Lab-Project 3 Earthquake

Some buildings can be analyzed as rigid bodies with flexible ground constraints when subjected to loadings due to earthquakes. The sketch illustrates such a model.

Assume that the horizontal earthquake excitation of the ground is given by $x_g = \hat{x}_g \sin(\Omega t)$. Treat the structure as a uniform bar (mass m_b , length ℓ) connected via link joint to the foundation (mass m_f , torsion stiffness k_θ , translation stiffness k).

- a) Derive the equations governing the structure's response in generalized form.
- b) Find the linearized equations for the non excited case $(\hat{x}_g = 0)$.
- c) Calculate the eigen-values and visualize the eigen-modes.
- d) Plot the amplitude-frequency diagrams of the excited motion.
- e) Explain the special case: $k_{\theta} \to m_b g \ell/2$.

Given:

$$m_b = 1000 \ [kg]$$
 $k_\theta = 100000 \ [Nm]$
 $m_f = 20000 \ [kg]$ $k = 10000 \ [N/m]$
 $\ell = 10 \ [m]$ $\hat{x}_g = 0.1 \ [m]$
 $\Omega = 0, \dots, 2.5 \ [1/s]$