Text-Summarization-Amazon-Fine-Food-Reviews

Project Overview

In this project, we are focusing on text summarization. The input is a long review of Amazon Fine Food products, and the output is a concise summary of the review.

Data-Visualization

Data	columns (total 10 colum	ns):					
#	Column	Non-Null Count	Dtype				
0	Id	42023 non-null	int64				
1	ProductId	42023 non-null	object				
2	UserId	42023 non-null	object				
3	ProfileName	42023 non-null	object				
4	HelpfulnessNumerator	42023 non-null	int64				
5	HelpfulnessDenominator	42023 non-null	int64				
6	Score	42023 non-null	int64				
7	Time	42023 non-null	int64				
8	Summary	42023 non-null	object				
9	Text	42023 non-null	object				
dtypes: int64(5), object(5)							

ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	Summary	Text
19747	B0030VBRIU	ACU1MBQ7T5YL0	Cynthia C. Eberhardt "CCEber"	3	3	5	1294704000	Yummy protein	I usually buy Sprout and thought I'd try this
43860	B001EQ5JLE	A1BUMMBK9WA993	Joyeuse	3	3	4	1290297600	Joyeuse	When we were in London three years ago, I love

- 1. We observe that each row contains a text and corresponding summary. The remaining columns are of no use in this task so we just ignore them.
- 2. As part of basic preprocessing, we drop any rows that are duplicates or contain null values.

Pre-Processing

As part of the preprocessing steps, I have performed the following transformations:

- 1. Converted all text to lowercase.
- 2. Replaced emojis with their meanings.
- 3. Some pre-encoded emojis that are not demojized back to their meanings will be simply removed.
- 4. Expanded contractions (e.g., 've to have).
- 5. Removed HTML tags.
- 6. Abbreviated common terms (e.g., GM for Good Morning).
- 7. Removed stop words.

- Why not perform stemming? We need to show the output, and the root form may or may not be a proper English word.
- Why not perform lemmatization? While lemmatization converts the root form back to an English word, it would take a lot of computation time.
- Why not perform spelling correction? Simply because the data is too large, and it would consume a significant amount of time.

Example – bought several vitality canned dog food products found good quality product looks like stew processed meat smells better labrador finicky appreciates product better: good quality dog food

Feature-Engineering

1. Now, as the input length of the model can vary, but all inputs in a given batch must be of the same length, choosing an appropriate max_length based on the typical length distribution of your dataset helps retain the most relevant information.

Text - Max length: 920, Min length: 4, Most frequent length: 13 Summary - Max length: 26, Min length: 0, Most frequent length: 2

- 2. We try to pad smaller sentences and truncate the longer ones. Hence, I choose an optimal max_length of 80 for text and 7 for summary.
- 3. Use the BERT tokenizer (uncased) to convert sentence tokens to their corresponding IDs. As for the vocabulary, it will be the BERT tokenizer's. Why do I choose this? Because the data is large and different people provided reviews, so much of it would be covered instead of creating a new vocabulary.

Model-Architecture

- 1. First both the inputs for encoder and decoder go through a embedding layer where each token is convert to a embedding of dimension 256.
- 2. Then encoder_inputs go through 3 LSTM encoder layers (The hidden states at each time step are passed onto next layer)
- 3. Remember the Hidden and cell states are of same dimension as the embeddings
- 4. The final encoder LSTM layer produces encoder_outputs (hidden states at each timestep) and final hidden/cell states (state_h, state_c)
- 5. The final states (state_h, state_c) are used to initialize the decoder LSTM, transferring the context of the input sequence
- 6. The decoder processes its embedded inputs while starting with encoder's final states
- 7. Cross-attention mechanism then:
 - Takes encoder_outputs (all hidden states from encoder) as Keys/Values
 - Takes decoder_outputs (current decoder hidden states) as Queries
 - Computes attention weights for each decoder timestep over encoder outputs
 - Produces context vectors focusing on relevant parts of input
- 8. The context vectors are concatenated with decoder outputs (combining attended input info with current decoder state)
- 9. Finally, the concatenated vectors go through a dense layer with softmax to predict the next token probabilities

Training Parameters:

- \rightarrow The optimizer used here is RMSprop.
- → The loss function is sparse_categorical_crossentropy.
- \rightarrow The metric used is accuracy.
- \rightarrow A scheduler was not used.
- \rightarrow Early stopping was implemented with a patience of 5 epochs if the model doesn't learn anything new after a while.

<u>Inference Time</u>

Encoder Inference

- Inputs: encoder_inputs
- Process: The encoder_inputs are passed through embedding and LSTM layers.
- Outputs:
 - encoder_outputs: The outputs from the LSTM layer for all timesteps.

- state.h: The hidden state from the LSTM layer.
- state_c: The cell state from the LSTM layer.

Decoder Inference (per timestep)

- Inputs:
 - decoder_inputs: The current input token for the decoder.
 - decoder_state_input_h: The hidden state from the previous timestep.
 - decoder_state_input_c: The cell state from the previous timestep.
 - decoder_hidden_state_input: The full encoder_outputs used for attention mechanism.

Processing Steps for Decoder Inference

- 1. **Embedding:** Embeds the decoder_inputs using an embedding layer.
- 2. **LSTM Processing:** The embedded input is passed through an LSTM layer along with the decoder_state_input_h and decoder_state_input_c (previous hidden and cell states).
- 3. State Update: The LSTM layer generates new hidden and cell states for the next timestep.
- 4. **Attention Computation:** Computes attention scores over the **encoder_outputs** to focus on relevant parts of the encoder's output.
- 5. Concatenation: Concatenates the LSTM output with the attention output to form a combined context vector.
- 6. **Probability Distribution:** The combined vector is processed to generate a probability distribution over the vocabulary, indicating the likelihood of each word being the next output.

Function Descriptions

- decode_sequence(input_seq):
 - **Purpose:** Generates summary text from the encoded input sequence.
 - Process:
 - * Encodes the input using the encoder model.
 - * Initializes with the 'start' token.
 - * Iteratively predicts the next tokens until:
 - · The 'end' token is reached, or
 - · The maximum summary length is reached.
 - * Updates states and the target sequence at each iteration.
- seq2summary(input_seq):
 - **Purpose:** Converts the target sequence into a readable summary.
 - Process:
 - * Filters out padding (0) and special tokens ('start', 'end').
 - * Converts indices to words using the reverse_target_word_index.
- seq2text(input_seq):
 - **Purpose:** Converts the source sequence into readable text.
 - Process:
 - * Filters out padding (0).
 - * Converts indices to words using the reverse_source_word_index.

Results

Review: quick easy portable think tastes great favorite flavor

Original summary: delicious Predicted summary: good

> Review: like coffee says go said Original summary: like coffee Predicted summary: good coffee

Review: sampled bought fair share ever ##idae sau Original summary: stuff put everything sauce Predicted summary: favorite sauce ##s

Review: discovered ta ##jin san diego al Original summary: great spice Predicted summary: great flavor

Review: search healthy snacks found item org

Original summary: top notch snack

Predicted summary: one best