Introdução a imagens e fotografia

Fotografia Computacional - LuxAI

INSTITUIÇÃO EXECUTORA

Tópicos

- Imagens, tipos, fotografia e perspectiva histórica;
- Radiação eletromagnética e espectro;
- Percepção de imagens e cores;
- Propriedade das cores;
- Adaptação ao brilho;
- Imagem digital, aquisição e processamento;
- Sensores CCD x CMOS;
- Amostragem e quantização;
- Representação da imagem.

Tipos de imagens

- Imagens digitais
 - Capturadas por um sensor e convertidas em um conjunto finito de pixels, contendo informações de cor ou intensidade
- Imagens analógicas
 - Capturadas em filme fotográfico por meio de processos químicos

Tipos de imagens

- Imagens: associadas à captura de uma cena registrada em um único quadro;
- Vídeos: ocorre a captura de imagens em sequência para um determinado período de tempo, criando a ilusão de movimento.

Fonte: http://penta3.ufrgs.br/fisica/Otica/

Câmeras - linha do tempo

Picture Perfect: The Evolution of the Camera

1820's-1839

Daguerreotype camera was first invented by Louis-Jaques-Mand Daduerre and Joseph Nicéphore Niepce

1935

Color photos created using subtractive color process, known as Kodachrome film

1947

Polaroid introduces instant image development

2016

Drone photography improves with DJI's Phantom 4 which uses computer vision and machine learning to track and photograph objects rather than following GPS signal

First camera phone

1500's

Pinhole camera (Camera Obscura) originally used for viewing Solar eclipses began to be used as an aid for drawing

1900

Kodak sells first commercial camera named the Brownie

1891

Gabriel Lippmann announces to the Academy of Sciences that he was able to create a fixed color photograph

1991

Kodak patents Ecam, first digital camera

1986

Fujifilm produced the first disposable camera

1973-1978

Steven Sasson invents first digital camera and receives U.S. patent

"Primeira fotografia do mundo" produzida por Joseph Niépce através da Heliografia

Louis-Jacques-Mandé Daguerre (1787-1851), inventor do Daguerreótipo

Fonte: ABREU, Rodrigo J. S., A relação entre a matemática e a fotografia. Dissertação (Mestrado em matemática). Programa de Pós-Graduação em Matemática, PUC/Rio. Rio de Janeiro, 2021. https://web.archive.org/web/20220623131734id_/https://www.maxwell.vrac.puc-rio.br/53718/53718.PDF

O infográfico descreve o processo um tanto árduo de fixar uma imagem em uma fina folha de cobre banhado a prata.

8

A primeira fotografia colorida permanente foi tirada por Thomas Sutton, que estava trabalhando com Clerk Maxwell, e é uma composição de três imagens em preto e branco, cada uma obtida através de um filtro vermelho, verde ou azul.

Fonte: ABREU, Rodrigo J. S., A relação entre a matemática e a fotografia. Dissertação (Mestrado em matemática). Programa de Pós-Graduação em Matemática, PUC/Rio. Rio de Janeiro, 2021. https://web.archive.org/web/20220623131734id_/https://www.maxwell.vrac.puc-rio.br/53718/53718.PDF

1880 Primeira fotografia da grande esfinge de Gizé no Egito 1900 Fotografia primeira lente teleobjetiva 1922 Geração de imagens em 5 tons de cinza 1929 Transmissão de imagens em 15 tons 1964 Primeira imagem da lua obtida por sonda 1966
Primeira
imagem da
terra por uma
sonda a partir
da lua

Fontes:

https://www.hypeness.com.br/2017/04/estas-20-imagens-sao-as-primeiras-fotografias-do-mundo/https://correiodoestado.com.br/variedades/primeira-foto-da-terra-vista-do-espaco-completa-50-anos/285159/

GONZALEZ, R. C.; WOODS, R. E. Digital Image Processing. Pearson, New York, NY.

Fotografia - Evolução tecnológica das câmeras (99-21)

Radiação eletromagnética (REM)

 As imagens e suas aplicações podem ser categorizadas de acordo com sua fonte

Fontes:

GONZALEZ, R. C.; WOODS, R. E. Digital Image Processing. Pearson, New York, NY. https://medium.com/ubntbr/como-o-sinal-wifi-é-propagado-na-natureza-d87daef39575

Radiação eletromagnética (REM)

 O resultado de uma imagem depende da quantidade de fótons recebidos pelo sensor

Radiação eletromagnética (REM)

Raios gama

Raios-X

Ultravioleta (UV)

Infravermelho (IR)

Fontes:

(a)<u>https://www.nasa.gov/universe/nasas-fermi-swift-missions-enable-a-new-era-in-gamma-ray-science/</u>
(b)Mcloughlin, Ian. (2008). Secure Embedded Systems: The Threat of Reverse Engineering. Parallel and Distributed Systems, International Conference on. 729-736. 10.1109/ICPADS.2008.126.

(c)https://www.azonano.com/news.aspx?newsID=39254

(d)https://spectrum.ieee.org/top-10-facts-gleaned-at-euv-litho-workshop

Imagens através de ondas sonoras

Sonar

Ultrassom (ondas sonoras não audíveis)

Espectro visível

Características do espectro solar e absorção pela atmosfera

Fonte: https://sunwindsolar.com/blog/solar-radiation-spectrum/

Espectroscopia

Aplicação: detecção de bioassinaturas)

O método de análise da espectroscopia consiste em medir a quantidade de radiação emitida e/ou absorvida por moléculas ou átomos.

Espectro visível

Band No.	Name	Wavelength (µm)	Characteristics and Uses
1	Visible blue	0.45-0.52	Maximum water penetration
2	Visible green	0.52-0.60	Good for measuring plant vigor
3	Visible red	0.63-0.69	Vegetation discrimination
4	Near infrared	0.76-0.90	Biomass and shoreline mapping
5	Middle infrared	1.55-1.75	Moisture content of soil and vegetation
6	Thermal infrared	10.4-12.5	Soil moisture; thermal mapping
7	Middle infrared	2.08-2.35	Mineral mapping

Imagens geradas por IA

(a) 2018

(b) 2022

(b) 2023

Fontes:

(a)https://twitter.com/wwwAlblog/status/983368399970594818

(b)https://www.tecmundo.com.br/software/263340-midjourney-imagens-mostram-evolucao-ia-ano.htm

Percepção visual de imagens

- Cores frias: no grupo das cores frias estão o azul, violeta e verde.
- Cores quentes: neste grupo de cores estão o vermelho, o laranja e o amarelo.
- Cores neutras: neste grupo estão os tons acinzentados, marrons e pastéis.

Onde:

- Comprimento de onda: $\lambda = c / v$
- Energia do fóton: $\mathbf{E} = \mathbf{h} \mathbf{v}$
- \mathbf{h} = cte. de Planck, \mathbf{v} = frequência
- **c** = velocidade da luz.

(b)

Percepção de cores

- As cores percebidas em um objeto são determinadas pela natureza da luz refletida em sua superfície
 - Um corpo que reflete a luz e é relativamente equilibrado em todos comprimentos de onda visíveis aparece em branco
 - Um objeto que pode ser percebido como verde reflete ondas na faixa de [500, 570] nm, absorvendo a energia de outros comprimentos de onda
- Luz acromática ou monocromática: luz sem cor (tons de cinza)
- Uma fonte de luz pode ser descrita pela radiância,
 luminância e brilho

Percepção de cores - anatomia do olho

Percepção de cores - percurso da luz incidente no olho

Percepção de cores - aspectos morfológicos da visão

- A visão é viabilizada pela distribuição de receptores de luz sobre a superfície da retina (p. ex., cones e bastonetes)
 - Cones são altamentes sensíveis a cores, posicionados na região central da retina, cada um conectado à sua própria fibra nervosa.
 Proporcionam a distinção de pequenos detalhes e seu número varia entre 6 e 7 milhões.
 - Bastonetes estão distribuídos sobre a superfície da retina, variando sua quantidade entre 75 a 150 milhões, proporcionam uma visão ampla do campo visual.

Percepção de cores - distribuição de cones e bastonetes

Fotografia

- Segundo o Michaelis online
 (https://michaelis.uol.com.br/moderno-portugues/busca/portugues-brasi leiro/fotografia): "Arte ou processo de reproduzir, pela ação da luz ou de qualquer espécie de energia radiante, sobre uma superfície sensibilizada, imagens obtidas mediante uma câmara escura."
- Segundo Webster
 (https://www.merriam-webster.com/dictionary/photography): "A arte ou
 o processo de produzir imagens pela ação de energia radiante e,
 especialmente, luz em uma superfície sensível, como filme ou um
 sensor óptico".
- Componentes básicos da câmera:
 - Lente: foca a luz no sensor de imagem ou no filme.
 - Abertura: controla a quantidade de luz que atinge o sensor por meio do ajuste do tamanho da abertura.
 - Obturador: determina o tempo de exposição, controlando a duração da exposição à luz.

Fotografia - Formação da imagem na câmera

Propriedades das cores

- Matiz: a cor que vemos (vermelho, azul, etc.);
- Saturação: especifica a pureza em termos de mistura de branco;
- Brilho: especifica o componente acromático, que é a quantidade de luz emitida ou refletida

Fonte: http://profs.ic.uff.br/~aconci/CG-Aula13-2017.pdf

Percepção visual

- O conceito de brilho está ligado à percepção visual da quantidade de luz proveniente de uma fonte luminosa.
 - A capacidade do sistema visual humano para discernir diferentes níveis de brilho é um elemento crucial ao apresentar resultados que envolvam imagens digitais.
 - Resultados experimentais demonstram que a sensibilidade do sistema visual humano ao brilho é representada de maneira logarítmica em relação à intensidade de luz que atinge o olho.

Percepção visual - adaptação ao brilho

Efeito Mach: o olho tende a subestimar ou superestimar a intensidade próxima às transições entre regiões de intensidades diferentes.

Percepção visual - Iluminância e razão de Weber

→ Razão (ou contraste) de Weber = △I/I

Percepção visual - Ilusão de ótica

Percepção visual - Ilusão de ótica

A ilusão da grelha cintilante é uma variante da ilusão da grelha de Hermann, descoberta por E. Lingelbach em 1994, em que existem círculos brancos situados nas intersecções de linhas cinzentas verticais e horizontais.

33

Percepção visual - Ilusão de ótica

A ilusão da parede do café, também conhecida como ilusão de Münsterberg

Fonte: https://commons.wikimedia.org/wiki/File:Café_wall.svg

Definição de imagem digital

- Descrita por uma função bidimensional (p. ex., f(x,y)):
 - Cada ponto no par ordenado (x,y) representa uma posição na imagem e o valor f(x,y) descreve a intensidade do ponto ou nível de cinza naquela posição.
 - Uma imagem digital é definida para um conjunto finito de valores que f, x e y podem assumir.

Componentes do processamento de imagens

Aquisição de imagens

Operação de uma simples célula em um arranjo 2D

Arranjo matricial - 2D

(c) Fotodiodo - um único ponto

(d) Arranjo linear - 1D

Fontes:

- (a)https://www.diffen.com/difference/CCD_vs_CMOS
- (b)https://what-when-how.com/introduction-to-video-and-image-processing/image-acquisition-introduction-to-video-and-image-processing-part-2/
- (c)https://ihtm.bg.ac.rs/en/products?layout=edit&id=338
- (d)https://www.photonics.com/Articles/Advances_in_CMOS_Image_Sensors_Open_Doors_to_Many/a57683

Aquisição de imagens

Aquisição de imagens - CCD e CMOS

PCI com um sensor CCD

Operação de um sensor CCD (charge-coupled device)

Operação de um sensor CMOS (complementary metal-oxidesemiconductor)

PCI com um sensor CMOS

Aquisição de imagens - CCD e CMOS

- CMOS geralmente consome menos energia
 - o Melhora duração da bateria.
- CCD tende a ser mais nítido e menos ruidoso
 - Também tende a ser mais sensível a condições com pouca luz comparado ao CMOS.
- CMOS tem menor custo comparado ao CCD
- Tecnologia SCMOS: foi lançada a tecnologia Scientific CMOS
 - É capaz de fornecer baixo ruído, alta velocidade e um grande campo de visão, tornando as câmeras SCMOS ideais para uma ampla gama de aplicações, da astronomia à microscopia.

Aquisição de imagens - Sensores Bayer e Foveon

Aquisição de imagens - Captura e projeção

- (1) Fonte de energia;
- (2) Um elemento de uma cena;
- (3) Sistema de imagem;
- (4) Projeção da cena no plano da imagem;
- (5) Imagem digitalizada.

Aquisição de imagens - Modelo de imagem simples

$$0 \leq f(x,y) < \infty$$

• A função f(x,y) deve ser positiva e finita

$$f(x,y) = i(x,y) r(x,y)$$

$$0 \leq i(x,y) < \infty$$

• *i(x,y) iluminação* - quantidade de luz incidindo na cena sendo observada. É determinada pela fonte de luz.

$$0 \leq r(x,y) \leq 1$$

• r(x,y) reflectância – quantidade de luz refletida pelos objetos na cena. É determinada pelas características dos objetos.

$$L_{min} \leq l \leq L_{max}$$

 I é denominado nível de cinza, ou seja a intensidade de uma imagem monocromática f nas coordenadas (x,y)

$$[L\min, L\max]$$

 O intervalo é denominado escala de cinza, onde l = 0 é considerado negro e l = L é considerado branco.

Aquisição de imagens - Amostragem e quantificação

Diagrama em blocos de etapas de conversão A/D (analógico/digital)

Sinal de entrada/saída sobrepostos de um processo de conversão A/D

Fontes:

(a)https://blog.cloudv.io/assets/files/Book_6x9_CH1-3.pdf

(b)https://micro.magnet.fsu.edu/primer/digitalimaging/acquisition.html

Aquisição de imagens - Amostragem e quantificação

Amostragem e quantificação de um segmento de imagem:

- (1) Imagem contínua com segmento AB.
- (2) Variação (analógica) de intensidade ao longo do segmento AB.
- (3) Amostragem e quantização do sinal percorrendo o segmento AB.
- (4) Varredura digital ao longo do segmento AB.

Aquisição de imagens - Amostragem e quantificação

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & \vdots & & \vdots \\ f(M-1,0) & f(M-1,1) & \cdots & f(M-1,N-1) \end{bmatrix}$$

Sequência de representações: imagem bidimensional, em 3D a partir da função de intensidade f(x,y) e seus correspondentes valores em tons de cinza.

- Saturação é o valor máximo no qual todos os valores de intensidade são cortados em uma região da imagem. A região saturada tem um nível de intensidade alto e constante.
- O ruído visível neste caso se apresenta como um padrão de textura granulada. O fundo escuro é mais ruidoso, mas o ruído é difícil de perceber.
- A Faixa dinâmica de um sistema de imagem: pode ser definida como a razão entre a intensidade máxima mensurável e o nível mínimo detectável de intensidade no sistema. Como regra geral, o limite superior é determinado pela saturação e o limite inferior pelo ruído.

Parâmetros:

Largura: N= 2ⁿ

• Altura: $M = 2^k$

 Níveis de resolução (tons de cinza):

$$G = 2^{m}$$

- Número de bits de resolução: m
- Quantidade total de bits ocupados:

$$b=N.M.m = m.2^{k+n}$$

Dimensões Resolução	32x32	64x64	128x128	256x256	512x512	1024×1024
1 bit	128	512	2048	8192	32768	131072
2 bits	256	1024	4096	16384	65536	262144
3 bits	384	1536	6144	24576	98304	393216
4 bits	512	2048	8192	32768	131072	524288
5 bits	640	2560	10240	40960	163840	655360
6 bits	768	3072	12288	49152	196608	786432
7 bits	896	3584	14336	57344	229376	917504
8 bits	1024	4096	16384	65536	262144	1048576

Obs.: cálculos adicionais podem ser realizados para a medida de ocupação de bytes em função do número de bits por pixel (resolução em níveis de cinza)

Imagens de tamanhos diferentes porém mesma quantidade de tons de cinza

Fonte: GONZALEZ, R. C.; WOODS, R. E. Digital Image Processing. Pearson, New York, NY.

Efeito da redução da resolução espacial (undersampling):

- (1) 1024×1024;
- (2) 512X512;
- (3) 256 X 256;
- (4) 128X128;
- (5) 64X64;
- (6) 32X32.

Efeito na diminuição nos tons de cinza nessa sequência : 256, 128, 64, 32, 16, 8, 4, 2.

- Linha superior, da esquerda para direita, imagens originalmente com dimensões 128 x 128, 64 x 64 e 32 x 32 pixels ampliadas para 1024 x 1024 pixels, usando interpolação de nível de cinza do vizinho mais próximo;
- Na parte inferior temos a mesma sequência utilizando interpolação bilinear.

Muito obrigado!

Fotografia Computacional - LuxAI <u>luxai.cin.ufpe.br</u>

INSTITUIÇÃO EXECUTORA

COORDENADORA

APOIO

