

CSE211 – Formal Languages and Automata Theory

U1L21 – Minimization of Automata

Dr. P. Saravanan

School of Computing SASTRA Deemed University

Agenda

- Recap of previous class
- Minimization of Automata
- Myhill Nerode Theorem
- Problems on minimization of DFA

Myhill Nerode Theorem

- Testing Equivalence of States
 - Table-filling algorithm(Myhill Nerode Theorem)
 Basis.

If p is an accepting state and q is not, then the pair $\{p, q\}$ is distinguishable.

Induction.

Let p and q be states such that for some input symbol a, the next states $r = \delta(p, a)$ and $s = \delta(q, a)$ are known to be distinguishable. Then $\{p, q\}$ are distinguishable.

Myhill Nerode Algorithm

- Step1: Draw a table for all pairs of states (p,q)
- Step 2: Mark all pairs where p€F and q€F
- Step 3: If there are any unmarked pairs (p,q) such that $[\delta(p, a), \delta(q, a)]$ is marked, then mark [p,q] where a is an input symbol.
- Repeat this until no more markings can be done
- Step 4: Combine all the unmarked pairs and make them a single state in the minimized DFA

Equivalence States: Example

Unmarked Pair	Output Pair by x		Marked pair from O/P	Is to be Marked
	9	1		?
(a,b)	(b,a)	(c, d)	•	> No
(a,f)	(b,f)	(C,f)	(Cf)	a fis to be marked
(h,f)	(α,f)	(d,f)	(a,f) (a,f)	Yes
((,e)	(0,2)	(f,f)	1	No

FLAT: Minimization of DFA

Equivalence States: Example

	Unmarked Pair	Output Pair by x		Marked pair	Is to be
		. 0	1	from O/P	Marked
	(< ,	·(e,e)	(f, f)	{	No
	(d,e)	(8, e)	(f,f)	a)	20
	$(a,b)_{\Lambda}$	(b,a)	((,&)	,	No
	(c,dx)	(e,e)	(f, f)	,	No
	((,8))			-	No

FLAT: Minimization of DFA

Example 2

Example 2 Answers

Correct

References

- John E. Hopcroft, Rajeev Motwani and Jeffrey D.
 Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

Unit II

THANK YOU.