

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Executive Summary

- Space X has revolutionized the space industry by providing rocket launches at a fraction of the cost of its competitors. This is possible due to its ability to reuse the first stage of its Falcon 9 rocket, saving millions of dollars per launch. To determine the cost of a launch, it is essential to predict if the first stage will land. This information can be used to bid against Space X for a rocket launch.
- In this project, we have created a machine learning pipeline using data extraction, exploratory data analysis, plots, machine learning, and Folium maps. The pipeline predicts if the first stage of a Falcon 9 rocket will land, given the data from preceding labs. The pipeline's accuracy is essential for determining the cost of a rocket launch and can help an alternate company bid against Space X.
- Overall, this project's goal is to leverage machine learning to enable fair competition in the rocket launch industry by accurately predicting whether the first stage of a rocket will land.

Introduction

- How Space X disrupted the rocket industry?
 - Reuse the first stage of their Falcon 9 rockets
 - Vertical Landing
 - In-house manufacturing
 - Advanced technology
- For companies looking to bid against Space X for a rocket launch, it is essential to accurately predict if the first stage of a Falcon 9 rocket will land. This information can help companies determine the cost of a launch and make informed decisions about bidding.

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected through request to the SpaceX API
- Perform data wrangling
 - Cleaning is done for rows with missing values
- Perform exploratory data analysis (EDA) using visualization
- Perform interactive visual analytics using Folium and Plotly Dashboard
- Perform predictive analysis using classification models
 - Finally, the building, tuning, and evaluation of classification models

Data Collection

- Data sets were collected through Space X API
- Requests allows me to make HTTP requests which I used to get data from the API
- Below is an example of how I obtained information on the outcome of the landing as well as other details such as the number of flights based on certain cores:

```
def getCoreData(data):
   for core in data['cores']:
           if core['core'] != None:
               response = requests.get("https://api.spacexdata.com/v4/cores/"+core['core']).json()
               Block.append(response['block'])
               ReusedCount.append(response['reuse_count'])
               Serial.append(response['serial'])
               Block.append(None)
               ReusedCount.append(None)
               Serial.append(None)
           Outcome.append(str(core['landing success'])+' '+str(core['landing type']))
           Flights.append(core['flight'])
           GridFins.append(core['gridfins'])
           Reused.append(core['reused'])
           Legs.append(core['legs'])
           LandingPad.append(core['landpad'])
```

Data Collection – SpaceX API

- Firstly, create multiple functions such as the one shown previously
- Essentially each function/ API call will give us information such as the Booster name/ name and location of launch site used/ landing outcomes/ type of landing/ etc.
- Link below for more info/ reference:

https://github.com/aaronlyy/IBM capstone datascience/blob/mai n/jupyter-labs-spacex-data-collectionapi.ipynb

```
# Requests allows us to make HTTP requests which we will use to get data from an API
import requests
# Pandas is a software library written for the Python programming language for data manipulation and analysis
import pandas as pd
# NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays
import numpy as np
# Datetime is a library that allows us to represent dates
import datetime

# Takes the dataset and uses the rocket column to call the API and append the data to the list
def getBoosterVersion(data):
    for x in data['rocket']:
        if x:
            response = requests.get("https://api.spacexdata.com/v4/rockets/"+str(x)).json()
BoosterVersion.append(response['name'])
```

Data Wrangling

- Exploratory Data Analysis (EDA) was conducted and converted the success outcomes into 1 (Successfully Landed) and 0 (Unsuccessfully Landed)
- The analysis also includes looking into the number of launches for each site, the number and occurrence of each orbit and many more.
- Link below for more info/ reference:

https://github.com/aaron-lyy/IBM capstone datascience/blob/main/labs-jupyter-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

- Visualizations of various relationships between variables in the dataset were explored
- It provided some preliminary insights about how certain variables would affect the success rate
- Feature engineering was carried out such as converting important categorical variables into dummy variables
- Link below for more info/ reference:

https://github.com/aaronlyy/IBM capstone datascience/blob/main/jupyter-labs-eda-dataviz.ipynb

EDA with SQL

- Queries done included:
 - The unique Launch Sites in the space mission
 - The total payload mass carried by boosters launched by NASA (CRS)
 - The average payload mass carried by booster version F9 v1.1
 - The date when the first successful landing outcome in ground pad was achieved
 - The total number of successful and failure mission outcomes
 - The number of successful landing outcomes between the date 04-06-2010 and 20-03-2017
 - Etc.
- Link below for more info/ reference:

https://github.com/aaronlyy/IBM capstone datascience/blob/main/jupyter-labs-eda-sqlcoursera sqllite.ipynb

Build an Interactive Map with Folium

- Multiple map objects such as markers, circles, lines, etc. were created and added to a folium map
- This objects provide better visualizations on the Launch Sites and the proximities around it.
- Using colored markers, it provides easier identification of the launch sites with relatively higher success rate
- Link below for more info/ reference:

https://github.com/aaronlyy/IBM_capstone_datascience/blob/main/lab_jupyter_launch_site_location.ipyn_b

Build a Dashboard with Plotly Dash

- A pie chart which shows the proportion of success among launch sites as well as the success rate of each launch site
- A scatter plot showing the correlation between success rate and payload mass is also added to the dashboard.
- These plots provide useful insights for us to understand which launch sites are doing well and whether the payload mass affects our success rate
- For more info/ reference of the dashboard, please refer to: https://github.com/aaron-lyy/IBM capstone datascience/blob/main/spacex dash app.py
- Dataset:

 https://github.com/aaron-lyy/IBM capstone datascience/blob/main/spacex launch dash.csv

Predictive Analysis (Classification)

- The model was built, evaluated, improved, and found the best using Grid Search CV as well as each model's respective parameters
- Using accuracy as the performance metric, we got the best classification model by comparing the scores.
- Link below for more info/ reference:

https://github.com/aaronlyy/IBM_capstone_datascience/blob/main/SpaceX_Machine_Learning_Pre_ diction_Part_5.jupyterlite.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• The above plot suggests that as the number of flights increase, the greater the success rate at each launch site.

Payload vs. Launch Site

• The plot above shows that for the VAFB-SLC launch site there are no rockets launched for heavy payload mass(greater than 10000)

Success Rate vs. Orbit Type

 Here we can see that ES-L1, GEO, HEO, and SSO has the greatest success Rate

Flight Number vs. Orbit Type

- We can see that in the LEO orbit the Success appears related to the number of flights
- On the other hand, there seems to be no relationship between flight number when in GTO orbit.

Payload vs. Orbit Type

- With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.
- However, for GTO, both positive landing rate and negative landing(unsuccessful mission) cannot be distinguished well as they are both there here.

Launch Success Yearly Trend

 Success rate since 2013 continue to increase till 2020

All Launch Site Names

- DISTINCT was used in the query to get the unique launch site names
- Here a total of 4 Launch site names were queried

```
query='''
SELECT DISTINCT Launch_Site
FROM SPACEXTBL
'''

df = pd.read_sql_query(query, con)
df
```

```
0 CCAFS LC-401 VAFB SLC-4E2 KSC LC-39A
```

Launch_Site

Launch Site Names Begin with 'CCA'

• Query Result below shows 5 records with launch site names beginning with 'CCA'

```
query='''
SELECT *
FROM SPACEXTBL
WHERE Launch_Site like 'CCA%'
LIMIT 5
'''

df = pd.read_sql_query(query, con)
df
```

	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
0	04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
1	08-12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2	22-05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
3	08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
4	01-03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC-	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

- Total payload carried by boosters from NASA (including collabs) is 48,213 kg
- SUM() function is used to get the total payload mass
- LIKE is used to get all possible boosters from 'NASA (CRS)'. Note that this includes any collaborations done with other customers.

```
query='''
SELECT SUM(PAYLOAD_MASS__KG_)
FROM SPACEXTBL
WHERE CUSTOMER like '%NASA (CRS)%'
'''
df = pd.read_sql_query(query, con)
df

SUM(PAYLOAD_MASS__KG_)

48213
```

Average Payload Mass by F9 v1.1

- Average payload mass carried by booster version F9 v1.1 is about 2,535 kg
- AVG() function is used to get the average payload mass
- LIKE is used to get all possible booster versions from 'F9 v1.1'

```
query='''
SELECT AVG(PAYLOAD_MASS__KG_)
FROM SPACEXTBL
WHERE Booster_Version like '%F9 v1.1%'

'''

df = pd.read_sql_query(query, con)
df

AVG(PAYLOAD_MASS__KG_)

2534.6666667
```

First Successful Ground Landing Date

```
query='''
SELECT min(new_date) as First_Date
FROM (SELECT (substr(Date,7,4) || "-" ||substr(Date,4,2)||"-"||substr(Date,1,2)) as new_date, *
FROM SPACEXTBL)
WHERE "Landing _Outcome" like 'Success (ground pad)'
'''
df = pd.read_sql_query(query, con)
df

First_Date
0 2015-12-22
```

- First Landing Date is on 22nd December 2015
- Some data manipulation was required for the date column to get it in the right format. (See the sub query)
- The min() function was used to get the earliest date

Successful Drone Ship Landing with Payload between 4000 and 6000

```
query='''
SELECT Booster_Version
FROM SPACEXTBL
WHERE "Landing _Outcome" = 'Success (drone ship)' AND PAYLOAD_MASS__KG_>4000 AND PAYLOAD_MASS__KG_<6000
'''

df = pd.read_sql_query(query, con)
df

Booster_Version
0    F9 FT B1022
1    F9 FT B1021.2
3    F9 FT B1031.2</pre>
```

• As shown above, the required conditions are placed in the query to get the list of Booster versions above

Total Number of Successful and Failure Mission Outcomes

- "CASE WHEN" is used to add in the condition for success / Failure
- "GROUP BY" is then used to group based on the created condition
- As shown, the number of successful mission outcomes is 100. The number of failed mission outcome is 1.

Boosters Carried Maximum Payload

- Subquery was used to get the maximum payload mass
- This will allow us to get the list of boosters carried by the maximum payload mass

	Booster_Version	payload_mass_kg
0	F9 B5 B1048.4	15600
1	F9 B5 B1048.5	15600
2	F9 B5 B1049.4	15600
3	F9 B5 B1049.5	15600
4	F9 B5 B1049.7	15600
5	F9 B5 B1051.3	15600
6	F9 B5 B1051.4	15600
7	F9 B5 B1051.6	15600
8	F9 B5 B1056.4	15600
9	F9 B5 B1058.3	15600
10	F9 B5 B1060.2	15600
11	F9 B5 B1060.3	15600

2015 Launch Records

- As mentioned previously, the date format is not in the standard format.
- Substr() is used to get the Year which allows us to get the 2015 Launch Records

Rank Successful Landing Outcomes Between 2010-06-04 and 2017-03-20

```
query='''
SELECT "Landing _Outcome",COUNT(*)
FROM (SELECT (substr(Date,7,4) || "-" ||substr(Date,4,2)||"-"||substr(Date,1,2)) as new_date, *
FROM SPACEXTBL WHERE (new_date BETWEEN "2010-06-04" AND "2017-03-20"))
WHERE "Landing _Outcome" like '%Success%'
GROUP BY "Landing _Outcome"
ORDER BY COUNT(*) DESC
'''

df = pd.read_sql_query(query, con)
df

Landing_Outcome COUNT(*)

0 Success (drone ship) 5

1 Success (ground pad) 3
```

- Used sub query to get the correct date format and date range.
- Then get the successful landing outcomes and do a group by
- Above shows the successful landing outcomes from 2010-06-04 to 2017-03-20

General Overview of Launch Sites in Follium Map

Coloured Markers showing Launch Site and Labels

• Green Markers above shows success while Red Markers show failure

Proximities to Railway and Coastline

- Above shows the selected launch site to its proximities such as railway, or coastline, with distance calculated and displayed
- As shown, a line is drawn from the launch site to the respective proximities

Success ratio among the Launch sites

- The pie chart above shows the percentage of Success among the launch sites
- KSC LC-39A shows the highest success rate.

Success Rate for KSC LC-39A

- The dashboard can also show us a pie chart of the success rate for a particular launch site
- Here, we can see that the success rate for KSC LC-39A is about 77%

Correlation between Payload and Launch Outcome

- The dashboard has a range slider which allows users to select the range of interest for the payload mass
- We can see that in general, lower payload mass gives a higher success rate

Classification Accuracy

```
Find the method performs best:

model = {'K Nearest Neighbors':knn_cv.best_score_,'Decision Tree':tree_cv.best_score_ ,'Support Vector Machine':svm_cv.best_score_,'Logistic Regressio best_method = max(model, key = model.get)

print(f"The best method is {best_method}: {model[best_method]}")

The best method is Decision Tree: 0.9035714285714287

tuned hpyerparameters:(best parameters) {'criterion': 'gini', 'max_depth': 4, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'splitter': 'best'}
```

• Out of all the built classification models, Decision Tree provided the highest classification accuracy

Confusion Matrix

- On the right shows the confusion matrix for the Decision Tree Model
- The only issue shown from the matrix is the False Positives with 2 counts predicted to land but in actual fact did not land.

Conclusions

- A higher payload mass suggests a lower success rate
- A greater flight number suggests a higher success rate for each launch site
- Some orbits have very high success rates, perhaps more analysis can be done on those orbits to gain insights on success rates factors
- We can also look into KSC LC-39A which has the greatest success rate among the launch sites.
- Overall, the decision tree classifier is the best model among all the classifiers explored

