

Three Dimensional Features for Smart Phone Activity Inference

2015/09/01

Presenter: Chien-Hsiang Lai | ADSLab

Advisor: Wen-Chih Peng

Outline

- Introduction
- Related Work
- Framework
- Methodology
- Experiment
- Implementation
- Conclusion

Introduction

Trend of Using Smart Phones

From we are social

SEP 2014

GLOBAL MOBILE PHONE USAGE

TOTAL WORLD POPULATION

7.258 BILLION

URBANISATION: 53%

UNIQUE MOBILE USERS

3.630 BILLION

PENETRATION: 50%

NB: THIS FIGURE IS BASED ON THE TOTAL NUMBER OF UNIQUE GLOBAL MOBILE USE!

Motivation

Light traffic on 101

Embarcadero
Trains station

Pittsburg/Bay Point to... 11:25pm
Industry With Mille

Embarcadero
Trains station

Pittsburg/Bay Point to... 11:25pm
Industry Bay Point to... 11:25p

- Trend of activity inference
 - Bring many business opportunities by offering services to user

Features

Problem Definition

- Goal
 - Inferring activity which is performed by user
- Input
 - Motion sensor data (3-axis reading of accelerometer x, y, z)
 - Software data (application package name apn)
 - Spatial-temporal data (GPS point gps & time t)
- Output
 - Inferred activity ∈ {working, dining, shopping, sporting, transportation, entertainment}

Challenge Issues

- Features
 - How to extract useful features
 - How to integrate different features in the inference model
- Resource of smart phone
 - Memory and storage of sensor hub are limited (16 KB and 128 KB respectively)
 - Model size needs to be smaller than restrict

Related Work

Sensor-Based Approach (1)

- Recognize daily routines from wearable sensors
 - Commuting, work, lunch, and dinner
- Feature
 - Mean and variance of the 3D-acceleration signals
 - Time-of-day information
- Method
 - Topic model
- Cons
 - Test on only one user

Sensor-Based Approach (2)

- Recognize actions by using phone-based accelerometer
 - Walking, jogging, climbing stairs, sitting, and standing
- **Feature**
 - Average
 - Standard deviation
 - Average absolute difference
 - Average resultant acceleration $(\sqrt{A_x^2 + A_y^2 + A_z^2})$
 - Time between peaks
- Method
 - Discover several acceleration patterns
- Cons
 - Only classify motion type actions
 - Recognize low level physical actions

Location-Based Approach

- Location and activity recommendations
 - Food/Drink, Shopping, Movie/shows, Sports, Tourism and amusement
- Feature
 - Location feature
 - Location-activity information
 - Activity-activity correlation
- Method
 - Construct a matrix for each feature
 - Solve sparseness by using collective matrix factorization
- Cons
 - General model
 - Data insufficient

⁴V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang. *Collaborative location and activity recommendations with gps history data*. WWW 2010.

Hybrid Software and Hardware Approach

- Classify different transportation modes
 - Still, walking, running, biking, and on a vehicle
- Feature
 - STD / mean / FFT_{ratio} / FFT_{peak} of accelerometer
 - STD of magnetometer
 - STD / mean of gyroscope
- Method
 - Feature extraction
 - Mode classification (optimized SVM)
- Cons
 - Only identify different transportation mode

⁵M.-C. Yu, T. Yu, S.-C. Wang, C.-J. Lin, and E. Y. Chang. *Big data small footprint: The design of a low-power classifier for detecting transportation modes*. VLDB 2014.

Framework

3D-AIM Framework

Classification

Methodology

Fuzzy Inference Process

- Consider that any activity could be performed anytime anywhere.
- Adopted modified fuzzy inference process
 - Soft classification
 - Demonstrate an approximation result (many-valued logic in degree)
 rather than an exact result (binary logic)
- Flow of fuzzy inference process
 - Fuzzification: translate input into real value
 - Rule evaluation: compute output score
 - Defuzzification: transfer score into output

Example of Fuzzy Inference Process

Fuzzification & Rule Evaluation

Defuzzification

Motion Part

Input

- Three axis accelerometer readings A_x , A_y , A_z
- Wearable/Mobile device orientation is not fixed
- Using magnitude of acceleration value¹ ($A_{MAG} = \sqrt{A_x^2 + A_y^2 + A_z^2}$)

Output

Probability (score) for each activity

Features

- The standard deviation of A_{MAG}
- The highest value of A_{MAG}
- The lowest value of A_{MAG}
- The average of A_{MAG}
- Motion part is implemented by using two strategies
 - Threshold-based model
 - Distribution matrix

Threshold-based model

- Determine the optimal threshold for discriminating motion type activity from the others
- Build a precision-recall graph
 - First, the highest precision (Precision = TP / (TP+FP))
 - Second, the highest recall (Recall = TP / (TP+FN))

Distribution Matrix

- Standard Deviation Distribution Matrix of A_{mag} SDDM
 - Distribution of standard deviation of A_{mag} for six activities
 - Supply further classification when user's standard deviation of A_{mag} is under 2.3
- Definition of **SDDM**

$$- SDDM_{i,j} = \frac{f_{i,j}}{\sum_{j=1}^{M} f_{i,j}}, \forall j \in Act.$$

Each row represents probabilities of all activities at a certain threshold

TABLE I: An example of distribution matrix of standard deviation of A_{mag} .

Standard Deviation	Working	Dining	Transportation	Sporting	Shopping	Entertainment
0.00	0.50	0.30	0.00	0.00	0.20	0.00
0.10	0.45	0.25	0.15	0.15	0.00	0.00
0.20	0.40	0.20	0.15	0.10	0.10	0.50

Software Part

- Input
 - Application usage (application package names)
- Output
 - Probability (score) for each activity

Extraction

LAPN (List of Application Package Name)

Indicate a set of applications which had used when user performed a particular activity

Extraction

- Extract used application package names from user's ActLog to form a LAPN for each activity
- There are six LAPNs

Rank Discrimination Ability of Apps

- Usage Frequency (F)
 - Using usage frequency is intuitive

$$F(app_{i,j}) = \frac{f_{app_{i,j}}}{\sum_{i=1}^{N} f_{app_{i,j}}}$$

- Entropy-Frequency (EF)
 - It considers not only usage frequency within each activity but also entropy between activities for each app

$$EF(app_{i,j}) = [1 - (-\sum_{j=1}^{M} p_{i,j} \log p_{i,j})] \cdot F(app_{i,j})$$

- Term Frequency-Inverse Document Frequency (TF-IDF)
 - Apps and LAPNs can be entirely mapped into terms and documents respectively

$$TF - IDF(app_{i,j}) = F(app_{i,j}) \cdot \log \frac{M}{|app_i : app_{i,j}|}$$

Select Top-K Apps

- Select top-k apps to form an application list for each activity
 - Small model size
 - Short classification time
 - Not each app is useful

Activity Probability Calculation

- General scoring
 - Don't consider the rank of the application in top-k application list
- Weighted scoring
 - Consider the rank of the application in top-k application list
 - The score decreases progressively with the rank

Example of Probability Calculation

- Suppose that there are three top-4 application lists for these activities
 - Working: (1) Dictionary (2) Gmail (3) Calendar (4) Browser
 - Sporting: (1) Nike(2) Music (3) Calendar (4) Browser
 - Dining : (1) Game (2) News (3) Weather (4) Camera
- Suppose that a user is using dictionary, news, gmail, camera and weather app

Weighted scoring

- Working score: 4 + 3 = 7 = 53.9%
- Sporting score: 0 = 0%
- Dining score : 3 + 2 + 1 = 6 = 46.1%
- General scoring
 - Working score: 1 + 1 = 2 = 40%
 - Sporting score: 0 = 0%
 - Dining score : 1 + 1 + 1 = 3 = 60%

Results for weighted score and general score are not consistent

Spatial-Temporal Part

- Input
 - GPS points
 - Timestamp
- Output
 - Probability (score) for each activity
- Two Approaches
 - (1) A location where user has been
 - Frequent Region with Activity-Timstamp Distribution Matrix (LATDM)
 - Global Activity-Timestamp Distribution Matrix (GATDM)
 - (2) A location where user has never been before
 - Public opinion from outsourced dataset
 - Global Activity-Timestamp Distribution Matrix (GATDM)

Stay Point Detection

GPS Raw Data

Stay Point

Detection

Stay Point

- Stay point
 - SP is a geographical region where a user stayed over a time threshold *T* within a geographical distance *D*

GPS Raw Data Stay Point Detection Stay Point **OPTICS** Clustering Frequent Region Activity Distribution Statistics Frequent Region / with Activitytemporal Matrix

Frequent Region Extraction

Approach II

- People tend to visit a location where he has never been before
 - The frequent region hasn't been discovered
 - No LATDM exists in this region
- Approach (adapted from [6])
 - Public opinions from the Internet
 - GATDM

Approach II

- Public opinion
 - Obtain category distribution of POIs from Foursquare
 - Transform POI categories into predefined five activities
 - Output probabilities of all activities

TABLE III: Mapping table of location category and activity.

Location Category	Activity
Food	Dining
Shop & Service	Shopping
Travel & Transport	Transportation
College & University	Working
Professional & Other Places	Working
Residence	Entertainment
Nightlife Spot	Entertainment
Arts & Entertainment	Entertainment
Outdoors & Recreation	Entertainment

GATDM

Reflect individual habits in daily life

Hybrid Part

- Integrate three probability distributions from each corresponding part for each activity
- Personalize inference model for each individual
 - Coefficients are set by rule of thumb
- Choose activity with the highest probability as the inferred result

$$\alpha \begin{bmatrix} ms.w \\ ms.d \\ ms.t \\ ms.e \\ ms.sp \\ ms.sh \end{bmatrix} + \beta \begin{bmatrix} ss.w \\ ss.d \\ ss.t \\ ss.e \\ ss.sp \\ ss.sh \end{bmatrix} + \gamma \begin{bmatrix} ls.w \\ ls.d \\ ls.t \\ ls.e \\ ls.sp \\ ls.sh \end{bmatrix} = \begin{bmatrix} p.w \\ p.d \\ p.t \\ p.e \\ p.sp \\ p.sh \end{bmatrix}$$
 (9)

where ms represents motion score, ss represents software score, ls represents location score, and p represents activity probability.

Experiment

Dataset

- Collected from Android logger
- Dataset I
 - 18 participants
 - From August 2013 to July 2015
 - 85,515 GPS points
 - 80% training data and 20% testing data
- Dataset II
 - 14 participants
 - From May to August 2013
 - Lack of app usage

(b) Dataset II

Competitor and Environment

Competitor

- Naïve Bayesian
- Classification and Regression Tree (CART)
- Support Vector Machine (SVM)

Environment

- Random (R)
- 5-fold cross validation (CV)
- Default setting (D)
- Optimized setting (O)

Overall Accuracy Evaluation

Performance of Threshold-Based Model

- Decision tree in Weka / R
 - They also consider 2.31 as the best threshold for classifying sporting and the others

Inference Ability of Different Activity

Inference Ability of Different Feature

- Issue I: Performance of M + S is worse than S
- Issue II: Performance of using *all features* is equivalent to *S* + *ST*

Average Execution Time

3D-AIM always performs the training and testing within 0.1 second

Model Size

- Model size
 - Needs to be smaller than limitation of sensor hub's memory

Impact of Parameters in Frequent Region Extraction

- Parameter setting
 - Minimum points *Mpt* = 2 is optimal
 - Radius R = 100 (m) is optimal

Impact of Parameter in Top-k Application List

- Parameter setting
 - General scoring is better than weighted scoring
 - Top K = 30 is the optimal

Implementation

NCTU Assist

- A logger with inference ability
 - Don't label activity before you do it
 - After a period of time for collecting data, the app will infer your activity

NCTU Assist (cont.)

- Framework of our system
 - Collect and upload (client → server)
 - Trigger and infer
 - Respond and label (server → client)

Collect and upload user's data to server

NCTU Assist (cont.)

- Respond and label
 - Inference result appears in the notification bar
 - Label your activity

Conclusion

Conclusion

- Proposed a personalized **3D-AIM** framework for activity inference
 - Motion part
 - Threshold-based model
 - SDDM
 - Software part
 - Top-k application list for each activity
 - Spatial-Temporal part
 - LATDM and GATDM
 - Public opinion and GATDM
 - Hybrid part
- 3D-AIM can reach outstanding performance
 - Reach 91% accuracy
 - Training and testing are within 0.1 second
 - Can fit memory size constraint
- Implement and integrate 3D-AIM with a logger application

