Hopfbündel

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

3-Sphäre S^3

Die 3-Sphäre $S^3 \subset \mathbb{R}^4$ ist mit $\underline{p} = (p_1, p_2, p_3, p_4) \in \mathbb{R}^4$ definiert durch $\|\underline{p}\| = 1$. Identifiziert man durch die Korrespondenz

$$(x^1, y^1, x^2, y^2) \leftrightarrow (x^1 + iy^1, x^2 + iy^2)$$

 \mathbb{R}^4 mit \mathbb{C}^2 , dann erhält man

$$S^{3} = \left\{ \left(z^{1}, z^{2} \right) \in \mathbb{C}^{2} : \left| z^{1} \right|^{2} + \left| z^{2} \right|^{2} = 1 \right\}. \tag{1}$$

Diese Darstellung von S^3 ist von 4 Parametern abhängig, aber nur 3 sind nötig. Also macht man z.B. mit $r_1, r_2 \geq 0$ und $\xi_1, \xi_2 \in \mathbb{R}$ den Ansatz $z^1 = r_1 \exp{(i\xi_1)}$ und $z^2 = r_2 \exp{(i\xi_2)}$. Es muss wegen (1) $r_1^2 + r_2^2 = 1$ gelten.

Man erhält die Parametrierung für S^3 (siehe dazu den Anhang)

$$S^{3} = \left\{ \left(\cos \left(\frac{\phi}{2} \right) \exp \left(i\xi_{1} \right), \sin \left(\frac{\phi}{2} \right) \exp \left(i\xi_{2} \right) \right) : \quad \xi_{1}, \xi_{2} \in \mathbb{R}, 0 \leq \frac{\phi}{2} \leq \frac{\pi}{2}, \right\}.$$
 (2)

Es werden im folgenden drei Fälle für die Beträge von z^1 und z^2 behandelt.

Fall 1:
$$|z^1|^2 = |z^2|^2$$

Aus (2) folgt $\cos\left(\frac{\phi}{2}\right) = \sin\left(\frac{\phi}{2}\right)$ und damit $\frac{\phi}{2} = \frac{\pi}{4}$ und $|z^1| = |z^2| = \frac{\sqrt{2}}{2}$. Die 3-Sphäre S^3 in diesem Fall ist der 2-dimensionale Torus

$$T_1 = \left\{ \left(\frac{\sqrt{2}}{2} \exp(i\xi_1), \frac{\sqrt{2}}{2} \exp(i\xi_2) \right) : \quad \xi_1, \xi_2 \in \mathbb{R} \right\}.$$
 (3)

Fall 2: $|z^1|^2 \le |z^2|^2$

Aus (2) folgt $\cos\left(\frac{\phi}{2}\right) \leq \sin\left(\frac{\phi}{2}\right)$ und wegen $\frac{\phi}{2} \in \left[0, \frac{\pi}{2}\right]$ ergibt sich $\frac{\pi}{4} \leq \frac{\phi}{2} \leq \frac{\pi}{2}$.

Für das untere Limit $\frac{\phi}{2} = \frac{\pi}{4}$ ergibt sich $T_2 = T_1$.

Für das obere Limit $\frac{\phi}{2}=\frac{\pi}{2}$ folgt $z^1=0,\,z^2=1$ und das ergibt die Kreislinie

$$T_2 = \left\{ \left(0, \frac{\sqrt{2}}{2} \exp\left(i\xi_2\right) \right) : \quad \xi_2 \in \mathbb{R} \right\}. \tag{4}$$

Für jeden Wert $\frac{\phi}{2}$ dazwischen ergibt sich ebenfalls ein 2-dimensionaler Torus, der zwischen den beiden Tori T_1 und T_2 liegt. Zusammengenommen entsteht ein 3-dimensionaler Vollturus als Vereinigung all dieser 2-dimensionalen Tori.

Fall 3: $|z^1|^2 \ge |z^2|^2$

Anhang

Behauptung

Es existiert für jedes Tupel (r_1, r_2) mit $r_1, r_2 \ge 0$ und $r_1^2 + r_2^2 = 1$ ein eindeutig bestimmter Winkel $\phi \in [0, \frac{\pi}{2}]$ mit $r_1 = \cos(\phi)$ und $r_2 = \sin(\phi)$.

Beweis

Zu r_1 kann man den Winkel $\phi_1 = \arccos(r_1)$ hinzubestimmen und zu r_2 den Winkel $\phi_2 = \arcsin(r_2)$.

Aus $r_1^2+r_2^2=1$ folgt $r_2=\pm\sqrt{1-r_1^2}$. Wegen $r_2\geq 0$ kommt nur das positive Vorzeichen in Frage. Also gilt $r_2=\sqrt{1-r_1^2}$.

Wegen (siehe dazu [2])

$$\arccos(x) = \arcsin\left(\sqrt{1-x^2}\right)$$

ergibt sich

$$\phi_2 = \arcsin(r_2) = \arcsin\left(\sqrt{1 - r_1^2}\right) = \arccos(r_1) = \phi_1.$$

Die beiden Winkel ϕ_1 und ϕ_2 sind also identisch.

Für $x \geq 0$ gilt $0 \leq \arcsin(x) \leq \frac{\pi}{2}$ und $0 \leq \arccos(x) \leq \frac{\pi}{2}$. Für den Winkel ϕ gilt also $\phi \in \left[0, \frac{\pi}{2}\right]$. \blacksquare

Literatur

- [1] Topology, Geometry and Gauge fields; Naber, Gregory; Springer Science+Business Media; 2011
- $\label{lem:condition} \begin{tabular}{ll} [2] $https://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie\#Additions theoreme; \\ Abschnitt: Umrechnung in andere trigonometrische Funktionen \\ \end{tabular}$