2.2.8.7

	ε]
*	Ţ	}}#∩	}sn]

Para que circule 2A pela resistência de 6 R , a fonte E deve ser de:

a)	6 V		
ъ)	9 V	1.1.1.1	
c)	11 ¥		
d)	18 V	*************************************	\boxtimes

Nota:
$$R_g = 3 + 6 = 9 \Omega$$

$$E = 9 I$$
 ou $E = 9 \times 2 = 18$ Volt

2.2.9.1

Três resistências estão montadas em paralelo,

A intensidade total da corrente 6 de 8,81A.

A que atravessa R, é de 2,75A; a que atravessa R₂ é de 3,22A.

A que atravessa R, é:

•	a)	2,04 A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\times
	ъ)	3,12 A		
	c)	3,3 A		
	a)	5,97 A	,,	

8,81A 3,22A R1 R2

Como a intensidade total é igual à soma das intensidades que passam nas resistências R_1 R_2 e R_3 vem:

$$I_{t} = I_{1} + I_{2} + I_{3}$$
 on $8,81 = 2,75 + 3,22 + I_{3} \implies$
 $\implies I_{3} = 8,81 - (2,75 + 3,22) = 8,81 - 5,97 = 2,84 \text{ A}$