## UNIVERSIDAD NACIONAL DE INGENIERÍA

### FACULTAD DE INGENIERÍA MECÁNICA



# INFORME DE LABORATORIO LABORATORIO DE CIRCUITOS ELÉCTRICOS

RELACIONES ESCALARES Y COMPLEJAS EN CIRCUITOS LINEALES CA

LIMA - PERÚ NOVIEMBRE 2019

# RELACIONES ESCALARES Y COMPLEJAS EN CIRCUITOS LINEALES CA

### ENTREGADO: 27 NOVIEMBRE 2019

| Huaroto Villavicencio Josue, 20174070 | Landeo Sosa Bruno, 2017202    |
|---------------------------------------|-------------------------------|
| Quesquen Vitor Angel, 20170270C       | Sotelo Cavero Sergio, 2017212 |
| ROFESOR:                              |                               |
|                                       |                               |

# Índice general

| 1. | Objetivos  |                                   | 1  |
|----|------------|-----------------------------------|----|
| 2. | Marco ted  | órico                             | 2  |
|    | 2.1. Circu | ito RLC en corriente alterna      | 2  |
|    | 2.1.1.     | Circuito R en corriente alterna   | 2  |
|    | 2.1.2.     | Circuito C en corriente alterna   | 3  |
|    | 2.1.3.     | Circuito L en corriente alterna   | 4  |
|    | 2.1.4.     | Circuito RLC en corriente alterna | 4  |
| 3. | Cuestiona  | ario                              | 5  |
| 4. | Conclusio  | nes y recomendaciones             | 21 |
| Bi | bliografía |                                   | 22 |

# Capítulo 1

# Objetivos

- 1. Determinar experimentalmente la variación de la intensidad y el voltaje a través de los elementos R-L-C, al aplicarles un voltaje alterno sinusoidal.
- 2. Observar como afecta la variación de un elemento del circuito  $(R \circ C)$ , al valor de la intensidad de la corriente para diferentes circuitos.
- 3. Verificar el cumplimiento de la segunda ley de Kirchoff en cada uno de los circuitos empleados.

### Capítulo 2

### Marco teórico

#### 2.1. Circuito RLC en corriente alterna

Son circuitos básicos, formados por resistencias, condensadores y bobinas, cuando se alimentan por una fuente de tensión alterna senoidal. En corriente alterna aparecen dos nuevos conceptos relacionados con la oposición al paso de la corriente eléctrica. Se trata de la reactancia y la impedancia. Un circuito presentará reactancia si incluye condensadores y/o bobinas. La naturaleza de la reactancia es diferente a la de la resistencia eléctrica. En cuanto a la impedancia decir que es un concepto totalizador de los de resistencia y reactancia, ya que es la suma de ambos. Es por tanto un concepto más general que la simple resistencia o reactancia.

#### 2.1.1. Circuito R en corriente alterna

El circuito formado por una resistencia alimentada por una fuente de tensión alterna senoidal:



La tensión  $V_g$  tendrá un valor instantáneo que vendrá dado en todo momento por:

$$V_q = V_0 \operatorname{sen}(2\pi f t)$$

En corriente alterna la oposición al paso de la corriente eléctrica tiene dos componentes, una real y otra imaginaria. Dicha oposición ya no se llama resistencia sino impedancia, Z. La

impedancia se expresa mediante un número complejo, por ejemplo de la forma a + jb, siendo a la parte real del número complejo y b su parte imaginaria. Pues bien, una resistencia presenta una impedancia que solo tiene componente real, ya que su componente imaginaria es de valor cero. Tendremos entonces que en el caso que nos ocupa la impedancia total del circuito será igual al valor que presenta la resistencia R, ya que no existe ningún otro elemento en el circuito. Así pues:

$$Z = R + i0$$

#### 2.1.2. Circuito C en corriente alterna

Este tipo de oposición al paso de la corriente eléctrica es de carácter reactivo, entendiendo tal cosa como una "reacción" que introduce el condensador cuando la tensión que se le aplica tiende a variar lentamente o nada.



Cuando el condensador está totalmente descargado se comporta como un cortocircuito. Cuando está totalmente cargado como una resistencia de valor infinito. Para valores intermedios de carga se comportará como una resistencia de valor intermedio, limitando la corriente a un determinado valor. Como en corriente alterna el condensador está continuamente cargándose y descargándose, mientras más lentamente varíe la tensión (frecuencia baja) más tiempo estará el condensador en estado de casi carga que en estado de casi descarga, con lo que presentará de media una oposición alta al paso de la corriente. Para variaciones rápidas de la tensión (frecuencias altas) el efecto será el contrario y por tanto presentará una oposición baja al paso de la corriente. Podemos decir, por tanto, que la naturaleza de este tipo de oposición es de carácter electrostático: la carga almacenada en el condensador se opone a que éste siga cargándose y esta oposición será mayor cuanto más carga acumule el condensador.

$$Z = 0 - iX_C$$

Donde  $X_C$  es la reactancia capacitiva que se calcula así:

$$X_C = \frac{1}{2\pi f C}$$

Como puede apreciarse, la impedancia que presenta un condensador solo tiene componente imaginaria reactiva.

#### 2.1.3. Circuito L en corriente alterna

La bobina presentará oposición al paso de la corriente eléctrica y ésta será reactiva, de manera similar al caso capacitivo.



Sin embargo, la naturaleza de la reactancia inductiva no es de carácter electrostático, sino de carácter electromagnético. Una bobina inducirá en sus extremos (debido a su autoinducción) una tensión que se opondrá a la tensión que se le aplique, al menos durante unos instantes. Ello provoca que no pueda circular corriente libremente. Cuanto mayor sea la velocidad de variación de la tensión aplicada mayor valor tendrá la tensión inducida en la bobina y, consecuentemente, menor corriente podrá circular por ella. Así, a mayor frecuencia de la tensión aplicada mayor será la reactancia de la bobina y a menor frecuencia de la tensión aplicada menor será la reactancia de la bobina.

$$Z = 0 + jX_L$$

$$X_L = 2\pi f L$$

#### 2.1.4. Circuito RLC en corriente alterna

$$Z = \frac{1}{\frac{1}{R} - \frac{1}{jX_C} + \frac{1}{jX_L}}$$

Reemplazando  $X_C$  y  $X_L$ :

$$Z = \frac{\mathrm{j}\omega LR}{\mathrm{j}\omega L - \omega^2 RLC + R}$$

# Capítulo 3

## Cuestionario

1. Sobre un par de ejes coordenados graficar en función de R (caso 1) y C (caso 2 y 3) las lecturas de V1 , V2 , y A tomadas en la experiencia.

### Caso 1



| V1 (volt) | V2 (volt) | A (amp) | R (ohm) |
|-----------|-----------|---------|---------|
| 148.2     | 6.2       | 0.7     | 193.5   |
| 147.1     | 7.81      | 0.9     | 152.5   |
| 146.1     | 9.43      | 1.1     | 125.5   |
| 145.3     | 11.2      | 1.3     | 105.9   |
| 144.5     | 15.27     | 1.5     | 89.3    |
| 145       | 14        | 1.7     | 84.5    |
| 144.1     | 15.1      | 1.9     | 73.48   |
| 139.9     | 17.2      | 2.1     | 67.51   |
| 143.2     | 19.4      | 2.3     | 60.49   |
| 143.1     | 20.7      | 2.5     | 55.46   |







### Caso 2



| V1 (volt) | V2 (volt) | A (amp) | C(uF) |
|-----------|-----------|---------|-------|
| 28.93     | 96.3      | 0.7     | 20    |
| 41.2      | 92.1      | 1       | 30    |
| 14.3      | 99.2      | 0.34    | 10    |
| 17.6      | 99.1      | 0.45    | 12    |
| 11.1      | 99.3      | 0.28    | 7.5   |
| 10.3      | 99.5      | 0.25    | 6.66  |
| 7.54      | 94.6      | 0.19    | 5     |
| 11.08     | 97.7      | 0.56    | 15    |
| 8.27      | 99.6      | 0.21    | 5.454 |
| 10.5      | 99.6      | 0.27    | 7     |







Caso 3

| V1 (volt) | V2 (volt) | A (amp) | C(uF)  |
|-----------|-----------|---------|--------|
| 98.9      | 3.33      | 0.372   | 30     |
| 98.9      | 3.28      | 0.372   | 20     |
| 99        | 3.13      | 0.372   | 10     |
| 99        | 3.15      | 0.372   | 12     |
| 99        | 3.11      | 0.372   | 7.5    |
| 99        | 3.1       | 0.372   | 6.66   |
| 99        | 3.09      | 0.372   | 5      |
| 99        | 3.18      | 0.372   | 1.5    |
| 99        | 3.04      | 0.372   | 5.4554 |
| 99        | 3.08      | 0.372   | 4      |







2. Graficar en cada caso el lugar geométrico de la impedancia del circuito, en el plano R-X.

#### Caso 1

Tenemos una resistencia variable en serie con una bobina, entonces la impedancia tiene la siguiente forma:

$$Z = RV + R_B + jX_L$$

Donde  $X_L$  es la reactancia inductiva de la bobina y está definida por:

$$X_L = 2\pi f L$$

Además se conoce que la resistencia propia de la bobina  $R_B$  es 2.4 ohm y tiene un L=25.9984 mH. Con datos conocidos de frecuencia (60Hz) se puede calcular la reactancia inductiva:

| V1 (volt) | V2 (volt) | A (amp) | Rv (ohm) | X₋(ohm)    |
|-----------|-----------|---------|----------|------------|
| 148.2     | 6.2       | 0.7     | 193.5    | 9.80116589 |
| 147.1     | 7.81      | 0.9     | 152.5    | 9.80116589 |
| 146.1     | 9.43      | 1.1     | 125.5    | 9.80116589 |
| 145.3     | 11.2      | 1.3     | 105.9    | 9.80116589 |
| 144.5     | 15.27     | 1.5     | 89.3     | 9.80116589 |
| 145       | 14        | 1.7     | 84.5     | 9.80116589 |
| 144.1     | 15.1      | 1.9     | 73.48    | 9.80116589 |
| 139.9     | 17.2      | 2.1     | 67.51    | 9.80116589 |
| 143.2     | 19.4      | 2.3     | 60.49    | 9.80116589 |
| 143.1     | 20.7      | 2.5     | 55.46    | 9.80116589 |

Y se hace un cuadro con la reactancia para cada valor de resistencia:

| Rv    | $R_B$ | jX∟        |
|-------|-------|------------|
| 193.5 | 195.9 | 9.80116589 |
| 152.5 | 154.9 | 9.80116589 |
| 125.5 | 127.9 | 9.80116589 |
| 105.9 | 108.3 | 9.80116589 |
| 89.3  | 91.7  | 9.80116589 |
| 84.5  | 86.9  | 9.80116589 |
| 73.48 | 75.88 | 9.80116589 |
| 67.51 | 69.91 | 9.80116589 |
| 60.49 | 62.89 | 9.80116589 |
| 55.46 | 57.86 | 9.80116589 |

### **CASO I**



Como se puede apreciar el valor es una recta horizontal debido a que el valor de la bobina es constante para cada medición.

#### Caso 2

Tenemos una resistencia variable en serie con un condensador, entonces la impedancia tiene la siguiente forma:

$$Z = R_1 - jX_C$$

Donde  $X_C$  es la reactancia inductiva de la bobina y está definida por:

$$X_C = \frac{1}{2\pi fC}$$

Además, se conoce que el condensador tiene un  $C=20\mu F$ . Con datos conocidos de frecuencia(60Hz) se puede calcular la reactancia capacitiva:

| V1 (volt) | V2 (volt) | A (amp) | C(uF) | Xc       |
|-----------|-----------|---------|-------|----------|
| 28.93     | 96.3      | 0.7     | 20    | 132.6291 |
| 41.2      | 92.1      | 1       | 30    | 88.4194  |
| 14.3      | 99.2      | 0.34    | 10    | 265.2582 |
| 17.6      | 99.1      | 0.45    | 12    | 221.0485 |
| 11.1      | 99.3      | 0.28    | 7.5   | 353.6777 |
| 10.3      | 99.5      | 0.25    | 6.66  | 398.2856 |
| 7.54      | 94.6      | 0.19    | 5     | 530.5165 |
| 11.08     | 97.7      | 0.56    | 15    | 176.8388 |
| 8.27      | 99.6      | 0.21    | 5.454 | 486.3554 |
| 10.5      | 99.6      | 0.27    | 7     | 378.9403 |

Y se hace un cuadro con la reactancia capacitiva para cada valor medido de resistencia, donde la resistencia es  $V_1/I$ .

| R1 (ohm) | Хс       |
|----------|----------|
| 41.3286  | 132.6291 |
| 41.2000  | 88.4194  |
| 42.0588  | 265.2582 |
| 39.1111  | 221.0485 |
| 39.6429  | 353.6777 |
| 41.2000  | 398.2856 |
| 39.6842  | 530.5165 |
| 19.7857  | 176.8388 |
| 39.3810  | 486.3554 |
| 38.8889  | 378.9403 |

### **CASO II**



Como se aprecia la tendencia es una línea vertical, pero por errores de medición los puntos se dispersaron mucho.

#### Caso 3

Tenemos una resistencia variable en serie con una bobina que está en paralelo con un condensador, entonces la impedancia tiene la siguiente forma:

- $\bullet$   $R_1$  se puede calcular por la división de  $V_1$  con  $I_1.$
- $\bullet$   $R_2$  se puede calcular por la división de  $V_2$  con  $I_2.$
- $\bullet$  La impedancia se puede representar como:  $Z=R_1+R_2\pm jX.$

| V1 (volt) | V2 (volt) | A (amp) | C(uF)  |
|-----------|-----------|---------|--------|
| 98.9      | 3.33      | 0.372   | 30     |
| 98.9      | 3.28      | 0.372   | 20     |
| 99        | 3.13      | 0.372   | 10     |
| 99        | 3.15      | 0.372   | 12     |
| 99        | 3.11      | 0.372   | 7.5    |
| 99        | 3.1       | 0.372   | 6.66   |
| 99        | 3.09      | 0.372   | 5      |
| 99        | 3.18      | 0.372   | 1.5    |
| 99        | 3.04      | 0.372   | 5.4554 |
| 99        | 3.08      | 0.372   | 4      |

Con los datos obtenidos se construye otra tabla:

| Vef    | Imp        | R1        | R2  | R1 <sup>2</sup> +R2 <sup>2</sup> | Z <sup>2</sup> | jΧ       |
|--------|------------|-----------|-----|----------------------------------|----------------|----------|
| 102.23 | 274.811828 | 265.86022 | 2.4 | 70687.4139                       | 75521.5408     | 69.52789 |
| 102.18 | 274.677419 | 265.86022 | 2.4 | 70687.4139                       | 75447.6847     | 68.99472 |
| 102.13 | 274.543011 | 266.12903 | 2.4 | 70830.4218                       | 75373.8648     | 67.40507 |
| 102.15 | 274.596774 | 266.12903 | 2.4 | 70830.4218                       | 75403.3884     | 67.62371 |
| 102.11 | 274.489247 | 266.12903 | 2.4 | 70830.4218                       | 75344.3469     | 67.18575 |
| 102.1  | 274.462366 | 266.12903 | 2.4 | 70830.4218                       | 75329.5901     | 67.07584 |
| 102.09 | 274.435484 | 266.12903 | 2.4 | 70830.4218                       | 75314.8348     | 66.96576 |
| 102.18 | 274.677419 | 266.12903 | 2.4 | 70830.4218                       | 75447.6847     | 67.95044 |
| 102.04 | 274.301075 | 266.12903 | 2.4 | 70830.4218                       | 75241.0799     | 66.41279 |
| 102.08 | 274.408602 | 266.12903 | 2.4 | 70830.4218                       | 75300.0809     | 66.85551 |

Entonces la impedancia total sería de la forma:

| R          | jχ       |
|------------|----------|
| 268.260215 | 69.52789 |
| 268.260215 | 68.99472 |
| 268.529032 | 67.40507 |
| 268.529032 | 67.62371 |
| 268.529032 | 67.18575 |
| 268.529032 | 67.07584 |
| 268.529032 | 66.96576 |
| 268.529032 | 67.95044 |
| 268.529032 | 66.41279 |
| 268.529032 | 66.85551 |

### **CASO IIII**



En este caso la tendencia también es una línea vertical, pero hay 2 mediciones que salieron distintas a la tendencia.

3. Graficar el lugar geométrico de los fasores corriente para los tres casos, tomando como referencia el fasor tensión (V) En el mismo diagrama graficar el lugar geométrico de los fasores  $V_1, V_2$ .





4. Para el caso 1, graficar el voltaje  $V_2$  en función de la corriente registrada por el amperímetro A.

| Medida | V2 (volts) | A (Amperios) |  |  |  |
|--------|------------|--------------|--|--|--|
| 1      | 6.2        | 0.7          |  |  |  |
| 2      | 7.81       | 0.9          |  |  |  |
| 3      | 9.43       | 1.1          |  |  |  |
| 4      | 11.2       | 1.3<br>1.5   |  |  |  |
| 5      | 15.27      |              |  |  |  |
| 6      | 14         | 1.7          |  |  |  |
| 7      | 15.1       | 1.9          |  |  |  |
| 8      | 17.2       | 2.1          |  |  |  |
| 9      | 19.4       | 2.3          |  |  |  |
| 10     | 20.7       | 2.5          |  |  |  |

Volatje 2 vs Corriente



5. Para el caso 2, graficar los voltajes  $V_1$  en función de la corriente registrada por el amperímetro A.

| Medida | V1 (volts) | A (Amperios)                      |  |  |  |
|--------|------------|-----------------------------------|--|--|--|
| 1      | 28.93      | 0.7                               |  |  |  |
| 2      | 41.2       | 1<br>0.34<br>0.45<br>0.28<br>0.25 |  |  |  |
| 3      | 14.3       |                                   |  |  |  |
| 4      | 17.6       |                                   |  |  |  |
| 5      | 11.1       |                                   |  |  |  |
| 6      | 10.3       |                                   |  |  |  |
| 7      | 7.54       | 0.19                              |  |  |  |
| 8      | 22.08      | 0.56                              |  |  |  |
| 9      | 8.27       | 0.21                              |  |  |  |
| 10     | 10.5       | 0.27                              |  |  |  |

### Volatje 1 vs Corriente



6. Para el caso 1, graficar los voltajes  $V_2$  en función de la corriente registrada por el amperímetro  $A_1$ .

| Medida | V2 (volts) | A1 (Amp) 0.408 0.396 0.389 0.386 0.381 0.38 |  |  |
|--------|------------|---------------------------------------------|--|--|
| 1      | 3.33       |                                             |  |  |
| 2      | 3.28       |                                             |  |  |
| 3      | 3.13       |                                             |  |  |
| 4      | 3.15       |                                             |  |  |
| 5      | 3.11       |                                             |  |  |
| 6      | 3.1        |                                             |  |  |
| 7      | 3.09       | 0.378                                       |  |  |
| 8      | 3.18       | 0.39                                        |  |  |
| 9      | 3.09       | 0.379                                       |  |  |
| 10     | 3.08       | 0.377                                       |  |  |

### Volatje 1 vs Corriente



7. Para los 3 casos plantear y verificar el cumplimiento de las Leyes de Kirchhoff y la Ley de Ohm en cada uno de los circuitos empleados, asimismo, elaborar un cuadro con los valores de los voltajes y corrientes obtenidos en cada caso y compararlo con los obtenidos teóricamente, indicando el % de error del voltaje y corriente suministrada por la fuente (obtenida al resolver cada circuito).



Figura 3.1: Caso 1



Figura 3.2: Caso 2



Figura 3.3: Caso 3

|    | Voltaje real 1 | Voltaje teórico 1 | Error 1 (%) | Voltaje real 2 | Voltaje teórico 2 | Error 2 (%) | Voltaje real 3 | Voltaje teórico 3 | Error 3 (%) |
|----|----------------|-------------------|-------------|----------------|-------------------|-------------|----------------|-------------------|-------------|
| 1  | 6.20           | 6.515273          | 5.085044    | 28.93          | 28.580704         | 1.207384    | 3.33           | 3.337690          | 0.230936    |
| 2  | 7.81           | 8.096545          | 3.668956    | 41.20          | 41.015653         | 0.447443    | 3.28           | 3.235640          | 1.352437    |
| 3  | 9.43           | 9.677818          | 2.627976    | 14.30          | 13.658764         | 4.484166    | 3.13           | 3.176111          | 1.473190    |
| 4  | 11.20          | 11.259091         | 0.527597    | 17.60          | 18.218246         | 3.512760    | 3.15           | 3.150598          | 0.018995    |
| 5  | 15.27          | 12.840364         | 15.911175   | 11.10          | 11.171774         | 0.646616    | 3.11           | 3.108077          | 0.061818    |
| 6  | 14.00          | 14.421636         | 3.011688    | 10.30          | 9.928279          | 3.608938    | 3.10           | 3.099573          | 0.013765    |
| 7  | 15.10          | 16.002909         | 5.979530    | 7.54           | 7.441290          | 1.309158    | 3.09           | 3.082565          | 0.240617    |
| 8  | 17.20          | 17.584182         | 2.233615    | 22.08          | 22.777727         | 3.159997    | 3.18           | 3.184615          | 0.145127    |
| 9  | 19.40          | 19.165455         | 1.208997    | 8.27           | 8.270286          | 0.003460    | 3.09           | 3.091069          | 0.034599    |
| 10 | 20.70          | 20.746727         | 0.225736    | 10.50          | 10.757276         | 2.450248    | 3.08           | 3.074061          | 0.192832    |

Observamos que los valores son muy cercanos, siendo que el error se mantiene menor a  $2\,\%$  para las mediciones.

### Capítulo 4

## Conclusiones y recomendaciones

- 1. Tener cuidado con las mediciones del multímetro debido a que habrán casos en el que la corriente sea mayor a 5 amperios y esto puede hacer que queme el fusible en el amperímetro si no se ha colocado en la escala adecuada.
- 2. Se aconseja usar la pinza amperimétrica para una mejor medición y no tener problemas con la escala.
- 3. Regular muy bien el autotransformador debido a que este voltaje es muy importante en los cálculos.
- 4. Ser bastante cuidado con la resistencia variable porque no se encuentra en buen estado y generalmente oscila su valor.
- 5. Cerciorarse del buen funcionamiento de la inductancia.
- 6. No olvidar agregar en sus cálculos el valor de la resistencia interna de la bobina.

# Bibliografía

- [1] Boylestad, Robert M. "Introducción al análisis de circuitos". Pearson
- [2] Sadiku, Matthew N. "Fundamemtos de circuitos eléctricos". Mc Graw Hill
- [3] Apuntes circuitos transitorios.

http://users.df.uba.ar/moreno/cursos/lab3/apuntes/transitorios.pdf