AMENDMENTS TO THE CLAIMS

Please replace all prior versions and listings of claims with the amended claims as follows:

1. (Currently amended) A process for producing a diaryl amine compound of the formula (I):

or a salt thereof,

said process comprising the [[step]] steps of

(1) coupling a compound of formula (II) with an amine of formula (III) in the presence of an alkali metal salt or a transition metal catalyst:

$$Ar_1-X$$
 Ar_2-NH-Y (III)

to form a compound of formula (IV):

and

(2) removing radical Y from the compound of formula (IV) in the presence of an acid;

wherein:

Ar₁ and Ar₂ are independently Q;

wherein each Q is an aryl or heteroaryl ring system optionally fused to a saturated or unsaturated 5-8 membered ring having 0-4 heteroatoms;

wherein Q is optionally substituted at one or more ring atoms with one or more substituents independently selected from halo; C_1 - C_6 aliphatic optionally substituted with N(R')₂, OR', CO₂R', C(O)N(R')₂, OC(O)N(R')₂, NR'CO₂R', NR'C(O)R', SO₂N(R')₂, N=CH-N(R')₂, or OPO₃H₂; C_1 - C_6 alkoxy optionally substituted with N(R')₂, OR', CO₂R',

C(O)N(R')₂, OC(O)N(R')₂, NR'CO₂R', NR'C(O)R', SO₂N(R')₂,

N=CH-N(R')₂, or OPO₃H₂; Ar₃; CF₃; OCF₃; OR'; SR'; SO₂N(R')₂; OSO₂R'; SCF₃; NO₂;

CN; N(R')₂; CO₂R'; CO₂N(R')₂; C(O)N(R')₂; NR'C(O)R'; NR'CO₂R'; NR'C(O)C(O)R';

NR'SO₂R'; OC(O)R'; NR'C(O)R²; NR'CO₂R²; NR'C(O)C(O)R²; NR'C(O)N(R')₂;

OC(O)N(R')₂; NR'SO₂R²; NR'R²; N(R²)₂; OC(O)R²; OPO₃H₂; and N=CH-N(R')₂;

R' is selected from hydrogen; C₁-C₆ aliphatic; or a 5-6 membered carbocyclic or heterocyclic ring system optionally substituted with 1 to 3 substituents independently selected from halo, C₁-C₆ alkoxy, cyano, nitro, amino, hydroxy, and C₁-C₆ aliphatic;

 R^2 is a C_1 - C_6 aliphatic optionally substituted with $N(R')_2$, OR', CO_2R' , $C(O)N(R')_2$ or $SO_2N(R')_2$; or a carbocyclic or heterocyclic ring system optionally substituted with $N(R')_2$, OR', CO_2R' , $C(O)N(R')_2$ or $SO_2N(R')_2$;

wherein Ar₃ is an aryl or heteroaryl ring system optionally fused to a saturated or unsaturated 5-8 membered ring having 0-4 heteroatoms;

wherein Ar₃ is optionally substituted at one or more ring atoms with one or more substituents independently selected from halo; C₁-C₆ aliphatic optionally substituted with N(R')₂, OR', CO₂R', C(O)N(R')₂, OC(O)N(R')₂, NR'CO₂R', NR'C(O)R', SO₂N(R')₂, N=C-N(R')₂, or OPO₃H₂; C₁-C₆ alkoxy optionally substituted with N(R')₂, OR', CO₂R', C(O)N(R')₂, OC(O)N(R')₂, SO₂N(R')₂, NR'CO₂R', NR'C(O)R', N=C-N(R')₂, or OPO₃H₂; CF₃; OCF₃; OR'; SR'; SO₂N(R')₂; OSO₂R'; SCF₃; NO₂; CN; N(R')₂; CO₂R'; CO₂N(R')₂; C(O)N(R')₂; NR'C(O)R'; NR'CO₂R'; NR'C(O)R'; NR'SO₂R'; OC(O)R'; NR'C(O)R²; NR'CO₂R²; NR'C(O)C(O)R²; NR'CO₂R²; NR'C(O)C(O)R²; NR'CO₂R²; OC(O)R'₂; OPO₃H₂; and -N=C-N(R')₂;

X is a leaving group;

Y is -C(O)-O-Z; and

Z is C_1 - C_6 aliphatic, benzyl, Fmoc, -SO₂R' or Q, provided that Q is not substituted with X or alkyne.

2. (Canceled)

- 3. (Original) The process according to claim 1, wherein the process is performed using a transition metal catalyst.
- 4. (Original) The process according to claim 3, wherein the transition metal catalyst comprises palladium.
- 5. (Original) The process according to claim 4 wherein the catalyst is PdL_a, wherein

each L is independently selected from -OAc,
-O-tolyl, halogen, PPh₃, dppe, dppf, dba, and BINAP; and n is an integer from 0-4.

- 6. (Original) The process according to claim 3, wherein the step of coupling a compound of formula (II) with an amine of formula (III) is performed in the presence of a base.
- 7. (Original) The process according to claim 6, wherein the base is selected from KOtBu, NaOtBu, K₃PO₄, Na₂CO₃, and Cs₂CO₃.
- 8. (Original) The process according to claim 1, wherein the process is performed using an alkali metal salt.
- 9. (Original) The process according to claim 8, wherein the alkali metal salt is selected from salts of potassium, rubidium, or cesium ions.
- 10. (Original) The process according to claim 9, wherein the alkali metal salt is selected from potassium carbonate or cesium carbonate.
- 11. (Original) The process according to claim 10, wherein the alkali metal salt is cesium carbonate.
- 12. (Original) The process according to claim 1, wherein X is selected from the group consisting of -Cl, -Br, -I, -F, -OTf, -OTs, iodonium, and diazo.
 - 13. (Original) The process according to claim 1, wherein Y is Boc.

14. (Currently amended) The process according to claim 1 for producing a diaryl amine compound of the formula:

$$G_4$$
 G_1
 G_2
 G_5
 G_5

comprising the [[step]] steps of (1) coupling a compound of formula 21 with an amine of formula 22 in the presence of an alkali metal salt or a transition metal catalyst, and (2) removing radical Y from the resultant compound in the presence of an acid:

$$G_4$$
 G_1
 G_5
 G_5

wherein:

R³ is selected from aliphatic, aryl, or aryl substituted with aliphatic, aryl, nitro, CN, CO₂R', CO₂N(R')₂, OR', NCO₂R', NR'C(O)N(R')₂, and OC(O)N(R')₂; provided that R³ is not t-butyl; and

 G_1 , G_2 , G_3 , G_4 , and G_5 are independently selected from hydrogen, aliphatic, aryl, substituted aryl, nitro, CN, OR', CO₂R', CO₂N(R')₂, NR'CO₂R', NR'C(O)N(R')₂, OC(O)N(R')₂, F, Cl, Br, I, O-Tos, O-Ms, OSO₂R', and OC(O)R'; and

X and Y are as defined in claim 1.

15. (Canceled)

16. (Original) The process according to claim 14, wherein the process is performed using a transition metal catalyst.

- 17. (Original) The process according to claim 16, wherein the transition metal catalyst comprises palladium.
- 18. (Original) The process according to claim 17 wherein the catalyst is PdL_n, wherein

each L independently is selected from -OAc,
-O-tolyl, halogen, PPh₃, dppe, dppf, dba, and BINAP; and n is an integer from 0-4.

- 19. (Original) The process according to claim 16, wherein the step of coupling a compound of formula 21 with an amine of formula 22 is performed in the presence of a base.
- 20. (Original) The process according to claim 19, wherein the base is selected from KOtBu, NaOtBu, K₃PO₄, Na₂CO₃, and Cs₂CO₃.
- 21. (Original) The process according to claim 14, wherein the process is performed using an alkali metal salt.
- 22. (Original) The process according to claim 21, wherein the alkali metal salt is selected from salts of potassium, rubidium, or cesium ions.
- 23. (Original) The process according to claim 22, wherein the alkali metal salt is selected from potassium carbonate or cesium carbonate.
- 24. (Original) The process according to claim 23, wherein the alkali metal salt is cesium carbonate.
- 25. (Original) The process according to claim 14, wherein X is selected from the group consisting of -Cl, -Br, -I, -F, -OTf, -OTs, iodonium, and diazo.
 - 26. (Original) The process according to claim 14, wherein Y is Boc.
- 27. (Original) The process according to claim 1 for producing a diaryl amine compound of the formula:

or a salt thereof,

said process comprising the [[step]] steps of (1) coupling a compound of formula
41a with an amine of formula 42a in the presence of an alkali metal salt or a transition
metal catalyst, and (2) removing radical Y from the resultant compound in the presence of
an acid:

10

wherein X and Y are as defined in claim 1 above.

28. (Canceled)

- 29. (Original) The process according to claim 27, wherein the process is performed using a transition metal catalyst.
- 30. (Original) The process according to claim 29, wherein the transition metal catalyst comprises palladium.
- 31. (Original) The process according to claim 30 wherein the catalyst is PdL_n, wherein

each L is independently selected from -OAc, -O-tolyl, halogen, PPh₃, dppe, dppf, dba, and BINAP; and n is an integer from 0-4.

32. (Original) The process according to claim 29, wherein the step of coupling a compound of formula 41a with an amine of formula 42a is performed in the presence of a base.

- 33. (Original) The process according to claim 32, wherein the base is selected from KOtBu, NaOtBu, K₃PO₄, Na₂CO₃, and Cs₂CO₃.
- 34. (Original) The process according to claim 27, wherein the process is performed using an alkali metal salt.
- 35. (Original) The process according to claim 34, wherein the alkali metal salt is selected from salts of potassium, rubidium, or cesium ions.
- 36. (Original) The process according to claim 35, wherein the alkali metal salt is selected from potassium carbonate or cesium carbonate.
- 37. (Original) The process according to claim 36, wherein the alkali metal salt is cesium carbonate.
- 38. (Original) The process according to claim 27, wherein X is selected from the group consisting of -Cl, -Br, -I, -F, -OTf, -OTs, iodonium, and diazo.
 - 39. (Original) The process according to claim 27, wherein Y is Boc.
- 40. (Original) The process according to claim 1 for producing a diaryl amine compound of the formula:

or a salt thereof,

said process comprising the [[step]] steps of (1) coupling a compound of formula 61a with an amine of formula 42a in the presence of an alkali metal salt or a transition metal catalyst, and (2) removing radical Y from the resultant compound in the presence of an acid:

wherein X and Y are as defined in claim 1 above.

- 41. (Canceled)
- 42. (Original) The process according to claim 40, wherein the process is performed using a transition metal catalyst.
- 43. (Original) The process according to claim 42, wherein the transition metal catalyst comprises palladium.
- 44. (Original) The process according to claim 43, wherein the catalyst is PdL, wherein

each L is independently selected from -OAc, -O-tolyl, halogen, PPh₃, dppe, dppf, dba, and BINAP; and n is an integer from 0-4.

- 45. (Original) The process according to claim 42, wherein the step of coupling a compound of formula 61a with an amine of formula 42a is performed in the presence of a base.
- 46. (Original) The process according to claim 45, wherein the base is selected from KOtBu, NaOtBu, K₃PO₄, Na₂CO₃, and Cs₂CO₃.
- 47. (Original) The process according to claim 40, wherein the process is performed using an alkali metal salt.
- 48. (Original) The process according to claim 47, wherein the alkali metal salt is selected from salts of potassium, rubidium, or cesium ions.

- 49. (Original) The process according to claim 48, wherein the alkali metal salt is selected from potassium carbonate or cesium carbonate.
- 50. (Original) The process according to claim 49, wherein the alkali metal salt is cesium carbonate.
- 51. (Original) The process according to claim 40, wherein X is selected from the group consisting of -Cl, -Br, -I, -F, -OTf, -OTs, iodonium, and diazo.
 - 52. (Original) The process according to claim 40, wherein Y is Boc.
- 53. (Original) The process according to claim 40 for producing a diaryl amine compound of the formula:

or a salt thereof,

said process comprising the [[step]] steps of (1) coupling a compound of formula 61 with an amine of formula 42 in the presence of an alkali metal salt or a transition metal catalyst, and (2) removing the Boc group from the coupled amine in the presence of an acid:

- 54. (Canceled)
- 55. (Original) The process according to any of claims 53 or 54 wherein the process is performed using cesium carbonate.

- 56. (Original) The process according to claim 54 further comprising the steps of:
 - (a) reacting the compound of formula 63 with a base; and
- (b) acidifying the reaction mixture formed in step (a) to produce a compound of the formula 75:

57. (Original) The process according to claim 56 wherein the base in step (a) is NaOH.

58. (Original) The process according to claim 56 wherein the acid in step (b) is HCl.

- 59. (Original) The process according to claim 56 further comprising the steps of:
- (c) reacting the compound of formula 75 with diphosgene; and
- (d) treating the reaction mixture formed in step (c) with NH₄OH to produce a compound of the formula 76:

60. (New) The process according to claim 1, wherein the acid is selected from the group consisting of HCl, HBr, HI and an organic acid.

- 61. (New) The process according to claim 14, wherein the acid is selected from the group consisting of HCl, HBr, HI and an organic acid.
- 62. (New) The process according to claim 27, wherein the acid is selected from the group consisting of HCl, HBr, HI and an organic acid.
- 63. (New) The process according to claim 40, wherein the acid is selected from the group consisting of HCl, HBr, HI and an organic acid.
- 64. (New) The process according to claim 53, wherein the acid is selected from the group consisting of HCl, HBr, HI and an organic acid.