27 Лінійні оператори і функціонали

Нехай X і E — топологічні векторні простори.

§27.1 Лінійні оператори, обмеженість і неперервність

Теорема 27.1

Лінійний оператор $T:X\to E$ є неперервним тоді і лише тоді, коли він є неперервним в точці x=0.

Доведення. **Необхідність.** Неперервний оператор є неперервним у будь-якій точці простору, зокрема у нулі.

Достатність. Припустимо, що оператор T є неперервним в нулі. Доведемо, що він є неперервним у довільній точці $x_0 \in X$. Нехай V — довільний окіл точки Tx_0 у просторі E. Тоді $V - Tx_0$ — окіл нуля в E. За умовою теореми, $T^{-1}(V - Tx_0)$ — окіл нуля в X. Оскільки оператор T є лінійним, маємо

$$T^{-1}(V) = T^{-1}(V - Tx_0) + x_0,$$

отже $T^{-1}(V)$ — окіл точки x_0 .

Означення 27.1. Лінійний оператор $T: X \to E$ називається **обмеженим**, якщо образ будь-якої обмеженої множини під дією T в X є обмеженою множиною в E.

Теорема 27.2

Кожний неперервний лінійний оператор $T: X \to E$ є обмеженим.

Доведения. Нехай A — обмежена множина в X. Доведемо обмеженість множини T(A). Нехай V — довільний окіл нуля в E і U — такий окіл нуля в X, що $T(U)\subset V$. Оскільки A — обмежена множина, то існує таке число N>0, що $\forall t>N$ $A\subset tU$. Тоді

$$\forall t > N \quad T(A) \subset tT(U) \subset tV.$$

Теорема 27.3

Нехай оператор $T:X\to E$ переводить деякий окіл U простору X в обмежену множину. Тоді оператор T є неперервним.

Доведення. Нехай T(U) — обмежена множина. Для довільного околу V нуля в E існує число t>0, що $T(U)\subset tU$. Тоді $t^{-1}U\subset T^{-1}(V)$, тобто $T^{-1}(V)$ є околом нуля у просторі X.

§27.2 Лінійні функціонали і їхні ядра

Теорема 27.4

Для ненульового лінійного функціонала f, заданого на топологічному просторі X, наступні умови є еквівалентними.

- 1. Функціонал f є неперервним.
- 2. Ядро функціонала $f \in$ замкненим.
- 3. Ядро функціонала f не є щільним в X.
- 4. Існує окіл нуля U: f(U) обмежена множина.

Доведення. 1 \implies 2. ker $f = f^{-1}(0)$. Оскільки $\{0\}$ — замкнена множина, а f — неперервний функціонал, то, оскільки прообраз замкненої множини під дією неперервного функціонала є замкненим, ker f є замкненою множиною.

- $2 \implies 3$. (Від супротивного.) Якщо ядро функціонала є замкненим і щільним в X, то ker f = X, тобто $f \equiv 0$, але за умовою теореми f ненульовий функціонал.
- $3 \implies 4$. Нехай ядро не є щільним. Тоді існує точка $x \in X$ і врівноважений окіл нуля U, такі що $(U+x) \cap \ker f = \emptyset$. Це значить, функціонал f в жодній точці $y \in U$ не може набувати значення -f(x). Отже, f(U) врівноважена множина чисел, що відрізняється від числової прямої (точніше, відрізок, симетричний відносно нуля).

Позначимо через X^* множину усіх неперервних лінійних функціоналів на X.

§27.3 Скінченновимірні простори і координатні функціонали

Означення 27.2. Нехай $\{x_k\}_{k=1}^{\infty}$ — базис банахового простору X і $x \in X$. Коефіцієнти розкладу $f_n(x)$ елемента x по базису $\{f_k\}_{k=1}^{\infty}$ називаються координатними функціоналами, що визначені на просторі X: $x = \sum_{k=1}^{\infty} f_n(x) x_k$.

Теорема 27.5

Нехай X — хаусдорфовий ТВП із $\dim X = n$. Тоді:

- 1. Будь-який лінійний функціонал на X є неперервним.
- 2. Для будь-якого топологічного векторного простору E будь-який лінійний оператор $T:X \to E$ є неперервним.
- 3. Простір X є ізоморфним n-вимірному гільбертовому простору ℓ_2^n .
- 4. Простір $X \in \text{повним}$.

Доведення. $1 \implies 2$. Обираючи в X базис $\{x_k\}_{k=1}^n$ з координатними функціоналами $\{f_k\}_{k=1}^n$, оператор T можна подати у вигляді

$$T(x) = T\left(\sum_{k=1}^{n} f_k(x)x_k\right) = \sum_{k=1}^{n} f_k(x)Tx_k.$$

Отже, обчислення T(x) зводиться до обчислення скалярів $f_k(x)$, де f — неперервний функціонал, множенню їх на фіксовані вектори Tx_k і додаванню добутків. В результаті отримуємо неперервний оператор T.

- $2 \Longrightarrow 3$. Оскільки обидва простори X і ℓ_2^n мають однакову розмірність n, то існує лінійна бієкція $T: X \to \ell_2^n$. За умовою оператори T і T^{-1} є неперервними, отже, існує ізоморфізм $T: X \to \ell_2^n$.
 - $3 \implies 4$. Випливає з повноти простору ℓ_2^n .
- $4 \implies 1$. Скористаємось математичною індукцією по n. При n=0 простір X містить лише нульовий елемент, тому твердження є тривіальним. Доведемо тепер крок індукції: нехай $\dim X = n+1$ і f ненульовий функціонал на X. Тоді $\dim \ker f = n$. За імплікаціями $1 \implies 2 \implies 3 \implies 4$ отримуємо, що $\ker f$ повний простір. Отже, $\ker f$ є замкнений в X і за теорем. 27.4 функціонал f є неперервним.

§27.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 507–510).