Plant Community Response

2025-08-05

```
#Load libraries
library(readxl)
## Warning: package 'readxl' was built under R version 4.3.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.3.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(viridis)
## Warning: package 'viridis' was built under R version 4.3.3
## Loading required package: viridisLite
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.3.3
library(rstatix)
## Warning: package 'rstatix' was built under R version 4.3.3
```

```
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
##
       filter
library(glmmTMB)
## Warning: package 'glmmTMB' was built under R version 4.3.3
library(boot)
## Warning: package 'boot' was built under R version 4.3.3
library(tidyr)
## Warning: package 'tidyr' was built under R version 4.3.3
library(vegan)
## Warning: package 'vegan' was built under R version 4.3.3
## Loading required package: permute
## Warning: package 'permute' was built under R version 4.3.3
## Loading required package: lattice
##
## Attaching package: 'lattice'
## The following object is masked from 'package:boot':
##
##
       melanoma
library(tibble)
library(dplyr)
library(purrr)
## Warning: package 'purrr' was built under R version 4.3.3
library(boot)
```

Load the dataset and calcualte relative biomass

To calculate relative biomass, the total biomass per species was divided by the total biomass within a mesocosm.

```
#Import the dataset
data_mortality <- read_excel(file.path(</pre>
   "C:/Users/Joyalea/Documents/UBCO/Thesis",
   "Final Files",
   "RQ3 PlantCommunityResponse",
   "MasterCopy_Biomass_2024.xlsx"
))
#Add treatment group column
data_mortality <- data_mortality %>%
   mutate(treatment = ifelse(mesocosm_id %in% c(1:7), "Control",
                                                     ifelse(mesocosm_id %in% c(8:14), "197198",
                                                                   ifelse(mesocosm_id %in% c(15:21), "240448",
                                                     ifelse(mesocosm_id %in% c(22:28), "240720", NA)))),
                 block = ifelse(mesocosm_id %in% c(15, 20, 22, 12, 11, 14, 24, 27,
                                                                                 19, 21, 25, 3, 2, 7), "A",
                                             ifelse(mesocosm_id %in% c(4, 17, 9, 28, 6, 1, 5, 18, 8,
                                                                                       26, 16, 23, 13, 10), "B", NA)))
#Review the data
head(data_mortality)
## # A tibble: 6 x 7
         date_weighed
##
                                             mesocosm id species
                                                                                      species id biomass treatment block
##
         <chr>
                                               <dbl> <chr>
                                                                                       <chr> <dbl> <chr>
                                                                                                                                               <chr>
## 1 September.14.2024
                                                              1 Taraxacum Ta.1
                                                                                                              8.28 Control
## 2 September 14. 2024
                                                               1 Taraxacum Ta.2
                                                                                                                7.56 Control
                                                                                                              8.5 Control
## 3 September 14. 2024
                                                             1 Taraxacum Ta.3
## 4 September 14. 2024
                                                             3 Taraxacum Ta.4
                                                                                                              9.18 Control
## 5 September 14. 2024
                                                             3 Taraxacum Ta.5
                                                                                                              5.54 Control
                                                                                                                                            Α
                                                                                                 8.88 Control
## 6 September 14. 2024
                                                              3 Taraxacum Ta.6
str(data_mortality)
## tibble [336 x 7] (S3: tbl_df/tbl/data.frame)
## $ date_weighed: chr [1:336] "September.14.2024" "September 14. 2024" 
## $ mesocosm_id : num [1:336] 1 1 1 3 3 3 2 2 2 4 ...
                             : chr [1:336] "Taraxacum" "Taraxacum" "Taraxacum" "Taraxacum" ...
## $ species
## $ species_id : chr [1:336] "Ta.1" "Ta.2" "Ta.3" "Ta.4" ...
## $ biomass
                               : num [1:336] 8.28 7.56 8.5 9.18 5.54 8.88 9.55 5.52 3.9 6.7 ...
## $ treatment : chr [1:336] "Control" "Control" "Control" "Control" ...
                                 : chr [1:336] "B" "B" "B" "A" ...
## $ block
\#Summarize\ count\ of\ individuals
counts_df <- data_mortality %>%
   filter(species == "Bromus", is.na(biomass)) %>%
   group_by(species, treatment) %>%
   summarise(n_individuals = n(), .groups = "drop")
#Summarize relative biomass (species biomass / total meso biomass)
rel_biomass <- data_mortality %>%
   group_by(mesocosm_id) %>%
   mutate(total_biomass = sum(biomass, na.rm = TRUE)) %>%
```

```
group_by(mesocosm_id, species, treatment) %>%
summarise(
   species_biomass = sum(biomass, na.rm = TRUE),
   total_biomass = unique(total_biomass),
   rel_biomass = species_biomass / total_biomass,
   .groups = "drop"
)
```

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Analyse changes in plant community structure (beta diversity) using relative host biomass

Relative host biomass was used as opposed to counts to account for overall growth of a species in a mesocosm, which can indirectly account for mortality

```
#Change data structure for bray analysis (convert columns to rows)
pivot_rel_biomass <- rel_biomass %>%
  select(mesocosm_id, species, rel_biomass) %>%
  pivot_wider(names_from = species, values_from = rel_biomass, values_fill = 0) %%
  column_to_rownames("mesocosm_id")
#Create metadata
metadata <- rel biomass %>%
  select(mesocosm_id, treatment) %>%
  distinct()
metadata <- metadata %>%
  filter(mesocosm id %in% rownames(pivot rel biomass)) %>%
  arrange(match(mesocosm_id, rownames(pivot_rel_biomass)))
#Check it worked correctly
View(metadata)
#Create Bray-Curtis dissimilarity matrix
bray_dist <- vegdist(pivot_rel_biomass, method = "bray")</pre>
print(adonis2(bray_dist ~ treatment, data = metadata, permutations = 999))
## Permutation test for adonis under reduced model
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = bray_dist ~ treatment, data = metadata, permutations = 999)
##
           Df SumOfSqs
                                    F Pr(>F)
                            R2
           3 0.08217 0.21732 2.2213 0.049 *
## Model
## Residual 24 0.29595 0.78268
         27 0.37813 1.00000
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

dispersion

boxplot(dispersion)


```
#Pairwise comparisons
pairwiseAdonis::pairwise.adonis(
 x = as.matrix(bray_dist),
 factors = metadata$treatment,
 sim.function = "vegdist",
 sim.method = "bray",
 p.adjust.m = "BH"
)
##
                pairs Df SumsOfSqs
                                     F.Model
                                                    R2 p.value p.adjusted sig
0.236
                                                                  0.4332
## 2 Control vs 240448 1 0.03694359 0.9737752 0.07505719
                                                         0.361
                                                                  0.4332
## 3 Control vs 240720
                      1 0.02668014 0.8157614 0.06365298
                                                         0.504
                                                                  0.5040
## 4 197198 vs 240448
                      1 0.08615613 2.5548590 0.17553306
                                                         0.094
                                                                  0.2820
     197198 vs 240720
                      1 0.10911738 3.8300576 0.24194843
                                                         0.011
                                                                  0.0660
    240448 vs 240720 1 0.04228909 1.1478299 0.08730185
                                                         0.326
                                                                  0.4332
#SIMPER analysis to see which species are driving the difference
simper_results <- simper(pivot_rel_biomass, group = metadata$treatment,</pre>
                       permutations = 999)
#View SIMPER results for each treatment pair
summary(simper_results) #Driven by Gaillardia
```

```
## Contrast: Control 197198
##
##
             average
                          sd ratio
                                         ava
                                                 avb cumsum
             0.05041 0.03449 1.46160 0.27900 0.34830 0.339 0.676
## Bromus
## Festuca
             0.04484 0.03113 1.44030 0.40620 0.37130 0.641 0.746
## Taraxacum 0.02884 0.02317 1.24460 0.21890 0.21620 0.835 0.343
## Gaillardia 0.02449 0.01694 1.44540 0.09590 0.06420 1.000 0.268
##
## Contrast: Control_240448
##
                             ratio
             average
                          sd
                                         ava
                                                 avb cumsum
             0.05604 0.03942 1.42160 0.27900 0.21420 0.371 0.418
## Bromus
## Festuca
             0.05360 0.03768 1.42230 0.40620 0.42720 0.726 0.300
## Taraxacum 0.02352 0.01962 1.19900 0.21890 0.23890 0.881 0.770
## Gaillardia 0.01795 0.01270 1.41320 0.09590 0.11970 1.000 0.849
##
## Contrast: Control_240720
##
##
             average
                          sd ratio
                                         ava
                                                 avb cumsum
## Bromus
             0.04455 0.03169 1.40590 0.27900 0.22370 0.337 0.900
## Festuca
             0.04126 0.03053 1.35140 0.40620 0.42100 0.649 0.905
## Taraxacum 0.02458 0.01613 1.52450 0.21890 0.22740 0.835 0.705
## Gaillardia 0.02178 0.01725 1.26250 0.09590 0.12800 1.000 0.519
## Contrast: 197198_240448
##
             average
                          sd
                             ratio
                                         ava
                                                avb cumsum
             0.07606 0.04678 1.62600 0.34830 0.21420 0.391 0.004 **
## Bromus
             0.05862 0.03895 1.50480 0.37130 0.42720 0.692 0.118
## Festuca
## Taraxacum 0.03107 0.02262 1.37350 0.21620 0.23890 0.852 0.215
## Gaillardia 0.02891 0.01733 1.66800 0.06420 0.11970 1.000 0.031 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Contrast: 197198 240720
##
##
             average
                          sd ratio
                                         ava
                                                 avb cumsum
             0.06337 0.04392 1.44300 0.34830 0.22370 0.369 0.116
## Bromus
            0.04417 0.03521 1.25470 0.37130 0.42100 0.626 0.758
## Festuca
## Gaillardia 0.03331 0.02116 1.57420 0.06420 0.12800 0.820 0.001 ***
## Taraxacum 0.03086 0.02089 1.47750 0.21620 0.22740 1.000 0.210
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Contrast: 240448_240720
##
##
             average
                          sd ratio
                                                 avb cumsum
                                         ava
## Festuca
             0.05460 0.03311 1.64890 0.42720 0.42100 0.401 0.227
             0.04724 0.03066 1.54080 0.21420 0.22370 0.747 0.828
## Taraxacum 0.02244 0.01897 1.18290 0.23890 0.22740 0.912 0.846
## Gaillardia 0.01197 0.01086 1.10190 0.11970 0.12800 1.000 0.995
## Permutation: free
## Number of permutations: 999
```

Visualise relative biomass by treatment using a stacked barplot

```
#Calculate mean +/- SD of relative biomass per species per treatment
rel_biomass <- rel_biomass %>%
  group_by(treatment, species) %>%
  summarise(mean_rel_biomass = mean(rel_biomass, na.rm = TRUE),
            sd_rel_biomass = sd(rel_biomass, na.rm = TRUE),
            .groups = "drop")
#Plot: stacked bar of mean relative biomass per treatment
rel_biomass_plot<-ggplot(rel_biomass, aes(x = treatment, y = mean_rel_biomass, fill = species)) +
  geom_col(position = "stack", width = 0.8, alpha = 0.95) +
  labs(title = "Mean Relative Biomass Composition by Treatment",
      y = "Relative Biomass",
       x = "Treatment") +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),
                     limits = c(0, 1), expand = c(0, 0)) +
  scale_fill_brewer(palette = "Paired", name = "Species") +
  theme minimal() +
  theme(
   panel.grid = element_blank(),
   axis.line = element_line(color = "black"),
   axis.ticks = element_line(color = "black")
  )
print(rel_biomass_plot)
```


Evaluate alpha diversity metrics

```
#Evaluate community richness (# of species present in a mesocosm)
richness <- specnumber(pivot_rel_biomass) #All species present in all mesocosms
#Shannon diversity
shannon_div <- diversity(pivot_rel_biomass, index = "shannon")</pre>
#Pielou's Evenness
evenness <- shannon_div / log(richness)</pre>
#Combine into data frame
diversity_df <- data.frame(</pre>
  mesocosm_id = rownames(pivot_rel_biomass),
  shannon = shannon_div,
 richness = richness,
 evenness = evenness
) %>%
  # Ensure mesocosm_id is character for joining
  mutate(mesocosm_id = as.factor(mesocosm_id)) %>%
  \# Add treatment or other metadata
 left_join(metadata %>% mutate(mesocosm_id = as.factor(mesocosm_id)),
            by = "mesocosm_id")
#Test for treatment effects on evenness
kruskal_result <- kruskal.test(evenness ~ treatment, data = diversity_df)</pre>
kruskal_result
##
## Kruskal-Wallis rank sum test
##
## data: evenness by treatment
## Kruskal-Wallis chi-squared = 3.3125, df = 3, p-value = 0.3459
#Test for treatment effects on shannon diversity
#Test for treatment effects on evenness
kruskal_result_shannon <- kruskal.test(shannon_div ~ treatment, data = diversity_df)</pre>
kruskal_result_shannon
##
## Kruskal-Wallis rank sum test
## data: shannon_div by treatment
## Kruskal-Wallis chi-squared = 3.3125, df = 3, p-value = 0.3459
```

Analysis of host mortality

Percent Survival by Species and Treatment


```
## # A tibble: 4 x 5
## species treatment n_total n_survived percent_survival
## <chr> <chr> <int> <int>
                             20
14
## 1 Bromus 197198
                     21
                                          95.2
                      21
## 2 Bromus 240448
                                           66.7
## 3 Bromus 240720
                     21
                              16
                                          76.2
## 4 Bromus Control
                      21
                             17
                                          81.0
```

##

Fisher's Exact Test for Count Data

##

data: fisher_matrix
p-value = 0.127

alternative hypothesis: two.sided