Improved TC-USOD Model for Underwater Saliency Detection

Alluri Lakshman Narendra, Attunuri Praneeth Reddy, Kapse Karthik

Indian Institute of Technology Dharwad

November 28, 2024

Introduction

What is Underwater Saliency Detection?

 Saliency detection highlights the areas in an image that catch the eye the most

Problem Statement

Problem Statement:

 Underwater object detection suffers from challenges such as light scattering, absorption, and color distortions.

Dataset Overview

USOD10K: Underwater Salient Object Detection Dataset

- Size: 10,255 annotated underwater images.
- Diversity:
 - 70 object classes, 12 scenarios.
 - Includes varying object sizes: small, medium, large.
- Annotations:
 - Salient object boundaries.
 - Depth maps for RGB-D integration.

The best model in USOD10K (TC-USOD)

TC-USOD: A Model for Underwater Object Detection

- **Transformer Encoder:** Captures global features from images.
- Convolutional Decoder: Creates saliency maps to highlight objects.

Input and Output:

- Input: Underwater images (with or without depth maps).
- Output: Maps showing important objects.

Observations from Outputs of the TC-USOD model

problems we observed:

- we observed that the outputs have more dominance of red and blue color's
- blurred and unclear regions these may affect the detection accuracy

Impact on Outputs:

 Incorrect detection of salient objects due to color and clarity issues.

solving color dominance issues

problem:

 dominance of red and blue colors in outputs reduced the detection accuracy and affected the saliency map quality.

to solve this, we applied preprocessing techniques:

- used color balance and fusion:
 - restored natural color balance by applying the gray world algorithm.
 - improved contrast and brightness using gamma correction.
- enhanced visibility by sharpening image features.

outcome:

 saliency maps with balanced colors, better contrast, and improved visual clarity.

enhancing clarity in detection

problem:

• blurred and unclear regions in the outputs caused misinterpretation of object boundaries.

to solve this, we introduced the depth auxiliary module (dam):

- implemented cross-modality fusion (cmf):
 - enhanced depth maps using spatial and channel attention mechanisms.
 - combined rgb and depth features to refine object boundaries.

outcome:

 saliency maps with sharper object boundaries and improved clarity.

improving feature integration

problem:

 lack of integration between low-level and high-level features resulted in missed details in the saliency maps.

to solve this, we applied multi-level feature fusion:

 combined low-level fine-grained features with high-level global features

outcome:

 improved saliency maps with detailed and holistic object representations.

training with a hybrid loss function

problem:

 conventional loss functions could not balance saliency accuracy and boundary precision.

to solve this, we designed a hybrid loss function:

- combined binary cross-entropy (bce), iou, dice, and ssim losses.
- ensured the model focused on both saliency detection and boundary accuracy.

outcome:

 generated saliency maps with accurate boundaries and high detection precision.

before and after preprocessing results

comparison: before (left) and after (right)

visual comparison: saliency maps

baseline vs. improved tc-usod:

- improved tc-usod demonstrates sharper boundaries and better detection of salient regions.
- particularly effective in turbid and low-contrast underwater conditions.

effectiveness of hybrid architecture

key observations:

pure convolutional models achieved:

• s-measure: 0.8222

mae: 0.0628

 hybrid models with depth auxiliary module (dam) and cross-modality fusion (cmf):

s-measure: 0.9215

mae: 0.0201

new tc-usod:

• s-measure: 0.9116

mae: 0.0238

effectiveness of hybrid loss

key improvements:

- loss functions tested:
 - **bce only:** s-measure: 0.9126, mae: 0.0224
 - **bce** + **dice** + **ssim:** s-measure: 0.9161, mae: 0.0299
 - bce + iou + dice + ssim (hybrid): s-measure: 0.9215, mae: 0.0201
- hybrid loss demonstrated better boundary precision and overall saliency detection performance.

quantitative comparison of results

performance metrics

s-measure (sm):

baseline tc-usod: 0.9021improved tc-usod: 0.8946

mae:

baseline tc-usod: 0.0228improved tc-usod: 0.0238

• e-measure (eme):

baseline tc-usod: 0.9568improved tc-usod: 0.9516

ap and auc:

baseline tc-usod auc: 0.9607, ap: 0.8953improved tc-usod auc: 0.9638, ap: 0.8963

conclusion

improved tc-usod:

- enables more reliable detection of underwater salient objects.
- enhances boundary clarity for complex underwater environments.
- scalable and adaptable for related underwater imaging tasks.

Conclusion

Key Takeaways:

- Improved TC-USOD successfully addresses underwater saliency detection challenges.
- Outperforms existing methods with DAM, multi-level fusion, and hybrid loss.
- Sets a new benchmark for underwater saliency detection tasks.

future improvements

for future work:

- depth map estimation:
 - develop more robust methods for accurate depth estimation in underwater environments.
 - address challenges caused by overlapping objects and varying viewpoints.
- co-saliency detection:
 - extend the model for detecting co-occurring salient objects across multiple images.
 - analyze group behavior or patterns in underwater scenes.

Acknowledgements

Special thanks:

- Dr. vandana barathi mam
- Sri dutta sir

Thank You!