

Przetwarzenie danych masowych

Wykład 1 – Wprowadzenie do problemu przetwarzania danych masowych. Zasady zaliczenia.

dr hab. inż. Tomasz Kajdanowicz, Piotr Bielak, Roman Bartusiak

October 12, 2021

Overview

Organizacja przedmiotu

Prowadzący

Zajęcia

Syllabus wykładu

Syllabus wykładu

Ocenianie

Materialy

Overview

Organizacja przedmiotu

Prowadzący

Zajęcia

Syllabus wykładu

Syllabus wykładu

Ocenianie

Materialy

Prowadzący

Organizacja przedmiotu

- dr hab inż. Tomasz Kajdanowicz tomasz.kajdanowicz@pwr.edu.pl
- ▶ Roman Bartusiak roman.bartusiak@pwr.edu.pl
- Krzysztof Rajda krzysztof.rajda@pwr.edu.pl

Godziny konsultacji zostaną przekazane w najbliższym czasie, ale już teraz zapraszamy do 441 A1. Proszę o przesłanie maila i umówienie się na spotkanie.

Zajęcia

Organizacja przedmiotu

Wykład

- Wprowadzenie teoretyczne
- Przegląd podstawowych zagadnień
- Wykłady i laboratoria wzajemnie się uzupełniają

Laboratoria

- Projekt wiodący przez laboratoria
- możliwość wykorzystania AWS
- Terminowość
- Kodowanie

Syllabus wykładu

Organizacja przedmiotu

- 1. Wprowadzenie do problemu przetwarzania danych masowych. Zasady zaliczenia.
- 2. Taksonomia metod przetwarzania danych masowych
- 3. Podstawowe metody zrównoleglania algorytmów uczenia maszynowego. Przetwarzanie synchroniczne i asynchroniczne
- 4. Spark przetwarzanie danych z wykorzystaniem paradygmatu Map-reduce - przetwarzanie wsadowe
- 5. Spark przetwarzanie danych z wykorzystaniem paradygmatu Map-reduce - przetwarzanie strumieniowe
- 6. Flink przetwarzanie danych w sposób strumieniowy
- 7. Flink przetwarzanie danych w sposób wsadowy

- 8. Produkcyjne aspekty utrzymywania i wdrażania aplikacjami
- Platformy zarządzania zasobami obliczeniowymi wprowadzenie, OpenStack
- 10. Platformy zarządzania zasobami obliczeniowymi Kubernetes
- 11. Metody automatyzacji zarządzania produkcyjnymi aplikacjami
- 12. Języki do przetwarzania danych masowych
- 13. Przykładowe metody z rodziny Gradient Boosting Machine
- Zaawansowane metody zrównoleglania algorytmów uczenia maszynowego
- 15. Recap podsumowanie wykładu

Ocenianie

Organizacja przedmiotu

Wykład

- Egzamin 7 i 14 lutego 2022
- Ocena z laboratoriów nie ma związku

Laboratoria

- Projekt wiodący przez całość zajęć realizowany w częściach
- Każda część oceniana osobna
- Każda część musi być zaliczona
- Wszystkie części wpływają na ocenę końcową
- Ocena 5.5 do otrzymania za dodatkową pracę

Materialy

Organizacja przedmiotu

- https://lsdp.ml
- ► AWS Educate https://awseducate.com
- ► Github Classroom https://classroom.github.com
- ► http://web.stanford.edu/class/cs246/

Overview

Organizacja przedmiotu

Prowadzący

Zajęcia

Syllabus wykładu

Syllabus wykładu

Ocenianie

Materialy

Big data

Główni gracze:

- Google
- Facebook
- Youtube
- ► Instagram
- Wikipedia
- Alibaba

Firmy gromadzą petabajty danych w każdej minucie.

W jakim celu?

Powód #1

- Gdyż mogą to zrobić!
- Pamięć dyskowa tanieje zgodnie z prawem Moor'a

Figure: Źródło: https://jcmit.net/diskprice.htm

Powód #2

- Dane można w prosty sposób monetyzować!
- trend superpersonalizacji (rekomendacje, oferty, promocje, newsfeedy)
- zmiana paradygmatu rynku marketplace

Ilość danych

- dane to surowiec więcej warty niż ropa
- ilość danych rośnie szybciej niż technologia ich przetwarzania
- pracujący z danymi, zwykle nie są zaangażowani w opracowywanie nowych modeli biznesowych
- rozwijający biznes zwykle nie mają kompleksowej wiedzy na temat całego spektrum dostępnych danych

Figure: Licencja zdjęcia: davidparkins.com, Źródło https://www.economist.com

Ile danych generujemy

Figure: Źródło: https://ec.europa.eu/newsroom/rtd/items/713444/en

Ile danych generujemy

Figure: Źródło: Industry Tap

Przykłady zastosowań big data

Figure: Źródło: opracowanie własne

Wprowadzenie do Przetwarzania Danych Masowych

- ► Volume (wolumen) ogromne ilości danych,
- Velocity (prędkość) dane napływają z kilku źródeł z różną i zmienną prękością,
- ► Value (wartość) dane mogą być trudne w zdobyciu,
- ► Veracity (wiarygodność) szum, anomalie i przesądy (biases) w danych,
- Variety (różnorodność) wiele źródeł danych, różne typy danych (ustrukturalizowane i nieustrukturalizowane),

Definicja jest czasami rozszerzana do 7V:

- Validity (poprawność) czy dane są poprawne i właściwe dla danego zastosowania,
- ► Volatility (ulotność) jak długo dane są ważne (valid) oraz jak długo powinny być przechowywane,

Przetwarzenie danych masowych

Wykład 1 – Wprowadzenie do problemu przetwarzania danych masowych. Zasady zaliczenia.

dr hab. inż. Tomasz Kajdanowicz, Piotr Bielak, Roman Bartusiak

October 12, 2021