Devoir à la maison n° 7

À rendre le 26 novembre

I. Puissances d'une matrice et suites récurrentes

Soient $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ deux suites réelles, vérifiant la relation de récurrence linéaire suivante :

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = -9x_n & -18y_n \\ y_{n+1} = 6x_n & +12y_n \end{cases},$$

avec $x_0 = -137$ et $y_0 = 18$. On se propose dans ce problème de trouver les termes généraux de ces deux suites.

Pour tout $n \in \mathbb{N}$, on pose $U_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$.

- 1) Montrer qu'il existe une matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que, pour tout $n \in \mathbb{N}$, $U_{n+1} = AU_n$.
- 2) Trouver par récurrence une expression de U_n en fonction notamment de A et de U_0 .
- 3) On pose $P = \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix}$. Cette matrice est-elle inversible? Si c'est le cas, donner son inverse.
- 4) Que vaut $P^{-1}AP$? Dans la suite, on notera $D = P^{-1}AP$.
- 5) Montrer que pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.
- **6)** Exprimer D^n en fonction de n.
- 7) En déduire l'expression de A^n en fonction de n.
- 8) Donner les termes généraux x_n et y_n .

II. Borne supérieure et point fixe

Soit $f:[0,1] \to [0,1]$ une application croissante. On veut montrer que f possède un point fixe, *i.e.* qu'il existe $t \in [0,1]$ tel que f(t) = t.

- 1) On note $T = \{x \in [0,1] \mid f(x) \le x\}.$
 - a) Montrer que T possède une borne inférieure, notée t.
 - **b)** Montrer que $f(T) \subset T$.
 - c) Montrer que f(t) minore T.
 - d) Déduire de tout ceci que f(t) = t.
- 2) Ce résultat est-il toujours vrai :
 - a) pour $f: [0,1] \rightarrow]0,1]$ croissante?
 - **b)** pour $f: [0,1] \rightarrow [0,1]$ croissante?

- FIN -