

Capítulo 6 do CCNA2

Protocolos de roteamento

Cisco Networking Academy® Mind Wide Open™

Capítulo 6

- 6.1 Implementação de roteamento estático
- 6.2 Configuração de rotas estáticas e padrão
- 6.3 Revisão de CIDR e de VLSM
- 6.4 Configuração de rotas estáticas de sumarização e flutuantes
- 6.5 Identificação e solução de problemas de rotas estáticas e padrão
- 6.6 Resumo

Capítulo 6: Objetivos

- Explicar as vantagens e desvantagens do roteamento estático.
- Explicar a finalidade de diferentes tipos de rotas estáticas.
- Configurar rotas estáticas IPv4 e IPv6 especificando um endereço do próximo salto.
- Configurar rotas padrão de IPv4 e IPv6.
- Explicar o uso de endereçamento legado classful na implementação da rede.
- Explicar a finalidade de CIDR em substituir o endereçamento classful.

Capítulo 6: Objetivos (continuação)

- Projetar e implementar um esquema de endereçamento hierárquico.
- Configurar um endereço de rede de sumarização de IPv4 e IPv6 para reduzir o número de atualizações da tabela de roteamento.
- Configurar uma rota estática flutuante para proporcionar uma conexão alternativa.
- Explicar como um roteador processa pacotes quando uma rota estática é configurada.
- Identificar e solucionar problemas comuns de configuração das rotas estáticas e padrão.

Acessar redes remotas

Um Roteador pode aprender sobre redes remotas de duas maneiras:

- Manualmente: as redes remotas são inseridas manualmente na tabela de roteamento usando rotas estáticas.
- Dinamicamente: as rotas remotas são aprendidas automaticamente usando um protocolo de roteamento dinâmico.

Por que usar roteamento estático?

O roteamento estático fornece algumas vantagens sobre o roteamento dinâmico, incluindo:

- As rotas estáticas não são anunciadas na rede, resultando em maior segurança.
- As rotas estáticas usam menos largura de banda do que os protocolos de roteamento dinâmico, nenhum ciclo de CPU é usado para calcular e comunicar rotas.
- O caminho que uma rota estática usa para enviar dados é conhecido.

Por que usar roteamento estático? (continuação)

O roteamento estático tem as seguintes desvantagens:

- A configuração inicial e a manutenção são demoradas.
- A configuração é propensa a erros, especialmente em grandes redes.
- A intervenção do administrador é necessária para manter informações de rota alteráveis.
- Não é dimensionável com redes em crescimento; a manutenção se torna problemática.
- Exige conhecimento completo de toda a rede para a implementação adequada.

Quando usar rotas estáticas

O roteamento estático tem três usos principais:

- Fornecer facilidade de manutenção da tabela de roteamento em redes menores que não devem crescer significativamente
- Roteamento para e das redes stub. Uma rede stub é uma rede acessada por uma única rota e o roteador não tem nenhum outro vizinho.
- Usando uma única rota padrão para representar um caminho a qualquer rede que não tenha uma correspondência mais específica com outra rota na tabela de roteamento. As rotas padrão são usadas para enviar o tráfego para qualquer destino além do próximo roteador.

Tipos de rotas estáticas

Aplicativos de rota estática

As rotas estáticas são usadas com frequência para:

- Conectar-se a uma rede específica
- Fornecer um gateway de último recurso para uma rede stub
- Reduzir o número de rotas anunciadas resumindo várias redes contíguas como uma rota estática
- Criar uma rota alternativa, caso ocorra falha no link da rota primária

Tipos de rotas estáticas Rota estática padrão

Conexão a uma Rede stub

Tipos de rotas estáticas Rota estática padrão

- Uma rota estática padrão é uma rota que combina todos os pacotes.
- Uma rota padrão identifica o endereço IP do gateway ao qual o Roteador envia todos os pacotes IP que não têm uma rota aprendida ou estática.
- Uma rota estática padrão é simplesmente uma rota estática com 0.0.0.0/0 como o endereço IPv4 de destino.

Tipos de rotas estáticas

Rota estática de sumarização

Uso de uma rota estática sumarizada

Tipos de rotas estáticas

Rota estática flutuante

- As rotas estáticas flutuantes são rotas estáticas usadas para fornecer um caminho alternativo para uma rota estática ou dinâmica principal, em caso de falha do link.
- A rota estática flutuante é usada somente quando a rota principal não está disponível.
- Para realizar isso, a rota estática flutuante é configurada com uma distância administrativa mais alta que a rota primária.

Sintaxe do comando ip route

Router(config)# **ip route** network-address subnet-mask {ip-address | exit-intf}

Parâmetro	Descrição		
network- address	Endereço de rede destino da rede remota a ser adicionado à tabela de roteamento.		
subnet-mask	 Máscara de sub-rede da rede remota a ser adicionada à tabela de roteamento. A máscara de sub-rede pode ser modificada para resumir um grupo de redes. 		
ip-address	 Geralmente conhecido como o endereço IP do roteador do próximo salto. Geralmente usado ao se conectar à mídia de transmissão (por exemplo, Ethernet). Geralmente cria uma pesquisa recursiva. 		
exit-intf	 Use a interface de saída para enviar pacotes para a rede destino. Também conhecida como rota estática diretamente conectada. Geralmente usada durante a conexão em uma configuração ponto a ponto. 		

Configurar rotas estáticas IPv4 Opções de Next-Hop

O próximo salto pode ser identificado por um endereço IP, por uma interface de saída ou ambos. A forma como o destino é especificado cria um dos três tipos de rastreamento de rota a seguir:

- Rota do próximo salto Somente o endereço do próximo salto é especificado.
- Rota estática diretamente conectada Somente a interface de saída do roteador é especificada.
- Rota estática totalmente especificada O endereço IP do próximo salto e a interface de saída são especificados.

Configurar rotas estáticas IPv4

Configurar uma rota estática do próximo salto

Quando um pacote é destinado à rede 192.168.2.0/24, o R1:

1. Procura uma correspondência na tabela de roteamento e descobre que tem que encaminhar pacotes para o endereço IPv4 do próximo salto 172.16.2.2. Verifique a tabela de roteamento de R1

2. R1 deve agora determinar como acessar 172.16.2.2; portanto, procura uma segunda vez uma correspondência de 172.16.2.2.

Configurar rotas estáticas IPv4

Configurar uma rota estática diretamente conectada

Configure rotas estáticas diretamente conectadas em R1

Configurar rotas estáticas IPv4 Verificar uma rota estática

Junto com ping e traceroute, os comandos úteis para verificar rotas estáticas incluem:

- show ip route
- show ip route static
- show ip route network

Configurar rotas IPv4 padrão Rota estática padrão

Sintaxe da rota estática padrão

Router(config) #ip route 0.0.0.0 0.0.0.0 {ip-address | exit-intf}

Parâmetro	Descrição
0.0.0.0	Corresponde a qualquer endereço de rede.
0.0.0.0	Corresponde a qualquer máscara de sub-rede.
ip- address	 Geralmente conhecido como o endereço IP do roteador do próximo salto. Geralmente usado ao se conectar à mídia de transmissão (por exemplo, Ethernet). Geralmente cria uma pesquisa recursiva.
exit- intf	 Use a interface de saída para enviar pacotes para a rede destino. Também conhecida como rota estática diretamente conectada. Geralmente usada durante a conexão em uma configuração ponto a ponto.

Configurar rotas IPv4 padrão

Configurar uma rota estática padrão

Configuração de uma rota estática padrão

Configurar rotas IPv4 padrão

Verificar uma rota estática padrão

Verificando a tabela de roteamento de R1

Configurar rotas estáticas IPv6

O comando ipv6 route

A maioria dos parâmetros são idênticos à versão de IPv4 do comando. As rotas estáticas IPv6 também podem ser implementadas como:

- Rota estática padrão IPv6
- Rota estática padrão IPv6
- Rota estática sumarizada IPv6
- Rota estática flutuante IPv6

```
Router(config) #ipv6 route ipv6-prefix/ipv6-mask {ipv6-address | exit-intf}
```

Opções de Next-Hop

O próximo salto pode ser identificado por um endereço IPv6, por uma interface de saída ou ambos. A forma como o destino é especificado cria um dos três tipos de rastreamento de rota:

- Rota do próximo salto IPv6 Somente o endereço do próximo salto IPv6 é especificado.
- Rota estática diretamente conectada IPv6 Somente a interface de saída do roteador é especificada.
- Rota estática totalmente especificada IPv6 O endereço IPv6 do próximo salto e a interface de saída são especificados.

Configurar rotas estáticas IPv6 Configurar uma rota estática IPv6 do próximo salto

Configure rotas estáticas do próximo salto do IPv6

INSTITUTO FEDERAL DE

Câmpus Inconfidentes

EDUCAÇÃO, CIÊNCIA E TECNOLOGIA

Configurar rotas estáticas IPv6 Configurar a rota estática IPv6 diretamente conectada

Configurar rotas estáticas diretamente conectadas do IPv6 no R1

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA

Configurar rotas estáticas IPv6 Configurar a rota estática IPv6 totalmente especificada

Configurar rotas estáticas totalmente especificadas do IPv6 no R1


```
R1(config)# ipv6 route 2001:db8:acad:2::/64 fe80::2
% Interface has to be specified for a link-local nexthop
R1(config)# ipv6 route 2001:db8:acad:2::/64 s0/0/0 fe80::2
R1(config)#
```

Verificar rotas estáticas IPv6 Verificar rotas estáticas IPv6

Junto com ping e traceroute, os comandos úteis para verificar rotas estáticas incluem:

- show ipv6 route
- show ipv6 route static
- show ipv6 route network

Configurar rotas IPv6 padrão Rota estática IPv6 padrão

Sintaxe de rota estática padrão do IPv6

Router(config) # ipv6 route ::/0 {ipv6-address | exit-intf}

Parâmetro	Descrição			
::/0	Corresponde a qualquer prefixo do IPv6 independentemente do tamanho do prefixo.			
ipv6-address	 Geralmente conhecido como endereço do IPv6 do roteador do próximo salto. Geralmente usado ao se conectar à mídia de transmissão (por exemplo, Ethernet). Geralmente cria uma pesquisa recursiva. 			
exit-intf	 Use a interface de saída para enviar pacotes para a rede destino. Também conhecida como rota estática diretamente conectada. Geralmente usada durante a conexão em uma configuração ponto a ponto. 			

Configurar uma rota estática IPv6 padrão

Configuração de uma rota estática padrão do IPv6

Verificar uma

verificar uma rota estática padrão

Verificando a tabela de roteamento de R1

Endereçamento clasful Endereçamento de rede classful

Classe	Bits de mais alta ordem	Iniciar	Finalizar
Classe A	0ххххххх	0.0.0.0	127.255.255.255
Classe B	10xxxxxx	128.0.0.0	191.255.255.255
Classe C	110xxxxx	192.0.0.0	223.255.255.255
Classe D (Multicast)	1110xxxx	224.0.0.0	239.255.255.255
Classe E (Reservado)	1111xxxx	240.0.0.0	255.255.255

Máscaras de sub-rede classful

Classe A

	Rede	Host	Host	Host
— le	255	0	0	0

Classe B

Máscara de Sub-Red

	Rede	Rede	Host	Host
Máscara de Sub-Rede	255	.255	.0	.0

Classe C

	Rede	Rede	Rede	Host
_				
Máscara de Sub-Rede	255	.255	.255	.0

Desperdício de endereçamento classful

Alocação de endereço IP de classe completa = Ineficiente

Classe A (1 - 126)

of possible networks: 126 # of Hosts/Net: 16.777.214 Max. # Hosts: 2.113.928.964

Classe B (128 - 191)

of possible networks: 16.384 # of Hosts/Net: 65.534

Max. # Hosts: 1.073.709.056

Class C (192 - 223)

of possible networks: 2.097.152

of Hosts/Net: 254

Max. # Hosts: 532.676.608

CIDR = Eficiente

Classe A (1 – 1.6) # of possible networks: 126 # of Hosts/Net: 16,777,214 Max. # Hosts: 16,777,214

of possible networks: 16.384 # of Hosts/Net: 65.554 Max. # Hosts: 1.73.09.056

Class C (192 – 2 3) # of possible networks: 2.097.152 # of Hosts/Net: 254 Max. # Hosts: 532.676.608

CIDR e sumarização de rota

Resumo de rotas de super-rede

CIDR

Exemplo de CIDR de roteamento estático

Uma rota estática sumarizada

R1 (config) #no ip route 172.16.0.0 255.255.0.0 s0/0/0
R1 (config) #no ip route 172.17.0.0 255.255.0.0 s0/0/0
R1 (config) #no ip route 172.18.0.0 255.255.0.0 s0/0/0
R1 (config) #no ip route 172.19.0.0 255.255.0.0 s0/0/0
R1 (config) #no ip route 172.20.0.0 255.255.0.0 s0/0/0
R1 (config) #no ip route 172.21.0.0 255.255.0.0 s0/0/0
R1 (config) #
R1 (config) #
R1 (config) #ip route 172.16.0.0 255.248.0.0 s0/0/0
R1 (config) #

VLSM

Máscara de Sub-rede de comprimento fixo

Esquema básico de sub-rede

Máscara de Sub-rede de comprimento variável

Sub-redes de tamanhos variados

VLSM em ação

- O VLSM permite o uso de máscaras diferentes para cada sub-rede.
- Depois que um endereço de rede dividido em subredes, essas sub-redes podem mais ser dividida em sub-redes.
- O VLSM simplesmente divide uma sub-rede em outras sub-redes. O VLSM pode ser considerado uma técnica de divisão em sub-redes.
- Os endereços de host individuais são atribuídos com base nos endereços de "sub-redes".

Divisão de Sub-redes

Divisão em sub-redes da sub-rede 10.2.0.0/16 para 10.2.0.0/24

Espaço de endereço inicial

Rede 10.0.0.0/8

1º ciclo de sub-redes
sub-redes
10.0.0.0/16
10.1.0.0/16
10.2.0.0/16
10.3.0.0/16
10.4.0.0/16
10.5.0.0/16
*
*1
10.255.0.0/16

256 sub-redes

Sub-redes	da	su	b-red	е

Sub sub-redes
10.2.0.0/24
10.2.1.0/24
10.2.2.0/24
10.2.3.0/24
10.2.4.0/24
10.2.5.0/24
25
*
4
10.2.255.0/24

256 sub-redes

Exemplo de VLSM

Prédio A 25 hosts	Prédio B 20 hosts	Prédio C 15 hosts	Prédio D 28 hosts		
4	=		7		
R1	R2	R3	R4		
	/27 Rede	Hosts			
Prédio A	.0	.130	.130		
Prédio B	.32	.3362	.3362		
Prédio C	.64	.6594	.6594		
Prédio D	.96	.97126	.97126		
Não utilizado	.128	.129158	.129158		
Não utilizado	.160	.161190	.161190		
Não utilizado	.192	.193222			
7	.224	.225254			
V	V	*	1		
	Rede /30	Hosts			
WAN R1-R2	.224	.225226	.225226		
WAN R2-R3	.228	.229230	.229230		
WAN R3-R4	.232	.233234	.233234		

Configurar rotas de sumarização IPv4

Resumo de rota

- A sumarização da rotas, também conhecida como a agregação de rota, é o processo de anunciar um conjunto de endereços contíguos como um único endereço com uma máscara de sub-rede menor e menos específica.
- O CIDR é uma forma de rota de sumarização e é sinônimo do termo super-rede.
- O CIDR ignora a limitação dos limites de classe completa e permite uma sumarização com as máscaras menores que a máscara de classe completa padrão.
- Esse tipo de sumarização ajuda a reduzir o número de entradas nas atualizações de roteamento e diminui o número de entradas nas tabelas de roteamento locais.

Calculando um resumo da rota

Etapa 2: Conte o número de bits correspondentes da extremidade esquerda para determinar a máscara.

Resposta: 14 bits correspondentes = /14 ou 255.252.0.0

Etapa 3: copie os bits correspondentes e adicione os bits zero para determinar o endereço de rede sumarizado.

Resposta: 172.20.0.0

Configurar rotas de sumarização IPv4

Exemplo de rota estática de sumarização

255.255.252.0

172.16.0.0

Configurar rotas de sumarização IPv6 Resumir endereços de rede IPv6

- Além do fato de os endereços IPv6 terem 128 bits de comprimento e serem escritos em notação hexadecimal, resumir endereços IPv6 é realmente semelhante à sumarização de endereços IPv4. Esse processo exige apenas algumas etapas extras para os endereços IPv6 abreviados e a conversão hexadecimal.
- Diversas rotas estáticas IPv6 podem ser sumarizadas em uma única rota estática de IPv6 se:
 - As redes de destino sejam contíguas e podem ser sumarizadas em um único endereço de rede.
 - As várias rotas estáticas usam a mesma interface de saída ou endereço IPv6 do próximo salto.

Configurar rotas de sumarização IPv6 Calcular endereços de rede IPv6

- Etapa 1. Liste os endereços de rede (prefixos) e identifique a parte onde os endereços são diferentes.
- Etapa 2. Expanda o IPv6, se estiver abreviado.
- Etapa 3. Converta a seção de diferenciação de hexadecimal em binário.
- Etapa 4. Conte o número de bits mais à esquerda para determinar o comprimento do prefixo da rota sumarizada.
- Etapa 5. Copie os bits correspondentes e adicione os bits zero para determinar o endereço de rede sumarizada (prefixo).
- Etapa 6. Converta a seção binária de volta a hexadecimal.
- Etapa 7. Adicione o prefixo de rota sumarizada (resultado da Etapa 4).

Configurar um endereço de sumarização do IPv6

Remover as rotas estáticas e configurar a rota sumarizada do IPv6

Configurar rotas estáticas flutuantes

Rotas estáticas flutuantes

- As rotas estáticas flutuantes são rotas estáticas que têm uma distância administrativa maior que a distância administrativa de outra rota estática ou rotas dinâmicas.
- A distância administrativa de uma rota estática pode ser aumentada para tornar a rota menos desejável que aquela de outra rota estática ou uma rota aprendida por um protocolo de roteamento dinâmico.
- Dessa forma, a rota estática "flutua" e não é usada quando a rota com a distância administrativa está ativa.
- No entanto, se a rota preferencial for perdida, a rota estática flutuante poderá assumir e o tráfego poderá ser enviado por meio dessa rota alternativa.

Configurar rotas estáticas flutuantes

Configurar uma rota estática flutuante

Configuração de uma rota estática flutuante até R3

Configurar rotas estáticas flutuantes

Testar a rota estática flutuante

- Use um comando show ip route para verificar se a tabela de roteamento está usando a rota estática padrão.
- Use um comando traceroute para seguir o fluxo de tráfego da rota primária.
- Desconecte o link primário ou desligue a interface principal de saída.
- Use um comando show ip route para verificar se a tabela de roteamento está usando a rota estática flutuante.
- Use um comando traceroute para seguir o fluxo de tráfego da rota de backup.

Identificar e Solucionar Problemas de Configuração de Rota Estática e Padrão IPv4

Identificar e Solucionar Problemas de uma Rota Ausente

Os comandos comuns de solução de problemas do IOS incluem:

- ping
- traceroute
- show ip route
- show ip interface brief
- show cdp neighbors detail

Capítulo 6: Resumo

- As rotas estáticas podem ser configuradas com um endereço IP do próximo salto, que é geralmente o endereço IP do roteador do próximo salto.
- Quando um endereço IP do próximo salto é usado, o processo da tabela de roteamento deve resolver esse endereço para uma interface de saída.
- Em links seriais ponto-a-ponto, geralmente é mais eficiente configurar a rota estática com uma interface de saída.
- Em redes multiacesso, como Ethernet, um endereço IP do próximo salto e uma interface de saída podem ser configurados na rota estática.
- As rotas estáticas têm uma distância administrativa padrão de "1".

Capítulo 6: Resumo (continuação)

- Uma rota estática só é inserida na tabela de roteamento se o endereço IP do próximo salto puder ser resolvido por meio de uma interface de saída.
- Se a rota estática é configurada com um endereço IP do próximo salto ou interface de saída, caso a interface de saída usada para encaminhar o pacote não esteja na tabela de roteamento, a rota estática não será incluída na tabela de roteamento.
- Em muitos casos, várias rotas estáticas podem ser configuradas como uma única rota de sumarização.

Capítulo 6: Resumo (continuação)

- A rota de sumarização final é uma rota padrão, configurada com um endereço de rede 0.0.0.0 e uma máscara de sub-rede 0.0.0.0.
- Se não houver correspondência mais específica na tabela de roteamento, a tabela de roteamento usará a rota padrão para encaminhar o pacote para outro Roteador.
- Uma rota estática flutuante pode ser configurada como alternativa de um link principal manipulando o valor administrativo.

Cisco | Networking Academy® | Mind Wide Open™