

TSD305-1C55

DIGITAL TEMPERATURE SENSOR

Product Description

The TSD is a contactless temperature measurement system located in a TO5 package. The TSD includes an infrared sensor (thermopile) and a sensor signal conditioner.

The TSD can be interfaced to any microcontroller by an I^2C interface. This microcontroller has to calculate the temperature results based on the ADC values and the calibration parameters

Features

- 0°C ... +100°C measurement range
- Small size
- Up to ±1°C accuracy
- I²C Interface
- Low current consumption
- Operating Temperature Range: -10°C ... +85°C

Applications

- Contactless temperature measurement
- Climate control
- Industrial process control
- Household applications

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. Even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply voltage	V_{DD}		-0.3		+3.63	V
Storage temperature	T _{stor}	dry	-20		+85	°C
Voltage at supply and IO pins	V _{DD} V _{IO}		-0.5		V _{DD} +0.5	V
Current into supply and IO pins	I _{IN}		-100		100	mA
ESD rating	ESD	Human Body Model	-2		+2	kV
Humidity	Hum		Non condensing			

OPERATING CONDITIONS

If not otherwise noted, 3.3V supply voltage is applied.

Parameter	Symbol	Symbol Condition		Тур	Max	Unit
Operating supply voltage	V _{DD}	stabilized, 100nF	1.68		3.6	V
VDD rise time	t _{VDD}				200	μs
Operating temperature	Тор		-20		+85	°C
Object temperature range	T _{OBJ}		0		+100	°C
Resolution	RES				0.1	°C
Supply Current		Active state, average		1050	1500	μΑ
Supply Current	I _{VDD}	Sleep state, idle current		20	25	nA
Serial data clock I2C	F _{SCL}				3.4	MHz
Self heating	SH	1 sample/s, still air, 60s			+0.2	°C
VDD capacitor	C _{VDD} Place close to the sensor			100		nF

THERMOPILE COMPONENT

If not otherwise noted, 3.3V supply voltage is applied.

Parameter Symbol Condi		Condition	Min	Тур	Max	Unit
Absorber area	А			0.8 x 0.8		mm
Field of view	FOV	At 50% of maximum signal	88			deg
Filter transmission range	LWP	Long wave pass		>5.5		μm

ANALOGUE TO DIGITAL CONVERTER

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Resolution	ADC _{RES}			16		bit
Conversion time	t _{CONV}			44.8	59.2	ms
Rise time	t ₆₃	Including rise time of sensor element			44.8	ms
Resolution internal temperature sensor	ITS _{RES}			0.003		K/LSB

TOLERANCES

If not otherwise noted, 3.3V supply voltage is applied.

 T_{sen} = sensor temperature, T_{obj} = object temperature

Parameter	Symbol	Sensor Temo	Object Temp	Max	Unit
Accuracy Standard Temp 1)	ACCs	+15°C < T _{sen} < +35°C	+40°C < T _{obj} < +80°C	±1	°C
Accuracy Extended Temp. 1 2)	ACC	Complete range	+40°C < T _{obj} < +80°C	+2	°C
Accuracy Extended Temp. 1 2)	ACC _{E1}	+15°C < T _{sen} < +35°C	Complete range	TZ	
Accuracy Extended Temp. 2 2)	ACC _{E3}	Complete range	Complete range	±3	°C

Other temperature ranges and accuracies are available on request.

²⁾ Proved by design

Typical accuracy performance

¹⁾ Proved while production

POWER & RESET

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Start up time	t _{STA1}	V _{DD} ramp up to interface communication			1	ms
	t _{STA2}	V _{DD} ramp to first ADC measurement			2.5	ms
Wake up time	t _{WUP1}	Sleep to active state interface communication			0.5	ms
	t _{WUP2}	Sleep to first ADC measurement			2	ms
Power down time for reset	t _{RESET}	VDD _{low}	3			μs
VDD low level VDD _{low}			0		0.2	V
VDD rising slope SR _{VDD}			10			V/ms

DIMENSIONS

If not specified, all tolerances according DIN ISO 2768-m.

PIN FUNCTION TABLE

Pin	Name	Туре	Function
1	SCL	DI	I ² C Clock
2	SDA	DIO	I ² C Data
3	V_{DD}	Р	Supply Voltage
4	V_{SS}	Р	Ground

I²C INTERFACE

An I^2C communication message starts with a start condition and it is ended by a stop condition.

Most commands consist of two bytes: the address byte and command byte.

I²C ADRESS

The standard I²C address is 0x00 (0b0000000X).

X = 0: I²C Write
 X = 1: I²C Read

STATUS BYTE

Each return starts with a status byte followed by the requested data word.

Bit	7	6	5	4	3	2	1	0
Meaning			Busy			Memory Error		

• Busy: 1 = Sensor is busy. The requested data is not available yet.

• Memory Error: 1 = Memory integrity check failed. Memory was changed after factory calibration.

COMMANDS

Note: Each return starts with a status byte followed by the requested data word.

Command	Return	Description
0x00 0x39	16 bit EEPROM data	Read data from EEPROM address (0x00 0x39) matching the command
0xAF	24 bit object temperature ADC, 24 bit sensor temperature ADC	Measure object temperature and sensor temperature ADC 16 times and calculates mean value. Store data in output buffer.

Read EEPROM

Write Command:

Read EEPROM Data:

Perform Measurement and Read ADC Data

Write Command:

Read ADC Data:

EEPROM CONTENT

Adress / hex	Adress / dec	Description	Name	Format	Example		
Adicos / lick	Auress / des	Description	Numo	Tormat	Content	Value	
0x00	0	Lot Nr.		UINT16	15001	YY WWW	
0x01	1	Serial Number		UINT16	12345	Number	
0x02 0x19	2 25	Factory Calibration Data					
0x1A	26	Min. Sensor Temp. / °C	T_{SenMin}	SINT16	0xFFEC	-20°C	
0x1B	27	Max. Sensor Temp. / °C	T _{SenMax}	SINT16	0x0055	+85°C	
0x1C	28	Min. Object Temp. / °C	T_{ObiMin}	SINT16	0x0000	0°C	
0x1D	29	Max. Object Temp. / °C	T_{ObjMax}	SINT16	0x0064	100°C	
0x1E	30	T		IEEE 754 H-Word	0xBB96	0.0040	
0x1F	31	Temperature Coefficient	TC	IEEE 754 L-Word	0xBB99	-0.0046	
0x20	32	Defense Temperature	Н	IEEE 754 H-Word	0x41D7	00.00	
0x21	33	Reference Temperature	T_{REF}	IEEE 754 L-Word	0x70A4	26.93	
0x22	34	Compensation	1.4	IEEE 754 H-Word	0x3A07	E 404E 04	
0x23	35	Coefficient k4	k4 _{comp}	IEEE 754 L-Word	0x4C8C	5.161E-04	
0x24	36	Compensation	1.0	IEEE 754 H-Word	0x3F10	E 000E 04	
0x25	37	Coefficient k3	k3 _{comp}	IEEE 754 L-Word	0x5CEC	5.639E-01	
0x26	38	Compensation	1.0	IEEE 754 H-Word	0x4367	0.0445 00	
0x27	39	Coefficient k2	k2 _{comp}	IEEE 754 L-Word	0x0D1F	2.311E+02	
0x28	40	Compensation	L.a	IEEE 754 H-Word	0x4724	4 0075 04	
0x29	41	Coefficient k1	k1 _{comp}	IEEE 754 L-Word	0x5A6F	4.207E+04	
0x2A	42	Compensation	1.0	IEEE 754 H-Word	0xC9A0	4 0405 00	
0x2B	43	Coefficient k0	$k0_{comp}$	IEEE 754 L-Word	0x254D	-1.312E+06	
0x2C	44	N					
0x2D	45	Not used					
0x2E	46	ADC → T	1.4	IEEE 754 H-Word	0x944B	4 0005 00	
0x2F	47	Coefficient k4	k4 _{Obj}	IEEE 754 L-Word	0xD24F	-1.029E-26	
0x30	48	ADC → T	1:0	IEEE 754 H-Word	0x2052	1 707E 10	
0x31	49	Coefficient k3	$k3_{Obj}$	IEEE 754 L-Word	0xF1C2	1.787E-19	
0x32	50	ADC → T	1:0	IEEE 754 H-Word	0xABE5	1 0015 10	
0x33	51	Coefficient k2	k2 _{Obj}	IEEE 754 L-Word	0x991B	-1.631E-12	
0x34	52	ADC → T	1.4	IEEE 754 H-Word	0x3797	1 0005 65	
0x35	53	Coefficient k1	k1 _{Obj}	IEEE 754 L-Word	0x2BBF	1.802E-05	
0x36	54	ADC → T	1-0	IEEE 754 H-Word	0x41D7	0.0005 61	
0x37	55	Coefficient k0	$k0_{Obj}$	IEEE 754 L-Word	0x6DBA	2.693E+01	
0x38	56	Status		UINT16	TBD		

NUMBER FORMAT

UINT16

Description: Unsigned integer

• Bits 16

Min (dec/hec/bin)
 Max (dec/hec/bin)
 0 / 0x0000 / 0b0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 000
 0000 0000
 0000 000
 0000 000
 <l

SINT16

Description: Signed integer

Bits 16

Min (dec/hec/bin) - 32,768 / 0x8000 / 0b1000 0000 0000 0000
 Max (dec/hec/bin) 32,767 / 0x7FFF / 0b0111 1111 1111 1111

FLOAT IEEE 754

Description: FloatBits 32

Example: H-Word 0x3DCC L-Word 0xCCCD

 \rightarrow 0.1

FLOAT IEEE 754 Conversions

The two integer words can easily be converted to a floating-point number by using a union consisting of an integer array and a float.

TEMPERATURE CALCULATION

SENSOR TEMPERATURE

The sensor temperature T_{Sen} is calculated from the corresponding 24 bit ADC value ADC_{sen}.

Name	Description	Format	Range	
			Min	Max
ADC _{sen}	ADC Sensor Temperature	INT24	0	16,777,216

ADCsen is scaled to cover the complete sensor temperature range from TsenMin to TsenMax.

Adress / hex	Adress / dec Description		Name	Format	Example		
		·			Value	Max	
0x1A	26	Min. Sensor Temp. / °C	T _{SenMin}	SINT16	0xFFEC	-20°C	
0x1B	27	Max. Sensor Temp. / °C	T _{SenMax}	SINT16	0x0055	+85°C	

Formula:

$$T_{\text{sen}} = ADC_{\text{sen}} / 2^{24} \times (T_{\text{SenMax}} - T_{\text{SenMin}}) + T_{\text{SenMin}}$$

Example:

$$ADC_{sen} = 6,364,157$$

$$T_{sen} = 6,364,157 / 224 \times [+85^{\circ}C - (-20^{\circ}C)] + (-20^{\circ}C) = \underline{19.83^{\circ}C}$$

OBJECT TEMPERATURE

The object temperature Tobj is calculated in dependence of the sensor temperature Tsen and ADCObj.

ADC_{obj} is shifted by 2²³ in order to provide unsigned integer values for positive and negative measurement values.

Name	Description	Format	Range		
	·		Min	Max	
ADC _{obj}	ADC Object Temperature Shifted by 2 ²³ (0 is represented by 8,388,608)	INT24	0	16,777,216	

The process consists of three successive steps.

TC Correction Factor

Adress / hex	Adress / dec	Description	Name	Format	Exan	nple
	7.4.1000 / 4.00		110			Value
0x1E	30	Tarana watu wa Ca afficia at	TO	IEEE 754 H-Word	0xBB96	0.0040
0x1F	31	Temperature Coefficient	TC	IEEE 754 L-Word	0xBB99	-0.0046
0x20	32	Defenses Temporations	T _{REF}	IEEE 754 H-Word	0x41D7	.00.00
0x21	33	Reference Temperature		IEEE 754 L-Word	0x70A4	+26.93

$$T_{sen} = +19.83$$
°C
 $T_{ref} = +26.93$ °C
 $TC = -0.0046$

Example:

Formula:

Temperature Compensation

Adress / hex	Adress / dec	Description	Name	Format	Example		
						Value	
0x22	34	Compensation	LA	IEEE 754 H-Word 0x3A0		5.161E-04	
0x23	35	Coefficient k4	k4 _{comp}	IEEE 754 L-Word	0x4C8C	5.161E-04	
0x24	36	Compensation	k9	IEEE 754 H-Word	0x3F10	5.639E-01	
0x25	37	Coefficient k3	k3 _{comp}	IEEE 754 L-Word	0x5CEC	5.639E-01	
0x26	38	Compensation	1.0	IEEE 754 H-Word	0x4367	2.311E+02	
0x27	39	Coefficient k2	k2 _{comp}	IEEE 754 L-Word	0x0D1F	2.311E+02	
0x28	40	Compensation	let.	IEEE 754 H-Word	0x4724	4.207E+04	
0x29	41	Coefficient k1	k1 _{comp}	IEEE 754 L-Word	0x5A6F	4.207E+04	
0x2A		Compensation	k0	IEEE 754 H-Word	0xC9A0	-1.312E+06	
0x2B		Coefficient k0	k0 _{comp}	IEEE 754 L-Word	0x254D	-1.312E+00	

Formula:		Example:	
		T _{sen} =	+19.83°C
		k4comp k0comp	See table above
Offset =	$k4_{comp} \times Tsen^4$ + $k3_{comp} \times Tsen^3$ + $k2_{comp} \times Tsen^2$ + $k1_{comp} \times Tsen$ + $k0_{comp}$	Offset =	$= 5.161 \cdot 10^{-4} \times 19.83^{4}$ $+ 5.639 \cdot 10^{-1} \times 19.83^{3}$ $+ 2.311 \cdot 10^{2} \times 19.83^{2}$ $+ 4.207 \cdot 10^{4} \times 19.83$ $+ -1.312 \cdot 10^{6}$
			= -382,399
Offset _{TC} =	Offset × TCF	$Offset_{TC} =$	= -382,399 × 1.0327 = -394,904
			- 551,564

Object Temperature Determination

Adress / hex	Adress / dec	Description	Name	Format	Example		
					Content	Value	
0x2E	46	ADC → T	k4	IEEE 754 H-Word	0x944B	-1.029E-26	
0x2F	47	Coefficient k4	k4 _{Obj}	IEEE 754 L-Word	0xD24F	-1.029E-26	
0x30	48	ADC → T	1.0	IEEE 754 H-Word	0x2052	1.787E-19	
0x31	49	Coefficient k3	k3 _{Obj}	IEEE 754 L-Word	0xF1C2	1.707E-19	
0x32	50	ADC → T	k2 _{Obj}	IEEE 754 H-Word	0xABE5	-1.631E-12	
0x33	51	Coefficient k2		IEEE 754 L-Word	0x991B	-1.031E-12	
0x34	52	ADC → T	k-1	IEEE 754 H-Word	0x3797	1.802E-05	
0x35	53	Coefficient k1	k1 _{Obj}	IEEE 754 L-Word	0x2BBF	1.802E-05	
0x36	54	ADC → T	k0	IEEE 754 H-Word	0x41D7	2.693E+01	
0x37	55	Coefficient k0	k0 _{Obj}	IEEE 754 L-Word	0x6DBA	2.093E+U1	

	Example:	
	ADCobj = k4obj k0obj	10,738,758 See table above
Offset _{TC} + ADC _{Obj} - 2 ²³	ADC _{Comp} =	= -394,904 + 10,738,758 - 8,388,608 = 1,955,246
ADC _{Comp} / TCF	ADCcompTC =	= 1,955,246 / 1.0327 = 1,893,334
$\begin{array}{l} \text{k4obj} \times \text{ADC}_{\text{CompTC}}^4 \\ + \text{k3obj} \times \text{ADC}_{\text{CompTC}}^3 \\ + \text{k2obj} \times \text{ADC}_{\text{compTC}}^2 \\ + \text{k1obj} \times \text{ADC}_{\text{compTC}} \\ + \text{k0obj} \end{array}$	T _{Obj} =	= $-1.029 \cdot 10^{-26} \times 1,893,334^4$ + $1.787 \cdot 10^{-19} \times 1,893,334^3$ + $-1.631 \cdot 10^{-12} \times 1,893,334^2$ + $1.802 \cdot 10^{-5} \times 1,893,334$ + $2.693 \cdot 10$ = $56.28^{\circ}C$
	ADCcomp / TCF k4obj × ADCcompTc ⁴ + k3obj × ADCcompTc ³ + k2obj × ADCcompTc ² + k1obj × ADCcompTc	$ADC_{Obj} = \\ k4_{Obj} \dots k0_{Obj}$ $Offset_{TC} + ADC_{Obj} - 2^{23}$ $ADC_{comp} = $ ADC_{comp} / TCF ADC_{comp} / TCF $ADC_{comp} = $ $K4_{Obj} \times ADC_{comp} = $

ORDER INFORMATION

Further customer specific adaptations are available on request. Please refer to the table below for part name, description and order information.

Part Number	Part Desription	Comment
G-TPMO-101	TSD305-1C55 Digital Thermopile Sensor	TO5, I ² C Interface, 0°C +100°C

EMC

Due to the use of these modules for OEM application no CE declaration is done. Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented. The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company 1711 139th Lane NW Andover, MN 55304 Tel: +1 763 689 4870 Fax: +1 763 689 5033

customercare.ando@te.com

EUROPE

TE Connectivity Sensors Germany GmbH

Hauert 13

44227 Dortmund Germany Tel: +49-231-9740-0 Fax: +49-231-9740-20

CustomerCare.dtmd@te.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company No. 368 Wulian 1st Road Gongxing Town Shuangliu, Chengdu Sichuan, 610200 China Tel: +86 (0) 28 8573 9088

Tel: +86 (0) 28 8573 9088 Fax: +86 (0) 28 8573 9070

customercare.chdu@te.com

ASIA

Measurement S a TE Connectiv No. 26, Langsh High-tech Park Nanshan Distri China

Tel: +86-755-3 Fax: +86-755-3 CustomerCare

te.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, MEAS, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2016 TE Connectivity Ltd. family of companies All Rights Reserved.

TSD305-2C55

DIGITAL TEMPERATURE SENSOR

Product Description

The TSD is a contactless temperature measurement system located in a TO5 package. The TSD includes an infrared sensor (thermopile) and a sensor signal conditioner.

The TSD can be interfaced to any microcontroller by an I^2C interface. This microcontroller has to calculate the temperature results based on the ADC values and the calibration parameters

Features

- 0°C ... +300°C measurement range
- Small size
- I²C Interface
- Low current consumption
- Operating Temperature Range: -10°C ... +85°C

Applications

- Contactless temperature measurement
- Climate control
- Industrial process control
- Household applications

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. Even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply voltage	V _{DD}		-0.3		+3.63	V
Storage temperature	T _{stor}	dry	-20		+85	°C
Voltage at supply and IO pins	V _{DD} V _{IO}		-0.5		V _{DD} +0.5	V
Current into supply and IO pins	I _{IN}		-100		100	mA
ESD rating	ESD	Human Body Model	-2		+2	kV
Humidity	Hum		No	on conden	sing	

OPERATING CONDITIONS

If not otherwise noted, 3.3V supply voltage is applied.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operating supply voltage	V _{DD}	stabilized, 100nF	1.68		3.6	V
VDD rise time	t _{VDD}				200	μs
Operating temperature	T _{op}		-20		+85	°C
Object temperature range	T _{OBJ}		0		+300	°C
Resolution	RES				0.1	°C
Supply Current		Active state, average		1050	1500	μΑ
Supply Current	I _{VDD}	Sleep state, idle current		20	25	nA
Serial data clock I2C	F _{SCL}				3.4	MHz
Self heating	SH	1 sample/s, still air, 60s			+0.2	°C
VDD capacitor	C _{VDD}	Place close to the sensor		100		nF

THERMOPILE COMPONENT

If not otherwise noted, 3.3V supply voltage is applied.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Absorber area	А			0.8 x 0.8		mm
Field of view	FOV	At 50% of maximum signal		88		deg
Filter transmission range	LWP	Long wave pass		>5.5		μm

ANALOGUE TO DIGITAL CONVERTER

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Resolution	ADC _{RES}			16		bit
Conversion time	t _{CONV}			44.8	59.2	ms
Rise time	t ₆₃	Including rise time of sensor element			44.8	ms
Resolution internal temperature sensor	ITS _{RES}			0.003		K/LSB

TOLERANCES

If not otherwise noted, 3.3V supply voltage is applied.

 T_{sen} = sensor temperature, T_{obj} = object temperature

Parameter	Symbol	Sensor Temo	Object Temp	Max	Unit
Accuracy Standard Temp 1)	ACCs	+10°C < T _{sen} < +40°C	+170°C < T _{obj} < +190°C	±1.5	%FS
Accuracy Extended Temp. 2)	ACC _{E1}	Complete range	Complete range	±2.5	%FS

Other temperature ranges and accuracies are available on request.

POWER & RESET

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Start up time	t _{STA1}	V _{DD} ramp up to interface communication			1	ms
	t _{STA2}	V _{DD} ramp to first ADC measurement		2.5	ms	
Wake up time	t _{WUP1}	Sleep to active state interface communication			0.5	ms
	t _{WUP2}	Sleep to first ADC measurement			2	ms
Power down time for reset	t _{RESET}	VDD _{low}	3			μs
VDD low level	VDD_{low}		0		0.2	V
VDD rising slope	SR _{VDD}		10			V/ms

DIMENSIONS

If not specified, all tolerances according DIN ISO 2768-m.

¹⁾ Proved while production

²⁾ Proved by design

PIN FUNCTION TABLE

Pin	Name	Туре	Function
1	SCL	DI	I ² C Clock
2	SDA	DIO	I ² C Data
3	V_{DD}	Р	Supply Voltage
4	V _{SS}	Р	Ground

I2C INTERFACE

An I2C communication message starts with a start condition and it is ended by a stop condition.

Most commands consist of two bytes: the address byte and command byte.

I²C ADRESS

The standard I²C address is 0x00 (0b0000000X).

X = 0: I²C Write
 X = 1: I²C Read

STATUS BYTE

Each return starts with a status byte followed by the requested data word.

Bit	7	6	5	4	3	2	1	0
Meaning			Busy			Memory Error		

Busy: 1 = Sensor is busy. The requested data is not available yet.

Memory Error: 1 = Memory integrity check failed. Memory was changed after factory calibration.

COMMANDS

Note: Each return starts with a status byte followed by the requested data word.

Command	Return	Description
0x00 0x39	16 bit EEPROM data	Read data from EEPROM address (0x00 0x39) matching the command
0xAF	24 bit object temperature ADC, 24 bit sensor temperature ADC	Measure object temperature and sensor temperature ADC 16 times and calculates mean value. Store data in output buffer.

Read EEPROM

Write Command:

Read EEPROM Data:

ı											
	c	Clave Advace	4	^	Ctatus Duta	۸	EEPROM Data	٨	EEPROM Data	N	l _D
	3	Slave Adress	1	Α	Status byte	А	[15:8]	А	[7:0]	N	

Perform Measurement and Read ADC Data

Write Command:

Read ADC Data:

EEPROM CONTENT

Adress / hex	Adress / dec	Description	Name	Format	Exa	Example		
Adicos / nex	Adicos / deo	Besonption	Numo	Tomat	Content	Value		
0x00	0	Lot Nr.		UINT16	15001	YY WWW		
0x01	1	Serial Number		UINT16	12345	Number		
0x02 0x19	2 25	Factory Calibration Data						
0x1A	26	Min. Sensor Temp. / °C	T _{SenMin}	SINT16	0xFFEC	-20°C		
0x1B	27	Max. Sensor Temp. / °C	T _{SenMax}	SINT16	0x0055	+85°C		
0x1C	28	Min. Object Temp. / °C	T_{ObjMin}	SINT16	0x0000	0°C		
0x1D	29	Max. Object Temp. / °C	T_{ObjMax}	SINT16	0x0064	100°C		
0x1E	30	Tamparatura Coefficient	TC	IEEE 754 H-Word	0xBB96	-0.0046		
0x1F	31	Temperature Coefficient	10	IEEE 754 L-Word	0xBB99	-0.0046		
0x20	32	Reference Temperature	т	IEEE 754 H-Word	0x41D7	26.93		
0x21	33	Reference Temperature	T _{REF}	IEEE 754 L-Word	0x70A4	20.93		
0x22	34	Compensation	l _e A	IEEE 754 H-Word	0x3A07	5.161E-04		
0x23	35	Coefficient k4	k4 _{comp}	IEEE 754 L-Word	0x4C8C	3.161E-04		
0x24	36	Compensation	1,0	IEEE 754 H-Word	0x3F10	5.639E-01		
0x25	37	Coefficient k3	k3 _{comp}	IEEE 754 L-Word	0x5CEC	3.039E-01		
0x26	38	Compensation	1,0	IEEE 754 H-Word	0x4367	2.311E+02		
0x27	39	Coefficient k2	k2 _{comp}	IEEE 754 L-Word	0x0D1F	2.311E+02		
0x28	40	Compensation	l/1	IEEE 754 H-Word	0x4724	4.207E+04		
0x29	41	Coefficient k1	k1 _{comp}	IEEE 754 L-Word	0x5A6F	4.207 = +04		
0x2A	42	Compensation	l ₂ O	IEEE 754 H-Word	0xC9A0	-1.312E+06		
0x2B	43	Coefficient k0	k0 _{comp}	IEEE 754 L-Word	0x254D	-1.312E+00		
0x2C	44	Not used						
0x2D	45	Not used						
0x2E	46	ADC → T	k4 _{Obj}	IEEE 754 H-Word	0x944B	-1.029E-26		
0x2F	47	Coefficient k4	K4Obj	IEEE 754 L-Word	0xD24F	-1.029L-20		
0x30	48	ADC → T	k3 _{Obj}	IEEE 754 H-Word	0x2052	1.787E-19		
0x31	49	Coefficient k3	NJObj	IEEE 754 L-Word	0xF1C2	1.707L-19		
0x32	50	ADC → T	k2 _{Obj}	IEEE 754 H-Word	0xABE5	-1.631E-12		
0x33	51	Coefficient k2	N∠Obj	IEEE 754 L-Word	0x991B	-1.031L-12		
0x34	52	ADC → T	V1	IEEE 754 H-Word	0x3797	1.802E-05		
0x35	53	Coefficient k1	k1 _{Obj}	IEEE 754 L-Word	0x2BBF	1.002E-05		
0x36	54	ADC → T	kO	IEEE 754 H-Word	0x41D7	2.693E+01		
0x37	55	Coefficient k0	k0 _{Obj}	IEEE 754 L-Word	0x6DBA	2.093E+UI		
0x38	56	Status		UINT16	TBD			

NUMBER FORMAT

UINT16

Description: Unsigned integer

• Bits 16

Min (dec/hec/bin)
 Max (dec/hec/bin)
 0 / 0x0000 / 0b0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 0000
 0000 000
 0000 0000
 0000 000
 0000 000
 <l

SINT16

Description: Signed integer

Bits
 16

Min (dec/hec/bin) - 32,768 / 0x8000 / 0b1000 0000 0000 0000
 Max (dec/hec/bin) 32,767 / 0x7FFF / 0b0111 1111 1111 1111

FLOAT IEEE 754

Description: FloatBits 32

Example: H-Word 0x3DCC L-Word 0xCCCD

 $\rightarrow 0.1$

FLOAT IEEE 754 Conversions

The two integer words can easily be converted to a floating-point number by using a union consisting of an integer array and a float.

TEMPERATURE CALCULATION

SENSOR TEMPERATURE

The sensor temperature T_{Sen} is calculated from the corresponding 24 bit ADC value ADC_{sen}.

Name	Description	Format	Rai	nge	
			Min Max		
ADC _{sen}	ADC Sensor Temperature	INT24	0	16,777,216	

ADCsen is scaled to cover the complete sensor temperature range from TsenMin to TsenMax.

Adress / hex	Adress / dec	Description	Name	Format	Exar	mple
		·			Value Max	
0x1A	26	Min. Sensor Temp. / °C	T _{SenMin}	SINT16	0xFFEC	-20°C
0x1B	27	Max. Sensor Temp. / °C	T _{SenMax}	SINT16	0x0055	+85°C

Formula:

$$T_{\text{sen}} = ADC_{\text{sen}} / 2^{24} \times (T_{\text{SenMax}} - T_{\text{SenMin}}) + T_{\text{SenMin}}$$

Example:

$$ADC_{sen} = 6,364,157$$

$$T_{sen} = 6,364,157 / 224 \times [+85^{\circ}C - (-20^{\circ}C)] + (-20^{\circ}C) = \underline{19.83^{\circ}C}$$

OBJECT TEMPERATURE

The object temperature Tobj is calculated in dependence of the sensor temperature Tsen and ADCobj.

ADC_{obj} is shifted by 2²³ in order to provide unsigned integer values for positive and negative measurement values.

Name	Description	Format	Range Min Max		
	·		Min Max		
ADC _{obj}	ADC Object Temperature Shifted by 2 ²³ (0 is represented by 8,388,608)	INT24	0	16,777,216	

The process consists of three successive steps.

TC Correction Factor

Adress / hex	Adress / dec	Description	Name	Format	Exan	nple
	7.4.1000 / 4.00			Content	Value	
0x1E	30	Tanana mahama On a Wisingt	TO	IEEE 754 H-Word	0xBB96	0.0040
0x1F	31	Temperature Coefficient	TC	IEEE 754 L-Word	0xBB99	-0.0046
0x20	32	5.4	_	IEEE 754 H-Word	0x41D7	.00.00
0x21	33	Reference Temperature	T_{REF}	IEEE 754 L-Word	0x70A4	+26.93

$$T_{sen} = +19.83$$
°C
 $T_{ref} = +26.93$ °C
 $TC = -0.0046$

Example:

Formula:

Temperature Compensation

Adress / hex	Adress / dec	Description	Name	Format	Exa	ample
					Content	Value
0x22	34	Compensation	k4	IEEE 754 H-Word	0x3A07	5.161E-04
0x23	35	Coefficient k4	k4 _{comp}	IEEE 754 L-Word	0x4C8C	3.101E-04
0x24	36	Compensation Coefficient k3	10	IEEE 754 H-Word	0x3F10	5.639E-01
0x25	37		k3 _{comp}	IEEE 754 L-Word	0x5CEC	3.039L-01
0x26	38	Compensation	1.0	IEEE 754 H-Word	0x4367	2.311E+02
0x27	39	Coefficient k2	k2 _{comp}	IEEE 754 L-Word	0x0D1F	2.311E+02
0x28	40	Compensation	Let.	IEEE 754 H-Word	0x4724	4.207E+04
0x29	41	Coefficient k1	k1 _{comp}	IEEE 754 L-Word	0x5A6F	4.207E+04
0x2A		Compensation	k0	IEEE 754 H-Word	0xC9A0	-1.312E+06
0x2B		Coefficient k0	k0 _{comp}	IEEE 754 L-Word	0x254D	-1.312E+00

Formula:		Example:	
		T _{sen} =	+19.83°C
		k4comp k0comp	See table above
Offset =	$k4_{comp} \times Tsen^4$ + $k3_{comp} \times Tsen^3$ + $k2_{comp} \times Tsen^2$ + $k1_{comp} \times Tsen$ + $k0_{comp}$	Offset =	$= 5.161 \cdot 10^{-4} \times 19.83^{4}$ $+ 5.639 \cdot 10^{-1} \times 19.83^{3}$ $+ 2.311 \cdot 10^{2} \times 19.83^{2}$ $+ 4.207 \cdot 10^{4} \times 19.83$ $+ -1.312 \cdot 10^{6}$
			= -382,399
Offset _{TC} =	Offset × TCF	$Offset_{TC} =$	= -382,399 × 1.0327 = -394,904
			- 551,564

Object Temperature Determination

Adress / hex Adress / de		Description	Name	Format	Exa	ample
	7.0.0007 0.00				Content	Value
0x2E	46	ADC → T	1.4	IEEE 754 H-Word	0x944B	-1.029E-26
0x2F	47	Coefficient k4	k4 _{Obj}	IEEE 754 L-Word	0xD24F	1 -1.029E-20
0x30	48	ADC → T	1.0	IEEE 754 H-Word	0x2052	1.787E-19
0x31	49	Coefficient k3	k3 _{Obj}	IEEE 754 L-Word	0xF1C2	1.767E-19
0x32	50	ADC → T	1.0	IEEE 754 H-Word	0xABE5	1 6015 10
0x33	51	L'Oefficient KZ	k2 _{Obj}	IEEE 754 L-Word	0x991B	-1.631E-12
0x34	52	ADC → T	1.4	IEEE 754 H-Word	0x3797	1 0005 05
0x35	53	Coefficient k1	k1 _{Obj}	IEEE 754 L-Word	0x2BBF	1.802E-05
0x36	54	ADC → T	k0 _{Obi}	IEEE 754 H-Word	0x41D7	2.6025.01
0x37	55	55 Coefficient k0		IEEE 754 L-Word	0x6DBA	2.693E+01

Formula:		Example:	
		ADCobj =	10,738,758
		k4obj k0obj	See table above
ADCcomp =	Offset _{TC} + ADC _{Obj} - 2 ²³	ADCcomp =	= -394,904 + 10,738,758 - 8,388,608 = 1,955,246
ADCcompTC =	ADC _{Comp} / TCF	ADCcompTC =	= 1,955,246 / 1.0327 = 1,893,334
Тоы =	$\begin{array}{l} \text{k4}_{\text{Obj}} \times \text{ADC}_{\text{CompTC}}^4 \\ + \text{k3}_{\text{Obj}} \times \text{ADC}_{\text{CompTC}}^3 \\ + \text{k2}_{\text{Obj}} \times \text{ADC}_{\text{CompTC}}^2 \\ + \text{k1}_{\text{Obj}} \times \text{ADC}_{\text{compTC}} \\ + \text{k0}_{\text{Obj}} \end{array}$	Tobj =	= -1.029·10 ⁻²⁶ × 1,893,334 ⁴ + 1.787·10 ⁻¹⁹ × 1,893,334 ³ + -1.631·10 ⁻¹² × 1,893,334 ² + 1.802·10 ⁻⁵ × 1,893,334 + 2.693·10
			= <u>56.28°C</u>

ORDER INFORMATION

Further customer specific adaptations are available on request. Please refer to the table below for part name, description and order information.

Part Number	Part Desription	Comment
G-TPMO-102	TSD305-2C55 Digital Thermopile Sensor	TO5, I ² C Interface, 0°C +300°C

EMC

Due to the use of these modules for OEM application no CE declaration is done. Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented. The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company 1711 139th Lane NW Andover, MN 55304 Tel: +1 763 689 4870 Fax: +1 763 689 5033

customercare.ando@te.com

EUROPE

TE Connectivity Sensors Germany GmbH

Hauert 13

44227 Dortmund Germany Tel: +49-231-9740-0 Fax: +49-231-9740-20

CustomerCare.dtmd@te.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company No. 368 Wulian 1st Road Gongxing Town Shuangliu, Chengdu Sichuan, 610200 China Tel: +86 (0) 28 8573 9088

Fax: +86 (0) 28 8573 9070

customercare.chdu@te.com

ASIA

Measurement S a TE Connectiv No. 26, Langsh High-tech Park Nanshan Distri China

Tel: +86-755-3 Fax: +86-755-3 CustomerCare

te.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, MEAS, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2016 TE Connectivity Ltd. family of companies All Rights Reserved.

TSD305

DIGITAL TEMPERATURE SENSORS

Product Description

The TSD Series are digital thermopile sensors in a TO5 package. The TSD sensors include an infrared sensor (thermopile) and a sensor signal conditioner.

The TSD sensors can be interfaced to any microcontroller by an I²C interface. This microcontroller has to calculate the temperature results based on the ADC values and the calibration parameters

Features

- 0°C ... up to +300°C measurement ranges
- Small size
- Small field of view available
- Up to ±1°C accuracy
- I²C Interface
- Low current consumption
- Operating Temperature Range: -10°C ... +85°C

Applications

- Contactless temperature measurement
- Climate control
- Industrial process control
- Household applications

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. Even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply voltage	V _{DD}		-0.3		+3.63	V
Storage temperature	T _{stor}	dry	-20		+85	°C
Voltage at supply and IO pins	V _{DD} V _{IO}		-0.5		V _{DD} +0.5	V
Current into supply and IO pins	I _{IN}		-100		100	mA
ESD rating	ESD	Human Body Model	-2		+2	kV
Humidity	Hum		No	on conder	sing	

OPERATING CONDITIONS

If not otherwise noted, 3.3V supply voltage is applied.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operating supply voltage	V_{DD}	stabilized, 100nF	1.68		3.6	V
VDD rise time	t _{VDD}				200	μs
Operating temperature	T _{op}		-20		+85	°C
Resolution	RES				0.1	°C
Supply Current	I _{VDD}	Active state, average		1050	1500	μΑ
Supply Current		Sleep state, idle current		20	25	nA
Serial data clock I2C	F _{SCL}		10	100	400	kHz
Self-heating	SH	1 sample/s, still air, 60s			+0.2	°C
VDD capacitor	C _{VDD}	Place close to the sensor		100		nF

THERMOPILE COMPONENT

If not otherwise noted, 3.3V supply voltage is applied.

Parameter	Symbol	Condition	Sensor	Min	Тур	Max	Unit
Absorber area	А			0.8 x 0.8			mm
Field of view	FOV	At 50% of maximum signal	TSD305-1C55 TSD305-2C55 TSD305-3C55		88		deg
			TSD305-1SL10		10		deg
Filter transmission range		Long wave pass	TSD305-1C55 TSD305-2C55 TSD305-3C55		>5.5		μm
		Silicon lens, no coating	TSD305-1SL10		≥1.1		μm

ANALOGUE TO DIGITAL CONVERTER

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Resolution	ADC _{RES}			16		bit
Conversion time	t _{CONV}			44.8	59.2	ms
Rise time	t ₆₃	Including rise time of sensor element			44.8	ms
Resolution internal temperature sensor	ITS _{RES}			0.003		K/LSB

OBJECT TEMPERATURE RANGE

Parameter	Symbol	Sensor	Min	Тур	Max	Unit
Object temperature range ¹⁾	т	TSD305-1C55 TSD305-3C55	0		+100	°C
	I OBJ	TSD305-2C55 TSD305-1SL10	0		+300	°C

¹⁾ Other temperatures on request

TOLERANCES

If not otherwise noted, 3.3V supply voltage is applied.

 T_{sen} = sensor temperature, T_{obj} = object temperature

Parameter	Symbol	Sensor Temperature	Sensor	Object Temperature	Max	Unit
Acquirect Standard Town 1)	A.C.C	+15°C < T _{sen} < +35°C	TSD305-1C55 TSD305-3C55	+40°C < T _{obj} < +80°C	±1	0/ 50
Accuracy Standard Temp 1)	ACCs	+15 C < 1 _{sen} < +35 C	TSD305-2C55 TSD305-1SL10	+170°C < T _{obj} < +190°	1 ±1	%FS
		Complete range	TSD305-1C55	+40°C < T _{obj} < +80°C		
Accuracy Extended Temp. 1 2)	400	+15°C < T _{sen} < +35°C		Complete range	±2	%FS
Accuracy Extended Temp. 1	ACC _{E1}	Complete range	TSD305-2C55	+170°C < T _{obj} < +190°	IZ	701-3
		+15°C < T _{sen} < +35°C	TSD305-1SL10	Complete range		
Accuracy Extended Temp. 2 2)	ACC _{E3}	Complete range	TSD305-1C55 TSD305-2C55 TSD305-3C55 TSD305-1SL10	Complete range	±3	%FS

Other temperature ranges and accuracies are available on request.

POWER & RESET

Parameter Symbol Condition		Min	Тур	Max	Unit	
Start up time	t _{STA1}	V _{DD} ramp up to interface communication			1	ms
	t _{STA2}	V _{DD} ramp to first ADC measurement			2.5	ms
Wake up time	t _{WUP1}	Sleep to active state interface communication			0.5	ms
	t _{WUP2}	Sleep to first ADC measurement			2	ms
Power down time for reset	t _{RESET}	VDD _{low}	3			μs
VDD low level	VDD _{low}		0		0.2	V
VDD rising slope	SR _{VDD}		10			V/ms

¹⁾ Ideal, proved by production

²⁾ Ideal case by design

DIMENSIONS

If not specified, all tolerances according DIN ISO 2768-m.

PIN FUNCTION TABLE

Pin	Name	Туре	Function
1	SCL	DI	I ² C Clock
2	SDA	DIO	I ² C Data
3	V_{DD}	Р	Supply Voltage
4	V _{SS}	Р	Ground

I²C INTERFACE

An I²C communication message starts with a start condition and it is ended by a stop condition.

Most commands consist of two bytes: the address byte and command byte.

I²C ADRESS

The standard I²C address is

Sensor	I2C Address Hex	I2C Address Bin
TSD305-1C55 TSD305-2C55 TSD305-1SL10	0x00	0b000000X
TSD305-2C55	0x1E	0b0011110X

X = 0: I²C Write
 X = 1: I²C Read

Digital Thermopile Sensor

STATUS BYTE

Each return starts with a status byte followed by the requested data word.

Bit	7	6	5	4	3	2	1	0
Meaning			Busy			Memory Error		

• Busy: 1 = Sensor is busy. The requested data is not available yet.

Memory Error: 1 = Memory integrity check failed. Memory was changed after factory calibration.

COMMANDS

Note: Each return starts with a status byte followed by the requested data word.

Command	Return	Description
0x00 0x39	16 bit EEPROM data	Read data from EEPROM address (0x00 0x39) matching the command
0xAF	24 bit object temperature ADC,24 bit sensor temperature ADC	Measure object temperature and sensor temperature ADC 16 times and calculates mean value. Store data in output buffer.

Read EEPROM

Write Command:

Read EEPROM Data:

S	Slave Adress	1	Α	Status Byte	Α	EEPROM Data [15:8]	Α	EEPROM Data [7:0]	Z	Р]
---	--------------	---	---	-------------	---	-----------------------	---	----------------------	---	---	---

Perform Measurement and Read ADC Data

Write Command:

Read ADC Data:

EEPROM CONTENT

Address / hex	Address / dec	Description	Name	Format	Exa	ample
Address / Hex	Address / dec	Description	Ivaille	Format	Content	Value
0x00	0	Lot Nr.		UINT16	15001	YY WWW
0x01	1	Serial Number		UINT16	12345	Number
0X02	2	I ² C Address Valid range: 0x00 0x7F, 0x04 0x07 are reserved	I ² CAdd	UINT16	0x00	0
0x03 0x19	2 25	Factory Calibration Data				
0x1A	26	Min. Sensor Temp. / °C	T _{SenMin}	SINT16	0xFFEC	-20°C
0x1B	27	Max. Sensor Temp. / °C	T _{SenMax}	SINT16	0x0055	+85°C
0x1C	28	Min. Object Temp. / °C	T_{ObjMin}	SINT16	0x0000	0°C
0x1D	29	Max. Object Temp. / °C	T _{ObjMax}	SINT16	0x0064	100°C
0x1E	30			IEEE 754 H-Word	0xBB96	
0x1F	31	Temperature Coefficient	TC	IEEE 754 L-Word	0xBB99	-0.0046
0x20	32	D: + :	_	IEEE 754 H-Word	0x41D7	00.00
0x21	33	Reference Temperature	T _{REF}	IEEE 754 L-Word	0x70A4	26.93
0x22	34	Compensation		IEEE 754 H-Word	0x3A07	- 4045 04
0x23	35	Coefficient k4	k4 _{comp}	IEEE 754 L-Word	0x4C8C	5.161E-04
0x24	36	Compensation		IEEE 754 H-Word	0x3F10	
0x25	37	Coefficient k3	k3 _{comp}	IEEE 754 L-Word	0x5CEC	5.639E-01
0x26	38	Compensation		IEEE 754 H-Word	0x4367	
0x27	39	Coefficient k2	k2 _{comp}	IEEE 754 L-Word	0x0D1F	2.311E+02
0x28	40	Compensation		IEEE 754 H-Word	0x4724	
0x29	41	Coefficient k1	k1 _{comp}	IEEE 754 L-Word	0x5A6F	4.207E+04
0x2A	42	Compensation		IEEE 754 H-Word	0xC9A0	
0x2B	43	Coefficient k0	k0 _{comp}	IEEE 754 L-Word	0x254D	-1.312E+06
0x2C	44					
0x2D	45	Not used				
0x2E	46	ADC → T		IEEE 754 H-Word	0x944B	
0x2F	47	Coefficient k4	k4 _{Obj}	IEEE 754 L-Word	0xD24F	-1.029E-26
0x30	48	ADC → T		IEEE 754 H-Word	0x2052	
0x31	49	Coefficient k3	k3 _{Obj}	IEEE 754 L-Word	0xF1C2	1.787E-19
0x32	50	ADC → T		IEEE 754 H-Word	0xABE5	
0x33	51	Coefficient k2	k2 _{Obj}	IEEE 754 L-Word	0x991B	-1.631E-12
0x34	52	ADC → T		IEEE 754 H-Word	0x3797	
0x35	53	Coefficient k1	k1 _{Obj}	IEEE 754 L-Word	0x2BBF	1.802E-05
0x36	54	ADC → T		IEEE 754 H-Word	0x41D7	
0x37	55	Coefficient k0	k0 _{Obj}	IEEE 754 L-Word	0x6DBA	2.693E+01
0x38	56	Status		UINT16	TBD	

CHANGE OF I²C ADDRESS

The I^2C address of each TSD can be modified to use multiple TSDs on one I^2C bus. The used I^2C address is configured via an EEPROM address. Power needs to be cycled to active an updated I^2C address.

Command	Return	Description
0x00 0x39	16 bit EEPROM data	Read data from EEPROM address (0x00 0x39) matching the command
0x40 0x79		Write data from EEPROM address (0x00 0x39).
0x90	W 10 M	Calculate and write memory checksum (CRC). If the CRC is valid, then the "Memory Error" status bit is set to 0.

The commands to read and write the EEPROM are shown below. After changing the I²C address, the checksum needs to be recalculated to reset the Memory Error bit.

NUMBER FORMAT

UINT16

Description: Unsigned integer

• Bits 16

Min (dec/hec/bin)
 Max (dec/hec/bin)
 Max (dec/hec/bin)
 Max (dec/hec/bin)
 Max (dec/hec/bin)

SINT16

Description: Signed integer

• Bits 16

Min (dec/hec/bin) - 32,768 / 0x8000 / 0b1000 0000 0000 0000
 Max (dec/hec/bin) 32,767 / 0x7FFF / 0b0111 1111 1111 1111

FLOAT IEEE 754

Description: FloatBits 32

Example: H-Word 0x3DCC L-Word 0xCCCD

→ 0b0011 1101 1100 1100 1100 1100 1101

 $\rightarrow 0.1$

FLOAT IEEE 754 Conversions

The two integer words can easily be converted to a floating-point number by using a union consisting of an integer array and a float.

TEMPERATURE CALCULATION

SENSOR TEMPERATURE

The sensor temperature T_{Sen} is calculated from the corresponding 24 bit ADC value ADC_{sen}.

Name	Description	Format	Range	
			Min	Max
ADC _{sen}	ADC Sensor Temperature	INT24	0	16,777,216

ADCsen is scaled to cover the complete sensor temperature range from TsenMin to TsenMax.

Adress / hex	Adress / dec	Description	Name	Format	Exar	mple
					Value	Max
0x1A	26	Min. Sensor Temp. / °C	T_{SenMin}	SINT16	0xFFEC	-20°C
0x1B	27	Max. Sensor Temp. / °C	T _{SenMax}	SINT16	0x0055	+85°C

Formula:

$$T_{sen}$$
 = ADC_{sen} / $2^{24} \times (T_{SenMax} - T_{SenMin}) + T_{SenMin}$

Example:

$$ADC_{sen} = 6,364,157$$

$$T_{sen} = 6,364,157 / 224 \times [+85^{\circ}C - (-20^{\circ}C)] + (-20^{\circ}C) = \underline{19.83^{\circ}C}$$

OBJECT TEMPERATURE

The object temperature Tobj is calculated in dependence of the sensor temperature Tsen and ADCobj.

ADC_{obj} is shifted by 2²³ in order to provide unsigned integer values for positive and negative measurement values.

Name	Description	Format	Rai	nge
	·		Min	Max
ADC _{obj}	ADC Object Temperature Shifted by 2 ²³ (0 is represented by 8,388,608)	INT24	0	16,777,216

The process consists of three successive steps.

TC Correction Factor

Formula:

Adress / hex	Adress / dec	dec Description Name	Format	Example		
Trained Tries	71010007 000	Boompaon	, ruino	T OTHICE	Content	Value
0x1E	30	Towns and two Coofficient	TO	IEEE 754 H-Word	0xBB96	0.0046
0x1F	31	Temperature Coefficient	TC	IEEE 754 L-Word	0xBB99	-0.0046
0x20	32	Deference Temperature	_	IEEE 754 H-Word	0x41D7	+26.93
0x21	33	Reference Temperature	T _{REF}	IEEE 754 L-Word	0x70A4	+20.93

$$T_{sen} = +19.83^{\circ}C$$
 $T_{ref} = +26.93^{\circ}C$
 $TC = -0.0046$

Example:

Temperature Compensation

Adress / hex	Adress / dec Description		Name	Format	Example		
					Content	Value	
0x22	34	Compensation	1.4	IEEE 754 H-Word	0x3A07	5.161E-04	
0x23	35	Coefficient k4	k4 _{comp}	IEEE 754 L-Word	0x4C8C	5.101E-04	
0x24	36	Compensation	k2	IEEE 754 H-Word	0x3F10	5.639E-01	
0x25	37	Coefficient k3	k3 _{comp}	IEEE 754 L-Word	0x5CEC	5.039⊑-01	
0x26	38	Compensation	k2	IEEE 754 H-Word	0x4367	2.311E+02	
0x27	39	Coefficient k2	k2 _{comp}	IEEE 754 L-Word	0x0D1F	2.311E+02	
0x28	40	Compensation	1.1	IEEE 754 H-Word	0x4724	4.207E+04	
0x29	41	Coefficient k1	k1 _{comp}	IEEE 754 L-Word	0x5A6F	4.207E+04	
0x2A		Compensation	k0	IEEE 754 H-Word	0xC9A0	-1.312E+06	
0x2B		Coefficient k0	k0 _{comp}	IEEE 754 L-Word	0x254D	-1.312E+06	

Formula:		Example:	
		T _{sen} =	+19.83°C
		k4 _{comp} k0 _{comp}	See table above
Offset =	$k4_{comp} \times Tsen^4$ + $k3_{comp} \times Tsen^3$ + $k2_{comp} \times Tsen^2$ + $k1_{comp} \times Tsen$ + $k0_{comp}$	Offset =	$= 5.161 \cdot 10^{-4} \times 19.83^{4}$ $+ 5.639 \cdot 10^{-1} \times 19.83^{3}$ $+ 2.311 \cdot 10^{2} \times 19.83^{2}$ $+ 4.207 \cdot 10^{4} \times 19.83$ $+ -1.312 \cdot 10^{6}$
			= -382,399
Offset _{TC} =	Offset × TCF	Offset _{TC} =	= -382,399 × 1.0327
			= -394,904

Object Temperature Determination

Adress / hex	Adress / dec	Description	Name	Format	Example	
raises in inch					Content	Value
0x2E	46	ADC → T	k4 _{Obj}	IEEE 754 H-Word	0x944B	-1.029E-26
0x2F	47	Coefficient k4		IEEE 754 L-Word	0xD24F	
0x30	48	ADC → T	k3 _{Obj}	IEEE 754 H-Word	0x2052	1.787E-19
0x31	49	Coefficient k3		IEEE 754 L-Word	0xF1C2	
0x32	50	ADC → T	k2 _{Obj}	IEEE 754 H-Word	0xABE5	-1.631E-12
0x33	51	Coefficient k2		IEEE 754 L-Word	0x991B	-1.031E-12
0x34	52	ADC → T	k1 _{Obj}	IEEE 754 H-Word	0x3797	1.802E-05
0x35	53	Coefficient k1		IEEE 754 L-Word	0x2BBF	1.002E-05
0x36	54	ADC → T	k0 _{Obj}	IEEE 754 H-Word	0x41D7	2.693E+01
0x37	55	Coefficient k0		IEEE 754 L-Word	0x6DBA	

Formula:		Example:	
		$ADC_{Obj} = k4_{Obj} \dots k0_{Obj}$	10,738,758 See table above
ADC _{comp} =	Offset _{TC} + ADC _{Obj} - 2 ²³	ADC _{Comp} =	= -394,904 + 10,738,758 - 8,388,608 = 1,955,246
ADCcompTC =	ADCcomp / TCF	ADC _{CompTC} =	= 1,955,246 / 1.0327 = 1,893,334
T _{Obj} =	$k4_{Obj} \times ADC_{CompTC}^4$ + $k3_{Obj} \times ADC_{CompTC}^3$ + $k2_{Obj} \times ADC_{CompTC}^2$ + $k1_{Obj} \times ADC_{CompTC}$ + $k0_{Obj}$	T _{Obj} =	= $-1.029 \cdot 10^{-26} \times 1,893,334^4$ + $1.787 \cdot 10^{-19} \times 1,893,334^3$ + $-1.631 \cdot 10^{-12} \times 1,893,334^2$ + $1.802 \cdot 10^{-5} \times 1,893,334$ + $2.693 \cdot 10$
			= <u>56.28°C</u>

Example Code

This example code is meant to illustrate the basic procedure to determinate the measured sensor and object temperatures with respect to TSD digital thermopile sensors. This code needs to be modified with respect to the compiler used.

```
// File: TSD Temperature_Determination_Example.c //
// Date: 01.\overline{1}1.2016 //
// Description: This example code is meant to illustrate the basical procedure //
// to determinat the measured sensor and object temperatures with //
// respect to TSD digital thermopile sensors. //
// This code is not meant to work or to be compiled. //
void TSD Determinate Temperature(void)
       signed int siMinObjTemp, siMaxObjTemp, siMinSenTemp, siMaxSenTemp;
       float fTC, fTref, fK4com, fK3com, fK2com, fK1com, fK0com, fK4obj, fK3obj,
       fK2obj, fK1obj, fK0obj;
       float fTsen, fTobj;
float fTCF, fOffset, fADCcomp;
       signed long slADC Object, slADC Sensor;
       // Read Temperature Range Minimum & Maximum
       siMinSenTemp = (signed int)Read EE UInt(26);
       siMaxSenTemp = (signed int)Read EE UInt(27);
       siMinObjTemp = (signed int)Read_EE_UInt(28);
       siMaxObjTemp = (signed int)Read EE UInt(29);
       // Read all necessary coefficients from the memory, float tye
       fTref = Read EE Float (32);
       fTC = Read EE Float(30);
       fTref = Read EE Float (32);
       fK4com = Read EE Float(34);
       fK3com = Read EE Float (36);
       fK2com = Read_EE_Float(38);
       fK1com = Read EE Float(40);
       fK0com = Read EE Float(42);
       fK4obj = Read EE Float (46);
       fK3obj = Read_EE_Float(48);
       fK2obj = Read EE Float(50);
       fK1obj = Read EE Float (52);
       fK0obj = Read EE Float (54);
       // Read ADC Values for Object Temp. & Sensor Temp.
       Read ADC Values (&slADC Object, &slADC Sensor);
       // Calculate Sensor Temp. (slADC_Sensor, Minimum & Maximum Sensor Temp.), Page 8
       fTsen = (float)slADC Sensor / 16777216.0 * (siMaxSenTemp - siMinSenTemp) + siMinSenTemp;
       // Calculate TC Correction Factor (Temp. Coefficient & Reference Temp.), Page 9fTCF = 1.0
       + ((fTsen - fTref) * fTC);
       // Calculate Offset Value, Page 10
       fOffset = fOffset + fK4com * fTsen * fTsen * fTsen * fTsen;
       fOffset = fOffset + fK3com * fTsen * fTsen * fTsen;
       fOffset = fOffset + fK2com * fTsen * fTsen;
       fOffset = fOffset + fK1com * fTsen;
       fOffset = fOffset + fK0com;
       fOffset = fOffset * fTCF;
       // Align ADC Value for Object Temperature, Page 11
       slADC Object = slADC Object - 8388608;
       // Calculate Object Temperature, Page 11
       fADCcomp = (float)slADC_Object + fOffset;
       fADCcomp = fADCcomp / fTCF;
       fTobj = fTobj + fK4obj * fADCcomp * fADCcomp * fADCcomp;
       fTobj = fTobj + fK3obj * fADCcomp * fADCcomp * fADCcomp;
       fTobj = fTobj + fK2obj * fADCcomp * fADCcomp;
       fTobj = fTobj + fKlobj * fADCcomp;
       fTobj = fTobj + fKOobj;
       // Resulting Sensor Temperature = fTsen
       // Resulting Object Temperature = fTobj
 1
```

APPLICATION NOTES

FIELD OF VIEW

The thermopile's field of view must be directed to the object surface of interest. The distance to the surface or the surface diameter must be adjusted to ensure that the complete sensors field of view is covered by the object, see example on the left in the picture below.

TSD305-1C55 TSD305-2C55

Distance / mm	Min. Diameter / mm
10	24
20	43
30	62
40	82
50	101
100	198
200	391
300	584
400	777
500	970

Distance / mm	Min. Diameter / mm
10	6
20	8
30	10
40	11
50	13
100	22
200	39
300	57
400	74
500	92

DIRECT SUNLIGHT

Sun light radiation which is transmitted through a glass window may influence the measurement accuracy. To avoid this, the thermopile sensor is equipped with a long wavelength filter. Due to not ideal filter characteristics a small portion of radiation will be added to the radiation of the object. In case of direct sunlight exposure this error can be up to +0.2°C.

TOUCHING THE SENSORS CAP

User should avoid touching the sensors cap. There will still be a measurement deviation after changing the sensors temperature rapidly.

EMISSIVITY

Every object is transmitting infrared energy in dependence to its temperature. The emissivity is the ratio of the radiated power by an object to the radiation of an ideal black body. Common materials like liquids, clothes, human skin, foods have emissivity factors >0.90 and therefore they can be measured very accurately without adopting the sensors specification.

To compensate the measurement for an object with significant low emissivity, ADCobj needs to be adjusted.

Name	Description	Format	Range		
	23337,4331		Min	Max	
ADC _{obj}	ADC Object Temperature Shifted by 2 ²³ (0 is represented by 8,388,608)	INT24	0	16,777,216	

Formula: Example:

> ADC_{Obj} = 10,738,758 0%)

11,278

		Emissivity _j	0.9 (90
ADC _{Corr} =	(ADC _{Obj} - 2 ²³) / 0.9	ADC _{Corr} =	= 2,61

Material		Emissivity
	Alumin	um
	Polished	0.10 - 0.05
	Oxidized	0.10 - 0.40
	Rough	0.10 - 0.30
	Anodized	0.60 - 0.95
Asphalt		0.90 - 1.00
	Bras	S
	Polished	0.05
	Oxidized	0.50 - 0.60
	Burnished	0.30
Ceramic		0.90 - 0.95
	Сорре	er
	Polished	0.10
	Oxidized	0.20 - 0.80
Foods		0.85 - 1.00
Gold		0.05
	Glas	S
	Plate	0.90 - 0.95
	Fused quartz	0.75

Material	Emissivity
Human Skin	0.99
Iror	1
Polished	0.20
Oxidized	0.50 - 0.95
Rusted	0.50 - 0.70
Pair	nt
Aluminum paint	0.50
Bronze paint	0.80
On metal	0.60 - 0.90
On plastic, wood	0.80 - 0.95
Paper	0.85 - 1.00
Plastic	0.95 - 1.00
Stainless	Steel
Polished	0.10 - 0.15
Oxidized	0.45 - 0.95
Wate	er
Liquid	0.90 - 0.95
Ice	0.95 - 1.00
Snow	0.80 - 1.00

ORDER INFORMATION

Digital Thermopile Sensor

Further customer specific adaptations are available on request. Please refer to the table below for part name, description and order information.

Part Number	Part Desription	Comment
G-TPMO-101	TSD305-1C55 Digital Thermopile Sensor	TO5, I ² C Interface, 0°C +100°C
G-TPMO-102	TSD305-2C55 Digital Thermopile Sensor	TO5, I ² C Interface, 0°C +300°C
G-TPMO-103	TSD305-3C55 Digital Thermopile Sensor	TO5, I ² C Interface Add=0x1E, 0°C +300°C
G-TPMO-104	TSD305-1SL10 Digital Thermopile Sensor	TO5, FOV=10°, I ² C Interface, 0°C +300°C

EMC

Due to the use of these modules for OEM application no CE declaration is done. Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented. The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company 1711 139th Lane NW Andover, MN 55304 Tel: +1 763 689 4870 Fax: +1 763 689 5033

customercare.ando@te.com

EUROPE

TE Connectivity Sensors Germany GmbH

Hauert 13

44227 Dortmund Germany Tel: +49-231-9740-0 Fax: +49-231-9740-20

CustomerCare.dtmd@te.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company No. 368 Wulian 1st Road Gongxing Town Shuangliu, Chengdu Sichuan, 610200 China

Tel: +86 (0) 28 8573 9088 Fax: +86 (0) 28 8573 9070

customercare.chdu@te.com

te.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, MEAS, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2016 TE Connectivity Ltd. family of companies All Rights Reserved.

TSEV0108L39

Thermopile Sensor Module

SPECIFICATIONS

- Contact less Temperature Measurement
- 8 Measurement Pixels
- Wide Supply Voltage Range
- Digital Interface Bus (SPI)

TSEV0108L39 is a contact-less temperature measuring system for OEM use based on the detection of infrared radiation

TSEV0108L39 is equipped with an infrared sensor (Thermopile) in front. In this version a Thermopile Array, *including 8 pixels*, is used. It has to be pointed at the target object

The basic working principle is:

- Detection of infrared radiation with a Thermopile sensor
- Determination of sensor temperature using a thermistor
- Calculation of ambient and object temperature using a processing unit
- Providing the temperatures at digital output bus (SPI like Interface)

FEATURES

-20°C – +120°C Measurement Range 4V – 16V Supply Voltage Range Up to 2°C Accuracy

APPLICATIONS

Contact less Temperature Measurement Microwave Oven Climate Control

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. And even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	Vcc	Measured versus GND	-0.3		16	V
Operating Temperature	T _{op}		-10		+85	°C
Storage Temperature	T _{stor}		-30		+85	°C
Humidity	Hum∟	-30°C - +50°C			85	%
Humidity	Hum _H	+50°C - +85°C			50	%

SENSOR CHARACTERISTICS

If not otherwise noted, 25°C ambient temperature, 5V supply voltage were applied.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Total Field of View	T_FOV	Over all 8 Pixels		40		0
Individual Field of View	P_FOV	Field of View of one Pixel		3.5		0
Focal length	f			3.9	mm	

OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply voltage	V_{cc}	Measured versus GND	4	5	6	V
Supply Current	_	Full ambient temp. range, no output load		10	15	mA
Humidity	Hum∟	-30°C - +50°C			85	%
Humidity	Hum _H	+50°C - +85°C			50	%

INTERFACE CHARACTERISTICS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Clock Rate (SPI)	F _{SPI}			100		kHz
Data Output Rate (New Measurement Data of all 8 Pixels available)	Fout			1		Hz

OPERATIONAL CHARACTERISTICS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Object Temperature Range	T _{obj}		-20		+120	°C
Ambient Temperature Range	T _{amb}		0		+85	°C
Resolution	Res				0.1	°C
Standard Start-Up Time	t Start	Time from turning on supply to first measurement		3	5	S
Accuracy tolerance when	ΛТ	-5°C < T _{object} < +5°C		±21)		°C
Tambient = 25°C ±5°C	ΔΙ	Outside above range		±4 ¹⁾		°C

 $^{^{1)}}$ Valid for a distance of 100mm and black body size of 150mm x 150mm

MECHANICAL DIMENSIONS

Only use hatched areas for mechanical assembly (screws, nuts, etc).

TERMINALS

Connector: JST B5B-PH-K-S(LF)(SN)

Pin	Name	Desription	Туре
1	GND	Supply Ground	Supply
2	MISO	Data Out	Output
3	MOSI	Data In	Input
4	CLK	Clock	Input
5	VDD	Supply Voltage	Supply

BLOCK DIAGRAM

FIELD OF VIEW

ANGLE OF PIXELS

1	2	3	4	5	6	7	8
19,03	13,84	8,41	2,82	-2,82	-8,41	-13,84	-19,03

FUNCTION

SPI INTERFACE

PHYSICAL INTERFACE PARAMETERS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Baudrate	FSPI		10		200	kHz
Data Bits				8		
Edge				Rising		
Chip Select				No		
Input Voltage Low					0.8	٧
Input Voltage High			2.8		3.6	V
Output Current High		@ 2.8V	1			mA
Output Current Low		@ 0.8V	1			mA

SPI CONNECTION

SPI SIGNAL TIMING DESCRIPTION

INTERNAL RESET

The internal SPI status is reset to idle state if one of the following conditions occur:

- 100ms without receiving data
- Reset due to cycling of supply voltage

FILTER CIRCUITRY

Capacitors are added to the following lines in to reduce noise/spikes in order to provide stable SPI transmission even in EMC affected environment:

- CLK
- MOSI

A 10nF capacitor is added parallel to ground potential.

SPI SIGNAL SEQUENCE

Reading Temperature of Pixel 1

Nr.	MOSI	MISO	Direction	Description			
1	0xA1		$M \rightarrow S$	Sending Command (See Command Reference)			
	Wait at least 150us to arrange temperature data						
2	0XFF	0xXX	M ← S	Receiving High Byte (Send 0xFF while receiving)			
	Wait at least 150us to arrange temperature data						
3	0XFF	0xXX	M ← S	Receiving Low Byte (Send 0xFF while receiving)			

EXAMPLE FOR 5V SPI INTERFACE LINE

The sensor cannot be connected directly to a SPI interface with 5V levels. Therefore the following circuitry is suggested. The Baud rate should be limited to 20kHz.

AMBIENT AND OBJECT MEASUREMENT

Please refer following table for SPI commands to read object temperature and ambient temperature. Both values are transmitted in tenth of degrees.

All temperature read outs are to be interpreted as twos complement.

Com	Description	Reply	Bytes
0xA0	Sensor Temperature	Sensor temperature in tenth of degrees Celsius	2
0xA1	Temperature Pixel 1	Temp. at pixel position 1 in tenth of degree Celsius	2
0xA2	Temperature Pixel 2	Temp. at pixel position 2 in tenth of degree Celsius	2
0xA3	Temperature Pixel 3	Temp. at pixel position 3 in tenth of degree Celsius	2
0xA4	Temperature Pixel 4	Temp. at pixel position 4 in tenth of degree Celsius	2
0xA5	Temperature Pixel 5	Temp. at pixel position 5 in tenth of degree Celsius	2
0xA6	Temperature Pixel 6	Temp. at pixel position 6 in tenth of degree Celsius	2
0xA7	Temperature Pixel 7	Temp. at pixel position 7 in tenth of degree Celsius	2
0xA8	Temperature Pixel 8	Temp. at pixel position 8 in tenth of degree Celsius	2

EXAMPLE OF TEMPERATURE CALCULATION

For reading object temperature of pixel 3 send: 0xA3

Return values i.e.:

Byte(0) = 0x02Byte(1) = 0xB0

Temperature $T_{obj} = (256 * Byte(0) + Byte(1)) / 10 = (256 * 2 + 11) / 10 = 52,3°C$

OUT OF TEMPERATURE RANGE INDICATION

Com	Description	Reply	Bytes
0xA0	Sensor Temperature < 0°C	0x8001	2
0xA0	Sensor Temperature > 85°C	0x8002	2
0xA1 - 0xA8	Pixel Temperature < -20°C	0x8003	2
0xA1 - 0xA8	Pixel Temperature > +120°C	0x8004	2

ORDER INFORMATION

Please order this product using following:

Part Number Part Description
G-TPMO-014 TSEV0108L39

EMC

Due to the use of these modules for OEM application no CE declaration is done.

Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented.

The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible

DEFINITIONS AND DISCLAIMERS

- Application information Applications that are described herein for any of these products are for illustrative purpose only. MEAS Deutschland GmbH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunctions of these products can reasonably be expected to result in personal injury.
 - MEAS Deutschland GmbH customers using or selling this product for use in such applications do so at their own risk and agree to fully indemnify MEAS Deutschland GmbH for any damages resulting from such improper use or sale

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company 910 Turnpike Road Shrewsbury, MA 01545 Tel: 1-508-842-0516 Fax: 1-508-842-0342 Sales email: temperature.sales.amer@meas-spec.com

EUROPE

Measurement Specialties (Europe), Ltd., a TE Connectivity Company Deutschland GmbH Hauert 13 44277 Dortmund Tel: +49 (0) 231/9740-0 Fax: +49 (0) 231/9740-20 Sales email: info.de@meas-spec.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company
No. 26 Langshan Road
Shenzhen High-Tech Park (North)
Nanshan District, Shenzhen 518057
China
Tel: +86 755 3330 5088
Fax: +86 755 3330 5099
Sales: pfg.cs.asia@meas-spec.com

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

VRoHS

TSEV01S01C90

SPECIFICATIONS

- Contact less Temperature Measurement
- Small Size
- Heat Spreader improves Accuracy
- Wide Supply Voltage Range
- Digital Interface Bus (SPI)
- Connector

The TSEV01S01C90 is a contact-less temperature measuring system for OEM use based on the detection of infrared radiation.

The TSEV01S01C90 is equipped with an infrared sensor (Thermopile) in front. The Thermopile Sensor has to be pointed at the target object.

The basic working principle is:

- Detection of infrared radiation with a Thermopile sensor, which turns incoming radiation to an analogue voltage
- Determination of sensor temperature using a thermistor
- Calculation of ambient and object temperature using a processing unit
- Providing the ambient and objects temperature at digital output bus (SPI)

The TSEC01S01C is suitable for a wide range of application where non-contact temperature measurement and high accuracy are required

FEATURES

0°C – 100°C Measurement Range Small Size Up to 1°C Accuracy 2mA Current Consumption

APPLICATIONS

Contact less Temperature Measurement Climate Control Industrial Process Control Household Applications

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. And even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	Vccmax	Stabilized supply voltage	-0.3		16	V
Operating Temperature	Topmax		-10		85	°C
Storage temperature	Tstor		-40		85	°C
Humidity	HumL	-40°C - +50°C			85	%
Humidity	HumH	+50°C - +85°C			50	%

OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	Vcc	Stabilized supply voltage	3.3		16	V
Operating Temperature Range	Тор		0		85	°C
Emission Coefficient	3		0.98			

SENSOR CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Field of View	FOV	Total field of view at 50% signal level		90		0
Wavelength Range	S		5.0) (cut o	n)	μm

OPERATIONAL CHARACTERISTICS

If not otherwise noted, 5V supply voltage and object with ϵ =0.98 were applied.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Object Temperature Range	Tobj		0		100	°C
Resolution	Res				0.02	°C
Supply Current ¹⁾	1	No output load		2		mΑ
Data Output Rate	Fout			1		Hz
Standard Start-Up Time	tStart			·	3	S

TOLERANCES

If not otherwise noted, 5V supply voltage and object with ϵ =0.98 were applied.

Parameter	Symbol	Sensor Temp.	Object Temp.	Max	Unit
Accuracy Standard Temp 1)	AccS	15 < T _{sen} < 35	$40 < T_{obj} < 80$	1	°C
Accuracy Extended Temp. 1 2)	AccE1	$T_{\text{sen}} < 15$, $T_{\text{sen}} > 35$	$40 < T_{obj} < 80$	2	°C
Accuracy Extended Temp. 2 2)	AccE2	15 < T _{sen} < 35	$T_{obj}<40,T_{obj}>80$	2	°C
Accuracy Extended Temp. 3 2)	AccE3	$T_{\text{sen}} < 15, T_{\text{sen}} > 35$	$T_{obj}<40,T_{obj}>80$	3	°C

OTHER TEMPERATURE RANGES AND ACCURACIES ARE AVAILABLE ON REQUEST.

- 1) Proved while production
- 2) Proved by design

SENSOR FIELD OF VIEW

MECHANICAL DIMENSIONS

Only use hatched areas for mechanical assembly (screws, nuts, etc).

TERMINALS

Connector: JST PHR-6

Pin	Name	Description	Туре
1	VDD	Supply Voltage	Supply
2	GND	Ground	Supply
3	SCL	SPI Clock	Interface
4	MISO	SPI Master In /	Interface
5	MOSI	SPI Master Out /	Interface
6	SCE	SPI Chip Enable	Interface

BLOCK DIAGRAM

INTERFACE

PARAMETER

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Baudrate	FSPI		10		100	kHz
Data Bits				8		
Chip Select				Yes		
Input Voltage Low					0.9	V
Input Voltage High		Vcc = 3.3V	2.1			V
Output Voltage Low		1mA			0.3	V
Output Voltage High		Vcc = 3.3V, 1mA	3.0			V

SIGNAL DESCRIPTION

SAMPLE CODE

```
Sample Code for sending 8 bits and reading 8 bits while sending 8 clocks.
// Setting directions
         TRISC4 = 1;
                          // SDI = Input
         TRISC5 = 0;
                          // SDO = Output
         TRISC3 = 0;
                          // SCL = Output
// Reset SPI Lines
         RC5 = 0;//SDO
         RC3 = 0;//SCL
         for (c = 0; c < 8; c++)
                                                     // Shift Receive Register
                 cReceive = cReceive << 1;
                                                     // SCL = 0
                  RC3 = 0;
                  RC5 = (cTransmit >> (7 - c));
                                                     // Outupt next Bit on SDO
                  RC3 = 1;
                                                     // SCL = 1
                                                              // Input next Bit on SDI
                 cReceive = cReceive | RC4;
         RC3 = 0;
         RC5 = 0;
         return cReceive;
```

AMBIENT AND OBJECT TEMPERATUREMEASUREMENT

Please refer following table for SPI commands to read object temperature and ambient temperature. Both values are transmitted in hundredth of degrees.

Com	Description	Reply	Bytes
0xA0	Sensor Temperature	Sensor temperature in hundredth of degrees Celsius	2
0xA1	Object Temperature	Object temperature in hundredth of degrees Celsius	2

SEQUENCE OF TRANSMISSION

Enable SCE (SCE=0) before transmission of "Command". Release SCE (SCE=1) after reading last byte.

EXAMPLE OF TEMPERATURE CALCULATION

For reading object temperature send: 0xA1

Return values i.e.:

Byte(0) = ??? discard reading Byte(1) = 0x1A (=26) Byte(2) = 0xB0 (=176)

Tobj = (256 * Byte(1) + Byte(2)) / 100 = (256 * 26 + 176) / 100 = 68.32°C

NAMING CONVENTION

ORDER INFORMATION

Please order this product using following:

Part Number Part Description
G-TPMO-022 TSEV01S01C90

EMC

Due to the use of these modules for OEM application no CE declaration is done.

Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented.

The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

DEFINITIONS AND DISCLAIMERS

- Application information Applications that are described herein for any of these products are for illustrative purpose only. MEAS Deutschland GmbH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunctions of these products can reasonably be expected to result in personal injury.
 - MEAS Deutschland GmbH customers using or selling this product for use in such applications do so at their own risk and agree to fully indemnify MEAS Deutschland GmbH for any damages resulting from such improper use or sale

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company 910 Turnpike Road Shrewsbury, MA 01545 Tel: 1-508-842-0516 Fax: 1-508-842-0342 Sales email:

temperature.sales.amer@meas-

EUROPE

Measurement Specialties (Europe), Ltd., a TE Connectivity Company Deutschland GmbH Hauert 13 44277 Dortmund Tel: +49 (0) 231/9740-0 Fax: +49 (0) 231/9740-20 Sales email: info.de@meas-spec.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company No. 26 Langshan Road Shenzhen High-Tech Park (North) Nanshan District, Shenzhen 518057 China Tel: +86 755 3330 5088 Fax: +86 755 3330 5099 Sales: pfg.cs.asia@meas-spec.com

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.

TSEV01S01C10

SPECIFICATIONS

- Contact less Temperature Measurement
- Small Size
- Heat Spreader improves Accuracy
- Wide Supply Voltage Range
- Digital Interface Bus (SPI)
- Connector
- Small Field of View

The TSEV01S01C10 is a contact-less temperature measuring system for OEM use based on the detection of infrared radiation.

The TSEV01S01C10 is equipped with an infrared sensor (Thermopile) in front. The Thermopile Sensor has to be pointed at the target object.

The basic working principle is:

- Detection of infrared radiation with a Thermopile sensor, which turns incoming radiation to an analogue voltage
- Determination of sensor temperature using a thermistor
- Calculation of ambient and object temperature using a processing unit
- Providing the ambient and objects temperature at digital output bus (SPI)

The basic thermopile sensor module is suitable for a wide range of application where non-contact temperature measurement and high accuracy are required

FEATURES

0°C – 300°C Measurement Range Small Size Up to 2°C Accuracy 2mA Current Consumption

APPLICATIONS

Contact less Temperature Measurement Climate Control Industrial Process Control Household Applications

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. And even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	Vccmax	Stabilized supply voltage	-0.3		16	٧
Operating Temperature	Topmax		-10		85	°C
Storage temperature	Tstor		-40		85	°C
Humidity	HumL	-40°C - +50°C			85	%
Humidity	HumH	+50°C - +85°C			50	%

OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	Vcc	Stabilized supply voltage	3.3		16	V
Operating Temperature Range	Тор		0		85	°C
Emission Coefficient	3		0.98			

SENSOR CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Field of View	FOV ₁₀	Total field of view at 10% signal level		14		0
Field of View	FOV ₅₀	Total field of view at 50% signal level		10		o
Wavelength Range	S		Silico	n, no co	ating	μm

OPERATIONAL CHARACTERISTICS

If not otherwise noted, 5V supply voltage and object with ϵ =0.98 were applied.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Object Temperature Range	Tobj		0		300	°C
Resolution	Res				0.1	°C
Supply Current ¹⁾	1	No output load		2		mA
Data Output Rate	Fout			1		Hz
Standard Start-Up Time	tStart				3	s

TOLERANCES

If not otherwise noted, 3.3V supply voltage and object with ϵ =0.98 were applied.

Parameter	Symbol	Sensor Temp.	Object Temp.	Max	Unit
Standard Temp 1) 3)	AccS	15 < T _{sen} < 35	$170 < T_{obj} < 190$	2	°C
Extended Temp. 1 ^{2) 3)}	AccE1	$T_{sen} < 15, T_{sen} > 35$	$170 < T_{obj} < 190$	3	°C
Extended Temp. 2 2) 3)	AccE2	15 < T _{sen} < 35	$T_{obj} < 170, T_{obj} > 190$	3	°C
Extended Temp. 3 ^{2) 3)}	AccE3	$T_{\text{sen}} < 15$, $T_{\text{sen}} > 35$	$T_{obj} < 170, T_{obj} > 190$	4	°C

OTHER TEMPERATURE RANGES AND ACCURACIES ARE AVAILABLE ON REQUEST.

- 1) Proved while production
- ²⁾ Proved by design
- ³⁾ Valid for a distance of 100mm and black body size of 150mm x 150mm

SENSOR FIELD OF VIEW

MECHANICAL DIMENSIONS

Only use hatched areas for mechanical assembly (screws, nuts, etc).

TERMINALS

Connector: JST PHR-6

Pin	Name	Description	Туре
1	VDD	Supply Voltage	Supply
2	GND	Ground	Supply
3	SCL	SPI Clock	Interface
4	MISO	SPI Master In /	Interface
5	MOSI	SPI Master Out /	Interface
6	SCE	SPI Chip Enable	Interface

BLOCK DIAGRAM

INTERFACE

PARAMETER

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Baudrate	FSPI		10		100	kHz
Data Bits				8		
Chip Select				Yes		
Input Voltage Low					0.9	V
Input Voltage High		Vcc = 3.3V	2.1			V
Output Voltage Low		1mA	•		0.3	V
Output Voltage High		Vcc = 3.3V, 1mA	3.0			V

SIGNAL DESCRIPTION

SAMPLE CODE

Sample Code for sending 8 bits and reading 8 bits while sending 8 clocks.

```
// Setting directions
       TRISC4 = 1;
                        // SDI = Input
       TRISC5 = 0;
                        // SDO = Output
                        // SCL = Output
       TRISC3 = 0;
// Reset SPI Lines
       RC5 = 0;//SDO
       RC3 = 0;//SCL
       for (c = 0; c < 8; c++)
                cReceive = cReceive << 1;
                                                   // Shift Receive Register
                RC3 = 0:
                                                   //SCL = 0
                RC5 = (cTransmit >> (7 - c));
                                                   // Outupt next Bit on SDO
                RC3 = 1;
                                                   // SCL = 1
                                                           // Input next Bit on SDI
                cReceive = cReceive | RC4;
       RC3 = 0;
       RC5 = 0;
       return cReceive;
```

AMBIENT AND OBJECT TEMPERATUREMEASUREMENT

Please refer following table for SPI commands to read object temperature and ambient temperature. Both values are transmitted in hundredth of degrees.

Com	Description	Reply	Bytes
0xA0	Sensor Temperature	Sensor temperature in hundredth of degrees Celsius	2
0xA1	Object Temperature	Object temperature in hundredth of degrees Celsius	2

SEQUENCE OF TRANSMISSION

Enable SCE (SCE=0) before transmission of "Command". Release SCE (SCE=1) after reading last byte.

EXAMPLE OF TEMPERATURE CALCULATION

For reading object temperature send: 0xA1

Return values i.e.:

Byte(0) = ??? discard reading

Byte(1) = 0x1A (=26)

Byte(2) = 0xB0 (=176)

Tobj = (256 * Byte(1) + Byte(2)) / 100 = (256 * 26 + 176) / 100 = 68.32°C

NAMING CONVENTION

ORDER INFORMATION

Please order this product using following:

Part Number Part Description
G-TPMO-023 TSEV01S01C10

EMC

Due to the use of these modules for OEM application no CE declaration is done.

Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented.

The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

DEFINITIONS AND DISCLAIMERS

- Application information Applications that are described herein for any of these products are for illustrative purpose only. MEAS Deutschland GmbH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunctions of these products can reasonably be expected to result in personal injury.
 - MEAS Deutschland GmbH customers using or selling this product for use in such applications do so at their own risk and agree to fully indemnify MEAS Deutschland GmbH for any damages resulting from such improper use or sale.

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company 910 Turnpike Road Shrewsbury, MA 01545 Tel: 1-508-842-0516 Fax: 1-508-842-0342 Sales email: temperature.sales.amer@meas-spec.com

EUROPE

Measurement Specialties (Europe), Ltd., a TE Connectivity Company Deutschland GmbH Hauert 13 44277 Dortmund Tel: +49 (0) 231/9740-0 Fax: +49 (0) 231/9740-20 Sales email: info.de@meas-spec.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company No. 26 Langshan Road Shenzhen High-Tech Park (North) Nanshan District, Shenzhen 518057 China Tel: +86 755 3330 5088 Fax: +86 755 3330 5099 Sales email: temperature.sales.asia@meas-spec.com

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.

TSEV01S01C05

SPECIFICATIONS

- Contact less Temperature Measurement
- Small Size
- Heat Spreader improves Accuracy
- Wide Supply Voltage Range
- Digital Interface Bus (SPI)
- Connector
- Small Field of View
- Improved constancy of output signal over distance

The TSEV01S01C05 is a contact-less temperature measuring system for OEM use based on the detection of infrared radiation.

The TSEV01S01C05 is equipped with an infrared sensor (Thermopile) in front. The Thermopile Sensor has to be pointed at the target object.

The basic working principle is:

- Detection of infrared radiation with a Thermopile sensor, which turns incoming radiation to an analogue voltage
- Determination of sensor temperature using a thermistor
- Calculation of ambient and object temperature using a processing unit
- Providing the ambient and objects temperature at digital output bus (SPI)

The thermopile sensor module is suitable for a wide range of application where non-contact temperature measurement and high accuracy are required.

FEATURES

0°C – 300°C Measurement Range Small Size Up to 2°C Accuracy 2mA Current Consumption Improved constancy of output signal over distance

APPLICATIONS

Contact less Temperature Measurement Climate Control Industrial Process Control Household Applications

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. And even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	Vccmax	Stabilized supply voltage	-0.3		+16	٧
Operating Temperature	Topmax		-10		+85	°C
Storage temperature	Tstor		-40		+85	°C
Humidity	HumL	-40°C - +50°C			85	%
Humidity	HumH	+50°C - +85°C			50	%

OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	Vcc	Stabilized supply voltage	+3.3		+16	V
Operating Temperature Range	Тор		-10		+85	°C
Emission Coefficient	ε		0.98			

SENSOR CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Field of View	FOV 10	Total field of view at 10% signal level		8		0
Field of View	FOV 50	Total field of view at 50% signal level		5		0
Wavelength Range	S		Silico	n, no co	ating	μm

OPERATIONAL CHARACTERISTICS

If not otherwise noted, 5V supply voltage and object with ϵ =0.98 were applied.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Object Temperature Range	Tobj		0		300	°C
Resolution	Res				0.1	°C
Supply Current ¹⁾	1	No output load		2		mΑ
Data Output Rate	Fout			1		Hz
Standard Start-Up Time	tStart				3	S

TOLERANCES

If not otherwise noted, 5V supply voltage and object with ϵ =0.98 were applied.

Parameter	Symbol	Sensor Temp.	Object Temp.	Max	Unit
Standard Temp 1) 3)	AccS	15 < T _{sen} < 35	$160 < T_{obj} < 200$	2	°C
Extended Temp. 1 ^{2) 3)}	AccE1	$T_{sen} < 15, T_{sen} > 35$	$160 < T_{obj} < 200$	3	°C
Extended Temp. 2 2) 3)	AccE2	15 < T _{sen} < 35	$T_{obj} < 160, T_{obj} > 200$	3	°C
Extended Temp. 3 ^{2) 3)}	AccE3	$T_{\text{sen}} < 15$, $T_{\text{sen}} > 35$	$T_{obj} < 160, T_{obj} > 200$	4	°C

OTHER TEMPERATURE RANGES AND ACCURACIES ARE AVAILABLE ON REQUEST.

- 1) Proved while production
- ²⁾ Proved by design
- $^{3)}$ Valid for a distance of 100mm and black body size of 150mm x 150mm

SENSOR FIELD OF VIEW

Mechanical Dimensions

Only use hatched areas for mechanical assembly (screws, nuts, etc).

TERMINALS

Connector: JST PHR-6

Pin	Name	Description	Type
1	VDD	Supply Voltage	Supply
2	GND	Ground	Supply
3	SCL	SPI Clock	Interface
4	MISO	SPI Master In /	Interface
5	MOSI	SPI Master Out /	Interface
6	SCE	SPI Chip Enable	Interface

BLOCK DIAGRAM

INTERFACE

PARAMETER

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Baudrate	FSPI		10		100	kHz
Data Bits				8		
Chip Select				Yes		
Input Voltage Low					0.9	V
Input Voltage High		Vcc = 3.3V	2.1			V
Output Voltage Low		1mA			0.3	V
Output Voltage High		Vcc = 3.3V, 1mA	3.0			V

SIGNAL DESCRIPTION

SAMPLE CODE

Sample Code for sending 8 bits and reading 8 bits while sending 8 clocks.

```
// Setting directions
       TRISC4 = 1;
                        // SDI = Input
                        // SDO = Output
       TRISC5 = 0;
       TRISC3 = 0;
                        // SCL = Output
// Reset SPI Lines
       RC5 = 0; // SDO
       RC3 = 0;// SCL
       for (c = 0; c < 8; c++)
                                                   // Shift Receive Register
                cReceive = cReceive << 1;
                RC3 = 0;
                                                   // SCL = 0
                                                   // Outupt next Bit on SDO
                RC5 = (cTransmit >> (7 - c));
                RC3 = 1;
                                                   // SCL = 1
                cReceive = cReceive | RC4;
                                                            // Input next Bit on SDI
       }
       RC3 = 0:
       RC5 = 0:
```

return cReceive;

AMBIENT AND OBJECT TEMPERATUREMEASUREMENT

Please refer following table for SPI commands to read object temperature and ambient temperature. Both values are transmitted in hundredth of degrees.

Ī	Com	Description	Reply	Bytes
	0xA0	Sensor Temperature	Sensor temperature in hundredth of degrees Celsius	2
	0xA1	Object Temperature	Object temperature in hundredth of degrees Celsius	2

SEQUENCE OF TRANSMISSION

Enable SCE (SCE=0) before transmission of "Command". Release SCE (SCE=1) after reading last byte.

EXAMPLE OF TEMPERATURE CALCULATION

For reading object temperature send: 0xA1

Return values i.e.:

Byte(0) = ??? discard reading

Byte(1) = 0x1A (=26) Byte(2) = 0xB0 (=176)

Tobj = (256 * Byte(1) + Byte(2)) / 100 = (256 * 26 + 176) / 100 = 68.32°C

NAMING CONVENTION

ORDER INFORMATION

Please order this product using following:

Part Number Part Description
G-TPMO-025 TSEV01S01C05

EMC

Due to the use of these modules for OEM application no CE declaration is done.

Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented.

The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

Definitions and Disclaimers

- Application information Applications that are described herein for any of these products are for illustrative purpose only. MEAS Deutschland GmbH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunctions of these products can reasonably be expected to result in personal injury.
 - MEAS Deutschland GmbH customers using or selling this product for use in such applications do so at their own risk and agree to fully indemnify MEAS Deutschland GmbH for any damages resulting from such improper use or sale.

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company 910 Turnpike Road Shrewsbury, MA 01545 Tel: 1-508-842-0516 Fax: 1-508-842-0342 Sales email: temperature.sales.amer@meas-spec.com

EUROPE

Measurement Specialties (Europe), Ltd., a TE Connectivity Company Deutschland GmbH Hauert 13 44277 Dortmund Tel: +49 (0) 231/9740-0 Fax: +49 (0) 231/9740-20 Sales email: info.de@meas-spec.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company No. 26 Langshan Road Shenzhen High-Tech Park (North) Nanshan District, Shenzhen 518057 China Tel: +86 755 3330 5088 Fax: +86 755 3330 5099 Sales email: temperature.sales.asia@meas-spec.com

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.

TPT300VIR Pyrometer

Key Features

- Contactless Temperature Measurement
- High Accuracy
- Wide Temperature Range
- Digital and Analogue Interface
- Industrial Usage (IP65)

TPT300V is a contactless temperature measuring system - called pyrometer - based on the detection of infrared radiation. TPT300V is equipped with a lens and an infrared sensor (Thermopile) in front. It has to be pointed at the target object. The basic working principle is:

- Detection of infrared radiation with a Thermopile sensor
- Further analogue signal processing
- Calculation of the objects temperature using a microcontroller
- Providing the objects temperature at digital or analogue output

The main fields of applications are temperature measuring in industrial applications i.e. at moving or inaccessible parts

FEATURES

- 0°C 300°C Measurement Range
- 9V 24V Supply Voltage Range
- RS232 Interface & Analogue Voltage Output
- IP65 protected

APPLICATIONS

- Contactless Temperature Measurement
- Industrial Process Control

ABSOLUTE MAXIMUM RATINGS

• Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. And even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	Vcc	Measured versus GND	-1		28	V
Storage Temperature	Tstor		-20		85	°C

OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	Vcc	Measured versus GND	9		24	٧
Supply Current	I	Full ambient temp. range, no output load		22		mA
Thermal Emission Coefficient of Object	ε	Adjustable via RS232	10		100	%
Field of View	FOV			±5		0
Digital Output Rate		Adjustable	0.1		10	Hz
Digital Output Settings			9600 Ba	ud, 8 Bit, N Stop Bit		

OPERATING CHARACTERISTICS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Object Temperature Range	Tobj	Digital output Analog output	0 12		300 288	°C
Ambient Temperature Range	Tamb		0		85	°C
Spectral Sensitivity	S		8		14	μm
Accuracy of Target Temp. Measuring	Acc ₁	Tambient = 25°C	± 1% of F	ull Scale Ra ± 3°C	ange resp.	°C
Accuracy of Target Temp. Measuring	Acc ₂	Full ambient temp. range		of Full Scal esp. ± 4.5°	•	°C
Resolution Digital	Res			0.3		°C
Analog Output Characteristics			T[°	C] x 5V/30	O _° C	V
Analog Output Range				0.2 - 4.8		V
Resolution Analog				0.3		°C
Analog Output Source Resistance				40		Ω
Housing			S	tainless ste	el	
Protection class				IP 65		

MECHANICAL DIMENSIONS

TERMINALS

Please take care: pin numbers are marked on the Binder and on most DSUB connectors!

Pin	Symbol	Description	Тур
1	+VS	Supply Voltage	Supply
2	GND	Ground potential	Supply
3	NC		
4	NC		
5	AN	Analog Output (Voltage)	Analog Output
6	RX	Receive Data (RS232)	Digital Input/Output
7	TX	Transmit Data (RS232)	Digital Input/Output

FUNCTION

RS232 PROTOCOL

Fixed RS232 settings: 9600 Baud, 8 Bit, No Parity, 1 Stop Bit

TPT MODES

There are two modes implemented in TPT sensors: the Free Running mode and the On Request mode.

In the Free Running mode the sensor cyclically sends measuring results via RS232. In this mode no further communication (for instance changing sensor parameters) is possible. The only telegram which is accepted in this mode is the "Set On Request Mode" telegram, which stops sensor output.

In On Request mode the sensor only sends data via RS232 after user has sent any request telegram. Only in this mode the changing of sensor parameters is possible.

NOTE: Updating the analog output is directly correlated with updating the RS232 output. Only if output data are sent via RS232 the analog output is updated. Two cases are possible: the "Request Result Data" telegram causes updating serial and analog output and - on the other hand - the cyclically sending data in Free Running Mode.

FACTORY SETTINGS

After delivery following parameters are set:

Parameter	Default Setting
Output Mode	Free Running
Output Format	Object and Ambient Temperature
Output Rate	100ms
Emissivity	98%

COMMANDS

command	to the sensor	sensor response	explanation
Request Software Version and Serial Number	"V"	"HL-Planartechnik " "TPT V2.2 yywwnnn-2" <cr> <lf></lf></cr>	Manufacturer company, software version, serial number with yy =Year, ww = weak of year, nnn = consecutive number, -2 = product code for TPT300V
Set Output Mode "Free Running"	"F"	"F"	"Free Running" mode is active
Set Output Mode "On Request"	"f"	"f"	"On Request" mode is active
Set Output Format "Object and Ambient Temperature"	"["	"["	Format "Object and Ambient Temperature" is active
Set Output Format "Object Temperature"	"i"	"¦"	Format "Object Temperature" is active
Set Emissivity Factor	"e" <emissivity></emissivity>	"e" <emissivity></emissivity>	Emissivity in percentage (10100), 1 Byte Binary-Format,
Read Emissivity Factor	"E"	"99"	Answer Emissivity in percentage (10100); ASCII-Format
Request Result Data (While Output Format "Object and Ambient Temperature")	"R"	"+255:+784" <cr> <lf></lf></cr>	With +255 = sensor temperature in tenth of degree C (1-3 digit with sign) +784 = object temperature in tenth of degree C (1-4 digit with sign);
Request Result Data (While Output Format "Object Temperature")	"R"	"+784" <cr> <lf></lf></cr>	With +784 = object temperature in tenth of degree C (1-4 digit with sign)
Software Reset	"q"	-	No Echo. It takes about 1 second until software reset is done and sensor acts normal (as after power-up)
Set Output Data Rate for Output Mode "Free Running"	"O" "(Data Rate Code)"	"O" "(Data Rate Code)"	(Note 1), ASCII-Format

[|] Code)" | "" = ASCII-Format, <> = Binary-Format, <CR>= Carriage Return, <LF> = Line Feed No reset is necessary to activate the new settings.

Note 1:

Data Rate Code	Output Data Rate
"0"	100 ms
"1"	500 ms
"2"	1000 ms
"3"	5000 ms
"4"	10000 ms

CE CONFORMITY

The sensor meets the normative requirements for use in industrial environment. The complete compliance with the norm is given under following conditions:

- Housing is connected to PE by screws
- Meas connecting cable is used
- Shield is connected to GND at user side

If the user intends to employ his own connecting cable, it is recommended to equip this cable with a ferrite near the sensor. A suitable type is Würth #74271112.

TECHNICAL CONTACT INFORMATION

ORDERING INFORMATION

Part No.	Part Description
G-TPSY-002	TPT300V

Convenient cable on request

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company 910 Turnpike Road Shrewsbury, MA 01545 Tel: 1-508-842-0516 Fax: 1-508-842-0342 Sales email: temperature.sales.amer@meas-spec.com

EUROPE

Measurement Specialties (Europe), Ltd., a TE Connectivity Company Deutschland GmbH Hauert 13 44277 Dortmund Tel: +49 (0) 231/9740-0 Fax: +49 (0) 231/9740-20 Sales email: info.de@meas-spec.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company
No. 26 Langshan Road
Shenzhen High-Tech Park (North)
Nanshan District, Shenzhen 518057
China
Tel: +86 755 3330 5088
Fax: +86 755 3330 5099
Sales: temperature.sales.asia@meas-

spec.com

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard