MNB] - TD2

1.
$$T_{0}(x) = 1$$
 $T_{1}(x) = x$
 $T_{1}(x) = \cos(2\arccos(x)) = 2\cos^{2}(\arccos(x)) - 1$
 $= 2x^{2} - 1$.

2. $\forall x \in \mathbb{R}$, $|\cos(x)| \le 1$ et $|\cos(x)| = 1$ pour $x = \ln r$, $1 \in \mathbb{Z}$.

En J'occurrence: $|\cos(x)| = \ln r$

Et si $|L| \ge |K|$ (ie $|\frac{L}{K}| \le 1$), $|x| = \cos(\frac{L}{K})$

Rq: $||T_{K}||_{\infty} = 1$.

3. $T_{K+1}(x) = \cos((K+1)\arccos(x))$. Posons $\theta = \arccos(x)$.

 $= \cos(K\theta + \theta)$
 $= \cos(K\theta \cos \theta - \sin K\theta \sin \theta)$

3.
$$T_{K+1}(x) = cos((K+1) \arccos(x))$$
. Posons $\theta = \arccos(sx)$.

 $= cos(K\theta + \theta)$
 $= cos(K\theta \cos \theta - \sin K\theta \sin \theta)$
 $T_{K-1}(x) = cos(K\theta - \theta)$
 $= cos(K\theta \cos \theta + \sin K\theta \sin \theta)$

Donc
$$T_{K+1}(x) + T_{K-1}(x) = 2\cos K\theta \cos \theta$$

= $2x \cos(K) \arccos x = 2x T_{K}(x)$
 $D'ai T_{K+1}(x) = 2x T_{K}(x) - T_{K-1}(x)$.

4. To
$$(x)=1$$
 est un polynôme de degré 0 , $T_n(x)=x$ en est un de degré 1 .
Soit $n \in \mathbb{N}$. Supposons que T_n et T_{n-n} sont des polynômes de degré respectif n et $n-n$.
 $T_{n+n}(x)=2x T_n(x)-T_{n-n}(x)$ Trèst un polynôme par opérations sur des polynômes.
De plus, deg $(T_{n+n})=1+$ deg $(T_n)=n+1$.

Donc
$$\forall k \in \mathbb{N}$$
, $\forall k$ est un polynôme de degré k .
De \widehat{m} , on prouve que son coeff dominant est 2^{k-1} (ou 1 si $k = 0$).

TK+1 étant de degré K+1, il samet K+1 racines. De plus, $T_{K+1}(x_i) = \cos\left(\frac{(K+1)(2i+1)}{(2K+2)}\pi\right) = 0$ donc, les x_i étant 2 à $2 \neq du$ fait de l'injectionnée de la fet cos, ce et les K+1 racines de Tx+1 -

5-
$$T_{n+1}(x) = 2^n \iint_{\mathbb{R}} (x - xi)$$

Diae: $f(x) - \Phi(x) = \frac{f(n+1)(x)}{(n+1)!} \frac{T_{n+1}(n)}{2^n}$

6- Posons $\varphi(x) = \frac{b+a}{a} + \frac{b-a}{2} x = u$
 $u^2 = \varphi(x^2)$

Donc
$$f(x) - \phi(x) = \frac{1}{(n+1)!} f^{(n+1)}(x) \pi(x-x;)$$

$$= \frac{1}{(n+1)!} f^{(n+1)}(x) \pi \frac{b-a}{2} (x-x;)$$

$$= \frac{1}{2n(n+1)!} f^{(n+1)}(x) (\frac{b-a}{2})^{n+1} \tau_{n+1}(x)$$

Donc:
$$\|f - \phi\| = \frac{2}{(n+1)!} \left(\frac{b-a}{4}\right)^{n+1} \|f^{(n+1)}\| \|T_{\mu_{\alpha}} \|$$

$$\leq \frac{2}{(n+1)!} \left(\frac{b-a}{4}\right)^{n+1} \|f^{(n+1)}\|$$

$$\leq \frac{2}{(n+1)!} \left(\frac{b-a}{4}\right)^{n+1} \|f^{(n+1)}\|$$

$$\leq \frac{2}{(n+1)!} \left(\frac{b-a}{4}\right)^{n+1} \|f^{(n+1)}\|$$