Cap. 3.1 imaginea

Lanțul imaginii (I)

- Lanțul imaginii reprezintă o modalitate de vizualizare a creării şi redării oricărei imagini
- Elementele lanțului sunt:
 - □ achiziția
 - □ prelucrarea
 - □ stocarea
 - □ transmiterea

SCENA

Lanțul imaginii (II)

- Orice aplicație poate omite anumite componente ale lanțului imaginii sau le poate utiliza într-o ordine diferită
- La achiziție, **rezoluția** imaginii este limitată de numărul fotodiodelor matricii CCD (*Charge Coupled Device* dispozitiv cu cuplaj prin sarcină)
- Acest fapt determină frecvența de eşantionare a CAN-ului pentru imaginea digitală

Achiziția imaginii fotografice (I)

- 1826 **Niepce** a realizat prima înregistrare (chimică) a unei imagini
- 1838 Niepce și **Daguerre** au creat prima cameră foto (*daguerreotype*)
- 1895 frații Lumiere au obținut patentul pentru cinematograf (16 cadre/secundă)

scenă obiectiv obturator film

Achiziția imaginii fotografice (II)

- Achiziția convențională a imaginii necesită următoarele componente principale:
 - □ obiectiv
 - pentru a focaliza lumina dintr-o scenă pe un film fotosensibil (argint)
 - □ diafragmă
 - pentru a controla **cantitatea de lumină** care impresionează filmul
 - □ obturator
 - pentru a controla **timpul** de expunere la lumină a filmului

ŊΑ

Achiziția imaginii electronice (I)

- Imaginea electronică este obținută utilizând:
 - □ elemente tradiționale: obiectiv, diafragmă, obturator
 - □ componente suplimentare:
 - CCD
 - □explorarea imaginii şi conversia **foto- electrică**
 - CAN
 - □ obținerea **formatului digital** al imaginii
 - mediu de stocare
 - □ memoria electronică, suport magnetic

Achiziția imaginii electronice (II)

stocare

obiectiv obturator scenă matrice digitală CCD

Camera foto digitală (I)

■ O cameră digitală portabilă, pentru achiziția imaginilor statice, are următoarele componente electronice:

Camera foto digitală (II)

CCD

□ pentru achiziția imaginii (conversie optoelectronică și explorare)

CAN

□ pentru cuantizarea imaginii

procesor numeric de imagine

□ pentru compresia imaginii şi conversia formatului

■ sub-sistem de stocare (digitală)

□ memorie electronică, magnetică sau interfață PC

microprocesor de comandă

□ pentru coordonarea procesului de achiziție (vizor LCD şi reglarea automată a focalizării, a diafragmei, a timpului de expunere etc.)

Efectul foto-electric (I)

Foto-detector

Amplificator

Efectul foto-electric (II)

- Fotonii sunt elemente de imagine
- Fotonii incidenți pe suprafața foto-detectoare cedează o cuantă de energie
- Electronii utilizează energia pentru ruperea legăturilor de valență, devenind electroni liberi
- Electronii liberi formează un curent electric, baza semnalului generat
- Semnalul de ieşire poate fi utilizat doar după amplificare
- Un foto-detector pe bază de siliciu este **sensibil** la același interval luminos ca **ochiul uman**

Dispozitiv cu cuplaj prin sarcină (I)

Dispozitiv foto-sensibil **bi-dimensional** \Leftrightarrow 10⁴ \div 10⁶ celule. Tehnici posibile:

- ☐ fiecare foto-diodă are un conector și un amplificator propriu (foarte complex)
- □ fiecare foto-diodă are un comutator pentru a o conecta la un amplificator (idem)
- □ CCD inventat de Bell Labs în anii '70
- CCD rezolvă **problema cablării**
- introduce ideea de canal
- pot trece pachete de electroni
- mişcarea pachetelor pe canal este controlată prin schimbarea tensiunii electrozilor canalului
- structura canalului ține separate pachetele de sarcină

Dispozitiv cu cuplaj prin sarcină

Dispozitiv cu cuplaj prin sarcină

Anatomy of a Charge Coupled Device (CCD)

CCD liniare (I)

- CCD liniar este o linie de fotodiode
- fotodiodele crează o **imagine electronică** a scenei capturate
- CCD-ul este un dispozitiv ce transportă electroni (informație de lumină) de la fiecare fotodiodă, la amplificatorul de ieșire

CCD liniare (II)

Cum lucrează CCD liniar:

- 1. fotodiodele sunt drenate de electroni liberi
- se expun fotodiodele scenei, electronii sunt generați în interiorul fotodiodelor, proporțional cu lumina
- 3. se **obturează lumina** (se închide obturatorul)
- 4. se închid porțile (comutatoarele) de transfer
- 5. electronii sunt transferați în CCD
- 6. **pachetele de electroni** sunt gata de transferat de-a lungul canalului, în timpul unei noi expuneri la scenă
- 7. se comută **tensiunea electrozilor** pentru a **muta** pachetele de electroni **un pas** la dreapta, spre amplificatorul de ieșire

Pasul 7 se repetă pentru toate fotodiodele din linie

CCD bidimensional (I)

Sunt utilizate două structuri pentru CCD bidimensional

1. CCD CU TRANSFER PE LINII

□ În CCD cu transfer pe linii fiecare **coloană** a foto-elementelor este conectată la canalul sau propriu

□ Avantaje:

- nu este nevoie de obturator
- poate capta o nouă imagine în timp ce citeşte cadrul precedent
- poate fi folosit la aplicații statice sau în mişcare

□ Dezavantaje:

dificil de fabricat (litografie complexă)

CCD cu transfer interliniar (I)

■ Fiecare coloană de foto-elemente (zona activă) este conectat la canalul său propriu (zona protejată, insensibilă la lumină)

CCD cu transfer interliniar (II)

Funcționarea CCD cu transfer pe linii:

- 1. se descarcă toate sarcinile
- 2. se expun foto-elementele
- 3. se închid porțile de transfer și se transferă electronii în partea protejată a rețelei
- 4. se deplasează canalele cu o celulă în jos, astfel încât să fie un rând de sarcini în CCD
- 5. se deplasează totul la dreapta
- 6. se transferă în amplificator
- se repetă pasul 5 pentru o linie
- se repetă paşii 4 şi 5 pentru toate liniile

CCD bidimensional(II)

2. CCD CU TRANSFER PE CADRE

- CCD cu transfer pe cadre are toate liniile foto-elementelor conectate la un **singur** canal
- □ Avantaje:
 - simplu de fabricat
 - întreaga suprafață este fotosensibilă
 - pixelii sunt mai apropiați unul de celălalt
- □ Dezavantaje:
 - necesită obturarea luminii în timpul transferului cadrului

CCD cu transfer de cadre (I)

■ Toate liniile foto-elementelor sunt conectate la un singur canal

CCD cu transfer de cadre (II)

Funcționarea CCD cu transfer pe cadre:

- 1. se descarcă întreg cadrul
- 2. se expun foto-elementele
- 3. se obturează lumina (obturatorul trebuie să se închidă, altfel imaginea ar fi afectată de modificarea scenei)
- 4. se deplasează un întreg rand jos în canal
- 5. se deplasează la dreapta în amplificator
- se repetă pasul 5 pentru o linie
- se repetă paşii 4 şi 5 pentru toate liniile

CCD color (I)

- Rețeaua CCD este sensibilă la toate culorile luminii din spectrul vizibil
- Ochiul uman are o sensibilitate selectivă la culoare:
 - Y = 0.3 R + 0.59 G + 0.11 B
- Un CCD color trebuie să proceseze lumina cu toate componentele sale

Tehnici posibile:

1. pixelii individuali devin sensibili la lumină doar la o anumită bandă ingustă de lungimi de undă, folosind filtre de culoare roşu, verde şi albastru

CCD color (II)

- 2. cele trei componente de culoare a oricărei imagini sunt obținute prin trei expuneri consecutive, lentilele fiind acoperite succesiv cu filtre de culoare roşu, verde şi albastru; această tehnică nu este recomandată scenelor în mişcare
- 3. camerele video utilizează o structură **GCMY**, cu o bună performanță la **lumina slabă**, utilizând patru filtre:
 - a. **G (Green):** verde
 - b. **C (Cyan):** turcoaz = verde + albastru
 - c. **M (Magenta):** purpuriu = roşu + albastru
 - d. **Y (Yellow):** galben = roşu + verde