

Dual Simplex Method

-> Special type of Simplex.

optimality is maintained in all the iteration for min Cj-Zj \ge 0 is optimal.

Il we get negative value Dual Simplex is not applicable.

Initially the Solution may not be feasable for Min Soln ≥ 0 (Non-negative) it can be injeasable initially.

If the problem is feasable in an iteration. then the procedure will be Stopped. because Soution is feasable & optimal.

Min $z = x_1 + 2x_2 + 3x_3$ $2x_1 - x_2 + x_3 \ge 4$ $x_1 + x_2 + 2x_3 \le 8$ $x_2 - x_3 \ge 2$ $x_1, x_2, \text{ and } x_3 \ge 0$

Convert ≥ to ≤

For Minimizath only
$$=$$
 type is hequired
 $\Rightarrow -2x_1 + x_2 - x_3 \le -4$
 $x_1 + x_2 + 2x_3 \le 8$
 $-x_2 + x_3 \le -2$
 $\Rightarrow -2x_1 + x_2 - x_3 + s_1 = -4$
 $x_1 + x_2 + 2x_3 + s_2 = 8$
 $-x_2 + x_3 + s_3 = -2$
 $= x_1 + 2x_2 + 3x_3 + 0s_1 + 0s_2 + 0s_3$

	Cj	1	2	3	\bigcirc	0	0	Solution
CB;	B. V	火 1	\mathcal{X}_2	X3	S_1	52	S ₃	201M(N)
	Si	-2	ſ	-	1	0	O	-4
Ō	S ₂	l	ι	2	O	1	O	8
0	Sz	0	-(1	Q	0	1	-2
	Zj	O	O	0	O	0	0	
	C; - Z;	1	2	3	0	0	O	

we need to see if the problem is fearable or not. We will find Smallest value from Solm

Determination		0	Ent	ring	V	wriable	
	1	4	3	O	0	O	
	KI	\mathcal{X}_2	X3	S_1	S 2	S ₃	
$-(C_j - Z_j)$	-1	- 2	-3	O	0	Q	
(Tanore +ve & o vulne of S1)	-2	١	-1	1	O	Ò	
(Ignore +ve's 0 vulue of S1) Ratio	1/2	_	3	_	_	—	
2j							
C; - Z;							

find the Smallest value

CB;	C; B. V	1 1/21	2 N2	3 X3	<u>o</u> S ₁	O S ₂	S ₃	Solution
1	261	١	-1/2	1/2	1/2	O	٥	-2
Ó	S ₂	0	3/2					
0	Sz							
	2;	1	-1/2	1/2	-1/2	O	0	
	Cj - Zj	0	5/2	5/2	1/2	0	0	

$$S_2 Row = 01d Value - (key (olumn * New Row))$$

$$\Rightarrow 1 - (1*1)$$

$$\Rightarrow 1 - (1 * -12) = 32$$

$$S_2 = 0 \frac{3}{2} \frac{3}{2} \frac{1}{2} 1 0$$

 $S_3 = 0 -1 1 0 0 1$

After finding $G_j - 2_j$ check optimulity