Group theory refine group and write down the perepedies of group? A group is a set of distinct element Gr' finite or instinite in number with a law of composition or Binary operation (addition multiplication, matrix) such that the dollowing properties an satisfied. (A) 7 A, B & G ; A O B & G [clouser property] 1) Thefreexist anidentity element Et G, such that V Ath, AOE = EOA = A there exist an inverse element $B \in G$ such that BOA = AOB = E A,B,CEG i.e AO (BOC) = (AOB)OC; dos all Associative property The number of members in a group is known as order of Group. A group Containing Abrite number of members is called finite group. A group Containing an infinite number of members is called infinite group. define order of a Genoup or is alled infinite group. Show that { i, -1,-i, 1} forms a group under the Composition of multiple Cation. (f) i. 1 = i = 0 downer property, -1.1 =-1 i . -1 = -i + G $-\hat{i}\cdot \hat{j} = -\hat{i}$ -1 · -1 = i + q La Good Miles -i.1 = -i + G so the identity element is 1.1 = 1 + 6 1.-1 = -1 & 9 The clouser property hold © i - (-i) = 1; $-i \in G$ and inverse of i (-1)·(1) = 1; -1 is inverse of -1 So; Inverse derment exist dor all element of Gi.

 $\hat{l} \cdot (-1 \cdot - \hat{l}) = i \cdot i = -1$ (i - 1) - i = -i - i = -1Associative property. what do you mean by Abelian group : 200 mula)
write down its property (" + commula) The product of group members is not necessarily commutating if the group members holds the commediative relative AB=BA; ZA, BEQ then group (6) is called Abelian group. Group + commutatine, 1 Commutative group, AB = BA; 7 A, BEG Prone that, a group formed by cube roots of unity is on abelian group under multiplication. G = { 1, 1, -1, -1, 1 | South of the first of $\omega \cdot \omega^2 = 1$, $\omega^2 \cdot \omega = 1$ (o;*) commutative group satisfied. Define cyclin group:= A group containing air single dement and its different powers is called cyclin group. for ex: - G = \ i, -i, 1, -1 \ 134-1

discuss about the notation group gormed By equilator triangle or R3 group consider a consulator triangle AABC, ois the centroid, G=(R,R2,R3) form a group of order &

To show that SR, R3 & form a group ? [R3-group] (Rotation Composition G= { R, R, R } 6 $R \cdot R^2 = R^3$, $R^3 \in G$ R". R3 = R2, R2 G R3. R = R , R + G so, clower peroperty hold. **(b)** POR3 = R R)O R3 = R4 so, identity property hold. ROR2 = R3 0 R 0 R = R 3 R³ O R³ = R³ Somerse, $R \cdot \{R^2, R^3\} = R \cdot R^2 = R^3$ (d) $\begin{cases} R^{3} \cdot R^{2} \cdot R^{3} = R^{3} \cdot R^{3} = R^{6} = R^{3} \end{cases}$ Absociated H. Discuss the rotation group dormed by sources or C4 rotation R(M2 omli-clockwise rotation,

$$\int_{\mathbb{R}^{2}} \mathbb{R}^{2} (\pi)$$

show that
$$C^4 = SR/R$$
, under Composition rotation.

$$R \cdot R^{2} = R^{3}$$
 $R^{3} \in G^{4}$
 $R^{2} \cdot R^{3} = R^{5} = R$ $R \in G^{4}$
 $R^{3} \cdot R^{4} = R^{3}$ $R^{3} \in G^{4}$

Rt. R = R RECT so, downer property hold

Show that
$$C^4 = \frac{9}{5}R_1R_2^3R_3^3R_4^4$$
 is a group under rotation or under comparition rotation.

 $R \cdot R^4 = R$ R2. R4 = R2 R3. R4= R3

R4. R4 = R4

so, Sdenlity property fold.

$$R \cdot R^{3} = R^{4}$$

$$R^{3} \cdot R = R^{4}$$

$$R^{4} \cdot R^{4} = R^{4}$$

$$R^{4} \cdot R^{4} = R^{4}$$

$$R^{5} \cdot R^{5} = R^{2}$$

$$R^{5} \cdot R^{5} \cdot R^{5} = R^{2}$$

$$R^{5} \cdot R^{5} \cdot R^{5} = R^{5} \cdot R^{5} = R^{2}$$
Associative property hold.

desine sub-group and diacum proporties of sub group. show that the minimum order or intex 4 subgroup is 2.

A subgroup of a Group G is a subact of G's elements which themselves will from a group

show that ch = 3 RIRIR 3 Rip is a speech condes setalises or under Composition fotofion.

in attacks

with example discuss group-group multiplication:

All the products of groups elements may be represented by a table moun as group-group multiplication table.

for example: we ansider the group formed by cube roots of unity under multiplication.

1				
	1	W	10 2	
1	1	A	ia ?	odani od postani produkta i sanan po sa
9**, _) 6 \ G		A COMME	1016	og men a broke bos, oj posto sala silandaron zame borancio
ω	w	ω ^γ ,	n Alba	en and a comment of the property of the comment of
a ²	ه څه	ing in	113 113	The same of the following same
57 / 12 S	Parit 4 h	300.50 .	o swith	grado agracionado da 13. Al esta de Militario da 10. Acordos

$$G_{1}^{2} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} & \mathbf{D} \\ \mathbf{G} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \\ \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{L} & \mathbf{D} \end{array} \right\} = \left$$

To show that multiplication of R^3 or C^3 rotation group to smed another group. $\alpha = \{R, R^7, R^3\}$

10g 8 g 19 1

Define symmetrie operation with an Ex: when an operation is partorm when a body the operation may be a rotation, reflection, inversion, translation or any other And the body remains invarient then the operation is called Symmetry operation. It we performed a 90° rotation operation about operat on a square about a line passing through a centre of the square and perpendicular and to the plane of the square remained invarient after the operation. (Rectangle - 180°) Discuss about the permutation in a group? If we interchange any two or more of the object in a system of n identical objects, then the resulting Gardigum of the system remains cinchanged. System, then all such possible from for mation from a group under which the system is invarient. number of permutation ni For ex: - we consider c³ or R³ rotation group. All possible permutations are, $= \begin{cases} R, R^3, R^2 \end{cases}$

 $= \begin{cases} R, R^{3}, R^{2} \end{cases}$ $= \begin{cases} R^{3}, R, R^{2} \end{cases}$ $= \begin{cases} R^{2}, R, R^{3} \end{cases}$ $= \begin{cases} R^{2}, R, R^{3} \end{cases}$ $= \begin{cases} R^{3}, R, R^{2} \end{cases}$

Discuss 150 morphism of groups. we amiden two groups on and a'; G= { E, A, B, c) and b'= { E', A', B, c') Both are of Some order. Are said The groups of and of are to be isomorphic x if there exist an unique one to one brios pondeme Between their members such a way that the products cornospon to producta Say Ex E ; A > A, B > B', C > C' If AB = c) ; then A'B'=c' AB -> A'B' firer: we consider G3 Rotation group and a group formed by cube note of unity. $c_3 = \{ R, R^3, R^3 \} \text{ and } G = \{1, \omega, \omega^2 \}$ = {\omega, \omega, \omega, \omega} $R^3 \rightarrow 1$ R-Wise $R^2 \rightarrow \omega^2$ elección en en en expensión de la company de R3 -> W R.R=R3 W. W = 23 R3 > W3 If, R.Ra=R3; Word=w3=1 $R^3 \rightarrow 1$ R.R2 N.D2 $R^2 R^3 = R^2$, $w \cdot w = w^2 = w$ w. 1 = w Homomorphism between two groups resembles to isomorphism. Occept that the Corrospondence is not required to one to one but many to an 9) Homo mor phism & but many to one. let us Graider two groups $H = \{E, A, B, c\}$ of order g'. And $G = \begin{cases} E_1, E_2 & ... \end{cases}$, $E_n, A_1, A_2, ... A_n; B_1, B_2 & ... B_n;$ c,, ca... en } Ob order gn.

What do you meen by remel? f (a * 6) = f(a) of(b)

Let fle a homomorphism of a group a to bi, then the sel the all those elements of G which are mapped to the identify e' of G' Called the Kernel of the homophiams. It is denoted by kerf or ker(f).

D'estine conjugate clements of a group and clarases of a group?

Comider a relation such as A-BA= C -O

where, A, B, C and the members of a group when such relation exist between two members B and C they are called Conjugate elements. The operation is called a similarity transformation of B by A.

Equal also com be reparablent aro, A-1 CA = B A-1 > inverse element of A

The members of a group which are Conjugate to each other forms a class of the group.

P. If two elements B and c are Conjugale to a third element D, then prove that B and c also conjugale to each other.

K of all elements of or which all