

**NOVEMBER 30, 2023** 

# PREDICTING DEMAND FOR BIKESHARING IN WASHINGTON DC

Semester Presentation for ECE 381.3: Applied Machine Learning

LAKSHYA JAGADISH, FADEEL KHAN, ASVIN KUMAR, POWELL LOWE

The University of Texas at Austin

# BACKGROUND: CAPITAL BIKESHARE

- Capital Bikeshare: government-run bike share company with 3.4 million annual bike ridership (~9k daily riders) in Washington D.C. and surrounding areas
- Riders can buy annual memberships ("registered" riders) or pay per trip ("casual" riders)
- Understanding variations in ridership an important consideration for future government city development
  - City planning
  - Strategies for advertisements on bikes
  - Strategies for marketing for more ridership



# DATA DESCRIPTION

#### **DATASET BREAKDOWN**

- Time series data, aggregated by both day and hour
- Feature set:
  - Time series (date, day, year, month, hour)
  - Seasonal information
  - Weather information (humidity, windspeed, temperature, state of weather)
  - Day information (weekday, weekend, holiday)
- Target variables:
  - "Registered" riders using bikes
  - "Casual" riders using bikes
  - Total riders (registered + casual)

- day.csv (aggregated by day between 2011-2012)
  - Size: 731 samples x 16 columns

- hour.csv (aggregated by hour between 2011-2012)
  - Size: 17379 samples x 17 columns

\*all features same for both except for "hour" feature in hour.csv

## PREVIOUS WORK

- Recurrent Neural Network (RNN) regression for predicting rider counts (Petnehazi et al.)
  - $\circ$  R<sup>2</sup> = 0.78-0.96
- Decision Trees multi-class prediction of seasons based on rider count and other features
   (Al-Otaibi et al.)
  - Classification accuracy = 0.4-0.7
- Kaggle Competition
  - Non-neural network models (LR, ensemble methods);  $R^2 = \sim 1.0$
  - No model/feature interpretation
- Statistical visual interactions between features (Britton et al.)
  - No predictive modeling

**TEXAS** ENGINEERING

# EXPLORATORY DATA ANALYSIS

- Multiple seasonalities
  - Weekends vs Weekdays
  - Winter vs Summer
  - Morning/Evening versus Midday
- Commutes dominated by Registered Users
- Temperature is most correlated weather
   feature with Count
   Humidity and Wind Speed → minimal correlation



# TBATS Baseline

- Incorporates:
  - Trigonometric seasonality
  - Box-Cox Transformation
  - 。 ARMA
  - Trend
- Pros:
  - Multiple seasonalities
  - Performs exponential smoothing
- Poor performance and extremely slow



### PRE-PROCESSING

- Normalization of feature set
- Seeding data, 80-20 train-test split
- 3-fold cross validation
- GridSearchCV for hyperparameter tuning
- Top 3 principal components explained 94-97% of variance → data inverse-transformed based on PCA
  - Model evaluation pre- and post-PCA

# MODEL SELECTION

- Linear Regression
- Support Vector Regression
- Random Forest
- XGBoost Forest
- Recurrent Neural Network (Long Short-Term Memory)



Emphasis placed on the simplicity and interpretability of models

# MODEL RESULTS - REGISTERED RIDERS

#### hourly dataset

| Model             | RMSE    | R^2   |
|-------------------|---------|-------|
| Linear Reg.       | 831.3   | 0.83  |
| Random Forest Reg | 10.64   | 0.99  |
| RF Reg (w/ PCA)   | 10.14   | 1.00  |
| XGBoost           | 36      | 0.95  |
| XGBoost (w/ PCA)  | 1.90    | 1.00  |
| LSTM              | 117.053 | 0.613 |
| LSTM (w/ PCA)     | 112.747 | 0.641 |

#### daily dataset

| Model             | RMSE    | R^2   |
|-------------------|---------|-------|
| Linear Reg.       | 925.06  | 0.76  |
| Random Forest Reg | 80.11   | 1.00  |
| RF Reg (w/ PCA)   | 81.02   | 1.00  |
| XGBoost           | 523     | 0.90  |
| XGBoost (w/ PCA)  | 42.46   | 1.00  |
| LSTM              | 915.016 | 0.664 |
| LSTM (w/ PCA)     | 968.066 | 0.624 |

# MODEL RESULTS - CASUAL RIDERS

#### hourly dataset

| Model             | RMSE   | R^2   |
|-------------------|--------|-------|
| Linear Reg.       | 36     | 0.88  |
| Random Forest Reg | 4.89   | 0.99  |
| RF Reg (w/ PCA)   | 4.91   | 0.99  |
| XGBoost           | 14.5   | 0.91  |
| XGBoost (w/ PCA)  | 1.08   | 1.00  |
| LSTM              | 20.129 | 0.871 |
| LSTM (w/ PCA)     | 20.138 | 0.871 |

#### daily dataset

| Model             | RMSE    | R^2   |
|-------------------|---------|-------|
| Linear Reg.       | 342     | 0.71  |
| Random Forest Reg | 144.57  | 0.97  |
| RF Reg (w/ PCA)   | 116.33  | 0.97  |
| XGBoost           | 251     | 0.84  |
| XGBoost (w/ PCA)  | 38.92   | 1.00  |
| LSTM              | 450.143 | 0.591 |
| LSTM (w/ PCA)     | 483.997 | 0.527 |

# KEY TAKEAWAYS + INTERPRETATION

SHAP is a game theoretic approach to explain the interpretability of any machine learning model.

SHAP values describe how each feature of each input modifies a "base rate" to get the target value.

Generally, higher absolute values have higher imparent
 on model output.





Explanation



# XGBOOST - CASUAL





# RANDOM FOREST - REGISTERED



# LINEAR REGRESSION - CASUAL



# XGBOOST (PCA) - REGISTERED



# KEY LIMITATIONS

#### **DATASET**

Size (2 years) limits training of yearly trend behavior

#### **MODELS**

- TBATS is difficult to train and interpret
- Hard to tell whether these models will perform on longer-duration data

### FUTURE WORK

- Continuously validating and updating the model as new data becomes available the current model is dated at 2011, it is important to keep up with the current trends.
- Real-time prediction capabilities learn to adapt to sudden changes in demand.
- Explore use of RL for optimizing bike-sharing operations over-time.
- Integrate other data sources such as social media or locations information which can provide insights into user behaviour, sentiments and preferences.
- Using ensemble models to combine the inferences from different models could be interesting to see how the model can perform in comparison to the XGBoost model.
- Model interpretation Could explore other frameworks like LIME and ELI5.

# REFERENCES

- Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
- M. Britton, 'VINE: Visualizing statistical interactions in black box models', arXiv [cs.LG], 01-Apr-2019.
- A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 184–199, 2015. DOI: 10.1007/978-3-319-23528-8 12
- G. Petneházi, 'Recurrent neural networks for time series forecasting', arXiv [cs.LG],
   31-Dec-2018.

# The University of Texas at Austin Cockrell School of Engineering