Data 621 Homework 5: Wine

Tommy Jenkins, Violeta Stoyanova, Todd Weigel, Peter Kowalchuk, Eleanor R-Secoquian, Anthony Pagan

12/05/2019

0.1 OVERVIEW

In this homework assignment, we will explore, analyze and model a data set containing information on approximately 12,000 commercially available wines. The variables are mostly related to the chemical properties of the wine being sold. The response variable is the number of sample cases of wine that were purchased by wine distribution companies after sampling a wine. These cases would be used to provide tasting samples to restaurants and wine stores around the United States. The more sample cases purchased, the more likely is a wine to be sold at a high end restaurant. A large wine manufacturer is studying the data in order to predict the number of wine cases ordered based upon the wine characteristics. If the wine manufacturer can predict the number of cases, then that manufacturer will be able to adjust their wine offering to maximize sales.

0.2 Objective:

Our objective is to build a count regression model to predict the number of cases of wine that will be sold given certain properties of the wine. HINT: Sometimes, the fact that a variable is missing is actually predictive of the target. You can only use the variables given to you (or variables that you derive from the variables provided).

Below is a short description of the variables of interest in the data set:

Variable Name	Definition	Theoretical Effect
INDEX	Identification Variable (do not use)	None
TARGET	Number of Cases Purchased	None
AcidIndex	Proprietary method of testing total acidity of wine by using a weighted average	
Alcohol	Alcohol Content	
Chlorides	Chloride content of wine	
CitricAcid	Citric Acid Content	
Density	Density of Wine	
FixedAcidity	Fixed Acidity of Wine	

FreeSulfurDioxide	Sulfur Dioxide content of wine	
LabelAppeal	Marketing Score indicating the appeal of label design for consumers. High numbers suggest customers like the label design. Negative numbers suggest customes don't like the design.	Many consumers purchase based on the visual appeal of the wine label design. Higher numbers suggest better sales
ResidualSugar	Residual Sugar of wine	
STARS	Wine rating by a team of experts. 4 Stars = Excellent, 1 Star = Poor	A high number of stars suggests high sales
Sulphates	Sulfate conten of wine	
TotalSulfurDioxide	Total Sulfur Dioxide of Wine	
VolatileAcidity	Volatile Acid content of wine	
рН	pH of wine	

1 DATA EXPLORATION

1.1 Data Summary

With over 12,000 observations in our sample, we must look into the data and explore key summary statistics. We also calculate the counts for NA's, 0, negative, and unique values.

```
##
    INDEX
                    TARGET FixedAcidity VolatileAcidity
##
   Min. : 1
                 Min. :0.000
                              Min. :-18.100 Min. :-2.7900
   1st Qu.: 4038
                1st Qu.:2.000
                               1st Qu.: 5.200 1st Qu.: 0.1300
##
                                               Median : 0.2800
##
   Median: 8110
                Median :3.000
                               Median : 6.900
##
   Mean : 8070
                Mean :3.029
                               Mean : 7.076
                                               Mean : 0.3241
   3rd Qu.:12106
                3rd Qu.:4.000
                               3rd Qu.: 9.500
                                                3rd Qu.: 0.6400
##
##
   Max.
         :16129
                 Max. :8.000
                                      : 34.400
                                               Max. : 3.6800
                               Max.
##
   CitricAcid
                  ResidualSugar
                                    Chlorides
##
                                                   FreeSulfurDioxide
##
   Min.
       :-3.2400
                   Min. :-127.800
                                    Min. :-1.1710 Min. :-555.00
##
   1st Qu.: 0.0300
                  1st Qu.: -2.000
                                    1st Qu.:-0.0310 1st Qu.: 0.00
   Median : 0.3100
                                    Median: 0.0460 Median: 30.00
##
                   Median : 3.900
                                    Mean : 0.0548 Mean : 30.85
##
   Mean
        : 0.3084
                   Mean
                        : 5.419
##
   3rd Qu.: 0.5800
                   3rd Qu.: 15.900
                                    3rd Qu.: 0.1530 3rd Qu.: 70.00
##
   Max.
       : 3.8600
                   Max. : 141.150
                                    Max. : 1.3510 Max. : 623.00
                   NA's
                                                   NA's :647
##
                         :616
                                    NA's :638
##
   TotalSulfurDioxide Density
                                        рΗ
                                                   Sulphates
##
   Min. :-823.0
                   Min. :0.8881
                                   Min. :0.480
                                                Min. :-3.1300
                   1st Ou.:0.9877
##
   1st Ou.: 27.0
                                   1st Ou.:2.960
                                                1st Ou.: 0.2800
##
   Median : 123.0
                   Median :0.9945
                                  Median :3.200
                                                Median : 0.5000
##
   Mean : 120.7
                   Mean :0.9942
                                   Mean :3.208
                                                Mean : 0.5271
                   3rd Qu.:1.0005 3rd Qu.:3.470
##
   3rd Qu.: 208.0
                                                 3rd Qu.: 0.8600
##
   Max. :1057.0
                    Max. :1.0992
                                   Max. :6.130
                                                 Max. : 4.2400
   NA's :682
                                   NA's :395
##
                                                 NA's :1210
##
    Alcohol
                 LabelAppeal
                                    AcidIndex
                                                     STARS
##
   Min. :-4.70
                Min. :-2.000000
                                   Min. : 4.000
                                                  Min. :1.000
   1st Qu.: 9.00
                                   1st Qu.: 7.000
##
                1st Qu.:-1.000000
                                                  1st Qu.:1.000
##
   Median:10.40
                Median : 0.000000
                                   Median : 8.000
                                                  Median :2.000
##
   Mean :10.49
                 Mean :-0.009066
                                  Mean : 7.773
                                                  Mean :2.042
   3rd Qu.:12.40
                 3rd Qu.: 1.000000
                                   3rd Qu.: 8.000
                                                  3rd Qu.:3.000
##
                 Max. : 2.000000
##
   Max.
        :26.50
                                   Max. :17.000
                                                  Max. :4.000
   NA's :653
##
                                                  NA's :3359
```

	vars	n	mean	sd	median	trimmed	mad
TARGET	1	12795	3.0290739	1.9263682	3.00000	3.0538244	1.4826000
FixedAcidity	2	12795	7.0757171	6.3176435	6.90000	7.0736739	3.2617200
VolatileAcidity	3	12795	0.3241039	0.7840142	0.28000	0.3243890	0.4299540
CitricAcid	4	12795	0.3084127	0.8620798	0.31000	0.3102520	0.4151280
ResidualSugar	5	12179	5.4187331	33.7493790	3.90000	5.5800410	15.7155600
Chlorides	6	12157	0.0548225	0.3184673	0.04600	0.0540159	0.1349166
FreeSulfurDioxide	7	12148	30.8455713	148.7145577	30.00000	30.9334877	56.3388000
TotalSulfurDioxide	8	12113	120.7142326	231.9132105	123.00000	120.8895367	134.9166000
Density	9	12795	0.9942027	0.0265376	0.99449	0.9942130	0.0093552
рН	10	12400	3.2076282	0.6796871	3.20000	3.2055706	0.3854760
Sulphates	11	11585	0.5271118	0.9321293	0.50000	0.5271453	0.4447800
Alcohol	12	12142	10.4892363	3.7278190	10.40000	10.5018255	2.3721600
LabelAppeal	13	12795	-0.0090660	0.8910892	0.00000	-0.0099639	1.4826000
AcidIndex	14	12795	7.7727237	1.3239264	8.00000	7.6431572	1.4826000
STARS	15	9436	2.0417550	0.9025400	2.00000	1.9711258	1.4826000

We visualize these counts per variable and then explore solutions further below.

The dataset consists of two data files: training and evaluation. The training dataset contains 16 columns, and the evaluation dataset also contains 16 columns.

1.2 Missing Data

An important aspect of any dataset is to determine how much, if any, data is missing. We look at all the variables to see which if any have missing data. We look at the basic descriptive statistics as well as the missing data and percentages.

We start by looking at the dataset as a whole and determine how many complete rows, that is rows with data for all predictors we have.

```
## Mode FALSE TRUE
## logical 6359 6436
```



```
3000 2000 1000 0
Set Size
```

With these results, if we remove all rows with incomplete rows, there will be a total of 6436 rows out of 12795. If we eliminate all non-complete rows and keep only rows with data for all the predictors in the dataset, our new dataset will results in 50% of the total dataset. We create a subset of data with complete cases if needed later in our analysis.

```
## Observations: 6,436
## Variables: 16
## $ INDEX
                        <int> 4, 5, 13, 14, 16, 23, 24, 25, 26, 27, 28, 3...
  $ TARGET
                        <int> 5, 3, 6, 0, 3, 4, 5, 4, 3, 2, 3, 4, 4, 3, 4...
   $ FixedAcidity
                        <dbl> 7.1, 5.7, 5.5, -17.2, 6.0, -1.3, 10.0, 6.8,...
  $ VolatileAcidity
                        <dbl> 2.640, 0.385, -0.220, 0.520, 0.330, 0.220, ...
   $ CitricAcid
                        <dbl> -0.88, 0.04, 0.39, 0.15, -1.06, 2.95, 0.27,...
   $ ResidualSugar
                        <dbl> 14.80, 18.80, 1.80, -33.80, 3.00, -53.00, 1...
## $ Chlorides
                        <dbl> 0.037, -0.425, -0.277, -0.022, 0.518, 0.541...
  $ FreeSulfurDioxide
                        <dbl> 214, 22, 62, 551, 5, -85, -188, -88, 87, 15...
   $ TotalSulfurDioxide <dbl> 142, 115, 180, 65, 378, -266, 229, 508, -28...
                        <dbl> 0.99518, 0.99640, 0.94724, 0.99340, 0.96643...
## $ Density
##
  $ pH
                        <dbl> 3.12, 2.24, 3.09, 4.31, 3.55, 3.61, 3.14, 3...
                        <dbl> 0.48, 1.83, 0.75, 0.56, -0.86, 0.82, 0.88, ...
   $ Sulphates
## $ Alcohol
                        <dbl> 22.0, 6.2, 12.6, 13.1, 3.9, 10.0, 11.0, 18....
  $ LabelAppeal
                        <int> -1, -1, 0, 1, 1, 0, 1, -1, -1, -1, 0, 0, 1,...
  $ AcidIndex
                        <int> 8, 6, 8, 5, 7, 8, 11, 8, 6, 7, 8, 7, 7, 8, ...
## $ STARS
                        <int> 3, 1, 4, 1, 2, 3, 2, 2, 1, 1, 1, 2, 2, 1, 3...
```

1.3 Visualization

We consider each variable

1.3.1 Target Variable

The distribution of our target variable is normal with the exception of many 0 Wine count entries. At such a high percentage, the zero scores likely reflect lack of popularity rather than error, especially if they get low human ratings.

1.3.1.1 Histogram

Wine Counts

1.3.1.2 Integers

The integer variables have a small range and look normal, similar to TARGET. Stars has the least number of values and has many 0 entries. We will treat these as meaningful due to the percentage of NA's. Decision makers who buy wine are similar to the population who creates the integer variables and the range of values is small, so we choose not

to impute these.

1.3.1.3 Doubles

The Double variable types look very similar to one another, and look somewhat normal. These look okay to impute after we've run our diagnostic plots.

1.3.2 Outliers

1.3.2.1 Boxplot

Boxplot Without outliers

1.3.2.2 Correlation

We note that the human ratings all have high correlations than do our chemical features.

2 DATA PREPERATION

,, ,,				
##	_	_	_	unique_count
## TARGET	0	0	2734	9
## FixedAcidity	0	1621	548	470
## VolatileAcidity	0	2827	9982	815
## CitricAcid	0	2966	9686	602
## ResidualSugar	616	NA	NA	2078
## Chlorides	638	NA	NA	1664
## FreeSulfurDioxide	647	NA	NA	1000
## TotalSulfurDioxide	682	NA	NA	1371
## Density	0	0	9492	5933
## pH	395	NA	NA	498
## Sulphates	1210	NA	NA	631
## Alcohol	653	NA	NA	402
## LabelAppeal	0	3640	5617	5
## AcidIndex	0	0	0	14
## STARS	3359	NA	NA	5

We recall that STARS has a high correlation with TARGET and we see that it has

r (wine1["STARS", "na_count"]/nrow(WineTrain))*100 % NA's and no zero's. We change NA to 0.

##	na_count	neg_count	zero_count	unique_count
## STARS	3359	NA	NA	5
## Sulphates	1210	NA	NA	631
## TotalSulfurDioxide	682	NA	NA	1371
## Alcohol	653	NA	NA	402
## FreeSulfurDioxide	647	NA	NA	1000
## Chlorides	638	NA	NA	1664
## ResidualSugar	616	NA	NA	2078
## рН	395	NA	NA	498
## TARGET	0	0	2734	9
## FixedAcidity	0	1621	548	470
## VolatileAcidity	0	2827	9982	815
## CitricAcid	0	2966	9686	602
## Density	0	0	9492	5933
## LabelAppeal	0	3640	5617	5
## AcidIndex	0	0	0	14

The remaining NA counts include continuous variables which we will impute.

We can normalize the negative counts, through BoxCox, since one of them has some correlation and is based on human ratings. While the negative ratings make the data irregular to work with, it is unlikely that so many people (r (wine1["STARS", "neg_count"]/nrow(WineTrain))*100 %) did not mean to give a negative rating. We can do this to the continuous variables as well rather than delete them, since they also have high counts.

##	na_count	neg_count	zero_count	unique_count	
## LabelAppeal	0	3640	5617	5	
## CitricAcid	0	2966	9686	602	
## VolatileAcidity	0	2827	9982	815	
## FixedAcidity	0	1621	548	470	
## TARGET	0	0	2734	9	
## Density	0	0	9492	5933	
## AcidIndex	0	0	0	14	
## ResidualSugar	616	NA	NA	2078	
## Chlorides	638	NA	NA	1664	
## FreeSulfurDioxide	647	NA	NA	1000	
## TotalSulfurDioxide	682	NA	NA	1371	
## pH	395	NA	NA	498	
## Sulphates	1210	NA	NA	631	
## Alcohol	653	NA	NA	402	
## STARS	3359	NA	NA	5	

By the same logic we will leave the zero counts alone until normalization. We can exclude the TARGET variable unless we will be normalizing it specifically for our later work.

##	na_count	neg_count	zero_count	unique_count	
## VolatileAcidity	0	2827	9982	815	
## CitricAcid	0	2966	9686	602	
## Density	0	0	9492	5933	
## LabelAppeal	0	3640	5617	5	
## TARGET	0	0	2734	9	
## FixedAcidity	0	1621	548	470	
## AcidIndex	0	0	0	14	
## ResidualSugar	616	NA	NA	2078	
## Chlorides	638	NA	NA	1664	
## FreeSulfurDioxide	647	NA	NA	1000	
## TotalSulfurDioxide	682	NA	NA	1371	
## pH	395	NA	NA	498	
## Sulphates	1210	NA	NA	631	
## Alcohol	653	NA	NA	402	
## STARS	3359	NA	NA	5	

We want to take a look at the least unique counts next, and by a large margin LabelAppeal, STARS, and AcidIndex show low unique counts. We can exclude TARGET until we analyze our feature transformation decisions. We see that AcidIndex is a proprietary weighted method for measuring Acid. We do not need to impute this, given its complexity and relative influence, and the risk or changing our results our very small ranges.

##	na_count	neg_count	zero_count	unique_count
## LabelAppeal	0	3640	5617	5
## STARS	3359	NA	NA	5
## TARGET	0	0	2734	9
## AcidIndex	0	0	0	14
## Alcohol	653	NA	NA	402
## FixedAcidity	0	1621	548	470
## pH	395	NA	NA	498
## CitricAcid	0	2966	9686	602
## Sulphates	1210	NA	NA	631
## VolatileAcidity	0	2827	9982	815
## FreeSulfurDioxide	647	NA	NA	1000
## TotalSulfurDioxide	682	NA	NA	1371
## Chlorides	638	NA	NA	1664
## ResidualSugar	616	NA	NA	2078
## Density	0	0	9492	5933

3 BUILD MODEL

3.1 Model 1: Poisson Regression (all predictors)

For the first model, we used the Poisson regression and all of the predictors.

```
##
## Call:
## glm(formula = TARGET ~ . - INDEX, family = poisson, data = WineTrain)
##
## Deviance Residuals:
##
      Min
                   Median
                                 3Q
                1Q
                                        Max
## -3.3301 -0.2799 0.0536 0.3861 1.7744
##
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                    1.688e+00 2.503e-01 6.742 1.56e-11 ***
                     4.868e-04 1.053e-03 0.462 0.6438
## FixedAcidity
## VolatileAcidity
                   -2.481e-02 8.362e-03 -2.968 0.0030 **
## CitricAcid
                    -1.614e-03 7.578e-03 -0.213 0.8313
                    -6.875e-05 1.939e-04 -0.355 0.7229
## ResidualSugar
## Chlorides
                    -3.327e-02 2.053e-02 -1.621 0.1050
## FreeSulfurDioxide 6.032e-05 4.399e-05 1.371 0.1703
## TotalSulfurDioxide 2.141e-05 2.854e-05 0.750 0.4531
## Density
                    -3.695e-01 2.462e-01 -1.501 0.1334
## pH
                    -2.547e-03 9.608e-03 -0.265 0.7909
## Sulphates
                    -6.672e-03 7.051e-03 -0.946 0.3440
## Alcohol
                    4.443e-03 1.772e-03 2.507 0.0122 *
## LabelAppeal
                    1.783e-01 7.958e-03 22.403 < 2e-16 ***
## AcidIndex
                    -4.762e-02 5.911e-03 -8.056 7.88e-16 ***
## STARS2
                     3.232e-01 1.740e-02 18.574 < 2e-16 ***
## STARS3
                     4.387e-01 1.896e-02 23.134 < 2e-16 ***
## STARS4
                     5.509e-01 2.688e-02 20.491 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 5844.1 on 6435 degrees of freedom
##
## Residual deviance: 3928.8 on 6419 degrees of freedom
     (6359 observations deleted due to missingness)
## AIC: 23095
##
## Number of Fisher Scoring iterations: 5
```


3.2 Model 2: Poisson Regression (reduced predictors)

For the second model, based on model 1, we reduced the number of predictors.

```
##
## Call:
## glm(formula = TARGET ~ VolatileAcidity + CitricAcid + Chlorides +
##
      FreeSulfurDioxide + TotalSulfurDioxide + Density + pH + Sulphates +
##
      Alcohol + LabelAppeal + AcidIndex + STARS, family = poisson,
##
      data = WineTrain)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  3Q
                                         Max
## -3.3170 -0.2829 0.0543 0.3858 1.7731
##
## Coefficients:
                      Estimate Std. Error z value Pr(>|z|)
##
                     1.669e+00 2.442e-01 6.832 8.37e-12 ***
## (Intercept)
                     -2.319e-02 8.142e-03 -2.849 0.00439 **
## VolatileAcidity
## CitricAcid
                     -4.347e-04 7.395e-03 -0.059 0.95313
## Chlorides
                     -2.918e-02 2.000e-02 -1.459 0.14447
## FreeSulfurDioxide 7.263e-05 4.282e-05 1.696 0.08987 .
## TotalSulfurDioxide 2.206e-05 2.785e-05 0.792 0.42828
## Density
                     -3.417e-01 2.402e-01 -1.422 0.15491
## pH
                     -3.949e-03 9.411e-03 -0.420 0.67478
## Sulphates
                     -6.911e-03 6.869e-03 -1.006 0.31437
## Alcohol
                     4.113e-03 1.730e-03 2.377 0.01743 *
                     1.766e-01 7.744e-03 22.801 < 2e-16 ***
## LabelAppeal
## AcidIndex
                     -4.784e-02 5.720e-03 -8.363 < 2e-16 ***
## STARS2
                     3.283e-01 1.700e-02 19.307 < 2e-16 ***
                     4.443e-01 1.852e-02 23.996 < 2e-16 ***
## STARS3
## STARS4
                      5.556e-01 2.611e-02 21.280 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
##
      Null deviance: 6145.7 on 6746 degrees of freedom
## Residual deviance: 4123.6 on 6732 degrees of freedom
     (6048 observations deleted due to missingness)
##
## AIC: 24216
##
## Number of Fisher Scoring iterations: 5
```


3.3 Model 3: Gaussian Regression (significant predictors)

```
##
## Call:
## glm(formula = TARGET ~ VolatileAcidity + FreeSulfurDioxide +
      TotalSulfurDioxide + Chlorides + Density + pH + Sulphates +
##
##
      LabelAppeal + AcidIndex + STARS, family = gaussian, data = WineTrain)
##
## Deviance Residuals:
##
      Min
                10
                    Median
                                  3Q
                                          Max
## -5.1949 -0.5359 0.0996 0.7405
                                       3.3160
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
                      5.331e+00 5.229e-01 10.194 < 2e-16 ***
## (Intercept)
                     -8.491e-02 1.740e-02 -4.881 1.08e-06 ***
## VolatileAcidity
                      2.752e-04 9.243e-05 2.978 0.00291 **
## FreeSulfurDioxide
## TotalSulfurDioxide 7.090e-05 5.952e-05 1.191 0.23358
                     -1.158e-01 4.293e-02 -2.697 0.00701 **
## Chlorides
                     -1.300e+00 5.169e-01 -2.516 0.01191 *
## Density
## pH
                     -1.875e-03 2.020e-02 -0.093 0.92607
## Sulphates
                     -2.413e-02 1.471e-02 -1.641 0.10092
## LabelAppeal
                     6.411e-01 1.649e-02 38.878 < 2e-16 ***
                     -1.611e-01 1.153e-02 -13.966 < 2e-16 ***
## AcidIndex
## STARS2
                     1.005e+00 3.313e-02 30.326 < 2e-16 ***
## STARS3
                      1.513e+00 3.839e-02 39.411 < 2e-16 ***
## STARS4
                      2.151e+00 6.199e-02 34.701 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for gaussian family taken to be 1.319364)
##
##
      Null deviance: 17036.4 on 7102 degrees of freedom
## Residual deviance: 9354.3 on 7090 degrees of freedom
     (5692 observations deleted due to missingness)
##
## AIC: 22141
##
## Number of Fisher Scoring iterations: 2
```


Model 3 shows a better Q-Q plot than the previous two models.

3.4 Model 4: Negative Binomial Regression

```
##
## Call:
## glm(formula = TARGET ~ VolatileAcidity + TotalSulfurDioxide +
      pH + Sulphates + LabelAppeal + AcidIndex + STARS, family = negative.binomial(1),
##
##
      data = WineTrain)
##
## Deviance Residuals:
       Min
                  1Q Median
                                      3Q
                                               Max
## -1.93848 -0.13164 0.02425 0.17731
                                           0.87362
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
                     1.443e+00 3.642e-02 39.613 < 2e-16 ***
## (Intercept)
## VolatileAcidity
                     -2.766e-02 5.397e-03 -5.125 3.04e-07 ***
## TotalSulfurDioxide 2.430e-05 1.823e-05 1.333 0.1827
## pH
                     -3.613e-03 6.190e-03 -0.584 0.5595
                     -8.920e-03 4.527e-03 -1.970 0.0488 *
## Sulphates
                     1.862e-01 5.081e-03 36.649 < 2e-16 ***
## LabelAppeal
## AcidIndex
                     -5.607e-02 3.622e-03 -15.480 < 2e-16 ***
## STARS2
                     3.232e-01 1.037e-02 31.160 < 2e-16 ***
## STARS3
                     4.375e-01 1.185e-02 36.914 < 2e-16 ***
## STARS4
                      5.464e-01 1.839e-02 29.716 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(1) family taken to be 0.1073286)
##
##
      Null deviance: 2393.6 on 7878 degrees of freedom
## Residual deviance: 1870.2 on 7869 degrees of freedom
##
     (4916 observations deleted due to missingness)
## AIC: 37774
##
## Number of Fisher Scoring iterations: 5
```


4 SELECT MODEL

4.1 Pick the best regression model

	Model 1	Model 2	Model 3	Model 4
AIC	23095.3698167386	24216.2765273715	22141.0249335269	37774.0980469856
BIC	23210.4540793765	24318.5293259809	22237.1807486529	37843.8176096981

With 4 models computed, we select the model with the lowest combination of AIC and BIC. From the table, we can see the model to pick is model 3

5 CONCLUSION

Model 3 showed the best result. We can observe its performance by plotting the datasets TARGET values agaisnt the predicted values. One thing we observe is that the model doesn't predict a TARGET of 8.

Other models, although of worse performace according to our selection metric, do show results of TARGET 8, but as can be seen in the graph below, they do not corresponde to real TARGET 8 classifications.

6 APPENDIX

Code used in analysis

```
knitr::opts_chunk$set(echo = FALSE, warning = FALSE)
require(knitr)
library(MASS)
library(psych)
library(kableExtra)
library(tidyverse)
library(faraway)
library(gridExtra)
library(reshape2)
library(leaps)
library(caret)
library(naniar)
library(pander)
library(pROC)
```

```
library(corrplot)
#library(jtools)
WineTrain <- read.csv("https://raw.githubusercontent.com/pkowalchuk/CUNY621-HW5/master/wine
-training-data.csv", na.strings="", header=TRUE)
WineTrain1 <- WineTrain
WineEval <- read.csv("wine-evaluation-data.csv",na.strings="",header=TRUE)</pre>
vr <- c("INDEX", "TARGET", "AcidIndex", "Alcohol", "Chlorides", "CitricAcid", "Density", "F
ixedAcidity", "FreeSulfurDioxide", "LabelAppeal", "ResidualSugar", "STARS", "Sulphates", "T
otalSulfurDioxide", "VolatileAcidity", "pH")
def <- c("Identification Variable (do not use)", "Number of Cases Purchased", "Proprietary
method of testing total acidity of wine by using a weighted average", "Alcohol Content", "C
hloride content of wine", "Citric Acid Content", "Density of Wine", "Fixed Acidity of Wine"
, "Sulfur Dioxide content of wine", "Marketing Score indicating the appeal of label design
for consumers. High numbers suggest customers like the label design. Negative numbers sugge
st customes don't like the design.", "Residual Sugar of wine", "Wine rating by a team of ex
perts. 4 Stars = Excellent, 1 Star = Poor", "Sulfate conten of wine", "Total Sulfur Dioxide
of Wine", "Volatile Acid content of wine", "pH of wine")
te <- c("None", "None", "", "", "", "", "", "", "Many consumers purchase based on the
visual appeal of the wine label design. Higher numbers suggest better sales", "", "A high n
umber of stars suggests high sales", "", "", "")
kable(cbind(vr, def, te), col.names = c("Variable Name", "Definition", "Theoretical Effect"
)) %>%
  kable_styling()
#glimpse(WineTrain)
#colnames(WineTrain[-1])<-"INDEX"</pre>
summary(WineTrain)
var stats<- function(WineTrain){</pre>
  wt <- WineTrain[-1]
 wine1 <- describe(wt)</pre>
  #wine1$na count <- sapply(WineTrain[-1], function(y) sum(length(which(is.na(y)))))</pre>
  wine1$na count <- sapply(wt, function(y) sum(is.na(y)))</pre>
  wine1$neg_count <- sapply(wt, function(y) sum(y<0))</pre>
  wine1$zero_count <- sapply(wt, function(y) sum(as.integer(y)==0))</pre>
  wine1$unique_count <- sapply(wt, function(y) sum(n_distinct(y)))</pre>
  return(wine1)
wine1 <- var_stats(WineTrain)</pre>
kable(wine1, "html", escape = F) %>%
```

```
kable styling("striped", full width = T) %>%
  column spec(1, bold = T) %>%
  scroll_box(width = "100%", height = "700px")
  geom_point(data = wine1, color = "red", shape = 15, size = 5)
qplot(wine1[c(-1),]$unique count,
      geom="bar",
      fill=as_factor(rownames(wine1[c(-1),])))
colsTrain<-ncol(WineTrain)</pre>
colsEval<-ncol(WineEval)</pre>
missingCol<-colnames(WineTrain)[!(colnames(WineTrain) %in% colnames(WineEval))]
cc<-summary(complete.cases(WineTrain))</pre>
cWineTrain<-subset(WineTrain, complete.cases(WineTrain))</pre>
CC
vis miss(WineTrain)
gg_miss_upset(WineTrain)
glimpse(cWineTrain)
WineTrain1$INDEX <- NULL
hist(WineTrain1$TARGET, col = "blue", xlab = " Target ", main = "Wine Counts")
WineTrain1[-1] %>%
  keep(is.integer) %>%
  gather() %>%
  ggplot(aes(value), main="") +
  facet wrap(~ key, scales = "free") +
  geom histogram()
WineTrain1 %>%
  keep(is.double) %>%
  gather() %>%
  ggplot(aes(value)) +
  facet wrap(~ key, scales = "free") +
  geom_histogram()
ggplot(melt(WineTrain[-1]), aes(x=factor(variable), y=value, fill=factor(variable))) + face
t_wrap(~variable, scale="free") + geom_boxplot()
ggplot(melt(WineTrain[-1]), aes(x=factor(variable), y=value, fill=factor(variable))) + face
t wrap(~variable, scale="free") + geom boxplot(outlier.shape=NA)
corrplot(as.matrix(cor(WineTrain[-1], use = "pairwise.complete")), method = "shade")
print(wine1[,14:17])
print(wine1[order(-wine1$na_count),14:17])
#WineTrain$STARS <- sapply(WineTrain$STARS, function(x) ifelse(is.na(x),0,x))
```

```
#WineTrain<-as.factor(WineTrain)</pre>
#wine1 <- var stats(WineTrain)</pre>
#mice imputation
#print(wine1[order(-wine1$na count),14:17])
print(wine1[order(-wine1$neg_count),14:17])
print(wine1[order(-wine1$zero_count),14:17])
print(wine1[order(wine1$unique_count),14:17])
WineTrain$STARS<-as.factor(WineTrain$STARS)</pre>
WineEval$STARS<-as.factor(WineEval$STARS)</pre>
#WineTest
m1 <- glm(TARGET ~ .-INDEX , family = poisson, data = WineTrain)
#m1 <- qlm(TARGET ~ ., family = poisson, data = WineTrain)
summary(m1)
par(mfrow = c(2,2))
plot(m1)
m2 <- glm(TARGET ~ VolatileAcidity + CitricAcid + Chlorides + FreeSulfurDioxide
                         + TotalSulfurDioxide + Density + pH + Sulphates + Alcohol + LabelAp
peal
             + AcidIndex + STARS, family = poisson, data = WineTrain)
summary(m2)
par(mfrow = c(2,2))
plot(m2)
m3 <- glm(TARGET ~ VolatileAcidity + FreeSulfurDioxide + TotalSulfurDioxide + Chlorides + D
ensity + pH + Sulphates + LabelAppeal + AcidIndex + STARS, family=gaussian, data = WineTrai
n)
summary(m3)
par(mfrow = c(2,2))
plot(m3)
m4 <- glm(TARGET ~ VolatileAcidity + TotalSulfurDioxide +
     pH + Sulphates + LabelAppeal + AcidIndex + STARS, family = negative.binomial(1),
     data = WineTrain)
summary(m4)
par(mfrow = c(2,2))
plot(m4)
mlAIC <- AIC(ml)</pre>
m1BIC <- BIC(m1)
m2AIC <- AIC(m2)
```

```
m2BIC <- BIC(m2)
m3AIC <- AIC(m3)
m3BIC <- BIC(m3)
m4AIC <- AIC(m4)
m4BIC <- BIC(m4)

AIC <- list(m1AIC, m2AIC, m3AIC, m4AIC)
BIC <- list(m1BIC, m2BIC, m3BIC, m4BIC)
kable(rbind(AIC, BIC), col.names = c("Model 1", "Model 2", "Model 3", "Model 4")) %>%
    kable_styling(full_width = T)

eval_p<-predict(m3,WineEval, type = "response")
write.csv(eval_p, "predicted_eval_values.csv")
train_p<-predict(m3,WineTrain, type = "response")
plot(train_p,WineTrain$TARGET)
train_p<-predict(m2,WineTrain, type = "response")
plot(train_p,WineTrain$TARGET)</pre>
```