Evaluation of IR Models

Priya Rao

UBIT Name: prao4

Person ID: 50321961

Introduction

The goal of this project is to implement various IR models, evaluate the IR system and improve the search results based on the understanding of the models, the implementation and the evaluation. Given is twitter data in three languages - English, German and Russian, 15 sample queries and the corresponding relevance judgements. These are indexed using Solr and the following three IR models are implemented: (i) Language Model, (ii) BM25 and (iii) Divergence from Randomness (DFR) Model. The results from these three sets will be evaluated using the Trec_eval program. Based on the evaluation results, the performance in terms of Mean Average Precision (MAP) is tweaked to get the best results.

Implementation

The three models in solr have been implemented using the similarity class which needs to be added into the schema.xml. Since in this project we have 3 models to implement, we would be building 3 schema files which contain the similarity class implementation of BM25, LM and DFR as shown (below are the implementations with the default values):

```
<schema name="default-config" version="1.6">
  <uniqueKey>id</uniqueKey>
  <similarity class="solr.BM25SimilarityFactory">
  <float name="b">0.75</float>
  <float name="k1">1.2</float>
  </similarity>
<schema name="default-config" version="1.6">
  <uniqueKey>id</uniqueKey>
  <similarity class="solr.LMDirichletSimilarityFactory">
  </similarity>
<schema name="default-config" version="1.6">
  <uniqueKey>id</uniqueKey>
  <similarity class="solr.DFRSimilarityFactory">
    <str name="normalization">H2</str>
    <str name="afterEffect">B</str>
    <str name="basicModel">G</str>
  </similarity>
```

The parameters of each of the schemas must be tweaked in order to check which parameters would achieve the best similarity scores.

Using the default parameters and having used no query parsers or any form of optimization done, the below values were obtained for BM25, LM and DFR:

runid	all	BM25
num q	all	
num ret	all	
_	all	
num_rel	all	
num_rel_ret		
map	all	
gm_map	all	0.6302
runid	all	DED
num_q	all	
num_ret	all	
num_rel	all	
num_rel_ret	all	
map		0.7055
gm_map	all	0.6382
runid	all	
num_q	all	15
num_ret	all	280
num_rel	all	225
num_rel_ret	all	119
map	all	0.6299
gm_map	all	0.5489
_		

Strategies

Upon tweaking the parameters of the BM25 model, i.e., decreasing both b and k1 values by 0.1 (0.6 and 1.1), we get:

runid	all	BM25
num q	all	15
num ret	all	280
num rel	all	225
num rel ret	all	130
map	all	0.6955
gm map	all	0.6285

This shows that decreasing the b and k1 values in the naïve model gives a decrease in the map score. Increasing the b and k1 values (0.9 and 1.4) in the naïve model increases the map score.

runid	all	BM25
num q	all	15
num ret	all	280
num rel	all	225
num rel ret	all	129
map	all	0.7004
gm map	all	0.6329

Upon further increasing the value of both b and k1 (1.0 and 1.5) in the na"ive model, there is a decrease in the overall map score:

runid	all	BM25
num_q	all	15
num ret	all	280
num_rel	all	225
num_rel_ret	all	130
map	all	0.6995
gm_map	all	0.6340

For k1 = 1.5 and b = 0.75, we get the values as:

runid	all	BM25
num_q	all	15
num_ret	all	280
num_rel	all	225
num_rel_ret	all	141
map	all	0.7019
gm_map	all	0.6686

Which is so far the ideal score obtained.

Upon adding a custom synonyms file, which allows for all those words not accounted by the query but are accounted for in the document which convey a similar meaning to that of the querying term, the BM25, LM and DFR models produce the below map scores:

runid	all	BM25
num_q	all	15
num_ret	all	280
num_rel	all	225
num rel ret	all	138
map	all	0.6905
runid	all	LM
num_q	all	15
num_ret	all	280
num_rel	all	225
num rel ret	all	125
map	all	0.6325
gm_map	all	0.5655
runid	all	DFR
num_q	all	15
num_ret	all	280
num_rel	all	225
num_rel_ret	all	141
map	all	0.7117
gm_map	all	0.6784
•		

Upon tweaking the parameters of LM (mu = 1800), we can see a maximum map score of:

runid	all	LM
num_q	all	15
num ret	all	280
num_rel	all	225
num_rel_ret	all	125
map	all	0.6346
gm map	all	0.5686

Observations

For BM25

K1	b	MAP score
1.2 (default)	0.75 (default)	0.6985
1.1	0.6	0.6955
1.4	0.9	0.7004
1.5	1.0	0.6995
1.5	0.75	0.7019

For DFR

Basicmodel	Aftereffect	Normalization	MAP score
G	В	H2	0.7117

For LM

Mu	MAP Score
2000 (default)	0.6325
1800	0.6346
1500	0.6286

Results

The best model evaluated among the three models is DFR with a MAP score of 0.7117, followed by BM25 with a MAP score of 0.7019 and LM with a MAP score of 0.6346.