+10 V $4.7 k\Omega$ TVCF 61 1 \$ € 3.3 kΩ $+0.7+(3.3 \text{ K})T_{E}=0$ VCE = VCB+ VBE IE = IB+IE = IB+ BIB=(1+B)IB 2.55 = Vc8+07 IB=15.84 MA, IC= 1.58 MA VCB=1.85 V Ic(4.7K)+VCE+IE(33K)=0 VCF = 2:55 V 98 + CC ils ^ Paul Brain Turn on captions Raise hand is preser

BASAVA CHARI BOPPUDI

Paul Brai

is prese

10 V

cc

Suppose that a certain *npn* transistor has $V_{BF} = 0.7 \text{ V}$ for $I_F = 10$ mA. Compute V_{RF} for $I_F = 1$ mA.

Repeat for $I_F = 1 \mu A$. Assume that $V_T = 26 \text{ mV}$.

$$I_{E} = I_{ES} \left(\exp\left(\frac{V_{BE}}{V_{T}}\right) - Y \right) \approx I_{ES} \exp\left(\frac{V_{BE}}{V_{T}}\right)$$

$$+ v_{BE} - v_{CE} - v_{CE}$$

$$+ v_{BE} - v_{E} - v_{E}$$

$$+ v_{E} - v_{E} - v_{E}$$

$$+ v_{E}$$

Andritaies

Problem

• The transistor in the circuit of Fig. has $\beta = 100$ and exhibits a v_{BE} of 0.7 V at $i_C = 1$ mA. Design the circuit so that a current of 2 mA flows through the collector and a voltage of +5 V appears at

the collector.

105

The transistor in the circuit of Fig. has $\beta = 100$ and exhibits a v_{RF} of 0.7 V at i_C = 1 mA. Design the circuit so that a current of 2 mA flows through the collector and a voltage of +5 V appears at the collector.

105

 The transistor in the circuit of Fig. has β = 100 and exhibits a v_{BF} of 0.7 V at i_C = 1 mA. Design the circuit so that a current of 2 mA flows through the collector and a voltage of +5 V appears at the collector.

is preser

• In the circuit shown in Fig., the voltage at the emitter was measured and found to be -0.7 V. If $\beta = 50$, find I_E , I_B , I_C , and V_C .

• In the circuit shown in Fig., measurement indicates V_B to be +1.0 V and V_E to be +1.7 V. What are α and β for this transistor? What voltage V_C do you expect at the collector?

107

Consider the circuit shown in Figure. Transistors Q1 and Q2 are identical, both having $I_{ES} = 10^{-14} A$ and $\beta = 100$. Calculate V_{BE} and I_{C2} . Assume that $V_T = 26 \text{mV}$ for both transistors.

Hint: Both transistors are operating in the active region.

Because the transistors are identical and have identical values of V_{BE}, their collector currents are equal.

$$I_{B1} + I_{B2} + I_{C} = 1mA \quad \& \quad I_{C} = \beta I_{B}$$

$$\downarrow I_{C2} \qquad \Rightarrow \quad I_{C} \left(\frac{2}{\beta} + 1\right) = 1mA \quad \Rightarrow \quad I_{C} = \frac{1mA}{1.02} = 0.98 \, mA$$

$$I_{E} = \left(1 + \frac{1}{\beta}\right) I_{C} = 0.99 \, mA$$

$$Since \quad I_{E} \approx I_{ES} \exp\left(\frac{V_{BE}}{V_{T}}\right) \quad we have$$

$$\therefore V_{BE} = V_{T} \ln \frac{I_{E}}{I_{ES}} = 0.026 \times \ln\left(0.99 \times 10^{11}\right) = 0.658 \, V$$

Find currents and voltages

