Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subiectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție în LISP

(DEFUN F(L)

(COND

((NULL L) NIL)

((LISTP (CAR L)) (APPEND (F (CAR L)) (F (CDR L)) (CAR (F (CAR L)))))

(T (LIST(CAR L)))

)
```

Rescrieți această definiție pentru a evita dublul apel recursiv **(F (CAR L))**. Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

C. Să se scrie un program PROLOG care generează lista permutărilor mulţimii 1..N, cu proprietatea că valoarea absolută a diferenţei între 2 valori consecutive din permutare este >=2. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru N=4 \Rightarrow [[3,1,4,2], [2,4,1,3]] (nu neapărat în această ordine)

D.	Se dă o listă neliniară și se cere înlocuirea valorilor numerice pare cu numărul natural succesor. Se va folosi o funcți e
	MAP.

 $\underline{\textit{Exemplu}}$ pentru lista (1 s 4 (2 f (7))) va rezulta (1 s 5 (3 f (7))).