Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte-Carlo.

Lionel Riou-Durand University of Warwick

Statistics Seminar, UBC May 3, 2022

Joint work with

Jure Vogrinc University of Warwick

Outline

Tuning for Hamiltonian Monte-Carlo

Tuning the time step: optimal scaling of the acceptance rate

Tuning the integration time: control of the worst ACF

Randomized HMC: a robust solution based on random integration times

Langevin diffusion

Robustness: positive damping enables control of the worst ACF

Connections to Randomized HMC

Quantitative exponential mixing rates

Metropolis Adjusted Langevin Trajectories

MALT: a robust alternative to HMC

Tuning the time step: optimal scaling for any damping

Numerical illustrations

Notations

- Euclidean norm: $|x| \triangleq (x^\top x)^{1/2}$, $x \in \mathbb{R}^d$.
- Supremum norm: $||f||_{\infty} \triangleq \sup_{\boldsymbol{x} \in \mathbb{R}^d} |f(\boldsymbol{x})|$.
- $\blacksquare \mathbb{L}^2(\pi_*)$ norm: $||f|| \triangleq (\int f^2 d\pi_*)^{1/2}$.
- 2-Wasserstein metric: $W_2(\nu,\mu) \triangleq \inf\{\mathbb{E}[|\boldsymbol{X}-\boldsymbol{Y}|^2]^{1/2}, \boldsymbol{X} \sim \nu, \boldsymbol{Y} \sim \mu\}$

Hamiltonian dynamics

■ Goal: approximate sampling from a target with density

$$\pi(\boldsymbol{x}) \propto \exp\{-\Phi(\boldsymbol{x})\}, \qquad \boldsymbol{x} \in \mathbb{R}^d.$$

■ A1: The potential $\Phi \in C^1(\mathbb{R}^d)$ has a Lipschitz gradient

$$\exists M > 0, \qquad |\nabla \Phi(\boldsymbol{x}) - \nabla \Phi(\boldsymbol{y})| \leq M|\boldsymbol{x} - \boldsymbol{y}|, \qquad \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d.$$

■ Hamiltonian dynamics for $t \ge 0$:

$$d \begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{V}_t \end{bmatrix} = \begin{bmatrix} \boldsymbol{V}_t \\ -\nabla \Phi(\boldsymbol{X}_t) \end{bmatrix} dt.$$

■ Invariant measure: $\pi \otimes \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)$ with density

$$\pi_*(x, v) \propto \exp\{-\Phi(x) - |v|^2/2\}, \qquad (x, v) \in \mathbb{R}^{2d}.$$

Leapfrog integrator

- Leapfrog: a standard integrator for Hamiltonian dynamics.
- lacksquare For a time step h>0, define $oldsymbol{ heta}_h:(oldsymbol{x}_0,oldsymbol{v}_0)\mapsto (oldsymbol{x}_h,oldsymbol{v}_h)$ as

$$egin{aligned} & oldsymbol{v}_{h/2} = oldsymbol{v}_0 - (h/2)
abla \Phi(oldsymbol{x}_0) \ & oldsymbol{x}_h = oldsymbol{x}_0 + h oldsymbol{v}_{h/2} \ & oldsymbol{v}_h = oldsymbol{v}_{h/2} - (h/2)
abla \Phi(oldsymbol{x}_h). \end{aligned}$$

■ Each trajectory is composed of L leapfrog steps: $\theta_h^L = \theta_h \circ \cdots \circ \theta_h$.

Hamiltonian Monte Carlo

- Duane et al. 1987
- HMC for time step h > 0 and integration time T > 0.
 - set $L = \lceil T/h \rceil$
 - ullet refresh the momentum $oldsymbol{V}' \leftarrow oldsymbol{\xi} \sim \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)$
 - ullet propose a trajectory $(oldsymbol{X}_L, oldsymbol{V}_L) = oldsymbol{ heta}_h^L(oldsymbol{X}_0, oldsymbol{V}')$
 - accept with probability $\pi_*(\boldsymbol{X}_L, \boldsymbol{V}_L)/\pi_*(\boldsymbol{X}_0, \boldsymbol{V}')$
 - ullet if rejected, flip the momentum $(oldsymbol{X}_L, oldsymbol{V}_L) \leftarrow (oldsymbol{X}_0, -oldsymbol{V}')$
- Remark: full refreshments erase the momentum flips.

Generalized Hamiltonian Monte Carlo

- Horowitz 1991
- GHMC for h > 0, T > 0, and persistence parameter $\alpha \in [0, 1)$.
 - set $L = \lceil T/h \rceil$
 - refresh the momentum $V' \leftarrow \alpha V_0 + \sqrt{1 \alpha^2 \xi} \sim \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)$.
 - ullet propose a trajectory $(oldsymbol{X}_L, oldsymbol{V}_L) = oldsymbol{ heta}_h^L(oldsymbol{X}_0, oldsymbol{V}')$
 - accept with probability $\pi_*(\boldsymbol{X}_L, \boldsymbol{V}_L)/\pi_*(\boldsymbol{X}_0, \boldsymbol{V}')$
 - ullet if rejected, flip the momentum $(oldsymbol{X}_L, oldsymbol{V}_L) \leftarrow (oldsymbol{X}_0, -oldsymbol{V}')$
- Remark: momentum flips are only partially erased.

HMC: tuning the time step

- Choosing h for a given T, when $\alpha = 0$ (full refreshments).
- A2: The potential writes $\Phi(x) = \sum_{i=1}^d \phi(x_i)$ where $\phi \in C^4(\mathbb{R})$

$$\int_{\mathbb{R}} x^8 \exp\{\phi(x)\} dx < \infty, \qquad \|\phi^{(k)}\|_{\infty} < \infty, \qquad k = 2, 3, 4.$$

- Beskos et al. 2013: optimal scaling of the acceptance rate, as $d \to \infty$.
- Choose $h = \ell_T d^{-1/4}$ to get an asym. acceptance rate $a(\ell_T) \approx 65\%$.

HMC: tuning the integration time

• Adaptively setting the path length T > 0.

$$d|\boldsymbol{X}_t - \boldsymbol{X}_0|^2 = 2(\boldsymbol{X}_t - \boldsymbol{X}_0)^{\top} \boldsymbol{V}_t dt.$$

- Idea: following Hamiltonian dynamics until $(\boldsymbol{X}_T \boldsymbol{X}_0)^{\top} \boldsymbol{V}_T < 0$.
- Hoffman and Gelman 2014: No-U Turn Sampler.
- lacksquare A black-box for tuning T>0, aiming to maximize the jump distance.
- Euclidean metric... what mixing guarantees for a given component?

HMC: tuning the integration time

- Auto-Correlation Functions: $\rho_i(T) \triangleq \text{Corr}(X_i(T), X_i(0)), i = 1, ..., d.$
 - Heterogeneity of scales, Gaussian

$$\Phi(\boldsymbol{x}) = \sum_{i=1}^d x_i^2/(2\sigma_i^2).$$

Periodic ACFs

$$\rho_i(T) = \cos(T/\sigma_i).$$

- The worst ACF $\max_{i \in [\![1,d]\!]} |\rho_i(T)|$ can be arbitrarily erratic and close to 1.
- Bou-Rabee and Sanz-Serna 2017: $T \sim \mathcal{E}xp(\lambda)$, Randomized HMC.
- Smoothing effect: $\mathbb{E}[\rho_i(T)] = \frac{\sigma_i^2}{\sigma_i^2 + \lambda^{-2}} \leq \frac{\sigma_{\max}^2}{\sigma_{\max}^2 + \lambda^{-2}} \Rightarrow$ monotonic.

Summary

Tuning for Hamiltonian Monte-Carlo

Tuning the time step: optimal scaling of the acceptance rate

Tuning the integration time: control of the worst ACF

Randomized HMC: a robust solution based on random integration times

Langevin diffusion

Robustness: positive damping enables control of the worst ACF

Connections to Randomized HMC

Quantitative exponential mixing rates

Metropolis Adjusted Langevin Trajectories

MALT: a robust alternative to HMC

Tuning the time step: optimal scaling for any damping

Numerical illustrations

Langevin diffusion

- Damping parameter $\gamma \geq 0$, a.k.a friction.
- Langevin SDE for $t \ge 0$:

$$d \begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{V}_t \end{bmatrix} = \begin{bmatrix} \boldsymbol{V}_t \\ -\nabla \Phi(\boldsymbol{X}_t) \end{bmatrix} dt + \begin{bmatrix} \boldsymbol{0}_d \\ -\gamma \boldsymbol{V}_t dt + \sqrt{2\gamma} d\boldsymbol{W}_t \end{bmatrix}.$$

- Langevin dynamics = Hamiltonian dynamics with momentum refreshment continuously induced by a Brownian Motion $(\mathbf{W}_t)_{t\geq 0}$.
- Same invariant measure: $\pi \otimes \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)$.

Control of the worst ACF

Running example, Gaussian with heterogeneous scales:

$$\Phi(\mathbf{x}) = \sum_{i=1}^{d} x_i^2 / (2\sigma_i^2).$$

■ ACF for the Langevin diffusion: various frictions $\gamma \geq 0$ for fixed $\sigma_i = 1$.

Control of the worst ACF

■ ACF for HMC and the Langevin diffusion ($\gamma = 2$), for various $\sigma_i > 0$.

• Positive damping enables a uniform control of the correlations

$$\gamma = 2/\sigma_{\max} \Rightarrow \max_{i \in [\![1,d]\!]} |\rho_{i,\gamma}(T)| \le e^{-T/\sigma_{\max}} (1 + T/\sigma_{\max}).$$

 2π

Connection with Randomized HMC

■ Randomized HMC with parameters (λ, α) , a jump-type SDE for $t \geq 0$:

$$\mathbf{d} \begin{bmatrix} \boldsymbol{X}_t \\ \boldsymbol{V}_t \end{bmatrix} = \begin{bmatrix} \boldsymbol{V}_t \\ -\nabla \Phi(\boldsymbol{X}_t) \end{bmatrix} \mathbf{d}t + \begin{bmatrix} \boldsymbol{0}_d \\ \left(\alpha \boldsymbol{V}_{t-} + \sqrt{1 - \alpha^2} \boldsymbol{\xi}_{\boldsymbol{N}_{t-}} - \boldsymbol{V}_{t-}\right) \mathbf{d}\boldsymbol{N}_t \end{bmatrix}.$$

■ Randomized HMC and Langevin diffusion generators, for $f \in C_c^{\infty}(\mathbb{R}^{2d})$.

$$\mathcal{L}_{\lambda,\alpha}^{\mathrm{RH}} \triangleq \mathcal{L}^{\mathrm{H}} + \lambda \mathcal{R}_{\alpha}^{\mathrm{PP}}$$

$$\mathcal{L}_{\gamma}^{\mathrm{LD}} \triangleq \mathcal{L}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{L}_{\gamma}^{\mathrm{ED}} \triangleq \mathcal{L}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{L}_{\gamma}^{\mathrm{BM}} = \mathcal{L}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{L}_{\alpha}^{\mathrm{PP}} = \mathcal{L}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{L}_{\alpha}^{\mathrm{BM}} = \mathcal{L}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{L}_{\alpha}^{\mathrm{PP}} = \mathcal{L}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{L}_{\alpha}^{\mathrm{PP}} = \mathcal{L}^{\mathrm{H}} = \mathcal{L}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}}$$

$$\mathcal{L}_{\alpha}^{\mathrm{PP}} = \mathcal{L}^{\mathrm{H}} = \mathcal{L}^{\mathrm{H}} + \gamma \mathcal{R}^{\mathrm{BM}} = \mathcal{L}^{\mathrm{H}} = \mathcal{L}^{$$

- Proposition: If $\lambda = \frac{2\gamma}{1-\alpha^2}$ then $\|\mathcal{L}_{\lambda,\alpha}^{\mathrm{RH}} f \mathcal{L}_{\gamma}^{\mathrm{LD}} f\|_{\infty} \to 0$ as $\alpha \to 1$.
- The Langevin Diffusion is a limit of Randomized HMC, obtained as refreshments become infinitesimally partial and frequent.

Quantitative mixing rates

- Denote \mathbf{P}^t the transition kernel of RHMC with parameters (λ, α)
- A3: the potential $\Phi \in C^2(\mathbb{R}^d)$, such that for some $M \geq m > 0$

$$m\mathbf{I}_d \preceq \nabla^2 \Phi(\mathbf{x}) \preceq M\mathbf{I}_d, \qquad \mathbf{x} \in \mathbb{R}^d.$$

■ Theorem: Let $\lambda = \frac{2\sqrt{M+m}}{1-\alpha^2}$, then for any $\alpha \in [0,1)$ we have

$$W_2((\nu \mathbf{P}^t)_{\boldsymbol{x}}, \pi) \le Ce^{-rt}W_2(\nu_{\boldsymbol{x}}, \pi), \qquad \nu = \nu_{\boldsymbol{x}} \otimes \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)$$

$$\|\mathbf{P}^t f\| \le C' e^{-rt} \|f\|, \qquad f \in \mathbb{L}_0^2(\pi)$$

where

$$r = \frac{1+\alpha}{2} \left(\frac{m}{\sqrt{M+m}} \right), \qquad C, C' \le 1.56$$

Quantitative mixing rates

- The Langevin diffusion is a limit of Randomized HMC that achieves the fastest exponential mixing rate for strongly log-concave targets.
- An interpolation between results from Deligiannidis et al. 2018 and Dalalyan and R-D 2020.
- Motivates the construction of a sampling algorithm directly built upon Langevin trajectories.

Summary

Tuning for Hamiltonian Monte-Carlo

Tuning the time step: optimal scaling of the acceptance rate

Tuning the integration time: control of the worst ACF

Randomized HMC: a robust solution based on random integration times

Langevin diffusion

Robustness: positive damping enables control of the worst ACF

Connections to Randomized HMC

Quantitative exponential mixing rates

Metropolis Adjusted Langevin Trajectories

MALT: a robust alternative to HMC

Tuning the time step: optimal scaling for any damping

Numerical illustrations

A discretization for Langevin Trajectories

- A standard integrator for Langevin dynamics (A1 \Rightarrow strong accuracy):
- Set $\alpha = e^{-\gamma h/2}$, let $(\boldsymbol{x}_h, \boldsymbol{v}_h) \sim \mathbf{Q}_{h,\gamma}((\boldsymbol{x}_0, \boldsymbol{v}_0), .)$ such that

$$egin{aligned} oldsymbol{v}_0' &= lpha oldsymbol{v}_0 + \sqrt{1-lpha^2} oldsymbol{\xi} \ oldsymbol{v}_{h/2} &= oldsymbol{v}_0' - (h/2)
abla \Phi(oldsymbol{x}_0) \ oldsymbol{x}_h &= oldsymbol{x}_0 + h oldsymbol{v}_{h/2} \ oldsymbol{v}_h' &= oldsymbol{v}_{h/2} - (h/2)
abla \Phi(oldsymbol{x}_h) \ oldsymbol{v}_h &= lpha oldsymbol{v}_h' + \sqrt{1-lpha^2} oldsymbol{\xi}'. \end{aligned}$$

■ Langevin Trajectory for L steps: $(x_{Lh}, v_{Lh}) \sim \mathbf{Q}_{h,\gamma}^L((x_0, v_0), .)$.

Metropolis Adjusted Langevin Trajectories

- MALT for friction $\gamma \ge 0$, time step h > 0, integration time T > 0.
 - set $L = \lceil T/h \rceil$
 - refresh the momentum $V_0 \leftarrow \boldsymbol{\xi} \sim \mathcal{N}_d(\mathbf{0}_d, \mathbf{I}_d)$
 - ullet propose $(oldsymbol{X}_L, oldsymbol{V}_L) \sim \mathbf{Q}_{h,\gamma}^L((oldsymbol{X}_0, oldsymbol{V}_0),.)$
 - accept with probability

$$\frac{\pi_*(\boldsymbol{X}_L, \boldsymbol{V}_L)}{\pi_*(\boldsymbol{X}_0, \boldsymbol{V}_0)} \times \prod_{i=1}^L \frac{q_{h,\gamma}((\boldsymbol{X}_i, -\boldsymbol{V}_i), (\boldsymbol{X}_{i-1}, -\boldsymbol{V}_{i-1}))}{q_{h,\gamma}((\boldsymbol{X}_{i-1}, \boldsymbol{V}_{i-1}), (\boldsymbol{X}_i, \boldsymbol{V}_i))}$$

- ullet if rejected, flip the momentum $(oldsymbol{X}_L, oldsymbol{V}_L) \leftarrow (oldsymbol{X}_0, -oldsymbol{V}_0)$
- Remark: full refreshments erase the momentum flips.

Metropolis Adjusted Langevin Trajectories

- A neat Metropolis adjustment for the Langevin diffusion.
- The length of the trajectories can be chosen by the user.
- Momentum flips can be erased by full refreshments.
- \blacksquare For $\gamma>0$ the trajectories are ergodic \Rightarrow no U-turns.
- Positive damping enables control of the worst ACF.
- A robust extension to HMC: we establish $d^{1/4}$ scaling for MALT for any choice of friction, without additional assumptions.

Optimal scaling: an extension to positive friction

- Choosing h for a given T and friction $\gamma \geq 0$?
- A2: The potential writes $\Phi({m x}) = \sum_{i=1}^d \phi(x_i)$ where $\phi \in C^4(\mathbb{R})$

$$\int_{\mathbb{R}} x^8 \exp\{\phi(x)\} dx < \infty, \qquad \|\phi^{(k)}\|_{\infty} < \infty, \qquad k = 2, 3, 4.$$

- Theorem: optimal scaling of the acceptance rate, as $d \to \infty$.
- Choose $h = \ell_T d^{-1/4}$ to get an asym. acceptance rate $a(\ell_T) \approx 65\%$.
- An extension of Beskos et al. 2013 to any friction $\gamma \geq 0$.

Numerical illustrations

■ Gaussian: $\Phi(x) = \sum_{i=1}^{d} x_i^2/(2\sigma_i^2)$. Heterogeneous scales: $\sigma_i^2 = i/d$.

Figure: Gaussian d=50. Worst ESS per time for estimating the mean and variance.

Numerical illustrations

- Setting: h > 0 is fixed to obtain acceptance rates close to 65%.
- lacktriangle Problem: tuning L to obtain good efficiency for every function.

Table: Gaussian d=50. Worst ESS per gradient evaluation for various functions.

	odd				even			
f(x)	x	x^3	sgn(x)	$\sin(x)$	x^2	x^4	$e^{- x }$	$\cos(x)$
MALT: $L=8$	0.25	0.31	0.31	0.27	0.40	0.42	0.43	0.40
RHMC: $L=5$	0.40	0.43	0.45	0.41	0.29	0.31	0.31	0.29
HMC: $L=3$	0.19	0.25	0.26	0.21	0.00	0.00	0.00	0.00
MALA ($L=1$)	0.06	0.08	0.09	0.07	0.12	0.12	0.16	0.13

Summary

Tuning for Hamiltonian Monte-Carlo

Tuning the time step: optimal scaling of the acceptance rate

Tuning the integration time: control of the worst ACF

Randomized HMC: a robust solution based on random integration times

Langevin diffusion

Robustness: positive damping enables control of the worst ACF

Connections to Randomized HMC

Quantitative exponential mixing rates

Metropolis Adjusted Langevin Trajectories

MALT: a robust alternative to HMC

Tuning the time step: optimal scaling for any damping

Numerical illustrations

Summary of contributions

- Langevin diffusion is a limit of Randomized HMC that achieves the fastest exponential mixing rate for strongly log-concave targets.
- Positive damping enables control of the worst ACF.
- MALT, a neat Metropolis correction for Langevin trajectories:
 - the length of the trajectories can be chosen by the user
 - momentum flips can be erased by full refreshments
- Optimal scaling, an extension of Beskos et al. 2013: we establish $d^{1/4}$ scaling for MALT, without additional assumptions.

Perspectives

- Adaptive tuning for h, T and γ , software implementations.
- Further comparisons with HMC, GHMC, Randomized HMC.

References I

- [Bes+13] Alexandros Beskos et al. "Optimal tuning of the hybrid Monte Carlo algorithm". In: *Bernoulli* 19.5A (2013), pp. 1501–1534.
- [Bet17] Michael Betancourt. "A conceptual introduction to Hamiltonian Monte Carlo". In: arXiv preprint arXiv:1701.02434 (2017).
- [BS17] Nawaf Bou-Rabee and Jesús Maria Sanz-Serna. "Randomized hamiltonian monte carlo". In: *The Annals of Applied Probability* 27.4 (2017), pp. 2159–2194.
- [Del+18] George Deligiannidis et al. "Randomized Hamiltonian Monte Carlo as scaling limit of the bouncy particle sampler and dimension-free convergence rates". In: arXiv preprint arXiv:1808.04299 (2018).

References II

- [DR20] Arnak S Dalalyan and Lionel R-D. "On sampling from a log-concave density using kinetic Langevin diffusions". In: Bernoulli 26.3 (2020), pp. 1956–1988.
- [Dua+87] Simon Duane et al. "Hybrid monte carlo". In: *Physics letters B* 195.2 (1987), pp. 216–222.
- [HG14] Matthew D Hoffman and Andrew Gelman. "The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.". In: J. Mach. Learn. Res. 15.1 (2014), pp. 1593–1623.
- [Hor91] Alan M Horowitz. "A generalized guided Monte Carlo algorithm". In: *Physics Letters B* 268.2 (1991), pp. 247–252.

References III

[Nea+11] Radford M Neal et al. "MCMC using Hamiltonian dynamics". In: Handbook of markov chain monte carlo 2.11 (2011), p. 2.

Pictures

■ Hamiltonian dynamics: Betancourt 2017

■ Leapfrog integrator: Neal et al. 2011

Thank you!