

SPCP: Sistema Probabilístico y de ML para Seguimiento y Control de Proyectos

Autor:

Lic. Osvaldo Daniel Muñoz

Director:

MBA Ing. Luis Villanueva Canales (Capgemini North Latam)

Índice

1.	Desc	ripción técnica-conceptual del proyecto a realizar	5
	1.1	Introducción	5
	1.2	Motivación	5
	1.3	El cliente	6
	1.4	Situación actual (as-is)	7
	1.5	Preguntas centrales	9
	1.6	Estado del arte	9
	1.7	Glosario de siglas	11
2.	Iden	tificación y análisis de los interesados	12
3.	Prop	oósito del proyecto	13
4.	Alca	nce del proyecto	13
5.	Sup	iestos del proyecto	L 4
6.	Rea	uerimientos	L 4
	6.1		14
	6.2	\	15
	6.3		16
	6.4		16
	6.5	Datos (DATA)	17
	6.6	De despliegue/DevOps (DEV)	17
7.	Hist	orias de usuarios ($Product\ backlog$)	L 7
8.	Entr	egables principales del proyecto	18
9.	Desg	glose del trabajo en tareas	L9
10). Dia	grama de Activity On Node	L9
11	l. Dia	grama de Gantt	20
12	2. Pre	supuesto detallado del proyecto	23
13	3. Ge	stión de riesgos	23
1 4	1. Ge:	stión de la calidad	25
			25

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	26 de agosto de 2025
1	Se completa hasta el punto 5 inclusive	10 de septiembre de 2025

Acta de constitución del proyecto

CDMX, 26 de agosto de 2025

Por medio de la presente se acuerda con el Lic. Osvaldo Daniel Muñoz que su Trabajo Final de la Carrera de Especialización en Inteligencia Artificial se titulará "SPCP: Sistema Probabilístico y de ML para Seguimiento y Control de Proyectos" y consistirá en diseñar y validar un sistema de estimación probabilística para la gestión de proyectos que, a partir de evidencias observadas en el tiempo, entregue pronósticos calibrados y accionables, buscando mejorar con modelos de ML la calibración de las predicciones, indicadores y ratios. El trabajo tendrá un presupuesto preliminar estimado de TBD horas y un costo estimado de \$ XXX, con fecha de inicio el 26 de agosto de 2025 y fecha de presentación pública el TBD.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Ing. Fernando Calatayud Cataño ITSC Digital Value

MBA Ing. Luis Villanueva Canales Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

1.1. Introducción

La compañía ITSC Digital Value ofrece servicios de (PMO) Project Management Office para la planificación, gestión, control y entrega de proyectos de tecnologías de la información bajo los estándares y mejores prácticas dictadas por el PMI (Project Management Institute), desarrolladas en su guía PMBOK (Project Management Body Of Knowledge).

Los lineamientos del PMI establecen el ciclo de vida de un proyecto en 5 fases, que se representan en la figura 1, y donde delimitamos el alcance de este proyecto a las fases 3 de ejecución, y 4 de monitoreo y control:

Figura 1. Ciclo de vida de un proyecto según PMI/PMBOK. Fases 3 (Ejecución) y 4 (Monitoreo y Control) como alcance del proyecto.

1.2. Motivación

En su recorrido profesional, los *projects managers* han tenido que enfrentar retos y desafíos íntimamente relacionados <mark>a</mark> la gestión, seguimiento y control de proyectos, en los que la planificación se realiza principalmente con argumentos y bases de verosimilitud razonable, pero en el despliegue surgen desfases, incumplimientos y subestimaciones, entre otros factores, que derivan en impactos como:

- Objetivos estratégicos.
- Reprogramación de entregables y sus fechas.
- Sobrecostos.
- Incumplimiento parcial o total de la relación costo/beneficio establecida.
- Credibilidad y confianza en el equipo de trabajo.
- Otras iniciativas dependientes en la organización.

En este sentido, podemos identificar que los métodos clásicos de la gestión de proyectos tienen limitaciones por el enfoque determinístico, y no proporcionan suficiente información ni predicciones asertivas para tomar decisiones oportunas que mitiguen y/o eviten los impactos en los proyectos descriptos en el párrafo anterior.

1.3. El cliente

ITSC Digital Value es una empresa mexicana fundada en el año 2013 a la que los clientes le solicitan servicios de consultoría en project management (PM). Su staff de profesionales generalmente son ingenieros certificados en las metodologías del PMI/PMBOK, y en ocasiones también en tecnologías específicas que les permiten desarrollar su labor principal como PM, así como el complemento de conocimientos específicos como telecomunicaciones o ingeniería civil para proyectos de construcción.

La misión y visión de la empresa está expresada en estos términos en la figura 2:

NUESTRA HISTORIA

ITSC se constituyó en el mes de marzo de 2013, como una sociedad civil mexicana iniciando actividades en la Ciudad de México.

Nuestro compromiso es ofrecer a nuestros clientes servicios de consultoría estratégica de negocios bajo los estándares más altos de calidad.

MISIÓN Y VISIÓN

MISIÓN

Proveer consultoría estratégica de negocios y soluciones empresariales a nuestros clientes, brindándoles un servicio de calidad, siendo rentable y financieramente estable en beneficio de nuestros socios y colaboradores.

VISIÓN

Ser una empresa reconocida por sus clientes como líder en consultoría estratégica de negocios, y por la calidad de los servicios brindados.

Figura 2. Misión y visión de ITSC Digital Value.

1.4. Situación actual (as-is)

El macro proceso clásico compuesto de 5 fases para la gestión de proyectos, según los lineamientos del PMI/PMBOK, es el que adoptan y despliegan los profesionales asignados a los contratos con los clientes, como se ve en la figura 3:

Figura 3. Macro-proceso del ciclo de vida de un proyecto (PMI/PMBOK).

Las entradas y salidas que requieren y generan cada una de las cinco fases se describen en las figuras 4 a 8 como sigue:

Figura 4. Fase 1: Inicio — Entradas y salidas principales.

Figura 5. Fase 2: Planificación — Entradas y salidas principales.

Figura 6. Fase 3: Ejecución — Entradas y salidas principales.

Figura 7. Fase 4: Monitoreo y Control — Entradas y salidas principales.

Figura 8. Fase 5: Cierre — Entradas y salidas principales.

De acuerdo a la experiencia del cliente, los proyectos se gestionan en las fases 3 (ejecución) y 4 (monitoreo y control), con un grado de incertidumbre variable, dependiendo de:

- La complejidad.
- Experiencia de los recursos asignados.
- Claridad y fluidez en la comunicación.
- Grado de compromiso hacia la producción de los entregables.
- Disponibilidad oportuna de los recursos financieros y materiales presupuestados.
- Eficiencia del modelo de gobierno.
- Habilidades y conocimientos de la oficina de gerencia del proyecto (PMO).

Debido a los grados de incertidumbre que existen en las fases 3 y 4 de la gestión de proyectos, el cliente requiere contar con un modelo que le proporcione, a partir de los datos que genera el modelo clásico, información complementaria y confiable mediante indicadores y ratios para tomar decisiones oportunas. Y de esta menera poder anticipar, mitigar y, en lo posible, evitar los desvíos e impactos en los resultados esperados del proyecto en cuanto a alcance, tiempo, costo y calidad propuestos al inicio en el statement of work (SOW).

1.5. Preguntas centrales

Dado el historial de un proyecto y sus artefactos:

- ¿Cuál es la probabilidad de exceder el baseline vigente en cada dimensión (tiempo, alcance, costo)?
- ¿Cómo evolucionan los indicadores de riesgos e incidentes para anticipar desvíos?
- Con modelos de machine learning (ML) (boosting cuantílico; TCN/LSTM), ¿mejoran el error y la calibración de los pronósticos de $\frac{\Delta_d}{EAC}$ y P(atraso/sobrecosto) frente a EVM/PERT/ARIMA?

1.6. Estado del arte

Aunque los métodos estadísticos clásicos constituyen una base sólida, resultan limitados para capturar no linealidades y efectos de interacción entre variables (p. ej., SPI/CPI, cambios de alcance, riesgos, incidentes). En este contexto, los enfoques de ML tabular y secuencial permiten explotar dichas interacciones y patrones temporales, ofreciendo bandas de predicción y probabilidades mejor calibradas. Asimismo, se priorizará la interpretabilidad (SHAP, PDP) y se establecerán comparaciones rigurosas frente a los baselines estadísticos, en línea con el enfoque requerido.

La figura 9 es un esquema de bloques de la solución propuesta:

Figura 9. To-be - esquema vertical en bloques de la solución propuesta.

1.7. Glosario de siglas

Cuadro 1. Siglas utilizadas en esta documento y su significado

Sigla	Concepto / significado
PMI	Project Management Institute.
PMBOK	Project Management Body of Knowledge.
WBS/EDT	Work Breakdown Structure / Estructura de Desglose del Trabajo.
AoN	Activity on Node (Diagrama de actividades con nodos).
PV	Planned Value (Valor planificado) — valor del trabajo planificado a la fecha [\$].
EV	Earned Value (Valor ganado) — valor del trabajo realmente completado [\$].
AC	Actual Cost (Costo real) — costo incurrido a la fecha [\$].
BAC	Budget at Completion (Presupuesto al completar) [\$].
CPI	Cost Performance Index — $CPI = EV/AC$ (>1 = eficiente).
SPI	Schedule Performance Index — $SPI = EV/PV$ (>1 = adelantado).
CV	$Cost\ Variance - CV = EV - AC\ [\$].$
SV	Schedule Variance — $SV = EV - PV$ [\$].
EAC	Estimate at Completion (Estimación al completar).
ETC	Estimate to Complete — $ETC = EAC - AC$ [\$].
VAC	$Variance\ at\ Completion - VAC = BAC - EAC\ [\$].$
TCPI	To-Complete Performance Index (Índice de desempeño requerido).
PERT	Duraciones a, m, b (optimista, más probable, pesimista) para
	Beta-PERT.
P50/P80/P90	Percentiles de costo/fecha (medidas probabilísticas).
RPN	Risk Priority Number — $RPN = S \times O$ (Severidad × Ocurrencia).
ML	Machine Learning.

Fórmulas e interpretación

Indicadores EVM Earn Value Management

$$CPI = \frac{EV}{AC}$$
 (> 1 favorable, eficiencia de costo)
 $SPI = \frac{EV}{PV}$ (> 1 adelantado en cronograma)
 $CV = EV - AC$ (\$ positivo = ahorro, negativo = sobrecosto)
 $SV = EV - PV$ (\$ positivo = adelantado, negativo = atraso)

Pronósticos de costo

$$EAC_1 = \frac{BAC}{CPI}$$
 Asume que el desempeño actual de costos continúa
$$EAC_2 = AC + (BAC - EV)$$
 Asume ejecución futura al costo presupuestado
$$EAC_{CPI \cdot SPI} = AC + \frac{BAC - EV}{CPI \cdot SPI}$$
 Si el atraso de cronograma impacta costos
$$ETC = EAC - AC; \ VAC = BAC - EAC$$
 Definiciones derivadas

Índice de desempeño requerido (TCPI)

$$TCPI_{BAC} = \frac{BAC - EV}{BAC - AC}$$
 (para cumplir con el BAC original)
 $TCPI_{EAC} = \frac{EAC - EV}{EAC - AC}$ (para cumplir con un nuevo objetivo EAC)

Lectura: TCPI > 1 implica **presión de costo**, será necesario mejorar la eficiencia para alcanzar la meta (BAC/EAC); TCPI < 1 implica **margen de costo**, es posible cumplir, aun con una eficiencia menor a la actual.

PERT (duraciones) y Monte Carlo Para una actividad con estimaciones (a, m, b):

$$\mu = \frac{a+4m+b}{6}, \qquad \sigma^2 = \frac{(b-a)^2}{36}.$$

Sumando actividades (suposición simple de independencia): $\mu_{\text{proy}} = \sum \mu_i$, $\sigma_{\text{proy}} = \sqrt{\sum \sigma_i^2}$. En la práctica, usar *Monte Carlo* para capturar dependencias y así obtener percentiles de fecha/costo (*P*50, *P*80, *P*90).

Percentiles y S-curves Reportando costo/fecha como distribución: por ejemplo, "Costo P50 = \$X, P80 = \$Y; P(EAC > BAC) = z%". Esto reemplaza el número único por rangos accionables.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Ing. Fernando	ITSC Digital Value	Director de Operaciones
	Calatayud Cataño		
Responsable	Lic. Osvaldo Daniel	FIUBA	Alumno
	Muñoz		
Orientador	MBA Ing. Luis	Capgemini North	Director del Trabajo Final
	Villanueva Canales	Latam	
Equipo	TBD 1		
Equipo	TBD 2		
Opositores	Team leaders	Cliente y	_
		contractors	
Usuario final	Project Managers	ITSC Digital Value	

- Orientador: el MBA Ing. Luis Villanueva Canales es un reconocido profesional en ciencias de la computación y electrónica y colaborará en refinar los requerimientos, así como dar las guías desde su experiencia para lograr los propósitos del proyecto.
- Cliente: el Ing. Fernando Calatayud Cataneo es exigente y detallista con vasta experiencia en entrega de servicios de consultoría. Conoce en profundidad los retos y desafíos de las disciplinas, con lo cual será riguroso en la definición de los requerimientos y en la calidad del producto final.
- Equipo: el equipo de trabajo se definirá a partir del dimensionamiento de las áreas de conocimiento que requiera el proyecto para su construcción. Es muy importante tener las definiciones para poder seleccionarlo.

3. Propósito del proyecto

Diseñar y validar un sistema de estimación probabilística que, a partir de evidencias observadas en el tiempo, entregue pronósticos calibrados y accionables, buscando mejorar con modelos de ML la calibración de las predicciones, indicadores y ratios.

4. Alcance del proyecto

El proyecto incluye:

- Formalizar las variables y artefactos (*work breakdown structure* (WBS), cronograma, costo, registros de riesgo/incidentes, cambios).
- Definir un modelo de probabilidad de desvío por dimensión (tiempo/alcance/costo)
 y su relación con riesgos/incidentes.
- Entrenar y validar modelos (Bayes/Monte Carlo/series de tiempo) con backtesting.

- Evaluar calibración y utilidad (curvas S con bandas, alertas tempranas, what-if).
- Entregar un tablero/notebooks reproducibles y una guía de uso para PMs.

El proyecto no incluye:

- Proyectos sin baseline.
- Datos no estructurados, o si no es posible normalizarlos.
- Estimación de recursos humanos a nivel individual (si hubiera faltante de datos).

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se establecen las siguientes hipótesis:

- La inclusión de variables de riesgo e incidentes mejora la predicción de desvíos en plazo y costo.
- Un modelo jerárquico bayesiano por paquete de trabajo (WBS) produce estimaciones mejor calibradas que una línea de base determinista + tendencia.
- Dado que el boosting cuantílico aprende relaciones no lineales e interacciones (SPI, CPI, Δ_{scope} , riesgos, incidentes) y genera bandas de predicción directamente, luego entonces, mejora la cobertura $(q_{10}/q_{50}/q_{90})$ y CRPS (Continuous Ranked Probability Score).
- TCN/LSTM (Temporal Convolutional Network/Long Short-Term Memory) reduce el Mean Absolute Error (MAE) cuando existen dependencias temporales fuertes.

6. Requerimientos

6.1. Funcionales (FR)

- FR-01 Ingesta al modelo unificado (DER vigente) El sistema debe aceptar datos por CSV/APIs y normalizarlos al modelo unificado del SPCP, conforme al DER vigente (todas las entidades definidas), aplicando reglas de tipos, obligatorios y PK/FK del diccionario.
- FR-02 Validación de dataset Validar columnas, tipos, PK/FK e impedir acumulados decrecientes (PV/EV/AC).
- FR-03 Cálculo EVM Calcular CPI, SPI, CV, SV, EAC (variantes) y TCPI.

- FR-04 Monte Carlo (cronograma) Simular con PERT $(a,m,b) \ge 10,000$ corridas; entregar finish P50/P80/P90 y P(Finish > Baseline).
- FR-05 Bayes (desempeño) Actualizar una red bayesiana por corte con observables (CPI, SPI, exposición de riesgo, cambios 7d, retrabajo, demoras proveedor) y estimar P(EAC > BAC) y drivers.
- **FR-06 ML baseline** Entrenar un modelo ML (p.ej., XGBoost) para EAC a t+4 semanas y probabilidad de sobrecosto > 10 %, con importancia/SHAP.
- FR-07 Fusión de señales y fiabilidad Combinar EVM + Bayes + ML mediante ensamble (promedio ponderado o stacking) para producir: (i) EAC final y (ii) probabilidad de sobrecosto.
- FR-08 Visualización ejecutiva El sistema debe presentar un panel de indicadores ejecutivos (KPIs de cabecera: P50/P80/P90 de EAC, P(EAC > BAC), TCPI), además de curvas S, histograma de simulaciones y una tabla ejecutiva con descarga CSV/PDF.
- **FR-09 Escenarios** Permitir "what-if" (cambios/riesgos) y recalcular percentiles y P(EAC > BAC).
- FR-10 Cortes y trazabilidad Emitir cortes semanales del dataset con manifiesto y huella (hash), y guardar la trazabilidad de cálculos por corte para asegurar reproducibilidad.
- FR-11 Descarga y API Permitir la descarga de resultados (CSV/PDF/PNG) y su consulta por API HTTP sencilla.

6.2. Documentación (DOC)

- **DOC-01 DER y diccionario** Entregar diagrama de entidad-relación (DER) y diccionario de datos (definiciones, dominios, *Primary Key / Foreign Key* (PK/FK)).
- **DOC-02 Mapeo de fuentes** Matriz Origen→modelo unificado por campo (PMIS/ERP/Jira/HR).
- **DOC-03 Manual de usuario** Flujo de carga, validación, ejecución, dashboards y exportaciones con capturas.
- **DOC-04 Manual de operación** Jobs, *seeds*, variables, backups, rotación de contraseñas, monitoreo.
- DOC-05 DOC-05 Ficha del modelo y de la red bayesiana Datos, métricas, deriva de datos, límites de uso y política de re-entrenamiento; incluir en la ficha de la BN los nodos, observables y supuestos.
- **DOC-06 Plan de pruebas** Casos de prueba para todos los requerimientos aplicables (funcionales, interfaz de usuario, integración, no funcionales, etc.), con criterios de aceptación y trazabilidad.

6.3. Testing (TEST)

- **TEST-01 Pruebas unitarias de ETL** Cobertura $\geq 80\%$ en los módulos de lectura y normalización de datos (parsers/normalizadores).
- **TEST-02 Contrato de datos** Validación del esquema durante la integración continua (CI); el proceso de build debe fallar ante cambios incompatibles.
- **TEST-03 Validación de la red bayesiana (BN)** Pruebas de posterior predictivo y análisis de sensibilidad de nodos para verificar la robustez de la BN.
- **TEST-04 Modelo Monte Carlo** Ejecuciones reproducibles (uso de semilla y validación de tolerancias en percentiles).
- **TEST-05 Validación de modelos de ML** Validación cruzada *k-fold* con reporte de MAE/RMSE y verificación de curva de calibración aceptable.
- **TEST-06 Backtesting** Validación *rolling-origin* vs. cortes históricos para EAC/fechas (MAE/RMSE y calibración).
- **TEST-07 Integración con APIs** En caso que aplique, pruebas con simulación controlada para Jira/PMIS/ERP, incluyendo casos de borde (valores nulos y duplicados).
- **TEST-08 Desempeño del panel** El dashboard inicial debe cargar en ≤ 5 segundos (p95) como meta ideal, y ≤ 10 segundos (p95) como meta mínima aceptable, para 12 meses de datos y 5,000 actividades.
- **TEST-09 Seguridad** Escaneo de dependencias y contraseñas, con verificación de controles básicos de acceso (RBAC)
- **TEST-10 Pruebas de aceptación de usuario (UAT)** Ejecución de 10 escenarios de negocio validados y firmados por el cliente.

6.4. Interfaz de usuario (UI)

- **UI-01 Diseño web adaptable** Visualización correcta en pantallas desde 1366×768 en adelante; versión móvil de solo lectura.
- UI-02 Indicadores claros (KPI) Tarjetas con EAC P50/P80/P90, P(EAC > BAC), TCPI con leyenda.
- **UI-03 Gráficos principales** S-curves, histograma de simulaciones, tendencias CPI/SPI y waterfall de EAC.
- **UI-04 Navegación y trazabilidad** Flujo de exploración: Entregable \rightarrow Actividades \rightarrow Riesgos/Cambios vinculados.
- **UI-05 Explicabilidad combinada** Panel de **SHAP/feature importance** (ML) y sensibilidad bayesiana (efecto de observables en posteriors), acompañado de texto breve.

UI-06 Exportación Exportar vistas clave en CSV, PDF y PNG con un solo clic.

6.5. Datos (DATA)

- **DATA-01 Modelo unificado (DER vigente)** Usar únicamente las columnas definidas en el esquema oficial; no se permiten campos extra ad-hoc.
- **DATA-02 Formato de fechas** Todas las fechas en formato YYYY-MM-DD y status_date semanal consistente.
- DATA-03 Identificadores (IDs) Únicos, estables, sin espacios; no reciclar IDs.
- **DATA-04 Calidad de datoa** Valores faltantes deben estar explícitos (no NaN); acumulados no pueden decrecer; moneda consistente dentro de cada proyecto.
- **DATA-05 Temporalidad** Separar *train/val/test* por tiempo (sin datos futuros); usar solo datos hasta cada fecha de corte.

6.6. De despliegue/DevOps (DEV)

- **DEV-01 Empaquetado** Implementación en *Docker*, usando variables de entorno para rutas y credenciales.
- **DEV-02 Datos de ejemplo (seeds)** Dataset demo reproducible para pruebas y aceptación de usuario (UAT).
- **DEV-03 Jobs automáticos** Orquestación del corte semanal y generación de reportes/exportables.
- **DEV-04 Copias de respaldo (backups)** Retención de snapshots y outputs durante al menos 6 meses, con verificación periódica de restauración.
- **DEV-05 Operaciones de ML (MLOps)** Registro de modelos, versionado de artefactos (modelo, features, semillas) y política de reentrenamiento.

7. Historias de usuarios (Product backlog)

La estimación de cada historia se basa en **complejidad**, **dificultad** e **incertidumbre**. Si la suma excede el máximo usual (20), se revisan las ponderaciones, especialmente la incertidumbre, ajustándolas a la realidad del SPCP donde los datos y modelos ya están definidos. De esta forma se evita inflar artificialmente las estimaciones y se mantiene la coherencia con la escala de Fibonacci modificada.

Backlog inicial:

1. Como jefe de PMs (cliente interno) quiero comparar el desempeño de todos mis proyectos en un panel consolidado para identificar rápidamente cuáles necesitan intervención.

Story points: 20 (complejidad 6, dificultad 6, incertidumbre 5)

- 2. Como analista de riesgos quiero ejecutar escenarios what-if modificando riesgos o duraciones críticas para ver cómo cambia la probabilidad de sobrecosto.

 Story points: 13 (complejidad 5, dificultad 4, incertidumbre 4)
- 3. Como usuario ejecutivo quiero descargar en un clic un reporte en PDF con la tabla de indicadores clave para llevarlo al comité de control.

 Story points: 8 (complejidad 3, dificultad 2, incertidumbre 3)
- 4. Como administrador del sistema quiero tener cortes semanales versionados con manifest + hash para asegurar trazabilidad y reproducibilidad de resultados. Story points: 8 (complejidad 3, dificultad 3, incertidumbre 2)
- 5. Como PM quiero ver un panel con P50/P80/P90 de EAC y P(EAC >BAC) para monitorear rápidamente la proyección de costos de mi proyecto. Story points: 5 (complejidad 2, dificultad 2, incertidumbre 1)
- 6. Como usuario externo al sistema quiero consultar un servicio sencillo que me entregue percentiles y alertas para integrar los resultados del SPCP en otras aplicaciones. Story points: 5 (complejidad 2, dificultad 2, incertidumbre 1)

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de usuario.
- Diagrama de circuitos esquemáticos.
- Código fuente del firmware.
- Diagrama de instalación.
- Memoria del trabajo final.
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1 (suma h)
 - 1.1. Tarea 1 (tantas h)
 - 1.2. Tarea 2 (tantas h)
 - 1.3. Tarea 3 (tantas h)
- 2. Grupo de tareas 2 (suma h)
 - 2.1. Tarea 1 (tantas h)
 - 2.2. Tarea 2 (tantas h)
 - 2.3. Tarea 3 (tantas h)
- 3. Grupo de tareas 3 (suma h)
 - 3.1. Tarea 1 (tantas h)
 - 3.2. Tarea 2 (tantas h)
 - 3.3. Tarea 3 (tantas h)
 - 3.4. Tarea 4 (tantas h)
 - 3.5. Tarea 5 (tantas h)

Cantidad total de horas: tantas.

¡Importante!: la unidad de horas es h y va separada por espacio del número. Es incorrecto escribir "23hs".

Se recomienda que no haya ninguna tarea que lleve más de 40 h. De ser así se recomienda dividirla en tareas de menor duración.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Una herramienta simple para desarrollar los diagramas es el Draw.io (https://app.diagrams.net/). Draw.io

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semi críticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color.

Figura 10. Diagrama de Activity on Node.

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de Gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + *plugins*. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa. https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS).

Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 11, se muestra un ejemplo de diagrama de gantt realizado con el paquete de pgfgantt. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Las fechas pueden ser calculadas utilizando alguna de las herramientas antes citadas. Sin embargo, el siguiente ejemplo fue elaborado utilizando esta hoja de cálculo.

Es importante destacar que el ancho del diagrama estará dado por la longitud del texto utilizado para las tareas (Ejemplo: tarea 1, tarea 2, etcétera) y el valor x unit. Para mejorar la apariencia del diagrama, es necesario ajustar este valor y, quizás, acortar los nombres de las tareas.

Figura 11. Diagrama de gantt de ejemplo

Figura 12. Ejemplo de diagrama de Gantt (apaisado).

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

Incluir la aclaración de si se emplea como moneda el peso argentino (ARS) o si se usa moneda extranjera (USD, EUR, etc). Si es en moneda extranjera se debe indicar la tasa de conversión respecto a la moneda local en una fecha dada.

COSTOS DIRECTOS						
Descripción	Cantidad	Valor unitario	ario Valor total			
SUBTOTAL						
COSTOS INDIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
TOTAL						

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10).
 - Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).
 - Justificar el motivo por el cual se asigna determinado número de (O).

Severidad	(S):	Χ.			
Instificación					

Ocurrencia (O): Y.
 Justificación...

Riesgo 3:

- Severidad (S): X.
 Justificación...
- Ocurrencia (O): Y. Justificación...

b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación:

- Severidad (S*): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O*): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Elija al menos diez requerimientos que a su criterio sean los más importantes/críticos/que aportan más valor y para cada uno de ellos indique las acciones de verificación y validación que permitan asegurar su cumplimiento.

- Req #1: copiar acá el requerimiento con su correspondiente número.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar.
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar.

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc.

Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno.

En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, los problemas que surgieron y cómo se solucionaron:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores:
 - Indicar esto y quién financiará los gastos correspondientes.