Week 5 - Programming Assignment [optional: extra credit]

The due date for this homework is Mon 8 Jun 2015 11:59 PM PDT.

□ In accordance with the Coursera Honor Code, I (Brandon Kinman) certify that the answers here are my own work.

Question 1

Your goal this week is to write a program to compute discrete log modulo a prime p. Let g be some element in \mathbb{Z}_p^* and suppose you are given h in \mathbb{Z}_p^* such that $h=g^x$ where $1 \le x \le 2^{40}$. Your goal is to find x. More precisely, the input to your program is p, g, h and the output is x.

The trivial algorithm for this problem is to try all 2^{40} possible values of x until the correct one is found, that is until we find an x satisfying $h=g^x$ in \mathbb{Z}_p . This requires 2^{40} multiplications. In this project you will implement an algorithm that runs in time roughly $\sqrt{2^{40}}=2^{20}$ using a meet in the middle attack.

Let $B=2^{20}$. Since x is less than B^2 we can write the unknown x base B as $x=x_0B+x_1$ where x_0,x_1 are in the range [0,B-1]. Then

$$h = g^x = g^{x_0B + x_1} = (g^B)^{x_0} \cdot g^{x_1}$$
 in \mathbb{Z}_p .

By moving the term g^{x_1} to the other side we obtain

$$h/g^{x_1} = (g^B)^{x_0} \quad \text{in } \mathbb{Z}_p.$$

The variables in this equation are x_0 , x_1 and everything else is known: you are given g, h and $B = 2^{20}$. Since the variables x_0 and x_1 are now on different sides of the equation we can find a solution using meet in the middle (Lecture 3.3):

1 of 3 6/7/15, 2:32 PM

- First build a hash table of all possible values of the left hand side h/g^{x_1} for $x_1 = 0, 1, \dots, 2^{20}$.
- Then for each value $x_0 = 0, 1, 2, ..., 2^{20}$ check if the right hand side $(g^B)^{x_0}$ is in this hash table. If so, then you have found a solution (x_0, x_1) from which you can compute the required x as $x = x_0 B + x_1$.

The overall work is about 2^{20} multiplications to build the table and another 2^{20} lookups in this table.

Now that we have an algorithm, here is the problem to solve:

- $p = 134078079299425970995740249982058461274793658205923933 \\ 77723561443721764030073546976801874298166903427690031 \\ 858186486050853753882811946569946433649006084171$
- $g = 11717829880366207009516117596335367088558084999998952205 \\ 59997945906392949973658374667057217647146031292859482967 \\ 5428279466566527115212748467589894601965568$
- $h = 323947510405045044356526437872806578864909752095244 \setminus 952783479245297198197614329255807385693795855318053 \setminus 2878928001494706097394108577585732452307673444020333$

Each of these three numbers is about 153 digits. Find x such that $h = g^x$ in \mathbb{Z}_p .

To solve this assignment it is best to use an environment that supports multi-precision and modular arithmetic. In Python you could use the gmpy2 or numbthy modules. Both can be used for modular inversion and exponentiation. In C you can use GMP. In Java use a BigInteger class which can perform mod, modPow and modInverse operations.

ı
1
н
н

☐ In accordance with the Coursera Honor Code, I (Brandon Kinman) certify that the answers here are my own work.

Submit Answers

Save Answers

You cannot submit your work until you agree to the Honor Code. Thanks!

2 of 3 6/7/15, 2:32 PM

3 of 3