Mathematical Statistics I

Chapter 1: Probability

Jesse Wheeler

Contents

1	Introduction	1
_	Discrete Random Variables 2.1 Bernoulli Random Variables	3

1 Introduction

Introduction

Formally, a random variable is a function from a sample space Ω to the real numbers¹. That is, for any element $\omega \in \Omega$, a random variable X will map ω to a real number: $X(\omega) \in \mathbb{R}$. Most often people think of random variables as random numbers rather than functions; in most instances in this class, this treatment will be sufficient.

Example of a random variable

Consider the experiment of flipping three coins. The sample space is

$$\Omega = \{hhh, hht, hth, thh, htt, tht, tth, ttt\}.$$

Some possible random variables include (1) the number of heads, (2) the number of tails, (3) the number of heads minus the number of tails.

Importantly, a random variable must assign a value to all possible outcomes $\omega \in \Omega$.

Number of Heads

Let X be the random variable representing the number of heads. If the result of the outcome is the event hth, the $X(\{hth\}) = 2$.

A few comments on random variables

- Sometimes in this course I will use the abbreviation RV to mean "random variable", and you can do so as well.
- It is conventional to use uppercase letters (math text or italics) to denote random variables.
- While a random variable is a function, the outcome of an experiment $\omega \in \Omega$ is random (that's the point), and we only ever see a single outcome. Thus, the fact that X is a function is often dropped, and we just write X. The realized value of X is random, because the input is random.

¹In this class, will assume real-valued spaces, though more generally a random variable can map to any measureable space

2 Discrete Random Variables

Discrete Random Variables

Definition: Discrete random variable

A discrete random variable is a random variable that can take on only a finite or at most a countably infinite number of values.

Example: The number of heads in three coin flips can only be in the set $\{0, 1, 2, 3\}$. Alternatively, consider flipping a coin indefinitely until you achieve a heads. The possible outcomes are in the set $\{1, 2, 3, \ldots\}$, which is countably infinite.

Probabilities

The probability measure on the sample space determines the probability of the values of X. In our example, if a coin is fair, then we can assign a uniform probability measure on the sample set of flipping a coin three times. That is, all outcomes are equally likely, each with probability 1/8. The probability that X takes on it's potential values is easily computed, by counting the number of outcomes that result in the particular value of X:

$$P(X = 0) = \frac{1}{8}$$

$$P(X = 1) = \frac{3}{8}$$

$$P(X = 2) = \frac{3}{8}$$

$$P(X = 3) = \frac{1}{8}$$

More generally, let's assume that X is a discrete RV, and denote the possible values as x_1, x_2, \ldots There exists a function p such that $p(x_i) = P(X = x_i)$ that satisfies $\sum_i p(x_i) = 1$. This function p is called the *probability mass function* (PMF) of the random variable X.

We may also be interested in calculating for all values $x \in \mathbb{R}$, the probability $F(x) = P(X \le x)$; the function F is called the *cumulative distribution function* (CDF). The CDF plays a number of important roles in probability and statistics that we will see later on. Some notes:

• The CDF is non-decreasing (see Theorem 1.2), and

$$\lim_{x \to -\infty} F(x) = 0$$
 and $\lim_{x \to \infty} F(x) = 1$.

- The PMF and CDF are connected: the CDF "jumps" at all values that the pdf p(x) > 0.
- Conventionally, the PMF is usually denoted with lower-case letters (e.g., p, f), whereas the CDF is usually denoted with upper-case letters (e.g., F).

See Figures 2.1 and 2.2 of Rice (2007) for a depiction of the PMF and CDF of the 3-coin example.

Independence

Jumping ahead a little bit, we will define what it means for random variables to be independent (a chapter 3 topic), as it will be useful for our discussions in this chapter.

Definition: Independent random variables

Let X and Y be discrete random variables defined on the same probability space, taking values x_1, x_2, \ldots and y_1, y_2, \ldots , respectively. X and Y are said to be independent if, for all i, j,

$$P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i).$$

This definition follows very similarly to that of independent events. Similar to that case, we can extend this definition to *mutaul independence* of many variables if the probabilities of all combinations of variables can be factored.

2.1 Bernoulli Random Variables

Bernoulli Random Variables

A Bernoulli RV only takes on two values², 0 and 1, with probabilities 1 - p and p, respectively. The PMF is therefore

$$p(1) = p$$

$$p(0) = 1 - p$$

$$p(x) = 0, \text{ if } x \neq 0 \text{ and } x \neq 1.$$

By using the output of 0 and 1, the PMF is usually written in a more compact form:

$$p(x) = \begin{cases} p^x (1-p)^x, & \text{if } x = 0 \text{ or } x = 1, \\ 0 & \text{otherwise} \end{cases}$$

Indicator functions

A common instance of a Bernoulli RV is an *indicator random variable*. Let I_A be the random variable that takes on the value of 1 if the event $A \subset \Omega$ occurs, and 0 otherwise:

$$I_A(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \text{otherwise} \end{cases}$$

Here, we see that $P(I_A = 1) = P(A)$.

Junk Citation

Rice (2007)

 $^{^2}$ Sometimes you'll see the random variable take values -1 and 1.

Acknowledgments

- Compiled on August 13, 2025 using R version 4.5.1.
- Licensed under the Creative Commons Attribution-NonCommercial license. © © S Please share and remix non-commercially, mentioning its origin.
- We acknowledge students and instructors for previous versions of this course / slides.

References

Rice JA (2007). Mathematical statistics and data analysis, volume 371. 3 edition. Thomson/Brooks/Cole Belmont, CA. 5, 9