

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Programação III AP2 2° semestre de 2007.

Nome -

Assinatura –

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular.
- 2. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 3. Você pode usar lápis para responder as questões.
- 4. Ao final da prova devolva as folhas de questões e as de respostas.
- 5. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Questão 1) (2.5 pontos)

Escreva um programa que receba como parâmetro de entrada, o nome de um arquivo texto, cujo conteúdo são o nome do aluno e as três notas dos alunos do curso, uma em cada linha, e que ordene o arquivo de saída em ordem crescente pela média do aluno. Isto é, se eu tiver como entrada o arquivo:

Antônio	10,0	9,5	7,5
Carlos	3,0	4,0	5,0
João	7,0	7,0	4,0

A saída será:

4,0

6,0

9,0

Um exemplo de uso desse programa seria java calculaMedia notas.txt.

Resposta:

```
import java.io.*;
public class calculaMedia {
public static void main(String[] args) throws IOException {
   BufferedReader in = new BufferedReader(new FileReader(args[0]));
   int n = 0;
   String s;
  try{
     while ((s = in.readLine()) != null) n++;
   catch (Exception e) {
     System.out.println("Excecao1\n");
  try {
      float vet[] = new float[n];
      int cont = 0;
      String vs[];
      float x, media;
      in.close();
      in = new BufferedReader(new FileReader(args[0]));
      while((s = in.readLine()) != null) {
        media = 0f;
        vs = s.split("\t");
        x = Float.parseFloat(vs[1]);
        media += x;
        x = Float.parseFloat(vs[2]);
        media += x;
        x = Float.parseFloat(vs[3]);
        media += x;
       media /= 3;
        vet[cont++] = media;
      BufferedWriter out = new BufferedWriter(new FileWriter("saida-
"+args[0]));
      Ordena (vet);
      for (int i = 0; i < n; i++) out.write(vet[i]+"\n");
      out.close();
   }
   catch (Exception e) {
     System.out.println("Excecao2\n");
   finally{
     in.close();
   }
 }
public static void Ordena (float[] vet){
   int i, j, menor;
   float temp;
   for (i = 0; i < vet.length; i++) {</pre>
```

```
menor = i;
      for (j = i + 1; j < \text{vet.length}; j++)
         if (vet[j] < vet [menor]) menor = j;</pre>
      temp = vet[menor];
      vet[menor] = vet[i];
      vet[i] = temp;
   }
}
}
Questão 2) (2.5 pontos)
O que será impresso no código a seguir. Sua resposta só será válida se você explicar o
porquê.
class Estado{ Estado(String s) { System.out.println(s); } }
class Pessoa{
 Estado p = new Estado ("Ativo");
  Pessoa() { System.out.println("Pessoa"); }
}
class Idoso extends Pessoa{
 Estado i = new Estado ("Sabio");
  Idoso() { System.out.println("Idoso"); }
class Avo extends Idoso{
 Estado a1 = new Estado ("Alegre");
 Estado a2 = new Estado ("Amigo");
 Estado a3 = new Estado ("Satisfeito");
  Avo() {
    System.out.println("Avo");
    a3 = new Estado ("Orgulhoso");
  void Fim(){System.out.println("Fim"); }
}
public class Teste{
 public static void main (String[] args) {
    Avo a = new Avo();
    a.fim();
  }
}
Resposta:
Ativo
Pessoa
Sabio
Idoso
Alegre
```

Amigo Satisfeito Avo Orgulhoso Fim

Questão 3) (2.5 pontos)

Escreva um programa para criar uma janela contendo um campo de texto e um botão, como mostrado na figura abaixo, e que tenha o seguinte comportamento:

- (a) O evento de pressionar a tecla *Return*, quando o cursor está posicionado sobre o campo de texto, deve ocasionar a criação de uma janela de diálogo na qual é impresso o texto contido no campo de texto, precedido por "O campo de texto contém:".
- (b) O evento de clicar no botão deve "limpar" o campo de texto, isto é, deve apagar o conteúdo do campo de texto, fazendo com que ele fique em branco.

Resposta:

```
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class AP2_2007_2_Q3 {
      public static void main(String[] args) {
           new JTexto();
      }
class JTexto implements ActionListener {
      JFrame frame = new JFrame("Apaga Texto");
      JTextField tf = new JTextField(20);
      JButton bt = new JButton("Limpa");
      public JTexto() {
            tf.setEditable(true);
            tf.addActionListener(this);
           bt.addActionListener(this);
            Container c = frame.getContentPane();
            c.setLayout(new FlowLayout(FlowLayout.CENTER, 5, 5));
            c.add(tf); c.add(bt);
            frame.setSize(300, 120);
            frame.setVisible(true);
      public void actionPerformed(ActionEvent e) {
            Object o = e.getSource();
            if (o == bt) {
                  tf.setText("");
            else if (o == tf)
                  JOptionPane.showMessageDialog(null, "O campo texto
contém: " + tf.getText());
```

}

Questão 4) (2.5 pontos)

Podemos representar um polinômio como uma lista ordenada de termos, onde os termos são ordenados por seus expoentes. Para adição de 2 (dois) polinômios, suas respectivas listas são percorridas e os termos nas posições correntes dos iteradores são examinadas. Se o expoente de um é menor que o de outro, insere o primeiro na lista resultante e avança o iterador do primeiro. Se os expoentes são iguais, então criamos um novo termo com este expoente, somamos os coeficientes e avançamos os 2 (dois) iteradores. Por exemplo: $3x^4 + 2x^2 + 3x + 7$ somado com $2x^3 + 4x + 5$ resulta em $3x^4 + 2x^3 + 2x^2 + 7x + 12$.

Escreva um programa para ler e adicionar polinômios. Você deve definir uma classe Termo que contém atributos expoente e coeficiente.

Resposta:

```
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
public class AP2_2007_2_Q4 {
     public static void main(String[] args) {
            Polinomio polinomio1 = new Polinomio();
            Polinomio polinomio2 = new Polinomio();
            polinomio1.lePolinomio();
            polinomio2.lePolinomio();
            Polinomio polinomio3 = polinomio1.adicao(polinomio2);
            polinomio3.imprimePolinomio();
      }
/* Classe que modela 1 único termo */
class Term {
      int coeficiente;
      int expoente;
      public Term(int c, int e) {
            coeficiente = c;
            expoente = e;
      }
      public int getCoeficiente() {
            return coeficiente;
      public int getExpoente() {
```

```
return expoente;
      }
      public void setCoeficiente(int coeficiente) {
            this.coeficiente = coeficiente;
      public void setExpoente(int expoente) {
            this.expoente = expoente;
      }
      public String toString() {
            return coeficiente + "x" + expoente;
}
/* Classe que modela um polinômio */
class Polinomio {
     private List termos;
      public Polinomio() {
            termos = new ArrayList();
      public List obtemTermos() {
           return termos;
      public void imprimePolinomio() {
            Iterator it = termos.iterator();
            while (it.hasNext()) {
                  System.out.print(((Term)it.next()).toString() + " ");
      }
      public void lePolinomio() {
            try {
              BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));
              String str = "";
              int exp = -1, coef = -1;
              System.out.println("Digite os expoentes e coeficientes do
polinômio ");
            while (exp != 0 && coef != 0) {
                  System.out.print("Expoente: ");
                  str = in.readLine();
                  exp = Integer.parseInt(str);
                  System.out.print("Coeficiente: ");
                  str = in.readLine();
                  coef = Integer.parseInt(str);
                  if (exp != 0 && coef != 0) {
                        Term t = new Term(coef, exp);
                        termos.add(t);
          } catch (IOException e) {
```

```
}
      public Polinomio adicao(Polinomio p) {
            Term t1 = null;
            Term t2 = null;
            Iterator it1 = termos.iterator();
            Iterator it2 = p.obtemTermos().iterator();
            Polinomio pRes = new Polinomio();
            List res = pRes.obtemTermos();
            while (it1.hasNext() && it2.hasNext()) {
                  if (t1 == null)
                        t1 = (Term)(it1.next());
                  if (t2 == null)
                        t2 = (Term)(it2.next());
                  if (t1.getExpoente() == t2.getExpoente())
                        res.add(new
Term(t1.getCoeficiente()+t2.getCoeficiente(), t1.getExpoente()));
                  else
                        if (t1.getExpoente() < t2.getExpoente())</pre>
                              res.add(new Term(t1.getCoeficiente(),
t1.getExpoente());
                        else
                              res.add(new Term(t2.getCoeficiente(),
t2.getExpoente()));
                  if (it1.hasNext())
                        t1 = (Term)(it1.next());
                  else
                  {
                        res.add(new Term(t2.getCoeficiente(),
t2.getExpoente()));
                        while (it2.hasNext()) {
                              t2 = (Term)(it2.next());
                              res.add(new Term(t2.getCoeficiente(),
t2.getExpoente()));
                        break;
                  if (it2.hasNext())
                        t2 = (Term)(it2.next());
                  else
                  {
                        res.add(new Term(t1.getCoeficiente(),
t1.getExpoente()));
                        while (it1.hasNext()) {
                              t1 = (Term)(it1.next());
                              res.add(new Term(t1.getCoeficiente(),
t1.getExpoente());
                        break;
                  }
            while (it1.hasNext()) {
```