Basic Engineering Circuit Analysis 电子电路启蒙教程

 $\mathbf{T}^{\mathrm{T}}\mathbf{T}$

2024年4月16日

		目录		3	线性电路综合分析	18
		ПА		Ū	3.1 瞬态电路分析	
1		基本概念	2		3.1.1 一阶电路	
	1.1	电路与电源	$\frac{2}{4}$		3.1.2 二阶电路	
	1.3	阻性电路	4		3.2.1 复激励函数与阻抗	22 23
	1.4	1.3.2 基本电路结构	5 6		3.2.2 频域电路分析	
	1.4	1.4.1 节点分析法	6		3.3 双端口网络	
	1.5	线性电路的叠加与等效	9		3.3.2 双端口网络的连接	
		1.5.2 线性等效	9	A	常见词汇中英文对照表	33
2	电容	、电感	11	В	Cadence Virtuoso 电路仿真基本用法	37
	2.1	电容器与电感器	11		B.1 启动	37
		2.1.1 电容	11		B.1.1 连接 MobaXterm 服务器	37
		2.1.2 电感	13		B.1.2 新建 Virtuoso 库	37
	2.2	磁耦合网络	15		B.1.3 新建 Cell 图	37
		2.2.1 互感器	15		B.2 绘图	37
		2.2.2 理想变压器	17		B.2.1 开关	37

1 Basic Concepts in Circuits电路基本概念

1.1 电路与电源

为了使得研究更简单也更泛用,**电路**简单地定义为**电气元件**的互联。电路中研究的常见物理量如表 1.1 所示。

表 1.1: 电子电路常见物理量

物理量	符号 Sh - 1	定义或含义 Definition	标准单位
Quantities	Symbol	Dennition	Unit
电荷量 charge	Q or q	正或负电荷的多少	coulomb(C)
电流 current	I or i	$i(t) = \frac{\mathrm{d}q(t)}{\mathrm{d}t}$	ampere(A)
电压 voltage	$V ext{ or } v$	$i(t) = \frac{dq(t)}{dt}$ $v = \frac{dw}{dq}$ $p = \frac{dw}{dq} \frac{dq}{dt} = vi$	volt(V)
电功率 power	P or p	$p = \frac{\mathrm{d}w}{\mathrm{d}q} \frac{\mathrm{d}q}{\mathrm{d}t} = vi$	watt(W)
电功 work	W or w	$\Delta w = \int_{t_1}^{t_2} vi \mathrm{d}t$	joule(J)

我们定义电流与电压的**关联参考方向**为电流从电压「+」侧流向电压「-」侧为正。这样,电功率就可统一用 p(t) = v(t)i(t) 计算,其中 p > 0 表示元件消耗电能,p < 0 表示元件提供电能。

注 1.1. 以分贝(dB)作单位

分贝(dB)是无量纲单位,以分贝作单位是一种相对的、对数的表示。 功率 p 若以分贝作单位,有

$$p = 10 \lg \frac{p}{1 \,\mathrm{W}} \; \mathrm{dBW} = 10 \lg \frac{p}{1 \,\mathrm{mW}} \; \mathrm{dBmW}$$

电压 v 若以分贝作单位, 则有

$$v = 20 \lg \frac{v}{1 \text{ V}} \text{ dBV} = 20 \lg \frac{v}{1 \text{ mV}} \text{ dBmV}$$

其中,单位 dBW、dBmW 往往叉简称为 dB、dBm。

例 1.1.1. 一个电阻 $R_L=50\,\Omega$ 上加有 V_0 dBV 的电压,则其上消耗的功率为

$$\begin{split} p &= 10 \lg \frac{p}{1 \, \text{mW}} \, \text{dBmW} = 10 \lg \frac{V_L^2}{R_L} \frac{1}{1 \, \text{mW}} \, \text{dBmW} \\ &= \left(10 \lg \frac{1}{R_L \times 1 \, \text{k}\Omega^{-1}} + 10 \lg \frac{V_L^2}{1 \, \text{V}^2} \right) \, \text{dBmW} \\ &= \left(10 \lg \frac{1}{50 \, \Omega \times 1 \, \text{k}\Omega^{-1}} + 20 \lg \frac{V_L}{1 \, \text{V}} \right) \, \text{dBmW} \\ &= \left(13 + V_0 \right) \, \text{dBmW} \end{split}$$

为了更简便地描述电流、电压的能量效应,我们定义从 t_0 开始一段时间 T 内电流和电压的 $\mathbf{7}$ 内电流和电压的 $\mathbf{7}$ 人

$$i_{\rm rms} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} i^2(\tau) \, \mathrm{d}\tau}, \quad \ v_{\rm rms} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} v^2(\tau) \, \mathrm{d}\tau}$$

给定电流、电压信号 $i(t) = I_P \cos(\omega t + \varphi_I), \ v(t) = V_P \cos(\omega t + \varphi_V),$ 即有

$$I_{\rm rms} = \frac{I_p}{\sqrt{2}}, \quad V_{\rm rms} = \frac{V_p}{\sqrt{2}}$$
 (1.1)

直接计算,有

$$\begin{split} p(t) &= v(t)i(t) = V_P \cos(\omega t + \varphi_V)I_P \cos(\omega t + \varphi_I) \\ &= \frac{1}{2}V_P I_P \cos(\varphi_V - \varphi_I) + \frac{1}{2}V_P I_P \cos(2\omega t + \varphi_V + \varphi_I) \end{split}$$

进而

$$\begin{split} \bar{P} &= \frac{1}{T} \int_{t_0}^{t_0 + T} p(t) \, \mathrm{d}t \\ &= \frac{1}{T} \int_{t_0}^{t_0 + T} \left(\frac{1}{2} V_P I_P \cos(\varphi_V - \varphi_I) + \frac{1}{2} V_P I_P \cos(2\omega t + \varphi_V + \varphi_I) \right) \mathrm{d}t \\ &= \frac{1}{2} V_P I_P \cos(\varphi_V - \varphi_I) = \frac{V_P}{\sqrt{2}} \frac{I_P}{\sqrt{2}} \cos(\varphi_V - \varphi_I) = I_{\mathrm{rms}} V_{\mathrm{rms}} \cos(\varphi_V - \varphi_I) \end{split}$$

将要使用的电源模型如表 1.2 所示。

表 1.2: 常见的电源模型

类别	名称	符号	作用
	恒压源	$v(t)$ $A \circ \longrightarrow H$	保持两端电压 $v_{AB} \equiv v(t)$
独立源	恒流源	A i(t) B	保持通过电流 $i_{AB}\equiv i(t)$
	压控电压源	V $A \circ \longrightarrow B$	依某部分电路电压 v_s 控制两端电压 $v=\mu v_s$
من الماء المن	流控电压源	🗸 - 2	依某部分电路电流 i_s 控制两端电压 $v=ri_s$
受控源	流控电流源	$A \circ \longrightarrow B$	依某部分电路电流 i_s 控制通过电流 $i=eta i_s$
	压控电流源	<u> </u>	依某部分电路电压 v_s 控制通过电流 $i=\mathbf{g}v_s$

注意,表 1.2 中依赖源的四个参数中,希腊字母表示的 μ 和 β 是无量纲量,而拉丁字母表示的 r 和 g 是有量纲的,量纲与字母对应的物理量(电阻 R、电导 G)一致。

1.2 集总约束原则

对一段导体, 记其两端截面为 x 与 y, 在其中有 Maxwell 方程:

$$\int_{S_x} J \, \mathrm{d}S - \int_{S_y} J \, \mathrm{d}S = \frac{\partial q}{\partial t}$$

对一个闭合回路,有 Maxwell 方程:

$$\oint E \, \mathrm{d}l = -\frac{\partial \Phi_B}{\partial t}$$

显然,若 $\frac{\partial q}{\partial t}=0,\; \frac{\partial \Phi_B}{\partial t}=0,\;$ 电流通过导体的时间忽略不计,则这两个方程可简化为 $i_x=i_y,\; \oint \mathrm{d}v=0$ 。

结论 1.2.1. 集总约束原则

若满足以下条件,则电路可以抽象为分立元件考虑:

- (1) 电路中没有变化的磁场;
- (2) 电路中各节点处的电荷量不变;
- (3) 电路的尺寸远小于其中电流激发的电磁波的波长。

电子电路研究满足集总约束原则的电路。

1.3 阻性电路

定义 1.3.1. 电阻 (resistance)、电导 (conductance)

电路元件电压与电流的比例常数称为电阻, 电流与电压的比例常数称为电导, 分别用 R 和 G 表示。

电阻的单位是 ohm (Ω) , 电导的单位是 siemens (S)。

元件 1.1. 电阻器 (resistor)

记号 固定电阻器记作 —****— (R), 可变电阻器记作 —****— (vR)。

特性 两端电压 v(t) 与通过电流 i(t) 成正比, 比例系数就是其电阻 R, 即

$$v(t) = Ri(t)$$

1.3.1 Kirchhoff 定律

由电子电路与系统的集总约束原则,我们有 $\int_{S_x} J \, \mathrm{d}S - \int_{S_y} J \, \mathrm{d}S = \frac{\partial q}{\partial t} = 0$,即有:

结论 1.3.1. Kirchhoff 电流定律

进入任一节点的电流代数和为 0。

即,对电路中任一节点,设从其所连的 N 个分支的第 j 个进入该节点的电流为 $i_j(t)$,则有 $\sum\limits_{j=1}^N i_j(t)=0$ 。

KCL 也可用「离开节点电流代数和为 0」或「进入节点总电流等于离开节点总电流」表述。

推论 1.3.2. 进入任何封闭曲面的电流的代数和为 0。

我们也有
$$\oint E \, \mathrm{d}l = -rac{\partial \Phi_B}{\partial t} = 0$$
, 即有:

结论 1.3.3. Kirchhoff 电压定律

沿任何封闭环路的电压代数和为 0。

即,对电路中任一环路,设从其某一节点开始的 N 个分支中第 j 个沿固定方向上电压为 $v_j(t)$,则有 $\sum_{i=1}^N v_j(t) = 0$ 。

KCL 背后是电荷守恒, KVL 背后是能量守恒。基于两大 Kirchhoff 定律, 或者说基于这两个守恒关系, 再加上电路中元件的数学条件, 就可以解出各个分支上的电压和电流。

1.3.2 基本电路结构

由 Ohm 定律和 Kirchhoff 定律, 容易得出:

结论 1.3.4. 电阻的串联分压法则

N 个串联电阻 $R_1,\ R_2,\ \cdots,\ R_N$ 的等效电阻为 $R_S=R_1+R_2+\cdots+R_N,$ 电阻 R_j 上分的电压是总电压的 $\frac{R_j}{R_S}$ 。

结论 1.3.5. 电阻的并联分流法则

N 个并联电阻 $R_1,\ R_2,\ \cdots,\ R_N$ 的等效电阻为 $R_{\mathrm{p}}=\dfrac{1}{\dfrac{1}{R_1}+\dfrac{1}{R_2}+\cdots+\dfrac{1}{R_N}},$ 电阻 R_j 上分的电流是总

电流的 $\frac{R_{\rm p}}{R_j}$ 。

此时我们就可以解决一些简单问题了。

解. 考虑做端点等效的替换:

注 1.2. Y – Δ 变换

例 1.3.6 给出的等效代换沟通了三角形 (Δ 型) 电路与三岔型 (Y型) 电路, 称为 $Y-\Delta$ 变换。

例
$$1.3.6$$
 给出的等效代换沟通了三角形(Δ 型)电路与三岔型(Y 型)电路,系
$$\begin{cases} R_a = \frac{R_1 R_2}{R_1 + R_2 + R_3} \\ R_b = \frac{R_2 R_3}{R_1 + R_2 + R_3} \end{cases}$$
。特别地,当各电阻相等时,有 $R_\Delta = 3R_Y$ 。
$$\begin{cases} R_c = \frac{R_1 R_3}{R_1 + R_2 + R_3} \end{cases}$$

1.4 电路分析方法

1.4.1 节点分析法

例 1.4.1. 在电路中求解 V_0 。

解,设出节点电压和各分支电流:

则在 ϕ_1 , ϕ_2 , ϕ_3 及接地处, 由 KCL 有

$$\begin{split} 8\,\mathrm{mA} - 2\,\mathrm{mA} + i_v - i_1 &= 0 \\ -i_v + I_x - i_2 &= 0 \\ 2\,\mathrm{mA} - I_x - i_0 - i_3 &= 0 \\ i_1 + i_2 + i_3 + i_0 - 8\,\mathrm{mA} &= 0 \end{split}$$

由 Ohm 定律代入即

$$\begin{split} 8\,\mathrm{mA} - 2\,\mathrm{mA} + i_v - \frac{\phi_1}{3\,\mathrm{k}\Omega} &= 0 \\ -i_v + \frac{\phi_3 - \phi_2}{2\,\mathrm{k}\Omega} - \frac{\phi_2}{6\,\mathrm{k}\Omega} &= 0 \\ 2\,\mathrm{mA} - \frac{\phi_3 - \phi_2}{2\,\mathrm{k}\Omega} - i_0 - \frac{\phi_3}{1\,\mathrm{k}\Omega} &= 0 \\ \frac{\phi_1}{3\,\mathrm{k}\Omega} + \frac{\phi_2}{6\,\mathrm{k}\Omega} + \frac{\phi_3}{1\,\mathrm{k}\Omega} + i_0 - 8\,\mathrm{mA} &= 0 \end{split}$$

得

$$\begin{split} &8\,\mathrm{mA} - 2\,\mathrm{mA} - \frac{\phi_1}{3\,\mathrm{k}\Omega} + \frac{\phi_3 - \phi_2}{2\,\mathrm{k}\Omega} - \frac{\phi_2}{6\,\mathrm{k}\Omega} = 0 \\ &2\,\mathrm{mA} - \frac{\phi_3 - \phi_2}{2\,\mathrm{k}\Omega} + \frac{\phi_1}{3\,\mathrm{k}\Omega} + \frac{\phi_2}{6\,\mathrm{k}\Omega} - 8\,\mathrm{mA} = 0 \end{split}$$

另外,有 $\phi_1 - \phi_2 = 4kI_x = 4k\frac{\phi_3 - \phi_2}{2k\Omega}$, $\phi_3 - 0 = V_0$,即可求解。

 \odot

注 1.3. 节点分析法的步骤

- (1) 确定节点数目和参考节点,设出节点电压和各分支电流;
- (2) 对每个电压源列出 KVL 方程, 其中依赖电压源的控制变量用节点电压表示;
- (3) 设有 N 个节点, N_v 个电压源,则还需列出 $N-1-N_v$ 个独立的 KCL 方程。首先考虑与电压源不邻接的非参考节点,然后考虑包裹电压源的「超节点」;其中依赖电流源的控制变量用节点电压表示。

1.4.2 环路分析法

例 1.4.2. 在电路中求解 V_0 。

解. 设出环路电流:

则 $V_x = 6 \,\mathrm{k}\Omega(i_2 - i_3)$, 由 KVL 有

$$\begin{split} 10\,\mathrm{V} - 2\,\mathrm{k}\Omega \cdot i_1 - 3\,\mathrm{k}\Omega \cdot i_1 - 4\,\mathrm{k}\Omega(i_1 - i_2) - 3\,\mathrm{k}\Omega(i_1 - i_3) - 0.5V_x &= 0 \\ 12\,\mathrm{V} - 6\,\mathrm{k}\Omega(i_2 - i_3) - 4\,\mathrm{k}\Omega(i_2 - i_1) - 4\,\mathrm{k}\Omega \cdot i_2 &= 0 \\ 0.5V_x - 3\,\mathrm{k}\Omega(i_3 - i_1) + 6\,\mathrm{k}\Omega(i_2 - i_3) - 6\,\mathrm{k}\Omega \cdot i_3 &= 0 \end{split}$$

代入解得
$$\begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 1.5644 \,\mathrm{mA} \\ 1.8020 \,\mathrm{mA} \\ 1.1617 \,\mathrm{mA} \end{bmatrix}, \ \text{于是 } V_0 = 6 \,\mathrm{k}\Omega \cdot i_3 = 6.97 \,\mathrm{V}_{\odot}$$
 §

注 1.4. 环路分析法的步骤

- (1) 确定基元环路数目,设出假想仅在各环路中保留的电流;
- (2) 基于每个电流源列出电流方程;
- (3) 设有 N 个基元环路, N_i 个电流源, 则还需对剩余环路绕开电流源列出 $N-1-N_i$ 个独立的 KVL 方程。

1.5 线性电路的叠加与等效

1.5.1 线性叠加

定义 1.5.1. 线性器件 (linear devices)

如果一个器件的伏安特性 v(i) 是满足叠加性和均匀性的线性表达式, 则称这是一个线性器件。

定义 1.5.2. 线性电路 (linear circuit)

- 一般地,线性电路只含有:
 - (1)线性器件(电阻、电压、电感);
 - (2) 线性的受控源;
 - (3)独立源。

结论 1.5.1. 线性电路的叠加定理

线性电路的输出电压(或电流),等于其中各个**独立源**单独作用,而其他独立源关闭(电压源短路,电流源开路)时的输出电压(或电流)之和。

1.5.2 线性等效

复杂的有源线性电路,有 Thévenin 形式 (如图 1.1a 所示)和 Norton 形式 (如图 1.1b 所示)两种等效形式。

图 1.1: 线性电路的等效形式

如图 1.2a、1.2b 所示,这两种等价形式的输出应认为是任意给定的外接负载 R_L 上的电压/电流。Thévenin

图 1.2: 两种等价形式的输出

形式中,

$$v_o(t) = \frac{R_L}{R_s + R_L} v_s(t), \qquad i_o(t) = \frac{1}{R_s + R_L} v_s(t) \label{eq:volume}$$

Norton 形式中,

$$i_o(t) = \frac{R_s}{R_s + R_L} i_s(t), \qquad v_o(t) = \frac{R_s R_L}{R_s + R_L} i_s(t) \label{eq:volume}$$

由两种表示方法的等价性,参数 $v_s(t)$ 和 $i_s(t)$ 之间的关系为 $v_s(t) = R_s i_s(t)$ 。

同时可以看出,当 $R_s \ll R_L$ 时, $v_o \simeq v_s$; 当 $R_s \gg R_L$ 时, $i_o \simeq i_s \circ$

注 1.5. 求线性电路的 Thévenin 或 Norton 等价形式的步骤

(1) 分别使输出两端点之间开路、短路,求出开路输出电压 v_0 和短路输出电流 i_0 ;

(2)

2 电容、电感

2.1 电容器与电感器

2.1.1 电容

元件 2.1. 电容器 (capacitor)

特性 存储电量与两端电压称正比,比例系数为电容 C,即 $q=Cv_{\circ}$

平行板电容器之间的电场与所带电荷之间的关系为 $E(t)=rac{q(t)}{arepsilon A},$ 而板间电压 $v(t)=\int_{l_0}^{l_0+d(t)} E(t)\,\mathrm{d} l=0$

 $E(t)d(t), \ \mathbb{M} \ q(t) = \frac{\varepsilon A}{d(t)}v(t), \ \mathbb{H} \ C(t) = \frac{\varepsilon A}{d(t)}\circ$

由 $i(t) = \frac{\mathrm{d}q(t)}{\mathrm{d}t}$, 电容器的伏安特性为

$$i(t) = C \frac{dv(t)}{dt} \tag{2.1}$$

即

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau = v(t_0) + \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau$$
 (2.2)

于是还可导出

$$p(t) = v(t)i(t) = Cv(t)\frac{\mathrm{d}v(t)}{\mathrm{d}t}$$

$$w(t) = \int_{-\infty}^{t} Cv(\tau)\frac{\mathrm{d}v(\tau)}{\mathrm{d}\tau}\,\mathrm{d}\tau = \frac{1}{2}Cv^{2}(\tau)\Big|_{-\infty}^{t} = \frac{q^{2}(t)}{2C}$$

由此容易导出下面的结论。

结论 2.1.1. 电容器电压不突变性

电容器两端电压不能突变。

证明. 有

$$\begin{split} 0 & \leq |v(t + \Delta t) - v(t)| = \left| \frac{1}{C} \int_t^{t + \Delta t} i(\tau) \, \mathrm{d}\tau \right| \leq \frac{1}{C} \int_t^{t + \Delta t} |i(\tau)| \, \mathrm{d}\tau \\ & \leq \frac{\sup_{t \leq \tau \leq t + \Delta t} |i(\tau)|}{C} \, \Delta t \xrightarrow{\Delta t \to 0} 0 \end{split}$$

即 $\Delta t \rightarrow 0$ 时, $|v(t+\Delta t)-v(t)|=0$ \circ

下面考虑电容器的串并联特性。

结论 2.1.2. 电容的串联分压法则

N 个串联电容 $C_1,\ C_2,\ \cdots,\ C_N$ 的等效电容为 $C_S=\dfrac{1}{\dfrac{1}{C_1}+\dfrac{1}{C_2}+\cdots+\dfrac{1}{C_N}},$ 电容 C_j 上分的电压是总

电压的 $rac{C_S}{C_j}$ 。

证明. 给 N 个电容 $C_1,~C_2,~\cdots,~C_N$ 的串联加上 v(t) 的电压和 i(t) 的电流,则由电容的伏安特性有 $i(t) = C_1 \frac{\mathrm{d} v_1(t)}{\mathrm{d} t} = C_2 \frac{\mathrm{d} v_2(t)}{\mathrm{d} t} = \cdots = C_N \frac{\mathrm{d} v_N(t)}{\mathrm{d} t} = C_S \frac{\mathrm{d} v(t)}{\mathrm{d} t}$

而其中 $v(t) = \sum_{n=1}^{N} v_n(t)$, 于是

$$\frac{i(t)}{C_S} = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=1}^N v_n(t) = \sum_{n=1}^N \frac{\mathrm{d}v_n(t)}{\mathrm{d}t} = \sum_{n=1}^N \frac{i(t)}{C_n} \quad \Rightarrow \quad C_S = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}}$$

考虑到 $v_j(t) = \frac{1}{C_j} \int_{-\infty}^t i(\tau) \, \mathrm{d} \tau \propto C_j^{-1}, \,\, 有$

$$\frac{v_j(t)}{v_l(t)} = \frac{\frac{1}{C_j}}{\sum\limits_{n=1}^{N} \frac{1}{C_n}} = \frac{C_S}{C_j}$$

结论 2.1.3. 电容的并联分流法则

N 个并联电容 $C_1,~C_2,~\cdots,~C_N$ 的等效电容为 $C_{\rm p}=C_1+C_2+\cdots+C_N,~$ 电容 C_j 上分的电流是总电流的 $\frac{C_j}{C_n}$ 。

证明. 给 N 个电容 C_1 , C_2 , ..., C_N 的并联加上 v(t) 的电压和 i(t) 的电流,则由电容的伏安特性有 dv(t)

$$i_n(t) = C_n \frac{\mathrm{d}v(t)}{\mathrm{d}t}, \quad n = 1, 2, \cdots, N$$

又 $i(t) = \sum_{n=1}^{N} i_n(t)$,于是

$$C_{\mathbf{p}}\frac{\mathrm{d}v(t)}{\mathrm{d}t} = \sum_{n=1}^{N} i_n(t) = \sum_{n=1}^{N} C_n \frac{\mathrm{d}v(t)}{\mathrm{d}t} = \left(\sum_{n=1}^{N} C_n\right) \frac{\mathrm{d}v(t)}{\mathrm{d}t} \quad \Rightarrow \quad C_{\mathbf{p}} = C_1 + C_2 + \dots + C_N$$

且显然 $i_j(t) \propto C_j$, 即知

$$\frac{i_j(t)}{i_(t)} = \frac{C_j}{\sum\limits_{}^{N} C_n} = \frac{C_j}{C_{\rm p}} \label{eq:continuous} \end{array}$$

例 2.1.4. 如图, 开关闭合前两电容器分别带电荷为 $q_1(0) = Q_1$, $q_2(0) = Q_2$, 求开关在 t = 0 时刻闭合前后 两电容器中存储的总能量。

解. 开关闭合前,

$$w(t<0) = \frac{Q_1^2}{2C_1} + \frac{Q_2^2}{2C_2}$$

开关闭合后,设 $t=t_1$ 时刻达到稳定,则有 $v_1(t_1)=v_2(t_1)$,即要

$$\left\{ \begin{aligned} &\frac{q_1(t_1)}{C_1} = \frac{q_2(t_1)}{C_2}, \\ &q_1(t_2) + q_2(t_1) = Q_1 + Q_2 \end{aligned} \right.$$

解出
$$q_1(t_1)=C_1\frac{Q_1+Q_2}{C_1+C_2},\ q_2(t_1)=C_2\frac{Q_1+Q_2}{C_1+C_2},\$$
 于是

$$w(t_1) = \frac{q_1^2(t_1)}{2C_1} + \frac{q_2^2(t_1)}{2C_2} = \frac{(Q_1 + Q_2)^2}{2(C_1 + C_2)}$$

从另一个角度看,开关闭合后,两电容器并联形成了一个容值为 C_1+C_2 的电容,其中能量就是 $w(t_1)=\frac{(Q_1+Q_2)^2}{2(C_1+C_2)}$ ⑤

注意到, 例 2.1.4 中电路总能量减少了, 但似乎并没有元件在消耗能量。

2.1.2 电感

元件 2.2. 电感器 (inductor)

特性 线圈中的磁通链与流过电流成正比,比例系数为电感 L,即 $\lambda = Li_{\circ}$

由 Faraday 电磁感应定律, $v(t) = \frac{\mathrm{d}\lambda(t)}{\mathrm{d}t}$, 则电感器的伏安特性为

$$v(t) = L \frac{\mathrm{d}i(t)}{\mathrm{d}t} \tag{2.3}$$

即

$$i(t) = \frac{1}{L} \int_{-\infty}^{t} v(\tau) d\tau = i(t_0) + \frac{1}{L} \int_{t_0}^{t} v(\tau) d\tau$$
 (2.4)

进而

$$p(t) = v(t)i(t) = Li(t)\frac{\mathrm{d}i(t)}{\mathrm{d}t}$$

$$w(t) = \int_{-\infty}^{t} Li(\tau)\frac{\mathrm{d}i(\tau)}{\mathrm{d}\tau}\,\mathrm{d}\tau = \left.\frac{Li^{2}(\tau)}{2}\right|^{t} = \frac{\lambda^{2}(t)}{2L}$$

与结论 2.1.1-2.1.3 类似, 我们也有下面的一些结论。

结论 2.1.5. 电感器电流不突变性

电感器之中电流不能突变。

证明. 有

$$\begin{split} 0 & \leq |i(t+\Delta t) - i(t)| = \left|\frac{1}{L} \int_t^{t+\Delta t} v(\tau) \, \mathrm{d}\tau \right| \leq \frac{1}{L} \int_t^{t+\Delta t} |v(\tau)| \, \mathrm{d}\tau \\ & \leq \sup_{t \leq \tau \leq t+\Delta t} v(\tau) \\ & \leq \frac{\sum_{t \leq \tau \leq t+\Delta t} v(\tau)}{L} \, \Delta t \xrightarrow{\Delta t \to 0} 0 \end{split}$$

即 $\Delta t \rightarrow 0$ 时, $|i(t + \Delta t) - i(t)| = 0_{\circ}$

结论 2.1.6. 电感的串联分压法则

N 个串联电感 $L_1,\ L_2,\ \cdots,\ L_N$ 的等效电感为 $L_S=L_1+L_2+\cdots+L_N,\$ 电感 L_j 上分的电压是总电压的 $\frac{L_j}{L_S}$ 。

证明. 给 N 个电感 $L_1,~L_2,~\cdots,~L_N$ 的串联加上 v(t) 的电压和 i(t) 的电流,则由电感的伏安特性有 $v_n(t)=L_n\frac{\mathrm{d}i(t)}{\mathrm{d}t}, \qquad n=1,2,\cdots,N$

而
$$v(t) = \sum_{n=1}^{N} v_n(t)$$
,于是

$$L_S \frac{\mathrm{d}i(t)}{\mathrm{d}t} = \sum_{n=1}^N v_n(t) = \sum_{n=1}^N L_n \frac{\mathrm{d}i(t)}{\mathrm{d}t} = \left(\sum_{n=1}^N L_n\right) \frac{\mathrm{d}i(t)}{\mathrm{d}t} \quad \Rightarrow \quad L_S = L_1 + L_2 + \dots + L_N = L_N + L_N$$

且显然 $v_j(t) \propto L_j$, 有

$$\frac{v_j(t)}{v_(t)} = \frac{L_j}{\sum\limits_{i=1}^{N} L_n} = \frac{L_j}{L_S}$$

结论 2.1.7. 电感的并联分流法则

N 个并联电感 $L_1,\ L_2,\ \cdots,\ L_N$ 的等效电感为 $L_{\mathrm{p}}=\dfrac{1}{\dfrac{1}{L_1}+\dfrac{1}{L_2}+\cdots+\dfrac{1}{L_N}},$ 电感 L_j 上分的电流是总

电流的 $\frac{L_{\rm p}}{L_i}$ 。

证明. 给 N 个电感 $L_1,\ L_2,\ \cdots,\ L_N$ 的并联加上 v(t) 的电压和 i(t) 的电流,则由电感的伏安特性有 $v(t) = L_1 \frac{\mathrm{d} i_1(t)}{\mathrm{d} t} = L_2 \frac{\mathrm{d} i_2(t)}{\mathrm{d} t} = \cdots = L_N \frac{\mathrm{d} i_N(t)}{\mathrm{d} t} = L_S \frac{\mathrm{d} i(t)}{\mathrm{d} t}$

又 $i(t) = \sum\limits_{n=1}^{N} i_n(t)$,于是

$$\frac{v(t)}{L_{\mathrm{p}}} = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=1}^{N} i_n(t) = \sum_{n=1}^{N} \frac{\mathrm{d}i_n(t)}{\mathrm{d}t} = \sum_{n=1}^{N} \frac{v(t)}{L_n} \quad \Rightarrow \quad L_{\mathrm{p}} = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N}}$$

考虑到 $i_j(t) = \frac{1}{L_j} \int_{-\infty}^t v(\tau) \, \mathrm{d} \tau \propto L_j^{-1}$,即知

$$\frac{i_j(t)}{i_(t)} = \frac{\frac{1}{L_j}}{\sum\limits_{n=1}^N \frac{1}{L_n}} = \frac{L_{\mathrm{p}}}{L_j}$$

电阻、电容、电感三种线性元件的基本数学物理性质如表 2.3 所示。

表 2.3: 电阻、电容、电感的基本性质

性质	电阻	电容	电感
正 灰			
记号	R	C	L
记忆因子	_	q	λ
伏安特性	$\begin{cases} i(t) = \frac{v(t)}{R} \\ v(t) = i(t)R \end{cases}$	C q $\begin{cases} i(t) = C \frac{\mathrm{d}v(t)}{\mathrm{d}t} \\ v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(\tau) \mathrm{d}\tau \end{cases}$ $w = \frac{1}{2}Cv^2 = \frac{q^2}{2C}$ $C_S^{-1} = \sum_{i=1}^{N} C_i^{-1}$	$\begin{cases} i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(\tau) d\tau \\ v(t) = L \frac{\mathrm{d}i(t)}{\mathrm{d}t} \\ w = \frac{1}{2} L i^2 = \frac{\lambda^2}{2L} \end{cases}$
存储能量	0	$w = \frac{1}{2}Cv^2 = \frac{q^2}{2C}$	$w = \frac{1}{2}Li^2 = \frac{\lambda^2}{2L}$
串联等效	$R_{S} = \sum_{j=1}^{N} R_{j}$ $R_{p}^{-1} = \sum_{j=1}^{N} R_{j}^{-1}$	$C_{S}^{-1} = \sum_{j=1}^{N} C_{j}^{-1}$ $C_{p} = \sum_{j=1}^{N} C_{j}$	j=1
并联等效	$R_{\rm p}^{-1} = \sum_{j=1}^{N} R_j^{-1}$	$C_{\mathrm{p}} = \sum\limits_{j=1}^{N} C_{j}$	$L_{ m p}^{-1} = \sum\limits_{j=1}^{N} L_{j}^{-1}$
直流等效	原阻值电阻	无穷大电阻 (开路)	无穷小电阻 (短路)
电流突变	可	可	不可
电压突变	可	不可	可

2.2 磁耦合网络

2.2.1 互感器

考虑如图 2.3 所示的电路。只给 L_1 通电,由 Ampére 定律, $\lambda_1(t) = N_1\phi(t) = L_1i_1(t)$,且有 $v_1(t) = L_1\frac{\mathrm{d}i_1(t)}{\mathrm{d}t}$;将磁感线用铁芯导入 L_2 ,由 Faraday 电磁感应定律,在 L_2 中 $\lambda_2(t) = N_2\phi(t) = \frac{N_2}{N_1}\lambda_1(t) = \frac{N_2}{N_1}L_1i_1(t)$,则 $v_2(t) = \frac{\mathrm{d}\lambda_2(t)}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{N_2}{N_1}L_1i_1(t)\right) = \frac{N_2}{N_1}L_1\frac{\mathrm{d}i_1(t)}{\mathrm{d}t}$ 。于是可以定义

定义 2.2.1. 互感 (mutual inductance)

两个匝数分别为 N_1 , N_2 的电感线圈 L_1 , L_2 用铁芯相通, L_1 中电流在 L_2 中产生的磁链与 L_1 中电流的比例系数为 $\frac{N_2}{N_1}L_1$,称为 L_1 中电流对 L_2 的**互感系数**,简称**互感**,记作 L_{21} 。

下面给
$$L_1,\ L_2$$
 同时通电,则两线圈中的磁链分别为
$$\begin{cases} \lambda_1 = L_1 i_1 + L_{12} i_2, \\ \lambda_2 = L_{21} i_1 + L_2 i_2, \end{cases}$$
 对时间求导就有
$$\begin{cases} v_1 = L_1 \frac{\mathrm{d} i_1}{\mathrm{d} t} + L_{12} \frac{\mathrm{d} i_2}{\mathrm{d} t}, \\ v_2 = L_{21} \frac{\mathrm{d} i_1}{\mathrm{d} t} + L_2 \frac{\mathrm{d} i_2}{\mathrm{d} t}, \end{cases}$$

事实上,我们有 $L_{12} = L_{21} = M$ 。前一式子表明,互感线圈的电压相对独立地来自于两个线圈中的电流变化,自感项与自身电流变化率的比例系数为其自身的电感,互感项与另一线圈电流变化率的比例系数为两线圈间的互感。

图 2.3: 互感器

注 2.1. 互感方向

我们在电感两侧加点表示线圈盘绕的方向(右手或左手),当两线圈中电流都从加点流入或都从加点 流出时互感项系数为所标记的 M, 否则互感项系数为 -M。

在如图 2.4 的互感装置中, 电路整体消耗的功率即为

$$\begin{split} p(t) &= v_1(t)i_1(t) + v_2(t)i_2(t) \\ &= \left(L_1\frac{\mathrm{d}i_1}{\mathrm{d}t} + M\frac{\mathrm{d}i_2}{\mathrm{d}t}\right)i_1(t) + \left(M\frac{\mathrm{d}i_1}{\mathrm{d}t} + L_2\frac{\mathrm{d}i_2}{\mathrm{d}t}\right)i_2(t) \\ &= \frac{1}{2}L_1\frac{\mathrm{d}}{\mathrm{d}t}i_1^2(t) + \frac{1}{2}L_2\frac{\mathrm{d}}{\mathrm{d}t}i_2^2(t) + M\frac{\mathrm{d}}{\mathrm{d}t}(i_1(t)i_2(t)) \end{split}$$

互感器存储的总能量就是

$$w(t) = \int_{-\infty}^{t} p(\tau) d\tau = \frac{1}{2} L_1 i_1^2(t) + \frac{1}{2} L_2 i_2^2(t) + M i_1(t) i_2(t)$$

即

$$w(t) = \frac{1}{2} \left(L_1 - \frac{M^2}{L_2} \right) i_1^2(t) + \frac{1}{2} L_2 \left(i_2(t) + \frac{M}{L_2} i_1(t) \right)^2$$
 (2.5)

互感器中的能量 $w(t) \ge 0$, 则 $M \le \sqrt{L_1 L_2}$, 于是我们定义

定义 2.2.2. 耦合系数 (coefficient of coupling)

两个电感线圈 $L_1,\,L_2$ 用铁芯相通构成互感系数为 M 的互感器,称比值 $k=\frac{M}{\sqrt{L_1L_2}}$ 为这个互感器 的耦合系数。

2.2.2 理想变压器

元件 2.3. 理想变压器 (ideal transformer)

(transformer core)

特性 理想的互感器,满足以下条件:

- (1) 铁芯中的磁通量穿过两个线圈的每一匝, 没有磁漏;

$$(2) 没有导线电阻和铁芯涡流,即没有铜损和铁损。 \\ \mathrm{于是其满足} \left\{ \begin{aligned} v_1 &= N_1 \frac{\mathrm{d}\phi}{\mathrm{d}t}, \\ v_2 &= N_2 \frac{\mathrm{d}\phi}{\mathrm{d}t}, \end{aligned} \right. \mathrm{pr} \, \frac{v_1}{v_2} = \frac{N_1}{N_2} \, \mathrm{o}$$

3 线性电路综合分析

3.1 瞬态电路分析

3.1.1 一阶电路

例 3.1.1. 无源 RC 电路 电路中电容 C 已充电至 $V_0,\ t=0$ 时刻闭合开关, 求 v(t)。

由 KCL,

$$C\frac{\mathrm{d}v(t)}{\mathrm{d}t} + \frac{v(t)}{R} = 0$$

解一阶常微分方程得 $v(t) = Ke^{-\frac{1}{CR}t}$,代入边界条件 $v(0) = V_0$,得

$$v(t) = V_0 e^{-\frac{1}{CR}t}$$

其中, $\tau = RC$ 称为**时间常数**,与电路至稳定的速度成反比。一般认为 $t = 5\tau$ 之后电路的变化即可忽略不计,此前的电路分析称为**瞬态电路分析**,此后的电路分析称为**稳态电路分析**。

图 3.5: 例 3.1.1 电路中的 v(t) 曲线

例 3.1.2. 基于例 2.1.4, 设其中开关闭合后的电阻为 R_1 , 求电流 i(t)。

解. 由 KVL 即有

$$\begin{split} &\frac{1}{C_1} \int_{-\infty}^t i(t) \, \mathrm{d}t + i(t) R_1 + \frac{1}{C_2} \int_{-\infty}^t i(t) \, \mathrm{d}t = 0 \\ \Rightarrow & \frac{\mathrm{d}}{\mathrm{d}t} i(t) + \frac{1}{R_1} \left(\frac{1}{C_1} + \frac{1}{C_2} \right) i(t) = 0 \end{split}$$

则解出

$$i(t)=i(0)\mathrm{e}^{-a_1t}, \qquad \sharp \, \, \, \psi \qquad \left\{ \begin{array}{l} a_1=\frac{1}{R_1}\left(\frac{1}{C_1}+\frac{1}{C_2}\right), \\ \\ i(0)=\frac{1}{R_1}\left(\frac{Q_1}{C_1}-\frac{Q_2}{C_2}\right) \end{array} \right. \tag{S}$$

例 3.1.3. 有源 RC 电路 电路中电容在开关闭合前没有充电, t = 0 时刻闭合开关, 求 v(t)。

解. 由 KVL 即有

$$i(t)R + v(t) = V_S \quad \Rightarrow \quad \frac{\mathrm{d}}{\mathrm{d}t}v(t) + \frac{1}{RC}v(t) = \frac{1}{RC}V_S$$

解出

$$v(t) = V_S - V_S \mathrm{e}^{-\frac{1}{RC}t}$$

(S)

例 3.1.4. 有源 RL 电路 分析电路中开关在反复拨动时 i(t) 的变化, 其中 $V_{S1} > V_{S2}$, 线圈在 t=0 时刻开 关拨到1侧之前没有充电。

解. 当开关拨到 1 侧时, 由 KVL 有

$$V_{S1} = i(t)R + L\frac{\mathrm{d}i(t)}{\mathrm{d}t} \quad \Rightarrow \quad \frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{R}{L}i(t) = \frac{V_{S1}}{L}$$

解一阶常微分方程得

$$i(t) = \frac{V_{S1}}{R} - \frac{V_{S1}}{R} e^{-\frac{R}{L}t}$$

设
$$t=t_1>5\tau_1$$
 时刻开关拨到 2 侧,除电源电压和边界条件外方程完全相同,同理即得
$$i(t)=\frac{V_{S2}}{R}+\left(\frac{V_{S1}}{R}-\frac{V_{S2}}{R}\right)\mathrm{e}^{-\frac{R}{L}(t-t_1)}$$
 ⑤

3.1.2 二阶电路

例 3.1.5. 无源 LC 电路 电路中电容在开关闭合前充电到 V_0 , 求 v(t)。

解. 由 KCL,

$$-C\frac{\mathrm{d}v(t)}{\mathrm{d}t} = \frac{1}{L}\int_{-\infty}^t v(\tau)\,\mathrm{d}\tau \quad \Rightarrow \quad \frac{\mathrm{d}^2v(t)}{\mathrm{d}t^2} + \frac{1}{LC}v(t) = 0$$

解二阶线性常系数齐次微分方程,其特征方程为 $S^2+\frac{1}{LC}=0$,记 $\omega_0=\frac{1}{\sqrt{LC}}$,其两个特征根为 $S_1=j\omega_0,\ S_2=-j\omega_0$,则知方程的通解为

$$v(t) = K_1 e^{j\omega_0 t} + K_2 e^{-j\omega_0 t}$$

代入初始条件
$$v(0)=V_0, \ \left.\frac{\mathrm{d}v(t)}{\mathrm{d}t}\right|_{t=0}=0,$$
 得 $K_1=K_2=\frac{V_0}{2},$ 即有

$$v(t) = \frac{V_0}{2} \left(\mathrm{e}^{i\omega_0 t} + \mathrm{e}^{-j\omega_0 t} \right) = V_0 \cos \omega_0 t \tag{\$} \label{eq:vt}$$

进一步,若初始条件为电容中充有电压 v_0 ,电感中充有电流 i_0 ,则解出

$$v(t) = v_0 \cos \omega_0 t + \sqrt{\frac{L}{C}} i_0 \sin \omega_0 t = A \cos(\omega_0 t + \phi), \quad 其中 \qquad \begin{cases} A = \sqrt{v_0^2 + \frac{L}{C}} i_0^2, \\ \omega_0 = \frac{1}{\sqrt{LC}}, \\ \phi = \arctan \sqrt{\frac{L}{C}} i_0 v_0 \end{cases}$$

能量会一直在电场能和磁场能之间转化,没有损耗。

例 3.1.6. 无源 RLC 电路 在开关闭合前电容中充有电压 v_0 ,电感中充有电流 i_0 ,求 v(t)。

解. 知
$$i(t) = -C \frac{\mathrm{d}v(t)}{\mathrm{d}t}$$
,由 KVL,有

$$-v(t)+i(t)R+L\frac{\mathrm{d}i(t)}{\mathrm{d}t}=0\quad\Rightarrow\quad \frac{\mathrm{d}^2v(t)}{\mathrm{d}t^2}+\frac{R}{L}\frac{\mathrm{d}v(t)}{\mathrm{d}t}+\frac{1}{LC}v(t)=0$$

解二阶线性常系数齐次微分方程,其特征方程为 $S^2+\frac{R}{L}S+\frac{1}{LC}=0$,记 $\omega_0=\frac{1}{\sqrt{LC}}$, $\zeta=\frac{R}{2\omega_0L}=\frac{R}{2}\sqrt{\frac{C}{L}}$,其两个特征根为 $S_1=-\zeta\omega_0+\omega_0\sqrt{\zeta^2-1}$, $S_2=-\zeta\omega_0-\omega_0\sqrt{\zeta^2-1}$ 。

(1) **若** $\zeta > 1$,则知方程的通解为

$$v(t) = K_1 \mathrm{e}^{\left(-\zeta \omega_0 + \omega_0 \sqrt{\zeta^2 - 1}\right)t} + K_2 \mathrm{e}^{\left(-\zeta \omega_0 - \omega_0 \sqrt{\zeta^2 - 1}\right)t}$$

代入初始条件
$$v(0)=v_0, \ \frac{\mathrm{d}v(t)}{\mathrm{d}t}\bigg|_{t=0}=-\frac{i_0}{C}, \ \mathrm{可解出}$$

$$K_1 = \frac{v_0}{2} + \frac{\zeta \omega_0 v_0 - \frac{i_0}{C}}{2\omega_0 \sqrt{\zeta^2 - 1}}, \quad \ K_2 = \frac{v_0}{2} - \frac{\zeta \omega_0 v_0 - \frac{i_0}{C}}{2\omega_0 \sqrt{\zeta^2 - 1}}$$

即得

$$\begin{split} v(t) &= \mathrm{e}^{-\zeta\omega_0 t} \Bigg(\frac{v_0}{2} \left(\left(\mathrm{e}^{\omega_0 \sqrt{\zeta^2 - 1}} \right)^t + \left(\mathrm{e}^{\omega_0 \sqrt{\zeta^2 - 1}} \right)^{-t} \right) \\ &+ \frac{\zeta\omega_0 v_0 - \frac{i_0}{C}}{2\omega_0 \sqrt{\zeta^2 - 1}} \left(\left(\mathrm{e}^{\omega_0 \sqrt{\zeta^2 - 1}} \right)^t - \left(\mathrm{e}^{\omega_0 \sqrt{\zeta^2 - 1}} \right)^{-t} \right) \Bigg) \end{split}$$

(2) **若** $\zeta = 1$,则知 $S_1 = S_2 = -\omega_0$,方程的通解为

$$v(t) = K_1 \mathrm{e}^{-\omega_0 t} + K_2 t \mathrm{e}^{-\omega_0 t}$$

代入初始条件
$$v(0)=v_0, \ \frac{\mathrm{d}v(t)}{\mathrm{d}t}\bigg|_{t=0}=-\frac{i_0}{C}, \ \mathrm{可解出}\ K_1=v_0, \ K_2=\omega_0v_0-\frac{i_0}{C}, \ \mathbb{p}$$
得

$$v(t) = \left(v_0 + \omega_0 v_0 t - \frac{i_0}{C} t\right) \mathrm{e}^{-\omega_0 t}$$

(3) 若 ζ < 1, 则知方程的通解为

$$v(t) = K_1 \mathrm{e}^{\left(-\zeta \omega_0 + j\omega_0 \sqrt{1-\zeta^2}\right)t} + K_2 \mathrm{e}^{\left(-\zeta \omega_0 - j\omega_0 \sqrt{1-\zeta^2}\right)t}$$

代入初始条件
$$v(0)=v_0, \ \left.\frac{\mathrm{d}v(t)}{\mathrm{d}t}\right|_{t=0}=-\frac{i_0}{C}, \ \mathrm{可解出}$$

$$K_1 = \frac{v_0}{2} - j \frac{\zeta \omega_0 v_0 - \frac{i_0}{C}}{2\omega_0 \sqrt{1-\zeta^2}}, \quad \ K_2 = \frac{v_0}{2} + j \frac{\zeta \omega_0 v_0 - \frac{i_0}{C}}{2\omega_0 \sqrt{1-\zeta^2}}$$

即得

$$\begin{split} v(t) &= V \mathrm{e}^{-\zeta \omega_0 t} \sin(\omega_d t + \phi), \quad \ \sharp \, \dot{\mathbb{P}} \quad \begin{cases} V = \sqrt{v_0^2 + \left(\frac{\zeta \omega_0 v_0 - \frac{i_0}{C}}{\omega_0 \sqrt{1 - \zeta^2}}\right)^2} \\ \omega_d &= \omega_0 \sqrt{1 - \zeta^2} \\ \phi &= \arctan \frac{\omega_0 v_0 \sqrt{1 - \zeta^2}}{\zeta \omega_0 v_0 - \frac{i_0}{C}} \end{cases} \end{split}$$

例 3.1.6 所讨论的电路即是带阻尼的 LC 振荡电路, 其中我们定义 $\alpha=\frac{R}{2L}$ 为**阻尼系数**, ω_0 为 LC **共振** (圆) 频率, 二者比值 $\zeta=\frac{\alpha}{\omega_0}=\frac{R}{2\omega_0L}=\frac{R}{2}\sqrt{\frac{C}{L}}$ 称为电路的**阻尼比**, 其物理与数学意义已在上面有很清楚的展示: $\zeta>1$ 的称为**过阻尼**电路, $\zeta=1$ 的称为**临界阻尼**电路, $\zeta<1$ 的称为**欠阻尼**电路。

若令初状态 $i_0 = 0$,则上面欠阻尼的结果就简化为

$$v(t) = \frac{v_0}{\sqrt{1 - \zeta^2}} e^{-\zeta \frac{\omega_d t}{\sqrt{1 - \zeta^2}}} \sin(\omega_d t + \arccos \zeta)$$
 (3.1)

分别取 $i_0 = 0$, $\zeta = 0.1$, 1, 6 作图, 得

注 3.1. 时域分析一阶、二阶电路的方法

- (1) 根据 KCL、KVL, 列出关于 i(t) 或 v(t) 的常微分方程, 在线性电路的条件下, 其是一阶或二阶 线性常系数常微分方程;
- (2) 无源电路中, 这个方程为齐次方程, 直接解出通解; 有源电路中, 方程带有常数项, 同时找出对应 特解即可;
- (3) 画出 i(t) 或 v(t) 曲线, 分析物理意义。

3.2 交流稳态电路分析

在上面的分析中,可以注意到求解微分方程之初所找的特解 $v_{\mathbf{p}}(t)$ (或 $i_{\mathbf{p}}(t)$)与电源电压的变化有关。

图 3.6: 主要的电源激励函数

前面的分析中, 我们对阶跃激励函数(图 3.6a)取的特解为

$$x_{\mathbf{p}}(t) = K$$

数学上, 我们对斜坡激励函数(图 3.6b)取的特解为

$$x_{\mathbf{p}}(t) = pt + q$$

对正弦激励函数(图 3.6c)取的特解为

$$x_{\mathrm{d}}(t) = K_1 \sin(\omega t) + K_2 \cos(\omega t)$$

进而都可以采用类似的方法进行电路分析。

3.2.1 复激励函数与阻抗

我们考虑将电源电压设为 $v_S(t)=V_S \mathrm{e}^{j\omega t}$,则其加在电阻 R 上时电流为

$$i(t) = \frac{v_S(t)}{R} = \frac{V_S}{R} e^{j\omega t}$$

其加在电容 C 上时电流为

$$i(t) = C \frac{\mathrm{d} v_S(t)}{\mathrm{d} t} = j \omega C V_S \mathrm{e}^{j \omega t}$$

其加在电感 L 上时电流为

$$i(t) = \frac{1}{L} \int_{-\infty}^{t} v_S(\tau) \, \mathrm{d}\tau = \frac{V_S}{j\omega L} \mathrm{e}^{j\omega t}$$

定义 3.2.1. 阻抗 (impedance)

加在元件上的相量电压与元件中的相量电流的比值, 称为元件在这一相量频率下的阻抗, 记作 Z。

阻抗的计算仍然可以使用叠加定理、Thévenin 等效等等方法。

例 3.2.1. 试求 $R_1,\ R_2,\ C_1,\ C_2$ 之间的关系,使得 $R_1,\ C_1$ 串联与 $R_1,\ C_2$ 并联这两个电路的端口效应等效。

表 3.4: 电阻、电容、电感的阻抗性质

性质	电阻	电容	电感
<u> </u>			
记号	R	C	L
伏安特性	$\begin{cases} i(t) = \frac{v(t)}{R} \\ v(t) = i(t)R \end{cases}$	$\begin{cases} c \\ i(t) = C \frac{\mathrm{d}v(t)}{\mathrm{d}t} \\ v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(\tau) \mathrm{d}\tau \end{cases}$	$\begin{cases} i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(\tau) \mathrm{d}\tau \\ v(t) = L \frac{\mathrm{d}i(t)}{\mathrm{d}t} \end{cases}$
阻抗	R	$rac{1}{j\omega C}$	$j\omega L$

解. 两电路的等效阻抗分别为

$$Z_{\rm eq1} = R_1 + \frac{1}{j\omega C_1}, \quad Z_{\rm eq2} = \frac{1}{\frac{1}{R_2} + j\omega C_2} = \frac{\frac{1}{R_2} - j\omega C_2}{\frac{1}{R_2^2} + \omega^2 C_2^2}$$

我们即是希望 $Z_{\text{eq}1} = Z_{\text{eq}2}$,那么

$$\begin{cases} \Re \mathfrak{e}\{Z_{\rm eq}\} = R_1 = \frac{\dfrac{1}{R_2}}{\dfrac{1}{R_2^2} + \omega^2 C_2^2} \\ \Im \mathfrak{m}\{Z_{\rm eq}\} = -\dfrac{1}{\omega C_1} = -\dfrac{\omega C_2}{\dfrac{1}{R_2^2} + \omega^2 C_2^2} \end{cases}$$

(S)

解得
$$\begin{cases} R_2 = \frac{R_1^2 + \omega^2 C_1^2}{R_1 \omega^2 C_1^2}, \\ C_2 = \frac{C_1}{R_1^2 + \omega^2 C_1^2} \, . \end{cases}$$

例 3.2.2. 设 $t=-\infty$ 时电感 L 上未充有电流,求在电源电压为 ${m V}_S=V_S{
m e}^{i\omega t}$ 时 L 上的电压 $v(t)_\circ$

时域解法. 由 KVL 有
$$\frac{\mathrm{d}}{\mathrm{d}t}i(t)+\frac{R}{L}i(t)=\frac{1}{L}v_S(t)$$
,而猜测电流应具有 $I(t)=I_S\mathrm{e}^{j(\omega t+\varphi)}$ 的形式,代入即有
$$\frac{\mathrm{d}}{\mathrm{d}t}\left(I_S\mathrm{e}^{j(\omega t+\varphi)}\right)+\frac{R}{L}I_S\mathrm{e}^{j(\omega t+\varphi)}=\frac{1}{L}V_S\mathrm{e}^{j\omega t} \Rightarrow j\omega I_S\mathrm{e}^{j(\omega t+\varphi)}+\frac{R}{L}I_S\mathrm{e}^{j(\omega t+\varphi)}=\frac{1}{L}V_S\mathrm{e}^{j\omega t}$$

$$\Rightarrow \left(j\omega+\frac{R}{L}\right)I_S\mathrm{e}^{j\varphi}=\frac{1}{L}V_S$$

从而
$$I_S \mathrm{e}^{j\varphi} = \frac{V_S}{R+j\omega L}, \$$
即有
$$\begin{cases} I_S = \frac{V_S}{\sqrt{R^2+\omega^2 L^2}}, & \text{真实电流为 } i(t) = \mathfrak{Re}\{I(t)\}_\circ \\ \varphi = -\tan^{-1}\frac{\omega L}{R}_\circ \end{cases}$$

频域解法. 由 KVL 有

下面考虑复能量。将电压 $v(t)=V_S\cos(\omega t+\varphi_V)$ 抽象为 ${m V}=V_S/\underline{\varphi_V}=V_S{
m e}^{j\varphi_V}$,电流 $i(t)=I_S\cos(\omega t+\varphi_I)$ 抽象为 ${m I}=I_S/\underline{\varphi_I}=I_S{
m e}^{j\varphi_I}$,定义复功率为 ${m S}=\frac{1}{2}{m V}{m I}^*$,其即有

$$\begin{split} \mathbf{S} &= \frac{1}{2} \mathbf{V} \mathbf{I}^* = \frac{1}{2} V_S \mathrm{e}^{j\varphi_V} I_S \mathrm{e}^{-j\varphi_I} = \frac{1}{2} V_S I_S \mathrm{e}^{j(\varphi_V - \varphi_I)} \\ &= \frac{1}{2} V_S I_S \big(\cos(\varphi_V - \varphi_I) + j \sin(\varphi_V - \varphi_I) \big) \\ &= V_{\mathrm{rms}} I_{\mathrm{rms}} \big(\cos(\varphi_V - \varphi_I) + j \sin(\varphi_V - \varphi_I) \big) \end{split}$$

显然,**平均功率** $\bar{P}=\mathfrak{Re}\{\pmb{S}\},$ 余下的虚部称为**无功功率**,记为 $Q=V_{\mathrm{rms}}I_{\mathrm{rms}}\sin(\varphi_V-\varphi_I)$ 。

定义 3.2.2. 功率参量
$$pf = \frac{\bar{P}}{V_{\rm rms}I_{\rm rms}} = \cos(\varphi_V - \varphi_I)_{\circ}$$

定义 3.2.3. 功率角
$$\varphi_V - \varphi_I = an^{-1} rac{Q}{ar{P}}$$
 \circ

与电阻电路中类似,当负载阻抗 Z_L 与 Thévenin 或 Norton 形式电源的内阻抗 Z_S 满足 $Z_S=Z_L^*$ 时,负载上的功率获得最大值 $\frac{V_{\rm rms}^2}{4R_S}$ 。

3.2.2 频域电路分析

定义 3.2.4. 传递函数 (transfer function)

一个电路或系统中输出与输入的比值随电信号频率的变化关系,称为该电路或系统的**传递函数**。一般地,传递函数记作 $\mathbf{H}(\omega)=M(\omega)\mathrm{e}^{j\phi(\omega)}$,其中 $M(\omega)=|\mathbf{H}(\omega)|$ 称为 $\mathbf{H}(\omega)$ 的幅值, $\phi(\omega)=\arg\mathbf{H}(\omega)$ 称 $\mathbf{H}(\omega)$ 的相位。

考虑如图电路,有 $\mathbf{V}_{\mathrm{out}}=iZ_{L}=rac{j\omega L}{R_{1}+j\omega L}\mathbf{V}_{\mathrm{in}}$,即得该电路的传递函数

$$\mathbf{\textit{G}}_{v}(\omega) = \frac{\mathbf{\textit{V}}_{\mathrm{out}}}{\mathbf{\textit{V}}_{\mathrm{in}}} = \frac{1}{\frac{R_{1}}{j\omega L} + 1} \Leftrightarrow \begin{cases} |\mathbf{\textit{G}}_{v}(\omega)| = \frac{1}{\sqrt{\frac{R_{1}^{2}}{\omega^{2}L^{2}} + 1}} \\ \arg \mathbf{\textit{G}}_{v}(\omega) = \tan^{-1}\frac{R_{1}}{\omega L} \end{cases}$$

注意到 ω 很大时 $\mathbf{G}_v(\omega) \to 1$,即高频电压全部同相加在输出负载上; ω 很小时 $\mathbf{G}_v(\omega) \to \frac{j\omega L}{R_1} \to 0$,即低频电压几乎不加在输出负载上,且输出电压与输入电压的相位差 90°。这样的电路就具有了滤波特性。

元件 3.1. 滤波器 (filter)

特性 信号输出与频率有各自的变化关系。

约定:幅值增益下降到最大增益 G_0 的 $\frac{\sqrt{2}}{2}$ 时的频率,称为滤波器的截止频率。

例 3.2.3. 试确定如图电路对应的滤波特性。

解. 由 KVL 有
$$\mathbf{V}_{\mathrm{out}} = \mathbf{I}R = \frac{R}{R+j\omega L + \frac{1}{j\omega C}} \mathbf{V}_{\mathrm{in}}$$
,即传递函数 $\mathbf{G}_{v}(\omega) = \frac{R}{R+j\left(\omega L - \frac{1}{\omega C}\right)}$ 。显然, $\omega \to 0$ 与 $\omega \to +\infty$ 时,都有 $\omega L - \frac{1}{\omega C} \to \infty$,即有 $\mathbf{G}_{v}(\omega) \to 0$;而注意到 $\omega L - \frac{1}{\omega C} = 0$,即 $\omega = \omega_{0} = \frac{1}{\sqrt{LC}}$ 时, $\mathbf{G}_{v}(\omega) = 1$,则这是一个带通滤波器。

 $\omega_0 = \frac{1}{\sqrt{LC}}$ 称为 LC 共振频率, $\omega = \omega_0$ 的电路状态称为共振状态。

下面根据约定求例 3.2.3 中滤波器的两截止频率的距离, 即**带宽**(BW)。令

$$|\mathbf{G}_v(\omega)| = \left|\frac{R}{R + j\left(\omega L - \frac{1}{\omega C}\right)}\right| = \frac{1}{\sqrt{1 + \frac{1}{R^2}\left(\omega L - \frac{1}{\omega C}\right)^2}} = \frac{1}{\sqrt{2}}$$

解得
$$\omega_c = \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}} \pm \frac{R}{2L}$$
,即知 $BW = \frac{R}{L}$ 。 进而注意到
$$\mathbf{G}_v(\omega) = \frac{R}{R + j\left(\omega L - \frac{1}{\omega C}\right)} = \frac{1}{1 + \frac{j}{R}\left(\frac{\omega L}{\omega_0\sqrt{LC}} - \frac{\omega_0\sqrt{LC}}{\omega C}\right)}$$

$$= \frac{1}{1 + \frac{j}{R}\sqrt{\frac{L}{C}}\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

定义**品质参数** $Q=\frac{1}{R}\sqrt{\frac{L}{C}},$ 重新计算 BW, 令 $|\mathbf{G}_v(\omega)|=\frac{1}{\sqrt{1+Q^2\left(\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega}\right)^2}}=\frac{1}{\sqrt{2}},$ 解出

$$\omega_c = \omega_0 \left(\sqrt{\frac{1}{4Q^2 + 1}} \pm \frac{1}{2Q} \right)$$

则 $BW = \frac{\omega_0}{Q}$ 。

当频率 ω 为共振频率 $\omega_0=\frac{1}{\sqrt{LC}}$ 时,电路阻抗 $Z_{\rm eq}=R_{\circ}$ 此时,设 $v_{\rm in}(t)=V_0\cos\omega_0 t$,则 $i(t)=\frac{V_0}{R}\cos\omega_0 t$,则可求

$$\begin{split} w_S(t) &= w_L(t) + w_C(t) = \frac{1}{2}Li^2(t) + \frac{1}{2}C\left(\frac{1}{C}\int_{-\infty}^t i(\tau)\,\mathrm{d}\tau\right)^2 \\ &= \frac{V_0^2L}{2R^2}\cos^2\omega_0 t + \frac{V_0^2}{2\omega_0^2R^2C}\sin^2\omega_0 t \equiv \frac{V_0^2L}{2R^2} \\ w_D(T) &= \int_0^T i^2(t)R\,\mathrm{d}t = \frac{V_0^2T}{2R} \end{split}$$

于是
$$\frac{w_S}{w_D} = \frac{\frac{V_0^2 L}{2R^2}}{\frac{V_0^2 T}{2R}} = \frac{L}{RT} = \frac{\omega_0 L}{2\pi R} = \frac{L}{2\pi R\sqrt{LC}},$$
即有

$$Q = 2\pi \frac{w_S}{w_D} \tag{3.2}$$

3.2.3 Bode 图

传递函数绘图的 ω 轴通常使用对数坐标。但对数坐标不是线性的,给作图带来了一些不便。为此,引入注 中的分贝(dB),建立对数频率坐标和增益分贝坐标的关系。

功率增益 $\frac{P_{\mathrm{out}}}{P_{\mathrm{in}}}$ 以 dB 作单位定义为

$$\frac{P_{\rm out}}{P_{\rm in}} = 10 \lg \frac{P_{\rm out}}{P_{\rm in}} \ \mathrm{dB}$$

其就有

$$\begin{split} \frac{P_{\text{out}}}{P_{\text{in}}} &= 10 \lg \frac{P_{\text{out}}}{P_{\text{in}}} \; \text{dB} = 10 \lg \left(\frac{V_o^2}{R_o} \middle / \frac{V_i^2}{R_i} \right) \; \text{dB} \\ &= 10 \lg \left(\frac{V_o}{V_i} \right)^2 \; \text{dB} + 10 \lg \frac{R_i}{R_o} \; \text{dB} \xrightarrow{\text{if } R_i = R_o} 20 \lg \frac{V_o}{V_i} \; \text{dB} \end{split}$$

于是电压增益 $\frac{V_{\mathrm{out}}}{V_{\mathrm{in}}}$ 以 dB 作单位定义为

$$\frac{V_{\text{out}}}{V_{\text{in}}} = 20 \lg \frac{V_{\text{out}}}{V_{\text{in}}} dB$$

一般形式的传递函数为

$$H(\omega) = H_0 \frac{\left(1 + \frac{j\omega}{\omega_{z1}}\right) \left(1 + \frac{j\omega}{\omega_{z2}}\right) \cdots \left(1 + \frac{j\omega}{\omega_{zm}}\right)}{\left(1 + \frac{j\omega}{\omega_{p1}}\right) \left(1 + \frac{j\omega}{\omega_{p2}}\right) \cdots \left(1 + \frac{j\omega}{\omega_{pm}}\right)} = H_0 \frac{A_{z1}/\phi_{z1} \cdot A_{z2}/\phi_{z2} \cdots A_{zm}/\phi_{zm}}{A_{p1}/\phi_{p1} \cdot A_{p2}/\phi_{p2} \cdots A_{pm}/\phi_{pm}}$$
(3.3)

对分子中一项的贡献 $\mathbf{H}_{zk}(\omega) = 1 + \frac{j\omega}{\omega_{zk}}$, 可知:

- $\omega \ll \omega_{zk}$ 时, $\mathbf{H}_{zk}(\omega) \rightarrow 1$;
- ω 在 ω_{zk} 附近时, $\mathbf{\textit{H}}_{zk}(\omega_{zk})=1+j$, $\mathbf{\textit{H}}_{zk}(10\omega_{zk})=1+10j\approx 10j\approx 10\mathbf{\textit{H}}_{zk}(\omega_{zk})$;
- $\omega \gg \omega_{zk} \text{ ft}, \ \mathbf{H}_{zk}(\omega) \rightarrow \frac{j\omega}{\omega_{zk}}$

其中, 对幅值 $|\mathbf{H}_{zk}(\omega)|$, 以 dB 作单位就有

$$\begin{split} |\pmb{H}_{zk}(10\omega_{zk})| - |\pmb{H}_{zk}(\omega_{zk})| &= 20\lg|\pmb{H}_{zk}(10\omega_{zk})| \; \mathrm{dB} - 20\lg|\pmb{H}_{zk}(\omega_{zk})| \; \mathrm{dB} \\ &= 20\lg\frac{|\pmb{H}_{zk}(10\omega_{zk})|}{|\pmb{H}_{zk}(\omega_{zk})|} \; \mathrm{dB} = 20\lg10 \; \mathrm{dB} = 20 \; \mathrm{dB} \end{split}$$

即,在 ω_{zk} 附近, ω 每增大 10 倍, $|\mathbf{H}_{zk}(\omega)|$ 的 dB 值滚升 20 dB;对幅角 $\arg \mathbf{H}_{zk}(\omega)$,则有

$$\arg \mathbf{\textit{H}}_{zk}(\omega_{zk}) = 45^{\circ}, \qquad \arg \mathbf{\textit{H}}_{zk}(10\omega_{zk}) \approx 90^{\circ}$$

即,在 ω_{zk} 附近, ω 每增大 10 倍,相位正偏 45°。类似可知,对分母中一项的贡献 ${\it \textbf{H}}_{pk}(\omega)=\frac{1}{1+\frac{j\omega}{\omega_{zk}}}$,在 ω_{pk}

附近, ω 每增大 10 倍, $|\mathbf{H}_{nk}(\omega)|$ 的 dB 值滚降 20 dB, 相位回偏 45°。

注 3.2. Laplace 域

3.3 双端口网络

定义 3.3.1. 双端口网络(two-port network)

双端口网络是一种具有四个端子的电路网络,其四个端子构成两对端子,每个端口的一对端子上的电流相等。

3.3.1 双端口网络的参数与变量

双端口网络的变量为两个端口上的电压、电流 v_1 , v_2 , i_1 , i_2 。我们考虑取出两个变量为输入变量, 两个变量为输出变量, 这共有 6 种可能, 形成 6 组参数。

A) $oldsymbol{Z}$ 参数 考虑以 $i_1,\ i_2$ 为自变量, $v_1,\ v_2$ 为因变量, 在线性电路中就有

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

分别令端口开路(使 $i_1=0$ 或 $i_2=0$),加压求流、加流求压,就有

$$Z_{11} = \frac{v_{\text{test1}}}{i_{\text{test1}}}\bigg|_{i_2 = 0}, \quad Z_{12} = \frac{v_{\text{test1}}}{i_{\text{test2}}}\bigg|_{i_1 = 0}, \quad Z_{21} = \frac{v_{\text{test2}}}{i_{\text{test1}}}\bigg|_{i_2 = 0}, \quad Z_{22} = \frac{v_{\text{test2}}}{i_{\text{test2}}}\bigg|_{i_1 = 0}$$

矩阵 $\mathbf{Z} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}$ 称为双端口网络的 \mathbf{Z} 参数矩阵。

例 3.3.1. 求该双端口网络的传递函数 $\pmb{H} = \frac{v_L}{v_S}$ 、输入阻抗 $R_{\rm in}$ 、输出阻抗 $R_{\rm out}$,其中双端口网络的 Z 参数已知。

解. 由 KVL 有
$$\begin{cases} v_S = R_S i_1 + v_1, \\ v_2 + R_L i_2 = 0, \end{cases} \stackrel{\text{for }}{=} \begin{cases} v_1 = Z_{11} i_1 + Z_{12} i_2, \\ v_2 = Z_{21} i_1 + Z_{22} i_2, \end{cases}$$

$$v_S = \left(R_S + Z_{11} - \frac{Z_{12}Z_{21}}{R_L + Z_{22}}\right)i_1$$

于是知

$$\begin{split} \mathbf{H} &= \frac{v_L}{v_s} = \frac{-R_L i_2}{\left(R_S + Z_{11} - \frac{Z_{12} Z_{21}}{R_L + Z_{22}}\right) i_1} = \frac{-R_L}{\left(R_S + Z_{11} - \frac{Z_{12} Z_{21}}{R_L + Z_{22}}\right)} \cdot \frac{-Z_{21}}{R_L + Z_{22}} \\ &= \frac{R_L Z_{21}}{(R_S + Z_{11})(R_L + Z_{22}) - Z_{12} Z_{21}} \end{split}$$

$$v_S = R_S i_1 + R_{\mathrm{in}} i_1 , \;$$
 対比系数即知 $R_{\mathrm{in}} = Z_{11} - \frac{Z_{12} Z_{21}}{R_L + Z_{22}}$

将
$$v_S = \left(R_S + Z_{11} - \frac{Z_{12}Z_{21}}{R_L + Z_{22}}\right)i_1$$
 代入 $i_2 = -\frac{Z_{21}}{R_L + Z_{22}}i_1$,即有
$$i_2 = -\frac{Z_{21}}{R_L + Z_{22}} \cdot \frac{v_S}{R_S + Z_{11} - \frac{Z_{12}Z_{21}}{R_L + Z_{22}}} = -\frac{Z_{21}v_S}{(R_L + Z_{22})(R_S + Z_{11}) - Z_{12}Z_{21}}$$
 即 $\frac{Z_{21}}{R_S + Z_{11}}v_S = -R_Li_2 - \left(Z_{22} - \frac{Z_{12}Z_{21}}{R_S + Z_{11}}\right)i_2$,其中 $-R_Li_2 = v_2$,则
$$R_{\text{out}} = Z_{22} - \frac{Z_{12}Z_{21}}{R_S + Z_{11}}$$

例 3.3.1 电路中可以化为:

其中 $R_{\rm in}=Z_{11}-\frac{Z_{12}Z_{21}}{R_L+Z_{22}},\ R_{\rm out}=Z_{22}-\frac{Z_{12}Z_{21}}{R_S+Z_{11}}$ 。当有最大能量传输效率(最大能量传递函数)时,两个电路中分别有 $\begin{cases} R_{\rm in}=R_S, \\ R_{\rm out}=R_L, \end{cases}$ 于是解得

$$R_{S} = \sqrt{Z_{11} \frac{Z_{11} Z_{22} - Z_{12} Z_{21}}{Z_{22}}} = \sqrt{R_{\text{in}} \Big|_{R_{L} = 0} \cdot R_{\text{in}} \Big|_{R_{L} = \infty}}$$

$$R_{L} = \sqrt{Z_{22} \frac{Z_{11} Z_{22} - Z_{12} Z_{21}}{Z_{11}}} = \sqrt{R_{\text{out}} \Big|_{R_{S} = 0} \cdot R_{\text{out}} \Big|_{R_{S} = \infty}}$$
(3.4)

类似地,考虑以 v_1, v_2 为自变量, i_1, i_2 为因变量, 在线性电路中就有

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

分别令端口短路(使 $v_1=0$ 或 $v_2=0$),加压求流、加流求压,就有

$$Y_{11} = \left. \frac{i_{\text{test1}}}{v_{\text{test1}}} \right|_{v_2 = 0}, \quad Y_{12} = \left. \frac{i_{\text{test1}}}{v_{\text{test2}}} \right|_{v_1 = 0}, \quad Y_{21} = \left. \frac{i_{\text{test2}}}{v_{\text{test1}}} \right|_{v_2 = 0}, \quad Y_{22} = \left. \frac{i_{\text{test2}}}{v_{\text{test2}}} \right|_{v_1 = 0}$$

矩阵 $Y = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$ 称为双端口网络的 Y 参数矩阵。

注意到
$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix},$$
即知

B) T 参数与 T' 参数 类似地、记双端口网络中

$$\begin{bmatrix} v_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} v_2 \\ -i_2 \end{bmatrix}$$

矩阵 $T = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ 称为双端口网络的 T **参数矩阵**。令右侧端口开路、短路,在左侧加压求流、加流求压,就有

$$A = \left. \frac{v_{\text{test1}}}{v_{\text{test2}}} \right|_{i_2 = 0}, \quad B = \left. - \frac{v_{\text{test1}}}{i_{\text{test2}}} \right|_{v_2 = 0}, \quad C = \left. \frac{i_{\text{test1}}}{v_{\text{test2}}} \right|_{i_2 = 0}, \quad D = \left. - \frac{i_{\text{test1}}}{i_{\text{test2}}} \right|_{v_2 = 0}$$

记双端口网络中

$$\begin{bmatrix} v_2 \\ i_2 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} v_1 \\ -i_1 \end{bmatrix}$$

矩阵 $m{T}' = egin{bmatrix} a & b \\ c & d \end{bmatrix}$ 称为双端口网络的 $m{T}'$ 参数矩阵。令左侧端口开路、短路,在右侧加压求流、加流求压,就有

$$a = \left. \frac{v_{\text{test2}}}{v_{\text{test1}}} \right|_{i_1 = 0}, \quad b = \left. -\frac{v_{\text{test2}}}{i_{\text{test1}}} \right|_{v_1 = 0}, \quad c = \left. \frac{i_{\text{test2}}}{v_{\text{test1}}} \right|_{i_1 = 0}, \quad d = \left. -\frac{i_{\text{test2}}}{i_{\text{test1}}} \right|_{v_1 = 0}$$

C) h **参数与** g **参数** 记双端口网络中

$$\begin{bmatrix} v_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ v_2 \end{bmatrix}$$

矩阵 $\mathbf{h} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}$ 称为双端口网络的 \mathbf{h} 参数矩阵。类似,记

$$\begin{bmatrix} i_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ i_2 \end{bmatrix}$$

矩阵 $m{g}=egin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}$ 称为双端口网络的 $m{g}$ 参数矩阵。同上有 $m{h}=m{g}^{-1}$ 。

3.3.2 双端口网络的连接

双端口网络的串联如图 3.7 所示, 其伏安特性有

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} + \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} = \boldsymbol{Z}_1 \begin{bmatrix} i_{11} \\ i_{12} \end{bmatrix} + \boldsymbol{Z}_2 \begin{bmatrix} i_{21} \\ i_{22} \end{bmatrix} = (\boldsymbol{Z}_1 + \boldsymbol{Z}_2) \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

即其 Z 参数

$$Z_{\oplus} = Z_1 + Z_2$$

图 3.7: 双端口网络的串联

类似, 双端口网络的并联如图 3.8 所示, 其伏安特性有

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} i_{11} \\ i_{12} \end{bmatrix} + \begin{bmatrix} i_{21} \\ i_{22} \end{bmatrix} = \boldsymbol{Y}_1 \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} + \boldsymbol{Y}_2 \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} = (\boldsymbol{Y}_1 + \boldsymbol{Y}_2) \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

即其 Y 参数

$$oldsymbol{Y}_{\!\!\!/\!\!\!/}=oldsymbol{Y}_1+oldsymbol{Y}_2$$

图 3.8: 双端口网络的并联

A 常见词汇中英文对照表

English	中文
Active Devices	有源器件
Amplification	放大
Angular frequency	角频率
Base Region	基区
Bistable Circuit	双稳态电路
Bode plot	波特图
Body effect	体效应
Branch	支路
Capacitor	电容器
Channel	通道
Charge	电荷
Circuit Equation	电路方程
CMOS Inverters	CMOS 反相器
Collector Region	集电区
Complementary MOS (CMOS)	互补金属-氧化物-半导体
Complementary Solution	补充解
Complex Power	复功率
Conductance	电导率
Conductivity	导电性
Covalent bonds	共价键
Crossover network	分频网络
Crystal Oscillator	晶体振荡器
Current	电流
Current density	电流密度
Cutoff	截止
Damping Factor	阻尼因子
Decibel	分贝
Depletion Region	耗尽区
Differential Equation	微分方程
Diffusion current	扩散电流
Digital Switches	数字开关
Doped semiconductors	掺杂半导体
Drift current	漂移电流
Dynamic Logic Circuits	动态逻辑电路
Dynamic RAM (DRAM) Cell	动态随机存取存储器单元
Electric Devices	电子器件

	续表
English	中文
Electric field	电场
Electron mobility	电子迁移率
Emitter Region	发射区
Energy	能量
Enhancement-type	增强型
Equivalent circuits	等效电路
Extraordinary Node	非普通节点
Feedback Loop	反馈回路
Field-Effect Transistor (FET)	场效应晶体管
Forward Bias	正向偏置
Free electron	自由电子
Frequency-domain	频域
Gate	栅极
Ground	接地
High pass filter	高通滤波器
Hole mobility	空穴迁移率
Homogeneity	同质性
Impedance	阻抗
Independent sources	独立源
Inductor	电感器
Input Bias Current	输入偏置电流
Input Impedance	输入阻抗
Input Offset Current	输入偏移电流
Integrated Circuit (IC)	集成电路
Integrator	积分器
Kirchhoff's Law	基尔霍夫定律
$\mathrm{KVL}/\mathrm{KCL}$	基尔霍夫电压/电流定律
Linear circuit	线性电路
Linear Devices	线性器件
Logic-Gate Circuits	逻辑门电路
Low pass filter	低通滤波器
Lumped Matter Discipline (LMD)	集总物质规律
Magnetic field	磁场
Magnetic Flux	磁通量
Memory Circuits	存储电路
Mesh-current method	回路电流法
Metal-Oxide-Semiconductor (MOS)	金属-氧化物-半导体

D 1: 1	₩->
English	中文
Negative Feedback	负反馈
Negative Resistance	负阻抗
NMOS transistor	NMOS 晶体管
Node	节点
Node-voltage method	节点电压法
Noise Margin	噪声裕度
Non-linear Devices	非线性器件
Norton's theorem	诺顿定理
Ohm's Law	欧姆定律
Operational Amplifier	运算放大器
Oscillation	振荡
Overdamped	过阻尼
Parasitic capacitance	寄生电容
Passive Devices	无源器件
Permittivity	介电常数
Phase	相位
PMOS transistor	PMOS 晶体管
Positive Feedback	正反馈
Power	功率
Power Consumption	功耗
Propagation Delay	传播延迟
Quality factor	品质因数
Ramp Function	斜坡函数
Reactive Power	无功功率
Resistance	电阻
Resistor	电阻器
Resonate Frequency	共振频率
Reverse Bias	反向偏置
Saturation Mode	饱和模式
Saturation Region	饱和区域
Schmitt Trigger	施密特触发器
Semiconductors	半导体
Signal Generators	信号发生器
Silicon crystal	硅晶体
Sinusoidal Function	正弦函数
Source	源极
Static RAM (SRAM) Cell	静态随机存取存储器单元

续表

	次 《
English	中文
Steady State	稳态
Step Function	阶跃函数
Substrate (Body)	衬底
Superposition	叠加
Thévenin's theorem	戴维南定理
Threshold voltage	阈值电压
Time Constant	时间常数
Transconductance	跨导
Transfer function	传递函数
Transient Circuit Analysis	瞬态电路分析
Tunnel Diode	隧道二极管
Underdamped	欠阻尼
Voltage	电压
Voltage division	电压分压
Voltage Source	电压源

B Cadence Virtuoso 电路仿真基本用法

B.1 启动

B.1.1 连接 MobaXterm 服务器

mkdir: 创建文件夹。 cd: 打开文件夹。 virtuoso &: 打开 Virtuoso。

B.1.2 新建 Virtuoso 库

Tools→Library Manager 打开 Virtuoso 库管理器对话框「Library manager」, 然后 File→New→Library 打开新建库对话框「New Library」。

在 New Library 界面为 library 命名, 勾选 Reference existing technology library, 将库 Analoglib 移入 Reference Technology Libraries。

B.1.3 新建 Cell 图

在 Library manager 界面选中刚才新建的 library, 单击 File→New→Cell View, 在弹出的「New File」窗口中 Cell 项为 Cell 命名,同时确认 Library 选项是刚才新建的 library、type 选项是 schematic。点击 OK。此时自动进入到原理图界面。

B.2 绘图

B.2.1 开关

开关 switch 实际上是一个电磁继电器, 开关的开合由线圈中是否有从 + 到 - 的电流决定。