Historia e Introducción de la Computación

Diego Feroldi feroldi@fceia.unr.edu.ar

Arquitectura del Computador Departamento de Ciencias de la Computación FCEIA-UNR

19 de agosto de 2014

Introducción

"Una computadora digital es una máquina que puede resolver problemas ejecutando las instrucciones que recibe de las personas".

Andrew S. Tanembaum Organización de computadoras: Un enfoque estructurado

- Blaise Pascal (1623-1662). Dispositivo construido en 1642 construido totalmente mecánico con engranajes. Solo podía restar y sumar.
- Goofried von Leibnitz (1646-1716). Construyó otra máquina totalmente mecánica que además podía multiplicar y dividir.
- Charles Babbage (1792-1871). Construyó una máquina diseñada para ejecutar un solo algoritmo con el objetivo de calcular tablas numéricas útiles para la navegación. Perforaba sus resultados en una placa de cobre.

- Luego desarrolló la máquina analítica para poder ejecutar diferentes algoritmos. Tenía cuatro componentes: el almacén (memoria), el molino (unidad de cómputo), la sección de entrada (lector de tarjetas perforadas) y la sección de salida (salidas perforadas e impresas). Podía sumar, restar multiplicar y dividir operandos.
- Ada Lovelace (1815-1852). Primera programadora de computadoras del mundo.
- Konrad Zuse (1910-1995). Construyó una serie de máquinas calculadoras automáticas empleando contactores electromagnéticos¹.

¹También denominados relés o relevadores.

- John Atanasoff (1903-1995). Diseñó una máquina que utilizaba aritmética binaria y tenía una memoria de condensadores empleando un proceso que denominó "refrescar la memoria". Nunca funcionó por problemas de implementación aunque el concepto era correcto.
- George Stibbitz (1904-1995). Realizó una máquina más primitiva que la de Atanasoff aunque si funcionó.

- Howard Aiken (1900-1973). Construyó con relevadores la máquina de propósito general que Babbage no había podido construir con ruedas dentadas.
- La primera máquina de Aiken (Mark I) se completó en Harvard en 1944. Tenía 72 palabras de 23 dígitos decimales cada una y un tiempo de instrucción de 6 segundos. Las entradas y salidas se efectuaban con cintas de papel perforadas.
- Para cuando terminó de desarrollar la Mark II las máquinas de relés ya eran obsoletas.

Computadoras mecánicas

Figura: Mark I

Breve historia de las arquitecturas de computadoras Computadoras con válvulas de vacío

- Alan Turing (1912-1954). Contribuyó a la creación de COLOSSUS, la primera computadora electrónica, desarrollada por el gobierno inglés.
- John Mauchley (1907-1980). Construyó ENIAC en 1946, la primera computadora moderna. Tenía 18000 válvulas y 1500 relés. Pesaba 30 toneladas y consumía 140 kW.
- EDSAC. Máquina sucesora de ENIAC en 1949.

Breve historia de las arquitecturas de computadoras Computadoras con válvulas de vacío

- Alan Turing (1912-1954). Contribuyó a la creación de COLOSSUS, la primera computadora electrónica, desarrollada por el gobierno inglés.
- John Mauchley (1907-1980). Construyó ENIAC en 1946, la primera computadora moderna. Tenía 18000 válvulas y 1500 relés. Pesaba 30 toneladas y consumía 140 kW.
- EDSAC. Máquina sucesora de ENIAC en 1949.

Computadoras con válvulas de vacío

Figura: Imagen de una válvula electrónica

Computadoras con válvulas de vacío

Figura: Imagen de la computadora ENIAC

Breve historia de las arquitecturas de computadoras Computadoras con transistores

- John Bardeen, Walter Brattain y William Schockley inventan el transistor en 1948 trabajando en los Bell Labs.
- TX-0 (1956). Primera computadora transistorizada, desarrollada en el Lincoln Laboratory del MIT.
- PDP-1 (1960). Primera microcomputadora con 4K de palabras de 18 bits y tiempo de ciclo de 5 μs .

Computadoras con transistores

Figura: Imagen de algunos tipos de transistores

Computadoras con transistores

- **1401** (1961). Desarrollada por IBM y orientada a la contabilidad comercial.
- 7094 (1962). Desarrollada por IBM y orientada a la computación científica.
- **6600** (1964). Desarrollada por CDC. Primera supercomputadora científica.

Computadoras con transistores

Figura: Imagen de la computadora IBM 1401

Computadoras con circuitos integrados

- Robert Noyce inventa el **circuito integrado** de silicio en 1958. Hizo posible colocar docenas de transistores en un solo chip.
- System/360 (1964). Desarrollada por IBM como familia de productos tanto para computación científica como comercial. Una importante innovación fue la multiprogramación.
- **PDP-8** (1965). Primera minicomputadora con mercado masivo (50000 unidades vendidas).
- PDP-11 (1970). Dominó el mercado de las minicomputadoras en los años setenta.

Computadoras con circuitos integrados

- Robert Noyce inventa el **circuito integrado** de silicio en 1958. Hizo posible colocar docenas de transistores en un solo chip.
- System/360 (1964). Desarrollada por IBM como familia de productos tanto para computación científica como comercial. Una importante innovación fue la multiprogramación.
- **PDP-8** (1965). Primera minicomputadora con mercado masivo (50000 unidades vendidas).
- PDP-11 (1970). Dominó el mercado de las minicomputadoras en los años setenta.

Computadoras con integración a muy gran escala

Figura: Imagen de la computadora IBM System/360

Computadoras con integración a muy gran escala

- **VLSI** (Integración a muy gran escala, Very Large Scale Integration). Es posible integrar millones de transistores en un solo chip.
- Intel 8080 (1974). Primera computadora de propósito general de 8 bits en un chip. Corría a 2 MHz y se le considera el primer diseño de microprocesador verdaderamente usable.
- Apple II (1977). Primera serie de microcomputadores de producción masiva hecha por la empresa Apple Computer. Arquitectura de 8 bits.

Computadoras con integración a muy gran escala

Figura: Imagen del microprocesador Intel 8080