Operácie s mnohočlenmi

- Opačný mnohočlen
- Sčítanie mnohočlenov
- Odčítanie mnohočlenov
- Násobenie mnohočlenov
 - o mnohočlen . jednočlen
 - o mnohočlen . mnohočlen
- Delenie mnohočlenov
 - o mnohočlen: jednočlen
 - o mnohočlen: mnohočlen

Opačný mnohočlen

Napíšte opačný mnohočlen k mnohočlenu $x^6 - 3x^4 + 2x^2 - 7x + 4$

Sformulujte pravidlo:

Sčítanie mnohočlenov

Sčítajte mnohočleny $x^4 + 2x^2 - 3x + 5$ a $3x^3 - 2x^2 + x - 4$.

Sformulujte pravidlo:

Odčítanie mnohočlenov

Odčítajte mnohočleny $3x^2 - xy + 2x - 2$ a $4x^2y - 2xy - \sqrt{3}x + 3$.

Sformuluite pravidlo:

Násobenie jednočlen . mnohočlen

Vynásobte jednočlen2x s mnohočlenom $\left(x^3-\frac{1}{2}x+3\right)$. Overte dosadením za x=1.

Sformulujte pravidlo:

Násobenie mnohočlen . mnohočlen

Vynásobte dvojčlen (2x + 3) s dvojčlenom $(x^2 + 2)$. Overte dosadením za x = 1.

Sformulujte pravidlo:

Geometricky interpretujte

$$a.(b + c)$$

$$(a + b).(c + d)$$

$$(a + b).(a + b)$$

Príklady:

1.
$$2x^2 + 3x - 2 + 2(x^2 + 1) - (3x^2 - 2x + 1)$$

2.
$$2x^4 - 3x + x(x^3 - 2x + 2) - x^2(3x^2 - x - 2)$$

3. Určte súčin mnohočlenov

a.
$$(x^2 - 2x)$$
 a $(xy - 2x + 1)$

b.
$$(3x^2 - xy + 2x - 2)$$
 a $(4x^2y - 2xy - x)$

- 4. Zjednodušte $(x + 2)^2 (x + 1)(x 3)$
- 5. Výraz $a^2 bc$ vyjadrite ako mnohočlen, ak a = 2x + 1, b = 1 3x, c = 4 + 2x.
- 6. Určte mnohočlen, ktorý je potrebné pričítať k mnohočlenu $(x+y)^2+r^2$ tak, aby sme dostali mnohočlen $(x+y+z)^2$
- 7. Určte o koľko sa zväčší hodnota výrazu $(x+2)(x^2-x-3)$, keď sa x zväčší o 2.

Samostatne

1. Výraz ab+c vyjadrite ako mnohočlen, ak

a.
$$a = x + 1, b = x^2 - 1, c = x^3 + 1.$$
 $[2x^3 + x^2 - x]$
b. $a = b = c = 3x-2$ $[9x^2 - 9x + 2]$

2. Určte o koľko sa zväčší hodnota výrazu $(a + b + 1)^2$ keď sa α zväčší o 1.

$$[2a + 2b + 3]$$

3. Zjednodušte

a.
$$x(x^2 + xy + y^2) - y(x^2 - xy - y^2) - x(x^2 + 2y^2)$$
 [y^3]
b. $(a^2b^3)^2 + (2a^2)^2y^2 - (a^2y)^2 - a^4(b^6 + 1)$ [$3a^4y^2 - a^4$]
c. $[(p+1)^2 - (p-1)^2]^2$ [$16p^2$]

Delenie mnohočlen: jednočlen

Vydeľte mnohočlen
$$(9x^3y^2 - 6x^2y^2 + 12xy - 2x)$$
 jednočlenom $3x$.

$$(9x^3x^3 - 6x^3x^3 + 12xx - 2x) : 3 \times = 3x^2x^3 - 2xx^3 + 14x - \frac{2}{3}$$
Vydeľte mnohočlen $(8a^4 - 6a^3 + 2\sqrt{3}a^2 - 14)$ jednočlenom $(-2a^2)$.

$$(8a^3 - 6a^3 + 2\sqrt{3}a^2 - 14) : (-2a^3) = -14a^3 + 3a - \sqrt{3} + \frac{7}{a^2}$$

$$-\frac{1}{2a^2} = \frac{7}{a^2} = 7a^3$$

Sformuluite pravidlo:

delin každig elen medseclena danja jednoelen

Je výsledkom delenia stále mnohočlen?e

A nesmieme zabudnúť, že Z podmie nez

Delenie mnohočlen: mnohočlen

Inšpirujme sa postupom delenia viacciferných čísel

Úloha: Vydeľte $(x^5 - 3x^2 - 4x + 6)$: $(x^2 - 2)$ a vykonajte skúšku.

Príklady:

1. Vydeľte mnohočleny

a.
$$(2x_{3}^{3} + 5x^{2} - 5x + 1)$$
: $(2x - 1) = x^{2} + 3x - 1$

$$- (2x_{3}^{3} - x^{2})$$

$$- (2x_{3}^{3} - x^{2})$$

$$- (6x_{3}^{2} - 5x + 1)$$

$$- (6x_{3}^{2} - 3x_{3})$$

$$- (6x_{3}^{2} - 3x_{3})$$

$$- (2x_{3}^{2} + 3x_{3}^{2} - 1)$$

$$- (2x_{3}^{2} - 1)$$

$$- (2x_{3}^$$

2.

a.
$$(6x^{6} - 8x^{5} + 14x^{4} - 21x^{3} + 3x^{2} + 8x - 14)$$
: $(3x^{3} - x^{2} + 2) = 2x^{3} - 2x^{2} + 4x - 7$

$$-(6x^{6} - 2x^{5} + 44x^{4} - 25x^{2} + 3x^{2} + 8x - 14)$$

$$-(6x^{5} + 42x^{4} - 4x^{2})$$

$$-(6x^{5} + 2x^{4} - 4x^{2})$$

$$-(12x^{4} - 4x^{2} + 8x - 14)$$

$$-(12x^{4} - 4x^{2} + 8x)$$

$$-(12x^{4} - 4x^{2} + 12x^{2} - 14)$$

$$-(12x^{4} - 4x^{2} + 12x^{2} - 14)$$

$$-(12x^{4} - 4x^{2} + 12x^{2} - 14)$$

b.
$$(x^{6} + x^{3} + 5 - 2x^{4} - 2x)$$
: $(x + x^{3} - 2)$

$$- (x^{6} + x^{4} + x^{3} - 2x + 5) \cdot (x^{3} + x - 2) = x^{3} - 3x + 3$$

$$- (x^{6} + x^{4} - 2x^{3})$$

$$- 3x^{4} + 3x^{2} - 2x + 5$$

$$- (-3x^{4} + -3x^{2}) + (-3x^{2}) + (-3x^{2} + -2x^{2})$$

$$- (-3x^{3} + -3x^{2} - -8x + 5)$$

$$- (-3x^{3} + -2x^{2} - -2x + 5)$$

$$- (-3x^{3} + -2x^{2} + -2x + 5)$$

$$- (-3x^{3} + -2x^{2} + -2x + 5)$$

$$- (-3x^{3} + -2x + -2x + 5)$$

$$- (-3x^{3} + -2x + -2x + 5)$$

$$- (-$$

(x3-3x+3).(x3+x-2)+(3x2-Mx+11)=

$$= \frac{1}{2} + \frac{$$

c.
$$x_{3}^{7}$$
: $(x_{3}^{2} - 2x + 3) = x^{5} + 2x^{4} + x^{3} - 4x^{2} - 4x - 10$ + $\frac{13x + 30}{x^{2} - 2x + 3}$ $\frac{-(x^{3} - 2x + 5x^{2})}{2x^{6} - 3x^{5}}$ $\frac{-(x^{3} - 2x + 5x^{2})}{-4x^{5} - 6x^{4}}$ $\frac{x^{3} - 6x^{4}}{-4x^{5} + 3x^{2}}$ $\frac{-(x^{3} + 2x^{2} - 2x + 3)}{-4x^{5} - 2x^{5}}$ $\frac{-(x^{3} + 2x^{2} - 3x^{2})}{-4x^{5} + 2x^{2} - 3x^{2}}$ $\frac{-(x^{3} + x^{3}) \cdot (x + x^{3} + x^{2} - x^{2})}{-(x^{3} + x^{3}) \cdot (x + x^{3} + x^{2} - x^{2})}$ $\frac{-(x^{3} + x^{3}) \cdot (x + x^{3} + x^{2} - x^{2})}{x^{3} \cdot (x + x^{3}) \cdot (x + x^{3}) \cdot (x + x^{3})}$

d.
$$(a^3 + b^3)$$
: $(a + b) = a^2 - ab + b^2$

$$-(a^2 + a^2 b)$$

$$-(a^2 b - ab)$$

$$-(ab^2 + b^3)$$
e. Nájdite reálne číslo t tak, aby delenie nemalo zvyšok: $(12x^2 + 17)$

e. Nájdite reálne číslo t tak, aby delenie nemalo zvyšok: $(12x^2 + 17x + t)$: (3x + 8)

$$\frac{(12x^{2}+17x+t)}{-(12x+32x)}$$

$$\frac{-(12x^{2}+17x+t)}{-(12x+32x)}$$

$$\frac{-(12x+32x)}{-(15x+46)}$$

$$\frac{(15x+46)}{-(15x+46)}$$

$$\frac{(15x+46)}{-(15x+46)}$$

Samostatne

1. Vydeľte mnohočleny, určte podmienky

a.
$$(6x^2 - 11x - 10)$$
: $(3x + 2)$

b.
$$(9y^4 + 26y^2 + 25): (3y^2 - 2y + 5)$$

c.
$$(11p^3 - 32 + 19p^2 + 3p^4 - 28p): (4 - 3p)$$

d.
$$(a^3 - b^3): (a - b)$$