Bounding the rank of SDP

Lijun Ding

January 29, 2019

Overview

- SDP and Why Low Rank Solutions
 - What is SDP?
 - Why Low Rank Solutions?
- Bounding the rank via number of constraints (m)
 - Bound of an exact solution
 - Bound of an approximate solution
- Questions

Semidefinite Programming (SDP)

A semidefinite program is an optimization problem of the form:

minimize
$$\mathbf{trace}(A_0X)$$

subject to $\mathbf{trace}(A_iX) = b_i, i = 1, ..., m,$ (P)
 $X \succeq 0,$

where $A_i \in \mathbb{S}^n \subset \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^m$ are problem data.

Semidefinite Programming (SDP)

A semidefinite program is an optimization problem of the form:

minimize
$$\mathbf{trace}(A_0X)$$

subject to $\mathbf{trace}(A_iX) = b_i, i = 1, ..., m,$ (P)
 $X \succeq 0,$

where $A_i \in \mathbb{S}^n \subset \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^m$ are problem data.

Here $X \succeq 0$ means X is positive semidefinite and symmetric, i.e., exists some $k \in \mathbb{N}$ and $F \in \mathbb{R}^{n \times k}$ such that

$$X = FF^{\top}$$
.

Applications of SDP

SDP is applicable to a variety of problems: meaning

- analyzing problem,
- providing useful solutions computationally.

An incomplete list of application includes

- Combinatorical optimization: Max-Cut, TSP
- Optics: Phase Retrieval
- Recommendation System: Matrix Completion
- Power Systems: Power flow
- Machine Learning: Community Detection
- Statistics: Experiment Design

Also see [Vandenberghe and Boyd 96] for more applications.

A detailed example: EDMC Set-up

Euclidean Distance Matrix Completion (EDMC):

- $oldsymbol{0}$ n many vectors $ar{v}_i \in \mathbb{R}^r$
- ② An index set $\Omega \subset \{1, \ldots, n\} \times \{1, \ldots, n\}$
- **3** Pairwise distance $d_{ij}^2 = \|\bar{v}_i \bar{v}_j\|^2$, $(i,j) \in \Omega$

A detailed example: EDMC Set-up

Euclidean Distance Matrix Completion (EDMC):

- $oldsymbol{0}$ n many vectors $ar{v}_i \in \mathbb{R}^r$
- ② An index set $\Omega \subset \{1, \ldots, n\} \times \{1, \ldots, n\}$
- **3** Pairwise distance $d_{ij}^2 = \|\bar{v}_i \bar{v}_j\|^2$, $(i,j) \in \Omega$

Q: Can we recover the matrix $D=[d_{ij}^2]$ from d_{ij} , $(i,j)\in\Omega$ with $|\Omega|\ll \frac{n(n+1)}{2}$, e.g., $|\Omega|=\mathcal{O}(n)$?

A detailed example: EDMC Set-up

Euclidean Distance Matrix Completion (EDMC):

- $oldsymbol{0}$ n many vectors $ar{v}_i \in \mathbb{R}^r$
- ② An index set $\Omega \subset \{1, \ldots, n\} \times \{1, \ldots, n\}$
- **3** Pairwise distance $d_{ij}^2 = \|\bar{v}_i \bar{v}_j\|^2$, $(i,j) \in \Omega$

Q: Can we recover the matrix
$$D=[d_{ij}^2]$$
 from d_{ij} , $(i,j)\in\Omega$ with $|\Omega|\ll \frac{n(n+1)}{2}$, e.g., $|\Omega|=\mathcal{O}(n)$?

- Important in sensor network
- Infer all pairwise distance from a few pairwise distance
- r = 3 usually

A detail example : Convexification to SDP

Consider the variable matrix:

$$V = [v_1, \ldots, v_n] \in \mathbb{R}^{r \times n},$$

and

$$X = V^{\top}V \in \mathbb{S}^n, X \succeq 0$$
, and $rank(\bar{X}) \leq r$

In particular, when $V = \bar{V} = [\bar{v}_1, \dots, \bar{v}_n]$, $\bar{X} = \bar{V}^\top \bar{V}$.

A detail example: Convexification to SDP

Consider the variable matrix:

$$V = [v_1, \ldots, v_n] \in \mathbb{R}^{r \times n},$$

and

$$X = V^{\top} V \in \mathbb{S}^n, X \succeq 0$$
, and $rank(\bar{X}) \leq r$

In particular, when $V = \bar{V} = [\bar{v}_1, \dots, \bar{v}_n]$, $\bar{X} = \bar{V}^\top \bar{V}$.

The condition based on d_{ij}^2 is

$$d_{ij}^2 = \|v_i - v_j\|_2^2 = \|v_i\|_2^2 + \|v_j\|_2^2 - 2v_i^\top v_j = x_{ii} + x_{jj} - 2x_{ij}.$$

A detail example: Convexification to SDP

Consider the variable matrix:

$$V = [v_1, \ldots, v_n] \in \mathbb{R}^{r \times n},$$

and

$$X = V^{\top}V \in \mathbb{S}^n, X \succeq 0$$
, and $rank(\bar{X}) \leq r$

In particular, when $V = \bar{V} = [\bar{v}_1, \dots, \bar{v}_n]$, $\bar{X} = \bar{V}^\top \bar{V}$.

The condition based on d_{ij}^2 is

$$d_{ij}^2 = \|v_i - v_j\|_2^2 = \|v_i\|_2^2 + \|v_j\|_2^2 - 2v_i^\top v_j = x_{ii} + x_{jj} - 2x_{ij}.$$

Convexification to SDP: expect \bar{X} to be a solution (up to a shift in \bar{V})

Find	X, V	minimize	trace(X)
s.t.	$d_{ij}^2 = x_{ii} + x_{jj} - 2x_{ij}$	subject to	$d_{ij}^2 = x_{ii} + x_{jj} - 2x_{ij}$
	$(i,j)\in\Omega$		$(i,j)\in\Omega$
	$X = V^{\top}V$		$X \succeq 0$

Outline

- SDP and Why Low Rank Solutions
 - What is SDP?
 - Why Low Rank Solutions?
- 2 Bounding the rank via number of constraints (m)
 - Bound of an exact solution
 - Bound of an approximate solution
- Questions

Why Low Rank? Interpretability

Low Rank solutions X^* to SDP usually are more interpretable.

• Euclidean distance matrix completion: $\operatorname{rank}(X^*) > \operatorname{rank}(\bar{X})$, hard to interpret. Expect $\operatorname{rank}(X^*) = \operatorname{rank}(\bar{X})$.

Why Low Rank? Interpretability

Low Rank solutions X^* to SDP usually are more interpretable.

- Euclidean distance matrix completion: $\operatorname{rank}(X^*) > \operatorname{rank}(\bar{X})$, hard to interpret. Expect $\operatorname{rank}(X^*) = \operatorname{rank}(\bar{X})$.
- ② Combinatorical optimization: $X^* = xx^\top$ and $x = \{\pm 1\}^n$, binary assignment.
- **3** Phase Retrieval: $X^* = xx^{\top}$, $x \in \mathbb{R}^n$ where x stands for an approximation of the underlying phase/object.

Why Low Rank? Computational opportunity

Recall $X^* \in \mathbb{S}^n$. Let $r^* = \operatorname{rank}(X^*)$ with $r^* \ll n$. Efficient Algorithm opportunity:

Why Low Rank? Computational opportunity

Recall $X^* \in \mathbb{S}^n$. Let $r^* = \operatorname{rank}(X^*)$ with $r^* \ll n$. Efficient Algorithm opportunity:

• Space:

	$X^* \in \mathbb{S}^n$	$X^* = FF^{\top}$
Space	$\mathcal{O}(n^2)$	$\mathcal{O}(\mathit{nr}^{\star})$

Why Low Rank? Computational opportunity

Recall $X^* \in \mathbb{S}^n$. Let $r^* = \operatorname{rank}(X^*)$ with $r^* \ll n$. Efficient Algorithm opportunity:

• Space:

	$X^* \in \mathbb{S}^n$	$X^* = FF^{\top}$	
Space	$\mathcal{O}(n^2)$	$\mathcal{O}(nr^*)$	

• Time:

	$X \in \mathbb{S}^n$	$X = FF^{\top}$
Matrix-vector product	$\mathcal{O}(n^2)$	$\mathcal{O}(\mathit{nr}^{\star})$

Outline

- SDP and Why Low Rank Solutions
 - What is SDP?
 - Why Low Rank Solutions?
- Bounding the rank via number of constraints (m)
 - Bound of an exact solution
 - Bound of an approximate solution
- Questions

Exact Bound: $\frac{r^*(r^*+1)}{2} \leq m+1$

Recall the SDP (P):

minimize
$$\mathbf{trace}(A_0X)$$
 subject to $\mathbf{trace}(A_iX) = b_i, \ i = 1, \dots, m,$ $X \succeq 0.$

Exact Bound: $\frac{r^*(r^*+1)}{2} \leq m + 1$

Recall the SDP (P):

minimize
$$\mathbf{trace}(A_0X)$$

subject to $\mathbf{trace}(A_iX) = b_i, i = 1, \dots, m,$
 $X \succeq 0.$

Theorem 1 [Barvinok 95, Pataki 98]

$$\frac{r^{\star}(r^{\star}+1)}{2} \leq m+1$$

Theorem 1 [Barvinok 95, Pataki 98]

If there is a solution to (P), then there is a solution X^* with rank r^* satisfying

$$\frac{r^{\star}(r^{\star}+1)}{2} \leq m+1$$

1 The bound on r^* depend only on m.

Theorem 1 [Barvinok 95, Pataki 98]

$$\frac{r^{\star}(r^{\star}+1)}{2} \leq m+1$$

- The bound on r^* depend only on m.
- ② If $m = \mathcal{O}(n)$, e.g., EDMC $|\Omega| = m = \mathcal{O}(n)$, then $r^* \ll n$.

Theorem 1 [Barvinok 95, Pataki 98]

$$\frac{r^{\star}(r^{\star}+1)}{2} \leq m+1$$

- The bound on r^* depend only on m.
- ② If $m = \mathcal{O}(n)$, e.g., EDMC $|\Omega| = m = \mathcal{O}(n)$, then $r^* \ll n$.
- **3** Rank grows $\mathcal{O}(\sqrt{m})$ though actual r^* can be much lower.

Theorem 1 [Barvinok 95, Pataki 98]

$$\frac{r^{\star}(r^{\star}+1)}{2} \leq m+1$$

- The bound on r^* depend only on m.
- ② If $m = \mathcal{O}(n)$, e.g., EDMC $|\Omega| = m = \mathcal{O}(n)$, then $r^* \ll n$.
- **3** Rank grows $\mathcal{O}(\sqrt{m})$ though actual r^* can be much lower.
- Existence of a "low" rank solution but not every solution is "low rank".

 Existence of a "low" rank solution but not every solution is "low rank".

Exact Bound: Historical Remarks

[Barvinok 95]

- Motivation: a graph problem which now are considered as Euclidean distance matrix completion
- Proof strategy: relies on convex duality theory
- Technique: Need results from algebraic geometry and semialgebraic set.

Exact Bound: Historical Remarks

[Barvinok 95]

- Motivation: a graph problem which now are considered as Euclidean distance matrix completion
- Proof strategy: relies on convex duality theory
- Technique: Need results from algebraic geometry and semialgebraic set.

[Pataki 98]

- Motivation: eigenvalue optimization
- Proof strategy: direct bound the rank of X*.
- Technique: Linear algebra (only)
- Generality: More general, deals with all solutions of (P)

Rank-Nullity Theorem

Given a linear map $\Psi:\mathbb{R}^I o\mathbb{R}^h$, define the null space and image space as

$$\operatorname{nullspace}(\Psi) := \{x \in \mathbb{R}^I \mid \Psi(x) = 0\}, \quad \operatorname{im}(\Psi) := \{\Psi(x) \in \mathbb{R}^h \mid x \in \mathbb{R}^I\}.$$

Recall the rank-nullity theorem says that

$$\dim(\mathbf{nullspace}(\Psi)) + \dim(\mathbf{im}(\Psi)) = I.$$

In particular, if h < I, then $nullspace(\Psi) \neq \emptyset$.

1 Given a solution $\bar{X} = FF^{\top}$, where $F \in \mathbb{R}^{n \times k}$

- **①** Given a solution $\bar{X} = FF^{\top}$, where $F \in \mathbb{R}^{n \times k}$
- ② If $\frac{k(k+1)}{2} \leq m+1$, we are done. Otherwise, consider the linear map

$$\Psi_F: S \in \mathbb{S}^k o egin{bmatrix} \mathbf{trace}(A_0FSF^{ op}) \\ \mathbf{trace}(A_1FSF^{ op}) \\ \vdots \\ \mathbf{trace}(A_mFSF^{ op}) \end{bmatrix} \in \mathbb{R}^{m+1}.$$

- **①** Given a solution $\bar{X} = FF^{\top}$, where $F \in \mathbb{R}^{n \times k}$
- ② If $\frac{k(k+1)}{2} \le m+1$, we are done. Otherwise, consider the linear map

$$\Psi_F: S \in \mathbb{S}^k o egin{bmatrix} \mathsf{trace}(A_0FSF^{ op}) \ \mathsf{trace}(A_1FSF^{ op}) \ dots \ \mathsf{trace}(A_mFSF^{ op}) \end{bmatrix} \in \mathbb{R}^{m+1}.$$

§ Since $\frac{k(k+1)}{2} > m+1$, rank-nullity theorem tells us that exists $S \neq 0$, such that $\Psi_F(S) = 0$

- **①** Given a solution $\bar{X} = FF^{\top}$, where $F \in \mathbb{R}^{n \times k}$
- ② If $\frac{k(k+1)}{2} \le m+1$, we are done. Otherwise, consider the linear map

$$\Psi_F: S \in \mathbb{S}^k o egin{bmatrix} \mathbf{trace}(A_0FSF^{\top}) \\ \mathbf{trace}(A_1FSF^{\top}) \\ \vdots \\ \mathbf{trace}(A_mFSF^{\top}) \end{bmatrix} \in \mathbb{R}^{m+1}.$$

- 3 Since $\frac{k(k+1)}{2} > m+1$, rank-nullity theorem tells us that exists $S \neq 0$, such that $\Psi_F(S) = 0$
- **4** Consider $X_{\alpha} = F(I + \alpha S)F^{\top}$ for $\alpha \in \mathbb{R}$, which is feasible and optimal for all small α (as $I \succ 0$)

- **①** Given a solution $\bar{X} = FF^{\top}$, where $F \in \mathbb{R}^{n \times k}$
- ② If $\frac{k(k+1)}{2} \leq m+1$, we are done. Otherwise, consider the linear map

$$\Psi_F: S \in \mathbb{S}^k
ightarrow egin{bmatrix} \mathbf{trace}(A_0FSF^{ op}) \\ \mathbf{trace}(A_1FSF^{ op}) \\ dots \\ \mathbf{trace}(A_mFSF^{ op}) \end{bmatrix} \in \mathbb{R}^{m+1}.$$

- Since $\frac{k(k+1)}{2} > m+1$, rank-nullity theorem tells us that exists $S \neq 0$, such that $\Psi_F(S) = 0$
- **②** Consider $X_{\alpha} = F(I + \alpha S)F^{\top}$ for $\alpha \in \mathbb{R}$, which is feasible and optimal for all small α (as $I \succ 0$)
- Set $-\frac{1}{\alpha}$ be a certain eigenvalue of S to reduce the rank and repeat step 1-4 until $\frac{k(k+1)}{2}$ ≤ m + 1.

Exact bound: Illustration of Step 5

• Set $\frac{1}{\alpha}$ be a certain eigenvalue of S to reduce the rank

Case Eigenvalue of $S \in \mathbb{S}^k$

$$\begin{aligned} \text{Set } \alpha &= \, -\frac{1}{\lambda_{\max}(S)} \\ \operatorname{rank}(I + \alpha S) &< k, \\ I + \alpha S &\geq 0 \end{aligned}$$

Case 2:

Set
$$\alpha = -\frac{1}{\lambda_{\min}(S)}$$

 $\operatorname{rank}(I + \alpha S) < k$,
 $I + \alpha S > 0$

Outline

- SDP and Why Low Rank Solutions
 - What is SDP?
 - Why Low Rank Solutions?
- 2 Bounding the rank via number of constraints (m)
 - Bound of an exact solution
 - Bound of an approximate solution
- Questions

Approximation bound: $O(\frac{\ln(m)}{\epsilon^2})$

What if we look for an approximate solution?

Approximation bound: $\mathcal{O}(rac{\ln(m)}{\epsilon^2})$

What if we look for an approximate solution?

Theorem 2 [Barvinok 2002]

Fix an approximation level $\epsilon \in (0,1)$. If A_i s are positive semidefinite and (P) admits a solution X^* with optimal value b_0 , then there is a matrix $X_0 \succeq 0$ such that for all $0 \le i \le m$

$$trace(A_iX_0) \in b_i[1-\epsilon,1+\epsilon]$$

and

$$\mathsf{rank}(X_0) \leq \frac{8}{\epsilon^2} \ln(4(m+1))$$

Fact: for any $A, B \succeq 0$, $\mathbf{trace}(AB) \geq 0$.

1 Dependence comparison:

Theorem 1	Theorem 2
$\mathcal{O}(\sqrt{m})$	$\mathcal{O}(\frac{\ln m}{\epsilon^2})$

Dependence comparison:

Theorem 1	Theorem 2
$\mathcal{O}(\sqrt{m})$	$\mathcal{O}(\frac{\ln m}{\epsilon^2})$

@ Genreal version: Exists but more complicated

Dependence comparison:

Theorem 1	Theorem 2
$\mathcal{O}(\sqrt{m})$	$\mathcal{O}(\frac{\ln m}{\epsilon^2})$

- @ Genreal version: Exists but more complicated
- **3** $\mathcal{O}(\frac{1}{\epsilon^2})$ Dependence: Not great. Similar dependence as Johnson-Lindenstrauss Lemma

Dependence comparison:

Theorem 1	Theorem 2
$\mathcal{O}(\sqrt{m})$	$\mathcal{O}(\frac{\ln m}{\epsilon^2})$

- @ Genreal version: Exists but more complicated
- **3** $\mathcal{O}(\frac{1}{\epsilon^2})$ Dependence: Not great. Similar dependence as Johnson-Lindenstrauss Lemma
- Proof technique in [Barvinok 2002]: Semidefinite quadratic form and Gaussian measures.

Approximation: Key Lemma

(Generalized) Johnson Lindernstrauss Lemma

Fix an approximation level $\epsilon \in (0,1)$, given m matrices $F_i \in \mathbb{R}^{n \times d_i}, i = 1, \ldots, m, d_i \leq n$, there is a matrix $U \in \mathbb{R}^{r \times n}$ with $r = \frac{8 \ln(4m)}{\epsilon^2}$ such that for all i,

$$||UF_i||_F^2 \in ||F_i||_F^2[1-\epsilon, 1+\epsilon].$$

- Take d = 1 reduces to normal J-L Lemma.
- Norma J-L will make the $r = \mathcal{O}(\frac{\ln(m + \sum d_i)}{\epsilon^2})$.

• First suppose the solution $X^* = I$. Then

$$b_i = \operatorname{trace}(A_i X^*) = \operatorname{trace}(A_i), \quad i = 0, 1, \dots, m.$$

• First suppose the solution $X^* = I$. Then

$$b_i = \mathsf{trace}(A_i X^*) = \mathsf{trace}(A_i), \quad i = 0, 1, \dots, m.$$

② Since $A_i \succeq 0$, exists $F_i \in \mathbb{R}^{n \times d_i}$ such that

$$A_i = F_i F_i^{\top}, \quad i = 0, \dots, m.$$

• First suppose the solution $X^* = I$. Then

$$b_i = \mathsf{trace}(A_i X^*) = \mathsf{trace}(A_i), \quad i = 0, 1, \dots, m.$$

② Since $A_i \succeq 0$, exists $F_i \in \mathbb{R}^{n \times d_i}$ such that

$$A_i = F_i F_i^{\top}, \quad i = 0, \dots, m.$$

Thus

$$b_i = \mathsf{trace}(F_i F_i^{\top}) = ||F_i||_F^2, i = 0, \dots, m.$$

• First suppose the solution $X^* = I$. Then

$$b_i = \mathsf{trace}(A_i X^*) = \mathsf{trace}(A_i), \quad i = 0, 1, \dots, m.$$

② Since $A_i \succeq 0$, exists $F_i \in \mathbb{R}^{n \times d_i}$ such that

$$A_i = F_i F_i^{\top}, \quad i = 0, \ldots, m.$$

Thus

$$b_i = \text{trace}(F_i F_i^{\top}) = ||F_i||_F^2, i = 0, \dots, m.$$

① Using generalized J-L to conclude there exists $U \in \mathbb{R}^{r \times n}$ with $r = \frac{8 \ln(4(m+1))}{\epsilon^2}$ such that

$$||UF_i||_F^2 \in ||F_i||_F^2[1-\epsilon, 1+\epsilon] = b_i[1-\epsilon, 1+\epsilon].$$

• We have $U \in \mathbb{R}^{r \times n}$ with $r = \frac{8 \ln(4(m+1))}{\epsilon^2}$ and

$$||UF_i||_F^2 \in ||F_i||_F^2[1-\epsilon, 1+\epsilon] = b_i[1-\epsilon, 1+\epsilon]$$

① We have $U \in \mathbb{R}^{r \times n}$ with $r = \frac{8 \ln(4(m+1))}{\epsilon^2}$ and

$$||UF_i||_F^2 \in ||F_i||_F^2[1-\epsilon, 1+\epsilon] = b_i[1-\epsilon, 1+\epsilon]$$

② Now set $X_0 = U^\top U$ with rank no larger than $\frac{8 \ln(4(m+1))}{\epsilon^2}$, and for all i

$$\mathsf{trace}(A_iX_0) = \mathsf{trace}(F_iF_i^\top U^\top U) = \mathsf{trace}((UF_i)^\top UF_i) = \|UF_i\|_F^2.$$

① We have $U \in \mathbb{R}^{r \times n}$ with $r = \frac{8 \ln(4(m+1))}{\epsilon^2}$ and

$$||UF_i||_F^2 \in ||F_i||_F^2[1-\epsilon, 1+\epsilon] = b_i[1-\epsilon, 1+\epsilon]$$

② Now set $X_0 = U^\top U$ with rank no larger than $\frac{8 \ln(4(m+1))}{\epsilon^2}$, and for all i

$$\mathsf{trace}(A_iX_0) = \mathsf{trace}(F_iF_i^\top U^\top U) = \mathsf{trace}((UF_i)^\top UF_i) = \|UF_i\|_F^2.$$

3 For general X^* , consider $X^* = FF^\top$ and

$$A'_i = F^{\top} A_i F, \quad i = 1, \ldots, m.$$

• We have $U \in \mathbb{R}^{r \times n}$ with $r = \frac{8 \ln(4(m+1))}{c^2}$ and

$$||UF_i||_F^2 \in ||F_i||_F^2[1-\epsilon, 1+\epsilon] = b_i[1-\epsilon, 1+\epsilon]$$

② Now set $X_0 = U^T U$ with rank no larger than $\frac{8 \ln(4(m+1))}{c^2}$, and for all i

$$\mathsf{trace}(A_iX_0) = \mathsf{trace}(F_iF_i^\top U^\top U) = \mathsf{trace}((UF_i)^\top UF_i) = \|UF_i\|_F^2.$$

3 For general X^* , consider $X^* = FF^{\top}$ and

$$A'_i = F^{\top} A_i F, \quad i = 1, \ldots, m.$$

1 Repeat previous step for A'_i and get X'_0 . Set $X_0 = FX'_0F^{\top}$.

Outline

- SDP and Why Low Rank Solutions
 - What is SDP?
 - Why Low Rank Solutions?
- 2 Bounding the rank via number of constraints (m)
 - Bound of an exact solution
 - Bound of an approximate solution
- Questions

Questions

• If a solution to (P) exists, there is a solution with rank r^* must satisfy

$$(a)r^{\star} > \frac{1}{2}m \quad (b)r^{\star} = \mathcal{O}(\sqrt{m}) \quad (c)r^{\star} > \frac{1}{2}n \quad (d)r^{\star} = \mathcal{O}(m^{\frac{1}{3}}).$$

• If a solution to (P) exists and all $A_i \succeq 0$, there is a matrix X_0 with ϵ -approximation level, i.e., $\mathbf{trace}(A_iX_0) \in b_i[1-\epsilon,1+\epsilon]$, and has rank r no more than

$$(a)\mathcal{O}(\frac{\ln(m)}{\epsilon^2}) \quad (b)\mathcal{O}(\frac{\ln(\ln(m))}{\epsilon^2}) \quad (c)\mathcal{O}(\frac{\ln(m)}{\epsilon}) \quad (d)\mathcal{O}(\frac{\ln(n)}{\epsilon})$$

References

Vandenberghe, Lieven, and Stephen Boyd. "Semidefinite programming." SIAM review 38, no. 1 (1996): 49-95.

Barvinok, Alexander I. "Problems of distance geometry and convex properties of quadratic maps." Discrete & Computational Geometry 13, no. 2 (1995): 189-202.

Pataki, Gabor. "On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues." Mathematics of operations research 23, no. 2 (1998): 339-358.

Barvinok, Alexander. A course in convexity. Vol. 54. American Mathematical Soc., 2002.