Predicting S&P 500 Stocks Return with Firm Characteristics and Macroeconomics Data

Name: Yifan Lu Institute: DSI Date:12/5/2023

GitHub Repo: https://github.com/HelenLumi/DATA1030-Project

Recap: Problem Statement

- Predicting S&P 500 stocks return using firm characteristics and macroeconomic data
 - Regression Problem
- Quantitative equity strategies
 - Multi-factor model from fundamental, macroeconomic and technical data

• Important for investors and portfolio managers to manage financial risk, hedge against market drawdown, etc.

Recap: Data

- Data
 - Stock return data: 500 stocks each month, from Mar. 2003 to Dec. 2021
 - 94 Firm Characteristics (FC) and 10 Macroeconomic variables
 - Shape: (80,211, 97)
- Preprocessing
 - Cross-sectional Median for missing data
 - Rank-Normalization FC
 - One-hot Encoder Industry variable 'sic2'
- EDA
 - Lagged 5-month return exists autocorrelation
 - Exclude 10 strongly correlated features
 - Outliers and ambiguous relationship between feature and target
- Preprocessed df: (80,211, 144)

Cross Validation

• 5-Fold Recursive Evaluation Scheme for time-series data

- → Recursively increase the training sample to retain the entire history.
- → Maintain a fixed-size/rolling validation and test sample.

ML models

Hyperparameters

[random_state=42*i]

Principal Components Regression (PCR)	PCA(): 'n_components': [1,3,5,7] 'svd_solver': 'randomized'
LR with L1 Regularization (Lasso)	'alpha': np.logspace(-4,-1,10)
Random Forests Regression	'n_estimators': [200], 'max_depth': [1, 2, 3, 6], 'max_features': [3, 5, 10, 20]
XGBoost	'n_estimators': [10000], 'early_stopping_rounds': [50], 'max_depth': [1, 2, 3], 'learning_rate': [.01, 0.1], 'subsample':[0.66]

Results

Baseline: dummy_regressor(strategy='mean')

Results

Plot of True vs Predicted Value - XGBoost Regressor

Interpretability

Permutation Importances

XGBoost - Total Gain

Interpretability

• SHAP - global importance

Top 3 Important features

- 1. <u>svar</u>: stock variance
- 2. <u>dp sp</u>: dividend-price ratio
- 3. <u>dfy</u>: default spread
- → macroeconomic variables

Interpretability

• SHAP - local importance

→ dfy typically drives return lower, dp_sp higher

Outlook

- Feature Engineering Feature interaction
 - E.g. Product of firm characteristics and macroeconomics data
- Include more lagged return better capture the trend in historical data
 - E.g. Fit a two-stage model that uses ARIMA and XGBoost
- Try longer time horizon to test the model robustness.

Thank you!

Q&A