Exercise sheet 1 Semantics of Higher-Order Logics (2007)

For exercises 1-3, let \mathcal{D} be the standard frame with $\mathcal{D}_o = \{\bot, \top\}$ and $\mathcal{D}_\iota = \{1\}$.

Exercise 1 Assume $(\mathcal{E}_{\alpha})_{\alpha \in \mathcal{T}}$ is a standard frame with

$$\mathcal{E}_o = \{\bot, \top\}$$

$$\mathcal{E}_\iota = \{1\}$$

Prove: $\forall \alpha \in \mathcal{T} : \mathcal{E}_{\alpha} = \mathcal{D}_{\alpha}$

Solution: We argue by induction on types. At both base types we know

$$\mathcal{E}_{\iota} = \{1\} = \mathcal{D}_{\iota}$$

and

$$\mathcal{E}_o = \{\bot, \top\} = \mathcal{D}_o$$

For the induction step, we assume $\mathcal{E}_{\alpha} = \mathcal{D}_{\alpha}$ and $\mathcal{E}_{\beta} = \mathcal{D}_{\beta}$.

Since both \mathcal{D} and \mathcal{E} are standard frames,

$$\mathcal{D}_{\alpha\beta} = (\mathcal{D}_{\alpha})^{\mathcal{D}_{\beta}} = (\mathcal{E}_{\alpha})^{\mathcal{E}_{\beta}} = \mathcal{E}_{\alpha\beta}.$$

That was easy!

Exercise 2 *Prove:* $\forall \alpha \in \mathcal{T} : \mathcal{D}_{\alpha}$ *is finite.*

Solution: We argue by induction on types. Obviously $\mathcal{D}_o = \{\bot, \top\}$ and $\mathcal{D}_\iota = \{1\}$ are both finite. For the induction step, we assume \mathcal{D}_α and \mathcal{D}_β are both finite. Since \mathcal{D} is a standard frame, we know $\mathcal{D}_{\alpha\beta} = (\mathcal{D}_\alpha)^{\mathcal{D}_\beta}$. Hence we calculate

$$|\mathcal{D}_{lphaeta}| = |\mathcal{D}_lpha|^{|\mathcal{D}_eta|} < \infty$$

Thus all the domains are finite.

Exercise 3 Define inductively an infinite set $\mathcal{T}^1 \subseteq \mathcal{T}$ s.t. $\forall \alpha \in \mathcal{T}^1 \quad |\mathcal{D}_{\alpha}| = 1$

Solution: Let \mathcal{T}^1 be the least set of types such that

- $\iota \in \mathcal{T}^1$
- $(\alpha\beta) \in \mathcal{T}^1$ whenever $\alpha \in \mathcal{T}^1$ and $\beta \in \mathcal{T}$

Intuitively, \mathcal{T}^1 is the set of types of the form $(\iota\beta^n\cdots\beta^1)$ for $n\geq 0$ and arbitrary types β^1,\ldots,β^n . We can inductively prove $|\mathcal{D}_{\alpha}|=1$ for each $\alpha\in\mathcal{T}^1$.

- Base case: $|\mathcal{D}_{\iota}| = 1$.
- Induction case: Assume the type is $(\alpha\beta)$ where $\alpha \in \mathcal{T}^1$ and $\beta \in \mathcal{T}$. Assume $|\mathcal{D}_{\alpha}| = 1$. (We do *not* assume $|\mathcal{D}_{\beta}| = 1$ why not?) We calculate:

$$|\mathcal{D}_{\alpha\beta}| = |\mathcal{D}_{\alpha}|^{|\mathcal{D}_{\beta}|} = 1^{|\mathcal{D}_{\beta}|} = 1.$$

Exercise 4 *Prove every functional* Σ -evaluation is ξ -functional.

Solution: To show functionality implies ξ -functionality, let $\mathbf{M}, \mathbf{N} \in wff_{\beta}(\Sigma)$, an assignment φ and a variable X_{α} be given. Suppose $\mathcal{E}_{\varphi,[\mathbf{a}/X]}(\mathbf{M}) = \mathcal{E}_{\varphi,[\mathbf{a}/X]}(\mathbf{N})$ for every $\mathbf{a} \in \mathcal{D}_{\alpha}$. We need to show $\mathcal{E}_{\varphi}(\lambda X_{\bullet}\mathbf{M}) = \mathcal{E}_{\varphi}(\lambda X_{\bullet}\mathbf{N})$. This follows from functionality since

$$\begin{split} \mathcal{E}_{\varphi}(\lambda X \boldsymbol{.} \mathbf{M}) @ \mathbf{a} &= \mathcal{E}_{\varphi, [\mathbf{a}, X]}((\lambda X \boldsymbol{.} \mathbf{M}) X) = \mathcal{E}_{\varphi, [\mathbf{a}/X]}(\mathbf{M}) \\ &= \mathcal{E}_{\varphi, [\mathbf{a}/X]}(\mathbf{N}) = \mathcal{E}_{\varphi, [\mathbf{a}, X]}((\lambda X \boldsymbol{.} \mathbf{N}) X) = \mathcal{E}_{\varphi}(\lambda X \boldsymbol{.} \mathbf{N}) @ \mathbf{a} \end{split}$$

for every $a \in \mathcal{D}_{\alpha}$.

Exercise 5 Let $\mathcal{J} := (\mathcal{D}, @, \mathcal{E})$ be a functional Σ -evaluation, φ be an assignment into \mathcal{J} , $\mathbf{F} \in wff_{\alpha \to \beta}(\Sigma)$ and $X_{\alpha} \notin \mathbf{Free}(\mathbf{F})$. Prove

$$\mathcal{E}_{\omega}(\lambda X_{\alpha}\mathbf{F}X) = \mathcal{E}_{\omega}(\mathbf{F}).$$

Solution: Let $a \in \mathcal{D}_{\alpha}$ be given. Since $X_{\alpha} \notin \mathbf{Free}(\mathbf{F})$, we have $\mathcal{E}_{\varphi,[\mathsf{a}/X]}(\mathbf{F}) = \mathcal{E}_{\varphi}(\mathbf{F})$. Since \mathcal{E} respects β -equality, we can compute

$$\mathcal{E}_{\varphi}(\lambda X_{\bullet} \mathbf{F} X)$$
@a = $\mathcal{E}_{\varphi,[\mathsf{a}/X]}((\lambda X_{\bullet} \mathbf{F} X)X) = \mathcal{E}_{\varphi,[\mathsf{a}/X]}(\mathbf{F} X) = \mathcal{E}_{\varphi}(\mathbf{F})$ @a.

Generalizing over a, we conclude $\mathcal{E}_{\omega}(\lambda X \mathbf{F} X) = \mathcal{E}_{\omega}(\mathbf{F})$ by functionality.

Exercise 6 Let $\mathcal{M} := (\mathcal{D}, @, \mathcal{E}, v)$ be a Σ -model. Prove if either $\top, \bot \in \Sigma$ or $\neg \in \Sigma$, then v is surjective.

Solution: Suppose $\top, \bot \in \Sigma$. By $\mathfrak{L}_{\top}(\mathcal{E}(\top))$ and $\mathfrak{L}_{\bot}(\mathcal{E}(\bot))$, we have $\upsilon(\mathcal{E}(\top)) = \mathsf{T}$ and $\upsilon(\mathcal{E}(\bot)) = \mathsf{T}$. Thus υ is surjective.

Suppose $\neg \in \Sigma$. Choose any $a \in \mathcal{D}_o$. We know $v(\mathcal{E}(\neg)@a) \neq v(a)$ by $\mathfrak{L}_{\neg}(\mathcal{E}(\neg))$. Thus v is surjective.

Exercise 7 Let $\mathcal{M} := (\mathcal{D}, @, \mathcal{E}, v)$ be a Σ -model. Suppose either $\top, \bot \in \Sigma$ or $\neg \in \Sigma$. Prove \mathcal{M} satisfies \mathfrak{b} iff \mathcal{D}_o has two elements.

Solution: By the previous exercise, we know v is surjective. Thus \mathcal{M} satisfies property \mathfrak{b} iff v is bijective iff \mathcal{D}_o has two elements.

Exercise 8 Assume that the signature contains only the logical connective \supset and the quantifier Π^o . Construct a Σ -model \mathcal{M} such that

1.
$$\mathcal{M} \models \forall P_o P$$

Solution: There is a model such that $\mathcal{M} \models \forall P_{o} P$. Let \mathcal{D} be the standard frame with $\mathcal{D}_o = \{\mathbf{T}\}$ and $\mathcal{D}_\iota = \{1\}$. Note that every \mathcal{D}_α has only one element. Let @ be the application operator. For every assignment φ and $\mathbf{A} \in wff_\alpha$, let $\mathcal{E}_\varphi(\mathbf{A})$ be the unique member of \mathcal{D}_α . It is easy to check \mathcal{E} is an evaluation function. Let $v: \mathcal{D}_o \to \{\mathbf{T}, \mathbf{F}\}$ be the inclusion function given by $v(\mathbf{T}) := \mathbf{T}$. It is easy to check $\mathcal{L}_{\supset}(()\mathcal{E}(\supset))$ and $\mathcal{L}_{\Pi^o}(()\mathcal{E}(\Pi^o))$ hold where $\mathcal{E}(\supset)$ is the unique element of \mathcal{D}_{ooo} (the "constant true function") and $\mathcal{E}(\Pi^o)$ is the unique element of $\mathcal{D}_{o(oo)}$ (the "constant true function"). Hence $\mathcal{M} := (\mathcal{D}, @, \mathcal{E}, v)$ is a Σ -model.

Now to check $\mathcal{M}\models \forall P_{o^{\blacksquare}}P$, simply note that $\mathcal{M}\models_{\varphi,[\mathbf{T}/P]}P$ and so $\mathcal{M}\models_{\varphi,[\mathbf{a}/P]}P$ for all $\mathbf{a}\in\mathcal{D}_o$.

Exercise 9 What are the weakest calculi \mathfrak{NR}_* in which the following sentences can be derived? Please give the derivations.

- 1. $\forall X_{o} \forall Y_{o} X \vee Y \Leftrightarrow Y \vee X$
- 2. $\forall X_{\alpha} \forall Y_{\alpha} X \vee Y \doteq Y \vee X$
- 3. $\lambda X_{\alpha} \lambda Y_{\alpha} X \vee Y \doteq \lambda X_{\alpha} \lambda Y_{\alpha} Y \vee X$
- 4. $\vee \doteq \lambda X_{\circ} \lambda Y_{\circ} Y \vee X$