# Advanced Parallel School 2022 Quantum Computing – Day 1 Quantum Algorithms

Mengoni Riccardo, PhD

14 Feb 2022



### **Quantum Computing @ CINECA**

**CINECA: Italian HPC center** 

**CINECA Quantum Computing Lab:** 

- Research with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

https://www.quantumcomputinglab.cineca.it



r.mengoni@cineca.it





### **Recap of Quantum Computing**



#### **Vectors**

Ket: 
$$|\Psi\rangle = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_n \end{pmatrix}$$
  $\forall \lambda \in \mathbb{C}$ 
Complex Number

Bra: 
$$\langle \psi | = (\psi_1^* \psi_2^* - \psi_N^*)$$

#### **Scalar Product**

$$\langle \phi | \psi \rangle = (\phi_{1}^{*} \phi_{2}^{*} - \phi_{N}^{*}) \begin{pmatrix} \psi_{2} \\ \psi_{2} \\ \vdots \\ \psi_{N} \end{pmatrix}$$

$$\langle \phi | \psi \rangle \in \mathbb{C}$$
Complex Number

$$\langle \phi | \Psi \rangle \in \mathbb{C}$$
Complex Number

#### **Scalar Product**

$$\langle \phi | \psi \rangle = (\phi_{1}^{*} \phi_{2}^{*} - ... \phi_{n}^{*}) \begin{pmatrix} \psi_{2} \\ \psi_{2} \\ \vdots \\ \psi_{n} \end{pmatrix}$$

$$\langle \phi | \psi \rangle \in \mathbb{C}$$
Complex Number



#### **Outer Product**

$$|\Psi\rangle \langle \Phi| = \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{n} \end{pmatrix} \begin{pmatrix} \phi_{1}^{*} & \phi_{2}^{*} & \dots & \phi_{n}^{*} \end{pmatrix} = \begin{pmatrix} \psi_{1} & \phi_{1}^{*} & \psi_{1} & \phi_{2}^{*} & \dots & \psi_{n}^{*} & \phi_{n}^{*} \\ \psi_{2} & \phi_{2}^{*} & \dots & \psi_{n}^{*} & \phi_{n}^{*} \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{n} & \phi_{2}^{*} & \psi_{n}^{*} & \phi_{2}^{*} & \dots & \psi_{n}^{*} & \phi_{n}^{*} \end{pmatrix}$$

Dimension =  $n \times n$ 



#### **Tensor Product**

$$| \phi \rangle \otimes | \psi \rangle = \begin{pmatrix} \phi_{1} & \psi_{1} & \psi_{2} & \psi_{3} \\ \phi_{2} & \psi_{3} & \psi_{4} & \psi_{2} & \psi_{4} \end{pmatrix}$$

$$| \phi \rangle \otimes | \psi \rangle = \begin{pmatrix} \phi_{1} & \psi_{2} & \psi_{3} & \psi_{4} & \psi_{4}$$

#### **Tensor Product**

Dimension =  $n^2$ 



#### Compact form:



### 1. Unit of Information



### Classically

## Unit of classical information is the bit State of a bit:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

### Quantumly

To a closed quantum system is associated a space of states *H* which is a Hilbert space. The pure state of the system is then represented by a unit norm vector on such Hilbert space.

The unit of quantum information is the quantum bit a.k.a. Qubit

State of a qubit:

$$|\Psi\rangle = |\Delta|0\rangle + |B|1\rangle = \begin{pmatrix} |\Delta|\\ |B| \end{pmatrix}$$

Space of states:  $\mathcal{H} \simeq \mathbb{C}^2$ 

State of a qubit:

$$|\Psi\rangle = |\Delta|0\rangle + |\beta|1\rangle = |\Delta|\beta\rangle$$

$$|\Delta|\beta \in \mathbb{C} \qquad |\Delta|^2 + |\beta|^2 = 1$$

Space of states:  $\mathcal{H} \simeq \mathbb{C}^2$ 

State of a qubit:

$$|\Psi\rangle = |\Delta|0\rangle + |\beta|1\rangle = |\Delta|$$

$$|\Delta|^2 + |\beta|^2 = 1$$

Can be parametrized as:

$$|\Psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

$$\theta \in [0,\pi] \qquad \phi \in [0,2\pi]$$





### 2. Composite systems



### Classically

#### State of N bits:

### Quantumly

The space of states of a composite system is the tensor product of the spaces of the subsystems

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes ... \otimes \mathbb{C}^2$$

#### **State of N qubits:**

$$||d_1|| = 000.00 + ||d_2|| = 1$$

$$||d_1||^2 = 1$$

### **Quantum Entanglement**

States that can be written as tensor product

$$|\Psi\rangle = |\Psi_1\rangle \otimes |\Psi_2\rangle \otimes \ldots \otimes |\Psi_N\rangle$$

are called factorable or product states



### **Quantum Entanglement**

States that can NOT be written as tensor product

$$|\Psi\rangle\neq|\Psi_{1}\rangle\otimes|\Psi_{2}\rangle\otimes...\otimes|\Psi_{N}\rangle$$

are called entangled states



### **Quantum Entangled** Bell's states

$$\frac{1}{\sqrt{2}} \left( |00\rangle + |11\rangle \right) \qquad \frac{1}{\sqrt{2}} \left( |01\rangle + |10\rangle \right)$$

$$\frac{1}{\sqrt{2}}\left(101)+110\right)$$

$$\frac{1}{\sqrt{2}}\left(100\rangle - 1112\right) \qquad \frac{1}{\sqrt{2}}\left(101\rangle - 110\right)$$

$$\frac{1}{\sqrt{2}}\left(101)-110\right)$$

### 3. State Change



### Classically: logic gates

| Logic Gate | Symbol     | Description                                                                                                                                    | Boolean            |
|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| AND        |            | Output is at logic 1 when, and only when all its inputs are at logic 1,otherwise the output is at logic 0.                                     | X = A•B            |
| OR         |            | Output is at logic 1 when one or more are at logic 1.If all inputs are at logic 0,output is at logic 0.                                        | X = A+B            |
| NAND       |            | Output is at logic 0 when,and only when all its inputs are at logic 1,otherwise the output is at logic 1                                       | X = <del>A•B</del> |
| NOR        | <b>→</b>   | Output is at logic 0 when one or more of its inputs are at logic 1.If all the inputs are at logic 0,the output is at logic 1.                  | X = A+B            |
| XOR        |            | Output is at logic 1 when one and Only one of its inputs is at logic 1. Otherwise is it logic 0.                                               | X=A⊕B              |
| XNOR       |            | Output is at logic 0 when one and only one of its inputs is at logic1. Otherwise it is logic 1. Similar to XOR but inverted.                   | X = A ⊕ B          |
| NOT        | <b>→</b> > | Output is at logic 0 when its only input is at logic 1, and at logic 1 when its only input is at logic 0. That's why it is called and INVERTER | $X = \overline{A}$ |



### Quantumly

The state change of a closed quantum system is described by a unitary operator

$$\frac{1}{3}\frac{1}{4}\frac{1}{4} = \frac{1}{4}\frac{1}{4}$$

$$\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}$$

**Schrodinger Equation** 



### **Quantumly: Quantum Gates**

### 4. Measurement



### Classically

Measuring returns the state of a bit with certainty

$$|0\rangle \xrightarrow{\text{Measure}} \begin{array}{c} \text{Outcome} \\ |0\rangle \end{array} \qquad \begin{array}{c} \text{Measure} \\ |1\rangle \end{array} \xrightarrow{\text{Outcome}}$$

Measurements do not affect the state of a bit



### Quantumly

### Measuring returns the bit state with some probability

#### Outcome



### Measurement affects the state of a qubit



### Quantumly

To any observable physical quantity is associated an hermitian operator O

$$O | O_i \rangle = O_i | O_i \rangle$$

- A measurement outcomes are the possibile eigenvalues  $\{o_i\}$ .
- The probability of obtaining  $o_i$  as a result of the measurement is

$$P_r(\sigma_i) = |\langle \Psi | \sigma_i \rangle|^2$$

• The effect of the measure is to change the state  $|\psi\rangle$  into the eigenvector of O

$$|\Psi\rangle \rightarrow |\sigma_i\rangle$$



### **Quantum Algorithms**



### **Quantum Algorithm = Quantum Circuit**

A quantum circuit with *n* input qubits and *n* output qubits is defined by a unitary transformation

$$U \in U(2^n)$$

$$egin{pmatrix} U^\dagger U = U U^\dagger = I \ U^{-1} = U^\dagger \end{pmatrix}$$



### **Quantum Algorithms**





### **Quantum Algorithms: Gates**



### **Quantum Algorithms: Gates**

### Single Qubit Gates

### **Generic single**

qubit rotation: 
$$R_{\vec{N}}(\theta) = cos(\frac{\theta}{2}) \pm - i sin(\frac{\theta}{2}) \vec{n} \cdot \vec{\sigma}$$

#### Pauli matrices:

$$\sigma_{x} = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_{y} = Y = \begin{pmatrix} 0 & -\lambda \\ \lambda & 0 \end{pmatrix} \qquad \sigma_{z} = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\text{Identity: } \underline{T} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

### Single Qubit Gates: Hadamard

$$H = \frac{1}{N_{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad H = -H$$

$$H(0) = \frac{1}{N_{2}} (10) + 112 = 1+1$$

$$H(1) = \frac{1}{N_{2}} (10) - (12) = 1-1$$

### Single Qubit Gates: Phase

$$\mathcal{U}_{\phi} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} \qquad 
\mathcal{U}_{\phi} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} \qquad 
\mathcal{U}_{\phi} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0$$

#### **Quantum Algorithms: Gates**

### **Two Qubit Gates: SWAP**

$$U_{SWAR} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
SWAP =  $\frac{X}{X}$ 



#### **Quantum Algorithms: Gates**

# **Two Qubit Gates: Control Not**

$$U_{cx} =$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| = \left| \frac{1}{2} \right|$$

$$\left( \left| \frac{1}{2} \right| \right| =$$



#### **Quantum Algorithms: Gates**

# **Two Qubit Gates: Control Unitary**

#### **Control Phase**

$$\left( \begin{array}{c} \left( \begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{\frac{1}{2}} \end{array} \right) \right) = \begin{array}{c} \left( \begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & e^{\frac{1}{2}} \end{array} \right) \end{array}$$

#### **Quantum Algorithms: Gates**

### **Three Qubit Gates: Toffoli**

$$\bigcup_{C_2X} \left| \exists_1 \exists_2 \exists_3 \right\rangle = \left| \exists_1 \exists_2 \right\rangle \times \left| \exists_3 \right\rangle$$

$$|z_1\rangle = |z_2\rangle$$

$$|z_2\rangle = |z_3\theta z_1 \cdot z_2\rangle$$

$$|z_3\rangle = |z_3\theta z_1 \cdot z_2\rangle$$

# **Quantum Algorithms: Universality**



### **Universal set of Quantum Gates**

We can exactly build any unitary  $\mathcal{T} \in \mathcal{T}(2^n)$  on n qubits by means of single qubit gates and Control-Not

$$G_{ex} = \left\{ U \in U(2) ; U_{cx} \right\}$$

### **Universal set of Quantum Gates**

We can exactly build any unitary  $\mathcal{T} \in \mathcal{T}(2^n)$  on n qubits by means of single qubit gates and Control-Not

$$Q_{ex} = \left( \bigcup \in U(2) \right) \quad U_{cx}$$

$$R_{\vec{n}}(\theta) = cos\left(\frac{\theta}{2}\right) I - i sin\left(\frac{\theta}{2}\right) \vec{n} \cdot \vec{\sigma} \qquad U_{cx} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

### **Quantum Algorithms: Universality**

# **Universal set of Quantum Gates**

Given 
$$(), ()' \in U(2^n), U' \text{ approximates } U \text{ within }$$

$$\varepsilon (\varepsilon) \circ) \text{ if } d(U,U') < \varepsilon$$

### **Quantum Algorithms: Universality**

# **Universal set of Quantum Gates**

Given 
$$(), ()' \in U(2''), U' \text{ approximates } U \text{ within }$$

$$\varepsilon \quad (\varepsilon) \circ) \quad \text{if} \quad d(U,U') < \varepsilon$$

where 
$$d(0,0) = \max_{14} \|(0-0)|4\rangle\|$$



### **Universal set of Quantum Gates**

We can approximate any unitary  $\mathcal{T} \in \mathcal{T}(2^n)$  on n qubits by means of the following gates

$$H = \frac{1}{N^{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 0 \\ 0 & e^{\lambda T} / 4 \end{pmatrix}$$

# **Quantum Algorithms: basics**



# **Multiple Hadamard gates**



# Single Qubit Gates: Hadamard

$$H = \frac{1}{N2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad H = -H$$

$$H(0) = \frac{1}{N2} (10) + 112 = 1+1$$

$$H(1) = \frac{1}{N2} (10) - (12) = 1-1$$

# **Quantum Algorithms: basics**

# **Multiple Hadamard gates**

$$H = \frac{1}{\sqrt{2}} \left( \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} + \frac{11}{\sqrt{2}} \right)$$

$$H^{\otimes N} = \frac{1}{\sqrt{2^N}} \sum_{x,y \in \{0,i\}^N} (-1)^{X,y} |X\rangle \langle y|$$

# **Quantum Computing @ CINECA**

**CINECA: Italian HPC center** 

**CINECA Quantum Computing Lab:** 

- Research with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

https://www.quantumcomputinglab.cineca.it



r.mengoni@cineca.it



