von JD., Seite 1 von 4 1. Quartil = 0.25-Quantil; Median = 0.5-Quantil; 3. Quartil = 0.75-Quartil; BeschreibendeStatistik $x_p \begin{cases} x_{floor(np)+1}, np \in \mathbb{N} \\ \frac{1}{2}(x_{np} + x_{np+1}, np \notin \mathbb{N}) \end{cases}$ 1.1 Beschreibende/Deskriptive Statis-Beobachtete Daten werden durch geeig-

tik

Beobachtete Daten werden durch geeignete statistische Kennzahlen charakterisiert und durch geeignete Grafiken an-

xp
$$\left\{\frac{1}{2}(x_{np} + x_{np+1}, np \in \mathbb{N})\right\}$$

Boxplot

 $\hat{F}(x_n) \approx p$; $\hat{F} = \text{kummul. rel. Häufigkeit;}$

1/4 je zu I_{min} &zu I_{max} Whiskers zeigen die Spannweite = max x_i - min x_i Aus beobachtete Daten werden Schlüsse gezogen und diese im Rahmen vorgege-1.11 Chebyshev bener Modelle der Wahrscheinlichkeits- $\frac{N(S_k)}{n} > 1 - \frac{1}{k^2}$, für alle $k \ge 1 \overline{x}$ der Durchschnitt, s > 0 die Stichproben-

1.3 Grundgesamtheit Ω : Grundgesamtheit ω :Element oder Ob-Standardabweichung von Beobachtungs-

jekt der Grundgesamtheit diskret(<30 Ausprägungen), stetig(≥30 Ausprägungen), univariat(p=1), mulivariat(p>1); Diskrete Merkmale haben eine abzählbare Anzahl möglicher Ausprägungen. Stetige Merkmale habne eine nicht abzählbare (=überabzählbar) Anzahl möglicher Ausprägungen.

nete statistische Kennzahlen charakteri-

1.2 Schließende/Induktive Statistik

1.4 Modalwerte x_{mod} Am häufigsten auftretende Ausprägungen (insbesondere bei qualitativen Merk-

Hilfszettel zur Klausur

schaulich gemacht.

theorie bewertet.

1.5 Mittelwert, quantitativ R:mean(x)

ten.**Empfindlich**gegenüber Ausreißern. $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 1.6 Median, quantitativ

R:median(x)Liegt in der Mitt der sortierten Daten x_i .

Schwerpunkt

Unempfindlich gegenüber Ausreißern.

 $x_{0.5} = \begin{cases} x_{\frac{n+1}{2}}, \text{ falls n ungerade} \\ \frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1}), \text{ falls n gerade} \end{cases}$

die "quadratische Verlustfunktionöder

die Varianz gibt das Minimum der Fehlerquadrate an. 1.9 p-Quantile

ten x_i ca. im Verhältnis p: (1-p) d.h. ment von Ω

Da-

Streuungsmaße 1.7 Stichprobenvarianz s^2

Verschiebungssatz:

 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}^2) = \frac{1}{n-1} (\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i^2)$

 $n\bar{x}^2$) Gemittelte Summe der quadratischen Abweichung vom Mittelwert

1.15 Regressionsgerade y 1.8 Stichpr.standardabw.

 $s = \sqrt{s}$ Streuungsmaß mit gleicher Einheit wie beobachteten Daten $x_i.\overline{x}$ minimiert

2 Wahrscheinlichkeitsrechnung

Ergebnisraum Ω : Menge aller möglichen Ergebnisse eines Experiments R:quantile(x,p). Teilt die sortierten Da- Elementarereignis $\omega \in \Omega$: einzelnes Elenis F treten ein. $\bigcup_{i=1}^{n} E_i$: mindestens ein Ereignis E_i tritt ein. **Schnitt** $E \cap F$: Ereignis E und Ereignis F

Ereignis $E \subseteq \Omega$: beliebige Teilmenge des

Ergebnisraums Ω heißt sicheres Ereignis,

Vereinigung $E \cup F$: Ereignis E oder Ereig-

Ø heißt unmögliches Ereignis

 $\bigcap_{i=1}^{n} E_i$ alle Ereignisse E_i treten ein. **Gegenereignis** $\overline{E} = \Omega / E$: Ereignis E tritt nicht ein (Komplement von E)

Interquartilsabstand $I = x_{0.75} - x_{0.25}$. Innerhalb der Box 50% aller Stichproben; **Disjunkte Ereignisse**E und F: $E \cap F = \emptyset$ 2.2 De Morgan'schen Regeln $\overline{E_1 \cup E_2} = \overline{E}_1 \cap \overline{E}_2$ $\overline{E_1 \cap E_2} = \overline{E}_1 \cup \overline{E}_2$ 2.3 Wahrscheinlichkeit

Dann berechnet sich die Wahrscheinlich-

2.6 Bedingte Wahrscheinlichkeit

 $P(E|F) = P_F(E) = \frac{|E \cap F|}{|F|} = \frac{P(E \cap F)}{P(F)}$

Elementarereignissen.

werten $x_1,...,x_n$. Sei $S_k = \{i, 1 \le i \le n : |x_i - \overline{x}| < k \cdot s\}$; Für eine beliebige Zahl $P(\bigcup_{i=1}^{\infty}) = \sum_{i=1}^{\infty} P(E_i)$, falls $E_i \cap E_j = \emptyset$ $k \ge 1$ liegen mehr als $100 \cdot (1 - \frac{1}{k^2})$ Prozent der Daten im Intervall von $\bar{x} - ks$ bis 2.4 Satz 2.1 $\overline{x} + ks$. **Speziell:**Für k = 2 liegen mehr als P(E) = 1 - P(E)75% der Daten im 2s-Bereich um \bar{x} . Für $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ k=3 liegen mehr als 89% der Daten im (Übungsaufgabe!!! Ergänzen) 3s-Bereich um \bar{x} . Komplement Formulierung: $\overline{S}_k = \{i | |x_i - \overline{x}| \ge k \cdot s\}; \frac{N(\overline{S}_k)}{n} \le \frac{1}{k^2};$ 2.5 Laplace-Experiment Die Ungleichheit lifert nur eine sehr gro-Zufallsexperimente mit n gleich wahr-

scheinlichen

2.7 Satz 2.2

keit P(E) für $E \subseteq \Omega$ aus:

 $\frac{\text{Mächtigkeit von E}}{\text{Mächtigkeit von }\Omega} = \frac{|E|}{n}$

 $P(E \cap F) = P(E|F) \cdot P(F)$

 $P(E \cap F) = P(F|E) \cdot P(E)$

 $0 \le P(E) \le 1$; $P(\Omega) = 1$;

sche Regeln 68% der Daten im Bereich um $\overline{x} \pm s$. 95% um $\overline{x} \pm 2s$. 99.7% um $\overline{x} \pm 3s$. 1.12 Korrelation Grafische Zusammenhang zwischen multivariaten Daten x und y durch ein Streudiagramm. Kennzahlen zur Untersuchung des Zusammenhangs:

be Abschätzung, ist aber unabhängig

von der Verteilung der Daten. Empiri-

1.13 Empirische Kovarianz R:cov(x,y); $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$

 $\ddot{S}_{xv} < 0$ fallend; 1.14 Empir. Korrelk.koeff. r R:cor(x, y); $r = \frac{s_{xy}}{s_x s_y}$; Näherungsweise lin.

 $\frac{1}{n-1}(\sum_{i=1}^{n}(x_iy_i)-n\overline{xy}); S_{xy}>0 \text{ steigend};$

Zusammenhang zw. x und y, falls $|r| \approx 1$; Bemerkung: -Der Korrelationskoeffizient kann nur einen statistischen Zusammenhang beschreiben, keinen Kausalen; -Den Korrelationskoeffizient immer im Zusammenhang mit den Streudiagramm sehen (Anscombe-Quartett).

 $y = mx + t \text{ mit } m = r \cdot \frac{s_y}{s_0} \text{ und } t = \overline{y} - m \cdot \overline{x};$ Für den Bereich $|\pm 0.7|$ bis $\pm 1 \Rightarrow$ linearer Zusammenhang.

2.1 Begriffe

keitsbaums zu allen Schnitten $F \cap E_i$

P(TAE) P(TAE) P(T)

2.9 Vierfeldertafel

 $P(F) = P(F \cap E) + P(F \cap \overline{E})$

 $P(\overline{F}) = P(\overline{F} \cap E) + P(\overline{F} \cap E)$

Satz 2.2 oben: $P(E \cap$ F) = $P(E) \cdot P(F|E) = P(F) \cdot P(E|F)$ Tafel $= P(F) - P(F \cap \overline{E}) = P(E) - P(\overline{F} \cap E); P(\overline{F}|E) =$ 1 - P(F|E)

2.10 Formel von Bayes Hilfreich, wenn man man $P(F|E_i)$ kennt, aber nicht $P(E_k|F)$ Satz 2.4 $P(E_k|F) =$

 $P(F|E_k)\cdot P(E_k)$ $\sum P(F|E_i) \cdot P(E_i)$

len Wahrscheinlichkeit.

Übung Die Ereignisse E und F heißen (stochastisch) unabhängig, wenn die İnformation über das Eintreten des einen Ereignisses die Wahrscheinlichkeit für das Eintreten des anderen Ereignisses nicht ändert, d.h. falls

P(E|F) = P(E) or $P(E \cap F) = P(E) \cdot P(F)$

Nur Nenner!P(F) aus dem Satz der tota-

2.11 Stochastische Unabhängigkeit

 $P(E) = \frac{\text{Anzahl der für E günstigen Ereignisse}}{\text{Anzahl der möglichen Ereignisse}}$ $P(E \cap F)$ Es gilt Falls die Ereignisse E, F unabhängig sind, dann sind auch: $\circ E, \overline{F}; \circ \overline{E}, F;$

> $\circ \overline{E}, \overline{F}$ unabhängig $\circ F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$ und Bemerkung o Stochastische Unabhängigkeit bedeutet nicht notwendigerweise eine \circ F(x) ist stetig & $P(a < X \le b) = P(a \le a)$ kausale Abhängigkeit; o Veranschauli- $X \le b$) wegen P(X = a) = 0

P(E)= \$ < P(EIF) 2.8 Satz der totalen Wahrscheinlichkeit Sei $\Omega = \bigcup_{i=1}^n E_i$ mit $E_i \cap E_j = \emptyset$ für $i \neq j$ d.h. die Ereignisse bilde eine disjunkte Zerlegung bzw. eine Partition von Ω . So-

 $P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i)$

Summe der Äste des Wahrscheinlich-

 $\circ A, B \neq \emptyset \text{ und } A \cap B = \emptyset$ $P(A \cap B) \stackrel{:}{=} P(A) \cdot P(B)$ $\emptyset \neq P(A) \cdot P(B)$ da P(A) > 0 und P(B) > 0=> A, B stochastisch abhängig 3 Zufallsvariable

chung mit Venn Diagramm stock. unabhörgig

3.7 Stetige ZV o Dichtefunktion $\int_{-\infty}^{\infty} f(x)dx = 1$

 \circ Verteilungsfunktion F(x) ist stetig mit $F'(x) = f(x); P(X = x_i) = 0$

 $x_i) = F(x_i) - \lim_{x \to x_i -} F(x) \neq 0$ $\circ P(a < X \le b) = F(b) - F(a) \ne P(a \le X \le b)$

Treppenfunktion. Sprunghöhen:P(X =

o Verteilungsfunktion F(x) ist rechtssei-

 \circ Wahrscheinlichkeitsverteilung p(x):

 $\int_{\mathbf{Untergrenze}}^{\Lambda}$ Es wird normal mit - Inte-

o Stetige ZV: $X(\Omega) \subseteq \mathbb{R}$; "z.B. Körpergrö-

Die Wahrscheinlichkeit P(B) für ein Er-

eignis B in R wird zurückgeführt auf die

Wahrscheinlichkeit der entsprechenden

Ereignisse in Ω . Für jedes $X \in \mathbb{R}$ ist die

Verteilungsfunktion $F: \mathbb{R} \to [0,1]$ einer

Für eine diskrete ZV X mit $X(\Omega) =$

 $x_1,...,x_n$ (n endlich oder abzählbar un-

endlich) ist die Wahrscheinlichkeitsfunk-

 $p(x) = \begin{cases} P(X = x_i), \text{falls } x_i \in X(\Omega) \\ 0, sonst \end{cases}$ (1)

 \circ F(x) ist eine rechtseitig stetige **Treppen**-

funktion mit Sprüngen bei der Realisati-

Stetige ZV X ist die Wahrscheinlichkeits-

dichte f $f: \mathbb{R} \to [0, \infty]$ definiert durch

 $\circ F(x) = (P(X \le x) = \sum_{x_i \le x} p(x_i)$

ße eines Menschen"

ZV X definiert durch:

o monoton wachsend

 $\circ P(X > x) = 1 - F(x)$

tion definiert durch:

on von x_i .

3.3 Stetige ZVs

 $P(a < X < b) = \int_a^b f(x) dx$

3.4 Verteilungsfunktion

3.5 Zusammenfassung

3.6 Diskrete ZV

3.2 Diskrete ZVs

 $F(x) = P(X \le x)$

 $0 \le F(x) \le 1$

3.1 Verteilungsfunktion-allg.

 $\circ \lim_{x \to -\infty} F(X) = 0 \lim_{x \to \infty} F(x) = 1$

 $\circ P(a < X \le b) = F(b) - F(a)$

 $\sum_{i=1}^{n} p(x_i) = 1$; x_i ist Realisation der ZV.

 $P(a < X \le b) = F(b) - F(a) = P(a \le X \le b)$ $(b) = F(a \le X < b) = P(a < X < b)$

Abbildung des **abstrakte** Ergebnisraums Ω auf \mathbb{R} . Eine Abbildung $X:\Omega\to\mathbb{R}$,

 $\omega \mapsto X(\omega) = \text{heißt Zufallsvariable (ZV). x}$ ∈ R. heißt Realisation der ZV X. ∘ Diskrete ZV: $X(\Omega) = x_1,...,x_2 (n \in \mathbb{N});$ z.B. X = "Augensumme beim Würfeln

```
3.8 Erwartungswert
Der Erwartungswert E[X] = \mu einer ZV
X ist der Schwerpunkt ihrer Verteilung
or der durchschnittliche zu erwartende
Wert der ZV.
o diskrete ZV: E[X] = \sum_{i=1}^{n} x_i \cdot p(x_i)
o stetige ZV: E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx
ZV ist konstant. E[X] verhält sich linear.
Eigenschaften von E[X]:
\circ E[b] = b
\circ E[aX + b] = aE[X] + b
\circ E[X_i + ... + X_n] = \sum_{i=1}^n E[X_i]
\circ \sum_{i=1}^n x_i
3.9 Satz 3.1
Sei Y = g(X) eine Funktion der ZV X. \mu;
Dann gilt:
o für diskrete ZV:E[g(X)] = \sum_{i=1}^{n} g(x).
• für stetige ZV: E[g(X)] = \int_{-\infty}^{\infty} g(x) ·
f(x)dx. Das vertauschen von E und g
nur bei linearen Funktionen möglich. ⇒
g(E[X])
3.10 Varianz
Die Varianz einer ZV X mit u ist ein qua-
dratisches Streungsmaß. \sigma^2 = Var[X] =
E[(X - \mu)^2] falls x stetig \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x)
Die Standardabweichung \sigma = \sqrt{Var[X]}
hat im Gegensatz zur Varianz die gleiche
Dimension von die ZV X.
\circ Var[b] = 0
\circ Var[aX+b] = a^2Var[X]
3.11 Satz 3.2
Var[X] = E[X^2] - (E[X])^2 Beim Minuend
wird beim Erwartungswert nur das ein-
fach stehende x quadriert nicht f(x)!!!
3.12 Z-Transformation, Standardisie-
Sei X eine ZV mit \mu und \sigma. Dann ist
Z = \frac{X - \mu}{\sigma} = \frac{x}{\sigma} - \frac{\mu(konstant)}{\sigma}
3.13 Kovarianz
Eigenschaften:

\circ Cov[X,Y] = Cov[Y,X] 

\circ Cov[X,X] = Var[X]

\circ Cov[aX,Y] = aCov[X,Y]
Die Kovarianz zweier ZV (X, Y) ist defi-
niert durch Cov[X, Y] = E[(X - E[X])(Y -
E[Y]); Die Kovarianz beschreibt die
Abhängigkeit zweier ZV X und Y. Je
stärker diese Korrelieren, desto (be-
tragsmäßig) größer ist die Kovarianz.
Falls X, Y(stochastisch) unabhängig \Rightarrow
Cov[X,Y] = 0
```

Hilfszettel zur Klausur von JD., Seite 2 von 4

3.18 Varianz $Var[aX + b] = a^{2}Var[X]$ Falls X_i , X_i paarweise unabhängig: $Var[X_1 + ... + X_n] = \sum_{i=1}^{n} Var[X_i]$ $Var[X_i] = \sigma^2 \Longrightarrow Var[\overline{X}] = Var[\frac{1}{n}(x_1 + ... +$ $|x_n| = \frac{1}{n^2} \sum_{i=1}^n Var[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}$ 3.19 Quantile Sei X eine ZV mit Verteilungsfunktion F(x) und 0 . Dann ist das p-Quantil definiert als der Wert $x_p \in \mathbb{R}$ für den gilt: $F(x_n) \geq p$. p-Quantil einer stetigen ZV mit streng monoton wachsenden $F(x)x_p = F^{-1}(p)d$. h. umkehrbar. Zuerst p dann e^{xp} 4 Spezielle Verteilung 4.1 Diskrete Verteilung 4.2 Bernouilliverteilung Indikatorvariable mit den Werten 1 bei Erfolg und 0 bei Misserfolg; Wahrschein**lichkeit:**P(X = 1) = p, P(X = 0) = 1 - p;**Verteilung:** $X \sim B_{1,p}$ p ist Erfolgswahrscheinlichkeit; $E[X] = p = \sum x_i \cdot p(x_i) = 1$ p(1); $Var[X] = p(1-p) = E[X^2] - (E[X])^2 =$ $p - p^2 = p(1 - p);$ 4.3 Binominalverteilung Anzahl der Erfolge beim n-maligen Ziehen mit Zurücklegen; Wahrscheinlichkeit $P(x = k) = \binom{n}{k} \cdot p^k$ $(1 - p)^{n-k}, k \in [0, 1, ..., n]$; Verteilung $X \sim B_{n,p}$; E[X] = np; Var[X] =np(1-p); **R:** dbinom(k,n,p)=P(X=k) ≜Wahrscheinlichkeits-/Dichtefunktion; pbinom(k,n,p)=F(k)

≜Verteilungsfunktion;

fallszahlen;

qbinom(q,n,p) = q-Quantil;

rbinom(k,n,p)\(\hat{p}\) kbinomialverteilte Zu-

3.14 Satz 3.3

 $Cov[X, Y] = E[XY] - E[X] \cdot E[Y]$

3.15 Varianz einer Summe von ZV

 $Var[X_1 + ... + X_n] = \sum_{i=1}^{n} Var[X_i]$

3.16 Overview $\mu \sigma$

Falls X_1, X_2 unabhängig:

 $\frac{1}{n}\sum_{i=1}^{n}E[x_i] = \frac{1}{n}\cdot n\cdot \mu = \mu;$

3.17 E[X]

 $\sum_{i=1}^{n} E[X_i]$

 $Var[X_i + ... + X_n]$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} Cov[X_i, X_j]; Var[X_1 + X_2] =$

 $Var[X_1] + Var[X_2] + 2Cov[X_1, X_2] \circ$ Falls X_i, X_j paarweise unabhängig !!!:

E[aX + b] = aE[X] + b; $E[X_1 + ... + E_n] =$

 $E[X_i] = \mu => E[\overline{X}] = E[\frac{1}{n}(X_1 + ... + X_n)] =$

 $Var[X] = \lambda \mathbf{R} : \frac{d}{pois}(k, \lambda) = P(X = k);$ tezeiten Sei $Y_t \sim P_{\lambda t}$ im Intervall [0,t] $ppois(k, \lambda) = F(k); \lambda = np.$ von t Zeiteinheiten, dann beschreibt 4.6 Gleichverteilung die Exponentialverteilung die Wartezeit Alle Werte $\{x_1,...,x_n\}$ einer ZV X sind X bis zum Eintreten eines Ereignisgleich wahrscheinlich; Wahrscheinlichses; Dichte- und Verteilungsfunktion: keit $P(X = x_k) = \frac{1}{n}$; Verteilung $f(x) = \lambda e^{-\lambda x} (x \ge 0)$ und F(x) = 1 - $X \sim U_{\{x_1,...,x_n\}}; E[X] = \frac{1}{n} \sum_{k=1}^n x_k = \overline{x};$ $e^{-\lambda x}$; Verteilung: $X \sim Exp_{\lambda}$; E[X] = $Var[X] = \frac{1}{n} \sum_{k=1}^{n} x_k^2 - \overline{x}^2$; **R**: sample(1 : $\frac{1}{1} \Rightarrow$ Berechnung mit partieller Integra-N,n) $\hat{=}$ n Zufallszahlen zwischen 1 und tion; $Var[X] = \frac{1}{12}$; **R**: $dexp(x, \lambda) = f(x)$; $pexp(x, \lambda) = F(x)$; Eigenschaft: Eine ex-4.7 Stet.Vert. ponentialverteile ZV X ist gedächtnislos, 4.8 Gleichverteilung/Rechteck d.h. P(X > s + t)|X > t = P(X > s); gl. Vert. Zufallszahlen aus einem Intervall [a,b]; **Dichte:** $f(x) = \frac{1}{b-a}$ für $x \in [a,b]$; **Verteilung:** $X \sim U_{[a,b]}$; $E[X] = \frac{a+b}{2}$; $Var[X] = \frac{(b-a)^2}{12} \mathbf{R} : \frac{d}{d}unif(x, a, b) = f(x);$ puni f(x,a,b) = F(x); runi f(n) = n Zufallszahlen zwischen 0 und 1; runi f(n,a,b) $\hat{=}$ n Zufallszahlen zwischen a und b; 4.9 Normalverteilung Beschreibt viele reale Situationen, 4.12 Chiquadrat-Verteilung insbesondere Grenzverteilung $Z_1,...,Z_n$ seien unabhängige, standardunabhängiger Summen; **Dichte:** normalverteilte $ZV \Rightarrow X = Z_1^2 + + Z_n^2$ $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)};$ Verteilung: hat Chiquadratverteilung mit n Freiheitsgraden; Anwendungsmodell: Sum- $X \sim N_{u,\sigma^2}$; $E[X] = \mu$; $Var[X] = \sigma^2$; **R**: men unabhängiger, standardnormalver $dnorm(x,\mu,\sigma) = f(x); pnorm(x,\mu,\sigma) = teilter ZV; Verteilung: X \sim \chi_n^2; E[X] =$ F(x); $qnorm(q, \mu, \sigma): q - Quantil$; Maxi-n; Var[X] = 2n; R: dchisq(x, n) = f(x); malstelle von f(x) bei $x = \mu$; Wende- ppchisq(x, n) = F(x); Eigenschaft: $X_1 \sim$

4.4 Hypergeometrische Verteilung

Anzahl der Erfolge beim n-maligen

Ziehen ohne Zurücklegen aus einer

Menge mit M Elementen, die Erfolg be-

deuten, und N Elementen, die Misserfolg

bedeuten. Gesamtum fang = M + N;

Wahrscheinlichkeit P(X = k) =

 $\binom{\binom{M}{k} \cdot \binom{N}{n-k}}{\binom{M+N}{k}}, k \in \{0, 1, ..., min\{n, M\}\};$ Ver-

teilung $X \sim H_{M,N,n}$; $E[X] = n \frac{M}{M+N}$;

 $Var[X] = n\frac{M}{M+N}(1 - \frac{M}{M+N})\frac{M+N-n}{M+N-1};$

→ 1 falls n klein im Verhältnis zu

M+N; **R**: dhyper(k, M, N, n) = P(X = k);

Verteilung der seltenen Ereignisse Häu-

figkeit punktförmiger Ereignisse in ei-

nem Kontinuum. Die durchschnittlich

zu erwartende Anzahl der Erfolge λ pro-

Maßeinheit (i. a. Zeiteinheit) sei bekannt.

 $k \in \mathbb{N}_0 \rightarrow diskret$ Wahrscheinlich-

keit $P(X = k) = \frac{\lambda^{\kappa}}{k!} e^{-\lambda} \text{ mit } \sum_{k=0}^{\infty} P(X = k)$

k) = 1, $da \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$; Verteilung

 $X \sim P_{\lambda}$; $E[X] = \lambda, da \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda} =$

 $e^{-\lambda} \sum_{k=1}^{\infty} \lambda \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} = \lambda;$

 $\frac{M}{M+N}$ $\hat{=}$ Tref ferwahrscheinlichkeit;

phyper(k, M, N, n) = F(k);

4.5 Poisson-Verteilung

dungsmodell: Schätz- und Testverfahren bei unbekannter Varianz; Verteilung: $Y \sim t_n$; E[Y] = 0 für n > 1; $Var[Y] = \frac{n}{n-2}$ Abbildung Dichtefunktion $u\sigma^2$ bekannt aber nicht die Verteilung Seien X_i (i = 1,...,n) unabhängige identische verteilte (i.i.d) ZV mit Erwartungswert μ und Varianz σ^2 . Dann gilt für hinreichend große n und $\overline{X} = \frac{1}{n} \sum_{i=1}^{n}$ nähe- $\sum_{i=1}^{n} X_i \sim N_{n\mu,n\sigma^2} \&$ $\frac{\sum X_i - n\mu}{\sqrt{}} \sim N_{0,1}$ $\sum X_i$ bezieht sich auf Y; $\sum X_i - n\mu$ bezieht sich auf X_i ; $\overline{X} \sim N_{\mu,\frac{\sigma^2}{n}}$ & $\frac{\overline{X}-\mu}{\sigma}\sqrt{n} \sim N_{0,1}$; Der Satz gilt sogar allgemeiner, wenn

großem n normalverteilt sind. Faustre-

gel: **Je** schiefer die Verteilung der X_i

desto größer muss n sein: n>30: falls

die unbekannte Verteilung ohne markan-

ten Ausreißer, aber schief ist (Exponenti-

alverteilung); n>15: falls die unbekann-

te Verteilung annähernd symmetrisch

ist(Binomialverteilung); $n \le 15$: falls die

unbekannte Verteilung annähernd nor-

verteilt mit n Freiheitsgraden; Anwen-

4.13 t-Verteilung

stelle von f(x) bei $x = \mu \pm \sigma$; $E[aX + b] = \chi_{n_1}^2$ und $X_2 \sim \chi_2^2 \Rightarrow X_1 + X_2 \sim \chi_{n_1 + n_2}$

Schätz-

aE[X] + b; $Var[aX + b] = a^2 Var[X]$; $X \sim N_{\mu,\sigma^2} \Rightarrow aX + b \sim N_{a\mu+b,a^2\sigma^2}$ und

 $\frac{X-\mu}{\sigma} \sim N_{0,1}; X_1 \sim N_{\mu_1,\sigma_1^2} \text{ und } X_2 \sim$

Dichte: $\varphi(x) = \frac{1}{\sqrt{2}}e^{(-\frac{1}{2}x^2)}$; Verteilung

 $\phi(x) = \int_{-\infty}^{x} \varphi(t)dt$; Quantile: $\phi(-x) = 1$

 $\phi(x) \Rightarrow -x_p = x_{1-p} \text{ z.B. } -x_{0.25} = x_{0.75};$

 $P(\mu - \sigma \le X \le \mu + \sigma) = P(-1 \le Z \le 1) \approx$

 $P(\mu - 2\sigma \le X \le \mu + 2\sigma) = P(-2 \le Z \le 2) \approx$

 $P(\mu - 3\sigma \le X \le \mu + 3\sigma) = P(-3 \le Z \le 3) \approx$

Modellierung von Lebensdauern, War-

 $N_{\mu_2,\sigma_2^2} \Rightarrow X_1 + X_2 \sim N_{\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2};$

 X_1, X_2 stochastisch unabhängig

werte: $Z = \frac{x - \mu}{\sigma} \sim N_{0,1}$;

4.11 Exponentialverteilung

4.10 Standardnormalverteilung

für
$$n > 2$$
; \mathbf{R} : $\frac{d}{dt}(y, n) = f(x)$; igenschaften: Für $n \to \infty$: $t_n \to N_{0,1}$; Achsensymmetrie der Dichtefunktion $\frac{d}{dt} = \frac{d}{dt} = \frac{d}{dt}$

 $Z \sim N_{0.1}$ und $X \sim \chi_n^2 \Rightarrow Y = \frac{Z}{X}$ ist t-

5 Zentraler Grenzwertsatz

5.1 ZGWS

rungsweise:

malverteilt ist;

die X_i abhängig und nicht identisch verteilt sind, vorausgesetzt kein X_i ist deutlich dominanter?! als die anderen.Für die Voraussetzung des ZGW ist, dass die X_i nicht normalverteilt sein müssen., damit $\sum_{i=1}^{n} X_i$ oder \overline{X} bei hinreichend

 $-\phi^{-1}(p) = \phi^{-1}(1-p)$ Zusammenhang Sicherheit für wahren Parameter; 6.3 Intervallschätzer Intervall für wahren Parameter, mit vorgegebener Sicherheit; Vorgabe (95% or 99%); Dichtefunkti-Aufgabentypen: Seien X_i i.i.d. ZV mit μ und σ^2 , aber unbekannter Verteilung. Dann sind $Z_1 = \frac{\sum X_i - n\mu}{\sqrt{n}\sigma}$ und $Z_2 = \frac{X - \mu}{\sigma}$ näherungsweise standardnormalverteilt. o Es lassen sich Wahrscheinlichkeiten für ter Parameter $\sum X_i, \overline{X}, Z_1$ oder Z_2 berechnen. $P(x_{0.025} < \frac{\overline{x} - \mu}{\sigma} \sqrt{n} < x_{0.975}) \ge 0.95$ • Es lässt sich n bestimmen, so dass, zu vorgegebener Schranke k und Wahrscheinlichkeit p gilt: $P(Z_i > k) \ge p$ or $-1.96; N_{0.1}; 1.96;$ $P(-k \le Z_i \le k) \ge p$ 6.4 μ , unbekannt, σ^2 , bekannt 5.4 Stichprobenvert.normalvert. Grundgesamt. $I =]\overline{X} - \phi^{-1}(1 - \frac{\alpha}{2}) \frac{\sigma}{\sqrt{n}}$ 5.5 Stichprobenmittel Die Stichprobenfunktion $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ $qnorm(1-\frac{\alpha}{2})$ ist eine erwartungstreue Schätzfunktion für Erwartungswert μ , d. h. $E[\overline{X}] = \mu$ φ-1/0,95)≈ 1,64S φ⁻¹(0,375) ≈ 1,96 5.6 Stichprobenvarianz 95% 2,5% Die Stichprobenfunktion $S^2 = \overline{X} + \phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}[$; 99% 0,5% p-1(0,995)≈ 2,576 $\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \overline{X})^2 = \frac{1}{n-1}(\sum_{i=1}^{n}X_i^2 - \overline{X})^2$ $n\overline{X}^2$)ist eine erwartungstreue Schätzfunktion für die Varianz σ^2 , d. h. $E[S^2] = \sigma^2$; $E[\overline{X}] = E[\frac{1}{n}\sum X_i] =$ $\frac{1}{n}E[\sum X_i] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}n\mu = \mu;$ 6.5 $\mu \& \sigma^2$, unbekannt $Var[\overline{X}] = Var[\frac{1}{n}\sum X_i] = \frac{1}{n^2}Var[\sum X_i] = I =]\overline{X} - t_{n-1}^{-1}(1 - \frac{\alpha}{2})\frac{S}{\sqrt{n}}, \overline{X} + t_{n-1}^{-1}(1 - \frac{\alpha}{2})\frac{S}{\sqrt{n}}$ $\frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$; Seien $X_i(i=1,...,n)$ unab- **6.6 Zusammenfassung** hängige normalverteilte ZV mit Erwartungswert μ und Varianz σ^2 . Dann gilt:

$\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2};$ Schätzwert für wahren Parameter, aber keine Aussage über Unsicherheit der Schätzung, Geringe

 $(n-1)S^2 = \sum (x-\overline{x})^2$

6 Konfidenzintervall

norm.vert. ist

6.1 Begriffe

6.2 Punkschätzer

kannter Varianz: $\frac{X-\mu}{S}\sqrt{n} \sim t_{n-1}$;

kl. Stichpr.umf. (n<30) ist die Grund-

gesamtheit näherungsweise normalver-

teilt or Stichpr.umf. ist hinreichend groß

(n30), die Sum. or. der Mittelwert der

 X_i nach dem ZGWS näherungsweise

Irrtumswahrscheinlichkeit = α ; Konfi

denzniveau = $1 - \alpha$; Konfidenzintervall

E[X]: Stichprobenmittel: $X = \frac{1}{n} \sum_{i=1}^{n} X_i$;

Varianz: Stichprobenvarianz: $s^2 =$

Hilfszettel zur Klausur von JD., Seite 3 von 4

 $\phi(-a) = 1 - 2\phi(-a)$

5.3 ϕ^{-1}

 $\phi(-a) = 1 - \phi(a); \phi(a) =$

 $1 - \phi(-a)$; $P(-a < Z < a) = \phi(a) - \phi(-a) =$

 $\phi(a) - (1 - \phi(a)) = 2\phi(a) - 1$ or $1 - \phi(-a) -$

qnorm(1

$P(-a \le \overline{x} \le a) > 0.95$; σist unbekann

$$=]\overline{X} - t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}}, \overline{X} + t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}} [$$

Wie verändert sich das $(1 - \alpha)$ -Konfidenzintervall, n-größer \Rightarrow I kürzer; $1-\alpha$ größer \Rightarrow I länger; Für $-\phi'(-\frac{\pi}{2}) + \phi'(\frac{\pi}{2}) + \frac{\pi}{2} = \phi'(-\frac{\pi}{2})$ bei bekannter Varianz: $\frac{\overline{X} - \mu}{\sigma} \sqrt{n} \sim N_{0,1}$; $\frac{L}{2} = 2\phi^{-1}(1 - \frac{\alpha}{2}) \frac{\sigma}{\sqrt{n}} \frac{1}{2} = 2\phi^{-1}(1 - \frac{\alpha}{2}) \frac{\sigma}{\sqrt{n}}$ $H_1: \mu \neq \mu_0$;

Geg: n, 1- α ; **Ges:** I s.o. **Geg:** \overline{X} , σ , 1 – α , L; H_0 wird abgelehnt, falls tg = $L = 2\phi^{-1}(1-\frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}$; Ges: n; $\sqrt{n} > 2\phi^{-1}(1-\frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}$ $\frac{\alpha}{2}$) $\frac{\sigma}{L}$ Geg: n, I, L; Ges: 1- α ; 1 - $\frac{\alpha}{2}$ =

 $\sim \chi^2_{n-1}$; Bei unbe- 6.7 Aufgabentypen

7 Hypothesentests Basierend auf n unabhängig und identisch Verteilte (i.i.d) Zufallsvariablen

$X_1,...,X_n$ (Messungen) soll eine Entschei-

dung getroffen werden, ob eine Hypothese für einen unbekannten Erwartungswert μ gültig ist or nicht. 7.1 Def α = Signifikanzniveau/ Fehlerwahr-

scheinlichkeit TG = Prüfgröße; TG* =

folgerung = H_0 wird nicht verworfen \rightarrow klassischer Parametertest. p-Wert = beobachtetes Signifikanzniveau 7.2 Null- und Gegenhypothese

standardisierte Prüfgröße; siginifikante

te Aussage, der widersprochen werden kann, wenn die Stichprobe einen Gegen- 7.6 Einseitiger Gauß Test beweis liefert. $H_0: \mu = \mu_0$; Gegenhypo**these** H_1 : Gegenteil von H_0 z.B. $H_1 \neq \mu_0$;

7.3 Ablehnungsbereich, Fehler 1. & 2. Treffen der Testentscheidung, basie-

 $tg = TG(x_1,...,x_n)$ der Prüfgröße TG; **Ab**lehnungsbereich / Kritischer Bereich C: Werte der Testgröße, die für H1, sprechen $P_{\mu 0}(\overline{X} \in C) \leq \alpha \Leftrightarrow TG = \frac{X - \mu_0}{\sigma_0} \sqrt{n} < 0$ & bei Gültigkeit von H_0 mit Wahrscheinlichkeit $\leq \alpha$ (meist 0.1, 0.05, or 0.01) auftreten. Fehler 1. Art:α ist die Wahrscheinlichkeit, dass H_0 verworfen wird, obwohl sie richtig ist. **Annahmebereich:** Komplement \overline{C} des Ablehnungsbereichs.

 H_0 kann nicht abgeleht werden, falls

 $tg \in \overline{C}(P(tg \in \overline{C}) \ge 1 - \alpha)$. Fehler 2. Art:

Die Wahrscheinlichkeit, dass H_0 nicht

den Konfidenzintervallen durch die Vorgabe eines kleinen Signifikanzniveau

größe TG* gilt: $P(TG \in C) \le \alpha \Leftrightarrow TG^* \in$ $]-\infty; \phi^{-1}(1-\frac{\alpha}{2})[\cup]\phi^{-1}(1-\frac{\alpha}{2}); \infty[; P(TG \in \mathbb{R})]$ \overline{C}) $\geq 1 - \alpha \Leftrightarrow TG^* \in [\phi^{-1}(\frac{\alpha}{2}), \phi^{-1}(1 - \frac{\alpha}{2})];$ Wird dann H_0 verworfen, spricht man von einer signifikanten Schlussfolgerung. Kann H_0 nicht verworfen werden, dann lässt sich keine Aussage über den Fehler 2. Art treffen & man spricht von einer schwachen Schlussfolgerung.

Schlussfolgerung = H_0 verworfen \rightarrow klas-7.5 Zweiseitiger Gauß Test sischer Parametertest; schwache Schluss-

$H_0: \mu = \mu_0$ gegen $H_1: \mu \neq \mu_0$; $\overline{X} \sim$

7.4 Klassischer Parametertest

 $TG(x_1,...,x_n) \in C$; H_0 wird angenom-

men falls $tg = TG(x_1,...,x_n) \in C$; Der

kritische Bereich ergibt sich analog zu

α d.h. max. Wahrscheinlichkeit für

Fehler 1. Art, mit standardisierter Prüf-

Modell: Verteilung der Grundgesamtheit $C \le \alpha \Leftrightarrow |TG| = \frac{|\overline{X} - \mu_0|}{\sigma_0} \sqrt{n} > \phi^{-1}(1 - \frac{\alpha}{2});$ or Testgröße **TG** (häufig \bar{x}) ist bekannt Testentscheidung: H_0 wird abgelehnt, bis auf einen Parameter, z.B. μ, für den falls $|TG| > \phi^{-1}(1-\frac{\alpha}{2})$; H_0 wird angenomeine Hypothese aufgestellt wird. TG ~

 $N_{\mu_0,\sigma_0^2/n} \Rightarrow \frac{X-\mu_0}{\sigma_0} \sqrt{n} \sim N_{0,1}; P_{\mu_0}(\overline{X} \in$

7.7 linksseitig

 N_{μ,σ^2} ; Nullhypothese: H_0 : Angezweifelmen, falls $|TG| \le \phi^{-1}(1-\frac{\alpha}{2})$

 $H_0: \mu \ge \mu_0 \text{ gegen } H_1: \mu < \mu_0$

7.8 rechtsseitig rend auf einer konkreten Stichprobe

$$\{x_1,...,x_n\}$$
; Berechnung der Realisation

$$H_0: \mu \le \mu_0 \text{ gegen } H_1: \mu > \mu_0$$

 $\phi^{-1}(\alpha)$; Testentscheidung: H_0 wird abgelehnt falls, $TG < \phi^{-1}(\alpha)$; H_0 wird angenommen, falls $TG \ge \phi^{-1}(\alpha)$;

linksseitig: 1 Verleilung der Testgröße

7.9 Varianten Gauß Test, σ^2 bekannt, μ unbekannt

Prüfgröße $tg = \frac{\overline{X} - \mu_0}{\sigma_0} \sqrt{n};$

 $|tg| > \Phi^{-1} \left(1 - \frac{\alpha}{2}\right) \left[2(1 - \Phi(tg)) \right]$ $tg > \Phi^{-1} (1 - \alpha)$

 $tg < t_{n-1}^{-1}(\alpha)$

7.10 t-Test, μ , σ^2 *unbekannt*

Prüfgröße $tg = \frac{X-\mu_0}{c}\sqrt{n}$

 $\mu = \mu_0 \mid \mu \neq \mu_0 \mid |tg| > t_{n-1}^{-1} \left(1 - \frac{\alpha}{2}\right) \mid 2(1 - t_{n-1}(|tg|))$

 $tg > t_{n-1}^{-1} (1 - \alpha)$

 $1 - t_{n-1}(tg)$

7.11 p-Wert Wahrscheinlichkeit, bei Zutreffen von H_0 den beobachteten Wert tg der Prüfgröße

 $\mu \le \mu_0 \mid \mu > \mu_0 \mid$

den Wert zu bekommen. Der p-Wert zu einer Hypothese H_0 ist der kleinste Wert von α , für den H_0 noch abgelehnt werden kann. Je kleiner der Wert, desto kleiner ist der Fehler 1. Art & umso signifikanter ist die Testentscheidung. Nice to know Anhand des p-Werts kann

man für beliebige Werte von α eine

Falls p - Wert < 1%: sehr hohe Signifi-

Falls $1\% \le p - Wert < 5\%$: hohe Signifi-

or einen noch stärker von μ_0 abweichen-

Falls $5\% \le p - Wert \le 10\%$: Signifikanz Falls p - Wert > 10%: keine Signifikanz 7.12 Zusammenhang I & Hypothesen-

Testentscheidung treffen;

tests zweiseitig zum Konfidenzniveau $1 - \alpha$; H_0 wird ab-

gelehnt, falls $\mu_0 \notin I$; H_0 wird angenommen, falls $\mu_0 \in I$; Das Konfidenzniveau ist der Annahmebereich von Ho zum Signifikanzniveau α ; 7.13 Zusammenfassung klass. Hy-

Signifikanzniveau α wird vorgegeben; α & Verteilung der Testgröße unter H_0

wir der Ablehnungsbereich ermittelt. Je kleiner (größer) α , desto kleiner (größ-

ter) ist der Ablehnungsbereich; $!: \alpha \& C$ hängen **nicht von** der konkreten Stichprobe ab;

H₀ wird abgelehnt, falls der ermittelte

Wert der Testgröße (beobachteter Wert) in C liegt. !: Die tg hängt von der konkreten Stichprobe ab. Sie ist eine ZV.

7.14 Test mittels p-Wert

 α wird vorgegeben.

Berechnung des p-Werts anhand der konkreten Stichprobe mit der Verteilung der

Tg unter H_0 ; !:Der p-Wert hängt von der konkreten

Stichprobe ab, ist eine ZV. H_0 wird abgelehnt, falls $p - Wert \le \alpha$.; zweiscifiger 8 Fehleranalyse

8.1 Auslöschung

senstellen wörtlich ausgelöscht werden.

rechtsselige wenn ungefähr gleich große, bereits mit Fehlern behaftete Zahlen voneinander Unkssähigt abgezogen werden & signifikante Mantis-

Hilfszettel zur Klausur von **JD**., Seite 4 von 4 8.2 Addition große signifikante Stellen schlucken klei-

ne signifikante Stellen.

9 Interpolation Zu gegebenen Punkten $(x_i, y_i), i = 0, ..., n$ mit $x_i \neq x_j$ für $i \neq j$ eine Funktion G (dies

ist nicht eindeutig! Abhängig von der Funktionsklasse), so dass $G(x_i) = v_i$, i = 10, ..., n (Interpolations bedingung). Interpolation ist ungeeignet für verauschte Daten. Lösung: Approximation der kleinsten Quadrate. 9.1 Begriffe Extrapolation \(\hat{=}\) Näherungwerte für x- Falls Werte außerhalb der Stützstellen;

Dividierende Differenzen Koeffizien-

ten ci lassen sich rekursiv durch wiederholte Bildung von "Differenzquotienten"berechnen 9.2 Lagrange, quer

2 Formeln; $p_n(x) = y_0 L_0(x) + y_1 L_1(x) + ... + y_n L_n(x)$; $L_k(x) \prod_{j=0; j \neq k}^n \frac{x-x_j}{x_k-x_j}$; Jede Basisfunktion $L_k(x)$ ist ein Polynom vom Grad $\leq n$; **Bemerkung:** Findet Anwendung bei Numerischer Integration; Wenn Stützstellen x_i gleich bleiben & nur y_i ändern \Rightarrow keine Neuberechnung; Rechenaufwand $\mathcal{O}((n+1)^2)$; Kommen neue Stützpunkte

hinzu ⇒ Neuberechnung!; Die Interpola-

tionspolynome liefern nur sinnvolle Nä-

herungswerte für x-Werte, die zwischen

den gegebenen Stützstellen liegen; Extra-

polation (Näherungwerte für x-Werte au-

ßerhalb der Stützstellen) kann zu großen Abweichungen führen.

9.3 Newton Darstellung des Interpolanten, die auf

ein gestaffeltes LGS führt & einfache Hinzunahme weiterer Punkte erlaubt. $p_n(x) = c_0 + c_1(x - x_0) + ... +$ $c_n(x-x_0)(x-x_1)...(x-x_{n-1})$

Polvnom vom Grad n

Das Resultierende LGS für die Koeffizienten c_i hat gestaffelte Form. **Interpola**tionsbedingungen? **Vorteile:** Rechenaufwand $O(n^2)$ Gleitpunktoperationen; Hinzufügen weiterer

Stützstellen ohne großen Aufwand. Andere Koeffizienten bleiben unverändert.

9.4 Dividierende Differenzen

-5 / 3-(-2)

großen Berechnungsaufwand die Änderung der Werte y_i für gleichbleibende

Newton & Lagrage ermöglichen ohne Stützstellen x_i .; Newton ergmöglicht ohne großen zusätzlichen Berechnungsaufwand diei Hinzuname weiter Stützstellen, zur Verbesserung der Genauigkeit

9.6 Effizienz 9.7 klasisch $p_n(x) = a_n x^n + ... + a_0$; Aufwand: 2n-1

9.5 Quiz

9.8 Horner Schema $p_3(x) = a_3x^3 + a_2x^2 + a_1 + a_0 = ((a_3 + a_2)x + a_1)x + a_0$ $a_1)x + a_0$; Allg.: $p_n(x) = (...(a_nx + a_{n-1})x +$... + a_1)x + a_0 ; **Aufwand:** n Mult.

onspolynom von Grad
$$n$$
, dann gilt fürn den Interpolationsfehler:
$$f(x) - p_n(x) = \underbrace{\frac{f^{(n+1)}(\theta)}{(n+1)!}(x - x_0)...(x - x_n)}_{\text{mit } \theta \in [x_0; x_n]}$$

 θ unbekannt, daher nur Fehlerabschätzung; Fehler ist Abhängig von der Verteilung der Stützstellen; Der Fehler ist bei großen n an den Intervallrändern deutlich größer, als in der Intervallmitte 9.10 Wahl der Stüztstellen Mit äquidistante Stützstellen konvergiert

das Interpolationspolynom nicht immer gegen die zugrundeliegende stetige Funktion, wenn die Anzahl der Stützstellen & damit der Grad des Polynoms

wächst. Lösung: Nicht-aquidistante Verteilung der Stützstellen, dichter an den Intervallgrenzen. 9.11 Chebyshev-Punkte haben die Eigenschaft; senkrechte Projektion von gleichverteilten Punkten auf

dem Einheitskreis. $t_k = cos \frac{(2k-1)\pi}{2n}, k =$ 1, ..., n, auf - 1, 1; Invtervall: a, b: $x_k =$ $\frac{a+b}{2} + \frac{b-a}{2}t_k$. \Rightarrow Fehler wird gleichmäßiger verteiltund Konvergenz erreicht.

9.12 Schwächen der Polynominterpola-

Hoher Rechenaufwand bei meist keiner hoher Differenzierbarkeitsgrad benötigt wird; RB kann Interpolationsfehler sehr groß sein; Bei wachsenden *n* ist es unmöglich eine Konvergenz gegen die zu interpolierenden Funktion sicherzustellen; \mathbf{R} : approx $\hat{=}$ lin Interpolation; Spline ≜ Spline interpolation; Bibliotheken für Polynominterpolation; 9.13 Spline

Jede Funktion S_i ist ein Polynom vom Grad $n \le k$; S(x) ist (k-1) - mal stetig dif- Für n allg.: $\frac{(b-a)}{2n} \frac{1}{3} (f(a) + 4(a+h))$

9.14 Kubisch **Ansatz:** $S_i = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + c_i(x - x_i)^2$ $d_i(x-x_i)^3$; Gleichungssystem: 4n Parameter $a_i, b_i, c_i, d_i (i = 0, ..., n - 1)$; 2n In-

terpolationsbedingungen: am Rand je nur eine. $S_i x_i = y_i$; $S_i(x_{i+1}) = y_{i+1}$ für $(i = 0, 1, ..., n - 1) \Rightarrow \text{Stetigkeit}; Stetig-$

keit der 1. Abl: $S_{i}(x_{i+1}) = S_{i+1}(x_{i+1})$; \Leftrightarrow $S'_{i}(x_{i+1}) - S'_{i+1}(x_{i+1}) = 0$; für i = 0, 1, ..., n -Falls α_i positiv. Integrations regeln stabil; 2; Stetigkeit der 2. Abl.: $S_i''(x_{i+1}) =$ $k \le 7 \& k = 9 \Rightarrow$ positive Gewichte; $S_{i+1}^{"}(x_{i+1}); S_{i}^{"}(x_{i+1}) - S_{i+1}^{"}(x_{i}+1) = 0;$ 10.6 Ordnung Integrationsregel

ferenzierbar, d.h. für alle $x_i(i=1,...,n-1)$... +4f(b-h)+f(b) S_n : Beachte gilt: $S_{i-1}(x_i)=S_i(x_i)$; gerade Anzahl an Teilinvervallen!;

für i = 0, 1, ..., n - 2); natürlicher Rand-

bedingungen: $S_0''(x_0) = 0$; $S_{n-1}''(x_n) = 0$; nach geschickter Umformung der Gleichungen hat das LGS Tridiagonalform. **Rechenaufwand** O(n) Gleitpunktoperapolynoms); **Beweis der Ordnung:** 1 = $\int_0^1 x^0 dx \stackrel{!}{=} ; \frac{1}{2} = \int_0^1 x dx \stackrel{!}{=} ; \frac{1}{3} = \int_0^1 x^2 \stackrel{!}{=} ;$

Verbesserung der Näherung: Aufteilung in kleine Teilintervalle & Summe von

gilt: $S_{i-1}(x_i) = S_i(x_i)$;

Rechtecksflächen bilden; Interpolation Vergleichbar zum Restglied bei der mit Polynom höheren Grades durch dis- **10.7 Fehler Quadratur** Taylorreihenentwicklung; Bemerkung: krete Punkte. Für (globalen) Fehler $e_{In} = \int_a^b f(x) dx - I_n$ 10.1 Ansatz[a,b] einer Quadraturformel I_n der Ordnung p $\int_{a}^{b} f(x)dx \approx (b-a)\sum_{i=0}^{i} \alpha_{i} f(x_{i})$

$p_k = \text{Interpolationspolynom}; I_n = \text{Quadra-}$

10.4 Trapezregel

10 NumInt

fahrens.; Singularität \(\hat{=}\) isolierter Punkt, der ungewöhnliches Verhalten zeigt; 10.3 Newton-Cotes Das Intergral des p_k dient als Appr. für das Int. von f(x); $\int_0^1 f(t)dt \approx \int_0^1 p_k(t)dt =$

turformel; K =Fehlerkonstante des Ver-

äquidistanten Knoten; Lösung: $\sum_{i=0}^{k} \alpha_i f(t_i)$ Das Interpolationspolynom 10.9 GauQua muss nicht explizit aufgestellt werden, es dient vorab der Bestimmung der Ge-Gauß-Quadraturformeln wichte α_j ; $\int_0^1 p_k(t) = \int_0^1 \sum f(t_j) L_j(t) dt =$ $\sum f(t_i) \int_0^1 L_i(t) dt$

$T_1: \int_0^1 f(t)dt \approx \frac{1}{2}(f(0)+f(1)); \int_a^b f(x)dx \approx$ $\frac{(b-a)}{1}\frac{1}{2}(f(a)+f(b));$

 T_n : Für Teilintervalle mit gleicher Länge: $h = \frac{b-a}{n}$; $T_n = h(\frac{f(x_0)}{2} + f(x_1) + ... + f(x_{n-1}) +$

10.5 SimpsonRegel $S_1: \int_0^1 f(t)dt \approx \frac{1}{6}(f(0) + 4f(0.5) + f(1));$

 $\int_{a}^{b} f(x)dx \approx \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b));$ 11.3 Abl.Regeln Für n = 1: $\frac{(b-a)}{2\cdot 1} \frac{1}{3} (f(a) + 4f(\frac{a+b}{2}) + f(b));$

sinx = cosx; cosx = -sinx; $tanx = \frac{1}{cos^2x} = 1 + \frac{1}{cos^2x}$ tan^2x ; $cotx = -\frac{1}{sin^2x} = -1 - cot^2x$;

 $\ln x = \frac{1}{x}$; $\log_a x = \frac{1}{(\ln a) \cdot x}$;

Summerregel $\int_a^b [f_1(x) + ... + f_n(x)]dx =$ $\int_a^b f_1(x)dx + \dots + \int_a^b f_n(x)dx$; Vertau-

 $f_n(x) \Rightarrow y' = f_1'(x) + f_2'(x) + ... + f_n'(x)$; **Pro-**

duktregel $y = u \cdot v \Rightarrow y' = u' \cdot v + v' \cdot u;$

 $y = u \cdot v \cdot x \Rightarrow y' = u' \cdot v \cdot w + u \cdot v' \cdot w + u \cdot v \cdot x';$

Quotientenregel $y = \frac{u}{v} \Rightarrow y' = \frac{u' \cdot v - u \cdot v'}{v^2}$;

Kettenregel $f'(x) = F'(u)u'(x) = \hat{F}'(u)$:

Ableitung der Äußeren Funktion; u'(x):

Faktorregel $\int_a^b C \cdot f(x) dx = C \cdot \int_a^b f(x) dx$;

 $x^{-n} = \frac{1}{n}$; $a^0 = 1$, $a^{-n} = \frac{1}{a^n}$; $a^m \cdot a^n = a^{m+n}$;

 $\frac{a^m}{a^n} = a^{m-n}$ für $a \neq 0$; $!(a^m)^n = (a^n)^m =$

 $a^{m \cdot n}$; $a^n \cdot b^n = (a \cdot b)^n$; $\frac{a^n}{b^n} = (\frac{a}{b})^n$ für $b \neq 0$;

a > 0: $a^b = e^{b \ln a}$; $0^0 = 1$; $x_1^1 = x_1$;

 $\Rightarrow m, n \in \mathbb{N}^*; a \ge 0, b \ge 0$

11.8 Abc-Formel

 $\sqrt{a^2} = |a|$; $b = a^n \Leftrightarrow a = \sqrt[n]{b}$; $\sqrt[n]{a} = a^{\frac{1}{n}}$;

 $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$; $x_{1,2} = \frac{2a}{-b \mp \sqrt{b^2 - 4ac}}$

 $(a+b)^2 = a^2 + 2ab + b^2$ 1. Binom; $(a+b)^3 =$

 $a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$; $(a+b)^{4} = a^{4} + 4a^{3}b + a^{4}b^{4}$

 $\frac{6a^2b^2 + 4ab^3 + b^4}{(a-b)^2 = a^2 - 2ab + b^2}$; 2. Binom; $(a-b)^3 =$

 $a^3 - 3a^2b + 3ab^2 - b^3$; $(a - b)^4 = a^4 - 4a^3b + a^3b^2$

o Beim Runden mind, eine Nachkommas-

Ableitung der Inneren Funktion

11.4 Integralregel, elementar

11.6 Potenzen

schungsregel $\int_{h}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$; Eine Integrationsregel hat Ordnung p, $\int_a^a f(x)dx = 0; \quad \int_a^b f(x)dx = \int_a^c f(x)dx + \int_a^c f(x)dx =

6 d.h. exakt für jxkdx (k=0,1,-,5)

wenn sie für Polynome vom Grad ≤ p-1 exakte Werte liefert; T_1 Ordnung 2 $\int_{c}^{b} f(x)dx \text{ für } (a \le c \le b);$ ⇒ exakt für Polynome Grad ≤ 1; Ordnung Newton-Cotes Regeln: mind. Ord-11.5 Berechnung best. Integr. nung k+1 (k: GRad des Interpolations- $\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$

 $\frac{1}{4} = \int_0^1 x^3 \stackrel{!}{=};$

Für 2n Teilintervalle, 2n+1 Knoten

mit gleicher Länge $h = \frac{b-a}{2n}$; $S_2 =$

 $\frac{h}{3}(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+f(x_4));$

Basierend auf äquidistanten Knoten $t_j = \frac{1}{k}$

 $|a,b|, h = \frac{b-a}{n} \& |e_{In}| \le (b-a)h^p K \cdot \sqrt[n]{a \pm b} \ne \sqrt[n]{a} \pm \sqrt[n]{b}$ $\max_{a \le x < b} |f^{(p)}(x)|$; $\sqrt[n]{a^m} = (a^m)^{\frac{1}{n}} = a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m = (\sqrt[n]{a})^m$ 10.8 Grenzen NeCo viele äquidistante Knoten → Gewichte $\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a^{\frac{1}{n}}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[m]{a}$ negativ → Verfahren instabil; geschlosse- $\sqrt[n]{a} \cdot \sqrt[n]{b} = (a^{\frac{1}{n}}) \cdot (b^{\frac{1}{n}}) = (ab)^{\frac{1}{n}} = \sqrt[n]{ab}$ ne NeCoRe → Funktionsauswertung an RB → Problem mit Singularitäten. größt- $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = (\frac{a}{b})^{\frac{1}{n}} = \sqrt[n]{\frac{a}{b}} \text{ für } b > 0$ mögliche Ordnung unerreichbar wegen

auf [a, b] gilt: $|e_{In}| = (b-a)h^p K|f^{(p)}(\xi)|.\xi \in$

Nur positive Gewichte!

Standardabweichung $\hat{=}\sigma$

11 Allgemein 11.1 Symbole Stichprobenstandardabweichung \(\delta\) s;

11.2 Abl.

 $e^{x} = e^{x}$; $a^{x} = (\ln a) \cdot a^{x}$;

 $6a^2b^2 - 4ab^3 + b^4$

11.10 Einigungen

11.11 Trigonometrischer Pythagoras $\sin^2 x + \cos^2 x = 1$

11.12 e

Summenregel $y = f_1(x) + f_2(x) + ... + a > 1$: str. mon. wachs; $\lambda < 0$ d.h. 0 < 1

 $y = a^x = e^{\lambda x} (\lambda = lna)$; Def.Ber.: $\infty < x < lna$

 $(a+b)(a-b) = a^2 - b^2$ 3. Binom;

Faktorregel $y = C \cdot f(x) \Rightarrow y' = C \cdot f'(x)$; ∞ ; Wert.ber.: $0 < y < \infty$; Mon.: $\lambda > 0$ d.h.

Hilfszettel zur Klausur von **JD**., Seite 5 von 4

a > 1): str. mon. fall.; Asymp.: y = 0 (x-Achse); y(0) = 1 (alle Kurven schneide die y-Achse bei y = 1); $y = a^{-1}$ entsteht durch Spiegelung von $y = a^x$ an der y-Achse.

11.13 Logarithm.

 $y = \log_a x$ mit x>0 ist Umkehrfunktion von $y = a^x$; Def.Ber.: x >0; Wert.Ber.: $-\infty < y < \infty$; Nullst.: $x_1 = 1$; Monot.: 0 < a < 1: str.mon. fall; a > 1; str.mon.wachs.; Asymp.: x = 0(yAchse); $log_a 1 = 0$, $log_a a = 1$; $y = log_a x$ ist Spieg. von $y = a^x$ an Wink.halb. d. 1. Quadr.