TD HLIN612 Calculabilité/Complexité Année 2020-21 Version 1.3

Université de Montpellier Place Eugène Bataillon 34095 Montpellier Cedex 5

RODOLPHE GIROUDEAU ET JEAN-CLAUDE KÖNIG 161, RUE ADA 34392 MONTPELLIER CEDEX 5

TEL: 04-67-41-85-40

 ${\it Mail}: \{rgirou, konig\}@{\it LIRMM.FR}$

Calculabilité/Complexité TD – Séance n^o 1

1 <u>Calculabilité</u>

1.1 Variations sur le codage

Exercice 1 – Codage de couples d'entiers

Soit $Rang: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ tel que $Rang(x,y) = \frac{(x+y)(x+y+1)}{2} + x$

- 1. Donner une version récursive de la fonction Rang.
- 2. Donner la fonction inverse.
- 3. Calculer Rang(4,5). Donner le couple pour lequel la valeur du codage est 8.

Exercice 2 - Codage de triplets

Soit c la fonction de codage pour les couples d'entiers vue en cours.

- 1. Soit h la fonction de codage pour les triplets définie par h(x, y, z) = c(c(x, y), z). Quel est le doublet codé par 67? Quel est le triplet codé par 67?
- 2. le couple (z,t) succède au couple (x,y) si c(z,t)=c(x,y)+1. Ecrire la fonction successeur qui prend en paramètre un couple et retourne le couple successeur.

Exercice 3 – Codage (suite)

Pour coder les listes d'entiers peut-on :

- 1. Faire la somme des entiers de la liste, et à somme égale prendre l'ordre lexicographique?
- 2. Faire comme pour les mots : prendre les listes les plus courtes d'abord et à égalité de longueur l'ordre lexicographique?

Exercice 4 – Codage (suite)

Proposer un codage pour les nombres rationnels.

Exercice 5 - Codage (suite)

On ordonne les listes de la façon suivante :

 $\sigma(l)$ = somme des entiers de la liste + longueur de la liste

Puis à valeur de σ égale on ordonne dans l'ordre lexicographique.

On note U_k l'ensemble des liste l telles que $\sigma(l) = k$ et $u_k = |U_k|$.

1. Donner les ensembles U_i , $i = 0, \ldots, 4$.

- 2. Montrer que $u_k = 2^k, \forall k \ge 1$.
- 3. Quelle est la première liste de $U_k, \forall k \in \mathbb{N}^*$ et la dernière?
- 4. Donner la fonction de codage en version itérative et récursive (resp. décodage).

Exercice 6 - Codage (suite et fin)

Soit la fonction f suivante de $\mathbb{N}^* \to \mathbb{N}$:

$$f(n) = k \text{ si } n = 2^k$$

 $f(n) = f(n/2) \text{ si } n \text{ pair et n'est pas une puissance de 2}$
 $f(n) = f((3n+1) \text{ sinon}$

Nous appelons $A_i = \{x | f(x) = i\}.$

- 1. Donner quelques éléments de $A_i, \forall i \in \{1, 2, 3, 4, 5, 6\}.$
- 2. Donner un algorithme qui prend i en paramètre et qui affiche tous les éléments de A_i .
- 3. Donner un algorithme qui affiche $A_1 \cup A_2$.
- 4. Donner un algorithme qui affiche $A_4 \cup A_6$.

1.2 Dénombrabilité

Exercice 7 - Diagonalisation

- 1. Soit une suite quelconque d'ensembles $E_i \subset \mathbb{N}$. Construire un ensemble qui n'appartient pas à cette suite (en vous inspirant de la diagonalisation).
- 2. Que pouvons-nous conclure sur l'ensemble des sous-ensembles de \mathbb{N} ?

Exercice 8 – Diagonalisation (pas prioritaire)

On considère l'ensemble U des suites $(u_n)_{n\in\mathbb{N}}$ à la valeurs dans $\{0,1\}$, c'est à dire $\forall n\in\mathbb{N}$; montrer que U n'est pas dénombrable.

Exercice 9 - Paradoxe

Montrer que les problèmes suivants engendrent un paradoxe

- 1. Le conseil municipal d'un village vote un arrêté municipal qui enjoint à son barbier (masculin) de raser tous les habitants masculins du village qui ne se rasent pas eux-mêmes et seulement ceux-ci.
- 2. Un crocodile s'empare d'un bébé et dit à la mère : « si tu devines ce que je vais faire, je te rends le bébé, sinon je le dévore. »

En supposant que le crocodile tienne parole, que doit dire la mère pour que le crocodile rende l'enfant à sa mère?

Une réponse usuelle de la mère est : « Tu vas le dévorer! »

Exercice 10 - Ensemble fini/infini

Un ensemble est fini si on ne peut pas le mettre en bijection avec une partie stricte de lui-même. Il est infini sinon.

Montrer que l'ensemble des entiers est infini.

Exercice 11 - Taille des ensembles

Soit E un ensemble, et soit $\mathcal{P}(E)$ l'ensemble des parties de E. On a $|E| < |\mathcal{P}(E)|$.

Pour montrer ceci, on suppose qu'il existe une bijection de E dans P(E).

Exercice 12 – Une preuve incorrecte

Nous considérons la fonction suivante donné par l'algorithme 1 :

Algorithm 1 La fonction de Collatz

```
while n \neq 1 do

if n = 0 \mod 2 then

n := n/2

else

n := 3 \times n + 1

end if

end while
```

Actuellement nous ne savons pas si cette fonction termine $\forall n$.

Est-ce que vous êtes d'accord avec la preuve suivante :

« Si le problème de l'arrêt était décidable il suffirait de l'appliquer à ce programme pour savoir si son exécution s'arrête. Or, on ne sait pas si son exécution s'arrête. D'où la contradiction »

Exercice 13 - Calculabilité

Soit $f: \mathbb{N} \to \{0,1\}$ une fonction totale non calculable.

- 1. Rappeler la définition d'une fonction totale et d'une fonction non calculable.
- 2. Construire une fonction $g: \mathbb{N} \to \mathbb{N}$ totale, croissante et non calculable à partir de f.

Exercice 14 - Calculabilité

Montrer que l'inverse d'une fonction f calculable et bijective est calculable.

Exercice 15 - Calculabilité

Montrer qu'une fonction f totale $\mathbb{N} \to \mathbb{N}$ est calculable si et seulement si son graphe

$$G = \{(x, f(x)|x \in \mathbb{N}\}\$$

est décidable.

Exercice 16 - Calculabilité

Soient E un ensemble et ϕ une fonction telle que $\phi(n)$ est égale au nombre d'éléments de E strictement inférieur à n.

1. Montrer que ϕ est calculable si et seulement si E est décidable.

Exercice 17 - Calculabilité

En vous inspirant du théorème de Rice, donnez le prédicat (indécidable) et la fonction contradictoire qui prouve par l'absurde le résultat d'indécidabilité pour chacun des exemples suivants : on ne peut décider si une procédure calcule

- 1. une fonction totale
- 2. une fonction injective
- 3. une fonction croissante
- 4. une fonction à valeurs bornées

Exercice 18 – Calculabilité

Soit E l'ensemble val(f) où f est calculable partielle.

1. Montrer que E est récursivement énumérable (inspirez-vous du fait que l'arrêt en t unités de temps est décidable)

Exercice 19 - Calculabilité

Soit f une fonction calculable, un ensemble B et son image réciproque par f, A:

$$A = f^{-1}(B) = \{x | f(x) \in B\}$$

- 1. Rappeler la définition d'un ensemble décidable et d'un ensemble récursivement énumérable.
- 2. A-t'-on B décidable implique A décidable?
- 3. A-t'-on B récursivement énumérable implique A récursivement énumérable?

Exercice 20 - Calculabilité

- 1. Montrer qu'un ensemble énuméré par une fonction calculable strictement croissante f est décidable.
- 2. En déduire que tout ensemble récursivement énumérable non décidable contient un sousensemble infini et décidable.

Exercice 21 – Calculabilité (pas prioritaire

1. Montrer que tout ensemble récursivement énumérable peut-être énuméré par une fonction sans répétition.

Exercice 22 - Calculabilité

Soient A et B deux ensembles décidables :

- 1. Est-on sûr que le complémentaire de A est décidable?
- 2. Est-on sûr que l'union de A et B est décidable?
- 3. Est-on sûr que l'intersection de A et B est décidable?
- 4. Même question en remplaçant décidables par récursivement énumérables.

Exercice 23 – Calculabilité (pas prioritaire

- 1. soit A un ensemble décidable de couples d'entiers. Montrer que la projection de A à savoir $E = \{x | \exists y \text{ tel que } (x, y) \in A\}$ est récursivement énumérable.
- 2. Montrer que réciproquement tout ensemble récursivement énumérable est la projection d'un ensemble décidable.

Exercice 24 - Concept de la réduction

Pour deux sous-ensembles A et B de \mathbb{N} , on dit que A se réduit à B (ce qu'on note $A \propto B$) si il existe une fonction totale (récursive) totale f telle que pour tout $x \in \mathbb{N}$, $x \in A$ ssi $f(x) \in B$.

- 1. Montrer que si B est décidable et $A \propto B$, alors A est décidable.
- 2. Montrer que si B est récursivement énumérable et $A \propto B$, alors A est récursivement énumérable .

Exercice 25 – Concept de la réduction (suite)

Pour réduire un problème A à un problème B, il suffit de montrer que la résolution de B permet de résoudre A à condition qu'une solution à B soit disponible.

Pour illustrer, supposons que A est le problème suivant : A(n) =le plus petit nombre premier qui est plus grand n, et B le problème de décision $B = \{n | n \text{ is prime } \}$.

- 1. Donner pour quelques valeurs de n la valeur de A(n).
- 2. Proposer une réduction du problème A au problème B.

Exercice 26 - Réduction

Montrer que les deux problèmes Problème du Carré d'un entier et Problème de la multiplication se réduisent l'un à l'autre.

L'addition, la soustraction et la division soient des opérations autorisées.

PROBLÈME DE LA MULTIPLICATION

Entrée : Soient $a \in \mathbb{N}$ et $b \in \mathbb{N}$.

Question : Peut-on multiplier a et b?

Problème du carré d'un entier

Entrée : Soit $a \in \mathbb{N}$.

Question : Peut-on élevé au carré a?

2 Complexité

Exercice 27 – Une certaine idée de la complexité

```
Soit la fonction C suivante :
int pf(int x)
    {
    int y=pg(x)
    return ph(y)
}
```

- 1. Quelle est la complexité du calcul de pf si pg est de complexité $O(n^4)$, ph de complexité linéaire et si $g(n) < n^2$ (g étant la fonction calculée par pg)?
- 2. Si ph s'exécute en temps polynomial, à quelle condition le calcul de pf se fait-il en temps polynomial?
- 3. Si les hypothèses de la question précédente est vérifiée que peut-on en déduire si la fonction h calculée par ph se calcule en temps polynomial?
- 4. Soit le calcul de Fibonacci en utilisant directement la formule de récurrence : $f_0 = 1, f_1 = 1, n > 1, f_n = f_{n-1} + f_{n-2}$. Montrons que le nombre d'additions nécessaires pour faire le calcul est compris entre $\sqrt{2}^n$ et 2^n ?
- 5. Comment améliorer pour que ce nombre soit en O(n)? Peut-on en déduire qu'il existe un algorithme qui calcule f_n avec un nombre d'additions polynomial par rapport à la taille de la donnée? Pourquoi?
- 6. Questions difficiles : comment calculer f_n avec un nombre d'additions et de multiplications polynomial par rapport à la taille de la donnée? Peut-on trouver un algorithme qui s'exécute en temps polynomial par rapport à la taille de la donnée?

Exercice 28 - Certificat

Si pour un problème Π vous avez un certificat polynomial pour une réponse positive et un certificat polynomial pour une réponse négative. Que pouvez-vous conclure? Justifiez votre réponse On connait un algorithme simple en $O(\sqrt{n})$ pour savoir si un nombre n est premier. Peut-on en déduire que savoir si un nombre est premier.

On peut savoir si n peut s'écrire comme le produit de deux nombres premiers et on connait un algorithme en $O(\sqrt{n})$. Peut-on en déduire que ce problème est dans P? Quel serait l'impact si ce problème était dans P?

Exercice 29 - Puissance de calcul

Tous les 4 ans la puissance des machines est multipliée environ par 8. Vous avez deux algorithmes A et B l'un dont le temps d'exécution est proportionnel à n^3 et l'autre dont le temps d'exécution est proportionnel à 2^n . Avec les deux algorithmes vous traitiez un problème de taille n = 10 en 1s, il y a 40 ans. Quelle est la taille des problèmes que vous êtes capables de traiter aujourd'hui avec chacun des deux algorithmes en 1s?.

Exercice 30 – Optimisation versus décision

Soit le problème du stable de taille k :

STABLE (Stable)

Entrée: Un graphe non orienté G = (X, E)

Question : Existe-t'il un stable (c'est à dire un sous-ensemble de sommets tel que deux sommets de ce sous-ensemble ne soient jamais reliés par une arête) de taille k

et sa version optimisation

MAX STABLE (MaxStable)

Entrée : Un graphe non orienté G = (X, E)

Question : Trouver un stable (c'est à dire un sous-ensemble de sommets tel que deux sommets de ce sous-ensemble ne soient jamais reliés par une arête) de taille maximum

- 1. Montrer que S'il existe un algorithme polynomial qui résout le problème de stabilité maximum alors la version décisionnelle est résoluble, lui aussi, en temps polynomial.
- 2. Montrer que s'il existe un algorithme qui résout le problème de stable de taille k en temps polynomial alors le problème de stabilité maximum est résoluble, lui aussi, en temps polynomial.

Exercice 31 – 2-Satisfaisabilité

- 1. Montrer en calculant le nombre de clauses créées et le nombre de variables ajoutées que la réduction de Satisfaisabilité à 3-Satisfaisabilité vue en cours est bien polynomiale.
- 2. Montrer que 2-Satisfaisabilité peut-être résolu est temps polynomial.

Exercice 32 – Autour de Satisfaisabilité

Non égal Satisfaisabilité (NAESAT)

Entrée : Et ant donnée une formule conjonctive ϕ sur n variables et m clauses

Question : Existe-t-'il une affectation de valeurs de vérité aux variables qui satisfasse ϕ tel que chaque clause à une littéral à vrai et un à faux?

Montrer que Non égal Satisfaisabilité est $\mathcal{NP}-complet$. La preuve se fera à partir de Satisfaisabilité

Exercice 33 - Autour de Satisfaisabilité (suite)

COUPE MAXIMUM (CUT)

Entrée: Soit G = (V, E) un graphe non orienté, $k \in \mathbb{N}$

Question : Existe t'il une partition de sommets en deux sous-ensembles V_1 et V_2 tel que le nombre d'arêtes entre V_1 et V_2 est k?

Réduire Non égal 3-Satisfaisabilité à Coupe maximum. Conclure.

Remarque : vous verrez en master que coupure min est polynomiale même si les arêtes ont des poids.

Exercice 34 – Problème de la coloration

Montrer que 3-coloriable est \mathcal{NP} -complet (réduction à partir de 3-SATISFAISABILITÉ).

Exercice 35 - VOYAGEUR DE COMMERCE

Voyageur de Commerce (TSP)

Entrée : Un ensemble de m villes X, un ensemble de routes entre les villes E. Une fonction de coût $v: E \to \mathbb{N}$ où v(x,y) est le coût de déplacement de x à y, $k \in \mathbb{N}$.

Question: Existe-il un cycle Hamiltonien de distance inférieure ou égale à k?

Montrer que VOYAGEUR DE COMMERCE est \mathcal{NP} -complet. (La preuve se fait à partir de CYCLE HAMILTONIEN). Qu'en est t'il si on autorise l'inégalité triangulaire $\forall i, j, k, c_{ik} \leq c_{ij} + c_{jk}$?

Exercice 36 - RECOUVREMENT DE SOMMETS

On veut montrer que le problème RECOUVREMENT DE SOMMETS est \mathcal{NP} -complet. La preuve se fera à partir de 3-Satisfaisabilité .

Aide pour la transformation polynomiale : Considérons les variables $x_1, \bar{x}_1, x_2, \bar{x}_2, \dots, x_n, \bar{x}_n$ et n arêtes $(x_i, \bar{x}_i), \forall i = 1, \dots, n$. Nous considérons m triangles constitués des littéraux. Pour une

clause C_i nous notons $c_{i_1}, c_{i_2}, c_{i_3}$ et nous relions le sommet x_i à un sommet d'un triangle noté $C_{j_k}, k = 1, 2, 3$ si la variable x_i apparaît dans la clause C_j à la position k. littéraux

Exercice 37 - RECOUVREMENT DE SOMMETS (suite)

Montrer que le Recouvrement de sommets reste \mathcal{NP} -complet même si tous les sommets sont de degrés pairs.

Exercice 38 – Réductions autour de Hamiltonisme (pas prioritaire)

Montrer que les problèmes sont tous NP-complets si l'un d'eux l'est :

- 1. CYCLE HAMILTONIEN dans un graphe non orienté
- 2. CHAÎNE HAMILTONIENNE dans un graphe non orienté
- 3. CIRCUIT HAMILTONIEN dans un graphe orienté
- 4. Chemin Hamiltonien dans un graphe orienté
- 5. CYCLE HAMILTONIEN dans un graphe biparti non orienté
- 6. CHAÎNE HAMILTONIENNE dans un graphe biparti non orienté

Exercice 39 - Mètre du charpentier

Montrer que le problème du mêtre de charpentier est un problème \mathcal{NP} -complet

MÈTRE DU CHARPENTIER (MC)

Entrée : La longueur de l'étui L et des segments l_i (i de 1 à n). Question : Peut-on plier le mètre pour qu'il rentre dans l'étui?

Exercice 40 – Algorithmes pseudo-polynomiaux

Donner deux algorithmes pseudo-polynomiaux pour résoudre la problème du sac-à-dos dont le temps d'exécution est proportionnel au produit d'un polynôme en n (nombre d'objet) et au volume du sac à dos (pour l'un des algorithme) et au poids de l'objet le plus lourd (pour l'autre).

Exercice 41 – Autour du problème de la 2-Partition

Nous rappelons que le problème suivant est NP-complet.

2-Partition (Partition)

Entrée: Etant donnés n objets a_i $(1 \le i \le n)$ de poids entiers $p(a_1), p(a_2), \ldots, p(a_n)$ de somme 2P.

Question : Est-il possible de les partager en deux sous-ensembles de même poids total P?

Montrer que les problèmes suivants sont NP-complets.

1. 2-Partition à valeurs paires (Partition à valeurs paires)

Entrée : Etant donnés n objets a_i $(1 \le i \le n)$ de poids entiers à valeurs paires $p(a_1), p(a_2), \ldots, p(a_n)$ de somme 2P.

Question : Est-il possible de les partager en deux sous-ensembles de même poids total P?

- 2. 2-Partition avec nombre pair)
 - **Entrée :** Etant donnés 2n objets a_i $(1 \le i \le 2n)$ de poids entiers $p(a_1), p(a_2), \ldots, p(a_{2n})$ de somme 2P.
 - **Question :** Est-il possible de les partager en deux sous-ensembles de même poids total P?
- 3. 2-Partition équilibré (Partition équilibré)
 - **Entrée**: Etant donnés 2n objets a_i $(1 \le i \le 2n)$ de poids entiers $p(a_1), p(a_2), \ldots, p(a_{2n})$ de somme 2P.
 - **Question :** Est-il possible de les partager en deux sous-ensembles I et \bar{I} de même poids total P tel que |I| = n?
- 4. 2-Partition (Partition impair/paire)
 - **Entrée**: Etant donnés 2n objets a_i $(1 \le i \le 2n)$ de poids entiers $p(a_1), p(a_2), \ldots, p(a_{2n})$ de somme 2P.
 - **Question :** Est-il possible de les partager en deux sous-ensembles I et \bar{I} tel que $\sum_{i \in I} a_i = \sum_{i \in \bar{I}} a_i$, avec un entier entre a_{2j-1} et a_{2j} appartenant à I?
- 5. 3-Partition (Partition à trois)
 - **Entrée**: Etant donnés n objets a_i $(1 \le i \le n)$ de poids entiers à valeurs paires $p(a_1), p(a_2), \ldots, p(a_n)$ de somme 3P.
 - **Question :** Est-il possible de les partager en trois sous-ensembles I_1 , I_2 et I_3 de $\{1, \ldots, n\}$ de même poids total P?

Exercice 42 - Programmation dynamique : algorithme pseudo-polynomial

- 1. Sur le problème de la partition :
 - 2-Partition (Partition)
 - **Entrée**: Etant donnés n objets a_i $(1 \le i \le n)$ de poids entiers $p(a_1), p(a_2), \ldots, p(a_n)$ de somme 2P.
 - **Question :** Est-il possible de les partager en deux sous-ensembles de même poids total P?
 - (a) Nous allons plonger le problème dans une classe de problèmes dépendant de paramètres et liés par une relation de récurrence. On considère deux entiers i et j avec $1 \le i \le n$ et $0 \le j \le P$, et l'expression booléenne T(i,j): « étant donnés les i premiers éléments de la famille, il existe un sous-ensemble de ces i éléments de poids j ». On remplit alors ligne par ligne un tableau A, qui contient les valeurs de T dont les colonnes sont indicées par j et les lignes par i.
 - i. Donner la formule qui lie la ligne i et i-1 et $p(a_i)$.
 - ii. Illustrer ce principe avec les données suivantes : n = 6, $p(a_1) = 5$, $p(a_2) = 9$, $p(a_3) = 3$, $p(a_4) = 8$, $p(a_5) = 2$, $p(a_6) = 5$.
 - iii. Comment avec le tableau rempli obtient-on les éléments de la partition?
 - (b) Donner la complexité de cet algorithme?
- 2. Le problème du sac à dos:

Nous considérons le problème du sac à dos sans répétition, c'est à dire les objets seront pris au plus une fois. Pour cela considérons, un tableau K à deux dimensions tel que K[j, w] représente la valeur maximale que l'on peut stocker dans un sac de capacité w avec des objets $1, \ldots, j$.

- (a) Donner les formules;
- (b) Illustrer le principe avec les données suivantes : $(w_1, v_1) = (1, 1)$; $(w_2, v_2) = (2, 6)$; $(w_3, v_3) = (5, 18)$; $(w_4, v_4) = (6, 22)$; $(w_5, v_5) = (7, 24)$ et W = 12.
- (c) Comment retrouver la solution à partir du tableau?
- (d) Donner la complexité en temps et en mémoire