ANNÉE UNIVERSITAIRE 2024/2025

4TMA701U Calcul Formel

Examen terminal session 1 Date: 11/12/2024 Heure: 9h30 Durée: 3h

Documents autorisés

Collège Sciences et Technologies

Vous rendrez à la fin de l'examen une copie papier ainsi qu'un fichier sage contenant vos programmes (lisible, commenté et nettoyé si possible..) au format EX-Nom-Prenom.ipynb (feuille Jupyter) ou EX-Nom-Prenom.sage (fichier texte). Le fichier est à envoyer par e-mail à l'adresse christine.bachoc@u-bordeaux.fr

Exercice 1 Soit p un nombre premier. Soit $P(X) = \sum_{i=0}^k a_i X^i \in \mathbb{Z}[X]$. On suppose dans tout ce qui suit qu'il existe un entier r tel que $P(r) \equiv 0 \mod p$ et $P'(r) \not\equiv 0 \mod p$ (ici P'(X) est le polynôme dérivé de P).

Le but de l'exercice est de calculer pour tout $n \geq 1$ un entier r_n , tel que $r_n \equiv r \mod p$ et $P(r_n) \equiv 0 \mod p^n$. On dit que r_n est un relèvement modulo p^n de la racine r de P modulo p.

- 1. Dans cette question, on calcule r_2 .
 - a) Justifiez l'existence d'un entier t tel que $r_2 = r + tp$, puis montrez que pour tout $i \ge 1$, $(r + tp)^i \equiv r^i + ir^{i-1}tp \mod p^2$.
 - b) En déduire que $P(r + tp) \equiv P(r) + P'(r)tp \mod p^2$.
 - c) Soit $b \in \mathbb{Z}$ tel que P(r) = bp. Soit c l'inverse de P'(r) modulo p. Justifiez l'existence de b et c, puis montrez que $t \equiv -bc \mod p$.
- 2. Implémentation et application numérique
 - a) Écrire dans Sage une fonction RELEVEMENT qui exécute le calcul de la question 1. Cette fonction prendra en entrées P(X), p, r, tels que $P(r) \equiv 0 \mod p$ et $P'(r) \not\equiv 0 \mod p$ et sort un entier r_2 , $0 \le r_2 < p^2$ tel que $r_2 \equiv r \mod p$ et $P(r_2) \equiv 0 \mod p^2$.
 - b) Soit $P(X) = X^{10} X + 1 \in \mathbb{Z}[X]$ et p = 11. Calculer dans $\mathbb{F}_{11}[X]$ le pgcd de P(X) et de $X^{11} X$ et en déduire que r = 2 est l'unique racine modulo 11 de P(X) (justifiez votre réponse).
 - c) Utilisez votre fonction RELEVEMENT pour calculer une racine de P modulo 11^2 qui relève r=2 et vérifiez le résutat.

3. Généralisation

- a) Inspirez-vous de la question 1 pour calculer r_{2i} à partir de r_i pour tout $i \geq 1$.
- b) En déduire l'unique racine modulo 11^7 de $X^{10} X + 1$ (vous devriez pouvoir appliquer votre fonction RELEVEMENT itérativement sans modifications..)

Exercice 2 Soit $F = \mathbb{Z}/17\mathbb{Z}$ et soit $P \in F[x]$ le polynôme de degré 23 dont les coefficients rangés par degré croissant sont :

$$[1,0,0,15,6,8,9,3,7,14,7,1,5,14,7,2,15,4,9,11,2,4,15,1]$$

Le but de l'exercice est de factoriser P.

- 1. Calculez dans Sage les polynômes $D_i = \operatorname{pgcd}(P, x^{17^i} x)$ pour i = 1, 2, 3, 6.
- 2. Expliquez pourquoi D_2 divise D_6 .
- 3. Soit $Q = D_6/D_2$. Expliquez pourquoi Q est le produit de trois polynômes irréductibles de degré 6 deux à deux distincts.
- 4. Calculez les diviseurs irréductibles de Q avec l'algorithme de Cantor-Zassenhaus, en expliquant ses étapes.
- 5. Donnez la factorisation complète de P.

Exercice 3 Soit $f = x^3 - xy - 4x + y^2 + 2y$ et $g = x^2 + y^2 - 4$ deux polynômes de $\mathbb{Q}[x, y]$. Soit I l'idéal de $\mathbb{Q}[x, y]$ engendré par f et g. On munit $\mathbb{Q}[x, y]$ de l'ordre lexicographique tel que x > y.

- 1. Montrez à la main que (f,g) n'est pas une base de Groebner de I.
- 2. Soit B la base de Groebner réduite de I, calculez B avec Sage.
- 3. A l'aide de cette base, calculez les solutions dans \mathbb{R}^2 du système suivant (vous expliquerez votre raisonnement).

$$\begin{cases} x^3 - xy - 4x + y^2 + 2y = 0 \\ x^2 + y^2 = 4 \end{cases}$$

4. Donnez une base du \mathbb{Q} -espace vectoriel $\mathbb{Q}[x,y]/I$. Quelle est la dimension de ce quotient?