Mine Blasting Data Analysis

Prof. Kamran Esmaeili Behrouz Ohadi

Gold open pit mine located in Northeastern Ontario, dimensions are 1750m E-W, 450m N-S, and 96m depth.

Blasting is being used to extract the material from the mine.

The objective of the study is to find the relationship between the blast outcomes and the rock mass parameters.

TYPE OF DATA (1)

1- Rock-Related Parameters

1-1- Rock type

X	Y	Z	Rock type					
560,000								

TYPE OF DATA (2)

1-2- Penetration Rate

Х	Y	Z	Penetration Rate					
	44,	000						

TYPE OF DATA (3)

1-3- Geotechnical Parameters

Range X	Range Y	Range Z	Q	RQD	IS50	DC orientation				
8 Geotech boreholes x 11 levels = 88										

TYPE OF DATA (4)

2- Blasting Parameters

В	Blast Location		Burden	Spacing	Stem.	Hole D.	Bench H.	Sub- drill	Explosi ve	Pattern	Initiate.	confine ment
Range X	Range Y	Range *							Туре			
956												

No.	Level	# of blasting
1	148	37
2	160	45
3	172	58
4	184	72
5	196	126
6	208	135
7	220	111
8	232	92
9	244	145
10	256	102
11	268	33
Sum		956

^{*} Each coordinate range represents specific blast location that includes many blast-holes which have their own coordinates.

TYPE OF DATA (5)

3- Blast-induced movement

X	Y	Z	Movement Magnitude	Movement deviation					
2,110									

TYPE OF DATA (6)

4- Blast-induced Fragmentation

4-1- Direct

В	last Locatio	n	D80	D50	D100				
Range X	Range Y	Range Z							
6+5 blast location									

4-2- Indirect

Filling Factor

Digability

COMBINING DATASETS

Finally, the information in different data-sets should be combined as below table.

Blas	st Loca	ition	Rock Type	Pen	Geotechnical Parameters					В	lasti	ng P	aran	nete	rs			Mc me	ove ent	Fra	igme	ntat	ion	
Range	Range	Range		etration		R	S		Burden	Spacing	Stemming	Hole Dia	Bench	Sub-	Explosive	Pattern	Initiation	confineme	Magnitude	Devia	lma ana		Filling	Digat
×	×	Z		rate	Q	RQD	IS50	DC	den	ing	ming	Diameter	Height	drill	/e Type	ern	tion	ement	itude	ation	D 8 0	D 5 0	Factor	ability

Accordingly, the blasting results (green parameters) should be related to two other types of parameters (blue and red columns).

The results can be used:

- 1- to predict the results of blasting (movement and fragmentation) knowing the rock-related (red column) and blast-related (blue column) parameters.
- 2- to optimize the blasting parameters (blue column) of a particular rock mass for a desired blast outcomes.

