Whole Genome Alignment

TIGR Training Seminar July 21th, 2006

Adam M Phillippy
Amp [at] cs.umd.edu

Goal of WGA

◆ For two genomes, *A* and *B*, find a mapping from each position in *A* to its corresponding position in *B*

Not so fast...

• Genome *A* may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to *B* (sometimes all of the above)

Sidetrack: Plots

- How can we visualize alignments?
- With an identity plot
 - XY plot
 - Let x = position in genome A
 - Let $y = %similarity of A_x$ to corresponding position in B
 - Plot the identity function
 - This can reveal islands of conservation, e.g. exons

Identity plot example

Sidetrack: Plots

- How can we visualize *whole* genome alignments?
- With an alignment dot plot
 - N x M matrix
 - Let i = position in genome A
 - Let j = position in genome B
 - Fill cell (i,j) if A_i shows similarity to B_i
 - A perfect alignment between *A* and *B* would completely fill the positive diagonal

Global vs. Local

- Global pairwise alignment
 - ... AAGCTTGGCTTAGCTGCTAGGGTAGGCTTGGG...
 - ... AAGCTGGGCTTAGTTGCTAG...TAGGCTTTGG...
- Whole genome alignment
 - Often impossible to represent as a global alignment
 - We will assume a set of local alignments (g-local)
 - This works great for draft sequence

Global vs. Local

Alignment Uses

Whole genome alignment

- Synteny analysis
- Polymorphism detection
- Sequence mapping

• Multiple genome alignment

- Identify conserved sequence, e.g. functional elements (annotation)
- Polymorphism detection

• Multiple alignment

- Phylogenetics
- Protein domain/structure analysis

Local sequence alignment

- Identify a DNA or protein sequence (annotation)
- Sensitive homology search
- Anchor a whole genome alignment

Alignment Tools

- Whole genome alignment
 - MUMmer*
 - Developed, supported and available at TIGR
 - LAGAN*, AVID
 - VISTA identity plots
- Multiple genome alignment
 - MGA, MLAGAN*, DIALIGN, MAVID
- Multiple alignment
 - Muscle?, ClustalW*
- Local sequence alignment
 - BLAST*, FASTA, Vmatch

MUMmer

- <u>Maximal Unique Matcher (MUM)</u>
 - match
 - exact match of a minimum length
 - maximal
 - cannot be extended in either direction without a mismatch
 - unique
 - occurs only once in both sequences (MUM)
 - occurs only once in a single sequence (MAM)
 - occurs one or more times in either sequence (MEM)

Fee Fi Fo Fum, is it a MAM, MEM or MUM?

MUM: maximal unique match

MAM: maximal almost-unique match ————————

MEM: maximal exact match

Seed and Extend

- How can we make MUMs BIGGER?
 - 1. Find MUMs
 - using a suffix tree
 - 2. Cluster MUMs
 - using size, gap and distance parameters
 - 3. Extend clusters
 - using modified Smith-Waterman algorithm

Seed and Extend visualization

FIND all MUMs
CLUSTER consistent MUMs
EXTEND alignments

R Q

Suffix Tree for atgtgtgtc\$

Drawing credit: Art Delcher

Clustering

```
cluster length = \Sigma m_i gap distance = c indel factor = |B - A| / B or |B - A|
```


Extending

break length = A

Banded Alignment

B

Adjustables

Matching

- match length
- mum, mam, mem

Clustering

- cluster length
- gap distance
- indel factor

Extending

- search length
- scoring matrix

nuc/promer options

-1

-mum, -mumreference, -maxmatch

-C

-g

-d

-b

-X

Seedless Genes

- Single base pair substitution
 - non-synonymous mutation
 - synonymous mutation
 - 80% AT Plasmodium falciparum
 - 55% AT Plasmodium vivax

Sidetrack: MUMmer suite

- mummer
 - exact matching
- nucmer
 - DNA multi-FastA input
 - whole genome alignment
- promer
 - DNA multi-FastA input
 - whole genome alignment
- run-mummer1*
 - FastA input
 - global alignment
- run-mummer3*
 - FastA input w/ draft
 - whole genome alignment
- exact-tandems
 - FastA input
 - exact tandem repeats

- NUCmer / PROmer utilities
 - mapview*
 - alignment plotter
 - draft sequence mapping
 - delta-filter
 - alignment filter
 - mummerplot
 - dot plotter
 - show-aligns
 - pairwise alignments
 - show-coords
 - alignment summary
 - show-snps
 - snp reporting
 - * show-tiling*
 - draft sequence tiling
- System utilities
 - gnuplot
 - xfig

mummer

- Primary uses
 - exact matching (seeding)
 - dot plotting
- Pros
 - very efficient *O*(n) time and space
 - ~17 bytes per bp of reference sequence
 - *E. coli K12* vs. *E. coli O157:H7* (~5Mbp each)
 - 17 seconds using 77 MB RAM
 - multi-FastA input
- Cons
 - exact matches only

nucmer & promer

- Primary uses
 - whole genome alignment and analysis
 - draft sequence alignment
- Pros
 - multi-FastA inputs
 - well suited for genome and contig mapping
 - convenient helper utilities
 - show-coords, show-snps, show-aligns
 - mummerplot
- Cons
 - low sensitivity (w\ default parameters) with respect to BLAST

Applied MUMing

- Comparative genomics
 - dot plotting
 - synteny analysis
 - SNP detection
- Genome sequencing
 - draft sequence comparision
 - comparative scaffolding
 - contig and BAC overlaps
- Repeat detection
 - genomic repeats

WGA Example

- ◆ Pyrococcus abyssi vs. horikoshii
 - Hyperthermophilic Archaea
 - 100 °C / 200 bar
 - ~1.7 Mbp circular chromosome
 - ~58% unique genes at time of publication (1998)
 - Chromosome shuffling
 - "Pyrococcus genome comparison evidences chromosome shuffling-driven evolution." Zivanovic Y, Lopez Philippe, Philippe H, Forterre P, *Nucleic Acids Res*. 2002 May 1;30(9):1902-10.
 - See DAGchainer (B. Hass, et al.)
 - Arabidopsis thaliana segmental duplications

COMMAND dotplot

promer -mum -l 5 PABY.fasta PHOR.fasta

-mum Find maximal unique matches (MUMs)

-1 Minimum match length (amino acids)

mummerplot -postscript out.delta

-postscript Generate a postscript format plot

OR

mummer —mum —l 20 —b —c PABY.fasta PHOR.fasta > out.mums
mummerplot out.mums

SNP Example

- ◆ Yersina pestis CO92 vs. Yersina pestis KIM
 - High nucleotide similarity, 99.86%
 - Extensive genome shuffling
 - Global alignment will not work
 - Highly repetitive
 - Will confuse local alignment (e.g. BLAST)

	*				//
				. /	
				1	
			1		
		/			
	. /				
1	/				
1.					

COMMAND SNP detection

nucmer —maxmatch CO92.fasta KIM.fasta

-maxmatch Find maximal exact matches (MEMs)

delta-filter -r -q out.delta > out.filter

-r Filter out repetitive reference alignments

-q Filter out repetitive query alignment

= show-snps -r -I -T -x 10 out.filter > out.snps

-r Sort SNPs by reference position

-I Do not output indels

-T Tab delimited output

-x 10 Output 10bp context for each SNP

show-snps output

- [P1] position of the SNP in the reference
- [SUB] reference base
- [SUB] query base
- **[P2]** position of the SNP in the query
- [BUFF] distance to the nearest polymorphism
- [DIST] distance to the nearest end of sequence
- [R] number of overlapping reference alignments (repeats)
- [Q] number of overlapping query alignments (repeats)
- [LEN R] length of the reference sequence
- [LEN Q] length of the query sequence
- [CTX R] context surrounding the reference base
- [CTX Q] context surrounding the query base
- **[FRM]** alignment orientation, 1 or -1 for forward or reverse
- [TAGS] the reference and query FastA IDs respectively
- All output coordinates and lengths are relative to the forward strand

COMMAND BAC overlapping

nucmer —maxmatch BACS.fasta BACS.fasta

-maxmatch Find maximal exact matches (MEMs)

show-coords -rcloT out.delta > out.coords

- -r Sort alignments by reference
- -c Display alignment coverage percentage
- -l Display sequence length
- -o Annotate overlaps between contigs
- -T Tabular output

show-aligns -r out.delta REF_ID QRY_ID

-r Sort alignments by reference

[S 1]	[E1]	[S2]	[E2]	[LEN 1]	[LEN 2]	[% IDY]	[LEN R]	[LEN Q]	[COV R]	[COV Q]	[TAGS]		
77793	127472	121884	72202	49680	49683	99.95	127472	121884	38.97	40.76	61	45	[END]
1	67053	56621	123672	67053	67052	99.91	127375	123672	52.64	54.22	72	18	[BEGIN]
1	111255	1	111255	111255	111255	99.99	111255	111255	100.00	100.00	74	75	[IDENTITY]
1	111255	1	111255	111255	111255	99.99	111255	111255	100.00	100.00	75	74	[IDENTITY]
107096	114214	116998	109898	7119	7101	98.08	114214	116998	6.23	6.07	76	332	[END]
55298	112695	1	57399	57398	57399	100.00	112695	130043	50.93	44.14	8	90	[END]
42551	116775	139969	65746	74225	74224	99.99	116775	139969	63.56	53.03	87	126	[END]
100319	101839	1	1521	1521	1521	99.41	125220	1521	1.21	100.00	89	561	[CONTAINS]
1	57399	55298	112695	57399	57398	100.00	130043	112695	44.14	50.93	90	8	[BEGIN]
1	23004	83959	106962	23004	23004	100.00	129101	106962	17.82	21.51	96	321	[BEGIN]

show-coords output

- [S1] start of the alignment region in the reference sequence
- [E1] end of the alignment region in the reference sequence
- [S2] start of the alignment region in the query sequence
- [E2] end of the alignment region in the query sequence
- [LEN 1] length of the alignment region in the reference sequence
- [LEN 2] length of the alignment region in the query sequence
- [% IDY] percent identity of the alignment
- [% SIM] percent similarity of the alignment
- [% STP] percent of stop codons in the alignment
- [LEN R] length of the reference sequence
- [LEN Q] length of the query sequence
- [COV R] percent alignment coverage in the reference sequence
- [COV Q] percent alignment coverage in the query sequence
- [FRM] reading frame for the reference and query sequence alignments respectively
- **[TAGS]** the reference and query FastA IDs respectively.
- All output coordinates and lengths are relative to the forward strand

show-aligns output

-- BEGIN alignment [+1 1 - 15407 | +1 1 - 15390] agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtctctgacagcagcttctgaactggttacctgc agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtgtctgatagcagcttctgaactggttacctgc 179 acacaacatccatgaaacgcattagcaccaccattaccaccatcaccatcaccattaccattaccattaccacaggtaacggtgcg acacaacatccatgaaacgcattagcaccaccattaccaccatcacc......attaccacaggtaacggtgcg 268 ggctgacgcgtacaggaaacacagaaaaaagcccgcacctgacagtgcgggcttttttt.tcgaccaaaggtaacgaggtaacaaccat

COMMAND

draft sequence comparison

nucmer -maxmatch ASM1.fasta ASM2.fasta

-maxmatch Use maximal exact matches (MEMs)

mummerplot -layout -large -filter out.delta

-layout Permute alignment matrix for better viewing

-large Big X11 (or postscript) plot -filter Auto-run 'delta-filter -r -q'

X11 Navigation:

left-mouse: position
middle-mouse: ruler

right-mouse-drag: zoom-box

N,P,U keys: next, previous, and un-zoom

Arachne vs. CA D. virilis assemblies

Arachne contig (X) mapping to multiple CA contigs (Y). Two macroscopic differences are highlighted, hundreds were found.

Comparative Scaffolding

- Scaffolding
 - order and orient draft contigs
 - using WGS mate-pair information
 - using physical map information
- Comparative Scaffolding
 - order and orient draft contigs
 - using a reference genome and alignment mapping
 - nucmer
 - very useful for physical gaps
 - can instantly close some sequencing gaps (overlapping contigs)

Comparative Scaffolding

COMMAND

contig mapping

nucmer -maxmatch REF.fasta CTGS.fasta

-maxmatch Find maximal exact matches (MEMs)

delta-filter -q out.delta > out.delta.filter

-q Filter out repetitive query alignments

show-coords -rcl out.delta > out.coords

- -r Sort alignments by reference
- -c Display alignment coverage percentage
- -l Display sequence length

Read Mapping

- Comparative assembly
 - Neanderthal genome, NY Times
 - 454 pyrosequencing
 - 100bp reads
 - no mate-pairs

```
nucmer -maxmatch -l 15 -c 40
delta-filter -q
show-coords -q
```

Comparative Mapping caveats

...RepeatsRepeatsRepeats...

- Exact repeats, palandromes, tandems, etc.
 - Use Vmatch
 - http://www.vmatch.de
- Long, inexact repeats
 - Use nucmer
 - genomic repeats -maxmatch -nosimplify
 - contig / BAC overlaps -maxmatch

genomic repeats found by 'nucmer --maxmatch --nosimplify'

[S 1]	[E1]	I	[S2]	[E2]	1	[LEN 1]	[LEN 2]	1			[TAGS]	
				=======	===	=======				==		
57832	60483	ī	1398170	1400821		2652	2652	ı	99.89	Ī	gde:6876	gde:6876
240759	242028	T	264386	263117	1	1270	1270	1	100.00	1	gde:6876	gde:6876
240759	263123	1	810529	832893	1	22365	22365	-	99.99		gde:6876	gde:6876
242022	263123		264380	285481		21102	21102	-1	99.99	-	gde:6876	gde:6876
263117	264386	1	811798	810529		1270	1270	-1	100.00	1	gde:6876	gde:6876
264380	285490	1	811792	832902	-	21111	21111	- [99.99		gde:6876	gde:6876
300630	301615	\perp	1066580	1065595		986	986	-1	98.88		gde:6876	gde:6876
592225	623250	-	623236	654262		31026	31027	- [99.99		gde:6876	gde:6876
803061	803126	1	810475	810540	-	66	66		100.00		gde:6876	gde:6876
862678	863090		864053	864465		413	413		78.74		gde:6876	gde:6876

References

- Documentation
 - http://mummer.sourceforge.net
 - publication listing
 - http://mummer.sourceforge.net/manual
 - thorough documentation
 - http://mummer.sourceforge.net/examples
 - Walkthroughs
- Email
 - mummer-help (at) lists.sourceforge.net
 - mummer-users (at) lists.sourceforge.net

Acknowledgements

Art Delcher

Steven Salzberg

Mihai Pop

Stefan Kurtz

Mike Schatz

