Redes de computadores 2022 -1 (11310052)

David Felipe Celeita Rodriguez

Organización inicial

- Objetivos del curso
- 2. Programa y referencias
- Metodología y herramientas pedagógicas
- 4. ¿Quién es el profesor?
- 5. Introducción: Capítulo 1

"Our virtues and our failings are inseparable, like force and matter. When they separate, man is no more."

Nikola Tesla

INFORMACIÓN GENERAL

Nombre de la asignatura	Redes de Computadores	
Código	11310052	
Tipo de asignatura	Electiva	
Número de créditos	2	
Tipo de crédito	1A+1B	
Horas de trabajo semanal con acompañamiento directo del profesor	64	
Horas semanales de trabajo independiente del estudiante	32	
Prerrequisitos	Algoritmos y estructuras de datos (11310006), Probabilidad	
Correquisitos	Ninguno	
Horario	Lunes y Miércoles de 7:00 A.m a 9:00 Am	
Líder de área	Martin Andrade Restrepo Correo: martin.andrade@urosario.edu.co	
Salón	Martes: 40BOOLE SALA BOOLE (Sede Claustro Edificio EL TIEMPO) Jueves: 1003404 LABORATORIO TESLA (Sede Claustro Torre 2 - Claustro)	

Objetivo del curso

Este es un primer curso en redes de computadores que introduce al estudiante a los conceptos y protocolos que permiten la comunicación de diversos dispositivos a través de múltiples medios. El curso cubre el sistema de capas que conforma Internet, desde la capa de aplicación hasta la capa física, pasando por las capas de red y transporte. El curso incorpora módulos donde se requieren habilidad de programación, así como herramientas de análisis probabilístico para determinar medidas de confiabilidad y desempeño en redes.

El curso busca formar al estudiante en los conceptos fundamentales de las redes de computadores, su estructura, principios de diseño, protocolos de comunicación y algoritmos.

Conceptos fundamentales

- Introducción a redes de computadores
- 2. Capa de aplicación
- 3. Capa de transporte
- 4. Capa de red
- 5. Desempeño y diseño de redes
- 6. Capa de enlace
- 7. Redes Inalámbricas
- Seguridad de redes

Resultados de Aprendizaje Esperados (RAE)

- 1. Identificar el sistema de capas empleado en las redes de computadores.
- 2. Describir los elementos de los protocolos de la capa de aplicación, incluyendo HTTP, FTP, DNS, entre otros.
- 3. Escribir aplicaciones que empleen sockets para su comunicación.
- 4. Identificar las características de los protocolos de transporte y red, incluyendo TCP, UDP, IP.
- 5. Definir e implementar algoritmos de ruteo en internet.
- 6. Describir las características principales de la capa de enlace, incluyendo códigos de corrección de error, redes de acceso y locales.
- 7. Construir y resolver modelos probabilísticos de redes para determinar medidas de confiabilidad y desempeño.

Modalidad del curso | | Estrategias de aprendizaje

Modalidad:

 Mixto simultáneo: algunos estudiantes están presentes en el salón y otros están conectados remotamente desde sus casas o ubicaciones externas a la Universidad.

• Estrategias:

- Análisis de casos
- Desarrollo de un proyecto de curso
- Talleres o ejercicios
- Enfoque de Aprender a Aprender: Aprendizaje activo, autorregulado, colaborativo, significativo, reflexivo

TEMA	ACTIVIDAD DE EVALUACIÓN	PORCENTAJE
1-3	Evaluación escrita individual – 1er parcial	20%
4-5	Evaluación escrita individual – 2do parcial	20%
6-7	Evaluación escrita individual – 3er parcial	20%
Todos	Proyecto	20%
Todos	Laboratorios, Talleres y Quices SOCRATIVE	20%

Programa

Fecha (Sesión)	Tema
Sesión 1-2 24 Ene – 28 Ene	Introducción a redes de computadores Parte 1
Sesión 3-4 31 Ene – 4 Feb	Introducción a redes de computadores Parte 2
Sesión 5-6 7 Feb – 11 Feb	Capa de aplicación Parte 1
Sesión 7-8 14 Feb – 18 Feb	Capa de aplicación Parte 2
Sesión 9-10 21 Feb – 25 Feb	Capa de transporte Parte 1
Sesión 10 21 Feb – 25 Feb	PARCIAL 1

Programa

Fecha (Sesión)	Tema
Sesión 11-12 28 Feb – 4 Mar	Capa de transporte Parte 2
Sesión 13-14 7 Mar – 11 Mar	Capa de red Parte 1 (Plano de datos)
Sesión 15-16 14 Mar – 18 Mar	Capa de red Parte 2 (Plano de datos)
Sesión 17-20 21 Mar – 25 Mar	Capa de red Parte 3 (Plano de control)
Sesión 17-20 28 Mar – 1 Abr	Capa de red Parte 4 (Plano de control)
Sesión 20 28 Mar – 1 Abr	PARCIAL 2

Programa

Fecha (Sesión)	Tema
Sesión 21-22 4 Abr – 8 Abr	Capa de enlace Parte 1
Sesión 23-24 18 Abr – 22 Abr	Capa de enlace Parte 2
Sesión 25-26 25 Abr – 29 Abr	Redes inalámbricas Parte 1
Sesión 27-28 2 May – 6 May	Redes inalámbricas Parte 2
Sesión 29-30 9 May – 13 May	Seguridad de redes Parte 1
Sesión 31-32 16 May – 20 May	Seguridad de redes Parte 2
Sesión 32 23 May – 27 May	Parcial 3
Semana Exámenes Finales	Presentación proyectos

BIBLIOGRAFÍA

- Bibliografía y recursos complementarios
- Bertsekas, D., Gallager, R. Data Networks. 2nd ed. 1992.
- Network essentials, Cisco Academy.
- Tanenbaum, A., Wetherall, D. Computer Networks. 5th ed. 2010.
- Peterson, L., Davie, B. (2010). *Computer networks: a systems approach.* Quinta edición. Morgan Kaufmann.

Redes de computadoras Un enfoque descendente

7.º edición

James F. Kurose Keith W. Ross Descargado en: eybooks.com

Herramientas de clase

- Técnica Pomodoro
- Plataforma E-Aulas + Zoom
- Menti (Participación)
- Socrative (Participación)
- https://b.socrative.com/login/student/
- ROOM NAME: CELEITA2022

- (2006-2011) Bachelor on Electronic Engineering Universidad Distrital, Bogotá, Colombia.
- (2011-2012) Automation engineer in low and medium voltage applications. ABB and Siemens, Bogotá, Colombia.
- M.Sc. (2012-2014) and Ph.D (2014-2018) in Electrical Engineering PowER, from Universidad de los Andes, Bogotá, Colombia.
- (2017) **Visiting researcher**, PSAC, Georgia Institute of Technology.
- (2019) Postdoc researcher, CentraleSupélec, GeePs, CNRS, Univ. Paris Saclay, Sorbonne Univ.
- (2020) Postdoc researcher, PowER, Universidad de los Andes.
- (2020-2021/1) Lecturer, Escuela Colombiana de Ingeniería Julio Garavito, Institución Universitaria Politécnico Grancolombiano
- (2021/1) **Postdoc researcher**, PowER, Universidad de los Andes y Queens University of Belfast.
- (2021/2) Professor, Universidad del Rosario, School of engineering, Science and Technology
- Research interest:
- Energy systems, Smart Cities & Grids, Advanced Distribution Automation, Protective Relaying Control, , Fault Location and Real-Time Simulation.
- Hobbies:
- Traveling, music, gaming, reading, volleyball, ping-pong, chess, drawing, geek stuff.
- Links:
- Google scholar CVLAC ResearchGate LinkedIn

¿Quién es el Profesor?

Dispositivos con conectividad a Internet

Capítulo 1: Introducción

Contexto:

¿Qué es Internet? ¿Qué es un protocolo?

Network edge (Frontera de la red): hosts, access network, physical media

Network core (Núcleo de la red): packet/circuit switching, internet structure

Desempeño de la red: loss, delay, throughput

Capas de protocolos, Modelos de servicio

Seguridad

Historia

¿Qué es Internet?

Basado en: Jim Kurose, Keith Ross Pearson, 2020 Slides

Computing Devices / Dispositivos informáticos:

- hosts = Sistemas terminales
- running network apps at Internet's "edge"

- routers, switches
 Communication links / Enlaces
 de comunicaciones
- fibra, cobre, radio, satélite
- Tasa de transmisión: bandwidth

Networks / Redes

 Conjunto de dispositivos, routers, Enlaces: Gestionados por organizaciones

Internet: red de redes

Basado en: Jim Kurose, Keith Ross Pearson, 2020 Slides

• Internet:

- Interconnected ISPs
- Los protocolos están en todo lado
 - Controlan el envío y la recepción de mensajes
 - e.g., HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4G, Ethernet
- Internet standards
 - RFC: Request for Comments
 - IETF: Internet Engineering Task Force

Internet: red de redes

- Internet:
 - Interconnected ISPs

Según las predicciones de Cisco, el tráfico IP global anual sobrepasará el umbral del zettabyte (10²¹ bytes) a finales de 2016 y alcanzará los 2 zettabytes por año en 2019 [Cisco VNI 2015].

• IETF: Internet Engineering Task Force

Internet: un punto de vista desde los servicios

Basado en: Jim Kurose, Keith Ross Pearson, 2020 Slides

- *Infraestructura* que provee servicios a multiples aplicaciones:
 - Web, streaming video, multimedia teleconferencing, email, games, ecommerce, social media, interconnected appliances, ...
 - provee una interfaz programable para aplicaciones distribuidas:
 - "hooks" permite que las aplicaciones de envío/recepción se "conecten" y usen el servicio de transporte de Internet
 - Opciones de servicio análogos a funcionalidades físicas: ie. E-mail Vs correo postal

¿Qué es un protocolo?

Protocolos humanos:

- "¿Qué hora es?"
- "Tengo una pregunta"
- Formalismos

Reglas para:

- ... Enviar mensajes específicos
- ... Tomar acciones especifícas cuando un mensaje determinado es recibido, o ante algun evento.

Protocolos de redes:

- computadores (dispositivos) en lugar de personas
- Todas las Comunicaciones por internet son gobernadas por protocolos

Los Protocolos definen el formato, orden de los mensajes enviados y recibidos entre diferentes entidades de la red, y acciones realizadas sobre mensajes transmitidos y recibidos

¿Qué es un protocolo?

Protocolos humanos Vs Protocolos de red (analogía)

Capítulo 1: Introducción

Contexto:

¿Qué es Internet? ¿Qué es un protocolo?

Network edge (Frontera de la red): hosts, access network, physical media

Network core (Núcleo de la red): packet/circuit switching, internet structure

Desempeño de la red: loss, delay, throughput

Capas de protocolos, Modelos de servicio

Seguridad

Historia

Requerimientos de una red

(= sistema terminal)

Detalles de la estructura de Internet

Network edge/Frontera de la red:

- hosts: clientes y servidores
- Grandes servidores normalmente integrados en la construcción de data centers

Detalles de la estructura de Internet

Network edge/Frontera de la red:

- hosts: clientes y servidores
- Grandes servidores normalmente integrados en la construcción de data centers

Access networks (red de acceso), medios físicos:

• wired, wireless communication links

Detalles de la estructura de Internet

Network edge/Frontera de la red:

- hosts: clients y servidores
- Grandes servidores normalmente integrados en la construcción de data centers

Access networks (red de acceso), medios físicos:

• wired, wireless communication links

Network core/Núcleo de la red:

- interconnected routers
- network of networks

Redes de acceso y medios físicos

Q: ¿Cómo conectar sistemas terminales a los routers de frontera (edge routers)?

- · Redes de acceso residenciales
- Redes de acceso institucionales (Universidad, empresa, gubernamental)
- Redes de acceso mobiles (WiFi, 4G/5G)

Redes de acceso: conductores/cables

frequency division multiplexing (FDM): Diferentes canales transmitidos a diferentes bandas de frecuencia

Redes de acceso: conductores/cables

- HFC: hybrid fiber coax
 - Asimétrico: hasta 40 Mbps 1.2 Gbps tasa de transmission de descarga,
 30-100 Mbps tasa de transmission de carga
- red de cable, fibra conectada a un router de un ISP
- En la casa se comparte acceso a la red por terminales de cable

Redes de acceso: digital subscriber line (DSL)

- Usa una línea telefónica existente a una oficina central DSLAM
 - Los datos en linea telefónica DSL van a internet
 - La voz en línea telefónica DSL va a la red telefónica
 - 24-52 Mbps dedicados como tasa de descarga
 - 3.5-16 Mbps dedicados como tasa de carga

Redes de acceso: red domiciliaria

Redes de acceso: red Wireless

Red de acceso compartido wireless access conecta un sistema terminal a un router

via base station aka "access point"

Wireless Local Area Networks (WLANs)

- Normalmente alrededor de un edificio (~30 metros)
- 802.11b/g/n (WiFi): 11, 54, 450
 Mbps tasa de transmisión

Wide-area cellular access networks

- Provista por un operador celular móvil (10's km)
- 10's Mbps
- 4G red celular (5G ya proyectada)

Redes de acceso: red institucional

- Empresas, universidades, etc.
- Mezcla de cableado, enlaces de tecnología wireless, conectando a un conjunto de switches y routers
- Ethernet: wired access at 100Mbps, 1Gbps, 10Gbps
 - WiFi: wireless access points at 11, 54, 450 Mbps

Híbrido Fibra/coaxial

Redes de acceso: red de datacenters

 high-bandwidth links (10s to 100s Gbps) conectando miles de servidores a Internet

```
f (r = t.apply(e[i], n), r === !1) break
       for (; 0 > i; i++)
          if (r = t.call(e[i], i, e[i]), r === !1) break
          if (r = t.call(e[i], i, e[i]), r === !1) break;
rim: b && !b.call("\ufeff\u00a0") ? function(e) {
  return null == e ? "" : b.call(e)
   return null == e ? "" : (e + "").replace(C, "")
                    && (M(Object(e)) } x.merge(n, "string" == typeof e ? [e] : e) : h.call(n,
```


Basado en: Jim Kurose, Keith Ross Pearson, 2020 Slides

Host: envía paquetes de datos

Función de envío del Host:

- Toma el mensaje de aplicación
- Lo separa en partes más pequeñas (paquetes) de longitud (length) L bits
- Transmite el paquete a una red de acceso a una tasa de transmisión (rate)

 R
- Tasa de transmission del enlace, aka link capacity, aka link bandwidth

$$= \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$$

Enlaces: medio físico

- bit: viaja entre pares transmisor/receptor
- Enlace físico: el medio o material que se encuentra entre ambos
- Medio guiado:
 - Las señales se propagan en materiales: copper, fiber, coax
- Medios no guiados:
 - Señales de libre propagación
 - e.g., radio

Twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10Gbps Ethernet

Enlaces: medio físico

Cable coaxial:

- Dos conductors concéntricos de cobre
- bidireccional
- broadband:
 - multiple frequency channels on cable
 - 100's Mbps per channel

Fiber optic cable:

- Fibra de vidrio transportando pulsos de luz (cada pulso es un bit) con operación de alta velocidad:
- high-speed point-to-point transmission (10's-100's Gbps)
- Bajas tasas de error:
 - Repetidores a grandes distancias
 - Inmune al ruido electromagnético

Enlaces: medio físico

Wireless

- Señales transportadas a diferentes bandas en un medio electromagnético
- No hay "cable" físico
- broadcast, "half-duplex" (sender to receiver)
- Efectos de propagación ambiente:
 - reflexión
 - Obstrucción (línea de vista)
 - Interferencia/ruido

Radio:

- Wireless LAN (WiFi)
 - 10-100's Mbps; 10's metros
- wide-area (e.g., 4G celular)
 - 10's Mbps over ~10 Km
- Bluetooth: cable replacement
 - Cortas distancias, tasas limitadas
- Microwave (terrestre)
 - point-to-point; 45 Mbps channels
- satellite
 - up to 45 Mbps per channel
 - 270 msec end-end delay

Capítulo 1: Introducción

Contexto:

¿Qué es Internet? ¿Qué es un protocolo?

Network edge (Frontera de la red): hosts, access network, physical media

Network core (Núcleo de la red): packet/circuit switching, internet structure

Desempeño de la red: loss, delay, throughput

Capas de protocolos, Modelos de servicio

Seguridad

Historia