(19) RÉPUBLIQUE FRANÇAISE

> INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

> > **PARIS**

No de publication : n'utiliser que pour classement et les

2.099.642

commandes de reproduction.)

Nº d'enregistrement national : (A utiliser pour les paiements d'annuités, les demandes de copies officielles et toutes autres correspondances avec [1.N.P.I.]

DEMANDE BREVET D'INVENTION

1re PUBLICATION

Date de dépôt....

28 juillet 1971, à 15 h 42 mn.

Date de la mise à la disposition du public de la demande.....

B.O.P.I. - «Listes» n. 11 du 17-3-1972.

- Classification internationale (Int. Cl.).. A 01 n 9/00//A 01 n 5/00, 17/00.
- Déposant : Société dite : BADISCHE ANILIN- & SODA-FABRIK AG., résidant en République Fédérale d'Allemagne.

Titulaire: Idem (71)

- Mandataire : Guétet & Bloch, Conseils en brevets d'invention, 39, avenue de Friedland,
- Herbicide.
- Invention de:
- Priorité conventionnelle : Demande de brevet déposée en République Fédérale d'Allemagne le 28 juillet 1970, n. P 20 37 265.0 au nom de la demanderesse.

10

25

*3*0

La présente invention a pour objet des berbicides, notamment des herbicides sélectifs, qui sont appropriés pour lutter contre les plantes indésirables parmi les plantes utiles.

On sait que l'on peut utiliser comme principes actifs herbicides des dérivés substitués de la dinitroaniline, des acides phosphoriques, des pyridazones, des urées substituées, des triazines et des bicarbamates. Leur action n'est toutefois pas toujours satisfaisante.

On a trouvé qu'ont une bonne action herbicide en pré-émergence et en post-émergence contre les mauvaises herbes, par exemple Chenopodium album, Galinsoga parviflora, Sinapis arvensis, Polygonum spp., Amaranthus spp., Portulaca oleracea, et contre les plantes adventices telles que Poa spp., Bromus spp., Vena sativa, Cyperus spp., les différents types de millet, par exemple Panicum spp., Setaria spp., Digitaria spp., Echinochloa spp., dans les cultures de Gossypium spp.,, Soja hispida, Brassica napus, Beta spp., Oryza sativa, des herbicides renfermant un mélange formé:

a) d'un composé de formule :

$$R_1 \xrightarrow{NO_2} R_4$$

dans laquelle R₁ représente de l'hydrogène, un radical nitro, alkyle, trofluorométhyle, méthylsulfonyle, R₂ un radical nitro, alkyle, trifluorométhyle, méthylsulfonyle, R₃ et R₄ peuvent être identiques ou différents et représenter de l'hydrogène, un radical aliphatique, ramifié ou linéaire saturé ou insaturé et éventuellement substitué par un halogène, un reste cyane, alcoxy, azido, un radical halogénoacétyloxyalkyle, ou alkylcarbamoyloxyalkyle, et en plus R₃ et R₄ peuvent former ensemble avec l'atome d'azote dont ils sont les substituants, un noyau hexaméthylène—imine, ou

b) d'un composé de formule

35 dans laquelle R₃ représente un radical cycloalkyle, ou le radi-

10

15

20

25

30

cal X, X est de l'hydrogène, un ou plusieurs radicaux, identiques ou différents, d'halogène, NO2, alkyle, alcényle, alcinyle, halogénoalkyle, alcoxy, R est un radical aliphatique, linéaire ou ramifié, saturé ou insaturé et éventuellement substitué par un halogène, un groupe cyane, alcoxy, Y est de l'oxygène ou du soufre, R₁ ou R₂ un radical alkyle, alcényle, alcinyle, aryle, aralkyle, cycloalkyle éventuellement substitué, R₂ pouvant en outre être un radical alcoxy, alcénoxy, alcinoxy, aroxy, alkyloxy, cycloalkyloxy éventuellement substitué et c) d'un composé de formule

T T O

dans laquelle X représente un reste alcoxy, thioalkyle, amino, alkylamino, dialkylamino, alcénylamino, dialcénylamino, alcinylamino, dialkylamino, halogénoalkylamino, acétylamino, halogénoacétylamino, diméthylformamidine, méthylformamidine, acétoacétyle, le groupe

R représentant un radical alkyle, alcényle, alcinyle, aralkyle, aryle, cycloalkyle éventuellement substitué ou de l'hydrogène, et les sels alcalins, alcalino-terreux et les sels aminé substitués de ces composés, <u>n</u> un nombre compris entre 1 et 6, Y du chlore, du brome, un reste alcoxy et thioalkyle, Z un halogéno-alkyle, alkyle et de l'hydrogène ou d) d'un composé de la formule :

dans laquelle R représente un radical phényle éventuellement substitué avec un halogène, un groupe nitre, alkyle ou

-3-

2099642

alcoxy, alcénoxy, alcinoxy, halogénoalkyle, alkyle ou dialkyl-carbamoyloxy, un radical bi- ou tricycloaliphatique éventuellement substitué avec un halogène, un groupe alkyle, un radical 3-benzothiazolyle, un radical phénoxyalkyle, éventuellement substitué, un radical alcényle ou alcinylcarbamoyloxy, R₁ de l'hydrogène, un radical cyclooctényle, cyclohexényle, R₂ de l'hydrogène, un radical alkyle, alcoxy, alcoxyalkyle, isobutène-(1)-yl-3, α,α-diméthylpropargyle, cyanalkyle et un radical carboxyalkyle, un radical alcoxyalkyle ou alkyle-C-O-CH₂ ou leurs

10 sels et esters, ou
e) d'un composé de formule

15

20

25

dans laquelle R représente un groupe alkyle, cyanalkyle, R₁ un groupe alkylamino, thioalkyle, azido, X un halogène, un groupe alcoxy, thioalkyle, azido ou f) d'un composé de formule

$$\begin{array}{c} \text{R-NH-C-O} \longrightarrow \\ \text{NH-C-Z}_{\mathbf{n}^{-\mathbf{R}_{1}}} \end{array}$$

dans laquelle X représente un radical phényle éventuellement substitué avec un halogène, un groupe alkyle, halogénoalkyle, un radical aliphatique, linéaire ou ramifié, saturé ou insaturé, éventuellement substitué avec un halogène, un radical alco-xyalkyle, un radical alkyle ou thioalkyle, Y de l'hydrogène, ou un groupe alkyle, R₁ un groupe alkyle, acétylalkyle, Z de l'oxygène, du soufre et n le nombre 1 ou 0.

On peut mélanger les différents principes actifs dans n'importe quels rapports. Des mélanges de principes actifs <u>a</u>, ou <u>b</u> avec les principes actifs <u>c</u>, <u>d</u>, <u>e</u> et <u>f</u>, en rapport pondéral de 3:1 à 1:3 sont préférés.

Pour la préparation des esters de l'acide phosphorique, on

peut faire réagir des sels de diesters des acides thio- ou dithiophosphoriques avec de la N-isobutinylchloracétanilide. En tant que sels, on préfère des sels alcalins de métaux (Na, K) ou des sels R₃NH, R représentant l'hydrogène, un groupe méthyle, éthyle, isopropyle ou n-propyle, Ces sels peuvent être également préparés par réaction avec le chloracétamide à partir de l'acide correspondant et des alcalis ou amines correspondants.

On peut effectuer la réaction avec une vitesse suffisante aussi bien dans des solvants organiques inertes, tels que les cétones, les éthers, des hydrocarbures aliphatiques ou aromatiques, que dans de l'eau ou des mélanges d'eau avec un ou plusieurs des solvants organiques cités. En tant que domaine de températures, convient le domaine allant de la température ordinaire au point d'ébullition du solvant correspondant, de préférence allant de 40 à 120°C.

Exemple 1

5

10

15

Préparation de l'acide 0,0-diéthyl-S-(N-isobutinyl-N-phényl-carbamoylméthyl)dithiophosphorique.

Dans un mélange de 50 parties en poids d'acétone et de 10
parties d'eau, on dissout 10,8 parties du sel ammonique de l'acide 0,0-diéthyl-dithiophosphorique et 11,1 parties de N-isobutinyl-chloracétanilide. On chauffe pendant 4 heures à 60°C, on dilue après refroidissement avec de l'eau et on dissout le produit dans du toluène ou du chlorure de méthylène. On lave la phase organique une fois avec une solution aqueuse à 5 % en poids de carbonate de sodium et plusieurs fois à l'eau. Après séchage sur du sulfate de sodium, on concentre la solution sous vide et enfin sous le vide d'une pompe à huile à moins de 70°C. On obtient 16,3 parties du composé cité ci-dessus.

(huile faiblement jaunâtre) n25 = 1,5540

calculé: N 3,77 S 17,25 P 8,36 trouvé: N 3,6 S 17,0 F 8,3

Exemple 2

35

Préparation de l'acide 0,0-diéthyl-S-(N-isobutinyl-N-phényl-carbamoylméthyl)-thiolphosphorique.

Selon l'exemple 1, on obtient, à partir de 9,9 parties en poids de sel ammonique de l'acide 0,0-diéthyl-thiophosphorique et de 11,1 parties de N-isobutinylchloracétanilide, 15,1 parties du composé cité ci-dessus. $n_{\rm D}^{25}=1,5273$.

5 .

10

15

20

25

30

35

40

-5-

2099642 '

calculé: N 3,95 S 9,0 F 8,73 trouvé: N 3,8 S 8,8 F 8,7

Les agents selon l'invention peuvent être employés sous forme de solutions, d'émulsions, de suspensions ou de poudres à épandre. Les formes d'application dépendent entièrement des buts à atteindre; elles doivent dans tous les cas garantir une fine répartition de la substance active.

Pour la préparation de solutions directement pulvérisables, on peut utiliser, en tant que liquides de pulvérisation, des hydrocarbures présentant des points d'ébullition supérieurs à 150°C, par exemple le tétrahydronaphtalène ou des naphtalènes alkylés, ou des liquides organiques ayant des points d'ébullition supérieurs à 150°C et portant un ou plusieurs groupes fonctionnels, par exemple le groupe céto, le groupe éther, le groupe ester ou le groupe amide, ces groupes pouvant être des substituants placés sur une chaîne hydrocarbure ou faire partie d'un noyau hétérocyclique.

On prépare les formes d'application aqueuse par addition d'eau à des émulsions concentrées, des pâtes ou des poudres mouillables (poudres de pulvérisation). Pour la préparation d'émulsions, on peut homogénéiser les substances telles quelles ou dissoutes dans un solvant, à l'aide de mouillants ou de dispersants, par exemple des produits d'addition de l'oxyde de polyéthylène, dans de l'eau ou des solvants organiques, mais on peut aussi préparer des concentrés appropriés à la dilution dans l'eau à partir de substance active, d'émulsionnant, de dispersant et éventuellement de solvant.

On prépare les poudres à épandre en mélangeant ou en broyant conjointement les substances actives avec un support solide, par exemple le kieselguhr, le talc, l'argile ou des engrais.

Pour améliorer l'action, on peut en outre ajouter des réticulants et des agents d'adhérence ou des huiles.

Exemple 3

On ensemence une surface agricole avec des graines de Gossypium hirsitum, Setaria viridis, Echinochloa crus-galli, Bromus tectorum, Amaranthus retroflexus et Portulaca oleracea et on traite ensuite avec les principes actifs séparés et les mélanges suivants, émulsionnés ou dispersés, chaque fois, dans 500 litres d'eau par hectare:

```
71 27692
                                  -6-
                                                        2099642
           N-allyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline
      I
      II
           N-propyl-N-\beta-chlor\'ethyl-2, 6-dinitro-4-trifluorom\'ethylaniline
           N-propyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline
      III
      IV
           N-éthyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline
  5
      V
           N,N-dipropyl-2,6-dinitro-4-méthylsulfonylaniline
           N-m-trifluorométhylphényl-N-1-cyclohex-1-ényl-N'-N'-dimé-
      VΙ
           thylurée
      VII
           N-m-chloro-phényl-N-1-cyclohex-1-ényl-N'-N'-diméthylurée
      VIII N-p-fluoro-phényl-N-1-cyclohex-1-ényl-N-méthylurée
 10
      IX
           N-m-trifluorométhylphényl-N'-N'-diméthylurée
      X
           N-p-chlorophényl-N'N'-diméthylurée
           Au bout de 4 à 5 semaines, on a constaté que les mélanges
      indiqués ci-dessous présentent une meilleure action herbicide
      et une meilleure compatibilité avec les plantes de culture que
15
      les composés séparés.
           Les résultats de l'essai sont rassemblés dans le tableau
      suivant (voir page 7).
      Quantités utilisées :
           1,5 et 4 kg/ha de principe actif
20
      II
      III 2
              et 4
      IV
           2
              et 3
           1,5 et 3 !
      VI
           2,5 et 4 "
25
      VII 3
               et 4 "
      VIII 2
               et 4 H
      IX
           1,5 et 3 *
      X
           1 et 3 "
      Quantités utilisées :
30
      I.
                  VI
                            1,5 et 2,5 kg/ha de principe actif
      II
                  VII
                                et 3
      III
                  VIII
                            2
                                et 2
      ΙÝ
                  X...
                            2
                                et 1
                  IX
                            1,5 et 1,5
35
      Tableau, voir page 7.
```

Les mélanges cités ci-dessous ont la même action biologique que les mélanges cités dans l'exemple 1:

N,N-dipropyl-2,6-dinitro-4-trifluorométhylaniline

N-β-méthoxyéthyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline

	7	İ	27	69	2						-7-								2	09	96	54	2	-
:	×	М	8	9	9	9	2	8						,										
	• •	5	0	20	2	09	8	80		Ħ	1,5	0	9	8	8	8	8							
	범	1,5 3	ı ·	60 95				80 100		+	1,5 +	-	~	~	-	~								
• • • •	VIII	4	0		8	2	8	80 100		×	+	0	100	100	9	9	100		٠.				•	
	VII	3 4	0	20 80	2	2	8	80 100		ΔI	2													
	TA	2,5 4	0 35	80 100				100 100		TIIA .	2	0	100		8	.0	00					•		
AU.	Δ	1,5 3	0 15			70 95		30 60		H	2			•	•	•	•							
TABLEAU	IV	 		80 100	ν.	60 75		% %		I + VII	+	0	9	9	9	100	90	•						
	H	(1)	0 20	60 95		% %		35 55	•	H	-	٠												
	II	4	ە 3	55 100		_	25 80	25 75		ΤΛ +	,5.+2,5	0	100	100	100	9	100							
	н	1,5 4	0 15	90 100	89	80 100	80 60	30 · 80		Н	~			ŢŢ.	•	นล			Sement	t total				
•	кв/ра де		Gossypium hirsut.	Setaria viridia	Hohinochloa crus-g.	Bromus tectorum	Amaranthus retrof.	Portulaca olerac.		kg/ha de	principe actif	Gossypium hirsutum	Setaria viridia	Echinochlos crus-galli	Bromus tectorum	Amaranthus retroflexus	Portulaca oleracea		0 = sans endommagement	100 = endommagement total	•			

N-β-méthoxy-éthyl-N-β-azidoéthyl-2,6-dinitro-4-trifluorométhylaniline

N-éthyl-N-butyl-2,6-dinitro-4-trifluorométhylaniline N-isobutyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline N-éthyl-N- β -cyanéthyl-2,6-dinitro-4-trifluorométhylaniline N-méthyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline N-butyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline N-β-méthoxyéthyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline

10

5

 $N-butyl-N-\beta-chloropropyl-2\,, 6-dinitro-4-trifluorométhylaniline$

N-propyl-N-β-chloropropyl-2,6-dinitro-4-trifluorométhylaniline N-propyl-N-β-bromethyl-2,6-dinitro-4-trifluoromethylaniline N, N-bis-β-(chloréthyl)-2, 6-dinitro-4-trifluorométhylaniline 15 N,N-bis-β-(chloréthyl)-2,6-dinitro-4-méthyl aniline N-propyl-N-allyl-4,6-dinitro-2-trifluorométhylaniline N-éthyl-N-β-azido-éthyl-2,6-dinitro-4-trifluorométhylaniline N-propyl-N-β-azido-éthyl-2,6-dinitro-4-trifluorométhylaniline 20

- N-propyl-N-β-(chloracétyloxy)-éthyl-2,6-dinitro-4-trifluorométhylaniline N,N-bis-(β-chloracétyloxy)-éthyl-2,6-dinitro-4-trifluorométhyl
 - aniline
- N-(β-chloracétyloxy)-éthyl-2,6-dinitro-4-trifluorométhylaniline N-(β-méthylcarbamoyloxy)-éthyl-2,6-dinitro-4-trifluorométhyl-25 aniline N-éthyl-N-β-brométhyl-2,6-dinitro-4-trifluorométhylaniline
 - N-β-méthoxyéthyl-N-β-brométhyl-2,6-dinitro-4-trifluorométhylaniline
- 30 N- Y-chloropropyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline

N-propène-(1)-yl-(3)-N- β -chloréthyl-2,6-dinitro-4-méthylaniline N-propyl-N-β-chloréthyl-2,6-dinitro-4-méthylaniline

- N-propyl-N-β-azidoéthyl-2,6-dinitro-4-méthylaniline 35
- N-propyl-N-β-azidoéthyl-2,6-dinitro-4-méthylsulfonylaniline N-propyl-N-β-brométhyl-2,6-dinitro-4-méthylsulfonylaniline N-propyl-N-β-(chloracétyloxy)-éthyl-2,6-dinitro-4-méthylaniline N-propyl-N-β-(chloracétyloxy)-propyl-2,6-dinitro-4-trifluorométhylaniline et
- N-propyl-N-β-(méthylcarbamoyloxy)-propyl-2,6-dinitro-4-trifluoro-40

-9-

2099642

méthylaniline

avec

10

N-m-trifluorométhylphényl-N-cyclohex-1-ényl-N'-méthylurée

N-3-chlorophényl-N-cyclohex-1-ényl-N'-méthylurée

N-3-chloro-4-méthoxyphényl-N-cyclohex-1-ényl-N'-méthylurée N-4-chlorophényl-N-cyclohex-1-ényl-N'-méthylurée N-phényl-N-cyclohex-1-ényl-N'-méthylurée N-phényl-N-cyclohex-1-ényl-N'N'-diméthylurée

1-(m-tert.-butylcarbamoyloxy-phényl)-3-méthylurée

1-(m-éthylcarbamoyloxy-phényl)-3-méthylurée 1-(m-allyl-tert.-butylcarbamoyloxy-phényl)-3,3-diméthylurée 1-(m-α,α-diméthyl-propine(1)-yl-(3)-carbamoyloxy-phényl)-3-

méthyl-3-méthoxyurée

1-(m-α-méthyl-α-éthyl-propine(1)-yl-(3)-carbamoyloxy-phényl)-3-

15 méthyl-3-méthoxyurée

1-(m-tert.-butyl-allylcarbamoyloxy-phényl)-3-méthyl-3-méthoxy-urée

N-m-trifluorométhyl-phényl-N'-méthyl-N'-butine-(1)-yl-(3)-urée N-3-chloro-4-méthoxy-phényl-N'-méthyl-N'-méthoxyurée

N-m-trifluorométhyl-phényl-N-méthoxyméthyl-N'-méthylurée N-m-trifluorométhyl-phényl-N-méthoxyméthyl-N'-méthyl-N'-méthoxyurée, et

N-m-trifluorométhyl-phényl-N-acétyloxyméthyl-N', N'-diméthylurée N-4-bromophényl-N-cyclohex-1-ényl-N'N'-diméthylurée

N-3,4-dichlorophényl-N-cyclohex-1-ényl-N'N'-diméthylurée N-3-chloro-4-méthoxyphényl-N-cyclohex-1-ényl-N'N'-diméthylurée N-\(\)1 ou 2(3a-4,5,6,7,7a-hexahydro)-4-méthanoindanyl_7-N',N'-diméthyl-N-cyclohex-1-ényl-urée

N-m-trifluorométhylphényl-N-cyclooctyl-1-ényl-N'N'-diméthylurée
N-m-trifluorométhyl-phényl-N-cyclooctyl-1-ényl-N'-méthylurée
N/5-(3a,4,5,6,7,7a-hexahydro)-4-méthanoindanyl_7-N'N'-diméthyl-urée

N-\(\)1 ou 2 (3a,4,5,6,7,7a-hexahydro)-4-méthanoindanyl_7-N'N'-di-méthylurée

N-bicyclo-(3,3,0)-octyl-N'N'-diméthylurée
N-3,4-dichlorophényl-N'N'-diméthylurée
N-cyclooctyl-N'N'-diméthylurée
N-m-diméthylcarbamoyloxy-phényl-N'-méthylurée.

40 Exemple 4

On remplit des pots d'essai de terre sablonneuse et argi-

2099642

leuse, on les place en serre et on les ensemence avec des graines de Gossypium hirsitum, Digitaria sanguinalis, Echinochloa crus galli, Amaranthus retroflexus et Portulaca oleracea et on traite avec les mélanges et les principes actifs séparés cités ci-dessous, dispersés ou émulsionnés, chaque fois, dans 500 litres d'eau par hectare.

- I N-allyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline
- II N-propyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline
- III N'N-dipropyl-2,6-dinitro-4-trifluorométhylaniline
- 10 IV 2-chloro-4-éthylamino-6-butin-1-yl-3-amino-1,3,5-triazine
 - V 2-chloro-4-éthylamino-6-méthoxyisopropyl-amino-1,3,5-triazine
 - VI 2-thiométhyl-4,6-diisopropylamino-1,3,5-triazine
- 15 I 2 et 4 kg/ha de principe actif
 - II 1 et 3 kg/ha de principe actif
 - III 1,5 et 3 kg/ha de principe actif
 - IV 2 et 3 kg/ha de principe actif
 - V 1,5 et 3 kg/ha de principe actif
- 20 VI 2 et 4 kg/ha de principe actif
 - I + VI 2+2 kg/ha de principe actif
 - II + IV 1 + 2 kg/ha de principe actif
 - III + V 1,5 + 1,5 kg/ha de principe actif.

Au bout de 4 à 5 semaines, on constate que les mélanges présentent une action herbicide plus forte en même temps qu'une meilleure compatibilité avec les plantes de culture que les composants séparés.

Les résultats ressortent du tableau suivant : (voir page 11)

- Les mélanges cités ont la même action biologique que les mélanges cités dans l'exemple précédent:
 - N,N-dipropyl-2,6-dinitro-4-méthylsulfonylaniline
 - N-éthyl-N-butyl-2,6-dinitro-4-méthylsulfonylaniline
 - N-β-méthoxyéthyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhyl-aniline
- N-β-méthoxyéthyl-N-β-azidoéthyl-2,6-dinitro-4-trifluorométhylaniline
 - N-propyl-N- β -cyanéthyl-2,6-dinitro-4-trifluorométhylaniline N-éthyl-N- β -chloréthyl-2,6-dinitro-4-trifluorométhylaniline
- N-éthyl-N-butyl-2,6-dinitro-4-trifluorométhylaniline
- N-isobutyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline

1 A 40.	1	•		Ħ	HH	제 법		i a	-	٨	ΙΛ		I +VI	TI+IV	III + V
kg/na ne principe actif	N N	4	. ~	10	7,07. 33	, M	α	100	ر ارز	100	io i	<u>-+</u> -	+	2 1 + 2	1,5 + 1,5
Gossypium birsutum	0	15	0	20	0	8	77	5	· 17	25	0	0 20	0	0	0
Digitaria sanguinal. Echinochloa crùs-g. Amaranthus retrof. Portulaca oleracea	8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 8 8 8 8	8 8 67 67	2 2 2 3	8888	6 6 6 6 6 6 6 6	65	98 86	75 75 70 70 70	8855	45 05 06 09	8 8 8 8	9 9 9 9	9 9 9 9	700 00 00 00 00 00 00 00 00 00 00 00 00
10	0 = 3E 100 = 67	sans endommagement endommagement total	ndom sagem	endommagement magement tota	ment tota	H								· .	

-12-

2099642

N-éthyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline N-méthyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline N-β-méthoxyéthyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline N-butyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline 5 N-méthyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline N-butyl-N-β-chloropropyl-2,6-dinitro-4-trifluorométhylaniline N-butyl-N-Y-chloropropyl-2,6-dinitro-4-trifluoromethylaniline N-propyl-N-β-chloropropyl-2,6-dinitro-4-trifluorométhylaniline N-propyl-N-β-brométhyl-2.6-dinitro-4-trifluorométhyleniline 10 N,N-bis-β-(chloréthyl)-2,6-dinitro-4-trifluoromethylaniline N, N-bis-β-(chloréthyl)-2,6-dinitro-4-méthylaniline N-propyl-N-allyl-4,6-dinitro-2-trifluorométhylaniline N-éthyl-N-β-azido-éthyl-2,6-dinitro-4-trifluorométhylaniline N-propyl-N-β-azido-éthyl-2,6-dinitro-4-trifluorométhylaniline 15 N-propyl-N-β-(chloracétyloxy)-éthyl-2,6-dinitro-4-trifluorométhylaniline N, N-bis-(β-chloracétyloxy)-éthyl-2,6-dinitro-4-trifluorométhylaniline N-(β-chloracétyloxy)-éthyl-2,6-dinitro-4-trifluorométhylaniline 20 N-(β-méthylcarbamoyloxy)-éthyl-2,6-dinitro-4-trifluorométhyl-N-éthyl-N-fi-brométhyl-2,6-dinitro-4-trifluorométhylaniline $N-\beta$ -méthoxyéthyl- $N-\beta$ -brométhyl-2,6-dinitro-4-trifluorométhylani-25 N-γ-chloropropyl-N-β-chlorethyl-2,6-dinitro-4-trifluoromethylaniline N-propène-(1)-yl-N-β-chloréthyl-2,6-dinitro-4-méthylaniline N-propyl-N-β-chloréthyl-2,6-dinitro-4-méthylaniline N-propyl-N-β-azidoéthyl-2,6-dinitro-4-méthylaniline 30 N-propyl-N- β -azidoéthyl-2,6-dinitro-4-méthylsulfonylaniline N-propyl-N-β-bromethyl-2,6-dinitro-4-methylsulfonylaniline N-propyl-N-β-(chloracétyloxy)-éthyl-2,6-dinitro-4-méthylaniline N-propyl-N-β-(chloracétyloxy)-propyl-2,6-dinitro-4-trifluorométhylaniline et N-propyl-N-β-(méthylcarbamoyloxy)-propyl-2,6-dinitro-4-trifluoro-35 méthylaniline avec 2-chloro-4-éthylamino-6-butine-1-yl-3-amino-1,3,5-triazine 2-chloro-4-éthylamino-6-méthoxyisopropylamino-1,3,5-triazine

2-ohloro-4-éthylamino-6- α , α -diméthylpropargylamino-1,3,5-triazine

2 et 3

2 et 3

1 et 2

VII VI

VIII

40

```
2-chloro-4-isopropylamino-6-α, α-diméthylpropargylamino-1,3,5-
     triazine
     2-thiométhyl-4-éthylamino-6-butin-1-yl-3-amino-1,3,5-triazine
     2-chloro-4-éthylamino-6-sec.-butylamino-1,3,5-triazine
 5
     2-chloro-4-éthylamino-6-α, α-diméthylcyanométhylamino-1,3,5-
     triazine
     2-chloro-4-isopropyl-amino-6-diéthylamino-1,3,5-triazine
     2-méthoxy-4-isopropylamino-6-éthylamino-1,3,5-triazine
     2-thiométhyl-4-isopropylamino-6-tert.-butylamino-1,3,5-triazine
10
     2-azido-4-sec.-butylamino-6-thiométhyl-1,3,5-triazine.
     Exemple 5
          On ensemence une surface agricole avec des graines de Soja
     hispida, Digitaria sanguinalis, Bromus testorum, Amaranthus re-
     troflexus et Portulaca oleracea et on traite ensuite avec les
15
     quantités indiquées, dispersées ou émulsionnées, chaque fois,
     dans 500 litres d'eau par hectare, des mélanges ou principes
     actifs séparés suivants :
             N-allyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhyl-
     I
             aniline
20
     II
             N-propyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhyl-
             aniline
             N'N-dipropyl-2,6-dinitro-triflucrométhylaniline
     III
     IV
             1-m-trifluorométhyl-4-diméthylamino-5-chloropyridazone-6
             1-phényl-4,5-diméthoxy-pyridazone-6
     ٧
25
     VI
             1-m-méthylphényl-4-méthoxy-5-bromo-pyridazone-6
     IIV
             N-m-trifluorométhyl-phényl-N-cyclohex-1-ényl-N'N'-di-
             méthylurée
             N, N-diméthyl-N"-\( \int \) N"-méthoxyisopropyl-carbamoyloxy-phé-
     VIII
             nyl 7-urée
30
     IX
             N-4-(p-chlorophénoxy)-phényl-N'N-diméthylurée
     X
             2-chloro-4-éthylamino-6-(α, α-diméthylcyanométhyl)amino-
             1,3,5-triazine
     I
             1 et 3 kg/ha de principe actif
     II
             1 et 2
35
     III
             1 et 3
     IV
             2 et 3
             1 et 2
```

15

20

14

2099642

```
IX
            2 et 3 kg/ha de principe actif
      X
            1 et 2
      I
               IV
                      1 et 2 kg/ha de principe actif
 5
      II
               V
                      1 et 1
      III
               VI
                      1 et 2
      Ι
               VII
                      1 et 2
      II
            + VIII
                      1 et 1
      III
               IX
                      1 et 2
10
      II
               X
                      1 et 1
```

Au bout de 4 à 5 semaines, on constate que les mélanges présentent une meilleure action herbicide et en même temps une meilleure compatibilité avec les plantes de culture que les principes actifs séparés.

Les résultats ressortent du tableau suivant (voir page 15).

Les mélanges suivants ont la même action biologique que les mélanges cités ci-dessus :

 $N-\beta-m$ éthoxyéthyl- $N-\beta$ -chloréthyl-2,6-dinitro-4-trifluorométhyl-aniline

 $N-\beta-m$ éthoxy-éthyl- $N-\beta-az$ idoéthyl-2,6-dinitro-4-trifluorométhyl-aniline

N-propyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline N-éthyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline

N-éthyl-N-butyl-2,6-dinitro-4-trifluorométhylaniline
N-isobutyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline
N-éthyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline
N-méthyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline
N-β-méthoxyéthyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline

N-butyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline
N-méthyl-N-β-cyanéthyl-2,6-dinitro-4-trifluorométhylaniline
N-butyl-N-β-chloropropyl-2,6-dinitro-4-trifluorométhylaniline
N-i-butyl-N- γ -chloropropyl-2,6-dinitro-4-trifluorométhylaniline

N-propyl-N-β-chloropropyl-2,6-dinitro-4-trifluorométhylaniline
N-propyl-N-β-brométhyl-2,6-dinitro-4-trifluorométhylaniline
N,N-bis-β-(chloréthyl) 2,6-dinitro-4-trifluorométhylaniline
N,N-bis-β-(chloréthyl)-2,6-dinitro-4-méthyl-aniline
N-propyl-N-allyl-4,6-dinitro-2-trifluorométhylaniline
N-éthyl-N-β-azido-éthyl-2,6-dinitro-4-trifluorométhylaniline

40 N-propyl-N-β-azido-éthyl-2,6-dinitro-4-trifluorométhylaniline

71 2	769	92		15-					20	99	642	
N M) 2	75 95 85 100			ľ	. •						
~	Ó	88748		¥ -		-			-		٠.	
. <i>K</i> ⁄	25	8886		H +	0	9	90	85	9			
H	5	00 17 4 00 17 17 00										
III 2	20	8 5 5 6 6 6 7 6 6										
7	0	\$ 50 50 \$ 70 00 \$ 70 0		I+IX 1+2	0	90	400	8	Ŗ,			
II 3	20	00 75 00 00 00							-			
2 4	0	8 2 8 2		. TIT		_	_	_	_		**	
М	6	955		H +	0	700	9	ጸ	9		-	
. b. cı	0	6 4 6 6		II.	·	,						
ري ح	20	8888	,	1 + T	.0	9	90	9	8	,		
~	0	23.25.55								•		
IV 3	15	8 8 8 8		+VI	0	S S 7.	ιζ.	0				
່ ໙	0	65 55 60 60		H +		¥	¥	٠.	₽ .			
HI 3	20	5 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		·						t t	ra1	
~	0	8228		≯	0	8	8	8	8	semer	to	
II 5	9	5 5 5 5 5		H C		~	Ť	~	ĕ	omma.	men	
~	0	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	•	+IV + 2							mag(
H ·	15	5 5 5 5		н	0	9	100	85	8	ane	ndor	
~	0	5525				: m		23		11	"	
kg/ha de principe actif	Soja hispida	Digitaria sanguin. Bromus tectorum Amaranthus retr. Portulaca oleracea		kg/ha de principe actif	Soja hispida	Digitaria sanguinalia	Bromus tectorum	Amaranthus retroflex	Porfulaca oleracea	.	100	,
	I II III IV V VI VIII VIII IX X 1312132312312	I II III IV VII VIII IX X 1 2 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 0 1 2 0 15 0 15 0 10 0 20 0 10 0 20 0 2	I II III III IV VI VI VIII VIII IX X I S S S S S S S S S S S S S S S	I III III IV V VI VIII IX X X X X X X X	I II III IV VI VII VII IX X 1 3 1 2 3 1 3 3 1 3 3 3 <td< td=""><td>pe actif 1 III III IV VII VIII VIII IX X</td><td>pe actiff I II III IV VI VII VIII IX X amoguin. 0 15 0 10 0 20 0 15 0 20 0 10 0 20</td><td> I</td><td> I</td><td> T TI TI TI TY V VI VIII TX X X X X X X X X </td><td> I</td><td> I</td></td<>	pe actif 1 III III IV VII VIII VIII IX X	pe actiff I II III IV VI VII VIII IX X amoguin. 0 15 0 10 0 20 0 15 0 20 0 10 0 20	I	I	T TI TI TI TY V VI VIII TX X X X X X X X X	I	I

-16-

2099642

N-propyl-N-β-(chloracétyloxy)-éthyl-2,6-dinitro-4-trifluorométhylaniline

N,N-bis-(β-chloracétyloxy)-éthyl-2,6-dinitro-4-trifluorométhyl-aniline

5 N-(β -chloracétyloxy)-éthyl-2,6-dinitro-4-trifluorométhylaniline N-(β -méthylcarbamoyloxy)-éthyl-2,6-dinitro-4-trifluorométhyl-aniline

N-éthyl-N-β-brométhyl-2,6-dinitro-4-trifluorométhylaniline N-β-méthoxyéthyl-N-β-brométhyl-2,6-dinitro-4-trifluorométhyl-

10 aniline

 $N-\sqrt{-\text{chloropropyl-}N-\beta-\text{chlorethyl-}2}$, 6-dinitro-4-trifluoromethylaniline

N-propène-(1)-yl-(3)-N-β-chloréthyl-2,6-dinitro-4-méthylaniline N-propyl-N-β-chloréthyl-2,6-dinitro-4-méthylaniline

N-propyl-N-β-azidoéthyl-2,6-dinitro-4-méthylaniline
N-propyl-N-β-azidoéthyl-2,6-dinitro-4-méthylsulfonylaniline
N-propyl-N-β-brométhyl-2,6-dinitro-4-méthylsulfonylaniline
N-propyl-N-β-(chloracétyloxy)-éthyl-2,6-dinitro-4-méthylaniline
N-propyl-N-β-(chloracétyloxy)-propyl-2,6-dinitro-4-trifluorométhylaniline et

thylaniline et N-propyl-N-β-(méthylcarbamoyloxy)-propyl-2,6-dinitro-4-trifluoro-méthylaniline

avec

1-m-trifluorométhylphényl-4-méthoxy-5-bromo-pyridazone-6

25 1-m-trifluorométhylphényl-4,5-diméthoxy-pyridazone-6

1-m-trifluorométhylphényl-4-diéthylamino-5-chloro-pyridazone-6

1-m-méthylphényl-4-amino-5-bromo-pyridazone-6

1-m-méthylphényl-4-méthoxy-5-bromopyridazone-6

1-m-méthylphényl-4,5-diméthoxy-pyridazone-6

1-m-trifluorométhylphényl-4-diméthylamino-6-bromo-pyridazone-(6)
1-phényl-4-dichloroacétylamino-5-bromo-pyridazone-(6)
1-phényl-4-bromoacétylamino-5-bromo-pyridazone-(6)
ester tert.-butylique de l'acide N-/1-m-méthylphényl 5 obloro

ester tert.-butylique de l'acide N-/1-m-méthylphényl-5-chloro-pyridazone-(6)-yl-(4)_7-oxamidique

ester propargylique de l'acide N-/1-phényl-5-bromo-pyridazone-(6)-yl-(4) //-oxamidique

ester isopropylique de l'acide N-21-phényl-5-bromo-pyridazone-(6)-yl-(4)_7-oxamidique

ester éthylique de l'amide d'acide N-/1-phényl-5-bromo-pyridazone-(6)-yl-(4)_7-azéléinique

2099642

```
ester éthylique de l'amide d'acide N-/1-phényl-5-bromo-pyridazone-
    (6)-yl-(4)_7-subérique
   amide d'acide N-/1-phényl-5-bromo-pyridazone-(6)-yl-(4)_7-adipi-
 5 ester isobutylique de l'amide d'acide N-/1-phényl-5-bromo-pyri-
   dazone-(6)-yl-(4)_7-adipique
   ester β-trifluoroéthylique de l'amide d'acide N-/1-phényl-5-
   bromo-pyridazone-(6)-yl-(4)_7-adipique
   ester éthylique de l'amide d'acide N-/1-phényl-5-bromo-pyridazo-
10 ne-(6)-yl-(4)_7-malonique
   ester méthylique de l'amide d'acide N-/1-phényl-5-bromo-pyrida-
   zone-(6)-yl-(4)_7-malonique
   ester méthylique de l'amide d'acide N-/1-cyclohexyl-5-chloro-
   pyridazone-(6)-yl-(4)_7-malonique et
15 ester methylique de l'amide d'acide N-/1-cyclohexyl-5-chloro-
   pyridazone-(6)-y1-(4)_7-glutarique.
   1-(m- tert.-butylcarbamoyloxy-phényl)-3-méthylurée
   1-(m-éthylcarbamoyloxy-phényl)-3-méthylurée
   1-(m-allyl-tert.-butylcarbamoyloxy-phényl)-3,3-diméthylurée
   1-(m-α, α-diméthyl-propine-(1)-yl-(3)-carbamoyloxy-phényl)-3-
   méthyl-3-méthoxyurée
   1-(m-α-méthyl-α-éthyl-propine-(1)-yl-(3)-carbamoyloxy-phényl-3-
   méthyl-3-méthoxyurée
   1-(m-tert.-butyl-allyl-carbamoyloxy-phéryl)-3-3-méthyl-méthoxy-
   N-m-trifluorométhyl-phényl-N'-méthyl-N'-butine-(1)-yl-(3)-urée
   N-3-chloro-4-méthoxy-phényl-N'-méthyl-N'-méthoxyurée
   N-m-trifluorométhylphényl-N-méthoxyméthyl-N'-méthylurée
   N-m-trifluoromethylphenyl-N-methoxymethyl-N'-methyl-N'-methoxy-
   urée
   N-m-trifluorométhylphényl-N-acétyloxyméthyl-N', N'-diméthylurée
   N-m-trifluorométhylphényl-N-cyclohex.1-ényl-N'-méthylurée
   N-3-chlorophényl-N-cyclohex-1-ényl-N'-méthylurée
```

N-3-chloro-4-méthoxyphényl-N-cyclohex-1-ényl-N'-méthylurée N-4-chlorophényl-N-cyclohex-1-ényl-N'-méthylurée N-phényl-N-cyclohex-1-ényl-N'-méthylurée N-phényl-N-cyclohex-1-ényl-N,N'-diméthylurée N-4-bromophényl-N-cyclohex-1-ényl-N'N'-diméthylurée N-3,4-dichlorophényl-N-cyclohex-1-ényl-N'N'-diméthylurée N-3-chloro-4-méthoxyphényl-N-cyclohex-1-ényl-N'N'-diméthylurée

N-_1 ou 2(3a,4,5,6,7,7a-hexahydro-4-)-méthanoindanyl_7-N'N'diméthyl-N-cyclohex-1-ényl-urée N-m-trifluorométhylphényl-N-cyclooct.-1-ényl-N'N'-diméthylurée N-m-trifluorométhylphényl-N-cyclooctyl-1-ényl-N'-méthylurée 5 N-_5-(3a,4,5,6,7,7a-hexahydro-4-)méthanoindanyl_7-N'N'diméthylurée N-_1 ou 2(3a,4,5,6,7,7a-hexahydro-4-)-méthanoindanyl_7-N'N'diméthylurée N-bicyclo-(3,3,0)-.octyl-N'N'-diméthylurée 10 N-3,4-dichlorophényl-N'N'-diméthylurée N-cyclooctyl-N'N'-diméthylurée N-m-diméthylcarbamoyloxy-phényl-N°-méthylurée N-p-chlorophényl-N-1-cyclohex-1-ényl-N'N'-diméthylurée N-p-fluoro-phényl-N-1-cyclohex-1-ényl-N'-méthylurée 15 N-4-24-méthoxyphénoxy-phényl_7-N'N'-diméthylurée N-3,4-dichlorophényl-N'-méthyl-N'-méthoxyurée N-(3-chloro-4-bromophényl)-N'-méthyl-N'-méthoxyurée 2-azido-4-sec.-butylamino-6-thiométhyl-1,3,5-triazine 2-thiométhyl-4-isopropylamino-6-tert.-butylamino-1,3,5-triazine 20 2-thiométhyl-4-isopropylamino-6-sec.-butylamino-1,3,5-triazine 2-thiométhyl-4-éthylamino-6-sec.-butylamino-1,3,5-triazine 2-chloro-4-éthylamino-6-sec.-butylamino-1,3,5-triazine 2-chloro-4-méthylamino-6-(α,α-diméthyl-cyanométhyl)-amino-1,3,5-

25 Exemple 6

30

triazine

On ensemence une surface agricole avec des graines de Gossypium hirsitum, Soja hispida, Digitaria sanguinalis, Bromus tectorum, Amaranthus retroflexus et Polygonum persicaria et on traite ensuite avec les quantités indiquées ci-dessous des mélanges et des principes actifs séparés, émulsionnés ou dispersés dans 500 litres d'eau par hectare :

- acide 0,0-diéthyl-S-/N-phényl-N-butine-1-yl-3)-carbamoylméthyl_7-dithiophosphorique
- acide 0,0-diéthyl-S-(N-butine-1-yl-(3)-N-phényl-carbamoyl-II 35 méthyl)-thiophosphorique
 - III 1-(3'-trifluorométhyl)-phényl-4-méthoxy-5-chloro-pyridazone-6-
 - 1-phényl-4,5-diméthoxy-pyridazone-6 IV
- N-mttrifluorométhyl-phényl-N-1-cyclohex-1-ényl-N'-diméthyl-40 urée

......

-19-

2099642

```
N-m-trifluorométhylphényl-N'N'-diméthylurée
   VI
   VII
         2-chloro-4-éthylamino-6-méthoxyisopropyl-1,3,5-triazine
         1,2 et 3 kg/ha de principe actif
   Ι
   II
         1,2 et 3
   III
         2
              et 3
   IV
         1
              et 2
   V
          2
              et 3
          2
              et 3
   VI
   VII
          1
              et 3
10
                 1 + 2 kg/ha de principe actif
   I
           III
   II
           IV
                 1 + 1
                 1 + 2
           V
   I
                 1 + 2
   II
           VI
           VII
                 2 + 1
   I
```

Au bout de 4 à 5 semaines, on constate que les mélanges présentent une meilleure action herbicide en même temps qu'une meilleure compatibilité avec les plantes de culture que les principes actifs séparés.

Les résultats de l'essai ressortent du tableau suivant : (voir page 20).

Exemple 7

On traite en serre les plantes Gossypium hirsitum, Soja hispida, Zea mays, Echinochloa crus-galli, Bromus tectorum, Amaranthus retroflexus et Polygonum persicaria (hauteur 3 à 20 cm) avec les principes actifs séparés et les mélanges cités ci-dessous,

- 20 les principes actifs séparés et les melanges cites ci-dessous, émulsionnés ou dispersés à chaque fois dans 500 litres d'eau par hectare :
 - I acide 0,0-diméthyl-S-(N-butine-1-yl-(3)-N-phényl-carbamoyl-méthyl)-dithiophosphorique
- 30 II acide 0,0-diméthyl-S-(N-butine-1-yl-(3)-N-phényl-carbamoyl-méthyl)-thiophosphorique
 - III 1-m-trifluorométhyl-4-diméthylamino-5-chloro-pyridazone-6
 - IV N-m-trifluorométhyl-phényl-N-1-cyclohex-1-ényl-N'N'-diméthyl-urée

35

- I 1 et 4 kg/ha de principe actif
- II 1,5 et 3 kg/ha de principe actif
- III 3 et 4 kg/ha de principe actif
- IV 1,5 et 3 kg/ha de principe actif

71	27692	-20-	2099642
М	25 100 100 100 100		
~	0 65 70 95	1 + VII	
W	6 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
a	0 10 20 20 20 25 25 25 25		
W	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Z AI	
a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11+ 100 100 100 100 95	
C)	7, 0 8 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
7-	0 0 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7		
iu.	25 26 25 25 25 25 26	14+U 14-2 100 100 100 100 100	
a	0 65 65 70 70		H
М	25 20 100 100 65 25		sens endommagement endommagement total
Ŋ	10 100 100 15	4 + 4 0 0 0 0 0 v	ma.ge:
~	0 0 8 8 0 0 0	H 6 6 6 6	ndom a.g.em
W	20 10 100 90 90 90		sens endommagement endommagement tota
Ŋ	0 100 100 55 20	11+11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	រ
7	0 0 88 0 0 0	H	. 400
principe acti	Gossypium hirsutum Soja hispida Digitaria sanguinalis Bromus tectorum Amaranthus retrofl. Polygonum persicaria	kg/ha de principe actif Gossypium hirsutum Soja hispida Digitaria sanguinalis Bromus tectorum Amaranthus retroflexus Polygonum persicaria	
	3 1 2 3 2 3 1 2 2 3 2 3 1 3	1 2 3 1 2 3 6 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 2 3 1 1 2 3 1 1 2 3 3 1 1 2 3 1 1 2 3 3 1 3 1	1 2 3 1 2 3 1 2 3 2 3 1 2 2 3 1 2 2 3 2 3

-21-

2099642

I + III 1 et 1 kg/ha de principe actif

II + IV 1,5 et 1,5 kg/ha de principe actif.

Dans les cultures de Gossypium hirsitum, Zea mays, Soja hispida, on a pulvérisé les liquides de pulvérisation au-dessous des feuilles. Au bout de 3 à 4 semaines, on constate que les mélanges présentent une meilleure action herbicide et une meilleure compatibilité avec les plantes de culture que les produits séparés.

Le résultat ressort du tableau suivant (voir page 22).

10 Exemple 8

15

On remplit des pots d'essai placés en serre avec de la terre argileuse et sablonneuse et on y sème des graines de Brassica napus., Beta vulgaris, Echinochloa crus-galli, Avena fatua, Sinapis arvensis et Gallinsoga parviflora et on traite ensuite avec les principes actifs séparés et les mélanges cités ci-dessous, dispersés ou émulsionnés dans 500 litres d'eau par hectare :

- I acide 0,0-diéthyl-S-/N-phényl-N-butine-1-yl-(3)-carbamoyl-méthyl 7-dithiophosphorique
- 20 II acide 0,0-diéthyl-S-(N-isobutinyl-N-phényl-carbamoyl-méthyl) thiophosphorique
 - III sel diméthylaminoéthanolique de l'acide N-/1-phényl-5-bro-mo-pyridazone-6-yl-(4)/2-oxamidique
 - IV 1-phényl-4-amino-5-chloro-pyridazone-(6)
- 25 I + III 1,5 et 1,5 kg par hectare de principe actif
 II + IV 1 et 3 " "
 - I 1,5 et 3 kg/ha de principe actif
 - II 1 et 4 "
 - III 1,5 et 3 " "
- 30 IV 3 et 4 " "

Au bout de 4 à 5 semaines, on constate que les mélanges présentent une meilleure action herbicide et une meilleure compatibilité avec les plantes de culture que les principes actifs séparés.

Je résultat ressort du tableau suivant : (voir page 23)

Exemple 9

On traite en serre les plantes Beta vulgaris, Oryza sativa, Echinochloa crusgalli, Avena fatua, Gallinsoga parviflora et Chenopodium album (hauteur 2 à 12 cm) avec les mélanges et prin-

! y	ł
=	ı
17	ł
3	۱
'n	۱
ᆿ	ł
2	ł
٠.	

kg/ha de principe actif												,
יייים שנייים	н	Ч	Ħ	H	·		IV	H + H	I	AT +		1
4	4	7,5	W	100	4	7,5	W	+	7,	+ 7,		27
Gossypium hirsutum 0	25.	0	ଧ	0	9	0	20	0		0		69
Soja hispida	25	0	8	9	ر ځ	0	25	9		0	*	2
Хев таув 0	20	0	89	40	150 150	o .	5	9		0	•	
Echinochlos cris-galli 80	100	95	9		9	9	. 6	8	·	100		
Bromus tectorum 80	100	80	99		. 62	65	19	100		100		
oflexus 40	100	40	8	20	95	00	9	8		100		
Polygonym persicaria 20	80	25	85		100	2	90	100		100		- 2
		•										2-
	0 = sa	sans end	endommagement	ment					•			-
100	11	endommagement total	ement	to ta	_			,				

0 = sans endommagement 100 = endommagement total

t	-)	۱
Ē		1	۱
Ė	ï	ì	I
Ė	1	۱	1
_	•		•

```
cipes actifs séparés suivants, dispersés ou émulsionnés , chaque fois, dans 500 litres d'eau par hectare :
```

- acide 0,0-diméthyl-S-(N-butine-1-yl-(3)-N-phényl-carbamoyl-méthyl)-dithiophosphorique
- 5 II acide 0,0-diméthyl-S-(N-butine-1-yl-(3)-N-phényl-carbamoyl-méthyl)-dithiophosphorique
 - III sel diméthylaminoéthanolique de l'acide N-/1-phényl-5bromo-pyridazone-6-yl-(4)_7-oxamidique
 - IV 3-méthoxycarbonylaminophényl-N-(3'-méthyl-phényl)-carbamate
- 10 I 0,5 / 1 / 2 kg/ha de principe actif
 - II 1 / 1,5/3 " "
 - III 1,5/ 2 /3 "
 - IV 0,5/ 1/1,5/2"
- 15 I + III 0,5 et 1,5 kg/ha de principe actif
 - I + IV 1 et 1 "
 - II + III 1 et 2 "
 - II + IV 1 et 0,5 "

Au bout de 3 à 4 semaines, on constate que les mélanges 20 présentent une meilleure action herbicide et une meilleure compatibilité avec les plantes de culture que les produits séparés.

Le résultat ressort du tableau suivant : (voir page 25).

Les mélanges suivants ont une action biologique correspondant à celle des mélanges cités dans les exemples 4 et 5 : acide 0,0-diéthyl-S-(N-butine-1-yl-(3)-N-phényl-carbamoyl-méthyl)-dithiophosphorique

acide 0,0-diméthyl-S-(N-butine4-yl-(3)-N-phénylcarbamoyl-méthyl)-dithiophosphorique

- acide méthyl-0-méthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-30 méthyl-dithiophosphorique
- acide éthyl-0-éthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-mé-thyl)-dithiophosphorique
 - acide 0,0-diallyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-méthyl)-dithiophosphorique
- acide éthyl-O-méthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-méthyl)-dithiophosphorique
 - acide phényl-O-éthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-méthyl)-dithiophosphorique
- acide 0,0-diphényl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-méthyl)dithiophosphorique

		1	Ì
ş-	-	ï	l
2	ä	1	l
ř	ř	I	۱
r	-	ł	ı
۶	7	ł	l
2	7	1	l
c	3	ı	l
٠.		1	ı

71	2 7	69	2					- 25-							209
	CI.	8	8	40	8	90	100								
1 1	1.5	15	50	8	25	100	9					•			
	~	0	0	20	8	8	33						,		
	6,0	Ö	0			8		0,5	0	0	9	95	8	90	
		15	g	95	8	9	100	HT T					•		
7.1.1	C 3	0	9	8	55	52	8				•				
	1,5	0	٥	2	40	20	8	II a	0	9	8	8	. 001	8	
	. 10	20	25	100	100	4	74	# +			7	7	¥	7	
E	1,5	5	ιV	35	90,	80	27	TAL						•	ement total
	~	0	0	ጸ	8	5	5	++ 	0	0	100	9	100	9	ommag ement
	a	50	ପ୍ଷ	- 8	9	35	35		٠.	•					sans endommagement endommagement total
· 1	-	0	0	8	90	8	8	TIII							
	0,5	0	0	65	2	6	10	0,5 +	O	0	100	100	8	100	0 00
kg/na de	ייים אולי אודים	Beta vulgaris	Oryza sativa	Echinochloa crus-g.	Avena fatua	Galinsoga parfilor.	Chenopodium album	kg/ha de principe actif	Beta vulgaria	Oryza sativa	Echinochloa crus-g.	Avena fatua	Galinsoga parviflora	Ohenopodium album	

- acide 0,0-diéthyl-S-(3,5-diméthylmorpholine-N-carbamoylméthyl)-dithiophosphorique
- acide 0,0-diéthyl-S-(2,5-diméthylmorpholine-N-carbamoylméthyl)-dithiophosphorique
- 5 acide 0,0-diéthyl-S-(N-éthyle-N-3'-méthylphényl-carbamoylméthyl)-dithiophosphorique
 - acide 0,0-diéthyl-S-(N-isopropyl-N-3'-phényl-carbamoylméthyl)-dithiophosphorique
- acide 0,0-diéthyl-S-(N-propargyl-N-phénylcarbamoylméthyl)-dithio-10 phosphorique
 - acide 0,0-diéthyl-S-(N-bromobutine-1-yl-(3)-N-phénylcarbamoylmé-thyl)-dithiophosphorique
 - acide 0,0-diéthyl-S-(N-cyanméthyl-N-phénylcarbamoylméthyl)-dithio-phosphorique
- acide 0,0-diéthyl-S-(N-éthyl-N-phénylcarbamoylméthyl)-dithiophosphorique acide 0,0-diéthyl-S-(N-méthyl-N-phényl-carbamoylméthyl)-dithiophosphorique
 - acide 0,0-diéthyl-S-(N-pentine-1-yl-(3)-N-phénylcarbamoylméthyl)-dithiophosphorique
- acide 0,0-di-(isopropyl)-S-(N-butine-(1)-yl-(3)-N-phényl-carbamoylméthyl)-dithiophosphorique
 - acide 0,0-diéthyl-5-(N- β -chloropropyl-N-phényl-carbamoyl-méthyl)-dithiophosphorique
- acide 0,0-diméthyl-S-(N-isopropyl-N-cyclohexyl-carbamoyl-méthyl)dithiophosphorique
 acide 0-éthyl-éthyl-S-(N-isopropyl-N-cyclohexyl-carbamoyl-méthyl)dithiophosphorique
- acide 0-éthyl-phényl-S-(N-isopropyl-N-cyclohexyl-carbamoyl-méthyl)-dithiophosphorique
- acide 0,0-diméthyl-S-(N-butine-(1)-yl-(3)-N-cyclohexyl-carbamoyl-méthyl)-dithiophosphorique
 - acide 0,0-diéthyl-S-(N-butine-(1)-yl-(3)-N-cyclohexyl-carbamoyl-méthyl)-dithiophosphorique
- acide 0,0-diéthyl-S-(N-butine-(1)-yl-(3)-N-cyclohexyl-carbamoyl-méthyl)- thiophosphorique acide 0,0-di-(isopropyl)-S-(N-isopropyl-N-cyclohexyl-carbamoyl
 - méthyl)-thiophosphorique
 acide 0,0-diméthyl-S-(N-α-cyanéthyl-N-phényl-carbamoylméthyl)-dithiophosphorique

```
acide 0,0-diéthyl-S-(N-β-cyanéthyl-N-phénylcarbamoylméthyl)-di-
       thiophosphorique
      acide 0,0-diéthyl-S-(N-β-cyanéthyl-N-cyclohexyl-carbamoylméthyl)-
      dithiophosphorique
  5
      acide 0,0-diéthyl-S-(N-isopropyl-N-cyclohexyl-carbamoylméthyl)-
      dithiophosphorique
      acide 0,0-diéthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoylméthyl)-
      thiophosphorique
      acide 0,0-diméthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoylméthyl)-
10
      thiophosphorique
      acide 0,0-diéthyl-S-(N-β-cyanéthyl-N-phénylcarbamoylméthyl)-thio-
      phosphorique
      acide 0,0-diéthyl-S-(N-α-cyanéthyl-N-phénylcarbamoylméthyl)-thio-
      phosphorique
15
      acide 0,0-diéthyl-S-(N-pentine-1-yl-(3)-N-phénylcarbamoylméthyl)-
      thiophosphorique
      acide 0,0-diéthyl-S-(N-$-cyanéthyl-N-cyclohexylcarbamoylméthyl)-
      thiophosphorique
      acide 0,0-diéthyl-S-(N-isopropyl-N-cyclohexFlcarbamoylméthyl)-
20
      thiophosphorique
      avec
      1-m-trifluorométhylphényl-4-diméthylamino-5-chloropyridazone-6
      1-m-trifluorométhylphényl-4-diéthylamino-5-chloro-pyridazone-6
      1-m-trifluorométhylphényl-4-méthoxy-5-chloro-pyridazone-6
25
      1-m-trifluorométhylphényl-4-méthoxy-5-bromo-pyridazone-6
      1-m-trifluorométhylphényl-4,5-diméthoxy-pyridazone-6
      1-m-trifluorométhylphényl-4-amino-5-bromo-pyridazone-6
      1-m-trifluorométhylphényl-4-α-hydroxy-β'β'β'-trichloréthylamino-
      5-chloro-pyridazone-6
30
      1-m-trifluorométhylphényl-4-acétylamino-5-bromo-pyridazone-6
      1-phényl-4-méthoxy-5-chloro-pyridazone-6
      1-phényl-4-méthoxy-5-bromo-pyridazone-6
      1-phényl-4-5-diméthoxy-pyridazone-6
      1-m-méthylphényl-4-amino-5-bromo-pyridazone-6
35
      1-m-methylphenyl-4-methoxy-5- bromo-pyridazone-6
      1-m-méthylphényl-4,5-diméthoxy-pyridazone-6
      1-m-trifluorométhylphényl-4-diméthylemino-5-bromo-pyridazone-6
      1-phényl-4-dichloracétylamino-5-bromo-pyridazone-(6)
      1-phényl-4-bromacétylamino-5-bromo-pyridazone-(6)
40
      ester tert.-butylique de l'acide N-/1-m-méthylphényl-5-chloro-
```

pyridazone-(6)-yl-(4)_7-oxamidique ester propargylique de l'acide N-/1-phényl-5-bromo-pyridazone-(6)-yl-(4)_7-oxamidique

- ester isopropylique de l'acide N-/1-phényl-5-bromo-pyridazone
 (6)-yl-(4)-/-oxamidique
 ester éthylique de l'amide d'acide N-/1-phényl-5-bromo-pyridazone-(6)-yl-(4)/-azéléinique
 ester éthylique de l'amide d'acide N-/1-phényl-5-bromo-pyrida
 - zone-(6)-yl-(4)_7-subérique
- amide de l'acide N-/1-phényl-5-bromo-pyridazone-(6)-yl-(4)_7-adipique ester isobutylique de l'amide d'acide N-/1-phényl-5-bromo-pyridazone-(6)-yl-(4)_7-adipique
- ester β-trifluorométhylique de l'amide d'acide N-/1-phényl-5-brono-pyridazone-(6)-yl-(4)/-adipique
 ester éthylique de l'amide d'acide N-/1-phényl-5-bromo-pyridazone-(6)-yl-(4)/-malonique
 ester méthylique de l'amide d'acide N-/1-phényl-5-bromo-pyridazone-(6)-yl-(4)/-malonique
- ester méthylique de l'amide d'acide N-/1-cyclohexyl-5-chloro-py-ridazone-(6)-yl-(4)/malonique et ester méthylique de l'amide d'acide N-/1-cyclohexyl-5-chloro-pyridazone-(6)-yl-(4)/-glutarique ester d'amide d'acide N-/1-cyclohexyl-5-chloropyridazone-(6)-
- yl-(4)_7-adipique
 phénylthiolester de l'acide N-/1-cyclohexyl-5-bromo-pyridazone(6)-yl-(4)_7oxamidique
 N-m-trifluorométhylphényl-N-cyclohex-1-ényl-N'N'-diméthylurée
- N-m-trifluorométhyl-N-cyclohex-1-ényl-N'-méthylurée
 N-3-chlorophényl-N-cyclohex-1-ényl-N'-méthylurée
 N-3-chloro-5-méthoxyphényl-N-cyclohex-1-ényl-N'-méthylurée
 N-4-chlorophényl-N-cyclohex-1-ényl-N'-méthylurée
 N-phényl-N-cyclohex-1-ényl-N'-méthylurée
 N-phényl-N-cyclohex-1-ényl-N'N'-diméthylurée
- 40 N-m-trifluorométhylphényl-N-cyclooct-1-ényl-N'N'-diméthylurée

-23-

2099642

```
N-m-trifluorométhylphényl-N-cyclooctyl-1-ényl-N-méthylurée
N-/5-(3a,4,5,6,7,7a-hexahydro-4)-méthanoindanyl_7-N'N-diméthyl-
urée
```

N-_1 ou 2(3a,4,5,6,7,7a-hexáhydro-4)-méthanoindanyl_7-N'N-dimé-

5 thylurée

N-bicyclo-(3,3,0)-octyl-N'N'-diméthylurée N-3,4-dichlorophényl-N'N'-diméthylurée

N-cyclooctyl-N'N'-diméthylurée

N-m-diméthylcarbamoyloxy-phényl-N-méthylurée

- 10 N-m-chloro-phényl-N-1-cyclohex-1-ényl-N'N'-diméthylurée N-p-fluoro-phényl-N-1-cyclohex-1-ényl-N'-méthylurée N-4-24-méthoxyphénoxy-phényl_7+N'N'-diméthylurée N-3-4-dichlorophényl-N-méthyl-N'-méthoxyurée N-(3-chloro-4-bromophényl)-N'-méthyl-N'-méthoxyurée
- 15 N,N-diméthyl-3-/3-(N-méthoxyisopropyl-carbamoyloxy)-phényl_7-urée

N,N-diméthyl-N'-/3-(N-méthyl-butine-(1)-yl-(3)-carbamoyloxy)-phényl_7-urée

1-(m-tert.-butylcarbamoyloxy-phényl)-3-méthylurée

- 20 1-(m-éthylcarbamoyloxy-pnényl)-3-méthylurée
 1-(m-allyl-tert.-butylcarbamoyloxy-phényl)-3,3-diméthylurée
 1-(m-α,α-diméthyl-propine-(1)-yl-(3)-carbamoyloxy-phényl)-3méthyl-3-méthoxyurée
 1-(m-α-méthyl-α-éthyl-propine-(1)-yl-(3)-carbamoyloxy-phényl)-3-
- 25 méthyl-3-méthoxyurée
 1-(m-tert.-butyl-allylcarbamoyloxyphényl)-3-méthyl-3-méthoxyurée
 N-m-trifluorométhyl-phényl-N'-méthyl-N'-butine-(1)-yl-(3)-urée
 N-3-chloro-4-méthoxy-phényl-N'-méthyl-N'-méthoxyurée
 N-m-trifluorométhyl-phényl-N-méthoxyméthyl-N'-méthylurée
- N-m-trifluorométhyl-phényl-N-méthoxyméthyl-N'-méthyl-N'-méthoxyurée et N-m-trifluorométhyl-phényl-N-acétyloxyméthyl-N'N'-diméthylurée 2-chloro-4-éthylamino-6-butine-1-yl-3-amino-1,3,5-triazine

2-chloro-4-éthylamino-6-méthoxyisopropyl-1,3,5-triazine

- 2-chloro-4-éthylamino-6-α, α-diméthylpropargylamino-1,3,5-triazine 2-chloro-4-isopropylamino -6-α, α-diméthylpropargylamino-1,3,5triazine
 - 2- thiométhyl-4-éthylamino-6-butine-1-yl-3-amino-1,3,5-triazine 2-chloro-4-éthylamino-6-sec.-butylamino-1,3,5-triazine
- 40 2-chloro-4-éthylamino-6-α, α-diméthylcyanométhylamino-1,3,5-tria-zine

```
2-chloro-4-isopropyl-amino-6-diéthylamino-1,3,5-triazine
       2-méthoxy-4-isopropylamino-6-éthylamino-1,3,5-triazine
       2-thiométhyl-4-isopropylamino-6-tert.-butylamino-1,3,5-triazine
       2-azido-4-sec.-butylamino-6-thiométhyl-1,3,5-triazine.
   5
            Les mélanges suivants ont la même action biologique que
       les mélanges cités dans les exemples 6 et 7:
      acide 0,0-diéthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-méthyl)-
      dithiophosphorique
      acide 0,0-diméthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-méthyl)-
 10
      dithiophosphorique
      acide méthyl-O-méthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-
      méthyl)-dithiophosphorique
      acide éthyl-0-éthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-mé-
      thyl)-dithiophosphorique
      acide 0,0-diallyl-S-(N-butine-1-yl-(3)-N-phénylcarbemoyl-méthyl)-
      dithiophosphorique
      acide éthyl-0-méthyl-S-(N-butine-1-yl-(3)-N- phénylcarbamoyl-
      méthyl)-dithiophosphorique
      acide phényl-0-éthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-
 20
      méthyl)-dithiophosphorique
     acide 0,0-diphényl-S-(N-butine-1-yl-(3)-N-phénylcarbamoyl-méthyl)-
      dithiophosphorique
     acide 0,0-diéthyl-S-(3,5-diméthylmorpholine-N-carbamoyl-méthyl)-
     dithiophosphorique
25
     acide 0,0-diéthyl-S-(2,5-diméthylmorpholine-N-carbamoylméthyl)-
     dithiophosphorique
     acide 0,0-diéthyl-S-(N-éthyl-N-3'-méthylphényl-carbamoylméthyl)-
     dithiophosphorique
     acide 0,0-diéthyl-S-(N-isopropyl-N -3'-phényl-carbemoylméthyl)-
30
     dithiophosphorique
     acide 0,0-di-(isopropyl)-S-(N-butine-(1)-yl-(3)-N-phényl-carba-
     moyl-méthyl)-dithiophosphorique
     acide 0,0-diéthyl-S-(N-β-chloropropyl-N-phényl-carbamoyl-méthyl)-
     dithiophosphorique
35
    acide 0,0-diméthyl-S-(N-isopropyl-N-cyclohexyl-carbamoyl-méthyl)-
     dithiophosphorique
    acide O-éthyl-éthyl-S-(N-isopropyl-N-cyclohexyl-carbamoyl-mé-
    thyl)-dithiophosphorique
    acide O-éthyl-phényl-S-(N-isopropyl-N-cyclohexyl-carbamoyl-mé-
    thyl)-dithiophosphorique
```

thiophosphorique

- acide 0,0-diméthyl-S-(N-butine -(1)-yl-(3)-N-cyclohexyl-carbamoyl-méthyl)-dithiophosphorique acide 0,0-diéthyl-S-(N-butine-(1)-yl-(3)-N-cyclohexyl-carbamoylméthyl)-dithiophosphorique 5 acide 0,0-diéthyl-S-(N-butine-(1)-yl-(3)-N-cyclohexyl-carbamoylméthyl)-thiophosphorique acide 0,0-di-(isopropyl)-S-(N-isopropyl-N-cyclohexyl-carbamoylméthyl)- thiophosphorique acide 0,0-diéthyl-S-(N-propargyl-N-phénylcarbamoylméthyl)-di-10 thiophosphorique acide 0,0-diéthyl-S-(N-bromobutine-1-yl-(3)-N-phénylcarbamoylméthyl)-dithiophosphorique acide 0,0-diéthyl-S-(N-cyanométhyl-N-phénylcarbamoylméthyl)-dithiophosphorique 15 acide 0,0-diéthyl-S-(N-éthyl-N-phénylcarbamoylméthyl)-dithiophosphorique acide 0,0-diéthyl-S-(N-méthyl-N-phénylcarbamoylméthyl)-dithiophosphorique acide 0,0-diéthyl-S-(N-pentine-1-yl-(3)-N-phénylcarbamoylméthyl)-20 dithiophosphorique acide 0,0-diméthyl-S-(N-α-cyanéthyl-N-phényl-carbamoylméthyl)dithiophosphorique acide 0,0-diéthyl-S-(N-β-cyanéthyl-N-phénylcarbamoylméthyl)-dithiophosphorique 25 acide 0,0-diéthyl-S-(N-B-cyanéthyl-N-cyclohexyl-carbamoylméthyl)dithiophosphorique acide 0,0-diéthyl-S-(N-isopropyl-N-cyclohexyl-carbamoylméthyl)dithiophosphorique acide 0,0-diéthyl-S-(N-butine-1-yl-(3)-phénylcarbamoylméthyl)-30 thiophosphorique acide 0,0-diméthyl-S-(N-butine-1-yl-(3)-N-phénylcarbamoylméthyl)thiophosphorique acide 0,0-diéthyl-S-(N-β-cyanéthyl-N-phénylcarbamoylméthyl)-
- acide 0,0-diéthyl-S-(N-α-cyanéthyl-N-phénylcarbamoylméthyl)-thio-phosphorique
 acide 0,0-diéthyl-S-(N-pentine-1-yl-(3)-N-phénylcarbamoylméthyl)-thiophosphorique
 acide 0,0-diéthyl-S-(N-β-cyanéthyl-N-cyclohexylcarbamoylméthyl)-thiophosphorique
 thiophosphorique

```
acide 0,0-diéthyl-S-(N-isopropyl-N-cyclohexylcarbamoylméthyl)-
       thiophosphorique
       avec
       esters d'amide d'acide N-(1-phényl-5-bromo-pyridazone-6-yl-4)-
  5
       adipique
       N-(1-phényl-5-chloro-pyridazone-6-yl-4)-(3'-acétylamino-phényl)-
       carbamate
       1-m-trifluorométhylphényl-4-diméthylamino-5-bromo-pyridazone-6-
       1-phényl-4-dichloroacétylamino-5-bromo-pyridazone-6
10
       1-phényl-4-bromoacétylamino-5-bromo-pyridazone-(6)
       ester tert.-butylique de l'acide N-/1-m-méthylphényl-5-chloro-
       pyridazone-(6)-yl-(4)_7-oxamidique
       ester propargylique de l'acide N-/1-phényl-5-bromo-pyridazine-
       (6)-y1-(4)_7-oxamidique
15
       ester isopropylique de l'acide N-/1-phényl-5-bromo-pyridazone-
       (6)-yl-(4)-oxamidique
       ester éthylique de l'amide d'acide N-21-phényl-5-bromo-pyrida-
       zone-(6)-yl-(4) 7-azéléinique
       ester éthylique de l'amide d'acide N-21-phényl-5-bromo-pyrida-
20
       zone-(6)-yl-(4)_7-subérique
      amide d'acide N-21-phényl-5-bromo-pyridazone-(6)-yl-(4)_7-adi-
      pique
      ester isobutylique de l'amide d'acide N-/1-phényl-5-bromo-py-
      ridazone-(6)-yl-(4)_7-adipique
25
      ester β-trifluoroéthylique de l'amide d'acide N-/1-phényl-5-
      bromo-pyridazone-(6)-yl-(4)_7-adipique
      ester éthylique de l'amide d'acide N-/1-phényl-5-bromo-pyri-
      dazone-(6)-yl-(4)_7-malonique
      ester méthylique de l'amide d'acide N-/1-phényl-5-bromo-pyri-
30
      dazone-(6)-yl-(4)_7-malonique
      ester méthylique de l'amide d'acide N-/1-cyclohexyl-5-chloro-
      pyridazone-(6)-yl-(4)_7-malonique
      ester méthylique de l'amide d'acide N-21-cyclohexyl-5-chloro-
      pyridazone-(6)-yl-(4)-glutarique
      1-phényl-4-amino-5-bromopyridazonyl-N-acétoacétate
35
      ester tert.-butylique d'acide N-/1-phényl-5-bromo-pyridazone-
      (6)-y1-(4) 7-oxamidique
      ester β-méthoxy-éthylique de l'acide N-(1-phényl-5-bromo-pyri-
      dazone-(6)-yl-(4)-oxamidique
      ester diéthylique de l'acide N-24-(1-phényl-5-bromopyradazone)-
40
      vl 7-aminotartronique
```

- 3-_N-(4-(1-phényl-5-bromopyridazone-6-yl)-carbamoyloxyphényl-méthyl_7-carbamate
- N-(1-phényl-5-bromo-pyridazone-6-yl-4)-(3'-acétylaminophényl)-carbamate
- 5 sel sodique de l'acide N-/1-phényl-5-bromo-pyridazone-6-yl-(4)/
 oxamidique
 - ester méthylique de l'acide N-(1-phényl-5-bromo-pyridazone-6-yl-4)-oxamidique
- esters de l'amide d'acide N-(1-cyclohexyl-5-chloro-pyridazone-6-10 yl-4)-adipique
 - ester m-acétoacétatamino-phénylique de l'acide 4-chloro-phényl-carbamique
 - ester m-acétoacétataminophénylique de l'acide 3-trifluorométhyl-phénylcarbamique
- 15 ester m-acétoacétatamino-phénylique de l'acide 4-fluorophénylcarbamique
 - ester m-acétoacétatamino-phénylique de l'acide 3-chloro-4-bromo-phénylcarbamique
- 3-\((1-m\) thylmercap tom\(\) thyl)-propylcarbamoyloxyph\(\) propylcarbamoyloxyph\(\) propylcarbamoyloxyph\(\) bamate
 - 3-_(1'-éthylmercaptométhyl)-propylcarbamoyloxyphényl_7-méthyl-carbamate
 - m-carbométhoxyaminophényl-ester de l'acide N-1,2-diméthylhexyl-carbamique
- ester m-carbométhoxyaminophénylique de l'acide N-1,1-diméthylallylcarbamique
 - ester m-carbométhoxyamino-phénylique de l'acide N-1,1-diméthyl-isobutylcarbamique
- ester m-carbométhoxyaminophénylique de l'acide N-1,5-diméthyl-30 pentylcarbamique
 - ester m-carbonéthoxyaminophénylique de l'acide N-1-méthylcyclopentylcarbamique
- ester m-acétoacétataminophénylique de l'acide phénylcarbamique 35 ester m-acétoacétataminophénylique de l'acide 3-méthyl-phénylcarbamique
 - ester m-carbométhoxyaminophénylique de l'acide N-β-éthylmercaptoéthylcarbamique
- ester m-carbométhoxyaminophénylique de l'acide N-β-méthyl-mercaptoéthylcarbamique

40

٠٠٠٠

2099642

1-m-méthylphényl-4-amino-5-bromo-pyridazone-6 ester m-carbométhoxyaminophénylique de l'acide N-(β-éthylmercapto-isopropyle)-carbamique ester m-carbométhoxyaminophénylique de l'acide N-(β-méthylmercapto-isopropyle)-carbamique carbamate de méthyle-m-(tricyclo-(3,2,1,0)-décényl-carbamoyl)oxyphényle carbamate de méthyle-N-/3-(3',4',dichlorophénylcarbamoyl)-4-méthyl-phényle7 10 ester m-carbométhoxyamino-p-méthyl- phénylique de l'acide N-(pfluorophényl)-carbamique ester m-carbonéthoxyamino-p-méthyl- phénylique de l'acide N-(mtrifluorométhylphényl)-carbamique Exemple 10 15 . On ensemence une surface agricole avec des graines de Gossypium hirsutum, Setaria faberii, Amaranthus retroflexus, Portulaca oleracea, Cyperus esculentus et on traite ensuite avec les composants séparés ou les mélanges cités ci-dessous, émulsionnés ou dispersés, chaque fois, dans 500 litres d'eau par hectare : N-allyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline 20 . I 1,5 et 4 kg/ha de principe actif II N-propyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline, 1 et 3 kg/ha de principe actif. III N-β-méthoxyéthyl-N-β-chloréthyl-2,6-dinitro-4-trifluoro-25 méthyl-aniline, 2 et 4 kg/ha de principe actif, N-β-méthoxy-éthyl-N-β-azidoéthyl-2,6-dinitro-4-trifluoro-IV méthylaniline., 3 et 4 kg/ha de principe actif V N, N-bis-propyl-2, 6-dinitro-4-trifluorométhylaniline 1 et 4 kg/ha de principe actif 1-m-trifluorométhylphényl-4-méthoxy-5-chloro-pyridazone-6 30 VI 2 et 3 kg/ha de principe actif 1-m-trifluorométhyl-phényl-4-méthoxy-5-bromo-pyridazone-6 VII 2 et 4 kg/ha de principe actif 1-m-trifluorométhylphényl-4,5èdiméthoxy-pyridazone-6 VIII .35 1 et 4 kg/ha de principe actif 1-m-trifluorométhylphényl-4-diéthylamino-5-chloro-pyrida-IX zone-6, 3 et 4 kg/ha de principe actif X 1-m-trifluorométhylphényl-4-diméthylamino-5-chloro-pyridazone-6

2,5 et 4 kg/ha de principe actif

7:	1	2	7	б	9	2	
----	---	---	---	---	---	---	--

-35-

2099642

I 1,5 et 2,5 kg/ha de principe actif II VI et 2 III VII 2 et 2 IV VIII 3 et 1 IX 1 et 3

Au bout de 4 à 5 semaines, on constate que les mélanges présentent une meilleure action herbicide et une meilleure compatibilité avec les plantes de culture que les composants séparés.

Le résultat de l'essai ressort du tableau suivant(voir page 36).

Exemple 11

5

15

On pulvérise sur les plantes Beta vulgaris, Setaria faberii, Bromus tectorum, Galinsoga parviflora et Sinapis arvensis, (hauteur 7 à 12 cm), les composés séparés ou mélanges suivants, dispersés ou émulsionnés, chaque fois, dans 500 litres d'eau par hectare.

- I N-allyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline 1,5 et 3 kg/ha de principe actif
- 20 II N-propyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline, 1 et 4 kg/ha de principe actif
 - III N-β-méthoxyéthyl-N-β-chloréthyl-2,6-dinitro-4-trifluorométhylaniline, 2 et 3 kg/ha de principe actif
- sel diméthylaminoéthanolique de l'acide N-/1-phényl-5-bromo-pyridazone-6-yl-(4)_7-oxamidique, 1,5 et 3 kg/ha de principe actif
 - V 1-phényl-4-amino-5-chloro-pyridazone-6 3 et 4 kg/ha de principe actif
- VI carbamate de 3-méthoxycarbonylaminophényl-N-(3'-méthyl-30 phényl)- 1 et 2 kg/ha de principe actif
 - I + IV 1,5 et 1,5 kg/ha de principe actif
 - II + V 1 et 3 "
 - III + VI 2 et 1 "

Au bout de 2 à 3 semaines, on constate que les mélanges présentent une action herbicide plus forte et une meilleure compatibilité avec le Beta vulgaris que les composants séparés.

Le résultat ressort du tableau suivant (voir page 37).

٦.	
Þ	1
-	I.
ч	ı
М	ı
7	l
티	1

September 1,5	7:	1 27	692	2		≐36=			2099642
if 1, 1		bd	l Cl	25 90 95 80		•	ĺ		
1f 1, T III IIV VIII VIII IX 25 100 50 100 65 100 55 100 65 100 45 75 35 80 45 100 30 45 55 100 65 100 55 100 65		2	0	35 50 55 45 45					
I		N 4	10	45 80 90 65					
1		. w	0	65 65 65		Ħ ~			
III		III 4	45				1	8888	
III III IV			0	45 65 65 75 75			1.	2 2 2 2	
III III II VI		<u> </u>	25	80 85 85 75		VIII 1.			
if 1,5 4 1 3 2 4 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 1 4 2 3 3 4 3 4 1 4 2 3 3 4 3 4 1 4 2 3 3 4 3 4 1 4 2 3 4 1 4 2 3 4 1 4 2 3 4 1 4 2 3 4 1 4 2 3 4 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(d		2 5 4 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6		+ +	0	6 6 7 8 8	
if 1,5 4 1 3 2 4 3 4 1 4 m 0 20 0 25 0 25 0 0 0 0 25 55 100 50 100 65 100 55 100 65 100 4 25 75 25 75 15 40 20 30 15 60 5 a 30 80 25 70 30 55 25 35 20 65 6 a 15 60 20 65 20 45 20 30 20 75 5 If I + X II + VI III + VII 10 10 100 exus 100 100 95 0 = sans endommagement total		\triangleright				Y is		•	
If III III IIV V V V V V V V V V V V V V			'	25.00 S		Н		· ,	
If III III IIV III III IIV III 0 20 4 3 4 1 III 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	o и и о	
if 1,5 4 1 3 2 4 3 m 0 20 0 25 0 25 0 0 55 100 50 100 65 100 55 100 25 75 25 75 15 40 20 3 a 30 80 25 70 30 55 25 3 a 15 60 20 65 20 45 20 3 If I + X II + VI 10 100 100 exus 100 100 0 = sans endommagement tot			1	* * * * * * * * * * * * * * * * * * *		•	ŀ	5 0 2, 9	# H
if 1,5 4 1 1,5 4 1 55 100 50 10 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 26 70 50 10 11		A		•					emen. tote
if 1,5 4 1 1,5 4 1 55 100 50 10 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 26 70 50 10 11									ma.B. nent
if 1,5 4 1 1,5 4 1 55 100 50 10 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 26 70 50 10 11		Π	l	· ·				6 6 6 6	endo) nagei
if 1,5 4 1 1,5 4 1 55 100 50 10 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 25 75 25 7 26 70 50 10 11			,			10			ans adom
if 1,5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		H		•					п п.
if 1,5 m 0 2 m 0 25 7 5 10 m 15 6 g m 30 g m 15 6 m							0	96 6 8	700
ti a s s		ы I	,CU			7	•		•
kg/ha de principe acti Gossypium hirsutum Setaria faberii Amaranthus retr. Portulaca oleracea Gyperus esculentus rg/ha de principe acti. Gossypium hirsutum Setaria faberii Amaranthus retrofle Portulaca oleracea Gyperus esculentus			•			رب د	•	XU.B	· ·
kg/ha de principe Gossypium hir Betaria faber Amaranthus re Portulaca oles Gyperus escule principe principe Gossypium hirs Betaria faberi Amaranthus ret Portulaca oler Cyperus escule		acti	sutum	ii tr. racea entus		acti.	n tum	i rofle acea ntus	
kg/ha de prin Gossypium Betaria f Amaranthu Portulaca Gossypium Gossypium Betaria fa Amaranthus Portulaca Cyperus es		cipe	hir	aber B re ole: scul		ipe	hire	beri ret oler cule	
Gossy Gossy Retari Rg/ha Rg/ha Rg/ha Gossy Gossy Gossy Gossy Gossy Cyperu Cyperu	de.	prir	pium	ia f nthu laca us e	фe	rin(i um	a fa Ithus aca a ea	
L 12 EL ALTE DE LA PROPE	rg/ha		iosay	letar mara ortu yper	g/ha		зву	stari aran rtul peru	
	,=4	•	.	w 4 P+ 6	'n	. I -	д	R P P	

						TABL	E E									1
kg/ha de principe actif		Н		H	· H	Н	·,	ΔI			ŢΛ		T + IV	II+ V	TT+TI	27
•	1,5	5 . 3	7	4.	'n	23	1,5.3	3	3	4	7	ભ	1,5+1,5	4+3	2+1	69
Beta vulgaris	0	35	- 0	35	· 0	: 17	.0	15	0	10	0 20	20	0	0	· 0	2
Setaraa faberii	2		23	8	40	. 8	35	. 2	28	00		. 9	100	100	8	
Bromus tectorum	\$	8	45	ያ	40	&	32	29	35	2		30	90,	100	85	
Galinsoga parviflora	9	8	9	25	9	50	35	8	45	80	50	100	.85	85	85	
Sinapis arvensis	ن ش	32	<u>tv.</u>	35	9	20	52	8	45	95	65.4	8	8	8	100	
	•		•			•	:		٠.		•					-37
÷,		Ŭ	() ()	ans	endon	sans endommagement	ment								. •	<u>-</u>
		9	100 = e	ndom	nagen	ent	endommagement total	1							. *	

-38-

2099642

REVENDICATIONS

1°) Herbicide renfermant un mélange formé a) d'un composé de formule

$$R_{1} = \sum_{\substack{NO_{2} \\ R_{2}}}^{NO_{2}} R_{4}$$

dans laquelle R₁ représente de l'hydrogène, un radical nitro, alkyle, trifluorométhyle, méthylsulfonyle, R₂ un radical nitro, alkyle, trifluorométhyle, méthylsulfonyle, R₃ et R₄ peuvent être identiques ou différents et représenter de l'hydrogène, un radical aliphatique, ramifié ou linéaire saturé ou insaturé et éventuellement substitué par un halogène, un reste cyane, alco-xy, azido, un radical halogénoacétyloxyalkyle, ou alkylcarbamoyloxyalkyle, et en plus R₃ et R₄ peuvent former ensemble avec l'atome d'azote dont ils sont les substituants, un noyau hexaméthylène-imine, ou

15 b) d'un composé de formule

$$R_{10}$$
 Y R $P-S-CH_{2}-C-N-R_{3}$

20 dans laquelle R₃ représente un radical cycloalkyle, ou le radi-

dicaux, identiques ou différents, d'halogène, NO2, alkyle, alcényle, alcinyle, halogénoalkyle, alcoxy, R est un radical aliphatique, linéaire ou ramifié, saturé ou insaturé et éventuellement substitué par un halogène, un groupe cyane, alcoxy, Y est de l'oxygène ou du soufre, R4 ou R2 un radical alkyle, alcényle, alcinyle, aryle, aralkyle, cycloalkyle, éventuellement substitué, R2 pouvant en outre être un radical alcoxy, alcénoxy, alcinoxy, aroxy, alkyloxy, cycloalkyloxy éventuellement substitué et c) d'un composé de formule

(voir page 39)

10

20

<u>--3</u>9--

2099642

dans laquelle X représente un radical alcoxy, thioalkyle, amino, alkylamino, dialkylamino, alcénylamino, dialcénylamino, alcinylamino, dialkylamino, halogénoalkylamino, acétylamino, halogénoacétylamino, diméthylformamidine, méthylformamidine, acétoacétyle, le groupe

-NH-CO-COOR, -NH-CO-COSR, -NH-COOR, -NH-COSR, COOR -NH-COH2 -NH-COH2 -NH-CO-(CH2)
$$_{\rm n}$$
-COOR -NH-CO-(CH2) $_{\rm n}$ -COOR

R représentant un radical alkyle, alcényle, alcinyle, aralkyle, aryle, cycloalkyle éventuellement substitué ou de l'hydrogène, et les sels alcalins, alcalino-terreux et les sels aminés substitués de ces composés, <u>n</u> est un nombre compris entre 1 et 6, Y du chlore, du brome, un reste alcoxy et thioalkyle, Z un halogénoal-kyle, alkyle et de l'hydrogène, ou

d) d'un composé de la formule

dans laquelle R représente un radical phényle éventuellement substitué avec un halogène, un groupe nitro, alkyle, alcoxy, alcénoxy, alcinoxy, halogénoalkyle, alkyle ou dialkylcarbamoyloxy, un radical bi- ou tricycloaliphatique éventuellement substitué avec un halogène, un groupe alkyle, un radical 3-benzothiazolyle, un radical phénoxyalkyle éventuellement substitué, un radical alcényle ou alcinylcarbamoyloxy-, R₁ de l'hydrogène, un radical 30 cyclooctényle, cyclohexényle, R₂ de l'hydrogène, un radical alkyle, alcoxy, alcoxyalkyle, isobutène-(1)-yl-3, α,α-diméthylpropargyle, cyanalkyle et un radical carboxyalkyle, un radical alcoxyalkyle ou alkyle-C-O-CH₂ ou leurs sels et esters, ou e) d'un composé

5

40

.15

-40)-

2099642

dans laquelle R représente un groupe alkyle, cyanalkyle, R_1 un groupe alkylamino, thioalkyle, azido, X un halogène, un groupe alcoxy, thioalkyle, azido ou

f) d'un composé de formule

dans laquelle R représente un radical phényle, éventuellement substitué avec un halogène, un groupe alkyle, halogénoalkyle, un radical aliphatique, linéaire ou ramifié, saturé ou insaturé, éventuellement substitué avec un halogène, un radical alcoxyalkyle, un radical alkyle ou thioalkyle, Y de l'hydrogène, ou un groupe alkyle, R₁ un groupe alkyle, acétylalkyle, Z de l'oxygène, du soufre et <u>n</u> le nombre 1 ou 0.

- 2°) Herbicide renfermant un support solide ou liquide et un mélange selon la revendication 1.
- 3°) Procédé pour la préparation d'un herbicide caractérisé par le fait que l'on mélange un support solide ou liquide avec un mélange selon la revendication 1.
- 4°) Procédé pour lutter contre la croissance de plantes 20 indésirables caractérisé par le fait que l'on traite les plantes indésirables ou le sol dans lequel leur croissance doit être empêchée avec un mélange selon la revendication 1.