Thesis Meeting 7

kense, for the thesis

Comparing Traces

- Comparing two traces requires a distance metric.
 - Bag of Activities
 - K-gram Model
 - Hamming Distance
 - Levenshtein Distance
- Levenshtein distance makes a lot of sense, however, there are issues with cost of operations (affecting length mismatch, label context, etc).

Modified Levenshtein Distance

- Base modification (following the paper)
 - Derive substitution costs
 - Derive Insertion costs
 - Modify edit distance with costs
- Additional modifications (new things to try)
 - Sub-conversations
 - Archetypes/Areas of similarity

Substitution Costs - Overview

- 1. Define the symbols
- 2. List the 3-grams, and frequency
- 3. Define the context for each symbol
- 4. Determine the pair-contexts
- 5. Determine the co-occurrence counts for each pair-context
- Determine the co-occurrence counts total
- 7. Define the norm on the count of co-occurrence total
- 8. Normalize co-occurrence counts total
- 9. Determine the probability of all symbols
- 10. Determine the expected value of occurrence for pairs of symbols
- 11. Determine the substitution scores

Substitution Costs - Define Symbols

An event log **E** is defined as

 $E = \{t_1, t_2, t_3, \dots t_n\}$ where n is the number of traces in the event log, and t_i is defined as a trace.

A trace t_i is defined as

 $t_i = (\ell_1, \ell_2, \ell_3, \dots \ell_w)$ where w is the number of actions in the given trace.

A label ℓ_i is defined from the set of labels ℓ , the 11 labels predetermined.

Substitution Costs - Define Symbols

 The list of symbols are obtained by taking each trace in the eventlog and obtaining the union of the sets of symbols in each trace.

Function: Define Symbols

Input: list (of traces)

Output: list (of symbols)

Substitution Costs - List the 3-grams and Freq

 The list of 3-grams are obtained by taking each trace in the event log, iterating in increments of three to record the 3-gram, and incrementing the frequency for each recorded 3-gram using a dictionary.

Function: 3-grams and frequency

Input: list (of traces)

Output: dictionary, dictionary (3-grams, frequency)

Substitution Costs - Defining Context

A context \mathcal{X}_a is the set of all contexts for a symbol a, where $a \in \ell$

A context is in the form xy, such that xay is in the list of 3-grams

Substitution Costs - Defining Context

• Context is obtained by taking each 3-gram in the form *xay*, and storing *xy* in the dictionary of list of symbols *a*, for all 3-grams in the list of 3-grams.

Function: Defining Context

Input: list (of 3-grams)

Output: dictionary (of contexts, where the key is the symbol, and the value is a list of contexts for that symbol)

Substitution Costs - Determine pair-contexts

A pair-context is a context $\mathcal{X}_{(a,b)'}$ which is the set of contexts common to symbols \boldsymbol{a} and \boldsymbol{b} .

• This is obtained via a union of the two sets of contexts for symbols \boldsymbol{a} and \boldsymbol{b} .

Function: Determine pair-contexts

Input: dictionary (of contexts, where the key is the symbol, and the value is the list of contexts for that symbol)

Output: dictionary (of pair-contexts, where the key is the pair of symbols, and the value is the list of contexts for that pair of symbols)

Substitution Costs - Determine Co-Occurrence Counts

A Co-Occurrence is defined as $C_{xy}(a,b)$ where xy denotes the context for the symbols a and b. $xy \in \mathcal{X}_{(a,b)}$

- Algorithmically, $C_{xy}(a,b) = n_i * n_j$, where n_i and n_j are the frequency counts for the 3-grams xay and xby respectively.
- Algorithmically, $C_{xy}(a,a) = n(n-1)/2$, where n is the frequency count for the 3-gram xay.

Input: list (of symbols), dictionary (of context-pairs), dictionary (of 3-gram freq)

Output: dictionary (where the key is the co-occurrence definition, and the value is the count/value for co-occurrence.

Substitution Costs - Determine Co-Occurrence Counts

- Co-Occurrence is the count for when symbols appear in contexts that are similar to one another.
- For instance, the sequence 'abbabbabba' and 'cbbcbbcbc' have symbols a and c appear in similar contexts.
- This helps the issue of context in modifying the edit distance as discussed previously.

Substitution Costs - Co-Occurrence Totals

Co-Occurrence totals C(a,b) is defined as the co-occurrence for symbols a and b for all contexts in $\mathcal{X}_{(a,b)}$

Substitution Costs - Normalization

- All co-occurrence totals *C(a,b)* are then summed to be the norm.
- All co-occurrence totals are then normalized, and organized in matrix format

$$M(a,b) = [C(a,b)/norm]$$

Substitution Costs - Probability of Occurrence

• $p_{a'}$ the probability of occurrence for symbol a is defined as

$$p_a = M(a,a) + \sum_{a!=b} M(a,b)$$

Substitution Costs - Expected Values

• The expected value of occurrence of a pair of symbols is defined:

$$E(a,b) = p_a^2$$
, if $a = b$
= $2p_a p_b$, otherwise

Substitution Costs - Substitution Score

• The final score for substitution of a symbol a with b is defined as a matrix of values, derived as a likelihood ratio.

$$S(a,b) = \log_2(M(a,b)/E(a,b))$$

Substitution Costs - Usage

- We would take a event log of lots of traces, and apply the algorithm defined in order to obtain a matrix of costs for substitutions of symbols a and b.
- Thus, we can use these values to determine how a substitution inside the edit-distance should be evaluated (instead of a generic unit cost as per Levenshtein).

Insert Costs - Overview

- Steps 1-3 are the same for Insert Costs
 - 4. Determine the occurrence of the 3-gram **xay**
 - 5. Determine the counts of 'Right Given Left'
 - 6. Define the norm for the counts of RGL
 - 7. Determine the probability of occurrence of symbols
 - 8. Normalize the values for counts of RGL
 - 9. Calculate the Insert Costs as a likelihood ratio

Insert Costs - Count of 'Right Given Left'

For each symbol $a, x \in \ell$, where $O_{xy}(a)$ is the count of the occurrence of xay, we can access the value via the 3-gram function.

$$RGL(a/x) = \sum_{y/xy \in \mathcal{X}a} O_{xy}(a)$$

- This function will take the counts for all 3-grams that begin with xa in the set of contexts \mathcal{X}_a .
- Essentially, finds the counts for when a appears after x.

Insert Costs - Insertion Score

The final score for insertion of a symbol b given symbol a is defined also as a likelihood ratio:

$$InsSc (a/b) = log_2(RGL(a/b)/p_a*p_b)$$

Insert Costs - Usage

- Finds similarity for sequential labels occurring
- Shows that both functions (sub and indel) are likelihood ratios, for probability of occurrence of the labels vs trends of occurrence
- Provided correct implementation, we can use the same logic to apply bigger trends

Modifying the Edit Distance

- In edit-distance, specifically Levenshtein, all operations are unit cost.
- For the modification, instead of unit cost, the cost will correspond to the scores derived for EACH operation.

- insert+1 traced i | delete+1 min_abcaacbc > Sub +1 6 4 4 3 1 1 2 3 3 4

if insert, compare trace1[i] w/
trace2[i]
insert(b/a)

Modifying the Edit Distance - Similarity Version

- Use the algorithm, but in reverse for similarity (argmax instead)
 - Special case of 1000 as "no operations taken" or perfect similarity (arbitrary starting threshold)
- A cost is then applied whenever the operation is chosen, according to the cost matrix derived from the event log
- The result is a score that takes into account context and trends present in the traces that we fed in (much akin to "training")

Considerations for the algorithm

- Algorithm probably assumes that the event log consists of traces that are largely obtained from the same set up (i.e: event log is from recorded hospital processes)
- This means the cost scores will be affected if we treat it similar to ML (in the most extreme cases)
- But the metric still captures short-term dependencies (co-occurrence, context)
- We can modify to capture long-term dependencies (sub-conversations?)

Sub-conversations

- We can describe a long-term dependency as a sub-conversation, a sequence of labels, given by LTL terms.
- Monologue: (give.statement OR give.opinion) UNTIL NOT(give.statement OR give.opinion)
- Share.Memory: (recall) UNTIL (closed.question OR open.question)
- We can describe these sequences through frequency.

Sub-conversations

- Similar conversations should share similar occurrences (normalized to length) of these sub-conversations.
- This assumption holds depending on how strictly we define the sub-conversations to look for. (i.e: interview-based conversation vs query-based)

Tasks

- 1. Look at describing longer sequences using LTL
- 2. Examine using LTL descriptions as an additional factor in similarity
- 3. <<Reserved>>