

آمار و احتمال مهندسی بهار ۱۴۰۳

تمرین سری سوم

سررسید تحویل: جمعه ۱۴ اردیبهشت ۱۴۰۳

مدرس درس: مهد*ی جع*فری

توجه: برای موارد مشخص شده با رنگ آبی نیازی به ارائه پاسخ نیست و به آنها نمرهای تعلق نمی گیرد. این موارد صرفا جهت تمرین و آمادگی بیشتر ارائه شدهاند.

سؤال ۱ متغیر های X و Y را با توزیع چگالی مشترک زیر در نظر بگیرید:

$$f(x,y) = cx(y-x)e^{-y}, \quad \cdot \le x \le y < \infty$$

الف) عدد c را بیابید.

ب) نشان دهید که:

$$f_{X|Y}(x|y) = {}^{\varphi}x(y-x)y^{-{}^{\varphi}}, \quad \cdot \le x \le y$$
$$f_{Y|X}(y|x) = (y-x)e^{x-y}, \quad \cdot \le x \le y < \infty$$

 $\mathbb{E}[Y|X] = X +$ ج) استدلال کنید که $\mathbb{E}[X|Y] = rac{1}{7}Y$ و اینکه

سؤال ۲ نشان دهید $\operatorname{Var}(X) = \cdot$ اگر و تنها اگر ۲ $P(X=c) = \cdot$ که یک عدد ثابت است.

سؤال n فرض کنید علیرضا فیروز جا در کل طول فعالیتش $N \sim Geom(s)$ بازی شطرنج انجام می دهد و در هر یک از بازیها با احتمال p مستقل از بازی های قبلی یا بعدی برنده می شود. متغیر تصادفی T را تعداد بردهای علیرضا در کل فعلایتش تعریف می کنیم:

- الف) میانگین و واریانس متغیر T را بیابید.
 - ب) تابع مولد گشتاور T را پیدا کنید.
- ج) با توجه به تابع مولد بدست آمده توزیع T و پارامترش را بیان کرده و توجیه شهودی درباره تابعیتش از این توزیع ارائه کنید.

١

سؤال ۴ متغیر های مستقل $X_1, X_2, ...$ را با توزیع یکسان و تابع چگالی احتمال $f: \mathbb{R} \to [\cdot, \infty)$ در نظر بگیرید. به اندیس $T_1, T_2, ...$ همچنین زمان $T_2, T_3, ...$ همچنین زمان $T_3, T_3, ...$ همچنین زمان رکورد می گویند اگر داشته باشیم $T_2, T_3, ...$ نشان دهید: $T_3, T_3, ...$ را زمان رکورد بودن $T_3, T_3, ...$ تعریف می کنیم. نشان دهید:

- الف) A_r ها مستقل و دارای احتمال A_r
- ب) اگر R_n را تعداد زمانهای رکورد تا ثانیه n تعریف کنیم، نشان دهید واریانس R_n رابطه زیر است:

$$var(R_n) = \sum_{r=1}^{n} (r^{-1} + r^{-1})$$

 $\mathbb{E}[T]=\infty$: اگر اولین زمان رکورد بعد از T=0 را با متغیر تصادفی T نشان دهیم نتیجه بگیرید که

سؤال ۵ برای متغیرهای تصادفی پیوسته روابط زیر را ثابت کنید:

- $\mathbb{E}[X|Y] = \mathbb{E}[\mathbb{E}[X|Y,Z]|Y]$ (الف
- $\mathbb{E}[(Y \mathbb{E}(Y|X))^{\mathsf{T}}] \leq (\mathsf{T} cor(X,Y)^{\mathsf{T}})var(Y)$ (ب
- $\mathbb{E}[X^p] < \infty o \mathbb{E}[X^q] < \infty$ داریم: $p > q \geq 1$ راگر p > q
- $\mathbb{E}[X\mathbb{E}[Y|Z]] = \mathbb{E}[\mathbb{E}[X|Z]Y] = \mathbb{E}[\mathbb{E}[X|Z]\mathbb{E}[Y|Z]]$ (د

سؤال 9 (امتیازی) نیمدایرهای به مرکز $O=(\cdot,R)$ در ناحیه اول مختصات و دو نقطه ABC و نقطه $O=(\cdot,R)$ و $O=(\cdot,R)$ و این به ما مثلث تصادفی $O=(\cdot,R)$ نظر بگیرید. حال با زاویه O=(t,R) نقطه دیگر O=(t,R) را روی محیط انتخاب می کنیم و این به ما مثلث تصادفی O=(t,R) نقطه O=(t,R) نقطه O=(t,R) را درون مثلث ایجاد شده انتخاب می کنیم. را می دهد. سپس به طور هم شانس و مستقل O=(t,R) نقطه O=(t,R) نقطه O=(t,R) را درون مثلث ایجاد شده انتخاب می کنیم. میخواهیم ببینیم به طور متوسط طول پاره خط وصل کننده این دو نقطه چقدر خواهد بود.

- الف) تابع چگالی شرطی $f_{u_1,u_7,v_1,v_7|\theta}(u_1,u_7,v_1,v_7|\theta)$ را بدست آورید.
- ب) تابع $\mathbb{E}[g(ec{u},ec{v})]$ را بدست آورید. $g(ec{u},ec{v})=\|ec{u}-ec{v}\|_{^{\intercal}}^{\intercal}=(u_{^{\intercal}}-v_{^{\intercal}})^{^{\intercal}}+(u_{^{\intercal}}-v_{^{\intercal}})^{^{\intercal}}$ وا بدست آورید.
- ج) فاصله دو نقطه \vec{u}, \vec{v} برابر با $\sqrt{g(\vec{u}, \vec{v})}$ است. با توجه به مقعر بودن این رابطه بازهای برای \vec{u}, \vec{v} برابر با \vec{u}, \vec{v} فاصله دو نقطه \vec{u}, \vec{v} فاصله دو نقطه و ستقیم فاصلهاش را با این حد بسنجید.

