Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Original) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion.

2. (Original) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion; and wherein the ferroelectric film is a solid solution with a dielectric shown by X₂SiO₅, X₄Si₃O₁₂, X₂GeO₅ or X₄Ge₃O₁₂ (wherein X represents Bi³⁺, Fe³⁺, Sc³⁺, Y³⁺, La³⁺, Ce³⁺, Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Tb³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺ or Lu³⁺).

3. (Currently Amended) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion; and

wherein the ferroelectric film includes at least one transition element in an amount of 5 to 40 mol% in total, the transition element having the <u>a</u> maximum positive valence which is +1 or more greater than the <u>a</u> valence of the A site ion of the ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$.

4. (Currently Amended) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion; and wherein the ferroelectric film includes at least one transition element in an amount of 5 to 40 mol% in total, the transition element having the a maximum positive valence which is +1 or more greater than the a valence of the B site ion of the ABO₃ or (Bi₂O₂)²⁺(A_{m-1}B_mO_{3m+1})²⁻.

5. (Currently Amended) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si^{4+} or Ge^{4+} is included in the A site ion; wherein the ferroelectric film includes at least one transition element having the a maximum positive valence which is +1 or more greater than the a valence of the B site ion of the ABO₃ or $(\mathrm{Bi}_2\mathrm{O}_2)^{2+}(\mathrm{A}_{m-1}\mathrm{B}_m\mathrm{O}_{3m+1})^{2-}$;

wherein the ferroelectric film includes at least one transition element having the \underline{a} maximum positive valence which is +1 or more greater than the \underline{a} valence of the A site ion of the ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$; and

wherein the transition elements are included in an amount of 5 to 40 mol% in the A and B sites in total.

6. (Currently Amended) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or (Bi₂O₂)²⁺(A_{m-1}B_mO_{3m+1})²⁻ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein the ferroelectric film is a solid solution with a dielectric shown by X_2SiO_5 , $X_4Si_3O_{12}$, X_2GeO_5 or $X_4Ge_3O_{12}$ (wherein X represents Bi^{3+} , Fe^{3+} , Sc^{3+} , Y^{3+} , La^{3+} , Ce^{3+} , Pr^{3+} , Nd^{3+} , Pm^{3+} , Sm^{3+} , Eu^{3+} , Gd^{3+} , Tb^{3+} , Dy^{3+} , Ho^{3+} , Er^{3+} , Tm^{3+} , Yb^{3+} or Lu^{3+}); and

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion;

wherein the ferroelectric film includes at least one transition element in an amount of 5 to 40 mol% in total, the transition element having the <u>a</u> maximum positive valence which is +1 or more greater than the <u>a</u> valence of the A site ion of the ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$.

7. (Currently Amended) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or (Bi₂O₂)²⁺(A_{m-1}B_mO_{3m+1})²⁻ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number), wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion;

wherein the ferroelectric film is a solid solution with a dielectric shown by X_2SiO_5 , $X_4Si_3O_{12}$, X_2GeO_5 or $X_4Ge_3O_{12}$ (wherein X represents Bi^{3+} , Fe^{3+} , Sc^{3+} , Y^{3+} , La^{3+} , Ce^{3+} , Pr^{3+} , Nd^{3+} , Pm^{3+} , Sm^{3+} , Eu^{3+} , Gd^{3+} , Tb^{3+} , Dy^{3+} , Ho^{3+} , Er^{3+} , Tm^{3+} , Yb^{3+} or Lu^{3+}); and

wherein the ferroelectric film includes at least one transition element in an amount of 5 to 40 mol% in total, the transition element having the <u>a</u> maximum positive valence which is +1 or more greater than the <u>a</u> valence of the B site ion of the ABO₃ or $(Bi_2O_2)^{2+}$ $(A_{m-1}B_mO_{3m+1})^{2-}$.

8. (Currently Amended) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein the ferroelectric film is a solid solution with a dielectric shown by X_2SiO_5 , $X_4Si_3O_{12}$, X_2GeO_5 or $X_4Ge_3O_{12}$ (wherein X represents Bi^{3+} , Fe^{3+} , Sc^{3+} , Y^{3+} , La^{3+} , Ce^{3+} , Pr^{3+} , Nd^{3+} , Pm^{3+} , Sm^{3+} , Eu^{3+} , Gd^{3+} , Tb^{3+} , Dy^{3+} , Ho^{3+} , Er^{3+} , Tm^{3+} , Yb^{3+} or Lu^{3+});

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion:

wherein the ferroelectric film includes at least one transition element having the \underline{a} maximum positive valence which is +1 or more greater than the \underline{a} valence of the B site ion of the ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$;

wherein the ferroelectric film includes at least one transition element having the \underline{a} maximum positive valence which is +1 or more greater than the \underline{a} valence of the A site ion of the ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$; and

wherein the transition elements are included in an amount of 5 to 40 mol% in the A and B sites in total.

9. (Currently Amended) The ferroelectric film as defined in any of claims 1 to 8, wherein the ferroelectric film includes Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the A site ion in an amount of 1%1 mol% or more; and

wherein at least one transition element having the a maximum positive valence of +3 or more is included in the A site in an amount of 5 to 40 mol% in total.

10. (Currently Amended) The ferroelectric film as defined in any of claims 1 to 8, wherein the ferroelectric film includes Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the A site ion in an amount of 1%1 mol% or more; and

wherein at least one transition element having the a maximum positive valence of +5 or more is included in the B site in an amount of 5 to 40 mol% in total.

11. (Currently Amended) A ferroelectric film including Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the <u>a</u>Pb site ion in an amount of 1%1 mol% or more,

wherein at least one transition element having the a maximum positive valence of +3 or more is included in the Pb site;

wherein at least one transition element having the a maximum positive valence of +5 or more is included in the a Zr or Ti site; and

wherein the transition elements are included in an mount of 5 to 40 mol% in the Pb and Zr or Ti sites in total.

12. (Currently Amended) A ferroelectric film including Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the a Pb site ion in an amount of 1%1 mol% or more,

wherein at least one of La and other lanthanoid series ions is included in the Pb site in an amount of 5 to 40 mol% in total.

13. (Currently Amended) A ferroelectric film including Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the <u>a</u>Pb site ion in an amount of 1%1 mol% or more,

wherein at least one of Nb, V and W is included in the <u>a</u>Zr or Ti site in an amount of 5 to 40 mol% in total.

14. (Currently Amended) A ferroelectric film including Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the <u>a</u>Pb site ion in an amount of 1%1 mol% or more,

wherein at least one of La and other lanthanoid series ions is included in the Pb site, and at least one of Nb, V and W is included in the a Zr or Ti site, in an amount of 5 to 40 mol% in the Pb and Zr or Ti sites in total.

15. (Currently Amended) The ferroelectric film as defined in any of elaim-claims11 to 14, further including:

at least one of Nb, V and W in the Zr or Ti site in an amount twice the amount of of a

Pb ion vacancy in the Pb site.

- 16. (Currently Amended) The ferroelectric film as defined in any of claims 11 to 14 is included including (111)-oriented tetragonal crystals.
- 17. (Currently Amended) The ferroelectric film as defined in any of claims 11 to 14 is included including (001)-oriented rhombohedral crystals.

18-29. (Canceled)

- 30. (Currently Amended) A ferroelectric memory comprising the ferroelectric film as defined in claim-any of claims 1-8, 11-14 and 23-24.1-8 and 11-14.
- 31. (Currently Amended) A piezoelectric device comprising the ferroelectric film as defined in elaim-any of claims 1-8, 11-14 and 23-24.1-8 and 11-14.