CSC236 Week 4 Tutorial:

Asymptotic Notations

Slides Credit: Charlene Chu

Review of Definitions

```
Big Oh Definition Function f(n) = O(g(n)) ("f is big oh of g") iff
```

- (i) There is some positive $n_0 \in \mathbb{N}$
- (ii) There is some positive $c \in \mathbb{R}$

such that
$$\forall n \geq n_0, f(n) \leq cg(n)$$

This means that g(n) is an **upper bound** on f(n). (e.g., $100n + 10000 = O(n^2)$.)

Big Omega Definition Function $f(n) = \Omega(g(n))$ iff

- (i) There is some positive $n_0 \in \mathbb{N}$
- (ii) There is some positive $c \in \mathbb{R}$

such that
$$\forall n \geq n_0, cg(n) \leq f(n)$$

This means that g(n) is a **lower bound** on f(n). (e.g., $n^3 + 4n^2 = \Omega(n^2)$)

Big Theta Definition Function
$$f(n) = \Theta(g(n))$$
 iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

This means that
$$g(n)$$
 is a **tight bound** on $f(n)$. (e.g., $n^2 + 5n + 7 = \Theta(n^2)$)

Review of Inequalities

If
$$x < y$$
, then $-x > -y$.

If
$$x < y$$
, then $\frac{1}{x} > \frac{1}{y}$.

So we can remove negative terms from big oh (upper bound) proofs and remove positive terms from big omega (lower bound) proofs.

Comparing Big Oh

Exercise 1

Prove that
$$\sqrt{7x^2 + 4x} = \Theta(x)$$
.

Exercise 2

Prove that
$$3n^3 - 5n^2 + 4n$$
 is $O(n^3)$.

Note: The constants $(n_0 \text{ and } c)$ don't have to be the best or smallest ones.

Exercise 3

Show that
$$(n \log n - 2n + 13) = \Omega(n \log n)$$
.

Note: In this course, all logs with no base are assumed base 2.