Logica e Calcolo Proposizionale

Fondamenti di Informatica I Corso di laurea in Ingegneria Informatica e Automatica Sapienza Università di Roma

Domenico Lembo, Paolo Liberatore, Alberto Marchetti Spaccamela, Marco Schaerf

Introduzione

Abbiamo già visto le rappresentazioni di numeri, caratteri e altro: ogni dato (di qualsiasi genere: numero, carattere, stringa, ...) si può rappresentare usando sequenze opportune di zeri e uni

Ora: come memorizzare ed elaborare queste sequenze con circuiti elettronici

Esempio di elaborazione: somma

```
1111 ← riporti

1011 +

1101 =

-----

11000
```

quattro somme di singole cifre

esempio: terza colonna $1+0+1 \rightarrow 0$ e riporto 1

Somma singola cifra

riporto	prima cifra	seconda cifra		risultato	nuovo riporto
0	0	0	\Rightarrow	0	0
0	0	1	\Rightarrow	1	0
0	1	0	\Rightarrow	1	0
0	1	1	\Rightarrow	0	1
1	0	0	\Rightarrow	1	0
1	0	1	\Rightarrow	0	1
1	1	0	\Rightarrow	0	1
1	1	1	\Rightarrow	1	1

```
es, penultima riga:
riporto=1 prima cifra=1 seconda cifra=0

⇒
risultato=0 nuovo riporto=1
```

Tabella, a parole

il **riporto** vale uno se:

- le due cifre valgono entrambe uno, oppure
- il vecchio riporto vale uno e una delle due cifre vale uno

più formale: nuovo riporto = 1 se

- prima cifra = 1 AND seconda cifra = 1, oppure
- riporto = 1 AND poi prima cifra = 1 OR seconda cifra = 1

Operatori di combinazione

nuovo riporto = 1 se

- (prima cifra = 1) AND (seconda cifra = 1)
 OR
- (riporto = 1) AND (prima cifra = 1 OR seconda cifra = 1)

condizioni: prima cifra=1, seconda cifra=1, riporto=1 combinate con AND e OR

Circuito elettronico per il nuovo riporto

nuovo riporto = 1 se

- (prima cifra = 1) AND (seconda cifra = 1)
 OR
- (riporto = 1) AND (prima cifra = 1 OR seconda cifra = 1)

valori 0 e 1 rappresentati con grandezze elettriche

esistono componenti elettronici che combinano i valori in modo AND altri che combinano in modo OR

in alto: prima cifra=1 AND seconda cifra=1 ecc.

Cifra del risultato

riporto	prima cifra	seconda cifra		risultato	nuovo riporto
0	0	0	\Rightarrow	0	0
0	0	1	\Rightarrow	1	0
0	1	0	\Rightarrow	1	0
0	1	1	\Rightarrow	0	1
1	0	0	\Rightarrow	1	0
1	0	1	\Rightarrow	0	1
1	1	0	\Rightarrow	0	1
1	1	1	\Rightarrow	1	1

altro modo di esprimerlo:

risultato=1 se

(riporto=0 AND prima cifra=0 AND seconda cifra=1) OR (riporto=0 AND prima cifra=1 AND seconda cifra=0) OR (riporto=1 AND prima cifra=0 AND seconda cifra=0) OR (riporto=1 AND prima cifra=1 AND seconda cifra=1)

riporto=0 → NOT riporto=1

esiste un componente elettronico che realizza NOT

Cifra del risultato: circuito

poi ci sarebbero gli altri tre pezzi del circuito (omessi)

Elaborazioni, in generale

Dati:

sequenze di bit

Elaborazione:

da dati ottenere altri dati

quindi: da sequenze di bit ottenerne altre

come: usando NOT, AND, OR

analisi dei blocchi

Blocchi che utilizzeremo

- NOT
- AND
- OR

Tutti hanno

- ingressi 0 o 1
- uscite 0 o 1

Blocco NOT

uscita 1 se riporto NOT uguale a 1

riporto uscita
0 1
1 0

detto anche: negazione, not, !, ¬

Blocco AND

uscita 1 se prima cifra uguale a 1 AND seconda cifra uguale a 1

prima cifra	seconda cifra	uscita
0	0	0
0	1	0
1	0	0
1	1	1

detto anche: congiunzione, and, &&, ∧

Blocco OR

uscita 1 se prima cifra uguale a 1 OR (oppure) seconda cifra uguale a 1

prima cifra	seconda cifra	uscita
0	0	0
0	1	1
1	0	1
1	1	1

detto anche: disgiunzione, or, ||, V

Circuiti integrati

esistono componenti elettronici che realizzano AND, OR, NOT.

Esempio:

il circuito integrato 4011 contiene quattro unità AND+NOT (in figura).

Altri contengono quattro unità OR+NOT, sei unità NOT, ecc.

un microprocessore è un componente che contiene milioni di unità del genere

Elaborazione

dati i valori degli ingressi...

... con le tabelle si possono calcolare i valori delle uscite anche per circuiti complicati

esempio: calcola nuovo riporto, con prima cifra zero, seconda cifra uno, riporto entrante uno

Uscita complessiva

In generale, dati gli ingressi, si può calcolare l'uscita:

NOT: uscita 1 se l'ingresso NOT vale 1

AND: uscita 1 se primo ingresso vale 1 AND secondo ingresso vale 1

OR: uscita 1 se primo ingresso vale 1 OR secondo ingresso vale 1

Valutazione e sintesi

Ci sono 2 operazioni fondamentali dei circuiti logici:

Valutazione

- dato un circuito e i valori degli ingressi, calcolare l'uscita
- si scrivono i valori 0/1 degli ingressi, si usano le tabelline di NOT,
 AND, OR per calcolare le uscite

Sintesi

- data la specifica di una elaborazione da fare (es. calcolare il riporto), disegnare il circuito usando NOT, AND e OR
- analisi "a occhio" della tabellina somme/riporti; regola già (quasi) espressa con AND, NOT, OR
- in generale, serve un metodo per passare dalla tabella al circuito

Dal circuito alla formula

formula complessiva:

```
(primacifra AND secondacifra) OR
((primacifra OR secondacifra) AND riporto)
```

Formule e circuiti

dato un circuito, si può scrivere la formula

data una formula, si può disegnare il circuito

(visto con il riporto: disegnato il circuito a partire dalla definizione con AND e OR)

Dal circuito alla formula

Sintesi: caso semplice

a	b		uscita
0	0	→	1
0	1	→	0
1	0	→	0
1	1	→	1

Analisi: uscita vale uno se i due ingressi sono uguali

in questo caso, si poteva anche scrivere la condizione: uguali = entrambi zero OR entrambi uno con circuiti più complessi non è possibile

Sintesi del Circuito

Caso più complesso

a	b	С		uscita
0	0	0	→	0
0	0	1	\rightarrow	0
0	1	0	\rightarrow	1
0	1	1	\rightarrow	1
_1	0	0	\rightarrow	1
1	0	1	\rightarrow	1
_1	1	0	\rightarrow	0
1	1	1	\rightarrow	0

a occhio: impossibile

metodo: in quali casi l'uscita vale 1?

Caso più complesso

a	b	C		uscita
0	0	0	\rightarrow	0
0	0	1	\rightarrow	0
0	1	0	\rightarrow	1
0	1	1	\rightarrow	1
1	0	0	\rightarrow	1
1	0	1	\rightarrow	1
1	1	0	\rightarrow	0
1	1	1	→	0

Per ogni riga con uscita 1:

$$a==0 \rightarrow (NOT \ a)$$
 $a==1 \rightarrow a$ $b==0 \rightarrow (NOT \ b)$ ecc.

$$a==1 \rightarrow a$$

$$b==0 \rightarrow (NOT b)$$

queste sono poi composte in AND. Ad es.,

(NOT a) AND b AND (NOT c)

Tutte le formulecosì ottenute si compongono in OR

(linea 101)

Semplificazione

```
(a AND (NOT b) AND (NOT c)) OR (a AND (NOT b) AND c)
la formula precedente sta a indicare due possibilità:

1. a AND (NOT b) AND (NOT c)
2. a AND (NOT b) AND c

ossia a AND (NOT b), e poi o c oppure NOT c

(a AND (NOT b) AND (NOT c)) OR (a AND (NOT b) AND c) =
```

lo stesso per l'altra sottoformula

a AND (NOT b)

(a AND (NOT b)) AND (c OR (NOT c)) =

Formula semplificata

```
((NOT a) AND b AND (NOT c))
                                  OR
((NOT a) AND b AND c)
                                  OR
(a AND (NOT b) AND (NOT c)) OR
(a AND (NOT b) AND c)
((NOT a) AND b) OR (a AND (NOT b))
circuito più piccolo!!
problema: semplificazione «a occhio»
con 100000 variabili invece di tre?
servono:
1) regole per semplificare
2) un metodo automatico
```

Logica proposizionale

```
valori: falso, vero (oppure: 0 e 1)
```

variabili: a, b, c, ...

connettivi: ¬ ∧ V (cioè NOT, AND, OR)

formula (es):

(a
$$V \neg b$$
) $\Lambda c \Lambda \neg a$

Regole logica proposizionale

- a \land a = a; a \lor a = a (idempotenza dell'AND e dell'OR)
- a \wedge b = b \wedge a; a \vee b = b \vee a (commutativa dell'AND e dell'OR)
- a Λ (b Λ c) = (a Λ b) Λ c; a V (b V c) = (a V b) V c (associative)
- a \land 0 = 0
- a \land 1 = a
- a V 0 = a
- a V 1 = 1
- a ∧ ¬a = 0
- a $V \neg a = 1$
- a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) (prop. Distributiva dell'AND rispetto all'OR)
- a V (b \land c) = (a V b) \land (a V c) (prop. Distributiva dell'OR rispetto all'AND)
- \neg (a \land b) = \neg a \lor \neg b (primo teorema di De Morgan)
- \neg (a V b) = \neg a $\land \neg$ b (secondo teorema di De Morgan)

• ...

Interpretazioni e modelli

esempio di formula:

(a
$$V \neg b$$
) $\Lambda c \Lambda \neg a$

valore: 0 o 1 a seconda dei valori delle variabili valore delle variabili = interpretazione

Una interpretazione assegna il valore 0 o 1 ad ogni variabile esempio:

$$\{a=1, b=0, c=0\}$$
 è una interpretazione $\{a=0, b=0, c=1\}$ è un'altra interpretazione

Valutazione di una formula

```
(a \lor \neg b) \land c \land \neg a
data l'interpretazione: \{a=1, b=0, c=0\}
la formula vale:
(a \lor \neg b) \land c \land \neg a =
(1 \lor \neg 0) \land 0 \land \neg 1 =
(1 \lor 1) \land 0 \land 0 =
1 \land 0 \land 0 =
0
```

con questa interpretazione la formula vale 0

Valutazione di una formula

```
(a V ¬b) \land c \land ¬a

altra interpretazione: {a=0, b=0, c=1}

(a V ¬b) \land c \land ¬a =

(0 V ¬0) \land 1 \land ¬0 =

(0 V 1) \land 1 \land 1 =

1 \land 1 \land 1 =
```

questa volta la formula vale 1

Modello di una formula

```
stessa formula interpretazione {a=1, b=0, c=0} \rightarrow formula vale 0 interpretazione {a=0, b=0, c=1} \rightarrow formula vale 1
```

il valore della formula dipende dall'interpretazione

una interpretazione che rende vera la formula si chiama **modello** della formula

Uso dei modelli

I modelli servono a definire:

- data una interpretazione e una formula, valutare la formula (= trovare l'uscita di un circuito dati i suoi ingressi)
- dato un insieme di interpretazioni, trovare la formula che vale 1 solo per quelli (= sintesi di un circuito, a partire dalle righe 1 di una tabella)
- 3. data una formula, decidere se ha un modello
- 4. trovare le conseguenze logiche di una formula

Ultimi due problemi: ancora non visti

ora: uno per volta i punti 1-4

Usi della logica

- 1. valutare una formula data una interpretazione
- 2. sintetizzare una formula
- 3. trovare (se esiste) un modello di una formula
- 4. effettuare deduzioni

iniziamo dal primo punto

Valutazione di una formula

interpretazione $\{a=1, ...\} \rightarrow si mette 1 al posto di a nella formula$

Usato per:

- Valore di una condizione in Python
- Composizione di condizioni in Python
- Verifica errori
- Test parità
- •

Usi della logica

- 1. valutare una formula data una interpretazione
- 2. sintetizzare una formula
- 3. trovare (se esiste) un modello di una formula
- 4. effettuare deduzioni

Sintesi

formula → circuito è facile tabella → formula già visto:

Α	В	 Uscita
0	0	
1	0	
1	1	 ••••

Si prendono le righe con uscita 1, ognuna è un modello (valori delle variabili per cui la formula vale 1)

Si compone l'OR (V) dei modelli

Semplificazione

sulla tabella:

se due righe con uscita 1 differiscono solo per una variabile, si possono prendere solo le altre variabili e formare così un unico Λ invece di due Λ in V (cf. slide 25)

vale anche su gruppi:

se in un gruppo di righe le variabili A hanno tutte lo stesso valore e le variabili B tutti i valori possibili, si può prendere solo la AND dei valori A

Questa semplificazione corrisponde alla applicazione ripetuta della regola:

$$(F \land c) \lor (F \land \neg c) = F$$

metodi automatici per trovare righe simili

(ma: semplificazione ottima è un problema intrattabile)

Semplificazione: esempio

abc	uscita
<u>000→</u>	0
001→	0
010→	1
011→	0
100→	1
101→	1
110→	1
<u>111→</u>	1

disegnare il circuito che realizza questa funzione

prima riga:

a=0 b=1 c=0
$$\rightarrow$$
 ¬a \land b \land ¬c principio: variabile=0 diventa not variabile variabile=1 diventa variabile

$$010 \rightarrow \neg a \land b \land \neg c$$
 $100 \rightarrow a \land \neg b \land \neg c$
 $101 \rightarrow a \land \neg b \land c$
 $110 \rightarrow a \land b \land \neg c$
 $111 \rightarrow a \land b \land c$

Semplificazioni

$$\neg a \land b \land \neg c \qquad \Rightarrow b \land \neg c$$

$$a \land b \land \neg c \qquad \Rightarrow a \land \neg c$$

$$a \land \neg b \land \neg c \qquad \Rightarrow a \land \neg c$$

$$a \land \neg b \land c \qquad \Rightarrow a \land \neg c$$

$$a \land \neg b \land c \qquad \Rightarrow a \land c$$

risultato: (b $\land \neg c$) \lor a

nota: a Λ ¬c e a Λ c si semplificano in a

domanda: ma a \wedge b \wedge ¬c non è stato "preso due volte"?

Modelli presi due volte

```
dato che F = F V F:
(\neg a \land b \land \neg c) \lor (a \land b \land \neg c) \lor (a \land \neg b \land \neg c) \lor ...
(\neg a \land b \land \neg c) \lor (a \land b \land \neg c) \lor (a \land b \land \neg c) \lor
|-----|
                               b ∧ ¬c
primi due si semplificano in:
secondi due si semplificano in: a \Lambda \neg c
```

Usi della logica

- 1. valutare una formula data una interpretazione
- 2. sintetizzare una formula
- 3. trovare (se esiste) un modello di una formula
- 4. effettuare deduzioni

Soddisfacibilità

formula F

verificare se ha un modello

oppure: trovare un modello (se esiste)

modello = valori di ingresso che producono 1 in uscita

Esempio: a ∧ b ∧ ¬a

vale 1 solo se sia a che ¬a valgono 1 impossibile formula insoddisfacibile

Soddisfacibilità: esempi

$$\neg b \land (a \lor b)$$

con a=1 e b=0 la formula è vera \rightarrow soddisfacibile

non è sempre così facile!

$$(a \lor \neg b) \land \neg a \land (b \lor a)$$

guardando tutti i possibili valori di a e b:

$$0 0 \rightarrow (0 \lor \neg 0) \land \neg 0 \land (0 \lor 0) = 0$$

$$0 1 \rightarrow (0 \lor \neg 1) \land \neg 0 \land (1 \lor 0) = 0$$

$$1 1 \rightarrow (1 \lor \neg 1) \land \neg 1 \land (1 \lor 1) = 0$$

formula sempre falsa → insoddisfacibile

Numero di interpretazioni

n variabili = 2ⁿ interpretazioni (tante quanti sono i numeri rappresentabili con n bit)

n	2 ⁿ			
1	2			
2	4			
3	8			
4	16			
5	32			
10	1024			
11	2048			

Crescita esponenziale

Metodi automatici

(a V
$$\neg$$
b) Λ \neg a Λ (b V a)
applicando la regola (F V c) Λ (F V \neg c) = F:

$$(a \lor \neg b) \land \neg a \land (b \lor a) =$$

 $(a \lor \neg b) \land \neg a \land (b \lor a) \land a = \emptyset$

infatti: a $\Lambda \neg a = 0$

formula insoddisfacibile

Risoluzione

Generalizzazione del metodo precedente:

la formula deve essere del tipo:

(a
$$V c V \neg b$$
) Λ (b $V d$) Λ ...

ossia un Λ di sottoformule che sono V di variabili e variabili negate.

La forma precedente si chiama *Forma Normale Congiuntiva (CNF).* **Teorema**: Ogni formula può sempre essere trasformata in una formula equivalente espressa in questa forma.

si applica la *regola di risoluzione*:

$$(F \lor \neg b) \land (b \lor D) \Rightarrow aggiungi F \lor D$$

se formula insoddisfacibile: alla fine si ottiene 0

metodo automatico per vedere se una formula è soddisfacibile: metodo di risoluzione

Esempio

 $(\neg a \lor c \lor d) \land (a \lor d \lor e) \land (\neg a \lor \neg c) \land \neg d \land \neg e$

Per comodità di esposizione numeriamo le formule in AND (dette *clausole*)

- $(\neg a \lor c \lor d)$
- (1)

(a V d V e)

(2)

(¬a V ¬c)

(3)

¬d

(4)

-e

(5)

Applichiamo la regola di risoluzione in tutti i possibili modi ed aggiungiamo

 $(c \lor d \lor e)$

- (6)
- da (1) e (2)
- $(d \ V \ e \ V \ \neg c)$ (7) da (2) e (3)

(¬a V c)

- (8) da (1) e (4)

(a V e)

- (9) da (2) e (4)

 $(a \lor d)$

- (10) da (2) e (5)

 $(\neg a \lor d)$

- (11) da (1) e (3)

Applichiamo la risoluzione considerando il nuovo insieme di clausole e otteniamo ad es.,

48

d

- (12) da (10) e (11)

(12) e (4) generano, per risoluzione, una clausola vuota (che vale 0). La formula è insoddisfacibile.

Soddisfacibilità: altri metodi

oltre a risoluzione:

- local search
- DPLL
- tableau
- ...

trovano un modello (se esiste) di una formula

Soddisfacibilità: uso pratico

problema → formula

formula → modello

il modello è una soluzione del problema

secondo passo: si fa con un programma per la soddisfacibilità

Esempio: i cavalieri della tavola rotonda

Re Artù deve far sedere i suoi 150 cavalieri alla tavola rotonda, ma deve essere sicuro che nessuno sia seduto vicino a un rivale. I posti sono 150 e le rivalità sono note.

Codifica della soluzione

soluzione = posizione per ogni cavaliere in binario:

- un numero da 0 a 149 per ogni cavaliere, oppure
- un bit per ogni cavaliere e posto usiamo il secondo sistema

formula che esprime il problema

- ogni cavaliere ha un posto
- mai due cavalieri nello stesso posto
- mai rivali vicini

vediamo nel dettaglio come si fa

Codifica binaria della soluzione

Formula che esprime la soluzione

Ogni cavaliere ha un posto:

```
x_siede_0 V x_siede_1 V x_siede_2 V ... V x_siede_149
no due cavalieri nello stesso posto: per ogni posto a
¬(x_siede_a ∧ y_siede_a)
no rivali vicini: se x e y sono rivali
¬(x_siede_a ∧ y_siede_b) dove b=(a+1)%150:
```

Non inviterò mai a cena 150 cavalieri

- era solo un esempio!
- forma generale:
 - assegnare delle risorse (es. posti) rispettando dei vincoli (es. no rivali vicini)
 - assegnare dei camion per trasportare delle merci
 - assegnare le aule in modo che il canale L-Z non sia mai in aula 1

– ...

Usi della logica

- valutare una formula data una interpretazione
- sintetizzare una formula
- trovare (se esiste) un modello di una formula
- effettuare deduzioni

Implicazione

altra applicazione della logica proposizionale: effettuare ragionamenti

Esempio:

- Gino o sta a casa o sta al bar
- Gino non sta a casa
- conseguenza: Gino sta al bar

si esprime in logica proposizionale:

In logica

- Variabili:
 - casa=1 denota Gino sta a casa
 - bar=1 denota Gino sta al bar
- Formule:

Gino o sta a casa o sta al bar: casa V bar

Gino non sta a casa: ¬casa

— Gino sta al bar: bar

- Ragionamento:
 - se casa V bar e ¬casa allora bar

In generale

se aVb e ¬a allora b

a	b	aVb	¬а
0	0	0	1
0	1	1	1
1	0	1	0
1	1	1	0

riga gialla: unica in cui vale sia aVb=1 che ¬a=1

in quella riga b=1

quindi: implicazione valida

Implicazione

- Forma generale dell'implicazione:
 se formula, formula, ... formula allora formula
- per ogni valore delle variabili:
 - se le formule prima di "allora" valgono tutte 1
 - Ne consegue che la formula dopo vale 1

Semantica:

A, B,
$$C \models Z$$

Formalmente: ogni interpretazione per cui A=1, B=1 e C=1 è tale per cui Z=1

Implicazione

Esempi:

```
a \lor b, \nega \vDash b

a \vDash a \lor b

a \land b \vDash b

a \lor b, a \lor \negb \vDash a

a \lor b, a \lor \negb, \nega \lor b \vDash a \land b

a \lor b, \negb \lor c \vDash a \lor c
```

Controesempi:

implicazione non vera: a \lor b $\not\models$ a implicazione non vera: a \lor b, b \lor c $\not\models$ a \lor c implicazione non vera: a $\not\models$ a \land b

Esempio di dimostrazione

aVb, $\neg bVc \models aVc è vero?$

а	b	С	aVb	¬bVc	aVc
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

linee gialle: quelle dove aVb=1 e $\neg bVc=1$

in tutte vale anche aVc=1

l'implicazione è quindi valida

Esempio di confutazione

aVb, bVc ⊨ aVc è vero?

а	b	С	aVb	bVc	aVc
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	1	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Linea rossa: aVb = 1 e bVc = 1 ma aVc = 0

l'implicazione quindi NON è valida

altro modo di dire "se"

Gino o è a casa o è al bar

=

se Gino non è a casa allora è al bar

casa V bar uguale a "se non casa allora bar"

viceversa: "se non studio verrò bocciato":

- se ¬studio allora bocciato
- studio V bocciato

(= o studio o verrò bocciato)

Implicazione materiale

- è una formula che si esprime con il simbolo → e consente di esprimere in modo esplicito formule nella forma se _ allora _
- è una abbreviazione: _→_ indica ¬_V_
- a \rightarrow b indica quindi ¬a \lor b
- quindi:
 - casa V bar si può anche scrivere come¬casa → bar
 - studio V bocciato si può anche scrivere come
 studio → bocciato

Implicazione materiale vs conseguenza logica

- aVb ∧ ¬bVc ⊨ aVc sempre vero (aVc è una conseguenza logica di aVb ∧ ¬bV)
- a → b è una formula che risulta vera o falsa a seconda del valore assegnato ad a ed a b. In particolare, se ad a assegniamo 0 la formula è vera qualunque sia il valore di b. Invece è falsa se ad a assegniamo 1 ed a b assegniamo 0.
- a seconda del contesto in cui è specificata la formula, l'implicazione può essere "sensata" oppure no. Ad esempio se a rappresenta il concetto "studio" e b indica "bocciato", ¬a → b è una implicazione materiale che rappresenta una situazione reale, ma se a denota "vittoria" e b denota "sconfitta", l'implicazione potrebbe non catturare correttamente la realtà, perché in molti sport esiste anche il pareggio.
- la semantica della logica non include informazioni sul contesto

Conseguenze logiche

¬casa ⊭ bar

lo si vede dalla tabella di verità:

casa	bar	¬casa	bar
0	0	1	0
0	1	1	1
1	0	0	0
1	1	0	1

righe gialle: dove ¬casa è vero

in una bar è falso

¬casa ⊭ bar

bar non è conseguenza logica di ¬casa

Indipendenza dal contesto

perché ¬casa ⊨ bar è falso?

- formula1 ⊨ formula2 indica un'implicazione vera a prescindere dal significato delle variabili
- come aggiungere informazioni relative al significato delle variabili?

Informazioni relative al contesto

¬casa ⊭ bar

ma:

 \neg casa \land (casa \lor bar) \vDash bar

oppure:

 $\neg casa \land (\neg casa \rightarrow bar) \models bar$

le implicazioni che valgono solo nello specifico contesto vanno inserite come formule $A \rightarrow B$

Informazioni generali e specifiche

la logica proposizionale distingue fra:

- ragionamento logico
 indipendente dal significato delle variabili: ⊨
- informazioni specifiche
 relative al contesto, quindi legate al significato delle variabili: ¬_V_,
 →, ecc.

ma *non* distingue fra:

- informazioni sempre vere nel contesto considerato
 es: è sempre vero che Gino sta o a casa o al bar
- informazioni vere solo nello specifico caso es: oggi Gino non è a casa

in entrambi i casi sono formule: casa Vbar (oppure ¬casa → bar) e ¬casa

Implicazione e soddisfacibilità

A⊨B vero se ogni interpretazione per cui A=1 è tale per cui B=1

riformulato:

non esiste una interpretazione per cui A=1 ma B=0

equivale alla *non soddisfacibilità* di A∧¬B

aVb, $\neg bVc \models aVc \text{ se e solo se aVb } \land \neg bVc \land \neg (aVc) \text{ non soddisfacibile}$

Vale anche il contrario

Equivalenza

due formule sono equivalenti se hanno gli stessi modelli (si può vedere sulle tabelle di verità)

equivalenze di De Morgan

```
\neg(aVb) equivalente a \neg a \land \neg b
```

$$\neg(a \land b)$$
 equivalente a $\neg a \lor \neg b$

Equivalenze di De Morgan: dimostrazione

per \neg (aVb) e \neg a $\land \neg$ b:

а	b	¬(aVb)	¬a∧¬b
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

ultime due colonne uguali: formule equivalenti stesso sistema per l'altra equivalenza

Equivalenza e implicazione

se A e B sono equivalenti:

A⊨B

 $B \models A$

e viceversa

Logica e computer

visto finora:

uso di blocchetti NOT, AND, OR per realizzare la somma

in generale: circuiti \neg , \land , \lor realizzano qualsiasi funzione (sintesi) in un computer,

i dati sono:

- elaborati
- memorizzati

Memorizzazione dati

elaborazione = funzioni realizzate con \neg , \land , \lor

Memorizzazione:

circuito che memorizza un bit

memorizzare 64 bit = 64 di questi circuiti

Retroazione

l'uscita ritorna indietro

come funziona?

i blocchi non sono istantanei

una variazione dell'ingresso ci mette un certo tempo (per quanto piccolo) a riflettersi sull'uscita

Stato iniziale

assumendo in=0 e out=0:

0 OR 0 = 0

configurazione stabile: l'uscita si mantiene a 0

se si cambia il valore di in?

cambia in: diventa 1

1 OR 0 = 1

Cambia il valore dell'uscita

Propagazione del valore

out passa a 1

configurazione stabile: 1 OR 1 = 1 out

mantiene il valore

in torna a zero

0 OR 1 = out

Rimane a 1

Circuito con retroazione: analisi

- inizio: in=0 out=0
- cambia in=1 \rightarrow out=1
- cambia in=0 \rightarrow out=1

una volta a 1, l'uscita mantiene il valore

circuito che memorizza l'arrivo di un 1 in ingresso

ricorda se è arrivato un uno

Memoria resettabile

una volta che out=1, il valore dell'uscita non cambia

vera memoria = ci si può mettere 0 oppure 1

serve un modo per riportare out a zero

Blocco di azzeramento

reset=1 →
primo ingresso di AND va a zero →
out va a zero

Situazione iniziale

ingressi: imposta=0 resetta=0

si assume uscita = 0

Imposta va a 1

Memorizzazione

Imposta torna a 0

ingressi: imposta=0 resetta=0

0 OR 1 = 1

1 AND 1 = 1

l'uscita si mantiene a 1

Nota: in questo caso gli ingressi ed uscite nel circuito sono uguali nei tempi t_0 , t_1 e t_2

Resetta diventa 1

Memorizzazione

Resetta torna a 0

Imposta = 0 resetta = 0

L'uscita si mantiene a 0

Nota: in questo caso gli ingressi ed uscite nel circuito sono uguali nei tempi t_1 e t_2

Riassunto

situazione iniziale: si assume uscita 0

- imposta=0 resetta=0: l'uscita si mantiene a 0
- imposta=1 resetta=0: l'uscita va a 1
- imposta=0 resetta=0: l'uscita si mantiene a 1
- 4. imposta=0 resetta=1: l'uscita va a 0
- 5. imposta=0 resetta=0: l'uscita si mantiene a 0

Quindi:

- imposta=1 \rightarrow out=1
- resetta=1 \rightarrow out=0
- con ingressi zero l'uscita mantiene il valore

Flip-flop

- circuito che memorizza un bit.
- di solito si disegna come:

Blocchi NOR

a NOR b = NOT (a OR b)

Flip-flop

out = NOT resetta AND (imposta OR out)

out = NOT (resetta OR (NOT (imposta OR out))) =
 NOT resetta AND (imposta OR out)

Riassunto

nei computer tutti i dati sono espressi in forma di sequenze di bit

bit=0 oppure 1

con elementi NOT, AND, OR si possono realizzare:

- circuiti che memorizzano bit (flip-flop)
- circuiti che elaborano (es. somma)