import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

In [2]:

%config Completer.use_jedi = False

In [95]:

train=pd.read_csv('train_titanic.csv')

Passengerld

Survived -- 0 = No, 1 = Yes

Pclass -- Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd

Name -- Passenger name

Sex -- male / female

Age -- age in years

SibSp -- no. of siblings / spouses aboard the Titanic

Parch -- no. of parents / children aboard the Titanic

Ticket -- Ticket number

Fare -- Passenger fare

Cabin -- Cabin number

Embarked -- Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

In [7]:

train.head()

Out[7]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN

Futrelle, Mrs. Jacques Heath (Lily May Peel) Allen, Mr. Henry Futrelle, Mrs. 35.0 1 0 113803 53.1000 C123 Allen, Mr. May Peel) Allen, Mr. Henry		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
4 5 0 3 William male 35.0 0 0 373450 8.0500 NaN	3	4	1	1	Mrs. Jacques Heath (Lily May	female	35.0	1	0	113803	53.1000	C123
	4	5	0	3	William	male	35.0	0	0	373450	8.0500	NaN

In [8]:

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype						
0	PassengerId	891 non-null	int64						
1	Survived	891 non-null	int64						
2	Pclass	891 non-null	int64						
3	Name	891 non-null	object						
4	Sex	891 non-null	object						
5	Age	714 non-null	float64						
6	SibSp	891 non-null	int64						
7	Parch	891 non-null	int64						
8	Ticket	891 non-null	object						
9	Fare	891 non-null	float64						
10	Cabin	204 non-null	object						
11	Embarked	889 non-null	object						
<pre>dtypes: float64(2), int64(5), object(5)</pre>									
memory usage: 83.7+ KB									

In [9]:

train.isnull()

Out[9]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embark
	0	False	False	False	False	False	False	False	False	False	False	True	Fal
	1	False	False	False	False	False	False	False	False	False	False	False	Fal
	2	False	False	False	False	False	False	False	False	False	False	True	Fal
	3	False	False	False	False	False	False	False	False	False	False	False	Fal
	4	False	False	False	False	False	False	False	False	False	False	True	Fal
	•••		•••		•••					•••			
	886	False	False	False	False	False	False	False	False	False	False	True	Fal
	887	False	False	False	False	False	False	False	False	False	False	False	Fal
	888	False	False	False	False	False	True	False	False	False	False	True	Fal
	889	False	False	False	False	False	False	False	False	False	False	False	Fal
	890	False	False	False	False	False	False	False	False	False	False	True	Fal

891 rows × 12 columns

4

In [10]:

train.isnull().sum()

```
0
          PassengerId
Out[10]:
          Survived
                            0
          Pclass
                            0
          Name
                            0
          Sex
                            0
                          177
          Age
          SibSp
                            0
          Parch
                            0
          Ticket
                            0
          Fare
                            0
          Cabin
                          687
          Embarked
                            2
          dtype: int64
         Calculate percentage of missing values
In [11]:
           train.count()
Out[11]:
          PassengerId
                          891
          Survived
                          891
          Pclass
                          891
          Name
                          891
          Sex
                          891
          Age
                          714
          SibSp
                          891
          Parch
                          891
          Ticket
                          891
          Fare
                          891
          Cabin
                          204
          Embarked
                          889
          dtype: int64
In [12]:
           #to count total number of rows
           train.isnull().count()
Out[12]: PassengerId
                          891
          Survived
                          891
          Pclass
                          891
          Name
                          891
          Sex
                          891
                          891
          Age
          SibSp
                          891
          Parch
                          891
          Ticket
                          891
          Fare
                          891
          Cabin
                          891
          Embarked
                          891
          dtype: int64
 In [4]:
           #percentange of missing value
           #round the value
           percentage_missing_data=round(((train.isnull().sum())/(train.isnull().count()))*100,
           percentage_missing_data
          PassengerId
                           0.0
 Out[4]:
          Survived
                           0.0
          Pclass
                           0.0
          Name
                           0.0
          Sex
                           0.0
                          19.9
          Age
          SibSp
                           0.0
```

Parch 0.0 Ticket 0.0 Fare 0.0 Cabin 77.1 Embarked 0.2 dtype: float64

Lets create Heatmap to visualize missing data

```
plt.subplots(figsize=(10,6))
sns.heatmap(train.isnull())
```

Out[96]: <AxesSubplot:>


```
In [8]:
    #for better visualization
    sns.heatmap(data=train.isnull(),yticklabels=False,cbar=False,cmap='viridis')
```

Out[8]: <AxesSubplot:>


```
In [9]: sns.countplot(x='Survived', data=train)
```

Out[9]: <AxesSubplot:xlabel='Survived', ylabel='count'>

Out[12]: <AxesSubplot:xlabel='Survived', ylabel='count'>


```
sns.countplot(x='Survived',hue='Sex',data=train)
 In [ ]:
In [13]:
           train['Pclass'].unique()
          array([3, 1, 2], dtype=int64)
Out[13]:
In [15]:
           #which class survived the most
           sns.countplot(x='Survived',hue='Pclass',data=train)
Out[15]: <AxesSubplot:xlabel='Survived', ylabel='count'>
                                                           Pclass
             350
                                                               1
                                                               2
             300
                                                              3
             250
             200
             150
             100
             50
              0
                                                     i
                            0
                                      Survived
In [17]:
           #which port has more survival count
           sns.countplot(x='Embarked',hue='Survived',data=train)
Out[17]: <AxesSubplot:xlabel='Embarked', ylabel='count'>
                                                          Survived
             400
                                                            0
                                                             1
             350
             300
             250
          5 250
200
             150
             100
              50
                                        C
                                     Embarked
In [18]:
           #which age group has more survival count
           sns.countplot(x='Parch', hue='Survived', data=train)
Out[18]: <AxesSubplot:xlabel='Parch', ylabel='count'>
```



```
In [16]: train.columns

Out [16]: Trdey(['PassengerId' 'Survived' 'Polass' 'Name' 'Sey' 'Age' 'SibSn'
```

Part 2

```
In [19]:    percentage_missing_data
Out[19]: PassengerId    0.0
```

Survived 0.0 Pclass 0.0 Name 0.0 Sex 0.0 19.9 Age SibSp 0.0 Parch 0.0 Ticket 0.0 Fare 0.0 Cabin 77.1 Embarked 0.2 dtype: float64

lets use box plot to explore any relationship between class and passenger age
sns.boxplot(x='Pclass',y='Age', data=train)

Out[20]: <AxesSubplot:xlabel='Pclass', ylabel='Age'>

Average age of passenger in each class

Custom function to fill in missing data

```
In [26]:
           #this function returns the mean value computed on above cell
           def impute_age(age_pclass):
               age=age_pclass[0]
               pclass=age_pclass[1]
               if(pd.isnull(age)):
                   if pclass==1:
                       return 38
                   elif pclass==2:
                       return 30
                   else:
                       return 25
               else:
                   return age
In [27]:
           train[['Age','Pclass']].apply(impute_age,axis=1)
                 22.0
Out[27]:
                 38.0
                 26.0
          2
                 35.0
          3
          4
                 35.0
          886
                 27.0
          887
                 19.0
          888
                 25.0
          889
                 26.0
          890
                 32.0
          Length: 891, dtype: float64
In [28]:
           #Lets fill this in the age column
           train['Age']=train[['Age','Pclass']].apply(impute_age,axis=1)
In [30]:
           #Now create a heatmap to check the new value
           sns.heatmap(data=train.isnull())
```

Out[30]: <AxesSubplot:>


```
plt.subplots(figsize=(10,6))
sns.heatmap(train.isnull()).set_title("Missing values heatmap")
```

Out[58]: Text(0.5, 1.0, 'Missing values heatmap')


```
In [59]:  #we have 2 null values in Embarked column, so lets drop it
    train.dropna(inplace=True)
In [60]:  #Now lets see the HeatMap
```

sns.heatmap(train.isnull()).set_title("Missing values heatmap")

localhost:8890/nbconvert/html/11_Logistic_Regression/titanic_logistic_regression.ipynb?download=false

Lets work with categorical variables

In [61]:

#We have to remove variable with text value.
that mean we have to remove them and add dummies
#pandas have some intersting thing to work with dummies
pd.get_dummies(train['Sex'])

Out[61]:		female	male
	0	0	1
	1	1	0
	2	1	0
	3	1	0
	4	0	1
	•••		
	886	0	1
	887	1	0
	888	1	0
	889	0	1
	890	0	1

889 rows × 2 columns

```
#Remove multicollinearity(*) by adding drop_first
sex=pd.get_dummies(train['Sex'],drop_first=True)
sex.head()
```

Out[62]: male 0 1

```
male
          1
               0
          2
               0
          3
               0
          4
               1
In [63]:
          #lets do the same for Embarked
          pd.get_dummies(train['Embarked'])
              CQS
Out[63]:
              0
            1 1 0 0
              0
                 0 1
            3 0
                  0 1
              0
                 0
          886
              0
                 0 1
          887 0
                  0
                   1
          888
              0
                  0
          889
              1
                  0 0
          890 0 1 0
         889 rows × 3 columns
In [65]:
           #Remove multicollinearity(*) by adding drop_first
          embark=pd.get_dummies(train['Embarked'],drop_first=True)
          embark.head()
Out[65]:
            Q S
          0
            0 1
             0 0
          2
             0 1
          3
            0 1
            0 1
In [67]:
          train=pd.concat([train,sex,embark],axis=1)
          train.head()
Out[67]:
            Passengerld Survived Pclass
                                          Name
                                                  Sex Age SibSp Parch
                                                                          Ticket
                                                                                   Fare Embark
```

		Passenge	ld Sur	vived	Pclass	Nar	ne S	ex A	ge	SibSp	Parch	Ticket	Fare	Embark
	0		1	0	3	Braur Mr. Ow Har	en m	ale 22	2.0	1	0	A/5 21171	7.2500	
	1		2	1	1	Cuming Mrs. Jo Bradl (Floren Brig	hn ley fem	ale 38	3.0	1	0	PC 17599	71.2833	
	2		3	1	3	Heikkine Mi Lai	iss. fem	ale 26	5.0	0	0	STON/O2. 3101282	7.9250	
	3		4	1	1	Jacqu Hea (Lily M	lrs. ues ath	ale 35	5.0	1	0	113803	53.1000	
	4		5	0	3	Allen, N Willia Her	am m	ale 35	5.0	0	0	373450	8.0500	
	4													•
In [70]:	#.	Lets drop Sex, Embo rain.drop	irked,	Name,	Ticket				۱, ۱	Passe	ngerId'],axis=1,	inplace:	=True)
In [73]:	t	rain.head	1()											
Out[73]:		Survived	Pclass	Age	SibSp	Parch	Fare	male	Q	S				
	0	0	3	22.0	1	0	7.2500	1	0	1				
	1	1	1	38.0	1	0	71.2833	0	0	0				
	2	1	3	26.0	0	0	7.9250	0	0	1				
	3	1	1	35.0	1	0	53.1000	0	0	1				
	4	0	3	35.0	0	0	8.0500	1	0	1				
In []:														

Part 3

Model Creation

```
In [74]: X=train.drop('Survived',axis=1)
y=train['Survived']

In [75]: X.head()
```

```
Out[75]:
             Pclass Age SibSp Parch
                                         Fare
                                             male Q S
          0
                 3
                    22.0
                                   0
                                       7.2500
                                                     0
                                                       1
          1
                    38.0
                                      71.2833
                 1
                                                 0
                                                     0
                                                       0
          2
                 3
                    26.0
                             0
                                   0
                                       7.9250
                                                 0
                                                     0
                                                       1
          3
                 1
                    35.0
                             1
                                      53.1000
                                                 0
                                                     0
                                                       1
          4
                 3 35.0
                             0
                                       8.0500
                                                    0
                                                      1
In [76]:
           y.head()
               0
          0
Out[76]:
               1
          2
               1
          3
               1
               0
          Name: Survived, dtype: int64
In [82]:
           from sklearn.model_selection import train_test_split
           X_train,X_test,y_train,y_test=train_test_split(X,
                                                             y, test_size=0.33,
                                                             random_state=42)
In [87]:
           from sklearn.linear_model import LogisticRegression
           logreg=LogisticRegression(max_iter=2000)
In [88]:
           logreg.fit(X_train,y_train)
          LogisticRegression(max_iter=2000)
Out[88]:
In [89]:
           predict=logreg.predict(X_test)
          Evaluation process
In [90]:
           from sklearn.metrics import classification report
In [91]:
           print(classification_report(y_test,predict))
                         precision
                                       recall f1-score
                                                           support
                      0
                              0.86
                                         0.85
                                                    0.85
                                                               184
                      1
                              0.75
                                         0.76
                                                    0.76
                                                               110
                                                    0.82
                                                               294
               accuracy
                              0.80
                                         0.81
                                                    0.80
                                                               294
              macro avg
          weighted avg
                              0.82
                                         0.82
                                                    0.82
                                                               294
In [92]:
           from sklearn.metrics import confusion matrix
           confusion_matrix(y_test,predict)
Out[92]: array([[156,
                         84]], dtype=int64)
```

Understanding classification_report

There are four ways to check if the predictions are right or wrong: TN / True Negative: the case was negative and predicted negative TP / True Positive: the case was positive and predicted positive FN / False Negative: the case was positive but predicted negative FP / False Positive: the case was negative but predicted positive

Precision — What percent of your predictions were correct? Precision = TP/(TP + FP) Recall — What percent of the positive cases did you catch? Recall = TP/(TP+FN) F1 score — What percent of positive predictions were correct? F1 Score = 2(Recall Precision) / (Recall + Precision)

https://medium.com/@kohlishivam5522/understanding-a-classification-report-for-your-machine-learning-model-88815e2ce397

Understanding confusion_matrix

True Positive

Interpretation: You predicted positive and it's true.

True Negative

Interpretation: You predicted negative and it's true.

False Positive (Type 1 Error)

Interpretation: You predicted positive and it's false.

False Negative (Type 2 Error)

Interpretation: You predicted negative and it's false.

https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62