Lesson 6: validation

the BDC group

September 24, 2019

Content and .tex sources licensed under the CC-BY-4.0 license

Outline

- scalable learning
- connecting the pieces together
- peer instructions
- a hands-on example

Scalable learning

Connecting the pieces together

The pieces of the puzzle, up to now:

- estimating the model parameters
- validating the model structure
- estimating the uncertainties

validating the data

Connecting the pieces together - piece 1: estimating the model parameters

Most important strategies, up to now:

- Ordinary Least Squares
- Principal Component Regression
- Partial Least Squares

Ordinary Least Squares

Formulation:
$$\widehat{\theta}_{\mathrm{LS}} = \arg\min_{\theta \in \Theta} \left\| \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} - \begin{bmatrix} f\left(u_1; \theta\right) \\ \vdots \\ f\left(u_N; \theta\right) \end{bmatrix} \right\|^2 = \arg\min_{\theta \in \Theta} \sum_{t=1}^{N} \left(y_t - f\left(u_t; \theta\right)\right)^2$$

Principal Components Regression

```
step 1: X = U\Sigma V^T \rightarrow \text{select } U^{PC} (i.e., the first n components)
```

step 2:
$$\widehat{\theta}_{PCR} = \arg\min_{\theta \in \Theta} \sum_{t=1}^{N} (y_t - U^{PC}\theta)^2$$

Principal Components Regression

step 2: $\widehat{\theta}_{PCR} = \arg\min_{\theta \in \Theta} \sum_{t=1}^{N} (y_t - U^{PC}\theta)^2$

Partial Least Squares

$$\begin{cases}
X = TP^T + E \\
Y = UQ^T + F
\end{cases}$$
(1)

Partial Least Squares

Partial Least Squares

?

Connecting the pieces together

The pieces of the puzzle, up to now:

- estimating the model parameters
- validating the model structure
- estimating the uncertainties

validating the data

Connecting the pieces together - piece 2:

validating the model structure

First question, even before seeing the data: are the *internal* and *external* validity satisfied?

Connecting the pieces together - piece 2:

validating the model structure

First question, even before seeing the data: are the *internal* and *external* validity satisfied? For us, in a rough way:

drawing conclusions (i.e., make models) ignoring some unknown input
 losing internal validity

Connecting the pieces together - piece 2: validating the model structure

First question, even before seeing the data: are the *internal* and *external* validity satisfied? For us, in a rough way:

- drawing conclusions (i.e., make models) ignoring some unknown input
 losing internal validity
- drawing conclusions (i.e., make models) ignoring some part of the input space (AND being in a situation where this leads to poor generalization capabilities)
 losing external validity

Connecting the pieces together - piece 2: validating the model structure

First question, even before seeing the data: are the *internal* and *external* validity satisfied? For us, in a rough way:

- drawing conclusions (i.e., make models) ignoring some unknown input
 losing internal validity
- drawing conclusions (i.e., make models) ignoring some part of the input space (AND being in a situation where this leads to poor generalization capabilities)
 losing external validity

Question 1

why "... space AND being ... "?

Example - introduction

Example - population validity

Definition: population validity = how well the sample used can be extrapolated to a population as a whole (type of external validity)

Example - ecological validity

Definition: ecological validity = how well the findings can be extrapolated to real life settings (type of external validity)

15

?

Bias vs. variance

our approach: $\theta=$ unknown and deterministic; $\widehat{\theta}=$ estimator of θ

Bias vs. variance

our approach: $\theta=$ unknown and deterministic; $\widehat{\theta}=$ estimator of θ

Question 2

is $\widehat{\theta}$ always a random variable?

- yes
- no

Bias vs. variance

our approach: $\theta = \text{unknown}$ and deterministic; $\widehat{\theta} = \text{estimator}$ of θ

Question 2

is $\widehat{\theta}$ always a random variable?

- yes
- no

usual case: $\widehat{\theta}=$ random variable

Mean Squared Error

how do we weight the difference between θ and $\widehat{\theta}$?

Mean Squared Error

how do we weight the difference between θ and $\widehat{\theta}$?

squared error committed by a specific realization of $\widehat{\theta}$: $\left\|\theta-\widehat{\theta}\right\|^2$

Mean Squared Error

how do we weight the difference between θ and $\widehat{\theta}$?

squared error committed by a specific realization of $\widehat{ heta}: \quad \left\| heta - \widehat{ heta} \right\|^2$

mean squared error committed by $\widehat{\theta}$: $\mathbb{E}\left[\left\|\theta-\widehat{\theta}\right\|^2\right]$

$$MSE(\theta) = \mathbb{E}\left[\left\|\theta - \widehat{\theta}\right\|^2\right]$$

$$MSE(\theta) = \mathbb{E}\left[\left\|\theta - \widehat{\theta}\right\|^2\right]$$

Example:
$$y_t \sim \mathcal{N}(\mu, 1)$$
 $\widehat{\mu} = 3$

$$MSE(\theta) = \mathbb{E}\left[\left\|\theta - \widehat{\theta}\right\|^2\right]$$

Example: $y_t \sim \mathcal{N}(\mu, 1)$ $\widehat{\mu} = 3$

Question 3

MSE(3) = ?

- 0
- 1
- 10

$$MSE(\theta) = \mathbb{E}\left[\left\|\theta - \widehat{\theta}\right\|^2\right]$$

Example:
$$y_t \sim \mathcal{N}(\mu, 1)$$
 $\widehat{\mu} = 3$

fundamental message: given $\widehat{\theta}$, that estimator may have excellent performance for certain specific θ s and awful performance for other ones!

$$\mathbb{E}\left[\left\|\theta-\widehat{\theta}\right\|^{2}\right] = \int_{\mathcal{V}^{N}} \left\|\theta-\widehat{\theta}\left(y_{1},\ldots,y_{N}\right)\right\|^{2} dp\left(y_{1},\ldots,y_{N};\theta\right)$$

$$\mathbb{E}\left[\left\|\theta-\widehat{\theta}\right\|^{2}\right] = \int_{\mathcal{Y}^{N}} \left\|\theta-\widehat{\theta}\left(y_{1},\ldots,y_{N}\right)\right\|^{2} dp\left(y_{1},\ldots,y_{N};\theta\right)$$

important implication: the MSE cannot be computed!

$$\mathbb{E}\left[\left\|\theta-\widehat{\theta}\right\|^{2}\right] = \int_{\mathcal{Y}^{N}} \left\|\theta-\widehat{\theta}\left(y_{1},\ldots,y_{N}\right)\right\|^{2} dp\left(y_{1},\ldots,y_{N};\theta\right)$$

important implication: the MSE cannot be computed!

Strategy: estimate some alternative quantity from the data:

$$\begin{cases} y_t = f(u_t; \theta) + v_t \\ \widehat{y}_t = \widehat{f}(u_t; \widehat{\theta}) \end{cases} \mapsto \frac{1}{N} \sum_{t=1}^{N} (y_t - \widehat{y}_t)^2$$

$$\mathbb{E}\left[\left\|\theta-\widehat{\theta}\right\|^{2}\right] = \int_{\mathcal{Y}^{N}} \left\|\theta-\widehat{\theta}\left(y_{1},\ldots,y_{N}\right)\right\|^{2} dp\left(y_{1},\ldots,y_{N};\theta\right)$$

important implication: the MSE cannot be computed!

Strategy: estimate some alternative quantity from the data:

$$\begin{cases} y_t = f(u_t; \theta) + v_t \\ \widehat{y}_t = \widehat{f}(u_t; \widehat{\theta}) \end{cases} \mapsto \frac{1}{N} \sum_{t=1}^{N} (y_t - \widehat{y}_t)^2$$

'training-vs-test' and cross-validation are examples

the bias - variance tradeoff

$$\mathbb{E}\left[\left\|\widehat{\theta}-\theta\right\|^2\right]$$

$$\mathbb{E}\left[\left\|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right\|^2\right] = \mathbb{E}\left[\left\|\widehat{\boldsymbol{\theta}} - \mathbb{E}\left[\widehat{\boldsymbol{\theta}}\right] + \mathbb{E}\left[\widehat{\boldsymbol{\theta}}\right] - \boldsymbol{\theta}\right\|^2\right]$$

$$\mathbb{E}\left[\left\|\widehat{\theta} - \theta\right\|^{2}\right] = \mathbb{E}\left[\left\|\widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right] + \mathbb{E}\left[\widehat{\theta}\right] - \theta\right\|^{2}\right]$$

$$= \mathbb{E}\left[\left\|\mathcal{V} + \mathcal{B}\right\|^{2}\right]$$

$$\begin{cases} \mathcal{V} \coloneqq \widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right] \\ \mathcal{B} \coloneqq \mathbb{E}\left[\widehat{\theta}\right] - \theta \end{cases}$$

$$\mathbb{E}\left[\left\|\widehat{\theta} - \theta\right\|^{2}\right] = \mathbb{E}\left[\left\|\widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right] + \mathbb{E}\left[\widehat{\theta}\right] - \theta\right\|^{2}\right]$$

$$= \mathbb{E}\left[\left\|\mathcal{V} + \mathcal{B}\right\|^{2}\right]$$

$$= \mathbb{E}\left[\left(\mathcal{V} + \mathcal{B}\right)^{T}\left(\mathcal{V} + \mathcal{B}\right)\right]$$

$$\begin{cases} \mathcal{V} := \widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right] \\ \mathcal{B} := \mathbb{E}\left[\widehat{\theta}\right] - \theta \end{cases}$$

$$\mathbb{E}\left[\left\|\widehat{\theta} - \theta\right\|^{2}\right] = \mathbb{E}\left[\left\|\widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right] + \mathbb{E}\left[\widehat{\theta}\right] - \theta\right\|^{2}\right]$$

$$= \mathbb{E}\left[\left\|\mathcal{V} + \mathcal{B}\right\|^{2}\right]$$

$$= \mathbb{E}\left[\left(\mathcal{V} + \mathcal{B}\right)^{T}\left(\mathcal{V} + \mathcal{B}\right)\right]$$

$$= \mathbb{E}\left[\left\|\mathcal{V}\right\|^{2} + \left\|\mathcal{B}\right\|^{2} + 2\mathcal{V}^{T}\mathcal{B}\right]$$

$$\mathbb{E}\left[\left\|\widehat{\theta} - \theta\right\|^{2}\right] = \mathbb{E}\left[\left\|\widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right] + \mathbb{E}\left[\widehat{\theta}\right] - \theta\right\|^{2}\right]$$

$$= \mathbb{E}\left[\left\|\mathcal{V} + \mathcal{B}\right\|^{2}\right] \qquad \left\{ \begin{array}{l} \mathcal{V} \coloneqq \widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right] \\ \mathcal{B} \coloneqq \mathbb{E}\left[\widehat{\theta}\right] - \theta \end{array} \right.$$

$$= \mathbb{E}\left[\left(\mathcal{V} + \mathcal{B}\right)^{T}\left(\mathcal{V} + \mathcal{B}\right)\right]$$

$$= \mathbb{E}\left[\left\|\mathcal{V}\right\|^{2} + \left\|\mathcal{B}\right\|^{2} + 2\mathcal{V}^{T}\mathcal{B}\right] \qquad \mathbb{E}\left[\mathcal{V}^{T}\mathcal{B}\right] = \mathbf{0}$$

$$\mathbb{E}\left[\left\|\widehat{\theta} - \theta\right\|^{2}\right] = \mathbb{E}\left[\left\|\widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right] + \mathbb{E}\left[\widehat{\theta}\right] - \theta\right\|^{2}\right]$$

$$= \mathbb{E}\left[\left\|\mathcal{V} + \mathcal{B}\right\|^{2}\right] \qquad \left\{ \begin{array}{l} \mathcal{V} := \widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right] \\ \mathcal{B} := \mathbb{E}\left[\widehat{\theta}\right] - \theta \end{array} \right.$$

$$= \mathbb{E}\left[\left(\mathcal{V} + \mathcal{B}\right)^{T}\left(\mathcal{V} + \mathcal{B}\right)\right]$$

$$= \mathbb{E}\left[\left\|\mathcal{V}\right\|^{2} + \left\|\mathcal{B}\right\|^{2} + 2\mathcal{V}^{T}\mathcal{B}\right] \qquad \mathbb{E}\left[\mathcal{V}^{T}\mathcal{B}\right] = \mathbf{0}$$

$$= \mathbb{E}\left[\left\|\mathcal{V}\right\|^{2}\right] + \left\|\mathcal{B}\right\|^{2}$$

$$\mathbb{E}\left[\left\|\widehat{\theta} - \theta\right\|^{2}\right] = \mathbb{E}\left[\left\|\widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right] + \mathbb{E}\left[\widehat{\theta}\right] - \theta\right\|^{2}\right]$$

$$= \mathbb{E}\left[\left\|\mathcal{V} + \mathcal{B}\right\|^{2}\right] \qquad \left\{ \begin{array}{l} \mathcal{V} \coloneqq \widehat{\theta} - \mathbb{E}\left[\widehat{\theta}\right] \\ \mathcal{B} \coloneqq \mathbb{E}\left[\widehat{\theta}\right] - \theta \end{array} \right.$$

$$= \mathbb{E}\left[\left(\mathcal{V} + \mathcal{B}\right)^{T} \left(\mathcal{V} + \mathcal{B}\right)\right]$$

$$= \mathbb{E}\left[\left\|\mathcal{V}\right\|^{2} + \left\|\mathcal{B}\right\|^{2} + 2\mathcal{V}^{T}\mathcal{B}\right] \qquad \mathbb{E}\left[\mathcal{V}^{T}\mathcal{B}\right] = \mathbf{0}$$

$$= \mathbb{E}\left[\left\|\mathcal{V}\right\|^{2}\right] + \left\|\mathcal{B}\right\|^{2}$$

$$= \text{"variance"} + \text{"bias}^{2}$$

Definitions

ideal model:
$$y_t = f(u_t) + v_t$$
 our model: $y_t = \widehat{f}(u_t, \widehat{\theta})$

underfitting = a $\widehat{f}(\cdot,\widehat{\theta})$ that misses the fundamental features of f_0 overfitting = a $\widehat{f}(\cdot,\widehat{\theta})$ that follows v_t instead of $f(u_t)$.

Remarking fact: the model complexity affects the bias - variance tradeoff

$$y_t = \prod_{k=1}^n \theta_k u_t^k + v_t$$

Remarking fact: the model complexity affects the bias - variance tradeoff

$$y_t = \prod_{k=1}^n \theta_k u_t^k + v_t$$

we will see how this strongly connects to the Ockham's razor

Quiz time!

Question 3

Underfitting is associated to

- high bias and low variance
- low bias and high variance

Quiz time!

Question 4

Overfitting is associated to:

- high bias and low variance
- low bias and high variance

Ockham's razor

from David J.C. MacKay, Information Theory, Inference, and Learning Algorithms

Ockham's razor

from David J.C. MacKay, Information Theory, Inference, and Learning Algorithms

Connecting the pieces together - piece 2:

validating the model structure

Strategy: estimate the MSE (or other performance indexes) from the data:

$$\begin{cases} y_t = f(u_t; \theta) + v_t \\ \widehat{y}_t = \widehat{f}(u_t; \widehat{\theta}) \end{cases} \mapsto \frac{1}{N} \sum_{t=1}^{N} (y_t - \widehat{y}_t)^2$$

Connecting the pieces together - piece 2:

validating the model structure

Strategy: estimate the MSE (or other performance indexes) from the data:

$$\begin{cases} y_t = f(u_t; \theta) + v_t \\ \widehat{y}_t = \widehat{f}(u_t; \widehat{\theta}) \end{cases} \mapsto \frac{1}{N} \sum_{t=1}^{N} (y_t - \widehat{y}_t)^2$$

Most important strategies, up to now:

- dividing the dataset into training / test / validation
- cross-validation

$$y \sim \mathcal{N}(\mu, \sigma^2 I)$$
 $\widehat{\mu} : \mathbb{R}^n \mapsto \mathbb{R}^n$ $\widehat{\mu}(\cdot) = \text{estimator of } \mu$ (2)

$$y \sim \mathcal{N}\left(\mu, \sigma^2 I\right)$$
 $\widehat{\mu} : \mathbb{R}^n \to \mathbb{R}^n$ $\widehat{\mu}\left(\cdot\right) = \text{estimator of } \mu$ (2)

$$R = \mathbb{E}\left[\left\|\mu - \widehat{\mu}\right\|_{2}^{2}\right]$$

$$y \sim \mathcal{N}\left(\mu, \sigma^2 I\right)$$
 $\widehat{\mu} : \mathbb{R}^n \to \mathbb{R}^n$ $\widehat{\mu}\left(\cdot\right) = \text{estimator of } \mu$
$$R = \mathbb{E}\left[\|\mu - \widehat{\mu}\|_2^2\right]$$
$$= \mathbb{E}\left[\|\mu - y + y - \widehat{\mu}\|_2^2\right]$$

(2)

$$y \sim \mathcal{N}\left(\mu, \sigma^{2} I\right) \qquad \widehat{\mu} : \mathbb{R}^{n} \to \mathbb{R}^{n} \qquad \widehat{\mu}\left(\cdot\right) = \text{estimator of } \mu$$

$$R = \mathbb{E}\left[\|\mu - \widehat{\mu}\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\|\mu - y + y - \widehat{\mu}\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\|\mu - y\|_{2}^{2}\right] + \mathbb{E}\left[\|y - \widehat{\mu}\|_{2}^{2}\right] + 2\mathbb{E}\left[\left(\mu - y\right)^{T}\left(y - \widehat{\mu}\right)\right]$$

$$y \sim \mathcal{N}\left(\mu, \sigma^{2} I\right) \qquad \widehat{\mu} : \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \qquad \widehat{\mu}\left(\cdot\right) = \text{estimator of } \mu$$

$$R = \mathbb{E}\left[\|\mu - \widehat{\mu}\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\|\mu - y + y - \widehat{\mu}\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\|\mu - y\|_{2}^{2}\right] + \mathbb{E}\left[\|y - \widehat{\mu}\|_{2}^{2}\right] + 2\mathbb{E}\left[\left(\mu - y\right)^{T}\left(y - \widehat{\mu}\right)\right]$$

$$= n\sigma^{2} + \mathbb{E}\left[\|y - \widehat{\mu}\|_{2}^{2}\right] + 2\mathbb{E}\left[\left(y - \mu\right)^{T}\left(\widehat{\mu} - y\right)\right]$$

$$y \sim \mathcal{N}\left(\mu, \sigma^{2} I\right) \qquad \widehat{\mu} : \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \qquad \widehat{\mu}\left(\cdot\right) = \text{estimator of } \mu$$

$$R = \mathbb{E}\left[\|\mu - \widehat{\mu}\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\|\mu - y + y - \widehat{\mu}\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\|\mu - y\|_{2}^{2}\right] + \mathbb{E}\left[\|y - \widehat{\mu}\|_{2}^{2}\right] + 2\mathbb{E}\left[(\mu - y)^{T}(y - \widehat{\mu})\right]$$

$$= n\sigma^{2} + \mathbb{E}\left[\|y - \widehat{\mu}\|_{2}^{2}\right] + 2\mathbb{E}\left[(y - \mu)^{T}(\widehat{\mu} - y)\right]$$

$$= -n\sigma^{2} + \mathbb{E}\left[\|y - \widehat{\mu}\|_{2}^{2}\right] + 2\sum_{i=1}^{n} \operatorname{cov}\left(y_{i}, \widehat{\mu}_{i}\right)$$

$$y \sim \mathcal{N}\left(\mu, \sigma^{2} I\right) \qquad \widehat{\mu} : \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \qquad \widehat{\mu}\left(\cdot\right) = \text{estimator of } \mu$$

$$R = \mathbb{E}\left[\|\mu - \widehat{\mu}\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\|\mu - y + y - \widehat{\mu}\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\|\mu - y\|_{2}^{2}\right] + \mathbb{E}\left[\|y - \widehat{\mu}\|_{2}^{2}\right] + 2\mathbb{E}\left[\left(\mu - y\right)^{T}\left(y - \widehat{\mu}\right)\right]$$

$$= n\sigma^{2} + \mathbb{E}\left[\|y - \widehat{\mu}\|_{2}^{2}\right] + 2\mathbb{E}\left[\left(y - \mu\right)^{T}\left(\widehat{\mu} - y\right)\right]$$

$$= -n\sigma^{2} + \mathbb{E}\left[\|y - \widehat{\mu}\|_{2}^{2}\right] + 2\sum_{i=1}^{n} \operatorname{cov}\left(y_{i}, \widehat{\mu}_{i}\right)$$

$$\Longrightarrow \qquad \widehat{R} = -n\sigma^{2} + \|y - \widehat{\mu}\|_{2}^{2} + 2\sum_{i=1}^{n} \operatorname{cov}\left(y_{i}, \widehat{\mu}_{i}\right)$$

Potential practical difficulties when doing model validation

- lack of data
- lack of control of the input variables
- uncertainty about the underlying probability distributions and correlations

?

Connecting the pieces together

The pieces of the puzzle, up to now:

- estimating the model parameters
- validating the model structure
- estimating the uncertainties

validating the data

Connecting the pieces together - piece 3: estimating the uncertainty on the model parameters

Typical aim: estimating mean and variance, assuming a Gaussian distribution:

Simplest strategy: jackknifing

Purpose: estimate bias and variance of the estimator;

Simplest strategy: jackknifing

Purpose: estimate *bias* and *variance* of the estimator; steps:

Purpose: estimate *bias* and *variance* of the estimator; steps:

- **①** define the reduced datasets $X_{[i]} \coloneqq \{X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n\}$
- ${\bf 2}$ compute the corresponding estimates $\widehat{\theta}_{[i]}$ = $\widehat{\theta}\left(X_{[i]}\right)$

Purpose: estimate *bias* and *variance* of the estimator; steps:

- lacktriangledown define the reduced datasets $X_{[i]}\coloneqq\{X_1,\ldots,X_{i-1},X_{i+1},\ldots,X_n\}$
- ${\bf 2}$ compute the corresponding estimates $\widehat{\theta}_{[i]}$ = $\widehat{\theta}\left(X_{[i]}\right)$
- **o** compute the average "reduced" estimate $\widehat{\theta}_{\text{ave}} \coloneqq \frac{1}{n} \sum_{i=1}^{n} \widehat{\theta}_{[i]}$

Purpose: estimate bias and variance of the estimator; steps:

- **①** define the reduced datasets $X_{[i]} := \{X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n\}$
- ${\bf 2}$ compute the corresponding estimates $\widehat{\theta}_{[i]}$ = $\widehat{\theta}\left(X_{[i]}\right)$
- **3** compute the average "reduced" estimate $\widehat{\theta}_{\text{ave}} \coloneqq \frac{1}{n} \sum_{i=1}^{n} \widehat{\theta}_{[i]}$
- compute the estimated bias and variance

$$\widehat{\mathsf{bias}}\left(\widehat{\boldsymbol{\theta}}\right)_{\mathsf{jk}} \coloneqq \frac{n-1}{n} \sum_{i=1}^{n} \left(\widehat{\boldsymbol{\theta}}_{[i]} - \widehat{\boldsymbol{\theta}}\right) \qquad \widehat{\mathsf{var}}\left(\widehat{\boldsymbol{\theta}}\right)_{\mathsf{jk}} \coloneqq \frac{n-1}{n} \sum_{i=1}^{n} \left(\widehat{\boldsymbol{\theta}}_{[i]} - \widehat{\boldsymbol{\theta}}_{\mathsf{ave}}\right)^{2}$$

Purpose: estimate bias and variance of the estimator; steps:

- define the reduced datasets $X_{[i]} := \{X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n\}$
- ${\bf 2}$ compute the corresponding estimates $\widehat{\theta}_{[i]}$ = $\widehat{\theta}\left(X_{[i]}\right)$
- **o** compute the average "reduced" estimate $\widehat{\theta}_{ave} \coloneqq \frac{1}{n} \sum_{i=1}^{n} \widehat{\theta}_{[i]}$
- compute the estimated bias and variance

$$\widehat{\mathsf{bias}}\left(\widehat{\boldsymbol{\theta}}\right)_{\mathsf{jk}} \coloneqq \frac{n-1}{n} \sum_{i=1}^{n} \left(\widehat{\boldsymbol{\theta}}_{[i]} - \widehat{\boldsymbol{\theta}}\right) \qquad \widehat{\mathsf{var}}\left(\widehat{\boldsymbol{\theta}}\right)_{\mathsf{jk}} \coloneqq \frac{n-1}{n} \sum_{i=1}^{n} \left(\widehat{\boldsymbol{\theta}}_{[i]} - \widehat{\boldsymbol{\theta}}_{\mathsf{ave}}\right)^{2}$$

 \rightarrow can be generalized to k deletions

- $\ensuremath{\mathbf 0}$ generate B new datasets with the same dimension as the original one sampling with replacement
- $oldsymbol{0}$ compute the B estimates
- $oldsymbol{0}$ compute some statistics on the B estimates

- lacktriangle generate B new datasets with the same dimension as the original one sampling with replacement
- $oldsymbol{0}$ compute the B estimates
- $oldsymbol{0}$ compute some statistics on the B estimates
- lacktriangledown if one wants to have a direct estimate of the predictive performance, average the performance of the various B estimates on the corresponding "out-of-bag" samples

- ullet generate B new datasets with the same dimension as the original one sampling with replacement
- $oldsymbol{0}$ compute the B estimates
- $oldsymbol{0}$ compute some statistics on the B estimates
- lacktriangledown if one wants to have a direct estimate of the predictive performance, average the performance of the various B estimates on the corresponding "out-of-bag" samples

? how big shall B be ?

Flashback: bias and variance tradeoff

Alternative strategies:

- jackknifing
- bootstrapping
- CV (i.e., go directly towards estimating the MSE / whatever performance index is desired)

Comparisons

- the bootstrap handles skewed distributions better
- the jackknife is suitable for smaller original data samples

how to use the expressions for the estimated variance

Using \widehat{P} for finding confidence intervals on $\widehat{\theta}$

$$(\widehat{\theta} - \theta) \sim \mathcal{N}(0, \widehat{P})$$

Using \widehat{P} for finding confidence intervals on $\widehat{\theta}$

$$(\widehat{\theta} - \theta) \sim \mathcal{N}(0, \widehat{P}) \Longrightarrow (\widehat{\theta}^{(k)} - \theta^{(k)}) \sim \mathcal{N}(0, \widehat{P}_{(kk)})$$

Using \widehat{P} for finding confidence intervals on $\widehat{ heta}$

$$(\widehat{\theta} - \theta) \sim \mathcal{N}(0, \widehat{P}) \Longrightarrow (\widehat{\theta}^{(k)} - \theta^{(k)}) \sim \mathcal{N}(0, \widehat{P}_{(kk)})$$

$$\implies \mathbb{P}\left[\left|\widehat{\theta}^{(k)} - \theta^{(k)}\right| \ge \alpha\right] \approx \sqrt{\frac{1}{2\pi\widehat{P}_{(kk)}}} \int_{|x| \ge \alpha} \exp\left(-\frac{1}{2} \frac{x^2}{\widehat{P}_{(kk)}}\right) dx$$

Using \widehat{P} for finding confidence intervals on $\widehat{\theta}$

$$(\widehat{\theta} - \theta) \sim \mathcal{N}(0, \widehat{P}) \Longrightarrow (\widehat{\theta}^{(k)} - \theta^{(k)}) \sim \mathcal{N}(0, \widehat{P}_{(kk)})$$

$$\implies \mathbb{P}\left[\left|\widehat{\theta}^{(k)} - \theta^{(k)}\right| \ge \alpha\right] \approx \sqrt{\frac{1}{2\pi\widehat{P}_{(kk)}}} \int_{|x| \ge \alpha} \exp\left(-\frac{1}{2} \frac{x^2}{\widehat{P}_{(kk)}}\right) dx$$

$$\Longrightarrow (\widehat{\theta} - \theta)^T \widehat{P}^{-1} (\widehat{\theta} - \theta) \sim \chi^2(K)$$

Confidence intervals: these mysterious objects...

$$\left(\begin{array}{c} \widehat{\theta} \in \Theta \\ C \subseteq \Theta \end{array}\right)$$

Confidence intervals: these mysterious objects...

$$\left\{ \begin{array}{ll} \widehat{\theta} \in \Theta & & \\ C \subseteq \Theta & & \end{array} \right.$$

Definition 1 (Confidence interval)

 $C: \mathcal{D} \mapsto 2^{\Theta}$ is a C.I. with confidence level α if

$$\inf_{\theta \in \Theta} \mathbb{P} \left[\mathcal{D} : C(\mathcal{D}) \ni \theta \right] \ge \alpha$$

Confidence intervals: these mysterious objects...

$$\left\{ \begin{array}{ll} \widehat{\theta} \in \Theta & & \\ C \subseteq \Theta & & \end{array} \right.$$

Definition 1 (Confidence interval)

$$C: \mathcal{D} \mapsto 2^{\Theta}$$
 is a C.I. with confidence level α if

$$\inf_{\theta \in \Theta} \mathbb{P} \left[\mathcal{D} : C(\mathcal{D}) \ni \theta \right] \ge \alpha$$

a C.I. is not a statement about heta

Connecting the pieces together

The pieces of the puzzle, up to now:

- estimating the model parameters
- validating the model structure
- estimating the uncertainties

validating the data

Connecting the pieces together - piece 4: validating the data

Can happen at every step

- validating the data
- estimating the model parameters
- validating the data
- validating the model structure
- validating the data
- estimating the uncertainties
- validating the data

Connecting the pieces together - piece 4: validating the data

Most important strategies, up to now:

- Hotelling's T²
- F- and Q-residuals (to be seen now)

Hotelling's T²

Fundamental question: are these

$$x_1, \dots, x_{n_x} \qquad \qquad y_1, \dots, y_{n_y} \tag{4}$$

identically distributed?

Hotelling's T²

Fundamental question: are these

$$x_1, \dots, x_{n_x} \qquad y_1, \dots, y_{n_y} \tag{4}$$

identically distributed? Algorithm:

$$\overline{x} \coloneqq \frac{1}{n_x} \sum_i x_i \qquad \overline{y} \coloneqq \frac{1}{n_y} \sum_i y_i \tag{5}$$

$$\Sigma_{x} := \frac{1}{n_{x} - 1} \sum_{i} (x_{i} - \overline{x}) (x_{i} - \overline{x})^{T} \qquad \qquad \Sigma_{y} := \frac{1}{n_{y} - 1} \sum_{i} (y_{i} - \overline{y}) (y_{i} - \overline{y})^{T} \qquad (6)$$

$$\Sigma := \frac{(n_x - 1) \Sigma_x + (n_y - 1) \Sigma_y}{n_x + n_y - 2} \tag{7}$$

Hotelling's T²

Fundamental question: are these

$$x_1, \dots, x_{n_x} \qquad \qquad y_1, \dots, y_{n_y} \tag{4}$$

identically distributed? Algorithm:

$$\overline{x} \coloneqq \frac{1}{n_x} \sum_i x_i \qquad \overline{y} \coloneqq \frac{1}{n_y} \sum_i y_i \tag{5}$$

$$\Sigma_x \coloneqq \frac{1}{n_x - 1} \sum_i (x_i - \overline{x}) (x_i - \overline{x})^T \qquad \qquad \Sigma_y \coloneqq \frac{1}{n_y - 1} \sum_i (y_i - \overline{y}) (y_i - \overline{y})^T \qquad (6)$$

$$\Sigma := \frac{(n_x - 1) \Sigma_x + (n_y - 1) \Sigma_y}{n_x + n_y - 2} \tag{7}$$

$$t^{2} \coloneqq \frac{n_{x} n_{y}}{n_{x} + n_{y}} \left(\overline{x} - \overline{y} \right) \Sigma \left(\overline{x} - \overline{y} \right)^{T} \tag{8}$$

Causes of outliers

- measurement error
- heavy tail distributions
- mixture models

Norms to treat outliers

Norms to treat outliers

?

Hands-on example - vaginal pressure data

Vaginal pressure data: state variables

- $m_{\rm a}(t)\coloneqq$ number of motor units that are in an active state at time t, and that are activated by a voluntary drive
- $m_{\mathrm{f}}(t) \coloneqq$ number of motor units that are in a fatigued state at time t
- $m_{\rm r}(t)\coloneqq$ number of motor units that are in a *resting state* at time t
- $u(t) \coloneqq$ muscular activation signal, sometimes referred to as the "brain stimulus" or "brain force"
- $M \coloneqq$ total number of motor units present in the muscles, assumed to be constant over time, i.e., $m_{\rm a}(t) + m_{\rm f}(t) + m_{\rm r}(t) = M$ for all t

Vaginal pressure data: state dynamics

$$\dot{m}_{\mathbf{a}}(t) = -\theta_{\mathbf{a} \to \mathbf{f}} m_{\mathbf{a}}(t) + \theta_{\mathbf{f} \to \mathbf{a}} m_{\mathbf{f}}(t) + u(t)\theta_{\mathbf{r} \to \mathbf{a}} m_{\mathbf{r}}(t) - (1 - u(t))\theta_{\mathbf{a} \to \mathbf{r}} m_{\mathbf{a}}(t)$$
(9)

Vaginal pressure data: state dynamics

$$\dot{m}_{a}(t) = -\theta_{a \mapsto f} m_{a}(t) + \theta_{f \mapsto a} m_{f}(t) + u(t) \theta_{r \mapsto a} m_{r}(t) - (1 - u(t)) \theta_{a \mapsto r} m_{a}(t)$$
(9)
$$\begin{cases} m_{f}(k+1) = \phi_{f \mapsto a} m_{f}(k) + (1 - \phi_{a \mapsto f}) m_{a}(k) \\ m_{a}(k+1) = \phi_{a \mapsto f} m_{a}(k) + (1 - \phi_{f \mapsto a}) m_{f}(k) \\ + u(k) \phi_{r \mapsto a} m_{r}(k) - (1 - u(k)) \phi_{a \mapsto r} m_{a}(k) \end{cases}$$
(10)
$$m_{r}(k) = M - m_{a}(k) - m_{f}(k)$$

Vaginal pressure data: state dynamics

$$\dot{m}_{a}(t) = -\theta_{a \mapsto f} m_{a}(t) + \theta_{f \mapsto a} m_{f}(t) + u(t) \theta_{r \mapsto a} m_{r}(t) - (1 - u(t)) \theta_{a \mapsto r} m_{a}(t)$$

$$\begin{cases}
m_{f}(k+1) = \phi_{f \mapsto a} m_{f}(k) + (1 - \phi_{a \mapsto f}) m_{a}(k) \\
m_{a}(k+1) = \phi_{a \mapsto f} m_{a}(k) + (1 - \phi_{f \mapsto a}) m_{f}(k) \\
+ u(k) \phi_{r \mapsto a} m_{r}(k) - (1 - u(k)) \phi_{a \mapsto r} m_{a}(k)
\end{cases}$$

$$m_{r}(k) = M - m_{a}(k) - m_{f}(k)$$

$$\begin{cases}
\phi_{f \mapsto a} \coloneqq 1 - \theta_{f \mapsto a} T \\
\phi_{a \mapsto f} \coloneqq 1 - \theta_{a \mapsto f} T \\
\phi_{a \mapsto r} \coloneqq \theta_{a \mapsto r} T \\
\phi_{r \mapsto a} \coloneqq \theta_{r \mapsto a} T
\end{cases}$$

$$(11)$$

Vaginal pressure data: estimation

$$m_{\mathbf{a}}(k+1) = \left(\phi_{\mathbf{a} \mapsto \mathbf{f}} - \phi_{\mathbf{a} \mapsto \mathbf{r}} - (\phi_{\mathbf{r} \mapsto \mathbf{a}} - \phi_{\mathbf{a} \mapsto \mathbf{r}}) u(k)\right) m_{\mathbf{a}}(k) + \left(1 - \phi_{\mathbf{f} \mapsto \mathbf{a}} - \phi_{\mathbf{r} \mapsto \mathbf{a}} u(k)\right) (1 - \phi_{\mathbf{a} \mapsto \mathbf{f}}) \left(\sum_{\tau=0}^{k-1} \phi_{\mathbf{f} \mapsto \mathbf{a}}^{k-1-\tau} m_{\mathbf{a}}(\tau)\right) + \phi_{\mathbf{r} \mapsto \mathbf{a}} M u(k)$$

$$(12)$$

Vaginal pressure data: estimation

$$m_{\mathbf{a}}(k+1) = \left(\phi_{\mathbf{a}\mapsto\mathbf{f}} - \phi_{\mathbf{a}\mapsto\mathbf{r}} - (\phi_{\mathbf{r}\mapsto\mathbf{a}} - \phi_{\mathbf{a}\mapsto\mathbf{r}}) u(k)\right) m_{\mathbf{a}}(k) + \left(1 - \phi_{\mathbf{f}\mapsto\mathbf{a}} - \phi_{\mathbf{r}\mapsto\mathbf{a}} u(k)\right) (1 - \phi_{\mathbf{a}\mapsto\mathbf{f}}) \left(\sum_{\tau=0}^{k-1} \phi_{\mathbf{f}\mapsto\mathbf{a}}^{k-1-\tau} m_{\mathbf{a}}(\tau)\right) + \phi_{\mathbf{r}\mapsto\mathbf{a}} M u(k)$$

$$(12)$$

or, in a more compact way,

$$m_a(k+1) = f(m_a(k), u(k); \theta)$$
 (13)

Vaginal pressure data: estimation

$$m_{\mathbf{a}}(k+1) = \left(\phi_{\mathbf{a}\mapsto\mathbf{f}} - \phi_{\mathbf{a}\mapsto\mathbf{r}} - (\phi_{\mathbf{r}\mapsto\mathbf{a}} - \phi_{\mathbf{a}\mapsto\mathbf{r}}) u(k)\right) m_{\mathbf{a}}(k) + \left(1 - \phi_{\mathbf{f}\mapsto\mathbf{a}} - \phi_{\mathbf{r}\mapsto\mathbf{a}} u(k)\right) (1 - \phi_{\mathbf{a}\mapsto\mathbf{f}}) \left(\sum_{\tau=0}^{k-1} \phi_{\mathbf{f}\mapsto\mathbf{a}}^{k-1-\tau} m_{\mathbf{a}}(\tau)\right) + \phi_{\mathbf{r}\mapsto\mathbf{a}} M u(k)$$

$$(12)$$

or, in a more compact way,

$$m_a(k+1) = f(m_a(k), u(k); \theta)$$
 (13)

⇒ naturally leads to a nonlinear LS formulation

What do we want to do?

- ullet estimate the parameters of person A and the associated uncertainty on this estimate (i.e., her physiological status)
- check if the model structure is meaningful
- detect outliers in the measurements stream (i.e., detect if the sensor is breaking)

Vaginal pressure data: first step

