LEYES DE LOS GASES

Elementos que son gases en CNPT

Los elementos H, N, O, F y Cl son gases y sus moléculas son diatómicas en **CNPT**!!!

Estados de la Materia

Estados de la Materia

	SÓLIDO	цельо	GASEOSO
Forma	Propia	Recipiente que lo contiene	No posee
Volumen	Cte.	Cte.	Variable
Efecto de la presión sobre el volumen	No	No	Si
Fuerzas atractivas	Atrac. > Rep.	Atrac. = Rep.	Atrac. < Rep.

Características generales:

- 1. Expansión
- 2. Forma indefinida
- 3. Compresibilidad
- 4. Mezclas
- 5. Baja densidad

$$\delta = m/V$$

Presión de un gas

El gas ejerce presión sobre cualquier superficie con la que entra en contacto, ya que las moléculas gaseosas se hallan en constante movimiento.

$$P = \frac{F}{A}$$

Presión Atmosférica

Es la fuerza que ejerce la atmósfera sobre la tierra.

El valor de la P. Atm. depende de la localización, temperatura y cond. climáticas.

1 bar = 10^5 Pa

PRESION ATMOSFERICA: https://www.youtube.com/watch?v=hVBLselXMnY

Medición de la presión atmosférica

Experiencia de Torricelli

 $P = \delta.g.h$

δ = densidad del líquido

g = aceleración de la gravedad.

h = altura de la columna

P = P
P = P columna Hg = δ*g*h
P = P atmosférica:
P = P atm =

 P_{atm} = 1,35951x10⁴ Kg x 9,81 m x 0,76 m m^3 m^3 m^2 x 0,76 m m^3 m^3 m^2 101325 Pa = 760 mmHg = 1 atm

N/m²

Manómetros para medir la presión de los gases

Presiones < a la P_{at.}

Presiones cercanas ó > a la P_{at.}

Unidades de Presión

```
P(atmosférica) = 760 mm Hg

1 atm = 760 mm Hg

1 atm = 760 Torr
```

1 mm Hg = 1 torr

La unidad SI es el Pascal: 1 Pa = $1N/m^2 = Kg/m.seg^2$

```
1 \text{ bar} = 10^5 \text{ Pa} = 100 \text{ KPa}
```

 $1 \text{ atm} = 1,01325 \cdot 10^5 \text{ Pa} = 1013,25 \text{ hPa}$

Escalas de Temperaturas

La escala centígrada, o Celsius, fue diseñada por el astrónomo sueco

Anders Celsius

Es utilizada en la mayoría de los países. El punto de congelación del H_2O es 0 grados (0 °C) y el punto de ebullición es de 100 °C.

Escalas de Temperaturas

En la escala Kelvin:

Para pasar de °C a Kelvin :

T (Kelvin) =
$$T(^{\circ}C)$$
 + 273

Para pasar de °C a *Farhenheit*

$$^{\circ}C = (F-32)\underline{5}$$

Para pasar de Farhenheit a °C

$$F = \frac{9}{5} C + 32$$

Escalas

Centígrada y Kelvin

$$P_f H_2 O = 0^{\circ} C = 273 \text{ K}$$

$$P_e H_2 O = 100^{\circ}C = 373 \text{ K}$$

Escala Kelvin es también llamada escala de temperaturas absoluta.

Ley de Boyle

$$V = cte \times \frac{1}{P}$$
 $PV = cte$

Ley de Charles (y Gay-Lussac)

$$V = cte \times T$$

$$\frac{V}{T} = cte$$

T = Temperatura absoluta Escala Kelvin

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Volumen de un gas a diferentes presiones

Principio de Avogadro

Volúmenes iguales de gases diferentes, medidos en iguales condiciones de presión y temperatura, tienen el mismo número de moléculas.

Ley de Avogadro: $V = cte \times n$ (P y T ctes)

VOLUMEN MOLAR

Volumen de 22,4 l

(0°C y 1atm)

contiene:
6,023x10²³

moléculas de gas

(1 mol).

Establece la relación entre la cantidad de gas y su volumen cuando se mantienen constantes la temperatura y la presión. Recuerde que la cantidad de gas se mide en moles.

Ecuación del Gas Ideal

Cómo consecuencia de las observaciones hechas por:

Boyle:
$$V \propto 1/P \ (n, T \text{ constante})$$

Charles:
$$V \propto T$$
 $(n, P \text{ constante})$

Boyle:
$$V \propto 1/P$$
 (n,T constante) $V \propto T$ (n,P constante) $V \propto \frac{nT}{P}$ Avogadro: $V \propto n$ (P,T constante)

$$V \propto \frac{nT}{P}$$

V es proporcional a **T** y **n** e inversamente proporcional a P.

Si llamamos R a esa constante...

Ecuación del Gas Ideal

Esta ecuación se conoce como la ecuación del gas ideal. Un gas ideal es un gas hipotético cuyo comportamiento de presión, volumen y temperatura se describe perfectamente con esta ecuación. El término R de la ecuación del gas ideal se denomina constante universal de los gases.

- ✓ Todos los gases a presiones bajas y temperaturas altas cumplen con esta ecuación.
- ✓ T debe ser siempre expresado en Kelvin, n en moles, P en atm y V en litros

La constante universal R

$$PV = n.R.T$$

$$R = \frac{PV}{nT} = \frac{1 \text{ atm } 22,4 \text{ L}}{1 \text{ mol } 273 \text{ K}} = 0,082 \text{ L atm/K mol}$$

Podemos determinar a partir de esta ley:

1.- El peso molecular : $M = \delta RT/P$

2.- Densidad del gas: δ = MP/RT

Ejemplo: A 18 °C y 765 mmHg, 1,29 L de un gas pesan 2,71 g. **Calcular el peso molecular aproximado del gas**.

Dado que el número de moles se puede definir como:

n = m/M

m= masa (g)

M= masa molecular (g/mol)

Se puede establecer esta cadena de igualdades a partir de la ecuación de estado de los gases ideales:

$$p V = nRT = \frac{m}{M}RT$$

donde *M* es la masa molecular del gas

Hay que recordar

$$M = \frac{2,71 \text{ g} \cdot 0,082 \left(\frac{\text{atmL}}{\text{mol K}}\right) \cdot 291 \text{ K}}{\frac{765}{760} \text{atm} \cdot 1,29 \text{ L}}$$

$$p \text{ debe venir en atm}$$

$$M = \frac{2,71 \text{ g} \cdot 0,082 \left(\frac{\text{atmL}}{\text{molK}}\right) \cdot 291 \text{K}}{\frac{765}{760} \text{atm} \cdot 1,29 \text{ L}} = 48,8 \text{ g/mol}$$

Ejemplo: Calcular la **densidad** del gas C₄H₈ a 273 ⁰C y a 1520 mmHg de presión.

La definición de densidad es: δ = m / V

 δ = densidad

m = masa

V = volumen

Recordemos que la cantidad de moles se calcula de la siguiente manera:

$$n = m / M$$

Si sustituimos "n" en la ley de los gases ideales se obtiene:

$$PV = (m/M).R.T$$

despejando adecuadamente para obtener la densidad (m/V) se obtiene:

M.
$$P = (m/V).R.T$$

(M.P)/(R.T) = m/V

y como masa sobre volumen es la definición de densidad, obtenemos la fórmula para determinar la densidad de un gas.

$$\delta$$
 = MP/RT

Por lo tanto, para calcular la densidad de C₄H₈ tendremos lo siguiente:

T =
$$273 \, ^{\circ}$$
C + $273,15 = 546,15 \, \text{K}$
P = $1520 \, / \, 760 = 2 \, \text{atm}$
M = $56 \, \text{g/mol}$

 δ = M. P/RT = 56 g/mol. 2 atm/ 0,082 L.atm/ K mol. 546,15 K = 2,50 g/L δ = 2,50 g/L

La constante universal R

0,082 $8.205 78 \times 10^{-2} \text{ L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ $8.314\ 51\ \times\ 10^{-2}\ L\cdot bar\cdot K^{-1}\cdot mol^{-1}$ 8.314 51 L·kPa·K⁻¹·mol⁻¹ $8.314\ 51\ J\cdot K^{-1}\cdot mol^{-1}$ 62.364 L·Torr·K⁻¹·mol⁻¹

La equivalencia 1 mol = 22,4 L

Solo es válido en CNPT!!!!

Ley de las presiones parciales de Dalton

La presión de una mezcla de gases es igual a la suma de las presiones parciales que cada gas ejercería si se encontrara sólo.

$$P_{t} = P_{1} + P_{2} + \dots + P_{N}$$

$$P_{t} = n_{1} \frac{RT}{V} + n_{2} \frac{RT}{V} + \dots + n_{N} \frac{RT}{V}$$

$$P_{t} = (n_{1} + n_{2} + \dots + n_{N}) \frac{RT}{V}$$

$$P_{t} = n_{t} \frac{RT}{V}$$

 P_t es la presión total P_1 , P_2 ,... es la presión parcial n_t es la suma total de moles T, V, R son constantes

Ley de las presiones parciales de Dalton

Otra relación útil entre presión parcial y presión total en una mezcla de gases es la siguiente:

Para una mezcla de 2 gases A y B

$$P_{A} = x_{A}P_{T}$$

$$P_{B} = x_{B}P_{T}$$

$$Donde = \begin{cases} x_{A} = \frac{n_{A}}{n_{A} + n_{B}} = \frac{n_{A}}{n_{T}} \\ x_{B} = \frac{n_{B}}{n_{A} + n_{B}} = \frac{n_{B}}{n_{T}} \end{cases}$$

Para una mezcla de n gases

siempre
$$x_1 + x_2 + + x_n = 1$$

Teoría Cinética de los Gases

- Los gases consisten en grandes cantidades de moléculas en constante movimiento.
- ➤ El volumen ocupado por todas las moléculas es mucho menor que el volumen del recipiente que las contiene.
- Las fuerzas de atracción entre moléculas son insignificantes.
- Las moléculas transfieren entre sí energía mediante choques pero, a T constante, la energía cinética media permanece constante.
- La energía cinética media de las moléculas es proporcional a la temperatura absoluta.
- A una temperatura dada, las moléculas de todos los gases tienen la misma energía cinética media.

TEORÍA CINETICO MOLECULAR

Las partículas del gas se mueven en línea recta hasta que colisionan

Las fuerzas de atracción y repulsión entre las

partículas son despreciables

La energía puede transferirse de una partícula a la otra durante las colisiones, pero si <u>la temperatura se mantiene</u> <u>constante</u>, la energía cinética promedio no cambia.

$$\overline{E_c} \cong T$$
 (absoluta) $E_c = \frac{1}{2} \text{ m } \overline{v^2} = \text{cte.T}$ (absoluta)

DIFUSION Y EFUSION DE LOS GASES

Los gases que se encuentran a la misma T tienen la misma E. Cinética promedio

Ley de Graham

Las velocidades de difusión de los gases son inversamente proporcionales a las raíces cuadradas de sus respectivas densidades o de sus pesos moleculares

$$v \propto \sqrt{\frac{1}{M_{molar}}}$$

$$\frac{v_1}{v_2} = \frac{\sqrt{M_2}}{\sqrt{M_1}}$$

$$\frac{v_1}{v_2} = \frac{\sqrt{\delta_2}}{\sqrt{\delta_1}}$$

Ley de Graham

Graham observó que la velocidad de difusión de un gas era inversamente proporcional a la raíz cuadrada de su densidad y por lo tanto, inversamente proporcional a la raíz cuadrada de su masa molecular.

Para dos gases de naturaleza diferente cuyas masas moleculares son m1 y m2 y poseen velocidades de difusión v1 y v2, se verifica que en iguales condiciones de temperatura y presión:

 $\frac{\mathbf{v}_1}{\mathbf{v}_2} = \sqrt{\frac{\mathbf{m}_2}{\mathbf{m}_1}}$

Teniendo en cuenta que: v= d/t (el tiempo es el mismo para ambas moléculas) y que m se reemplaza por la masa molar M:

$$\frac{\mathbf{v}_1}{\mathbf{v}_2} = \frac{\mathbf{d}_1}{\mathbf{d}_2} = \sqrt{\frac{\mathbf{M}_2}{\mathbf{M}_1}}$$