Dr. Joshua D. Bocarsly

Postdoctoral Research Associate, University of Cambridge jb2382@cam.ac.uk
engineering.ucsb.edu/~jdbocarsly
16 October 2020

EDUCATION

UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Sep 2015 – Jun 2020

Santa Barbara, CA

Ph.D. Candidate in Materials (Ph.D. defense: 27 February 2020, degree awarded 10 Jun 2020).

PRINCETON UNIVERSITY

Sep 2011 – Jun 2015

Princeton NJ, USA

B.A. in Chemistry Summa Cum Laude, Certificate in Materials Science and Engineering

RESEARCH EXPERIENCE

POSTDOCTORAL RESEARCH ASSOCIATE

7 Aug 2020 - current

advisor: Professor Clare Grey, University of Cambridge, Department of Chemistry

In situ studies of magnetic battery materials

Research objective: Use magnetic measurements, diffraction, and NMR to understand the electrochemical performance and physical behavior of magnetic battery materials. This research is performed as part of the collaborative, multi-university CATMAT project of the Faraday Institution, seeking to identify and control novel lithium-ion battery materials to enable safe, affordable, well-performing electric vehicles.

PH.D. RESEARCH Sep 2015 – Jun 2020

Co-advisors: Professors Ram Seshadri and Stephen Wilson, UC Santa Barbara, Materials Research Laboratory

Experimental and computational research in materials chemistry and physics.

Research objective: Understand how coupling between magnetism and structure can be used to manipulate magnetic intermetallics, magnetocalorics, and skyrmion-host materials. Key areas of expertise: synchrotron and neutron diffraction, magnetic measurements, density functional theory calculations, solid state materials synthesis. Energy materials for applications including magnetocalorics, efficient spintronics, and batteries.

Roles: Instrument manager in shared user facility (SQUID and PPMS) and laboratory manager of a synthesis lab.

Thesis title: Linking crystal structure and magnetism in intermetallics

UNDERGRADUATE RESEARCH

1 Feb 2012 - 8 Aug 2015

Advisor: Professor Robert Cava, Princeton University Chemistry Department

3.5 years of undergraduate independent research in solid-state chemistry with a focus on the synthesis and characterization (electrical properties, crystal structure, magnetism, and superconductivity) of oxides and oxyflourides in the tungsten bronze family.

Thesis title: Exotic doping schemes in the tungsten bronze family

OTHER INDEPENDENT RESEARCH:

June 2012 - Aug 2012: Summer internship in analytical geochemistry at the Bermuda Institute of Ocean Science (Advisor: Dr. Natasha McDonald; Funder: Princeton Environmental Institute)

June 2010 - Aug 2011: During high school, performed research with Prof. Jeffrey Schwartz (Princeton University) in surface chemistry for biomedical engineering (awarded Intel STS and ISEF finalist for this work)

SCIENTIFIC COMPUTING

Coursework and independent projects in data processing and analysis, interactive data visualization, machine learning and statistics, and website creation.

Languages: Scientific Python, Matlab, R, C, Java, Javascript & HTML

Publicly available projects: UCSB Magnet Database (magnets.mrl.ucsb.edu) [3], magentro.py code [8]

AWARDS, PRIZES, AND FELLOWSHIPS

2019 Marie Curie Individual European Fellowship Reserve List and Seal of Excellence

2016-2019 Six-time awardee of Dow Materials Institute travel fellowships at UC Santa Barbara

- Awarded on the basis of participation in outreach activities, laboratory citizenship, and mentorship.
- 2019 Member of the U.S. delegation to the Lindau Nobel Laureate meeting (topic: Physics)
 - Chosen as one of 67 participants from the U.S. to attend this meeting in Lindau, Germany with 40 Nobel Laureates
- 2019 Materials Research Laboratory Excellence in Education Outreach Award
 - o Awarded annually to one or two UC Santa Barbara students in recognition for educational outreach
- 2019 Edward J. Kramer Prize in Materials
 - Inaugural awardee of prize given annually to a UC Santa Barbara student or Post-doc in the field of Materials
- 2016 NSF Graduate Research Fellowship Awardee
 - o Competitive US fellowship which completely supports graduate student stipend and tuition for 3 years.
- 2015-2016 Holbrook Foundation Fellowship, UCSB Institute for Energy Efficiency
 - o Supplementary fellowship that may be awarded to incoming UC Santa Barbara Ph.D. students
- 2015 NSF Graduate Research Fellowship Honorable Mention
- 2015 Henry McCay Prize for Physical Chemistry (Princeton University)
 - Awarded to one graduating student annually in the Princeton University Chemistry Department
- 2015 Election into Sigma Xi, the Scientific Research Society
- 2011 Intel Science Talent Search Finalist
 - Based on independent research carried out in high school. The most prestigious science competition for U.S. high-school students.
- 2011 Intel International Science & Engineering Fair Finalist

RESEARCH ARTICLES

- 24. Y.M. Oey, D.A. Kitchaev, **J.D. Bocarsly**, E.C. Schueller, J.A. Cooley, R. Seshadri, Magnetocaloric behavior and magnetic ordering in MnPdGa, *submitted*.
- 23. **J.D. Bocarsly**, M.D. Johannes, S.D. Wilson, R. Seshadri, Magnetostructural coupling from competing magnetic and chemical bonding effects, *submitted*.
- 22. A.S. Sukhanov, A. Heinemann, L. Kautzsch, J.D. Bocarsly, S.D. Wilson, C. Felser, D.S. Inosov, Robust metastable skyrmions with tunable size in the chiral magnet FePtMo₃N, accepted to Phys. Rev. B Rapid Communications.
- 21. M. B. Preefer, M. Saber, Q. Wei, N.H. Bashian, J.D. Bocarsly, W. Zhang, G. Lee, J. Milam-Guerrero, E. S. Howard, R.C. Vincent, B.C. Melot, A. Van der Ven, R. Seshadri, B. Dunn, Multielectron redox and insulator-to-metal transition upon lithium insertion in the fast-charging, Wadsley-Roth phase PNb₉O₂₅, *Chem. Mater.* 32 (2020) 4553-4563. doi:10.1021/acs.chemmater.0c00560
 - Supplementary cover article

- 20. E.C. Schueller, D.A. Kitchaev, J.L. Zuo, J.D. Bocarsly, J.A. Cooley, A. Van der Ven, S.D. Wilson, R. Seshadri, Structural evolution and skyrmionic phase diagram of the lacunar spinel GaMo₄Se₈, *Phys. Rev. Mater.* 4 (2020) 064402. doi: 10.1103/PhysRevMaterials.4.064402
- 19. Y.M. Oey, J.D. Bocarsly, D. Mann, E.E. Levin, M. Shatruk, and R. Seshadri, Structural changes upon magnetic ordering in magnetocaloric AlFe₂B₂, *Appl. Phys. Lett.* **116** (2020) 212403. doi:10.1063/5.0007266
- 18. A.W. Cook, J.D. Bocarsly, R.A. Lewis, A.J. Touchton, S. Morochnik, T.W. Hayton, An iron ketimide single-molecule magnet [Fe₄(N=CPh₂)₆] with suppressed through-barrier relaxation, *Chem. Sci.* 11 (2020) 4753. doi: 10.1039/d0sc01578d
- 17. J.A. Cooley, J.D. Bocarsly, E.C. Schueller, E.E. Levin, E.E. Rodriguez, A. Huq, S.H. Lapidus, S.D. Wilson, R. Seshadri, Evolution of non-collinear magnetism in magnetocaloric MnPtGa, *Phys. Rev. Mater.* 4 (2020) 044405. doi:10.1103/PhysRevMaterials.4.044405
- 16. E.E. Levin, J.D. Bocarsly, J.H. Grebenkemper, R. Issa, S.D. Wilson, T.M. Pollock, R. Seshadri, Structural coupling and magnetic tuning in Mn_{2-x}Co_xP magnetocalorics for thermomagnetic power generation, *APL Mater.* 8 (2020) 041106. doi:10.1063/1.5142000
- 15. L. Kautzsch, J.D. Bocarsly*, C. Felser, S.D. Wilson, R. Seshadri, Controlling Dzyaloshinskii-Moriya interactions in the skyrmion host candidates FePd_{1-x}Pt_xMo₃N, *Phys. Rev. Mater.* 4 (2020) 024412. *corresponding author. doi:10.1103/PhysRevMaterials.4.024412
 - o First author was TU Dresden Master's student working under my mentorship.
- 14. C.A.C. Garcia, J.D. Bocarsly*, R. Seshadri, Computational screening of magnetocaloric alloys, *Phys. Rev. Mater.* 4 (2020) 024402. *corresponding author. doi:10.1103/PhysRevMaterials.4.024402
 - o First author was UC Santa Barbara undergraduate under my mentorship
- 13. A. M. Zieschang, J.D Bocarsly, J. Schuch, C. Reichel, B. Kaiser, W. Jaegermann, R. Seshadri, B. Albert, Magnetic and electrocatalytic properties of nanoscale cobalt boride, Co₃B, *Inorg. Chem.* 58 (2019) 16609–16617. doi:10.1021/acs.inorgchem.9b02617
- 12. M. Preefer, J. Grebenkemper, F. Schroeder, J.D. Bocarsly, K. Pilar, J. Cooley, W. Zhang, J. Hu, S. Misra, F. Seeler, K. Schierle-Arndt, R. Seshadri, Rapid and tunable assisted-microwave preparation of glass and glass-ceramic thiophosphate "Li₇P₃S₁₁" Li-ion conductors, *ACS Appl. Mater. Interfaces* 11 (2019) 42280–42287. doi:10.1021/acsami.9b15688
- 11. E.C. Schueller, J.L. Zuo, J.D. Bocarsly, D.A. Kitchaev, S.D. Wilson, and R. Seshadri, Modeling thestructural distortion and magnetic ground state of the polar lacunar spinel GaV₄Se₈, *Phys. Rev. B.* **100** (2019) 045131. doi:10.1103/PhysRevB.100.045131
- 10. **J.D. Bocarsly**, E.E. Levin, S. Humphrey, T. Faske, W. Donner, S.D. Wilson and R. Seshadri, Magnetostructural coupling drives magnetocaloric behavior: The case of MnB versus FeB, *Chem. Mater.* **31** (2019) 4873-4881 doi:10.1021/acs.chemmater.9b01476
 - o Supplementary cover article
- 9. **J.D. Bocarsly**, C. Heikes, C.M. Brown, R. Seshadri, and S.D. Wilson, Competing magnetic interactions and atomic site preferences in the chiral skyrmion host materials Co_xZn_yMn_z (x+y+z=20), *Phys. Rev. Mater.* 3 (2019) 4873-4881, doi:10.1103/PhysRevMaterials.3.014402.
 - o Editor's suggestion & highlight in 2019 NCNR Annual Report
- 8. **J.D. Bocarsly**, R.F. Need, R. Seshadri, and S.D. Wilson, Magnetoentropic signatures of skyrmionic phase behavior in FeGe. *Phys. Rev. B. Rapid Communication* **97** (2018) 100404(R). doi:10.1103/PhysRevB.97.100404
 - o magnetro.py code released publicly
- 7. A. Zieschang, J.D. Bocarsly, M. Dürrschnabel, H. Kleebe, R. Seshadri, B. Albert, Low-temperature synthesis and magnetostructural transition in antiferromagnetic, refractory nanoparticles: chromium nitride, CrN, *Chem. Mater.* 30 (2018) 1610-1616. doi:10.1021/acs.chemmater.7b04815
- 6. J.H. Grebenkemper, J.D. Bocarsly, E.E Levin, G. Seward, C. Heikes, C. Brown, S. Misra, F. Seeler, K. Schierle-Arndt, S.D. Wilson, R. Seshadri, Rapid microwave preparation and composition tuning of the

- high-performance magnetocalorics (Mn,Fe)₂(P,Si), ACS Appl. Mater. Interfaces 10 (2018) 7208-7213. doi:10.1021/acsami.7b16988
- 5. E.E. Levin, **J.D. Bocarsly**, K.E. Wyckoff, T.M. Pollock, R. Seshadri, Tuning the magnetocaloric response in half-Heusler/Heusler MnNi_{1+x}Sb solid solutions, *Phys. Rev. Mater.* **1** (2017) 075003. doi:0.1103/PhysRevMaterials.1.075003
- 4. C.M. Hamm, J.D. Bocarsly, G. Seward, U.I. Kramm, C.S. Birkel, Non-conventional synthesis and magnetic properties of MAX phases (Cr/Mn)₂AlC and (Cr/Fe)₂AlC, *J. Mater. Chem. C* 23 (2017) 5555-5832. doi:10.1039/C7TC00112F
 - o Showcased article
- 3. **J.D. Bocarsly**, E.E. Levin, C.A.C. Garcia, K. Schwennicke, S.D. Wilson, R. Seshadri, A simple computational proxy for screening magnetocaloric compounds, *Chem. Mater.* **29** (2017) 1613-1622. doi:10.1021/acs.chemmater.6b04729 UCSB magnet database created in conjunction with this article
- 2. A. Zieschang, J.D. Bocarsly, M. Dürrschnabel, L. Molina-Luna, H. Kleebe, R. Seshadri, B. Albert, Nanoscale iron nitride, ε-Fe₃N: Preparation from liquid ammonia and magnetic properties, *Chem. Mater.* **29** (2017) 621-628. doi: 10.1021/acs.chemmater.6b04088
- 1. **J.D. Bocarsly**, D. Hirai, M.N. Ali, R.J. Cava, Superconducting phase diagram of In_xWO₃ synthesized by indium deintercalation, *Europhysics Lett.* **103** (2013) 17001. doi:10.1209/0295-5075/103/17001
 - o Published at the end of second year as an undergraduate

INVITED PRESENTATIONS AND SEMINARS

- 4. Magnetocaloric materials for next-generation refrigeration and waste heat recovery. *Invited conference presentation at Materials Research Outreach Program, Santa Barbara, Jan 2019.*
- 3. Magnetostructural coupling in magnetocalorics: the case of MnB vs. FeB. *Invited seminar at TU Darmstadt, Germany, September 2018.*
- 2. IRG 1: Magnetic intermetallic mesostructures. *Invited presentation at MRSEC summer symposium, Santa Barbara, California, July 2018.*
- 1. Discovery of new magnetocaloric materials through density functional theory screening, rapid synthesis, and rapid measurement. *Invited Eduard Zintl Colloquium at TU Darmstadt*, *Germany*, *September 2016*.

SELECTED ORAL AND POSTER CONFERENCE PRESENTATIONS

- 8. How magnetism and structure couple in magnetocalorics. *Poster presentation at North American Solid State Chemistry Conference, Golden, Colorado, July 2019.*
- 7. How magnetism and structure couple in magnetocaloric materials. *Oral presentation at American Chemical Society Spring Meeting, Orlando, Florida, April 2019.*
- 6. Computational and experimental design of magnetocalorics with large magnetostructural coupling. *Oral presentation at Join MMM-Intermag Conference, Washington D.C., Jan 2019.*
- 5. Subtle first-order transitions in magnetocalorics. *Oral presentation at Thermag VIII, Darmstadt, Germany, September 2018.*
- 4. Magnetoentropic signatures of phase transitions in room temperature skyrmion host materials. *Oral presentation at American Physical Society March Meeting, Los Angeles, California, March 2018.*
- 3. Using a dataset of magnetic material properties to screen for magnetocalorics. *Poster presentation at American Chemical Society Spring Meeting, San Francisco, California, April 2017.*
- 2. Discovery of new magnetocaloric materials through density functional theory screening, rapid synthesis, and rapid measurement. *Oral presentation at Thermag VII, Torino, Italy, September 2016.*
- 1. Deposition of Lignin as a Significant Source of Chromophoric Dissolved Organic Matter in the North Atlantic Subtropical Gyre. *Poster presentation at American Geophysical Union Fall Meeting, San Francisco, California, December 2012.*

MENTORING, TEACHING, OUTREACH, AND SERVICE

During Ph.D., served as a research mentor for three undergraduate students and one Masters student in both experimental and computational projects. Several publications with undergraduate co-authors, and two publications with mentees as the first author where I am the corresponding author.

Served as teaching assistant for UCSB undergraduate Introduction to Materials Science and Grader for Special Topics in Inorganic Materials.

Outreach activities include organizing hands-on activities and organizations at local schools with primarily underrepresented minority populations, serving as a designated answerer on UCSB ScienceLine, and performing outreach at MOXI, the Wolf Museum of Exploration + Innovation.

Reviewer at Chemistry of Materials and Solid State Sciences