Lecture notes on theoretical mechanics

Scientific LAN

2024年10月10日

前言

这里是某科学的懒羊羊,该课程笔记为本人大二上于中国科学技术大 学潘海俊老师的理论力学课程的学习笔记,并以潘海俊老师编著的理论力 学导论为参考书籍编纂,用于本人学习巩固课程知识并在此公开分享与各 位共同学习。如有错误之处还请谅解。

> Scientific LAN 2024年10月10日

目录

第 一 章	章 运动学		
1.1	坐标变	· 换	1
	1.1.1	符号	1
	1.1.2	右手直角坐标系	2
	1.1.3	坐标变换	2
	1.1.4	转动公式	3
	1.1.5	正交曲线坐标系	4
	1.1.6	相对运动	5
1.2	张量 .		5
	1.2.1	定义	5
	1.2.2	张量代数运算	6
1.3	场的导	数	7
	1.3.1	梯度算子	7
	1.3.2	场的变换	8
	1.3.3	求导约定	8
1.4	约束 .		8
	1.4.1	自由体系	8
	1.4.2	完整约束体系	8
	1.4.3	理想约束假设	9

目录			II
	1.4.4	动能	9
	1.4.5	势能	10
第二章	Lagra	inge 力学	11
2.1	Hamilt	ton 原理	11
	2.1.1	泛函	11
	2.1.2	Hamilton 原理的证明	12
	2.1.3	推论	13
	2.1.4	Lagrange 函数的性质	14
2.2	拉格朗	月日乘子法	15
	2.2.1	约束力 $f(\overrightarrow{r},t)=0$	15
	2.2.2	几点说明	15

1.1 坐标变换

1.1.1 符号

求和约定: 在某一单项式中同一指标重复出现,则意味着对其求和。

$$(AB)_{ij} = \sum_{k}^{n} A_{ik} B_{kj} \Leftrightarrow (AB)_{ij} = A_{ik} B_{kj}$$

求和指标称为哑指标,若无特殊说明则均使用求和约定。如: $A_{ii} = trA$

kronecker 符号:

$$\delta_{ij} \equiv \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$$

因此有

$$\delta_{ii} = 3 \qquad (i = 1, 2, 3)$$

$$A_{ik}\delta_{kj} = A_{ij}$$

$$A_{ik}\delta_{ki} = trA$$

$$A_{ij}B_{ji} = trAB$$

levi-civita(排列) 符号

$$\varepsilon_{ijk} \equiv \begin{vmatrix} \delta_{i1} & \delta_{i2} & \delta_{i3} \\ \delta_{j1} & \delta_{j1} & \delta_{j1} \\ \delta_{k1} & \delta_{k1} & \delta_{k1} \end{vmatrix}$$

因此有

$$\varepsilon_{ijk}A_{i1}A_{j2}A_{k3} = detA$$

$$\varepsilon_{ijk}A_{il}A_{jm}A_{kn} = \varepsilon_{lmn}detA$$

$$\varepsilon_{ijk}\varepsilon_{mnk} = \delta_{im}\delta_{jn} - \delta_{in}\delta_{jm}$$

1.1.2 右手直角坐标系

右手直角坐标系中的基矢满足

$$\hat{x_i} \cdot \hat{x_j} = \delta_{ij}$$

$$(\hat{x}_i \times \hat{x}_j) \cdot \hat{x}_k = \varepsilon_{ijk}$$

在右手直角坐标系中的任意一个向量表示为:

$$\overrightarrow{r} = r_i \hat{x}_i = (\overrightarrow{r} \cdot \hat{x}_i) \hat{x}_i$$

1.1.3 坐标变换

旋转变换矩阵:

$$\lambda_{ij} \equiv \hat{x_i}' \hat{x_j}$$

该矩阵第 i 行是 $\hat{x_i}'$ 轴在原坐标系中的三个方向余弦,第 j 列是 $\hat{x_j}$ 轴在新坐标系中的三个方向余弦

$$\hat{x_i}' = (\hat{x_i}' \cdot \hat{x_i})\hat{x_i} = \lambda_{ij}\hat{x_j}$$

故

$$x_{i}^{'} = \lambda_{ij} x_{j}$$

同理有逆变换

$$\hat{x}_{i} = \lambda_{ji}\hat{x}_{j}^{'}$$

$$x_{i} = \lambda_{ji}x_{j}^{'}$$

旋转变换矩阵为特殊正交阵,即

$$\lambda \lambda^T = I$$

$$det\lambda = 1$$

定义正交变换 $\hat{x_i}'=\lambda_{ij}\hat{x_j}$, $det\lambda=1$ 的变换为旋转变换, $det\lambda=-1$ 的变换为反演旋转变换

变换 λ 具有主动观点及被动观点:主动观点将变换视为作用于空间各点上的;被动观点将变换视为作用于坐标系上的。

1.1.4 转动公式

转动公式:

$$\overrightarrow{r}' = \overrightarrow{r}\cos\theta + \hat{n}(\hat{n}\cdot\overrightarrow{r})(1-\cos\theta) + \hat{n}\times\overrightarrow{r}\sin\theta$$

转动矩阵:

$$\lambda_{ij} = \delta_{ij}\cos\theta + n_i n_j (1 - \cos\theta) - \varepsilon_{ijk} n_k \sin\theta$$

通过转动矩阵,转动公式分类表示为 $\hat{x_i}' = \lambda_{ij} x_j$

转动角度 θ 为: $\cos\theta = \frac{tr\lambda - 1}{2}$, 转动矩阵的转轴 \hat{n} 为其特征向量: $\lambda \cdot \hat{n} = \hat{n}$ 即转动矩阵这一代数特征与其对应转动的几何特征相互推导。

无限小转动:

$$d\overrightarrow{\theta} \equiv \overrightarrow{n}d\theta$$

故

$$d\overrightarrow{r} = d\overrightarrow{\theta} \times \overrightarrow{r}$$
$$\frac{d\overrightarrow{r}}{dt} = \overrightarrow{\omega} \times \overrightarrow{r}$$

$$|\overrightarrow{r}(t)| = const \Leftrightarrow \frac{d\overrightarrow{r}}{dt} = \overrightarrow{\omega} \times \overrightarrow{r}$$

1.1.5 正交曲线坐标系

球坐标系:

$$\overrightarrow{r} = r\hat{r}$$

由

$$d\overrightarrow{\Theta} = d\theta \hat{\varphi} + d\varphi \hat{z} = d\varphi \cos \theta \hat{r} - d\varphi \sin \theta \hat{\theta} + d\theta \hat{\varphi}$$

得

$$\overrightarrow{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\sin\theta\dot{\varphi}\hat{\varphi}$$

$$\frac{\partial \overrightarrow{r}}{\partial r} = \hat{r} \quad \frac{\partial \overrightarrow{r}}{\partial \theta} = \hat{\phi} \times \overrightarrow{r} \quad \frac{\partial \overrightarrow{r}}{\partial \phi} = \hat{z} \times \overrightarrow{r}$$

柱坐标系:

$$\overrightarrow{r} = s\hat{s} + z\hat{z}$$

$$\overrightarrow{v} = \dot{s}\hat{s} + s\dot{\varphi}\hat{\varphi} + \dot{z}\hat{z}$$

1.1.6 相对运动

$$\begin{split} \frac{d\overrightarrow{G}}{dt} &= (\frac{d\overrightarrow{G}}{dt})_{rot} + \overrightarrow{\omega} \times \overrightarrow{G} \\ \overrightarrow{v} &= \overrightarrow{v}_0 + \overrightarrow{v}' + \overrightarrow{\omega} \times \overrightarrow{r}' \\ \overrightarrow{a} &= \overrightarrow{a}_0 + \overrightarrow{a}' + \overrightarrow{\omega} \times (\overrightarrow{\omega} \times \overrightarrow{r}') + 2\overrightarrow{\omega} \times \overrightarrow{v}' + \dot{\overrightarrow{\omega}} \times \overrightarrow{r}' \end{split}$$

其中 $\overrightarrow{\omega} \times (\overrightarrow{\omega} \times \overrightarrow{r}')$ 为向心加速度, $2\overrightarrow{\omega} \times \overrightarrow{v}'$ 为科里奥利加速度, $\overrightarrow{\omega} \times \overrightarrow{r}'$ 为横向加速度。

1.2 张量

1.2.1 定义

n 阶张量 $\overset{\leftrightarrow}{T}$ 满足变化:

$$T'_{i_1\cdots i_n} = \lambda_{i_1j_1\cdots i_nj_n} T_{j_1\cdots j_n}$$

赝张量: $T'_{i_1\cdots i_n} = det\lambda \cdot \lambda_{i_1j_1\cdots i_nj_n} T_{j_1\cdots j_n}$

- 二者在旋转变换下无区别,但在反演(宇称)变换下不同。
- 一阶张量 (矢量) \overrightarrow{A} :

$$A'_{i} = \lambda_{ij}A_{j}$$

$$\overrightarrow{A} \cdot \overrightarrow{B} \equiv A_{i}B_{i}$$

$$(\overrightarrow{A} \times \overrightarrow{B})_{i} \equiv \varepsilon_{ijk}A_{j}B_{k}$$

二阶张量 \overleftarrow{T} :

$$T'_{ij} = \lambda_{ik} \lambda_{jl} T_{kl}$$

或写为矩阵形式

$$T' = \lambda T \lambda^T$$

6

并矢:

$$(\overrightarrow{A}\overrightarrow{B})_{ij} \equiv A_i B_j$$

九个张量 $\hat{x}_i\hat{x}_j$ 构成了二阶张量空间的一组基

$$\overleftrightarrow{T} = T_{ij}\hat{x}_i\hat{x}_j$$

1.2.2 张量代数运算

张量积:

$$R^{m+n | \mathfrak{H}} = T^{m | \mathfrak{H}} \otimes S^{n | \mathfrak{H}}$$

$$R_{i_1\cdots i_{m+n}} = T_{i_1\cdots i_m} R_{i_1\cdots i_n}$$

并矢也为张量积。张量不变性

$$T'_{ij}\hat{x}_i\hat{x}_j' = T_{ij}\hat{x}_i\hat{x}_j$$

点乘: 张量与矢量点乘满足 1、就近原则 2、 $\hat{x_i} \cdot \hat{x_j} = \delta_{ij}$ 故

$$\overleftrightarrow{T} \cdot \overrightarrow{A} = (T_{ik}A_k)\hat{x_i}$$

$$\overrightarrow{A} \cdot \overleftrightarrow{T} = (A_k T_{kj}) \hat{x_j}$$

$$\overrightarrow{A} \cdot \overleftrightarrow{T} \overrightarrow{B} = T_{ij} A_i B_j$$

矩阵表示:

$$\begin{pmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix}$$

和

$$\begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix} \begin{pmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{pmatrix}$$

叉乘: 张量与矢量叉乘满足 1、就近原则 2、 $\hat{x_i} \times \hat{x_j} = \varepsilon_{ijk}\hat{x_k}$

$$\overrightarrow{A} \times \overrightarrow{B} = (\varepsilon_{ijk} A_j B_k) \hat{x_i}$$

轴矢量之间的叉乘得到的是极矢量.

1.3 场的导数

1.3.1 梯度算子

梯度算子 ▽:

$$\nabla \equiv \hat{x}_i \frac{\partial}{\partial x_i} = \hat{x}_i \partial_i$$

$$\nabla \varphi = (\partial_i \varphi) \hat{x}_i$$

$$d\varphi = \nabla \varphi \cdot d \overrightarrow{r}$$

$$\nabla \cdot \overrightarrow{F} = \partial_i F_i$$

$$\nabla \overrightarrow{F} = (\partial_i F_j) \hat{x}_i \hat{x}_j$$

$$\nabla \times \overrightarrow{F} = (\varepsilon_{ijk} \partial_j F_k) \hat{x}_i$$

$$\nabla \cdot \overleftarrow{T} = (\partial_k T_{ki}) \hat{x}_i$$

定理:

$$\nabla \times (\overrightarrow{f} \times \overrightarrow{g}) = (\nabla \cdot \overrightarrow{g} + \overrightarrow{g} \cdot \nabla) \overrightarrow{f} - (\nabla \cdot \overrightarrow{f} + \overrightarrow{f} \cdot \nabla) \overrightarrow{g}$$

$$\nabla \times \nabla \varphi \equiv 0$$

$$\nabla \cdot (\nabla \times \overrightarrow{A}) \equiv 0$$

$$\partial_i F_j = \partial_j F_i \Leftrightarrow \nabla \times \overrightarrow{F} = 0 \Rightarrow \overrightarrow{F} = \nabla \varphi$$

$$\nabla \cdot \overrightarrow{F} = 0 \Rightarrow \overrightarrow{F} = \nabla \times \overrightarrow{A}$$

1.3.2 场的变换

在两个坐标系中的同一个标量场满足:

$$\varphi'(x_1', x_2', x_2') = \varphi(x_1, x_2, x_3)$$

1.3.3 求导约定

对矢量求导:

$$\frac{\partial f}{\partial \overline{A}} \equiv \frac{\partial f}{\partial A_i} \hat{x}_i \equiv \left(\frac{\partial f}{\partial A_1}, \frac{\partial f}{\partial A_2}, \frac{\partial f}{\partial A_3}\right)^T$$

若 $f = f(\overrightarrow{r}, \dot{\overrightarrow{r}}, t)$, 则其对 t 全导数:

$$\frac{df}{dt} = \frac{\partial f}{\partial \overrightarrow{r}} \dot{\overrightarrow{r}} + \frac{\partial f}{\partial \dot{\overrightarrow{r}}} \ddot{\overrightarrow{r}} + \frac{\partial f}{\partial t}$$

对一组变量求导:

$$f = f(q_1 \cdots q_n)$$
$$\frac{\partial f}{\partial q} = \left(\frac{\partial f}{\partial q_1}, \frac{\partial f}{\partial q_2}, \cdots, \frac{\partial f}{\partial q_n}\right)^T$$

1.4 约束

1.4.1 自由体系

N 个质点的质点组,状态参量为 $(\overrightarrow{r}, \dot{\overrightarrow{r}}) = (\overrightarrow{r_1}, \dots, \overrightarrow{r_n}, \dot{\overrightarrow{r_1}}, \dots, \dot{\overrightarrow{r_n}})$

1.4.2 完整约束体系

一般约束

$$f(\overrightarrow{r}, \dot{\overrightarrow{r}}, t) = 0$$

完整约束

$$f(\overrightarrow{r},t) = 0$$

9

一个 N 个质点 K 个完整约束的体系:

自由度 n=3N-k,构成 n 维位形曲面,法向量:

$$\overrightarrow{n_{\alpha}} = \frac{\partial f_{\alpha}}{\partial \overrightarrow{r}}$$

n 维广义坐标 q,有

$$\overrightarrow{r} = \overrightarrow{r}(q,t)$$

切向量 $\overrightarrow{\tau_k} = \frac{\partial \overrightarrow{r}}{\partial q_k}$

同理有 n 维广义速度 \dot{q} , 得

$$\dot{\overrightarrow{r}} = \frac{\partial \overrightarrow{r}}{\partial q_i} \dot{q}_i + \frac{\partial \overrightarrow{r}}{\partial t}$$

定理:

$$\begin{split} \frac{\partial \dot{\overrightarrow{r}}}{\partial q_k} &= \frac{d}{dt} \frac{\partial \overrightarrow{r}}{\partial q_k} \\ \frac{\partial \dot{\overrightarrow{r}}}{\partial \dot{q}_k} &= \frac{\partial \overrightarrow{r}}{\partial q_k} \end{split}$$

1.4.3 理想约束假设

约束 $f\alpha(\overrightarrow{r},t)=0$ 提供的约束力:

$$\overrightarrow{N}^{\alpha} = (\overrightarrow{N}_{1}^{\alpha}, \overrightarrow{N}_{2}^{\alpha}, \cdots, \overrightarrow{N}_{N}^{\alpha})$$

理想约束假设:

$$\overrightarrow{N} = \lambda_{\alpha} \frac{\partial f_{\alpha}}{\partial \overrightarrow{r}}$$

即约束力与位型曲面垂直。

1.4.4 动能

$$T = \frac{1}{2} m_a \dot{\overrightarrow{r}}^2$$

$$\frac{\partial T}{\partial \dot{\overrightarrow{r}}} = \overrightarrow{p}$$

广义动能:

$$T \equiv T(\overrightarrow{r}(q, \dot{q}, t))$$
$$\frac{\partial T}{\partial \dot{q}_k} = \overrightarrow{p} \cdot \overrightarrow{\tau}_k$$

1.4.5 势能

$$U(\overrightarrow{r},t) = U^{\flat \uparrow}(\overrightarrow{r},t) + \frac{1}{2} \sum_{a \neq b} U_{ab}(r_{ab})$$

粒子 a 受到的力:

$$\overrightarrow{F}_a = -\frac{U^{\not \! h}}{\partial \overrightarrow{r'}_a} - \sum_{a \neq b} \frac{\partial U_{ab}}{\partial \overrightarrow{r_a}}$$

故体系受力:

$$\overrightarrow{F} = -\frac{\partial U}{\partial \overrightarrow{r}}$$

广义力:

$$Q_k \equiv \overrightarrow{F} \cdot \frac{\partial \overrightarrow{r}}{\partial q_k} = -\frac{\partial U}{\partial q_k}$$

第二章 Lagrange 力学

2.1 Hamilton 原理

Hamilton 原理: 在满足约束,且有相同端点的所有可能路径中,真实运动是使得作用量 $S=\int_{t_1}^{t_2}Ldt$ 取得最小值的路径。其中 $L=L(\overrightarrow{r},\overrightarrow{r},t)=T-U$ 为 Lagrange 函数.

Lagrange 函数中的动能 T 为体系总动能,势能 U 为主动力所贡献的势能之和.

2.1.1 泛函

泛函:

$$I[q(t)] = \int_{t_1}^{t_2} L(q, \dot{q}, t)$$

路径变分 $\delta q(t)$

速度变分 $\delta \dot{q} \equiv \frac{d}{dt} \delta q$

加速度变分 $\delta\ddot{q} \equiv \frac{d}{dt}\delta\dot{q}$

$$\delta L(q, \dot{q}, t) = \frac{\partial L}{\partial q_k} \delta q_k + \frac{\partial L}{\partial \dot{q}_k} \delta \dot{q}_k$$

泛函变分:

$$\delta I[q(t)] = \int_{t_1}^{t_2} \delta L dt$$

即变分与积分、导数均可换序。Leibniz formula:

$$\delta(fg) = g(\delta f) + f(\delta g)$$

链式法则:

$$\delta g(f) = \frac{\partial g}{\partial f} \delta f$$

若对于任意函数 $\eta_1(x), \eta_2(x), \cdots, \eta_n(x)$, 有

$$\int_a^b \left[\sum_{k=1}^n G_k(x)\eta_k(x)\right] dx = 0$$

$$\mathbb{M} \ G_1(x) = G_2(x) = \dots = G_n(x) = 0$$

驻值路径

$$\delta I[q(t)] = 0 \Leftrightarrow \frac{\delta L}{\delta q_k} \equiv \frac{\partial L}{\partial q_k} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} = 0$$

Eular-Lagrange 方程

推论:

若 L 不显含 q_k ,则 $\frac{\partial L}{\partial q_k} = const$

Jacob 积分:

$$h(q, \dot{q}, t) \equiv \dot{q}_k \frac{\partial L}{\partial \dot{q}_k} - L$$

Lagrange 方程等价于

$$\frac{dh}{dt} = -\frac{\partial L}{\partial t}$$

当 L 不显含 t 时,则 h = const.

2.1.2 Hamilton 原理的证明

证明: 1

¹本人认为这段证明很 cool,遂记录

$$\begin{split} \frac{\partial L}{\partial q_k} &= \frac{\partial L}{\partial \overrightarrow{r}} \cdot \frac{\partial \overrightarrow{r}}{\partial q_k} + \frac{\partial L}{\partial \dot{\overrightarrow{r}}} \cdot \frac{\partial \dot{\overrightarrow{r}}}{\partial q_k} \\ \frac{\partial L}{\partial \dot{q}_k} &= \frac{\partial L}{\partial \dot{\overrightarrow{r}}} \cdot \frac{\partial \dot{\overrightarrow{r}}}{\dot{q}_k} = \frac{\partial L}{\partial \dot{\overrightarrow{r}}} \cdot \frac{\partial \overrightarrow{r}}{q_k} \\ \frac{d}{dt} (\frac{\partial L}{\partial \dot{q}_k}) &= \frac{d}{dt} (\frac{\partial L}{\partial \dot{\overrightarrow{r}}} \cdot \frac{\partial \overrightarrow{r}}{q_k}) = (\frac{d}{dt} \frac{\partial L}{\partial \dot{\overrightarrow{r}}}) \cdot \frac{\partial \overrightarrow{r}}{q_k} + \frac{\partial L}{\partial \dot{\overrightarrow{r}}} \cdot \frac{\partial \dot{\overrightarrow{r}}}{q_k} \end{split}$$

故 $\frac{\delta L}{\delta q_k}$ 可改写为:

$$\frac{\delta L}{\delta q_k} = \frac{\partial L}{\partial q_k} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} = \left(\frac{\partial L}{\partial \overrightarrow{r}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\overrightarrow{r}}}\right) \cdot \frac{\partial \overrightarrow{r}}{\partial q_k}$$

对于 Lagrange 函数

$$L = T(\overrightarrow{r}, t) - U(\overrightarrow{r}, t)$$

将 T 和 U 代入改写后的 $\frac{\delta L}{\delta q_k}$

$$\frac{\delta T}{\delta q_k} = (\frac{\partial T}{\partial \overrightarrow{r}} - \frac{d}{dt} \frac{\partial T}{\partial \overrightarrow{r}}) \cdot \frac{\partial \overrightarrow{r}}{\partial q_k} = -\overrightarrow{p} \cdot \frac{\partial \overrightarrow{r}}{\partial q_k}$$

$$\frac{\delta T}{\delta q_k} = (\frac{\partial T}{\partial \overrightarrow{r}} - \frac{d}{dt} \frac{\partial T}{\partial \overrightarrow{r}}) \cdot \frac{\partial \overrightarrow{r}}{\partial q_k} = -\overrightarrow{F} \cdot \frac{\partial \overrightarrow{r}}{\partial q_k}$$

故 Eular-Lagrange 方程可改写为

$$\frac{\delta L}{\delta q_k} = (\overrightarrow{F} - \dot{\overrightarrow{q}}) \cdot \frac{\partial \overrightarrow{r}}{\partial q_k} = 0$$

这就是理想约束假设下的牛顿第二定律。

2.1.3 推论

广义动量:

$$p_k \equiv \frac{\partial L}{\partial \dot{q_k}}$$

故 Jacob 积分

$$h(q, \dot{q}, t) \equiv \dot{q}_k \frac{\partial L}{\partial \dot{q}_k} - L = p_k \dot{q}_k - L$$

满足 $\frac{dh}{dt} = -\frac{\partial L}{\partial t}$

若 L 不显含 q_k , 则 $p_k = const$.

若 L 不显含 t,则 h=const.

广义力:

$$Q_k \equiv \overrightarrow{F} \cdot \frac{\partial \overrightarrow{r}}{\partial q_k} = -\frac{\partial U}{\partial q_k}$$

即广义力是势能对广义坐标的导数。体系的平衡位置即是使广义力 $Q_k = 0$ 的位置。

2.1.4 Lagrange 函数的性质

惯性系: Lagrange 函数的动能与势能是在惯性系下观测得到的,若在非惯性系中,则 Lagrange 函数的动能为非惯性系中的动能,势能则除了主动力还需考虑惯性力的贡献。

一般不采用非惯性系中的 Lagrange 函数,只需在惯性系中写出 L 函数,并利用下面的规范变换化简即可得到相同结果。

Lagrange 函数的不确定性(规范变换):

$$L'(q, \dot{q}, t) = L(q, \dot{q}, t) + \frac{dF(q, t)}{dt}$$

规范变换前后的 Lagrange 函数满足相同的拉格朗日方程,故可描述同一体系, 其中不依赖于 \dot{q} 的 F(q,t) 称为规范函数。

可加性: 对于一个体系的 A, B 两部分, 若两部分之间相互作用的势能可忽略,则

$$L_{A+B} = L_A(q_A, \dot{q_A}) + L_B(q_B, \dot{q_B})$$

即此时二者可视为孤立体系处理。

通常情况下,我们反向使用该性质:即对于一个体系,可以通过选取合适的广义坐标 q_A 和 q_B ,将对应的 Lagrange 函数化简为分别只和 q_A,q_B 相关的两部分,即可将耦合的体系拆分成了孤立的研究对象。

2.2 拉格朗日乘子法

2.2.1 约束力 $f(\vec{r},t) = 0$

对于自由度为 s 的体系,为求解约束力 $f(\overrightarrow{r},t)=0$,

1、设想将该约束解除,则体系由 $\mathbf{s}+1$ 个不独立的广义坐标 $q=(q_1,\cdots,q_{s+1})$ 描述。

通过变换方程将约束方程写为

$$f(q,t) = 0$$

2、广义约束力:

$$Q_{k}^{'} = \overrightarrow{N} \cdot \frac{\partial \overrightarrow{r}}{\partial q_{k}} = \lambda \frac{\partial f}{\partial q_{k}}$$

其中 λ 称为拉格朗日乘子,若将 Q_k' 排列为矢量 \overrightarrow{Q}' ,则在广义坐标 \mathbf{q} 构成的空间中, \overrightarrow{Q}' 与超曲面 $\mathbf{f}=0$ 垂直。

将牛顿方程 $\overrightarrow{P}+\overrightarrow{N}-\overrightarrow{P}=0$ 在方向 $\frac{\partial \overrightarrow{r}}{\partial q_k}$ 上作投影。得到:

$$\frac{\delta L}{\delta q_{k}} + Q_{k}' = 0$$

即在求解约束力问题时有 q,λ 这 s+2 个未知量及如下 s+2 个方程:

$$\begin{cases} \frac{d}{dt} \frac{\partial L}{\partial q_k} - \frac{\partial L}{\partial q_k} = \lambda \frac{\partial f}{\partial q_k} \\ f(q, t) = 0 \end{cases}$$

注意写出上式第一个方程(也叫带乘子的拉格朗日方程)时不可提前代入约束条件,否则将会化为广义坐标相互独立的情况。

由这 s+2 个方程就可以确定体系的位形 q_k 以及广义约束力 $\lambda \frac{\partial f}{\partial q_k}$ 。

2.2.2 几点说明

若将 λ 视为广义坐标,则可定义如下拉格朗日函数:

$$\widetilde{L} \triangleq L(q, \dot{q}, t) + \lambda f(q, t) = \widetilde{L}(q, \lambda, \dot{q}, t)$$

拉格朗日方程则化为

$$\begin{cases} \frac{\delta \tilde{L}}{\delta q_k} = \frac{\delta L}{\delta q_k} + \lambda \frac{\partial f}{\partial q_k} = 0\\ \frac{\delta \tilde{L}}{\delta \lambda} = f = 0 \end{cases}$$

即对应了 2.2.1 中求解约束力问题的 s+2 个方程。

同样的定义了新的 Jacob 积分:

$$\widetilde{h} \triangleq \widetilde{P_k} \dot{q_k} + \widetilde{P_\lambda} \dot{\lambda} - \widetilde{L} = h - \lambda f$$

与不含约束方程的雅可比积分有相同结论,若 \widetilde{L} 不显含 t,则 $\widetilde{h}=const$ 而对于多个约束的情况,只需将 λf 用 $\lambda_{\alpha}f_{\alpha}$ 替换即可。

静力学问题:

前面提到, 若仅需求解平衡位置, 则使广义力为 0 即可求解:

$$\frac{\partial U}{\partial q_k} = 0$$

若要得到体系平衡位置的约束力,则使用拉格朗日乘子法:

$$\frac{\partial U}{\partial q_k} = \lambda \frac{\partial f}{\partial q_k}$$

即

$$Q_k' + Q_k = 0$$