SOLUCIÓN DEL TALLER DE GEOMETRÍA

Operacional y numéricos

1. En la figura, el triángulo ABC es isósceles rectángulo en B, si \underline{AB} mide 12 cm, entonces la longitud de \underline{AC} es

- A. $12\sqrt{2}$
- B. $4\sqrt{2}$
- C. $2\sqrt{2}$
- D. $16\sqrt{2}$

1. En la figura, el triángulo ABC es isósceles rectángulo en B, si \underline{AB} mide 12 cm, entonces la longitud de \underline{AC} es

B. $4\sqrt{2}$

C. $2\sqrt{2}$

D. $16\sqrt{2}$

2. En el triángulo ABC de la figura adjunta, D pertenece a \underline{AC} , E pertenece a \underline{BC} y $\underline{DE} \parallel \underline{AB}$. Si AB=24 cm, BC=16 cm, CE=12 cm y CD=9 cm, entonces el perímetro del trapecio ABED es

- A. 50 cm
- B. 47 cm
- C. 49 cm
- D. 45 cm

2. En el triángulo ABC de la figura adjunta, D pertenece a \underline{AC} , E pertenece a \underline{BC} y \underline{DE} || \underline{AB} . Si AB=24 cm, BC=16 cm, CE=12 cm y CD=9 cm, entonces el perímetro del trapecio ABED es

- A. 50 cm
- B. 47 cm
- C. 49 cm
- D. 45 cm

$$\frac{Q}{AD} = \frac{12}{16-12} \Rightarrow AD = \frac{9 \times 4}{12}$$

$$AD = \frac{36}{12} = 3$$

2. En el triángulo ABC de la figura adjunta, D pertenece a \underline{AC} , E pertenece a \underline{BC} y $\underline{DE} \parallel \underline{AB}$. Si AB=24 cm, BC=16 cm, CE=12 cm y CD=9 cm, entonces el perímetro del trapecio ABED es

$$\frac{Q}{AD} = \frac{12}{16-12} \Rightarrow AD = \frac{9 \times 4}{12}$$

$$AD = \frac{36}{12} = 3$$

$$\frac{16}{24} = \frac{12}{DE} \rightarrow DE = \frac{12 \times 24}{16} = 18$$

2. En el triángulo ABC de la figura adjunta, D pertenece a \underline{AC} , E pertenece a \underline{BC} y \underline{DE} || \underline{AB} . Si AB=24 cm, BC=16 cm, CE=12 cm y CD=9 cm, entonces el perímetro del trapecio ABED es

B. 47 cm

C. 49 cm

D. 45 cm

3. En la figura, la circunferencia mayor tiene radio $\underline{AB} = 6$ y \underline{AB} , \underline{BC} son diámetros de las dos circunferencias menores respectivamente con AB = BC. ¿Cuánto mide el área sombreada?

- A. $18\pi \ cm^2$
- B. $28\pi \ cm^2$
- C. $36\pi \ cm^2$
- D. $9\pi \ cm^2$

En la figura, la circunferencia mayor tiene radio $\underline{AB} = 6$ y \underline{AB} , BC son diámetros de las dos circunferencias menores respectivamente con AB = BC. ¿Cuánto mide el área sombreada?

A. $18\pi \ cm^2$

B. $28\pi \ cm^2$

B. ∠οπ υ...
 C. 36π cm²

D. $9\pi \ cm^2$

Asombreada = Agrande - Ablanca

3. En la figura, la circunferencia mayor tiene radio $\underline{AB} = 6$ y \underline{AB} , \underline{BC} son diámetros de las dos circunferencias menores respectivamente con AB = BC. ¿Cuánto mide el área sombreada?

A. $18\pi \ cm^2$

B. $28\pi \ cm^2$

C. $36\pi \ cm^2$

D. 9π cm²

Asombreada = Agrande - Ablanca

$$A_{5} = \pi(6)^{2} - 2[\pi(3)^{2}]$$

$$= 36 \pi - 18 \pi$$

$$= 18 \pi$$

El cuadrilátero ABCD está circunscrito a una circunferencia, siendo E, F, G y H los puntos de tangencia. Si $\underline{ED} = 1$, $\underline{CF} = 3$, $\underline{GB} = 2$ y $\underline{HA} = 5$, entonces ¿cuál es el perímetro del cuadrilátero?

- A. 15
- B. 22
- C. 30
- D. 16

El cuadrilátero ABCD está circunscrito a una circunferencia, siendo E, F, G y H los puntos de tangencia. Si $\underline{ED} = 1$, $\underline{CF} = 3$, $\underline{GB} = 2$ y $\underline{HA} = 5$, entonces ¿cuál es el perímetro del cuadrilátero?

A. 15 B. 22 C. 30 D. 16

$$P_0 = 2(1+2) + 2(3+5)$$

$$= 6 + 16$$

$$= 22$$

En la figura, \underline{CD} es el diámetro de la circunferencia de centro O. El triángulo ABC está inscrito en la circunferencia, $\underline{CO}=13~cm$ y $\underline{CA}=24~cm$. ¿Cuánto mide el perímetro de la región coloreada?

A.
$$26\pi + 60$$

B.
$$169\pi - 60$$

C.
$$26\pi - 60$$

D.
$$169\pi + 60$$

5. En la figura, \underline{CD} es el diámetro de la circunferencia de centro O. El triángulo ABC está inscrito en la circunferencia, $\underline{CO}=13~cm$ y $\underline{CA}=24~cm$. ¿Cuánto mide el perímetro de la región coloreada?

A.
$$26\pi + 60$$

B.
$$169\pi - 60$$

C.
$$26\pi - 60$$

D.
$$169\pi + 60$$

5. En la figura, \underline{CD} es el diámetro de la circunferencia de centro O. El triángulo ABC está inscrito en la circunferencia, $\underline{CO} = 13~cm$ y $\underline{CA} = 24~cm$. ¿Cuánto mide el perímetro de la región coloreada?

A.
$$26\pi + 60$$

B.
$$169\pi - 60$$

C.
$$26\pi - 60$$

D.
$$169\pi + 60$$

$$P_{\text{Negro}} = P_0 + P_{\Delta}$$
$$= 2\pi (13) + P_{\Delta}$$

5. En la figura, \underline{CD} es el diámetro de la circunferencia de centro O. El triángulo ABC está inscrito en la circunferencia, $\underline{CO} = 13 \ cm$ y $\underline{CA} = 24 \ cm$. ¿Cuánto mide el perímetro de la región coloreada?

A.
$$26\pi + 60$$

B.
$$169\pi - 60$$

C.
$$26\pi - 60$$

D.
$$169\pi + 60$$

$$AB = \sqrt{26^2 - 24^2} = \sqrt{676 - 576}$$

$$= \sqrt{100} = 10$$

$$P_{N} = 26 + 24 + 10 = 60$$

5. En la figura, \underline{CD} es el diámetro de la circunferencia de centro O. El triángulo ABC está inscrito en la circunferencia, $\underline{CO} = 13 \ cm$ y $\underline{CA} = 24 \ cm$. ¿Cuánto mide el perímetro de la región coloreada?

A.
$$26\pi + 60$$

B.
$$169\pi - 60$$

C.
$$26\pi - 60$$

D.
$$169\pi + 60$$

$$P_{\text{Negro}} = P_0 + P_{\Delta}$$

$$= 2\pi (13) + P_{\Delta}$$

$$= 26\pi + 60$$

$$AB = \sqrt{26^2 - 24^2} = \sqrt{676 - 576}$$

$$= \sqrt{100} = 10$$

$$P_{N} = 26 + 24 + 10 = 60$$

6. Si cada cuadrado en la figura tiene lado 2. ¿Cuál es el área del polígono dado por la línea negra?

A. 24

B. 28

C. 32

D. $6\sqrt{2} + 12$

6. Si cada cuadrado en la figura tiene lado 2. ¿Cuál es el área del polígono dado por la línea negra?

$$A_{figura} = 6(2x2)$$

$$= 6x4$$

$$= 24$$

A. 24

B. 28

C. 32

D. $6\sqrt{2} + 12$

7. En la figura, ABCD es un cuadrado de perímetro 4a y AFGE rectángulo. Si $\underline{AE} = 1$ y $\underline{AF} = 2$, ¿Cuál es el perímetro de la figura coloreada?

- A. 4a 3
- B. 4a
- C. 4a 2
- D. 4a 1

7. En la figura, ABCD es un cuadrado de perímetro 4a y AFGE rectángulo. Si $\underline{AE} = 1$ y $\underline{AF} = 2$, ¿Cuál es el perímetro de la figura coloreada?

B. 4a

$$P_{color} = a + a + (a-2)$$
+ 1 + 2 + (a-1)

7. En la figura, ABCD es un cuadrado de perímetro 4a y AFGE rectángulo. Si $\underline{AE} = 1$ y $\underline{AF} = 2$, ¿Cuál es el perímetro de la figura coloreada?

A. 4a - 3

B. 4a

C. 4a - 2

D. 4a - 1

$$P_{color} = a + a + (a-2)$$

$$+ 1 + 2 + (a-1)$$

$$= 4a$$

En la figura, ABCD es un cuadrado con perímetro 32, el cual está formado por 4 cuadrados congruentes y subdividido a su vez en triángulos semejantes. ¿Cuál es el área de la zona coloreada?

A. 6

B. 3

C. 15

En la figura, ABCD es un cuadrado con perímetro 32, el cual está formado por 4 cuadrados congruentes y subdividido a su vez en triángulos semejantes. ¿Cuál es el área de la zona coloreada?

$$P = 32 \implies L = \frac{32}{4} = 8$$

$$A_{50mb} = \frac{1}{4}(4*4) + \frac{1}{4}(16)$$
 $+ \frac{1}{8}(16)$

8 En la figura, ABCD es un cuadrado con perímetro 32, el cual está formado por 4 cuadrados congruentes y subdividido a su vez en triángulos semejantes. ¿Cuál es el área de la zona coloreada?

B. 3

$$P = 32 \implies L = \frac{32}{4} = 8$$

$$A_{50mb} = \frac{1}{4}(4*4) + \frac{1}{4}(16)$$
 $+ \frac{1}{8}(16)$

$$=4+4+2=10$$

9 La figura representa un tubo de alcantarillado. En un segundo pasa una cantidad de agua equivalente a su capacidad. ¿Cuántos centímetros cúbicos pasan por él en 5 segundos (si consideramos π =3,14)?

A. 700

B. 652

C. 650

9 La figura representa un tubo de alcantarillado. En un segundo pasa una cantidad de agua equivalente a su capacidad. ¿Cuántos centímetros cúbicos pasan por él en 5 segundos (si consideramos π =3,14)?

A. 700

B. 652

C. 650

D. 628

$$55eg \rightarrow 5(40)T = 200T$$

= $200(3,14)$
= 62%

SANT

10. En la figura adjunta CD // AB, CD = 8 cm, EC = 4 cm y CB = 10 cm.

¿Cuál es la medida de AB?

A. 3 cm

B. 12 cm

C. 10 cm

D. 3/16 cm

10. En la figura adjunta CD // AB, CD = 8 cm, EC = 4 cm y CB = 10 cm.

¿Cuál es la medida de AB?

A. 3 cm

B. 12 cm

C. 10 cm

D. 3/16 cm

$$\frac{8}{AB} = \frac{4}{6}$$

$$AB = \frac{8 \times 6}{4} = \frac{48}{4} = 12$$

Triángulo P

A
$$p, \sqrt{pq}$$

B.
$$p, \sqrt{p(p \ q)}$$

c
$$q, \sqrt{pq}$$

D.
$$q, pq$$

Triángulo P

A
$$(p)\sqrt{pq}$$

B.
$$p\sqrt{p(p q)}$$

c.
$$q, \sqrt{pq}$$

D.
$$q,pq$$

Triángulo P

A
$$(p)\sqrt{pq}$$

B.
$$(p)\sqrt{p(p q)}$$

c.
$$q, \sqrt{pq}$$

D.
$$q,pq$$

$$\Rightarrow X^2 = 9P \rightarrow X = \sqrt{P9}$$

Triángulo P

$$\frac{f}{\chi} = \frac{\chi}{P}$$

A
$$p$$
, \sqrt{pq}

B.
$$p, \sqrt{p(p \ q)}$$

c.
$$q, \sqrt{pq}$$

D.
$$q,pq$$

$$\Rightarrow X^2 = 9P \rightarrow X = \sqrt{P9}$$

12. Si las coordenadas de los vértices de un triángulo son (4, 0), (12, 0) y (12, 8), ¿cuál es el área del triángulo, en unidades cuadradas?

A.32

B.48

C.96

12. Si las coordenadas de los vértices de un triángulo son (4, 0), (12, 0) y (12, 8), ¿cuál es el área del triángulo, en unidades cuadradas?

A.32

B.48

C.96

12. Si las coordenadas de los vértices de un triángulo son (4, 0), (12, 0) y (12, 8), ¿cuál es el área del triángulo, en unidades cuadradas?

A.32

B.48

C.96

