Linear Regression: Sample Model for understanding

Code ▼

libraries

Hide library(ggplot2) library(tibble) library(dplyr) Attaching package: 'dplyr' The following objects are masked from 'package:stats': filter, lag The following objects are masked from 'package:base': intersect, setdiff, setequal, union Hide sim1 <- modelr::sim1</pre> Hide sim1

y <dbl></dbl>	x <int></int>
4.199913	1
7.510634	1
2.125473	1
8.988857	2
10.243105	2
11.296823	2
7.356365	3
10.505349	3
10.505349	3

x <int></int>					y <dbl></dbl>
3				10.5	11601
4				12.40	34589
1-10 of 30 rows	Previous	1	2	3	Next

```
ggplot(sim1, aes(x, y)) +
  geom_point()
```



```
models <- tibble(
  a1 = runif(250, -20,40),
  a2 = runif(250, -5, 5)
)

ggplot(data = sim1, aes(x, y)) +
  geom_point() +
  geom_abline(aes(intercept=a1, slope=a2), data = models, alpha=1/4)</pre>
```



```
model1 <- function(a, data) {
   a[1] + data$x * a[2]
}
model1(c(7, 1.5), sim1)</pre>
```

```
[1] 8.5 8.5 8.5 10.0 10.0 10.0 11.5 11.5 11.5 13.0 13.0 13.0 14.5 14.5 14.5 16.0 16.0 16.0 1 7.5 17.5 17.5 [22] 19.0 19.0 19.0 20.5 20.5 20.5 22.0 22.0 22.0
```

Root Mean Squared Deviation

Hide

```
measure_distance <- function(mod, data) {
   diff <- data$y - model1(mod, data)
   sqrt(mean(diff ^ 2))
}
measure_distance(c(7, 1.5), sim1)</pre>
```

```
[1] 2.665212
```

```
sim1_dist <- function(a1, a2) {
  measure_distance(c(a1,a2), sim1)
}

models <- models %>%
  mutate(dist = purrr::map2_dbl(a1, a2, sim1_dist))

ggplot(sim1, aes(x,y)) +
  geom_point(size=2, color="grey30") +
  geom_abline(
   aes(intercept = a1, slope = a2, color = -dist),
   data = filter(models, rank(dist) <= 10)
  )
</pre>
```



```
ggplot(models, aes(a1,a2)) +
  geom_point(data = filter(models, rank(dist) <= 10), size=4, color="red")+
  geom_point(aes(color = -dist))</pre>
```



```
grid <- expand.grid(
  a1 = seq(-10, 15, length =25),
  a2 = seq(0,4, length = 25)
) %>%
  mutate(dist = purrr::map2_dbl(a1,a2, sim1_dist))

grid %>%
  ggplot(aes(a1,a2)) +
  geom_point(data = filter(grid, rank(dist) <= 10), size=4, color="red") +
  geom_point(aes(color = -dist))</pre>
```



```
ggplot(sim1, aes(x,y)) +
  geom_point(size =2, color="grey30") +
  geom_abline(
   aes(intercept = a1, slope = a2, color = -dist),
   data = filter(grid, rank(dist) <= 10)
)</pre>
```



```
best <- optim(c(0,0), measure_distance, data = sim1)
best$par</pre>
```

```
[1] 4.222248 2.051204
```

The Best Model from optim package

```
ggplot(sim1, aes(x,y)) +
  geom_point(size =2, color = "grey30") +
  geom_abline(intercept = best$par[1], slope = best$par[2])
```

Hide

sim1_model <- lm(y ~ x, data = sim1)
coef(sim1_model)</pre>

(Intercept) x 4.220822 2.051533

Hide

Hide

broom::tidy(sim1_model)

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	4.220822	0.8688261	4.858074	4.088263e-05
x	2.051533	0.1400240	14.651295	1.173451e-14
2 rows				

Prediction

```
library(rsample)
data_split <- initial_split(sim1)
training_data <- training(data_split)
testing_data <- testing(data_split)</pre>
```

```
model <- lm(y ~x, data = training_data)
coef(model)</pre>
```

```
(Intercept) x 3.798628 2.148178
```

Hide

```
prediction <- predict(model, testing_data)
testing_data <- testing_data %>%
  mutate(pred = prediction)
testing_data
```

pred <dbl></dbl>	y <dbl></dbl>	x <int></int>
12.39134	14.25796	4
16.68770	15.95597	6
16.68770	16.89480	6
18.83587	20.08599	7
18.83587	17.17185	7
18.83587	19.93631	7
23.13223	21.12831	9
25.28041	21.97520	10

```
ggplot(testing_data) +
geom_line(aes(x, pred), size = 3, color = "red", alpha = 0.5) +
geom_point(aes(x,y), size = 5, color = "green", alpha = 3/4) +
geom_point(data = sim1, aes(x,y), alpha = 0.5)
```


Measure acuracy

Hide

yardstick::metrics(testing_data, y, pred)

.metric <chr></chr>	.estimator <chr></chr>	.estimate <dbl></dbl>
rmse	standard	1.7516218
rsq	standard	0.8440479
mae	standard	1.5161443
3 rows		