Algebraic Number Theory (MA3A6) - Problem Sheet 2

This sheet is not for submission, but you may ask for help or feedback if you wish.

- 1. Is $\frac{3+2\sqrt{6}}{1-\sqrt{6}}$ an algebraic integer?
- 2. Given a ring R (commutative and with 1) and an ideal $I \subseteq R$, show that
 - $\cdot R/I$ is a field $\Leftrightarrow I$ is maximal
 - · R/I is an integral domain $\Leftrightarrow I$ is prime.
- 3. Let α be an algebraic number. Show that $n\alpha$ is an algebraic integer for some $n \in \mathbb{Z}_{>0}$.
- 4. Factorise 24 and $5 + 3\sqrt{-7}$ as product of irreducible elements;
 - (a) in $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$,
 - (b) in $\mathbb{Z}\left[\sqrt{-7}\right]$.
- 5. Consider $\mathbb{Q}(\alpha)$ where α is a root of $\alpha^3 + \alpha^2 + \alpha + 2 = 0$.

Express

$$(\alpha^2 + \alpha + 1)(\alpha^2 + \alpha)$$
 and $(\alpha - 1)^{-1}$

in the form $a\alpha^2 + b\alpha + c$ with $a, b, c \in \mathbb{Q}$.

- 6. Show that $\sqrt{2} + \sqrt{3}$ is algebraic over \mathbb{Q} of degree 4.
- 7. Let p and q be coprime square-free integers. Show that the minimal polynomial of \sqrt{p} over $\mathbb{Q}(\sqrt{q})$ is $X^2 p$.
- 8. Let F be an extension of a field K with basis $\{\gamma_1, \ldots, \gamma_n\}$ over K. Show that for any $x \in F^*$, $\{x\gamma_1, \ldots, x\gamma_n\}$ is also a K-basis for F.
- 9. Let M be an $n \times n$ matric over a field k. Assume $\operatorname{tr}(MX) = 0$ for all $n \times n$ matrices X over k. Show that M = 0.
- 10. Let L be a free module over \mathbb{Z} with basis e_1, \ldots, e_n . Let M be a free sub-module of the same rank, with basis u_1, \ldots, u_n . Let $u_i = \sum c_{ij} e_j$. Show that the index (L:M) is given by the determinant

$$(L:M) = |\det(c_{ij})|.$$