CS 388C: COMBINATORICS AND GRAPH THEORY Lecture 20

Scribes: Eshan Chattopadhyay, Rashish Tandon

April 3 2012

We first recall Fisher's inequality which we saw in the previous class and use similar techniques to solve some problems.

Theorem 1 (Fisher's inequality). A_1, \ldots, A_m be distinct subsets of $\{1, \ldots, n\}$ such that $|A_i \cap A_j| = k$ for some fixed $1 \le k \le n$ and every $i \ne j$. Then $m \le n$.

1 Even Town

Consider the following problem. A town has n citizens and they form clubs such that

- 1. Every club has an even number of members
- 2. Every club shares an even number of members
- 3. No two clubs have identical membership

We first prove that at least $2^{\frac{n}{2}}$ clubs can be formed which satisfy the above conditions. To see this, let the citizens be numbered $1, \ldots, n$. Consider the collection of all possible unions of the sets $\{1, 2\}, \{3, 4\}, \ldots, \{n-1, n\}$. These $2^{\frac{n}{2}}$ sets can be seen to satisfy the conditions of even size and even intersection (with each set corresponding to a club). We thus have the following theorem.

Theorem 2. Under the Even town rules, with n citizens, it is possible to form $m \geq 2^{\frac{n}{2}}$ clubs.

We now prove an upper bound on the size of the collection.

Theorem 3. Under the Even town rules, with n citizens, $m \leq 2^{\frac{n}{2}}$, where m is the number of clubs formed.

Proof. We prove this by contradiction. Suppose if possible there is such a collection of sets C of size more than $2^{\frac{n}{2}}$. We associate an incidence vector in $\mathbb{F}_2^n = \{0,1\}^n$ for each set in the collection and let the corresponding collection of vectors V be v_1, \ldots, v_m $(m > 2^{\frac{n}{2}})$. We also define the inner product $\langle v, u \rangle = \sum_{i=1}^n v(i)u(i) \mod (2)$. Thus any v_i satisfies $\langle v_i, u \rangle = 0$ for $u \in V$ and hence can be seen linear constraints on v_i . Now since V is of size more that $2^{\frac{n}{2}}$, there are at least $\frac{n}{2} + 1$ linearly independent vectors in V. Since each linearly independent vector v' imposes a linearly independent constraint $\langle v, v' \rangle = 0$ on any $v \in V$ it forces V to be confined in some subspace of \mathbb{F}_2^n of dimension at most $\frac{n}{2} - 1$. This is a contradiction since the collection contains at least $\frac{n}{2} + 1$ linearly independent vectors which proves the upper bound of $2^{\frac{n}{2}}$ on the size of the collection. \square

2 Odd Town

We look at a close variant of the Even town problem with the following rules.

- 1. Every club has an odd number of members.
- 2. The intersection of any two clubs is even

Note that the rule of uniqueness is guaranteed by the rules above.

Theorem 4. Under the Odd town rules, with n citizens $m \le n$ where m is the number of clubs formed.

Proof. As in the upper bound proof of the Even town problem, we associate incidence vectors corresponding to each set in the collection C and use the same definition of inner product. We observe that for any v_i in the collection, $\langle v_i, v_i \rangle = 1$ and $\langle v_i, v_j \rangle = 0$ if $i \neq j$. Consider the matrix $A_{m \times n}$ over \mathbb{F}_2 , with each row as the incidence vector of a set in the collection C. Now $AA^T = I_{m \times m}$ and hence rank(A) = m (using the following facts from linear algebra: (1) $rank(A) = rank(A^T)$, (2) $rank(AB) \leq min\{rank(A), rank(B)\}$). But since $rank(A) \leq min\{m, n\}$, it follows that $m \leq n$.

There are many other versions known for this problem.

3 Intersecting Families

Definition 1 (Intersecting family). A family $\mathcal{F} = A_1, \ldots, A_m$ is called intersecting if $A_i \cap A_j \neq \emptyset$, $\forall i \neq j$.

Definition 2 (k-uniform Intersecting family). An intersecting family $\mathcal{F} = A_1, \ldots, A_m$ with each $|A_i| = k$.

Note 1. We can assume $n \ge 2k$ since otherwise any two k sized subsets will intersect and hence $|\mathcal{F}|$ can be $\binom{n}{k}$.

Note 2. For $n \geq 2k$, we can form an intersecting family of size $\binom{n-1}{k-1}$ by fixing one common element. The natural question to ask is if we can do better. The following theorem proves that this in fact is the optimal sized family.

Theorem 5 (Erdos-Ko-Rado). If $n \geq 2k$, then a k-uniform intersecting family \mathcal{F} has at most $\binom{n-1}{k-1}$ sets.

In order to prove this theorem we first prove a simple lemma.

Lemma 1. Consider a cycle of length n and let $n \geq 2k$. Consider paths P_i starting at i and of length k. Let \mathcal{H} be a family of paths of length k such that any 2 intersect. Then $|\mathcal{H}| \leq k$.

Proof. Consider any P_0 which is already in \mathcal{H} . There are exactly (2k-2) P_i 's which intersect P_0 . To see this observe that $P_{-(k-1)}, \ldots, P_{-1}, P_1, \ldots, P_{k-1}$ (where the subscripts are taken mod(n)) are distinct and intersect P_0 . Further from each pair P_i and P_{i-k} , $1 \le i \le k-1$, at most one can appear in \mathcal{H} . This proves our claim.

Now, we provide a proof to Theorem (5).

Proof. Suppose we have a k-intersecting family \mathcal{F} . Now, consider a party of n guests, seated on a round table. Suppose there are $\binom{n}{k}$ clubs among them i.e. all possible clubs of size k. All those clubs which are in \mathcal{F} are colored Red. Clearly, any two red clubs have a common member.

A club is said to be *honored* if the whole club sits together.

For any fixed seating, exactly n clubs are honored. Now, using Lemma 1, for any fixed seating, we know that at most k Red clubs can be honored.

There are a total of n! different seating arrangements. Suppose, n! different parties are organised. Then, by symmetry, any club is honored the same number of times overall. Let, R := the number of times that any club is honored. Then,

$$R = \frac{n!n}{\binom{n}{k}}$$

Counting the number of times any Red club is honored (=R), we get

$$R \le \frac{n!k}{|\mathcal{F}|}$$

It follows that

$$|\mathcal{F}| \le \frac{k}{n} \binom{n}{k} = \binom{n-1}{k-1}$$