Particle spectrograph

Wave operator and propagator

$ au_{1}^{\#2}$	0	0	0	0	0	0	0	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#1}{}_{lpha} \; \sigma_{1}^{\#2}{}_{lpha} \; au_{1}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0	
$\sigma_{1^{^{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\tau_{1}^{\#1}{}_{\!$	$-\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	$\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	$\frac{9k^2r_3+4t_2}{3(1+k^2)^2r_3t_2}$	0	0	0	0	
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$-\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{9k^2r_3+4t_2}{3(k+k^3)^2r_3t_2}$	$-\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{+}\alpha_{\beta}$	2 3 k ² r ₃	$-\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	0	0	0	0	
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_1^{\#1} +^\alpha$	$\tau_1^{\#2} +^{\alpha}$	

$f_{1^-}^{\#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{#2} \alpha f_{1}^{#1} \alpha f_{1}^{#2}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+^2$	$\frac{\sqrt{2} t_2}{3}$	[2]	$-\frac{1}{3}$ \bar{l} kt_2	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{6} (9 k^2 r_3 + 4 t_2)$	$\frac{\sqrt{2} \ t_2}{3}$	$-\frac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
	$\omega_1^{\#1} + ^{\alpha\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{\#1} + \alpha^\beta$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{\#2} + \alpha$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	0

$\omega_{0^{+}}^{\sharp 1} f_{0^{+}}^{\sharp 1} f_{0^{+}}^{\sharp 2} \omega_{0^{-}}^{\sharp 1}$							
$\omega_0^{\sharp 1}$ †	0	0	0	0			
$f_{0^{+}}^{#1}$ †	0	0	0	0			
$f_{0+}^{#2}$ †	0	0	0	0			
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$			

Source constraints/gauge generators

<u> </u>	aage generators
SO(3) irreps	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0+}^{\#1} == 0$	1
$\sigma_{0+}^{\#1} == 0$	1
$r_1^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\sigma_1^{\#2\alpha} == 0$	3
$\sigma_1^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	5
Total constraints:	28

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_2^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
# ₁ †	0	0	0	0
# ₁ †	0	0	0	0
#2 0+ †	0	0	0	0
# ₁ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Massive and massless spectra

No massless particles

Unitarity conditions