Application/Control Number: 10/057,179

Art Unit: 2611

determining a posterior covariance matrix $\hat{\Sigma}_p$ of the channels using a FFT matrix W, the previous estimate of the transmitted symbol X_p , a channel convergence matrix $\hat{\Sigma}^{-1}$, and a Gaussian noise variance σ^2 as $\hat{\Sigma}_p = (W^H X_p^H X_p W / \sigma^2 + \Sigma^{-1})^{-1}$;

- —where determining a posterior means comprises determining a the posterior mean $\hat{\underline{h}}_p$ of a channel impulse response as $\hat{\underline{h}}_p = \hat{\Sigma}_p(\mathbf{W}^H\mathbf{X}_p^H\mathbf{Y}/\sigma^2 + \Sigma^{-1}E\{\underline{h}\})$, where the received symbol is \mathbf{Y} , and $E\{\underline{h}\}$ is a the channel impulse response;
- determining a channel update coefficients matrix C for recovering the next-estimate of the transmitted symbol; and

applying the coefficient matrix C to the posterior mean $\hat{\underline{h}}_p$, the FFT matrix W, and the received symbol Y according to $\underline{\widetilde{X}}_{p+1} = \mathbf{C}^{-1}(\hat{\underline{h}}_p^H \mathbf{W}^H \mathbf{Y})^T$ to optimize the next estimate of the transmitted symbol $\underline{\widetilde{X}}_{p+1}$.

Regarding claim 1, in line 4, "symbol transmitted" is replaced by –transmitted **VB S/II/6** symbol--.

Regarding claim 18, the following version replaces all prior versions in their entirety:

- 18. The system of claim 12 further comprising:
- means for determining a posterior covariance matrix $\hat{\Sigma}_p$ of the channels using the FFT matrix W, the initial estimate of the transmitted symbol X_p , a channel convergence matrix $\sum_{j=1}^{n-1} x_j$ and a Gaussian noise variance σ^2 as $\hat{\Sigma}_p = (W^H X_p^H X_p W / \sigma^2 + \Sigma^{-1})^{-1}$;
- where the means for determining a posterior mean comprises means for determining a the posterior mean $\hat{\underline{h}}_p$ of a channel impulse response as $\hat{\underline{h}}_p = \hat{\Sigma}_p(\mathbf{W}^H\mathbf{X}_p^H\mathbf{Y}/\sigma^2 + \Sigma^{-1}E\{\underline{h}\})$, where the received symbol is Y and $E\{\underline{h}\}$ is a the channel impulse response;