

# **OPERATIONS MANUAL**

## **EBC-BX**

WinSystems reserves the right to make changes in the circuitry  
and specifications at any time without notice.

© Copyright 2003 by WinSystems. All Rights Reserved.

## **REVISION HISTORY**

**P/N 403-0307-000**

| <b>ECO Number</b> | <b>Date Code</b> | <b>Rev Level</b> |
|-------------------|------------------|------------------|
| ORIGINATED        | 030124           | B                |
| 03-57             | 030923           | C                |

# TABLE OF CONTENTS

| Section Number | Paragraph Title              | Page Number |
|----------------|------------------------------|-------------|
| 1              | General Information          |             |
| 1.1            | Features                     | 1-1         |
| 1.2            | General Description          | 1-1         |
| 1.3            | Specifications               | 1-2         |
| 2              | EBC-BX Technical Reference   |             |
| 2.1            | Introduction                 | 2-1         |
| 2.2            | Intel FW82430BX Chipset      | 2-1         |
| 2.3            | Memory Installation          | 2-1         |
| 2.4            | Interrupt Routing            | 2-2         |
| 2.5            | Power/Reset Connections      | 2-3         |
| 2.6            | Mouse Interface              | 2-3         |
| 2.7            | Real Time Clock/Calendar     | 2-4         |
| 2.8            | Keyboard Interface           | 2-4         |
| 2.9            | Serial Interface             | 2-5         |
| 2.10           | Parallel Printer Port        | 2-12        |
| 2.11           | Speaker/Sound Interface      | 2-12        |
| 2.12           | PC/104 Interface             | 2-12        |
| 2.13           | PC/104-Plus Bus Interface    | 2-13        |
| 2.14           | Floppy Interface             | 2-14        |
| 2.15           | IDE Hard Disk Interface      | 2-15        |
| 2.16           | Watchdog Timer Configuration | 2-16        |
| 2.17           | Status LED                   | 2-16        |
| 2.18           | Battery Select Control       | 2-16        |
| 2.19           | DiskOnChip Configuration     | 2-17        |
| 2.20           | Parallel I/O                 | 2-18        |
| 2.21           | VGA Configuration            | 2-21        |
| 2.22           | Ethernet Controller          | 2-23        |
| 2.23           | Fan Power Connector          | 2-24        |
| 2.24           | Multi-I/O Connector          | 2-25        |
| 2.25           | USB Connector                | 2-25        |
| 2.26           | Jumper/Connector Summary     | 2-26        |
| 3              | Award BIOS Configuration     |             |
| 3.1            | General Information          | 3-1         |
| 3.2            | Entering Setup               | 3-1         |
| 3.3            | Setup Main Menu              | 3-1         |
| 3.4            | Standard CMOS Setup          | 3-2         |
| 3.5            | Advanced BIOS Features Setup | 3-6         |
| 3.6            | Chipset Features Setup       | 3-11        |
| 3.7            | Integrated Peripherals Setup | 3-14        |
| 3.8            | Power Management Setup       | 3-19        |
| 3.9            | PnP/PCI Configuration        | 3-23        |

|                   |                                                         |      |
|-------------------|---------------------------------------------------------|------|
| 3.10              | PC Health Status                                        | 3-25 |
| 3.11              | Frequency/Voltage Control                               | 3-25 |
| 3.12              | Load BIOS Defaults                                      | 3-26 |
| 3.13              | Set Supervisor Password                                 | 3-27 |
| 3.14              | Set User Password                                       | 3-27 |
| 3.15              | Save & Exit Setup                                       | 3-27 |
| 3.16              | Exit without Saving                                     | 3-27 |
| <b>4</b>          | <b>EBC-BX DiskOnChip Configuration</b>                  |      |
| 4.1               | DiskOnChip Usage                                        | 4-1  |
| 4.2               | DOC Initialization                                      | 4-1  |
| <b>5</b>          | <b>WS16C48 Programming Reference</b>                    |      |
| 5.1               | Introduction                                            | 5-1  |
| 5.2               | Function Definitions                                    | 5-1  |
| 5.3               | Sample Programs                                         | 5-6  |
| <b>APPENDIX A</b> | <b>I/O Port Map</b>                                     |      |
| <b>APPENDIX B</b> | <b>Interrupt Map</b>                                    |      |
| <b>APPENDIX C</b> | <b>EBC-BX Parts Placement Guide</b>                     |      |
| <b>APPENDIX D</b> | <b>EBC-BX Parts List</b>                                |      |
| <b>APPENDIX E</b> | <b>EBC-BX Mechanical Drawing</b>                        |      |
| <b>APPENDIX F</b> | <b>WS16C48 I/O Routines and Sample Program Listings</b> |      |

# 1 General Information

## 1.1 Features

- Intel Low Power Celeron Processors and Low Power Pentium III processors
- EBX-compliant board
- 256KB/128KB of pipeline burst L2 cache (Pentium III/Celeron)
- Up to 256MB of SDRAM
- Socket for bootable DiskOnChip or DIP socket for BIOS extension support of Flash or ROM
- PC Compatible uses Intel 443BX chip set
- On board high resolution AGP 1X video controller
- Flat panel video support
- Supports resolutions up to 1280 x 1024
- Simultaneous CRT and LCD operation
- PC-104/Plus and PC/104 expansion buses
- 10/100 Mbps Ethernet using Intel 82559
- 4 RS-232 serial ports with FIFO, COM1 & COM2 supports optional RS-422/485/J1708 support
- Bi-directional LPT port supports EPP/ECP
- Dual IDE channels support UDMA-33 and UDMA-66 Drives
- 48 bi-directional TTL digital I/O lines

## 1.2 General Description

The EBC-BX is a small, high-performance, embeddable computer system on a single board. It integrates a number of popular I/O options including AGP 1X VGA, Ethernet, Solid-State Disk, and High-Density Parallel I/O. Four PC compatible serial ports are standard, as are the floppy, hard disk, and parallel printer interfaces. The EBC-BX is populated with either an Intel low power Celeron processor or an Intel low power Pentium III processor at speeds from 300 to 700 MHz. Up to 256Mbytes of user installable DIMM memory is supported. A 16-bit PC/104 expansion bus and the PC/104Plus bus is provided for further expansion to an entire industry of add-on peripherals including sound and speech modules, SCSI controllers, Analog I/O modules, and literally hundreds of other options available from WinSystems and a variety of vendors supporting the PC/104 and PC/104-Plus standards. An onboard 32-pin silicon disk socket supports the M-Systems' Disk On Chip Flash modules in sizes ranging from 8 Megabytes to over 500 Megabytes.

## 1.3 Specifications

### 1.3.1 Electrical

Bus Interface : PC/104 8-Bit or 16-Bit expansion bus  
PC/104-Plus 32-bit expansion bus

System Clock : FSB 100MHz

Interrupts : TTL Level input

VCC : +5V +/- 5% at 2.75A typical with an Intel 400Mhz Celeron processor with 32MB SDRAM  
+5V +/-5% at 3.4A typical with an Intel Pentium III processor at 700 Mhz with 32MB SDRAM

VCC1 : +12V +/-5% (Not required. PC/104 Expansion, Flat Panel, use only)

VCC2 : -12V +/-5% (Not required. PC/104 Expansion or Flat Panel use only)

VCC3: 3.3V (Not required. PC/104 Plus expansion use only)

Memory Addressing : 256 Megabyte addressing

BIOS ROM : 256K Atmel Flash (reprogrammable on board)

Memory DIMM Socket : 168-pin 3.3V Dimm Module; PC-100 SDRAM Module

SSD Memory : One 32-pin JEDEC standard socket supporting the M-Systems' 32-Pin DOC (DiskOnChip) module.

### 1.3.2 Mechanical

Dimensions : 5.75 X 8.0 X 0.60 inches (without PC/104 modules or cables)

PC-Board : FR4 Epoxy Glass with 6 signal layers and 4 power planes with screened component legend, and plated through holes

Jumpers : 0.025" square posts on 0.10" centers

Connectors : Multi I/O : 50-pin RN type IDH-50LP  
COM3/COM4 : 20-pin RN type IDH-20LP  
Floppy Disk : 34-pin RN type IDH-34-LP

|                   |                                                                        |
|-------------------|------------------------------------------------------------------------|
| CRT :             | 14-pin 2mm Molex Type 87331-1420                                       |
| Flat Panel :      | Two, 50-pin 2mm Molex type 87331-5020                                  |
| Power/Reset :     | 9-pin in-line Molex type 26-60-7091                                    |
| Fan Power :       | 3-pin in-line Molex type 22-11-2032                                    |
| Mouse :           | 5-pin in-line latching Molex type 22-11-2052                           |
| USB :             | 4-pin in-line latching Molex type 22-11-2042                           |
| PC/104 Bus :      | 64-Pin SAMTEC type ESQ-132-12-G-D<br>40-Pin SAMTEC type ESQ-120-12-G-D |
| PC/104-Plus Bus : | 120-Pin SAMTEC type TS-30-Q                                            |
| IDE :             | Two 40-pin 2mm Molex Type 70246-4021                                   |
| Ethernet :        | RJ-45                                                                  |

### 1.3.3 Environmental :

Operating Temperature : -40° to +60° C

Non-condensing relative humidity : 5% to 95%

## 2 EBC-BX Technical Reference

### 2.1 Introduction

This section of the manual is intended to provide sufficient information regarding the configuration and usage of the EBC-BX board. WinSystems maintains a Technical Support group to help answer questions regarding configuration, usage, or programming of the board. For answers to questions not adequately addressed in this manual, contact Technical Support at (817) 274-7553 between 8AM and 5PM Central Time.

### 2.2 Intel FW82443BX / SMSC Victory-66 Chipset

The EBC-BX utilizes the Intel FW82443BX North bridge coupled with the SMSC Victory-66 South bridge. This combined chipset provides a highly-integrated, high-performance backbone for full Pentium class compatibility. The Chipset contains the logic for DRAM and bus state control as well as the standard complement of 'AT' class peripherals, including :

- Two-82C37 DMA controllers
- Two-82C59 Interrupt controllers
- 82C54 Timer/Counter
- Real Time Clock
- Enhanced Power Management
- Full Plug and Play compatibility

These functional units are 100% PC/AT compatible and are supported by the Award BIOS and setup. Users desiring to access these internal peripherals directly should refer to any manufacturer's generic literature on the equivalent discrete component.

There are a number of internal registers within the BX chipset that are used by the BIOS for control and configuration. Refer to the I/O map in Appendix A for port usage to avoid conflicts when adding external I/O devices.

### 2.3 Memory Installation

The EBC-BX supports a single user installable 168-pin standard DIMM. DIMM modules should be a minimum speed of PC-100 and x64 or x72. Either ECC or non-ECC parts may be used. A single DIMM socket is provided which can support SDRAM sizes from 32MB to 256MB. For a list of qualified DIMMs, go to <http://www.winsystems.com/memory>

Installation is accomplished with power off by inserting the DIMM module directly into the connector at M1. The DIMM module is keyed in 2 places and cannot be inserted backwards without ex-

treme force. The module is inserted until the retaining clips snap into place. Removal is the reverse process. Push down on the retaining clips, moving them outward. The DIMM module, once released, will be forced up to an appropriate removal position.

## 2.4 Interrupt Routing

All interrupts on the EBC-BX are routed to their respective PC/104 bus pins. On board non-PnP peripherals, are routed to their typical usage interrupts using the jumper block at J19. This block allows disconnecting or rerouting of the onboard interrupts. The layout for the J19 header and the default jumper settings are shown below.



| J19   |    |        |
|-------|----|--------|
| IRQ3  | 1  | o o 2  |
| IRQ4  | 3  | o o 4  |
| IRQ5  | 5  | ■ 6    |
| IRQ7  | 7  | o o 8  |
| IRQ6  | 9  | o o 10 |
| IRQ14 | 11 | ■ 12   |
| IRQ15 | 13 | ■ 14   |
| IRQ12 | 15 | o o 16 |
| IRQ11 | 17 | o o 18 |
| IRQ10 | 19 | ■ 20   |
| IRQ9  | 21 | ■ 22   |

## 2.5 Power/Reset Connections

Power is applied to the EBC-BX via the connector at J3 (Molex part number 26-60-7091). The pin definitions for J3 are given below. An optional push-button-reset (Normally Open) may also be routed into J3 if desired. Momentary closure to ground forces a hardware reset.



**Note :** The 3.3 Volt input pin does not provide power to any devices on the board. It is routed directly to the PC/104Plus Bus and is only required if there are PC/104Plus cards that require 3.3 Volts supplied from the Bus. The +12 and -12 Volt pins are routed directly to the PC/104 connectors and flat-panel connectors and are not required for normal board operation.

## 2.6 Mouse Interface

A PS/2 mouse may be attached via the connector at J1. An adapter cable, CBL-225-1 is available from Win Systems to adapt to a conventional PS/2 mouse connector. The pin out for J1 is shown here.



## 2.7 Real Time Clock/Calendar

The EBC-BX contains an onboard Clock/Calendar within the Victory-66 chip. This clock is fully compatible with the MC146818A used in the original PC-AT computers. This clock has a number of features including periodic and alarm interrupt capabilities. In addition to the time and date keeping functions, the system configuration is kept within the CMOS RAM contained in the clock section. This RAM holds all of the setup information regarding hard and floppy disk types, video type, shadowing, wait states, etc. Refer to the section on the Award BIOS Setup for what is configured via the CMOS RAM.



It may be necessary at some time to make the CMOS RAM forget its current configuration and start fresh with factory defaults. This may be accomplished by removing power from the board. Then remove the jumper from pins 2-3 on J27 and place on pins 1-2 for 10 seconds. Replace the jumper on J27 pins 2-3, power-up, and reconfigure the CMOS settings as desired.

If it is desired to operate the board without a battery J27 must be jumpered on pins 1-2.

## 2.8 Keyboard Interface

The EBC-BX contains an onboard PS/2 style keyboard controller. Keyboard connection is made through the Multi-I/O connector at J2. An adapter cable P/N CBL-247-1 is available from Win Systems to make ready access to all of the devices terminated at the Multi-I/O connector. Users desiring custom connections should refer to the Multi-I/O connector pin definitions given later in this manual.

## 2.9 Serial Interface



The EBC-BX provides four 16550 compatible RS-232 serial ports at the following addresses :

|      |       |            |              |
|------|-------|------------|--------------|
| COM1 | 3F8H  | at IRQ 4   | (PnP Device) |
| COM2 | 2F8H  | at IRQ 3   | (PnP Device) |
| COM3 | 3E8H* | at IRQ 5** |              |
| COM4 | 2E8H* | at IRQ 9** |              |

\*COM ports 3 and 4 can be enabled or disabled individually via the jumper block at J24. When J24 pins 1-2 are jumpered, COM3 is enabled. When J24 pins 3-4 are jumpered, COM4 is enabled.

\*\*The interrupts are not disconnected when COM3 or COM4 are disabled. Use the interrupt routing block J19 described earlier to disconnect the default interrupts if desired.

The two primary serial ports, COM1 and COM2 are configurable for RS-422, RS-485 or J1708, with the addition of optional driver ICs (Win Systems P/N CK-75176-2). The configuration options for each of the supported modes are shown on the following pages. Connection to COM1 and COM2 is made through the Multi-I/O connector at J2. An adapter cable (P/N CBL-247-1) is available from Win-Systems to adapt to standard DB9 connectors.

### COM1 - RS-232



### COM2 - RS-232



## **COM3/COM4 - RS-232**

COM3 and COM4 are RS-232 only and are terminated at J4. An adapter cable is available from WinSystems (P/N CBL-173-1), which adapts J4 to two standard DB9M connectors. The pin definitions for J4 are shown here :

| J4       |           |
|----------|-----------|
| COM3 DCD | 1 o o 2   |
| COM3 RX  | 3 o o 4   |
| COM3 TX  | 5 o o 6   |
| COM3 DTR | 7 o o 8   |
| GND      | 9 o o 10  |
| COM4 DCD | 11 o o 12 |
| COM4 RX  | 13 o o 14 |
| COM4 TX  | 15 o o 16 |
| COM4 DTR | 17 o o 18 |
| GND      | 19 o o 20 |
| COM3 DSR |           |
| COM3 RTS |           |
| COM3 CTS |           |
| COM3 RI  |           |
| N/C      |           |
| COM4 DSR |           |
| COM4 RTS |           |
| COM4 CTS |           |
| COM4 RI  |           |
| N/C      |           |

### **2.9.1 RS-422 Mode Configuration**

RS-422 levels are supported on both COM1 and COM2 with the installation of the optional "Chip Kit", WinSystems part number CK-75176-2. This kit provides the driver ICs necessary for a single channel of RS-422. If two channels of RS-422 are required then two kits will be needed. RS-422 is a 4-wire point-to-point full-duplex interface allowing much longer cable runs than are possible with RS-232. The differential transmitter and receiver twisted pairs offer a high degree of noise immunity. RS-422 usually requires the lines be terminated at both ends. This termination can be accomplished either on the cable or by installing resistors on the board in locations reserved for them. The method for determining the correct resistor values is beyond the scope of this document but it is recommended that trial values of 100 ohms be used in all three locations at the receiver end. The following illustration shows the correct mode jumpering, driver IC installation, I/O connector pin definitions, and terminationresistor locations for each of the channels when used in RS-422 mode.

## COM1 - RS-422



**RS-422 NOTE :** When used in RS-422 mode, the transmitter must be enabled by setting the RTS bit in the Modem Control Register (Bit1).

**\*Important Note:** All serial termination components are surface mount 0805 packages on the bottom side of the board. These should only be installed by surface mount qualified individuals.

## COM2 - RS-422



**RS-422 NOTE:** When used in RS-422 mode, the transmitter must be enabled by setting the RTS bit in the Modem Control Register (Bit).

## 2.9.2 RS-485 Mode Configuration

The RS-485 Multi-drop interface is supported on both channels with the installation of the optional “Chip Kit”, WinSystems’ part number CK-75176-2. A single kit is sufficient to configure both channels for RS-485. RS-485 is a 2-wire multi-drop interface where only one station at a time talks (transmits) while all others listen (receive). RS-485 usually requires the twisted pair be terminated at each end of the run. The required termination values are dependent upon a number of factors including: line impedance, line length, etc. A good trial value is 100 ohms in all three resistor locations. The following illustrations show the correct jumpering, driver IC installation, I/O connector pinout, and termination resistor locations for each of the channels when used in RS-485 mode.

### COM1 - RS-485



**RS-485 NOTE :** Because RS-485 uses a single twisted-pair, all transmitters are connected in parallel. Only one station at a time may transmit or have its transmitter enabled. The transmitter Enable/Disable is controlled in software using bit 1 in the Modem Control Register (RTS). When RTS is set, the transmitter is enabled, and when cleared (the normal state) the transmitter is disabled and the receiver is enabled. Note that it is necessary to allow some minimal settling time after enabling the transmitter before transmitting the first character. Likewise, following a transmission, it is necessary to be sure that all characters have been completely shifted out of the UART (Check Bit 6 in the Line Status Register) before disabling the transmitter to avoid chopping off the last character.

**Important Note:** All serial termination components are surface mount 0805 packages on the bottom of the board. These should only be installed by surface mount qualified individuals.

## COM2 - RS-485



**RS-485 NOTE :** Because RS-485 uses a single twisted-pair, all transmitters are connected in parallel. Only one station at a time may transmit or have its transmitter enabled. The transmitter Enable/Disable is controlled in software using bit 1 in the Modem Control Register (RTS). When RTS is set, the transmitter is enabled, and when cleared (the normal state) the transmitter is disabled and the receiver is enabled. Note that it is necessary to allow some minimal settling time after enabling the transmitter before transmitting the first character. Likewise, following a transmission, it is necessary to be sure that all characters have been completely shifted out of the UART (Check Bit 6 in the Line Status Register) before disabling the transmitter to avoid chopping off the last character.

**Important Note : All serial termination components are surface mount 0805 packages. These should only be installed by surface mount qualified individuals.**

### 2.9.3 SAE J1708 Configuration

The Society of Automotive Engineers (SAE) J1708 interface is a variation of the RS-485 interface which is used for "Serial Data Communications between Microcomputer Systems in Heavy Duty Vehicle Applications". It is beyond the scope of this document to go into detail on the J1708 specification. The EBC-BX may be user configured for J1708 by the addition of the CK-75176-2 "Chip Kit". One "Chip Kit" is sufficient to configure both channels for J1708. The illustrations that follow show the correct jumpering, driver IC installation, I/O connector pin definitions, and the termination network details for each of the channels when used in J1708 mode.

## COM1 - J1708



**Important Note :** All serial termination components are surface mount 0805 packages on the bottom of the board. These should only be installed by surface mount qualified individuals.

## COM2 - J1708



## 2.10 Parallel Printer Port

The EBC-BX supports a fully bi-directional parallel printer port capable of EPP and ECP operations. The PnP parallel port is mapped by default at 378H and is terminated at the Multi-I/O connectors at J3. Other I/O and interrupt mapping are available using the Award BIOS setup menu options. The pin definitions for the parallel port DB25 connector when using the CBL-247-1 cable are shown below:

|        |      |      |        |
|--------|------|------|--------|
| STROBE | 1 o  | o 14 | AUTOFD |
| PD0    | 2 o  | o 15 | ERROR  |
| PD1    | 3 o  | o 16 | INIT   |
| PD2    | 4 o  | o 17 | SLIN   |
| PD3    | 5 o  | o 18 | GND    |
| PD4    | 6 o  | o 19 | GND    |
| PD5    | 7 o  | o 20 | GND    |
| PD6    | 8 o  | o 21 | GND    |
| PD7    | 9 o  | o 22 | GND    |
| ACK    | 10 o | o 23 | GND    |
| BUSY   | 11 o | o 24 | GND    |
| PE     | 12 o | o 25 | GND    |
| SLCT   | 13 o |      | GND    |

## 2.11 Speaker/Sound Interface

The EBC-BX utilizes a high-impedance piezo type device for audio output. BIOS beep codes, error signaling, or user-defined tones can be presented via this device.

## 2.12 PC/104 Bus Interface

The EBC-BX supports I/O expansion through the standard PC/104 connectors at J20 and J23. The EBC-BX supports both 8-bit and 16-bit PC/104 modules. The PC/104 connector pin definitions are provided on the following page for reference purposes.

|         | J23 |   |     | J20     |      |     |         |
|---------|-----|---|-----|---------|------|-----|---------|
| GND     | B1  | o | A1  | IOCHK   |      |     | GND     |
| RESET   | B2  | o | A2  | BD7     |      |     | MEMCS16 |
| +5V     | B3  | o | A3  | BD6     | LA23 | C1  | o       |
| IRQ9    | B4  | o | A4  | BD5     | LA22 | C2  | o       |
| -5V     | B5  | o | A5  | BD4     | LA21 | C3  | o       |
| DRQ2    | B6  | o | A6  | BD3     | LA20 | C4  | o       |
| -12V    | B7  | o | A7  | BD2     | LA19 | C5  | o       |
| 0WS     | B8  | o | A8  | BD1     | LA18 | C6  | o       |
| +12V    | B9  | o | A9  | BD0     | LA17 | C7  | o       |
| GND     | B10 | o | A10 | IOCHRDY | MEMR | C8  | o       |
| MEMW    | B11 | o | A11 | AEN     | MEMW | C9  | o       |
| MEMR    | B12 | o | A12 | SA19    | SD8  | C10 | o       |
| IOW     | B13 | o | A13 | SA18    | SD9  | C11 | o       |
| IOR     | B14 | o | A14 | SA17    | SD10 | C12 | o       |
| DACK3   | B15 | o | A15 | SA16    | SD11 | C13 | o       |
| DRQ3    | B16 | o | A16 | SA15    | SD12 | C14 | o       |
| DACK1   | B17 | o | A17 | SA14    | SD13 | C15 | o       |
| DRQ1    | B18 | o | A18 | SA13    | SD14 | C16 | o       |
| REFRESH | B19 | o | A19 | SA12    | SD15 | C17 | o       |
| SYSCLK  | B20 | o | A20 | SA11    | KEY  | C18 | o       |
| IRQ7    | B21 | o | A21 | SA10    |      | C19 | o       |
| IRQ6    | B22 | o | A22 | SA9     |      |     |         |
| IRQ5    | B23 | o | A23 | SA8     |      |     |         |
| IRQ4    | B24 | o | A24 | SA7     |      |     |         |
| IRQ3    | B25 | o | A25 | SA6     |      |     |         |
| DACK2   | B26 | o | A26 | SA5     |      |     |         |
| TC      | B27 | o | A27 | SA4     |      |     |         |
| BALE    | B28 | o | A28 | SA3     |      |     |         |
| +5V     | B29 | o | A29 | SA2     |      |     |         |
| OSC     | B30 | o | A30 | SA1     |      |     |         |
| GND     | B31 | o | A31 | SA0     |      |     |         |
| GND     | B32 | o | A32 | GND     |      |     |         |

## 2.13 PC/104Plus Bus Interface

The EBC-BX supports I/O expansion through the standard PC/104Plus connector at J22. The PC/104Plus Bus pin definitions are provided on the following page for reference purposes.

| J22 |             |          |          |              |
|-----|-------------|----------|----------|--------------|
| Pin | A           | B        | C        | D            |
| 1   | GND/5.0 KEY | Reserved | +5       | AD00         |
| 2   | VI/O        | AD02     | AD01     | +5V          |
| 3   | AD05        | GND      | AD04     | AD03         |
| 4   | C/BE0*      | AD07     | GND      | AD06         |
| 5   | GND         | AD09     | AD08     | GND          |
| 6   | AD11        | VI/O     | AD10     | M66EN        |
| 7   | AD14        | AD13     | GND      | AD06         |
| 8   | +3.3V       | C/BE1*   | AD15     | +3.3V        |
| 9   | SERR*       | GND      | SB0*     | PAR          |
| 10  | GND         | PERR*    | +3.3V    | SDONE        |
| 11  | STOP*       | +3.3V    | LOCK*    | GND          |
| 12  | +3.3V       | TRDY*    | GND      | DEVSEL*      |
| 13  | FRAME*      | GND      | IRDY*    | +3.3V        |
| 14  | GND         | AD16     | +3.3.V   | C/BE3*       |
| 15  | AD18        | +3.3V    | AD17     | GND          |
| 16  | AD21        | AD20     | GND      | AD19         |
| 17  | +3.3V       | AD23     | AD22     | +3.3V        |
| 18  | IDSEL0      | GND      | IDSEL1   | IDSEL2       |
| 19  | AD24        | C/BE3*   | VI/O     | IDSEL3       |
| 20  | GND         | AD26     | AD25     | GND          |
| 21  | AD29        | +5V      | AD28     | AD27         |
| 22  | +5V         | AD30     | GND      | AD31         |
| 23  | REQ0*       | GND      | REQ1*    | VI/O         |
| 24  | GND         | REQ2*    | +5V      | GNT0*        |
| 25  | GNT1*       | VI/O     | GNT2*    | GND          |
| 26  | +5V         | CLK0     | GND      | CLK1         |
| 27  | CLK2        | +5V      | CLK3     | GND          |
| 28  | GND         | INTD*    | +5V      | RST*         |
| 29  | +12V        | INTA*    | INTB*    | INTC*        |
| 30  | -12V        | Reserved | Reserved | GND/3.3V KEY |

## 2.14 Floppy Disk Interface

The EBC-BX supports up to 2 standard 3 1/2" or 5 1/4" PC compatible floppy disk drives. The drives are connected via the I/O connector at J10. Note that the interconnect cable to the drives is a standard floppy I/O cable used on desktop PCs. The cable must have the twisted section prior to the drive A position. The pin definitions for the J10 connector are shown on the following page:

| J10 |    |   |             |
|-----|----|---|-------------|
| GND | 1  | o | o 2         |
| GND | 3  | o | o 4         |
| GND | 5  | o | o 6         |
| GND | 7  | o | o 8 INDEX   |
| GND | 9  | o | o 10 MTR0   |
| GND | 11 | o | o 12 DRV1   |
| GND | 13 | o | o 14 DRV0   |
| GND | 15 | o | o 16 MTR1   |
| GND | 17 | o | o 18 DIR    |
| GND | 19 | o | o 20 STEP   |
| GND | 21 | o | o 22 WDATA  |
| GND | 23 | o | o 24 WGATE  |
| GND | 25 | o | o 26 TRK0   |
| GND | 27 | o | o 28 WPRT   |
| GND | 29 | o | o 30 RDATA  |
| GND | 31 | o | o 32 HDSEL  |
| GND | 33 | o | o 34 DSKCHG |

## 2.15 IDE Hard Disk Interface

The EBC-BX supports standard IDE fixed disks through the I/O connectors at J5 (primary) and J8 (secondary). The EBC-BX supports multiple PIO modes as well as Ultra-DMA (UDMA)33 and UDMA 66 drives when used with an UDMA 80-pin cable (WinSystems P/N CBL-126-10). A red activity LED is present at D3 and D2 for the primary and secondary hard drive controllers respectively. The pin definitions for J5 and J8 are shown here:

| J5 and J8 |    |   |          |
|-----------|----|---|----------|
| RST       | 1  | o | o 2 GND  |
| D7        | 3  | o | o 4 D8   |
| D6        | 5  | o | o 6 D9   |
| D5        | 7  | o | o 8 D10  |
| D4        | 9  | o | o 10 D11 |
| D3        | 11 | o | o 12 D12 |
| D2        | 13 | o | o 14 D13 |
| D1        | 15 | o | o 16 D14 |
| D0        | 17 | o | o 18 D15 |
| LED       | 19 | o | o 20 N/C |
| DRQ       | 21 | o | o 22 GND |
| IOW       | 23 | o | o 24 GND |
| IOR       | 25 | o | o 26 GND |
| RDY       | 27 | o | o 28 NC  |
| DACK      | 29 | o | o 30 GND |
| IRQ       | 31 | o | o 32 NC  |
| A1        | 33 | o | o 34 NC  |
| A0        | 35 | o | o 36 A2  |
| CS1       | 37 | o | o 38 CS3 |
| VCC       | 39 | o | o 40 GND |

## 2.16 Watchdog Timer Configuration



The EBC-BX board features a power-on voltage detect, and power-down/power brownout reset circuit to protect memory and I/O from faulty CPU operation during periods of illegal voltage levels. This supervisor circuitry also features a watchdog timer which can be used to guard against software lock ups. An internal timer with a period of 1.5 or 150 seconds will, when enabled, reset the CPU if the watchdog has not been serviced within the allotted time. The watchdog timer powers-up disabled and must be enabled in software before timing will begin. Enabling is accomplished by writing a 1 to I/O port 1EEH. Writing a 0 to I/O port 1EEH will disable the watchdog. After enabling, resetting may be accomplished by writing any value to I/O port 1EFH at least every 1.5 if J21 is not jumpered or at least every 150 seconds if J21 is jumpered, or a reset will occur. This mode of operation can be used with the BIOS or DOS provided that the watchdog is disabled before making any extensive BIOS or DOS calls, especially video or disk I/O calls which could exceed the time seconds allowed when the 1.5 second mode is used.

## 2.17 Status LED

A green LED is populated on the board at D1 which can be used for any application specific purpose. The LED can be turned on in software by writing a 1 to I/O port 1EDH. The LED can be turned off by writing a 0 to 1EDH.

## 2.18 Battery Select Control

An onboard 350mAH nominal capacity, lithium battery is provided for the CMOS Clock/Calendar. A master battery enable jumper is provided at J27. When J27 is jumpered pins 2-3, battery power is supplied to the Clock/Calendar. When J27 is jumpered pins 1-2, the battery is totally disconnected and no current will be drawn from it. Battery life is highly dependent upon duty cycle as there is no current drawn from the battery when +5 volts is applied to the board. Both storage and operational temperatures play a prominent factor in battery life. High temperatures will shorten battery life significantly. J27 must be jumpered 1-2 if a battery is not installed.

## 2.19 DiskOnChip Configuration

The DiskOnChip can be enabled by jumpering J12 and J13 as shown below.



**Note : J13 pins 1-2 control BIOS write, and must be jumpered at all times for proper Plug-N-Play operation.**





## 2.20 Parallel I/O

The EBC-BX utilizes the Win Systems WS16C48 ASIC high-density I/O chip mapped at a base address of 120H. The first 24 lines are capable of fully latched event sensing with sense polarity being software programmable. Two, 50-pin connectors allow for easy mating with industry standard I/O racks. The pinout for the two connectors are shown on the next page.

### 2.20.1 Parallel I/O Enable

The parallel features of the EBC-BX can be enabled or disabled using the jumper block at J6. When J6 is jumpered the parallel I/O is enabled at I/O address 120H. When J6 is open the 16 addresses starting at I/O address 120H are free for use by other devices.

### 2.20.2 Parallel I/O VCC Enable

The I/O connectors can provide +5 volts to an I/O rack or for miscellaneous purposes by jumpering J14. When J14 is jumpered +5 volts is provided at pin 49 of both J7 and J9. It is the user's responsibility to limit current to a safe value (less than 400mA) to avoid damaging the CPU board.

### 2.20.3 Parallel I/O Connectors

The 48 lines of parallel I/O are terminated through two 50-pin connectors at J7 and J9. The J7 connector handles I/O ports 0-2 while J9 handles ports 3-5. The pin definitions for J7 and J9 are shown on the following page.

| J7           | J9           |
|--------------|--------------|
| Port 2 Bit 7 | 1 o o 2      |
| Port 2 Bit 6 | 3 o o 4      |
| Port 2 Bit 5 | 5 o o 6      |
| Port 2 Bit 4 | 7 o o 8      |
| Port 2 Bit 3 | 9 o o 10     |
| Port 2 Bit 2 | 11 o o 12    |
| Port 2 Bit 1 | 13 o o 14    |
| Port 2 Bit 0 | 15 o o 16    |
| Port 1 Bit 7 | 17 o o 18    |
| Port 1 Bit 6 | 19 o o 20    |
| Port 1 Bit 5 | 21 o o 22    |
| Port 1 Bit 4 | 23 o o 24    |
| Port 1 Bit 3 | 25 o o 26    |
| Port 1 Bit 2 | 27 o o 28    |
| Port 1 Bit 1 | 29 o o 30    |
| Port 1 Bit 0 | 31 o o 32    |
| Port 0 Bit 7 | 33 o o 34    |
| Port 0 Bit 6 | 35 o o 36    |
| Port 0 Bit 5 | 37 o o 38    |
| Port 0 Bit 4 | 39 o o 40    |
| Port 0 Bit 3 | 41 o o 42    |
| Port 0 Bit 2 | 43 o o 44    |
| Port 0 Bit 1 | 45 o o 46    |
| Port 0 Bit 0 | 47 o o 48    |
| +5V          | 49 o o 50    |
|              | GND          |
|              | Port 5 Bit 7 |
|              | Port 5 Bit 6 |
|              | Port 5 Bit 5 |
|              | Port 5 Bit 4 |
|              | Port 5 Bit 3 |
|              | Port 5 Bit 2 |
|              | Port 5 Bit 1 |
|              | Port 5 Bit 0 |
|              | Port 4 Bit 7 |
|              | Port 4 Bit 6 |
|              | Port 4 Bit 5 |
|              | Port 4 Bit 4 |
|              | Port 4 Bit 3 |
|              | Port 4 Bit 2 |
|              | Port 4 Bit 1 |
|              | Port 4 Bit 0 |
|              | Port 3 Bit 7 |
|              | Port 3 Bit 6 |
|              | Port 3 Bit 5 |
|              | Port 3 Bit 4 |
|              | Port 3 Bit 3 |
|              | Port 3 Bit 2 |
|              | Port 3 Bit 1 |
|              | Port 3 Bit 0 |
|              | +5V          |
|              | GND          |

#### 2.20.4 WS16C48 Register Definitions

The EBC-BX uses the Win Systems exclusive ASIC device, the WS16C48. This device provides 48 lines of digital I/O. There are 17 unique registers within the WS16C48. The following table summarizes the registers and the text that follows provides details on each of the internal registers.

| I/O Address Offset | Page 0      | Page 1      | Page 2      | Page 3      |
|--------------------|-------------|-------------|-------------|-------------|
| 00H                | Port 0 I/O  | Port 0 I/O  | Port 0 I/O  | Port 0 I/O  |
| 01H                | Port 1 I/O  | Port 1 I/O  | Port 1 I/O  | Port 1 I/O  |
| 02H                | Port 2 I/O  | Port 2 I/O  | Port 2 I/O  | Port 2 I/O  |
| 03H                | Port 3 I/O  | Port 3 I/O  | Port 3 I/O  | Port 3 I/O  |
| 04H                | Port 4 I/O  | Port 4 I/O  | Port 4 I/O  | Port 4 I/O  |
| 05H                | Port 5 I/O  | Port 5 I/O  | Port 5 I/O  | Port 5 I/O  |
| 06H                | Int_Pending | Int_Pending | Int_Pending | Int_Pending |
| 07H                | Page/Lock   | Page/Lock   | Page/Lock   | Page/Lock   |
| 08H                | N/A         | Pol_0       | Enab_0      | Int_ID0     |
| 09H                | N/A         | Pol_1       | Enab_1      | Int_ID1     |
| 0AH                | N/A         | Pol_2       | Enab_2      | Int_ID2     |

## Register Details

**Port 0-5 I/O** - Each I/O bit in each of the 6 ports can be individually programmed for input or output. Writing a '0' to a bit position causes the corresponding output pin to go to a High-Impedance state (pulled high by external 10K ohm resistors). This allows it to be used as an input. When used in the input mode, a read reflects the inverted state of the I/O pin, such that a high on the pin will read as a '0' in the register. Writing a '1' to a bit position causes the output pin to sink current (up to 12mA), effectively pulling it low.

**INT\_PENDING** - This read-only register reflects the combined state of the INT\_ID0 through INT\_ID2 registers. When any of the lower 3 bits are set, it indicates that an interrupt is pending on the I/O port corresponding to the bit position(s) that are set. Reading this register allows an Interrupt Service Routine to quickly determine if any interrupts are pending and which I/O port has a pending interrupt.

**PAGE/LOCK** - This register serves two purposes. The upper two bits select the register page in use as shown here:

### D7 D6 Page

|     |        |
|-----|--------|
| 0 0 | Page 0 |
| 0 1 | Page 1 |
| 1 0 | Page 2 |
| 1 1 | Page 3 |

Bits 5-0 allow for locking the I/O ports. A '1' written to the I/O port position will prohibit further writes to the corresponding I/O port.

**POL0-POL2** - These registers are accessible when page 1 is selected. They allow interrupt polarity selection on a port-by-port and bit-by-bit basis. Writing a '1' to a bit position selects the rising edge detection interrupts while writing a '0' to a bit position selects falling edge detection interrupts.

**ENAB0-ENAB2** - These registers are accessible when page 2 is selected. They allow for port-by-port and bit-by-bit enabling of the edge detection interrupts. When set to a '1' the edge detection interrupt is enabled for the corresponding port and bit. When cleared to a '0', the bit's edge detection interrupt is disabled. Note that this register can be used to individually clear a pending interrupt by disabling and reenabling the pending interrupt.

**INT\_ID0 - INT\_ID2** - These registers are accessible when page 3 is selected. They are used to identify currently pending edge interrupts. A bit when read as a '1' indicates that an edge of the polarity programmed into the corresponding polarity register has been recognized. Note that a write to this register (value ignored) clears ALL of the pending interrupts in this register.

## 2.21 VGA Configuration

The EBC-BX uses a fourth generation CRT/Flat panel Super VGA controller. It supports standard VGA output as well as a variety of Flat Panel Displays using optional Flat Panel Adapter (FPA) kits. The video on the EBC-BX uses the Asiliant 69000 series VGA controllers. The Asilant controller supports standard and super-VGA as well as Color and Mono chrome panels with 8, 9, 12, 15, 16, 18, 24 and 36-bit interfaces.

WinSystems provides flat panel support through a series of Flat Panel Adapter (FPA) kits. Contact your WinSystems Applications Engineer for the most current list of available FPA's and supported panels. Details regarding interfacing to specific Flat Panels is not provided in this manual but should be referenced in the documentation accompanying the FPA kit. Attempted connection to any flat panel not directly supported by a WinSystems FPA module is at the user's risk and extreme care should be exercised to avoid damaging or destroying the panel.

**HAZARD WARNING:** LCD panels can require a high voltage for the panel backlight. This high-frequency voltage can exceed 1000 volts and can present a shock hazard. Care should be taken when wiring or handling the inverter output. To avoid danger of shock and to avoid damaging fragile and expensive panels, make all connection changes with power removed.

**Note:** J26 must be jumpered 1-2 for Sharp-type panels, and 2-3 for NEC-type panels.

### 2.21.1 CRT Output Connection

Video output to a standard VGA monitor is made via the connector at J32. An adapter cable part number CBL-234-1 is available from WinSystems to adapt from J32 to the standard DB15 VGA connector. The pin definitions for the J32 connector are shown here :

| J32      |           |     |
|----------|-----------|-----|
| RED      | 1 o o 2   | GND |
| GREEN    | 3 o o 4   | GND |
| BLUE     | 5 o o 6   | GND |
| H SYNC   | 7 o o 8   | GND |
| V SYNC   | 9 o o 10  | GND |
| DDC DATA | 11 o o 12 | GND |
| DDC CLK  | 13 o o 14 | VCC |

## 2.21.2 Panel Backlight Connection

Panel Backlight connection is made via the connector at J25. The pinout for J25 is shown here for reference.



## 2.21.3 Flat Panel Output Connection

Connection to all flat panels is made via the two 50-pin connectors at J31 and J32. These connectors are cabled to the appropriate FPA (Flat Panel Adapter) module which then breaks out the necessary cabling for attachment to the panel itself. The FPA module also supplies any special controls that may be needed for the panel. Refer to the FPA documentation for specific hookup instructions. The pin definitions for J30 and J33 are shown here :

| J30   |           |       |  | J33     |           |       |  |
|-------|-----------|-------|--|---------|-----------|-------|--|
| FP12  | 1 ○ ○ 2   | GND   |  | SW0     | 1 ○ ○ 2   | SW1   |  |
| FP13  | 3 ○ ○ 4   | GND   |  | SW2     | 3 ○ ○ 4   | SW3   |  |
| FP14  | 5 ○ ○ 6   | GND   |  | FPO     | 5 ○ ○ 6   | GND   |  |
| FP15  | 7 ○ ○ 8   | GND   |  | FP1     | 7 ○ ○ 8   | GND   |  |
| FP16  | 9 ○ ○ 10  | GND   |  | FP2     | 9 ○ ○ 10  | GND   |  |
| FP17  | 11 ○ ○ 12 | GND   |  | FP3     | 11 ○ ○ 12 | GND   |  |
| FP18  | 13 ○ ○ 14 | GND   |  | FP4     | 13 ○ ○ 14 | GND   |  |
| FP19  | 15 ○ ○ 16 | GND   |  | FP5     | 15 ○ ○ 16 | GND   |  |
| FP20  | 17 ○ ○ 18 | GND   |  | FP6     | 17 ○ ○ 18 | GND   |  |
| FP21  | 19 ○ ○ 20 | GND   |  | FP7     | 19 ○ ○ 20 | GND   |  |
| FP22  | 21 ○ ○ 22 | GND   |  | FP8     | 21 ○ ○ 22 | GND   |  |
| FP23  | 23 ○ ○ 24 | GND   |  | FP9     | 23 ○ ○ 24 | GND   |  |
| FP24  | 25 ○ ○ 26 | GND   |  | FP10    | 25 ○ ○ 26 | GND   |  |
| FP25  | 27 ○ ○ 28 | GND   |  | FP11    | 27 ○ ○ 28 | GND   |  |
| FP26  | 29 ○ ○ 30 | GND   |  | PCSHCLK | 29 ○ ○ 30 | GND   |  |
| FP27  | 31 ○ ○ 32 | GND   |  | PCFLM   | 31 ○ ○ 32 | GND   |  |
| FP28  | 33 ○ ○ 34 | GND   |  | PCLP    | 33 ○ ○ 34 | GND   |  |
| FP29  | 35 ○ ○ 36 | GND   |  | PCM     | 35 ○ ○ 36 | GND   |  |
| FP30  | 37 ○ ○ 38 | GND   |  | PHSYNC  | 37 ○ ○ 38 | GND   |  |
| FP31  | 39 ○ ○ 40 | GND   |  | PVSYNC  | 39 ○ ○ 40 | GND   |  |
| FP32  | 41 ○ ○ 42 | GND   |  | ENVCC   | 41 ○ ○ 42 | GND   |  |
| FP33  | 43 ○ ○ 44 | GND   |  | ENBKL   | 43 ○ ○ 44 | GND   |  |
| FP34  | 45 ○ ○ 46 | GND   |  | ENVEE   | 45 ○ ○ 46 | -12V  |  |
| FP35  | 47 ○ ○ 48 | GND   |  | +12V    | 47 ○ ○ 48 | +12V  |  |
| SWVCC | 49 ○ ○ 50 | SWVCC |  | SWVCC   | 49 ○ ○ 50 | SWVCC |  |

#### 2.21.4 Video Mode Table

The EBC-BX video section supports a number of standard and extended VGA modes. The following table extracted from the Asilant 69000 databook shows the video modes supported.

| Resolution  | Color depth (bpp) | Refresh Rates |
|-------------|-------------------|---------------|
| 640 x 480   | 8                 | 60, 75, 85    |
| 640 x 480   | 16                | 60, 75, 85    |
| 640 x 480   | 24                | 60, 75, 85    |
| 800 x 600   | 8                 | 60, 75, 85    |
| 800 x 600   | 16                | 60, 75, 85    |
| 800 x 600   | 24                | 60, 75, 85    |
| 1024 x 768  | 8                 | 60, 75, 85    |
| 1024 x 768  | 16                | 60, 75, 85    |
| 1280 x 1024 | 8                 | 60            |

#### 2.22 Ethernet Controller

The 82559 is part of Intel's second generation family of fully integrated 10BASE-T/100BASE-TX LAN solutions. The 82559 consists of both the Media Access Controller (MAC) and the physical layer (PHY) combined into a single component solution.

The 82559 is a 32-bit PCI controller that features enhanced scatter-gather bus mastering capabilities which enables it to perform high-speed data transfers over the PCI bus. The 82559 bus master capabilities enable the component to process high-level commands and perform multiple operations off-loading communication tasks from the system CPU. Two large transmit and receive FIFOs of 3 Kbytes each help prevent data underruns and overruns, allowing the 82559 to transmit data with minimum interframe spacing (IFS).

The 82559 can operate in either full duplex or half duplex mode. In full duplex mode the 82559 adheres to the IEEE 802.3x Flow Control specification. Half duplex performance is enhanced by a proprietary collision reduction mechanism.

The 82559 includes a simple PHY interface to the wire transformer at rates of 10BASE-T and 100BASE-TX, and Auto-Negotiation capability for speed, duplex, and flow control. The 82559 also includes an interface to a serial (4-pin) EEPROM. The EEPROM provides power-on initialization for hardware and software configuration parameters. The 82559 is also 100% PnP compatible and is configured through this interface. Ethernet connection to the EBC-BX is made through the connector at J28.

There are Ethernet status LED's at D6, D7, and D8. The color and function of each LED is listed below:

- D6 = Ethernet 100BASE-TX (Red)
- D7 = Ethernet activity LED (Green)
- D8 = Ethernet link LED (Yellow)

*For ethernet drivers go to:*

<http://developer.intel.com/design/network/drivers/>



Cooling fan connections J31 and J34

J31



J34



J31 and J34



## 2.23 Fan Power Connector

The EBC-BX has a connector located at J31 to supply power to the processor cooling fan. The pin definitions are shown here for reference. There is also a connector at J34 for use with an auxiliary system cooling fan. The pin definitions for these connectors is shown here :

Both J31 and J34 provide +5V nominal at 250mA max.

## 2.24 Multi I/O Connector

The I/O to the primary serial channels, the printer port, and key board are all terminated via the connector at J2. An adapter cable, part number CBL-247-1, is available from WinSystems to adapt to the conventional I/O connectors. The pin definitions for J2 are shown here

| J2            |      |      |
|---------------|------|------|
| COM1 - DCD    | 1 o  | o 2  |
| COM1 - RXD    | 3 o  | o 4  |
| COM1 - TXD    | 5 o  | o 6  |
| COM1 - DTR    | 7 o  | o 8  |
| COM1 - GND    | 9 o  | o 10 |
| COM2 - DSR    | 11 o | o 12 |
| COM2 - RTS    | 13 o | o 14 |
| COM2 - CTS    | 15 o | o 16 |
| COM2 - RI     | 17 o | o 18 |
| LPT - STROBE  | 19 o | o 20 |
| LPT - PD0     | 21 o | o 22 |
| LPT - PD1     | 23 o | o 24 |
| LPT - PD2     | 25 o | o 26 |
| LPT - PD3     | 27 o | o 28 |
| LPT - PD4     | 29 o | o 30 |
| LPT - PD5     | 31 o | o 32 |
| LPT - PD6     | 33 o | o 34 |
| LPT - PD7     | 35 o | o 36 |
| LPT - ACK     | 37 o | o 38 |
| LPT - BUSY    | 39 o | o 40 |
| LPT - PE      | 41 o | o 42 |
| LPT - SLCT    | 43 o | o 44 |
| KEYBD - GND   | 45 o | o 46 |
| KEYBD - KDATA | 47 o | o 48 |
| KEYBD - +5V   | 49 o | o 50 |
| COM1 - DSR    |      |      |
| COM1 - RTS    |      |      |
| COM1 - CTS    |      |      |
| COM1 - RI     |      |      |
| COM2 - DCD    |      |      |
| COM2 - RSX    |      |      |
| COM2 - TXD    |      |      |
| COM2 - DTR    |      |      |
| COM2 - GND    |      |      |
| LPT - AUTOFD  |      |      |
| LPT - ERROR   |      |      |
| LPT - INIT    |      |      |
| LPT - SLCTIN  |      |      |
| LPT - GND     |      |      |
| KEYBD - GND   |      |      |
| KEYBD - GND   |      |      |
| KEYBD - CLK   |      |      |
| KEYBD - +5V   |      |      |

## 2.25 USB Connector

A USB cable may be attached via the connector at J11. An adapter cable, CBL-249-1 is available from WinSystems to adapt to a conventional USB port. The pinout for J11 is shown here.

| J11 |       |  |
|-----|-------|--|
| 1 o | USBV0 |  |
| 2 o | D0-   |  |
| 3 o | D0+   |  |
| 4 o | USBG0 |  |

## 2.26 Jumper/Connector Summary

| Connector/<br>Jumper | Description                             | Page Reference |
|----------------------|-----------------------------------------|----------------|
| J1                   | Mouse connector                         | 2-3            |
| J2                   | Multi-I/O connector                     | 2-25           |
| J3                   | Power connector                         | 2-3            |
| J4                   | COM3, COM4 connector                    | 2-7            |
| J5                   | Primary IDE connector                   | 2-15           |
| J6                   | Parallel I/O enable jumper              | 2-18           |
| J7                   | Parallel I/O connector                  | 2-18           |
| J8                   | Secondary IDE connector                 | 2-15           |
| J9                   | Parallel I/O connector                  | 2-18           |
| J10                  | Floppy disk connector                   | 2-14           |
| J11                  | USB connector                           | 2-25           |
| J12                  | DOC Enable jumper                       | 2-17           |
| J13                  | DOC configuration jumper                | 2-17           |
| J14                  | Parallel I/O VCC select jumper          | 2-18           |
| J15                  | COM1 RS-422/RS-485 configuration jumper | 2-5            |
| J16                  | COM2 RS-422/RS-485 configuration jumper | 2-5            |
| J17                  | COM1 RS-422/RS-485 configuration jumper | 2-5            |
| J18                  | COM1 RS-422/RS-485 configuration jumper | 2-5            |
| J19                  | IRQ routing jumper                      | 2-2            |
| J20                  | PC/104 16-bit connector                 | 2-13           |
| J21                  | Watchdog Timer configuration jumper     | 2-16           |
| J22                  | PC/104Plus connector                    | 2-13           |
| J23                  | PC/104 8-bit connector                  | 2-13           |
| J24                  | COM3/COM4 Enable jumper                 | 2-5            |
| J25                  | Flat Panel backlight connector          | 2-22           |
| J26                  | Flat Panel backlight type select jumper | 2-21           |
| J27                  | Master Battery select jumper            | 2-4            |
| J28                  | Ethernet connector                      | 2-23           |
| J29                  | ITP Debug port                          | N/A            |
| J30                  | Flat Panel/FPA connector                | 2-22           |
| J31                  | CPU Fan/tachometer connector            | 2-24           |
| J32                  | VGA CRT output connector                | 2-21           |
| J33                  | Flat Panel/FPA connector                | 2-22           |
| J34                  | Auxiliary Fan/Tachometer connector      | 2-24           |

# 3 Award BIOS Configuration

## 3.1 General Information

The EBC-BX comes equipped with a standard Award BIOS with Setup in ROM that allows users to modify the basic system configuration. This type of information is stored in battery-backed CMOS RAM so that it retains Setup information when power is turned off.

## 3.2 Entering Setup

To enter setup, power on the computer and press the DEL key immediately after the message "Press DEL to Enter Setup" appears on the lower left of the screen. If the message disappears before you respond and you still wish to enter setup, restart the system by turning it OFF and then ON or by pressing the RESET button, if so equipped, or by pressing the CTRL, ALT and DEL key simultaneously. Alternatively, under certain error conditions of incorrect setup the message:

"Press F1 to continue or DEL to Enter Setup"

may appear. To Enter Setup at that time, press the DEL key. To attempt to continue, ignoring the error condition, press the F1 key.

## 3.3 Setup Main Menu

The main menu screen is displayed on the following page. Each of the options will be discussed in this section. Use the arrow keys to highlight the desired selection and press ENTER to enter the submenu or to execute the function selected.



### 3.4 Standard CMOS Features

The items in the Standard CMOS Setup menu are divided into several categories. Each category may include one or more setup items. Use the arrow keys to highlight the item and then use the PgUp, PgDn, +-. keys to select the desired value for the item.

#### Date

The date format is <day>,< date>,< month>, <year>

Day = The day, from Sun to Sat, determined by the BIOS and is display only

Date = the date, from 1 to 31 (or the maximum for the current month)

Month = the month, JAN through DEC

Year = The year, from 1900 to 2099

#### Time

The time is hour, minute, second. The time is calculated on the 24-hour, military-time clock such that 1:00PM is 13:00:00.

Phoenix - AwardBIOS CMOS Setup Utility  
Standard CMOS Features

|                      |                       |                        |
|----------------------|-----------------------|------------------------|
| Date (mm:dd:yy)      | Wed Dec 4 2002        | Item Help              |
| Time (hh:mm:ss)      | 13:57:21              |                        |
| IDE Primary Master   | [MAXTOR 6L020J1]      | Menu Level             |
| IDE Primary Slave    | [None]                | Press [Enter] to enter |
| IDE Secondary Master | [HL-DT-STDVD-ROM GR8] | next page for detail   |
| IDE Secondary Slave  | [None]                | hard drive settings.   |
| Drive A              | [1.44M, 3.5 in.]      |                        |
| Drive B              | [None]                |                        |
| Video                | [EGA/VGA]             |                        |
| Halt On              | [No Errors]           |                        |
| Base Memory          | 640K                  |                        |
| Extended Memory      | 261120K               |                        |
| Total Memory         | 262144K               |                        |

↑↓→← : Move Enter : Select PU/PD/+/- : Value F10 : Save ESC : Exit F1 : General Help  
F5 : Previous Values F6 : Fail-Safe Defaults F7 : Optimized Defaults

### **IDE Primary Master**

Pressing [Enter] brings up a sub-menu screen of choices regarding the Primary fixed disk.

### **IDE HDD Auto-Detection**

Pressing [Enter] when this selection is highlighted will cause the system to interrogate the attached hard disk and choose the parameters automatically

### **IDE Primary Master**

Pressing [Enter], when this item is highlighted, allows for selection of how parameters for the hard drive will be determined. The choices are :

- None - No Hard Drive is installed
- Auto - Automatically detect the hard disk parameters at power-up  
(Recommended Setting)
- Manual - Use the parameters entered manually by the user

### **Access Mode**

Pressing [Enter] when this option is highlighted allows selection of the hard disk access mode. The choices are :

- CHS - The drive will be accessed using direct Cylinder, Head, Sector mode. No translation will take place. This can only be used when the "manual" mode is selected above.
- LBA - This selection allows the native mode of the drive to be translated to Cylinder, head, and sector counts that are compatible with allowable BIOS parameter restrictions. Drives up to 120GB can be used with this mode.
- LARGE - This is another translation scheme that is not commonly used but may be required for some O/Ss.
- AUTO - This mode chooses the appropriate translation mode (usually LBA) for the actual drive attached. (Recommended Setting)

### **Drive Parameters/Size**

The drive size in MB is displayed for all modes. When manual and CHS modes are selected the user may enter values into these fields :

- Cylinder - 0 to 65535
- Head - 0 to 255
- Precomp - 0 to 65535
- Landing Zone - 0 to 65535
- Sector - 0 to 255

### **IDE Primary Slave**

This selection is identical to the IDE Primary Master shown above.

### **IDE Secondary Master**

This selection is identical to the IDE Primary Master shown above.

### **IDE Secondary Slave**

This selection is identical to the IDE Primary Master shown above.

### **Drive A type/Drive B type**

This category identifies the type of floppy drives attached as Drive A: or Drive B:. The choices are as follows :

NONE  
360K, 5.25 in.  
1.2M, 5.25 in.  
720K, 3.5 in  
1.44M, 3.5 in.  
2.88M 3.5 in.

### **Video**

This category specifies the type of video adapter used for the primary system monitor that matches your video display board and monitor. The available choices are:

EGA/VGA  
CGA40  
CGA80  
MONO

The EBC-BX has built-in VGA support so EGA/VGA should be selected.

### **Error Halt**

This category determines whether the system will halt if a nonfatal error is detected during the power-up self test. The choices are:

No Errors : The system will not be stopped for any error that may be detected.

All Errors : Whenever the BIOS detects a nonfatal error, the system will be stopped and a prompt will appear.

All, but Keyboard : The system will not stop for a keyboard error, it will stop for all other errors.

All, but diskette : The system will not stop for disk errors. All others will result in a prompt.

All but Disk/Key : All errors except diskette or keyboard will result in a halt and a prompt.

## **Memory**

This category is display only and is determined by the BIOS POST (Power-On Self Test).

### **Base Memory**

The POST routines in the BIOS will determine the amount of base (conventional) memory installed in the system. The value of the base memory is typically 640K for systems with a Mega byte of memory or greater.

### **Extended Memory**

The BIOS determines how much extended memory is present during the POST. This is the amount of memory located above 1MB in the CPU's memory address space.

### **Total Memory**

The BIOS displays the total of the Base memory and the Extended memory installed in the system.

## **3.5 Advanced BIOS Features Setup**

### **Virus Warning**

This option when enabled, protects the boot sector and partition table of the hard disk against unauthorized writes through the BIOS. Any attempt to alter these areas will result in an error message and a prompt to authorize the activity.

### **CPU Internal Cache**

This option, when enabled, provides maximum performance by caching instructions and data using the on-chip cache of the Pentium processor.

### **External Cache**

This option, when enabled, further enhances performance by caching recently used instructions and data into fast SRAM.

Phoenix - AwardBIOS CMOS Setup Utility  
Advanced BIOS Features

|                            |            | Item Help  |
|----------------------------|------------|------------|
| Virus Warning              | [Disabled] | Menu Level |
| CPU Internal Cache         | [Enabled]  |            |
| External Cache             | [Enabled]  |            |
| CPU L2 Cache ECC Checking  | [Enabled]  |            |
| Processor Number Feature   | [Disabled] |            |
| Quick Power On Self Test   | [Enabled]  |            |
| First Boot Device          | [Floppy]   |            |
| Second Boot Device         | [HDD-0]    |            |
| Third Boot Device          | [CD-ROM]   |            |
| Boot Other Device          | [Enabled]  |            |
| Swap Floppy Drives         | [Disabled] |            |
| Boot Up Floppy Seek        | [Disabled] |            |
| Boot Up Numlock Status     | [On]       |            |
| Gate A20 Options           | [Fast]     |            |
| Typematic Rate Setting     | [Enabled]  |            |
| Typematic Rate (Chars/Sec) | [6]        |            |
| Typematic Delay (Msec)     | [250]      |            |
| Security Option            | [Setup]    |            |
| OS Select for DRAM > 64MB  | [Non-OS2]  |            |
| Report No FDD for WIN 95   | [No]       |            |
| Video BIOS Shadow          | [Enabled]  |            |
| C8000-CBFFF Shadow         | [Disabled] |            |
| CC000-CFFFF Shadow         | [Disabled] |            |
| D0000-D3FFF Shadow         | [Disabled] |            |
| D4000-D7FFF Shadow         | [Disabled] |            |
| D8000-DBFFF Shadow         | [Disabled] |            |
| DC000-DFFFF Shadow         | [Disabled] |            |
| Small Logo (EPA) Show      | [Disabled] |            |

↑ ↓ → ← : Move Enter : Select PU/PD/+/- : Value F10 : Save ESC : Exit F1 : General Help  
 F5 : Previous Values F6 : Fail-Safe Defaults F7 : Optimized Defaults

### CPU L2 Cache ECC Checking

This option when enable provides ECC validity checking to the L2 cache reads.

### **Processor Number Feature**

This feature when enabled allows software to read the unique Processor Serial number present on the Intel processors.

### **Quick Power On Self Test (POST)**

This option, when enabled, speeds up the POST during power up. The BIOS will shorten and/or skip some items during POST.

### **First Boot Device**

This options allows for selection of the primary or “First” boot device. The BIOS will attempt to boot from this device first. The menu selection are :

Floppy  
LS120  
HDD-0  
SCSI  
CD-ROM  
HDD-1  
HDD-2  
HDD-3  
ZIP100  
LAN  
Disabled

Note : Not all of these devices will be available and selection of a nonexistent device may result in a drastic increase in boot time.

### **Second Boot Device**

This option allows for selection of the secondary choice for boot media usage. The options are identical to those given above for the “First Boot Device”.

### **Third Boot Device**

This option allows for selection of a third choice of boot media. The options are the same as for the previous two menu items.

### **Boot Other Device**

The option when enabled allows other devices with self-contained boot firmware to be come the primary boot media.

### **Swap Floppy Drive**

This option allows for swapping of the A: and B: floppy drives without actually relocating the drives on the cable.

### **Boot Up Floppy Seek**

During POST, when this option is enabled, the BIOS will determine if the floppy drive is 40 track or 80 tracks. If disabled, no seek test will be performed and no error can be reported.

### **Boot Up Numlock Status**

This allows user selection of the Numlock state at boot time.

### **Gate A20 Option**

This option allows for the selection of the source for the gate A20 signal. The choices are:

Normal - Sourced from the keyboard controller

Fast - Sourced from the Chipset

### **Typematic Rate Setting**

This option enables or disables the typematic rate programming at boot time. Typematic is the auto-repeat function for the keyboard.

### **Typematic Rate**

When the typematic rate setting is enabled, the typematic repeat speed is set via this option. The supported rates are :

- 6 characters per second
- 8 characters per second
- 10 characters per second
- 12 characters per second
- 15 characters per second
- 20 characters per second
- 24 characters per second
- 30 characters per second

### **TypeMatic Delay**

When typematic rate setting is enabled, this option specifies the time in milliseconds before auto-repeat begins. The supported values are:

250 mS  
500 mS  
750 mS  
1000 mS

### **Security Option**

This option allows you to limit access to the system and setup, or just to setup. The choices are:

System - The system will not boot and access will be denied if the correct password is not entered at the prompt.

Setup - The system will boot, but access to Setup will be denied if the correct password is not entered at the prompt.

**NOTE:** To disable security, select "Password Setting" at the Setup Main Menu and then you will be asked to enter a password. Do not type anything, just hit ENTER. Once the security is disabled, the system will boot and you can enter Setup freely.

### **OS Select for DRAM > 64MB**

This option allows selection of an operating system for DRAM greater than 64MB.

The options are:

OS2  
Non-OS2

### **Report No FDD for Win 95**

This option, when enabled, signals Windows 95 if there is no floppy present.

The options are:

Yes  
No

### **Shadowing Options**

When shadowing for a particular address range is enabled, it instructs the BIOS to copy the BIOS located in ROM into DRAM. This shadowing from an 8-bit EPROM into fast 32-bit DRAM results in a Multi-magnitude increase in performance. The main BIOS is shadowed automatically but there are other areas that may be selected for shadowing as shown here:

Video BIOS Shadow - C000-C7FFF EGA/VGA BIOS ROM  
C8000-CBFFF  
CC000-CFFFF  
D0000-D3FFF  
D4000-D7FFF  
D8000-DBFFF  
DC000-DFFFF

### **Small Logo(EPA) Show**

This option when enabled instructs the BIOS to display the EPA Energy- Star logo in the upper right corner of the screen during the POST process.

## **3.6 Chipset Features Setup**

The options in this section control the chipset programming at boot time. In most cases, the default settings should be used unless you have a clear understanding of the significance of the change. It is possible using these options to create a system that will either not boot or is very unstable or unreliable. If this should occur, there are two methods to return the system to a stable configuration. If the system works well enough to get into Setup, simply choose the “Load BIOS Defaults” option and then select “Save and Exit Setup” to restore factory defaults. If the system will not run well enough to run Setup, it will be necessary to remove the battery source temporarily until the CMOS memory decays. Refer to Section 2.7 for details on reinitializing the CMOS RAM.

Each of the options for the Chipset Features Menu will be briefly discussed in the sections that follow.

### **SDRAM RAS-to-CAS Delay**

This option allows for selection of the number of clock to delay the RAS to CAS transition. The available choices are :

3 Clocks  
2 Clocks

Phoenix - AwardBIOS CMOS Setup Utility  
Advanced Chipset Features

|                          |            |                             |
|--------------------------|------------|-----------------------------|
| SDRAM RAS-to-CAS Delay   | [3]        | Item Help<br><br>Menu Level |
| SDRAM RAS Precharge Time | [3]        |                             |
| SDRAM CAS Latency Time   | [3]        |                             |
| SDRAM Precharge Control  | [Enabled]  |                             |
| DRAM Data Integrity Mode | [Non-ECC]  |                             |
| System BIOS Cacheable    | [Disabled] |                             |
| Video BIOS Cacheable     | [Disabled] |                             |
| Video RAM Cacheable      | [Disabled] |                             |
| 8 Bit I/O Recovery Time  | [1]        |                             |
| 16 Bit I/O Recovery Time | [1]        |                             |
| Memory Hole at 15M-16M   | [Disabled] |                             |
| AGP Aperture Size (MB)   | [64]       |                             |

↑↓→← : Move Enter : Select PU/PD/+/− : Value F10 : Save ESC : Exit F1 : General Help  
F5 : Previous Values F6 : Fail-Safe Defaults F7 : Optimized Defaults

### SDRAM RAS Precharge Time

This option allows for setting the SDRAM RAS precharge timing. The choices are :

3 clocks  
2 clocks

### SDRAM CAS Latency Time

This option allows control of the SDRAM CAS latency timing. The choices are :

3 clocks  
2 clocks

**SDRAM Precharge Control**

This option, when enabled, allow control of the SDRAM precharge timing.

**System BIOS Cacheable**

This option enables or disables cacheability of the system BIOS.

**Video BIOS Cacheable**

This option enables or disables cacheability of the video BIOS.

**8 Bit I/O Recovery**

Enables and defines 8-bit I/O recovery time in number of clocks.

**16 Bit I/O Recovery**

Enables and defines 16-bit I/O recovery time in number of clocks.

**Memory Hole At 15M-16M**

This option, when enabled, disables onboard memory between 15M and 16M.

**AGP Aperture Size (MB)**

This option specifies the amount of address space to allocate to the AGP video aperture. The choices are :

4  
8  
16  
32  
64  
128  
256

### 3.7 Integrated Peripherals Setup

The options in this section allow for control of the integrated peripherals, i.e. Floppy and IDE controllers, serial ports, and the parallel port.

| Phoenix - Award BIOS CMOS Setup Utility |              |            |
|-----------------------------------------|--------------|------------|
| Integrated Peripherals                  |              |            |
| IDE 1st Channel Cable                   | [40 Pins]    | Item Help  |
| IDE 2nd Channel Cable                   | [40 Pins]    | Menu Level |
| IDE Primary Master PIO                  | [Auto]       |            |
| IDE Primary Slave PIO                   | [Auto]       |            |
| IDE Secondary Master PIO                | [Auto]       |            |
| IDE Secondary Slave PIO                 | [Auto]       |            |
| IDE Primary Master UDMA                 | [Auto]       |            |
| IDE Primary Slave UDMA                  | [Auto]       |            |
| IDE Secondary Master UDMA               | [Auto]       |            |
| IDE Secondary Slave UDMA                | [Auto]       |            |
| On-Chip Primary PCI IDE                 | [Enabled]    |            |
| On-Chip Secondary PCI IDE               | [Enabled]    |            |
| USB Keyboard Support                    | [Disabled]   |            |
| Init Display First                      | [AGP]        |            |
| IDE HDD Block Mode                      | [Enabled]    |            |
| Onboard FDC Controller                  | [Enabled]    |            |
| Onboard Serial Port 1                   | [3F8/IRQ4]   |            |
| Onboard Serial Port 2                   | [2F8/IRQ3]   |            |
| Onboard Parallel Port                   | [378/IRQ7]   |            |
| Parallel Port Mode                      | [ECP+EPP1.9] |            |
| ECP Mode Use DMA                        | [3]          |            |

↑↓→← : Move Enter : Select PU/PD/+/- : Value F10 : Save ESC : Exit F1 : General Help  
F5 : Previous Values F6 : Fail-Safe Defaults F7 : Optimized Defaults

#### IDE 1st Channel Cable

This option allows for specification of the cable type attached to the Primary IDE channel. The choices are :

40 Pins  
80 Pins

### **IDE 2nd Channel Cable**

This option allows the cable type to be specified for the secondary IDE channel. The choices are :

40 Pins  
80 Pins

### **IDE Primary Master PIO**

This option allows selection of the PIO mode to be used with the Primary Master IDE device. The choices are :

Auto  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4

### **IDE Primary Slave PIO**

This option allows for selection of the PIO mode to be used with a Primary Slave IDE device. The choices are :

Auto  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4

### **IDE Secondary Master PIO**

This option allows selection of the PIO mode to be used with the Secondary Master IDE device. The choices are :

Auto  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4

### **IDE Secondary Slave PIO**

This option allows for selection of the PIO mode to be used with a Secondary Slave IDE device. The choices are :

Auto  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4

### **IDE Primary Master UDMA**

This option allows for selecting whether an UDMA mode will be used for disk transfers on the Primary Master IDE device. The choices are :

Disabled  
Auto

### **IDE Primary Slave UDMA**

This option allows for selecting whether an UDMA mode will be used for disk transfers on the Primary Slave IDE device. The choices are :

Disabled  
Auto

### **IDE Secondary Master UDMA**

This option allows for selecting whether an UDMA mode will be used for disk transfers on the Secondary Master IDE device. The choices are :

Disabled  
Auto

### **IDE Secondary Slave UDMA**

This option allows for selecting whether an UDMA mode will be used for disk transfers on the Secondary Slave IDE device. The choices are :

Disabled  
Auto

### **On-Chip Primary PCI IDE**

This option enables or disables the onboard Primary IDE controller.

### **On-Chip Secondary PCI IDE**

This option enables or disables the onboard Secondary IDE controller.

### **USB Keyboard Support**

This option enables or disables BIOS support for USB keyboards.

### **Init Display First**

This option allows selection of the source for the first, or primary, video controller. The choices are :

PCI Slot  
AGP

Note : The onboard video is implemented on the AGP bus. An alternate primary video display may be used by installing a PC/104Plus video card and setting this option to PCI Slot.

### **IDE Block Mode**

This option allows enabling of the IDE block mode for disk transfers.

### **Onboard FDC Controller**

This option controls the onboard Floppy Disk controller. The options are :

Enabled  
Disabled

### **Onboard Serial Port 1**

This option allows for control of the first onboard serial port. The options are :

Disabled  
3F8/IRQ4  
2F8/IRQ3  
3E8/IRQ4  
2E8/IRQ3  
Auto

### **Onboard Serial Port 2**

This option allows for control of the second onboard serial port. The options are :

Disabled  
3F8/IRQ4  
2F8/IRQ3  
3E8/IRQ4  
2E8/IRQ3  
Auto

### **Onboard Parallel Port**

This option allows for configuration of the onboard parallel printer port. The options are :

Disabled  
3BC/IRQ7  
378/IRQ7  
278/IRQ5

### **Parallel Port Mode**

This option controls the operating mode of the onboard parallel port. The options are :

SPP  
EPP1.9+SPP  
ECP  
ECP+EPP1.9  
Normal  
EPP1.7+SPP  
ECP+EPP1.7

### **ECP Mode Use DMA**

This option controls which DMA channel will be used for ECP transfers. The choices are:

3  
1

### 3.8 Power Management Setup

The items in this menu control operation of the BIOS based power management functions.

#### ACPI function

This option allows for control of the BIOS level ACPI functionality.

| Phoenix - Award BIOS CMOS Setup Utility<br>Power Management Setup |                    |            |
|-------------------------------------------------------------------|--------------------|------------|
| ACPI Function                                                     | [Enabled]          | Item Help  |
| Power Management                                                  | [User Define]      |            |
| PM Control by APM                                                 | [Yes]              | Menu Level |
| Video Off Method                                                  | [V/H SYNC + Blank] |            |
| Video Off After                                                   | [Standby]          |            |
| Modem Use IRQ                                                     | [3]                |            |
| Doze Mode                                                         | [Disabled]         |            |
| Standby Mode                                                      | [Disabled]         |            |
| Suspend Mode                                                      | [Disabled]         |            |
| HDD Power Down                                                    | [Disabled]         |            |
| VGA Active Monitor                                                | [Disabled]         |            |
| IRQ 8 Break Suspend                                               | [Disabled]         |            |
| USB Keyboard Support                                              | [Disabled]         |            |
| ** Reload Global Timer Events **                                  |                    |            |
| IRQ[3-7, 9-15],NMI                                                | [Disabled]         |            |
| Primary IDE 0                                                     | [Disabled]         |            |
| Primary IDE 1                                                     | [Disabled]         |            |
| Secondary IDE 0                                                   | [Disabled]         |            |
| Secondary IDE 1                                                   | [Disabled]         |            |
| Floppy Disk                                                       | [Disabled]         |            |
| Serial Port                                                       | [Disabled]         |            |
| Parallel Port                                                     | [Disabled]         |            |

↑ ↓ → ← : Move Enter : Select PU/PD/+/- : Value F10 : Save ESC : Exit F1 : General Help  
F5 : Previous Values F6 : Fail-Safe Defaults F7 : Optimized Defaults

### **Power Management**

This option allows for the specification for the type and extent of power management options. The choices are :

- User Define
- Min Saving
- Max Saving

### **PM Control by APM**

This option, when enabled, allows an APM aware OS to control system power management. The options are :

- Yes
- No

### **Video Off Method**

This option specifies the method used for Video blanking or PM shutdown. The options are :

- Blank Screen
- V/H SYNC + Blank
- DPMS

### **Video Off After**

This option specifies at what power- management stage the video off function will be executed. The options are :

- NA
- Suspend
- Standby
- Doze

### **Modem Use IRQ**

This option allows specification of the IRQ used by the modem for PM control functions. The options are :

NA  
3  
4  
5  
7  
9  
10  
11

### **Doze Mode**

This option allows for setting the time-out value before entering Doze mode or for disabling Doze mode completely. The options are :

Disable  
1 Min  
2 Min  
4 Min  
8 Min  
12 Min  
20 Min  
30 Min  
40 Min  
1 Hour

### **Standby Mode**

This option allows for setting the time-out value before entering Standby mode or for disabling Standby mode completely. The options are :

Disable  
1 Min  
2 Min  
4 Min  
8 Min  
12 Min  
20 Min  
30 Min  
40 Min  
1 Hour

### **Suspend Mode**

This option allows for setting the time-out value before entering Suspend mode or for disabling Suspend mode completely. The options are :

- Disable
- 1 Min
- 2 Min
- 4 Min
- 8 Min
- 12 Min
- 20 Min
- 30 Min
- 40 Min
- 1 Hour

### **HDD Power Down**

This option allows selection of a Hard disk power down timer. The options are :

- Disable
- 1 Min
- 2 Min
- 3 Min
- 4 Min
- 5 Min
- 6 Min
- 7 Min
- 8 Min
- 9 Min
- 10 Min
- 11 Min
- 12 Min
- 13 Min
- 14 Min
- 15 Min

### **VGA Active Monitor**

This option when enabled tracks video changes for PM activity status.

### **IRQ 8 Break Suspend**

This option when enabled allows an RTC alarm event to awaken from a suspend event.

### **Reload Global Timer Events**

The 8 options that follow allow individual selection of IRQs or devices to monitor. Activity on any of the enabled options resets the countdown timers delaying any further power management steps.

The items that can be enabled for monitoring are :

- IRQ[3-7, 9-15], NMI
- Primary IDE 0
- Primary IDE 1
- Secondary IDE 0
- Secondary IDE 1
- Floppy Disk
- Serial Port
- Parallel Port

### **3.9 PNP/PCI Configuration**

The options in this section control PNP and PCI resources.

| Phoenix - AwardBIOS CMOS Setup Utility<br>PNP/PCI Configuration |               |                                                                                                                                    |
|-----------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------|
| PNP OS Installed                                                | [No]          | Item Help                                                                                                                          |
| Reset Configuration Data                                        | [Disabled]    | Menu Level                                                                                                                         |
| Resources Controlled by                                         | [Manual]      | Select yes if you are using a Plug and Play capable operating system. Select No if you need the BIOS to configure non-boot devices |
| IRQ Resources                                                   | [Press Enter] |                                                                                                                                    |
| DMA Resources                                                   | [Press Enter] |                                                                                                                                    |
| Memory Resources                                                | [Press Enter] |                                                                                                                                    |
| PCI/VGA Palette Snoop                                           | [Disabled]    |                                                                                                                                    |

↑ ↓ → ← : Move Enter : Select PU/PD/+/- : Value F10 : Save ESC : Exit F1 : General Help  
F5 : Previous Values F6 : Fail-Safe Defaults F7 : Optimized Defaults

### **PnP OS Installed**

This option allows the user to assign whether the operating system is Plug and Play compatible. The options are:

Yes  
No

### **Reset Configuration Data**

This option, when enabled, will reset the configuration data on power up. The options are:

Enabled  
Disabled

### **Resources Controlled By**

This option allows the user to select resource control of the system. The options are:

Auto (ESCD)  
Manual

### **IRQ Resources**

This option allows for IRQs to be reserved for Legacy ISA devices or to be used in the pool of available IRQs for PCI and ISA PnP devices.

### **DMA Resources**

This option allows for DMA resources to be reserved for legacy ISA devices or to be used in the pool of available DMA resources for PCI or ISA PnP devices.

### **Memory Resources**

This option allows for reserving an upper memory block with a size between 8K and 64K Bytes. The available starting segment addresses for this reserved block are :

C800  
CC00  
D000  
D400  
D800  
DC00

### **PCI/VGA Palette Snoop**

This option when enabled permits PCI/VGA palette snooping.

### **3.10 PC Health Status**

This option is different from the other setup menu items in that there are no configurable options. This is simply a status screen that can be used to examine the status of various temperatures and voltages on the board.

| Phoenix - AwardBIOS CMOS Setup Utility |              |
|----------------------------------------|--------------|
| PC Health Status                       |              |
| Current Systems Temp                   | 30°C / 86°F  |
| Current CPU Temp                       | 39°C / 102°F |
| Current CPUFAN1 Speed                  | 3740 RPM     |
| Current CPUFAN2 Speed                  | 0 RPM        |
| +2.5 Volts                             | 2.51 V       |
| Vcore                                  | 1.36 V       |
| +3.3 Volts                             | 3.36 V       |
| +5.0 Volts                             | 4.97 V       |
| +12.0 Volts                            | 11.97 V      |
| VCCT                                   | 1.48 V       |

↑↓→← : Move Enter : Select PU/PD/+/- : Value F10 : Save ESC : Exit F1 : General Help  
F5 : Previous Values F6 : Fail-Safe Defaults F7 : Optimized Defaults

### **3.11 Frequency/Voltage Control**

The items in this menu allow for configuration of certain clock control items.

#### **Auto Detect PCI/DIMM Clk**

This option when enabled, instructs the BIOS to turn off unused clocks to DIMM sockets and PCI slots.



### Spread Spectrum

This option enables the purposeful jittering of all of the primary Clock frequencies by the percentages given by the choices shown here.

Disabled  
-0.5%  
+/-0.5%  
+/-0.25%

### 3.12 Load BIOS Defaults

This option when selected, reloads all of the CMOS settings with the factory specified settings.

### **3.13 Set Supervisor Password**

This option, when a pass word has been entered, protects the Setup menus from unauthorized alteration of the options. Hitting “Enter” when prompted for the pass word, disables the pass word security.

### **3.14 Set User Password**

This option provides a second level of password security to the BIOS setup screens. When both the Supervisor and the User passwords are enabled. The user will only be able to alter fixed disk info. If no Supervisor password is enabled, the user access password allows full access to the Setup screens. The security option is disabled by hitting “Enter” at the password prompt.

### **3.15 Save & Exit Setup**

This function writes all changes to CMOS RAM and restarts the system.

### **3.16 Exit without Saving**

This option exits setup without saving any changes made and then restarts the system.

## 4

# EBC-BX DiskOnChip Configuration

### 4.1 DiskOnChip Usage

The EBC-BX supports the M-Systems' DiskOnChip (DOC) flash device in sizes ranging from 8MB to over 500MB. The DOC device contains a BIOS extension, the TFFS (True Flash File System), and the Flash memory all in a single 32-pin device. The DOC emulates a hard disk and can be used as a secondary hard disk to a physical IDE drive or it can be the only hard disk in the system.

The DOC is installed into the socket at U15. Refer to the section 2.19 for correct device jumpering and enabling of the DOC.

### 4.2 DOC Initialization

The DOC is initialized in an identical fashion to a fixed disk. DOS is booted (from floppy or hard disk), FDISK is run on the DOC drive (be sure to get the right drive), the system is rebooted and then the DOC is formatted using the DOS format command.

If the /S switch was used during formatting and there is no other fixed disk device specified or attached to the system the DOC will become the boot device. If a hard disk is present, the DOC will become a secondary fixed disk.

# 5

# WS16C48 Programming Reference

## 5.1 Introduction

This section provides basic documentation for the included I/O routines. It is intended that the accompanying source code equip the programmer with a basic library of I/O functions for the WS16C48 or can serve as the basis from which application specific code can be derived.

## 5.2 Function Definitions

This section briefly describes each of the functions contained in the driver. Where necessary, short examples will be provided to illustrate usage. Any application making use of any of the driver functions should include the header file “ui048.h”, which includes the function prototypes and the needed constant definitions.

Note that all of the functions utilize the concept of “bit\_number”. The “bit\_number” is a value from 1 to 48 (1 to 24 for interrupt related functions) that correlates to a specific I/O pin. Bit\_number 1 is port 0 bit 0 and continues through to bit\_number 48 at port 5 bit 7.

---

### INIT\_IO - Initialize I/O, set all ports to input

#### **Syntax**

```
void init_io(unsigned io_address);
```

#### **Description**

This function takes a single argument:

io\_address - The I/O address of the WS16C48 chip.

There is no return value. This function initializes all I/O pins for input (sets them high), disables all interrupt settings, and sets the image values.

---

## READ\_BIT - Reads an I/O port Bit

### **Syntax**

```
int read_bit(int bit_number);
```

### **Description**

This function takes a single argument:

bit\_number - This is a value from 1 to 48 that indicates the I/O pin to read from.

This function returns the state of the I/O pin. A '1' is returned if the I/O pin is low and a '0' is returned if the pin is high.

---

## WRITE\_BIT - Write a 1 or 0 to an I/O pin

### **Syntax**

```
void write_bit(int bit_number, int value);
```

### **Description**

This function takes two arguments:

bit\_number - This is value from 1 to 48, which is the bit to be acted upon.

Value - is either 1 or 0.

This function allows for writing of a single bit to either a '0' or a '1' as specified by the second argument. There is no return value and other bits in the I/O port are not affected.

---

## SET\_BIT - Set the specified I/O Bit

### **Syntax**

```
void set_bit(int bit_number);
```

### **Description**

This function takes a single argument:

bit\_number - a value between 1 and 48 specifying the port bit to be set.

This function sets the specified I/O port bit. Note that setting a bit results in the I/O pin actually going low. There is no return value and other bits in the same I/O port are unaffected.

---

## CLR\_BIT - Clear the specified I/O Bit

### **Syntax**

```
void clr_bit(int bit_number);
```

### **Description**

This function takes a single argument:

bit\_number - a value from 1 to 48 indicates the bit number to clear.

This function clears the specified I/O bit. Note that clearing the I/O bit results in the actual I/O pin going high. This function does not affect any bits other than the one specified.

---

## ENAB\_INT - Enable Edge Interrupt, Select Polarity

### **Syntax**

```
void enab_int(int bit_number, int polarity);
```

### **Description**

This function requires two arguments:

bit\_number - A value from 1 to 24 specifying the appropriate bit

polarity - Specifies rising or falling edge polarity detect. The constants RISING and FALLING are defined in “uio48.h”

This function enables the edge detection circuitry for the specified bit at the specified polarity. It does not unmask the interrupt controller, install vectors, or handle interrupts when they occur. There is no return value and only the specified bit is affected.

---

## DISAB\_INT - Disable Edge Detect Interrupt Detection

### **Syntax**

```
void disb_int(int bit_number);
```

### **Description**

This function requires a single argument:

bit\_number - A value from 1 to 24 specifying the appropriate bit.

This function shuts down the edge detection for the specified bit. There is no return value and no harm is done by calling this function for a bit which did not have edge detection interrupts enabled. There is no affect on any other bits.

---

## CLR\_INT - Clear the specified pending interrupt

### **Syntax**

```
void clr_int(int bit_number);
```

### **Description**

This function requires a single argument:

bit\_number - The specified bit number from 1 to 24 to reset the interrupt.

This function clears a pending interrupt on the specified bit. It does this by disabling and reenabling the interrupt. The net result after the call is that the interrupt is no longer pending and is rearmed for the next transition of the same polarity. Calling this function on a bit that has not been enabled for interrupts will result in its interrupt being enabled with an undefined polarity. Calling this function with no interrupt pending will have no adverse affect. Only the specified bit is affected.

---

## GET\_INT - Retrieve bit number of pending interrupt

### **Syntax**

```
int get_int(void);
```

### **Description**

This function requires no arguments and returns either a '0' for no bit interrupts pending or a value between 1 and 24 representing a bit number that has a pending edge detect interrupt. The function returns with the first interrupt found and begins its search at Port 0 Bit 0 proceeding through to Port 2 Bit 7. It is necessary to use either `clr_int()` or `disab_int()` to avoid returning the same bit continuously. This function may either be used in an application's ISR or can be used in the foreground to poll for bit transitions.

## 5.3 Sample Programs

There are three sample programs in source code form included on the EBC-BX diskette in the UIO48 directory. These programs are not useful by themselves but are provided to illustrate the usage of the I/O functions provided in UIO48C.

### FLASH.C

This program was compiled with Borland C/C++ version 3.1 on the command line with:

```
bcc flash.c ui048.c
```

This program illustrates the most basic usage of the WS16C48. It uses three functions from the driver code. The io\_init() function is used to initialize the I/O functions and the set\_bit() and clr\_bit() functions are used to sequence through all 48 bits turning each on and then off in turn.

### POLL.C

This program was compiled with Borland C/C++ version 3.1 on the command line with:

```
bcc poll.c ui048.c
```

This program illustrates additional features of the WS16C48 and the I/O library functions. It programs the first 24 bits for input, arms them for falling edge detection, and then polls using the library routine get\_int() to determine if any transitions have taken place.

### INT.C

This program was compiled with Borland C/C++ version 3.1 on the command line with:

```
bcc int.c ui048.c
```

This program is identical in function to the "poll.c" program except that interrupts are active and all updating of the transition counters is accomplished in the background during the interrupt service routine.

### Summary

The source code for all three programs as well as the I/O routines are included on the accompanying diskette. The source code is also provided in printed form in APPENDIX F. These I/O routines along with the sample program should provide for a good basis on which to build an application using the features of the WS16C48.

# 6 APPENDIX A - I/O Port Map

The following is a list of PC I/O ports. Addresses marked with a '-' are not used on the EBC-BX but their use should be carefully qualified so as not to conflict with other I/O boards. I/O addresses marked with a '+' are used on the EBC-BX board and are unique to the WinSystems' design. I/O Addresses marked with '\*\*\*' are generally unused and should be the basis for the first choices in I/O address selection.

| Hex Range | Usage                        |
|-----------|------------------------------|
| 000-00F   | 8237 DMA #1                  |
| **010-01F | FREE                         |
| 020-021   | 8259 PIC #1                  |
| +022-023  | Finali 486 Chipset Registers |
| **024-03F | FREE                         |
| 040-043   | 8254 Timer                   |
| **044-05F | FREE                         |
| 060-06F   | 8042 Keyboard Controller     |
| 070-071   | CMOS RAM/RTC                 |
| **072-07F | FREE                         |
| 080-08F   | DMA Page Registers           |
| **090-09F | FREE                         |
| 0A0-0BF   | 8259 PIC #2                  |
| 0C0-0DF   | 8237 DMA #2                  |
| **0E0-0EF | FREE                         |
| 0F0-0F1   | Coprocessor Control          |
| **0F2-11F | FREE                         |
| +120-12F  | WS16C48 HDIO                 |
| **130-1DF | FREE                         |
| +1E0-1EF  | SSD, Led, Watchdog control   |
| 1F0-1FF   | Fixed Disk I/O               |
| -200-20F  | Joystick port                |
| -210-21F  | PCM SSD I/O Ports            |
| -220-22F  | Soundblaster I/O ports       |
| **230-237 | FREE                         |
| -238-23B  | BUS Mouse                    |
| **240-277 | FREE                         |
| 278-27F   | LPT1                         |
| **280-2AF | FREE                         |
| -2B0-2DF  | EGA Video                    |
| -2E0-2E7  | GPIB Interface               |
| 2E8-2EF   | COM4                         |
| **2F0-2F7 | FREE                         |
| 2F8-2FF   | COM2                         |
| -300-31F  | Prototype Card               |
| -320-32F  | XT Hard Disk                 |
| **330-377 | FREE                         |
| -378-37F  | Parallel Printer             |
| -380-3AF  | SDLC                         |

|          |             |
|----------|-------------|
| -3B0-3BB | DMA         |
| -3C0-3CF | EGA         |
| 3E8-3EF  | COM3        |
| 3F0-3F6  | Floppy Disk |
| 3F8-3FF  | COM1        |

## 7

## APPENDIX B - Interrupt Map

| No. | Address | Type     | Description                                 |
|-----|---------|----------|---------------------------------------------|
| 0   | 00      | CPU      | Divide by 0                                 |
| 1   | 04      | CPU      | Single Step                                 |
|     |         |          | 386 Debug Exception                         |
| 2   | 08      | CPU      | NMI                                         |
| 3   | 0C      | CPU      | Breakpoint                                  |
| 4   | 10      | CPU      | Overflow                                    |
| 5   | 14      | BIO      | Print Screen                                |
|     |         | 186      | Bound Exception                             |
| 6   | 18      | 186      | Invalid opcode exception                    |
| 7   | 1C      | 186      | Coprocessor unavailable                     |
| 8   | 20      | Hardware | IRQ0 - 18.2Hz heart beat                    |
|     |         | 286      | LIDT - Double fault exception               |
| 9   | 24      | Hardware | IRQ1 - Keyboard interrupt                   |
|     |         | 286      | Coprocessor segment                         |
| A   | 28      | Hardware | IRQ2 - XT Reserved,<br>AT-Slaved Controller |
|     |         | 286      | Invalid TSS exception                       |
| B   | 2C      | Hardware | IRQ3 - COM2                                 |
|     |         | 286      | Segment not present                         |
| C   | 30      | Hardware | IRQ4 - COM1                                 |
|     |         | 286      | Stack fault exception                       |
| D   | 34      | Hardware | IRQ5 - XT Hard Disk, AT Free                |
|     |         | 286      | Protection fault exception                  |
| E   | 38      | Hardware | IRQ6 - Floppy Disk Interrupt                |
|     |         | 386      | Page fault exception                        |
| F   | 3C      | Hardware | IRQ7 - LPT1                                 |
| 10  | 40      | BIOS     | Video BIOS functions                        |
|     |         | 286      | Coprocessor exception                       |
| 11  | 44      | BIOS     | BIOS Equipment check                        |
|     |         | 486      | Alignment check exception                   |
| 12  | 48      | BIOS     | Memory Size function                        |
| 13  | 4C      | BIOS     | BIOS Disk functions                         |
| 14  | 50      | BIOS     | BIOS serial functions                       |
| 15  | 54      | BIOS     | Cassette/protected mode<br>functions        |
| 16  | 58      | BIOS     | Keyboard BIOS functions                     |
| 17  | 5C      | BIOS     | BIOS printer functions                      |
| 18  | 60      | BIOS     | SROM Basic Entry point (IBM)                |
| 19  | 64      | BIOS     | Boot loader function                        |
| 1A  | 68      | BIOS     | BIOS time of day functions                  |
| 1B  | 6C      | BIOS     | Keyboard break vector                       |
| 1C  | 70      | BIOS     | User chained timer tick                     |
| 1D  | 74      | BIOS     | Video Initialization                        |
| 1E  | 78      | BIOS     | Floppy Disk parameter table                 |
| 1F  | 7C      | BIOS     | CGA graphic character font                  |

*WinSystems - "The Embedded Systems Authority"*

|    |     |          |                                          |
|----|-----|----------|------------------------------------------|
| 20 | 80  | MS-DOS   | Program terminate                        |
| 21 | 84  | MS-DOS   | DOS function call                        |
| 22 | 88  | MS-DOS   | Terminate Address                        |
| 23 | 8C  | MS-DOS   | Ctrl-Break Address                       |
| 24 | 90  | MS-DOS   | Fatal Error Vector                       |
| 25 | 94  | MS-DOS   | Absolute disk read                       |
| 26 | 98  | MS-DOS   | Absolute disk write                      |
| 27 | 9C  | MS-DOS   | Terminate                                |
| 28 | A0  | MS-DOS   | Idle Signal                              |
| 29 | A4  | MS-DOS   | TTY output                               |
| 2A | A8  | MS-DOS   | MS-Net services                          |
| 2F | BC  | MS-DOS   | Print Spool                              |
| 30 | C0  | MS-DOS   | Long jump interface                      |
| 33 | CC  | MS-DOS   | Mouse functions                          |
| 3F | FC  | MS-DOS   | Overlay interrupt                        |
| 40 | 100 | BIOS     | Floppy I/O when fixed disk<br>is present |
| 41 | 104 | BIOS     | Fixed disk 1 parameter table             |
| 42 | 108 | BIOS     | EGA Chain                                |
| 43 | 10C | BIOS     | EGA Parameter table pointer              |
| 44 | 110 | BIOS     | EGA graphics character font              |
| 4A | 128 | BIOS     | AT Alarm exit address                    |
| 50 | 140 | BIOS     | AT Alarm interrupt                       |
| 51 | 144 | BIOS     | Mouse functions                          |
| 5A | 168 | NET      | Functions                                |
| 5B | 16C | NET      | Boot chain                               |
| 5C | 170 | NET      | Net BIOS entry                           |
| 67 | 19C | MS-DOS   | EMS functions                            |
| 6D | 1B4 | VGA      | VGA Service                              |
| 70 | 1C0 | Hardware | IRQ8 - Real Time clock                   |
| 71 | 1C4 | Hardware | IRQ9 - Redirected IRQ2                   |
| 72 | 1C8 | Hardware | IRQ10 - Unassigned                       |
| 73 | 1CC | Hardware | IRQ11 - Unassigned                       |
| 74 | 1D0 | Hardware | IRQ12 - Unassigned                       |
| 75 | 1D4 | Hardware | IRQ13 - Unassigned                       |
| 76 | 1D8 | Hardware | IRQ14 - IDE Fixed Disk                   |
| 77 | 1DC | Hardware | IRQ15 - Unassigned                       |
| 80 | 200 |          |                                          |
| F0 | 3C0 | Basic    |                                          |
| F1 | 3C4 |          |                                          |
| FF | 3FC | Not Used |                                          |

## 8 APPENDIX C

## EBC-BX Parts Placement Guide - Top



## EBC-BX Parts Placement Guide - Bottom



**9**

## APPENDIX D

EBC-BX Parts List

10/13/03 Range on Parent Item PAGE 1  
11:19:08 WinSystems, Inc.

ASSM ITEM FROM: EBC-BXPLUS-700 ASSM ITEM THRU: EBC-BXPLUS-700  
PARENT LOC FROM: <FIRST> PARENT LOC THRU: <LAST>

| LVL ITEM KEY     | ITEM DESCRIPTION                        | BOM COMMENT                                | ITEM QTY | TYPE REQUIRED |
|------------------|-----------------------------------------|--------------------------------------------|----------|---------------|
| EBC-BXPLUS-700   | EBX-COMPATIBLE 700 MHZ LP PENTIUM 3 OMB | EBX-COMPATIBLE 700 MHZ LP PENTIUM 3 OMB SD | F 1.0    |               |
| 1 999-9999-001   | SPECIAL NOTES                           | 07/24/03 MEB ECO 03-44                     | I 1.0    |               |
| 1 999-9999-001   | SPECIAL NOTES                           | 09/11/02 MEB ECO 02-42                     | I 1.0    |               |
| 1 999-9999-001   | SPECIAL NOTES                           | 05/21/02 MEB (REV A)                       | I 1.0    |               |
| 1 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                              | I 1.0    |               |
| 1 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                              | I 1.0    |               |
| 1 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                              | I 1.0    |               |
| 1 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                              | I 1.0    |               |
| 1 0307-001-0000C | ASSY CORE, BOT-SMT EBC-BX REV.C         | ASSY CORE, BOT-SMT EBC-BX REV.C            | F 1.0    |               |
| 2 999-9999-001   | SPECIAL NOTES                           | 07/24/03 MEB ECO 03-44 REV.C               | I 1.0    |               |
| 2 999-9999-001   | SPECIAL NOTES                           | 09/11/02 MEB ECO 02-42                     | I 1.0    |               |
| 2 999-9999-001   | SPECIAL NOTES                           | 05/02/02 MEB (REVA)                        | I 1.0    |               |
| 2 999-9999-001   | SPECIAL NOTES                           | 02-06-03 KMT ECO 03-09                     | I 1.0    |               |
| 2 999-9999-001   | SPECIAL NOTES                           | 05/08/03 KMT ECO# 03-36                    | I 1.0    |               |
| 2 400-0307-000C  | PCB, EBC-BX REV.C                       |                                            | I 1.0    |               |
| 2 601-0000-503   | RES 0 Ohm 5% 1/10w 0805                 | R100,R101,R110,R111,R118,R182,W100,        | I 13.0   |               |
| 2 999-9999-001   | SPECIAL NOTES                           | W105,W107,W109,W112,W113,W114              | I 1.0    |               |
| 2 601-0100-503   | RES 10 Ohm 5% 1/10w 0805                | R149,R165,R166,R167                        | I 4.0    |               |
| 2 601-0101-503   | RES 100 Ohm 5% 1/10w 0805               | R127,R139,R183                             | I 3.0    |               |
| 2 601-0102-503   | RES 1K Ohm 5% 1/10w 0805                | R128,R130,R131,R137,R138,R140,R144,R151,   | I 11.0   |               |
| 2 999-9999-001   | SPECIAL NOTES                           | R154,R171,R180                             | I 1.0    |               |
| 2 601-0103-503   | RES 10K Ohm 5% 1/10w 0805               | R126,R129,R132,R134,R135,R146,R150,R155,   | I 12.0   |               |
| 2 999-9999-001   | SPECIAL NOTES                           | R187,R188,R191,R204                        | I 1.0    |               |
| 2 601-0203-503   | RES 20K Ohms 5% 1/10w 0805              | R156                                       | I 1.0    |               |
| 2 601-0220-503   | RES 22 Ohm 5% 1/10w 0805                | R174,R177,R186                             | I 3.0    |               |
| 2 601-0271-503   | RES 270 Ohm 5% 1/10w 0805               | R175,R190,R196                             | I 3.0    |               |
| 2 601-0303-503   | RES 30K OHM 5% 0805 1/10W SMT           | R152,R160,R205                             | I 3.0    |               |
| 2 601-0331-503   | RES 330 Ohm 5%, 0805                    | R121,R122,R123,R124,R141,R143,R145,R148,   | I 12.0   |               |
| 2 999-9999-001   | SPECIAL NOTES                           | R195,R197,R199,R202                        | I 1.0    |               |
| 2 601-0332-503   | RES 3.3K Ohm, 5%, 0805 1/10W SMT        | R158,R162,R176                             | I 3.0    |               |
| 2 601-0470-503   | RES 47 Ohm 5% 1/10w 0805                | R170,R194                                  | I 2.0    |               |
| 2 601-0471-503   | RES 470 Ohm 20% 1/10w 0805              | R102,R107                                  | I 2.0    |               |
| 2 601-0474-503   | RES 470K Ohm 5% 1/10w 0805              | R120                                       | I 1.0    |               |
| 2 601-0564-503   | RES 560K Ohm 5% 1/10w 0805              | R119                                       | I 1.0    |               |
| 2 601-0683-503   | RESISTOR 68K 5% 0805 SMT                | R153                                       | I 1.0    |               |
| 2 601-0750-503   | RES 75 Ohm 5% 1/10w 0805                | R193                                       | I 1.0    |               |
| 2 601-1000-303   | RES 100 Ohm 1% 1/10w 0805 SMT           | R161,R172,R181                             | I 3.0    |               |
| 2 601-1001-303   | RES 1K OHM 1% 1/10W SMT 0805            | R185,R201,R203                             | I 3.0    |               |
| 2 601-1100-303   | RES 110 OHM 1% 0805 1/10W SMT           | R168                                       | I 1.0    |               |
| 2 601-1210-303   | RES 121 Ohm 1% 1/10w 0805               | R173                                       | I 1.0    |               |
| 2 601-1432-303   | RES 14.3K Ohm 1% 1/10w 0805             | R163                                       | I 1.0    |               |
| 2 601-1500-303   | RES 150 Ohm 1% 1/10w 0805               | R159,R178,R192                             | I 3.0    |               |
| 2 601-1501-303   | RES 1.5K Ohm 1% 1/10w 0805              | R125,R136,R184                             | I 3.0    |               |
| 2 601-3922-303   | RES 39.2K Ohms 1% 1/10W 0805            | R198                                       | I 1.0    |               |
| 2 601-4532-303   | RES 45.3K 1% 0805                       | R164,R200                                  | I 2.0    |               |
| 2 601-5490-303   | RES 549 Ohms 1% 0805                    | R142,R157                                  | I 2.0    |               |
| 2 601-562A-303   | RES 56.2 OHM 1% 0805 1/10W SMT          | R169,R179,R189                             | I 3.0    |               |
| 2 601-6040-303   | RES 604 Ohms 1% 1/10W 0805              | R147                                       | I 1.0    |               |

10/13/03 Range on Parent Item PAGE 2  
11:19:09 WinSystems, Inc.

ASSM ITEM FROM: EBC-BXPLUS-700 ASSM ITEM THRU: EBC-BXPLUS-700  
PARENT LOC FROM: <FIRST> PARENT LOC THRU: <LAST>

| LVL ITEM KEY   | ITEM DESCRIPTION                 | BOM COMMENT                                | ITEM QTY | TYPE REQUIRED |
|----------------|----------------------------------|--------------------------------------------|----------|---------------|
| 2 602-0100-524 | RN 10 Ohm, 5%, 4RES ARRAY        | RP170,RP198                                | I 2.0    |               |
| 2 602-0101-524 | RN 100 Ohm, 5%, 4RES ARRAY       | RP150                                      | I 1.0    |               |
| 2 602-0102-524 | RN 1K Ohm, 5%, 4RES ARRAY        | RP105,RP121,RP139,RP141,RP154,RP163,RP173, | I 10.0   |               |
| 2 999-9999-001 | SPECIAL NOTES                    | RP184,RP199,RP200                          | I 1.0    |               |
| 2 602-0103-524 | RN 10K Ohm, 5%, 4RES ARRAY       | RP100,RP101,RP102,RP103,RP104,RP113,       | I 37.0   |               |
| 2 999-9999-001 | SPECIAL NOTES                    | RP114,RP115,RP116,RP125,RP126,RP128,RP129, | I 1.0    |               |
| 2 999-9999-001 | SPECIAL NOTES                    | RP130,RP131,RP132,RP133,RP134,RP135,       | I 1.0    |               |
| 2 999-9999-001 | SPECIAL NOTES                    | RP136,RP137,RP138,RP143,RP144,RP145,RP146, | I 1.0    |               |
| 2 999-9999-001 | SPECIAL NOTES                    | RP147,RP149,RP157,RP159,RP160,RP161,       | I 1.0    |               |
| 2 999-9999-001 | SPECIAL NOTES                    | RP164,RP165,RP167,RP171,RP172              | I 1.0    |               |
| 2 602-0151-524 | RN 150 OHM 4 RES 8 PIN PKG 5%    | RP182,RP183                                | I 2.0    |               |
| 2 602-0152-524 | RN 1.5K OHM 4 RESISTOR 8 PIN PKG | RP174                                      | I 1.0    |               |
| 2 602-0220-524 | RN 22 Ohm, 5%, 4RES ARRAY        | RP185,RP186,RP187,RP188,RP189,RP190,RP191  | I 11.0   |               |
| 2 999-9999-001 | SPECIAL NOTES                    | RP192,RP193,RP194,RP195                    | I 1.0    |               |
| 2 602-0272-524 | RN 2.7K Ohm, 5%, 4RES ARRAY      | RP142,RP155,RP158,RP162                    | I 4.0    |               |
| 2 602-0330-524 | RN 33 Ohm, 5%, 4RES ARRAY        | RP106,RP107,RP108,RP109,RP111,RP112,RP117, | I 16.0   |               |

|   |              |                                |                                              |       |
|---|--------------|--------------------------------|----------------------------------------------|-------|
| 2 | 999-9999-001 | SPECIAL NOTES                  | RPI18,RP119,RP120,RP122,RP123,RP124,RP127, I | 1.0   |
| 2 | 602-0331-524 | RN 330 Ohm, 5%, 4RES ARRAY     | RP151,RP152 I                                | 2.0   |
| 2 | 602-0471-524 | RN 470 Ohm, 4 RES 8 PIN RPACK  | RP168,RP169 I                                | 2.0   |
| 2 | 602-0472-524 | RN 4.7K Ohm, 5%, 4RES ARRAY    | RP110,RP140,RP148,RP166,RP197 I              | 5.0   |
| 2 | 602-0750-524 | RN 75 Ohm, 5%, 4RES ARRAY      | RP181,RP196 I                                | 2.0   |
| 2 | 602-0822-524 | RN 8.2K Ohm, 5%, 4RES ARRAY    | RP153,RP156,RP175,RP176,RP177,RP178,RP179, I | 8.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | RP180 I                                      | 1.0   |
| 2 | 603-1027-803 | CAP 1000pF 50v 20% CER 0805    | C111,C272 I                                  | 2.0   |
| 2 | 603-1037-803 | CAP .01uF 50v 20% CER 0805     | C155,C168,C176,C209 I                        | 4.0   |
| 2 | 603-1047-803 | CAP .1uF 50v 20% CER 0805      | C102,C105,C106,C107,C108,C109,C113,C114, I   | 109.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C115,C116,C117,C118,C119,C120,C121,C122, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C123,C124,C125,C126,C127,C128,C129,C130, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C131,C132,C133,C134,C135,C136,C137,C138, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C139,C140,C141,C142,C143,C144,C145,C146, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C147,C149,C151-C154,C156,C157,C158,C159, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C160,C161,C162,C163,C164,C165,C167,C170, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C172,C178,C179,C180,C183,C184,C185,C186, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C187,C188,C189,C190,C191,C192,C205,C210, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C214,C221,C223,C229,C231,C232,C233,C234, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C236,C237,C239,C240,C241,C242,C243,C247, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C250,C251,C252,C253,C255,C256,C257,C258, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C260,C261,C262,C263,C264,C267,C274,C284, I   | 1.0   |
| 2 | 999-9999-001 | SPECIAL NOTES                  | C285 I                                       | 1.0   |
| 2 | 603-1052-803 | CAP 1uF 10v 20% CER 0805       | C166,C182,C222 I                             | 3.0   |
| 2 | 603-1055-807 | CAP 1uF 25v 20% CER 1812       | C171,C173,C174,C206,C273 I                   | 5.0   |
| 2 | 603-1061-803 | CAP 10uF 6.3v 20% X5R SMT 0805 | C150 I                                       | 1.0   |
| 2 | 603-1527-803 | CAP .0015uF 50v 20% CER 0805   | C230 I                                       | 1.0   |
| 2 | 603-2219-803 | CAP 220pF 200v 20% CER 0805    | C278,C282,C286 I                             | 3.0   |
| 2 | 603-8217-803 | CAP 820pF 50v 20% CER 0805     | C181,C196 I                                  | 2.0   |
| 2 | 603-3307-503 | CAP 33pF 50v 2% CER 0805       | C283 I                                       | 1.0   |

| Range on Parent Item |                  | PAGE | 3 |
|----------------------|------------------|------|---|
| 10/13/03             | WinSystems, Inc. |      |   |
| 11:19:10             |                  |      |   |

|                                |                                |
|--------------------------------|--------------------------------|
| ASSM ITEM FROM: EBC-BXPLUS-700 | ASSM ITEM THRU: EBC-BXPLUS-700 |
| PARENT LOC FROM: <FIRST>       | PARENT LOC THRU: <LAST>        |

| LVL | ITEM KEY     | ITEM DESCRIPTION                       | BOM COMMENT              | ITEM QTY | TYPE REQUIRED |
|-----|--------------|----------------------------------------|--------------------------|----------|---------------|
| 2   | 603-3317-803 | CAP 330PF 20% 50V 0805 SMT X7R         | C177,C197                | I        | 2.0           |
| 2   | 603-4707-803 | CAP 47pF 50v 20% CER 0805 4k per reel  | C110,C112,C265,C268,C271 | I        | 5.0           |
| 2   | 603-4737-803 | CAP .047uF 50v 20% CER 0805            | C148,C169                | I        | 2.0           |
| 2   | 603-5687-303 | CAP 5.6pF 50V +/- .5pF 0805 SMT NPO    | C175,C193                | I        | 2.0           |
| 2   | 603-82R7-303 | CAP 8.2pF 50v .50pF CER 0805           | C220                     | I        | 1.0           |
| 2   | 607-0008-000 | DIODE SMT SCHOTTKY SOT-23              | D100,D101,D102           | I        | 3.0           |
| 2   | 660-0002-002 | TRANS MMBT2222ALT1 SOT-23              | Q100,Q101,Q103,Q104      | I        | 4.0           |
| 2   | 665-0004-002 | FAIRCHILD FDV301N NCHANNEL DIGITAL FET | Q102                     | I        | 1.0           |

SUB-ASSEMBLY TOTAL: 0307-001-0000C ARLIN - 93 Items

|   |                |                                         |                                |   |     |
|---|----------------|-----------------------------------------|--------------------------------|---|-----|
| 1 | 0307-002-0000C | ASSY CORE, TOP-TH EBC-BX REV.C          | ASSY CORE, TOP-TH EBC-BX REV.C | F | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                           | 07/24/03 MEB ECO 03-44         | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                           | 07-01-03 MEB ECO 03-36         | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                           | 09/11/02 MEB ECO 02-42         | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                           | 05/15/02 MEB (REVA)            | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                  | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                  | I | 1.0 |
| 2 | 200-0040-000   | SOCKET 40 POS QPHFZ-40-B-1W (Aptos)     | J20                            | I | 1.0 |
| 2 | 200-0064-000   | SOCKET 64 POS QPHFZ-64-B-1W (Aptos)     | J23                            | I | 1.0 |
| 2 | 200-0120-000   | CONN PC104 PLUS Aptos PQECOK9.35/2.28   | J22                            | I | 1.0 |
| 2 | 200-0168-100   | SOCKET 168 PIN 3.0V SDRAM DIMM,VERTICAL | M1                             | I | 1.0 |
| 2 | 201-0003-001   | HDR 3 PIN MOLEX 22-11-2032              | J31,J34                        | I | 2.0 |
| 2 | 201-0004-003   | HDR MOLEX 4 POS 22-11-2042              | J11                            | I | 1.0 |
| 2 | 201-0005-003   | HEADER 5 PIN LATCH MOLEX 22-11-2052     | J1                             | I | 1.0 |
| 2 | 201-0009-003   | HEADER 9 POS. RA .156" SP GOLD PLATING  | J3                             | I | 1.0 |
| 2 | 201-0034-021   | HDR 34 ST IDH-34LP-S3-TR (720)          | J10                            | I | 1.0 |
| 2 | 201-0036-010   | HDR 1X36 UN Aptos LHY-36S-E-060/030     | J12,J21=1X2                    | I | .6  |
| 2 | 999-9999-001   | SPECIAL NOTES                           | J15,J16,J17,J18,J27=1X3        | I | 1.0 |
| 2 | 201-0040-022   | HDR 40 POS IDC W/PIN 20 REMOVED 80/tray | J5,J8                          | I | 2.0 |
| 2 | 201-0050-021   | HDR 50 ST IDH-50LP-S3-TR (504) 60/tray: | J2                             | I | 1.0 |
| 2 | 201-0072-120   | HDR 2X36 UN Aptos LHZ-72S-E-060/030     | J13=2X2 J19=2X11               | I | .4  |
| 2 | 250-0320-001   | TERMINAL STRIP 316-93-132-41-006000     | U15=2X16                       | I | 1.0 |
| 2 | 250-0320-200   | SKT STRP 32 POS SS-132-G-2 (SAM)        | U4,U6=2X12 U5,U7,U9,U10=2X4    | I | 3.0 |
| 2 | 200-0243-100   | SOCKET 24 P .3 ICO-243-S8A-T (1,496)    | U17,U28                        | I | 2.0 |

SUB-ASSEMBLY TOTAL: 0307-002-0000C ARLIN - 23 Items

|   |                |                                 |                                 |   |     |
|---|----------------|---------------------------------|---------------------------------|---|-----|
| 1 | 0307-004-0000C | ASSY CORE, TOP-SMT EBC-BX REV.C | ASSY CORE, TOP-SMT EBC-BX REV.C | F | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                   | 07/24/03 MEB ECO 03-44          | I | 1.0 |

|   |              |                                        |                        |   |     |
|---|--------------|----------------------------------------|------------------------|---|-----|
| 2 | 999-9999-001 | SPECIAL NOTES                          | 09/11/02 MEB ECO 02-42 | I | 1.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                          | 05/15/02 MEB (REVA)    | I | 1.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                          | SPECIAL NOTES          | I | 0.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                          | SPECIAL NOTES          | I | 1.0 |
| 2 | 125-0008-000 | TRANSISTOR SI4947DY DUAL P-CHANNEL FET | U29                    | I | 1.0 |
| 2 | 601-0220-503 | RES 22 Ohm 5% 1/10w 0805               | R1,R2                  | I | 2.0 |

10/13/03 Range on Parent Item PAGE 4  
11:19:11 WinSystems, Inc.

ASSM ITEM FROM: EBC-BXPLUS-700 ASSM ITEM THRU: EBC-BXPLUS-700  
PARENT LOC FROM: <FIRST> DEFAULT COMPONENT LOCATION: ARLIN PARENT LOC THRU: <LAST>

| LVL ITEM KEY   | ITEM DESCRIPTION                         | BOM COMMENT                     | ITEM QTY | TYPE REQUIRED |
|----------------|------------------------------------------|---------------------------------|----------|---------------|
| 2 601-2508-304 | RES .025 OHM 1/2WATT 1% 1206 SMT         | R4                              | I        | 1.0           |
| 2 602-0330-524 | RN 33 Ohm, 5%, 4RES ARRAY                | RP1,RP2,RP3,RP4                 | I        | 4.0           |
| 2 603-1047-803 | CAP .1uF 50v 20% CER 0805                | C10,C15,C36,C42-C46,C48,C50,C56 | I        | 11.0          |
| 2 603-1055-807 | CAP 1uF 25v 20% CER 1812                 | C38,C53                         | I        | 2.0           |
| 2 603-1065-82D | CAP 10uF 25v 20% TAN 6032                | C1,C2,C9,C11,C14,C19,C20,C24    | I        | 8.0           |
| 2 603-107C-85F | CAP 100uF 8VOLT 20% POLYMER ALUM 7343H   | C3,C21,C30,C31,C32,C33,C34      | I        | 7.0           |
| 2 603-187B-85F | IC, CAP 180uF 4V 20% POLYMER ALUM 7343H  | C25,C26,C39,C40,C49,C60         | I        | 6.0           |
| 2 603-2207-503 | CAP 22PF 50v 2% NPO 0805                 | C12,C13,C16,C17                 | I        | 4.0           |
| 2 603-3365-82E | CAP 33uF 25V 20% 7343 TANT.SMT           | C5,C59                          | I        | 2.0           |
| 2 603-4763-82E | CAP 47uF 16v 20% TAN 7343                | C4,C18                          | I        | 2.0           |
| 2 603-68R7-203 | CAP 6.8pF 50v +/-5pf CER 0805 4k/reel    | C7,C8                           | I        | 2.0           |
| 2 605-1005-000 | INDUCTOR 4.7uh 0805 SMT                  | L3                              | I        | 1.0           |
| 2 605-2001-000 | FERRITE BEAD, SMT 3528                   | FB1,FB2                         | I        | 2.0           |
| 2 606-0006-000 | IC, 5V 4AMP TRANSFORMER                  | T2                              | I        | 1.0           |
| 2 606-0008-000 | IC, SHIELDED INDUCTOR SMT                | L1,L2                           | I        | 2.0           |
| 2 607-0005-005 | LED, GREEN SMT                           | D1,D7                           | I        | 2.0           |
| 2 607-0006-005 | LED, RED SMT                             | D2,D3,D6                        | I        | 3.0           |
| 2 607-0007-005 | LED, YELLOW SMT                          | D8                              | I        | 1.0           |
| 2 607-0010-013 | IC UPSS819 POWERMITE SCHOTTKY DIODE 1A   | D4,D5                           | I        | 2.0           |
| 2 611-0004-001 | IC, 74HC04M Philips 74HC04D-T 2500/reel  | U20                             | I        | 1.0           |
| 2 611-0125-001 | IC, 74HC125 QUAD TRI-STATE BUFFER        | U16                             | I        | 1.0           |
| 2 611-0245-002 | IC, 74HC245DW-T Philips 2k/reel          | U22                             | I        | 1.0           |
| 2 612-0014-001 | IC, 74HCT14 (SM)                         | U21                             | I        | 1.0           |
| 2 612-0688-002 | IC, 74HCT688D-T (SM) Philips 2k/reel     | U14                             | I        | 1.0           |
| 2 621-0025-024 | IC, FDCC37C672-MD SUPER I/O TQFP         | U8                              | I        | 1.0           |
| 2 622-0002-019 | IC, LTC1726EMS8-5 SUPERVISOR             | U13                             | I        | 1.0           |
| 2 622-0020-021 | IC, SYSTEM HARDWARE MONITOR              | U26                             | I        | 1.0           |
| 2 622-0021-019 | IC, FREQ. SYNTH CY28317ZC-2T TSSOP       | U18                             | I        | 1.0           |
| 2 623-0011-025 | IC, INTEL 82443BX HOST BRIDGE/CONTROLLER | U32                             | I        | 1.0           |
| 2 623-0012-025 | IC, SMSC SLC90E66 PCI SOUTH BRIDGE       | U25                             | I        | 1.0           |
| 2 650-0032-002 | SOCKET 32P AMP 822498-1 (28)             | U27                             | I        | 1.0           |
| 2 665-0005-008 | IC, N CHANNEL SMPTE MOSFET SO-8 PKG      | Q1,Q2,Q3,Q4,Q5,Q6               | I        | 6.0           |
| 2 668-0001-008 | IC, DUAL COMPLEMENTARY MOSFET SO-8 PKG   | U35                             | I        | 1.0           |
| 2 677-0006-029 | IC, SWITCHING REGULATOR CONTROLLER       | U36                             | I        | 1.0           |
| 2 677-0007-019 | IC, DUAL SWITCHING CONT. W/150ma LD0     | U37                             | I        | 1.0           |
| 2 681-0002-007 | XTAL, 14.31818mhz 18pf SMT FA-365        | Y2                              | I        | 1.0           |
| 2 681-0004-001 | XTAL 32.768KHZ SMT 6pf load capacity     | Y1                              | I        | 1.0           |
| 2 682-0003-006 | OSC 1.8432MHZ CMOS SG-710 SERIES         | U11                             | I        | 1.0           |
| 2 690-0001-000 | TRANSDUCER, AUDIO STAR MQT-03D           | SP1                             | I        | 1.0           |

SUB-ASSEMBLY TOTAL: 0307-004-0000C ARLIN - 46 Items

|                  |                             |                             |   |     |
|------------------|-----------------------------|-----------------------------|---|-----|
| 1 0307-010-0000C | SUB ASSY CORE, EBC-BX REV.C | SUB ASSY CORE, EBC-BX REV.C | F | 1.0 |
| 2 999-9999-001   | SPECIAL NOTES               | 07/24/03 MEB ECO 03-44      | I | 1.0 |
| 2 999-9999-001   | SPECIAL NOTES               | 09/11/02 MEB ECO 02-42      | I | 1.0 |
| 2 999-9999-001   | SPECIAL NOTES               | 05/15/02 MEB (REVA)         | I | 1.0 |

10/13/03 Range on Parent Item PAGE 5  
11:19:12 WinSystems, Inc.

ASSM ITEM FROM: EBC-BXPLUS-700 ASSM ITEM THRU: EBC-BXPLUS-700  
PARENT LOC FROM: <FIRST> DEFAULT COMPONENT LOCATION: ARLIN PARENT LOC THRU: <LAST>

| LVL ITEM KEY   | ITEM DESCRIPTION                     | BOM COMMENT                          | ITEM QTY | TYPE REQUIRED |
|----------------|--------------------------------------|--------------------------------------|----------|---------------|
| 2 999-9999-001 | SPECIAL NOTES                        | 02-05-03 KMT ECO 0309                | I        | 1.0           |
| 2 999-9999-001 | SPECIAL NOTES                        | SPECIAL NOTES                        | I        | 1.0           |
| 2 999-9999-001 | SPECIAL NOTES                        | SPECIAL NOTES                        | I        | 1.0           |
| 2 111-0047-000 | BATTERY, LTC-3PN 3.5V (EAGLE PICHET) | BT1 *MUST HAND SOLDER AFTER ASSEMBLY | I        | 1.0           |

|   |              |                                          |                                            |   |     |
|---|--------------|------------------------------------------|--------------------------------------------|---|-----|
| 2 | 201-0002-000 | PLUG JUMPER 999-19-310-00-000000         | J12=1-2 J13=1-2 3-4                        | I | 9.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                            | J19=5-6 11-12 13-14 19-20 21-22            | I | 1.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                            | J27=2-3                                    | I | 1.0 |
| 2 | 637-0008-015 | FLASH, 256KX8 AT29C020-PLCC (32/TUBE)    | U27 CS=4A9B \EBCBX\REL0416.BIN             | I | 1.0 |
| 2 | 730-0083-000 | IC, SP208CP (SIPPEX), MAX208CNG (15)     | U4,U6                                      | I | 2.0 |
| 2 | 901-0011-000 | IC, PALC22V10-35PC (15, TI) (17, CYP)    | U17 CS=8503 \EBCBX\EBCBXU17.JED            | I | 2.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                            | U28 CS=2B84 \EBCBX\EBCBXU28.JED            | I | 1.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                            | NOTE: INST. FOR ASSY. OF FAN / HEAT SINK   | I | 1.0 |
| 2 | 403-0307-200 | ASSY DRAWING, CPU COOLER                 | DRAWING, CPU COOLER INSTRUCTIONS.          | I | 1.0 |
| 2 | 502-0515-200 | CPU COOLER, 54mm 5V W/TACH 10 wk LT      | U34 * SEE 403-0307-200 INSTRUCTIONS        | I | 1.0 |
| 2 | 502-0009-000 | HEAT SINK 1" X 1" MATERIAL/PART# RD-339C | U34 * SEE 403-0307-200 INSTRUCTIONS        | I | 1.0 |
| 2 | 502-0018-000 | HEAT SPREADER' 1.25"x 1.60" COPPER       | U34 * SEE 403-0307-200 INSTRUCTIONS        | I | 1.0 |
| 2 | 502-0209-000 | HEAT SINK .750"x.750" THERMAGAP .020"THK | U34 * SEE 403-0307-200 INSTRUCTIONS        | I | 1.0 |
| 2 | 500-0200-033 | SCREW PPH 4-40 X 1/4"                    | U34 * SEE 403-0307-200 INSTRUCTIONS        | I | 4.0 |
| 2 | CBL-238-1    | CABLE, CPU COOLING FAN                   | U34 * SEE 403-0307-200 INSTRUCTIONS        | I | 1.0 |
| 2 | 502-0016-000 | HEAT SINK,BDN14-3CB 1.41"SQUARE x.355"HT | U32 * INST. W/THERMAL ADHESIVE 502-0009-00 | I | 1.0 |
| 2 | 502-0009-000 | HEAT SINK 1" X 1" MATERIAL/PART# RD-339C | U32 * INST. ON 502-0016-000                | I | 1.0 |

SUB-ASSEMBLY TOTAL: 0307-010-0000C ARLIN - 24 Items

|   |                |                                       |                                  |   |     |
|---|----------------|---------------------------------------|----------------------------------|---|-----|
| 1 | 0307-200-0000C | ASSY ENET, TOP-SMT, EBC-BX REV.C      | ASSY ENET, TOP-SMT, EBC-BX REV.C | F | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                         | 07/24/03 MEB ECO 03-44           | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                         | 09/11/02 MEB ECO 02-42           | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                         | 05/16/02 MEB (REVA)              | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                         | 12/06/02 KT ECO# 02-73           | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                         | SPECIAL NOTES                    | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                         | SPECIAL NOTES                    | I | 1.0 |
| 2 | 603-1065-82D   | CAP 10uF 25v 20% TAN 6032             | C22                              | I | 1.0 |
| 2 | 606-0007-000   | IC, 10/100 LAN MAGNETICS              | T1                               | I | 1.0 |
| 2 | 621-0038-025   | IC, GD82551QM ETHERNET PCI CONTROLLER | U24                              | I | 1.0 |
| 2 | 635-0001-001   | IC, 24C02 EEPROM S08 SERIAL 16X64     | U19                              | I | 1.0 |
| 2 | 681-0001-007   | XTAL, 25.0000mhz 18pf SMT FA-365      | Y3                               | I | 1.0 |

SUB-ASSEMBLY TOTAL: 0307-200-0000C ARLIN - 11 Items

|   |                |                                 |                                |   |     |
|---|----------------|---------------------------------|--------------------------------|---|-----|
| 1 | 0307-202-0000C | ASSY ENET, TOP-TH EBC-BX REV.C  | ASSY ENET, TOP-TH EBC-BX REV.C | F | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                   | 07/24/03 MEB ECO 03-44         | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                   | 09/11/02 MEB ECO 02-42         | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                   | 05/16/02 MEB (REVA)            | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                   | SPECIAL NOTES                  | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                   | SPECIAL NOTES                  | I | 1.0 |
| 2 | 201-0008-500   | TEL JACK RJ45 MOLEX 950-01-2881 | J28                            | I | 1.0 |

SUB-ASSEMBLY TOTAL: 0307-202-0000C ARLIN - 6 Items

| Range on Parent Item           |                |                                        | PAGE                             | 6                 |
|--------------------------------|----------------|----------------------------------------|----------------------------------|-------------------|
| WinSystems, Inc.               |                |                                        |                                  |                   |
| ASSM ITEM FROM: EBC-BXPLUS-700 |                |                                        | ASSM ITEM THRU: EBC-BXPLUS-700   |                   |
| PARENT LOC FROM: <FIRST>       |                |                                        | PARENT LOC THRU: <LAST>          |                   |
| LVL                            | ITEM KEY       | ITEM DESCRIPTION                       | BOM COMMENT                      | TYPE QTY REQUIRED |
| 1                              | 0307-300-0000C | ASSY VIDEO, TOP-SMT EBC-BX REV.C       | ASSY VIDEO, TOP-SMT EBC-BX REV.C | F 1.0             |
| 2                              | 999-9999-001   | SPECIAL NOTES                          | 07/24/03 MEB ECO 03-44           | I 1.0             |
| 2                              | 999-9999-001   | SPECIAL NOTES                          | 09/11/02 MEB ECO 02-42           | I 1.0             |
| 2                              | 999-9999-001   | SPECIAL NOTES                          | 05/16/02 MEB (REVA)              | I 1.0             |
| 2                              | 999-9999-001   | SPECIAL NOTES                          | SPECIAL NOTES                    | I 1.0             |
| 2                              | 999-9999-001   | SPECIAL NOTES                          | SPECIAL NOTES                    | I 1.0             |
| 2                              | 603-1065-82D   | CAP 10uF 25v 20% TAN 6032              | C23,C27,C28,C29,C47              | I 5.0             |
| 2                              | 650-0032-002   | SOCKET 32P AMP 822498-1 (28)           | U33                              | I 1.0             |
| 2                              | 621-0026-025   | IC, VIDEO CONTROLLER, 69K 256 PIN MBGA | U31                              | I 1.0             |

SUB-ASSEMBLY TOTAL: 0307-300-0000C ARLIN - 8 Items

|   |                |                                     |                                  |       |
|---|----------------|-------------------------------------|----------------------------------|-------|
| 1 | 0307-302-0000C | ASSY VIDEO, TOP-THR EBC-BX REV.C    | ASSY VIDEO, TOP-THR EBC-BX REV.C | F 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                       | 07/24/03 MEB ECO 03-44           | I 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                       | 09/11/02 MEB ECO 02-42           | I 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                       | 05/16/02 MEB (REVA)              | I 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                       | SPECIAL NOTES                    | I 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                       | SPECIAL NOTES                    | I 1.0 |
| 2 | 201-0007-003   | HEADER 7 PIN MOLEX 22-11-2072       | J25                              | I 1.0 |
| 2 | 201-0014-420   | HDR., 2X7 2MM SHROUDED              | J32                              | I 1.0 |
| 2 | 201-0036-010   | HDR 1X36 UN Aptos LHY-36S-E-060/030 | J26=1X3                          | I 1.0 |
| 2 | 201-0050-420   | HDR, Sam., STMM-125-02-S-D          | J30,J33                          | I 2.0 |

SUB-ASSEMBLY TOTAL: 0307-302-0000C ARLIN - 9 Items

|   |                |                              |                              |       |
|---|----------------|------------------------------|------------------------------|-------|
| 1 | 0307-310-0000C | SUB ASSY VIDEO, EBC-BX REV.C | SUB ASSY VIDEO, EBC-BX REV.C | F 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                | 07/24/03 MEB ECO 03-44       | I 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                | 03/21/03 MEB ECO 03-20       | I 1.0 |

|   |              |                                       |                                      |   |     |
|---|--------------|---------------------------------------|--------------------------------------|---|-----|
| 2 | 999-9999-001 | SPECIAL NOTES                         | 09/11/02 MEB ECO 02-42               | I | 1.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                         | 05/16/02 MEB (REVA)                  | I | 1.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                         | SPECIAL NOTES                        | I | 1.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                         | SPECIAL NOTES                        | I | 1.0 |
| 2 | 637-0003-015 | IC, AT29C010A-12JC 128K X 8 FLASH ROM | U33 CS=3B00 EBCBX\PCIVID\REL0314.BIN | I | 1.0 |
| 2 | 201-0002-000 | PLUG JUMPER 999-19-310-00-00000       | J12=1-2                              | I | 2.0 |
| 2 | 999-9999-001 | SPECIAL NOTES                         | J26=2-3                              | I | 1.0 |

SUB-ASSEMBLY TOTAL: 0307-310-0000C ARLIN - 9 Items

|   |                |                                         |                                         |   |     |
|---|----------------|-----------------------------------------|-----------------------------------------|---|-----|
| 1 | 0307-400-0000C | ASSY SECOND SERIAL TOP-SMT,EBC-BX REV.C | ASSY SECOND SERIAL TOP-SMT,EBC-BX REV.C | F | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                           | 07/24/03 MEB ECO 03-44                  | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                           | 09/11/02 MEB ECO 02-42                  | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                           | 05/16/02 MEB (REVA)                     | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                           | I | 1.0 |
| 2 | 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                           | I | 1.0 |
| 2 | 621-0033-024   | IC, ST16C2550CQ48 DUAL UART             | U12                                     | I | 1.0 |

SUB-ASSEMBLY TOTAL: 0307-400-0000C ARLIN - 6 Items

10/13/03 Range on Parent Item PAGE 7  
11:19:14 WinSystems, Inc.

ASSM ITEM FROM: EBC-BXPLUS-700 ASSM ITEM THRU: EBC-BXPLUS-700  
PARENT LOC FROM: <FIRST> PARENT LOC THRU: <LAST>

| LVL | ITEM KEY       | ITEM DESCRIPTION                        | BOM COMMENT                            | ITEM | QTY | TYPE REQUIRED |
|-----|----------------|-----------------------------------------|----------------------------------------|------|-----|---------------|
| 1   | 0307-402-0000C | ASSY SECOND SERIAL TOP-TH,EBC-BX REV.C  | ASSY SECOND SERIAL TOP-TH,EBC-BX REV.C | F    | 1.0 |               |
| 2   | 999-9999-001   | SPECIAL NOTES                           | 07/24/03 MEB ECO 03-44                 | I    | 1.0 |               |
| 2   | 999-9999-001   | SPECIAL NOTES                           | 09/11/02 MEB ECO 02-42                 | I    | 1.0 |               |
| 2   | 999-9999-001   | SPECIAL NOTES                           | 05/16/02 MEB (REVA)                    | I    | 1.0 |               |
| 2   | 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                          | I    | 1.0 |               |
| 2   | 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                          | I    | 1.0 |               |
| 2   | 201-0020-021   | HEADER 2x10 ST Aptos LPHS-20S3-B-032-SP | J4                                     | I    | 1.0 |               |
| 2   | 201-0072-120   | HDR 2X36 UN Aptos LHZ-72S-E-060/030     | J24=2X2                                | I    | .1  |               |
| 2   | 250-0320-200   | SKT STRP 32 POS SS-132-G-2 (SAM)        | U2=2X12 U3=2X12                        | I    | .7  |               |

SUB-ASSEMBLY TOTAL: 0307-402-0000C ARLIN - 8 Items

|   |                |                                     |                                     |   |     |  |
|---|----------------|-------------------------------------|-------------------------------------|---|-----|--|
| 1 | 0307-410-0000C | SUB ASSY SECOND SERIAL,EBC-BX REV.C | SUB ASSY SECOND SERIAL,EBC-BX REV.C | F | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                       | 07/24/03 MEB ECO 03-44              | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                       | 09/11/02 MEB ECO 02-42              | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                       | 05/16/02 MEB (REVA)                 | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                       | SPECIAL NOTES                       | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                       | SPECIAL NOTES                       | I | 1.0 |  |
| 2 | 730-0083-000   | IC, SP208CP (SIPEX), MAX208CNG (15) | U2,U3                               | I | 2.0 |  |
| 2 | 201-0002-000   | PLUG JUMPER 999-19-310-00-00000     | J24=1-2 3-4                         | I | 2.0 |  |

SUB-ASSEMBLY TOTAL: 0307-410-0000C ARLIN - 7 Items

|   |                |                                      |                                    |   |     |  |
|---|----------------|--------------------------------------|------------------------------------|---|-----|--|
| 1 | 0307-500-0000C | ASSY DIGITAL TOP SMT, EBC-BX REV.C   | ASSY DIGITAL TOP SMT, EBC-BX REV.C | F | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                        | 07/24/03 MEB ECO 03-44             | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                        | 09/11/02 MEB ECO 02-42             | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                        | 05/16/02 MEB (REVA)                | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                        | SPECIAL NOTES                      | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                        | SPECIAL NOTES                      | I | 1.0 |  |
| 2 | 603-1065-82D   | CAP 10uF 25v 20% TAN 6032            | C6                                 | I | 1.0 |  |
| 2 | 650-0084-002   | SOCKET, 84 POSITION PLCC 213-084-602 | U1                                 | I | 1.0 |  |

SUB-ASSEMBLY TOTAL: 0307-500-0000C ARLIN - 7 Items

|   |                |                                               |                                   |   |     |  |
|---|----------------|-----------------------------------------------|-----------------------------------|---|-----|--|
| 1 | 0307-502-0000C | ASSY DIGITAL TOP TH, EBC-BX REV.C             | ASSY DIGITAL TOP TH, EBC-BX REV.C | F | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                                 | 07/24/03 MEB ECO 03-44            | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                                 | 09/11/02 MEB ECO 02-42            | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                                 | 05/16/02 MEB (REVA)               | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                                 | SPECIAL NOTES                     | I | 1.0 |  |
| 2 | 999-9999-001   | SPECIAL NOTES                                 | SPECIAL NOTES                     | I | 1.0 |  |
| 2 | 201-0036-010   | HDR 1X36 UN Aptos LHY-36S-E-060/030           | J6,J14=1X2                        | I | .1  |  |
| 2 | 201-0050-021   | HDR 50 ST IDH-50LP-S3-TR (504) 60/tray: J7,J9 |                                   | I | 2.0 |  |

SUB-ASSEMBLY TOTAL: 0307-502-0000C ARLIN - 7 Items

|   |                |                                |                                |   |     |  |
|---|----------------|--------------------------------|--------------------------------|---|-----|--|
| 1 | 0307-510-0000C | SUB ASSY DIGITAL, EBC-BX REV.C | SUB ASSY DIGITAL, EBC-BX REV.C | F | 1.0 |  |
|---|----------------|--------------------------------|--------------------------------|---|-----|--|

10/13/03 Range on Parent Item PAGE 8  
11:19:15 WinSystems, Inc.  
ASSM ITEM FROM: EBC-BXPLUS-700 ASSM ITEM THRU: EBC-BXPLUS-700  
PARENT LOC FROM: <FIRST> DEFAULT COMPONENT LOCATION: ARLIN PARENT LOC THRU: <LAST>

| LVL ITEM KEY   | ITEM DESCRIPTION                 | BOM COMMENT            | ITEM QTY | TYPE REQUIRED |
|----------------|----------------------------------|------------------------|----------|---------------|
| 2 999-9999-001 | SPECIAL NOTES                    | 07/24/03 MEB ECO 03-44 | I        | 1.0           |
| 2 999-9999-001 | SPECIAL NOTES                    | 09/11/02 MEB ECO 02-42 | I        | 1.0           |
| 2 999-9999-001 | SPECIAL NOTES                    | 05/16/02 MEB (REVA)    | I        | 1.0           |
| 2 999-9999-001 | SPECIAL NOTES                    | SPECIAL NOTES          | I        | 1.0           |
| 2 999-9999-001 | SPECIAL NOTES                    | SPECIAL NOTES          | I        | 1.0           |
| 2 201-0002-000 | PLUG JUMPER 999-19-310-00-000000 | J6=1-2                 | I        | 1.0           |
| 2 905-0030-000 | IC, UD27-PL84-M3B:D              | U1                     | I        | 1.0           |

SUB-ASSEMBLY TOTAL: 0307-510-0000C ARLIN - 7 Items

|                  |                                         |                                          |   |      |
|------------------|-----------------------------------------|------------------------------------------|---|------|
| 1 0307-720-0000C | SUB ASSY BOT-SMT PROCESSOR 700MHZ REV C | SUB ASSY BOT-SMT PROCESSOR 700MHZ REV C  | F | 1.0  |
| 2 999-9999-001   | SPECIAL NOTES                           | 07/24/03 MEB ECO 03-44                   | I | 1.0  |
| 2 999-9999-001   | SPECIAL NOTES                           | 09/11/02 MEB ECO 02-42                   | I | 1.0  |
| 2 999-9999-001   | SPECIAL NOTES                           | 05/16/02 MEB (REVA)                      | I | 1.0  |
| 2 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                            | I | 1.0  |
| 2 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                            | I | 1.0  |
| 2 603-2252-803   | CAP 2.2uF X5R 10v 20% CER 0805          | C194,C195,C198,C199,C201,C202,C207,C208, | I | 35.0 |
| 2 999-9999-001   | SPECIAL NOTES                           | C212,C213,C215,C216,C217,C218,C219,C224, | I | 1.0  |
| 2 999-9999-001   | SPECIAL NOTES                           | C225,C226,C227,C228,C235,C238,C244,C245, | I | 1.0  |
| 2 999-9999-001   | SPECIAL NOTES                           | C246,C254,C259,C266,C269,C270,C275,C276, | I | 1.0  |
| 2 999-9999-001   | SPECIAL NOTES                           | C277,C280,C281                           | I | 1.0  |
| 2 601-0000-503   | RES 0 Ohm 5% 1/10w 0805                 | W102,W106                                | I | 2.0  |

SUB-ASSEMBLY TOTAL: 0307-720-0000C ARLIN - 11 Items

|                  |                                         |                                         |   |     |
|------------------|-----------------------------------------|-----------------------------------------|---|-----|
| 1 0307-725-0000C | SUB ASSY TOP-SMT PROCESSOR 700MHZ REV C | SUB ASSY TOP-SMT PROCESSOR 700MHZ REV C | F | 1.0 |
| 2 999-9999-001   | SPECIAL NOTES                           | 07/24/03 MEB ECO 03-44                  | I | 1.0 |
| 2 999-9999-001   | SPECIAL NOTES                           | 09/11/02 MEB ECO 02-42                  | I | 1.0 |
| 2 999-9999-001   | SPECIAL NOTES                           | 05/16/02 MEB (REVA)                     | I | 1.0 |
| 2 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                           | I | 1.0 |
| 2 999-9999-001   | SPECIAL NOTES                           | SPECIAL NOTES                           | I | 1.0 |
| 2 603-2252-803   | CAP 2.2uF X5R 10v 20% CER 0805          | C35,C37,C41,C51,C52,C54,C55,C57,C58     | I | 9.0 |
| 2 620-0017-025   | IC, PROC. KC80526GY850256 850MHZ PIII   | U34                                     | I | 1.0 |

SUB-ASSEMBLY TOTAL: 0307-725-0000C ARLIN - 7 Items

|                |                                 |                                        |   |     |
|----------------|---------------------------------|----------------------------------------|---|-----|
| 1 950-0001-100 | BAG STATIC BARRIER 07-0810 8X10 | BAG STATIC BARRIER 07-0810 8X10        | I | 1.0 |
| 1 910-0024-000 | LABEL, STATIC SENSITIVE 130-02  | LABEL, STATIC SENSITIVE 130-02         | I | 1.0 |
| 1 910-0037-000 | LABEL, AWARD BIOS, D686 Pentium | INSTALL BIOS LABEL ON PC104 CONNECTOR. | I | 1.0 |
| 1 999-9999-001 | SPECIAL NOTES                   | NOTE: JUMPER SETUP SUMMARY             | I | 1.0 |
| 1 999-9999-001 | SPECIAL NOTES                   | J6=1-2                                 | I | 1.0 |
| 1 999-9999-001 | SPECIAL NOTES                   | J12=1-2                                | I | 1.0 |
| 1 999-9999-001 | SPECIAL NOTES                   | J13=1-2, 3-4                           | I | 1.0 |
| 1 999-9999-001 | SPECIAL NOTES                   | J19=5-6, 11-12, 13-14, 19-20, 21-22    | I | 1.0 |
| 1 999-9999-001 | SPECIAL NOTES                   | J24=1-2, 3-4                           | I | 1.0 |
| 1 999-9999-001 | SPECIAL NOTES                   | J26=2-3                                | I | 1.0 |

10/13/03 Range on Parent Item PAGE 9  
11:19:15 WinSystems, Inc.  
ASSM ITEM FROM: EBC-BXPLUS-700 ASSM ITEM THRU: EBC-BXPLUS-700  
PARENT LOC FROM: <FIRST> DEFAULT COMPONENT LOCATION: ARLIN PARENT LOC THRU: <LAST>

| LVL ITEM KEY   | ITEM DESCRIPTION | BOM COMMENT | ITEM QTY | TYPE REQUIRED |
|----------------|------------------|-------------|----------|---------------|
| 1 999-9999-001 | SPECIAL NOTES    | J27=2-3     | I        | 1.0           |

TOP ASSEMBLY TOTAL: EBC-BXPLUS-700 ARLIN - 33 Items

#### REPORT RECAP

0 WARNING(S)

#### PARAMETER RECAP

PARAMETER KEY : 10 BOM for Manuals  
REPORT TITLE : Range on Parent Item

ASSM ITEM RANGE : EBC-BXPLUS-700 THRU EBC-BXPLUS-700 COSTING METHOD : A  
PARENT LOC RANGE : <FIRST> THRU <LAST> QUANTITY TO EXPLODE : 1

|                               |             |                             |
|-------------------------------|-------------|-----------------------------|
| PRODUCT KEY RANGE : <FIRST>   | THRU <LAST> | USE SCRAP FACTOR (Y/N) : N  |
| COMMODITY KEY RANGE : <FIRST> | THRU <LAST> | UPDATE INV STD COST : N     |
| DEFAULT COMP LOC : ARLIN      |             | NO. LEVELS TO EXPLODE : 999 |
| BOM STATUS PRIORITY : A       |             | COLUMNS OF DESC TEXT : 42   |
|                               |             | SHORT OR LONG (S/L) : S     |
|                               |             | PRINT ITEM DESC (Y/N) : Y   |

# **10 APPENDIX E**

EBC-BX Mechanical Drawing

5

4

3

2

1

| REVISIONS |     |             |      |            |
|-----------|-----|-------------|------|------------|
| ZONE      | REV | DESCRIPTION | DATE | CHANGED BY |
|           |     |             |      |            |
|           |     |             |      |            |
|           |     |             |      |            |

D

D

0.20" ↓ ↑ 0.20"

C

C



B

B

A

A

|                                                                                                                                                   |                   |      |                         |           |           |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|-------------------------|-----------|-----------|--------------|
| UNLESS OTHERWISE SPECIFIED<br>DIMENSIONS ARE IN INCHES.<br>FRACTIONS ARE IN EIGHTEENTHS.<br>ANGLES ARE IN DEGREES.<br>DECIMALS ARE IN HUNDREDTHS. | CUSTOMER APPROVAL | DATE | <i>WinSystems, Inc.</i> |           |           |              |
| APPROVAL                                                                                                                                          | DATE              |      | THE STD BUS AUTHORITY   |           |           |              |
| CHECKER                                                                                                                                           | DATE              |      | EBC-BX                  |           |           |              |
| DRAFT/DESIGN                                                                                                                                      | DATE              |      | MOUNTING DIMENSIONS     |           |           |              |
| FINISH                                                                                                                                            | DATE              |      | SIZE C                  | PAGE CODE | DWG NO.   | REV          |
|                                                                                                                                                   | 01/08/03          |      | 1/1                     | 1/1       | EBCBX.DWG | A            |
|                                                                                                                                                   |                   |      | SCALE                   | CAD ID    | EBCBX.DWG | SHEET 1 OF 1 |

5

4

3

2

1

# **11 APPENDIX F**

**WS16C48 I/O Routines and Sample Program Listings**

```
/* UIO48.H

Copyright 1996 by WinSystems Inc.

Permission is hereby granted to the purchaser of the WinSystems
UIO cards and CPU products incorporating the UIO device, to distribute
any binary file or files compiled using this source code directly or
in any work derived by the user from this file. In no case may the
source code, original or derived from this file, be distributed to any
third party except by explicit permission of WinSystems. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or implied.
In no case shall WinSystems be liable for any direct or indirect loss
or damage, real or consequential resulting from the usage of this
source code. It is the user's sole responsibility to determine
fitness for any considered purpose.

*/
/***********************
*      Name    : uio48.h
*
*      Project   : PCM-UIO48 Software Samples/Examples
*
*      Date     : October 30, 1996
*
*      Revision: 1.00
*
*      Author    : Steve Mottin
*
***********************/

*
*      Changes :
*
*      Date        Revision      Description
*      _____       _____
*      10/30/96    1.00          Created
*
***********************/
#define RISING 1
#define FALLING 0

void init_io(unsigned io_address);
int read_bit(int bit_number);
void write_bit(int bit_number);
void set_bit(int bit_number);
void clr_bit(int bit_number);
void enab_int(int bit_number, int polarity);
void disb_int(int bit_number);
void clr_int(int bit_number);
int get_int(void);
```

```

/* UIO48.C

Copyright 1996 by WinSystems Inc.

Permission is hereby granted to the purchaser of the WinSystems
UIO cards and CPU products incorporating the UIO device, to distribute
any binary file or files compiled using this source code directly or
in any work derived by the user from this file. In no case may the
source code, original or derived from this file, be distributed to any
third party except by explicit permission of WinSystems. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or implied.
In no case shall WinSystems be liable for any direct or indirect loss
or damage, real or consequential resulting from the usage of this
source code. It is the user's sole responsibility to determine
fitness for any considered purpose.

*/
*****  

*      Name    : uio48.c  

*  

*      Project   : PCM-UIO48 Software Samples/Examples  

*  

*      Date     : October 30, 1996  

*  

*      Revision: 1.00  

*  

*      Author    : Steve Mottin  

*  

*****  

*  

*      Changes :  

*  

*      Date        Revision      Description  

*  

*      10/30/96    1.00          Created  

*  

*****  

*/  

  

#include <dos.h>  

  

/* This global holds the base address of the UIO chip */  

  

unsigned base_port;  

  

/* This global array holds the image values of the last write to each I/O
ports. This allows bit manipulation routines to work without having to
actually do a read-modify-write to the I/O port.  

*/  

  

unsigned port_images[6];  

  

/*=====
*           INIT_IO
*  

*      This function take a single argument :
*  

*  

*      io_address  :  This is the base I/O address of the 16C48 UIO Chip
*                      on the board.
*  

=====

```

```

/*
 * This function initializes all I/O pins for input, disables all interrupt
 * sensing, and sets the image values.
 */
=====
void init_io(unsigned io_address)
{
int x;

/* Save the specified address for later use */

base_port = io_address;

/* Clear all of the I/O ports. This also makes them inputs */

for(x=0; x < 7; x++)
    outportb(base_port+x, 0);

/* Clear our image values as well */

for(x=0; x < 6; x++)
    port_images[x] = 0;

/* Set page 2 access, for interrupt enables */

outportb(base_port+7, 0x80);

/* Clear all interrupt enables */

outportb(base_port+8,0);
outportb(base_port+9,0);
outportb(base_port+0x0a,0);

/* Restore normal page 0 register access */

outportb(base_port+7,0);

}

=====
*                               READ_BIT
*
*
* This function takes a single argument :
*
*
* bit_number      : The integer argument specifies the bit number to read.
*                   Valid arguments are from 1 to 48.
*
* return value : The current state of the specified bit, 1 or 0.
*
* This function returns the state of the current I/O pin specified by
* the argument bit_number.
*
=====
int read_bit(int bit_number)
{
unsigned port;
int val;

```

```

/* Adjust the bit_number to 0 to 47 numbering */

--bit_number;

/* Calculate the I/O port address based on the updated bit_number */

port = (bit_number / 8) + base_port;

/* Get the current contents of the port */

val = inportb(port);

/* Get just the bit we specified */

val = val & (1 << (bit_number % 8));

/* Adjust the return for a 0 or 1 value */

if(val)
    return 1;

return 0;
}

=====
*
*                         WRITE_BIT
*
* This function takes two arguments :
*
*
* bit_number :  The I/O pin to access is specified by bit_number 1 to 48.
*
* val :  The setting for the specified bit, either 1 or 0.
*
* This function sets the specified I/O pin to either high or low as dictated
* by the val argument. A non zero value for val sets the bit.
*
=====*/
void write_bit(int bit_number, int val)
{
unsigned port;
unsigned temp;
unsigned mask;

/* Adjust bit_number for 0 based numbering */

--bit_number;

/* Calculate the I/O address of the port based on the bit number */

port = (bit_number / 8) + base_port;

/* Use the image value to avoid having to read the port first. */

temp = port_images[bit_number / 8]; /* Get current value */

/* Calculate a bit mask for the specified bit */

```

```

mask = (1 << (bit_number % 8));

/* Check whether the request was to set or clear and mask accordingly */

if(val)          /* If the bit is to be set */
    temp = temp | mask;
else
    temp = temp & ~mask;

/* Update the image value with the value we're about to write */

port_images[bit_number / 8] = temp;

/* Now actually update the port. Only the specified bit is affected */

outportb(port,temp);
}

/*=====
*           SET_BIT
*
*
* This function takes a single argument :
*
* bit_number : The bit number to set.
*
* This function sets the specified bit.
*
*=====
*/
void set_bit(int bit_number)
{
    write_bit(bit_number,1);
}

/*=====
*           CLR_BIT
*
*
* This function takes a single argument :
*
* bit_number : The bit number to clear.
*
* This function clears the specified bit.
*
*=====
*/
void clr_bit(int bit_number)
{
    write_bit(bit_number,0);
}

/*=====
*           ENAB_INT
*
*
* This function takes two arguments :
*
* bit_number : The bit number to enable intterups for. Range from 1 to 48.

```

```

/*
* polarity      : This specifies the polarity of the interrupt. A non-zero
*                  argument enables rising-edge interrupt. A zero argument
*                  enables the interrupt on the falling edge.
*
* This function enables within the 16C48 an interrupt for the specified bit
* at the specified polarity. This function does not setup the interrupt
* controller, nor does it supply an interrupt handler.
*/
=====
void enab_int(int bit_number, int polarity)
{
    unsigned port;
    unsigned temp;
    unsigned mask;

    /* Adjust for 0 based numbering */
    --bit_number;

    /* Calculate the I/O address based upon the bit number */
    port = (bit_number / 8) + base_port + 8;

    /* Calculate a bit mask based on the specified bit number */
    mask = (1 << (bit_number % 8));

    /* Turn on page 2 access */
    outportb(base_port+7,0x80);

    /* Get the current state of the interrupt enable register */
    temp = inportb(port);

    /* Set the enable bit for our bit number */
    temp = temp | mask;

    /* Now update the interrupt enable register */
    outportb(port,temp);

    /* Turn on access to page 1 for polarity control */
    outportb(base_port+7,0x40);

    /* Get the current state of the polarity register */
    temp = inportb(port);           /* Get current polarity settings */

    /* Set the polarity according to the argument in the image value */

    if(polarity)                  /* If the bit is to be set */
        temp = temp | mask;
    else
        temp = temp & ~mask;

    /* Write out the new polarity value */

```

```

        outportb(port,temp);

        /* Set access back to Page 0 */

        outportb(base_port+7,0x0);

    }

/*=====
*
*           DISAB_INT
*
* This function takes a single argument :
*
* bit_number : Specifies the bit number to act upon. Range is from 1 to 48.
*
* This function shuts off the interrupt enabled for the specified bit.
*
*=====
*/
void disb_int(int bit_number)
{
unsigned port;
unsigned temp;
unsigned mask;

/* Adjust the bit_number for 0 based numbering */

--bit_number;

/* Calculate the I/O Address for the enable port */

port = (bit_number / 8) + base_port + 8;

/* Calculate the proper bit mask for this bit number */

mask = (1 << (bit_number % 8));

/* Turn on access to page 2 registers */

outportb(base_port+7,0x80);

/* Get the current state of the enable register */

temp = inportb(port);

/* Clear the enable bit int the image for our bit number */

temp = temp & ~mask;

/* Update the enable register with the new information */

outportb(port,temp);

/* Set access back to page 0 */

outportb(base_port+7,0x0);

}

```

```

/*
*           CLR_INT
*
* This function takes a single argument :
*
* bit_number : This argument specifies the bit interrupt to clear. Range
*               is 1 to 24.
*
*
* This function is use to clear a bit interrupt once it has been recognized.
* The interrupt left enabled.
*/
void clr_int(int bit_number)
{
unsigned port;
unsigned temp;
unsigned mask;

/* Adjust for 0 based numbering */
--bit_number;

/* Calculate the correct I/O address for our enable register */
port = (bit_number / 8) + base_port + 8;

/* Calculate a bit mask for this bit number */
mask = (1 << (bit_number % 8));

/* Set access to page 2 for the enable register */
outportb(base_port+7,0x80);

/* Get current state of the enable register */
temp = inportb(port);

/* Temporarily clear only OUR enable. This clears the interrupt */
temp = temp & ~mask;           /* clear the enable for this bit */

/* Write out the temporary value */
outportb(port,temp);

/* Re-enable our interrupt bit */
temp = temp | mask;

/* Write it out */
outportb(port,temp);

/* Set access back to page 0 */
outportb(base_port+7,0x0);

```

```

}

/*=====
*
*          GET_INT
*
* This function take no arguments.
*
* return value : The value returned is the highest level bit interrupt
*                 currently pending. Range is 1 to 24.
*
* This function returns the highest level interrupt pending. If no interrupt
* is pending, a zero is returned. This function does NOT clear the interrupt.
*=====
*/
int get_int(void)
{
int temp;
int x;

/* read the master interrupt pending register, mask off undefined bits */

temp = inportb(base_port+6) & 0x07;

/* If there are no interrupts pending, return a 0 */

if((temp & 7) == 0)
    return(0);

/* There is something pending, now we need to identify what it is */

/* Set access to page 3 for interrupt id registers */

outportb(base_port+7,0xc0);

/* Read interrupt ID register for port 0 */

temp = inportb(base_port+8);

/* See if any bit set, if so return the bit number */

if(temp !=0)
{
    for(x=0; x <=7; x++)
    {
        if(temp & (1 << x))
        {
            outportb(base_port+7,0);      /* Turn off access */
            return(x+1);                /* Return bitnumber with active
int */
        }
    }
}

/* None in Port 0, read port 1 interrupt ID register */

```

```

temp = inportb(base_port+9);

/* See if any bit set, if so return the bit number */

if(temp !=0)
{
    for(x=0; x <=7; x++)
    {
        if(temp & (1 << x))
        {
            outportb(base_port+7,0);      /* Turn off access */
            return(x+9);                /* Return bitnumber with active
int */
        }
    }
}

/* Lastly, read status of port 2 int id */

temp = inportb(base_port+0x0a);          /* Read port 2 status */

/* If any pending, return the appropriate bit number */

if(temp !=0)
{
    for(x=0; x <=7; x++)
    {
        if(temp & (1 << x))
        {
            outportb(base_port+7,0);      /* Turn off access */
            return(x+17);               /* Return bitnumber with active
int */
        }
    }
}

/* We should never get here unless the hardware is misbehaving but just
   to be sure. We'll turn the page access back to 0 and return a 0 for
   no interrupt found.
*/
outportb(base_port+7,0);
return 0;
}

```

```

/* FLASH.C

Copyright 1996-2001 by WinSystems Inc.

Permission is hereby granted to the purchaser of the WinSystems
UIO cards and CPU products incorporating the UIO device, to distribute
any binary file or files compiled using this source code directly or
in any work derived by the user from this file. In no case may the
source code, original or derived from this file, be distributed to any
third party except by explicit permission of WinSystems. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or implied.
In no case shall WinSystems be liable for any direct or indirect loss
or damage, real or consequential resulting from the usage of this
source code. It is the user's sole responsibility to determine
fitness for any considered purpose.

*/
#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include "ui048.h"

/* This is where we have our board jumpered to */

#define BASE_PORT 0x120

/* This is an ultra-simple demonstration program of some of the functions
available in the UIO48 source code library. This program simply sets and
clears each I/O line in succession. It was tested by hooking LEDs to all
of the I/O lines and watching the lit one race through the bits.
*/
void main()
{
int x;

/* Initialize all I/O bits, and set them for input */
init_io(BASE_PORT);

/* We'll repeat our sequencing until a key is pressed */

while(!kbhit())
{
    /* We will light the LED attached to each of the 48 lines */
    for(x=1; x <=48; x++)
    {
        /* Setting the bit lights the LED */
        set_bit(x);
        /* The wait time is subjective. We liked 100mS */
        delay(100);
        /* Now turn off the LED */
        clr_bit(x);
    }
    getch();
}

```

```

/* POLL.C

Copyright 1996-2001 by WinSystems Inc.

Permission is hereby granted to the purchaser of the WinSystems
UIO cards and CPU products incorporating the UIO device, to distribute
any binary file or files compiled using this source code directly or
in any work derived by the user from this file. In no case may the
source code, original or derived from this file, be distributed to any
third party except by explicit permission of WinSystems. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or implied.
In no case shall WinSystems be liable for any direct or indirect loss
or damage, real or consequential resulting from the usage of this
source code. It is the user's sole responsibility to determine
fitness for any considered purpose.

*/

#include <stdio.h>
#include <conio.h>
#include "uio48.h"

#define BASE_PORT 0x120

/* This program uses the edge detection interrupt capability of the
   WS16C48 to count transitions on the first 24 lines. It does this
   however, not by using true interrupts but by polling for transitions
   using the get_int() function.

*/

/* Our transition totals are stored in this array */

unsigned int_counts[25];

/* Definitions for local functions */

void check_ints(void);

void main()
{
int x;

/* Initialize the I/O ports. Set all I/O pins to input */

init_io(BASE_PORT);

/* Initialize our transition counts, and enable falling edge
   transition interrupts.
*/
for(x=1; x<25; x++)
{
    int_counts[x] = 0;      /* Clear the counts */
    enable_int(x,FALLING); /* Enable the falling edge interrupts */
}

```

```

}

/* Clean up the screen for our display. Nothing fancy */
clrscr();

for(x=1; x<25; x++)
{
    gotoxy(1,x);
    printf("Bit number %02d ",x);
}

/* We will continue to display until any key is pressed */

while(!kbhit())
{
    /* Retrieve any pending transitions and update the counts */

    check_ints();

    /* Display the current count values */

    for(x=1; x < 25; x++)
    {
        gotoxy(16,x);
        printf("%05u",int_counts[x]);
    }
    getch();
}

void check_ints()
{
int current;

/* Get the bit number of a pending transition interrupt */

current = get_int();

/* If it's 0 there are none pending */

if(current == 0)
    return;

/* Clear and rearm this one so we can get it again */

clr_int(current);

/* Tally a transition for this bit */

++int_counts[current];
}

```

```
/* INTS.C

Copyright 1996-2001 by WinSystems Inc.

Permission is hereby granted to the purchaser of the WinSystems
UIO cards and CPU products incorporating the UIO device, to distribute
any binary file or files compiled using this source code directly or
in any work derived by the user from this file. In no case may the
source code, original or derived from this file, be distributed to any
third party except by explicit permission of WinSystems. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or implied.
In no case shall WinSystems be liable for any direct or indirect loss
or damage, real or consequential resulting from the usage of this
source code. It is the user's sole responsibility to determine
fitness for any considered purpose.

*/

#include <stdio.h>
#include <dos.h>
#include <conio.h>
#include "uioc48.h"

#define BASE_PORT 0x120

/* This program like the poll.c sample uses the edge detection interrupt
   capability of the WS16C48 to count edge transitions. Unlike poll.c,
   however this program actually uses interrupts and update all of the
   transition counters in the background.

*/

/* Our transition totals are stored in this global array */
unsigned int_counts[25];

/* Function declarations for local functions */

void check_ints(void);
void interrupt int_handler(void);
void interrupt (*old_handler)(void);

void main()
{
int x;

    /* Initialize the I/O ports. Set all I/O pins to input */

    init_io(BASE_PORT);

    /* Install an interrupt handler for the board */

    /* We disable interrupts whenever we're changing the environment */

    disable(); /* Disable interrupts during initialization */

    /* Get the old handler and save it for later restoration */

```

```

old_handler = getvect(0x72);      /* Hardwired for IRQ10 */

/* Install out new interrupt handler */

setvect(0x72,int_handler);

/* Clear the transition count values and enable the falling edge
   interrupts.
*/
for(x=1; x<25; x++)
{
    int_counts[x] = 0;          /* Clear the counts */
    enab_int(x,FALLING);      /* Enable the falling edge interrupts */
}

/* Unmask the interrupt controller */

outportb(0xa1,(inportb(0xa1) & 0xfb)); /* Unmask IRQ 10 */

/* Reenable interrupts */
enable();

/* Set up the display */

clrscr(); /* Clear the Text Screen */

for(x=1; x<25; x++)
{
    gotoxy(1,x);
    printf("Bit Number %02d ",x);
}

/* We will continuously print the transition totals until a
key is pressed */

/* All of the processing of the transition interrupts, including
   updating the counts is done in the background when an interrupt
occurs.
*/
while(!kbhit())
{
    for(x=1; x < 25; x++)
    {
        gotoxy(16,x);
        printf("%05u",int_counts[x]);
    }
}

getch();

/* Disable interrupts while we restore things */

disable();

/* Mask off the interrupt at the interrupt controller */

```

```

        outportb(0xa1,inportb(0xa1) | 0x02);      /* Mask IRQ 10 */

/* Restore the old handler */

        setvect(0x72,old_handler);      /* Put back the old interrupt handler */

/* Reenable interrupts. Things are back they way they were before we
started.

*/
        enable();
}

/* This function is executed when an edge detection interrupt occurs */

void interrupt int_handler(void)
{
int current;

/* Get the current interrupt pending. There really should be one
here or we shouldn't even be executing this function.
*/
        current = get_int();

/* We will continue processing pending edge detect interrupts until
there are no more present. In which case current == 0
*/
        while(current)
{
        /* Clear the current one so that it's ready for the next edge */

        clr_int(current);

        /* Tally up one for the current bit number */

        ++int_counts[current];

        /* Get the next one, if any others pending */

        current = get_int();
}

/* Issue a non-specific end of interrupt command (EOI) to the
interrupt controller. This rearms it for the next shot.
*/
        outportb(0xa0,0x20);      /* Do non-specific EOI */
        outportb(0x20,0x20);
}

```



Telephone: 817-274-7553 . . Fax: 817-548-1358  
<http://www.winsystems.com> . . E-mail: [info@winsystems.com](mailto:info@winsystems.com)

## **WARRANTY**

WinSystems warrants that for a period of two (2) years from the date of shipment any Products and Software purchased or licensed hereunder which have been developed or manufactured by WinSystems shall be free of any material defects and shall perform substantially in accordance with WinSystems' specifications therefore. With respect to any Products or Software purchased or licensed hereunder which have been developed or manufactured by others, WinSystems shall transfer and assign to Customer any warranty of such manufacturer or developer held by WinSystems, provided that the warranty, if any, may be assigned. The sole obligation of WinSystems for any breach of warranty contained herein shall be, at its option, either (i) to repair or replace at its expense any materially defective Products or Software, or (ii) to take back such Products and Software and refund the Customer the purchase price and any license fees paid for the same. Customer shall pay all freight, duty, broker's fees, insurance charges and other fees and charges for the return of any Products or Software to WinSystems under this warranty. WinSystems shall pay freight and insurance charges for any repaired or replaced Products or Software thereafter delivered to Customer within the United States. All fees and costs for shipment outside of the United States shall be paid by Customer. The foregoing warranty shall not apply to any Products or Software which have been subject to abuse, misuse, vandalism, accidents, alteration, neglect, unauthorized repair or improper installations.

**THERE ARE NO WARRANTIES BY WINSYSTEMS EXCEPT AS STATED HEREIN. THERE ARE NO OTHER WARRANTIES EXPRESS OR IMPLIED INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, IN NO EVENT SHALL WINSYSTEMS BE LIABLE FOR CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF DATA, PROFITS OR GOODWILL. WINSYSTEMS' MAXIMUM LIABILITY FOR ANY BREACH OF THIS AGREEMENT OR OTHER CLAIM RELATED TO ANY PRODUCTS, SOFTWARE, OR THE SUBJECT MATTER HEREOF, SHALL NOT EXCEED THE PURCHASE PRICE OR LICENSE FEE PAID BY CUSTOMER TO WINSYSTEMS FOR THE PRODUCTS OR SOFTWARE OR PORTION THEREOF TO WHICH SUCH BREACH OR CLAIM PERTAINS.**

## **WARRANTY SERVICE**

All products returned to WinSystems must be assigned a Return Material Authorization (RMA) number. To obtain this number, please call or FAX WinSystems' factory in Arlington, Texas and provide the following information:

1. Description and quantity of the product(s) to be returned including its serial number.
2. Reason for the return.
3. Invoice number and date of purchase (if available), and original purchase order number.
4. Name, address, telephone and FAX number of the person making the request.
5. Do not debit WinSystems for the repair. WinSystems does not authorize debits.

After the RMA number is issued, please return the products promptly. Make sure the RMA number is visible on the outside of the shipping package.

The customer must send the product freight prepaid and insured. The product must be enclosed in an anti-static bag to protect it from damage caused by static electricity. Each bag must be completely sealed. Packing material must separate each unit returned and placed as a cushion between the unit(s) and the sides and top of the shipping container. WinSystems is not responsible for any damage to the product due to inadequate packaging or static electricity.