

iCE40 UltraPlus Breakout Board

User Guide

FPGA-UG-02001-1.2

April 2022

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Acronyms in This Document	5
1. Introduction	6
2. Features	
3. iCE40 UltraPlus Device	8
4. Software Requirements	<u>c</u>
5. Demonstration Design Shunts	10
6. Clock Sources	
7. Board Power	12
8. Board Configuration and Programming	13
9. Test Points	16
10. RGB LED Demonstration Design and Software User Interface	18
11. Serial Communication Interface	21
11.1. LED Control through SPI	21
11.2. SPI Protocol	21
11.3. Register Definitions	22
12. Ordering Information	24
Appendix A. Schematic Diagrams	25
Appendix B. Bill of Materials	31
References	
Technical Support Assistance	36
Revision History.	

Figures

Figure 2.1. iCE40 UltraPlus Breakout Board (Top Side)	7
Figure 5.1. Default Shunt Locations	10
Figure 8.1. Board Configuration for Programming Flash	13
Figure 8.2. Device Property Settings for Programming Flash	14
Figure 8.3. Setting Status in Diamond Programmer for Programming Flash	14
Figure 8.4. Device Property Settings for Programming iCE40 UltraPlus	15
Figure 9.1. J52 Header 'A' Breakouts	16
Figure 9.2. J2 Header 'B' Breakouts	16
Figure 9.3. J3 Header 'C' Breakouts	16
Figure 9.4. U6 PMOD Connector	17
Figure 9.5. J1 Adardvark Connector	17
Figure 9.6. Breakout Headers	17
Figure 10.1. SPI Flash Selection (Horizontal) for J6	
Figure 10.2. iCE40 UltraPlus Selection (Vertical) for J6	19
Figure 10.3. iCE40 UltraPlus LED Demonstration Interface	19
Figure 11.1. SPI Physical Transaction	21
Figure A.1. Block Diagram	25
Figure A.2. FTDI Connection	26
Figure A.3. DUT Connection	27
Figure A.4. RGB,PMOD and HEADERS	28
Figure A.5. Regulator Connection	29
Figure A.6. SPI	30
Tables	
Table 11.1. Register Address and Bit Field Allocation	
Table 11.2. Bit Field Functionality Definition	
Table 11.3. RGB Color Code Definition	
Table 11.4. LED Brightness Code Definition	
Table 11.5. Breathe Ramp Code Definition	
Table 11.6. Blink Rate Code Definition	
Table 12.1. Ordering Information	24

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
CMOS	Complementary Metal-Oxide Semiconductor
FPGA	Field Programmable Gate Array
FTDI	Future Technology Devices International
1/0	Input/Output
LED	Light-emitting Diode
SPI	Serial Peripheral Interface

1. Introduction

Thank you for choosing the Lattice iCE40 UltraPlus™ Breakout Board.

This guide describes how to begin using the iCE40 UltraPlus Breakout Board, an easy-to-use platform for demonstrating the high-current LED drive capabilities of the iCE40 UltraPlus, which has more memory to achieve functions mainly required in the customer mobile market. Along with the evaluation board and accessories, this kit includes a pre-loaded LED Driver Demo that demonstrates driving the RGB LEDs with a PWM circuit. In addition, most of the device's I/O pins are accessible through one of the several header locations on the board, facilitating rapid prototyping of user functions.

The contents of this user guide include demo operation, top-level functional descriptions of the various portions of the evaluation board, descriptions of the onboard connectors, shunts, and a complete set of schematics and the bill of materials for the iCE40 UltraPlus Breakout Board.

Note: Static electricity can severely shorten the lifespan of electronic components. Be careful when handling the iCE40 UltraPlus Breakout Board as to not damage it from ESD.

2. Features

The iCE40 UltraPlus Breakout Board includes:

- iCE40 UltraPlus Breakout Board The iCE40 UltraPlus Breakout Board features the following on-board components and circuits:
 - iCE40 UltraPlus (iCE40UP5K-SG48) device in a 48-PIN QFN package.
 - Example of a board using this 0.5mm pitch QFN package.
 - High-current LED output
 - iCE40 UltraPlus Current Measurements
 - Standard USB cable for device programming.
 - RoHS-compliant packaging and process
- Pre-loaded Demo The kit includes a pre-loaded demo to control the onboard RGB LED in conjunction with a software run user interface.
- USB Connector Cable A mini B USB port provides power, a programming interface and communication for the software RGB LED user interface to the iCE40 UltraPlus SPI port.

Figure 2.1 shows the top side of the iCE40 UltraPlus Breakout Board indicating the specific features that are designed on the board.

Figure 2.1. iCE40 UltraPlus Breakout Board (Top Side)

3. iCE40 UltraPlus Device

The board features an iCE40UP5K FPGA with a 1.2 V core supply. The device package is 48-PIN QFN. For a complete description of this device, see iCE40 UltraPlus Family Data Sheet (FPGA-DS-02008).

4. Software Requirements

You should install the following software before you begin developing designs for the board:

- Lattice iCEcube2 2017.01 (or higher)
- Diamond Programmer 3. 9 (or higher)

These software are available at the Lattice website Design Software and IP page. Make sure you log in to www.latticesemi.com, otherwise these software downloads are not visible. It is also recommended to download the RGB LED software user interface which interfaces with the iCE40 UltraPlus Breakout Board. This user interface allows you to control the RGB LED for color, brightness, blinking and breathing. Download the PC or MAC version of the user interface at www.latticesemi.com.

5. Demonstration Design Shunts

Lattice provides the RGB LED Driver Demo design programmed on the board. The RGB LED Driver Demo used in conjunction with the software user interface illustrates the use of a PWM driver controlling the LEDs on the board. Below is a description of the control jumpers for each LED.

- The RGB LED transitions colors.
 - J27 can be used to probe RGB LED (Default shunted). If you remove J27, the RGB LED does not light up.

Figure 5.1 shows the default board shunt locations.

JZI - RGB SHUIRS

Figure 5.1. Default Shunt Locations

6. Clock Sources

The board has a single 12 MHz clock source. The 12 MHz clock drives both the FTDI USB interface device, and the iCE40UP5K device. The iCE40UP5K can be disconnected from the 12 MHz oscillator using J51. This is necessary, for example, when iCE40UP5K device pin35 is mistakenly programmed as an output and prevents the FTDI USB interface from operating.

7. Board Power

There are two versions of the Bill of Materials (BOM). Early versions have D11 populated with a CDBU0520 Schottky. Later versions populate D11 with a CDSU4148. The later version diode complies with the voltage requirements on the Vpp_2V5 pin for NVCM programming/configuration.

The board provides the following power features:

- Board Power
 - Board power is derived from the USB connection.
 - D13 Blue LED indicates Board Power
- iCE40 UltraPlus VCC/VCC PLL
 - Onboard 1.2 V supply
 - ICC can be measured across the series resistor R76 (1 Ω) at TP11 and TP12
 - ICC_PLL can be measured across the series resistor R77 (1 Ω) at TP13 and TP14
- iCE40 UltraPlus VCCIO
 - Onboard 3.3 V supply
 - ICCO can be measured across the series resistor R73 (1 Ω) at TP5 and TP6
 - ICC1 can be measured across the series resistor R75 (1 Ω) at TP9 and TP10
 - ICC2 can be measured across the series resistor R74 (1 Ω) at TP7 and TP8

The power supplies on the iCE40 UltraPlus Breakout Board are simplified and suitable for booting from the external SPI flash. The power supply sequencing does not conform to the NVCM boot requirements as specified in iCE40 UltraPlus Family Data Sheet (FPGA-DS-02008). You may encounter intermittent boot success and/or higher than specified startup currents when attempting to boot from NVCM.

8. Board Configuration and Programming

The board allows for programming of the iCE40 UltraPlus or the SPI Flash:

- SPI Flash Programming J6 shunt pins 1-3 and 2-4 (Default shunted)
 - U5 Micron Technology Inc. part number N25Q032A13ESC40F
- iCE40 UltraPlus Configuration or Programming J6 shunt pins 1-2 and 3-4
 - U1 iCE40UP5K SG48
- CRESETB can be asserted by pushing SW1
 - Can be probed with J11
- Done LED D2
 - Can be probed with J28 (Default shunted)

The details of the iCE40 UltraPlus Board for SPI flash programming are shown in Figure 8.1.

Figure 8.1. Board Configuration for Programming Flash

To program SPI flash in Diamond Programmer:

- 1. Make sure that the Standalone Diamond Programmer is installed.
- 2. Connect the iCE40 UltraPlus breakout board through the USB cable to a PC or MAC.
- 3. Start Diamond Programmer.
- Set Device Family to iCE40 UltraPlus" and Device to "iCE40UP5K". Refer to Figure 8.3.
- 5. Open the Device Properties dialog. Apply the settings highlighted in Figure 8.2.
 - Programming file is the bitmap file that will be programmed into the iCE40 UltraPlus breakout board.
 - Load from File button should be used to refresh fields such as "Data file size" and "End address(Hex)".

- 6. Click **OK** to exit Device Properties dialog.
- 7. Click the **Program** button in Diamond Programmer to download the bitstream file.

Figure 8.2. Device Property Settings for Programming Flash

Figure 8.3. Setting Status in Diamond Programmer for Programming Flash

The differences between programming ICE40 UltraPlus and programming flash are described below.

To program ICE40 UltraPlus in Diamond Programmer:

- 1. Change jumpers on J6, shunt pins 1-2 and 3-4.
- 2. Apply the settings in the Device Properties dialog as shown in Figure 8.4.

Figure 8.4. Device Property Settings for Programming iCE40 UltraPlus

For more information on Diamond Programmer, please refer to its user guide.

9. Test Points

The board features a number of headers and test connections which provide access to the iCE40 UltraPlus I/Os:

Figure 9.1. J52 Header 'A' Breakouts

Figure 9.2. J2 Header 'B' Breakouts

Figure 9.3. J3 Header 'C' Breakouts

© 2016-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 9.4. U6 PMOD Connector

Figure 9.5. J1 Adardvark Connector

The break-out headers and test connectors are shown in Figure 9.6.

Figure 9.6. Breakout Headers

10. RGB LED Demonstration Design and Software User Interface

The iCE40 UltraPlus Breakout Board can demonstrate a complete controller for an RGB LED. Following are the steps to run the demonstration. The software user interface tool used here is the same as the one used with the iCE40 Ultra Breakout Board. You can refer to the Lattice website iCE40 Ultra Breakout Board page.

To run the demonstration:

- Ensure that the RGB LED user interface is installed.
- 2. Make sure the jumpers on J6 are both in the horizontal position. This is the default pins 1-3 and 2-4 shorted together.

Figure 10.1. SPI Flash Selection (Horizontal) for J6

- 3. Connect the iCE40 UltraPlus breakout board through the USB cable to a PC or MAC.
- 4. After the iCE40 UltraPlus device has initialized and the RGB LED is illuminated RED, change the J6 jumper positions to vertical, shorting pins 1-2 and 3-4. This is required to allow the USB port to communicate with the iCE40UP5K device.

© 2016-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 10.2. iCE40 UltraPlus Selection (Vertical) for J6

5. Start the RGB user interface on the PC or MAC.

Figure 10.3. iCE40 UltraPlus LED Demonstration Interface

Now you can control the RGB LED on the iCE40 UltraPlus Breakout Board. You can set the color, brightness, blinking rate as well as breathing.

Note: The RGB user interface is the same demo tool used with iCE40 Ultra Breakout board.

11. Serial Communication Interface

11.1. LED Control through SPI

The Software user interface demonstration program communicates with the iCE40 UltraPlus device using an SPI serial communication channel. The SPI interface (mode 0) control link is implemented using a simple write-only protocol (see Figure 11.1.)

Figure 11.1. SPI Physical Transaction

11.2. SPI Protocol

Data on the MOSI serial line is transmitted MSB first.

Addr[7:0] - Controls which of the 16 bits are updated with REG data.

Note that Unspecified REG bits must be written, but are ignored.

Table 11.1. Register Address and Bit Field Allocation

Addr	Bits Written	Bit Position	
0x13	REG[3:0]	dddd	
0x14	REG[7:4]	cccc	
0x15	REG[11:8]	bbbb	
0x16	REG[15:12]	aaaa	
0x19	REG[15:0]	aaaabbbbccccdddd	

REG[15:0] – Consists of four control fields.

Table 11.2. Bit Field Functionality Definition

Field	Bit Positions	Function	
aaaa	REG[15:12] RGB Color[3:0]		
bbbb	REG[11:8]	REG[11:8] Brightness[3:0]	
сссс	REG[7:4]	Breathe Ramp [3:0]	
dddd	REG[3:0]	Blink Rate [3:0]	

11.3. Register Definitions

Table 11.3. RGB Color Code Definition

Default setting (hardware, software) is denoted by (*).

RGB Color[3:0]	Color	Color Code
0000*	Red	#FF0000
0001	Orange	#FF7F00
0010	Yellow	#FFFF00
0011	Chartreuse	#7FFF00
0100	Green	#00FF00
0101	Spring Green	#00FF7F
0110	Cyan	#00FFFF
0111	Azure	#007FFF
1000	Blue	#0000FF
1001	Violet	#7F00FF
1010	Magenta	#FF00FF
1011	Rose	#FF007F
1100	_	-
1101	_	_
1110	_	_
1111	White	#FFFFFF

Table 11.4. LED Brightness Code Definition

Brightness[3:0]	Level (%)
0000	6.25 (dim)
0001	12.5
0010	18.78
0011	25
0100	31.25
0101	37.5
0110	43.75
0111*	50
1000	56.25
1001	62.5
1010	68.75
1011	75
1100	81.25
1101	87.5
1110	93.75
1111	100 (bright)

Table 11.5. Breathe Ramp Code Definition

Breathe Ramp[3:0]	Level (%)
0000*	.0x (fast)
0001	.063x
0010	.125x
0011	.25x
0100	.5x
0101	1x
0110	2x
0111	4x (slow)
1000	_
1001	_
1010	_
1011	_
1100	_
1101	_
1110	_
1111	_

Table 11.6. Blink Rate Code Definition

Blink Rate[3:0]	Level (%)
0000	Always On
0001	1/16 (fast)
0010	1/8
0011	1/4
0100	1/2
0101*	1
0110	2
0111	4
1000	Always Off
1001	-
1010	-
1011	-
1100	-
1101	-
1110	_
1111	-

12. Ordering Information

Table 12.1. Ordering Information

Description	Ordering Part Number	China RoHS Environment- Friendly Use Period (EFUP)
iCE40 UltraPlus Breakout Board	iCE40UP5K-B-EVN	©

Appendix A. Schematic Diagrams

Figure A.1. Block Diagram

© 2016-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure A.2. FTDI Connection

Figure A.3. DUT Connection

Figure A.4. RGB,PMOD and HEADERS

Figure A.5. Regulator Connection

Figure A.6. SPI

Appendix B. Bill of Materials

Item	Reference	Qty	Part	PCB Footprint	Part Number	Manufacturer	Description
1	C1,C3,C67	3	4.7uF	cc0603	ECJ-1VB0J475K	Panasonic	CAP CER 4.7UF 6.3V 10% X5R 0603
2	C2,C4,C5,C6,C7, C8,C9,C11,C12, C15,C37,C38,C39,C40,C44,C49,C53,C63,C64,C66,C87,C89,C91, C93,C94	25	0.1uF	cc0402	C0402C104K4RAC TU	Kemet	CAP CER 0.1UF 16V 10% X7R 0402
3	C10,C35,C42,C47,C65	5	10uF	cc0603	LMK107BJ106MAL TD	Taiyo Yuden	CAP CER 10UF 10V 20% X5R 0603
4	C36,C43	2	1uF	cc0402	C0402C105K9PAC TU	Kemet	CAP CER 1UF 6.3V 10% X5R 0402
5	C41,C45,C46,C48	4	0.01uF	cc0402	C0402C103J4RACT U	Kemet	CAP CER 10000PF 16V 5% X7R 0402
6	C72,C73,C74,C75,C76	5	0.1uF	cc0603	C0603C104K4RAC TU	Kemet	CAP CER 0.1UF 16V 10% X7R 0603
7	C84,C85	2	22uF	cc0805	LMK212BJ226MG- T	Taiyo Yuden	CAP CER 22UF 10V 20% X5R 0805
8	C88, C95, C99, C100	4	1uF	cc0402	C0402C105K4PAC 7867	Kemet	CAP CER 1UF 16V 10% X5R 0402
9	C90, C92, C98, C101	4	10nF	cc0402	C0402C103J4RACT U	Kemet	CAP CER 10000PF 16V 5% X7R 0402
10	C96	1	100nF	cc0402	C0402C104K4RAC TU	Kemet	CAP CER 0.1UF 16V 10% X7R 0402
11	C97	1	10uF	cc0402	CL05A106MP5NU NC	Samsung	CAP CER 10UF 10V X5R 0402
12	D3	1	Green	SM_D_0603	LG L29K-G2J1-24-Z	Osram	LED SMARTLED GREEN 570NM 0603
13	D8,D9,D10	3	CDBU0130R	diode_sod523f	CDBU0130R	Comchip	DIODE SCHOTTKY 30V 100MA 0603
14	D11 (Older Version)	1	CDBU0520	diode_sod523f	CDBU0520	Comchip	DIODE SCHOTTKY 30V 100MA 0603
15	D11 (Later Version)	1	CDSU4148	diode_sod523f	CDSU4148	Compchip	DIODE SCHOTTKY 30V 150MA 0603
16	D13	1	Blue	led_0603	LTST-C190TBKT	LITE-On Inc.	LED BLUE CLEAR 0603 SMD

Item	Reference	Qty	Part	PCB Footprint	Part Number	Manufacturer	Description
17	FB4,FB5	2	FB_60ohm	L0603	HI0603P600R-10	Laird-signal	FERRITE CHIP POWER 60 Ω SMD
18	J1	1	SPI PGM	hdr5x2	77313-801-10LF	FCI	CONN HEADER .100 DUAL STR 10POS
19	J2,J3	2	Header2x10	hdr_samtec_m tsw_2x10_100	MTSW-110-08-T- D-300	Samtec	CONN HEADER 20POS .100" TH DUAL
20	J5	1	SKT_MINIUS B_B_RA	skt_miniusb_b _ra	5075BMR-05-SM- CR	Neltron	CONN MINI USB RCPT RA TYPE B SMD
21	J6	1	TSW-102-07- F-D	hdr_samtec_ts w_2x2_100	TSW-102-07-F-D	Samtec	CONN HEADER 4POS .100" DBL
22	J7	1	TSW-102-07- G-S	hdr_samtec_ts w_1x2_100	TSW-102-07-G-S	Samtec	CONN HEADER 2POS .100" SGL GOLD
23	J11	1	CRST	HDR1X2-40	77311-801-02LF	FCI	CONN HEADER .100 SINGL STR 2POS
24	J27	1	HEADER 3X2	HDR3x2	_	_	_
25	J28	1	DONE	HDR1X2-40	77311-801-02LF	FCI	CONN HEADER .100 SINGL STR 2POS
26	J51	1	2 PIN JPR	2PIN_100MIL	_	_	_
27	J52	1	HEADER 6X2_0	HDR_6X2	_	_	_
28	L4,L6,L7	3	600 OHM 800MA	fb0603	BLM18HE601SN1 D	Murata	FERRITE CHIP 600 Ω 800MA 0603
29	R5,R6,R7,R8,R49,R70,R71	7	0	cr0603	RC0603JR-070RL	Yageo	RES 0.0 Ω 1/10W JUMP 0603 SMD
30	R9,R19	2	2.2K	cr0402	RC0402FR-072K2L	Yageo	RES 2.20 K Ω 1/16W 1% 0402 SMD
31	R10	1	12K	cr0402	RC0402FR-0712KL	Yageo	RES 12.0 K Ω 1/16W 1% 0402 SMD
32	R11,R12,R13,R25,R58,R59,R60	7	10K	cr0402	RC0402FR-0710KL	Yageo	RES 10.0 K Ω 1/16W 1% 0402 SMD
33	R14	1	100	R0603	CRCW0603100RFK EAHP	Vishay	RES 100 Ω 0.25W 1% 0603 SMD

Item	Reference	Qty	Part	PCB Footprint	Part Number	Manufacturer	Description
34	R34	1	10k	R0603	ERJ-3EKF1002V	Panasonic	RES 10 K Ω 1/10W 1% 0603 SMD
35	R35	1	2k2	R0603	ERJ-3EKF2201V	Panasonic	RES 2.2 K Ω 1/10W 1% 0603 SMD
36	R54	1	1K	cr0402	ERJ-2GEJ102X	Panasonic	RES SMD 1 K Ω 5% 1/10W 0402
37	R62,R63	2	1M	cr0402	RC0402JR-071ML	Yageo	RES 1.0M Ω 1/16W 5% 0402 SMD
38	R64	1	357K	cr0603	ERJ-3EKF3573V	Panasonic	RES SMD 357 K Ω 1% 1/10W 0603
39	R65	1	210K	cr0402	ERJ-2RKF2103X	Panasonic	RES SMD 210 K Ω 1% 1/10W 0402
40	R66,R67	2	100	cr0603	RC0603FR- 07100RL	Yageo	RES 100 Ω 1/10W 1% 0603 SMD
41	R68,R69	2	0.1	cr0603	ERJ-3RSFR10V	Panasonic	RES .10 Ω 1/10W 1% 0603 SMD
42	R72,R78,R79,R80	4	4.7K	cr0603	CRCW06034K70FK EA	Vishay	RES 4.70 K Ω 1/10W 1% 0603 SMD
43	R73,R74,R75,R76,R77	5	1	cr0603	RC0603FR-071RL	Yageo	RES SMD 1 Ω 1% 1/10W 0603
44	R94,R95	2	62	SM_R_0603	ERJ-3EKF62R0V	Panasonic	RES 62 Ω 1/10W 1% 0603 SMD
45	R97	1	110	SM_R_0603	ERJ-3EKF1100V	Panasonic	RES 110 Ω 1/10W 1% 0603 SMD
46	SW1	1	CRST	2psmd_eswitc h	TL1015AF160QG	E-Switch	SWITCH TACTILE SPST-NO 0.05 A 12V
47	SW2	1	SW-DIP4	sw_sp_st_cts_ 195-4mst	195-4MST	CTS Electrocompo nents	SWITCH SIDE ACTUATED 4 SEC 50V
48	TP1,TP2,TP3	3	TP_S_40_63	tp_s_40_63	_	_	Square test point, 40mil inner diameter, 63mil outer diameter
49	TP5,TP6,TP7,TP8,TP9,TP10,TP11,TP12,TP13,TP14	10	DNI	tp_s_40_63	_	_	Square test point, 40mil inner diameter,

Item	Reference	Qty	Part	PCB Footprint	Part Number	Manufacturer	Description
							63mil outer diameter
50	U1	1	iCE40UP5K/ 3K- SG48	iCE40UP5K_SG 48	_	_	_
51	U2	1	FT2232HL	tqfp64_0p5_12 p2x12p2_h1p6	FT2232HL-REEL	FTDI	IC USB HS DUAL UART/FIFO 64-LQFP
52	U3	1	93LC56-SO8	so8_50_244	93LC56CT-I/SN	Microchip	IC EEPROM 2KBIT 3MHZ 8SOIC
53	U4	1	LED TRI- COLOUR_1	6-PLCC	SFT722N-S	Seoul Semiconducto r Inc.	LED RED/GRN/BLU CLEAR LENS 6PLCC
54	U5	1	N25Q032A1 3ESC40F	so8_50_244	N25Q032A13ESC4 0F	Micron	IC Flash Mem Serial- SPI 3V/3.3V 32M-Bit 4M 7ns 8-Pin SO T/R
55	U6	1	PMOD socket	HDR_2X6	_	_	_
56	U7	1	LT3030EFE# TRPBF	tssop20_26_26 0_thrm_pad	LT3030EFE#TRPBF	Linear	IC REG LDO ADJ 20TSSOP
57	X1	1	12.0000MHZ	2_5mmx2mm	SiT1602AC-12- 33E-12.000	SiTime	OSC MEMS 12MHZ H/LV-CMOS SMD
58	iCE40 ULTRAPLUS BREAKOUT BOARD PCB	1	_	_	305-PD-16-0084	PACTRON	_

References

The standards used in this document and their abbreviations are listed on the table below.

Abbreviation	Standards Publication, Organization, and Date
HDMI	High Definition Multimedia Interface, Revision 1.4a, HDMI Licensing LLC., March 2010
HCTS	HDMI Compliance Test Specification, Revision 1.4a, HDMI Licensing LLC., March 2010
HDCP	High-bandwidth Digital Content Protection, Revision 2.2, Digital Content Protection, LLC; February 2013 High-bandwidth Digital Content Protection, Revision 1.4, Digital Content Protection, LLC; July 2009
DVI	Digital Visual Interface, Revision 1.0, Digital Display Working Group, April 1999
E-EDID	Enhanced Extended Display Identification Data Standard, Release A Revision 1, VESA; February 2000
CEA-861-D	A DTV Profile For Uncompressed High Speed Digital Interfaces, EIA/CEA, July 2006
EDDC	Enhanced Display Data Channel Standard, Version 1, VESA, September 1999
MHL	MHL (Mobile High-definition Link) Specification, Version 3.0, MHL, LLC, August 2013

For more information on the specifications that are applied in this document, contact the responsible standards groups listed on the table below.

Standards Group	Web URL
ANSI/EIA/CEA	http://global.ihs.com
VESA	http://www.vesa.org
HDCP	http://www.digital-cp.com
DVI	http://www.ddwg.org
HDMI	http://www.hdmi.org
MHL	http://www.mhlconsortium.org

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Revision 1.2 April 2022

Section	Change Summary	
All	Adjustments in formatting across the document.	
	 Updated document ID of reference document iCE40 UltraPlus Family Datasheet from DS1056 to FPGA-DS-02008. 	
	Updated last page of the document.	
Acronyms in This Document	Added this section.	
Disclaimers	Added this section.	
Board Power	Added a paragraph regarding BOM.	
Serial Communication Interface	Changed section name form GUI Serial Communication Interface to Serial Communication Interface.	
Appendix A. Schematic Diagram	Updated Figure A.3. DUT Connection to change CDBU0520 to CDSU4148.	
Appendix B. Bill of Materials	Updated table to create two new rows for D11.	
Revision History	Updated table to new template.	

Revision 1.1, March 2017

213/01/212/11/2017				
Section	Change Summary			
All	Corrected document status; removed "Preliminary".			
	iCE40 UtraPlus Family Datasheet document number changed to DS1056.			
Software Requirements	Updated Lattice iCEcube2 to version 2017.01 and Diamond Programmer version to 3.9.			
Appendix A. Schematic Diagram	Updated figures.			
Lattice Semiconductor	Removed this section.			
Documents				

Revision 1.0, September 2016

Section	Change Summary
All	Initial release.

www.latticesemi.com