Esercizio

Una particella si muove lungo l'asse x seguendo la seguente legge oraria

$$x(t) = A \ln \left(1 + \left(\frac{t}{\tau} \right)^2 \right) \tag{1}$$

con A = 1 m, e $\tau = 1$ s.

- 1. Disegnare il grafico della legge oraria;
- 2. Determinare la posizione della particella agli istanti $t=0,\,t=\tau$ e $t=2\tau$;
- 3. Calcolare la velocità media negli intervalli $t \in [0; \tau]$ e $t \in [\tau; 2\tau]$;
- 4. Calcolare la velocità istantanea agli istanti $t = \tau/2$ e $t = 3\tau/2$;
- 5. Determinare in quale istante la particella raggiunge la posizione $x^* = 3 \,\mathrm{m}$;
- 6. Calcolare la velocità massima della particella e in quale istante tale velocità viene raggiunta;

SOLUZIONE

1. Per disegnare il grafico della legge oraria, notiamo che

$$i) t \ll \tau$$
 $A \ln \left(1 + \underbrace{\left(\frac{t}{\tau}\right)^2}_{\ll 1} \right) \simeq A \left(\frac{t}{\tau}\right)^2$ (2)

$$(ii) t \gg \tau$$
 $A \ln \left(1 + \underbrace{\left(\frac{t}{\tau}\right)^2}_{\gg 1} \right) \simeq 2A \ln \frac{t}{\tau}$ (3)

e si ottiene il grafico in Fig.1

Figure 1: Andamento della legge oraria x(t) [Eq.(1)]

2. Inserendo i tre valori $t=0,\,t=\tau,$ e $t=2\tau$ nella legge oraria, otteniamo

$$x(t=0) = A \ln\left(1 + \left(\frac{0}{\tau}\right)^2\right) = A \cdot 0 = 0 \,\mathrm{m} \tag{4}$$

$$x(t=\tau)$$
 $A \ln\left(1 + \left(\frac{\tau}{\tau}\right)^2\right) = A \ln 2 = 1 \,\mathrm{m} \cdot 0.69 = 0.69 \,\mathrm{m}$ (5)

$$x(t = 2\tau)$$
 $A \ln\left(1 + \left(\frac{2\tau}{\tau}\right)^2\right) = A \ln 5 = 1 \,\mathrm{m} \cdot 1.61 = 1.61 \,\mathrm{m}$ (6)

3. • La velocità media nell'intervallo $t \in [0; \tau]$ è data per definizione da

• La velocità media nell'intervallo $t \in [\tau; 2\tau]$ è data per definizione da

$$\bar{v}_{[\tau;2\tau]} = \frac{x(2\tau) - x(\tau)}{2\tau - \tau} = \\
[uso (5) e (6)] \\
= \frac{A \ln 5 - A \ln 2}{\tau} = \\
= \frac{A}{\tau} \ln \frac{5}{2} = \\
= \frac{1 \text{ m}}{1 \text{ s}} \cdot 0.916 = \\
= 0.916 \frac{\text{m}}{\text{s}}$$
(8)

4. La velocità istantanea ad un generico istante si ottiene per definizione come derivata temporale della legge oraria (1)

$$v(t) = \frac{dx}{dt} = A \cdot \frac{2\frac{t}{\tau^2}}{1 + \left(\frac{t}{\tau}\right)^2} \tag{9}$$

ossia

$$v(t) = 2A \cdot \frac{t}{t^2 + \tau^2} \tag{10}$$

ed è riportata in Fig.2.

Pertanto, inserendo in (10) gli istanti $t=\tau/2$ e $t=3\tau/2$, si ottiene

$$v(t = \frac{\tau}{2}) = 2A \cdot \frac{\frac{\tau}{2}}{\left(\frac{\tau}{2}\right)^2 + \tau^2} = \frac{4}{5} \frac{A}{\tau}$$
 (11)

$$v(t = \frac{3\tau}{2}) = 2A \cdot \frac{\frac{3\tau}{2}}{\left(\frac{3\tau}{2}\right)^2 + \tau^2} = \frac{12}{13} \frac{A}{\tau}$$
 (12)

Sostituendo i valori

$$v(t = \frac{\tau}{2}) = \frac{4}{5} \frac{\text{m}}{\text{s}} = 0.80 \frac{\text{m}}{\text{s}}$$
 (13)

$$v(t = \frac{3\tau}{2}) = \frac{12}{13} \frac{\text{m}}{\text{s}} = 0.92 \frac{\text{m}}{\text{s}}$$
 (14)

NOTA BENE:

L'istante $t = \tau/2$ si trova esattamente al centro dell'intervallo temporale $t \in [0; \tau]$ su cui in precedenza abbiamo valutato la velocità media (7). Confrontando la velocità media nell'intervallo [Eq. (7)] con la velocità istantanea al centro dell'intervallo [Eq. (13)] notiamo che la velocità media sottostima di circa il 14% la velocità istantanea in $t = \tau/2$. Analogamente, l'istante $t = 3\tau/2$ si trova esattamente al centro dell'intervallo temporale $t \in [\tau; 2\tau]$ su cui in precedenza abbiamo valutato la velocità media (8). Confrontando la velocità media nell'intervallo [Eq. (8)] con la velocità istantanea al centro dell'intervallo [Eq. (14)], notiamo che in questo caso la velocità media sottostima del solo 0.4% la velocità istantanea in $t = 3\tau/2$.

Figure 2: Andamento della legge oraria della velocità v(t) [Eq.(10)]

5. Denotiamo con t^* l'istante (ancora incognito) in cui la particella raggiunge la posizione x^* . Allora per definizione

$$x(t^*) = x^*$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Sostituendo il valore $x^* = 3 \,\mathrm{m}$, si ottiene

$$t^* = 1 \,\mathrm{s} \,\sqrt{e^{\frac{3\,\mathrm{m}}{1\,\mathrm{m}}} - 1} = \sqrt{e^3 - 1} \,\mathrm{s} = 4.37 \,\mathrm{s}$$
 (16)

6. Per stabilire la velocità massima della particella dobbiamo valutare il valore massimo della legge oraria della velocità (10). Annullandone la derivata (ossia valutando dove si annulla l'accelerazione) si ottiene

$$a(t) = \frac{dv}{dt} = 2A\left(\frac{t^2 + \tau^2 - 2t^2}{(t^2 + \tau^2)^2}\right) = 2A\frac{t^2 - \tau^2}{(t^2 + \tau^2)^2} = 0$$
 (17)

che ha come solutione (positiva)

$$t_{max} = \tau$$
 (istante in cui raggiunge la velocità massima) (18)

Il valore v_{max} di tale velocità massima si ottiene sostituendo $t = t_{max}$ nella legge oraria della velocità (10). Si ottiene

$$v_{max} = v(t_{max}) = 2A \cdot \frac{t_{max}}{t_{max}^2 + \tau^2} = 2A \cdot \frac{\tau}{\tau^2 + \tau^2} = \frac{A}{\tau} = \frac{1 \text{ m}}{1 \text{ s}}$$
 (19)