Sentiment Classification using Document Embeddings trained with Cosine Similarity

Tan Thongtan et al,. ACL 2019

AILAB 송지수

Sentiment Classification

• Identify, extract, quantify, and study affective states and subjective information

오늘 보고 5시 반에 시작이라는데?

What do we need for SC?

- Text Representation (Word, Sentence, Document, ...)
- Classifier (Based on:
 - Traditional Methods (SVM, Statistical, ...)
 - Deep Learning Language Model (BERT, CNN, RNN, ...))

Text Representation

 Mapping variable length texts into fixed length, Dense, realvalued vectors

-> To make texts as valid inputs to a classifier

Word2Vec

 Map each word to a real vector, whereby the dot product between two vectors represents the amount of similarity in meaning between the words they represent

Word2Vec

- Weight Matrix: W(V X N), W'(N X V)
 - V: Number of Words
 - N: Dimension of Word Vector

1. Make a dictionary of all V

(0: 보고, 1: 시간, 2: 점심, 3: 싸먹, 4: 두부촌, 5: 피자, ...)

then a word can be converted as a one-hot-vector

(점심 -> [0, 0, 1, 0, 0, 0, ...] / 보고 -> [1, 0, 0, 0, 0, 0, ...])

2. Get a word vector by lookup table (W)

$$\begin{bmatrix} 0, \ 0, \ 1, \ 0, \ 0, \ 0, \ \dots \end{bmatrix} \quad X \quad \begin{bmatrix} 0.1895, \ 0.6841, \ 0.8611, \ -0.4915, \ \dots \\ 0.9813, \ -0.3241, \ 0.1476, \ 0.2891, \ \dots \\ 0.6544, \ 0.8471, \ 0.3695, \ -0.6577, \ \dots \end{bmatrix} = \begin{bmatrix} 0.6544, \ 0.8471, \ \dots \end{bmatrix}$$

3. Skip-Gram or CBOW (Continuous Bag-of-Words)

3. CBOW (Continuous Bag-of-Words)

3. CBOW (Continuous Bag-of-Words)

3. CBOW (Continuous Bag-of-Words)

3. Skip-Gram

4. Learning (in Skip-Gram)

$$P(o|c) = rac{exp(u_o^T v_c)}{\sum_{w=1}^{W} exp(u_w^T v_c)}$$

v: row vector of W

u: column vector of W'

- To maximize P(o|c):
 - Numerator has to be a higher value
 - Denominator has to be a lower value

- PV-DM vs PV-DBOW
 - 1. PV-DM (Distributed Memory Model)
 - A paragraph vector is additionally averaged or concatenated along with the context and that whole is used to predict the next word
 - 2. PV-DBOW (Distributed Bag of Words)
 - A paragraph vector alone is used and trained to predict the words in the paragraph

PV-DM

PV-DM

오늘 보고 5시 반에 시작이라는데?

Paragraph dictionary

Id	Paragraph
0	오늘 보고 5시 반에 시작이라는데?

Word dictionary

Id	Word
0	오늘
1	보고
2	5시
3	반
4	에
5	시작
6	이라는데

• PV-DM

오늘 보고 5시 반에 시작이라는데?

Paragraph dictionary

Id	Paragraph
0	[0.3188, 0.6849, 0.6351,]

Word dictionary

Id	Word
0	[0.6584,]
1	[0.1387,]
2	[0.9683,]
3	[0.2279,]
4	[0.2499,]
5	[0.3766,]
6	[0.7725,]

PV-DM

오늘 보고 5시 반에 시작이라는데?

Step	Input	Label
0	[오늘 보고 5시 반에 시작이라는데?, 오늘, 보고, 5시]	반
1	[오늘 보고 5시 반에 시작이라는데?, 보고, 5시, 반]	에
2	[오늘 보고 5시 반에 시작이라는데?, 5시, 반, 에]	시작

Step	Input	Label
0	[d0, w0, w1, w2]	w3
1	[d0, w1, w2, w3]	w4
2	[d0, w2, w3, w4]	w5

PV-DM

오늘 보고 5시 반에 시작이라는데?

Step	Input	Label
0	[[0.3188, 0.6849, 0.6351,], [0.6584,], [0.1387,], [0.9683,]]	[0, 0, 0, 1, 0, 0,]
1	[[0.3188, 0.6849, 0.6351,], [0.1387,], [0.9683,], [0.2279,]]	[0, 0, 0, 0, 1, 0,]
2	[[0.3188, 0.6849, 0.6351,], [0.9683,], [0.2279,], [0.2499,]]	[0, 0, 0, 0, 0, 0,]

PV-DM Fixed! Classifier on Average/Concatenate Paragraph Matrix----W Paragraph the cat sat id **Update!**

PV-DM Fixed! Classifier on Average/Concatenate Paragraph Matrix----W Paragraph the cat sat id **Update!**

PV-DBOW

PV-DBOW and DV-ngram

Blended!

Objective function

$$\sum_{d \in D} \sum_{w_o \in W_d} -\log p(w_o|d)$$

d : Document

D: the set of all documents in the dataset

 w_0 : n-gram

 W_d : the set of all n-grams in the document d

Objective function

$$p(w_o|d) = \frac{e^{\alpha \cos \theta_{w_o}}}{\sum_{w \in W} e^{\alpha \cos \theta_w}}$$
$$= \operatorname{softmax}(\alpha \cos \theta_{w_o})$$

$$\cos \theta_w = \frac{\boldsymbol{v}_d^T \boldsymbol{v}_w}{\|\boldsymbol{v}_d\| \|\boldsymbol{v}_w\|}$$

 v_d , v_w : vector representations of the d and the word/n-gram w

 α : hyperparameter

W: the set of all n-grams in the vocabulary

Dot Product vs Cosine Similarity

$$p(w_o|d) = \frac{e^{\boldsymbol{v}_d^T \boldsymbol{v}_{w_o}}}{\sum_{w \in W} e^{\boldsymbol{v}_d^T \boldsymbol{v}_w}}$$

$$p(w_o|d) = \frac{e^{\mathbf{v}_d^T \mathbf{v}_{w_o}}}{\sum_{w \in W} e^{\mathbf{v}_d^T \mathbf{v}_w}} \qquad p(w_o|d) = \frac{e^{\alpha \cos \theta_{w_o}}}{\sum_{w \in W} e^{\alpha \cos \theta_w}}$$

Dot Product

Range : -inf ~ inf

Cosine Similarity

Range : -1 ~ 1

Dot Product vs Cosine Similarity

$$p(w_o|d) = \frac{e^{\alpha \cos \theta_{w_o}}}{\sum_{w \in W} e^{\alpha \cos \theta_w}}$$

• Using the cosine similarity term alone as an input to the softmax function may not be sufficient in modeling the conditional probability distribution \rightarrow added scaling parameter α

Proposed architecture

Experiments

Figure 2: PCA visualization of embeddings trained with (a) dot product, (b) L2R dot product and (c) cos. similarity.

Experiments

Embedding	Dot	L2R Dot	Cos.
Statistic	Prod.	Prod.	Sim.
Same Mean Cos. Sim.	0.23	0.20	0.35
Diff. Mean Cos. Sim.	0.21	0.17	0.32
Mean Norm	8.91	6.30	5.35

Table 3: Embedding statistics.

Same (Classes) Mean Cos. Sim and Diff. (Classes) Mean Cos. Sim are both higher than embeddings using dot product (Authors don't know why)

Experiments

(Li et al., 2017)

Model	IMDB Dataset Accuracy (%)	TopicRNN	
NB-SVM Bigrams	91.22	(Dieng et al., 2017) One-hot bi-LSTM	
Wang and Manning, 2012) NB-SVM Trigrams Magnillates 1, 2015)	91.87	(Johnson and Zhang, 2016) Virtual Adversarial	
Mesnil et al., 2015) V-ngram	92.14	(Miyato et al., 2016) BERT large finetune UDA	
Li et al., 2016a) Oot Product with	92.45	(Xie et al., 2019) NB-weighted-BON +	
2 Regularization Paragraph Vector	92.58	DV-ngram NB-weighted-BON +	
(Le and Mikolov, 2014) Document Vectors using	93.13	L2R Dot Product NB-weighted-BON +	
Cosine Similarity W-Neural-BON Ensemble	93.51	Cosine Similarity	
(Li et al., 2016b) TGNR Ensemble	93.51	Table 4: Comparison with other models	