Assignment 6

October 17, 2023

- 1. Prove that $\lim_{x\to 0} \frac{\sin x}{x} = 1$
- 2. Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous such that given any two points $x_1 < x_2$, there exists a point x_3 such that $x_1 < x_3 < x_2$ and $f(x_3) = g(x_3)$. Show that f(x) = g(x) for all x.
- 3. Suppose f is a function from $f: \mathbb{R} \to \mathbb{R}$ is a continuous function such that $\lim_{|x|\to\infty} f(x) = 0$. Prove that f is bounded on \mathbb{R} and attains either an absolute maximum or an absolute minimum!
- 4. There does not exist a continuous function f from [0,1] onto \mathbb{R} Why?
- 5. Find a continuous function f from (0,1) onto \mathbb{R} .
- 6. Let $f:[a,b]\to\mathbb{R}$ be a continuous function such that for each $x\in[a,b]$ there exists $y\in[a,b]$ such that $|f(y)|\leq\frac{1}{2}|f(x)|$. Prove there exists a point c in [a,b] such that f(c)=0.
- 7. Let $f:(0,1)\to\mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ where } p, q \in \mathbb{N} \text{ and } p, q \text{ have no common factors,} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

- (a) Show that f is continuous at every irrational.
- (c) Show that f is discontinuous at every rational.