Template: Study Material

<mrs. anantmati<br="">S. Patil></mrs.>	<date: 07="" 10="" 2020=""></date:>	<mr. arjun="" d.<br="">Wandhekar></mr.>
Key words: Adjoint of Matrix, Inverse of Matrix, Solution of simultaneous equations.	Learning Objective: Solve the given system of linear equations using matrix inversion method.	Diagram/ Picture:
Key Questions: Have you wondered how to find inverse of a matrix?	Algebra of Matrices Transpose of Matrix Matrices Inverse of Matrix (Adjoint method) Solution of system of linear equation	
	Course Content: Adjoint of a matrix: Adjoint of a matrix is the <u>transpose</u> of co-factor matrix $\therefore Adj \ A = \left[c_{ij}\right]^t$ Co-factor matrix is a matrix of co-factors= $\left[c_{ij}\right]$ $where \ c_{ij} = (-1)^{i+j} \times M_{ij}$ where Minor M_{ij} = determinant of matrix obtained by deleting i th	Key Definitions/ Formula Adjoint of a matrix: Adjoint of a matrix is the transpose of co-factor matrix $\therefore Adj \ A = \left[c_{ij}\right]^t$
Solved word Problem:	row & jth column of given matrix. Solved examples: 1. If $A = \begin{bmatrix} -1 & 1 & 1 \\ 2 & 4 & 2 \\ 3 & 2 & 1 \end{bmatrix}$, find Adj A Solution.: Given $A = \begin{bmatrix} -1 & 1 & 1 \\ 2 & 4 & 2 \\ 3 & 2 & 1 \end{bmatrix}$ $c_{11} = (-1)^{1+1} \times \begin{vmatrix} 4 & 2 \\ 2 & 1 \end{vmatrix} = +(4-4) = 0$ $c_{12} = (-1)^{1+2} \times \begin{vmatrix} 2 & 2 \\ 3 & 1 \end{vmatrix} = -(2-6) = 4$ $c_{13} = (-1)^{1+3} \times \begin{vmatrix} 2 & 4 \\ 3 & 2 \end{vmatrix} = +(4-12) = -8$ $c_{21} = (-1)^{2+1} \times \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -(1-2) = 1$ $c_{22} = (-1)^{2+2} \times \begin{vmatrix} -1 & 1 \\ 3 & 1 \end{vmatrix} = +(-1-3) = -4$ $c_{23} = (-1)^{2+3} \times \begin{vmatrix} -1 & 1 \\ 3 & 2 \end{vmatrix} = +(2-4) = -2$ $c_{31} = (-1)^{3+1} \times \begin{vmatrix} 1 & 1 \\ 4 & 2 \end{vmatrix} = +(2-4) = -2$ $c_{32} = (-1)^{3+2} \times \begin{vmatrix} -1 & 1 \\ 2 & 2 \end{vmatrix} = -(-2-2) = 4$ $c_{33} = (-1)^{3+3} \times \begin{vmatrix} -1 & 1 \\ 2 & 4 \end{vmatrix} = +(-4-2) = -6$ $\therefore Matrix of cofactors = C = \begin{bmatrix} 0 & 4 & -8 \\ 1 & -4 & 5 \\ -2 & 4 & -6 \end{bmatrix}$	Inverse of a matrix: Given a non-singular matrix 'A', if there exists a matrix 'B' such that $A \times B = B \times A = I$ ther matrix B is the inverse of matrix A. Formula: $A^{-1} = \frac{1}{\det A} \times Adj A$

Application of Concept/ Examples in real life: Matrices are used in coding
and decoding of information.

Link to YouTube/ OER/ video: http://www.khanacade

COURSE CONTENT: CONTINUED......

Singular matrix

A square matrix A is called singular matrix if det(A) or |A| = 0.

Non-Singular matrix

A square matrix A is called non-singular, if det (A) or $|A| \neq 0$.

Solved Example:

1) If
$$A = \begin{bmatrix} -2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 1 & 1 \end{bmatrix}$ Show that the matrix AB is non-singular.

Solution : Given A =
$$\begin{bmatrix} -2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$
 B = $\begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 1 & 1 \end{bmatrix}$

AB = $\begin{bmatrix} -2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 1 & 1 \end{bmatrix}$

AB = $\begin{bmatrix} 0+0+1 & -2+0+1 \\ 0+4+3 & 1+6+3 \end{bmatrix}$ = $\begin{bmatrix} 1 & -1 \\ 7 & 10 \end{bmatrix}$

|AB| = $\begin{bmatrix} 1 & -1 \\ 7 & 10 \end{bmatrix}$ = 10 + 7

∴ AB is a non-singular matrix.

Inverse of a matrix:

Given a non-singular matrix 'A', if there exists a matrix 'B' such that

 $A \times B = B \times A = I$ then matrix B is the inverse of matrix A.

Notation: Inverse of A = A^{-1}

Formula:
$$A^{-1} = \frac{1}{\det A} \times Adj A$$

Solved example:

1. Find the inverse of the matrix
$$A=\begin{bmatrix}3&1&2\\4&1&1\\2&-1&3\end{bmatrix}$$

Solution: Given
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 4 & 1 & 1 \\ 2 & -1 & 3 \end{bmatrix}$$

$$|A| = 3(3+1) - 1(12-2) + 2(-4-2)$$

$$= 12 - 10 - 12 = -10 \neq 0$$

$$\therefore A^{-1} \text{ exists}$$

$$c_{11} = (-1)^{1+1} \times \begin{vmatrix} 1 & 1 \\ -1 & 3 \end{vmatrix} = +(3+1) = 4$$

$$c_{12} = (-1)^{1+2} \times \begin{vmatrix} 4 & 1 \\ 2 & 3 \end{vmatrix} = -(12-2) = -10$$

$$c_{13} = (-1)^{1+3} \times \begin{vmatrix} 4 & 1 \\ 2 & -1 \end{vmatrix} = +(-4-2) = -6$$

$$c_{21} = (-1)^{2+1} \times \begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} = -(3+2) = -5$$

$$c_{22} = (-1)^{2+2} \times \begin{vmatrix} 3 & 2 \\ 2 & 3 \end{vmatrix} = +(9-4) = 5$$

$$c_{23} = (-1)^{2+3} \times \begin{vmatrix} 3 & 1 \\ 2 & -1 \end{vmatrix} = -(-3-2) = 5$$

$$c_{31} = (-1)^{3+1} \times \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = +(1-2) = -1$$

$$c_{32} = (-1)^{3+2} \times \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} = -(3-8) = 5$$

$$c_{33} = (-1)^{3+3} \times \begin{vmatrix} 3 & 1 \\ 4 & 1 \end{vmatrix} = +(3-4) = -1$$

$$\therefore C = \begin{bmatrix} 4 & -10 & -6 \\ -5 & 5 & 5 \\ -1 & 5 & -1 \end{bmatrix}$$

$$\therefore Adj A = C^t = \begin{bmatrix} 4 & -5 & -1 \\ -10 & 5 & 5 \\ -6 & 5 & -1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{-10} \times \begin{bmatrix} 4 & -5 & -1 \\ -10 & 5 & 5 \\ -6 & 5 & -1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{-10} \times \begin{bmatrix} 4 & -5 & -1 \\ -10 & 5 & 5 \\ -6 & 5 & -1 \end{bmatrix}$$

Solution of simultaneous equations:

Suppose
$$a_1x+b_1y+c_1z=d_1$$

$$a_2x+b_2y+c_2z=d_2$$

$$a_3x+b_3y+c_3z=d_3$$

are the given simultaneous equations.

These equations can be represented in matrix form as follows:

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \quad \text{i.e.} \quad \mathbf{A} \times \mathbf{X} = \mathbf{B} \ \text{where}$$

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}; \ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}; B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

The solution of the system of equations is given by $X = A^{-1} \times B$ where $A^{-1} = \frac{1}{\det A} \times Adj A$

Solved Example:

1. Solve the equation using matrix method:

$$x + y + z = 3$$
; $x + 2y + 3z = 4$; $x + 4y + 9z = 6$
Solution: $x + y + z = 3$;
 $x + 2y + 3z = 4$;
 $x + 4y + 9z = 6$

Matrix Equation: $A \times X = B$

Where
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$$
; $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$; $B = \begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix}$

$$\therefore |A| = 1(18 - 12) - 1(9 - 3) + 1(4 - 2) = 6 - 6 + 2 = 2 \neq 0$$

$$\therefore A^{-1}$$
 exists

$$c_{11} = (-1)^{1+1} \times \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix} = +(18 - 12) = 6$$

$$c_{12} = (-1)^{1+2} \times \begin{vmatrix} 1 & 3 \\ 1 & 9 \end{vmatrix} = -(9-3) = -6$$

$$c_{13} = (-1)^{1+3} \times \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} = +(4-2) = 2$$

$$c_{21} = (-1)^{2+1} \times \begin{vmatrix} 1 & 1 \\ 4 & 9 \end{vmatrix} = -(9-4) = -5$$

$$c_{22} = (-1)^{2+2} \times \begin{vmatrix} 1 & 1 \\ 1 & 9 \end{vmatrix} = +(9-1) = 8$$

$$c_{23} = (-1)^{2+3} \times \begin{vmatrix} 1 & 1 \\ 1 & 4 \end{vmatrix} = -(4-1) = -3$$

$$c_{31} = (-1)^{3+1} \times \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = +(3-2) = 1$$

$$c_{32} = (-1)^{3+2} \times \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = -(3-1) = -2$$

$$c_{33} = (-1)^{3+3} \times \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = +(2-1) = 1$$

$$\therefore C = \begin{bmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1 \end{bmatrix}$$

$$\therefore Adj A = C^t = \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{\det A} \times Adj A = \frac{1}{2} \times \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix}$$

$$= \frac{1}{2} \times \begin{bmatrix} 18 - 20 + 6 \\ -18 + 32 - 12 \\ 6 - 12 + 6 \end{bmatrix}$$

$$= \frac{1}{2} \times \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

$$\therefore x = 2; y = 1; z = 0$$

Key Take away from this UO:

- 1. Inverse of Matrix (Adjoint method)
- 2. Solution of simultaneous equation by matrix method.