# (19) 世界知的所有権機關 国際事務局



# A TRACTO CONTINUO DE COLOTO ESCOL COLOR CONTRACTO A DE FERMI ANTON ASSET RECOLUENCO CON ACCUSO ASSET DA LA TRA

(43) 国際公園日 2004年1月15日(15.01,2004)

## PCT

# (10) 国際公開番号

| 国際矮殊公叛?。 |
|----------|
|          |

# WO 2004/006444 A1

H03M 13/19

(72) 発明者; および

(21) 国際出願番号:

PCT/JP2003/007476

(75) 発明者/出願人 (米国についてのみ): 松本 渉 (MATU-

(22) 国際出頭日:

2003年6月12日(12.06.2003)

MOTO, Wataru) [JP/JP]; 〒100-8310 東京都 千代田区 丸の内二丁目2番3号 三菱電機株式会社内 Tokyo (JP),

(25) 国際出願の言語:

日本語

(74) 代理人: 酒井 宏明 (SAKALHiroaki); 〒100-0013 東京 都 千代田区 霞が関三丁目 2番 6号 東京倶楽部ビル ディング Tokyo (JP).

(26) 国際公開の言語:

日本語

(81) 指定国 (国内): CN, JP, US.

(30) 優先権データ: 特願2002-193767 2002年7月2日 (02.07.2002)

二丁目2番3号 Tokyo (JP).

(71) 出願人 (米国を除く全ての指定国について): 三 菱電機株式会社 (MITSUBISHI DENKI KABUSHIKI KAISHA) [JP/JP]; 〒100-8310 東京都 千代田区 丸の内 (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC. NL, PT, RO, SE, SI, SK, TR).

添付公開書類; 国際調査報告書

/続葉有/

(54) Title: CHECK MATRIX GENERATION METHOD AND CHECK MATRIX GENERATION DEVICE

(54) 発明の名称: 検査行列生成方法および検査行列生成装置



basic matrix, and selecting the column largest weight; searching row and column weight ensemble with the row weights limited to

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

two types and deciding the optimal row weight set; deleting the basic matrix successively from the base; searching row and column weight ensemble with the row weight set as a fixed parameter and deciding an optimal column weight set; searching an optimal row and column weight ensemble with each weight set as a fixed parameter, and dividing the basic matrix weight at random after the row deletion according to the optimal ensemble.

(57) 築約: 本発明のLDPC 行号用検査行列生成方法においては、たとえば、検査行列生成装置が、符号長、符号 化単、ユークリット機同符号を決定し、当該符号を並付着えて基本行列を作成し、列の最大重みを選択するステッ プと、行の重みを連絡する 2 種類に限定した状態で行と列の重ねのアンサンブルを探索し、最適な行の重みのセットを決定するステップと、表本行列を施切から順に削除するステップと、行の重みのセットを固定パラメータと固定 で行と列の重みのアンサンブルを探索し、最近な列の重みのセットを決するステップと、各重みのセットを固定 パラメータとして行と列の重みの最適なアンサンブルを探索するステップと、最適なアンサンブルに基づいて行削 除後の基本行列の重みをランダムに分割するステップと、未実行する。

# 明細書

# 検査行列生成方法および検査行列生成装置

### 5 技術分野

この発明は、誤り訂正符号として低密度ペリティ検査(LDPC: Low-Densit y Parity-Check)符号を採用した場合における検査行列生成方法および検査行列 生成装置に関するものであり、詳細には、確定的で特性が安定したLDPC符号 用検査行列を探索可能な検査行列生成方法および検査行列生成装置に関するものである。

#### 背景技術

10

15

20

以下、従来のLDPC符号用検査行列生成方法について説明する。第13図は、LDPC符号化/復号システムを示す図である。第13図において、101は符号化器であり、102は変調器であり、103は通信路であり、104は復調器であり、105は復号器である。ここでは、従来のLDPC符号用検査行列生成方法を説明する前に、LDPC符号を使用した場合の符号化、復号の流れについて説明する。

まず、送信側の符号化器101では、後述する所定の方法で検査行列Hを生成する。そして、以下の条件に基づいて生成行列Gを求める。

G: k×n行列(k:情報長, n:符号語長)

GH<sup>T</sup>=0 (Tは転置行列)

その後、符号化器101では、情報長kのメッセージ  $(m_1m_2...m_k)$  を受け取り、上記生成行列Gを用いて符号語Cを生成する。

25  $C = (m_1 m_2 \cdots m_k) G$ 

$$= (c_1 c_2 \cdots c_n) \qquad (\hbar \mathcal{E} L H (c_1 c_2 \cdots c_n)^T = 0)$$

そして、変調器102では、生成した符号語Cに対して、BPSK、QPSK、

15

20

25

多値QAMなどのデジタル変調を行い、送信する。

一方、受信側では、復調器104が、通信路103を介して受け取った変調信号に対して、BPSK,QPSK,多値QAMなどのデジタル復調を行い、さらに、復号器105が、LDPC符号化された復調結果に対して、「sum-productrujズム」による繰り返し復号を実施し、推定結果(もとの $m_1$   $m_2$  … $m_k$  に対応)を出力する。

ここで、従来のLDPC符号用検査行列生成方法について具体的に脱明する。 LDPC符号用の検査行列としては、たとえば、LDPCの発案者Gallagerにより以下のような行列が提案されている(非特許文献1、第14図参照)。 第14図に示す行列は、「1」と「0」の2値の行列で、「1」の部分を整り つぶしている。他の部分は全て「0」である。この行列は、1行の「1」の数( これを行の重みと表現する)が4で、1列の「1」の数(これを列の重みと表現

lar-LDPC符号」と呼んでいる。また、Gallagerの符号では、たとえば、第14図に示すように、行列を3プロックに分け、2プロック目と3プロック目に対してランダム電検を行っている。

する)が3であり、全ての列と行の重みが均一なため、これを一般に「Regu

しかしながら、このランダム置換には、所定のルールがないため、より特性の 良好な符号を見つけるためには、計算機による時間のかかる探索を行わなければ ならなかった。

そこで、たとえば、計算機探索によらなくても確定的に行列を生成でき、比較的安定した良好な特性を示すLDPC符号として、ユークリット幾何符号を用いる方法が、Y. Kou等によって提案された (非特許文献2参照)。この方法では、規則的なensemble (アンサンブル)で構成された「Regular -- LDPC符号」について説明されている。

ここでは、有限幾何符号の一種であるユークリット幾何符号EG(2, 2°)を用いてLDPC符号の検査行列を生成する方法が提案されており、誤り率10<sup>-4</sup>点において、シャノン限界から1.45dBに接近した特性を得ている。第

15

20

25

15図は、たとえば、ユークリット幾何符号 $EG(2,2^2)$ の構成を示す図であり、行、列のそれぞれの重みが4,4の「Regular-LDPC符号」構造をしている。

したがって、ユークリット幾何符号EG (m, 2°) の場合、その特性は、以 下のように規定される。

符号長: n=225-1

冗長ビット長: n-k=3\*-1

情報長: k=22\*-3\*

最小距離: d<sub>min</sub>=2\*+1

10 密度: r=2\*/(22\*-1)

第15図を見ても分かるように、ユークリット幾何符号は、各行の「1」の配置が行毎に巡回シフトした構造になっており、符号が容易にかつ確定的に構成できる特長がある。

Y. Kouらによる検査行列の生成方法では、さらに、上記ユークリット幾何符号に基づいて行と列の重みを変更し、行、列を必要に応じて拡張している。たとえば、EG(2,2°)の列の重みを1/2に分離する場合、Y. Kouらの論文では、1列内に4つある重みを1つ置きに2個づつ分離する。第16回は、列の重みを4から2に規則的に分離した例を示す図である。

一方、上記「Regular-LDPC符号」の特性よりも「Irregular-LDPC符号」の特性の方が良好であることが、Ludy等により報告された(非特許文献3参照)。なお、上記「Irregular-LDPC符号」は、列と行の重みがそれぞれあるいはどちらか一方が均一でないLDPC符号を表す。

そして、それは、Richardson等(非特許文献4参照)、あるいはC hung等(非特許文献5参照)によって理論的に解析された。

特に、Chung等は、繰り返し復号器における入力と出力の対数尤度比(L LR)がガウス分布に近似できると仮定してLDPC符号の「Sum-Prod uctTルゴリズム」を解析し、良好な行と列の重みのアンサンブルを求めている。

#### 非特許文献1

R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Pre 5 ss. 1963.

#### 非特許文献2

Y. Kou, S. Lin, and M. P. C. Fossorier, "Low Density Parity Check Code s Based on Finite Geometries: A Rediscovery," ISIT 2000, pp. 200, Sorren to, Itary, June 25-30, 2000.

#### 10 非特許文献 3

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, "I mproved Low-Density Parity-Check Codes Using Irregular Graphs and Belief Propagation," Proceedings of 1998 IEEE International Symposium on Information Theory, pp. 171, Cambridge, Mass., August 16-21, 1998.

#### 15 非特許文献 4

T. J. Richardson and R. Urbanke, "The capacity of low-density parity-c heck codes under message-passing decoding," IEEE Trans. Inform. Theory, vol. 47, No. 2, pp. 599-618, Feb. 2001.

#### 非特許文献 5

20

S.-Y. Chung, T. J. Richardson, and R. Urbanke, "Analysis of Sum-Produc t Decoding of Low-Density Parity-Check Codes Using a Gaussian Approximat ion," IEEE Trans. Inform. Theory, vol. 47, No. 2, pp. 657-670, Feb. 2001.

しかしながら、たとえば、上記Chung等による従来のLDPC符号用検査 7列生成方法は、行内の「1」の点の数(後述するパリアブルノードの次数配分 に相当)と、列内の「1」の点の数(後述するチェックノードの次数配分に相当

10

25

) と、の両方を変数として、下記の (1) 式 (rate: 符号化率) が最大とな るバリアブルノードの次数配分およびチェックノードの次数配分を求めている。 すなわち、SNR (Signal to Noise Ratio) が最小となるアンサンブルを線形 計画法により探索している。

$$rate = 1 - \frac{\int_0^1 \rho(x)}{\int_0^1 \lambda(x)} \qquad \cdots (1)$$

そのため、上記「rate」の最大値により得られる検査行列が流動的になり、 特性が安定しない、という問題があった。また、従来のLDPC符号用検査行列 生成方法は、バリアブルノードの次数配分の導出とチェックノードの次数配分の 導出とを所定回数にわたって繰り返し行っているため、探索処理にある程度の時 間を要する、という問題もあった。

本発明は、上記に鑑みてなされたものであって、確定的で特性が安定し、かつ 任意のアンサンブルに対応したLDPC符号用の検査行列を容易に探索可能で、 15 さらに、性能の良好な検査行列生成方法および検査行列生成装置を提供すること を目的とする。

# 発明の開示

上述した課題を解決し、目的を達成するために、本発明にかかる検査行列生成 方法にあっては、ユークリット幾何符号を用いて、列と行の重みまたはどちらか 20 一方が均一でない低密度パリティ検査符号の検査行列を生成するために、符号長 と符号化率を決定する符号長/符号化率決定ステップと、ベースとなるユークリ ット幾何符号を選択するユークリット幾何符号選択ステップと、選択したユーク リット幾何符号を特定の関係式に基づいて並べ替えて基本行列を作成する並べ替 えステップと、条件「2 <列の重みの最大値≤ユークリット幾何符号における列 内の1の数」を満たす列の重みの最大値を選択する最大重み選択ステップと、行 の重みの数を連続する2種類に限定した状態で、ガウス近似法による最適化を用

10

いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンブルを探索し、その後、最適な行の重みのセットを決定する第1の重み探察ステップと、分割後の行数を考慮して、前記基本行列を底辺から順に削除する行削除ステップと、前記行の重みのセットを固定パラメータとして、ガウス近似法による最適化を用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンブルを探索し、その後、最適な列の重みのセットを決定する第2の重み探索ステップと、前記行の重みのセットおよび前記列の重みのセットを固定パラメータとして、ガウス近似法による最適化を用いて、低密度パリティ検査符号の行の重みと列の重みの最適なアンサンブルを探索する第3の重み探索ステップと、最終的なアンサンブルに基づいて前記行削除後の基本行列の行および列の重みを所定の手順でランダムに分割する分割ステップと、を含むことを特徴とする。

つぎの発明にかかる検査行列生成方法において、前記並べ替えステップで用いる特定の関係式は、行列内の重みが列中の上部に配置されるように生成することを特徴とする。

15 つぎの発明にかかる検査行列生成方法にあっては、Cavlavグラフを用い て、列と行の重みまたはどちらか一方が均一でない低密度パリティ検査符号の検 査行列を生成するために、符号長と符号化率を決定する符号長/符号化率決定ス テップと、ベースとなるCaylayグラフの行および列の重みを決定して基本 行列を作成するCaylayグラフ決定ステップと、条件「2<列の重みの最大 値≦Caylayグラフにおける列内の1の数」を満たす列の重みの最大値を選 20 択する最大重み選択ステップと、行の重みの数を連続する2種類に限定した状態 で、ガウス近似法による最適化を用いて、暫定的に、低密度パリティ検査符号の 行の重みと列の重みのアンサンブルを探索し、その後、最適な行の重みのセット を決定する第1の重み探索ステップと、分割後の行数を考慮して、前記基本行列 25 を底辺から順に削除する行削除ステップと、前記行の重みのセットを固定パラメ 一夕として、ガウス近似法による最適化を用いて、暫定的に、低密度パリティ検 査符号の行の重みと列の重みのアンサンプルを探索し、その後、最適な列の重み

10

15

のセットを決定する第2の重み探索ステップと、前記行の重みのセットおよび前 記列の重みのセットを固定パラメータとして、ガウス近似法による最適化を用い て、低密度パリティ検査符号の行の重みと列の重みの最適なアンサンブルを探索 する第3の重み探索ステップと、最終的なアンサンブルに基づいて前記行削除後 の基本行列の行および列の重みを所定の手順でランダムに分割する分割ステップ と、を含むことを特徴とする。

つぎの発明にかかる検査行列生成方法において、前記ガウス近似法では、符号 化率を固定した状態で、かつガウスノイズが最大になるように、行の重みと列の 重みの最適なアンサンブル(thresholdが最小となるアンサンブル)を1回の線 形計画法で探索することを特徴とする。

つぎの発明にかかる検査行列生成方法において、前記第3の重み探索ステップでは、前記アンサンブルの重み配分を、重み単位の重み総数が整数で、かつ重み単位の重み総数の総和とユークリット幾何符号の「1」の総数とが等しくなるように調整し、前記分割ステップでは、調整後のアンサンブルに基づいて分割処理を行うことを特徴とする。

つぎの発明にかかる検査行列生成方法において、前配分割ステップでは、基本のランダム系列のラテン方陣を作成し、当該ラテン方陣に基づいて、前配行削除 後の基本行列における各行および各列から重み「1」を抽出することにより、各 列および各行をランダムに分割することを特徴とする。

20 つぎの発明にかかる検査行列生成装置にあっては、ユークリット幾何符号を用いて、列と行の重みまたはどちらか一方が均一でない低密度パリティ検査符号の検査行列を生成する構成として、符号長と符号化率を決定する符号長/符号化率決定手段と、ベースとなるユークリット幾何符号を選択するユークリット幾何符号を選択するユークリット幾何符号を特定の関係式に基づいて並べ替号選択手段と、選択したユークリット幾何符号を特定の関係式に基づいて並べ替えて基本行列を作成する並べ替え手段と、条件「2 < 列の重みの最大値≦ユークリット幾何符号における列内の1の数」を満たす列の重みの最大値を選択する最大重み選択手段と、行の重みの数を連続する2種類に限定した状態で、ガウス近

似法による最適化を用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンプルを探索し、その後、最適な行の重みのセットを決定する第1の重み探索手段と、分割後の行数を考慮して、前記基本行列を底辺から順に削除する行削除手段と、前記行の重みのセットを固定パラメータとして、ガウス近似法による最適化を用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンブルを探索し、その後、最適な列の重みのセットを決定する第2の重み探索手段と、前記行の重みのセットおよび前記列の重みのセットを固定パラメータとして、ガウス近似法による最適化を用いて、低密度パリティ検査符号の行の重みと列の重みの最適なアンサンブルを探索する第3の重み探索手段と、最終的なアンサンブルに基づいて前記行削除後の基本行列の行および列の重みを所定の手順でランダムに分割する分割手段と、を備えることを特徴とする。

5

10

15

20

25

つぎの発明にかかる検査行列生成装置にあっては、Caylayグラフを用い て、列と行の重みまたはどちらか一方が均一でない低密度パリティ検査符号の検 査行列を生成する構成として、符号長と符号化率を決定する符号長/符号化率決 定手段と、ベースとなるCaylayグラフの行および列の重みを決定するCa v l a v グラフ決定手段と、条件「2 <列の重みの最大値≦C a y l a y グラフ における列内の1の数」を満たす列の重みの最大値を選択する最大重み選択手段 と、行の重みの数を連続する2種類に限定した状態で、ガウス近似法による最適 化を用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサ ンブルを探索し、その後、最適な行の重みのセットを決定する第1の重み探索手 段と、分割後の行数を考慮して、前記基本行列を底辺から順に削除する行削除手 段と、前記行の重みのセットを固定パラメータとして、ガウス近似法による最適 化を用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサ ンブルを探索し、その後、最適な列の重みのセットを決定する第2の重み探索手 段と、前記行の重みのセットおよび前記列の重みのセットを固定パラメータとし て、ガウス近似法による最適化を用いて、低密度パリティ検査符号の行の重みと 列の重みの最適なアンサンブルを探索する第3の重み探索手段と、最終的なアン

サンブルに基づいて前記行削除後の基本行列の行および列の重みを所定の手順で ランダムに分割する分割手段と、を備えることを特徴とする。

### 図面の簡単な説明

5 第1図は、本発明にかかるLDPC符号用検査行列生成方法を示すフローチャ ートであり、第2図は、選択されたユークリット幾何符号EG(2.2<sup>2</sup>)のマ トリクスを示す図であり、第3図は、並べ替え後のマトリクス(基本行列)を示 す図であり、第4図は、重み配分後の生成関数 $\mathfrak{d}(\mathbf{x})$ と生成関数 $\mathfrak{g}(\mathbf{x})$ のア ンサンブル(暫定)を示す図であり、第5図は、重み配分後の生成関数 $\lambda$ (x) と生成関数 o(x) のアンサンブル (暫定) を示す図であり、第6図は、重み配 10 分後の生成関数 $\lambda$  (x) と生成関数 $\rho$  (x) のアンサンブルを示す図であり、第 7 図は、重み配分調整用テーブルの一具体例を示す図であり、第8 図は、第6 図 に示すアンサンブルを調整後の、最終的な生成関数 $\lambda$  (x) と生成関数 $\rho$  (x) のアンサンブルを示す図であり、第9図は、従来の論文における分割手順を示す 図であり、第10図は、基本のランダム系列C(i)と基本のランダム系列の置 15 換パターンLB $_{i}$ ( $_{i}$ )を示す図であり、第11図は、ラテン方陣行列L $_{i,a}$ ( $_{i}$ )を示す図であり、第12図は、E b / N o (情報1 ビットあたりの信号電力対 ノイズ電力比)と誤り率特性(BER)との関係を示す図であり、第13図は、 LDPC符号化/復号システムを示す図であり、第14図は、従来のLDPC符 号用の検査行列を示す図であり、第15図は、ユークリット幾何符号EG(2, 20  $2^2$ ) の構成を示す図であり、第16図は、列の重みを4から2に規則的に分離 した例を示す図である。

# 発明を実施するための最良の形態

25 本発明をより詳細に脱術するために、添付の図面に従ってこれを説明する。 第1図は、本発明にかかるLDPC符号用検査行列生成方法を示すフローチャートである。なお、本実施の形態におけるLDPC符号用検査行列生成方法は、

10

20

25

たとえば、設定されるパラメータに応じて通信装置内で実行する構成としてもよいし、通信装置外部の他の制御装置(計算機等)で実行することとしてもよい。 本実施の形態におけるLDPC符号用検査行列生成方法が通信装置外部で実行される場合は、生成済みのLDPC符号用検査行列が通信装置に格納される。以降の実施の形態では、説明の便宜上、通信装置内で上記方法を実行する場合について説明する。

まず、本実施の形態のLDPC符号用検査行列生成方法を説明する前に、本実施の形態のLDPC符号用検査行列生成方法を実現可能な符号化器および復号器の位置付け、および「Irregular-LDPC符号」用の従来の検査行列生成方法について説明する。なお、LDPC符号化/復号システムの構成については、先に説明した第13図と同様である。

送信側の符号化器101では、後述する本実施の形態のLDPC符号用検査行列生成方法で検査行列Hを生成する。そして、以下の条件に基づいて生成行列Gを求める。

15 G: k×n行列(k:情報長, n:符号語長)

GH<sup>T</sup>= 0 (Tは転置行列)

その後、符号化器101では、情報長kのメッセージ  $(m_1m_2\cdots m_k)$  を受け取り、上記生成行列Gを用いて符号語Gを生成する。

$$C = (m_1 m_2 \cdots m_k) G$$

$$= (c_1 c_2 \cdots c_n) \qquad (\hbar \hbar l_{n} H (c_1 c_2 \cdots c_n)^{\tau} = 0)$$

そして、変調器102では、生成した符号語Cに対して、BPSK, QPSK, 多値QAMなどのデジタル変調を行い、送信する。

一方、受信側では、復調器104が、通信路103を介して受け取った変調信号に対して、BPSK,QPSK,多値QAMなどのデジタル復調を行い、さらに、復号器105が、LDPC符号化された復調結果に対して、 $\Gamma_{Sum-product}$ では、作力には、作力には、作力に対して、 $\Gamma_{Sum-product}$ では、作力に対して、 $\Gamma_{Sum-product}$ では、作力に対して、 $\Gamma_{Sum-product}$ では、作力に対し、 $\Gamma_{Sum-product}$ では、作力に対し、 $\Gamma_{Sum-product}$ では、 $\Gamma_{Sum-produc$ 

つぎに、Chung等 (S.-Y. Chung, T. J. Richardson, and R. Urbanke, "Analysis of Sum-Product Decoding of Low-Density Parity-Check Codes Using a Gaussian Approximation," IEEE Trans. Inform. Theory, vol. 47, No. 2, pp. 657-670, Feb. 2001.) によって理論的に解析された、「Irregula.rーLDPC符号」用の従来の検査行列生成方法について詳細に説明する。ここでは、繰り返し復号器における入力と出力の対数尤度比(LLR)がガウス分布に近似できると仮定してLDPC符号の「Sum-Productアルゴリズム」を解析し、良好な行と列の重みのアンサンプルを求めている。

なお、上記論文に記述されたLDPC符号用検査行列生成方法であるガウス近 似法(Gaussian Approximation)では、前提として、検査行列における行内の「 1」の点をバリアブルノードと定義し、列内の「1」の点をチェックノードと定 譲する。

まず、チェックノードからパリアブルノードへのLLRメッセージ伝搬を解析する。 $0 < s < \infty \ge 0 \le t < \infty \ge 0$ 、外内の関数(2)式を定義する。なお、 $s = m_{u0}$ はu0の平均値であり、u0は分数値 $\sigma_n^2$ のガウスノイズを含む伝送路を経由して受信した信号の対数尤度比(LLR)であり、t1は所定の繰り返しの時点におけるチェックノードのLLR出力値のアンサンブル平均である。

10

15

$$f_{j}(s,t) = \phi^{-1} \left[ 1 - \left[ 1 - \sum_{i=2}^{d_{1}} \lambda_{i} \phi(s + (i-1)t) \right]^{j-1} \right]$$

$$f(s,t) = \sum_{i=2}^{d_{1}} \rho_{j} f_{j}(s,t) \qquad \cdots (2)$$

25

なお、上記 λ (x) および ρ (x) は、それぞれバリアブルノードおよびチェックノードの次数配分 (パリアブルノードとチェックノードの各1行、各1列内

の「1」の数を次数と表現する)の生成関数を表し、(3) 式および(4) 式のように表すことができる。また、 $\lambda_i$ と $\rho_i$ は、それぞれ次数 i のバリアブルノードとチェックノードに属するエッジの比率を表す。また、 $d_i$ は最大バリアブルノードの次数であり、 $d_i$ は最大チェックノードの次数である。

5

$$\lambda(x) = \sum_{i=2}^{d_1} \lambda_i x^{i-1} \qquad \cdots (3)$$

$$\rho(x) = \sum_{i=2}^{d_r} \rho_i x^{i-1} \qquad \cdots (4)$$

10 ただし、 φ (x) は下記 (5) 式のように定義する。

$$\phi(\mathbf{x}) = \begin{cases} 1 - \frac{1}{\sqrt{4\pi \mathbf{x}}} \int_{\mathbb{R}} \tanh \frac{\mathbf{u}}{2} \cdot e^{\frac{(\mathbf{u} - \mathbf{x})^2}{4\mathbf{x}}} d\mathbf{u} & \text{if } \mathbf{x} > 0 \\ 1 & \text{if } \mathbf{x} < 0 \end{cases} \dots (5)$$

15

そして、(2)式は、等価的に下記(6)式と表すことができる。

$$t_1 = f(s, t_{i-1}) \qquad \cdots (6)$$

なお、t<sub>1</sub>は1番目の繰り返し時点におけるチェックノードのLLR出力値の アンサンブル平均である。

ここで、誤りが0となりうるSNRの限界 (threshold) を求めるための条件は、 $1\to\infty$ のときに $t_1$  (s)  $\to\infty$  ( $R^+$ と表現する) となることであり、この条件を満たすためには、以下の条件(7) 式を満たす必要がある。

25

$$t < f(s,t)$$
, 全ての $t \in \mathbb{R}^+$  …(7)

つぎに、バリアブルノードからチェックノードへのLLRメッセージ伝搬を解析する。 $0 < s < \infty \ge 0 < r \le 1$  という条件において、以下の関数 (8) 式を定義する。なお、r の初期値 $r_n$ は $\phi$  (s) である。

5 
$$h_i(s,r) = \phi \left( s + (i-1) \sum_{j=2}^{d_r} \rho_j \phi (1 - (1-r)^{j-1}) \right)$$
  
 $h(s,r) = \sum_{i=1}^{d_r} \lambda_i h_i(s,r) \qquad \cdots (8)$ 

そして、(8)式は、等価的に下記(9)式と表すことができる。

 $r_1 = h(s, r_{l-1})$  ...(9)

10

15

20

ここで、誤りが0となりうるSNRの限界 (threshold) を求めるための条件 は、 $r_1$  (s)  $\rightarrow 0$ となることであり、この条件を満たすためには、以下の条件 (10) 式を満たす必要がある。

$$r > h(s,r)$$
, 全ての $r \in (0,\phi(s))$  …(10)

さらに、上記Chung等の論文では、上記式を用いて以下の手順でバリアブルノードとチェックノードの最適な次数を探索している(ガウス近似法)。

- (1) 生成関数  $\lambda$  (x) とガウスノイズ  $\sigma$   $\pi$  が与えられていると仮定し、生成関数  $\rho$  (x) を変数として、前述した (1) 式が最大となる点を探索する。なお、この探索における拘束条件は、 $\rho$  (1) =1 と正規化することと、上記 (7) 式を満たすことである。
- 25 (2) 生成関数 $_0$  (x) とガウスノイズ $_{\sigma}$  が与えられていると仮定し (たとえば、 (1) の結果より得られる値)、生成関数 $_0$  (x) を変数として、 (1) 式が最大となる点を探索する。なお、この探索における拘束条件は、 $_0$  (1) =1

と正規化することと、上記 (10) 式を満たすことである。

- (3)最大「rate」を求めるために、上記(1)と上記(2)を繰り返し実行し、生成関数  $\lambda$  (x)と生成関数  $\rho$  (x)のより良好なアンサンブルを線形計画法で探索する。
- (4)最後に、ガウスノイズσ<sub>n</sub>より信号電力を1と正規化して、SNRの限界 (threshold)を求める(下記(11)式参照)。

threshold(dB)=-10\*log10(2\* $\sigma_n^2$ ) ...(11)

10 しかしながら、上記Chung等の論文では、「rate (符号化率)」の最大値により得られる検査行列が流動的になり、設計時の仕様として固定されるrateが変動してしまう、という問題があった。また、上記Chung等の論文では、バリアブルノードの次数配分の導出とチェックノードの次数配分の導出とを所定回数にわたって繰り返し行っているため、探索処理にある程度の時間を要する、という問題や、任意のアンサンブル、任意の符号長、任意の符号化率に容易に対応することができない、という問題もあった。

そこで、本実施の形態においては、確定的で特性が安定し、かつ任意のアンサンブル,任意の符号長,任意の符号化率に対応した「IrregularーLDPC符号」用の検査行列を、短時間で容易に探索する方法について説明する(第1図参照)。具体的にいうと、ここでは、ユークリット幾何符号における1行または1列の「1」の配置を分割および削除することにより、「IrregularーLDPC符号」用の検査行列を生成する。第1図は、実施の形態1のLDPC符号用検査行列生成方法を示す図である。

本実施の形態のLDPC符号用検査行列生成方法では、まず、符号長Nと符号

25 化率rateを決定する(ステップS1)。これにより、検査行列のサイズがN

×Mに確定する。なお、MはN×(1-rate)で表すことができる。した

がって、たとえば、N=6000, rate=0.5の場合、MはM=6000

×0. 5=3000となる。

つぎに、「Irregular-LDPC符号」用の検査行列のベースとなる ユークリット幾何符号 $EG(2, 2^*)$ を選択する(ステップS2)。ここでは、 行の重みと列の重みがそれぞれ $2^*$ となる。

つぎに、選択したユークリット幾何符号 $EG(2, 2^s)$ を、列内の1の位置が列中のできるだけ上部にくるように、以下の手順で並べ替える(ステップS3)。まず、この並べ替え手順を一般的に表現すると、 $h_k(X) \in \mathcal{J}$ ロア体 $GF(2^{2s})$ ,  $k = \{1, 2, \cdots, 4\times (2^{2s}-1)\}$  の場合、下記(12)式のように表現できる。

10

20

25

5

$$\begin{bmatrix} h_{i+0}(X) \\ h_{i+1}(X) \\ h_{i+2}(X) \\ \vdots \\ h_{i+(2^{s}-1)}(X) \end{bmatrix} = \begin{bmatrix} 1 \\ X^{-w1} \\ X^{-w2} \\ \vdots \\ X^{-w(2^{s}-1)} \end{bmatrix} \times \left[ \left(1 + X^{w1} + X^{w2} + \dots + X^{w(2^{s}-1)}\right) \cdot X^{(i-1)} \right] \dots (12)$$

なお、 $i=1\sim 2^2*-1$  とする。また、  $(1\ 2)$  式の  $(\cdot)$  内の多項式は、ユークリット幾何符号EG  $(2,\ 2^*)$  の最初の行を表現した式を表す。

そして、 $i=1\sim 2^{2^{*}}-1$ ,  $j=1\sim i-1$ までの間に、 $h_{i}$  (X)  $=h_{i}$  (X) が存在する場合は、 $h_{i}$  (X) を削除する。この並べ替え処理により、後述する行の削除処理(ステップS 6)を行う場合に、できるだけ重みの大きい列を残すことができ、かつ列内の重みのパリエーションをできるだけ少なくすることができる。

具体例として、たとえば、s=2とした場合、すなわち、ユークリット幾何符 号 $EG(2, 2^2)$ を選択した場合、上配並べ替え手順を実施すると、第2図の

10

15

マトリクスが第3図のマトリクスのように並べ替えられる。第2図は、ステップ S2にて選択されたユークリット幾何符号EG(2, 2²)のマトリクスを示す 図(空白は0を表す)であり、第3図は、並べ替え後のマトリクス(基本行列) を示す図である。

つぎに、列の最大重み $\gamma$ 1、 $(2<\gamma_1\le 2^s)$  を選択する(ステップS 4)。 LDPC符号を用いた符号化/復号においては、一般的に、2部グラフ上に「サイクル4」および「サイクル6」が少ないほど良好な特性を得ることができる。 したがって、LDPC符号としては、「サイクル4」や「サイクル6」といった少ないサイクルの発生を抑制する構造が望ましい。ユークリット幾何符号には、すでに「サイクル4」が存在しないので、「サイクル6」を削減することによって、復号特性の向上を図る。たとえば、ユークリット幾何符号EG(2,  $2^s$ )の場合には、重みが 12程度のときに「サイクル6」の数が減少し、よい特性を示すことが一般に知られているので、ここでは、 $\gamma_1=12$ を選択する。なお、ここでは、 $\gamma_1=12$ を選択することとしたが、これに限らず、上配条件を満たしていれば、これ以外の数を選択してもよい。

20 そして、下記の(13)式を満たすパラメータセット  $\{\mu_1, \mu_2\}$  を選択する(ステップS5)。なお、 $2 \le \mu_1 \le 2$  \*,  $i \in \{1, 2\}$  である。

$$\begin{split} b_1 \mu_1 + b_2 \mu_2 &= 2^s \\ \text{arg. min} \left| \rho_- \mu_i - \rho'_- \mu_i \right| \\ \rho'_- \mu_i &= \frac{\mu_i \times b_i}{2^s} & \cdots \text{(13)} \end{split}$$

ただし、 $b_i$ , i は非負の整数であり、 $\mu_i$ は行の重みを表し、 $\rho_i$   $\mu_i$ では「 I  $\pi$  r  $\pi$  r  $\pi$  u l  $\pi$  r  $\pi$  u l  $\pi$  r  $\pi$  r  $\pi$  u l  $\pi$  r  $\pi$ 

ここで、バリアブルノードの次数配分の生成関数 $\lambda$ (x)とチェックノードの 次数配分の生成関数 $\rho$ (x)のアンサンブルを探索するための本実施の形態のガ ウス近似法の実行手順について説明する。

- 15 (1) 符号化率「rate」を固定する(ステップS1)。
  - (2) 生成関数  $\lambda$  (x) と生成関数  $\rho$  (x) を同時に変数として扱い、ガウス  $\ell$  イズ  $\sigma_x$  が最大になるように、線形計画法で最適な生成関数  $\lambda$  (x) と生成関数  $\ell$  (x) を探索する。この探索における拘束条件は、 $\lambda$  (1) = 1,  $\ell$  (1) = 1 と正規化し、さらに上記(10)式を満たすことである。
- 20 このように、本実施の形態では、上記 (9) 式と上記 (10) 式を満たす生成 関数  $\lambda$  (x) と生成関数  $\rho$  (x) を1回の線形計画法で求めることとしたため、 上記論文 (chung等) のように、生成関数  $\lambda$  (x) の導出と生成関数  $\lambda$  (x) の導出を繰り返し実行し、双方の最適値を求める方法よりも、容易かつ短時間 に、確定的でかつ特性が安定したアンサンブルを生成できる。
- 25 つぎに、上記ステップS5で求めた b<sub>1</sub>, b<sub>2</sub>, μ<sub>1</sub>, μ<sub>2</sub>にしたがって後述する行の分割処理(ステップS8)を実行した後の行数をM<sup>\*</sup>とした場合、下記(14)式に示す行数を、上記第3図に示す基本行列の底辺から順に削除する(

ステップS 6 )。その結果、行削除後の行列は、列の重みのセットが  $\{d_1, d_2, \cdots d_\alpha\}$  となる。

$$\frac{M'-M}{b_1+b_2} \cdots (14)$$

10

25

つぎに、上記本実施の形態のガウス近似法による最適化を用いて、さらに上記で求めた $\mu_1$ ,  $\mu_2$ ,  $\rho_-\mu_1$ ,  $\rho_-\mu_2$  を固定のパラメータとして、暫定的に、要求された符号化率に基づく「Irregular-LDPC符号」のアンサンブルを求める(ステップS7)。そして、列の重みxの数が1 よりも小さくなった特定の列に関しては、その重みを候補から削除する。第5図は、 $\gamma_1$ = $d_1$ =12, rate=0.5の場合の、重み配分後の生成関数 $\lambda$ (x)と生成関数 $\rho$ (x)のアンサンブル(暫定)を示す図である。

つぎに、上記で求めた重み配分を満たし、かつ下記の(15)式を満たす、列 の重み候補のセット  $\{\gamma_1, \gamma_2, \cdots \gamma_1\}$  を選択する(ステップS7)。 なお、  $\gamma_1 \le 2$ \*である。そして、下記の(15)式を満たさない列の重みが存在する 場合には、その列の重みを候補から削除する。

$$\begin{bmatrix} a_{1,1}^{(d_{-}\beta)} & a_{1,1}^{(d_{-}\beta)} & \cdots & a_{1,1}^{(d_{-}\beta)} \\ a_{1,1}^{(d_{-}\beta)} & a_{1,1}^{(d_{-}\beta)} & \cdots & a_{1,1}^{(d_{-}\beta)} \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} \begin{bmatrix} \gamma_{1} \\ \gamma_{2} \\ \vdots \\ \gamma_{1} \end{bmatrix} = \begin{bmatrix} d_{-}\beta \\ d_{-}\beta \\ \vdots \\ d_{-}\beta \end{bmatrix} \cdots (15)$$

なお、各 a は、列の重み d  $_{\beta}$  ( $\beta$  = {1, 2, …  $_{\alpha}$ }) を構成するための {  $\gamma_1$ ,  $\gamma_2$ , …  $\gamma_1$ } に対する非負の整数となる係数を表し、 $_{i}$ ,  $_{j}$  は正の整数であり、 $_{\gamma}$  は列の重みを表し、 $_{\gamma}$  は列の最大重みを表す。

つぎに、上記本実施の形態のガウス近似法による最適化を用いて、さらに上記で求めた $\mu_1$ ,  $\mu_2$ ,  $\rho_{\mu_1}$ ,  $\rho_{\mu_2}$  と  $\{\gamma_1, \gamma_2, ...\gamma_1\}$  を固定パラメータとして、要求された符号化率に基づく「 $\{\gamma_1, \gamma_2, ...\gamma_1\}$ 

Б

10

20

25

号」のアンサンブルを求める(ステップS7)。第6図は、 $\gamma_1 = d_1 = 12$ ,rate=0.50場合の、重み配分後の生成関数 $\lambda$ (x)と生成関数 $\rho$ (x)のアンサンブルを示す図である。

つぎに、分割処理を行う前に、第6図に示す生成関数 2 (x) と生成関数 p (x) のアンサンプルの重み配分を以下の手順で調整する (ステップ S 7)。 なお、ここでは、第6図の重み配分を調整したものではないが、説明の便宜上、第7図の例を用いて上記調整手順について説明する。第7図は、重み配分調整用テープルの一具体例を示す図である。

- (1) ガウス近似法で求めた生成関数1(x)と生成関数の(x)のアンサンブルをテーブルの2列目と3列目に設定する。
  - (2) 重み配分2 なよび $p_x$  (3列目) と、ユークリット幾何符号EG (2,  $2^5$ ) における全行列の「1」の総数TP=26688と、を乗算し、重み単位の重み総数を求め、さらに、当該重み単位の重み総数とその総和を4列目に設定する。
- (3) 重み単位の重み総数(4列目)を対応する重みxで割り、重み単位の総列数を求め、それを5列目に設定する。
  - (4) 重み単位の総列数が小数点以下を含む場合、丸め処理(四捨五入, 切上げ, 切捨て等)を行い、その結果を6列目に設定する。
  - (5) 丸め処理後の重み単位の総列数 (6列目)と対応する重みxとを乗算し、 丸め処理後の重み単位の重み総数を求め、それを7列目に設定する。そして、各 重み総数の総和 (7列目の合計の行)が行列内の「1」の総数 (TP=2668 8)と等しいかどうかを確認する。
  - (6) 行列内の「1」の総数に等しくない場合、丸め処理後の重み単位の重み総数 (7列目) を整数単位で調整し、その結果を8列目に設定する。この場合、8列目の総和が、行列内の「1」の総数 (TP=26688) に等しくなるように調整する。
    - (7) 調整後の重み単位の重み総数 (8列目) を対応する重みxで割り、調整後

の重み単位の総列数を求め、それを9列目に設定する。 調整後の各重みの配分( 11列目)は、可能な限りガウス近似法で求めた値(3列目)に近い値にする。 なお、上記調整手順は、一般的に、下記の(16)、(17)、(18)式のように表現することができる。まず、重み $\gamma_1$ に属する列の数 $n_{-\gamma_1}$ と、重み $\mu_1$ に属する行の数 $n_{-\mu_1}$ と、を以下の(16)式で求める。なお、 $w_1$ は行を削除した後の行列の重みの総和を示す

$$n_{\gamma_i} = round \left( w_t \times \frac{\lambda_{\gamma_i}}{\gamma_i} \right), n_{\mu_i} = round \left( w_t \times \frac{\rho_{\mu_i}}{\mu_i} \right) \cdots (16)$$

そして、以下の条件((17),(18)式)の下で、重み $\gamma$ ;に属する最終的な列の数 $\mathbf{n}$ \_ $\gamma$ ;  $\hat{}$ と、重み $\mu$ ;に属する最終的な行の数 $\mathbf{n}$ \_ $\mu$ ;  $\hat{}$  を求める。なお、 $\lambda$ \_ $\gamma$ ;  $\hat{}$  は行の削除後の行列にあわせて調整した重み $\gamma$ ;に属する列の比率を表し、 $\rho$ \_ $\mu$ ;  $\hat{}$  は行の削除後の行列にあわせて調整した重み $\mu$ ;に属する行の比率を表す。

15

5

$$\begin{aligned} \mathbf{n'}_{-}\gamma_{i} &= \mathbf{w_{t}} \times \frac{\lambda'_{-}\gamma_{i}}{\gamma_{i}}, i = 1, 2, ..., 1 \\ \sum_{i=1}^{l} \mathbf{n'}_{-}\gamma_{i} \cdot \gamma_{i} &= \mathbf{w_{t}} \\ &= \arg \min \sum_{i=1}^{l} \left| \lambda_{-}\gamma_{i} - \lambda'_{-}\gamma_{i} \right| \cdots (17) \end{aligned}$$

20

$$n'_{\mu_i} = w_t \times \frac{\rho'_{\mu_i}}{\mu_i}, i = 1,2$$

$$\sum_{i=1}^{2} \mathbf{n'}_{-} \boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{i} = \mathbf{w}_{t} \cdots (18)$$

25

第8図は、上記の手順で第6図に示すアンサンブルを調整した場合の、ステップS7における最終的な生成関数 $\lambda$ (x)と生成関数 $\rho$ (x)のアンサンブルを

示す図である。

5

15

最後に、ユークリット幾何符号における1行あるいは1列の分割手順(ステップS8)について説明する。たとえば、分割手順に関して、Y. Kou等の論文では、規則的に分割する方法を提示している。第9図は、上記論文における分割手順を示す図である。まず、第9図に示すように行列のナンパリングを行う。ここでは、列番号を左端から順に1,2,3,…とし、行番号を上から順に1,2,3,…とする。そして、たとえば、32点×1列を8点×4列に分割する場合、下配(19)式にしたがって規則的に分割する。

10 
$$S_m(n) = B_1(m+4*n)$$
 ...(19)

なお、m=1, 2, 3, 4とし、n=0, 1, 2, 3, 4, 5, 6, 7とし、 1 はEG (2,  $2^5$ ) の列番号を表す。また、 $B_1$  (x) はEG (2,  $2^5$ ) の 1 列目の「1」の位置を表し、 $S_m$  (n) は分割後の行列のm列目の「1」の位置を表す。

具体的にいうと、EG(2, 2<sup>5</sup>)における1列中の「1」の位置を示す行番号は、

 $B_1$  (x) = {1 32 114 136 149 223 260 382 402 438 467 507 574 579 588 6 22 634 637 638 676 717 728 790 851 861 879 947 954 971 977 979 998}

20 となり、その結果、分割後の行列における1~4列目の「1」の位置を示す行番号は、B<sub>1</sub>(x)から「1」の番号が規則的に抽出され、

 $S_1$  (n) = {1 149 402 574 634 717 861 971}

 $S_2$  (n) = {32 223 438 579 637 728 879 977}

 $S_3$  (n) = {114 260 467 588 638 790 947 979}

25 S<sub>4</sub> (n) = {136 382 507 622 676 851 954 998} となる。すなわち、32点×1列が8点×4列に分割される。

一方、本発明におけるユークリット幾何符号の分割処理は、上記のように規則

的に分割するのではなく、B<sub>1</sub>(x)から「1」の番号をランダムに抽出する(後述するランダム分割の具体例を参照)。なお、この抽出処理は、ランダム性が保持されるのであればどのような方法を用いてもよい。

これにより、分割後の行列のm列目の「1」の位置の一例を $R_m$  (n) とした場合、 $R_m$  (n) は、たとえば、

 $R_1$  (n) = {1 114 574 637 851 879 977 979}

 $R_2$  (n) = {32 136 402 467 588 728 861 971}

 $R_3$  (n) = {149 260 382 438 579 638 717 998}

 $R_4$  (n) = {223 507 622 634 676 790 947 954}

(1) 基本のランダム系列を作成する。

10 となる。

15

ここで、上記ランダム分割の一例、すなわち、上記「乱数系列のラテン方陣を 用いた分割方法」を詳細に説明する。ここでは、ランダム分割を行う場合のラン ダム系列を容易かつ確定的に生成する。この方法による利点は、送信側と受信側 が同じランダム系列を生成できることにある。これは、現実のシステムではきわ めて重要となる。また、符号特性の条件が正確に規定できる、という利点もある。

以下に、ランダム系列作成の一例を記述する。ここでは、説明の便宜上、ユーク リット幾何符号EG(2, 2<sup>5</sup>)を用いる。ユークリット幾何符号EG(2, 2

5) の場合、1行に存在する「1」の数は25=32個である。

PをP≥2\*を満たす最小の素数とした場合、たとえば、2<sup>5</sup>のときはP=3 7となる。ここで、系列長P-5=32の基本のランダム系列C(i)を(20)式にしたがって作成する。

C(1) = 1

 $C (i+1) = G_0 \times C (i) \mod P \cdots (20)$ 

25 ただし、i=0, 1, …, P-2とし、 $G_o$ はガロア体GF (P) の原始元である。その結果、C (i) は、

C (i) =  $\{1\ 2\ 4\ 8\ 16\ 32\ 27\ 17\ 34\ 31\ 25\ 13\ 26\ 15\ 30\ 23$ 

9 18 36 35 33 29 21 5 10 20 3 6 12 24 11 22 7 14 28 19}

となる。

- (2) 系列長が25=32となるように、32より大きい数を削除する。
- 5 C (i) = {1 2 4 8 16 32 27 17 31 25 13 26 15 30 23 9 18 29 21 5 10 20 3 6 12 24 11 22 7 14 28 19}
  - (3) 基本のランダム系列を一定間隔で読み出すためにスキップ間隔 S (j) を 以下の(21)式のように定義する。
    - S(j) = j j = 1, 2, ..., 2\* ... (21)
- 10 (4)以下の(22)式で置換パターンLB;(i)を作成する。
  - $LB_{j}(i) = ((S(j) \times i) \mod P) + 1$  $j = 1, 2, \dots, 2$

 $i = 1, 2, \dots, P-1 \dots (22)$ 

なお、LB $_{\rm j}$  ( $_{\rm i}$ ) も  $_{\rm 2}$  \*より大きい数字は削除する。第 $_{\rm 10}$  図は、基本のランダム系列の置換パターンLB $_{\rm j}$  ( $_{\rm i}$ ) を示す図である。

- (5) q列i行でj番目のラテン方陣行列 $L_{j,q}$ (i)を以下の(23)式で算出することによって、分割処理を行う。このとき、ステップS6の削除処理によって、列の重み $d_{\beta}$ 4 $_{\beta}$ 5 $_{\beta}$ 6 $_{\beta}$ 6 $_{\beta}$ 6 $_{\beta}$ 7 $_{\beta}$ 6 $_{\beta}$ 7 $_{\beta}$ 6 $_{\beta}$ 7 $_{\beta}$ 7 $_{\beta}$ 6 $_{\beta}$ 8 $_{\beta}$ 7 $_{\beta}$ 7 $_{\beta}$ 8 $_{\beta}$ 8 $_{\beta}$ 8 $_{\beta}$ 9 $_{\beta}$ 8 $_{\beta}$ 9 $_{\beta}$ 9
- 20 ) の要素から間引く。

$$L_{jq}(i) = LB_{j}(((q+i-2) \mod 2^{s})+1)$$

j=1, 2, ..., 2\*

i = 1, 2, ..., 2 s

 $q = 1, 2, \dots, 2^s \dots (23)$ 

第11図は、ラテン方陣行列L<sub>iq</sub>(i)を示す図である。このラテン方陣行列L<sub>jq</sub>(i)は、拡張する対象の行列のj×32+q列目の分割パターンを決める。たとえば、削除により短縮されたEG(2,2<sup>5</sup>)の670列目g<sub>570</sub>(1

)を

10

15

20

25

 $g_{670}$  (1) = {28 48 84 113 153 220 225 234 268 280 283 284 322 363 3 74 436 497 507 525 593 600 617 623 625 644 670 701 783 805 818 892 929} とし、これを重み6の5列と重み2の1列に分割する。対応するラテン方陣 $L_1$ 。(i) は20\*32+30=670であるため、

 $L_{21,\ 30}$  (i) = {13 19 9 10 16 24 25 28 23 5 8 12 31 14 30 21 4 6 17 7 15 29 2 3 27 22 26 18 1 20 32 11}

となる。結果として、分割パターンは以下のようになる。

$$g_{670, 1}(1) = g_{670}(L_{21, 30}(1))$$

$$= \{322 525 268 280 436 625\} \quad i = 1, 2, \dots, 6$$

$$g_{670, 2}(1) = g_{670}(L_{21, 30}(1))$$

$$= \{644 783 623 153 234 284\} \quad i = 7, 8, \dots, 12$$

 $g_{670, 3}(1) = g_{670}(L_{21, 30}(1))$ = {892 363 818 600 113 220} i = 1 3, 1 4, ..., 1 6

 $g_{570, 4}(1) = g_{670}(L_{21, 50}(1))$   $= \{497 225 374 805 48 84\} \quad i = 17, 18, \dots, 24$ 

 $g_{570, 5}(1) = g_{670}(L_{21, 30}(1))$ = {701 617 670 507 28 593}  $i = 25, 26, \dots, 30$ 

 $g_{670, 6}(1) = g_{670}(L_{21, 30}(1))$ = {929 283} i = 31, 32

以下では、上記で説明したLDPC符号の特性を比較する。第12図は、Eb/No(情報1ピットあたりの信号電力対ノイズ電力比)と誤り率特性(BER)との関係を示す図である。なお、復号法は「SumーProductアルゴリズム」である。この特性は、第8図に示すアンサンブルを使用したものであり、Y. Kou等の論文のように規則的に分割した場合と、乱数系列のラテン方陣による分割処理を実行した場合と、の特性比較を示す。

第12図からわかるように、本実施の形態の分割方法を用いた場合には、シャ

10

15

20

ノン限界に1.2dB程度まで近づいているのがわかる。このように、Y.Ko u等の論文のような規則的な分割では、「Irregular-LDPC符号」 であっても大幅な改善は見込めないが、本実施の形態のランダム分割を実施する と、ループの発生する確率が大幅に減るので性能が画期的に改善される。

このように、本実施の形態においては、まず、符号長と符号化率を決定し、つ ぎに、ベースとなるユークリット幾何符号を選択し、つぎに、選択したユークリ ット幾何符号を特定の関係式に基づいて並べ替えて基本行列を作成し、つぎに、 条件「2<γ」≦2°」を満たす列の重みの最大値を選択し、つぎに、行の重み の数を連続する2種類に限定した状態で、暫定的に、ガウス近似法によりIrr egular-LDPC符号のアンサンブルを探索し、その後、最適な行の重み のセットを決定し、つぎに、分割後の行数を考慮して基本行列を底辺から順に削 除し、つぎに、行の重みのセットを固定パラメータとして、暫定的に、ガウス近 似法によりIrregular-LDPC符号のアンサンブルを探索し、その後、 最適な列の重みのセットを決定し、つぎに、行の重みのセットおよび列の重みの セットを固定パラメータとして、ガウス近似法によりIrregularーLD PC符号の最適なアンサンブルを探索し、最後に、このアンサンブルに基づいて 行削除後の基本行列の重みを所定の手順でランダムに分割する。これにより、確 定的で特性が安定し、かつ任意のアンサンブル、任意の符号長、任意の符号化率 に対応した「Irregular-LDPC符号」用の検査行列を、短時間で容 易に生成できる。

なお、本実施の形態においては、「Irregular-LDPC符号」用の 検査行列を生成するために、ユークリット幾何符号を用いたが、これに限らず、 たとえば、Cayleyグラフを用いて、確定的な「Irregular-LD PC符号」を構成することとしてもよい。この場合、先に説明した、「ベースと なるユークリット幾何符号を避択する処理(ステップS2)」、「選択したユークリット幾何符号を (12) 式に基づいて並べ替えて基本行列を作成する処理( ステップS3)」、に置き換えて、「ベースとなるCaylayグラフの行およ

び列の重みを決定して基本行列を作成する処理」、を実行する。これ以外の処理 については、上記第1図の処理と同様である。

したがって、Cayleyグラフを用いた場合であっても、上記と同様の手順を実施することによって、同様の効果を得ることができる。なお、Cayleyグラフには「J.Rosenthal, P.O. Vontobel, "Construction of LDPC codes using Ramanujan graphs and ideas from Margulis," in Proc. of the 38-th Allerton Conference on Communication, Control, Computing, 2000, pp. 248-257」に示されているように、Magulisの構成法やRamanujanグラフの構成法がある。

また、上記では、基本行列にユークリット幾何符号またはCayleyグラフを用いることとしたが、これに限らず、「行と列の重みが一定」かつ「サイクル数が6以上」という条件を満たす行列であれば、たとえば、射影幾何符号等の、ユークリット幾何符号以外の行列を用いることとしてもよい。

以上、説明したとおり、本発明によれば、まず、符号長と符号化率を決定し、 つぎに、ベースとなるユークリット幾何符号を選択し、つぎに、選択したユーク 15 リット幾何符号を特定の関係式に基づいて並べ替えて基本行列を作成し、つぎに、 列の重みの最大値を選択し、つぎに、行の重みの数を連続する2種類に限定した 状態で、暫定的に、ガウス近似法によりIrregularーLDPC符号のア ンサンブルを探索し、その後、最適な行の重みのセットを決定し、つぎに、分割 20 後の行数を考慮して基本行列を底辺から順に削除し、つぎに、行の重みのセット を固定パラメータとして、暫定的に、ガウス近似法によりIrregular-LDPC符号のアンサンブルを探索し、その後、最適な列の重みのセットを決定 し、つぎに、行の重みのセットおよび列の重みのセットを固定パラメータとして、 ガウス近似法によりIrregular-LDPC符号の最適なアンサンブルを 探索し、最後に、このアンサンブルに基づいて行削除後の基本行列の重みを所定 25 の手順でランダムに分割する。これにより、確定的で特性が安定し、かつ任意の アンサンブル,任意の符号長,任意の符号化率に対応した「Irregular

15

20

25

ーLDPC符号」用の検査行列を、短時間で容易に生成できる、という効果を奏する。

つぎの発明によれば、行列内の重みが列中の上部に配置されるように並べ替えることとした。これにより、行の削除処理を行う場合に、重みの大きい列を残すことができ、かつ列内の重みのバリエーションを少なくすることができる、という効果を奏する。

つぎの発明によれば、まず、符号長と符号化率を決定し、つぎに、ベースとなるCaylayグラフの行および列の重みを決定して基本行列を作成し、つぎに、列の重みの最大値を選択し、つぎに、行の重みの数を連続する2種類に限定した状態で、暫定的に、ガウス近似法によりIrregularーLDPC符号のアンサンブルを探索し、その後、最適な行の重みのセットを決定し、つぎに、分割後の行数を考慮して基本行列を底辺から順に削除し、つぎに、行の重みのセットを固定パラメータとして、暫定的に、ガウス近似法によりIrregularーLDPC符号のアンサンブルを探索し、その後、最適な列の重みのセットを決定し、つぎに、行の重みのセットおよび列の重みのセットを固定パラメータとして、ガウス近似法によりIrregularーLDPC符号の最適なアンサンブルを探索し、最後に、このアンサンブルに基づいて行削除後の基本行列の重みを所定の手順でランダムに分割する。これにより、確定的で特性が安定し、かつ任意のアンサンブル、任意の符号人に発言の行うによっていました。「IrregularーLDPC符号」用の検査行列を、短時間で容易に生成できる、という効果を奏する。

つぎの発明によれば、生成関数 $\lambda$  (x) と生成関数 $\rho$  (x) を1回の線形計画法で求めることとしたため、上記論文のように、生成関数 $\lambda$  (x) の導出と生成関数 $\rho$  (x) の導出を繰り返し実行し、双方の最適値を求める方法よりも、容易かつ短時間に、確定的でかつ特性が安定したLDPC符号用の検査行列を生成することができる、という効果を奏する。

つぎの発明によれば、重み配分を、重み単位の重み総数が整数で、かつ重み単

10

15

20

25

位の重み総数の総和とユークリット幾何符号の「1」の総数とが等しくなるよう に調整する。これにより、高精度な分割処理を実現できる、という効果を奏する。 つぎの発明によれば、ランダム系列のラテン方陣を作成することによって、符 号特性の条件を正確に規定できる、という効果を奏する。

つぎの発明によれば、まず、符号長と符号化率を決定し、つぎに、ベースとなるユークリット幾何符号を選択し、つぎに、選択したユークリット幾何符号を特定の関係式に基づいて並べ替えて基本行列を作成し、つぎに、列の重みの最大値を選択し、つぎに、行の重みの数を連続する2種類に限定した状態で、暫定的に、ガウス近似法によりIrregularーLDPC符号のアンサンブルを探索し、その後、最適な行の重みのセットを決定し、つぎに、分割後の行数を考慮して基本行列を底辺から順に削除し、つぎに、行の重みのセットを固定パラメータとして、暫定的に、ガウス近似法によりIrregularーLDPC符号のアンサンブルを探索し、その後、最適な列の重みのセットを決定し、つぎに、行の重みのセットおよび列の重みのセットを固定パラメータとして、ガウス近似法によりIrregularーLDPC符号の最適なアンサンブルを探索し、最後に、このアンサンブルに基づいて行削除後の基本行列の重みを所定の手順でランダムに分割する構成とした。これにより、確定的で特性が安定し、かつ任意のアンサンブル、任意の符号長、任意の符号化率に対応した「IrregularーLDPC符号」用の検査行列を、短時間で容易に生成できる、という効果を奏する。

つぎの発明によれば、まず、符号長と符号化率を決定し、つぎに、ベースとなるCaylayグラフの行および列の重みを決定して基本行列を作成し、つぎに、列の重みの最大値を選択し、つぎに、行の重みの数を連続する2種類に限定した状態で、暫定的に、ガウス近似法によりIrregularーLDPC符号のアンサンブルを探索し、その後、最適な行の重みのセットを決定し、つぎに、分割後の行数を考慮して基本行列を底辺から順に削除し、つぎに、行の重みのセットを固定パラメータとして、暫定的に、ガウス近似法によりIrregularーLDPC符号のアンサンブルを探索し、その後、最適な列の重みのセットを決定

し、つぎに、行の重みのセットおよび列の重みのセットを固定パラメータとして、 ガウス近似法によりIrregularーLDPC符号の最適なアンサンブルを 探索し、最後に、このアンサンブルに基づいて行削除後の基本行列の重みを所定 の手順でランダムに分割する構成とした。これにより、確定的で特性が安定し、 かつ任意のアンサンブル、任意の符号を

かつ任意のアンサンブル,任意の符号長,任意の符号化率に対応した「Irregular-LDPC符号」用の検査行列を、短時間で容易に生成できる、という効果を奏する。

# 産業上の利用可能性

5

10 以上のように、本発明にかかるLDPC符号用検査行列生成方法および検査行列生成装置は、誤り訂正符号としてLDPC符号を採用した通信システムに有用であり、特に、確定的で特性が安定した「Irregular-LDPC符号」を生成する装置に適している。

## 請求の範囲

- 1. 列と行の重みまたはどちらか一方が均一でない低密度パリティ検査符号の 検査行列を生成するための検査行列生成方法において、
- 5 符号長と符号化率を決定する符号長/符号化率決定ステップと、

行および列の重みを決定し、「行と列の重みが一定」かつ「サイクル数が 6 以上」という条件を満たす基本行列を決定する基本行列決定ステップと、

条件「2<列の重みの最大値≤基本行列における列内の1の数」を満たす列の 重みの最大値を選択する最大重み選択ステップと、

行の重みの数を連続する2種類に限定した状態で、ガウス近似法による最適化を用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンブルを探索し、その後、最適な行の重みのセットを決定する第1の重み探索ステップと、

分割後の行数を考慮して、前記基本行列を底辺から順に削除する行削除ステップと、

前記行の重みのセットを固定パラメータとして、ガウス近似法による最適化を 用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンプルを探索し、その後、最適な列の重みのセットを決定する第2の重み探索ステップと、

20 前記行の重みのセットおよび前記列の重みのセットを固定パラメータとして、 ガウス近似法による最適化を用いて、低密度パリティ検査符号の行の重みと列の 重みの最適なアンサンブルを探索する第3の重み探索ステップと。

最終的なアンサンブルに基づいて前配行削除後の基本行列の行および列の重み を所定の手順でランダムに分割する分割ステップと、

- 25 を含むことを特徴とする検査行列生成方法。
  - 2. ユークリット幾何符号を用いて、列と行の重みまたはどちらか一方が均一で

ない低密度パリティ検査符号の検査行列を生成するための検査行列生成方法において、

符号長と符号化率を決定する符号長/符号化率決定ステップと、

ベースとなるユークリット幾何符号を選択するユークリット幾何符号選択ステップと、

選択したユークリット幾何符号を特定の関係式に基づいて並べ替えて基本行列 を作成する並べ替えステップと、

条件「2<列の重みの最大値≦ユークリット幾何符号における列内の1の数」 を満たす列の重みの最大値を選択する最大重み選択ステップと、

行の重みの数を連続する2種類に限定した状態で、ガウス近似法による最適化を用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンプルを探索し、その後、最適な行の重みのセットを決定する第1の重み探索ステップと、

分割後の行数を考慮して、前記基本行列を底辺から順に削除する行削除ステッ 15 プと、

前配行の重みのセットを固定パラメータとして、ガウス近似法による最適化を 用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンプ ルを探索し、その後、最適な列の重みのセットを決定する第2の重み探索ステッ プと、

並配行の重みのセットおよび前配列の重みのセットを固定パラメータとして、 ガウス近似法による最適化を用いて、低密度パリティ検査符号の行の重みと列の 重みの最適なアンサンブルを探索する第3の重み探索ステップと、

最終的なアンサンブルに基づいて前記行削除後の基本行列の行および列の重み を所定の手順でランダムに分割する分割ステップと、

- 25 を含むことを特徴とする検査行列生成方法。
  - 3. 前記並べ替えステップで用いる特定の関係式は、

25

行列内の重みが列中の上部に配置されるように生成することを特徴とする請求 の範囲第2項に記載の検査行列生成方法。

- 4. 前記ガウス近似法では、符号化率を固定した状態で、かつガウスノイズが最大になるように、行の重みと列の重みの最適なアンサンブル (thresholdが最小となるアンサンブル)を1回の線形計画法で探索することを特徴とする請求の範囲第2項に記載の検査行列生成方法。
- 5. 前記第3の重み探索ステップでは、前記アンサンブルの重み配分を、重み単位の重み総数が整数で、かつ重み単位の重み総数の総和とユークリット幾何符号の「1」の総数とが等しくなるように調整し、

前記分割ステップでは、調整後のアンサンブルに基づいて分割処理を行うこと を特徴とする請求の範囲第2項に配載の検査行列生成方法。

- 15 6. 前記分割ステップでは、基本のランダム系列のラテン方陣を作成し、当該ラテン方陣に基づいて、前記行削除後の基本行列における各行および各列から重み「1」を抽出することにより、各列および各行をランダムに分割することを特徴とする請求の範囲第2項に記載の検査行列生成方法。
- 7. Caylayグラフを用いて、列と行の重みまたはどちらか一方が均一でない低密度パリティ検査符号の検査行列を生成するための検査行列生成方法において、

符号長と符号化率を決定する符号長/符号化率決定ステップと、

ベースとなるCaylayグラフの行および列の重みを決定して基本行列を作成するCaylayグラフ決定ステップと、

条件「2<列の重みの最大値≤Caylayグラフにおける列内の1の数」を 満たす列の重みの最大値を選択する最大重み選択ステップと、

15

25

行の重みの数を連続する2種類に限定した状態で、ガウス近似法による最適化を用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンブルを探索し、その後、最適な行の重みのセットを決定する第1の重み探索ステップと、

5 分割後の行数を考慮して、前記基本行列を底辺から順に削除する行削除ステップと、

前記行の重みのセットを固定パラメータとして、ガウス近似法による最適化を 用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンブ ルを探索し、その後、最適な列の重みのセットを決定する第2の重み探索ステッ プと、

前記行の重みのセットおよび前記列の重みのセットを固定パラメータとして、 ガウス近似法による最適化を用いて、低密度パリティ検査符号の行の重みと列の 重みの最適なアンサンブルを探索する第3の重み探索ステップと、

最終的なアンサンブルに基づいて前配行削除後の基本行列の行および列の重み を所定の手順でランダムに分割する分割ステップと、

を含むことを特徴とする検査行列生成方法。

- 8. 前記ガウス近似法では、符号化率を固定した状態で、かつガウスノイズが最大になるように、行の重みと列の重みの最適なアンサンブル (thresholdが最小 となるアンサンブル)を1回の線形計画法で探索することを特徴とする請求の範囲第7項に記載の検査行列生成方法。
  - 9. 前記第3の重み探索ステップでは、前記アンサンブルの重み配分を、重み単位の重み総数が整数で、かつ重み単位の重み総数の総和とCaylayグラフの「1」の総数とが等しくなるように調整し、

前記分割ステップでは、調整後のアンサンブルに基づいて分割処理を行うこと を特徴とする請求の範囲第7項に配載の検査行列生成方法。

- 10. 前記分割ステップでは、基本のランダム系列のラテン方陣を作成し、当該 ラテン方陣に基づいて、前記行削除後の基本行列における各行および各列から重 み「1」を抽出することにより、各列および各行をランダムに分割することを特 像とする請求の範囲第7項に記載の検査行列生成方法。
- 11. ユークリット幾何符号を用いて、列と行の重みまたはどちらか一方が均一 でない低密度パリティ検査符号の検査行列を生成する検査行列生成装置において、 符号長と符号化率を決定する符号長/符号化率決定手段と、
- 10 ペースとなるユークリット幾何符号を選択するユークリット幾何符号選択手段と、

選択したユークリット幾何符号を特定の関係式に基づいて並べ替えて基本行列 を作成する並べ替え手段と、

条件「2 <列の重みの最大値≤ユークリット幾何符号における列内の1 の数」 を満たす列の重みの最大値を選択する最大重み選択手段と、

行の重みの数を連続する2種類に限定した状態で、ガウス近似法による最適化を用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンブルを探索し、その後、最適な行の重みのセットを決定する第1の重み探索手段と、

- 20 分割後の行数を考慮して、前配基本行列を底辺から順に削除する行削除手段と、 前記行の重みのセットを固定パラメータとして、ガウス近似法による最適化を 用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンプ ルを探索し、その後、最適な列の重みのセットを決定する第2の重み探索手段と、 前記行の重みのセットおよび前記列の重みのセットを固定パラメータとして、
- 25 ガウス近似法による最適化を用いて、低密度パリティ検査符号の行の重みと列の 重みの最適なアンサンブルを探索する第3の重み探索手段と、

最終的なアンサンブルに基づいて前記行削除後の基本行列の行および列の重み

35

を所定の手順でランダムに分割する分割手段と、

を備えることを特徴とする検査行列生成装置。

12. Caylayグラフを用いて、列と行の重みまたはどちらか一方が均一でない低密度パリティ検査符号の検査行列を生成する検査行列生成装置において、 符号長と符号化率を決定する符号長/符号化率決定手段と、

ベースとなる C a y l a y グラフの行および列の重みを決定する C a y l a y グラフ決定手段と、

条件「2<列の重みの最大値≦Caylayグラフにおける列内の1の数」を 満たす列の重みの最大値を選択する最大重み選択手段と、

行の重みの数を連続する2種類に限定した状態で、ガウス近似法による最適化を用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンブルを探索し、その後、最適な行の重みのセットを決定する第1の重み探索手段と、

分割後の行数を考慮して、前配基本行列を底辺から順に削除する行削除手段と、前記行の重みのセットを固定パラメータとして、ガウス近似法による最適化を用いて、暫定的に、低密度パリティ検査符号の行の重みと列の重みのアンサンブルを探索し、その後、最適な列の重みのセットを決定する第2の重み探索手段と、前記行の重みのセットおよび前記列の重みのセットを固定パラメータとして、

20 ガウス近似法による最適化を用いて、低密度パリティ検査符号の行の重みと列の 重みの最適なアンサンブルを探索する第3の重み探索毛段と

最終的なアンサンブルに基づいて前記行削除後の基本行列の行および列の重み を所定の手順でランダムに分割する分割手段と、

を備えることを特徴とする検査行列生成装置。

5

10



第2図



3/14

第3図



第4図

| d <sub>i</sub>           |    | 12             |
|--------------------------|----|----------------|
| Rate                     |    | 0.5            |
|                          | х  | λ <sub>x</sub> |
|                          | 2  | 0.221354       |
|                          | 3  | 0.281879       |
|                          | 6  | 0.021475       |
|                          | 7  | 0.0001         |
| _                        | 10 | · 8.71E-05     |
|                          | 12 | 0.475104       |
|                          | Х  | Pχ             |
|                          | 8  | 0.92192        |
|                          | 9  | 0.07808        |
| σ <sub>GA</sub>          |    | 0.946711       |
| SNR <sub>norm</sub> (GA) |    | 0.2886dB       |
|                          |    |                |

# 第5図

| d <sub>l</sub>           |    | 12             |
|--------------------------|----|----------------|
| Rate                     |    | 0.5            |
|                          | х  | λ <sub>x</sub> |
|                          | 2  | 0.221354       |
|                          | з  | 0.281879       |
|                          | 6  | 0.021475       |
|                          | 7  | 0.0001         |
| ***                      | 12 | 0.475104       |
|                          | Х  | Px             |
|                          | 8  | 0.92192        |
|                          | 9  | 0.07808        |
| σ <sub>GA</sub>          |    | 0.946736       |
| SNR <sub>norm</sub> (GA) |    | 0.2884dB       |
|                          |    |                |

## 第6図

| d <sub>I</sub>           |    | 12             |
|--------------------------|----|----------------|
| Rate                     |    | 0.5 .          |
|                          | х  | λ <sub>x</sub> |
|                          | 2  | 0.224033       |
|                          | 3  | 0.282078       |
|                          | 6  | 0.033481       |
|                          | 7  | 0.000166       |
|                          | 12 | 0.460242       |
|                          | X  | ρ <sub>X</sub> |
|                          | 8  | 1              |
| σ <sub>GA</sub>          |    | 0.947054       |
| SNR <sub>norm</sub> (GA) |    | 0.2855dB       |
|                          |    |                |

第7図

|         | 2  | 3                               | 4        | ß        | ဖ     | 7                | 8           | 6    | 9  | 11          |
|---------|----|---------------------------------|----------|----------|-------|------------------|-------------|------|----|-------------|
|         | ×  | ×۷                              |          |          |       |                  |             |      | ×  | γ×          |
| ジ       | ~  | 0.224033399                     | 5376.802 | 2688.401 | 2688  | 5376             | 5372        | 2686 | 2  | 0.223833333 |
| LE<br>N | 6  | 0.282077752                     | 6769.866 | 2256.622 | 2257  | 6771             | 2229        | 2259 | က  | 0.282375    |
| , –     | 9  | 0.033481078                     | 803.5459 | 133.9243 | 134   | 804              | 804         | 134  | 9  | 0.0335      |
|         | 7  | 0.000166151                     | 3.98762  | 0.56966  | -     | 7                | 7           | -    | 7  | 0.000291667 |
|         | 12 | 0.46024162                      | 11045.8  | 920.4832 | 920   | 11040            | 11040       | 920  | 12 | 0.46        |
| 哈       |    | 0.582003275                     | 24000    | 6000     | 0009  |                  | 23998 24000 | 6000 |    | -           |
|         | ×  | ×σ                              |          |          |       |                  |             |      | ×  | ×σ          |
| チェック    | ∞  | -                               | 24000    | 3000     | 3000  | 24000 24000      | 24000       | 3000 | 8  | 1           |
| Œ.      |    | -                               | 24000    | 3000     |       | 3000 24000 24000 | 24000       | 3000 |    | 1           |
| rate    |    | 0.500000001                     |          |          |       |                  |             |      |    | 0.5         |
| K       | 9  | ・行列内の1の総数TP=(1023-273)x32=24000 | (1023-2  | 73)x32=" | 24000 |                  |             |      |    |             |

# 第8図

| d <sub>I</sub>           |    | 12             |      |
|--------------------------|----|----------------|------|
| 符号長                      |    | 6000           |      |
|                          | х  | λ <sub>x</sub> | No.  |
|                          | 2  | 0.223833       | 2686 |
|                          | 3  | 0.282375       | 2259 |
|                          | 6  | 0.0335         | 134  |
|                          | 7  | 0.000292       | 1    |
|                          | 12 | 0.46           | 920  |
|                          | Х  | Pχ             | No.  |
|                          | 8  | 1              | 3000 |
| σ <sub>GA</sub>          |    | 0.946999       |      |
| SNR <sub>norm</sub> (GA) |    | 0.2860dE       | 3    |

9/14

第9図

|    |   |   | 1 |   |   |   |   |   |   |    |    |    |    |
|----|---|---|---|---|---|---|---|---|---|----|----|----|----|
|    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 1  |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 2  |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 3  |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 4  |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 5  |   |   |   |   |   |   |   |   |   | П  |    |    |    |
| 6  |   |   |   |   |   |   |   |   |   |    |    |    | П  |
| 7  |   |   |   | Г |   |   |   |   |   | Г  | Г  |    | П  |
| 8  |   | L |   | Г |   |   |   |   |   |    | Г  |    |    |
| 9  |   |   |   |   |   |   |   | П |   |    |    |    | П  |
| 10 |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 11 |   |   |   |   |   |   | Г | П |   |    |    |    |    |
| 12 |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 13 |   |   |   |   |   |   |   |   |   | Г  |    |    |    |
|    |   |   |   |   |   |   |   |   |   |    |    |    | _  |

**账10**図

|   |      | _     |     | _   | _              | _    | _     |      | _        |      |     | _                | _    |          |              |          | _        |          |        |          | _        |        |          |          |       |          |       |        |                |     |      |     |          |           |                 |   |
|---|------|-------|-----|-----|----------------|------|-------|------|----------|------|-----|------------------|------|----------|--------------|----------|----------|----------|--------|----------|----------|--------|----------|----------|-------|----------|-------|--------|----------------|-----|------|-----|----------|-----------|-----------------|---|
|   |      | 3 8   | 3 6 | - 6 | 1 5            | - 6  | -     | _    | 4 8      | 3 6  | 5 5 | . 4              | _ a  | . 4      | 76           | 88       | 7        | 9        | Ξ      | •        | _        | 8      | 8        | 4        | . 2   | 80       | 8     | 8      | ĸ              | ន   | 19   | 9   | 2        | ]         |                 |   |
|   |      | ç     | , 6 |     | , ,            | -    | -     | 7 10 | 3 6      |      | 1 2 |                  |      | - 6      | 2            | =        | -        |          | - 8    | 8        | 9        | _2     | *        | 8        | 8     | 7        | Ξ     | ın     | ္က             | ã   |      |     |          | l         |                 |   |
|   |      | -     | 2 6 | -   | _              | _    | ·     | 9 6  | -        | •    |     | 27               | 2    | =        | _            | - 62     | 8        | =        |        | _        | è        | - 2    | -2       | ٩        |       | 8        |       |        |                |     |      | Ξ   | _        |           |                 |   |
|   |      | 9 8   | _   |     | -              | - 8  | 8     |      | _        |      | 3 6 | 12 15            |      | 69       | 2            | -        | _        |          |        |          |          |        |          |          |       |          | _     | Ξ      | _              |     |      | 2   |          |           |                 |   |
|   |      | 15    | _   |     | _              | 2 2  | _     |      |          |      | -   |                  |      |          |              |          |          | 32       |        |          |          |        |          |          | 22    |          | _     |        | -              |     | _    | =   | -        | 1         |                 |   |
|   | 9    |       | 2 4 | _   |                | 3 2  |       |      | 1 0      |      |     |                  | -    | _        | 픙            | Ξ        | _        | <u>~</u> | - 83   | ==       | _        | 8      | ===      | -        | 8     | =        | -     | 83     | <del>-</del> - | က   |      | -   | 2        |           |                 |   |
|   | 36   |       |     |     |                |      |       |      |          |      | - 8 | 16               | -    | 6        | -64          | 10       | 2        | 픞        | -      | ~~~      | -        | _      | -8       | 2        | =     | 8        |       |        |                |     | 1    | 8   | Ξ        |           |                 |   |
|   | . 40 | 1     | =   | 2   |                | 2 0  | -     | . z  | -        | . Ic | . 6 | 16               | 63   | -2       | <del>-</del> | =        | 9        | =        | -      | -89      | =        | -      | 88       | 200      | -     | <u>8</u> | -     | 22     | 프              |     |      |     | 12       |           |                 |   |
|   | 00   | -     |     | _   | -              | _    | _     | . 5  | 2        |      | -   | 17               | -    | - 5      | -            | ÷        | 7        | ÷        | 8      | =        | - 20     | _      | <u>8</u> | 13       | _     | <u>×</u> | Ξ     |        |                |     |      | 8   | 2        | ١.        | _               |   |
|   | 00   | -     | -   | _   | _              | . 2  | _     |      | 1 2      | _    |     | 27               |      |          |              |          | Ξ        |          |        |          |          |        |          |          | 54    |          | _     | 24     | _              | _   | 10   |     | +        | П         | 8               | l |
|   | 5    | _     |     |     |                | , F  |       |      |          | 50   | _   | _                | _    | _        | 60           |          |          | _        | 5      |          | 2        |        |          |          | 12    |          |       | 10     | _              |     |      | ··  | 2        | Н         | E I             | l |
|   | 5    |       | 6   |     |                |      |       |      | 12       | _    | _   |                  | ÷    | _        | 4            |          | 7        | -        | _      | ÷        |          | 18     |          |          |       | _        | 53    | 22     |                |     | Ξ    |     | 릔        | 1         | 8               | l |
|   | 9    |       | _   | -   |                | - 22 | _     | _    |          |      | _   | _                | -    | 22       |              | 26 2     |          |          | -      |          |          |        | _        |          |       | _        |       | _      | 29             |     |      |     | =        |           | random sequence |   |
|   | 4    | 8     | -   | 9   | 2              | 7    | 2     | 0.   | -        |      |     |                  |      |          |              |          |          | 8        |        |          |          |        | 24 1     | 9        | 8     |          |       | 38     | _              | 61  | _    | Ξ   | 퓌        | Н         | 0               |   |
|   | 17   |       | 7   |     |                |      |       |      |          |      |     |                  |      |          |              |          |          | ^        |        |          | _        | -      |          | -        | 32    | _        | -     | _      | 26 21          | _   | 3 20 | -   | 픨        |           | pasic           | ł |
|   | 16   |       |     |     |                |      |       |      |          |      |     | -                | 8    | ~        | 8            | <u>-</u> | 8        | 8        | *      | 8        | 8        | -      | ᇹ        |          | _     | _        | 8     |        |                |     |      | -   | ~        | ı         | nof             |   |
|   | Ę    | P     | 8   | 8   | 83             | -    | 9     |      | 6        | 24   | 67  | 17               | 8    | 0        | 10           | 8        | 8        | =        | 9      | -        | -        | -      | =        | 10       | 충     | _        |       |        | ᅜ              |     | 9 20 | =   | 20       | 1         | pettern of      |   |
|   | 4    | [=    | 28  | 10  | 19             | 9    | 24    | -    | 12       | 8    | 9   | 8                | Ξ    | 12       | ø            | 9        | 8        | -        | XI     | 8        | <u>=</u> | -      | 7        | π.       | -     | 5        | 8     | -      | -              | ÷   | 32   | _   | 쁶        | - 1       | ŝ               |   |
|   | 5    | 13    | 26  | 2   | 2              | 8    | 7     | 12   | 8        | 9    | 6   | 88               | 89   | 2        | •            | 8        | ~        | ĸ        | =      | <u>=</u> | -        | 8      | -        | 8        | 10    | 8        |       |        | 8              | •   |      |     | 9        |           | parmutation     |   |
|   | 4    | 12    | 24  | Ξ   | 83             | 2    | 2     | 6    | 2        | 8    | ន   | 8                | ~    | 9        | ᇙ            | 6        | 9        | 휸        | ю      | -        | 8        | *      | ÷        | <u>8</u> | 60    |          | _     | 8      | _              |     | _    | 6   | 씚        | 1         | E               |   |
|   | Ξ    | Ξ     | 22  | 7   | 18             | 28   | 63    | ž    | 33       | 9    | 2   | 8                | 9    | 1        | 8            | 03       | 60       | 2        | 6      | 휸        | <u>=</u> | 10     | =        | 7.       | -     |          |       |        | ÷              | 30  | _    | _   | 20       | 7         | _               |   |
|   | 9    |       |     |     |                |      |       | 9    | 16       | 28   | æ   | 8                | 8    | 01       | 2            | 22       | 33       | ıo       | 10     | 55       | 8        | 18     | 83       | _        | Ξ     |          |       |        | =              |     | _    | 17  |          |           |                 |   |
|   | 8    |       | 무   | 27  | 60             | -    | 28    | 7    | 16       | 25   | 9   | 5                | 8    | ю        | 7            | 83       | 32       | *        | 6      | 8        | 76       | 63     | 2        | 2        | 8     | _        | _     | _      | _              | _   |      |     | 8        |           |                 |   |
|   | 8    | ⊢-    |     |     | 8              | 00   | Ξ     | 9    | 27       | •    | =   | ន                | 8    | -        | 6            | 2        | 8        | 4        | 2      | 8        | 28       | ~      | 10       | 23       | 55    |          |       |        | _              | صا  | _    | ÷   | 8        |           |                 |   |
|   | 7    |       | =   |     | 88             | ın   | 24    | 6    | 28       | ø    | 9   | 17               | 22   | 55       | -            | 80       | 12       | প্ল      | 8      | 9        | 2        | 8      | 7        | 4        | Ξ     | =        |       |        | 8              | _   | -    |     | 8        |           |                 |   |
|   |      |       | 12  |     | 54             | 8    | ю     |      | 17       |      |     |                  | 9    | 9        | 8            | 83       | m        | æ        |        |          |          | 01     |          |          | 8     |          |       | -      |                |     |      |     | 2        | Г         |                 |   |
|   | ka   |       | 2   |     |                | 23   |       |      |          |      | =   |                  |      |          |              |          |          | 2        | 26     | 2        | 4        | •      | 4        | 18       | 2     | 28       |       | -      |                |     |      |     | 2        | 1         |                 |   |
|   | 4    |       | 8   |     |                |      |       |      |          |      |     | F                | £    | <u>e</u> | ş            | 6        | <u>6</u> | 8        | 0      | 유        | 7        | 18     | গ্ৰ      | 8        | 8     | -7       |       |        |                | _   | _    |     | 8        | В         | 2               |   |
|   | 8    | 3     | 6   |     |                |      |       |      |          |      |     | ď                |      |          |              |          |          | 8        | S      | 8        | 8        | 32     | -        | 4        | -     | 9        | 2     | =      | 6              | 123 | 13   | 8   | 7        |           | 影               |   |
|   | ×    | 2     |     |     |                | 2    |       |      |          |      |     | 8                |      |          |              |          | 8        | -        | m      | ю        | ^        | 8      | Ξ        | 2        | 9     | = :      | 20    | 2      | 2 1            | 18  | _    |     | 5        |           | Ē               |   |
|   | ٦    | _     | ~   | 60  | 4              | ю    | 9     | ^    | 8        |      | ೭   | Ξ                | 72   | 2        | <u>*</u>     |          | 9        | 2        | =      | 9        |          |        |          | 8        | 5     | 122      | 8 1   | 53     | B 8            | 87  |      | _   | 3        |           | ž I             |   |
|   |      | (1)kg | (S) | (E) | ( <del>)</del> | B(5) | 19(0) | (c)  | (B)      | B(8) | 600 | (F)(F)           | (2)J | LE(13)   | £            | 9        | 19(16)   | BG 73    | (B)(B) | (6)      | (DZ)     | (12)   | LB(22)   | (S)      | 1964) | 952      | 02/07 | 18(27) | 1628           |     |      |     | 1/2      | o o local | 2               |   |
|   | _    |       |     | _   | 3              | 3    | 3     | 3    | _        | 3    | =   | 3                | ם    | 3        | =            | "        | =        | ۳        | =      | "        | =        | 4      | 4        | 9        | 5     | 9 9      | 3     | 9 !    | 9              | 9   | 9 !  | 9 3 | Ì        | ٥         | ا               |   |
| N |      | -     | 2   | 4   | 8              | 16   | 32    | 27   | 12       | ક    | 38  | 6                | 92   | 5        | 8            | ន        | æ        | 9        | 8      | 2        | 10       | 0      | 8        | 93       | 0     | 7 7      | \$ :  | = 1    | 3 1            | -   | 4 9  | 8 9 | <u> </u> | /         |                 |   |
| _ | 1    | =     | ล   | ଳ   | e              | ន    | 8     | 2    | <u>۾</u> | 2    | 6   | ( <del>1</del> ) | ล    | e :      | ÷ i          | 6        | 8        | 2        | 8      | a -      | _        | _      | _        | e .      | _     | _        | _     | _      | _              | _   | _    | _   | 4        |           |                 |   |
| 8 | ١    | ŏ     | ŏ   | ŏ,  | ĕ              | ö    | ŏ     | ŏ    | ö        | g    | 8   | 8                | 8    | 8        | Š.           | 8        | ĕ        | 8.       | 8      | 8        | 80       | g<br>S | 85       | 8        | 9 9   | 8        | 3     | 2 6    | 9 3            | 620 | 080  | 3 8 | 3        |           |                 |   |
|   |      |       |     |     |                |      |       |      |          |      |     |                  |      |          |              |          |          |          |        |          |          |        |          |          |       |          |       |        |                |     | _    |     | _        |           |                 |   |

第11図

81 t r r 82 c r 22 2 B t r 0 2 C t t 8 B 8 C B 2 E 4 C 2 C 4 A 9 



### 第13図



### 第14図



第15図



第16図



#### INTERNATIONAL SEARCH REPORT

International application No.

|                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            | 101/01                                                                                                                                                                                                                                                    | 03/0/4/0                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. CLASS<br>Int.                                                                                                              | IFICATION OF SUBJECT MATTER<br>C1 <sup>7</sup> H03M13/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                    |
|                                                                                                                               | o International Patent Classification (IPC) or to both nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tional classification a                                                                                                                                    | nd IPC                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                    |
|                                                                                                                               | S SEARCHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                    |
| Int.                                                                                                                          | ocumentation scarched (classification system followed b<br>C1 <sup>7</sup> H03M13/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                    |
| Jitsu<br>Kokai                                                                                                                | ion searched other than minimum documentation to the<br>nyo Shinan Koho 1926-1996<br>I Jitsuyo Shinan Koho 1971-2003                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Toroku Jitsuy<br>Jitsuyo Shina                                                                                                                             | yo Shinan Koho<br>an Toroku Koho                                                                                                                                                                                                                          | 1994-2003<br>1996-2003                                                                                                                                                                                             |
|                                                                                                                               | ata base consulted during the international search (name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e of data base and, wh                                                                                                                                     | eere practicable, sear                                                                                                                                                                                                                                    | ch terms used)                                                                                                                                                                                                     |
| Category*                                                                                                                     | Citation of document, with indication, where ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | propriete of the                                                                                                                                           | ant naccases                                                                                                                                                                                                                                              | Delegant and 1                                                                                                                                                                                                     |
| A A                                                                                                                           | JP 2001-168733 A (Thomson-CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                            | mit hazzakez                                                                                                                                                                                                                                              | Relevant to claim No.                                                                                                                                                                                              |
| **                                                                                                                            | 22 June, 2001 (22.06.01),<br>Fig. 2<br>& EP 1093231 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                    |
| A                                                                                                                             | JP 06-223095 A (Canon Inc.),<br>12 August, 1994 (12.08.94),<br>Fig. 4<br>& EP 0611054 A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                                                                                                           | 1-12                                                                                                                                                                                                               |
| A                                                                                                                             | JF 06-223096 A (Canon Inc.),<br>12 August, 1994 (12.08.94),<br>Fig. 3<br>& EP 0611054 A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                                                                                                           | 1-12                                                                                                                                                                                                               |
| Furth                                                                                                                         | er documents are listed in the continuation of Box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | See patent far                                                                                                                                             | nily annex.                                                                                                                                                                                                                                               |                                                                                                                                                                                                                    |
| "A" docum<br>conside<br>"E" cartier<br>date<br>"L" docum<br>cited to<br>special<br>"O" docum<br>means<br>"P" docum<br>than th | I categories of cited documents:<br>ent defining the general state of the art which is not<br>red to be of particular relevance<br>document but published on or after the international filing<br>ent which may throw doubts on priority claim(s) or which is<br>to establish the publication date of another cristion or other<br>reason (as specifica)<br>ent referring to a nor disclosure, use, exhibition or other<br>ent published prior to the international filing date but later<br>es priority date claimed<br>actual completion of the international search | "X" document of pa<br>considered now<br>step when the do<br>"Y" document of pa<br>considered to in<br>combined with<br>combination be<br>"&" document memi | principle or theory undi-<br>riticular relevance; the of<br>all or cannot be conside<br>ocument is taken alone<br>riticular relevance; the of<br>two was a miventive step<br>one or more other such<br>ing obvious to a person<br>ber of the same patent: | ne application but cited to<br>erlying the invention<br>cannot be<br>red to involve an inventive<br>cannot be<br>cannot be<br>cannot be<br>when the document is<br>documents, such<br>skilled in the art<br>family |
| 17 S                                                                                                                          | September, 2003 (17.09.03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date of mailing of to<br>30 Septe                                                                                                                          | ember, 2003                                                                                                                                                                                                                                               | (30.09.03)                                                                                                                                                                                                         |
|                                                                                                                               | nailing address of the ISA/<br>anese Patent Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Authorized officer                                                                                                                                         |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                    |

|                                                      | 国際調査報告                                                                                                                                                                | 国際出願番号                                                                                          | PCT/JP0                                                                                                 | 3/07476                                                                 |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| A. 発明の<br>Int.                                       | 属する分野の分類(国際特許分類(I P C))<br>C l <sup>7</sup> H O 3 M 1 3 / 1 9                                                                                                         |                                                                                                 |                                                                                                         |                                                                         |
| 調査を行った                                               | 行った分野<br>最小限資料(国際特許分類(I P C))<br>C 1 <sup>7</sup> H 0 3 M 1 3 / 1 9                                                                                                   |                                                                                                 |                                                                                                         |                                                                         |
| 日本国実用日本国公開日本国登録日本国実用                                 | 外の資料で調査を行った分野に含まれるもの<br>新業公報 1926-1996年<br>実用新家公報 1971-2003年<br>実用新家公報 1994-2003年<br>新業登録公報 1996-2003年                                                                |                                                                                                 |                                                                                                         |                                                                         |
|                                                      | 用した電子データベース(データベースの名称                                                                                                                                                 | 、調査に使用した用語)                                                                                     |                                                                                                         |                                                                         |
| C. 関連する<br>引用文献の                                     | 5と認められる文献                                                                                                                                                             |                                                                                                 |                                                                                                         |                                                                         |
| カテゴリー*                                               | 引用文献名 及び一部の箇所が関連する                                                                                                                                                    | ときは、その関連する簡                                                                                     | 所の表示                                                                                                    | 関連する<br>請求の範囲の番号                                                        |
| A                                                    | JP 2001-168733 A<br>フ)、2001.06.22、図2<br>A1                                                                                                                            | (トムソンーセー)                                                                                       | エスエ                                                                                                     | 1~12                                                                    |
| A                                                    | JP 06-223095 A (キ<br>08.12、図4 & EP 06                                                                                                                                 | ヤノン株式会社)、<br>11054 A2                                                                           | 1994.                                                                                                   | 1~12                                                                    |
| A                                                    | JP 06-223096 A (キ<br>08.12、図3 & EP 06                                                                                                                                 | ャノン株式会社)、<br>11054 A2                                                                           | 1994.                                                                                                   | 1~12                                                                    |
| □ C欄の続き                                              | にも文献が列挙されている。                                                                                                                                                         | □ パテントファミ                                                                                       | 11                                                                                                      | er a sa m                                                               |
| をの<br>「E」国際出版<br>以後に2<br>「L」優先権主<br>日若献(理<br>下O」口頭によ | カテゴリー<br>のある文献ではなく、一般的技術水準を示す<br>目前の出願または特許であるが、国際出願日<br>表されたもの<br>悪に極義を提起する文献又は他の文献の発行<br>は他の特別な理由を確立するために引用する<br>由を付す)<br>る開示、使用、歴示等に言及する文献<br>目前で、かつ優先権の主張の基礎となる出願 | の日の後に公表<br>「丁」国際出願日又は<br>出願と矛盾する<br>の理解のために<br>「X」特に関連のある。<br>の新規様で以下<br>「Y」特に関連のある。<br>上の文献との、 | さ優先日後に公表で<br>優先日後に公表で<br>そのでするもってとる。<br>引文献性があってとて、ている<br>が主義者と考え<br>とないとないとないとないとないとないとないとないとないとないとない。 | された文献であって<br>き明の原理又は理論<br>i該文献のみで発明<br>られるもの<br>i該文献と他の1以<br>i 関である紹会せい |
| 国際調査を完了                                              | 17.09.03                                                                                                                                                              | 国際調査報告の発送日                                                                                      | 30                                                                                                      | .09.03                                                                  |
| 日本国                                                  | 名称及びあて先<br> 特許庁(ISA/JP)<br> 便番号100-8915<br> 千代田区霞が関三丁目4番3号                                                                                                            | 特許庁審查官(権限の<br>石井 研一<br>電話番号 03-35                                                               | · (**)                                                                                                  | 5X 8124<br>内線 3556                                                      |