Variáveis Aleatórias Contínuas: Distribuição Normal, Distibuição Gama, Distribuição Qui-quadrado, Distribuição t de Student e Distribuição F

Ben Dêivide

13 de fevereiro de 2016

Sumário

- 1 Revisão sobre variável aleatória
- 2 Variável aleatória Contínua
- 3 Exemplo 3
- 4 Outras Distribuições contínuas

llustração

Definição 1 (Variável aleatória contínua)

Uma variável aleatória X contínua é uma função que assume em uma sequência não contável de números reais distintos, pertencentes a $B \in \mathcal{B}$, sendo \mathcal{B} a σ -álgebra de Borel.

Definição 1 (Variável aleatória contínua)

Uma variável aleatória X contínua é uma função que assume em uma sequência não contável de números reais distintos, pertencentes a $B \in \mathcal{B}$, sendo \mathcal{B} a σ -álgebra de Borel.

Exemplo 1

Um navio petroleiro sofre um acidente no qual seu casco é rompido e o óleo é derramado. Seja X a variável aleatória que determina a área atingida pelo óleo do navio.

Definição 1 (Variável aleatória contínua)

Uma variável aleatória X contínua é uma função que assume em uma sequência não contável de números reais distintos, pertencentes a $B \in \mathcal{B}$, sendo \mathcal{B} a σ -álgebra de Borel.

Exemplo 1

Um navio petroleiro sofre um acidente no qual seu casco é rompido e o óleo é derramado. Seja X a variável aleatória que determina a área atingida pelo óleo do navio.

Definição 2 (Variável Aleatória Contínua)

Uma variável aleatória X é contínua se $P_X(X=x)=0$.

Definição 3 (Função densidade de probabilidade)

Seja $f:\mathbb{R} \to \mathbb{R}+$ uma função. Então f é uma função densidade se $f_X(x) \geq 0$ para todo $x \in \mathbb{R}$, e $\int_{-\infty}^{\infty} f_X(x) = 1$.

Definição 3 (Função densidade de probabilidade)

Seja $f: \mathbb{R} \to \mathbb{R}+$ uma função. Então f é uma função densidade se $f_X(x) \geq 0$ para todo $x \in \mathbb{R}$, e $\int_{-\infty}^{\infty} f_X(x) = 1$.

Definição 4 (Variável aleatória absolutamente contínua)

Uma variável aleatória X é absolutamente contínua se existe uma função densidade $f_X(x)$, tal que

$$F_X(x) = \int_{-\infty}^x f_X(t)dt,$$
 (1)

para todo $x \in \mathbb{R}$.

Caracterização da variável aleatória absolutamente contínua

Definição 5 (Função de distribuição)

Se X é uma variável aleatória contínua em (Ω, \mathcal{F}, P) , a função de distribuição F_X , se existir uma função densidade f_X , é definida por

$$F_X(x) = \int_{-\infty}^x f_X(t)dt, \ x \in \mathbb{R}.$$

Caracterização da variável aleatória absolutamente contínua

Definição 5 (Função de distribuição)

Se X é uma variável aleatória contínua em (Ω, \mathcal{F}, P) , a função de distribuição F_X , se existir uma função densidade f_X , é definida por

$$F_X(x) = \int_{-\infty}^x f_X(t)dt, \ x \in \mathbb{R}.$$

Caracterização da variável aleatória absolutamente contínua

Definição 6 (Função quantil)

A função quantil, considerando uma variável aleatória com função de distribuição $F_X(x)$ é a função $F^{-1}:[0,1]\to\mathbb{R}$ definida por

$$F^{-1}(p) = x,$$

para todo $p \in [0,1]$, em que x é o menor valor real $F_X(x) \geq p$. Assim, $F_X^{-1}(p)$ é o p-ésimo quantil de X ou 100p% percentil de X.

Gráficos

Distribuição Gama

Definição 7 (Distribuição Gama)

Uma variável aleatória X contínua, tem distribuição normal se sua função densidade de probabilidade é dada por

$$f(x) = \begin{cases} \frac{\lambda}{\Gamma(r)} (\lambda x)^{r-1} e^{-\lambda x} &, \text{ para } x > 0, \\ 0 &, \text{ para } x \le 0, \end{cases}$$
 (2)

em que os parâmetros r e λ satisfazem r>0 e $\lambda>0$, e $\Gamma(.)$ é a função gama definida por:

$$\Gamma(r) = \int_0^\infty t^{r-1} e^{-t} dt, \qquad r > 0.$$
(3)

Distribuição Gama

Em particular, $\lambda = \frac{1}{2}$ e $r = \frac{\nu}{2}$:

$$f(x) = \frac{\lambda}{\Gamma(r)} (\lambda x)^{r-1} e^{-\lambda x}$$

$$= \frac{\left(\frac{1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(\frac{1}{2}x\right)^{\frac{\nu}{2}-1} e^{-\frac{1}{2}x}$$

$$= \frac{1}{\Gamma\left(\frac{\nu}{2}\right)} \left(\frac{1}{2}\right)^{\frac{\nu}{2}} x^{\frac{\nu}{2}-1} e^{-\frac{1}{2}x},$$
(4)

conhecida como DISTRIBUIÇÃO QUI-QUADRADO.

Distribuição t de Student

Definição 8 (Distribuição t de Student)

Uma variável aleatória contínua X tem distribuição t de Student se sua função densidade de probabilidade é definida por:

$$f(x) = \begin{cases} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\left(1+\frac{\nu^2}{2}\right)^{\frac{\nu+1}{2}}}, -\infty \le x \le \infty, \\ 0, caso \ contrário, \end{cases}$$
(5)

com ν graus de liberdade, sendo $\nu>0$. Em notação $X\sim t_{\nu}$.

Distribuição F

Definição 9 (Distribuição F)

Uma variável aleatória contínua X tem distribuição F se sua função densidade de probabilidade é definida por:

$$f(x) = \begin{cases} \frac{\Gamma[(\nu_1 + \nu_2)/2]}{\Gamma(\nu_1/2)\Gamma(\nu_2/2)} \times \left(\frac{\nu_1}{\nu_2}\right)^{\nu_1/2} \times \\ \times \frac{x^{(\nu_1 - 2)/2}}{[1 + (\nu_1/\nu_2)x]^{(\nu_1 + \nu_2)/2}} &, para \ x > 0, \\ 0 &, para \ x \le 0, \end{cases}$$
 (6)

com ν_1 e ν_2 graus de liberdade, sendo $\nu_1,\nu_2>0$. Em notação $X\sim F_{\nu_1,\nu_2}.$