Lecture 11: Priority Queue and Heap

Read: Carrano, Chpt.11.

"Good" characteristics of BST:

- Simplicity in concept & implementation.
- Objects stored in a BST can easily be sorted.
- Support general find and delete operations as well as special searchMin(Max) and deleteMin(Max) operations.
- Very efficient on average with $T_a(n) = O(\lg n)$.

"Bad" characteristics of BST:

- Worst-case complexity depends on height of tree; hence, $T_w(n) = O(n)$.
- Less efficient when many items are having identical keys.

Q: Can we design an efficient ADT with $T_w(n) = T_a(n) = O(\lg n)$?

Use Priority Queue.

ADT: Priority Queue.

A collection class in which its object has been assigned a priority with the following operations:

- 1. createPQ():
- 2. destroyPQ():
- 3. PQIsEmpty():
- 4. PQInsert(in newItem: PQItemType)
 throw PQException
- 5. PQDelete(out priorityItem: PQItemType)
 throw PQException
 // delete min (or max) priority object

6. PQSize():

Remark: A PQ does not always support general delete and find operations.

Designing a Priority Queue: Simplest Approaches:

Use a sorted or unsorted array/linked list.

Better Approach:

Use a BST.

Best Approach:

Use a heap.

Defn: A *max* (binary) *heap* H is a complete binary tree satisfying the *heap-ordered tree property* such that the priority of any node \geq priority of all its descendants.

Remark: A maximum priority element occupies the root of the max heap H.

Example: A max heap H.

Example: The following binary trees are not heaps.

Q: Can you define a *min heap*?

A *min heap* is a complete binary tree H such that the priority of any node \leq priority of all its descendants.

Implementation of Heap:

Let's consider some typical heap operation(s) to motivate our selection of data structures for the implementation of heap.

Consider inserting 9 into the following heap H.

Observe that, after insertion, we must get back a complete binary tree satisfying the heap-ordered tree property!

Q: Where should we insert the new node in order to get back a heap?

General Approach:

Always use a two-steps process:

- (1) After insertion/deletion, maintain a complete binary tree structure for H.
- (2) Re-structure H from (1) so that it will satisfy the heap-ordered tree property.
- **Q:** Where will 9 go in order to get back a complete binary tree?

The node with key 9 must now traverse up the tree in order to get back the heap-ordered tree property.

Consider deleting max node (root) from the heap H.

Using similar two-step approach, we replace node 8 with the last node (node 5) in level-order traversal of H.

The node with key 5 must now traverse down the tree in order to get back the heap-ordered tree property.

Q: What is the most efficient data structure to implement a heap?

1. Pointer Implementation of Heap:

To facilitate the upward/downward movement in insert/delete operations, we must have parent/children information.

Consider the following node structure:

Q: Is this a good data structure?

No! This data structure is very inefficient in supporting insertion and deletion.

Why?

Remark: Do not use pointers to implement a heap!

2. Array implementation of heap:

Let H be a heap with n nodes. H can be represented using an array A[0:Max_Queue-1] such that

- (1) Root of T at A[0],
- (2) For any node A[i], the left child (right child) of A[i] is at A[2i+1] (A[2i+2]) if exists.

Remarks:

- (1) Parent of a node A[i] is at A[(i-1)/2] if exists.
- (2) For n > 1, A[i] is a leaf node in H iff $2i \ge n$.

An Alternate Array Implementation:

Skip A[0] and store root of H at A[1]. Hence,

- (1) Parent of node A[i] is at A[$\lfloor i/2 \rfloor$].
- (2) Left child (right child) of a node A[i] is at A[2i] (A[2i+1]).
- (3) A[i] is a leaf iff 2i > n.

Example:

H:

Array representation of H using A[0]:

Array representation of H without using A[0]:

Consider inserting 9 into a max heap H.

Inserting 9:

Compare 9 with its parent 6 and swap:

Compare 9 with its parent 7 and swap:

Compare 9 with its parent 8 and swap:

Since node 9 has no parent; process terminates.

In general, for inserting a new item X into H, we need to find a location to insert X along the path from X (after insertion) to the root of H by repeatedly comparing X with his parent, grandparent, ..., until either a node with priority $\geq X$ is found or the root is reached.

Remark: Insert (remove) operation can be somewhat speeded up if we will attempt to find the *final* location for X first instead of placing X into various locations in H only find out later that it needs to be moved to another location again.

Example: Consider inserting 9 into the heap H.

Creating new location for 9:

Compare 9 with its parent 6; 6 moves down:

Compare 9 with its parent 7; 7 moves down:

 \downarrow

Compare 9 with its parent 8; 8 moves down:

Insert 9 into its final location; process terminates:

Using Array implementation:											9			
	0	1	2	3	4 ,	5	6	7	8	9	10	/		
	8	7	5	5	6*	3	2	1	3	5	•			

0	- 1								,	,		
8	7 *	5	5	3	2	1	3	5	64			

Consider deleting the highest priority item (root) from the original heap H.

Q: What happens after 8 is removed?

Replace the root of H with the last item (in level order) 5.

Compare 5 with its two children, swap with 7:

Compare 5 with its two children, swap with 6:

Insert 5 into its final location; process terminates:

In general, we replace the root (highest priority item) of H with the "last" item X in H. We then repeatedly compare X with its child (children), swap with the larger child if necessary, until $X \ge its$ child (children if X has two children) or a leaf is reached.

Performance analysis:

For insert/remove operations, in the worst-case, we have to either traverse all the way from a leaf to the root (for insert) or traverse all the way from the root to a leaf (for delete). Hence, the complexities of both algorithms will depend on the height of the heap. Since a heap is a complete binary tree and a complete binary tree with n nodes has height $\lfloor \lg n \rfloor + 1$, $T_w(n) = O(\lg n)$, where n is the number of items in the heap.

Array implementation:

0	1	2	3	4	5	6	7	8	9/	<i>/</i>		
8	7	5	5	6	3	2	1	3	3			

Q: How do we build the initial heap H? **Two build-heap methods:**

1. **Top-down approach**: Insert items in the set, one by one, into an initially empty heap.

$$T_w(n) = O(nlgn).$$

2. **Bottom-up approach**: First form a complete binary tree H for S according to its given order. If we scan the nodes of H in the reverse level order (leaf-to-root), observe that a leaf by itself is a heap and two heaps can be combined together with their common parent to form a bigger heap (as in delete operation), we can grow a heap for S in a bottom-up fashion.

Heapify as in delete operation by moving a root node down the tree so as to satisfy the heap-order tree property:

$$T_w(n) = O(n)$$
.

Example: Build a heap for $S = \{5,3,2,6,8,5,7,1,3,5\}$.

Form initial complete binary tree:

Since n = 10, first non-leaf node needs to be checked has array index $\lfloor n/2 \rfloor - 1 = 4$, follows by nodes with index 3, 2, 1, 0.

For A[2], compare 2 with 5 and 7, swap with 7:

For A[1], compare 3 with 6 and 8, swap with 8:

Compare 3 with 5, swap with 5:

Compare 5 with 8 and 7, swap with 8:

Compare 5 with 6 and 5, swap with 6:

Compare 5 with 1 and 3, terminates process!

HW: Repeat above constructions using array.

PQ Sorting Revisited:

- 1. Build a PQ Q for S.
- 2. Delete repeatedly until Q is empty.

Heap Sort:

- 1. Build a max-heap H for S.
- 2. Deletemax repeatedly until H is empty. (Swap max item with the current last item in array.)

Worst-Case Complexity of Heap Sort:

Building a heap: $\Theta(n)$.

DeleteMax: $\Theta(\lg n)$.

Hence, $T(n) = \Theta(n \lg n)$

Worst-Case Time Comparison of PQ Implementations: Assuming max-heap:

PQ Operation	Heap	BST	Sorted List	Unsorted Array
Build/Organize	O(n)	$O(n^2)$	$O(n^2)$	O(n)
Insert	O(lgn)	O(n)	O(n)	O(1)
Search	O(n)	O(n)	O(n)	O(n)
GeneralDelete	O(n)	O(n)	O(n)	O(n)
DeleteMax	O(lgn)	O(n)	O(n)	O(n)
DeleteMin	O(n)	O(n)	O(1)	O(n)

Extension: k-heap, $k \ge 3$.

2-heap <u>k-heap</u>

Complete binary tree Complete k-ary tree Heap-ordered tree Heap-ordered tree

Implementation:

Array implementation with root at A[1].

Parent of A[i] at A[(i+k-2)/k],

1st child at A[ki-k+2],

2nd child at A[ki-k+3],

3rd child at A[ki-k+4],

•••

 j^{th} child at A[ki-k+j+1], $1 \le j \le k$, if exists.

Example:

Given A[i] in a 3-heap.

Parent of A[i] at A[(i+1)/3],

1st child at A[3i–1],

2nd child at A[3i],

3rd child at A[3i+1], if exists.

HW: Compute parent-children info if rooted at A[0].