БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ РАДИОФИЗИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ КАФЕДРА ИНФОРМАТИКИ И КОМПЬЮТЕРНЫХ СИСТЕМ

Н.В. ЛЕВКОВИЧ Н. В. СЕРИКОВА

ЗАДАНИЯ ПО КУРСУ

«ПРОГРАММИРОВАНИЕ»

ВАРИАНТ А

2020 МИНСК

ОГЛАВЛЕНИЕ

2семестр	3
5. Функции	4
5.6. Сортировка массивов	
5.7. Перегрузка и шаблон функций	4
5.8. Передача имени функции в качестве параметра. Вычисление корня уравнения	5
5.9. Рекурсия	
6. Структуры. Файлы	7
6.1. Строки string	
6.2. Массивы структур	
6.3. Текстовый и бинарный файлы чисел	
6.4. Бинарный файл структур	
6.5. Текстовый файл структур	
7. Динамические структуры данных	9
7.1. Динамическое выделение памяти для одномерных массивов	
7.2. Динамическое выделение памяти для одномерных массивов структур	
7.3. Динамическое выделение памяти для двумерных массивов	
7.4. Ctek	
7.5. Очередь	11
8. Классы	12
8.1. Класс «Слово»	
8.2. Класс «Студент»	14
8.3. Класс «База данных о Студентах»	
8.4. Класс«вектор»	
8.5. Перегрузка операций	
9. Библиотека шаблонов STL	18
9.1. Вектор	
9.2. Матрица	
9.3. Ctek	
9.4. Очередь	18
10. Наследование	19
10.1. Наследование	

2 CEMECTP

29 занятий

o	ценка	количество задач
4		18
5		24
6	,	29

№	тема	№ задач			
		4	5	6	
1	5. Функции	5.1			
2		5.2			
3		5.3			
4		5.4	5.7		
5		5.5		5.8	
6		5.6		5.9	
7	6. Структуры. Файлы	6.1			
8		6.2			
9		6.3	6.4		
10				6.5	
11	7. Динамические	7.1			
11	структуры данных	7.1			
12		7.2			
13		7.3			
14			7.4		
15			7.5		
16	8. Классы				
17		8.1			
18		8.2			
19		8.4			
20			8.3		
21				8.5	
22					
23	9. Библиотека STL	9.1			
24		9.2			
25			9.3		
26				9.4	
27	10. Наследование				
28		10.1			
29					
30	Зачет				

5. ФУНКЦИИ

Примечание: В программах не использовать глобальных переменных.

5.6. СОРТИРОВКА МАССИВОВ

Дан массив чисел произвольной длины. Отсортировать массив заданными сортировками. Определить число сравнений и перемещений (перестановок с одного места на другое) элементов в процессе выполнения программы.

Для тестирования программы заполнять массив значениями тремя способами: по возрастанию, по убыванию, случайным образом.

Каждый метод сортировки, каждый способ заполнения массивов оформить отдельными функциями.

- 1. выбором и вставкой
- 2. вставкой и обменом
- 3. обменом и выбором
- 4. выбором и бинарной вставкой
- 5. вставкой и бинарной вставкой
- 6. обменом и бинарной вставкой
- 7. выбором и обменом
- 8. вставкой и выбором
- 9. обменом и вставкой
- 10. бинарной вставкой и выбором
- 11. бинарной вставкой и вставкой
- 12. бинарной вставкой и обменом

5.7. ПЕРЕГРУЗКА И ШАБЛОН ФУНКЦИЙ

Обеспечить перегрузку и шаблоны необходимых функций для выполнения задания 5.6 с типами элементов массивов char, int, float, double.

5.8. ПЕРЕДАЧА ИМЕНИ ФУНКЦИИ В КАЧЕСТВЕ ПАРАМЕТРА. ВЫЧИСЛЕНИЕ КОРНЯ УРАВНЕНИЯ

Вычислить корень уравнения f(x) = 0 на отрезке [a; b] с точностью $\varepsilon = 10^{-6}$, используя заданный метод (M = 1 – метод половинного деления, M=2- метод касательных, M=3- метод хорд) для заданных функций. Вычисление корня уравнения оформить в виде функции с функциональным параметром. В качестве результатов функции получить: значение корня заданного уравнения x_0 , количество итераций цикла k iter для получения корня c заданной точностью, значение функции $f(x_0)$.

1. a)
$$f(x) = x^2 - 3$$

$$a = 1;$$
 $b = 3;$

6)
$$f(x) = e^{-sx} - 2 + x^2$$

$$a = 0;$$
 $b = 1.5;$ $s = 0.3;$ $M = 1.$

2. a)
$$f(x) = x^3 - 3$$

$$a = 1;$$
 $b = 4;$

6)
$$f(x) = \sqrt[8]{x} - 2\cos^2(\pi x/2)$$

6)
$$f(x) = \sqrt[8]{x} - 2\cos^2(\pi x/2)$$
 $a = 0$; $b = 4.5$; $s = 0.5$; $M = 1$.

3. a)
$$f(x) = (x-1)^2 - 3$$

$$a = 1;$$
 $b = 4;$

6)
$$f(x) = e^{(x-s)} - \sqrt{x+1}$$

$$a = 0;$$
 $b = 2;$ $s = 0.3;$ $M = 1.$

4. a)
$$f(x) = (x-1)^2 - 3$$

$$a = -2;$$
 $b = 1;$

6)
$$f(x) = \cos^2(x) - \sqrt[s]{x}$$

$$a = 0;$$
 $b = 1;$ $s = 2;$ $M = 1.$

5. a)
$$f(x) = (x-1)^2 - 5$$

$$a = -3;$$
 $b = 0;$

6)
$$f(x) = x^2 - \sin(5x^s)$$

$$a = 0.5$$
; $b = 0.8$; $s = 1$; $M = 2$.

6. a)
$$f(x) = (x-1)^3 - 8$$

$$a = 1;$$
 $b = 4;$

6)
$$f(x) = s \cos^2(\pi x) - \sqrt{x}$$

$$a = 0;$$
 $b = 1.5;$ $s = 1;$ $M = 2.$

7. a)
$$f(x) = (x+3)^3 - 8$$

$$a = -2;$$
 $b = 1;$

$$6) f(x) = \cos(\pi x) - x^{s}$$

$$a = 0;$$
 $b = 2;$ $s = 3;$ $M = 2.$

8. a)
$$f(x) = (x-1)^3 - 1$$

$$a = 0;$$
 $b = 3;$

$$f(x) = sx - \cos^2(\pi x)$$

$$a = -1$$
; $b = 0.7$; $s = 1$; $M = 2$.

9. a)
$$f(x) = (x-1)^2 - 5$$

$$a = 2;$$
 $b = 43;$

6)
$$f(x) = (x - s)^2 - e^{-x}$$

$$a = 2;$$
 $b = 43;$ $a = 1;$ $b = 4;$ $s = 1;$ $M = 3.$

10. a)
$$f(x) = (x+1)^2 -5$$

$$a = 0$$
: $b = 2$:

6)
$$f(x) = x^2 - e^x - 1.5s$$

$$a = -1.5$$
; $b = 1$; $s = 1$; $M = 3$.

11. a)
$$f(x) = (x+1)^2 -4$$

$$a = 0;$$
 $b = 3;$

6)
$$f(x) = \cos^2(\pi x) + x^2 - 1.5s$$

6)
$$f(x) = \cos^2(\pi x) + x^2 - 1.5s$$
 $a = -1$; $b = 1$; $s = 1$; $M = 3$.

12. a)
$$f(x) = (x+1)^2 - 9$$

$$a = 1;$$
 $b = 4;$

6)
$$f(x) = \cos^2(\pi x) - e^{x^s} + 1$$
 $a = 0;$ $b = 1;$ $s = 1;$ $M = 3.$

$$a = 0;$$
 $b = 1;$ $s = 1;$ $M = 3$

5.9. РЕКУРСИЯ

Описать функции для выполнения следующего задания двумя способами: используя механизм рекурсии и через цикл.

- **1.** Вычислить для заданного натурального $n: \sqrt{a + \sqrt{a + ... + \sqrt{a}}}$.
- **2.** Описать рекурсивную логическую функцию, проверяющую является ли симметричной часть строки s, начинающаяся i-м и кончающаяся j-м ее элементами.
- **3.** Задана непустая последовательность положительных вещественных чисел, за которой следует отрицательное число. Описать рекурсивную функцию без параметров для нахождения суммы этих положительных чисел.
- 4. Описать рекурсивную функцию без параметров, которая подсчитывает количество цифр в тексте (за текстом следует точка).
- 5. Напечатать в обратном порядке заданный текст (за текстом следует точка).
- **6.** Дана последовательность ненулевых целых чисел, за которой следует 0. Напечатать сначала все отрицательные числа этой последовательности, затем все положительные (в любом порядке).
- 7. Найти *n*-й член числовой последовательности чисел Фибоначчи.
- **8.** Найти n-й член числовой последовательности, которая определяется рекуррентной формулой: $a_1 = 1$, $a_2 = 2$, $a_{n+1} = 2 \cdot a_n + a_{n-1}$.
- **9.** Найти n-й член числовой последовательности, которая определяется рекуррентной формулой: $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, $a_{n+1} = 3a_n + 2a_{n-1} + a_{n-2}$.
- **10.** Найти значение полинома Чебышева $T_n(x)$ при заданных вещественном x и натуральном n, значения вычисляются по рекуррентной формуле $T_0(x) = 1$, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) T_{n-1}(x)$.
- **11.** Дано вещественное x, целое n. Определить x^n . Степенную функцию вычис-

лять по формуле
$$x^n = \begin{cases} 1, & n = 0; \\ 1/x^{|n|}, & n < 0; \\ x \cdot x^{n-1}, & n > 0. \end{cases}$$

12. Найти значение функции C(m, n), где 0 < m < n, если: $C_n^0 = C_n^n = 1;$ $C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$.

6. СТРУКТУРЫ. ФАЙЛЫ

6.1. СТРОКИ STRING

Выполнить задания **4.1**, **4.2**, **4.3** используя класс string для представления данных. Задания выполнить через функции.

6.2. МАССИВЫ СТРУКТУР

Написать программу для создания массива записей со сведениями о студентах (ФИО, возраст, курс, пол, успеваемость). По заданному массиву определить:

- **1.** Определить ФИО самого старшего студента n курса.
- **2.** Определить ФИО самого младшего студента n курса.
- **3.** Определить средний возраст студентов n курса.
- **4.** Определить количество студентов мужского пола на n курсе.
- **5.** Определить средний бал успеваемости студентов n курса.
- **6.** Определить средний бал успеваемости студентов по m предмету на n курсе.
- **7.** Определить количество отличников на n курсе.
- **8.** Определить количество неуспевающих студентов на n курсе.
- **9.** Определить количество отличников по m предмету на n курсе.
- **10.** Определить количество неуспевающих студентов по m предмету на n курсе.
- **11.** Определить количество студентов на n курсе, имеющих средний бал успеваемости выше среднего бала по его курсу.
- **12.** Определить количество студентов на n курсе, имеющих средний бал успеваемости ниже среднего бала по его курсу.

6.3. ТЕКСТОВЫЙ И БИНАРНЫЙ ФАЙЛЫ ЧИСЕЛ

Выполнить задания для **текстового и бинарного** файлов. **Размер файла** <= **64GiB**.

- **1.** Компоненты файла f вещественные числа. Определить и вывести на экран порядковый номер того из них, которое наиболее близко к соответственному целому числу.
- **2.** Компоненты файла f целые (отличные от нуля) числа: x, y1, ... yn. Вывести на экран два последовательных члена этой последовательности, среднее арифметическое которых ближе всего к x.
- **3.** Компоненты файла f вещественные числа. Записать в файл g наибольшее значение первых десяти компонент, затем следующих десяти и т. д.
- **4.** Компоненты файла f целые числа. Получить файл g, в котором записаны сначала все положительные числа, затем все отрицательные.
- **5.** Компоненты файла f целые числа, положительных чисел столько же, сколько отрицательных. Получить файл g из чисел исходного файла, в котором не было бы двух соседних чисел с одинаковым знаком.

- **6.** Компоненты файла f целые числа, причём положительных чисел столько же, сколько отрицательных. Получить файл g из чисел исходного файла, в котором записаны 2 положительных числа, затем 2 отрицательных и т. д.
- **7.** Компоненты файла f целые числа, чётных чисел столько же, сколько нечётных. Получить файл g из чисел исходного файла, в котором не было бы двух соседних чисел одинаковой четности.
- **8.** Компоненты файла f целые числа, причём чётных чисел столько же, сколько нечётных. Получить файл g из чисел исходного файла, в котором записаны 2 чётных числа, затем 2 нечётных т. д.
- **9.** Компоненты файла f целые числа, причём десять идущих подряд положительных чисел чередуются с десятью отрицательными числами и т. д. Получить файл g из чисел исходного файла, в котором записано сначала пять положительных чисел, затем пять отрицательных и т.д.
- **10.** Компоненты файла f целые числа, причём десять идущих подряд положительных чисел чередуются с десятью отрицательными числами и т. д. Получить файл g из чисел исходного файла, в котором записано сначала двадцать положительных чисел, затем двадцать отрицательных и т. д.
- **11.** Компоненты файла f целые числа. Получить файл g из чисел исходного файла, в котором записаны сначала все отрицательные числа, затем все нули, затем все положительные числа.
- **12.** Компоненты файла f целые числа. Получить файл g из чисел исходного файла, в котором записаны сначала все четные положительные числа, затем все четные отрицательные, затем нечетные положительные, затем нечетные отрицательные.

6.4. БИНАРНЫЙ ФАЙЛ СТРУКТУР

Выполнить задания 6.2 для работы с большой базой данных, не помещающейся в оперативной памяти, храня записи в *бинарном* файле.

6.5. ТЕКСТОВЫЙ ФАЙЛ СТРУКТУР

Выполнить задания 6.2 для работы с большой базой данных, не помещающейся в оперативной памяти, храня записи в *текстовом* файле.

7. ДИНАМИЧЕСКИЕ СТРУКТУРЫ ДАННЫХ

7.1. ДИНАМИЧЕСКОЕ ВЫДЕЛЕНИЕ ПАМЯТИ ДЛЯ ОДНОМЕРНЫХ МАССИВОВ

Выполнить задание, используя динамическое выделение памяти для одномерного массива.

- 1. Из двух массивов разной длины сформировать общий массив и вычислить сумму положительных элементов.
- 2. Из двух массивов разной длины сформировать общий массив и поменять местами его максимальный и минимальный элементы.
- **3.** Получить массив C(K), упорядоченный по возрастанию, путем слияния массивов A(N) и B(M), упорядоченных по возрастанию (K = N + M).
- **4.** Даны два вектора (одномерных массива), содержащих *n* вещественных элементов. Если векторы различны, то получить вектор, являющийся суммой двух векторов, иначе переписать в него элементы исходного вектора.
- **5.** Даны два вектора (одномерных массива), содержащих n вещественных элементов. Найти скалярное произведение двух векторов.
- **6.** Даны три вектора (одномерных массива), содержащих n вещественных элементов. Определить, являются ли вектора ортогональными.
- **7.** Дан массив целых чисел, содержащий n элементов Элементы массива циклически сдвинуть на K позиций влево.
- **8.** Дан массив целых чисел, содержащий n элементов Элементы массива циклически сдвинуть на K позиций вправо.
- **9.** Дан массив целых чисел, содержащий n элементов. Получить массив из элементов, встречающихся в исходном массиве ровно один раз без повторений.
- **10.** Дан массив целых чисел, содержащий n элементов. Получить массив из элементов, встречающихся в исходном массиве более одного раза без повторений.
- **11.** Дан массив целых чисел, содержащий n элементов. Получить массив из элементов, встречающихся в исходном массиве ровно два раза без повторений.
- 12. Найти максимальную по длине монотонную неубывающую подпоследовательность элементов массива.

7.2. ДИНАМИЧЕСКОЕ ВЫДЕЛЕНИЕ ПАМЯТИ ДЛЯ ОДНОМЕРНЫХ МАССИВОВ СТРУКТУР

Написать функцию для создания динамического массива записей со сведениями о студентах (ФИО, возраст, курс, успеваемость). Выполнить задание 6.2.

7.3. ДИНАМИЧЕСКОЕ ВЫДЕЛЕНИЕ ПАМЯТИ ДЛЯ ДВУМЕРНЫХ МАССИВОВ

Выполнить задание, используя динамическое выделение памяти для двумерного массива, двумя способами:

- описывая двумерный массив как одномерный, с расчётом смещения элемента массива по линейной формуле;
- описывая двумерный массив как указатель на массив указателей.
- **1.** Для заданной матрицы A найти значение $\min_{j} (\sum_{i} \left| a_{ij} \right|)$.
- **2.** Найти норму заданной матрицы A, определенную как $\max_{i} (\sum_{i} \left| a_{ij} \right|)$.
- **3.** Определить, является ли заданная матрица ортонормированной, т. е. такой, в которой скалярное произведение каждой пары различных строк равно 0, а скалярное произведение каждой строки на себя равно 1.
- **4.** Подсчитать количество строк заданной матрицы, которые составлены из различных чисел.
- 5. Подсчитать количество столбцов заданной матрицы, которые составлены из различных чисел.
- **6.** Поменять местами строку, содержащую элемент с наибольшим значением в матрице, со строкой, содержащей элемент с наименьшим значением.
- 7. Вывести номера столбцов, все элементы, которых четны.
- **8.** Найти максимальный элемент среди стоящих на главной и побочной диагонали и поменять его местами с элементом, стоящим на пересечении этих диагоналей.
- 9. Среди строк заданной матрицы, содержащих только нечетные элементы, найти строку с максимальной по модулю суммой элементов.
- **10.** Среди столбцов заданной матрицы, содержащих только такие элементы, которые по модулю не больше заданного натурального n, найти столбец с минимальным произведением элементов.
- **11.** Найти все такие натуральные числа k, что k-я строка совпадает с k-м столбцом.
- **12.** Матрица имеет седловую точку a_{ij} , если a_{ij} является минимальным в i-й строке и максимальным в j-м столбце. Найти все седловые точки заданной матрицы.

7.4. CTEK

Разбить текст, хранящийся в текстовом файле, на слова и вывести их в обратном порядке, используя связанную динамическую структуру данных — стек.

7.5. ОЧЕРЕДЬ

Разбить текст, хранящийся в текстовом файле, на слова и вывести слова, удовлетворяющие условиям задания 4.2, используя связанную динамическую структуру данных — очередь.

8. КЛАССЫ

8.1. КЛАСС «СЛОВО»

Разработать класс, содержащий методы:

- Заполнение полей класса с клавиатуры
- Вывод на экран

Реализовать в классе следующие виды конструкторов:

- без параметров;
- инициализации слова заданным словом-инициализатором;
- инициализации слова заданным количеством повторов заданного символа;
- инициализации слова частью заданного слова-инициализатора (первые п символов, последние п символов);
- копирования.

Определить объекты класса так, чтобы вызывался конструктор каждого вида. Выполнить задания, используя объекты этого класса.

- **1.** Проверить, есть ли во введённом слове удвоенные гласные буквы. Вывести эти буквы, если они есть, как значение нового объекта класса «Слово».
- 2. Вывести повторяющиеся в значении исходного объекта-слова буквы как значение нового объекта-слова.
- 3. Удвоить каждый символ введённого слова и сформировать новый объект-слово.
- **4.** Во введённом значении объекта-слова поменять местами каждую пару соседствующих символов, начиная с первой. Слово дополнить пробелом справа, если в нем нечетное число символов. Сформировать новый объект-слово.
- **5.** Вывести новое слово-объект, упорядочив по возрастанию в лексикографическом порядке буквы исходного слова.
- 6. Определить количество различных букв в написании введенного с клавиатуры слова и сформировать из них новое слово-объект.
- **7.** Вычислить суммарный ASCII-код введённого с клавиатуры значения объекта-слова. Создать и вывести новое слово-объект, заменив каждую строчную букву исходного значения соответствующей прописной.
- **8.** Заменить все строчные буквы введённого слова числом, равным порядковому номеру буквы по алфавиту. Сформировать новое слово-объект. Например: $Abc \rightarrow A23$.

- 9. Сравнить два слова и вывести новое слово-объект, значением которого является наибольшее из двух исходных.
- **10.** Заменить все прописные буквы введенного английского слова числом, равным порядковому номеру буквы по алфавиту. Сформировать новое словообъект. Например: $aBC \rightarrow a23$.
- **11.** Вычислить суммарный ASCII-код введённого с клавиатуры значения объекта-слова. Создать и вывести новое слово-объект, заменив каждый символ исходного слова, имеющего код больше, чем код символа 'n', символом 'f'.
- 12. Сравнить два слова и вывести новое слово-объект, значением которого являются 3 первых символа наибольшего из исходных слов.

8.2. КЛАСС «СТУДЕНТ»

Разработать класс «Студент» и определить его методы:

- Заполнение полей класса с клавиатуры
- Загрузка из бинарного файла
- Сохранение в бинарный файл
- Вывод на экран

Реализовать конструкторы трех видов (без аргументов, инициализации, копирования) и деструктор.

Выполнить задание 6.2, используя объекты этого класса.

8.3. КЛАСС «БАЗА ДАННЫХ О СТУДЕНТАХ»

Используя класс «Студент» задания 8.2 разработать класс «База данных студентов» и определить его методы:

- Добавление студента в базу данных с вводом данных с клавиатуры
- Загрузка базы данных из бинарного файла
- Сохранение базы данных в бинарный файл
- Вывод на экран
- Поиска студентов в базе данных

Реализовать конструкторы трех видов (без аргументов, инициализации, копирования) и деструктор.

Выполнить задание 6.4, используя объекты этого класса.

8.4. КЛАСС «ВЕКТОР»

Разработать класс «вектор», моделирующий математическое понятие «одномерный массив».

Реализовать три вида конструктора (без аргументов, инициализации, ко-пирования), деструктор.

Максимально возможный размер массива задать константой. В отдельном поле size должно храниться значение количества элементов (размерность) объекта-вектора.

Определить методы:

- задания размерности вектора,
- определения количества элементов заданного вектора;
- получения элемента вектора по заданному индексу, с контролем выхода за пределы размерности вектора
- занесения значения элемента вектора по заданному индексу, с контролем выхода за пределы размерности вектора,
- сложения, вычитания, умножения и деления всех элементов вектора на скаляр,
- ullet определения длины вектора ($l = \sqrt{\sum_{i=1}^n x_i^2}$),
- вычисления поэлементного сложения (вычитания, умножения, деления) векторов с одинаковыми границами индексов,
- вывод значений элементов вектора на экран,
- ввода значений элементов вектора с клавиатуры,
- заполнения элементов вектора случайными числами.

Разместить описание класса в заголовочном файле, а определения методов и главную функцию программы — в отдельных файлах. Использовать объекты класса «вектор» при решении предложенной задачи.

- **1.** X(N) и Y(M) исходные векторы. Определить вектор с максимальной длиной.
- **2.** X(N) и Y(M) исходные векторы. Определить вектор с минимальной длиной.
- **3.** Вычислить скалярное произведение векторов X(N) и Y(N): $k = \sum_{i=0}^{n-1} x_i y_i$. Получить вектор Z с элементами $z_i = x_i + k$.
- **4.** Даны три вектора, содержащих n вещественных элементов. Определить, являются ли вектора ортогональными.
- **5.** X(N) и Y(N) исходные векторы. Получить вектор Z с элементами $z_0 = 1; \ z_i = x_i * y_i + x_{i-1} * y_{i-1}, \ i = 1, n-1.$
- **6.** X(N) и Y(N) исходные векторы. Получить вектор Z с элементами $z_0 = 1$; $z_i = x_i * y_i x_{i-1} * y_{i-1}, i = 1, n-1.$
- **7.** X(N) и Y(N) исходные векторы. Получить вектор Z с элементами $z_i = a*x_i + b*y_i$, i = 0, n-1, a, b максимальные значения векторов X, Y.
- **8.** X(N) и Y(N) исходные векторы. Получить вектор Z с элементами $z_i = a*x_i b*y_i$, i = 0, n-1, a, b минимальные значения векторов X, Y.
- **9.** Найти среднее значение элементов вектора X(N) и max максимальное отклонение значений x_i от этого среднего значения. Получить вектор Z с элементами $z_i = x_i + max$.
- **10.** Получить вектор Y(N), упорядоченный по возрастанию значений элементов вектора X (N). Вычислить скалярное произведение векторов X (N) и Y (N): $k = \sum_{i=0}^{n-1} x_i y_i$.
- **11.** Включить в упорядоченный вектор X(N) новый элемент z так, чтобы сохранилась упорядоченность его элементов. Реализовать алгоритм бинарного поиска для определения места вхождения включаемого элемента.
- **12.** Получить вектор Z(K), упорядоченный по возрастанию, путем слияния векторов X(N) и Y(M), упорядоченных по возрастанию (K = N + M).

8.5. ПЕРЕГРУЗКА ОПЕРАЦИЙ

Для предыдущего задания реализовать перегрузку заданной операции двумя способами: как метод класса, как независимую внешнюю функцию. Продемонстрировать выполнение этой операции над объектами типа «вектор».

- 1. «[]» индексирования (обращения к отдельному элементу вектора),
- 2. «<<» вывода значений элементов вектора на экран,
- 3. «>>» ввода значений элементов вектора с клавиатуры,
- **4.** «=» присвоить всем элементам вектора значение скаляра,
- 5. «+» сложения всех элементов вектора со скаляром,
- **6.** «-» вычитания из всех элементов вектора скаляр,
- 7. «*» умножения всех элементов вектора на скаляр,
- **8.** «/» деления всех элементов вектора на скаляр,
- **9.** «+» поэлементного сложения двух векторов одинаковой размерности,
- 10. «-» поэлементного вычитания двух векторов одинаковой размерности,
- 11. «*» поэлементного умножения двух векторов одинаковой размерности,
- **12.** «/» поэлементного деления двух векторов одинаковой размерности.

9. БИБЛИОТЕКА ШАБЛОНОВ STL

9.1. BEKTOP

Реализовать задание **7.1**, используя объявление и методы соответствующего параметризированного класса *vector* из стандартной библиотеки шаблонов STL.

9.2. МАТРИЦА

Реализовать задание **7.3**, используя объявление и методы соответствующего параметризированного класса *vector* из стандартной библиотеки шаблонов STL.

9.3. CTEK

Реализовать задание **7.4**, используя объявление и методы соответствующего параметризированного класса *vector* из стандартной библиотеки шаблонов STL.

9.4. ОЧЕРЕДЬ

Реализовать задание **7.5**, используя объявление и методы соответствующего параметризированного класса list из стандартной библиотеки шаблонов STL.

10. НАСЛЕДОВАНИЕ

10.1. НАСЛЕДОВАНИЕ

Для каждого класса описать поля, характеризующие объект, и методы, позволяющие заполнять и получать значения каждого из полей. выводить значения полей на экран, а также необходимые конструкторы. Конструкторы и методы должны проверять параметры на допустимость.

Определить и описать иерархию классов в следующих заданиях.

- 1. студент, преподаватель, персона;
- 2. журнал, газета, книга, печатное издание;
- 3. зачет, экзамен, форма отчетности;
- 4. тест, экзамен, испытание;
- 5. точка, линия, прямоугольник, геометрическая фигура;
- 6. компьютер, персональный компьютер, сервер, суперЭВМ;
- 7. университет, школа, колледж, учебное заведение;
- 8. математика, физика, программирование, предмет;
- 9. подразделение университета, факультет, кафедра, библиотека;
- **10.** С, С++, язык программирования;
- 11. ассемблер, С, языки программирования;
- 12. число, целое число, рациональное число, комплексное число.