Buildings

Swayam Chube

Last Updated: March 28, 2025

§2.4 Buildings

Let (G, B, N, R) be a Tits system with $H = B \cap N$. Suppose there is a reduced and irreducible root system Σ_0 on a Euclidean space A, a chamber C of the associated root system Σ , and a surjective homomorphism $\nu : N \rightarrow W$ such that

- (i) $\ker \nu = H$, so that we may identify the Weyl group N/H of the Tits system with the affine Weyl group W of Σ . We shall implicitly make this identification henceforth.
- (ii) under this identification, the distinguished generators of N/H are the reflections in the walls of the chamber C, i.e.,

$$R = \{ \mathbf{w}_{\alpha} : \alpha \in \Pi \}$$
.

Following the notation of [Mac71], the conjugates of B in G are called the *Iwahori subgroups* of G and a *parahoric* subgroup of G is a *proper* subgroup containing an Iwahori subgroup. We have seen last time that that every Iwahori subgroup of G is conjugate to a unique $P_S := BW_SW$, where $S \subseteq R$. In particular, each parahoric subgroup of G uniquely determines a subset G of G.

This sets up a bijective correspondence $S \longleftrightarrow F$ between the subsets S of R and the facets F of the chamber C: to a facet F corresponds the set of all $w_{\alpha} \in R$ which fix F. Under this correspondence, $\emptyset \longleftrightarrow C$, and $R \longleftrightarrow \emptyset$. If $S \longleftrightarrow F$, then we write P_F for P_S . Clearly, each parahoric subgroup P uniquely determines a facet F(P) of C: namely F(P) = F if and only if P is conjugate to P_F .

The *building* associated with the Tits system structure on G is the set

$$\mathcal{J} = \{ (P, x) \colon x \in F(P) \} .$$

With each parahoric subgroup P associate

$$\mathscr{F}(P) = \{(P, x) : x \in F(P)\} \subseteq \mathscr{F}.$$

The set $\mathcal{F}(P)$ is called a *facet* of $\mathcal{F}(P)$. In particular, if P is an Iwahori subgroup, $\mathcal{F}(P)$ is called a *chamber* of $\mathcal{F}(P)$. We define the *closure of a facet* as

$$\overline{\mathscr{F}(P)} = \bigcup_{\substack{Q \supseteq P \\ Q \leqslant G}} \mathscr{F}(Q).$$

The group G acts on \mathcal{I} as

$$g \cdot (P, x) = (gPg^{-1}, x)$$
.

§§ Apartments

Set

$$\mathcal{A}_0 := \bigcup_{w \in W} \overline{\mathcal{F}(wBw^{-1})} \subseteq \mathcal{F}.$$

Since $\overline{\mathscr{F}(wBw^{-1})}$ is the union of $\mathscr{F}(P)$'s for all parahorics containing wBw^{-1} and conjugation by w is the same as conjugation by some $n \in N$ for which $\nu(n) = w$, it follows that

$$\mathscr{A}_0 = \bigcup_{n \in \mathbb{N}} n \mathscr{F}(P).$$

Proposition 2.4.1. There exists a *unique* bijection $j: A \to \mathcal{A}_0$ such that

(1) for each facet F of C and each $x \in F$.

$$j(x) = (P_F, x),$$

(2) $j \circ w = w \circ j$ for all $w \in W$.

Proof. Let $y \in A$. Then there is a unique $x \in \overline{C}$ such that there exists a $w \in W$ such that y = wx. Let F be the facet of C containing x. Define $j(y) = (wP_Fw^{-1}, x) \in \mathcal{A}_0$. We must check that j is well-defined. Suppose $w' \in W$ is such that y = w'x. Then $w^{-1}w'$ fixes x and hence, belongs to the subgroup of W generated by $\{w_\alpha \colon \alpha \in \Pi, \ w_\alpha \text{ fixes } x\}$ ([Mac71, last line on pg. 16]). That is, $w^{-1}w' \in W_S$, where $S \longleftrightarrow F$. In particular, $w^{-1}w' \in P_F = P_S$, therefore, $wP_Fw^{-1} = w'P_Fw'^{-1}$. Hence, j is well-defined and clearly satisfies (1). As for (2), let $w'' \in W$ and $y \in Y$ as before. Then w''y is conjugate to x under w''w, therefore, $j(w''y) = (w''wP_Fw^{-1}w''^{-1}, x) = w''(P_F, x) = w''j(y)$. The uniqueness is clear since the conjugates of \overline{C} cover A.

Lemma 2.4.2. If $g\mathscr{A}_0 = \mathscr{A}_0$, then $j^{-1} \circ (g|_{\mathscr{A}_0}) \circ j \in W$.

Proof. Let $\mathscr{C}_0 \subseteq \mathscr{A}_0$ denote the chamber $\mathscr{F}(B) = j(C)$ of \mathscr{F} . Note that $g\mathscr{C}_0$ is another chamber of \mathscr{F} and is contained in $\mathscr{A}_0 = \bigcup_{n \in N} \bigcup_{P \supseteq B} n\mathscr{F}(P)$, therefore there exists $n_0 \in N$ such that $g\mathscr{C}_0 = n_0\mathscr{C}_0$. Hence, $g_0 = n_0^{-1}g$ normalizes B, and

hence, lies in B as we have seen last time. Notice that $g_0\mathscr{A}_0=n_0^{-1}g\mathscr{A}_0=n_0^{-1}\mathscr{A}_0=\mathscr{A}_0$, since $\nu(n_0)\in W$. It is also clear that g_0 fixes \mathscr{E}_0 and each of its facets. It is clear that the map $j^{-1}\circ(g|_{\mathscr{A}_0})\circ j$ is a bijection from A to A which fixes the chamber C and each of its facets. Now, since $w\in W$, and j commutes with the action fo the affine Weyl group on A, we have

$$\left(j^{-1}\circ\left(g_{0}|_{\mathscr{A}_{0}}\right)\circ j\right)\left(wx\right)=w\left(j^{-1}\circ\left(g_{0}|_{\mathscr{A}_{0}}\right)\circ j\right)\left(x\right)=wx.$$

In particular, $j^{-1} \circ (g_0|_{\mathscr{A}_0}) \circ j$ is the identity map. Hence,

$$j^{-1} \circ (g|_{\mathscr{A}_0}) \circ j = j^{-1} \circ (n_0|_{\mathscr{A}_0}) \circ j = \nu(n_0) \in W,$$

as desired.

The subsets $g\mathscr{A}_0$ of \mathscr{F} for $g\in G$ are called the *apartments* of the building \mathscr{F} . If $\mathscr{A}=g\mathscr{A}_0$ is an apartment, transport the Euclidean structure of A onto \mathscr{A} via the bijection $(g|_{\mathscr{A}_0})\circ j:A\to\mathscr{A}$. We must check that this structure is well-defined. Indeed, if $\mathscr{A}=g'\mathscr{A}_0$, then

$$\left[\left(g'|_{\mathcal{A}_{0}}\right)\circ j\right]^{-1}\circ\left[\left(g|_{\mathcal{A}_{0}}\circ j\right)\right]=j^{-1}\circ\left(g'^{-1}g|_{\mathcal{A}_{0}}\right)\circ j$$

is an element of the affine Weyl group, in particular, it is an affine transformation that preserves lengths. Therefore, there is a well-defined Euclidean structure on \mathcal{A} .

Lemma 2.4.3. Any two facets of \mathcal{F} are contained in a single apartment.

Proof. Consider two facets $\mathscr{F}(P_1)$ and $\mathscr{F}(P_2)$ where P_1 , P_2 are parahoric subgroups of G, say $P_i - g_i P_{F_i} g_i^{-1}$ for $i \in \{1, 2\}$, where F_1 , F_2 are facets of the chamber G in G. Since G = BWB, we can write $g_1^{-1}g_2 = b_1 nb_2$ for some $g_1 = g_1 b_2$ for some $g_2 = g_1 b_2$ for some $g_1 = g_2 b_2$ for some $g_2 = g_1 b_2$ for some $g_1 = g_2 b_2$ for some $g_2 = g_1 b_2$ for some $g_2 = g_2 b_2$

$$P_1 = g P_{F_1} g^{-1}$$
 and $P_2 = g (n P_{F_2} n^{-1}) g^{-1}$,

whence $\mathcal{F}(P_1)$ and $\mathcal{F}(P_2)$ are both contained in $g\mathcal{A}_0$.

Lemma 2.4.4. G acts transitively on the set

$$\{(\mathcal{E}, \mathcal{A}) : \mathcal{E} \text{ is a chamber in } \mathcal{A}\}.$$

Proof. Since $\ell = g\ell_0$ where $\ell_0 = \mathcal{F}(B)$ for some $g \in G$, we may suppose without loss of generality that $\ell = \ell_0$. If $\mathcal{A} = g\mathcal{A}_0$ contains ℓ_0 , then $g^{-1}\ell_0 = n\ell_0$ for some $n \in N$. Setting $g_1 = gn$, we see that $A = g_1\mathcal{A}_0$ and $\ell_0 = g_1\ell_0$.

Proposition 2.4.5. Let \mathscr{A} , \mathscr{A}' be two apartments and let \mathscr{E} be a chamber contained in $\mathscr{A} \cap \mathscr{A}'$. Then there exists a unique bijection $\rho : \mathscr{A}' \to \mathscr{A}$ such that

(1) There exists $g \in G$ such that $\rho x = gx$ for all $x \in \mathcal{A}'$, and

(2) $\rho x = x$ for all $x \in \mathscr{E}$.

Moreover, $\rho x = x$ for all $x \in \mathcal{A} \cap \mathcal{A}'$, and $d_{\mathcal{A}'}(x,y) = d_{\mathcal{A}}(\rho x, \rho y)$ for all $x, y \in \mathcal{A}'$.

Proof. Due to Lemma 4.4, there exists $g \in G$ which sends the pair $(\mathscr{E}, \mathscr{A}')$ to the pair $(\mathscr{E}, \mathscr{A})$. Note that $g\mathscr{E} = \mathscr{E}$ and $\mathscr{E} = \mathscr{F}(B')$ for some lwahori subgroup B' of G. This means that g normalizes B', and hence, $g \in B'$. Thus, this map fixes every element of \mathscr{E} , and hence, satisfies the desired conditions.

Next, we argue uniqueness. If $\rho_1, \rho_2 : \mathscr{A}' \to \mathscr{A}$ are two such maps, then $\rho_1 \circ \rho_2^{-1}$ is a bijection from \mathscr{A} to \mathscr{A} which fixes \mathscr{E} . There exists $h \in G$ such that h maps $(\mathscr{E}_0, \mathscr{A}_0)$ to the pair $(\mathscr{E}, \mathscr{A})$. Therefore, $h^{-1}gh\mathscr{A}_0 = \mathscr{A}_0$ and fixes \mathscr{E}_0 . Due to Lemma 4.2, it follows that $h^{-1}gh$ is the identity on \mathscr{A}_0 , whence g is the identity on \mathscr{A} . The assertion $d_{\mathscr{A}}(\rho x, \rho y) = d_{\mathscr{A}'}(x, y)$ is clear from the definition of the metric.

It remains to show that $\rho x = x$ for all $x \in \mathcal{A} \cap \mathcal{A}'$. Due to Lemma 4.4, we may assume $\mathcal{A}' = \mathcal{A}_0$, $\mathcal{A} = g\mathcal{A}_0$ and $\ell = \ell_0 = \mathcal{F}(B)$. Since $g\ell_0 = \ell_0$, it follows that $b \in B$ as before. Now let $\mathcal{F} = \mathcal{F}(P)$ be a facet contained in $\mathcal{A} \cap \mathcal{A}'$. Since $\mathcal{F}(P) \subseteq \mathcal{A}_0 \cap g\mathcal{A}_0$, we have

$$P = n_1 P n_1^{-1} = g (n_2 P_F n_2^{-1}) g^{-1}$$

for some facet F of C and $n_1, n_2 \in N$. The above equality implies $n_1^{-1}gn_2$ normalizes P_F and hence lies in P_F , therefore, $Bn_1P_F = Bn_2P_F$. But due to [Mac71, 2.3.5],

$$Bn_1P_F = Bn_1W_FB = Bn_2W_FB = Bn_2P_F$$

where W_F is the subgroup of W fixing F. Recall again ([Mac71, 2.3.1]) that there is a bijection between N/H and $B \setminus G/B$. Hence $n_1 W_F = n_2 W_F$, in other words, $n_1 P_F n_1^{-1} = n_2 P_F n_2^{-1}$, consequently, $\mathscr{F}(P) = g\mathscr{F}(P) = \rho\mathscr{F}$, as desired.

§§ Retraction of the building onto an apartment

Theorem 2.4.6. Let \mathscr{A} be an apartment and \mathscr{E} a chamber in \mathscr{A} . Then there exists a unique mapping $\rho: \mathscr{F} \to \mathscr{A}$ such that for all apartments \mathscr{A}' containing \mathscr{E} , $\rho|_{\mathscr{A}'}$ is the bijection $\mathscr{A}' \to \mathscr{A}$ of Proposition 4.5.

Proof. Let $x \in \mathcal{F}$. By Lemma 4.3, there exists an apartment \mathscr{A}_1 containing x and \mathscr{E} . Let $\rho_1 : \mathscr{A}_1 \to \mathscr{A}$ be the bijection of Proposition 4.5 and define $\rho(x) := \rho_1(x)$. We must show that this map is well-defined first. Indeed, suppose \mathscr{A}_2 is another apartment of \mathscr{F} containing x and \mathscr{E} and $\rho_2 : \mathscr{A}_2 \to \mathscr{A}$ be the bijectio nof Proposition 4.5, then $\rho_1^{-1} \circ \rho_2 : \mathscr{A}_2 \to \mathscr{A}_1$ is again the bijection of Proposition 4.5 for the apartments \mathscr{A}_2 , \mathscr{A}_1 , and the chamber \mathscr{E} . Thus, $\rho_1^{-1} \circ \rho_2$ fixes $x \in \mathscr{A}_1 \cap \mathscr{A}_2$, i.e., $\rho_1(x) = \rho_2(x)$. This shows the existence of a desired retraction.

To see uniqueness, again use the fact that for any $x \in \mathcal{F}$, there exists an apartment containing x and \mathcal{E} . This completes the proof.

The mapping ρ defined above is called the *retraction of* \mathcal{I} *onto* \mathcal{A} *with centre* \mathcal{C} .

Proposition 2.4.7. Let ρ be the retraction of Theorem 4.6. Then

- (1) $\rho x = x$ for all $x \in \mathcal{A}$.
- (2) For each facet \mathscr{F} in \mathscr{I} , $\rho|_{\overline{\mathscr{F}}}$ is a surjective affine isometry of $\overline{\mathscr{F}} \twoheadrightarrow \overline{\rho \mathscr{F}}$.
- (3) If $x \in \overline{\mathcal{B}}$, then $\rho^{-1}(x) = \{x\}$.

Proof. (1) According to Theorem 4.6, $\rho|_{\mathscr{A}}$ is the unique bijection of Proposition 4.5, which is just the identity map, and hence $\rho x = x$ for all $x \in \mathscr{A}$.

- (2) Let \mathscr{A}' be an apartment containing \mathscr{F} and \mathscr{E} , which exists due to Lemma 4.3. Note that $\overline{\mathscr{F}} \subseteq \mathscr{A}'$. Since $\rho: \mathscr{A}' \to \mathscr{A}$ is an isometry due to Proposition 4.5, the assertion follows.
- (3) Let \mathscr{F}' be a facet of \mathscr{F} mapping to \mathscr{F} under ρ . Note that $\rho: \mathscr{A}' \to \mathscr{A}$ is multiplication by some $g \in G$ which leaves \mathscr{E} fixed, therefore, must leave all its facets fixed too, after all the facets are those corresponding to the parahorics containing the lwahori corresponding to \mathscr{E} .

Proposition 2.4.8. (1) There exists a unique function $d: \mathcal{I} \times \mathcal{I} \to \mathbb{R}_+$ such that $d|_{\mathscr{A} \times \mathscr{A}}$ is the metric $d_{\mathscr{A}}$ for each apartment \mathscr{A} of \mathscr{I} .

- (2) If ρ is a retraction of $\mathcal F$ onto an apartment $\mathcal A$ as in Theorem 4.6, then $d(\rho(x),\rho(y)) \leqslant d(x,y)$ for all $x,y\in \mathcal F$.
- (3) d is a G-invariant metric on \mathcal{F} .

- *Proof.* (1) Let $x,y \in \mathcal{F}$, then due to Lemma 4.3, there is an apartment \mathscr{A} containing x and y. We define $d(x,y) \coloneqq d_{\mathscr{A}}(x,y)$. Suppose \mathscr{A}' is another apartment containing x and y. We must show that $d_{\mathscr{A}}(x,y) = d_{\mathscr{A}'}(x,y)$. Let \mathscr{E} be a chamber in \mathscr{A} such that $x \in \overline{\mathscr{E}}$, this can be done, since every facet corresponds to a parahoric, which contains an Iwahori. Similarly, let \mathscr{E}' be a chamber in \mathscr{A}' such that $y \in \overline{\mathscr{E}}'$. Again by Lemma 4.3, there is an apartment \mathscr{A}'' containing \mathscr{E} and \mathscr{E}' . From Proposition 4.5, we have that $d_{\mathscr{A}}(x,y) = d_{\mathscr{A}''}(x,y)$ because \mathscr{A} and \mathscr{A}'' share the chamber \mathscr{E} . Analogously, $d_{\mathscr{A}'}(x,y) = d_{\mathscr{A}''}(x,y)$. Thus, the distance d is well-defined. That it is G-invariant follows from the definition of $d_{\mathscr{A}}$ as $(g|_{\mathscr{A}_0}) \circ j : A \to \mathscr{A}$.
- (2) This is cumbersome to write out formally but here's the main idea: Choose an apartment \mathscr{A}' in \mathscr{F} containing x and y. This apartment is in bijection with A, through which its metric is defined. The affine line joining x to y in A will intersect finitely many facets in the tessellation of A. Thus, this line segment can be broken into a union of smaller closed line segments, each lying in the closure of a facet. Under ρ , the image of each such line segment is a line segment of the same length. In particular, the image of [xy] under ρ is a polygonal line, whose "total length" is $d_{\mathscr{A}'}(x,y)$. The triangle inequality implies the desired conclusion.
- (3) Let $x, y, z \in \mathcal{F}$ and let \mathscr{A} be an apartment containing x and y. Let ρ be a retraction of \mathscr{F} onto \mathscr{A} as in Theorem 4.6. Then keeping in mind that $\rho(x) = x$ and $\rho(y) = y$, we have

$$d(x,y) = d_{\mathcal{A}}(\rho(x),\rho(y)) \leqslant d(\rho(x),\rho(z)) + d(\rho(z),\rho(y)) \leqslant d(x,z) + d(z,y),$$

where the last equality follows from (2).

Proposition 2.4.9. \mathcal{I} is complete with respect to the metric d.

Proof. Let $(x_n)_{n\geqslant 1}$ be a Cauchy sequence in $\mathscr F$ with respect to the metric d. Let ρ be a retraction of $\mathscr F$ onto an apartment $\mathscr A_0$ as in Theorem 4.6. Then $(\rho x_n)_{n\geqslant 1}$ is a Cauchy sequence in $\mathscr A_0$, and as such, converges to some $x\in\mathscr A_0$. Let $x=(P,a)\in\mathscr A_0$ where $a\in A$. Then there is a $\mu>0$ such that $d(x,wx)\geqslant \mu$ for all $w\in W$, the affine Weyl group. Let $g\in G$ be such that $x\neq gx$. We claim that $d(x,gx)\geqslant \mu$. Indeed, there is an apartment $\mathscr A'=h\mathscr A_0$ containing both x and y for some y for some y. Then, from the y-invariance of y,

$$d(x, gx) = d(h^{-1}x, h^{-1}gx) \geqslant \mu,$$

which is clear from the bijection $A \leftrightarrow \mathscr{A}_0$. Again, since d is G-invariant, it follows that $d(gx, g'x) \geqslant \mu$ for all $g, g' \in G$ such that $gx \neq g'x$.

Now, let N > 0 be a positive integer such that for all $m, n \ge N$,

$$d(\rho x_n, x) < \frac{1}{3}\mu$$
 and $d(x_m, x_n) < \frac{1}{3}\mu$.

By definition, each ρx_n is of the form $g_n x_n$ for some $g_n \in G$. Set $y_n = g_n^{-1} x$. Then for $n \geqslant N$, using the G-invariance of d, we have

$$d(y_n, y_{n+1}) \leq d(y_n, x_n) + d(x_n, x_{n+1}) + d(x_{n+1}, y_{n+1})$$

$$= d(x, \rho x_n) + d(x_n, x_{n+1}) + d(x_{n+1}, y_{n+1})$$

$$< \frac{1}{3}\mu + \frac{1}{3}\mu + \frac{1}{3}\mu < \mu.$$

Hence, $y_N = y_{N+1} = \cdots =: y$. Finally, for $n \ge N$, we have

$$d(x_n, y) = d(x_n, y_n) = d(g_n x_n, g_n y_n) = d(\rho x_n, x) \to 0,$$

as $n \to \infty$.

Fixed point theorem

A subset $X \subseteq \mathcal{F}$ is said to be *convex* if whenever $x, y \in X$, $[xy] \subseteq X$.

Lemma 2.4.10. Let $x, y, z \in \mathcal{F}$ and let m be the midpoint of [xy] Then

$$d(z,x)^2 + d(z,y)^2 \geqslant 2d(z,m)^2 + \frac{1}{2}d(x,y)^2.$$

Proof. If x,y,z lie in the same apartment, then upon moving to the Euclidean space A, this is just a restatement of the well-known Apollonius' theorem. In the general case, let $\mathscr A$ be an apartment containing x and y and choose a chamber $\mathscr E$ in $\mathscr A$ such that $m\in\overline{\mathscr E}$. Let $\rho:\mathscr F\to\mathscr A$ be the retraction with centre $\mathscr E$ as in Theorem 4.6. Note that due to Lemma 4.3, we can choose an apartment $\mathscr A'$ containing $\mathscr E$ and z. Then, using Proposition 4.5, it is clear that $d(\rho(z),m)=d(z,m)$. Hence, we have

$$d(z,x)^{2} + d(z,y)^{2} \ge d(\rho(z),x)^{2} + d(\rho(z),y)^{2}$$

$$= 2d(\rho(z),m)^{2} + \frac{1}{2}d(x,y)^{2}$$

$$= 2d(z,m)^{2} + \frac{1}{2}d(x,y)^{2},$$

as desired.

Theorem 2.4.11. Let X be a bounded non-empty subset of \mathcal{I} . Then the group of (affine?) isometries γ of \mathcal{I} such that $\gamma(X) \subseteq X$ has a fixed point in the closure of the convex hull of X.

Proof. Let $\delta(X)$ denote the diameter of the set X. Fix a real number $k \in (0,1)$ and let

$$fX := \{ m \in \mathcal{F} : m \text{ is the midpoint of } [xy] \text{ with } x, y \in X \text{ and } d(x,y) \geqslant k\delta(X) \}.$$

If $m \in fX$ and $z \in X$, then m is the midpoint of [xy] for some $x, y \in X$ with $d(x, y) \ge k\delta(X)$. Using Lemma 4.10,

$$d(z,m)^2 \leqslant \frac{1}{2}d(z,x)^2 + d(z,y)^2 - \frac{1}{4}d(x,y)^2 \leqslant \underbrace{\left(1 - \frac{1}{4}k^2\right)}_{k_2}\delta(X)^2.$$

Next, if $m, z \in fX$, then m is the midpoint of [xy] for some $x, y \in X$ with $d(x, y) \ge k\delta(X)$. Again, using Lemma 4.10,

$$d(z,m)^{2} \leqslant \frac{1}{2}d(z,x)^{2} + \frac{1}{2}d(z,y)^{2} - \frac{1}{4}d(x,y)^{2} \leqslant \underbrace{\left(1 - \frac{1}{2}k^{2}\right)}_{k}\delta(X)^{2}.$$

That is, $\delta(fX) \leq k_2\delta(X)$. Hence, $\delta(f^nX) \to 0$ as $n \to \infty$. For each positive integer n, pick $x_n \in f^nX$. Then, it is clear that

$$d(x_n, x_{n+1}) \leqslant k_2 \delta(f^n X) \leqslant k_1 k_2^n \delta(X).$$

Hence $(x_n)_{n\geqslant 1}$ is a Cauchy sequence in \mathcal{I} , so that it converges to some $x\in\mathcal{I}$. Clearly x lies in the closure of the convex hull of X, since each f^nX is contained in the convex hull of X. We claim that x is the desired fixed point.

Finally, let γ be an isometry of $\mathcal F$ such that $\gamma X\subseteq X$. Then $\gamma f^nX\subseteq f^nX$. Let $x_n'=\gamma(x_n)$. Then $(x_n')_{n\geqslant 1}$ is a Cauchy sequence with $x_n'\in f^nX$ for all $n\geqslant 1$ and converges to γx . But since $\delta(f^nX)\to 0$, it follows that $d(x_n,x_n')\to 0$ as $n\to\infty$. Hence $\gamma x=x$, as desired.

A subset $M \subset G$ is said to be *bounded* if MX is bounded for all bounded subsets $X \subset \mathcal{F}$.

Lemma 2.4.12. M is bounded if and only if M (non-trivially) intersects only finitely any double cosets in $B \setminus G/B$.

Proof. Let ρ be the retraction of $\mathscr F$ onto the apartment $\mathscr A_0$ with centre $\mathscr E_0=\mathscr F(B)$. Then $X\subseteq \mathscr F$ is bounded if and only if ρX is bounded. Indeed, it is clear that if X is bounded, then so is ρX ; conversely, suppose ρX is bounded and pick some $x\in X$ and fix a $b_0\in \mathscr E_0$. Then there is an apartment containing x and $\mathscr E_0$ on which ρ acts by some element $g\in G$. But since d is a G-invariant metric, it follows that

$$d(x, b_0) = d(gx, gb_0) \le d(gx, b_0) + d(b_0, gb_0) \le d(\rho x, b_0) + \text{diam } \mathcal{E}_0.$$

Note that ρX is bounded if and only if it is contained in a finite union o closed chambers $\overline{\mathscr{E}}$ of \mathscr{A}_0 . Hence M is bounded if and only if $M\mathscr{E}_0$ is bounded for each chamber \mathscr{E} of \mathscr{A}_0 which is possible if and only if $M\mathscr{E}_0$ is bounded.

For each $m \in M$, let $w_m \in W$ denote the unique element such that $m \in Bw_mB$. Then $M\mathscr{E}_0$ is bounded if and only if $\bigcup_{m \in M} w_m\mathscr{E}_0$ is bounded if and only if the set $\{w_m \colon m \in M\}$ is finite, that is, M intersects only finitely many double cosets in $B \setminus G/B$.

Theorem 2.4.13. A subgroup Γ of G is bounded if and only if Γ is contained in a parahoric subgroup.

Proof. Suppose Γ is bounded and let $x \in \mathcal{F}$. Then $X = \Gamma x$ is bounded and is stable under the action of Γ which acts through affine isometries. Thus, using Theorem 4.11, there exists a fixed point $y \in \mathcal{F}$, i.e., $\Gamma y = y$. If y lies in the facet $\mathcal{F}(P)$, then Γ must normalize the parahoric subgroup P, whene $\Gamma \subseteq P$ due to [Mac71, 2.3.6].

Conversely suppose Γ is contained in a parahoric subgroup, which by conjugating can be assumed to be of the form P_S , where S is a *proper* subset of R. Now note that $P_S = BW_SB$ where W_S is finite because $S \neq R$. Hence Γ is bounded due to Lemma 4.12.

References

[Mac71] I.G. Macdonald. Spherical Functions on a Group of P-adic Type. Publications of the Ramanujan Institute. Ramanujan Institute for Advanced Study in Mathematics, University of Madras, 1971.