Digital Systems Design and Laboratory [15. Reduction of State Tables and State Assignment]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Sequential Logic Design

- ☐ Unit 11: Latches and Flip-Flops
- ☐ Unit 12: Registers and Counters
- ☐ Units 13--15: Finite State Machines
- ☐ Unit 16: Summary
- ☐ Designing a sequential circuit
 - Construct a state graph or state table (Unit 14)
 - Simplify it (Unit 15)
 - Derive flip-flop input equations and output equations (Unit 12)

- ☐ Elimination of Redundant States
- Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

"0101/1001" Detector

- - ➤ Input X 01010010100100
 - > Output Z 000100000010000
- Complete state graph
 - > S₀: Reset
 - $> S_1: 0$

 - > S_2 : 1 (00 % II) > S_3 : Two inputs received; Z must be 0
 - > S4: 01 or 10 / 長有线面 > bit = 01?
 - \triangleright S₅: Three inputs received; Z must be 0
 - $> S_6$: 010 or 100

4情到3冰旺里和黄南信到 (1度記字写版·utput)

Elimination of Redundant States (1/4)

☐ "Another" state graph for "0101/1001" sequence detector

Elimination of Redundant States (2/4)

- Many similar cases
- ☐ Equivalent state
 - > Same next states
 - > Same outputs
- ☐ Check H

$$\rightarrow$$
 H = I = K = M = N = P

☐ Check J

$$\rightarrow$$
 J = L

		-		-	
Input	Present	Next	State	Present	Output
Sequence	State	X = 0	X = 1	X = 0	X = 1
Reset	А	В	С	0	0
0	В	D	E	0	0
1	С	F	G	0	0
00	D	Н	1	0	0
01	Е	J	K	0	0
10	Ferriva	ent L	M	0	0
11	G stu	te N	Р	0	0
000	H	А	Α	0	0
001	9	А	А	0	0
010	J	А	Α	0	1
011	(k)	А	Α	0	0
100	L	Α	Α	0	1
101	M	А	Α	0	0
110	(N)	А	А	0	0
111	P	А	А	0	9

Elimination of Redundant States (3/4)

- ☐ Check E
 - \triangleright E = F
- ☐ Check D
 - \triangleright D = G

Input	Present	Next State		Present	Output
Sequence	State	X = 0	X = 1	X = 0	X = 1
Reset	А	В	С	0	0
0	В	D	Е	0	0
1	С	F	G	0	0
00	D	Н	$I \rightarrow H$	0	0
01	Е	J	$K \rightarrow H$	0	0
10	F	$L \rightarrow J$	$M \rightarrow H$	0	0
11	G	$N \rightarrow H$	$P \rightarrow H$	0	0
000	Н	Α	Α	0	0
001	1	А	А	0	0
010	J	А	Α	0	1
011	K	А	А	0	0
100	L	Α	Α	0	1
101	M	А	А	0	0
110	N	А	А	0	0
111	Р	А	А	0	0

Elimination of Redundant States (4/4)

Input	Present	Next State		Present	Output
Sequence	State	X = 0	X = 1	X = 0	X = 1
Reset	Α	В	С	0	0
0	В	D	E	0	0
1	С	$F \rightarrow E$	$G \rightarrow D$	0	0
00	D	Н	Н	0	0
01	Е	J	Н	0	0
10	F	J	Н	0	0
11	G	Н	Н	0	0
000	Н	А	Α	0	0
001		А	А	0	0
010	J	А	Α	0	1
011	K	А	А	0	0
100	L	А	А	0	1
101	M	А	А	0	0
110	N	А	А	0	0
111	Р	А	А	0	0

- Elimination of Redundant States
- **Equivalent States**
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

State Equivalence

- 13/3 68 imph

Definition

- N_1 , N_2 : sequential circuits (not necessarily different) $\underline{\mathbf{X}}$: a sequence of inputs of arbitrary length
- \succ Then, state p in N₁ \equiv state q in N₂ if and only if $\lambda_1(p,\underline{X}) = \lambda_2(q,\underline{X})$ for every possible input sequence X
- λ: output

 Difficult to check the equivalence using this definition!
 - Infinite number of input sequences

Theorem

·用Thmiế, / 省四年的inputition

Two states p and q of a sequential circuit are equivalent if and only if for every single input X, the outputs are the same and the next states are equivalent, i.e., $\lambda(p,X) = \lambda(q,X)$ and $\delta(p,X) = \delta(q,X)$

Ly met state 232 equivalent, 2-19 1916

利力的事系统· δ: next state Note that the next state do not have to be equal, just equivalent

Is next of a fe quivalent

Example: State Equivalence

☐ The following state table has no equivalent states

- \triangleright The only possible pair of equivalent states is S₀ and S₂
 - $S_0 \equiv S_2$ if and only if $S_3 \equiv S_3$, $S_2 \equiv S_0$, $S_1 \equiv S_1$, and $S_0 \equiv S_1$
- \triangleright However $S_0 \equiv S_1$ is not true due to different outputs

ı,	5	。丰	,4	١
	`\	ح	丰	52

	Present	Ne	ext St	ate		Prese	nt O	utput			
	State	$X_1X_2 = 00$	01	10	11	$X_1 X_2 = 00$	01	10	11		
	S_0	S_3	S ₂	ς_1	S ₀	00	10	11	01		
	S_1	$\int S_0$	S_1	S ₂	S ₃	10	10	11	11	K	十秋到一村。68
	S_2	S_3	S ₀	S ₁	S_1	00	10	11	01	7	·
	S ₃	S_2	S_2	S_1	S_0	00	00	01	01	11	
7	1. 75 = 10 output										
1	1) rest state 1) next state 1) next state										
u I	mit stro	must state his aniverse ?									

- ☐ Elimination of Redundant States
- Equivalent States
- Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

Implication Table Construction (1/3)

- Draw an empty table, where each square represents a pair
- If outputs are different, give it an X (impossible!)
- Write down the implied pair in the square

 Delete self-implied pairs (redundant)

 Mark 4, B: 400. State

 10, F equiv. State

			_		16-16	7						
Present	Next	State	Present	В	C-A	M :	A, B 6/3	PALV				
State	X = 0	X = 1	Output		(3)]	.1	ما تما من آلا	2 % %		
Α	D	С	0	C A,U)(X)	X	5	olf imp()	1 00 pm 1 元美川 2年	1-13pm		
В	F	Н		D will	A-D	A-F E-H	X	/ <u>里</u> 條	920 4.			
С	Е	D	1	7-[6]	C-É	E-H	-C-E-					10 60
D	Α	Е	0 49	igtyw.E	Х	Х	A-D	X			Im 7	plication able
Е	С	Α	_	为对义 F		Х		Ø _X	C-F		,	/
F	F	В	1	1030			B-D		A-B		V	
G	В	Н	0	G	B-D C-H	B-F	х	A-B E-H	Х	Х		
Н	С	G	1	Н	Х	Х	C-E	Х	A-G	C-F	Х	
			•		^	^	D-G	_ ^	A-O	B-G		
					Δ	В	C	D	F	F	G	13

Implication Table Construction (2/3)

- ☐ Iteratively compare states by the implied pairs
 - Only for the same output
 - First pass (column-by-column in this case)
 - Second pass

Present	Next	State	Present
State	X = 0	X = 1	Output
Α	D	С	0
В	F	Н	0
С	Е	D	1
D	Α	Е	0
Е	С	А	1
F	F	В	1
G	В	Н	0
Н	С	G	1

Implication Table Construction (3/3)

- ☐ Find equivalent states
 - \triangleright For each square i-j which does not contain an X, i \equiv j
- ☐ The same procedure for Moore and Mealy machines

Present	Next	Present	
State	X = 0	X = 1	Output
Α	$D \rightarrow A$	С	0
В	F	Н	0
С	E → C	$D \rightarrow A$	1
D	Α	Е	0
Е	С	А	1
F	F	В	1
G	В	Н	0
Н	С	G	1

- Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- **☐ Equivalent Sequential Circuits**
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

Equivalent Sequential Circuits

Definition

- \triangleright Two sequential circuits are equivalent: $N_1 \equiv N_2$ if
- \triangleright For each state p in N₁, there is a state q in N₂ such that p \equiv q
- For each state s in N_2 , there is a state t in N_1 such that $s \equiv t$

Implication Table

 \square $N_1 \equiv N_2$?

Present	Next	State	Present	Output
State	X = 0	X = 1	X = 0	X = 1
А	В	Α	0	0
В	С	D	0	1
С	А	С	0	1
D	С	В	0	wejue 0
	•		λ^{ee}	0.18/115

 S_2

 S_3

Present	Next	State	Present Output		
State	X = 0	X = 1	X = 0	X = 1	
S_0	S_3	S_1	0	1	
S_1	S_3	S_0	0	0	
S ₂	S_0	S_2	0	0	
S_3	S_2	S_3	0	1	

Muchine 24 Potate

3 implication table: 1874

7.18 machine, 716 sequential arguit

2 Idinung what table

-	, onl	pir 7-161		
	X	C-S ₃ D-S ₁	A-S ₃ e-S ₁	X
₹ 	B-S ₃	X	X	C-S ₃ B-S ₀
	B-S ₀	X	X	G-S ₀ B-S ₂
	X	D-S ₂	A-S ₂ -C-S ₃	X

\Rightarrow	$A \equiv S_2$ $B \equiv S_0$ $C \equiv S_3$ $D \equiv S_2$	$N_1 \equiv N_2$

- Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- **☐** Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

How about Don't Cares?

□ A state table is incompletely specified if don't cares are present

> Certain sequences will never occur as inputs

Present	Next	State	Present Output		
State	X = 0	X = 1	X = 0	X = 1	
Α	В	D	0	(-) G	
В	С	D	0) 0	0,	
С	В	Α	9 1	0),	
D	С	D	0	\mathcal{Q}^{ν}	

Present	Next	State	Present Output		
State	X = 0	X = 1	X = 0	X = 1	
Α	В	Α	0	1	
В	В	Α	1	0	
С	В	А	1	0	
D	С	D	0	1	

sylf pont care

0 ", A, c output
$$7^{[i]} \rightarrow A^{\ddagger} \cup$$

$$0 \text{ The both } A = D \rightarrow \text{ Homotometric cure is } A = D \rightarrow \text{ Homotome$$

- ☐ Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- **□** <u>Derivation of Flip-Flop Input Equations</u>
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

Recap: Sequential Logic Design

- ☐ Designing a sequential circuit
 - Construct a state graph or state table (Unit 14)
 - Simplify it (Unit 15)
 - State reduction
 - State assignment
 - Choice of flip-flops
 - > Derive flip-flop input equations and output equations (Unit 12)

State Assignment and Transition Table

state table

 S_2

 S_2

 S_6

 S_2

S

 $X = 1 \mid X = 0$

0

☐ Given a state table

- > 7 states
- ➤ 3 flip-flops
- State assignment
 - ➤ Many possible ways
 - > Example

$$S_0 = 000$$
, $S_1 = 110$,

 $S_2 = 001$, $S_3 = 111$,

$$S_4 = 011, S_5 = 101, S_6 = 010$$

☐ Transition table

- > State table + state assignment
- ☐ If using D flip-flops
 - > By Karnaugh maps

•
$$A^+ = D_A = X'$$
, $B^+ = D_B = X'C' + A'C + A'B$, $C^+ = D_C = A + XB$

 S_0

 S_1

 S_2

 S_{3}

S₁

 S_1

S

X = 1

0

				MAIL MAN	(* 1/10	
0	0		A ⁺ B ⁺ C ⁺		- 4	<u>7</u>
0	0		X = 0	X = 1	X = 0	X = 1
1	0	000	110	001	0	0
0	1	110	111	001	0	0
		001	110	011	0	0

111	101	001	0	0
011	110	010	0	0

101	101	001	1	0
010	110	010	0	1

010	110	010	0	1
100				

Recap: Derivation of Flip-Flop Input Equations

☐ Determine the flip flop input equations from the <u>next-state</u> <u>equations</u> using K-maps

Туре	Innut	Q = 0		Q = 1		Rules for forming input map from next state map	
of FF Input		$Q^+ = 0$	Q+ = 1	$Q^+ = 0$	Q+ = 1	Q = 0 Half of Map	Q = 1 Half of Map
D	D	0	1	0	1	No change	No change
Т	Т	0	1	1	0	No change	Complement
	S	0	1	0	Х	No change	Replace 1's with X's
S-R	R	Х	0	1	0	Replace 0's with X's Replace 1's with 0's	Complement
1 1/	J	0	1	Х	Х	No change	Fill in with X's
J-K	К	Х	Х	1	0	Fill in with X's	Complement

- ☐ Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- **□** Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

Equivalent (State Assignments)

- ☐ Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- **☐** Guidelines for State Assignment
- ☐ One-Hot State Assignment

State Assignment

- ☐ State assignment determines the cost of the logic required to realize a sequential circuit
 - A good state assignment leads to a Karnaugh map that can easily be simplified and results in few terms
- | Idea: Place 1's together (or 0's together) on the next-state maps (文の知算す

Guidelines

- Guidelines
 - ➤ No guarantee a minimum solution
- 不解解達生 gridelines
- ➤ Work for D & J-K flip-flops, not for T and S-R flip-flops
- Adjacent assignments
 - \triangleright For a given input, states with the same next state (S₀ and S₁)
 - > States which are next states of the same state (S₄ and S₅)
 - \triangleright States which have the same output (S₆ and S₇)
 - Place 1's together on the output maps

- ☐ Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

One-Hot State Assignment

Different strategy

道利的

的教育

- Do not care about how many flip-flops used
 - Examples: Complex Programmable Logic Device (CPLD) and Field Programmable Gate Array (FPGA)
 - Only care about the speed
- One-hot state assignment: One flip-flop for each state
 - Example: 3 flip-flops for 3 states $(Q_0Q_1Q_2)$ $S_0 = 100$, $S_1 = 010$, $S_2 = 001$) This state

Write next-state and output (Z) equations directly by inspecting the state graph

- $Q_0^+ = F'R'Q_0 + F'RQ_1 + FQ_2$
- $Q_1^+ = F'R'Q_1 + F'RQ_2 + FQ_0$
- $Q_2^+ = F'R'Q_2 + F'RQ_0 + FQ_1$

Q&A