Here,
$$a=2$$
, $b=2$, $d=1$, $p=-1$

So, $\underline{a}=\underline{b}^d$ (": $2=2^d$)

So, case($\underline{B}(ii)$ is applicable.

Thus,
$$T(n) = \Theta(n \log^2 \log^2 n)$$

$$= \Theta(n \log^2 \log^2 n)$$

$$= \Theta(n \log^2 n).$$

Her,
$$a = \sqrt{2}$$
, $b = 2$, $d = 0$, $p = 1$.

So, $a > b$, $d = 0$, $p = 1$.

So, $a > b$, $d = 0$, $p = 1$.

So, $a > b$, $d = 0$, $p = 1$.

$$= \Theta(V_1, \mathcal{I}_{\mathcal{L}})$$

$$=\Theta(\sqrt{n})$$

2)
$$T(n) = 0.5T(\frac{1}{2}) + n$$

($a < 1$; cannot have less than one subproblem)

3)
$$T(n) = 64T(\frac{n}{8}) - n^2 \log n$$

 $(f(n) \text{ cannot be negative})$

4)
$$T(n) = T(\frac{1}{2}) + n(2-\cos n)$$

(+rigonometric functions cannot be part of $f(n)$).

Change of Variable method

$$1) T(n) = 2T(\sqrt{n}) + \log n$$

$$\Rightarrow$$
 Let $n=2^{m} \Rightarrow m=\log n$

So,
$$T(2^m) = 2T(2^{\frac{m}{2}}) + m \longrightarrow 1$$

Let
$$T(2^m) = S(m) \Rightarrow T(2^m) = S(m)$$

$$S(m) = 2 S(\frac{m}{2}) + m$$

We can apply master method to the above secursience.

So,
$$a = b^d$$
 (case (II) is applicable)

$$S(m) = \Theta(mlog m)$$

$$S(m) = \Theta(mlog m)$$

$$\Rightarrow T(2^m) = \Theta(mlog m)$$

$$\Rightarrow T(n) = \Theta(log n log log n) \quad (Putting m = log n)$$

$$\Rightarrow Let n = 2^m \Rightarrow m = log n$$

$$So, T(2^m) = 3T(2^n) + m$$

$$(onsides T(2^m) = S(m) \Rightarrow T(2^n) = S(n^n)$$

$$\Rightarrow S(m) = 3S(n^n) + m$$

$$So, us can apply master method to the above securarce, a = 3, b = 2, d = 1, p = 0.

Here, a > bd (3 > 2^1)
$$So, S(m) = \Theta(mlog 2^n)$$

$$\Rightarrow T(2^m) = \Theta(mlog 2^n)$$

$$\Rightarrow T(2^m) = \Theta(mlog 2^n)$$$$