Case study 4

FINANCIAL DELINQUENCY

BALAJI AVVARU, APURV MITTAL, RAVI SIVARAMAN

Abstract

The objective of this study is to find if a company will bankrupt or not. The data is heavily skewed towards companies that do not bankrupt as only some of the companies go bankrupt. The risk in creating this model is it will have an accuracy of over 95% but may still fail to predict when the company is going bankrupt as the data doesn't have a lot of information about companies that went bankrupt. In this study, the objective is to find out with good accuracy and precision if a company may go bankrupt.

Introduction

The dataset consists of five files, one file for each year. Each file contains 64 attributes labeled as Attr1 through Attr64. All attributes are numerical except for the target variable which is a string and classifies if the company was bankrupt or not. The target feature is a string, but it is changed to 0 (non-bankrupt) and 1 (bankrupt).

Attribute Name	Description
X1	net profit / total assets
X2	total liabilities / total assets
Х3	working capital / total assets
X4	current assets / short-term liabilities
X5	[(cash + short-term securities + receivables - short-term liabilities) / (operating expenses - depreciation)] * 365
Х6	retained earnings / total assets
X7	EBIT / total assets
X8	book value of equity / total liabilities
Х9	sales / total assets
X10	equity / total assets
X11	(gross profit + extraordinary items + financial expenses) / total assets
X12	gross profit / short-term liabilities
X13	(gross profit + depreciation) / sales
X14	(gross profit + interest) / total assets
X15	(total liabilities * 365) / (gross profit + depreciation)
X16	(gross profit + depreciation) / total liabilities
X17	total assets / total liabilities
X18	gross profit / total assets
X19	gross profit / sales
X20	(inventory * 365) / sales

X21	sales (n) / sales (n-1)
X22	profit on operating activities / total assets
X23	net profit / sales
X24	gross profit (in 3 years) / total assets
X25	(equity - share capital) / total assets
X26	(net profit + depreciation) / total liabilities
X27	profit on operating activities / financial expenses
X28	working capital / fixed assets
X29	logarithm of total assets
X30	(total liabilities - cash) / sales
X31	(gross profit + interest) / sales
X32	(current liabilities * 365) / cost of products sold
X33	operating expenses / short-term liabilities
X34	operating expenses / total liabilities
X35	profit on sales / total assets
X36	total sales / total assets
X37	(current assets - inventories) / long-term liabilities
X38	constant capital / total assets
X39	profit on sales / sales
X40	(current assets - inventory - receivables) / short-term liabilities
X41	total liabilities / ((profit on operating activities + depreciation) * (12/365))
X42	profit on operating activities / sales
X43	rotation receivables + inventory turnover in days
X44	(receivables * 365) / sales
X45	net profit / inventory
X46	(current assets - inventory) / short-term liabilities
X47	(inventory * 365) / cost of products sold
X48	EBITDA (profit on operating activities - depreciation) / total assets
X49	EBITDA (profit on operating activities - depreciation) / sales
X50	current assets / total liabilities
X51	short-term liabilities / total assets
X52	(short-term liabilities * 365) / cost of products sold)
X53	equity / fixed assets
X54	constant capital / fixed assets
X55	working capital
X56	(sales - cost of products sold) / sales
X57	(current assets - inventory - short-term liabilities) / (sales - gross profit - depreciation)

X58	total costs /total sales
X59	long-term liabilities / equity
X60	sales / inventory
X61	sales / receivables
X62	(short-term liabilities *365) / sales
X63	sales / short-term liabilities
X64	sales / fixed assets

Table 1 : Attributes and Description

Reference: https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data

Data Analysis

There were 41322 values that were missing or null. Below table lists the number of values missing in the data set with their percentages for top 5 (in terms of missing data) attribute.

Column	Null Values	Null Value By %
Attr37	18984	43.73 %
Attr21	5854	13.48 %
Attr27	2764	6.36 %
Attr60	2152	4.95 %
Attr45	2147	4.94 %

Table 2: Missing Values

To decide the most appropriate way to impute the missing data. Additional analysis on the data is required.

The data distribution of top 5 attributes missing data is listed below:

	Attr37	Attr21	Attr27	Attr60	Attr45
count	24421	37551	4.06E+04	4.13E+04	41258
mean	105.08	3.88	1.11E+03	4.48E+02	14.82
std	3058.42	228.66	3.50E+04	3.23E+04	2428.23
min	-525.52	-1325	-2.59E+05	-1.24E+01	-256230
25%	1.14	0.90	4.50E-02	5.55E+00	0.02
50%	3.09	1.04	1.08E+00	9.79E+00	0.28
75%	11.41	1.20	5.14E+00	2.02E+01	0.95
max	398920	29907	4.21E+06	4.82E+06	366030

Table 3: Data distribution of Attributes

The above distribution of data shows that the standard deviation is very high for all of the top missing attributes. This shows that the taking a mean to impute the missing values may not be appropriate as the deviation between minimum and maximum values is very high and will skew the mean of the variables. Upon further analysis it was determined that the organizations which were bankrupt has much higher values in some of these attributes skewing the data further. There are significant outliers in the data, and it is appropriate to use the median values instead to impute the missing data considering the data at 50% and even at 75% distribution is much smaller than the actual mean. This analysis applies median for all missing values, as all columns that were missing data show the similar characteristics.

Violin plot for Missing Data Columns

Figure 1:Violin plot shows extreme variations of data distribution

Figure 2: Collinearity heatmap of Attributes

Data shows there is high collinearity for few of the attributes and this is expected, as many of the features are calculated based of other variables (mathematical formulae). In this analysis

none of the attribute are dropped and study considers all the columns for data analysis and modeling.

Target

Target is a binary classification of whether the company went bankrupt or not. Note that most companies don't go bankrupt, so the data is heavily skewed. From the target variable distribution, we can see that only around 5% of the companies ended up filing bankruptcy. so, the dataset is imbalanced. Accuracy would not be the right metric since we have imbalanced data. The cost of False Negative would be high, and Recall would be right metric to evaluate models. F-score which gives a balance between precision and recall can also be used as other metric

Figure 3: Target Distribution

2. Methods

Classification Models

This study uses random forest with a number of parameters to check the best set of parameters and compare the model to XGBoost with also a variety of parameters to see which model performs better.

Model evaluation metrics would be accuracy, precision and recall. In the case of Bankruptcy, if the model fails to predict the False Negative correctly that means the financial institute continue to service the companies that will go bankrupt this will be the more severe outcome as the bank may lose a large financial investment, compared to predicting a false positive which would make the bank closely monitor a company that would most likely not go bankrupt.

Due to the imbalanced nature of the minority class in the data set we implemented a stratified shuffle to ensure each fold in cross validation is representative of the distribution for samples of the original data set.

Random Forest Classification

Random forest is an ensemble tree-based learning algorithm where it combines more than one algorithm of the same or different kinds for classifying objects. The Random Forest Classifier is a set of decision trees from a randomly selected subset of the training set. It aggregates the votes from different decision trees to decide the final class of the test object.

Parameters:

- n estimators: number of trees in the forest
- max_depth: max number of levels in each decision tree
- criterion: The function to measure the quality of a split. Supported criteria are *gini* for the Gini impurity and *entropy* for the information gain. Note: this parameter is tree-specific
- min samples split = min number of data points placed in a node before the node is split
- min_samples_leaf = min number of data points allowed in a leaf node
- class_weight: The balanced mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as

```
a. n_samples / (n_classes * np.bincount(y))
```

This study compares two models, Random Forest Classification and XGBoost. Random Forest is the basic unsupervised method to classify using Entropy/Gini. In theory, Random Forest gives a benchmark upon which any sufficient advanced algorithm must beat. In general, any algorithm that is using deep learning principles must have a better outcome than Random Forest.

XGBoost

XGBoost stands for eXtreme Gradient Boosting, which provides a gradient boosting, and often achieves higher accuracy simple Decision Trees, but at a cost of simple interpretability, as XGBoost follows paths of hundreds or thousands of trees, makes it harder to interpret, but provides an accuracy boost.

The hyper-parameters (tunable parameters) are:

- *learning_rate*: The learning rate. In each boosting step, this value shrinks the weight of new features, preventing overfitting or a local minimum. This value must be between 0 and 1. The default value is 0.3.

- max_depth: The maximum depth of a tree. Be careful, greater the depth, greater the complexity of the model, and easier to overfit. This value must be an integer greater than 0 and have 6 as default.
- n_estimators: The number of trees in ensemble.
- gamma: A regularization term and it's related to the complexity of the model. It's the minimum loss necessary to occur a -split in a leaf. It can be any value greater than zero and has a default value of 0.
- col sample_bytree: Represents the fraction of columns to be subsampled. It's related to the speed of the algorithm and preventing overfitting. The default value is 1 but it can be any number between 0 and 1.
- *lambda*: L2 regularization on the weights. This encourages smaller weights. Default is 1 but it can be any value.

Randomized Search

Since *GridSearch* method is performance intensive for *Random Forest* and *XGBoost*. This study uses Randomized search option to find the most optimum model of the dataset.

Random Forest:

For *Random Forest* below hyper tuning parameters were used:

```
max_depth = [5, 7, 8, 10, 12]

n_estimators = [200]

criterion = ['entropy']

min_samples_leaf = [3, 4, 5]

min_samples_split = [8, 10, 12]

class_weight = ['balanced']
```

XGBoost:

For *XGBoost* below hyper tuning parameters were used:

```
n_estimators = [200]

learning_rate = [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5]

max_depth = range (3, 15)

colsample_bytree = [i/10.0 for i in range (1, 3)]

gamma = [0.01, 0.05, 0.1, 0.2, 0.3]
```

```
reg_lambda = [0.01, 0.05, 0.1, 1.0, 5.0, 10.0, 50.0, 100.0]
min child weight = [0.1, 0.9, 0.95,1, 2, 3]
```

3. Results

The two models *Random Forest* and *XGBoost* were computed on the given data. Both models produce high precision results. The *Random Forest* model produces the highest accuracy of 95% while *XGBoost* produces the highest accuracy of 97.4%.

Best Random Forest Model:

Below parameters produced the best *Random Forest* model:

```
max_depth = [12]

n_estimators = [200]

criterion = ['entropy']

min_samples_leaf = [4]

min_samples_split = [8]

class_weight = ['balanced']
```

Best XGBoost Model:

Below parameters produced the best XGBoost model:

```
n_estimators = [200]
learning_rate = [0.5]
max_depth = [6]
colsample_bytree = [0.2]
gamma = [ 0.05]
reg_lambda = [10]
min_child_weight = [1]
```

Both the models with the parameters listed above were executed with Cross Validation of 10.

The detailed results from both the models are listed below:

Metric	XGBoost	Random Forest
Best Accuracy	0.97	0.95
F-Score	0.69	0.54

Precision	0.92	0.53
Recall	0.57	0.56

Table 4: Classification Matrix comparison of RF and XGBoost

The ROC curve for the Random Forest and XGBoost models showed a mean area under the curve AUC of 1.00. The ROC curve also indicates there are no false positives compared to the true positive rate. The area under the curve indicates the results cover the entire dataset.

The Precision-Recall Curve for the Random Forest and XGBoost models are shown below (middle plots) indicates XGBoost is better model compared to Random Forest

The higher Recall-Precision distribution across different thresholds also suggest that XGBoost is the better model.

Table 5: Comparison of RF and XGBoost

4. Conclusion

XGBoost and Random Forest produces high accuracy results for the dataset provided. XGBoost gives a model with higher accuracy compared to that of Random Forest. Top 10 attributes in terms of feature importance from both models are listed below:

XGBoost		Random Forest	
Feature Name	Coefficient Weights	Feature Name	Coefficient Weights
Attr34	0.053017	Attr27	0.092498
Attr27	0.047856	Attr24	0.061082
Attr24	0.044652	Attr34	0.04467
Attr31	0.036197	Attr46	0.039253
Attr26	0.03458	Attr26	0.029613
Attr6	0.031737	Attr6	0.028936
Attr63	0.027181	Attr39	0.028045
Attr5	0.022615	Attr16	0.026946
Attr39	0.022301	Attr35	0.023761
Attr46	0.022255	Attr5	0.022659
Attr19	0.020986	Attr13	0.022149
Attr22	0.02077	Attr42	0.021406
Attr13	0.019001	Attr27	0.092498
Attr30	0.018951	Attr24	0.061082

Table 6: Features Importance from RF and XGBoost

Figure 2-Feature Importance of top 10 Attributes XGBoost (Above) and Random Forest (Below)

The above table displays the features with their coefficient levels. These are the top 10 coefficients after the L2 penalty.

Attributes 27 and 24 are the topmost features in terms of importance from both the models. As per the description these attributes are the profit of the organization. It makes sense that

profit plays a very high role in predicting if an organization may go bankrupt in the near future or not. The model has accurately identified the important features.

Attribute	Description
X24	gross profit (in 3 years) / total assets
X27	profit on operating activities / financial expenses

Since XGBoost has higher accuracy and F-score, it's the recommended model based on the analysis in this study.

The precision in this model for our target clients that went bankrupt (target 1), tells that out of the predicted values how many were correct. In this model it tells the number of false positives. This represents when a company did not go bankrupt, but the model predicted that they had gone bankrupt. This is assumed to be less severe since the bank will most likely just pay closer attention to this company which is not a major loss in investment. The best model is XGBoost with 92% precision which is just much better than the Random Forest that has just 53% precision.

The best model is the XGBoost this is because it is the best in predicting the critical metric of recall for the target 1. The random forest performed with 56% of the recall being correct, XGBoost was the best with 57% correct recall. While this was the best compared to the other models it still leaves a lot of room for improvement in prediction capabilities.

Appendix – Code

NB Viewer Link:

https://nbviewer.org/github/ravisiv/CS4_BankruptcyClassificationXGBoost/blob/main/CaseStudy4.ipynb