```
In [1]: include("/home/nicole/Jupyter/SSBRJ/src/SSBR.jl")
using SSBR

In [2]: function getPos(ped,IDs)
    posAi = Array(Int64,size(IDs,1))
    for (i,id) = enumerate(IDs[:,1])
        posAi[i] = ped.idMap[id].seqID
    end
    return posAi
end

Out[2]: getPos (generic function with 1 method)

In [3]: ; cd Data/0.5g2k/G/5
    /home/nicole/Jupyter/JG3/Data/0.5g2k/G/5
```

```
In [4]: ;ls
        Correlation.G5.G.PBLUP.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        GenNF.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.G.PBLUP.txt
        all.ID
        genotype.ID
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]:
        ;awk '{print $1}' PedAll.txt | sort -b > all.ID
       ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
In [6]:
In [7]: ;join -v1 all.ID genotype.ID > noGenotype.ID
In [8]: ;awk '{print $1,$2}' Phe.txt > sim.phenotype
```

```
In [9]: | ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [12]: ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]: ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]: ;join GO.ID genotype.ID > GO.Genotype.ID
In [17]: ;join G1.ID genotype.ID > G1.Genotype.ID
In [18]: ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]: ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]: |; join G4.ID genotype.ID > G4.Genotype.ID
In [21]: |;join G5.ID genotype.ID > G5.Genotype.ID
In [22]: ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]: ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]: |;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [25]: ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
```

```
In [26]: |;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]: ;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc G4.Genotype.ID;wc G5.Genotype
          200 200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype.ID;wc G4.noGenotype.ID;wc G
          7800 7800 46800 GO.noGenotype.ID
          7800 7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A_Mats,numSSBayes = calc_Ai("PedAll.txt", "genotype.ID", calculateInbreeding=false)
In [30]:
         nothing
                = read_genotypes("GenNF.txt",numSSBayes)
         df
         M_Mats = make_MMats(df,A_Mats,ped,center=true);
                                                                                 # with centering
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes)
         J_Vecs = make_JVecs(numSSBayes,A_Mats)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
                                                                                 # with J
         X Mats, W Mats = make XWMats(J_Vecs, Z_Mats, M_Mats, numSSBayes)
         nothing
```

```
In [31]:
         vG
                = 0.704
                = 0.704
         vRes
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M Mats,y Vecs,J Vecs,Z Mats,X Mats,W Mats,A Mats, numSSBayes,vRes,vG,nIter, outFreq=5000);
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         7088.478253 seconds (23.84 G allocations: 736.501 GB, 2.83% gc time)
In [32]: betaHat
Out[32]: 2-element Array{Float64,1}:
          35.2737
           3.23277
In [33]: using DataFrames
In [34]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',header=false)
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
```

```
In [35]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with epsilon
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n", reg1)
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.916
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.992
Out[35]: 0.9162337958934708
In [36]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[36]: -1.857020554852373
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # with epsilon
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3f\n", reg2)
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.907
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.105
Out[37]: 0.9071271449444995
In [38]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[38]: -0.5841605169284093
```

```
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 ) # with epsilon
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg3)
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.884
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.969
Out[39]: 0.8842001263179008
In [40]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: -2.15075748668098
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.710
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.862
Out[41]: 0.7103806243904698
In [42]: GEBV = aHat1[posAi]
         GOGEBV=mean(GEBV)
Out[42]: -3.3676440344162084
```

```
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.786
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 1.001
Out[43]: 0.785842319548925
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: -2.652344243431408
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", reg5)
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.771
         SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = 0.998
Out[45]: 0.7705543294742967
In [46]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: -2.050803306872118
```

```
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", reg6)
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.777
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 1.036
Out[47]: 0.7769206560544959
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: -1.522760562930204
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", req7)
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.767
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.049
Out[49]: 0.767398178324782
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: -1.0129005595186664
```

```
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", reg8)
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.890
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 1.095
Out[51]: 0.8896102323033726
In [52]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: -0.5356706219456339
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.943
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.086
Out[53]: 0.9427134499270754
In [54]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[54]: -1.8845418997650305
```

```
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.932
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.001
Out[55]: 0.9324166161602709
In [56]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[56]: -1.391877499837726
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req10)
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.932
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 1.073
Out[57]: 0.93187971408171
In [58]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[58]: -0.9655682036252741
```

```
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req11)
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.934
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 1.108
Out[59]: 0.9340315433003825
In [60]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[60]: -0.5064230296465436
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg12)
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.869
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 0.993
Out[61]: 0.8689232496881254
In [62]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[62]: -0.1119877510784904
```

```
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req13)
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.890
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 1.095
Out[63]: 0.8896102323033726
In [64]: writedlm("Correlation.G5.G.JC.txt",cor13)
In [65]: writedlm("Regression.G5.G.JC.txt",reg13)
In [66]: | TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[66]: 34.768634500000005
In [67]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[67]: -0.5356706219456339
In [68]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.688
         SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = 0.869
Out[68]: 0.688307956736098
```

```
In [69]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[69]: -3.405672294279059
In [70]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.768
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 1.006
Out[70]: 0.7680925147123159
In [71]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[71]: -2.6846639035235533
In [72]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor15 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg15)
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.753
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 0.994
Out[72]: 0.7525794830439658
In [73]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[73]: -2.078629847981011
```

```
In [74]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor16 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg16)
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.761
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.033
Out[74]: 0.7610958719045126
In [75]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[75]: -1.5488204996810668
In [76]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor17 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg17)
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.753
         SSBRJC from Gibbs - G4.noGenotype.ID: regression of TBV on GEBV = 1.045
Out[76]: 0.7528555807977821
In [77]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[77]: -1.0360008879402092
In [78]: numSSBayes
Out[78]: SSBR.NumSSBayes(54875,45875,9000,40000,39000,1000,2000)
```

```
In [79]: J1 = sortrows(J_Vecs.J1)
Out[79]: 45875x1 Array{Float64,2}:
          -1.00013
          -0.989406
          -0.989104
          -0.988687
          -0.986955
          -0.986772
          -0.98594
          -0.985627
          -0.985612
          -0.985601
          -0.985574
          -0.985536
          -0.985534
           6.10569e-17
           6.32562e-17
           6.62234e-17
           6.63866e-17
           6.66704e-17
           7.02019e-17
           7.43747e-17
           7.69405e-17
           8.8762e-17
           8.89062e-17
           8.99651e-17
           1.07791e-16
```

```
In [80]: J1[J1 .< 0.0,:]
Out[80]: 43858x1 Array{Float64,2}:
          -1.00013
          -0.989406
          -0.989104
          -0.988687
          -0.986955
          -0.986772
          -0.98594
          -0.985627
          -0.985612
          -0.985601
          -0.985574
          -0.985536
          -0.985534
          -7.21236e-36
          -7.20815e-36
          -7.20799e-36
          -7.19558e-36
          -7.17281e-36
          -7.16503e-36
          -5.41067e-36
          -7.17032e-66
          -3.55806e-67
          -1.78322e-67
          -1.78322e-67
          -1.78112e-67
```