Lecture 11

Frequency response and the Fourier transform

Preview of today's lecture

- Fourier series application examples
- ◆ Filtering a periodic signal
 - → Impact of filtering on the FS coefficients
 - → Types of common filters: lowpass, highpass, bandpass, bandstop
- ◆ Introduction to the Fourier transform

Basic signals

	Time domain <i>x(t)</i>	Fourier coefficients a_k
Constant (periodic for any T)	c	$c\delta[k]$
Cosine	$\cos(\omega_0 t)$	$\frac{1}{2}\delta[k-1] + \frac{1}{2}\delta[k+1]$
Sine	$\sin(\omega_0 t)$	$\frac{1}{2j}\delta[k-1] - \frac{1}{2j}\delta[k+1]$
Impulse train	$\sum_{m=-\infty}^{\infty} \delta(t - mT)$	$\frac{1}{T}$

Pulse train in general

From O&W Example 3.5

From the book

$$a_k = \frac{\sin\left(\pi k \frac{2T_1}{T}\right)}{k\pi} \quad k \neq 0$$

$$a_0 = \frac{2T_1}{T}$$

Rewritten using the sinc function $sinc(x) = \frac{sin(\pi x)}{\pi x}$

$$a_k = \frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right)$$

with fundamental frequency

$$a_k = \frac{2T_1}{T} \operatorname{sinc}\left(\frac{k2T_1}{T}\right)$$

simplified

Fourier series properties

lacktriangle Let $oldsymbol{\chi}(oldsymbol{t})$ and $oldsymbol{y}(oldsymbol{t})$ both have period $oldsymbol{T}=rac{2\square}{!\ 0}$, and

$$x(t) \stackrel{FS}{\longleftrightarrow} a_k \qquad y(t) \stackrel{FS}{\longleftrightarrow} b_k$$

	Time domain	FS domain
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time shift	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0}$
Time reversal	x(-t)	a_{-k}

Fourier series properties (continued)

	Time domain	FS domain
Time scaling	$x(\alpha t)$	a_k $T_{ m new}=rac{T}{lpha}$ period changes
Conjugate	$x^*(t)$	a_{-k}^*
Multiplication	x(t)y(t)	$\sum_{\ell=-\infty}^{\infty} a_{\ell} b_{k-\ell}$
Derivative	$\frac{d}{dt}x(t)$	$a_k(jk\omega_0)$
Parseval's Theorem	$\frac{1}{T} \int_{T} x(t) ^2 dt$	$=\sum_{k=-\infty}^{\infty} a_k ^2$

Fourier series and symmetry

	Time domain	FS domain
Conjugate symmetry	x(t) real	$a_k = a_{-k}^*$
Real and even	x(t) real and even	a_k real and even
Real and Odd	x(t) real and odd	a_k imag. and odd

(from O&W 3.26)

Application Example 6

lacktriangle Let x(t) be a periodic signal whose FS coefficients are

$$a_k = \begin{cases} 2 & k = 0\\ j(1/2)^{|k|} & \text{otherwise} \end{cases}$$

- \bullet Is x(t) real?
 - igspace Real signals must satisfy $x(t) = x^*(t)$ or $a_k = a_{-k}^*$ not satisfied here
- lacktriangle Is x(t) even?
 - lacktriangle Even signals satisfy x(t) = x(-t) or $a_k = a_{-k}$ yes is satisfied
- ♦ Is $\frac{dx(t)}{dt}$ even? ♦ The FS coefficients of $\frac{dx(t)}{dt}$ are $(j\omega_0 k)a_k$ for which $(j\omega_0 k)a_k \neq -(j\omega_0 k)a_{-k}$

Connections back to ECE 45

Lectures 2 - 3 working with signals

Lectures 4 - 7 LTI systems in the time domain

Lectures 11-12 LTI systems in the frequency domain

Lectures 8 - 10 Fourier series

Lectures 13 - 17 Fourier transform

Filtering periodic signals

Key points

- Explain how LTI systems impact signals
- Distinguish between different kinds of frequency filters

Recall the implications of the eigenfunction property

◆ General case

$$e^{j\omega_0 t} \longrightarrow H(j\omega_0) \longrightarrow H(j\omega_0)e^{j\omega_0 t}$$

Special case for real impulse responses

$$\cos(\omega_0 t) \longrightarrow H(j\omega) \longrightarrow |H(j\omega_0)| \cos(\omega_0 t + \angle H(j\omega_0))$$

How to find the frequency response?

◆ If the system is described by a differential equation

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k} \qquad \Rightarrow \qquad H(j\omega) = \frac{\sum_{k=0}^{M} b_k (j\omega)^k}{\sum_{k=0}^{N} a_k (j\omega)^k}$$

If you have the impulse response, compute the Fourier transform

$$H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt$$

Impact of LTI systems on periodic signals

Fourier series coefficients are modified by the frequency response of the system

General concept of a filter

Coffee filter

Sunglasses

Filtering an image to enhance the red

Modify the frequency content of the signal to create a sunset effect

Filtering a signal to enhance the bass

Change the frequency content of audio playback per personal preference

example of Spotify pre-set equalizer settings

High-pass filters (HPFs)

◆ Systems that pass high frequencies, attenuate low frequencies

Band-stop (notch) filters

◆ Stop (attenuates) a certain band, and passes the other frequencies

Example: Low-pass filtering a periodic signal I

Consider an ideal low-pass filter whose frequency response is

Example: Low-pass filtering a periodic signal 2

◆ Find the output if the input signal is

Square wave with period T=1/5

From O&W Example 3.5

From the book

$$a_k = \frac{\sin\left(\pi k \frac{2T_1}{T}\right)}{k\pi} \quad k \neq 0$$

$$a_0 = \frac{2T_1}{T}$$

Rewritten using the sinc function $sinc(x) = \frac{\sin(\pi x)}{\pi x}$ (for connecting to results in later lectures)

$$a_k = \frac{2T_1}{T} \operatorname{sinc}\left(\frac{k2T_1}{T}\right)$$

Example: Low-pass filtering a periodic signal 4

Period
$$T = \frac{1}{5}$$

Rectangle size $T_1 = \frac{1}{20}$

Fundamental frequency
$$\omega_0 = \frac{2\pi}{1/5}$$

= 10π

Fourier series coefficients

$$k \neq 0 \quad a_k = \frac{4}{\pi k} \sin\left(\pi k \frac{1}{2}\right)$$
$$k = 0 \qquad a_0 = 2$$

(note effect of scaling by 4)

Example: Low-pass filtering a periodic signal 5

Fourier series coefficients are modified by the frequency response of the system

Example: Low-pass filtering a periodic signal 6

Fourier coefficients before the LTI system

Fourier coefficients after the LTI system

Example: Low-pass filtering a periodic signal 7

Time domain signal before the LTI system

Time domain signal after the LTI system

Frequency response summary

- ◆ If the input to an LTI system is periodic, then the output is also periodic with the same period
- ◆ LTI systems impact the amplitude and phase of the Fourier series coefficients as determined by the frequency response of the system
- To determine the effect of an LTI system on a periodic signal, compute the Fourier transform of the impulse response and evaluate it at multiples of the fundamental frequency $k\omega_0$

Fourier transform

Key points

- Define Fourier transform
- Determine the Fourier transforms of Tand DT signals

Fourier transform for all signals

lacktriangleright For a signal X(t), the Fourier transform (FT) X(t) is

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

lack The notation $\mathcal{F}\{\cdot\}$ means to take the Fourier transform of the function inside the brackets

lacktriangle In some books, $X(\omega)$ is used instead of $X(j\omega)$

No periodicity assumption in the signal

Fourier series for periodic signals

- Consider the periodic signal x(t) with period T: x(t+T) = x(t)
- lacktriangle The Fourier series representation of the periodic signal x(t) is

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{ik\omega_0 t} \qquad \mathbf{k} \mathbf{w}_0$$

where $\omega_0=rac{2\pi}{T}$ is the fundamental frequency

- lacktriangle The Fourier series coefficients of x(t) are $\{a_k\}$ and a_0 is DC
- lacktriangle The k-th harmonic components of x(t) are a_k and a_{-k}

Interpreting the Fourier transform

◆ The Fourier transform can be written

Why do we care about complex sinusoids anyways?

lacktriangle For an LTI system, with input $e^{j\omega t}$ it is easy to compute the output

$$e^{j\omega t} \to H(j\omega) \to H(j\omega)e^{j\omega t}$$

◆ If a signal can be represented as a sum of sinusoids, then it is possible to compute the output of an LTI system

without convolution

Fourier transform!!

◆ Further notice that

$$H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt$$

Example – Unit impulse

◆ Consider the signal

♦ Its FT is given by

$$X(t) = O(t)$$

$$X(j\omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} \delta(t)dt$$

$$= 1$$

Example - Triangle

Compute the Fourier transform of

$$x(t) = \begin{cases} 1 - t & t \in [0, 1] \\ 0 & \text{else} \end{cases}$$

Solution:

Example - Triangle (continued)

◆ Compute the Fourier transform of

of
$$x(t) = \begin{cases} 1 - t & t \in [0, 1] \\ 0 & \text{else} \end{cases}$$

♦ Solution:

$$X(j\omega) = \int_{0}^{1} e^{-j\omega t} dt - t \frac{1}{-j\omega} e^{-j\omega t} \Big|_{0}^{1} + \int_{0}^{1} \frac{1}{-j\omega} e^{-j\omega t} dt$$

$$= \int_{0}^{1} e^{-j\omega t} dt - t \frac{1}{-j\omega} e^{-j\omega t} \Big|_{0}^{1} + \left(\frac{1}{j\omega}\right)^{2} e^{-j\omega t} \Big|_{0}^{1}$$

$$= \frac{1}{j\omega} - \frac{1}{j\omega} e^{-j\omega} + \frac{1}{j\omega} e^{-j\omega} - \frac{1}{\omega^{2}} e^{-j\omega} + \frac{1}{\omega^{2}}$$

$$= \frac{1}{j\omega} - \frac{1}{\omega^{2}} e^{-j\omega} + \frac{1}{\omega^{2}}$$

Inverse Fourier transform

lacktriangle Given the frequency response $oldsymbol{X}(oldsymbol{j})$, $oldsymbol{X}(oldsymbol{t})$ is given by the

inverse Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

- ◆ Transform looks similar to direct transform except
 - → Sign of the exponential is different
 - Scaling factor in front (results from using radians and not Hertz)

Similarity will lead to the concept of duality

Example – Unit impulse in frequency

lacktriangle Consider the signal $X(j\omega) = \delta(\omega)$

$$X(j\omega) = \delta(\omega)$$

◆ Its FT is given by

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega) e^{j\omega t} d\omega$$
$$= \frac{1}{2\pi}$$

Notice the duality here in each domain

Example – Shifted delta in frequency

- lacktriangle Consider an impulse in the frequency domain $\,X(j\omega)=\delta(\omega-\omega_0)\,$
- ♦ Its inverse FT is given by

$$x(t) = \frac{1}{2\Box} \int_{-\infty}^{\infty} \delta(! - !_0) e^{i! t} d!$$

$$= \frac{e^{j\omega_0 t}}{2\pi} \int_{-\infty}^{\infty} \delta(\omega - \omega_0) d\omega$$
$$= \frac{e^{j!} ot}{2\Box}$$

Example - A few deltas in frequency

◆ Use the Fourier transform synthesis equation to determine the inverse Fourier transform of

$$X(\omega) = 2\pi\delta(\omega) + \pi\delta(\omega - 4\pi) + \pi\delta(\omega + 4\pi)$$

Solution

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (2\pi\delta(\omega) + \pi\delta(\omega - 4\pi) + \pi\delta(\omega + 4\pi)) e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \left(2\pi e^{j0t} + \pi e^{j4\pi t} + \pi e^{-j4\pi t} \right)$$

$$= 1 + \frac{1}{2} e^{j4\pi t} + \frac{1}{2} e^{-j4\pi t}$$

$$= 1 + \cos(4\pi t)$$

Summarizing the Fourier transform and its inverse

Fourier transform (analysis)

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Inverse Fourier transform (synthesis)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega$$

$$x(t) \leftrightarrow X(j\omega)$$

Note: An alternative formulation that is common uses Hertz rather than radians/sec

Fourier transform in Hertz

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt \quad f \text{ in Hz}$$

Inverse Fourier transform from X(f) (note lack of $1/2\pi$)

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df$$

In EE 45 we will use $X(j\omega)$