Website Fingerprinting Attack Mitigation using Traffic Morphing

Eric Chan-Tin (Loyola University Chicago¹)
Taejoon Kim (Texas A&M University, Commerce)
Jinoh Kim (Texas A&M University, Commerce)

Tor

- Free, open-source
- 2002
- Anonymity network
- Onion routing
- 2,000,000+ users daily
- 7,000+ volunteers (relay nodes)

Website Fingerprinting Attack

Uses only number of packets, size of packets, and direction of packets

Accuracy

- 80+% accuracy
- Machine learning such as k-NN, SVM, RandomForest

- Padding
 - Every packet has same size
- Delay
 - Same delay
- Extra packets (noise)

Make every website look similar using traffic morphing

But...

Hard to make every website on the Internet look similar

Contribution

- Some websites already look "similar"
 - Number of packets
 - Size of packets
- Cluster "similar" websites and make all websites within a cluster indistinguishable
 - Easier to do within a cluster than for ALL websites on the Internet
 - Use traffic morphing

Dataset

- Panchenko et. al., "Website fingerprinting at Internet scale," NDSS 2016
- 757 unique websites
 - 40 instances each

Proposed Algorithm

- Cluster websites
 - PCA (Principal Component Analysis)
 - 104 features
 - Total number of outgoing packets
 - Total number of incoming packets
 - Total size of all outgoing packets
 - Total size of all incoming packets
 - 100 samples of cumulative packet sizes
- Traffic morph each cluster to make all websites within that cluster indistinguishable

Clustering

Elbow Method

Traffic Morph Method

- Biggest
- Make the size of every packet in a cluster be the same size as the biggest packet in that cluster

Experiment Setup

- 50% of dataset for training, 50% for testing
- Repeat 10 times

Accuracy

Mitigation	Accuracy
No defense (Tor)	91%
CS-BuFLO	22%
Tamaraw	10%
WTF-PAD	15%
Walkie-Talkie	19%
Our Algorithm	< 1%

Overhead

Mitigation	Latency Overhead	Bandwidth Overhead
No defense (Tor)	0%	0%
CS-BuFLO	173%	130%
Tamaraw	200%	38%
WTF-PAD	0%	54%
Walkie-Talkie	34%	31%
Our Algorithm	0%	210%

Summary

- Promising research
 - Clustering
 - Traffic morphing within each cluster
- Almost completely mitigates website fingerprinting attacks (<1% accuracy)
- Other methods such as average packet size, random packet size, and closest packet size

Thank you!

Questions?

Eric Chan-Tin, chantin@cs.luc.edu