Beispiel.

Kapital $K_0=10.000$ EUR wird über 3 Jahre mit 6% p.a. angelegt. Bei mehrjähriger Verzinsung ergibt sich

Zinsperiode	k	Kapitalendwert nach 3 Jahren [in EUR]	$i_{ m eff}$
Jahr	1	$K_3 = K_0 \cdot (1 + 0.06)^3 = 11.910, 16$	6%
Halbjahr	2	$K_3 = K_0 \cdot \left(1 + \frac{0.06}{2}\right)^{3 \cdot 2} = 11.940, 52$	6.09%
Quartal	4	$K_3 = K_0 \cdot \left(1 + \frac{0.06}{4}\right)^{3.4} = 11.956, 18$	6.14%
Monat	12	$K_3 = K_0 \cdot \left(1 + \frac{0.06}{12}\right)^{3.12} = 11.966, 80$	6.17%

Soll trotz unterjähriger Verzinsung der Effektivzins immer 6% betragen, so sind folgende Nominal- bzw. Periodenzinssätze zu wählen:

Zinsperiode	k	$i_p = \sqrt[k]{1 + i_{\text{eff}}} - 1$	$i = i_{\text{nom}} = i_p \cdot k$
Jahr	1	0.06	6%
Halbjahr	2	$\sqrt[2]{1.06} - 1 = 0.0296$	5.91%
Quartal	4	$\sqrt[4]{1.06} - 1 = 0.0147$	5.87%
Monat	12	$\sqrt[12]{1.06} - 1 = 0.00487$	5.84%