(CVL)

CIVIL ENGINEERING

INSTRUCTIONS TO CANDIDATES

Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE,

Immediately on opening this Question Paper Booklet, check;

- Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
- In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.

Use of Calculators, Mathematical Tables and Log books is not permitted.

Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.

Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page 5... is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.

- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response 6. Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.

The OMR Response Sheet will not be valued if the candidate:

- Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
- Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.

Adopts any other malpractice.

- Rough work should be done only in the space provided in the Question Paper Booklet.
- No loose sheets or papers will be allowed in the examination hall.

Timings of Test: 10.00 A.M. to 1.00 P.M.

- Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet. 12. leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.

This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

MATHEMATICS

1. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 =$

- (1) 3I (2) 9I
- (3) 271
- (4) 811

2. If
$$A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$$
 is a skew symmetric matrix, then the value of x is

- (1) 1
- (2) 2
- (3) 3
- (4) 4

What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3

- (1) 64
- (2) 268
- (3) 512
- (4) 256

4. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| =$

- (1) 1 . (2) 2
- (3) 3

- The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

- (4) x = 1, y = 2, z = 3
- 6. If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x ai}$ then A = _____, B = _____.
 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

- 7. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to

 - (1) A₂ (2) 2A₂
- (3) 4A,

- 8. The period of the function $f(x) = |\sin x|$ is
 - (1) π
- (2) 2π
- (3) 3π

- If A+B=45°, then (1-cotA). (1-cotB) is
 - (1) 1
- (2) 0
- (3) 2
- (4) -1

- 10. The value of sin 78° + cos 132° is

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$
- 11. If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$
 - (1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

- (4) 4 sinA sinB sinC
- 12. The principal solution of Tanx = 0 is
 - (1) $x = n\pi, n \in \mathbb{Z}$

(2) x=0

(3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$

(4) $x = n\pi + \alpha, n \in \mathbb{Z}$

13.	The value	of Tan-	(2)	+ Tan-1	(3)) is

- (1) $\frac{\pi}{4}$
- (2) $\frac{\pi}{2}$
- (3) $\frac{\pi}{3}$

14. If the sides of a right angle triangle are in A.P., then the ratio of its sides is

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- ∆²
- (2) Δ⁻²
- (3) Δ⁻³
- (4) \(\Delta^4 \)

16.
$$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$
- (3) $\frac{1}{R}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) cos-1 (2/9)
- (2) cos⁻¹ (2/5) (3) cos⁻¹ (7/9) (4) cos⁻¹ (1/3)

18. The polar form of complex number
$$1-i$$
 is

- (1) $\sqrt{2}e^{-i\pi/4}$ (2) $\sqrt{2}e^{i\pi/4}$ (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

19. If 1,
$$\omega$$
, ω^2 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) ω
- (2) ω^2
- (3) 1
- (4) 0

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$ (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- (3) (-3, -1) (4) (-1, -3)

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
 - (1) 2c
- (2) 4c
- (4) c
- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta$, $y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta$, $y = b \cot\theta$
- 24. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0
- (4) 8x-7=0
- 25. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is (2) $c^2 = a^2m^2 - b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$
 - (1) c = a/m

- 26. Lt $\frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$ is
 - (1) 3 (2) 2
- (3) 4

- 27. $\log i =$
 - (1) $\pi/2$ (2) $\pi/4$
- (3) $i\pi/2$
- (4) $i\pi/4$

- 28. $\frac{d}{dx}[\log_7 X] =$
- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_e^7$ (4) $\frac{1}{x} \log_7^e$

- 29. $\frac{d}{dx}[2\cosh x] =$
 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

30.
$$\frac{d}{dx} \left[\cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

31. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{y}}$

32. The derivative of
$$e^x$$
 with respect to \sqrt{x} is

(1)
$$\frac{2\sqrt{x}}{e^x}$$
 (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$

$$(2) \quad 2\sqrt{x}\,e^x$$

$$(3) \quad \frac{e^x}{2\sqrt{x}}$$

$$(4) \quad \sqrt{x}.e^{x}$$

33. The equation of the normal to the curve
$$y = 5x^4$$
 at the point (1, 5) is

(1)
$$x + 20y = 99$$

(2)
$$x + 20y = 101$$

(3)
$$x - 20y = 99$$

(1)
$$x + 20y = 99$$
 (2) $x + 20y = 101$ (3) $x - 20y = 99$ (4) $x - 20y = 101$

34. The angle between the curves
$$y^2 = 4x$$
 and $x^2 + y^2 = 5$ is

$$(1)$$
 $\frac{\pi}{4}$

35. If
$$u = x^3y^3$$
 then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

- (1) $6(x^3+y^3)$ (2) $6x^3y^3$

36.
$$\int \csc x \, dx =$$

- (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x.\cot x + C$

37.
$$\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$$

- (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$

38.
$$\int f^{1}(x) \cdot [f(x)]^{n} dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$

(2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

$$(n+1)[f(x)]^{n+1}+C$$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2) $\frac{1}{1+x^2} + C$

(2)
$$\frac{1}{1+x^2} + C$$

(3)
$$x^2.Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

$$41. \quad \int \frac{dx}{1 + e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$

(3) $e^{-x} + C$

(2)
$$\log (1+e^x) + C$$

(3)
$$e^{-x} + C$$

$$42. \quad \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin|x| \, dx =$$

- (1) 0 (2) 1
- (3) 2 (4) -1

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3
- (4) 2

- 45. The degree of $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = a\frac{d^2y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- (4) 3
- 46. The family of straight lines passing through the origin is represented by the differential equation (1) ydx + xdy = 0 (2) xdy - ydx = 0 (3) xdx + ydy = 0 (4) xdx - ydy = 0

- 47. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + hy + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 49. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- (2) $C_1 \cos x + C_2 \sin x + C_3 e^x$
- $(3) \quad C_1 + C_2 \cos x + C_3 \sin x$
- (2) $C_1 \cos x + C_2 \sin x + C_3$ (4) $(C_1 + C_2 x + C_3 x^2) e^x$
- 50. Particular Integral of $(D-1)^4 y = e^x$ is
- (2) $\frac{x^4}{24}e^{-x}$ (3) $\frac{x^4}{12}e^x$ (4) $\frac{x^4}{24}e^x$

Set Code :	T2
Booklet Code :	

PHYSICS

31.		e. The dimension			ation.	A/B = m where n	n is lin	ear mass density and A is		
	(1) same as that of latent heat					same as that o	same as that of pressure			
	(3)	same as that of	work		(4)					
52.	The	dimensional for	mula d	of capacitance in	terms	of M, L, T and	Lis			
	(1)	$[ML^2T^2J^2]$	(2)	[ML-2T4]	(3)	$[\mathbf{M}^{-1}\mathbf{L}^{3}\mathbf{T}^{3}\mathbf{I}]$	(4)	$[\mathbf{M}^{-1}\mathbf{L}^{-2}\mathbf{T}^{4}\mathbf{I}^{2}]$		
53.	If <i>l</i> ,	m and n are the d	lirecti	on cosines of a v	ector,	then				
	(1)	l+m+n=1	(2)	$l^2 + m^2 + n^2 = 1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1		
54.	The	angle between i+	j and	j+k is						
	(1)	00	(2)	90°	(3)	45°	(4)	60°		
55.	A pa	article is moving	eastw he ave	ards with a veloc rage acceleration	ity of	5 ms ⁻¹ . In 10 se is time is	conds	the velocity changes to		
	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	ls nort	h-west	(2)	zero				
	(3)	$\frac{1}{2}$ ms ⁻² towards	north		(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² towar	ds nor	th-east		
66.	The	linear momentun	nofa	particle varies wi	ith tin	ne t as n = a + ht	-ct² w	hich of the following is		

- 56. The linear momentum of a particle varies with time t as $p = a+bt+ct^2$ which of the following is correct?
 - (1) Force varies with time in a quadratic manner.
 - (2) Force is time-dependent.
 - (3) The velocity of the particle is proportional to time.
 - (4) The displacement of the particle is proportional to t.
- 57. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is
 - (1) v
- (2) 2v
- (3) 3v/4
- (4) 4v/3

Set Code :	T2
oklet Code :	A

58.	The	velocity of a fre	ely fal	ling body af	ter 2s is							
	(1)	9.8 ms ⁻¹	(2)	10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹				
59.		rge number of b				s with the sam	e speed u	. The maxim	um area on			
	(1)	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$				
60.	The the c	minimum stopp	ing dis	tance for a coetween the	ar of mass tyres and t	m, moving wi he road is μ, ν	th a spee will be	d v along a le	vel road, if			
	(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$	(3)	$\frac{v^2}{4\mu g}$	(4)	$\frac{\nu}{2\mu g}$				
61.		en a bicycle is in that it acts										
	(1) In the backward direction on the front wheel and in the forward direction on the rear wheel											
	(2)	In the forward	directi	on on the fro	nt wheel a	nd in the back	ward dir	ection on the	rear wheel			
	(3)	In the backwar	rd dire	ction on both	the front	and the rear w	heels					
	(4)	In the forward	direct	ion on both t	he front ar	nd the rear wh	eels		3			
62.	In a	perfectly inelas	tic col	lision, the tw	o bodies							
	(1)	strike and expl	lode		(2)	explode with	out strik	ing				
	(3)	implode and e	xplode		(4)	combine and	move to	gether				
63.		er the action of	a cons	tant force, a	particle is	experiencing	a consta	nt acceleration	on, then the			
	(1)	zero			(2)	positive						
	(3)	negative			(4)	increasing u	niformly	with time				

		Set Code: T2
		Booklet Code : A
64.	Consider the following two statements:	
	A: Linear momentum of a system of parti	cles is zero.
	B: Kinetic energy of a system of particles	is zero.
	Then	
		and the National State of the Committee

(1)	A implies B & B implies A	(2)	A does not imply B & B does not imply A
(3)	A implies B but B does not imply A	(4)	A does not imply B but B implies A

65.	An engine dev	elops 10 kV	of power.	How much	time	will it	take	to lif	ft a mass	of 200 i	kg to a
	height of 40 m? (Given $g = 10 \text{ ms}^{-2}$)										
	(1) 4s	(2)	5s	(3)	8s			(4)	10s		

66.	If a spring has time period T, and is cut into n equal part	s, then the time period will b
	T	

- (2) $\frac{1}{\sqrt{n}}$ (1) $T\sqrt{n}$ (3) nT
- When temperature increases, the frequency of a tuning fork
 - (1) increases
 - (2) decreases
 - (3) remains same
 - (4) increases or decreases depending on the materials

68. If a simple harmonic motion is represented by
$$\frac{d^2x}{dy^2} + \alpha x = 0$$
, its time period is

- $(3) \quad \frac{2\pi}{\sqrt{\alpha}} \qquad \qquad (4) \quad \frac{2\pi}{\alpha}$ (1) $2\pi\sqrt{\alpha}$
- 69. A cinema hall has volume of 7500 m3. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be
 - (1) 850 w-m²
- (2) 82.50 w-m²
- (3) 8.250 w-m²
- (4) 0.825 w-m²

Set Code :	T2
Booklet Code :	A

70.	To	absorb the se								
	(1)	Glasses, s	stores		(2)	Carpets, curtains				
	(3)	Polished s	surfaces		(4)	Platform	ns			
71.	IfN	represents	avagadro's	numbe	r, then the num	ber of mol	ecules in 6 gr	m of hydro	ogen at NTP is	
		2N		3N		N		N/6		
72.	The	mean trans	lational kir	netic en	ergy of a perfe	of a perfect gas molecule at the temperature T K is				
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT		
	The amount of heat given to a body which raises its temperature by 1°C									
		(1) water equivalent				thermal heat capacity				
		(3) specific heat			100		ure gradient			
74.					ressure of a ga		to be propor	tional to t	he cube of its	
	(1)	$\frac{3}{2}$	(2)	$\frac{4}{3}$	(3)	2	(4)	5 3		
75.	Clac	iding in the	optical fibe	er is mai	inly used to					
	(1)	to protect	the fiber fr	om me	chanical stress	es				
	(2)	to protect	the fiber fr	om cor	rocion					

(3) to protect the fiber from mechanical strength

(4) to protect the fiber from electromagnetic guidance

Set Code : T2

Booklet Code : A

CHEMISTRY

76.	The	valency electro	nic co	nfiguration of	Phospho	orous atom (At.)	No. 15) is						
		3s ² 3p ³		3s1 3p3 3d1		$3s^23p^23d^1$		3s1 3p2 3d2						
77.	An	element 'A' of A	t.No.12	2 combines wi	th an ele	ment 'B' of At.N	o.17.	The compound formed is						
		covalent AB	(2)			$\operatorname{covalent} \operatorname{AB}_2$	(4)							
78.	The	number of neut	rons p	resent in the at	om of	Ba ¹³⁷ is								
		56	(2)	137		193	(4)	81						
79.	Нус	Hydrogen bonding in water molecule is responsible for												
	(1)	decrease in its	freezi	ng point	(2)	increase in its	degree	e of ionization						
	(3) increase in its boiling point					decrease in its	boilin	g point						
80.	In th	ne HCl molecule	, the bo	onding betwee	n hydro	gen and chlorine	is							
		purely covalen		-		polar covalent		complex coordinate						
81.	Pota	assium metal and	potas	sium ions	19									
	(1) both react with water					have the same	numbe	er of protons						
	(3)	both react with	chlori	ne gas	(4)	have the same	electro	onic configuration						
82.	stand	dard flask. 10 ml	of this:	solution were p	pipetted o		lask ar	made upto 100 ml in a ad made up with distilled solution now is						
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M						
83.	Con	centration of a 1	.0 M s	olution of pho	sphoric	acid in water is								
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N						
84.	Whi	ch of the followi	ng is a	Lewis acid?										
	(1)	Ammonia			(2)	Berylium chlor	ide							
		Boron trifluori	de		(4)	Magnesium oxi								
					14-A	•								

Set Code:	T2
Booklet Code :	A

(1) Potassium chloride and potassium hydroxide (2) Sodium acetate and acetic acid (3) Magnesium sulphate and sulphuric acid (4) Calcium chloride and calcium acetate 86. Which of the following is an electrolyte? (1) Acetic acid (2) Glucose (3) Urea (4) Pyridine 87. Calculate the Standard emf of the cell, Cd/Cd*2//Cu*2/Cu given that E° Cd/Cd*2 = 0.44V a E° Cu/Cu*2 = (-) 0.34 V. (1) (-) 1.0 V (2) 1.0 V (3) (-) 0.78 V (4) 0.78 V 88. A solution of nickel chloride was electrolysed using Platinum electrodes. After electrolysis (1) nickel will be deposited on the anode (2) Cl ₂ gas will be liberated at the cathode (3) H ₂ gas will be liberated at the anode (4) nickel will be deposited on the cathode 89. Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardnes terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%)	85.	Which of the following constitutes the components of a buffer solution?											
(3) Magnesium sulphate and sulphuric acid (4) Calcium chloride and calcium acetate 86. Which of the following is an electrolyte? (1) Acetic acid (2) Glucose (3) Urea (4) Pyridine 87. Calculate the Standard emf of the cell, Cd/Cd*2//Cu*2/Cu given that E° Cd/Cd*2 = 0.44V at E° Cu/Cu*2 = (-) 0.34 V. (1) (-) 1.0 V (2) 1.0 V (3) (-) 0.78 V (4) 0.78 V 88. A solution of nickel chloride was electrolysed using Platinum electrodes. After electrolysis (1) nickel will be deposited on the anode (2) Cl2 gas will be liberated at the cathode (3) H2 gas will be liberated at the anode (4) nickel will be deposited on the cathode (5) H2 gas will be liberated at the anode (6) nickel will be deposited on the cathode (7) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating		(1)	Potassium ch	loride a	nd potassium hy	droxic	le						
(4) Calcium chloride and calcium acetate 86. Which of the following is an electrolyte? (1) Acetic acid (2) Glucose (3) Urea (4) Pyridine 87. Calculate the Standard emf of the cell, Cd/Cd*2//Cu*2/Cu given that E° Cd/Cd*2 = 0.44V at E° Cu/Cu*2 = (-) 0.34 V. (1) (-) 1.0 V (2) 1.0 V (3) (-) 0.78 V (4) 0.78 V 88. A solution of nickel chloride was electrolysed using Platinum electrodes. After electrolysis (1) nickel will be deposited on the anode (2) Cl ₂ gas will be liberated at the cathode (3) H ₂ gas will be liberated at the anode (4) nickel will be deposited on the cathode 89. Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating		(2)	Sodium aceta	te and a	cetic acid								
86. Which of the following is an electrolyte? (1) Acetic acid (2) Glucose (3) Urea (4) Pyridine 87. Calculate the Standard emf of the cell, Cd/Cd+2//Cu+2/Cu given that E0 Cd/Cd+2 = 0.44V at E0 Cu/Cu+2 = (-) 0.34 V. (1) (-) 1.0 V (2) 1.0 V (3) (-) 0.78 V (4) 0.78 V 88. A solution of nickel chloride was electrolysed using Platinum electrodes. After electrolysis (1) nickel will be deposited on the anode (2) Cl2 gas will be liberated at the cathode (3) H2 gas will be liberated at the anode (4) nickel will be deposited on the cathode 89. Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardnes terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating		(3)	Magnesium s	ulphate	and sulphuric ac	id							
(1) Acetic acid (2) Glucose (3) Urea (4) Pyridine 87. Calculate the Standard emf of the cell, Cd/Cd*2//Cu*2/Cu given that E° Cd/Cd*2 = 0.44V a E° Cu/Cu*2 = (-) 0.34 V. (1) (-) 1.0 V (2) 1.0 V (3) (-) 0.78 V (4) 0.78 V 88. A solution of nickel chloride was electrolysed using Platinum electrodes. After electrolysis (1) nickel will be deposited on the anode (2) Cl ₂ gas will be liberated at the cathode (3) H ₂ gas will be liberated at the anode (4) nickel will be deposited on the cathode 89. Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating		(4)	Calcium chlo	ride and	d calcium acetate	;							
87. Calculate the Standard emf of the cell, Cd/Cd*2//Cu given that E° Cd/Cd*2 = 0.44V a E° Cu/Cu*2 = (-) 0.34 V. (1) (-) 1.0 V (2) 1.0 V (3) (-) 0.78 V (4) 0.78 V 88. A solution of nickel chloride was electrolysed using Platinum electrodes. After electrolysis (1) nickel will be deposited on the anode (2) Cl2 gas will be liberated at the cathode (3) H2 gas will be liberated at the anode (4) nickel will be deposited on the cathode 89. Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating	86.	Whi	ch of the follow	wing is	an electrolyte?								
E ⁰ Cu/Cu ⁺² = (-) 0.34 V. (1) (-) 1.0 V (2) 1.0 V (3) (-) 0.78 V (4) 0.78 V 88. A solution of nickel chloride was electrolysed using Platinum electrodes. After electrolysis (1) nickel will be deposited on the anode (2) Cl ₂ gas will be liberated at the cathode (3) H ₂ gas will be liberated at the anode (4) nickel will be deposited on the cathode 89. Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating		(1)	Acetic acid	(2)	Glucose	(3)	Urea	(4)	Pyridine				
(1) (-) 1.0 V (2) 1.0 V (3) (-) 0.78 V (4) 0.78 V 88. A solution of nickel chloride was electrolysed using Platinum electrodes. After electrolysis (1) nickel will be deposited on the anode (2) Cl ₂ gas will be liberated at the cathode (3) H ₂ gas will be liberated at the anode (4) nickel will be deposited on the cathode 89. Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating	87.												
88. A solution of nickel chloride was electrolysed using Platinum electrodes. After electrolysis (1) nickel will be deposited on the anode (2) Cl ₂ gas will be liberated at the cathode (3) H ₂ gas will be liberated at the anode (4) nickel will be deposited on the cathode 89. Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating					1.0 V	(3)	(-) 0.78 V	(4)	0.78 V				
(1) nickel will be deposited on the anode (2) Cl ₂ gas will be liberated at the cathode (3) H ₂ gas will be liberated at the anode (4) nickel will be deposited on the cathode (8) Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron (9) Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water (4) Chlorine water (5) A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm (5) Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) (4) Sherardizing (2) zincing (3) metal cladding (4) electroplating			**	000									
(3) H ₂ gas will be liberated at the anode (4) nickel will be deposited on the cathode 89. Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardnes terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating	88.		olution of nicke	l chlori	de was electroly	sed u	sing Platinum	electrod	es. After ele	ctrolysis,			
89. Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating			nickel will be	deposi	ted on the anode	(2)	Cl ₂ gas will be interacted at the cathode						
(1) Cu (2) Li (3) Zinc (4) Iron 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating		(3)	H ₂ gas will be	liberat	ed at the anode	(4)	nickel will be	e deposi	ted on the ca	imode			
90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating	89.												
(1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating		(1)	Cu	(2)	Li	(3)	Zinc	- (4)	Iron				
(1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating	90.	Which of the following cannot be used for the sterilization of drinking water?											
(3) Potassium Chloride (4) Chlorine water 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating						(2) Calcium Oxychloride							
terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating			Potassium Cl	nloride		(4)	Chlorine water						
terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating	91.	Aw	ater sample she	owed it	to contain 1.20 n	ng/litr	e of magnesiu	n sulpha	ate. Then, its	hardness in			
(1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating		term	s of calcium c	arbonat	e equivalent is								
(1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating						(3)	0.60 ppm	(4)	2.40 ppm				
(1) sodium bicarbonate (2) sodium carbonate decahydrate (3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating	92.	Sod	a used in the L	-S proc	ess for softening	of wa	ter is, Chemic	ally.					
(3) sodium carbonate (4) sodium hydroxide (40%) 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electroplating						(2)	sodium carbo	onate de	cahydrate '				
(1) sherardizing (2) zincing (3) metal cladding (4) electroplating						(4)	sodium hydr	oxide (4	0%)				
(1) sherardizing (2) zincing (3) metal cladding (4) electroplating	93	The	process of cen	entatio	on with zinc pow	der is	known as						
, 15-A	,,,					(3)	metal claddin	ng (4)	electroplat	ing			
, 134						15.4							

Set Code :	T2
Booklet Code :	A

94.	Car	rosion of a me	tal is fas	test in					
	(1)	rain-water	(2)	acidulated wat	er (3)	distilled water	(4)	de-ionise	d water
95.	Wh	ich of the follo	wing is	a thermoset poly	mer?				
	(1)	Polystyrene			(2)	PVC			
	(3)	Polythene			(4)	Urea-formaldel	hyde r	resin	
96.	Che	mically, neopro	ene is						
	(1)	polyvinyl ben	zene		(2)	polyacetylene			
	(3)	polychloropr	ene		(4)	poly-1,3-butadi	ene	s 29	
97.	Vul	canization invo	lves heat	ing of raw rubbe	r with	1		4	
	(1)	selenium eler			(2)	elemental sulph	ur		
	(3)	a mixture of S	Se and el	emental sulphur	(4)	a mixture of sele	enium	and sulphu	ır dioxide
98.	Petr	ol largely conta	ains.						
	(1)	a mixture of u	nsaturat	ed hydrocarbon	s C,-	C _g			
	(2)	a mixture of b	enzene,	toluene and xyle	ene .				
	(3)	a mixture of s	aturated	hydrocarbons (C12 - C	14			
	(4)			hydrocarbons (
99.	Whi	ch of the follow	ving gas	es is largely resp	oonsil	ole for acid-rain?			
	(1)	SO, & NO,			(2)	CO, & water vap	our		
	(3)	CO ₂ & N ₂	70		(4)	N ₂ &CO ₂			
100.	BOL	stands for							
	(1)	Biogenetic Ox	ygen De	emand	(2)	Biometric Oxyge	en De	mand	
	(3)	Biological Ox				Biospecific Ovv			

Set Code :	T2
Booklet Code :	A

CIVIL ENGINEERING

101.	Stre	ss strain curve is always a straight lin	e for	
	(1)	Elastic materials	(2)	materials obeying Hook's law
	(3)	Elasto-plastic materials	(4)	plastic materials
102.	The	maximum value of Poisson's for an	elastic m	naterial is
	(1)	0.25	(2)	0.5
	(3)	0.75	(4)	1.0
103.		stress at which extension of a materia	al takes p	place more quickly as compared to the increase
	(1)	Elastic point	(2)	Plastic point
	(3)	Breaking point	(4)	Yielding point
104.	For	ductile materials, the most appropria	ite failui	re theory is
	(1)	maximum shear stress theory		
	(2)	maximum principal stress theory		
	(3)	maximum principal strain theory		
	(4)	shear strain energy theory		*
105.	The	materials which have the same elast	ic prope	rties is in all directions are
	(1)	Brittle material	(2)	Homogeneous material
	(3)	Isotropic material	(4)	Hard material
106.	weig	elastic bar of length 'l', cross section ght W is having vertically, it is subject gation of the bar is given by	onal area	A, Young's modulus of elasticity E and self and applied axially at the bottom end. The total
	(1)	WI/AE + PI/AE	. (2)	WI/2AE+PI/AE
	(3)	WI/2AE + PI/2AE	(4)	WI/AE+PL/2AE
			17-A	(CVL)

Set Code :	T2
Booklet Code :	A

107.	The	bending mome	nt diag	ram is a cubic p	arabola	for a cantilev	er				
	(1)	subjected to tr	iangul	ar load varying	from z	ero at free end	to maxii	num at fixed e	nd		
	(2)			ted to a moment							
	(3)	subjected to uniformly distributed load									
	(4)	subjected to co	oncent	rated load at the	e free e	nd					
108.	For	a simply suppor	ted bea	am with central	load, th	ne Bending M	oment w	ill be			
	(1)	Least at the ce			(2)						
.4	(3)	maximum at th	ne supp	oorts	(4)	maximum a	t the cent	re			
109.	The	B.M on a section	n is ma	aximum when s	hearing	force					
		is maximum		is minimum		is equal	(4)	changes sign			
110.	The	deflection due	to cour	ole M at the free	end of	a cantilever	of length	L is			
	(1)	ML/EI	(2)	2ML/EI		ML ² /2EI	137.5	M ² L/2EI			
111.	The	shear force on a	a simpl	v supported bea	am is pi	oportional to	,				
22.25	(1)	displacement				sum of the					
	(3)	algebraic sum			(4)	algebraic sum of axial forces					
112.	The alwa	shape of the ber	nding n	noment diagran	n over t	he length of a	beam, ha	wing no extern	al load is		
	(1)	parabolic	(2)	cubical	(3)	linear	(4)	circular			
113.	The	ratio of maxim	um to a	verage shear st	ress in	a solid circul	ar section	is			
	(1)	1.0	(2)	1.33	(3)	1.5	(4)	1.7			
114.	The	Poison's ratio f	or corl	c is							
	(1)	zero	(2)	0.1	(3)	0.2	(4)	0.3			
					18-A				(CVL)		

Set Code :	T2
Booklet Code :	A

								Set Code : T2 Booklet Code : A		
115	The	sum of the mor	ment of	inertias abou	it any two	orthogonal axes	s is			
		always consta			(2)	always zero				
		always one			(4)	always linear		K 12		
116.	Stra	in energy in tor	rsion of ty and (a shaft per ui G as modulus	nit volume	e is given by cor	nsideri	ing 'q' as shear stress, E		
			(2)			q/4G	(4)	q/4E		
117.	The	maximum shea	ar stress	in a thin tube	e is					
	(1)	equal to avera	age shea	ar stress	(2)	twice the avera	age she	ear stress		
	(3)	half the avera	ge shea	r stress	(4)	one third of av	crage	shear stress		
118.	Mac	aulay's method	is used	for calculati	on of whi	ch quantity				
	(1)	bending mom	ent		(2)	shear force				
	(3)	slope and def	lection		(4)	stresses				
119.	Alo	ng the neutral a	xis of si	imply suppor	ted beam		10			
	(1)	fibers do not	undergo	strain	(2)	fibers undergo minimum strain				
	(3)	fibers underg	o maxir	num strain	(4)	fibers undergo minimum stress				
120.	The	area under stre	ss strai	n curve repre	sents					
	(1)	work done	(2)	ductility	(3)	strain energy	(4)	residual stress		
121.	The	maximum defl	ection o	of a cantilever				nent (M) at its free end is		
	(1)	M1 ² /3EI	(2)	Ml ² /4EI	(3)	MI ² /6EI	(4)	MI ² /2EI		
122.	The	shape of kern a	area of a	a rectangular	section is					
	(1)	rectangle	(2)	square	(3)	rhombus	(4)	parallelogram		
123.	Pola	r modulus of a	section	n is a measure	e of streng	gth of section in				
	(1)	bending	(2)	shear	(3)	torsion	(4)	axial compression		
					10.4			(CVL)		

Set Code :	T2
Booklet Code :	A

Thi	ck cylinders a	re analys	ed on the b	agis of					
					Lame's th	eory			
			33 theory	, ,		•			
(5)	1 0133011 3 11	icory		(4)	Kankine S	uleory			
Wh	en one end of	a fixed b	eam defle	cts by '8' the	n the bendi	ng momen	t at deflec	ted end is	
(1)	$\frac{2EI\delta}{L^2}$	(2)	$\frac{3EI\delta}{L}$	(3)	$\frac{3EI\delta}{L^2}$	(4)	$\frac{6EI\delta}{L^2}$		
The	flexural rigid	ity of a h	inged end	is					
					two	(4)	one		
Buc	kling load can	be great	er than cru	shing load it	f				
(1)	column is a	short col	umn	(2)	column ha	s both end	sfixed		
(3)	column is a l	ong one		(4)	column both ends hinged				
For	a column of le	ngth 'L'	having one	end fixed a	nd other end	d free, the e	quivalent	length is	
(1)	2L	(2)	L	(3)	L/2	(4)	$L/\sqrt{2}$		
			of a colur	nn having b	oth the ends	s fixed and	the colum	n whose both	
(1)	1.0	(2)	2.0	(3)	3.0	(4)	4.0		
		ght of a m	asonry dan	n of a triangu	lar section v	whose base	width is 'b	and specific	
(1)	$b\sqrt{s}$	(2)	b.s	(3)	$\sqrt{b}.\sqrt{s}$	(4)	$s\sqrt{b}$		
The f	failure wedge	develops	when a ret	aining wall				TV .	
(1)	moves away	from the	backfill						
(2)	moves toward	ds backfi	11						
(3)	sink downwar	rds							
(4)	stresses equa	lly by ve	rtical and I	norizontal fo	orces				
				20-A				(CVL)	
	(1) (3) Wh (1) The (1) (3) For: (1) The the e (1) (1) (1) (1) (2) (3)	(1) maximum s (3) Poisson's the When one end of the flexural rigid (1) infinity Buckling load can (1) column is a second (3) column is a second (3) column is a second (4) 2L. The ratio of cripple the ends are hinger (1) 1.0 The maximum height gravity 's' is (1) $b\sqrt{s}$ The failure wedge (1) moves away (2) moves toward (3) sink downward (3)	(1) maximum shear stree (3) Poisson's theory When one end of a fixed by (1) $\frac{2EI\delta}{L^2}$ (2) The flexural rigidity of a hit (1) infinity (2) Buckling load can be great (1) column is a short colic (3) column is a long one For a column of length 'L'! (1) $2L$ (2) The ratio of crippling loads the ends are hinged, is (1) 1.0 (2) The maximum height of a migravity 's' is (1) $b\sqrt{s}$ (2) The failure wedge develops (1) moves away from the (2) moves towards backfit (3) sink downwards	(1) maximum shear stress theory (3) Poisson's theory When one end of a fixed beam deflect (1) $\frac{2EI\delta}{L^2}$ (2) $\frac{3EI\delta}{L}$ The flexural rigidity of a hinged end it (1) infinity (2) zero Buckling load can be greater than cru (1) column is a short column (3) column is a long one For a column of length 'L' having one (1) 2L (2) L The ratio of crippling loads of a column the ends are hinged, is (1) 1.0 (2) 2.0 The maximum height of a masonry dam gravity 's' is (1) $b\sqrt{s}$ (2) b.s The failure wedge develops when a ref (1) moves away from the backfill (2) moves towards backfill (3) sink downwards	(3) Poisson's theory (4) When one end of a fixed beam deflects by '8' the (1) $\frac{2EI\delta}{L^2}$ (2) $\frac{3EI\delta}{L}$ (3) The flexural rigidity of a hinged end is (1) infinity (2) zero (3) Buckling load can be greater than crushing load if (1) column is a short column (2) (3) column is a long one (4) For a column of length 'L' having one end fixed at (1) 2L (2) L (3) The ratio of crippling loads of a column having be the ends are hinged, is (1) 1.0 (2) 2.0 (3) The maximum height of a masonry dam of a triangulgravity 's' is (1) $b\sqrt{s}$ (2) b.s (3) The failure wedge develops when a retaining wall (1) moves away from the backfill (2) moves towards backfill (3) sink downwards (4) stresses equally by vertical and horizontal for	(1) maximum shear stress theory (2) Lame's the (3) Poisson's theory (4) Rankine's When one end of a fixed beam deflects by '\delta' then the bending (1) $\frac{2EI\delta}{L^2}$ (2) $\frac{3EI\delta}{L}$ (3) $\frac{3EI\delta}{L^2}$ The flexural rigidity of a hinged end is (1) infinity (2) zero (3) two Buckling load can be greater than crushing load if (1) column is a short column (2) column had (3) column is a long one (4) column become (1) 2L (2) L (3) L/2 The ratio of crippling loads of a column having both the ends the ends are hinged, is (1) 1.0 (2) 2.0 (3) 3.0 The maximum height of a masonry dam of a triangular section of gravity 's' is (2) b.s (3) $\sqrt{b}.\sqrt{s}$ The failure wedge develops when a retaining wall (1) moves away from the backfill (2) moves towards backfill (3) sink downwards (4) stresses equally by vertical and horizontal forces	(1) maximum shear stress theory (2) Lame's theory (3) Poisson's theory (4) Rankine's theory When one end of a fixed beam deflects by '\delta' then the bending moment (1) $\frac{2EI\delta}{L^2}$ (2) $\frac{3EI\delta}{L}$ (3) $\frac{3EI\delta}{L^2}$ (4) The flexural rigidity of a hinged end is (1) infinity (2) zero (3) two (4) Buckling load can be greater than crushing load if (1) column is a short column (2) column has both ends (3) column is a long one (4) column both ends him For a column of length 'L' having one end fixed and other end free, the ends are hinged, is (1) 1.0 (2) 2.0 (3) 3.0 (4) The ratio of crippling loads of a column having both the ends fixed and the ends are hinged, is (1) 1.0 (2) 2.0 (3) 3.0 (4) The maximum height of a masonry dam of a triangular section whose base gravity 's' is (1) $b\sqrt{s}$ (2) b.s (3) $\sqrt{b}.\sqrt{s}$ (4) The failure wedge develops when a retaining wall (1) moves away from the backfill (2) moves towards backfill (3) sink downwards (4) stresses equally by vertical and horizontal forces	(1) maximum shear stress theory (2) Lame's theory (3) Poisson's theory (4) Rankine's theory (4) Rankine's theory (5) Poisson's theory (6) Poisson's theory (7) Poisson's theory (8) Poisson's theory (1) Poisson's theory (1) Rankine's theory (1) Poisson's theory (1) Rankine's theory (1) Poisson's theory (1) Rankine's theory (1) Poisson's theory	

Set Code :	
Booklet Code :	A

								Set Coo	ie : T2
								Booklet Cod	le : A
132.	The	lateral earth pr	essure o	n a retaining wa	all				
	(1)	is equal to ma	ass of th	e soil retained					
	(2)	proportional	to the de	epth of the soil					
	(3)	proportional	to the so	quare of the dep	th of th	ne soil			
	(4)	proportional	to the in	ternal friction	of the s	oil			
133	Mod	lulus of rapture	e of con	crete is a measu	are of			9	
155.	(1)				(2)	direct tensile s	trengtl	h	
		compressive			(4)	both flexural &	k tensi	le strength	
134	The	fineness modu	ulus of fi	ne aggregate is	in the	range of			
		2.0 to 3.5		3.5 to 5.0		5.0 to 7.0	(4)	7.0 to 10.0	
	г.			a aggregate ch	ould be	in			
135.				e, aggregate sh	(2)	surface dry co	ndition		
	(1)	saturated con			(4)	- 80 Militin			
	(3)	bone dry con	aition		(4)	Seilli Saturateo	Condi	iion	
136.	For	reinforced cen	nent con	crete the slump				6 6220	
	(1)	0 to 5 cm	(2)	2.5 to 7.5 cm	(3)	7.5 to 10 cm	(4)	5 to 12.5 cm	n
		*							
137.	The	ratio of tensile	e to com	pressive streng	th of c	oncrete is			
	(1)	0.025	(2)	0.04	(3)	0.1	(4)	0.4	,+
138.	Des	ign mix concre	ete is pro	eferred over no	minal n	nix concrete bee	cause		
	(1)	strength of fe			(2)	cement conten	nt of la	ter is more	100
	(3)	-		former at site	(4)	strength of lat	er is le	ess	
139	Whi	ich of the follo	wing do	es not cause un	soundr	ness in cement			
	(1)	free lime	0	776 12	(2)	magnesia			
	(3)	calcium sulp	hate		(4)	silica			
					21-A				(CVL)

Set Code :	T2
Booklet Code :	A

140	. The	partial safety f	actor fo	or steel as p	er IS 456-2	2000 is taken	as		
	(1)	1.15	(2)	1.25	(3)	1.50	(4)	1.75	
141.	. In v	vorking stress d	esign, t	he factor o	f safety is a	pplied on			
	(1)	ultimate stres	s		(2)	yield stress	S		
	(3)	stress at elast	ic limit		(4)	breaking st	ress		
142.	Ina	RCC column if	ties are	not provid	ded, the col	umn is likely	to to		
	(1)	fail by bucklin	ıg .		(2)	fail by crus	hing		
	(3)	behave like a h	oeam		(4)	fail by tors	ion		+
143.	Tod	lesign a column	, one sh	ould norm	ally start by	assuming th	ne area of	steel as	
	(1)	1%	(2)	0.15%	(3)	0.5%	(4)	0.75%	
144.	Whi	ich of the follow	ving is g	generally n	ot designed	for shear			
	(1)	a slab			(2)	a cantilever	beam		
	(3)	a footing			(4)	a beam			
145.	The	maximum shea	r stress	in a beam o	of rectangul	lar section is	given by	32	
	(1)	1.25 times the	averag	e	(2)	1.5 times th	e average		
	(3)	1.75 times the	averag	e	(4)	2.0 times th	e average		
146.	The	radius of a bar l	end to	form a hoo	k, should n	ot be less tha	ın		
	(1)	twice the diam	neter		(2)	thrice the d	iameter		
	(3)	four times the	diamet	er	(4)	five times th	he diamete	er	- 50
147.	Incre	ease in fineness	moduli	is of aggre	gate indicat	tes			
	(1)	fine grading			(2)	coarser grad			
	(3)	gap grading			(4)	mixed gradi	ng		
					22-A				(CVL)

Set Code :	T2
Booklet Code :	A

148. I	In sla	ab, the minimur	n reinfo	orcement prov	rided is (for Fe 250 Gi	rade)		
		0.10% of its g			(2)	0.12% of its	gross sec	tional area	L
- 8	(3)	0.15% of its g			(4)	0.18% of its	gross sec	ctional area	ı
149.	The	diameter of long	gitudin	al bars of a co	lumn sho	ould never be	less than		
		6 mm	(2)		(3)	10 mm	(4)	12 mm	
								0.0	
150.	A co	olumn is regard	ed as lo	ong column if	the ratio	of its effect	ive length	and latera	il dimensi
		10	(2)	12	(3)	20	(4)	25	
	(-)				4	+			
151	The	shear reinforce	ment ir	RCC is prov	ided to re	esist			
	(1)	vertical shear		•	(2)	horizontal s	hear		
						diagonal ter			
		diameter acres	SPORGIO	n	(4)	diagonai tei	ision		
	(3)	diagonal com	pressio	n	(4)	diagonalitei	ision		
								ning in two	direction
152.	The	maximum ratio	of spa	n to depth of a	slab sim	ple supported		ning in two	direction
152.	The		of spa			ple supported	d and span	ning in two	direction
152.	The (1)	maximum ratio	of spa (2)	n to depth of a	slab sim	ple supported	d and span (4)	ning in two	direction
152.	The (1)	maximum ratio	(2) M-20	n to depth of a 30 then what wo	slab sim (3)	ple supported 35 e modular rat	d and span (4)	ning in two 40 13.33	direction
152.	The (1)	maximum ratio	(2) M-20	n to depth of a	slab sim (3)	ple supported	d and span (4)	40	direction
152.	The (1)	maximum ratio 25 oncrete grade is 7.08	(2) M-20 (2)	n to depth of a 30 then what wor 9.08	(3) ald be the	ple supported 35 e modular rat 12	(4) io (4)	40	direction
152. 153.	The (1) If co (1) For	maximum ratio 25 oncrete grade is 7.08 stairs spanning	(2) M-20 (2) horizo	then what wor 9.08	(3) ald be the (3) imum wa	ple supported 35 e modular rat 12	(4) io (4)	13.33	direction
152. 153.	The (1)	maximum ratio 25 oncrete grade is 7.08 stairs spanning	(2) M-20 (2) horizo	n to depth of a 30 then what wor 9.08	(3) ald be the (3) imum wa	ple supported 35 e modular rat 12 hist provided	(4) io (4) is	13.33	direction
152. 153.	The (1) If co (1) For (1)	maximum ratio 25 concrete grade is 7.08 stairs spanning 4 cm	(2) (A-20) (2) (2) (2)	then what wor 9.08 ntally the min 6 cm	(3) ald be the (3) imum wa (3)	ple supported 35 e modular rat 12 hist provided 10 cm	(4) io (4) is (4)	13.33 12 cm	
152. 153.	The (1) If cc (1) For (1)	maximum ratio 25 concrete grade is 7.08 stairs spanning 4 cm	(2) M-20 (2) horizo (2) l and ri	then what wor 9.08 antally the min 6 cm	(3) ald be the (3) imum wa (3)	ple supported 35 e modular rat 12 hist provided 10 cm	(4) io (4) is (4)	13.33 12 cm	
152. 153.	The (1) If cc (1) For (1)	maximum ratio 25 concrete grade is 7.08 stairs spanning 4 cm	(2) M-20 (2) horizo (2) l and ri	then what wor 9.08 antally the min 6 cm	(3) ald be the (3) imum wa (3)	ple supported 35 e modular rat 12 hist provided 10 cm	(4) io (4) is (4)	13.33 12 cm	
152. 153. 154.	The (1) If co (1) For (1) If T (1)	maximum ratio 25 concrete grade is 7.08 stairs spanning 4 cm and R are tread 2R + T = 60	(2) (Am-20) (2) (2) (2) (2) (3)	then what won 9.08 Intelligence to the mine of the	(3) uld be the (3) imum wa (3) y of a stat (3)	ple supported 35 e modular rat 12 hist provided 10 cm ir, then 2R + T = 3	(4) io (4) is (4)	13.33 12 cm	
152. 153. 154.	The (1) If co (1) For (1) If T (1)	maximum ratio 25 concrete grade is 7.08 stairs spanning 4 cm	(2) M-20 (2) horizo (2) l and ri (2) of an a	then what won 9.08 Intelligence to the mine of the	(3) ald be the (3) imum wa (3) y of a state (3) and	ple supported 35 e modular rat 12 hist provided 10 cm ir, then 2R + T = 3	(4) io (4) is (4)	13.33 12 cm R+2T=	

								Set Code : T2
								Booklet Code : A
157.	Wal	king over the area	and o	bserving its ma	in featu	res and bounda	ries, is k	known as survey.
	(1)	Topographical	(2)	Cadastral	(3)	City	(4)	Reconnaissance
158.		sum of the exter e number of its s		gles of a closed	traver	se is equal to _		Right angles, where n
	(1)	(2n - 4)	(2)	(2n + 4)	(3)	(4n - 2)	(4)	(4n + 2)
159.	Ifth	e whole circle be	earing	of a line is 270	°, then	its bearing in q	uadran	tal system is
	(1)	90°W	(2)	90°E	(3)	180°W	(4)	180°E
160.		ne which passes to ne cross hair, is o			ntre of	the objective a	nd also	through the intersection
	(1)	Line of collima	ntion		(2)	Axis of teleso	cope	
	(3)	Horizontal axis			(4)	Trunion axis		
161.		L. of a B.M. is 20	00.00	m, back sight is	1.525	m and foresight	is 3.28	5 m, R.L. of the forward
	(1)	198.460m	(2)	201.760m	(3)	198.240m	(4)	201.525m
162.	In tr	apezoidal formu	la of a	areas, the line jo	ining t	he ends of the	ordinate	es is assumed
	(1)	semi circular	(2)	straight	(3)	parabolic	(4)	circular
163.	1 Ac	ere is equal to						
	(1)	43560 sq.ft	(2)	34560 sq.ft	(3)	54360 sq.ft	(4)	64350 sq.ft
164.	Ifa	tacheometer is fi	tted w	ith anallatic ler	ıs			
	(1)	Additive consta	ant is	100, multiplying	g const	ant is 0		
	(2)	Additive consta	ant is	0, multiplying c	onstan	t is 100		
	(3)	Both additive c	onsta	nt and multiplyi	ng con	stant are 100		
	(4)	Both additive c	onsta	nt and multiplyi	ng cons	stant are 50		

24-A

165. One S.I. unit of viscosity is equal to (1) 10 poises (2) 981 poises (3) 9.81 Ns/m² (4) 10 kg.sec/m² 166. 8 m of oil (sp.Gr. = 0.8) head is equal to the following water head (1) 10 m (2) 8 m (3) 6.4 m (4) 1 m 167. A vertical triangular area of altitude h has one side in the free surface of a liquid. Its vertex is downward. The depth of its centre of pressure is (1) 0.8 h (2) 0.75 h (3) 0.5 h (4) h/3 168. The equation of continuity (1) is valid for incompressible fluids (2) expresses the relation between mass and area of cross-section (3) relates the density variations along a stream line (4) relates the mass rate of flow along a stream tube 169. Flow of a fluid from low pressure to high pressure is (1) possible in upward flow through a uniform vertical line (2) possible in flow through a diverging pipe with horizontal axis (3) possible in flow through a diverging pipe with a horizontal axis (4) impossible if the passage has a constant cross-section 170. Differential manometers are used for measuring (1) velocity of fluid at a point									Set Code : T2 Booklet Code : A
166. 8 m of oil (sp.Gr. = 0.8) head is equal to the following water head (1) 10 m (2) 8 m (3) 6.4 m (4) 1 m 167. A vertical triangular area of altitude h has one side in the free surface of a liquid. Its vertex is downward. The depth of its centre of pressure is (1) 0.8 h (2) 0.75 h (3) 0.5 h (4) h/3 168. The equation of continuity (1) is valid for incompressible fluids (2) expresses the relation between mass and area of cross-section (3) relates the density variations along a stream line (4) relates the mass rate of flow along a stream tube 169. Flow of a fluid from low pressure to high pressure is (1) possible in upward flow through a uniform vertical line (2) possible in flow through a converging pipe with horizontal axis (3) possible in flow through a diverging pipe with a horizontal axis (4) impossible if the passage has a constant cross-section	165.	One	S.I. unit of vi	scosity is	equal to				
(1) 10 m (2) 8 m (3) 6.4 m (4) 1 m 167. A vertical triangular area of altitude h has one side in the free surface of a liquid. Its vertex is downward. The depth of its centre of pressure is (1) 0.8 h (2) 0.75 h (3) 0.5 h (4) h/3 168. The equation of continuity (1) is valid for incompressible fluids (2) expresses the relation between mass and area of cross-section (3) relates the density variations along a stream line (4) relates the mass rate of flow along a stream tube 169. Flow of a fluid from low pressure to high pressure is (1) possible in upward flow through a uniform vertical line (2) possible in flow through a converging pipe with horizontal axis (3) possible in flow through a diverging pipe with a horizontal axis (4) impossible if the passage has a constant cross-section		(1)	10 poises	(2)	981 poises	(3)	9.81 Ns/m ²	(4)	10 kg.sec/m ²
167. A vertical triangular area of altitude h has one side in the free surface of a liquid. Its vertex is downward. The depth of its centre of pressure is (1) 0.8 h (2) 0.75 h (3) 0.5 h (4) h/3 168. The equation of continuity (1) is valid for incompressible fluids (2) expresses the relation between mass and area of cross-section (3) relates the density variations along a stream line (4) relates the mass rate of flow along a stream tube 169. Flow of a fluid from low pressure to high pressure is (1) possible in upward flow through a uniform vertical line (2) possible in flow through a converging pipe with horizontal axis (3) possible in flow through a diverging pipe with a horizontal axis (4) impossible if the passage has a constant cross-section	166.	8 m	of oil (sp.Gr.	= 0.8) he	ad is equal to	the follo	wing water hea	d	
downward. The depth of its centre of pressure is (1) 0.8 h (2) 0.75 h (3) 0.5 h (4) h/3 168. The equation of continuity (1) is valid for incompressible fluids (2) expresses the relation between mass and area of cross-section (3) relates the density variations along a stream line (4) relates the mass rate of flow along a stream tube 169. Flow of a fluid from low pressure to high pressure is (1) possible in upward flow through a uniform vertical line (2) possible in flow through a converging pipe with horizontal axis (3) possible in flow through a diverging pipe with a horizontal axis (4) impossible if the passage has a constant cross-section		(1)	10 m	(2)	8 m	(3)	6.4 m	(4)	l m
 The equation of continuity is valid for incompressible fluids expresses the relation between mass and area of cross-section relates the density variations along a stream line relates the mass rate of flow along a stream tube Flow of a fluid from low pressure to high pressure is possible in upward flow through a uniform vertical line possible in flow through a converging pipe with horizontal axis possible in flow through a diverging pipe with a horizontal axis impossible if the passage has a constant cross-section Differential manometers are used for measuring 	167.						ide in the free s	urface	of a liquid. Its vertex is
 is valid for incompressible fluids expresses the relation between mass and area of cross-section relates the density variations along a stream line relates the mass rate of flow along a stream tube Flow of a fluid from low pressure to high pressure is possible in upward flow through a uniform vertical line possible in flow through a converging pipe with horizontal axis possible in flow through a diverging pipe with a horizontal axis impossible if the passage has a constant cross-section 		(1)	0.8 h	(2)	0.75 h	(3)	0.5 h	(4)	h/3
 is valid for incompressible fluids expresses the relation between mass and area of cross-section relates the density variations along a stream line relates the mass rate of flow along a stream tube Flow of a fluid from low pressure to high pressure is possible in upward flow through a uniform vertical line possible in flow through a converging pipe with horizontal axis possible in flow through a diverging pipe with a horizontal axis impossible if the passage has a constant cross-section 				4					
 (2) expresses the relation between mass and area of cross-section (3) relates the density variations along a stream line (4) relates the mass rate of flow along a stream tube 169. Flow of a fluid from low pressure to high pressure is (1) possible in upward flow through a uniform vertical line (2) possible in flow through a converging pipe with horizontal axis (3) possible in flow through a diverging pipe with a horizontal axis (4) impossible if the passage has a constant cross-section 170. Differential manometers are used for measuring 	168.	The	-						
 (3) relates the density variations along a stream line (4) relates the mass rate of flow along a stream tube 169. Flow of a fluid from low pressure to high pressure is (1) possible in upward flow through a uniform vertical line (2) possible in flow through a converging pipe with horizontal axis (3) possible in flow through a diverging pipe with a horizontal axis (4) impossible if the passage has a constant cross-section 170. Differential manometers are used for measuring 		(1)	is valid for i	ncompre	ssible fluids				
 (4) relates the mass rate of flow along a stream tube 169. Flow of a fluid from low pressure to high pressure is (1) possible in upward flow through a uniform vertical line (2) possible in flow through a converging pipe with horizontal axis (3) possible in flow through a diverging pipe with a horizontal axis (4) impossible if the passage has a constant cross-section 170. Differential manometers are used for measuring 		(2)	expresses th	e relation	between ma	ass and ar	ea of cross-sec	tion	
 Flow of a fluid from low pressure to high pressure is possible in upward flow through a uniform vertical line possible in flow through a converging pipe with horizontal axis possible in flow through a diverging pipe with a horizontal axis impossible if the passage has a constant cross-section 		(3)	relates the de	ensity va	riations along	g a stream	line		
 possible in upward flow through a uniform vertical line possible in flow through a converging pipe with horizontal axis possible in flow through a diverging pipe with a horizontal axis impossible if the passage has a constant cross-section 		(4)	relates the m	ass rate	of flow along	g a stream	tube		(a)
 (2) possible in flow through a converging pipe with horizontal axis (3) possible in flow through a diverging pipe with a horizontal axis (4) impossible if the passage has a constant cross-section 170. Differential manometers are used for measuring 	169.	Flov	w of a fluid fro	m low p	ressure to hig	gh pressu	re is		
 (3) possible in flow through a diverging pipe with a horizontal axis (4) impossible if the passage has a constant cross-section 170. Differential manometers are used for measuring 		(1)	possible in u	pward fl	ow through a	uniform	vertical line		
(4) impossible if the passage has a constant cross-section 170. Differential manometers are used for measuring		(2)	possible in fl	low throu	igh a converg	ging pipe	with horizontal	axis	2
170. Differential manometers are used for measuring		(3)	possible in fl	low throu	igh a divergir	ng pipe w	ith a horizontal	axis	
-		(4)	impossible i	f the pas	sage has a co	nstant cro	oss-section		
-	170.	Diff	erential mano	meters a	re used for m	easuring			

TV .

25-A

(2) pressure of fluid at a point

(4) difference of pressure between two points

(3) discharge of fluid

							5	Set Code : T2
							Book	et Code : A
171.	The	pressure at ve	na-contra	acta of an extern	al mou	athpiece is		
	(1)	always less th	nan satur	ation vapor pres	sure o	fliquid		
	(2)	inversely pro	portiona	l to square of co	oeffici	ent of contrac	tion	
	(3)	always great	er than at	mospheric pres	sure			
	(4)	a function of	the head	l over the mouth	piece			
172.	AV-	notch is consi	dered to	be a better note	h beca	use		
	(1)	its C _d is prac	tically ur	niform over a wi	ide ran	ge of heads		
	(2)	-		contraction of				
	(3)	It keeps the h	ead with	in a reasonable	limit e	ven for large	discharges	
	(4)	Its C _d is sma	ller				10	
173.		error of 1 mm i 3m the percen						notch. If the head
	(1)	0.5	(2)	0.6	(3)	1.0	(4) 1.5	a .
174.	The	Hagen-Poiseu	ille equa	tion gives				
	(1)	head loss in	aminar f	low				
	(2)	boundary sh	ear stress	in laminar flow	/			
	(3)	shear stress	distributi	on in any pipe f	low			
	(4)	velocity dist	ribution	in any pipe flow				
175.	The	loss of head d	ue to fric	ction in turbulen	t flow	through a circ	cular pipe	
	(1)	varies as cub	e of aver	rage velocity	(2)	varies invers	ely as square o	f average velocity
	(3)			erage velocity	(4)	is directly pr	roportional to a	verage velocity
176.	Lan	ninar flow thro	ugh a pi	pe, the velocity	distrib	ution curve is		
	(1)	logarithmic	2850	A RELIGIOUS CONTRACTOR OF THE PERSON OF THE		parabolic		
	(3)	elliptical			(4)	hyperbolic		

26-A

177. For the most economical trapezoidal section of an open channel

- (1) depth of flow = twice base width
- (2) depth of flow = hydraulic radius
- (3) sloping side = half the top width
- (4) sloping side = base width

178. Froude's number is defined as the ratio of

- (1) Inertia force to viscous force
- (2) Inertia force to elastic force
- (3) Inertia force to pressure force
- (4) Inertia force to gravity force

179. The critical velocity for a flow of q m3 width of a wide rectangular channel is given by

$$(1) \quad \left(\frac{q^2}{g}\right)^{\frac{1}{3}}$$

(2)
$$(q^2g)^{\frac{1}{3}}$$

(3)
$$\left(\frac{g}{q^2}\right)^{\frac{1}{3}}$$

(4)
$$(qg)^{\frac{1}{2}}$$

180. The function of scroll case of a reaction turbine is to

- (1) Guide the water to the runner at appropriate angle
- (2) Guide the water smoothly to the tailrace
- (3) Distribute the water evenly around the wheel
- (4) Reduce the eddy and shock losses

181. The runner blades of a Kaplan turbine are

- (1) More curved than propeller blades
- (2) More curved than pelton blades
- (3) More curved than Francis blades
- (4) Less curved than Francis blades

182. When the speed of a centrifugal pump is constant

- (1) Shaft power decreases with increase of Q
- (2) H_m decreases with increase of Q
- (3) Q increases with increase of H_m
- (4) Q is independent of H_m

Set Code :	
Booklet Code :	A

183.	The	optical square is based on the pr	inciple of op	tical
	(1)	reflection	(2)	refraction
	(3)	double reflection	(4)	double refraction
184.	A re	servoir provided at the intake he	ad works fro	m which water enters the penstocks is
	(1)	power canal (2) tail rack	(3)	fore bay (4) trash rack
185.	Con	sumptive use is :		
	(1)	water used up in plant metaboli	ism	
	(2)	sum of evapo-transpiration and	amount used	d up in plant metabolism
	(3)	sum of evapo-transpiration and	infiltration	losses
	(4)	combined use of surface and g	round water	resources
186.	The	head under which a centrifugal p	ump works i	s called
	(1)			pressure head
	(3)	suction head	(4)	manometric head
187.		volume of water that can be exerial is known as	tracted by fo	orce of gravity from a unit volume of aquifer
	(1)	specific capacity	(2)	specific yield
	(3)	specific retention	(4)	specific storage
188.	One	cumec day is equal to		
	(1)	8.64 hectare metres	(2)	86.4 hectare metres
	(3)	864 hectare metres	(4)	0.864 hectare metres
189.	Lace	ey considered channel section		
	(1)	Rectangular (2) Trapezoi	dal (3)	Semi elliptical (4) Elliptical

				Set Code : T2
				Booklet Code : A
190.	Lanc	d is said to be water logged when		
		Gravity drainage is ceased	(2)	
	(3)		(4)	Capillary fringe reaches root zone of plants
191.	Hyd	raulic jump occurs when the flow cha	anges fro	om
	(1)		(2)	sub critical to super critical
	(3)	critical to turbulent	(4)	laminar to turbulent
192.	Stre	ams that contribute to the ground wa		
	(1)	Effluent streams	(2)	Ground water stream
	(3)	Influent streams	(4)	Perennial stream
193	Rati	ional method correlates		
	(1)	Run off coefficient with intensity of	of rainfal	1
	(2)	Run off co efficient with drainage	area	
	(3)	Drainage area with intensity of rain	fall	
	(4)	Intensity of rainfall with run off		
194	. The	example of multiple Arch type Buttr	ress dam	
	(1)	Mir-Alam dam	(2)	Khadakwasla Dam
	(3)	Idikki dam	(4)	Koyna dam
195	. Sur	charge storage of reservoir is the vol	ume of v	water stored between
	(1)			
	(2)	Maximum pool level and minimum	n pool le	vel
	(3)	Minimum pool level and normal po	ool level	

(4) Normal pool level and revert bed level

Set Code :	T2
Booklet Code :	A

	page endangers the stability of an earth dam built on pervious foundation because of piping th depends on					
(1) height of dam	(2)	quantity of seepage f	low		
(3) value of exit gradient	(4)	total reservoir storage capacity			
197. In	verted filter for providing foundation	on drainage	has			
(1	multi layers of soil particles of same permeability					
(2	multi layers in which permeability increases from top to bottom					
(3	multi layers in which permeability increases from bottom to top					
(4) only one layer of soil			10		
198. G	ravity dams transfer load to founda	tion by				
(1) Arch action	(2)	Cantilever action			
(3) Both arch and cantilever action	(4)	Cohesion	(**)		
199. A	chute spill way is generally provide	ed with				
(1) A weir	. (2)	A barrage			
(3) Concrete gravity dam	(4)	An earth dam	10		
200. TI	ne function of surge tank is to					
(1) avoid flow in reverse direction					
(2) smoothen the flow					
(3)	act as a reservoir for emergency condition					
(4	relieve the pipe line of excessive pressure transients					
		30-A			(CVL	