LINEAR MODELS SIESSION TIP Phil BORDING

Least Squares Problem

What is "Least"

RELATIONSHIPS USING

VARIANCES AND COVARIANCES!

MATH - ENGLISH - ART!

PERCEPTRONS

MACHINE LEARNING
GIVEN DATA AND TRUTH
LEARN TO RECOGNIZE COMPLEX INPUT

VARIANCE - COVARIANCE

Point CLUSTER

X values have average value.

Y values have average value.

VARIANCE-COVARIANCE

VARIANCE in X.

$$\frac{1}{N} \leq \left(x_i - \bar{x}_m\right)^2$$

VARIANCE in Y.

$$\frac{1}{N} \leq (y_i - \overline{y}_m)^2$$

Variances

DISTANCE of X Points from Mean |X-X| = DISTANCE

Y Points from Mean

Y-Y = DISTANCE

Variance = & DISTANCES

COVARIANCES

USE X Versus Y Products

Example of Covariances

STUDENT	MANH	ENGLISH	ART
1	90	60	90
2	90	90	30
3	60	60	60
,4	60	60	90
5	30	30	30

MATRIX DATA - AVERAGE VALUES

= (

$$\begin{array}{r}
24 \ 0 \ 30 \\
24 \ 30 - 30 \\
-6 \ 0 \ 0 \\
-6 \ 0 \ 30 \\
-36 - 30 - 30
\end{array}$$

$$CC = \begin{bmatrix} 24 & 24 - 6 - 6 - 36 \\ 0 & 30 & 0 & 0 - 30 \\ 30 - 30 & 0 & 30 - 30 \end{bmatrix} \times \begin{bmatrix} 24 & 0 & 30 \\ 24 & 30 - 30 \\ -6 & 0 & 0 \\ -6 & 0 & 30 \\ -36 - 30 - 30 \end{bmatrix}$$

SYMMETTEIC!

COVARIANCE WATRIX = 5

504 360 180 360 360 0 180 0 720

VAR COU COV
COV VAR COV
COV COV VAR

VARIANCE - COUARIANCE

	MATH	ENG.	ART
MATH	504	360	180
ENG	360	360	0
ART	180	0	720

DOES ENGLISH

AND

ART

RELATE ?

NO PREDICTABLE RELATIONSHIP!

LEAST SQUARES

EIGEN VECTOR

2 EIGENVECTOR

COVARIANCE MATRIX
HAS EIGEN VALUES
AND EIGEN VECTORS

These Distances

ARE MAXIMUM

MAX!