Introduction to Analysis I HW3

B13902024 張沂魁

September 23, 2025

Problem 0.0.1. Let $(x^{(n)})_{n=m}^{\infty}$ be a sequence of points in a metric space (X,d), and let $L \in X$. Show that if L is a limit point of the sequence $(x^{(n)})_{n=m}^{\infty}$, then L is an adherent point of the set

$$S = \{x^{(n)} : n \ge m\}.$$

Is the converse true?

Problem 0.0.2. The following construction generalizes the construction of the reals from the rationals in Chapter 5, allowing one to view any metric space as a subspace of a complete metric space. In what follows we let (X, d) be a metric space.

(a) Given any Cauchy sequence $(x_n)_{n=1}^{\infty}$ in X, we introduce the formal limit

$$\lim_{n\to\infty} x_n$$
.

We say that two formal limits $LIM_{n\to\infty} x_n$ and $LIM_{n\to\infty} y_n$ are equal if

$$\lim_{n \to \infty} d(x_n, y_n) = 0.$$

Show that this equality relation obeys the reflexive, symmetry, and transitive axioms, i.e. that it is an equivalence relation.

(b) Let \overline{X} be the space of all formal limits of Cauchy sequences in X, modulo the above equivalence relation. Define a metric $d_{\overline{X}}: \overline{X} \times \overline{X} \to [0, \infty)$ by

$$d_{\overline{X}}(LIM_{n\to\infty} x_n, LIM_{n\to\infty} y_n) := \lim_{n\to\infty} d(x_n, y_n).$$

Show that this function is well-defined (the limit exists and does not depend on the choice of representatives) and that it satisfies the axioms of a metric. Thus $(\overline{X}, d_{\overline{X}})$ is a metric space.

- (c) Show that the metric space $(\overline{X}, d_{\overline{X}})$ is complete.
- (d) We identify an element $x \in X$ with the corresponding constant Cauchy sequence (x, x, x, ...), i.e. with the formal limit $\text{LIM}_{n\to\infty} x$. Show that this is legitimate: for $x,y\in X$,

$$x = y \iff \operatorname{LIM}_{n \to \infty} x = \operatorname{LIM}_{n \to \infty} y$$

With this identification, show that

$$d(x,y) = d_{\overline{X}}(x,y),$$

and thus (X,d) can be thought of as a subspace of $(\overline{X},d_{\overline{X}})$.

- (e) Show that the closure of X in \overline{X} is \overline{X} itself. (This explains the choice of notation.)
- (f) Finally, show that the formal limit agrees with the actual limit: if $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in X that converges in X, then

$$\lim_{n \to \infty} x_n = LIM_{n \to \infty} x_n \quad \text{in } \overline{X}.$$

- **a.** We verify the following properties:
 - Reflexive: $LIM_{n\to\infty} x_n$ and $LIM_{n\to\infty} x_n$ are equal since d is metric, so $\forall n, d(x_n, x_n) = 0$.
 - Symmetry: If $LIM_{n\to\infty} x_n$ and $LIM_{n\to\infty} y_n$ are equal, this mean $\lim_{n\to\infty} d(x_n, y_n) = 0$. And since d is metric, so $\lim_{n\to\infty} d(y_n, x_n) = 0$, hence $LIM_{n\to\infty} y_n$ and $LIM_{n\to\infty} x_n$ are equal.
 - Transitive: If $\lim_{n\to\infty} x_n$ and $\lim_{n\to\infty} y_n$ are equal and $\lim_{n\to\infty} y_n$ and $\lim_{n\to\infty} z_n$ are equal, then we have $\lim_{n\to\infty} d(x_n,y_n) = \lim_{n\to\infty} d(y_n,z_n) = 0$. By definition, there exists $N_1,N_2>0$ s.t. for all $n\geq N_1$, we have $d(x_n,y_n)<\frac{\varepsilon}{2}$ and for all $n\geq N_2$ we have $d(y_n,z_n)<\frac{\varepsilon}{2}$.

Thus, for all $n \ge \max\{N_1, N_2\}$, we have

$$d(x_n,z_n) \leq d(x_n,y_n) + d(y_n,z_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

which means $\lim_{n\to\infty} d(x_n, z_n) = 0$, and thus $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n$.

b. We first show that the limit exists. Note that $\lim_{n\to\infty}d(x_n,y_n)\in\mathbb{R}_{\geq 0}$ for all Cauchy sequence $\{x_n\}_{n=1}^\infty$, $\{y_n\}_{n=1}^\infty$ in X. We already know $(\mathbb{R},|\cdot|)$ is complete, so we know $(\mathbb{R}_{\geq 0},|\cdot|)$ is also complete as it is a closed subspace of $(\mathbb{R},|\cdot|)$. Now we define $u_n:=d(x_n,y_n)$ for all $n\geq 1$, then we want to show that $\{u_n\}_{n=1}^\infty$ is Cauchy in $\mathbb{R}_{\geq 0}$, and then we can conclude that $\{u_n\}_{n=1}^\infty$ converges in $\mathbb{R}_{\geq 0}$, and thus $\lim_{n\to\infty}d(x_n,y_n)$ exists.

Claim 0.0.1. Suppose (X, d) is a metric space, then for all $a, b, c, d \in X$ we have

$$|d(a,b) - d(c,d)| \le d(a,c) + d(b,d)$$

Proof. Since

$$\begin{cases} d(a,b) \le d(a,c) + d(c,b) \le d(a,c) + d(c,d) + d(d,b) \\ d(c,d) \le d(c,a) + d(a,d) \le d(c,a) + d(a,b) + d(b,d), \end{cases}$$

so we have

$$\begin{cases} d(a,b) - d(c,d) \ge d(a,c) + d(d,b) \\ -d(c,a) - d(b,d) \le d(a,b) - d(c,d), \end{cases}$$

so we can conbine these two equations and get the result.

By Claim 0.0.1, we know for all $p, q \ge 1$, we have

$$|u_p - u_q| = |d(x_p, y_p) - d(x_q, y_q)| \le d(x_p, x_q) + d(y_p, y_q).$$

Now since $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are Cauchy, so for every $\varepsilon > 0$, there exists $N_1, N_2 > 0$ s.t.

$$\begin{cases} d(x_p, x_q) < \frac{\varepsilon}{2} & \forall p, q \ge N_1 \\ d(y_p, y_q) < \frac{\varepsilon}{2} & \forall p, q \ge N_2. \end{cases}$$

Thus, for all $p, q \ge \max\{N_1, N_2\}$, we know

$$|u_p - u_q| \leq d(x_p, x_q) + d(y_p, y_q) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence, we know $\{u_n\}_{n=1}^{\infty}$ is Cauchy in $\mathbb{R}_{\geq 0}$, $|\cdot|$.

Now we show that $d_{\overline{X}}$ is well-defined. In other words, if $LIM_{n\to\infty}x_n = LIM_{n\to\infty}z_n$, then we want to show

$$d_{\overline{X}}\left(\mathrm{LIM}_{n\to\infty}x_n,\mathrm{LIM}_{n\to\infty}y_n\right) = d_{\overline{X}}\left(\mathrm{LIM}_{n\to\infty}z_n,\mathrm{LIM}_{n\to\infty}y_n\right) \quad \forall \text{ Cauchy } \left\{y_n\right\}_{n=1}^{\infty} \text{ in } (X,d).$$

Equivalently, we want to show $\lim_{n\to\infty} d(x_n,y_n) = \lim_{n\to\infty} d(z_n,y_n)$. Note that we have

$$\lim_{n \to \infty} d(x_n, z_n) = 0 \text{ and } d(x_n, y_n) \le d(x_n, z_n) + d(z_n, y_n),$$

so we know

$$\lim_{n \to \infty} d(x_n, y_n) \le \lim_{n \to \infty} d(x_n, z_n) + \lim_{n \to \infty} d(z_n, y_n) = \lim_{n \to \infty} d(z_n, y_n).$$

Also, we have $d(z_n, y_n) \leq d(z_n, x_n) + d(x_n, y_n)$, so we know

$$\lim_{n \to \infty} d(z_n, y_n) \le \lim_{n \to \infty} d(z_n, x_n) + \lim_{n \to \infty} d(x_n, y_n) = \lim_{n \to \infty} d(x_n, y_n),$$

and thus we can conclude that $\lim_{n\to\infty} d(x_n, y_n) = \lim_{n\to\infty} d(z_n, y_n)$. Finally, we want to show that $(\overline{X}, d_{\overline{X}})$ is a metric space.

- \forall Cauchy $\{x_n\}_{n=1}^{\infty} \in X$, $d_{\overline{X}}(\text{LIM}_{n\to\infty}x_n, \text{LIM}_{n\to\infty}x_n) = \lim_{n\to\infty} d(x_n, x_n) = 0$.
- \forall Cauchy $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \in X$,

$$d_{\overline{X}}(\text{LIM}_{n\to\infty}x_n, \text{LIM}_{n\to\infty}y_n) = \lim_{n\to\infty} d(x_n, y_n) = \lim_{n\to\infty} d(y_n, x_n)$$
$$= d_{\overline{X}}(\text{LIM}_{n\to\infty}y_n, \text{LIM}_{n\to\infty}x_n)$$

• \forall Cauchy $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}, \{z_n\}_{n=1}^{\infty} \in X$,

$$\begin{split} d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n, \mathrm{LIM}_{n\to\infty}z_n) &= \lim_{n\to\infty} d(x_n, z_n) \\ &\leq \lim_{n\to\infty} (d(x_n, y_n) + d(y_n, z_n)) = \lim_{n\to\infty} d(x_n, y_n) + \lim_{n\to\infty} d(y_n, z_n) \\ &= d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n, \mathrm{LIM}_{n\to\infty}y_n) + d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}y_n, \mathrm{LIM}_{n\to\infty}z_n). \end{split}$$

Hence, we know $(\overline{X}, d_{\overline{X}})$ is a metric space.

c. We want to show that for all $\{u_n\}_{n=1}^{\infty} \subseteq \overline{X}$, there exists $\{z_n\}_{n=1}^{\infty} \subseteq X$ s.t. $\lim_{n\to\infty} u_n = \text{LIM}_{n\to\infty} z_n$. Since $\{u_n\}_{n=1}^{\infty}$ is a sequence of formal limit of Cauchy sequences in X, so we can define $u_k = \text{LIM}_{n\to\infty} x_n^{(k)}$ for all $k \ge 1$. Now we construct $\{z_n\}_{n=1}^{\infty}$. Since we know for all $k \ge 1$, $\{x_n^{(k)}\}_{n=1}^{\infty}$ is a Cauchy sequence in X, so for all $k \ge 1$, there exists $N_k > 0$ s.t. $n \ge N_k$ implies $d\left(x_n^{(k)}, x_{N_k}^{(k)}\right) < \frac{1}{k}$. Now we let $z_k = x_{N_k}^{(k)}$ for all $k \ge 1$.

Claim 0.0.2. $\{z_k\}_{k=1}^{\infty}$ is a Cauchy sequence in X.

Proof. For all $\varepsilon>0$, we know there exists $K\geq 0$ s.t. $\frac{1}{K}<\frac{\varepsilon}{3}$. Also, since $\{u_n\}_{n=1}^{\infty}$ is Cauchy, so there exists N>0 s.t. $i,j\geq N$ implies $d_{\overline{X}}(u_i,u_j)<\frac{\varepsilon}{3}$, which can be writen as $\lim_{n\to\infty}d\left(x_n^{(i)},x_n^{(j)}\right)<\frac{\varepsilon}{3}$. To be more precise, there exists N>0 and N'>0 s.t. if $i,j\geq N$ and $n\geq N'$, then $d\left(x_n^{(i)},x_n^{(j)}\right)<\frac{\varepsilon}{3}$. Now for all $p,q\geq \max\{N,K\}$ and $n\geq \max\{N_p,N_q,N'\}$, we have

$$d(z_p, z_q) = d\left(x_{N_p}^{(p)}, x_{N_q}^{(q)}\right) \le d\left(x_{N_p}^{(p)}, x_n^{(p)}\right) + d\left(x_n^{(p)}, x_{N_q}^{(q)}\right)$$

$$\le d\left(x_{N_p}^{(p)}, x_n^{(p)}\right) + d\left(x_n^{(p)}, x_n^{(q)}\right) + d\left(x_n^{(q)}, x_{N_q}^{(q)}\right)$$

$$< \frac{1}{p} + \varepsilon + \frac{1}{q} < \frac{1}{K} + \frac{\varepsilon}{3} + \frac{1}{K} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Hence, we know $\{z_k\}_{k=1}^{\infty}$ is Cauchy.

Claim 0.0.3. $\lim_{n\to\infty} u_n = LIM_{n\to\infty} z_n$.

*

Proof. Suppose $L=\mathrm{LIM}_{n\to\infty}z_n$. For all $\varepsilon>0$, we want to show there exists N>0 s.t. $m\geq N$ implies $d_{\overline{X}}(u_m,L)<\varepsilon$, which is equivalent to $\lim_{n\to\infty}d\left(x_n^{(m)},z_n\right)<\varepsilon$. To be more precise, we want to show there exists $N\geq 0$ and N'>0 s.t. if $m\geq N$ and $n\geq N'$, then $d\left(x_n^{(m)},z_n\right)<\varepsilon$. Note that $d\left(x_n^{(m)},z_n\right)\leq d\left(x_n^{(m)},z_m\right)+d(z_m,z_n)$. Suppose K>0 has $\frac{1}{K}<\frac{\varepsilon}{2}$, we know such K exists. Also, since $\{z_n\}_{n=1}^\infty$ is Cauchy, so we know there exists $N_1'>0$ s.t. for all $p,q\geq N_1'$, we have $d\left(z_p,z_q\right)<\frac{\varepsilon}{2}$. Hence, if we pick $m\geq \max\{K,N_1'\}$ and $n\geq \max\{N_m,N_1'\}$, then

$$\begin{split} d\left(x_n^{(m)}, z_n\right) &\leq d\left(x_n^{(m)}, z_m\right) + d(z_m, z_n) < \frac{1}{m} + \frac{\varepsilon}{2} \\ &\leq \frac{1}{K} + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \end{split}$$

and we're done.

By Claim 0.0.2 and Claim 0.0.3, we know every Cauchy sequence in \overline{X} converges to a formal limit of a Cauchy sequence of X, which means it converges in \overline{X} , and thus $(\overline{X}, d_{\overline{X}})$ is complete.

d. We first show that $x = y \Leftrightarrow \text{LIM}_{n \to \infty} x = \text{LIM}_{n \to \infty} y$. If x = y, then we know

$$\lim_{n \to \infty} d(x, y) = \lim_{n \to \infty} d(x, x) = 0,$$

which means $\text{LIM}_{n\to\infty}x = \text{LIM}_{n\to\infty}y$. Now we prove the converse, if $\text{LIM}_{n\to\infty}x = \text{LIM}_{n\to\infty}y$, then we know $\lim_{n\to\infty}d(x,y)=d(x,y)=0$, so x=y.

Now we show that $d(x,y) - d_{\overline{X}}(x,y)$. Note that

$$d_{\overline{X}}(x,y) = \lim_{n \to \infty} d(x,y) = d(x,y),$$

so this is true.

- **e.** Since we know $\operatorname{cl}_{\overline{X}}(X) \subseteq \overline{X}$, we only need to show $\overline{X} \subseteq \operatorname{cl}_{\overline{X}}(X)$. Suppose $x \in \overline{X}$, then $x = \operatorname{LIM}_{n \to \infty} x_n$ where $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in X. Now we want to show that $x \in \operatorname{cl}_{\overline{X}}(X)$, which is equivalent to show for all $\varepsilon > 0$, there exists $y \in X$ s.t. $y \in B_{\overline{X}}(x,\varepsilon)$. If such y exists, then $d_{\overline{X}}(x,y) < \varepsilon$, which means $\lim_{n \to \infty} d(x_n,y) < \varepsilon$. However, $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, so there exists N > 0 s.t. $i, j \geq N$ implies $d(x_i, x_j) < \frac{\varepsilon}{2}$. Thus, we can pick $y = x_N$, and then we have for all $n \geq N$, $d(x_n,y) < \frac{\varepsilon}{2} < \varepsilon$ Hence, we have $\lim_{n \to \infty} d(x_n,y) < \varepsilon$, and we're done.
- **f.** Since $\{x_n\}_{n=1}^{\infty}$ can be seen as a sequence of elements in \overline{X} , and notice that $\{x_n\}_{n=1}^{\infty}$ is still Cauchy in \overline{X} since for all $\varepsilon > 0$, we know there exists N > 0 s.t. $p, q \ge N$ implies $d(x_p, x_q) < \varepsilon$, so under same circumstances, we know

$$d_{\overline{X}}(x_p, x_q) = \lim_{n \to \infty} d(x_p, x_q) < \varepsilon,$$

and we're done. Now since we have proved \overline{X} is complete in (c), so we know there exists $L \in \overline{X}$ s.t. $\lim_{n \to \infty} x_n = L$. Also, since $L \in \overline{X}$, so $L = \text{LIM}_{n \to \infty} a_n$ for some Cauchy sequence $\{a_n\}_{n=1}^{\infty}$ in X. Now we want to show $\text{LIM}_{n \to \infty} a_n = \text{LIM}_{n \to \infty} x_n$. Hence, we want to show $\lim_{n \to \infty} d(a_n, x_n) = 0$, which is equivalent to prove $\forall \varepsilon > 0$, $\exists N > 0$ s.t. $n \ge N$ implies $d(a_n, x_n) < \varepsilon$.

- Notice that since $\lim_{n\to\infty} x_n = L \in \overline{X}$, so $\forall \varepsilon > 0$, $\exists N_1 > 0$ s.t. $p \ge N_1$ implies $d_{\overline{X}}(x_p, L) < \frac{\varepsilon}{2}$, and thus $\lim_{n\to\infty} d(x_p, a_n) < \frac{\varepsilon}{2}$. Hence, there exists M > 0 s.t. if $p \ge N_1$ and $n \ge M$, then $d(x_p, a_n) < \frac{\varepsilon}{2}$.
- Also, since $\{x_n\}_{n=1}^{\infty}$ is Cauchy in X, so there exists $N_2>0$ s.t. $p,q\geq N_2$ implies $d(x_p,x_q)<\frac{\varepsilon}{2}$.

Use the above two properties, we know for all $n \ge \max\{M, N_2\}$ we can choose $s \ge \max\{N_1, N_2\}$ so that

$$d(a_n, x_n) \le d(a_n, x_s) + d(x_s, x_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

and we're done.

Problem 0.0.3. In the following, all the sets are subsets of a metric space (X, d).

(a) If $\overline{A} \cap \overline{B} = \emptyset$, then

$$\partial(A \cup B) = \partial A \cup \partial B.$$

(b) For a finite family $\{A_i\}_{i=1}^n \subseteq X$, show that

$$\operatorname{int}\left(\bigcap_{i=1}^{n} A_{i}\right) = \bigcap_{i=1}^{n} \operatorname{int}(A_{i}).$$

(c) For an arbitrary (possibly infinite) family $\{A_{\alpha}\}_{{\alpha}\in F}\subseteq X$, prove that

$$\operatorname{int}\left(\bigcap_{\alpha\in F}A_{\alpha}\right)\subseteq\bigcap_{\alpha\in F}\operatorname{int}(A_{\alpha}).$$

- (d) Give an example where the inclusion in part (c) is strict (i.e., equality fails).
- (e) For any family $\{A_{\alpha}\}_{{\alpha}\in F}\subseteq M$, prove that

$$\bigcup_{\alpha \in F} \operatorname{int}(A_{\alpha}) \subseteq \operatorname{int}\left(\bigcup_{\alpha \in F} A_{\alpha}\right).$$

- (f) Give an example of a finite collection F in which equality does not hold in part (e).
- **a.** If $x \in \partial(A \cup B)$, then for all r > 0, we have

$$\begin{cases} B_X(x,r) \cap (A \cup B) = (B_X(x,r) \cap A) \cup (B_X(x,r) \cap B) \neq \varnothing. \\ B_X(x,r) \cap (X \setminus (A \cup B)) = B_X(x,r) \cap (X \setminus A) \cap (X \setminus B) \neq \varnothing. \end{cases}$$

Hence, either $B_X(x,r) \cap A$ or $B_X(x,r) \cap B$ is not empty. Also, we have $B_X(x,r) \cap (X \setminus A) \neq \emptyset$ and $B_X(x,r) \cap (X \setminus B) \neq \emptyset$. Thus, $x \in \partial A \cup \partial B$, which means $\partial (A \cup B) \subseteq \partial A \cup \partial B$. Now we show that $\partial A \cup \partial B \subseteq \partial (A \cup B)$. If $x \in \partial A \cup \partial B$, then we first give a claim:

Claim 0.0.4. If $x \in \partial A$, then $x \notin \partial B$, and vice versa.

Proof. If $x \in \partial A \cap \partial B$, then since $x \in \partial A \subseteq \overline{A}$ and $x \in \partial B \subseteq \overline{B}$, so $x \in \overline{A} \cap \overline{B} = \emptyset$, which is a contradiction.

Without lose of generality, we can suppose $x \in \partial A$ and $x \notin \partial B$, then we know

$$\forall r > 0 \text{ we have } \begin{cases} B_X(x,r) \cap A \neq \varnothing \\ B_X(x,r) \cap (X \setminus A) \neq \varnothing \end{cases},$$

$$\exists r' > 0 \text{ s.t. exactly one of } \begin{cases} B_X(x,r') \subseteq B \\ B_X(x,r') \subseteq (X \setminus B) \end{cases} \text{ occurs.}$$

However, if $B_X(x,r') \subseteq B$, then $x \in B_X(x,r') \subseteq B \subseteq \overline{B}$. However, $x \in \partial A \subseteq \overline{A}$, so $x \in \overline{A} \cap \overline{B} = \emptyset$, which is a contradiction. Thus, we know $B_X(x,r') \subseteq B$. Now since $x \in \partial A$, so $\forall r > 0$, we have $\emptyset \neq B_X(x,r) \cap A \subseteq B_X(x,r) \cap (A \cup B)$. Now we want to show $B_X(x,r) \cap (X \setminus A) \cap (X \setminus B) \neq \emptyset$.

• Case 1: $r \geq r'$, then we have $B_X(x,r) \subseteq B_X(x,r') \subseteq X \setminus B$ and thus

$$B_X(x,r) \cap (X \setminus A) \subseteq X \setminus B \Rightarrow B_X(x,r) \cap (X \setminus A) \cap (X \setminus B) \neq \emptyset$$

since $B_X(x,r) \cap (X \setminus A) \neq \emptyset$.

• Case 2: r' < r, then we know $B_X(x,r') \subseteq (X \setminus B)$ and $B_X(x,r') \subseteq B_X(x,r)$. Now if we can show $B_X(x,r') \cap (X \setminus A) \cap (X \setminus B) \neq \emptyset$, then since $B_X(x,r') \subseteq B_X(x,r)$, so we know

$$\emptyset \neq B_X(x,r') \cap (X \setminus A) \cap (X \setminus B) \subseteq B_X(x,r) \cap (X \setminus A) \cap (X \setminus B).$$

Now we show that $B_X(x,r') \cap (X \setminus A) \cap (X \setminus B) \neq \emptyset$. Note that since $B_X(x,r') \subseteq (X \setminus B)$, so in fact

$$B_X(x,r')\cap (X\setminus A)\cap (X\setminus B)=B_X(x,r')\cap (X\setminus A)\neq \emptyset$$

since $x \in \partial A$, and thus we're done.

- **b.** If $x \in \text{Int}(\bigcap_{i=1}^n A_i)$, then $\exists r_1 > 0$ s.t. $B_X(x, r_1) \subseteq \bigcap_{i=1}^n A_i$. Hence, $B_X(x, r_1) \subseteq A_i$ for all $1 \leq i \leq n$, which means $x \in \text{Int}(A_i)$ for all $1 \leq i \leq n$, and thus $x \in \bigcap_{i=1}^n \text{Int}(A_i)$. This shows $\text{Int}(\bigcap_{i=1}^n A_i) \subseteq \bigcap_{i=1}^n \text{Int}(A_i)$. This shows $\text{Int}(\bigcap_{i=1}^n A_i) \subseteq \bigcap_{i=1}^n \text{Int}(A_i)$. Now we show that $\bigcap_{i=1}^n \text{Int}(A_i) \subseteq \text{Int}(\bigcap_{i=1}^n A_i)$. Suppose $x \in \bigcap_{i=1}^n \text{Int}(A_i)$, for each i s.t. $1 \leq i \leq n$, we know there exists $r_i > 0$ s.t. $B_X(x, r_i) \subseteq A_i$, so if we pick $r' = \min\{r_1, r_2, \dots, r_n\}$, then $B_X(x, r') \subseteq \bigcap_{i=1}^n A_i$, and thus $x \in \text{Int}(\bigcap_{i=1}^n A_i)$.
- **c.** If $x \in \text{Int}\left(\bigcap_{\alpha \in F} A_{\alpha}\right)$, then $\exists r_1 > 0$ s.t. $B_X(x, r_1) \subseteq \bigcap_{\alpha \in F} A_{\alpha}$. Hence, $B_X(x, r_1) \subseteq A_{\alpha}$ for all $\alpha \in F$, which means $x \in \text{Int}(A_{\alpha})$ for all $\alpha \in F$, and thus $x \in \bigcap_{\alpha \in F} \text{Int}(A_{\alpha})$. This shows $\text{Int}\left(\bigcap_{\alpha \in F} A_{\alpha}\right) \subseteq \bigcap_{\alpha \in F} \text{Int}(A_{\alpha})$.
- **d.** Suppose $\{A_{\alpha}\}_{\alpha \in F} = \{(1 \frac{1}{n}, 2 + \frac{1}{n})\}_{n \in \mathbb{N}}$, then $\bigcap_{\alpha \in F} A_{\alpha} = [1, 2]$, and Int ([1, 2]) = (1, 2). Besides, Int $(1 \frac{1}{n}, 2 + \frac{1}{n}) = (1 \frac{1}{n}, 2 + \frac{1}{n})$, and $\bigcap_{n \in \mathbb{N}} (1 \frac{1}{n}, 2 + \frac{1}{n}) = [1, 2]$. Hence, in this case, the equality fails.
- **e.** If $x \in \bigcup_{\alpha \in F} \operatorname{Int}(A_{\alpha})$, then $x \in \operatorname{Int}(A_{i})$ for some $i \in F$, and thus there exists $r_{i} > 0$ s.t. $B(x, r_{i}) \subseteq A_{i}$. Hence, $B(x, r_{i}) \subseteq \bigcup_{\alpha \in F} A_{i}$, and thus $x \in \operatorname{Int}(\bigcup_{\alpha \in F} A_{i})$.
- **f.** Suppose the family is $\{[1,2],[2,3]\}$, then

$$Int[1,2] \cup Int[2,3] = (1,2) \cup (2,3).$$

Also, $[1,2] \cup [2,3] = [1,3]$, so Int $([1,2] \cup [2,3]) = \text{Int}[1,3] = (1,3)$. This is the case the equality fails.

Problem 0.0.4. Let (X, d) be a metric space and $Y \subset X$ be an open subset. For any subset $A \subset Y$, show that A is open in Y if and only if it is open in X.

Proof.

(⇒) Since A is open in Y, so there exists open $O \subseteq X$ s.t. $A = O \cap Y$. Since O and Y are both open sets in X, so there exists $r_1, r_2 > 0$ s.t.

$$B_X(x, r_1) \subseteq O$$
 and $B_X(x, r_2) \subseteq Y$.

Now let $r_3 = \min\{r_1, r_2\}$, then $B_X(x, r_3) \subseteq O \cap Y = A$, which shows A is open in X.

(\Leftarrow) Now if A is open in X, then for all $x \in X$, there exists $B_X(x,r) \subseteq A$, but $B_Y(x,r) \subseteq B_X(x,r)$, so we have $B_Y(x,r) \subseteq A$, and thus A is open in Y.

Problem 0.0.5. On the space (0,1], we may consider the topology induced by the metric space (\mathbb{R},d) defined by d(x,y) = |x-y|. Alternatively, we may also define a distance d' on (0,1], given

by

$$d'(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|, \quad \forall x, y \in (0,1].$$

- (a) Show that d' is a metric on (0,1]
- (b) Let $x \in (0,1]$ and $\varepsilon > 0$. Let $B = B_d(x,\varepsilon) = \{y||y-x| < \varepsilon\} \cap (0,1]$ be the open ball centered at x of radius ε for the metric d in (0,1]. Show that for any $y \in B$, we may find $\varepsilon' > 0$ such that

$$B_{d'}(y,\varepsilon') \subseteq B = B_d(x,\varepsilon).$$

- (c) Show that an open ball in ((0,1],d') is also an open ball in ((0,1],d).
- (d) Conclude that the metric spaces ((0,1],d) and ((0,1],d') are topologically equivalent, that is, a set A is open in one space if and only if it is also open in the other one.
- (e) Is ((0,1], d') a complete metric space? How about ((0,1], d)?

Problem 0.0.6. (a) We say that a family of closed balls

$$(\overline{B}(x_n, r_n))_{n>1}$$

is a decreasing sequence of closed balls if the nesting condition

$$\overline{B}(x_{n+1}, r_{n+1}) \subseteq \overline{B}(x_n, r_n)$$
 for all $n \in \mathbb{N}$

is satisfied. Give an example of a decreasing sequence of closed balls in a complete metric space with empty intersection.

(b) We say that a family of closed balls

$$(\overline{B}(x_n,r_n))_{n\geq 1}$$

is a decreasing sequence of closed balls with radii tending to zero if

$$r_n \to 0 \quad \text{as } n \to \infty,$$

and the nesting condition

$$\overline{B}(x_{n+1}, r_{n+1}) \subseteq \overline{B}(x_n, r_n)$$
 for all $n \in \mathbb{N}$

is satisfied. Show that a metric space (M,d) is complete if and only if every decreasing sequence of closed balls with radii going to zero has a nonempty intersection.