

Demand forecasting model taxonomy for short seasonal time series using cross-sectional information

Huijing Chen
John Boylan, Ivan Svetunkov
ISF 2019

Agenda

- Research motivation
- Theoretical framework
- Empirical analysis
- Simulations
- Conclusions
- Further research

Research motivation ---- Practical needs

- Difficulty in estimating seasonality with short data history
- Multiple products with similar seasonal patterns
- Same/similar products in different locations
- Exploring cross-sectional information
- Empirical evidence: Dalhart (1974), Withycombe (1989), Bunn and Vassilopoulos (1993), Ouwehand et al. (2007), Chen and Boylan (2008)

Research motivation ---- Theoretical development

- Theoretical underpinnings:
 - Chen and Boylan (2007): stationary seasonality
 - Ouwehand et al. (2007): multivariate ETS(MAM) model, risk of negative demand (Akram et al. 2009)
- Need of a multiplicative demand modelling framework
- Multivariate framework to model inter-relationships
 - de Silva *et al.* (2010): vector innovations structural time series (VISTS) framework
 - VISTS models beneficial but experiments using models containing level and trend components only
 - Current research framework focusing on the seasonal component

Research motivation ---- vector exponential smoothing (VES)

- VES model assuming single source of error (based on VISTS)
- Taxonomy on individual or common:
 - Seasonal component: Ouwehand et al. (2007)
 - Smoothing parameters:
 - Level and trend: Fildes et al. (1998)
 - Seasonality: Ouwehand et al. (2007)
 - Seasonal seed values: no previous studies
- Original contribution: ALL three elements examined together comprehensively

Model framework

Model from Ouwehand et al. (2007)

$$Y_{it} = (l_{i,t-1} + b_{i,t-1})S_{t-m}(1 + \varepsilon_{it})$$

$$l_{it} = (l_{i,t-1} + b_{i,t-1})(1 + \alpha_i \varepsilon_{it})$$

$$b_{it} = b_{i,t-1} + \alpha_i \beta_i (l_{i,t-1} + b_{i,t-1}) \varepsilon_{it}$$

$$S_t = S_{t-m} \left(1 + \gamma \sum_{i=1}^{N} w_i \, \varepsilon_{it} \right)$$

Our proposed model

$$Y_{it} = l_{i,t-1}b_{i,t-1}S_{i,t-m}\delta_{it}$$

$$l_{it} = l_{i,t-1} b_{i,t-1} \delta_{it}^{\alpha_i}$$

$$b_{it} = b_{i,t-1} \delta_{it}^{\beta_i}$$

$$S_t = S_{t-m} \prod_{i=1}^N w_i \delta_{it}^{\gamma}$$

*can be log-transformed into additive format

Cross sectional information on seasonality: seasonal components, seasonal smoothing parameters and seed values

Taxonomy of vector exponential smoothing (VES) models

Most restrictive model	Seasonal components	Smoothing parameters	Seasonal seed values	Abbreviation	N
	Common	Common (Seasonal)	Common	$CC_sC \longleftarrow S_t^* =$	$S_{t-m}^* + \gamma \sum_{t=0}^{N}$
	Individual	Common (All)	Common	IC _A C	i = i
	Individual	Common (All)	Individual	$ C_A $ $S_*^* =$	$S_{i,t-m}^* + \gamma \delta$
	Individual	Common (Seasonal)	Common	IC _s C	$S_{i,t-m} + \gamma O$
	Individual	Common (Seasonal)	Individual	IC _S I	
	Individual	Individual	Common	IIC ← C* −	$S_{i,t-m}^* + \gamma_i$
enchmark	Individual	Individual	Individual	III 4	i,t-m i fi

Common (Seasonal): same seasonal smoothing parameter across series

Common (All): all three smoothing parameter values are the same across series

Weights in the CC_SC model

$$S_t^* = S_{t-m}^* + \gamma \sum_{i=1}^N w_i \delta_{it}^*$$

• Equal weights: adopted in current study, variance equal across series

$$S_t^* = S_{t-m}^* + \frac{1}{N} \gamma \sum_{i=1}^N \delta_{it}^*$$

- Unequal weights:
 - Reasonable to assign low weights to noisy series
 - Requires further research

$$w_i = \frac{\sigma_i^{-1}}{\sum_{j=1}^N \sigma_j^{-1}} \text{ or } w_i = \frac{\sigma_i^{-2}}{\sum_{j=1}^N \sigma_j^{-2}}$$

Empirical analysis

- 218 series from 7 product families
- Monthly demand data for different types of light bulbs
- 5 years history: 1 year hold out; 2, 3 or 4 years estimation

	No. of
	SKUs
Group 1	66
Group 2	27
Group 3	61
Group 4	45
Group 5	2
Group 6	12
Group 7	5
Total	218

Estimation

- All models implemented in smooth package for R (Svetunkov, 2019)
 - Version 2.4.8
 - ves() function implements all main VES models
 - gsi() function implements CC_SC
- Models estimated via minimisation of trace of covariance matrix Σ
 - Full likelihood can only be applied to small groups
 - de Silva et al. (2010) reported no deterioration in forecasting performance

Error measures

Mean Absolute Error (MAE):

$$\frac{\sum_{j=1}^{h} \left| e_{t+j} \right|}{h}$$

h: forecasting horizont: forecast origin

j=1 to 12

Measure overall accuracy

Mean Squared Error (MSE):

$$\frac{\sum_{j=1}^{h} e_{t+j}^2}{h}$$

All measures are relative to the benchmark model (III)

Absolute Mean Error (AME):

$$\left| \frac{\sum_{j=1}^{h} e_{t+j}}{h} \right|$$

Measures bias

Empirical findings

	4 years			3 years			2 years		
	ReIMAE	ReIMSE	RelAME	ReIMAE	ReIMSE	RelAME	ReIMAE	ReIMSE	RelAME
CCsC	0.72	0.49	0.67	0.88	0.76	0.74	0.78	0.62	0.78
ICAC	0.56	0.31	0.43	0.63	0.41	0.57	0.65	0.43	0.56
ICsC	0.69	0.46	0.67	0.74	0.54	0.79	0.70	0.48	0.69
IIC	0.80	0.60	0.87	0.85	0.69	0.87	0.82	0.66	0.90
ICAI	0.80	0.66	0.74	0.89	0.80	0.74	0.94	0.87	0.76
IC sI	0.97	0.95	1.04	1.02	1.03	1.00	0.91	0.84	0.97
Ш	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

All VES models perform better than III (benchmark)

IC_AC is the best performing VES model

Improvement on III greater as length of history increases

Seed values: common seeds

beneficial

Smoothing parameters: *C_S*/*C_A* beneficial, more so IF seed values are common

Seasonal components: common beneficial but may be too restrictive

Simulations: Data generation

- Level, trend and seasonality specified in additive form (sim.ves() function), then taking exponent
- Initial level: random $\in [4, 10]$. This reflects a wide range of mean demand values
- Initial trend: 0
- Initial seasonal seeds: randomly generated between -1 and 1, then normalised
- Noise: $\delta_{it} \sim \text{LogN}(0, \sigma_i^2)$, σ is set to be 0.09 and equal
- Forecasting horizon: 1 to 12 months ahead
- Number of series: 2 or 100
- **Length of history**: 36 or 60 observations
- Replication: 1000

Simulations: Smoothing parameters

Group 1: DGP--ICAI & ICAC

- Common low: [0.1, 0.05, 0.1]
- Common high: [0.4, 0.3, 0.4]

Group 2: DGP-- ICsI, ICsC

- Common γ : 0.1 or 0.4
- α_i , β_i : random $\in [0.1, 0.4]$
- $\beta_i < \alpha_i$
- $\gamma < 1 \alpha_i$
- CC_sC: not included in the data generation yet

Group 3: DGP-- III & IIC

• All smoothing parameters random $\in [0.1, 0.4]$

Using most commonly applied values rather than the whole parameter space

Number of parameters to estimate

2 series 100 series

	Parameters per series		Parameters overall			Parameters	per series	Parameters	overall
Model	likelihood	trace	likelihood	trace	Model	likelihood	trace	likelihood	trace
Ш	19.0	18.0	37.0	36.0	Ш	117.0	18.0	6750.0	1800.0
IIC	13.0	12.0	25.0	24.0	IIC	105.1	6.1	5562.0	612.0
IC _S I	18.5	17.5	36.0	35.0	IC sI	116.0	17.0	6651.0	1701.0
IC _S C	12.5	11.5	24.0	23.0	IC _s C	104.1	5.1	5463.0	513.0
CCsC	12.5	11.5	24.0	23.0	CCsC	104.1	5.1	5463.0	513.0
IC _A I	17.5	16.5	34.0	33.0	ICAI	114.0	15.0	6453.0	1503.0
ICAC	11.5	10.5	22.0	21.0	ICAC	102.2	3.2	5265.0	315.0

Number of parameters to estimate per series is larger than the sample size (max 48 obs)

Simulations findings: point forecasts (1)

Simulations findings: point forecasts (2)

• 2 series

	RelMAE	RelRMSE	RelAME
IC _A I	0.95	0.95	0.94
IC _A C	1.02	1.02	1.03
	RelMAE	RelRMSE	RelAME
IC _A I	0.95	0.95	0.95
IC _A C	0.71	0.72	0.68

• 100 series

	RelMAE	RelRMSE	RelAME
IC _A I	0.97	0.97	0.96
IC _A C	0.88	0.89	0.83
	RelMAE	RelRMSE	RelAME
IC _A I	0.97	0.97	0.95
IC _A C	0.57	0.58	0.50

Red indicates data generation process

Parameters to estimate:

IC_AI : 33 IC_AC: 21

III: 36

Parameters to estimate:

IC_AI : 1503 IC_AC: 315 III: 1800

Simulations findings: 95% interval coverage & relative range

Conclusions

- VES models perform well in simulations and empirical analysis
- Parsimonious and flexible models perform strongly
- *C_A* models provide the lowest forecasting errors
 - perform consistently in different data generation processes
 - IC_AC Performance against benchmark improves when number of series available increases

Coverage:

- Improves when more observations available
- Improves when more series available
- **C models closer to 95% coverage than **I models
- Relative range: *C_A* models have narrower range than the III benchmark

Future research

- Simulate data generation process of CC_SC
- Allow optimised weights in CC_SC
- Explore benefits (if any) of full likelihood
- Consider shrinkage estimation for VES models
- Assess VES models with new empirical data
- Model selection within the taxonomy of VES models
- VES models extendable to multiple seasonal patterns

Thank you for your attention!

References

- Akram, M., Hyndman, R. J., Ord, J. K., Stat, A. N. Z. J., Kram, M. U. A., Yndman, R. O. B. J. H., & Rd, J. K. E. O. (2009) Exponential smoothing and non-negative data. Australian and New Zealand Journal of Statistics, 51(4), 415–432. https://doi.org/10.1111/j.1467-842X.2009.00555.x
- Bunn, D.W. and Vassilopoulos A.I. (1993) Using group seasonal indices in multi-item short-term forecasting. *International Journal of Forecasting*, 9(4), 517-526. https://doi.org/10.1016/0169-2070(93)90078-2
- Chen, H. and Boylan, J.E. (2007) Use of individual and group seasonal indices in subaggregate demand forecasting. *Journal of the Operational Research Society, 58*(12), 1660-1671. https://www.jstor.org/stable/4622863
- Chen, H. and Boylan, J.E. (2008) Empirical evidence on individual, group and shrinkage seasonal indices. *International Journal of Forecasting*, 24(3), 525-534. https://doi.org/10.1016/j.ijforecast.2008.02.005
- Dalhart, G. (1974) Class seasonality a new approach. American Production and Inventory Control Society 1974 Proceedings. Reprinted in Forecasting, 2nd Ed., American Production and Inventory Control Society, Washington DC, 11-16.
- de Silva, A., Hyndman, R. J., & Snyder, R. (2010). The vector innovations structural time series framework. *Statistical Modelling: An International Journal*, 10(4), 353–374. https://doi.org/10.1177/1471082X0901000401
- Fildes, R., Hibon, M., Makridakis, S. & Meade, N. (1998) Generalising about univariate forecasting methods: further empirical evidence. *International Journal of Forecasting*, 14(3), 339-358. https://doi.org/10.1016/S0169-2070(98)00009-0
- Ouwehand, P., Hyndman, R.J., de Kok, T.G., & van Donselaar, K.H. (2007) A state space model for exponential smoothing with group seasonality. Department of Econometrics & Business Statistics Working Paper Series 07/07, Monash University. https://www.monash.edu/business/ebs/research/publications/ebs/wp07-07.pdf
- Svetunkov I. (2019). smooth: Forecasting Using State Space Models. R package version 2.4.8 https://github.com/config-i1/smooth
- Withycombe, R. (1989) Forecasting with combined seasonal indices. *International Journal of Forecasting*, 5(4), 547-552. https://doi.org/10.1016/0169-2070(89)90010-1