Analyzing the choice of transportation

Elie Daher

July 3, 2017

Abstract

This document contains the problem of analysing the choice of transportation. This problem is from the chapter UTA Methods of the Book: Multiple Criteria Decision Analysis. This document was made during my internship at LAMSADE in the summer of 2017.

A DM wants to analyse the choice of transportation. The DM is interstered in the following criteria

- 1. price
- 2. time (min)
- 3. comfort (possibility to have a seat)

The evaluation of the previous criteria:

Means of transportation	Price	Time	Comfort	Ranking of the DM		
RER	3	10	+	1		
METRO (1)	4	20	++	2		
METRO (2)	2	20	0	2		
BUS	6	40	0	3		
TAXI	30	30	+++	4		

DM's preferences: $RER \succ Metro1 \approx Metro2 \succ Bus \succ Taxi$

1 Scale for each criteria

For each criteria, the interval $[g_i^*, g_{i*}]$ is cut into $(\alpha_i - 1)$ equal intervals. So in this case we have:

- Price \rightarrow [30, 16, 2]
- Time \rightarrow [40, 30, 20, 10]
- Comfort \rightarrow [0,+,++,++]

2 Marginal value by linear interpolation

The marginal value is calculated by a linear interpolation. In this case we have:

- $v[g(RER)] = 0.07v_1(16) + 0.93v_1(2) + v_2(10) + v_3(+)$
- $v[g(METRO1)] = 0.14v_1(16) + 0.86v_1(2) + v_2(20) + v_3(++)$
- $v[g(METRO2)] = v_1(2) + v_2(20) + v_3(0) = v_1(2) + v_2(20)$
- $v[g(BUS)] = 0.29v_1(16) + 0.71v_1(2) + v_2(40) + v_3(0) = 0.29v_1(16) + 0.71v_1(2)$
- $v[g(TAXI)] = v_1(30) + v_2(30) + v_3(+++) = v_2(30) + v_3(+++)$

3 Replace v_i with w_{ij}

- $v[g(RER)] = w_{11} + 0.93w_{12} + w_{21} + w_{22} + w_{23} + w_{31}$
- $v[g(METRO1)] = w_{11} + 0.86w_{12} + w_{21} + w_{22} + w_{31} + w_{32}$
- $v[g(METRO2)] = w_{11} + w_{12} + w_{21} + w_{22}$
- $v[g(BUS)] = w_{11} + 0.71w_{12}$
- $v[g(TAXI)] = w_{21} + w_{31} + w_{32} + w_{33}$

4 Difference between each pair of consecutive actions

- $\Delta(RER, METRO1) = 0.07w_{12} + w_{23} w_{32} + \sigma_{RER} \sigma_{METRO1} \ge \delta$
- $\Delta(METRO1, METRO2) = -0.14w_{12} + w_{31} + w_{32} + \sigma_{METRO1} \sigma_{METRO2} = 0$
- $\Delta(METRO2, BUS) = 0.29w_{12} + w_{21} + w_{22} + \sigma_{METRO2} \sigma_{BUS} \ge \delta$
- $\Delta(BUS, TAXI) = w_{11} + 0.71w_{12} w_{21} w_{31} w_{32} w_{33} + \sigma_{BUS} \sigma_{TAXI} \ge \delta$

5 Linear Program

Main objectif: $[min]F = \sum_{a \in A_R} \sigma(a)$ subject to :

$$\Delta(RER, METRO1) \ge \delta$$

$$\Delta(METRO1, METRO2) = 0$$

$$\Delta(METRO2, BUS) \ge \delta$$

$$\Delta(BUS, TAXI) \ge \delta$$

$$\sum_{i=1}^{n} w_{i}(a_{i}^{*}) = 1$$

$$\sum_{i=1}^{n} u_i(g_i^*) = 1$$

With $[min]F = \sum_{a \in A_R} \sigma(a)$ as the main objectif, we have the following linear program to solve:

Desc	w_{11}	w_{12}	w_{21}	w_{22}	w_{23}	w_{31}	w_{32}	w_{33}	Result
$\Delta(RER, METRO1) \ge \delta$	0	0.07	0	0	1	0	-1	0	$\geq \delta$
$\Delta(METRO1, METRO2) = 0$	0	-0.14	0	0	0	1	1	0	=0
$\Delta(METRO2, BUS) \ge \delta$	0	0.29	1	1	0	0	0	0	$\geq \delta$
$\Delta(BUS, TAXI) \ge \delta$	1	0.71	-1	0	0	-1	-1	-1	$\geq \delta$
$\sum_{i=1}^{n} u_i(g_i^*) = 1$	1	1	1	1	1	1	1	1	=1

So by using the com.google.ortools library, we can solve the Linear Program above with $\sigma=0.05$. This Linear Program solution is coded in Java class ChoiceTransportation.

```
Minimize

Obj: +1 eRER_ +1 eRER__1 +1 eMETRO1_ +1 eMETRO1__2 +1 eMETRO2__ +1 eMETRO2__3 +1 e
Subject to

auto_c_0000000000: +0.070000000000000000 w12 +1 w23 -1 w32 -1 eRER__ +1 eRER__1 +1 e
auto_c_0000000001: -0.14 w12 +1 w31 +1 w32 -1 eMETRO1__ +1 eMETRO1__2 +1 eMETRO2_
auto_c_0000000002: +0.29 w12 +1 w21 +1 w22 -1 eMETRO2__ +1 eMETRO2__3 +1 eBUS__ -1 e
auto_c_0000000003: +1 w11 +0.71 w21 -1 w22 -1 w31 -1 w32 -1 w33 +1 eTAXI__ -1 eTAXI_
auto_c_0000000004: +1 w11 +1 w12 +1 w21 +1 w22 +1 w23 +1 w31 +1 w32 +1 w33 = 1
```

An optimal solution has been found of the LP with $\sigma=0.05$. The objective was accomplished with $[min]F=\sum_{a\in A_R}\sigma(a)=0$ and $w_{11}=0.5,\ w_{22}=0.05,\ w_{23}=0.05,\ w_{33}=0.4$.

```
Problem solved in 286 milliseconds
Optimal objective value = 0.0
w31 = 0.0
w11 = 0.5
w22 = 0.05
w33 = 0.4
w21 = 0.0
w32 = 0.0
w12 = 0.0
w12 = 0.0
```