Modular Forms (mod p) and Galois Representations

Benedict H. Gross

This is a continuation of the paper Algebraic Modular Forms ([G]); we will continue to use the same notation and conventions. Let G be a reductive algebraic group over $\mathbf{0}$, with the property that every arithmetic subgroup Γ of $G(\mathbf{0})$ is finite (equivalent conditions are given in [G, Prop. 1.4]). For simplicity, we will assume that G is an inner form of a split group over $\mathbf{0}$, so that the L-group of G defined in [G, §13] is just \hat{G} , the split dual group over \mathbf{Z} . We will also assume that there is a cocharacter η : $\mathbf{G}_{\mathfrak{m}} \to \hat{T}$ satisfying the condition [G, (13.5)]:

$$\langle \eta, \alpha \rangle = 1$$

for all simple roots α of \hat{T} with respect to \hat{B} . We fix η once and for all.

Our aim in this paper is to review the theory of modular forms (mod p) on G described in [G, §9]. We will then discuss the action of the Hecke algebra on the finite-dimensional space M over $\mathbf{Z}/p\mathbf{Z}$ of modular forms of a fixed weight and level. Unlike the case of characteristic zero (see [G, Prop. 6.11]), M need not be a semisimple Hecke module. However, to each simple submodule $N \subset M$, we hope to associate a Galois representation

$$\rho_N : \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \hat{\mathsf{G}}(k),$$

where k is an algebraic closure of $\mathbf{Z}/p\mathbf{Z}$. The representation ρ_N should satisfy certain local properties, which are specified in Chapter 1. In Chapter 2, we discuss a particular example, with $\hat{G} = G_2$ and p = 5, which was studied by D. Pollack and J. Lansky.

In Chapter 3, we establish some general results on local Galois representations

$$\rho: \operatorname{Gal}(\overline{\mathbf{Q}}_n/\mathbf{Q}_n) \to \hat{\mathsf{G}}(k).$$

Received 10 June 1998. Revision received 8 July 1998.

For example, we show that the inertia group always maps to a Borel subgroup, and that the niveau of the characters of the tame inertia group (cf. [S2, §1.7]) divide the order of an element in the Weyl group $W(\hat{T}, \hat{G})$ of \hat{G} . In Chapter 4, we apply these results to the Galois representations associated to ordinary modular forms (mod p).

1 Galois representations associated to

modular forms (mod p)

Let G be a reductive group over \mathbf{Q} , with the hypotheses made in the introduction. Let p be a prime where G is split over \mathbf{Q}_p , and let K_p be a hyperspecial maximal compact subgroup of $G(\mathbf{Q}_p)$. Let

$$K_p \rightarrow G(p)$$

be the reduction homomorphism, and let W be an irreducible representation of the finite group G(p) over $\mathbf{Z}/p\mathbf{Z}$. Let

$$K = \prod_{\ell \neq \mathfrak{p}} K_\ell \times K_\mathfrak{p}$$

be an open compact subgroup of $G(\hat{\mathbf{O}})$.

The group K acts on the vector space W via the maps

$$K \to K_p \to G(p) \to GL(W)$$
.

We define the vector space M = M(K, W) of modular forms of level K and weight $W \pmod p$ by

$$M = \{f: G(\mathbf{0}) \setminus G(\hat{\mathbf{0}}) \to W: f(gk) = k^{-1}f(g) \text{ for all } k \in K\}.$$

Some motivation for this definition is given in [G, §8–9], where G(p) is denoted $\overline{G}(p)$ and W is denoted \overline{W} . Since the double coset space

$$G(\mathbf{Q})\backslash G(\hat{\mathbf{Q}})/K$$

is finite [G, Prop. 4.3], and the representation W is finite-dimensional, M is a finite-dimensional vector space over $\mathbf{Z}/p\mathbf{Z}$.

Let $\mathcal H$ denote the Hecke algebra of functions

$$f: \prod_{\ell \neq p} G(\mathbf{Q}_{\ell}) \to \mathbf{Z}/p\mathbf{Z}$$

which are

$$\text{bi} - \prod_{\ell \neq \upsilon} K_{\ell}\text{-invariant}.$$

This acts linearly on the space M, by the formula of [G, (6.6)]. Let $N \subset M$ denote a nonzero simple submodule, which exists whenever $M \neq 0$ (as M is finite-dimensional). Let

$$E = End_{\mathcal{H}}(N)$$
,

which is a finite field of characteristic p. We fix an embedding of E into k, an algebraic closure of $\mathbf{Z}/p\mathbf{Z}$.

If ℓ is a prime, where K_{ℓ} is hyperspecial, the local Hecke algebra \mathcal{H}_{ℓ} of K_{ℓ} -biinvariant functions on $G(\mathbf{Q}_{\ell})$ is abelian, and is contained in the center of \mathcal{H} . Hence the simple submodule N gives rise to a homomorphism of $\mathbb{Z}/p\mathbb{Z}$ -algebras:

$$\varphi_{\ell} \colon \mathcal{H}_{\ell} \to E \to k.$$

Since $p \neq \ell$ and we have fixed the cocharacter η of \hat{T} , the homomorphism ϕ_{ℓ} has Satake parameter (see [G, §16])

$$s_{\ell}(N)$$
 in $C\ell(\hat{G})(k)$.

Here $C\ell(\hat{G})$ is the affine scheme (over **Z**) of semisimple conjugacy classes in \hat{G} , which is isomorphic to the quotient of \hat{T} by the finite Weyl group $W(\hat{T}, \hat{G})$.

We say, after Serre, that a representation

$$\rho$$
: $\Gamma \to \hat{G}(k)$

is completely reducible provided the following condition holds: Whenever the image $\rho(\Gamma)$ is contained in a parabolic subgroup \hat{P} of \hat{G} , it is contained in a Levi factor \hat{L} of \hat{P} . When $\hat{G} = GL_n$, completely reducible representations correspond to semisimple Γ -modules of rank n over k.

Conjecture 1.1. Associated to a simple submodule $N \subset M$, there is a continuous, completely reducible Galois representation

$$\rho_N : \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \hat{\mathsf{G}}(k),$$

which satisfies the following properties.

- (a) For every prime $p \neq \ell$, where K_{ℓ} is hyperspecial, the representation ρ is unramified at ℓ , and any Frobenius Fr_{ℓ} maps to an element whose semisimple part $\rho_{N}(Fr_{\ell})_{ss}$ has class $s_{\ell}(N)$ in $C\ell(\hat{G})(k)$.
- (b) The semisimple part $\rho_N(Fr_\infty)_{ss}$ of the image of any complex conjugation maps to the class of the involution $\eta(-1)$ in $Cl(\hat{G})(k)$.

Condition (b) asserts, when $p \neq 2$ and the group G is semisimple, that complex conjugation maps to the most negative involution in G. By our hypothesis that G is an inner form of a split group, the opposition involution of the Dynkin diagram of G is trivial. This implies that $\eta(-1)$ has Brauer trace equal to $-\operatorname{rank}(\hat{G})$ on the adjoint representation Lie(Ĝ) of Ĝ.

For inner forms G of GL(2), Conjecture 1.1 can be proved using methods of Serre [S]. In this case, the representation ρ is uniquely determined. In general, we can ask: How unique is the representation ρ , conjectured to exist in 1.1?

Proposition 1.2. The simple submodule N determines the kernel of the representation ρ_N , and so determines the fixed field $L \subset \overline{\mathbf{Q}}$ of the kernel. The field L is a finite, normal extension of \mathbf{Q} with Galois group a subgroup of $\hat{G}(k)$.

Proof (following a letter of Serre). Let ρ_1 and ρ_2 be two representations associated to N, with fixed fields L_1 and L_2 . To show that $L_1 = L_2$, we consider the composite extension $L = L_1 L_2$, which is fixed by the kernel of

$$\rho_1 \times \rho_2$$
: Gal($\overline{\mathbf{Q}}/\mathbf{Q}$) $\rightarrow \hat{\mathbf{G}}(\mathbf{k}) \times \hat{\mathbf{G}}(\mathbf{k})$.

Consider the representation

$$\rho_1$$
: Gal(L/L₂) $\rightarrow \hat{G}(k)$.

The Frobenius elements at unramified primes in $Gal(L/L_2)$ map to unipotent classes in $\hat{G}(k)$. Indeed, they have the same semisimple parts as for ρ_2 , and ρ_2 is the trivial representation of $Gal(L/L_2)$. Hence the image of ρ_1 is a finite, unipotent subgroup $\Gamma \subset \hat{G}(k)$.

We now invoke a result of Borel and Tits [BT], which associates to Γ a canonical parabolic subgroup $\hat{P} \subset \hat{G}$ with the properties

$$N_{\hat{G}(k)}(\Gamma) \subset \hat{P}(k),$$

 $\Gamma \subset R_{\iota\iota}(\hat{P})(k).$

Since $Gal(L/\mathbf{Q})$ normalizes $Gal(L/L_2)$, the image of ρ_1 is contained in $\hat{P}(k)$. By complete reducibility, the image of ρ_1 is contained in a Levi factor $\hat{L}(k)$ of $\hat{P}(k)$.

But $\hat{L} \cap R_u(\hat{P}) = 1$, so $\Gamma = 1$, and ρ_1 is trivial on $Gal(L/L_2)$. This shows that $L_2 \supset L_1$. Reversing the roles and considering the representation

$$\rho_2$$
: Gal(L/L₁) $\rightarrow \hat{G}(k)$,

shows that $L_1 \supset L_2$. Hence $L_1 = L_2$, as claimed.

We note that there may be more than one $\hat{G}(k)$ -conjugacy class of homomorphisms ρ : $Gal(L/\mathbf{Q}) \hookrightarrow \hat{G}(k)$, which have the same local data in $C\ell(\hat{G})(k)$. When there is a single class, we predict that the image is contained in a conjugate of the finite group $\hat{G}(E)$.

2 An example

In this section, we assume that G is the anisotropic form of the exceptional group of type G_2 over \mathbf{Q} . Then G may be given explicitly as the automorphism group of the \mathbf{Q} -algebra of Cayley's octonions.

The dual group \hat{G} is the split group G_2 over **Z**, and the cocharacter η is uniquely determined by its inner product with the simple roots for \hat{T} with respect to \hat{B} .

The group G is split over \mathbf{Q}_p for all primes p, and we fix a hyperspecial subgroup K_p so that $K = \prod K_p = \underline{G}(\hat{\mathbf{Z}}) \subset G(\hat{\mathbf{Q}})$, where \underline{G} is the model over \mathbf{Z} discussed in [G2, §4]. In the example, we take p = 5 and let W be the irreducible representation of $G_2(5)$ of dimension $5^6 = 15,625$, which is the reduction of the Steinberg representation (mod 5), and has highest weight $\mu = 4\omega_1 + 4\omega_2$.

By computations of Lansky and Pollack, the space M(K, W) defined in §1 has dimension 1 over $\mathbb{Z}/5\mathbb{Z}$. Hence $\mathbb{M} = \mathbb{N}$ is a simple module for the unramified Hecke algebra

$$\bigotimes_{\ell \neq 5}^{\wedge} \mathcal{H}_{\ell} = \mathcal{H}$$

with endomorphism ring $E = \mathbf{Z}/5\mathbf{Z}$. Lansky and Pollack computed the action of \mathcal{H}_2 and \mathcal{H}_3 on N, and found the characteristic polynomials of $s_2(N)$ and $s_3(N)$ in $C\ell(G_2)(5)$ acting on the 7-dimensional representation of $G_2(5)$ over $\mathbb{Z}/5\mathbb{Z}$:

$$x^7 - x^6 - x^5 + 2x^4 - 2x^3 + x^2 + x - 1 = 0$$
 for s_2 , $x^7 - 2x^6 - x^4 + x^3 + 2x - 1 = 0$ for s_3 .

Conjecture 1.1 predicts the existence of an extension L of \mathbf{Q} , which is Galois and totally complex, with

$$\rho_N$$
: Gal(L/ \mathbf{Q}) \hookrightarrow G₂(5).

The extension L should be unramified outside of 5, and the primes 2 and 3 should have behavior predicted by the polynomials for s_2 and s_3 . Presumably, the representation ρ_N is surjective; we will return to this question in §5.

3 Local Galois representations

The material in this section is independent of the theory of modular forms (mod p), and we will change the notation slightly.

Let p be a prime, and let k be an algebraically closed field of characteristic p. Let $\hat{\mathsf{G}}$ be a connected, reductive group over k; since the field k will be fixed throughout the section, we will write \hat{G} for the discrete group $\hat{G}(k)$. Our aim is to study continuous, local Galois representations

$$\rho: \operatorname{Gal}(\overline{\mathbf{Q}}_{p}/\mathbf{Q}_{p}) \to \hat{\mathsf{G}}. \tag{3.1}$$

We first recall some of the structure of the local Galois group $D = Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$. Let I be the inertia subgroup of D, and let I_w be the wild inertia subgroup of I. Both are normal subgroups of D, and we have isomorphism (see [S3, Ch. IV])

 $D/I \simeq \hat{\mathbf{Z}}$, generated by Fr_p ,

$$I_t = I/I_w \simeq \prod_{\ell \neq p} \! \mathbf{Z}_\ell(1),$$

where I_t is the tame quotient, and Fr_p acts on I_t by multiplication by p.

Proposition 3.2. The image $\rho(I)$ of the inertia subgroup is contained in a Borel subgroup \hat{B} of \hat{G} .

Proof. Since I_w is a pro-p-group, $\rho(I_w)$ is a finite p-group. Hence $\rho(I_w) = \Gamma$ is a unipotent subgroup of \hat{G} .

Let \hat{P} be the canonical parabolic subgroup which Borel and Tits associate to Γ [BT]. Since I_w is normal in D, we have

$$\begin{array}{cccc} \rho \colon & D & \rightarrow & \hat{P} \\ & \cup & & \cup \\ & I_w & \rightarrow & R_u(\hat{P}). \end{array} \tag{3.3}$$

Let \hat{L} be a Levi factor of \hat{P} . Taking the quotient of (3.3) by $R_u(\hat{P})$, we obtain a partial semisimplification of ρ :

$$\rho_s \colon D/I_w \to \hat{L}.$$
 (3.4)

The image $\rho_s(I_t)$ is cyclic, of order prime to p. Hence it is generated by a semisimple element α in \hat{L} , and is contained in a maximal torus \hat{T} of \hat{L} . Let \hat{B}_L be a Borel subgroup of \hat{L} containing \hat{T} , and let \hat{B} be the inverse image of \hat{B}_L under the map

$$\hat{P} \rightarrow \hat{P}/R_{11}(\hat{P}) = \hat{L}.$$

Then \hat{B} is a Borel subgroup of \hat{G} containing the image $\rho(I)$.

We now consider the partial semisimplification ρ_s of ρ constructed in (3.4):

$$\rho_s \colon D/I_w \to \hat{L}$$

$$\cup \qquad \cup$$

$$I_t \to \hat{T}.$$

Let a be a generator of the cyclic group $\rho_s(I_t)$ in $\hat{T}.$

Proposition 3.5. There is an element n in the normalizer of \hat{I} in \hat{L} , which satisfies

$$nan^{-1} = a^p$$
.

Proof. The cyclic group $\langle a \rangle$ in \hat{T} is normalized by $g = \rho_s(Fr_p)$, and $gag^{-1} = a^p$. Hence the tori \hat{T} and $g^{-1}\hat{T}g$ both centralize a, and are maximal in the connected reductive group $Z_{\hat{\mathfrak{l}}}(\mathfrak{a})^0 \subset \hat{\mathfrak{l}}$. They are therefore conjugate by an element $z \in Z_{\hat{\mathfrak{l}}}(\mathfrak{a})^0$: $z\hat{\mathsf{l}}z^{-1} = g^{-1}\hat{\mathsf{l}}g$. The element n = gz in \hat{L} lies in the normalizer of \hat{T} , and satisfies $nan^{-1} = a^p$.

We say the local representation ρ is *regular* if a is a regular, semisimple element in \hat{L} : $Z_{\hat{I}}(a)^0 = \hat{T}$. In this case, the element n constructed in the proof of Proposition 3.5 is uniquely determined in the quotient group $N_{\hat{r}}(\hat{T})/\hat{T} = W(\hat{T},\hat{L})$, and ρ determines a unique element (up to conjugacy) in the Weyl group of L. Note that this Weyl group is a subgroup of the Weyl group of Ĝ.

Corollary 3.6. If the element n of Proposition 3.5 has order f in the quotient group $W(\hat{L}, \hat{T}) = N_{\hat{T}}(\hat{T})/\hat{T}$, then

$$\alpha^{\mathfrak{p}^f-1} = \alpha \quad \text{in} \quad \hat{\mathsf{T}}. \qquad \qquad \Box$$

We now study, in more detail, the case when f = 1, so n can be chosen to lie in \hat{T} .

Proposition 3.7. The following conditions are all equivalent.

- (a) The element n in Proposition 3.5 can be chosen to lie in \hat{T} .
- (b) $a^{p-1} = 1 \text{ in } \hat{T}$.
- (c) The homomorphism ρ_s : $I_t \to \hat{T}$ factors as $\rho_s = \overline{\lambda} \circ \omega$, where ω : $I_t \to (\mathbf{Z}/p\mathbf{Z})^*$ is the fundamental character giving the Galois action on the p-th roots of unity in $\overline{\mathbf{Q}}_p$, and the map $(\mathbf{Z}/p\mathbf{Z})^* \to \hat{T}$ is given by a class $\overline{\lambda}$ in $X_{\bullet}(\hat{T})/(p-1)X_{\bullet}(\hat{T})$.

Proof. The first two conditions are clearly equivalent, and show $\rho_s(I_t)$ is cyclic of order dividing p-1. Hence ρ_s , restricted to I_t , factors through the quotient $I_t \rightarrow (\mathbf{Z}/p\mathbf{Z})^*$, and a homomorphism $\overline{\lambda}$: $(\mathbf{Z}/p\mathbf{Z})^* \to \hat{\mathsf{T}}$ is given by a cocharacter (mod (p-1)).

When the equivalent conditions of Proposition 3.7 hold, we say ρ has niveau 1. One simple situation in which ρ is regular, of niveau 1, is the following proposition.

Proposition 3.8. Assume that the finite unipotent group $\Gamma = \rho(I_w)$ contains a regular unipotent element of \hat{G} . Then ρ is regular, of niveau 1.

Proof. When Γ contains a regular element, the canonical parabolic subgroup which Borel and Tits associate to Γ is a Borel subgroup \hat{B} of \hat{G} . Hence $\rho: D \to \hat{B}$ and $\rho_s: D/I_w \to \hat{T}$. In this case, a is clearly regular, and n lies in \hat{T} .

4 Ordinary modular forms (mod p)

In this section, we use the general results on local Galois representations to predict the restriction of the representation ρ_N to a decomposition group at p, when G is simply connected and the simple module $N \subset M$ is ordinary at p.

The prediction involves the irreducible representation W of G(p), used to define the space M = M(K, W). We first recall the parameters of irreducible representations of G(p) when G is simply connected, which are due to Chevalley [C] and Steinberg [St]. A good exposition of this theory can be found in [B].

Proposition 4.1. Assume that G is simply connected and split over $\mathbf{Z}/p\mathbf{Z}$, of rank r. Then there are p^r distinct, irreducible representations W of G(p) over $\mathbf{Z}/p\mathbf{Z}$, parametrized by the cocharacters λ in $X_{\bullet}(\hat{T})$ which satisfy $1 \leq \langle \lambda, \alpha \rangle \leq p$ for all simple roots α of \hat{T} with respect to \hat{B} .

Proof. We fix $T \subset B \subset G$ over $\mathbf{Z}/p\mathbf{Z}$. Then Chevalley proved that for each dominant weight μ of T, there is an irreducible algebraic representation W_{μ} of G with highest weight μ for B. Steinberg showed that the restriction of W_{μ} to G(p) is irreducible if and only if $\langle \mu, \alpha \rangle \leq p-1$ for all simple coroots α of T. Our parameter λ is simply $\mu+\eta$, where η is half the sum of the positive roots for T with respect to B. (Note that η is equal to the cocharacter of \hat{T} introduced earlier.)

Although it is not needed in what follows, we make a few remarks about the irreducible representations W_{λ} of G(p). The trivial representation has parameter $\lambda = \eta$, and the Steinberg representation has parameter $\lambda = p\eta$. Very little is known about the character of W_{λ} , or even the dimension of W_{λ} , except in the case when λ lies in the small alcove:

$$\langle \lambda, \beta \rangle \leq \mathfrak{p},$$
 (4.2)

where β is the highest root of \hat{T} with respect to \hat{B} . In this case, W_{λ} is the reduction (mod p) of the corresponding irreducible representation V_{λ} for G in characteristic zero, and the character of W_{λ} on T is given by Weyl's character formula:

$$char(t \mid W_{\lambda}) = \sum sign(\sigma)t^{\sigma\lambda} / \sum sign(\sigma)t^{\sigma\eta}.$$

In general, if $\lambda = \mu + \eta$ is a weight of T, which satisfies $1 \leq \langle \lambda, \alpha \rangle \leq p$ for all simple roots α of \hat{T} with respect to \hat{B} , let V_{λ} be the irreducible representation of G over \mathbf{Q}_p with highest weight μ . Since K_p is compact, there are \mathbf{Z}_p -lattices in V_{λ} which are stable under K_p . One can choose a stable lattice V_{λ}^0 so that the G(p)-module $V_{\lambda}^0/pV_{\lambda}^0$ has a unique simple

quotient, isomorphic to W_{λ} (see [B]). When λ is in the small alcove, or λ is the parameter of the trivial or Steinberg representation, $V_{\lambda}^{0}/pV_{\lambda}^{0}$ is irreducible and isomorphic to W_{λ} .

The choice of V_{λ}^0 gives a lattice inside the \mathbf{Q}_p -vector space $M(K, V_{\lambda})$ of modular forms of level K and weight V_{λ} for G. This space has two equivalent definitions (see [G, §8-9]):

$$\begin{split} M(K,V_{\lambda}) &= \left\{ F \colon G(\hat{\mathbf{Q}})/K \to V_{\lambda} \colon F(\gamma g) = \gamma F(g) \text{ for } \gamma \text{ in } G(\mathbf{Q}) \right\} \\ &= \left\{ f \colon G(\hat{\mathbf{Q}}) \backslash G(\hat{\mathbf{Q}}) / \prod_{\ell \neq p} K_{\ell} \to V_{\lambda} \colon f(gk_p) = k_p^{-1} f(g) \text{ for } k_p \text{ in } K_p \right\}. \end{split} \tag{4.3}$$

The first admits an action of the \mathbf{Q}_p -Hecke algebra of K in $G(\hat{\mathbf{Q}})$, and the second allows us to define the lattice $M(K, V_{\lambda}^{0})$ consisting of those f with values in V_{λ}^{0} . The \mathbf{Z}_{p} -Hecke algebra $\mathcal{H}(\mathbf{Z}_n)$ of

$$\prod_{\ell \neq p} K_\ell \quad \text{in} \quad \prod_{\ell \neq p} G(\mathbf{Q}_\ell)$$

acts on $M(K, V_{\lambda}^{0})$, but the Hecke algebra of K_{p} in $G(\mathbf{Q}_{p})$ does not act on this lattice. The homomorphism of G(p)-modules

$$V_{\lambda}^{0}/pV_{\lambda}^{0} \rightarrow W_{\lambda}$$

gives a linear map of \mathcal{H} -modules (see [G, §9]):

$$M(K, V_{\lambda}^{0})/pM(K, V_{\lambda}^{0}) \to M(K, W_{\lambda}).$$
 (4.4)

Now let $\tilde{N} \subset M(K, V_{\lambda})$ be a simple Hecke submodule, and let \tilde{E} be the center of the endomorphism ring of \tilde{N} . Then \tilde{E} is a finite extension field of \mathbf{Q}_n , and the local Satake parameter $s_p(\tilde{N})$ lies in $\hat{T}/W(\tilde{E})$. We say \tilde{N} is ordinary if there is a representative \tilde{s}_p for $s_p(\tilde{N})$ in $\hat{T}(\tilde{E})$ such that the quotient

$$\tilde{s}_n/\lambda(p)$$

lies in the maximal compact subgroup of $\hat{T}(\tilde{E})$ (see [G, §19]). Let $\tilde{N}_0 = \tilde{N} \cap M(K, V_{\lambda}^0)$, and let N be the image of \tilde{N}_0 in M(K, W_{λ}) under (4.4). We say N is ordinary at p if it is nonzero, and arises from the reduction of an ordinary module \tilde{N} as above.

Conjecture 4.5. Assume that the simple \mathcal{H} -submodule $N \subset M(K, W_{\lambda})$ is ordinary at p. Then the restriction of the global Galois representation ρ_N to a decomposition group at p has niveau 1, and the restriction of ρ_s to I_t factors as $\overline{\lambda} \circ \omega$, where $\overline{\lambda}$ is the image of λ in $X_{\bullet}(\hat{T})/(p-1)X_{\bullet}(\hat{T}).$

We note the image of λ in $X_{\bullet}(\hat{T})/(p-1)X_{\bullet}(\hat{T})$ is almost enough to determine the restricted dominant weight λ , which satisfies $1 \leq \langle \lambda, \alpha \rangle \leq p$ for all simple α . Only the cases where $\langle \lambda, \alpha \rangle = 1$ and $\langle \lambda, \alpha \rangle = p$ need to be distinguished. Perhaps in the former case, the action of wild inertia on the simple root space U_{α} in $U^{\alpha b}$ is peu ramifiée, as a Kummer extension of $\mathbf{Q}_{p}(\mu_{p})$, in the sense of [S4, p. 186].

5 An example, revisited

In the example of §2, $W=W_{\lambda}$ with $\lambda=5\cdot\eta$ the parameter of the Steinberg representation. In this case, the map

$$M(K, V_{\lambda}^{0})/5M(K, V_{\lambda}^{0}) \rightarrow M(K, W_{\lambda})$$

is an isomorphism. Both spaces have dimension 1 over $\mathbb{Z}/5\mathbb{Z}$, as 5 is not a torsion prime for G_2 , and

$$M(K, V_{\lambda}) \simeq V_{\lambda}^{\underline{G}(Z)}$$

has dimension 1 over \mathbf{Q}_5 . The simple module $N=M(K,W_\lambda)$ is ordinary at 5, so we predict that the restriction of

$$\rho_{\rm N}: {\rm Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to {\rm G}_2(5)$$

to a decomposition group at 5, takes values in a Borel subgroup $\hat{B}.$ Here we even predict that

$$\rho_s = \overline{\lambda} \circ \omega = \overline{\eta} \circ \omega$$

on all of D/I_w , so that the fixed field of the kernel of ρ_s is $\mathbf{Q}_5(\mu_5)$, and the characters of D/I_w on the representation

$$\rho_s: D/I_w \to G_2(5) \to GL_7(5)$$

are
$$\{\omega^3, \omega^2, \omega, 1, \omega^{-1}, \omega^{-2}, \omega^{-3}\}$$
.

Finally, since $\langle \lambda, \alpha \rangle = 5$ for both simple roots α , we predict that the finite group $\rho(I_w) \subset \hat{U}$ contains regular unipotent elements, and so has exponent 25. If this is the case, the global representation is surjective.

Acknowledgments

I would like to thank J.-P. Serre, J. Lansky, and D. Pollack for their help.

References

- A. Borel, "Properties and linear representations of Chevalley groups" in Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Lecture Notes in Math. 131, Springer, Berlin, 1970, 1-55.
- [BT] A. Borel and J. Tits, Eléments unipotents et sous-groupes paraboliques de groupes réductifs, I, Invent. Math. 12 (1971), 95-104.
- C. Chevalley, Classification des groupes de Lie algébriques, Institut Henri Poincaré Notes, [C] Paris, 1956-1958.
- [G] B. H. Gross, *Algebraic modular forms*, to appear in Israel J. Math.
- [G2] ——, Groups over Z, Invent. Math. 124 (1996), 263–279.
- J.-P. Serre, Two letters on quaternions and modular forms (mod p), Israel J. Math. 95 (1996), [S] 281-299.
- [S2] ——, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. **15** (1972), 259–331.
- [S3] _____, Local Fields, trans. M. J. Greenberg, Grad. Texts in Math. 67, Springer, New York, 1979.
- [S4] ——, Sur les représentations modulaires de degré 2 de $Gal(\overline{Q}/Q)$, Duke Math. J. **54** (1987), 179-230.
- [St] R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56.

Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA