幂级数与 Fourier 级数 练习题

Edited by G.Cui

Ex 1. 求级数 $\sum_{n=1}^{\infty} (\sin \frac{1}{3n})(x^2 + x + 1)^n$ 的收敛区间.

Ex 2. 讨论级数

$$1 + \frac{1}{2x\sqrt{2}} + \frac{1}{4x^2\sqrt{3}} + \dots + \frac{1}{2^n x^n \sqrt{n+1}} + \dots$$

的收敛性,并求出它的收敛区域与一致收敛区域.

Ex 3. 求级数 $\sum_{n=1}^{\infty} n^{n^2} x^{n^3}$ 的收敛范围.

Ex 4. 设 $a_n \ge 0$, $\sum_{n=1}^{\infty} a_n$ 发散, $\lim_{n \to \infty} \frac{a_n}{a_1 + a_2 + \dots + a_n} = 0$, 试证:

$$\overline{\lim_{n\to\infty}}\sqrt[n]{a_n} = 1$$

Ex 5. 把下列函数展成 x 的幂级数, 并说明收敛范围.

1.
$$f(x) = \frac{1}{(1+x)(1+x^2)(1+x^4)}$$
;

2.
$$\phi(x) = \sin^3 x$$
.

Ex 6. 求 $\frac{\ln(x+\sqrt{1+x^2})}{\sqrt{1+x^2}}$ 的幂级数展开.

Ex 7. 证明: 若 $f(x) = \sum_{n=0}^{\infty} a_n x^n (a_n > 0, n = 0, 1, 2, ...)$ 的收敛半径为 $+\infty$,且 $\sum_{n=0}^{\infty} a_n n!$ 收敛,则 $\int_0^{+\infty} e^{-x} f(x) dx$ 也收敛,且 $\int_0^{+\infty} e^{-x} f(x) dx = \sum_{n=0}^{\infty} a_n n!$.

求证: 当 0 < x < 1 时, 有 $f(x) + f(1-x) + \ln x \ln(1-x) = \frac{\pi^2}{6}$.

- 1. 将 f(x) 展开为正弦级数;
- 2. 写出和函数的表达式, 绘出和函数的图形;
- 3. 该级数在 $(0,\pi)$ 上是否一致收敛.

Ex 10.

- 1. 将周期为 2π 的函数 $f(x) = \frac{1}{4}x(2\pi x)(x \in [0, 2\pi])$ 展开为 Fourier 级数, 并由此求出 $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- 2. 通过 Fourier 级数逐项积分求出 $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

参考答案

Ex 1. \(\mathbf{R}: \hat{\phi} \tau = x^2 + x + 1, \) \(\mathbf{H} \sum_{n=1}^{\infty} \sin \frac{1}{3n} t^n. \) \(\vartinlim a_n = \sin \frac{1}{3n}, \) \(\frac{1}{R} = \overline{\lim_{n \to \infty}} \frac{a_{n+1}}{a_n} = 1, \)	所以
$R=1$. 考察端点处的收敛情况: $t=-1$ 时, 有 $\sum (-1)^n \sin \frac{1}{3n}$, 容易看出是一 Le	ibniz
型级数, 故收敛; $t=1$ 时, 有 $\sum \sin \frac{1}{3n} \sim \sum \frac{1}{3n}$, 发散. 所以收敛范围 $t \in [-1,1)$,	解得
$x \in (-1,0)$	
Ex 2.	
解 :	
Ex 3.	
解:	
Ex 4.	
解:	
Ex 5.	
解:	
Ex 6.	
解:	
Ex 7.	
证明 <i>:</i>	

Ex 8.	
证明:	
Ex 9.	
解:	
Ex 10.	
解:	