A comparison of design-based and model-based approaches for spatial data.

In alphabetical order Michael Dumelle*,a, Matt Higham*,b, Lisa Madsenc, Anthony R. Olsena, Jay M. Ver Hoef^d

^a United States Environmental Protection Agency, 200 SW 35th St, Corvallis, Oregon, 97333
 ^b Saint Lawrence University Department of Mathematics, Computer Science, and Statistics,
 23 Romoda Drive, Canton, New York, 13617
 ^c Oregon State University Department of Statistics, 239 Weniger Hall, Corvallis, Oregon,
 97331

^dMarine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, 98115

2 Abstract

10

11

13

15

17

23

24

25

28

31

34

This is the abstract.

Text based on elsarticle sample manuscript, see http://www.elsevier.com/author-schemas/latex-instructions#elsarticle

Potential Journals:

- Ecological Applications
- Methods in Ecology and Evolution
- Journal of Applied Ecology
- Environmetrics
- Environmental and Ecological Statistics

21 1. Introduction

There are two general approaches for using data to make statistical inferences about a population: design-based and model-based. When data cannot be obtained for all units in a population (population units), data on a subset of the population units is collected and called a sample. In the design-based approach, inferences about the underlying population are informed from a probabilistic process in which population units are selected to be in the sample. Alternatively, in the model-based approach, inferences are made from specific assumptions about the underlying process that generated the data. Each paradigm has a deep historical context (Sterba, 2009) and its own set of general advantages (Hansen et al., 1983).

Though the design-based and model-based approaches apply to statistical inference in a broad sense, we focus on comparing these approaches for spatial data. We define spatial data as data that incorporates the specific locations of the population units into either the design or estimation process. De Gruijter and Ter Braak (1990) give an early comparison of design-based and model-based

^{*}Corresponding Author

approaches for spatial data, quashing the belief that design-based approaches could not be used for spatially correlated data. Thereafter, several comparisons between design-based and model-based for spatial data have been considered 39 (Brus and De Gruijter, 1997; Ver Hoef, 2002, 2008). Cooper (2006) review the two approaches in an ecological context before introducing a "model-assisted" 41 variance estimator that combines aspects from each approach. In addition to Cooper (2006), there has been substantial research and development into 43 estimators that use both design and model-based principles (see e.g. Cicchitelli 44 and Montanari (2012), Chan-Golston et al. (2020) for a Bayesian approach, 45 and Sterba (2009)). More recent overviews include Brus (2020) and Wang et al. 47

Though comparisons between design-based and model-based approaches to spatial data have been studied, no numerical comparison has been made between design-based approaches that incorporate spatial locations and model-50 based approaches. In this manuscript, we compare design-based approaches 51 that incorporate spatial locations to model-based approaches for spatial data. 52 The rest of the manuscript is organized as follows. In Section 2, we compare 53 sampling and estimation procedures between the design-based approach and 54 the model-based approach for spatial data. In Section 3, we use a simulation approach to study the behavior and performance of both approaches. In Section 4, we use both approaches to analyze real data. And in Section 5, we end with a discussion and provide directions for future research.

2. Background 59

64

67

77

The design-based and model-based approaches incorporate randomness in 60 fundamentally different ways. In this section, we describe the role of randomness 61 and its effects on subsequent inferences. We then discuss specific inference 62 methods for the design-based and model-based approaches for spatial data. 63

2.1. Comparing Design-Based and Model-Based Approaches

The design-based approach assumes the population is fixed. Randomness is incorporated via the selection of units in a sampling frame according to a sampling design. A sampling frame is the set of all units available to be sampled. A sampling design assigns a positive probability of inclusion (inclusion 68 probability) to each unit in the sampling frame. Some examples of commonly used sampling designs include simple random sampling, stratified random sample, 70 and cluster sampling. These sampling designs tend to select units from the 71 sampling frame independently of other units, so we call them "Independent 72 Random Sampling" (IRS) designs. The design-based approach combines the 73 randomness of the sampling design and the data collected via the sample to estimate parameters (e.g. means and totals) of a population. Generally, these 75 population parameters are assumed to be fixed, unknown constants. 76

Treating the data as fixed and incorporating randomness through the sampling design yields estimators having very few other assumptions. Confidence intervals for these types of estimators are typically derived using limiting arguments that incorporate all possible randomizations of sampling units selected via the sampling design. Means and totals, for example, are asymptotically Gaussian by the Central Limit Theorem (under some assumptions). If we repeatedly sample the surface, then 95% of all 95% confidence intervals constructed from a procedure with appropriate coverage will contain the true, fixed mean. Särndal et al. (2003) and Lohr (2009) provide thorough reviews of the design-based approach.

81

83

85

86

87

90

91

92

94

95

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

117

118

119

120

121

122

The model-based approach assumes the data are a random realization of a data-generating process. Randomness is often incorporated through distributional assumptions on this process and need not be incorporated through random sampling (bottom row of Figure 1). Instead of estimating fixed but unknown parameters (as in the design-based approach), the goal of model-based inference in the spatial context is often to predict a realized variable, or value. For example, suppose the realized mean of all population units is the value of interest. Instead of estimating a fixed, unknown mean, we are predicting the value of the mean, a random variable. We know that if we sampled all population units (and not any units outside the population), we would be able to exactly predict (without any uncertainty) the mean of our one realized process. Assuming the data are realized from a specific data-generating process yields predictions that are linked to distributional assumptions. These distributional assumptions are used to derive prediction intervals. If we repeatedly generate the response values from a fixed spatial process and obtained a sample, then 95% of all 95% prediction intervals constructed from a procedure with appropriate coverage will contain their respective realized means. Cressie (1993) and Schabenberger and Gotway (2017) provide reviews of model-based approaches for spatial data. A visual comparison of the design-based and model-based assumptions is provided in Figure 1 (Brus (2020) provides a similar figure).

Tony O.: Before this section is it useful to have a section that lays out the general site selection and general analysis options. Thinking about site selection as design-based IRS, design-based GRTS, Arbitrary set of sites, selection for model-based. Then general analysis options as design-based no spatial, design-based spatial, model-based. This four by three table would show that model-based analyses are possible for all selection options. Design-based options with no spatial info possible for IRS-based and GRTS-based. Design-based options with spatial info possible for GRTS-based.

Jay VH: What about the design for model-based inference? Strictly speaking, it is fixed – there is no probabilistic use of a randomized design. However, we are going to have to deal with Diggle et al. (2010).

2.2. Spatially Balanced Design and Analysis

Lisa M.: Need a more precise definition of "miniature" in this context, and need an example.

Jay VH: Saying "the distribution of the sampled population units mirrors the density of..." is confusing to me. Are these formal statistical definitions of distribution (cumulative distribution function) and density (probability density

Figure 1: A comparison of sampling under the design-based and model-based frameworks. Points circled are those that are sampled. In the top row, we have one fixed population, and three random samples of n=4. The response values at each site are fixed, but we obtain different estimates for the mean response because the randomly sampled sites vary from sample to sample. In the bottom row, we have three realizations of the same spatial process sampled at the same locations. The spatial process generating the response values has a single mean, but the realized mean is different in each of the three panels.

function)? Wouldn't IRS sample be a miniature, as it should, on average, mirror a population?

126

128

129

130

131

132

133

134

135

136

137

139

140

141

143

145

147

148

149

150

151

152

153

154

155

156

157

158

159

160

The design-based approach can use spatial locations to obtain spatially balanced samples. First we discuss spatial balance with respect to the population (Stevens and Olsen, 2004). A sample is spatially balanced with respect to the population if the sampled population units are a miniature of the population units. A sample is a miniature of the population if the distribution of the sampled population units mirrors the density of all population units. Spatial balance with respect to the population is different than spatial balance with respect to geography. A sample that is spatially balanced with respect to geography is spread out in some type of equidistant manner over geographical space and is not meant to be miniatures of the population. When we refer to spatial balance henceforth, we mean spatial balance with respect to the population.

Spatially balanced samples are useful because they tend to yield estimates that have lower variance than estimates constructed from sampling designs lacking spatial balance (Barabesi and Franceschi, 2011; Benedetti et al., 2017; Grafström and Lundström, 2013; Robertson et al., 2013; Stevens and Olsen, 2004; Wang et al., 2013). To quantify spatial balance, Stevens and Olsen (2004) proposed loss functions based on Voroni polygons. The first spatially balanced sampling algorithm that saw widespread use was the Generalized Random Tessellation Stratified (Stevens and Olsen, 2004). Since GRTS was developed, several other spatially balanced sampling algorithms have emerged, including the Local Pivotal Method (Grafström et al., 2012; Grafström and Matei, 2018), Spatially Correlated Poisson Sampling (Grafström, 2012), Balanced Acceptance Sampling (Robertson et al., 2013), Within-Sample-Distance (Benedetti and Piersimoni, 2017), and Halton Iterative Partitioning (Robertson et al., 2018). We focus on the Generalized Random Tessellation Stratified (GRTS) algorithm to select spatially balanced sampling because it has several attractive properties, including Lisa M.: List major attractive properties, and detailed by Stevens and Olsen (2004) and Dumelle et al. (2021).

The GRTS algorithm is used to sample from finite and infinite populations and works by utilizing a mapping between two-dimensional and one-dimensional space. The population units in two-dimensional space are divided into cells using a hierarchical index. Population units are then mapped to a one-dimensional line via the hierarchical indexing. The line length of each population unit equals its inclusion probability. A systematic sample is conducted on the line and these samples are linked to a population unit in two-dimensional space, which results in the desired sample. Stevens and Olsen (2004) and Dumelle et al. (2021) provide further details.

After collecting a sample using the GRTS algorithm, the data are used to estimate population parameters. The Horvitz-Thompson estimator (Horvitz and Thompson, 1952) yields unbiased estimates of population means and totals. For example, if τ is a population total, then the Horvitz-Thompson estimator of τ

(denoted by $\hat{\tau}_{ht}$), is given by

$$\hat{\tau}_{ht} = \sum_{i=1}^{n} Z_i \pi_i^{-1},\tag{1}$$

where Z_i and π_i are the observed value and inclusion probability of the *i*th population unit selected in the sample. A similar formula exists for estimating the mean, μ . Horvitz and Thompson (1952) and Sen (1953) provide variance estimators for $\hat{\tau}_{ht}$, but they have two drawbacks. First, they rely on calculating π_{ij} , the probability that population unit *i* and population unit *j* are included in the sample, and this can be very difficult to calculate. Second, they ignore the spatial locations of the population units. To address these drawbacks, Stevens and Olsen (2003) proposed a local neighborhood variance estimator. The local neighborhood variance estimator does not rely on π_{ij} , and it incorporates spatial locations by assigning higher weights to nearby observations. Stevens and Olsen (2003) show this variance estimators tends to reduce the estimated standard error of $\hat{\tau}$, yielding narrower confidence confidence intervals for τ .

2.3. Finite Population Block Kriging

Finite Population Block Kriging (FPBK) is a model-based approach that expands the geostatistical Kriging framework to the finite population setting (Ver Hoef, 2008). Instead of basing inference off of a specific sampling design, we assume the data are generated by a spatial process. Ver Hoef (2008) gives details on the theory of FPBK, but some of the basic principles are summarized below. Let $\mathbf{z} \equiv \{z(s_1), z(s_2), ..., z(s_N)\}$ be a response vector at locations $s_1, s_2, ..., s_N$ that can be measured at the N population units and is represented as an $N \times 1$ vector. Suppose we want to predict some linear function of the response variable, $f(\mathbf{z}) = \mathbf{b}'\mathbf{z}$, where \mathbf{b}' is a $1 \times N$ vector of weights. For example, if we want to predict the population total across all population units, then we would use a vector of 1's for the weights.

However, we often only have a sample of the N population units. Denoting quantities that are part of the sampled population units with a subscript s and quantities that are part of the unsampled population units with a subscript u,

$$\begin{pmatrix} \mathbf{z}_s \\ \mathbf{z}_u \end{pmatrix} = \begin{pmatrix} \mathbf{X}_s \\ \mathbf{X}_u \end{pmatrix} \boldsymbol{\beta} + \begin{pmatrix} \boldsymbol{\delta}_s \\ \boldsymbol{\delta}_u \end{pmatrix}, \tag{2}$$

where \mathbf{X}_s and \mathbf{X}_u are the design matrices for the sampled and unsampled population units, respectively; β is the parameter vector of fixed effects; and $\boldsymbol{\delta}_s$ and $\boldsymbol{\delta}_u$ are random errors for the sampled and unsampled population units, respectively. Denoting $\boldsymbol{\delta} \equiv [\boldsymbol{\delta}_s \ \boldsymbol{\delta}_u]'$, we assume the expectation of $\boldsymbol{\delta}$ equals $\boldsymbol{0}$.

We also assume that there is spatial correlation in δ , which can be modeled using a covariance function. It is common to assume the covariance function is second-order stationary and isotropic (Cressie, 1993), and that the spatial covariance decreases as the separation between population units increases. Many spatial covariance functions exist, but the primary function we use throughout

the simulations and applications in this manuscript is the exponential covariance function: the i, j^{th} entry for $\text{cov}(\boldsymbol{\delta})$ is

$$\operatorname{cov}(\delta_i, \delta_j) = \theta_1 \exp(-3h_{i,j}/\theta_2) + \theta_3 \mathbb{1}\{\mathbf{h}_{i,j} = 0\},\tag{3}$$

where $h_{i,j}$ is the distance between population units i and j, and θ is a vector of spatial covariance parameters of the partial sill θ_1 , the range θ_2 , and the nugget θ_3 ; and, \mathbb{I} is equal to 1 when distance h_i, j is equal to 0, and equal to 0 otherwise. However, any spatial covariance function could be used in the place of the exponential, including functions that allow for non-stationarity or anisotropy (Chiles and Delfiner, 1999, pp. 80–93).

 ${f Lisa~M.}$: Include formulas. Perhaps, but, these are very heavy in notation and matrix algebra. We might consider, however, adding the formulas to an Appendix.

With the above model formulation, the Best Linear Unbiased Predictor (BLUP) for $f(\mathbf{b}'\mathbf{z})$ and its prediction variance can be computed. While details of the derivation are in (Ver Hoef, 2008), we note here that the predictor and its variance are both moment-based.

We note that we only use FPBK in this paper in order to focus more on comparing the design-based and model-based approaches. However, k-nearest-neighbors (Fix and Hodges, 1951; Ver Hoef and Temesgen, 2013), random forest (Breiman, 2001), Bayesian models (Chan-Golston et al., 2020), among others, can also be used to obtain predictions for a mean or total from spatially correlated responses in a finite population setting. We choose to use FPBK because it is faster than a Bayesian approach and random forest and because Ver Hoef and Temesgen (2013) showed that the method outperforms k-nearest-neighbors in many scenarios.

3. Numerical Study

We used a numerical simulation study to investigate performance of four design-analysis combinations, summarized in Table 1.

Table 1: Types of Sampling Design and Analysis combinations considered in the simulation study. The columns give the two types of sampling designs while the rows give the two types of analyses.

	IRS	GRTS
Design	IRS-Design	GRTS-Design
Model	IRS-Model	GRTS-Model

We used a crossed design with the simulation parameters given in Table 2 for a total of 36 scenarios. All scenarios used exponential correlation with an effective range of $\sqrt{2}$ for N=900 response values simulated on the unit square in either random locations (Site Locations = Random) or gridded locations (Site

Locations = Gridded). The mean for the spatial process generating the response was set to zero.

24:

For the lognormal scenarios, the response values were simulated using the specified correlation parameters using a normal distribution and were subsequently exponentiated. A total variance of 2 and a mean of 0 on the normal scale is equivalent to a total variance of 47 and a mean of 2.72 after exponentiation. Therefore, when the model-based methods were used for lognormal response, the correlation was mis-specified. We chose to simulate values with a lognormal distribution so that we could test the model-based analysis approach with a mis-specified model and so that we could test both analysis approaches on data that exhibits a large amount of skewness.

Table 2: Simulation parameters. Total variability for all scenarios was 2 so that the partial sill was 0, 1, or 1.8.

Sample Size (n)	50	100	200
Site Locations	Random	Gridded	
Partial Sill / Total Variance	0	0.5	0.9
Response Type	Normal	Lognormal	

There were 2000 simulation trials for each of the 36 parameter combinations. In each trial, response values were generated from a spatial process with the specified parameters, and a GRTS sample and an IRS sample were selected. For the GRTS sample, the design-based approach using the local neighborhood variance (GRTS-Design) and a model-based approach were applied (GRTS-Model). For the IRS sample, the design-based approach using the simple random sample variance (IRS-Design) and a model-based approach were applied (IRS-Model).

The GRTS algorithm and the local neighborhood variance estimator are available in the **R** package spsurvey (Dumelle et al., 2021). FPBK can be readily performed in **R** with the sptotal package (Higham et al., 2020). We use sptotal for both the simulation analysis and the application, estimating parameters with Restricted Maximum Likelihood (REML).

Figure 2 shows the relative efficiency of the four approaches from Table 1 with "IRS-Design" as the baseline:

$$E = \frac{rMSPE \ of \ approach}{rMSPE \ of \ IRS-Design},$$

where rMSPE is the root-Mean-Squared-Prediction-Error. When there is no spatial correlation (top row), the four approaches have approximately equal rMSPE, even when the assumptions of the model-based approaches are violated. So, using GRTS or using a spatial model does not result in much loss in efficiency even if the response variable is not spatially correlated. When there is high spatial correlation (bottom row), the GRTS-Model approach tends to perform best, but difference in relative efficiency between GRTS-Model and GRTS-Design

Figure 2: Relative Efficiency of the four design-analysis approaches. The plot is faceted by the type of response on the columns and the partial-sill to total-variance ratio on the rows.

is not very big. In the lognormal, high partial sill settings (bottom-right facet), GRTS-Design outperforms IRS-Model by a large margin, suggesting that the design decision (whether to use IRS or GRTS) is more important than the analysis decision (whether to analyze using model assumptions or not).

Unsurprisingly, Figure 2 also shows that, when the assumptions for GRTS-Model are satisfied, the approach outperforms GRTS-Design. However, even when the model that generates the data is different than the model used to fit the data, as in the lognormal response, the model-based approach still outperforms the design-based approach when there is a high amount of spatial correlation.

Plot Note: change colours and think about shape think about legend going on graph

Figure 3 shows the coverage for each of the four approaches. We see that the four approaches have somewhat similar coverages in all settings, with GRTS-Design having slightly lower coverage when the response is normal.

In the normal response settings, where assumptions for the model-based approaches and the design-based approaches are satisfied, all approaches have coverage around the nominal 0.95. Because the intervals are symmetric, normal-based intervals, the coverages are generally lower than the nominal 95%. We see that, because the sampling distribution of the mean is asymptotically normal (reference for this? a spatial version of CLT), the coverages when the sample size is 200 are much closer to the nominal 95% than the coverages when the sample

Figure 3: Coverage of the four design-analysis approaches. All confidence intervals are normal-based and have a nominal confidence level of 0.95, marked with a horizontal line. The plot is faceted by the type of response on the columns and the partial-sill to total-variance ratio on the rows.

size is 50. In general, the more skewed the distribution of the response, the larger the sample size needed to ensure proper coverage of these normal-based intervals.

Do we want to mention stuff like what's in these next bullet points or no?

- for the model-based approach, the more skewed the population is, the higher the sample size needed to satisfy CLT for predicting a mean. The derivation of the BLUP is entirely moment-based (no distribution assumed) but we still need to assume a distribution to estimate spatial parameters and to generate bounds of a prediction interval.
- many confidence intervals generated for design-based approaches also rely
 on the CLT and the normal distribution to generate the interval. Again,
 for highly skewed data with a small sample size, this assumption is violated
 even though all of the assumptions for generating the estimator are valid.

4. Application

28:

The Environmental Protection Agency (EPA), states, and tribes periodically conduct National Aquatic Research Surveys (NARS) in the United States to

Figure 4: Population distribution of mercury concentration for 986 lakes in the contiguous United States. Thirty-five lakes were dropped from the analysis because they were missing mercury concentration.

assess the water quality of various bodies of water. We will use the 2012 National Lakes Assessment (NLA), which measures various aspects of lake health and quality in lakes in the contiguous United States, to obtain an interval for mean mercury concentration. Although all lakes in the survey were measured in 2012, there may not always be enough time or money to do so. Therefore, we will explore whether or not we can still obtain an adequately precise estimate for the realized mean mercury concentration if we only take a sample of 100 of the 986 lakes.

Figure 4 shows that mercury concentration is right-skewed, with most lakes having a low value of mercury concentration but a few having a much higher concentration. Mercury concentration exhibits some spatial correlation, with high mercury concentrations in lakes in the northeast and north central United States. Because we are considering these lakes to be our entire population, we know that the realized mean mercury concentration is $103.2 \, \mathrm{ng} \, / \, \mathrm{g}$.

Table 3: Application of design-based and model-based approaches to the NLA data set on mercury concentration. The true mean concentration is $103.2\ 103.2\ ng\ /\ g$

Approach	Estimate	SE	$95\%~\mathrm{LB}$	95% UB
IRS-Design	112.7	8.8	95.4	129.9
IRS-Model	110.5	7.9	95.0	125.9
GRTS-Design	101.8	6.1	89.8	113.7
GRTS-Model	102.3	5.9	90.8	113.9

Table 3 shows the application of a design-based analysis on an IRS, a model-based analysis on an IRS, a design-based analysis on a GRTS sample, and a model-based analysis on a GRTS sample. We see that, for all four analyses, the true realized mean mercury concentration is within the bounds of the 95% intervals. However, we should not generalize the results of this particular realization to any other data set or even to other potential samples of this data set

But, we do note a couple of patterns. The design-based IRS analysis shows 312 the largest standard error: a likely reason is that this is the only approach 313 that does not use the spatial correlation in mercury concentration across the 314 contiguous United States. We also see that, for the samples drawn, the both analyses with the GRTS sampling design have a lower standard error than the 316 analyses with the IRS sampling design. We would expect this to be the case for 317 most samples because mercury concentration exhibits spatial correlation so a 318 spatially balanced sample should usually yield a lower standard error. If it is 319 acceptable to have an interval for mean mercury concentration of about 25 ng/ 320 g and if we ignore the other variables that the EPA collects information on in these NLA surveys, then the EPA could consider sampling just 50 lakes to save 322 time and money. 323

5. Discussion

325

327

329

332

333

334

336

338

339

340

341

342

344

345

347

348

349

351

- Pros of Design-Based (items we are not exploring): computationally efficient, few assumptions, more naturally handles binary data,
- Pros of Model-Based (items we are not exploring): covariate inference, more efficient small-area estimation, model selection?, estimated spatial parameters to better understand spatial structure, site-by-site predictions/prediction map

331 References

Barabesi, L., Franceschi, S., 2011. Sampling properties of spatial total estimators under tessellation stratified designs. Environmetrics 22, 271–278.

Benedetti, R., Piersimoni, F., 2017. A spatially balanced design with probability function proportional to the within sample distance. Biometrical Journal 59, 1067–1084.

Benedetti, R., Piersimoni, F., Postiglione, P., 2017. Spatially balanced sampling: A review and a reappraisal. International Statistical Review 85, 439–454.

Breiman, L., 2001. Random forests. Machine learning 45, 5–32.

Brus, D., De Gruijter, J., 1997. Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion). Geoderma 80, 1–44.

Brus, D.J., 2020. Statistical approaches for spatial sample survey: Persistent misconceptions and new developments. European Journal of Soil Science.

Chan-Golston, A.M., Banerjee, S., Handcock, M.S., 2020. Bayesian inference for finite populations under spatial process settings. Environmetrics 31, e2606.

Chiles, J.-P., Delfiner, P., 1999. Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons, New York.

Cicchitelli, G., Montanari, G.E., 2012. Model-assisted estimation of a spatial population mean. International Statistical Review 80, 111–126.

Cooper, C., 2006. Sampling and variance estimation on continuous domains. Environmetrics: The official journal of the International Environmetrics Society 17, 539–553.

Cressie, N., 1993. Statistics for spatial data. John Wiley & Sons.

De Gruijter, J., Ter Braak, C., 1990. Model-free estimation from spatial samples: A reappraisal of classical sampling theory. Mathematical geology 22, 407–415.

Dumelle, M., Olsen, A.R., Kincaid, T., Weber, M., 2021. Selecting and analyzing spatial probability samples in r using spatroy. Manuscript Submitted for Publication.

Fix, E., Hodges, J.L., 1951. Discriminatory analysis, nonparametric discrimination: Consistency properties. USAF School of Aviation Medicine.

Grafström, A., 2012. Spatially correlated poisson sampling. Journal of Statistical Planning and Inference 142, 139–147.

Grafström, A., Lundström, N.L., 2013. Why well spread probability samples are balanced. Open Journal of Statistics 3, 36–41.

Grafström, A., Lundström, N.L., Schelin, L., 2012. Spatially balanced sampling through the pivotal method. Biometrics 68, 514–520.

Grafström, A., Matei, A., 2018. Spatially balanced sampling of continuous populations. Scandinavian Journal of Statistics 45, 792–805.

Hansen, M.H., Madow, W.G., Tepping, B.J., 1983. An evaluation of model-dependent and probability-sampling inferences in sample surveys. Journal of the American Statistical Association 78, 776–793.

Higham, M., Ver Hoef, J., Bryce, F., 2020. Sptotal: Predicting totals and weighted sums from spatial data.

Horvitz, D.G., Thompson, D.J., 1952. A generalization of sampling without replacement from a finite universe. Journal of the American statistical Association 47, 663–685.

Lohr, S.L., 2009. Sampling: Design and analysis. Nelson Education.

Robertson, B., Brown, J., McDonald, T., Jaksons, P., 2013. BAS: Balanced acceptance sampling of natural resources. Biometrics 69, 776–784.

Robertson, B., McDonald, T., Price, C., Brown, J., 2018. Halton iterative partitioning: Spatially balanced sampling via partitioning. Environmental and Ecological Statistics 25, 305–323.

Särndal, C.-E., Swensson, B., Wretman, J., 2003. Model assisted survey sampling. Springer Science & Business Media.

Schabenberger, O., Gotway, C.A., 2017. Statistical methods for spatial data analysis. CRC press.

Sen, A.R., 1953. On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics 5, 127.

Sterba, S.K., 2009. Alternative model-based and design-based frameworks for inference from samples to populations: From polarization to integration. Multivariate behavioral research 44, 711–740.

Stevens, D.L., Olsen, A.R., 2003. Variance estimation for spatially balanced samples of environmental resources. Environmetrics 14, 593–610.

Stevens, D.L., Olsen, A.R., 2004. Spatially balanced sampling of natural resources. Journal of the american Statistical association 99, 262–278.

399

400

401

402

403

404

Ver Hoef, J., 2002. Sampling and geostatistics for spatial data. Ecoscience 9, 152–161.

Ver Hoef, J.M., 2008. Spatial methods for plot-based sampling of wildlife populations. Environmental and Ecological Statistics 15, 3–13.

Ver Hoef, J.M., Temesgen, H., 2013. A comparison of the spatial linear model to nearest neighbor (k-nn) methods for forestry applications. PloS one 8, e59129.

Wang, J.-F., Jiang, C.-S., Hu, M.-G., Cao, Z.-D., Guo, Y.-S., Li, L.-F., Liu, T.-J., Meng, B., 2013. Design-based spatial sampling: Theory and implementation. Environmental modelling & software 40, 280–288.

Wang, J.-F., Stein, A., Gao, B.-B., Ge, Y., 2012. A review of spatial sampling.

Spatial Statistics 2, 1–14.