Personal Solutions to Problem Sheet 1 QFT by David Tong

Baset

June 2025

1.

According to Eq. (2),

$$\frac{\partial y}{\partial t} = \sqrt{\frac{2}{a}} \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{a}\right) \dot{q}_n$$

$$\frac{\partial y}{\partial x} = \sqrt{\frac{2}{a}} \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) \frac{n\pi}{a} q_n$$
(1)

implying (assuming the integrals are finite and convergent, m, n > 0):

$$L = \int_{0}^{a} dx \left[\frac{\sigma}{2} \frac{2}{a} \left(\sum_{n=1}^{\infty} \sin \left(\frac{n\pi x}{a} \right) \dot{q}_{n} \right)^{2} - \frac{T}{2} \frac{2}{a} \left(\sum_{n=1}^{\infty} \cos \left(\frac{n\pi x}{a} \right) \frac{n\pi}{a} q_{n} \right)^{2} \right]$$

$$= \frac{1}{a} \int_{0}^{a} dx \left[\sigma \sum_{m,n} \sin \left(\frac{n\pi}{a} x \right) \sin \left(\frac{m\pi}{a} x \right) \dot{q}_{n} \dot{q}_{m} - T \sum_{m,n} \cos \left(\frac{n\pi}{a} x \right) \cos \left(\frac{m\pi}{a} x \right) \left(\frac{\pi}{a} \right)^{2} mn \, q_{n} q_{m} \right]$$

$$= \frac{1}{a} \sum_{m,n} \int_{0}^{a} dx \left[\sigma \frac{\cos \left((m-n) \frac{\pi}{a} x \right) - \cos \left((m+n) \frac{\pi}{a} x \right)}{2} \dot{q}_{n} \dot{q}_{m} - T \frac{\cos \left((m-n) \frac{\pi}{a} x \right) + \cos \left((m+n) \frac{\pi}{a} x \right)}{2} \right]$$

$$\left(\frac{\pi}{a} \right)^{2} mn \, q_{n} q_{m} \right] = \frac{1}{a} \sum_{m,n} \left[\frac{\sigma}{2} \delta_{m,n} \dot{q}_{n} \dot{q}_{m} - \left(\frac{\pi}{a} \right)^{2} \delta_{m,n} mn \, q_{n} q_{m} \frac{T}{2} \right]$$

$$= \sum_{n=1}^{\infty} \left[\frac{\sigma}{2} \dot{q}_{n}^{2} - \frac{T}{2} \left(\frac{n\pi}{a} \right)^{2} q_{n}^{2} \right] = L(q_{n}, \dot{q}_{n})$$

$$(2)$$

E-L equations imply:

$$-\frac{\partial L}{\partial q_n} + \partial_\mu \frac{\partial L}{\partial_\mu (q_n)} = 0 \quad \equiv T(\frac{n\pi}{a})^2 q_n + \sigma \ddot{q}_n = 0 \implies$$

$$\ddot{q}_n + \frac{T}{\sigma} (\frac{n\pi}{a})^2 q_n = 0 \implies \omega_n^2 = \frac{T}{\sigma} (\frac{n\pi}{a})^2$$
(3)