Linear regression with gradient descent

Ingmar Schuster
Patrick Jähnichen
using slides by Andrew Ng

This lecture covers

- Linear Regression
 - Hypothesis formulation, hypthesis space
- Optimizing Cost with Gradient Descent
- Using multiple input features with Linear Regression
- Feature Scaling
- Nonlinear Regression
- Optimizing Cost using derivatives

Linear Regression

Price for buying a flat in Berlin

- Supervised learning problem
 - Expected answer available for each example in data
- Regression Problem
 - Prediction of continuous output

Price in 1000€

Training data of flat prices

- **m** Number of training examples
- **x** is input (predictor) variable "features" in ML-speek
- **y** is output (response) variable

73	174
146	367
38	69
124	257

Square meters

Notation

$$(x,y)$$
 — one training example $(x^{(i)}, y^{(i)})$ — ith training example

Learning procedure

Hypothesis parameters

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 linear regression, one input variable (univariate)

How to choose parameters?

Optimization objective

- Purpose of learning algorithm expressed in optimization objective and cost function (often called J)
 - Fit data well
 - Few false positives

- Few false negatives
- •

Fitting data well: least squares cost function

- In regression almost always want to fit data well
 - smallest average distance to points in training data (h(x) close to y for (x,y) in training data)
 - Cost function often named J

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \frac{\left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2}{\left((\theta_0 + \theta_1 x^{(i)}) - y^{(i)}\right)^2}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} \frac{\left((\theta_0 + \theta_1 x^{(i)}) - y^{(i)}\right)^2}{\left((\theta_0 + \theta_1 x^{(i)}) - y^{(i)}\right)^2}$$

- Squaring
 - Penalty for positive and negative deviations the same
 - Penalty for large deviations stronger

Optimizing Cost with Gradient Descent

Gradient Descent Outline

- Want to minimize $\mathrm{J}(heta_0, heta_1)=rac{1}{2m}\sum_{i=1}^m\left((heta_0+ heta_1x^{(i)})-y^{(i)}
 ight)^2$
- Start with random θ_0, θ_1
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we end up at minimum

Linear regression w. gradient descent

3D plots and contour plots

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} ((\theta_0 + \theta_1 x^{(i)}) - y^{(i)})^2$$

few parameters

$$\min_{\theta_0 \theta_1} ize J(\theta_0, \theta_1) = \arg_{\theta} \min J(\theta)$$

Gradient descent

while not converged:

partial derivative

for all j:

$$tmp_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$[\theta_0 \ \theta_1] := [tmp_0 \ tmp_1]$$

beware: incremental update incorrect!

Learning Rate considerations

Small learning rate leads to slow convergence

$$\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

- Overly large learning rate may not lead to convergence or to divergence
- Often $\alpha \in [0.001, 1]$

Checking convergence

- Gradient descent works correctly if $J(\theta)$ decreases with every step
- Possible convergence criterion: converged if $J(\theta)$ decreases by less than constant ϵ

Local Minima

Gradient descent can get stuck at local minima
 (e.g. J not squared error for regression with only one variable)

Variants of Gradient Descent

Using multiple input features

Multiple features

Square meters	Bedrooms	Floors	Age of building (years)	Price in 1000€
x1	x2	х3	x4	У
200	5	1	45	460
131	3	2	40	232
142	3	2	30	315
756	2	1	36	178

Notation

n - number of features (here n = 4)

 $x^{(i)}$ – input features of *i*th training example

 $x_j^{(i)}$ - feature j in ith training example

$$x^{(3)} = \begin{bmatrix} 142\\3\\2\\40 \end{bmatrix}$$

$$x_1^{(4)} = 756$$

Hypothesis representation

•
$$h_{\theta}(x_1, \dots, x_n) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

More compact

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1}, \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \text{with definition } \mathbf{x}_0 := 1$$

$$h_{\theta}(x) = \begin{bmatrix} \theta_0 & \theta_1 & \dots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$
$$= \theta^T x$$

Gradient descent for multiple variables

- Generalized cost function $\mathrm{J}(heta) = rac{1}{2m} \sum_{i=1}^m \left(h_{ heta}(x^{(i)}) y^{(i)}
 ight)^2$
- Generalized gradient descent

```
while not converged:

for all j:

tmp_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)

\theta := \begin{bmatrix} tmp_0 \\ \vdots \\ tmp_n \end{bmatrix}
```


Partial derivative of cost function for multiple variables

Calculating the partial derivative

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left((\theta_{0} x_{0}^{(i)} + \dots + \theta_{n} x_{n}^{(i)}) - y^{(i)} \right)^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

Gradient descent for multiple variables

Simplified gradient descent

```
while not converged:
for all j:
tmp_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}
\theta := \begin{bmatrix} tmp_{0} \\ \vdots \\ tmp_{n} \end{bmatrix}
```


Conversion considerations for multiple variables

 With multiple variables, comparison of variance in data is lost (scales can vary strongly)

Square meters	30 - 400
Bedrooms	1 - 10
	80 000
Price	2 000 000

Gradient descent converges faster for features on similar scale

Feature Scaling

Feature scaling

- Different approaches for converting features to comparable scale
 - Min-Max-Scaling makes all data fall into range [0, 1]

$$\mathbf{x}_j^{(i)\prime} := \frac{x_j^{(i)} - min(x_j)}{max(x_j) - min(x_j)}$$

(for single data point of feature j)

Z-score conversion

Z-Score conversion

- Center data on 0
- Scale data so majority falls into range [-1, 1]

$$\mu(x_j) = \frac{1}{m} \sum_{i=1}^{m} x_j^{(i)}$$

mean / empirical expected value (mu)

empirical standard deviation (sigma)

$$\sigma(x_j) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_j^{(i)} - \mu(x_j))^2}$$

Z-score conversion of single data point for feature j

$$\mathbf{x}_j^{(i)\prime} := \frac{\mathbf{x}_j^{(i)} - \mu(\mathbf{x}_j)}{\sigma(\mathbf{x}_j)}$$

Visualizing standard deviation

Nonlinear Regression (by cheap trickery)

Nonlinear Regression Problems

Nonlinear Regression Problems (linear approximation)

Nonlinear Regression Problems (nonlinear hypothesis)

Nonlinear Regression with cheap trickery

- Linear Regression can be used for Nonlinear Problems
- Choose nonlinear hypothesis space

•
$$h_{\theta}(x_1,\ldots,x_n) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \ldots$$

•
$$h_{\theta}(x_1,\ldots,x_n) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_2^3 + \theta_4 x_2^5 + \ldots$$

•
$$h_{\theta}(x_1,\ldots,x_n) = \theta_0 + \theta_1 x_1 + \theta_2 \sqrt{x_2} + \ldots$$

Optimizing cost using derivatives

Comparison Gradient Descent vs. Setting derivative = 0

Instead of Gradient descent solve

$$\frac{\partial}{\partial \theta_i} J(\theta) = 0$$

for all i

Comparison Gradient Descent vs. Setting derivative = 0

Gradient Descent

- Need to choose lpha
- Needs many iterations, random restarts etc.
- Works well for many features

Derivation

- No need to choose lpha
- No iterations
- $O(n^3)$
- Slow for many features

This lecture covers

- Linear Regression
 - Hypothesis formulation, hypthesis space
- Optimizing Cost with Gradient Descent
- Using multiple input features with Linear Regression
- Feature Scaling
- Nonlinear Regression
- Optimizing Cost using derivatives

Pictures

 Some public domain plots from en.wikipedia.org and de.wikipedia.org