

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Fernando Quintana Ayudante: Daniel Acuña León

## Ayudantía 1 EPG3310 - Probabilidad 13 de Marzo

1. Una colección no vacía M de subconjuntos de X se llama "clase monótona" si, para cada sucesión monótona creciente  $(E_n)$  en M y cada sucesión monótona decreciente  $(F_n)$  en M, los conjuntos

$$\bigcup_{n=1}^{\infty} E_n, \qquad \bigcap_{n=1}^{\infty} F_n$$

pertenecen a M. Demuestre que una  $\sigma$ -álgebra es una clase monótona. Además, si A es una colección no vacía de subconjuntos de X, entonces existe una clase monótona más pequeña que contiene a A (también llamada "clase monótona generada por A").

- 2. Sea  $(S, \Sigma, \mu)$  un espacio medible y  $\Sigma_{\mu}$  la completación de  $\Sigma$  relativa a  $\mu$ . Demuestre que  $\Sigma_{\mu}$  es una  $\sigma$ -álgebra.
- 3. El conjunto de Cantor es construido removiendo los tercios centrales de segmentos de línea en [0,1] del siguiente modo: Sea  $M_1$  el tercio central de [0,1], esto es,  $M_1=(1/3,2/3)$ . Sea  $M_2$  la unión de los tercios centrales de  $[0,1]\setminus M_1$ , i.e.  $M_2=(1/9,2/9)\cup (7/9,8/9)$  y así sucesivamente. El conjunto de Cantor C es definido entonces como  $[0,1]\setminus\bigcup_{n=1}^{\infty}M_n$ .
  - a) Demuestre que C tiene medida de Lebesgue 0.
  - b) Sea  $x = (0.a_1a_2...)_3 = \sum_{n=1}^{\infty} a_n/3^n$  la expansión en base 3 de  $x \in [0,1]$ . Demuestre que  $x \in C$  si y sólo si  $a_n \in \{0,2\}$  para todo  $n \ge 1$ .
  - c) Demuestre que C es no numerable.
- 4. Sea  $(S, \Sigma, \mu)$  un espacio medible y f una función Borel medible no negativa en S. Sea  $p \in (0, \infty)$  y  $\epsilon \in (0, \infty)$ . Demuestre que:

$$\mu\{s: f(s) \ge \epsilon\} \le \frac{1}{\epsilon^p} \int_S f^p d\mu$$