

Machine Learning in Practice I

Antal Jakovac, 2025

About the course

- Course Title: "Machine Learning in Practice I"
- instructor: antal.jakovac@uni-corvinus.hu
- course objectives
 - why and when to use Machine Learning (ML)
 - data handling methods
 - core ML models before deep learning
 - how to build an ML project

ERSITY About the course

- about the course
 - evaluation: written exams (together with exercises)
 - learning material: course slides, books, podcasts, etc.
 - books:
 - An Introduction to Statistical Learning (G.James , D. Witten , T. Hastie , R. Tibshirani, https://www.statlearning.com/)
 - Designing machine learning systems (Chip Huyen)

- Introduction to Machine Learning
- Data Preprocessing & Feature Engineering
- Tree-Based Methods
- Ensemble Methods (Bagging, Random Forests, Boosting)
- Instance-Based Learning k-Nearest Neighbors
- Probabilistic Models Naive Bayes & Gaussian Mixtures
- Linear Models for Regression
- Linear Models for Classification
- Support Vector Machines (SVMs)
- Dimensionality Reduction
- Examples from audio and computer vision

23/09/25

5

why do we need Artificial Intelligence (Machine Learning)?

	observation	modelling	computation	conclude/action
historic times	human	human	human	human
machines	machine	human	human	human
computers	machine	human	machine	human
Al	machine	machine	machine	human

- task of AI is not to solve an actual problem, but solve modelling
- we do not know the model it uses → it can be smarter than us!

- Traditional Programming vs. ML
 - traditional: data + rules → output
 - ML: data + output → rules
- when to use ML?
 - → Automation of complex tasks → heuristics
 - Adaptability
 - Performance on large data
 - Real-world examples (email spam, face detection, recommendation systems)

- Types of ML; traditionally
 - supervised:
 - show data + labels → learns the assignment
 - examples: classification, regression
 - unsupervised:
 - find patterns in unlabeled data
 - not unique → context, magnitude
 - examples: clustering, dimensionality reduction
 - reinforcement:
 - learn by interacting with the environment
 - not covered in this course

- Types of ML; other points of view
 - task-driven (System I)
 - define a task (classification, prediction, control)
 - show examples of good (eventually bad) solutions
 - train models to optimize for success on that task
 - includes most supervised/reinforcement learning examples
 - data-driven (System II)
 - reveal structures by showing similar data
 - does not need explicit labelling
 - LLM's, autoencoders, similarity learning
 - recently popular (self-supervised learning, foundation models, and retrievalbased systems)

- Typical ML tasks
 - classification
 - face, dog breeds, bird songs classification
 - spam detection, disease diagnosis, sentiment analysis
 - lot of labeled data
 - regression (price prediction, weather forecasting, energy demand)
 - clustering (customer segmentation, document grouping, biological cell types)
 - compression (PCA, visualization, autoencoders, embeddings)

Typical ML tasks

- decision making (robotics, game playing, resource allocation, monitoring)
- generation (text, translation, image, data, molecular structure, code)
- outlier analysis (email spam, suspicious customer, fraud detection, etc.)
- recommendation systems (movies, jobs, code completion, etc.)
- ranking/retrieval (search engines, document/data retrieval)

- somewhat overlapping areas; e.g. chemical plant monitoring system
 - anomaly detection
 - classification
 - time-series forecasting
 - reinforcement learning (control), recommendation systems

- ML algorithms (pre-deep neural networks)
 - Linear regression, logistic probability
 - Bayesian analysis, probability theory
 - Support Vector Machines
 - Decision Trees, ensemble methods
 - k-nearest neighbour method
 - Principal Component Analysis
 - Extreme Learning Machine
- majority of ML applications in production are not DNN!

Tools

- language: Python
- packages:
 - numpy: numerical computing
 - scipy, scikit-learn: classical ML tools
 - pandas: data manipulation
 - matplotlib, seaborn: visualization

Tools

- Python virtual environment: > python -m venv .venv
- activate environment:
 - Linux/Windows WSL: > source .venv/bin/activate
 - Windows PowerShell: > .venv\Scripts\Activate
- Install necessary packages within the environment
 - > pip install matplotlib numpy scipy scikit-learn pandas seaborn ipykernel
- automation:
- > pip freeze > requirements.txt
- > pip install -r requirements.txt

Tools for code development

- notebook services: Jupyter, Google Colab
- advanced editors: Visual Studio Code or similar
- Linux-like environment in Windows: WSL
- docker: containerize your work like a standalone machine
- communication: API endpoints (Python fastAPI or Flask)

Typical ML workflow

- Typical ML workflow
 - 1) Problem definition
 - 2) Data collection
 - 3) Data cleaning & preprocessing
 - 4) Feature engineering
 - 5) Model selection
 - 6) Training & validation
 - 7) Evaluation
 - 8) Deployment & monitoring

- Typical ML workflow
 - 1) Problem definition
 - 2) Data collection
 - 3) Data cleaning & preprocessing
 - 4) Feature engineering
 - 5) Model selection
 - 6) Training & validation
 - 7) Evaluation
 - 8) Deployment & monitoring

- what is the problem we want to solve?
 (classification, regression, clustering, ...)
- is ML an adequate tool?
- what does success look like? (accuracy? low error? business impact?)
- what are the domain constraints and goals (e.g. medicine data availability, privacy → practical, ethical or technical limits)
- example: predict customer churn or classify handwritten digits

- Typical ML workflow
 - 1) Problem definition
 - 2) Data collection —————
 - 3) Data cleaning & preprocessing
 - 4) Feature engineering
 - 5) Model selection
 - 6) Training & validation
 - 7) Evaluation
 - 8) Deployment & monitoring

- enough data
- sampling methods → diverse data
- labelled data (if supervised)
- example: downloading a CSV of housing prices or collecting user logs

- Typical ML workflow
 - 1) Problem definition
 - 2) Data collection
 - 3) Data cleaning & preprocessing
 - 4) Feature engineering
 - 5) Model selection
 - 6) Training & validation
 - 7) Evaluation
 - 8) Deployment & monitoring

- missing values, duplicates, outliers
- normalize, scale, encode categorical features
- convert raw inputs into usable formats
- example: fill missing ages with median; scale prices to [0,1]

- Typical ML workflow
 - 1) Problem definition
 - 2) Data collection
 - 3) Data cleaning & preprocessing
 - 4) Feature engineering
 - 5) Model selection
 - 6) Training & validation
 - 7) Evaluation
 - 8) Deployment & monitoring

- create meaningful input features
- transform or combine raw attributes
- select or construct new features based on domain knowledge
- example: from date of birth → compute age; combine "city" and "job type"

- Typical ML workflow
 - 1) Problem definition
 - 2) Data collection
 - 3) Data cleaning & preprocessing
 - 4) Feature engineering
 - 5) Model selection
 - 6) Training & validation
 - 7) Evaluation
 - 8) Deployment & monitoring

- choose a suitable algorithm (e.g. linear regression; SVM; RF; k-NN)
- consider interpretability, complexity, training time
- example: try logistic regression first for classification, then maybe a random forest, or a deep neural network

- Typical ML workflow
 - 1) Problem definition
 - 2) Data collection
 - 3) Data cleaning & preprocessing
 - 4) Feature engineering
 - 5) Model selection
 - 6) Training & validation
 - 7) Evaluation
 - 8) Deployment & monitoring

- split data into training and validation sets (and possibly test)
- train on one part, validate on another
- tune hyperparameters (e.g., via crossvalidation)
- example: train a model on 80% of the data, validate on 20%

- Typical ML workflow
 - 1) Problem definition
 - 2) Data collection
 - 3) Data cleaning & preprocessing
 - 4) Feature engineering
 - 5) Model selection
 - 6) Training & validation
 - 7) Evaluation
 - 8) Deployment & monitoring

Use metrics appropriate for the task:

- classification: accuracy, precision, recall, F1
- regression: MSE, MAE, R²
- plot confusion matrices, ROC curves, residuals
- example: check precision/recall on spam classification

- Typical ML workflow
 - 1) Problem definition
 - 2) Data collection
 - 3) Data cleaning & preprocessing
 - 4) Feature engineering
 - 5) Model selection
 - 6) Training & validation
 - 7) Evaluation
 - 8) Deployment & monitoring

- integrate the model into production (web app, API, etc.)
- monitor for drift, performance degradation
- retrain if needed (based on new data or feedback)
- example: host model on a server and track prediction accuracy over time

- Consider a world W consisting of 2 pixels
 - $\{\square\square,\square\blacksquare,\square\square,\ldots\square\blacksquare\}$
- W also has two visible states A and B. We observe that
 - **→** A → { □ □, □,... □ }
 - **→** B → { □ ■, ■,... ■ }
- Step1: problem definition: tell the state from the pixels
 - → classification task

- Step2-3: Data collection, cleaning, preprocessing
- in our case: observation → numerics
- the pixels are black-and-white → brightness is a number in [0,1]
 - black: 0
 - white: 1
 - grey: somewhere in between
- 2 pixels mean 2 numbers (x_1, x_2)
- usually Step2-3 is rather tedious...

- Step4-5-6: feature engineering, model selection, training (in practice these are separate steps)
- Let us plot the point pairs corresponding to state A and B
 - the points lie in subspaces (lines)
 - within state A and B

$$\frac{x_1}{2} + x_2 = \begin{cases} 1 & \text{for state } A \\ 0 & \text{for state } B \end{cases}$$

worth to introduce new coordinates (features)

$$u = \frac{x_1}{2} + x_2, \quad v = x_1 - \frac{x_2}{2}$$

- Step4-5-6: feature engineering, model selection, training
- with the new coordinates $x_1 = \frac{2u}{5} + \frac{4v}{5}$, $x_2 = \frac{4u}{5} \frac{2v}{5}$
- constant u aligned with states; constant v changes within a given state

- Step4-5-6: feature engineering, model selection, training
- To tell apart state A and B we need only the value of u!

- otherwise neither
- solves classification task

- Step4-5-6: feature engineering, model selection, training
- To describe a instance belonging to a state we need just v!
 - state A: v in [-0.5,0.75]
 - state B: v in [-0.25,1]
- solves compression, dimensional reduction

- Step4-5-6: feature engineering, model selection, training
- a perfect feature selection provides a coordinate system best aligned with the equivalence classes of the data
 - there are coordinates that are constant on each data class, and have different values on different classes (relevant/selective coordinates – good for classification)
 - there are coordinates that change within a given data class (descriptive/irrelevant coordinates – good for compression)
- task of all model building is to find (approximately) these coordinates/features

- Step4-5-6: feature engineering, model selection, training
- in practice we separate the task of coordination
 - feature selection: original features, simple combinations
 - model selection: single out a parametrizable functional space to combine the features (distance, linear- or nonlinear combinations)
 - training: determine the free parameters of the model that fits the data the best

- Step4-5-6: feature engineering, model selection, training
- mind vs data?
 - data/models importance ratio → data are central importance in real world applications
 - are data enough? do we possess the necessary knowledge?
 - present approach: data engineering is the most important, few fundamental research (cf. LeCun vs Wang in Meta)

Logics of Intelligence

- Step7: evaluation
- try to estimate how well the original task was solved
 - class reconstruction accuracy
 - robustness, proclivity for failures
 - treatment of outliers
 - business benefits

Logics of Intelligence

- Step8: deployment and monitoring
- in a real-life application the ML code is used as a product
- requires continuous monitoring
 - data/environment may change
 - new classes appear
 - errors may occur

Logics of Intelligence

takehome message: Task of the intelligence is to

find the **relevant features** and **adapt** their values to the task

- two popular workflow schemes today: waterfall vs. agile
- waterfall workflow:

- clear documentation of the task
- predictable timeline
- inflexible
- late discovery of errors
- good for well-defined projects (like bridge building)

Waterfall

- agile workflow: (agile manifesto, description)
 - individuals > processes
 - collaborative vs rigid teams
 - working model > detailed documentation
 - Minimal Viable Product MVP
 - improvement

"If you're not embarrassed by the first version of your product, you've launched too late."

— Reid Hoffman, founder of LinkedIn

Goal: Solve transportation

MVP: Skateboard 🛹

Next: Bicycle 🚲

Then: Motorcycle 😹

Finally: Car 🚗

agile workflow: (agile manifesto, description)

customer collaboration > contract negotiation

customer needs even over signed contracts

responding to change > following a plan

- original ideas/original task estimates may fail
- continuous adaptation
- launch a "good enough" product

- agile workflow: (agile manifesto, description)
 - pros:
 - flexible, self-improving, communicative
 - customer-centric
 - cons:
 - over-emphasized meetings ("agile theater")
 - over-controlled
 - less predictable

- agile workflow: (agile manifesto, description)
 - loops, sprints
 - user interface/user experience (UI/UX)
 - CI/CD, CI/CD pipelines continuous integration, continuous deployment
 - Kanban/Jira: project development visualization (backlog, to do, in progress, testing, done)

- typical small group agile project
 - define the goal (user stories), create a backlog (list of tasks)
 - make repo (github), branches
 - make MVP, backend API, frontend, testbed
 - get MVP working, deploy to test environment
 - collect feedback (team + users)
 - refine tasks, and directions to proceed

Structure of a professional ML organization

- Business side
 - client/stakeholder: business requirements (e.g., "reduce equipment downtime," "recommend better products")
 - Business Analyst / Product Manager (translates business goals into ML problems, acts as the bridge between client and technical teams)
 - Project/ Product Manager (budgeting, timelines, and resource allocation, Coordinates with business analysts and technical leads to estimate cost)

Production level ML organization

- @ Data/model experts
 - data engineer: build and maintain data pipelines → data collection, cleaning, validating, transformation (ETL/ELT), storing (database, data lake), monitoring
 - ML engineer/data scientist
 - feature generation
 - design, train, and fine-tune ML models
 - explores and experiments with data, build prototypes
 - performance evaluation

Production level ML organization

- Software & Infrastructure
 - software architect: designs overall system, service planning, integration with other services, APIs, databases
 - software developer (coder): implements algorithms, frontend-backend
 - DevOps/MLOps engineer:
 - automates deployment, monitoring, scaling of ML models
 - works with Docker, Kubernetes, CI/CD pipelines, cloud platforms.
 - ensures the ML system is reproducible, reliable, and easy to maintain.

Production level ML organization

- ① Operations, Monitoring & Safety
 - QA / Test Engineer: tests software and ML pipelines (unit tests, integration tests, stress tests), ensures reliability before release
 - Monitoring & Reliability Engineer: monitors system health after deployment.; tracks data drift, performance degradation, unusual patterns
 - Security Engineer: ensures compliance with data privacy, protects against adversarial attacks, model leaks.

>> The Full Pipeline in a Story (user story)

- Client says: "I need early warnings for dangers in a chemical plant."
- Business Analyst refines: "This means anomaly detection on sensor signals."
- Data Engineer sets up pipelines to collect sensor data.
- Data Scientist explores, builds a prototype anomaly detector.
- ML Engineer optimizes the model for latency and accuracy.

nthe Full Pipeline in a Story (user story)

- Software Architect decides how it fits into the production system.
- Developers implement the service around the model.
- DevOps/MLOps deploys it to the cloud with monitoring.
- QA & Monitoring check performance and flag issues.
- Security Engineer ensures compliance and robustness.

Programming code structure

VERSITY Code structure

How to organize a (ML) code?

- points of view:
 - effective code development (also in teams)
 - scalability
 - extensibility
 - easy maintenance

monolith code structure

Original approach: monolith program structure

- UI, business logic, data access in one code
- coding logic: input data → transformation → resulting data
- best fits for imperative/procedural languages (like C, Fortran)
 - program state: mutable variables
 - program is a chain of commands, changing the state
- natural approach → original programming style

monolith code structure

problems:

- hard to trace bugs or change code:
 - variable change appear in different functions
 - frequently hidden state change in procedures
 - in a large code intractable structure
- functions are specific → not reusable
- experience: monolith codes become unmaintainable (software complexity crisis in the 1970s–80s)
- still used for starting a project (MVP)

```
y = 3 #global state variable

def function(x):
    x +=y
    y+=1 #changes y tacitly
    return x
```


different type of solutions:

- object oriented programming
 - data and the corresponding procedures are bundled: "objects" of the world
 - abstraction: hierarchy of classes
 - inheritance: classes are reusable
 - examples: C++, Java

```
class MyClass:
    def __init__(self, state):
        self.state = state

#change of state is a class method
    def rotate(self, angle):
        self.state → self.state′(angle)
        return self
```


- functional programming
 - stateless programs, unmutable variables
 - functions give back new objects (pure functions)
 - \rightarrow based on mathematical logic (λ -calculus) e.g. λx . x+1 and their application, e.g. $(\lambda x$. x+1) 5 \rightarrow 6
 - basic elemental functions: see next page

```
counter=0
def impure():
    counter+=1 #side effect
    return counter
def pure(x):
    return x+1 #no side effect
```

basic elemental functions

```
    map: map (λx. x*2) [1,2,3] → [2,4,6]
    reduce/fold: fold (+) 0 [1,2,3] → 6
```

- filter: filter even [1,2,3,4] → [2,4]
- \Rightarrow zip: zip ['a','b','c'] [1,2,3] \rightarrow [('a',1),('b',2),('c',3)]
- \rightarrow compose: (compose f g) x → f(g(x))
- examples: Haskell, Lisp, F#
- not popular in the original form, but lot of elements are applied

- mixed (multi-paradigm) languages:
 - allow all kind of programming style
 - examples: Python, JavaScript, Rust, Swift,
 - e.g. Python has map, filter, reduce, based on lists.
 - Python supports OOP, classes, inheritance, etc.

architectures

Other way of deviating from monolithic imperative coding

- monolithic structure
- frontend+backend
- microservices
- micro frontend structure (c.f. https://micro-frontends.org/)

Backend + frontend

- rise of web (1990s) browsers became universal clients
- specialized tools for browser programming (like HTML, CSS, JavaScript)
- task solving (backend) + visualization (frontend) separately
 - develop separately, different languages, tools
 - scale BE and FE separately
 - needs interface management → see next page

- functions designed for intra-code communication, can not be applied any more
- inter-service communication standards:
 - → APIs (application programming interface → synchronous)
 - queues (message buffer → asynchronous)

- APIs call server functions (endpoints)
 - needs continuously running background processes (web server process), listening to input channels (ports)
 - endpoints: well defined input and output formats, usually in json
 - communication → REST API: get, put/patch, post, delete
 - in Python: Flask, fastAPI
 - can be asynchronous, too

```
#fastAPI snippet
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
def read root():
  return {"message": "Hello ?+"}
#start service
uvicorn main:app
#call service
open http://127.0.0.1:8000, or
curl http://127.0.0.1:8000/
results {"message": "Hello "
```


- queues: async send message
 - message broker runs in background, it stores messages
 - worker processes deliver messages for subscribers/consumers
 - data plain text or json
 - metadata + payload
 - in Python: queue + threading

```
#queue application example
import queue
q = queue.Queue()
#put data to queue
q.put(item)
#read data from queue
item = q.qet()
#... process data ...
q.task_done()
```

Microservices + frontend

- good scaling properties (e.g. web users) → requiring independence of elementary tasks became popular
- lot independent, narrowly scoped (micro) services
 - separate development (languages, tools, teams), deployment
 - separate scaling
 - resilience: bugs are confined, not affect the whole system
- examples Netflix, Amazon → hype in 2010s

- new challenge: how to organize a lot of services
- microservice management: docker, Kubernetes

#example Dockerfile

FROM python:3.12-slim

WORKDIR /app

COPY main.py.

RUN pip install fastapi uvicorn

CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]

```
#example docker-compose.yml
services:
 service1:
  build: ./service1
  container name: service1
  ports:
   - "8001:8000"
 service2:
  build: ./service2
  container name: service2
  ports:
   - "8002:8000"
```

docker-compose up --build

of BUDAPEST

- new challenge: how to organize a lot of services
- CI/CD pipelines:
 - continuous improvement
 - continuous deployment
 - team communication
- example: github

```
#example .github/workflows/ci.yml
name: CI
on:
 push: branches: ["main"]
 pull request: branches: ["main"]
jobs:
 build-and-test:
  runs-on: ubuntu-latest
  steps:
   - name: Checkout code
    uses: actions/checkout@v4
   - name: Set up Python
    uses: actions/setup-python@v5
    with:
     python-version: "3.12"
   - name: Install dependencies
    run: |
     python -m pip install --upgrade pip
     pip install -r requirements.txt
     pip install pytest
```

- despite all advantages microservices have drawbacks
 - operational complexity manage hundreds of services
 - network calls → latency, performance issues
 - interprocess debugging is hard

- Current trends (2020s → now)
 - modular monolith applications
 - microservices where they make sense
 - functions-as-a-service (FaaS)
 - in cloud services like AWS, Azure, Google cloud
 - locally they seem like functions
 - behave like services when deployed
 - run on demand

```
Current trend
```

- modular r
- microserv
- functions
 - in clou
 - locally

 - run on

```
#example in AWS
            #lambda_function.py
            def lambda handler(event, context):
                 name = event.get("name", "my name")
                 return { "statusCode": 200,
                         "body": f"Hello, {name}! \(\frac{1}{2}\rm \)"}
           zip function.zip lambda function.py
            aws lambda create-function \
             --function-name helloLambda \
             --runtime python3.12 \
             --role arn:aws:iam::<YOUR_ACCOUNT_ID>:role/lambda-ex-role \
             --handler lambda function.lambda handler \
             --zip-file fileb://function.zip
behave curl -X POST \
              -H "Content-Type: application/json" \
              -d '{"name": "MLcourse"}' \
               https://abcd1234.execute-api.us-east-1.amazonaws.com/default/hello
```


ML Code structure

Code infrastructure → software architecture

- use few necessary microservices → clear task definition
- use lambda for simple services
- containerize microservices → portability, environmental stability
- use container management → docker (Kubernetes)
- use CI/CD management → github or similar

data sources:

- user input (text, image, video, etc.) often not well formed, errors
- system generated (logs, measurements, predictions) well formed data, easy-to-use
- own data, own clients (first-party), other companies, their own clients (second-party), other companies not own clients (thirdparty – e.g. internet usage, traffic, etc)

data formats

- CSV (comma separated values)
 - text, human readable
 - 🕶 tabular, row-major
 - fast to get data belonging to the same example
- Parquette
 - binary more compact, but not human readable
 - tabular, column major
 - fast to get data belonging to the same feature

data formats

- CSV (comma

 - tabular, row
- Parquette
 - binary md #output
 - tabular, cold
 - fast to get d

#example books.csv

title, author, publisher, year

The Hobbit, J.R.R. Tolkien, George Allen & Unwin, 1937

The Fellowship of the Ring, J.R.R. Tolkien, George Allen & Unwin, 1954

Nineteen Eighty-Four, George Orwell, Secker & Warburg, 1949

Brave New World, Aldous Huxley, Chatto & Windus, 1932

text, humar The Catcher in the Rye,J.D. Salinger,"Little, Brown and Company",1951

#read data using pandas

fast to get d import pandas as pd

df = pd.read_csv("books.csv")

print(df)

		title	author	publisher	year
	0	The Hobbit	J.R.R. Tolkien	George Allen & Unwin	1937
	1	The Fellowship of the Ring	J.R.R. Tolkien	George Allen & Unwin	1954
q	2	Nineteen Eighty-Four	George Orwel	I Secker & Warburg	1949
	3	Brave New World	Aldous Huxle	y Chatto & Windus	1932
4		The Catcher in the Rye J.D. Salinger Little, Brown and Company			

data formats

- CSV (comma separated values)
 - text, human readable
 - tabular, row-major
 - fast to get data belonging to the same example
- Parquette
 - binary mor

 - fast to get da

```
Row-major order
                  Column-major order
```

```
#store in parguette - needs fastparquet to be installed
                   df.to_parquet("books.parquet", engine="fastparquet", index=False)
tabular, colul #store in parquette - needs fastparquet to be installed
                   df_parquet = pd.read_parquet("books.parquet", engine="fastparquet")
```


data formats:

- JSON (JavaScript Object Notation) → today's standard
 - hierarchical structure
 - text, human readable
 - key-value pairs
 - in Python: dict
 - supported by all languages

data formats:

- JSON (Java§
 - hierarchical
 - text, humar
 - key-value p
 - in Python: o
 - supported |

```
#example books.json
  "title": "The Hobbit",
  "author": "J.R.R. Tolkien",
  "publisher": "George Allen & Unwin",
  "year": 1937
  "title": "The Fellowship of the Ring",
  "author": "J.R.R. Tolkien",
  "publisher": "George Allen & Unwin",
  "year": 1954
#read with pandas
df = pd.read json("books.json")
```


data models:

- for more complicated data, and if queries are required, storing data in simple files is not enough
- instead: databases with dedicated database handlers
 - relational (e.g. Sqlite)
 - nonrelational (e.g. Redis, Mongo)

data models:

- relational
 - tabular logic: main tables, subtables for standardization, index tables for faster query
 - strict schemas
 - query language for data retrieval → SQL (structured query language): declarative, specify the result, not the algorithm
 - pros: simple logic, widely used
 - cons: abundant schema systems, lots of superficial data, tedious to introduce new features, complicated table structure

data models:

relational

faster query

strict schen

query langu declarative.

pros: simpl

cons: abun introduce n

```
#example sqlite application – built in Python package
                   import sqlite3
                   #create/connect database
                   conn = sqlite3.connect("Data/books.db")
                   cur = conn.cursor()
                   #create tables
                   cur.execute("""
* tabular logi CREATE TABLE IF NOT EXISTS publishers (
                      id INTEGER PRIMARY KEY AUTOINCREMENT.
                      name TEXT NOT NULL
                   cur.execute("""
                    CREATE TABLE IF NOT EXISTS books (
                      id INTEGER PRIMARY KEY AUTOINCREMENT.
                      title TEXT NOT NULL,
                     author TEXT NOT NULL,
                     vear INTEGER.
                      publisher id INTEGER,
                      FOREIGN KEY (publisher id) REFERENCES publishers(id)
                   111111
```


data models:

- relational
 - tabular logi faster query
 - strict schen
 - query languerrent from books b declarative
 - **pros**: simpl
 - cons: abun

```
#insert a publisher
cur.execute("INSERT INTO publishers (name) VALUES (?)", ("George Allen &
Unwin",))
publisher id = cur.lastrowid
# Insert a book linked to that publisher
cur.execute("INSERT INTO books (title, author, year, publisher id) VALUES
(?, ?, ?)",("The Hobbit", "J.R.R. Tolkien", 1937, publisher id))
#commit changes
conn.commit()
```

Query join

cur.execute("""

SELECT b.title, b.author, p.name AS publisher

JOIN publishers p ON b.publisher id = p.id

print(cur.fetchall())

conn.close()

#output

[('The Hobbit', 'J.R.R. Tolkien', 'George Allen & Unwin')]

data models:

- NoSQL: no SQL → not only SQL
 - pros: no schemas → flexibility, scalability, treat of unstructured data
 - cons: storage capacity, performance trade-offs, data chaos
 - document stores: data are stored as a JSON (string)
 - query can be a more difficult task
 - examples: mongoDB, CouchDB create own index tables for effectivity
 - key-value pairs: for fast query (example: RedisDB, DynamoDB)
 - graph databases: concentrate on relations (nodes and edges)
 (Examples: Neo4j, Amazon Neptune, ArangoDB)

data models:

NoSQL: no S docker start/stop mongodb

cons: stora

examples

key-value p

graph datal books = db["books"] (Examples: N

#install mongodb-image and pymongo

docker run -d --name mongodb -p 27017:27017 -v ~/my data/mongo:/data/db mongo:7.0 pip install pymongo

#runs a service in the background – start/stop it

pros: no sc #install mongodb and pymongo

from pymongo import MongoClient

1. Connect to local MongoDB

document </p

query cal # 2. Create (or use existing) database

db = client["library"]

3. Create collections

publishers = db["publishers"]

4. Clear old data (for demo purposes)

publishers.delete many({}) books.delete many({})

f"was published by {publisher['name']} in {book['year']}.")

data

5. Insert publishers

print(f"{book['title']} by {book['author']} "

```
pub allen = publishers.insert one({"name": "George Allen & Unwin"}).inserted id
pub secker = publishers.insert one({"name": "Secker & Warburg"}).inserted id
pub chatto = publishers.insert one({"name": "Chatto & Windus"}).inserted id
pub little = publishers.insert one({"name": "Little, Brown and Company"}).inserted id
# 6. Insert books with publisher references
books.insert many([
  {"title": "The Hobbit", "author": "J.R.R. Tolkien", "year": 1937, "publisher id": pub allen},
  {"title": "The Fellowship of the Ring", "author": "J.R.R. Tolkien", "year": 1954, "publisher id": pub allen},
  {"title": "Nineteen Eighty-Four", "author": "George Orwell", "year": 1949, "publisher id": pub secker},
  {"title": "Brave New World", "author": "Aldous Huxley", "year": 1932, "publisher id": pub chatto},
  {"title": "The Catcher in the Rye", "author": "J.D. Salinger", "year": 1951, "publisher id": pub little},
# 7. Query: find all books and join publisher info manually
for book in books.find():
  publisher = publishers.find one({" id": book["publisher id"]})
```


data storage:

- data warehouse:
 - stores historical data → structured, cleaned, integrated
 - → optimized for analysis, reporting → few but very large, complex queries
 - ETL (extract, transform, load)
 - OLAP (online analytic processing)
 - examples: historical sales data, stock price data
 - solutions: Amazon Redshift, Google BigQuery

data storage:

- database:
 - stores current, operational data.
 - used for day-to-day transactions (insert, update, delete).
 - optimized for fast read/write, many small simple queries
 - example: an e-commerce database storing users, orders, payments
 - OLTP (Online Transaction Processing)
 - solutions: MySQL, PostgreSQL, Oracle DB, MongoDB, DynamoDB

data storage:

- data lake:
 - stores data in raw form → future-proof
 - application goal not needed to be specify
 - cheap and scalable storage (HDFS, Amazon S3, Azure Data Lake Storage, Google Cloud Storage)
 - schema-on-read solutions (ELT, extract, load, transform) → processing engines (Kafka, TensorFlow, Athena)
 - example: log storage, IoT data storage

data sampling: collecting all data usually not feasible

- nonprobability sampling → focus on data collection; prone to selection bias
 - convenience sampling: take all what is available
 - snowball sampling: start with a small set, and follow its descendants
 - judgement sampling: experts say what to collect
 - quota sampling: collect the same number of data from different areas (like age groups)
 - example of bias: psychology experiments (university students), sentiment analysis (wordy people), medical data (unsuccessful treatments)

data sampling:

- probability sampling → needs a data model → biased?
 - stratified sampling: collect the same amount of data per class
 - weighted sampling: take into account data scaled with probability
 - in choice: class A 25%, class B 75% → consider A samples 3 times
 - in training: give weight for underrepresented classes (see later)
 - reservoir sampling: keep the first k sample, and replace it randomly
 - importance sampling

$$E_P[x] = \sum_{x} x P(x) = \sum_{x} x P(x) = \sum_{x} x P(x) = E_Q[x P(x)]$$

data augmentation:

- if there are not enough data, or not representative enough, we can transform data to generate new ones (symmetries)
 - rotation, scaling
 - perturbation, noising
 - texture or style change
- data generation: simulations in artificial environment (e.g. selfdriving cars)

labelling:

- for classification we should collect examples in different classes
- problems:
 - → how unambiguous are the labels? → multi-label classes
 - how precise are the labels? → no database is 100% correct!
 - what to do with missing labels? → label functions, semi-supervised, etc.
- hand labelled data, naturally labelled data (context is given), automatically generated data

How can we assess the success of the ML results?

- not unique! depends on the problem on hand
 - example: percentage of correctly classified images
 - if the probability of belonging to class A is 99%, then the simple method saying that all elements belong to A is 99% accurate!
 - clearly not good, if the task is to find the 1% not-A class!

- baselines: how accurate are simple methods and other approaches?
 - random baseline: choose class randomly → 1/N probability for balanced
 - zero rule: all belonging to one class → high probability for inbalanced
 - simple heuristic → use a simple proxy (feature)
 - human experts → how well do humans perform?
 - other ML methods

- confusion matrix
 - correct classes vs. estimated classes
 - works for multi-class evaluation
 - in probabilistic sense joint probability: $C_{ij} = P(\text{predicted}_i, \text{actual}_j)$

	Actual Yes	Actual No	Predicted Total
Predicted Yes	TP=0.510	FP=0.038	PP=0.548
Predicted No	FN=0.032	TN=0.420	PN=0.452
Actual Total	AP=0.542	AN=0.478	1.0

- correctness measures for 2-class evaluation
 - accuracy: prob. of choosing the correct class: (TP+TN)
 - precision: conditional for Predicted Yes: $P(\text{actual}_p|\text{predicted}_p) = \frac{TP}{PP}$
 - recall: conditional for Actual Yes: $P(\text{predicted}_P|\text{actual}_P) = \frac{TP}{AP}$
 - *type I error*: probability of false alarm: $P(\text{predicted}_P|\text{actual}_N) = \frac{FP}{AN}$
 - * type II error: probability of missing signal: $P(\text{predicted}_N|\text{actual}_P) = \frac{FN}{AP}$

- effect of a threshold on the prediction
 - in lot of cases Yes/No decision comes from comparing a signal with a threshold → e.g. smoke detector signal vs. danger level
 - ROC (receiver operating characteristics)

$$ROC = \frac{P(\text{predicted}_{P}|\text{actual}_{P})}{P(\text{predicted}_{P}|\text{actual}_{N})} = \frac{\text{recall}}{\text{type I error}}$$

AUC: area under curve

effect of a threshold on the prediction

Data modelling

- Simplest basic case: characterization of one-dimensional data
 - → data $\rightarrow x \in \mathbb{R}$ (numbers for analytic characterization)
 - most complicated case: union of sections
 - \bullet a single section can be characterized by $X \le x \le Y$
- Separation of two 1D sets
 - if the two sets are separated (hard margin) $\begin{cases} x \in A \Leftrightarrow x < x_{sep} \\ x \in B \Leftrightarrow x > x_{sep} \end{cases}$
 - overlapping case? → no perfect solution

VERSITY One dimensional dataset

- overlapping regions → define an error function to minimize
 - error function for example $L_p(x_{sep}) = \sum_{n} |x x_{sep}|^p$

$$L_p(x_{sep}) = \sum_{x \in \text{overlap}} |x - x_{sep}|^{\frac{1}{2}}$$

- sum up points in the overlapping region
- meaning of p:
 - $p=2 \rightarrow mean$
 - p=1 ("hinge loss") → median

$$0 = \frac{d}{dx_{sep}} \sum_{i=1}^{N} (x_i - x_{sep})^2 = 2 \sum_{i=1}^{N} (x_{sep} - x_i) \Rightarrow x_{sep} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sum_{i=1}^{N} |x_i - x_{sep}| = \sum_{x_i > x_{sep}} (x_i - x_{sep}) + \sum_{x_i < x_{sep}} (x_{sep} - x_i) = (N_{<} - N_{>}) x_{sep} + \sum_{x_i > x_{sep}} x_i - \sum_{x_i < x_{sep}} x_i \Rightarrow N_{<} = N_{>}$$

UNIVERSITY One dimensional dataset

- Another approach: treat the problem as a regression
 - → define a function $f: \mathbb{R} \to \mathbb{R}$, that $\begin{cases} f(x) < 0 \Leftrightarrow x \in A \\ f(x) > 0 \Leftrightarrow x \in B \end{cases}$
 - a classification can always be translated to regression
 - \rightarrow simplest: linear relation f(x)=ax+b
 - probabilistic interpretation: $p(x) = \frac{e^{f(x)}}{1 + e^{f(x)}} \in [0,1], \quad p(0) = 0.5$ logistic map, probability of belonging to class B
 - → loss function: $L(a,b) = \sum (p(x) I_{x \in B})^2$, $I_{x \in B} = 1$ if $x \in B$, else 0

- Another approach: treat the problem as a regression
 - logistic map, probability of belonging to class B

$$p(x) = \frac{e^{ax+b}}{1+e^{ax+b}}$$

Statistical / information theory characterization

- take a sample where $n_A \in A$, $n_B \in B$, $n = n_A + n_B$
- entropy: ~ log of how many ways we can order this set

$$S = \frac{1}{n} \ln \binom{n}{n_A} = \frac{1}{n} \ln \frac{n!}{n_A! n_B!}$$

- Stirling formula: $\ln(n!) \approx n \ln n n...$
- Shannon entropy:

$$S = \ln n - \frac{n_A}{n} \ln n_A - \frac{n_B}{n} \ln n_B = -n \sum_{i=1}^{2} p_i \ln p_i \qquad p_i = \frac{n_i}{n}$$

$$p_i = \frac{n_i}{n}$$

Statistical / information theory characterization

- if we randomly choose A with probability q, and B with (1-q), then what is the probability to get $n_A \in A$, $n_B \in B$?
 - choose the first n_A from A, the rest from B + ordering: $P = \binom{n}{n_A} q^{n_A} (1-q)^{n_B}$ $\ln P = -n p_A \ln p_a n p_B \ln p_B + n_A \ln q + n_B \ln (1-q) = n \sum_{i=1}^2 p_i \ln \frac{q}{p_i}$
- Kullback-Leibler (KL) divergence: probability to get the sample from a random choice with probability q: 1
 - "distance" of distributions

$$D(p||q) = \frac{1}{n} \ln P = \sum_{i=1}^{2} p_i \ln \frac{q}{p_i}$$

How successful is the separation?

- impurity of a sample: $n_A \in A$, $n_B \in B \Rightarrow p = \frac{n_A}{n_A + n_B}$
- impurity measure:

• entropy:
$$I_H(p) = p \log(p) + (1-p) \log(1-p)$$

- Gini impurity: $I_G(p) = p(1-p)$
- with separation total impurity change

$$\Delta I = I_0 - \left(\frac{n_{\text{left}}}{n} I_{\text{left}} + \frac{n_{\text{right}}}{n} I_{\text{right}}\right)$$

- The generalization to multiple dimensions is not simple
 - in 1D the coordinates are unique
 - \rightarrow in multidimensional case we can optimize the coordination \rightarrow features
 - simplest case: use original coordinates
 - usually the original coordinates are not equally useful
 (c.f. image → x coord separates more)
 - choose that coordinate that leads to the smallest total impurity!

Decision tree (DT)

repeat until pure or max number

always converges, but may result in fragmented divisions

IVERSITY Tree based methods

- Decision tree (DT) example
 - two 2D sets
- pros:
 - simple
 - interpretable
- cons:
 - not robust enough(→ irregular shape)

- Decision tree (DT) example
 - two 2D sets
- pros:
 - simple
 - interpretable
- cons:
 - not robust enough
 (→ irregular shape)
 use fixed depth!

Decision tree (DT) technical solution in Python → Google colab

imports

import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.tree import DecisionTreeClassifier from sklearn.tree import plot_tree from sklearn.metrics import confusion_matrix

Decision tree (DT) technical solution in Python → Google colab

```
2d data generation
x = np.random.normal(1, 0.4, size=100)
y = np.random.normal(1, 0.4, size=100)
data1 = np.array([x,y]).T
x = np.random.normal(0, 0.4, size=100)
y = np.random.normal(0, 0.4, size=100)
data2 = np.array([x,y]).T
X = np.concatenate((data1, data2))
y =
```

np.concatenate((np.zeros(100),np.ones(100)))

ERSITY Tree based methods

Decision tree (DT) technical solution in Python → Google colab

clf =
 DecisionTreeClassifier(max_depth=4)
 clf.fit(X, y)

The Ensemble methods

- Decision tree → too specific for a sample
- Possible solution: use an ensemble of trees ("bag" or "forest")
- ways of improvement
 - bagging (Bootstrap AGGregatING) → bagging, random forest
 - boosting → adaptive boosting, gradient boosting
 - other methods → extra trees, isolated forests, oblique trees