INTRODUÇÃO AO DESEMPENHO DE AERONAVES PARTE 04

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra

No vôo planado, somente a sustentação (L), o arrasto (D) e o peso da anv (W) estão presentes

A tração (T) é considerada nula pois o GMP está desligado

Se a anv desloca-se em MRU então a ∑F = 0 Determinando-se o equilíbrio de forças ao longo da direção de vôo:

$$D = W \cdot sen\theta$$

e perpendiculares a DV:

$$L = W \cdot \cos\theta$$

Dividindo uma equação pela outra, tem-se:

$$tan\theta = (L/D)^{-1}$$

 θ = ângulo de planeio

Portanto, quanto maior o L/D, menor o ângulo de planeio (θ) e maior a distância horizontal que uma anv é capaz de percorrer em vôo planado, a partir de uma certa altura

Já a velocidade de planeio (V_G) é função somente do peso (W) da anv e da densidade do ar (altitude de vôo) e independe de L/D

No vôo planado, é fundamental determinar-se as seguintes condições de vôo:

- a velocidade de melhor planeio, onde θ é mínimo
- a velocidade de menor razão de descida ROD_{MIN}

Para θ ser mínimo, C_L/C_D deve ser máximo

Neste caso, a anv percorre a maior distância horizontal por unidade de perda de altura, ou seja, ela voa na condição de máximo alcance em vôo planado, então

$$V_{\text{max }L/D} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{C_{D_0}}} = \sqrt{\frac{2W}{\varrho S \sqrt{\pi \text{AeC}_{D_0}}}}$$

$$C_{L_{\max L/D}} = \sqrt{\frac{C_{D_0}}{K}} = \sqrt{\pi \text{AeC}_{D_0}}$$

$$\left(\frac{L}{D}\right)_{\text{max}} = \frac{1}{2\sqrt{C_{D_0}K}} = \frac{1}{2}\sqrt{\frac{\pi Ae}{C_{D_0}}}$$

Voar na condição de RD_{MIN} significa que a anv permanecerá o maior tempo possível em vôo a medida que perde altitude

$$RD = V \sin \overline{\gamma} = V \frac{C_D}{C_L} \cos \overline{\gamma} = \sqrt{\frac{W}{S}} \frac{2}{\varrho} \frac{C_D^2}{C_L^3} \cos^3 \overline{\gamma}$$

Sendo cosy ~ 1, então

$$RD = V \sin \overline{\gamma} = V \frac{C_D}{C_L} = \sqrt{\frac{W_2 C_D^2}{S \varrho C_L^3}}$$

Na condição para RD_{MIN} tem-se

$$V_{\min sink} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{3C_{D_0}}}$$

$$\left(\frac{L}{D}\right)_{\min sink} = \sqrt{\frac{3}{16KC_{D_0}}} = \sqrt{\frac{3\pi Ae}{16C_{D_0}}}$$

$S = 14.1 \, \text{m}^2$ W=300 kg b=15 m A = 161.2 Source: Ref. 8,2 0.8 ci/ci 0.4 0.04 0.08 0.12 0.16 8 16 24 32 200 400 600 800 Figure 8.4 Aerodynamic Characteristics of a Glider 800

Table 8.1 Calculation of Performance Characteristics of a Glider

α	C_L	CD	C_L/C_D	C_L^3/C_D^2	tany	Ÿ	V	V	RD
deg.						deg.	m/sec	km/hr	m/sec
12	1.47	0.0950	15.5	352	0.0645	3.7	15.2	54.7	0.97
11	1.46	0.0865	16.9	415	0.0592	3.4	15.3	55.0	0.90
9	1.36	0.0675	20.2	553	0.0495	2.8	15.8	56.8	0.78
7	1.23	0.0535	22.9	641	0.0437	2.5	16.7	60.0	0.73
5	1.08	0.0440	24.5	644	0.0408	2.3	17.8	64.0	0.72
3	0.90	0.0350	25.7	595	0.0389	2.2	19.4	69.7	0.76
1	0.70	0.0275	25.4	453	0.0394	2.3	22.1	79.5	0.87
-1	0.49	0.0220	22.0	225	0.0455	2.6	26.5	95.2	1.20
-3	0.25	0.0180	13.9	48	0.0719	4.1	36.5	131.0	2.62
-4	0.12	0.0160	7.5	6.8	0.1333	7.6	53.2	191.0	7.03

VÔO PLANADO

SPEED POLAR

Para o vôo planado, é conveniente plotar a velocidade vertical (V_V ou RD) em função da velocidade de vôo horizontal (V_H)

Esse gráfico é conhecido por "speed polar" (polar de velocidades) ou hodógrafo

Nele é possível identificar facilmente a velocidade de vôo e a RD para as condições de melhor planeio e menor RD

SPEED POLAR x DRAG POLAR

SPEED POLAR

No vôo planado, a variação na densidade e no peso somente alteram as velocidades de vôo e de descida, modificando as curvas da "speed polar"

O ângulo de planeio (θ) não se altera

SPEED POLAR

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra

EXERCÍCIO DE APLICAÇÃO

Determine:

- ✓ o menor ângulo de planeio da sua anv (θ_{MIN})
- √ a menor razão de descida (ROD_{MIN})
- ✓ a velocidade de melhor planeio e a velocidade de menor razão de descida
- ✓ a distância no solo a ser percorrida em vôo planado se a anv tiver uma pane em seu GMP a 10.000 ft de altura

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra

As potências disponível (P_A) e requerida (P_R) sofrem alterações com o aumento da altitude (H_P), reduzindo o excesso de potência e portanto, a razão de subida (R/C)

Há uma certa altitude onde as curvas da P_A e da P_R tornam-se tangentes e portanto, o excesso de potência e a R/C são zero

Nesta situação, o vôo reto e nivelado é somente possível em uma única velocidade

TETO ABSOLUTO

Altitude no qual o excesso de potência ($P_A - P_R$) é nulo e, portanto, a R/C = 0

TETO DE SERVIÇO OU OPERACIONAL

Altitude onde o excesso de potência ($P_A - P_R$) ainda permite uma R/C_{MAX} = 100 ft/min

TETO DE COMBATE

Altitude onde o excesso de potência ($P_A - P_R$) ainda permite uma R/C_{MAX} = 500 ft/min

MÉTODO PARA O CÁLCULO DOS TETOS ABSOLUTO, SERVIÇO E COMBATE

- ✓ calcule os valores da R/C_{MAX} para diferentes altitudes (no mínimo 4 altitudes)
- ✓ plote num gráfico R/C_{MAX} (eixo horizontal) x Altitude (eixo vertical)
- ✓ extrapole a curva obtida até interceptar o eixo vertical e obtenha graficamente os tetos absolutos, de serviço e de combate
- ✓ pode ser obtido tb a equação que melhor se ajusta a curva obtida no item anterior

EXERCÍCIO DE APLICAÇÃO

Determine o teto de serviço e o absoluto da sua anv

TEMPO DE SUBIDA

O tempo de subida até uma determinada altitude é um parâmetro de desempenho muito importante tanto para aeronaves civis quanto para as militares

Razão de subida (R/C) é a velocidade vertical da aeronave e portanto

$$v = ds/dt$$

ou seja

$$R/C = dh/dt$$

$$t = \int_{h_1}^{h_2} \frac{dh}{R/C}$$

Sendo
$$h_1 = 0$$
 (SL)

$$t = \int_0^{h_2} \frac{dh}{R/C}$$

TEMPO DE SUBIDA

O tempo de subida pode ser determinado graficamente:

- ✓ plotar a curva R/C⁻¹ (eixo vertical) x Altitude (eixo horizontal)
- √ a área embaixo da curva entre as altitudes h₁ e h₂ corresponde numericamente ao tempo de subida entre essas altitudes

TEMPO DE SUBIDA – ANV A HÉLICE

TEMPO DE SUBIDA – ANV A JATO

EXERCÍCIO DE APLICAÇÃO

Calcule o Δt de subida da sua anv entre o SL e 10.000 ft

DÚVIDAS??

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra