Przetwarzanie sygnałów i obrazów Studia niestacjonarne roku akademickiego 2023/2024

Propozycja projektu

Stanisław Horna **241202**

Przemysław Kowalski **241214**

Spis treści

1. Cel Projektu	3
2. Opis stanowiska symulującego taśmociąg	4
2.1. Taśmociąg	4
2.2. Kamera	4
2.3. Oświetlenie	4
2.4. Przedmioty	4
3. Funkcje systemu wizyjnego	5
3.1. Rozpoznawanie i klasyfikacja przedmiotów	5
3.2. Tworzenie statystyk poszczególnych klas przedmiotów	5
3.3. Alarm w przypadku wykrycia niepożądanego przedmiotu:	5
4. Architektura systemu	6
4.1. Sprzętowa część systemu	6
4.1.1. Komputer przemysłowy	6
4.2. Oprogramowanie	6
5. Podsumowanie	7

1. Cel Projektu

Celem projektu jest stworzenie systemu wizyjnego, który będzie działał w czasie rzeczywistym na taśmociągu. System ma rozpoznawać, klasyfikować oraz wykonywać określone obliczenia na przedmiotach przemieszczających się pod kamerą.

2. Opis stanowiska symulującego taśmociąg

2.1. Taśmociąg

Przedmioty będą wrzucane na taśmociąg, który będzie poruszał się ze stałą prędkością. Pas transmisyjny taśmociągu będzie gładki wykonany z gumy lub papieru w kolorze białym.

2.2. Kamera

Zainstalowana kamera będzie rejestrować przedmioty transportowane przez taśmociąg pod kątem 90° z odległości 30 cm, która nagrywa minimum w jakości FullHD (1920x1080) oraz 30 klatkach na sekundę (30fps).

2.3. Oświetlenie

Taśmociąg będzie oświetlony dwiema lampami o mocy **100W** generującymi **8550-9000lm**. Lampy będą ustawione w odległości 150cm od taśmy przesuwającej przedmioty.

2.4. Przedmioty

Przedmioty wrzucane na taśmę to damska biżuteria w kategoriach:

- naszyjniki,
- pierścionki,
- bransoletki,
- kolczyki.

Przedmioty wpadają na taśmociąg w sposób, który umożliwia ich przyleganie do siebie, ale nie nakładanie się jednego przedmiotu w drugi, czy umieszczanie jednego w drugim.

3. Funkcje systemu wizyjnego

3.1. Rozpoznawanie i klasyfikacja przedmiotów

System będzie analizował obrazy przedmiotów poruszających się po taśmie i przypisywał im odpowiednie nazwę:

- naszyjnik,
- pierścionek,
- bransoletka,
- kolczyk,

Klasyfikacja będzie odbywać się na podstawie kształtu przedmiotu znajdującego się na taśmie oraz jego wielkości np. średnicy, grubości ściańki tip.

3.2. Tworzenie statystyk poszczególnych klas przedmiotów

System będzie zbierał dane na temat ilości i rodzaju przedmiotów, generując statystyki np.:

- liczba naszyjników,
- liczba par kolczyków,
- liczba pierścionków.

3.3. Alarm w przypadku wykrycia niepożądanego przedmiotu:

Jeśli system wykryje przedmiot, którego nie jest w stanie w stanie sklasyfikować zaznaczy go w czerwonej ramce.

4. Architektura systemu

4.1. Sprzętowa część systemu

4.1.1. Komputer przemysłowy

Odpowiednio wydajny komputer do analizy i przetwarzania obrazu, z zainstalowanym językiem programowania Python, podstawowymi bibliotekami, a także dodatkowymi:

- Numpy,
- CV2,
- Matplotlib,
- Skimage.

4.2. Oprogramowanie

Algorytmy przetwarzania obrazu z wykorzystaniem narzędzi takich jak **OpenCV** oraz bibliotek w języku programowania **Python**.

Zostanie przygotowany interfejs użytkownika, na którym:

- będą aktualizowane w czasie rzeczywistym statystyki ile wykryto przedmiotów a ile elementów nieznanych,
- dodatkowo dla każdego nowo wykrytego elementu będzie pokazywany histogram,
- możliwość zatrzymania i wznowienie nagrania.

5. Podsumowanie

Projekt zakłada stworzenie kompleksowego systemu wizyjnego, który spełni wymagania dotyczące rozpoznawania i klasyfikacji damskiej biżuterii (naszyjniki, pierścionki, kolczyki, bransoletki) na przesuwającym się pasie transmisyjnym taśmociągu. Przedstawione w pliku szczegóły maksymalnie dokładnie opisują założenia niezbędne do zbudowania kompleksowego systemu wizyjnego, przed przystąpieniem do prac nad budową systemu. Wszystkie przedstawione założenia są elastyczne i mogą ulec zmianie w miarę rozwoju i postępu prac nad projektem.