Часть 1. Тест.

A 178

158

G Нет верного ответа.

B 198

E 169

C 148

F 168

Вопрос 2 🖡 При добавлении нового наблюдения

- $oxed{A}$ TSS не увеличится; R^2 не уменьшится
- \fbox{B} TSS может измениться произвольно; R^2 не уменьшится
- \square TSS может измениться произвольно; R^2 может измениться произвольно
- $\boxed{\mathrm{D}}$ TSS может измениться произвольно; R^2 не увеличиться
- TSS не уменьшится; R^2 может и вырасти, и упасть

Вопрос 3 \clubsuit Если в модели парной регрессии $Y_i = \beta_1 + \beta_2 X_i + u_i$ все X_i равны константе 2016, то оценка $\hat{\beta}_2$ равна

A 1/2016

C -2016

E 2016

- не существует
- \boxed{D} -1/2016

 $\mathbf{F} = 0$

Вопрос 4 \clubsuit Если в модели парной регрессии $Y_i = \beta_1 + \beta_2 X_i + u_i$ все Y_i равны константе 2016, то оценка $\hat{\beta}_2$ равна

A -2016

C 1/2016

E 2016

 \boxed{B} -1/2016

- D не существует
- 0

Вопрос 5 👫 Квартальные данные о ВВП России за 10 лет являются

А случайной выборкой

П панельными данными

В сходящимся рядом

временным рядом

С перекрестной выборкой

<u>F</u> Нет верного ответа.

Вопрос 6 👫 Предпосылки теоремы Гаусса-М	lаркова выполнены, случайные ошибки нормаль-		
но распределены. Регрессия по 25 наблюдения	ям имеет вид $\hat{Y}_i = -1 + \mathop{4}\limits_{(2)} X_i$. В скобках указаны		
стандартные ошибки. На уровне значимости	0.05		
значим только коэффициент наклона	ния значимости		
В оба коэффициента незначимы	D оба коэффициента значимы		
С недостаточно информации для определе	Е значим только свободный член		
Вопрос 7 \clubsuit Если P -значение t -статистики сии равно 0.04 , то этот коэффициент не значи	при проверке значимости коэффициента регресми при уровне значимости		
0.01 C 0.95	E 0.05		
B 0.9 D 0.1	F <i>Hem верного ответа.</i>		
Вопрос 8 👫 Регрессия по 25 наблюдениям из	меет вид $\hat{Y}_i = -1 - 1.5 X_i$. В скобках указаны стан-		
	равенстве коэффициента наклона (-1) расчётное		
$\boxed{A} -0.5$ $\boxed{C} 0.5$	■ -1		
$\boxed{B} \ 2$ $\boxed{D} \ -2$	F Нет верного ответа.		
Вопрос 9 🗘 В регрессии с константой, оцен-	ённой с помощью МНК, сумма остатков		
равна 0	ное значение		
В равна 1	E может принимать любое положительное		
С не существует	значение		
 Может принимать любое неположитлен	${\mathsf F}^{\mathsf F}$ может принимать любое значение из ${\mathbb R}$		
Вопрос 10 👫 Необходимым условием теоре	мы Гаусса-Маркова является		
постоянство дисперсии случайной ошиб	S- С постоянство дисперсии остатков		
ки	$lacktriangle$ нормальность Y_i		
[B] наличие в матрице X единичного столб	E нормальность остатков		
ца	F Нет верного ответа.		

Часть 2. Задачи.

1. Эконометресса Ефросинья исследует, как зависит надой молока, $milk_i$, (в литрах) от возраста коровы, age_i , (в годах):

$$milk_i = \beta_1 + \beta_2 age_i + u_i$$

Показатель	Значение
RSS	B1
ESS	B 2
TSS	1240
R^2	В3
Стандартная ошибка регрессии	1.45
Количество наблюдений	340

Коэффициент	Оценка	$se(\hat{\beta})$	t-статистика	Р-значение	Левая (95%)	Правая (95%)
Константа	4.565	0.207	B4	В9	B5	B6
age	B7	B8	3.670	0.000	0.036	0.119

Найдите пропущенные числа В1-В9.

Ответ округляйте до 2-х знаков после запятой. Кратко поясняйте формулой, как были получены результаты.

$$B1 = 1.45^2 \cdot (340 - 2)$$

$$B2 = ESS = TSS - RSS$$

$$B3 = R^2 = ESS/TSS$$

$$B4 = t_c = 4.565/0.207 = 22$$

По таблицам (t-распределение с 338 степенями свободы или примерно нормальное) $t_{crit}=1.96$

$$B5 = CI_{left} = 4.565 - 1.96 \cdot 0.207$$

$$B6 = CI_{right} = 4.565 + 1.96 \cdot 0.207$$

$$B7 = \hat{\beta}_{milk} = (0.036 + 0.119)/2 = 0.0775$$

$$B8 = se(\hat{\beta}_{milk}) = \hat{\beta}_{milk}/t_{milk} = 0.0775/3.670$$

$$B9 = P - value(22) \approx 0.000$$

2. Гарри Поттер и Рон Уизли активно готовятся к чемпионату мира по квиддичу. В течение 30 дней они сначала посещают Хогсмид и выпивают некоторое количество сливочного пива в пинтах, $beer_t$, после забивают определённое количество квоффлов в штуках, $quaffle_t$. Гермиона Грейнджер оценила следующую регрессию:

$$\widehat{quaffle_t} = \underset{(2.83)}{80} - \underset{(1)}{3beer_t}$$

В скобках приведены стандартные ошибки. Оценка дисперсии ошибок равна $\hat{\sigma}^2=238$. Сегодня Гарри и Рон выпили 4 пинты сливочного пива.

- а) Проверьте гипотезы о значимости каждого коэффициента на уровне значимости 5%. Находим t-статистики: $t_c=80/2.83=28.3,\,t_{beer}=-3/1=-3.$ Если предположить нормальность ошибок, то $t_{crit}=2.05.$ Следовательно, в обоих случаях H_0 : $\beta=0$ отвергается и оба коэффициента значимо отличны от нуля.
- б) Постройте точечный прогноз количества квоффлов, забитых сегодня Гарри Поттером и Роном Уизли

$$\hat{Y}_i = 80 - 3 \cdot 4 = 80 - 12 = 68$$

в) Постройте 90%-ый доверительный интервал для коэффициента наклона регрессии Для уровня доверия 90% получаем критическое значение $t_{crit}=1.7$. Отсюда доверительный интервал равен

$$[-3-1\cdot 1.7; -3+1\cdot 1.7]$$

- 3. Для модели $Y_i = \beta_1 + \beta_2 X_i + u_i$ выполнены все предпосылки теоремы Гаусса-Маркова.
 - а) Докажите, что МНК-оценка коэффициента β_2 является случайной величиной
 - б) Докажите, что эта оценка является несмещённой
 - в) Найдите дисперсию этой оценки

Решение изложено в лекциях

4. Для модели $Y_i=\beta_1+\beta_2 X_i+u_i$ выполнены все предпосылки теоремы Гаусса-Маркова. Для МНК-оценок коэффициентов найдите $\widehat{\mathrm{Cov}}(\hat{\beta}_1,\hat{\beta}_2)$.

Решение изложено в лекциях

- 5. Дайте определения следующих понятий
 - а) Несмещённая оценка Оценка $\hat{\theta}$ называется несмещённой, если $\mathrm{E}(\hat{\theta})=\theta$
 - б) Эффективная оценка Оценка $\hat{\theta}$ называется эффективной среди множества оценок Θ , если для любой оценки $\hat{\theta}'$ из множества Θ выполнено неравенство $\mathrm{Var}(\hat{\theta}) \leq \mathrm{Var}(\hat{\theta}')$
 - в) Состоятельная последовательность оценок Последовательность оценок $\hat{\theta}_1,\,\hat{\theta}_2,\,...,$ называется состоятельной, если

$$\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| < \varepsilon) = 1$$

для любого числа $\varepsilon > 0$.