Filter Summary Report: TIA,simple,Z2,Z3

Generated by MacAnalog-Symbolix

December 11, 2024

Contents

1 Examined $H(z)$ for TIA simple Z2 Z3: Z_3
2 HP
$\begin{array}{llllllllllllllllllllllllllllllllllll$
4 LP
5 BS
5.1 BS-1 $Z(s) = \left(\infty, R_2, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty\right)$
5.2 BS-2 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3(C_3 L_3 s^2 + 1)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty \right)$
5.3 BS-3 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty \right)$
$5.4 \text{BS-4 } Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3(C_3 L_3 s^2 + 1)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \infty, \ \infty, \ \infty \right) $
5.5 BS-5 $Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \infty, \ \infty, \ \infty \right)$
5.6 BS-6 $Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \infty, \ \infty, \ \infty \right)$
5.7 BS-7 $Z(s) = \left(\infty, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty \right)'$
5.8 BS-8 $Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty, \infty \right)$
6 GE
7 AP
8 INVALID-NUMER
9 INVALID-WZ
10 INVALID-ORDER $10.1 \text{ INVALID-ORDER-1 } Z(s) = (\infty, R_2, R_3, \infty, \infty, \infty) $

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$
10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$
10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty\right)$
10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$
10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \infty\right)$
10.9 INVALID-ORDER-9 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, \infty\right)$
$10.10 \text{INVALID-ORDER-10 } Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
10.11INVALID-ORDER-11 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, \infty\right)$
$10.12 \text{INVALID-ORDER-} 12 \ Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
$10.13 \text{INVALID-ORDER-13 } Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
$10.14 \text{INVALID-ORDER-14 } Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \infty\right) $
$10.15 \text{INVALID-ORDER-15 } Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
$10.16 \text{INVALID-ORDER-16 } Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \infty\right) $
$10.17 \text{INVALID-ORDER-17 } Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ R_3, \ \infty, \ \infty, \ \infty\right) $
$10.18 \text{INVALID-ORDER-} 18 \ Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
$10.19 \text{INVALID-ORDER-19 } Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \infty\right) $
$10.20 \text{INVALID-ORDER-20 } Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
$10.21 \text{INVALID-ORDER-21 } Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
$10.22 \text{INVALID-ORDER-} 22 \ Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \infty\right) \ \dots $
$10.23 \text{INVALID-ORDER-23 } Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
10.24INVALID-ORDER-24 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \infty\right)$
$10.25 \text{INVALID-ORDER-} 25 \ Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ R_3, \ \infty, \ \infty, \ \infty\right) $
$10.26 \text{INVALID-ORDER-} 26 \ Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
$10.27 \text{INVALID-ORDER-} 27 \ Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \infty\right) $
10.28INVALID-ORDER-28 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$
$10.29 \text{INVALID-ORDER-29 } Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
$10.30 \text{INVALID-ORDER-30 } Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \infty\right) $
$10.31 \text{INVALID-ORDER-31 } Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
10.32INVALID-ORDER-32 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \infty\right)$
10.33INVALID-ORDER-33 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, \infty\right)$
$10.34 \text{INVALID-ORDER-34 } Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
$10.35 \text{INVALID-ORDER-35 } Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \infty\right) $
$10.36 \text{INVALID-ORDER-} 36 \ Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
$10.37 \text{INVALID-ORDER-37 } Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
$10.38 \text{INVALID-ORDER-38 } Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \infty\right) $
$10.39 \text{INVALID-ORDER-39 } Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right) $
10.40INVALID-ORDER-40 $Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \infty \right)'$
10.41INVALID-ORDER-41 $Z(s) = \left(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3, \infty, \infty, \infty\right)$
10.42INVALID-ORDER-42 $Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$
10 (9) WHID OPPER (9.77) \downarrow 1 \downarrow 80

10.44INVALID-ORDER-44 $Z(s) = (\infty)$	$(0, L_2s + R_2 + \frac{1}{C_2s}, R_3 + \frac{1}{C_3s}, \infty, \infty, \infty)$
10.45INVALID-ORDER-45 $Z(s) = (\infty)$	$(0, L_2s + R_2 + \frac{1}{C_2s}, L_3s + \frac{1}{C_3s}, \infty, \infty, \infty)$
10.46INVALID-ORDER-46 $Z(s) = (\infty)$	$(0, L_2s + R_2 + \frac{1}{C_2s}, \frac{L_3s}{C_3L_3s^2 + 1}, \infty, \infty, \infty)$
10.47INVALID-ORDER-47 $Z(s) = (\infty)$	$(0, L_2s + R_2 + \frac{1}{C_2s}, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty)$
10.48INVALID-ORDER-48 $Z(s) = (\infty)$	$(0, L_2s + R_2 + \frac{1}{C_2s}, \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \infty, \infty, \infty)$
10.49INVALID-ORDER-49 $Z(s) = (\infty)$	$\circ, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \infty, \ \infty, \ \infty \bigg) \dots \qquad \qquad$
10.50INVALID-ORDER-50 $Z(s) = (\infty)$	\circ , $\frac{L_2s}{C_2L_2s^2+1}+R_2$, $\frac{1}{C_3s}$, ∞ , ∞ , ∞)
10.51INVALID-ORDER-51 $Z(s) = (\infty)$	$\circ, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ \infty, \ \infty, \ \infty \Big) \dots \qquad 1$
10.52INVALID-ORDER-52 $Z(s) = (\infty)$	\circ , $\frac{L_2s}{C_2L_2s^2+1} + R_2$, $R_3 + \frac{1}{C_3s}$, ∞ , ∞ , ∞
10.53INVALID-ORDER-53 $Z(s) = (\infty)$	\circ , $\frac{L_2s}{C_2L_2s^2+1} + R_2$, $L_3s + \frac{1}{C_3s}$, ∞ , ∞ , ∞
10.54INVALID-ORDER-54 $Z(s) = (\infty)$	\circ , $\frac{L_{2}s}{C_{2}L_{2}s^{2}+1}+R_{2}$, $\frac{L_{3}s}{C_{3}L_{3}s^{2}+1}$, ∞ , ∞ , ∞
10.55INVALID-ORDER-55 $Z(s) = (\infty)$	\circ , $\frac{L_2s}{C_2L_2s^2+1} + R_2$, $L_3s + R_3 + \frac{1}{C_3s}$, ∞ , ∞ , ∞
\	$\circ, \ \frac{L_{2}s}{C_{2}L_{2}s^{2}+1} + R_{2}, \ \frac{L_{3}s}{C_{3}L_{3}s^{2}+1} + R_{3}, \ \infty, \ \infty, \ \infty \bigg) \qquad \dots \qquad 1$
10.57INVALID-ORDER-57 $Z(s) = \left(\infty \right)$	$\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3, \infty, \infty, \infty$
10.58INVALID-ORDER-58 $Z(s) = \bigcirc $	
_	$\infty, \ \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{R_3}{C_3R_3s+1}, \ \infty, \ \infty, \ \infty \bigg) \ \dots \qquad \qquad$
10.60INVALID-ORDER-60 $Z(s) = \left(\infty \right)$	$\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3+\frac{1}{C_3s}, \infty, \infty, \infty $
\	$\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+\frac{1}{C_3s}, \ \infty, \ \infty, \ \infty \right) \ \dots \qquad \qquad$
10.62INVALID-ORDER-62 $Z(s) = \left(\propto \right)$	$\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty $
	$\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, L_3s+R_3+\frac{1}{C_3s}, \infty, \infty, \infty $
10.64INVALID-ORDER-64 $Z(s) = (x)$	$\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3s}{C_3L_3s^2+1}+R_3, \ \infty, \ \infty, \ \infty\right) $

11 PolynomialError

- 1 Examined H(z) for TIA simple Z2 Z3: Z_3
- 3 BP

2 HP

3.1 BP-1 $Z(s) = \left(\infty, R_2, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$

Parameters:

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.2 BP-2 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$

Parameters:

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.3 BP-3 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$

Parameters:

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

$$H(s) = \frac{L_3 R_3 s}{C L R s^2 + L s + R}$$

 $H(z) = Z_3$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}$$

3.4 BP-4
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$$

Parameters:

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.5 BP-5
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$$

Parameters:

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.6 BP-6
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$$

Parameters:

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.7 BP-7
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ \infty, \ \infty, \ \infty\right)$$

Parameters:

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_3}$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}$$

K-LP: 0 K-HP: 0

K-BP: *R*₃

Qz: 0 Wz: None

3.8 BP-8
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \infty, \infty, \infty\right)$$

$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}$

Parameters:

Q: $C_3 R_3 \sqrt{\frac{1}{C_3 L_3}}$ wo: $\sqrt{\frac{1}{C_3 L_3}}$ bandwidth: $\frac{1}{C_3 R_3}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0

4 LP

Wz: None

5 BS

5.1 BS-1
$$Z(s) = \left(\infty, R_2, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty\right)$$

Parameters:

Q: $\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$ wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3}{L_3}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.2 BS-2 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3(C_3 L_3 s^2 + 1)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

Parameters:

Q: $\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$ wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3}{L_3}$ K-LP: R_3

$$H(s) = \frac{C_3 L_3 R_3 s^2 + R_3}{C_3 L_3 s^2 + C_3 R_3 s + 1}$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + R_3}{C_3 L_3 s^2 + C_3 R_3 s + 1}$$

K-HP:
$$R_3$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.3 BS-3
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3}{L_3}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.4 BS-4
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$$
 wo: $\sqrt{\frac{1}{C_3}}$ bandwidth: $\frac{R_3}{L_3}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.5 BS-5
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3}{L_3}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + R_3}{C_3 L_3 s^2 + C_3 R_3 s + 1}$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + R_3}{C_3 L_3 s^2 + C_3 R_3 s + 1}$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + R_3}{C_3 L_3 s^2 + C_3 R_3 s + 1}$$

5.6 BS-6
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3}{L_3}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.7 BS-7
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \infty, \ \infty, \ \infty\right)$$

Parameters:

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3}{L_3}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.8 BS-8
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3}{L_3}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

6 **GE**

7 AP

$$H(s) = \frac{C_3 L_3 R_3 s^2 + R_3}{C_3 L_3 s^2 + C_3 R_3 s + 1}$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + R_3}{C_3 L_3 s^2 + C_3 R_3 s + 1}$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + R_3}{C_3 L_3 s^2 + C_3 R_3 s + 1}$$

8 INVALID-NUMER

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, R_2, R_3, \infty, \infty, \infty)$

$$H(s) = R_3$$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{1}{C_3 s}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_3}{C_3 R_3 s + 1}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 R_3 s + 1}{C_3 s}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{C_3 s}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, R_2, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 1}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{C_3 s}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}$$

10.9 INVALID-ORDER-9 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \infty, \infty, \infty\right)$

 $H(s) = R_3$

10.10 INVALID-ORDER-10 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

 $H(s) = \frac{1}{C_3 s}$

10.11 INVALID-ORDER-11 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

 $H(s) = \frac{R_3}{C_3 R_3 s + 1}$

10.12 INVALID-ORDER-12 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

 $H(s) = \frac{C_3 R_3 s + 1}{C_3 s}$

10.13 INVALID-ORDER-13 $Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

 $H(s) = \frac{C_3 L_3 s^2 + 1}{C_3 s}$

10.14 INVALID-ORDER-14 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \infty\right)$

 $H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 1}$

10.15 INVALID-ORDER-15 $Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

 $H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{C_3 s}$

10.16 INVALID-ORDER-16 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \infty\right)$

 $H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}$

10.17 INVALID-ORDER-17 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \infty, \infty, \infty\right)$

 $H(s) = R_3$

10.18 INVALID-ORDER-18 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{1}{C_3s}, \infty, \infty, \infty\right)$

 $H(s) = \frac{1}{C_3 s}$

10.19 INVALID-ORDER-19 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_3}{C_3 R_3 s + 1}$$

10.20 INVALID-ORDER-20 $Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right)$

$$H(s) = \frac{C_3 R_3 s + 1}{C_3 s}$$

10.21 INVALID-ORDER-21 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, L_3s + \frac{1}{C_3s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{C_3 s}$$

10.22 INVALID-ORDER-22 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 1}$$

10.23 INVALID-ORDER-23 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{C_3 s}$$

10.24 INVALID-ORDER-24 $Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \infty\right)$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}$$

10.25 INVALID-ORDER-25 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \infty\right)$

$$H(s) = R_3$$

10.26 INVALID-ORDER-26 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{1}{C_3 s}$$

10.27 INVALID-ORDER-27 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_3}{C_3 R_3 s + 1}$$

10.28 INVALID-ORDER-28 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 R_3 s + 1}{C_3 s}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{C_3 s}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 1}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{C_3 s}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \infty, \infty, \infty\right)$$

$$H(s) = R_3$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{1}{C_3 s}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + 1}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{C_3 s}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{C_3 s}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 1}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{C_3 s}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \infty, \infty, \infty\right)$$

$$H(s) = R_3$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{1}{C_3 s}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + 1}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{C_3 s}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{C_3 s}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 1}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{C_3 s}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}$$

10.49 INVALID-ORDER-49 $Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ R_3, \ \infty, \ \infty, \ \infty\right)$

 $H(s) = R_3$

10.50 INVALID-ORDER-50 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \infty\right)$

 $H(s) = \frac{1}{C_3 s}$

10.51 INVALID-ORDER-51 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ \infty, \ \infty, \ \infty\right)$

 $H(s) = \frac{R_3}{C_3 R_3 s + 1}$

10.52 INVALID-ORDER-52 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \infty\right)$

 $H(s) = \frac{C_3 R_3 s + 1}{C_3 s}$

10.53 INVALID-ORDER-53 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \infty\right)$

 $H(s) = \frac{C_3 L_3 s^2 + 1}{C_3 s}$

10.54 INVALID-ORDER-54 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \infty\right)$

 $H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 1}$

10.55 INVALID-ORDER-55 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \infty\right)$

 $H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{C_3 s}$

10.56 INVALID-ORDER-56 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \infty\right)$

 $H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}$

10.57 INVALID-ORDER-57 $Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3, \infty, \infty, \infty\right)$

 $H(s) = R_3$

10.58 INVALID-ORDER-58 $Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{1}{C_3s}, \infty, \infty, \infty\right)$

 $H(s) = \frac{1}{C_3 s}$

10.59 INVALID-ORDER-59
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + 1}$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{C_3 s}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, L_3s + \frac{1}{C_3s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{C_3 s}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 1}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+R_3+\frac{1}{C_3s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{C_3 s}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}$$

11 PolynomialError