

SSumM: Sparse Summarization of Massive Graphs

Kyuhan Lee*

Hyeonsoo Jo*

Jihoon Ko

Sungsu Lim

Kijung Shin

Graphs are Everywhere

Subway networks

Citation networks

Internet topologies

Massive Graphs Appeared

Social networks

2.49 Billion active users

Purchase histories

World Wide Web

5.49 Billion web pages

Difficulties in Analyzing Massive graphs

Computational cost (number of nodes & edges)

Difficulties in Analyzing Massive graphs

Solution: Graph Summarization

Introduction Problem Algorithms Experiments Conclusion

Advantages of Graph Summarization

- Many graph compression techniques are available
 - TheWebGraph Framework [BV04]
 - BFS encoding [AD09]
 - SlashBurn [KF11]
 - VoG [KKVF14]
- Graph summarization stands out because
 - Elastic: reduce size of outputs as much as we want
 - Analyzable: existing graph analysis and tools can be applied
 - Combinable for Additional Compression: can be further compressed

Input Graph

Adjacency Matrix

Summary Graph

Summary Graph

Summary Graph

	1	2	3	4	5	6	7	8	9
1	0	1	3/8	3/8	3/8	3/8	1/3	1/3	1/3
2	1	0	3/8	3/8	3/8	3/8	1/3	1/3	1/3
3	3/8	3/8	0	5/6	5/6	5/6	0	0	0
4	3/8	3/8	5/6	0	5/6	5/6	0	0	0
5	3/8	3/8	5/6	5/6	0	5/6	0	0	0
6	3/8	3/8	5/6	5/6	5/6	0	0	0	0
7	1/3	1/3	0	0	0	0	0	1	1
8	1/3	1/3	0	0	0	0	1	0	1
9	1/3	1/3	0	0	0	0	1	1	0

Reconstructed Adjacency Matrix

3 9 3/8 3/8 3/8 1/3 1/3 3/8 1/3 3/8 3/8 1/3 3/8 3/8 1/3 1/3 5/6 5/6 5/6 3/8 3/8 0 0 0 0 5/6 0 5/6 3/8 3/8 5/6 0 0 0 3/8 3/8 5/6 5/6 5/6 0 0 0 5/6 5/6 3/8 3/8 | 5/6 0 0 1/3 1/3 0 0 0 1/3 1/3 0 0 1/3 0 0 1/3 0 0 1 0

Summary Graph

Reconstructed Adjacency Matrix

Road Map

- Introduction
- Problem <<
- Proposed Algorithm: SSumM
- Experimental Results
- Conclusions

Problem Definition: Graph Summarization

Given:

a graph $m{G}$ and the target number of node $m{K}$

Find:

a summary graph \overline{G}

To Minimize:

the difference between graph $m{G}$ and the restored graph $\widehat{m{G}}$

Subject to:

the number of supernodes in $\overline{G} \leq K$

Introduction Problem Algorithms Experiments Conclusion

Problem Definition: Graph Summarization

a $\operatorname{\mathsf{graph}} G$ ar

Find:

a **summary** g

To Minimize:

the differend

le \pmb{K}

restored graph $\widehat{m{G}}$

Subject to:

the number of supernodes in $\overline{G} \leq K$

Introduction Problem Algorithms Experiments Conclusion

Problem Definition: Graph Summarization

Given:

a graph G and the desired size K (in bits)

Find:

a summary graph $\overline{m{G}}$

To Minimize:

the difference with graph graph $m{G}$ and the restored graph $m{G}$

Subject to:

size of \overline{G} in bits $\leq K$

Details: Size in Bits of a Graph

Input graph G

Size of graph: $2|E|\log_2|V|$

Encoded using $log_2|V|$ bits

Size of summary graph: $|P|(2 \log_2 |S| + \log_2 \omega_{max}) + |V| \log_2 |S|$

S : set of supernodes

P: set of superedges

 w_{max} : maximum superedge weight

Size of summary graph: $|P|(2\log_2|S| + \log_2 \omega_{max}) + |V|\log_2|S|$

Summary graph \overline{G}

S : set of supernodes

P: set of superedges

 w_{max} : maximum superedge weight

Size of summary graph: $|P|(2\log_2|S| + \log_2\omega_{max}) + |V|\log_2|S|$

Summary graph \overline{G}

S : set of supernodes

P: set of superedges

 w_{max} : maximum superedge weight

Size of summary graph: $|P|(2\log_2|S| + \log_2 \omega_{max}) + |V|\log_2|S|$

Details: Error Measurement

	1	2	3	4	5	6	7	8	9
1	0	1		0	0	1	0	0	1
2	1		1	0	0	1	1	0	0
3	0	1	0	1	1	1	0	0	1
4	0	0		0	1	0	0	0	0
5	0	0		1	0	1	1	0	0
6	1	1	1	0	1	0	0	0	0
7	0	1	0	0	1	0	0	1	1
8	0	0	0	0	0	0	1	0	1
9	1	0	1	0	0	0	1	1	0

	1	2	3	4	5	6	7	8	9
1	0	1	3/8	3/8	3/8	3/8	1/3	1/3	1/3
2	1	0	3/8	3/8	3/8	3/8	1/3	1/3	1/3
3	3/8	3/8	0	5/6	5/6	5/6	0	0	0
4	3/8	3/8	5/6	0	5/6	5/6	0	0	0
5	3/8	3/8	5/6	5/6	0	5/6	0	0	0
6	3/8	3/8	5/6	5/6	5/6	0	0	0	0
7	1/3	1/3	0	0	0	0	0	1	1
8	1/3	1/3	0	0	0	0	1	0	1
9	1/3	1/3	0	0	0	0	1	1	0

Reconstructed Adjacency Matrix *A*

Reconstructed Adjacency Matrix \widehat{A}

$$RE_{p}(A, \widehat{A}) = \left(\sum_{i=1}^{|V|} \sum_{j=1}^{|V|} |A(i, j) - \widehat{A}(i, j)|^{p}\right)^{\frac{1}{p}}$$

Road Map

- Introduction
- Problem
- Proposed Algorithm: SSumM <<
- Experimental Results
- Conclusions

Main ideas of SSumM

- Practical graph summarization problem
 - ∘ *Given*: a graph *G*
 - \circ *Find*: a summary graph $\overline{\boldsymbol{G}}$
 - ullet <u>To minimize</u>: the difference between $oldsymbol{G}$ and the restored graph $\widehat{oldsymbol{G}}$
 - Subject to: Size of $\overline{\mathbf{G}}$ in bits $\leq \mathbf{K}$
- Combines node grouping and edge sparsification
- Prunes search space
- Balances error and size of the summary graph using MDL principle

How to choose a next action?

How to choose a next action?

Graph Summarization is

A Search Problem

How to choose a next action?

Graph Summarization is

A Search Problem

<u>Summary graph size</u> + <u>Information loss</u>

How to choose a next action?

Graph Summarization is

A Search Problem

<u>Summary graph size</u> + <u>Information loss</u>

MDL Principle

Introduction Problem Algorithms Experiments Conclusion

Overview: SSumM

• Given:

 \circ (1) An input graph G, (2) the desired size K, (3) the number T of iterations

• Outputs:

 \circ Summary graph $\overline{m{G}}$

Procedure

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Initialization Phase

Input graph G

Summary graph \overline{G}

$$C = \{c\}$$
 $B = \{b\}$
 $A = \{a\}$
 $G = \{g\}$
 $I = \{i\}$
 $E = \{e\}$
 $F = \{f\}$
 $I = \{h\}$

Procedure

- Initialization phase <<</p>
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Candidate Generation Phase

Input graph G

$$C = \{c\}$$

$$D = \{d\}$$

$$A = \{a\}$$

$$E = \{e\}$$

$$G = \{g\}$$

$$I = \{i\}$$

$$F = \{f\}$$

$$H = \{h\}$$

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase <<</p>
 - Merge and sparsification phase
- Further sparsification phase

For each candidate set C

$$C = \{c\}$$

$$D = \{d\}$$

$$E = \{e\}$$

$$B = \{b\}$$

$$A = \{a\}$$

Among possible candidate pairs

- Initialization phase
- t = 1
- While $t++ \leq T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase <<
- Further sparsification phase

For each candidate set *C*

$$C = \{c\}$$

$$D = \{d\}$$

$$E = \{e\}$$

$$B = \{b\}$$

$$A = \{a\}$$

Among possible candidate pairs

- Initialization phase
- t = 1
- While $t++ \leq T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase <<
- Further sparsification phase

Select the pair with
the greatest (relative) reduction
in the cost function
(A, B) (A, D) (C, D)

```
if reduction(C, D) > \theta:

merge(C, D)

else

sample log_2 |C| pairs again
```

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase <<</p>
- Further sparsification phase

Select the pair with
the greatest (relative) reduction
in the cost function
(A, B) (A, D) (C, D)

```
if reduction(C, D) > \theta:

merge(C, D)

else

sample log_2 |C| pairs again
```

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase <<</p>
- Further sparsification phase

Summary graph \overline{G}

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase <<</p>
- Further sparsification phase

Summary graph \overline{G}

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase <<
- Further sparsification phase

Summary graph \overline{G}

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase <<</p>
- Further sparsification phase

Summary graph \overline{G}

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase <<
- Further sparsification phase

Summary graph \overline{G}

Sparsify or not according to total description cost

- Initialization phase
- -t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase <<
- Further sparsification phase

Summary graph \overline{G}

Sparsify or not according to total description cost

- Initialization phase
- -t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase <<</p>
- Further sparsification phase

Summary graph \overline{G}

Sparsify or not according to total description cost

- Initialization phase
- t = 1
- While $t++ \leq T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase <<
- Further sparsification phase

Summary graph \overline{G}

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Summary graph \overline{G}

Different candidate sets and decreasing threshold θ over iteration

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Summary graph \overline{G}

Summary graph \overline{G}

Different candidate sets and decreasing threshold θ over iteration

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Summary graph \overline{G}

Summary graph \overline{G}

Different candidate sets and decreasing threshold θ over iteration

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Summary graph \overline{G}

Summary graph \overline{G}

Different candidate sets and decreasing threshold θ over iteration

riocedule —

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Summary graph \overline{G}

Summary graph \overline{G}

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Summary graph \overline{G}

Summary graph \overline{G}

Different candidate sets and decreasing threshold θ over iteration

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Summary graph \overline{G}

Summary graph \overline{G}

Different candidate sets and decreasing threshold θ over iteration

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Summary graph \overline{G}

Summary graph \overline{G}

Summary graph \overline{G}

Procedure

- Initialization phase
- t = 1
- While $t++ \le T$ and K <size of \overline{G} in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Summary graph \overline{G}

Summary graph \overline{G}

Summary graph \overline{G}

Procedure

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Summary graph \overline{G}

Summary graph \overline{G}

Summary graph \overline{G}

Procedure

- Initialization phase
- t = 1
- While $t++ \le T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- Further sparsification phase

Further Sparsification Phase

Summary graph \overline{G}

$$C = \{c, d\}$$

$$A = \{a, e\}$$

$$G = \{g, h, i\}$$

$$F = \{f\}$$

Superedges sorted by ΔRE_n

- Initialization phase
- t = 1
- While $t++ \leq T$ and $K < \text{size of } \overline{G}$ in bits
 - Candidate generation phase
 - Merge and sparsification phase
- **Further sparsification phase <<**

Road Map

- Introduction
- Problem
- Proposed Algorithm: SSumM
- Experimental Results <<
- Conclusions

Experiments Settings

• 10 datasets from 6 domains (up to 0.8B edges)

- Three competitors for graph summarization
 - k-Gs [LT10]
 - S2L [RSB17]
 - SAA-Gs [BAZK18]

SSumM Gives Concise and Accurate Summary

SSumM Gives Concise and Accurate Summary

SSumM is Fast

SSumM is Fast

SSumM is Scalable

SSumM Converges Fast

Road Map

- Introduction
- Problem
- Proposed Algorithm: SSumM
- Experimental Results
- Conclusions <<

Conclusions

- Practical Problem Formulation
- Scalable and Effective Algorithm Design
- Extensive Experiments on 10 real world graphs

Code available at https://github.com/KyuhanLee/SSumM

SSumM: Sparse Summarization of Massive Graphs

Kyuhan Lee*

Hyeonsoo Jo*

Jihoon Ko

Sungsu Lim

Kijung Shin