Формальные языки. Домашнее задание на 16.05

Горбунов Егор Алексеевич

16 мая 2016 г.

Задание №1 Показать, что языки не являются контекстно свободными.

Решение:

- (a) Язык $a^i b^j c^k$, i < j < k. Будем показывать исходя из леммы о накачке. Для n. Рассмотрим слово $\omega = a^n b^{n+1} c^{n+2}$. Покажем, что какое бы разбиение не взяли $\omega = uvxyz$, что $vy \neq \varepsilon$ и $|vxy| \leq n$, то найдётся $k \geq 0$, что $uv^k xy^kz \notin L$. Т.к. $|vxy| \leq n$, то возможны только следующие случаи:
 - $vxy = a^d$. Тогда мы всегда накачиваем a(v, y) не пусты) и всегда можем найти такой k, что v^kxy^k будет равен a^D , где D > n+1.
 - $vxy = a^d b^q$. В этом случае при увеличении k (накачивая) мы рано или поздно сделаем так, что либо степень a будет больше степени b, либо степень b будет больше степени c, т.к. степень a остаётся неизменной.
 - $vxy = b^d$. Аналогично случаю с a^d .
 - $vxy = b^d c^q$. У нас в v хотя бы один b или в y хотя бы один c. Положим k = 0, тогда в uv^0xy^0z (накаченное w) будет хотя бы на 1 b меньше чем в исходном w (если в u есть b), но тогда это слово не принадлежит языку, ибо степень b в нём d степени d. Аналогично если вдруг u оказалось пустым, но тогда d точно не пусто. (как я понял, по лемме важно, чтобы vy было не пуста, а не каждый в отдельности)
 - $vxy = c^d$. Тут берём k = 0 и аналогично предыдущему случаю.
- (b) Язык $a^n b^n c^i$, где $i \le n$. Аналогично исходя из леммы на накачке. Для n. Рассмотрим слово $\omega = a^n b^n c^n$. $\omega = uvxyz$, $|vxy| \le n$. Таким образом возможные случаи для vxy:
 - $vxy = a^d$. Тут всё понятно. При накачке с любым k мы потеряем равенство числа a-шек и b-шек
 - $vxy = b^d$. Аналогично.
 - $vxy = c^d$. Тут при накачке с любым k > 0 (достаточно k = 1) получим, что число c-шек стало больше, чем число α -шек, а это уже вне языка!

- $vxy = a^db^q$. Возьмём тогда и положим k = 0. У нас тогда любо нарушится равенство числа ашек и b-шек (это если в v и y их суммарно разное число), а если равенство и не нарушится, то т.к. vy не пусто, то число b и a уменьшится хоть на 1, но тогда, т.к. число c-шек станет больше хотя бы на один в силу того, что во взятом слове число a b и c одинаково.
- $vxy = b^d c^q$. Любая накачка приводит к нарушению либо равенства числа a и b, либо к тому, что c стало больше. (см. предыдущий пункт).

(c) Язык 0^p , где p — простое. Исходя из леммы о накачке. Для n. Рассмотрим слово подходящей длины:

$$\omega = uvxyz = 0^u0^v0^x0^y0^z$$

Накачаем его так:

$$0^{|u|}(0^{|v|})^{|u|+|x|+|z|}0^{|x|}(0^y)^{|u|+|x|+|z|}0^{|z|} = 0^{|u|}0^{|v|}(|u|+|x|+|z|)0^{|x|}0^{|y|}(|u|+|x|+|z|)0^z = 0^{|u|+|x|+|z|+|z|}0^{|x|}(|u|+|x|+|z|)+|y|(|u|+|x|+|z|)0^{|x|}0^{|x|}(|u|+|x|+|z|)0^{|x|}0$$

Получили, что длинна накаченного слова составная!

- (d) Язык $0^i 1^j$, где $j=i^2$. Для п достаточно рассмотреть слово $\omega=0^n 1^{n^2}$. У нас $|vxy|\leq n$ (то, что в лемме о накачке). Таким образом суммарное число 0 и 1 в этой части слова равна n. Если при накачке число 0 увеличивается на 1, то число 1 должно увеличиться на 2n+1, чтобы получить слово из языка. Легко увидеть (правда =)), что такое невозможно.
- (e) Язык $a^n b^n c^i$, где $n \le i \le 2n$. Для n рассматриваем слово $\omega = a^n b^n c^{2n}$ и действуем аналогично пункту (b).