

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PIAUÍ – UFPI CAMPUS SENADOR HELVÍDIO NUNES DE BARROS – PICOS BACHARELADO EM SISTEMAS DE INFORMAÇÃO

Arquitetura e Organização de Computadores

Sistemas de Informação - UFPI Prof. Dr. Frank César Lopes Véras 2023.1

AULA 7

Formato de uma palavra no IAS

(b) Palavra para armazenamento de uma instrução

Cada palavra pode conter duas instruções de 20 bits (opcode + address)

Fluxograma de operação do IAS (Stallings – Cap. 2)

CICLOS DE INSTRUÇÃO:

- Busca
- Decodifição
- Execução

M(X) = conteúdo da posição de memória cujo endereço é X

(X : Y) = bits X a Y

CICLO DE BUSCA

- Código de operação da próxima instrução é carregado no IR
- Parte correspondente ao endereço é carregada no MAR
- Essa instrução pode ser obtida do IBR ou da memória
 - A palavra correspondente é carregada no MBR
 - Depois no IBR, no IR e no MAR

CICLO DE BUSCA

- •Por que usar essas vias indiretas?
 - Circuitos eletrônicos controlam as operações (transferências de dados)
 - Um único registrador especifica o endereço de memória para leitura ou para escrita
 - Um único registrador é utilizado como fonte ou destino do valor lido ou escrito

- •Código de uma operação é colocado no IR
 - Início do CICLO DE EXECUÇÃO

- Iniciado depois que o código de uma operação é colocado no IR
- Circuito de controle interpreta o código de operação:
 - Envia os sinais de controle apropriados
 - Dados são transferidos, ou
 - Operação é executada pela ULA

- IAS tinha 21 instruções divididas em 5 grupos:
 - Transferência de dados
 - Desvio incondicional
 - Desvio condicional
 - Aritmética
 - Modificação de endereço

- •TIPO 1: Transferência de dados
 - Ocorre entre a memória e os registradores da ULA
 - Ou entre dois registradores

Tipo de instrução	Opcode	Representação simbólica	Descrição
	00001010	LOAD MQ	Transfere o conteúdo de MQ para AC
	00001001	LOAD MQ,M(X)	Transfere o conteúdo do local de memória X para MQ
	00100001	STOR M(X)	Transfere o conteúdo de AC para o local de memória X
Transferência de dados	00000001	LOAD M(X)	Transfere M(X) para o AC
	00000010	LOAD - M(X)	Transfere — M(X) para o AC
	00000011	LOAD [M(X)]	Transfere o valor absoluto de M(X) para o AC
	00000100	LOAD – [M(X)]	Transfere - M(X) para o acumulador

CONJUNTO DE INSTRUÇÕES DO IAS

TIPO 2: Desvio incondicional

- Normalmente
 - UC executa as instruções na sequência em que se encontram na memória
 - Sequência é "quebrada" por uma instrução de desvio
 - Usado para executar sequência de instruções repetidamente

Tipo de instrução	Opcode	Representação simbólica	Descrição
Desvio incondicional	00001101	JUMP M(X,0:19)	Apanha a próxima instrução da metade esquerda de M(X)
Desvio incondicional	00001110	JUMP M(X,20:39)	Apanha a próxima instrução da metade direita de M(X)

CONJUNTO DE INSTRUÇÕES DO IAS

- TIPO 3: Desvio condicional
 - Efetuado dependendo do teste de uma condição
 - Permite a inserção de pontos de decisão

Tipo de instrução	Opcode	Representação simbólica	Descrição
Desvio condicional	00001111	JUMP+ M(X,0:19)	Se o número no AC for não negativo, apanha a próxima instrução da metad esquerda de M(X)
	00010000	JUMP+ M(X,20:39)	Se o número no AC for não negativo, apanha a próxima instrução da metade direita de M(X)

- •TIPO 4: Aritmética
- -Operações executadas pela ULA

Tipo de instrução	Opcode	Representação simbólica	Descrição
Aritmética	00000101	ADD M(X)	Soma M(X) a AC; coloca o resultado em AC
	00000111	ADD M(X)	Soma M(X) a AC; coloca o resultado em AC
	00000110	SUB M(X)	Subtrai M(X) de AC; coloca o resultado em AC
	00001000	SUB [M(X)]	Subtrai M(X) de AC; coloca o resto em AC
	00001011	MUL M(X)	Multiplica M(X) por MQ; coloca os bits mais significativos do resultado em AC coloca bits menos significativos em MQ
	00001100	DIV M(X)	Divide AC por M(X); coloca o quociente em MQ e o resto em AC
	00010100	LSH	Multiplica o AC por 2; ou seja, desloca à esquerda uma posição de bit
	00010101	RSH	Divide o AC por 2; ou seja, desloca uma posição à direita

- •TIPO 5: Modificação de endereço
- -Cálculo de endereços pela ULA
- •Inserção em instruções armazenadas na memória

Tipo de instrução	Opcode	Representação simbólica	Descrição
Modificação de endereço	00010010	STOR M(X,8:19)	Substitui campo de endereço da esquerda em M(X) por 12 bits mais à direita de AC
	00010011	STOR M(X,28:39)	Substitui campo de endereço da direita em M(X) por 12 bits mais à direita de AC

LEMBRETES

- •1ª AVALIAÇÃO DATA PROVÁVEL: 05/06/2023.
- •CONTEÚDO -
- Criação e envio dos grupos.