Øving 8 - Likningsløsere

Obligatoriske oppgaver

- 1 Vis at Newtons metode har kvadratisk konvergens så lenge $f'(r) \neq 0$.
- Lag et script som løser likningen $x = \cos x$ til maskinpresisjon med den vanlige fikspunktiterasjonen $x_{n+1} = \cos(x_n)$. Hvor mange iterasjoner trengs med startverdi x = 1?
- 3 Lag et script som løser likningen $x = \cos x$ til maksinpresisjon med Newtons metode. Hvor mange iterasjoner trengs med startverdi $x_0 = 1$?
- 4 Lag et script som løser likningssystemet

$$x^2 + y^2 = 4$$
$$xy = 1$$

til maskinpresisjon med Newtons metode. Hvor mange iterasjoner trengs med startverdi

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad ?$$

 $\boxed{5}$ Bruk Newtons metode til å finne $\sqrt[3]{7}$ til maskinpresisjon.

Anbefalte oppgaver

- 1 Løs likningen $x \ln x = 1$ til maskinpresisjon med den klassiske fikspunktiterasjonen. Merk at likningen kan skrives om til x = g(x) på flere måter.
- 2 Løs likningen $x \ln x = 1$ til maskinpresisjon med Newtons metode.
- 3 Løs likningen $x^3 x^2 + x + 2$ til maksinpresisjon med Newtons metode og startverdi x = -1. Gi et a priori estimat for hvor mange iterasjoner som trengs.
- 4 Vis fikspunktiterasjonen x = g(x) har lineær konvergens dersom $g'(r) \neq 0$.