The Chinese Remainder Theorem

Chinese Remainder Theorem: If $m_1, m_2, ..., m_k$ are pairwise relatively <u>prime</u> positive integers, and if $a_1, a_2, ..., a_k$ are any integers, then the simultaneous congruences

$$x \equiv a_1 \pmod{m_1}$$
, $x \equiv a_2 \pmod{m_2}$, ..., $x \equiv a_k \pmod{m_k}$

have a solution, and the solution is unique modulo m, where

 $m = m_1 m_2 \cdots m_k$.

assume k = 4. Note the proof is <u>constructive</u>, i.e., it shows us how to Proof that a solution exists: To keep the notation simpler, we will actually construct a solution.

Our simultaneous congruences are

 $x \equiv a_1 \pmod{m_1}, x \equiv a_2 \pmod{m_2}, x \equiv a_3 \pmod{m_3}, x \equiv a_4 \pmod{m_4}.$

Our goal is to find integers w_1 , w_2 , w_3 , w_4 such that:

_	value	value	value	value
	$mod m_1$	$mod m_2$	$mod m_3$	$mod m_4$
^{1}M	1	0	0	0
W2	0	1	0	0
11/3	0	0	1	0
w_4	0	0	0	1

Once we have found w_1 , w_2 , w_3 , w_4 , it is easy to construct x:

$$x = a_1 w_1 + a_2 w_2 + a_3 w_3 + a_4 w_4.$$

Moreover, as long as the moduli (m_1, m_2, m_3, m_4) remain the same, we can use the same w_1 , w_2 , w_3 , w_4 with any a_1 , a_2 , a_3 , a_4 .

 $z_1 = m / m_1 = m_2 m_3 m_4$ $z_2 = m / m_2 = m_1 m_3 m_4$ $z_3 = m / m_3 = m_1 m_2 m_4$ $z_4 = m / m_4 = m_1 m_2 m_3$ First define:

Note that

 $z_1 = m_2 m_3 m_4$, then p divides m_2 , m_3 , or m_4 .) $gcd(z_1, m_1) = 1$. (If a prime p dividing m_1 also divides i) $z_1 \equiv 0 \pmod{m_j}$ for j = 2, 3, 4. ii) $gcd(z_1, m_1) = 1$ (If a writer a

and likewise for z_2 , z_3 , z_4 .

Next define: $y_1 \equiv z_1^{-1} \pmod{m_1}$ $y_2 \equiv z_2^{-1} \pmod{m_2}$ $y_3 \equiv z_3^{-1} \pmod{m_3}$ $y_4 \equiv z_4^{-1} \pmod{m_4}$

The inverses exist by (ii) above, and we can find them by Euclid's extended algorithm. Note that

iii) $y_1 z_1 \equiv 0 \pmod{m_j}$ for j = 2, 3, 4. (Recall $z_1 \equiv 0 \pmod{m_j}$) iv) $y_1 z_1 \equiv 1 \pmod{m_1}$

and likewise for y_2z_2 , y_3z_3 , y_4z_4 .

 $w_2 \equiv y_2 z_2 \pmod{m}$ $w_3 \equiv y_3 z_3 \pmod{m}$ $w_4 \equiv y_4 z_4 \pmod{m}$ Lastly define: $w_1 \equiv y_1 z_1 \pmod{m}$

Then w_1, w_2, w_3 , and w_4 have the properties in the table on the previous page

Example: Solve the simultaneous congruences

$$x \equiv 6 \pmod{11}$$
, $x \equiv 13 \pmod{16}$, $x \equiv 9 \pmod{21}$, $x \equiv 19 \pmod{25}$.

Solution: Since 11, 16, 21, and 25 are pairwise relatively prime, the Chinese Remainder Theorem tells us that there is a unique solution modulo *m*, where m = 11.16.21.25 = 92400.

We apply the technique of the Chinese Remainder Theorem with

$$k = 4$$
, $m_1 = 11$, $m_2 = 16$, $m_3 = 21$, $m_4 = 25$, $a_1 = 6$, $a_2 = 13$, $a_3 = 9$, $a_4 = 19$,

to obtain the solution.

We compute

```
y_1 \equiv z_1^{-1} \pmod{m_1} \equiv 8400^{-1} \pmod{11} \equiv 7^{-1} \pmod{11} \equiv 8 \pmod{11}

y_2 \equiv z_2^{-1} \pmod{m_2} \equiv 5775^{-1} \pmod{16} \equiv 15^{-1} \pmod{16} \equiv 15 \pmod{16}
                                                                                                                                                                                                                                                                                                                                                                                                                                                 y_3 \equiv z_3^{-1} \pmod{m_3} \equiv 4400^{-1} \pmod{21} \equiv 11^{-1} \pmod{21} \equiv 2 \pmod{21}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         y_4 \equiv z_4^{-1} \pmod{m_4} \equiv 3696^{-1} \pmod{25} \equiv 21^{-1} \pmod{25} \equiv 6 \pmod{25}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  w_2 \equiv y_2 z_2 \pmod{m} \equiv 15.5775 \pmod{92400} \equiv 86625 \pmod{92400}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          w_3 \equiv y_3 z_3 \pmod{m} \equiv 2.4400 \pmod{92400} \equiv 8800 \pmod{92400}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       w_1 \equiv y_1 z_1 \pmod{m} \equiv 8.8400 \pmod{92400} \equiv 67200 \pmod{92400}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 w_4 \equiv y_4 z_4 \pmod{m} \equiv 6.3696 \pmod{92400} \equiv 22176 \pmod{92400}
                                                                                                                                       z_3 = m / m_3 = m_1 m_2 m_4 = 11.16.25 = 4400
                                                                                                                                                                                                           z_4 = m / m_4 = m_1 m_3 m_3 = 11.16.21 = 3696
                                                                       z_2 = m / m_2 = m_1 m_3 m_4 = 11.21.25 = 5775
z_1 = m / m_1 = m_2 m_3 m_4 = 16.21.25 = 8400
```

The solution, which is unique modulo 92400, is

$$x \equiv a_1 w_1 + a_2 w_2 + a_3 w_3 + a_4 w_4 \pmod{92400}$$

 $\equiv 6.67200 + 13.86625 + 9.8800 + 19.22176 \pmod{92400}$
 $\equiv 2029869 \pmod{92400}$
 $\equiv 51669 \pmod{92400}$

Example: Find all solutions of $x^2 \equiv 1 \pmod{144}$.

Solution:
$$144 = 16.9 = 2^4 3^2$$
, and $gcd(16.9) = 1$.

We can replace our congruence by two simultaneous congruences:

$$x^2 \equiv 1 \pmod{16}$$
 and $x^2 \equiv 1 \pmod{9}$

 $x^2 \equiv 1 \pmod{16}$ has 4 solutions: $x \equiv \pm 1$ or $\pm 7 \pmod{16}$ $x^2 \equiv 1 \pmod{9}$ has 2 solutions: $x \equiv \pm 1 \pmod{9}$ There are 8 alternatives: i) $x \equiv 1 \pmod{16}$ and $x \equiv 1 \pmod{9}$ ii) $x \equiv 1 \pmod{16}$ and $x \equiv -1 \pmod{9}$ iii) $x \equiv -1 \pmod{16}$ and $x \equiv 1 \pmod{9}$ iv) $x \equiv -1 \pmod{16}$ and $x \equiv -1 \pmod{9}$

$$x_1$$
, $x = 1$ (mod 16) and $x \equiv 1$ (mod

$$(x - 1) = 1 \pmod{16}$$
 and $x = 1 \pmod{16}$

v)
$$x \equiv 7 \pmod{16}$$
 and $x \equiv 1 \pmod{4}$

v)
$$x \equiv 7 \pmod{16}$$
 and $x \equiv 1 \pmod{9}$
vi) $x \equiv 7 \pmod{16}$ and $x \equiv -1 \pmod{9}$

$$v_{ii}) \quad x \equiv -7 \pmod{16} \quad \text{and} \quad x \equiv 1 \pmod{9}$$

viii)
$$x \equiv -7 \pmod{16}$$
 and $x \equiv -1 \pmod{9}$

By the Chinese Remainder Theorem with k = 2, $m_1 = 16$ and $m_2 = 9$, each case above has a unique solution for x modulo 144.

We compute:
$$z_1 = m_2 = 9$$
, $z_2 = m_1 = 16$, $y_1 \equiv 9^{-1} \equiv 9 \pmod{16}$, $y_2 \equiv 16^{-1} \equiv 4 \pmod{9}$, $w_1 \equiv 9 \cdot 9 = 81 \pmod{144}$, $w_2 \equiv 16 \cdot 4 \equiv 64 \pmod{144}$.

The 8 solutions are:

i)
$$x \equiv 1 \cdot 81 + 1 \cdot 64$$
 $\equiv 145 \equiv 1 \pmod{144}$
ii) $x \equiv 1 \cdot 81 + (-1) \cdot 64$ $\equiv 17 \equiv 17 \pmod{144}$
iii) $x \equiv (-1) \cdot 81 + (-1) \cdot 64 \equiv -17 \equiv -17 \pmod{144}$
iv) $x \equiv (-1) \cdot 81 + (-1) \cdot 64 \equiv -145 \equiv -1 \pmod{144}$
v) $x \equiv 7 \cdot 81 + (-1) \cdot 64 \equiv 631 \equiv 55 \pmod{144}$
vi) $x \equiv 7 \cdot 81 + (-1) \cdot 64 \equiv 503 \equiv 71 \pmod{144}$
vii) $x \equiv (-7) \cdot 81 + 1 \cdot 64 \equiv -503 \equiv -71 \pmod{144}$

-55 (mod 144)

viii) $x = (-7) \cdot 81 + (-1) \cdot 64 = -603$