Securing Digital Democracy Lecture 9 | Using Technology Wisely

Criteria

Transparency

Voters can observe and understand the process.

A fully transparent election system supports accountability as well as public oversight, comprehension and access to the entire process.

Definitions adopted from Joseph Lorenzo Hall http://josephhall.org/papers/jhall-phd.pdf

Verifiability

Voters have means to convince themselves that the outcome is correct without having to blindly trust the technology or the election authorities.

Auditability

The system can be manually checked after the election to ensure that the votes have been counted properly.

Software Independence

A voting system is software-independent if an undetected change or error in its software cannot cause an undetectable change or error in an election outcome.

See: Rivest and Wack, "On the Notion of Software Indepdence in Voting Systems" http://people.csail.mit.edu/rivest/RivestWack-
OnTheNotionOfSoftwareIndependenceInVotingSystems.pdf

Post-Election Auditing

Redundant Records

Slow/e> Redundancy + Different failure modes = Greater security Tally

Varified by voter

Unverified

But...Redundancy only helps if we use both records!

M

Post-Election Audits

Pick some precincts **randomly** for paper recount. If electronic tallies disagree, recount everywhere.

How much to Audit?

Standard practice:

Fixed Fraction of Precincts (e.g., 10%)

Recommended practice:

Fixed Level of Confidence (e.g., 99%)

Statistical Risk-Limiting Audits

Establish, with high statistical confidence, that hand-counting *all* of the paper records would yield the same winner as the electronic tally.

Audit Example

Goal: Reject hypothesis that ≥ 5% of ballots differ between electronic and paper

For 95% confidence, hand-audit 60 precincts

Cost: about \$100,000

An Alternative Approach

Precinct-based auditing (standard practice)

Ballot-based auditing

100 marbles, 10% blue

6300 beads, 10% blue

How large a sample do we need to detect an error?

Example due to Andrew Appel. http://www.cs.princeton.edu/~appel/voting/

Audit Example

Goal: Reject hypothesis that ≥ 5% of ballots differ between electronic and paper

For 95% confidence, hand-audit 60 precincts

Cost: about \$100,000 \$1,000

Why Not Ballot-based?

Need to match up electronic with paper ballots.

Difficult without compromising the secret ballot!

Machine-Assisted Auditing

Machine-Assisted Auditing

Step 2. Audit the recount machine by selecting random ballots for human inspection.

Machine-Assisted Auditing

We can use a machine without having to trust it!

More Efficient Audits

2006 Virginia U.S. Senate race 0.3% margin of victory We want 99% confidence

	Precinct	Machine
	Based	Assisted
# Ballots	1,141,900	2,339
# Precincts	1,252	1,351

See Calandrino, Halderman, and Felten, "Machine-Assisted Election Auditing." EVT 2007. https://jhalderm.com/pub/papers/audit-evt07.pdf

The Gold-Medal Standard

Precinct-Count Optical Scan

Mandatory Risk-Limiting Audits

End-to-End Verifiable Voting

This segment adapted from Josh Benaloh, with permission.

End-to-End (E2E) Voter-Verifiability

As a voter, I can be sure that:

- My vote is cast as I intended.
- My vote is counted as cast.
- All votes are counted as cast.

Not a secret ballot!

Alice Johnson, 123 Main . . YES Bob Ramirez, 79 Oak NO

Carol Wilson, 821 Market . NO

End-to-End Voter-Verifiability

As a voter, I can be sure that:

- My vote is cast as I intended.
- My vote is counted as cast.
- All votes are counted as cast.
- No voter can demonstrate how he or she voted to a third party.

A Verifiable Receipt

Precinct 37 – Machine 4
Nov. 6, 2012 1:39PM

Vote receipt tag:
7A34ZR9K4BX

7A34ZR9k4BX

Encrypted record

encrypted record

of the voter's vote

Carol Wilson, 821 Market . .

Checking the Result

End-to-End Verifiable Elections

Anyone who cares to do so can:

Check that their own encrypted votes are correctly listed.

Alice Johnson, 123 Main.

Bob Ramirez, 79 Oak

Carol Wilson, 821 Market

Check that other voters are legitimate.

Check the mathematical proof of the correctness of the tally.

The Voter's Perspective

Voters can ...

- Use their receipts to check that their results are properly recorded.
- Throw their receipts in the trash.
- Verify the accuracy of the election with apps they wrote themselves.
- Download apps from sources of their choice to verify the election.
- Believe verifications done by their political parties.
- Accept the results without question.

Lots of Details to Get Right!

How do voters know that their receipt matches their choices?

How are voters convinced that the published encrypted votes correspond to the announced tally?

Voter-Initiated Auditing

Voter's choice:

Cast

or

Challenge

Voter-Initiated Auditing

Cast

Voter-Initiated Auditing

Challenge

Helios

http://heliosvoting.org/

Verifying an E2E Result

Scantegrity

See: Chaum, et al., "Scantegrity II: End-to-End Verifiability for Optical Scan Election Systems using Invisible Ink Confirmation Codes". EVT 2008. http://static.usenix.org/event/evt08/tech/full_papers/chaum/chaum.pdf

M

Verifiable Tallying

Confirmation Code Table

Correspondence Table

Voted Choice Table

Ballot	Α	В			VOTE?		Result	YES	NO
B1	7LC	WTX	T	B3:A		R2:YES	 R1	7	7
B2	J31	160	7	B1:B		R3:NO	 R2	>/	7
В3	KWA	HXL		B2:A		R1:YES	R3		→
			1	B1:A		R2:NO	 $/\!/\!/$		
			17	B2:B		R1:NO			
			7	B3:B		R3:YES			

Verifiable Tallying

Verifiable Tallying

Confirmation Code Table

Ballot	Α	В
B1	7LC	
B2		TC0
В3		H7L

Correspondence Table

VOTE?	
	F E
	F E
	F E
X	F T
X	
X	

Voted Choice Table

Result	YES	NO
R1		\checkmark
R2		\checkmark
R3	\checkmark	

No: 2

Yes: 1

Verifiable Tallying

Questions for E2E?

Complexity?

Usability?

Comprehensibility?

Security?

Securing Digital Democracy Lecture 9 | Using Technology Wisely

