Exercice 2 06 points

Dans le plan complexe rapporté à un repère orthonormé $(O; \vec{u}, \vec{v})$ d'unité graphique 1 cm, on considère les points A_0, A_1, A_2 d'affixe respective $z_0 = 5 - 4i, z_1 = -1 - 4i, z_2 = -4 - i$. Soit f la fonction qui, à tout point M(z), associe le point M'(z'), tel que :

$$z' = \frac{1-i}{2}z + \frac{-3+i}{2}$$

- 1. (a) Trouver l'affixe b du point B invariant par f. (0,5pt)
 - (b) Établir la relation b z' = i(z z'); en déduire la nature du triangle BMM'. (0,5pt + 0,5pt)
- 2. Pour tout $n \in \mathbb{N}$, le point A_{n+1} est défini par la relation $A_{n+1} = f(A_n)$ et on pose $u_n = A_n A_{n+1}$.
 - (a) Calculer les affixes des points A_3 , A_4 , A_5 et A_6 . (0,25pt + 0,25pt + 0,25pt + 0,25pt)
 - (b) Placer les points A_3, A_4, A_5, A_6 et A_6 dans le repère $(O; \vec{u}, \vec{v})$. (01pt)
 - (c) Démontrer que la suite (u_n) est géométrique. (0,5pt)
- 3. Soit (v_n) la suite définie sur \mathbb{N} par :

$$v_n = u_0 + u_1 + u_2 + \dots + u_n = \sum_{k=0}^n u_k.$$

- (a) Exprimer v_n en fonction de n. (0,5pt)
- (b) La suite (v_n) est-elle convergente? (0,5pt)
- 4. (a) Calculer en fonction de n le rayon r_n du cercle circonscrit au triangle BA_nA_{n+1} . (0,5pt)
 - (b) Déterminer le plus petit entier naturel n_0 tel que $r_n < 10^{-2}$. (0,5pt)

$\underline{PROBLEME} \tag{10pt}$

PARTIE A

Soit h la fonction dérivable sur \mathbb{R} et définie par $h(x) = 1 + e^{2x-4}$ et $K = \left[1; \frac{5}{4}\right]$.

- 1. a) Calculer h'(x) et préciser le sens de variation de h. (0,25pt + 0,25pt)
 - b) Montrer que $h(K) \subset K$. (0,5pt)
- 2. a) Montrer que l'équation h(x) = x admet une solution unique λ dans K. (0,5pt)
 - b) Montrer que $\forall x \in K$, $0 \le h'(x) \le \frac{1}{2}$. (On pourra utiliser les variations de h). (0,25pt)
 - c) En déduire que $|h(x) \lambda| \le \frac{1}{2}|x \lambda|$. (0,25pt)
- 3. On considère la suite (W_n) définie sur $\mathbb N$ par :

$$\begin{cases} W_0 = 1 \\ W_{n+1} = h(W_n) \end{cases}$$

- a) Démontrer par récurrence que pour tout entier naturel $n, W_n \in K$. (0,5pt)
- b) Démontrer que $|W_{n+1} \lambda| \le \frac{1}{2}|W_n \lambda|$ et $|W_n \lambda| \le \left(\frac{1}{2}\right)^n$. $\forall n \in \mathbb{N}$. (0,5pt + 0,25pt)
- c) En déduire que la suite (W_n) converge vers un réel à préciser. (0,25pt)

PARTIE B

Soit f la fonction définie par :

$$f(x) = \begin{cases} \ln \left| \frac{x-1}{x+1} \right| & \text{si } x \in [0; +\infty[\\ x - \frac{e^x - 1}{e^x + 1} & \text{si } x \in] - \infty; 0[\end{cases}$$

- 1. Déterminer le domaine de définition D_f de f. (0,5pt)
- 2. Étudier la continuité de f en 0. (0,5pt)
- 3. a) Montrer que $\forall x \in]0; 1[, |x-1| = 1 x \text{ et } \frac{f(x)}{x} = \frac{\ln(1-x)}{x} \frac{\ln(1+x)}{x}.$ (0.5pt)
 - b) Étudier la dérivabilité de f en 0. (0.5pt)
 - c) En déduire les tangentes à la courbe représentative de f au point d'abscisse 0. (0,5pt)
- 4. Montrer que $\forall x \in]-\infty; 0[, f(x) = x + 1 \frac{2e^x}{e^x + 1}]$ (0,25pt)
- 5. Calculer les limites de f aux bornes des intervalles de son ensemble de définition. (0.5pt)
- 6. En déduire les équations des asymptotes à la courbe C_f de f. (0,5pt)
- 7. Calculer f'(x) pour tout $x \in \mathbb{R} \setminus \{0, 1\}$. (0,5pt)
- 8. Étudier les variations de f. (0,5pt)
- 9. Tracer la courbe C_f . (Unité : 2 cm) (0,5pt)

PARTIE C

Soit g la restriction de la fonction f à l'intervalle $I =]1; +\infty[$.

- 1. Montrer que la fonction g réalise une bijection de l'intervalle I sur un intervalle J à préciser. Soit g^{-1} sa bijection réciproque. (0,5pt)
- 2. Montrer que : $\forall x \in J, \ g^{-1}(x) = 1 \frac{2e^x}{e^x 1}$. (0,25pt)
- 3. Tracer la courbe $C_{q^{-1}}$ dans le repère précédent. (0,5pt)