AUTOCORRELAZIONE ed ERRORI nella SIMULAZIONE di processi di Markov

In senso molto generale, ogní volta che facciamo un conto numerico, vorremmo essere in grado di riportare (un po' come si fa per un esperimento in laboratorio) due cose:
RISULTATI ed ERRORI!
Spesso in laboratorio abbiamo dati indipendenti. Ci trovismo in un CASO SEMPLICE! Per PROCESSI di MARKOV le COSE soranno PIV' COMPLICATE!
Quando abbiamo un CAMPIONE di N DATT INDIPENDENTI
(diciamo che questo campione sia conteguto in un VETTORE de con length (dd) = N)
RISULTATO \iff mean (dd) ERRORE \iff std (dd)/sqrt(length(dd)) = $\frac{\text{Std}(dd)}{V_N}$
Questo è spesso il caso della raccolta di dati da misure in laboratorio: siccome i dati
generati sono INDIPENDENTI (nell'ipoten, ovviamente, che si tratti di misure dirette senza errori sistematici) pouso applicare i risultati che discendono dalla LEGGE dei GRANDI NUMERI:
- Se OSSERVO un fenomeno describto do una certo distribuzione, la MEDIA ARITMETICA dei dati (notate du "parliamo Matlab": che fe mean) è una STIMA CORRETTA e NON DISTORTA del VALOR MEDIO sella distribuzione
- La VARIANZA della MEDIA E ugusle alla VARIANZA del PROCESSO divisa per il numero di prave (cardinalità del mio Campione) - Poi due prendi amo come stima della ERRORE lo SCARTO (radice quartoti della Varianza), denominato T, lo sento della HEDIA e dempue T, dove T E lo scarto del processo, come misurato dolla funzione "sta" di Matlab.
1
N.B. L'Unica soltiguezza in questo coso è nulla determinazione NON DISTORTA della T. (parliamo di unbiased estimators): pida Gi pusa Matlab a face la cosa correlto, possiamo disinteressarcene

-> COME DOBBIAMO CALCOLARE gli ERRORI nd coso di SIMULAZIONI
di PROCESSI DI MARKOV?
La conclusione generale cui arriveremo è che la applicazione ingenua della semplice ricetta vista sopra (valida per un campione di dati indipendenti) ci conduce a SOTTOSTIMARE SISTEMATICAMENTE GLI ERRORI!
Un po' di notazionu:
- UN processo $\tilde{\epsilon}$ und successions di CONFIGURAZIONI del SISTEMA $\{X_{\tilde{\epsilon}} _{\tilde{t}}=1T\}$; - se misuro und funzione $f(X)$ ottenzo la successione $\{f_{\tilde{\epsilon}}=f(X_{\tilde{\epsilon}})\}$;
- CHIAMO $\mu_f = \langle f_t \rangle_{\pi} = \sum_{x} f(x) T_{x}$ il VALOR MEDIO di f_t sulla distribuzione asintofica TI
definisco)FUNZIONE di AUTOCORRELAZIONET
$\left\ C_{H}(t) = \langle f_{s} f_{s+t} \rangle_{\pi} - \langle f_{s} \rangle_{\pi} \langle f_{t} \rangle_{\pi} = \langle f_{s} f_{s+t} \rangle - \mu_{f}^{2} \right\ $
N.B. Correlo due misure "distant + rul tempo della simulazione" (é fuzione della distanza fra i due tempo l'efo la notazione: 5 non Guta)
N.B.2 Mi aspetto du se $(ff(f) \simeq 0)$ Moo a distanza temporale f^* le mie misure siano decorrelate (al solito: valor media del prodotto in queste condizioni $E \simeq \text{prodotto}$ du valori medi)
N.B. 3 Notore il pedice ff: la f2 di AUTOCORRELAZIONE E diverso pur diverse funzioni f
Notace the $C_{ff}(t) = \langle f_s f_{s+t} \rangle_{\pi} - \mu_F^2 = \sum_{xy} f(x) \left(W_{xy}^{1+1} T_y - T_x T_y \right) f(y)$
e demque Cff(+) -> 0 purde With -> TTx!
Quindi SU TEMPI LUNGHI LE MISORE RACCOLTE SIMULIAND IL PROGESSO SI DECORRELANO: M2 "QUANTO CI METTONO"?

Scrivo una FUNZ. LI AUTOCORRELAZIONE NORHALIZZATA
$C_{II}(t)$
$Pff(t) = \frac{C_{ff}(t)}{C_{ff}(0)} (owero P_{ff}(0) = 1)$
TIPICAMENTE PH(+)~e-1+/2
11.500000000000000000000000000000000000
il die non a stupisce: ricordate die pudevamo memoria della distribuzione di
probabilità iniziale $P^{(0)}$ in $P^{(W)} = W^N P^{(0)} \rightarrow TT + O(\widehat{A} ^W)$? Ngrande
λ € l'autorstore in modulo (λ ≠1) più vicino a uno. Dra N e il nostro t e
$ \hat{\lambda} ^{N} \rightarrow \hat{\lambda} ^{+} = e^{\ln \hat{\lambda} ^{+}} = e^{+\ln \hat{\lambda} }$
Poidié $ \hat{\lambda} < 1$, $ \ln \hat{\lambda} < 0$ e $ \ln \hat{\lambda} = - \ln \hat{\lambda} $, owero $ \hat{\lambda} ^{\frac{1}{2}} = e^{-\frac{1}{2} \ln \hat{\lambda} }$
the posson servere $1\hat{\lambda} _{t} = e^{-\frac{1}{16m\lambda} _{t}-1} = e^{-\frac{1}{2}} \dots$
,
DEFINISCO IL TEMPO LA AUTORRELAZIONE Texpit = lim Sup + - log / Pij (4) /
() () () () () () () () () ()
T = SUD T CHARSUT LIGHT TEMPO L RUAISAMENTO
e Zexp = SUP Texpit rappressuots dunque il TEMPO di RILASSAMENTO
dd MODO PIU' LENTO dd SISTEMA.
Queito comports du Lovo attembere un tempo ALMENO to Texp per
Ouside are il Sistema TERMALIZZATO
CONTRACTOR INTO CONTRACTOR
auto - 1
ma questo non a dia sucos nulla sugli emori

Definisco ors il TEMPO di AUTOCORRELAZIONE INTEGRATO

$$Z_{int,f} = \frac{1}{2} \sum_{t=-\infty}^{\infty} \rho_{ff}(t) = \frac{1}{2} + \sum_{t=1}^{\infty} \rho_{ff}(t)$$

(con questo normalizzazione - c/k il follore 1/2 - Int, f ~ Texpit se Pif(+) ~ etz...)

QUANTO VALE LA VARIANZA ALL' EQUILIBRIO di

Questo é la quantité du misuro, pudu so du F -> pf. In sostanza,

La F leggo il RISULTATO e la RADICE QUADRATA (scarta) della sua VARIANZA mi da la stima dell' ERRORE, que é quello du vado cercando!

$$Vor_{\Pi}(\bar{T}) = \langle \bar{T}^{2} \rangle - \mu_{f}^{2} = \frac{1}{N^{2}} \langle \sum_{t,l=1}^{N} \{ t f_{S} \rangle - \mu_{l}^{2} \}$$

$$= \frac{1}{N^{2}} \sum_{t,l=1}^{N} \left[\langle f_{T}f_{S} \rangle - \mu_{l}^{2} \right]$$

$$= \frac{1}{N^{2}} \sum_{t,l=1}^{N} \langle f_{l}(t-S) \rangle = \frac{1}{N^{2}} \sum_{t=-N+1}^{N-1} (N-l+1) C_{ff}(t+1)$$

$$= \frac{1}{N} \sum_{t=-N+1}^{N-1} \left(1 - \frac{l+1}{N} \right) C_{ff}(t+1)$$

$$= \frac{1}{N} 2 C_{ff}(0) \frac{1}{2} \sum_{t=-N+1}^{N-1} \left(1 - \frac{l+1}{N} \right) P_{ff}(t+1)$$

Ora quando N >> t, I (ouviamente é puello du vaplio! molte misure!!)

$$\frac{1}{2} \sum_{t=-N+1}^{N-1} (1 - \frac{|t|}{N}) \rho_{H}(t) \sim \frac{1}{2} \sum_{t=-\infty}^{\infty} \rho_{H}(t)$$

Il due vuol lire du per un numero di misure N>>7

$$V_{\mathcal{H}_{\Pi}}(\overline{+}) \simeq \frac{1}{N} \left(2 \, \overline{\mathcal{L}}_{int,+} \right) \, C_{ff}(0)$$

dove (11(0) & la ranianza di f M'equilibrio...

E' come die che
$$V_{N_{\Pi}}(\overline{f}) = \frac{1}{N_{eff}} V_{N_{\Pi}}(f)$$
 dove $N_{eff} = \frac{N}{2 \tau_{inf}, f}$

OWLO La VAVIANZA della media è predla della quantità du vojtio misurare abbattata NON 1: 1 ma di 1 deve Nett < N per elfetto di Int, +:

duro "spaziare le misure" per trovare quelle decorrelate!

L'ERRORE de descemo (ad exempro per la lunghezza della coda all'equilibrio)

Love de e un comprone de N misure di + sul processo.

Sul comprome sterio (in generale sul compione più grande possibile)

avro per prima cosa determinato Tintit, il de dicede a sua

volta di misurare la funzione di autocorrelazione di f.

N SOSTANZA

- PRIMA J: PRENDERE MEDIE devo FAR TERMALIZZARE il SISTEMA (pur lempi di ordine Zerp...)
- UNA VOLTA ALL' EQUILIBRIO, LEVO prima determinare la FUNZIONE di AUTOCORRELAZIONE; poi da questa Levo Calcobre Zint, +; INFINE passo DETERMINARE II ERRORE.