Algèbre commutative et effectivité

Alexandre Guillemot

 $17\ {\rm septembre}\ 2022$

Table des matières

1	Pré	liminaire	es sur les anneaux de polynômes, idéaux, noethérianité	
	1.1	Anneaux	noéthériens	
		1.1.1 I	Définition	
		1.1.2 Т	Théorème de la base de hilbert	
	1.2	Division	multivariée	
		1.2.1	Ordres monomiaux	
		1.2.2 A	Algorithme de division multivariée	
	1.3	Bases de	Gröbner	
		1.3.1 I	Définition	
		1.3.2 I	déaux monomiaux	
	1.4	Algorith	me de Buchberger	
		_	Critère de Buchberger	

Introduction

L'objectif de ce cours est de "résoudre" des systèmes d'équations polynômiales. Formellement, si $f \in k[x_1, \dots, x_n]$, $I = (f_1, \dots, f_r)$, alors

$$f \in I \iff \exists g_1, \dots, g_r \in k[x_1, \dots, x_n] \mid f = f_1g_1 + \dots + f_rg_r$$

On voudrait ainsi déterminer si $f \in I$. Références : 2 livres de Cox, Little, O'Shea

Chapitre 1

Préliminaires sur les anneaux de polynômes, idéaux, noethérianité

Dans ce chapitre, tous les anneaux seront commutatifs. Fixons dès à présent un $k \in \mathbf{Fld}$ (on supposera toujours qu'on dispose d'algorithmes pour les opérations du corps).

1.1 Anneaux noéthériens

1.1.1 Définition

Définition 1.1.1. (Anneau noéthérien) Un anneau est noéthérien si toute suite croissante d'idéaux $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots$ est stationnaire i.e.

$$\exists N \in \mathbb{N} \mid \forall m \geq N, I_m = I_N$$

Proposition 1.1.1. Un anneau est noéthérien si et seulement si tout idéal de A est finiment engendré.

Ex 1.1.1. Voici des exemples d'anneaux noéthériens/non noéthériens

Anneaux noéthériens	Anneaux non noéthériens
\mathbb{Q}	$k[\mathbb{N}]$
Plus généralement, tout corps k	
$\mathbb{R}[x]$	
Plus généralement, tout PID	
${\mathbb Z}$	
$k[x_1, \cdots, x_n]$ (conséquence de 1.1.1)	
Anneaux finis	
Anneaux artiniens	

1.1.2 Théorème de la base de hilbert

Théorème 1.1.1. (Théorème de la base de Hilbert) Soit A un anneau noéthérien. Alors A[x] est un anneau noéthérien.

Corollaire 1.1.1. Si k est un corps, alors $k[x_1, \dots, x_n]$ est noeth pour $n \in \mathbb{N}$.

 $D\'{e}monstration$. On veut montrer que tout idéal $I \stackrel{\text{id}}{\subseteq} A[x]$ est finiment engendré. Soit $I \stackrel{\text{id}}{\subseteq} A[x]$, montrons qu'il est finiment engendré. Pour chaque $n \in \mathbb{N}$, soit

$$I_n := \{ a_n \in A \mid \exists a_0 + a_1 x + \dots + a_n x^n \in I \}$$

Il est facile de voir que $I_n \stackrel{\mathrm{id}}{\subseteq} A$. Ensuite (I_i) est croissante, car si $a_i \in I_i$ pour un $i \in \mathbb{N}$, alors $\exists f \in I$ tq le coefficient directeur de f soit a_i . Mais alors $xf(x) \in I$ est de degré i+1 et son coefficient directeur est encore a_i , d'où $a_i \in I_{i+1}$. Ainsi cette suite d'idéaux est stationnaire (A noeth). Notons $N \in \mathbb{N}$ tq $m \geq N \Rightarrow I_m = I_N$. Les idéaux I_0, \dots, I_N sont finiment engendrés, notons $\{a_{i,j}\}_{1 \leq j \leq r_i}$ des familles génératrices pour I_i , pour tout $i \in [0, N]$. Pour chaque $a_{i,j}, \exists f_{ij} \in I$ tq $\deg(f_{ij}) \leq i$ et le terme de degré i de $f_{i,j}$ est $a_{i,j}$ (par définition de I_i). Montrons que $I = (\{f_{i,j}\}_{0,1 \leq i,j \leq N, r_i})$: soit $f \in I$,

- 1. si $\deg(f) = 0$, alors posons $a \in A$ to $f = ax^0$. Ainsi $a \in I_0$, ainsi $\exists b_1, \dots, b_{r_0}$ to $a = \sum_{i=1}^{r_0} b_i a_{0,i}$. Or $f_{0,i} = a_{0,i} x^0$, ainsi $f = \sum_{i=1}^{r_0} b_i f_{0,i}$.
- 2. Si $d = \deg f > 0$, notons b le coeff directeur de f. Ainsi $b \in I_d$ Cas où $d \leq N$: On peut écrire $b = \sum_{i=1}^{r_d} \lambda_i a_{d,i}$ avec $\lambda_i \in A$. Posons $S = \sum_{i=1}^{r_d} \lambda_i f_{d,i}$, alors le coefficient directeur de S est précisément b (et $\deg S \leq d$). Ainsi $\deg(f-S) < d$, et $f S \in I$. Par hypothèse de récurrence, $f S \in (\{f_{i,j}\})$ et $S \in (\{f_{i,j}\})$, donc finalement $f \in (\{f_{i,j}\})$.

Cas où d > N: Notons b le coeff directeur de $f, b \in I_d = I_N \Rightarrow b = \sum \lambda_i a_{N,i}$. Posons $T := \sum \lambda_i f_{N,i} X^{d-N}$ est de degré d et de coeff directeur b, puis on conclut comme précedemment en regardant le polynômes f - T.

Ainsi les idéaux de A[x] sont finiment engendrés, donc A[x] est noeth.

1.2 Division multivariée

1.2.1 Ordres monomiaux

Fixons $k \in \mathbf{Fld}$. Rappelons que si $I \subseteq k[x]$ non nul, alors $\exists g \in k[x]$ t.q. I = (g) (car k[x] est principal, euclidien). Soit $f \in k[x]$, alors $f \in (g) \iff g \mid f \iff$ le reste de la division euclidienne de f par g est nul (et on dispose d'un algorithme pour réaliser la division euclidienne). Question : peut-on généraliser à $k[x_1, \dots, x_n]$?

Rq 1.2.1. Soit
$$I \subseteq k[x]$$
, $I = (f_1, \dots, f_r)$. Alors $I = (\operatorname{pgcd}(f_1, \dots, f_r))$

Définition 1.2.1. (Ordre monomial) Un ordre monomial sur $k[x_1, \dots, x_n]$ est une relation d'ordre \leq sur l'ensemble des $\{x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mid \alpha \in \mathbb{N}^n\}$ tq

- 1. \leq est un ordre total (pour tout $x^{\alpha}, x^{\beta} \in k[x_1, \cdots, x_n], (x^{\alpha} \leq x^{\beta}) \vee (x^{\beta} \leq x^{\alpha})$).
- 2. $x^{\alpha} \leq x^{\beta} \Rightarrow \forall \gamma \in \mathbb{N}^n, x^{\alpha+\gamma} \leq x^{\beta+\gamma}$
- 3. $1 \le x^{\alpha}$ pour tout $\alpha \in \mathbb{N}^n$.

Notation. On écrira $\alpha \leq \beta$ au lieu de $x^{\alpha} \leq x^{\beta}$.

- **Ex 1.2.1.** 1. Dans k[x], il est facile de vérifier qu'il n'existe qu'un seul ordre monomial $<: x^n < x^m \iff n < m$.
 - 2. Ordre lexicographique \leq_{lex} : soient $\alpha, \beta \in \mathbb{N}^n$ tq $\alpha \neq \beta$,

$$\alpha <_{lex} \beta \iff \exists 1 \leq r \leq n \mid \alpha_i = \beta_i \text{ pour } i < r \text{ et } \alpha_r < \beta_r$$

(i.e. le premier coeff non nul d $\beta - \alpha$ est positif). Par exemple, dans $k[x_1, x_2, x_3]$, $x_1^2 >_{lex} x_1 x_2 >_{lex} x_2^2 >_{lex} x_3^{2097434}$

3. Ordre lexicographique gradué \leq_{deglex} : Pour $\alpha \in \mathbb{N}^n$, notons $|\alpha| = \sum \alpha_i$. Alors soient $\alpha \neq \beta$ dans \mathbb{N}^n ,

$$\alpha <_{deglex} \beta \iff (|\alpha| < |\beta|) \lor (|\alpha| = |\beta| \land \alpha <_{lex} \beta)$$

4. Ordre lexicographique renversé gradué $<_{degrevlex}$:

$$\alpha <_{degrevlex} \beta \iff (|\alpha| < |\beta|) \lor (|\alpha| = |\beta| \land (\exists r \in [1, n]] \mid \forall i \in [r+1, n], \alpha_i = \beta_i \text{ et } \alpha_r > \beta_r))$$

(la deuxième condition reviens a vérifier que le dernier coeff non nul de $\beta - \alpha$ est négatif dans le cas où $|\alpha| = |\beta|$)

Exercice. Vérifier que ces ordres sont des ordres monomiaux.

Dans sage, on appelle "term orders" de tels ordres.

Proposition 1.2.1. Soit \leq un ordre sur \mathbb{N}^n satisfaisant les propriétés 1 et 2 de la def 1.2.1. Alors tfae

- 3. $0_{\mathbb{N}^n} \leq \alpha, \forall \alpha \in \mathbb{N}^n$
- 4. \leq est un bon ordre : $\forall E \subseteq \mathbb{N}^n$ non vide, E contient un élément minimal pour \leq .

Démonstration. $4 \Rightarrow 3$: Supposons qu'il existe $\alpha \in \mathbb{N}^n$ tq $\alpha < 0$, alors $2\alpha < \alpha$, $3\alpha < 2\alpha$ et ainsi de suite, donc $\cdots < 2\alpha < \alpha < 0$, mais alors $\{m\alpha \mid m \in \mathbb{N}\}$ n'a pas d'élément minimal, donc < n'est pas un bon ordre.

 $3\Rightarrow 4$: Supposons qu'il existe $F\subseteq \mathbb{N}^n$ non vide et sans élément minimal. Posons

$$m_1 = \min\{\alpha_1 \mid \alpha \in F\}$$

et notons $\alpha^{(1)} \in F$ tq $\alpha_1^{(1)} = m_1$. Posons de plus

$$F_1 = \{ \beta \in F \mid \beta \le \alpha^{(1)} \}$$

Remarquons alors que F_1 est non vide (il contient $\alpha^{(1)}$). Construisons maintenant m_i , $\alpha^{(i)}$ et F_i par récurrence : supposons que l'on a construit F_{i-1} non vide, alors on constuit m_i comme

$$m_i := \min\{\alpha_i \mid \alpha \in F_{i-1}\}$$

Il existe alors $\alpha^{(i)} \in F_{i-1}$ tq $\alpha_i^{(i)} = m_i$, puis finalement on construit F_i comme

$$F_i := \{ \beta \in F_{i-1} \mid \beta \le \alpha^{(i)} \}$$

Remarquons finalement que F_i est encore non vide, puisqu'il contiens $\alpha^{(i)}$. Maintenant F_n n'admet pas d'élément minimal, car sinon en notant β un tel élément, et prenons $\gamma \in F$. Alors $\gamma \leq \beta$ implique que γ est dans F_n , puisque $\gamma \leq \beta \leq \alpha^{(n)}$, et ainsi $\gamma = \beta$ par minimalité de β dans F_n . Ainsi β serait un élément minimal de F, qui n'en admet pas. Ainsi il existe $\beta \in F_n$ tel que $\beta < \alpha^{(n)}$. Maintenant comme $\alpha^{(n)} \leq \alpha^{(n-1)} \leq \cdots \leq \alpha^{(1)}$, on a $F_n \subseteq F_{n-1} \subseteq \cdots \subseteq F_0 := F$, et donc pour tout $i \in [1, n]$, $\beta \in F_{i-1}$.

Posons maintenant $m_2 = \min\{\alpha_2 \mid \alpha \in F_1\}$, et prenons $\alpha^{(2)} \in F_1$ tq $\alpha_2^{(2)} = m_2$, $\alpha_1^{(2)} = m_1$. On construit alors $F_2 := \{\beta \in F_1 \mid \beta < \alpha^{(2)}$, puis de manière récursive m_i et F_i pour $i \in [\![1,n]\!]$. F_n est infini, et $F_n \subseteq F_{n-1} \subseteq \cdots \subseteq F_1 \subseteq F$. Soit $\beta \in F_n$ tq $\beta < \alpha^{(n)}$, alors $\beta_i \geq \alpha_i^{(n)}$ par construction de $\alpha^{(n)}$. Ainsi $\beta - \alpha^{(n)} \in \mathbb{Z}_{>0}^n$ Alors $\beta - \alpha^n < 0$, car sinon on aurait $\beta \geq \alpha^{(n)}$.

1.2.2 Algorithme de division multivariée

Fixons maintenant un ordre monomial $\leq \sup k[x_1, \dots, x_n]$.

Définition 1.2.2. Soit $f = \sum_{\alpha \in \mathbb{N}^n} \lambda_{\alpha} x^{\alpha} \in k[x_1, \dots, x_n] \setminus \{0\},$

- 1. Le multidegré de f est $\mathrm{mdeg}(f) = \max_{>} \{\alpha \in \mathbb{N}^n \mid \lambda_\alpha \neq 0\}$
- 2. Le coefficient dominant de f $\mathrm{LC}(f) = \lambda_{\mathrm{mdeg}(f)}$
- 3. Le mo,ome dominant de f est $LM(f) = X^{mdeg(f)}$

4. Le terme dominant de f est $LT(f) = \lambda_{mdeg(f)} mdeg(f)$

Soit (f_1, \dots, f_r) un r-tuple de polynômes non nuls de $k[x_1, \dots, x_n]$. Soit $f \in k[x_1, \dots, x_n]$, on cherche $Q_1, \dots, Q_r, R \in k[x_1, \dots, x_n]$ tq

- 1. $f = Q_1 f_1 + \dots + Q_r f_r + R$
- 2. R = 0 ou aucun des termes de R n'est divisible par $LT(f_1), \dots, LT(f_r)$.

Algorithme

- 1. Initialisation: $f^{(0)} := f, Q_1^{(0)}, \dots, Q_r^{(0)} = 0, R^{(0)} = 0.$
- 2. Etapte $m \geq 1$: Si $f^{(m-1)} = 0$, alors $Q_i := Q_i^{(m_1)}$ et $R = R^{(m-1)}$, terminer l'algo. Sinon, si $LT(f_1) \mid LT(f^{(m_1)})$, effectuer:

$$f^{(m)} \leftarrow f^{(m-1)} - \frac{\text{LT}(f^{(m-1)})}{\text{LT}(f_1)} f_1$$

$$Q_1^{(m)} \leftarrow Q_1^{(m-1)} + \frac{\text{LT}(f^{(m-1)})}{\text{LT}(f_1)}$$

$$Q_i^{(m)} \leftarrow Q_i^{(m_1)}, i \neq 1$$

$$R^{(m)} \leftarrow R^{(m-1)}$$

Sinon si $LT(f_2) \mid LT(f^{(m-1)})$, effectuer

$$f^{(m)} \leftarrow f^{(m-1)} - \frac{\text{LT}(f^{(m-1)})}{\text{LT}(f_2)} f_2$$

$$Q_2^{(m)} \leftarrow Q_2^{(m-1)} + \frac{\text{LT}(f^{(m-1)})}{\text{LT}(f_2)}$$

$$Q_i^{(m)} \leftarrow Q_i^{(m_1)}, i \neq 2$$

$$R^{(m)} \leftarrow R^{(m-1)}$$

sinon si $LT(f_3) \mid LT(f^{(m-1)})$, effectuer ... sinon si $LT(f_r) \mid LT(f^{(m-1)})$, effectuer ... sinon effectuer

$$f^{(m)} \leftarrow f^{(m-1)} - \text{LT}(f^{(m-1)})$$

$$R^{(m)} \leftarrow R^{(m-1)} + \text{LT}(f^{(m-1)})$$

$$Q_i^{(m)} \leftarrow Q_i^{(m-1)}$$

Rq 1.2.2. A la fin de l'étape $m \geq 0$,

$$f^{(m)} + \sum_{i} Q_i^{(m)} f_i + R^{(m)} = f$$

Si $f^{(m)}=0$, alors on a bien $\sum Q_i^{(m)}f_i+R^{(m)}=f$ et alors $R^{(m)}=0$ ou aucun des termes de $R^{(n)}$ n'est divisible par $\mathrm{LT}(f_1),\cdots,\mathrm{LT}(f_r)$. La procédure s'arrête : sinon, on aurait $f^{(0)},f^{(1)},\cdots$ avec $\mathrm{mdeg}f^{(0)}>\mathrm{mdeg}f^{(1)}>\cdots$ et ainsi $\{\alpha\mid \exists m\in\mathbb{N},\,\alpha=\mathrm{mdeg}f^{(m-1)}\}$ n'a pas d'éléments minimal.

Notation Le reste obtenu s'écrira \bar{f}^{f_1,\dots,f_t} . Si $F = \{f_1,\dots,f_r\}$, on écrira \bar{f}^F .

Rq 1.2.3. L'algo donne l'exitence de Q_i et R tq $f = \sum Q_i f_i + R$ satisfaisant les conditions imposées précédemment. Ces Q_i et R ne sont pas uniques.

Ex 1.2.2.
$$k[x_1, x_2]$$
, $<_{lex}=:<$, $f = x_1^2 + x_1x_2 + x_2^2$, $f_1 = x_1$, $f_2 = x_1 + x_2$. Alors
$$f = (x_1 + x_2)f_1 + x_2^2$$
$$= x_1f_2 + x_2^2$$
$$= x_1f_1 + x_2f_2 + 0$$

donc $f \in (f_1, f_2)$ mais $\bar{f}^{f_1, f_2} \neq 0$!

1.3 Bases de Gröbner

1.3.1 Définition

Définition 1.3.1. (Base de Groöbner, 1) Soit $I \stackrel{\mathrm{id}}{\subseteq} k[x_1, \cdots, x_n]$ non nul. Une base de Groöbner de I est un ensemble fini $G \subseteq I$ tq

- 1. I = (G),
- 2. $f \in I \iff \bar{f}^G = 0$

Par convention, Ø est une base de Groöbner de l'idéal nul.

Ex 1.3.1. 1. Si $0 \neq g \in k[x]$, alors $\{g\}$ est une BDG (base de Groöbner) de (g).

2. Si $0 \neq g \in k[x_1, \dots, x_n]$, alors $\{g\}$ est une BDG (base de Groöbner) de (g).

Comment peut-on avoir $f \in (f_1, \dots, f_r)$ mais $\bar{f}^{f_1, \dots, f_r} \neq 0$? Il faut qu'à une étape de la division, LT(f) ne soit pas divisible par aucun des $LT(f_i)$.

1.3.2 Idéaux monomiaux

Définition 1.3.2. (Idéal monomial) Un idéal $I \subseteq k[x_1, \dots, x_n]$ est monomial s'il existe des monômes m_1, \dots, m_r tq $I = (m_1, \dots, m_r)$ (par convention $\{0\}$ est monomial).

Proposition 1.3.1. Soient $m_1, \dots, m_r \in k[x_1, \dots, x_n]$ des monömes, alors $m \in (m_1, \dots, m_r) \iff m$ est divisible par l'un des m_i .

Démonstration. Exercice

Soient $f_1, \dots, f_r \in k[x_1, \dots, x_n]$. LT(f) divisible par l'un des LT $(f_1), \dots, LT(f_r)$ si et seulement si $LT(f) \in (\{LT(f_i)\})$ d'après la proposition précédente. Notation $E \subseteq k[x_1, \dots, x_n]$,

$$LT(E) := \{LT(f) \mid f \in E\}$$

Définition 1.3.3. (Base de Groöbner, 2) Une base de Groöbner d'un idéal $I \subseteq k[x_1, \cdots, x_n]$ est un ensemble (fini) $G \subseteq I$ tq (LT(I)) = (LT(G))

Théorème 1.3.1. Les deux définitions de bases de Groöbner sont équivalentes.

Démonstration. def $1 \Rightarrow \text{def } 2$: Soit $f \in I$ si $LT(f) \notin (LT(G))$, alors LT(f) n'est divisible par aucun des LT(g), $g \in G$ donc $\bar{f}^G \neq 0$. $\text{def }2\Rightarrow \text{def }1: \text{Notons }G=\{g_1,\cdots,g_r\}.$ Soit $f\in I,$ on veut que $\bar{f}^G=0.$ Il suffit de montrer

que le reste est nul à chaque étape de l'algo de division. Or

$$f - \sum Q_i^{(m)} g_i - R^{(m)} = f^{(m)}$$

et $f - \sum Q_i^{(m)} g_i \in I$. Si $R^{(m)}$, alors $f^{(m)} \in I$, donc $\mathrm{LT}(f^{(m)}) \in (\mathrm{LT}(G))$. D'où $R^{(m+1)} = 0$ puis récurrence.

Théorème 1.3.2. Tout $I \stackrel{\text{id}}{\subset} k[x_1, \cdots, x_n]$ admet une base de Groöbner.

 $D\acute{e}monstration$. On cherche $G \subseteq I$ tq (LT(G)) = (LT(I)). D'après le thm de la base de Hilbert, $\exists H \overset{\text{fini}}{\subseteq} \mathrm{LT}(I)$ t
q $(H) = (\mathrm{LT}(I)).$ Notons h_1, \cdots, h_r des polynômes de
 I dont les termes dominants sont les éléments de H. Alors $\{h_1, \dots, h_r\}$ est une BDG de I.

Algorithme de Buchberger 1.4

1.4.1 Critère de Buchberger

Définition 1.4.1.
$$f, g \in k[x_1, \dots, x_n]$$
, alors
$$S(f, g) := \frac{\operatorname{ppcm}(\operatorname{LM}(f), \operatorname{LM}(g))}{\operatorname{LT}(f)} f - \frac{\operatorname{ppcm}(\operatorname{LM}(f), \operatorname{LM}(g))}{\operatorname{LT}(g)} g$$

Théorème 1.4.1. (Critère de Buchberger) Soit $G = \{g_1, \cdot, g_r\} \subseteq k[x_1, \cdots, x_r]$. Alors G est une BDG de (G) si et seulement si $\forall g, h \in G, \overline{S(g,h)}^G = 0$