1

Analog Assignment

Karyampudi Meghana Sai EE23BTECH11031

In Exercises 7.3 and 7.4, what is the net power absorbed by each circuit over a complete cycle. Explain your answer.

Solution: (a) In Exercise 7.3:

Fig. 1. Inductive Circuit

Symbol	Value	Description
L	44mH	Inductance
V_{rms}	220 V	Voltage
f	50 Hz	Frequency
ω	$2\pi f = 100\pi$	Angular Frequency
φ	?	Phase difference between current and voltage
$I_{\rm rms}$	15.92 A	rms value of current

TABLE I Input Parameters

Fig. 2. s domain Circuit

$$V(s) = I(s)(sL) \tag{1}$$

$$I(s) = \frac{V(s)}{(sL)} \tag{2}$$

$$H(s) = \frac{\dot{V}(s)}{I(s)} \tag{3}$$

$$H(s) = sL \tag{4}$$

Substituting s with j ω :

$$H(j\omega) = j\omega L \tag{5}$$

Average power absorbed by the inductor in the circuit is given by:

$$P = VIcos(\phi) \tag{6}$$

For an inductor the phase angle is:

$$\phi = -\frac{\pi}{2} \tag{7}$$

$$\cos(\phi) = 0 \tag{8}$$

$$P_L = 0 (9)$$

(b) In Exercise 7.4:

Fig. 3. Plot of equation(5)

$$V(s) = I(s) \left(\frac{1}{sC}\right) \tag{10}$$

$$I(s) = \frac{V(s)}{\left(\frac{1}{sC}\right)}$$

$$H(s) = \frac{V(s)}{I(s)}$$

$$H(s) = \frac{1}{sC}$$
(11)

$$H(s) = \frac{V(s)}{I(s)} \tag{12}$$

$$H(s) = \frac{1}{sC} \tag{13}$$

Fig. 4. Capacitive Circuit

Symbol	Value	Description
С	$60 \mu F$	Capacitance
V_{rms}	110 V	Voltage
f	60 Hz	Frequency
ω	$2\pi f = 120\pi$	Angular Frequency
φ	?	Phase difference between current and voltage
$I_{ m rms}$	2.49 A	rms value of current

TABLE II Input Parameters

Fig. 5. s domain Circuit

Substituting s with j ω :

$$H(j\omega) = \frac{1}{j\omega C} \tag{14}$$

Average power absorbed by the capacitor in the circuit is given by:

$$P = VIcos(\phi) \tag{15}$$

For an capacitor the phase angle is:

$$\phi = \frac{\pi}{2} \tag{16}$$

$$\cos(\phi) = 0 \tag{17}$$

$$P_C = 0 ag{18}$$

Fig. 6. Plot of equation(14)