- 1. 用适当符号 $(\in, \notin, =, \subsetneq)$ 填空: π _**Q**; $\{x|x=2k+1, k \in \mathbf{Z}\}$ _ $\{x|x=2k-1, k \in \mathbf{Z}\}$; $\{3.14\}$ _**Q**; $\{y|y=x^2\}$ _ $\{x|y=x^2\}$.
- 2. 已知 $P = \{y = x^2 + 1\}, \ Q = \{y | y = x^2 + 1, \ x \in \mathbf{R}\}, \ E = \{x | y = x^2 + 1, \ x \in \mathbf{R}\}, \ F = \{(x,y) | y = x^2 + 1, \ x \in \mathbf{R}\}, \ G = \{x | x \ge 1\}, \ H = \{x | x^2 + 1 = 0, \ x \in \mathbf{R}\}, \ \emptyset$ 各集合间关系正确的有_______. (答案可能不唯一) (A) P = F (B) Q = E (C) E = F (D) $Q \subseteq G$ (E) $H \subsetneq P$
- 3. 设全集是实数集 \mathbf{R} , $M = \{x | -2 \le x \le 2\}$, $N = \{x | x < 1\}$, 则 $\mathbf{C}_U M \cap N =$

- 6. 设全集 $U = \{2, 3, a^2 + 2a 3\}$, 集合 $A = \{|2a 1|, 2\}$, $C_U A = \{5\}$, 则实数 $a = \underline{\hspace{1cm}}$.
- 7. (1) 设 $M = \{y | y = x^2, x \in \mathbf{R}\}, N = \{x | x = t, t \in \mathbf{R}\}, 则 M \cap N = _____.$ (2) 设 $M = \{(x, y) | y = x^2, x \in \mathbf{R}\}, N = \{(t, x) | x = t, t \in \mathbf{R}\}, 则 M \cap N = ____.$
- 8. 设全集 $U = \{1, 2, 3, 4\}, C_U A \cap B = \{3\}, A \cap C_U B = \{2\}, C_U A \cup C_U B = \{2, 3, 4\}, \ \emptyset \ C_U A \cap C_U B = \underline{\hspace{1cm}}$
- 9. 集合 $C = \{x | x = \frac{k}{2} \pm \frac{1}{4}, \ k \in \mathbf{Z}\}, D = \{x | x = \frac{k}{4}, \ k \in \mathbf{Z}\},$ 试判断 $C \ni D$ 的关系, 并证明.
- - (1) 若 $A \cap B = A$, 求实数 a 的取值范围;
 - (2) 若 $A \cup B = A$, 求实数 a 的取值范围.
- 11. 若集合 A = [2,3], 集合 B = [a,2a+1].
 - (1) 若 $A \subsetneq B$, 求实数 a 的取值范围;
 - (2) 若 $A \cap B \neq \emptyset$, 求实数 a 的取值范围.
- 12. 设全集 $U = \mathbf{R}$, 集合 $A = \{x|f(x) = 0\}$, $B = \{x|g(x) = 0\}$, $C = \{x|h(x) = 0, x \in \mathbf{R}\}$, 则方程 $\frac{f^2(x) + g^2(x)}{h(x)} = 0 \text{ 的解集是} (用 U, A, B, C 表示).$
- 13. (1) 已知集合 $A = \{y | y = x^2, x \in \mathbf{R}\}, B = \{y | y = 4 x^2, x \in \mathbf{R}\}, \text{ 则 } A \cap B = \underline{\hspace{1cm}}$
 - (2) 已知集合 $A = \{(x,y)|y=x^2, x \in \mathbf{R}\}, B = \{(x,y)|y=4-x^2, x \in \mathbf{R}\}, \text{ 则 } A \cap B = \underline{\hspace{1cm}}$
- 14. 设 $m \in \mathbb{R}$, 已知 $A = \{x|x^2 3x + 2 = 0\}$, $B = \{x|mx + 1 = 0\}$, 且 $B \subsetneq A$, 则 $m = \underline{\hspace{1cm}}$.
- 16. 已知 $A = \{x | x^2 3x + 2 = 0\}$, $B = \{x | x^2 ax + a = 0, x \in \mathbf{R}\}$, 若 $B \subseteq A$, 求满足题意的实数 a.
- 17. 设集合 $A = \{x | x^2 + px + 1 = 0, x \in \mathbf{R}\}$, 若 $A \cap \mathbf{R}^+ = \emptyset$. 求实数 p 的取值范围.

- 18. 设函数 $f(x) = \lg(\frac{2}{x+1} 1)$ 的定义域为集合 A, 函数 $g(x) = \sqrt{1 |x+a|}$ 的定义域为集合 B.
 - (1) 当 a = 1 时, 求集合 B.
 - (2) 问: $a \ge 2$ 是 $A \cap B = \emptyset$ 的什么条件 (在"充分非必要条件、必要非充分条件、充要条件、既非充分也非 必要条件"中选一)? 并证明你的结论.
- 19. 如图, U 为全集, M, P, S 是 U 的三个子集, 则阴影部分所表示的集合是 (
 - A. $(M \cap P) \cap S$
- B. $(M \cap P) \cup S$
- C. $(M \cap P) \cap \mathcal{C}_U S$ D. $(M \cap P) \cup \mathcal{C}_U S$

- 20. 设集合 $A = \{5, \log_2(a+3)\}, B = \{a, b\}, 若 A \cap B = \{2\}, 则 A \cup B = _____.$
- 21. 设集合 $A \cap \{-2,0,1\} = \{0,1\}, A \cup \{-2,0,2\} = \{-2,0,1,2\},$ 则满足上述条件的集合 A 的个数为___ 个.
- 22. 若集合 $A = \{x \mid x < 2\}, B = \{x \mid x > a\}$, 满足 $A \cap B = \{2\}$, 则实数 a = 1.
- 23. 若集合 $M = [a-1, a+1], N = (-\infty, -1) \cup [2, +\infty),$ 且 $M \cap N = \emptyset$, 则实数 a 的取值范围为_____
- 24. 集合 $A = \{(x,y)|x^2+y^2=25\}, B = \{(x,y)|x=3y=4\}, 则 A \cap B$ 的子集个数是________个.
- 25. 已知集合 $M = \{x | x = 3m + 1, m \in \mathbf{Z}\}, N = \{y | y = 3m + 2, m \in \mathbf{Z}\}, 若 x_0 \in M, y_0 \in N, 则 x_0 y_0 与集合$ M,N 的关系是 ().
 - A. $x_0y_0 \in M$ 但 $x_0y_0 \notin N$

B. $x_0y_0 \in N \boxtimes x_0y_0 \notin M$

C. $x_0y_0 \notin M \perp x_0y_0 \notin N$

- D. x_0y_0 ∈ M 且 x_0y_0 ∈ N
- 26. 若 $A = \{x | x = 2n, n \in \mathbf{Z}\}, B = \{x | x = 4m, m \in \mathbf{Z}\}, 求证: B \subsetneq A.$
- 27. 设常数 $a \in \mathbf{R}$, 集合 $A = \{x | \frac{3-2x}{x-1} + 1 \ge 0, \ x \in \mathbf{R}\}, \ B = \{x | 2ax < a+x, \ x \in \mathbf{R}\}.$ 若 $A \cup B = B$, 求 a 的 取值范围.
- 28. 设常数 $m \in \mathbf{R}$, $A = \{(x,y)|x^2 + mx y + 2 = 0, x \in \mathbf{R}\}$, $B = \{(x,y)|x y + 1 = 0, x \in M\}$, 且 $A \cap B \neq \emptyset$.
 - (1) 若 $M = \mathbf{R}$, 求实数 m 的取值范围;
 - (2) 若 $M = (\frac{1}{3}, 2]$, 求实数 m 的取值范围.
- 29. 设常数 $k \in \mathbf{R}$, 关于 x 的不等式组 $\begin{cases} x^2 x 2 > 0, \\ 2x^2 + (2k+5)x + 5k < 0 \end{cases}$ 整数解的集合为 $\{-2\}$, 求实数 k 的取值范 围.

31.	出知 $M = \{a \frac{1}{5-a} \in \mathbb{N},$	$a \in \mathbf{Z}$ },则用列举法表示	$M = \underline{\hspace{1cm}}$.		
32.	定义集合运算: $A \odot B =$	$\{z z=xy(x+y),\ x\in A,$	$y \in B$ }, 设集合 $A = \{0,$	1 }, $B = \{2,3\}$, 则集合 $A \odot B$ 的	
	所有元素之和为	·			
33.	已知全集 $U = \mathbf{R}, A = \{-1, 1\}$	-1 }, $B = \{x \lg(x^2 - 2) =$	$\lg x$ },则()		
	A. $A \subseteq B$	B. $A \cup B = \emptyset$	C. $A \supseteq B$	$D. (C_U A) \cap B = \{2\}$	
34.	集合 $A = \{(x,y) y = x $	$+1$, $B = \{(x,y) y = \frac{1}{2}x$	$+a$ }, 若 $A \cap B = \emptyset$, 则	a 的取值范围是	
35.	周查某班 50 名学生, 音乐爱好者有 40 人, 体育爱好者有 24 人, 则两方面都爱好的人数最少人,				
	最多人.				
36.	已知集合 $A = \{x ax^2 - 3$	3x + 2 = 0 至多有一个元	素,则 a 的取值范围是	; 若至少有一个元素, 则	
	a 的取值范围是	<u>_</u> .			
37.	设含有三个实数的集合既	三可以表示为 $\{a, \frac{b}{a}, 1\}$,又	可以表示为 $\{a^2,a+b,0\}$,那么 $a+b=$	
38.	设 $f(x) = x^2 - 12x + 36$, $A = \{a 1 \le a \le 10, \ a \in \mathbf{N}\}$, $B = \{b b = f(a), \ a \in A\}$, 又设 $C = A \cap B$. 求集合 $C \in A$				
39.	设常数 $m \in \mathbf{R}, A = \{(x,y) y = -x^2 + mx - 1, x \in \mathbf{R}\}, B = \{(x,y) x + y = 3, x \in M\}, 且 A \cap B$ 的子集有				
	两个.				
	(1) 若 $M = \mathbb{R}$, 求实数 m 的值;				
	(2) 若 $M = [0,3]$, 求实数	(m) 的取值范围.			
40.	填写下列命题的否定形式	·.			
	(1) $m \le 0$ 或 $n > 0$:		;		
	(2) 空间三条直线 l,m,n	两两相交:		;	
	(3) 复数 z_1, z_2, z_3 中至多	一个为纯虚数:		·	
41.	已知 a,b 是整数, 写出命题 "若 ab 为偶数, 则 $a+b$ 为偶数"的逆命题、否命题、逆否命题, 并判断所写命题				
	的真假.				
	逆命题:		, 真假:;		
	否命题:		, 真假:;		
	逆否命题:		, 真假:		
42.	设甲是乙的充分非必要条	·件, 乙是丙的充要条件, 丁	是丙的必要非充分条件,	则丁是甲的 ()	
	A. 充分非必要条件		B. 必要非充分条件		
	C. 充要条件		D. 既非充分又非必要	要条件	
43.	若 $A \in B$ 的必要非充分	条件, 则 \overline{A} 是 \overline{B} 的	条件.		

44.	下列各组命题中互为等价命题的是().			
	A. $A \subseteq B - A \cup B = B$	B. $x \in A$ 且 $x \in B$ 与 $x \in A \cup B$			
	C. $a \in A \cap B$ 与 $a \in A$ 或 $a \in B$	D. $m \in A \cap B = m \in A \cup B$			
45.	填空 (在"充分不必要"、"必要不充分"、	、"充要"、"既不充分也不必要"中选一种作答):			
	(1) " $\alpha \neq \beta$ " 是 $\cos \alpha \neq \cos \beta$ "的	条件;			
	(2) 在 $\triangle ABC$ 中, " $A=B$ " 是 " $\sin A=$	sin B"的条件.			
46.	"a>0b>0" 的一个必要非充分条件是 ().				
	A. $a > 0$ B. $b > 0$	C. $a > 0b > 0$ D. $a, b \in \mathbf{R}$			
47.	"函数 $f(x)$ $(x \in \mathbf{R})$ 存在反函数"是"函	数 $f(x)$ 在 \mathbf{R} 上为增函数"的().			
	A. 充分而不必要条件	B. 必要而不充分条件			
	C. 充分必要条件	D. 既不充分也不必要条件			
48.	填空: (填 "充分不必要"、"必要不充分"、"充要"、"既不充分也不必要")				
	(1) 对于实数 x, y, p : $xy > 1$ 且 $x + y > 2$ 是 q : $x > 1$ 且 $y > 1$ 的 条件;				
	(2) 对于实数 x, y, p : $x + y \neq 8$ 是 q : $x \neq 2$ 或 $y \neq 6$ 的 条件;				
	(3) 已知 $x, y \in \mathbf{R}$, $p: (x-1)^2 + (y-2)^2 = 0$ 是 $q: (x-1)(y-2) = 0$ 的 条件;				
	*(4) 设 $x,y \in \mathbf{R}$, 则 " $x^2 + y^2 < 2$ " 是 " $ x + y \le \sqrt{2}$ " 的 条件; 又是 " $ x + y < 2$ " 的				
	条件; 又是 " $ x < \sqrt{2}$ 且 $ y < \sqrt{2}$ "的 条件.				
	(5) 设 $a_1, b_1, c_1, a_2, b_2, c_2$ 均为非零实数, 方程 $a_1x^2 + b_1x + c_1 = 0$ 和方程 $a_2x^2 + b_2x + c_2 = 0$ 的实数解集分				
	别为 M 和 N , 则 " $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ " 是 ".	M = N"的条件.			
49.	(1) 是否存在实数 m , 使得 $2x + m < 0$	是 $x^2 - 2x - 3 > 0$ 的充分条件? 说明理由.			
	(2) 是否存在实数 m , 使得 $2x + m < 0$ 是 $x^2 - 2x - 3 > 0$ 的必要条件? 说明理由.				
50.	已知关于 x 的实系数二次方程 $ax^2 + bx$	$c + c = 0 \ (a > 0)$,分别求下列命题的一个充要条件:			
	(1) 方程有一正根, 一根是零;				
	(2) 两根都比 2 小.				
51.	设 $a,b\in\mathbf{R}$, 写出命题 "若 $a+b>0$ 且 $ab>0$, 则 $a>0$ 且 $b>0$ " 的逆否命题.				
52.	填空 (填"充分不必要"、"必要不充分"、	、"充要"、"既不充分也不必要"):			
	(1) 若 $x, y \in \mathbf{R}$, 则 $x^2 + y^2 \neq 0$ 是 " x, y 不全为零"的 条件;				
	(2) 若 $x, y \in \mathbf{R}$, 则 " $xy > 0, x + y > 0$ " 是	是 " $x > 0, y > 0$ " 的 条件;			
	(3) 设 $a,b \in \mathbf{R}$, 则 " $ a + b = a+b $ " 是	是" $ab=0$ "的条件;			
	(4) 若 a,b,c 是常数, 则 " $a>0$ 且 b^2-4	$ac < 0$ "是"对任意 $x \in \mathbf{R}$,有 $ax^2 + bx + c > 0$ "的条件			
	(5) 设 $a, b \in \mathbf{R}$, 则 $b = \tan a$ 是 $a = \arctan$	tan b 的 条件.			
53.	已知 $x,y \in \mathbf{R}$, 有如下四个命题: ① $x^2+y^2<1$; ② $ x + y <1$; ③ $ x <1$ 且 $y <1$; ④ $ x+y <1$				
	则	必要条件 (答案可能不唯一).			

54. 使不等式 $2x^2 - 5x - 3 \ge 0$ 成立的一个充分不必要条件是 ().

A. x < 0

B. $x \geq 0$

C. $x \in \{-1, 3, 5\}$ D. $x \le \frac{1}{2}$ 或 $x \ge 3$

- 55. 已知 α : " $x \ge a$ ", β : " $|x-1| \le 1$ ", 若 α 是 β 的必要非充分条件, 则实数 α 的取值范围是____
- 56. 命题甲: 关于 x 的方程 $x^2 + x + m = 0$ 有两个相异的负根; 命题乙: 关于 x 的方程 $4x^2 + x + m = 0$ 无实根, 若这两个命题有且只有一个是真命题, 求实数 m 的取值范围. *
- 57. 已知 $P = \{x | x^2 8x 20 < 0\}$, $S = \{x | |x a| < m\}$, 求实数 a, m 的值, 使得 " $x \in P$ " 是 " $x \in S$ " 的充要条
- 58. 设 $f(x) = ax^2 + x + a$, 写出一个 a 的值,
 - (1) 使 f(x) > 0 ($x \in \mathbf{R}$) 恒成立;
 - (2) 使 f(x) > 0 ($x \in \mathbf{R}$) 恒不成立;
 - (3) 使 f(x) > 0 ($x \in \mathbf{R}$) 不恒成立.
- 59. 命题 (1) $a > b \Rightarrow ac^2 > bc^2$; (2) $ac^2 > bc^2 \Rightarrow a > b$; (3) $a > b \Rightarrow \frac{1}{a} < \frac{1}{b}$; (4) a < b < 0, $c < d < 0 \Rightarrow ac > bd$;

(5)
$$\sqrt[n]{a} > \sqrt[n]{b} \Rightarrow a > b \ (n \in \mathbf{N}^*);$$
 (6) $a + c < b + d \Leftrightarrow \begin{cases} a < b, \\ c < d; \end{cases}$ (7) $a < b < 0 \Rightarrow a^2 > ab > b^2$. 其中真命题

的序号是

60. 已知 $a, b \in \mathbb{R}$, 则 ab(a-b) < 0 成立的一个充要条件是 (

A. $\frac{1}{a} > \frac{1}{b} > 0$

B. $\frac{1}{a} < \frac{1}{b}$ C. $0 < \frac{1}{a} < \frac{1}{b}$ D. $\frac{1}{a} > \frac{1}{b}$

61. "
$$\begin{cases} 2 < x + y < 4, \\ 0 < xy < 3 \end{cases}$$
 " 是 "
$$\begin{cases} 2 < x < 3, \\ 0 < y < 1 \end{cases}$$
 " 的_____ 条件.

62. 下列函数中, 最小值为 2 的函数有_____

$$(1) \ y = x + \frac{1}{x}, \ x \in (0, +\infty); \ (2) \ y = x + \frac{1}{x}, \ x \in (1, +\infty); \ (3) \ y = \frac{x^2 + 3}{\sqrt{x^2 + 2}}; \ (4)y = \log_3 x + \log_x 3.$$

- 63. $z = (x+y)(\frac{1}{x} + \frac{1}{4y}), (x,y>0)$ 的最小值是______.
- 64. 若正实数 a, b 满足 a + b = 1, 则 ().

A. $\frac{1}{a}+\frac{1}{b}$ 的最大值是 4 B. ab 的最小值是 $\frac{1}{4}$ C. $\sqrt{a}+\sqrt{b}$ 有最大值 $\sqrt{2}$ D. a^2+b^2 有最小值 $\frac{\sqrt{2}}{2}$

65. 如果 0 < a < b, t > 0, 设 $M = \frac{a}{b}, N = \frac{a+t}{b+t}$, 那么 ().

A. M > N

B. M < N

C. M = N

D. $M \supset N$ 的大小随 t 的变化而变化

66. 将一根铁丝切割成三段做一个面积为 2 平方米、形状为直角三角形的框架,则至少需要_____ 米的铁丝 (不计损失,精确到 0.1 米).

- 67. (1) 比较 $1+a^2 = \frac{1}{1-a}$ 的大小;
 - (2) 设 a > 0, $a \ne 1$, t > 0, 比较 $\frac{1}{2} \log_a t$ 和 $\log_a \frac{t+1}{2}$ 的大小, 证明你的结论.
- 68. 已知 $x,y \in \mathbf{R}^+$ 且 x+y=4,求 $\frac{1}{x}+\frac{2}{y}$ 的最小值. 某学生给出如下解法: 由 x+y=4 得, $4 \geq 2\sqrt{xy}$ ①, 即 $\frac{1}{\sqrt{xy}} \geq \frac{1}{2}$ ②,又因为 $\frac{1}{x} + \frac{2}{y} \geq 2\sqrt{\frac{2}{xy}}$ ③,由②③得 $\frac{1}{x} + \frac{2}{y} \geq \sqrt{2}$ ④,即所求最小值为 $\sqrt{2}$ ⑤.请指出这位同学 错误的步骤,并给出正确的解法,
- 69. 已知 $x, y \in \mathbb{R}^+$, xy = x + y + 1, 求 x + y 的取值范围 (试用两种方法求解).
- 70. 设 $a, b \in \mathbf{R}$, 若 a |b| > 0, 则下列不等式中正确的是 (

A. b - a > 0

B. $a^3 + b^3 < 0$ C. b + a > 0 D. $a^2 - b^2 < 0$

71. 已知 0 < x < y < a < 1, 则 ().

A. $\log_a(xy) < 0$ B. $0 < \log_a(xy) < 1$ C. $1 < \log_a(xy) < 2$ D. $\log_a(xy) > 2$

72. 设 a > 1 > b > -1, 则下列不等式中恒成立的是 ().

A. $\frac{1}{a} < \frac{1}{b}$ B. $\frac{1}{a} > \frac{1}{b}$

C. $a > b^2$

D. $a^2 > 2b$

- 73. 若 $1 < a < 3, -4 < b < 2, 则 <math>\frac{1}{2}a b$ 的取值范围是______.
- 74. 已知 $x, y \in \mathbf{R}^+$, 且 x + 4y = 1, 则 $x \cdot y$ 的最大值为_____
- 75. 函数 $y = \log_a(x+3) 1$ $(a>0,\ a\neq 1)$ 的图像恒过定点 A, 若点 A 在直线 mx+ny+1=0 上, 其中 mn>0, 则 $\frac{1}{m} + \frac{2}{n}$ 的最小值为______
- 76. * 如果正数 a, b, c, d 满足 a + b = cd = 4, 那么 (

A. ab < c + d 且等号成立时, abcd 的取值唯一

B. ab > c + d 且等号成立时, abcd 的取值唯一

 $C. ab \le c + d$ 且等号成立时, abcd 的取值不唯一

D. $ab \ge c + d$ 且等号成立时, abcd 的取值不唯一

- 78. 在等差数列 $\{a_n\}$ 和等比数列 $\{b_n\}$ 中, $a_1 = b_1 > 0$, $a_3 = b_3 > 0$, $a_1 \neq a_3$, 试比较 a_5 与 b_5 的大小.
- 79. 下列不等式中解集为 **R** 的是 ().

A. $x^2 - 6x + 9 > 0$ B. $4x^2 + 12x + 9 < 0$ C. $3x^2 - x + 2 > 0$ D. $3x^2 - x + 2 < 0$

- 80. 不等式 $(x-1)^2(2-x) < 0$ 的解集是 $(x-1)^2(2-x) > 0$ 的解集是
- 81. 已知关于 x 的不等式 $x^2 + ax + b < 0$ 的解集为 (-1,2), 则 a + b =

- 82. 不等式 $-1 < x^2 + 2x 1 \le 2$ 的解集是 .
- 83. 用一根长为 100 米的绳子能否围成一个面积大于 600 平方米的矩形?_____(用"能"或"不能"填空).
- 84. 已知关于 x 的不等式 $ax^2 bx + c > 0$ 的解集是 $(-\frac{1}{2}, 2)$, 对于 a, b, c 有以下结论: ① a > 0; ② b > 0; ③ c > 0; ④ a + b + c > 0; ⑤ a b + c > 0. 其中正确的序号有______.
- 85. 若关于 x 的不等式 $(a-2)x^2 + 2(a-2)x 4 < 0$ 对一切 $x \in \mathbf{R}$ 成立, 则实数 a 的取值范围是 .
- 86. 已知关于 x 的不等式 (2a-b)x+a-5b>0 的解集是 $(-\infty,\frac{10}{7})$, 则关于 x 的不等式 ax>b 的解集 是 .
- 87. 已知关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集为 $\{x | 2 < x < 4\}$, 求关于 x 的不等式 $cx^2 + bx + a < 0$ 的解集.
- 88. 解关于 x 的不等式: $(ax + 4)(x 1) > 0(a \in \mathbf{R})$.
- 89. 已知 $f(x) = x^2 + 2(a-2)x + 4$.
 - (1) 如果对一切 $x \in \mathbf{R}$, f(x) > 0 恒成立, 求实数 a 的取值范围;
 - (2) 如果对 $x \in [-3,1]$, f(x) > 0 恒成立, 求实数 a 的取值范围.
- 90. 不等式 $-6x^2 x + 2 \le 0$ 的解集是 . .
- 91. 解关于 x 的不等式 $x^2 3(a+1)x + 2(3a+1) \le 0(a \in \mathbf{R})$.
- 92. 解关于 x 的不等式组: $\begin{cases} ax > -1, & (a \in \mathbf{R}). \\ x + a > 0 \end{cases}$
- 93. 若关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集为 (-1, 2), 求关于 x 的不等式 $a(x^2 + 1) + b(x 1) + c > 2ax$ 的 解集.
- 94. 若关于 x 的不等式 $(a^2 4)x^2 + (a + 2)x 1 \ge 0$ 的解集为 \emptyset , 求实数 a 的取值范围.
- 95. 若关于 x 的不等式 $(a^2-4)x^2+(a+2)x+1>0$ 对一切 $x \in \mathbb{R}$ 均成立, 求实数 a 的取值范围.
- 96. * 设 f(x) 是定义在 **R** 上的偶函数, 在区间 $(-\infty,0)$ 上单调递增, 且满足 $f(-a^2+2a-5) < f(2a^2+a+1)$, 求实数 a 的取值范围.
- 97. * Ξ 知 $A = \{x|x^2 3x + 2 \le 0\}, B = \{x|x^2 (a+1)x + a \le 0\}.$
 - (1) 若 $A \subsetneq B$, 求 a 的取值范围;
 - (2) 若 $B \subseteq A$, 求 a 的取值范围.
- 98. 下列不等式中, 与 $x^2 > 2$ 同解的不等式的序号为______.

$$(1) \ x^2 + \frac{1}{x-3} > 2 + \frac{1}{x-3}; \ (2) \ x^2 + \sqrt{x-4} > 2 + \sqrt{x-4}; \ (3) \ x^2 - (x-1) > 2 - (x-1); \ (4) \ x^2(x-2) > 2(x-2).$$

99. 不等式 $\frac{3x+4}{5-x} \ge 6$ 的解集是_____.

- 100. 若不等式 $\frac{2x+a}{x+b} \le 1$ 的解集为 $\{x|1 < x \le 3\}$, 则 a+b 的值是______.
- 101. 不等式 $(x-1)^2(2-x)(x+1) \le 0$ 的解集是_____.
- 102. 不等式 2 < |x+1| < 3 的解集是______.
- 103. 不等式 |x-2| > 9x 的解集是______.
- 104. 不等式 $4^{x-\frac{5}{x}+1} \le 2$ 的解集是
- 105. 不等式 $\log_{\frac{1}{4}} 4x^2 > \log_{\frac{1}{4}} (3-x)$ 的解集是_____.
- 106. 解下列不等式:
 - (1) |x-5|-|2x+3|<1;
 - $(2) \ \frac{2x^2 + x 3}{x^2 + x + 1} \ge 1;$
 - (3) $4^{2x} 2^{2x+2} + 3 < 0$
 - (4) $\log_2(x-1) < \log_4(2-x) + 1$.
- 107. (1) 关于 x 的不等式 $|x-1| |x-2| < a^2 + a 1$ 的解集是 **R**, 求实数 a 取值范围;
 - (2) 关于 x 的不等式 $|x-1| |x-2| < a^2 + a 1$ 有实数解, 求实数 a 的取值范围.
- 108. * 设全集 $U = \mathbf{R}$, 已知关于 x 的不等式 $|x-1| + a 1 > 0 (a \in \mathbf{R})$ 的解集为 A, 若 $\mathcal{C}_U A \cap \mathbf{Z}$ 恰有 3 个元素, 求 a 的取值范围.
- 109. 不等式 $\left| \frac{x}{1+x} \right| > \frac{x}{1+x}$ 的解集是______
- 110. 不等式 $\frac{2x}{1-x} \le 1$ 的解集是______.
- 111. 不等式 $\frac{1+|x|}{|x|-1} \ge 3$ 的解集是_____.
- 113. 已知 a>0 且 $a\neq 1$, 关于 x 的不等式 $a^x>\frac{1}{2}$ 的解集是 $(-\infty,1)$, 则 a=______.
- 114. 关于 x 的不等式 $\log_{\frac{1}{2}}(x-\frac{1}{x}) > 0$ 的解集是______.
- 115. 若不等式 |3x b| < 4 的解集中的整数有且仅有 1, 2, 3, 则 b 的取值范围为______.
- 116. 已知关于 x 的不等式 $\frac{ax-5}{x^2-a} < 0$ 的解集为 M.
 - (1) 当 a = 5 时, 求集合 M;
 - (2) 若 $2 \in M$ 且 $5 \notin M$, 求实数 a 的取值范围.
- 117. (1) 对任意实数 x, |x-1|-|x+3|>a 恒成立, 求实数 a 的取值范围;
 - (2) * 对任意实数 x, |x-1| |x+3| > a 恒不成立, 求实数 a 的取值范围.

- 118. (1) 若关于 x 的不等式 $x^2 kx + 1 > 0$ 的解集为 **R**, 求实数 k 的取值范围;
 - (2) * 若关于 x 的不等式 $x^2 kx + 1 > 0$ 在 [1,2] 上有解, 求实数 k 的取值范围.
- 119. 已知 $a, b \in \mathbf{R}^+$,求证: $\frac{a}{\sqrt{b}} + \frac{b}{\sqrt{a}} \ge \sqrt{a} + \sqrt{b}$.
- 120. 已知 $x, y \in \mathbf{R}$, 求证: $x^2 + y^2 + 1 \ge x + y + xy$.
- 121. 已知 $a, b \in \mathbb{R}^+$ 且 $a \neq b$, 求证: $|a^3 + b^3 2ab\sqrt{ab}| > |a^2b + ab^2 2ab\sqrt{ab}|$.
- 122. 已知 0 < a < 1 ,0 < b < 1, 0 < c < 1, 求证: (1-a)b, (1-b)c, (1-c)a 中至少有一个小于等于 $\frac{1}{4}$.
- 123. $a \times b \times c$ 是互不相等的正数,则下列不等式中不正确的序号是______

$$(1) |a-b| \le |a-c| + |c-b|; (2) |a^2 + \frac{1}{a^2} \ge a + \frac{1}{a}; (3) |a-b| + \frac{1}{a-b} \ge 2; (4) \sqrt{a+3} - \sqrt{a+1} \le \sqrt{a+2} - \sqrt{a}.$$

- 124. 已知 a > b > c > 0, 试比较 $\frac{a-c}{b}$ 与 $\frac{b-c}{a}$ 的大小.
- 125. 已知 a > 0, 试比较 $a = \frac{1}{a}$ 的大小.
- 126. 若 x, y, m, n 均为正数, 求证: $\sqrt{(m+n)(x+y)} \ge \sqrt{mx} + \sqrt{ny}$.
- 127. 已知 $a, b, c \in \mathbb{R}^+$,求证: $a^2b^2 + b^2c^2 + c^2a^2 \ge a^2bc + ab^2c + abc^2$
- 128. 设 $f(x) = \sqrt{1+x}$ (x>0). 若 $x_1 \neq x_2$, 求证: $|f(x_1) f(x_2)| < |x_1 x_2|$.
- 129. 若实数 x, y, m 满足 |x-m| > |y-m|, 则称 x 比 y 远离 m.
 - (1) 若 $x^2 1$ 比 1 远离 0, 求 x 的取值范围;
 - (2) 定义: 在 \mathbf{R} 上的函数 f(x) 等于 x^2 和 x+2 中远离 0 的那个值. 求证: $f(x) \ge 1$ 在 \mathbf{R} 上恒成立.
- 130. 函数 $y = \frac{\sqrt{2x+1}}{x-3} + (x-1)^0$ 的定义域为______.
- 131. 若函数 y = f(x) 的定义域是 [-2, 4], 则函数 g(x) = f(x) + f(-x) 的定义域是______.
- 132. 下列各组中, 两个函数是同一个函数的组的序号是______

$$(1) \ y = \lg x \ -\frac{1}{6} \lg x^2; \ (2) \ f(x) = 2^x, \ D = \{0, 1, 2, 3\} \ -\frac{1}{6} g(x) = \frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (3) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1, 2, 3\}; \ (4) \ -\frac{1}{6} x^3 + \frac{5}{6} x + 1, \ D = \{0, 1,$$

- (3) $f(x) = x^2 2x 1$, $g(t) = t^2 2t 1$; (4) $y = \sqrt{x^2 1}$, $y = \sqrt[3]{x^3 1}$.
- 133. 已知函数 $f(x) = 6 + 5x x^2$, 函数 $g(x) = \frac{1}{\sqrt{x^2 5x 6}}$, 则 $f(x) \cdot g(x) = \underline{\hspace{1cm}}$.
- 134. 函数 y = f(x) 满足对于任意 x > 0, 恒有 $f(x + 1) = \lg x$, 则 y = f(x) 在 x > 1 时的解析式为______.
- 135. 函数 y = f(x) 满足对于任意 $x \neq 0$, 恒有 $f(x \frac{1}{x}) = x^3 \frac{1}{x^3}$. 若存在 x_0 使得 $f(x_0) = 0$, 则 $x_0 = \underline{\qquad}$.
- 136. 已知 y = f(x) 为偶函数, 且 y = f(x) 的图像在 $x \in [0,1]$ 时的部分是半径为 1 的圆弧, 在 $x \in [1, +\infty)$ 时的部分是过点 (2,1) 的射线, 如图.

- (2) 写出 f(f(-2)) 的值:______;
- (3) 写出方程 $f(x) = \frac{\sqrt{3}}{2}$ 的解集:______.
- 137. 某工厂生产一种仪器的元件,由于受生产能力和技术水平等因素的限制,会产生较多次品,根据经验知道,次品数 p(万件) 与日产量 x(万件) 之间满足关系: $p = \begin{cases} \frac{x^2}{6}, & 1 \leq x < 4, \\ x + \frac{3}{x} \frac{25}{12}, & x \geq 4. \end{cases}$ 件可以盈利 20 万元,但每产生 1 万件次品将亏损 10 万元.(实际利润 = 合格产品的盈利-生产次品的亏损),试将该工厂每天生产这种元件所获得的实际利润 T(万元) 表示为日产量 x(万件) 的函数.
- 138. 设常数 a、b 满足 1 < a < b, 函数 $f(x) = \lg(a^x b^x)$, 求函数 y = f(x) 的定义域.
- 139. 如图, 用长为 l 的铁丝弯成下部为矩形, 上部为半圆形的空心框架, 若矩形底边长为 2x, 试用解析式将此框架 围成的面积 y 表示 x 的函数.

- 140. 已知函数 $f(x) = \sqrt{ax^2 + x + 1}$.
 - (1) 若函数 y = f(x) 的定义域为 $(-\infty, +\infty)$, 求实数 a 的取值范围;
 - (2) 若函数 y = f(x) 的值域为 $[0, +\infty)$, 求实数 a 的取值范围.
- 141. 已知函数 $f(x) = \sqrt{x}$, 函数 $g(x) = \sqrt{1-x} \sqrt{x}$, 则函数 y = f(x) + g(x) 的定义域为______.
- 142. 已知函数 y = f(x) 的定义域为 [1,4], 则函数 $y = \frac{f(2x)}{x-2}$ 的定义域是______.
- 143. (1) 设函数 $D(x) = \begin{cases} 1, & x \in \mathbf{Q}, \\ 0, & x \notin \mathbf{Q}. \end{cases}$ 令 $F(x) = D(\sqrt{2}x), \, \mathbb{D} F(1) = \underline{\hspace{1cm}};$

144. 已知
$$f(x) = \begin{cases} x-2, & x>8, \\ f(x+3), & x \leq 8, \end{cases}$$
则 $f(2) = \underline{\qquad}$.

145. 设常数
$$a \in \mathbf{R}$$
, $f(x) = \begin{cases} x + a, & x < a, \\ \frac{1}{x} + a, & x \ge a. \end{cases}$ 若 $f(2) = 2$, 则 $a = \underline{\qquad}$.

146. 已知函数
$$f(x) = \begin{cases} \sqrt{x}, & x > 1, \\ & \text{函数 } g(x) = 1 - \sqrt{x}. \end{cases}$$
 求函数 $y = f(x) + g(x)$ 的解析式及定义域. $x \leq 1,$

- 147. * 设 D 是含数 1 的有限实数集, f(x) 是定义在 D 上的函数, 若 f(x) 的图像绕原点逆时针旋转 $\frac{\pi}{6}$ 后与原图像重合,则在以下各项中, f(1) 的可能取值只能是 ()
 - A. $\sqrt{3}$

B. $\frac{\sqrt{3}}{2}$

C. $\frac{\sqrt{3}}{3}$

- D. 0
- 148. 设常数 $p \in \mathbf{R}$, 设函数 $f(x) = \log_2 \frac{x+1}{x-1} + \log_2(x-1) + \log_2(p-x)$.
 - (1) 求 p 的取值范围以及函数 y = f(x) 的定义域;
 - (2) 若 y = f(x) 存在最大值, 求 p 的取值范围, 并求出最大值.
- 149. 已知 xy < 0, 且 $4x^2 9y^2 = 36$. 问: 能否由此条件将 y 表示成 x 的函数? 若能, 求出该函数的解析式; 若不能, 说明理由.
- 150. 已知常数 $a \in \mathbf{R}$, 函数 $g(x) = \frac{x}{x+2}$, 函数 $h(x) = \frac{1}{x+a}$. 设函数 $F(x) = g(x) \cdot h(x)$, D_F 是其定义域; f(x) = g(x) h(x), D_f 是其定义域.
 - (1) 设 a = 2, 求函数 F(x) 的值域;
 - (2) 对于给定的常数 a, 是否存在实数 t, 使得 f(t) = 0 成立?若存在, 求出这样的所有 t 的值;若不存在, 说明理由;
 - (3) * 是否存在常数 a 的值, 使得对于任意 $x \in D_f \cap \mathbf{R}^+$, 有 $f(x) \ge 0$ 恒成立?若存在, 求出所有这样的 a 的值; 若不存在, 说明理由.
- 151. 给定六个函数: ① $y = \frac{1}{x}$; ② $y = x^2 + 1$; ③ $y = x^{-\frac{1}{3}}$; ④ $y = 2^x$; ⑤ $y = \log_2 x$; ⑥ $y = \sqrt{x^2 1} + \sqrt{1 x^2}$. 在这六个函数中,是奇函数但不是偶函数的是_______, 是偶函数但不是奇函数的是______, 既不是奇函数也不是偶函数的是_______, 既是奇函数又是偶函数的是______.
- 152. 设常数 a、 $b \in \mathbf{R}$. 若定义在 [a-2,2a] 上的 $f(x)=ax^2+bx$ 是偶函数, 则 a=_______, b=_______.
- 153. 设常数 $a, b \in \mathbf{R}$. 若定义在 [a-1, a+1] 上的 $f(x) = ax^2 + x + b$ 是奇函数, 则 $a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}$

- 154. 若函数 $f(x) = \frac{(x+1)(x+a)}{x}$ 为奇函数, 则实数 f(x)______
- 155. 设函数 y = f(x) 为定义在 ${\bf R}$ 上的函数, 则命题: " $f(-1) \neq f(1)$ 且 $f(-1) \neq -f(1)$ " 是命题 "y = f(x) 既不 是奇函数也不是偶函数"的________条件(填"充分不必要"、"必要不充分"、"充要"、"既不充分也不必 要"之中一个).
- 156. 设 y = f(x) 是定义在 **R** 上的函数, 当 $x \ge 0$ 时, $f(x) = x^2 2x$.

 - (2) 当 y = f(x) 为偶函数时,则当 x < 0 时, f(x) =______
- 157. 设奇函数 y = f(x) 的定义域为 [-5,5]. 若当 $x \in [0,5]$ 时, y = f(x) 的图像如图, 则不等式 xf(x) < 0 的解 是_____.

- 158. 若定义在 **R** 上的两个函数 y = f(x)、y = g(x) 均为奇函数. 设 F(x) = af(x) + bg(x) + 1.

 - (2) 若函数 y = F(x) 在 $(0, +\infty)$ 上存在最大值 4, 则 y = F(x) 在 $(-\infty, 0)$ 上的最小值为__
- 159. 判断下列函数 y = f(x) 的奇偶性:

(1)
$$f(x) = (x-1) \cdot \sqrt{\frac{1+x}{1-x}}$$
;

$$(1) f(x) = (x-1) \cdot \sqrt{\frac{1+x}{1-x}};$$

$$(2)f(x) = \begin{cases} x(1-x), & x < 0, \\ x(1+x), & x > 0. \end{cases}$$

- 160. 已知函数 $f(x) = x^2 2a|x-1|, x \in \mathbf{R}$, 常数 $a \in \mathbf{R}$.
 - (1) 求证: 函数 y = f(x) 不是奇函数;
 - (2) 若函数 y = f(x) 是偶函数, 求实数 $f(x) = \log_3 |2x + a|$ 的值.
- 161. 判断下列函数 y = f(x) 的奇偶性:

(1)
$$f(x) = \frac{1}{a^x - 1} + \frac{1}{2}$$
 (常数 $a > 0$ 且 $a \neq 1$);
(2) $f(x) = \frac{ax}{x^2 - a}$ (常数 $a \in \mathbf{R}$).

$$(2) f(x) = \frac{ax}{x^2} (常数 a \in \mathbf{R}).$$

162. 设 y = f(x) 是定义在 **R** 上的函数,则下列叙述正确的是().

A. y = f(x)f(-x) 是奇函数

B.
$$y = f(x)|f(-x)|$$
 是奇函数

C. y = f(x) - f(-x) 是偶函数

- D. y = f(x) + f(-x) 是偶函数
- 163. 设函数 y = f(x) 为定义在 **R** 上的函数, 则 " $f(0) \neq 0$ " 是 "函数 y = f(x) 不是奇函数"的 ().
 - A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

- D. 既不是充分条件, 也不是必要条件
- 164. 设 y = f(x) 是定义在 **R** 上的奇函数, 当 x < 0 时, $f(x) = \lg(2 x)$, 则 $x \in \mathbf{R}$ 时, $f(x) = \underline{\hspace{1cm}}$.
- 165. 判断下列函数 y = f(x) 的奇偶性, 并说明理由:

(1)
$$f(x) = x^3 - \frac{1}{-}$$
;

(2)
$$f(x) = \frac{|x+3|-3}{\sqrt{4-x^2}}$$
.

- 166. 根据常数 a 的不同取值, 讨论下列函数 y = f(x) 的奇偶性, 并说明理由:
 - (1) f(a) > f(0);
 - (2) f(x) = x|x a|.
- 167. 设函数 y = f(x) 是定义在 R 上的奇函数. 若 x > 0 时, $f(x) = \lg x$.
 - (1) 求方程 f(x) = 0 的解集;
 - (2) 求不等式 f(x) > -1 的解集.
- 168. 是否存在实数 b, 使得函数 $g(x) = \frac{2^x}{4^x b}$ 是奇函数? 若存在, 求 b 的值; 若不存在, 说明理由.
- 169. 常数 $a \in \mathbf{R}$. 若函数 $f(x) = \lg(10^x + 1) + ax$ 是偶函数, 则 $a = \underline{\hspace{1cm}}$.
- 170. 已知 y = f(x) 为定义在 \mathbf{R} 上的奇函数, y = g(x) 为定义在 \mathbf{R} 上的偶函数, 且任意 $x \in \mathbf{R}$, 都有 $f(x) = g(x) + \frac{1}{x^2 + x + 1}$, 则 $f(1) + g(1) = \underline{\hspace{1cm}}$.
- 171. 设常数 $a \neq 0$. 若函数 $f(x) = \lg \frac{x+1-2a}{x+1+3a}$. 是否存在实数 a, 使函数 y = f(x) 为奇函数或偶函数? 若存在, 求出 a 的值, 并判断相应的 y = f(x) 的奇偶性; 若不存在, 说明理由.