Theory of the Double Descent Phenomena in High-Dimensional Linear Regression

Using the Replica Method from Statistical Mechanics

Charles H. Martin, PhD
Calculation Consulting
San Francisco, CA
charles@calculationconsulting.com

Contents

1	Introduction and Overview	2
2	Problem Setup and Notation 2.1 Teacher Model (Data Generation)	
3	Replica Formalism: Partition Function and Replication 3.1 Defining a Partition Function 3.2 Replication: k Copies of the System 3.3 Explicit Form of $E(\mathbf{w}^a)$ in the Teacher–Student Setup	4
4	Averaging Over the Random Design X 4.1 Notation: The Design Matrix X	5 5 6
5	Replica Order Parameters and Saddle-Point Equations5.1 Defining Overlaps in Replica Space	6
6	Ridgeless Limit $(\beta \to \infty)$ and the Double Descent	7
7	Explicit Final Expressions for the Generalization Error 7.1 Schematic Form in the Noise-Free Case	8
8	Putting It All Together: Step-by-Step Summary	8

1 Introduction and Overview

These notes provide a full, detailed, and self-contained derivation of the *double descent* phenomenon in high-dimensional linear regression using the replica method from statistical mechanics. The aim is to show *every step* that goes into a typical replica-style calculation, assuming only that the reader has a basic familiarity with Gaussian integrals, elementary linear algebra, and some broad knowledge of mean-field methods in physics.

The **double descent** effect refers to a non-monotonic dependence of test (generalization) error on model complexity or parameter dimension p. In a simple linear-regression setting, when the number of parameters p is close to the number of data points n, there is a large peak (traditionally viewed as "overfitting") but then, somewhat surprisingly, the test error goes back down again as p becomes much larger than n.

We demonstrate how the *replica method* captures this phenomenon by computing the *typical* generalization error in the limit $n, p \to \infty$ at fixed ratio $\alpha = p/n$. We will see that at $\alpha = 1$ the error develops a significant peak (a divergence when noise is absent), signifying the interpolation threshold, followed by a second descent for $\alpha > 1$.

2 Problem Setup and Notation

We focus on a teacher-student linear regression problem with random design:

2.1 Teacher Model (Data Generation)

- There is a **true parameter** (teacher) vector $\mathbf{w}^* \in \mathbb{R}^p$.
- We have n training samples $(\mathbf{x}_{\mu}, y_{\mu})$, labeled by $\mu = 1, 2, \dots, n$.
- Each $\mathbf{x}_{\mu} \in \mathbb{R}^p$ is drawn i.i.d. from a Gaussian distribution with mean zero and covariance $\frac{1}{p}\mathbf{I}_p$, i.e.

$$\mathbf{x}_{\mu} \sim \mathcal{N}ig(\mathbf{0}, rac{1}{p}\mathbf{I}_pig).$$

• The training label is generated as

$$y_{\mu} = \mathbf{x}_{\mu}^{\top} \mathbf{w}^{\star} + \varepsilon_{\mu},$$

where ε_{μ} is (optional) noise, often taken i.i.d. $\mathcal{N}(0, \sigma^2)$, with σ^2 being the noise variance. In the noise-free case, $\sigma^2 = 0$.

2.2 Student Model (Learning Procedure)

We fit a vector $\mathbf{w} \in \mathbb{R}^p$ to the training data by *ordinary least squares* (OLS). That is, we minimize the sum of squared errors:

$$E(\mathbf{w}) = \sum_{\mu=1}^{n} (y_{\mu} - \mathbf{x}_{\mu}^{\mathsf{T}} \mathbf{w})^{2}.$$

The solution that minimizes $E(\mathbf{w})$ is

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} E(\mathbf{w}).$$

In the under-parameterized regime (p < n) and when **X** is full column rank, the classical closed-form is

$$\hat{\mathbf{w}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y},$$

where **X** is the $n \times p$ design matrix whose μ -th row is \mathbf{x}_{μ}^{\top} and $\mathbf{y} = (y_1, \dots, y_n)^{\top}$.

When p > n, $\mathbf{X}^{\top}\mathbf{X}$ is rank-deficient (or nearly so). However, *ridgeless* regression can still find a solution that perfectly interpolates the data (often given by the Moore–Penrose pseudoinverse).

2.3 Test Error (Generalization Error)

We define the *test error* (or generalization error) by

$$E_{\text{test}}(\hat{\mathbf{w}}) = \mathbb{E}_{\mathbf{x}} [(\mathbf{x}^{\top} \hat{\mathbf{w}} - \mathbf{x}^{\top} \mathbf{w}^{\star})^{2}],$$

where the expectation is with respect to a fresh sample $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \frac{1}{p}\mathbf{I}_p)$. In isotropic settings, we often find

$$E_{\text{test}}(\hat{\mathbf{w}}) = \frac{1}{p} \|\hat{\mathbf{w}} - \mathbf{w}^{\star}\|^2 + \text{(possible extra term if } \sigma^2 > 0).$$

2.4 Large-Dimensional Limit

We consider the high-dimensional limit

$$n \to \infty$$
, $p \to \infty$, with $\alpha = \frac{p}{n}$ held fixed.

We will see that E_{test} becomes a function of α and other parameters (e.g. the noise variance σ^2). The **replica method** lets us compute the *typical* $E_{\text{test}}(\alpha)$ when \mathbf{x}_{μ} and \mathbf{w}^{\star} are random.

3 Replica Formalism: Partition Function and Replication

3.1 Defining a Partition Function

To analyze the properties of the *minimum* of $E(\mathbf{w})$, we can embed the problem in a statistical-mechanics framework by introducing a "Gibbs measure" at inverse temperature β :

$$Z = \int d\mathbf{w} \exp[-\beta E(\mathbf{w})].$$

In the limit $\beta \to \infty$, the integral is dominated by the global minima of $E(\mathbf{w})$. Hence, studying Z (or $\ln Z$) as $\beta \to \infty$ is effectively studying the behavior of the minimizer $\hat{\mathbf{w}}$.

However, we also need to average over the random data $\{\mathbf{x}_{\mu}, \varepsilon_{\mu}\}$. Typically, one writes $\langle Z^k \rangle$ to denote the average of Z^k over the data. Then one tries to evaluate

$$\langle \ln Z \rangle = \lim_{k \to 0} \frac{\langle Z^k \rangle - 1}{k}.$$

This is the **replica trick**: we compute $\langle Z^k \rangle$ for integer k, then analytically continue to $k \to 0$.

3.2 Replication: k Copies of the System

We define

$$Z^{k} = \left(\int d\mathbf{w} \exp[-\beta E(\mathbf{w})] \right)^{k} = \int \prod_{a=1}^{k} d\mathbf{w}^{a} \exp\left[-\beta \sum_{a=1}^{k} E(\mathbf{w}^{a})\right].$$

Hence we have k replicas of the weight vector, labeled by a = 1, 2, ..., k. Next, we take the average over \mathbf{X} and ε_{μ} :

$$\langle Z^k \rangle = \int (d\mathbf{X}) (d\varepsilon) p(\mathbf{X}, \varepsilon) \prod_{a=1}^k \exp[-\beta E(\mathbf{w}^a)].$$

We want to handle $p(\mathbf{X}, \varepsilon)$, the probability density of the data. Typically:

- X has rows $\mathbf{x}_{\mu} \sim \mathcal{N}(0, \frac{1}{n}\mathbf{I}_p)$ i.i.d.,
- $\varepsilon_{\mu} \sim \mathcal{N}(0, \sigma^2)$ i.i.d.,
- $y_{\mu} = \mathbf{x}_{\mu}^{\top} \mathbf{w}^{\star} + \varepsilon_{\mu}$.

3.3 Explicit Form of $E(\mathbf{w}^a)$ in the Teacher–Student Setup

Recall

$$E(\mathbf{w}^a) = \sum_{\mu=1}^n (y_{\mu} - \mathbf{x}_{\mu}^{\mathsf{T}} \mathbf{w}^a)^2.$$

Since $y_{\mu} = \mathbf{x}_{\mu}^{\top} \mathbf{w}^{*} + \varepsilon_{\mu}$, we have

$$E(\mathbf{w}^a) = \sum_{\mu=1}^n (\mathbf{x}_{\mu}^{\top} \mathbf{w}^{\star} + \varepsilon_{\mu} - \mathbf{x}_{\mu}^{\top} \mathbf{w}^a)^2.$$

Thus

$$E(\mathbf{w}^a) = \sum_{\mu=1}^n (\mathbf{x}_{\mu}^{\top} (\mathbf{w}^* - \mathbf{w}^a) + \varepsilon_{\mu})^2.$$

Hence,

$$\sum_{a=1}^{k} E(\mathbf{w}^{a}) = \sum_{a=1}^{k} \sum_{\mu=1}^{n} \left[\mathbf{x}_{\mu}^{\top} (\mathbf{w}^{*} - \mathbf{w}^{a}) + \varepsilon_{\mu} \right]^{2}.$$

4 Averaging Over the Random Design X

4.1 Notation: The Design Matrix X

We have an $n \times p$ matrix **X**, each row is \mathbf{x}_{μ}^{\top} , with

$$\mathbf{x}_{\mu} \sim \mathcal{N}ig(\mathbf{0}, rac{1}{p}\mathbf{I}_pig)$$
 .

Hence $x_{\mu i} \sim \mathcal{N}(0, \frac{1}{p})$ i.i.d. The measure for **X** (ignoring normalizing constants) is

$$d\mathbf{X} \exp \left[-\frac{p}{2}\operatorname{Tr}(\mathbf{X}^{\top}\mathbf{X})\right]$$

(More precisely, we have a factor $\exp[-\frac{p}{2}\sum_{\mu,i}x_{\mu i}^2]$, matching variance $\frac{1}{p}$.)

4.2 Quadratic Forms in X

Observe that

$$\sum_{\mu=1}^{n} \left[\mathbf{x}_{\mu}^{\top} (\mathbf{w}^{\star} - \mathbf{w}^{a}) \right]^{2} = \| \mathbf{X} (\mathbf{w}^{\star} - \mathbf{w}^{a}) \|^{2} = (\mathbf{w}^{\star} - \mathbf{w}^{a})^{\top} \mathbf{X}^{\top} \mathbf{X} (\mathbf{w}^{\star} - \mathbf{w}^{a}).$$

In the replicated exponent, we have $\sum_{a=1}^{k} \|\mathbf{X}(\mathbf{w}^{\star} - \mathbf{w}^{a})\|^{2}$.

4.3 Hubbard-Stratonovich (HS) Transform or Random Matrix Identities

To carry out $\int d\mathbf{X} \exp[\dots]$, one typically uses either:

- 1. A known random matrix integral, e.g. Wishart integrals for large n, p, or
- 2. **HS transform**, which introduces auxiliary variables to decouple the product in **X** from $(\mathbf{w}^* \mathbf{w}^a)$.

In either approach, the end result is that the dependence on \mathbf{X} becomes encapsulated by macroscopic order parameters (like norms and overlaps).

4.4 A Sketch of the HS Decoupling Step

For example, a typical HS formula for the factor

$$\exp\left[-\sum_{a=1}^{k} \|\mathbf{X}(\mathbf{w}^{\star} - \mathbf{w}^{a})\|^{2}\right]$$

is (omitting normalization constants):

$$\exp\left[-\sum_{a} \|\mathbf{X}(\mathbf{w}^{\star} - \mathbf{w}^{a})\|^{2}\right] = \int \prod_{a=1}^{k} d\mathbf{z}^{a} \exp\left[-\frac{1}{2}\sum_{a} \|\mathbf{z}^{a}\|^{2} + i\sum_{a} \mathbf{z}^{a\top}\mathbf{X}(\mathbf{w}^{\star} - \mathbf{w}^{a})\right].$$

Then one can integrate over \mathbf{X} row by row, using its Gaussian measure. Finally, we see that the integral organizes itself in terms of the dot products among $(\mathbf{w}^* - \mathbf{w}^a)$, revealing our order parameters.

5 Replica Order Parameters and Saddle-Point Equations

5.1 Defining Overlaps in Replica Space

A standard approach is to define the following replica-symmetric order parameters. For $a, b \in \{1, ..., k\}$,

$$q^{a} = \frac{1}{p} \|\mathbf{w}^{a}\|^{2}, \quad Q^{ab} = \frac{1}{p} \mathbf{w}^{a} \cdot \mathbf{w}^{b}, \quad m^{a} = \frac{1}{p} \mathbf{w}^{a} \cdot \mathbf{w}^{\star}.$$

Often, by replica symmetry (RS), we have $q^a = q$, $m^a = m$ for all a, and $Q^{ab} = Q$ for $a \neq b$. Then we only need to solve for a small number of scalar variables $\{q, Q, m\}$.

5.2 Self-Consistency from the Free Energy (Saddle Point)

After integrating out **X** and ε_{μ} , one obtains an expression like

$$\langle Z^k \rangle \approx \int d\{q, m, Q, \dots\} \exp[n \Phi(q, m, Q, \dots)].$$

Then in the large n limit, by a saddle-point approximation, the integral is dominated by the stationary point of Φ . This yields **saddle-point equations**

$$\frac{\partial \Phi}{\partial q} = 0, \quad \frac{\partial \Phi}{\partial m} = 0, \quad \frac{\partial \Phi}{\partial Q} = 0, \dots$$

In the limit $k \to 0$, these define the typical (most probable) values of q, m, Q that correspond to the typical solution $\hat{\mathbf{w}}$.

Crucially, from q, m, we get

$$\|\mathbf{w}^a - \mathbf{w}^{\star}\|^2 = p q + \|\mathbf{w}^{\star}\|^2 - 2 p m,$$

so the *test error* for each replica is (in isotropic design):

$$E_{\text{test}} = \frac{1}{p} \|\mathbf{w}^a - \mathbf{w}^*\|^2 = q + \frac{\|\mathbf{w}^*\|^2}{p} - 2m.$$

Hence, once the saddle-point (q, m, Q, \dots) is found, we can read off $E_{\text{test}}(\alpha)$.

6 Ridgeless Limit $(\beta \to \infty)$ and the Double Descent

In ridgeless (or ℓ_2 -regularization-free) regression, we effectively take $\beta \to \infty$, so that the partition function Z is dominated by the *global minimum* of $E(\mathbf{w})$. In that case, the replica analysis simplifies. One typically finds:

$$\min_{\mathbf{w}} E(\mathbf{w}) = \begin{cases} \text{some finite value} & (p < n), \\ 0 & (p > n, \text{ i.e. the data can be perfectly fit).} \end{cases}$$

The self-consistent equations reveal that:

- For $\alpha = p/n < 1$, the model is under-parameterized; classical least-squares formulas suggest a certain decreasing function of α for the test error.
- As $\alpha \to 1$, $\mathbf{X}^{\top}\mathbf{X}$ becomes nearly singular, the variance of $\hat{\mathbf{w}}$ blows up, and the test error *peaks*.
- For $\alpha > 1$, the solution *interpolates* perfectly, yet the *typical* generalization error begins to decrease again.

This yields the **double descent** curve: a large spike around $\alpha = 1$, with lower error on both sides.

7 Explicit Final Expressions for the Generalization Error

7.1 Schematic Form in the Noise-Free Case

When $\sigma^2 = 0$, a well-known result from random matrix theory / replica for (ridgeless) linear regression states that the typical test error has a divergence near $\alpha = 1$. A classic form is:

$$E_{\text{test}}(\alpha) = \begin{cases} \frac{1}{1-\alpha} & \alpha < 1, \\ \frac{1}{\alpha - 1} & \alpha > 1, \end{cases}$$

modulo prefactors depending on $\|\mathbf{w}^{\star}\|^2$ (and ignoring additive constants). This simple formula is not the full universal expression but captures the *qualitative* blow-up around $\alpha = 1$ and the descent afterward. More refined versions incorporate the exact norm $\|\mathbf{w}^{\star}\|^2$ and other details.

7.2 Noise $\sigma^2 > 0$

With nonzero noise, $\sigma^2 > 0$, the peak remains but is finite; the error does not literally diverge. The essence is the same: as α crosses 1, we see a large bump in the test error, then a second descent for $\alpha > 1$.

7.3 General Lessons

Replica theory yields closed-form or semi-closed-form solutions for

$$E_{\text{test}}(\alpha) = \left\langle \frac{1}{p} \|\hat{\mathbf{w}} - \mathbf{w}^{\star}\|^2 \right\rangle,$$

averaged over random design. One finds that:

- 1. E_{test} is typically a non-monotonic function of α .
- 2. A large spike (first descent \rightarrow high peak \rightarrow second descent) appears around $\alpha = 1$.
- 3. For large $\alpha \gg 1$, the solution is heavily over-parameterized but paradoxically can generalize better in a *typical-case* sense than solutions at moderate α .

8 Putting It All Together: Step-by-Step Summary

Here we collect the derivation in a logical order without skipping:

1. Define the regression problem:

$$y_{\mu} = \mathbf{x}_{\mu}^{\top} \mathbf{w}^{*} + \varepsilon_{\mu}, \quad E(\mathbf{w}) = \sum_{\mu=1}^{n} (\mathbf{x}_{\mu}^{\top} \mathbf{w}^{*} + \varepsilon_{\mu} - \mathbf{x}_{\mu}^{\top} \mathbf{w})^{2}.$$

2. Partition function:

$$Z = \int d\mathbf{w} \, \exp[-\beta \, E(\mathbf{w})].$$

3. Replicate k times:

$$Z^{k} = \int \prod_{a=1}^{k} d\mathbf{w}^{a} \exp\left[-\beta \sum_{a=1}^{k} E(\mathbf{w}^{a})\right].$$

4. Average over data X, ε :

$$\langle Z^k \rangle = \int d\mathbf{X} d\varepsilon \ p(\mathbf{X}, \varepsilon) \ [\dots].$$

Here

$$p(\mathbf{X}) \propto \exp\left[-\frac{p}{2}\operatorname{Tr}(\mathbf{X}^{\top}\mathbf{X})\right],$$

assuming $x_{\mu i} \sim \mathcal{N}(0, \frac{1}{p})$, and similarly for ε_{μ} .

5. Rewriting the cost:

$$\sum_{a=1}^{k} E(\mathbf{w}^{a}) = \sum_{a=1}^{k} \sum_{\mu=1}^{n} \left(\mathbf{x}_{\mu}^{\top} (\mathbf{w}^{*} - \mathbf{w}^{a}) + \varepsilon_{\mu} \right)^{2}.$$

- 6. **Decoupling the integrals**: Use either the Hubbard–Stratonovich transformation or known random-matrix expansions. This is where one obtains the expression in terms of *overlaps* among $(\mathbf{w}^* \mathbf{w}^a)$.
- 7. Introduce order parameters m^a, q^a, Q^{ab} for the norms and overlaps in replica space. Under replica symmetry, reduce to m, q, Q.
- 8. Saddle-point approximation: In the large-n, p limit, $\langle Z^k \rangle$ is dominated by the extremum of an exponent with $n \Phi(\dots)$, leading to self-consistent equations for (m, q, Q).
- 9. Take $k \to 0$ limit: Obtain $\langle \ln Z \rangle$ from $\langle Z^k \rangle$. In the $\beta \to \infty$ limit (ridgeless), interpret solutions that correspond to the *global* minima.
- 10. Result for test error:

$$E_{\text{test}} = \frac{1}{p} \|\hat{\mathbf{w}} - \mathbf{w}^*\|^2 = q + \frac{\|\mathbf{w}^*\|^2}{p} - 2m$$

(plus possibly a term if $\sigma^2 > 0$).

11. **Double Descent**: The solution for $E_{\text{test}}(\alpha)$ has a characteristic peak near $\alpha = 1$ and lower values for $\alpha \ll 1$ or $\alpha \gg 1$.

9

9 Conclusion and Interpretation

The **replica method** provides a systematic tool to compute *typical-case* performance of high-dimensional regression under random design. By:

- Defining a partition function from the cost,
- Replicating and averaging over **X**,
- Introducing order parameters (overlaps) in replica space,
- Solving the saddle-point equations in the large-n, p limit,

we derive a closed-form expression (or set of self-consistent equations) for the mean generalization error $\langle E_{\text{test}} \rangle$ as a function of $\alpha = p/n$.

This computation shows a *peak* or *divergence* around $\alpha = 1$, capturing the so-called **double descent** phenomenon: a first descent for $\alpha < 1$, a large spike near $\alpha = 1$, and a second descent for $\alpha > 1$. This result *cannot* be seen through purely classical biasvariance trade-off arguments but arises naturally from the replica/typical-case analysis (or equivalently from advanced random-matrix approaches).

Key References for Further Reading:

- H. Nishimori, Statistical Physics of Spin Glasses and Information Processing, Oxford, 2001.
- M. Mézard and A. Montanari, Information, Physics, and Computation, Oxford, 2009.
- Works of Manfred Opper and coauthors from the 1990s and 2000s on statistical mechanics of learning.
- The more recent wave of papers on "double descent" in linear models and neural networks (e.g. Belkin, Hsu, and Mitra, 2019).

End of Derivation.