

Institutt for matematiske fag

Eksamensoppgave i
TMA4320 Introduksjon til vitenskapelige beregninger
Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163
III. 4505 0165
Eksamensdato: xx. august 2016
Eksamenstid (fra-til): xx:xx-xx:xx
Hjelpemiddelkode/Tillatte hjelpemidler: B: Spesifiserte trykte hjelpemidler tillatt:
K. Rottmann: Matematisk formelsamling
• K. Hottmann. Matematisk formelsaming
Bestemt, enkel kalkulator tillatt.
Målform/språk: bokmål
Antall sider: 2
Antall sider vedlegg: 0
Kontrollert av:
Kontrollert av.

Sign

Dato

Oppgave 1

a) Vi ser på likningen

$$x^2 + 3x - 4 = 0.$$

Foreslå en fikstpunktiterasjon for denne likningen og bestem, om denne iterasjonen konvergerer lokalt¹ mot røttene til denne likningen.

Oppgave 2

- a) Finn det polynomet p(x) av lavest mulig grad som passer igjennom punktene (0,0), (1,1), (2,1), (3,1).
- **b)** La $p_n(x)$ være polynomet av *lavest mulig grad* som interpolerer funksjonen $f(x) = \cos(x)$ i punktene $x_1 = \frac{1}{2}\pi$, $x_2 = \frac{3}{2}\pi$, ..., $x_n = \frac{2n-1}{2}\pi$. Formelen for estimatet av interpolasjonsfeilen er gitt av

$$f(x) - p_n(x) = \frac{(x - x_1)(x - x_2)\cdots(x - x_n)}{n!} f^{(n)}(c_{n,x}), \tag{1}$$

hvor punktet $c_{n,x} \in [\min\{x,x_1\},\max\{x,x_n\}]$ avhenger fra n og x.

La oss se på punktet x = 0 i estimatet (1). Bestem $p_n(x)$ og vis at $\lim_{n\to\infty} f^{(n)}(c_{n,0}) = 0$ (hint: vurder de forskjellige led i estimatet (1)).

Oppgave 3

- a) Beregn tilnærmelse av integral $\int_0^1 \sqrt{x} \, dx$ ved hjælp av midpunkt og trapezoid kvadraturer. Bruk n=2 paneler.
- b) La $M_{[a,b]}f$ og $T_{[a,b]}f$ være midpunkt og trapezoid kvadraturer med n=1 panel for funksjonen f på interval [a,b]. Feilestimatetene for disse kvadraturer er gitt av

$$\int_{a}^{b} f(x) dx = M_{[a,b]} f + \frac{h^{3}}{24} f''(c) + O(h^{4}), \qquad \text{og}$$
$$\int_{a}^{b} f(x) dx = T_{[a,b]} f - \frac{h^{3}}{12} f''(c) + O(h^{4}),$$

hvor c = (a + b)/2, og h = b - a.

¹Lokalt=når startpunktet x_0 er tett til en rot.

La oss definere en ny kvadratur som $Q_{[a,b]}f = \alpha M_{[a,b]}f + \beta T_{[a,b]}f$. Bestem verdiene α , β slik at

$$\int_{a}^{b} f(x) \, \mathrm{d}x = Q_{[a,b]} f + O(h^4).$$

c) La $p_0(x) = 1$. Finn et polynom $p_1(x)$ av grad 1 som er ortogonal mot p_0 på intervallet [0, 1].

Oppgave 4 Vi skal nå se på et initialverdiproblem:

$$y''(t) = -(y(t))^2, y(0) = 1, y'(0) = 0.$$
 (2)

a) Betrakt den følgende Runge–Kutta metoden med to steg²:

$$k_1 = f(t_n, w_n),$$

$$k_2 = f(t_n + \frac{2}{3}h, w_n + \frac{2}{3}hk_1),$$

$$w_{n+1} = w_n + h(\frac{1}{4}k_1 + \frac{3}{4}k_2),$$
(3)

som tilnærmer en løsning til et initialverdiproblem w'(t) = f(t, w(t)).

Bruk denne metoden med h=0.5 til å finne en tilnærmelse til løsningen av (2) i t=0.5.

b) Den lokale trunkeringsfeilen av (den eksplisite) Eulersmetoden oppfører seg som $O(h^2)$ for små h, mens metoden (3) har den lokale trunkerigsfeilen av størrelsen $O(h^3)$.

Bruk den eksplisite Eulersmetoden med h=0.5 til å finne en tilnærmelse til løsningen av (2) i t=0.5. Basert på beregningene i **a)** vurder den lokale trunkeringsfeilen av Eulersmetoden i dette tilfelle.

Videre, bestem steglengden h^* slik at Eulersmetoden gir den lokale trunkeringsfeilen av størrelsen $\approx 1.0 \cdot 10^{-4}$.

Oppgave 5

- a) Beregn den diskrete Fouriertransformasjonen av $x = [1, i, -i]^T$, hvor $i^2 = -1$.
- **b)** Bruk resultaten fra **a)** til å beregne den *inverse* diskrete Fouriertransformasjonen av den konjugerte vektoren $\bar{x} = [1, -i, i]^{T}$.

²"stages" i boken