How to use the MeSH.db Package

Koki Tsuyuzaki 1 , Itoshi Nikaido 2,3 and Gota Morota 4 .

August 19, 2013

¹Department of Medical and Life Science, Tokyo University of Science.
 ²Functional Genomics Unit, RIKEN Center for Developmental Biology.
 ³Laboratory for Systems Biology, RIKEN Center for Developmental Biology.
 ⁴Department of Animal Sciences, University of Wisconsin-Madison.

k.t.the-answer@hotmail.co.jp

Contents

6	Setup	14
	5.2 Annotation of Leukemia	10
	5.1 Exercises in cols, keytypes, keys and select	8
5	Examples	8
4	Data	4
3	Methods	4
2	Getting started	4
1	Introduction	2

1 Introduction

This document provides the way to use *MeSH.db* package. MeSH (Medical Subject Headings) is the NLM controlled vocabulary used to manually index articles for MEDLINE/Pubmed [1].

Figure 1: MeSH Term

The amount of vocabulary in MeSH is about twice as large as that of GO (Gene Ontology)[2] and its category is also wider. Therefore MeSH is expected to be much detailed and exhaustive gene annotation tool. Some softwares or databases using MeSH are now proposed [3, 4, 5, 6].

MeSH.db is a free R package for handling MeSH in R. Its data are retrieved from NLM ftp site (http://www.nlm.nih.gov/mesh/filelist.html). MeSH in 2013 has 19 hierarchies and MeSH.db provides 16 of them, which are actually assigned to some MeSH Terms. Each category is expressed as single capital alphabet defined by NLM as abbreviations.

Abbreviation	Category
A	Anatomy
В	Organisms
С	Diseases
D	Chemicals and Drugs
E	Analytical, Diagnostic and Therapeutic Techniques and Equipment
F	Psychiatry and Psychology
G	Phenomena and Processes
Н	Disciplines and Occupations
I	Anthropology, Education, Sociology and Social Phenomena
J	Technology and Food and Beverages
K	Humanities
L	Information Science
M	Persons
N	Health Care
V	Publication Type
Z	Geographical Locations

MeSH has hierarchical structures like GO. MeSH.db provides its Ancestor-Offspring Relationships (AOR) and Parent-Child Relationships (PCR) as corresponding table (dataframe). Data of PCR and AOR are also used for calculating the conditional probability in enrichment analysis (meshr package).

2 Getting started

To load the MeSH.db package, just type library (MeSH.db). 5 methods and 36 data are provided by MeSH.db.

3 Methods

Following 5 methods are provided by MeSH.db.

MeSH	Function for retrieval of the summary of all object in MeSH.db
MeSH_dbconn	Function for retrieval of the connection of .sqlite database
MeSH_dbfile	Function for retrieval of the directory of .sqlite file
MeSH_dbschema	Function for retrieval of the schema of .sqlite database
MeSH_dbInfo	Function for retrieval of the information of .sqlite database

4 Data

Following 36 data are provided by MeSH.db.

MeSHMAPCOUNTS	The number of row of all data		
MeSHTERM	MeSH Term		
MeSHSYNONYM	The synonym of MeSH Term		
MeSHQUALIFIER	Substantial Information of MeSH Term		
MeSHAAOR	Ancestor-Offspring Relationships in A category		
MeSHBAOR	Ancestor-Offspring Relationships in B category		
MeSHCAOR	Ancestor-Offspring Relationships in C category		
MeSHDAOR	Ancestor-Offspring Relationships in D category		
MeSHEAOR	Ancestor-Offspring Relationships in E category		
MeSHFAOR	Ancestor-Offspring Relationships in F category		
MeSHGAOR	Ancestor-Offspring Relationships in G category		
MeSHHAOR	Ancestor-Offspring Relationships in H category		
MeSHIAOR	Ancestor-Offspring Relationships in I category		
MeSHJAOR	Ancestor-Offspring Relationships in J category		
MeSHKAOR	Ancestor-Offspring Relationships in K category		
MeSHLAOR	Ancestor-Offspring Relationships in L category		
MeSHMAOR	Ancestor-Offspring Relationships in M category		
MeSHNAOR	Ancestor-Offspring Relationships in N category		
MeSHVAOR	Ancestor-Offspring Relationships in V category		
MeSHZAOR	Ancestor-Offspring Relationships in Z category		
MeSHAPCR	Parent-Child Relationships in A category		
MeSHBPCR	Parent-Child Relationships in B category		
MeSHCPCR	Parent-Child Relationships in C category		
MeSHDPCR	Parent-Child Relationships in D category		
MeSHEPCR	Parent-Child Relationships in E category		
MeSHFPCR	Parent-Child Relationships in F category		
MeSHGPCR	Parent-Child Relationships in G category		
MeSHHPCR	Parent-Child Relationships in H category		
MeSHIPCR	Parent-Child Relationships in I category		
MeSHJPCR	Parent-Child Relationships in J category		
MeSHKPCR	Parent-Child Relationships in K category		
MeSHLPCR	Parent-Child Relationships in L category		
MeSHMPCR	Parent-Child Relationships in M category		
MeSHNPCR	Parent-Child Relationships in N category		
MeSHVPCR	Parent-Child Relationships in V category		
MeSHZPCR	Parent-Child Relationships in Z category		

In *MeSH.db*, all data are extracted by 4 functions defined by *AnnotationForge*; **keytypes**, **cols**, **keys** and **select**. keys function has 1 parameter (keytype) and select function also has 3 parameters (keys, cols and keytype). cols is the columns which you can retrieved by select and keytype is the columns which you can specify as the parameter in keys and select functions.

Object Name	cols	keytype
MeSHMAPCOUNTS	MAPNAME, COUNT	MAPNAME
	MESHID, MESHTERM,	MESHID, MESHTERM,
MeSHTERM	CATEGORY	CATEGORY
MeSHSYNONYM	MESHID, MESHSYNONYM	MESHID
	QUALIFIERID, SUBHEADING,	
MeSHQUALIFIER	MESHID	QUALIFIERID, MESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHAAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHBAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHCAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHDAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHEAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHFAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHGAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHHAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHIAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHJAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHKAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHLAOR	OFFSPRINGMESHID	OFFSPRINGMESHID

	ANCESTERMESHID,	ANCESTERMESHID,
MeSHMAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHNAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHVAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHZAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHAPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHBPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHCPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHDPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHEPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHFPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHGPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHHPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHIPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHJPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHKPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHLPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHMPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHNPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHVPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHZPCR	CHILDMESHID	CHILDMESHID

5 Examples

5.1 Exercises in cols, keytypes, keys and select

MeSH.db uses cols, keytypes, keys and select functions defined by AnnotationForge. In this section we will show you how to use these functions in MeSH.db.

At first, install and load the MeSH.db.

> library(MeSH.db)

ls shows all object in MeSH.db.

> ls("package:MeSH.db")

[1]	"MeSH"	"MeSH_dbconn"	"MeSH_dbfile"	"MeSH_dbInfo"
[5]	"MeSH_dbschema"	"MeSHAAOR"	"MeSHAPCR"	"MeSHBAOR"
[9]	"MeSHBPCR"	"MeSHCAOR"	"MeSHCPCR"	"MeSHDAOR"
[13]	"MeSHDPCR"	"MeSHEAOR"	"MeSHEPCR"	"MeSHFAOR"
[17]	"MeSHFPCR"	"MeSHGAOR"	"MeSHGPCR"	"MeSHHAOR"
[21]	"MeSHHPCR"	"MeSHIAOR"	"MeSHIPCR"	"MeSHJAOR"
[25]	"MeSHJPCR"	"MeSHKAOR"	"MeSHKPCR"	"MeSHLAOR"
[29]	"MeSHLPCR"	"MeSHMAOR"	"MeSHMAPCOUNTS"	"MeSHMPCR"
[33]	"MeSHNAOR"	"MeSHNPCR"	"MeSHQUALIFIER"	"MeSHSYNONYM"
[37]	"MeSHTERM"	"MeSHVAOR"	"MeSHVPCR"	"MeSHZAOR"
[41]	"MeSHZPCR"			

Here we use cols, keytypes, keys and select against MeSHMAPCOUNTS.

cols returns the rows which you can retrieve in MeSHMAPCOUNTS.

> cols(MeSHMAPCOUNTS)

[1] "MAPNAME" "COUNT"

keytypes returns the rows which you can use as the optional parameter in keys and select functions against MeSHMAPCOUNTS.

> keytypes(MeSHMAPCOUNTS)

[1] "MAPNAME"

Here we will know that MAPNAME is available.

keys function specifies the value of keytype.

select method specifies the rows in particular cols having user-defined keys and retrieved data as single dataframe like SQL's SELECT statement. Now we retrieve the rows in which MAPNAME is equivalent to "MeSHTERM".

```
> select(MeSHMAPCOUNTS, keys = k[1, ], cols = c("MAPNAME", "COUNT"),
+ keytype = "MAPNAME")

MAPNAME COUNT
1 MeSHTERM 28921
```

By the way, here we don't have to specify keytype as parameter against MeSHMAP-COUNTS, because MeSHMAPCOUNTS only has single col which is possible to be keytype and keytype is consequently specified.

```
> select(MeSHMAPCOUNTS, keys = k[1, ], cols = c("MAPNAME", "COUNT"))

MAPNAME COUNT
1 MeSHTERM 28921
```

The same can be said of MeSHSYNONYM.

5.2 Annotation of Leukemia

Next we will annotate *Leukemia* by MeSH.

- > cols(MeSHTERM)
- [1] "MESHID" "MESHTERM" "MESHCATEGORY"

MESHID, MESHTERM and MESHCATEGORY can be retrieved from MeSHTERM.

- > keytypes(MeSHTERM)
- [1] "MESHID" "MESHTERM" "MESHCATEGORY"

All of them are available as a keytype's parameter.

select function retrieves the rows in which MESHTERM is "Leukemia" in MeSHTERM table.

```
> LEU <- select(MeSHTERM, keys = "Leukemia", cols = c("MESHID",
```

- + "MESHTERM", "MESHCATEGORY"), keytype = "MESHTERM")
- > LEU

MESHID MESHTERM MESHCATEGORY

1 D007938 Leukemia (

select function shows that MESHID of *Leukemia* is D007938 and *Leukemia* is in C (Diseases) category.

Using MeSHSYNONYM, we can also check whether *Leukemia* has some synonyms.

- > select(MeSHSYNONYM, keys = LEU[1, 1], cols = c("MESHID", "MESHSYNONYM"),
- + keytype = "MESHTERM")

MESHID MESHSYNONYM

- 1 D007938 Leucocythaemias
- 2 D007938 Leucocythaemia|T191|NON|EQV|NLM (2012)|110224|abcdef
- 3 D007938 Leucocythemias
- 4 D007938 Leucocythemia|T191|NON|EQV|NLM (2012)|110224|abcdef
- 5 D007938 Leukemias

We will know that *Leukemia* has some synonyms like *Leucocythaemia*, *Leucocythaemias*, *Leucocythaemias* and *Leukemias*.

MeSH also defines QUALIFIER, which is more rough category (SUBHEADING). We can also use select function against MeSHQUALIFIER.

```
> select(MeSHQUALIFIER, keys = LEU[1, 1], cols = c("QUALIFIERID",
+ "SUBHEADING", "MESHID"), keytype = "MESHID")
```

	QUALIFIERID	SUBHEADING	MESHID
1	Q000097	blood	
2	Q000134	cerebrospinal fluid	
3	Q000139	chemically induced	
4	Q000145	classification	
5	Q000150	complications	D007938
6	Q000151	congenital	D007938
7	Q000175	diagnosis	D007938
8	Q000178	diet therapy	D007938
9	Q000188	drug therapy	D007938
10	Q000191	economics	D007938
11	Q000196	embryology	D007938
12	Q000201	enzymology	D007938
13	Q000208	ethnology	D007938
14	Q000209	etiology	D007938
15	Q000235	genetics	D007938
16	Q000266	history	D007938
17	Q000276	immunology	D007938
18	Q000378	metabolism	D007938
19	Q000382	microbiology	D007938
20	Q000401	mortality	
21	Q000451	nursing	
22	Q000453	epidemiology	D007938
23	Q000469	parasitology	
24	Q000473	pathology	D007938
25	Q000503	physiopathology	
26	Q000517	prevention & control	D007938
27	Q000523	psychology	
28	Q000530	radiography	
29	Q000531	radionuclide imaging	
30	Q000532	radiotherapy	
31	Q000534	rehabilitation	
32	Q000601		D007938
33	Q000628		D007938
34	Q000652		D007938
35	Q000662	veterinary	
36	Q000736	ultrasonography	
37	Q000821	virology	D007938

As mentioned before, MeSH has hierarchical structures. AOR provides us upper (or lower) hierarchical MeSH Term. We already know Leukemia is categorized in C (Diseases), so MeSHCAOR is available.

```
> ANC <- select(MeSHCAOR, keys = LEU[1, 1], cols = c("ANCESTORMESHID",
+ "OFFSPRINGMESHID"), keytype = "OFFSPRINGMESHID")
> ANC
ANCESTORMESHID OFFSPRINGMESHID
```

1 D009370 D007938

There are D009370 above Leukemia.

We can translate these MeSH ID to MeSH Term.

```
> select(MeSHTERM, keys = ANC[, 1], cols = c("MESHTERM"), keytype = "MESHID")
```

MESHTERM

1 Neoplasms by Histologic Type

Once we set keytype to opposite direction (OFFSPRINGMESHID to ANCESTORMESHID), we can also retrieved MeSH ID of lower hierarchies.

```
> OFF <- select(MeSHCAOR, keys = LEU[1, 1], cols = c("ANCESTORMESHID",
+ "OFFSPRINGMESHID"), keytype = "ANCESTORMESHID")
> OFF
```

	ANCESTORMESHID	OFFSPRINGMESHID
1	D007938	D001353
2	D007938	D001752
3	D007938	D004915
4	D007938	D007939
5	D007938	D007940
6	D007938	D007941
7	D007938	D007942
8	D007938	D007943
9	D007938	D007945
10	D007938	D007946
11	D007938	D007947
12	D007938	D007948
13	D007938	D007951
14	D007938	D007952
15	D007938	D007953
16	D007938	D015448
17	D007938	D015451
18	D007938	D015452
19	D007938	D015456
20	D007938	D015458
21	D007938	D015459
22	D007938	D015461
23	D007938	D015463

24	D007938	D015464
25	D007938	D015465
26	D007938	D015466
27	D007938	D015470
28	D007938	D015471
29	D007938	D015472
30	D007938	D015473
31	D007938	D015477
32	D007938	D015479
33	D007938	D016582
34	D007938	D016583
35	D007938	D023981
36	D007938	D054066
37	D007938	D054198
38	D007938	D054218
39	D007938	D054403
40	D007938	D054429
41	D007938	D054438

There are a lot of MeSH ID, and it means Leukemia has many lower hierarchies.

PCR provides directly lower (or upper) hierarchy.

```
> CHI <- select(MeSHCPCR, keys = LEU[1, 1], cols = c("PARENTMESHID",
+ "CHILDMESHID"), keytype = "PARENTMESHID")
> CHI
```

PARENTMESHID CHILDMESHID

```
D007938
                    D007942
1
2
                    D007943
       D007938
3
       D007938
                   D007945
4
       D007938
                    D007946
5
       D007938
                    D007951
6
       D007938
                    D007952
7
       D007938
                    D007953
8
       D007938
                    D016582
9
       D007938
                    D016583
```

We can also translate these MeSH ID to MeSH Term.

> select(MeSHTERM, keys = CHI[, 2], cols = c("MESHTERM"), keytype = "MESHID")

MESHTERM

```
    Leukemia, Experimental
    Leukemia, Hairy Cell
    Leukemia, Lymphoid
    Leukemia, Mast-Cell
```

```
6 Leukemia, Myeloid
7 Leukemia, Plasma Cell
8 Leukemia, Radiation-Induced
9 Leukemia, Feline
10 Enzootic Bovine Leukosis
```

We will know *Leukemia* has a lot of subtypes like *Leukemia*, *Myeloid*, *Leukemia*, *PlasmaCell* and so on.

6 Setup

```
This vignette was built on:
```

> sessionInfo()

```
R version 3.0.1 (2013-05-16)
```

Platform: x86_64-apple-darwin10.8.0 (64-bit)

locale:

[1] ja_JP.UTF-8/ja_JP.UTF-8/ja_JP.UTF-8/ja_JP.UTF-8

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] MeSH.db_1.0 AnnotationForge_1.2.2 org.Hs.eg.db_2.9.0 [4] RSQLite_0.11.4 DBI_0.2-7 AnnotationDbi_1.22.6

[7] Biobase_2.20.1 BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] IRanges_1.18.3 stats4_3.0.1 tools_3.0.1

References

- [1] S. J. Nelson and et al. The MeSH translation maintenance system: structure, interface design, and implementation. *Stud. Health Technol. Inform.*, 107: 67-69, 2004.
- [2] M. Ashburner and et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat. Genet.*, 25(1): 25-29, 2000.
- [3] T. Nakazato and et al. BioCompass: a novel functional inference tool that utilizes MeSH hierarchy to analyze groups of genes. *In Silico Biol.*, 8(1): 53-61, 2007.
- [4] T. Nakazato and et al. Nucleic Acids Res. Gendoo: functional profiling of gene and disease features using MeSH vocabulary., 37: W166-W169, 2009.
- [5] D. J. Saurin and et al. GeneMeSH: a web-based microarray analysis tool for relating differentially expressed genes to MeSH terms. *BMC Bioinformatics*, 11: 166, 2010.
- [6] M. A. Sartor and et al. Metab2MeSH: annotating compounds with medical subject headings. *Bioinformatics*, 28(10): 1408-1410, 2012.