Using Big Data to Minimize Fraud, Waste, and Abuse (FWA) in United States Healthcare

Paul Marks Indiana University Online Student Shepherdsville, Kentucky 40165 pcmarks@iu.edu

ABSTRACT

The cost of healthcare includes the loss of billions of dollars due to Fraud, Waste, and Abuse (FWA). Many of the schemes to commit FWA are very intricate and require the analysis of many data sources simultaneously. The question answered here is "How can we use big data analysis to help minimize these costs and thus optimize the money spent on healthcare?"

KEYWORDS

i523, hid327, fraud, waste, abuse, healthcare, health insurance

1 INTRODUCTION

FWA is an issue that affects everyone in the U.S. since healthcare services are leveraged by everyone at some point and the costs for those services include the money lost to FWA. The three components of FWA are varying degrees of culpability. The Centers for Medicare and Medicaid Services (CMS) in part defines fraud as "knowingly and willfully executing, or attempting to execute, a scheme or artifice to defraud any health care benefit program". Waste as "overusing services, or other practices that, directly or indirectly, result in unnecessary costs", and Abuse as "involves payment for items or services when there is not legal entitlement to that payment and the provider has not knowingly and/or intentionally misrepresented facts".[9] While the percentage of cost attributable to FWA can vary from insurer to insurer, Medicare estimates that 11 percent of its payments for Original Medicare are improper primarily due to FWA.[8] In combination these cost the United States healthcare system 80 billion dollars[6] annually.

Advances in big data technology can help reduce these losses. Big data offers the ability to look at data in real time to determine if a claim is legitimate or not. Historically, due to the amount of data involved, this type of analysis would have to happen after the claims have been paid with specific models targeting specific schemes to identify FWA. Big data can help lower the cost of health-care in the United States by identifying FWA claims and stopping payments before they occur.

2 HEALTHCARE FRAUD, WASTE, AND ABUSE ENVIRONMENT

It is easy to understand the problem FWA poses. Healthcare funds are of limited quantity. Insurance helps to spread the cost among groups of people, but does not provide limitless funds. As costs increase, so do premiums or direct payments for healthcare. In order for as many people as possible to be able to have access to healthcare costs have to be managed. There are many ideas

for helping to provide affordable healthcare, but there is much discussion and disagreement on exactly how to do that. Reducing costs by eliminating as much FWA as possible is one solution that everyone, except for those participating in and profiting from FWA schemes, can agree on.

Data to fight FWA is not just the information gathered by a doctor or other provider while working with a patient. In order to fully utilize advances in technology, multiple sources of information must be brought together. Sources include claims (current and historic), clinical, provider, geospatial, and other sources of information. This allows for data analytics to take a deeper look into not only a single participant, but others who may be related to that participant. Providers who are involved in improper billing tend to be associated with other providers who have a higher frequency of being involved with improper billing as well. For big data analysis this involves looking at corporate ownership, who providers use as a billing agent, and who they tend to refer patients to for other service in order to uncover a larger pattern of FWA collusion.[13]

The problem for big data to solve is the size of all this data and how to process it fast enough. Using CMS as an example, being a government entity much of their data is available publicly, it is easy to get an idea of the amount of data. Medicare processed 1.2 billion claims in 2014, covering 53.8 million beneficiaries, with 6,142 hospitals, and 1,173,802 non-institutional providers[7]. In addition payments must be made within a specific timeframe depending on the insurer and their agreement with providers. This time includes all the normal steps to verify and process a claim so the time available to examine the data for FWA is very limited.

It must be noted that when working with this type of data, Protected Health Information (PHI) and Personally Identifiable Information (PII), that there are many regulations about the ability to access and secure it which must be followed. While this makes it more difficult to get access to the data it can be overcome by working cooperatively with the various data owners.

2.1 Big Data Techniques for FWA

So how can big data be used to approach this issue? Leveraging big data tools such as Hadoop, analysts could divide the different sources of information into data lakes, looking at each source separately, and then combining the results. Table 1 on page 5 shows sources of information and what level of FWA they are generally related to. The highest level combines sets of data from all data views. It looks for patterns across criminal networks which may involve many providers and beneficiaries. By looking at things more globally across potentially billions of records, big data provides the ability to perform complex network analysis which can uncover

intricate conspiracies perpetrated by coordinated efforts of many providers and facilities.[14]

While there are simple cases of fraud which follow a typical known pattern, this is only a portion of the problem. Fraud schemes change and can involve many different entities which may not seem to be related on the surface. The more data which can be combined and analyzed, the more fraud that can be found. The need for this type of analysis is because much of the FWA committed in healthcare is done so by providers working in conjunction with each other and providers working in conjunction with their patients.[5] "Social network analysis can help identify relationships, links and hidden patterns of information sharing and interactions within potentially fraudulent clusters, including:

- Patient relationships with known perpetrators of health care fraud;
- Links between recipients, businesses, assets and relatives and associates;
- Links between licensed and non-licensed and sanctioned providers; and
- Inappropriate relationships between patients, providers, employees, suppliers and partners"[5]

In order to keep up with organized fraud activities, there must be a dedicated practice of data analytics which is ever evolving.

Traditionally programs have been written to look for specific sets of circumstances. Leveraging existing knowledge about the data and using it to look for specific patterns is known as supervised in big data terms. "There are several supervised fraud detection methods such as: Bayesian Networks, Neural Networks (NNs), Decision Trees, and Fuzzy Logic."[3] Neural Networks and Decision Trees have a higher tolerance for handling large amounts of noisy data and are therefore more popular than the other methods. There are also unsupervised methods in which data is fed into the system without preexisting notions of what to look for[3]. Unsupervised methods sort through data and find relationships and groupings of related information, find clusters of what could be considered normal, and determine where the outliers are.

Because unsupervised methods only identify outliers, applying unsupervised methods to healthcare data requires that outliers then have to be verified as FWA or acceptable patterns. "Patrick McIntyre, SVP of Health Care Analytics at Anthem, one of the country's biggest payers, credits machine learning and big data with their ability to "identify potentially fraudulent or wasteful claims on a daily basis." The algorithms are run at the same time as claims are batch processed, so questionable claims are immediately identified, flagged and sent to the clinical coding experts for review."[4] This greatly increases the ability to fight FWA by having the machine pinpoint where to look in all the data available to the reviewer. Suddenly the task of finding fraud is not as daunting. By leveraging both of these techniques FWA can be discovered at an accelerated pace. The number of models the system knows will grow over time as more data is fed into it and more patters are discovered and verified.

2.2 Current Solutions

Many companies currently offer solutions for detecting FWA in healthcare payment systems. They include the ability to identify FWA claims during the payment cycle so that payment is not made to suspect claims. Truven Health[1], Healthcare Fraud Shield[12], and SAS[10], just to name a few, all have systems they offer based on big data. The specifics of the systems they offer are proprietary in nature so many of the descriptions are generic. Truven Health claims their solution mixes technology and healthcare intelligence. They have a model which groups services together for form a picture of the full view of the illness including inpatient, outpatient, and pharmaceuticals. This data in analyzed by knowledge rules based on clinical classifications and medical literature. This helps to identify wasteful or unnecessary service patterns in clinical and billing abuse which are hard to detect. Using this approach "the analyst can understand the entire range and cost of services provided to a patient during a single episode of illness, which then is aggregated to profile a provider's entire practice."[1]

SAS materials include the ability to find hundreds of millions of dollars in savings before claims are paid by taking an enterprise approach to FWA.[10] Their solution incorporates the rules and models into the claims process so companies can process the rules against all of their claims instead of sample sets. This helps to uncover more schemes and "spot linked entities and crime rings, which can help stem larger losses."[11]. The U.S. Federal government is also investing heavily into FWA analytics. "The CMS has awarded defense contractor Northrop Grumman Corp. a \$ 91 million contract to develop and implement a second generation of an advanced analytics system, called the Fraud Prevention System, to help identify high-risk claims in Medicaid and Medicare."[2]

2.3 Future uses of Big Data Analytics

Currently there is still a certain amount of honor built into healthcare. "The system's inherent structure of trust enables both simple billings errors and illicit actors to hide in the shadows of the murky deep as overpayments quietly siphon money away from legitimate care."[13] If a claim is submitted by a valid entity, using the correct process, and everything is in order then it is most likely paid. For many claims this is done without any specific proof of the services being provided. With more and more healthcare information being digitized this may not be the case in the future. X-rays, lab tests, clinical notes, etc. are all being stored digitally. Computers are now able to interpret images and unstructured text very accurately. By linking this data to claims data the clinical information could be required as part of claims payment. An x-ray of broken bone, notes which support a diagnosis, Magnetic Resonance Imaging files, could all be interpreted automatically. Not only would the data be used to compare to the claims information, but to other images/notes on file to ensure that the same files were not being submitted with multiple claims. The system could know what one individual medical history looks like compared to another similar to how facial recognition is able to match like images. Requiring and being able to validate more information before services are paid for would help the reduce the ability of perpetrators of FWA to be able to get reimbursed for services they should not. This level of verification would not be possible without the ability to process massive amounts of data quickly.

Historically the payers of most healthcare claims, insurers, have not had the ability to examine actual evidence that a service has

2

taken place on a broad scale. (It is done manually on a specific case or audit basis.) Through the use of advances in big data and combining current and new data stores such as electronic health records into the payment process, a difference can be made in the amount of money lost to FWA in healthcare. Data from providers must be run against entity resolution solutions. Complex claims analysis, including rules-based clinical reviews, must be part of the normal pre-payment workflow leveraging predictive analytics to stop payments on billions of dollars worth of FWA claims before they are made. "This is not just a health care imperative, but a national economic imperative that must be addressed immediately." [5] The technology exists today that can help protect the integrity of the healthcare system and the quality of care for Americans. [5]

3 CONCLUSIONS

While there may be disagreement on many aspects of healthcare in America, everyone should agree that eliminating Fraud, Waste, and Abuse within the system is the right thing to do. FWA costs billions of dollars annually. Just a 1 percent reduction in the estimated 80 billion dollars annually would result in 800 million dollars in savings. With this amount of money at stake significant investments should continue to be made in leveraging advanced big data technologies into solving this problem. Due to the continued rise in the amount of data collected traditional programming cannot keep up with the pace. Advanced techniques must be leveraged which can learn in an unsupervised manner. The future of the best methods for fighting FWA in healthcare will be a combination of this analysis and teams specializing in the rules and regulations of healthcare in the United States. The unsupervised methods will work through massive amounts of structured and unstructured data breaking it down into cases and schemes which are most likely FWA. These will be reviewed, confirmed or denied as accurate, and fed back into overall FWA platform. As this cycle continues over and over the ability to fight FWA in United States Healthcare will get better. While Big Data may never eliminate FWA in Healthcare it can help to minimize it and save the country billions of dollars a year.

ACKNOWLEDGMENTS

The author would like to thank Dr. Gregor von Laszewski for his support and suggestions to write this paper. It has helped to expand my knowledge in how modern data analytics can help to save FWA which has plagued the healthcare system.

REFERENCES

- [1] Truven Health Analytics. 2017. Program Integrity. Online. (2017). http://truvenhealth.com/your-healthcare-focus/government/program-integrity
- [2] Virgil Dickson. 2016. Northrop Grumman wins \$ 91 million CMS contract for fraud detection. Online. (04 2016). http://www.modernhealthcare.com/article/ 20160407/NEWS/160409912
- [3] Namrata Ghuse, Pranali Pawar, and Amol Potgantwar. 2017. An Improved Approch For Fraud Detection In Health Insurance Using Data Mining Techniques. International Journal of Scientific Research in Network Security and Communication 5, 3 (06 2017), 27–33.
- [4] Erin Hitchcock. 2017. The Role of Big Data in Preventing Healthcare Fraud, Waste and Abuse. Online. (09 2017). https://www.datameer.com/company/ datameer-blog/role-big-data-preventing-healthcare-fraud-waste-abuse/
- [5] Mark Isbitts. 2017. Preventing Health Care Fraud with Big Data and Analytics. Online. (2017). http://www.lexisnexis.com/risk/insights/ health-care-fraud-layered-approach.aspx

- [6] Vinil Menon and Parikshi Sheth. 2016. Big Data Analytics Can Be a Game Changer for Healthcare Fraud, Waste, and Abuse. Online. (04 2016). https://www.hfma.org/Content.aspx?id=47523
- [7] United States Department of Health and Human Services. 2015.
 2015 CMS Statistics. Online. (12 2015). https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/CMS-Statistics-Reference-Booklet/Downloads/2015CMSStatistics.pdf
- [8] United States Department of Health and Human Services. 2016. FY 2016 Agency Financial Report. Online. (11 2016). https://www.hhs.gov/sites/default/files/ fy-2016-hhs-agency-financial-report.pdf
- [9] United States Department of Health and Human Services. 2017. Combating Medicare Parts C and D Fraud, Waste, and Abuse Web-Based Training Course. Online. (01 2017). https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/Downloads/CombMedCandDFWAdownload.pdf
- [10] Inc. SAS Institute. 2017. Health Insurance Get full coverage for your big data challenges. Online. (2017). https://www.sas.com/en_us/industry/health-insurance.html
- [11] Inc. SAS Institute. 2017. SAS Fraud Framework for Health Care. Online. (2017). https://www.sas.com/en_us/software/fraud-framework-for-health-care.html
- [12] Healthcare Fraud Shield. 2017. FWAShield A Fully Integrated Fraud, Waste and Abuse Software System. Online. (2017). http://www.hcfraudshield.com/ fwashield.aspx
- [13] Rodger Smith. 2016. Using Big Data in the Hunt for Healthcare Fraud, Waste, and Abuse Payers must leverage all the big data analytics tools at their disposal to hunt down healthcare fraud, waste, and abuse. Online. (04 2016). https://revcycleintelligence.com/news/ using-big-data-in-the-hunt-for-healthcare-fraud-waste-and-abuse
- [14] Dallas Thornton, Roland M. Mueller, Paulus Schoutsen, and Jos van Hillegersberg. 2013. Predicting Healthcare Fraud in Medicaid: A Multidimensional Data Model and Analysis Techniques for Fraud Detection. Procedia Technology 9, Supplement C (2013), 1252 – 1264. https://doi.org/10.1016/j.protcy.2013.12.140 CENTERIS 2013 - Conference on ENTERprise Information Systems / ProjMAN 2013 - International Conference on Project MANagement/ HCIST 2013 - International Conference on Health and Social Care Information Systems and Technologies.

[Table 1 about here.]

4 BIBTEX ISSUES

5 ISSUES

DONE:

Example of done item: Once you fix an item, change TODO to DONE

5.1 Writing Errors

DONE:

Errors in title, e.g. capitalization - missing an M

5.2 Citation Issues and Plagiarism

DONE:

Need to paraphrase long quotations (whole sentences or longer)

3

1 Types of Fraud and their related Sources[14]

5

Table 1: Types of Fraud and their related Sources[14]

		Phantom Billing	Duplicate Billing	Upcoding	Unbundling	Excessive or Unnecessary Services	Kickbacks
Level 1	Single Claim, or Transaction				*	*	
Level 2	Patient / Provider		*		*	*	
Level 3	a. Patient	*	***	*	***	*	
	b. Provider	**		***	*	***	
Level 4	a. Insurer Policy / Provider	**		*	**	**	*
	b. Patient / Provider Group	*	*	*	*	*	
Level 5	Insurer Policy / Provider Group	**		**	**	**	*
Level 6	a. Defined Patient Group	**		*	*	**	**
	b. Provider Group	**		***	**	***	*
Level 7	Multiparty, Criminal Conspiracies	**		**	*	**	***

Usefulness: * Low ** Medium *** High