1	
2	
3	
4	
5	
6	$\label{thm:continuous} \textbf{Pose estimates from online videos show that side-by-side walkers synchronize movement}$
7	under naturalistic conditions
8	
9	Synchronization of walking "in the wild"
10	
11	
12	
13	
14	Claire Chambers ¹ ¶*, Gaiqing Kong ² ¶, Kunlin Wei ² , Konrad Kording ¹
15	
16	
17	
18	¹ Department of Bioengineering and Department of Neuroscience, University of
19	Pennsylvania, Philadelphia, PA, USA
20	
21	² School of Psychological and Cognitive Sciences, Peking University, Beijing, China
22	
23	
24	
25	* Corresponding author
26	E-mail: <u>clairenc@seas.upenn.edu</u>
27	
28	
29	¶ These authors contributed equally to this work.
30	
31	
32 33	
34	
35	

Abstract

Marker-less video-based tracking promises to allow us to do movement science on existing video databases. We revisited the old question of how people synchronize their walking using real world data. We thus applied pose estimation to 348 video segments extracted from YouTube videos of people walking in cities. As in previous, more constrained, research, we find a tendency for pairs of people to walk in phase or in anti-phase with each other. Large video databases, along with pose-tracking algorithms, promise answers to many movement questions without experimentally acquiring new data.

Author summary

Lab experiments have shown that people align their movements when they walk together. We asked if walkers synchronize their movements in real-life settings too. To do so, we examined how people move in YouTube videos using marker-less tracking. We confirmed previous results: people walking together tend to walk either in phase or in opposite phase. Marker-less tracking from video allows us to address questions about naturalistic movement using existing video data.

Introduction

To successfully navigate any environment, a walker must adapt to the surface they walk on, avoid obstacles, change speed, and plan movements according to their goals (1,2). Processes that impact walking behavior range from peripheral processes to high-level decision-making processes (3,4). Walking, like all movement, often takes place in the context of other people. Humans, when walking, must often generate their actions according to the movements of people around them.

Coordination of movements with others during everyday activities helps to achieve shared goals efficiently and fluently, for example when playing sports, moving an object together, or walking side-by-side. In many cases, synchronization is needed to successfully carry out the task at hand. However, evidence from laboratory experiments suggests that synchronization between people does not only take place when it is required by the task. There is evidence for uninstructed movement coordination from laboratory experiments where subjects are asked to perform various artificial tasks, for example, sway pendulums, sit in rocking chairs, or spontaneously move their arms (5–11). Coordination across individuals thus appears to be fairly ubiquitous, occurring even when it is not required by the task and there is no instruction to do so.

Previous laboratory-based studies have investigated if people walking side-by-side synchronize their movements. Walker synchronization is common when people walk side-by-side, and has been found in over-ground walking studies (4,12–14) and in treadmill walking studies (15–20). For example, Zivotofsky and Hausdorff (2007) found that when people were asked to walk side-by-side, they walked in anti-phase (left-right, right-left), with the left leg of one walker aligned with the right leg of the other walker, without instruction. van Ulzen et al. (2008) tracked subjects during side-by-side treadmill walking and found both in-phase (left-left, right-right) and anti-phase (left-right, right-left) walking with preferred synchronization modes. In sum, previous results provide evidence that pairs tend to walk in phase or in anti-phase.

However, as with many movement science paradigms, it is not known if walker synchronization occurs in real world settings, outside of the laboratory. This is especially relevant for the walking studies in the laboratory: researchers have found a substantial difference in biomechanics between walking on the treadmill and walking on level ground

(21,22). The synchronization of pairs of walkers observed on treadmill might not generalize to real life settings.

There have been previous examinations of walker synchronization in naturalistic settings. While most lab studies used motion capture systems to quantify walking parameters, research has relied on reviewer ratings to address walking over ground (14). This is understandable since motion capture technologies were either low in precision, like smartphone sensors, or low in portability, with previous experiments requiring that subjects wear markers or recording equipment (23,24). This made motion capture a challenge for studying walker synchronization in real life. Thanks to recent work on pose tracking from 2D video, it is now possible to perform marker-less tracking with only 2D video data as input (25–27). These algorithms take as input a 2D RGB image and output an estimate of human pose in image coordinates with reasonable accuracy. Marker-less tracking applied to videos provides the opportunity to ask questions about naturalistic behavior outside the laboratory.

Here we apply pose estimation to online videos to ask how people synchronize their movements when they walk side-by-side. We used a state-of-the-art pose-estimation algorithm, OpenPose, to extract human body pose from 2D videos (25). OpenPose finds joint positions of people in videos and fits a 2D skeleton model to each person in the image. We built a simple search algorithm to find video segments containing pairs of people walking side-by-side in YouTube videos. From the resulting video segments, we extracted the pose of people in the video and tracked their identity through videos. We examined pose estimates to ask if people walking together synchronized their movements, using vertical ankle displacement to quantify walking angle and thus phase.

Methods

Video data

We wanted to obtain videos of people walking in a naturalistic setting. To find this data, we searched for videos on <u>youtube.com</u> using the search term "walking in" followed by the names of major cities: Bangkok, London, Paris, Dubai, New York, Singapore, Kuala Lumpur, Istanbul, Tokyo, Seoul, Hong Kong, Barcelona, Amsterdam, Milan, Taipei, Rome, Osaka, Vienna, Shanghai, and Prague. Videos were ranked by relevance by YouTube. We examined the most relevant videos for each search term that were over 20 minutes long. In our analysis, we included videos that contained pairs of people walking with low camera movement and where limbs of people in the video were uncropped. We selected videos that met these criteria from the 20 most relevant results on YouTube.

Pose estimation

We needed a method to quantify the synchronization of walker pairs from 2D videos. We therefore began by extracting human pose from video frames, using OpenPose, a pose-estimation algorithm that detects body part positions from 2D RGB images (25). OpenPose detects the position of the neck, shoulders, elbows, wrists, hips, knees, and ankles, as well as key facial points of eyes, ears, and nose. OpenPose assigns a unique person identity to each skeleton present in the image. In our analysis pipeline, we extract the pose of humans from individual frames of videos.

Search algorithm

We first needed to identify video segments of people walking side-by-side from the downloaded YouTube videos. We therefore built an algorithm to search through YouTube videos and extract the particular segments containing pairs of people walking (Fig 1). First, we subsampled YouTube videos at a rate of 2 frames/second, then extracted pose estimates from video frames. Based on pose estimates present in a frame we detected pairs of walkers. Finally, we defined continuous sequences of frames that contained pairs of walkers for inclusion in our analysis.

From each frame of the subsampled YouTube video, we extracted human pose, resulting in a set of x, y coordinates indicating body part position and a person index. We included skeletons that contained at least 14 out of the total 18 parts. As movement synchronization is typically quantified by relative phase between two oscillatory motions, we created a measure of walking phase by using the ankle position. Therefore, we required that both ankles be detected for a given skeleton. This resulted in a set of pose estimates for each video frame with people present.

Using pose estimates from each frame, we then detected pairs of walkers on a frame-by-frame basis. We built a bounding box around each skeleton pair found in the image. To ensure that walkers were side-by-side, we selected pairs where the aspect ratio (height:width) of the bounding box was between 1:1 and 3:1, and where ankles of the pair were within 15% of the bounding box from each other in y-coordinates. To avoid data with low spatial resolution, we selected pairs where the height of the bounding box was over 120 pixels. To ensure that we analyzed pairs of adult walkers and not adult-child pairs, we only included pairs where the ratio between the larger and smaller skeleton was less than 1.25:1. This resulted in a set of detected person pairs from each video frame.

To produce video segments of pairs of walkers, we identified sequences of video frames that contained at least one pair of walkers for the whole duration of the segment, with a minimum segment lasting 2.5 seconds. We excluded pairs where two or more walker pair detections contained a common element (person) for 3 consecutive subsampled frames or more (1.5 seconds), which would suggest a group of walkers. We then extracted video segments of pair of walkers from the original YouTube video sampled at the original frame rate. We manually selected videos that contained non-occluded pairs of adults walking continuously toward or away from the camera on flat surfaces in well-lit conditions, where

people were not carrying large objects or using an assistive device. This resulted in video segments containing pairs of people walking together.

From each video segment, we needed to extract pose and track individuals through the video, in order to obtain cyclic walking signals for each person. We extracted pose estimates for all frames. Using the pose estimates, we tracked pairs of walkers through the frames of the video. We tracked pairs of walkers by first running the previous walker pair detection step on the first frame of the segment. We then minimized the distance between skeletons in the video from one frame to the next averaged across the key points present in both frames, $D = \sum_{i=1}^{n} \sqrt{(x_{i,j} - x_{i,j+1})^2 + (y_{i,j} - y_{i,j+1})^2}$ where i is a keypoint index, j is a frame, n is the number of keypoints that are present in both frames, x is the x-coordinate of a key point and y is the y-coordinate of the key point. To track a given person, we iterated through the frames of the video and minimized the distance for each frame pair. Common problems were switches in person identity across frames and failure to accurately track the ankle. We therefore manually selected videos for inclusion in our analysis where the algorithm successfully tracked people through frames of the video.

Fig 1. Flowchart describing stages of search algorithm used to find segments of videos containing pairs of walkers.

Data analysis

To quantify walker synchronization from pose estimates, we analyzed the vertical displacement between the ankle joints, using this as a way of quantifying the relative walking

phase. We first replaced missing values using linear interpolation. We did not have control over video recordings and so, in most video segments, the distance between the camera and the walkers was not fixed. We therefore needed to detrend the ankle coordinates. To do so, within each frame, we computed the distance of the ankle relative to a reference body part and divided this distance by the height of the skeleton. We selected the neck as the reference part since this is typically the least occluded part. We combined this data across frames to form a time series of detrended ankle coordinates. We removed outliers from the signal by removing points which were two standard deviations or more from the mean. We then normalized the signal by subtracting its mean and dividing by its standard deviation. We low-pass filtered the ankle displacement signal using a third order Butterworth filter with a cutoff frequency of 2 Hz. This resulted in a signal from which we could extract the vertical ankle displacement and walking phase.

For each pair of walkers, we wanted to analyze the walking phase relationship using the positions of the ankles. We computed the relative ankle displacement by subtracting the right ankle position from the left ankle position. We then computed the Hilbert phase of the displacement signal. The phase signal, which we use as a proxy for oscillatory walking motion for one person, varied between $-\pi$ and $+\pi$. The relative phase between walkers was simply computed by subtracting the walking phase of one walker from the other. We also wrapped the phase difference so that it could not extend outside $-\pi$ and $+\pi$. This resulted in a time series of relative phases for each pair of walkers. We analyzed the distribution of relative phase for each pair of walkers by computing the mean phase angle.

In order to combine estimates of walker synchronization across different videos, we computed the mean of the phase distribution from each video segment. We fitted mixtures of von Mises distributions to the distribution of mean relative phase extracted from each video, and identified the peaks of the best fitting distribution. Peak phase of 0 would mean that

walking in phase is a dominant mode of walker synchronization, and peak phase of π would mean that walking in anti-phase is a dominant mode.

We extracted the frequency of walking by examining displacement between left and right ankles in y coordinates. The displacement signal is positive when the left ankle is above the right and negative when the left ankle is below the right. This displacement signal is cyclic, and one cycle represents two steps. We extracted the frequency by computing the peak value of the discrete fast Fourier transform. We doubled this frequency in cycles/second to obtain the walking frequency conventionally defined as steps/second.

In our video data, we had no control over how the video was recorded. For example, the camera was often in movement and camera angle was variable, both of which could have an influence on our measure of ankle position. We therefore wanted to ensure that our analyses of frequency and relative walking phase were unbiased. We verified that the mean relative phase extracted from pose estimates was consistent with the mean relative phase extracted from labels of foot strike timings. Our "ground-truth" data set consisted of 5-second-long segments from 43 randomly-selected videos from our final data set. We annotated left and right foot strike timings for each member of the walking pair. Note that foot strike is one of the most salient kinematic event for locomotion, and its timing is easy to estimate (28,29). We assumed that the maximal displacement between left and right ankles took place at the foot strike. From the foot strike timings, we built a piecemeal sine wave where +1 represented left foot strike and -1 represented a right foot strike. We compared the frequency and peak relative phase extracted from this signal with that extracted from pose estimates. This allowed us to validate our analysis from pose estimates.

We wanted to ensure that the ages of pairs found in videos were not biased to a certain age range, e.g., youth. For the videos in our final data set, we estimated the ages of walkers in each pair to the nearest decade.

This study was approved by the University of Pennsylvania Institutional Review Board (protocol 827723).

Results

We asked if people synchronize their walking when they walk side-by-side in naturalistic settings. To do so, we analyzed videos found on YouTube. Within YouTube videos, we searched for video segments with pairs of people walking. From video segments, we extracted the pose of each member of the walking pair. In order to examine walker synchronization, we analyzed displacement between left and right ankles for each member of the pair. Based on the displacement signal, we extracted the walking frequency and mean relative phase for each pair to examine walker synchronization.

To find relevant videos, we searched for videos on <u>youtube.com</u> using the search term 'walking in' followed by the names of major cities. Our search resulted in 363 videos. We excluded 113 videos because they did not include footage of pairs of people walking. We excluded 48 videos because of large amounts of camera movement, cropped video frames, camera angles which prevented pose estimation, and poor visibility. We excluded 3 videos because the format of the video was not suitable (a large amount of occluding text on the screen and panoramic videos). After screening, we included a total of 199 videos, which gave us a reasonably sized dataset for quantifying synchronization.

Within these videos, our algorithm identified 888 video segments with pairs of people walking lasting at least 2.5 seconds. Some segments were unsuitable because 1.) the segment did not contain pairs of adults walking continuously towards or away from the camera in well-lit conditions (258 segments), 2.) the segment included large amounts of camera movement, occlusion, or cropping of body parts from the video which prevented successful pose-tracking (197 segments). In the end, we extracted pose from the 433 suitable video

segments containing 441 pairs of walkers, among which pose estimation or tracking failed for 93 walking pairs. Thus, our final sample for walking analyses include 348 video segments with a mean duration of 4.73 seconds (SD = 5.99, Fig 2). Walkers in the video had a mean age rating of 30.66 years (SD = 12.34). Although most walkers were in the young age range of $20\sim40$ years (71%), we still had 29% of walkers in the range of 40 to 70 years. Thus, we have a reasonably representative dataset to investigate our questions.

Fig 2. Descriptive data of videos. **(A)** Distribution of duration of video segments in seconds. **(B)** Number of video segments for each city we searched for. **(C)** Distribution of estimated age of walkers averaged across the pair in years.

We wanted to quantify the degree of synchronization in the walking phase of each pair. To do so, we examined the phase relationship between two oscillatory walking patterns, using the signed y-displacement between left and right ankles. From the time series of left and right ankle positions in y-coordinates (Fig 3A, B), we extracted the cyclic motion of walking for each member of a walking pair. We first detrended the y-coordinates of the left and right ankles (Fig 3C, D). Then we normalized and low pass filtered the detrended signal (Fig 3E, F). For each walker, we computed the displacement between the left and right ankles (Fig 3G), then computed the Hilbert phase of the displacement time series (Fig 3H). Finally, we computed the relative phase between Walker 1 and Walker 2. We examined the distribution of the relative phase to quantify walker synchronization (Fig 3I). The

representative video segment in the Fig 3 showed a predominant in-phase synchronization as the relative phase clustered around zero. The ability to estimate relative phase from videos enables us to estimate synchronization behavior in the population.

Fig 3. Extracting relative phase from the y-coordinates of the left and right ankles. Walkers are superimposed on the same panel. The strong overlap between the signals shows that the pair is walking in phase. (**A, B**) We first extracted the y-coordinates of the left and right ankles for Walker 1 and Walker 2 frame by frame. (**C, D**) We then detrended the signal by subtracting the y-coordinate of a reference body part, the neck, and dividing by the height of the walker. This gave a signal that was invariant to the position of the walkers in the frame and their size. (**E, F**) We then removed outliers, normalized and low-pass filtered the signal. (**G**) Using the normalized y-coordinate signal, we subtracted right ankle coordinate from the left ankle coordinate. (**H**) We computed the phase angle by taking the Hilbert transform of the difference. (**I**) We examined the distribution of the relative phase between walkers by computing the mean of the distribution (red).

We wanted to validate the outputs from pose estimates. We thus compared the walking frequency and mean relative phase computed from pose estimates with those extracted from a ground truth signal. We found reasonable agreement between the ground-truth estimates and pose estimates (Fig 4, relative phase: $R^2 = .71$ (N = 43); walker frequency: $R^2 = .23$ (N = 43)). Therefore, despite the variability of recording conditions, we were able to meaningfully extract information about walking patterns from pose estimates.

Fig 4. Comparison of relative phase and walking frequency computed from pose estimates and ground truth. (**A**) Mean relative phase from pose estimates as a function of mean relative phase from ground truth data with overlaid linear fit. (**B**) Walker frequency from pose estimates as a function of walker frequency from ground truth data with overlaid linear fit.

We asked what the overall synchronization is in our sample as a whole. For an analysis that combined data across video segments, we quantified the mean relative walking phase for each video segment and examined its distribution across all segments. To quantify the most prevalent relative phases, we fit a mixture of von Mises distributions model to the distribution of mean relative phase, comparing models with one to four peaks. We found that the model with three peaks provided the best fit to the data, as quantified by Bayesian Information Criterion (Fig 5A). The means of the three components or peaks of the model were .01, -3.05, and -3.13 in radians with concentrations (normalized κ) of .17, .80, and .02 respectively (Fig 5B). The component with approximately zero mean shows that pairs walked in phase with each other. The other peak close to π show that pairs also walk in near anti-

phase with each other. Note, the two peaks near π are close to each other and, accordingly, the two-peak model is comparable to the three-peak model in BIC. We have thus shown that people walking in pairs have a tendency to walk in phase or in anti-phase with each other.

Fig 5. Group results of relative phase and walking frequency. (**A**) We fitted mixture of von Mises distribution models to the distribution of mean relative phase, varying the number of peaks of the distribution. The best fitting model contains three peaks. (**B**) The distribution of the mean relative phase across pairs of walkers and means of the best-fitting mixture of von Mises distributions (red). (**C**) Distribution of walking frequency, quantified using ankle displacement (Mean = 1.85 Hz, SD = .32). (**D**) Scatterplot of walking frequencies of walkers within each pair.

As an additional validity test of our method, we tested if its walking frequency estimate agrees with the typical walking cadence in the literature. We thus measured walking frequency from ankle displacement signals (Fig 5C). The average walker frequency was 1.85 Hz (SD = .32), which is very similar to the average of \sim 2 Hz previously reported in the literature (30). The range of walking frequency was approximately from 1 to 2.5 Hz, appearing to reflect the cadence in naturalistic settings. In fact, the frequency within pairs was

almost identical for some walking pairs, shown by points close to the diagonal line in Fig 5D. The frequency of walkers differed by less than .1 Hz in 66% of walking pairs. This was not the case for all walking pairs, though this is understandable as the walking pairs differed (e.g., heights) and our pose estimation is inevitably plagued by noise.

Discussion

We asked how people synchronize their movements when they walk side-by-side, by analyzing pose estimates extracted from online videos. We searched for videos on youtube.com using the search term 'walking in' followed by the names of major cities. We analyzed the relative phase and walking frequency computed from the vertical displacement between the ankles in each video. We validated our analysis from pose estimates through comparison with ground-truth data and found reasonable agreement between estimates of mean relative phase and walking frequency. The mean frequency of walkers was 1.85 Hz, close to the average of 2 Hz reported in the literature (30). We found that the distribution of relative phase across video segments contained prominent peaks near 0 and π , which reflects a tendency for pairs of walkers to walk in phase or in anti-phase with each other. Using pose estimation applied to online videos, we confirmed findings from more constrained laboratory experiments on a larger sample and in more naturalistic conditions. We have thus shown that a pose estimation algorithm applied to 2D videos can be used to address questions about naturalistic movement.

The strong tendency for walking in-phase or anti-phase is consistent with previous laboratory studies (4,12,17). However, previous studies have to examine walking pairs on a treadmill, which is set at a fixed walking speed (17). Furthermore, biomechanical studies have found that normal ground walking is different from treadmill walking (21,22). The manipulation of walking speed and the very fact of walking on the treadmill might impact the

synchronization results and prevent generalization of previous findings. Our study bypassed these questions by investigating unconstrained, naturalistic walking from videos shot in different cities. In these videos, people walk with their "preferred" speed, and their leg lengths presumably vary widely. Despite the lack of experimental control, we still find evident phase entrainment between walking patterns. Hence, our study provides solid evidence for unintentional synchronization between walking pairs.

We developed a pipeline to study walking behavior from videos. Using this pipeline, we were able to extract sufficient information to carry out a group analysis across hundreds of video segments. Outside the scope of this work, various interesting questions arise on the dynamics between individual walkers. For example, walkers in social situations created in the laboratory have been found to obey leader-follower dynamics (2) and while pairs spend more time walking in phase or in anti-phase, the phase relationship has been found to shift over time (17). Another interesting question to ask is whether biomechanical features such as leg length impact walking synchronization, as shown in the laboratory (18). Addressing these questions would require a more detailed analysis of individual data, precluded by the level of noise in our data and the lack of longer video segments in our dataset. Larger data sets and more precise pose estimation algorithms will make these analyses possible in future.

Although pose estimation is a promising tool for movement science and related applications, its application at present involves limitations. One challenge is the presence of different sources of variability in videos. Due to imperfect pose estimation, our measure of ankle joint position varied around the true position. To remove noise, more sophisticated forms of denoising than the standard signal processing techniques used here can be applied. For example, measuring the contribution of different noise sources would allow the application of deconvolutional techniques to separate the walking phase signal from noise. Another problem is that camera angle, which constantly changes in the videos that we used,

predictions from, for example, recurrent neural networks would allow the algorithm to learn the mapping of 2D-joint positions to walking phase (31). Although standard techniques were sufficient for our purposes here, we anticipate the need to apply more sophisticated techniques to address questions that require more precise measurements when using real world data.

A second limitation is that most existing pose-estimation algorithms output twodimensional pose estimates (25,26). Without depth cameras, it is therefore impossible to measure true three-dimensional kinematic variables. For example, in the present study, this prevented us from measuring walking phase directly from joint angles. Answering questions about naturalistic movement and developing usable applications generally requires estimation of a subjects' three-dimensional pose. Some existing algorithms that fit a three-dimensional body model to two-dimensional images may provide a solution (27,32). However, they are, for the most part, inaccessible to those without expertise in the field of computer vision. The release of these algorithms in the form of more accessible software will contribute to the advancement of movement science and many fields in behavioral science.

A third challenge is continuous tracking of person identity in videos. Pose estimation algorithms provide joint position coordinates for each frame but do not track person identity throughout a video. Simple tracking algorithms that minimize distance across frames often fail because large amounts of occlusion present in natural scenes. Improvements of optimization methods for tracking algorithms and integrating pose estimation with tracking on whole videos will allow more successful analysis of movement in natural and dynamic scenes (33,34).

Besides algorithmic solutions, we can devise practical solutions using specialized setups to meet the above challenges. For example, we could carefully place multiple cameras

in naturalistic settings. Alternatively, we could place lab-grade sensors on people in the real world. While all these approaches are doable and have been used in past research, having scalable approaches that can leverage large datasets is particularly promising.

Many real-world applications are calling for automatic pose estimation based on videos. Improved pose tracking will allow the field to quantify movement variables from easily obtained data, thus paving the way for a host of video-based applications in fields including medicine and sport (35). Movement tracking applications will allow us to better quantify the parameters of movement indicative of disease and thus will enable us to build objective, inexpensive, and affordable video-based diagnostic software that can replace expensive in-person evaluations. Similarly, pose tracking can be used to quantify the success of physical therapy interventions and will provide an objective standard that will help to guide therapists. Applications for sports, based on the parameterization of the best possible movement and other relevant variables related to fatigue or injury, include "virtual coaching" where an application can instruct users on when to train or how to best execute a movement from video recordings. We expect that such applications will soon be integrated into standard practice within these fields.

Movement science stands to gain the most from adopting pose estimation as part of its standard toolkit. Movement science and the field of psychology more generally have been limited by small data set sizes and a set of overly constrained laboratory tasks that may invoke qualitatively different mechanisms to those at play during real world tasks (36,37). Examination of 3D kinematics of real-world movement data will capture important aspects of behavior unseen during simple laboratory tasks. Such an examination alone may be sufficient to inform models. Pose estimation can be used in combination with an experimental approach to constrain the kinds of experiments we do in the laboratory, and to provide evidence for or against models based on real-world data. Using videos will make large amounts of kinematic

data easy to collect and will remove the need to collect new data in some cases, since existing video data sets can be used. To progress, movement science must embrace a more ecological approach that emphasizes movement as it occurs "in the wild" (35,37) and we expect that pose estimation from video will be key to this process.

436

437

References

- 438 1. Seethapathi N, Srinivasan M. The metabolic cost of changing walking speeds is
- significant, implies lower optimal speeds for shorter distances, and increases daily
- energy estimates. Biol Lett. 2015;11(9):20150486.
- 2. Ducourant T, Vieilledent S, Kerlirzin Y, Berthoz A. Timing and distance
- characteristics of interpersonal coordination during locomotion. Neurosci Lett.
- 443 2005;389(1):6–11.
- 3. Borghese NA, Bianchi L, Lacquaniti F. Kinematic determinants of human locomotion.
- 445 J Physiol. 1996;494(3):863–79.
- 446 4. Zivotofsky A, Bernad-Elazari H, Grossman P, Hausdorff J. The effects of dual tasking
- on gait synchronization during over-ground side-by-side walking. Hum Mov Sci.
- 448 2018;59:20–9.
- 449 5. Issartel J, Marin L, Cadopi M. Unintended interpersonal co-ordination: "can we march
- 450 to the beat of our own drum?" Neurosci Lett. 2007;411(3):174–9.
- 451 6. Demos AP, Chaffin R, Begosh KT, Daniels JR, Marsh KL. Rocking to the beat:
- Effects of music and partner's movements on spontaneous interpersonal coordination.
- 453 J Exp Psychol Gen. 2012;141(1):49–53.
- 454 7. Miles LK, Griffiths JL, Richardson MJ, MacCrea N. Too late to coordinate:
- 455 Contextual influences on behavioral synchrony. Eur J Soc Psychol. 2010;40:625–34.
- 456 8. O'Brien B, Schmidt RC. Evaluating the Dynamics of Unintended Interpersonal

- 457 Coordination. Ecol Psychol. 2010;7413:37–41.
- 458 9. Richardson MJ, Marsh KL, Schmidt RC. Effects of visual and verbal interaction on
- 459 unintentional interpersonal coordination. J Exp Psychol Hum Percept Perform.
- 460 2005;31(1):62–79.
- 461 10. Richardson MJ, Marsh KL, Isenhower RW, Goodman JRL, Schmidt RC. Rocking
- 462 together: Dynamics of intentional and unintentional interpersonal coordination. Hum
- 463 Mov Sci. 2007;26(6):867–91.
- 464 11. Schmidt RC, Richardson MJ. Dynamics of interpersonal coordination. Underst
- 465 Complex Syst. 2008;281–308.
- 466 12. Sylos-Labini F, D'Avella A, Lacquaniti F, Ivanenko Y. Human-Human interaction
- forces and interlimb coordination during side-by-side walking with hand contact. Front
- 468 Physiol. 2018;9(179):1–14.
- 469 13. Zivotofsky A, Gruendlinger L, Hausdorff JM. Modality-specific communication
- 470 enabling gait synchronization during over-ground side-by-side walking. Hum Mov Sci.
- 471 2012;31(5):1268–85.
- 472 14. Zivotofsky A, Hausdorff JM. The sensory feedback mechanisms enabling couples to
- walk synchronously: An initial investigation. J Neuroeng Rehabil. 2007;4:1–5.
- 474 15. Nessler JA, Gutierrez V, Werner J, Punsalan A. Side-by-side treadmill walking
- 475 reduces gait asymmetry induced by unilateral ankle weight. Hum Mov Sci.
- 476 2015;41:32–45.
- 477 16. Nessler JA, Kephart G, Cowell J, De Leone CJ. Varying treadmill speed and
- inclination affects spontaneous synchronization when two individuals walk side by
- 479 side. J Appl Biomech. 2011;27(4):322–9.
- 480 17. van Ulzen NR, Lamoth CJC, Daffertshofer A, Semin GR, Beek PJ. Characteristics of
- instructed and uninstructed interpersonal coordination while walking side-by-side.

- 482 Neurosci Lett. 2008;432(2):88–93.
- 483 18. Nessler JA, Gilliland SJ. Interpersonal synchronization during side by side treadmill
- walking is influenced by leg length differential and altered sensory feedback. Hum
- 485 Mov Sci. 2009;28(6):772–85.
- 486 19. Nessler JA, De Leone CJ, Gilliland S. Nonlinear time series analysis of knee and ankle
- 487 kinematics during side by side treadmill walking. Chaos An Interdiscip J Nonlinear
- 488 Sci. 2009;19(2):026104.
- 489 20. Nessler JA, Gilliland SJ. Kinematic analysis of side-by-side stepping with intentional
- and unintentional synchronization. Gait Posture. 2010;31(4):527–9.
- 491 21. Lee SJ, Hidler J. Biomechanics of overground vs. treadmill walking in healthy
- 492 individuals. J Appl Physiol. 2008;104(3):747–55.
- 493 22. Ochoa J, Sternad D, Hogan N. Treadmill versus Overground Walking: Different
- 494 Response to Physical Interaction. J Neurophysiol. 2017;118:2089–2102.
- 495 23. Hayhoe M, Ballard D. Eye movements in natural behavior. Trends Cogn Sci.
- 496 2005;9(4):188–94.
- 497 24. Howard IS, Ingram JN, Kording KP, Wolpert DM. Statistics of Natural Movements
- Are Reflected in Motor Errors. J Neurophysiol. 2009;102(3):1902–10.
- 499 25. Cao Z, Simon T, Wei S-E, Sheikh Y. Realtime Multi-Person 2D Pose Estimation using
- Part Affinity Fields. IEEE Conf Comput Vis Pattern Recognit. 2016;1–9.
- 501 26. Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, et al.
- DeepLabCut: markerless pose estimation of user-defined body parts with deep
- 503 learning. Nat Neurosci. 2018;21(9):1281–9.
- 504 27. Güler RA, Neverova N, Kokkinos I. DensePose: Dense Human Pose Estimation In
- The Wild. arXiv. 2018;1802.00434.
- 506 28. Hreljac A, Marshall RN. Algorithms to determine event timing during normal walking

- using kinematic data. J Biomech. 2000;33:783–6.
- 508 29. Mickelborough J, Van Der Linden ML, Richards J, Ennos AR. Validity and reliability
- of a kinematic protocol for determining foot contact events. Gait Posture.
- 510 2000;11(1):32–7.
- 30. Pachi A, Ji T. Frequency and velocity of people walking. Struct Eng. 2005;83(3):36–
- 512 40.
- 513 31. Maas AL, Le Q V., O'Neil TM, Vinyals O, Nguyen P, Ng AY. Recurrent Neural
- Networks for Noise Reduction in Robust ASR. In: Thirteenth Annual Conference of
- the International Speech Communication Association. 2012.
- 516 32. Loper M, Mahmood N, Romero J, Pons-moll G, Black MJ. SMPL: A skinned multi-
- person linear model. In: ACM Transactions on Graphics (TOG). 2015. p. 248.
- 518 33. Iqbal U, Milan A, Gall J. PoseTrack: Joint multi-person pose estimation and tracking.
- 519 IEEE Conf Comput Vis Pattern Recognit. 2017;4654–63.
- 520 34. Insafutdinov E, Andriluka M, Pishchulin L, Tang S, Levinkov E, Andres B, et al.
- ArtTrack: Articulated multi-person tracking in the wild. IEEE Conf Comput Vis
- 522 Pattern Recognit. 2017;1293–301.
- 523 35. Wei K, Kording KP. Behavioral tracking gets real. Nat Neurosci. 2018;21(9):1146–7.
- 524 36. Open Science Collaboration. Estimating the reproducibility of psychological science.
- 525 Science. 2015;349(6251):1–7.
- 526 37. Ingram JN, Wolpert DM. Naturalistic approaches to sensorimotor control. Prog Brain
- 527 Res. 2011;191:3–29.

528