

Rette linjer

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

Rette linjer

- 1 Rette linjer
 - Koordinatsystem
 - Formel for linje
 - Konstantledd og stigningstall

2 Grafisk avlesning

3 Grafisk løsning av lineære likningssett

Hvis vi skal holde styr på to tall samtidig, kan vi se dem for oss grafisk i et koordinatsystem.

Punktet (x, y) «lagrer» tallet x langs den vannrette aksen og tallet y langs den loddrette aksen.

- Punktet (x, y) «lagrer» tallet x langs den vannrette aksen og tallet y langs den loddrette aksen.
- Vi kan også bruke to tall til å beskrive et punkt.

- Punktet (x, y) «lagrer» tallet x langs den vannrette aksen og tallet y langs den loddrette aksen.
- Vi kan også bruke to tall til å beskrive et punkt.
- Punktet (0,0) kaller vi origo.

- Punktet (x, y) «lagrer» tallet x langs den vannrette aksen og tallet y langs den loddrette aksen.
- Vi kan også bruke to tall til å beskrive et punkt.
- Punktet (0,0) kaller vi origo.
- Vi kommer til å bruke koordinatsystemet til å tegne opp alle punkter som løser en likning.

Vi har likningen y = x + 1. La oss finne noen løsninger.

Når x = -2 er y = -2 + 1 = -1.

- Når x = -2 er y = -2 + 1 = -1.
- Når x = -1 er y = -1 + 1 = 0.

- Når x = -2 er y = -2 + 1 = -1.
- Når x = -1 er y = -1 + 1 = 0.
- Når x = 0 er y = 0 + 1 = 1.

Når
$$x = -2$$
 er $y = -2 + 1 = -1$.

■ Når
$$x = -1$$
 er $y = -1 + 1 = 0$.

Når
$$x = 0$$
 er $y = 0 + 1 = 1$.

Når
$$x = 1$$
 er $y = 1 + 1 = 2$.

Når
$$x = -2$$
 er $y = -2 + 1 = -1$.

■ Når
$$x = -1$$
 er $y = -1 + 1 = 0$.

Når
$$x = 0$$
 er $y = 0 + 1 = 1$.

Når
$$x = 1$$
 er $y = 1 + 1 = 2$.

Når
$$x = 2$$
 er $y = 2 + 1 = 3$.

- Når x = -2 er y = -2 + 1 = -1.
- Når x = -1 er y = -1 + 1 = 0.
- Når x = 0 er y = 0 + 1 = 1.
- Når x = 1 er y = 1 + 1 = 2.
- Når x = 2 er y = 2 + 1 = 3.
- Alle disse punktene ligger på linje.

- Når x = -2 er y = -2 + 1 = -1.
- Når x = -1 er y = -1 + 1 = 0.
- Når x = 0 er y = 0 + 1 = 1.
- Når x = 1 er y = 1 + 1 = 2.
- Når x = 2 er y = 2 + 1 = 3.
- Alle disse punktene ligger på linje.
- Alle punktene på linja er faktisk løsningene til likningen.

Rette linjer

- 1 Rette linjer
 - Koordinatsystem
 - Formel for linje
 - Konstantledd og stigningstall

2 Grafisk avlesning

3 Grafisk løsning av lineære likningssett

Alle likninger på formen $y = a \cdot x + b$ beskriver en linje i koordinatsystemet.

- Alle likninger på formen $y = a \cdot x + b$ beskriver en linje i koordinatsystemet.
- Den mest rett frem måten å tegne den på er å regne ut to punkter.

- Alle likninger på formen $y = a \cdot x + b$ beskriver en linje i koordinatsystemet.
- Den mest rett frem måten å tegne den på er å regne ut to punkter.

Eksempel

Vi skal tegne linja y = -2x + 3.

- Alle likninger på formen $y = a \cdot x + b$ beskriver en linje i koordinatsystemet.
- Den mest rett frem måten å tegne den på er å regne ut to punkter.

Eksempel Vi skal tegne linja y = -2x + 3. Når x = 0 er y = 3, og når x = 1 er v = 1.

- Alle likninger på formen $y = a \cdot x + b$ beskriver en linje i koordinatsystemet.
- Den mest rett frem måten å tegne den på er å regne ut to punkter.

Eksempel

- Vi skal tegne linja y = -2x + 3.
- Når x = 0 er y = 3, og når x = 1 er y = 1.
- Vi kan nå tegne linja mellom punktene.

- En horisontal linje har formen y = k.
- En vertikal linje har formen x = k.

- En horisontal linje har formen y = k.
- En vertikal linje har formen x = k.

- En horisontal linje har formen y = k.
- En vertikal linje har formen x = k.

- En horisontal linje har formen y = k.
- En vertikal linje har formen x = k.

Rette linjer

- 1 Rette linjer
 - Koordinatsystem
 - Formel for linje
 - Konstantledd og stigningstall

2 Grafisk avlesning

3 Grafisk løsning av lineære likningssett

Tallet b i y = ax + b kalles konstantleddet.

- Tallet *b* i *y* = *ax* + *b* kalles konstantleddet.
- Det forteller oss hvor linja kommer til å treffe y-aksen.

- Tallet b i y = ax + b kalles konstantleddet.
- Det forteller oss hvor linja kommer til å treffe y-aksen.

- Tallet b i y = ax + b kalles konstantleddet.
- Det forteller oss hvor linja kommer til å treffe y-aksen.

- Tallet *b* i *y* = *ax* + *b* kalles konstantleddet.
- Det forteller oss hvor linja kommer til å treffe y-aksen.
- Tallet *a* i *y* = *ax* + *b* kalles stigningstallet.

- Tallet *b* i *y* = *ax* + *b* kalles konstantleddet.
- Det forteller oss hvor linja kommer til å treffe y-aksen.
- Tallet a i y = ax + b kalles stigningstallet.
- Det forteller oss hvor fort linja stiger.

- Tallet *b* i *y* = *ax* + *b* kalles konstantleddet.
- Det forteller oss hvor linja kommer til å treffe y-aksen.
- Tallet a i y = ax + b kalles stigningstallet.
- Det forteller oss hvor fort linja stiger.

- Tallet b i y = ax + b kalles konstantleddet.
- Det forteller oss hvor linja kommer til å treffe y-aksen.
- Tallet a i y = ax + b kalles stigningstallet.
- Det forteller oss hvor fort linja stiger.

- Tallet b i y = ax + b kalles konstantleddet.
- Det forteller oss hvor linja kommer til å treffe y-aksen.
- Tallet a i y = ax + b kalles stigningstallet.
- Det forteller oss hvor fort linja stiger.
- Om du går ett steg til siden, går linja a steg opp.

Oppgave

Oppgave

Tegn linjene
$$y = 2x - 1$$
 og $y = -\frac{1}{2}x + 2$.

Linja y = 2x - 1 går gjennom -1 på y-aksen.

Oppgave

- Linja y = 2x 1 går gjennom -1 på y-aksen.
- Om vi går ett steg til siden, skal vi gå opp 2.

Oppgave

- Linja y = 2x 1 går gjennom -1 på y-aksen.
- Om vi går ett steg til siden, skal vi gå opp 2.

Oppgave

- Linja y = 2x 1 går gjennom -1 på y-aksen.
- Om vi går ett steg til siden, skal vi gå opp 2.
- Linja $y = -\frac{1}{2}x + 2$ går gjennom 2 på y-aksen.

Oppgave

- Linja y = 2x 1 går gjennom -1 på y-aksen.
- Om vi går ett steg til siden, skal vi gå opp 2.
- Linja $y = -\frac{1}{2}x + 2$ går gjennom 2 på y-aksen.
- Om vi går to steg til siden, skal vi gå ned 1.

Oppgave

- Linja y = 2x − 1 går gjennom −1 på y-aksen.
- Om vi går ett steg til siden, skal vi gå opp 2.
- Linja $y = -\frac{1}{2}x + 2$ går gjennom 2 på y-aksen.
- Om vi går to steg til siden, skal vi gå ned 1.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET