UNIWERSYTET EKONOMICZNY W KATOWICACH WYDZIAŁ INFORMATYKI I KOMUNIKACJI INFORMATYKA

Paweł Babiuch

ALGORYTMY WYZNACZANIA PUNKTÓW RÓWNOWAGI W GRACH O SUMIE ZERO

Praca licencjacka Napisana w Katedrze Inżynierii Wiedzy pod kierunkiem dr Przemysława Juszczuka

Przebieg prezentacji

1. Wprowadzenie

- a. Podstawowe definicje
- b. Podziały gier

2. Proces analizy gier

- a. Wyznaczanie punktów siodłowych
- b. Strategie dominujące oraz zdominowane
- c. Strategie mieszane

3. Przykłady rozwiązań gier dla praktycznej realizacji projektu

- a. Gra z punktem siodłowym
- b. Mała gra bez punktu siodłowego
- c. Metoda graficzna
- d. Duża gra bez punktu siodłowego

1. Wprowadzenie

- Teoria gier jest narzędziem wspomagającym podejmowanie decyzji przez uczestników (dążących do zmaksymalizowania swojego wyniku), które mają miejsce każdego dnia na całym świecie w wielu gałęziach nauk. Teoria gier pozwala w sposób matematyczny sformułować zasady zachowywania się uczestników;
- Niniejsza prezentacja ma za zadanie wprowadzić kilka podstawowych definicji oraz określić zakres tematyki; ma za zadanie przedstawić metody analizy rozwiązywania gier; a także przedstawia praktyczną reprezentację zaimplementowanych algorytmów w aplikacji.

1a. Podstawowe definicje

- Gracz (uczestnik gry) jest osobą podejmującą racjonalne decyzje, a każda gra zawiera co najmniej dwie strony konfliktu;
- Zbiór strategii zbiór możliwych wyborów każdego gracza; S_i= {s₁, s₂, ..., s_k}, gdzie s_k jest k-tym możliwym wyborem i-tego gracza, określanym dalej jako k-ta strategia;
- Zbiór wyników zbiór wypłat dla każdego gracza. Każda podjęta przez gracza strategia ma odpowiadającą wypłatę (wynik);
- Reguły to indywidualne zasady dla każdej gry i muszą być przestrzegane przez każdego z uczestników. Mogą dotyczyć np. kolejności ruchów czy o momencie przekazywania informacji pomiędzy graczami.

2. Proces analizy gier

2a. Wyznaczanie punktów siodłowych

Dla każdej strategii $S_i \in S_w$, gdzie S_w jest zbiorem strategii Gracza Wierszowego

- a) Wypisz najmniejsze wypłaty (minima wierszy)
- b) Wybierz największą wartość spośród minimów wierszy (maksimin)

Dla każdej strategii Sj € Sk, gdzie Sk jest zbiorem strategii Gracz Kolumnowego

- a) Wypisz największe wypłaty (maksima wierszy)
- b) Wybierz najmniejszą wartość spośród maksimów wierszy (minimaks)

Jeżeli (minimaks = maksimin):

a) Gra posiada punkt siodłowy

W przeciwnym razie:

a) Szukaj rozwiązań w strategiach mieszanych

2b. Strategie dominujące oraz zdominowane

```
1. Dla każdej pozostałej pary strategii A i B Gracza Wierszowego, wyznacz:
      a) Ile wypłat ze strategii A jest większych od strategii B;
      b) Ile wypłat ze strategii A jest mniejszych od strategii B;
      c) Ile wypłat ze strategii A jest równych strategii B;
2. Dla otrzymanych obliczeń sprawdź zachodzące warunki:
      a) Jeżeli a+c=liczba wypłat strategii A, to A dominuje B;
      b) Jeżeli jednak b+c=liczba wypłat A, to A jest dominowana przez B;
      c) W przeciwnym razie brak zachodzącej dominacji;
3. Jeżeli nastąpiła dominacja:
      a) Usuń z macierzy strategię zdominowaną;
4. Powtórz kroki (1) do (3) dla Gracza Kolumnowego;
5. Jeżeli w krokach (1) do (4) nie wystąpiła żadna dominacja (
      a) Zakończ wyszukiwanie dominacji;
   W przeciwnym razie:
      a) Powtórz algorytm od kroku (1);
```

2c. Strategie mieszane

Gra 2x2 – Względne częstotliwości

Gra 2xm – Metoda graficzna

Gra nxm – Metoda przybliżona

		A	В	C	D											
A	4	2	3	1	4		1	3	5	7	10	13	16	19	22	25
1	В	1	2	5	4		5	6	7	8	10	12	14	16	18	20
•	C	2	3	4	1		4	6	8	10	13	16	19	22	25	28
1	D	4	2	2	2		2	6	10	14	16	18	20	22	24	26

2	3	1	4
3	5	6	8
4	7	11	12
8	9	13	14
12	11	15	16
16	13	17	18
20	15	19	20
24	17	21	22
26	20	25	23
28	23	29	24

3. Przykłady rozwiązań gier dla praktycznej realizacji projektu

Okna użyte do zobrazowania analizy gry

- Główna macierz gry
 - Dodatkowo pola na obliczenia minimaksu i maksiminu
 - Dodatkowo pola na obliczanie metodą przybliżoną
- Panel dla względnych częstotliwości
- Panel dla zobrazowania metody graficznej

	Gracz B	Minima	Logi z anali		
А	В	С	Wierszy	23# Analiza została zakończon	
				22# Zaznaczono punkt siodłow	
2	1	1	1	21# Zaznaczono punkt siodłow	
			-5	20# Zaznaczono punkt siodłow	
-1	0	-5		19# Zaznaczono punkt siodłow	
				18# Zaznaczanie punktów siod	
7	1	1	1	17# Znaleziono punkt siodłowy	
				16# Znaleziono kolejny maks kı	
				15# Znaleziono największą wai gracza: Gracz B	
1	0	-3	-3	14# Znaleziony maks kolumny	
				13# Znaleziono największą war gracza: Gracz B	
7	1	1		12# Znaleziony maks kolumny	

3a. Gra z punktem siodłowym

Algorytm (minimaks i maksimin) znalazł punkt siodłowy – zaznaczając go w dodatkowych kolumnach (kolorem czerwonym) oraz oznaczył wypłaty będące punktami siodłowymi (kolor zielony).

Z prawej strony widać fragment logów generowanych w trakcie analizy.

3b. Mała gra bez punktu siodłowego

- Algorytm (minimaks i maksimin)
 nie znalazł punktów siodłowych;
- Nie wykryto strategii zdominowanych;
- Za pomocą strategii mieszanych wyznaczono względne częstotliwości;

3c. Metoda graficzna

Przed usunięciem strategii zdominowanych

Po usunięciu strategii zdominowanych

3c. Metoda graficzna

Wyznaczanie górnej granicy metodą graficzną

Wyznaczanie względnych częstotliwości metodą mieszaną dla małych gier (2x2)

3d. Duża gra bez punktu siodłowego

- Rozpoczęcie wyszukiwania względnych częstotliwości metodą przybliżoną;
- Zaznaczono strategię A (dodano +1 dla względnych częstotliwości) i dodano sumy do sumy wypłat kolumn
 - zaznaczono najmniejszą wartość.

			Suma wypłat	Logi z aı					
A B				В	С	D	wierszy	53# Znajduję najmniejszą w kolumnie.	
		A 2		3	1	4	1	52# Dla wybranej strategii z częstotliwość o 1	
	A							51# Pobieram strategię C gr do dodatkowej tablicy	
		1	_		5	1	5	50# Znajduję najmniejszą w wierszu.	
	В			2				49# Dla wybranej strategii z częstotliwość o 1	
Gracz								48# Pobieram strategię A gr do dodatkowej tablicy	
A	С	2		3				47# Liczba powtórzeń liczor ilocznu liczby strategii Gracz	
	Wzg	ględne częstot	liwości					46# Rozwiązywanie gry met	
	Α	В	С	D			2	45# Szukanie rozwiązania v mieszanych.	
Gracz A	1	0	0	0	2	2		44# Brak dominacji pomięd:	
	А	В	С	D				43# Porównuję strategię gra	
Gracz B	0	0 0 1		0	1	4		42# Brak dominacji pomięd:	

3d. Duża gra bez punktu siodłowego

- Zaznaczono strategię C (dodano +1 dla względnych częstotliwości) i dodano sumy do sumy wypłat wierszy zaznaczono największą wartość.
- Powtórz kroki $n \cdot m$ razy, gdzie n = liczba strategii Gracza A, m = liczba strategii Gracza B.

3d. Duża gra bez punktu siodłowego

Efekt końcowy analizy dużej gry bez punktu siodłowego

Wnioski

- Omawianym tematem pracy była analiza wspomagająca wybory związane z problemami decyzyjnymi wśród uczestników konfliktu;
- Temat pracy został zawężony do gier 2-osobowych o sumie zero;
- Cel został osiągnięty i zrealizowany za pomocą silniku graficznego Unity 3D, który umożliwił utworzenie dowolnej (z omawianego zakresu tematyki) gry oraz krok po kroku analizowanie jej – wraz z ułatwiającymi analizę logami;
- Ze względu na architekturę aplikacji (wzorce projektowe) w łatwy sposób można rozbudować aplikację dla szerszych zagadnień związanych z tematyką teorii gier.