A limit is a value toward which an expression converges as one or more variables approach certain values. It is denoted as:

$$L = \lim_{x \to a} f(x)$$

• A **left-hand limit** means the limit of a function as it approaches from the left-hand side. It is denoted as:

$$LHL = \lim_{x \to a^-} f(x)$$

• On the other hand, a **right-hand limit** means the limit of a function as it approaches from the right-hand side.

$$RHL = \lim_{x \to a+} f(x)$$

• A **Function** is a relationship between inputs and outputs where each input is related to exactly one output.

- The **domain** of a function is the set of input values for f, in which the function is real and defined.
- The set of all the outputs of a function is known as the **range** of the function.
- Some important functions for Machine Learning:

Function	Name	Domain	Range	Plot
$f(x) = \frac{1}{x}$	Hyperbola	R	R	$y = \frac{1}{x}$ 0 x

$f(x) = e^x$	Exponent	R	R+	$y = e^{x}$
f(x) = x	Modulus	R	R+	y = x $y = x $ x $-4 -3 -2 -1 0 1 2 3 4$ -2 -3
f(x) = log(x)	Exponential	R+	R	$y = \log_{10}(x)$ $y = \log_{10}(x)$ 2 1 2 1 2 3 4 5 6 -1 -2 -3 -4
$f(x) = \frac{1}{1 + e^{-x}}$	Sigmoid	R	(-1, 1)	0.5

$f(x) = \sin(x)$	sine	R	[-1, 1]	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
f(x) = tan(x)	tangent	$R - (2n+1)\frac{\pi}{2}$	R	-3π/2 -π -π/2 π/2 π 3π/2 2 -5:θ

• f(x) is **continuous** at a point x = a,

if
$$\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = \lim_{x \to a} f(x)$$

Example:

- 1. Figure 1 is continuous everywhere in its domain.
- 2. In Figure 2, at x=1, $\lim_{x\to 1^-}f(x)\neq \lim_{x\to 1^+}f(x)$

Therefore, the function given in Figure 2 is not continuous at x=1.

• A Tangent is a straight line that touches a graph only at one point. Example:

In the above-given graph, line y = 6x - 9 is a tangent line to the curve at the point (3,9).