Perth Modern School

Yr 12 Maths Specialist

Page 1

Year 12 Specialist

TEST 2
2018
TIME: 5 mins reading 40 minutes working
Classpads allowed!
36 marks 8 Questions

Independent Public School Preceptional schooling. Exceptional students. PERTH MODERN SCHOOL	
PERTH MODERN SCHOOL	

Теасћег:

Note: All part questions worth more than 2 marks require working to obtain full marks.

Q1 (2 & 2 = 4 marks) Consider $(X - 2i) = X^2 + 4X - 4$ Consider (X - 2i) is a factor of (X)

(ii) Determine three linear factors of

Q2 (6 marks) Consider $\int (x) = x^3 + bx^2 + cx + 8$ where b & c are constants. Given that (x + 2) is a factor of f(x) and when f(x) is divided by f(x - 3) has a remainder of f(x) Determine f(x + 2) of f(x) and when f(x) is divided by

 Q4 (2 & 2 = 4 marks)

Given that
$$f(x) = \sqrt{x}$$
 and $h(x) = \frac{1}{x^2 + 5}$:

i) Determine the rule of $h \circ f(x)$

- State the natural domain and range of $h \circ f(x)$

Q5 (3 & 3 = 6 marks)

On the diagram, sketch the inverse function $f^{-1}(x)$

$$y = \frac{1}{f(x)}$$
 ii) On the diagram below, sketch

Q6) (1, 1, 2 & 2 = 6 marks) $\int (x) = \frac{(x+d)}{ax+b} \text{ where } a,b,c \& d \text{ are non-zero constants.}$ i) Determine the natural domain of \int

ii) Determine the limit that
$$f$$
 approaches as $\chi \to \infty$

iii) Determine the inverse function
$$\int_{-1}^{-1} (\chi)^{1-1} d\chi$$
 in terms of $a,b,c\&d$.

iv) Determine the possible values of
$$a,b,c$$
 & d if $f=\int_{\mathbb{T}^{-1}}$

Page 4

Yr 12 Maths Specialist

Perth Modern School

Q7 (4 marks)

Consider the equation |2x+5| = p|x+q| + r which is true and only true for $\frac{-5}{2} \le x \le 3$. Determine the possible values of the constants p,q & r.

Page 5

Yr 12 Maths Specialist

Perth Modern School

Q8 (4 marks)

Let
$$z = \cos(2\theta) + i\sin(2\theta)$$
, prove that $\frac{1+z}{1-z} = \frac{i}{\tan \theta}$