Formule Fondamentali

Analisi dei Segnali

```
f λ = v (relazione frequenza-lunghezza d'onda)
B = f_max - f_min (larghezza di banda)
```

Teorema di Nyquist (canale senza rumore)

```
R_max = 2B log<sub>2</sub>(V) [bps]
```

- B: larghezza di banda (Hz)
- V: numero di livelli discreti
- Determina velocità massima teorica

Teorema di Shannon (canale con rumore)

```
C = B \log_2(1 + S/N) [bps]
```

- S/N: rapporto segnale-rumore (lineare)
- C: capacità del canale

Conversioni SNR

```
SNR(dB) = 10 \log_{10}(S/N)

S/N = 10^(SNR(dB)/10)
```

Teorema del Campionamento

```
f_s ≥ 2f_max
```

Modulazioni Digitali

Codifiche di Linea - Regole

NRZ (Not Return to Zero)

- Bit '1' → livello alto
- Bit '0' → livello basso
- Problema: lunghe sequenze stesso bit → perdita sincronismo

RZ (Return to Zero)

- Bit '1' → alto prima metà, zero seconda metà
- Bit '0' → sempre zero
- Problema: lunghe sequenze '0' → perdita sincronismo

Manchester IEEE 802.3

- Bit '1' → transizione basso-alto a metà periodo
- Bit '0' → transizione alto-basso a metà periodo
- Vantaggio: sempre transizioni → auto-sincronizzante

Differential Manchester

- Bit '1' → nessuna transizione all'inizio bit
- Bit '0' → transizione all'inizio bit
- Sempre transizione a metà per sincronismo
- Vantaggio: immune a inversioni polarità

Modulazioni Digitali - Caratteristiche

ASK (Amplitude Shift Keying)

- Modifica ampiezza portante
- OOK: '1'=portante presente, '0'=assente
- Svantaggio: sensibile al rumore

FSK (Frequency Shift Keying)

- '1' → frequenza f₁, '0' → frequenza f₀
- Vantaggio: più robusta di ASK

PSK (Phase Shift Keying)

- BPSK: '1' $\to 0^{\circ}$, '0' $\to 180^{\circ}$
- Vantaggio: ampiezza costante, robusta

DPSK (Differential PSK)

- '1' → inversione fase, '0' → mantiene fase
- Vantaggio: no sincronizzazione fase assoluta

QAM (Quadrature Amplitude Modulation)

- Combina ampiezza e fase
- 16-QAM: 4 bit/simbolo, coordinate (I,Q)
- · Vantaggio: alta efficienza spettrale

Metodologie di Risoluzione

Per Teorema di Nyquist

- 1. Identificare B (banda) e V (livelli)
- 2. Applicare: R max = 2B log₂(V)
- 3. Se richiesti livelli: $V = 2^{R} \max(2B)$

Per Teorema di Shannon

- 1. Convertire SNR da dB a lineare se necessario
- 2. Applicare: $C = B \log_2(1 + S/N)$
- 3. Per trovare SNR: $S/N = 2^{(C/B)} 1$

Per Campionamento

- 1. f s \geq 2f max (evitare aliasing)
- 2. f_max ≤ f_s/2 (frequenza massima ammissibile)

Per Codifiche di Linea

- 1. Dividere sequenza bit per bit
- 2. Applicare regole specifiche codifica
- 3. Mantenere continuità segnale
- 4. Verificare transizioni per sincronismo

Per Modulazioni

- 1. Determinare bit per simbolo: $n = log_2(M)$
- 2. Creare mappatura bit → simboli
- 3. Calcolare durata: T_totale = N_simboli × T_simbolo
- 4. Per QAM: usare costellazione e codice Gray

Scelta Tecnica Ottimale

Criteri Decisione Modulazione

• Alta efficienza: QAM (ma serve buon SNR)

Robustezza: PSK/DPSK

Semplicità: ASK/FSK

• No sincronizzazione: DPSK

Criterio Banda vs Velocità

Nyquist: limite teorico (no rumore)

Shannon: limite pratico (con rumore)

• **Sempre**: Shannon ≤ Nyquist in presenza rumore

Trade-off Fondamentali

- ↑ Livelli → ↑ Velocità ma ↑ Sensibilità rumore
- ↑ Banda → ↑ Capacità ma ↑ Costo
- ↑ SNR → ↑ Modulazioni complesse possibili