Unit **11**

PARALLELOGRAMS AND TRIANGLES

Theorem

In a parallelogram

- (i) Opposite sides are congruent.
- (ii) Opposite angles are congruent.
- (iii) The diagonals bisect each other.

Given

In a quadrilateral ABCD, AB || DC, BC || AD and the diagonals AC, BD meet each other at point O.

- (i) $\overline{AB} \cong \overline{DC}. \overline{AD} \cong \overline{BC}$
- (ii) ∠ADC≅∠ABC,∠BAD≅∠BCD
- (iii) $\overrightarrow{OA} \cong \overrightarrow{OC}, \overrightarrow{OB} \cong \overrightarrow{OD}$

Construction

In the figure as shown, we label the angles as $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$ and $\angle 6$.

	Statements	Reasons
(i)	In $\triangle ABD \leftrightarrow \triangle CDB$	
	∠4 ≅ ∠1	Alternate angles
	$\overline{\mathrm{BD}}\cong\overline{\mathrm{BD}}$	Common
	∠2 ≅ ∠3	Alternate angles
	$\triangle ABD \cong \triangle CDB$	$A.S.A. \cong A.S.A.$
So,	$\overline{AB} \cong \overline{DC}. \overline{AD} \cong \overline{BC}$	(corresponding sides of congruent triangles)
and	$\angle A \cong \angle C$	(corresponding angles of congruent triangles)
(ii)	Since	
	$\angle 1 \cong \angle 4$ (a)	Proved
and	$\angle 2 \cong \angle 3$ (b)	Proved
••	$m \angle 1 + m \angle 2 = m \angle 4 + m \angle 3$	From (a) and (b)
or	$m\angle ADC = m\angle ABC$	
or	∠ADC≅ ∠ABC	8

and $\angle BAD = \angle BCD$	Proved in (i)
(iii) In $\triangle BOC \leftrightarrow \triangle DOA$ $\overline{BC} \cong \overline{AD}$ $\angle 5 \cong \angle 6$ $\angle 3 \cong \angle 2$ $\therefore \triangle BOC \cong \triangle DOA$	Proved in (i) Vertical angles Proved A.A.S≅ A.A.S
Hence $\overrightarrow{OC} \cong \overrightarrow{OA}$, $\overrightarrow{OB} \cong \overrightarrow{OD}$	Corresponding sides of congruent triangles)

D

Corollary

Each diagonal of a parallelogram bisects it into two congruent triangles.

Example

The bisectors of two angles on the same side of a parallelogram cut each other at right angles.

A parallelogram ABCD, in which $\overline{AB} \parallel \overline{DC}, \overline{AD} \parallel \overline{BC}$

The bisectors of ∠A and ∠B cut each other at E.

$$m\angle E = 90^{\circ}$$

Construction

Name the angles $\angle 1$ and $\angle 2$ as shown in the figure.

Statements	Reasons
$m \angle 1 + m \angle 2$ $= \frac{1}{2} (m \angle BAD + m \angle ABC)$	$\begin{cases} m \angle 1 = \frac{1}{2} m \angle BAD, \\ m \angle 2 = \frac{1}{2} mABC \end{cases}$
$= \frac{1}{2}(180^{\circ})$ =90°	$\begin{cases} \text{Int.angles on the same s} \overline{\text{AB}} \\ \text{Which cuts} & \text{segments AD and BC} \\ \text{are supplementary.} \end{cases}$
ence in $\triangle ABE$, m $\angle E = 90^{\circ}$	$m\angle 1+m\angle 2=90^{\circ}$ (proved)

EXERCISE 11.1

(1) One angle of a parallelogram is 130°. Find the measures of its remaining angles.

Given

ABCD is a parallelogram that $m\angle A = 130^{\circ}$

To Prove

(Required) To find the measures of $\angle B$, $\angle C$, $\angle D$

Proof

	Statements		Reasons
m∠C	= m∠A		Opposite angles of parallelogram.
m∠C	$= 130^{\circ}$	12	Given, $m\angle A = 130^{\circ}$
m∠B	+ m∠A =	180°	$\overline{AD} \parallel \overline{BC}$ and \overline{AB} is transversal.
			∴ sum of interior angles.
m∠B	$+130^{\circ} =$	180°	Given $m\angle A = 130^{\circ}$
m∠B	= 180° –	-130°	
m∠B	= 50°		
m∠D	= m∠B	NB.	Opp. angles
m∠D	$= 50^{\circ}$		As $m\angle B = 50^{\circ}$
∴ m∠B	= 50°, m∠C	$= 130^{\circ},$	*
m∠D	$= 50^{\circ}$		

One exterior angle formed on producing one side of a parallelogram is 40°. Find the measures of its interior angles.

Given

ABCD is a parallelogram, side AB has been produced to p to form exterior angle $m\angle CBP = 40^{\circ}$ and name the interior angles as $\angle 1$, $\angle C$, $\angle D$, $\angle A$.

Required

To find the degree measures of $\angle 1$, $\angle C$, $\angle D$, $\angle A$

* Statements			Reasons			
m∠1 + m∠CBP	=	180°	Supp.angles.			W
$m\angle 1 + 40^{\circ}$	=	180°	m∠CBP	=	40° given	

∴
$$m \angle 1$$
 = $180^{\circ} - 40^{\circ}$
 $m \angle 1$ = 140° (i)
 $m \angle D$ = $m \angle 1$ Opp.angles of llm

$$m \angle D$$
 = 140° (ii) From (i) AD || BC and AB is transversal.

$$m \angle A + m \angle 1 = 180^{\circ}$$
 || From (i) AD || BC and AB is transversal.

$$m \angle A + 140^{\circ} = 180^{\circ}$$
 || (Interior angles) From (i) || (Interior angles) || From (ii) || (Interior angles) || From (iii) || (Interior angles) || From (iii) || (Interior angles) || (Interior

Theorem

If two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram.

Given

In a quadrilateral ABCD, $\overline{AB} \cong \overline{DC}$ and $\overline{AB} \parallel \overline{DC}$

To prove

ABCD is a parallelogram.

Construction

Join the point B to D and in the figure, name the angles as indicated:

 $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$

Statements		Reasons
In	$ \Delta ABD \leftrightarrow \Delta CDB $ $ \overline{AB} \cong \overline{DC} $	Given
	$\angle 2 \cong \angle 1$ $\overline{BD} \cong \overline{BD}$	Alternate angles Common
n.Xe	$\Delta ABD \cong \Delta CDB$	S.A.S. postulate
Now ∴		(i) (corresponding angles of congruent triangles)(ii) From (i)

and
$$\overline{AD} \cong \overline{BC}$$

....(iii)

Corresponding sides of congruent As

ABII DC Also

....(iv)

Hence ABCD is a parallelogram

From (ii) - (iv)

Given

EXERCISE 11.2

- Prove that a quadrilateral is a parallelogram if its (1)
 - Opposite angles are congruent.
 - Diagonals bisect each other. **(b)**

Given Given ABCD is a quadrilateral.

$$m\angle A = m\angle C$$
,

$$m\angle B = m\angle D$$

Proof

Statements	Reasons
m∠A=m∠C (i)	Given
m∠B=m∠D (ii)	Given
Now	TOLIO.
$m\angle A + m\angle B + m\angle C + m\angle D = 360^{\circ}$	Angles of a quad.
$m\angle A + m\angle B + m\angle A + m\angle B = 360^{\circ}$	From (i), (ii)
$m\angle A + m\angle A + m\angle B + m\angle B = 360^{\circ}$	Rearranging
$2m\angle A + 2m\angle B = 360^{\circ}$	
$(m\angle A + m\angle B) = 360^{\circ}/2 = 180^{\circ}$	Dividing by 2
∴ AD II BC	As $m\angle A + m\angle B = 180^{\circ}$
Similarly it can be	(sum of interior angles)
Proved that AB I CD	
Hence ABCD is a parallelogram.	

prove that a quadrilateral is a parallelogram if its opposite sides are congruent.

D

Given

In quadrilateral

ABCD,
$$\overline{AB} \cong \overline{DC}$$
.

$$\overline{AD} \cong \overline{BC}$$

Required

ABCD is all gm

AB || CD, AD || BC

Join point B to D and name the angles $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$

Proof

	Stateme	nts	Reasons
	\triangle ABD \leftrightarrow \triangle CD	В	
	$\overline{AD} \cong \overline{CB}$		Given
	$\overline{AB} \cong \overline{CD}$		Given
	$\overline{BD} \cong \overline{BD}$		Common
<i>:</i> .	$\triangle ABD \cong \triangle CDB$		$S.S.S \cong S.S.S$
So	∠2 ≅ ∠1	(i)	Corresponding angles of Congruent triangles
	∠4 ≅ ∠3	(ii)	Alternate angles
Henc	e ABIICD	(iii)	∠2 and ∠1 are congruent
Simil	arly BCHAD	(iv)	Alternate angles ∠3, ∠4 congruent
•••	ABCD is a paral	lelogram.	From iii, iv
			(() / '

Theorem

The line segment, joining the mid-points of two sides of a triangle, is parallel to the third side and is equal to one half if its length.

Given In $\triangle ABC$, the midpoints of \overline{AB} and \overline{AC} are L and M respectively.

To Prove

$$\overline{LM} \parallel \overline{BC}$$
 and $m\overline{LM} = \frac{1}{2} m\overline{BC}$

	Statements	Reasons	
In	$\Delta BLN \leftrightarrow \Delta ALM$		
	$\overline{BL} \cong \overline{AL}$,	Given	
	∠1 ≅ ∠2	Vertical angles	
	$\overline{NL} \cong \overline{ML}$	Construction	

<i>:</i> .	$\Delta BLN \cong \Delta ALM$		S.A.S. postulate
and	$\angle A \cong \angle 3$ $\overline{NB} \cong \overline{AM}$	(i) (ii)	(corresponding angles of congruent triangles) (corresponding sides of congruent triangles)
But Thus ∴ ∴	$\overline{NB}\parallel \overline{AM}$ $\overline{NB}\parallel \overline{MC}$ $\overline{MC} \cong \overline{AM}$ $\overline{NB} \cong \overline{MC}$ $\overline{BC}\parallel \overline{MC}$ $\overline{BC}\parallel \overline{MC}$ $\overline{BC} \cong \overline{NM}$ $\overline{MC} \cong \overline{NM}$ $\overline{MC} \cong \overline{NM}$ $\overline{MC} \cong \overline{NM}$	JL(vi)	From (i), alternate ∠s (M is a point of AC) Given {from (ii) and (iv)} From (iii) and (v) (Opposite sides of a parallelogram BCMN) (Opposite sides of parallelogram) Construction
Hence	$m\overline{LM} = \frac{1}{2} m\overline{BC}$	<u>u</u>	{from (vi) and (vii)}

Example

The line segments, joining the mid-points of the sides of a quadrilateral, taken in order, form a parallelogram. D R C

Given

A quadrilateral ABCD, in which P is the mid-point of \overline{AB} , Q is the mid-point of \overline{BC} , R is the mid-point of \overline{CD} , S is the mid-point of \overline{DA} .

P is joined to Q, Q is joined to R. R is joined to S and S is joined to P.

To prove

PQRS is a parallelogram.

Construction

Join A to C.

	Statements	Reasons
In	ΔDAC,	
	$ \frac{\overline{SR} \parallel \overline{AC}}{m\overline{SR} = \frac{1}{2}m\overline{AC}} $	S is the mid-point of \overline{DA} R is the mid-point of \overline{CD}
In	ΔΒΑС,	
	PQ AC	P is the mid-point of AB
	$m\overline{PQ} = \frac{1}{2}m\overline{AC}$	Q is the mid-point of BC
	$\overline{SR} \parallel \overline{PQ}$	Each AC
	$m\overline{SR} = m\overline{PQ}$	Each $=\frac{1}{2}m\overline{AC}$
Thus	PQRS is a parallelogram	$\overline{SR} \parallel \overline{PQ}, m\overline{SR} = m\overline{PQ} \text{ (proved)}$

EXERCISE 11.3

(1) Prove that the line-segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

S

B

Given

ABCD is a quadrilateral.

P, Q, R, S are the mid-points of $\overline{AB}, \overline{BC}, \overline{CD}, \overline{DA}$ respectively.

P is joined to R, Q is joined to S. \overline{SQ} , \overline{PR} intersect at point "O"

To Prove

$$\overline{OP} \cong \overline{OR}, \overline{OS} \cong \overline{OQ}$$

Construction Join P, Q, R, S in order, join A to C.

Statemen	its	Reasons
SR AC (i)		In $\triangle ADC$. S, R are mid-points Of \overrightarrow{AD} , \overrightarrow{DC}
$m\overline{SR} = \frac{1}{2}m\overline{AC}$	(ii)	*

And $\overline{PQ} \parallel \overline{AC}$ (iii)	In ΔABC; P, Q are mid-points
$m\overline{PQ} = \frac{1}{2}m\overline{AC}$ (iv)	of AB,BC
$ \begin{array}{ccc} $	from (i), and (iii) From (ii) and (iv)
Similarly PSIIQR	
$m\overline{PS} = mQR$	
Hence PQRS is a parallelogram	
Now PR, SQ are the diagonals	The state of the s
Of PQRS that intersect at point O.	
∴ OP ≅ OR	
∴ $\overline{OS} \cong \overline{OQ}$	1001
University (characters (Charles)	Diagonals of a parallelogram
-	Bisect each other.

(2) Prove that the line-segments joining the mid-points of the opposite sides of a rectangle are the right-bisectors of each other.

D
R
C

Given

ABCD is a rectangle.

and P, Q, R, S are the mid-points of sides

AB, BC, CD and DA, respectively.

P is joined to R, S to Q These intersect at "O"

To Prove

$$\overline{OQ} \cong \overline{OS}, \overline{OR} \cong \overline{OP} \text{ and } \overline{RP} \perp \overline{SQ}$$

Statements		Reasons
ABII CD	100	opposite sides of rectangle
$\overline{AP} = \overline{DR}$	(i)	SINGRADIA
$m\overline{AB} = m\overline{CD}$		
$\frac{1}{2} m\overline{AB} = \frac{1}{2} m\overline{CD}$		
$m\overline{AP} = m\overline{DR}$	(ii)	
APRD is rectangle		

$$\frac{1}{2}$$
m $\overline{DA} = m\overline{RP}$

$$\overline{mDS} = \overline{mRO}$$

∴ DSIIRO,

Hence SORD is rectangle.

: $m\angle SOR = 90^{\circ}$, $\overrightarrow{RP} \perp \overrightarrow{SQ}$.

As $m\angle A = m\angle D = 90^\circ$

Mar Diagonals of a rectangle are congruent.]

Prove that the line-segment passing through the mid-point of one side and rule to another side of a triangle also bisects the third side.

In ΔABC, D is mid-point

AB, DE BC which meets AC at E.

equired E is mid-point of

ABandEA≅ EC

Take EFII AB which meets BC at F.

S	tatements	Reasons
	(ii) (iii)	DE BF given, EF DB const. Opposite sides of parallelogram Given Corresponding angles. Corresponding angles. Form (iii)
$\frac{\angle 3 \cong \angle C}{\overline{AD} \cong \overline{EF}}$ Hence $\triangle ADE \cong \angle A$	ΔEFC	Form (iv) Corresponding angles. Form (ii) A.A.S ≅ A.A.S

. AE≅CE	Corresponding sides of
: AE=CD	congruent triangles.

Theorem

The medians of a triangle are concurrent and their point of concurrency is the point of trisection of each median.

Given

ΔΑΒΟ

To Prove

The medians of the AABC concurrent and the point of concurrency is the point of trisection of each median.

Construction

Draw two medians \overline{BE} and \overline{CF} of the $\triangle ABC$ which intersect each other at point (Join A to G and produce it to point H such that $\overline{AG} \cong \overline{GH}$. Join H to the points B and C.

 \overline{AH} Intersects \overline{BC} at the point D.

Statements		Reasons
In	ΔACH, GE II HC, BEII HC	G and E are mid-points of sides \overline{AH} and \overline{AC} respectively G is a point of \overline{BE}
or	DDII 110	
Simil	wii)	from (i) and (ii)
**	BHCG is a parallelogram	
and	$m\overline{GD} = \frac{1}{2}m\overline{GH}$	(iii) (Diagonals BC and GH of parallelogram BHCG intersect each other
	BD ≅CD	at point D).
	AD is a median of ΔABC	
Med	ians $\overline{\mathrm{AD}}$, $\overline{\mathrm{BE}}$ and $\overline{\mathrm{CF}}$ pass t	hrough (G is the intersecting point of BE an
the point G		CF and AD pass through it.)
36		(iv) Construction
F10-2012-014-014-014-01		

$$m\overline{GD} = \frac{1}{2}m\overline{AG}$$

and G is the point of trisection of \overline{AD} –(v) similarly it can be proved that G is also the point of trisection of \overline{CF} and \overline{BE} .

from (iii) and (iv)

EXERCISE 11.4

(1) The distances of the point of concurrency of the medians of a triangle from its vertices are respectively 1.2cm; 1.4 cm and 1.5 cm. Find the lengths of its medians,

Solution Let ABC be a triangle with center of gravity at G where mAG=1.2cm, BG=1.4cm, mCG=1.5cm

Required To find the length of AP, BQ, CR

Proof:

$$m\overline{AP} = \frac{3}{2} \times (mAG)$$

$$= \frac{3}{2} \times 1.2 = 1.8 \text{ cm}$$

$$m\overline{BQ} = \frac{3}{2} \times (m\overline{BG})$$

$$= \frac{3}{2} \times 1.4 = 2.1 \text{ cm}$$

$$m\overline{CR} = \frac{3}{2} \times (mCG)$$

$$= \frac{3}{2} \times 1.5 = 2.25 \text{ cm}$$

(2) Prove that the point of concurrency of the medians of a triangle and the triangle which is made by joining the mid-points of its sides is the same.

Given

In $\triangle ABC$, \overline{AQ} , \overline{BR} , \overline{CP} are its medians that are concurrent at point G. $\triangle PQR$ is formed by joining mid-points of \overline{AB} , \overline{BC} , \overline{CA}

To Prove

Point G is point of concurrency of triangle PQR.

	Statements	Reasons
	PR BC	P, R are mid-points of AB and AC
⇒	PR BQ (i)	10 5 10 5
	RQ AB	P, Q are mid-points of \overline{AB} and \overline{BC}
⇒	$\overline{RQ} \ \overline{PB}$ (ii)	
	PBQR is a parallelogram.	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	BR, PQ are its diagonals, that	t bisect each other at T.
	T is mid-point \overline{PQ} , similarly	
	S is mid-point of PR and U is	s mid-point of PQ.

Theorem

If three or more parallel lines make congruent segments on a transversal, they also intercept congruent segments on any other line that cuts them.

Given

AB||CD||EF

The transversal \overrightarrow{LX} intersects \overrightarrow{AB} , \overrightarrow{CD} and \overrightarrow{EF} at the points M, N and P respectively, such that $\overrightarrow{MN} \cong \overrightarrow{NP}$. The transversal \overrightarrow{QY} intersects them at points R, S and T respectively.

To Prove

RS≃ST

Construction

From R, draw $\overline{RU} \parallel \overline{LX}$, which meets \overline{CD} at U. From S, draw $\overline{SV} \parallel \overline{LX}$ which meets \overline{EF} at V. as shown in the figure let the angles be labeled as

 $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$

Statements	Reasons
MNUR is a parallelogram	RU LX (construction)
*	AB CD (given)
$\therefore \overline{MN} \cong \overline{RU} \qquad \qquad \dots (i)$	(opposite sides of a parallelogram)

Simila	arly,		
	$\overline{NP} \cong \overline{SV}$	(ii)	Given
But	$\overline{MN} \cong \overline{NP}$	(iii)	{from (i), (ii) and (iii)}
	$\overline{RU} \cong \overline{SV}$		Each is LX (construction)
Also	RUII SV		Corresponding angles
	∠1 ≅ ∠2		Corresponding angles
and	∠3 ≅ ∠4		
In	$\Delta RUS \leftrightarrow \Delta SVT$,		Proved
	$\overline{RU} \cong \overline{SV}$		Proved
	∠1 ≅ ∠2	n o ²	Proved
∴ Hence	$\angle 3 \cong \angle 4$ $\Delta RUS \cong \Delta SVT$ $RS \cong \overline{ST}$		S.A.A.≅S.A.A. (corresponding sides of a congruent triangles)

Corollaries (i) A line, through the mid-point of one side, parallel to another side of a triangle, bisects the third side.

Given In $\triangle ABC$, D is the mid-point of \overline{AB} .

DE! BC which cuts AC at E.

To prove

 $\overline{AE} \cong \overline{EC}$

Construction

Through A, draw $\overline{LM} \parallel \overline{BC}$.

Statements	Reasons
Intercepts cut by \overrightarrow{LM} , \overrightarrow{DE} , \overrightarrow{BC} on	
AC are congruent.	$\{\underline{\underline{Intercepts}}$ cut by parallels \overline{LM} , \overline{DE} ,
i.e., $\overline{AC} \cong \overline{EC}$	BC on AB are congruent (given)

- (ii) The parallel line from the mid-point of one non-parallel side of a trapezium to the parallel sides bisects the other non-parallel side.
- (iii) If one side of a triangle is divided into congruent segments, the line drawn from the point of division parallel to the other side will make congruent segments on third side.

Exercise 11.5

1. In the given figure. $\overrightarrow{AX} \parallel \overrightarrow{BY} \parallel \overrightarrow{CZ} \parallel \overrightarrow{DU} \parallel \overrightarrow{EV}$ and $\overrightarrow{AB} \cong \overrightarrow{BC} \cong \overrightarrow{CD} \cong \overrightarrow{DE}$ if $\overrightarrow{mMN} = 1$ cm then

find the length of \overline{LN} and \overline{LQ}

Given

In given figure $\overrightarrow{AX} \parallel \overrightarrow{BY} \parallel \overrightarrow{CZ} \parallel \overrightarrow{DU} \parallel \overrightarrow{EV}$, $\overrightarrow{AB} \cong \overrightarrow{BC} \cong \overrightarrow{CD} \cong \overrightarrow{DE}$, $\overrightarrow{mMN} = 1cm$

Required:

To find $m\overline{LN}$ and $m\overline{LQ}$

Statement	Reasons
AXIIBYIICZIIDUIIEV	Given
$\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{DE}$	Given
$\overline{\mathrm{BC}} \cong \overline{\mathrm{MN}}$: lines through A, B, C, D, E cut \overline{LQ} in
$\overline{NP} \cong \overline{PQ}$	points L, M, N, P, Q.
mMN = 1cm	Given
$\overline{LN} = 2\overline{MN}$	1 - 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
=2(1)	$\therefore \overline{MN} = 1cm$
=2cm	11
LQ=4MN	
=4x1	
= 4cm	

2. Take a line segment of length 5cm and divide it into five congruent parts.

[Hint: Draw an acute angle $\angle BAX$. On \overline{AX} take $\overline{AP} \cong \overline{PQ} \cong \overline{QR} \cong \overline{RS} \cong \overline{ST}$.

Joint T to B. Draw line parallel to \overline{TB} from the points P, Q, R and S.]

Construction:

- (i) Take a line segment AB of 5cm long.
- (ii) Draw an acute angle ∠BAX.
- (iii) Mark 5 points on \overrightarrow{AX} at equal distance starting from point A.
- (iv) Join the last point (mark)T to B.
- (v) Draw SF, RE, QD, PC parallel to TB these line segments meet AB at F,E,D,C points.

Result: AB has been divided into five equal points

$$\overline{AC} \cong \overline{CD} \cong \overline{DE} \cong \overline{FB}$$

- 3. Fill in the blanks.
- (i) In a parallelogram opposite sides are.... (Parallel / Congruent)
- (ii) In a parallelogram opposite angles are (Equal / Congruent)
- (iii) Diagonals of a parallelogram each other at a point. (Intersect)
- Medians (iv) of triangle are (Concurrent)
- Diagonal of a (v) parallelogram divides the parallelogram into two triangles. (Congruent)
- In parallelogram ABCD 4.
 - \overline{mAB} ... \cong \overline{mDC} (i)
 - (ii) $\overline{mBC} ... \cong ... \overline{mAD}$

- (iii) $m \angle 1 \cong ...m \angle 3....$
- (iv) $m\angle 2 \cong ...m\angle 4....$

5. Find the unknowns in the given figure.

Given: Let ABCD be the given figure with

$$\overline{AB} \cong \overline{CD}$$

$$\overline{BC} \cong \overline{AD}$$

To Find: m°, n°, x°, y°

Proof:

Statement	Reasons	155-77-1
ABCD is a Parallelogram	AB≅CD	
C+110	ĀD≅BC	
$\angle n = 75^{\circ}$	Opposite interior angles	
$m^{o} + 75^{o} = 180^{o}$ $m^{o} = 180^{o} - 75^{o} = 105^{o}$ $x^{o} = m^{o}$ $x^{o} = 105^{o}$	supplementary angles	
$x^{o} + y^{o} = 180^{o}$ $y^{o} = 180^{o} - x^{o}$	supplementary angles	
$y^{o} = 180^{o} - 105^{o}$ $y^{o} = 75^{o}$		

If the given figure ABCD is a parallelogram, then find x, m.

ABCD is a parallelogram with Given: angles as shown To Find xo and mo

in a	THE REAL PROPERTY.	
18		7
154		10
- 12		٠.

Statement $11 x^{\circ} = 55^{\circ}$	Reasons
$x^{o} = \frac{55^{o}}{11} = 5^{o}$	Opposite angles of parallelogram
$x^{\circ} = 5^{\circ}$ $(5m + 10)^{\circ} + 55^{\circ} = 180^{\circ}$ $(5m + 10)^{\circ} = 180^{\circ} -55^{\circ}$ $5m^{\circ} + 10^{\circ} = 125^{\circ}$	Int. supplementary angles
$5m^{\circ} = 125^{\circ} - 10^{\circ}$ $5m^{\circ} = 115^{\circ}$ $m^{\circ} = 23^{\circ}$	

7. The given figure LMNP is a parallelogram. Find the value of m, n.

Given: The parallelogram LMNP with lengths and angles as shown to find: m° and n° Proof:

Statement	I. $8m-4n$ M
4m + n = 10(i) 8m - 4n = 8(ii) Multiplying (i) by 4 16m + 4n = 40 (iii)	Opposite sides of llgm Opposite side of llgm
Adding (i) and (iii) 8m -4n = 8	

$$\frac{16m + 4n = 40}{24m = 48}$$

$$m = \frac{48}{24} = 2$$
Put in (i)
$$4(2) + n = 10$$

$$8 + n = 10$$

$$n = 10 - 8 \implies n = 2$$

8. In the question 7, sum of the opposite angles of the parallelogram is 110° , find the remaining angles.

Given: LMNP is a parallelogram with angles 55°, 55° as shown To Find: All angles

Statement $\angle LPN+55^{\circ}=180^{\circ}$	Reasons
$\angle LPN = 125^{\circ}$	Interior angles
Also	
$\angle m = \angle P$	Opposite and
$2 m = 125^{\circ}$	Opposite angles $\therefore \angle P = 125^{\circ}$