UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

Proyecto Curricular de Matemáticas INTRODUCCIÓN AL CÁLCULO TALLER **Funciones**

- 1. El área de la superficie de un cilindro circular recto cerrado es de $50 \pi cm^2$. expresar el volumen del cilindro en función de su radio.
- 2. Un comerciante vende 750 de sus productos al mes, a un precio de \$ 25.000 cada uno, y por cada \$4.000 de reducción en el precio de cada uno, se venden cada mes 40 productos más. Si s representa el número de veces que se reduce el precio en \$4.000, exprese el ingreso generado cada mes por ventas del producto como función de s.
- 3. Exprese el área del rectángulo en función del radio del círculo.

4. El punto (3,1) pertenece a la recta que pasa por los puntos (b,0) y (a,0), exprese el area del triángulo formado por la recta y los ejes de coordenadas en función de **a**

5. Determine el dominio y el rango de las siguientes funciones, elabore una tabla de valores y represente cada función en un plano xy

a)
$$f(x) = \frac{x-2}{3x+2}$$

b)
$$f(x) = \frac{4x^2-4}{2x-2}$$

c)
$$f(x) = 5x^2 + 4x - 2$$

d)
$$f(x) = \frac{4x^2+4}{2x^2-8}$$

e)
$$f(x) = \frac{x^3 + 3x^2 + 2x}{x^2 + 3x + 2}$$

$$f(x) = \sqrt[3]{4-2x}$$

$$g) f(x) = \frac{\sqrt{x+3}}{x-2}$$

h)
$$f(x) = \frac{x}{|x|}$$

6. Si
$$f(x) = 3x^2 + x - 5$$
. Hallar:
a) $\frac{f(x-2)-f(x)}{2}$, b) $\frac{f(x+4)-f(x)}{-4}$, c) $\frac{f(x-h)-f(f)}{h}$

- 7. Un asesor comercial cobra \$ 75.000 por una consulta inicial con duración de máximo una hora y \$ 100.000 por cada hora adicional dedicada al proyecto, exprese el cobro del asesor en función de la cantidad total de horas dedicadas al proyecto.
- 8. Exprese \mathbf{y} en función de \mathbf{x} , como también el área del triángulo ΔABC

9. Dada la función: $g(x) = \sqrt{x-2}$ trace la gráfica de las funciones:

a)
$$g_1 = g(x) + 5/2$$
 b) $g_2(x) = g(x+3)$,
c) $g_3(x) = g(x+2) - 2$, d) $g_4(x) = -3g(x)$.

10. Dada la función $h(t) = |t^2 - 3|$ trace la gráfica de la funciones:

a)
$$h_1(t) = h(t) - 3$$
, b) $h_2(t) = h(t+5)$, c) $h_3(t) = h(t-2) + 2$ d) $h_4(t) = -h(t)$

11. Un tanque de agua tiene forma de tanque circular recto, con una altura de 7 metros y un radio

de 3 metros si el tanque se llena a una profundidad de \mathbf{h} metros y \mathbf{x} el radio sobre la superficie del agua, exprese el volumen de agua en el tanque en función de \mathbf{x} .

12. Exprese el área del semicírculo en función del radio.

- 13. Se desea cortar un alambre de 30 cm de longitud, en dos partes, con una se forma un cuadrado y con la otra una circunferencia, exprese el área del cuadrado y de el círculo en función del lado del cuadrado.
- 14. Dada la gráfica de la función y = f(x) contestar:

- a) Determine: f(-5), f(-4), f(-2), f(0), f(1), f(2), f(4), f(5).
- b) ¿Cuáles son los ceros de f(x)?
- c) ¿En qué intervalos f(x) > 0?
- d) ¿En qué intervalos f(x) es negativa?
- *e*) ¿En qué intervalos f(x) es creciente?
- f) ¿En que intervalos f(x) es decreciente?
- 15. A partir de la función $f(x) = \sqrt{x}$, represente las funciones:
 - a) f(x) + 3
 - b) f(x+3)

c)
$$f(x+3)+3$$

d)
$$f(x-2)-4$$

- 16. A partir de la función $g(x) = |x^2 2|$, represente las funciones:
 - a) g(x) + 4
 - b) g(x-4)
 - c) g(x-2)-3
 - d) g(x+3)-5
- 17. Exprese la distancia **d**, entre el punto (1,4) y el punto (x,y), en la parábola que tiene ecuación $y=x^2+1$
- 18. Exprese la distancia **d**, entre el punto (5,2) y el punto (x,y), en la curva $y=2-\sqrt{x}$.
- 19. Exprese el área superficial de un cilindro circular recto cerrado de altura 10 centímetros en función de su volumen.
- 20. Se desea cortar una caja abierta con una hoja de 20 por 10 centímetros, cortando cuadrados iguales en las esquinas de lado x, hallar el volumen y el área superficial de la caja en función de x.

21. Determine si las siguientes funciones son pares, impares o ni par ni impar justifique:

a)
$$f(x) = 2x^2 - 5/3$$

b)
$$g(x) = 4x^3 + \sqrt{2}x$$

c)
$$f(t) = \frac{t^3}{3t^2+1}$$

d)
$$y = \frac{x^3 + 3x - 5}{x^2 - 3x + 1}$$

e)
$$h(x) = \sqrt{x^2 - 1}$$

$$f) y = \frac{2x^2-1}{x-2x^3}$$

22. Dadas la funciones: $f(x) = x^2 - 1$, $g(x) = \sqrt{x^3 + 4}$, $h(x) = \frac{2x+1}{x-2}$, $p(x) = \frac{1}{x^2-4}$, $i(x) = x^4$ y $l(x) = \sqrt{x}$. Hallar:

a)
$$h(x) + p(x)$$

b)
$$1 - g(x)^2$$

c)
$$h(x) \circ l(x)$$

d)
$$g(x)[l(x) + f(x)]$$

$$e) [p(x)/h(x)] \circ f(x)$$

$$f)$$
 $(l \circ [h \circ g])_x$

$$g) [f(x) - g(x)] \circ h(x)$$

- 23. Responda y justifique cada una de las siguientes preguntas:
 - *a*) ¿La suma de funciones polinómicas de igual grado genera funciones de grado?:
 - *b*) ¿El producto de funciones polinómicas genera funciones de grado?
 - c) ¿La diferencia de funciones polinómicas genera funciones de grado?
 - *d*) ¿El dominio de la función suma entre dos funciones polinómicas está dado por?
 - e) ¿El dominio de la función producto entre dos funciones polinómicas está dado por?
 - f) ¿El dominio de la función cociente entre dos funciones polinómicas está dado por?
 - *g*) ¿El dominio de la función composición entre dos funciones dado por?
 - *h*) ¿Qué relación existe, en general, entre las gráficas de f y f⁻1?
- 24. Identifique cuales de las siguientes funciones son inyectivas, sobreyectivas, biyectivas o ninguna.

a)
$$f(x) = 3 - \frac{2}{3}x$$

b)
$$f(x) = \frac{x-5}{2x}$$

$$c) \ f(x) = \sqrt{3 - 2x}$$

$$d) \ f(x) = \sqrt{1 - x^2}$$

e)
$$f(x) = x^2 - 3$$

$$f) \ f(x) = x^3 - 1$$

g)
$$f(x) = \frac{3x+4}{5}$$

h)
$$f(x) = -2x^2 + 5x - 1$$

25. Si $f(x) \circ f^{-}1(x) = 1$. Realice las restricciones que sean posibles al dominio y el codominio para hallar la función inversa de:

$$a) f(x) = \frac{x-5}{2x}$$

$$b) \ f(x) = \sqrt{3 - 2x}$$

c)
$$f(x) = \sqrt{1 - x^2}$$

d)
$$f(x) = x^2 - 3$$

e)
$$f(x) = x^3 - 1$$

$$f(x) = \frac{3x+4}{5}$$

g)
$$f(x) = -2x^2 + 5x - 1$$

h)
$$f(x) = \frac{2x^2 - 1}{x - 2x^3}$$

i)
$$f(x) = |2x + 1|$$