Fachbereich Mathematik & Informatik

Freie Universität Berlin

Prof. Dr. Ralf Kornhuber, Prof. Dr. Christof Schütte, Lasse Hinrichsen

7. Übung zur Vorlesung

Computerorientierte Mathematik I

WS 2020/2021

http://numerik.mi.fu-berlin.de/wiki/WS_2020/CoMaI.php

Abgabe: Do., 21. Januar 2021, 12:15 Uhr

1. Aufgabe (6 TP)

Zur Auswertung einer Funktion $f: \mathbb{R} \setminus \{-1,1\} \to \mathbb{R}$ soll der Algorithmus

$$f(x) = \frac{x^8 - 1}{x^4 - 1} = \frac{g_2(g_1(x))}{g_2(g_3(x))}, \qquad g_1(x) = x^8, \qquad g_2(y) = y - 1, \qquad g_3(x) = x^4$$

verwendet werden.

- a) Bestimmen Sie die relative Stabilität des Algorithmus in $x \in \mathbb{R} \setminus \{-1, 1\}$.
- b) Was geschieht für $x \to 1$?
- c) Geben Sie einen Algorithmus für die Auswertung von f an, für den die relative Stabilität in $\mathbb{R}\setminus\{-1,1\}$ gleichmäßig beschränkt ist. Dabei können Sie Grundrechenarten sowie Elementarfunktionen der Art $h(x) = x^n$ und h(x) = x + c verwenden.

2. Aufgabe (6 TP) Für $x \in \mathbb{R} \setminus \left\{-1, -\frac{1}{2}\right\}$ sei

$$f(x) = \frac{1}{1+2x} - \frac{1-x}{1+x}.$$

- a) Bestimmen Sie $\kappa_{\rm rel}(f,x)$ für x>0. Diskutieren Sie anschließend die relative Stabilität $\sigma_{\rm rel}$ für einen beliebigen Algorithmus, der der obigen Darstellung der Abbildungsvorschrift von f entspricht.
- b) Finden Sie einen stabileren Algorithmus für die Auswertung von f.

3. Aufgabe (8 PP)

Die Exponentialfunktion $\exp : \mathbb{R} \to \mathbb{R}; x \mapsto \exp(x)$ soll durch die Funktion

$$f_N(x) := \sum_{k=0}^N \frac{x^k}{k!}$$

(also der Potenzreihenentwicklung bis zur N-ten Ordnung) approximiert werden.

- a) Implementieren Sie f_N in PYTHON, indem Sie eine Funktion $\exp_{approx}(x, N)$ schreiben, deren Rückgabewert der Auswertung von $f_N(x)$ entspricht. Außerdem: Falls Sie die Funktion math.factorial verwenden (oder anderweitig in jedem Durchlauf einer Schleife die Fakultät k! mit vergleichbar hohem Aufwand auswerten) gibt es Punktabzug!
- b) Wir betrachten nun die verschiedenen Formulierungen

$$g_1(x, N) = f_N(x), \quad g_2(x, N) = \frac{1}{f_N(-x)}, \quad g_3(x, N, K) = f_N\left(\frac{|x|}{K}\right)^{\operatorname{sign}(x)\cdot K}$$

Schreiben Sie eine Skriptdatei run_7_3.py, die für $x \in \{-5,1,5\}$, $K \in \{1,11\}$ sowie für $N \in \{0,5,10,\cdots,50\}$ die folgenden relativen Fehler

$$\begin{split} & \texttt{error_1}(x_j, N_k) = \frac{|g_1(x_j, N_k) - \exp(x_j)|}{\exp(x_j)} \\ & \texttt{error_2}(x_j, N_k) = \frac{|g_2(x_j, N_k) - \exp(x_j)|}{\exp(x_j)} \\ & \texttt{error_3}(x_j, N_k, K_l) = \frac{|g_3(x_j, N_k, K_l) - \exp(x_j)|}{\exp(x_j)} \end{split}$$

für alle möglichen Kombinationen aus (x_i, N_K, K_l) berechnet.

Wählen Sie ein sinnvolles Zahlenformat und tabellelieren Sie alle berechneten Fehler, so dass jede Zeile einem möglichem Wert von N entspricht und die Spalten den jeweiligen Fehlern. Sie sollten also $3+3+2\cdot 3=12$ verschiedene Fehlerkombinationen für jedes N bekommen. Speichern Sie die Tabelle als Textdatei daten.txt ab.

c) Schildern Sie Ihre Beobachtungen und interpretieren Sie die Ergebnisse. Schreiben Sie Ihre Antwort in eine Datei beobachtungen7.txt.

4. Bonusaufgabe (Quiz) (1 Bonus TP/PP)

Formulieren Sie eine Frage zur Vorlesung. Falls Sie die Antwort wissen, geben Sie die richtige Antwort und 3 falsche Antwortmöglichkeiten an.

ALLGEMEINE HINWEISE

Die Punkte unterteilen sich in Theoriepunkte (TP) und Programmierpunkte (PP). Bitte beachten Sie die auf der Vorlesungshomepage angegebenen Hinweise zur Bearbeitung und Abgabe der Übungszettel, insbesondere der Programmieraufgaben.

1. Aufgabe (6 TP)

Zur Auswertung einer Funktion $f\colon \mathbb{R}\setminus\{-1,1\}\to \mathbb{R}$ soll der Algorithmus

$$f(x) = \frac{x^8 - 1}{x^4 - 1} = \frac{g_2(g_1(x))}{g_2(g_3(x))}, \qquad g_1(x) = x^8, \qquad g_2(y) = y - 1, \qquad g_3(x) = x^4$$

verwendet werden.

- a) Bestimmen Sie die relative Stabilität des Algorithmus in $x \in \mathbb{R} \setminus \{-1, 1\}$.
- b) Was geschieht für $x \to 1$?
- c) Geben Sie einen Algorithmus für die Auswertung von f an, für den die relative Stabilität in $\mathbb{R}\setminus\{-1,1\}$ gleichmäßig beschränkt ist. Dabei können Sie Grundrechenarten sowie Elementarfunktionen der Art $h(x) = x^n$ und h(x) = x + c verwenden.

2. Aufgabe (6 TP) Für
$$x \in \mathbb{R} \setminus \left\{-1, -\frac{1}{2}\right\}$$
 sei

$$f(x) = \frac{1}{1+2x} - \frac{1-x}{1+x}.$$

- a) Bestimmen Sie $\kappa_{\mathrm{rel}}(f,x)$ für x>0. Diskutieren Sie anschließend die relative Stabilität $\sigma_{\rm rel}$ für einen beliebigen Algorithmus, der der obigen Darstellung der Abbildungsvorschrift von f entspricht.
- b) Finden Sie einen stabileren Algorithmus für die Auswertung von f

1	1-x 1+x	(1-x). (1+zx)	
(CX) = 1+ZX	$\frac{1-x}{1+x} = \frac{1+x}{(1+2x)\cdot(1+x)}$	(7+X)·(1+Zx)	
_ 1+x	$\frac{(1+2x)-(x+2x^{2})}{(1+x)\cdot(1+2x^{2})}$	z <u>.</u> `)	
(1+x)+(2x	+ 2x2) (1+X)·(1+2x)	
= 1+x 2x2+3x+	7+ x -2x 1		
2x2+5x+1	2x + 5x + 1		
$= \frac{2x^2}{2x^2+3x+4}$			
2x+5x+1			
Kre(= \(\frac{1}{2} \) (x/(3)	$\frac{ f(x) }{ x } = \frac{ f(x) }{ x }$	$\frac{(3(x))^2}{(3(x))^2}$	
$f(x) = \frac{f(x)(2x+1)}{x}$	$3x + 1$) - $(2x^{2} \cdot (4x + 3)^{2})$	<i>)</i>	
$8x^{3} + 12x^{2} + 6$	$\frac{-(x^{2} + (8x^{3} + 6x^{2}))}{-(x^{2} + 3x + 1)^{2}} =$	C(X + 6x -	
	<u>'x</u> +3x+1)		
	$= \frac{\left 2x^{2} \cdot 4 x}{\left(2x^{2} + 3x + 1\right)^{3}}$	$\frac{ +(x^{1})\cdot x }{(2x^{2}+3x+1)^{3}} = \frac{ -(x^{1})\cdot x }{(2x^{2}+3x+1)^{3}}$	
$ x = \frac{ x x + 6x^2}{ (7x^2 + 3x + 3$	n=		

