Stochastische Modelle

11. Übung

Aufgabe 42. Es seien U und V unabhängige Zufallsvariablen. Für die Mengen $A \subset \mathbb{R}$ und $B \subset \mathbb{R}^2$ gelte die folgende Implikation:

$$u \in A \text{ und } (u, v) \in B \implies (w, v) \in B \text{ für alle } w \in A^c$$

- $u \in A \text{ und } (u, v) \in B \implies (w, v) \in B \text{ für alle } w \in A^c$ e: L H L H $P(U \in A, (U, V) \in B) \leq P(U \in A) P((U, V) \in B)$ (a) Zeigen Sie:
- (b) Zeigen Sie durch ein Gegenbeispiel, dass die Unabhängigkeitsannahme nicht gestrichen werden kann.

Hinweis zu (a). Benutzen Sie eine Zufallsvariable W, so dass W dieselbe Verteilung hat wie U und so dass U, V, W unabhängig sind und beachten Sie die Ungleichung

$$1_A(u) 1_B(u, v) 1_{A^c}(w) \le 1_A(u) 1_B(w, v) 1_{A^c}(w).$$

Aufgabe 43. Seien $(Y_n)_{n=1}^{\infty}$, $(T_n)_{n=0}^{\infty}$ und $\{N(t): t \geq 0\}$ wie in Definition 3.1. Es sei $t^* > 0$ ein fester Zeitpunkt und es sei $X := Y_{N(t^*)+1}$. Interpretiert man die Y_n als Lebensdauern von nacheinander verwendeten Bauteilen, dann ist X die Lebensdauer des zur Zeit t^* verwendeten Bauteils. Zeigen Sie:

- (a) $P(X < t) < P(Y_1 < t)$ für alle t > 0.
- (b) $E(X^k) \geq E(Y_1^k)$ für alle k > 0.

Aufgabe 44. Es seien U_1, \ldots, U_n unabhängige auf dem Intervall [a, b] gleichverteilte Zufallsvariablen. Ordnet man, für jedes ω , die Werte $U_1(\omega), U_2(\omega), \ldots, U_n(\omega)$ aufsteigend an, erhält man die Ordnungsstatistiken $\overline{U_{(1)}}(\omega) \leq U_{(2)}(\omega) \leq \cdots \leq U_{(n)}(\omega)$.

- (a) Berechnen Sie $P(U_{(1)} < U_{(2)} < \cdots < U_{(n)})$ für $n \ge 2$.
- (b) Zeigen Sie, dass

$$f(u_1, \dots, u_n) := \begin{cases} \frac{n!}{(b-a)^n}, & a < u_1 < \dots < u_n < b, \\ 0, & \text{sonst,} \end{cases}$$

eine Dichte von $(U_{(1)}, \ldots, U_{(n)})$ ist.

Aufgabe 45. Es seien X_1, X_2, \ldots unabhängige exponentialverteilte Zufallsvariablen mit Parameter $\lambda > 0$. Für $n = 1, 2, \ldots$ sei $S_n := \sum_{i=1}^n X_i$ und

$$f_n(s_1, \dots, s_n) := \begin{cases} \lambda^n e^{-\lambda s_n}, & 0 < s_1 < \dots < s_n, \\ 0, & \text{sonst.} \end{cases}$$

Zeigen Sie, dass f_n eine Dichte von (S_1, \ldots, S_n) ist.

Aufgabe 46. Sei $n \geq 2$. Seien T_1, \ldots, T_n Zufallsvariablen mit der gemeinsamen Dichte f_n aus Aufgabe 45. Sei $Y_1 := T_1$ und $Y_k := T_k - T_{k-1}, k = 2, \ldots, n$. Zeigen Sie, dass Y_1, \ldots, Y_n unabhängige exponentialverteilte Zufallsvariablen mit Parameter λ sind.