School of Computing and Information Systems COMP30026 Models of Computation Tutorial Week 7

16–18 September 2020

The exercises

- 51. Let A, B, and C be sets. Show:
 - (a) $A \not\subseteq B \Leftrightarrow A \setminus B \neq \emptyset$.
 - (b) $A \cap B = A \setminus (A \setminus B)$.

Hint: Use the formal (logical) definitions of the concepts involved.

- 52. Recall that the symme each of the following set equips://eduassistpro.gith@hallow.
 - (a) $A \oplus B = A$
 - (b) $A \oplus B$ Assignment Project Exam Help (c) $A \oplus B = A \cup B$ (d) Assignment Project Exam Help

 - (e) $A \oplus B = A^c$
- 53. Consider this statement is tr ps://eduassistpro.github.io/
- 54. Show that a relation R on A is transitive iff $R \circ$ relation R for white R to pat edu_assist_pro
- 55. Relations are sets. To say that $R(x,y) \wedge S(x,y)$ holds is the same as saying that (x,y) is in the relation R and also in the relation S, that is, $(x, y) \in R \cap S$.

Suppose R and S are reflexive relations on a set A. Then $\Delta_A \subseteq R$ and $\Delta_A \subseteq S$, so $\Delta_A \subseteq R \cap S$. That is, $R \cap S$ is also reflexive. We say that intersection *preserves* reflexivity. It is easy to see that union also preserves reflexivity. Similarly, if R is reflexive then so is R^{-1} , but the complement $A^2 \setminus R$ is clearly not. The following table lists these results. Complete the table, indicating which operations on relations preserve symmetry and transitivity.

Property	Reflexivity	Symmetry	Transitivity
preserved under \cap ?	yes		
preserved under \cup ?	yes		
preserved under inverse?	yes		
preserved under complement?	no		

- 56. Continuing from the previous question, now assume that R and S are equivalence relations. From your table's first two rows, determine whether $R \cap S$ necessarily is an equivalence relation, and whether $R \cup S$ is.
- 57. Suppose we know about functions $f: A \to B$ and $g: B \to A$ that f(g(y)) = y for all $y \in B$. What, if anything, can be deduced about f and/or g being injective and/or surjective?
- 58. Suppose $h: X \to X$ satisfies $h \circ h \circ h = 1_X$. Show that h is a bijection. Also give a simple example of a set X and a function $h: X \to X$ such that $h \circ h \circ h = 1_X$, but h is not the identity function (hint: think paper-scissors-rock).

- 59. (Drill.) The Cartesian product of two sets A and B is defined $A \times B = \{(a,b) \mid a \in A \land b \in B\}$. That is, a pair whose first component comes from A and whose second component comes from B is an element of $A \times B$ (and no other pairs are). Recall that \cap and \cup are absorptive, commutative and associative. Does \times have any of those properties?
- 60. (Drill.) Consider this conjecture: If a binary relation R on some set A is both symmetric and anti-symmetric then R is reflexive. Prove or disprove the conjecture.
- 61. (Drill.) Suppose A is a set of cardinality 42, that is, A has 42 elements. What, if anything, can we say about B's cardinality if we know that some function $f:A\to B$ is injective? What, if anything, can we say about B's cardinality if we know that some function $f:A\to B$ is surjective?
- 62. (Optional.) Let \leq be a partial order on a set X. We say that a function $h: X \to X$ is:
 - $idempotent iff \forall x$
 - $monotone iff \forall x$, https://eduassistpro.github.io/

Note that an idempotent function does all of its work "in one go"; repeated application will not change it result; Amonetone function it that respects order if it had grows, its output must grow too a stay the same).

A function which is identified and appear that an appear in proportion of the second of the second

an equivalent deterministic automaton—yet another u tor.

Consider $D = \{aA, cdd\}$ and the artial redet edu_assist_pro $x \leq y \text{ iff } x = a \vee$

Below is the so-called Hasse diagram for D. A Hasse diagram provides a helpful way of depicting a partially ordered set. The nodes are the elements of the set, and the order is given by the edges: $x \leq y$ if and only if there is a path from x to y travelling upwards only, along edges (and the path can have length 0).

Define eight functions $f_1, \ldots, f_8: D \to D$, exhibiting all possible combinations of the three properties. That is, find some

- (a) f_1 which is idempotent, monotone, and increasing;
- (b) f_2 which is idempotent and monotone, but not increasing;
- (c) f_3 which is idempotent and increasing, but not monotone;
- (d) f_4 which is monotone and increasing, but not idempotent;
- (e) f_5 which is idempotent, but neither monotone nor increasing;
- (f) f_6 which is monotone, but neither idempotent nor increasing;
- (g) f_7 which is increasing, but neither idempotent nor monotone;
- (h) f_8 which is neither idempotent, monotone, nor increasing.