ENCE464

Embedded Software & Advanced Computing Tutorial

Term-3 Project : Week-2, Term-3

By: Steve Weddell

25 July 2019

Project Milestones and Deliverables

WinCalendar	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Jul 2019	14:00:00:00:00:00:00:00:00:00:00:00:00:00	2	3	4	5	6	7
	Mid-year break : : :	Mid-year break : : :	Mid-year break: : :	Mid-year break:::	Mid-year break : : :		
	8	9	10	11	12	13	14
	Mid-year break	Mid-year break	Mid-year break	Mid-year break · · ·	Mid-year break		
	15 Outline	16 ENCE464 Term3	17 Project group	18 ENCE464	19 Students allocated	20	21
	ENCE464 proj. in Lect.	Project spec. on Learn	selection on Learn	Proj. discussion in ESL	if not in a group!!		
	22	23	24	25 ENCE464	26	27	28
				Mlestone 1: Interface			
	29	30	31	1 ENCE464	2	3	4
				M2: Control & Emulator			
Aug 2019	5	6	7	8 ENCE464	9	10	11
				Milestone 3: Emulator			
	12	13	14	15 ENCE464	16	17	18
				Milestone 4: Testing			
	19	20	21	22 Deadline!!	23	24	25 Deadline!!
				Deliverable 1: Demo;			Deliverables 3: Criti
	26-1-1-1-1-1-1	 :ap::::::::::::::::::::::::::::::::::	 -	2: Code	liam::::::::::	24	4: Report
	26 Lecture break	. 27 Lecture break	28 Lecture break	29 : Lecture break	:30 Lecture break	31	1

One Project, Two Perspectives

Header Connections

Note: for external connections via the connector on the underside of your Tiva LaunchPad, a Ground connection is essential.

HeliRig analogue Height O/P

GP2Y0A41SK0F

GP2Y0A41SK0F

Distance Measuring Sensor Unit Measuring distance : 4 to 30 cm Analog output type

■Description

GP2Y0A41SK0F is a distance measuring sensor unit, composed of an integrated combination of PSD

■Agency approvals/Compliance

Compliant with RoHS directive (2002/95/EC)

Emulator analogue O/P: Use an SPI DAC

8/10/12-Bit Voltage Output Digital-to-Analog Converter with Internal V_{REF} and SPI Interface

Features

- MCP4801: 8-Bit Voltage Output DAC
- MCP4811: 10-Bit Voltage Output DAC
- MCP4821: 12-Bit Voltage Output DAC
- Rail-to-Rail Output
- · SPI Interface with 20 MHz Clock Support
- Simultaneous Latching of the DAC Output with LDAC Pin
- Fast Settling Time of 4.5 µs
- Selectable Unity or 2x Gain Output
- 2.048V Internal Voltage Reference
- 50 ppm/°C V_{REF} Temperature Coefficient
- 2.7V to 5.5V Single-Supply Operation
- Extended Temperature Range: -40°C to +125°C

Applications

- Set Point or Offset Trimming
- Sensor Calibration
- Precision Selectable Voltage Reference
- Portable Instrumentation (Battery-Powered)
- · Calibration of Optical Communication Devices

Description

The MCP4801/4811/4821 devices are single channel 8-bit, 10-bit and 12-bit buffered voltage output Digital-to-Analog Converters (DACs), respectively. The devices operate from a single 2.7V to 5.5V supply with an SPI compatible Serial Peripheral Interface.

The devices have a high precision internal voltage reference (V_{REF} = 2.048V). The user can configure the full-scale range of the device to be 2.048V or 4.096V by setting the Gain Selection Option bit (gain of 1 of 2).

The devices can be operated in Active or Shutdown mode by setting a Configuration register bit or using the \overline{SHDN} pin. In Shutdown mode, most of the internal circuits, including the output amplifier, are turned off for power savings, while the amplifier output (V_{OUT}) stage is configured to present a known high resistance output load (500 k Ω , typical).

The devices include double-buffered registers, allowing a synchronous update of the DAC output using the LDAC pin. These devices also incorporate a Power-on Reset (POR) circuit to ensure reliable power-up.

The devices utilize a resistive string architecture, with its inherent advantages of low DNL error, low ratio

Emulator to Controller Interface

