Introduction aux services réseaux - R2.05 Architecture des réseaux TD1

Michel Salomon

IUT de Belfort-Montbéliard Département d'informatique

Protocoles mis en œuvre dans Internet

- Description de la pile protocolaire
- Protocoles de la couche Réseau
 - Protocole IP
 - Adresse IP et rôle du préfixe ou masque de réseau
 - Adresses IPv4 dites privées ou réservées
 - Protocole ARP
 - Protocole ICMP
- Exercices

Description de la pile protocolaire - Rappel

- Suite de protocoles → l'ensemble des protocoles qui constituent la pile des protocoles utilisés dans Internet
- Souvent on parle de pile ou modèle TCP/IP, du nom des deux protocoles majeurs → ils permettent de connecter deux hôtes appartenant à des réseaux différents
 - TCP \rightarrow fait un transport fiable de bout en bout pour toute appli.
 - IP \rightarrow se charge du routage à travers des réseaux différents / Internet

Cependant, ce ne sont pas le seuls protocoles utilisés

Description de la pile protocolaire - Rappel

Couche Réseau - Internet Protocol

Caractéristiques

- Achemine des paquets (datagrammes) entre hôtes de réseaux diff.
 - Encapsulent des segments
 - Durée de vie limitée (champ *Time To Live* dans l'en-tête IP)
- De manière indépendante, sans connexion, via différents types de réseaux (Couche Liaison de données → Ethernet, FDDI, ATM, etc.)
- Sans garantir l'arrivée à destination
- Sans imposer de délai de transmission (Quality of Service)
- Un hôte / nœud est identifié par une adresse IP
 - Adresses IP publiques attribuées par l'IANA qui applique les
 - décisions de l'Internet Corporation for Assigned Names and Numbers
- Acheminement distant assuré par les routeurs
 - Utilisent des tables de routage
 - N'ont qu'une connaissance locale du réseau (routeurs voisins)
 - Font au "mieux" (politique best effort)

Couche Réseau - Internet Protocol

Adresse IP ⇒ 32 bits en IPv4 et 128 bits en IPv6

- Définit implicitement
 - Une adresse IP de réseau (network)
 - un numéro (ou adresse) d'hôte dans ce réseau

via un préfixe (IPv4/v6) ou masque de réseau (netmask - IPv4)

- Tout réseau a une adresse IP qui l'identifie
 - \rightarrow termine par un ou plusieurs bits à 0
- Existence d'adresses IP désignant simultanément plusieurs hôtes → adresse de diffusion ou broadcast → 2 types de com.
 - lacktriangle Point à point ou unicast
 ightarrow 1 source et 1 destination
 - 2 Point à multipoint ou $broadcast \rightarrow 1$ source et plusieurs dest.

Cette approche permet a un hôte source de déterminer si l'hôte destination appartient au même réseau (envoi direct \rightarrow routage direct)

Ou non (envoi en passant par un routeur \rightarrow routage indirect)

Michel Salomon

Couche Réseau - Internet Protocol

Existence d'adresses IPv4 dites privées ou réservées

- ullet Non routées sur Internet o paquets détruits par certains routeurs
- Notation utilisée dite décimale pointée
 - $\bullet~0.0.0.0 \rightarrow d\acute{e}signe~la~route~par~d\acute{e}faut$
 - 127.X.X.X → boucle locale
 Permet à une machine de s'"envoyer" des paquets, même sans carte / interface réseau, 127.0.0.1 = adresse de loopback
 - 10.0.0.1 à 10.255.255.254 (préfixe = 8)
 - \rightarrow vastes réseaux privés
 - 172.16.0.1 à 172.31.255.254 (préfixe = 12)
 - → moyens réseaux privés
 - 192.168.0.1 à 192.168.255.254 (préfixe = 16)
 - $\rightarrow \text{ petits r\'eseaux priv\'es}$

Adresses utilisées pour créer des réseaux privés accédant à Internet via la translation d'adresse (Network Address Translation)

 Blocs d'adresses anciennement associés aux classes de réseaux A,B et C → obsolète (aujourd'hui Classless InterDomain Routing)

Couche Réseau - Internet Control Message Protocol

Caractéristiques

- Permet de faire du contrôle d'erreur et de la gestion d'erreurs lors de l'acheminement d'un datagramme via IP
- Par exemple lorsqu'un hôte n'est pas accessible
- Différents types de message ICMP (un message est encapsulé dans un datagramme IP)
- Permet à un hôte / un routeur d'obtenir des informations ou d'indiquer une erreur (mise à jour des tables de routage)

Quelques commandes l'utilisant

- ping (permet d'obtenir le *Round Trip Time* délai aller/retour)
 - ullet Message ICMP_ECHO_REQUEST de la source o la destination
 - ullet Message ICMP_ECHO_REPLY de la destination o la source
- traceroute, netstat

Couche Réseau - Address Resolution Protocol

Caractéristiques

- Permet de trouver une adresse MAC / physique (par ex. Ethernet) à partir d'une adresse IP / logique
- Stockage des correspondance dans une table locale sur l'hôte dans le cache ARP (peut être affichée avec la commande arp)
- Obtention de l'adresse MAC par broadcast, puis unicast

Le broadcast utilise l'adresse MAC=ff:ff:ff:ff:ff

Retour et complément sur des notions déjà abordées en R2.04

Exercice 1 - Translation d'adresses

- Donner les différents types d'adresses permettant d'identifier une machine et pour chacune la couche où elle est utilisée
- Indiquer les protocoles qui permettent de passer d'un type d'adresse à un autre, du moins quand ils existent

Exercice 2 - Configuration réseau d'une machine

- Quelles informations sont nécessaires pour configurer l'accès réseau d'une machine? Identification de la machine; routage; etc.
- Quel est le rôle du préfixe / masque de réseau?
- Sous Linux, quels fichiers contiennent ces informations?

Exercice 3 - Communications et équipements d'interconnexion

• On considère l'architecture de réseau ci-dessous

formé de 9 machines reliées par 4 équipements d'interconnex. dont 2 sont indéterminés (E1 et E2)

 Bien que l'on parle que d'un réseau, il peut y avoir plusieurs sous-réseaux au sein de celui-ci

Exercice 3 (suite)

- On sait d'autre part que la masque utilisé dans ce réseau est 255.255.248 et que les adresses IP
 - \rightarrow 192.168.0.1,192.168.0.6, 192.168.0.12 et 192.168.0.18 sont attribuées aux machines
 - ightarrow doc, happy, grumpy et sleepy mais sans savoir quelle adresse est à quelle machine
- On vous demande de répondre aux questions suivantes :
 - Lorsqu'un paquet de diffusion ARP est émis par sneezy, quelles machines recevront ce paquet?
 - 2 Lorsqu'un paquet est émis par sneezy vers la machine bashful, quelles machines recevront ce paquet?
 - Oscillation
 Lorsqu'un paquet est émis par sneezy vers la machine sleepy, quelles machines recevront ce paquet?
 - Quelle est la valeur du préfixe?

Exercice 3 (suite)

- On sait d'autre part que la masque utilisé dans ce réseau est 255.255.248 et que les adresses IP
 - ightarrow 192.168.0.1,192.168.0.6, 192.168.0.12 et 192.168.0.18 sont attribuées aux machines
 - \rightarrow doc, happy, grumpy et sleepy mais sans savoir quelle adresse est à quelle machine
- On vous demande de répondre aux questions suivantes :
 - À partir des adresses IP et du masque de réseau proposer une façon d'assigner chacune des adresses IP à l'une des machines, puis en déduire la nature de l'équipement d'interconnexion E1
 - Enfin, sachant que l'adresse de diffusion du réseau de la machine dopey est 192.168.0.23 en déduire une affectation possible pour les 4 adresses IP et la nature de l'équipement d'interconnexion *E*2