

CANDIDATE

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS	_		9709/13
Paper 1 Pure Mathem	natics 1 (P1)		May/June 2019
			1 hour 45 minutes
Candidates answer or	the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 19 printed pages and 1 blank page.

(i)	Express $x^2 - 4x + 8$ in the form $(x - a)^2 + b$.	
		•••••
		•••••
		•••••
		••••
		••••
		••••
		• • • • •
		••••
		••••
(ii)	Hence find the set of values of x for which $f(x) < 9$, giving your answer in exact form.	
(ii)	Hence find the set of values of x for which $f(x) < 9$, giving your answer in exact form.	
(ii)		

	remaining three terms of the expansion.
	(1) 5
ii)	Hence find the coefficient of x in the expansion of $(1 + 4x^2)(2x - \frac{1}{2x})^5$.

The diagram shows triangle ABC which is right-angled at A. Angle $ABC = \frac{1}{5}\pi$ radians and AC = 8 cm. The points D and E lie on BC and BA respectively. The sector ADE is part of a circle with centre A and is such that BDC is the tangent to the arc DE at D.

(i)	Find the length of AD .	[3]
(ii)	Find the area of the shaded region.	[3]

The function f is defined by $f(x) = \frac{48}{x-1}$ for $3 \le x \le 7$. The function g is defined by $g(x) = 2x - 4$ for $a \le x \le b$, where a and b are constants.
(i) Find the greatest value of a and the least value of b which will permit the formation of the composite function gf. [2]
It is now given that the conditions for the formation of gf are satisfied.
(ii) Find an expression for $gf(x)$. [1
(iii) Find an expression for $(gf)^{-1}(x)$. [2]

wei	o heavyweight boxers decide that they would be more successful if they competed in a lower ight class. For each boxer this would require a total weight loss of 13 kg. At the end of week 1 y have each recorded a weight loss of 1 kg and they both find that in each of the following weeks ir weight loss is slightly less than the week before.
	xer A 's weight loss in week 2 is 0.98 kg. It is given that his weekly weight loss follows an arithmetic gression.
(i)	Write down an expression for his total weight loss after x weeks. [1]
(ii)	He reaches his 13 kg target during week n . Use your answer to part (i) to find the value of n . [2]

Boxer B's weight loss in week 2 is $0.92 \,\mathrm{kg}$ and it is given that his weekly weight loss follows a geometric progression.

•••••	••••••	•••••	•••••	•••••	••••••		••••••	•••••	•••••	• • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	,
•••••	•••••	•••••	•••••	•••••				•••••		• • • • • • • • •	•••••		•••••		•••••	· • • • • •
	•••••	•••••	•••••	•••••				•••••	•••••	•••••			•••••		•••••	· • • • • •
				•••••					•••••	•••••			•••••			· • • • • •
				•••••												· • • • • •
•••••	••••••	••••••	•••••	•	••••••											
•••••	•••••	••••••	•••••	•••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••
•••••	•••••	••••••	•••••	•••••				•••••	•••••	•••••	•••••		•••••	••••••	•••••	••••
•••••			•••••	•••••				•••••	•••••	•••••						· • • • • •
										•••••						· • • • • •
										•••••			•••••			· • • • •
										••••						
•••••	••••••	••••••	•••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	•••••
•••••	••••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••	•••••			•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	· • • • • •
•••••	••••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••			•••••	•••••	•••••	• • • • •
	•••••	•••••	•••••	•••••				•••••	•••••	•••••			•••••	••••••	•••••	· • • • • •
	•••••	•••••	•••••	•••••				•••••		•••••			•••••			· • • • • •

The diagram shows a solid figure ABCDEF in which the horizontal base ABC is a triangle right-angled at A. The lengths of AB and AC are 8 units and 4 units respectively and M is the mid-point of AB. The point D is 7 units vertically above A. Triangle DEF lies in a horizontal plane with DE, DF and FE parallel to AB, AC and CB respectively and N is the mid-point of FE. The lengths of DE and DF are 4 units and 2 units respectively. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} respectively.

(i)	Find \overrightarrow{MF} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[1]
(ii)	Find \overrightarrow{FN} in terms of i and j .	[1]
(iii)	Find \overrightarrow{MN} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[1]

 	 •••••	
 •••••	 	
 	 •••••	

The coordinates of two points A and B are (1, 3) and (9, -1) respectively and D is the mid-point of

State the coordinates of D .	[1]
	•••••
It is given that $CD^2 = 20$. Write down an equation relating x and y.	[1]
	•••••
	that [3]
it can be simplified to $y = 2x = 9$.	ری
	•••••
	•••••
	It is given that $CD^2 = 20$. Write down an equation relating x and y . It is given that AC and BC are equal in length. Find an equation relating x and y and show it can be simplified to $y = 2x - 9$.

coordina	ites of C.									
••••••				•••••	•••••					••••
•••••		••••••	••••••	•••••	•••••			•••••		••••
										••••
										••••
					•••••					••••
					•••••					
••••••	•••••	•••••	•••••	••••••	•••••			•••••		••••
••••••		•••••	•••••	•••••						•••
•••••			•••••	•••••	•••••					•••
			•••••		•••••					•••
										•••
										•••
										•••
										•••
•••••	••••••	••••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••
••••••		••••••	•••••	•••••	•••••					•••
					•••••					•••
										•••
•••••		••••••	•••••	•••••	•••••		•••••			•••
		•••••	•••••	•••••	•••••			•••••		•••

the values o	f the constants	s a , b and k .			onary points		
••••••	•••••	••••••	•••••		•••••		
••••••	•••••	•••••	••••••	•••••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
••••••	••••••		••••••		••••••		
		••••••			•••••	•••••	
			•				
					•••••		
•••••	•••••		•••••	••••••	•••••		
		•••••					
••••••	••••••	•••••	••••••	•••••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
••••••	••••••		•••••	•	•••••	•	•
			•				

The function $f: x \mapsto p \sin^2 2x + q$ is defined for $0 \le x \le \pi$, where p and q are positive constants. The diagram shows the graph of y = f(x).

(i)	In terms of p and q , state the range of f.	[2]	
		••••	

(ii) State the number of solutions of the following equations.

(a)
$$f(x) = p + q$$
 [1]

(b)
$$f(x) = q$$
 [1]

(c)
$$f(x) = \frac{1}{2}p + q$$

			•		l necessary working
•••••		•••••	•••••		•••••
					•••••
					•••••
••••••					•••••
					•••••
		••••••	•••••	••••••	
			•••••		••••••
			•••••		••••••
	•••••	••••••	•••••		••••••
		••••••••••	•	••••••	•••••

The diagram shows part of the curve with equation $y = (3x + 4)^{\frac{1}{2}}$ and the tangent to the curve at the point A. The x-coordinate of A is 4.

)	Find the equation of the tangent to the curve at A.	[5]
		•••••
		•••••
		•••••
		•••••
		••••••
		••••••
		••••••

(ii)	Find, showing all necessary working, the area of the shaded region.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

[Question 10 (iii) is printed on the next page.]

at '	which the x -coordinate is increasing. Find the x -coordinate of P .	
••••		••••••
••••		••••••
••••		
••••		••••••
••••		
••••		•••••
••••		••••••
••••		•••••
••••		••••••
••••		
••••		••••••
••••		
••••		••••••
••••		••••••
••••		•••••
••••		•••••
••••		••••••

Additional Page

must be clearly shown.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.