

Hence, the output of the combination of the two NAND gates is given as:

$$Y = \overline{(A \cdot B) \cdot (A \cdot B)} = \overline{AB} + \overline{AB} = AB$$

Hence, this circuit functions as an AND gate.

(b) \overline{A} is the output of the upper left of the NAND gate and \overline{B} is the output of the lower half of the NAND gate, as shown in the following figure.

Hence, the output of the combination of the NAND gates will be given as:

$$Y = \overline{A} \cdot \overline{B} = \overline{\overline{A}} + \overline{\overline{B}} = A + B$$

Hence, this circuit functions as an OR gate.

Question 14.18:

Write the truth table for circuit given in Fig. 14.47 below consisting of NOR gates and identify the logic operation (OR, AND, NOT) which this circuit is performing.

(Hint: A = 0, B = 1 then A and B inputs of second NOR gate will be 0 and hence Y=1. Similarly work out the values of Y for other combinations of A and B. Compare with the truth table of OR, AND, NOT gates and find the correct one.)

Answer

A and B are the inputs of the given circuit. The output of the first NOR gate is $\overline{A+B}$. It can be observed from the following figure that the inputs of the second NOR gate become the out put of the first one.

A + B + A + B | A + B + A + B |

Hence, the output of the combination is given as:

$$Y = \overline{A + B} + \overline{A + B} = \overline{A \cdot B} + \overline{A \cdot B}$$
$$= \overline{A \cdot B} = \overline{A} + \overline{B} = A + B$$

The truth table for this operation is given as:

A	В	Y (=A + B)
0	0	0
0	1	1
1	0	1
1	1	1

This is the truth table of an OR gate. Hence, this circuit functions as an OR gate.

Question 14.19:

Write the truth table for the circuits given in Fig. 14.48 consisting of NOR gates only. Identify the logic operations (OR, AND, NOT) performed by the two circuits.

Answer

(a) A acts as the two inputs of the NOR gate and Y is the output, as shown in the following figure. Hence, the output of the circuit is $\overline{A+A}$.

Output, $Y = \overline{A + A} = \overline{A}$

The truth table for the same is given as:

A	$\mathbf{r}^{\left(=\overline{A}\right)}$
0	1
1	0

This is the truth table of a NOT gate. Hence, this circuit functions as a NOT gate.

(b) A and B are the inputs and Y is the output of the given circuit. By using the result obtained in solution **(a)**, we can infer that the outputs of the first two NOR gates are \overline{A} and \overline{B} , as shown in the following figure.

 \overline{A} and \overline{B} are the inputs for the last NOR gate. Hence, the output for the circuit can be written as:

$$Y = \overline{A} + \overline{B} = \overline{A} \cdot \overline{B} = A \cdot B$$

The truth table for the same can be written as:

A	В	$Y (=A \square B)$
0	0	0
0	1	0
1	0	0
1	1	1

This is the truth table of an AND gate. Hence, this circuit functions as an AND gate.