ये questions module/sheets के as it is है | Solve them in 01 hour.

1. Find magnitude of change in velocity?

 $\vec{A} = 12\hat{i} + 5\hat{j}$ 2.

Find (i) A_{x_i}

(ii) A_{v}

(iii) |A|,

- (iv) Angle of \vec{A} from x-axis
- (v) Angle of \vec{A} from y-axis
- (vi) Unit vector along \vec{A}
- If $\vec{A} = 0.6\hat{i} + b\hat{j}$ is a unit vector, find value of b. 3.
 - (1) 0.8
- (2) 0.7
- (3) 0.6
- (4) 0.3
- A vector makes an angle of 30° with the 4. horizontal. If the horizontal component of the vector is 250 N, find the magnitude of vector and its vertical component.
- If $\vec{A} = \hat{i} + \hat{j} + \sqrt{2}k$, then find: 5.
 - (i) A_x, A_y, A_z
 - (ii) $|\vec{A}|$
 - (iii) Direction cosines of \vec{A}
 - (iv) Angle of vector with x, y and z axis
- $\vec{A} = \hat{i} + 2\hat{j} + 2\hat{k}$; $\vec{B} = 3\hat{i} + \hat{j} + 10\hat{k}$ then find: 6.
 - (i) \vec{R}
 - (ii) $|\vec{R}|$
 - (iii) Unit vector parallel to resultant vector
 - (iv) Direction cosine of \vec{R}
- $\vec{A} = \hat{i} \hat{j} + 2\hat{k}$; $\vec{B} = -2\hat{j} \hat{k}$ then find unit vector 7. parallel to \vec{R} of \vec{A} and \vec{B} .

- 8. Determine the vector which when added to the resultant of \vec{P} and \vec{Q} , gives ZERO resultant (equilibrium). $\vec{P} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{Q} = 2\hat{i} - \hat{j} + 2k$
- 9. Determine the vector which when added to the resultant of \vec{P} and \vec{Q} , gives unit vector along x-axis where $\vec{P} = \hat{i} + 2\hat{j} + k$, $\vec{Q} = 2\hat{i} - \hat{j} + 2k$.
 - (1) $-2\hat{i} + \hat{j} 3\hat{k}$ (2) $2\hat{i} + \hat{j} + 3\hat{k}$
 - (3) $2\hat{i} \hat{j} + 3\hat{k}$ (4) $-2\hat{i} \hat{j} 3\hat{k}$
- Find angle between \vec{A} and \vec{B} , if \vec{A} (6N) and 10. \vec{B} (4N) and $\vec{A} \cdot \vec{B} = 12$.
 - (1) 30°
- $(2) 45^{\circ}$
- (3) 60°
- (4) 75°
- Find Work done if Force $\vec{F} = 3\hat{i} + 2\hat{j} + k$ and 11. Displacement $\vec{s} = 2\hat{i} - 5\hat{j} + 3k$.
 - (1) 1 J
- (2) -1 J
- (3) 2 J
- (4) -2 J
- Find Power if Force $\vec{F} = 2\hat{i} 2\hat{j} + k$ and velocity 12. $\vec{v} = 3\hat{i} + 2\hat{j} - k.$
 - (1) 5 W
- (2) 2 W
- (3) 1 W
- (4) 0 W
- $\vec{A} = 3\hat{i} + 4\hat{j}$ Find angle between 13. $\vec{B} = 12\hat{i} - 5\hat{j}$?
- A force $\vec{F} = (3\hat{i} + 4\hat{j})N$ acts on a body and 14. displaces it by $\vec{S} = (3\hat{i} + 4\hat{j})$ m. The work done $(W = \overrightarrow{F} \cdot \overrightarrow{S})$ by the force is:
 - (1) 10 J
- (2) 12 J
- (3) 19 J
- (4) 25 J

- What is the projection of $3\hat{i} + 4\hat{k}$ on the y-axis? 15.
 - (1) 3
- (2) 4
- (3) 5
- (4) zero
- If $\vec{P} = 3\hat{i} + 4\hat{j} + 12\hat{k}$ then find magnitude and the **16.** direction cosines of \vec{P} .
- Find the angle made by $(\hat{i} + \hat{j})$ vector from X and 17. Y axes respectively.
- Find out the angle made by $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ vector 18. from X, Y and Z axes respectively.
- 19. A force of 4N is inclined at an angle of 60° from the vertical. Find out its components along horizontal and vertical directions.

A force is inclined at an angle of 60° from the 20. horizontal. If the horizontal component of the force is 40N, calculate the vertical component.

- 21. Determine that vector which when added to the resultant of $\vec{P} = 2\hat{i} + 7\hat{j} - 10\hat{k}$ and $\vec{Q} = \hat{i} + 2\hat{j} + 3\hat{k}$ gives a unit vector along X-axis.
- 22. The sum of three vectors shown in figure, is zero. What is the magnitude of vector \overrightarrow{OB} and \overrightarrow{OC} ?

23. For shown situation, what will be the magnitude of minimum force in newton that can be applied in any direction so that the resultant force is along east direction?

- If a unit vector is represented by $0.5\hat{i} 0.8\hat{j} + c\hat{k}$, 24. then the value of 'c' is:
 - (1) 1
- (3) $\sqrt{0.01}$
- (4) $\sqrt{0.39}$
- Vector \vec{P} makes angles α , β and γ with the X, Y25. Z-axes and respectively, then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$
 - (1) 0
- (2) 1
- (3) 2
- (4) 3
- The direction cosines of a vector $\hat{i} + \hat{j} + \sqrt{2}\hat{k}$ are: 26.

 - (1) $\frac{1}{2}, \frac{1}{2}, 1$ (2) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2}$

 - (3) $\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}$ (4) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
- 27. The unit vector along $\hat{i} + \hat{j}$ is:
 - (1) k

- 28. The unit vector parallel to the resultant of the vectors $\vec{A} = 4\hat{i} + 3j + 6k$ and $\vec{B} = -\hat{i} + 3j - 8k$ is:

(1)
$$\frac{1}{7}[3\hat{i}+6j-2k]$$
 (2) $\frac{1}{7}[3\hat{i}+6j+2k]$

(3)
$$\frac{1}{49} [3\hat{i} + 6j + 2k]$$
 (4) $\frac{1}{49} [3\hat{i} + 6j - 2k]$

- If $\vec{A} + \vec{B}$ is a unit vector along x-axis and 29. $\vec{A} = \hat{i} - \hat{j} + k$, then what is \vec{B} ?
 - (1) $\hat{j} + \hat{k}$
- (3) $\hat{i} + \hat{j} + \hat{k}$ (4) $\hat{i} + \hat{j} \hat{k}$
- The angle that the vector $\vec{A} = 2\hat{i} + 3\hat{j}$ makes with **30.** *y*-axis is:
 - (1) $tan^{-1}(3/2)$
- (2) $tan^{-1}(2/3)$
- (3) $\sin^{-1}(2/3)$
- (4) $\cos^{-1}(3/2)$
- 31. What happens, when we multiply a vector by (-2)?
 - (1) direction reverses and unit changes
 - (2) direction reverses and magnitude is doubled
 - (3) direction remains unchanged and unit changes
 - (4) none of these
- 32. Two vectors of equal magnitude have a resultant equal to either of them in magnitude. The angle between them is:
 - (1) 60°
- (2) 90°
- (3) 105°
- (4) 120°
- A force $(3\hat{i} + 2\hat{j})N$ displaces an object through a 33. distance $(2\hat{i}-3\hat{j})$ m. The work $(W=\vec{F}\cdot\vec{S})$ done is:
 - (1) zero
- (2) 12 J
- (3) 5 J
- (4) 13 J
- 34. angle between the vectors $\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{B} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ will be:
 - (1) zero
- (2) 180°
- (3) 90°
- (4) 45°
- The angle between vectors $(\hat{i} + \hat{j})$ and $(\hat{j} + \hat{k})$ is: 35.
 - (1) 90°
- (2) 180°
- (3) 0°
- $(4) 60^{\circ}$

- If $\vec{P} \cdot \vec{Q} = PQ$, then angle between \vec{P} and \vec{Q} is: **36.**
 - (1) 0°
- $(2) 30^{\circ}$
- (3) 45°
- (4) 60°
- Three vectors \vec{A}, \vec{B} and \vec{C} are such that 37. $\vec{A} = \vec{B} + \vec{C}$ and their magnitudes are in ratio 5:4:3 respectively. Find angle between vector \vec{A} and \vec{C} .
- A unit vector in the direction of resultant vector of 38. $\vec{A} = -2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{B} = \hat{i} + 2\hat{j} - 4\hat{k}$ is:
 - (1) $\frac{-2\hat{i} \hat{j} + \hat{k}}{\sqrt{6}}$ (2) $\frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}$
 - (3) $\frac{-\hat{i}+5\hat{j}-5\hat{k}}{\sqrt{51}}$ (4) $\frac{2\hat{i}-\hat{j}+\hat{k}}{\sqrt{6}}$
- If $\vec{A} = 4\hat{i} 3\hat{j}$ and $\vec{B} = 5\hat{i} + 18\hat{j}$ then magnitude 39. and direction of $\vec{A} + \vec{B}$ will be:
 - (1) 17.49, $tan^{-1}(2)$
 - (2) 15, $tan^{-1}(4/3)$
 - (3) 20, $tan^{-1}(4/5)$
 - (4) 17.49, $tan^{-1}(5/3)$
- The resultant of two vectors \vec{P} and \vec{O} is \vec{R} . If O40. is doubled; the new resultant is perpendicular to P, then *R* equals to:
 - (1) *P*
- (3) P + Q
- If the magnitudes of vectors \vec{A} , \vec{B} and \vec{C} are 4, 3 41. and 5 units respectively and $\vec{A} + \vec{B} = \vec{C}$, the angle between vectors \vec{A} and \vec{B} is:
- (2) $\cos^{-1}\left(\frac{5}{16}\right)$
- (3) $\tan^{-1}(5)$ (4) $\tan^{-1}\left(\frac{12}{5}\right)$
- Two vectors \vec{A} and \vec{B} are such 42. $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$ then the angle between the two vectors \vec{A} and \vec{B} will be:
 - (1) π

- The vector projection of a vector $3\hat{i} + 5\hat{k}$ on 43. y-axis is:
 - (1) 5
- (2) 4
- (3) 3
- (4) Zero
- If $\vec{A} = 3\hat{i} + 5\hat{j} 7\hat{k}$, the direction of cosines of the 44. vector \vec{A} are:
 - (1) $\frac{2}{\sqrt{83}}, \frac{5}{\sqrt{83}}, \frac{7}{\sqrt{83}}$
 - (2) $\frac{3}{\sqrt{83}}, \frac{5}{\sqrt{83}}, \frac{7}{\sqrt{83}}$
 - $(3) \quad \frac{1}{\sqrt{83}}, \frac{2}{\sqrt{83}}, \frac{5}{\sqrt{83}}$
 - (4) $\frac{3}{\sqrt{83}}, \frac{5}{\sqrt{83}}, \frac{-7}{\sqrt{83}}$

- The angle between vectors $(\hat{i} + \hat{j})$ and $(\hat{j} + \hat{k})$ is; 45.
 - $(1) 90^{\circ}$
- (2) 180°
- (3) 0°
- $(4) 60^{\circ}$
- $\overrightarrow{F_1} = 2\hat{i} + 5k$ vectors Consider two **46.** and $\overrightarrow{F_2} = 3j + 4k$. The magnitude of the scalar product of these vectors is:
 - (1) 26
- (2) 28
- (3) 30
- (4) 20
- What is the angle between $\hat{i} + \hat{j} + \hat{k}$ and \hat{i} ?

 - (1) $\cos^{-1}\left(\frac{1}{2}\right)$ (2) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (3) $\cos^{-1}\left(\frac{1}{3}\right)$ (4) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Answer Key

- 1. $5\sqrt{2} \text{ m/s}$
- 2. (i) 12, (ii) 5, (iii) 13, (iv) $\alpha = \tan^{-1} \frac{5}{12}$,

(v)
$$\beta = \tan^{-1} \frac{12}{5}$$
, (vi) $\frac{12\hat{i} + 5\hat{j}}{13}$

- 3. (1)
- 4. $\frac{250}{\sqrt{3}}$
- 5. (i) 1, 1, $\sqrt{2}$, (ii) 2, (iii) $\cos \alpha = \frac{1}{2}$, $\cos \beta = \frac{1}{2}$, $\cos \gamma \frac{1}{\sqrt{2}}$ (iv) 60°, 60°, 45°
- **6.** (i) $4\hat{i} + 3\hat{j} + 12\hat{k}$, (ii) 13, (iii) $\hat{R} = \frac{4\hat{i} + 3\hat{j} + 12\hat{k}}{13}$,

(iv)
$$\cos \alpha = \frac{4}{13}, \cos \beta = \frac{3}{13}, \cos \gamma \frac{12}{13}$$

- $7. \qquad \hat{R} = \frac{\hat{i} 3\hat{j} + \hat{k}}{\sqrt{11}}$
- **8.** $\vec{x} = -3\hat{i} \hat{j} 3\hat{k}$
- 9. (4)
- 10. (1)
- 11. (2)
- 12. (3)
- 13. $\theta = \cos^{-1} \frac{16}{65}$
- 14. (4)
- 15. (4)
- 16. Magnitude = 13, Direction cosines = $\frac{3}{13}$, $\frac{4}{13}$, $\frac{12}{13}$
- 17. (45°, 45°)
- 18. $\alpha = \cos^{-1} \frac{1}{\sqrt{3}}$, $\beta = \cos^{-1} \frac{1}{\sqrt{3}}$, $\gamma = \cos^{-1} \frac{1}{\sqrt{3}}$

- 19. Vertical component = 2N, Horizontal component = $2\sqrt{3}N$
- **20.** $40\sqrt{3}$ N
- **21.** $-2\hat{i} 9\hat{j} + 7\hat{k}$
- **22.** $|\overrightarrow{OC}| = 10\sqrt{2}\text{N}$, OB = 10 N
- **23.** $F_{\min} = 6N$
- 24. (2)
- 25. (3)
- 26. (3)
- 27. (3)
- 27. (3)
- 28. (1)
- 29. (2)
- 30. (2)
- 31. (2)
- 32. (4)
- 33. (1)
- 34. (3)
- **35.** (4)
- **36.** (1)
- 37. (53°)
- 38. (3)
- **39.** (4)
- 40. (2)
- 41. (1)
- 42. (4)
- 43. (4)
- 44. (4)
- 45. (4)
- 46. (4)
- 47. (4)

