AVL tree

Ch. 10

• Height of generated tree depends on the input sequence.

Sequence 1:

Height of generated tree depends on the input sequence.

Sequence 1:

• Height of generated tree depends on the input sequence.

Maximum number of comparison to search a key: 4

• Height of generated tree depends on the input sequence.

AVL-tree: an efficient binary search tree

• Dynamically rebalance subtrees to maintain height-balanced.

Rotations

• Preserving the <u>in-order</u> invariant of the search tree while moving one subtree upward.

Rotations (with subtrees)

• Preserving the <u>in-order</u> invariant of the search tree while moving one subtree upward.

Inorder: AXBYC

Inorder: AXBYC

Double rotations

Equivalent to two consecutive rotations

Inorder: AXBYCZD

Inorder: AXBYCZD

Double rotation for LR imbalance RR rotation! rotation LR rotation = RR rotation + LL rotation

Balance factor in AVL tree

• For **every node x**, define its balance factor **BF**:

BF(x) = height(x's left subtree) - height(x's right subtree)

• Balance factor of every node x is -1, 0, or 1

Exercise

Given the following AVL tree.

Q9: What is the balance factor of Node α ?

Q10: What is the balance factor of Node b?

Q11: What is the balance factor of Node *c*?

Height of AVL tree is O(log n)

n: total number of nodes in the AVL tree

Proof:

Let N_h = number of nodes in an AVL tree whose height is h.

- $N_0 = 0$.
- $N_1 = 1$.

• N_h for h > 1.

- Both T_I and T_R are AVL trees.
- Assume that height of T_L is h-1. Then height of T_R can be h-2 in the worst case.
- T_L has N_{h-1} nodes. T_R has N_{h-2} nodes.
- So, $N_h = N_{h-1} + N_{h-2} + 1$.

N_h is similar with Fibonacci Number

Let N_h = number of nodes in an AVL tree whose height is h.

•
$$F_0 = 0$$
, $F_1 = 1$.

•
$$F_i = F_{i-1} + F_{i-2}$$
, $i > 1$.

$$\cdot N_0 = 0, N_1 = 1.$$

•
$$N_h = N_{h-1} + N_{h-2} + 1$$
, $i > 1$.

• $F_i \sim \phi^i / sqrt(5)$.

If ignore, N_h becomes Fibonacci number

•
$$\phi = (1 + \text{sqrt}(5))/2 \approx 1.618$$

Height of AVL tree is $O(\log_{\phi}(n))$

AVL tree example

Operation: Insertion

- Insert the node using the insertion algorithm of binary search tree.
- If BF=0 becomes -1 or 1, subtree height changes and rebalancing may be needed.

Operation: Insertion

Operation: Insertion

Insertion may cause imbalance

- Following insert, retrace path towards root and adjust balance factors as needed.
- Stop when you reach a node whose balance factor becomes 0, 2, or -2, or when you reach the root.
- The new tree is **not** an AVL tree only if you reach a node whose balance factor is either 2 or −2.
- In this case, we say the tree has become unbalanced.

Imbalance type

A: The nearest ancestor of the newly inserted node whose balance factor becomes +2 or -2 following the insert.

Four types of imbalance:

- RR ... newly inserted node is in the right subtree of the right subtree of A.
- LL ... left subtree of left subtree of A.
- RL ... left subtree of right subtree of A.
- LR ... right subtree of left subtree of A.

LL rotation

- Subtree height does not change. $(h+2 \rightarrow h+2)$
- No adjustment to be done for its ancestors.

LR rotation (Case 1)

- Subtree height does not change.
- No adjustment to be done for its ancestors.

LR rotation (Case 2)

• No adjustment to be done for its ancestors.

LR rotation (Case 3)

- Subtree height does not change.
- No adjustment to be done for its ancestors.

Single and double rotations

- Single
 - LL and RR
- Double
 - LR and RL
 - LR is RR (first) followed by LL (second)
 - RL is LL (first) followed by RR (second)

LR rotation is RR + LL rotations

After insertion

After RR rotation

After LL rotation

Exercise

• Q12: Please write out the result after inserting 5 into to the following AVL tree.

1 3

Q13: Please write out the result after inserting 15 into to the

following AVL tree.

Exercise

Q14: Please write out the result after inserting 58 into to the

following AVL tree.

 Q15: Please write out the result after inserting 79 into to the following AVL tree.

