Cognoms	Nom	DNI

Examen Final AP3

Duració: 3 hores

9/1/2019

- L'enunciat té 6 fulls, 12 cares i 4 problemes.
- Poseu el vostre nom complet i número de DNI a cada full.
- Contesteu tots els problemes en el propi full de l'enunciat i a l'espai reservat.
- A no ser que es digui el contrari, cal justificar les respostes.

Problema 1 (1.5 punts)

Volem generar totes les permutacions de $\{1, 2, ..., n\}$ tals que cap subseqüència de k nombres consecutius sumi més de s. Pots assumir que $n \ge k \ge 2$, $s \ge 0$. Per exemple, si n = 4, k = 3, s = 7, les úniques permutacions possibles són

$$(3,1,2,4), (3,2,1,4), (4,1,2,3), (4,2,1,3)$$

La permutació (1,3,2,4) no és vàlida perquè la subseqüència (3,2,4) suma més de 7. Completa el següent codi:

```
void write_perm_max(int n, int k, int s) {
  vector < bool > used(n+1, false);
  vector < int > sol; // Inicialment buit
  write_perm_max(n, k, s, sol, used);
}
int main(){
  int n, k, s;
  cin >> n >> k >> s;
  write_perm_max(n, k, s);
}
```

Cognoms	Nom	DNI	
)
Problema 2		(2.5 punt	s)

Nom

DNI

En Joan és fill d'una família que ha embogit davant la voràgine de consumisme en què s'han convertit les festes nadalenques. Pels $n \ge 1$ dies que duren aquestes festes, els seus pares han comprat n regals. Cada dia, li mostraran el regal corresponent a aquell dia, i en Joan el podrà acceptar o rebutjar. L'única restricció és que no pot acceptar el regal dos dies consecutius. Davant l'ansietat de no escollir prou bé, en Joan ha regirat tota la casa i ha trobat una llista (v_1, v_2, \dots, v_n) , on v_i és el valor del regal que li oferiran el dia i-èssim. En Joan, desesperat, ens demana ajuda: vol saber quina és la màxima suma de valors que pot aconseguir.

(a) (1 pt.) Completa el codi (recursiu) següent per solucionar aquest problema:

```
int max_valor (const vector < int>& v, int k) {
  if (k < 0) return
  else if (k == 0) return
  else return max( [
int main() {
  int n;
  cin >> n;
  vector < int > v(n);
  for (int i = 0; i < n; ++i) cin >> v[i];
  cout << "Valor: " << max_valor(v, n-1) <math><< endl;
```

(b) (0.5 pts.) Troba la recurrència que descriu el nombre de vegades que s'executa algun dels returns de les dues primeres línies de max_valor, en funció de k. Usa la solució d'aquesta recurrència per calcular una fita del cost en temps, en funció de k, de max_valor. Finalment calcula una fita inferior del cost del programa principal.

Ajuda: et pot ser útil recordar que per $n \ge 0$ es té que F_n , el n-èssim nombre de la successió de Fibonacci 1, 1, 2, 3, 5, . . . compleix $F_n \in \Theta(\phi^n)$ on $\phi = \frac{1+\sqrt{5}}{2}$.

int max_valor (const vector)	
}	
Anàlisi del temps i espai:	

Cognoms	Nom	DNI
Problema 3		(3 punts)

Un conegut investigador visitarà la UPC el proper 30 de gener per tal d'impartir-hi una xerrada. Davant l'allau de peticions per assistir-hi, s'ha decidit que l'investigador repetirà la xerrada diverses vegades. Per tal de determinar quantes xerrades es faran i l'hora d'inici de cadascuna d'elles, hem preguntat a les *n* persones interessades l'interval de temps en el que els aniria bé que la xerrada comencés.

Disposem, així doncs, d'un conjunts d'intervals $I = \{ [s_i, t_i] \mid 1 \le i \le n \}$ i volem esbrinar el menor nombre de xerrades necessàries, i la seva hora d'inici, per tal que tothom pugui assistir a almenys una d'elles.

(a) (0.5 pts.) Considera el següent algorisme golafre:

```
P:=I
mentre P \neq \emptyset
escull\ el\ nombre\ t\ inclòs\ en\ el\ major\ nombre\ d'intervals\ de\ P
(en\ cas\ d'empat\ escull\ el\ menor\ t)
planifica\ una\ xerrada\ a\ les\ t\ hores
elimina\ de\ P\ tots\ els\ intervals\ que\ inclouen\ t
fmentre
```

Demostra que aquest algorisme no sempre calcula la solució òptima, tot donant un contraexemple.

(b) (1.5 pts.) Considera el següent algorisme golafre:

```
P:=I
i:=1
mentre\ P \neq \emptyset
escull\ [s,t] \in P\ amb\ minim\ t
planifica\ una\ xerrada\ a\ les\ t\ hores;\ t_i:=t
elimina\ de\ P\ tots\ els\ intervals\ que\ inclouen\ t
i:=i+1
fmentre
```

imentre	
Siguin $\{t_1, t_2, \ldots, t_g\}$ les hores en les que l'algorisme golafre anterior planifica les xerrades i considerem $t_1^* < t_2^* < \ldots < t_{\theta}^*$ les hores, ordenades, d'una solució òptima.	
• Demostra que $t_1 < t_2 < \ldots < t_g$. Pots fer-ho per reducció a l'absurd.	
• Domostra que 0 < e	
• Demostra que $\theta \le g$.	
	/

Cognoms	Nom	DNI	
Demostra per inducció que per	er a tota $1 \le i \le \theta$ es	compleix $t_i \geq t_i^*$.	

	Nom	DNI
Problema 4		(3 punts)
Com que s'apropen les eleccions munique cívic on les diferents associacions de les n associacions electrons com una certa franja, expressada com un cormen el conjunt $I = \{[s_i, f_i] \mid 1 \le i \le a$ la al major nombre d'associacions, perceptades poden solapar-se.	el municipi podra existents pot fer un ninterval de temp n . L'objectiu de	nn celebrar les seves reuni- na única petició de reserva ps. Les peticions recollides l'ajuntament és reservar la
a) (0.5 pts.) Considera el següent algo	orisme golafre:	
$P := I$ mentre $P \neq \emptyset$ escull l'interval més curt accepta la reserva k-èsima elimina de P tots els intervante fmentre Demostra que aquest algorisme no un contraexemple.	vals que intersecc	•

(b)	(1.5 pts.) Demostra que si s^* és el major nombre de reserves que es poden acceptar, i s és el nombre de reserves que accepta l'algorisme golafre anterior, aleshores $s \geq \frac{1}{2}s^*$.	
	<i>Ajuda</i> : sigui $S = (J_1, J_2,, J_s)$ la seqüència d'intervals acceptats per l'algorisme anterior. És a dir, en la iteració i -èsima s'accepta l'interval J_i . Per $1 \le i \le s$, considerem $B_i = J_i \cup \{J \in I \mid J \text{ és eliminat de } P \text{ en la iteració i-èsima} \}$. Esbrina quants intervals dins de cada B_i poden aparèixer com a molt en una solució òptima.	

Cognoms	Nom	DNI
(1 pt.) Es coneix algun algo aquest problema? Si es així seva optimalitat ni analitzar	í, explica'l de manera info	rmal sense demostrar la

Aquesta cara estaria en blanc intencionadament si no fos per aquesta nota.