

HCC/HCF4017B HCC/HCF4022B

COUNTERS/DIVIDERS

4017B DECADE COUNTER WITH 10 DECODED OUTPUTS

4022B OCTAL COUNTER WITH 8 DECODED OUTPUTS

- FULLY STATIC OPERATION
- MEDIUM SPEED OPERATION-12MHz (typ.) AT VDD = 10V
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- MEETS ALL REQUIREMENTS OF JEDECTENTATIVE STANDARD N° 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC4017B/4022B** (extended temperature range) and **HCF4017B/4022B** (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package and plastic micro package.

The HCC/HCF4017B and HCC/HCF4022B are 5stage and 4-stage Johnson counters having 10 and 8 decoded outputs, respectively. Inputs include a CLOCK, a RESET, and a CLOCK INHIBIT signal. Schmitt trigger action in the CLOCK input circuit provides pulse shaping that allows unlimited clock input pulse rise and fall times. These counters are advanced one count at the positive clock signal transition if the CLOCK INHIBIT signal is low. Counter advancement via the clock line is inhibited when the CLOCK INHIBIT signal is high. A high RESET signal clears the counter to its zero count. Use of the Johnson decade-counter configuration permits high-speed operation, 2-input decimal-decode gating, and spike-free decoded outputs. Anti-lock gating is provided, thus assuring proper counting sequence. The decoded outputs are normally low and go high only at their respective decoded time slot. Each decoded output remains high for one full clock cycle. A CARRY-OUT signal completes one

June 1989 1/12

cycle every 10 clock input cycles in the **HCC/HCF4017B** or every 8 clock input cycles in the

HCC/HCF4022B and is used to ripple-clock the succeeding device in a multi-device counting chain.

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
VI	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package-temperature Range	200 100	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types	3 to 18	V
	HCF Types	3 to 15	V
V_{I}	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types	- 55 to + 125	°C
	HCF Types	- 40 to + 85	°C

^{*} All voltages values are referred to Vss pin voltage.

LOGIC DIAGRAMS

TIMING DIAGRAMS

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

	l		7	est Con	dition	s				Value					
Symbol	Parame	Parameter		٧o	I _o	V _{DD}	T _{Low} * 25°C T					T _H	ah*	Unit	
				(V)	(μA)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.		
ΙL	Quiescent		0/5			5		5		0.04	5		150		
	Current	нсс	0/10			10		10		0.04	10		300		
	Types	1	0/15			15		20		0.04	20		600		
		0/20			20		100		0.08	100		3000	μΑ		
			0/5			5		20		0.04	20		150		
		HCF Types	0/10			10		40		0.04	40		300		
		Types	0/15			15		80		0.04	80		600		
V _{OH}	Output High	1	0/5		< 1	5	4.95		4.95			4.95			
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V	
			0/15		< 1	15	14.95		14.95			14.95			
V_{OL}	Output Low	'	5/0		< 1	5		0.05			0.05		0.05		
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V	
			15/0		< 1	15		0.05			0.05		0.05		
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5			
	Voltage			1/9	< 1	10	7		7			7		V	
				1.5/13.5	< 1	15	11		11			11			
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5		
	Voltage			9/1	< 1	10		3			3		3	V	
				13.5/1.5	< 1	15		4			4		4		
I _{OH}	Output Drive	HCC	0/5	2.5		5	- 2		- 1.6	- 3.2		- 1.15			
	Current	Types	0/5	4.6		5	_ 0.64		_ 0.51	- 1		- 0.36			
			0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		mA	
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4			
		HCF	0/5	2.5		5	_ 1.53		- 1.36	- 3.2		- 1.1			
		Types	0/5	4.6		5	- 0.52		- 0.44	- 1		- 0.36			
			0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9			
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4			
l _{OL}	Output		0/5	0.4		5	0.64		0.51	1		0.36			
	Sink	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9			
	Current	l ypcs	0/15	1.5		15	4.2		3.4	6.8		2.4		mA	
			0/5	0.4		5	0.52		0.44	1		0.36		1117	
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9			
			0/15	1.5		15	3.6		3.0	6.8		2.4			
I _{II+} , I _{IL}	Input Leakage	HCC Types	0/18	Any In	ınııt	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μΑ	
	Current	HCF Types	0/15	Ally III	.put	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μΛ	
Cı	Input Capa	citance		Any In	put					5	7.5			pF	

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. width $V_{DD} = 5V$, 2V min. width $V_{DD} = 10V$, 2.5V min. width $V_{DD} = 10V$

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all $V_{DD} = 0.3\%^{\circ}C$ values, all input rise and fall time = 20ns)

0	Barrandan	Test Conditions			Value		11:0:4
Symbol	Parameter	V _{DD}	, (V)	Min.	Тур.	Max.	Unit
CLOCKE	D OPERATION						
t _{PLH} , t _{PHL}	Propagation Delay Time		5		325	650	
	Decode Out	1	10		135	270	ns
		1	15		85	170	
	Carry Out		5		300	600	
		1	10		125	250	ns
		1	15		80	160	
t _{THL} , t _{TLH}	Transition Time		5		100	200	
	Carry Out or Decoded Out Line	1	10		50	100	ns
		1	15		40	80	
f _{CL} *	Maximum Clock Input Frequency		5	2.5	5	5	
		1	10	5	10		MHz
		1	15	5.5	11		
t _W	Minimum Clock Pulse Width		5		100	200	
		1	10		45	90	ns
		1	15		30	60	
t _r , t _f	Clock Input Rise or Fall Time		5				
		1	10	Unlimited			μs
		1	15				
t _{setup}	Data Setup Time		5		115	230	
	Minimum Clock Inhibit	1	10		50	100	ns
		1	15		35	7.5	
RESET (PERATION						
t _{PLH} , t _{PHL}	Propagation Delay Time	!	5		265	530	
	Carry Out or Decode Out Lines	1	10		115	230	ns
		1	15		85	170	
t _W	Minimum Reset Pulse Width		5		130	260	
		1	10		55	110	ns
		1	15		30	60	
t _{rem}	Minimum Reset Removal Time		5		200	400	
		1	10		140	280	ns
		1	15		75	150	

^{*} Measured with respect to carry output line.

Typical Output Low (sink) Current Characteristics.

Typical Output High (source) Current Characteristics.

TYPICAL APPLICATIONS

Divide by N Counter (N \leq 10) with N Decoded Outputs.

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

When the Nth decoded output is reached (Nth clock pulse) the S-R flip-flop (constructed from two NOR gates of the **HCC/HCF4001B**) generates a reset pulse which clears the **HCC/HCF4017B** to its zero count. At this time, if the Nth decoded output is greater than or equal to 6, the Cout line goes high to clock the next **HCC/HCF4017B** counter section. The "0" decoded output also goes high at this time. Coincidence of the clock low and decoded "0" output high resets the S-R flip flop to enable the **HCC/HCF4017B**. If the Nth decoded output is less than 6, the Cout line will not go high and, therefore, cannot be used. In this case "0" decoded output may be used to perform the clocking function for the next counter.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
5 11111	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

