Name: Rollno:

CSE340: Theory of Computation (Mid Semester Exam)

September 15, 2021

Total Number of Pages: 8

Total Points 80

Instructions

- 1. Read these instructions carefully.
- 2. Write you name and roll number on all the pages of the answer book.
- 3. Cheating or resorting to unfair means will be severely penalized.
- 4. Do not exchange question books or change the seat after obtaining question paper.
- 5. Using pens (blue/black ink) and not pencils. Do not use red pens for answering.
- 6. Every question should be done on a new page. Parts of the same question can be done on the same page. Failure to do this will result in a penalty of 5 marks.

Helpful hints

- 1. It is advisable to solve a problem first before writing down the solution.
- 2. The questions are *not* arranged according to the increasing order of difficulty. Do a quick first round where you answer the easy ones and leave the difficult ones for the subsequent rounds.

1 Objective Questions

Question 1. (1 point) Consider the languages $L_1 = \{\}$ and $L_2 = \{\epsilon\}$. Which of the following is equivalent to $\{\}$?

- **A.** L_1L_2
- B. $L_1^*L_2$
- C. $L_1L_2^* \cup L_1^*$
- D. $L_1^*L_2^* \cup L_1$

Question 2. (1 point) What is the minimum number of states required to construct a DFA to recognize $L = \{0^{5n} | n > 0\}$?

- A. 4
- В. 5
- C. 6
- D 7

Name: Rollno:

Question 3. (2 points) Which of the following regular expression are equivalent?

 R_1 : $a^*(ab^*a^* + b^*) + b^*(ba^*b^* + a^*)$

 $R_2: (a^*+b^*)(a^*+b^*)(b^*+a^*)$

 $R_3: a^*b^*a^* + b^*a^*b^*$

 $R_4: a^*b^* + bb^*a^* + aa^*b^*a^*$

- A. Only R_1 and R_3
- B. Only R_3 and R_4
- C. Only R_2, R_3 and R_4
- **D.** Only R_1, R_2 and R_3

Question 4. (2 points) What is the regular expression corresponding to the following NFA?

- A. $(\epsilon + (0+1)0)(0+1)^*$
- B. $(\epsilon + 0 + 1)0(0 + 1)^*$
- C. $(\epsilon + 00 + 10)(0 + 1)^*$
- **D.** $\epsilon + (0+1)0(0+1)^*$

Question 5. (5 points) Consider the following two DFAs A_1 and A_2

DFA A_1

DFA A_2

Which one of the following is true?

- A. $L(A_1) \subsetneq L(A_2)$
- **B.** $L(A_2) \subsetneq L(A_1)$
- C. $L(A_1) = L(A_2)$
- D. None of the above

Question 6. (1 point) Consider the following NFA.

Which states belong to the ϵ -closure of the state q_1 in the above NFA?

- A. q_0
- **B.** q_1
- **C.** q_4
- **D.** q_5

Question 7. (1 point) Context-free languages are closed under which of the following operations?

- A. Set difference
- B. Complementation
- C. Concatenation
- D. Union

Question 8. (1 point) Which of the following production rules are not allowed in a grammar in Chomsky Normal Form (S is the start symbol)?

- **A.** $A \longrightarrow BCD$
- **B.** $S \longrightarrow SA$
- C. $A \longrightarrow AB$
- **D.** $A \longrightarrow aB$

Question 9. (2 points) A CFG G is given below with S as the start symbol.

$$\begin{array}{ccc} S & \longrightarrow & aS \mid A \\ A & \longrightarrow & aAb \mid bAa \mid \epsilon \end{array}$$

Which of the following strings is generated by the grammar?

- A. aabbaba
- B. aababab
- C. abababb
- D. aabbaab

Question 10. (2 points) Consider the language

$$L = \{w \in \{0,1\}^* \mid w \text{ begins with } 11 \text{ and has an even number of } 1\text{'s}\}.$$

How many states will the minimal DFA for L have?

- A. 6
- B. 5
- C. 3
- D. 4

Question 11. (1 point) Identify the language generated by the following grammar -

$$S \longrightarrow AB$$

$$A \longrightarrow aAb \mid \epsilon$$

$$B \longrightarrow bB \mid b$$

- A. $\{a^m b^n \mid n \ge m, m > 0\}$
- B. $\{a^m b^n \mid n \ge m, m \ge 0\}$
- C. $\{a^m b^n \mid n > m, m > 0\}$
- **D.** $\{a^m b^n \mid n > m, m \ge 0\}$

Question 12. (2 points) What is the language accepted by the following DFA?

- A. The set of string containing ababb as substring
- B. The set of strings beginning with ababb
- C. The set of strings ending with ababb
- D. The set of strings with bababb as substring

Question 13. (2 points) Consider the following two grammars: G_1 :

$$S \longrightarrow SbS \mid a$$

 G_2 :

$$S \longrightarrow aB \mid ab$$

$$A \longrightarrow AB \mid a$$

$$B \longrightarrow ABb \mid b$$

Which of the following option is correct?

A. Only G_1 is ambiguous.

- B. Only G_2 is ambiguous.
- C. Both G_1 and G_2 are ambiguous.
- D. Neither G_1 nor G_2 are ambiguous.

Question 14. (5 points) Match the NFAs , DFAs and REs in column A with their appropriate languages in column B.

Column A	Column B
$\operatorname{start} \to \begin{pmatrix} q_0 \\ q_1 \\ q_2 \end{pmatrix} \qquad \begin{pmatrix} q_2 \\ q_2 \\ q_2 \end{pmatrix}$	
(1)	(a) $\{w \in \{0,1\}^* \mid w \text{ ends with 1 and has even no. of 0's}\}$
(2) 00*1(0+1)*	(b) $\{w \in \{0,1\}^* \mid w \text{ has } 101 \text{ as a substring}\}$
(3) $0^*(\epsilon + 10^*(\epsilon + 10^*))$	(c) $\{w \in \{0,1\}^* \mid w \text{ has at most two 1's}\}$
$(4) \text{ start} \xrightarrow{q_0} \xrightarrow{1} \xrightarrow{q_1} \xrightarrow{0} \xrightarrow{q_2} \xrightarrow{1} \xrightarrow{q_3}$	(d) $\{w \in \{0,1\}^* \mid w \text{ begins with } 0 \text{ and has at least one } 1\}$

Choose the correct matching from following choices.

- A. 1-b, 2-d, 3-a, 4-c
- B. 1-b, 2-c, 3-a, 4-d
- C. 1-a, 2-d, 3-c, 4-b
- D. 1-d, 2-c, 3-a, 4-b

Question 15. (5 points) Consider the following finite state machine A

Choose the correct modifications so that A becomes a DFA and

 $L(A) = \{w \in \{a, b\}^* \mid w \text{ has odd length with at least one } b\}.$

- A. Replace θ by b' and ϕ by a' and make b' starting state and b' accept state
- B. Replace θ by 'b' and ϕ by 'a' and make S starting state and P accept state
- C. Replace θ by 'a' and ϕ by 'b' and make P starting state and Q accept state
- D. Replace θ by 'a' and ϕ by 'b' and make Q starting state and P accept state

Question 16. (1 point) If $L = \{a, ab\}$, which of the following are in L^* ?

- A. aabaaab
- B. abababaab
- C. abababbab
- D. bababaaba

Question 17. (2 points) Consider the following grammar.

$$\begin{array}{ccc} S & \longrightarrow & AB \\ A & \longrightarrow & a \mid BaB \\ B & \longrightarrow & bbA \end{array}$$

Which of the following statements is/are true?

- A. The length of every string produced by this grammar is even.
- B. No string produced by this grammar has three consecutive as.
- C. The grammar is in Chomsky Normal Form.
- D. The string *abbaab* is generated by this grammar.

Question 18. (2 points) Let R be a regular language and L be a context-free language. Which of the following is necessarily true?

- A. $L \cap R$ is regular
- B. \overline{R} is regular
- C. If $L \cup R$ is regular then L is regular
- **D.** $L \cup R$ is context-free

Question 19. (2 points) Which of the following languages are regular?

- A. $\{w \in \{0,1\}^* \mid w \text{ has an even number of 0's}\}$
- B. $\{w \in \{0,1\}^* \mid w \text{ has equal number of 0's and 1's}\}$
- C. $\{w \in \{a, b, c\}^* \mid w \text{ has no } c \text{ to the left of an } a\}$
- **D.** $\{w \in \{a, b, c\}^* \mid w \text{ has } 10 \text{ } c\text{'s after every } a\}$

Question 20. (5 points) Let L be a language over Σ . Define

$$L' = \{ w \in \Sigma^* \mid wx \in L \text{ for some } x \in \Sigma^* \text{ and } |w| = |x| \}.$$

Which one of the following statements are correct?

- A. If L is regular then L' is regular
- B. If L is regular then L' is non-regular
- C. There exists a regular language L such that L' is not regular
- D. There exists a non-regular language L such that L' is regular

Name:

Rollno:

2 Subjective Questions

Question 21. Consider the CFG G given by the following production rules

$$\begin{array}{ccc} S & \longrightarrow & S_1C \mid AS_2 \\ S_1 & \longrightarrow & aS_1b \mid \epsilon \\ S_2 & \longrightarrow & bS_2c \mid \epsilon \\ A & \longrightarrow & aA \mid \epsilon \\ C & \longrightarrow & cC \mid \epsilon \end{array}$$

(a) (2 points) The language of G,

 $L(G) = \{w \in \{a,b,c\}^* \mid \underline{\qquad \qquad } w = a^i b^j c^k, \ i = j \ \text{or} \ j = k$

(b) (4 points) Give a string of length 6 in L(G) that has a unique parse tree with respect to G. Draw the parse tree.

(c) (4 points) Give a string of length 6 in L(G) that has two parse trees with respect to G. Draw the two parse trees.

Name: Rollno:

Question 22. (10 points) Give a CFG for the language

$$L = \{a^i b^j c^k \mid j \le i + k \le 2j, i, j, k \ge 0\}.$$

For each variable used in your CFG, describe the language generated by the variable.

Solution:

$$S \longrightarrow T_1T_2 \mid aT_1bT_2c$$

$$T_1 \longrightarrow aT_1b \mid aaT_1b \mid \epsilon$$

$$T_2 \longrightarrow bT_2c \mid bT_2cc \mid \epsilon$$

- Language generated by T_1 is $\{a^i b^{j_1} \mid j_1 \leq i \leq 2j_1\}$
- Language generated by T_2 is $\{b^{j_2}c^k \mid j_2 \leq k \leq 2j_2\}$
- Language generated by S is $\{a^i b^j c^k \mid j \le i + k \le 2j\}$

Question 23. (5 points) Prove that no infinite subset of the language $L = \{0^n 1^n \mid n \ge 0\}$ is regular.

Solution: Given p > 0, set $w = 0^q 1^q$ where q is some number greater than p and $0^q 1^q$ is in the language. Since it is an infinite subset, therefore existence of such a string is guaranteed. Rest of the proof is similar to the proof that L is not regular using pumping lemma.

Question 24. (10 points) Let $A \subseteq \{0,1\}^*$ and let

$$A' = \{xy \mid x1y \in A\}.$$

That is, A' contains all strings obtained from a string in A by deleting exactly one 1. Show that if A is regular, then A' is also regular (give the construction only).

Solution: Let $D = (Q, \{0, 1\}, \delta, q_0, F)$ be a DFA for A. We construct an NFA $N = (Q', \{0, 1\}, \delta', q'_0, F')$ for A', where $Q' = Q \times (\alpha, \beta)$, $q'_0 = (q_0, \alpha)$, $F' = \{(f, \beta) \mid f \in F\}$ and δ' is defined as follows:

$$\delta'((q,\alpha),a) = \{(\delta(q,a),\alpha)\}$$

$$\delta'((q,\beta),a) = \{(\delta(q,a),\beta)\}$$

$$\delta'((q,\alpha),\epsilon) = \{(\delta(q,1),\beta)\}$$

Essentially, states of the form (q, α) corresponds to the automata not having skipped a 1 yet and states of the form (q, β) corresponds to the fact that the automata has skipped a 1.