

Robotics 1

Kinematic control

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Robot motion control

- need to "actually" realize a desired robot motion task ...
 - regulation of pose/configuration (constant reference)
 - trajectory following/tracking (time-varying reference)
- despite the presence of
 - external disturbances and/or unmodeled dynamic effects
 - initial errors (or arising later due to disturbances) w.r.t. desired task
 - discrete-time implementation, uncertain robot parameters, ...
- we use a general control scheme based on
 - feedback (from robot state measures, to impose asymptotic stability)
 - feedforward (nominal commands generated in the planning phase)
- the error driving the feedback part of the control law can be defined either in Cartesian or in joint space
 - control action always occurs at the joint level (where actuators drive the robot), but performance has to be evaluated at the task level

Robotics 1

Kinematic control of robots

- a robot is an electro-mechanical system driven by actuating torques produced by the motors
- it is possible, however, to consider a kinematic command (most often, a velocity) as control input to the system...
- ...thanks to the presence of low-level feedback control at the robot joints that allows imposing commanded reference velocities (at least, in the "ideal case")
- these feedback loops are present in industrial robots within a "closed" control architecture, where users can only specify reference commands of the kinematic type
- in this way, performance can be very satisfactory, provided the desired motion is not too fast and/or does not require too large accelerations

Kinematic vs. dynamic control of robots

more on this in Robotics 2 ...

Robotics 1

An introductory example

- a mass M in linear motion: $M\ddot{x} = F$
- low-level feedback: $F = K(u \dot{x})$, with u = reference velocity
- equivalent scheme for $K \to \infty$: $\dot{x} \approx u$
- in practice, valid in a limited frequency "bandwidth" $\omega \leq K/M$

inner loop exact solution for a constant input \bar{u} $\dot{x}(t) = \dot{x}_0 + (\bar{u} - \dot{x}_0)[1 - \exp(-\frac{K}{M}t)]$

Frequency response of the closed-loop system

■ Bode diagrams of
$$P(s) = \frac{v(s)}{u(s)} = \frac{sx(s)}{u(s)}$$
 for $K/M = 0.1, 1, 10, 100$

Time response

• setting K/M=10 (bandwidth), we show two possible time responses to unit sinusoidal velocity reference commands at different ω

actually realized velocities

A more detailed example

including nonlinear dynamics

• single link (a thin rod) of mass m, center of mass at d from joint axis, inertia M (motor + link) at the joint, rotating in a vertical plane (the gravity torque at the joint is configuration dependent)

- fast low-level feedback control loop based on a PI action on the velocity error + an approximate acceleration feedforward
- kinematic control loop based on a P feedback action on the position error + feedforward of the velocity reference at the joint level
- evaluation of tracking performance for rest-to-rest motion tasks with "increasing dynamics" = higher accelerations

A more detailed example

Simulink scheme

ideal behavior

A more detailed example

Simulink scheme

Simulation results

rest-to-rest motion from downward to horizontal position

Simulation results

rest-to-rest motion from downward to horizontal position

Simulation results

rest-to-rest motion from downward to horizontal position

real position errors increase when reducing too much the motion time

(⇒ acceleration is too large)

while ideal position errors
(based only on kinematics)
remain always the same!!
here = 0, thanks to the initial matching
between robot and reference trajectory

Control loops in industrial robots

- analog loop on velocity $(G_{vel}(s), \text{ typically a PI})$
- digital feedback loop on position, with velocity feedforward
- this scheme is local to each joint (decentralized control)

Kinematic control of joint motion

$$e = q_d - q \implies \dot{e} = \dot{q}_d - \dot{q} = \dot{q}_d - (\dot{q}_d + K(q_d - q)) = -Ke$$

decoupled $e_i \rightarrow 0$ $(i = 1, \dots, n)$ exponentially, $\forall e(0)$

$$e_p = p_d - p \implies \dot{e}_p = \dot{p}_d - \dot{p} = \dot{p}_d - J(q)J^{-1}(q)\left(\dot{p}_d + K_p(p_d - p)\right) = -K_p e_p$$

- decoupled $e_{p,i} \to 0$ $(i = 1, \dots, m)$ exponentially, $\forall e_p(0)$
- needs on-line computation of the inverse^(*) $J^{-1}(q)$
- real-time + singularities issues

 $^{(*)}$ or pseudoinverse if m < n

Simulation

desired reference trajectory:

two types of tasks

- 1. straight line
- 2. circular path both with constant speed

numerical integration method:

fixed step Runge-Kutta at 1 msec

Simulink blocks

calls to Matlab functions

k(q)=dirkin (user)

J(q)=jac (user)

J-1(q)=inv(jac) (library)

kinematic controller

- a saturation (for task 1.)
 or a sample and hold (for task 2.)
 added on joint velocity commands
- system initialization of kinematics data, desired trajectory, initial state, and control parameters (in init.m file)

never put "numbers" inside the blocks!

Matlab functions


```
dirkin.m

function [p] = dirkin(q)

global l1 l2

px=l1*cos(q(1))+l2*cos(q(1)+q(2));
py=l1*sin(q(1))+l2*sin(q(1)+q(2));
```

```
function [J] = jac(q)

global l1 l2

J(1,1)=-l1*sin(q(1))-l2*sin(q(1)+q(2))
J(1,2)=-l2*sin(q(1)+q(2));
J(2,1)=l1*cos(q(1))+l2*cos(q(1)+q(2));
J(2,2)=l2*cos(q(1)+q(2));
```

```
init.m
% controllo cartesiano di un robot 2R
% initialization
clear all; close all
alobal 11 12
% lunghezze bracci robot 2R
11=1; 12=1;
% velocità cartesiana desiderata (costante)
vxd=0; vyd=0.5;
% tempo totale
                                                      init.m
T=2:
                                                      script
% configurazione desiderata iniziale
                                                  (for task 1.)
q1d0=-45*pi/180; q2d0=135*pi/180;
pd0=dirkin([q1d0 q2d0]");
pxd0=pd0(1); pyd0=pd0(2);
% configurazione attuale del robot
q10=-45*pi/180; q20=90*pi/180;
p0=dirkin([q10 q20]");
% matrice dei quadagni cartesiani
K=[20 \ 20]; K=diag(K);
%saturazioni di velocità ai giunti (input in deg/sec, convertito in rad/sec)
vmax1=120*pi/180; vmax2=90*pi/180;
```

Robotics 1

Simulation data for task 1

- straight line path with constant velocity
 - $x_d(0) = 0.7 \text{ m}, y_d(0) = 0.3 \text{ m}; v_{d,y} = 0.5 \text{ m/s, for } T = 2 \text{ s}$
- large initial error on end-effector position
 - $q(0) = (-45^{\circ}, 90^{\circ}) \Rightarrow e_{p}(0) = (-0.7, 0.3) \text{ m}$
- Cartesian control gains
 - $K_p = \text{diag}\{20, 20\}$
- (a) without joint velocity command saturation
- (b) with saturation ...
 - $v_{max,1} = 120^{\circ}/\text{s}, v_{max,2} = 90^{\circ}/\text{s}$

Results for task 1a

path executed by the robot end-effector (actual and desired)

initial transient phase (about 0.2 s)

stroboscopic view of motion (start and end configurations)

trajectory following phase (about 1.8 s)

Robotics 1

Results for task 1a (cont)

straight line: initial error, no saturation

 p_x , p_y actual and desired

control inputs \dot{q}_{r1} , \dot{q}_{r2}

Results for task 1b

path executed by the robot end-effector (actual and desired)

initial transient phase (about 0.5 s)

stroboscopic view of motion (start and end configurations)

trajectory following phase (about 1.5 s)

Results for task 1b (cont)

straight line: initial error, with saturation

 p_x , p_y actual and desired

control inputs
$$\dot{q}_{r1}$$
, \dot{q}_{r2} (saturated at \pm $v_{max,1}$, \pm $v_{max,2}$)

Simulation data for task 2

- circular path with constant velocity
 - centered at (1.014, 0) with radius R = 0.4 m;
 - v = 2 m/s, performing two rounds $\Rightarrow T \approx 2.5$ s
- zero initial error on Cartesian position ("match")
 - $q(0) = (-45^{\circ}, 90^{\circ}) \Rightarrow e_p(0) = 0$
- (a) ideal continuous case (1 kHz), even without feedback
- (b) with sample and hold (ZOH) of $T_{hold} = 0.02$ s (joint velocity command updated at 50 Hz), but without feedback
- (c) as before, but with Cartesian feedback using the gains
 - $K_p = \text{diag}\{25, 25\}$

Results for task 2a

circular path: no initial error, continuous control (ideal case)

Robotics 1

Results for task 2b

circular path: no initial error, **ZOH** at 50 Hz, **no** feedback

1.5

-0.5

Robotics 1

-0.5

x (m)

27

Results for task 2c

circular path: no initial error, **ZOH** at 50 Hz, **with** feedback

note however that larger P gains will eventually lead to unstable behavior (see: stability problems for discrete-time control systems)

3D simulation

video

kinematic control of Cartesian motion of Fanuc 6R (Arc Mate S-5) robot simulation and visualization in Matlab

Kinematic control of KUKA LWR

video

Discrete-Time Redundancy Resolution at the Velocity Level with Acceleration/Torque Optimization Properties

Fabrizio Flacco Alessandro De luca

Robotics Lab, DIAG Sapienza University or Rome

September 2014

kinematic control of Cartesian motion with redundancy exploitation velocity vs. acceleration level