基线与容量

徐戟 南瑞集成/子衿技术团队 2016年1月

关于自己

徐戟:网名白鳝,老网虫白鳝(QQ:62565)

南瑞集成/子衿技术团队 首席架构师

从1992年起从事系统集成行业,曾就职于DEC、赛格计算机、长天集团、联想集团等大型系统 集成商

主持开发过全国首套电信级联机实时计费系统;国内首套三检合一的检验检疫综合管理系统; 金融大前置平台IPP

出版过3本书:《Oracle DBA优化日记》,《Oracle RAC日记》,《DBA的思想天空》

"信息无障碍研究会"专业顾问

DBA晋级的特征

根据现象分析问题

系统出问 题了 看看问题 的现象 在脑子里 寻找类似 故障 找度娘查 查类似故 障 找高手问 问类似故 障

根据指标分析问题

超过度娘根据自己或者 经验分析 MOS分 是否存在 析是否存 异常指标 在异常指标

搜集各 种指标 系统出 数据

问题了

根据基线分析问题

根据容量分析问题

不仅仅考虑基线

考虑系统的总体负载能力

考虑数据库标准操作产生的资源消耗情况

考虑不同硬件之间的容量差异

考虑信息系统长期发展的可持续问题

系统为什么变慢了?

~~~~~~~	Per Second	Per Transaction
Redo size:	943, 485. 99	5, 398. 83
Logical reads:	1, 885, 469. 44	10, 789. 06
Block changes:	5, 408. 82	30. 95
Physical reads:	3, 018. 65	17. 27
Physical writes:	807. 43	4. 62
User calls:	25, 691. 83	147.01
Parses:	5, 337. 02	30. 54
Hard parses:	67. 79	0.39
Sorts:	8, 733. 19	49. 97
Logons:	0.99	0.01
Executes:	12, 025. 36	68.81
Transactions:	174. 76	

				and the same of th
Top 5 Timed Events			•	%Total
			wait	Call
Event	Waits	Time (s)	(ms)	Time Wait Class
CPU time		194, 992		70.0
db file sequential read	5, 140, 193	30,020	6	10.8 User I/O
library cache lock	243, 658	17, 364	71	6.2 Concurrenc
library cache pin	2, 437	4, 346	1783	1.6 Concurrenc
log file sync	629, 952	3, 091	5	1.1 Commit

- 8月2日CPU从早上7
  点30开始到下午5点
  30都基本上处于
  100%
- 平时这个系统的CPU 使用率不超过40%
- 8月3日起未见异常

#### 可能的原因

- 应用出了问题?
- 共享池争用?
- 某个SQL出现问题?
- 存储系统出现问题?
- 服务器出现问题?
- •

# 关注点-根据指标分析

	~~~~~~	D 0 1	D
		Per Second	Per Transaction
	Redo size:	943, 485. 99	5, 398. 83
	Logical reads:	1, 885, 469. 44	10, 789. 06
/	Block changes:	5, 408. 82	30. 95
ľ	Physical reads:	3, 018. 65	17. 27
	Physical writes:	807. 43	4. 62
	User calls:	25, 691. 83	147. 01
	Parses:	5, 337. 02	30. 54
	Hard parses:	67. 79	0. 39
	Sorts:	8, 733. 19	49. 97
	Logons:	0.99	0.01
	Executes:	12, 025. 36	68. 81
	Transactions:	174. 76	

	Top 5 Timed Events			Avg 9 wait	%Total Call
	Event	Waits	Time (s)	(ms)	Time Wait Class
	CPU time db file sequential read	5, 140, 193	194, 992 30, 020	6	70.0 10.8 User I/0
_	library cache lock	243, 658	17, 364	71	6.2 Concurrenc
	library cache pin	2, 437	4, 346	1783	1.6 Concurrenc
	log file sync	629, 952	3, 091	5	1.1 Commit

关注点-根据基线进行分析

~~~~~~	Per Second	Per Transaction
Redo size:	943, 485. 99	5, 398. 83
Logical reads:	1, 885, 469. 44	10, 789. 06
Block changes:	<b>5, 408. 82</b>	30. 95
Physical reads:	3, 018. 65	17. 27
Physical writes:	807. 43	4. 62
User calls:	25, 691. 83	147. 01
Parses:	5, 337. 02	30. 54
Hard parses:	67. 79	0.39
Sorts:	8, 733. 19	49. 97
Logons:	0.99	0.01
Executes:	12, 025. 36	68.81
Transactions:	174. 76	

Top 5 Timed Events			Avg 9 wait	%Total Call	
Event	Waits	Time (s)	(ms)	Time Wait Class	
CPU time		194, 992		70.0	
db file sequential read	5, 140, 193	30,020	6	10.8 User I/O	
library cache lock	243, 658	17, 364	71	6.2 Concurrenc	
library cache pin	2, 437	4, 346	1783	1.6 Concurrenc	
log file sync	629, 952	3, 091	5	1.1 Commit	

### 关注点-根据容量进行分析

~~~~~~~	Per Second	Per Transaction
Redo size:	943, 485. 99	5, 398. 83
Logical reads:	1, 885, 469. 44	10, 789.06
Block changes:	5, 408. 82	30. 95
Physical reads:	3, 018. 65	17. 27
Physical writes:	807. 43	4.62
User calls:	25, 691. 83	147.01
Parses:	5, 337. 02	30. 54
Hard parses:	67. 79	0.39
Sorts:	8, 733. 19	49. 97
Logons:	0.99	0.01
Executes:	12, 025. 36	68.81
Transactions:	174. 76	

Top 5 Timed Events			Avg 9	%Total Call	
Event	Waits	Time (s)	(ms)	Time	Wait Class
CPU time		194, 992		70.0	
db file sequential read library cache lock	5, 140, 193 243, 658	30, 020 17, 364	6 71		User I/O Concurrenc
library cache pin	2, 437	4, 346	1783		Concurrenc
log file sync	629, 952	3, 091	5	1. 1	Commit

问题

业务部门的人突然说某个业务很慢,而你发现系统资源都没有瓶颈,数据库也没有什么指标明显异常,你该如何进一步分析?

最佳实践

从业务运行基线入手

从业务模块下钻到SQL

退而求其次

分析核心SQL的基线

检查核心SQL的的执行次数,每次执行的CPU, IO等开销以及执行计划等与基线相比是否有变化

IT苦力的做法

先做个AWR报告,看看有没有有问题的SQL

通过各种手段问清楚相关业务是否和这条SQL有关

做个SQL AWR报告

分析执行计划,看看有没有问题

基线

对于系统而言,从运维的角度来说,基线-BASELINE是某个运行状态在某个时间上的快照

对于DBA来说,基线是用来判断某个指标是否正常的参考条件

某个指标、某个运维经验、某个现象都可以成为运维基线

对DBA来说,有价值的基线往往来自于长期运维的经验,而不是简单的某个指标

有价值的基线-举例

某个系统,活跃会话数超过100,系统资源就会紧张,超过200,系统就会有问题

某条查询语句在某一个时刻并发执行数量超过100,系统就有可能出现性能问题

DBTIME/采样时间大于100说明系统中某些常用SQL的执行计划出现了错误

LOG FILE SYNC超过10毫秒,系统就容易HANG

基线其实很简单

基线是DBA对系统的看法和经验

DBA往往会把正常的系统的某些指标归纳为基线

基线可以通过积累来获得和完善

基线的采集可以通过多种方式进行,自动,手动均可

基线管理不简单

理论上你可以把系统中的所有指标都作为基线管理起来

实际上充分"理解"的基线才对运维有意义

充分"理解"系统,然后才能总结出"有价值"的基线

基线的管理必须借助自动化手段

定期进行趋势分析,可能防患于未然

对违背基线规则的事件需要进行闭环管理

采集数据库基线的办法

- 手工脚本
- 自动化工具,比如EM
- 通过 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE

把整个AWR保存为基线

- 找台机器,建个AWR历史数据库
- 使用awrextr.sql定期导出AWR数据
- 使用awrload.sql导入AWR历史数据库(可以存放多个数据库的AWR资料)
- 使用awrrpti选择所需的数据库生成报告
- 通过自定义脚本直接分析AWR数据

基线的使用

故障应急分析

- 系统出现问题时的采集数据和基线数据进行对比
- 对于无法定位的问题,通过整体指标对比进行分析,比如 awrddrpt

趋势分析

- 当采集了足够数量的采样点后, 趋势分析就成为可能
- 趋势分析可以以周、月、年为单位进行
- 对于持续恶化的指标要进行针对性分析

预警

- 积累了足够的采样后,可以框定某个指标的低阀值、高阀值和平均值
- 对于超过高低阀值的现象要进行闭环管理

基线预警与分析

基线预警可以根据某个单项指标的高低阀值简单设置

数据分析不能仅仅依靠某个指标简单的进行

关联性数据分析十分重要,比如共享池问题,需要分析共享池使用率、解析情况、执行情况、相关闩锁丢失率、SGA RESIZE情况、库缓冲指标、字典缓冲、执行/解析较高的SQL等综合情况才能得到完整的分析结果

需要注意的一点

- 虽然使用工具可以让基线分析工作自动化,但是无目的的分析效果不佳
- 如果每天有一两个预警,那么我们可以很好的闭环分析,每天几十甚至上百的预警实际上对DBA来说意义不大
- 开始时候不要贪多,逐渐掌握更多的指标

己知系统的基线搞清楚了但是没有历史积累的系统怎么办

系统容量

- 不同CPU之间的性能差异是什么样的?
- 我们新买的高端存储能提供什么样的IO能力?
- 升级了存储后一直存在问题,是存储本身的问题还是配置存在问题?
- 割接了几个省的系统, CPU使用率就100%了, 问题出在哪了?

系统级容量基线

- 一块15000rpm的SAS盘的IOPS指标为150-200
- 一个磁盘块的物理IO延时大约在2-5毫秒
- 对OLTP系统而言,高端存储的CACHE命中率在60-70%
- 一个INTEL E7芯片CPU每秒可以处理300-500M的IO
- 一个千兆以太网在RAC INTERCONNECT上的流量大概80M/秒,而万兆以太网可以达到850M/秒

•

Oracle数据库容量基线

- 一般OLTP系统的DB CACHE命中率在98%以上
- db file sequence read:在一个正常的OLTP系统中,占比超过50%,甚至更高,平均响应时间4毫秒左右,不超过10毫秒可以认为正常,超出20毫秒可能对系统产生较大影响
- Log file sync:在一个正常的系统中,小于4毫秒,如果使用中高端存储,并且存储负载不是很高,该指标为1-2毫秒
- Ave global cache get time (ms): 一般在负载不是很高的系统中,为1-4毫秒,如果超过20毫秒,说明存在问题

SQL容量基线

```
select count(1) as count from (SELECT c.zpxmjl xmjl, a.htid, a.htmc, a.htbh, a.khmc, b.xmjc, a.xsddh, a.ssgs, TO_CHAR(a.htqdsj, 'yyyy-mm-dd') htqdsj, a.hte, a.erpxmbh, a.htzt, a.khfzr, TO_CHAR(a.htlyjfsj, 'yyyy-mm-dd') htlyjfsj, TO_CHAR(a.htlyjssj, 'yyyy-mm-dd') htlyjfsj, TO_CHAR(a.htl
```


业务模块容量基线

	Account of the second of the s			
序号	并发用户数	CPU资源 ((毫秒) 内存使用率	3
	1	10	51.2	41.78%
	2	50	235.2	41.83%
	3	100	424	41.85%
	4	200	561.6	41.86%
	5	300	718.4	41.92%

系统基线的复杂性

- 不同类型的系统在系统级基线上表现差异较大
- 比如SQL单次执行时间是否超过1个CPU周期,在CPU相关基线上表现差异会较大
- 较为准确的系统级基线需要通过日常积累甚至专业分析才能获得

通过一个例子看IO

	Load Profile Per Call	Per Second	Per Transaction	Per Exec
	~~~~~~~			
	<del></del>			
	DB Time(s):	19. 5	0. 6	0.00
	0. 01			
	DB CPU(s):	7. 8	0. 3	0. 00
	0. 00			12 19
_	Redo size:	1, 088, 428. 3	35, 735. 8	
_	Logical reads:	710, 902. 8	23, 340. 7	1
	Block changes:	6, 239. 2	204. 9	3/
	Physical reads:	17, 835. 5	585. 6	
	Physical writes:	455. 7	15. 0	
	User calls:	3, 293. 3	108. 1	
	Parses:	748. 3	24. 6	
	Hard parses:	1. 7	0. 1	
	W/A MB processed:	26. 1	0. 9	
	Logons:	0. 4	0.0	
_	Executes:	8, 863. 2	291. 0	
	Rollbacks:	0. 5	0.0	
	Transactions:	30. 5		

# 通过一个例子看IO

Function Name	Reads: Data	Requestion Requestion	s Data per sec	Writes: Data	•	Data per sec	Waits: Count	Avg Tm(ms)
Direct Reads	457. 1G	1061. 4	129. 632	3M	0. 1	. 000830	0	N/A
Buffer Cache Re	39. 2G	1112. 7	11. 1082	OM	0. 0	OM	3864. 5K	3. 7
DBWR	OM	0.0	OM	13G	288. 4	3. 68205	0	N/A
0thers	5 <b>G</b>	6. 3	1. 42823	5. 2G	6. 9	1. 48113	22. 8K	3. 6
LGWR	1 M	0. 0	. 000276	3. 9G	97. 0	1.09783	236. 9K	3. 5
Direct Writes	1 M	0. 0	. 000276	68M	0. 2	. 018832	0	N/A
Streams AQ	OM	0. 0	OM	OM	0.0	OM	1	0. 0
TOTAL:	501. 3G	2180. 3	142. 169	22. 1G	392. 6	6. 28068	4124. 3K	3. 7

