Részecskekeltés Nehézion Reakciókban

Wolf György

Doktori értekezés

Tartalomjegyzék

Bev	rezetés		1		
A BUU-modell					
2.1	Trans	zport egyenletek	9		
2.2	A tesz	rtrészecske módszer	13		
	2.2.1	Az ütközési tag szimulációja	14		
Ben	Bemenő adatok, numerikus módszerek				
3.1	Tesztr	észecskék mozgása	17		
3.2	agtér-potenciál	17			
	3.2.1	A potenciál paramétereinek meghatározása	19		
	3.2.2	A Coulomb-potenciál	25		
	3.2.3	Inicializálás	27		
	3.2.4	Stabilitás	28		
3.3 Rezonanciák tulajdonságai, és bomlási szélességei					
	3.3.1	Rezonanciák bomlása	36		
3.4	3.4 A mezon-barion hatáskeresztmetszet				
3.5	A bari	ion-barion hatáskeresztmetszetek	39		
	3.5.1	A hatáskeresztmetszet általános alakja	39		
	A E 2.1 2.2 Ben 3.1 3.2 3.3	2.1 Transz 2.2 A tesz 2.2.1 Bemenő a 3.1 Tesztr 3.2 Az átl 3.2.1 3.2.2 3.2.3 3.2.4 3.3 Rezon 3.3.1 3.4 A mez 3.5 A bari	A BUU-modell 2.1 Transzport egyenletek 2.2 A tesztrészecske módszer 2.2.1 Az ütközési tag szimulációja Bemenő adatok, numerikus módszerek 3.1 Tesztrészecskék mozgása 3.2 Az átlagtér-potenciál 3.2.1 A potenciál paramétereinek meghatározása 3.2.2 A Coulomb-potenciál 3.2.3 Inicializálás 3.2.4 Stabilitás 3.2.4 Stabilitás 3.3 Rezonanciák tulajdonságai, és bomlási szélességei 3.3.1 Rezonanciák bomlása 3.4 A mezon-barion hatáskeresztmetszet 3.5 A barion-barion hatáskeresztmetszetek		

		3.5.2 Az $NN \to N\Delta(1232)$ hatáskeresztmetszet 41					
		3.5.3 Az $NN \rightarrow NR$ hatáskeresztmetszet					
		3.5.4 Az η -keltés hatáskeresztmetszete					
		3.5.5 Az 1π -keltés hatáskeresztmetszete					
		3.5.6 A ρ -keltés hatáskeresztmetszete 45					
		$3.5.7$ A 2π -keltés hatáskeresztmetszete					
		3.5.8 Az $NR \rightarrow NN$ hatáskeresztmetszet					
		3.5.9 Az $NR \rightarrow NR'$ hatáskeresztmetszet					
		$3.5.10~{\rm Az}~NN \to NN\pi~{\rm hat\'askeresztmetszet}$					
		$3.5.11 \text{ Az } NN\pi \rightarrow NN \text{ reakci\'o} \dots \dots$					
		3.5.12 Rugalmas barion-barion hatáskeresztmetszet					
	3.6	A K^+ -keltés hatáskeresztmetszetei					
	3.7	Az ω -keltés hatáskeresztmetszetei					
	3.8	Hatáskeresztmetszetek a szimulációban					
4	A r	ezonancia-anyag 59					
	4.1	π -mag ütközések					
	4.2	Proton-mag ütközések és a kaonkeltés					
	4.3	A kísérleti eredmények nehézion ütközésekben					
	4.4	A rezonancia-anyag dinamikája					
	4.5	.5 Az állapotegyenlet vizsgálata					
5	Dile	eptonkeltés 94					
	5.1	Vektormezon-dominancia					
	5.2	A dileptonkeltés hatáskeresztmetszetei					
		$5.2.1 \pi^+\pi^-$ -annihiláció					
		5.2.2 Fékezési-sugárzás					

		5.2.3	Dalitz-bomlás	99
	5.3	Eredm	nények	102
6	Vek	zonok közegben	111	
	6.1	A kirá	lis szimmetria helyreállása	111
	6.2	$ ho ext{-mez}$	on és az elektromágneses alakfaktorok közegben	113
	6.3	Az ω-1	mezon kiszélesedése	116
		6.3.1	$\omega - \sigma$ keveredés	118
		6.3.2	Eredmények	124
		6.3.3	$\pi\pi$ fáziseltolások az s –csatornában	128
7	Öss	zegzés		133

1. Fejezet

Bevezetés

A hetvenes évek közepén Berkeley-ben befejeződéséhez közeledett a részecskefizikai kísérleti program. Felmerült a kérdés, hogyan tovább. A természetes válasz az lett volna, hogy bezárják a gyorsítót (ahogyan az körülbelül 20 év !! múlva végülis be következett). Ez számos embernek hátrányos lett volna, így elkezdtek azon gondolkozni, hogyan tehetnék hasznossá a gyorsítót.

Az az ötletük támadt, hogy ha protonokat tudnak gyorsítani, akkor kis átalakítások után nehezebb magokat is. Kutatási célként a maganyag állapotegyenletének a feltérképezését jelölték meg. Ezt az ötletet el tudták adni a döntéshozóknak, s a gyorsító 20 további évig működött, s megszületett a nehézion fizika. Lehet, hogy nem pontosan így játszódótt le, — bár ilyen szóbeszéd járja — de a gyermek megszületett, s lassan önálló tudománnyá nőtte ki magát. A kezdetekben a magfizika egy ágának tekintették. Manapság már nem biztos, hogy ez a besorolás megállja a helyét, hiszen kutatási célokat, eszközöket, nyelvezetet tekintve sokkal közelebb áll a részecskefizikához. A legnagyobb létező és építés alatt álló nehézion fizikai gyorsítóknak (SPS és LHC a CERN-ben, AGS és RHIC Brookhavenben) vannak részecskefizikai kutatási programjaik is. Talán úgy le-

2 1. Bevezetés

het megfogalmazni, hogy a részecskefizikusok otthagyják az erős kölcsönhatás nehezen megoldható nemperturbatív problémáinak a világát, (a rácsszámolások kivételével), s az üresen hagyott területre benyomulnak a nehézion fizikusok.

Ezzel el is árultam a nehézion fizika alapvető kutatási célját: az erősen kölcsönható anyag tulajdonságainak vizsgálata. Az első divatos, s máig eleven terület a maganyag állapotegyenletének a meghatározása. Ma röviden szólva annyival tudunk többet róla mint 20 évvel ezelőtt, hogy a kérdés nagyon bonyolult, s további még pontosabb mérésekre van szükség. (Persze azért ennél egy kicsit többet is tudunk: a nehézion fizikai kísérletek eredményei egy közepes keménységű, $K \approx 300 \pm 80 \text{ MeV}$ állapotegyenlettel írhatóak le a legjobban.) Később természetesen új, izgalmas témák merültek fel. A magfizikai erőknek van egy rövid hatótávolságú taszító és egy hosszú hatótávolságú vonzó komponensük. A Van der Waals erőkkel való analógia alapján természetesnek tűnik, hogy a maganyagnak is van egy "folyadék-gáz" fázisátalakulása. Ez a probléma sem lezárt még, bár már kétszer is bejelentették a "folyadék-gáz" fázisátalakulás kísérleti kimutatását [1, 2, 3]. Az ezzel kapcsolatos magbeli instabilitások és a multifragmentáció vizsgálatában jelentős eredményeket ért el Németh Judit, Fái György és Papp Gábor [4, 5, 6, 7]. Sajnos a kormányok nem biztosítanak elég anyagi forrást ezekre a kutatásokra, (vagy pedig a kísérleti fizikusok nem elég találékonyak?), így nincs lehetőség végtelen nagyságú anyag (egy neutron csillag már jó közelítéssel ilyen) laboratóriumi vizsgálatára. A szűkös anyagi lehetőségek csak a nehézion reakciók vizsgálatát teszik lehetővé. Az ott szereplő kis részecskeszám megkérdőjelezi, hogy egyáltalán beszélhetünk-e ilyen reakciókban fázisátalakulásról, hiszen a fázisátalakulás, amely bizonyos termodinamikai mennyiségek ugrásával, illetve szingularitásával definiált, csak végtelen anyagmennyiségek esetén léphet fel.

Azóta további fázisátalakulások kerültek a kutatás látókörébe. Az egyik ötlet

[8] szerint nagy sűrűségen a pionok a közegben található nukleonokkal és Δ -kal kölcsönhatva felpuhulnak, a teljes energiájuk akár nulla is lehet, így nagy pion sűrűség alakulhat ki; ez a pionkondenzáció jelensége. Mint a kutatások kiderítették, ez az állapot csak alacsony hőmérsékleten (a nehézion fizika léptékével nézve), s nagy sűrűségen jöhet létre. Ez az állapot nehézion ütközésekben nem érhető el. (Nagy sűrűséget csak nagy bombázó energia alkalmazásával lehet létrehozni, amely maga után vonja a nagy hőmérséklet keletkezését is.)

A maganyagnak számos más fázisátalakulását is megjósolták már (pl. sűrűség izomerek [9], hiperon anyag [10, 11]), de ezek közül vitathatatlanul a legnagyobb érdeklődést a hadron anyag – kvark-gluon plazma fázisátalakulás és a valószínűleg vele kapcsolatos királis szimmetria helyreállásának fázisátalakulása okozza.

Az erős kölcsönhatást leíró modell a kvantumszíndinamika (QCD), melyet sajnos eddig még nem sikerült kielégító módon megérteni. Nem bizonyított, de mindenki által elfogadott feltételezés, hogy "normális" körülmények között a színtöltések be vannak zárva a színtelen hadronokba. Fenomenológikus modellek [12] és rácsszámolások [13] azt jósolják, hogy nagy hőmérsékleten és/vagy nagy sűrűségen a színtöltések kiszabadulhatnak és kvark-gluon plazma jöhet létre, melyben a kvarkok és a gluonok szabadon mozoghatnak. Fázisátalakulásra utaló jeleket már találtak, de sajnos (?) eddig mindegyikről bebizonyosodott, hogy a jelenségre hagyományos, hadronikus anyagot feltételező magyarázat is létezik. Ezen a területen a külföldön dolgozó magyar kutatókon (pl. Csernai Lászlón, Gyulassy Miklóson) kívül Magyarországon működik egy nemzetközi mércével mérve is erős iskola, a Zimányi József vezette csoport (Lukács Béla, Biró Tamás, Lévai Péter és Csörgő Tamás).

A másik előbb említett fázisátmenet, a királis szimmetria helyreállása. A közönséges nemperturbatív vákuumban a kvark-antikvark párok kondenzációja sér-

4 1. Bevezetés

ti a királis szimmetriát. Ez, a spontán szimmetriasértés jelensége felelős többek között a nagy alkotó kvarktömegért. Elméleti becslések [14] és újabban már rácsszámolások is [15] azt jósolják, hogy ez a kvarkkondenzátum nagy hőmérsékleten és/vagy nagy sűrűségen eltűnik, a királis szimmetria helyre áll. A jóslatok szerint ez a fázisátalakulás is hasonló hőmérsékleti és sűrűség tartományban megy végbe mint a kvark-gluon plazma kialakulásáé, azonban a két fázisátalakulás esetleges kapcsolata még nem ismert. A királis szimmetria helyreállásának folyamatára utaló jeleket találtak a CERN-ben a CERES és a HELIOS detektorokkal [16, 17].

Ebben az értekezésben a forró, sűrű hadronanyag tulajdonságait tanulmányozzuk. A hadronanyag jellegzetességeinek megértése, állapotegyenlete már önmagáért is érdekes. A fontosságát fokozza az is, hogy már alapállapoti magsűrűségen a királis szimmetria helyreállásának a folyamata a jóslatok szerint észlelhető lehet [18]. A kvark-gluon plazma vizsálatában is kikerülhetetlen a hadronanyag tulajdonságainak a figyelembevétele, hiszen a rehadronizáció után sűrű, forró hadronanyag keletkezik, amely a hadron fázisban lehül, kitágul és ezután jut el a detektorokba.

Nehézion reakciókban relativisztikus energiákon (az egy bombázó részecskére eső energia néhány száz MeV-től 2 GeV-ig terjed) a sűrűsödési fázisban a sűrűség elérheti a 2–3 ρ_0 értéket, viszont várhatóan még nem jelentkeznek a kvark-gluon szabadsági fokok, húrok megjelenése miatti bonyodalmak. Így ez a tartomány különösen alkalmasnak látszik az extrém feltételek közötti hadronanyag tulajdonságainak a vizsgálatára. Részecskekeltés speciális szerepet játszik ezekben a vizsgálatokban [19], hiszen a mezonok és elektromágneses gerjesztések csak a reakció folyamán jelennek meg, így várható, hogy információt hordoznak a keletkezésük körülményeiről, a nehézion reakció sűrű, forró fázisáról.

Mezonok (π, η, K^+) és az \overline{p} keletkezésére küszöbalatti energiákon (ahol az egy

részecskére jutó bombázó energia nukleon-nukleon ütközésben nem lenne elég a kérdéses részecske keltésére) jellemzően többszöri barion-barion ütközésben gyűlik össze az energia. Így ezek jó információ forrásai lehetnének a termalizált maganyag vizsgálatának [20, 21, 22, 23, 24]. Azonban a K^+ -on kívül az összes hadronikus részecske erősen kölcsönhat a környezetével, s ahogy majd megmutatjuk, a detektorban mért pionok, η -k jelentős része az ütközés késői szakaszában, alacsony sűrűségen keletkezik.

Mivel a vizsgálatok szerint nehézion reakciókban a pion-spektrum és a pion multiplicitás érzéketlen a $\pi N\Delta$ -dinamika részleteire, így megvizsgáljuk a pionmag reakciókat is [25]. A pion-mag ütközések vizsgálata a pionfizika szempontjából is nagyon érdekes, hiszen ez információt nyújthat a pion és a Δ -rezonancia közegbeli kölcsönhatásáról, a pion felpuhulásáról [8, 26, 27]. Vitatott a pionok elnyelődésének a mechanizmusa is [28, 29, 30]; nem ismert, hogy milyen szerepe van a pionok több nukleonon való abszorpciójának.

A mezonokkal ellentétben az elektromágneses jelek (fotonok, dileptonok) lényegében kölcsönhatás nélkül hagyják el a reakciós térfogatot, így a nehézion reakciók sűrű, forró fázisának ígéretes szondái lehetnek. A pionkeltés energiája felett a fotonok domináns része π^0 -bomlásból származik, az igazán érdekes információkat hordozó direkt fotonok elvesznek a nagy háttérben [31]. Alacsonyabb energián, E/A < 100 MeV, a fotonok is igen érdekes jelenségekre világíthatnak rá [32, 33, 34, 35]. Például lehet a segítségükkel a maganyag állapotegyenletét tanulmányozni [32, 33].

Dileptonok (e^+e^- párok) esetében, azonban az invariáns tömeg mérésével kiszűrhetők a π^0 -bomlásából származó párok. Az általunk vizsgált energia-tartományban a DLS együttműködés figyelt meg dileptonokat a BEVALAC-nál [36, 37]. Most egy újabb, második-generációs dilepton spektrométert, a HADES-t

6 1. Bevezetés

építik a GSI-ben, Darmstadtban [38], amely 1998-ban kezdi meg a működését.

A dileptonok nem csak hasznos szondái a reakció sűrű fázisának, hanem a tömeges fotonok és töltött hadronok közegbeli csatolását (az elektromágneses alakfaktorokat) az időszerű tartományban is lehet általuk vizsgálni [39, 40, 41, 42, 43, 44]. A vektormezon-dominancia elve feltételezi, hogy ez a csatolás a fotonok kvantumszámait hordozó, a QCD-vákuum virtuális $q\bar{q}$ gerjesztésein, azaz vektormezonokon keresztül történik. A dileptonkeltés, így érzékeny a vektormezonok közegbeli tulajdonságaira. A QCD-összegszabályok szerint a vektormezonok tömege a királis szimmetriasértés helyreállása során jelentősen csökken, amelynek várhatóan mérhető hatásai vannak a dileptonok tömegspektrumában, azaz ezáltal a QCD-vákuum tulajdonságai is vizsgálhatóak [42].

Érdemes megjegyezni, hogy manapság a nehézion fizikában kidolgozott elméleti és kísérleti eszközöket felhasználják más területeken is, például az atomi klaszterek elméleti vizsgálatában [45], vagy a nehézion sugarakat a rák gyógyításában például a GANIL-ban, Caenban és a GSI-ben, Darmstadtban.

A vizsgált rendszer — egy nehézion ütközés — alkotó elemeinek a száma tucatnyitól néhány ezerig terjed (a legnagyobb mai nehézion gyorsítón a CERNbeli SPS-en többezer pion is keletkezhet egy ütközésben). Így elméleti leírására általában nem alkalmazható semmilyen jól alátámasztott, matematikailag korrekt közelítés. A néhány-test problémákra kidolgozott módszerek (pl. Fagyejevegyenletek) már technikailag nem alkalmazhatóak, a statisztikus módszerekhez e részecskeszám még túl kevés, ráadásul általában nem egyensúlyi reakcióval állunk szemben. Mivel precíz matematikai eszközök nem állnak rendelkezésre, így sok múlik a kutatók intuícióján.

Az első modellek termodinamikai jellegűek voltak. A tűzgolyó modellben feltételezték, hogy a reakcióban aktívan résztvevő részecskék gyorsan termalizálódnak, kialakul egy globális termodinamikai egyensúly, amely aztán különböző egyszerű feltevések (pl. izotróp radiális expanzió [46]) mellett tágul, majd pedig a rendszer kifagy. A részecskék a kifagyáskori állapotukkal érkeznek a detektorba. A különböző kémiai modellek, mint például a sikeres Zimányi féle hadrokémia [47, 48], is idesorolhatóak.

A következő lépcsőfok, a tűzcsík modell csak azt tételezte fel, hogy a termodinamikai egyensúly csak az egymással szembetalálkozó csíkokban érvényesül, a csíkok nem feltétlenül azonos termodinamikai intenzív mennyiségekkel rendelkeznek. A fejlődés következő, logikus lépcsője a hidrodinamikai modell megjelenése volt, melyben a termodinamikai egyensúly már csak pontonként teljesül, minden pontban más-más jellemzőkkel. Ennek az ágnak is van prominens magyar kutatója, Csernai László. Ezen korai modellek leírása megtalálható Bertsch és Das Gupta nagyon jó összefoglalójában [49].

A hidrodinamikai modell egyik gyengeségét próbálta kiküszöbölni Lovas István az impulzustérbeli anizotrópiának a bevezetésével [50], majd ezt továbbfejlesztettük, s konzisztens termodinamikai és a hidrodinamikai egyenleteket írtunk fel az anizotrópiára [51, 52, 53, 54, 55, 56].

A nehézion reakciók leírásának egy másik, hosszabb távon sikeresebbnek tűnő ága a reakció teljes, nemegyensúlyi vizsgálata mikroszkópikus transzport-modellek segítségével. (Amelyet a gyorsan fejlődő számítógépes kapacitások tettek lehetővé.) A kezdeti modellek, a kaszkád modellek [57, 58] csak a részecskék ütközését vették figyelembe, később a részecskék között ható hosszú hatótávolságú erőket, nukleáris potenciálokat is beépítették a modellekbe.

Egy ilyen modell alapegyenleteit vázoljuk a második fejezetben, míg a bemenő adatokat, hatáskeresztmetszeteket, potenciálokat ismertetjük a harmadik fejezetben. A negyedik fejezetben a mezonok és a rezonanciák dinamikáját vizsgáljuk, és

8 1. Bevezetés

néhány kísérleti adattal összehasonlítjuk a modellünk jóslatait. Az ötödik fejezetet a dileptonok tanulmányozására fordítjuk, a hatodikban pedig megvizsgálunk néhány közegbeli effektus hatását a vektormezonokra, s vázoljuk kísérleti kimutatásainak a lehetőségét. Végül egy rövid összefoglalóval zárjuk munkánkat.

2. Fejezet

A BUU-modell

2.1 Transzport egyenletek

A hadron-mag és mag-mag reakciók dinamikáját transzport egyenletek segítségével vizsgáljuk. Nehézion reakciók leírására szolgáló első ilyen jellegű modell a Cugnon féle kaszkád-modell volt [57, 58], melyben a részecskék (barionok, mezonok) csak pillanatszerű ütközésekben hatnak kölcsön, egyébként szabad, egyenesvonalú, egyenletes mozgást végeznek. Ezt a modellt azután számosan továbbfejlesztették. Két fő irányzat alakult ki. Az egyik irányzat (BUU) az ütközések mellett a részecskék kölcsönhatását egy időtől függő önkonzisztens átlagtér-potenciállal közelíti. Míg a másik irányzat (kvantum molekuláris dinamika, QMD) az átlagtér helyett kétrészecske-potenciált használ. Bertsch és Das Gupta összefoglalója [49] tartalmazza a korai modellek részleteit.

Alacsony bombázó energiákon — a pionkeltés küszöbe alatt — a rugalmatlan ütközések elhanyagolhatóak, s a rendszer csak nukleonokat tartalmaz. A reakció dinamikai leírására a nukleonok egyrészecske fázistérbeli eloszlásfüggvényére

 $f(\vec{r}, \vec{p}, t)$ vonatkozó mozgásegyenletet használjuk.

$$\frac{\partial f(\vec{r}, \vec{p}, t)}{\partial t} + \left\{ \frac{\vec{p}}{E} + \frac{m^*(\vec{r}, \vec{p})}{E} \vec{\nabla}_p U(\vec{r}, \vec{p}) \right\} \vec{\nabla}_r f(\vec{r}, \vec{p}, t)
+ \left\{ -\frac{m^*(\vec{r}, \vec{p})}{E} \vec{\nabla}_r U(\vec{r}, \vec{p}) \right\} \vec{\nabla}_r f(\vec{r}, \vec{p}, t) = I_{coll}[f(\vec{r}, \vec{p}, t)],$$
(2.1)

ahol \vec{r} és \vec{p} a nukleonok térbeli és impulzustérbeli koordinátáit jelenti, míg az N protont (p) vagy neutront (n) jelöl.

Az effektív tömeg $m^*(\vec{r}, \vec{p})$ a (2.1) egyenletben tartalmazza a nukleon nyugalmi tömegét m_N (= 939 MeV) továbbá a skalár, impulzusfüggő átlagteret, $U(\vec{r}, \vec{p})$ -t,

$$m^*(\vec{r}, \vec{p}) = m_N + U(\vec{r}, \vec{p}).$$
 (2.2)

A nukleon kvázirészecskének tekinthető

$$E = \sqrt{m^*(\vec{r}, \vec{p})^2 + \vec{p}^2}.$$
 (2.3)

diszperziós relációval.

Az (2.1) egyenlet bal oldala megegyezik a Vlaszov-egyenlettel, mely egymással nemkölcsönható nukleonok mozgását írja le skalár, impulzusfüggő átlagtérben, $(U(\vec{r},\,\vec{p})$ -ben).

A BUU-egyenlet jobb oldala (az ütközési integrál, $I_{coll}(f(\vec{r}, \vec{p}, t)))$ leírja az eloszlásfüggvény $f(\vec{r}, \vec{p}, t)$ időbeli fejlődését kéttest ütközések hatására. Például az egyrészecske fázistérbeli eloszlásfüggvény $f(\vec{r}_1, \vec{p}_1, t)$ megváltozása két nukleon rugalmas ütközésének a hatására $\vec{p}_1 + \vec{p}_2 \longleftrightarrow \vec{p}_3 + \vec{p}_4$ impulzusokkal)

$$I_{coll} [f_{1}(\vec{r}, \vec{p}_{1}, t)]$$

$$= \frac{g}{(2\pi)^{3}} \int d^{3}p_{2} \int d^{3}p_{3} \int d\Omega_{4} v_{12} \frac{d\sigma_{12\to34}}{d\Omega} \delta^{3} (\vec{p}_{1} + \vec{p}_{2} - \vec{p}_{3} - \vec{p}_{1})$$

$$\times (f_{3}(\vec{r}, \vec{p}_{3}, t) f_{4}(\vec{r}, \vec{p}_{4}, t) \bar{f}_{1}(\vec{r}, \vec{p}_{1}, t) \bar{f}_{2}(\vec{r}, \vec{p}_{2}, t))$$

$$- f_{1}(\vec{r}, \vec{p}_{1}, t) f_{2}(\vec{r}, \vec{p}_{2}, t) \bar{f}_{3}(\vec{r}, \vec{p}_{3}, t) \bar{f}_{4}(\vec{r}, \vec{p}_{4}, t)), \qquad (2.4)$$

ahol $d\sigma_{12\to34}/d\Omega$ a differenciális nukleon-nukleon hatáskeresztmetszet közegben, $\bar{f}_i=1-f_i~(i=1,..,4)$ a Pauli-kizárási faktorok és v_{12} az N_1 és N_2 nukleonok közötti relativ sebesség a tömegközépponti rendszerükben. A g=2 a (2.4) egyenletben a nukleonok spin degenerációját jelöli. Az (2.1) egyenletet a (2.4) ütközési integrállal együtt a Boltzmann-Uehling-Uhlenbeck (vagy Vlaszov-Uehling-Uhlenbeck, Boltzmann-Nordheim, Landau-Vlaszov) egyenletnek nevezik.

A modell a klasszikus fizikán alapszik. Kvantum-effektusok közül, csak a Pauli-elvet veszi figyelembe. (Impliciten a potenciálokon és hatáskeresztmetszeteken keresztül, természetesen további kvantumfizikai információkat tartalmaz.)

A pionkeltési energia felett figyelembe kell venni a rugalmatlan ütközések, mint például a mezonkeltés, vagy a barion rezonancia-gerjesztés hatását is. A BUU-modellben [39, 42, 59] — amellyel itt foglalkozunk — a barionokon kivül a π , η , ρ és a skalár σ -mezon (amely korrelált pion párokat szimulál a spin-izospin = 0 csatornában) propagálnak. Nukleonokon kívül a modellünkben szerepel az összes négy-csillagos N^* és Δ rezonancia, amelynek tömege kisebb mint 2 GeV/ c^2 , azaz: $\Delta(1232)$, N(1440), N(1520), N(1535), $\Delta(1600)$, $\Delta(1620)$, N(1650), N(1675), N(1680), $\Delta(1700)$, N(1720), $\Delta(1905)$, $\Delta(1910)$ és $\Delta(1950)$. A rezonanciák tulajdonságait leíró paramétereket a Particle Data Group [60] összeállításából vettük.

Bevezetve a fázistérbeli eloszlásfüggvényeket az összes fenti részecskére (minden izospin állapotra külön-külön) az (2.1)-hez hasonló egyenlet írja le az összes hadron mozgását. Mivel a különböző részecskefajták kölcsönhatnak egymással, így az integro-differenciál egyenletek csatolódnak egymáshoz az ütközési tagon és az átlagtéren keresztül.

A csatolt egyenletrendszer vázlatosan a következőképpen néz ki:

$$Df_N = I_{coll}[f_N, f_{\Delta(1232)}, ..., f_{\Delta(1950)}, f_{\pi}, f_{\rho}, f_{\eta}, f_{\sigma}]$$

$$Df_{\Delta(1232)} = I_{coll}[f_N, f_{\Delta(1232)}, ..., f_{\Delta(1950)}, f_{\pi}]$$
... = ...
$$Df_{N(1535)} = I_{coll}[f_N, f_{\Delta(1232)}, ..., f_{\Delta(1950)}, f_{\pi}, f_{\rho}, f_{\eta}, f_{\sigma}]$$

$$Df_{\Delta(1600)} = I_{coll}[f_N, f_{\Delta(1232)}, ..., f_{\Delta(1950)}, f_{\pi}, f_{\rho}, f_{\sigma}]$$
... = ..
$$Df_{\Delta(1950)} = I_{coll}[f_N, f_{\Delta(1232)}, ..., f_{\Delta(1950)}, f_{\pi}, f_{\rho}, f_{\sigma}]$$

$$Df_{\pi} = I_{coll}[f_N, f_{\Delta(1232)}, ..., f_{\Delta(1950)}, f_{\pi}, f_{\rho}, f_{\sigma}]$$

$$Df_{\eta} = I_{coll}[f_N, f_{N(1535)}]$$

$$Df_{\rho} = I_{coll}[f_N, f_{N(1440)}, ..., f_{\Delta(1950)}, f_{\pi}]$$

$$Df_{\sigma} = I_{coll}[f_N, f_{N(1440)}, ..., f_{\Delta(1950)}, f_{\pi}], \qquad (2.5)$$

ahol Df a Vlaszov-egyenlet baloldalát jelöli. Az ütközési integrálok a (2.5) egyenletrendszer jobb oldalán ugyanolyan struktúrájúak mint a (2.4) egyenlet jobb oldala.

A rugalmas ütközések mellett a (2.5) egyenletrendszer tartalmazza az öszszes megengedett átmenetet. N-nel jelölve a nukleonokat, R-rel és R'-vel a fent felsorolt rezonanciákat, a következő reakciókat vesszük figyelembe:

• rugalmas barion-barion ütközések

$$\begin{array}{ccc} NN & \leftrightarrow & NN \\ NR & \leftrightarrow & NR \end{array}$$

rugalmas NR-ütközésekben a rezonancia tömege változhat a megfelelő Lorentz-eloszlásfüggvény, (3.20) szerint.

• rugalmatlan barion-barion ütközések

$$NN \leftrightarrow NR$$

$$NR \leftrightarrow NR'$$

 $NN \leftrightarrow \Delta(1232)\Delta(1232)$

• rugalmatlan barion-mezon ütközések

$$R \leftrightarrow N\pi$$

$$R \leftrightarrow N\pi\pi \ (\Delta(1232)\pi, \ N(1440)\pi, \ N\rho, \ N\sigma)$$

$$N(1535) \leftrightarrow N\eta$$

$$NN \leftrightarrow NN\pi$$

• mezon-mezon ütközések

$$\rho \leftrightarrow \pi\pi \text{ (p-hullám)}$$
 $\sigma \leftrightarrow \pi\pi \text{ (s-hullám)}$

2.2 A tesztrészecske módszer

A szokásos módszer az ilyen csatolt nemlineáris integro-differenciál egyenletek megoldására az, hogy a folytonos eloszlásfüggvényt helyettesítjük véges számú tesztrészecskével (azaz Dirac δ -függvények összegével):

$$f(\vec{r}, \vec{p}, t) = \frac{1}{N} \sum_{i}^{N \times A} \delta(\vec{r} - \vec{r}_i(t)) \delta(\vec{p} - \vec{p}_i(t))$$

$$(2.6)$$

ahol N jelöli a nukleononkénti tesztrészecskék (vagy párhuzamos események) számát, míg A a reakcióban résztvevő nukleonok száma. Behelyettesítve a (2.6) közelítést a BUU-egyenletbe (2.5), megkapjuk a tesztrészecskékre a klasszikus

Hamilton-mozgásegyenleteket:

$$\frac{d\vec{r}_{i}(t)}{dt} = \frac{\partial H}{\partial \vec{p}_{i}} = \frac{\vec{p}_{i}}{E_{i}} + \frac{m_{i}^{*}}{E_{i}} \vec{\nabla}_{p_{i}} U(\vec{r}_{i}, \vec{p}_{i}(t))$$

$$\frac{d\vec{p}_{i}(t)}{dt} = -\frac{\partial H}{\partial \vec{r}_{i}} = -\frac{m_{i}^{*}}{E_{i}} \vec{\nabla}_{r_{i}} U(\vec{r}_{i}, \vec{p}_{i}(t)).$$
(2.7)

ahol H az egyrészecske Hamilton-függvény:

$$H(\vec{r}_i, \vec{p}_i) = \sqrt{\vec{p}_i^2 + (m_i + U_s(\vec{r}, \vec{p}))^2} . \tag{2.8}$$

Így a BUU-egyenlet a tesztrészecske módszer segítségével leegyszerűsödik klasszikus pontrészecskék rendszerének az időfejlődésére ((2.7) egyenlet). Megemlítjük, hogy modellünkben a mezonok — ha kifejezetten mást nem állítunk,— az ütközéseket és a Coulomb-kölcsönhatást leszámítva szabadon mozognak.

A párhuzamos sokaság algoritmust [49] használjuk, melyben az ütközés csak akkor megengedett, ha mindkét részecske azonos sokasághoz tartozik. A sokaságok csak az átlagtéren és a Pauli-blokkoláson keresztül csatolódnak, melyeket a sokaságokra átlagolunk.

2.2.1 Az ütközési tag szimulációja

Az ütközést pillanatszerű kölcsönhatásnak tekintjük, melyet az a két téridő pont jellemez, ahol az ütköző részecskék vannak az ütközés pillanatában. A legegyszerűbb ütközési feltétel az, hogy két részecske ütközik, ha az impaktparaméterük (minimális relatív távolságuk a közös tömegközépponti CM-rendszerükben) kissebb mint $b_{\rm max}$,

$$b_{\text{max}} = \sqrt{\frac{\sigma}{\pi}} \,. \tag{2.9}$$

Az impaktparamétert invariáns formában kell kifejezni, hogy egy szimulációban Lorentz-transzformáció nélkül el lehessen dönteni, hogy a két részecske

ütközik-e. (Ez radikálisan csökkenti a számítások gépidejét.) Kodama és társai [61] találtak egy ilyen előírást. Az impaktparaméter b_{rel} megadható a következő módon:

$$b_{rel} = \sqrt{R_{12}^2 - \frac{h_{12}^2}{v_{12}^2}} \tag{2.10}$$

ahol

$$R_{12}^{2} = -(x_{1} - x_{2})^{2} - \left(\frac{p_{1}(x_{1} - x_{2})}{m_{1}}\right)^{2}$$

$$h_{12} = \frac{p_{1}(x_{1} - x_{2})}{m_{1}} - \frac{p_{2}(x_{1} - x_{2})m_{1}}{p_{1}p_{2}}$$

$$v_{12}^{2} = 1 - \left(\frac{m_{1}m_{2}}{p_{1}p_{2}}\right)^{2}.$$
(2.11)

A CM-rendszerben az ütközés egyidejű, de abban rendszerben, amelyben a nehézion ütközést leírjuk, ott két különböző idő tartozik az ütközéshez. A két részecske sajátrendszerében ezekhez tartozzék τ_1 és τ_2 :

$$\tau_{1} = -\frac{(p_{1}(x_{1} - x_{2}))}{m_{1}} + \frac{h_{12}}{v_{12}^{2}}$$

$$\tau_{2} = \frac{(p_{2}(x_{1} - x_{2}))}{m_{2}} + \frac{h_{21}}{v_{12}^{2}}.$$
(2.12)

Így a leíró rendszerben az ütközéshez tartozó idő

$$dt = \frac{1}{2} \left(\frac{e_1}{m_1} \tau_1 + \frac{e_2}{m_2} \tau_2 \right) \tag{2.13}$$

amelynek az adott időlépésbe kell esnie, hogy az ütközés megtörténjék.

A leírás természetesen nem kovariáns. Egyszerűen ellenőrizhetjük az ütközési előírásunkat: Megvizsgáljuk az ütközési számot különböző rendszerekben. Ca+Ca ütközésekben 400 AMeV és 2.1 AGeV bombázó energiákon az ütközési szám 1%-nál kevesebbel különbözik a labor valamint a CM rendszerben.

3. Fejezet

Bemenő adatok, numerikus módszerek

A modellhez meg kell adni a bemenő adatait, az átlagtér paramétereit, és a hatás-keresztmetszeteket. Az átlagtér paramétereit a magok alapállapotbeli tulajdon-ságaihoz illesztettük, míg a hatáskeresztmetszeteket, ha lehet, mérésekből vesz-szük, ezek hiányában pedig modellszámításokból. A nehézion ütkozésekben is vákuumbeli hatáskeresztmetszeteket használunk, bár a nukleáris közegben a hatáskeresztmetszetek jelentősen módosulhatnak [62, 63]. A BUU modellünk nem tartalmaz szabad fittelhető paramétert.

A numerikus számításban differenciálokat használunk deriváltak helyett:

$$\frac{\partial F(x)}{\partial x} \approx \frac{F(x + \Delta x) - F(x - \Delta x)}{2\Delta x} \tag{3.1}$$

ahol helyszerinti differenciálban $\Delta x = 1$ fm-t és impulzus szerintiben $\Delta x = 10$ MeV-t használunk. A számításainkban az időlépésnek $\Delta t = 0.5$ fm/c értéket választottuk; ennek további csökkentése nem okoz jelentős változást az eredményekben (csak jelentősen növeli a számítások időigényét).

3.1 Tesztrészecskék mozgása

A mozgásegyenletet ((2.7) egyenlet) az időt diszkretizálva a prediktor-korrektor módszerrel oldjuk meg [64, 65]. Ez egy kétlépéses eljárás elsőrendű differenciál egyenletek megoldására. Első lépésben megbecsüljük az összes tesztrészecske jövendő koordinátáját és impulzusát:

$$\vec{p}_i^P = \vec{p}_i - \Delta t \frac{\partial H(\vec{r}_i, \vec{p}_i)}{\partial \vec{r}_i},$$

$$\vec{r}_i^P = \vec{r}_i + \Delta t \frac{\partial H(\vec{r}_i, \vec{p}_i)}{\partial \vec{p}_i},$$
(3.2)

ahol Δt a számítás időlépése. Ezután kiszámoljuk az új potenciálokat az új koordinátákkal, s a korrekciós lépésben az új Hamilton függvénnyel kiszámoljuk az időlépéshez tartozó végleges koordinátákat és impulzusokat:

$$\vec{p}_i^K = \vec{p}_i - 0.5 * \Delta t \left(\frac{\partial H(\vec{r}_i, \vec{p}_i)}{\partial \vec{r}_i} + \frac{\partial H(\vec{r}_i^P, \vec{p}_i^P)}{\partial \vec{r}_i^P} \right)$$
(3.3)

$$\vec{r}_i^K = \vec{r}_i + 0.5 * \Delta t \left(\frac{\partial H(\vec{r}_i, \vec{p}_i)}{\partial \vec{p}_i} + \frac{\partial H(\vec{r}_i^P, \vec{p}_i^P)}{\partial \vec{p}_i^P} \right). \tag{3.4}$$

Az új koordináták, impulzusok meghatározása után meghatározzuk mely ütközések, rezonancia-bomlások, mezon-elnyelések történnek a következő időlépésben $t+\Delta t/2$ és t+3 $\Delta t/2$ között, feltéve, hogy a részecskék egyenesvonalú, egyenletes mozgást végeznek abban az időlépésben.

3.2 Az átlagtér-potenciál

Maganyagban a részecskék a közegben lévő többi részecske által létrehozott potenciálban mozognak. Dirac-fenomenológikus optikai-modell számolásokból [66, 67] ismert, hogy rugalmas nukleon-mag szórási adatokat csak impulzustól is függő potenciállal lehet leírni. Mi a Welke által javasolt [68] potenciált használjuk

modellünkben:

$$V(\rho) = \frac{A}{2} \frac{\rho^2}{\rho_0} + \frac{B}{\tau + 1} \frac{\rho^{\tau + 1}}{\rho_0^{\tau}} + \frac{C}{\rho_0} \sum_{I,S} \sum_{I',S'} \int \int \frac{d^3p}{(2\pi)^3} \frac{d^3p'}{(2\pi)^3} \frac{f(\vec{r}, \vec{p}) f(\vec{r}, \vec{p'})}{1 + \left(\frac{\vec{p} - \vec{p'}}{\Lambda}\right)^2},$$
(3.5)

$$U^{nr}(\vec{r}, \vec{p}) = A \frac{\rho}{\rho_0} + B \left(\frac{\rho}{\rho_0}\right)^{\tau} + 2 \frac{C}{\rho_0} \sum_{I', S'} \int \frac{d^3 p'}{(2\pi)^3} \frac{f(\vec{r}, \vec{p'})}{1 + \left(\frac{\vec{p} - \vec{p'}}{\Lambda}\right)^2}.$$
 (3.6)

ahol ρ és ρ_0 a barion sűrűség és a maganyag alapállapoti sűrűsége. A potenciál impulzusfüggő része megegyezzik egy skalár-mezon kicserélődésének a hatásával, egy impulzustérbeli Yukawa-potenciállal, ahol a skalár-mezon tömege az Λ . A Δ -és az N^* -rezonanciák ugyanabban a potenciálban mozognak mint a nukleonok, míg a mezonokat szabad részecskékként kezeljük.

A fenti potenciál (3.6) az impulzusfüggetlen Skyrme-potenciál általánosítása, s ahhoz hasonlóan nem Lorentz-kovariáns.

Mivel az ütközési integrált ((2.5) egyenlet) az ütköző részecskék tömegközépponti rendszerében (vagy a bomló rezonancia nyugalmi rendszerében) számoljuk, a tesztrészecskék mozgásegyenletét pedig a nehézion reakció tömegközépponti rendszerében integráljuk, így az energiamegmaradás nemrelativisztikus potenciálok esetén nem biztosított. A modellt relativisztikus energiákon is használni akarjuk, így relativisztikusan invariáns potenciálra van szükség. Ennek érdekében kiszámoljuk a nemrelativisztikus átlagteret U^{nr} -t a lokális nyugalmi rendszerben, amelyet az eltűnő lokális barion-árammal definiálunk ($\vec{j}(r,t)=\vec{0}$). A lokális nyugalmi rendszerben — elhanyagolva a vektorpotenciált — az egyrészecske energián keresztül a nemrelativisztikus potenciálból, U^{nr} -ból származtatjuk a skalár potenciált U-t a

$$\sqrt{p^2 + m^2} + U^{nr}(\vec{r}, \vec{p}) = \sqrt{p^2 + (m + U(\vec{r}, \vec{p}))^2}.$$
(3.7)

egyenlet segítségével. Minden más Lorentz-rendszerben ugyanezzel az értékkel definiáljuk. A skalár potenciál $U(\vec{r}, \vec{p})$ konstrukciójánál fogva Lorentz-invariáns, így használható relativisztikus energiákon is. Kétrészecske ütközésekben $(N_1 + N_2 \rightarrow N_3 + N_4)$ (vagy rezonancia-bomlásokban) az energiamegmaradást a következőképpen biztosítjuk:

$$E_1 + E_2 = E_3 + E_4$$

$$\sqrt{\vec{p}_1^2 + m_1^{*2}} + \sqrt{\vec{p}_2^2 + m_2^{*2}} = \sqrt{\vec{p}_3^2 + m_3^{*2}} + \sqrt{\vec{p}_4^2 + m_4^{*2}}.$$
(3.8)

3.2.1 A potenciál paramétereinek meghatározása

A potenciál paramétereit a maganyag alapállapoti tulajdonságaihoz és az egyrészecske potenciál kísérletileg megfigyelt impulzusfüggőségéhez illesztjük. A kiinduló pont az energiasűrűség

$$H(\vec{r}) = \sum_{I,S} \int \frac{d^3 p}{(2\pi)^3} \sqrt{\vec{p}^2 + m^2} f_{I,S}(\vec{r}, \vec{p}) + V(\rho(\vec{r})).$$
 (3.9)

Végtelen kiterjedésű, nulla hőmérsékletű maganyagra a fázistér-eloszlásfüggvény egy Θ -függvény

$$f(\vec{r}, \vec{p}) = \Theta(p_F - |\vec{p}|) \tag{3.10}$$

ahol a Fermi-impulzus

$$p_F = \left(\frac{3}{2}\pi^2 \rho(\vec{r})\right)^{\frac{1}{3}}. (3.11)$$

módon függ a sűrűségtől. Ezzel az eloszlásfüggvénnyel az integrálok analitikusan elvégezhetőek.

Az energiasűrűségből (3.9) megkapjuk az állapotegyenletet, azaz a kötési-energiát a sűrűség függvényében:

$$\frac{E_b}{A}(\rho) = \frac{H(\vec{r})}{\rho} - m$$

$$= \frac{3}{8}m\left(\frac{m}{p_F}\right)^3 \left[\left(\frac{p_F}{m} + 2\left(\frac{p_F}{m}\right)^3\right) \left(1 + \left(\frac{p_F}{m}\right)^2\right)^{\frac{1}{2}} - \ln\left(\frac{p_F}{m} + \sqrt{1 + \left(\frac{p_F}{m}\right)^2}\right)\right] - m + \frac{A}{2}\frac{\rho}{\rho_0} + \frac{B}{\tau + 1}\left(\frac{\rho}{\rho_0}\right)^{\tau} + \frac{C}{\pi^4}\frac{\Lambda^6}{\rho\rho_0}\frac{1}{24}\left[-\left(\frac{2p_F}{\Lambda}\right)^2 - \left(\frac{2p_F}{\Lambda}\right)^3\pi + \frac{3}{2}\left(\frac{2p_F}{\Lambda}\right)^4 + 2\left(\frac{2p_F}{\Lambda}\right)^3\left(\arctan\left(\frac{\Lambda}{2p_F}\right) - \arctan\left(\frac{2p_F}{\Lambda}\right)\right) + \left(1 + 3\left(\frac{2p_F}{\Lambda}\right)^2\right)\ln\left(1 + \left(\frac{2p_F}{\Lambda}\right)^2\right)\right].$$
(3.12)

Az alapállapot feltétele az, hogy a kötési-energia az alapállapoti sűrűségen (ρ_0) , a minimumán legyen,

$$0 = \frac{\partial}{\partial \rho} \left(\frac{E_b}{A}(\rho) \right)_{\rho = \rho_0} \sim p_F \frac{\partial}{\partial p_F} \left(\frac{E_b}{A}(p_F) \right)_{p_F = p_{F_0}}$$

$$= \frac{3}{8} m \left(\frac{m}{p_F} \right)^3 \left[\left(-3 \frac{p_F}{m} - \left(\frac{p_F}{m} \right)^3 + 2 \left(\frac{p_F}{m} \right)^5 \right) \left(1 + \left(\frac{p_F}{m} \right)^2 \right)^{-\frac{1}{2}} \right]$$

$$+ 3 \ln \left(\frac{p_F}{m} + \sqrt{1 + \left(\frac{p_F}{m} \right)^2} \right) + \frac{3}{2} A \frac{\rho}{\rho_0} + \frac{3\tau}{\tau + 1} B \left(\frac{\rho}{\rho_0} \right)^{\tau}$$

$$+ \frac{C}{\pi^4} \frac{\Lambda^6}{\rho \rho_0} \frac{1}{8} \left[\left(\frac{2p_F}{\Lambda} \right)^2 + \frac{1}{2} \left(\frac{2p_F}{\Lambda} \right)^4 \right]$$

$$- \left(1 + \left(\frac{2p_F}{\Lambda} \right)^2 \right) \ln \left(1 + \left(\frac{2p_F}{\Lambda} \right)^2 \right) . \tag{3.13}$$

A kompresszibilitás (K, összenyomhatóság) az állapotegyenlet alapállapoti görbületeként van definiálva:

$$K \equiv 9\rho^{2} \frac{d^{2}}{d\rho^{2}} \left(\frac{E_{b}}{A}(\rho)\right)_{\rho=\rho_{0}} = p_{F}^{2} \frac{d^{2}}{dp_{F}^{2}} \left(\frac{E_{b}}{A}(p_{F})\right)_{p_{F}=p_{F0}}$$

$$= \frac{3}{2} m \left(\frac{m}{p_{F}}\right)^{3} \left[\left(3\frac{p_{F}}{m} + \left(\frac{p_{F}}{m}\right)^{3}\right) \left(1 + \left(\frac{p_{F}}{m}\right)^{2}\right)^{-\frac{1}{2}}$$

$$-3 \ln \left(\frac{p_{F}}{m} + \sqrt{1 + \left(\frac{p_{F}}{m}\right)^{2}}\right)\right] + 3A\frac{\rho}{\rho_{0}} + \frac{3\tau(3\tau - 1)}{\tau + 1}B\left(\frac{\rho}{\rho_{0}}\right)^{\tau}$$

EOS	K (MeV)	a (MeV)	b (MeV)	c (MeV)	τ	$\Lambda(1/fm)$
SM	215	-120.3	150.8	-64.65	1.231	2.168
S	215	-285.1	231.9	/	1.227	/
$\mathbf{M}\mathbf{M}$	290	-26.09	56.59	-64.65	1.764	2.168
M	290	-158.64	105.45	/	1.579	/
HM	380	-7.44	37.94	-64.65	2.40	2.168
Н	380	-124.17	71.0	/	2.0	/

3.1. táblázat: Az alkalmazott potenciálok paraméterei és a hozzájuk tartozó kompresszibilitások.

$$+\frac{C}{\pi^4} \frac{\Lambda^6}{\rho \rho_0} \frac{1}{2} \left[-\left(\frac{2p_F}{\Lambda}\right)^2 + \left(1 + \frac{1}{2} \left(\frac{2p_F}{\Lambda}\right)^2\right) \ln\left(1 + \left(\frac{2p_F}{\Lambda}\right)^2\right) \right] . \tag{3.14}$$

Mivel K nem ismert pontosan, — becslések szerint a 200-380 MeV tartományba esik — a potenciál paramétereit a kompresszibilitás többféle értékéhez illesztettük, így a modellünk különböző K melletti jóslatait a mérésekkel összevetve, információt nyerünk a K meghatározásához.

A (3.12), (3.13) és (3.14) egyenletek segítségével impulzusfüggetlen potenciál esetében az A, B és τ paraméterek rögzíthetőek, azonban a (3.6) parametrizáció tartalmazza még a C és a Λ paramétereket, melyeket az egyrészecske potenciál impulzusfüggéséhez való illesztéssel rögzítünk $\rho = \rho_0$ sűrűségen [69]:

$$U(p = 0) = -75 \text{ MeV}$$
 $U(p = \infty) = 30.5 \text{ MeV}$ (3.15)

A (3.15) egyenletben p az impulzus \vec{p} , abszolut értéke, amellyel a nukleon a maganyaghoz képest mozog.

3.1. ábra: A maganyag kemény (K=380 MeV, H), közepes (K=290 MeV, M), és puha (K=215 MeV, S) állapotegyenlete. Mindhárom esetre a folytonos vonal mutatja az impulzustól független, míg a pontozott vonal az impulzusfüggű állapotegyenleteket. (lásd 3.1. táblázat)

A potenciál paramétereit különböző kompresszibilitásokra az 3.1. táblázatban közöljük.

Számításainkban általában egy impulzusfüggő potenciálból származtatott állapotegyenletet használunk (MM), amely a maganyag kötési-energiájára BE=-16 MeV-t, normál sűrűségére ρ_0 =0.168 1/fm³-t és kompresszibilitására K = 290 MeV ad.

Az 3.1. ábrán bemutatjuk a maganyag kemény (K=380 MeV, H), közepes (K=290 MeV, M), és puha (K=215 MeV, S) állapotegyenletét. Mindhárom esetre a folytonos vonal mutatja az impulzustól független, míg a pontozott vonal az impulzusfüggő állapotegyenleteket. Csak nagy kompresszibilitás esetén van észlel-

3.2. ábra: Az átlagtér $\vec{p}=\vec{0}$ impulzusra kemény (K=380 MeV, H), közepes (K=290 MeV, M), és puha (K=215 MeV, S) állapotegyenlet esetén. Mindhárom esetre a folytonos vonal mutatja az impulzustól független, míg a pontozott vonal az impulzusfüggő állapotegyenleteket. (lásd 3.1. táblázat)

hető különbség az impulzusfüggő és impulzusfüggetlen állapotegyenletek között.

Az átlagtér-potenciál a sűrűség függvényében látható $\vec{p}=\vec{0}$ impulzusra kemény (K=380 MeV, H), közepes (K=290 MeV, M), és puha (K=215 MeV, S) állapotegyenlet esetén a 3.2. ábrán. Mindhárom esetre a folytonos vonal mutatja az impulzustól független, míg a pontozott vonal az impulzusfüggő állapotegyenleteket.

Az átlagtér-potenciál impulzusfüggőségét mutatjuk be a 3.3. ábrán közepes kompresszibilitású, impulzusfüggő potenciál esetében $0.5\rho_0$, ρ_0 , $2\rho_0$ és $3\rho_0$ sűrűségeken.

3.3. ábra: Az átlagtér-potenciál impulzusfüggése MM paraméterekkel $0.5\rho_0$ (szaggatott), ρ_0 (folytonos), $2\rho_0$ (pontozott) és $3\rho_0$ (szaggatott-pontozott vonal) sűrűségeken.

Az átlagtér (3.6) szerinti számítása egy nehézion reakció esetén azonban túl időigényes lenne, hiszen minden pontban s minden időlépésben egy integrált kellene kiszámítani a potenciál impulzusfüggő részére, $U^{nr}(\vec{r}, \vec{p})$ -re. Így ezt a tagot a lokális Thomas-Fermi közelítésben határozzuk meg, ahol az eloszlásfüggvény

$$f(\vec{r}, \vec{p}) = \Theta(p_F - |\vec{p}|),$$

alakú, s az integrált a (3.6) egyenletben analitikusan végrehajthatjuk [68]:

$$U^{nr}(\vec{r}, \vec{p}) = A \frac{\rho}{\rho_0} + B \left(\frac{\rho}{\rho_0}\right)^{\tau} + 2 \frac{C}{\rho_0}$$

$$\frac{4\pi \Lambda^3}{(2\pi\hbar)^3} \left[\frac{p_F^2 + \Lambda^2 - p^2}{2p\Lambda} \ln \frac{(p+p_F)^2 + \Lambda^2}{(p-p_F)^2 + \Lambda^2} + \frac{2p_F}{\Lambda} - 2 \left[\arctan \left(\frac{p+p_F}{\Lambda}\right) - \arctan \left(\frac{p-p_F}{\Lambda}\right) \right] \right]. \tag{3.16}$$

A sűrűség és a Pauli-kizárási tag számításánál Gauss-simítást alkalmazunk [70], hogy elkerüljük a nemfizikai statisztikus fluktuációkat. Rögzített r_g rácspontra

$$\rho(r_g) = \frac{1}{N} \sum_{i=1}^{N(A_t + A_p)} \frac{1}{(\sqrt{2\pi}\Delta)^3} \exp\left(\frac{-(r_g - r_i)^2}{2\Delta^2}\right)$$
(3.17)

ahol N jelöli a nukleononkénti tesztrészecskék számát, r_i ez egyedi tesztrészecskék koordinátája és Δ a Gauss-függvény szélessége. Köbös rácsot használunk $\Delta=1$ fm rácsállandóval. Minden r rácspont körül egy 6 fm oldalhosszúságú kockát veszünk figyelembe a sűrűség számításához. Hasonló technikát alkalmazunk az f(r,p,t) számításánál, de impulzustérben a Gauss-függvény helyett lépcső-függvényt használunk $\Delta p=0.45$ fm⁻¹ sugárral.

3.2.2 A Coulomb-potenciál

Töltött barionok és mezonok mozgását a nukleáris potenciálon kivül még az öszszes töltött részecske által generált Coulomb-potenciál $V_c(\vec{r})$ is befolyásolja. Mivel a közelítésünkben a mezonok nem érzik a nukleáris potenciálokat, így csak a Coulomb-erő

$$\vec{F}_c(\vec{r}) = -q \, \vec{\nabla}_r V_c(\vec{r}) \tag{3.18}$$

az egyetlen, amely hat a q töltésű mezonokra. Töltött barionokra az F_c erő (3.18) egy további tagot ad a mozgásegyenletükben (2.7). A Coulomb-potenciált, $V_c(\vec{r})$ -t a Poisson-egyenlet megoldása segítségével kapjuk meg, melyet az ADI- (Alternating-Direction Implicit Iterative) algoritmussal [71] oldunk meg.

3.4. ábra: felső ábra: A Hartree-Fock számolás szerint a stabil magok sugara, r_0 [72] mint a tömegszám függvénye. Alsó ábra: A középponti barion sűrűség $\rho_{r=0}$ a tömegszám függvényében.

3.5. ábra: Három gyakran használt mag kezdeti impulzuseloszlása a szokásos tesztrészecske számmal: az arany 200 (folytonos vonal), a kalcium (szaggatott vonal) és az α részecske (pontozott vonal) 1000 tesztrészecskével.

3.2.3 Inicializálás

Először a koordináta térben osztjuk szét a tesztrészecskéket Woods-Saxon alakú eloszlásban

$$\rho(r) = \frac{\rho_{r=0}}{\left[1 + e^{\frac{r-r_0}{\alpha}}\right]},\tag{3.19}$$

ahol $\rho_{r=0}$ mag középponti sűrűsége, α a felületi paraméter és r_0 a sugár. Az r_0 és α paramétereket egy Hartree-Fock számolásból [72] vesszük:

$$0.46 < \alpha < 0.475$$
 .

 r_0 értékeit különféle magokra az 3.4. ábrán mutatjuk meg.

A lokális Thomas-Fermi közelítés alapján a tesztrészecskék impulzusai minden cellában véletlenszerűen vannak elosztva 0 és a lokális Fermi-impulzus $(p_F(\rho))$ között [31]. Az inicializált impulzuseloszlást ábrázoljuk a 3.5. ábrán. A nyíl mutatja a Fermi-impulzust, amely a naiv maganyag közelítésben a részecskék maximális impulzusa. Az általunk használt módszer jól közeliti a Hartree-Fock számításokban talált nagy impulzusú farkot. Ez a tartomány különösen jelentős a küszöb alatti reakciók megértéséhez. A módszer statisztikus jellegénél fogva javul növekvő tesztrészecske számmal.

3.2.4 Stabilitás

Egy nehézion ütközés kezdetekor a két mag kis távolságról egymásfelé repül. A kezdeti távolság a szimulációnkban a legkisebb olyan távolság, amely mellett a potenciálok meg lényegesen nem fednek át: a két mag felszínének távolsága a modellünkben kezdetben 4 fm.

Ha a magok nem stabilak, akkor még a reakció előtt szétrepülnek, s a számítás hamis eredményhez vezet, így a stabilitás szükséges előfeltétele a modell alkalmazhatóságának. A 3.6. ábrán egy nyugvó kalcium mag és egy nyugvó arany mag sűrűség-profilját mutatjuk meg különböző időpillanatokban. Kalcium esetében 1000, míg az arany esetében 200 tesztrészecskét használtunk; ezen magokra ezek a szokásos tesztrészecske számok a számításainkban. A kezdeti sűrűségeloszlás mindkét magra a t=0 fm/c-vel jelzett állapot körül a 0.15 - 0.2 fm^{-3} tartományban ingadozik. Nagyon fontos, hogy mindkét mag lokalizált marad 80 fm/c-ig, amely biztosítja a numerikus módszer használhatóságát (hiszen ez az idő hosszabb, mint a nehézion reakciók időtartama ezeken az energiákon).

A nukleonok inicializált koordinátái természetesen a mag nyugalmi rendsze-

3.6. ábra: Egy nyugvó kalcium mag (felül) és egy arany mag (alul) sűrűségeloszlása különböző időpillanatokban fm/c-ben.

3.7. ábra: Egyenletesen mozgó kalcium (felül) és arany (alul) magok sűrűség profilja t=0 fm/c (folytonos vonalak), t=10 fm/c (szaggatott vonalak), t=20 fm/c (pontozott vonalak) és t=30 fm/c (szaggatott-pontozott vonalak) 0.4 AGeV (bal oldal) és 1.0 AGeV (jobb oldal) kinetikus energiákra.

3.8. ábra: Kötési-energia E/A-m az idő függvényében kalcium (folytonos vonal) és egy arany magra (szaggatott vonal).

rében egyidejűek. Mozgó magot egy nyugvó mag Lorentz-transzformációjával hozunk létre, de az új koordinátákat már ebben az új, mozgó rendszerben tekintjük egyidejűeknek. Azaz a nyugalmi állapot stabilitása nem elég, szükséges még annak a bemutatása is, hogy egy mozgó, Lorentz-transzformált mag is stabil marad. A 3.7. ábrán mozgó kalcium és arany magok sűrűség-profiljait ábrázoljuk különböző időpillanatokban. A felső sorban kalcium, az alsóban pedig az arany magokat mutatjuk, amelyek a bal oldali ábrákon $T_{lab}=0.4$ AGeV és a jobb oldaliakon $T_{lab}=1.0$ AGeV kinetikus energiával mozognak. Ezek az energiák $\beta=0.71$ és $\beta=0.88$ sebességeknek felelnek meg. A Lorentz-kontrakció miatt a 3.6. ábrához képest rövidebb magokat nagyobb sűrűséggel láthatunk az ábrákon. Látható, hogy a magok 30 fm/c időintervallumban stabilak maradnak. A sűrűség fluktuációk arányosan ugyanakkorák, mint a 3.6. ábrán látható nyugvó magok esetében.

Az energiamegmaradás teljesülése nem triviális a transzport modellekben, hiszen számos közelítés sérti azt, így például a sűrűség simítása, az ütközésekben az energiamegmaradás kirovásának a módja, a numerikus pontatlanság, stb. A modell alapvető tulajdonságainak tanulmányozása során meg kell vizsgálni az energiamegmaradás teljesülését nyugvó magokra és nehézion reakciókra egyaránt. A modellünkben nyugvó magok esetén az energia fluktuációja ± 0.2 MeV, ahogyan ez a 3.8. ábrán kalcium és arany magokra látható. Ez az ingadozás az általunk vizsgált energia-tartományban (100 MeV – 2 GeV) elhanyagolható.

Egy nehézion reakcióban minden ütközésben sérül valamelyest az energiamegmaradás, hiszen az impulzus változása miatt nem csak a kinetikus energia változik, hanem a potenciális is. A kinetikus energia megmaradását egyszerű biztosítani, nem úgy a potenciális energiáét. Az általunk használt feltétel (3.8. egyenlet) elég jól kielégíti az energiamegmaradás feltételét [72]. Ezt a 3.9. ábrán

3.9. ábra: Részecskékkénti energia (E/A-m) az idő függvényében 1 AGeV bombázó energián centrális Ca+Ca (folytonos vonal), Zr+Zr (szaggatott vonal) és Au + Au ütközésben. A felső ábrához impulzusfüggetlen Skyrme-potenciált, az alsóhoz az MM-mel jelzett impulzusfüggő potenciált használtunk (lásd 3.1. táblázat).

is megfigyelhetjük 1 AGeV energiájú centrális kalcium+kalcium, cirkónium+cirkónium és arany+arany ütközésben. A felső ábrán az impulzusfüggetlen Skyrmepotenciál használata mellett az ütközés felsűrűsödése alatt az egyrészecskére jutó energia csökken 4 MeV-vel, majd visszaáll közelítőleg a kezdeti értékre. Az impulzusfüggő potenciál használata esetén nehéz magok esetében (amely nagyon sok ütközést jelent) ennél rosszabb a helyzet, de még arany+arany ütközésben is a sérülés az ütközés végére csak 3 %.

3.3 Rezonanciák tulajdonságai, és bomlási szélességei

A BUU-modellben a rezonanciákat tömeghéjon lévő részecskékként kezeljük, de ezt a rezonancia-tömeget a Lorentz-eloszlásfüggvény

$$F(M) = \frac{2}{\mathcal{N}_r} \frac{M^2 \Gamma_{r,tot}(M)}{(M^2 - M_r^2)^2 + M^2 \Gamma_{r,tot}^2(M)}$$
(3.20)

szerint választjuk meg, amely függ a rezonancia-csúcs helyétől, M_r -től és a teljes szélességtől, $\Gamma_{r,tot}$ -tól, s \mathcal{N}_r a normálási faktor:

$$\mathcal{N}_r = \int_{-\infty}^{\infty} dM \, 2 \frac{M^2 \, \Gamma_{r,tot}(M)}{(M^2 - M_r^2)^2 + M^2 \, \Gamma_{r,tot}^2(M)}.$$
 (3.21)

Barion rezonanciák paramétereit a 3.2. táblázatban közöljük. A ρ -mezon rezonancia-csúcsának a helyére az $M_r=770~{\rm MeV/c^2}$ -t, szélességére a $\Gamma_r=150~{\rm MeV}$ értéket használjuk. A megfelelő mennyiségek a σ -mezonra $M_r=800~{\rm MeV/c^2}$ és $\Gamma_r=800~{\rm MeV}$.

A bomlási szélességek energiafüggőek. Az energiafüggés a rezonancia kvantumszámaitól függ. A következőkben felsoroljuk, hogy milyen parametrizációkat használunk a bomlási szélességekre, $\Gamma(M)$ -re.

 \bullet A $\Delta(1232)$ egypionos bomlása

A $\Delta(1232)$ -bomlásra a Koch és társai által bevezetett parametrizációt alkalmazzuk [74]:

$$\Gamma_{Moniz}(q) = \Gamma_R \frac{M_\Delta}{M} \left(\frac{q}{q_r}\right)^3 \left(\frac{q_r^2 + \delta^2}{q^2 + \delta^2}\right)^2, \tag{3.22}$$

ahol M a $\Delta(1232)$ rezonancia aktuális tömege és $M_{\Delta}=1232~{\rm MeV/c^2}.~q$ és q_r a pion hármas-impulzusa az M, illetve M_{Δ} tömegű bomló rezonancia nyugalmi rendszerében. A levágási-függvényben a δ paraméter értéke: $\delta=0.3~{\rm GeV/c}$.

			bomlási arány $[\%]$					
rezonancia	$\frac{\overline{ \mathcal{M}^2 }}{16 \pi}$	Γ_R			Νππ			
	$[mbGeV^2]$	[MeV]	Νπ	Νη	$\Delta\pi$	Νρ	Νσ	$N(1440)\pi$
$\Delta(1232)$	-	120	100	0	0	0	0	0
N(1440)	14	350	65	0	25	0	10	0
N(1520)	4	120	55	0	25	15	5	0
N(1535)	8, 40	203	50	45	0	2	0	3
$\Delta(1600)$	68	350	15	0	75	0	0	10
$\Delta(1620)$	68	150	30	0	60	10	0	0
N(1650)	4	150	80	0	7	5	4	4
N(1675)	68	150	45	0	55	0	0	0
N(1680)	4	130	70	0	10	5	15	0
$\Delta(1700)$	7	300	15	0	55	30	0	0
N(1720)	4	150	20	0	0	80	0	0
$\Delta(1905)$	7	350	15	0	25	60	0	0
$\Delta(1910)$	68	250	50	0	50	0	0	0
$\Delta(1950)$	14	300	75	0	25	0	0	0

3.2. táblázat: Bomlási szélességek és bomlási-csatornák a barion rezonanciákra. Az adatokat [60]-ből illetve az N(1535) rezonanciára [73]-ból vettük. A második oszlop az $NN\to NR$ csatorna átlagolt mátrixelemeit tartalmazza.

• Nehezebb rezonanciák egypionos vagy η -bomlása

Nehezebb rezonanciák egypionos bomlásának a szélességét a

$$\Gamma(q) = \Gamma_R \left(\frac{q}{q_r}\right)^{2l+1} \left(\frac{q_r^2 + \delta^2}{q^2 + \delta^2}\right)^{l+1},\tag{3.23}$$

kifejezés adja meg, ahol l a pion vagy éta impulzus
momentuma, q és q_r a pion vagy η impulzusa a bomló rezonancia nyugalmi rendszerében. Ebben az esetben

$$\delta^2 = (M_R - M_N - m_\pi)^2 + \frac{\Gamma_R^2}{4}.$$
 (3.24)

• Barion rezonanciák kétpionos bomlása

Barion rezonanciák két-pionos bomlását kétlépéses folyamattal modellezzük. Először a nehéz rezonancia elbomlik egy $\Delta(1232)$ -ra, vagy N(1440) rezonanciára és egy pionra; vagy pedig egy nukleonra és egy ρ - vagy σ -mezonra bomlik. Az új rezonanciák ezután a nukleáris közegben mozognak, majd egy második lépésben elbomlanak; a barion rezonanciák egy nukleonra és egy pionra, míg a mezon rezonanciák két pionra.

$$R \to r \, b \to N \, \pi \, \pi. \tag{3.25}$$

Itt R jelöli a kiinduló barion rezonanciát, r a $\Delta(1232)$, N(1440), ρ vagy σ rezonanciát, b az pion vagy egy nukleon. Mivel a (3.25) folyamatban az első lépésben egy újabb rezonancia jelenik meg, így integrálni kell ennek az r közbenső rezonanciának a tömegére, μ -re, amikor az eredeti rezonancia kétpionos bomlási szélességét számoljuk:

$$\Gamma_{R \to r \, b}(M) = \Gamma_{R \to r \, b}(M_r) \frac{M_r}{M} \frac{\int_0^{M_r - m_b} d\mu \frac{p_f \, \mu^2 \, \Gamma_{r,tot}(\mu)}{(\mu^2 - m_r^2)^2 + \mu^2 \, \Gamma_{r,tot}^2(\mu)}}{\int_0^{M_r - m_b} d\mu \frac{p_f \, \mu^2 \, \Gamma_{r,tot}(\mu)}{(\mu^2 - m_r^2)^2 + \mu^2 \, \Gamma_{r,tot}^2(\mu)}}$$

$$\times \left(\frac{(M_R - M_N - 2m_\pi)^2 + \delta^2}{(M - M_N - 2m_\pi)^2 + \delta^2}\right)^2, \tag{3.26}$$

 p_f jelöli r és b impulzusát R nyugalmi rendszerében $(M, illetve <math>M_r$ tömegű R-re). A (3.26) egyenletben bevezettünk egy levágási-függvényt, amely biztosítja, hogy $\Gamma_{R\to r\,b}(M)$ nem divergál nagy tömegekre. A levágási paraméter, δ értéke 0.3 GeV.

mezon rezonanciák bomlási szélessége

A mezon rezonanciák bomlási szélességét hasonlóan parametrizáljuk mint a $\Delta(1232)$ -ét,

$$\Gamma(M) = \Gamma_r \frac{M_r}{M} \left(\frac{q}{q_r}\right)^{2J_r + 1} \frac{q_r^2 + \delta^2}{q^2 + \delta^2},\tag{3.27}$$

ahol M_r és M a rezonancia-csúcs helye, illetve az aktuális tömeg. q és q_r ugyanúgy vannak definiálva, mint a (3.22) egyenletben, míg J_r a rezonancia spinje és Γ_r az M_r tömeghez tartozó bomlási szélesség. A levágási függvény δ paraméterére ugyanúgy $\delta=0.3$ GeV-t használunk.

3.3.1 Rezonanciák bomlása

A $R \to N\pi/\rho/\sigma$, $R \to R'\pi$ és $N(1535) \to N\eta$ rezonancia-bomlásokat vákuumban csak a szélességük befolyásolja, élettartamuk: $\Gamma(M)^{-1}$. Közegben azonban a bomlást a Pauli-elv tilthatja.

Minden időlépésben kiszámítjuk a bomlás valószínűségét a rezonancia nyugalmi rendszerében, az exponenciális bomlási törvénnyel:

$$P = 1 - \exp(-\Gamma(M)\Delta\tau/\hbar) \tag{3.28}$$

ahol $\Gamma(M)$ a rezonancia bomlási szélessége és $\Delta \tau = \Delta t/\gamma$ a számolás időlépése a rezonancia nyugalmi rendszerében. Monte-Carlo módszerrel eldöntjük, hogy a

rezonancia elbomlana-e ebben az időlépésben. Mielőtt megengednénk a bomlást, ellenőrizzük, hogy a kimenő nukleon fázistere szabad-e, s a bomlás valószínűségét a fázistér betöltöttségének arányában csökkentjük.

A rezonancia-bomlás izotróp a rezonancia nyugalmi rendszerében.

3.4 A mezon-barion hatáskeresztmetszet

Az általunk használt rezonanciaképben a mezon-barion ütközésekre (például a $\pi N \to \pi N$) a Breit-Wigner hatáskeresztmetszet képletét alkalmazzuk

$$\sigma_{ab\to R\to cd} = \frac{2J_R + 1}{(2S_a + 1)(2S_b + 1)} \frac{4\pi}{p_i^2} \frac{s \,\Gamma_{R\to ab} \,\Gamma_{R\to cd}}{(s - M_R^2)^2 + s \,\Gamma_{tot}^2}.$$
 (3.29)

A (3.29) egyenletben ab és cd jelöli a barion és a mezon kezdeti- illetve végállapotot, és R a közbenső barion rezonancia. J_R , S_a és S_b a barion rezonancia és a kezdőállapoti részecskék spinje. A modellünkben a rezonanciakeltés hatáskeresztmetszetét úgy kapjuk meg, hogy a (3.29) egyenletben a $\Gamma_{R\to cd}$ parciális szélességet helyettesítjük a teljes szélességgel:

$$\sigma_{ab\to R} = \frac{2J_R + 1}{(2S_a + 1)(2S_b + 1)} \frac{4\pi}{p_i^2} \frac{s \, \Gamma_{R\to ab} \, \Gamma_{tot}}{(s - M_R^2)^2 + s \, \Gamma_{tot}^2}.$$
 (3.30)

A 3.10. ábrán a számított teljes π^-p hatáskeresztmetszetet (folytonos vonal) összehasonlítjuk a kísérleti adatokkal [75]. A modellünkben ezt a hatáskeresztmetszetet úgy kapjuk meg, hogy összegzünk az összes barion rezonanciára. A 3.10. ábrán a szaggatott, a pontozott és a szaggatott-pontozott vonal a $\Delta(1232)$, a N(1440) és a N(1535) járulékait mutatja.

A 3.11. ábrán megmutatjuk a $\pi^- p \to \eta n$ reakcióra vonatkozó eredményünket. Ebben a folyamatban csak a N(1535) rezonancia ad járulékot, mivel csak ennek a rezonanciának van η bomlása a modellünkben (3.2. táblázat). Mindkét hatáskeresztmetszetet a modellünk jól írja le $p_{\pi} \approx 1.0$ GeV impulzusig.

3.10. ábra: A folytonos vonal mutatja a számított teljes π^-p -hatáskeresztmetszetet, a kísérleti adatok a [75]-ból származnak. A szaggatott, a pontozott és a szaggatott-pontozott vonalak a $\Delta(1232)$, N(1440) és a N(1535) járulékait ábrázolják.

3.11. ábra: A folytonos vonal mutatja a (3.29) egyenlet alapján számított teljes $\pi^-p\to\eta n$ hatáskeresztmetszetet. A kísérleti adatokat a [75]-ból vettük.

A (3.29) egyenletet használjuk a $\pi\pi$ -ütközésekben keletkező σ - és ρ -keltés hatáskeresztmetszetének számítására is (a megfelelő spin faktorokkal).

3.5 A barion-barion hatáskeresztmetszetek

Ebben a szakaszban leírjuk a modellben felhasznált barion-barion hatáskeresztmetszetek meghatározásának a módszereit.

3.5.1 A hatáskeresztmetszet általános alakja

A hatáskeresztmetszet képletének levezetéséhez feltételezzük, hogy kétnukleon, $a+b\to R+c$, ütközésben egy R barion rezonancia és c nukleon keletkezik. Ezután az R rezonancia elbomlik két részecskére, $R\to de$. Spinnélküli részecskéket tekintve az invariáns mátrixelem felírható

$$\mathcal{M}_{ab\to cde} = \mathcal{M}_{ab\to Re} P_R \mathcal{M}_{R\to cd}, \tag{3.31}$$

alakban, ahol P_R a közbenső R barion rezonancia propagátora, $\mathcal{M}_{ab\to Re}$ és $\mathcal{M}_{R\to cd}$ az $a+b\to R+e$ és $R\to c+d$ reakciók mátrixelemei. A hatáskeresztmetszet általános alakjából indulunk ki:

$$d\sigma_{ab\to cde} = \frac{(2\pi)^4}{4 p_i \sqrt{s}} \delta^4(p_a + p_b - p_c - p_d - p_e) \overline{|\mathcal{M}_{ab\to cde}|^2} \times \frac{d^3 p_c}{(2\pi)^3 2E_c} \frac{d^3 p_d}{(2\pi)^3 2E_d} \frac{d^3 p_e}{(2\pi)^3 2E_e},$$
(3.32)

ahol \sqrt{s} a reakció invariáns energiája és p_i a CMS impulzus a kezdeti állapotban. $\overline{\mid \mathcal{M}_{ab \to cde} \mid^2}$ a kezdeti spinekre átlagolt és végállapoti spinekre összegzett invariáns mátrixelem abszolutértékének a négyzete. Főltéve, hogy mátrixelem négyzete faktorizálható

$$\overline{\mid \mathcal{M}_{ab \to cde} \mid^2} = \overline{\mid \mathcal{M}_{ab \to Re} \mid^2} \mid P_R \mid^2 \overline{\mid \mathcal{M}_{R \to cd} \mid^2}, \tag{3.33}$$

megkapjuk a hatáskeresztmetszetet a rezonancia-tömeg, M függvényében

$$\frac{d\sigma_{ab\to Re\to cde}}{dM} = \sigma_{ab\to Re}(M) \frac{2}{\mathcal{N}_R} \frac{M^2 \Gamma_{R\to cd}}{(M^2 - M_R^2)^2 + M^2 \Gamma_{tot}^2}.$$
 (3.34)

ahol

$$\sigma_{ab\to Re}(M) = \frac{1}{64\pi^2 s \, p_i} \int d\Omega \, p_f \overline{\mid \mathcal{M}_{ab->Re}(M) \mid^2}, \tag{3.35}$$

 p_f és p_i jelöli a kezdeti és végállapoti CMS impulzusokat az $a+b \to R+e$ reakcióban, míg s a reakció invariáns energiájának a négyzete. Feltételezzük továbbá, hogy a $\Delta(1232)$ -rezonanciát kivéve (3.5.2 fejezet) az összes barion rezonanciára $\overline{|\mathcal{M}_{ab->Re}(M)|^2}$ konstans (független a rezonancia tömegétől és a reakció szórási szögétől).

Az R rezonancia keltésének a hatáskeresztmetszetét megkapjuk, ha a (3.34) egyenletben a $\Gamma_{R\to cd}$ parciális szélességet kicseréljük a Γ_{tot} teljes szélességre, és integrálunk az R rezonancia M tömegére. Ekkor szögtől és rezonancia-tömegtől független mátrixelem esetében (azaz a $\Delta(1232)$ kivételével az összes barion rezonanciára) a keltési hatáskeresztmetszet a következő alakba írható:

$$\sigma_{ab\to Re} = \frac{\overline{|\mathcal{M}_{ab->Re}|^2}}{16 \pi s p_i} \int dM \frac{2}{\mathcal{N}_R} \frac{p_f M^2 \Gamma_{tot}}{(M^2 - M_R^2)^2 + M^2 \Gamma_{tot}^2}.$$
 (3.36)

A $N^+N^+ \to N^0\Delta^{++}$ hatáskeresztmetszetből megkapjuk a többi izospin csatorna hatáskeresztmetszetét az izospin szimmetria felhasználásával. Feltesszük, hogy a kölcsönhatási Hamilton-operátor mind az izospin operátor négyzetével, mind a harmadik komponensével felcserélhető, továbbá nem függ az izospin vetületétől, csak a teljes izospintől. Azaz, csak azonos teljes izospinű állapotok között lehetséges az átmenet. Az NN rendszernek vagy 1 vagy 0 a teljes izospinje, míg az $N\Delta$ rendszernek 1 vagy 2, így az átmenet csak az I=1 állapotok között lehetséges. Kihasználva az izospin szimmetriát

$$\sigma_{N+N+\rightarrow N^0\Delta^{++}} = 3\sigma_{N+N+\rightarrow N+\Delta^{+}}$$

$$\sigma_{N^0N^+\to N^0\Delta^+} = \sigma_{N^+N^+\to N^+\Delta^+}. \tag{3.37}$$

A többi $NN \to N\Delta$ hatáskeresztmetszet triviális következménye az izospin szimmetriának.

Hasonló összefüggéseket nem lehet levezetni az $NN \to NN^*$ hatáskeresztmetszetekre, mivel ott mindkét, az I=0 és az I=1 izospin csatornában lehetséges az átmenet, így két független hatáskeresztmetszetre van szükség. Általánosan feltesszük, hogy az N(1535) rezonanciát kivéve a $N^+N^+ \to NN^*$ és az $N^0N^+ \to NN^*$ reakciók mátrixelemei megegyeznek.

3.5.2 Az $NN \rightarrow N\Delta(1232)$ hatáskeresztmetszet

Az $NN \to N\Delta(1232)$ hatáskeresztmetszetre a Dimitriev és társai [76] által kifejlesztett OBE-modellt használjuk, melyben egypion-kicseréléses u- és t-csatorna Born-diagrammokból határozták meg a hatáskeresztmetszetet. A modell paramétereit, (az $NN\pi$ -, $N\Delta(1232)\pi$ -csatolási állandókat és a vertexekben a pion alakfaktorának levágását) úgy határozták meg, hogy reprodukálják a kísérleti $pp \to N\Delta^{++}$ hatáskeresztmetszetet. Ezt a hatáskeresztmetszetet úgy módosítjuk, hogy a modellükben szereplő $\Delta(1232)$ -szélességet [76] a BUU-modellben szereplő Moniz-parametrizációval (3.22) helyettesítjük. A 3.12. ábrán összehasonlítjuk a $\sqrt{s}=2.31$ GeV energiájú ütközésben a kísérletileg mért differenciális hatáskeresztmetszetet és néhány energián a tömegeloszlást a modell eredményeivel.

3.5.3 Az $NN \rightarrow NR$ hatáskeresztmetszet

Nukleon-nukleon ütközésekben a nehezebb barion rezonanciák keltésének hatáskeresztmetszetét úgy kapjuk meg, hogy illesztjük az ütközés mátrixelemét a már

3.12. ábra: Összehasonlítjuk a $pp \to n\Delta(1232) \sqrt{s} = 2.31~{\rm GeV}$ energiájú ütközésben a differenciális hatáskeresztmetszetet és néhány energián a $\Delta(1232)$ tömegeloszlását (folytonos vonal) a kísérleti eredményekkel [76] (korongok).

megmért 1π -, η -, ρ - és 2π -keltés hatáskeresztmetszetéhez. Feltételezzük, hogy nukleon-nukleon ütközésben a $\Delta(1232)$ gerjesztés felett az 1π -, η -, ρ - és 2π -keltés csak rezonanciákon keresztül, két- illetve három-lépéses folyamatban történik. A pion, η és ρ keltését egy rezonancia keltésével és utána annak egy pion-ra, η -ra vagy ρ -ra és egy barionra való bomlásával írjuk le:

$$NN \to NR \to NN\pi/\eta/\rho.$$
 (3.38)

Feltételezzük, hogy nukleon-nukleon ütközésben a 2π -keltés vagy két $\Delta(1232)$ keltésével s egy-egy pionra és nukleonra bomlásával, vagy az egyik nukleon magasabb rezonanciára gerjesztésével, majd annak két-lépésben egy nukleonra és két pionra bomlásával történik.

3.5.4 Az η -keltés hatáskeresztmetszete

Mivel a modellünkben csak a N(1535) csatolódik az η -mezonhoz, így közbenső rezonanciaként egyedül az N(1535) rezonanciát figyelembevéve és a cde végállapotnak az $NN\eta$ csatornát tekintve a (3.34) egyenletből megkapjuk az η -keltés hatáskeresztmetszetét. Az ismeretlen mátrixelem négyzetet, $|\mathcal{M}_{ab->Re}|^2$ -t illesztjük a kísérleti η -keltési adatokhoz. Proton-proton ütközésben az N(1535)-keltés mátrixelemére a

$$\overline{\mid \mathcal{M}_{p\,p\to p\,N^+(1535)}\mid^2} = 16\pi \times 8\,\text{mb GeV}^2.$$
 (3.39)

értéket kapjuk. A 3.13. ábrán összehasonlítjuk az illesztett $pp \to pp\eta$ hatáskeresztmetszetet a mért értékekkel [75, 77].

A mérések alapján [77] proton-neutron ütközésben az η -keltés hatáskeresztmetszete körülbelül ötször akkora mint proton-proton ütközésekben. Azaz

$$|\mathcal{M}_{p\,n\to p\,N(1535)}|^2 = |\mathcal{M}_{p\,n\to n\,N^+(1535)}|^2 = 16\pi \times 40\,\text{mb GeV}^2.$$
 (3.40)

3.13. ábra: A $pp \to pp\eta$ reakció hatáskeresztmetszete a rezonancia-modellben a (3.39) mátrixelemmel (folytonos vonal) összehasonlítva a kísérleti adatokkal [75, 77].

3.5.5 Az 1π -keltés hatáskeresztmetszete

Nukleon-nukleon ütközésekben az 1π -keltés hatáskeresztmetszetét úgy kapjuk meg, hogy inkoherensen összegezünk az összes lehetséges közbenső rezonanciára. $\Delta(1232)$ -keltésre a (3.5.2.) fejezet eredményeit használjuk, míg a magasabb rezonanciákra az (3.34) egyenletet integráljuk a rezonancia-tömeg, M szerint, a-val és b-vel jelölve a két nukleont a kezdeti állapotban és c-vel, d-vel és e-vel az $NN\pi$ végállapotot. A megfelelő izospin koefficiensekkel

$$\sigma_{pp\to p\,p\,\pi^0} = \frac{2}{3}\sigma_{3/2} + \frac{1}{3}\sigma_{1/2} \tag{3.41}$$

$$\sigma_{p \, p \to p \, n \, \pi^+} = \frac{10}{3} \sigma_{3/2} + \frac{2}{3} \sigma_{1/2} \tag{3.42}$$

$$\sigma_{p \, n \to p \, p \, \pi^-} = \frac{1}{3} \sigma_{3/2} + \frac{2}{3} \sigma_{1/2} \tag{3.43}$$

$$\sigma_{p \, n \to p \, n \, \pi^0} = \frac{4}{3} \sigma_{3/2} + \frac{2}{3} \sigma_{1/2}, \tag{3.44}$$

ahol

$$\sigma_{3/2} = \sum_{I_R = \frac{3}{2}} p \, p \to p \, R^+ \frac{\Gamma_{R \to N \, \pi}}{\Gamma_{R,tot}}$$

3.14. ábra: A $pp\to pp\rho^0$ reakció hatáskeresztmetszete a rezonancia-modellünkben a 3.2. táblázatbeli mátrixelemekkel (folytonos vonal) és a kísérleti adatok [75].

$$= \sigma_{p\,p\to p\,\Delta^{+}(1232)} + \frac{1}{4} \frac{\overline{|\mathcal{M}|^{2}}}{16\pi\,p_{i}\,s} \times \int_{M_{N}+m_{\pi}}^{\sqrt{s}-M_{N}} dM\,p_{f} \sum_{\substack{R \neq \Delta(1232)\\I_{R}=\frac{3}{2}}} \frac{M^{2}\,\Gamma_{R\to N\,\pi}(M)}{(M^{2}-M_{R}^{2})^{2} + M^{2}\,\Gamma_{R,tot}^{2}(M)}$$
(3.45)

és

$$\sigma_{1/2} = \sum_{I_R = \frac{1}{2}} p \, p \to p \, R^+ \frac{\Gamma_{R \to N \, \pi}}{\Gamma_{R,tot}}$$

$$= \frac{\overline{|\mathcal{M}|^2}}{16\pi \, p_i \, s} \int_{M_N + m_\pi}^{\sqrt{s} - M_N} dM \, p_f \sum_{I_R = \frac{1}{2}} \frac{M^2 \, \Gamma_{R \to N \, \pi}(M)}{(M^2 - M_R^2)^2 + M^2 \, \Gamma_{R,tot}^2(M)}. \tag{3.46}$$

3.5.6 A ρ -keltés hatáskeresztmetszete

Azon rezonanciák invariáns mátrixelemét, amelyek egy nukleonra és egy ρ -ra (3.2. táblázat) bomlanak, megkapjuk, a

$$pp \to pp\rho^0$$
. (3.47)

reakció mért hatáskeresztmetszetéhez való illesztéssel. Az (3.41) egyenlethez hasonlóan a ρ^0 -keltés hatáskeresztmetszete is az I=3/2- és I=1/2-rezonanciák

összege:

$$\sigma_{pp\to pp\rho^0} = \frac{2}{3}\sigma_{3/2} + \frac{1}{3}\sigma_{1/2},\tag{3.48}$$

ahol $\sigma_{3/2}$ -t és $\sigma_{1/2}$ -t ugyanúgy definiáljuk mint a (3.45) és (3.46) egyenletekben. Az így kapott mátrix-elemeket a 3.2. táblázat második oszlopában tüntettük fel. A ρ^0 -keltés hatáskeresztmetszetét a 3.14. ábrán hasonlítjuk össze a kísérleti adatokkal [75].

3.5.7 A 2π -keltés hatáskeresztmetszete

Nukleon-nukleon ütközésekben a 2π -keltés a modellünkben több lépcsőben megy végbe:

1.
$$NN \to NR \to N\Delta(1232)\pi \to NN\pi\pi$$
 (3.49)

$$2. NN \to NR \to NN(1440)\pi \to NN\pi\pi$$
 (3.50)

3.
$$NN \to NR \to NN\rho \to NN\pi\pi$$
 (3.51)

$$4. NN \to NR \to NN\sigma \to NN\pi\pi \tag{3.52}$$

$$5. NN \rightarrow \Delta(1232)\Delta(1232) \rightarrow NN\pi\pi. \tag{3.53}$$

Itt R egy nehezebb rezonanciát jelöl. A bomlási arányokat és a bomlási szélességeket a 3.2. táblázatban közöljük. Az $NN \to \Delta(1232)\Delta(1232)$ hatáskeresztmetszetet a [78]-ből vettük. A 2π -keltés hatáskeresztmetszetét az előbbiekhez hasonlóan számoljuk ki. Definiáljuk $\sigma_{3/2}^i$ -t és $\sigma_{1/2}^i$ -t (i=1,..,4) hasonlóan a (3.45) és (3.46) egyenletekhez, csak $\Gamma_{R\to N\pi}$ -t a megfelelő szélességekkel Γ_i -vel (i=1,..,4) helyettesítjük a reakció második lépcsőjének (3.49) - (3.52) megfelelően. Így a hatáskeresztmetszet

$$\sigma_{NN\to NN\pi\pi} = \sum_{i=1}^{4} n_i \sigma_{1/2}^i + \sum_{i=1}^{4} d_i \sigma_{3/2}^i + \sigma_{NN\to\Delta(1232)\Delta(1232)\to NN\pi\pi}, \tag{3.54}$$

	$pp \to pp\pi^+\pi^-$	$pp \to pp\pi^0\pi^0$	$pp \to pn\pi^+\pi^0$	$pn \to pn\pi^+\pi^-$	$pp \to pp\pi^-\pi^0$
n_1	5/9	2/9	2/9	5/9	2/9
n_2	4/9	1/9	4/9	4/9	4/9
n_3	1/3	0	2/3	1/3	2/3
n_4	2/3	1/3	0	2/3	0
d_1	26/45	2/45	22/9	52/45	17/45
d_2	2/9	2/9	14/9	4/9	5/9
d_3	2/3	0	10/3	2/3	1/3
d_4	0	0	0	0	0

3.3. táblázat: A (3.49) - (3.52) reakciók három lépésének izospin együtthatóinak szorzatai azon csatornákra, amelyekre kísérleti adatok léteznek.

ahol n_i és d_i a reakció (3.49) - (3.52) három lépésének izospin együtthatóinak szorzatai. Az együtthatókat a 3.3. táblázatban soroljuk fel.

Felhasználva azon mátrixelemeket, amelyeket az η - és ρ -keltés segítségével már meghatároztunk, illesztjük az ismeretlen $\overline{|\mathcal{M}_{NN\to NR}|^2}$ mátrixelemeket úgy, hogy leírják nukleon-nukleon ütközésben az 1π - és 2π -keltés hatáskeresztmetszeteit. Különböző izospin csatornákra az illesztett 1π -keltés hatáskeresztmetszeteket (folytonos vonal) összehasonlítjuk a kísérleti adatokkal [75] a 3.15. ábrán, ahol a $\Delta(1232)$ (szaggatott), 1/2 izospinű rezonanciák (pontozott) és a nehezebb 3/2 izospinű rezonanciák (szaggatott-pontozott vonal) járulékát külön-külön feltüntetjük. A modellünk az egy-pion-hatáskeresztmetszeteket jól írja le egészen 5 GeV tömegközépponti-energiáig.

A 3.16. ábrán a modellünkből számított 2π -keltés hatáskeresztmetszeteit (3.54) hasonlítjuk össze a létező kísérleti adatokkal [75]. A multi-rezonancia-

3.15. ábra: Az 1π -keltés hatáskeresztmetszeteket (folytonos vonal) különböző izospin csatornákra összehasonlítjuk a kísérleti adatokkal [75]; szaggatott a $\Delta(1232)$, pontozott az 1/2 izospinű rezonanciák és szaggatott-pontozott vonal a magasabb, 3/2 izospinű rezonanciák járulékát jelöli.

modellünk a 3.2. táblázatban szereplő mátrixelemekkel ugyanolyan jól írja le a 2π -keltést, mint az 1π -adatokat.

3.5.8 Az $NR \rightarrow NN$ hatáskeresztmetszet

Az $NR \to NN$ reakció hatáskeresztmetszetét, ahol R vagy egy $\Delta(1232)$ -t, vagy egy magasabban fekvő rezonanciát jelöl ugyancsak a (3.32) egyenlet írja le. Mivel ismerjük a mátrixelemeket $(3.2.\ táblázat)$, s annak az energiától és a rezonancia-tömegtől való függését (illetve függetlenségét), így nincs szükség a részletes egyensúly elvére, hogy a fordított reakcióból határozzuk meg a hatáskeresztmetszeteket, mint a transzport modellek korábbi változataiban szokásos volt.

3.5.9 Az $NR \rightarrow NR'$ hatáskeresztmetszet

 $NR \to NR'$ reakció esetén, ha R és R' különböző rezonanciák (lehet az egyik a $\Delta(1232)$ is) az $NN \to NR$ és $NN \to NR'$ reakciók mátrixelemeinek az átlagát használjuk. Ez a megoldás biztosítja a részletes egyensúly elvének kielégítését. A (3.34) egyenlethez hasonlóan a következő kifejezéshez jutunk:

$$\sigma_{N_{R \neq R'}}^{N_{R \rightarrow NR'}} = I \frac{0.5(|\mathcal{M}_{NN \rightarrow NR}|^2 + |\mathcal{M}_{NN \rightarrow NR'}|^2) 2 (2J_{R'} + 1)}{16 \pi p_i s} \times \int dM \, p_f \frac{2}{\pi} \frac{M^2 \, \Gamma_{R'}(M)}{(M^2 - M_{R'}^2)^2 + M^2 \, \Gamma_{R'}^2(M)},$$
(3.55)

ahol I a megfelelő izospin együttható (lásd a 3.4. táblázatot) és J'_R a végállapoti rezonancia spinje.

3.5.10 Az $NN \rightarrow NN\pi$ hatáskeresztmetszet

Az $NN \to NR$ -hatáskeresztmetszeteket úgy kaptuk meg, hogy a $\Delta(1232)$ rezonancia-csúcsa feletti energiákon illesztettük őket az 1π -keltés adataihoz. Összeha-

3.16. ábra: Nukleon-nukleon ütközésben a 2π -keltés különböző izospin csatornáinak hatáskeresztmetszetei a rezonancia-modellünkben és a kísérleti adatok [75].

				I
N^+	N^+	N^+	N^+	1
N^+	N^0	N^+	N^0	1/2
N^+	N^+	N^0	Δ^{++}	3/4
N^+	N^+	N^+	Δ^+	1/4
N^+	N^0	N^+	Δ^0	1/4
N^+	Δ^{++}	N^+	Δ^{++}	1
N^+	Δ^+	N^0	Δ^{++}	3/8
N^+	Δ^+	N^+	Δ^+	5/8
N^+	Δ^0	N^+	Δ^0	1/2
N^+	Δ^{-}	N^+	Δ^{-}	5/8

3.4. táblázat: Barion-barion ütközések izospin együtthatói. N és Δ az I=1/2 és az I=3/2 izospinű részecskéket jelöli. A fel nem sorolt csatornák együtthatóit megkapjuk az izospin szimmetriából.

sonlítva a kísérleti adatokkal az így kapott hatáskeresztmetszet kisebb a pionkeltés küszöbe és a $\Delta(1232)$ -keltés között mint a mért (lásd a 3.17. ábrát). A kísérleti és a rezonancia-modell által jósolt hatáskeresztmetszetek közötti különbséget az s-hullámú direkt π -keltésnek $(NN \to NN\pi)$ tulajdonítjuk. Ezt a különbséget,— az s-hullámú hatáskeresztmetszetet — a következő kifejezéssel illesztjük:

$$\sigma_{NN \to NN\pi}(x) = A x^{n_1} e^{-(a x^{n_2} + b x)}, \qquad (3.56)$$

ahol

$$x = \frac{\sqrt{s} - 2M_N - m_{\pi}}{5 \,\text{GeV}},$$

az így kapott paramétereket a 3.5. táblázatban közöljük. A $\sigma_{NN\to NN\pi}$ reakció

3.17. ábra: Nukleon-nukleon ütközésekben az 1π -keltés hatáskeresztmetszete a rezonancia-bomlásokból (szaggatott vonal) és a teljes hatáskeresztmetszet a direkt pionkeltést is figyelemebe véve (folytonos vonal) a kísérleti adatokkal [75] összehasonlítva.

csatorna	A [mb]	a	b	n_1	n_2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	61.3	1.52	2.50	6.18	3.48
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	122.6	1.52	2.50	6.18	3.48
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24.9	3.30	0.85	1.93	0.002
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.25	0.88	0	2.31	3.64

3.5. táblázat: A direkt π -keltés $\sigma_{N\,N\to N\,N\,\pi}$ ((3.56) egyenlet) hatáskeresztmetszetének paraméterei.

hatáskeresztmetszetét inkoherensen hozzáadva a barion rezonanciák bomlásainak járulékához megkapjuk az egypionkeltés teljes hatáskeresztmetszetét amely a 3.17. ábrán (folytonos vonal) jól közelíti a kísérleti hatáskeresztmetszetet még a küszöbenergia közelében is.

3.5.11 Az $NN\pi \rightarrow NN$ reakció

Feltéve, hogy az $N_1+N_2\to N_3+N_4+\pi$ reakció invariáns mátrixeleme csak az invariáns energiától függ, a $\sigma_{N_1\,N_2\to N_3\,N_4\,\pi}$ hatáskeresztmetszetet ((3.5.10) fejezet) a következő alakba írhatjuk [60, 79]

$$\sigma_{N_{1}N_{2} \to N_{3}N_{4}\pi}(\sqrt{s}) = \frac{S_{N_{1},N_{2}}}{64(2\pi)^{3} p_{i} \sqrt{s^{3}}} |\mathcal{M}_{N_{1}N_{2} \to N_{3}N_{4}\pi}(\sqrt{s})|^{2} \times \int dm_{34}^{2} dm_{3\pi}^{2}.$$
(3.57)

Itt S_{N_1,N_2} az N_1 és N_2 szimmetria faktora, p_i a kezdőállapotbeli nukleon CMS impulzusa és

$$m_{34}^2 = (p_3 + p_4)^2, \ m_{3\pi}^2 = (p_3 + p_\pi)^2.$$

Az átmeneti valószínűsége annak, hogy a pion elnyelődik az N_3 és N_4 nukleon-páron a

$$W_{fi} = (2\pi)^4 \frac{\delta^4 (p_{N,1} + p_{N,2} - p_{N,3} - p_{N,4} - p_{\pi}) |\mathcal{M}|^2}{V^5} , \qquad (3.58)$$

alakban írható, ahol a V normálási térfogatban 2E részecske van [80]. Megszorozva ezt az egyenletet az (N_1, N_2) nukleonok végállapoti fázistér faktoraival megkapjuk, hogy

$$\Gamma_{\pi N_3 N_4 \to N_1 N_2} = S_{N_1, N_2} \frac{p_f}{4\pi \sqrt{s}} |\mathcal{M}|^2 \frac{1}{2E_{\pi}} \frac{\rho_{N,3}}{2E_{N,3}} \frac{\rho_{N,4}}{2E_{N,4}}, \tag{3.59}$$

ahol $\rho_{N,3}$ és $\rho_{N,4}$ a helyi proton vagy neutron sűrűségek.

3.5.12 Rugalmas barion-barion hatáskeresztmetszet

A rugalmas nukleon-nukleon ütközés hatáskeresztmetszetére a szokásos Cugnon parametrizációt [49, 58] alkalmazzuk mind a szög szerint kiintegrált hatáskeresztmetszetre

$$\sigma_{NN \to NN} = \left(\frac{35}{1 + (\sqrt{s} - 2M_N)/\text{GeV}} + 20\right) \text{ mb.}$$
 (3.60)

mind a szögeloszlásra

$$\frac{d\sigma_{el}}{d\Omega} = \exp(-A(s)t) \tag{3.61}$$

ahol t az impulzusátadás négyzete.

$$A(s) = \frac{6}{GeV^2} \frac{[3.65(\sqrt{s} - 2M_N)/\text{GeV}]^6}{1 + [3.65(\sqrt{s} - 2M_N)/\text{GeV}]^6}.$$
(3.62)

A nukleon-rezonancia rugalmas ütközés (ugyanaz a barion rezonancia található a kezdeti- és a végállapotban) hatáskeresztmetszetét a következőképpen állapítjuk meg: feltesszük, hogy a nukleonok rugalmas ütközése izotróp, (ami persze ellentmond a (3.61) egyenletnek,) így meg tudjuk határozni a rugalmas ütközés mátrixelemét (3.35. egyenlet)

$$|\mathcal{M}_{NN\to NN}|^2 = 16 \pi s \left(\frac{35}{1 + (\sqrt{s} - 2M_N)/\text{GeV}} + 20\right) \text{ mb.}$$
 (3.63)

Behelyettesítve a (3.63) egyenletet a (3.34) egyenletbe, megkapjuk a rugalmas nukleon-barion hatáskeresztmetszetet

$$\sigma_{NR \to NR} = \frac{\mid \mathcal{M}_{NN \to NN} \mid^2}{16 \pi p_i s} \int d\mu \, p_f \frac{2}{\mathcal{N}_R} \frac{\mu^2 \, \Gamma_R(\mu)}{(\mu^2 - M_R^2)^2 + \mu^2 \, \Gamma_R^2(\mu)}.$$
 (3.64)

Megjegyezzük, hogy a (3.64) hatáskeresztmetszet megengedi az ütközés hatására a rezonancia tömegének változását. A rezonancia tömegének megválasztását ugyanúgy végezzük el mint az $NN \to NR$ reakció esetében.

A nukleon-rezonancia ütközések hatáskeresztmetszetéről feltesszük továbbá, hogy izotrópak.

3.6 A K⁺-keltés hatáskeresztmetszetei

A K^+ -keltést már a nehézion fizika korai szakaszában az állapotegyenlet jó szondájának tartották [81], hiszen a K^+ a antiritka-kvark tartalma miatt nem nyelődik el a barionokban (a Λ -rezonancia kivételével, amellyel való találkozása azonban elhanyagolható valószínűségű). Azaz, ha egyszer keltődött, akkor az nagy valószínűséggel el is hagyja rendszert.

A mikroszkópikus keltési hatáskeresztmetszetek közül a pion által indukált az kísérletileg elég jól ismert. A teljes hatáskeresztmetszet, a $\pi^+ n \to K^+ \Lambda$ és $\pi^o p \to K^+ \Lambda$ folyamatokra átlagolva a

$$\sigma_{\pi N \to K^{+} \Lambda}(s) = \begin{cases} 2.47 \ mb \frac{(\sqrt{s} - \sqrt{s_o})}{\text{GeV}} & \sqrt{s_o} < \sqrt{s} \le 1.7 \ GeV \\ \frac{0.0225 \ \text{mb}}{(\sqrt{s}/\text{GeV} - 1.6)} & \sqrt{s} > 1.7 \ GeV \end{cases}$$
(3.65)

alakban parametrizálható [82], (ahol $\sqrt{s_o}=m_\Lambda+m_K$) és nagyon jól reprodukálja a mért adatokat $\sqrt{s}=3$ GeV energiáig.

Nagyon kevés kísérleti adat létezik az $NN \to NYK^+$ hatáskeresztmetszetekre (Y egy Λ - vagy Σ -hiperont jelöl). Zwermann és Schürmann parametrizálta [83] a Λ - és Σ -hiperonokra összegzett hatáskeresztmetszetet:

$$\sigma_{NN\to BYK^+}(s) = 0.8 \ mb \left(\frac{p_K^{max}}{GeV/c}\right)^4 \tag{3.66}$$

ahol p_K^{max} az adott tömegközépponti energia, \sqrt{s} mellett elérhető maximális kaon impulzus a két barion (NN) CM-rendszerében az $NN \to K^+\Lambda N$ csatornára. Gyakran használják még a Randrup és Ko parametrizációját is [84] a fenti reakcióra, de az valószínűleg túlbecsüli a hatáskeresztmetszetet a küszöbkörüli energiákon. Mi a Zwermann-Schürmann parametrizációt használjuk.

Az $N\Delta \to NYK^+$ folyamat hatáskeresztmetszete nem mérhető, viszont mint a szimulációkból kiderült [85, 86, 87, 88], nagyon fontos szerepet játszik a K^+

keltésében. Randrup és Ko [84], s később Wu és Ko [89] egy Born-közelítéses modellben a különböző Clebsch-Gordan együtthatók következtében a

$$\sigma_{N\Delta\to K^+} = 3/4 \,\sigma_{NN\to K^+}$$

$$\sigma_{\Delta\Delta\to K^+} = 1/2 \,\sigma_{NN\to K^+} \tag{3.67}$$

összefüggést kapták. Ezt használjuk mi is a számításainkban.

A differenciális hatáskeresztmetszetekre még kevesebb adat ismert. Felteszszük, hogy a kaonok a fázistérben egyenletesen oszlanak el, ahogyan azt Cugnon javasolta [82, 84], azaz

$$\frac{E_K d^3 \sigma(s)}{dp_K^3} = \sigma(s) \frac{3E_K}{\pi p_K^2 p_K^{max}} \left(1 - \frac{p_K}{p_K^{max}}\right) \left(\frac{p_K}{p_K^{max}}\right)^2 \tag{3.68}$$

ahol E_K és p_K a kaon energiája és impulzusa. Ez a differenciális hatáskeresztmetszet az elérhető kevés adathoz 30 %-os pontosságon belül illeszkedik. Feltesszük még, hogy a kaonkeltés hatáskeresztmeszetei izotrópak a reakciók tömegközépponti rendszerében.

3.7 Az ω -keltés hatáskeresztmetszetei

Az ω -keltés manapság egyre több érdeklődést kelt, hiszen az ω keskenysége miatt kísérletileg könnyen azonosítható. Ezért figyelembe vesszük az ω -t keltő csatornákat is. Mivel nem ismert olyan rezonancia, amelynek ω lenne az egyik bomlásterméke, ezért az ω -keltés nem illeszthető be modellünkben olyan egyszerűen, mint a ρ -keltés. Ennek következtében az $NN \to NN\omega$ és a $\pi N \to \omega N$ egylépéses csatornákon keresztül építjük be modellünkben az ω -keltést. A hatáskeresztmetszetet egy egyszerű függvénnyel írjuk le, amelynek paramétereit illesztjük a létező

3.18. ábra: A $pp\to pp\omega$ hatáskeresztmetszet illesztése. Az adatokat a [75, 90] referenciákból vettük.

adatokhoz. Proton-proton ütközésekben a

$$\sigma_{pp\to pp\omega} = 0.36 \frac{(\sqrt{s} - \sqrt{s_0})^{1.4}/\text{GeV}^{1.4}}{1.25 + (\sqrt{s} - \sqrt{s_0})^2/\text{GeV}^2} \text{ mb}$$
(3.69)

(ahol $\sqrt{s_0} = 2m_p + m_{\omega}$,) nagyon jól illeszkedik az adatokhoz [75, 90] még küszöb körüli energiákon is (3.18. ábra).

Az ω -keltés differenciális hatáskeresztmetszetét még nem mérték. S így ugyanazt a feltevést hasznájuk mint a kaonokra, és pedig, hogy az ω impulzuseloszlása a fázistérben egyenletes, azaz

$$\frac{E_{\omega}d^{3}\sigma(s)}{dp_{\omega}^{3}} = \sigma_{t}(s)\frac{3E_{\omega}}{\pi p_{\omega}^{2}p_{\omega}^{max}}\left(1 - \frac{p_{\omega}}{p_{\omega}^{max}}\right)\left(\frac{p_{\omega}}{p_{\omega}^{max}}\right)^{2}$$
(3.70)

ahol $E_{\omega},\,p_{\omega}$ és p_{ω}^{max} ugyanúgy definiáltak mint a (3.68) egyenlet esetében.

A $\pi^- p \to \omega n$ reakció hatáskeresztmetszete is kísérletileg jól ismert [75] és

$$\sigma_{\pi^- p \to \omega n} = 1.24 \frac{(\sqrt{s} - \sqrt{s_0})^{1.6} / GeV^{1.6}}{0.0014 + (\sqrt{s} - \sqrt{s_0})^{1.4} / GeV^{1.4}} \text{ mb}$$
(3.71)

3.19. ábra: A $\pi N \to \omega N$ hatáskeresztmetszet. Az adatok a [75] referenciából származnak.

alakban parametrizáljuk, ahol $\sqrt{s_0} = m_n + m_{\omega}$. (A 3.19. ábrán felhasználtuk, hogy az izospin szimmetria miatt a $\pi^- p \to \omega n$ és $\pi^+ n \to \omega p$ reakciók hatáskeresztmetszete megegyezik.).

Feltettük még, hogy tetszőleges barion-barion, illetve pion-barion reakcióban az ω -keltés hatáskeresztmeszete megegyezik a megfelelő NN, illetve a πN hatáskeresztmetszetekkel ugyanazon a tömegközépponti energián. Az ω -keltés hatáskeresztmeszetei izotrópak a reakció tömegközépponti rendszerében.

3.8 Hatáskeresztmetszetek a szimulációban

Inkluzív hatáskeresztmetszet kiszámításához az egyes impaktparaméterekre kiszámoljuk az adott reakció valószínűségét vagy a multiplicitását $N_{reac}(b)$ -t, s ebből a hatáskeresztmetszetet megkapjuk az impaktparaméter szerinti integrálással:

$$\sigma = \int 2\pi b \, db \, N_{reac}(b) \quad . \tag{3.72}$$

4. Fejezet

A rezonancia-anyag

A rezonancia-anyag kifejezést néhány éve kezdték használni a relativisztikus nehézion ütközésekben keletkező anyag elnevezésére. Ez a név így, kívülállók számára félrevezető lehet, (talán épp ez volt a cél, lásd kutatási pénzek megszerzése) hiszen azt sejtteti, hogy az anyagnak egy új fázisával állunk szemben. A rezonancia-anyag, azonban az anyagnak nem egy minőségileg új állapota. 2 AGeV bombázó energián akár háromszoros alapállapoti sűrűség is létrejöhet, amelynek egyharmada rezonancia. Ez azt jelenti, hogy ilyen ütközésekben a rezonanciák parciális sűrűsége eléri a normál magsűrűséget [91]. Ezzel indokolják a rezonancia-anyag elnevezést. Mi is használjuk ezt az elnevezést, azonban hangsúlyozzuk, hogy ez csak olyan hadron-anyag, amely elég sok rezonanciát tartalmaz.

Mielőtt elemeznénk a nehézion ütközések dinamikáját megmutatjuk, hogy a modellünk elfogadhatóan reprodukálja az alapvető mennyiségeket.

4.1 π -mag ütközések

A π -mag ütközések vizsgálatával kettős célunk van: egyrészt ellenőrízzük, hogy a modellünk helyesen írja-e le a pionok és rezonanciák dinamikáját, másrészt, megvizsgáljuk, hogy melyik reakció felelős a pionok elnyeléséért.

A pion elnyelődésének a mechanizmusa még vitatott. Energia- és impulzusmegmaradás megtíltja az egy nukleonon való abszorpciót. A legfontosabb így a két nukleonon való elnyelődés. A magasabb rendű reakciók fontossága azonban még nem ismert. Nehezebb magok esetében, a három-test folyamat becslések szerint 10% és 50% között járul hozzá teljes elnyelési hatáskeresztmetszethez [30].

A szimulációnkban a pion két lépésben nyelődik el: először befogódik egy R-rezonanciába, és ez az R második lépcsőben elnyelődhet egy $RN \to NN$ reakció folyamán. Ez a folyamat nyílvánvalóan egy két-test elnyelést szimulál. A $R \to \pi N$ folyamatot és az utána következő $\pi N \to R'$ elnyelést tekintve látható, hogy a BUU tartalmaz magasabb rendű elnyelési folyamatokat is, azonban a pionnak a folyamatban végig tömeghéjon kell lennie, míg a valóságban "off-shell" is lehet.

Először összehasonlítjuk a 4.1. ábrán a $T_{\pi}=165~{\rm MeV}$ energiájú pionok elnyelési hatáskeresztmetszetének a tömegszámtól való függését [92] a számításainkkal. Az egyezés kitűnő.

A [93]-ban közölt kaszkád számolás egy kettes faktorral alulbecsülte az elnyelés hatáskeresztmetszetét. Ennek az a magyarázata, hogy a $\Delta N \to NN$ reakció hatáskeresztmetszetét naívan, a stabil részecskékre vonatkozó részletes-egyensúly elvéből határozták meg. Ahogyan azt a [41, 42]-ban levezettük rezonanciák esetében az elvet módosítani kell, s ez a módosítás esetenként akár háromszorosára növeli a fenti hatáskeresztmetszetet a naív megoldáshoz képest. A kísérleti adatok

4.1. ábra: $T_{\pi} = 165 MeV$ energiájú π^+ -ok elnyelési hatáskeresztmetszete. A kísérleti adatokat [92] referenciából nyertük.

[94] is alátámasztják a módszerünk helyességét. Amint már megjegyeztük, az itt részletezett modellünkben az $NR \to NN$ hatáskeresztmetszet meghatározásához nincs szükség a részletes egyensúly elvére.

Vizsgáljuk ezután könnyű, közepes és nehéz magokon a teljes elnyelési hatás-keresztmetszeteket a $T_{\pi}=85~{\rm MeV}$ - 315 MeV energia-tartományban (4.2. ábra). Ezen tartomány azért érdekes, mert a tartomány közepén a hatáskeresztmetszetet a Δ -rezonancia dominálja. A teljes energia-tartományon a modellünk mindhárom magra a mért adatokkal [92] egyező eredményt szolgáltat. Megjegyezzük, hogy a modellünk egy korábbi verziója magasabb energiákon, ($T_{\pi}=315~{\rm MeV}$) túlbecsülte az adatokat. Ez a különbség nagyobb volt nehezebb magok esetében. A hatáskeresztmetszetek finomabb beállítása (ezen nem a pion-mag elnyeléshez való illesztést kell érteni, hanem például az $N\Delta \to NN$, vagy az $NR \to NN$ hatáskeresztmetszetek reálisabb, a fordított reakciók kísérleti adataihoz pontosabban illeszkedő, megválasztását) javított a nagyobb energiájú pionok leírásán.

4.2. ábra: A teljes π^+ elnyelési hatáskeresztmetszet 12 C, 56 Fe és 209 Bi magokra az energia függvényében. A kísérleti adatokat a [92] referenciából nyertük.

Összehasonlítva a modellünket Salcedoék, — speciálisan a pion-mag elnyelési reakciók vizsgálatára alkotott, — pion-kaszkád modelljével [29], az eredményeink legalább olyan jók. Salcedoék túlbecsülik az elnyelést nagyobb pion-energiákon, nehéz magokon. Salcedoék a modellünkből hiányzó három-test elnyelés hatását elég jelentősnek, 30%-osnak találták.

Az elnyelési mechanizmus pontosabb tanumányozását teszik lehetővé az exkluzív $(\pi^+, 2p)$ és $(\pi^+, 3p)$ reakciók. Ransome és társai pion-mag ütközésben különböző magokra több energián a pion abszorpciós hatáskeresztmetszet mérésével párhuzamosan azonosították a kijövő protonokat is [95]. Kiszámoltuk a $(\pi^+, 2p)$ és $(\pi^+, 3p)$ exkluzív hatáskeresztmetszeteket $T_{\pi} = 150$ MeV pion-energiánál. A kontinuum protonokra ugyanazt az energia-vágást, $(E_p > 23 \text{ MeV})$ alkalmaztuk,

atommag	$(\pi^+, 2p\&3p)$	$(\pi^+, 2p\&3p)$	$(\pi^+,3p)$	$(\pi^+,3p)$
	BUU	exp.	BUU	exp.
¹² C	114	118	15	13
⁵⁸ Ni	272	290	30	33
¹¹⁸ Sn	333	340	46	35
²⁰⁸ Pb	399	405	48	29

4.1. táblázat: (π^+, Np) reakciók exkluzív hatáskeresztmetszete. A pionok energiája $T_\pi=150$ MeV. Az adatoknak ([95]) $\pm 10\%$ szisztematikus hibájuk van.

mint az idézett kísérletben. A modellünk eredményeit a 4.1. táblázatban hasonlítjuk össze a mért adatokkal. Az egyezés kitűnő, különösen könnyű magokra. Nehezebb magokra túl sok $(\pi^+, 3p)$ eseményt találtunk, de ebben a csatornában a kísérletek hibája is nagyobb. A kísérletekkel egyezően az N>3 esetre a (π^+, Np) események járuléka elhanyagolható.

A pion-mag elnyelés vizsgálatát összegezve megállapíthatjuk, hogy mind az inkluzív, mind az exkluzív adatokat helyesen reprodukáljuk a teljes vizsgált energia-tartományban.

4.2 Proton-mag ütközések és a kaonkeltés

Mielőtt a sűrű, forró anyag vizsgálatához hozzáfognánk, érdemes megvizsgálni a proton-mag ütközéseket is. Egyrészt ez egy újabb ellenőrzése a modellünknek, másrészt egyszerűbb, ellenőrízhetőbb körülményeket kínál a nukleáris közeg módosító hatásainak a vizsgálatára.

4.3. ábra: Protonok, π^+ -ok és K^+ -ok differenciális hatáskeresztmetszete $\Theta_{lab}=40^o\pm 4^o$ szögtartományban a laboratóriumi impulzus függvényében.

A K^+ -mezonok tömege az elméleti becslések szerint [96] már normál magsűrűségen jelentősen megnő ($\approx 50~{\rm MeV}$). Proton-mag reakciókban a sűrűség lényegében végig ρ_0 körüli értéket vesz fel, míg nehézion ütközésekben ez széles tartományban változik, s nem olyan egyszerű kvantitatív jóslatokat tenni a közeg hatásának a nagyságára. Hozzátesszük, hogy a mikroszkópikus hatáskeresztmetszetek (például $NN \to NYK^+$) pontosabb ismerete nélkül nem lehet megbízható következtetéseket levonni a kaonok közegbeli módosulására. A nehézion reakciók vizsgálatára számos transzport-modellbeli számolás található az irodalomban [21, 82, 84, 85, 86, 87, 88], de a proton-mag reakciókban a kaonkeltést tudomásunk szerint rajtunk kívül [97, 98] még eddig nem vizsgálta senki mikroszkópikus modellben.

A K^+ -keltést és emellett a proton- és pionkeltést nemrégiben mérték proton-mag ütközésekben a SATURNE gyorsítónál Saclay-ban [99] p+C és p+Pb ütközésekben 1.2, 1.5 és 2.5 GeV energián. A detektor a $40^{\circ} \pm 4^{\circ}$ térszöget fedte le. A 4.3. ábrán megmutatjuk jóslatainkat a protonok, pozitív pionok és kaonok kétszeresen differenciális hatáskeresztmetszetére a $40^{\circ} \pm 4^{\circ}$ szögtartományban a laboratóriumi impulzus függvényében. A protonok spektrumában jelentkező csúcs az a szemlélő (spectator) protonok járuléka, s így független a bombázó energiától. A modellünk nem tartalmazza a fragmensek kialakulását, így az egyébként atommagokban kötött protonokat nem különbözteti meg az egyedüli protonoktól. Ezért épp a szemlélő protonok tartományában az eredményünk nem tekinthető reálisnak. A detektor által mért tartományben a modellünk nagyon jól írja le az adatokat. A számításainkban a kaon szabadon mozgó, s a vákuumbeli tömegével rendelkezik. Az egyezés mint már említettük, nem jelent megkötést a kaonok közegbeli tulajdonságaira nézve, hiszen a mikroszkópikus hatáskeresztmetszetek változtatásával (például a Zwermann-Schürman parametrizáció [83]

4.4. ábra: A különböző K^+ -források gerjesztési függvénye p+C és p+Pb ütközésekben.

helyett a Randrup-Ko által javasoltat [84] használva a kaonkeltés hatáskeresztmetszete körülbelül kétszeresére növekszik ezeken az energiákon.

A növekvő bombázó energiával a spektrumok is nőnek. Ez a növekedés annál jelentősebb, minél nagyobb energiát követel a járulékot adó részecske keltése. Míg a protonok az ütközés kezdete óta jelen vannak, így velük csak kinetikus energiát kell közölni, s ott a spektrum csak a nagy impulzus tartományokban nő jelentősen a bombázó energiával. Az ellenkező véglet a kaon, amelynek már a létrehozásához is jelentős energiát kell koncentrálni. Nagy impulzusú kaonok szinte csak a 2.5 GeV energiájú reakcióban tudnak keletkezni.

A 4.4. ábrán láthatjuk, hogy a küszöb feletti energiákon az NN ütközések adják a legfontosabb járulékot, míg az alacsonyabb energián a pion indukált reakciók dominálnak. Ha az NN, illetve az $N\Delta$ hatáskeresztmetszetekre a Randrup-Ko parametrizációt használnánk, akkor más képet kapnánk az alacsonyabb bombázó energia tartományában, ugyanis akkor a p+C ütközésben az $N\Delta$ reakció

4.5. ábra: A különböző K^+ -források szintvonalai a rapiditás-transzverzális impulzus síkon 1.2 és 2.5 GeV energiájú p+Pb ütközésekben. A szomszédos vonalak feleződő szinteket jelölnek. y_t , y_m és y_p a céltárgy- a közép- és a lövedék-rapiditását jelöli. A folytonos vonal a SATURNE-i detektor mérési tartományát mutatja.

dominálná a küszöb alatti energiákat [98].

A különböző források szögeloszlása jelentősen különbözik. A 4.5. ábrán látható, hogy 1.2 GeV energiájú p+Pb reakcióban az NN ütközésekben keletkező kaonok kis területen, a középső rapiditás tartományában koncentrálódnak, míg a többi forrás eloszlása sokkal egyenletesebb. Ez különbözőség lehetőséget nyújthat a különböző források járulékainak szétválasztására, s azok külön-külön tanulmányozására.

4.3 A kísérleti eredmények nehézion ütközésekben

Vitán felül áll, hogy a barionok energiaeloszlása számos mennyiséget befolyásol. A 4.6. ábrán megmutatjuk, hogy a modellünk helyesen írja le a protonok tömegközépponti-energia eloszlását. Az adatokat a BEVALAC-nál mérték [100].

A nukleonokkal ellentétben a mezonok az ütközés kezdetén még nincsenek jelen, így a keletkezett mezonok száma fontos jellemzője a reakciónak. A mezonok multiplicitása nehezen mérhető. Egyes detektorok csak korlátozott térszögben mérnek (pl. TAPS), másoknak magas az energiaküszöbe (FOPI). Ez a magyarázata annak, hogy a pionok multiplicitására a legmegbízhatóbb eredmények még mindig a Harris csoportjától származó BEVALAC adatok [101, 102]. A TAPS-együttműködés is mért pionkeltési valószínűségeket [103], de ezt egy kis rapiditás intervallumból extrapolálták a teljes 4π térszögre. Amint ezt megmutattuk [104], ezzel 800 AMeV bombázó energián alábecsülték a pionok számát 20 %-kal. A 4.7. ábrán megmutatjuk a modellünk jóslatait a centrális ütközésekben keletkező

4.6. ábra: Transzverzális protonok energiaspektruma a CMS-ben 800 AMeV energián 40 Ca $^{+40}$ Ca és 20 Ne $^{+20}$ Ne ütközésben.

egy nukleonra jutó pionok számára és szembesítjük azokat a kísérleti eredményekkel [101, 102, 103]. (A TAPS-adatok esetében megszoroztuk 3-mal a mért π^0 -ok számát, mivel a vizsgált rendszer izospin szimmetrikus.) Az egyezés elég jó, bár 1 AGeV környékén 20–30 %-kal túlbecsüljük a pionok számát, míg 800 AMeV energián ez egyezés tökéletes [104].

A 4.8. ábrán az 1.8 AGeV energiájú, centrális Ar+KCl ütközésben a BEVA-LAC-nál mért π^- -ok $d\sigma/dp_t$ spektrumát [105] hasonlítjuk össze a különböző, 0 fm-től 1.6 fm és 2.3 fm értékek közötti b_{max} -ig integrált elméleti spektrumokkal (a kísérletekben szereplő centrális jelzőt nem lehet egyértelműen egy b_{max} -hoz kötni). Az ábrán látható, hogy a spektrum alakja a vizsgált tartományban független b_{max} -tól, csak természetesen b_{max} növelésével nő a számított spektrum. Az is megállapítható, hogy a modellünk elég jól írja le a spektrum alakját.

4.7. ábra: A pionok egy nukleonra eső multiplicitása centrális nehézion ütközésekben. Az adatok [101, 102, 103, 104]-ból származnak.

4.8. ábra: A π^- -ok transzverzális-impulzus spektruma centrális ütközésekben. Az adatokat [105] négyzetek, míg a különböző maximális impaktparaméterig b_{max} -ig integrált BUU eredményeket vonalak ábrázolják.

4.9. ábra: π^- -ok szögeloszlása a cos Θ_{CMS} függvényében 'minimum bias' (felül) és centrális (alul) eseményekben a reakció tömegközépponti rendszerében. A kísérleti adatokat [105] korongokkal, és a modell eredményeit négyszögekkel jelöljük. A vonal egy (4.1) alakú fit a BUU eredményekhez.

4.10. ábra: $0.52 \leq Y_{lab} \leq 0.84$ laboratóriumi rapiditású π^0 -ok transzverzális impulzus spektruma 1.0 AGeV energiájú Au+Au-ütközésben. A BUU eredményeit hisztogramm jelöli, a satírozás a számolás statisztikai hibáját érzékelteti. A kísérleti adatokat [106, 107] négyzetek jelölik.

Következőnek az előbbi ütközés szögeloszlását vizsgáljuk. Mivel $b_{max}=2.1$ fm adja a legjobb egyezést a spektrumra, így a szögeloszlás elemzésénél ezt az értéket használjuk a centrális ütközésre, míg a 'minimum bias' adatok esetében a teljes impaktparaméter tartományt figyelembe vesszük. A 4.9. ábrán a π^- -mesonok $\cos(\Theta_{CMS})$ -szerinti eloszlását hasonlítjuk össze a kísérleti adatokkal [105]. A felső ábra az inkluzív, 'minimum bias', míg az alsó a centrális ütközésben keletkező szögeloszlást, a $dN/d\cos(\Theta_{CMS})$ -t mutatja. Az adatokat korongok, a BUU eredményeit négyszögek jelölik. A számításokhoz illesztett

$$\frac{dN}{d\cos(\Theta_{CMS})} = const. \times (1.0 + a\cos^2(\Theta_{CMS}))$$
(4.1)

függvényt vonallal jelöljük. A jóslatunk mindkét eloszlásra jól egyezzik a mért adatokkal. Az illesztéssel a teljes spektrumra a=1.5, centrális eseményekre

a=0.8 anizotrópia paramétert nyertük. Az anizotrópia paraméter csökkenése a centrális eseményekben egyszerűen megérthető. Annak a valószínűsége, hogy a pionok első generációs $NN \to N\Delta(1232) \to NN\pi$ -ütközésben keletkeznek, s utána elhagyják a reakciós zónát, magasabb perifériális, illetve félperifériális ütközésekben, mint centrálisban. Centrális ütközésben a magasabb ütközési szám miatt a barionok jobban termalizálódnak, s így az általuk keltett pionok is. Mivel az összes események között jelentős súllyal szerepelnek a perifériális események, így a magasabb anizotrópia a 'minimum bias' eseményekre érthető.

Ezek után a π^0 keltését vizsgáljuk, és hasonlítjuk össze a TAPS-detektor által mért kísérleti adatokkal. Az 1 AGeV energiájú Au+Au ütközésben a 0.52– 0.84 laboratóriumi rapiditás-intervallumban keltett π^0 -mezonok $1/p_t d\sigma/dp_t$ spektrumát ábrázoljuk a 4.10. ábrán a p_t transzverzális impulzus függvényében. A számolás eredményét hisztogrammmal ábrázoljuk, s a satírozás jelöli a statisztikus bizonytalanságát. A TAPS által mért spektrumot [106, 107] négyzetek jelölik. A számítás kis transzverzális-impulzusok esetében jól közelíti a mért spektrumot. Korábbi modellek ezt a tartományt alulbecsülték, (mi is), de a nehezebb rezonanciák két-pionos bomlásának bevezetése növelte az alacsony energiás pionok számát. $p_T \approx 0.2$ GeV/c impulzusokra a modell 10%-kal túlbecsüli a hatáskeresztmetszetet, 0.3 GeV/c impulzus felett a számítás a statisztikai hiba határán belül van.

Az imént vizsgált rendszeren kívül a TAPS együttműködés megmérte a π^0 -ok transzverzális impulzus spektrumát 1.0 és 1.5 AGeV energiájú Ar+Ca ütközésekben is. Az adatokat a megfelelő számításokkal a 4.11. ábrán láthatjuk. A satírozás a számítások statisztikai hibáit jelzik. 1.0 AGeV energián az adatokat enyhén túlbecsüljük a 0.1-0.3 GeV/c transzverzális impulzus tartományban. 0.3 GeV/c impulzus felett a számítás és az adatok egyezése nagyon jó. 1.5 AGeV

4.11. ábra: π^0 -ok transzverzális impulzus spektruma 1.0 (felül) és 1.5 (alul) AGeV energiájú Ar+ Ca ütközésekben 0.48 $\leq Y_{lab} \leq$ 0.88 illetve 0.68 $\leq Y_{lab} \leq$ 0.84 labor-rapiditás intervallumokra. A BUU eredményeit hisztogramm jelöli, a satírozás a számolás statisztikai hibáját érzékelteti. a kísérleti adatokat [106, 107] négyzetek jelölik.

4.12. ábra: Az η -mezonok egy nukleonra eső multiplicitása centrális nehézion ütközésekben. Az adatokat [104, 108]-ból vettük.

energián az egyezés a teljes impulzus-tartományban kitűnő, még a $0.2~{\rm GeV/c}$ transzverzális impulzus környezetében is.

Ezek után megvizsgáljuk az η -keltést. A 4.12. ábrán a centrális Ca+Ca ütközésben az egy nukleonra eső η -multiplicitást ábrázoljuk a bombázó energia függvényében. A TAPS-adatokról itt is azt lehet elmondani, amit a pionok esetében, azaz a 4π -re való extrapoláció hibalehetőséget jelent. A hatáskeresztmetszetet konzekvensen alábecsüljük. Fontos megjegyezni, hogy az 1 AGeV-es 40 Ca+ 40 Ca ütközésben a kísérletekben mért η -multiplicitást legfeljebb egy kettes faktorral becsüljük alul. Ennek nagy jelentősége van a dileptonkeltés vizsgálatában.

Jobb, extrapoláció nélküli összehasonlítást kínál az η-k spektruma. A 4.13. ábrán összehasonlítjuk a BUU modell jóslatait (üres körök) a TAPS együttmű-ködés (négyzetek) kísérleti eredményeivel [107, 108] Ar+Ca 1.0 AGeV, Au+Au 1.0 AGeV és Ar+Ca 1.5 AGeV energiájú reakciókban. Mind a mérésnek, mind a számításoknak nagy a statisztikus hibájuk, így csak annyit mondhatunk, hogy a

4.13. ábra: η -hatáskeresztmetszetek a transzverzális impulzus függvényében Ar+Ca 1.0 AGeV, Au+Au 1.5 AGeV és Ar+Ca 1.5 AGeV energiájú reakciókban. Az üres körök a BUU modell eredményeit, a négyzetek az adatokat [107, 108]. A labor-rapiditás intervallumokat az ábrán feltüntettük.

4.14. ábra: A pion és η transzverzális tömeg szerinti spektruma 0.8 AGeV energiájú Ar+Ca ütközésben. A korongok a mért π^0 (üres) és η (telt) pontokat [104], a vonalak a modell eredményeit jelenítik meg.

modell jóslatai nincsenek ellentmondásban a mért adatokkal. Végül megvizsgáljuk a 4.14. ábrán a 800 AMeV energiájú Ar+Ca ütközésben a pionok és az éták transzverzális tömeg szerinti eloszlását. A kísérleti adatok szintén a TAPS együttműködéstől származnak [104]. A pion-spektrum egyezése kiváló majdnem öt nagyságrenden keresztül, az η spektrum meredeksége jó, azonban a spektrum valamivel alulbecsült.

A 4.12., 4.13. és a 4.14. ábrákat tanulmányozva, úgy tűnik, hogy az η -spektrumok meredekségét reprodukáljuk, ellenben az abszolút hatáskeresztmetszetet rendszeresen alulbecsüljük. Ez az energia-függetlenség a mikroszkópikus hatáskeresztmetszet hibájára utal. Az $np \to NN(1535)$ kísérletileg nem jól ismert az η -keltés küszöbe körül. Ha a $\sigma_{np\to NN(1535)}/\sigma_{pp\to NN(1535)}$ arányra 5 helyett 8-at

használnánk, amely nem mond nagyon ellent a méréseknek, akkor az η adatokat is sokkal jobban reprodukálnánk.

Összességében megállapíthatjuk, hogy a modellünk a 0.8-2 AGeV energiatartományban mind a barion, pion és éta spektrumot, mind a pionok számát és szögeloszlását elég pontosan jósolja meg. Tanulmányoztuk, továbbá, a töltött pionok arányát az impulzusuk függvényében és elfogadható eredményeket kaptunk [109]. Az η -k számát a modell a teljes vizsgált energia-tartományban alulbecsüli, miközben a spektrumok meredeksége jó.

Kihangsúlyozzuk, hogy a mezonok a Coulomb-kölcsönhatást és az ütközéseket leszámítva szabadon mozognak modellünkben. Egyidőben divatos volt a pionok felpuhulásának a hatását tanulmányozni mikroszkópikus modellekben. Mi is behódoltunk a divatnak [110], de az általunk használt közelítésben az effektus hatása kicsinek bizonyult.

4.4 A rezonancia-anyag dinamikája

Először a nehezebb mezonok forrásait vizsgáljuk. (Mivel az η két lépcsőben, az N(1535)-rezonancián keresztül, keletkezik a modellünkben, így ebben az esetben valójában az N(1535)-keltését vizsgáljuk.) A küszöbenergia (1.256 GeV) felett a legtöbb η , nukleon-nukleon (NN) ütközésekben keletkezik, ahogyan ez a 4.15. ábrán megfigyelhető. Ez érthető, hiszen egy reakció során a legtöbb ütközés ezeken az energiákon ebbe a csoportba tartozik. Ha azonban jóval a részecske gerjesztésének a küszöbe alá megyünk, akkor az NN ütközések túlnyomó része nem rendelkezik elég energiával az adott részecske keltéséhez. A pionok viszont energiatárolóként működnek, hiszen egy korábbi ütközés energiája átment egy pion energiájába, amely aztán teljes egészében az új részecske keltésére használ-

4.15. ábra: Az η -mezon forrásai centrális Ca+Ca ütközésekben a bombázó energia függvényében. A különböző forrásokat az ábrán feltüntettük. R a barion rezonanciák összegzett hatását jelöli.

ható. Hasonló szerepet játszanak a barion rezonanciák is, ahol a rezonancia és a nukleon tömege közötti különbség használható fel a mezon keltésére. Ez a magyarázata annak, hogy bár a πN , πR vagy NR ütközések száma jóval alacsonyabb az NN ütközéseknél, mégis küszöb alatti energiákon a πN és πR dominálja az η -keltés hatáskeresztmetszetét.

Hasonló tendenciát figyelhetünk meg az ω -mezon esetében is. Bár ebben az esetben a nagy $\pi p \to n \omega$ hatáskeresztmetszet miatt a küszöb felett is a pion indukált ω -keltés dominál. A küszöb alatti energiákon a πR csatorna jósolt dominanciája azt a veszélyt hordozza magával, hogy ott a modell jóslatai nagyon bizonytalanná válnak, hiszen a fenti hatáskeresztmetszet kísérletileg teljesen ismeretlen. A modellünk feltevése: hogy tetszőleges pion-barion reakcióban az ω -keltés hatáskeresztmeszete megegyezik a πN hatáskeresztmetszettel ugyanazon a tömegközépponti energián, teljesen "ad hoc", "nincsen jobb" tipusú feltételezés.

A 4.17. ábrán a Δ , az N(1535), az η és π multiplicitásokat hasonlítjuk össze az ütközés középső 27 fm³ térfogatában uralkodó sűrűséggel 1 AGeV energiájú cent-

4.16. ábra: Az ω -mezon forrásai centrális Ca+Ca ütközésekben a bombázó energia függvényében. A különböző forrásokat az ábrán feltüntettük. R a barion rezonanciák összegzett hatását jelöli.

rális Ca+Ca (felső) és Au+Au (alsó ábra) ütközésben. A "gerjesztések" száma (a rezonanciák és mezonok számának összege) már viszonylag korán, a sűrű fázis vége felé eléri a maximumát, ahol a "gerjesztések" dominánsan még rezonanciák. A mezonok csak az ütközés tágulási szakaszának a legvégén érik el a detektorban megfigyelhető számukat. Az η hamarabb lecsatolódik a rendszerről mint a π -szabadsági fok. Megfigyelhető továbbá az is, hogy az η -mezonok átlagosan nagyobb sűrűségen (és így természetesen nagyobb energiasűrűségen) keletkeznek mint a pionok, hiszen gerjesztésük küszöbenergiája jóval magasabb.

A reakció dinamikájában a $\Delta(1232)$ -rezonanciákhoz képest a nehezebb rezonanciák szerepe másodlagos. A 4.18. ábrán a $\Delta(1232)$ (folytonos vonal), a nehezebb rezonanciák összege (szaggatott vonal), N(1440) (pontozott vonal) és a N(1535)-rezonancia (szaggatott-pontozott vonal) száma látható 1 AGeV energiájú Ca+Ca (felül) és Au+Au (középen), valamint 1.5 AGeV energiájú Au+Au (alul) ütközésekben. Látható, hogy a $\Delta(1232)$ után második legnagyobb számban

4.17. ábra: Néhány mennyiség időbeli fejlődése 1 AGeV energiájú centrális Ca+Ca (felső) és Au+Au (alsó ábra) ütközésben: Centrális sűrűség, ρ (vastag folytonos vonal); Δ -k száma (folytonos vonal); N(1535)-k száma (pontozott-szaggatott vonal), η -k száma (pontozott vonal) és π -ok száma (szaggatott vonal).

4.18. ábra: A $\Delta(1232)$ -k (folytonos), a nehezebb rezonanciák összege (szaggatott), N(1440) (pontozott) és a N(1535) (szaggatott-pontozott hisztogram) száma centrális, (b=0 fm) ütközésekben az idő függvényében. Felül 1 AGeV energiájú Ca+Ca, középen: 1 AGeV energiájú Au+Au és alul 1.5 AGeV energiájú Au+Au ütközésben.

4.19. ábra: A magasabb barion rezonanciák és a $\Delta(1232)$ -rezonancia aránya az idő függvényében centrális, (b=0 fm) 1.5 AGeV energiájú Au+Au, (folytonos), 1 AGeV energiájú Au+Au (szaggatott vonal) és Ca+Ca-ütközésekben (pontozott vonal).

jelenlévő rezonancia, az N(1440) is mindhárom rendszerben csak 3–4 ezreléke a nukleonokénak, míg a $\Delta(1232)$ -ra ez 10–15 %. Az ennél is nehezebb rezonanciák száma még kevesebb.

Tovább tanulmányozzuk ezt a kérdést a 4.19. ábrán, ahol a különböző rezonanciák és a $\Delta(1232)$ arányát mutatjuk az idő függvényében. 1 AGeV energián a nehezebb rezonanciák száma összesen is csak hatoda a $\Delta(1232)$ számának. 1.5 AGeV energián ez az arány magasabb, 25 %. Az is látható, hogy közepes magokról (Ca) nehéz magokra (Au) térve, nem növeljük a nehezebb rezonanciák számát, csak meghosszabítjuk a jelenlétüket. A bombázó energiát növelve, persze a nehezebb rezonanciák aránya is növekszik.

4.20. ábra: Au+Au ütközések legsűrűbb pillanatában a középponti, $33fm^3$ térfogatú cella barion tartalma a bombázó energia függvényében.

A 4.20. ábrán Au+Au ütközések legsűrűbb ($\approx 33 \text{fm}^3$) térfogatú tartományának (ahol, és amely pillanatban maximális a rezonancia/nukleon arány) barion tartalmát mutatjuk meg a bombázó energia függvényében. Látható, hogy 2 AGeV bombázó energián körülbelül 30 %-a a barionoknak $\Delta(1232)$, míg a nehezebb rezonanciák aránya kicsi. Mivel a maximális sűrűség ezen az energián a középponti cellában közelítőleg $3\rho_0$, ez azt jelenti, hogy a $\Delta(1232)$ sűrűség az nagyjából ρ_0 . Ez indokolhatja a rezonancia-anyag elnevezést.

A 4.21. ábrán a kísérletileg megfigyelhető, "az ütközésből kiszabadult" 1 AGeV Ca+Ca és Au+Au reakcióban keletkezett pionok és éták ütközési számának az eloszlását láthatjuk. Itt az "ütközés" egy mezonra vonatkoztatva egy elnyelést és egy ugyanolyan tipusú mezonnak az azt követő újra kibocsájtását jelenti; így szimuláljuk a modellünkben egyébként nem szereplő rugalmas mezonbarion ütközéseket. Pionok esetében az eloszlás mindkét magra elég sima, és a pionok végleges kiszabadulásuk előtt akár kilencszer is ütközhetnek, sőt arany esetében ez a szám akár 12 is lehet. Az átlagos ütközési szám kalcium estében

4.21. ábra: A detektorban mérhető η -k (szaggatott vonal) és π -k (folytonos vonal) ütközési-szám eloszlása 1 AGeV energiájú centrális Ca+Ca és Au+Au ütközésekben. Az η -k számát 100-zal megszoroztuk.

 ≈ 3 –4, míg aranyra ≈ 5 . Az éták ezzel szemben, sokkal ritkábban ütköznek. Ennek az a magyarázata, hogy egy η elnyelődése után az N(1535) rezonanciák csak $\approx 50\%$ valószínűséggel bomlanak η -ra, míg a pionok elnyelésében alapvető szerepet játszó Δ és N(1440) rezonanciák majdnem 100% valószínűséggel újra pionra bomlanak.

A 4.22. ábrán 1 és 2 AGeV energiájú 40 Ca $^{+40}$ Ca és 197 Au $^{+197}$ Au ütközésekben összehasonlítjuk az η - és π -keltés sűrűségfüggését azon η -k (η_f) és π -ok (π_f) keltésének a sűrűségfüggésével, amelyek el is hagyják a rendszert. Mindegyik vizsgált rendszerben az η -k (pontozott-szaggatott vonal) többségét nagy sűrűségen keltették, azonban azon η -k keltésének sűrűségeloszlása, amelyek eljutnak a detektorokig elég lapos. A pionok esetében a helyzet hasonló, csak a detektorba eljutó pionok keltésének sűrűségeloszlása még alacsonyabb sűrűségeken csúcsosodik. A magyarázat nyílvánvaló: mindkét mezon átlagos szabadúthossza alacsony,

4.22. ábra: A π -k (folytonos vonalak) és η -k (pontozott vonalak) száma (π_i, η_i), valamint azon π -ok (szaggatott vonalak) és η -k (pontozott-szaggatott vonalak) száma (π_f, η_f), amelyek eljutnak a detektorokba, a keltési-helyük sűrűségének a függvényében 1 és 2 AGeV energiájú 40 Ca+ 40 Ca és 197 Au+ 197 Au ütközésekben.

4.23. ábra: η - és a π -mezonok pályahosszainak (két ütközés közötti távolságainak) eloszlása 1 AGeV energiájú centrális 40 Ca+ 40 Ca ütközésben. Az eloszlásokhoz illesztett exponenciálisok meredeksége $\lambda_{\pi} \approx \lambda_{\eta} \approx 1.3$ fm.

így nem tudnak ütközés nélkül kiszabadulni a sűrű közegből. Az η -k laposabb eloszlásának az az oka, hogy átlagosan kevesebbet ütköznek mint a pionok.

Azért, hogy ezt az állítást illusztráljuk, a 4.23. ábrán megmutatjuk az η - és a π -mezonok két ütközés közötti pályahosszainak eloszlását 1 AGeV energiájú centrális 40 Ca+ 40 Ca ütközésben. Az eloszlásokhoz exponenciális-függvényeket illesztve, az átlagos szabadúthosszra $\lambda_{\pi} \approx 1.3$ fm és $\lambda_{\eta} \approx 1.3 \pm 0.1$ fm értékeket kapjuk, amely jóval kisebb mint a Ca mag sugara, amit az ábrán az r_{Ca} -val jelölt függőleges nyíl mutat. Megjegyezzük, hogy ezek az értékek az ütközés egész történetére átlagoltak.

A pionok és éták sűrűség eloszlását összehasonlítva láthatjuk, hogy az éták átlagosan jóval nagyobb sűrűségen keletkeznek. Ez érthető, hiszen az éták jóval nagyobb tömege miatt, magasabb energiasűrűség szükséges a keltésükhöz (s így magasabb barion-sűrűség is, hiszen ez a kettő ezeken az energiákon arányos egymással), mint a könnyű pionok keltéséhez. Ennek a tendenciának továbbfolytatá-

4.24. ábra: ρ - és ω -mezonok keltésének a sűrűség függése

sát láthatjuk a 4.24. ábrán, ahol 1 AGeV energiájú ütközésben a vektormezonok keltésének a sűrűségeloszlását ábrázoljuk.

Érdemes megvizsgálni a különböző részecskékre a kis, $(\rho < \rho_0)$, közepes, $(\rho_0 < \rho_0)$ és nagy sűrűségeken $(\rho > 2\rho_0)$ keltett részecskék arányát, amelyek a 4.2. táblázatban találhatók 1 AGeV energiájú Au+Au és Ca+Ca, valamint 2 AGeV energiájú Ca+Ca ütközésekre. A táblázat tanulsága az, hogy ha nagy sűrűségekről szeretnénk információt szerezni, akkor minél jobban a keltési küszöb alá kell menni. Ennek az a magyarázata, hogy küszöb feletti energián még az ütközés tágulási szakaszában is van elég energia az adott részecske keltéséhez, míg jóval küszöb alatti energiák esetében, csak többszöri ütközésben gyűlik össze az energia a részecskekeltéshez, amely nagy sűrűséget követel meg. A pionokra az 1 AGeV energia már jóval a keltési küszöb felett van, míg ez a vektormezonokra jóval alatta. Ha növeljük az ütköző magok atomszámát, akkor nagyobb sűrűség érhető el, így a fenti arány is nagyobb. A bombázó energia növelése viszont csökkenti a nagy sűrűségű tartomány hatását.

	Au+Au 1 AGeV		Ca+Ca 1 AGeV		Ca+Ca 2 AGeV	
	$\frac{P(D2)}{P(D0)}$	$\frac{P(D1)}{P(D0)}$	$\frac{P(D2)}{P(D0)}$	$\frac{P(D1)}{P(D0)}$	$\frac{P(D2)}{P(D0)}$	$\frac{P(D1)}{P(D0)}$
π	0.90	0.98	0.44	0.84	0.45	0.63
η	2.29	2.32	0.95	1.47	1.03	1.27
ρ	14.4	12.4	3.4	6.06	4.47	4.23
ω	11.9	10.3	2.82	5.31	5.03	4.34

4.2. táblázat: A $D2=\{\rho>2\rho_0\}$, $D1=\{2\rho_0>\rho>\rho_0\}$ és a $D0=\{\rho_0>\rho\}$ sűrűségtartományokra, kiintegrált keltési valószínűségek P(Di)-k arányai a tárgyalt mezonokra különféle ütközésekben. Az arányoknak körülbelül 20 % statisztikai hibájuk van.

4.5 Az állapotegyenlet vizsgálata

Az állapotegyenletet általában a folyási adatokból próbálják kihámozni [111], mi itt azt tanulmányozzuk, hogy milyen a hatása az állapotegyenletnek a részecskekeltésre. A 4.25. ábrán megvizsgáljuk, hogy hogyan függ a pionok spektruma a különböző állapotegyenletektől, a kompresszibilitástól. Ahogyan az várható a pion-spektrum független az állapotegyenlettől, amint azt a 4.22. ábrán látható sűrűség eloszlás sejtteti.. Még az extrém K = 215 MeV és a K = 380 MeV keménységű állapotegyenletek használatával számolt pion-spektrumok is megkülönböztethetetlenek akár impulzusfüggetlen (felső ábra), akár impulzusfüggő (alsó ábra) potenciálokat használunk. A felső és az alsó spektrumok különbözősége arra utal, hogy a potenciál impulzusfüggésének változása észlelhető változásokat okoz a pionok spektrumában.

A K^+ részecskék lényegében kölcsönhatás nélkül hagyják el a reakciótérfoga-

4.25. ábra: Pionok transzverzális impulzus spektruma különböző állapotegyenletek alkalmazása mellett 1 AGeV energiáju Au+Au ütközésben. A felső ábrán a Skyrme-potenciált az alsón a teljes impulzusfüggő-potenciált használtuk.

4.26. ábra: Protonok, pozitív pionok és kaonok impulzus-spektruma puha (K=210 MeV) és kemény (K=380 MeV) állapotegyenletek alkalmazása mellett 0.6 AGeV energiáju Au+Au ütközésben.

tát, s korábban lecsatolódnak mint a pionok (ugyanazon okból mint az éták és a vektormezonok). Így több esélyt nyújtanak, a sűrű közeg vizsgálatára mint a pionok, vagy akár az éták. Minél inkább csökkentjük a bombázó energiát, annál inkább érzékenyek lesznek a részecske multiplicitások kis energiakülönbségekre (például tömegkülönbség, vagy a potenciális energia különbsége). Ezért a K^+ -keltést 600 AMeV energiájú Au+Au ütközésben vizsgáljuk. Ennél lényegesen alacsonyabb energián a hatáskeresztmetszet túl kicsi lenne. Itt a kaonok keltése már nagyon küszöb alatti folyamat. A 4.26. ábrán összehasonlítjuk a protonok, pionok és K^+ -k spektrumát puha illetve kemény állapotegyenletek alkalmazása mellett. Láthatjuk, hogy a π^+ és a proton spektrumban a statisztikai ingadozásoktól eltekintve nincs észlelhető különbség. A K^+ -spektrumok, egy kettes faktorral különböznek. Ez megnyithatja az utat az állapotegyenlet meghatáro-

4.27. ábra: 30 MeV energiájú γ -k keltésének időfüggése 40 AMeV energiájú Ta+Au ütközésben az állapotegyenlet kétféle kompresszibilitása mellett.

zása felé. Megjegyezzük azonban, hogy a mikroszkópikus hatáskeresztmetszetek hiányos ismerete küszöb körüli energiákon, valamint a K^+ közegbeli változásának bizonytalansága (várhatóan a K^+ -tömege nő a nukleáris közegben [96]) egyenlőre meggátolja az állapotegyenlet meghatározását.

Megemlítjük még, hogy ígéretes vizsgálatok történtek 100 MeV energia alatti nehézion ütközésekben a γ -keltésen keresztül az állapotegyenlet tanulmányozására. A BUU-modellünk egy lélegző módust jósolt 40–60 AMeV bombázó energián [32]. A második összesűrűsödés "erőssége", s így az innen kibocsájtott fotonok száma drasztikusan függ az összenyomhatóságtól [33] (4.27. ábra). Ezen másodlagos fotonok kimutatására az ad lehetőséget, hogy a mérések két meredekséggel leírható γ -spektrumot találtak. Mivel a termális fotonok már egy egyensúlyi rend-

szerben keletkeznek, így sokkal alacsonyabb a karakterisztikus energiájuk, mint a direkt fotonoknak, amelyek az első nukleon-nukleon ütközésben keltődnek. Ennek megfelelően a mért γ -spektrum alacsony "hőmérsékletű" komponense ered a második sűrűsödésből. A két komponens kompresszibilitástól függő arányára adott BUU-jóslatot a mérésekkel összehasonlítva az összenyomhatóságra K = 310 ± 50 MeV adódott. Ezt az adatot is óvatosan kell kezelni, hiszen az érvelés ugyan logikus és szemléletes [33], de még a második besűrűsödés létezése sem bizonyított.

5. Fejezet

Dileptonkeltés

A dileptonok, azaz e^+e^- párok ($\mu^+\mu^-$ párok relativisztikus energiákon, $E \sim 1-2$ GeV nehezen mérhetőek) fontos információkat szolgáltathatnak a maganyag sűrű és forró állapotáról [39, 40, 42, 44]. A dileptonok mint megfigyelhető részecskék, számos jó tulajdonsággal rendelkeznek:

- Csak elektromágnesesen hatnak kölcsön, így lényegében változatlan tulajdonságokkal hagyják el az erősen kölcsönható rendszert, azaz direkt információt szolgáltatnak a reakció intenzív szakaszáról.
- Az invariáns tömegüket mérve a különböző forrásokat szét lehet választani, például a π^0 bomlásból származó dileptonok invariáns tömege kisebb mint a pion tömeg.
- Dileptonok közvetlenül csatolódnak a vektormezonokhoz, (vektormezon-dominancia), így a vektormezonok közegbeli tulajdonságai (pl. tömeg és szélesség) megfigyelhetőek.

 Keltésük valószínűsége a finomszerkezeti állandó négyzetével arányos, így kísérleti kimutatásuk nehéz, az eddigi adatok nagy statisztikai hibával rendelkeznek. Szabad a tér elméleti spekulációkra.

Ez a magyarázata, hogy az első kísérleti adatok megjelenésével [36] a dileptonkeltés nagy érdeklődést váltott ki [39, 112, 113, 114, 115, 116, 117].

Relativisztikus energiákon a dileptonoknak négy fontosabb forrásuk van.

- 1. Dalitz-bomlások: mezonok (π⁰, η és ω) és barionok (Δ és N* rezonanciák) Dalitz-bomlása. Alacsony invariáns dilepton tömegeknél a π⁰- és η-bomlás dominálja hatáskeresztmetszetet, a Δ(1232)-nak jelentős, míg a nehezebb barion rezonanciáknak elhanyagolható a járuléka [39, 42].
- 2. Fékezési-sugárzás: proton-neutron és pion-barion fékezési-sugárzás közül az első fontos, míg a második csak alacsony invariáns tömegekre jelentős forrás [39]. A proton-proton fékezési sugárzás elhanyagolható, hiszen dipol közelítésben a protonok lábairól emittált fotonok negatívan interferálnak. A magok koherens fékezési sugárzása csak alacsony tömegek esetén jelentős forrás [118, 119].
- 3. $\pi^+\pi^-$ -annihiláció, amely egy közbenső ρ -n keresztül bomlik el a vektormezon-dominancia elve szerint.
- 4. vektormezonok (ρ, ω, ϕ) direkt bomlása.

5.1 Vektormezon-dominancia

Az erős kölcsönhatást leíró elmélet valószínűleg a QCD (kvantumszíndinamika), de alacsony energiákon a megoldása jelenleg még ismeretlen, így effektív modelleket használnak. A hadronfizika egyik ilyen sikeres feltevése az 1960-as évekből a vektormezon-dominancia elve [120]: Ez az elv azt állítja, hogy a hadronikus elektromágneses áram operátora alacsony energiákon megegyezik az ismert semleges vektormezon (ρ , ω és ϕ) téroperátorok lineáris kombinációjával. Ez az elv akkor alkalmazható, ha a hadronok kvark-gluon szerkezete még nem észlelhető. A Vektormezon-Dominancia (VMD) — a hadronok elektromágnesesen csak a vektormezonokon keresztül hatnak kölcsön, s csak azok csatolódnak a fotonokhoz — következménye megfigyelhető a hadronok elektromágneses alakfaktorában. A VMD-én alapuló számítások a mezonokra (az ω -mezon kivételével) nagyon jól egyeznek a kísérletekkel [121], és különösen jól a pionokra [26]. Barionokra, úgy tünik, hogy a VMD csak durva közelítés.

A mezonokra a következőekben feltételezzük a VMD érvényességét (kivéve az ω -mezont), míg barionokra, ha mást nem állítunk $F(q^2)=1$ alakfaktort használunk.

5.2 A dileptonkeltés hatáskeresztmetszetei

5.2.1 $\pi^+\pi^-$ -annihiláció

A pion-annihiláció a ρ -mezonon keresztül folyik, amelyik elbomlik egy virtuális, tömeges fotonra a vektormezon-dominanciával. A hatáskeresztmetszetet

$$\sigma^{\pi^{+}\pi^{-}\to e^{+}e^{-}}(M) = \frac{4\pi}{3} \left(\frac{\alpha}{M}\right)^{2} \sqrt{1 - \frac{4m_{\pi}^{2}}{M^{2}}} |F_{\pi}(M)|^{2}, \qquad (5.1)$$

formában parametrizáljuk mint Gale és Kapusta [112], és a pion electromágneses alakfaktora

$$|F_{\pi}(M)|^2 = \frac{m_{\rho}^2}{(M^2 - m_{\rho}^{'2})^2 + m_{\rho}^2 \Gamma_{\rho}^2},$$
 (5.2)

5.1. ábra: A $\pi^+\pi^-$ -annihiláció hatáskeresztmetszete az invariáns tömeg függvényében.

ahol M a dilepton invariánstömeg, α a finomszerkezeti állandó és

$$m_{
ho} = 775 \ {
m MeV} \,, \qquad m_{
ho}' = 761 \ {
m MeV} \,, \qquad \Gamma_{
ho} = 118 \ {
m MeV} \,.$$

A 5.1. ábrán megmutatjuk a pion-annihiláció hatáskeresztmetszetét.

Megjegyezzük, hogy a (5.1) egyenlet a pionok vákuumbeli annihilációs hatáskeresztmetszete, lehetséges közegbeli változásait később vizsgáljuk.

5.2.2 Fékezési-sugárzás

Ha töltött részecskék ütköznek, akkor sugározhatnak fotonokat, vagy — virtuális fotonon keresztül — dilepton párt kelthetnek. Esetünkben a proton-neutron fékezési sugárzás játszik legfontosabb szerepet, hiszen ezen az energiákon a proton-proton fékezési sugárzás elhanyagolható a protonokból kibocsájtott két foton destruktív interferenciája miatt. Ahogy [39]-ban megmutattuk, a $\pi^{\pm}N$ fékezési sugárzás csak alacsony dilepton tömegek esetén ($M \leq 100$ MeV) jelentős. Magasabb energiákon szerepet játszanak még a különböző rugalmatlan ütközések folyamán (pl. $\pi\pi \to \pi\pi e^+e^-$) keltett dilepton párok, azonban ezek az általunk

vizsgált energia-tartományban elhanyagolhatóak. Mivel a hatáskeresztmetszetek kísérletileg nem ismertek, elméleti számítások szükségesek. Egy szokásos módszer az egy-bozon-kicsélés (OBE) modell alkalmazása. Egy effektív OBE közelítésben a proton-neutron fékezési sugárzás hatáskeresztmetszetét számították ki [122, 123]-ben, figyelemebe véve mind a belső, mind a külső nukleon lábakról való kisugárzást. Négy mezon $(\pi, \sigma, \omega, \rho)$ kicserélésével modellezték az NN Tmatrixot; a csatolási állandókat és levágási tagokat a proton-neutron rugalmas hatáskeresztmetszetéhez illesztették. Ugyanezt a módszert valódi fotonokra alkalmazva jó közelítését kapták a kísérleti adatoknak [124]. Ez nyilvánvalóan ma a legjobb módszer, de numerikus alkalmazása nehézkes. A fékezési-sugárzás hatáskeresztmetszetére a fázistér szerint javított lágy-foton közelítést alkalmazzuk [112, 122], ahol a két nukleon között kicserélt töltött mezon sugárzását elhanyagoljuk és az erős kölcsönhatási vertexet tömeghéjon számítjuk ki (amely közelítés persze csak alacsony dilepton energiáknál megalapozott). Ennek a közelítésnek az előnye, hogy az elektromágneses és a nem jól ismert erős-kölcsönhatás mátrixelemek szeparáltak, a hatáskeresztmetszetben egyszerűen a megfelelő fékezési sugárzás nélküli hatáskeresztmetszet jelenik meg (pl. proton-neutron esetében a proton-neutron rugalmas hatáskeresztmetszet). Ezt a hatáskeresztmetszetet korrigálni kell, ugyanis a végállapotban a két ütköző részecske energiája kisebb, mint dilepton sugárzása nélkül (a dilepton pár energiajával), így a végállapot fázistere is kisebb, mint ami az erős kölcsönhatást leíró hatáskeresztmetszetbe bele van épîtve.

$$\frac{d\sigma}{dy \ d^{2}q_{t} \ dM} = \frac{\alpha^{2}}{6 \pi^{3}} \frac{\overline{\sigma(s)}}{M \ q_{o}^{2}} \frac{R_{2}(s_{2})}{R_{2}(s)}$$

$$R_{2}(s) = \sqrt{1 - (m_{1} + m_{2})^{2}/s}$$

$$s_{2} = s + M^{2} - 2 \ q_{o}\sqrt{s}$$

$$\overline{\sigma(s)} = \frac{s - (m_1 + m_2)^2}{2 m_1^2} \sigma(s) . \tag{5.3}$$

ahol m_1 a gyorsuló töltött részecske tömege, M az invariáns tömeg, q_o az energia, q_t a transzverzális impulzus és y a dilepton pár rapiditása. Mivel a lágy-foton közelítés mindkét feltevése megalapozatlan, így összehasonlítottuk, a biztosabb talajon álló OBE közlítéssel a [39] cikkben és elég jó egyezést találtunk 100 MeV invariánstömeg felett.

5.2.3 Dalitz-bomlás

Amelyik részecske fotont bocsájt ki, az dileptonosan is bomlik (Dalitz-bomlás). Az M tömegű dileptonra bomlás szélességét meg lehet határozni a QED-ből [125]

$$\frac{d\Gamma}{dM^2} = \frac{\alpha}{3\pi} \frac{\Gamma_o(M^2)}{M^2} \tag{5.4}$$

ahol

$$\Gamma_o(M^2) = \frac{\lambda^{1/2}(M^2, m_N^2, m_\Delta^2)}{16 \pi m_\Delta^2} m_N [2 M_t(M^2) + M_l(M^2)]$$
 (5.5)

a teljes bomlási szélesség M tömegű tömeges fotonra és

$$\lambda(x, y, z) = x^2 + y^2 + z^2 - 2(xy + xz + yz).$$
(5.6)

 M_t és M_l a transzverzális és longitudinális mátrixelemek a kölcsönhatás konkrét alakjától függenek.

Jelentős járuléka van a Δ bomlásnak. A következő $N\Delta\gamma$ vertexet használjuk:

$$\mathcal{L}_{int} = eA^{\mu}\bar{\psi}_{\Delta}^{\beta}\Gamma_{\beta\mu}\psi_{N} \tag{5.7}$$

ahol

$$\Gamma_{\beta\mu} = gf\eta_{\beta\mu}$$

$$f = -1.5 \frac{m_{\Delta} + m_{N}}{m_{N}((m_{N} + m_{\Delta})^{2} - M^{2})}$$

$$\eta_{\beta\mu} = -M\chi_{\beta\mu}^{1} + \chi_{\beta\mu}^{2} + 0.5\chi_{\beta\mu}^{3}$$

$$\chi_{\beta\mu}^{1} = (q_{\beta}\gamma_{\mu} - q_{\nu}\gamma^{\nu}g_{\beta\mu})\gamma_{5}$$

$$\chi_{\beta\mu}^{2} = (q_{\beta}\bar{P}_{\mu} - q_{\nu}\bar{P}^{\nu}g_{\beta\mu})\gamma_{5}$$

$$\chi_{\beta\mu}^{3} = (q_{\beta}q_{\mu} - M^{2}g_{\beta\mu})\gamma_{5}$$

$$\bar{P} = \frac{1}{2}(p_{\Delta} + p_{N}).$$
(5.8)

g=2.72 a csatolási állandó, amit a $\Delta(1232)$ γ -bomlás parciális szélességéhez, $\Gamma_o(0)=0.72$ MeV-hez illesztettük. Ezzel a kölcsönhatással a következő mátrixelemet kapjuk:

$$M_{l} = (e f g)^{2} \frac{m_{\Delta}^{2}}{9 m_{N}} M^{2} 4(m_{\Delta} - m_{N} - q_{o})$$

$$M_{t} = (e f g)^{2} \frac{m_{\Delta}^{2}}{9 m_{N}} [q_{o}^{2} (5 m_{\Delta} - 3(q_{o} + m_{N})) - M^{2} (m_{\Delta} + m_{N} + q_{o})].$$
(5.9)

Az ebből a kölcsönhatásból eredő szélességet mutatjuk néhány $\Delta(1232)$ -tömegre a 5.2. ábra bal oldalán. Érdemes megfigyelni, hogy milyen nagy a különbség a csak 100 MeV-vel eltérő tömegű Δ -k szélessége között. Így, ha sikerül kísérletileg elkülöníteni a Δ Dalitz-bomlás járulékát, akkor a Δ -rezonancia közegbeli tömegeloszlása is vizsgálható. Mint megmutattuk [40], és majd később illusztráljuk, erre leginkább a 400–500 AMeV energiájú nehézion ütközésben van lehetőség.

Az η Dalitz-bomlás közepes tömegekre dominálja az invariáns spekrumot. A bomlási szélesség a következő alakban írható [121, 125]:

$$\frac{d\Gamma_{\eta \to \gamma e^+ e^-}}{dM} = \frac{4\alpha}{3\pi} \frac{\Gamma_{\eta \to 2\gamma}}{M} \left(1 - \frac{M^2}{m_p^2}\right)^3 |F_{\eta}(M)|^2 , \qquad (5.10)$$

ahol az alakfaktort

$$F_{\eta}(M) = \frac{1}{1 - M^2/\Lambda_n^2} \tag{5.11}$$

5.2. ábra: A különböző tömegű Δ -rezonanciák (bal oldali) és a π^0 -, az η - és az ω -mezonok (jobb oldali) Dalitz-bomlás szélességeinek tömegszerinti eloszlása.

módon parametrizáltuk [121] és

$$\Lambda_{\eta} = 0.77 \text{ GeV} . \tag{5.12}$$

Ez az alak a vektormezon-dominancia elvéből következik, és jól egyezzik a kísérleti értékkel $\Lambda_{\eta}=0.72\pm0.09~{\rm GeV}.$

Ultrarelativisztikus energiákon az ω Dalitz-bomlása is jelentős járulékot ad. A teljesség kedvéért ezt is tárgyaljuk. A bomlás szélessége [121]:

$$\frac{d\Gamma_{\omega \to \pi^o e^+ e^-}}{dM} = \frac{2\alpha}{3\pi} \frac{\Gamma_{\omega \to \pi^o \gamma}}{M} \left[\frac{(m_\omega^2 - m_\pi^2 + M^2)^2 - 4m_\omega^2 M^2}{(m_\omega^2 - m_\pi^2)^2} \right]^{3/2} |F_\omega(M)|^2 (5.13)$$

alakban írható, ahol az alakfaktort a következő alakban parametrizáltuk:

$$|F_{\omega}(M)|^2 = \frac{1}{(1 - M^2/\Lambda_{\omega}^2)^2 + \Gamma^2/\Lambda_{\omega}^2}$$
(5.14)

és

$$\Lambda_{\omega} = 0.65 \text{ GeV} , \qquad \Gamma = 0.075 \text{ GeV} .$$
 (5.15)

Ez az alakfaktor illeszkedik a kísérleti eredményekhez [121], de ellentmond a vektormezon-dominancia elvének. Az 5.2. ábrán a π^0 , az η és az ω mezonok Dalitzbomlás szélességeinek tömegszerinti eloszlása, $1/\Gamma_0 d\Gamma(M)/dM$ látható, ahol Γ_0 azon bomlás szélessége, ahol a dilepton helyett egy foton keletkezik. A számításainkban kiderült, hogy relativisztikus energiákon az ω -mezonok Dalitz-bomlásának járuléka a dilepton spektrumhoz elhanyagolható.

5.3 Eredmények

Előszőr a DLS adataival [37] hasonlítjuk össze az eredményeinket az 5.3. ábrán 1 AGeV energiájú α+Ca (bal felső ábra), d+Ca (jobb felső ábra), Ca+Ca (bal alsó ábra) és C+C (jobb alsó ábra) reakciókra. Az összehasonlíthatóság érdekében az eredményeink keresztül mentek a kísérleti szűrőn. Az egyes járulékokat feltüntettük az ábrákon. A kísérleti eredmények és az elméleti jóslatok jelentősen különböznek. Az elmélet 2–5-ös faktorral alulbecsli a kísérleti értékeket a 200-500 MeV tartományban. Érdemes azt is figyelembe venni, hogy az eltérés már a d+Ca rendszerben is megjelenik és hasonló nagyságrendű mint a Ca+Ca ütközésben, azaz az elért sűrűségtől függetlennek tűnik. A kísérleti értékek helyes értékeléséhez hozzá kell tenni, hogy ugyanez a csoport 7–8 éve már publikált dilepton spektrumokat [36], ahol körülbelül egy ötös faktorral alacsonyabb hatáskeresztmetszeteket közölt. S ekkor még az elmélet [39, 42, 114, 115, 116] a hibahatáron belül egyezett a DLS adatokkal. Az új publikációjuk szerint a régi mérések során, nem vették figyelembe, hogy a detektoraik a kisütésük után egy bizonyos ideig nem tudnak mérni. A vizsgálataik szerint csak az események 20 %-t rögzítették, így azt javasolják, hogy a régi adatokat felejtsük el. Egy ilyen hiba természetesen csökkenti az új méréseikbe vetett bizalmat, s nem csak az

5.3. ábra: Dileptonok invariánstömeg-spektruma 1 AGeV energiájú α +Ca (bal felső ábra), d+Ca (jobb felső ábra), Ca+Ca (bal alsó ábra) és C+C (jobb alsó ábra). Az egyes járulékokat feltüntettük az ábrákon. Az adatokat a [37] referenciából vettük, a modell-számításokban a kísérleti szűrőt használtuk.

elméleti fizikusok között. Az elmélet egyenlőre nem talált olyan effektust, új forrást, amely helyreállítaná a kísérleti adatok és az elmélet egyezését. A DLS csoport szerint, ha az η -multiplicitás 9–10-szerese lenne az eddig hittnek, mértnek [108] (4.12. ábra), akkor megmagyarázható lenne a spektrumuk. Ilyen mértékű különbséget az η -multiplicitást mérő TAPS együttműködés kizártnak tart. Ha a HADES mérései igazolják az új DLS adatokat, akkor úgy tűnik új jelenséggel van dolgunk. Már most megjegyezzük, hogy a 6. fejezetben tárgyalt ρ közegbeli módosulása nem oldja meg a problémát, hiszen a különbség már a két piontömeg alatt is jelentkezik, s ott a ρ -mezonnak nincs, nem lehet járuléka.

A 5.4 ábrán vizsgáljuk a dileptonok hatáskeresztmetszetének tömegszámtól és bombázó energiától való függését. 1 AGeV energián a tömegszám változásával a kép csak csekély mértékben változik. Talán csak az η jelentősége csökken, és a vektormezonoké nő a tömegszám növelésével. 130 MeV invariáns tömeg alatt (nem mutatjuk az ábrán) a π^0 és a 250 MeV < M < 400 MeV tartományban könnyű és közepes magokra az η Dalitz-bomlása dominálja a spektrumokat. Az Au+Au rendszerben az η csak ez előbb említett tartomány alsó részében jelentős. Mivel mindkét mezon élettartama jóval hosszabb mint a nehézion reakció időtartama, így mind a π^0 , mind az η a közegen kivül bomlik el, azaz csak az ütközés végi π^0 és η multiplicitást ismerhetjük meg Dalitz-bomlásaik mérésével. Mindkét mezon keltési hatáskeresztmetszete ismert, így ez a két tartomány felhasználható a dileptonok tömegspektrumának abszolut normalizációjához.

A π^0 és η által dominált tartományok között a $\Delta(1232)$ Dalitz-bomlása adja a legfontosabb járulékot, de a pn fékezési sugárzás sem elhanyagolható.

Nagyon fontos az tény, hogy 500 MeV felett, a keskeny ω -csúcsot leszámítva szinte az összes dilepton a $\pi^+\pi^-$ -annihilációból származik.

A bombázó energiától való függést tanulmányozva megállapíthatjuk, hogy az

5.4. ábra: Dileptonok invariánstömeg-spektruma 1 AGeV energiájú C+C (bal felső ábra), Ca+Ca (bal középső ábra), Au+Au (bal alsó ábra) ütközésekben, valamint Ca+Ca ütközésekben 0.5 AGeV (jobb felső ábra), 0.7 AGeV (jobb középső ábra) és 2.0 AGeV (jobb alsó ábra) energián. Az egyes járulékokat feltüntettük az ábrákon.

5.5. ábra: Dileptonok transzverzális impulzus spektruma (bal oldali ábra), valamint rapiditás-eloszlása (jobb oldali ábra) 1 AGeV energiájú Au+Au ütközésben. Az egyes járulékokat feltüntettük az ábrákon.

1 AGeV energiához képest a 2 AGeV energián a legnagyobb változást a pn fékezési sugárzás meredekségének a jelentős növekedése jelenti, s ennek következtében a pn fékezési sugárzás magasabb tömegeknél is jelentős marad, s kevesebb hely marad az annihiláció dominanciájának.

1 AGeV alá csökkentve a bombázó energiát, megfigyelhetjük, hogy az η jelentősége csökken, s 500 AMeV bombázó energián a modellünk nem is jósol egy η -mezont sem. Megjegyezzük, hogy ezeken az energiákon a számolásunk statisztikai hibája az η multiplicitására, valamint a $\pi^+\pi^-$ annihilációra nagyon jelentős. Így azt sem lehet eldöntenünk, hogy 500–700 AMeV bombázó energián a vektormezonok tartományában melyik forrás a jelentősebb: az annihiláció, vagy pedig a vektormezonok bomlása. A bombázó energiát csökkentve a $\Delta(1232)$ Dalitzbomlás jelentősége nő s 400–500 AMeV bombázó energiákon lehet a legtisztább körülmények között a tulajdonságait vizsgálni, ahogyan azt már a [40] munkánkban is jeleztük.

Megjegyezzük, hogy ezekben a számításokban a pionok s az η -mezonok elekt-

romágneses alakfaktorára a mért, a vákuumbeli függvényeket, míg a barionok alakfaktorára azonosan 1-et használunk.

Azért, hogy a 5.4. ábra baloldali grafikonjainak hasonlóságát számok nyelvére lefordítsuk, tanulmányoztuk az $M>270~{\rm MeV}$ tömegekre integrált hatáskeresztmetszeteknek atomszám-függését 1 AGeV energiájú szimmetrikus ütközésekben, $^{12}{\rm C}$ -től $^{197}{\rm Au}$ -ig, és $\sigma\sim (M_PM_T)^\alpha$ alakú skálázást találtunk

$$\alpha = \begin{cases} \pi^{+}\pi^{-} & \text{annihiláció} & 1.00 \pm 0.05 \\ pn & \text{fékezési sugárzás} & 0.96 \pm 0.02 \\ \Delta & \text{Dalitz-bomlás} & 1.10 \pm 0.15 \\ \eta & \text{Dalitz-bomlás} & 0.84 \pm 0.10 \\ \rho & - & \text{bomlás} & 1.20 \pm 0.10 \\ \omega & - & \text{bomlás} & 1.20 \pm 0.15 \ . \end{cases}$$

$$(5.16)$$

kitevőkkel. Mivel a kitevők többsége közel áll egyhez, így valóban nem lehet jelentős a különbség a 5.4. ábra baloldali oszlopának spektrumaiban. Megfigyelhető azonban, hogy a ρ - és ω -mezonok kitevője jóval nagyobb egynél. Ennek az az oka, hogy a vektormezonok keltésére ezeken az energiák jóval küszöb alattiak, így csak többszöri ütközésben gyűlhet össze az energia a keltésükre. Ez nehezebb magok ütközésében jóval gyakrabban fordul elő, mint könnyű magok esetében.

Míg az invariánstömeg szerinti eloszlás jól használható a külömböző források elkülönítéséhez, addig erre sem a transzverzális impulzus spektrum, sem a rapiditás-eloszlás nem alkalmas (lásd a 5.5. ábrát). Az összes forrásnak hasonló a járuléka, kivéve talán a a $\pi^+\pi^-$ -annihilációt, melynek kissé keményebb az transzverzális impulzus spektruma, mint a többié.

A különböző források jobb impulzustérbeli áttekintését nyújtja a 5.6. ábra, amelyen a fontosabb dileptonforrások impulzustérbeli eloszlásait mutatjuk. Az ábrán az $M>270~{\rm MeV}$ tömegtartományra integráltunk, s az egymást követő

5.6. ábra: A fontosabb dileptonforrások $M>270~{\rm MeV}$ -re integrált fázistérbeli eloszlásainak a szintvonalai. Az egymást követő szintvonalak a feleződő intenzitásokat jelzik.

5.7. ábra: A $\pi^+\pi^-$ -annihiláció járuléka három sűrűségtartományból 1 AGeV energiájú ¹⁹⁷Au+¹⁹⁷Au ütközésben; folytonos vonal: $\rho < \rho_0$; szaggatott vonal: $\rho_0 < \rho_0$; pontozott vonal: $\rho > 2\rho_0$.

szintvonalakkal a feleződő intenzitásokat jelezzük. Megjegyezzük, hogy a különböző járulékokhoz tartoző szintvonalaknak nincs egymással kapcsolatuk, azaz ugyanazzal a vonallal jelölt konturokhoz különböző ábrán különböző szintek tartozhatnak. Az ábrán nyilakkal jelöltük meg a céltárgy (y_t) és a lövedék (y_p) rapiditását. Jól látható, hogy a vektormezonok keletkezése inkább a középső rapiditás tartományban öszpontosul, míg a $\Delta(1232)$ és az η bomlástermékei széles fázistértartományban jelentkeznek.

Mivel minket elsősorban a vektormezonok sűrű közegbeli tulajdonságai érdekelnek, érdemes megvizsgálni, hogy a $\pi^+\pi^-$ -annihiláció melyik sűrűségtartományról hordoz információt. A 5.7. ábrán megvizsgáltuk a $\pi^+\pi^-$ -annihiláció tömegspektrumát a keltésük szerinti három sűrűség-tartományban. A bal oldali ábra az összes eseményeket, míg a jobb oldali centrális, (b < 3.5 fm) ütközéseket tartalmazza csak. Jól látható, hogy a különböző sűrűségtartományban keletke-

zett annihilációs dileptonok tömegspektruma jelentősen különbözik. Míg alacsony sűrűségen keletkezett dileptonok uralják az alacsony tömegű $M\approx 300~{\rm MeV}$ tartományt, a vektormezonok tömege táján már a sűrű közegben keletkezett dileptonok dominálnak. Ezt tovább lehet erősíteni a centrális ütközések kiválasztásával. A nehéz pároknak ez a feldúsulása annak köszönhető, hogy a sűrű fázisban jóval nagyobb valószínűséggel találunk nagy energiájú piont (ami szükséges nehéz dilepton keltéséhez), mint az ütközés táguló szakaszában. A centralitás feltétele csak növeli a sűrű fázis jelentőségét. Így $M>500~{\rm MeV}$ tömegű dileptonokat mérve a $\pi^+\pi^-$ -annihilációt és a ω -bomlást vizsgálhatjuk (lásd a 5.4. ábrát) nagy sűrűségeken (lásd a 5.7. ábrát és a 4.2. táblázatot).

6. Fejezet

Vektormezonok közegben

6.1 A királis szimmetria helyreállása

Az erős kölcsönhatásnak egy fontos szimmetriája a királis szimmetria [126, 127]. A királis szimmetria azt jelenti, hogy a balkezes és jobbkezes fermionok szétcsatolódnak, az $SU(3)_V$ mellett az $SU(3)_A$ is szimmetriája az erős kölcsönhatásnak. Ez csak tömeg-nélküli részecskék esetében lehetséges, hiszen tömeges balkezes részecskét át lehet Lorentz-transzfomálni jobbkezessé. Így a királis szimmetria megköveteli az alapvető fermionok nulla tömegét. A királis szimmetria jelentkezik a mátrixelemekben, de nem találjuk nyomát a részecskespektrumban. Ez csak úgy lehetséges, ha a szimmetria spontán sérül.

Mivel a QCD-t tartjuk az erős kölcsönhatás elméletének, így ki kell elégítenie két feltételt:

- 1. A QCD-nek közelítőleg királisan szimmetrikusnak kell lennie;
- 2. A vákuum nem lehet invariáns a királis transzformációkkal szemben, a közelítő szimmetriának spontán sérülnie kell.

A részecskefizikai fenomenológiából következik [130], hogy

$$m_u \approx 4 \text{ MeV}, \qquad m_d \approx 7 \text{ MeV}, \quad \text{\'es} \quad m_s \approx 150 \text{ MeV}.$$
 (6.1)

Így az első pont a kis kvark tömegek miatt kielégül.

A spontán szimmetriasértést az elnemtűnő vákuumbeli kvarkkondenzátum okozza [128, 129]:

$$<0 | \overline{u}u | 0> = <0 | \overline{d}d | 0> = <0 | \overline{q}q | 0> \approx -(225MeV)^3,$$
 (6.2)

amely értékeket a QCD-összegszabályokból nyertek.

A kvarkkondenzátum mind a rácsszámolások szerint, [131], mind a QCD-öszszegszabályok szerint [132, 133] csökken a hőmérséklet és/vagy a sűrűség növelésével. A jóslataik szerint a változása már a GSI-beli SIS gyorsító energiáján is észlelhető lesz. A királis fázisátalakulás (a kvarkkondenzátum eltűnése) 200 MeV körüli hőmérsékleten várható [133]. A kvarkkondenzátum sűrűségfüggését csak kis sűrűségekre ismerjük megbízhatóan. Ha ezt tovább extrapoláljuk, akkor a királis fázisátalakulás $\rho=3-4\rho_0$ sűrűségen következik be.

Ahogyan majd látni fogjuk a vektormezonok tömege erősen függ a kvarkkondenzátumtól [133]:

$$m_{\rho} \sim <\overline{q}q>^{1/3}$$
,

így érthető, hogy a vektormezonok közegbeli tulajdonságainak a vizsgálata nagyon fontos az erős kölcsönhatás megértése szempontjából.

6.1. ábra: A pion elektromágneses alakfaktora vákuumban (folytonos vonal); $\rho = \rho_0$ (pontozott vonal) és $\rho = 2\rho_0$ (pontozott-szaggatott vonal) sűrűségen Herrmann és társai számításaiban [134]; továbbá $\rho = \rho_0$ (szaggatott vonal) és $\rho = 2\rho_0$ (pontozott vonal) sűrűségen Hatsuda és Lee számításaiban [18] összehasonlítva a kísérleti adatokkal [135].

6.2 ρ -mezon és az elektromágneses alakfaktorok közegben

Mivel a pion elektromágneses alakfaktorát a ρ -mezon tulajdonságai határozzák meg [26], pontosabban a pion alakfaktora arányos a ρ spektrálfüggvényének abszolutérték négyzetével, a ρ -közegbeli módosulása a domináns pion-annihiláció járulékán keresztül, várhatóan módosítja a dilepton tömegspektrumot is.

A ρ -mezon közegbeli tulajdonságai vitatottak, s manapság intenzíven kutatják. Hadronikus modellekben [134, 136, 137, 138] a ρ -mezont egy csupasz ρ és egy $\pi^+\pi^-$ rezonancia keverékének tekintik. A modell paramétereit a pion vá-

kuumbeli elektromágneses alakfaktorához és a ρ vákuumbeli tömegéhez illesztik. Figyelembe véve a pion közegbeli felpuhulását (amelyet a pion és egy Δ -nukleon lyuk keveredése okoz [26]) egy vektormezon dominancián alapuló modellben Herrmann és társai [134] azt jósolják, hogy a ρ tömege nem változik a sűrűség növelésével, a rezonancia szélessége viszont jelentősen megnő (lásd 6.1. ábrán). Hasonló eredményre vezetett a többi hasonló modell is (pl. Chanfray és társai [136]).

Másrészről egy kvantumszíndinamika (QCD) szimmetriáin alapuló modell [139] vagy a QCD-összegszabályokon alapuló becslések [18, 140] azt sejttetik, hogy a csökkenő kvarkkondenzátum hatására a ρ -mezon tömege csökken a sűrűség növelésével.

A 6.1. ábrán az adatokat jelző pontok mutatják a pion szabad elektromágneses alakfaktorát [135], míg a görbék az elméleti jóslatokat különböző sűrűségeken. A folytonos vonal jelzi a szabad alakfaktort, a sűrűn pontozott és a szagatott-pontozott vonalak mutatják $\rho = \rho_o$ és $\rho = 2\rho_o$ sűrűségeken a ρ -mezon kiszélesedését a pion felpuhulásának hatására Herrmann és társai modelljében [134], míg a szaggatott és a pontozott vonalak ugyanezen sűrűségeken a csökkenő ρ tömeg miatt módosult pion alakfaktorát.

Megvizsgáltuk, hogy ez a két szcenárió milyen megfigyelhető effektuskat okoz. Kiszámoltuk 197 Au + 197 Au 1 AGeV energiájú ütközésben a dilepton tömegspektrumot vákuumbeli és a két elmélet szerinti vektormezon tulajdonságokkal. A 6.2. ábrán a folytonos vonal mutatja az annihiláció spektrumát a vákuumbeli alakfaktorral. A pontozott vonal a Herrmann modell, a szaggatott vonal a QCD-összegszabályok szerinti alakfaktorral számított pion-annihilációs komponenst mutatja. Ha az eltűnő kvarkkondenzátum ω -t és ρ -t módosító hatását vesszük figyelembe (a görbéket Q-val indexeltük), akkor a keskeny ω -csúcs helyett egy szélesebb

6.2. ábra: Dilepton tömegspektrum ¹⁹⁷Au+¹⁹⁷Au 1 AGeV energiájú ütközésben. A Q index-szel jelöljük az annihiláció komponenst $\pi^+\pi_Q^-$ t és ω -bomlást, ω_Q -t az eltűnő kvarkkondenzátum szcenárióban [140], a H-val indexelt annihiláció komponenst, $\pi^+\pi_H^-$ -t, a hadronikus modell [134] által jósolt ρ -tulajdonságokkal számoltuk.

eloszlás jelenik meg a spektrumban körülbelül 550 MeV invariáns tömeg körül, ahol a szélesség nem az ω kiszélesedésének, hanem az ω -keltés sűrűségeloszlásának a következménye. A $\pi^+\pi^-$ -annihiláció a szabad ρ tömegénél jelentősen lecsökken (felére, harmadára), és 3–4-szeresére nő a 450–650 MeV tartományban. A ρ hadronikus modellekben jósolt kiszélesedése nem okoz ilyen drasztikus változásokat. A pion-annihilációs komponens hasonlóan, bár csekélyebb mértékkel változik, mint a ρ -tömeg csökkenésének a hatására (H-val jelöltük). Megjegyezzük, hogy a módosított spektrum számolásakor feltettük, hogy a vektormezonok

keletkezésükkor azonnal elbomlanak, ami a ρ esetében elfogadható feltevés, az ω esetében valószínüleg hibás. (Ámbár az ω nyílvánvalóan kiszélesedik a közegben, ahogyan azt majd a következő fejezetben tárgyaljuk.) Már úgy tűnik van olyan kísérleti megfigyelés [16, 17], amely alátámasztja a ρ közegbeli változását, azonban a két fenti szcenárió között az eddigi adatok még nem tudnak dönteni [141].

1 GeV-es nehézion ütközésekben 500 MeV felett a vektormezonok járulékához képest a háttér elhanyagolható, így ezek a jósolt effektusok meghatározzák a második generációs HADES spektrométer szükséges felbontását.

6.3 Az ω -mezon kiszélesedése

Láttuk, hogy a pion-annihilációban keletkező ρ -mezon nem csúcsként jelentkezik a dilepton tömegspektrumban, hanem inkább széles eloszlásként, így a ρ -mezon közegbeli módosulásának kísérleti kimutatása elég nehéz feladat. Az ω -mezon keskeny szélessége miatt, kísérletileg sokkal könnyebben azonosítható, így közegbeli változása is a mérésekben egyszerűbben tanulmányozható.

Az ω -mezon megváltozásának számos oka lehet, a következőkben megemlítünk néhányat:

Az ütközési szélesedés: a két legfontosabb ütközési szélesedéshez vezető reakció a maganyagban az ωN → ωN és az ωN → πN. Míg az első hatását elég nehéz megjósolni, (egy Born-közelítéses gráf-számolásban a rugalmas ütközés nem realisztikus, 100 MeV-es nagyságrendű szélességet ad) a másodikra jó becslést lehet adni, hiszen az ellentétes reakció π⁻p → ωn hatáskeresztmetszete mért, s ebből a részletes egyensúly elve alapján az ωN → πN

6.3. ábra: Az ω -mezon kiszélesedése a $\omega N \to \pi N$ ütközések hatására.

hatáskeresztmetszet meghatározható. Impulzus közelítésben a

$$\Gamma^{\omega} = \rho \, p_{\omega} \sigma_{\omega N \to \pi N} / m_{\omega} \tag{6.3}$$

képlettel megkapható a szélesség. A (6.3) egyenletben ρ a rendszer sűrűsége, p_{ω} az ω -mezon impulzusa a maganyaghoz rögzített rendszerben, $\sigma_{\omega N \to \pi N}$ az előbb említett hatáskeresztmetszet, és m_{ω} az ω tömege. Látható, hogy ez a reakció már $\rho = \rho_0$ sűrűségen is közelítőleg megduplázza az ω -mezon szélességét.

- a kvarkkondenzátum modosulása királis szimmetria helyreállása miatt (lásd az előző fejezetet).
- a π és ρ -mezonok közegbeli módosulása (a $\pi \rho \omega$ -csatolás miatt az ω sajátenergiához járulékot ad a $\pi \rho$ -hurok [142])
- Az ω -meson közegbeli keveredése a σ -mezonnal (lásd a 6.4. ábrát) [143].

A következőkben a σ - ω keverődést vizsgáljuk.

$$\frac{\omega}{q^{\mu}}$$
 $\frac{N}{N}$ $-\frac{\sigma}{N}$ $-\frac{\sigma}{N}$

6.4. ábra: $\sigma - \omega$ keveredés nukleon-lyuk hurok által.

A közegben a szimmetriák sérülnek, így olyan átmenetek is megengedettek lehetnek, amelyek a vákuumban különféle szimmetria okok miatt tiltottak. A skalár (σ) és a vektor (ω) részecskék keveredése vákuumban tiltott, a két részecskének ellentétes a G-paritása, és erős kölcsönhatásban a G-paritás megmarad. Ezen kívül a csatolásuk a gerjesztés négyes-impulzusával arányos $(\omega^{\mu}\partial_{\mu}\sigma)$. A G-paritás megmaradásának a sérüléséhez elnemtűnő barion-sűrűség szükséges, hiszen ekkor a töltéstükrözési szimmetria sérül. Már ezekből a vizsgálatokból is leszűrhetjük, hogy a keveredés nő a sűrűséggel, s az ω impulzusával.

6.3.1 $\omega - \sigma$ keveredés

A Walecka-modell stabilitása kapcsán nulla hőmérsékleten már tanulmányozták a $\sigma - \omega$ keveredést [144, 145]. A következőekben elhanyagoljuk a rendszer antinukleon tartalmát, hiszen az itt vizsgált hőmérsékleteken, $T \leq 150$ MeV a járulékuk elhanyagolható. A számításokat a közeghez rögzített rendszerben hajtjuk végre, ekkor a keveredést a következő integrál adja:

$$\Pi^{\mu}(q) = ig_v g_s \lambda \int \frac{d^4k}{(2\pi)^4} \text{Tr}[G(k)G(k+q)\gamma^{\mu}]$$
(6.4)

ahol g_v, g_s az ω és σ csatolása a nukleonokhoz, λ az izospin degeneráció (maganyagra: $\lambda = 2$) és

$$G(k) = (\gamma_{\nu}k^{\nu} + M) \left[\frac{1}{k^2 - M^2 + i\epsilon} + i\frac{\pi}{E}\delta(k_0 - E)n_T(k) \right]$$

$$= (\gamma_{\nu}k^{\nu} + M)[D_F(k) + D_D(k)], \qquad (6.5)$$

 $E=\sqrt{M^2+|\vec{k}|^2},\,k^{\nu}$ és M a nukleonok effektív impulzusa és tömege — a Walecka-modellben [146] $k^{\nu}=p^{\nu}-g_v<\omega^{\nu}>$, illetve $M=m_n-g_s<\sigma>$,—

$$D_F(k) = \frac{1}{k^2 - M^2 + i\epsilon}, \qquad D_D(k) = i\frac{\pi}{E}\delta(k_0 - E)n_T(k)$$
 (6.6)

és $n_T(k)$ a nukleonok eloszlásfüggvénye T hőmérsékleten

$$n_T(k) = \frac{1}{1 + \exp\frac{E - \mu}{T}} \,. \tag{6.7}$$

Az átlósösszeg kiszámítása egyszerű:

$$Tr \left[(\gamma^{\nu} k_{\nu} + M)(\gamma^{\rho} (k_{\rho} + q_{\rho}) + M) \gamma^{\mu} \right] = 4(2k^{\mu} + q^{\mu})M \tag{6.8}$$

így

$$\Pi^{\mu} = i4Mg_{v}g_{s}\lambda \int \frac{d^{4}k}{(2\pi)^{4}} (2k^{\mu} + q^{\mu})
\times [D_{F}(k) + D_{D}(k)][D_{F}(k+q) + D_{D}(k+q)].$$
(6.9)

Válasszuk meg úgy a koordináta rendszert, hogy \vec{q} z-irányú legyen azaz: $q^{\mu} = (q_0, 0, 0, q_z)$. Mivel a bariontöltés megmaradása miatt

$$q_{\mu}\Pi^{\mu} = 0 \tag{6.10}$$

 Π^{μ} -nek csak egy komponense független ($\Pi_x = \Pi_y = 0$):

$$q_0 \Pi_0 - q_z \Pi_z = 0 . (6.11)$$

Elég kiszámítanunk Π_0 -t. Néhány nyílvánvaló lépés után azt kapjuk, hogy

$$\Pi_{0} = \frac{Mg_{v}g_{s}\lambda}{4\pi^{2}q_{z}} \int \frac{kdk}{E} n_{T}(k) \int_{-k}^{k} dk_{z} \left[\frac{2E + q_{0}}{k_{z} - \left(\frac{q^{2} + 2Eq_{0}}{2q_{z}}\right) - i\epsilon} - \frac{2E - q_{0}}{k_{z} - \left(\frac{2Eq_{0} - q^{2}}{2q_{z}}\right) + i\epsilon} \right]$$
(6.12)

Időszerű gerjesztések esetén, $(q_0 \ge q_z)$, az első tagnak nincs pólusa. A második tag járuléka a képzetes részhez:

$$\Im\Pi_0 = \frac{Mg_v g_s \lambda}{4\pi q_z} \int dE \, n_T(E) (2E - q^0) \,\Theta\left(k - \left| \frac{2Eq_0 - q^2}{2q_z} \right| \right) \tag{6.13}$$

Megoldva a

$$k \ge \left| \frac{2Eq_0 - q^2}{2q_z} \right| \tag{6.14}$$

egyenlőtlenséget, E-re azt kapjuk, hogy

$$\frac{q_0 - q_z \sqrt{1 - 4M^2/q^2}}{2} \le E \le \frac{q_0 + q_z \sqrt{1 - 4M^2/q^2}}{2} \tag{6.15}$$

amely a várt eredményt mutatja, vagyis a képzetes rész nulla, ha az $N\bar{N}$ -ra-bomlás energetikailag tiltott, azaz

$$\Im\Pi_0 = 0$$
 ha $q^2 < 4M^2$. (6.16)

Ha $q^2 \geq 4M^2$, a keveredés képzetes része:

$$\Im\Pi_{0} = \frac{Mg_{v}g_{s}\lambda}{4\pi q_{z}} \int dE \, n_{T}(E)(2E - q^{0})$$

$$\Theta\left(E - \frac{q_{0} - q_{z}\sqrt{1 - 4M^{2}/q^{2}}}{2}\right) \Theta\left(\frac{q_{0} + q_{z}\sqrt{1 - 4M^{2}/q^{2}}}{2} - E\right)$$
(6.17)

amely $T=0, n_T(E)=\Theta(E_f-E)$ esetén visszaadja a [145] publikációban kapott eredményt.

A valós részre a dk_z szerinti integrál elvégzése után a következő kifejezést kapjuk:

$$\Re\Pi_{0} = \frac{Mg_{v}g_{s}\lambda}{4\pi^{2}q_{z}}\mathcal{P}\int dE \, n_{T}(E) \left[(2E+q_{0})\ln\frac{q^{2}+2Eq_{0}-2kq_{z}}{q^{2}+2Eq_{0}+2kq_{z}} + (2E-q_{0})\ln\frac{q^{2}-2Eq_{0}-2kq_{z}}{q^{2}-2Eq_{0}+2kq_{z}} \right].$$
(6.18)

6.5. ábra: Járulék a) az ω szélességéhez, és b) a $\pi\pi\to e^+e^-$ hatáskeresztmetszethez.

Ezek az integrálok numerikusan elvégezhetőek, azonban a második tag számolásánál óvatosnak kell lenni a

$$E = \frac{q_0 \pm q_z \sqrt{1 - 4M^2/q^2}}{2} \tag{6.19}$$

pólusok körül (az első tagnak nincs pólusa). Ezt az eredményt kapták T=0-ra Henning és Friman [144], a [145]-ben megjelent képlet hibás.

Ahogyan azt vártuk, a keveredés nullához tart $q_z=0$ esetén.

A keveredés egyik következménye az ω -mezon kiszélesedése, míg a másik egy új, ω -mezonon keresztüli dileptonkeltési csatorna megjelenése közegben, ahogyan az a 6.5. ábrán látható. Az ω bomlási szélessége két, k_1 és k_2 impulzusú pionra [147]:

$$\Gamma = \frac{1}{2m_{\omega}} |\mathcal{M}|^2 \frac{d^3 k_1}{2k_1^0 (2\pi)^3} \frac{d^3 k_2}{2k_2^0 (2\pi)^3} (2\pi)^4 \delta^4 (P - k_1 - k_2) S \tag{6.20}$$

Az ω -mezon két-pionos bomlásának a végállapota lehet $\pi^+\pi^-$ és $\pi^0\pi^0$. Az első esetben a szimmetria faktor S=1, a második esetben S=1/2.

Az omega spinjére kiátlagolt szélessége a nyugalmi rendszerében:

$$\Gamma^{\pi^{+}\pi^{-}} = \frac{g_{\sigma\pi}^{2}}{4\pi} \frac{k_{\pi}}{6g_{z}^{2}} |\Pi_{0}|^{2} |G_{\sigma}|^{2}$$
(6.21)

ahol $k_{\pi} = \sqrt{0.25 m_{\omega}^2 - m_{\pi}^2}$ a végállapoti pion impulzus. A $\pi^0 \pi^0$ végállapot parciális szélessége a fele a $\pi^+ \pi^-$ végállapotének. Így

$$\Gamma^{\omega \to \pi\pi} = \frac{g_{\sigma\pi}^2}{4\pi} \frac{k_{\pi}}{4q_z^2} |\Pi_0|^2 |G_{\sigma}|^2 \tag{6.22}$$

Most kiszámítjuk a 6.5b. ábrán mutatott pion-annihilációs folyamat hatáskeresztmetszetét. A hatáskeresztmetszet ugyanaz a $\pi^0\pi^0$ és a $\pi^+\pi^-$ csatornára.

$$\sigma = \frac{1}{4[(p_1p_2)^2 - m_{\pi}^4]^{1/2}} |\mathcal{M}|^2 \frac{m_e}{k_1^0} \frac{d^3k_1}{(2\pi)^3} \frac{m_e}{k_2^0} \frac{d^3k_2}{(2\pi)^3}$$

$$(2\pi)^4 \delta^4(p_1 + p_2 - k_1 - k_2)$$
(6.23)

Mivel az ω és a γ megmaradó áramhoz csatolódik, a propagátorokban csak a $g_{\mu\nu}$ tag ad járulékot. Egyszerűség kedvéért számítsuk ki a folyamat hatáskeresztmetszetét $M=m_{\omega}$ invariáns energiánál. A fázistér integrálok elvégzése után azt kapjuk, hogy

$$\sigma^{\pi\pi\to e^+e^-}(m_{\omega}) = \frac{\Gamma^{\omega\to\pi\pi}}{(\Gamma^{\omega}_{free} + \Gamma^{\omega\to\pi\pi})^2} \left(\frac{\alpha}{g_v}\right)^2 \frac{32\pi^2 m_{\omega}}{3p_{\pi}^2}$$

$$= \frac{4\Gamma^{\omega}_{free}\Gamma^{\omega\to\pi\pi}}{(\Gamma^{\omega}_{free} + \Gamma^{\omega\to\pi\pi})^2} 4.68\mu b. \qquad (6.24)$$

Azaz, a hatáskeresztmetszet közegfüggése csak a $\Gamma^{\omega \to \pi\pi}$ tagon keresztül jelenik meg. A hatáskeresztmetszetnek maximuma van, ha $\Gamma^{\omega}_{free} = \Gamma^{\omega \to \pi\pi}$, és ekkor $\sigma^{\pi\pi \to e^+e^-}(m_{\omega}) = 4.68 \mu b$. Érdemes ezt összehasonlítani a vákuumbeli, p-hullámú folyamat hatáskeresztmetszetével, melynek a közbenső állapota egy ρ -mezon, $\sigma^{\pi^+\pi^-\to e^+e^-}(m_{\omega}) = 6\mu b$. Vákuumban csak a $\pi^+\pi^-$ csatorna ad járulékot, míg közegben a $\pi^0\pi^0$ annihiláció is, így a bemenő izospinre átlagolt szabad hatáskeresztmetszet $\sigma_{vac} = 1.33 \mu b$ kisebb, mint az omega által közvetített folyamat maximuma: $\sigma^{max}_{anyag} = 1.56 \mu b$.

A szélesség kiszámításához a bemenő adatok a következőek:

6.6. ábra: $\pi\pi$ s-hullámú szórási fázistolások illesztése az adatokhoz [148].

• σ tömeg: m_{σ} ; és a $\sigma\pi$ csatolási állandó: $g_{\sigma\pi}$; Az s-hullámú $\pi\pi$ szórási fázistolásokhoz illesztjük őket. Feltételezzük, hogy a legfontosabb járulékot a σ -mezon kicserélése adja. Kiszámítjuk a σ sajátenergiáját egy (pion- és kaon-) hurok közelítésben (lásd a 6.11b. ábrát). A vertexekben bevezetünk egy

$$F(q) = \frac{\Lambda^2}{\Lambda^2 - q^2} \tag{6.25}$$

alakú levágást. A számunkra érdekes energia-tartományban ($\sqrt{s}\approx m_{\omega}$) ez jó leírását adja a $\pi\pi$ szórás fáziseltolásainak (6.6. ábra) a

$$m_{\sigma} = 840 \text{ MeV}, g_{\sigma\pi} = 12.8 m_{\pi}, g_{\sigma K} = 8.68 m_{K}, \Lambda = 1.4 \text{ GeV}$$
 (6.26)

paraméterekkel. A számítás részleteit a 6.3.3 fejezetben közöljük.

• $\sigma N\bar{N}$ csatolási állandó: g_s ; A $g_s=12.78$ értéket [149]-ból vesszük, ahol azt a πN szórási amplitúdókhoz illesztették. Tömeghéjon lévő nukleonokra végezték el az illesztést, míg mi a tömeghéjtól távol használjuk. Megjegyezzük továbbá, hogy az általuk használt σ -mezon egy effektív részecske, amellyet a πN szórási amplitúdó magyarázatára, s nem a $\pi\pi$ -szórás fáziseltolásainak leírására használtak. Így nem meglepő, hogy az ő σ -részecskéjük tulajdonságai valamelyest különböznek ($m'_{\sigma}=667$ MeV, $g'_{\sigma\pi\pi}=26m_{\pi}$) az általunk a $\pi\pi$ -szórásra használttól. Másrészről a Walecka-modellben szereplő effektív skalár mezon és a nukleon csatolási állandója is körülbelül megegyezik a fenti értékkel. Összességében ez a csatolási állandó a legbizonytalanabb a modellünkben.

• a nukleonok effektív tömege;

A nukleonok effektív tömegét a nemlineáris Walecka-modellben [146] számítjuk ki, amely reális alapállapoti tulajdonságokat szolgáltat a magoknak. ($\rho_0 = 0.17 \text{ fm}^{-3}$, kötési-energia=-16 MeV, összenyomhatóság K=290 MeV, és alapállapoti sűrűségen az effektív tömeg, $m^*/m = 0.7$).

- $\omega N \bar{N}$ csatolási állandó: g_v ; Az $\omega N N$ csatolásra a $g_v = 9$ értéket használjuk, amely az alacsonyenergiás hadron fenomenológia egyik eredménye [150].
- foton és az ω csatolás; A foton és az ω csatolását a vektormezon-dominancia alapján határozzuk meg: $f_{\gamma\omega} = e/g_v m_{\omega}^2$.

6.3.2 Eredmények

Az 6.7. ábrán egy $p_{\omega} = 0.2 \text{ GeV/c}$ impulzusú ω -mezon szabad és a $\sigma - \omega$ keveredésből eredő szélességét mutatjuk. Körülbelül ρ_0 sűrűségnél a közeg által okozott szélesség eléri a vákuumbeli szélességet (8 MeV), és utána meredeken növekszik,

6.7. ábra: A $p_{\omega}=200~{\rm MeV}$ impulzus
ú ω -mezon a $\sigma-\omega$ keveredésből eredő szélesedésének a sűrűségfüggése.

és kicsivel 2 ρ_0 sűrűség felett eléri a 100 MeV-et.

A közeg által $\rho=\rho_0$ sűrűségen okozott parciális szélesség impulzus-függését mutatjuk a 6.8. ábrán. 200 MeV/c impulzus felett a kétpionos bomlási csatorna dominál a vákuumbeli hárompionos bomlás felett. A gyorsan mozgó ω -mezonok élettartama sűrű közegben lecsökkenhet még 1 fm/c alá is. Ezt a jóslatot a $\gamma+A\to A+e^+e^-$ kísérletekben lehet talán ellenőrizni [151, 152].

A keveredés függ a hőmérséklettől, de gyengébben mint a sűrűségtől, ahogyan azt korábban már tárgyaltuk. A szélesség csökken a növekvő hőmérséklettel, ahogyan az a 6.9. ábrán látható $p_{\omega}=0.2~{\rm GeV/c}$ impuzusra és $\rho=2\rho_0$ sűrűségen. A hőmérsékletet 0-ról 100 MeV-re növelve a szélesség megközelítőleg a negyedére csökken.

Ezeknek az effektusoknak a dilepton spektrumban megfigyelhető következményei lehetnek. A vizsgált effektus kétféleképpen módosítja a dilepton spektrumot:

6.8. ábra: Az ω keveredésből eredő parciális szélességének impulzusfüggése $\rho=\rho_0$ sűrűségen.

6.9. ábra: A $p_{\omega}=200~{\rm MeV}$ impulzusú ω -mezon a keveredésből eredő szélesedésének a hőmérséklet függése $\rho=2\rho_0$ sűrűségen.

6.10. ábra: Dileptonok tömegspektruma 1.3 GeV energiájú π^-+^{208} Pb ütközésben. A felső, a középső és az alsó ábra a teljes, a $p_t < 0.1$ GeV valamint a $p_t > 0.6$ GeV impulzus-vágású spektrumot mutatja. Sűrű, pontozott a ρ , pontozott a "szabad", s folytonos vonal a módosult ω járulékát jelöli.

az ω -csúcs kiszélesedik, s ezzel a csúcs magassága is csökken, és a $\pi\pi$ -annihiláció megjelenik közbenső ω -mezonon keresztül is.

Megvizsgáltuk ezen effektusok hatását az 1.3 GeV energiájú $\pi^- + ^{208}$ Pb ütközés dilepton tömegspektrumán. A vektormezonok tömegének a tartományában (600 MeV < M < 900 MeV) a ρ és az ω bomlásai adják a domináns járulékot. A 6.10. ábrán sűrű, pontozott vonal mutatja a ρ járulékát, míg a "szabad", σ -val nem keveredő ω spektrumát pontozott, a módosult ω járulékát folytonos vonallal jelöljük. A legfelső ábra a teljes spektrumot mutatja. A módosult és a szabad járulék alig különbözik egymástól. A középső ábrán azon dileptonok tömegspektrumát ábrázoljuk, amelyek transzverzális impulzusa kicsi, p_t < 100 MeV. Mivel ezen dileptonok jobbára a közeghez képest lassúak, így érthető, hogy a forrásukul szolgáló ω keveredése a σ -val elhanyagolható. Teljesen más képet kapunk, ha a gyors, (p_t > 600 MeV) dileptonokat vizsgáljuk. Ekkor a kiszélesedett ω eltűnik a ρ háttér alatt. Ez az impulzus-függés segíthet effektus megfigyelésében. A SIS-nél épülő HADES detektorral az ω -csúcs és a háttér arányát kell vizsgálni. A nagy impulzusú dileptonok spektrumában az ω -csúcs eltünése a keveredés jele lehet.

Fontos megjegyezni, hogy nehézion ütközésekben M>500 MeV invariáns tömegű dileptonok domináns része $\pi^+\pi^-$ annihilációban keletkezik, egy éles "direkt" ω -csúcstól eltekintve, míg pn fékezési sugárzás, Δ -bomlás és "direct" ρ -bomlás csak csekély szerepet játszanak.

6.3.3 $\pi\pi$ fáziseltolások az s-csatornában

Az m_{σ} és $g_{\sigma\pi\pi}$ meghatározása hosszadalmasabb feladat, az s-hullámú $\pi\pi$ szórási fázistolásokhoz illesztjük őket. Feltételezzük, hogy a legfontosabb járulékot a σ -mezon kicserélése adja.

a)
$$\frac{\pi}{\pi}$$
 b) $-\frac{\sigma}{\pi}$, K π , K

6.11. ábra: a) $\pi\pi$ s-hullámú szórás; b) σ sajátenergia.

$$\tan(\delta_0(q)) = -\frac{\Im G_{\sigma}^{-1}(q)}{\Re G_{\sigma}^{-1}(q)}$$
(6.27)

$$G(q) = \frac{1}{q^2 - m^2 - \Pi(p)} \ . \tag{6.28}$$

a σ -mezon teljes propagátora.

Kiszámítjuk a σ sajátenergiáját $(\Pi(p))$ egy (pion- és kaon-) hurok közelítésben (lásd a 6.11b. ábrát). A vertexekben bevezetünk egy

$$F(q) = \frac{\Lambda^2}{\Lambda^2 - q^2} \tag{6.29}$$

alakú levágást. A sajátenergia két azonos struktúrájú tagból áll, egyik a kaon, a másik a pion-hurok járuléka. Itt a pion-hurok $(\pi^+\pi^-$ vagy $\pi^0\pi^0)$ járulékát vezetjük le.

$$-i\Pi(q) = g_{\sigma\pi}^2 F^2(q) \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - m_{\pi}^2 + i\epsilon} \frac{1}{(k-q)^2 - m_{\pi}^2 + i\epsilon}$$
(6.30)

Válasszuk azt a koordináta rendszert, ahol $q^{\mu} = (q_0, \vec{0})$. Ebben a rendszerben egyszerűsíthetjük a sajátenergia kifejezését:

$$\Pi(q) = g_{\sigma\pi}^2 F(q_0)^2 \int \frac{d^3k}{(2\pi)^3} \frac{1}{2E_{\pi}} \frac{1}{q_0} \left[\frac{1}{q_0 - 2E_{\pi} + i\epsilon} + \frac{1}{q_0 + 2E_{\pi} - i\epsilon} \right]$$
(6.31)

ahol
$$E_{\pi} = \sqrt{m_{\pi}^2 + (\vec{k})^2}$$
.

Célszerű a retardált sajátenergiát kiszámolni:

$$\Pi^r(q_0 \ge 0) = \Pi(q_0), \qquad \Pi^r(q_0 < 0) = -\Pi(q_0)$$
(6.32)

hiszen az alakfaktorok nélkül a retardált sajátenergia analitikus függvénye q_0 -nak, s így a képzetes rész meghatározása után egy egyszerű diszperziós integrál adja meg a valós részt.

Felhasználva a

$$\frac{1}{x - x' + i\epsilon} = \mathcal{P}\frac{1}{x - x'} \mp i\pi\delta(x - x') \tag{6.33}$$

azonosságot a sajátenergia képzetes része pozitív q_0 -ra:

$$\Im\Pi_{\pi}^{r}(q_0) = -\frac{3g_{\sigma\pi}^2}{32\pi}F^2(q_0)\frac{\sqrt{q_0^2 - 4m_{\pi}^2}}{q_0}\theta(q_0^2 - 4m_{\pi}^2)$$
(6.34)

(ha nincs megoldása a $q_0 = 2E_{\pi}$ egyenletnek, akkor a képzetes rész nulla).

A sajátenergia valós részét megadja a diszperziós integrál:

$$\Re\Pi_{\pi}^{r}(q_0) = \frac{3g_{\sigma\pi}^2}{16\pi^2} F^2(q_0) \mathcal{P} \int_{2m_{\pi}}^{\infty} dq' \frac{\sqrt{q'^2 - 4m_{\pi}^2}}{q_0^2 - q'^2}$$
(6.35)

A σ -tömeghez illesztve renormáljuk a divergens σ -sajátenergiát a Pauli-Villars módszerrel. Bevezetünk egy Λ nehéz mezont, amely járuléka eltünteti a pion- és kaon-hurokban keletkező divergenciákat. A Λ sajátenergiáját a pionéhoz hasonlóan számíthatjuk ki. Így

$$\Pi_{\pi}(q_{0}) = -\frac{3g_{\sigma\pi}^{2}}{16\pi^{2}}F^{2}(q_{0})\left\{\log\left(\frac{m_{\Lambda}}{m_{\pi}}\right) + \frac{(q_{0}^{2} - 4m_{\pi}^{2})^{1/2}}{2q_{0}}\log\left[\frac{q_{0} - (q_{0}^{2} - 4m_{\pi}^{2})^{1/2}}{q_{0} + (q_{0}^{2} - 4m_{\pi}^{2})^{1/2}}\right] - \frac{(4m_{\Lambda}^{2} - q_{0}^{2})^{1/2}}{2q_{0}}\left(2\arctan\frac{(4m_{\Lambda}^{2} - q_{0}^{2})^{1/2}}{q_{0}} - \pi\right)\right\} - i\frac{3g_{\sigma\pi}^{2}}{32\pi}F^{2}(q_{0})\frac{\sqrt{q_{0}^{2} - 4m_{\pi}^{2}}}{q_{0}}\theta(q_{0}^{2} - 4m_{\pi}^{2}) \tag{6.36}$$

és

$$\Pi_K(q_0) = -\frac{g_{\sigma K}^2}{4\pi^2} F^2(q_0) \left\{ \log \left(\frac{m_{\Lambda}}{m_{K}} \right) \right\}$$

$$+\frac{(4m_K^2 - q_0^2)^{1/2}}{2q_0} \left(2 \arctan \frac{(4m_K^2 - q_0^2)^{1/2}}{q_0} - \pi \right) - \frac{(4m_\Lambda^2 - q_0^2)^{1/2}}{2q_0} \left(2 \arctan \frac{(4m_\Lambda^2 - q_0^2)^{1/2}}{q_0} - \pi \right) \right\}$$
(6.37)

(a képzetes részhez a Λ -nak nincs járuléka, hiszen $2m_{\Lambda} > q_0$). A renormált σ -tö-meget, m_{σ} -t, azzal a feltétellel definiáljuk, hogy a σ -propagátor nevezőjének reális része legyen nulla, ha $q^2 = q_0^2 = m_{\sigma}^2$. Így

$$\Re G_{\sigma}^{-1}(q_{0}) = q_{0}^{2} - m_{\sigma}^{2} \\
-\frac{3g_{\sigma\pi}^{2}}{16\pi^{2}} \left\{ F^{2}(m_{\sigma}) \frac{(m_{\sigma}^{2} - 4m_{\pi}^{2})^{1/2}}{2m_{\sigma}} \log \left[\frac{m_{\sigma} - (m_{\sigma}^{2} - 4m_{\pi}^{2})^{1/2}}{m_{\sigma} + (m_{\sigma}^{2} - 4m_{\pi}^{2})^{1/2}} \right] \\
-F^{2}(q_{0}) \frac{(q_{0}^{2} - 4m_{\pi}^{2})^{1/2}}{2q_{0}} \log \left[\frac{q_{0} - (q_{0}^{2} - 4m_{\pi}^{2})^{1/2}}{q_{0} + (q_{0}^{2} - 4m_{\pi}^{2})^{1/2}} \right] \\
-F^{2}(m_{\sigma}) \frac{(4m_{\Lambda}^{2} - m_{\sigma}^{2})^{1/2}}{2m_{\sigma}} \left(2 \arctan \left[\frac{(4m_{\Lambda}^{2} - m_{\sigma}^{2})^{1/2}}{m_{\sigma}} \right] - \pi \right) \\
+F^{2}(q_{0}) \frac{(4m_{\Lambda}^{2} - q_{0}^{2})^{1/2}}{2q_{0}} \left(2 \arctan \left[\frac{(4m_{\Lambda}^{2} - q_{0}^{2})^{1/2}}{q_{0}} \right] - \pi \right) \right) \\
-\frac{g_{\sigma K}^{2}}{4\pi^{2}} \left\{ F^{2}(m_{\sigma}) \frac{(4m_{K}^{2} - m_{\sigma}^{2})^{1/2}}{2m_{\sigma}} \left(2 \arctan \left[\frac{(4m_{K}^{2} - m_{\sigma}^{2})^{1/2}}{m_{\sigma}} \right] - \pi \right) \right. \\
-F^{2}(q_{0}) \frac{(4m_{K}^{2} - q_{0}^{2})^{1/2}}{2q_{0}} \left(2 \arctan \left[\frac{(4m_{K}^{2} - q_{0}^{2})^{1/2}}{m_{\sigma}} \right] - \pi \right) \\
-F^{2}(m_{\sigma}) \frac{(4m_{\Lambda}^{2} - m_{\sigma}^{2})^{1/2}}{2m_{\sigma}} \left(2 \arctan \left[\frac{(4m_{\Lambda}^{2} - m_{\sigma}^{2})^{1/2}}{m_{\sigma}} \right] - \pi \right) \\
+F^{2}(q_{0}) \frac{(4m_{\Lambda}^{2} - q_{0}^{2})^{1/2}}{2q_{0}} \left(2 \arctan \left[\frac{(4m_{\Lambda}^{2} - q_{0}^{2})^{1/2}}{m_{\sigma}} \right] - \pi \right) \right\}$$
(6.38)

Az $m_\Lambda \to \infty$ határesetben az $m_\Lambda\text{--t}$ tartalmazó tagok eltünnek, így végűl a

$$\begin{split} G_{\sigma}^{-1}(q_0) &= q_0^2 - m_{\sigma}^2 \\ &- \frac{3g_{\sigma\pi}^2}{16\pi^2} \left\{ F^2(m_{\sigma}) \frac{(m_{\sigma}^2 - 4m_{\pi}^2)^{1/2}}{2m_{\sigma}} \log \left[\frac{m_{\sigma} - (m_{\sigma}^2 - 4m_{\pi}^2)^{1/2}}{m_{\sigma} + (m_{\sigma}^2 - 4m_{\pi}^2)^{1/2}} \right] \\ &- F^2(q_0) \frac{(q_0^2 - 4m_{\pi}^2)^{1/2}}{2q_0} \log \left[\frac{q_0 - (q_0^2 - 4m_{\pi}^2)^{1/2}}{q_0 + (q_0^2 - 4m_{\pi}^2)^{1/2}} \right] \right\} \end{split}$$

$$-\frac{g_{\sigma K}^{2}}{4\pi^{2}} \left\{ F^{2}(m_{\sigma}) \frac{(4m_{K}^{2} - m_{\sigma}^{2})^{1/2}}{2m_{\sigma}} \left(2 \arctan \left[\frac{(4m_{K}^{2} - m_{\sigma}^{2})^{1/2}}{m_{\sigma}} \right] - \pi \right) - F^{2}(q_{0}) \frac{(4m_{K}^{2} - q_{0}^{2})^{1/2}}{2q_{0}} \left(2 \arctan \left[\frac{(4m_{K}^{2} - q_{0}^{2})^{1/2}}{q_{0}} \right] - \pi \right) \right\} + i \frac{3g_{\sigma\pi}^{2}}{32\pi} F^{2}(q_{0}) \frac{\sqrt{q_{0}^{2} - 4m_{\pi}^{2}}}{q_{0}} \theta(q_{0}^{2} - 4m_{\pi}^{2})$$

$$(6.39)$$

eredményhez jutunk.

7. Fejezet

Összegzés

Magfizikában az elmúlt évek kutatásainak egyik fő iránya a sűrű és (vagy) forró maganyag vizsgálata. A relativisztikus nehézion ütközések egyedülálló lehetőséget nyújtanak ennek az "anyagnak" laboratóriumi körülmények közötti vizsgálatához.

A nehézion reakciók dinamikáját egy mikroszkópikus transzport-modell, BUU segítségével tanulmányoztuk. Ebben a modellben a nukleonok mellett a 2 GeV/ c^2 -nél kisebb tömegű barion rezonanciák, valamint a pionok, η -k, ρ -k és σ -mezonok propagálnak.

A kölcsönhatás hosszú hatótávolságú részét egy impulzustól függő átlagtérpotenciállal közelítjük, amelynek a barionok a forrásai és csak a barionokra hat. A töltött részecskékre hat ezenkívül a Coulomb-erő. A potenciál paramétereit a maganyag alapállapoti tulajdonságaihoz rögzítettük. Módszerünk —még a Lorentz-transzformáció után is — stabil magot szolgáltat. Megmutattuk, hogy modellünk a nehézion reakciókban is kielégítő pontossággal megtartja az energiamegmaradást.

Hatáskeresztmetszeteket vezettünk le, vezettünk be az összes lehetséges üt-

7. Összegzés

közésre (néhány mezon-mezon ütközés kivételével). Az irodalomban már létezik hasonló modell, de a hatáskeresztmetszeteinket másoktól függetlenül határoztuk meg. A rezonanciák tulajdonságait a lehető legrealistábban, a kísérleteket kielégítő módon írtuk le. Bevezettünk ω és K^+ keltő csatornákat; s az ω -keltés hatáskeresztmetszeteit magunk illesztettük az elérhető kísérleti adatokhoz. A modellünk részletei megtalálhatók a [33, 39, 42, 44, 59, 97] publikációkban.

Ezután ellenőríztük a modellünket pion-mag, proton-mag és mag-mag ütközésekben. A pion-mag ütközésben sokkal jobb egyezést sikerült elérnünk, mint a modellünk korábbi verziójában [25], az elérhető exkluzív és inkluzív kísérleti eredményeket ragyogóan reprodukáljuk. Az elnyelési hatáskeresztmetszetnek mind az energiától, mind az elnyelő mag tömegszámától való függését helyesen kaptuk meg. A modell eredményei azt sejttetik, hogy a pion-elnyelés megértéséhez nincs szükség magasabb rendű folyamatok, a több nukleonon való elnyelés explicit bevezetésére.

Vizsgáltuk ezenkívül a proton-nukleon ütközéseket, s ezekben különösen a K^+ -keltést. Itt is jó eredményeket kaptunk [97, 98], bár ez kaonokra lehet a véletlen műve is, hiszen a kaonokra nem vezettünk be semmilyen sajátenergiát, amelynek létezése elvárt, s nem elhanyagolható hatással járhat. A pionok és barionok impulzus-spektrumát is kielégítően le tudtuk írni.

Összehasonlítottuk a modellünk jóslatait nehézion fizikai mérések eredményeivel. Megállapítottuk, hogy a barion- a pion- és az η -spektrumok meredekségét és a pionok szögeloszlását kielégítően reprodukáljuk, azonban a pionok multiplicitását 20–30 %-kal túl-, az η -multiplicitást 30–50 %-kal alulbecsüljük. Ezek közül az η esetében lehetséges, hogy az általunk alkalmazott $pn \to pn\eta$ mikroszkópikus hatáskeresztmetszet túl alacsony. Nem változtattunk rajta, mert a filozófiánk az, hogy semmilyen bemenő paramétert nem illesztünk a nehézion fizikai reakciókbeli

eredményhez. Ellenkező esetben modellünk elveszítené jósló képességét.

Miután leellenőrízve úgy találtuk, hogy a modellünk valósághoz (kísérleti eredményekhez) hűen írja le a mért mennyiségeket, tanulmányoztuk vele a nehézion reakciók dinamikáját. Főbb megállapításaink a következőek voltak:

- 1–2 GeV bombázó energián az elérhető barion-sűrűség 2–3 ρ_0
- 2 GeV bombázó energián a barionok körülbelül egy harmada $\Delta(1232)$ -rezonancia. A többi rezonancia száma elhanyagolható, 1–2 ezrelék.
- A detektorokba eljutó pionok és éták az ütközés viszonylag késői szakaszában keletkeznek, alacsony sűrűségeken.
- A reakció nagy sűrűségű szakaszáról a mélyen küszöb alatti reakciókban keltett részecskék a legjobb hírmondók. Például 1 AGeV energiájú Au+Au ütközésben a vektormezonoknak lényegében a fele $\rho > 2\rho_0$, a másik fele pedig a $2\rho_0 > \rho > \rho_0$ sűrűségű tartományban keletkezik. A ritka, $\rho < \rho_0$ sűrűségű tartományban a keltésük valószínűsége elhanyagolható.
- Küszöb alatti reakciókban keltett részecskék fontos forrása az ismeretlen hatáskeresztmetszetű NR, vagy πR ütközés.

Modellünket dileptonkeltés vizsgálatára is alkalmaztuk. Figyelembe vettük a jelentős dilepton-forrásokat: $\pi^+\pi^-$ -annihiláció, direkt bomlásai a ρ - és az ω -mezonoknak, a proton-neutron és pion-nukleon fékezési-sugárzások, és a Dalitz-bomlásait a π^0 -, η - és az ω -mezonoknak, valamint a $\Delta(1232)$ - és N(1440)-rezonanci-áknak. Ezek közül a pion-nukleon fékezési-sugárzás, valamint az ω -mezonnak és a N(1440)-rezonanciának a Dalitz-bomlásai elhanyagolhatóak.

7. Összegzés

Kiszámítottuk a dileptonok tömegspektrumát a megmért 1 AGeV energiájú d+Ca, α+Ca, C+C valamint Ca+Ca ütközésekben. Az új DLS-adatok és a modell jóslatai között óriási különbség van mindegyik rendszerre. Nem is látszik olyan reakció, amely megmagyarázná ezt.

Az invariáns tömegspektrumot tanulmányozva megállapítottuk, hogy minden vizsgált rendszerre a piontömeg alatt a π^0 -Dalitz-bomlása, míg a nagy tömegek tartományában a $\pi^+\pi^-$ -annihiláció és a keskeny ω -csúcs dominálják a hatáskeresztmetszeteket. Ez a tény megnyitja az utat a vektormezonok közegbeli tulajdonságainak a tanulmányozásához.

Ezek után vizsgáltuk a dileptonkeltés tömegszámtól, valamint a bombázó energiától való függését. Azt találtuk, hogy 1 AGeV bombázó energián a vektormezonokat leszámítva mindegyik komponens járuléka megközelítőleg $\sim (A_t A_p)$ szerint skálázódik. A vektormezonoknak $\sim (A_t A_p)^{1.2}$ szerint függ a hatáskeresztmetszetük a céltárgytól és lövedéktől. Ez a magasabb kitevő is jelzi, hogy keltésük túlnyomóan a sűrű közegben történik. Azt is megmutattuk, hogy a nagy tömegű, $(M>600~{\rm MeV})$ pion-annihilációból származó dileptonok szintén túlnyomórészt a reakció sűrű fázisából származnak.

Alacsonyabb energián, E $\approx 400-500$ AMeV — az η -nak a spektrumból való eltünése miatt — kinyillik egy ablak a $\Delta(1232)$ tanulmányozásához.

Dileptonok tanulmányozásával lehetőség nyílik a vektormezonok közegbeli tulajdonságainak vizsgálatára. A ρ -mezon sűrű anyagbeli tulajdonságaira jelenleg két szcenárió létezik. Az egyik szerint (QCD-összegszabályok) a tömege közel lineárisan csökken a sűrűség növelésével, a másik szerint a sűrű közegben nem változik a tömege, csak kiszélesedik (hadronikus modellek). Megmutattuk, hogy már a SIS-energiákon is kimutatható a két modell különbsége a dileptonok tömegspektrumában.

Végül tanulmányoztuk az ω -mezon maganyagbeli változását a σ -mezonnal való keveredés hatására. Azt találtuk, hogy már normál magsűrűségen egy 200 MeV/c impulzussal mozgó ω -mezon szélessége megduplázódik (eltekintve a hasonló nagyságrendbe eső ütközési szélesedéstől). A normál maganyag-sűrűségen az ω szélessége elérheti a 40 MeV-et is. A szélesedés a sűrűséggel növekszik, és két-háromszoros maganyag-sűrűségen elérheti a 200 MeV-et is. Ennak az effektusnak a kimutatására a π -Pb 1.3 GeV energiájú ütközést ajánljuk, melyben a dileptonok tömegspektrumában az alacsony transzverzális impulzusú tartományban kiemelkedő ω -csúcs a nagy transzverzális impulzusú tartományban eltűnik a ρ által dominált háttér alatt.

Még számos nyitott kérdés maradt, amit a modellünkkel vizsgálni lehet. Tűkön ülve várjuk például a HADES első eredményeit. Helyesek-e az új DLS-adatok?

Nem vizsgáltuk meg még részletesen a K^+ -keltést nehézion reakciókban. A kaonok explicit propagálásának beépítése lehetőséget adna a ϕ -mezonok vizsgálatára.

El nem döntött kérdés még, hogy az alacsony energiájú nehézion ütközésben létrejött átmeneti állapot oszcillációja létezik-e.

Még hosszan lehetne sorolni az izgalmas kérdéseket. Remélhetőleg hamarosan meg is tudjuk az egyikét-másikát válaszolni.

Irodalomjegyzék

- [1] R.W. Minich et al., Phys. Lett. **118B** (1982) 458
- [2] I. Lovas és Gy. Wolf, Act. Phys. Hun., **58** (1985) 23
- [3] J. Pochodzalla et al. Phys. Rev. Lett. **75** (1995) 1040
- [4] J. Németh, M. Barranco, J. Debois, C. Ngo, Phys. A325 (1986) 347
- [5] G. Fái, J. Randrup, Nucl. Phys. A404 (1983) 551, Comput. Phys. Comm.42(1986) 385
- [6] G. Papp, W. Nörenberg, Heavy Ion Phys., 1 (1995) 241
- [7] L.P. Csernai, J. Németh, G. Papp, Heavy Ion Phys., 3 (1996) 17
- [8] A.B. Migdal, Rev. Mod. Phys. **50**,107(1978)
- [9] H. Stöcker, W. Greiner, Phys. Rep. **137**(1986) 277
- [10] A. Bodmer, Phys. Rev. **D4** (1971) 1601
- [11] S. Chin és A. Kerman, Phys. Rev. Lett. 43 (1978) 1291
- [12] J. Kuti, B. Lukács, J. Polonyi, K. Szlachányi, Phys. Lett. 95B (1980) 75

- [13] A. Ukawa, Nucl. Phys. **A498** (1989) 227c
- [14] S. Klimt, M. Lutz, W. Weise, Phys. Lett. 249 (1990) 386
- [15] G. Boyd et al. Phys. Rev. Lett. **75** (1995) 4169, Phys. Lett. **B349** (1995)
- [16] G. Agakichiev et al., Phys. Rev. Lett. **75** (1995) 1272
- [17] M. A. Mazzoni, Nucl. Phys. A566 (1994) 95c, M. Masera, Nucl. Phys. A590 (1995) 93c
- [18] T. Hatsuda, S.H. Lee, Phys. Rev. C46 (1992) R34
- [19] U. Mosel, Annu. Rev. Nucl. Part. Sci., 41 (1991) 29
- [20] W. Cassing, G. Batko, U. Mosel, K. Niita, O. Schult, Gy. Wolf, Phys. Lett.238B (1990) 25
- [21] G. Batko, W. Cassing, K. Niita, Gy. Wolf, Giessen preprint UGI-90-2.
 G. Batko, W. Cassing, U. Mosel, K. Niita, Gy. Wolf, (Proceedings of the International Workshop on Gross Properties of Nuclei and Nuclear Excitations, Hirschegg, Austria, 1990, ed. by H. Feldmeier p.174)
- [22] G. Batko, W. Cassing, U. Mosel, K. Niita, Gy. Wolf, Phys. Lett. 256B (1991)
- [23] W. Cassing, G. Batko, T. Vetter and Gy. Wolf, Z. Phys. A340(1991) 51
- [24] Gy. Wolf, W. Cassing, U. Mosel, Phys. Lett. **271B** (1991) 43
- [25] A. Engel, W. Cassing, U. Mosel, M. Schäfer, Gy. Wolf, Nucl. Phys. A572 (1994) 657

- [26] T. Ericson and W. Weise, Pions and Nuclei (Clarendon Press, Oxford, 1988)
- [27] C.L. Korpa, Rudi Malfliet, Phys. Rev. C52 (1995) 2756
- [28] D. Ashery, J.P. Schiffer, Annu. Rev. Nucl. Part. Sci., 36 (1986) 207
- [29] L.L. Salcedo et al., Nucl. Phys. **A484** (1988) 557
- [30] C.H.Q. Ingram, Nucl. Phys. **A553** (1993) 573c
- [31] W. Cassing, V. Metag, U. Mosel, K. Niita, Phys. Rep. 188(1990) 363
- [32] G. Martinez, F.M. Marques, Y. Schutz, Gy. Wolf et al., Phys. Lett. B349 (1995) 23
- [33] Gy. Wolf, Act. Phys. Pol., **B26** (1995) 583
- [34] F.M. Marques, G. Martinez, Y. Schutz, Gy. Wolf et al., Phys. Lett. B349 (1995) 30
- [35] H.W. Barz, B. Kämpfer, Gy. Wolf, W. Bauer, Phys. Rev. C53 (1996) R553
- [36] G. Roche et al., Phys. Rev. Lett. 61 (1988) 1069, C. Naudet et al., Phys.
 Rev. Lett. 62 (1989) 2652, G. Roche et al., Phys. Lett. 226B (1989) 228
- [37] R.J. Porter et al., nucl-ex/9703001
- [38] P. Salabura, Act. Phys. Pol., B27 (1996) 421,
 R. Schicker et al., Nucl. Inst., A380 (1996) 586, nucl-ex/9605004
- [39] Gy. Wolf, G. Batko, W. Cassing, U. Mosel, K. Niita, M. Schäfer, Nucl. Phys. A517 (1990) 615
- [40] Gy. Wolf, W. Cassing, U. Mosel, M. Schäfer, Phys. Rev. C43 (1991) R1501

- [41] Gy. Wolf, W. Cassing, U. Mosel, Nucl. Phys. A545 (1992) 139c
- [42] Gy. Wolf, W. Cassing, U. Mosel, Nucl. Phys. **A552** (1993) 549
- [43] Gy. Wolf, W. Cassing, W. Ehehalt, U. Mosel, Prog. Part. Nucl. Phys. 30 (1993) 273
- [44] Gy. Wolf, "Dilepton and vector meson production in heavy-ion reactions", elküldve a Heavy Ion Phys.-be
- [45] T. LeBrun, et al., Phys. Rev. Lett. **72** (1994) 3965
- [46] J.P. Bondorf, S.I.A. Garpman, J. Zimányi, Nucl. Phys. A296 (1978) 320
- [47] I. Montvay, J. Zimányi, Nucl. Phys. **A316** (1979) 490
- [48] T.S. Biró, J. Zimányi, Phys. Lett. **113B** (1982) 6
- [49] G.F. Bertsch, S. Das Gupta, Phys. Rep. **160**(1988) 189
- [50] I. Lovas, Nucl. Phys. **A367** (1981) 509
- [51] I. Lovas, Gy. Wolf, N.L. Balázs, Phys. Rev. C35 (1987) 141
- [52] N.L. Balázs, I. Lovas, és Gy. Wolf, Magyar Fiz. Foly. 36 (1989) 289
- [53] H.W. Barz, B. Kämpfer, B. Lukács, K. Martinás, Gy. Wolf, Phys. Lett. B194 (1987) 15
- [54] B. Kämpfer, B. Lukács, Gy. Wolf, Europhys. Lett., 8 (1989) 239
- [55] B. Kämpfer, B. Lukács, Gy. Wolf, H.W. Barz, Phys. Lett. **B240** (1990) 297
- [56] B. Kämpfer, B. Lukács, Gy. Wolf, H.W. Barz, Sov. J. Nucl. Phys. 51 (1990) 234

- [57] J. Cugnon, T. Mizutani and J. Vandermeulen, Nucl. Phys. A352 (1981) 505
- [58] J. Cugnon, D. Kinet und J. Vandermeulen, Nucl. Phys. A379 (1982) 553
- [59] S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel, Gy. Wolf, Z. Phys. A356(1997) 421, UGI-96-16, nucl-th/9609009
- [60] Particle Data Group, Phys. Rev. **D50** (1994) 1173
- [61] T. Kodama, S.B. Duarte, K.C. Chung, R. Donangelo, R.A.M.S. Nazareth, Phys. Rev. C29 (1984) 2146
- [62] M. Schönhofen, M. Cubero, B.L. Friman, W. Nörenberg, Gy. Wolf, Nucl. Phys. A572 (1994) 112
- [63] B. ter Haar, R. Malfliet, Phys. Rep. **149**(1987) 207
- [64] W.H. Press, B.P. Flannery, S.A. Teukolsky und W.T. Veterling, Numerical recipies, (Cambridge University Press, Cambridge, 1989).
- [65] J. Stoer and R. Burlirsch: vol. 1, (Springer-Verlag, Berlin, 1978)
- [66] L.G. Arnold, B.C. Clark, Phys. Rev. C19 (1979) 917
- [67] K. Weber, B. Blättel, W. Cassing, H.-C. Dönges, V. Koch, A. Lang, U. Mosel, Nucl. Phys. A539 (1992) 713 K. Weber, B. Blättel, W. Cassing, H.-C. Dönges, A. Lang, T. Maruyama, U. Mosel, Nucl. Phys. A552 (1993) 571
- [68] G. Welke, M. Prakash, T.T.S. Kuo and S. Das Gupta: Phys. Rev. C38 (1988) 2101

- [69] C. Gale, G. M. Welke, M. Prakash, S. J. Lee, S. Das Gupta, Phys. Rev. C41 (1990) 1545
- [70] K. Niita, W. Cassing, U. Mosel, Nucl. Phys. A504 (1989) 391
- [71] R.S. Varga, Matrix iterative analysis, (Prentice Hall, 1962)
- [72] H. Lenske, személyes közlés
- [73] B. Krusche, J. Ahrens, G. Anton, R. Beck, M. Fuchs, A.R. Gabler, F. Härtner, S. Hall, P. Harty, S. Hlavac, D. MacGregor, C. McGeorge, V. Metag, R. Owens, J. Peise, M. Röbig-Landau, A. Schubert, R. S. Simon, H. Ströher and V. Tries, Phys. Rev. Lett. 74 (1995) 3736
- [74] J.H. Koch, E.J. Moniz, N. Ohtsuka, Ann. Phys., **154** (1984) 99
- [75] Baldini et al.: Landolt-Börnstein vol. 12, (Springer, Berlin, 1987)
- [76] V. Dimitriev, O. Sushkov, C. Gaarde, Nucl. Phys. A459 (1986) 503
- [77] E. Chiavassa, G. Dellacasa, N. De Marco, C. De Oliveira Martins, M. Gallio,
 P. Guaita, A. Musso, A. Piccotti, E. Scomparin, E. Vercellin, J. M. Durand,
 G. Milleret and C. Wilkin, Phys. Lett. B337 (1994) 192
- [78] S. Huber and J. Aichelin, Nucl. Phys. **A573** (1994) 587
- [79] C. Itzykson and J.B. Zuber, Quantum Field Theory, (McGraw-Hill, New York, 1980)
- [80] F. Halzen and A. D. Martin, Quarks and Leptons, (John Wiley & Sons, New York, 1984)
- [81] J. Aichelin, C.M. Ko, Phys. Rev. Lett. 55 (1985) 2661

- [82] J. Cugnon, R.M. Lombard, Nucl. Phys. A422 (1984) 635
- [83] W. Zwermann, B. Schürmann, Nucl. Phys. A423 (1984) 525
- [84] J. Randrup, C.M. Ko, Nucl. Phys. A343 (1980) 519 és A411 (1983) 537
- [85] A. Lang et al., Nucl. Phys. **A541** (1992) 507
- [86] T. Maruyama, W. Cassing, U. Mosel, S. Teis, K. Weber, Nucl. Phys. A573 (1994) 653
- [87] X.S. Fang, C.M. Ko and Y.M. Zheng, Nucl. Phys. **A556** (1993) 499
- [88] C. Hartnack, J. Jaenicke, L. Sehn, H. Stocker, J. Aichelin, Nucl. Phys. A580 (1994) 643
- [89] J.Q. Wu, C.M. Ko, Nucl. Phys. **A499** (1989) 810
- [90] O. Bing et al., Nouvelles de Saturne, (Juin 95) 51
- [91] W. Ehehalt, W. Cassing, A. Engel, U. Mosel, Gy. Wolf, Phys. Rev. C47 (1993) R2467
- [92] D. Ashery et al., Phys. Rev. C23 (1981) 2173
- [93] J. Cugnon, M.C. Lemaire, Nucl. Phys. **A489** (1988) 781
- [94] R. Holzmann, et al., Phys. Lett. **B366** (1996) 63
- [95] R.D. Ransome et al., Phys. Rev. C45 (1992) R509
- [96] M. Lutz, A. Steiner, W. Weise, Nucl. Phys. **A574** (1994) 755
- [97] Gy. Wolf, Heavy Ion Phys., 1 (1995) 359

- [98] Gy. Wolf, Heavy Ion Phys., 4 (1996) 309
- [99] M. Debowski et al., Z. Phys. **A356**(1996) 313
- [100] S. Nagamiya, M. Gyulassy, Advances in Nuclear Physics 13 (Plenum Press, 1984, p. 201)
- [101] J.W. Harris et al., Phys. Lett. **153B** (1985) 377
- [102] J.W. Harris et al., Phys. Rev. Lett. **58** (1987) 463
- [103] R. Simon, TAPS-együttműködés, személyes közlés
- [104] A. Marin, R. Simon, Gy. Wolf et al., "Exclusive π^0 and η -meson production in $^{40}{\rm Ar} + ^{nat}{\rm Ca}$ at 800A MeV", elküldve a Phys. Lett. B-be
- [105] R. Stock, Phys. Rep. **135**(1986) 259
- [106] O. Schwalb, M. Pfeiffer, F. D. Berg et al., Phys. Lett. **B321** (,) 199420
- [107] V. Metag, TAPS-együttműködés, személyes közlés
- [108] F.D. Berg et al., Phys. Rev. Lett. **72** (1994) 977
- [109] S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel, Gy. Wolf, nucl-th/9701057
- [110] W. Ehehalt W. Cassing, A. Engel, U. Mosel, Gy. Wolf, Phys. Lett. 298B (1993) 31
- [111] W. Cassing, G. Batko, B. Blättel, V. Koch, A. Lang, U. Mosel, K. Niita, K. Weber and Gy. Wolf, Nucl. Phys. A519 (1990) 357c
- [112] C. Gale, J. Kapusta, Phys. Rev. C35 (1987) 2107

- [113] L.H. Xia, C.M. Ko, L. Xiong and J.Q. Wu, Nucl. Phys. A485 (1988) 721
- [114] L. Xiong, Z.G. Wu, C.M. Ko and J.Q. Wu, Nucl. Phys. **A512** (1990) 772
- [115] K.K. Gudima, A.I. Titov and V.D. Toneev, Phys. Lett. **B287** (1992) 302
- [116] L.A. Winckelmann et al., Phys. Lett. **B298** (1993) 22
- [117] Proceedings of the 3. Workshop on a Real Photon/Di-Lepton program for SIS, GSI, January 1992
- [118] V. Koch, B. Blättel, W. Cassing, U. Mosel, Phys. Lett. **B236** (1990) 135
- [119] T. Lippert, J. Thiel, N. Grün, W. Scheid, Int. J. Mod. Phys. A6 (1991) 5249
- [120] J.J Sakurai, Currents and Mesons, (University of Chicago Press, 1969)
- [121] L.G. Landsberg, Phys. Rep. **128**(1985) 301
- [122] M. Schäfer, T. Biró, W. Cassing, U. Mosel, Phys. Lett. **B221** (1989) 1
- [123] M. Schäfer et al., Nucl. Phys. **A575** (1994) 429, (UGI-93-05),
- [124] M. Schäfer et al., Z. Phys. **A339**(1991) 391
- [125] B.E. Lautrup, J. Smith, Phys. Rev. **D3** (1971) 1122
- [126] T.P. Cheng and L.F. Li, Gauge Theory of Elementary Particle Physics and Nuclei, (Clarendon Press, Oxford, 1988)
- [127] U. Mosel, Fields, Symmetries, and Quarks (McGraw-Hill, New York, 1989)
- [128] M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B147 (1979) 385 és ibid. 448

- [129] L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127(1985) 1
- [130] J. Gasser, H. Leutwyler, Phys. Rep. 87(1982) 77
- [131] J.B. Kogut, D.K. Sinclair, K.C. Wang, Phys. Lett. 263B (1991) 101
- [132] E.G. Drukarev, E.M. Levin, Prog. Part. Nucl. Phys. 27 (1991) 77
- [133] T. Hatsuda, Nucl. Phys. **A544** (1992) 27c
- [134] M. Herrmann, B. Friman, W. Nörenberg, Nucl. Phys. A560 (1993) 411
- [135] L.M. Barkov et al., Nucl. Phys. **B256** (1985) 365
- [136] G. Chanfray, P. Schuck, Nucl. Phys. **A555** (1993) 329
- [137] M. Asakawa et al., Phys. Rev. C46 (1992) R1159
- [138] V. Mull, J. Wambach and J. Speth, (Proceedings of the International Workshop on Gross Properties of Nuclei and Nuclear Excitations, Hirschegg, Austria, 1992, ed. by H. Feldmeier p.188)
- [139] G. Brown, M. Rho, Phys. Rev. Lett. 66 (1991) 2720
- [140] M. Asakawa, C.M. Ko, Nucl. Phys. **A560** (1993) 399
- [141] W. Cassing, W. Ehehalt, C.M. Ko, Phys. Lett. **B363** (1995) 35
- [142] V. Theileis, Diplomamunka, GSI, Darmstadt (1996)
- [143] Gy. Wolf, B. Friman, M. Soyeur, "In-medium omega-meson broadening and s-wave pion annihilation into e+e- pairs", elküldve Nucl. Phys.-be
- [144] P.A. Henning, B.L. Friman, Nucl. Phys. **A490** (1988) 689

- [145] K. Lim, C.J. Horowitz, Nucl. Phys. **A501** (1989) 729
- [146] B.D. Serot and J.D. Walecka, Adv. Nucl. Phys., 16 (Plenum Press, 1986)
- [147] J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965)
- [148] C.D. Froggat, J.L. Petersen, Nucl. Phys. **B129** (1977) 89
- [149] J.W. Durso, A.D. Jackson, B.J. VerWest, Nucl. Phys. A345 (1980) 471
- [150] U.G. Meissner, Phys. Rep. **161**(1988) 213
- [151] B.L. Friman, M. Soyeur, (Proceedings of the International Workshop on Gross Properties of Nuclei and Nuclear Excitations, Hirschegg, Austria, 1995, ed. by H. Feldmeier p.261), accepted by Nucl. Phys. A ()
- [152] B.M. Preedom, (Proceedings of the International Workshop on Gross Properties of Nuclei and Nuclear Excitations, Hirschegg, Austria, 1995, ed. by H. Feldmeier p.273), CEBAF Proposal PR-94-002

Köszönetnyílvánítás

Először is megköszönöm feleségemnek Katinak, és lányaimnak: Gyöngyikének és Tündikének, hogy türelemmel türték, hogy a munka időnként elrabol a családtól, s támogatták erőfeszítéseimet.

Hálával tartozom szüleimnek. Áldozatos nevelésük nélkül biztosan nem juthattam volna el idáig.

Köszönettel tartozom továbbá Németh Juditnak és Lovas Istvánnak. Támogatásuk nélkül már valószínűleg nem lennék a pályán.

Sokat köszönhetek Szabados Lászlónak is, aki a kezdetekben izgalmasabbnálizgalmasabb fizikai problémákkal élesztette a fizika iránti szenvedélyemet.

Bizonyosan nem született volna meg ez a dolgozat (legalább is nem ilyen tartalommal), ha Prof. Ulrich Mosel és Prof. Wolfgang Nörenberg nem biztosítottak volna ideális lehetőséget a kutatásaimra. Ráadásúl a szükségben is rögtön a segítségemre siettek.

Szeretném megköszönni együttműködő partnereimnek munkájukat, különösen Bengt Frimannak és Madeleine Soyeurnek, hogy az ω tulajdonságainak vizsgálata során számos jó tanáccsal vitték előre kutatásaimat, valamint Stefan Teis-nek, hogy vezetésem mellett beépítette a BUU-modellbe az impulzusfüggő potenciált, továbbá a hatáskeresztmetszetek egy része is az ő kezenyomát viseli.