ЛАБОРАТОРНАЯ РАБОТА №4 ИССЛЕДОВАНИЕ RC-ГЕНЕРАТОРОВ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Цель работы

Исследование дифференцирующей трехзвенной и Γ - образной RC - цепочек.

Учебные задания и методические указания к их выполнению

Задание 1 Расчет и измерение частоты трехзвенной RC - цепочки

Рассчитать частоту, на которой фазовый сдвиг цепочки равен 180 градусов. Номиналы элементов приведены на схеме. Номиналы конденсаторов рассчитываются в соответствии с вариантом: $C_1 = C_2 = C_3 = 5000 + N * 100$ пФ, где N номер по списку.

$$f_0 = \frac{1}{2 \pi R C \sqrt{6}}$$
, при $R_1 = R_2 = R_3 = R$ и $C_1 = C_2 = C_3 = C$.

Коэффициент передачи на частоте f_0 равен $\beta_0 = \frac{1}{29} = 0.0345$.

Для измерения частоты f_0 :

- включить плоттер Боде в режиме измерения ФЧХ, мультиметр XMM2 в режиме переменного напряжения;
- на генераторе установить режим переменного напряжения и значение амплитуды E_{ε} = 14.15 B;
- заполнить таблицу 13 меняя частоту сигнала на генераторе и измеряя напряжение $U_{\scriptscriptstyle 6blX}$ мультиметром XMM2, частоту f_0 зафиксировать на плоттере Боде по признаку смены знака фазы.

Таблица 13

$F_{\it c}$	0.5	1	1.1	1.2	$f_0=$	2	2.5	5	10	КГц
$oldsymbol{U}_{\scriptscriptstyle{ extit{6bix}}}$										

Рассчитать коэффициент передачи цепочки на частоте f_0 :

$$\beta_0 = \frac{U_{\text{\tiny BbIX}}}{e_{\scriptscriptstyle z}}$$
 .

Задание 2 Исследование генератора с трехзвенной RC - цепочкой

Для настройки схемы генератора:

- установить ключ J_1 в нижнее положение, а ключ J_2 в замкнутое положение;
- включить осциллограф и переменным резистором R_8 добиться устойчивого генерирования синусоидальных колебаний с максимальной амплитудой без заметных искажений;
- частотомером измерить частоту генерации $f_{\it c}$.

Для определения коэффициента усиления на частоте генерации f_{ϵ} :

- ullet установить ключ J_1 в верхнее положение, а ключ J_2 в разомкнутое положение;
- установить мультиметр ХММ1 в режим измерения переменного напряжения;
- на генераторе установить режим переменного напряжения и значение амплитуды E_{ε} = 14,15 мB;
- мультиметром XMM1 измерить $U_{\rm \scriptscriptstyle GbLX}$ и рассчитать коэффициент усиления $K_{\rm _{\it yc}} = \frac{U_{\it BbLX}}{e_{\rm _{\it z}}} \ .$

Сравнить расчетные и экспериментальные значения f_0 и $f_{\it c}$, а также β_0 и $\frac{1}{K_{\rm yc}}$.

Задание 3 Расчет и измерение частоты Γ - образной RC — цепочки

Рассчитать частоту, на которой фазовый сдвиг цепочки равен 0 градусов. Номиналы элементов приведены на схеме. Номиналы конденсаторов рассчитываются в соответствии с вариантом: $C_1 = C_2 = C_3 = 5000 + N * 100$ пФ, где N номер по списку.

$$f_0 = \frac{1}{2 \pi RC}$$
 , при $R_1 = R_2 = R$ и $C_1 = C_2 = C$.

Коэффициент передачи на частоте f_0 равен $\beta_0 = \frac{1}{3} = 0.33$.

Для измерения частоты f_0 :

• включить плоттер Боде в режиме измерения ФЧХ, мультиметр XMM2 в режиме переменного напряжения;

- на генераторе установить режим переменного напряжения и значение амплитуды $E_{\epsilon} = 14.15 \text{ B}$;
- заполнить таблицу 14 меняя частоту сигнала на генераторе и измеряя напряжение $U_{\text{вых}}$ мультиметром XMM2, частоту f_0 зафиксировать на плоттере Боде по признаку смены знака фазы.

Таблица 14

$F_{\it c}$	0.5	1	1.1	1.2	f ₀ =	2	2.5	5	10	КГц
$oldsymbol{U}_{e\omega x}$										

Рассчитать коэффициент передачи цепочки на частоте f_0 :

$$\beta_0 = \frac{U_{\text{\tiny BLIX}}}{e_{\text{\tiny c}}} .$$

Задание 4 Исследование генератора с Г - образной RC — цепочкой

Для настройки схемы генератора:

ullet установить ключ J_1 в нижнее положение, а ключ J_2 в замкнутое положение;

- включить осциллограф и переменным резистором R₈ добиться устойчивого генерирования синусоидальных колебаний с максимальной амплитудой без заметных искажений;
- частотомером измерить частоту генерации f_{ϵ} .

Для определения коэффициента усиления на частоте генерации f_z :

- ullet установить ключ J_1 в верхнее положение, а ключ J_2 в разомкнутое положение;
- установить мультиметр XMM1 в режим измерения переменного напряжения;
- на генераторе установить режим переменного напряжения и значение амплитуды $E_z = 141,5 \text{ mB}$;
- мультиметром XMM1 измерить $U_{\rm\scriptscriptstyle Sblx}$ и рассчитать коэффициент усиления $K_{\rm\scriptscriptstyle yc} = \frac{U_{\rm\scriptscriptstyle Sblx}}{e_{\rm\scriptscriptstyle s}} \ .$

Сравнить расчетные и экспериментальные значения f_0 и $f_{\it c}$, а также β_0 и $\frac{1}{K_{\rm max}}$.

Содержание отчёта

- 1. Наименование и цель работы.
- 2. Электрические расчётные схемы и схемы цепи, собранные в Multisim.
- 3. Расчётные формулы.
- 4. Графики АЧХ генераторов.
- 5. Таблицы с экспериментальными данными.
- 6. Выводы по работе.