Predictive Coding, Variational Autoencoders, and Biological Connections

Joseph Marino California Institute of Technology

introduction

Predictive coding and VAEs share a <u>common origin</u>, arising from ideas from Mumford, 1992; Dayan et al., 1995; Olshausen & Field, 1996; etc. However, these areas have <u>evolved largely independently</u>.

- We connect and contrast these areas to strengthen the bridge between neuroscience and machine learning.
- We discuss **frontiers** where these areas can contribute to each other.

connections & contrasts

Biological Connections

Top-Down Neurons — Generative Model Bottom-Up Neurons — Inference Updating Lateral Connections — Covariance Matrix Neural Activity — Estimates & Errors Cortical Column — Corresponding Estimate &

Error

Predictive Coding

- Model: Latent Gaussian Model
- Model Parameterization: Analytical, e.g., Polynomial
- Approx. Posterior: Typically Gaussian
- Inference Optimization: Gradient-Based
- **Dynamics**: Typically Generalized Coordinates, e.g., Velocity

Variational Autoencoders

- Model: Latent Gaussian Model
- Model Parameterization: Deep Neural Networks
- Approx. Posterior: Typically Gaussian
- Inference Optimization: Amortized
- **Dynamics**: Typically Recurrent Neural Networks

background

Latent Variable Models

model $p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})$ observations **x** latent variables z

 $p_{\theta}(\mathbf{x}|\mathbf{z})$

X

Variational Inference

approx. posterior $q(\mathbf{z}|\mathbf{x}) \leftarrow \arg\max \mathcal{L}(\mathbf{x}; q, \theta)$

ELBO/-FE $\mathcal{L}(\mathbf{x}; q, \theta) \equiv \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - D_{\mathrm{KL}}(q(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}))$

frontiers

Backpropagation within Neurons

• if a deep network is analogous to an individual neuron, then backprop-like mechanisms may occur within neurons

Credit assignment in networks using local prediction error signals

<u>Larger role for</u>

- → non-linear dendritic computation
- backpropagating action potentials

Predictive Coding [Rao & Ballard, 1999; Friston, 2005]:

- cortex constructs a generative model of sensory inputs, and
- uses approximate inference to perform state estimation.

Hierarchical latent Gaussian model:

$$p_{\theta}(\mathbf{z}_{\ell}|\mathbf{z}_{\ell+1}) = \mathcal{N}(\mathbf{z}_{\ell}; \boldsymbol{\mu}_{\theta,\ell}(\mathbf{z}_{\ell+1}), \boldsymbol{\Sigma}_{p,\ell})$$
$$p_{\theta}(\mathbf{x}|\mathbf{z}_{1}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{\theta,\mathbf{x}}(\mathbf{z}_{1}), \boldsymbol{\Sigma}_{\mathbf{x}})$$

Gradient-based variational inference:

$$q(\mathbf{z}_{\ell}|\mathbf{x}) = \mathcal{N}(\mathbf{z}_{\ell}; oldsymbol{\mu}_{q,\ell}, oldsymbol{\Sigma}_{q,\ell}) \
abla_{oldsymbol{\mu}_{q,1}} \mathcal{L} = \mathbf{J}^{\intercal} oldsymbol{arepsilon}_{\mathbf{x}} - oldsymbol{arepsilon}_{1}$$

Variational Autoencoders [Kingma & Welling, 2014; Rezende et al., 2014]:

• parameterize conditional probabilities with deep networks, and

where ${f J}=\partial m{\mu}_{ heta,{f x}}/\partial m{\mu}_{q,1}$, and $m{arepsilon}_{f x}$ and $m{arepsilon}_1$ are weighted errors, e.g., $oldsymbol{arepsilon}_{\mathbf{x}} = oldsymbol{\Sigma}_{\mathbf{x}}^{-1} (\mathbf{x} - oldsymbol{\mu}_{ heta, \mathbf{x}})$.

Normalizing Flows through Lateral Inhibition

• complex probability distributions with tractable sampling and evaluation

Basic Form:

base distribution $p_{\theta}(\mathbf{u})$ invertible transforms $\mathbf{v} = f_{\theta}(\mathbf{u})$ change of variables formula

 $p_{\theta}(\mathbf{v}) = p_{\theta}(\mathbf{u}) \left| \det \left(\frac{d\mathbf{v}}{d\mathbf{u}} \right) \right|^{-1}$

Affine Autoregressive Flows [Kingma et al., 2016]:

forward transform: $v_i = \alpha_{\theta}(\mathbf{v}_{< i}) + \beta(\mathbf{v}_{< i}) \cdot u_i$

inverse transform: $u_i = \frac{v_i - \alpha_{\theta}(\mathbf{v}_{< i})}{\beta(\mathbf{v}_{< i})}$

This basic normalization scheme is found in retina, thalamus, cortex, central pattern generators, etc.

• learn to perform variational inference optimization (amortization).

Deep networks:

e.g.,
$$\boldsymbol{\mu}_{ heta,\ell}(\mathbf{z}_{\ell+1}) = \mathrm{NN}_{ heta,\ell}(\mathbf{z}_{\ell+1})$$

Amortized variational inference:

direct
$$\boldsymbol{\mu}_q \leftarrow \mathrm{NN}_{\phi}(\mathbf{x})$$

iterative
$$\boldsymbol{\mu}_q \leftarrow \mathrm{NN}_{\phi}(\boldsymbol{\mu}_q, \nabla_{\boldsymbol{\mu}_q} \mathcal{L})$$

 $oldsymbol{\mu}_q \leftarrow \mathrm{NN}_\phi(oldsymbol{\mu}_q, oldsymbol{arepsilon}_{\mathbf{x}}, oldsymbol{arepsilon}_{\mathbf{z}})$ Reparameterization:

$$\mathbf{z} = oldsymbol{\mu}_q + oldsymbol{\sigma}_q \odot oldsymbol{\gamma} \qquad oldsymbol{\gamma} \sim \mathcal{N}(oldsymbol{\gamma}; \mathbf{0}, \mathbf{I})$$

may prove useful for integrating latent variable models with supervised tasks and reinforcement learning

Attention via Precision-Weighting

• prediction precision provides a mechanism for attention [Spratling, 2008]

higher precision => larger loss contribution => larger 'attentional' weight

$$egin{aligned} oldsymbol{arepsilon}_{\mathbf{x}} &= oldsymbol{\Sigma}_{\mathbf{x}}^{-1}(\mathbf{x} - oldsymbol{\mu}_{ heta,\mathbf{x}}) \ &= \Pi_{\mathbf{x}}(\mathbf{x} - oldsymbol{\mu}_{ heta,\mathbf{x}}) \end{aligned}$$