Ayush dhar dubey Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Atomic Structure:

27. Based on the equation [JEE-Main(online) 2014]

$$\Delta E = -2.0 \times 10^{-18} \text{ J} \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right)$$

the wavelength of the light that must be absorbed to excite hydrogen electron from level n = 1 to level n = 2 will be (h = $6.625 \times 10^{-34} \text{ Js}$, C = $3 \times 10^8 \text{ ms}^{-1}$)

- (1) 2.650×10^{-7} m (2) 1.325×10^{-7} m (3) 1.325×10^{-10} m (4) 5.300×10^{-10} m

(a) Calculate velocity of electron in first Bohr orbit of hydrogen atom (Given r = a₀) 6.

(b) Find de-Broglie wavelength of the electron in first Bohr orbit.

[HT-2005]

(c) Find the orbital angular momentum of 2p-orbital in terms of h/2π units.

1. Which of the following could be derived from Rutherford's α-particle scattering experiment-

- (A) Most of the space in the atom is empty
- (B) The radius of the atom is about 10⁻¹⁰ m while that of nucleus is 10⁻¹⁵m
- (C) Electrons move in a circular path of fixed energy called orbits
- (D) Radius of nucleus is directly proportional to cubic root of mass number.

42. If p is the momentum of the fastest electron ejected from a metal surface after the irradiation of light having wavelength \(\lambda\), then for 1.5 p momentum of the photoelectron, the wavelength of the light should be : (Assume kinetic energy of ejected photoelectron to be very high in comparison to work function): [JEE Main (April) 2019]

 $(1) \frac{3}{4} \lambda$

 $(2) \frac{4}{9} \lambda$

 $(3) \frac{1}{2}\lambda \qquad (4) \frac{2}{3}\lambda$

54. If the work function of a metal is 6.63 × 10 J, the maximum wavelength of the photon required to remove a photoelectron from the metal is nm. (Nearest integer) [Given: h =

Solid State:

- 14. Element 'B' forms ccp structure and 'A' occupies half of the octahedral voids, while oxygen atoms occupy all the tetrahedral voids. The structure of bimetallic oxide is: [Jee Main, April 2019]
 - (A) AB2O4
- (B) A₄B₂O
- (C) A4BO4
- (D) A₂B₂O
- 6. A metal crystallises in bcc. Find the % fraction of edge length not covered and also % fraction of edge length covered by atom is:
- 3. In a solid, S²⁻ ions are packed in fcc lattice. Zn²⁺ occupies half of the tetrahedral voids in an alternating arrangement. Now if a plane is cut (as shown) then the cross-section would be:

- (B) CCC
- (c) 000
- (II)

- A match box exhibit -
 - (A) Cubic geometry

(B) Monoclinic geometry

(C) Tetragonal geometry

- (D) Orthorhombic geometry
- 13. Consider the bcc unit cells of the solids 1 and 2 with the position of atoms as shown below. The radius of atom B is twice that of atom A. The unit cell edge length is 50% more in solid 2 then in

Coordination Chemistry:

- 67. Which one of the following complexes is an outer orbital complex?
 - (A) [Fe(CN)₆]⁴⁻

(B) [Mn(CN)6]4-

(C) [Co(NH₃)₆]³⁺

(D) [Ni(NH₃)₆]²⁺

2.	Which of the following statement(s) is (are) correct? (A) The oxidation state of iron in sodium nitroprusside Na ₂ [Fe(CN) ₅ (NO)] is +2. (B) [Ag(NH ₃) ₂] ⁺ is linear in shape. (C) In [Fe(H ₂ O) ₆] ³⁺ , Fe is d ² sp ³ hybridized. (D) In Ni(CO) ₄ , the oxidation state of Ni is zero.		
37.	The formula of the complex hydridotrimethoxidoborate(III) ion is:		
	(A) [BH(OCH ₃) ₃] ²⁻ (B) [BH ₂ (OCH ₃) ₃] ²⁻ (C) [BH(OCH ₃) ₃] ⁻ (D) [BH(OCH ₃) ₃] ⁺	
50.	The pair having the same magnetic mon	ent is:- [J-MAIN-	2016]
	[At. No.: Cr = 24, Mn = 25, Fe = 26, Co = 27]		
	(1) [CoCl ₄] ²⁻ and [Fe(H ₂ O) ₆] ²⁺	(2) [Cr(H ₂ O) ₆] ²⁺ and [CoCl ₄] ²⁻	
	(3) $\left[Cr(H_2O)_6\right]^{2+}$ and $\left[Fe(H_2O)_6\right]^{2+}$	(4) $[Mn(H_2O)_6]^{2*}$ and $[Cr(H_2O)_6]^{2*}$	
30.	Which of the following complex ions will exhibit optical isomerism? [J-MAIN-2012, Online]		
	(en = 1, 2-diamine ethane)		
	(1) [Co(en) ₂ Cl ₂] ⁺	(2) [Zn(en) ₂] ²⁺	

(4) [Cr(NH3)2Cl2]*

(3) [Co(NH₃)₄Cl₂]⁺