Signali i sustavi - Diferencijalne jednadžbe

Homogeno rješenje

$$y_h(t) = Ce^{st}$$

VIŠESTRUKE FREKVENCIJE (primjer)

$$s_1 = 2$$
, $s_2 = s_3 = 4$, $s_4 = s_5 = s_6 = -5$
 $y_h(t) = C_1 e^{2t} + (C_2 + C_3 t) e^{4t} + (C_4 + C_5 t + C_6 t^2) e^{-5t}$

KONJUGIRANO KOMPLEKSNE FREKVENCIJE

$$s_{1,2} = \sigma \pm j\omega$$
$$y_h(t) = e^{\sigma t} \left[A\cos(\omega t) + B\sin(\omega t) \right]$$

Partikularno rješenje

Pobuda $u\left(t\right)$	Partikularni oblik $y_{p}\left(t ight)$
\overline{A}	K
$Ae^{\varphi t}$	$Ke^{arphi t}t^{k}$
t^M	$K_0 + K_1 t^1 + \dots + K_M t^M$
$t^M e^{arphi t}$	$\left(K_0 + K_1 t^1 + \dots + K_M t^M\right) e^{\varphi t} t^k$
$A\cos\left(\Omega_{0}t\right)$ ili $A\sin\left(\Omega_{0}t\right)$	$K_1 \cos(\Omega_0 t) + K_2 \sin(\Omega_0 t)$

k - broj ponavljanja φ kao karakteristične frekvencije

Početni uvjeti

Formule iz SiS-a, posljednja stranica. Uvijek se (osim kod nepobuđenog sustava), traže uvjeti u 0^+ iz uvjeta u 0^- . Kod mirnog odziva, početni uvjeti jednaki su 0.

Pregled odziva

odziv	oblik	
MIRNI	$y_{m}\left(t\right) = y_{h}\left(t\right) + y_{p}\left(t\right)$	
NEPOBUĐENI	$y_{n}\left(t\right) =y_{h}\left(t\right)$	
TOTALNI	$y_{tot}(t) = y_h(t) + y_p(t) = y_m(t) + y_n(t)$	
PRIRODNI	$y_{prir}\left(t\right) = y_{tot}\left(t\right) - y_{p}\left(t\right)$	
PRISILNI	$y_{pris}\left(t\right)=y_{p}\left(t\right)$	
IMPULSNI	$h(t) = \begin{cases} \sum_{m=0}^{M} (b_{N-m}D^{m}) h_{A}(t), & t \ge 0, N > M \\ b_{0}\delta(t) + \sum_{m=0}^{M} (b_{N-m}D^{m}) h_{A}(t), & t \ge 0, N = M \end{cases}$	

N - red sustava, M - stupanj najveće derivacije pobude, D - operator deriviranja