Exercícios Inferência Matemática
Barry R. James - Probabilidade: um curso em nível intermediário
Capítulo 1 e Capítulo 2

Sumário

1	Pági	inas 26 - 32																										2
	1.1	Questão 1 .																				 						2
	1.2	Questão 2 .																				 						2
	1.3	Questão 3 .																				 						3
	1.4	Questão 4 .																				 						4
	1.5	Questão 5 .																				 						5
	1.6	Questão 6 .																										5
	1.7	Questão 7 .																				 						6
	1.8	Questão 8 .																				 						7
	1.9	Questão 9 .																				 						S
	1.10	Questão 10																				 						Ĝ
	1.11	Questão 11																										10
	1.12	Questão 12																				 						11
	1.13	Questão 13																										12
	1.14	Questão 14																										14
	1.15	Questão 15																										15
	1.16	Questão 16																				 						15
	1.17	Questão 17																				 						16
	1.18	Questão 18																				 						16
	1.19	Questão 19																										17
	1.20	Questão 20																										17
		•																										18
	1.22	Questão 22																										19
	1.23	Questão 23																										20
	1.24	Questão 24																				 					. 4	21
2	Dám	inas 86-89																									•	22
2	2.1																											42 22
	$\frac{2.1}{2.2}$	Questão 2 .																										22 23
	2.3	Questão 3 .																										$\frac{23}{23}$
	$\frac{2.3}{2.4}$	Questão 4 .																										23
		•																										23
	2.5 2.6	Questão 5 . Questão 6 .																										23
	$\frac{2.0}{2.7}$	Questão 7 .																										23
	2.7	Questão 8 .																										23 23
	2.9	Questão 9 .																										23 23
		Questão 10	•	 •	 •	 •	• •	•	•	•	•	•	 •	•	 •	 •	 •	•	•	•	 •	 •	•	•	 •	•		20 24

Capítulo 1

Páginas 26 - 32

Questão 1 1.1

- (a) \equiv (ii)
- (b) \equiv (iii)
- (c) $\equiv (iv)$
- $(d) \equiv (i)$

Questão 2 1.2

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} P(A_n)$$

Se os subconjuntos B_1, B_2

subconjuntos $B_1, B_2, \dots, B_n \subset B$ são disjuntos, então:

$$P\left(\bigcup_{n=1}^{\infty} B_n\right) = \sum_{n=1}^{\infty} P(B_n) \text{ } (\sigma\text{-Aditividade})$$

Podemos construir B de tal forma que:

$$B \subset A \Rightarrow P(B) \le P(A)$$

Podemos também escrever os subconjuntos A_n de tal forma que eles sejam disjuntos:

$$B_n = A_n - \bigcup_{m=1}^{n-1} A_m \Rightarrow B_n \subset A_n, \quad n > 1$$

$$\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$$

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = P\left(\bigcup_{n=1}^{\infty} B_n\right) = \sum_{n=1}^{\infty} P(B_n) \le \sum_{n=1}^{\infty} P(A_n)$$

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} P(A_n)$$

1.3 Questão 3

(a) Note que:

$$\bigcap_{i=1}^{\infty} A_i = \left(\bigcup_{i=1}^{\infty} A_i^c\right)^c$$

Então:

$$P\left(\bigcap_{i=1}^{\infty} A_i\right) = P\left(\left(\bigcup_{i=1}^{\infty} A_i^c\right)^c\right) = 1 - P\left(\bigcup_{i=1}^{\infty} A_i^c\right) \ge 1 - \sum_{i=1}^n P(A_i^c)$$

$$\Rightarrow P\left(\bigcap_{i=1}^{\infty} A_i\right) \ge 1 - P\left(\bigcup_{i=1}^{\infty} A_i^c\right)$$

(b)

$$P(A_k) \ge 1 - \varepsilon$$

4

$$\sum_{k=1}^{n} P(A_k) \ge \sum_{i=1}^{n} (1 - \varepsilon) = n - n\varepsilon$$

$$\sum_{k=1}^{n} P(A_k) \ge P\left(\bigcup_{k=1}^{n} A_k\right)$$

$$\sum_{k=1}^{n} P(A_k^c) \ge P\left(\bigcup_{k=1}^{n} A_k\right)^c$$

$$n - \sum_{k=1}^{n} P(A_k) \ge 1 - P\left(\bigcap_{n=1}^{n} A_k\right)$$

$$\sum_{k=1}^{n} P(A_k) \le -1 + n + P\left(\bigcap_{n=1}^{n} A_k\right)$$

$$n - n\varepsilon \le -1 + n + P\left(\bigcap_{k=1}^{n} A_k\right)$$

$$1 - n\varepsilon \le P\left(\bigcap_{k=1}^{n} A_k\right)$$

(c)

$$P\bigg(\bigcap_{k=1}^{n} A_k\bigg) \ge 1 - \sum_{k=1}^{n} P(A_k^c)$$

Sabemos que

$$P\left(\bigcup_{k=1}^{n} A_{n}\right) \leq \sum_{n=1}^{n} P(A_{k})$$

$$\Rightarrow P\left(\bigcup_{n=1}^{n} A_{n}^{c}\right) \leq \sum_{n=1}^{n} P(A_{n}^{c})$$

$$\Rightarrow P\left(\bigcap_{n=1}^{\infty} A_{n}\right)^{c} \leq \sum_{n=1}^{n} P(A_{n}^{c})$$

$$\Rightarrow 1 - P\left(\bigcap_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{n} P(A_{n}^{c})$$

$$\Rightarrow P\left(\bigcap_{n=1}^{\infty} A_{n}\right) \geq 1 - \sum_{n=1}^{\infty} P(A_{n}^{c})$$

1.4 Questão 4

a)

$$P(A_n) = 0$$

Sabemos que:

$$P\bigg(\bigcup_{n=1}^{\infty} A_n\bigg) \le \sum_{n=1}^{\infty} P(A_n) = 0$$

Note que por hipótese $\bigcup_{n=1}^{n} A_n \ge 0$ pois se tratam de eventos aleatórios de Ω . Então:

$$0 \ge P\left(\bigcup_{n=1}^{n} A_n\right) \le 0 \Rightarrow P\left(\bigcup_{n=1}^{n} A_n\right) = 0$$

b)

$$P\left(\bigcap_{n=1}^{\infty} A_n\right) = 1 - P\left(\bigcup_{n=1}^{\infty} A_n^c\right) \quad (*)$$

Note que pelo teorema anterior:

$$1 - P\left(\bigcup_{n=1}^{\infty} A_n^c\right) \le 1 - \sum_{n=1}^{\infty} P(A_n^c) = 1 - \sum_{n=1}^{\infty} (1 - P(A_n)) = 1 - \sum_{n=1}^{\infty} (1 - 1) = 1$$
$$\therefore 1 - P\left(\bigcup_{n=1}^{\infty} A_n^c\right) \le 1 \underset{(*)}{\Longrightarrow} P\left(\bigcap_{n=1}^{\infty} A_n\right) \ge 1$$

Porém essa expressão é limitada superiormente pois $\bigcap_{n=1}^{\infty} A_n \subset \Omega$ e $P\left(\bigcap_{n=1}^{\infty} A_n\right) \leq \Omega = 1$ Logo:

$$1 \ge P\bigg(\bigcap_{n=1}^{\infty} A_n\bigg) \le 1$$

$$\therefore P\bigg(\bigcap_{n=1}^{\infty} A_n\bigg) = 1$$

1.5 Questão 5

É fácil ver que $P(A_n) \longrightarrow 1 \Leftrightarrow A_n = \Omega$. Além disso, sabemos que $P(B \cap \Omega) = B, \forall B \subseteq \Omega$. Então, $P(A_n \cap B_n) \to p$ quando $B_n \to p$

1.6 Questão 6

- a) Para provarmos que $\mathscr{A} \cap \mathscr{B}$ é σ -algebra de Ω , basta mostrar que essa intersecção satisfaz as 3 propriedades de uma σ -algebra.
 - $\mathscr{A} \cap \mathscr{B} \neq \emptyset$ pois por definição \mathscr{A} e \mathscr{B} são não vazios.
 - $(\mathscr{A} \cap \mathscr{B})^c = \mathscr{A}^c \cup \mathscr{B}^c$. Por hipótese, \mathscr{A}^c e \mathscr{B}^c pertencem ao subconjunto de partes de Ω e pela propriedade 3 a união desses dois elementos também pertence ao subconjunto de partes de Ω .

b) Sejam A_n σ -algebras contendo \mathscr{C} . Entao $\bigcap_{n=1}^{\infty} \mathscr{A}_n$ é uma σ -algebra minimal que contem \mathscr{C} .

Sol:

Por hipotese, tem-se que:

 $\mathcal{A}_n, n = 1, 2, \ldots, e \sigma$ -algebra contendo \mathscr{C} .

Como $\bigcap_{n=1}^{\infty} \mathscr{A}_n \subset \mathscr{A}$ para algum n, enta
o $\bigcap_{n=1}^{\infty} \mathscr{A}_n$ contem \mathscr{C} . Entao basta mostrar que $\bigcap_{n=1}^{\infty} \mathscr{A}_n$ é σ -algebra.

De fato:

Temos que $\mathscr{C} \in \bigcap_{n=1}^{\infty} \mathscr{A}_n$, então (i) e satisfeito.

Por outro lado,

(ii) Se $A \in \bigcap_{n=1}^{\infty} \mathscr{A}_n$ enta
o $A \in \mathscr{A}_n, \forall n.$ Sendo \mathscr{A}_n σ -algebra, temos que:

$$A^c \in \mathscr{A}_n, \forall n$$

Dai,
$$A^c \in \bigcap_{n=1}^{\infty} \mathscr{A}_n$$

(iii) Sejam A_1, A_2, \ldots eventos de $\bigcap_{n=1}^{\infty} \mathscr{A}_n$.

Então
$$A_1, A_2, \ldots \in \mathscr{A}, \forall n = 1, \ldots$$

Daí $\bigcup_{i=1}^{\infty} A_i \in \mathscr{A}_n, \forall n = 1, 2, \ldots$
Assim, $\bigcup_{i=1}^{\infty} A_i \in \bigcap_{n=1}^{\infty} \mathscr{A}_n$

1.7 Questão 7

$$\limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n = A, A = \lim_{n \to \infty} A_n$$

$$\Rightarrow \lim_{n \to \infty} P(A_n) = P(A)$$

Seja:

a) $\limsup_{n\to\infty} A_n = A = \lim_{n\to\infty} A_n$ Defina

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \left(\bigcup_{i=n}^{\infty} \right)$$

$$B_1 \supset B_2 \dots \supset B_n \supset \dots \supset \bigcap_{i=1}^{\infty} B_n = \bigcap_{n=1}^{\infty} \left(\bigcup_{i=n}^{\infty} A_i \right) = \limsup_{n \to \infty} A_n = A,$$

Então, pela continuidade da probabilidade, tem-se que:

$$\lim_{n\to\infty} P(B_n) = P(A)$$

ou

$$\lim_{n \to \infty} P\left(\bigcup_{i=n}^{\infty} A_i\right) = P(A) \qquad (1)$$

Por outro lado,

$$A_n \subset \bigcup_{i=n}^{\infty} A_i$$

Assim,

$$P(A_n) \le P\left(\bigcup_{i=n}^{\infty} A_i\right)$$

e

$$\lim_{n \to \infty} P(A_n) \le \lim_{n \to \infty} P\left(\bigcup_{i=n}^{\infty} A_i\right) \stackrel{(1)}{=} P(A)$$
$$\therefore \lim_{n \to \infty} P(A_n) \le P(A) \quad (2)$$

b) Se $\liminf_{n\to\infty} A_n = \lim_{n\to\infty} A_n = A$, Então

$$\lim_{n \to \infty} A_n \ge P(A) \tag{3}$$

A prova está completa a partir de (2) e (3)

1.8 Questão 8

$$\Omega: \left\{ \omega = d_1, d_2 : d_1, d_2 \in \{1, 2, 3, 4, 5, 6\} \right\}$$

Vitória 1 :
$$V_1 = \left\{ (d_1, d_2) : d_1 + d_2 \in \{7, 11\} \right\}$$

Derrota 1 : $D_1 = \left\{ (d_1, d_2) : d_1 + d_2 \in \{2, 3, 12\} \right\}$
Continuação: $C = \left\{ 4, 5, 6, 8, 9, 10 \right\}$

A partir daqui, a probabilidade de vitória está condicionada ao valor obtido em C, caso o jogador obtenha o mesmo resultado em dois lançamentos consecutivos ele ganha, caso contrário, ele perde. Note que o jogo continua até o jogador ganhar ou perder, podendo ter potencialmente um numero elevado de jogadas de dados, então, é interessante incorporamos o final do jogo na medida de probabilidade.

Podemos considerar que a vitória se dá quando o jogador consegue atingir a condição de vitória antes da condição de derrota, que é probabilisticamente análogo considerar que a foi alcançada a vitória ou a derrota.

Utilizando o teorema de Bayes:

$$P\Big(\{s=x\}|\{s=x\}\cup\{s=7\}\Big) = \frac{P\Big(\{s=x\}\cap\Big\{\{s=x\}\cup\{s=7\}\Big\}\Big)}{P\Big(\Big\{\{s=x\}\cup\{s=7\}\Big\}\Big)}$$
$$\therefore P\Big(\{s=x\}|\{s=x\}\cup\{s=7\}\Big) = \frac{P\Big(\{s=x\}\cup\{s=7\}\Big)}{P\Big(\Big\{\{s=x\}\cup\{s=7\}\Big\}\Big)}$$

Sendo assim, tomando $s = d_1 + d_2$ o evento em que a soma dos números nas faces superiores dados leva a vitória, temos que a probabilidade de vitória dado que a $s \in C$ pode ser expressa por:

Primeiro lançamento

$$P(\{s=4\}) \cdot P(\{s=7\} | \{s=4\} \cup \{s=7\})) = \frac{3}{36} \cdot \frac{\frac{3}{36}}{\frac{9}{36}} = \frac{3}{36} \cdot \frac{3}{9})$$

$$P(\{s=5\}) \cdot P(\{s=5\} | \{s=5\} \cup \{s=7\})) = \frac{4}{36} \cdot \frac{\frac{4}{36}}{\frac{10}{36}} = \frac{4}{36} \cdot \frac{4}{10}$$

$$P(\{s=6\}) \cdot P(\{s=6\} | \{s=6\} \cup \{s=7\})) = \frac{5}{36} \cdot \frac{\frac{5}{36}}{\frac{11}{36}} = \frac{5}{36} \cdot \frac{5}{11}$$

$$P(\{s=8\}) \cdot P(\{s=8\} | \{s=8\} \cup \{s=7\})) = \frac{5}{36} \cdot \frac{\frac{5}{36}}{\frac{10}{36}} = \frac{5}{36} \cdot \frac{5}{11}$$

$$P(\{s=9\}) \cdot P(\{s=9\} | \{s=8\} \cup \{s=7\})) = \frac{4}{36} \cdot \frac{\frac{4}{36}}{\frac{10}{36}} = \frac{4}{36} \cdot \frac{4}{10}$$

$$P(\{s=10\}) \cdot P(\{s=10\} | \{s=10\} \cup \{s=7\})) = \frac{3}{36} \cdot \frac{\frac{3}{36}}{\frac{9}{36}} = \frac{3}{36} \cdot \frac{3}{9}$$

Logo, a probabilidade de vitória é dada por:

$$P(\{G\}) = \frac{8}{36} + 2\left(\frac{3}{36} \cdot \frac{3}{9} + \frac{4}{36} \cdot \frac{4}{10} + \frac{5}{36} \cdot \frac{5}{11}\right) = 0.4929293$$

Analogamente, se considerarmos a probabilidade de derrota, temos:

$$P\bigg(\{s=7\}|\{s=x\}\cup\{s=7\}\bigg) = \frac{P\bigg(\{s=7\}\bigg)}{P\bigg(\Big\{\{s=x\}\cup\{s=7\}\Big\}\bigg)}$$

endo assim, tomando $s = d_1 + d_2$ o evento em que a soma dos números nas faces superiores dados leva a derrota, temos que a probabilidade de derrota dado que a $s \in C$ pode ser expressa por:

$$\begin{split} &P(\{s=4\}) \cdot P(\{s=7\} | \{s=4\} \cup \{s=7\}) = \frac{3}{36} \cdot \frac{\frac{6}{36}}{\frac{9}{36}} = \frac{3}{36} \cdot \frac{6}{9} \\ &P(\{s=5\}) \cdot P(\{s=7\} | \{s=5\} \cup \{s=7\}) = \frac{4}{36} \cdot \frac{\frac{6}{36}}{\frac{36}{36}} = \frac{4}{36} \cdot \frac{6}{10} \\ &P(\{s=6\}) \cdot P(\{s=7\} | \{s=6\} \cup \{s=7\}) = \frac{5}{36} \cdot \frac{\frac{6}{36}}{\frac{36}{36}} = \frac{5}{36} \cdot \frac{6}{11} \\ &P(\{s=8\}) \cdot P(\{s=7\} | \{s=8\} \cup \{s=7\}) = \frac{5}{36} \cdot \frac{\frac{6}{36}}{\frac{36}{36}} = \frac{5}{36} \cdot \frac{6}{11} \\ &P(\{s=9\}) \cdot P(\{s=7\} | \{s=8\} \cup \{s=7\}) = \frac{4}{36} \cdot \frac{\frac{6}{36}}{\frac{36}{36}} = \frac{4}{36} \cdot \frac{6}{10} \\ &P(\{s=10\}) \cdot P(\{s=7\} | \{s=10\} \cup \{s=7\}) = \frac{3}{36} \cdot \frac{\frac{6}{36}}{\frac{36}{22}} = \frac{3}{36} \cdot \frac{6}{9} \end{split}$$

Logo, a probabilidade de derrota é dada por:

$$P(\{G\}) = \frac{4}{36} + 2\left(\frac{3}{36} \cdot \frac{6}{9} + \frac{4}{36} \cdot \frac{6}{10} + \frac{5}{36} \cdot \frac{6}{11}\right) = 0.5146605$$

1.9 Questão 9

Podemos fixar a sorvetes do sabor A e b sorvetes do sabor B de acordo com as preferências, sendo assim, resta distribuir (n-a) e (n-b) sorvetes entre as 2n-a-b pessoas restantes, que são indiferentes ao sabor. Além disso, existem $\binom{2n}{n}$ maneiras de distribuir os 2n entre os indivíduos.

Logo, a probabilidade do evento de interesse ocorrer é:

$$P(A) = \frac{\binom{2n-a-b}{n-a}}{\binom{2n}{n}}$$

1.10 Questão 10

Seja x o número de retiradas até obter uma carta de número par do conjunto de cartas enumeradas de 1 a 10, um modelo probabilístico possível é:

$$P_X(x) = \begin{cases} \frac{5}{10}, & x = 1\\ \frac{5}{10} \cdot \frac{5}{9}, & x = 2\\ \frac{5}{10} \cdot \frac{5}{9} \cdot \frac{5}{8}, & x = 3\\ \frac{5}{10} \cdot \frac{5}{9} \cdot \frac{5}{8} \cdot \frac{5}{7}, & x = 4\\ \frac{5}{10} \cdot \frac{5}{9} \cdot \frac{5}{8} \cdot \frac{5}{7} \cdot \frac{5}{6}, & x = 5\\ \frac{5}{10} \cdot \frac{5}{9} \cdot \frac{5}{8} \cdot \frac{5}{7} \cdot \frac{5}{6} \cdot \frac{5}{5}, & x = 6 \end{cases}$$

$$P_X(x) = \begin{cases} \frac{1}{2}, & x = 1\\ \frac{5}{18}, & x = 2\\ \frac{5}{36}, & x = 3\\ \frac{5}{84}, & x = 4\\ \frac{5}{252}, & x = 5\\ \frac{5}{1260}, & x = 6 \end{cases}$$

1.11 Questão 11

a) $\Omega = \left\{ (x,y) : x,y \in [0,1] \right\}$

O espaço de probabilidade pode ser definido por:

$$(\Omega, \mathscr{B}^2, p_x)$$

Onde \mathscr{B}^2 é a sigma algebra de borel do quadrado definido em \mathbb{R}^2 e p_x é a medida de probabilide de Lebesgue.

b)
$$\Omega = \left\{ \omega = \{r_1, r_2, \ldots\} : r_i \in \{A1, A2, \ldots, K4\}, i = 1, 2 \ldots, \right\}$$

$$P(r = k) = \frac{4}{52} \left(\frac{48}{52}\right)^{k-1}, \quad k = 1, 2, 3, \ldots$$

c)
$$\Omega = \left\{ (r_1, r_2, \dots, r_1 5) : r_i \in \{p, p, p, p, p, p, p, p, v, v, v, v, v, b\}, i = 1, \dots, 15 \right\}$$

$$P(p, v, b) = \frac{15!}{p! \cdot v! \cdot b!} \left(\frac{9}{15}\right)^p \left(\frac{5}{15}\right)^v \left(\frac{1}{15}\right)^b$$

d)
$$\Omega = \left\{ (r_1, r_2, \dots, r_{15}) : r_i \in \{p, p, p, p, p, p, p, p, p, v, v, v, v, b\}, i = 1, \dots, 15 \right\}$$

$$P(p, v, b) = \frac{\binom{9}{p} \binom{5}{v} \binom{1}{b}}{\binom{15}{p+v+b}} = 1$$

1.12 Questão 12

a)
$$P_X(k) = \frac{\binom{4}{k}\binom{48}{4-k}}{\binom{52}{4}}, \quad k = 0, 1, 2, 3, 4$$

b)
$$P_X(k) = {4 \choose k} \left(\frac{4}{52}\right)^k \left(\frac{48}{52}\right)^{4-k}, \quad k = 0, 1, 2, 3, 4$$

c) É fácil ver que é mais fácil obter 4 reis no caso com reposição pois a probabilidade de retirada do rei é sempre maior ou igual do que no caso sem reposição.

1.13 Questão 13

a) Sejam A ,B e C eventos de Ω .

Podemos definir a união dos eventos como, tomando $D = B \cup C$:

$$A \cup D = (A - D) \cup (A \cap D) \cup (D - A)$$

Aplicando probabilidade, temos:

$$P(A \cup D) = P(A - D) + P(A \cap D) + P(D - A)$$

$$P(A \cup D) = P(A) - P(A \cap D) + P(A \cap D) + P(D) - P(A \cap D) = P(A) + P(D) - P(A \cap D)$$

Substituindo

$$P(A \cup B \cup C) = P(A) + P(B \cup C) - P(A \cap (B \cup C))$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(B \cap C) - P(A \cap (B \cup C))$$

$$= P(A) + P(B) + P(C) - P(B \cap C) - [P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)]$$

$$\therefore P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(B \cap C) - P(A \cap B) - P(A \cap C) + P(A \cap B \cap C)]$$

b) $P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i, \le n} P\left(\bigcap_{j=1}^{k} A_{ij}\right)$

c) i) Primeira desigualdade:

$$\sum_{i=1}^{n} P(A_i) - \sum_{1 \le i \le j \le n} P(A_i \cap A_j) \le P\left(\bigcup_{i=1}^{n} A_i\right)$$

$$\sum_{i=1}^{n} P(A_i) - \sum_{1 \le i \le j \le n} P(A_i \cap A_j) \le \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 \le \dots \le i_k \le n} P\left(\bigcap_{j=1}^{k} A_{ij}\right)$$

É fácil ver que as duas equações são iguais para os casos onde $n \le 2$ e todas as intersecções (n+2) á (n+2) são vazias. Caso contrário, a primeira equação é sempre menor.

Segunda desigualdade:

$$P\bigg(\bigcup_{i=1}^{n} A_i\bigg) \le \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i \le j \le n} P(A_i \cap A_j) + \sum_{1 \le i \le j \le k \le n} P(A_i \cap A_j \cap A_k)$$

$$\sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 \le \dots \le i_k \le n} P\left(\bigcap_{j=1}^{k} A_{ij}\right) \le \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i \le j \le n} P(A_i \cap A_j) + \sum_{1 \le i \le j \le k \le n} P(A_i \cap A_j \cap A_k)$$

Utilizando uma argumentação semelhante ao item anterior, podemos notar que a segunda equação contabiliza apenas intersecções até 3 elementos, entretanto, se observarmos o primeiro termo da primeira equação, $\sum_{i=1}^{n} (-1)^{k+1}$, ela apresenta sinal negativo para valores de k>4

Então, levando em consideração os fatos de que $\sum\limits_{k=4}^n (-1)^{k+1} \sum\limits_{1 \leq i_1 \leq \ldots \leq i_k \leq n} P\left(\bigcap\limits_{j=1}^k A_{ij}\right) \leq 0$ e que as duas equações são iguais para casos onde $k \leq 3$ ou as intersecções (n+3) á (n+3) são vazias , a desigualdade está provada.

ii)

1.14 Questão 14

a) Tendo em vista que o evento A_i denota acerta acertar a i-ésima frase, temos que a probabilidade de acertar ao menos uma se da pela união de todos os eventos.

$$P\left(\bigcup_{i=1}^{4} A_i\right) = \sum_{k=1}^{4} (-1)^{k+1} \sum_{1 \le i_1 \le \dots \le i_k \le 4} P\left(\bigcap_{j=1}^{k} A_{ij}\right)$$

$$P\left(\bigcup_{i=1}^{4} A_i\right) = 4 \cdot \frac{1}{4} - \frac{\binom{4}{2}}{4 \cdot 3} + \frac{\binom{4}{3}}{4 \cdot 3 \cdot 2} - \frac{\binom{4}{4}}{4 \cdot 3 \cdot 2 \cdot 1} = 1 - \frac{1}{2} + \frac{1}{6} - \frac{1}{24} = \frac{15}{24} = 0.625$$

Os termos da equação acima denotam, respectivamente:

- A soma das probabilidades de se acertar todas as frases.
- A probabilidade de se acertar quaisquer duas frases.
- A probabilidade de se acertar quaisquer três fases.
- A probabilidade de se acertar todas as frases.
- b) Generalizando a equação acima, temos:

$$P\left(\bigcup_{i=1}^{n} A_i\right) = n \cdot \frac{1}{n} - \frac{\binom{n}{2}}{\frac{n!}{(n-2)!}} + \frac{\binom{n}{3}}{\frac{n!}{(n-3)!}} - \dots + \frac{\binom{n}{n}}{\frac{n!}{(n-n)!}} = \sum_{i=1}^{n} \frac{(-1)^{(i-1)}}{i!}$$

c)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{(-1)^{(i-1)}}{i!} = \sum_{i=1}^{\infty} \frac{(-1)^{(i-1)}}{i!} = 1 + \sum_{j=0}^{\infty} \frac{(-1)^{j}}{i!} = 1 - e^{-1} = 0.6321206$$

1.15 Questão 15

A resposta é a mesma pois os dois experimentos são análogos. (Matching problem)

1.16 Questão 16

a)

$$P(B|\cup A_n) = \frac{P(B\cap (\cup A_n))}{P(\cup A_n)} = \underbrace{\frac{P(\cup (B\cap A_n))}{P(\cup A_n)}}_{A_n \text{ disjuntos}} = \underbrace{\frac{\sum P(B\cap A_n)}{P(\cup A_n)}}_{P(\cup A_n)}$$

Note que:

$$P(B|A_n) = \frac{P(B \cap A_n)}{P(A_n)} \ge c \Rightarrow P(B \cap A_n) \ge P(A_n) \cdot c$$

Então:

$$\frac{\sum P(B \cap A_n)}{P(\cup A_n)} \ge \frac{c \sum P(A_n)}{\sum P(A_n)} = c$$

b) Supondo $P(B|A_n) = c$

$$P(B|A_n) = \frac{P(B \cap A_n)}{P(A_n)} = c \Rightarrow P(B \cap A_n) = P(A_n) \cdot c$$
$$P(B|\cup A_n) = \frac{\sum P(B \cap A_n)}{\sum P(A_n)} = \frac{c \sum P(A_n)}{\sum P(A_n)} = c$$

c) Sequência decrescente de eventos.

$$P(A_{n+1}|A_n) = \frac{P(A_{n+1} \cap A_n)}{P(A_n)} = \frac{P(A_{n+1})}{P(A_n)} \le \frac{1}{2} \Rightarrow P(A_{n+1}) \le \frac{P(A_n)}{2}$$

Note que:

$$\frac{P(A_1)}{2} \ge P(A_2)$$

$$\frac{P(A_2)}{2} \ge P(A_3) \Rightarrow \frac{P(A_3)}{2^2} \ge P(A_1)$$

$$\vdots$$

$$P(A_n) \ge \frac{P(A_1)}{2^{n+1}}$$

Logo:

$$P(A_n) \ge \frac{P(A_1)}{2^{n+1}} \stackrel{n \to \infty}{\longrightarrow} 0$$

d) Assim como nos itens anteriores,

$$P(B|\cup A_n) = \frac{\sum P(B\cap A_n)}{P(\cup A_n)} = \frac{\sum P(C\cap A_n)}{P(\cup A_n)} = \frac{P(\cup (C\cap A))}{P(\cup A_n)} = P(C|\cup A_n)$$

e) Note que se $\cup A_n = \Omega$ então se $B \in \Omega \Rightarrow B \cap \cup A_n = B$

$$B \cap C = (\cup A_n) \cap (B \cap C) = \underbrace{\bigcup (A_n \cap B \cap C)}_{A_n \text{ disjuntos}}$$

$$P(B|C) = \frac{P(B \cap C)}{P(C)} = \underbrace{\sum P(A_n \cap B \cap C)}_{P(C)} = \underbrace{\sum P(\mathcal{C}) P(A_n|C) P(B|A_n \cap C)}_{P(\mathcal{C})}$$

$$\therefore P(B|C) = \sum P(A_n|C) P(B|A_n \cap C)$$

1.17 Questão 17

 D_1 : {Chover hoje.}

 D_2 : {Chover amanhã.}

 D_3 : {Chover depois de amanhã.}

$$P(D_1) = 1$$

$$P(D_2) = 0.7$$

$$P(D_2^c) = 0.3$$

$$P(D_3|D_2) = 0.7$$

$$P(D_3|D_2^c) = 0.4$$

$$P(D_3) = P(D_3 \cap D_2) + P(D_3 \cap D_2^c) = P(D_3|D_2) \cdot P(D_2) + P(D_3|D_2^c) \cdot P(D_2^c) = 0.7 \cdot 0.7 + 0.4 \cdot 0.3 = 0.61$$

1.18 Questão 18

A: { Evento onde o números observados são diferentes }

a) E_1 : {Ao menos um dos números ser 6}

$$P(E_1|A) = \frac{P(E_1 \cap A)}{P(A)} = \frac{\frac{10}{36}}{\frac{30}{36}} = \frac{1}{3}$$

b) E_2 : {A soma dos números é 8}

$$P(E_1|A) = \frac{P(E_1 \cap A)}{P(A)} = \frac{\frac{4}{36}}{\frac{30}{36}} = \frac{2}{15}$$

1.19 Questão 19

$$\Omega = \{SR\}U\{SR^c\}$$

$$P(SR) = p$$

$$P(C) = P(C \cap SR) + P(C \cap SR^c)$$

$$P(C) = p + (1 - p) \cdot \frac{1}{m}$$

$$P(SR|C) = \frac{P(SR \cap C)}{P(C)} = \frac{p}{p + \frac{1-p}{m}}$$

$$\lim_{m \to \infty} \frac{P(SR \cap C)}{P(C)} = \frac{p}{p + \frac{1-p}{m}} = 1$$

$$\lim_{p \to 0} \frac{P(SR \cap C)}{P(C)} = \frac{p}{p + \frac{1-p}{m}} = 0$$

1.20 Questão 20

i)

ii)

C:{Chove em novembro} F:{Fluminense ganha}

$$P(C) = 0.3$$

$$P(F|C) = 0.4$$

$$P(F|C) = \frac{P(F \cap C)}{P(C)} = \frac{P(C|F)P(F)}{P(C)}$$

$$\frac{P(C|F)P(F)}{P(C)} = P(F|C)$$

$$P(C|F) = \frac{P(F|C)P(C)}{P(F)} = \frac{0.4 \cdot 0.3}{P(F)}$$

$$P(F) = P(F|C)P(C) + P(F|C^c)P(C^c) = 0.4 \cdot 0.3 + 0.6 \cdot 0.7$$

$$\therefore P(C|F) = \frac{P(F|C)P(C)}{P(F)} = \frac{0.4 \cdot 0.3}{0.4 \cdot 0.3 + 0.6 \cdot 0.7} = 0.2222$$

1.21 Questão 21

 $A : \{ \text{Pedro escreve a carta} \}$

 $B:\{$ Correio não perde a carta $\}$

C:{Carteiro entrega a carta}

 $M: \{ \text{Marina não recebe} \}$

$$P(A) = 0.8$$

$$P(B) = 0.9$$

$$P(C) = 0.9$$

$$P(M) = 0.2 + 0.8 \cdot 0.1 + 0.8 \cdot 0.9 \cdot 0.1 = 0.352$$

$$P(A^c|M) = \frac{P(A^c \cap M)}{P(M)} = \frac{0.2}{0.352} \approx 0.5681$$

1.22 Questão 22

a) E_1 :{Não ocorre nenhum dos A_k }

$$P(A_k) = p_k \Rightarrow P(A_K^c) = 1 - p_k$$

$$\therefore P(E_1) = P\left(\bigcap A_k^c\right) = \prod_{k=1}^n (1 - p_k)$$

b) E_2 :{Ocorre pelo menos um dos A_k }

$$P(E_2) = 1 - \prod_{k=1}^{n} (1 - p_k)$$

c) E_3 :{Ocorre qualquer um dos A_k uma vez}

$$P(E_3) = p_1 \cdot \prod_{k=2}^{n} (1 - p_k) + p_2 \cdot \prod_{\substack{k=1 \ k \neq 2}}^{n} (1 - p_k) + \dots + p_n \cdot \prod_{\substack{k=1 \ k \neq n}}^{n} (1 - p_k)$$

$$P(E_3) = \sum_{i=1}^{n} \left[p_i \cdot \prod_{\substack{k=1 \ k \neq i}}^{n} (1 - p_k) \right]$$

d) E_4 :{Ocorrem qualquer dois dos A_k uma vez}

$$P(E_4) = \sum_{j=1}^{n} \sum_{i=1}^{n} \left[p_i \cdot p_j \cdot \prod_{\substack{k=1\\k \neq i,j}}^{n} (1 - p_k) \right]$$

e) E_5 :{Ocorrem todos dos A_k }

$$P(E_5) = \prod_{k=1}^n p_k$$

f) E_6 :{Ocorrem no máximo n-1 dos A_k } E_6^c :{Ocorrem no mínimo n dos A_k , ou seja, todos os A_k }

$$P(E_6) = 1 - \prod_{k=1}^{n} p_k$$

1.23 Questão 23

1.24 Questão 24

Capítulo 2

Páginas 86-89

2.1 Questão 1

- 2.2 Questão 2
- 2.3 Questão 3
- 2.4 Questão 4
- 2.5 Questão 5
- 2.6 Questão 6
- 2.7 Questão 7
- 2.8 Questão 8
- 2.9 Questão 9

$$f(x) = \begin{cases} \frac{1}{(1+x)^2}, x > 0 \\ 0, x < 0 \end{cases}$$

$$Y = max(X, c) = \begin{cases} X, X > c \\ c, X \le c \end{cases}$$

$$P(X = Y \le y, X > c) + P(Y = c, Y \le y, X \le c)$$

$$F_Y(x) = \begin{cases} 0, x < 0 \\ \frac{x}{(1+x)}, x > c \end{cases}$$

2.10 Questão 10

$$Y = \begin{cases} 1, X > 1 \\ X, X < 1 \end{cases}$$

se y<0 então FY = 0 pois X só assume valores no intervalo $[0,\!1]$

Se y< X , então $F_Y(x^-) = F_z : Z \sim U[0,x]$

se x < y < 1

$$F_{-}$$

$$F_y = \begin{cases} 0, y < 0 \\ x/2, y < x < 1 \\ 1, x > 1 \end{cases}$$

$$Y = \begin{cases} X, X > 2\\ 2.X < 2 \end{cases}$$

$$y < 0, F_y = 0$$

 $0 < y < 2$, Fy = 0

$$y>=2$$
, $FY = 1- \exp(-2y)$

$$F_y = \begin{cases} 0, y < 0 \\ 1 - e^{-2y}, y \ge 2 \end{cases}$$

$$F_{ac} = \begin{cases} 0, y < 2 \\ e^{-4} - e^{-2y}, y \ge 2 \end{cases}$$

$$F_d = \begin{cases} 0, y < 2 \\ 1 - e^{-4}, y \ge 2 \end{cases}$$