Exercícios suplementares

- 1 Numa quinta de criação de animais pretende-se determinar a quantidade diária de milho, trigo e alfafa que devem compor a ração de cada animal de modo a serem satisfeitas certas exigências nutricionais. Na tabela seguinte são indicadas:
 - as quantidades de nutrientes presentes em cada quilograma de milho, trigo e alfafa
 - o custo, em unidades monetárias (u.m.), de um quilograma de milho trigo e alfafa

Nutrientes:	kg de milho	kg de trigo	kg de alfalfa
Hidratos de carbono	90	20	40
Proteínas	30	80	60
Vitaminas	10	20	60
Custo por kg (u.m.)	42	36	30

As quantidades diárias que cada animal necessita de hidratos de carbono, proteínas e vitaminas são pelo menos de 200, 180 e 150, respectivamente.

Sabendo que se pretende minimizar os custos da alimentação de cada animal, formule este problema como um modelo de Programação Linear.

2 – Considere a região admissível (S) de um problema de Programação Linear definida pelas seguintes restrições:

Resolva graficamente os seguintes problemas:

a) Max Z = x + y
s.a
$$(x,y) \in S$$

b) Min F = $-x - 2y$
s.a $(x,y) \in S$
c) Min G = $x + 2y$
s.a $(x,y) \in S$
d) Max W = $-x + y$
s.a $(x,y) \in S$

e) Min H =
$$x$$

s.a $(x,y) \in S$

3 – Considere a região admissível (T) de um problema de Programação Linear definida pelas seguintes restrições:

Resolva graficamente os seguintes problemas:

a) Min
$$Z = x + 2y$$

s.a $(x,y) \in T$
b) Max W = $3x + y$
s.a $(x,y) \in T$
c) Max G = $-x + y$
s.a $(x,y) \in T$

4 – Recorrendo ao Algoritmo Simplex Revisto e considerando a base inicial (x,z), resolva o seguinte problema de Programação Linear:

Min G =
$$3x + 2y + 4z$$

s.a $x - y + 2z \ge 5$
 $x + 2y + z \ge 5$
 $x, y, z \ge 0$

5 – Considere o seguinte problema de Programação Linear:

Max F =
$$3x + Y$$

s.a $x \ge 1$
 $y \ge 2$
 $x + y \le 5$
 $x, y \ge 0$

- a) Sabendo que as variáveis básicas óptimas são x, y e f₁, construa o quadro óptimo do Simplex.
- b) Admita que o coeficiente da variável y na função objectivo passou a ter o valor β ($\beta \in IR$). Determine:
 - i) Para que valores de β se mantém óptima e única a solução determinada em a).
 - ii) Para que valores de β é óptima a solução determinada em a) mas existem bases óptimas alternativas? Determine a solução óptima do problema nesta situação.

- c) Admita que ao problema inicial é adicionada uma nova variável não negativa w com coeficiente (-2) na função objectivo e coeficientes 1, 2 e 1 na primeira, segunda e terceira restrições respectivamente. Indique, justificando, se a solução determinada em a) permanece óptima.
- d) A introdução da restrição adicional $2x + y \ge 6$ altera a solução óptima determinada em a)? E altera a região admissível?