Universidade Federal da Grande Dourados Análise Numérica — Lista 5 Engenharia Mecânica — 2016.2 Prof. Adriano Barbosa

- 1. Calcule a spline cúbica natural utilizando os dados abaixo:
 - (a) (8.3, 17.56492), (8.6, 18.50515)
 - (b) (-0.5, -0.02475), (-0.25, 0.3349375), (0, 1.101)
- 2. Os dados no exercício anterior foram gerados a partir das funções abaixo. Use as splines cúbicas calculadas para aproximar os valores de f(x) e f'(x) e calcule o erro.
 - (a) $f(x) = x \ln(x)$, approxime f(8.4) e f'(8.4)
 - (b) $f(x) = x^3 + 4.001x^2 + 4.002x + 1.101$, approxime $f\left(-\frac{1}{3}\right)$ e $f'\left(-\frac{1}{3}\right)$
- 3. A spline cúbica natural s abaixo está definida em [0,2]

$$s(x) = \begin{cases} s_0(x) = 1 + 2x - x^3, & \text{se } 0 \le x \le 1 \\ s_1(x) = 2 + b(x - 1) + c(x - 1)^2 + d(x - 1)^3, & \text{se } 1 \le x \le 2 \end{cases}$$

Encontre b, $c \in d$.

- 4. Calcule a spline cúbica natural para aproximar $f(x) = \cos(\pi x)$ usando os seguintes valores x = 0, 0.25, 0.5, 0.75, 1. Integre a spline no intervalo [0, 1] e compare com o valor real da integral $\int_0^1 \cos(\pi x) dx$. Use as derivadas da spline para aproximar f'(0.5) e f''(0.5) e compare as aproximações com os valores reais.
- 5. Sejas f definida em [a,b] e $a=x_0 < x_1 < x_2 = b$. Mostre que a spline quadrática interpolante para o problema acima gera cinco equações e seis incógnitas. A condição $s \in C^2[x_0,x_2]$ resolve o problema?

Respostas:

As splines abaixo estão escritas na forma:

$$s_i(x) = a_i + b_i(x - x_i)c_i(x - x_i)^2 + d_i(x - x_i)^3$$
, para $x \in [x_i, x_{i+1}]$

1. (a)

i	a_i	b_i	c_i	d_i
0	17.564920	3.13410000	0.00000000	0.000000000

(b)	
-----	--

i	a_i	b_i	c_i	d_i
0	-0.02475000	1.03237500	0.00000000	6.50200000
1	0.33493750	2.25150000	4.87650000	-6.50200000

2.

	X	Aprox. $f(x)$	f(x)	Erro
a.	8.4	17.87833	17.877146	1.1840×10^{-3}
b.	$-\frac{1}{3}$	0.1774144	0.17451852	2.8959×10^{-3}
	х	Aprox. $f'(x)$	f'(x)	Erro
a.	8.4	3.134100	3.128232	5.86829×10^{-3}
b.	$-\frac{1}{3}$	1.574208	1.668000	0.093792
3. $b = -$	-1, c = -	3, d = 1		
4.				,

x_i	a_i	b_i	c_i	d_i
0	1.0	-0.7573593	0.0	-6.627417
0.25	0.7071068	-2.0	-4.970563	6.627417
0.5	0.0	-3.242641	0.0	6.627417
0.75	-0.7071068	-2.0	4.970563	-6.627417