

Прогнозирование доходности акций с использованием гибридной модели BiLSTM, ансамблирования ТарМ и анализа новостного фона

RMSE_INF

5 октября *2025* г.

Цель проекта и бизнес-ценность

Ключевая цель

Разработать эффективную модель для краткосрочного прогнозирования доходности акций российского рынка (горизонт 20 дней), объединяющую ценовые данные и анализ новостного контекста.

Бизнес-ценность

Модель направлена на повышение точности прогнозирования, что обеспечит принятие более обоснованных инвестиционных решений, позволит автоматизировать торговые стратегии и улучшить управление портфелем.

Ключевые гипотезы

Опережающий сигнал новостей

Анализ тональности новостного фона (NLP) предоставит опережающие сигналы, значительно повышающие точность прогнозирования по сравнению с моделями, основанными исключительно на ценовых данных.

Эффективность гибридной модели

Гибридная архитектура *BiLSTM + TabM* превзойдет базовые подходы благодаря способности извлекать сложные временные зависимости и использовать эффективное ансамблирование для повышения точности.

Синергия данных

Комбинация ценовых данных, технических индикаторов и результатов сентимент-анализа обеспечит более робастную и точную модель прогнозирования.

Источники данных и временные параметры

Источники данных

- Ценовые данные (свечи *OHLCV*): open, high, low, close, volume. Период: 19.06.2020 08.09.2025 (19 тикеров).
- Новостные данные: дата публикации, заголовок, текст

Временные интервалы

Для формирования прогноза модель использует последовательности данных за *60* дней, предшествующих дате прогноза (период [*t-60*, *t-1*]).

Предотвращение утечки данных

Строгий временной протокол: Защита от утечек данных

Ключевое правило: Информация за день Т (цены и новости) используется для прогноза ТОЛЬКО на следующий день Т+1. Симуляция реальности: Модель не "заглядывает в будущее". Она использует сегодняшнюю информацию для прогноза на завтра, как это делает реальный трейдер.

Протокол экспериментов

Разделение данных

Данные разделяются на обучающую (15 тикеров, ~80%) и валидационную (4 тикера, ~20%) выборки. Такое разделение на уровне тикеров позволяет объективно оценить обобщающую способность модели.

02

Оценка Модели

Производительность модели оценивается на независимой валидационной выборке (4 тикера). В качестве основной метрики используется средняя абсолютная ошибка (МАЕ).

Сравнение результатов: Гибридная Модель и Базовый Прогноз

Базовая модель	Прогнозирование на основе средней исторической доходности	0.014302	-
Гибридная модель <i>(BiLSTM-TabM)</i>	Использование полного набора признаков (ценовые данные + новостные факторы)	0.013642	+4.61%

Гибридная модель показала значительное улучшение, снизив среднюю абсолютную ошибку (МАЕ) на 4.61% по сравнению с базовой моделью. Этот результат подтверждает высокую предсказательную способность предложенного подхода.

Эффективность и практическое применение модели

Оптимизация ресурсов

- **Предобработка новостей:** занимает мене 20 минут с использованием *gpt-4o-mini* и около 5 минут *RuBERT*
- Обучение модели: требует примерно 15 минут на GPU (GPU P 100).
- **Требуемая видеопамять (RAM):** 16 ГБ при размере пакета (batch_size) 128.

• BERT для новостей

Ключевые сценарии использования

- **Ранжирование активов:** ежедневная оценка акций для выявления потенциальных лидеров и аутсайдеров рынка.
- Основа для алго-трейдинга: автоматизация принятия торговых решений и отправки приказов.

Оптимизированная гибридная

Архитектура сочетает *BiLSTM* для эффективного извлечения временных паттернов и *TabM*, имитирующую ансамбль *MLP*-моделей. Это обеспечивает улучшенную регуляризацию и значительно повышает общую производительность.

архитектура

O TabM

Ключевые преимущества и инновации

Расширенный Feature Engineering

Мы используем комплексный набор из 85 признаков, включающий ценовые данные, результаты сентимент-анализа (RuBERT), технические индикаторы и свечные паттерны.

1. Базовые ценовые признаки (6 признаков)

open, high, low, close: Цены открытия, максимума, минимума и закрытия.

volume: Объем торгов.

return: Дневная доходность

2. Признаки анализа тональности (6 признаков)

Источник: Модель mxlcw/rubert-tiny2-russian-financial-sentiment (на базе RuBERT), примененная к классифицированным новостям.

sentiment_label: Итоговая метка (Негатив/Нейтраль/Позитив).

sentiment_score: Непрерывный скор от -1 до +1.

positive_prob, negative_prob, neutral_prob: Вероятности каждого класса.

confidence: Уверенность модели в своем прогнозе.

3. Технические индикаторы (11 признаков)

Признаки, отражающие динамику и моментум ценового движения.

Скользящие средние: SMA и EMA с разными периодами (10, 20, 50).

Осцилляторы: RSI (индекс относительной силы) и MACD (с сигнальной линией).

Волатильность: ATR (средний истинный диапазон).

4. Свечные паттерны (61 признак)

Источник: Библиотека TA-Lib.

Описание: Огромный набор бинарных признаков

5. Контекстные и временные признаки (2 признака)

day_of_week: День недели

ticker_code

Оценка эффективности: Снижение ошибки прогнозирования

Базовая модель (Наивный подход)	0.014302	-	
Предложенный подход <i>(BiLSTM-TabM +</i> Новости <i>)</i>	0.013642	↓ <i>4.61%</i>	

Представленный ансамблевый подход с разделением весов демонстрирует значительное снижение средней абсолютной ошибки прогноза. Это улучшение напрямую ведет к формированию более точных и потенциально прибыльных торговых сигналов.

Выводы и ограничения

Основные выводы

- **Влияние новостей:** Интеграция сентимент-анализа новостей существенно повышает точность модели (около 1.5%).
- **Эффективное ансамблирование:** *ТаbМ* улучшает качество моделей, работающих с табличными и временными данными.

Дальнейшие шаги

- Внедрение роллинг-валидации для оценки производительности.
- Оптимизация гиперпараметров *TabM* для повышения эффективности.
- Увеличиваем размер *train*
- Перход на *finBERT*

• Репозиторий с кодом

Ограничения текущего подхода

- **Макроэкономические факторы:** Модель не учитывает влияние макроэкономических показателей.
- Горизонт прогноза: Прогнозирование ограничено краткосрочным периодом (до 20 дней).
- **Качество NLP:** Результаты зависят от возможностей модели *mxlcw/rubert-tiny2-russian-financial-sentiment*