

Fundamentos Físicos y Tecnológicos (G.I.I.)

Curso 2010/2011

Relación de problemas 2

- 1. Una resistencia de 11 Ω se conecta a través de una batería de fem 6 V y resistencia interna de 1 Ω . Determinar:
 - a) La intensidad de corriente
 - b) La tensión en los bornes de la batería
 - c) La potencia suministrada por la fem
 - d) La potencia suministrada a la resistencia externa
- 2. Una resistencia de $4~\Omega$ y otra de $6~\Omega$ se conectan en paralelo y una diferencia de potencial se aplica a través de la combinación. Determinar:
 - a) la resistencia equivalente
 - b) la intensidad total de la corriente
 - c) la corriente que circula por cada resistencia
 - d) la potencia disipada en cada resistencia
- 3. Calcula la resistencia equivalente de las asociaciones de resistencias de las figuras 1, 2, 3, 4 y 5 entre los puntos A y B.

Figura 1:

Figura 2:

- 4. En el circuito mostrado en la figura 6, determinar:
 - $a)\,$ la resistencia equivalente entre los puntos a y b

Figura 3:

Figura 4:

- b) si la caída de potencial entre a y b es 12 V, hallar la corriente en cada resistencia
- 5. En el circuito de la figura 7 la caída de tensión a través de la resistencia A es de 100 V. Encontrar:
 - a) La intensidad que atraviesa cada una de las resistencias B, C, D.
 - b) La caída de tensión en la resistencia B.
 - c) La potencia disipada en la resistencia F.
- 6. Determinar, en el circuito de la figura 8:
 - a) La resistencia equivalente
 - b) La indicación del galvanómetro (G)
 - c) La intensidad en todos los hilos.
 - d) Las diferencias de potencial V_{AB} , V_{AC} , V_{CD} y V_{DB}
- 7. Para el circuito de la figura 9:
 - a) Calcular la corriente que atraviesa la resistencia R_L , así como la caída de tensión entre sus extremos A y B.
 - b) Calcular el equivalente Thevenin y Norton del circuito entre los puntos A y B, siendo R_L la carga del circuito.
 - c) Comprueba que usando cada equivalente se obtienen las mismas corrientes y tensiones en R_L que al resolver el circuito completo.

Datos:
$$R_1 = 6$$
 k Ω ; $R_2 = 12$ k Ω ; $R_3 = 10$ k Ω ; $R_4 = 10$ k Ω ; $R_5 = 10$ k Ω ; $R_L = 10$ k Ω ; I=0.5 mA; $V_1 = 10$ V; $V_2 = 20$ V

Figura 5:

Figura 6:

- 8. Calcular el equivalente Thevenin del circuito de la figura 10 entre los puntos A y B. Datos: I = 1 mA; $R_1=R_2=R_3=1$ k Ω ; $R_4=R_5=2$ k Ω
- 9. Calcular la corriente en cada rama y la potencia disipada por cada resistencia del circuito de la figura 11 cuando R_1 = 2 k Ω ; R_2 = R_3 = R_4 = 6 k Ω ; V= 12 V.
- 10. Calcular la corriente en cada rama y la potencia disipada por cada resistencia del circuito de la figura 12 cuando $R_1=3$ k Ω ; $R_2=1$ k Ω ; $R_3=2$ k Ω ; $V_1=7$ V; $V_2=5$ V.
- 11. Calcular la corriente y la potencia disipada por cada resistencia en el circuito de la figura 13 si R_1 = 1 k Ω ; R_2 = 100 Ω ; R_3 = 1 k Ω ; R_4 = 2 k Ω ; V=5 V. Si la resistencia R_2 se modifica, cambiándose su valor a R_2 =10 k Ω , ¿cómo se modifica la diferencia de tensión entre los puntos a y b? ¿se modifica la corriente que circula por la rama de la izquierda como consecuencia de este cambio?
- 12. Calcular el valor de V_3 en el circuito de la figura 14 si $R_1=R_2=R_3=1$ k Ω , $I_1=2$ mA, $V_1=1$ V y $V_2=2$ V.
- 13. Resolver el circuito de la figura 15 usando el método de las mallas y el método de los nudos.
 - a) Calcular la potencia que aportan las fuentes al circuito.
 - b) Calcular la potencia que disipan cada una de las resistencias.
 - c) ¿Cuánto vale la tensión en C?¿Cuál es la diferencia de tensión entre A y B?
 - d) Calcular los equivalentes Thevenin y Norton del circuito entre los puntos A y B.

Datos: R_1 =6 k Ω ; R_2 = 10 k Ω ; R_3 =10 k Ω ; R_4 =6 k Ω ; I_1 =1 mA; I_2 =1 mA; V_1 =6 V; V_2 =6 V

- 14. Para el circuito de la figura 16:
 - a) Calcula el equivalente de Thevenin entre los puntos A y B.

Figura 7:

Figura 8:

b) Calcula la potencia que suministra (o consume) la fuente de corriente en el circuito. Indica claramente si es potencia suministrada o consumida.

Datos: $I_1 = 1 \text{ mA}$; $V_1 = 1 \text{ V}$; $V_2 = 3 \text{ V}$.

- 15. Calcular el equivalente de Thevenin del circuito mostrado en la figura 17 visto desde los terminales A y B.
- 16. Calcular el equivalente de Thevenin de la parte recuadrada del circuito de la figura 18 vista desde los terminales A y B.
- 17. Calcular el valor de la tensión V_2 en el circuito de la figura 19 si V_1 =10V, C_1 =1 nF, C_2 = C_3 =10 nF.
- 18. Calcular la tensión en cada punto del circuito de la figura 20:
 - a) Cuando el interruptor está abierto.
 - b) Cuando el interruptor está cerrado.
 - c) ¿Cómo cambiaría el resultado si el interruptor se sustituyese por una resistencia de valor R?
 - d) ¿Cómo cambiaría el resultado si el interruptor se sustituyese por una bobina de inductancia L?
- 19. En los circuitos de la figuras 21, 22, 23 y 24 encontrar el valor de V_0

Figura 9:

Figura 10:

Figura 11:

Figura 12:

Figura 13:

Figura 14:

Figura 15:

Figura 16:

Figura 17:

Figura 18:

Figura 19:

Figura 20:

Figura 21: 7

Figura 22:

Figura 23:

Figura 24:

20. En los circuitos de la figuras 25, 26 y 27 encontrar el valor de I_0 usando el principio de superposición.

Figura 25:

Figura 26:

Figura 27: