A Population Genetic Report

using PopGenReport Ver. 2.0

Adamack & Gruber (2014)

July 10, 2014

Contents

1	Land	dscape Genetic Analysis	2
	1.1	Maps of resistance matrices	2
	1.2	Pairwise Euclidean distances	3
	1.3	Pairwise cost distances	5
	1.4	Pairwise path lengths	7
	1.5	Pairwise genetic distances (D)	9
	1.6	Partial Mantel tests following the approach of Wassermann et al. 2010	11
	1.7	Multiple Matrix Regression with Randomization analysis	12

1 Landscape Genetic Analysis

Here some initial words on the method....

1.1 Maps of resistance matrices

The following pages show simple maps of the resistance matrices. In case of the pathtype is "leastcost" also the least-cost paths are shown.

layer:leastcost, NN=4

4 /	•	•	•	_	•• •	
	, ,	Pairv	VISE	FIIC	lidean	distances
		u u v	V 13C	Luc	nacan	uistantes

10	39	38	26	9	33	22	43	14	6	0
6	37	31	25	11	25	26	39	10	0	6
∞	27	25	14	10	20	18	30	0	10	14
7	11	15	18	39	20	31	0	30	39	43
9	22	34	14	17	33	0	31	18	26	22
က	25	9	20	30	0	33	20	20	25	33
4	34	35	21	0	30	17	39	10	11	9
ಣ	13	21	0	21	20	14	18	14	25	56
7	22	0	21	35	9	34	15	25	31	38
1	0	22	13	34	25	22	11	27	37	39
	_	2	3	4	ಬ	9	7	∞	6	10

Table 1: Pairwise euclidean distances

1.3 Pairwise cost distances

		2	3	4	ಬ	9	2	∞	6	10
1	0	48	18	51	46	26	34	38	52	55
2	48	0	09	92	11	89	16	65	61	74
3	18	09	0	33	54	18	46	20	34	37
4	51	92	33	0	65	25	62	13	15	∞
ಬ	46	11	54	65	0	62	25	54	20	63
9	26	89	18	25	62	0	54	22	26	29
7	34	16	46	79	25	54	0	99	22	83
∞	38	65	20	13	54	22	99	0	14	17
6	52	61	34	15	20	26	22	14	0	13
10	55	74	37	∞	63	53	83	17	13	0

Table 2: Pairwise cost distances - layer, path type='leastcost', ${\rm NN}{=}4$

1.4 Pairwise path lengths

Path lengths are only calculated if path type is "least cost".

	1	2	3	4	5	9	2	∞	6	10
-	0	29	18	51	46	26	15	38	52	55
2	53	0	41	92		49	16	65	61	74
3	18	41	0	33	54	18	27	20	34	37
4	51	92	33	0	65	25	09	13	15	∞
ಬ	46	11	54	65	0	62	25	54	20	63
9	26	49	18	25	62	0	35	22	26	53
7	15	16	27	09	25	35	0	47	75	64
∞	38	65	20	13	54	22	47	0	14	17
6	52	61	34	15	20	26	22	14	0	13
10	22	74	37	∞	63	29	64	17	13	0

Table 3: Pairwise path lengths (based on least cost paths) - layer, pathtype="leastcost', NN=4"

1.5 Pairwise genetic distances (D)

	0.273				229.0 90		0.000	0.142
0.6		0.170	299.	96	96	0	~ 1	
7 11	54		0	0.2	0.69	0.000	0.142	0.180
0.201	0.6	0.705	0.214	0.713	0.000	0.696	0.677	0.708
6 0.356 0.653	0.248	0.330	0.690	0.000	0.713	0.296	0.308	0.333
0.645 0.133	0.612	0.719	0.000	0.690	0.214	0.667	0.671	0.708
0.458 0.711	0.307	0.000	0.719	0.330	0.705	0.170	0.180	0.124
3 0.232 0.602	0.000	0.307	0.612	0.248	0.654	0.273	0.331	0.295
0.000	0.602	0.711	0.133	0.653	0.201	0.657	0.678	0.691
0.000	0.232	0.458	0.645	0.356	0.701	0.435	0.475	0.438
$\frac{1}{2}$	က	4	က	9	7	∞	6	10

Table 4: Pairwise genetic distance (D)

1.6 Partial Mantel tests following the approach of Wassermann et al. 2010

Gen ~Euclidean | layer

	model	r	p
1	Gen ~layer Euclidean	0.8623	0.003
2	Gen ~Euclidean layer	-0.4771	0.994

Table 5: Mantel tests following methodology of Wassermann et al. 2011

1.7 Multiple Matrix Regression with Randomization analysis

The approach follows the approach of Wang 2013 and Legendre et al. 1994.

	layer	coefficient	tstatistic	tpvalue	Fstat	Fpvalue	r2
2	layer	0.013	11.036	0.001	143.917	0.001	0.873
3	Euclidean	-0.009	-3.518	0.021			
1	Intercept	0.140	4.505	0.877			

Table 6: Multiple Matrix Regression wiht Randomization