Exemplar Problem

This problem gives nice step by step idea for solving NGT problems. Please try to do it by yourself before looking at the solution.

Example 11 Find numerically the greatest term in the expansion of $(2 + 3x)^9$, where

$$x = \frac{3}{2}.$$

Solution We have $(2 + 3x)^9 = 2^9 \left(1 + \frac{3x}{2}\right)^9$

Now,
$$\frac{T_{r+1}}{T_r} = \frac{2^9 \left[{}^9C_r \left(\frac{3x}{2} \right)^r \right]}{2^9 \left[{}^9C_{r-1} \left(\frac{3x}{2} \right)^{r-1} \right]}$$
$$= \frac{{}^9C_r}{{}^9C_{r-1}} \left| \frac{3x}{2} \right| = \frac{\underline{|9|}{|r|9-r} \cdot \frac{|r-1|10-r|}{\underline{|9|}} \left| \frac{3x}{2} \right|}{\underline{|9|}}$$
$$= \frac{10-r}{r} \left| \frac{3x}{2} \right| = \frac{10-r}{r} \left(\frac{9}{4} \right) \qquad \text{Since} \quad x = \frac{3}{2}$$

Therefore, $\frac{T_{r+1}}{T_r} \ge 1 \Rightarrow \frac{90 - 9r}{4r} \ge 1$ $\Rightarrow 90 - 9r \ge 4r$ $\Rightarrow r \le \frac{90}{13}$ $\Rightarrow r \le 6 \frac{12}{13}$ (Why?)

Thus the maximum value of r is 6. Therefore, the greatest term is $T_{r+1} = T_7$.

Hence,
$$T_7 = 2^9 \left[{}^9C_6 \left(\frac{3x}{2} \right)^6 \right], \quad \text{where } x = \frac{3}{2}$$
$$= 2^9 \cdot {}^9C_6 \left(\frac{9}{4} \right)^6 = 2^9 \cdot \frac{9 \times 8 \times 7}{3 \times 2 \times 1} \left(\frac{3^{12}}{2^{12}} \right) = \frac{7 \times 3^{13}}{2}$$

Example 15 If a_1 , a_2 , a_3 and a_4 are the coefficient of any four consecutive terms in the expansion of $(1 + x)^n$, prove that

$$\frac{a_1}{a_1 + a_2} + \frac{a_3}{a_3 + a_4} = \frac{2a_2}{a_2 + a_3}$$

Solution Let a_1 , a_2 , a_3 and a_4 be the coefficient of four consecutive terms T_{r+1} , T_{r+2} , T_{r+3} , and T_{r+4} respectively. Then

$$a_1 = \text{coefficient of T}_{n+1} = {}^{n}\text{C}_{n}$$

$$a_2$$
 = coefficient of $T_{r+2} = {}^{n}C_{r+1}$

$$a_3$$
 = coefficient of $T_{r+3} = {}^{n}C_{r+2}$

and $a_4 = \text{coefficient of T}_{r+4} = {}^{n}\text{C}_{r+3}$

Thus
$$\frac{a_1}{a_1 + a_2} = \frac{{}^{n}C_r}{{}^{n}C_r + {}^{n}C_{r+1}}$$

$$= \frac{{}^{n}C_{r}}{{}^{n+1}C_{r+1}} \quad (:: {}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1})$$

$$=\frac{\left|\underline{n}\right|}{\left|\underline{r}\right|\left|n-r\right|}\times\frac{\left|\underline{r+1}\right|\left|n-r\right|}{\left|n+1\right|}=\frac{r+1}{n+1}$$

Similarly,

$$\frac{a_3}{a_3 + a_4} = \frac{{}^{n}C_{r+2}}{{}^{n}C_{r+2} + {}^{n}C_{r+3}}$$

$$= \frac{{}^{n}C_{r+2}}{{}^{n+1}C_{r+3}} = \frac{r+3}{n+1}$$

Hence,

L.H.S. =
$$\frac{a_1}{a_1 + a_2} + \frac{a_3}{a_3 + a_4} = \frac{r+1}{n+1} + \frac{r+3}{n+1} = \frac{2r+4}{n+1}$$

and

R.H.S. =
$$\frac{2a_2}{a_2 + a_3} = \frac{2\binom{n}{C_{r+1}}}{\binom{n}{C_{r+1}} + \binom{n}{C_{r+2}}} = \frac{2\binom{n}{C_{r+1}}}{\binom{n+1}{C_{r+2}}}$$

$$= 2 \frac{|n|}{|r+1|n-r-1} \times \frac{|r+2|n-r-1|}{|n+1|} = \frac{2(r+2)}{n+1}$$

Two similar kind of problems based on the concept of independent term.

Q1. Find the term independent of x, where $x\neq 0$, in the expansion of $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^{15}$

Sol. Given expansion is
$$\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^{15}$$

$$T_{r+1} = {}^{15}C_r \left(\frac{3x^2}{2}\right)^{15-r} \left(-\frac{1}{3x}\right)^r$$
or
$$T_{r+1} = {}^{15}C_r (-1)^r 3^{15-2r} 2^{r-15} x^{30-3r}$$
(i)

For the term independent of x, $30 - 3r = 0 \implies r = 10$

 \therefore The term independent of x is

$$T_{10+1} = {}^{15}C_{10} \, 3^{-5} \, 2^{-5}$$
 (Putting $r = 10$ in (i))
= ${}^{15}C_{10} \left(\frac{1}{6}\right)^5$

Q2. If the term free from x is the expansion of $\left(\sqrt{x} - \frac{k}{x^2}\right)^{10}$ is 405, then find the value of k.

Sol: Given expansion is $\left(\sqrt{x} - \frac{k}{x^2}\right)^{10}$

$$T_{r+1} = {}^{10}C_r(\sqrt{x})^{10-r} \left(\frac{-k}{x^2}\right)^r = {}^{10}C_r(x)^{\frac{1}{2}(10-r)} (-k)^r x^{-2r}$$
$$= {}^{10}C_r(x)^{5-\frac{r}{2}-2r} (-k)^r = {}^{10}C_r x^{\frac{10-5r}{2}} (-k)^r$$

For the term free from x, $\frac{10-5r}{2} = 0 \implies r = 2$

So, the term free from x is $T_{2+1} = {}^{10}C_2 (-k)^2$.

$$\Rightarrow \qquad ^{10}C_2 \left(-k\right)^2 = 405$$

$$\Rightarrow \frac{10 \times 9 \times 8!}{2! \times 8!} (-k)^2 = 405$$

$$\Rightarrow$$
 $45k^2 = 405 \Rightarrow k^2 = 9 \therefore k = \pm 3$

Problem might seem a bit out of place by notation and all, but it is quite easy, give it a go.

Q15. In the expansion of $(x + a)^n$, if the sum of odd term is denoted by 0 and the sum of even term by Then, prove that

(i)
$$O^2 - E^2 = (x^2 - a^2)^n$$

(ii) $4OE = (x + a)^{2n} - (x - a)^{2n}$
(i) We have $(x + a)^n = {}^nC_0x^n + {}^nC_1x^{n-1} \ a^1 + {}^nC_2x^{n-2} \ a^2 + {}^nC_3x^{n-3} \ a^3 + \dots + {}^nC_n \ a^n$
Sum of odd terms, $O = {}^nC_0x^n + {}^nC_2x^{n-2} \ a^2 + \dots$
And sum of even terms, $E = {}^nC_1x^{n-1} \ a + {}^nC_3x^{n-3} \ a^3 + \dots$
Since $(x + a)^n = O + E$ (i) $(x - a)^n = O - E$ (ii) $(x - a)^n = O - E$ (iii) $O + E(O - E) = (x + a)^n(x - a)^n = O - E^n$ (iv) $O + E(O - E) = (x + a)^n(x - a)^n = O^n(x - a)^n = O^n(x$

Sol.

Finding middle term, or NGC.

Q12. If p is a real number and the middle term in the expansion $(\frac{p}{2}+2)^{\circ}$ is 1120, then find the value of p.

Sol. Given expansion is $\left(\frac{p}{2} + 2\right)^8$ Since index is n = 8, there is only one middle term, i.e., $\left(\frac{8}{2} + 1\right)$ th = 5th term

$$T_5 = T_{4+1} = {}^8C_4 \left(\frac{p}{2}\right)^{8-4} \cdot 2^4$$

$$\Rightarrow 1120 = {}^8C_4p^4 \qquad \Rightarrow 1120 = \frac{8 \times 7 \times 6 \times 5 \times 4!}{4! \times 4 \times 3 \times 2 \times 1}p^4$$

$$\Rightarrow 1120 = 7 \times 2 \times 5 \times p^4 \qquad \Rightarrow p^4 = \frac{1120}{70}$$

$$\Rightarrow p^4 = 16 \qquad \Rightarrow p^2 = 4 \Rightarrow p = \pm 2$$