

IronHack Data Analytics

WEEK 7 | DRY EYES MACHINE LEARNING

Agenda

- Project Overview: "The Dry Eye Syndrome"
- Data Selection
- Feature Engineering & Selection
- Model Building & Evaluation
- Hyperparameter Tuning & Model Optimization
- Key Findings & Insights
- Real World Implication & Impact
- Challenges & Learnings
- Future Work & Improvements

Project Overview: The Dry Eye Syndrome (DES)

- Common condition = Eyes do not produce
 enough tears or the tears evaporate too
 quickly
- Causes: Environmental factors, aging, medical conditions, screen time (!!)
- Treatment & Prevention: Artificial tears & eye drops, using using humidifiers, wearing blue-light filters
- \rightarrow As rising Data Analysts our heavy screen time puts us at risk of developing DES and we want to prevent that!

Data Selection

Dry Eyes

preprocessed dry eye dataset

- Key Columns:
 - Sleep Duration
 - Screen Time
 - Height/Weight (BMI)
 - o Age / Gender
 - 0 ...
- Lists various factors that might contribute to DES

Oversampling

Feature Engineering

One Hot Encoding

Categorical columns

- Age (young adults, adults)
- Gender
- Sleep disorder
- Week up during night
- Feel sleepy during day
- Alcohol consumption
- Smoking

Numerical columns

- Sleep duration
- Sleep quality
- Stress level
- Heart rate
- Daily steps
- Physical activity
- BMI

MinMax Scaler

Model Building and Evaluation

• Oversampling needed due to heavy data imbalance!

Model Selection:

- Logistic Regression Model
 - Low accuracy (0.55)

- Decision Tree
 - Greater accuracy (0.70)
- → But prone to overfitting!

Model Accuracy: 0.5520					
Classification	Report: precision	recall	f1-score	support	
0 1	0.40 0.70	0.55 0.55	0.46 0.62	1397 2603	
accuracy macro avg weighted avg	0.55 0.59	0.55 0.55	0.55 0.54 0.56	4000 4000 4000	

	precision	recall	f1-score	support
0	0.60	0.21	0.31	1307
1	0.71	0.93	0.80	2693
accuracy			0.70	4000
macro avg	0.65	0.57	0.56	4000
weighted avg	0.67	0.70	0.64	4000

Model Building and Evaluation

Model Selection:

- Random Forest Classifier
 - $\circ \quad \text{Accuracy (0.69} \rightarrow 0.70)$
- → Similar performance to decision tree
 - KNN
 - Low Accuracy (0.54)
- → Also computationally expensive!

р	recision	recall	f1-score	support
0	0.61	0.21	0.32	1307
1	0.71	0.93	0.81	2693
accuracy			0.70	4000
macro avg	0.66	0.57	0.56	4000
weighted avg	0.68	0.70	0.65	4000

Model Accuracy:	0.5445			
Classification	Report: precision	recall	f1-score	support
0	0.37	0.45	0.41	1397
1	0.67	0.59	0.63	2603
accuracy			0.54	4000
macro avg	0.52	0.52	0.52	4000
weighted avg	0.57	0.54	0.55	4000

Hyperparameter Tuning & Model Optimization

 Initial Random Forest model achieved 69.9% accuracy, but we wanted to optimize it for better performance

Key hyperparameters tuned:

- n_estimators: Number of trees in the forest
- max_depth: Maximum depth of each tree
- min_samples_split: Minimum samples required to split a node
- min_samples_leaf: Minimum samples required at a leaf node
- max_features: Number of features considered for splitting

Optimized Random Forest Classifier:

- n_estimators: 386
- max_depth: 36
- min_samples_split: 13
- min_samples_leaf: 20
- max_features: 'log2'

Result: Accuracy improved **slightly** from **69.9**% → **70.2**%.

Challenges & Learning

- Data Preprocessing Uncertainty: Mistakes were made due to confusion on whether to normalize & one-hot
 encode before or after splitting the data
- Model Selection Confusion: Various models were tested, and selecting the best-performing one required experimentation
- Hyperparameter Tuning had limited Impact: Despite optimizing the Random Forest model, the improvement was minor (~69.9% → 70.2% accuracy)
- Imbalanced Dataset Required Oversampling: Without balancing, models performed poorly in predicting DES

Key Findings & Insights

- Best Performing Model: Random Forest Classifier achieved the highest accuracy (70.2%) after
 hyperparameter tuning
- Feature Importance Analysis:
 - Screen Time & Sleep Duration had strong correlations with Dry Eye Disease
- Age & Gender had limited predictive power in our dataset
- Logistic Models Underperformed: Logistic Regression failed to capture complex interactions
- Decision Trees showed decent results but Random Forest had the best balance of accuracy & robustness

Future Work & Improvements

- Preventing Data Leakage: Ensure normalization & encoding happen after the train-test split to avoid unrealistic performance metrics
- Feature Selection Optimization: Use correlation matrix & feature importance scores to refine the most relevant predictors
- Experiment with More Advanced Models: E.g.XGBoost, LightGBM, or Neural Networks for potential performance gains
- Collect More Data: Expanding the dataset could improve model generalizability and performance

PROJECT Dry Eye Syndrome

THANKS!

Angel Vargas | Elohor Avwarute | Lukas Günther | Rebecca Woo