AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application.

LISTING OF CLAIMS:

1. (currently amended)

An automated computer-controlled monitoring system for determining the concentration of an analyte of interest in ground water, industrial and surface water, comprising:

- 4 -a-sampling-device-within-a-well-casing-and-comprising-valve-means-and-water-level-sensor-means-to-provide-a-ground
 6 water-sample-of-predetermined-volume;
- a-treatment-assembly-to-receive-the-sample-from-the
 sampling-device; -said-treatment-assembly-comprising-means-to-
 provide-a-calibration-standard-for-the-analytical-assembly; -
 and-one-of-(a)-a-treatment-cartridge-to-filter-the-sample-and--
 a-calibration-sensor; --(b)--a-source-of-analyte-free-water-
 connected-with-the-treatment-assembly; --

diversion means dividing a water sample into first and

second flow paths, said first flow path directing the water

sample to a sample chamber for analysis, and the second flow

path passing the water sample through one of (a) a media, (b) a

chamber, to eliminate the analyte of interest before

introduction of water into the sample chamber,

(continued)

(currently amended - continued)

- a calibration assembly to add a standard of predetermined

 concentration of -the- analyte -and-volume-to-the-water-from-thetreatment-assembly; to the water after it passes through one

 of (a) the media, (b) the chamber, to eliminate the analyte of
 interest, and
- an analytical assembly comprising-instrumentation-foranalysis-of-analytes-of-interest, to determine the concentration

 of the analyte in the sample water for either of the first or
 second flow paths.
- 28 -sensor-means-in-the-analytical-assembly-for-sensingconcentration-of-the-analyte-in-the-sample;-and-
- analytical-module-to-transmit-the-data-to-a-cognizant-agency:--

2

2. (original)

An automated monitoring system according to Claim 1, and further comprising a calibration loop for establishing a predetermined amount of standard solution.

3. (original)

An automated monitoring system according to Claim 1, and further comprising:

means to provide a matrix modifier, and

a valved loop defining a volume of matrix modifier introduced into the sample chamber.

4. Canceled.

4

6

2

4

2

5. (currently amended)

An automated monitoring system according to Claim 1, wherein:

the analytical and calibration assemblies are disposed in a casing separate from [[the]] a monitoring well casing to provide improved environmental control, ease of maintenance and security.

(currently amended)

An automated monitoring system according to Claim 1, and further comprising means for stirring [[the]] a ground water sample to enhance volatilization of concentration of the analyte in the sample.

7. (original)

An automatic monitoring system according to Claim 1, wherein trichloroethylene is the analyte of interest, and monitoring and analysis are performed utilizing an optrode assembly and procedure.

8. (currently amended)

An automated computer-controlled method for determining concentration of an analyte of interest in ground water and surface water, comprising the steps of:

- collecting and transporting a ground- water sample froma-well-easing to a preparatory treatment assembly,
- performing-one-of-(a)-passing-said-water-sample-throughfiltering-media-in-a-treatment-assembly-to-remove-the-analyte

 of-interest,-(b)-supplying-water-having-no-analysis-thereinfrom-an-external-source,--
- passing-water-from-an-external-source-to-a-calibrationassembly-for-addition-of-a-calibration-standard;-
- the water sample into first and second flow paths, said

 first flow path directing the water sample to a sample chamber for analysis, and the second flow path passing the water

 sample through one of (a) a media, (b) a chamber, to eliminate the analyte of interest before introduction of water into the sample chamber,

(continued)

8. (currently amended - continued)

	passing the water sample with-the to a calibration
20	standard-therein-to-the-analytical-module-for-analysis,-
	assembly to add a standard of predetermined concentration of
22	analyte to the water sample after it passes through one of
	(a) the media, (b) the chamber, to eliminate the analyte
24	of interest, and
	passing the water sample to an analytical assembly
26	to determine the concentration of the analyte in the sample
	water for either of the first or second flow paths.
28	analyzing-one-of-(a)-the-sample,-(b)-the-standard,-by-
	instrumentation-appropriate-for-the-analyte-of-interest,
30	and-recording-analysis-results;-
	transporting-fluids-from-said-analytical-assembly-to
32	disposal-means,-and

relaying-analysis-data-from-the-analytical-assembly-to--

a-communication-system-for-transmission-to-a-cognizant-agency-

2

4

9. (original)

A method according to Claim 8, and further comprising:

introducing calibration standards into a standard container and transporting the standard by a sample vessel.

10. (currently amended)

A method according to Claim 8, and further comprising the step of:

calibrating -said-instrumentation for analysis by providing a predetermined amount of standard solution via a calibration loop and passing it into the sample chamber.

11. (original)

A method according to Claim 10, and further comprising:

passing the sample from a well casing to a calibration system to prepare blanks or standards for addition of the standard directly for use in the analytical assembly.

4

6

8

2

12. (currently amended)

A method according to Claim 8, and further comprising the steps of:

introducing the sample [[in]] <u>into</u> a sample vessel until a lower sensor is satisfied, and

adding water to the sample vessel from a water treatment cartridge until an upper water level sensor in the sample vessel is satisfied to provide a predetermined dilution.

13. (currently amended)

A method according to Claim 8, wherein the analyte of interest is trichloroethylene and said-instrumentation-for-analysis comprises utilizes an optroduce assembly.

14. (new)

A method according to Claim 8, and further comprising relaying analysis data from the analytical assembly to a communication system for transmission to a cognizant agency.

15. (new)

An automated monitoring system according to Claim 1,

and further comprising a sampling device within a well

casing and comprising valve means and water level sensor

means to provide a ground water sample of predetermined

volume.

16. (new)

An automated monitoring system according to Claim 15,

and further including a treatment assembly to receive the sample from the sampling device, said treatment assembly

comprising means to provide a calibration standard for the analytical assembly, and one of (a) a treatment cartridge

to filter the sample and a calibration sensor, (b) a source of analyte-free water connected with the treatment assembly.

17. (new)

An automated monitoring system according to Claim 1, and further comprising means to receive analysis and assay data from the analytical assembly to transmit the data to a cognizant agency.