| I.  | Régulation de température simple boucle (10 pts)                                                                                                  |   |   |   |  |      |                                                                            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--|------|----------------------------------------------------------------------------|
| 1   | Donner le schéma électrique correspondant au cahier des charges.                                                                                  | 1 | В | П |  | 0,75 | Il manque l'alimentation du capteur.                                       |
| 2   | Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.                                                                      | 1 | Α |   |  | 1    |                                                                            |
| 3   | Régler le système pour avoir un niveau de 50% pour une commande de la vanne FV1 de 50%.                                                           | 1 | Α |   |  | 1    |                                                                            |
| 4   | Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct). | 1 | В |   |  | 0,75 | On demande de faire un échelon de commande.                                |
| 5   | Régler la boucle de régulation, en utilisant une méthode par approches successives, en mode de régulation PI.                                     | 4 | С |   |  | 1,4  | Il reste encore beaucoup de travail pour régler correctement cette boucle. |
| 6   | Enregistrer l'influence d'une variation du débit de sortie sur le niveau.                                                                         | 2 | D |   |  | 0,1  | Je ne vois pas le niveau, seulement le débit.                              |
| II. | Régulation parallèle (10 pts)                                                                                                                     |   |   |   |  |      |                                                                            |
| 1   | Rappeler le fonctionnement d'une boucle de régulation parallèle.                                                                                  | 1 | В |   |  | 0,75 | Ce n'est pas tout à fait ça.                                               |
| 2   | doccus                                                                                                                                            | 3 | Α |   |  | 3    |                                                                            |
| 3   | Régler la boucle de niveau en utilisant la méthode de Ziegler & Nichols. On choisira un correcteur PI.                                            | 2 | D |   |  | 0,1  | Vous réglez toujours la même boucle !!                                     |
| 4   | Enregistrer l'influence d'une variation du débit de sortie sur le niveau.                                                                         | 2 | С |   |  | 0,7  | Ce n'est pas la réponse à la question posée.                               |
| 5   | Expliquez l'intérêt d'une régulation parallèle en vous aidant de vos enregistrements. Citez un autre exemple pratique.                            | 2 | Α |   |  | 2    |                                                                            |

Note: 11,55/20

## **TP2 Debit**

## I. Régulation de débit simple boucle

1)



2)





| X   | Y   |
|-----|-----|
| 0   | 0   |
| 35  | 25  |
| 52  | 50  |
| 68  | 75  |
| 100 | 100 |

Sens d'action direct donc regulateur inverse



5)



$$Xp=120$$

$$Ti=0$$

$$Td=5$$



## II. Régulation parallèle

1) Une régulation parrallèle fonctionne avec deux mesures qui permettent d'assurer le fonctionnement d'un procédé , on utilise deux correcteurs et un seul organe de réglage. Dans ce TP nous aurons régulation débit et niveau pour l'organe de réglage FV1. A la fin un sélécteur choisir la régulation la plus adaptée.





Tc = environ 3 secondesXpc = 80

## Pour PID MIXTE:

XP = 1.7\*XPC = 136 TI = TC / 2 = 1.5TD = TC / 8 = 0.375



Systéme parfaitement réglé avec Ziegler & Nichols

4)



5)
La régulation en parallèle permet de surveiller le iveau du réservoir afin d'éviter qu'il déborde de celui-ci si jamais la valeur réglée dépasse celle réglée sur l'alarme alors la régulation change de correcteur pour éviter tout problèmes.