Laborato	Cyfrowej
Ćwiczenie nr: 1 Temat zajęć: Bramki	Data wykonania: 16.03.2018
Kierunek/semestr: AiR / 4	Data uruchomienia:
Wykonali: Katarzyna Kowalska	22.03.2018

1. Cel zadania / wymagania projektowe

Przy pomocy bramek logicznych z biblioteki Xilinx Spartan zbudowaliśmy układ realizujący funkcję logiczną 4-zmiennych wg tablicy prawdy F1/4.

Tablica prawdy układu wg generatora zadań dla numeru indeksu 132100:

dekoder D1

we	BIN	wyj	BIN
0	0000	1	0001
1	0001	14	1110
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	6	0110
6	0110	8	1000
7	0111	4	0100
*		0	0000

^{* -} wszystkie pozostale stany

wejście	wyjście
$We_3We_2We_1We_0$	$Wy_3Wy_2Wy_1Wy_0$
0000	0001
0001	1110
0010	1010
0011	1011
0100	1100
0101	0110
0110	1000
0111	0100
1000	0000
1001	0000
1010	0000
1011	0000
1100	0000
1101	0000
1110	0000
1111	0000

2. Synteza układu / tablice Karnaugha dla realizowanej funkcji

 $\bullet \qquad \mathsf{W} \mathsf{y}_0 = \overline{\mathsf{W} \mathsf{e}_3} \cdot \overline{\mathsf{W} \mathsf{e}_2} \cdot \overline{\mathsf{W} \mathsf{e}_1} \cdot \ \overline{\mathsf{W} \mathsf{e}_0} + \overline{\mathsf{W} \mathsf{e}_3} \cdot \overline{\mathsf{W} \mathsf{e}_2} \cdot \mathsf{W} \mathsf{e}_1 \cdot \mathsf{W} \mathsf{e}_0 = \overline{\mathsf{W} \mathsf{e}_3} \cdot \overline{\mathsf{W} \mathsf{e}_2} \ \cdot (\mathsf{W} \mathsf{e}_1 \otimes \ \mathsf{W} \mathsf{e}_0 \)$

We_1/We_0 We_3/We_2	00	01	11	10	
00	1	0	1	0	
01	0	0	0	0	
11	0	0	0	0	
10	0	0	0	0	

 $\bullet \qquad Wy_1 = \ \overline{We_3} \cdot \overline{We_1} \cdot We_0 + \overline{We_3} \cdot \overline{We_2} \cdot We_1$

We_1/We_0 We_3/We_2	00	01	11	10	
00	0	1	1	1	
01	0	1	0	0	
11	0	0	0	0	
0	0	0	0	0	

 $\bullet \qquad \mathsf{W} \mathsf{y}_2 = \ \overline{\mathsf{W} \mathsf{e}_3} \cdot \mathsf{W} \mathsf{e}_2 \cdot \overline{\mathsf{W} \mathsf{e}_1} + \overline{\mathsf{W} \mathsf{e}_3} \cdot \overline{\mathsf{W} \mathsf{e}_1} \cdot \mathsf{W} \mathsf{e}_0 + \overline{\mathsf{W} \mathsf{e}_3} \cdot \mathsf{W} \mathsf{e}_2 \cdot \mathsf{W} \mathsf{e}_0$

We_1/We_0 We_3/We_2	00	01	11	10	
00	0	1	0	0	
01	1	1	1	0	
11	0	0	0	0	
0	0	0	0	0	

 $\bullet \qquad \mathbf{W}\mathbf{y_3} = \overline{\mathbf{W}\mathbf{e_3}} \cdot \overline{\mathbf{W}\mathbf{e_2}} \cdot \mathbf{W}\mathbf{e_0} + \overline{\mathbf{W}\mathbf{e_3}} \cdot \overline{\mathbf{W}\mathbf{e_2}} \cdot \mathbf{W}\mathbf{e_1} + \ \overline{\mathbf{W}\mathbf{e_3}} \cdot \mathbf{W}\mathbf{e_2} \cdot \overline{\mathbf{W}\mathbf{e_0}}$

We_1/We_0 We_3/We_2	00	01	11	10	
00	0	1	1	1	
01	1	0	0	1	
11	0	0	0	0	
0	0	0	0	0	

3. Realizacja przy pomocy bramek z biblioteki Xilinx Spartan3

4. Weryfikacja poprawności projektu / wyniki symulacji

• Wymuszenia zdefiniowano zgodnie z poniższym skryptem Tcl:

force We3 0 0ps, 1 80ps -repeat 160ps force We2 0 0ps, 1 40ps -repeat 80ps force We1 0 0ps, 1 20ps -repeat 40ps force We0 0 0ps, 1 10ps -repeat 20ps run 160ps • Tablica prawdy weryfikowanej funkcji:

dekoder D1

we	BIN	wyj	BIN
0	0000	1	0001
1	0001	14	1110
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	6	0110
6	0110	8	1000
7	0111	4	0100
*		0	0000

^{* -} wszystkie pozostale stany

• Symulacja w programie ModelSim:

Wyniki symulacji behawioralnej potwierdzają poprawność wykonania modelu strukturalnego urządzenia. Pojawianie się na wyjściu stanu wysokiego jest zgodne z zawartością tablicy prawdy dla funkcji F1/4.

5. Implementacja / testowanie prototypu

• Interfejs testowanego urządzenia (wg schematu):

Port urządzenia testowanego	Sygnał płyty prototypowej	Kanał analizatora stanów		
We ₀	Pmod JA1	CH0		
We ₁	Pmod JA2	CH1		
We_2	Pmod JA3	CH2		
We_3	Pmod JA4	CH3		
Wy_0	Pmod JA7	CH8		
Wy_1	Pmod JA8	CH9		
Wy_2	Pmod JA9	CH10		
Wy_3	Pmod JA10	CH11		
CE	SW7	-		
RST	SW6	-		
CLK	Zegar 50MHz	-		

Testowanie polega na podaniu na wejścia A,B,C,D bloku fl_4 sekwencji 4-bitowych w kodzie NKB i obserwacji zachowania układu przy pomocy analizatora stanów logicznych. Analizator podłączony do układu poprzez port Pmod_JA. Procedura testowania wykorzystuje wewnętrzny licznik binarny 4-bitowy (najstarszy bit licznika podany na wejście A urządzenia testowanego). Częstotliwość zegara licznika (wejście C dla CB4CE) wynosi ~1kHz.

• Pinout Report

	Pin Number	ir ji 🖛	Pin Usage	Pin Name	Direction	IO Standard	IO Bank Number		Slew Rate	Termination	IOB Delay	Voltage	Constraint	IO Register	Signal Integrity
1	R17	ce	IBUF	IP	INPUT	LVCMOS	1				NONE		LOCATED	NO	NONE
2	B8	clk	IBUF	IP_L13P_0/GCLK8	INPUT	LVCMOS	0				NONE		LOCATED	NO	NONE
3	B18	rst	IBUF	IP	INPUT	LVCMOS	1				NONE		LOCATED	NO	NONE
4	L15	we0	IOB	IO_L09N_1/A11	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
5	K12	we1	IOB	IO_L11N_1/A9/RHCLK1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
6	L17	we2	IOB	IO_L10N_1/VREF_1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
7	M15	we3	IOB	IO_L07P_1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
8	K13	wy0	IOB	IO_L11P_1/A10/RHCLK0	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
9	L16	wy1	IOB	IO_L09P_1/A12	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
10	M14	wy2	IOB	IO_L05P_1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
11	M16	wy3	IOB	IO_L07N_1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE