Talk On

NumPy

Table of Content

- 1. About NumPy
- 2. NumPy Array Manipulation
- 3. Universal functions in NumPy
- 4. NumPy Aggregation
- 5. Application of NumPy

1. About NumPy

- Stands for Numerical Python.
- NumPy is a python library used for working with arrays.
- NumPy array is a collection of homogeneous data types stored in contiguous memory location
- Has function for working in domain of linear algebra, fourier transform, and matrices.
- Written partially in Python, but parts that require fast computation are written in C or C++.
- Source code of NumPy is located at github repository.
 - https://github.com/numpy/numpy

NumPy Vs Python List

- NumPy arrays are by default Homogeneous, whereas List can be either Homogeneous or Heterogeneous.
- NumPy arrays have fixed size at creation, unlike python lists which can grow dynamically.
- In NumPy array element wise operation is possible, whereas in list element wise operation is not possible.
- NumPy array can be multidimensional, whereas python list is by default 1 dimensional.
- NumPy are very fast compared Python Lists.

Why NumPy is Fast?

- An array is a collection of homogeneous data types that are stored in contiguous memory locations.
- Vectorized operations are possible in NumPy.
- NumPy package integrates C, C++, and Fortran codes in Python.
 - These programming language have very little execution time compared to Python.

2. NumPy Array manipulation

- Creating arrays
- Attributes of arrays
- Indexing of arrays
- Slicing of arrays
- Reshaping of arrays
- Joining and Splitting of arrays

Creating arrays

Attributes of Numpy arrays

- ndim:
 - Represents the number of dimensions (axes) of the array
- shape:
 - Given the tuple of integers representing size of the ndarray in each dimension
- size:
 - Gives the total number of elements in the ndarray. Equals to the product of elements of the result of the attribute **shape**
- dtype:
 - tells the data type of the elements of a Numpy array. In Numpy array, all the elements have the same data type.
- itemsize:
 - o returns the size(in bytes) of each element of a Numpy array.
- nbytes:
 - Add size(in bytes) of individual elements in the array.
 - Nbytes = itemsize*size

Attributes of Numpy arrays: Example

```
In [76]: # create array
         sample array = np.array([[3, 4, 6], [0, 8, 1]])
         sample array
Out[76]: array([[3, 4, 6],
                [0, 8, 1]])
         Now, let's understand mentioned attributes of numpy array:
In [3]: # ndarray.ndim
         print(f"The dimension of sample array is: {sample array.ndim}")
         The dimension of sample array is: 2
In [4]: # ndarray.shape
         print(f"The shape of sample array is: {sample array.shape}")
         The shape of sample array is: (2, 3)
In [5]: # ndarray.size
         print(f"The total number of elements in the sample array is: {sample array.size}")
         The total number of elements in the sample array is: 6
In [6]: # ndrray.dtype
        print(f"The data type of elements of sample array is: {sample array.dtype}")
         The data type of elements of sample array is: int64
In [7]: # ndarray.itemsize, returns the size (in bytes) of each element of a Numpy array
         print(f"The size of each element in the numpy array is: {sample array.itemsize}")
         The size of each element in the numpy array is: 8
```

Array Indexing: One-dimensional Array

- Array indexing means accessing element via array.
- ith value can be accessed by specifying desired index in square brackets.

Array Indexing: multi-dimensional array

Items can be accessed using comma-separated list of indices.

Array Slicing: Accessing Subarrays

- Slicing means taking elements from one given index to another
- Like lists, we can slice numpy array
- We pass slice instead of index like this: sample_array[start:stop:step]
 - If we don't pass start its considered as 0
 - If we don't pass end its considered length of array in that dimension
 - If we don't pass step its considered as 1
- Types:
 - Slicing, one-dimensional array (1D array)
 - Slicing, multi-dimensional array (e.g. 2D array)

Slicing, one-dimensional array

- Case 1: Step is positive
 - Example: Access subarray [40, 50, 60, 70] from array shown:

- using positive index: array[3:7]
- using negative index: array[-6:-2]
- using both positive and negative index: array[3:-2]
- Note: end index is exclusive

Slicing, one-dimensional array (Cont...)

- Case 2: Step is negative
 - Negative step refer to an index from the end
 - **Example:** Access subarray [70, 50, 60, 40] from array shown:

- using positive index: array[6:2:-1]
- using negative index: array[-3:-7:-1]
- using both positive and negative index: array[6:-7:-1]
- Note: end index is exclusive

Slicing, one-dimensional array (Code)

```
In [11]: import numpy as np
         # Define array
         a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90])
         # Casel: Step is positive
         print("***Case 1: Step is positive***")
         print(f"Slicing using positive index: {a[3:7]}")
         print(f"Slicing using negative index: {a[-6:-2]}")
         print(f"Slicing using both positive and negative index: {a[3:-2]}")
         # Case2 : Step is negative
         print("***\nCase 2: Step is negative***")
         print(f"Slicing using positive index: {a[6:2:-1]}")
         print(f"Slicing using negative index: {a[-3:-7:-1]}")
         print(f"Slicing using both positive and negative index: {a[6:-7:-1]}")
         ***Case 1: Step is positive***
         Slicing using positive index: [40 50 60 70]
         Slicing using negative index: [40 50 60 70]
         Slicing using both positive and negative index: [40 50 60 70]
         Case 2: Step is negative***
         Slicing using positive index: [70 60 50 40]
         Slicing using negative index: [70 60 50 40]
         Slicing using both positive and negative index: [70 60 50 40]
```

Slicing, multi-dimensional array

- Consider the case of 2D array.
- Slicing a 2D array is similar to a 1D array.
- Use a comma to separate the row slice and the column slice.
- **Example:** Access subarray [[1, 2], [5, 6]] from array shown below:

Syntax: array[0:2, 1:3]

Slicing, multi-dimensional array(code)

```
In [13]: # Slicing, 2D array

# define array
a = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]])

# slice array,
print(f"Slicing subarrays containing row=[row1, row2] and column=[colum1, column2]:\n {a[0:2, 1:3]}")

Slicing subarrays containing row=[row1, row2] and column=[colum1, column2]:
    [[1 2]
    [5 6]]
```

View and Copy of array

```
In [46]: # Copy
         # define array
         arr = np.array([1, 2, 3, 4, 5])
         # make copy
         copy arr = arr.copy()
         # display original and copy of an array
         print(f"Original array= {arr} Copy array= {copy arr}")
         # verify memory is not shared
         print(f"\nDo original array and view of an array shares memory?\nAns: {np.shares memory(arr, copy arr)}")
         # edit index 0 in copy array i.e. from 1 to -1
         copy arr[0] = -1
         print(f"\nCopy array changed from [1 2 3 4 5] to {copy arr}")
         print(f"But original array doesnot changed i.e. {arr}")
         Original array= [1 2 3 4 5] Copy array= [1 2 3 4 5]
         Do original array and view of an array shares memory?
         Ans: False
         Copy array changed from [1 2 3 4 5] to [-1 2 3 4 5]
         But original array doesnot changed i.e. [1 2 3 4 5]
```

Subarrays as no-copy view

```
# Define array
arr = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])
print(f"Original array:\n{arr}")
# Slice
sliced arr = arr[0:2. 1:3]
print(f"\nmemory address of original array: {id(arr)}")
print(f"memory address of sliced subarray: {id(sliced arr)}")
print(f"\nDo original array and sliced subarray shares memory?\nAns: {np.shares memory(arr, sliced arr)}")
# edit sliced array, i.e. index=[0, 1] of original array
sliced arr[0][0] = 100
print(f"\nChanges reflected to original array i.e.\n {arr}")
Original array:
[[0 1 2 3]
[4 5 6 7]
 [ 8 9 10 11]]
memory address of original array: 139968340233152
memory address of sliced subarray: 139968340353392
Do original array and sliced subarray shares memory?
Ans: True
Changes reflected to original array i.e.
 [[ 0 100 2 3]
           6 71
       9 10 1111
```

Reshaping of arrays

- The shape of an array is the number of elements in each dimension
- Reshaping means changing the shape of an array.
- By reshaping we can add or remove dimensions or change the number of elements in each dimension.
- Example:
 - Reshape from 1D to 2D
 - Reshape from 1D to 3D

Example: Reshape from 1D to 2D

```
Q. Convert the following 1D array with 12 elements into a 2D array
In [19]: # create a array
        arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
        new arr = arr.reshape(4, 3)
         print(f"array before reshaping:\n {arr}")
         print(f"\narray after reshaping to shape (4, 3):\n {new arr}")
         array before reshaping:
         [1 2 3 4 5 6 7 8 9 10 11 12]
         array after reshaping to shape (4, 3):
         [[ 1 2 3]
          [4 5 6]
          [7 8 9]
          [10 11 12]]
```

Example: Reshape from 1D to 3D

```
Q. Covert the following 1D array with 12 elements into a 3D array
In [20]: # sample array
         arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
         # reshape to 3D array
         new arr = arr.reshape(2, 3, 2)
         print(f"array before reshaping to 3D is:\n {arr}")
         print(f"\narray after reshaping to 3D is:\n {new arr}")
         array before reshaping to 3D is:
         [1 2 3 4 5 6 7 8 9 10 11 12]
         array after reshaping to 3D is:
         [[[ 1 2]
           [ 3 4]
           [ 5 6]]
          [[ 7 8]
           [ 9 10]
           [11 12]]]
```

Can we Reshape into any Shape

- Yes, as long as elements required for reshaping are equal in both shapes.
- Question:
 - Convert 1D array with 8 elements to a 2D array with shape (3, 3)
 - o Is it possible?
- Answer:
 - This process will raise an exception as there are 8 elements in 1D and
 9 elements in 2D after reshaping
- Coding example:

Exception when Reshaping

```
In [21]: arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
         # reshape to 3x3
         newarr = arr.reshape(3, 3)
         print(newarr)
         ValueError
                                                     Traceback (most recent call last)
         <ipython-input-21-416b01fa8732> in <module>
               3 # reshape to 3x3
         ----> 4 newarr = arr.reshape(3, 3)
               6 print(newarr)
         ValueError: cannot reshape array of size 8 into shape (3,3)
         As we can see this lead to an exception as expected
```

Array Joining

- Array Joining means putting content of two or more array in a single array
- In SQL we join tables based on keys, whereas in NumPy we join arrays by axes.
- Array Joining can be done in two ways:
 - **Concatenation**: using **concatenate()** function
 - **Stacking**: using **stack()** function
- Now, lets understand each of them.

Concatenation

- Syntax: numpy.concatenate((a1, a2, ...), axis=0, out=None)
 - o a1, a2, ...: Sequence of array_like. The array must have the same shape
 - o axis: Int, optional. axis along which array will be concatenated
 - out: ndarray, optional. The destination to place the result
- We pass sequence of arrays that we want to the **concatenate()** function.
- After concatenating dimensions of resulting array will be same as that of individual array.
- Order of concatenation will be based on the order in which array are passed to the **concatenate()** function.

Concatenation(Cont..)

- Concatenate 1D array
- Concatenate 2D array
 - Concatenate along row axis (axis=0)
 - Concatenate along column axis (axis=1)
- Concatenate 3D array
 - Concatenate along axis=0
 - Concatenate along axis=1
 - Concatenate along axis=2

Concatenate 1D array

- 1D array only have one axis i.e axis=0
- So, concatenation is only along axis=0
- Example:

```
In [2]: arr1 = np.array([1, 2, 3])
    arr2 = np.array([4, 5, 6])

# display array
    print(f"Array 1: {arr1}")
    print(f"Array 2: {arr2}")

arr = np.concatenate((arr1, arr2))

print(f"Concatenating 1D array: {arr}")

Array 1: [1 2 3]
    Array 2: [4 5 6]
    Concatenating 1D array: [1 2 3 4 5 6]
```

Concatenate 2D array (Along axis=0)

- Setting axis=0 concatenates along the row axis.
- Similar to NumPy **vstack()** i.e. vertical stacking function.
 - numpy.vstack((arr1, arr2))

Concatenate 2D array (Along axis=1)

- Setting axis=1 concatenates along the column axis.
- Similar to NumPy **hstack()** i.e. horizontal stacking function.
 - numpy.hstack((arr1, arr2))

Stacking

```
In [69]: # Define two array
         arr1 = np.array([[1, 2], [3, 4]])
         arr2 = np.array([[5, 6], [7, 8]])
         # display array
         print(f"array1:\n{arr1}")
         print(f"\narray2:\n{arr2}")
         # stack array
         np.stack((arr1, arr2), axis=0)
         array1:
         [[1 2]
          [3 4]]
         array2:
         [[5 6]
          [7 8]]
Out[69]: array([[[1, 2],
                 [3, 4]],
                [[5, 6],
                 [7, 8]]])
```

Splitting

- Splitting is reverse operations of joining
 - Joining merges multiple arrays into one.
 - Splitting breaks one array into multiple one.
- Can be implemented using numpy functions:
 - o numpy.split()
 - numpy.array_split()
 - numpy.hsplit()
 - numpy.vsplit()
- We pass array we want to split and the number of split.
- Sub-arrays obtained after splitting is only view of the original arrays.
 - Changes made to the sub-arrays also reflect changes in the original array

array_split() VS split()

- Both are use to split numpy arrays.
- numpy.split():
 - Does not adjust elements when elements are less in source array.
 - Meaning: if the array has less element than required for splitting, it will raise an exception.
- numpy.array_split():
 - Adjust elements when elements are less in source array.
 - Meaning: if the array has less element than required for splitting, the last end array is null.
- Coding Example:

array_split() vs split() (Example)

```
Q. Split [1, 2, 3, 4, 5, 6] into four parts
# define array
 arr = np.array([1, 2, 3, 4, 5, 6])
 print(f"origina array: {arr}")
 # split
 splitted arr = np.array split(arr, 4)
 print(f"splitted array using array split(): {splitted arr}")
 origina array: [1 2 3 4 5 6]
 splitted array using array split(): [array([1, 2]), array([3, 4]), array([5]), array([6])]
arr = np.array([1, 2, 3, 4, 5, 6])
print("***As Expected split() throws an error:***\n")
split arr = np.split(arr, 4)
***As Expected split() throws an error:***
ValueError: array split does not result in an equal division
```

Splitting (via specifying axis name)

- Can specify axis to do the split around.
- For 2D arrays, splitting can be done in two ways:
 - Splitting across axis=0
 - Similar to numpy.hsplit() for equal division case
 - Splitting across axis=1
 - Similar to *numpy.vsplit()* for equal division case
- Now let's understand each of them separately

Splitting 2D array (axis=0)

- Syntax: numpy.array_split(arr, split_num, axis=0)
- Comparison with numpy.vsplit()
 - Similar to *numpy.vsplit()* when splitting results in the equal division.
 - o numpy.array_split(): can work with both equal and unequal division case
 - o numpy.vsplit():
 - work only in the equal division case
 - raise an exception in the case of unequal division..
- Example:

Splitting 2D array (axis=0) Example

```
# define array
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15], [16, 17, 18]])
print(f"sample array:\n {arr}")
# split via array split()
print(f"array split(axis=0) result:\n {np.array split(arr, 3, axis=0)}")
# split via vstack()
print(f"vsplit() result:\n {np.vsplit(arr, 3)}")
                             array split(axis=0) result:
                                                                  vsplit() result:
sample array:
                              [array([[1, 2, 3],
                                                                  [array([[1, 2, 3],
[[ 1 2 3]
                                   [4, 5, 6]]), array([[ 7, 8, 9], [4, 5, 6]]), array([[ 7, 8, 9],
[ 4 5 6]
                                                                   [10, 11, 12]]), array([[13, 14, 15],
                                   [10, 11, 12]]), array([[13, 14, 15],
[7 8 9]
                                                                       [16, 17, 18]])]
                                   [16, 17, 18]])]
[10 11 12]
[13 14 15]
[16 17 18]]
```

Splitting 2D array(axis=1)

- Syntax: numpy.array_split(arr, split_num, axis=1)
- Comparison with numpy.hsplit()
 - Similar to *numpy.hsplit()* when splitting results in the equal division.
 - o numpy.array_split(): can work with both equal and unequal division case.
 - o numpy.hsplit():
 - work only in the equal division case.
 - raise an exception in the case of unequal division.
- Example:

Splitting 2D array (axis=1) Example

```
# define array
arr = np.array([[1, 2, 3], [3, 4, 3], [5, 6, 3], [7, 8, 3]])
print(f"Sample array:\n {arr}")
# Split via array split with axis=1
print(f"\narray split(axis=1) result:\n {np.array split(sample arr, 3, axis=1)}")
# split via hsplit()
print(f"\nhsplit() result:\n {np.hsplit(sample arr, 3)}")
Sample array:
                                               hsplit() result:
                array split(axis=1) result:
 [[1 2 3]
                                                [array([[1],
                 [array([[1],
                                                       [3],
                        [3],
  [3 4 3]
                                                       [5],
                        [5],
  [5 6 3]
                                                       [7]]), array([[2],
                        [7]]), array([[2],
  [7 8 3]]
                        [4],
                                                       [4],
                        [6],
                                                       [6],
                                                       [8]]), array([[3],
                        [8]]), array([[3],
                        [3],
                                                       [3],
                        [3],
                                                       [3],
                        [3]])]
                                                       [3]])]
```

3. NumPy Universal functions (Ufuncs)

- Looping over the array to perform repeated task like addition, subtraction, etc on each array element are common.
- Computation time to perform such repeated task increases with relatively larger data.
- NumPy makes this faster by using vectorized operations, implemented through ufuncs.
- Types:
 - Unary ufuncs
 - Binary ufuncs
- Example:
 - Compare computation time for element-wise multiplication without and with using ufuncs

Types of Ufuncs

- Unary ufuncs
 - Operates on single inputs.
 - Example: negation of input array x
- Binary ufuncs
 - Operates on two inputs.
 - Example: addition of two input array x and y
- Operators and Equivalent ufunc:

```
Operator Equivalent ufunc Description
                          Addition (e.g., 1 + 1 = 2)
         np.add
                          Subtraction (e.g., 3 - 2 = 1)
         np.subtract
                          Unary negation (e.g., -2)
         np.negative
                          Multiplication (e.g., 2 * 3 = 6)
        np.multiply
                          Division (e.g., 3 / 2 = 1.5)
         np.divide
         np.floor divide Floor division (e.g., 3 // 2 = 1)
                          Exponentiation (e.g., 2 ** 3 = 8)
         np.power
                          Modulus/remainder (e.g., 9 % 4 = 1)
         np.mod
```

Computation time comparison

Element-Wise multiplication using Ufuncs In [27]: import time import numpy as np # Define two numpy array x1 = np.arange(1, 1000) x2 = np.arange(1, 1000) tic = time.process_time() # Element-wise multiplication using Ufuncs mul = np.multiply(x1,x2) # Displyay Element-wise multiplication time using Ufuncs toc = time.process_time() print ("elementwise multiplication using Ufuncs" "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms") elementwise multiplication using Ufuncs ----- Computation time = 0.09755300000025002ms

- Using ufuncs computation time is less compared to classic python for loops.
- The reason behind less computation time using ufuncs is due to Vectorization

Vectorization

- It's a technique in order to getting rid of explicit for loop in python.
- Vectorization can be performed using parallelization instruction called SIMD instruction.
- SIMD stands for single instruction multiple data.
- In python SIMD is enabled through Ufuncs.
 - Helps python NumPy to take much better advantage of parallelism to do computation faster.

Vectorization in Deep Learning

- Famous in different task such as Classification, Segmentation, Detection, etc.
- Deep Learning demands large number of data that helps model to generalize.
- Large number of training set leads to large number of time to run the code i.e.
 need to wait long time to get the result.
- So, in deep learning ability to perform vectorization has become key skill.
- Note:
 - whenever possible avoid using explicit for loops

4.Aggregation: Min, Max

- As data analyst, the first step is to explore and understand the data.
- One way to understand the data is to compute summary statistics.
- Mean and standard deviation are most common statistical method to summarize the data.
- These are called **Aggregates**.
- Different useful aggregates are: sum, product, minimum, maximum, etc.
- Visual interpretation of python built-in aggregation:

NumPy aggregation functions

- Like python NumPy also has built-in aggregation functions.
- Specially designed for working with Numpy arrays.
- Different NumPy aggregation functions:

Function Name	NaN-safe Version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mean	np.nanmean	Compute mean of elements
np.std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute variance
np.min	np.nanmin	Find minimum value
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
np.any	N/A	Evaluate whether any elements are true
np.all	N/A	Evaluate whether all elements are true

Python VS NumPy aggregation

 Q. Why to use NumPy aggregate functions when they are already available in Python?

• Speed:

 NumPy aggregate functions are must faster than Python aggregate functions.

Aware of dimensions:

- NumPy aggregate functions are aware of dimensions.
- However python aggregate functions behave differently on multi-dimensional arrays.

Note:

 Whenever possible make use of NumPy version of aggregates when operating on NumPy arrays

Python VS NumPy aggregation (Cont...)

- Aware of dimensions:
 - Consider code snippet as shown:

- **Expected output: 45** i.e. sum of all elements in the array
- But output are not according to expectation using python inbuilt sum().
- Ousing numpy sum:
 print(f"Result using NumPy sum(): {np.sum(array)}")
 Result using NumPy sum(): 45

5.Application of NumPy

MATLAB Replacement

- Can do all sorts of mathematics with NumPy.
- There are functions for Linear algebra, fourier transform, and so on.

Machine Learning

Knowing NumPy you can do some of the stuff with machine learning.

NumPy with pandas

- Pandas interoperates with NumPy for faster computations.
- Using both libraries together is a very helpful resource for scientific computation.

Thank you for your Valuable time....