Multi-Place Predicate Logic Symbolization

Part II – Operations and Equality

Alex Koo

Subjects

1. Individual Constants or Names
Lower case letters a-h

2. Variables
Lower case letters i-z

3. Operation LettersLower case letters a-hMay have number places as superscript

Complex Particular Terms

'Joe's brother's wife'

'Sarah's aunt'

'David's cousin's dog's vet'

Operations

 F^1 : a is Canadian. a^1 : the cousin of a. e^0 : Tom.

Tom is Canadian. Fe

Tom's cousin. a(e)

Tom's cousin is Canadian. Fa(e)

The father of Jodie's dog walker's cousin is Canadian.

 F^1 : a is Canadian. a^1 : the cousin of a.

 b^1 : the father of a. c^1 : the dog walker of a.

f⁰: Jodie.

Jodie's dog walker: c(f)

Cousin: a(c(f))

Father: b(a(c(f)))

... is Canadian: Fb(a(c(f)))

- 1. Use brackets with operations
 - Names have no brackets

2. Operations count as a single term each

3. Learn to read places/slots

How many places is each predicate and operation?

 G^2 , a^0 , b^2 , c^0 , d^0

 F^1 , a^1 , b^1 , c^0

 H^3 , a^1 , b^0 , c^1 , d^0 , e^2 , f^0 , g^0

Predicates

Predicate Letters
 Upper case A-O
 May have number places as superscript

2. Identity Sign =

Identity Syntax

 $\alpha = \beta$ where α , β are subjects

 α does not equal β

$$\sim \alpha = \beta$$
 or $\alpha \neq \beta$

Identity is a special 2-place predicate

Bad Identity Examples

$$(c(a))=d$$

$$F(x=y)$$

$$x=G(ab)$$

$$a = \sim b$$

$$(x=a)$$

$$\sim$$
(x=y)

Tom's cousin isn't Jodie's dog walker.

 a^1 : the cousin of a. c^1 : the dog walker of a. e^0 : Tom. f^0 : Jodie.

a(e) isn't c(f)

Tom's cousin isn't Jodie's dog walker.

 a^1 : the cousin of a. c^1 : the dog walker of a. e^0 : Tom. f^0 : Jodie.

$$a(e) \neq c(f)$$

or

$$\sim$$
a(e)=c(f)

Frank and Carla cuddled different dogs. D^1 : a is a dog. C^2 : a cuddled b. f^0 : Frank. c^0 : Carla.

 $\exists x(Dx \land C(fx)) \land \exists y(Dy \land C(cy))$ Dogs could be same or different

 $\exists x(Dx \land C(fx) \land C(cx))$ Dogs are the same

 $\exists x(Dx \land C(fx) \land \exists y(Dy \land C(cy) \land x \neq y))$ Dogs are different

No singer except/besides Justin is awesome.

 A^1 : a is a awesome. B^1 : a is a singer. a^1 : Justin.

$$\sim \exists x(Ax \land Bx \land x \neq a) \quad \forall x(Ax \land Bx \rightarrow x = a)$$

Am I missing something?

Is Justin an awesome singer?

∧(Aa∧Ba)?

Implication

VS

Implicature

Only philosophers are happy.

 A^1 : a is a philosopher. H^1 : a is happy.

$$\forall x(Hx \rightarrow Ax)$$

$$\forall x (\sim Ax \rightarrow \sim Hx)$$

Are there happy philosophers?

Rihanna is Drake's only friend.

 F^2 : a is the friend of b. a^0 : Rihanna. d^0 : Drake.

If anyone is Drake's friend, it's Rihanna.

Is Rihanna Drake's friend?

Rihanna is Drake's only friend.

 F^2 : a is the friend of b. a^0 : Rihanna. d^0 : Drake.

Rihanna is Drake's friend, and no one else is.

$$F(ad) \land \sim \exists x(x \neq a \land F(xd))$$

Rihanna is Drake's friend, and if anyone is Drake's friend they are actually just Rihanna.

 $F(ad) \land \forall x (F(xd) \rightarrow x = a)$

Rihanna is Drake's only friend.

 F^2 : a is the friend of b. a^0 : Rihanna. d^0 : Drake.

 $F(ad) \land \sim \exists x(x \neq a \land F(xd))$

 $F(ad) \land \forall x (F(xd) \rightarrow x = a)$

 $\forall x(F(xd)\leftrightarrow x=a)$

a⁰: Canada. b¹: The Prime Minister of {1}.

h²: {1} is the hair of {2}. F¹: {1} is a person.

 A^2 : {1} is better than {2}.

A(Prime Minister of Canada's Hair ____)
A(h(b(a)) ____)

$$\forall x(Fx \rightarrow A(h(b(a))h(x)))$$

a⁰: Canada. b¹: The Prime Minister of {1}.

 h^2 : {1} is the hair of {2}. F^1 : {1} is a person.

 A^2 : {1} is better than {2}.

The Prime Minister of Canada has better hair than any other person.

Superlatives

a⁰: Canada. b¹: The Prime Minister of {1}.

h²: {1} is the hair of {2}. F¹: {1} is a person.

 A^2 : {1} is better than {2}.

If you're a person other than the Prime Minister of Canada, then the Prime Minister of Canada has better hair than you.

a⁰: Canada. b¹: The Prime Minister of {1}.

 h^2 : {1} is the hair of {2}. F^1 : {1} is a person.

 A^2 : {1} is better than {2}.

There does not exist a person who has better hair than the Prime Minister of Canada.

a⁰: Canada. b¹: The Prime Minister of {1}.

h²: {1} is the hair of {2}. F¹: {1} is a person.

 A^2 : {1} is better than {2}.

All sports are fun, except for Golf.
All sports, except for Golf, are fun.
Al: a is a sport. F1: a is fun. g0: Golf.

 C^1 : a is a carrot. A^2 : a ate b. a^0 : Avery.

Avery ate at least one carrot. $\exists x(Cx \land A(ax))$

Avery ate at least two carrots. $\exists x(Cx \land A(ax) \land \exists y(Cy \land x \neq y \land A(ay)))$

Avery ate at least three carrots. $\exists x(Cx \land A(ax) \land \exists y(Cy \land x \neq y \land A(ay)) \land \exists z(Cz \land z \neq x \land z \neq y \land A(az))))$ Beth played at most one board game. B^1 : a is a board game. A^2 : a plays b. b^0 : Beth.

 $\forall x (Bx \land A(bx) \rightarrow \forall y (By \land A(by) \rightarrow x = y))$

 $\forall x \forall y (Bx \land By \land A(bx) \land A(by) \rightarrow x = y)$

 $\sim \exists x (Bx \land A(bx) \land \exists y (By \land A(by) \land x \neq y))$

 \sim $\exists x \exists y (Bx \land By \land A(bx) \land A(by) \land x \neq y)$

Beth played at most two board games. B^1 : a is a board game. A^2 : a plays b. b^0 : Beth.

$$\forall x(Bx \land A(bx) \rightarrow \forall y(By \land A(by) \rightarrow \forall z(Bz \land A(bz) \rightarrow x = y \lor x = z \lor y = z)))$$

 $\forall x \forall y \forall z (Bx \land By \land Bz \land A(bx) \land A(by) \land A(bz)$ $\rightarrow x = y \lor x = z \lor y = z)$

...

C¹: {1} is a piece of chicken. F¹: {1} is fried.

A²: {1} ate {2}. a⁰: Sarah.

Sarah ate a piece of fried chicken, and there does not exist a different piece of fried chicken that she also ate.

C¹: {1} is a piece of chicken. F¹: {1} is fried.

 A^2 : {1} ate {2}. a^0 : Sarah.

 $\exists x(Cx \land Fx \land A(ax))$

C¹: {1} is a piece of chicken. F¹: {1} is fried.

 A^2 : {1} ate {2}. a^0 : Sarah.

 $\exists x(Cx \land Fx \land A(ax) \land \forall y(Cy \land Fy \land A(ay) \rightarrow A(ay)) \land A(ay) \land$

C¹: {1} is a piece of chicken. F¹: {1} is fried.

 A^2 : {1} ate {2}. a^0 : Sarah.

 $\exists x(Cx \land Fx \land A(ax) \land \forall y(Cy \land Fy \land A(ay) \rightarrow x = y))$

 $\exists x \forall y (Cx \land Fx \land A(ax) \land \forall y (Cy \land Fy \land A(ay) \rightarrow x = y))$

C¹: {1} is a piece of chicken. F¹: {1} is fried.

 A^2 : {1} ate {2}. a^0 : Sarah.

 $\exists x(Cx \land Fx \land A(ax) \land \neg \exists y(Cy \land Fy \land A(ay) \land x \neq y))$