Problem 1. For $x \in \mathbb{R}^d$ let $||x||_2$ denote the Euclidean norm $||x||_2 = \left(\sum_{j=1}^d (x_j)^2\right)^{1/2}$, and consider the function

$$\mathbb{R}\ni t\to p_2(t)=\|x+ty\|_2^2\;,$$

where x, y are two fixed vectors in $\mathbb{R}^d \setminus \{0\}$.

(a) Show that

$$p_2(t) = t^2 ||y||_2^2 + 2tx \cdot y + ||x||_2^2$$
.

- (b) Admitting complex t, find the formula for the roots of $p_2(\cdot)$.
- (c) From the formula $p_2(t) = ||x + ty||_2^2$, argue that p_2 can have at most one distinct real root (actually it has no real roots, except when x and y are parallel).
- (d) By a combination of (b) and (c) what can you conclude about the (discriminant) expression $4(x \cdot y)^2 4||x||_2^2||y||_2^2$? Use this fact to derive the inequality

$$|x \cdot y| \le ||x||_2 ||y||_2$$
,

for all $x, y \in \mathbb{R}^d$. This is called the Cauchy-Schwarz inequality.

Problem 2. Let B be an $n \times d$ real matrix, and define

$$||B||_F = \left(\sum_{i,j=1}^{n,d} (b_{ij})^2\right)^{1/2}.$$

This is called the Frobenius norm of the matrix B.

(a) Show that

$$||Bx||_2 \le ||B||_F ||x||_2$$
, for all $x \in \mathbb{R}^d$.

Here $\|\cdot\|_2$ denotes the Euclidean norm, $\|x\|_2 = \left(\sum_{j=1}^d (x_j)^2\right)^{1/2}$.

Let $x_{\lambda} \in \mathbb{R}^d$ be a family of vectors indexed on $\lambda > 0$. We say that

$$x_{\lambda} \to x_0$$
 as $\lambda \to 0$, or equivalently $x_0 = \lim_{\lambda \to 0} x_{\lambda}$,

if and only if

$$||x_{\lambda} - x_0||_2 \to 0$$
 as $\lambda \to 0$.

(b) Show that

$$x_{\lambda} \to x_0$$
 as $\lambda \to 0$ implies that $Bx_{\lambda} \to Bx_0$ as $\lambda \to 0$

Problem 3. Let C denote the matrix

$$C = \left(\begin{array}{ccc} 4 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 4 \end{array}\right) .$$

- (a) Find the eigenvalues and corresponding eigenvectors for C.
- (b) Use your results from (a) to diagonalize C, *i.e.*, to write C as $C = QDQ^T = QDQ^{-1}$, where Q is orthogonal and D is diagonal.
- (c) Based on the decomposition you found in (b) find a simple formula for C^{100} . Similarly find a symmetric matrix \sqrt{C} with the property that $\sqrt{C}\sqrt{C}=C$.

Problem 4. Given a real $n \times n$ matrix A define

$$||A||_{\sigma} = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2}.$$

- (a) Show that if μ is an eigenvalue for A then $|\mu| \leq ||A||_{\sigma}$.
- (b) Now assume A is symmetric and as a consequence it has an orthonormal basis of eigenvectors $\{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$ with corresponding eigenvalues $\{\mu_1, \mu_2, \dots, \mu_n\}$. In that case show that

$$\max_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2} \le \max_{1 \le i \le n} |\mu_i| \ .$$

(c) Based on (a) and (b) show that $||A||_{\sigma} = \max_{1 \leq i \leq n} |\mu_i|$ for any real symmetric matrix A.