M800 Roger Temam 4/15 Report

1 Infinite Dimensional Stochastic Processes

Definition 1.1. Let (Z, \mathbb{Z}) be a measurable space. A family $\{X_i\}_{i \in I}$ of Z-valued r.v.'s on $(\Omega, \mathcal{F}, \mathbb{P})$ is called a **stochastic process**. For $\{i_1, \ldots, i_m\} \subset I$, the measures defined on the product space Z^m given by

$$\mu(X_{i_1}, \ldots, X_{i_m})(S) = \mathbb{P}[(X_{i_1}, \ldots, X_{i_m}) \in S]$$

are called the **finite dimensional distributions (f.d.d.'s)** of $\{X_i\}_{i\in I}$ (also called the **marginals**).

Source: M647 Lecture 1 (revised), Definition 1.1.5

Remark: In the SPDE context, we look at stochastic processes $\{X(t)\}_{t\geq 0}$ with values in Banach/Hilbert spaces.

Definition 1.2. Let \mathcal{U} be a Hilbert space. A \mathcal{U} -valued stochastic process $(L(t))_{t\geq 0}$ is called a **Levy process** if,

- (i) L(0) = 0
- (ii) L has independent increments: $\forall 0 \le t_1 < t_2 < \cdots < t_k$ the r.v.'s
- $L(t_k) L(t_1), \ldots, L(t_k) L(t_{k-1})$ are independent.
- (iii) L has stationary increments: $L(t) L(s) \sim L(t-s), \ \forall t \geq s \geq 0$.
- (iv) Stochastic continuity: $\forall t_0 \geq 0, L(t) \rightarrow L(t_0)$ in probability as $t \rightarrow t_0$, i.e. $\forall \epsilon > 0$,

$$\lim_{t \to t_0} \mathbb{P}[||L(t) - L(t_0)||_{\mathcal{U}} > \epsilon] = 0.$$

Source: M647 Lecture 2, Definition 2.2.1

Theorem 1.3. Every Levy process L has a cadlag modification, i.e. there is a $\mathcal U$ -valued Levy process $\widetilde L$ such that

(i) \widetilde{L} has cadlag sample paths a.s.

$$(ii) \ \forall t \geq 0 \ \mathbb{P} \Big[\widetilde{L}(t) = L(t) \Big] = 1.$$

Source: M647 Lecture 2 (revised), Theorem 2.2.3

Proof. For the sequence $\{t+n^{-1}\}_{n\in\mathbb{N}}$, we find that $L(t+n^{-1}) \xrightarrow{\mathbb{P}} L(t)$, and it follows that $L(t+n^{-1}) \xrightarrow{\text{a.s.}} L(t)$, since we find that the series

$$\overline{L}(t) := L(t+1) + \sum_{n=1}^{\infty} \left[L(t+(n+1)^{-1}) - L(t+n^{-1}) \right]$$
 (1.1)

converges in \mathbb{P} , so $\overline{L}(t)$ exists a.s., since $\left\{L\left(t+(n+1)^{-1}\right)-L\left(t+n^{-1}\right)\right\}_{n\in\mathbb{N}}$ is a sequence of independent random variables. Note moreover, that almost surely we have

$$(\forall t \in \mathbb{Q}_+) \Big(\overline{L}(t) \text{ exists}\Big)$$

Define

$$\widetilde{L}(t) := \begin{cases} 0 & \text{if } t = 0, \\ \overline{L}(t) & \text{if } t \in \mathbb{Q}_+ \setminus \{0\} \text{ and } \overline{L}(t) \text{ exists,} \\ L^*(t) \in \bigcap_{t' \in \mathbb{Q}_+, \ t < t'} \overline{\overline{L}([t, t'])} & \text{if } t \in \mathbb{R}_+ \setminus \mathbb{Q}_+ \text{ and such an } L^*(t) \text{ exists.} \end{cases}$$

$$(1.2)$$

$$C(t) = \begin{cases} 0 & \text{if } t = 0, \\ \overline{L}(t) & \text{otherwise.} \end{cases}$$

It shall then suffice to verify (i) and (ii) of the theorem, since the fact that \widetilde{L} is a Levy process follows immediately by property (ii).

(i) To show that \widetilde{L} has cadlag sample paths a.s., we want to show that for all $t \geq 0$, we have $\lim_{s \to t^+} \widetilde{L}(s) = \widetilde{L}(t).$

First, note that almost surely $\overline{L}(t)$ exists for all $t \in \mathbb{Q}_+ \setminus \{0\}$. Next, we want to verify the following claim:

Claim. $\widetilde{L}|(\mathbb{Q}_+\setminus\{0\})$ is cadlag a.s.

Given a decreasing sequence $\{q_k\}_{k\in\mathbb{N}}\subset\mathbb{Q}_+\setminus\{0\}$ such that $q_k\searrow q$, for $q\in\mathbb{Q}_+\setminus\{0\}$, we

want to show that

$$\lim_{k \to +\infty} \widetilde{L}(q_k) = \widetilde{L}(q) \text{ a.s. } (1.3)$$

First, note that *q* is of the form

$$q = \sum_{j=1}^{N} n_j^{-1}$$

for $n_1 \le n_2 \le \cdots \le n_N$ and all q_k is of the form

$$q_k = \sum_{i=1}^{N_k} n_{j,k}^{-1},$$

for $n_{1,k} \leq n_{2,k} \leq \cdots \leq n_{N_k,k}$. As $q_k \searrow q$, we find $n_{j,k} = n_j$ eventually for $1 \leq j \leq N$ as $k \to +\infty$ and $n_{j,k} \to +\infty$ for all j > N (for whichever j subindex exists for each k). As a result, for each $l \geq 1$, we find by recursive diagonalization of the sequences

$$\left\{L\left(\sum_{j=1}^{\min(N_k,l)} n_{j,k}^{-1}\right)\right\}_{k\in\mathbb{N}}$$

that we have

$$\lim_{k \to +\infty} \overline{L} \left(\sum_{j=1}^{\min(N_k, l)} n_{j,k}^{-1} \right) = \overline{L} \left(\sum_{j=1}^{\min(N, l)} n_j^{-1} \right),$$

almost surely and it follows taking $l \to +\infty$ and applying further diagonalization that

$$\lim_{k \to +\infty} \widetilde{L}(q_k) = \lim_{k \to +\infty} \overline{L}(q_k) = \overline{L}(q) = \widetilde{L}(q)$$

almost surely, and (1.3) is reached.

Now that we have proved the claim, we then want to verify that a cadlag restriction $\widetilde{L}|(\mathbb{Q}_+\setminus\{0\})$ on the dense subset $\mathbb{Q}_+\setminus\{0\}\subset\mathbb{R}_+$ has a Cadlag extension L^* that almost

surely agrees with \widetilde{L} . It can be shown (using a similar argument to the argument that a continuous function on a dense subset of a metric space extends to a continuous extension on the metric space) that the cadlag property of $\widetilde{L}|(\mathbb{Q}_+\setminus\{0\})$ implies preservation of Cauchy decreasing sequences $\{q_k\}_{k\in\mathbb{N}}\subset\mathbb{Q}_+\setminus\{0\}$, to the image, and hence for every $t\in\mathbb{R}_+$, we find that every decreasing sequence $\{q_k\}_{k\in\mathbb{N}}\subset\mathbb{Q}_+\setminus\{0\}$ such that $q_k\searrow t$, we find $\left\{\widetilde{L}(q_k)\right\}_{k\in\mathbb{N}}$ is Caucy and hence converges to some uniquely determined limit $L^*(t)$.

To show that L^* (in the almost sure scenario that $\widetilde{L}|(\mathbb{Q}_+\setminus\{0\})$ is Cadlag where L^* exists on all \mathbb{R}_+) agrees almost surely with \widetilde{L} . We find that the case where t>0 is immediate, since almost surely $\overline{L}(t)=\widetilde{L}|(\mathbb{Q}_+\setminus\{0\})=L^*(t)$ exists if $t\in\mathbb{Q}_+\setminus\{0\}$ and $\widetilde{L}(t)=L^*(t)$ by construction of if $t\in\mathbb{R}_+\setminus\mathbb{Q}_+$. We are then left with the case where t=0, which is a more special case of part (ii) (which we prove next).

(ii) Let $t \geq 0$. To show that $\mathbb{P} \Big[\widetilde{L}(t) = L(t) \Big] = 1$, note first by stochastic continuity that $L(s) \stackrel{\mathbb{P}}{\longrightarrow} L(t)$ as $s \to t^+$. In the case where $t \in \mathbb{Q}_+$, we find by (1.1) and (1.2) that almost surely we have $L(t) = \overline{L}(t) = \widetilde{L}(t)$, since L(t) and $\overline{L}(t)$ are both \mathbb{P} -limits of the sequence $\Big\{ L \Big(t + n^{-1} \Big) \Big\}_{n \in \mathbb{N}}$. Next, in the case where $t \in \mathbb{R}_+ \setminus \mathbb{Q}_+$, we can choose $q_k \searrow t$ and note that since almost surely we have $\widetilde{L}(q_k) = L(q_k)$, for each $k \in \mathbb{N}$, and it follows from the fact that $\widetilde{L}(q_k) \stackrel{\text{a.s.}}{\longrightarrow} \widetilde{L}(t)$ and $L(q_k) \stackrel{\mathbb{P}}{\longrightarrow} L(t)$ that $\widetilde{L}(t)$ and L(t) are both \mathbb{P} -limits of the sequence $\{L(q_k)\}$, and hence agree almost surely. \square

Proposition 1.4. Let L a Levy process

(i)
$$\mathbb{E}||L_t||_{\mathcal{H}} < +\infty \ \forall t \geq 0$$

(ii) If L is a mean-zero Levy process, then L is a martingale with respect to its natural filtration $\{\sigma(X_t)\}_{t\geq 0}$.

Source: M647 Lecture 2 (revised), Proposition 2.5.2

Remark 1.1: This proposition is a more general claim than that of the cited proposition. A mean-zero Levy Processes are $\mathcal{L}^1(\mathbb{P};\mathcal{U})$ by definition, while part (i) claims that <u>all</u> Levy processes are $\mathcal{L}^1(\mathbb{P};\mathcal{U})$.

Proof.

(i) In the case that t=0, we have $L_t=0$ and we are done. Suppose t>0, and suppose towards contradiction otherwise, i.e., that

$$\mathbb{E}||L_t||_{\mathcal{U}} = +\infty.$$

Observe that for all $k \ge 1$, and $1 \le l \le k$ we have

$$L(t) = \sum_{l=1}^{k} L\left(\frac{lt}{k}\right) - L\left(\frac{(l-1)t}{k}\right),\,$$

and the random variables

$$L\left(\frac{lt}{k}\right) - L\left(\frac{(l-1)t}{k}\right) \sim L\left(\frac{t}{k}\right) \quad (1.4)$$

are i.i.d. for $1 \le l \le k$. Then for all $k \ge 1$, and $1 \le l \le k$, we have

$$k\mathbb{E}\left|\left|L\left(\frac{t}{k}\right)\right|\right|_{\mathcal{U}} = \sum_{l=1}^{k} \mathbb{E}\left|\left|L\left(\frac{lt}{k}\right) - L\left(\frac{(l-1)t}{k}\right)\right|\right|_{\mathcal{U}} \ge \mathbb{E}\left|\left|\sum_{l=1}^{k} L\left(\frac{lt}{k}\right) - L\left(\frac{(l-1)t}{k}\right)\right|\right|_{\mathcal{U}}$$

$$= \mathbb{E}\left|\left|L(t)\right|\right|_{\mathcal{U}} = +\infty$$

$$\Longrightarrow \mathbb{E}\left|\left|L\left(\frac{t}{k}\right)\right|\right|_{\mathcal{U}} = +\infty.$$

We find that for all $k \ge 1$, we have for each $1 \le l \le k$

$$\mathbb{E}\left|\left|L\left(\frac{t}{k}\right)\right|\right|_{q_{1}} = +\infty,$$

and it follows by (1.4) that for each $j, k \ge 1$, we find that for $1 \le l \le j$

$$\mathbb{E}\left|\left|L\left(\frac{lt}{jk}\right) - L\left(\frac{(l-1)t}{jk}\right)\right|\right|_{\mathcal{U}} = \mathbb{E}\left|\left|L\left(\frac{t}{jk}\right)\right|\right|_{\mathcal{U}} = +\infty,$$

hence as $j \to +\infty$ we find by a corollary of the Strong Law of Large Numbers Billingsley,

page 284 that

$$j^{-1} \sum_{l=1}^{j} \left| \left| L \left(\frac{lt}{jk} \right) - L \left(\frac{(l-1)t}{jk} \right) \right| \right|_{\mathcal{U}} \xrightarrow{\text{a.s.}} \mathbb{E} \left| \left| L \left(\frac{t}{jk} \right) \right| \right|_{\mathcal{U}} = + \infty.$$

Then almost surely for each $k \ge 1$, we have some $1 \le l_k \le j_k$ such that

$$\left| \left| L \left(\frac{l_k t}{j_k k} \right) - L \left(\frac{(l_k - 1)t}{j_k k} \right) \right| \right|_{q_I} \ge 1. \quad (1.5)$$

We then conclude that almost surely there exists $\frac{r_k t}{j_k k} \le \frac{t}{k}$ such that $\frac{r_k t}{j_k k} \to 0$ as $k \to +\infty$, but the sequence

$$\left\{ \left| \left| L\left(\frac{l_k t}{j_k k}\right) - L\left(\frac{(l_k - 1)t}{j_k k}\right) \right| \right|_{\mathfrak{U}} \right\}_{k \in \mathbb{N}}$$

isn't Cauchy by (1.5), which contradicts the fact that $L\left(\frac{r_k t}{j_k k}\right) \stackrel{\mathbb{P}}{\longrightarrow} L(0) = 0$ as $k \to +\infty$.

(ii) Note that we proved in part (i) that L_t is $\mathfrak{L}^1(\mathbb{P}; \mathfrak{U})$, for all $t \geq 0$ and we use the mean-zero hypothesis to prove the remaining condition that $\mathbb{E}[L_t|\sigma(L_s)] = L_s$. Note that since

$$\mathbb{E}[L_t|\sigma(L_s)] = \mathbb{E}[L_t - L_s|\sigma(L_s)] + \mathbb{E}[L_s|\sigma(L_s)] = \mathbb{E}[L_t - L_s|\sigma(L_s)] + L_s$$

we find the desired condition to be equivalent to the condition that

$$\mathbb{E}[L_t - L_s | \sigma(L_s)] = 0, \quad (1.6)$$

and so it shall suffice to prove that. $\sigma(L_s)$ -measurability 0 is immediate. Observe that L_t-L_s and $\mathbb{1}_G$, for $G\in\sigma(L_s)$ are independent. It follows that

$$\mathbb{E}[(L_t - L_s)\mathbb{1}_G] = \mathbb{E}[L_t - L_s] \cdot \mathbb{E}[\mathbb{1}_G] = 0 = \mathbb{E}[0 \cdot \mathbb{1}_G],$$

since

$$\mathbb{E}[L_t - L_s] = \mathbb{E}[L_{t-s}] = 0.$$

and (1.6) is satisfied. \Box

Examples 1.5.

1. A **Wiener process** is a \mathcal{U} -valued, integrable, mean-zero Levy process with a.s. continuous paths.

Source: M647 Lecture 2 (revised), Definition 2.2.2

2. Let μ be a finite Borel measure on $\mathcal U$ (Hilbert space) such that $\mu(\{0\})=0$. A **compound Poisson process (CPP) with intensity measure** μ is a Levy process P with cadlag $\mathcal U$ -value sample paths s.t.

$$\mathbb{P}[P(t) \in \Gamma] = e^{-\mu(\mathfrak{U})t} \sum_{k=0}^{\infty} \frac{t^k}{k!} \mu^{*k}(\Gamma), \ \forall t \ge 0, \ \Gamma \in \mathfrak{B}(\mathfrak{U}).$$

Here, $\mu^{*j} = \mu * \mu * \cdots * \mu$, $\mu^{*0} := \delta_0 = \text{probability measure concentrated at the point } 0 \in \mathcal{U}$.

Hence, the ony difference between a Levy process and a Wiener process is the possible occurences of jumps (discontinuities).

Source: M647 Lecture 2 (revised), Definition 2.4.1

Sources:

Spring 2022-M647 Lecture 1-2 (revised)

Probability and Measures § 22 Billingsley

2 Parametrization Techniques

Notation 2.1: Given a Hilbert space \mathcal{U} , $L_2^0(\mathcal{U})$ --or simply L_2^0 when context is clear--refers to the (Hilbert) space of all Hilbert-Schmit operators.

Let $\Phi:(t,\omega,x)\mapsto \Phi(t,\omega,x)$ be a measurable mapping from

$$(\Omega_T \times E, \mathcal{P}_T \times \mathcal{B}(E))$$
 into $(L_2^0(\mathcal{U}), \mathcal{B}(L_2^0(\mathcal{U})))$,

Thus, in particular, for arbitrary $x \in E$, $\Phi(\cdot, \cdot, x)$ is a predictable L_2^0 -valued process. Additionally, let μ be a finite positive meaure on (E, \mathcal{E}) .

Theorem 2.1. (Stochastic Fubini Theorem) Assume that:

$$\int_{F} ||\Phi(\cdot,\cdot,x)||_{T} \mu(dx) < +\infty.$$

Then almost surely we have

$$\int_{E} \left[\int_{0}^{T} \Phi(t,x) dW(t) \right] d\mu(x) = \int_{0}^{T} \left[\int_{E} \Phi(t,x) d\mu(x) \right] dW(t).$$

Source: Da Prato, Zabczyk, Theorem 4.18 (page 109)

We shall prove a more general analogue (at least, hopefully more general, refer to *remark* 2.2 (ii)) of this thoerem (that I've formulated myself) that we shall call the "Fubini Thoerem for random measures". Basically, this theorem asserts that for random measures ν and η on (E, \mathcal{E}) and (G, \mathcal{G}) , respectively on the product random measure $\xi := \nu \otimes \eta$ on $(E \times G, \mathcal{E} \otimes \mathcal{G})$ (defined analogously by the random measure generated by the premeasure $\xi(A \times B) := \nu(A)\eta(B)$, for $A \in \mathcal{E}$, $G \in \mathcal{G}$), we have that the integration done in different order almost surely agrees, for any Banach Space X-valued random ξ -measurable function Φ .

Theorem 2.2. (Fubini Theorem for random measures) Suppose that $\Phi \in \mathcal{L}^1(\xi; X)$, i.e., that Φ is a ξ -random measurable function such that

$$\int_{E\times G} ||\Phi||_X d\xi < +\infty \text{ a.s.}$$

Then almost surely we have

$$\int_{E\times G} \Phi d\xi = \int_{G} \left[\int_{E} \Phi(e,g) d\nu(e) \right] d\eta(g) = \int_{E} \left[\int_{G} \Phi(e,g) d\eta(g) \right] d\nu(e). \quad (2.1)$$

Outline of the Proof. First take Φ to be a simple function of the form

$$\sum_{j=1}^{N} x_{j} \mathbb{1}_{A_{j} \times B_{j}} \quad (2.2)$$

and observe that

$$\int_{E \times G} \Phi d\xi = \sum_{j=1}^{N} x_{j} \xi(A_{j} \times B_{j}) = \sum_{j=1}^{N} x_{j} \nu(A_{j}) \eta(B_{j}) = \sum_{j=1}^{N} x_{j} \int_{E} \mathbb{1}_{A_{j}}(e) d\nu(e) \int_{G} \mathbb{1}_{B_{j}}(g) d\eta(g)$$

and (2.1) is met by linearity of (Bochner)-integration over random measures.

The next part is met by utilizing an analogous "monotone class lemma" to pass Φ over a \mathbb{P} -limit of of simple functions of the form of (2.2), and then invoke **Lemma 1.6** (ii) of my 4/8 notes to get \mathbb{P} -convergence, then choose the appropriate subsequence to get the desired almost sure result. \square

Remark 2.2.

- (i) Note that the proof of **Thoerem 2.2** I've outlined relies on a pretty different strategy than the one done in the proof of the previously-mentioned Stochastic Fubini Theorem in *Da Prato, Zabczyk*, where there, a Borel-Cantelli Lemma, Markov inequality, and Ito-isometry argument is used to get the result. In my argument, I relate it to the arguments done in *Folland*, and claim analogous measure theoretic constructions and principles hold for random measures. (which in the future will require a more in-depth report)
- (ii) As a disclaimer, the proof of **Thoerem 2.2** is not as general as I would like, i.e., it doesn't quite generalize **Theorem 2.1**, the issue being that W(t) (and hence the "random measure" μ_W) in that theorem is \mathcal{H} -valued (which can be done, but I have not done so in my notes) and the kernel is L_2^0 -valued, whereas both random measures are \mathbb{R} -valued and the kernel is \mathcal{H} -valued. In either a later edit of this report or a later report, I plan to further generalize this theorem accordingly.

Sources:

Stochastic equations in infinite dimensions § 4.6 Da Prato, Zabczyk

Real Analysis, Modern Techniques § 2.5