Double-click (or enter) to edit

Assignment 3

KARTHIK R

21BIT0023

import pandas as pd
df=pd.read_csv('/content/penguins_size.csv')
df

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	E
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE	C
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE	
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE	
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE	
339	Gentoo	Biscoe	NaN	NaN	NaN	NaN	NaN	
340	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	FEMALE	
341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	MALE	
342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	FEMALE	
343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	MALE	

344 rows × 7 columns

Univariate Analysis
a) Pie Chart
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(4,4))
condition=df['sex']=='MALE'
plt.pie(condition)
plt.show()

Distribution Plot
plt.figure(figsize=(4,4))
sns.distplot(df['body_mass_g'])
plt.show()

<ipython-input-3-918725f44299>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

Bivariate Anaysis
a) Scatter graph
plt.figure(figsize=(4,4))
plt.scatter(df['culmen_length_mm'], df['culmen_depth_mm'])
plt.show()

b) Bar graph
plt.figure(figsize=(4,4))
plt.bar(df['flipper_length_mm'], df['body_mass_g'])
plt.show()

c) Jointplot
sns.jointplot(x='culmen_length_mm', y='body_mass_g',data=df)

<seaborn.axisgrid.JointGrid at 0x7f8b91b91c30>

a) Heatmap
sns.heatmap(df.corr())

<ipython-input-7-d40a44c373f1>:3: FutureWarning: The default value of numeric_only in DataFrame.corr is sns.heatmap(df.corr())

b) Pairplot
sns.pairplot(df)

Perform descriptive statistics on the dataset.
df.describe()

culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	
342.000000	342.000000	342.000000	342.000000	11.
43.921930	17.151170	200.915205	4201.754386	
5.459584	1.974793	14.061714	801.954536	
32.100000	13.100000	172.000000	2700.000000	
39.225000	15.600000	190.000000	3550.000000	
44.450000	17.300000	197.000000	4050.000000	
48.500000	18.700000	213.000000	4750.000000	
59.600000	21.500000	231.000000	6300.000000	
	342.000000 43.921930 5.459584 32.100000 39.225000 44.450000	43.921930 17.151170 5.459584 1.974793 32.100000 13.100000 39.225000 15.600000 44.450000 17.300000 48.500000 18.700000	342.000000 342.000000 342.000000 43.921930 17.151170 200.915205 5.459584 1.974793 14.061714 32.100000 13.100000 172.000000 39.225000 15.600000 190.000000 44.450000 17.300000 197.000000 48.500000 18.700000 213.000000	342.000000 342.000000 342.000000 342.000000 43.921930 17.151170 200.915205 4201.754386 5.459584 1.974793 14.061714 801.954536 32.100000 13.100000 172.000000 2700.00000 39.225000 15.600000 190.00000 3550.000000 44.450000 17.300000 197.000000 4050.000000 48.500000 18.700000 213.000000 4750.000000

```
\label{thm:model} \mbox{\tt\# Check for Missing values and deal with them.} \\ \mbox{\tt df.isnull().any()}
```

```
species False
island False
culmen_length_mm True
culmen_depth_mm True
flipper_length_mm True
body_mass_g True
sex True
dtype: bool
```

df.sex.value_counts ()

MALE 168
FEMALE 165
. 1
Name: sex, dtype: int64

```
df['sex']=df['sex'].replace(".", "MALE")
df.sex. value_counts ()
```

```
MALE
     FEMALE
              165
     Name: sex, dtype: int64
df['sex']=df['sex'].fillna ("MALE")
df.median ()
     <ipython-input-13-73b9c0aff334>:2: FutureWarning: The default value of numeric_only in DataFrame.median is deprecated. In a future
       df.median ()
     {\tt culmen\_length\_mm}
                            44.45
     culmen_depth_mm
                            17.30
     flipper_length_mm
                           197.00
     body_mass_g
                          4050.00
     dtype: float64
    4
df=df.fillna(df.median ( ))
df.isnull ().sum()
     <ipython-input-14-fea379c4db1f>:1: FutureWarning: The default value of numeric_only in DataFrame.median is deprecated. In a future
       df=df.fillna(df.median ( ))
     species
                          0
     island
                          0
     culmen_length_mm
     culmen_depth_mm
                          0
     flipper_length_mm
                          0
     body_mass_g
                          0
                          0
     sex
     dtype: int64
    4
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 344 entries, 0 to 343
     Data columns (total 7 columns):
      # Column
                           Non-Null Count Dtype
      0 species
                             344 non-null
                                             object
         island
                             344 non-null
                                             object
         culmen_length_mm 344 non-null
                                             float64
                             344 non-null
      3
          culmen_depth_mm
                                             float64
      4
         flipper_length_mm 344 non-null
                                             float64
```

Find the outliers and replace them outliers plt.figure(figsize=(4,4)) sns.boxplot(df.culmen_length_mm)

dtypes: float64(4), object(3) memory usage: 18.9+ KB

5

6 sex

body_mass_g

344 non-null

344 non-null

float64

object

plt.figure(figsize=(4,4)) sns.boxplot(df.culmen_depth_mm)

plt.figure(figsize=(4,4))
sns.boxplot(df.flipper_length_mm)

plt.figure(figsize=(4,4))
sns.boxplot(df.body_mass_g)


```
# no outliers
# Check for Categorical columns and perform encoding.
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):
                      Non-Null Count Dtype
# Column
    -----
                       -----
                       344 non-null
                                      object
 0
    species
                       344 non-null
 1
    island
                                      object
    culmen_length_mm 344 non-null
                                      float64
 3
     culmen_depth_mm
                       344 non-null
                                      float64
    flipper_length_mm 344 non-null
                                      float64
    body_mass_g
                       344 non-null
                                      float64
    sex
                       344 non-null
                                      object
dtypes: float64(4), object(3)
memory usage: 18.9+ KB
```

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['sex'] = le.fit_transform(df['sex'])
df['species'] = le.fit_transform(df['species'])
df['island'] = le.fit_transform(df['island'])
df.head()
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	\blacksquare
0	0	2	39.10	18.7	181.0	3750.0	1	ıl.
1	0	2	39.50	17.4	186.0	3800.0	0	
2	0	2	40.30	18.0	195.0	3250.0	0	
3	0	2	44.45	17.3	197.0	4050.0	1	
4	0	2	36.70	19.3	193.0	3450.0	0	

Check the correlation of independent variables with the target
df.corr().species.sort_values(ascending=False)

```
      species
      1.000000

      flipper_length_mm
      0.850819

      body_mass_g
      0.747547

      culmen_length_mm
      0.728706

      sex
      0.010240

      island
      -0.635659

      culmen_depth_mm
      -0.741282

      Name: species, dtype: float64
```

Split the data into dependent and independent variables
x=df.drop(columns=['species'], axis=1)
y=df.species
x.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	
0	2	39.10	18.7	181.0	3750.0	1	ılı
1	2	39.50	17.4	186.0	3800.0	0	
2	2	40.30	18.0	195.0	3250.0	0	
3	2	44.45	17.3	197.0	4050.0	1	
4	2	36.70	19.3	193.0	3450.0	0	

y.head()

Name: species, dtype: int64

Scaling the data
from sklearn.preprocessing import MinMaxScaler
scale=MinMaxScaler()
x_s=pd.DataFrame(scale.fit_transform(x),columns=x.columns)
x_s.head()

	island	<pre>culmen_length_mm</pre>	${\tt culmen_depth_mm}$	flipper_length_mm	body_mass_g	sex
0	1.0	0.254545	0.666667	0.152542	0.291667	1.0
1	1.0	0.269091	0.511905	0.237288	0.305556	0.0
2	1.0	0.298182	0.583333	0.389831	0.152778	0.0
3	1.0	0.449091	0.500000	0.423729	0.375000	1.0
4	1.0	0.167273	0.738095	0.355932	0.208333	0.0
4						

```
# Split the data into training and testing
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x_s,y,test_size=0.2,random_state=0)
# check the training and testing data shape.
x_train.shape
```

(275, 6)

x_test.shape

(69, 6)

y_train.shape

(275,)

y_test.shape

(69,)

✓ 0s completed at 8:47 PM

• ×