Traffic Sign Classification

-Implementare-

Temă: clasificarea semnelor de circulație (trecere de pietoni, cedează trecerea, stop).

Dataset:

View dataset

- Creat prin combinarea imaginilor dintr-un set de date cu mai multe semne de circulație și imagini descărcate de pe google.
- Etichetarea s-a făcut manual
- Alcătuit din 3 foldere: crosswalk(117 imagini), give-way(108 imagini), stop(110 imagini)
- Preprocesare:
 - o Toate imaginile au extensia .png
 - o Imaginile sunt modificate pentru a avea rezoluția 50x50 / 150x150
 - Imaginile sunt convertite într-un format ușor de procesat de un algoritm de machine learning: .flatten()
- Impărțirea în seturile de antrenare, validare și testare se face cu ajutorul funcției *train_test_split()*, 80% din dataset fiind păstrat pentru antrenare, 10% pentru validare și 10% pentru testare; împărțirea se face prin apelarea de 2 ori a funcției *train_test_split()* pentru a evita pierderea de date

Algoritm:

I. K-Nearest Neighbors

- Pentru antrenare am folosit clasificatorul *K-Nearest Neighbors* o metodă de învățare supervizată.
- Acest algoritm este unul leneș, deoarece nu creează un model în comparație cu alte metode de clasificare, ci prezice direct pe baza datelor de antrenament.
- Rezultatul utilizării algoritmului *k-NN* în operații de clasificare reprezintă apartenența la o clasă. Un obiect este clasificat cu votul majorității vecinilor săi, obiectul fiind atribuit clasei cele mai frecvente din *k-NN*.
- Avantaie:
 - o Este simplu de implementat.
 - O Nu este necesară nicio pregătire a datelor înainte.
 - o Este flexibil în alegerea tipurilor de distanțe sau a caracteristicilor.
- Dezavantaje:
 - O Clasificatorul k-NN este nepotrivit pentru seturi de dimensiuni mari.
 - o Alegerea valorii lui *K* poate fi dificilă.
 - o Nu face predicții pentru lucruri rare.
- KNeighborsClassifier(n neighbors, weights, algorithm, leaf size, p)
 - o *n neighbors* numărul vecinilor considerați
 - o weights modul în care sunt ponderate contribuțiile vecinilor
 - o algorithm algoritmul folosit pentru a calcula cei mai apropiați vecini
 - o leaf size dimensiunea frunzei utilizată pentru algoritmii BallTree sau KDTree
 - o p parametrul de putere pentru metrica Minkowski

II. Naïve Bayes

- Pentru antrenare am folosit clasificatorul *Naïve Bayes* o metodă de învățare supervizată.
- Tehnică de clasificare statistică.
- Se bazează pe Teorema lui Bayes: $P(A|B) = \frac{P(A|B)*P(A)}{P(B)}$
- Tehnica presupune existența unui set de date deja clasificate.
- Scopul este reprezentat de determinarea clasei în care se încadrează o nouă instanță de același tip cu cele deja existente.
- Clasificatorul este *naiv*, deoarece presupune că toate atributele unui punct sunt independente unele de altele, însemnând că prezența sau absența unei caracteristici nu afectează probabilitatea unei alte caracteristici.
- Avantaje:
 - o Funcționează rapid și poate prezice cu ușurință clasa.
 - o Potrivit pentru rezolvarea problemelor de predicție cu mai multe clase.
 - O Nu necesită un volum mare de date de antrenare.
- Dezavantaje:
 - O Presupune că toate caracteristicile sunt independete, ceea ce se întâmplă rar în viața reală.
 - O Algoritmul se confruntă cu problema de frecvență zero.
- *GaussianNB(priors, var smoothing)*:
 - o priors probabilitățile anterioare ale claselor
 - o *var_smoothing* porțiunea din cea mai mare varianță a tuturor caracteristicilor, care se adaugă la variatii pentru stabilitatea calculului

III. K-Nearest Neighbors + Naïve Bayes

- Pentru antrenare am folosit clasificatorul *K-Nearest Neighbors*.
- Pentru filtrarea rezultatelor obținute cu algoritmul KNN am utilizat clasificatorul Naïve Bayes.

Librării:

- cv2
- numpy
- sklearn
 - o model selection > train test split
 - o neighbors → KNeighborsClassifier
 - o naive bayes → GaussianNB
 - o metrics → accuracy score, classfication report, confusion matrix
- matplotlib

Acuratețe:

I. K-Nearest Neighbors

Pentru parametrii aleşi, $KNeighborsClassifier(n_neighbors=1, weights=distance, algorithm=auto, p=2)$ am obținut un procent de acuratețe de:

Validare: 57.58%Testare: 67.65%

II. Naïve Bayes

Pentru parametrii aleși, *GaussianNB(priors=None, var_smoothing=1)* am obținut un procent de acuratețe de:

Validare: 54.55%Testare: 55.88%

III. K-Nearest Neighbors + Naïve Bayes

Pentru parametrii aleşi, $KNeighborsClassifier(n_neighbors=1, weights=distance, algorithm=auto, p=2)$ am obținut un procent de acuratețe de:

Validare KNN: 63.64%Testare KNN: 61.76%

• Testare NB pe KNN: 58.82%

Raport de clasificare pentru setul de testare:

- <u>Precision</u> capacitatea clasificatorului de a nu eticheta un eșantion negativ ca fiind pozitiv. $\frac{T_p}{T_p + F_p}$
- Recall capacitatea clasificatorului de a găsi toate probele pozitive. $\frac{T_p}{T_p+F_n}$
- <u>F1-Score</u> o medie armonică ponderată a preciziei și a sensibilității, unde un scor F-beta atinge cea mai bună valoare la 1 și cel mai slab scor la 0.
- Support numărul de apariții ale fiecărei clase în y true.

Afișare rezultate:

I. KNN

Classification	Report for	Test Set	(KNN):	
	precision	recall	f1-score	support
crosswalk	0.67	0.67	0.67	12
give-way	0.70	0.64	0.67	11
stop	0.58	0.64	0.61	11
accuracy			0.65	34
macro avg	0.65	0.65	0.65	34
weighted avg	0.65	0.65	0.65	34

II. Naïve Bayes

Classification	Report for	Test Set	(NB):	
	precision	recall	f1-score	support
crosswalk	0.53	0.75	0.62	12
give-way	0.75	0.55	0.63	11
stop	0.44	0.36	0.40	11
accuracy			0.56	34
macro avg	0.57	0.55	0.55	34
weighted avg	0.57	0.56	0.55	34

III. KNN + Naïve Bayes

Classification	Report for	Test Set	(Naive Baye	s on KNN P	redictions):
	precision	recall	f1-score	support	
crosswalk	0.50	0.67	0.57	12	
give-way	0.75	0.55	0.63	11	
stop	0.40	0.36	0.38	11	
accuracy			0.53	34	
macro avg	0.55	0.53	0.53	34	
weighted avg	0.55	0.53	0.53	34	

Matrice de confuzie:

I. KNN

```
Confusion Matrix for Test Set (KNN):
[[8 1 3]
[2 7 2]
[2 2 7]]
```


II. Naïve Bayes

```
Confusion Matrix for Test Set (NB):
[[9 1 2]
[2 6 3]
[6 1 4]]
```


III. KNN + Naïve Bayes

```
Confusion Matrix for Test Set (Naive Bayes on KNN Predictions):
[[8 1 3]
[1 6 4]
[4 1 6]]
```


Afișare teste:

View results

Rezultate:

I. KNN

- Pentru n_n eighbors=5, weights=distance, algorithm=auto, p=2 am obținut o acuratețe a testelor de 58.82%
- Pentru n_n eighbors=3, weights=distance, algorithm=auto, p=2 am obținut o acuratețe a testelor de 61.76%
- Pentru *n_neighbors=3*, weights=distance, algorithm=ball_tree, leaf_zise=20, p=2 am obtinut o acuratete a testelor de **61.76%**
- Pentru *n_neighbors=5*, *weights=uniform*, *algorithm=brute*, *p=2* am obținut o acuratețe a testelor de **55.88%**
- Pentru n_n eighbors=1, weights=distance, algorithm=auto, p=2 am obținut o acuratețe a testelor de 61.76%
- Prin modificarea dimensiunii imaginilor, păstrând parametrii de mai sus, am obtinut:
 - 300x300 → acuratețea testelor de **58.82%**
 - 200x200 → acuratetea testelor de 61.76%
 - o $150x150 + interpolation = cv.INTER AREA \rightarrow acuratețea testelor de 67.65%$
 - 50x50 → acuratețea testelor de **64.71%**

II. Naïve Baves

- Pentru *GaussianNB(priors=None, var_smoothing=1e-1)* am obținut o acuratețe a testelor de **50.00%**
- Pentru GaussianNB(priors=None, var_smoothing=2) am obținut o acuratețe a testelor de 52.94%
- Pentru GaussianNB() am obtinut o acuratete a testelor de 47.06%
- Pentru *GaussianNB(priors=None, var_smoothing=1)* am obținut o acuratețe a testelor de **55.88%**
- Pentru *GaussianNB(priors=[0.3, 0.3, 0.4], var_smoothing=1)* am obținut o acuratețe a testelor de **55.88%**

III. KNN + Naïve Bayes

- Pentru KNeighborsClassifier(n_neighbors=5), GaussianNB() am obținut o acuratețe a testelor de 55.88%
- Pentru KNeighborsClassifier(n_neighbors=3, weights=distance, algorithm=auto, p=2), GaussianNB(priors=None, var smoothing=1) am obținut o acuratețe a testelor de 52.94%
- Pentru *KNeighborsClassifier(n_neighbors=3, weights=distance, algorithm=ball_tree, leaf_size=20, p=2), GaussianNB(priors=None, var_smoothing=1e-9)* am obținut o acuratete a testelor de **58.82%**

Concluzii & Observații:

- Clasificatorii KNN și Naïve Bayes obțin o acuratețe mai scăzută față de clasificatorul SVC utilizat în tema 1. Acest lucru se poate datora setului de date (nu sunt suficiente imagini sau acestea nu sunt potrivite pentru o antrenare foarte bună).
- Acuratețea este influențată de parametrii funcțiilor, cât și de preprocesarea datelor (rezoluția imaginilor).
- Modelul potrivit pentru setul meu de date s-a dovedit a fi clasificatorul *SVC*. Acest fapt se poate datora robusteții algoritmului (este mai puțin sensibil la valori aberante, poate face distincția mai bine între un pattern adevărat și zgomot).
- Clasificatorul KNN a mai fost utilizat în lucrări de clasificare a semnelor de circulație.
- Am adaptat algoritmul utilizat la Tema 1 pentru rezolvarea cerințelor impuse. Am modificat parametrii funcțiilor *KNeighborsClassifier()* și *GaussianNB()* pentru a obține cea mai bună acuratețe.

Referințe:

- sklearn.neighbors.KNeighborsClassifier
- <u>naive_bayes</u>
- <u>sklearn.naive_bayes.GaussianNB</u>
- Confusion matrix
- Classification report
- Traffic Sign Detection
- <u>Laborator</u>
- Curs