

Fondation Campus Biotech Geneva +

Introduction to Open & Reproducible Science (IORDS)

Michael Dayan, Data Scientist Manager

Methods & Data facility
Human Neuroscience Platform
Foundation Campus Biotech Geneva

Virtual machine info

To get an IP, please fill the form at:

https://tinyurl.com/IORDS2021-IP-ML2

START VS CODE AND JUPYTER ON YOUR BROWSER:

- Start an internet browser on your own machine
- *Jupyter:* <your_IP>:8888

PASSWORD: braincode!

ANY PROBLEM? Please raise your hand or ask questions on Slack: channel #machine-learning

On site support (including coding):

Maël

Remote support (including coding):

Nathan

Serafeim

LECTURE OBJECTIVES

Introduction to machine learning lectures objectives (you should be able to...):

- Understand the typical form of the data characterizing a machine learning problem (N samples x p features, with p labels for supervised machine learning)
- Understand what fitting a model means
- Understand how to score predictions and why an independent test set is essential
- Know how to implement cross-validation, and know why this is useful

ML Part 1

- Understand the goal of classification and how performance is measured
- Understand the concept of overfitting and underfitting
- Understand the principles of regularization and it could be implemented
- Understand the main idea behind dimensionality reduction
- Understand the goal of clustering, how the performance can be measured, and how it is implemented with k-means

ML Part 2

MAKING PREDICTIONS

> Take measurements

Observations

Find a way to make predictions

Shot 1

Shot 2

Shot 3

60

45

45

Fitted model (r= \(\bar{\beta}_{\psi} \psi + \bar{\beta}_{0} \) > Assess generalizability of predictions **ORIGINAL TRAINING DATASET Test score** (e.g. MSE) Labels Labels **Features Features** Angle Range r Range r Angle Idata points / Samples) Ψ (psi) Ψ (psi)

32.4

36.2

37.7

• • •

.EAST BAD" MODEL?

Shot 1

Shot 2

Shot 3

37

24

54

33.1

29.6

41.4

MAKING PREDICTIONS

MAKING PREDICTIONS

- > Take measurements
- Find a way to make predictions
- > Assess generalizability of predictions

GENERALIZABILITY OF ML MODELS (& MODEL SELECTION)

SUPERVISED LEARNING: REGRESSION & CLASSIFICATION

Supervised learning

When the model is associating features to a label, the task is called supervised learning (the labels provided by the user is the "supervision")

Depending if the label is continuous (e.g. house price) or categorical (e.g. diagnosis), the supervised learning task is called differently:

- regression when the label is continuous
- classification when the label is categorical
- Example of classification algorithm: logistic regression

Many classification algorithm output a probability value p between 0 and 1

- \rightarrow have to choose threshold p_{thr} to define labels, e.g. p_{thr} = 0.5:
 - if y <= 0.5 then label is 0
 - If y > 0.5 then label is 1

There can be reasons to choose $p_{thr} \neq 0.5$ (e.g when focus on avoiding false positives or false negatives)

CLASSIFICATION EVALUATION

Classification scores

		Actual			
		Positive	Negative		
Predicted	Positive	True positive	False positive		
	Negative	False negative	True negative		

Accuracy = (TP + TN) / (TP + FP + FN + TN)

Sensitivity (or TPR) = TP / (TP+FN)

False Positive Rate (FPR) = FP / (FP+TN)

Specificity = TN / (FP+TN)

Precision (PPV) = TP / (TP+FP)

→ Depends on which probability threshold you choose to define positive cases p=0.5? p=0.95?

The choice of outcome(s) (and features) is fully part of the research design

DATASET

		Feature matrix X				Label array y
		Age	Sex	ROI 1	•••	Has disease
Observations ta points / samples)	Subj 1	60	F	42.0		No
	Subj 2	45	M	29.1		Yes
	Subj 3	45	F	31.7		No
	Subj 4	35	F	25.4		Yes
(data						

CLASSIFICATION EVALUATION

Classification scores

		Actual			
		Positive	Negative		
Predicted	Positive	True positive	False positive		
	Negative	False negative	True negative		

Accuracy = (TP + TN) / (TP + FP + FN + TN)

Sensitivity (or TPR) = TP / (TP+FN)

False Positive Rate (FPR) = FP / (FP+TN)

Specificity = TN / (FP+TN)

Precision (PPV) = TP / (TP+FP)

→ Depends on which probability threshold you choose to define positive cases p=0.5? p=0.95?

REGULARIZATION

- How to prevent overfitting?
- Feature selection
- Regularization (in linear regression), forcing model parameters $(\beta \text{ coefficients})$ to be small or zero

λ is an hyper-parameter (not fitted)

→ Need to find best hyper-parameter

CHOOSING HYPERPARAMETERS WITH NESTED CROSS-VALIDATION

OTHER EXAMPLE OF CLASSIFICATION MODEL: SVM

$$\mathsf{margin} = \frac{1}{\|w\|}$$

 $\mathop{\mathrm{minimize}}_{\mathbf{w},b}$

$$\frac{1}{2}||\mathbf{w}||^2$$

subject to:
$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1$$
 $i = 1, ..., n$.

$$\underset{\mathbf{w},b}{\operatorname{minimize}}$$

$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$

subject to:
$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0.$$

$$C\sum_{i=1}^{n} \xi_{i} \longrightarrow C_{+} \sum_{i \in I_{+}} \xi_{i} + C_{-} \sum_{i \in I_{-}} \xi_{i}$$

$$C_+ n_+ = C_- n_-$$

$$\frac{C_+}{C_-} = \frac{n_-}{n_+}$$

MACHINE LEARNING ESTIMATORS

THANK YOU FOR YOUR ATTENTION!

Classification

General examples about classification algorithms.

Normal and Shrinkage Linear Discriminant Analysis for classification

Recognizing hand-written digits

Plot classification proba-

Classifier comparison

Linear and Quadratic
Discriminant Analysis with
covariance ellipsoid

Clustering

Examples concerning the sklearn.cluster module.

Plot Hierarchical Clustering Dendrogram

Feature agglomeration

A demo of the mean-shift clustering algorithm

Demonstration of k-means assumptions

COURSE SUPPORT

SLACK (iords2021.slack.com)

- Course main channel: #general
- Topic channels: #linux, #linux-capstone, #git, #git-capstone, #python, #full-example, #machine-learning
- → Check regularly for course info (esp. pinned items)
- → Do not hesitate to ask questions (please reply "in thread")

1-to-1 OFFICE HOURS for course questions:

- 20-min slots every Friday morning between 9AM and 11AM
- → Book a time slot here: https://tinyurl.com/IORDS-office-hours
- → Do not hesitate to ask any kind of question, this is a beginner course!

EMAIL:

methods@fcbg.ch

Please whitelist!

