Prof. Amador Martin-Pizarro Übungen: Dr. Francesco Gallinaro

Modelltheorie II

Homework Sheet 9 Deadline: 03.07.2023, 14 Uhr

Unless explicitly mentioned, we work inside a sufficiently large saturated model \mathbb{U} of an ω -stable complete first-order theory T with infinite models in a fixed language \mathcal{L} .

Exercise 1 (4 Points). Let G be a definable group such that the formula " $x \in G$ " is strongly minimal. Given a definable subgroup $H \leq G$, show that either H is finite or H = G.

Deduce from the above that \mathbb{C} is both additively and multiplicatively connected.

Exercise 2 (7 Points). Let G be a group definable over the subset of parameters B of \mathbb{U} .

- a) Show that every element of G can be written as a product of two elements, each generic over B.
- b) Consider a generic element a over B. If $g \downarrow_B a$, show that $g \cdot a$ is generic over B, g. In particular we have $g \cdot a \downarrow_B g$.
- c) Deduce that the product $g \cdot h$ of two elements g and h, both generic over B and with $g \downarrow_B h$, is again generic over B. Moreover, show that $g \cdot h \downarrow_B g$ and $g \cdot h \downarrow_B h$.
- d) Suppose now that an element a of G satisfies that $g \cdot a \downarrow_B a$ whenever $g \downarrow_B a$. Conclude that a is generic over B.

Exercise 3 (9 Points). Consider the saturated model \mathbb{C} of the strongly minimal theory ACF₀ in the language of rings, as in Exercise 3 of the homework sheet 7.

a) Given b_1, \ldots, b_n algebraically independent, let p be the type over $B = \{b_1, \ldots, b_n\}$ of maximal rank containing the definable set $X = \{(x_1, \ldots, x_n) \in \mathbb{C}^n \mid \sum_{i=1}^n b_i \cdot x_i = 1\}$. Describe explicitly the additive stabilizer $\operatorname{Stab}(p)$ of p, as a B-definable subgroup of $(\mathbb{C}^n, +)$. What is its Morley rank and degree?

Let now $Z = \{(x,y) \in \mathbb{C}^2 \mid y = x^2\}$ and q its unique type of maximal rank over \emptyset . Notice that q is stationary. Set $H = \operatorname{Stab}(q)$ and H^0 its connected component.

- b) Given an element (g,h) of H^0 generic over a realization (a,b) of q, which algebraic equation does (g,h) satisfy over (a,b)?
- c) Conclude that H^0 is trivial, using that H^0 is connected. **Hint:** Take two suitable elements of H^0 over (a, b).
- d) Is H trivial?

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.07 IM KELLER DES MATHEMATISCHEN INSTITUTS.