## MATH 5411 - Advanced Probability I Homework 3

(due: December 4, 2022)

Q1: Let  $X, X_1, X_2, ...$  be a sequence of random variables defined on the same probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Further, let  $g : \mathbb{R} \to \mathbb{R}$ . Let  $D_g$  be the set of the discontinuity points of g. Assume that  $\mathbb{P}(X \in D_g) = 0$ . Prove the following continuous mapping theorem for convergence in distribution: If  $X_n \xrightarrow{D} X$ , then  $g(X_n) \xrightarrow{D} g(X)$ .

**Q2**: Suppose  $g, h : \mathbb{R} \to \mathbb{R}$  are continuous with g(x) > 0, and  $|h(x)|/g(x) \to 0$  as  $|x| \to 0$ . Let  $F, F_1, F_2, \ldots$  be a sequence of distribution functions. Suppose  $F_n \to F$  weakly and  $\int g(x) dF_n(x) \leq C < \infty$  uniformly in n. Prove

$$\int h(x) dF_n(x) \to \int h(x) dF(x).$$

Q3: Let  $X_1, X_2, \ldots$  be i.i.d. and have the standard normal distribution. It is known that

$$\mathbb{P}(X_i > x) \sim \frac{1}{\sqrt{2\pi}x} \exp(-\frac{x^2}{2})$$
 as  $x \to \infty$ .

where  $a(x) \sim b(x)$  means  $a(x)/b(x) \to 1$  if  $x \to \infty$ .

(i): Prove that for any real number  $\theta$ .

$$\mathbb{P}(X_i > x + \frac{\theta}{x})/\mathbb{P}(X_i > x) \to \exp(-\theta), \quad \text{as } x \to \infty$$

(ii) Show that if we define  $b_n$  by  $\mathbb{P}(X_i > b_n) = 1/n$ ,

$$\mathbb{P}(b_n(\max_{1 \le i \le n} X_i - b_n) \le x) \to \exp(-e^{-x}).$$

(iii) Show that  $b_n \sim (2 \log n)^{\frac{1}{2}}$  and conclude  $\max_{1 \leq i \leq n} X_i / (2 \log n)^{\frac{1}{2}} \to 1$  in probability.

**Q4**: Let  $X_1, X_2, ...$  be independent taking values 0 and 1 with probability 1/2 each. Let  $X = 2\sum_{j\geq 1} X_j/3^j$ . Compute the characteristic function of X.

**Q5**: Let  $S_n = X_1 + \cdots + X_n$  in the following problems.

(a): Suppose that  $X_i$ 's are independent and  $\mathbb{P}(X_i = i) = \mathbb{P}(X_i = -i) = \frac{i^{-\alpha}}{4}$  and  $\mathbb{P}(X_i = 0) = 1 - \frac{i^{-\alpha}}{2}$  for some nonnegative parameter  $\alpha$ . Find  $a_n(\alpha), b_n(\alpha)$  such that  $(S_n - a_n(\alpha))/b_n(\alpha) \Rightarrow N(0, 1)$  when  $\alpha \in (0, 1)$  and prove this CLT.

(b):Suppose that  $X_i$ 's are independent and  $\mathbb{P}(X_i = 1) = \frac{1}{i} = 1 - \mathbb{P}(X_i = 0)$ . Find  $a_n$  and  $b_n$  such that  $(S_n - a_n)/b_n \Rightarrow N(0, 1)$  and prove this CLT.

**Q6**: Suppose that  $X_n$  and  $Y_n$  are independent, and  $X_n \to X_\infty$  in distribution and  $Y_n \to Y_\infty$  in distribution. Show that  $X_n^2 + Y_n^2$  converges in distribution.

**Q7**: Let  $X_1, X_2, \ldots$  be i.i.d. with a density that is symmetric about 0, and continuous and positive 0. Find the limiting distribution of

$$\frac{1}{n}\Big(\frac{1}{X_1}+\ldots+\frac{1}{X_n}\Big).$$

