Chapitre 4 Logique des prédicats du premier ordre

Les limites de la logique propositionnelle

Exp 1 :Prenons la proposition suivante : « $x^2=1$ » est ce que cette proposition est vraie ou faux ?

On ne peut pas dire que la proposition x²=1 est vraie ou faux tant qu'on ne sait pas ce que vaut x, cette proposition vraie quand x=1 ou x=-1 et faux dans les autres cas

Exp 2 : prenons le raisonnement suivant Tout homme est mortel, Socrate est un homme, donc Socrate est mortel.

En logique propositionnel

```
p: "Tout homme est mortel",
q: "Socrate est un homme", p \land q /= r
r: "donc Socrate est mortel".
donc on ne peut pas prouver r à partir de p \land q
```

- nouvelle représentation
 - "Pour tout x, si x est un homme alors x est mortel",
 - "Socrate est un homme",
 - "donc Socrate est mortel".
 - x est un homme est représenté par H(x)
 - x est mortel est représenté par M(x)
 - en logique des prédicats
 - $\forall x (H(x) \rightarrow M(x)) \land H(Socrate) \rightarrow M(Socrate)$

Une telle proposition, dont les valeurs de vérité sont fonction d'une ou plusieurs variables s'appelle

un prédicat

On utilise ces propositions dont la valeurs de vérité dépend de variables, qu'on veut manipuler des propriétés générales un peu compliquées et des relations entre variables

Définition 1 : d'un prédicat

fonction propositionnelle qui conduit à une proposition lorsque les variables sont instanciées P(x1,···, xn) où x1,···, xn: n variables indépendantes

Exemple d'un prédicat

- dans la proposition « Mohamed est grand » on a
 - une variable: Mohamed
 - le prédicat : est grand
- Dans la proposition « Maya mange une pomme » on a
 - une variable : Maya et un complément pomme
 - le prédicat : mange

Exemple d'un prédicat

On pourrait réécrire les propositions précédentes sous une forme qui met en évidence le prédicat, soit :

est grand(Mohamed)

mange(Maya, pomme)

Exemple d'un prédicat

Suivant ce modèle, la logique des prédicats représente les propositions élémentaires (atomiques) son la forme :

```
nom-prédicat(variable 1 , variable 2 , . . .)
```

où variable 1, variable 2, . . . sont les variables sur lesquels porte le prédicat (la variable et ses éventuels compléments)

Un prédicat peut avoir un ou plusieurs arguments qui peuvent être des constantes ou des fonctions

Le langage de la logique des prédicats

une langage L des prédicats du 1^{ere} ordre est caractérisé par :

- > un ensemble infini dénombrable de symboles de prédicats
- > un ensemble infini dénombrable de symboles fonctionnels
- > un ensemble infini dénombrable de variables
- > un ensemble infini dénombrable de constantes
- \triangleright les connecteurs : \neg , \land , \lor , \rightarrow , \leftrightarrow
- ▶ les quantificateurs ∀, ∃
- les parenthèses

Les expression du langage

 L'ensemble des expressions bien formés d'un langage des prédicats du 1^{ere} ordre est formé de termes et de formules

Définition 2 (termes)

- (a) toute variable est un terme
- (b) toute constante est un terme
- (c) si f est un symbole de fonction d'arité n et si t1,t2,..., tn sont des termes, alors f(t1,t2,..., tn) est un terme.
- (a) Rien d'autre n'est un terme, s'il n'est obtenu en vertu des règles (a), (b), et (c)
- **Exemple**: Les expressions : f(x), f(g(x)), f(x,y) sont des termes

Définition 3 (formules)

- a) une formule atomique est une formule
- b) si A et B sont des formules alors ¬ A, A ∧ B, A ∨ B, A → B, A

 ⇔ B sont des formules
- c) si A est une formule et x une variable alors ∀x A, ∃x A sont des formules
- d) Rien d'autre n'est une formule, s'il n'est obtenu en vertu des règles (a), (b)ou (c)

Définition 4 (formule atomique)

- si t1, · · · , tn sont des termes et P est un prédicat alors
 - P(t1, · · · , tn) est une formule atomique

Quantifieur existentiel/ Universel

- ∃ → se lit « il existe (en moins) un »
- ∀→ se lit « pour tout », « pour chaque », « pour tous les », « quelque soit »

Exercice

Représentation en logique des prédicats des énoncés suivants :

- Quelqu'un arrive
- Personne n'est venu
- Quelques champignons sont comestibles
- Tous les petits oiseaux volent
- Tous les enfants aiment les bonbons
- Aucun enfant ne déteste les bonbons
- Tout ce qui brille n'est pas en or ni les chats, ni les chiens ne sont tolérés
 - chats et chiens doivent avoir une autorisation

Priorité des connecteurs

Pour éviter les ambigüités on fixe une priorité des connecteurs logiques

$$\forall$$
 et \exists > \neg > \land > \lor > \Leftrightarrow

▶ ¬ a \lor b \Rightarrow g signifie $((\neg a) \lor b) \Rightarrow g$ $\forall x \ b \Rightarrow g$ signifie $(\forall x \ b) \Rightarrow g$ qui est différent de $\forall x \ (b \Rightarrow g)$

Une occurrence d'une variable x dans une formule F est une occurrence liée si cette occurrence apparaît dans une sous-formule de F qui commence par un quantificateur $\forall x$ ou $\exists x$. Sinon, on dit que l'occurrence est libre.

- Une variable est libre dans une formule si elle possède au moins une occurrence libre dans la formule.
- Une formule F est close(fermée) si elle ne possède pas de variables libres.

Exemple1.

Dans la formule $p(x) \lor q(y) x$ et y sont libres. Dans $\forall x(p(x) \land r(y, x)) x$ est liée, y est libre Dans $\exists x(p(x) \lor q(x)) \land r(x)$ la variable x joue deux rôles différents, elle est liée dans la partie à gauche de \land et libre dans la partie de droite.

 Bien que cette formule soit syntaxiquement correcte, il est fortement déconseillé de l'écrire ainsi, mieux vaut renommer x en y dans l'une des deux parties.

Exemple2

Dans la formule $\forall x P(x, y, f(x)) \Rightarrow E(g(x, y), x)$, les deux premières occurrences de x sont liées, les deux dernières sont libres.

Dans la formule $\forall x (P(x, y, f(x)) \Rightarrow E(g(x, y), x))$, toutes les occurrences de x sont liées.

- ensemble des variables liées: si A est une formule, l'ensemble Varlie(A) des variables liées de A est défini par :
- ▶ si A=P(t1,t2,...,tn) alors $Varlie(A)=\emptyset$
- ▶ si A est de la forme $B \land C$ ou $B \lor C$ ou $B \to C$ ou $B \leftrightarrow C$ alors $Varlie(A) = Varlie(B) \cup Varlie(C)$
- \rightarrow si A est de la forme \neg B alors Varlie(A) = Varlie(B)
- > si A est de la forme $\forall x B ou \exists x B alors$ Varlie(A) = Varlie(B) ∪ {x}

ensemble des variables libres: si A est une formule, l'ensemble Varlib(A) des variables libres de A est défini par :

- \rightarrow si A=P(t1,t2,...,tn) alors Varlib(A) = Var(A)
- ▶ si A est de la forme $B \land C$ ou $B \lor C$ ou $B \to C$ ou $B \leftrightarrow C$ alors $Varlib(A) = Varlib(B) \cup Varlib(C)$
- \rightarrow si A est de la forme \neg B alors Varlib(A) = Varlib(B)
- ▶ si A est de la forme $\forall x B \text{ ou } \exists x B \text{ alors}$ $Varlib(A) = Varlib(B) - \{x\}$

Exemples

- $A = (p(f(x, y)) \vee \forall z \ r(a, z))$
- Var(A) ? Varlie(A) ? Varlib(A) ?
- ▶ $B = (\forall x p(x, y, z) \lor \forall z (p(z) \rightarrow r(z)))$
- Var(B) ? Varlie(B) ? Varlib(B) ?
- $ightharpoonup C = \forall x \exists y (p(x, y) \rightarrow \forall z r(x, y, z))$
- Var(C) ? Varlie(C) ? Varlib(C) ?

Exercices

- Parmi les formules suivantes lesquelles sont des formules closes ?
- → ∀i (pluie(i) ∧ ¬sortir(i))
- ▶ $\exists i (\neg pluie(i) \land (\forall i (different(i, j) \rightarrow pluie(j))))$
- $\forall x P(x, y) \land \forall y Q(y)$

22

Standardisation des variables

- Une formule est dite *propre* ou *rectifiée* lorsque l'ensemble de ses variables liées est disjoint de celui des variables libres, et que toutes les occurrences d'une variable liée appartiennent à une même sous-formule de liaison.
- Pour transformer une formule non propre en une formule propre, il suffit de *standardiser* les variables en les renommant de la manière suivante :
- renommer les occurrences liées de toute variable libre,
- donner des noms différents à toutes les variables liées se trouvant dans des sous-formules de liaison différentes.

Standardisation des variables

Exemple Soit la formule non propre

$$A = \forall x (\exists y P(x, y) \Rightarrow \forall z Q(x, y, z) \land \forall y \exists x R(f(x), y)).$$

Elle se transforme en la formule propre

$$A : = \forall x (\exists u \ P(x, u) \Rightarrow \forall z \ Q(x, y, z) \land \forall v \ \exists w \ R(f(w), v)).$$

Soit $\{x \mid 1, \dots, x \mid n\}$ l'ensemble des variables libres d'une formule propre A. La formule close $\forall x \mid (\dots, (\forall x \mid n \mid A) \dots$) est appelée *clôture universelle* de A.

Substitution d'une variable par un terme

- Soient A une formule dont x est une variable libre et t un terme. La *substitution* de *t* à *x* dans *A*, notée
- A(x/t), est la formule obtenue en remplaçant chaque occurrence libre de x dans A par t
- Si A est une formule atomique, A(x/t) est la formule obtenue en remplaçant toutes les occurrences de x par
- $A = \neg B$ alors $A(x/t) = \neg B(x/t)$ b)
- A=B1oB2 alors A(x/t)=B1(x/t) o B2(x/t)
- A=QyB où $Q=\{\exists,\forall\}$ alors d)

$$A(x/t) = \begin{bmatrix} QyB & si x=y \\ QyB(x/t) si x\neq y \end{bmatrix}$$

Exemple

```
Soit A = P(x) \lor \forall x \exists y \ Q(x,y) et t = f(y,u).
Pour obtenir A(x \mid t), on renomme d'abord les occurrences liées de x et y, ce qui donne P(x) \lor \forall z 1 \exists z 2 \ Q(z 1, z 2), puis on effectue la substitution, ce qui donne P(f(y,u)) \lor \forall z 1 \exists z 2 \ Q(z 1,z 2)
```

Termes libre pour une variable

Un terme t est libre pour une variable x dans une formule A ssi :

- t ne contient pas de variable
- A est une formule atomique
- \rightarrow A= \neg B et t est libre pour x dans B
- ▶ A=B1oB2 et t est libre pour x dans B1 et dans B2, avec $o=\{\land,\lor,\rightarrow,\leftrightarrow\}$
- A=QyB et x=y ou bien x≠y et y ne figure pas parmi les variables de t et t est libre pour x dans B, avec Q={∃,∀}

Exemple

```
Dans l'exemple A = \forall x P(x,y) \rightarrow \exists y Q(x,y) et t = f(x,y)

A(x/t) = (\forall x P(x,y))(x/t) \rightarrow (\exists y Q(x,y))(x/t)

= \forall x P(x,y) \rightarrow \exists y Q(f(x,y),y)
```

la variable y de f(x ,y) étant liée par le quantifieur ∃ après la substitution, le terme f(x,y) n'est pas libre pour x

- ► $A(y/t) = (\forall x P(x,y))(y/t) \rightarrow (\exists y Q(x,y))(y/t)$ = $\forall x P(x,f(x,y)) \rightarrow \exists y Q(x,y)$
- c'est la variable x de f(x,y) qui va se trouve dans le champ du quantifieur ∀x après la substitution de f(x,y) à y.

sémantique de la logique des prédicats

 On définit un domaine d'interprétation (un domaine où on interprète les entités syntaxiques),

- A chaque symbole de prédicat on lui attribue une relation dans ce domaine,
- A chaque symbole de foncteur (fonction) on lui attribue une fonction dans ce domaine,
- A chaque symbole de constante on lui attribue une constante dans ce domaine,

```
• I_c la fonction : D^m \to D \qquad D^m \to \{0,1\} f \to I_c(f) \qquad P \to I_c(P)
• I_v la fonction : Var \to D \\ x \to I_v(x)
```

Interprétation d'une formule de la logique des prédicats

A une formule de \mathcal{L}_{Pr} , association d'une valeur de vérité I(A) à A

- si x est une variable libre alors I(x) = I_v(x)
- $I(f(t_1, \dots, t_n)) = (I_c(f))(I(t_1), \dots, I(t_n))$
- $I(P(t_1, \dots, t_m)) = (I_c(P))(I(t_1), \dots, I(t_m))$
- si A et B sont des formules alors ¬A, A ∧ B, A ∨ B, A → B, A ↔ B s'interprètent comme dans la logique propositionnel
- si A est une formule et x une variable alors I(∀x A) = 1 si I_{x/d}(A) = 1 pour tout élément d ∈ D
- si A est une formule et x une variable alors I(∃x A) = 1 si I_{x/d}(A) = 1 pour au moins un élément d ∈ D

```
F1 : Masculin(Jean) F2 : Feminin(Marie)
```

F5 :
$$\forall x (Feminin(x) \rightarrow (Masculin(x) \rightarrow \bot))$$

F6:
$$\forall x (\forall y (Frere(x, y) \rightarrow Masculin(x)))$$

F7:
$$\forall x (Frere(x, x) \rightarrow \bot)$$

Soit
$$I = (D, I_c, I_v)$$
 avec $D = \{a, b, c\}$

$$I_c(Jean) = a$$
, $I_c(Marie) = b$, $I_c(Pierre) = c$

$$I_c(Masculin) = f_{Ma}$$
 tq si $x = b$ alors $f_{Ma}(x) = 0$ sinon $f_{Ma}(x) = 1$
 $I_c(Feminin) = f_{Fe}$ tq si $x = b$ alors $f_{Fe}(x) = 1$ sinon $f_{Fe}(x) = 0$
 $I_c(Frere) = f_{Fr}$ tq si $x = a$ et $y = b$ alors $f_{Fr}(x, y) = 1$ sinon $f_{Fr}(x, y) = 0$

quelques définitions

- $A \in \mathcal{L}_{Pr}$, $B \in \mathcal{L}_{Pr}$ et $\mathcal{F} \subset \mathcal{L}_{Pr}$,
- W: ensemble des interprétations
 - A est une tautologie, |= A, si ∀ I ∈ W, I(A) = 1
 - B est une conséquence de A si ∀ I ∈ W tq I(A) = 1 alors I(B) = 1, on écrit A ⊨ B
 - B est une conséquence de F si ∀I ∈ W tq ∀A ∈ F, I(A) = 1 alors
 I(B) = 1, on écrit F ⊨ B
 - A est satisfaisable si ∃I ∈ W tq I(A) = 1
 - F est satisfaisable si ∃I ∈ W tq ∀A ∈ F, I(A) = 1
 - A est insatisfaisable ou incohérente si ∀ I ∈ W, I(A) = 0
 - F est insatisfaisable si ∀I ∈ W, ∃A ∈ F tq I(A) = 0

Équivalence. Formes normales 1 -Formules équivalentes

Proposition 1 Soit F une formule. On a les équivalences suivantes :

$$\neg(\forall xF) \equiv \exists x\neg F$$
$$\neg(\exists xF) \equiv \forall x\neg F$$
$$\forall x\forall yF \equiv \forall y\forall xF$$
$$\exists x\exists yF \equiv \exists y\exists xF$$

Équivalence. Formes normales 1 -Formules équivalentes

Proposition 2 Soit F une formule, la variable x et G la formule dans la quelle ne contient pas x.. On a alors les équivalences suivantes :

- 1) $\forall xG \equiv \exists xG \equiv G$
- $(\forall xF \vee G) \equiv \forall x(F \vee G)$
- 3) $(\forall xF \wedge G) \equiv \forall x(F \wedge G)$
- 4) $(\exists x F \lor G) \equiv \exists x (F \lor G)$
- 5) $(\exists x F \land G) \equiv \exists x (F \land G)$

6)
$$(G \land \forall xF) \equiv \forall x(G \land F)$$

$$(G \lor \forall xF) \equiv \forall x(G \lor F)$$

8)
$$(G \land \exists xF) \equiv \exists x(G \land F)$$

9)
$$(G \lor \exists xF) \equiv \exists x(G \lor F)$$

10)
$$(\forall xF \Rightarrow G) \equiv \exists x(F \Rightarrow G)$$

11)
$$(\exists xF \Rightarrow G) \equiv \forall x(F \Rightarrow G)$$

12)
$$(G \Rightarrow \forall xF) \equiv \forall x(G \Rightarrow F)$$

13)
$$(G \Rightarrow \exists xF) \equiv \exists x(G \Rightarrow F)$$

Forme normale prénexe

Définition (Forme prénexe) Une formule F est dite en forme prénexe si elle est de la forme Q_1x_1 Q_2x_2 ... Q_n x_n F'

où chacun des Q_i est soit un quantificateur \forall , soit un quantificateur \exists , et F' est une formule qui ne contient aucun quantificateur.

Proposition *Toute formule F est équivalente à une formule prénexe G.*

Démonstration: Par induction structurelle sur *F*.

Forme normale prénexe

algorithme

- élimination des connecteurs d'implication et d'équivalence
- renommage des variables (plus de variable libre et liée en même temps)
- suppression des quantificateurs inutiles
- transfert du connecteur de négation immédiatement devant les atomes
- transfert des quantificateurs en tête des formules

Forme normale prénexe

Proposition 3 Toute formule F est équivalente à une formule prénexe G ', où G' est en FNC

Proposition 4 Toute formule F est équivalente à une formule prénexe G', où G' est en FND.

Exercice

Déterminer une formule prénexe équivalente à

- 1. $(\exists x P(x) \land \forall x (\exists y Q(y) \rightarrow R(x)))$.
- 2. $(\forall x \exists y R(x,y) \rightarrow \forall x \exists y (R(x,y) \land \forall z (R(x,z) \rightarrow (R(y,z) \lor E(y,z))))$
- 3. $\forall x \forall y ((R(x,y) \land \neg E(x,y)) \rightarrow \exists z (E(y,g(x,h(z,z))))$

Transformation d'une fbf en clauses formes prénexes.

Cette transformation comprend les étapes suivantes:

- Eliminer les implications à l'aide de la règle suivante: $X1 \rightarrow X2 \equiv \neg X1 \lor X2$
- 2) Réduire les portées des négations jusqu'aux littéraux avec les lois de Morgan.
- 3) Standardiser les variables (renommer les variables de telle sorte que chaque quantificateur ait sa propre variable).

Exemple: $(\forall x)P(x) \rightarrow (\forall x)Q(x) \equiv (\forall x)P(x) \rightarrow (\forall y) Q(y)$

Transformation d'une fbf en clauses. →Skolemisation

Eliminer les quantificateurs existentiels par le processus suivant: Remplacer une variable existentielle par une fonction de Skolem(un nouveau nom de fonction) dont les arguments sont les variables liées à des quantificateurs universels dont la portée inclut la portée du quantificateur existentiel à éliminer. S'il n'existe pas de quantificateur universel alors la fonction de Skolem est une constante de Skolem.

Exemples

- 1. $A=(\forall y)(\exists x) P(x,y)$ $sk(A)=(\forall y)P(g(y),y)$ où g est une fonction de Skolem.
- 2. $A=(\forall x)(\forall y)(\exists z) P(x,y,z)$ $sk(A)=(\forall x)(\forall y) P(x,y,g(x,y)) où g est une fonction de Skolem$
- 3. $A=(\exists x)P(x) sk(A)=P(A) où A est une constante de Skolem$
- 4. $A = \forall x \ \forall y \ \exists z (E(x, y) \Rightarrow A(x, z)).$ $sk(A) = \ \forall x \ \forall y (E(x, y) \Rightarrow A(x, f(x, y))).$
- 4. $A = \forall x \exists u \forall y \exists z (P(x, u) \Rightarrow (Q(u, y) \land R(y, z))).$ $sk(A) = \forall x \forall y (P(x, f(x)) \Rightarrow (Q(f(x), y) \land R(y, g(x, y)))).$

Transformation d'une fbf en clauses.

- 5) Mettre l'expression sous forme normale prénexe.
- 6) Mettre la matrice sous FNC.
- 7) Eliminer les quantificateurs universels (effacer la partie préfixe)
- 8) Eliminer les symboles \(\lambda \) en remplaçant
- X1 \(X2 \) X3 \(.... \) \(Xn \) par l'ensemble de clauses
- {X1, X2, X3,, Xn} Chaque Xi est formée de disjonction de littéraux.
- 9) Renommer les variables des clauses Xi

Remarque

La skolemisation ne conserve pas le sens des formules. En général sk(A) n'est pas équivalente à A, mais

Théorème A est satisfiable ssi sk(A) l'est.

```
Par conséquent, pour démontrer que \{f1, \ldots, fn\} /= g on peut démontrer (par exemple avec le principe de résolution) que \{sk(f1), \ldots, sk(fn), sk(\neg g)\} est inconsistant.
```

la résolution

Dans le cas de la logique des prédicats, on peut effectuer la résolution sur deux littéraux $P(t \mid 1,...,t \mid n)$ et $\neg P(u \mid 1,...,u \mid n)$ non seulement s'ils sont égaux mais également si les ti et ui unifiables.

Définition

Deux formules atomiques sont unifiables s'il existe une substitution des *variables* par des termes qui rend les deux formules identique.

exemple

- Les formules atomiques P(x, a, y) et P(c, a, z), où a et c sont des constantes, sont unifiables par la substitution $x \rightarrow c$, $y \rightarrow z$.
- Par contre P(x, a, y) et P(c, b, z) ne sont pas unifiables car les constantes a et b ne peuvent être unifiées (on ne peut remplacer une constante par une autre).

Exemple Résolution avec unification

$$C1 = \neg P(x) \lor \neg Q(y) \lor R(x, y)$$

 $C2 = Q(a)$
 $C3 = P(b)$
 $y \to a \text{ sur } C1 \text{ permet la résolution avec } C2 :$
 $CR = \neg P(x) \lor R(x, a)$
 $x \to b \text{ sur } CR, \text{ résolution avec } C3 :$
 $Cs = R(b, a)$
Remarque

Comme en logique des propositions, on emploie généralement la résolution pour faire des preuves par réfutation.

Exemple(exo10) On veut montrer que les

On veut montrer que les trois formules

$$f = \forall x ((S(x) \lor T(x)) \Rightarrow P(x))$$

$$f2 = \forall x (S(x) \lor R(x)),$$

 $f3 = \neg R(a)$ ont pour conséquence la formule

$$P(a)$$
.

Passage en forme clausale:

$$C = \neg S(x) \lor P(x)$$

$$C2 = \neg T(x) \lor P(x)$$

$$f2 \equiv C3 = S(x) \vee R(x)$$

$$\mathcal{B} \equiv C4 = \neg R(a)$$

$$C5 = P(a)$$

$$C6 = S(a) \text{ Rés}(c4,c3(x/a))$$

 $C7 = P(a) \text{ Rés}(c6,c1(x/a))$
 $C8 = [] \text{ Rés}(c5,c7)$

On a donc prouvé la conséquence logique. {f1,f2,f3}|=P(a)

Aspect syntaxique

Système formel du calcul des prédicats

- L'alphabet et l'ensemble des fbf sont, respectivement, F' définis précédemment.
- L'ensemble des axiomes est l'ensemble des formules de F' de l'une des formes suivantes :

 $A 1 : A \rightarrow (B \rightarrow A)$

 $A : (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$

 $A 3 : (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

 $A 4 : \forall x A(x) \rightarrow A(t)$

 $A 5 : \forall x(D \rightarrow B) \rightarrow (D \rightarrow \forall xB)$

où A, B et C sont des formules quelconques de F', x une variable, t un terme et D une formule n'ayant pas x comme variable libre.

Aspect syntaxique

Système formel du calcul des prédicats

L'ensemble des règles de déduction est

$$A,A \rightarrow B \vdash B$$
 (modus ponens)
 $A \vdash \forall xA$ (généralisation)

pour toutes formules *A,B* de F' et pour toute variable *x*.

Proposition 1

Pour toute formule A du calcul des prédicats du premier ordre, la formule (A→A) est une théorème.

Proposition 2 (Théorème de déduction.)

Soient $A_1,...,A_{n-1},,A_n$ des formules closes et B une formule quelconque, du calcul des prédicats du premier ordre.

$$si\ A_1,...,A_{n-1},A_n\ \vdash B.\ alorsA_1,...,A_{n-1}\vdash (A_n\rightarrow B)$$