Packaging Evolution: From Basics to 3D Integration

Module 3: Thermal Simulations of Semiconductor Packages Using ANSYS

This module provides a hands-on walkthrough for performing thermal simulations of Flip-Chip BGA semiconductor packages using **ANSYS Icepak**, part of the **ANSYS Electronics Desktop** (**AEDT**) suite. The process includes package modelling, power source assignment, meshing, and thermal analysis with visualization.

3.1 Introduction to ANSYS Electronics Desktop (AEDT)

ANSYS Electronics Desktop is a unified simulation environment that integrates:

- Electromagnetic (EM) Simulation
- Thermal Analysis
- Signal and Power Integrity Checks
- Electromechanical Co-simulation

It is widely adopted in electronic systems design, particularly for PCBs, IC packages, and complete systems.

3.2 Setting Up a Flip-Chip BGA Package in Icepak

Step 1: Launch Icepak

- Open ANSYS Workbench
- Navigate to Project → Insert Icepak Design
- Click the **Icepak** tab to enter the modelling interface

Step 2: Create Flipchip BGA Package

• Go to Toolkit → Geometry → Packages → Flipchip BGA

• In the configuration window, input:

o **xLength**: 15 mm

o yLength: 15 mm

Package Thickness: 3 mm

Model Type: Detailed

Symmetry: Full

• Click **OK** to generate the 3D model

Step 3: Explore the Package Components

- In the **Model Tree**, expand Solids to view:
 - o Ball Group

Substrate

o Die Underfill

o Die

3.3 Material Definitions and Power Assignment

Step 4: Review Material Assignments

Check and update material properties for all solids if needed (e.g., epoxy, silicon, copper).

Step 5: Assign Thermal Power Sources

5.1 For the Die:

- Under Project Manager → Thermal, locate BGA1 die source
- Set Thermal Power Input: 1 W

• Choose "Source Thermal Model"

5.2 For the Substrate:

- Right-click Flipchip_BGA1_substrate → Assign Thermal → Source
- Set Thermal Condition to Fixed Temperature (Ambient)

Step 6: Add Temperature Monitors

- Right-click each component (Substrate, Die, Underfill)
- Choose Assign Monitor → Point
- Select Temperature and click OK

3.4 Meshing and Analysis Setup

Step 7: Generate Mesh

- Go to the Simulation tab → Click Generate Mesh
- Save the file if prompted
- Wait for the mesh to complete; resolve or note any warnings

Step 8: Review Mesh Quality

- Go to Mesh Visualization → Quality
- Inspect:
 - o Face Alignment

Skewness

Element Volume

Step 9: Add Thermal Analysis Setup

- In Project Manager, right-click Analysis → Add Analysis Setup
- Use default solver settings unless customization is required

3.5 Running Simulation and Viewing Results

Step 10: Validate the Simulation

- Click Validate in the top toolbar
- Ensure all green ticks are shown, this confirms a correct setup

Step 11: Run Simulation and Plot Temperature Field

- Click Analyse All to start the solver
- Upon completion, select the Flipchip BGA package in 3D view
- Right-click → Plot Fields → Temperature → Temperature
- In Plot Settings:
 - o Enable Specify Name/Folder
 - Choose Plot on Surface Only
 - o Enable Gaussian Smoothing for clarity

Final Output

A complete thermal simulation of the Flipchip BGA package is successfully executed for a **1 W power input**, with the temperature distribution visualized over the package components.

