Towards the Next Generation of Multi-Criteria Recommendation

Zhe Li

Z.Li-9@tudelft.nl

October 7, 2018

Recommender Systems

How to maximize the user satisfaction of recommender systems?

Research Topic-User-Centric Recommendation

Research Topic-User-Centric Recommendation

Previous Work

URM: 0.5 * Rating + 0.5 * ListRanking

Variation: 0.5 * Relevance + 0.5 * Trust

Multiple Objective Optimization:

AP + p * DCG

Calibration recommendation

Shi Y, Larson M, Hanjalic A. Unifying rating-oriented and ranking-oriented collaborative filtering for improved recommendation[J]. Information Sciences, 2013, 229: 29-39.

Rodriguez M, Posse C, Zhang E. Multiple objective optimization in recommender systems[C]//Proceedings of the sixth ACM conference on Recommender systems. ACM, 2012: 11-18.

Theoretical Backgrounds: GAN

GAN [I]

Theoretical Backgrounds: IRGAN

Wang, Jun, et al. "Irgan: A minimax game for unifying generative and discriminative information retrieval models." Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2017.

Weinan Zhang. Generative adversarial nets for information retrieval: Fundamentals and advances. In SIGIR, 2018.

Theoretical Backgrounds: Multiple Generators

Current Work: MOGAN

Motivation: Whether a user finds a particular recommendation satisfying or not is independent of how we measure the performance of that recommendation.

Evaluation: The model shows good performance on all kinds of evaluation metrics.

Datasets

Dataset	Amazon Digital Music	Movielens-100K	Yelp
#users	5,541	943	366,715
#items	3,568	1,682	60,785
#ratings	64,706	100,000	1,569,264
Scale	1-5	1-5	1-5
Sparsity/%	99.67	93.70	99.99

Minimax Games

Game I: DCG vs AP

Game 2: Different gain functions in DCG

Game 3: Different discount functions in DCG

Research Topic-Package Recommendation

Example: Trip in Vancouver

Research Topic-Package Recommendation

Example: Trip in Vancouver

Research Topic- Cross-Modality User/Item Modeling

Example: Music recommendation

Research Questions

Wrap-up

- Multi-criteria recommendations
 - Why?
- A brief introduction to MOGAN
 - Framework
 - Experimental design
- 3 different research topics in Multi-criteria RecSys
 - User-oriented recommendation
 - Package recommendation
 - Cross-modal user/item modeling

Special thanks goes to my promotors: Prof. Alan Hanjalic and Dr. Julián Urbano

References

- 1. Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.
- 2. Wang, Jun, et al. "Irgan: A minimax game for unifying generative and discriminative information retrieval models." Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2017.
- 3. Weinan Zhang. Generative adversarial nets for information retrieval: Fundamentals and advances. In SIGIR, 2018.
- 4. Hoang, Quan, et al. "MGAN: Training generative adversarial nets with multiple generators." (2018).
- 5. Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." arXiv preprint(2017).
- 6. Wang B, Yang Y, Xu X, et al. Adversarial cross-modal retrieval[C]//Proceedings of the 2017 ACM on Multimedia Conference. ACM, 2017: 154-162.

