Compactification in low dimension

Tri Nguyen - University of Alberta

April 29, 2025

In this expository note, I will try to explain explicitly how to compactify $\Gamma\backslash\mathbb{H}$ by adding points in two ways.

1 Some preparations

We will always denote Γ a subgroup of the group $SL_2(\mathbb{Z})$ of finite index, and this group acts on the upper half complex plane \mathbb{H} by

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \circ z := \frac{az+b}{cz+d}$$

When z tends to infinity, we have

$$\lim_{z \to \infty} \frac{az+b}{cz+d} = \frac{a}{c},$$

so we add the rational line to define the action of this group at ∞ . In particular, we consider the set

$$\overline{\mathbb{H}}=\mathbb{H}\cup\mathbb{P}^1(\mathbb{Q})$$

Note that on the projective rational line, we define the action to be the multiplication of a 2×2 matrix with a 2×1 vector. Then under this action, we have the following lemma

Lemma 1. $SL_2(\mathbb{Z})$ acts transitively on $\mathbb{P}^1(\mathbb{Q})$.

Proof. For each point in $\mathbb{P}^1(\mathbb{Q})$, we can choose the representative to be of the form [a:b], where $\gcd(a,b)=1$. Then there exists $x,y\in\mathbb{Z}$ such that

$$ax - by = 1$$

Thus we get the following equality

$$\begin{bmatrix} b & a \\ -x & y \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

This implies any points in $\mathbb{P}^1(\mathbb{Q})$ can be moved to [0:1], and thus the action is transitive. \square

Corollary 2. If Γ is a subgroup of finite index in $\mathrm{SL}_2(\mathbb{Z})$ then $\Gamma \backslash \mathbb{P}^1(\mathbb{Q})$ has only finite orbits.

2 Compactification of $\Gamma\backslash\mathbb{H}$ by adding points.

We introduce a topology on $\overline{\mathbb{H}}$. For the usual upper half plane, the topology is the usual metric topology on \mathbb{C} , and we only define the system of the neighborhood of $r \in \mathbb{P}^1(\mathbb{Q})$.

Let $S(c,\omega)$ be the circle that touches the real line at $\omega = p/q$ and has the radius $\frac{c}{2q^2}$. Then the collection of circles $D(c,\omega) = \bigcup_{0 < c' \le c} S(c',\omega)$ is called *Farey disk*. Let $c \to 0$, these disks define a neighborhood of ω . The Farey disks at ∞ are defined to be the region

$$D(T, \infty) = \{z : \Im z \geqslant T\}$$

It can be checked easily that the matrix under inversion, the Farey disk at ∞ is mapped to D(1/T,0). In general, if $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ such that $\gamma \circ \infty = \omega$ then $D(T,\infty)$ is mapped to $D(1/T,\omega)$. With the above topology on the extended upper half plane, we could show that

Lemma 3. $\Gamma \setminus \overline{\mathbb{H}}$ is a compact set.

The proof is taken from [1] and I rewrite it here for completeness.

Proof. We first prove for the case $\Gamma = \mathrm{SL}_2(\mathbb{Z})$. It is well known that the quotient space $\Gamma \backslash \mathbb{H}$ is identical to the set

$$\mathcal{F} = \{ z \in \mathbb{H} : \Re z \in [-1/2, 1/2), |z| \ge 1 \text{ and } |z| > 1 \text{ if } \Re z > 0 \}$$

By lemma 1, the projective rational line "shrinks" to a point under the action of $\Gamma = \operatorname{SL}_2(\mathbb{Z})$, Thus we can identify $\Gamma \backslash \overline{\mathbb{H}}$ with the set $\tilde{\mathcal{F}} = \mathcal{F} \cup \{\infty\}$. Consider an open cover $\{U_i\}_{i \in I}$ of $\tilde{\mathcal{F}}$ and the natural projection $\pi \colon \overline{\mathbb{H}} \to \tilde{\mathbb{F}}$. Then the set $\{\pi^{-1}(U_i)\}_{i \in I}$ forms an open cover of $\overline{\mathbb{H}}$. There must be an index i_0 such that $\pi^{-1}(U_{i_0})$ contains a neighborhood of ∞ , namely contains a Farey disk $D(T, \infty)$ for some T > 0. Since $\overline{\mathcal{F}} - D(T, \infty)$ is a compact set, its image under π is compact, hence it can be covered by U_{i_1}, \ldots, U_{i_m} . Altogether, $\tilde{\mathcal{F}}$ admits a finite subcover U_{i_0}, \ldots, U_{i_m} . Now we proceed to the general case. Note that

$$\overline{\mathbb{H}} = \operatorname{SL}_2(\mathbb{Z}) \circ \tilde{\mathcal{F}} = \bigcup \Gamma a_i \circ \tilde{\mathcal{F}}$$

by corollary 2. Then under the surjective map $\pi \colon \overline{\mathbb{H}} \to \Gamma \backslash \overline{\mathbb{H}}$, we have

$$\Gamma \setminus \overline{\mathbb{H}} = \bigcup \pi \left(\Gamma a_i \circ \tilde{\mathcal{F}} \right),$$

which shows that the set $Y(\Gamma) = \Gamma \setminus \overline{\mathbb{H}}$ is compact as it is the union of compact sets.

The orbit of $\mathbb{P}^1(\mathbb{Q})$ under the action of Γ is called *cusps*. We have the obvious equality that

$$\Gamma\backslash\overline{\mathbb{H}}=\Gamma\backslash\mathbb{H}\cup\underbrace{\Gamma\backslash\operatorname{\mathbb{P}}^1(\mathbb{Q})}_{\text{cusps}}$$

So in fact lemma 3 tells us that we only need to add a finite cusp to get a compact domain. That means we only need to consider the actions of Γ on the projective rational line. By the orbit-stabilizer theorem, we get the decomposition

$$\Gamma \backslash \bigcup_{\omega} D(c, \omega) = \bigcup \Gamma_{\omega_i} \backslash D(c, \omega_i)$$

where ω_i is the set of representative for the action of Γ on $\mathbb{P}^1(\mathbb{Q})$ and Γ_{ω_i} are the stabilizer of $\omega_i \in \Gamma$.

Again, since the action of $\mathrm{SL}_2(\mathbb{Z})$ on $\mathbb{P}^1(\mathbb{Q})$ is transitive, for each $r \in \mathbb{P}^1(\mathbb{Q})$, there exists an element $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ such that $\gamma \circ \infty = r$. So we have $\Gamma_r = \gamma \Gamma_\infty \gamma^{-1}$. Hence we only need to know the "shape" of the domain $\Gamma_\infty \backslash D(T, \infty)$. WLOG, we could assume $\Gamma = \mathrm{SL}_2(\mathbb{Z})$, and hence

$$\Gamma_{\infty} = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} : n \in \mathbb{Z} \right\}$$

Geometrically, $\Gamma_{\infty}\backslash D(T,\infty)$ is the strip $\{\Re z \in [-1/2,1/2), \Im z \geqslant T\}$. But this is biholomorphic to a closed disk that misses a point on the boundary. So compactification is obtained by filling in the missing points to get finitely many compact disks.

3 Borel - Serre compactification of $\mathrm{SL}_2(\mathbb{Z}) \setminus \mathbb{H}$

We consider another compactification, by looking at the Farey disk $D(c, \omega)$ for fixed parameters c, ω . Then for any points $y \neq \omega$ on the Farey circle $S(c, \omega)$, we could connect y with ω by a unique geodesic in the upper half-plane.

These geodesics are either upper half circles that are orthogonal to the real line or the vertical line passing through ω . We thus can identify the Farey disks as follows

$$D(c,\omega) - \{\omega\} = X_{\infty,\omega} \times (0,c],$$

since a point θ on the Farey circles $S(c,\omega)$ is defined by its radius, up to a scaling of c, and the intersection of the geodesic $\overline{\theta\omega}$ with the real line. The uniqueness of the geodesics gives us a bijection between two sets. Here we let $X_{\infty,\omega} = \mathbb{P}^1(\mathbb{R}) - \{\omega\}$

How does the group Γ act on the set on the RHS set in the above identification? First, we look at the special case where $\omega = \infty$. In this case, the identification is

$$D(T, \infty) - \infty = X_{\infty, \infty} \times [T, \infty)$$

On the left, stabilizer subgroup Γ_{∞} can be thought of as a subgroup of the group of translation, which leaves all the Farey circles $S(t,\infty)$ - which are the line $\{\Im z = t \geqslant T\}$ in this case - intact. Thus on the right-hand side, the action of Γ_{∞} only affects the first coordinate. In general case, we need a lemma

Lemma 4. If $\gamma \in \operatorname{SL}_2(\mathbb{Z})$ such that $\gamma \circ \infty = \omega$ then $\gamma \circ D(T, \infty) = D(1/T, \omega)$.

Assume lemma 4 with the note that $\Gamma_{\omega} = \gamma \Gamma_{\infty} \gamma^{-1}$, we conclude that the action of Γ_{ω} only affects $X_{\infty,\omega}$ for all $\omega \in \mathbb{P}^1(\mathbb{Q})$. Since $\Gamma_{\omega} \backslash X_{\infty,\omega}$ is a circle, it is compact. Hence we can compactify the quotient space $\Gamma_{\omega} \backslash D(c,\omega) - \{\omega\}$ as

$$\Gamma_{\omega}\backslash D(c,\omega) - \{\omega\} \hookrightarrow \Gamma_{\omega}\backslash X_{\infty,\omega} \times [0,c]$$

As in section 1, we only need to compactify finitely many such quotient spaces and get the compactification of $\Gamma\backslash\mathbb{H}$.

Now we give a proof of lemma 4

Proof. Assume $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ is an element that sends ∞ to $\omega = \frac{p}{q}$. Let $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix}.$$

Thus we must have a=p, c=q and b, c are integers such that aq-cp=1. A Farey circle in the neighborhood of ∞ is, in fact, a line $S(T,\infty)=\{\Im z=T\}$, and this line is mapped to a circle tangent to the real line. Direct calculation shows that, for z=x+iT

$$\Im(\gamma \circ z) = \frac{\Im z}{|cz+d|^2} = \frac{T}{(cx+d)^2 + c^2 T^2} \leqslant \frac{1}{q^2 T}$$

The equality happens if x = -d/c. Since this $\gamma \circ z$ is a point on the circle tangent to the real line at p/q and has the largest distance to the real line, the segment connect p/q and $\gamma \circ z$ must be the diameter of the image circle. In particular, the radius of the image circle is $\frac{1}{2Tq^2}$. Lemma 4 follows immediately.

The above process can be applied to finitely many Fareye disks as in section 2 to get a compactification of $\Gamma\backslash\mathbb{H}$.

4 Equivalent definitions of semi-stability

4.1 In two dimension

In this section, we give two definitions of semi-stability in \mathbb{H} , and show that they are essentially the same. We will also compute the semi-stable locus in \mathbb{H} .

We first introduce some terminology: for each complex number $z \in \mathbb{H}$, we assign to it a lattice in \mathbb{C} , where the lattice is spanned by two vectors $\{z,1\}$. By identifying $\mathbb{C} \cong \mathbb{R}^2$, we can compute the volume of the fundamental domain given by this lattice is $y = \Im(z)$. Then we scale two vectors in the basis to get a unit lattice.

Following this process, each $z \in \mathbb{H}$ is assigned with a unique unit lattice, namely $\Gamma_z = \operatorname{span}_{\mathbb{Z}} \{a, z/a\}$, where $a = \Im(z)$. Now we are ready to define semi-stability. Furthermore, to each lattice, we assigned to it a plot in the following way:

- We start with the point (0,0) in the plane.
- Let u be the shortest vector in the lattice Γ_z , we highlight the point $(1, \log |u|)$ in the plane.
- Finally, we attached the point $(2, \log(vol(A)))$, where A is the fundamental domain of Γ_z .
- We connect consecutive points by line segments. The union of these line segments is called *profile* of the lattice.

In our setting, since we already normalize all lattices to unit lattice, the final point is in fact (2,0).

Definition 1. The lattice assigned to the number $z \in \mathbb{H}$ is call semi-stable if and only if the point $(1, \log |u|)$ lies above the x-axis.

Before giving the second definition of semi-stablility, we will try to find the semi-stable locus using this definition. First, we restrict our attention to the fundamental domain

$$\mathcal{F} = \{z \in \mathbb{H} : \Re z \in [-1/2, 1/2), |z| \ge 1 \text{ and } |z| > 1 \text{ if } \Re z > 0\}$$

For each point $z \in \mathcal{F}$, it is easily to see that the shortest vector in the corresponding lattice is a. Thus the 1-dim point is $(1, \log(a)) = (1, -\log(y)/2)$. By definition, Γ_z is semi-stable iff $\log(y) \leq 0$, i.e. $y \geq 1$. To find the semi-stable locus in the whole upper half plane, we need the following result

Lemma 5. If Γ_z is semi-stable, then so is the lattice $\Gamma_{g \circ z}$, where $g \in \mathrm{SL}_2(\mathbb{Z})$.

Proof. If we denote $L_z = \operatorname{span}_{\mathbb{Z}}\{1, z\}$, then $L_{\gamma \circ z} = cL_z$ for some complex number c. Indeed, we just need to check for γ be an inversion or translation, since these two transformations generate $\operatorname{SL}_2(\mathbb{Z})$, but this is easy. Now let $c = re^{it}$. Multiplying by e^{it} doesn't change the length, hence doesn't change the semi-stability. Multiplying by a positive number r will shift $(1, \log |u|)$ to $(1, \log |u| + \log r)$ and $(2, \log(vol(A)))$ to $(2, \log(vol(A)) + 2\log r)$. I think in 2 dimensional case, c is 1

The line segment d connecting origin with the final point intersect the line x = 1 at $(1, \log(vol(A)) + \log r)$. By the semi-stability of the original lattice the point $(1, \log |u| + \log r)$ is above the line segment d.

From this lemma, we could see that the semi-stable locus is the complement of the Farey balls in the upper half plane.

Now we give the second definition of semi-stability. First we note that \mathbb{H} can be identified with the set $SL_2(\mathbb{R})/SO_2(\mathbb{R})$. Using Iwasawa's decomposition, we could identify z = x + iy with the pair (a(z), n(z)) where

$$a(z) = \begin{bmatrix} y^{-1/2} & 0 \\ 0 & y^{1/2} \end{bmatrix} \quad n(z) = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$$

Then we can define a map

$$H_B: \mathbb{H} \to \mathfrak{sl}_2, \quad z \mapsto \log(a(z))H,$$

where $H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Then we define a unique linear map $\alpha \colon \mathbb{R}H \to \mathbb{C}$ such that $\alpha(H) = 2$. Set $\rho = \alpha/2$. For each T = -kH where k > 0, we define the degree of instability of $x \in \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2(\mathbb{R})$ as follows

$$\deg_{\rm inst}^T(x) := \min_{\gamma \in \Gamma/\Gamma \cap B} \langle \rho, H_B(x\gamma) - T \rangle$$

In this particular case, the RHS of the above definition can be simplified as

$$\deg_{\text{inst}}^{T}(x) = \min_{\gamma \in \Gamma} \log(a(x\gamma) + k)$$

For the case k=0, the point x is call semi-stable iff $\deg_{\mathrm{inst}}^T(x) \ge 0$. Since the minimum is always achieved, this implies $\frac{-1}{2}\log(\Im(x\gamma)) \ge 0$, i.e. $\Im(x\gamma) \le 1$ for all γ .

A key observation is that the minimum of a(z) is achieved inside the Siegel's set, which is exactly the fundamental domain \mathcal{F} in this case. This implies the semi-stable locus inside the fudamental domain is the intersection of \mathcal{F} with $\{\Im(z) < 1\}$. So the semi-stable locus is the union of orbits who has a representative in this part.

4.2 In higher dimension

We start with the standard basis $\{e_i\}_{i=1}^n$ in the Euclidean space \mathbb{R}^n . Then for each $g \in \mathrm{SL}_n(\mathbb{R})$, we can assign g to the lattice spanned by $\{ge_i\}_{i=1}^n$. By normalizing, we can choose g so that the fundamental domain corresponding to this lattice has unit volume and denoted by Γ_g . for each $1 \leq m \leq n-1$, pick the sublattice M of the smallest volume and assign it to the point $(m, \log vol(M))$, and connecting to consecutive points by a line segment. boundary of the convex hull of this plot is called **canonical plot**. The analogue of semi-stability in higher dimension is

Definition 2. For each point g, if the canonical plot of the lattice Γ_g contains exactly a line connecting the origin with (n,0).

We can defined a function H_B similarly to the function is previous section, then the degree of instability can be defined by computing the following function:

$$\deg_{\mathrm{inst}}(g) := \min_{P \in ParSt, \gamma \in \mathrm{SL}(\mathbb{Q})/P(\mathbb{Q})} \langle \rho_P, H_B(g\gamma) \rangle$$

Definition 3. A point g is semi-stable if $\deg_{inst}(g) \ge 0$.

To give a feeling how to compute the degree of instability of g, we look at the Iwasawa decomposition and consider n = 3. Then

$$q = kan$$

where $k \in SO(3,\mathbb{R})$ and a is the diagonal matrix, n is unipotent upper triangular matrix. In particular

$$a = \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{bmatrix} \quad \text{and} \quad n = \begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix}$$

The value of $deg_{inst}(g)$ will depend on which parabolic subgroup we are evaluating at. But in short, we will have the following system of inequalities

$$\begin{cases} \log(s_1) \ge 0\\ \log(s_1) + \log(s_2) \ge 0 \end{cases}$$

Now we introduce some setting to understand what semi-stability means in term of canonical plot. In \mathbb{R}^3 , we choose a specific set of linearly independent vector $\Delta = {\alpha_1, \alpha_2}$, where

$$\alpha_i = e_{i+1} - e_i, \quad i = 1, 2$$

For each $j = \overline{1, n}$, we defined the weight λ_i such that

$$\lambda_j \cdot \alpha_i = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

Clearly we have λ_n is orthogonal to Δ . Now consider the vector

$$\omega = \sum_{i=1}^{n} \log a_g \cdot e_1 = (s_1, \dots, s_n)$$

Since multiplying by k doesn't change the volume of the lattice, we can assume that g = an. The following equations are easily verified:

Lemma 6. We have the following identities:

- 1. $\alpha_i \cdot \omega = s_{i+1} s_i$.
- 2. $\lambda_1, \ldots, \lambda_n$ is a basis of \mathbb{R}^n .
- 3. $\nu_{\Delta}(\lambda_i) = \lambda_i (i/n)\lambda_n$, where μ_{Δ} is the projection on the subspace spanned by Δ .

Let $\mathcal{C} = \{v \in \mathbb{R}^3 \mid \alpha_i \cdot v > 0 \text{ for all } \alpha_i\}$. This defines a cone in \mathbb{R}^n . We also denote

- $V_{\Lambda} = \{ v \in \mathbb{R}^n \mid \alpha_i \cdot v = 0 \}.$
- $V_{\Delta}^{\Delta} = \{v \in \mathbb{R}^n \mid \text{ The nearest point to } v \text{ lies on the faces } V_{\Delta}\}$

In particular, we have a rather nice description of V_{Δ}^{Δ} in term of $\alpha_i's$ and λ_n .

Lemma 7.

$$V_{\Delta}^{\Delta} = \left\{ \sum_{i=1}^{n-1} c_i \alpha_i + c_n \lambda_n \mid c_i \leq 0, \quad \forall i \leq n-1 \right\}$$

Now for each point g, we assign to this point the point ω and we defined its **profile** to be the profile polygon that moves from x = i to x = i + 1 along a segment of slope s_i . Assume that this profile passes through n points (i, y_i) , we have a relation

$$y_0 = 0, y_i - y_{i-1} = s_i$$

which implies

$$y_i = s_1 + \ldots + s_i = -\lambda_i \cdot \omega$$

By the lemma 7, V_{Δ}^{Δ} are spanned by λ_n and α_i 's, which means for it consists of the points v such that $\nu_{\Delta}(\lambda_i) \cdot v \leq 0$ for $i = \overline{1, n-1}$ by lemma 6. In term of y_i 's, it can be rephrased as $y_i - (i/n)y_n$ (note that $y_i = -\lambda_i \cdot \omega$). But in term of plot, this is just saying that the point (i, y_i) lies above the point (n, y_n) for all n. Note that in our setting, $y_n = 0$. So V_{Δ}^{Δ} is exactly the set of semi-stable lattice points. Note that we showed above $y_i/i \geq y_n/n = 0$, which implies that a point g corresponding to a lattice point lies inside V_{Δ}^{Δ} must satisfies $s_1 + \ldots + s_i \geq 0$, for $i \leq n-1$. For n = 3, we recover the previous definition.

References

[1] Diamond, F., & Shurman, J. M. (2005). A first course in modular forms (Vol. 228, pp. xvi-436). New York: Springer.