Selected Answers to Exercise 3*

DING Chao

May 4, 2019

1 P47-13(3)

$$\begin{aligned} &((x_1*x_2)^{-1})_{\mathfrak{M}[\sigma]} \\ =& I(^{-1})((x_1*x_2)_{\mathfrak{M}[\sigma]}) \\ =& (n-(x_1*x_2)_{\mathfrak{M}[\sigma]})) \bmod n \\ =& (n-I(*)(x_{1_{\mathfrak{M}[\sigma]}},x_{2_{\mathfrak{M}[\sigma]}}) \bmod n \\ =& (n-(x_{1_{\mathfrak{M}[\sigma]}}+_nx_{2_{\mathfrak{M}[\sigma]}})) \bmod n \\ =& (n-(\sigma(x_1)+_n\sigma(x_2)) \bmod n \\ =& (n-(1 \bmod n)+_n(2 \bmod n)) \bmod n \\ =& -3 \bmod n \end{aligned}$$

$$((x_1)^{-1} * (x_2)^{-1})_{\mathfrak{M}[\sigma]}$$

$$= I(*)[(x_1^{-1})_{\mathfrak{M}[\sigma]}, (x_2^{-1})_{\mathfrak{M}[\sigma]}]$$

$$= I(*)[I(^{-1})(\sigma(x_1)), I(^{-1})(\sigma(x_2))]$$

$$= ((n-1) \bmod n) +_n ((n-2) \bmod n)$$

$$= -3 \bmod n$$

Since $((x_1 * x_2)^{-1})_{\mathfrak{M}[\sigma]} = ((x_1)^{-1} * (x_2)^{-1})_{\mathfrak{M}[\sigma]}$, by Definition 3.12(2), p36, $A_{\mathfrak{M}[\sigma]} = T$.

2 P47-14(2)

Lemma 1: $\models A \Rightarrow \models \forall x.A. \ (\Leftrightarrow indeed).$

 $^{^*{\}it ver}$ 2.2. This document is maintained on https://github.com/sleepycoke/Mathematical_Logic_NJUCS

Proof. By $\models A$, we have for any (M, σ) , $A_{\mathfrak{M}[\sigma]} = T$. Therefore for any $a \in M$, $A_{\mathfrak{M}[\sigma[x:=a]]} = T$ (note that $\sigma[x:=a]$ is one specific assignment of all the σ), which implies $\forall x.A_{\mathfrak{M}[\sigma]} = T$, aka $\mathfrak{M} \models_{\sigma} \forall x.A$. As a result, since (M, σ) is arbitrary, $\models \forall x.A$.

Let
$$A \triangleq (x \doteq y \rightarrow y \doteq x)$$
,
 $A_{\mathfrak{M}[\sigma]}$
 $= B_{\rightarrow}[(x \doteq y)_{\mathfrak{M}[\sigma]}, (y \doteq x)_{\mathfrak{M}[\sigma]}]$
 $= \begin{cases} F & \text{if } (x \doteq y)_{\mathfrak{M}[\sigma]} = T \text{ and } (y \doteq x)_{\mathfrak{M}[\sigma]} = F \\ T & \text{otherwise} \end{cases}$

However, $(x \doteq y)_{\mathfrak{M}[\sigma]} = T$ implies $\sigma(x) = \sigma(y)$, which implies $\sigma(y) = \sigma(x)$ and $(y \doteq x)_{\mathfrak{M}[\sigma]} = T$. Thus $A_{\mathfrak{M}[\sigma]} = T$. Applying Lemma 1 twice we get $\models \forall x \forall y.A$.

3 P49-24

 \Rightarrow

$$\mathfrak{M} \models_{\sigma} \forall x.A$$

$$\Rightarrow$$
For all $a \in M, A_{\mathfrak{M}[\sigma[x:=a]]} = T$

$$\Rightarrow$$
For all $a \in M$, $A_{\mathfrak{M}[\rho[x:=a]]} = T$, since z is fresh in A, where $\rho \triangleq \sigma[z:=a]$.

$$\Rightarrow \text{For all } a \in M, A_{\mathfrak{M}[\rho[x:=z_{\mathfrak{M}[\rho]}]]} = T$$

$$\Rightarrow$$
For all $a \in M, A[\frac{z}{x}]_{\mathfrak{M}[\rho]} = T$, by Lemma 3.24, p40.

$$\Rightarrow \mathfrak{M} \models_{\rho} \forall z. A[\frac{z}{x}]$$

$$\Rightarrow \mathfrak{M} \models_{\sigma} \forall z. A[\frac{z}{x}], \text{ since } z \notin FV(\forall z. A[\frac{z}{x}]).$$

 \Leftarrow

$$\mathfrak{M} \models_{\sigma} \forall z. A[\frac{z}{x}]$$

$$\Rightarrow \mathfrak{M} \models_{\rho} \forall z. A[\frac{z}{x}], \text{ since } z \notin FV(\forall z. A[\frac{z}{x}]), \text{ where } \rho \triangleq \sigma[z := a].$$

$$\Rightarrow \text{For all } a \in M, A[\frac{z}{x}]_{\mathfrak{M}[\rho]} = T$$

$$\Rightarrow \text{For all } a \in M, A_{\mathfrak{M}[\rho[x := z_{\mathfrak{M}[\rho]}]]} = T, \text{ by Lemma 3.24, p40.}$$

$$\Rightarrow \text{For all } a \in M, A_{\mathfrak{M}[\rho[x := a]]} = T$$

$$\Rightarrow \text{For all } a \in M, A_{\mathfrak{M}[\sigma[x := a]]} = T, \text{ since } z \text{ is fresh in } A.$$

$$\Rightarrow \mathfrak{M} \models_{\sigma} \forall x. A$$