```
In [1]: # Imports
import os
import subprocess
import stat
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import datetime
sns.set(style="white")
%matplotlib inline

# What can we learn about different hosts and areas?
# What can we learn from predictions? (ex: locations, prices, reviews, etc)
# Which hosts are the busiest and why?
# Is there any noticeable difference of traffic among different areas and what could be the reason for it?
```

```
In [2]: path = 'dataset/AB_NYC_2019.csv'
df = pd.read_csv(path)
```

In [14]: df.head()

Out[14]:

|   | id   | name                                                      | host_id | host_name   | neighbourhood_group | neighbourhood | latitude | longitude | room_type          | price | minim |
|---|------|-----------------------------------------------------------|---------|-------------|---------------------|---------------|----------|-----------|--------------------|-------|-------|
| 0 | 2539 | Clean & quiet apt home by the park                        | 2787    | John        | Brooklyn            | Kensington    | 40.64749 | -73.97237 | Private room       | 149   | 1     |
| 1 | 2595 | Skylit Midtown<br>Castle                                  | 2845    | Jennifer    | Manhattan           | Midtown       | 40.75362 | -73.98377 | Entire<br>home/apt | 225   | 1     |
| 2 | 3647 | THE VILLAGE<br>OF<br>HARLEMNEW<br>YORK!                   | 4632    | Elisabeth   | Manhattan           | Harlem        | 40.80902 | -73.94190 | Private room       | 150   | 3     |
| 3 | 3831 | Cozy Entire<br>Floor of<br>Brownstone                     | 4869    | LisaRoxanne | Brooklyn            | Clinton Hill  | 40.68514 | -73.95976 | Entire<br>home/apt | 89    | 1     |
| 4 | 5022 | Entire Apt:<br>Spacious<br>Studio/Loft by<br>central park | 7192    | Laura       | Manhattan           | East Harlem   | 40.79851 | -73.94399 | Entire<br>home/apt | 80    | 10    |

```
In [6]: df.columns
```

```
In [28]: # How many nights people usually rent from Airbnb NYC?
    plt.hist(df['minimum_nights'], bins = 20, range=(0,30))
    plt.title('Minimum Nights rented')
    plt.xlabel('Number of Nights')
    plt.show()
    # The average location is around 7 days. However, the most frequent rentals are between 2 to 4 days.
    # Interesting to notice here is that 30 days rentals occurs frequently.
```



In [33]: # Avg of days people stay rented in NYC Airbnb
round(df['minimum\_nights'].mean(),1)

Out[33]: 7.0

Out[44]: Text(0.5,1,'Rentals per Neighbouhood')



# In [47]: # Prices average by neighbourhood sns.barplot(data=df, x='neighbourhood\_group', y='price', palette = 'Greens\_r') plt.xlabel("Neighborhood", fontdict= {'size':10}) plt.ylabel("Price", fontdict= {'size':12}) plt.title("Prices per Neighbouhood") # We can see that Manhattan and Brooklyn are the most expensives, following the offer X demand rule.

Out[47]: Text(0.5,1,'Prices per Neighbouhood')



```
In [6]: # Type of Listings
    plt.figure(figsize=(5,4))
    g = sns.countplot(x = 'room_type', data = df)
    plt.xlabel("Room Type",fontdict= {'size':10})
    plt.ylabel("Quantity of Rentals", fontdict= {'size':12})
    plt.title("Rentals by type")
    # The results show us that usually people rent an entire appartment, but given NYC is an expensive place and also big
    city,
    # we can also see almost as many people listing a Private Room, probably using it to capitalize empty spaces.
```

Out[6]: Text(0.5,1,'Rentals by type')



# Which hosts are the busiest and why?

```
In [179]: # Most busy hosts
busyHosts = df['host_id'].value_counts() #count how many rents per host_ID
busyHosts = pd.DataFrame(busyHosts)
busyHosts.columns = ['rentals']
busyHosts['hostID'] = busyHosts.index
busyHosts.reset_index(drop=True)
```

### Out[179]:

|    | rentals | hostID    |
|----|---------|-----------|
| 0  | 327     | 219517861 |
| 1  | 232     | 107434423 |
| 2  | 121     | 30283594  |
| 3  | 103     | 137358866 |
| 4  | 96      | 12243051  |
| 5  | 96      | 16098958  |
| 6  | 91      | 61391963  |
| 7  | 87      | 22541573  |
| 8  | 65      | 200380610 |
| 9  | 52      | 7503643   |
| 10 | 52      | 1475015   |
| 11 | 50      | 120762452 |
| 12 | 49      | 2856748   |
| 13 | 49      | 205031545 |
| 14 | 47      | 190921808 |
| 15 | 43      | 26377263  |
| 16 | 39      | 2119276   |
| 17 | 37      | 19303369  |
| 18 | 34      | 25237492  |
| 19 | 34      | 119669058 |
| 20 | 33      | 76104209  |
| 21 | 33      | 113805886 |
| 22 | 33      | 213781715 |

|       | rentals | hostID    |
|-------|---------|-----------|
|       |         |           |
| 23    | 32      | 238321374 |
| 24    | 31      | 51501835  |
| 25    | 31      | 50760546  |
| 26    | 30      | 224414117 |
| 27    | 29      | 13347167  |
| 28    | 28      | 39528519  |
| 29    | 28      | 417504    |
|       |         |           |
| 37427 | 1       | 209237058 |
| 37428 | 1       | 18594883  |
| 37429 | 1       | 29285454  |
| 37430 | 1       | 202449469 |
| 37431 | 1       | 7708014   |
| 37432 | 1       | 48677964  |
| 37433 | 1       | 4443213   |
| 37434 | 1       | 5960171   |
| 37435 | 1       | 49753169  |
| 37436 | 1       | 32846930  |
| 37437 | 1       | 15535189  |
| 37438 | 1       | 91757655  |
| 37439 | 1       | 3266249   |
| 37440 | 1       | 1723485   |
| 37441 | 1       | 101809002 |

|       | rentals | hostID    |
|-------|---------|-----------|
| 37442 | 1       | 50945119  |
| 37443 | 1       | 21148770  |
| 37444 | 1       | 63407204  |
| 37445 | 1       | 48161896  |
| 37446 | 1       | 113110121 |
| 37447 | 1       | 15397994  |
| 37448 | 1       | 14337132  |
| 37449 | 1       | 19729266  |
| 37450 | 1       | 156843123 |
| 37451 | 1       | 45483124  |
| 37452 | 1       | 1641589   |
| 37453 | 1       | 4070519   |
| 37454 | 1       | 208106618 |
| 37455 | 1       | 235939247 |
| 37456 | 1       | 1288080   |

37457 rows × 2 columns

In [180]: #Select only the top 10 renters
busyHosts = busyHosts.head(10)

In [181]: busyHosts

Out[181]:

|           | rentals | hostID    |
|-----------|---------|-----------|
| 219517861 | 327     | 219517861 |
| 107434423 | 232     | 107434423 |
| 30283594  | 121     | 30283594  |
| 137358866 | 103     | 137358866 |
| 12243051  | 96      | 12243051  |
| 16098958  | 96      | 16098958  |
| 61391963  | 91      | 61391963  |
| 22541573  | 87      | 22541573  |
| 200380610 | 65      | 200380610 |
| 7503643   | 52      | 7503643   |

```
In [186]: plt.figure(figsize=(15,10))
    g = sns.barplot(y='rentals', x= 'hostID', data=busyHosts)
    plt.ylabel("Qty Rentals",fontdict= {'size':10})
    plt.xlabel("Host ID", fontdict= {'size':12})
    plt.title("Rentals by hostID (100+ rentals)")
```





In [192]: # Extracting only the Top 10 hosts from DF and put in a DF.
hosts = [219517861,107434423,30283594,137358866,12243051,16098958,61391963,22541573,200380610,7503643]
df2 = df[df['host\_id'].isin(hosts)]
df2 = pd.DataFrame(df2)

In [198]: # Where do they have their estates?
plt.figure(figsize=(10,8))
sns.barplot(x='host\_name', y='price', data=df2, hue='neighbourhood\_group')
# The top 10 renters have their estate in Manhattan and/or Brooklyn areas, confirming that the demand is strong in tho
se locat

Out[198]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1b650f34ef0>



```
In [200]: # What kind of property they usually list for renting in Airbnb
plt.figure(figsize=(10,8))
sns.barplot(x='host_name', y='price', data=df2, hue='room_type')
# The top 10 renters have most of the times the entire appartment for rent.
```

Out[200]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1b652278668>



## **Best Qualities for renting**

```
In [11]: df3 = df.filter(['name','host_id', 'host_name'], axis=1)
    df3.head()
```

Out[11]:

|   | name                                             | host_id | host_name   |
|---|--------------------------------------------------|---------|-------------|
| 0 | Clean & quiet apt home by the park               | 2787    | John        |
| 1 | Skylit Midtown Castle                            | 2845    | Jennifer    |
| 2 | THE VILLAGE OF HARLEMNEW YORK!                   | 4632    | Elisabeth   |
| 3 | Cozy Entire Floor of Brownstone                  | 4869    | LisaRoxanne |
| 4 | Entire Apt: Spacious Studio/Loft by central park | 7192    | Laura       |

```
In [29]: # Extracting the column Name (with qualities from the property) and putting into a list for counting
    reps = []
    c=0
    while c < len(df3):
        try:
        strg = df3['name'][c].split()
        except:
        c=c+1
    for i in strg:
        reps.append(i)
    c=c+1</pre>
```

```
In [74]: # Convert all to Lowecase
reps = [x.lower() for x in reps]
```

```
In [75]: repsdf = pd.DataFrame(reps)
    repsdf = repsdf[0].value_counts()
    graph = pd.DataFrame(repsdf[repsdf>1500])
    graph.columns = ['wordCount']
    graph['word'] = graph.index
    graph.reset_index(drop=True)
```

### Out[75]:

|    | wordCount | word         |
|----|-----------|--------------|
| 0  | 6986      | private      |
| 1  | 6112      | apartment    |
| 2  | 4634      | cozy         |
| 3  | 3773      | studio       |
| 4  | 3627      | brooklyn     |
| 5  | 3570      | apt          |
| 6  | 3387      | spacious     |
| 7  | 2966      | east         |
| 8  | 2856      | manhattan    |
| 9  | 2634      | park         |
| 10 | 2537      | sunny        |
| 11 | 2319      | beautiful    |
| 12 | 2294      | williamsburg |
| 13 | 2055      | village      |
| 14 | 2044      | heart        |
| 15 | 1882      | large        |
| 16 | 1819      | loft         |
| 17 | 1787      | nyc          |
| 18 | 1715      | central      |
| 19 | 1648      | modern       |
| 20 | 1617      | home         |
| 21 | 1615      | luxury       |
| 22 | 1522      | west         |

| <br> |  |  |
|------|--|--|
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |

```
In [76]: plt.figure(figsize=(15,10))
    g = sns.barplot(y='word', x= 'wordCount', data=graph)
    plt.ylabel("Quality",fontdict= {'size':10})
    plt.xlabel("Mentions", fontdict= {'size':12})
    plt.title("Top property features highlighted by Airbnb users for NYC Rent")
```

Out[76]: Text(0.5,1,'Top property features highlighted by Airbnb users for NYC Rent')

