Sentiment Analysis of Product Reviews using Naive Bayes

IBM Summer Internship Project

By Reeti Singh(2nd Year, CSE)

Introduction

- **Goal**:To analyze customer sentiments (positive or negative) from product reviews.
- **Approach**: Natural Language Processing (NLP) techniques and Naive Bayes classifier.
- Why this? Sentiment analysis helps businesses understand customer feedback to improve products and services.

Tools & Technologies Used

Python, Jupyter Notebook, Pandas, NumPy, NLTK (Natural Language Toolkit), Scikit-learn, Matplotlib & Seaborn

Dataset Overview

Raw dataset sample:

Review Text	Sentiment
Great product!	Positive
Not satisfied.	Negative
Highly recommend.	Positive

Sentiment distribution: 50% positive, 50% negative.

Data Preprocessing (NLP)

Text cleaning (punctuation, casing, whitespace)

Tokenization

Stopword removal

Stemming

Vectorization using TF-IDF for feature extraction

Naive Bay Classifier

Model Building: Naive Bayes

Model used: Multinomial Naive Bayes

- Why? Simple, fast, interpretable, and works well for text classification
- Train-test split: 80-20
- Model trained on TF-IDF vectors

Evaluation Metrics

Confusion Matrix

	Predicted Positive	Predicted Negative
Actual Positive	True Positive	False Negative
Actual Negative	False Positive	True Negative

Performance Comparison

Accuracy

Overall correctness.

Precision

Correctpositive predictions.

Recall

Actualpositives identified.

Challenges & Solutions

Challenge	Solution
Handling noisy data. Balancing	Implemented robust cleaning.
sentiment classes. Optimising	Used resampling techniques.
model performance.	Fine-tuned hyperparameters.

Results & Insights

Keyword Analysis

Cusomer Reviews

Model Accuracy

Final model accuracy score achieved.

TF-IDF Feature Importance

How Others Can Use It

Clone the Repository

Accessthe project codebase by cloning the Git repository to your local machine.

Install Dependencies

Install all necessary Python libraries and tools using the provided requirements.txt file.

Execute Jupyter Notebook

Run the Jupyter Notebook files to train the model and test its performance with your data.

Integrate Custom Data

Plugin your own product review dataset to perform sentiment analysis and gain insights.

Conclusion

- A practical project applying core NLP techniques
- Demonstratedeffective preprocessing + model pipeline Open-
- source and can be extended with more advanced ML models

Thank You! please feel free to connect.

Linkedin