Mathematics 551 Homework, January 12, 2020

We start by reviewing some vector algebra. Let $\mathbf{a} = (a_1, a_2)$ and $\mathbf{b} = (b_1, b_2)$ be vectors in \mathbb{R}^2 and c a scalar. Then the sum of \mathbf{a} and \mathbf{b} is

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2)$$

and the product of \mathbf{a} by the c is

$$c\mathbf{a} = (ca_1, cb_1).$$

It is common to use the notation

$$\mathbf{i} = (1,0), \quad \mathbf{j} = (0,1).$$

With this notation we can write a as

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}.$$

The *inner product* of **a** and **b** is

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2.$$

Then

$$\mathbf{a} \cdot \mathbf{a} = (a_1)^2 + (a_2)^2$$

which is the square of the length of a. We use the notation

$$\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$$

for the *length* of a.

If c_1 and c_2 are scalars and \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors are scalars then the inner product has the following properties:

- $\bullet \ \mathbf{b} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}.$
- $\bullet (c_1\mathbf{u} + c_2\mathbf{v}) \cdot \mathbf{w} = c_1\mathbf{u} \cdot \mathbf{w} + c_2\mathbf{v} \cdot \mathbf{w}.$

Consequences of these that will come up are

$$\|\mathbf{a} + \mathbf{b}\| = \|\mathbf{a}\|^2 + 2\mathbf{a} \cdot \mathbf{b} + \|\mathbf{a}\|^2$$
$$\|\mathbf{a} - \mathbf{b}\| = \|\mathbf{a}\|^2 - 2\mathbf{a} \cdot \mathbf{b} - \|\mathbf{a}\|^2.$$

Problem 1. Prove these formulas.

A very important property of the inner product is given by

Theorem 1. If \mathbf{a} and \mathbf{b} are nonzero vectors and θ is the angle between them, then

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\theta).$$

Problem 2. In the triangle shown a, b, and c are the side lengths of $\triangle ABC$ and γ is the angle between \overrightarrow{CB} and and \overrightarrow{CA} . Use Theorem 1 to show

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma).$$

Hint: Let $\mathbf{u} = \overrightarrow{CB}$, $\mathbf{v} = \overrightarrow{CA}$ and $\mathbf{w} = \overrightarrow{AB}$. Then $\mathbf{w} = \mathbf{u} - \mathbf{v}$ and therefore $\|\mathbf{w}\|^2 = \|\mathbf{u} - \mathbf{v}\|^2$.

A Corollary of Theorem 1 is that non-zero vectors \mathbf{a} and \mathbf{b} are perpendicular if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Problem 3. Show that for any vectors \mathbf{a} and \mathbf{b} that $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$ are perpendicular if and only if $\|\mathbf{a}\| = \|\mathbf{b}\|$.

Problem 4. Define a map $J: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$J(x,y) = (-y,x).$$

Show for all non-zero vectors ${\bf v}$ that

- (a) $||J\mathbf{v}|| = ||\mathbf{v}||$
- (b) \mathbf{v} and $J\mathbf{v}$ are always perpendicular.