Lab 3

- IP routing table
- 2. Static route configuration

Routing of packets

Routing of packets - IP protocol

Routing table in Cisco IOS

- Stored in RAM, displayed with the show ip route command
- Contains information about
 - Directly Connected Routes
 - Static Routes
 - Dynamic Routes

```
RE#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is not set
R 192.168.0.0/24 [120/2] via 192.168.66.1, 00:00:03, Serial0/0/1
R 192.168.3.0/24 [120/1] via 192.168.68.1, 00:00:02, Serial0/1/0
C 192.168.4.0/24 is directly connected, FastEthernet0/0
R 192.168.5.0/24 [120/1] via 192.168.70.2, 00:00:03, Serial0/0/0
R 192.168.64.0/24 [120/1] via 192.168.66.1, 00:00:03, Serial0/0/1
R 192.168.65.0/24 [120/2] via 192.168.68.1, 00:00:02, Serial0/1/0
                  [120/2] via 192.168.66.1, 00:00:03, Serial0/0/1
C 192.168.66.0/24 is directly connected, Serial0/0/1
R 192.168.67.0/24 [120/1] via 192.168.68.1, 00:00:02, Serial0/1/0
C 192.168.68.0/24 is directly connected, Serial0/1/0
R 192.168.69.0/24 [120/1] via 192.168.70.2, 00:00:03, Serial0/0/0
                  [120/1] via 192.168.68.1, 00:00:02, Serial0/1/0
C 192.168.70.0/24 is directly connected, Serial0/0/0
```

Directly-connected networks

Static routes

Dynamic routes

Routing metrics

- A quantitative cost of a path to a given destination, needed to compare paths for determining the best one
 - Hop count
 - Bandwidth
 - Cost
 - Delay
 - Load
 - Reliability

Metric field in the routing table

- Metric used for each routing protocol
 - RIP hop count
 - IGRP & EIGRP Bandwidth (used by default), Delay (used by default), Load, Reliability
 - IS-IS & OSPF Cost, Bandwidth (Cisco's implementation)

Load balancing

Packets are forwarded using all equal-cost paths

Administrative distance

- Administrative Distance (AD) defines the preference of a routing source
 - Integer value from 0 to 255
 - The lower the value the more preferred the route source (the more trustworthy the route)

AD in the routing table

First number in the brackets in the routing table

```
R2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
    192.168.1.0/24 [90/2172416] via 192.168.2.1, 00:00:24, Serial0/0/0
    192.168.2.0/24 is directly connected, Serial0/0/0
    192.168.3.0/24 is directly connected, FastEthernet0/0
    192.168.4.0/24 is directly connected, Serial0/0/1
    192.168.5.0/24 [120/1] via 192.168.4.1, 00:00:08, Serial0/0/1
    192.168.6.0/24 [90/2172416] via 192.168.2.1, 00:00:24, Serial0/0/0
    192.168.7.0/24 [120/1] via 192.168.4.1, 00:00:08, Serial0/0/1
    192.168.8.0/24 [120/2] via 192.168.4.1, 00:00:08, Serial0/0/1
```

Default AD

Route Source	Administrative Distance
Connected	0
Static	1
EIGRP summary route	5
External BGP	20
Internal EIGRP	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
External EIGRP	170
Internal BGP	200

Path determination and switching

- Path determination pick the best path to a destination
 - Directly connected network
 - Remote network
 - No route determined
 - Destination unreachable
- Switching switch a packet from an incoming interface to an outgoing interface
 - The Source and Destination IP addresses never change
 - The Source & Destination MAC addresses change as packet is forwarded from one router to the next.
 - TTL field decrements by one until a value of zero is reached, at which point the router discards the packet
 - this prevents packets from endlessly traversing the network

Switching

Static routing – example of use

Command ip route

```
Router(config) # ip route network-address subnet-mask {ip-address | exit-interface } [Distance]
```

Parameter	Description
network-address	Destination network address of the remote network to be added to the routing table.
subnet-mask	Subnet mask of the remote network to be added to the routing table. The subnet mask can be modified to summarize a group of networks.
ip-address	Commonly referred to as the next-hop router's IP address.
exit-interface	Outgoing interface that is used to forward packets to the destination network.


```
R1#debug ip routing
(**output omitted**)
R1#conf t
R1(config)#ip route 172.16.1.0 255.255.255.0 172.16.2.2
00:20:15: RT: add 172.16.1.0/24 via 172.16.2.2, static metric [1/0]
Rl#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
      * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/24 is subnetted, 3 subnets
        172.16.1.0 [1/0] via 172.16.2.2
        172.16.2.0 is directly connected, Serial0/0/0
        172.16.3.0 is directly connected, FastEthernetO/O
R1#
```

Configuring routes to two or more remote networks


```
R1(config) #ip route 192.168.1.0 255.255.255.0 172.16.2.2
R1(config) #ip route 192.168.2.0 255.255.255.0 172.16.2.2
R1(config)#end
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/24 is subnetted, 3 subnets
        172.16.1.0 [1/0] via 172.16.2.2
        172.16.2.0 is directly connected, Serial0/0/0
        172.16.3.0 is directly connected, FastEthernet0/0
     192.168.1.0/24 [1/0] via 172.16.2.2
     192.168.2.0/24 [1/0] via 172.16.2.2
```

- Configure a static route with an exit interface
 - Lookup is more efficient

```
R1(config) #no ip route 192.168.2.0 255.255.255.0 172.16.2.2
R1(config)#ip route 192.168.2.0 255.255.255.0 serial 0/0/0
R1(config)#end
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - CSPF NSSA external type 1, N2 - CSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/24 is subnetted, 3 subnets
       172.16.1.0 [1/0] via 172.16.2.2
       172.16.2.0 is directly connected, Serial0/0/0
       172.16.3.0 is directly connected, FastEthernet0/0
    192.168.1.0/24 [1/0] via 172.16.2.2
     192.168.2.0/24 is directly connected, Serial0/0/0
```

Exit interface now specified in the static route. No need for a recursive lookup.

Routing table principles

 Every router makes its decisions alone, based on the information it has in its routing table.

Different routing tables may contain different information

A routing table can tell how to get to a destination but not how

to get back

Recursive route lookup


```
R1#show ip route
(**output omitted**)

172.16.0.0/24 is subnetted, 3 subnets
S 172.16.1.0 [1/0] via 172.16.2.2
C 172.16.2.0 is directly connected, Serial0/0/0
C 172.16.3.0 is directly connected, FastEthernet0/0
S 192.168.1.0/24 [1/0] via 172.16.2.2
S 192.168.2.0/24 [1/0] via 172.16.2.2

Step 1: Find a route.
Step 2: Find an exit interface.
```

Exit interface down


```
R1#debug ip routing
IP routing debugging is on
R1#config t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#int s0/0/0
R1 (config-if) #shutdown
R1(config-if)#end
is up: 0 state: 6 sub state: 1 line: 0
RT: interface Serial0/0/0 removed from routing table
RT: del 172.16.2.0/24 via 0.0.0.0, connected metric [0/0]
RT: delete subnet route to 172.16.2.0/24
RT: del 192.168.1.0 via 172.16.2.2, static metric [1/0]
RT: delete network route to 192.168.1.0
RT: del 172.16.1.0/24 via 172.16.2.2, static metric [1/0]
RT: delete subnet route to 172.16.1.0/24
R1#show ip route
***output omitted***
Gateway of last resort is not set
     172.16.0.0/24 is subnetted, 1 subnets
        172.16.3.0 is directly connected, FastEthernet0/0
```

- Configure a static route with an exit interface
 - Issue with Ethernet exit interfaces

R1(config)#ip route 192.168.2.0 255.255.255.0 fastethernet 0/1

R1(config)#ip route 192.168.2.0 255.255.255.0 fastethernet 0/1 172.16.2.2

Static routing – when to use

- Dynamic routing is not preferred for security reasons
 - Routing protocol can be a means to compromise network operation
 - Static routing enforces routes
 - To pass through firewalls
 - To pass through safe portions of the network
- Routing policies are in place
 - Service level agreements
 - Load balancing

Routes to destinations must be carefully planned on each router **to avoid routing loops**

Destination prefix	Next Hop	Cost	
192.168.3.0/24	Se0/1/0	30	
192.168.3.0/24	Se0/0/0	40	
192.168.0.0/24	Se0/0/1	30	
192.168.0.0/24	Se0/1/0	40	
192.168.5.0/24	Se0/0/0	30	

PC_e

Static routing – configuration phase

Routing table entries are manually configured by the network manager (already covered)

Destination prefix	Next Hop	Cost
192.168.3.0/24	Se0/1/0	30
192.168.3.0/24	Se0/0/0	40
192.168.0.0/24	Se0/0/1	30
192.168.0.0/24	Se0/1/0	40
192.168.5.0/24	Se0/0/0	30

PC_e

Use of a "design table" to keep track of planned routes and identify loops

- How to avoid loops?
 - Loops are guaranteed to be avoided if the shortest-path tree to each destination network is used for each router
 - For directed graphs with non-negative weights, the shortest-path tree is computed by the **Dijkstra's algorithm**
- What if additional constraints are specified?
 - e.g., do not use a specific link for primary paths, ...
 - A constrained shortest-path tree is defined
 - out of scope of this class

Use of a "design table" to keep track of planned routes and identify loops

Network	RA	RB	RC	RD	RE	RF
192.168.128.0/24	_					
192.168.1.0/24	_	_				
192.168.2.0/24		_	_			
192.168.3.0/24	_		_			
192.168.16.0/24					_	
192.168.64.0/24			_			_
192.168.65.0/24		_		_		
192.168.66.0/24				_	_	
192.168.67.0/24					_	_

 Use of a "design table" to keep track of planned routes and identify loops

Network	RA	RB	RC	RD	RE	RF
192.168.128.0/24	_	RA	RA	RB	RF	RC
192.168.1.0/24	_	_	RB	RB	RD	RC
192.168.2.0/24	RB	_	_	RB	RF	RC
192.168.3.0/24	_	RA	_	RB	RF	RC
192.168.16.0/24	RC	RD	RF	RE	_	RE
192.168.64.0/24	RC	RC	_	RB	RF	_
192.168.65.0/24	RB	_	RB	_	RD	RC
192.168.66.0/24	RB	RD	RB	_	_	RC
192.168.67.0/24	RC	RC	RF	RB	_	_