Guía práctica para la resolución de Ecuaciones de Recurrencia Lineales de coeficientes constantes

Alberto Salguero

23 de noviembre de 2017

Esquema general de resolución

- ① Expresar la ecuación general de la forma $t(n) + a_1 t(n-1) + a_2 t(n-2) + \cdots + a_k t(n-k) = h(n)$
- ② Si $h(n) = 0 \Rightarrow \text{ERL Homogénea}$
 - **1** Hallar $\{r_1, r_2, \dots, r_k\}$ raíces de la ecuación característica
 - Raíces simples
 - 2 Raíces múltiples
 - Reescribir ecuación original como $t(n) = \frac{\lambda_1 r_1^n + \lambda_2 r_2^n + \dots + \lambda_n r_n^n}{2}$
 - 3 Plantear sistema de ecuaciones con los casos base
 - **1** Determinar los valores de $\lambda_1, \lambda_2, \dots, \lambda_p$
- **3** Si $h(n) \neq 0 \Rightarrow \text{ERL No Homogénea}$
 - Añadir a la ecuación característica los factores aportados por h(n)
 - Resolver como ERL Homogénea

Ejemplo

$$t(n) = \begin{cases} 5t(n-1) - 6t(n-2) & n > 1 \\ 1 & n = 1 \\ 0 & n = 0 \end{cases}$$

① Expresar la ecuación general de la forma $t(n) + a_1 t(n-1) + a_2 t(n-2) + \cdots + a_k t(n-k) = h(n)$

Ejemplo

$$t(n) = \begin{cases} 5t(n-1) - 6t(n-2) & n > 1\\ 1 & n = 1\\ 0 & n = 0 \end{cases}$$

• Expresar la ecuación general de la forma $t(n) + a_1 t(n-1) + a_2 t(n-2) + \dots + a_k t(n-k) = h(n)$ t(n) - 5t(n-1) + 6t(n-2) = 0 $a_1 = -5, a_2 = 6, k = 2, h(n) = 0$

2 $h(n) = 0 \Rightarrow ERL Homogénea$

$$t(n) = \begin{cases} 5t(n-1) - 6t(n-2) & n > 1 \\ 1 & n = 1 \\ 0 & n = 0 \end{cases}$$

- t(n) 5t(n-1) + 6t(n-2) = 0 $a_1 = -5, a_2 = 6, k = 2, h(n) = 0$
- ② Definir una nueva ecuación de la forma $c(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \cdots + a_k$.

$$t(n) = \begin{cases} 5t(n-1) - 6t(n-2) & n > 1 \\ 1 & n = 1 \\ 0 & n = 0 \end{cases}$$

- t(n) 5t(n-1) + 6t(n-2) = 0 $a_1 = -5, a_2 = 6, k = 2, h(n) = 0$
- ② Definir una nueva ecuación de la forma $c(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k$.

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

$$t(n) - 5t(n-1) + 6t(n-2) = 0$$

$$a_1 = -5, a_2 = 6, k = 2, h(n) = 0$$

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

3 Calcular las $R = \{r_1, r_2, \dots, r_k\}$ raíces de c(x)

$$t(n) - 5t(n-1) + 6t(n-2) = 0$$

$$a_1 = -5, a_2 = 6, k = 2, h(n) = 0$$

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

3 Calcular las $R = \{r_1, r_2, \dots, r_k\}$ raíces de c(x)

$$\frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 6}}{2} = \frac{5 \pm \sqrt{1}}{2} \Rightarrow R = \{3, 2\}$$

1
$$t(n) - 5t(n-1) + 6t(n-2) = 0$$

2 $a_1 = -5, a_2 = 6, k = 2, h(n) = 0$
2 $c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$
3 $r_1 = 3, r_2 = 2$

$$t(n) - 5t(n-1) + 6t(n-2) = 0$$

$$a_1 = -5, a_2 = 6, k = 2, h(n) = 0$$

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

- $r_1 = 3, r_2 = 2$
- Expresar la ecuación de la forma $c(x) = (x r_1)(x r_2) \cdots (x r_k).$

- t(n) 5t(n-1) + 6t(n-2) = 0 $a_1 = -5, a_2 = 6, k = 2, h(n) = 0$
- $c(x) = x^2 5x^{2-1} + 6x^{2-2} = x^2 5x^1 + 6$
- $r_1 = 3, r_2 = 2$
- Expresar la ecuación de la forma $c(x) = (x r_1)(x r_2) \cdots (x r_k)$.

$$c(x) = (x-3)(x-2) = (x-3)^{1}(x-2)^{1}, \quad m_1 = 1, m_2 = 1$$

$$t(n) - 5t(n-1) + 6t(n-2) = 0$$

$$a_1 = -5, a_2 = 6, k = 2, h(n) = 0$$

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

$$r_1 = 3, r_2 = 2$$

1
$$c(x) = (x-3)(x-2) = (x-3)^1(x-2)^1, m_1 = 1, m_2 = 1$$

$$t(n) - 5t(n-1) + 6t(n-2) = 0$$

$$a_1 = -5, a_2 = 6, k = 2, h(n) = 0$$

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

$$r_1 = 3, r_2 = 2$$

•
$$c(x) = (x-3)(x-2) = (x-3)^{1}(x-2)^{1}, m_1 = 1, m_2 = 1$$

⑤ $\nexists m_p > 1 \Rightarrow$ Raíces simples.

- t(n) 5t(n-1) + 6t(n-2) = 0 $a_1 = -5, a_2 = 6, k = 2, h(n) = 0$
- $c(x) = x^2 5x^{2-1} + 6x^{2-2} = x^2 5x^1 + 6$
- $r_1 = 3, r_2 = 2$
- $c(x) = (x-3)(x-2) = (x-3)^{1}(x-2)^{1}, \quad m_1 = 1, m_2 = 1$
- **⑤** $\nexists m_p > 1 \Rightarrow$ Raíces simples.
- Definir la base B del conjunto de soluciones como $B = \{r_1^n, r_2^n, \dots, r_p^n\}.$

- t(n) 5t(n-1) + 6t(n-2) = 0 $a_1 = -5, a_2 = 6, k = 2, h(n) = 0$
- $c(x) = x^2 5x^{2-1} + 6x^{2-2} = x^2 5x^1 + 6$
- $c(x) = (x-3)(x-2) = (x-3)^{1}(x-2)^{1}, \quad m_1 = 1, m_2 = 1$
- **⑤** $\#m_p > 1 \Rightarrow$ Raíces simples.
- Definir la base B del conjunto de soluciones como $B = \{r_1^n, r_2^n, \dots, r_p^n\}.$

$$B = \{3^n, 2^n\}$$

$$t(n) - 5t(n-1) + 6t(n-2) = 0$$

$$a_1 = -5, a_2 = 6, k = 2, h(n) = 0$$

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

- $r_1 = 3, r_2 = 2$
- $c(x) = (x-3)(x-2) = (x-3)^1(x-2)^1$, $m_1 = 1$, $m_2 = 1$
- **⑤** $\#m_p > 1 \Rightarrow$ Raíces simples.
- **6** $B = \{3^n, 2^n\}$
- Reescribir la ecuación original como $t(n) = \frac{\lambda_1 r_1^n + \lambda_2 r_2^n + \cdots + \lambda_p r_p^n}{n!}$

$$t(n) - 5t(n-1) + 6t(n-2) = 0$$

$$a_1 = -5, a_2 = 6, k = 2, h(n) = 0$$

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

- $r_1 = 3, r_2 = 2$
- **4** $c(x) = (x-3)(x-2) = (x-3)^1(x-2)^1, m_1 = 1, m_2 = 1$
- **⑤** $\nexists m_p > 1 \Rightarrow$ Raíces simples.
- **6** $B = \{3^n, 2^n\}$
- Reescribir la ecuación original como $t(n) = \lambda_1 r_1^n + \lambda_2 r_2^n + \dots + \lambda_n r_n^n$

$$t(n) = \frac{\lambda_1}{3^n} + \lambda_2 2^n$$

$$t(n) - 5t(n-1) + 6t(n-2) = 0$$

$$a_1 = -5, a_2 = 6, k = 2, h(n) = 0$$

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

$$r_1 = 3, r_2 = 2$$

•
$$c(x) = (x-3)(x-2) = (x-3)^{1}(x-2)^{1}, m_1 = 1, m_2 = 1$$

- **⑤** $\nexists m_p > 1 \Rightarrow$ Raíces simples.
- **6** $B = \{3^n, 2^n\}$
- \odot Plantear un sistema de p ecuaciones, incluyendo los casos base

$$t(n) - 5t(n-1) + 6t(n-2) = 0$$

$$a_1 = -5, a_2 = 6, k = 2, h(n) = 0$$

②
$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

- $r_1 = 3, r_2 = 2$
- $c(x) = (x-3)(x-2) = (x-3)^{1}(x-2)^{1}, \quad m_1 = 1, m_2 = 1$
- **⑤** $\nexists m_p > 1 \Rightarrow$ Raíces simples.
- **6** $B = \{3^n, 2^n\}$
- $(n) = \frac{\lambda_1}{3^n} + \lambda_2 2^n$
- \odot Plantear un sistema de p ecuaciones, incluyendo los casos base

$$\begin{cases} t(0) = \lambda_1 3^0 + \lambda_2 2^0 = 0 \\ t(1) = \lambda_1 3^1 + \lambda_2 2^1 = 1 \end{cases} \Rightarrow \begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 3 + \lambda_2 2 = 1 \end{cases}$$

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

- $r_1 = 3, r_2 = 2$
- $c(x) = (x-3)(x-2) = (x-3)^{1}(x-2)^{1}, \quad m_1 = 1, m_2 = 1$
- **⑤** $\nexists m_p > 1 \Rightarrow$ Raíces simples.
- **1** $B = \{3^n, 2^n\}$
- $(n) = \lambda_1 3^n + \lambda_2 2^n$
- \odot Plantear un sistema de p ecuaciones, incluyendo los casos base

$$\begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 3 + \lambda_2 2 = 1 \end{cases} \Rightarrow \lambda_2 = -\lambda_1 \Rightarrow \lambda_1 3 - \lambda_1 2 = 1$$
$$\lambda_1 = 1 \Rightarrow \lambda_2 = -1$$

$$t(n) - 5t(n-1) + 6t(n-2) = 0$$

$$a_1 = -5, a_2 = 6, k = 2, h(n) = 0$$

$$c(x) = x^2 - 5x^{2-1} + 6x^{2-2} = x^2 - 5x^1 + 6$$

$$r_1 = 3, r_2 = 2$$

4
$$c(x) = (x-3)(x-2) = (x-3)^1(x-2)^1, m_1 = 1, m_2 = 1$$

- **⑤** $\nexists m_p > 1 \Rightarrow$ Raíces simples.
- **6** $B = \{3^n, 2^n\}$
- $t(n) = \frac{\lambda_1}{3^n} + \lambda_2 2^n$
- **3** $\lambda_1 = 1, \lambda_2 = -1$

$$t(n) = 1 \cdot 3^n + (-1) \cdot 2^n = 3^n - 2^n$$

Ejemplo

$$t(n) = \begin{cases} 2t(n-1) - t(n-2) & n > 1 \\ 1 & n = 1 \\ 0 & n = 0 \end{cases}$$

① Expresar la ecuación general de la forma $t(n) + a_1 t(n-1) + a_2 t(n-2) + \cdots + a_k t(n-k) = h(n)$

Ejemplo

$$t(n) = \begin{cases} 2t(n-1) - t(n-2) & n > 1\\ 1 & n = 1\\ 0 & n = 0 \end{cases}$$

① Expresar la ecuación general de la forma $t(n) + a_1 t(n-1) + a_2 t(n-2) + \dots + a_k t(n-k) = h(n)$ t(n) - 2t(n-1) + 1t(n-2) = 0 $a_1 = -2, a_2 = 1, k = 2, h(n) = 0$

 $h(n) = 0 \Rightarrow ERL Homogénea$

$$t(n) = \begin{cases} 2t(n-1) - t(n-2) & n > 1 \\ 1 & n = 1 \\ 0 & n = 0 \end{cases}$$

- t(n) 2t(n-1) + 1t(n-2) = 0 $a_1 = -2, a_2 = 1, k = 2, h(n) = 0$
- ② Definir una nueva ecuación de la forma $c(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \cdots + a_k$.

$$t(n) = \begin{cases} 2t(n-1) - t(n-2) & n > 1 \\ 1 & n = 1 \\ 0 & n = 0 \end{cases}$$

- t(n) 2t(n-1) + 1t(n-2) = 0 $a_1 = -2, a_2 = 1, k = 2, h(n) = 0$
- ② Definir una nueva ecuación de la forma $c(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \cdots + a_k$.

$$c(x) = x^2 - 2x^{2-1} + 1x^{2-2} = x^2 - 2x^1 + 1$$

$$t(n) - 2t(n-1) + 1t(n-2) = 0$$

$$a_1 = -2, a_2 = 1, k = 2, h(n) = 0$$

$$c(x) = x^2 - 2x^{2-1} + 1x^{2-2} = x^2 - 2x^1 + 1$$

3 Calcular las $R = \{r_1, r_2, \dots, r_k\}$ raíces de c(x)

$$t(n) - 2t(n-1) + 1t(n-2) = 0$$

$$a_1 = -2, a_2 = 1, k = 2, h(n) = 0$$

$$c(x) = x^2 - 2x^{2-1} + 1x^{2-2} = x^2 - 2x^1 + 1$$

3 Calcular las $R = \{r_1, r_2, \dots, r_k\}$ raíces de c(x)

$$\frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 1}}{2} = \frac{2 \pm \sqrt{0}}{2} \Rightarrow R = \{1, 1\}$$

①
$$t(n) - 2t(n-1) + 1t(n-2) = 0$$

 $a_1 = -2, a_2 = 1, k = 2, h(n) = 0$
② $c(x) = x^2 - 2x^{2-1} + 1x^{2-2} = x^2 - 2x^1 + 1$

$$r_1 = 1, r_2 = 1$$

$$t(n) - 2t(n-1) + 1t(n-2) = 0$$

$$a_1 = -2, a_2 = 1, k = 2, h(n) = 0$$

$$c(x) = x^2 - 2x^{2-1} + 1x^{2-2} = x^2 - 2x^1 + 1$$

- $r_1 = 1, r_2 = 1$
- Expresar la ecuación de la forma $c(x) = (x r_1)(x r_2) \cdots (x r_k)$

$$t(n) - 2t(n-1) + 1t(n-2) = 0$$

$$a_1 = -2, a_2 = 1, k = 2, h(n) = 0$$

$$c(x) = x^2 - 2x^{2-1} + 1x^{2-2} = x^2 - 2x^1 + 1$$

- $r_1 = 1, r_2 = 1$
- Expresar la ecuación de la forma $c(x) = (x r_1)(x r_2) \cdots (x r_k)$

$$c(x) = (x-1)(x-1) = (x-1)^2$$
, $r_1 = 1$, $m_1 = 2$

$$t(n) - 2t(n-1) + 1t(n-2) = 0$$

$$a_1 = -2, a_2 = 1, k = 2, h(n) = 0$$

2
$$c(x) = (x-1)^2$$
, $r_1 = 1$, $m_1 = 2$

3 $\exists m_i > 1 \Rightarrow$ Raíces múltiples.

- t(n) 2t(n-1) + 1t(n-2) = 0 $a_1 = -2, a_2 = 1, k = 2, h(n) = 0$
- $c(x) = (x-1)^2, r_1 = 1, m_1 = 2$
- **3** $\exists m_i > 1 \Rightarrow$ Raíces múltiples.
- Oefinir la base B del conjunto de soluciones como

$$B = \{n^{0}r_{1}^{n}, n^{1}r_{1}^{n}, \cdots, n^{m_{1}-1}r_{1}^{n}, \cdots, n^{0}r_{2}^{n}, n^{1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, \dots, n^{0}r_{p}^{n}, n^{1}r_{p}^{n}, \cdots, n^{m_{p}-1}r_{p}^{n}, \}$$

- t(n) 2t(n-1) + 1t(n-2) = 0 $a_1 = -2, a_2 = 1, k = 2, h(n) = 0$
- $c(x) = (x-1)^2, r_1 = 1, m_1 = 2$
- ③ $\exists m_i > 1 \Rightarrow \text{Raíces múltiples}.$
- Oefinir la base B del conjunto de soluciones como

$$B = \{n^{0}r_{1}^{n}, n^{1}r_{1}^{n}, \dots, n^{m_{1}-1}r_{1}^{n}, \dots, n^{0}r_{2}^{n}, n^{1}r_{2}^{n}, \dots, n^{m_{2}-1}r_{2}^{n}, \dots, n^{m_{2}-1}r_{2}^{n}, \dots, \dots, \dots, n^{0}r_{p}^{n}, n^{1}r_{p}^{n}, \dots, n^{m_{p}-1}r_{p}^{n}, \}$$

$$B = \{n^{0}1^{n}, n^{1}1^{n}\} = \{1, n\}$$

$$t(n) - 2t(n-1) + 1t(n-2) = 0$$

$$a_1 = -2, a_2 = 1, k = 2, h(n) = 0$$

- $c(x) = (x-1)^2, r_1 = 1, m_1 = 2$
- ③ $\exists m_i > 1 \Rightarrow \text{Raíces múltiples}.$
- **4** $B = \{1, n\}$
- **3** Reescribir la ecuación original como $t(n) = \frac{\lambda_1}{b_1} b_1 + \frac{\lambda_2}{b_2} b_2 + \dots + \frac{\lambda_i}{b_i} b_i$

$$t(n) - 2t(n-1) + 1t(n-2) = 0$$

$$a_1 = -2, a_2 = 1, k = 2, h(n) = 0$$

$$c(x) = (x-1)^2, r_1 = 1, m_1 = 2$$

- ③ $\exists m_i > 1 \Rightarrow \text{Raíces múltiples}.$
- \bullet $B = \{1, n\}$
- Seescribir la ecuación original como $t(n) = \lambda_1 b_1 + \lambda_2 b_2 + \dots + \lambda_i b_i$

$$t(n) = \lambda_1 \cdot 1 + \lambda_2 n = \lambda_1 + \lambda_2 n$$

$$t(n) - 2t(n-1) + 1t(n-2) = 0$$

$$a_1 = -2, a_2 = 1, k = 2, h(n) = 0$$

②
$$c(x) = (x-1)^2$$
, $r_1 = 1$, $m_1 = 2$

- ③ $\exists m_i > 1 \Rightarrow \text{Raíces múltiples}.$
- **4** $B = \{1, n\}$
- O Plantear un sistema de i ecuaciones, incluyendo los casos base

- t(n) 2t(n-1) + 1t(n-2) = 0 $a_1 = -2, a_2 = 1, k = 2, h(n) = 0$
- $c(x) = (x-1)^2, r_1 = 1, m_1 = 2$
- ③ $\exists m_i > 1 \Rightarrow \text{Raíces múltiples}.$
- **4** $B = \{1, n\}$
- O Plantear un sistema de i ecuaciones, incluyendo los casos base

$$\begin{cases} t(0) = \lambda_1 + \lambda_2 0 = 0 \\ t(1) = \lambda_1 + \lambda_2 1 = 1 \end{cases} \Rightarrow \begin{cases} \lambda_1 = 0 \\ \lambda_1 + \lambda_2 = 1 \end{cases}$$

- t(n) 2t(n-1) + 1t(n-2) = 0 $a_1 = -2, a_2 = 1, k = 2, h(n) = 0$
- ② $c(x) = (x-1)^2$, $r_1 = 1$, $m_1 = 2$
- ③ $\exists m_i > 1 \Rightarrow \text{Raíces múltiples}.$
- **4** $B = \{1, n\}$
- O Plantear un sistema de i ecuaciones, incluyendo los casos base

$$\begin{cases} \lambda_1 = 0 \\ \lambda_1 + \lambda_2 = 1 \end{cases} \Rightarrow \lambda_1 = 0$$
$$\lambda_1 + \lambda_2 = \lambda_2 = 1$$

$$t(n) - 2t(n-1) + 1t(n-2) = 0$$

$$a_1 = -2, a_2 = 1, k = 2, h(n) = 0$$

$$c(x) = (x-1)^2, \quad r_1 = 1, m_1 = 2$$

- **③** $\exists m_i > 1 \Rightarrow$ Raíces múltiples.
- **4** $B = \{1, n\}$
- **6** $\lambda_1 = 0, \lambda_2 = 1$

$$t(n) = \frac{\lambda_1}{\lambda_1} + \lambda_2 n = 0 \cdot +1 \cdot n = n$$

Ejemplo

$$t(n) = \begin{cases} t(n-1) + 2 & n > 0 \\ 0 & n = 0 \end{cases}$$

① Expresar la ecuación general de la forma $t(n) + a_1 t(n-1) + a_2 t(n-2) + \cdots + a_k t(n-k) = h(n)$

Ejemplo

$$t(n) = \begin{cases} t(n-1) + 2 & n > 0 \\ 0 & n = 0 \end{cases}$$

① Expresar la ecuación general de la forma $t(n) + a_1 t(n-1) + a_2 t(n-2) + \cdots + a_k t(n-k) = h(n)$

$$t(n) - 1t(n-1) = 2$$
, $a_1 = -1$, $k = 1$, $h(n) = 2$

2 $h(n) = 2 \Rightarrow ERL$ No Homogénea

- **1** t(n) 1t(n-1) = 2, $a_1 = -1$, k = 1, h(n) = 2
- **2** Reescribir h(n) como $\sum_{i=1}^{i} p(n)S_{i}^{n}$, donde p(n) es un polinomio de grado m_{i}

1
$$t(n) - 1t(n-1) = 2$$
, $a_1 = -1$, $k = 1$, $h(n) = 2$

2

$$h(n) = 2 = \sum_{1}^{1} 2 = \sum_{1}^{1} (2 \cdot 1 \cdot 1) = \sum_{1}^{1} 2n^{0}1^{n} \Rightarrow S_{1} = 1, m_{1} = 0$$

- **1** t(n) 1t(n-1) = 2, $a_1 = -1, k = 1, h(n) = 2$
- $S_1 = 1, m_1 = 0$
- 3 Definir una nueva ecuación de la forma

$$c_1(x) = x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k$$

$$c_2(x) = (x - S_1)^{m_1 + 1} (x - S_2)^{m_2 + 1} \cdots (x - S_i)^{m_i + 1}$$

$$c(x) = c_1(x)c_2(x)$$

- **1** t(n) 1t(n-1) = 2, $a_1 = -1$, k = 1, h(n) = 2
- $S_1 = 1, m_1 = 0$
- Oefinir una nueva ecuación de la forma

$$c_{1}(x) = x^{k} + a_{1}x^{k-1} + a_{2}x^{k-2} + \dots + a_{k}$$

$$c_{2}(x) = (x - S_{1})^{m_{1}+1}(x - S_{2})^{m_{2}+1} \cdot \dots (x - S_{i})^{m_{i}+1}$$

$$c(x) = c_{1}(x)c_{2}(x)$$

$$c_{1}(x) = x^{1} + (-1) = x - 1$$

$$c_{2}(x) = (x - 1)^{0+1} = x - 1$$

$$c(x) = c_{1}(x)c_{2}(x) = (x - 1)(x - 1)$$

1
$$t(n) - 1t(n-1) = 2$$
, $a_1 = -1$, $k = 1$, $h(n) = 2$

- c(x) = (x-1)(x-1)
- **3** Calcular las $R = \{r_1, r_2, \dots, r_k\}$ raíces de c(x)

1
$$t(n) - 1t(n-1) = 2$$
, $a_1 = -1, k = 1, h(n) = 2$

- c(x) = (x-1)(x-1)
- **3** Calcular las $R = \{r_1, r_2, \dots, r_k\}$ raíces de c(x)

$$R = \{1, 1\}$$

1
$$t(n) - 1t(n-1) = 2$$
, $a_1 = -1, k = 1, h(n) = 2$

$$c(x) = (x-1)(x-1)$$

$$R = \{1, 1\}$$

• Expresar la ecuación de la forma $c(x) = (x - r_1)(x - r_2) \cdots (x - r_k)$

1
$$t(n) - 1t(n-1) = 2$$
, $a_1 = -1, k = 1, h(n) = 2$

$$c(x) = (x-1)(x-1)$$

- $R = \{1, 1\}$
- Expresar la ecuación de la forma

$$c(x) = (x - r_1)(x - r_2) \cdots (x - r_k)$$

$$c(x) = (x-1)(x-1) = (x-1)^2, \quad m_1 = 2$$

1
$$t(n) - 1t(n-1) = 2$$
, $a_1 = -1, k = 1, h(n) = 2$

- c(x) = (x-1)(x-1)
- $R = \{1, 1\}$
- $c(x) = (x-1)(x-1) = (x-1)^2, m_1 = 2$
- **⑤** $\exists m_p > 1 \Rightarrow$ Raíces múltiples.

1
$$t(n) - 1t(n-1) = 2$$
, $a_1 = -1, k = 1, h(n) = 2$

- c(x) = (x-1)(x-1)
- $R = \{1, 1\}$
- $c(x) = (x-1)(x-1) = (x-1)^2, m_1 = 2$
- **⑤** $\exists m_p > 1 \Rightarrow$ Raíces múltiples.

- **1** t(n) 1t(n-1) = 2, $a_1 = -1$, k = 1, h(n) = 2
- $R = \{1, 1\}$
- $c(x) = (x-1)(x-1) = (x-1)^2, m_1 = 2$
- **4** ∃ $m_p > 1 \Rightarrow$ Raíces múltiples.
- Of Definir la base B del conjunto de soluciones como

$$B = \{n^{0}r_{1}^{n}, n^{1}r_{1}^{n}, \cdots, n^{m_{1}-1}r_{1}^{n}, \cdots, n^{0}r_{2}^{n}, n^{1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, \dots, n^{0}r_{p}^{n}, n^{1}r_{p}^{n}, \cdots, n^{m_{p}-1}r_{p}^{n}, \}$$

- **1** t(n) 1t(n-1) = 2, $a_1 = -1$, k = 1, h(n) = 2
- $R = \{1, 1\}$
- $c(x) = (x-1)(x-1) = (x-1)^2, \quad m_1 = 2$
- **③** $\exists m_p > 1 \Rightarrow$ Raíces múltiples.
- Offinir la base B del conjunto de soluciones como

$$B = \{n^{0}r_{1}^{n}, n^{1}r_{1}^{n}, \cdots, n^{m_{1}-1}r_{1}^{n}, \cdots, n^{0}r_{2}^{n}, n^{1}r_{2}^{n}, \cdots, n^{m_{2}-1}r_{2}^{n}, \cdots, \dots, n^{0}r_{p}^{n}, n^{1}r_{p}^{n}, \cdots, n^{m_{p}-1}r_{p}^{n}, \}$$

$$B = \{n^{0}1^{n}, n^{1}1^{n}\} = \{1, n\}$$

1
$$t(n) - 1t(n-1) = 2$$
, $a_1 = -1, k = 1, h(n) = 2$

$$c(x) = (x-1)(x-1) = (x-1)^2, m_1 = 2$$

- **③** $\exists m_p > 1 \Rightarrow$ Raíces múltiples.
- **4** $B = \{1, n\}$

1
$$t(n) - 1t(n-1) = 2$$
, $a_1 = -1$, $k = 1$, $h(n) = 2$

$$c(x) = (x-1)(x-1) = (x-1)^2, m_1 = 2$$

- **③** $\exists m_p > 1 \Rightarrow$ Raíces múltiples.
- **4** $B = \{1, n\}$
- Seescribir la ecuación original como $t(n) = \frac{\lambda_1 b_1}{\lambda_1 b_1} + \frac{\lambda_2 b_2}{\lambda_2 b_2} + \dots + \frac{\lambda_i b_i}{\lambda_i b_i}.$

1
$$t(n) - 1t(n-1) = 2$$
, $a_1 = -1$, $k = 1$, $h(n) = 2$

$$c(x) = (x-1)(x-1) = (x-1)^2, m_1 = 2$$

- **3** $\exists m_p > 1 \Rightarrow$ Raíces múltiples.
- $B = \{1, n\}$
- **3** Reescribir la ecuación original como $t(n) = \lambda_1 b_1 + \lambda_2 b_2 + \cdots + \lambda_i b_i$.

$$t(n) = \frac{\lambda_1}{\lambda_1} \cdot 1 + \lambda_2 n = \frac{\lambda_1}{\lambda_1} + \lambda_2 n$$

- $2 t(n) = \frac{\lambda_1}{\lambda_1} \cdot 1 + \lambda_2 n = \frac{\lambda_1}{\lambda_1} + \lambda_2 n$
- **3** Para cada parámetro ligado i, hallar el valor de λ_i por sustitución, añadiendo al sistema de ecuaciones una nueva ecuación, donde

```
t(n) se sustituye por \lambda_i b_i

t(n-1) se sustituye por \lambda_i b_i, restando 1 a n en b_i

t(n-2) se sustituye por \lambda_i b_i, restando 2 a n en b_i

...
```

 c_2 aporta a c(x) el parámetro ligado λ_2 , luego se puede hallar sustituyendo en la ecuación original t(n) por $\lambda_2 n$, t(n-1) por $\lambda_2 (n-1)$, t(n-2) por $\lambda_2 (n-2)$...

$$t(n) = \begin{cases} t(n-1) + 2 & n > 0 \\ 0 & n = 0 \end{cases}$$

- **1** t(n) 1t(n-1) = 2, $a_1 = -1$, k = 1, h(n) = 2
- $2 t(n) = \frac{\lambda_1}{\lambda_1} \cdot 1 + \lambda_2 n = \frac{\lambda_1}{\lambda_1} + \lambda_2 n$
- **3** Sustituir en la ecuación original t(n) por $\lambda_2 n$ y t(n-1) por $\lambda_2 (n-1)$

$$t(n) = \begin{cases} t(n-1) + 2 & n > 0 \\ 0 & n = 0 \end{cases}$$

- **1** t(n) 1t(n-1) = 2, $a_1 = -1, k = 1, h(n) = 2$
- $t(n) = \frac{\lambda_1}{\lambda_1} \cdot 1 + \lambda_2 n = \frac{\lambda_1}{\lambda_1} + \lambda_2 n$
- **3** Sustituir en la ecuación original t(n) por $\lambda_2 n$ y t(n-1) por $\lambda_2 (n-1)$

$$t(n) = t(n-1) + 2 \Rightarrow \lambda_2 n = \lambda_2 (n-1) + 2$$
$$\lambda_2 n = \lambda_2 n - \lambda_2 1 + 2$$
$$\lambda_2 1 = \lambda_2 n - \lambda_2 n + 2$$
$$\lambda_2 = 2$$

• Sustituir en la ecuación original t(n) por $\lambda_2 n$ y t(n-1) por $\lambda_2 (n-1)$

$$t(n) = t(n-1) + 2 \Rightarrow \lambda_2 n = \lambda_2 (n-1) + 2$$
$$\lambda_2 n = \lambda_2 n - \lambda_2 1 + 2$$
$$\lambda_2 1 = \lambda_2 n - \lambda_2 n + 2$$
$$\lambda_2 = 2$$

2 Plantear un sistema de ecuaciones, incluyendo los casos base

- Plantear un sistema de ecuaciones, incluyendo los casos base

$$t(0) = \frac{\lambda_1}{\lambda_1} + 2 \cdot 0 = \frac{\lambda_1}{\lambda_1} = 0$$

$$t(n) = 0 + 2 \cdot n = 2n$$

Ejemplo

$$t(n) = \begin{cases} t(\frac{n}{2}) + t(\frac{n}{2}) + \frac{n}{2}, & n > 1 \\ 0, & n = 1 \end{cases}$$

Expresar la ecuación general de la forma

$$t(n) + a_1t(n-1) + a_2t(n-2) + \cdots + a_kt(n-k) = h(n).$$

Ejemplo

$$t(n) = \begin{cases} t(\frac{n}{2}) + t(\frac{n}{2}) + \frac{n}{2}, & n > 1 \\ 0, & n = 1 \end{cases}$$

Expresar la ecuación general de la forma

$$t(n) + a_1 t(n-1) + a_2 t(n-2) + \cdots + a_k t(n-k) = h(n).$$

$$t(n) - t(\frac{n}{2}) - t(\frac{n}{2}) = \frac{n}{2}$$

 $t(n) - 2t(\frac{n}{2}) = \frac{n}{2}$

Ejemplo

$$t(n) = \begin{cases} t(\frac{n}{2}) + t(\frac{n}{2}) + \frac{n}{2}, & n > 1 \\ 0, & n = 1 \end{cases}$$

$$t(n)-2t(\frac{n}{2})=\frac{n}{2}$$

Es una ecuación que no sabemos resolver, pero si suponemos que $n = 2^k$.

$$t(2^k) - 2t(\frac{2^k}{2}) = \frac{2^k}{2}, \quad 2^k > 1$$

 $t(2^k) - 2t(2^{k-1}) = \frac{1}{2}2^k, \quad k > 0$

$$t(2^k) - 2t(2^{k-1}) = \frac{1}{2}2^k, \quad k > 0$$

Si realizamos un cambio de variable donde $T(k)=t(2^k)$, tenemos que $T(k)-2T(k-1)=\frac{1}{2}2^k,\quad k>0$

que ya se encuentra expresada de una forma que sabemos resolver, y donde $a_1 = -2, k = 1, h(k) = \frac{1}{2}2^k$.

 $h(k) = \frac{1}{2}k \Rightarrow \text{ERL No homogénea} \Rightarrow \text{Reescribir } h(k) \text{ como}$ $\sum_{i=1}^{j} p(k)S_{i}^{k}$, donde p(k) es un polinomio de grado m_{i} .

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

que ya se encuentra expresada de una forma que sabemos resolver, y donde $a_1 = -2$, k = 1, $h(k) = \frac{1}{2}2^k$. $h(k) = \frac{1}{2}k \Rightarrow \text{ERL No homogénea} \Rightarrow \text{Reescribir } h(k) \text{ como}$ $\sum_{i=1}^{l} p(k)S_i^k$, donde p(k) es un polinomio de grado m_i .

$$h(k) = \frac{1}{2}2^k = \sum_{1}^{1} \frac{1}{2}2^k = \sum_{1}^{1} (\frac{1}{2} \cdot k^0 \cdot 2^k) \Rightarrow S_1 = 2, m_1 = 0$$

Definir una nueva ecuación de la forma

$$c_1(x) = x^k + A_1 x^{k-1} + A_2 x^{k-2} + \dots + A_k$$

$$c_2(x) = (x - S_1)^{m_1 + 1} (x - S_2)^{m_2 + 1} \cdots (x - S_i)^{m_i + 1}$$

$$c(x) = c_1(x) c_2(x)$$

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

$$S_1 = 2, m_1 = 0$$

Definir una nueva ecuación de la forma

$$c_1(x) = x^k + A_1 x^{k-1} + A_2 x^{k-2} + \dots + A_k$$

$$c_2(x) = (x - S_1)^{m_1 + 1} (x - S_2)^{m_2 + 1} \cdots (x - S_i)^{m_i + 1}$$

$$c(x) = c_1(x) c_2(x)$$

donde $c_2(x)$ aporta i parámetros ligados a c(x).

$$c_1(x) = x^1 + (-2) = x - 2$$

$$c_2(x) = (x - 2)^{0+1} = (x - 2)$$

$$c(x) = c_1(x)c_2(x) = (x - 2)(x - 2)$$

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

 $c(x) = c_1(x)c_2(x) = (x-2)(x-2)$

Calcular las $\{r_1, r_2, \cdots, r_k\}$ raíces de c(x).

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

$$c(x) = c_1(x)c_2(x) = (x-2)(x-2)$$

Calcular las $\{r_1, r_2, \cdots, r_k\}$ raíces de c(x).

$$R = \{2, 2\}$$

Expresar la ecuación de la forma

$$c(x) = (x - r_1)(x - r_2) \cdots (x - r_k).$$

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

 $c(x) = c_1(x)c_2(x) = (x-2)(x-2)$

$$c(x) = (x-2)(x-2) = (x-2)^2$$

 $\exists m_p > 1 \Rightarrow \mathsf{Raices} \; \mathsf{multiples}.$

$$c(x) = (x-2)^2, m_1 = 2$$

Definir la base B del conjunto de soluciones como

$$B = \{k^{0}r_{1}^{k}, k^{1}r_{1}^{k}, \cdots, k^{m_{1}-1}r_{1}^{k}, \cdots, k^{0}r_{2}^{k}, k^{1}r_{2}^{k}, \cdots, k^{m_{2}-1}r_{2}^{k}, \cdots, k^{m_{p}-1}r_{p}^{k}, \cdots, k^{m_{p}-1}r_{p}^{k}, \cdots, k^{m_{p}-1}r_{p}^{k}, \}$$

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$
$$c(x) = c_1(x)c_2(x) = (x-2)(x-2)$$

$$c(x) = (x-2)(x-2) = (x-2)^2$$

 $\exists m_p > 1 \Rightarrow \mathsf{Raices} \; \mathsf{multiples}.$

$$c(x) = (x-2)^2, m_1 = 2$$

Definir la base B del conjunto de soluciones como

$$B = \{k^0 2^k, k^1 2^k\} = \{2^k, k 2^k\}$$

Reescribir la ecuación original como $t(n) = \lambda_1 b_1 + \lambda_2 b_2 + \cdots + \lambda_i b_i$.

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

 $B = \{k^0 2^k, k^1 2^k\} = \{2^k, k 2^k\}$

Reescribir la ecuación original como

$$t(n) = \lambda_1 b_1 + \lambda_2 b_2 + \cdots + \lambda_i b_i.$$

$$T(k) = \frac{\lambda_1}{\lambda_1} \cdot 2^k + \lambda_2 k 2^k$$

Para cada parámetro ligado i, hallar el valor de λ_i por sustitución, añadiendo al sistema de ecuaciones una nueva ecuación, donde

$$T(k)$$
 se sustituye por $\lambda_i b_i$

T(k-1) se sustituye por $\lambda_i b_i$, restando 1 a k en b_i

T(k-2) se sustituye por $\lambda_i b_i$, restando 2 a k en b_i

. . .

 c_2 aporta a c(x) el parámetro ligado λ_2 , luego se puede hallar sustituyendo en la ecuación original T(k) por $\lambda_2 k 2^k$, T(k-1) por $\lambda_2 (k-1) 2^{(k)}$, T(k-2) por $\lambda_2 (k-2) 2^{(k)}$...

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

 $B = \{k^0 2^k, k^1 2^k\} = \{2^k, k 2^k\}$

$$T(k) = 2T(k-1) + \frac{1}{2}2^k \Rightarrow \lambda_2 k 2^k = 2(\lambda_2(k-1)2^{(k-1)}) + \frac{1}{2}2^k$$
$$\lambda_2 k 2^k = \lambda_2(k-1)2^k + \frac{1}{2}2^k$$
$$\lambda_2 k = \lambda_2(k-1) + \frac{1}{2}$$
$$\lambda_2 k = \lambda_2 k - \lambda_2 + \frac{1}{2}$$
$$\lambda_2 k = \frac{1}{2}$$

Quedando la ecuación como

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

Reescribir la ecuación original como

$$t(n) = \frac{\lambda_1 b_1}{\lambda_1 b_1} + \frac{\lambda_2 b_2}{\lambda_2 b_2} + \cdots + \frac{\lambda_i b_i}{\lambda_i b_i}.$$

$$T(k) = \frac{\lambda_1}{\lambda_1} \cdot 2^k + \lambda_2 k 2^k$$

$$T(k) = 2T(k-1) + \frac{1}{2}2^k \Rightarrow \lambda_2 k 2^k = 2(\lambda_2(k-1)2^{(k-1)}) + \frac{1}{2}2^k$$
$$\lambda_2 k 2^k = \lambda_2(k-1)2^k + \frac{1}{2}2^k$$
$$\lambda_2 k = \lambda_2(k-1) + \frac{1}{2}$$
$$\lambda_2 k = \lambda_2 k - \lambda_2 + \frac{1}{2}$$
$$\lambda_2 = \frac{1}{2}$$

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

$$T(k) = \lambda_1 \cdot 2^k + \frac{1}{2}k2^k$$

Deshacer el cambio $T(k) = t(2^k)$,

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

$$T(k) = \lambda_1 \cdot 2^k + \frac{1}{2}k2^k$$

Deshacer el cambio $T(k) = t(2^k)$.

$$2^{k} = n \Rightarrow k = \log_{2} n \Rightarrow t(n) = \frac{\lambda_{1}}{2} 2^{\log_{2} n} + \frac{1}{2} (\log_{2} n) 2^{\log_{2} n}, \quad n > 1$$
$$t(n) = \frac{\lambda_{1}}{2} n^{\log_{2} 2} + \frac{1}{2} (\log_{2} n) n^{\log_{2} 2}, \quad n > 1$$
$$t(n) = \frac{\lambda_{1}}{2} n + \frac{1}{2} (\log_{2} n) n, \quad n > 1$$

Plantear un sistema de ecuaciones, incluyendo los casos base.

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

$$t(n) = \lambda_1 n + \frac{1}{2}(\log_2 n)n, \quad n > 1$$

Plantear un sistema de ecuaciones, incluyendo los casos base.

$$t(1) = \lambda_1 1 + \frac{1}{2} (\log_2 1) 1 = \lambda_1 + \frac{1}{2} \cdot 0 \cdot 1 = \lambda_1 = 0$$

Determinar los valores de $\lambda_1, \lambda_2, \dots, \lambda_p$.

$$T(k) - 2T(k-1) = \frac{1}{2}2^k, \quad k > 0$$

$$t(n) = \frac{\lambda_1}{n} n + \frac{1}{2} (\log_2 n) n, \quad n > 1$$

Plantear un sistema de ecuaciones, incluyendo los casos base.

$$t(1) = \lambda_1 1 + \frac{1}{2} (\log_2 1) 1 = \lambda_1 + \frac{1}{2} \cdot 0 \cdot 1 = \lambda_1 = 0$$

$$t(n) = \frac{1}{2}(\log_2 n)n$$