

Реализация кросс-платформенной библиотеки цифровой обработки изображений в мобильной микроскопии

В.А. Кутуев, группа 16.Б11-мм

Научный руководитель: доц., к.т.н. Ю.В. Литвинов

Консультант: Я.А. Кириленко

Рецензент: П.М. Катунин, MELScience

Оптическая микроскопия

- Широкая доступность для массового использования
 - о Школы
 - Университеты
 - Самостоятельное изучение
- Качество изображения оставляет желать лучшего из-за бюджетных оптических систем
 - Малая глубина фокуса
 - Артефакты в оптической системе (пыль, грязь, дешевые линзы)
 - Разрешающая способность

Цифровая обработка изображений

- Большое количество методов цифровой обработки изображений для улучшения качества
 - о Фокус-стекинг
 - Удаление артефактов: пыль, капли воды и грязи
- Смартфон удобный инструмент для захвата и обработки

Удаление пыли

Фокус-стекинг

5/19

Отбор кадров

6/19

Постановка задачи

Цель

Разработать кроссплатформенную мобильную библиотеку для цифровой обработки набора кадров, снятых с использованием оптического микроскопа

Задачи

- Реализовать кроссплатформенную мобильную библиотеку
 - Алгоритм удаления пыли
 - Алгоритмы выбора кадров
 - Алгоритмы фокус-стекинга
- Реализовать систему для визуального сравнения результатов работы алгоритмов и провести опрос для сравнения их качества
- Создать мобильное приложение замера скорости работы алгоритмов, реализованных в библиотеке
- Создать прототип мобильного приложения для апробации библиотеки

Мобильные приложения

- Инструменты для управления камерой или микроскопом
 - AirLab
 - DinoDirect
 - TinyCapture
 - Labscope Material
- Инструменты для макросъёмки
 - HedgeCam 2
 - Magnifier Camera
 - Cozy Magnifier & Microscope
- Редакторы фото
 - Snapseed
 - Adobe Photoshop Mix
 - o Pixl

Создание мобильных приложений

- АРІ целевых платформ
 - Android: Kotlin, Java
 - iOS: Swift, Objective-C
- Кросс-платформенные фреймворки
 - Xamarin
 - React Native
 - Flutter

Кроссплатформенность

Архитектура библиотеки

Система визуального сравнения

Набор 1/33 Изображение

Desktop-интерфейс

Мобильный интерфейс

Результаты опроса (1)

Результаты опроса (2)

Сравнение результата фокус-стекинга с убиранием пыли и без

Результаты опроса (3)

Сравнение кадра из стека и результата фокус-стекинга

Приложение для замеров производительности

Результаты замеров производительности

Разрешение видео	Удаление пыли, с.	Отбор кадров		Фильтрация	Фокус-стекинг		
		Parts, Mc.	BestN, мс.	отобранных кадров, мс.	pixel based, мс.	neighbor based, мс.	transform based, c.
464×848	1,32±0,01	56,3±0,5	36,7±0,1	2,0±0,1	42,8±0,4	340,1±9,3	3,2±0,1
768×1024	4,02±0,01	156,4±1,5	126,9±1,1	3,5±0,1	78,8±0,5	773,0±4,7	6,1±0,1
1080×1920	67,16±0,21	615,9±7,6	472,9±3,4	11,4±0,1	222,7±3,6	2544,1±27,1	24,3±0,3

В таблице представлены доверительные интервалы для времени работы алгоритмов с доверительной вероятностью 0,95 Замеры проводились на смартфоне Huawei Nexus 6P, CPU: Qualcomm Snapdragon 810 MSM8994, RAM: 3 ГБ

Прототип мобильного приложения

Достигнутые результаты

- В кроссплатформенной библиотеке реализованы:
 - Алгоритм удаления пыли
 - Алгоритмы выбора кадров
 - Алгоритмы фокус-стекинга
- Создано web-приложение для визуального сравнения результатов работы алгоритмов, с его помощью проведён опрос для сравнения качества работы алгоритмов, реализованных в библиотеке
- Проведены замеры скорости работы алгоритмов
- Создан прототип мобильного приложения, использующий разрабатываемую библиотеку

19/19