Rappresentazioni soluzioni agli esercizi per natale

Second'anno di matematica, SNS

February 13, 2018

Soluzioni agli esercizi

Esercizio 1

Siano k e n due interi positivi. Per ogni $\sigma \in S_k$ denotate con $\omega(\sigma)$ il numero di orbite di σ su $\{1, \ldots, k\}$. Dimostrate la formula:

$$\frac{1}{k!} \sum_{\sigma \in S_k} n^{\omega(\sigma)} = \binom{n+k-1}{k}$$

Soluzione 1.1 Si consideri $G = S_k$ e X l'insieme delle funzioni da $\{1,...,k\}$ in $\{1,...,n\}$. Su questo insieme si faccia agire S_k in questo modo: data una permutazione $\sigma \in S_k$ e $f \in X$, $(\sigma f)(x) = f(\sigma(x))$, dove $x \in \{1,...,k\}$. Fissata $\sigma \in G$ cerchiamo le $f \in X$ che sono fissate da $\sigma \colon \forall x$, $(\sigma f)(x) = f(\sigma(x)) = f(x)$. Osserviamo che questo implica $\forall h$ interi $f(x) = f(\sigma^h(x))$. Dunque le f fissate sono costanti sulle orbite di σ , e in effetti qualunque f costante sulle orbite di σ è fissata. Dunque, poichè si deve scegliere un numero fra 1 e n per ogni orbita in modo indipendente, ho $n^{\omega(\sigma)}$ funzioni fissate da σ . Per il lemma di Burnside il numero di orbite in cui si divide X è dunque $|X/G| = \frac{1}{k!} \sum_{\sigma \in S_k} n^{\omega(\sigma)}$, ma si può contare diversamente: due funzioni appartengono alla stessa orbita secondo G se e solo se hanno le immagini uguali come multiset (cioè contando il numero di controimmagini). Assegnamo dunque a s_i il numero di elementi in $\{1,...,k\}$ che sono mappati in $i \in \{1,...,n\}$. Vale $\forall i \ s_i \geq 0$ e $\sum_{1}^{n} s_i = k$ poichè si assegna un valore a ogni elemento del dominio. Per ogni possibile $\{s_i\}$ esiste una e una sola orbita, dunque si è concluso ricordando che vi sono $\binom{n+k-1}{k}$ modi per partizionare un intero k in n addendi contando l'ordine.

Soluzione 1.2

Esercizio 2

Calcolate la scomposizione in fattori irriducibili dei prodotti di tutte le possibili coppie di rappresentazioni irriducibili di S_4 .

Soluzione 2.1

Soluzione 2.2

Esercizio 3

(a) Sia $\rho: G \to \operatorname{GL}(V)$ una rappresentazione irriducibile di un gruppo G. Dimostrate che l'immagine del centro di G è contenuta nel sottogruppo dei multipli dell'identità.

- (b) Dimostrate che ogni sottogruppo finito di \mathbb{C}^* è ciclico
- (c) Se un gruppo finito ha una rappresentazione fedele irriducibile, allora il suo centro è ciclico. Nota: una rappresentazione ρ di G è fedele se ρ : $G \to \operatorname{GL}(V_{\rho})$ è iniettivo.

Soluzione 3.1

Soluzione 3.2

Esercizio 4

Se ρ è una rappresentazione irriducibile di S_5 di grado 5 e $s \in S_5$ è un 5-ciclo, fate vedere che $\rho(s)$ ha come autovalori tutte e sole le radici quinte dell'unità.

Soluzione 4.1 Sia ζ una radice primitiva quinta dell'unità.

- Dal fatto che $\rho(s)^5 = I$, se $\lambda \in \operatorname{Sp} \rho(s)$ allora $\lambda^5 = 1$. Inoltre $s^2 = (1\ 3\ 5\ 2\ 4)$ è coniugato a $s \in \operatorname{Sp} \rho(s^2) = \{\lambda^2: \lambda \in \operatorname{Sp} \rho(s)\}$.
- Sia $a_0 \in \mathbb{N}$ la molteplicità di $\zeta^0 = 1$ e $a_i \in \mathbb{N}$ la molteplicità di ζ^{2^i} per $i = 1, \ldots, 4$ relativamente a $\rho(s)$. Allora, visto che $\chi_{\rho}(s) = \chi_{\rho}(s^2)$, usando il fatto che la traccia è la somma degli autovalori si ha

$$a_0 + \sum_{i=1}^4 a_i \zeta^{2^i} = a_0 + \sum_{i=1}^4 a_i \zeta^{2^{i+1}} \Leftrightarrow \sum_{i=1}^4 (a_i - a_{i-1}) \zeta^{2^i} = 0 \Leftrightarrow$$

$$\zeta[(a_1 - a_4)\zeta + (a_2 - a_1)\zeta^3 + (a_3 - a_2)\zeta^2 + (a_4 - a_3)] = 0$$

Ma $p(x) = (a_4 - a_3) + (a_1 - a_4)x + (a_3 - a_2)x^2 + (a_4 - a_3)x^3$ è un polinomio a coefficienti interi di terzo grado che si annulla in ζ , e quindi $x^4 + \ldots + 1 \mid p(x) \Rightarrow p(x) \equiv 0$.

Quindi $a_1 = \ldots = a_4 =: n$.

- La somma delle molteplicità è la dimensione dello spazio. L'equazione $a_0 + 4n = 4$ ha solo due soluzioni naturali:
 - 1. $a_0 = 5, n = 0$: in questo caso $\rho(s) = I$, e perciò:

$$120 = 120 \langle \chi_{\rho}, \chi_{\rho} \rangle = \sum_{g \in S_5} |\chi_{\rho}(g)|^2 \ge \sum_{i=0}^4 |tr(\rho(s^k))|^2 = 125 > 120 = |S_5|$$

Assurdo.

2. $a_0 = 1, n = 1$: in questo caso $\operatorname{Sp} \rho(s)$ sono esattamente tutte e sole le radici quinte dell'unità, come volevasi dimostrare.

Soluzione 4.2

Esercizio 5

Trovare la tavola dei caratteri di A₄.

Soluzione 5.1 Do per noto che le classi di coniugio di A_4 siano rappresentate da id, (12)(34), (123), (132) (si fa a conti ricordandosi che le classi di coniugio di A_n sono o quelle di S_n oppure quelle di S_n spezzate a metà).

 A_4 ha 12 elementi e 4 classi di coniugio. Inoltre so che non è abeliano (quindi ha almeno una rappresentazione di dimensione ≥ 2) e ammette sicuramente la rappresentazione banale. Facendo i casi si vede che l'unico modo di fare 12 sommando quattro quadrati con questi constraint è $12 = 3^2 + 3 \cdot 1^2$. Andiamo quindi a cercare tre omomorfismi di A_4 in \mathbb{C}^* per poi completare la tabella per ortogonalità.

Notiamo che A_4 è generato dalla classe di coniugio di (123). Infatti se conosco il valore di χ su questa classe so che $\chi(132) = \chi((123))^2$ e poi completo per omomorfismo. Siccome (123) ha ordine tre e stiamo cercando rappresentazioni di grado 1, si ha che $\chi(123)$ è un radice terza dell'unità. Ci sono quindi al più tre possibilità per un tale omomorfismo. Ciò significa che li abbiamo trovati tutti.

Completando per ortogonalità si ricava:

$numero\ di\ elementi$	1	3	4	4
classi di conj.	id	(12)(34)	(123)	(132)
χ_{id}	1	1	1	1
χ_a	1	1	ζ	ζ^2
χ_b	1	1	ζ^2	ζ
χ_g	3	-1	0	0

Soluzione 5.2

Esercizio 6

Trovare la tavola dei caratteri di D_4, D_5 .

Soluzione 6.1 0.1 Tabella dei caratteri di D4

Ordine di D4: 8 elementi. Generato da 2 elementi: ρ , σ (rispettivamente rotazione e simmetria, con relazioni $\rho^4 = \sigma^2 = e$ e $\sigma \rho \sigma^{-1} = \rho^{-1}$). Ha 5 classi di coniugio: $\{e\}, \{\rho^2\}, \{\rho, \rho^3\}, \{\sigma, \sigma \rho^2\}, \{\sigma\rho, \sigma\rho^3\}$. Non è abeliano e ha almeno la rappresentazione banale, quindi si ha $8 = 2^2 + 4 \cdot 1^2$ è l'unico modo di scrivere 8. Dobbiamo quindi trovare 4 omomorfismi di D4 in \mathbb{C}^* per poi ricavare per ortogonalità la rappresentazione di dimensione 2.

Notiamo che, siccome σ ha ordine 2, esso può essere mandato solo in ± 1 (radici 2-esime dell'unità) e siccome ρ e ρ^-1 stanno nella stessa classe di coniugio si ha $x=\chi(\rho)$ deve essere una radice quarta dell'unità che rispetti $x=x^3$ e quindi deve essere solo o 1 o -1. Abbiamo quindi solo quattro possibili scelte per un possibile omomorfismo da D4 in \mathbb{C}^* , che sono quindi obbligate perché sappiamo che esistono 4 caratteri di dimensione 1 per D4 (ovvero omomorfismi). Quindi scrivendo questi nella tabella e completandola per ortonormalità si ha:

$numero\ elementi$	1	1	2	2	2
classi di conj.	e	$ ho^2$	$ ho, ho^3$	$\sigma, \sigma \rho^2$	$\sigma \rho, \sigma \rho^3$
χ_{id}	1	1	1	1	1
χ_a	1	1	1	-1	-1
χ_b	1	1	-1	1	-1
χ_{ab}	1	1	-1	-1	1
χ_q	2	-2	0	0	0

Soluzione 6.2

Esercizio 7

Sia T un tetraedro di centro nell'origine, e sia $G \subseteq O_3$ il gruppo delle trasformazioni ortogonali che portano T in se stesso. Numerando in qualche modo i vertici di T da 1 a 4, otteniamo un'azione di G su $\{1, 2, 3, 4\}$.

- (a) Fate vedere che questo dà un'identificazione di G con S_4 .
- (b) Fate vedere che il sottogruppo di G delle matrici con determinante positivo corrisponde ad A_4 .
- (c) Scomponete la rappresentazione per permutazioni corrispondente agli spigoli del tetraedro come rappresentazione di A_4 .

Soluzione 7.1

Soluzione 7.2

Esercizio 8

Sia G un gruppo finito che agisce su un insieme finito I con almeno due elementi in modo non banale. Diciamo che l'azione è doppiamente transitiva se date due coppie (i,i') e (j,j') di elementi di I con $i \neq i'$ e $j \neq j'$ esiste $s \in G$ con $s \cdot i = j$ e $s \cdot i' = j'$.

Sia ρ_I la corrispondente rappresentazione per permutazioni e scriviamo $\rho_I = \mathbb{1} + \rho$, come al solito. Allora fate vedere che ρ è irriducibile se e solo se l'azione di G su I è doppiamente transitiva.

Concludete che S_n ha una rappresentazione irriducibile di grado n-1 per ogni n > 2

Cenno di soluzione: Fate vedere che ρ è irriducibile se e solo se $\langle \chi_{\rho_I} | \chi_{\rho_I} \rangle = 2$. Ma χ_{ρ_I} è reale, per cui $\langle \chi_{\rho_I} | \chi_{\rho_I} \rangle = \langle \chi^2_{\rho_I} | 1 \rangle = \langle \chi_{\rho_{I \times I}} | 1 \rangle$ è il numero di orbite di G su $I \times I$.

Soluzione 8.1

Soluzione 8.2

Esercizio 9

Sia G un gruppo finito. Dati due elementi $h,g \in G$ appartenenti a classi di coniugio distinte mostrare che

$$\sum_{\rho \in Irr\ (G)} \chi_{\rho}(g) \overline{\chi_r ho(h)} = 0$$

dove Irr(G) denota l'insieme delle rappresentazioni irriducibili di G a meno di isomorfismo. Cosa riuscite a dire sulla precedente somma se invece h e g sono elementi coniugati?

Cenno di soluzione: Considerate il carattere di $\mathbb{C}[G]$ come rappresentazione di $G\times G$

Soluzione 9.1

Soluzione 9.2

Idee utili per gli esercizi