Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2010/2011

AL210 - Algebra 2: Gruppi, Anelli e Campi

Prof. F. Pappalardi

Tutorato 3 - 11 Ottobre 2010

Tutore: Matteo Acclavio

www.matematica3.com

Esercizio 1.

Sia (G, \cdot) un gruppo abeliano e $a, b \in G$ dimostrare se sono vere le seguenti affermazioni (in caso contrario fornire un controesempio):

- $o(a) = m, o(b) = n \Rightarrow o(ab) = MCD(n, m).$
- $o(a) = \infty$, o(b) finito $\Rightarrow o(ab) = \infty$.
- $o(a) = \infty$, $o(b) = \infty \Rightarrow o(ab) = \infty$

Esercizio 2.

Sia (G,\cdot) gruppo e \sim_{γ} la relazione così definita: $g \sim_{\gamma} h \Leftrightarrow g = x^{-1}hx \; \exists x \in G$.

Dimostare che \sim_{γ} è una relazione di equivalenza

Esercizio 3.

Sia G un gruppo e sia $x \in G$. Mostrare che:

- i) L'insieme $C(x) := \{g \in G \mid gx = xg\}$ è un sottogruppo di G. Questo sottogruppo si chiama il centralizzante di x.
- ii) C(x) può non essere normale in G;

iii)
$$Z(G) = \bigcap_{x \in G} C(x);$$

iv) $gxg^{-1} = hxh^{-1}$ se e soltanto se gC(x) = hC(x). Dedurne che il numero dei coniugati distinti di $x \in |G|/|C(x)|$.

Esercizio 4.

Dimostrare se N è normale in H e se H è normale in $GL_2(\mathbb{R})$ dove:

$$\begin{split} N &= \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) | b \in \mathbb{R} \right\} \\ H &= \left\{ \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right) | a, b, c \in \mathbb{R} ab \neq 0 \right\}. \end{split}$$

Esercizio 5.

Dimostrare che H è normale in V_4 e V_4 è normale in A_4 ma H non è normale in A_4 dove:

$$H = <(12)(34) > V_4 = <(12)(34), (14)(23) >$$