Introduction to PMMA Reactor Unit Modeling

In this presentation, we will explore the development of a predictive model for the Poly-Methyl Methacrylate (PMMA) Reactor Unit. The goal is to accurately predict the monomer concentration, a critical target variable, based on several key input variables.

2022chb1055 - Purab Gupta

2022chb1038- Aditya Vikram Sharma

Background on PMMA Reactor Unit

The PMMA (Poly-Methyl Methacrylate) Reactor Unit is a critical component in the production of PMMA, a versatile thermoplastic material widely used in various industries. This reactor system is responsible for the polymerization of methyl methacrylate monomers to form PMMA polymer chains. Therefore, accurate prediction of the monomer concentration is important for optimizing the reactor performance and product quality.

We will now adhere to this problem by various regression and deep learning techniques

Fig. 2. MMA polymerization reactor flow sheet

System Parameters

INPUT VARIABLES

- 1. **Coolant water flowrate (Fcw)**: It controls the rate at which heat is removed from the system, ensuring optimal temperature conditions for the polymerization process. Adjusting the coolant water flowrate can have a direct impact on the overall reaction kinetics and the quality of the PMMA polymer produced.
- 2. **Monomer inlet Flowrate (F):** It determines the rate at which the methyl methacrylate monomers are fed into the system for polymerization.
- 3. **Initiator Concentration(CI)**: It determines the rate at which the polymerization reaction is initiated and affects the overall reaction kinetics.

Variables

4.Temperature (T): it determines the reaction rate and the extent of polymerization.

5.Jacket Temperature (T): It refers to the temperature of the reactor's outer jacket, which helps to maintain a specific temperature range throughout the reaction.

6.Coolant inlet temp.water (Two): The coolant inlet temperature (TWC) in the PMMA Reactor Unit refers to the temperature of the water used as a cooling agent in the system. It is a crucial parameter to preventing any potential overheating.

7.Inlet temperature of Feed (Tin): This refers to the temperature of the monomer and initiator solution that is fed into the reactor to start the polymerization process.

OUTPUT VARIABLES

Monomer Concentration: The primary target variable in this PMMA reactor modeling task is the monomer concentration.

Data Preprocessing

The raw data was cleaned, validated, and preprocessed to handle missing values, outliers, and ensure consistency across the dataset.

Removing outliers

and filtering data that may skew the analysis. This ensures the accuracy and reliability of the analysis by eliminating any anomalies that may interfere with the modeling process.

Test - Train Split

: The dataset is then split into a test set (30 % of dataset) and a train set (70% of dataset).

Algorithms Applied

Feature Selection

Linear Regression

Polynomial Regression

2 Applying Principal Component Analysis +PCR

Linear Regression

Polynomial Regression

Lasso Regression

3 — ANN (single pass)

4 ANN (multiple hidden layer)

5 ____ KNN

Feature Selection

These techniques help to identify the most significant features, reducing computational complexity and improving model performance.

In our case we have used the following feature selection methods

- 1. PCA Regression Models
- 2. Backward Selection Model ANN (using RFE)

important variables identified

- 1. Initiator Concentration
- 2. Monomer Inlet Flowrate

Linear Regression Model

MSE	3.726761654178907e -05
R ²	0.759092092252 6123
AIC	-61178.31478582333 5
coefficients	[223.69190701 6.23043635]

Polynomial Regression Model

MSE	3.7267616541 78907e-05
R ²	0.8685903868 061529
AIC	-42823.02035 007634

We begin by rewriting C_Y in terms of the unknown variable.

$$\mathbf{C}_{\mathbf{Y}} = \frac{1}{n} \mathbf{Y} \mathbf{Y}^{T}$$

$$= \frac{1}{n} (\mathbf{P} \mathbf{X}) (\mathbf{P} \mathbf{X})^{T}$$

$$= \frac{1}{n} \mathbf{P} \mathbf{X} \mathbf{X}^{T} \mathbf{P}^{T}$$

$$= \mathbf{P} (\frac{1}{n} \mathbf{X} \mathbf{X}^{T}) \mathbf{P}^{T}$$

$$\mathbf{C}_{\mathbf{Y}} = \mathbf{P} \mathbf{C}_{\mathbf{X}} \mathbf{P}^{T}$$

Note that we have identified the covariance matrix of \mathbf{X} in the last line.

Our plan is to recognize that any symmetric matrix \mathbf{A} is diagonalized by an orthogonal matrix of its eigenvectors (by Theorems 3 and 4 from Appendix A). For a symmetric matrix \mathbf{A} Theorem 4 provides $\mathbf{A} = \mathbf{E}\mathbf{D}\mathbf{E}^T$, where \mathbf{D} is a diagonal matrix and \mathbf{E} is a matrix of eigenvectors of \mathbf{A} arranged as columns.³

Now comes the trick. We select the matrix **P** to be a matrix where each row $\mathbf{p_i}$ is an eigenvector of $\frac{1}{n}\mathbf{X}\mathbf{X}^T$. By this selection, $\mathbf{P} \equiv \mathbf{E^T}$. With this relation and Theorem 1 of Appendix A $(\mathbf{P}^{-1} = \mathbf{P}^T)$ we can finish evaluating $\mathbf{C_Y}$.

$$C_{\mathbf{Y}} = \mathbf{P}\mathbf{C}_{\mathbf{X}}\mathbf{P}^{T}$$

$$= \mathbf{P}(\mathbf{E}^{T}\mathbf{D}\mathbf{E})\mathbf{P}^{T}$$

$$= \mathbf{P}(\mathbf{P}^{T}\mathbf{D}\mathbf{P})\mathbf{P}^{T}$$

$$= (\mathbf{P}\mathbf{P}^{T})\mathbf{D}(\mathbf{P}\mathbf{P}^{T})$$

$$= (\mathbf{P}\mathbf{P}^{-1})\mathbf{D}(\mathbf{P}\mathbf{P}^{-1})$$

$$C_{\mathbf{Y}} = \mathbf{D}$$

It is evident that the choice of **P** diagonalizes C_Y . This was the goal for PCA. We can summarize the results of PCA in the matrices **P** and C_Y .

- The principal components of **X** are the eigenvectors of $\mathbf{C}_{\mathbf{X}} = \frac{1}{n} \mathbf{X} \mathbf{X}^T$.
- The i^{th} diagonal value of C_Y is the variance of X along $\mathbf{p_i}$.

Applying Principal Component Analysis

applied to the preprocessed dataset in order to reduce the dimensionality of the data and identify the most relevant features that contribute to the variation in the dataset.

Linear Regression Model

MSE	2.1107854969007497 e-05
R ²	0.8635531421249624
AIC	-45210.63431605374

β0	β1	β2	β3	β4	β5	β6
1.028022	3.933137	-8.84973	-5.25112	3.359698	1.858487	6.355705
40e+02	71e-05	937e-06	382e-07	93e+00	10e-03	82e-02

Polynomial Regression Model

MSE	2.1107854969007 497e-05
R ²	0.8685903868061 529
AIC	-45210.63431605 374

Lasso Regression Technique

MSE	0.00015475773303 572454
R ²	0.00039565534220 73128
AIC	-36833.328641284 85

Artificial Neural Network (ANN)

we have used backward selection model in ANN

By iteratively removing features based on their contribution to the model, the backward selection model in ANN helps to find the optimal subset of features for prediction.

Actual vs. Predicted 6.06 6.04 Predicted 6.00 5.98 6.00 6.02 6.04 6.06 6.08 Actual

ANN (Single Layer)

MSE	4.0238493966171 52e-05
R ²	0.7398871354836 924
AIC	-42500.88312847 685

ANN (Multiple Layer)

MSE	4.0238493966171 52e-05
R ²	0.5288274281180 687
AIC	-42500.88312847 685

CONCLUSION

Algorithm	MSE	AIC
Linear	3.726761654178907e-05	-61178.31478 5823335
Polynomial	3.726761654178907e-05	-42823.02035 007634
Multi-linear	2.1107854969007497e-05	-45210.63431 605374
Polynomial	2.1107854969007497e-05	-45210.63431 605374
Lasso	0.00015475773303572454	-36833.32864 128485
ANN	4.023849396617152e-05	-42500.88312 847685
ANN (multiple layer)	4.023849396617152e-05	-42500.88312 847685
KNN		

conclusion

We have successfully implemented all the preprocessing methods along with both linear and non linear models, and have validated them with metrics such as R2, MSE, AIC, BIC and compared them accordingly.

The best model came out to be PCA with Polynomial Regression with respect to R² metric.