SIGN LANGUAGE RECOGNITION

by

Patrick Raja – 20BCE1058 Adrian V Martin – 20BCE1847 Akash -20BCE1919

A project report submitted to

Dr. Maria Anu

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

in partial fulfillment for the requirements for the course of

CSE4022 – NATURAL LANGUAGE PROCESSING

in

B.Tech Computer Science and Engineering

APRIL 2023

Abstract

The project aims at building a machine learning model that will be able to classify the various hand gestures used for fingerspelling in sign language. In this user independent model, classification machine learning algorithms are trained using a set of image data and testing is done on a completely different set of data. For the image dataset, depth images are used, which gave better results than some of the previous literatures, owing to the reduced pre-processing time. Various machine learning algorithms are applied on the datasets, including Random Forest Classifier.

Introduction

Communication is very crucial to human beings, as it enables us to express ourselves. We communicate through speech, gestures, body language, reading, writing or through visual aids, speech being one of the most used among them. However, unfortunately, for the speaking and hearing-impaired minority, there is a communication gap. Visual aids, or an interpreter, are used for communicating with them. However, these methods are rather cumbersome and expensive, and can't be used in an emergency. Sign Language chiefly uses manual communication to convey meaning. This involves simultaneously combining hand shapes, orientations and movement of the hands, arms or body to express the speaker's thoughts.

Sign Language consists of fingerspelling, which spells out words character by character, and word level association which involves hand gestures that convey the word meaning. Fingerspelling is a vital tool in sign language, as it enables the communication of names, addresses and other words that do not carry a meaning in word level association. Despite this, fingerspelling is not widely used as it is challenging to understand and difficult to use. Moreover, there is no universal sign language and very few people know it, which makes it an inadequate alternative for communication.

A system for sign language recognition that classifies finger spelling can solve this problem.

Literature Survey

S.	TITLE	LIST OF	LITERATURE REVIEW	REFERENCE
No		AUTHORS		
1.	Static Hand Gesture Recognition Using Artificial Neural Network	Trong-Nguyen Nguyen, Huu- Hung Huynh, Jean Meunier	The authors have discussed about a real time system for recognition of American Sign Language (ASL) gestures. The authors then focus on sign language recognition and discuss the various approaches used in this field, including template matching, feature-based approaches, and machine learning techniques. The best achieved results give an accuracy of up to 98%. The authors have identified the key challenges and limitations associated with these approaches. The authors provide a detailed overview of the features and limitations of each system and highlight the need for real-time, accurate, and context-aware sign	https://citeseer x.ist.psu.edu/d ocument?repid =rep1&type=p df&doi=a2401 59a3e11010ef5 1ab767da2340 85fc06e90b
2.	Computer Vision Based Hand Gesture Interfaces for Human- Computer Interaction	Sören Lenman, Lars Bretzner, Björn Thuresson	Initial anguage recognition systems. This article explains about building a first prototype for exploring the use of pie- and marking menus in gesture-based interaction. The authors have chosen a viewbased representation of the hand, including both color and shape cues. The system tracks and recognizes the hand poses based on a combination of multi-scale color feature detection, view-based hierarchical hand models and particle filtering. The hand poses, or hand states, are represented in terms of hierarchies of color image features at different scales, with qualitative inter-relations in terms of scale, position and orientation. These hierarchical models capture the coarse shape of the hand poses. In each image, detection of multi-scale colour features is performed. The hand states are then simultaneously detected and tracked using particle filtering, with an extension of	https://cid.nada .kth.se/pdf/CI D-172.pdf

			layered sampling referred to as	
			hierarchical layered sampling.	
3.	Hand Gesture	N. R. Das, B.	The authors have discussed the	https://ieeexplo
<i>J</i> .	Recognition	R. Shadap, and	advantages of deep learning-based	re.ieee.org/doc
	using Deep	D. K.	approaches for hand gesture	ument/835185
	Learning for	Bhattacharyya	recognition, such as their ability to	<u>6</u>
	Sign	Dilattaciiai y y a	automatically learn features from	<u> </u>
	Language		data, handle variations in hand	
	Interpretation		gestures, and improve recognition	
	interpretation		accuracy. They also provide a brief	
			overview of the various deep	
			learning architectures used in hand	
			gesture recognition, such as	
			Convolutional Neural Networks	
			(CNNs), Recurrent Neural Networks	
			(RNNs), and their variants. The	
			authors have discussed about the	
			need for a system to identify the	
			hand sign gustures in real time. The	
			authors highlight the limitations of	
			the machine learning approaches,	
			including the need for a large dataset,	
			high computational complexity, and	
			poor performance in noisy	
			environments and suggests a	
			alternative deep-learning model.	
4.	Android	Sakshi Lahoti,	In this article, The authors speaks	https://ieeexplo
	based	Shaily Kayal,	about building a mobile app that can	re.ieee.org/abst
	American	Sakshi	recognizes sign language. This	ract/document/
	Sign	Kumbhare,	article plans on creating a model	8493838/refere
	Language	Ishani	using three steps namely, Hand	nces#reference
	Recognition	Suradkar,	gesture capture and skin, feature	<u>s</u>
	System with	Vikul Pawar	extraction, classification using SVM,	
	Skin		over 500 images are used for	
	Segmentation		training, The project uses skin	
	and SVM		segmentation with a black	
			background so that akin	
			segmentation and edge detection	
			becomes easy and reduce the storage	
			space and load time. The model	
			displays the output on the screen	
			when a input hand gesture is shown	
			in the camera. Support vector	
			machine (SVM) is a supervised	
İ			learning model which is used in	
			classification of model. In this article	
			they have used HOG (histogram of	
			oriented gradient) which acts as a	
			human/feature descriptor for this	
			purpose. The final dataset is sent to	

5.	Sign Language Recognition	Satwik Ram Kodandaram, N. Pavan Kumar, Sunil Gl	cloud for further requirement. The accuracy aquired by the android app is about 89.54 percentage. The author says that the accuracy varies with the complex background. This can be very useful because mobile phone is one of the widely used electronic device. This research paper deals with recognizing the hand gestures acquisition and continues till text or speech is generated for corresponding hand gestures. Here hand gestures for sign language can be classified as static and dynamic. However, static hand gesture recognition is simpler than dynamic hand gesture recognition, but both recognition is important to the human community. The authors use Deep Learning Computer Vision to recognize the hand gestures by building Deep Neural Network architectures (Convolution Neural Network Architectures) where the model will learn to recognize the hand gestures images over an epoch.	(PDF) Sign Language Recognition (researchgate.n et)
6.	Sign and Human Action Detection Using Deep Learning	Shivanarayna Dhulipala, Festus Fatai Adedoyin, Alessandro Bruno	The authors of this study aimed to develop an efficient deep learning model that can be used to predict British sign language in an attempt to narrow this communication gap between speech-impaired and nonspeech-impaired people in the community. Two models were developed in this research, CNN and LSTM, and their performance was evaluated using a multi-class confusion matrix. The CNN model emerged with the highest performance, attaining training and testing accuracies of 98.8% and 97.4%, respectively. In addition, the model achieved average weighted precession and recall of 97% and 96%, respectively. On the other hand, the LSTM model's performance was quite poor, with the maximum training and testing	Sign Language Recognition Using Deep Learning on Custom Processed Static Gesture Images IEEE Conference Publication IEEE Xplore

		T		<u> </u>
			performance accuracies achieved	
			being 49.4% and 48.7%,	
			respectively. The research concluded	
			that the CNN model was the best for	
			recognizing and determining British	
_	G.	A 11. D	sign language.	G: T
7.	Sign	Aditya Das,	The authors of the paper presents	Sign Language
	Language	Shantanu	results obtained by retraining and	Recognition
	Recognition	Gawde, Khyati	testing this sign language gestures	<u>Using Deep</u>
	Using Deep	Suratwala,	dataset on a convolutional neural	<u>Learning on</u>
	Learning on	Dhananjay	network model using Inception v3.	Custom
	Custom	Kalbande	The model consists of multiple	Processed
	Processed		convolution filter inputs that are	Static Gesture
	Static Gesture		processed on the same input. The	Images IEEE
	Images		validation accuracy obtained was	Conference
			above 90% This paper also reviews	Publication
			the various attempts that have been	<u>IEEE Xplore</u>
			made at sign language detection	
			using machine learning and depth	
			data of images. It takes stock of the	
			various challenges posed in tackling	
			such a problem, and outlines future	
0	T	A1 1 1 T7	scope as well.	1 //* 1
8.	Faster	Abdul Kawsar	In this article, the authors propose	https://ieeexplo
	Convergence	Tushar, Akm	several modifications to the	re.ieee.org/abst
	and	Ashiquzzaman	traditional DCNN architecture. They	ract/document/
	Reduction of	, and Md.	introduce a dropout layer to reduce	<u>8289040</u>
	Overfitting in	Rashedul	overfitting, a batch normalization	
	Numerical	Islam	layer to reduce internal covariate	
	Hand Sign		shift and achieve faster convergence,	
	Recognition		and a global average pooling layer to	
	Using DCNN		reduce the number of parameters.	
			The authors report that the modified	
			DCNN achieves higher accuracy and	
			faster convergence compared to the	
			traditional DCNN architecture. They also demonstrate that the modified	
			DCNN outperforms other state-of- the-art methods for numerical hand	
			sign recognition.	
9.	Hand gesture	Feng-Sheng	In order to distinguish continuous	https://www.sc
	recognition	Chen, Chih-	gestures against stationary	iencedirect.co
	using a real-	Ming Fu,	backgrounds, the authors of this	m/science/artic
	time tracking	Chung-Lin	study develop a hand gesture	le/abs/pii/S026
	method and	Huang	recognition system. The system	288560300070
	hidden	Truang	consists of four modules: gesture	<u>288300300070</u> <u>2</u>
	Markov		recognition, feature extraction,	<u> </u>
	models		hidden Markov model training, and	
	moucis		real-time hand tracking and	
			extraction. They first employ a real-	
			extraction. They first employ a rear-	

	T	T		
10.	Hand gesture	E.	time hand tracking and extraction technique to track the moving hand and extract the hand region, after which they characterise the spatial data using a Fourier descriptor and the temporal characteristics using a motion analysis. The authors combine the spatial and temporal features of the input image sequence as their feature vector. They then use HMMs to recognise the input gesture after extracting the feature vectors. The gesture that has to be recognised is evaluated separately by each HMM. The relevant gesture is shown by the model with the highest score. The validation accuracy obtained was above 90%.	https://www.sc
10.	Hand gesture recognition using a neural network shape fitting technique	E. Stergiopoulou, N. Papamarkos	In this paper proposes a new technique for hand gesture recognition which is based on hand gesture features and on a neural network shape fitting procedure. Firstly, the hand region is isolated by using a skin color filtering procedure in the YCbCr color space. To obtain noiseless segmented images regardless to the variation of the skin color and the lighting conditions. The stage that concerns the fitting of the hand's shape as well as the stage of finger features extraction is the innovative and powerful Self-Growing and Self Organized Neural Gas network which approximate the hand's morphology. As a result, the extracted finger features are well discriminated and thus they conduce to a successful recognition. It is found from the experiments that the recognition rate is very promising and approaches 90.45%. It is worth to underline that the key characteristic of the proposed hand gesture recognition technique is the use of the SGONG neural network. The reason is twofold; SGONG is able to describe very effectively the shape of the hand, and thus allows the extraction of robust and effective	https://www.sc iencedirect.co m/science/artic le/abs/pii/S095 219760900069 4

features, and moreov by converging faster networks.	
---	--

Libraries and Models Used:

- **OpenCV** is a popular Python library used for computer vision tasks, including image and video processing, object detection and recognition, feature extraction, and camera calibration.
- **Mediapipe** uses a machine learning model based on convolutional neural networks (CNNs) to estimate the 3D coordinates of 21 hand landmarks and visualizing it.
- **Pickle** used to serialize and deserialize a wide range of Python objects, including integers, floating-point numbers, strings, lists, dictionaries, sets, and complex data structures containing these basic types.
- Random Forest Model builds multiple decision trees and combines their predictions to produce a more accurate and stable prediction.
- **Numpy** provides a set of powerful tools for working with multidimensional arrays and matrix.

Modules:

- Collecting image and labelling the folder.
- Using mediapipe for collecting landmarks co-ordinates from the images
- Collecting the landmarks co-ordinates from each images in the dataset and storing it in a pickle file.
- Training the extracted values using any machine learning model and recording the accuracy.
- Using different machine learning model for best accuracy.
- Storing the model.
- Using the model to predict real time sign languages and displaying the prediction.

REQUIREMENTS:

- IDE: Pycharm
- Library
 - 1. Os
 - 2. Cv2
 - 3. Pickle
 - 4. Mediapipe
 - 5. Random Forest Classifier from sklearn.ensemble
 - 6. Train_test_split from sklearn.model_selection
 - 7. Accuracy_score from sklearn.metrics
 - 8. Numpy

Experimental Setup

Architecture diagram:

Procedure:

Collecting images:

Create a folder named data for storing the train data(images). Mention its path in a variable as string. If the folder is not created the program will create a folder. Specify the number of signs you are going to train in the number_of_classes variable and the number of images collected in the dataset_size variable. Using cv2, The frame of the camera footage is displayed. Press "Q" for capturing images continuously for each class. Repeat the same for total number of classes specified.

Creating dataset:

Using mediapipe library, we can obtain the landmarks of the hands in the images. Each images in the folders is changes from BGR format to RGB format. The images are processed to find the landmarks. The results are stored in an array. By subtracting the minimum x and y values from each hand landmark point's coordinates, the code effectively normalizes the hand landmark data with respect to the top-left corner of the hand bounding box. This normalization is useful for various tasks such as gesture recognition, as it removes the dependency of hand landmark data on the absolute position and size of the hand in the video frame. The results such as the co-ordinates and the directory name which is represented as labels is stored in a pickle file.

Training the dataset:

Using the data and label values from the pickle file. The data is split into two types training and testing data. The training data consists of 80% of the dataset (images) and test data consists of 20% of the dataset. An ensemble model is built using random forest

classifier and trained using the training data. The prediction accuracy is found to be 100%. The model is stored for real time prediction.

Inference Classifier:

In inference classifier, a real time image is taken from the camera and the image is changed from BGR to RGB format. The landmarks are stored and using the prediction model the result is predicted and stored as a variable. Using cv2 the predicted value is displayed near the hand in the camera.

Output Screenshots:

Collecting images:

100 images are stored:

Single image:

An training image for the alphabet 'E'.

Storing training dataset in the pickle file:

Creating a model using Random forest and saving it:

Predicting real time sign language:

Conclusion:

This project can increase the interaction between the people who don't know sign language with people who are unable to ear or talk. Using this project any one can train their own gesture and share it with others, so that any confidential matter can be shared without others understanding it.

By using the ensemble Random Forest model on this extracted data, we demonstrated high levels of accuracy in detecting and classifying sign language gestures.

Reference:

- https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a240159a3e11010 ef51ab767da234085fc06e90b
- https://cid.nada.kth.se/pdf/CID-172.pdf
- Sign Language Recognition Using Deep Learning on Custom Processed Static Gesture
 Images | IEEE Conference Publication | IEEE Xplore

Appendix:

COLLECT_IMGS.PY:

```
DATA DIR = './data'
number of classes = 26
cv2.putText(frame, 'Ready? Press "Q" ! :)', (100, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3,cv2.LINE_AA)
cap.release()
```

CREATE_DATASET.PY:

```
import os
import pickle

import mediapipe as mp
import cv2

mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles

hands = mp_hands.Hands(static_image_mode=True,
min_detection_confidence=0.3)
```

TRAIN_CLASSIFIER.PY:

```
import pickle

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np

data_dict = pickle.load(open('./data.pickle', 'rb'))

data = np.asarray(data_dict['data'])
labels = np.asarray(data_dict['labels'])

x_train, x_test, y_train, y_test = train_test_split(data, labels,
test_size=0.2, shuffle=True)

model = RandomForestClassifier()

model.fit(x_train, y_train)
```

```
y_predict = model.predict(x_test)
score = accuracy_score(y_predict, y_test)
print('{}% of samples were classified correctly !'.format(score * 100))

f = open('model.p', 'wb')
pickle.dump({'model': model}, f)
f.close()
```

INFERENCE_CLASSIFIER.PY:

```
model_dict = pickle.load(open('model.p', 'rb'))
model = model dict['model']
cap = cv2.VideoCapture(0)
mp hands = mp.solutions.hands
mp drawing = mp.solutions.drawing utils
mp drawing styles = mp.solutions.drawing styles
hands = mp_hands.Hands(static image mode=True,
```