Rendu Projet BDD2

BOUTIN Loïc, HACQUES Florian, NYUNTING Elbert, PINEL Félix Janvier 2017

Résumé

Dans le cadre de l'UE X6I0050 "Bases de Données 2" nous avons réalisé ce projet. Il comporte le bestiaire de Dungeons and Dragons $5^{\grave{e}me}$ édition tiré du livre <u>Monster Manual</u>. Ce rapport expliquera la mise en place des attributs, leurs décompositions, leurs dépendances ainsi que les difficultés rencontrées dans la réalisation de celui-ces derniers.

Table des matières

1	Introduction	1
2	Table des attributs	1
3	Décomposition des tables3.1 Dépendances3.2 Décomposition3.2.1 Algorithme de Bernstein3.2.2 Algorithme de Décomposition	3
4	Tests de normalisation	ϵ
5	UML	6

1 Introduction

2 Table des attributs

Afin de simplifier la lecture, les attributs ont été représentés en lignes avec les exemples en colonnes. L'attribut nom est une clé primaire car chaque monstre a un nom unique est ces monstres sont triés alphabétiquement.

Attributs	Exemple 1	Exemple 2	Exemple 3	Exemple 4	
nom	Beholder	<u>Lamia</u>	Medusa	Bulette	
taille	Large	Large	Medium	Large	
type	Aberration	Monstrosity	Monstrosity	Monstrosity	
race	Beholder	Lamia	Medusa	Bulette	
morale	Lawful	Chaotic Lawful		-	
ethique	Evil	Evil	Evil	-	
aC	18	13	15	17	
multiplePV	19	13	17	9	
dePV	10	10	8	10	
constantePV	76	26	51	45	
exp	10 000	1 100	2 300	1 800	
cR	13	4	6	5	
attSTR	10	16	10	19	
attDEX	14	13	15	11	
attCON	18	15	16	21	
attINT	17	14	12	2	
attWIS	15	15	13	10	
attCHA	17	16	15	5	
langues	Undercommon	Abyssal, Common	Common	-	
competences	Perception	Deception, Insight,	Deception, Insight,	Perception	
		Stealth	Perception, Stealth		
valCompetences	12	7, 4, 3	5, 4, 4, 5	6	
habitat	Underdark	Ruins	Ruins	Underdark	
déplacement	Fly	Walk, Fly	Walk	Walk, Burrow	
vitesse	20	30, 30	30	40, 40	

1

Attributs	Exemple 5	emple 5 Exemple 6		Exemple 8
nom	Spectator	Solar	Azer	Clawing Claw
taille	Medium	Large	Medium	Tiny
type	Aberration	Celestial	Elemental	Undead
race	Beholder	Angel	Fire	Humanoid
			Elemental	
morale	Lawful	lawful	Lawful	Neutral
ethique	Neutral	Good	Neutral	Evil
aC	14	21	17	12
multiplePV	6	18	6	1
dePV	8	10	8	4
constantePV	12	144	12	0
exp	700	33 000	450	10
cR	3	21	2	0
attSTR	8	26	17	13
attDEX	14	22	12	14
attCON	14	26	15	11
attINT	13	25	12	5
attWIS	14	25	13	10
attCHA	11	30	10	4
langues	Undercommon	All	Ignan	-
		(toutes langues)		
competences	Perception	Perception	-	-
valCompetences	6	14	-	-
habitat	Underdark	Heaven	Fire Realm	Cities
déplacement	Fly	Walk, Fly	Walk	Walk, Climb
vitesse	30	50, 150	30	20, 20

3 Décomposition des tables

3.1 Dépendances

Nous voyons que certains attributs dépendent d'un ature attribut. Nous voyons donc dans cette table :

- race \rightarrow habitat, Type
- competences, nom \rightarrow valCompetences
- déplacement, nom \rightarrow vitesse
- taille \rightarrow dePV
- cR \rightarrow exp
- $\underline{\text{nom}} \rightarrow \text{tout attributs}$

Notre but est donc de changer ces dépendances afin d'avoir quelque chose d'atomique.

3.2 Décomposition

Afin de pouvoir passer en 1FN, nous allons atomiser les attributs, mais nous prenons l'exemple de Lamia ($Exemple\ 2$) à partir du tableau précédente. Nous allons atomiser les attributs langues, compétences. et déplacements pour l'exemple du Lamia.

Attributs	Exemple 2	Exemple 2	Exemple 2	Exemple 2	Exemple 2	Exemple 2
nom	<u>Lamia</u>	Lamia	Lamia	Lamia	Lamia	Lamia
taille	Large	Large	Large	Large	Large	Large
•		•	•	•	•	
langues	Abyssal	Abyssal	Abyssal	Common	Common	Common
competences	Deception	Insight	Stealth	Deception	Insight	Stealth
valCompetences	7	4	3	7	4	3
•		•	•		•	•
deplacement	Walk	Walk	Walk	Walk	Walk	Walk
Vitesse	30	30	30	30	30	30

Attributs	Exemple 2	Exemple 2	Exemple 2	Exemple 2	Exemple 2	Exemple 2
nom	<u>Lamia</u>	<u>Lamia</u>	<u>Lamia</u>	Lamia	<u>Lamia</u>	Lamia
taille	Large	Large	Large	Large	Large	Large
•			•		•	
		•	•			•
•						
langues	Abyssal	Abyssal	Abyssal	Common	Common	Common
competences	Deception	Insight	Stealth	Deception	Insight	Stealth
valCompetences	7	4	3	7	4	3
•						
deplacement	Fly	Fly	Fly	Fly	Fly	Fly
Vitesse	30	30	30	30	30	30

Attention. Dans ce cas, il n'y a qu'un seul type de Lamia, on ne parle pas içi de différents types de Lamias, mais **TOUS** les compétences, langues et modes de déplacements des Lamias, mais les données sont atomiques. Un Lamia peut donc parler Abyssal et Common, et est capable de Deception à 7 points, Insight à 4 points et Stealth à 3 points ainsi que Walk à une vitesse 30 et Fly à une vitesse 30. Cette ambiguïté sera levée par la normalisation et la décomposition des tables.

La clé est donc <u>nom</u>, langues, competences et deplacement.

Nous avons donc comme dépendances :

- 1. nom, deplacement \rightarrow vitesse
- 2. nom, competences \rightarrow valCompetence
- 3. race \rightarrow habitat, type
- 4. $taille \rightarrow dePV$
- 5. $cR \rightarrow exp$
- 6. nom \rightarrow tout sauf langues, competences, val Competences, deplacement et vitesse

3.2.1 Algorithme de Bernstein

Commençons par faire la couverture minimale :

nom+

 $nom, touts auf \{langues, competences, valCompetences, deplacement, vitesse\}$

 $\underline{deplacement} +$

deplacement

competence +

competence

Donc les dépendances 1 et 2 n'ont pas d'attributs redondants.

Montrons maintenant que nous n'avons pas de dépendances redondantes. Donc nous allons prendre chaque dépendances et faire la fermeture des attributs de gauche sans compter la dépendance en cours.

nom, deplacement +

 $toutsauf\{langues, competences, valCompetences, vitesse\}$

nom, competences +

 $\overline{toutsauf\{langues, deplacement, valCompetences, vitesse\}}$

 $\frac{race+}{race}$

 $\frac{taille+}{taille}$

 $\frac{cR+}{cR}$

 $\frac{nom+}{nom}$

Donc nous n'avons pas de dépendances redondantes, notre couverture minimale est donc l'ensemble des dépendances.

On applique la suite de l'algorithme de Bernstein et on obtient

- 1. R1(\underline{nom} , deplacement, vitesse) avec DF1 = 1
- 2. R2($\underline{\mathtt{nom}}$, competences, valCompetence) avec DF2 = 2
- 3. R3(race, habitat, type) avec DF3 = 3
- 4. R4(taille, dePV) avec DF4 = 4
- 5. R5(\underline{cR} , exp) avec DF5 = 5
- 6. R6($\underline{\text{nom}}$, tout sauf langues, competences, valCompetences, deplacement et vitesse) avec DF6 = 6

On finit ce algorithme, comme nous voyons que notre clé est dans aucune table, nous ajoutons la table R7(nom, langues, competence, deplacement) avec $DF7 = \{\}$

Algorithme de Décomposition

les feuilles R1 à R5 de cet arbre sont les mêmes que les relations R1 à R5 au dessus respectivement. R6 aura nom, taille, race, morale, ethique, aC, multiple de PV, constante de PV, cR et tous les attributs (STR, DEX, etc..). Ce qui résulte que R62 est l'équivalent de R7.

- DF1{1} C \rightarrow NC donc FNBC
- DF2{2} C \rightarrow NC donc FNBC
- DF3{3} C \rightarrow NC donc FNBC
- DF4 $\{4\}$ C \rightarrow NC donc FNBC
- DF5 $\{5\}$ C \rightarrow NC donc FNBC
- DF6 $\{6\}$ C \rightarrow NC donc FNBC
- DF62{} Pas de DF donc FNBC

4 Tests de normalisation

Nous n'avons pas réussi à faire fonctionner l'outil qui nous a été proposé après l'avoir testé sur plusieurs ordinateurs.

5 UML

FIGURE 1 – UML de la base de données finale