Daniel Geng ID: 504588536

Fall 2016

1	١
T	,

P	Q	$P \implies \neg Q$	$Q \implies \neg P$
0	0	1	1
0	1	1	1
0 0 1	0	1	1
1	1	0	0

 $P \implies \neg Q \text{ and } Q \implies \neg P \text{ are equivalent.}$

P	Q	$P \iff \neg Q$	$((P \land \neg Q) \lor (\neg P \land Q))$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

 $1 \mid 1 \mid \mathbf{0} \mid \mathbf{0}$ $P \iff \neg Q \text{ and } ((P \land \neg Q) \lor (\neg P \land Q)) \text{ are equivalent.}$

2)

		α	$ \begin{array}{c} [\beta] \\ \neg S \implies \neg F \end{array} $	
S	F	$S \Longrightarrow F$	$\neg S \implies \neg F$	$\alpha \implies \beta$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	1
1	1	1	1	1

Invalid, but satisfiable.

			$[\alpha]$	[eta]	
S	F	H	$S \implies F$	$\neg S \implies \neg F$	$\alpha \implies \beta$
0	0	0	1	1	1
0	0	1	1	0	0
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	1	1	1

Invalid, but satisfiable.

			$[\alpha]$	[eta]	
S	F	H	$(S \vee H) \implies F$	$(S \Longrightarrow F) \lor (H \Longrightarrow F)$	$\alpha \iff \beta$
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	1	1	1

Valid (and satisfiable).

- 3) Knowledge base: Mythical (Y), Immortal (I), Mammal (M), Horned (H), Magical (G)
 - $\bullet \ Y \implies I$
 - $\bullet \ \neg Y \implies (\neg I \land M)$
 - $\bullet \ (I \vee M) \implies H$
 - \bullet $H \implies G$

$\underline{\text{CNF}}$

$$Y \implies I$$

$$= (\neg Y \lor I)$$

$$\neg Y \implies (\neg I \land M)$$

$$= Y \vee (\neg I \wedge M)$$

$$= (Y \vee \neg I) \wedge (Y \vee M)$$

$$(I \vee M) \implies H$$

$$= \neg (I \lor M) \lor H$$

$$= (\neg I \wedge \neg M) \vee H$$

$$= (H \vee \neg I) \wedge (H \vee \neg M)$$

$$H \implies G$$

$$= (\neg H \lor G)$$

CNF: $(\neg Y \lor I) \land (Y \lor \neg I) \land (Y \lor M) \land (H \lor \neg I) \land (H \lor \neg M) \land (\neg H \lor G)$

- 1. $(\neg Y \lor I)$
- 2. $(Y \vee \neg I)$
- 3. $(Y \vee M)$
- 4. $(H \vee \neg I)$
- 5. $(H \vee \neg M)$
- 6. $(\neg H \lor G)$

Prove Mythical (Y):

- 7. $\neg Y$ (Try to find contradiction)
- 8. $\neg I$ (2, 7)
- 9. M(3,7)
- 10. H(5, 9)
- 11. G(6, 10)

No contradictions found, cannot prove that the unicorn is mythical with this knowledge base.

Prove Magical (G):

- 7. $\neg G$ (Try to find contradiction)
- 8. $\neg H$ (6, 7)
- 9. $\neg I$ (4, 8)
- 10. $\neg M$ (5, 8)
- 11. Y(3, 10)
- 12. I(1, 11)

Statements 9 and 12 contradict each other, so the unicorn must be magical.

Prove Horned (H):

- 7. $\neg H$ (Try to find contradiction)
- 8. $\neg I$ (6, 7)
- 9. $\neg M$ (5, 8)
- 10. Y(3, 9)
- 11. I(1, 10)

Statements 8 and 11 contradict each other, so the unicorn must be horned.