Конечные группы

А.СОСИНСКИЙ

ОНЯТИЕ группы, в частности конечной группы, — одно из важнейщих понятий математики. И вместе с тем одно из самых распространенных и наиболее полезных для приложений.

Без конечных групп нельзя, например, указать, какие алгебраические уравнения разрешимы в радикалах, а какие — нет, описать, как устроены кристаллы, создавать коды, исправляющие ошибки. Об этом, однако, мы здесь рассказывать не будем, а ограничимся простейшими примерами конечных групп.

Иллюстрации: группы действий

Непустой набор некоторых действий, которые можно последовательно выполнять, называют группой, если в этом наборе для каждого действия обязательно присутствует обратное к нему, а результат последовательного выполнения любых двух действий тоже является действием из этого набора.

В качестве иллюстрации рассмотрим действия солдата, выполняющего команды строевой подготовки

Рис. 1

(рис.1). Эти четыре действия составляют группу $R(\Box) = \{C, \Pi, \Pi, K; o\}$. Так, результат последовательного выполнения действий Π и K (направо и кругом) будет совпадать с результатом действия Π (налево); это

записывается в виде равенства К ∘ П = П. Точно так же Л ∘ Л = П ∘ П = К, Л ∘ П = П ∘ Л = К ∘ К = С. Остальные соотношения в группе можно извлечь из ее таблицы умножения, показанной на рисунке 1. Особую роль играет здесь действие С, которое можно назвать «ничегонеделание». (Такое действие обязательно есть в любой группе: мы его получим, выполнив произвольное действие, а затем обратное к нему.) У нас действия П и Л обратны друг к другу, действие К — обратно к самому себе, и т.д.

Рис. 2

Рассмотрим другую группу, тоже состоящую из поворотов. Именно — группу поворотов пятиконечной звезды $\Pi(\star)$ относительно ее центра (рис.2). «Ничегонеделание» (в этом случае — поворот на 0°) обозначено через R_0 , а остальные повороты (на 72°, 144°, 216°, 288°) — через R_1 , R_2 , R_3 , R_4 . Здесь $R_2 \circ R_1 = R_1 \circ R_2 = R_3$, $R_3 \circ R_3 = R_1$, $R_1 \circ R_4 = R_0$ (последнее означает, что R_4 обратно к R_1) и т.д.

Набор

$$\Pi(\star)=\{R_0,R_1,R_2,R_3,R_4;o\}$$

образует группу.

Рассмотрим, наконец, «группу надевания носка» (рис.3), состоящую из следующих действий:

О = «Оставь, как есть»,

П = «Сними и надень на другую ногу».

В = «Сними, выверни и надень на v же ногу».

П' = «Сними, выверни и надень на другую ногу».

Здесь «ничегонеделание» — это О, далее $\Pi \circ B = \Pi'$, $\Pi \circ \Pi = B \circ B = O$, $\Pi' \circ \Pi = B$ и т.д.

Снова получается группа $H = \{O, \Pi, B, \Pi'; \circ\}$, состоящая, как и $R(\square)$, из четырех действий. Группы H и $R(\square)$, однако, принципиально разные: у них таблицы умножения отличаются не только обозначением элементов, но и своим строением. Так, по диагонали таблицы умножения H стоит одно и то же действие O, в то время как H а этой диагонали у $R(\square)$ стоят разные элементы.

Подозреваю, что у самых серьезных читателей нарастает возмущение: какая-то там строевая подготовка, надевание носков — что за глупости такие, не научно это все! Спешу возразить: научно, даже очень. Знаете, как на самом деле называется набор действий солдата? Циклическая группа 4-го порядка или группа вычетов по модулю 4. А наше «надевание носков» — группа Клейна. Повороты же звезды — это одна из так называемых простых конечных групп.

Эта статья была опубликована жур нале «Квант» в №2 за 1987 год.

19

Рис. 4

Группы симметрий геометрических фигур

С каждой геометрической фигурой F можно связать вполне определенную группу S(F), называемую группой самосоемещений или группой симметрий этой фигуры; по определению, ее набор действий состоит из всех перемещений, совмещающих фигуру F саму с собой. Например, S(□)состоит из 8 действий: четырех поворотов квадрата (относительно его центра, в том числе на 0*) и четырех отражений (относительно двух диагоналей и двух «средних линий» квадрата).

В группе S(△) самосовмещений правильного треугольника — 6 действий, в группе S(□) прямоугольника — 4. Таблица умножения группы S(□) изображена на рисунке 4.

Если сравнить таблицу умножения для группы $S(\mathbb{Q})$ с таблицей умножения для группы H, можно заметить, что эти таблицы отличаются только обозначением действий. Если перечименовать действия так:

$$O \rightarrow R_0$$
, $\Pi \rightarrow R_1$, $B \rightarrow S_1$, $\Pi' \rightarrow S_2$,

то одна таблица превратится в другую. Группы с совпадающими (при подходящем переименовании действий) таблицами умножения называются изоморфными. Мы сейчас установили, что группы $S(\square)$ и H изоморфны (их обычно в честь Φ . Клейна обозначают буквой K), а ранее заметили, что эти группы не изоморфны группе $R(\square)$ действий солдата.

Читатель, возможно, догадался, почему мы обозначили группу действий солдата через $R(\square)$: она изоморфна группе поворотов квадрата и углы $2k\pi/4$, k=0, 1, 2, 3. Эта группа— частный случай (при n=4) группы поворотов правильного n-угольника (относительно его центра), которая еще называется циклической группой

КОНЕЧНЫЕ ГРУППЫ

n-го порядка и обычно обозначается через Z_a .

В алгебре группы изучают «с точностью до изоморфизма», т.е. не различают изоморфные группы: алгебраисту не интересно, как называется группа и ее действия, ему важно знать структуру таблицы умножения группы.

Группы перестановок и их подгруппы

Рассмотрим конечный набор предметов — скажем, пять. Обозначим предметы цифрами, а весь набор через $N_5 = \{1, 2, 3, 4, 5\}$. Перестановкой $i \in S_5$ этих предметов называется любое взаимно однозначное отображение $i \colon N_5 \to N_5$, т.е., попросту говоря, перенумерация предметов. Новый номер i(k) k-го предмета мы будем обозначать через i_k . Для наглядности перестановку i обычно представляют в виде таблицы:

$$i = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ i_1 & i_2 & i_3 & i_4 & i_5 \end{pmatrix}$$

Это позволяет легко находить произведение перестановок i и j. Например, если

$$i = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix},$$

$$j = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix},$$

то
$$k(3) = (i \circ j)(3) = i(j(3)) = i(5) = 2$$
, так что

$$i \circ j = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}$$

(обратите внимание, что при $k = i \circ j$ сначала выполняется j, а потом i, причем это не все равно: $i \circ j \neq j \circ i$ — проверьте!). Также легко находить обратные перестановки (\ast чтением снизу вверх \ast):

$$i^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix}^{-1} =$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$$

Нетрудно проверить, что S_5 образует группу, состоящую из 5! = 120 перестановок. Эта группа называется группой перестановок пяти предметов или симметрической группой

nятой степени. Совершенно аналогично определяется симметрическая группа S_n n-й степени для любого натурального n.

Группы перестановок интересны в частности тем, что содержат много подгрупп (т.е. частей, которые сами являются группами). В группах перестановок содержатся подгруппы, изоморфные всем нащим ранее рассмотренным группам. Заинтересованный читатель может в этом убедиться, проштудировав рисунок 5.

Рассматривая этот рисунок, читатель наверняка обратит внимание на красивые числовые закономерности, которые на нем проявляются. В частности, если назвать порядком группы число ее элементов, а порядком элемента g — наименьшее число k, для которого $g^k = e$, то можно сформулировать следующую теорему.

Теорема Лагранжа, Порядок любой подгруппы, также как порядок любого элемента группы, является делителем порядка группы.

Доказательство (не очень сложное) мы здесь не приводим.

Взаимоотношения групп: гомоморфизмы

Группы изучают не каждую саму по себе, а в их взаимодействии. Назовем гомоморфизмом $\gamma:G \to H$ группы G в группу H всякое отображение, ставящее в соответствие каждому действию g из G вполне определенное действие $h = \gamma(g)$ из H, если для любых g и g' из G выполняется

$$\gamma(g \circ g') = \gamma(g) \circ \gamma(g').$$

(Коротко говорят так: гомоморфизм — это отображение, сохраняющее операцию «.)

Бестолковый солдат, который игнорирует команды «кругом» и «смирно», а в ответ на команды «налево» и «направо» поворачивается кругом, тем самым задает гомоморфизм

$$\beta: R(\square) \rightarrow \mathbb{Z}_2 = \{C, K; \circ\}$$

по правилу $\beta(C) = \beta(K) = C$, $\beta(\Pi) = \beta(J) = K$. Задумавшийся солдат, не реагирующий ни на какую команду, определяет тривиальный гомоморфизм и тривиальную группу:

$$\alpha: R(\square) \to \{e\}.$$

Нетривиальные гомоморфизмы не всегда существуют. Например, лю-

Группа
$$I_{12} = \{G_i^{2\pi_{12}} = \mathcal{Z}, \mathcal{Z}, \mathcal{Z}, \dots \mathcal{Z}, \mathcal{Z}, \mathcal{Z}^{n} = e\}$$

1 злемент Ппорядка: $\{\mathcal{Z}, e\} \cong \mathcal{Z}_{2}$
2 элемента III порядка: $\{\mathcal{Z}, \mathcal{Z}, e\} \cong \mathcal{Z}_{3}$
2 элемента IV пор.: $\{\mathcal{Z}, \mathcal{Z}, \mathcal{Z}, \mathcal{Z}, e\} \cong \mathcal{Z}_{4}$
2 злемента VI пор.: $\{\mathcal{Z}, \mathcal{Z}, \mathcal{Z}, \mathcal{Z}, \mathcal{Z}^{n} \neq e\} \cong \mathcal{Z}_{4}$
4 злемента XII пор.: $\mathcal{Z}, \mathcal{Z}, \mathcal{Z}, \mathcal{Z}, \mathcal{Z}^{n} \neq e\} \cong \mathcal{Z}_{6}$

Группа $S_4 = \{\begin{pmatrix} 1 & 2 & 3 & 4 \\ i_1 & i_2 & i_3 & i_4 \end{pmatrix} : 6 cero 4! = 24 \text{ перест.} \}$

Группа
$$S_4 = \{ (i_1 i_2 i_3 i_4) : 6 cero 4! = 24 перест. \}$$

9 элем. II порт (12) (34), (13) (24), (14) (23) $e \cong \mathbb{Z}_2 \}$

8 элем. III порт (123), (124), (134), (234), $e \cong \mathbb{Z}_3 \}$

6 элем. III порт (12341), (3412), (4123), $e \cong \mathbb{Z}_4 \}$
 $\{(12), (34), (12), (34), e \} \cong \mathcal{K} \ (гр. Fілейна)$
 $\{(1234), (12), (34), e \} \cong \mathcal{K} \ (гр. Fілейна)$
 $\{(1234), (12), (34), e \} \cong \mathcal{K} \ (гр. Fілейна)$

$$S_5 = \{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ i_1 & i_2 & i_3 & i_4 & i_5 \end{pmatrix} : 5! = 120$$
 элементов $\}$ Есть элементы порядков II , III , IV , V , VI ;

пример эмемента порядка $VI: \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$. Есть подгруппы, изоморфные $(Z_2, Z_3, Z_4, Z_5, Z_5)$ Есть подгруппы, изоморфные $(S_3, S_4, u K)$. Есть единственния подгруппа $(S_2)^{20}$ порядка $(S_3)^{20}$.

Рис. 5. Подгруппы циклической группы Z_{12} и групп перестановок S_4 и S_5 . Красным выделены циклические подгруппы Z_k , зеленым — так называемые знакопеременные группы (A_4 и A_5). В описании группы S_4 цифры в круглых скобках обозначают циклы, т.е. перестановки, меняющие цифры (1 2 3 4)

круглых скобках обозначают циклы, т.е. перестановки, меняющие цифры в по кругу, например (123) = $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$ (т.е. $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$, $4 \rightarrow 4$) или $(24) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$, $(13)(24) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$.

бой гомоморфизм $\alpha: \mathbb{Z}_5 \to \mathbb{Z}_2$ или $\beta: \mathbb{Z}_5 \to \mathbb{Z}_6$ — тривиален.

Абстрактные группы и теорема Кэли

До сих пор мы рассматривали вполне конкретные группы, состоящие из действий — поворотов, симметрий и других преобразований. Но к понятию группы можно походить с более формальных, общих позиций; группы тогда считаются состоящими из элементов произвольной природы, а умножение — тоже произвольная операция (не обязательно композиция действий). Получается следующее аксиоматическое определение. Множество G элементов произвольной

природы, в котором задана бинарная операция * (состоящая в том, что каждой паре элементов $a, b \in G$ ставится в соответствие их произведение c = a*b, тоже являющееся элементом G), называется (абстрактной) группой, если

 операция * ассоциативна, т.е. для любых a, b, c ∈ G

$$a*(b*c) = (a*b)*c;$$

2. в G имеется единственный нейтральный элемент $e \in G$, для которого

$$a*e=e*a=a$$

при любом $a \in G$;

3. для каждого $a \in G$ существует единственный обратный элемент $a^{-1} \in G$ такой, что

$$a^{-1}*a = a*a^{-1} = e$$
.

Это общее определение позволяет сразу получить много новых примеров групп. Так, целые числа Z образуют группу (в качестве * берем операцию +, нейтральный элемент — это 0, а обратным к $a \in G$ служит (-a); ненулевые действительные числа $R\{0\}$ образуют группу относительно умножения и т.д.

Однако по существу абстрактный подход ничего нового не дает: оказывается, что любая абстрактная группа изоморфна некоторой группе действий. Мы докажем это здесь лишь для конечных групп.

Теорема Кэли. Всякая конечная группа G изоморфна некоторой подгруппе группы перестановок S_n .

Доказательство. Пусть $G = \{e = g_1, g_2, ..., g_n\}$. Каждому элементу $g_k \in G$ поставим в соответствие перестановку

$$\begin{pmatrix} 1 & 2 & 3 & \dots & n \\ i_1 & i_2 & i_3 & \dots & i_n \end{pmatrix}$$

где i_1 — номер элемента $g_k * g_1 = g_k * e$ (на самом деле $i_1 = k$), i_2 — номер элемента $g_k * g_2$, ..., i_n — номер элемента $g_k * g_n$. Тогда все i_s различны (т.е. действительно получается перестановка) и соответствие

$$g_k \rightarrow \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$

задает гомоморфизм $h:G \to S_n$ (это следует из ассоциативности), притом h отображает G взаимно однозначно на подгруппу $h(G) \subset S_n$ (это следует из аксиом 2 и 3).