ARITHMETIC

5° Retroalimentació n II tomo V

1. Si:
$$\overline{abc} \cdot a = 6744$$

$$\overline{abc} \cdot b = 3372$$

$$\overline{abc} \cdot c = 2529$$

Calcule $(\overline{abc})^2$ y dé como respuesta la suma Resoluciónas.

Del dato

Sabemos:

Sabemos: tenem
$$abc$$
:
$$(\overline{abc})^2 = (\overline{abc}) \times (\overline{abc}) \longrightarrow abc$$

$$2529 \quad \overline{abc} \cdot c$$

$$3372 \quad \overline{abc} \cdot b$$
Donde
$$6744 \quad \overline{abc} \cdot a$$

Piden:

suma de cifras

$$7 + 1 + 0 + 6 + 4 + 9$$

$$\therefore 27$$

2. Aumentando 9 a cada uno de los dos factores de una multiplicación, el producto aumenta en 729. Calcule el producto original si la diferencia de sus factores es 18.

Resolución:

Sabemos:
$$M \times m = P$$

Reemplazando los datos:

$$(M+9) \cdot (m+9) = P + 729$$

 $M \cdot m + 9(M+m) + 81 = P + 729$
 $9(M+m) = 648$

Donde:
$$M + M = 72$$
dato: $M - M = 18$

$$2.M = 90 \implies M = 45 \text{ y } m = 27$$

Piden: producto original

$$P = 45.27$$

$$P = 1215$$

En una división, el cociente es 100 y el residuo es 43; al agregar 2000 unidades al dividendo y al repetir la división se obtiene un cociente de 121 y un residuo de 6. Halle el valor del dividendo.

Resolución

Del dato tenemo D = dq + r

además:

$$\rightarrow$$
 A + 2000 = (B) .121 + 6

Reemp:

$$(100.B + 43) + 2000 = 121.B + 6$$

 $21.B = 2037 \implies B = 97$

Piden:valor del dividendo A

$$A = (97).100 + 43$$

$$A = 9700 + 43$$

4. ¿Cuántos numerales de cuatro cifras cuya cifra de primer orden es 6 son divisibles entre 14?

Resolución:

Del dato tenemos:

$$\overline{abc6} = \overset{\circ}{14}$$

$$\overset{\circ}{14} = 14.k$$

$$1000 \le 14.k < 10000$$

$$71,... \leq k < 714,...$$

Pero: 14.k = ...6

$$k = ...4; ...9$$

Donde:

$$k = 74; 79; 84; 89;; 714$$
valores (k) $\frac{714 - 69}{5} = \frac{645}{5}$

Piden

: : # valores (k) = 129

¿Cuál es el menor número entero positivo que se debe sumar al número para que sea divisible entre 17?

Resolució

Del dato tenemos:

$$\overline{2abc} = 17 + 4$$

$$2000 + \overline{abc} = 17 + 4$$

$$17 + 11 + \overline{abc} = 17 + 4$$

$$\overline{abc} = 17 - 7 = 17 + 10$$

Sea x el menor número a

$$\frac{\text{sumar}}{abc2} + x = 17$$

$$\frac{(\overline{abc})}{10} + 2 + x = 17$$

reemplazando:

$$(17 + 10.10 + 2 + x = 17)$$
 $102 + x = 17$

Piden
$$\therefore x_{min} = 17$$

À la fiesta de aniversario de la Academia asistió un número de personas que es mayor que 300 pero menor que 450. En cierto momento se observó que los 3/14 de los asistentes son varones que están bebiendo y los 4/15 de los mismos son mujeres que están bailando; luego, si todos los varones están bailando o bebiendo. ¿Cuántas mujeres no están bailando en dicho momento?

Del dato tenemos:

asistentes:

X
X:
$$\begin{array}{c}
 & X = mcm(14; 15) \\
 & X = 210 \\
 & X = 210.k
 \end{array}$$

Donde:

$$\rightarrow$$
 $X = 4$

Luego:

* Varones que beben:
$$^{3}_{14}$$
 . $^{420} = 9$

* Mujeres
$$\frac{4}{15}$$
 .420 = 112 = *

Pide Mujeres que no

$$42 \theta a ila m_{12} m_{uj.bail} + 202)$$

∴ 106

7. En una división inexacta, el residuo por defecto, el residuo por exceso, el cociente por exceso y el divisor, forman una progresión aritmética de razón 14. Halle el valor del dividendo.

Resolución

Del dato tenemos:

$$r_d = x$$
 Reemp:
 $r_e = x + 14 \longrightarrow r_e = 42$
 $q_e = x + 28 \longrightarrow q_e = 56$
 $d = x + 42 \longrightarrow d = 70$

$$r_d + r_e = d$$

Reemp: $x + x + 14 = x + 42$
 $x = 28$

Sabemos que: $D = d \cdot q_e - r_e$

Piden $D = (70)(56) - 42$
 $D = 3878$

8. Halle el residuo que se obtiene al dividir 74254^{1043} entre 9.

Resolución:

$$74254^{1043} = (9 + 4)^{1043}$$

Operando: = $9 + 2^{2086}$

$$=$$
 $9 + (2^3)^{695}$ 2^1

$$= 9 + (9 - 1)^{349} 2^{1}$$

$$=$$
 $9 + (9 - 1) . 2$

$$=$$
 $9 + 9 - 2$

Donde:

$$74254^{1043} = 9 + 7$$

Piden

 \therefore residuo = 7

¿Qué lugares ocupan los dos términos consecutivos de la siguiente progresión aritmética cuya diferencia de cuadrados es 744? 3; 7; 11; 15;....

recordemo

$$n = \frac{t_n - t_0}{r}$$

Resolución:

Del dato tenemos:

Dato: términos consecutivos

Donde:
$$(x+4)^2 - (x)^2 = 744$$

$$x^2 + 8.x + 16 - x^2 = 744$$

$$8.x = 728$$

$$x = 91$$

Reemplazando:

$$n = \frac{95 - (-1)}{4} \implies n = 24$$

Piden:

términos t_{n-1} y t_n consecutivos. Rpt t_{23} • t_{24}

10. Dada la siguiente progresión aritmética: $\overline{aa0}$; $\overline{ab(a + 2)}$; $\overline{a(b + 1)(3b)}$; ...; $\overline{(3a)05}$ Calcule: a + b

Resolución

Reemplazando:

Donde:

$$n = \frac{305 - 97}{13} = \frac{208}{13} \implies n = 16$$

Piden:
$$(a + b + n) = 19$$

