Национальный исследовательский университет «МЭИ» Институт Радиотехники и Электроники им. В.А. Котельникова Кафедра Радиотехнические системы

Отчёт

по лабораторной работе №2

«УГЛОВОЙ ДИСКРИМИНАТОР»

по дисциплине «Радиоавтоматика»

Бригада № 4

Группа: ЭР-11-21

Студенты: Тимохин С.А.

Выскиль С.М.

Оценка:

Дата: 15.11.2024

Цель работы: изучение характеристик углового дискриминатора на базе антенной решётки.

В данной работе рассматривается метод пеленга направления на источник сигнала по разности фаз сигнала, принимаемого разнесёнными антеннами.

Рисунок 1 - Определение пеленга на источник сигнала по разности фаз

Описание лабораторной установки

Измерительная установка (рисунок 2) состоит из трех сверхширокополосных радиомодулей и компьютера. Используемые сверхширокополосные радиомодули измеряют не фазы принимаемых сигналов, а времена их распространения от цели до соответствующего элемента антенной решётки. Однако для целей изучения углового дискриминатора, времена распространения пересчитываются в фазы. В компьютерном модуле рассчитывается разность оценок фаз и её пересчёт в оценку углового направления.

Рисунок 2 – Схема лабораторной установки

Рисунок 3 — Структурная схема углового дискриминатора с фазовыми измерениями

Домашняя подготовка

- 1) Истинное направление на цель: $\theta = arctg\left(\frac{b}{c}\right)$
- 2) Оценка направления на цель в угловом измерителе:

$$\hat{\theta} = \arcsin\left(\frac{R_1 - R_2}{L}\right) = \arcsin\left(\frac{\sqrt{c^2 + (b + 0.5 \cdot L)^2} - \sqrt{c^2 + (b - 0.5 \cdot L)^2}}{L}\right)$$

3) При этом должны выполняться условия:

$$\begin{bmatrix} A_3 O^2 = b^2 + c^2 \\ c = \sqrt{A_3 O^2 - b^2} \\ b = \sqrt{A_3 O^2 - c^2} \end{bmatrix}$$

- 4) Построим четыре дискриминационные характеристики для углового дискриминатора $\hat{\theta}(\theta)$ для сочетания случаев близкого $A_3O^{min}=1$ м и далекого $A_3O^{max}=4$ м расположения цели относительно антенной решётки, а также для случаев малой базы $L^{min}=0.3$ м и большой базы $L^{max}=0.6$ м.
- 5) Построим четыре дискриминационные характеристики для углового дискриминатора $\hat{\theta}(\theta)$ для сочетания случаев близкого $A_3 O^{min} = 50$ м и далекого $A_3 O^{max} = 150$ м расположения цели относительно антенной решётки, а также для случаев малой базы $L^{min} = 150$ м и большой базы $L^{max} = 250$ м.

Рисунок 4 – Дискриминационные характеристики углового дискриминатора

Рисунок 5 – Дискриминационные характеристики углового дискриминатора

Ход работы

Tаблица 1-Pезультаты эксперимента при $AO^{min}=2$ м

L=0.3м				L=0.6м				heta, град
$M[\widehat{ heta}]$	$\sigma[\widehat{ heta}]$	b , м	c, M	$M[\hat{\theta}]$	$\sigma[\widehat{ heta}]$	b , м	c, M	
86.691	8.328	2.0	0.0	72.569	12.377	2.0	0.0	-90
59.815	13.901	1.97	0.35	44.730	5.679	1.97	0.35	-80
37.265	7.947	1.88	0.68	22.033	2.186	1.88	0.68	-70
52.362	12.925	1.73	1.0	17.806	4.288	1.73	1.0	-60
52.250	11.064	1.53	1.29	68.361	10.324	1.53	1.29	-50
33.567	8.116	1.29	1.53	27.885	4.089	1.29	1.53	-40
28.924	8.076	1.0	1.73	24.104	3.220	1.0	1.73	-30
19.854	7.590	0.68	1.88	16.777	2.859	0.68	1.88	-20
9.997	7.267	0.35	1.97	8.226	2.765	0.35	1.97	-10
0.802	8.505	0.0	2.0	-5.941	3.699	0.0	2.0	0
-14.291	7.697	0.35	1.97	-15.375	2.683	0.35	1.97	10
-32.475	7.215	0.68	1.88	-22.417	5.079	0.68	1.88	20
-54.203	11.904	1.0	1.73	-37.578	4.135	1.0	1.73	30
-55.313	10.524	1.29	1.53	-50.526	5.028	1.29	1.53	40
-54.861	13.319	1.53	1.29	-54.405	5.977	1.53	1.29	50
-52.250	11.064	1.73	1.0	-65.983	8.843	1.73	1.0	60
-54.722	13.571	1.88	0.68	-85.164	8.056	1.88	0.68	70
-70.84	22.555	1.97	0.35	-28.909	1.543	1.97	0.35	80
-74.123	14.844	2.0	0.0	-87.806	5.719	2.0	0.0	90

Рисунок 6 — Семейство экспериментально построенных ДХ при размерах базы L=0.3м и L=0.6м при расстоянии до цели $AO^{min}=2$ м

Рисунок 7 — Семейство экспериментально построенных ΦX при размерах базы L=0.3м и L=0.6м при расстоянии до цели $AO^{min}=2$ м

Tаблица 2 - Pезультаты эксперимента при $AO^{min} = 4.7 \text{ M}$

L=0.3м				L=0.6м				0 прод
$M[\widehat{ heta}]$	$\sigma[\widehat{ heta}]$	b , м	C, M	$M[\widehat{ heta}]$	$\sigma[\widehat{ heta}]$	b , м	с, м	heta, град
68.663	17.799	4.7	0.0	65.527	6.144	4.7	0.0	-90
39.348	7.818	4.63	0.82	56.895	4.447	4.63	0.82	-80
45.242	11.349	4.07	2.35	53.538	5.279	4.07	2.35	-60
-1.161	6.076	3.02	3.6	32.689	3.445	3.02	3.6	-40
-34.971	10.262	1.61	4.42	12.543	5.538	1.61	4.42	-20
33.675	13.019	0.0	4.7	-4.786	4.067	0.0	4.7	0
-48.308	6.956	1.61	4.42	-26.426	3.497	1.61	4.42	20
-57.527	14.591	3.02	3.6	-47.186	4.932	3.02	3.6	40
-73.279	13.886	4.07	2.35	-86.892	5.348	4.07	2.35	60
-77.769	13.787	4.63	0.82	-89.603	2.310	4.63	0.82	80
-52.783	9.021	4.7	0.0	-83.680	8.574	4.7	0.0	90

Рисунок 8 — Семейство экспериментально построенных ДХ при размерах базы L=0.3м и L=0.6м при расстоянии до цели $AO^{min}=4.7~\mathrm{M}$

Рисунок 9 — Семейство экспериментально построенных ΦX при размерах базы L=0.3м и L=0.6м при расстоянии до цели $AO^{min}=4.7~\mathrm{M}$

Для сравнения кривых хода ДХ и Φ Х при различных параметрах измерений был построен сводный график экспериментальных ДХ углового дискриминатора:

Рисунок 10 — Семейство экспериментально построенных ДХ при размерах базы L=0.3м и L=0.6м и расстояниях до цели $AO^{min}=2$ м и $AO^{min}=4.7$ м

Pисунок 11 — Семейство экспериментально построенных ΦX при размерах базы L=0.3м и L=0.6м и расстояниях до цели $AO^{min}=2$ м и $AO^{min}=4.7$ м

Вывод

В ходе лабораторной работы был изучен принцип работы углового дискриминатора на базе антенной решетки, состоящей из двух элементов.

Угловой дискриминатор — устройство, процесс на выходе которого зависит от разницы между истинным угловым направлением и его оценкой.

Чтобы точность снятия экспериментальных характеристик была одинаковая, измерения производились с относительно одинаковой длительностью периода усреднения ДХ (≈ 100 отсчётов)

Как видно из графика семейства ДХ (см. рисунок 10), зависимости, измеренные экспериментально расходятся с теорией, это может объясняться:

- Неточным выставлением начального положения базы антенной решётки относительно цели. $\theta \approx 0^\circ$. Уже только из-за этого мог наблюдать сдвиг оценки угла, относительно истинного угла направления на цель.
- Неидеальным направлением максимумов ДН антенны цели и антенной решётки друг на друга.
- Интерференция излучаемых целью волн, в связи с отражениями от окружающих объектов.

В лабораторной работе были исследованы флуктуационные характеристики, оценённые с помощью расчёта СКО, по которым можно судить о величине флуктуаций и отклонении оценки пеленга.

На рисунке 11 видно, что удаление цели от антенной решётки увеличивает величину флуктуационной составляющей оценки угла направления на цель, потому что уменьшается мощность принимаемого сигнала, который теряется в шумах.

Из эксперимента также видно, что недостаточно верно подобранная величина базы при малом расстоянии до цели, способна помешать верной оценке разности фаз сигнала.

Также, чем ближе цель находится к антенной решётке, тем сильнее проявляется неточность оценки, потому что условие перпендикулярности лучей перестаёт выполняться.

Рисунок 12 – Пример непараллельности хода лучей

$$\hat{\theta} \approx \hat{\theta}' = \arcsin\left(\frac{\Delta \hat{R}}{L}\right) = \arcsin\left(\frac{\Delta \hat{\phi}}{2\pi} \cdot \frac{\lambda}{L}\right) \approx \theta + n,$$

Из рисунка 12 очевидно, что угол $\theta' \neq \theta$, поэтому пересчитать угол θ через разницу фаз не получится, и мы получим неверную оценку.