

Grundlagen der Elektrotechnik II

Frequenzanalyse periodischer Signale

Studien- und Versuchsaufgaben

Autor: Richard Grünert 23.5.2019

1 Vorbereitungsaufgaben

1.1

$$\underline{X}_{\nu} = \frac{1}{T_1} \cdot \int_{T_1} x(t) \cdot e^{-(j\nu \cdot \omega_1 t)} dt$$

$$= \frac{1}{T_1} \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} X_m \cdot e^{-(j\nu \cdot \omega_1 t)} dt$$

$$= -\frac{X_m}{T_1 \cdot j\nu \omega_1} \cdot \left[e^{-(j\nu \cdot \omega_1 t)} \right]_{-\frac{\tau}{2}}^{\frac{\tau}{2}}$$

$$= -\frac{X_m}{T_1 \cdot j\nu \omega_1} \cdot \left(e^{-j\nu \cdot \omega_1 \frac{\tau}{2}} - e^{j\nu \cdot \omega_1 \frac{\tau}{2}} \right)$$

 $\omega_1 = \frac{2\pi}{T_1}$ und Erweiterung mit $\frac{-1}{-1}$:

$$\underline{X}_{\nu} = \frac{X_m}{2j\pi\nu} \cdot \left(e^{j\nu \cdot \pi \frac{\tau}{T_1}} - e^{-j\nu \cdot \pi \frac{\tau}{T_1}} \right)$$
$$= \frac{X_m}{\pi\nu} \cdot \frac{\left(e^{j\nu \cdot \pi \frac{\tau}{T_1}} - e^{-j\nu \cdot \pi \frac{\tau}{T_1}} \right)}{2j}$$

mit
$$\frac{\left(e^{jx} - e^{-jx}\right)}{2j} = \sin(x)$$
 und $\frac{\tau}{T_1} = D$:
$$\underline{X}_{\nu} = \frac{X_m}{\pi\nu} \cdot \sin(\pi\nu D)$$

Erweitert man wieder mit $\frac{D}{D}$ erhält man das Bild einer Spaltfunktion $si(x) = \frac{\sin x}{x}$:

$$\underline{X}_{\nu} = D \cdot X_m \cdot \frac{\sin(\pi \nu D)}{\pi \nu D} = D \cdot X_m \cdot \sin(\pi \nu D)$$

Als reele Reihe:

$$x(t) = X_0 + \sum_{\nu=1}^{\infty} \hat{X}_{\nu} \cos(\nu \cdot \omega_1 t + \phi_{\nu})$$
$$X_0 = \frac{1}{T_1} \cdot \int_{T_1} x(t) dt = \frac{X_m}{2}$$

Aus der komplexen Reihendarstellung folgt

$$b_{\nu} = -2 \cdot \operatorname{Im}(\underline{X}_{\nu}) = 0$$

$$\hat{X}_{\nu} = \sqrt{a_{\nu}^2 + b_{\nu}^2} = 2 \cdot |\underline{X}_{\nu}| \Longrightarrow a_{\nu} = 2 \cdot |D \cdot X_m \cdot \operatorname{si}(\nu \pi D)|$$

 ϕ_{ν} hängt nur vom Wert von $\mathrm{si}(\nu\pi D)$ ab, da \underline{X}_{ν} rein reell ist:

$$\phi_{\nu} = \begin{cases} 0 & ; \nu = \frac{4k+1}{2D} \\ \pi & ; \nu = \frac{4k-1}{2D} \\ \text{n.d.} & ; \text{sonst} \end{cases}$$

Somit ist

$$x(t) = \frac{X_m}{2} + \sum_{\nu=1}^{\infty} 2DX_m \cdot |\sin(\pi\nu D)| \cdot \cos(\nu \cdot \frac{2\pi}{T_1} \cdot t + \phi_{\nu})$$

Reihenentwicklung von x(t) bis zur 16. Oberwelle

D=0.

Effektivwert:

$$X_{\text{eff}} = \sqrt{\frac{1}{T_1} \cdot \int_{T_1} x^2(t) \, dt} = \sqrt{\frac{X_m^2}{T_1} \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} 1 \, dt}$$
$$X_{\text{eff}} = X_m \cdot \sqrt{\frac{\tau}{T_1}} = X_m \cdot \sqrt{D}$$

$D = \frac{1}{2}, X_{\text{eff}} = \frac{X_m}{\sqrt{2}}$				$D = \frac{1}{4}, X_{\text{eff}} = \frac{X_m}{2}$			$D = \frac{1}{8}, X_{\text{eff}} = \frac{X_m}{\sqrt{8}}$		
ν	\underline{X}_{ν}	$\hat{X}_{ u}$	$\phi_{ u}$	ν	$\hat{X}_{ u}$	$\phi_{ u}$	ν	$\hat{X}_{ u}$	$\phi_{ u}$
1	$\frac{1}{\pi}X_m$	$\frac{2}{\pi}X_m$	0	1	$\frac{\sqrt{2}}{\pi}X_m$	0	1	$\frac{\sqrt{2-\sqrt{2}}}{\pi}X_m$	0
2	_	_	_	2	$\frac{1}{\pi}X_m$	0	2	$\frac{\sqrt{2}}{2\pi}X_m$	0
3	$-\frac{1}{3\pi}X_m$	$\frac{2}{3\pi}X_m$	π	3	$\frac{\sqrt{2}}{3\pi}X_m$	0	3	$\frac{\sqrt{2+\sqrt{2}}}{3\pi}X_m$	0
4	_	_	_	4	_	_	4	$\frac{1}{2}X_m$	0
5	$\frac{1}{5\pi}X_m$	$\frac{2}{5\pi}X_m$	0	5	$\frac{\sqrt{2}}{5\pi}X_m$	π	5	$\frac{\sqrt{2+\sqrt{2}}}{5\pi}X_m$	0
6	_	_	_	6	$\frac{1}{3\pi}X_m$	π		$\frac{\sqrt{2}}{16\pi}X_m$	0
7	$-\frac{1}{7\pi}X_m$	$\frac{2}{7\pi}X_m$	π	7	$\frac{\sqrt{2}}{7\pi}X_m$	π	7	$\frac{\sqrt{2-\sqrt{2}}}{7\pi}X_m$	0
8	_	_	_	8	_	_	8	_	_
9	$\frac{1}{9\pi}X_m$	$\frac{2}{9\pi}X_m$	0	9	$\frac{\sqrt{2}}{9\pi}X_m$	0	9	$\frac{\sqrt{2-\sqrt{2}}}{9\pi}X_m$	π
10	_	_	_	10	$\frac{1}{5\pi}X_m$	0	10	$\frac{\sqrt{2}}{5\pi}X_m$	π
11	$-\frac{1}{11\pi}X_m$	$\frac{2}{11\pi}X_m$	π	11	$\frac{\sqrt{2}}{11\pi}X_m$	0	11	$\frac{\sqrt{2+\sqrt{2}}}{11\pi}X_m$	π
12	_	_	_	12	_	_	12	$\frac{1}{6\pi}X_m$	π
13	$\frac{1}{13\pi}X_m$	$\frac{2}{13\pi}X_m$	0	13	$\frac{\sqrt{2}}{13\pi}X_m$	π	13	$\frac{\sqrt{2+\sqrt{2}}}{13\pi}X_m$	π
14	_	_	_	14	$\frac{1}{7\pi}X_m$	π	14	$\frac{\sqrt{2}}{7\pi}X_m$	π
15	$-\frac{1}{15\pi}X_m$	$\frac{2}{15\pi}X_m$	π	15	$\frac{\sqrt{2}}{15\pi}X_m$	π	15	$\frac{\sqrt{2-\sqrt{2}}}{15\pi}X_m$	π
16	_	_	_	16	_	_	16	_	_

1.2

$$\underline{X}_{\nu} = \frac{1}{T_1} \cdot \int_{-\frac{T_1}{2}}^{\frac{T_1}{2}} X_m \cos(\omega_0 t) \cdot e^{-(j\nu\omega_0 t)} dt \qquad = \frac{X_m}{T_1} \cdot \left[\frac{e^{-(j\nu\omega_0 t)}}{1} \right]_{-\frac{T_1}{2}}^{\frac{T_1}{2}}$$

1.3

$$\underline{U}_2 = \underline{U}_0 \cdot \frac{\frac{1}{j\omega C + \frac{1}{R_2}}}{R_1 + \frac{1}{j\omega C + \frac{1}{R_2}}} = \frac{\underline{U}_0 \cdot R_2}{R_1 + R_2 + j\omega C R_1 R_2}$$

Betrag:

$$\hat{U}_2 = \frac{\hat{U}_0 \cdot R_2}{\sqrt{(R_1 + R_2)^2 + (\omega C R_1 R_2)^2}}$$

Phase:

$$\phi_{\underline{U}_2} = \phi_{\underline{U}_0} - \arctan \frac{\omega C R_1 R_2}{R_1 + R_2}$$

- 2 Versuchsaufgaben
- 2.1
- 2.2
- 2.3