UECE – CCT – Curso de Computação – FÓRMULAS e PROPRIEDADES DE SOMATÓRIOS – Prof. Valdisio Viana

$$01. \ \sum_{k=1}^{n} (c.a_k + b_k) = c. \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k \ \rightarrow \ \sum_{k=1}^{n} \Theta[f(k)] = \Theta[\sum_{k=1}^{n} f(k)]$$

02.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

03.
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

02.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 03. $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ 04. $\sum_{k=1}^{n} k^3 = \left[\sum_{k=1}^{n} k\right]^2 = \frac{n^2(n+1)^2}{4}$

05.
$$\sum_{k=1}^{n} k^4 = \frac{n (n+1) (6n^3 + 9n^2 + n - 1)}{30}$$

$$06. \sum_{k=1}^{n} k^{p} \approx \Theta(N^{p+1})$$

07.
$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1}-1}{x-1}$$
 (PG finita, razão $x \neq 1$)

07.
$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1}-1}{x-1}$$
 (PG finita, razão $x \neq 1$) 08. $\sum_{k=0}^{\infty} x^{k} = \frac{1}{1-x}$ (PG infinita, razão $|x| < 1$)

09.
$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + O(1)$$

09.
$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + O(1)$$
 10. $\sum_{k=1}^{\infty} k \cdot x^{k} = \frac{x}{(1-x)^{2}}$ para $|x| < 1$

11.
$$\sum_{k=1}^{n} k.x^{k} = \frac{x - (n+1)x^{n+1} + n.x^{n+2}}{(1-x)^{2}} \quad \text{para} \quad x \neq 1$$

12.
$$\sum_{k=1}^{n} k.2^{k} = (n-1).2^{n+1} + 2$$

12.
$$\sum_{k=1}^{n} k.2^{k} = (n-1).2^{n+1} + 2$$
 13. $\sum_{k=1}^{n-1} \frac{1}{k(k+1)} = \sum_{k=1}^{n-1} \frac{1}{k} - \sum_{k=1}^{n-1} \frac{1}{k+1}$

14. a)
$$\sum_{k=1}^{n} {n \choose k} = 2^n$$

b)
$$\sum_{k=1}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

14. a)
$$\sum_{k=1}^{n} {n \choose k} = 2^n$$
 b) $\sum_{k=1}^{n} {k \choose m} = {n+1 \choose m+1}$ c) $\max_{1 \le k \le n} {n \choose k} = {n \choose \lceil k/2 \rceil}$

15.
$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \frac{1}{288n^2} - \frac{139}{51840n^3} - \frac{571}{2488320n^4} + \cdots\right)$$
 (Stirling series)

16.
$$S(n) = c.S(n-1) + g(n) \rightarrow S(n) = c^{n-1}S(1) + \sum_{i=2}^{n} c^{n-i}g(i) \blacktriangleleft$$

RECORRÊNCIAS

17.
$$T(n) = a.T(n/b) + f(n) \rightarrow T(n) = \Theta(n^{\log_b^a}) + \sum_{i=0}^{h-1} a^i f(\frac{n}{b^i})$$
 para $h = \log_b^n$

$$\begin{array}{ll} \textbf{Master theorem} & \textit{If } T(n) = aT(\lceil n/b \rceil) + O(n^d) \textit{ for } \\ \textit{some constants } a > 0, \ b > 1, \ \textit{ and } d \geq 0, \textit{ then :} \\ \textit{DASGUPTA,S., PAPADIMITRIOU,C. and VAZIRANI, U., Algorithms (p. 49.)} \end{array} \\ T(n) = \left\{ \begin{array}{ll} O(n^d) & \textit{if } d > \log_b a \\ O(n^d \log n) & \textit{if } d = \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if } d < \log_b a \\ O(n^{\log_b a}) & \textit{if$$

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

18. Equação homogênea característica:

$$a_{0}T(n) + a_{1}T(n-1) + a_{2}T(n-2) + ... + a_{k}T(n-k) = 0$$

Raízes distintas: $r_1 \neq r_2 \neq r_3 \dots \neq r_p \rightarrow T(n) = c_1 r_1^N + c_2 r_2^N \dots c_n r_n^N$

Raízes múltiplas: $r_1 = r_2 = r_3 \dots = r_p \rightarrow T(n) = c_1 r_1^N + c_2 N r_2^N \dots c_p N^{p-1} r_p^N$

Raízes Complexas Distintas: $r = a \pm bi \rightarrow T(n) = c.p^N$ onde $p = \sqrt{a^2 + b^2}$

Raízes complexas múltiplas: $T(n) = c_1 p^N + c_2 N p^N$ onde $p = \sqrt{a^2 + b^2}$