

注:中断周期内的微操作序列 分析每个阶段的微操作序列 就不分析了,原理类似 取指周期(所有指令都一样) 间址周期(所有指令都一样) 执行周期(各不相同) PC → MAR $Ad(IR) \rightarrow MAR$ CLA $0 \rightarrow AC$ $1 \rightarrow R$ $1 \rightarrow R$ clear ACC 指令 $M(MAR) \rightarrow MDR$ ACC清零 $M(MAR) \rightarrow MDR$ $MDR \rightarrow IR$ $Ad(IR) \rightarrow MAR$ LDA X $MDR \rightarrow Ad(IR)$ $1 \rightarrow R$ 取数指令, $OP(IR) \rightarrow ID$ 把X所指内容 $M(MAR) \rightarrow MDR$ $(PC) + 1 \rightarrow PC$ 取到ACC MDR → AC JMP X Ad (IR) \rightarrow PC 无条件转移 罗列出<mark>所有</mark>指令在各个阶段的微操作序列,就可以知道 在什么情况下需要使用这个微操作 $A_0 \bullet Ad (IR) + \overline{A_0} \bullet (PC) \rightarrow PC$ BAN X 根据指令操作码、目前的机器周期、节拍信号、机器状态条件,即可确定现在这个节拍下应该发出哪些"微命令" Branch ACC Negative 条件转移, 当ACC为负时转移 王道考研/CSKAOYAN.COM

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在一个节拍 内完成

并允许有先后顺序

(1) PC \rightarrow MAR

(2) 1 \rightarrow R 存储器空闲即可

(3) M (MAR) \rightarrow MDR 在(1)之后

(4) MDR \rightarrow IR

(5) OP (IR) \rightarrow ID 在(4)之后

在(3)之后

(6) (PC) + 1 \rightarrow PC 在(1)之后

王道考研/CSKAOYAN.COM

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

 T_0 (1) PC \rightarrow MAR

 T_0 (2) 1 \rightarrow R

 T_1 (3) M (MAR) \rightarrow MDR 在(1)之后

 T_1 (6) (PC) + 1 \rightarrow PC 在(1)之后

(4) MDR \rightarrow IR

(5) OP (IR) \rightarrow ID

在(3)之后 在(4)之后

存储器空闲即可

两个微操作占用时 间较短,根据原则 三安排在一个节拍

M(MAR)→ MDR 从主存取数据,用时较长,因此必须一个时钟周期才能保证微操作的完成

MDR → IR 是CPU内部寄存器的数据传送,速度很快,因此在一个时钟周期内可以紧接着完成 OP (IR) → ID。 也就是可以一次同时发出两个微命令。

王道考研/CSKAOYAN.COM

安排微操作时序-间址周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在一个节拍 内完成

并允许有先后顺序

 T_0 (1) Ad(IR) \rightarrow MAR

 T_0 (2) 1 \rightarrow R

 T_1 (3) M (MAR) \rightarrow MDR

 T_2 (4) MDR \rightarrow Ad(IR)

王道考研/CSKAOYAN.COM

11

安排微操作时序-执行周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在一个节拍 内完成

并允许有先后顺序

① CLA T₀

clear T_1 ACC清零 T_2 $0 \rightarrow$ AC

② COM T₀

complement T_1 ACC取反 T_2 $\overline{AC} \rightarrow AC$

3 SHR T_0 Shift T_1

shift 算术右移 T_2 L(AC) \rightarrow R(AC) T_2 AC0 \rightarrow AC0

4 CSL T₀

cyclic shift T_1 $KETA \pm 12$ T_2 $R(AC) \rightarrow L(AC)$, $AC_0 \rightarrow AC_0$

循环左移 T₂ ⑤ STP T₀ stop

stop 停机 T₂ 0 → G

王道考研/CSKAOYAN.COM

安排微操作时序-中断周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作

尽量 安排在一个节拍 内完成

并允许有先后顺序

存储器空闲即可

 T_0 (2) 1 \rightarrow W T_0 (3) 0 \rightarrow EINT

 T_0 (1) a \rightarrow MAR

硬件关中断

 T_1 (4) (PC) \rightarrow MDR

内部数据通路空闲即可

 T_2 (5) MDR \rightarrow M(MAR)

在(3)之后

T₂ (6) 向量地址 → PC

在(3)之后

这些操作由中断隐指令完成

注:中断隐指令不是一条指令,而是指一条指令的 中断周期由硬件完成的一系列操作

中断周期的三个任务:

1. 保存断点

2. 形成中断服务程序的入口地址

3. 关中断

王道考研/CSKAOYAN.COM

设计步骤:

1. 分析每个阶段的微操作序列

2. 选择CPU的控制方式

3. 安排微操作时序

4. 电路设计

				组作	合逻辑	建设订							
				计步骤 列出	: 操作时间	司表	非访	存指令					
工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
FE取指	т		PC → MAR	1	1	1	1	1	1	1	1.5	1	1
	T ₀		1 → R	1	1	1	1	1	1	1	4 T	1	1
	Т		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1
	T_1		$(PC)+1 \longrightarrow PC$	1	1	1	1	1	1	1	1	1	1
	T ₂		MDR→ IR	1	1	1	1	1	1	1	1	1	1
			$OP(IR) \rightarrow ID$	1	1	1	1	1	1	1	1	1	1
		I	1→ IND						1	1	1	1	1
		/ ī	1 → EX	1	1	1	10	1	1	1	1	1	1

设计步骤 1. 列出掉]表		组合								
2. 写出微 操作命令的 最简表达式	工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP	BAN	A Pilling
		. 4	03	$Ad(IR) \rightarrow MAR$			1	1	1			7 27
	20	T_0	0	$1 \rightarrow R$			1		1		8	,
		00		$1 \longrightarrow W$				1		5(1)	65	
		T_1		$M(MAR) \rightarrow MDR$			1		1	N. A.		
66	EX 执行	11		$AC \longrightarrow MDR$				1		4		
H	37/11			(AC)+(MDR)→AC			1	H	2())			
				$MDR \rightarrow M(MAR)$				1	TT (5)			
				MDR→AC					1			
0,0		T ₂		0→AC	1			40				
				$\overline{AC} \rightarrow AC$		1						
				$Ad(IR) \rightarrow PC$	4		8			1		
			A ₀	$Ad(IR) \rightarrow PC$		W 00					1	
•				_*		5				王道考	研/CSK/	AOYAN.COM

				微操	作信	号综	合						
工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
FE 取指	T_0		PC → MAR	1	1	1	1	1	1	1	1	1	1
	T ₁		$1 \longrightarrow R$ $M(MAR) \longrightarrow MDR$	1	1	1	1	1	1	1	1	1	1
		. :	1 · K	ı	1	i I	i I	i I	ı -		4	40.5	<u> </u>
IND 间址	T ₁		$M(MAR) \rightarrow MDR$						1	1	1	[^] 1	1
(20)		44	EX 人		$1 \longrightarrow W$					1	<u></u>		
			T ₁	M(M	AR)→	MDR		H	1	B	1		-
M (FE·T	MAR)	$\rightarrow M$ $D \cdot T_1 (A)$	DR微操作命令的逻 ADD+STA+LDA+JM D+STA+LDA+JMP	辑表达 IP+BA	式: N)+E	X·T₁(A	VDD+I	.DA)					

画出逻辑图

M (MAR) →MDR微操作命令的逻辑表达式:
FE·T1+ IND·T1(ADD+STA+LDA+JMP+BAN) + EX·T1(ADD+LDA)
=T1{FE+IND(ADD+STA+LDA+JMP+BAN)+EX(ADD+LDA)}

FE

T1

M (MAR) → MDR (MAR) →

硬布线控制器的设计

- 1. 分析每个阶段的微操作序列
- 2. 选择CPU的控制方式
- 3. 安排微操作时序
- 4. 电路设计
 - (1) 列出操作时间表
 - (2)写出微操作命令的最简表达式
 - (3)画出逻辑图

硬布线控制器的特点:

指令越多,设计和实现就越复杂,因此一般用于 RISC (精简指令集系统) 如果扩充一条新的指令,则控制器的设计就需要大改,因此扩充指令较困难。 由于使用纯硬件实现控制,因此执行速度很快。微操作控制信号由组合逻辑电路即时产生。

王道考研/CSKAOYAN.COM

21

你还可以在这里找到我们

快速获取第一手计算机考研信息&资料

购买2024考研全程班/领学班/定向班 可扫码加微信咨询

- - 微博: @王道计算机考研教育
- B站: @王道计算机教育
- - 小红书: @王道计算机考研
- - 知乎: @王道计算机考研
- - 抖音: @王道计算机考研
- 淘宝: @王道论坛书店