Lineær algebra noter - Ortogonale og ortonormale baser

Lukas Peter Jørgensen, 201206057, DA4

24. juni 2014

Indhold

1	Dis	position	
2	Not	er	
	2.1	Ortogonalt sæt	
	2.2	Basis	
	2.3	Ortonormalt sæt	
	2.4	Theorem 5.5.1	
	2.5	Theorem 5.5.2	

1. TBD

2 Noter

2.1 Ortogonalt sæt

Et sæt af vektorer $\{v_1, v_2, \dots, v_n\}$ er ortogonale hvis:

$$\langle v_j, v_i \rangle = 0 \text{ for } i \neq j$$

Dette sæt er en basis hvis det opfylder definitionen for en basis.

2.2 Basis

Sættet $\{v_1, v_2, \dots, v_n\}$ er en basis for V hvis vektorerne i sættet indbyrdes er lineært uafhængige og spanner V.

2.3 Ortonormalt sæt

Et sæt af vektorer $\{v_1, v_2, \dots, v_n\}$ er ortonormalt hvis:

- Sættet er ortogonalt
- Sættet består af enhedsvektorer (er normeret).

$$\langle v_i, v_j \rangle = \delta_{ij} \left\{ egin{array}{ll} 1 & {
m for } \ i=j, \\ 0 & {
m ellers} \end{array} \right.$$

2.4 Theorem 5.5.1

Hvis $\{v_1, \ldots, v_n\}$ er et ortogonalt set af ikke-nul vektorer i et indre produktrum V, så er v_1, \ldots, v_n lineært uafhængige.

 v_1, \ldots, v_n er ortogonale og ikke-nul vektorer.

$$c_1v_1 + \dots + c_nv_n = 0$$

For $1 \leq j \leq n$ får man ved at tage det indreprodukt af v_j på begge sider af udregningen:

$$c_j \langle v_j, v_1 \rangle + \dots + c_n \langle v_j, v_n \rangle = 0$$

 $c_j \langle v_i, v_j \rangle = 0$

Og derved må alle skalarer være 0 - altså er v_i 'erne uafhængige.

2.5 Theorem 5.5.2

Lad $\{u_1, \ldots, u_n\}$ være en ortonormal basis for et indre produktrum V. Hvis der så gælder:

$$v = \sum_{i=1}^{n} c_i u_i$$

Så er $c_i = \langle v, u_i \rangle$.

Vi udregner $\langle v, u_i \rangle$:

$$\langle v, u_i \rangle = \langle \sum_{j=1}^n c_j u_j, u_i \rangle = \sum_{j=1}^n (c_j \langle u_j, u_i \rangle) = \sum_{j=1}^n c_j \delta_{ji} = c_i$$