Resumen Tema 5

1. Datagrama IP

VERSION: (4 bits) versión del protocolo IP. Actualmente es la 4. La futura será la 6.

HLEN: (4 bits) longitud de la cabecera en filas de 32 bits (valor mínimo 5).

TIPO DE SERVICIO: Tiene dos partes. Los seis primeros bits se denominan

"Servicios diferenciados" (DS) y se usan para priorizar el paquete. Los dos últimos se asemejan a los FECN y BECN de Frame Relay.

LONGITUD TOTAL: del datagrama medida en octetos.

IDENTIFICACIÓN: Este campo, junto con las IP origen y destino y el tipo de protocolo identifican el datagrama de manera única en la red.

FLAGS:

No usado.	
"Don't Fragment"	1: este paquete no se puede fragmentar/0:Sí se puede
Quedan fragmentos	1: este no es el último fragmento / 0:Sí lo es

DESPLAZAMIENTO Especifica el desplazamiento del fragmento en el datagrama original, medido en unidades de 64 octetos, empezando con desplazamiento 0.

TIEMPO DE VIDA: número de saltos máximo que puede dar este datagrama.

PROTOCOLO: Especifica el tipo de protocolo encapsulado.

CHECKSUM DEL ENCABEZAMIENTO:

DIRECCIONES IP FUENTE Y DESTINO:

OPCIONES: Se incluyen para chequear la red, elegir la ruta del paquete, etc.

2. Protocolo ARP

Sirve para rellenar la tabla arp que relaciona direcciones de red con direcciones del nivel de enlace. Es de nivel 3 y se encapsula directamente sobre el nivel de enlace. Válido no sólo para ethernet e IP, pues en su cabecera se puede elegir el protocolo y el tamaño de la dirección. El campo "Función" puede ser:

- 1-Mensaje de difusión solicitando la MAC del equipo cuya IP se especifica.
- 2-Respuesta del mensaje anterior.
- 3-Mensaje RARP ("Reverse ARP"). Mensaje de difusión solicitando una IP dinámica.
- 4-Respuesta al mensaje RARP.

RARP fue sustituido por BootP y éste mejorado por DHCP.

3. Protocolo ICMP

Es un protocolo de diagnóstico del nivel de red que se encapsula sobre IP. Utilizado por los comandos ping y tracert. El campo "TIPO" tiene un número que puede indicar: "petición de eco", "respuesta de eco", "destino inalcanzable", "tiempo excedido", etc.

4 Direccionamiento IP

Los routers utilizan una "tabla de enrutamiento" cuyas filas incluyen:

- -Dirección de red de destino: red a la que desea llegar el paquete.
- -IP (o Interfaz usada si es punto a punto) del próximo salto hacia la red destino.
- -Métrica: distancia o coste por esta ruta a la red destino.

Las tablas pueden tener **rutas estáticas** (configuradas "a mano") o **dinámicas** (calculadas con la información periódica de otros routers). Existen varios protocolos para ello: RIP, IGRP, OSPF, denominados protocolos de "**enrutamiento**" en contraste con IP al que se le suele llamar protocolo de "**enrutado**".

Tipos de direcciones:

Dirección de red: r.r.r.0 (ceros en host)

Dirección de difusión: r.r.r.255 (unos en host) o 255.255.255.255

Dirección del equipo: 0.0.0.0 y 127.0.0.1 Dirección de un equipo de la red local: 0.0.e.e

CLASE	RANGO	DESCRIPCION
A (1-127.x.x.x)		
	10. x.x.x	Privada
	127. x.x.x	"loopback": el propio PC
B (128-191.x.x.x)		
	172.16-31. x.x	Privada
C (192-224.x.x.x)		
	192.168. x.x	Privada
D (224-240.x.x.x)		Multicast
E (241 en adelante)		Reservadas

5. IP v6

Surgió debido al agotamiento de direcciones IP de la versión anterior. Sus características son:

- 1 Espacio de direcciones ampliado de 128 bits.
- 2 Mayor flexibilidad de direccionamiento:
 - -Dirección "anycast" dirigido a un equipo cualquiera de un conjunto (varios comparten la misma IP, se reparte el paquete al más próximo).
 - -Direcciones Multicast con campo de ámbito.
- 3 Etiquetado de "flujo de datos" para mejor tratamiento de voz y vídeo.
- 4 QoS asociados a los flujos de datos.
- 5 Cabecera simplificada con respecto a la versión 4.
- 6 Mejora del campo opciones que se trata como cabeceras insertables.
- 7 Privacidad de datos.

Transición:

- -Doble pila: Hay dos NICs lógicas en la física: una trabajando en ipv4 y la otra en ipv6.
- -túnel: Se comunican islas ipv6 mediante túneles a través de ipv4
- -NAT: Las islas ipv6 se conectan a ipv4 traduciendo unas direcciones por otras.

Configuración:

- -manual.
- -DHCPv6
- -SLAAC (ICMPv6)
- -mixta: SLAAC+DHCP.

Direccionamiento:

- -A partir de la MAC se construye la EUI, un identificador único de 48 bits
- -Todos los equipos tienen una IPv6 local: ff80::/10, acabada en la EUI
- -La global tiene tres partes: enrutamiento global, subred, identificador
- -Loopback :: 1/128
- -Redes privadas: fc00::/7
- -Multicast: ff::/8

ff02::1/128 para Broadcast ff02::2/128 para los routers

ff02::idnic|grupo/128 para un grupo designado por el admin.

6. TCP

- •PUERTOS FUENTE Y DESTINO: identifican las aplicaciones en fuente y destino. Existen unos puertos reservados (80 web; 21 ftp, etc...) y otros para libre uso (dinámicos) que se escogen de forma aleatoria al realizar la conexión.
- •NÚMERO DE SECUENCIA: posición del primer byte de datos del segmento en la secuencia de bytes de la máquina fuente.
- •ACUSE DE RECIBO (ACK): byte siguiente al último recibido. Usa "piggy-backing"
- •HLEN: (4 bits) longitud de la cabecera en unidades de 32 bits.
- •RESERVADO (6 bits)
- •CÓDIGO: (6 bits) URG: campo puntero urgente válido.

ACK: campo ACK válido.

PSH: forzar envío de segmentos.

RST: fin de la conexión

SYN: establecimiento de la conexión

FIN: fin de la transmisión por parte de este emisor.

- •VENTANA: (16bits) bytes que la máquina está dispuesta a aceptar. La retransmisión está adaptada a la red. El tamaño se varía para controlar el flujo.
- •CHECKSUM: (16bits) verificar la integridad del encabezamiento y datos.
- •PUNTERO URGENTE: posición en la que los datos urgentes acaban.
- •OPCIONES: como el negociado del tamaño de ventana.
- •RELLENO: para que el encabezamiento sea un múltiplo exacto de 32.

7. UDP

Protocolo sencillo que no ofrece mayor servicio que la distinción por número de puerto de la aplicación a la que va destinada la información. Es adecuado para tráficos de vídeo y voz. Es más rápido dado que su cabecera es menor, pero no ofrece fiabilidad.

8. APLICACIÓN

Telnet: Servicio de terminal virtual no cifrado.

SSH: Terminal virtual con encriptación.

FTP, SMB, SAMBA: Transferencia de archivos.

SMTP: Servicio de correo electrónico.

SNMP: Protocolo usado para administración de los equipos de la red

HTTP: Protocolo de archivos de hipertexto.

DNS: Sistema de nombres de dominio. Traducen nombres en IPs.