AED1 - Aula 19

Filas de prioridade: implementações básica e com heap

Filas de prioridade são um tipo abstrato de dados

- em que cada elemento está associado a um valor,
 - o que indica sua prioridade,
- e que generaliza tanto filas quanto pilhas.

Uma fila de prioridades suporta operações de:

- inserção de um elemento com um certo valor de prioridade,
- edição da prioridade de um elemento (operação menos comum),
- remoção do elemento com maior (ou menor) prioridade.
 - Esta operação não atende maior e menor simultaneamente.
 - Por isso temos filas de prioridade de máximo
 - e filas de prioridade de mínimo.

Para simplificar, ao longo desta aula

- vamos supor que o valor de cada elemento corresponde a sua prioridade,
- e vamos focar na versão de **máximo** da fila de prioridade.
 - Destacamos que é simples transformar a implementação
 - de uma fila de prioridade de máximo
 - em uma fila de prioridade de mínimo.

Conhecendo a definição e operações suportadas por uma fila de prioridade,

- como definir as prioridades dos elementos.
 - o para que uma fila de prioridade se comporte como uma fila?
- E para que ela se comporte como uma pilha?

Implementação básica de uma fila de prioridade

Esta implementação utiliza ideias

• da nossa implementação de fila em vetor.

Exemplo:

Tamanho

• tam = fim - ini;

Remoção do elemento máximo

$$x = q[ini++];$$

• Leva tempo constante, i.e., O(1).

Inserção de um elemento x

for (int i = fim - 1; i >= ini &&
$$v[i] < x$$
; i--)
 $v[i + 1] = v[i]$;
 $v[i + 1] = x$;
fim++;

• Ela leva tempo proporcional a tam no pior caso, i.e., O(tam).

Implementação básica de uma fila de prioridade de máximo

baseada na implementação de fila em vetor circular

Remoção e, principalmente, inserção passam a ter mais detalhes,

- mas a eficiência da primeira continua constante
 - o e da segunda continua proporcional ao número de elementos,
 - i.e, O(tam).

Será que podemos fazer melhor?

Implementação de uma fila de prioridade usando Heap

Heap é uma estrutura de dados eficiente para implementar Filas de Prioridades.

• Exemplo de um heap de máximo:

Um heap de máximo é

- uma árvore binária completa ou quase-completa,
- cujos nós respeitam a propriedade do heap de máximo, i.e.,

o valor da prioridade de um nó é >= que a prioridade de seus filhos.

- Note que essa propriedade não nos permite comparar os valores
 - o de um filho esquerdo e de um filho direito.

Numa árvore binária completa

- cada nível p tem 2^p nós.
- Lembrando que a raiz fica no nível 0
 - o e que o nível aumenta cada vez que
 - vamos de um nó para seu filho esquerdo ou direito.

Quantos nós tem uma árvore binária completa com h níveis?

- O número de nós m = 2<sup>(h + 1) 1.
 </sup>
- Para entender o porquê, vamos analisar quantitativamente tal árvore.

Numa árvore binária quase completa

- cada nível p tem 2^p nós,
 - o com a possível exceção do último nível.
- Se for esse o caso, no último nível as posições dos nós
 - o são preenchidas da esquerda para a direita, sem espaços vazios.

O fato do heap ser uma árvore binária quase completa,

- permite que ele seja implementado em um vetor,
 - o como mostra o seguinte exemplo:

- Em tal implementação o vetor é preenchido da esquerda para a direita,
 - o e os nós da árvore são contados/numerados de cima para baixo
 - e, em cada nível, também da esquerda para a direita.
- Desse modo, o número associado a cada nó da árvore
 - o corresponde a seu índice no vetor.

De modo geral, implementamos um heap com m elementos

- em um vetor v que começa em 0 e vai até m 1.
- Para tanto, dado um elemento na posição i,
 - o é essencial saber quem é pai, filho esquerdo e filho direito de i.
- Para tanto, podemos usar as seguintes fórmulas:

```
#define FILHO_ESQ(i) (2 * i + 1)

#define FILHO_DIR(i) (2 * i + 2)

#define PAI(i) ((i - 1) / 2)
```

- Observe que elas funcionam corretamente
 - no heap do exemplo anterior.

Traduzindo a propriedade do heap de máximo

- para a implementação em vetor temos
 - \circ v[PAI(i)] = v[(i 1) / 2] >= v[i]
 - v[i] >= v[2 * i + 1] = v[FILHO_ESQ(i)]
 - \circ $v[i] >= v[2 * i + 2] = v[FILHO_DIR(i)]$
- Observe que, o nó raiz, que não tem pai, fica na posição 0.
- Além disso, se FILHO_ESQ(i) ou FILHO_DIR(i) forem >= m,
 - o então i não tem filho esquerdo ou direito, respectivamente.
- Note que os nós da segunda metade do vetor não tem filhos, já que
 - o para $i \ge m / 2$ temos FILHO_ESQ(i) = 2 * i + 1 >= 2 m / 2 + 1 >= m.
- De fato, em um heap (e em toda árvore binária guase completa),
 - o número de folhas (nós sem filhos) é pelo menos metade do total.

Para obter uma intuição do porque o índice de um nó i

• é aproximadamente metade do índice de seus filhos, observe que,

- o numa árvore binária quase completa o número de nós antes de i é
 - aproximadamente igual ao número de nós entre i e seus filhos.
- Para uma explicação mais precisa, considere a análise do seguinte exemplo:

Queremos descobrir a altura de uma árvore binária quase completa com m nós,

- ou, de modo equivalente,
 - o número de níveis que um heap com m elementos possui,
- pois isso será relevante para entender
 - o a eficiência de operações que manipulam um heap.

Para tanto, vamos considerar algumas questões:

- Quantos nós cabem no nível h de uma árvore binária completa?
 - Já vimos que são 2^h nós.
- Quantos nós cabem numa árvore binária completa com h níveis?
 - Também já vimos que são 2^(h + 1) 1 nós.
- Lembre que a numeração dos nós da árvore,
 - o que corresponde aos índices do vetor,
 - começa em 0 na raiz,
 - aumenta de cima para baixo nos níveis,
 - e, em cada nível, aumenta da esquerda para a direita.
- Quais os possíveis índices dos nós do nível h?
 - São inteiros no intervalo [2^h 1, 2^h(h + 1) 2].
 - Isso porque, com 2^(h + 1) 1 nós na árvore e contando a partir de 0,
 - o último elemento tem índice 2^(h + 1) 2,
 - o e o primeiro elemento do nível h tem índice
 - $2^h + 1 2^h + 1 = 2^h + 2^h 1 2^h = 2^h 1$

Lembre que o india do ultimo mo da árrore/heap é m-1

- Qual o nível do último nó da árvore, que tem índice m 1?
 - o h = piso(lg m), pois
 - 2^h 1 <= m 1 <= 2^(h + 1) 2
 - \blacksquare 2^h <= m <= 2^(h + 1) 1
 - \blacksquare 2^h <= m < 2^(h + 1)
 - $h \le lg(m) < h + 1$
- Portanto, o número de níveis de um heap com m elementos é piso(lg m).
- Note que, se trocarmos m 1 pelo índice i de um nó qualquer,
 - o conseguimos obter o nível deste usando o mesmo raciocínio,
 - i.e., o nível de i é piso(lg (i + 1)).

Agora vamos estudar as duas funções mais importantes para manutenção do heap.

Sobe Heap

- Veremos esta função aplicada à inserção de um novo elemento no heap,
 - o que é seu uso mais comum.
- Também a utilizaremos para construir um heap a partir de um vetor.

Código da sobeHeap:

```
// sobe o elemento em v[pos] até restaurar a propriedade do heap
void sobeHeap(int v[], int pos)
{
   int corr = pos;
   while (corr > 0 && v[PAI(corr)] < v[corr])
   {
      troca(&v[corr], &v[PAI(corr)]);
      corr = PAI(corr);
   }
}</pre>
```

• Exemplo de uso da sobeHeap:

```
printf("Testando sobeHeap com elemento da ultima posicao\n");
sobeHeap(v, m - 1);
```

Corretude e invariante da sobeHeap:

- O invariante principal que vale no início de cada iteração é
 - o todo elemento em v[0 .. pos] respeita a propriedade do heap,
 - exceto, possivelmente, pelo elemento corr.
 - o Isto é, $v[i] \le v[PAI(i)] = v[(i-1)/2]$ vale para todo i != corr.

Eficiência da sobeHeap:

- número de operações é O(log pos) = O(log m),
 - o pois no início corr = pos e em cada iteração corr é dividido por 2.

A seguir apresentamos o código da função insereHeap,

- que implementa uma das operações fundamentais da fila de prioridade.
- Esta função coloca o novo elemento na próxima posição disponível no vetor,
 - o e invoca sobeHeap para restabelecer a propriedade do Heap.
 - Por isso, sua eficiência é O(lg m).

```
int insereHeap(int v[], int m, int x)
{
    v[m] = x;
    sobeHeap(v, m);
    return m + 1;
}
```

Exemplos de uso da insereHeap:

```
printf("Inserindo novo elemento no max heap\n");
    m = insereHeap(v, m, 999);

printf("Criando novo max heap usando insereHeap - ordem
direta\n");
    m = 0;
    for (i = 0; i < n; i++)
        m = insereHeap(v, m, i);

printf("Criando novo max heap usando insereHeap - ordem
inversa\n");
    m = 0;
    for (i = 0; i < n; i++)
        m = insereHeap(v, m, n - i - 1);</pre>
```

Uso da sobeHeap para reorganizar um vetor transformando-o em um Heap:

- Qual a eficiência deste algoritmo?
 - o O(m lg m), pois invoca sobeHeap m vezes.

Desce Heap

- Veremos esta função aplicada à remoção de um elemento do heap,
 - que é seu uso mais comum.
- Também a utilizaremos para construir um heap a partir de um vetor.

Código da desceHeap:

Exemplo de uso da desceHeap:

```
printf("Testando desceHeap com elemento da primeira posicao\n");
v[0] = 0;
desceHeap(v, m, 0);
```

Corretude e invariante da desceHeap:

- O invariante principal que vale no início de cada iteração é
 - o todo elemento em v[0 .. m 1] respeita a propriedade do heap,
 - exceto, possivelmente, pelo elemento corr.
 - Isto é, v[i] >= v[FILHO_ESQ(i)] = v[2 * i + 1]
 - $e v[i] >= v[FILHO_DIR(i)] = v[2 * i + 2] vale para todo i != corr.$

Eficiência da desceHeap:

- número de operações é O(lg m),
 - o pois em cada iteração descemos um nível na árvore do heap
 - e o maior nível é piso(lg m).

A seguir apresentamos o código da função removeHeap,

- que implementa uma das operações fundamentais da fila de prioridade.
- Esta função remove e devolve o elemento máximo,
 - o que está na primeira posição do vetor.
- Para ocupar essa posição vaga,
 - o ela move o último elemento do vetor para a primeira posição.
- Então, ela invoca desceHeap para restabelecer a propriedade do Heap.
 - o Por isso, sua eficiência é O(lg m).

```
int removeHeap(int v[], int m, int *px)
{
    *px = v[0];
    troca(&v[0], &v[m - 1]);
    desceHeap(v, m, 0);
    return m - 1;
}
```

• Exemplo de uso do removeHeap:

```
printf("Removendo o maior elemento do vetor usando
removeHeap\n");
    m = removeHeap(v, m, &x);
```

Curiosidade:

- É possível usar a função desceHeap para reorganizar um vetor
 - o de modo a transformá-lo em um heap.
- De fato, essa implementação é particularmente eficiente.
 - Veremos como ela funciona numa próxima aula.

Heaps são estruturas de dados muito eficientes

- para implementar filas de prioridade.
- Por isso, sempre que estiverem resolvendo um problema
 - o e perceberem que seu algoritmo busca repetidamente
 - pelo maior (ou menor) elemento de um conjunto,
 - o devem desconfiar que um heap tornará seu algoritmo mais rápido.

Quiz 1:

Como transformar um heap de máximo em um heap de mínimo?

Quiz 2:

- Considere que uma operação de edição alterou a prioridade
 - o de um elemento i de um Heap, alocado em um vetor v[0 .. m 1].
- Podemos usar as funções sobeHeap e desceHeap
 - o para restaurar a propriedade do Heap.
- Supondo que a edição reduziu a prioridade de v[i],
 - o qual função usar e quais os parâmetros da chamada?
- Responda a mesma questão,
 - o no caso da edição ter aumentado a prioridade de v[i].