课程代号: 100180121 北京理工大学 2019-2020 学年第一学期

物理学院《大学物理 AII》期末考试题 A 卷

2020年1月15日 14:00-16:00

班级_		学号				总分				
任课教	效师姓名_									
			模块	三 电磁学	全(63分)					
	填空题	选择题	计算1	计算 2	计算3	计算4	合计	复核人		
得分										
	1	1	1	1	1	I	I			
模块四 近代物理(37分)										
	填雪	空题 选	择题	计算1	计算 2	合计	复构	亥人		
得	身分									
可能日	月到的物理	堂								
真空介电常量 $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2}$, 真空磁导率 $\mu_0 = 4\pi \times 10^{-7} \text{ N} \cdot \text{A}^{-2}$, 普朗克常量 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$, 基本电荷 $e = 1.60 \times 10^{-19} \text{ C}$, 质子质量 $m_e = 9.11 \times 10^{-31} \text{ kg}$, 质子质量 $m_p = 1.67 \times 10^{-27} \text{ kg}$.										
模块三 电磁学(63分)										
一、填空题(共 21 分,每题 3 分,将答案写在试卷指定的横线 ""上)										
1. (3 分)如图所示,空间内电场强度分量为 $E_x = b\sqrt{x}$, $E_y = 0$,										
$E_z = 0$	0, 若正	方体边长	为a,则·	该正方体	内的电荷	电量为	9 4 -			
		o				,	\sqrt{z}	a		
		_			的球面上,「					
							过 O 点的	$\phi \circ \dot{q}$		
		为			, ## d =	* → 4 ¬	5 E J			
3. (3分) 如图所示,半径为 $R_1 = 2R$ 的导体球 A 带电量 q ,在它外面同心										
地套一金属球壳 B,其内外壁半径分别为 R_2 和 R_3 。已知 $R_2 = 3R$, $R_3 = 4R$, 今在距球心为 $r = 8R$ 处放一电量为 Q 的点电荷,并将球壳 B 接地。则球壳										
	と球心力 <i>r</i> 5电量为	— on 火瓜	电里 / 0 €	, 即从 电何	,开付邳冗	D 1女地。火	四本近 、	B 22 =		
ப // 🕸	↓ 心里/1/		· · · · · · · · · · · · · · · · · · ·							

- 4. (3 分) 在真空中, 若一均匀电场中的电场能量密度与 0.50T 的均匀磁场中的磁场能量 密度相等,该电场的电场强度为。。
- 5. (3分)一带电粒子,垂直射入到均匀磁场中,如果粒子质量增大到2倍,入射速度 增大到2倍,磁场的磁感应强度增大到4倍,则通过粒子运动轨道所包围范围内的磁 通量增大到原来的倍。
- 6. (3分)一根无限长的载流直导线被弯成图示形状。圆形部分的直径为 10cm, 且其圆心 O 到直线部分的垂直距离为 r。为使圆心 O 处的磁感应 强度为零,r=。

7. (3 分)如图,一带电量为 q 的点电荷,以匀角速度 ω 作半径为 R 的圆周 运动。设 t=0时,点电荷所在的坐标为 (R, 0),以 \vec{i}, \vec{j} 分别表示 x, y 轴上 的单位矢量,则圆心处 O 点的位移电流密度矢量为

二、选择题 (单选, 共9分, 每题3分, 将答案写在试卷上指定的方括号"[]"内)

1. (3 分) 带正电粒子通过点电荷 Q 的电场时运动轨迹如图实线所示,虚线为 等势面,设 φ_B 和 φ_A 分别为 B 点和 A 点的电势, 粒子在由 B 到 A 的运动过程中

- (A) $\varphi_B > \varphi_A$, 粒子电势能减小; (B) $\varphi_B < \varphi_A$, 粒子电势能减小;
- (C) $\varphi_B > \varphi_A$, 粒子动能减小; (D) $\varphi_B < \varphi_A$, 粒子动能和电势能总量不变。

1 ſ

2.(3 分)已知两共轴细长螺线管,外管线圈半径为 r_1 ,内管线圈半径为 r_2 ,匝数分别为 N_1 、 N_2 , 设它们的自感系数分别为 L_1 、 L_2 。则它们的互感系数为

(A)
$$M = \frac{r_1}{r_2} \sqrt{L_1 L_2}$$
; (B) $M = \frac{r_2}{r_1} \sqrt{L_1 L_2}$; (C) $M = \sqrt{L_1 L_2}$; (D) $M = L_1 L_2$ •

3. (3 分) 如图,导体棒 MCN 长度为 L,在均匀磁场 \vec{B} 中绕通过 C点的垂直于棒长且沿磁场方向的轴 OO 转动(角速度 $\vec{\omega}$ 与 \vec{B} 同向), CN 的长度为 L/3,则 C, N 两点的电动势大小是

- (A) $B\omega L^2/18$; (B) $B\omega L^2/9$; (C) $B\omega L^2/2$; (D) 0_{\circ}

三、计算题(共33分,将答案写在试卷空白处)

1. (9 分) 如图所示,同轴电缆由半径为 R_1 的导线和半径为 R_3 的导体圆筒构成,在内、外导体间用两层电介质隔离,分界面的半径为 R_2 ,其介电常数分别为 ϵ_1 和 ϵ_2 。试求:

- (1) ε₁/ε₂ 为何值时两层电介质中最大电场强度相等?
- (2) 满足(1) 情况下的电缆单位长度的电容。

2. (9分) 如图所示,在均匀磁场中,半径为 R 的均匀带电薄圆盘以角速度 ω 绕中心轴转动,圆盘电荷面密度为 σ 。求它的磁矩及所受的磁力矩。

- 3. (9 分) 大线圈的半径为 a, 共有 N 匝。大线圈与小线圈同轴放置,小线圈面积为 S (小线圈的面积远小于大线圈的面积)。小线圈沿大线圈的轴线运动,如图所示。已知 t 时刻,在离大线圈中心 O 为 x 时,小线圈的速度大小为 v。试求:
- (1) 此时两个线圈间的互感系数;
- (2) 若小线圈通有电流 I,忽略小线圈中的电流变化及大线圈的自感,则大线圈中感应电动势大小。

4. $(6 \, f)$ 半径为 R 的超导圆环,电阻为零,自感为 L,放在磁感强度为 \vec{B} 的均匀磁场中,环的轴线(垂直纸面)与 \vec{B} 垂直(如图 a),环内没有电流。现将这环绕垂直于 \vec{B} 的直径(图 a 中纸面内虚线)旋转 90° ,使它的轴线平行于 \vec{B} (如图 b)。试求:

- (1)环内的电流;
- (2)外力做的功。

模块四 近代物理(37分)

一、填空题(共15分,每题3分,	将答案写在试卷指定的横线""上)
1. (3分) 匀质细棒静止时的质量为 i	m_0 ,长度为 l_0 ,当它沿棒长方向作高速的匀速直线
运动时,测得它的长为1,则该棒的速	E度 $v=$,该棒所具有的动能 E_k
=	
2. (3分)一个静止的物体自发分裂原	成两部分,静止质量分别为 3kg 和 5.33kg, 已知前
一部分的速度为 0.8c (c 为真空	(中的光速),则分裂前原物体的静止质量为
kg 。 试 说 。	明分裂过程遵守的物理原理
	射一铜球,铜球放出电子。若将铜球充电,电势至
少充到V时,再	用此种单色光照射,铜球将不再放出电子。已知铜
的逸出功为4.47eV。	
4. (3分)在一次康普顿散射中,入身	时光子传递给静止电子的最大能量为 Ek, 电子的静
止质量为 m ₀ ,入射光子的能量为	o
5. (3 分) 波长 $\lambda = 500$ nm的光沿 x 轴	由正方向传播,光的波长不确定量 $\Delta \lambda = 10^{-4} \mathrm{nm}$,则
利用不确定关系式 $\Delta x \Delta p_x \geq h$,	可得光子的 x 坐标的不确定量至少为
0	
二、选择题(共6分,单选,每题3	分,将答案写在试卷上指定的方括号"[]"内)
1. (3分)在某个位置找到光子的概率	
(A) 正比于光强;	(B) 随着光的波长减小而增大;
(C) 正比于电场强度;	(D 正比于该光子能量。
	[]
2. (3 分) 设氢原子处于状态 ψ_{21-1} =	$R_{21}(r)Y_{1-1}(\theta,\varphi)$,此时角动量和它在 z 方向的投影
值有确定值,它们分别是	
(A) \hbar , $-\hbar$;	(B) $\sqrt{2}\hbar$, $-\hbar$;
(C) $\sqrt{6}\hbar$, $2\hbar$;	(D) 以上都不对。
	[]

三、计算题(共16分,将答案写在试卷空白处)

1. (10分) 粒子在一维势场中运动,其束缚定态波函数为

$$\psi(x) = \begin{cases} A(a^2 - x^2), & |x| \le a \\ 0, & |x| > a \end{cases}$$

若已知x=0处为势能零点。试求

- (1) 归一化常数 A;
- (2) 势能零点处的概率密度;
- (3) 势函数 U(x)。(一维定态薛定谔方程: $-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + U\psi = E\psi$)

- 2. $(6\,\%)$ 一飞船相对于地球以 0.80c 的速度飞行,光脉冲从船尾发出(事件 1)传到船头(事件 2),飞船上观察者测得飞船长为 90m。
- 试求(1)飞船上的钟测得这两个事件的时间间隔;
 - (2) 地面观察者测得这两个事件的空间间隔和时间间隔。