

DATA70202: Applying Data Science Industry Partner:

Student ID: 11338133, 11337396, 11048557, 11361453, 10806957

Course Unit Leader: Dr Nuno Pinto

Industry Mentor: Dr. Hrishikesh Ballal

Group Number: P03

About GeoDesign Hub

A digital platform that empowers collaborative decision-making through sophisticated, digitally powered negotiations.

Stakeholders

- Property Developers
- Community Organizations
- Portfolio Managers
- Local Authorities
- Urban Designers/Planners

Project Deliverables

- 1. 30-year Financial Model
- 2. Financial Comparison Reports
- 3. Interviews with Stakeholders

How does this help GeoDesign Hub's process & Stakeholders?

- Informed Decision Making
- Transparency in Financial Considerations
- Optimum Resource Allocation

Data

Properties:

- 1. diagramid
- 2. description
- 3. sysname
- 4. diagramtype
- 5. color
- 6. geometry

GeoDesign - A

GeoDesign - B

GeoDesigns are digital representations of potential development plans, often created using GeoJSON, a common data format for encoding geographic data.

Project Management and Team Dynamics

Financial Modelling: 3 members

- In-depth analysis on each system types and its assumptions
- Develop the financial model
- Create Python script to reflect financial metrics and calculations for each GeoDesign

Reporting & Visualisation: 2 members

- Research on feasible reporting tools
- Utilise JSON output from Python script for dashboards
- Create user-friendly and interactive interface to display financial feasibility

Project Management and Team Dynamics

Internal: Team collaboration

- Regular Meetings
 - o Progress check-in
 - Problem resolution
 - Next steps
- Task Allocation
 - Clear assignment of roles and expected outcomes
- Communication Platforms
 - Daily updates through
 WhatsApp, Teams meetings &
 Emails

External: Industry Partner Engagement

- Bi-weekly Progress Meetings
 - Progress report
 - Maintain feedback loop
 - Next steps
- Feedback Integration
 - Ensure that solutions meet actual business needs and user expectations

Financial Model

	Sysname	System Type	
	LDH	Low Density Housing	
	HDH	High Density Housing	
	IND	Industry & Commerce	
	GI	Green Infrastructure	
	EI	Energy Infrastructure	
	BI	Blue Infrastructure	
	INST	T Institutional	
AG		Agriculture	
	TRANS Transport		

Financial Model for 6 System Types:

- 1. System specific assumptions
- 2. Input values by stakeholders
- 3. Python script for financial metric calculations

Sustainability metrics to assess Socio-Economic Impacts

System Specific Assumptions

Industry and	Commerce
--------------	----------

Construction Period In Years

Annual Construction Expenses

Average lease rate/sqft (£)

Operating Expenses, Annual (£)

Occupancy Rate (%)

Initial Investment (£)

Cap Rate (%)

Growth Rate (%)

Low-Density and High-Density Housing

Construction Period In Years

Annual Construction Expenses

Expected Annual Units Rented

Unit Sale Price (£)

Annual Operating Expenses (£)

Annual Expected Rent Per Unit

Annual Expected Units Sold

Initial Investment (£)

Cap Rate (%)

Growth Rate, Sale/Rent (%)

Growth Rate, Expenses (%)

Green Infrastructure

Initial Investment(£)

Annual Construction Expenses(£)

Construction Period In Years(Year)

Annual Maintenance expenses(£)

Annual Insurance Costs(£)

Annual Advertising Revenue(£)

Cap Rate (%)

Growth Rate (%)

System Specific Assumptions

		4	4
	Intra	ctrii	CTITE
Blue	ппа	วน น	Cluie
		-	- 10

Initial Investment(£)

Annual Construction Expenses(£)

Construction Period In Years(Year)

Annual Decommissioning Costs(£)

Annual Water Resource Management Costs(£)

Annual Water quality monitoring costs(£)

Annual Insurance Costs(£)

Annual Water purification costs(£)

Cap Rate (%)

Growth Rate (%)

Energy Infrastructure

Initial Investment(£)

Annual Construction Expenses(£)

Construction Period In Years(Year)

Annual Operation and Maintenance Costs(£)

Energy Sale Price(£)

Estimated Annual Energy Production(KW/h)

Annual Decommissioning Costs(£)

Annual Insurance Costs(£)

Cap Rate (%)

Growth Rate (%)

System Specific Assumptions

Institutional				
Initial Investment (£)				
Annual Operating Expenses (£)				
Capacity (units)				
Operational Efficiency (%)				

Resource Utilisation Rate (%)

Initial Investment (£)			
Distance/Route length (km)			
Average Annual Passengers			
Annual Operating Expenses (£)			
Capacity Utilisation (%)			
Route Optimisation (km/day)			
Fuel Efficiency (km/l)			
Travel time/km (mins/km)			

Agriculture			
Initial Investment(£)			
Yield/Land Area (units/sqft)			
Yield Improvements (%)			
Water Usage Reductions (I/sqft)			
Carbon Emission Reductions (g/sqft)			

Python Script for Financial Metric Calculation

Data Access:

- Input: Geodesigns (.geojson), assumptions (.csv)
- Output: Analysis (.json)
- The JSON output is provided to the reporting team for creating visualisations.

Financial Analysis Framework

- System-Specific Formulas
- Discounted Cash Flow Analysis:
- Estimates an investment's intrinsic value by considering all future cash flows.
 - Factors in the time value of money.
 - The model spans 30 years, with columns for Year 0 through Year 30.
 - Key financial components include:
 Effective Gross Potential Revenue (£)
 Operating Expenses (£)
 Net Operating Income (£)
- Net Present Value: Estimated present value of the property
- Internal Rate of Return: Annualized return rate an investment is expected to generate over its lifetime.

Discounted Cash Flow	Year 0	•••	Year 30
Gross Potential Revenue			
Operating Expenses			
Net Operating Income			

A simplified version of the DCF model.

System Specific Formulas for DCF

System Type Gross Potential Revenue		Operating Expenses	
LDH	Annual Expected Rent Per Unit * Expected Annual Units Rented + Annual Expected Units Sold * Unit Sale Price	Annual Operating Expenses	
HDH	Annual Expected Rent Per Unit * Expected Annual Units Rented + Annual Expected Units Sold * Unit Sale Price	Annual Operating Expenses	
IND	(Average Lease Rate/sqft * area) * (Annual Occupancy Rate (%)/100)	Annual Operating Expenses	
GI	Annual Advertising Revenue	Annual Maintenance Expenses + Annual Insurance Costs	
BI	Entertainment Revenue + Revenue From Fishing And Aquatic Products	Annual Water Resource Management Costs + Annual Insurance Costs + Annual Water Quality Monitoring Costs + Annual Water Purification Costs + Annual Decommissioning Costs	
EI	Energy Sale Price * Estimated Annual Energy Production	Annual Operation and Maintenance Costs + Annual Insurance Costs + Annual Fuel Costs + Annual Energy Storage and Distribution Costs	

Comparative Financial Analysis Reports

Two interactive dashboards were created:

1. PowerBI dashboard:

- Powerful business intelligence platform develop by Microsoft.
- Allows users to connect to various data sources, transform and analyse data, and create interactive visualisations and reports.

2. HTML financial visualisation tool:

- Unlike the Power BI dashboard, which relies on a JSON input format received from the python script,
 the HTML tool allows users to directly input financial parameters within the user interface.
- A JavaScript code attached to each HTML dashboard, tailored to different system types acts as the calculation engine.
- This streamlines the data input process and potentially simplifies integration with the GeoDesign Hub platform.

PowerBI Dashboard

Key Features:

- 1. System Selection
- 2. Diagram Selection
- 3. Return Analysis
 - a. Colour-Coded Lines
 - b. Tooltip Functionality
- 4. 30-Year Financial Analysis Data Table
- 5. Property Location Comparison
- 6. Key Value Comparison

HTML Tool

The University of Manchester

- Six different HTML files for each system.
- In this, the user can input different set of values and get a corresponding output immediately.
- This potentially provides a simplified integration with the GeoDesign Hub platform.

Key Features:

- **User-Defined Inputs**
- 2. Visualisation
- 30 Year Financial Analysis Data Table

GI Financial Model

Enter Financial

Par	rameters:
Initi	al Investment(£):
20	000000
Ann	ual Construction Expenses(£):
10	00000
	struction Period In rs(Year):
2	
Ann	ual Maintenance Expenses(£):
50	0000
Ann	ual Insurance Costs(£):
10	0000
Ann	ual Advertising Revenue(£):
20	00000
_	

Growth Rate (%):

Cap Rate (%):

Compute and Draw Chart

Valuation for Year 30: 4143637.61 IRR: 8.14%

30-year Financial Chart

Financial Data Table

Year	Gross Potential Revenue	Operating Expenses	Net Operating Income
1	-2100000.00	0.00	-2100000.00
2	-102000.00	0.00	-102000.00
3	208080.00	62424.00	145656.00
4	212241.60	63672.48	148569.12
5	216486.43	64945.93	151540.50
6	220816.16	66244.85	154571.31
7	225232.48	67569.75	157662.74
8	229737.13	68921.14	160815.99
9	234331.88	70299.56	164032.31
10	239018.51	71705.55	167312.96
11	243798.88	73139.67	170659.22
12	248674.86	74602.46	174072.40
13	253648.36	76094.51	177553.85
14	258721.33	77616.40	181104.93
15	263895.75	79168.73	184727.03
16	269173.67	80752.10	188421.57
17	274557.14	82367.14	192190.00
18	280048.28	84014.49	196033.80
19	285649.25	85694.77	199954.47
20	291362.23	87408.67	203953.56
21	297189.48	89156.84	208032.64
22	303133.27	90939.98	212193.29
23	309195.93	92758.78	216437.15
24	315379.85	94613.96	220765.90
25	321687.45	96506.23	225181.21
26	328121.20	98436.36	229684.84
27	334683.62	100405.09	234278.54
28	341377.30	102413.19	238964.11
29	348204.84	104461.45	243743.39
30	355168.94	106550.68	4392255.87

Interviews with Stakeholders

- Aimed to test and validate the understanding and usefulness of our model outputs and reporting UI
- Stakeholders: two academics with specialised backgrounds in urban development & planning
- Their suggestions and comments are illustrated below:

Stakeholder 1:

Specialises in Real Estate

Economics

- 1. Apply DCF instead of cash flow analysis.
- 2. Start DCF from 'Year 0' instead of 'Year 1'
- 3. Positive feedback on utilising NPV and IRR, could include pay-back period
- 4. Report UI was easily interpretable

Stakeholder 2:

Specialises in Town Planning

- 1. To include socioeconomic perspective parameters in the model such as UN population projections and climate change parameters
- 2. Reduction of 30-year time horizon

Conclusion

Goals achieved

- Financial modeling framework
- Interactive Dashboards
- Stakeholder Feedback

Bottlenecks & Challenges

- Long 30-year timeframe and rapid pace of environmental changes diminishing forecast accuracy
 - → adjust models for shorter timeframes
- Steep learning curve due to team members' lack of financial modelling knowledge
 - → seeking support from industry partner and academics
 - → managing project timeline to allow for more time on knowledge acquisition

Learning Outcomes & Career Development

- Financial modeling
- Data visualisation
- Project management skills
- Industry insights
- Application of theoretical concepts in data science to real-world scenarios

Thank You