切れ、紙詰まり、トナーなし、ドアオープン等の状態)に応じ て変更するようにしたので、ユーザーは視覚的に容易にデバイスの状態を知るこ とができるようになる。これにより、ユーザーは、使用可能なデバイスを効率的 に選択し使用することができる。

[0166]

また、本実施の形態では、クライアント111,113において、デバイスの 状態を表すアイコン情報(デバイスピットマップアイコン情報)を、デバイスへ のイベント通知先登録時(その応答受信時)や、デバイスからのイベント通知受 信時に該デバイスから直接取得するように構成したので、デバイスの様々な状態 を表すアイコン情報をサーバ112やクライアント111,113で予め保持し ておく必要はない。これにより、サーバ112やクライアント111,113の メモリ資源の消費を防ぐことができる。また、数多くのクライアントが存在する 場合に、それぞれのクライアントにアイコン情報をインストールする必要がない ため、クライアント側のユーザの負担を軽減することができると共に、不明の状 態のデバイスを表示することもなくなるという効果がある。

[0167]

また、本実施の形態では、デバイスの状態取得のためにポーリングを行わず、 イベント通知方式を採用しているので、ユーザはリアルタイムにデバイスの状態 を知ることができると共に、クライアント111, 113のCPUの負荷を軽減 することができる。さらには、ネットワークのトラフィックを軽減することもで きる。

[0168]

(第2の実施の形態)

ここでは、上記図5に示したような階層的構造のロケーション情報(位置情報)に基づく検索に関する実施の形態を説明する。

[0169]

まず、上述した第1の実施の形態では、上記図19に示したように、レイアウトビットマップとして、各ブロックのビットマップ(MP1-1, MP1-2, MP2-1, MP2-2)、及び UnknownビットマップUMPの計5枚のレイアウトビットマップを有する場合とした。

これに対して、本実施の形態では、さらに各階層毎にレイアウトビットマップ を有する場合とし、以下、この場合のクライアント側での表示方法について説明 する。

尚、本実施の形態の表示方法には、先に説明したクライアントの表示方法が含まれるものである。

[0170]

図39は、検索する各階層に対応するビットマップリスト(以下、「ビットマップ対応リスト」と言う)を示す図である。

このビットマップ対応リストの下部に示すリストは、上記図19に示したMA P情報の管理情報に相当するリストである。

[0171]

本実施の形態では、アイコン情報(デバイスピットマップアイコン)を表示する場合、検索する階層の属性のすぐ下の属性情報に基づくようにする。階層の上下関係は、上記図5に示した通りである。

例えば、「BU=AAビル」の検索条件で全てのデバイスを検索する場合には

、そのすぐ下の属性 F L (上記図 5 参照) を、そのデバイスのアイコンを表示するための位置情報として、レイアウトビットマップ上に表示する。

[0172]

そこで、まず、クライアント側での検索結果の表示処理について説明する。

[0173]

例えば、ABC商事にある全てのデバイスの検索を行う場合、あるクライアント側 (クライアント111とする) のユーザは、上記図10に示したようなの検索条件入力画面上で、検索項目の入力欄1001aに「会社名(O)」をプルダウンメニューから選択して入力し、その属性値の入力欄1002aに「ABC商事」を入力して、検索開始ボタン1005を押してデバイス検索を実行する。

[0174]

これにより上記のデバイス検索を実行したクライアント111は、上述した第 1の実施の形態で説明した手順で、サーバ112から検索結果を得る。そして、 クライアント111は、サーバ112から獲得した検索結果に基づいて、デバイ スピットマップアイコンをレイアウトピットマップ上に重ねて表示する。

このとき、クライアント111の表示処理は、図40のフローチャートに示し たものとなる。

[0175]

すなわち、検索結果表示処理が開始されると、得られた検索結果の全ての表示が終了したか否かを判断し(ステップS6001)、全ての処理が終わるまで、 表示処理を全て繰り返すことになる。

ステップS6001での判断の結果、検索結果の処理を全て終了していない場合には、検索結果のロケーション情報中からデバイス名(NM)情報を取得する。これは、後述するステップS6008やステップS6010、ステップS6013でデバイスビットマップアイコンを表示するために行う処理である。

[0176]

次に、検索した条件の属性に対応したレイアウトビットマップが既に表示済みかどうかを判断する(ステップS6003)。

ここでは、「属性=O、属性値=ABC商事」の条件で検索を実行したことか

ら、上記図38に示したビットマップ対応リストを参照して、図41に示すようなレイアウトビットマップMP101上に検索結果のデバイスビットマップアイコンを表示することになる。したがって、ステップS6003では、上記図41のレイアウトビットマップMP101が表示済みかどうかを判断する。

[0177]

ステップS6003の判断の結果、まだレイアウトビットマップを表示していない場合には、対応するレイアウトビットマップを画面上に表示し(ステップS6004)、次のステップS6005の処理に移行する。

[0178]

一方、ステップS6003での判断の結果、レイアウトビットマップを既に表示済みであった場合には、上述のステップS6004の処理はスキップして、検索した属性の下層属性とその属性値とを検索結果から取得する(ステップS6005)。

[0179]

そして、この取得した下層の属性値を表示可能かどうかを判断する(ステップ S6006)。

この判断の結果、属性値の範囲外だったものや、属性値が入力されていないデ バイスは表示不可能ということで、ステップS6011に進む。

[0180]

ステップS6011では、Unknown マップUMPが既に表示済みかどうかを判断し、未表示であった場合にはUnknown マップUMPを表示する(ステップS6012)。

そして、ステップS6002で獲得したデバイス名(NM値)に対応するデバイスピットマップアイコンを、Unknown マップUMPのデバイス欄1902に表示する(ステップS6013)。

[0181]

一方、ステップS6006での判断の結果、上記取得した下層の属性値を表示可能であった場合には、その下層属性がMAP属性(アイコンの表示座標情報)であるかどうかを判断する(ステップS6007)。

この判断の結果、MAP属性でなかった場合には、表示しているレイアウトビットマップ上の属性位置に、ステップS6002で取得したデバイス名(NM値)に対応するデバイスビットマップアイコンを重ねて表示する(ステップS6008)。ここでは、階層型ロケーション情報で階層Oの下の階層BRの属性値が「東京支店」であることから(上記図5参照)、取得された各デバイス名に対応するアイコンは、東京支店5001の位置上に表示されることになる。その結果、図42のような表示を得ることになる。

[0182]

また、より詳細にデバイスの位置を検索する場合、ユーザは、上記図10の検索条件入力画面上で、検索項目の入力欄1001aに「ブロック名(BL)」をプルダウンメニューから選択して入力し、その属性値の入力欄1002aに「2-1」を入力して、検索開始ボタン1005を押してデバイス検索を実行する。

[0183]

これにより、クライアント111は、上述した第1の実施の形態で説明した手順で、サーバ112から検索結果を得る。そして、クライアント111は、検索サーバPCから獲得した検索結果に基づいて、デバイスピットマップアイコンをレイアウトピットマップ上に重ねて表示する。このときも、上記図40の処理フローを実行する。

[0184]

この場合は、ステップS6007での判断の結果、ステップS6005で取得した下層の属性がMAP属性であることから、ステップS6009に進む。

ステップS6009では、そのMAP情報で示される座標範囲がレイアウトビットマップの範囲内かどうかを判断する。そして、範囲内であった場合には、そのとき表示しているレイアウトビットマップの座標位置に、ステップS6002で獲得したデバイス名(NM値)に対応するデバイスビットマップアイコンを重ねて表示する(ステップS6010)。

[0185]

ここでは、「属性=BL、属性値=2-1」の条件で検索を実行したことから 、上記図39に示したビットマップ対応リストを参照して、上記図16に示すよ うなレイアウトピットマップMP2-1上に検索結果のデバイスアイコンを表示することになる。また、階層ロケーション情報の属性BLの階層下の属性がMAP属性であることから(上記図5参照)、検索結果の各デバイスを表すアイコンは、そのレイアウト上の座標上に表示されることになる。この結果、上記図22のような表示を得ることになる。

[0186]

尚、ステップS6009での判断の結果、MAP情報で示される座標範囲がレイアウトビットマップの範囲内かなかった場合は、ステップS6013に進み、ステップS6002で獲得したデバイス名(NM値)に対応するデバイスビットマップアイコンを、Unknown マップUMPのデバイス欄1902に表示することになる。

[0187]

つぎに、上述した検索結果の表示の他の表示例を幾つか挙げて説明する。

[0188]

先に説明したように、上記図41は、「属性=O、属性値=ABC商事」で検索した場合に使用されるレイアウトビットマップMP101を示したものである。この場合、属性Oの下層属性BRの属性値が「東京支店」であるデバイスのデバイスピットマップアイコンは5001に表示され、属性値が「大阪支店」であるデバイスのデバイスビットマップアイコンはレイアウトビットマップ5002にアイコンが表示される。

したがって、「属性=O、属性値=ABC商事」の条件ですべてのデバイスを 検索したときの結果表示は上記図42に示すようになる。

[0189]

図43は、「属性=BR、属性値=東京支店」の条件で検索した場合に使用されるレイアウトビットマップMP102である。この場合、属性BRの下層属性はOPであるが、これはオプション(OPTION)があることを示し、さらにもう一層下に詳細情報があることを示している。その属性BUの属性値がAAビルであるデバイスのデバイスビットマップアイコンはレイアウトビットマップ5201に表示される。

したがって、「属性=BR、属性値=東京支店」の条件ですべてのデバイスを 検索したときの結果表示は図44に示すようになり、この図44に示すように、 AAビル内に存在するデバイスのデバイスビットマップアイコンが、レイアウト ビットマップ5201に表示される。

[0190]

図45は、「属性=BU、属性値=AAビル」の条件で検索した場合に使用されるレイアウトビットマップMP103である。この場合、属性BUの下層属性FLの属性値が2Fであるデバイスのデバイスビットマップアイコンはレイアウトビットマップ5402上に表示され、属性値が1Fであるデバイスのデバイスビットマップアイコンはレイアウトビットマップ5401上に表示されることになる。

したがって、「属性=BU、属性値=AAビル」の条件ですべてのデバイスを 検索したときの結果表示は図46に示すようになり、この図46に示すように、 2Fのフロア内に存在する全てのデバイスのデバイスピットマップアイコンはレ イアウトビットマップ5402に表示され、1Fのフロア内に存在する全てのデ バイスのデバイスピットマップアイコンはレイアウトビットマップ5401に表 示される。

[0191]

図47は、「属性=FL、属性値=2F」の条件で検索した場合に使用される レイアウトビットマップMP104である。この場合、属性FLの下層属性BL の属性値が"2-1"であるデバイスのデバイスピットマップアイコンはレイア ウトビットマップ5601上に表示され、属性値が"2-2"であるデバイスの デバイスビットマップアイコンはレイアウトビットマップ5602上に表示され る。

したがって、「属性=FL、属性値=2F」の条件ですべてのデバイスを検索 したときの結果表示は図48に示すようになり、この図48に示すように、2F -1に存在する全てのデバイスのデバイスビットマップアイコンがレイアウトビットマップ5601上に表示され、2F-2に存在する全てのデバイスのデバイ スピットマップアイコンが2F-2のレイアウトビットマップ5602上に表示 される。

[0192]

図49は、「属性=FL、属性値=1F」の条件で検索した場合に使用される レイアウトビットマップMP105である。

この場合の検索の結果表示は、図50に示すように、属性FLの下層属性BLの属性値が"1-2"であるデバイスのデバイスのデバイスビットマップアイコンはレイアウトビットマップ5801上に表示され、属性値が"1-1"であるデバイスのデバイスビットマップアイコンはレイアウトビットマップ5802上に表示される。

[0193]

上述したように、本実施の形態によれば、ユーザの検索要求レベルに応じて、 詳細な表示からおおざっぱな表示まで、ロケーション情報の各階層に応じた検索 とその表示を行うことが可能になる。

[0194]

尚、上述した各実施の形態では、MAP上にデバイスを示すアイコンを表示するように構成したが、これに限られることはなく、例えば、デバイスの状態を示す情報として文字情報を用い、これをMAP上に表示するようにしてもよい。

[0195]

また、上記各実施の形態では、MAP上にデバイスを示すアイコンを画面上に表示出力するようにしたが、これに限られることはなく、例えば、プリント出力等、ユーザが視覚的にデバイスの位置や状態等を把握できるような出力であればよい。

[0196]

また、上記各実施の形態での上述した動作を実施するためのネットワークデバイス制御プログラムが、外部からインストールされるプログラムによってPC200(上記図2参照)にて遂行されるようにしてよい。

この場合、上記プログラムを含む情報群を、CD-ROMやフラッシュメモリ、フロッピーディスク等の外部の記憶媒体、或いは電子メールやパソコン通信等のネットワークを介してPC200に供給し、PC200内にてその情報群をロ

ードする場合でも、本発明は適用されるものである。

[0197]

図51は、上記記憶媒体の一例としてのCD-ROMのメモリマップを示した ものである。

この図51において、"9999"に示す領域には、それ以降のインストール プログラムを記憶してある領域9998、及びネットワークデバイス端末装置制 御プログラムを記憶してある領域9997のアドレス情報が、ディレクトリ情報 として格納される。

したがって、上記ネットワーク制御プログラムがPC200にインストールされる際には、先ず、領域9998のインストールプログラムがPC200内にロードされてCPU202によって実行される。このインストールプログラムの実行により、領域9997からネットワークデバイス端末装置制御プログラムが読み出され、ハードディスク(HDD)211に格納されることになる。その後、CPU202がハードディスク(HDD)211内のプログラムを読み出して実行することで、上記各実施の形態での機能が実現されることになる。

[0198]

また、本発明は、複数の機器(例えば、ホストコンピュータ、インタフェース機器、リーダ等)から構成されるシステム、或いは統合装置に適用しても、1つの機器からなる装置に適用しても、上述した効果を得ることができる。

[0199]

また、本発明は、上記各実施の形態の機能を実現するソフトウェアのプログラムコード(上記図4に示した機能を実現するプログラムコード等)を記録した記憶媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(又はCPUやMPU等)が、記憶媒体に格納されたプログラムコードを読み出して実行することによっても、本発明の目的が達成されることは言うまでもない。

この場合、記憶媒体から読み出されたプログラムコード自体が本発明の新規な 機能を実現することになり、そのプログラムコードを記憶した記憶媒体は、本発 明を構成することになる。 プログラムコードを供給するための記憶媒体としては、例えば、フロッピーディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM, CD-R、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。

[0200]

また、コンピュータが読み出したプログラムコードを実行することによって、 上記各実施の形態の機能が実現される他、そのプログラムコードの指示に基づき 、コンピュータ上で稼動しているOS等が実際の処理の一部又は全てを実行する ことによっても、上記各実施の形態の機能が実現され得る。

[0201]

さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードや、コンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部又は全てを実行することによっても、上記各実施の形態の機能が実現され得る。

[0202]

また、本発明は、上記各実施の形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体から読み出し、そのプログラムを、パソコン通信等の通信ラインを介して要求者にそのプログラムを配信する場合にも適用できることは言うまでもない。

[0203]

【発明の効果】

以上説明したように本発明では、クライアントにおいて、ロケーション情報の各階層に対応するマップを保持し、サーバで検出されたデバイスの状態を表す当該デバイスからの状態情報(アイコン等)を、当該デバイスが設置されている位置(ロケーション情報により示される位置)に対応するマップ上に重ねて出力(表示出力等)することで、マップ上の状態情報を当該デバイスの状態に応じて変更して出力するように構成したので、クライアント側のユーザは、どのデバイスが、どの位置にあるかを容易に理解することができると共に、デバイスの現在状態をも知ることができる。これにより、ユーザーは、使用可能なデバイスを効率

的に選択し使用することができる。

[0204]

また、デバイスの状態情報をデバイスで保持し、その状態情報を、クライアントからの状態変化通知要求時やクライアントへの状態変化通知時に当該クライアントへ直接与えるように構成したので、サーバやクライアントはデバイスの状態情報を予め保持しておく必要はない。これにより、サーバやクライアントのメモリ資源の消費を防ぐことができる。また、例えば、数多くのクライアントが存在する場合、それぞれのクライアントにデバイスの状態情報をインストールする必要がないので、クライアント側のユーザの負担を軽減することができる。

[0205]

また、クライアントがデバイスの状態変化(イベント)を取得する際に、デバイスが自己の状態変化が発生した時にそれをクライアントへ通知するように構成したので(イベント通知方式の採用)、クライアントは、デバイスの状態をリアルタイムに認識し、マップ上に重ねて出力しているデバイスの状態情報を当該デバイスの状態に応じて変更することができる。これにより、クライアント側のユーザは、リアルタイムにデバイスの状態を知ることができると共に、クライアントの負荷を軽減することができる。さらには、ネットワークのトラフィックを軽減することもできる。

【図面の簡単な説明】

【図1】

第1の実施の形態において、本発明を適用したネットワークシステムの構成を 示すブロック図である。

【図2】

上記ネットワークシステムのクライアント及びサーバとして用いるパーソナル コンピュータの内部構成を示すブロック図である。

【図3】

上記ネットワークシステムのデバイスの内部構成を示すブロック図である。

【図4】

上記ネットワークシステムの最も特徴とする構成を機能的に示すブロック図で

ある。

【図5】

上記サーバが管理するデバイスのロケーション情報の階層的構造を説明するための図である。

【図6】

上記デバイスが上記サーバに対して登録するデバイス情報を説明するための図 である。

【図7】

上記サーバが管理する上記デバイス情報を説明するための図である。

【図8】

上記デバイス (カラーLBP) が保持するアイコン情報の一例を説明するため の図である。

【図9】

上記デバイス(MFP)が保持するアイコン情報の一例を説明するための図である。

【図10】

上記クライアントでの検索条件入力画面を説明するための図である。

【図11】

上記検索条件入力画面での入力状態の一例を説明するための図である。

【図12】

上記検索条件入力画面にて入力された検索情報に対応した検索条件式を説明するための図である。

【図13】

上記サーバから上記クライアントに対して送信される検索結果の一例を説明するための図である。

【図14】

上記クライアントが保持しているレイアウトビットマップ情報の例1を説明するための図である。

【図15】

上記クライアントが保持しているレイアウトビットマップ情報の例2を説明するための図である。

【図16】

上記クライアントが保持しているレイアウトビットマップ情報の例3を説明するための図である。

【図17】

上記クライアントが保持しているレイアウトビットマップ情報の例4を説明するための図である。

【図18】

上記クライアントが保持しているレイアウトビットマップ情報 (UMP) の一例を説明するための図である。

【図19】

上記レイアウトビットマップ情報と上記ロケーション情報を対応付けて管理するためのテーブル情報を説明するための図である。

【図20】

上記クライアントにおいて、上記レイアウトビットマップ上に上記デバイスを 示すアイコンが表示された状態の例 1 を説明するための図である。

【図21】

上記クライアントにおいて、上記レイアウトビットマップ上に上記デバイスを 示すアイコンが表示された状態の例2を説明するための図である。

【図22】

上記クライアントにおいて、上記レイアウトビットマップ上に上記デバイスを 示すアイコンが表示された状態の例3を説明するための図である。

【図23】

上記クライアントにおいて、上記レイアウトビットマップ上に上記デバイスを 示すアイコンが表示された状態の例4を説明するための図である。

【図24】

上記クライアントから上記デバイスに対して発行されるイベント通知先登録要求を説明するための図である。

【図25】

上記デバイスが上記イベント通知先登録要求を管理するためのテーブル情報を 説明するための図である。

【図26】

上記デバイスから上記クライアントに対して送信されるイベント通知先登録の 応答を説明するための図である。

【図27】

上記デバイスから上記クライアントに対して返送されるイベント通知を説明するための図である。

【図28】

上記レイアウトビットマップ上に上記デバイスを示すアイコンを所定位置に重ねて表示するための処理を説明するための図である。

【図29】

上記レイアウトビットマップ上のアイコンが、上記デバイス状態に応じて変更 された状態を説明するための図である。

【図30】

上記サーバの全体動作を説明するためのフローチャートである。

【図31】

上記サーバの全体動作のデバイス検索処理を説明するためのフローチャートで ある。

【図32】

上記クライアントの全体動作を説明するためのフローチャートである。

【図33】

上記クライアントの全体動作のデバイス検索要求発行処理を説明するためのフローチャートである。

【図34】

上記クライアントの全体動作のデバイス検索結果処理を説明するためのフロー チャートである。

【図35】

上記クライアントの全体動作のイベント通知受信処理を説明するためのフロー チャートである。

【図36】

上記デバイスの上記サーバに対するデバイス情報の登録処理を説明するための フローチャートである。

【図37】

上記デバイスのイベント通知先登録動作を説明するためのフローチャートである。

【図38】

上記イベント通知先登録動作のイベント通知処理を説明するためのフローチャートである。

[図39]

第2の実施の形態において、 検索する各階層に対応するビットマップリスト を示す図である。

【図40】

検索クライアントが行う検索結果表示処理を示すフローチャートである。

【図41】

「属性=O、属性値=ABC商事」で検索した場合に表示されるレイアウトビットマップを示す図である。

【図42】

「属性=O、属性値=ABC商事」の条件ですべてのデバイスを検索したときの 結果表示を示す図である。

【図43】

「属性 = BR、属性値 = 東京支店」で検索した場合に表示されるレイアウトビットマップを示す図である。

【図44】

「属性=BR、属性値=東京支店」の条件ですべてのデバイスを検索したときの結果表示を示す図である。

【図45】

「属性=BU、属性値=AAビル」で検索した場合に表示されるレイアウトビットマップを示す図である。

【図46】

「属性=BU、属性値=AAビル」の条件ですべてのデバイスを検索したときの 結果表示を示す図である。

【図47】

「属性=FL、属性値=2F」で検索した場合に表示されるレイアウトビットマップを示す図である。

【図48】

「属性=FL、属性値=2F」の条件ですべてのデバイスを検索したときの結果 表示を示す図である。

【図49】

「属性=FL、属性値=1F」で検索した場合に表示されるレイアウトビットマップを示す図である。

【図50】

「属性=FL、属性値=1F」の条件ですべてのデバイスを検索したときの結果 表示を示す図である。

【図51】

本発明の機能を実施するためのネットワークデバイス制御プログラムが格納される記憶媒体の一例を説明するための図である。

【符号の説明】

- 100 ネットワークシステム
- 111, 113 クライアント
- 112 サーバ
- 101~105 デバイス
- 120 ファイアウォール
- 130 ネットワーク
- 140 他のネットワークシステム
- 150 LAN

特平11-202710

- 411 検索要求受信部
- 412 デバイス情報管理部
- 413 デバイス検索部
- 4 1 4 検索結果返送部
- 421 検索条件指定部
- 4 2 2 問合部
- 423 検索結果受信部
- 424 イベント通知先登録要求部
- 425 イベント情報受信部
- 426 MAP情報保持部
- 427 表示部
- 431 デバイス情報保持部
- 432 デバイス情報登録部
- 433 イベント通知先登録要求受信部
- 434 イベント通知先保持部
- 435 イベント通知部
- 436 アイコン情報保持部

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図6】

Location情報TAG		
NM	LBP1110	
MAP	10X+10Y	
VD	printer	
· BL 2-1		
FL 2F		
BU	AAビル	
OP	extend	
BR	東京支店	
0	ABC商事	
C JP		
デバイス属性情報TAG		
color	OK	
IPaddress	192.1.2.1	
	NM MAP DV BL FL BU OP BR O C デバイス属 color	

【図7】

		101	102	103	104	105
902	NM	LBP1110	MFP6550	LBP3310	LBP3310	SCN2160
903	MAP	10X+10Y	5X+30Y	10X+10Y	15X+25Y	5X+5Y
904	DV	printer	MFP	printer	printer	scaner
905	BL	2-1	2-1	2-2	1-1	1-2
906	FL	2F	2F	2F	1F	1F
907	BU	AALIV	AALIL	AMビル	AAピル	AALIU
908	OP	extend	extend	extend	extend	extend
909	BR	東京支店	東京支店	東京支店	東京支店	東京支店
910	0	ABC商事	ABC商事	ABC商事	ABC商事	ABC商事
911	С	JP	JP	JP	JP	JP
913	color	OK	NG	NG	NG	OK
914 <u>I</u>	Paddress	192. 1. 2. 1	192. 1. 2. 10	192. 1. 2. 100	192. 1. 2. 101	192. 1. 2. 200

【図8】

Ready	
No Paper	No Paper
Paper Jammed	Janumed

【図9】

【図10】

【図11】

【図12】

検索条件 (&(DV=printer) (color=OK)

【図13】

NM	LBP1110			
MAP	10X+10Y			
סע	printer			
BL	2-1			
FL	2F			
BU	AALIV			
OP	extend			
BR	東京支店			
0	ABC商事			
С	JP			
color	OK			
IPaddress	192.1.2.1			

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

C=JP, O=ABC商事, BR=東京支店, OP=extend, BU=AAビル

1402	1403
BL	bitmap
1-1	MP1-1
1-2	MP1-2
2-1	MP2-1
2-2	MP2-2
その他	UMP

【図20】

【図21】

【図22】

【図23】

【図24】

イベント通知先登録		
通知条件TAG		
通知条件 =(紙切れ 紙詰まり)		
イベント通知先TAG		
イベント通知先 =TCPIP:192.1.2.16:1025		

【図25】

通知条件	通知プロトコル	通知先ネットワークアドレス
紙切れ 紙詰まり	TCP/IP	192. 1. 2. 16:1025
紙切れ	TCP/IP 192. 1. 2. 18:2040	

【図26】

【図27】

イベント通知			
発生イベント	アイコンTAG		
No Paper			
Location TAG			
NM	LBP1110		
MAP	10X+10Y		
DV	printer		
BL	2-1		
FL	2F		
BU	AAビル		
OP	extend		
BR	東京支店		
0	ABC商事		
С	JP		

【図28】

【図29】

【図30】

【図31】

【図32】

【図33】

【図34】

【図35】

【図36】

【図37】

【図38】

[図39]

С	JP	JP .	JP	JP	JP
0	ABC商事	ABC商事	ABC商事	ABC商事	ABC商事
BR	_	東京支店	東京支店	東京支店	東京支店
OP		extend	extend	extend	extend
BU			AALIV	AAピル	AALIV
FL				2 F	1F
BL					
MAP					
対応マップ	MP101 (図41)	MP102 (図43)	MP103 (図45)	MP104 (図47)	MP105 (図49)

С	JP	JP	JP	JP	_
0	ABC商事	ABC商事	ABC商事	ABC商事	-
BR	東京支店	東京支店	東京支店	東京支店	-
OP	extend	extend	extend	extend	-
BU	AALIV	AMビル	AAビル	AAピル	-
FL	1F	1F	2F	2F	-
BL	1-1	1-2	2-1	2-2	_
MAP					
対応マップ	MP1-1 (図14)	MP1-2 (図15)	MP2-1 (図16)	MP2-2 (図17)	UMP (図18)

【図40】

【図41】

【図42】

【図43】

【図44】

【図45】

【図46】

【図47】

【図48】

【図49】

【図50】

【図51】

4.

【書類名】 要約書

【要約】

【課題】 ネットワーク上の所望するデバイスの位置、属性、及び状態を視覚的 に分かりやすく把握できるネットワークシステムを提供する。

【解決手段】 サーバ112は、デバイスからの当該デバイスの位置に関する情報を階層的に表したロケーション情報及び属性情報を管理する。デバイスは、自己の各種状態に対応する複数の状態情報(アイコン情報)を保持し、クライアント111からの状態変化通知要求により自己の状態変化発生時に当該状態変化に対応する状態情報を返送する。クライアント111は、上記ロケーション情報の各階層に対応するマップ情報を保持し、サーバ112で検出されたデバイスに対応するマップ情報上にデバイスからの状態情報を重ねて出力(表示出力)する。

【選択図】 図4

出願人履歷情報

識別番号

[000001007]

1. 変更年月日 1990年 8月30日

[変更理由] 新規登録

住 所 東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社