19.08.03

# JAPAN PATENT OFFICE

REC'D 0 5 SEP 2003

**WIPO** 

**PCT** 

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 7月23日

出 Application Number:

特願2002-214160

[ST. 10/C]:

[JP2002-214160]

出 Applicant(s):

新日本製鐵株式会社

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 8月





【書類名】 特許願

【整理番号】 PG140723-1

【提出日】 平成14年 7月23日

【あて先】 特許庁長官 及川 耕造 殿

【国際特許分類】 C21C 7/00

【発明者】

【住所又は居所】 愛知県東海市東海町5-3 新日本製鐵株式会社名古屋

製鐵所内

【氏名】 溝口 利明

【発明者】

【住所又は居所】 愛知県東海市東海町5-3 新日本製鐵株式会社名古屋

製鐵所内

【氏名】 上島 良之

【発明者】

【住所又は居所】 愛知県東海市東海町5-3 新日本製鐵株式会社名古屋

製鐵所内

【氏名】 山口 純

【発明者】

【住所又は居所】 愛知県東海市東海町5-3 新日本製鐵株式会社名古屋

製鐵所内

【氏名】 渡辺 祐

【発明者】

【住所又は居所】 愛知県東海市東海町5-3 新日本製鐵株式会社名古屋

製鐵所内

【氏名】 伊藤 彰

【発明者】

【住所又は居所】 愛知県東海市東海町5-3 新日本製鐵株式会社名古屋

製鐵所内

【氏名】 松原 洋二

#### 【特許出願人】

【識別番号】 000006655

【氏名又は名称】

新日本製鐵株式会社

【代理人】

【識別番号】

100078101

【弁理士】

【氏名又は名称】 綿貫 達雄

【選任した代理人】

【識別番号】 100059096

【弁理士】

【氏名又は名称】 名嶋 明郎

【選任した代理人】

【識別番号】 100085523

【弁理士】

【氏名又は名称】 山本 文夫

【手数料の表示】

【予納台帳番号】 038955

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要



【発明の名称】 アルミナクラスターの少ない鋼材

#### 【特許請求の範囲】

【請求項1】 酸化物系介在物を $Al_2O_3$  とREM 酸化物が主成分で、重量%でREM 酸化物の含有量を0.5 ~15%としたことを特徴とするアルミナクラスターの少ない鋼材。

【請求項2】 重量%でC:0.0005~1.5 %、Si:0.005~1.2 %、Mn:0.05 ~3.0 %、P:0.001 ~0.1 %、S:0.0001~0.05%、Al:0.005~1.5 %、T.0:80ppm 以下で、残部がFe及び不可避的不純物を含有したことを特徴とする請求項1に記載のアルミナクラスターの少ない鋼材。

【請求項3】 重量%でCu:0.1~1.5%、Ni:0.1~10.0%、Cr:0.1~10.0%、Mo:0.05 ~1.5%の1種または2種以上を含有することを特徴とする請求項2に記載のアルミナクラスターの少ない鋼材。

【請求項4】 重量%でNb: $0.005\sim0.1\%$ 、V: $0.005\sim0.3\%$ 、Ti: $0.001\sim0.25\%$ の1種または2種以上を含有することを特徴とする請求項2または3に記載のアルミナクラスターの少ない鋼材。

【請求項5】 重量%でB:0.0005~0.005%を含有することを特徴とする請求項2または3または4に記載のアルミナクラスターの少ない鋼材。

【請求項6】 鋳片のスライム抽出で得られるアルミナクラスターの最大径が 100 μm以下であることを特徴とする請求項1または2または3または4または 5 に記載のアルミナクラスターの少ない鋼材。

【請求項7】 鋳片のスライム抽出で得られる20μm以上のアルミナクラスターの個数が2個/kg以下である請求項6に記載のアルミナクラスターの少ない鋼材。

# 【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、自動車用鋼板、構造用・耐摩耗鋼用厚板や油井管用鋼管等に適したアルミナクラスターの少ない鋼材に関するものである。



#### 【従来の技術】

鋼板などの圧延鋼材は、一般的に転炉で溶製された未脱酸の溶鋼をAIで脱酸するアルミキルド鋼として製造されている。脱酸時に生成するアルミナは硬質で、クラスター化しやすく、数100 μm以上の介在物として残留する。したがって、溶鋼からの除去が不十分な場合、薄板での熱延、冷延時のスリバー疵(線状疵)、構造用厚板での材質不良、耐摩耗鋼用厚板での低温靭性低下や油井管用鋼管での溶接部UST 欠陥不良等の原因となる。

#### [0003]

このアルミナを溶鋼から除去する方法として、(1) 脱酸後に、アルミナの凝集、合体による溶鋼からの浮上、分離時間をできるだけ長くとるように転炉での出鋼時に脱酸剤のAIを投入する方法や、(2) 二次精錬法のひとつであるCAS やRH処理で溶鋼の強攪拌を行い、アルミナの浮上、分離を促進する方法や、(3) 溶鋼中へのCaの添加によってアルミナを低融点介在物のCaO-AI<sub>2</sub>O<sub>3</sub> に形態制御し無害化する方法等が行われていた。

#### [0004]

ところが、前記(1)、(2)の方法によるアルミナの浮上分離対策では限界があって、数100  $\mu$ m 以上の介在物を完全に除去できないため、スリバー疵を防止できないという問題があった。(3)のCaによる酸化物系介在物の改質は、介在物の低融点化によってクラスター生成が防止でき微細化する。しかし、城田ら(材料とプロセス,4(1991),p.1214参照)によれば、アルミナを溶鋼中で液相のカルシウムアルミネートにするためには[Ca]/[T.0]を0.7~1.2 の範囲に制御する必要がある。そのためには、例えばT.0 が40ppm で28~48ppm という多量のCaを添加する必要がある。一方、タイヤ用のスチールコードや弁バネ材では、介在物を圧延加工時に変形しやすい低融点のCaO-SiO2-Al2O3(-MnO)系に制御し、無害化することが一般的に良く知られている。しかしながら、これらの方法では通常Caを安価なCaSi合金で添加するため、Siの上限の厳しい自動車用鋼板や缶用冷延鋼板では実用化されていないのが現状である。

#### [0005]



#### [0006]

A1キルドを前提にした方法として、特開昭52-70918によれば、A1脱酸、または A1-Si 脱酸後にSe、Sb、LaまたはCeの一種以上を0.001~0.05%添加することにより、またはこれと溶鋼攪拌と組み合わせることによって、溶鋼/アルミナクラスター間の界面張力を制御して溶鋼中のアルミナクラスターを浮上分離させて除去する非金属介在物の少ない清浄鋼の製造法が示されている。また、特開2001-2 6842では溶鋼をA1およびTiで脱酸後、Caおよび/またはREM を添加することにより、酸化物系介在物の大きさを50μm以下で、組成をA1203:10~30wt%、Caおよび/またはREM 酸化物:5~30wt%、Ti酸化物:50~90wt%とする表面性状および内質に優れる冷延鋼板ならびにその製造方法が開示されている。さらに、特開平11-323426ではA1、REM およびZrの複合脱酸によってアルミナクラスターがなく、欠陥の少ない清浄なA1キルド鋼の製造方法が提案されている。しかしながら、これらの方法では、アルミナクラスターを確実に浮上分離させることが困難で、介在物欠陥を要求される品質レベルまで低減することができなかった。

#### [0 0.0 7]

A1を使用しない方法として、特許1150222 号公報では、溶鋼をCa0 含有フラックスで脱酸後、Ca、Mg、REM の一種以上を含む合金を例えば100 ~200ppm添加し、介在物を低融点、軟質化するスチール用鋼の製造方法が開示されている。また、特許1266834 号公報ではMn、Si等のAl以外の脱酸剤でT.0  $\leq$ 100ppmに調整後、空気酸化防止を目的にREM を50~500ppm添加する極細伸線性の良好な線材の製造方法が示されている。しかしながら、これらの方法では、脱酸で安価なAlを使用しないため、脱酸剤のコストアップという問題があった。また、Siで脱酸する場合には、Si上限の厳しい薄板材への適用は困難であった。

#### [0008]

一方、アルミナ粒子のクラスター化にはいくつかの生成機構が提案されている。例えば、特開平9-192799では溶鋼中の $P_2O_5$ が $Al_2O_3$  粒子の凝集合体を促進して



いると考え、Caを添加して、 $nCa0 \cdot mP_2O_5$  とし、 $Al_2O_3$  のバインダーである $P_2O_5$  の結合力を低下させることにより、浸漬ノズルへの $Al_2O_3$  付着が防止できることが示されている。また、安中ら(鉄と鋼,(1995), p.17)によれば、連続鋳造で浸漬ノズルの閉塞防止のために用いているArガスに捕捉されたアルミナ粒子が、冷延鋼板に発生するスリバー疵の原因であると推察している。さらに、H. Yin et al. (ISIJ Int., 37(1997), p.936) は、気泡に捕捉されたアルミナ粒子がキャピラリー効果により気泡表面で凝集合体するという観察結果を示している。このように、アルミナクラスターの微視的な生成機構についても解明されつつあるが、クラスター化防止のための具体的方法が明らかでなかったため、アルミナクラスターによる介在物欠陥を、要求される品質レベルまで低減することが困難であった。

#### [0009]

### 【発明が解決しようとする課題】

本発明は上記のような従来の問題点を有利に解決するためになされたものであり、薄板、厚板、鋼管、形鋼、棒鋼等の鋼材において製品欠陥の原因となる粗大なアルミナクラスターの生成を溶鋼中およびAr気泡表面で防止することにより、自動車、家電用途の薄板のスリバー疵、構造用厚板の材質不良、耐摩耗用厚板の低温靭性低下、油井管用鋼管の溶接部UST 欠陥等の表面疵や内部欠陥が少ない鋼材を提供することを目的として完成されたものである。

# [0010]

# 【課題を解決するための手段】

発明者は上記課題を解決するため、実験および検討を重ね、その成果として、①クラスターのアルミナ粒子間にはFeO および FeO・Al<sub>2</sub>O<sub>3</sub> の低融点酸化物がバインダーとして存在すること、②このバインダーを適当な量のREM で還元することによって、溶鋼中およびAr気泡表面でのアルミナ粒子の凝集合体が抑制されることが分かった。すなわち、本発明のアルミナクラスターの少ない鋼材は、Al脱酸またはAl-Si 脱酸した溶鋼中にCe、La、PrまたはNd等の1種類以上の希土類元素(REM)を添加することにより、酸化物系介在物をAl<sub>2</sub>O<sub>3</sub> とREM 酸化物が主成分で、REM 酸化物の含有量を重量%で0.5~15%としたことを特徴とするものであ



る。なお、 $\mathrm{Al}_2\mathrm{O}_3$  中REM 酸化物の含有量は重量%で  $2\sim12\%$ とするのが好ましい 。また、鋳片の断面観察、あるいはスライム抽出で得られる酸化物系介在物の50 %以上が上記の組成範囲であることが望ましい。

#### [0011]

なお、鋼の成分は重量%でC:0.0005~1.5%、Si:0.005~1.2%、Mn:0.05 ~3.0% 、P:0.001 ~0.1%、S:0.0001~0.05%、AI:0.005~1.5%、T.0:80ppm 以下とし、 あるいはさらに(a) Cu:0.1~1.5%、Ni:0.1~10.0% 、Cr:0.1~10.0%、Mo:0.05 ~1.5%の1種または2種以上、または(b)Nb:0.005 ~0.1%、V:0.005 ~0.3%、Ti :0.001~0.25%の1種または2種以上、または(c)B:0.0005~0.005%の(a)、(b )、(c) 何れか一つまたは二つ以上を含有し、残部がFe及び不可避的不純物とす ることが好ましい。

#### [0012]

さらに、鋳片のスライム抽出で得られるアルミナクラスターの最大径が $100~\mu$ m以下であることが好ましく、また、鋳片のスライム抽出で得られる $20 \mu$  m以上 のアルミナクラスターの個数が2個/kg以下であることが好ましい。

#### [0013]

#### 【発明の実施の形態】

以下に本発明の好ましい実施の形態を示す。

本発明ではA1脱酸またはA1-Si 脱酸した溶鋼中にCe、La、PrまたはNd等の1種 類以上の希土類元素 (REM)を添加することにより、酸化物系介在物をAl203 とRE M 酸化物が主成分で、REM 酸化物の含有量を重量%で0.5~15%とする。この組 成範囲において、アルミナ粒子同士の凝集合体を抑制でき、粗大なアルミナクラ スターの生成が防止できる。 $Al_2O_3$  中REM 酸化物の含有量は重量%で $2\sim 12\%$ と するのが好ましい。なお、本発明における希土類元素とは原子番号57のLaから原 子番号71のLuをさす。

#### [0014]

Al<sub>2</sub>0<sub>3</sub> 中のREM 酸化物の含有量上限を15%とするのは、実施例の図1に示すよ うに、これを超えてREM 酸化物の含有量が多くなると介在物の凝集合体がしやす くなり、粗大クラスターが生成するためであり、下限を0.5%としたのは、これ未





#### [0015]

なお、本発明におけるAI脱酸、AI-Si 脱酸で製造される鋼材とは、重量%でC: 0.0005~1.5%、Si:0.005~1.2%、Mn:0.05 ~3.0%、P:0.001 ~0.1%、S:0.0001~0.05%、A1:0.005~1.5%、T.0 ≦80ppm とし、あるいはさらに(a) Cu:0.1~1.5%、Ni:0.1~10.0%、Cr:0.1~10.0%、Mo:0.05 ~1.5%の1種または2種以上、または(b)Nb:0.005 ~0.1%、V:0.005 ~0.3%、Ti:0.001~0.25%の1種または2種以上、または(c)B:0.0005 ~0.005%の(a)、(b)、(c) 何れか一つまたは二つ以上を含有し、残部がFe及び不可避的不純物からなる炭素鋼であり、鋼材に必要な圧延を加えることにより、薄板、厚板、鋼管、形鋼、棒鋼等へ適用できる。この範囲が好ましい理由は以下の通りである。

#### [0016]

Cは鋼の強度を最も安定して向上させる基本的な元素であるため、所望する材料の強度によって含有量を0.0005~1.5 %の範囲で調整する。強度あるいは硬度確保のためには0.0005%以上含有させることが望ましいが、1.5 %より多いと靭性が損なわれるので1.5 %以下がよい。

#### [0017]

Siを0.005 ~1.2 %としたのは、0.005%未満では予備処理が必要となって精錬に大きなコスト負担をかけ経済性を損ねることとなり、1.2 %より多いとメッキ不良が発生し、表面性状や耐食性を劣化するためである。

#### [0018]

Mnを0.05~3.0 %としたのは、0.05%未満では精錬時間が長くなって、経済性を損ねることになり、3.0 %より多いと鋼材の加工性が大きく劣化するためである。

#### [0019]

P  $\epsilon$  0.001  $\sim$  0.1 % したのは、0.001%未満では溶銑予備処理に時間とコストがかり経済性を損ねることとなり、0.1 %より多いと鋼材の加工性が大きく劣化するためである。



Sを0.0001~0.05%としたのは、0.0001%未満では溶銑予備処理に時間とコストがかかり経済性を損ねることとなり、0.05%より多いと鋼材の加工性と耐食性が大きく劣化するためである。

#### [0021]

A1を0.005  $\sim 1.5$  %としたのは、0.005%未満ではAIN としてNをトラップし、固溶Nを減少させることができない。また、1.5 %より多いと表面性状と加工性が劣化するので1.5 %以下が良い。

#### [0022]

T.0 を80ppm 以下としたのは、80ppm より多いとアルミナ粒子の衝突頻度が増加するため、クラスターが粗大化する場合が有るためである。また、アルミナの改質に必要なREM の添加量が増大するため、コストがかかり経済性も損ねる。ここで、T.0 は鋼中の総酸素量で溶存酸素と介在物中酸素の合計を示す。

#### [0023]

以上が基本成分系であるが、本発明では、これらの他にそれぞれの用途に応じて、(a) Cu、Ni、Cr、Moの1種以上、(b)Nb、V、Tiの1種以上、(c)Bの(a)、(b)、(c) 何れか一つまたは二つ以上を含有させることができる。

#### [0024]

Cu、Ni、Cr、Moは何れも鋼の焼入れ性を向上させる元素であって、Cu、NiおよびCrは0.1%以上、Moは0.05%以上含有させることによって、強度向上効果を示すが、Cuは1.5 およびMoは1.5%、NiおよびCrは10%を超えて添加すると靭性および加工性を損なうおそれがあるため、Cuは $0.1 \sim 1.5%$ 、NiおよびCrはそれぞれ $0.1 \sim 10%$ 、Moは $0.05 \sim 1.5%$ の範囲に限定する。

# [0025]

Nb、V、Tiはいずれも析出強化により鋼の強度を向上させる元素であって、Nb およびV は0.005%以上、Tiは0.001%以上含有させることによって、強度向上効果を示すが、Nbは0.1%、V は0.3%、Tiは0.25%を超えて添加すると靭性を損なうおそれがあるため、Nbは $0.005 \sim 0.1$ %、V は $0.005 \sim 0.3$ %、Tiは $0.001 \sim 0.25$ %の範囲に限定する。



Bは鋼の焼入れ性を向上させ、強度を高める元素であって、0.0005%以上含有させることによって、強度向上効果を示すが、0.005%を超えて添加するとBの析出物を増加させ靭性を損なうおそれがあるため、0.0005~0.005%の範囲に限定する。

#### [0027]

さらに、鋳片のスライム抽出で得られるアルミナクラスターの最大径が $100~\mu$  m以下としたのは、 $100~\mu$ m より大きいと製品での表面欠陥や内部欠陥に繋がるためである。また、鋳片のスライム抽出で得られる $20~\mu$  m以上のアルミナクラスターの個数が $2~60~\mu$  m以上のアルミナクラスターの個数が $2~60~\mu$  m以下としたのは、 $2~60~\mu$  m以上のアルミナクラス内部欠陥に繋がるためである。

#### [0028]

溶鋼中へのREM の添加は、例えば二次精錬装置のCAS やRHを使って、溶鋼のAI 脱酸後に行う。REM はCe、La等の純金属、REM 金属の合金または他金属との合金のいずれでも良く、形状は塊状、粒状、またはワイヤー等であっても良い。REM添加量は極微量なので、溶鋼中REM 濃度を均一にするため、RH槽内での還流溶鋼中への添加や取鍋添加後のArガス等での攪拌が望ましい。また、タンディッシュ、鋳型内溶鋼へREM を添加することもできる。

#### [0029]

#### 【実施例】

270tの転炉において吹錬後、所定の炭素濃度に調整して出鋼した。 2 次精錬で目標の溶鋼成分に調整し、A1脱酸後、REM をCe、La、ミッシュメタル(例えば、重量%でCe:45%、La:35%、Pr:6%、Nd:9%、他不可避不純物からなる合金)、あるいはミッジュメタル、SiおよびFeの合金(Fe-Si-30%Rem)として添加した。その結果を表1に示す。表1の溶鋼を垂直曲げ型連続鋳造機により、鋳片寸法が245mm厚×1200~2200mm幅、鋳造速度が1.0~1.8m/min、タンディッシュ内溶鋼温度が1520~1580℃の条件で鋳片を製造した。その後、熱間圧延、酸洗、さらには必要に応じて冷間圧延を実施し、品質調査を行った。熱間圧延後の板厚は2~100mm、冷間圧延後の板厚は0.2mmであった。



#### [0030]

鋳片から採取したサンプルの最大クラスター径、クラスター個数、平均介在物組成や欠陥発生率等は、表2に示すとおりで、本発明がアルミナクラスター起因の製品欠陥を大幅に低減して優れた生産性を示すものであることが確認できた。

#### [0031]

なお、表1と表2における\*1~\*7の意味は以下のとおりである。

\*1: REM はCe、La、Pr、Ndの合計。

\*2: MM:ミッシュメタル。重量%でCe:45%、La:35%、Pr:6%、Nd:9%、他不可避不純物からなる合金。MMSi:REM-Si-Fe合金。組成はREM:30%、Si:30%、残部Fe。

\*3: 鋳片断面から任意抽出した10個の介在物組成の平均値。組成はEDX 付SE M で同定した。

\*4: 最大クラスター径の測定方法は、重量1kg ±0.1kg の鋳片からスライム電解抽出(最小メッシュ20μm を使用)した介在物を実体顕微鏡で写真撮影(40倍)し、写真撮影した介在物の長径と短径の平均値を全ての介在物で求めてその平均値の最大値を最大介在 物径とした。クラスター個数は重量1±0.1kg のスライム電解抽出(最小メッシュ20μm を使用)した介在物であり、光学顕微鏡(100倍)で観察した20μm以上の全ての介在物個数を1kg単位個数に換算した。\*5: 欠陥発生率は、以下の式による。

薄板は板表面でのスリバー疵発生率(=スリバー疵総長/コイル長×100,%)。 厚板は製品板でのUST 欠陥発生率あるいはセパレーション発生率(=欠陥発生 板数/検査総板数×100,%)。シャルピー試験後の破面観察でセパレーション発生 有無を確認した。

なお、表2の厚板材欠陥発生率では、欠陥がUST 欠陥の場合は (UST)、セパレーション欠陥の場合は (SPR)と記述した。

鋼管は油井管溶接部でのUST 欠陥発生率(=欠陥発生管数/検査総管数×100, %)。

\* 6: -20 $^{\circ}$ での圧延方向における $^{\circ}$  ノッチシャルピー衝撃試験値。試験片 5本の平均値。



[0032]

# 【表1】

| 本発明例 A1 薄板 0.0005 0.035 0.55 0.017 0.0057 0.050 Ti:0.006 3 27 MMSi合约                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | T          | 製品                                    | 日曜の成   | 鋼の成分(質量% (BL DEM TORES REMISES REMIS |                 |         |          |          |                        |                 |            |          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|---------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|----------|----------|------------------------|-----------------|------------|----------|--|
| 泰登明例   A1   選校   0.005   0.035   0.55   0.017   0.0057   0.055   10.006   3   2   2   MMSS合本整理例   A2   薄枝   0.002   0.005   0.76   0.027   0.0114   0.020   Ticl.01   5   20   MMSS合本整理例   A3   薄枝   0.004   0.011   0.010   0.0111   0.070   Ticl.012   11   35   MMSS合本整理例   A4   薄枝   0.007   0.019   0.33   0.007   0.0114   0.020   Ticl.01   5   20   MMSS合本整理例   A5   薄枝   0.004   0.019   0.013   0.007   0.0114   0.020   Ticl.01   5   20   MMSS合本整理例   A5   薄枝   0.007   0.019   0.33   0.007   0.0119   0.034   Ticl.01   9   21   MMSS合本整理例   A6   薄枝   0.004   0.018   0.35   0.019   0.0133   0.066   Ticl.0.1   9   21   MMSS合本整理例   A6   薄枝   0.004   0.018   0.35   0.019   0.0133   0.066   Ticl.0.15   20   33   MMSS合本整理例   A7   薄枝   0.001   0.006   0.011   0.005   0.0048   0.055   Ticl.0.045   20   33   MMSS合本整理例   A7   薄枝   0.001   0.006   0.011   0.005   0.0048   0.055   Ticl.0.03   17   24   MMSS合本整理例   A1   薄枝   0.001   0.007   0.65   0.015   0.0038   0.055   0.0048   0.055   Ticl.0.03   17   24   MMSS合本整理例   A1   薄枝   0.009   0.007   0.65   0.015   0.0038   0.055   0.0030   3   8   18   MMSS合本整理例   A1   薄枝   0.095   0.033   0.40   0.005   0.0238   0.055   0.030   3   8   18   MMSS合本整理例   A1   薄枝   0.095   0.053   0.40   0.005   0.0238   0.032   2   1   MMSS合本整理例   A1   薄枝   0.095   0.053   0.40   0.005   0.0238   0.032   2   5   2   MMSS合本基理例   A1   薄枝   0.095   0.053   0.40   0.005   0.0238   0.035   0.055   5   2   MMSS合本基理例   A1   薄枝   0.095   0.053   0.40   0.005   0.0238   0.035   0.055   5   2   MMSS合本基理例   A1   薄枝   0.095   0.053   0.40   0.005   0.0238   0.035   0.045   0.055   0.058   6   18   18   MMSS合本基理例   A1   薄枝   0.095   0.053   0.40   0.005   0.0238   0.035   0.055   0.056   1   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                       |                                       | No         | . 形北                                  | C      | Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Man             | EM, 1.0 | Jeppm, 7 | 大部に既     | 及び小可避小剤                | <u>73)</u>      | T=-        | REM添加    |  |
| 本登明例 A2 薄板 0.002 0.005 0.76 0.027 0.007 0.009 Tt0.001 5 20 Missing 本登明例 A3 薄板 0.004 0.011 0.14 0.040 0.0171 0.070 Tt0.012 11 35 Missing 不差明例 A5 薄板 0.002 0.013 0.36 0.019 0.0133 0.066 Tt0.003 12 25 Missing 不差明例 A5 薄板 0.002 0.013 0.36 0.019 0.0133 0.066 Tt0.003 12 25 Missing 不差明例 A7 薄板 0.002 0.013 0.36 0.019 0.0133 0.066 Tt0.003 12 25 Missing 不差明例 A7 薄板 0.004 0.018 0.53 0.032 0.0190 0.035 Tt0.0045 20 33 Missing 不差明例 A7 薄板 0.001 0.006 0.11 0.005 0.0048 0.055 Tt0.013 37 42 Cee 未差明例 A8 薄板 0.001 0.006 0.11 0.005 0.0048 0.055 Tt0.01 37 42 Cee 未差明例 A10 薄板 0.095 0.006 0.91 0.007 0.65 0.015 0.0038 0.055 Tt0.01 37 42 Cee 未差明例 A10 薄板 0.095 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.05  | 本発明                                   | 列 A1       |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |         |          |          |                        |                 |            |          |  |
| 本発明例 A3 薄板 0.004 0.011 0.14 0.040 0.0171 0.070 〒1:0.012 11 30 MASSIGS 本発明例 A4 薄板 0.007 0.019 0.33 0.007 0.0219 0.034 〒1:0.01 9 21 MASSIGS 本発明例 A5 薄板 0.002 0.013 0.36 0.019 0.013 0.066 〒1:0.03 12 25 MM 5年発明例 A5 薄板 0.002 0.013 0.36 0.019 0.0133 0.066 〒1:0.03 12 25 MM 5年発明例 A5 薄板 0.002 0.013 0.36 0.019 0.0133 0.066 〒1:0.03 12 25 MM 5年発明例 A5 薄板 0.002 0.013 0.36 0.019 0.035 〒1:0.045 20 33 MMSIGS 本発明例 A5 薄板 0.001 0.006 0.11 0.005 0.0048 0.055 〒1:0.045 20 33 MMSIGS 本発明例 A9 薄板 0.001 0.006 0.11 0.005 0.0048 0.055 〒1:0.01 37 24 MMSIGS 本発明例 A9 薄板 0.009 0.077 0.65 0.015 0.0038 0.055 〒10.01 37 42 Ce 年条明例 A10 薄板 0.0038 0.006 0.91 0.024 0.015 0.059 0.050 3 25 MMSIGS 本発明例 A11 薄板 0.095 0.038 0.040 0.005 0.0248 0.055 1.030 8 18 MMSIGS 本発明例 A12 薄板 0.095 0.053 0.40 0.005 0.0238 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |         |          | 1 0.050  | 11:0.006               |                 | _          |          |  |
| 本発明例   A4   薄板   0.007   0.019   0.33   0.007   0.0217   0.001   10.012   11   35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |            |                                       |        | 4 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 0.02    | 0.011    | 4 0.020  | 11:0.01                |                 |            |          |  |
| 本発明例 A5 薄板 0.002 0.013 0.36 0.019 0.013 0.066 Tic.0.03 12 25 MMSieże 本発明例 A6 薄板 0.004 0.018 0.53 0.032 0.0190 0.035 Tic.0.045 20 33 MMSieże 本発明例 A7 薄板 0.006 0.032 0.81 0.042 0.0238 0.015 Tic.0.003 17 24 WMSieże 东発明例 A7 薄板 0.001 0.006 0.11 0.005 0.0048 0.055 Tic.0.01 37 42 Ccc 本発明例 A8 薄板 0.001 0.006 0.91 0.024 0.0238 0.015 Tic.0.03 17 24 WMSieże 东発明例 A10 薄板 0.001 0.006 0.91 0.024 0.0195 0.039 0.055 Tic.0.01 37 42 Ccc 本発明例 A10 薄板 0.0019 0.077 0.65 0.015 0.0038 0.055 Tic.0.01 37 42 Ccc 本発明例 A11 薄板 0.038 0.006 0.91 0.024 0.0105 0.039 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.040   | 2 0.0017 | 0.070    | 1:0.012                |                 |            | MMSi合金   |  |
| 本発明例 A6 薄板 0.004 0.018 0.53 0.032 0.019 0.035 Tr.0.045 203 3 MASSISPE 本発明例 A7 薄板 0.006 0.032 0.81 0.042 0.0238 0.015 Tr.0.003 17 24 MASSISPE 本発明例 A8 薄板 0.001 0.006 0.01 0.005 0.0048 0.055 Tr.0.003 17 24 MASSISPE ARE NO 0.001 0.006 0.11 0.005 0.0048 0.055 Tr.0.003 17 24 MASSISPE ARE NO 0.001 0.006 0.11 0.005 0.0048 0.055 Tr.0.003 17 24 MASSISPE ARE NO 0.001 0.006 0.11 0.005 0.0048 0.055 Tr.0.003 17 24 MASSISPE ARE NO 0.001 0.006 0.11 0.005 0.0048 0.055 Tr.0.003 17 24 MASSISPE ARE NO 0.001 0.007 0.055 0.003 0.005 0.030 0.055 3 25 MASSISPE ARE NO 0.001 0.003 0.006 0.15 0.003 0.005 0.030 0.005 0.000 0.000 0.005 0.000 0.005 0.000 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.005 0.000 0.005 0.000 0.005 0.005 0.000 0.005 0.005 0.000 0.005 0.005 0.005 0.005 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0  |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |         | 0.021    |          |                        |                 |            | MMSi合金   |  |
| 本発明例   A7   薄板   0.006   0.032   0.81   0.042   0.0238   0.015   170.003   17   24   MMSI6全   本発明例   A8   薄板   0.019   0.077   0.65   0.0048   0.055   170.001   37   42   Ce   Ce   Ce   Ce   Ce   Ce   Ce   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |         | 0.013    | 3 0.066  | Ti:0.03                |                 |            |          |  |
| 本発明例 A8 薄枝 0.001 0.006 0.11 0.005 0.0048 0.055 Th.0.01 37 42 MMSic会 未発明例 A9 薄板 0.019 0.077 0.65 0.015 0.0038 0.055 3 25 MMSic会 未発明例 A10 薄板 0.038 0.006 0.91 0.024 0.0105 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.034   | 2 0.019  | 0.035    | Ti:0.045               |                 |            | MMSi合金   |  |
| 本発明例   A9   競技   D.019   D.077   D.65   D.015   D.0038   D.055   D.015   D.0038   D.055   D.015   D.0038   D.055   D.015   D.0038   D.055     |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.042   | 2 0.023  | B 0.015  | Ti:0.003               | 17              | 24         | MMSi合金   |  |
| 本発明例   A10   薄板   0.038   0.006   0.91   0.024   0.0105   0.030   8   18   MMSicase     |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.008   | 0.004    | B 0.055  | Ti:0.01                |                 |            | Ce       |  |
| 本発明例   A11   薄板   0.067   0.030   0.15   0.038   0.0276   0.090   2   17   MMSiccolar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.013   | 0.003    | 0.055    |                        | 3               | 25         | MMSi合金   |  |
| 本発明例   A12   薄板   0.095   0.053   0.40   0.005   0.023   0.024   0.055   5   22   MMSi合金   A5建明例   A13   薄板   0.029   0.005   0.033   0.0181   0.066   8   18   MMSi合金   A5建明例   A15   薄板   0.048   0.038   0.043   0.033   0.0181   0.066   8   18   MMSi合金   A5建明例   A15   薄板   0.048   0.038   0.043   0.033   0.0181   0.066   8   18   MMSi合金   A5建明例   A15   薄板   0.010   0.084   0.88   0.006   0.0057   0.066   10   19   MMSi合金   A5建明例   A17   薄板   0.007   0.013   0.016   0.033   0.0143   0.087   9   16   MMSi合金   A5建明例   A17   薄板   0.029   0.038   0.39   0.042   0.067   0.075   0.066   10   19   MMSi合金   A5建明例   A19   薄板   0.029   0.038   0.39   0.042   0.066   0.037   0.075   14   21   MMSi合金   A5建明例   A20   薄板   0.029   0.038   0.026   0.0110   0.056   29   33   La   A5建明例   A21   厚板   0.280   0.290   1.08   0.011   0.0030   0.005   Cr-0.55   29   33   La   A5建η에   A24   厚板   0.100   0.680   0.110   0.030   0.005   Cr-0.55   29   33   La   A5星η에   A24   厚板   0.100   0.680   0.250   0.010   0.0040   0.013   Cr-0.48   5   20   MMSi合金   A5星η에   A25   厚板   0.030   0.680   0.250   0.010   0.0040   0.013   Cr-0.48   5   20   MMSi合金   A5星η에   A27   寧管   0.513   0.380   1.18   0.008   0.023   0.088   Ti-0.015   4   35   MMSi合金   A5星η에   A27   寧管   0.513   0.380   1.18   0.008   0.023   0.088   Ti-0.015   4   35   MMSi合金   A5星η에   A27   寧管   0.513   0.380   1.18   0.008   0.0238   0.088   Ti-0.015   4   35   MMSi合金   A5星η에   A30   寧管   0.551   0.019   0.0040   0.0040   0.0040   0.0040   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.00   | 本発明の                                  | DIA1       | 1 海拔                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.024   | 0.010    | 0.030    |                        | 8               | 18         | MMSi合金   |  |
| 本発明例   A13   薄板   0.029   0.005   0.013   0.017   0.0152   0.045   5   15   MMSi合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 本発明                                   | MAI        | 2 藩 4                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.038   | 0.0276   | 0.090    |                        | 2               | 17         |          |  |
| 本発明例   A14   薄板   0.048   0.038   0.43   0.031   0.018   0.066   8   18   MMSi合金   A28   MMSica   A28   MMSi   | 本発明体                                  | II A I     | 3 58#                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.00    | 0.0238   | 0.032    |                        |                 |            | MMSi合金   |  |
| 本発明例 A15 薄板 0.124 0.057 0.69 0.044 0.021 0.058 6 14 MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 本発明の                                  | AI         | 4 海北                                  |        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 0.01    | 0.0152   | 2 0.045  |                        | 5               | 15         | MMSi合金   |  |
| 本発明例 A16 薄板 0.010 0.084 0.88 0.006 0.0057 0.056 10 19 MMSi合金 本発明例 A17 薄板 0.007 0.013 0.16 0.033 0.0143 0.087 9 16 MMSi合金 本発明例 A18 薄板 0.029 0.038 0.39 0.042 0.0067 0.075 14 21 MMSi合金 本発明例 A19 薄板 0.037 0.075 0.58 0.013 0.0060 0.034 18 23 MMSi合金 本発明例 A20 薄板 0.037 0.007 0.88 0.026 0.0110 0.056 29 33 La 本発明例 A21 厚板 0.280 0.290 1.08 0.011 0.0030 0.005 Cr:0.5 2 19 MMSi合金 本発明例 A22 厚板 0.270 0.300 1.10 0.010 0.0040 0.013 Cr:0.48 5 20 MMSi合金 本発明例 A22 厚板 0.270 0.300 1.10 0.010 0.0040 0.013 Cr:0.48 5 20 MMSi合金 本発明例 A22 厚板 0.270 0.300 1.00 0.010 0.0050 0.056 0.024 MMSi合金 本発明例 A24 厚板 0.110 0.250 0.90 0.010 0.0050 0.065 0.024 MMSi合金 本発明例 A25 厚板 0.060 0.250 0.61 0.012 0.0040 0.013 Cr:0.48 5 20 MMSi合金 本発明例 A26 厚板 0.060 0.250 0.61 0.012 0.0040 0.040 Ni:9.25 9 12 MM Si合金 本発明例 A28 厚板 0.070 0.050 1.20 0.008 0.0005 0.065 0.065 0.024MMSiS.Cr-0.45 4 9 MMSi合金 本発明例 A28 簿管 0.551 0.019 1.69 0.010 0.0050 0.065 0.008 Ni:0.25Nb.015M0.02 11 13 La 本差明例 A28 簿管 0.551 0.019 1.69 0.010 0.0460 0.004 Ni:9.25 9 12 MM Si合金 本発明例 A29 銷管 0.551 0.019 1.69 0.010 0.0460 0.006 Ti:0.045 10 28 MMSi合金 本発明例 A30 鍊管 0.589 0.155 0.13 0.014 0.0460 0.006 Ti:0.045 10 28 MMSi合金 本発明例 A31 鍊管 0.561 0.153 0.67 0.005 0.050 0.050 Ti:0.033 22 42 MMSi合金 本発明例 A31 鍊管 0.589 0.015 0.010 0.0460 0.006 Ti:0.03 2 3 42 MMSi合金 比較例 B1 薄板 0.002 0.013 0.36 0.019 0.0133 0.050 Ti:0.03 2 28 MMSi合金 比较例 B2 薄板 0.030 0.053 0.40 0.038 0.0006 Ti:0.016 43 56 MM Si合金 比较例 B3 薄板 0.031 0.022 0.21 0.010 0.014 0.020 Ti:0.03 2 28 MMSi合金 比较例 B4 薄板 0.005 0.011 0.14 0.027 0.0219 0.050 Ti:0.03 2 28 MMSi合金 比较例 B5 薄板 0.030 0.053 0.40 0.038 0.0050 Ti:0.045 10 13 MMSi合金 比较例 B7 厚板 0.005 0.011 0.14 0.027 0.0219 0.050 Ti:0.045 11 9 MMSi合金 比较例 B7 厚板 0.005 0.053 0.40 0.038 0.0050 0.006 Ti:0.013 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                      | 本発明体                                  | ÍΔI        | 5 3 3                                 |        | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 0.033   | 0.0181   | 0.066    |                        | 8               | 18         |          |  |
| 本発明例 A17 薄板 0.007 0.013 0.16 0.005 0.0057 0.066 10 19 MMSi合金 本発明例 A18 薄板 0.002 0.013 0.16 0.003 0.0143 0.037 9 16 MMSi合金 本発明例 A18 薄板 0.029 0.038 0.39 0.042 0.0067 0.075 14 21 MMSi合金 本発明例 A20 薄板 0.037 0.007 0.88 0.026 0.0110 0.056 29 33 La 本発明例 A20 薄板 0.037 0.007 0.88 0.026 0.0110 0.056 29 33 La 本発明例 A21 厚板 0.280 0.290 1.08 0.011 0.0030 0.005 Cr:0.5 2 19 MMSi合金 本発明例 A22 厚板 0.270 0.300 1.10 0.010 0.0040 0.013 Cr:0.48 5 20 MMSi合金 本発明例 A22 厚板 0.300 0.680 2.53 0.009 0.0050 1.200 Cr:0.46 6 15 MMSi合金 本発明例 A24 厚板 0.110 0.250 0.90 0.010 0.0050 1.200 Cr:0.46 6 15 MMSi合金 本発明例 A24 厚板 0.110 0.250 0.90 0.010 0.0050 1.200 Cr:0.46 6 15 MMSi合金 本発明例 A22 厚板 0.300 0.680 2.53 0.009 0.0050 1.200 Cr:0.46 6 15 MMSi合金 本発明例 A22 厚板 0.300 0.680 1.200 0.0050 0.065 Caca2Midas5.Cr-0.45 4 9 MMSi合金 本発明例 A22 厚板 0.000 0.250 0.61 0.012 0.0040 0.040 Nii9.25 9 12 MM 6c.358.Widas6.Cr-0.45 4 9 MMSi合金 本発明例 A22 窗唇 板 0.070 0.050 1.20 0.008 0.0005 0.030 Mca.25Mbo015V.002 11 13 La 本発明例 A28 窗管 0.513 0.360 1.18 0.008 0.0005 0.030 Mca.25Mbo015V.002 11 13 La 本発明例 A29 露管 0.551 0.019 1.69 0.010 0.0460 0.009 Ti:0.015 4 35 MMSi合金 本発明例 A31 窗管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti:0.015 4 35 MMSi合金 本発明例 A31 窗管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti:0.016 43 56 MM 6c.25Mbo015V.002 11 13 La 比較例 B1 薄板 0.002 0.013 0.36 0.014 0.0300 0.006 Ti:0.07 34 42 MMSi合金 L 数例 B4 薄板 0.002 0.013 0.36 0.014 0.0300 0.006 Ti:0.016 43 56 MM 6c.25Mbo015V.002 0.000 0.000 Ti:0.016 43 56 MM 6c.25Mbo015V.002 0.000 Ti:0.010 0.000 0.000 0.000 Ti:0.010 0.000 0.000 0.000 Ti:0.010 0.000 0.000 0.000 Ti:0.010 0.000 0.000 0.000 Ti:0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0  | 太祭田仏                                  | ΔΙ         | は無い                                   |        | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 0.044   | 0.0219   | 0.058    |                        | 6               | 14         |          |  |
| 本発明例 A18 薄板 0.029 0.038 0.33 0.042 0.067 0.075 14 21 MMSi合金 本発明例 A20 薄板 0.019 0.075 0.58 0.013 0.060 0.034 18 23 MMSi合金 本発明例 A20 薄板 0.019 0.075 0.58 0.013 0.060 0.034 18 23 MMSi合金 本発明例 A20 薄板 0.037 0.007 0.88 0.026 0.0110 0.056 29 33 La 本発明例 A21 厚板 0.280 0.290 1.08 0.011 0.0030 0.005 Cr-0.5 2 19 MMSi合金 本発明例 A22 厚板 0.270 0.300 1.10 0.010 0.0040 0.013 Cr-0.48 5 20 MMSi合金 本発明例 A23 厚板 0.300 0.680 2.53 0.009 0.0050 1.200 Cr-0.46 6 15 MMSi合金 本発明例 A24 厚板 0.110 0.250 0.90 0.010 0.0050 0.065 Cr-0.46 6 15 MMSi合金 本発明例 A25 厚板 0.000 0.250 0.61 0.012 0.0040 0.046 Ni9 25 9 12 MM MSi合金 本発明例 A26 厚板 0.070 0.050 1.20 0.008 0.0005 0.046 Ni9 25 9 12 MM MSi合金 本発明例 A26 厚板 0.070 0.050 1.20 0.008 0.0005 0.030 Mc0.28Mb.0015\times 3 9 12 MM MSi合金 本発明例 A26 厚板 0.070 0.050 1.20 0.008 0.0005 0.030 Mc0.28Mb.0015\times 0.001 13 Ca A21 9 9 0.513 0.360 1.18 0.008 0.0238 0.008 Ti-0.015 4 35 MMSi合金 本発明例 A29 鋼管 0.513 0.360 1.18 0.008 0.0238 0.008 Ti-0.015 4 35 MMSi合金 本発明例 A29 鋼管 0.580 0.351 0.019 1.69 0.010 0.0460 0.006 Ti-0.025 22 42 MMSi合金 本発明例 A30 鋼管 0.618 0.252 0.66 0.004 0.0300 0.006 Ti-0.055 22 42 MMSi合金 本発明例 A30 鋼管 0.580 0.243 1.24 0.011 0.0390 0.006 Ti-0.016 43 56 MM 本発明例 A31 鋼管 0.580 0.243 1.24 0.011 0.0390 0.006 Ti-0.012 33 32 36 Ce U較例 B1 薄板 0.002 0.013 0.36 0.019 0.0133 0.030 Ti-0.03 2 2 28 MMSi合金 比較例 B3 薄板 0.003 0.023 0.40 0.038 0.024 0.008 Ti-0.012 33 35 MMSi合金 比較例 B4 薄板 0.031 0.022 0.21 0.010 0.014 0.020 Ti-0.03 22 22 La Lb N M B5 薄板 0.002 0.025 0.60 0.004 0.030 0.005 Ti-0.03 22 22 La Lb N M B5 薄板 0.002 0.025 0.60 0.004 0.030 0.005 Ti-0.03 22 22 La Lb N M B5 薄板 0.002 0.025 0.60 0.004 0.030 0.005 Ti-0.03 22 22 La Lb N M B5 薄板 0.002 0.025 0.60 0.004 0.030 0.005 Ti-0.03 22 22 La Lb N M B5 薄板 0.002 0.025 0.60 0.004 0.038 0.032 Ti-0.03 69 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.0  | 本參明係                                  | I A I      | 7 港が                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.008   | 0.0057   | 0.066    |                        | 10              | 19         |          |  |
| 本発明例 A20 薄板 0.019 0.075 0.58 0.039 0.066 0.005 0.005 18 23 MMSiê金 本発明例 A20 薄板 0.037 0.007 0.88 0.026 0.010 0.056 29 33 L MMSiê金 本発明例 A21 厚板 0.280 0.290 1.08 0.011 0.0030 0.005 Cr.0.5 29 33 L MMSiê金 本発明例 A21 厚板 0.280 0.290 1.08 0.011 0.0030 0.005 Cr.0.5 29 33 MMSiê金 本発明例 A21 厚板 0.270 0.300 1.10 0.010 0.0040 0.013 Cr-0.48 5 20 MMSiê金 本発明例 A23 厚板 0.300 0.680 2.53 0.009 0.0050 1.200 Cr-0.46 6 15 MMSiê金 本発明例 A24 厚板 0.110 0.250 0.90 0.010 0.0050 0.065 Cu42,M6.05,Cr.0.45 4 9 MMSiê金 本発明例 A25 厚板 0.060 0.250 0.61 0.012 0.0040 0.040 Nii9 25 9 12 MM A28 原板 0.026 0.070 0.050 1.20 0.0080 0.0050 0.008 Ti-0.015 4 35 MMSiê金 本発明例 A27 鋼管 0.513 0.360 1.18 0.008 0.0050 0.038 Ti-0.015 4 35 MMSiê金 本発明例 A29 鋼管 0.551 0.019 1.69 0.010 0.0460 0.006 Ti-0.25 22 42 MMSiê金 本発明例 A29 鋼管 0.580 0.351 0.13 0.014 0.0460 0.006 Ti-0.25 22 42 MMSiê金 本発明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0390 0.005 Ti-0.038 32 36 Ce 比較例 B3 薄板 0.003 0.021 0.014 0.0460 0.006 Ti-0.16 43 56 MM A条明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0390 0.005 Ti-0.038 32 36 Ce 比較例 B3 薄板 0.002 0.013 0.36 0.014 0.027 0.0219 0.008 Ti-0.012 33 35 MMSiê金 比較例 B4 療板 0.002 0.013 0.36 0.010 0.014 0.027 0.0219 0.008 Ti-0.012 30 35 Ce 比較例 B3 薄板 0.003 0.021 0.104 0.027 0.0219 0.005 Ti-0.038 32 36 Ce 比較例 B4 療板 0.002 0.013 0.36 0.038 0.014 0.027 0.0219 0.050 Ti-0.03 22 22 La 比較例 B6 厚板 0.002 0.015 0.010 0.014 0.020 Ti-0.03 22 22 La 比較例 B7 厚板 0.020 0.025 0.60 0.020 0.0238 0.032 Ti-0.03 69 例 MMSiê金 比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr-0.48 1 9 MMSiê金 比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr-0.49 15 14 MM MSiê金 比較例 B8 厚板 0.072 0.280 1.11 0.008 0.0050 0.022 Cr-0.49 15 14 MM MSiê金 比較例 B9 厚板 0.002 0.052 1.26 0.010 0.0030 0.022 Cr-0.49 15 14 MM MSiê金 比較例 B10 厚板 0.055 0.590 0.27 0.012 0.0040 0.015 Cr-0.48 1 9 MMSiê金 比較例 B10 厚板 0.055 0.590 0.27 0.012 0.0040 0.015 Cr-0.48 1 9 MMSiê金 比較例 B10 厚板 0.055 0.590 0.27 0.012 0.0040 0.015 Cr-0.49 15 14 MM MSiê金 比較例 B10 厚板 0.055 0.590 0.27 0.012 0.0040 0.005 Ti-0.012 30 38 MMSiê金 0.480 0.370 0.144 0.0000 Ti-0.012 30 38 MMSiê金 0.480 0.370 0.144 1.35 0.002   | 本參明の                                  | Δ1         | 2 法数                                  |        | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 0.033   | 0.0143   | 0.087    |                        |                 |            |          |  |
| 本発明例 A20 薄板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 本発明例                                  | ΔI         |                                       |        | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 0.042   | 0.0067   | 0.075    |                        | 14              | 21         |          |  |
| 本発明例 A21 厚板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 太祭阳佐                                  | 1 A 2      | ) 海北                                  |        | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D.013   | 0.0060   | 0.034    |                        | 18              | 23         |          |  |
| 本発明例 A22 厚板 0.270 0.300 1.10 0.010 0.0040 0.013 Cr-0.48 5 20 MMSi合金 本発明例 A23 厚板 0.300 0.680 2.53 0.009 0.0050 1.200 Cr-0.46 6 15 MMSi合金 本発明例 A24 厚板 0.010 0.250 0.90 0.010 0.0050 0.065 Cac 2,Nic.085,Cr-0.45 Mec 0.35 V.0.04,Re0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 本祭明保                                  | A21        | 1 1 1 1 1                             |        | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 0.026   | 0.0110   | 0.056    |                        | 29              | 33         |          |  |
| 本発明例 A23 厚板 0.300 0.680 2.53 0.009 0.0050 1.200 Cr.0.46 6 15 MMSi合金 本発明例 A24 厚板 0.110 0.250 0.90 0.010 0.0050 1.200 Cr.0.46 6 15 MMSi合金 本発明例 A25 厚板 0.000 0.250 0.61 0.012 0.0040 0.040 Ni:9.25 9 12 MM A25 厚板 0.000 0.250 0.61 0.012 0.0040 0.040 Ni:9.25 9 12 MM A25 厚板 0.000 0.050 1.200 0.008 0.0005 0.030 Med.28NMc0.05NMc0.02 11 13 La 本発明例 A26 厚板 0.070 0.050 1.20 0.008 0.0005 0.030 Med.28NMc0.05NMc0.02 11 13 La 本発明例 A28 鋼管 0.513 0.360 1.18 0.008 0.0238 0.008 Ti:0.015 4 35 MMSi合金 本発明例 A29 鋼管 0.589 0.135 0.13 0.014 0.0460 0.009 Ti:0.045 10 28 MMSi合金 本発明例 A30 鋼管 0.589 0.135 0.13 0.014 0.0460 0.006 Ti:0.25 22 42 MMSi合金 本発明例 A30 鋼管 0.581 0.153 0.67 0.005 0.0504 0.008 Ti:0.016 43 56 MM A28 明例 A32 鋼管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti:0.016 43 56 MM A28 明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0300 0.006 Ti:0.016 43 56 MM A28 明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0300 0.006 Ti:0.016 43 56 MM A28 MM A28 MM A29 MMSi合金 0.008 0.008 0.008 MMSi合金 0.008 MMSi合金 0.008 0.008 0.008 MMSi合金 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008  | 本參明係                                  | A22        | <b>海北</b>                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.011   | 0.0030   | 0.005    | Cr:0.5                 | 2               | 19         | MMSi合金   |  |
| 本発明例 A24 厚板 0.110 0.250 0.90 0.010 0.0050 1.200 Cr-0.46 6 15 MMSi合金本発明例 A25 厚板 0.060 0.250 0.61 0.012 0.0040 0.040 Nij9.25 9 12 MM A差報例 A26 厚板 0.070 0.050 1.20 0.008 0.0005 0.030 Mcd.25Nbc0.015 4 35 MMSi合金本発明例 A27 鋼管 0.513 0.360 1.18 0.008 0.0238 0.008 Ti:0.015 4 35 MMSi合金本発明例 A28 鋼管 0.551 0.019 1.69 0.010 0.0460 0.009 Ti:0.045 10 28 MMSi合金本発明例 A29 鋼管 0.559 0.135 0.13 0.014 0.0460 0.006 Ti:0.25 22 42 MMSi合金本発明例 A30 鋼管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti:0.016 43 56 MM 全発明例 A31 鋼管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti:0.016 43 56 MM 全発明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0390 0.005 Ti:0.038 32 36 Ce比較例 B1 薄板 0.002 0.011 0.14 0.027 0.0219 0.050 Ti:0.038 32 36 Ce比較例 B2 薄板 0.002 0.013 0.36 0.019 0.0133 0.030 Ti:0.03 22 28 MMSi合金比較例 B3 薄板 0.031 0.022 0.21 0.010 0.0144 0.020 Ti:0.03 22 22 La比較例 B3 薄板 0.031 0.022 0.21 0.010 0.0144 0.020 Ti:0.03 22 22 La比較例 B7 厚板 0.270 0.280 1.11 0.008 0.0050 0.022 Cr-0.49 15 14 MM Si合金比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr-0.48 1 9 MMSi合金比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr-0.48 1 9 MMSi合金比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr-0.48 1 9 MMSi合金比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr-0.48 1 9 MMSi合金比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr-0.48 1 9 MMSi合金比较例 B8 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr-0.48 1 9 MMSi合金比较例 B8 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr-0.48 1 9 MMSi合金比较例 B9 厚板 0.005 0.590 0.27 0.012 0.0040 0.015 Cr-0.48 1 9 MMSi合金比较例 B1 厚板 0.070 0.052 1.26 0.010 0.0030 0.022 Cr-0.49 15 14 MM MMSi合金比较例 B1 厚板 0.055 0.590 0.27 0.012 0.0040 0.035 Nij9.33 1 9 MMSi合金比较例 B12 鋼管 0.562 0.455 0.10 0.010 0.0030 0.022 Cr-0.49 15 14 MM MMSi合金比较例 B12 鋼管 0.562 0.145 0.11 0.012 0.0340 0.006 Ti:0.018 3 35 MMSi合金                                                                                                                                                                                                                                                                                                                                                 | 本參明仍                                  | Δ23        | 2 III 16                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.010   | 0.0040   | 0.013    | Cr:0.48                | 5               | 20         |          |  |
| 本発明例 A25 厚板 0.060 0.250 0.61 0.012 0.0040 0.040 Nisp.25 9 12 MM A25 厚板 0.070 0.050 1.20 0.008 0.0005 0.030 Nisp.25 11 13 La 本発明例 A28 鋼管 0.513 0.360 1.18 0.008 0.0238 0.008 Ti.0.015 4 35 MMSi合金 本発明例 A29 鋼管 0.551 0.019 1.69 0.010 0.0460 0.009 Ti.0.045 10 28 MMSi合金 本発明例 A29 鋼管 0.589 0.135 0.13 0.014 0.0460 0.006 Ti.0.25 22 42 MMSi合金 本発明例 A30 鋼管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti.0.016 43 56 MM 金卷明例 A31 鋼管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti.0.07 34 42 MMSi合金 本発明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0390 0.005 Ti.0.038 32 36 Ce 比較例 B1 薄板 0.005 0.011 0.14 0.027 0.0219 0.050 Ti.0.038 32 36 Ce 比較例 B2 薄板 0.002 0.013 0.36 0.019 0.0133 0.030 Ti.0.03 22 28 MMSi合金比較例 B3 薄板 0.031 0.022 0.21 0.010 0.0114 0.020 Ti.0.03 22 28 MMSi合金比較例 B4 薄板 0.038 0.053 0.40 0.038 0.0124 0.080 Ti.0.03 22 28 MMSi合金比較例 B4 薄板 0.038 0.053 0.40 0.038 0.0124 0.080 Ti.0.03 22 28 MMSi合金比較例 B5 薄板 0.022 0.21 0.010 0.0114 0.020 Ti.0.03 22 22 22 42 MMSi合金比较例 B6 厚板 0.270 0.280 1.11 0.008 0.0050 0.028 Cr0.51 30 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 本祭明(6                                 | Δ26        | 1 1 15                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |         | 0.0050   |          |                        | 6               | 15         |          |  |
| 本発明例 A25 厚板 0.060 0.250 0.61 0.012 0.0040 Nieo.25,Vo.04,Be0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .4.36.21b.                            | امدا       | - 1 - TD                              | 0.110  | 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.90            | 0.010   | 0.0050   | 0.065    | Cu:0.2,Ni:0.85,Cr:0.45 | 4               | 9          |          |  |
| 本発明例 A26 厚板 0.070 0.050 1.20 0.008 0.0005 0.030 Mcd.25hbc0015.M0.022 11 13 La 本発明例 A27 鋼管 0.513 0.360 1.18 0.008 0.0238 0.008 Ti:0.015 4 35 MMSi合金本発明例 A28 鋼管 0.551 0.019 1.69 0.010 0.0460 0.009 Ti:0.045 10 28 MMSi合金本発明例 A30 鋼管 0.618 0.252 0.66 0.004 0.0300 0.006 Ti:0.25 22 42 MMSi合金本発明例 A31 鋼管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti:0.07 34 42 MMSi合金本発明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0390 0.006 Ti:0.07 34 42 MMSi合金木発明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0390 0.005 Ti:0.038 32 36 Ce比較例 B1 薄板 0.0005 0.011 0.14 0.027 0.0219 0.050 Ti:0.012 35 MMSi合金比較例 B2 薄板 0.002 0.013 0.366 0.019 0.0133 0.030 Ti:0.03 22 22 La比較例 B3 薄板 0.031 0.022 0.21 0.010 0.0114 0.020 Ti:0.03 22 22 La比較例 B4 薄板 0.038 0.053 0.40 0.038 0.0124 0.080 Ti:0.03 22 22 La比較例 B5 薄板 0.002 0.025 0.60 0.020 0.0238 0.032 Ti:0.03 22 22 La比較例 B7 厚板 0.020 0.025 0.60 0.020 0.0238 0.032 Ti:0.03 69 数ii MMSi合金比較例 B7 厚板 0.020 0.280 1.11 0.008 0.0050 0.028 Cr:0.51 30 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 太经阳值                                  | Δ25        | TET to                                | 0.000  | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04            |         |          |          | Ma:0.35,V:0.04,B:0.001 |                 |            |          |  |
| 本発明例 A27 鋼管 0.513 0.360 1.18 0.008 0.0233 0.008 Ti-0.015 4 35 MMSi合金 本発明例 A28 鋼管 0.551 0.019 1.69 0.010 0.0460 0.009 Ti-0.045 10 28 MMSi合金 本発明例 A30 鋼管 0.618 0.252 0.66 0.004 0.00460 0.006 Ti-0.016 43 56 MM s 条 新明例 A30 鋼管 0.618 0.252 0.66 0.004 0.0300 0.006 Ti-0.016 43 56 MM s 条 新明例 A31 鋼管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti-0.07 34 42 MMSi合金 本発明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0390 0.006 Ti-0.07 34 42 MMSi合金 比較例 B1 薄板 0.002 0.013 0.36 0.019 0.0390 0.005 Ti-0.038 32 36 Ce 比較例 B2 薄板 0.002 0.013 0.36 0.019 0.0133 0.030 Ti-0.03 22 28 MMSi合金 比較例 B3 薄板 0.031 0.022 0.21 0.010 0.0114 0.020 Ti-0.03 22 22 La 比較例 B4 薄板 0.038 0.053 0.40 0.038 0.0114 0.020 Ti-0.045 16 13 MMSi合金 比較例 B5 薄板 0.002 0.025 0.60 0.020 0.0238 0.032 Ti-0.03 22 22 La 比較例 B6 厚板 0.270 0.280 1.11 0.008 0.002 0.023 0.022 0.025 0.020 0.023 0.022 0.025 0.020 0.023 0.022 0.022 0.023 0.030 Ti-0.03 69 81 MMSi合金 比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr-0.48 1 9 MMSi合金 比較例 B8 厚板 0.310 0.270 1.07 0.010 0.0030 0.022 0.022 0.024 0.0040 0.015 Cr-0.48 1 9 MMSi合金 比較例 B9 厚板 0.000 0.230 0.88 0.008 0.0050 0.022 0.024 0.049 15 14 MM 12 0.025 0.050 0.050 0.025 0.049 15 14 MM 12 0.025 0.050 0.050 0.025 0.025 0.026 0.020 0.023 0.022 0.024 0.0040 0.015 0.024 0.00015 0.024 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.0001 | 大 <u>杂阳</u> 鱼                         | A 26       | <b>原</b> 板                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.012   | 0.0040   | 0.040    | Ni:9.25                | 9               | 12         | MM       |  |
| 本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 大经阳何                                  | 1 427      | 9四位                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,20            | 0.008   | 0.0005   | 0.030    | Mo:0,25,Nb:0.015.V:0.0 | 25 11           |            |          |  |
| 本発明例 A29 鋼管 0.589 0.135 0.13 0.014 0.0460 0.009 Ti:0.045 10 28 MMSi合金 本発明例 A30 鋼管 0.589 0.135 0.13 0.014 0.0460 0.006 Ti:0.25 22 42 MMSi合金 本発明例 A31 鋼管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti:0.07 34 42 MMSi合金 本発明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0390 0.005 Ti:0.038 32 36 Ce 比較例 B1 薄板 0.0005 0.011 0.14 0.027 0.0219 0.050 Ti:0.012 0 35 比較例 B2 薄板 0.002 0.013 0.36 0.019 0.013 0.030 Ti:0.03 2 28 MMSi合金 比較例 B3 薄板 0.031 0.022 0.21 0.010 0.0114 0.020 Ti:0.03 2 28 MMSi合金 比較例 B4 薄板 0.038 0.053 0.40 0.038 0.0124 0.080 Ti:0.045 16 13 MMSi合金 比較例 B6 厚板 0.270 0.280 1.11 0.008 0.050 0.028 Cr:0.51 0 12 比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr:0.48 1 9 MMSi合金 比較例 B8 厚板 0.310 0.270 1.07 0.010 0.0030 0.022 Cr:0.49 15 14 MM 12 12 12 12 12 13 14 14 15 15 14 15 0.008 0.008 0.008 Ti:0.12 0 38 0.008 Ti:0.03 1 1 9 MMSi合金 比較例 B1 厚板 0.072 0.052 1.26 0.010 0.0030 0.022 Cr:0.49 15 14 MM 12 12 13 19 MMSi合金 比较例 B1 厚板 0.055 0.590 0.27 0.012 0.0040 0.035 Ni:9.33 1 9 MMSi合金 比较例 B1 厚板 0.055 0.590 0.27 0.012 0.0040 0.035 Ni:9.33 1 9 MMSi合金 比较例 B1 厚板 0.072 0.052 1.26 0.010 0.0030 0.022 Cr:0.49 15 14 MM 12 12 12 14 14 15 0.008 0.0050 0.028 Cr:0.51 0 12 12 12 12 13 13 14 14 15 0.008 0.0050 0.028 Cr:0.51 0 12 12 12 14 14 15 0.008 0.0050 0.028 Cr:0.51 0 12 12 12 14 15 0.0050 0.0050 0.028 Cr:0.51 0 12 12 12 12 13 13 14 14 15 0.008 0.0050 0.028 Cr:0.51 0 12 12 12 12 13 13 14 14 15 0.008 0.0050 0.028 Cr:0.51 0 12 12 12 13 13 14 15 0.008 0.0050 0.028 Cr:0.51 0 15 14 15 14 15 14 15 0.008 0.0050 0.028 Cr:0.51 0 15 14 15 14 15 15 14 15 0.008 0.0050 0.028 0.008 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008 0.0050 0.008  |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.18            | U.008   | L0.0238  | 1 0.0081 | Ti:0.015               |                 |            |          |  |
| 本発明例 A30 鋼管 0.561 0.153 0.67 0.004 0.0300 0.006 Ti:0.25 22 42 MMSi合金 本発明例 A30 鋼管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti:0.07 34 42 MMSi合金 本発明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0390 0.005 Ti:0.038 32 36 Ce 比較例 B1 薄板 0.0005 0.011 0.14 0.027 0.0219 0.050 Ti:0.012 0 35 比較例 B2 薄板 0.002 0.013 0.36 0.019 0.0133 0.030 Ti:0.03 2 28 MMSi合金比較例 B3 薄板 0.031 0.022 0.21 0.010 0.0114 0.020 Ti:0.03 22 22 La 比較例 B4 薄板 0.002 0.025 0.60 0.020 0.0238 0.032 Ti:0.03 22 22 La 比較例 B6 厚板 0.020 0.025 0.60 0.020 0.0238 0.032 Ti:0.03 69 附加MSi合金比較例 B7 厚板 0.270 0.280 1.11 0.008 0.0050 0.028 Cr.0.51 0 12 比較例 B8 厚板 0.310 0.270 1.06 0.012 0.0040 0.015 Cr.0.48 1 9 MMSi合金比較例 B8 厚板 0.310 0.270 1.07 0.010 0.0030 0.022 Cr.0.49 15 14 MM 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                              | A20        | 劉彦                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.69            | 0.010   | 0.0460   | 0.009    | Ti:0.045               |                 |            |          |  |
| 本発明例 A31 鋼管 0.561 0.153 0.67 0.005 0.0504 0.008 Ti:0.16 43 56 MM 本発明例 A32 鋼管 0.580 0.243 1.24 0.011 0.0390 0.005 Ti:0.038 32 36 Ce 比較例 B1 薄板 0.0005 0.011 0.14 0.027 0.0219 0.050 Ti:0.012 0 35 比較例 B2 薄板 0.002 0.013 0.36 0.019 0.0133 0.030 Ti:0.03 2 28 MMSi合金比較例 B3 薄板 0.031 0.022 0.21 0.010 0.0114 0.020 Ti:0.03 22 22 La 比較例 B4 薄板 0.038 0.053 0.40 0.038 0.0124 0.080 Ti:0.045 16 13 MMSi合金比較例 B5 薄板 0.002 0.025 0.60 0.020 0.0238 0.032 Ti:0.03 69 部 MMSi合金比較例 B7 厚板 0.270 0.280 1.11 0.008 0.050 0.028 Cr0.51 0.12 0.12 0.004 0.015 Cr0.48 1 9 MMSi合金比較例 B8 厚板 0.310 0.270 1.07 0.010 0.0030 0.022 Cr0.49 15 14 MM 12 0.000 B1 厚板 0.100 0.230 0.88 0.008 0.0050 0.022 Cr0.49 15 14 MM 12 0.000 B1 厚板 0.0050 0.230 0.88 0.0050 0.022 Cr0.49 15 14 MM 12 0.000 B1 厚板 0.055 0.590 0.27 0.012 0.0040 0.055 Ni:9.33 1 9 MMSi合金比較例 B1 厚板 0.072 0.055 1.26 0.010 0.0030 0.022 Ne:0.35,Nbc.023,Vo.02,B-0.0015 0.38 0.050 B1 0.056 0.480 0.370 0.19 0.002 0.0340 0.006 Ti:0.018 3 35 MMSi合金比較例 B13 鋼管 0.480 0.370 0.19 0.002 0.0330 0.006 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.637 0.144 1.35 0.002 0.0230 0.008 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.637 0.144 1.35 0.002 0.0030 0.003 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.637 0.144 1.35 0.002 0.0030 0.003 Ti:0.018 3 35 MMSi合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 本 <del>经</del> 阳 仞                    | A 20       | 细色                                    |        | 0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.13            | 0.014   | 0.0460   | 0.006    | Ti:0.25                | 22              |            |          |  |
| 大寒明例   A32 鋼管                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 本条明例                                  | A21        | 细色                                    | 0.618  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.66            | 0.004   | 0.0300   | 0.006    | Ti:0.16                | 43              |            |          |  |
| 比較例 B1 薄板 0.0005 0.011 0.14 0.027 0.0219 0.050 Ti:0.038 32 36 Ce 比較例 B2 薄板 0.0002 0.013 0.36 0.019 0.0133 0.030 Ti:0.03 2 28 MMSi合金比較例 B3 薄板 0.031 0.022 0.21 0.010 0.0114 0.020 Ti:0.03 22 22 La 比較例 B4 薄板 0.038 0.053 0.40 0.038 0.0124 0.080 Ti:0.045 16 13 MMSi合金比較例 B5 薄板 0.002 0.025 0.60 0.020 0.0238 0.032 Ti:0.03 69 时 MMSi合金比較例 B6 厚板 0.270 0.280 1.11 0.008 0.0050 0.028 Cr:0.51 0 12 比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr:0.48 1 9 MMSi合金比較例 B8 厚板 0.310 0.270 1.07 0.010 0.0030 0.022 Cr:0.49 15 14 MM 上較例 B9 厚板 0.100 0.230 0.88 0.008 0.0050 0.022 Cr:0.49 15 14 MM 上較例 B10 厚板 0.055 0.590 0.27 0.012 0.0040 0.035 Ni:9.33 1 9 MMSi合金比較例 B11 厚板 0.072 0.052 1.26 0.010 0.0030 0.022 Cr:0.49 15 14 MM 比較例 B11 厚板 0.072 0.052 1.26 0.010 0.0030 0.022 M:0.035,Ni:0.03,Vi.0.03,Vi.0.023 0.0012 比較例 B13 鋼管 0.480 0.370 0.19 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.480 0.370 0.19 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.480 0.370 0.19 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.480 0.370 0.19 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.480 0.370 0.19 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 太经阳何                                  | V33        | 细色                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.67            | 0.005   | 0.0504   | 0.008    | Ti:0.07                |                 |            |          |  |
| 比較例 B2 薄板 0.002 0.013 0.36 0.019 0.0133 0.030 Ti:0.012 0 35 比較例 B3 薄板 0.031 0.022 0.21 0.010 0.0114 0.020 Ti:0.03 22 22 La 比較例 B4 薄板 0.038 0.053 0.40 0.038 0.0124 0.080 Ti:0.045 16 13 MMSi合金比較例 B5 薄板 0.002 0.025 0.60 0.020 0.0238 0.032 Ti:0.03 69 周1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>化較例</b>                            |            |                                       |        | 0.243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |         |          | 0.005    | Ti:0.038               | 32              |            |          |  |
| 比較例 B3 薄板 0.031 0.022 0.21 0.010 0.0114 0.020 Ti:0.03 22 22 La 比較例 B4 薄板 0.038 0.053 0.40 0.038 0.0124 0.080 Ti:0.045 16 13 MMSi合金比較例 B5 薄板 0.002 0.025 0.60 0.020 0.0238 0.032 Ti:0.03 69 周 MMSi合金比較例 B6 厚板 0.270 0.280 1.11 0.008 0.0050 0.028 Cr:0.51 0.12 比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr:0.48 1 9 MMSi合金比較例 B8 厚板 0.310 0.270 1.07 0.010 0.0030 0.022 Cr:0.49 15 14 MM 15 14 MM 15 15 14 MM 15 15 15 14 MM 15 15 15 14 MM 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |            | 持板                                    | 0.0000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.14            | 0.027   | 0.0219   | 0.050    | Ti:0.012               |                 |            |          |  |
| 比較例 B4 薄板 0.038 0.053 0.40 0.038 0.0124 0.080 Ti:0.045 16 13 MMSi合金比較例 B5 薄板 0.002 0.025 0.60 0.020 0.0238 0.032 Ti:0.03 69 81 MMSi合金比較例 B7 厚板 0.270 0.280 1.11 0.008 0.0050 0.028 Cr:0.51 0.12 比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr:0.48 1 9 MMSi合金比較例 B8 厚板 0.310 0.270 1.07 0.010 0.0030 0.022 Cr:0.49 15 14 MM 比較例 B9 厚板 0.100 0.230 0.88 0.008 0.0050 0.062 Cr:0.18Mio.83,Cr:0.44 Mc:0.32\times_0.0015 0.12 \times_0.0015 0.0012 0.0040 0.035 Ni:9.33 1 9 MMSi合金比較例 B11 厚板 0.072 0.052 1.26 0.010 0.0030 0.022 Cr:0.49 15 14 MM 比較例 B12 鋼管 0.562 0.145 0.11 0.012 0.0040 0.005 Ni:9.33 1 9 MMSi合金比較例 B13 鋼管 0.480 0.370 0.19 0.009 0.0238 0.008 Ti:0.12 0 38 比較例 B14 鋼管 0.637 0.144 1.35 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.637 0.144 1.35 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.637 0.144 1.35 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |            | <b>建設</b>                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.36            | 0.019   | 0.0133   | 0.030    | Ti:0.03                |                 |            | MMSI &   |  |
| 比較例 B5 薄板 0.002 0.026 0.60 0.020 0.0238 0.032 Ti:0.03 69 8i MMSi合金比較例 B6 厚板 0.270 0.280 1.11 0.008 0.0050 0.028 Cr:0.51 0.12 比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr:0.48 1 9 MMSi合金比較例 B8 厚板 0.310 0.270 1.07 0.010 0.0030 0.022 Cr:0.49 15 14 MM 上較例 B9 厚板 0.100 0.230 0.88 0.008 0.0050 0.062 Cuc.0.18,Ni:0.83,Cr:0.44 Me:0.32,V:0.03,Be-0.0015 Cb MMSi合金比較例 B11 厚板 0.055 0.590 0.27 0.012 0.0040 0.035 Ni:9.33 1 9 MMSi合金比較例 B11 厚板 0.072 0.052 1.26 0.010 0.0030 0.022 Me:0.35,Ni:0.033,V:0.03,Be-0.0015 Cb MMSi合金比較例 B12 鋼管 0.562 0.145 0.11 0.012 0.0340 0.006 Ti:0.12 0 38 比較例 B13 鋼管 0.480 0.370 0.19 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.637 0.144 1.35 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.637 0.144 1.35 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.637 0.144 1.35 0.009 0.0238 0.008 Ti:0.018 3 35 MMSi合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |            | 海拔                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.21            | 0.010   | 0.0114   | 0.020    | Ti:0.03                |                 |            |          |  |
| 比較例 B6 厚板 0.270 0.280 1.11 0.008 0.0050 0.028 Cr:0.51 0 12 比較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr:0.48 1 9 MMSi合金比較例 B8 厚板 0.310 0.270 1.07 0.010 0.0030 0.022 Cr:0.49 15 14 MM 比較例 B9 厚板 0.100 0.230 0.88 0.008 0.0050 0.062 Cuc0.18,Ni:0.83,Cr:0.44 Mc:0.32,Vi0.03,Bei.0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.40            | 0.038   | 0.0124   | 0.080    | Ti:0.045               |                 |            |          |  |
| 上較例 B7 厚板 0.290 0.310 1.06 0.012 0.0040 0.015 Cr.0.48 1 9 MMSi合金<br>比較例 B8 厚板 0.310 0.270 1.07 0.010 0.0030 0.022 Cr.0.49 15 14 MM<br>比較例 B9 厚板 0.100 0.230 0.88 0.008 0.0050 0.062 Cuc0.18,Ni:0.83,Cr:0.44 Mc:0.32,Vi0.03,Bei.0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 上 歌 例                                 | 200        | 净板                                    | 0.002  | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.60            | 0.020   | 0.0238   | 0.032    | Ti:0.03                |                 | 0.1        | MMSi ⇔ & |  |
| 比較例 B8 厚板 0.310 0.270 1.07 0.010 0.0030 0.022 Cr:0.48 1 9 MMSi合金 比較例 B9 厚板 0.100 0.230 0.88 0.008 0.0050 0.062 Cuc.0.8Nic.0.83,Cr:0.44 Mc:0.32,V:0.03,B:0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 上較何                                   | D7         | 学似                                    |        | 0.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.11            | 0.008   | 0.0050   | 0.028    | Cr:0.51                | 0               |            |          |  |
| 上較例 B10 厚板 0.055 0.590 0.27 0.012 0.0040 0.035 Ni:9.33 1 9 MMSi合金<br>比較例 B12 鋼管 0.562 0.145 0.11 0.012 0.0340 0.006 Ti:0.12 0 38 比較例 B13 鋼管 0.480 0.370 0.19 0.009 0.0238 0.086 Ti:0.018 3 35 MMSi合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | _          |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.06            | 0.012   | 0.0040   | 0.015    | Cr:0.48                |                 | _          | MMSIAA   |  |
| 上較例 B10 厚板 0.055 0.590 0.27 0.012 0.0040 0.035 Ni:9.33 1 9 MMSi合金<br>上較例 B12 鋼管 0.562 0.145 0.11 0.012 0.0340 0.006 Ti:0.12 0 38<br>上較例 B13 鋼管 0.480 0.370 0.19 0.009 0.0238 0.080 Ti:0.018 3 35 MMSi合金<br>比較例 B14 鋼管 0.637 0.144 1.35 0.003 0.022 No:0.35 Ni:0.018 3 35 MMSi合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> 1.07</u> ]  | 0.010   | 0.00301  | 0.022    | )r0 49                 |                 |            |          |  |
| 比較例     B10 厚板     0.055 0.590     0.27 0.012 0.0040 0.035 Ni:9.33     1 9 MMSi合金       比較例     B11 厚板     0.072 0.052 1.26 0.010 0.0030 0.022 No:0.35,Nb:0.023,Va.022 15 14 MM       比較例     B12 鋼管     0.562 0.145 0.11 0.012 0.0340 0.006 Ti:0.12 0 38       比較例     B13 鋼管     0.480 0.370 0.19 0.009 0.0238 0.080 Ti:0.018 3 35 MMSi合金       比較例     B14 鋼管     0.637 0.144 1.35 0.003 0.023 0.025 Ti.0.018 3 35 MMSi合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | つった (グリ                               | 22         | <b>学似</b>                             | 0.100  | U.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.88            | 0.008   | 0.0050   | 0.062    | ₩0.18,Ni:0.83,Or:0.44  |                 | _          |          |  |
| 上較例 B11 厚板 0.072 0.052 1.26 0.010 0.0030 0.022 Nc:0.35,Nb:0.023,Vd.022 15 14 MM big B13 鋼管 0.480 0.370 0.19 0.009 0.0238 0.080 Ti:0.018 3 35 MMSi合金比較例 B14 鋼管 0.637 0.144 1.35 0.003 0.023 0.005 Ti:0.018 3 35 MMSi合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · · | B10        | <b>16.4</b> €                         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |         | _        | i N      | 0:0.32.V:0 03 B-0 0015 | E CALCO ACCOUNT | · <b>-</b> |          |  |
| 比較例     B12 鋼管     0.562     0.145     0.11     0.012     0.0340     0.006     Ti:0.12     15     14     MM       上較例     B13 鋼管     0.480     0.370     0.19     0.009     0.0238     0.080     Ti:0.018     3     35     MMSi合金       比較例     B14 鋼管     0.637     0.144     1.35     0.003     0.0238     0.080     Ti:0.018     3     35     MMSi合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 吕뷔         | と と と と と と と と と と と と と と と と と と と | 0.055  | <u>U.590</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27            | 0.012   | 0.0040   | 0.0351N  | li-9 33                | 4               | 9          | MASISAN  |  |
| 上較例 B13 鋼管 0.480 0.370 0.19 0.009 0.0238 0.080 Ti:0.12 3 3 35 MMSi合金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | B13        | 好似                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.26            | 0.010   | 0.0030   | 0.022 N  | a:0.35 NH-0 022 VAD 02 | 15              |            |          |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | と数句                                   | <u> </u>   | 2月日                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>U. I I J</u> | 0.012   | 0.03401  | 0.00617  | i:0 12                 |                 |            |          |  |
| 0元(25   P 1年)時日   U.0371 U.1441   1.351 0.002 0.002 0.005 元: 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |            |                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.19            | 0.009   | 0.0238   | 0.080    | i:0.018                | _               |            | MSi≙&    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ₩ <b>₩</b>                            | <u>014</u> | 月日                                    | 0.03/  | U.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.35            | 0.002   | 0.0220   | 0.005 T  | i:0.045                |                 |            |          |  |



# 【表2】

|                   | No.      | 介在物組成+3, mass% |       |                     | 1          | d         |              | l             |  |
|-------------------|----------|----------------|-------|---------------------|------------|-----------|--------------|---------------|--|
| ļ                 | 1.10.    | Ai2O3          | Re2O3 | 最大クラスター径            |            | 欠陥発生率     |              | 板厚方向          |  |
| 本発明例              | J A1     | 96.3           | 0.5   | *4, μm              | *4. 個/kg   |           | エネルキ ー*6, J  | 絞り値*7.%       |  |
| 本発明例              |          | 96.6           | 2.4   | 62<br>≤ 20          | 1.2        |           |              |               |  |
| 本発明例              |          | 94.3           | 3.9   |                     | 0.0        |           |              |               |  |
| 本発明例              |          | 84.8           | 6.4   |                     | 0.0        |           |              |               |  |
| 本発明例              |          | 90.3           | 7.3   |                     | 0.0        |           |              |               |  |
| 本発明例              |          | 87.1           | 9.8   |                     | 0.0        |           |              |               |  |
| 本発明例              |          | 87.8           | 11.3  |                     | 0.0        |           |              |               |  |
| 本発明例              |          | 83.8           | 14.4  |                     | 0.0        |           |              |               |  |
| 本発明例              |          | 90.7           | 0.5   | 52                  | 0.7        |           |              |               |  |
| 本発明例              |          | 91.0           | 6.6   | 65<br>≤ 20          | 2.0        |           |              |               |  |
| 本発明例              |          | 96.2           | 0.6   | <u>≦ 20</u>         | 0.0        | 0.26      |              |               |  |
| 本発明例              |          | 96.8           | 2.3   |                     | 1.1        | 0.21      |              |               |  |
| 本発明例              |          | 94.3           | 3.9   | <u>≦</u> 20<br>≦ 20 | 0.0        | 0.20      |              |               |  |
| 本発明例              | A14      | 84.8           | 6.4   | <u>≥</u> 20<br>≤ 20 | 0.0        | 0.09      |              | $ \geq $      |  |
| 本発明例              | A15      | 91.6           | 6.0   | <u>≅</u> 20<br>≦ 20 | 0.0        | 0.15      |              |               |  |
| 本発明例              |          | 88.4           | 8.4   | <u>≅ 20</u> ≤ 20    | 0.0        | 0.11      |              |               |  |
| 本発明例              | A17      | 90.0           | 9.0   | <u>≅ 20</u><br>≦ 20 | 0.0        | 0.12      |              |               |  |
| 本発明例              | A18      | 87.1           | 11.1  | <u>≥ 20</u><br>≤ 20 | 0.0        | 0.16      |              |               |  |
| 本発明例              | A19      | 78.6           | 12.6  | 31                  | 0.0        | 0.08      |              |               |  |
| 本発明例              |          | 82.8           | 14.8  | 42                  | 0.1        | 0.11      |              |               |  |
| 本発明例              |          | 94.9           | 1.9   | 43                  | 0.8<br>1.0 | 0.12      |              |               |  |
| 本発明例              | A22      | 96.6           | 2.4   | <u>≤ 20</u>         | 0.0        |           | 39.8         |               |  |
| 本発明例              | A23      | 93.1           | 5.1   | <u>≅ 20</u>         | 0.0        |           | 40.2         |               |  |
| 本発明例              | A24      | 84.3           | 6.9   | <u>≅ 20</u>         |            | 9.1(UST)  | 36.5         | $\overline{}$ |  |
|                   |          |                |       |                     | 0.0        | 3.1(031)  |              |               |  |
| 本発明例              | A25      | 86.0           | 11.6  | 23                  | 0.1        | 4.8(SPR)  | <del>\</del> |               |  |
| 本発明例              | A26      | 82.4           | 14.4  | 43                  | 0.6        | 1.5(0.11) |              | 58.5          |  |
| 本発明例              | A27      | 98.5           | 0.5   | 59                  | 1.0        | 0         |              | 00.0          |  |
| 本発明例              | A28      | 93.7           | 4.5   | ≦ 20                | 0.0        | 0.0       |              |               |  |
| 本発明例              | A29      | 83.3           | 7.9   | ≦ 20                | 0.0        | 0.2       |              |               |  |
| 本発明例              | A30      | 85.0           | 12.6  | 46                  | 0.2        | 0.1       |              |               |  |
| 本発明例              | A31      | 83.5           | 13.3  | 31                  | 0.2        | 0.2       |              |               |  |
| 本発明例              | A32      | 84.0           | 15.0  | 65                  | 1.2        | 0.2       |              |               |  |
| 比較例               | B1       | 98.2           | 0.0   | 172                 | 5.6        | 0.8       |              |               |  |
| 比較例               | B2       | 91.0           | 0.2   | 115                 | 3.1        | 0.6       |              |               |  |
| 比較例               | B3       | 80.4           | ×17.3 | 105                 | 3.5        | 12        |              |               |  |
| <u>比較例</u>        | B4       | 74.9           | 22.0  | 284                 | 7.5        | 1.4       |              |               |  |
| <u>比較例</u><br>比較例 | B5       | 83.7           | 13.1  | 152                 | 3.3        | 0.7       |              |               |  |
| <u>比較例</u><br>比較例 | B6<br>B7 | 99.0           | 0.0   | 181                 | 6.8        |           | 21.6         |               |  |
| 比較例               |          | 98.0           | 0.2   | 103                 | 2.5        |           | 26.5         |               |  |
| 比較例               | B8<br>B9 | 72.1           | 19.2  | 172                 | 4.8        |           | 22.3         |               |  |
| ルレキス [79]         | 29       | 99.0           | 0.0   | 186                 | 7.3 2      | 1.5(UST)  |              |               |  |
| 比較例               | B10      | 00.0           |       |                     |            |           |              |               |  |
|                   | B11      | 98.0           | 0.2   | 108                 |            | 3.6(SPR)  |              |               |  |
|                   | B12      | 72.1<br>97.6   | 19.2  | 167                 | 4.3        |           |              | 31.0          |  |
|                   | B13      | 91.1           | 0.0   | 126                 | 5.7        | 1.2       |              |               |  |
|                   | B14      | 80.7           | 0.2   | 101                 | 2.9        | 1.4       |              |               |  |
| -TA 1/3           | <u> </u> | 00.7           | 16,9  | 168                 | 3.7        | 1.1       |              |               |  |



# [0034]

# 【発明の効果】

以上の説明からも明らかなように、本発明によればAI脱酸、Al-Si 脱酸鋼で、 最終製品における粗大アルミナクラスター起因の表面疵や内部欠陥が少ない鋼材 を得ることができる。

よって、本発明は従来のAl脱酸鋼やAl-Si 脱酸鋼における問題点を一掃したアルミナクラスターの少ない鋼材の製造方法として、産業の発展に寄与するところは極めて大である。

#### 【図面の簡単な説明】

【図1】 本発明による $A1_20_3$  中のREM 酸化物の含有量と最大アルミナクラスター径の関係を示す説明図である。



【書類名】

図面

【図1】





#### 【書類名】 要約書

#### 【要約】

【課題】 製品欠陥の原因となる粗大なアルミナクラスターの生成を溶鋼中およびAr気泡表面で防止することにより、自動車、家電用途の薄板のスリバー疵、構造用厚板の材質不良、耐磨耗用厚板の低温靭性低下、油井管用鋼管の溶接部UST 欠陥等の表面疵や内部欠陥が少ない鋼材を提供する。

【解決手段】 鋼中の酸化物系介在物を $Al_2O_3$  とREM 酸化物が主成分で、重量%でREM 酸化物の含有量を $0.5 \sim 15\%$ とする。

【選択図】 図1

# 特願2002-214160

# 出願人履歴情報

識別番号

[000006655]

1. 変更年月日 [変更理由]

1990年 8月10日 新規登録

住所

東京都千代田区大手町2丁目6番3号

氏 名 新日本製鐵株式会社