UCS310 Database Management System

E-R Model

Lecture-11 Date: 06 Feb 2023

Dr. Sumit Sharma
Assistant Professor
Computer Science and Engineering Department
Thapar Institute of Engineering and Technology, Patiala

Recap

- Nested Subqueries
 - Set Membership where in, not in
 - Set Comparisons where some, all, exists, unique
 - Subqueries in from and select clause
 - with clause
- Modification of database delete, insert, update
- Join operation: natural, inner, outer
- Constraints

Design Phase

- Initial phase -- characterize fully the data needs of the prospective database users.
- Second phase -- choosing a data model
 - Applying the concepts of the chosen data model
 - Translating these requirements into a conceptual schema of the database.
 - A fully developed conceptual schema indicates the functional requirements of the enterprise.
 - Describe the kinds of operations (or transactions) that will be performed on the data

Design Phase

- Final Phase -- Moving from an abstract data model to the implementation of the database
 - Logical Design Deciding on the database schema.
 - Database design requires that we find a "good" collection of relation schemas.
 - Business decision What attributes should we record in the database?
 - Computer Science decision What relation schemas should we have and how should the attributes be distributed among the various relation schemas?
 - Physical Design Deciding on the physical layout of the database

Design Alternatives

- In designing a database schema, we must ensure that we avoid two major pitfalls:
 - Redundancy: a bad design may result in repeat information.
 - Redundant representation of information may lead to data inconsistency among the various copies of information
 - Incompleteness: a bad design may make certain aspects of the enterprise difficult or impossible to model.
- Avoiding bad designs is not enough. There may be a large number of good designs from which we must choose.

Design Approaches

- Entity Relationship Model (covered in this chapter)
 - Models an enterprise as a collection of entities and relationships
 - Entity: a "thing" or "object" in the enterprise that is distinguishable from other objects
 - Described by a set of *attributes*
 - Relationship: an association among several entities
 - Represented diagrammatically by an *entity-relationship* diagram:
- Normalization Theory
 - Formalize what designs are bad, and test for them

ER Model

- The Entity-Relationship (ER) model was originally proposed by Peter in 1976
- The ER model is a conceptual data model that views the real world as entities and relationships. A basic component of the model is the Entity-Relationship diagram, which is used to visually represent data objects

ER Model - Database Modeling

- The ER data mode was developed to facilitate database design by allowing specification of an **enterprise schema** that represents the overall logical structure of a database
- The ER data model employs three basic concepts:
 - entity sets,
 - relationship sets,
 - Attributes
- The ER model also has an associated diagrammatic representation, the ER diagram, which can express the overall logical structure of a database graphically

Entity Sets

- An entity is an object that exists and is distinguishable from other objects.
 - Example: specific person, company, event, plant
- An entity set is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays
- An entity is represented by a set of attributes; i.e., descriptive properties possessed by all members of an entity set.
 - Example:

```
instructor = (ID, name, salary)
course= (course_id, title, credits)
```

A subset of the attributes form a primary key of the entity set;
 i.e., uniquely identifying each member of the set.

Entity

Entity Sets - instructor and student

76766	Crick
45565	Katz
10101	Srinivasan
98345	Kim
76543	Singh
22222	Einstein

instructor

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

Representing Entity sets in ER Diagram

- Entity sets can be represented graphically as follows:
 - Rectangles represent entity sets.
 - Attributes listed inside entity rectangle
 - Underline indicates primary key attributes

instructor

<u>ID</u>
name

ID
name
tot cred

Entity

- Tangible Entity: Tangible Entities are those entities which exist in the real world physically
 - Example: Person, car, etc.
- Intangible Entity: Intangible Entities are those entities which exist only logically and have no physical existence.
 - Example: Bank Account, etc
- Strong Entity: has a primary key
- Weak Entity:
 - Do not a primary key
 - Dependent on parent entity

Relationship Sets

A relationship is an association among several entities

Example:

```
44553 (Peltier) <u>advisor</u> 22222 (<u>Einstein</u>) student entity relationship set instructor entity
```

• A **relationship set** is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

Example:

$$(44553,22222) \in advisor$$

Relationship Sets

- Example: we define the relationship set *advisor* to denote the associations between students and the instructors who act as their advisors.
- Pictorially, we draw a line between related entities

Representing Relationship Sets via ER Diagrams

Diamonds represent relationship sets.

Relationship Sets

- An attribute can also be associated with a relationship set
- For instance, the *advisor* relationship set between entity sets *instructor* and *student* may have the attribute *date* which tracks when the student started being associated with the advisor

Relationship Sets with Attributes

Design Phase

- Entity sets of a relationship need not be distinct
 - Each occurrence of an entity set plays a "role" in the relationship
- The labels "course_id" and "prereq_id" are called **roles**.

Degree of a Relationship Set

- Binary relationship
 - involve two entity sets (or degree two).
 - most relationship sets in a database system are binary
- Relationships between more than two entity sets are rare. Most relationships are binary. (More on this later.)
 - Example: *students* work on research *projects* under the guidance of an *instructor*
 - relationship *proj_guide* is a ternary relationship between *instructor*, *student*, and *project*

Non-binary Relationship Sets

- Most relationship sets are binary
- There are occasions when it is more convenient to represent relationships as non-binary
- E-R Diagram with a Ternary Relationship

Complex Attributes

- Attribute types:
 - Simple and composite attributes.
 - Single-valued and multivalued attributes
 - Example: multivalued attribute: phone_numbers
 - Derived attributes
 - Can be computed from other attributes
 - Example: age, given date_of_birth
- Domain the set of permitted values for each attribute

Attributes

Simple Attributes

 Simple attributes are those attributes which can not be divided further

Composite Attributes

 Composite attributes allow us to divided attributes into subparts (other attributes).

Single Valued Attributes

 Single valued attributes are those attributes which can take only one value for the given entity from an entity set

Multi Valued Attributes

 Multi valued attributes are those attributes which can take more than one value for the given entity from an entity set

Derived Attributes

 Derived attributes are those attributes which can be derived from other attribute(s)

Key Attributes

 Key attributes are those attributes which can identify an entity uniquely in the entity set

Representing Complex Attributes in ER Diagram

instructor

```
ID
name
  first_name
  middle_initial
  last_name
address
  street
     street number
     street name
     apt_number
  city
  state
  zip
{ phone_number }
date_of_birth
age()
```

Mapping Cardinality Constraints

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets
- For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

Mapping Cardinalities

Note: Some elements in A and B may not be mapped to any elements in the other set

Mapping Cardinalities

Many to one

Many to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Representing Cardinality Constraints in ER Diagram

- We express cardinality constraints by drawing either a directed line (\rightarrow) , signifying "one," or an undirected line (-), signifying "many," between the relationship set and the entity set.
- One-to-one relationship between an instructor and a student :
 - A student is associated with at most one *instructor* via the relationship *advisor*
 - A student is associated with at most one department via stud_dept

One-to-Many Relationship

- one-to-many relationship between an *instructor* and a *student*
 - an instructor is associated with several (including o) students via *advisor*
 - a student is associated with at most one instructor via advisor,

Many-to-One Relationships

- In a many-to-one relationship between an instructor and a student,
 - an instructor is associated with at most one student via advisor,
 - and a student is associated with several (including o) instructors via advisor

Many-to-Many Relationship

- An instructor is associated with several (possibly o) students via advisor
- A student is associated with several (possibly o) instructors via advisor

Total and Partial Participation

■ **Total participation** (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set

participation of *student* in *advisor* relation is total

- every student must have an associated instructor
- **Partial participation**: some entities may not participate in any relationship in the relationship set
 - Example: participation of instructor in advisor is partial

Thanks!