5.2 Methods of Curve Fittings

Suppose that we are given the points (x_1, y_1) , (x_2, y_2) , ..., (x_N, y_N) and we want to fit a function $y = xe^{Ax}$, $y = cx^A$, $y = \frac{1}{Ax+B}$, etc.

For these functions there are two techniques used

(1) data linearization method & (2) Nonlinear method using Matlab

<u>Data Linearization Method</u> (change of variable method)

The original (x_k, y_k) are transformed to new points (X_k, Y_k) & then we find least squares line y = Ax + B for the new points we solve normal eqs & find A and B. After finding A & B, we need to write the function in terms of old variables (x_k, y_k) . This technique is called data linearization.

Example: Consider the data

x_k	0	1	2	3	4
y_k	1.3	2.5	3.7	4.9	7.3

Use the data linearization method to find the least squares exponential fit $y = f(x) = ce^{Ax}$ for the data. Also find the root mean square error.

Solution: $y = ce^{Ax}$

Taking *ln* on both sides.

$$\ln y = \ln(ce^{Ax}) \Rightarrow \ln y = \ln c + \ln e^{Ax}$$

$$\Rightarrow \ln y = \ln c + Ax$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y \qquad \qquad B \qquad X$$

The change of variables are X = x, $Y = \ln y \& B = \ln c$ $c = e^B$

The normal eqs are

$$A\sum_{k=1}^{N} X_k^2 + B\sum_{k=1}^{N} X_k = \sum_{k=1}^{N} X_k Y_k$$

$$A\sum_{k=1}^{N} X_k + BN = \sum_{k=1}^{N} Y_k$$

Sum

$X_k = x_k$	y_k	$Y_k = \ln y_k$	X_k^2	X_kY_k
0	1.3	ln(1.3) = 0.2624	0	0
1	2.5	ln(2.5) = 0.9163	1	0.9163
2	3.7	ln(3.7) = 1.3083	4	2.6166
3	4.9	ln(4.9) = 1.5892	9	4.7676
4	7.3	ln(7.3) = 1.9879	16	7.9516
10		6.0641	30	16.2521

Multiplying eq(2) by 2 & subtracting from eq(1)

$$30A + 10B = 16.2521$$

$$- 20A + 10B = 12.1282$$

$$10A = 4.1239 \Rightarrow A = \frac{4.1239}{10} = 0.41239$$

We want $y = ce^{Ax}$ in the form Y=Ax+B, so we need to get rid of the exponent.

On exam will ask only up to here, the change of variables.

$$30A + 10B = 16.2521 \leftarrow (1)$$

 $10A + 5B = 6.0641 \leftarrow (2)$

Sub A into eq(2) \Rightarrow 10(0.41239) + 5B = 6.0641

$$\Rightarrow 5B = 6.0641 - 4.1239 = 1.9402 \Rightarrow B = \frac{1.9402}{5} = 0.38804$$

Ans. is in form Y=Ax+B, so we need back to form $y = ce^{Ax}$

So
$$c = eB = e^{0.38804} = 1.474088 \approx 1.4741$$

Thus, the exponential fit is $y = f(x) = ce^{Ax} = 1.4741e^{0.41239x}$

Root Mean Square Error

The root mean square error is
$$E_2(f) = \left[\frac{1}{5}\sum_{k=1}^{5}(ce^{Ax} - y_k)^2\right]^{\frac{1}{2}}$$

$$E_2(f) = \left[\frac{1}{5}\left\{(1.4741e^0 - 1.3)^2 + (1.4741e^{0.41239} - 2.5)^2 + \left(1.4741e^{0.41239(2)} - 3.7\right)^2 + \left(1.4741e^{0.41239(3)} - 4.9\right)^2 + \left(1.4741e^{0.41239(4)} - 7.3\right)^2\right\}\right]^{\frac{1}{2}}$$

$$= \left[\frac{1}{5}\left\{0.0303 + 0.0748 + 0.1136 + 0.0322 + 0.13856\right\}\right]^{\frac{1}{2}}$$

$$= 0.27909$$

One of these 7 will be asked on the exam.

Textbook has change of variable table for different functions on page 269.

(1)
$$y = \frac{A}{x} + B$$

Change of variables are $X = \frac{1}{x}$, $Y = y$

(2)
$$y = \frac{1}{Ax+B} \Rightarrow \frac{1}{y} = Ax + B$$

Y

Change of variables are $X = x \& Y = \frac{1}{y}$

$$(3) y = A \ln x + B$$

$$X$$

Change of variables are $X = \ln x$, Y = y

(4)
$$y = (Ax + B)^{-2}$$
 or $y = \frac{1}{(Ax+B)^2}$
$$\frac{1}{y} = (Ax + B)^2 \Rightarrow \frac{1}{\sqrt{y}} = Ax + B$$

Change of variables are X = x, $Y = \frac{1}{\sqrt{y}}$ or $y^{-\frac{1}{2}}$

$$(5) \ y = \frac{x}{A + Bx}$$

$$\frac{1}{y} = \frac{A + Bx}{x} \Rightarrow \frac{1}{y} = \frac{A}{x} + \frac{Bx}{x}$$

Change of variables are $X = \frac{1}{x}$ and $Y = \frac{1}{y}$

(6)
$$y = ce^{Ax}$$

 $\ln y = (ce^{Ax}) \Rightarrow \ln y = \ln c + Ax$
 $y = B$

Change of variables are X = x, Y=ln y & B = ln c or $c = e^B$

(7)
$$y = cx^A$$

 $\ln y = \ln(cx^A) \Rightarrow \ln y = \ln c + \ln(x^A) \Rightarrow \ln y = \ln c + A \ln x$

Change of variables are $X = \ln x$, $Y = \ln y$, $B = \ln c$ or $c = e^B$

when changing var., we want to get to this form y = Ax + B