Taller 4 (Estructuras de Datos y Algoritmos)

David Gómez y Simón Correa

1.1 Código y constantes

1.2 Tamaño del problema

El tamaño del problema, son los elementos que faltan por sumar del arreglo.

1.3 ecuación de recurrencia

```
T(n) = a. c_1 if n = 0
b. c_2 + T(n-1) if n > 0
```

1.4 Ecuación con Wolfram Alpha

$$T(n) = c_2*n + c_1$$

1.5 Aplicar la notación O

```
-T(n) es O (c_2*n + c_1) por definición de O
```

- T(n) es O (c_2* n) por regla de la Suma
- T(n) es O (n), por regla del producto

1.6 Complejidad

La complejidad que tiene el algoritmo trabajado para el peor de los casos, es decir para números muy grandes de n, o en otras palabras el arreglo tiene un mayor número de elementos, es de O(n)

complejidad calculada no coincide con los datos reales, tomando 20 tamaños diferentes del arreglo.

2.1 Código y Constantes

```
public static boolean groupSumAux(int start, int[] nums, int target)
{
    if (start == nums.length) { //
        return target==0; //c_1 = 4
    }else{
        return groupSumAux(start+1, nums, target-nums[start]) ||
        groupSumAux(start+1, nums, target); //c_2 = 7
        } //T(n) = c_2 + T(n-1) + T(n-1)
    }
}
```

2.2 Tamaño del problema

El tamaño del problema es el tamaño del arreglo, es decir la cantidad de contenedores o cajas que hay que acomodar dentro del espacio

2.3 Ecuación de recurrencia

$$T(n) = a. c_1$$
 if start = nums.length
$$c. c_2 + T(n-1) + T(n-1)$$
 if $n > 0$

2.4 Ecuación con Wolfram Alpha

$$T(n) = c_2 (2^n - 1) + c_1 2^n - 1$$

2.5 Aplicar notación O

O
$$(c_2 (2^n - 1) + c_1*2^n - 1)$$
 Por definición de O O $(c_2 *2^n - c_3 + c_1*2^n - 1)$ Por algebra

```
O (c_2 *2^n + c_1*2^n - 1) - c_3) Por algebra
```

O
$$(c_2 *2^n + c_1 *2^n - 1)$$
 Por regla de la suma

O
$$(c_2 *2^n + c_1*2^n*2^(-1))$$
 Por algebra

O (2ⁿ +2ⁿ) Por regla del producto

O(2*2^n) Por algebra

O(2ⁿ) Por Regla del producto

2.6 Complejidad

La complejidad del algoritmo cuando n tomo los peores valores, es decir cuando hay que ingresar una cantidad de paquetes muy grande al contenedor, la ecuación adquiere una complejidad de

O (2 ^n).

Podemos observar que al realizar un testeo del tiempo de ejecución del algoritmo en función de n, los tiempos arrojados corresponden a la ecuación de complejidad O (2^n)

3.1 Código y Constantes

3.2 Tamaño del problema

El tamaño del problema depende del n-esimo termino que el usuario pida calcular de la secuencia de fibonacci

3.3 Ecuación de recurrencia

$$T(n) = a. c_1$$
 if $n=1 && if $n=2$
b. c_2 if $n=0$
c. $c_3 + T(n-1) + T(n-2)$ if $n > 2$$

3.4 Ecuación con Wolfram Alpha

$$T(n) = c_1 F_n + c_2 L_n$$
 (where c_1 and c_2 are arbitrary parameters)
 (F_n is the n^th Fibonacci Number)
 (L_n is the n^th Lucas Number)

3.5 Aplicar notación O

O (
$$c_1 F_n + c_2 L_n$$
) Por definición de O O($F_n + L_n$) Por regla del producto

3.6 Complejidad

La complejidad del algoritmo cuando n tomo los peores valores, es decir cuando se le pide al algoritmo calcular un termino n-esimo más grande de Fibonacci, la ecuación adquiere una complejidad de

O (2 ^n).

que al realizar un testeo del tiempo de ejecución del algoritmo en función de n, los tiempos arrojados corresponden a la ecuación de complejidad O (2^n)