REAL ANALYSIS

LECTURE NOTES

ABSTRACT. The Notes indicate what we do in the lectures, but are not a complete replacement of the book and lectures. The text is from two books of *Real Analysis*:

- [1] Xingwei Zhou & Wenchang Sun: Real Variable Analysis, the third edition, Science Press, 2014.
- [2] E. Stein & R. Shakarchi: Real Analysis, Princeton University Press, 2005.

L^p space (continued)

1. The dual space of L^p when $1 \leq p < \infty$

Suppose that \mathcal{B} is a complete normed linear space (Banach space) over \mathbb{R} equipped with a norm $\|\cdot\|$. A linear functional is a linear mapping $T: \mathcal{B} \to \mathbb{R}$ which satisfies

$$T(af + bg) = aT(f) + bT(g), \quad \forall \ a, b \in \mathbb{R}, \text{ and } f, g \in \mathcal{B}.$$

A linear functional T is continuous if given $\varepsilon > 0$ there is $\delta > 0$ so that

$$|T(f) - T(g)| \le \varepsilon$$
 whenever $||f - g|| \le \delta$.

We say that a linear functional is bounded if there is M > 0 with

$$|T(f)| \le M||f||, \ \forall \ f \in \mathcal{B}.$$

The linearity of T shows that these two notions are equivalent.

Theorem 1.1. A linear functional on a Banach space is continuous if and only if it is bounded.

Proof. Observe that T is continuous if and only if it is continuous at the origin. This is a direct consequence of the linearity.

Indeed if T is continuous, we choose $\varepsilon = 1$ and g = 0 so that $|T(f)| \le 1$ whenever $||f|| \le \delta$ for some $\delta > 0$. Hence, given any non-zero $h \in \mathcal{B}$, we see that

$$|T(\delta h/||h||) \le 1 \Longrightarrow |T(h)| \le \frac{1}{\delta}||h||.$$

Conversely, if T is bounded it is clearly continuous at the origin, hence continuous.

The set of all continuous linear functionals over \mathcal{B} is a vector space via the following addition and scalar multiplication:

$$(T_1 + T_2)(\cdot) := T_1(\cdot) + T_2(\cdot)$$
 and $(aT)(\cdot) := aT(\cdot)$.

This vector space may be equipped with a norm as follows:

$$||T|| := \sup_{\|f\| \le 1} |T(f)| = \sup_{\|f\| = 1} |T(f)| = \sup_{f \ne 0} \frac{|T(f)|}{\|f\|}.$$

The vector space of all continuous linear functionals on \mathcal{B} equipped with $\|\cdot\|$ above is called the dual space of \mathcal{B} , and is denoted by \mathcal{B}^* .

Theorem 1.2. The vector space \mathcal{B}^* is a Banach space.

Proof. Suppose $\{T_k\}$ is a Cauchy sequence in \mathcal{B}^* . Then for each $f \in \mathcal{B}$,

$$|T_k(f) - T_i(f)| = |(T_k - T_l)(f)| \le ||T_k - T_l|| ||f||.$$

This means that the sequence $\{T_k(f)\}$ is Cauchy in \mathcal{B}^* , hence converges to a limit, denoted by T(f).

Step 1. We verify the above-defined $T \in \mathcal{B}^*$.

Clearly the mapping $T: f \mapsto T(f)$ is linear. If M is so that $||T_k|| \leq M$ for all k, then

$$|T(f)| \le |(T - T_k)(f)| + |T_k(f)| \le |(T - T_k)(f)| + M||f||.$$

Therefore, taking $k \to \infty$ we find

$$|T(f)| \le M||f|| \ \forall \ f \in \mathcal{B}.$$

Thus T is bounded.

Step 2. We show $T_k \to T$ in \mathcal{B}^* .

Fix any $\varepsilon > 0$. One has

$$|(T - T_k)(f)| \le |(T - T_j)(f)| + |(T_k - T_j)(f)| \le |(T - T_j)(f)| + \frac{\varepsilon}{2} ||f||,$$

when k, j are large. Choose j (dependent on f) so that

$$|(T-T_j)(f)| \le \frac{\varepsilon}{2} ||f||.$$

In the end, we find that for k large, independent of f,

$$|(T-T_k)(f)| \le \varepsilon ||f||.$$

This proves that $||T - T_k|| \to 0$, as desired.

Suppose that $p \in [1, \infty]$ and q is the conjugate exponent of p, that is

$$\frac{1}{p} + \frac{1}{q} = 1.$$

The key observation to make is the following: Hölder inequality shows that every function $g \in L^q(E)$ gives rise to a bounded linear functional on $L^p(E)$ by

$$T_g(f) = \int_E f(x)g(x)dx,$$

and that $||T_g|| \leq ||g||_q$. Therefore, $L^q(E) \ni g \mapsto T_g \in [L^p(E)]^*$ implies that $L^q(E) \subset (L^p)^*(E)$ when $p \in [1, \infty]$.

The main result is that when $1 \leq p < \infty$, every linear functional on $L^p(E)$ is of the form (1.1). We remark that this result is in general not true when $p = \infty$; the dual of $L^{\infty}(E)$ contains $L^1(E)$, i.e. $(L^{\infty}(E))^* \supset L^1(E)$, but it is larger.

Theorem 1.3. Suppose $p, q \ge 1$ and 1/p + 1/q = 1. Then

$$(L^p(E))^* = L^q(E), \quad 1 \le p < \infty,$$

in the following sense: for every bounded linear functional T on $L^p(E)$, there is a unique $g \in L^q(E)$ so that $T = T_g$, which is given by

(1.1)
$$T_g(f) = \int_E f(x)g(x)dx,$$

Moreover $||T|| = ||g||_q$.

Lemma 1.1. Suppose $1 \le p, q \le \infty$ are conjugate exponents.

(i) If $g \in L^q(E)$, then

$$||g||_q = \sup \left\{ \left| \int_E fg \right| : ||f||_p \le 1 \right\}.$$

(ii) Suppose g is integrable on all sets of finite measure, and

$$\sup \left\{ \left| \int_{E} fg \right| : ||f||_{p} \le 1, \ f \ is \ simple \right\} = M < \infty.$$

Then $g \in L^q(E)$ and $||g||_q = M$.

Proof. We start with (i). Assume without loss of generality $g \neq 0$. By Hölder inequality

$$\sup \left\{ \left| \int_{E} fg \right| : ||f||_{p} \le 1 \right\} \le ||g||_{q}.$$

For the reverse inequality we consider the following cases.

(C1) q = 1 and $p = \infty$. Take f(x) = sign g(x). Then $||f||_{\infty} = 1$ and

$$\Big| \int_E fg \Big| = ||g||_1.$$

(C2) $1 < p, q < \infty$. Take $f(x) = |g(x)|^{q-1} \operatorname{sign} g(x) / ||g||_q^{q-1}$. Since p(q-1) = q,

$$||f||_p^p = \int_E |g(x)|^{p(q-1)} / ||g||_q^{p(q-1)} = 1$$
 and $\left| \int_E fg \right| = ||g||_q$.

(C3) $q = \infty$ and p = 1. Fix any $\varepsilon > 0$.

Let E_{ε} be a set of finite positive measure such that

$$|g(x)| \ge ||g||_{\infty} - \varepsilon$$
 on E_{ε} .

Take $f(x) = \chi_{E_{\varepsilon}}(x) \operatorname{sign} g(x) / m(E_{\varepsilon})$. Then $||f||_1 = 1$ and

$$\left| \int_{E} fg \right| = \int_{E_{\varepsilon}} |g| \ge ||g||_{\infty} - \varepsilon.$$

This finishes the proof of part (i).

Next we show (ii). The direction

$$M \leq ||g||_q$$

is implied by Hölder inequality.

(C1) p > 1. Take a sequence of simple functions g_k so that $|g_k(x)| \le |g(x)|$ and $g_k(x) \to g(x)$ for every x. Let $f_k(x) = |g_k(x)|^{q-1} \text{sign } g(x)/\|g_k\|_q^{q-1}$. Then $\|f_k\|_p = 1$. So

$$M \ge \Big| \int_E f_k g \Big| \ge \frac{1}{\|g_k\|_q^{q-1}} \int_E |g_k|^q = \|g_k\|_q.$$

By Fatou's Lemma, it follows that

$$||g||_q \le \left(\liminf_{k \to \infty} \int_E |g_k|^q\right)^{\frac{1}{q}} \le M.$$

(C2) p = 1. Take $f_k(x) = (\text{sign } g(x))\chi_{E_k}(x)/m(E_k)$, where E_k is an increasing sequence of sets of finite measure whose union is E. Then $||f_k||_1 = 1$ and

$$M \ge \lim_{k \to \infty} \left| \int_E f_k g \right| \ge ||g||_{\infty} - \varepsilon.$$

Since ε is arbitrary, we obtain $M \geq ||g||_{\infty}$.

This proves part (ii).

We now state the following celebrated theorem.

Theorem (Lebesgue-Radon-Nikodym Theorem). Suppose μ is a σ -finite positive measure on the measure space (X, \mathcal{M}) and ν a σ -finite signed measure on \mathcal{M} . Then there exist unique signed measure ν_a and ν_s on \mathcal{M} such that

$$\nu = \nu_a + \nu_s$$
, with $\nu_s \perp \mu$, $\nu_a \ll \mu$.

In addition, then measure ν_a takes the form $d\mu_a = f d\mu$, that is

$$\nu_a(E) = \int_E f(x)d\mu(x)$$

for some extended μ -integrable function f.

A proof can be found in *Real Analysis* by Stein-Shakarchi, see Theorem 4.3 in Chapter 6 of the book. The argument therein is due to von Neumann, which exploits a linear transform $T: L^2(X, \rho) \to L^2(X, \rho)$, where $\rho = \nu + \mu$ and

$$T(\psi) = \int_{X} \psi(x) d\nu(x),$$

with an elegent use of the Riesz representation theorem (see Theorem 2.4 below). The interested readers are referred to Stein-Shakarchi's book for the details.

Proof of Theorem 1.3.

Firstly, let us suppose $m(E) < \infty$.

Given a functional T on $L^p(E)$, we define a set function ν by

$$\nu(G) = T(\chi_G)$$
, where G is measurable set of E.

The definition makes sense because $\chi_G \in L^p(E)$ since $m(E) < \infty$. Observe that

$$|\nu(G)| \le ||T|| ||\chi_G||_p = ||T|| [m(G)]^{\frac{1}{p}}.$$

Now the linearity of T implies that ν is finitely-additive. If $\{G_k\}$ is a countable collection of disjoint measurable sets, and we set $G = \bigcup_{k \ge 1} G_k$, $G_N^* = \bigcup_{k \ge N+1} G_k$, then

$$\chi_G = \chi_{G_N^*} + \sum_{k=1}^N \chi_{G_k}.$$

Therefore

$$\nu(G) = \nu(E_N^*) + \sum_{k=1}^{N} \nu(G_k).$$

However $\nu(E_N^*) \to 0$ as $N \to \infty$, because of the continuity of T, see (1.2). This shows that ν is countably additive, and absolutely continuous w.r.t. the Lebesgue measure.

By the Lebesgue-Radon-Nikodym Theorem, there is $g \in L^1(E)$ so that

$$\nu(G) = \int_G g dx$$
 for every measurable set G of E .

Therefore

$$T(\chi_G) = \int_E \chi_G g dx$$

By the linear extension, the above formula holds for all simple functions. Employing part (ii) of Lemma 1.1, $g \in L^q(E)$. Since simple functions are dense in L^p , $1 \le p < \infty$, each $f \in L^p(E)$ can be written as $f = \sum_{k=1}^{\infty} a_k \chi_{G_k}$. By the continuity of T, we see that

$$T(f) = \lim_{N \to \infty} \int_E (S_N f) g dx$$
, where $S_N f = \sum_{k=1}^N a_k \chi_{G_k}$.

By the Hölder inequality, $|fg| \in L^1(E)$. Since $|(S_N f)g| \leq |fg|$, the dominated convergence theorem yields

(1.3)
$$T(f) = \int_{E} fg dx, \quad \forall \ f \in L^{p}(E).$$

By Lemma 1.1, we see that $||g||_q = ||T||$.

We next deal with the case $m(E) = \infty$.

Take an increasing sequence $\{E_k\}$ of sets of finite measure that exhaust E. By the previous argument, for each k there is $g_k \in L^1(E_k)$ and $g_k = 0$ outside E_k , so that

$$T(f) = \int_{E} f g_k dx$$
, whenever f is supported in E_k and $f \in L^p(E_k)$.

By Lemma 1.1, $||g_k||_q \le ||T||$.

Because of (1.3), $g_l = g_k$ a.e. on E_k , whenever $l \ge k$. Therefore $\lim_{k \to \infty} g_k(x) = g(x)$ exists for a.e. x, and by Fatou's Lemma,

$$||g||_q \le \left(\liminf_{k \to \infty} \int_E |g_k|^q\right)^{\frac{1}{q}} \le ||T||.$$

As a result,

(1.4)
$$T(f) = \int_{E} fg dx, \quad \forall f \in L^{p}(E_{k}), \text{ supp} f \subset E_{k}.$$

Each $f \in L^p(E)$ can be written as $f = \lim_{N\to\infty} f\chi_{E_N}$. A simple limiting argument shows that (1.4) holds for all $f \in L^p(E)$. By Lemma 1.1, $||T|| = ||g||_q$, and so the theorem is proved.

2. The Hilbert space L^2

Motivated by \mathbb{R}^n and \mathbb{C}^n , an inner product space is defined to be a vector space V over either \mathbb{R} or \mathbb{C} (not necessarily finite dimensional), together with an inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ (\mathbb{C}) which is required to be:

(1) Conjugate Symmetric: for all $u, v \in V$,

$$\langle u, v \rangle = \overline{\langle v, u \rangle}.$$

In the real case, this is just usual the usual symmetry condition $\langle u, v \rangle = \langle v, u \rangle$.

(2) Linear in the first argument: for all scalars α and all $u, u_1, u_2, v \in V$,

$$\langle \alpha u, v \rangle = \alpha \langle u, v \rangle, \quad \langle u_1 + u_2, v \rangle = \langle u_1, v \rangle + \langle u_2, v \rangle.$$

By conjugate symmetry, it follows that for all scalars α and all $u, v_1, v_2, v \in V$

$$\langle u, \alpha v \rangle = \overline{\alpha} \langle u, v \rangle, \quad \langle u, v_1 + v_2 \rangle = \langle u, v_1 \rangle + \langle u, v_2 \rangle.$$

(3) Positive Definite:

$$\langle u, u \rangle 0, \langle u, u \rangle = 0$$
 if and only if $u = 0$ (the zero vector).

In an inner product space the norm is defined by

$$||u|| = \langle u, u \rangle^{\frac{1}{2}}.$$

It is a norm because of the following Cauchy-Schwartz inequality 1

$$|\langle u, v \rangle| \le ||u|| ||v||,$$

$$0 \leq \langle u - \lambda v, u - \lambda v \rangle = \langle u, u \rangle - \frac{|\langle u, v \rangle|^2}{\langle v, v \rangle}.$$

The result follows.

¹Assume $v \neq 0$ (otherwise the result is trivial) and let $\lambda = \langle u, v \rangle / \langle v, v \rangle$. Then a calculation gives

with equality if and only if u and v are linearly dependent. It follows that ||u|| defines a norm, that is

Homogeneity: $\|\alpha u\| = |\alpha| \|u\|$;

Positivity: $||u|| \ge 0$, ||u|| = 0 iff u = 0;

Triangle Inequality: $||u+v|| \le ||u|| + ||v||$.

The triangle inequality is a consequence of Cauchy-Schwartz inequality:

$$||u+v||^2 = ||u||^2 + ||v||^2 + 2\operatorname{Re}\langle u, v \rangle \le ||u||^2 + ||v||^2 + 2||u|| ||v|| \le (||u|| + ||v||)^2.$$

We observe that $L^2(E)$ is an inner product space with the L^2 inner product given by

$$\langle f, g \rangle := \int_E f \bar{g}$$
 (complex-valued functions);

$$\langle f, g \rangle := \int_E fg$$
 (real-valued functions).

Definition 2.1. A Hilbert space \mathcal{H} is a complete, separable, inner product space.

Theorem 2.1. Let E be a measurable set of \mathbb{R}^n . Then $L^2(E)$ is a Hilbert space.

The notion of an orthonormal basis is fundamental in the theory of Hilbert spaces.

Definition 2.2. Let \mathcal{H} is a Hilbert space with a countable orthonormal subset $\mathcal{E} = \{e_1, e_2, e_3, \ldots\}$, either finite or infinite. We say \mathcal{E} is an orthonormal basis for \mathcal{H} if every $f \in \mathcal{H}$ is of the form

$$f = \sum_{k \ge 1} a_k e_k,$$

that is

$$\left\| f - \sum_{k>1}^{N} a_k e_k \right\| \to 0 \quad as \ N \to \infty.$$

for some $a_k \in \mathbb{R}$ (or \mathbb{C}).

Fix a large N. Write $f = S_N + (f - S_N)$, where

$$S_N = \sum_{k=1}^N a_k e_k.$$

Multiplying e_k at both sides, we obtain

$$\langle f, e_k \rangle = \langle S_N, e_k \rangle + \langle f - S_N, e_k \rangle = a_k + \langle f - S_N, e_k \rangle,$$

which yields

$$|\langle f, e_k \rangle - a_k| \le ||f - S_N||.$$

Sending $N \to \infty$, we find that

$$a_k = \langle f, e_k \rangle$$
.

Theorem 2.2. Every Hilbert space \mathcal{H} has an orthonormal subset $\mathcal{E} = \{e_1, e_2, \dots, \}$ such that finite linear combinations of the e_i are dense in \mathcal{H} .

Suppose $\mathcal{E} = \{e_1, e_2, \ldots, \}$ is any orthonormal subset of \mathcal{H} such that finite linear combinations of the e_i are dense in \mathcal{H} , then $\mathcal{E} = \{e_1, e_2, \ldots, \}$ is an orthonormal basis.

Given an orthonormal basis $\mathcal{E} = \{e_1, e_2, \dots, \}$, for any $f \in \mathcal{H}$, we have

$$f = \sum_{k>1} a_k e_k$$
, where $a_k = \langle f, e_k \rangle$.

Moreover

$$||f||^2 = \sum_{k>1} |a_k|^2$$
 (Parseval's identity).

Suppose $\{e_1, e_2, \ldots, \}$ is an orthonormal set (but not necessarily a basis). Then

$$\sum_{k>1} |\langle f, e_k \rangle|^2 \le ||f||^2 \quad (Bessel's \ inequality)$$

If equality holds then $\{e_1, e_2, \ldots\}$ is an orthonormal basis.

The Gram Schmidt process converts a basis of an inner product space into an orthonormal basis. Suppose w_1, \ldots, w_m is a basis. Then we construct e_1, \ldots, e_m as follows:

- (1) $e_1 = w_1/||w_1||$. (Unit length vector in same direction as w_1 .)
- (2) $e_2 = (w_2 \langle w_2, e_1 \rangle e_1) / \|w_2 \langle w_2, e_1 \rangle e_1\|$. (Subtract from w_2 its projection on the space spanned by e_1 , and then normalise to unit length. This gives a unit length vector orthogonal to e_1 and in the space spanned by w_1, w_2 .)
- (3) $e_k = (w_k \sum_{j=1}^{k-1} \langle w_k, e_j \rangle e_j) / \|w_k \sum_{j=1}^{k-1} \langle w_k, e_j \rangle e_j\|.$
- (4) Repeat the above procedure.

Proof of Theorem 2.2.

Step 1. Because \mathcal{H} is separable there is a countable dense subset $\{g_1, g_2, g_3, \ldots\}$. By successively removing any g_i which is a linear combination of previous g_j 's, we can assume

that each finite subset $\{g_1, \ldots, g_N\}$ is linearly independent. For this new sequence which we also denote by $\{g_1, g_2, g_3, \ldots\}$, finite linear combinations of the g_i will be dense.

Applying the Gram Schmidt process from we obtain an orthonormal set $\{e_1, e_2, e_3, \ldots\}$, such that for each N the sets $\{e_1, \ldots, e_N\}$ and $\{g_1, \ldots, g_N\}$ span the same N-dimensional subspace of \mathcal{H} . Since finite linear combinations of the g_i are dense it follows that finite linear combinations of the e_i are also dense.

From now until the end of Step 5 we assume that \mathcal{E} is an orthonormal subset of \mathcal{H} and that finite linear combinations of the e_i are dense in \mathcal{H} .

Step 2. If $\langle h, e_i \rangle = 0$ for all e_i then h = 0.

To prove this, use the result in Step 1 to obtain a sequence $(h_k)_{k\geq 1}$ of linear combinations of the e_i such that $h_k \to h$. Since $\langle h, e_i \rangle = 0$ for all e_i it follows that $\langle h, h_k \rangle = 0$ for all h_k . From this we have the following nice argument:

$$||h||^2 = |\langle h, h \rangle| = |\langle h, h - h_k \rangle| \le ||h|| ||h - h_k|| \to 0 \text{ as } k \to \infty.$$

Hence ||h|| = 0 and so h = 0.

Step 3. Let $a_k = \langle f, e_k \rangle$. Then, for all $i = 1, \ldots, N$,

$$e_i \perp \left(f - \sum_{k=1}^{N} a_k e_k\right),$$

and

(2.1)
$$||f||^2 = \sum_{k=1}^{N} |a_k|^2 + ||f - \sum_{k=1}^{N} a_k e_k||.$$

This is the Pythagoras theorem.

Step 4. We show that $f = \sum_{k=1}^{\infty} a_k e_k$.

It follows by (2.1) that

$$\sum_{k=1}^{\infty} |a_k|^2 \le ||f||^2 < \infty,$$

and so the series $\sum_{k=1}^{\infty} |a_k|^2$ converges. This in turn shows that $\{\sum_{k=1}^{N} a_k e_k\}_{N=1}^{\infty}$ is a Cauchy sequence in \mathcal{H} , because

$$\left\| \sum_{k=1}^{M} a_k e_k - \sum_{j=1}^{N} a_j e_j \right\| = \sum_{i=N+1}^{M} |a_i|^2 \to 0.$$

By the completeness, $\sum_{k=1}^{\infty} a_k e_k$ exists, denoted by g.

Fix i. Since

$$\langle f - \sum_{k=1}^{N} a_k e_k, e_i \rangle = 0, \quad \forall \ N \ge i.$$

Sending $N \to \infty$, we obtain $\langle f - g, e_i \rangle = 0$ for all i. Therefore f = g by Step 2.

Step 5. Note that $||f||^2 = \sum_{k>1} |a_k|^2$.

This now follows from (2.1), since $||f - \sum_{k=1}^{N} a_k e_k|| \to 0$ as $N \to \infty$ by Step 4.

Step 6. If $\{e_1, e_2, \ldots\}$ is an orthonormal set, but not necessarily a basis, then Step 3 is still valid. It follows that $\sum_{k\geq 1} |a_k|^2 \leq \|f\|^2$. If equality holds, then $\|f - \sum_{k=1}^N a_k e_k\|^2 \to 0$ as $N \to \infty$ and so $f = \sum_{k\geq 1} a_k e_k$. In particular $\{e_1, e_2, \ldots\}$ is an orthonormal basis.

Definition 2.3. Given $1 \le p < \infty$, we define

$$\ell_{\mathbb{R}}^p = \left\{ x : \mathbb{N} \to \mathbb{R} : \sum_{k \ge 1} |x_k|^p < \infty, \ x_k = x(k) \right\},$$

$$\ell_{\mathbb{C}}^p = \left\{ x : \mathbb{N} \to \mathbb{C} : \sum_{k \ge 1} |x_k|^p < \infty, \ x_k = x(k) \right\},$$

with the norm $\|\cdot\|_{\ell^p}$ given by $\|x\|_{\ell^p} = (\sum_{k\geq 1} |x_k|^p)^{\frac{1}{p}}$. We also define

$$\ell_{\mathbb{R}}^{\infty} = \left\{ x : \mathbb{N} \to \mathbb{R} : \sup_{k \ge 1} |x_k| < \infty, \ x_k = x(k) \right\},$$

$$\ell_{\mathbb{C}}^{\infty} = \left\{ x : \mathbb{N} \to \mathbb{C} : \sup_{k > 1} |x_k| < \infty, \ x_k = x(k) \right\}.$$

with the norm $\|\cdot\|_{\ell^{\infty}}$ given by $\|\alpha\|_{\ell^{\infty}} = \sup_{k\geq 1} |a_k|$.

There are Hölder and Minkowski inequalities for ℓ^p :

$$\sum_{i=1}^{\infty} |x_i y_i| \le ||x||_{\ell^p} ||y||_{\ell^q}, \quad \frac{1}{p} + \frac{1}{q} = 1, \quad 1 < p, q < \infty,$$

$$||x + y||_{\ell^p} \le ||x||_{\ell^p} + ||y||_{\ell^p}, \quad 1 \le p \le \infty.$$

Hence ℓ^p $(1 \le p \le \infty)$ is a normed linear space. Moreover they are Banach spaces.

We can define an inner product for $\ell_{\mathbb{R}}^2$ or $\ell_{\mathbb{C}}^2$ by

$$\langle x, y \rangle = \sum_{i>1} x_i y_i \text{ or } \langle x, y \rangle = \sum_{i>1} x_i \bar{y}_i$$

It can be verified that ℓ^2 is a Hilbert space.

The following result is a consequence of Theorem 2.2.

Theorem 2.3. Each Hilbert space over \mathbb{R} (or \mathbb{C}) is isomorphic to \mathbb{R}^n (or \mathbb{C}^n) for some n, or is isomorphic to $\ell^2_{\mathbb{R}}$ (or $\ell^2_{\mathbb{C}}$).

2.1. Riesz representation theorem.

We present the following theorem which characterises the continuous linear functionals on each Hilbert space.

Theorem 2.4 (Riesz representation theorem). Let T be a continuous linear functional on a Hilbert space \mathcal{H} . Then, there is a unique $g \in \mathcal{H}$ such that

$$T(f) = \langle f, g \rangle$$
 for all $f \in \mathcal{H}$.

Moreover ||T|| = ||g||.

Proof. We outline the proof by several steps.

Step 1. Let $S = \{f : T(f) = 0\}$, i.e. the kernel of T. Then S is a subspace (since T is linear) and is closed (since T is continuous).

Step 2. If $S = \mathcal{H}$ then T is the zero operator and we take $g = 0 \in \mathcal{H}$. Otherwise, let $S^{\perp} = \{h : \langle h, f \rangle = 0 \ \forall \ f \in S\}$, the orthogonal complement of S. So $\mathcal{H} = S \oplus S^{\perp 2}$. Select

$$h \in \mathcal{S}^{\perp}$$
 with $||h|| = 1$.

Step 3. Check that $T(f)h - T(h)f \in \mathcal{S}$, for every $f \in \mathcal{H}$. Hence

$$0 = \langle T(f)h - T(h)f, h \rangle = T(f) - \langle f, \overline{T(h)}h \rangle.$$

²We have the following conclusion (not hard exercise): If \mathcal{G} is a closed subspace of \mathcal{H} , then for any $f \in \mathcal{H}$, there is a unique $g_0 \in \mathcal{G}$ such that $||f - g_0|| = \inf_{g \in \mathcal{G}} ||f - g||$ and $(f - g_0) \perp g$ for all $g \in \mathcal{G}$. Since $\mathcal{S} = \ker(T)$ is a closed subspace of \mathcal{H} . Hence we can write $f = (f - g_0) + g_0$ where g_0 is the unique element in \mathcal{S} , so $f - g_0 \in \mathcal{S}^{\perp}$ by the above-mentioned conclusion.

By taking $g = \overline{T(h)}h$, we obtain

$$T(f) = \langle f, g \rangle, \ \forall \ f \in \mathcal{H}.$$

By Cauchy-Schwartz inequality, $||T(f)|| \le ||f|| ||g||$, so $||T|| \le ||g||$. Using $T(g) = ||g||^2$, we see that ||T|| = ||g||.

Step 4. Uniqueness: Suppose $T(f) = \langle f, g_1 \rangle = \langle f, g_2 \rangle$ for all f. Then $\langle f, g_1 - g_2 \rangle = 0$. Taking $f = g_1 - g_2$ shows $g_1 = g_2$.

Remark 2.1. It follows that S^{\perp} is one dimensional. For this, suppose h_1 and h_2 are two unit vectors in S^{\perp} . By the construction in the proof above and the uniqueness, we see that $\overline{T(h_1)}h_1 = \overline{T(h_2)}h_2$. So h_1 and h_2 are linearly dependent.

Remark 2.2. As a consequence of Theorem 2.4, we see that $(L^2)^* = L^2$, which was previously shown in Theorem 1.3.

In general, consider a linear transformation $T: \mathcal{H}_1 \to \mathcal{H}_2$ where \mathcal{H}_1 and \mathcal{H}_2 are two Hilbert space. We say T is bounded if there is M > 0 so that

$$||T(f)||_{\mathcal{H}_2} \le M||f||_{\mathcal{H}_1}.$$

The norm of T is given by

$$||T|| := \sup\{||T(f)||_{\mathcal{H}_2}/||f||_{\mathcal{H}_1}: f \neq 0\}$$
$$= \sup\{|\langle T(f), g \rangle|: ||f|| \leq 1, ||g|| \leq 1, f \in \mathcal{H}_1, g \in \mathcal{H}_2\}.$$

The first identity is the definition, and the second needs a little argument.

We say a linear transformation T is continuous, if $||T(f_k) - T(f)||_{\mathcal{H}_2} \to 0$ as $||f_k - f||_{\mathcal{H}_1} \to 0$. It is not hard to show, by using the linearity, that T is continuous if and only if it is bounded.

An application of the Riesz representation theorem is to determine the existence of the "adjoint" of a linear transformation. Consider the continuous linear transformation $T: \mathcal{H} \to \mathcal{H}$, that is from \mathcal{H} to itself. Given $g \in \mathcal{H}$, we have a continuous linear functional

$$\langle T(\cdot), g \rangle : \mathcal{H} \to \mathbb{R} \ (or \ \mathbb{C}).$$

By Riesz representation theorem, there is a unique $g^* \in \mathcal{H}$ so that

$$\langle T(\cdot), g \rangle = \langle \cdot, g^* \rangle.$$

Therefore we can define an operator $T^*: \mathcal{H} \to \mathcal{H}$ via $T^*(g) = g^*$. The Riesz representation theorem also gives us

$$||T^*(g)|| = \sup\{|\langle T(f), g \rangle| / ||f|| : f \in \mathcal{H}, \ f \neq 0\}$$
$$= \sup\{|\langle T(f), g \rangle| / ||f|| : f \in \mathcal{H}, \ ||f|| \le 1\}.$$

It is not hard to see that T^* is continuous and linear. We list the following properties

(i)
$$\langle T(f), g \rangle = \langle f, T^*(g) \rangle$$
, $\forall f, g \in \mathcal{H}$; (ii) $||T|| = ||T^*||$; (iii) $(T^*)^* = T$.

We will not go further. The content will be left to the course Functional Analysis.

2.2. Fourier series in $L^2([-\pi,\pi])$.

We work in $L^2([-\pi,\pi])$. Every interval [a,b] is OK but the constants are messier.

We use the inner product on $L^2([-\pi,\pi])$ for convenience

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f \bar{g}.$$

In the real case one can check that

$$S := S_{\mathbb{R}} = \{1, \sqrt{2}\cos kx, \sqrt{2}\sin kx : k \in \mathbb{N}\}\$$

forms an orthonormal set in $L^2([-\pi,\pi])$.

In the complex case one can check that

$$S := S_{\mathbb{C}} = \{ e^{ik\pi} : k \in \mathbb{N} \}$$

forms an orthonormal set in $L^2([-\pi,\pi])$.

Theorem 2.5. In the real or complex case, S defined above is an orthonormal basis.

Proof. By Theorem 2.2, we show that Span(S), the set of finite liner combinations of functions from S, is dense in $L^2([-\pi, \pi])$, and so in the L^2 norm.

Step 1. We first consider the real case.

Observe that (i) $\operatorname{Span}(S_{\mathbb{R}})$ is an algebra, namely it is closed under addition, scalar multiplication, and products; (ii) $\operatorname{Span}(S_{\mathbb{R}})$ contains the constant functions; (iii) $\operatorname{Span}(S_{\mathbb{R}})$ separates points, namely for each pair $x \neq y$, one has $f(x) \neq f(y)$ for some $f \in \operatorname{Span}(S_{\mathbb{R}})$.

By the Stone-Weierstrass theorem (see Theorem 2.7 below), $\operatorname{Span}(S_{\mathbb{R}})$ is dense in $C([-\pi, \pi])$ in the sup norm.

Step 2. Next we consider the complex case.

Suppose $f = u + iv \in L^2([-\pi, \pi])$. Fix any $\varepsilon > 0$. From the real case, there are $\phi, \psi \in \text{Span}(\mathbb{S}_{\mathbb{R}})$ such that $\|u - \phi\|_{L^2} < \varepsilon/2$ and $\|v - \psi\|_{L^2} < \varepsilon/2$. It follows that $\|f - g\| < \varepsilon$, where $f = \phi + i\psi$.

Note that $g \in \text{Span}(S_{\mathbb{C}})$, which can be seen from

$$\cos kx = \frac{1}{2}(e^{ikx} + e^{-ikx}), \quad \cos kx = \frac{1}{2i}(e^{ikx} - e^{-ikx}), \text{ and } 1 = e^{i0x}.$$

This completes the proof in the complex case.

We now summary some important facts for Fourier series in $L^2([-\pi, \pi])$ below. The result is a consequence of the combination of Theorem 2.2 and Theorem 2.5.

Theorem 2.6. Suppose $f \in L^2([-\pi, \pi]; \mathbb{R})$. Let

$$a_0 = \int_{-\pi}^{\pi} f(x)dx, \ a_k = \sqrt{2} \int_{-\pi}^{\pi} f(x) \cos kx dx, \ b_k = \sqrt{2} \int_{-\pi}^{\pi} f(x) \sin kx dx, \ k > 0.$$

Then

- (i) $f(x) = a_0 + \sqrt{2} \sum_{k \ge 1} (a_k \cos kx + b_k \sin kx)$ with convergence in L^2 sense.
- (ii) $f_{-\pi}^{\pi} |f|^2 = a_0^2 + \sum_{k \ge 1} (a_k^2 + b_k^2).$
- (iii) f = 0 a.e. if and only if $a_k = b_k = 0$ for all k.
- (iv) $f \mapsto (a_0, a_1, b_1, a_2, b_2, a_3, b_3, \ldots)$ is an isomorphism between $L^2([-\pi, \pi]; \mathbb{R})$ and ℓ^2 .

Suppose $f \in L^2([-\pi, \pi]; \mathbb{C})$. Let $c_k = \int_{-\pi}^{\pi} f(x)e^{-ikx}xdx$ for $k \in \mathbb{Z}$. Then

- (i) $f(x) = \sum_{k=\infty}^{\infty} c_k e^{ikx}$ with convergence in L^2 sense.
- (ii) $\int_{-\pi}^{\pi} |f|^2 = \sum_{k=\infty}^{\infty} |c_k|^2$.
- (iii) f = 0 a.e. if and only if $c_k = 0$ for all k.
- (iv) $f \mapsto (c_0, c_1, c_{-1}, c_2, c_{-2}, \ldots)$ is an isomorphism between $L^2([-\pi, \pi]; \mathbb{C})$ and ℓ^2 .

2.3. Stone's generalisation of the Weierstrass theorem.

Let K be a compact set, and $C(K) = C(K; \mathbb{R})$ (or $C(K) = C(K; \mathbb{C})$) be the set of all continuous real-valued (complex-valued) functions on K. We concern if some subset \mathscr{A} with nice properties is dense in C(K). That is the so-called approximation theorem.

The following Stone-Weierstrass theorem is used in the proof of Theorem 2.5, which is a generalisation of Theorem ??.

Theorem 2.7 (Stone-Weierstrass Theorem). Let \mathscr{A} be an algebra of real continuous functions on a compact set K. Suppose

- (i) \mathscr{A} separates points on K;
- (ii) \mathscr{A} vanishes at no point of K.

Then the uniform closure \mathscr{B} of \mathscr{A} is $C(K;\mathbb{R})$.

The presentation below is from the book *Principles of Mathematics Analysis* by Rudin.

Definition 2.4. A family $\mathscr A$ of real (or complex) functions defined on a set E is said to be an algebra if

(i)
$$f + g \in \mathcal{A}$$
; (ii) $fg \in \mathcal{A}$; (iii) $cf \in \mathcal{A}$; $\forall f, g \in \mathcal{A}$ and $c \in \mathbb{R}$ (or \mathbb{C}).

That is, if \mathscr{A} is closed under addition, product, and scalar multiplication.

Definition 2.5. Let \mathscr{B} be the set of all functions which are limits of uniformly convergent sequences of members of \mathscr{A} . Then \mathscr{B} is called the uniform closure of \mathscr{A} .

Definition 2.6. Let \mathscr{A} be a family of functions on a set E. Then \mathscr{A} is said to separate points on E if to every pair of distinct points $x, y \in E$ there corresponds a function $f \in \mathscr{A}$ such that $f(x) \neq f(y)$.

If to each $x \in E$ there corresponds a function $g \in \mathcal{A}$ such that $g(x) \neq 0$, we say that \mathcal{A} vanishes at no point of E.

The algebra of all polynomials in one variable clearly separate points and vanishes at no point on \mathbb{R} . An example of an algebra which does not separate points is the set of all even polynomials, as f(-x) = f(x) for each such function.

Lemma 2.1. Suppose $\mathscr A$ is an algebra of functions on a set E, $\mathscr A$ separates points on E, and vanishes at no points of E. Suppose x, y are distinct points of E, and a, b are constants. Then $\mathscr A$ contains a function f such that

$$f(x) = a$$
 and $f(y) = b$.

Proof. The assumptions show there are ϕ, ψ, η in \mathscr{A} such that

$$\phi(x) \neq 0, \quad \psi(y) \neq 0, \quad \eta(x) \neq \eta(y).$$

Put

$$u(\xi) = (\eta(\xi) - \eta(x))\psi(\xi)$$
 and $v(\xi) = (\eta(\xi) - \eta(y))\phi(\xi)$.

Then $u, v \in \mathscr{A}$ and

$$u(x) = v(y) = 0$$
, $u(y) \neq 0$ and $v(x) \neq 0$.

Therefore

$$f(\xi) = \frac{av(\xi)}{v(x)} + \frac{bu(\xi)}{u(y)}$$

has the desired properties.

Proof of Theorem 2.7. The proof is divided into several steps.

Step 1. If $f \in \mathcal{B}$, then $|f| \in \mathcal{B}$.

Let $M = \sup_{x \in K} |f(x)|$. Fix any $\varepsilon > 0$. By Weierstrass Theorem, there exist N and real numbers $a_1, \dots a_N$ such that

(2.2)
$$\sup_{y \in [-M,M]} \left| \sum_{k=1}^{N} a_k y^k - |y| \right| < \varepsilon.$$

Since \mathcal{B} is an algebra, the function

$$g_N(\xi) := \sum_{k=1}^N a_k f^k(\xi)$$

is an element of \mathcal{B} . We see from (2.2) that

$$\sup_{\xi \in K} |g_N(\xi) - |f(\xi)|| < \varepsilon.$$

Since \mathscr{B} is uniformly closed, we have $|f| \in \mathscr{B}$.

Step 2. If $f, g \in \mathcal{B}$, then $\max(f, g), \min(f, g) \in \mathcal{B}$.

This is a consequence of Step 1 and the observation below

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|,$$

$$\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|.$$

Step 3. Given $f \in C(K; \mathbb{R})$, a point $x \in K$, and $\varepsilon > 0$, there is a $g_x \in \mathcal{B}$ such that $g_x(x) = f(x)$ and

(2.3)
$$g_x(\xi) > f(\xi) - \varepsilon, \quad \forall \ \xi \in K.$$

Appying Lemma 2.1 to \mathscr{B} , we deduce, for each $y \in K$, there is $h_y \in \mathscr{B}$ such that

$$h_y(x) = f(x), h_y(y) = f(y).$$

By the continuity of h_y , there exists an open set $\mathscr{U}_y \ni y$, such that

$$h_y(\xi) > f(\xi) - \varepsilon, \ \forall \ \xi \in \mathscr{U}_y.$$

Since K is compact, there is a finite set y_1, \ldots, y_L such that

$$K \subset \bigcup_{j=1}^{L} \mathscr{U}_{y_j}.$$

By Step 2, the function defined below is in \mathcal{B} , and has the needed properties,

$$g_x(\xi) = \max(h_{y_1}(\xi), \dots, h_{y_L}(\xi)).$$

Step 4. Given $f \in C(K; \mathbb{R})$, and $\varepsilon > 0$, there is $h \in \mathcal{B}$ such that

(2.4)
$$\sup_{\xi \in K} |h(\xi) - f(\xi)| < \varepsilon$$

Once this is obtained, our theorem is proved.

For each $x \in K$, consider the function g_x constructed in Step 3. By the continuity, there are open sets $\mathcal{V}_x \ni x$, such that

$$(2.5) g_x(\xi) < f(\xi) + \varepsilon, \ \forall \ \xi \in \mathscr{V}_x.$$

By the compactness of K, we find x_1, \ldots, x_J such that

$$K \subset \bigcup_{j=1}^{J} \mathscr{V}_{x_j}.$$

Then define

$$h(\xi) = \min(g_{x_1}(\xi), \dots, g_{x_J}(\xi)).$$

Now (2.4) follows by combining (2.3) and (2.5).

Theorem 2.7 does not hold for complex algebras in general. However the conclusion holds if \mathscr{A} is self-adjoint, that is for every $f \in \mathscr{A}$ its complex conjugate $\bar{f} \in \mathscr{A}$, where $\bar{f}(x) = \overline{f(x)}$.

Theorem 2.8. Suppose \mathscr{A} is a self-adjoint algebra of complex continuous functions on a compact set K, \mathscr{A} separates points of K, and \mathscr{A} vanishes at no point of K. Then the uniform closure \mathscr{B} of \mathscr{A} is $C(K;\mathbb{C})$. In other words, \mathscr{A} is dense in $C(K;\mathbb{C})$.

Proof. This is a consequence of applying Theorem 2.7 to

$$\operatorname{Re}(f) = f + \bar{f}$$
 and $\operatorname{Im}(f) = f - \bar{f}$.