Rozwiązanie drugiego zadania z trzeciej listy z Mechaniki Kwantowej

Piotr Polesiuk, Bartłomiej Pytko

28 lutego 2012

Niech $A: \mathbb{C}^n \to \mathbb{C}^n$ będzie operatorem hermitowskim. Udowodnić następujące twierdzenia

1. Jeżeli podprzestrzeń $W\subseteq\mathbb{C}^n$ jest podprzestrzenią niezmienniczą operatora A to jej ortogonalne dopełnienie W^{\perp} jest również podprzestrzenią niezmienniczą A.

Dowód. Operator A jest hermitowski, tzn. dla dowolnych wektorów $x,y\in\mathbb{C}^n$ zachodzi $\langle Ax|y\rangle=\langle x|Ay\rangle$. Weźmy dowolny wektor $u\in W^\perp$. Z definicji ortogonalnego dopełnienia spełnia on $\forall w\in W.\langle u|w\rangle=0$. Pokażę, że własność ta zachodzi również dla Au. W tym celu weźmy dowolne $w\in W$. Wtedy

$$\langle Au|w\rangle = \langle u|Aw\rangle = 0$$

Pierwsza równość wynika z hermitowskości operatora A, zaś równość druga wynika z niezmienniczości podprzestrzeni W ($Aw \in W$) oraz z definicji ortogonalnego dopełnienia.

- 2. Istnieje baza ortonormalna złożona z wektorów własnych operatora A.
- 3. Przestrzeń \mathbb{C}^n jest ortogonalną sumą prostą podprzestrzeni własnych operatora A.