LEARNING THEORY STRIKES BACK AGAIN

Matthieu Bloch February 14, 2019

RECAP: DICHOTOMIES AND GROWTH FUNCTION

Definition (Dichotomy)

For a dataset $\mathcal{D} riangleq \{\mathbf{x}_i\}_{i=1}^N$ and set of hypotheses \mathcal{H} , the set of <u>dichotomies</u> generated by \mathcal{H} on \mathcal{D} is $\mathcal{H}(\{\mathbf{x}_i\}_{i=1}^N) riangleq \{\{h(\mathbf{x}_i)\}_{i=1}^N: h \in \mathcal{H}\}$

By definition $|\mathcal{H}(\{\mathbf{x}_i\}_{i=1}^N)| \leq 2^N$ and in general $|\mathcal{H}(\{\mathbf{x}_i\}_{i=1}^N)| \ll |\mathcal{H}|$

Definition (Growth function)

For a set of hypotheses
$$\mathcal{H}$$
, the $growth$ function of \mathcal{H} is $m_{\mathcal{H}}(N) \triangleq \max_{\{\mathbf{x}_i\}_{i=1}^N} |\mathcal{H}(\{\mathbf{x}_i\}_{i=1}^N)|$

The growth function does not depend on the datapoints $\{\mathbf{x}_i\}_{i=1}^N$ and $m_{\mathcal{H}}(N) \leq 2^N$

LOGISTICS

Lecture slides and notes

■ Report typos and errors on Piazza (thank you!)

If you are considering dropping the class, please send an email to Dr. Bloch

■ Solutions released once DL student turn their homework

Problem set #2

Released over the weekend

Registering for office hours

■ Solutions released once DL student turn their homework

RECAP: EXAMPLES OF GROWTH FUNCTIONS

Linear classifiers: $\mathcal{H} \triangleq \{h : \mathbb{R}^2 \to \{\pm 1\} : \mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w}^{\intercal}\mathbf{x} + b) | \mathbf{w} \in \mathbb{R}^2, b \in \mathbb{R}\}$

$$m_{\mathcal{H}}(3) = 8$$

$$m_{\mathcal{H}}(4) = 14 < 2^4$$

Definition (Shattering)

If ${\cal H}$ can generate all dichotomies on $\{{f x}_i\}_{i=1}^N$, we say that ${\cal H}$ shatters $\{{f x}_i\}_{i=1}^N$

Definition (Break point)

If not data set of size k can be shattered by ${\mathcal H}$, then k is a break point for ${\mathcal H}$

BREAKING POINTS

Proposition.

If there exists any break point for ${\mathcal H},$ then $m_{{\mathcal H}}(N)$ is polynomial in N

If there is no break point for ${\mathcal H}$,then $m_{{\mathcal H}}(N)=2^N$

Definition.

Assume $\mathcal H$ has break point k. B(N,k) is the maximum number of dichotomies of N points such that no subset of size k can be shattered by the dichotomies.

B(N,k) is a purely combinatorial quantity, does *not* depend on ${\cal H}$

Example.

Assume ${\cal H}$ has break point 2. How many dichotomties can we generate of set of size 3?

By definition, if k is a break point for \mathcal{H} , then $m_{\mathcal{H}}(N) \leq B(N,k)$

BREAKING POINTS

Lemma.

$$B(N,1) = 1, B(1,k) = 2 ext{ for } k > 1, \ orall k > 1 ext{ } B(N,k) \leq B(N-1,k) + B(N-1,k-1)$$

Lemma.

5

$$B(N,k) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

B(N,k) is polynomial

6