Measure Theoretic Probability: Assignment 1

- 2.1 Since Ω is finite, then $|\Omega| = n$ for some n. Thus there are 2^n elements in the set of all subsets of Ω denoted by 2^{Ω} . Thus we have $\varnothing, \Omega \in 2^{\Omega}$. For any $A \in 2^{\Omega}$, $A^c \in 2^{\Omega}$ since A^c is also a subset of Ω . Lastly, there are only finite elements in 2^{Ω} , thus any finite union of sets in 2^{Ω} is a subset of Ω thus also in 2^{Ω} which shows that 2^{Ω} is a σ -algebra.
- 2.2 We have $(\mathcal{G}_{\alpha})_{\alpha \in A}$ be an arbitrary family of σ -algebras defined on an abstract space Ω . Let $\mathcal{H} = \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$, it is a σ -algebra since:
 - (a) $\varnothing, \Omega \in \mathcal{H}$ since $\Omega \in \mathcal{G}_{\alpha}$ for all $\alpha \in A$.
 - (b) Let $H \in \mathcal{H}$, then $H^c \in \mathcal{H}$ since $H \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$ implies $H^c \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$.
 - (c) Let $H_n \in \mathcal{H}$ for all n, then $\bigcup_n H_n \in \mathcal{H}$ since $\bigcup_n H_n \in \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$.
- 2.3 a) Let $X \in \left(\bigcup_{n=1}^{\infty} A_n\right)^c$, thus $X \notin A_n$ for any n if and only if $X \in \bigcap_{n=1}^{\infty} A_n^c$.
 - b) Let $X \in (\bigcap_{n=1}^{\infty} A_n)^c$ thus $X \notin A_n$ for all n, so $X \in \bigcup_{n=1}^{\infty} A_n^c$. For the other containment, let $X \in \bigcup_{n=1}^{\infty} A_n^c$, then $X \notin A_n$ for some n, thus $X \notin \bigcap_{n=1}^{\infty} A_n$ and we are done.
- 2.4 We are given \mathcal{A} to be a σ -algebra and $(A_n)_{n\leq 1}$ be a sequence of events in \mathcal{A} . Then

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k \ge n}^{\infty} A_k = \bigcup_{n=1}^{\infty} \left(\bigcup_{k \ge n}^{\infty} A_k^c \right)^c$$

since $A_k \in \mathcal{A}$, $A_k^c \in \mathcal{A}$ we have $\bigcup_{k\geq n}^{\infty} A_k^c$ and its complement to be in \mathcal{A} for all n. Thus $\liminf_{n\to\infty} A_n \in \mathcal{A}$. Next we observe that

$$\limsup_{n \to \infty} A_n = \bigcap_{n} \bigcup_{k \ge n}^{\infty} A_k = \left(\bigcup_{n}^{\infty} \left(\bigcup_{k \ge n}^{\infty} A_k \right)^c \right)^c$$

again $\bigcup_{k\geq n}^{\infty} A_k$ and its complement are in \mathcal{A} for all n, thus the complement of countably unions of them is also in \mathcal{A} . Lastly, let $X\in \liminf_{n\to\infty} A_n$, thus $X\in \bigcap_{k\geq n}^{\infty} A_k$ for some sufficiently large n and since $\bigcap_{k\geq n}^{\infty} A_k\subseteq \bigcup_{k\geq n}^{\infty} A_k$, $X\in \bigcup_{k\geq n}^{\infty} A_k$ for some sufficiently large n. Thus $X\in \bigcap_{n}^{\infty} \bigcup_{k\geq n}^{\infty} A_k$ which shows $\liminf_{n\to\infty} A_n\subset \limsup_{n\to\infty} A_n$.

- 2.5 We consider the cases where $X \in \limsup_n A_n \setminus \liminf_n A_n$ and $X \notin \limsup_n A_n \setminus \liminf_n A_n$. For the former, we have $\limsup_n 1_{A_n} \liminf_n 1_{A_n} = 1 0$
- 2.6 Given \mathcal{A} be a σ -algebra of Ω , $B \in \mathcal{A}$ and $\mathcal{F} = \{A \cap B : A \in \mathcal{A}\}$.
 - (a) $\varnothing, \Omega \in \mathcal{A}$, thus $\varnothing = \varnothing \cap B = \varnothing$ and $\Omega \cap B = B$ are elements of \mathcal{F} .
 - (b) Let $K \in \mathcal{F}$, then $K = H \cap B$ for some $H \in \mathcal{A}$. Then $K^c = B \setminus K \in \mathcal{F}$ as $K^c = H^c \cap B$.
 - (c) Let $H_n \in \mathcal{A}$ for all n. Then $H_n \cap B \in \mathcal{F}$ for all n. Thus $\bigcup_n^{\infty} (H_n \cap B) = (\bigcup_n^{\infty} H_n) \cap B \in \mathcal{F}$.

2.9

2.10

2.11

2.12

2.13 We shall prove by induction. For n=2, $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$. Suppose it is true for up to n=k, i.e.

$$P(\bigcup_{i=1}^{k} A_i) = \sum_{i} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{k+1} P(A_1 \cap A_2 \cap \dots \cap A_k)$$

thus when n = k + 1,

$$P(\cup_{i=1}^{k+1} A_i) =$$

 $2.14 \ P(A \cap B) \le \min\{P(A), P(B)\} = 1/3. \ \text{Then} \ P(A \cap B) = P(A) + P(B) - P(A \cup B) \ge P(A) + P(B) - 1 = 1/12.$

2.15

2.16

2.17 Let \mathcal{A} be the family of all subsets of the infinite set Ω where $\mathcal{A} := \{A \subseteq \Omega : A \text{ or } A^c \text{ is finite.}\}$ We have $\emptyset, \Omega \in \mathcal{A}$ as the null set is finite. For any $A \in \mathcal{A}$, either A or A^c is finite, thus $A^c \in \mathcal{A}$. For $A, B \in \mathcal{A}$, $A \cup B$ is also finite since finite union of finite sets is also finite. Thus \mathcal{A} is an algebra. Countably union does not hold since countably union of finite sets is not necessarily finite.

2