Innlevering 1

Høst 2024

Binærsøk med lenkede lister

Gi en verste tilfelle kjøretidsanalyse av algoritmen nedenfor, som implementerer binærsøk over *lenkede lister*. Hvordan påvirker valget av datastruktur kjøretidskompleksiteten i dette tilfellet?

```
ALGORITHM: BINÆRSØK MED LENKEDE LISTER
   Input: En ordnet lenket liste A og et element x
   Output: Hvis x er i listen A, returner true ellers false
 1 Procedure BinarySearch(A, x)
        \mathsf{low} \gets 0
 2
        \begin{array}{l} \mathsf{high} \leftarrow |\mathsf{A}| - 1 \\ \mathsf{while} \ \mathsf{low} \leq \mathsf{high} \ \mathsf{do} \\ \mid \ i \leftarrow \lfloor \frac{\mathsf{low} + \mathsf{high}}{2} \rfloor \end{array}
              if A.get(i) = x then
 6
               return true
 7
              else if A.get(i) < x then
 8
                 \mathsf{low} \leftarrow i+1
              else if A.get(i) > x then
10
                  high \leftarrow i-1
11
         return false
12
```

Teque

Oppgaven er hentet fra Kattis¹. Vi følger samme format på input- og output, slik at oppgaven deres kan lastes opp på Kattis, men dette er *ikke* et krav. Det er heller ikke nødvendig å oppfylle tidskravet som Kattis stiller.

Deque, eller double-ended queue, er en datastruktur som støtter effektiv innsetting på starten og slutten av en kø-struktur. Den kan også støtte effektivt oppslag på indekser med en array-basert implementasjon.

Dere skal utvide idéen om deque til *teque*, eller *triple-ended queue*, som i tillegg støtter effektiv innsetting i midten. Altså skal *teque* støtte følgende operasjoner:

 $push_back(x)$ sett elementet x inn bakerst i køen.

push_front(x) sett elementet x inn fremst i køen.

push_middle(x) sett elementet x inn i midten av køen. Det nylig insatte elemementet x blir nå det nye midtelementet av køen. Hvis k er størrelsen på køen før innsetting, blir x satt inn på posisjon $\lfloor (k+1)/2 \rfloor$.

get(i) printer det i-te elementet i køen.

Merk at vi bruker 0-baserte indekser.

Input

Første linje av input består av et heltall N, der $1 \le N \le 10^6$, som angir hvor mange operasjoner som skal gjøres på køen.

Hver av de neste N linjene består av en streng S, etterfulgt av et heltall. Hvis S er push_back, push_front eller push_middle, så er S etterfulgt av et heltall x, slik at $1 \le x \le 10^9$. Hvis S er get, så S etterfult av et heltall i, slik at $0 \le i <$ (størrelsen på køen).

Merk at du ikke trenger å ta høyde for ugyldig input på noen som helst måte, og du kan trygt anta at ingen get-operasjoner vil be om en indeks som overstiger størrelsen på køen.

Output

For hver get-operasjon, print verdien som ligger på den i-te indeksen av køen.

Eksempel-input	Eksempel-output
9	3
push_back 9	5
push_front3	9
push_middle5	5
get 0	1
get1	
get 2	
push_middle1	
get1	
get2	

 $^{^{1}} https://open.kattis.com/problems/teque \\$

Oppgaver

- (a) Skriv pseudokode for hver av operasjonene
 - push_back
 - push_front
 - push_middle
 - get

Lavere kjøretidskompleksitet på operasjonene er bedre.

- (b) Skriv et Java eller Python-program som leser input fra stdin og printer output *nøyaktig* slik som beskrevet ovenfor.
- (c) Oppgi en verste-tilfelle kjøretidsanalyse av samtlige operasjoner med \mathcal{O} -notasjon. I analysen fjerner vi begrensningen på N, altså kan N være vilkårlig stor.
- (d) Hvis vi vet at N er begrenset, hvordan påvirker det kompleksiteten i \mathcal{O} -notasjon? Formulert annerledes: Hvorfor er det viktig at vi fjerner begrensningen på N i forrige deloppgave? (Hint: 10^6 er en konstant).