CSCI 335 Theory of Computing

Lecture 18 – Decidability IV: The reducibility method

DATE: December 19 2022

Learning Outcomes

NEWGIZA UNIVERSITY

Learning Outcomes

By the end of this section you will be able to:

- Use the undecidability of the acceptance problem of TMs ($A_{
 m TM}$) to show that some other languages are undecidable
- Understand the reducibility method for proving undecidability

- Undecidability of the TM halting problem $(HALT_{TM})$
- The concept of reducibility
- Undecidability of the TM emptiness problem ($E_{\rm TM}$)
- Undecidability of the TM equivalence problem (EQ_{TM})

Undecidability of the TM halting problem ($HALT_{TM}$)

NEW GIZA UNIVERSITY

Undecidability of the TM halting problem $(HALT_{TM})$

If we know that some problem (say $A_{\rm TM}$) is undecidable, we can use that to show other problems are undecidable.

Defn: $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$

Recall Theorem: $HALT_{TM}$ is undecidable

Proof by contradiction, showing that $A_{\rm TM}$ is reducible to $HALT_{\rm TM}$:

Assume that $HALT_{\rm TM}$ is decidable and show that $A_{\rm TM}$ is decidable (false!).

Let TM R decide $HALT_{TM}$.

Construct TM S deciding $A_{\rm TM}$.

S ="On input $\langle M, w \rangle$

- 1. Use *R* to test if *M* on *w* halts. If not, *reject*.
- 2. Simulate M on w until it halts (as guaranteed by R).
- 3. If *M* has accepted then *accept*. If *M* has rejected then *reject*.

TM S decides $A_{\rm TM}$, a contradiction. Therefore $HALT_{\rm TM}$ is undecidable.

NEWGI7A IINIVERSITY

Undecidability of the TM halting problem $(HALT_{TM})$

NEWGIZA UNIVERSITY

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that $A_{\rm NFA}$ is reducible to $A_{\rm DFA}$.

Example 3: Finding your way around a new city is reducible to the problem of obtaining a map of the city

If A is reducible to B then solving B gives a solution to A.

- then B is easy $\rightarrow A$ is easy.
- then A is hard $\rightarrow B$ is hard.

this is the form we will use

Check-in 9.1

Is Biology reducible to Physics?

- (a) Yes, all aspects of the physical world may be explained in terms of Physics, at least in principle.
- (b) No, some things in the world, maybe life, the brain, or consciousness, are beyond the realm pf Physics.
- (c) I'm on the fence on this question!

To prove *B* is undecidable:

- Show undecidable A is reducible to B. (often A is $A_{\rm TM}$)
- Template: Assume TM R decides B.

 Construct TM S deciding A. Contradiction.

Why do we use the term "reduce"?

When we reduce A to B, we show how to solve A by using B and conclude that A is no harder than B.

Possibility 1: We bring A's difficulty down to B's difficulty.

Possibility 2: We bring B's difficulty up to A's difficulty.

Undecidability of the TM emptiness problem (E_{TM})

NEW GIZA UNIVERSITY

Undecidability of the TM emptiness problem (E_{TM})

Let $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: $E_{\rm TM}$ is undecidable

Proof by contradiction. Show that $A_{\rm TM}$ is reducible to $E_{\rm TM}$.

Assume that $E_{\rm TM}$ is decidable and show that $A_{\rm TM}$ is decidable (false!).

Let TM R decide $E_{\rm TM}$.

Construct TM S deciding A_{TM} .

$$S =$$
 "On input $\langle M, w \rangle$

- 1. Transform M to new TM $M_w =$ "On input x
 - 1. If $x \neq w$, reject.
 - 2. else run *M* on *w*
 - 3. *Accept* if *M*

accepts."

- 2. Use R to test whether $L(M_w) = \emptyset$
- 3. If YES [so *M* rejects *w*] then *reject*. If NO [so *M* accepts *w*] then *accept*.

 M_w works like M except that it always rejects strings x where $x \neq w$. So $L(M_w) = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \end{cases}$

NEWGI7A UNIVERSITY

Undecidability of the TM emptiness problem (E_{TM})

Undecidability of the TM equivalence problem (EQ_{TM})

NEWGI7A IINIVERSITY

Undecidability of the TM equivalence problem (EQ_{TM})

 EQ_{TM} is undecidable.

PROOF IDEA Show that if EQ_{TM} were decidable, E_{TM} also would be decidable by giving a reduction from E_{TM} to EQ_{TM} . The idea is simple. E_{TM} is the problem of determining whether the language of a TM is empty. EQ_{TM} is the problem of determining whether the languages of two TMs are the same. If one of these languages happens to be \emptyset , we end up with the problem of determining whether the language of the other machine is empty—that is, the E_{TM} problem. So in a sense, the E_{TM} problem is a special case of the EQ_{TM} problem wherein one of the machines is fixed to recognize the empty language. This idea makes giving the reduction easy.

NEW GIZA UNIVERSITY

Undecidability of the TM equivalence problem (EQ_{TM})

PROOF We let TM R decide EQ_{TM} and construct TM S to decide E_{TM} as follows.

S = "On input $\langle M \rangle$, where M is a TM:

- Run R on input (M, M₁), where M₁ is a TM that rejects all inputs.
- If R accepts, accept; if R rejects, reject."

If R decides EQ_{TM} , S decides E_{TM} . But E_{TM} is undecidable by Theorem 5.2, so EQ_{TM} also must be undecidable.

NEWGI7A IINIVERSITY

Undecidability of the TM equivalence problem (EQ_{TM})

E_TM (Already proved to be undecidable)

EQ_TM (Assumed to be decidable)

Accept

A TM that rejects all inputs

Reject

Reject

Summary

Summary

- The TM halting problem ($HALT_{TM}$) is undecidable
- The concept of reducibility
- The TM emptiness problem ($E_{\rm TM}$) is undecidable
- The TM equivalence problem (EQ_{TM}) is undecidable

Readings

- Reducibility: Section 5.1 (Sipser 2013)
- What is the halting problem?
 https://www.codingninjas.com/codestudio/library/halting-problem-in-the-theory-of-computation
- Halting problem <u>https://en.wikipedia.org/wiki/Halting_prob</u> lem