What Is Claimed Is:

- A reflective liquid crystal display device, comprising:
 - a substrate having first and second pixel regions;
 - a gate line on the substrate;
- a data line crossing the gate line and defining the pixel regions;
- a thin film transistor connected to the gate line and the data line, wherein the thin film transistor comprises a gate electrode, an active layer, and source and drain electrodes;

first and second reflective electrodes over the thin film transistor, wherein the first and second reflective electrodes are separated from each other by a first gap, the first and second reflective electrodes are located at the first and second pixel regions, respectively, and completely cover the data line at the pixel regions; and

a patterned spacer filling the first gap between the first and second reflective electrodes.

- 2. The reflective liquid crystal display device according to claim 1, wherein the data line comprises first and second branch lines separated from each other by a second gap, wherein the first and second reflective electrodes completely cover the first and second branch lines, respectively.
- 3. The reflective liquid crystal display device according to claim 2, wherein the first gap is equal to or smaller than the second gap.
- 4. The reflective liquid crystal display device according to claim 2, wherein the first reflective electrode and the first branch line have an overlapping area substantially the same as a second overlapping area formed by the second reflective electrode and the second branch line.
- 5. The reflective liquid crystal display device according to claim 1, wherein the first and second reflective electrodes are connected to the drain electrode, the gate electrode is connected to the gate line, and the source electrode is connected to the data line.

- 6. The reflective liquid crystal display device according to claim 1, wherein the first and second reflective electrodes are formed of one of silver (Ag), aluminum (Al), and aluminum (Al) alloy.
- 7. The reflective liquid crystal display device according to claim 1, wherein the first and second reflective electrodes have an uneven surface in the first and second pixel regions, respectively.
- 8. The reflective liquid crystal display device according to claim 1, wherein the patterned spacer is formed of a photosensitive organic material having a negative type.
- 9. The reflective liquid crystal display device according to claim 8, wherein the patterned spacer is opaque.
- 10. A method of fabricating a reflective liquid crystal display device, comprising:

forming a gate line on a substrate having first and second pixel regions;

forming a data line crossing the gate line and defining the pixel regions;

forming a thin film transistor connected to the gate line and the data line, wherein the thin film transistor comprises a gate electrode, an active layer, and source and drain electrodes;

forming first and second reflective electrodes over the thin film transistor, wherein the first and second reflective electrodes are separated from each other by a first gap, the first and second reflective electrodes are located at the first and second pixel regions, respectively, and completely cover the data line at the pixel regions;

forming a photosensitive organic layer on an entire surface of the substrate having the first and second reflective electrodes; and

forming a patterned spacer filling the first gap between the first and second reflective electrodes by sequentially exposing and developing the photosensitive organic layer,

wherein the photosensitive organic layer is exposed to light passing through the first gap.

- 11. The method according to claim 10, wherein the photosensitive organic layer includes a negative photoresist.
- 12. The method according to claim 10, wherein the substrate has a first surface where the first and second reflective electrodes are formed and a second surface facing into the first surface, wherein the light passing through the first gap is emitted from an outside of the second surface.
- 13. The method according to claim 10, wherein the data line comprises first and second branch lines separated from each other by a second gap, wherein the first and second reflective electrodes completely cover the first and second branch lines, respectively.
- 14. The method according to claim 13, wherein the first reflective electrode and the first branch line has a first

overlapping area substantially the same as a second overlapping area formed by the second reflective electrode and the second branch line.

- 15. The method according to claim 10, wherein the first and second reflective electrodes are connected to the drain electrode, the gate electrode is connected to the gate line, and the source electrode is connected to the data line.
- 16. The method according to claim 10, wherein the first and second reflective electrodes are formed of one of silver (Ag), aluminum (Al), and aluminum (Al) alloy.
- 17. The method according to claim 10, wherein the first and second reflective electrodes has an uneven surface in the first and second pixel regions, respectively.
- 18. A reflective liquid crystal display device, comprising:

first and second substrates facing into and spaced apart from each other, the first and second substrates having first and second pixel regions, respectively;

- a gate line on an inner surface of the first substrate;
- a data line crossing the gate line and defining the first and second pixel regions;
- a thin film transistor connected to the gate line and the data line, wherein the thin film transistor comprises a gate electrode, an active layer, and source and drain electrodes;

first and second reflective electrodes over the thin film transistor, wherein the first and second reflective electrodes are separated from each other by a first gap, the first and second reflective electrodes are located at the first and second pixel regions, respectively, and completely cover the data line at the pixel regions;

- a color filter layer on an inner surface of the second substrate;
 - a common electrode on the color filter layer;
- a liquid crystal layer between the first and second reflective electrodes and the common electrode; and

a patterned spacer filling the first gap between the first and second reflective electrodes, the patterned spacer contacting the common electrode.

19. A method of fabricating a reflective liquid crystal display device, comprising:

forming a gate line on a first substrate having first and second pixel regions;

forming a data line crossing the gate line and defining the first and second pixel regions;

forming a thin film transistor connected to the gate line and the data line, wherein the thin film transistor comprises a gate electrode, an active layer, and source and drain electrodes;

forming first and second reflective electrodes over the thin film transistor, wherein the first and second reflective electrodes are separated from each other by a first gap, the first and second reflective electrodes are located at the first and second pixel regions, respectively, and completely cover the data line at the pixel regions;

forming a photosensitive organic layer on an entire surface of the substrate having the first and second reflective electrodes;

forming a patterned spacer filling the first gap between the first and second reflective electrodes by sequentially exposing and developing the photosensitive organic layer, wherein the photosensitive organic layer is exposed to light passing through the first gap;

forming a color filter layer on a second substrate;

forming a common electrode on the color filter layer;

attaching the first and second substrates such that the

first and second reflective electrodes face into the common

electrode; and

forming a liquid crystal layer between the first and second reflective electrodes and the common electrode.

20. The method according to claim 18, wherein the patterned spacer contacts the common electrode.