Lecture 4 Part II

FUNCTIONS

Definition

A function (or map) f from a set A to a set B is a rule that assigns to each element $a \in A$ a unique element $f(a) \in B$. We denote such a function by

$$f: A \to B;$$

 $a \mapsto f(a).$

The set A is the **domain** of f and the set B is the **codomain** of f.

4回 > 4回 > 4 回

Tan Kai Meng (NUS) Semester 1, 2019/20 2 / 20

Note

- Note the difference between the arrows \rightarrow and \mapsto in the definition of f.
- When f(a) can be written down as a closed formula in terms of a, we can replace the line $a\mapsto f(a)$ by the explicit formula for f(a). For example,

$$f: \mathbb{R} \to \mathbb{R}; \\ a \mapsto a^2 + a + 1. \qquad = \qquad \begin{cases} f: \mathbb{R} \to \mathbb{R}; \\ f(a) = a^2 + a + 1. \end{cases}$$

Exercise

What is wrong with the following function?

$$f: \mathbb{R} \to \mathbb{R};$$

 $f(x) \mapsto x^2 + 4.$

◆ロト ◆問 > ◆意 > ◆意 > ・ 意 ・ の Q (*)

Definition

A function $f: A \to B$ is well-defined if and only if

- f defines a unique f(a) for each $a \in A$;
- $f(a) \in B$ for each $a \in A$.

Exercise

The following 'functions' are not well-defined. Why?

- $\bullet \ \ f: \mathbb{Z} \to \mathbb{R}; \ f(x) = \sqrt{x}. \qquad \text{sqrt(x) may not be a real number if x<0 => f(a) doesn't }$
- ullet $f: \mathbb{Z}_{\geq 0} o \mathbb{R}; \ f(x) = a \ ext{ where } a^2 = x. rac{ ext{f doesn't defines a unique f(x). f(x) could be sqrt(x) and}}{ ext{sqrt(x)}}$

Note

Every function, by definition, is well-defined. A function that is not well-defined is not a function (a contradiction of terms). Thus checking if a function f is well-defined, is the same as checking if the rule defined by f is a function.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

Tan Kai Meng (NUS)

Semester 1, 2019/20 4 / 20

Arrow Diagrams

A function may be depicted using an arrow diagram.

In the arrow diagram of a well-defined function:

- all arrows originate from the domain and terminate at the co-domain;
- every element in the domain has one and only one arrow originating from it.

Tan Kai Meng (NUS) Semester 1, 2019/20 5 / 20

Some Common Functions

- Let A be a set. The function $I_A: A \to A$; $a \mapsto a$ is called the identity function on A.
- Let B be a subset of A. Then function $\iota_B^A: B \to A$; $b \mapsto b$ is called the **inclusion map** of B in A.
- For $x \in \mathbb{R}$, define |x|, |x| and $\lceil x \rceil$ by:

$$|x| := \begin{cases} x, & \text{if } x \ge 0; \\ -x, & \text{if } x < 0; \end{cases}$$

$$\lfloor x \rfloor := \max\{n \in \mathbb{Z} \mid n \le x\};$$

$$\lceil x \rceil := \min\{n \in \mathbb{Z} \mid x \le n\}.$$

These are the absolute value, floor and ceiling of x respectively. We thus have the absolute value function $\mathbb{R} \to \mathbb{R}$; $x \mapsto |x|$. Similarly, we also have the floor function and ceiling function.

Tan Kai Meng (NUS) Semester 1, 2019/20 6 / 20

Sequences

A **sequence** (or more accurately, an infinite sequence) is a function whose domain is \mathbb{Z}^+ .

For example, a function $f: \mathbb{Z}^+ \to \mathbb{R}$ is a real sequence, and a function $g: \mathbb{Z}^+ \to \mathbb{Z}$ is a sequence of integers.

Sometimes we write a sequence $h:\mathbb{Z}^+\to B$ as an infinite tuple $(h(1),h(2),h(3),\dots)=(h(n))_{n\in\mathbb{Z}^+}.$

We will see more of sequences later in the course.

Tan Kai Meng (NUS)

7 / 20

Images and Preimages

Let $f:A\to B$ be a function. For $a\in A$, if f(a)=b, we say that b is the image of a under f, and that a is a preimage (or an inverse image) of b under f.

Let $X \subseteq A$ and $Y \subseteq B$. Then:

$$f(X) := \{ f(x) \mid x \in X \} = \{ b \in B \mid \exists x \in X, f(x) = b \};$$

$$f^{-1}(Y) := \{ a \in A \mid f(a) \in Y \}.$$

We call f(X) the set of images of X under f, and $f^{-1}(Y)$ the set of preimages of Y under f.

Note

For $a \in A$ and $Y \subseteq B$, we have

$$a \in f^{-1}(Y) \quad \Leftrightarrow \quad f(a) \in Y.$$

→□▶ →□▶ → □▶ → □ ● のQで

Tan Kai Meng (NUS)

Semester 1, 2019/20

8 / 20

Exercise

Let $f: A \to B$ be a function, $X \subseteq A$ and $Y \subseteq B$.

- If $X \neq \emptyset$, can $f(X) = \emptyset$? never
- $\textbf{ 1f } Y \neq \varnothing \text{, can } f^{-1}(Y) = \varnothing \text{? yes }$
- $\textbf{ § Show that if } X' \subseteq X \text{, then } f(X') \subseteq f(X).$
- Show that if $Y' \subseteq Y$, then $f^{-1}(Y') \subseteq f^{-1}(Y)$.

Tan Kai Meng (NUS) Semester 1, 2019/20 9 / 20

Range

Definition

Let $f:A\to B$ be a function. The range of f, denoted by $\Re(f)$, is the set of all images of f, i.e.

$$\Re(f) := \{ f(a) \mid a \in A \} = f(A).$$

Note

Clearly $\Re(f) \subseteq B$, and $f(X) \subseteq \Re(f)$ for all $X \subseteq A$.

Example

- Let A be a set. Then $\Re(I_A) = A$.
- 2 Let B be a subset of A. Then $\Re(\iota_B^A) = B$.
- ① Let $f:\mathbb{R}\to\mathbb{R}$ be defined by $f(x)=x^2$ for all $x\in\mathbb{R}$. Then $\Re(f)=\mathbb{R}_{\geq 0}.$

4D > 4A > 4B > 4B > B 990

Tan Kai Meng (NUS) Semester 1, 2019/20 10 / 20

How to find $\Re(f)$?

When asked to determine the range of a function f:

- Make an intelligent guess what it should be. Let's say it should be the set C.
- Prove that $C = \Re(f)$ (i.e. that $C \subseteq \Re(f)$ and that $\Re(f) \subseteq C$).

Exercise

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 + x + 1$ for all $x \in \mathbb{R}$. Determine the range of f.

Tan Kai Meng (NUS)

Solution.

[Note that $f(x)=x^2+x+1=(x-\frac12)^2+\frac34$. From this we guess that $\Re(f)=\{x\in\mathbb{R}\mid x\geq\frac34.]$

- $\bullet \quad \text{Let } a \in \mathbb{R}.$
 - ② $f(a) = (a \frac{1}{2})^2 + \frac{3}{4} \ge \frac{3}{4}$, so that $f(a) \in \{x \in \mathbb{R} \mid x \ge \frac{3}{4}\}$.
- $\textbf{②} \ \, \mathsf{Thus,} \, \, \Re(f) = \{f(a) \mid a \in \mathbb{R}\} \subseteq \{x \in \mathbb{R} \mid x \geq \tfrac{3}{4}\}.$
- $\textbf{ 1} \quad \text{Let } b \in \{x \in \mathbb{R} \mid x \geq \frac{3}{4}\}.$ [We need to find $a' \in \mathbb{R}$ such that f(a') = b, i.e. $(a' \frac{1}{2})^2 + \frac{3}{4} = b$, which upon solving yields $a' = \frac{1}{2} \pm \sqrt{b \frac{3}{4}}.$]
 - $\textbf{ 2} \quad \text{Then } b-\tfrac{3}{4}\geq 0 \text{ so that } \sqrt{b-\tfrac{3}{4}}\in\mathbb{R}.$
 - $\textbf{ Let } a'=\tfrac12+\sqrt{b-\tfrac34}. \ \ \mathsf{Then} \ a'\in\mathbb{R}, \ \mathsf{and}$ $f(a')=(a'-\tfrac12)^2+\tfrac34=b.$

Tan Kai Meng (NUS) Semester 1, 2019/20 12 / 20

Equality of functions

Definition

Two functions f and g are equal, denoted f = q, if and only if:

- the domains of f and g are equal;
- the codomains of f and g are equal;
- f(x) = g(x) for all x in the domain of f(x) = f(x) for all f(x) = g(x) for all

Exercise

Let B be a subset of A.

- Is $\iota_B^A = I_A$? true iff B = A, otherwise false since f(x) != g(x) Is $\iota_B^A = I_B$? equal.

Composition of Functions

Definition (codomain of F must be equal to domain of G)

Let $f:A\to B$ and $g:B\to C$ be functions. The composition of f with g, denoted $g\circ f$, is the function with domain A and co-domain C that sends $a\in A$ to g(f(a)) for all $a\in A$. In other words,

$$g \circ f : A \to C;$$

 $a \mapsto g(f(a)).$

Exercise

Check that $g \circ f$ is indeed well-defined.

Note

- In order for $g \circ f$ to be defined, we need the codomain of f to be equal to the domain of g.
- We write f^2 for $f \circ f$ (defined when the domain and the codomain of f are equal).

Tan Kai Meng (NUS) Semester 1, 2019/20 14 / 20

Example

Let $f,g:\mathbb{R}\to\mathbb{R}$ be functions defined by f(x)=2x+3 and $g(x)=x^2$ for all $x\in\mathbb{R}$. Then $g\circ f,f\circ g:\mathbb{R}\to\mathbb{R}$, and

$$(g \circ f)(x) = g(f(x)) = g(2x+3) = (2x+3)^2 = 4x^2 + 12x + 9;$$

$$(f \circ g)(x) = f(g(x)) = f(x^2) = 2x^2 + 3$$

for all $x \in \mathbb{R}$.

Example

Let $f:\mathbb{R} \to \mathbb{Z}$, $g:\mathbb{R} \to \mathbb{R}$ and $h:\mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \lfloor x \rfloor + 1,$$
 $g(x) = x + 2,$ $h(x) = \lfloor x \rfloor + 3$

for all $x \in \mathbb{R}$. Then

$$h(x) = \lfloor x \rfloor + 3 = (\lfloor x \rfloor + 1) + 2 = f(x) + 2 = g(f(x))$$

for all $x \in \mathbb{R}$.

Is $h=q\circ f$? no, since the codomain of f is different from the domain of g

Tan Kai Meng (NUS) Semester 1, 2019/20 15 / 20

Exercise

Let $f:A\to B$ be a function. Recall the identity functions I_A and I_B .

Prove that:

- 1. Prove:
- (i) same domain
- (ii) same codomain
- (iii) $f \cdot la(a) = f(la(a)) = f(a)$

Tan Kai Meng (NUS)

Theorem (Associativity of Composition of Functions)

Let $f:A\to B$, $g:B\to C$ and $h:C\to D$ be functions. Then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Proof.

- **1** Both $h \circ (g \circ f)$ and $(h \circ g) \circ f$ have domain A.
- ② Both $h \circ (g \circ f)$ and $(h \circ g) \circ f$ have codomain D.
- \bullet For all $a \in A$,

$$(h \circ (g \circ f))(a) = h((g \circ f)(a)) = h(g(f(a)));$$

 $((h \circ g) \circ f)(a) = (h \circ g)(f(a)) = h(g(f(a))).$

Thus, $(h \circ (g \circ f))(a) = ((h \circ g) \circ f)(a)$.

Tan Kai Meng (NUS)

Semester 1, 2019/20

Remarks

- We may thus write $h \circ g \circ f$ without ambiguity.
- For $f: A \to A$ and $n \in \mathbb{Z}^+$, we write f^n for

$$\underbrace{f \circ f \circ \cdots \circ f}_{n}$$

We further define f^0 to be I_A (so that $f^0(a) = a$ for all $a \in A$) by convention.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Tan Kai Meng (NUS) Semester 1, 2019/20 18 / 20

Commutativity of Composition of Functions?

Is composition of functions commutative in general?

This question is asking if $g\circ f$ and $f\circ g$ are equal, when f and g are functions.

Of course if $g\circ f$ is defined, then we necessarily must have that the codomain of f equals the domain of g, say $f:A\to B$ and $g:B\to C$. Now, for $f\circ g$ to be defined, we need C=A.

Even if C=A, we have $g\circ f:A\to A$ and $f\circ g:B\to B$, so that $g\circ f\neq f\circ g$ unless A=B.

Exercise

If $f:A\to A$ and $g:A\to A$ are functions, then is $f\circ g=g\circ f$?

◆ロト ◆回ト ◆注ト ◆注ト 注 りくぐ

Summary

We have covered:

- How to define a function the correct notation to be used
- Arrow diagram of a function its characteristics
- Domain, codomain and range of a function
- Images and preimages
- When are two functions equal
- Composition of functions always associative, seldom commutative