Optimization of Target Values in an Artificial Neural Network

Andrassik, Bhuyian, Yakar, Zauner

Recap: Definitions

- Target values → expected output a neural Network is trained to produce for a specific given input
- Class values → values assigned to the correct class position in the target vector
- Non-class values → values used for all incorrect class positions in the target vector

Recap: Encoding Methods

One-hot encoding

$$ext{Target}_{ ext{cat}} = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}, & ext{Target}_{ ext{dog}} = egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}, & ext{Target}_{ ext{rat}} = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$$

Class values

• 1 (cat / dog / rat)

Non-class value

• 0

These could be anything in [0, 1]!

→ Introduce adaptive assignment via Sigma-Adaptation

Adaptive Refinement - General Approach

Each epoch:

- Record all outputs
- Adjust the class value by averaging it with the most consistent class output seen so far
- Adjust the non-class value by averaging all non-class outputs across the epoch (and previous guesses)

This method dynamically adapts the target values to match the evolving output behavior of the network

Base Approach Performance

σ-Adaptation Prototype

Uses the variability in outputs (standard deviation) to dynamically enforce separation

Steps:

- 1. Compute the sum of standard deviations for current outputs: σ_{sum}
- 2. For every class ensure:
 - All values remain within [0, 1]
 - |class non-class| $\geq \sigma_{sum}$
- 3. If too close:
 - \circ Move non-class **down** by σ_{sum}
- 4. If this would exceed bounds clip to 0 or 1

σ-Adaptation Performance

Alternative σ-Adaptation Methods

Adjust both class and non-class values →

- class_{adjusted} = class_{previous} + σ_{sum}
- non-class_{adjusted} = non-class_{previous} σ_{sum}

Use only half of sigma-sum →

- class_{adjusted} = class_{previous} + (σ_{sum} * ½)
- non-class_{adjusted} = non-class_{previous} (σ_{sum} * ½)

Next Steps

We can increase accuracy by:

- Improving the adaptation
 - Move more in early training
 - Adjust the calculation logic
 - 0 ...
- Reducing Overfitting
 - Regularization techniques
 - 0 ...