Name	
ID	No

ONLY THE ANSWERS IN THE ANSWER SHEET WILL BE GRADED.

Part A: Multiple choice questions (12 points)

Question 1-2: Let the recurrence relation a_n be the number of ternary strings (a string that contains only 0s, 1s, and 2s) of length n that **DO NOT** contain **three consecutive 0s**.

- 1. Given a_n is in the form of $a_n = Aa_{n-1} + Ba_{n-2} + Ca_{n-3}$ Find A, B, and C respectively.
 - a. 2, 2, 4
 - b. 1, 2,4
 - c. 1, 2, 3
 - d. 2, 2, 2
- 2. How many possible ternary strings of length 5?
 - a. 111
- b. 222
- c. 333
- d. 444

Question 3-4: Let the recurrence relation a_n be the number of ways to climb n stairs if the person climbing the stairs can take **one** or **three** stairs at a time $(n \ge 1)$.

3. Given a_n is in the form of $a_n = Aa_{n-1} + Ba_{n-2} + Ca_{n-3} + Da_{n-4}$

Find A, B, C and D respectively.

- a. 0, 0, 1, 1
- b. 0, 1, 0, 1
- c. 1, 0, 1, 0
- d. 1, 1, 0, 0
- 4. How many possible ways to climb 6 stairs?
 - a 6
- b. 5
- C 4
- d. 3

Question 5-6: Let the recurrence relation a_n be the minimum moves needed to solve the "Tower of Hanoi" problem with n disks. $(n \ge 1)$.

[Recalled the **rules of the game**, move a disk at a time from one peg to another, never place a disk on a smaller disk, and the goal is to have all disks on the second peg in order of size.]

- 5. Given a_n is in the form of $a_n = Aa_{n-1} + Ba_{n-2} + C$ Find A, B, and C respectively.
 - a. 2, 0, 1
 - b. 2, 1, 0
 - c. 1, 0, 2
 - d. 1, 2, 0

6. Find the minimum moves needed to solve the "Tower of Hanoi" problem with 5 disks?

- a. 21
- b. 31
- c. 42

Question 7-8: The recurrence relation satisfied by a_n where a_n is the number of intersection points from those n lines and b_n is the number of regions that a plane is divided into by n lines, if no two of the lines are parallel and no three of the lines go through the same point.

- 7. Given a_n is in the form of $a_n = Aa_{n-1} + Ba_{n-2} + Cn + K$ Find A + B + C + K

8. Let
$$c_n = a_n + b_n$$
 and c_n is in the form of $c_n = Ac_{n-1} + Bc_{n-2} + Cn + K$

Find
$$A + B + C + K$$

- a. -1
- b. 0
- c. 1

Question 9-10: The recurrence relation satisfied by a_n where a_n is the number of ways to completely cover a $2 \times n$ checkerboard with 1×2 dominoes. [Hint: Consider separately the coverings where the position in the top right corner of the checkerboard is covered by a domino positioned horizontally and where it is covered by a domino positioned vertically.]

9. Given a_n is in the form of $a_n = Aa_{n-1} + Ba_{n-2} + Ca_{n-3} + Da_{n-4}$

Find A, B, C and D respectively.

- a. 1, 0, 0, 1
- b. 0, 1, 0, 1
- c. 1, 0, 1, 0
- d. 1, 1, 0, 0
- 10. From a_n got in the question 9, find a_7 .
 - a. 13
- b. 14 c. 20
- d. 21

Question 11-12: There are n lamp labelled 1, 2, ..., n. Lamp 1 can be switched on or off at any time. Lamp k, where $1 < k \le n$ can only be switched (on or off) when the lamp k-1 is the only lamp that is on out of lamps 1, 2, ..., k-1. Given that all lamps are initially off, and let P(n) be **the minimum** moves to turn on the lamp n.

- 11. Find P(n).
 - a. 1 + $\frac{n(n-1)}{2}$
 - b. $2^n 1$
 - c. 2^{n-1}
 - d. P(n-1) + 2P(n-2) when n > 2
- 12. Find P(3).
 - a. 4
- b. 5
- c. 6
- d. 7

Quiz	4A	(M	odı	ule	6)
Recu	rren	ce	Re	latio	ons

Name	
ID	No

Part B: Numeric response questions (11 points)

- 13. **[4 points]** Given $a_n = 2a_{n-1} + 3a_{n-2}$ with $a_0 = 1$ and $a_1 = 7$ for $n \ge 2$. Do the following tasks.
 - a. Let $r_{_1}$, $r_{_2}$ be the answers of the characteristic equation where $r_{_1} < r_{_2}$. Solve the characteristic equation to find $r_{_1}$ and $r_{_2}$.
 - b. From a., given that the unique solution is in the form of $a_n = A(r_1)^n + B(r_2)^n$. Solve for the unique solution to find A and B
- 14. **[7 points]** The solution of the recurrence relation $a_n = 5a_{n-1} 6a_{n-2} + 2n$ for $n \ge 2$ where $a_0 = 0$ and $a_1 = 2$. If general solution is in the form of $a_n = A3^n + B(C^n) + Dn^2 + En + F$
 - a. Find the value of [A], B, C, D, E and [F]
 - b. Find a_5
- 15. **[Bonus 4 points]** A hunter, Taeyeon, and an invisible bunny play a game in the Euclidean plane. The bunny's starting point, A_0 and the Taeyeon's starting point, B_0 are the same **(Hint**: $D_0 = ?$ **)**. After n-1 rounds of the game, the bunny is at point A_{n-1} and the hunter is at point B_{n-1} . In the nth round of the game, three things occur in order:
 - i. The bunny moves invisibly away from Taeyeon to a point A_n such that the distance between A_{n-1} and A_n is exactly 1.
 - ii. A tracking device reports a point P_n to Taeyeon. The guarantees provided by the tracking device to Taeyeon are that the distance between P_n and A_n is exactly 1 and the vector $A_n P_n$ perpendicular to the vector $A_n A_{n-1}$.
 - iii. Taeyeon moves visibly to a point B_n which is the direction to the tracking point such that the distance between B_{n-1} and B_n is exactly 1.

Let D_n is distance between the Taeyeon and the bunny after n rounds and let's say that the recurrence relation of $D_n = \sqrt{\left(D_{n-1} + 1\right)^2 + 1} - 1$ by approximately after somehow "MAGIC" solving and got that $D_n = \sqrt{n + X - Y\sqrt{n + Z}}$. Find D_0 , X, Y and Z respectively. [Hint: Maybe let $F_n = \left(D_n + 1\right)^2$ can help?, FYI: X, Y, Z are positive integers.]

"Well, That Part Is A Little Dramatic." -Tenet-

Quiz 4A (Module 6)
Recurrence Relations

Name	
ID	No

ANSWER SHEET for Quiz 4A

Part A: Choose the correct answer and provide the **X** mark.

Na		Cho	oice		Na	Choice			N.		Choice			
No.	a.	b.	C.	d.	No. a.	a.	b.	C.	d.	No.	a.	b.	C.	d.
1.					5.					9.				
2.					6.					10.				
3.					7.					11.				
4.					8.					12.				

Part B: Provide an answer in terms of **INTEGER ONLY**.

No.	Variables	Answer	Variables	Answer
42	r_{1}		A	
13.	$r_{_2}$		В	
	[A]		D	
14.	В		Е	
14.	С		[F]	
	$a_{_{5}}$			
15.	D_{0}		Y	
15.	X		Z	

[&]quot;Well, That Part Is A Little Dramatic." -Tenet-