- 1. Characterisation
 - If $Y \sim Exp(\theta)$, then $X = Y^{1/\gamma} \sim W(\theta, \gamma)$.
 - Probability Density Function (pdf):

$$f_X(x;\theta,\gamma) = f_Y(x^{\gamma};\theta) \left| \frac{dx^{\gamma}}{dx} \right|$$
$$= \frac{\gamma x^{\gamma-1}}{\theta} \exp\left(-\frac{x^{\gamma}}{\theta}\right)$$

• Cumulative Distribution Function (*CDF*):

$$F_X(x;\theta,\gamma) = \int_0^x \frac{\gamma u^{\gamma-1}}{\theta} \exp\left(-\frac{u^{\gamma}}{\theta}\right) du$$
$$= \left[-e^{-u^{\gamma}/\theta}\right]_{u=0}^x$$
$$= 1 - e^{-x^{\gamma}/\theta}$$

- 1. Characterisation (Continued)
 - Moments:

$$E_{\theta,\gamma}(X) = \theta^{1/\gamma} \Gamma\left(\frac{1}{\gamma} + 1\right) \qquad E_{\theta,\gamma}(X^2) = \theta^{2/\gamma} \Gamma\left(\frac{2}{\gamma} + 1\right)$$

RECALL:
$$\Gamma(x+1) = x\Gamma(x)$$
, $\Gamma(k) = (k-1)!$ and $\Gamma(1/2) = \sqrt{\pi}$.

· If $\gamma = 1$, then

$$E_{\theta,1}(X) = \theta\Gamma(2) = \theta;$$
 $E_{\theta,1}(X^2) = \theta^2\Gamma(3) = 2\theta^2$

· If $\gamma = 0.5$, then

$$E_{\theta,0.5}(X) = \theta^2 \Gamma(3) = 2\theta^2$$
 $E_{\theta,0.5}(X^2) = \theta^4 \Gamma(5) = 24\theta^4$

· If $\gamma = 2$, then

$$E_{\theta,2}(X) = \sqrt{\theta}\Gamma(3/2) = \frac{1}{2}\sqrt{\pi\theta}$$
 $E_{\theta,2}(X^2) = \theta\Gamma(2) = \theta$

- 1. Characterisation (Continued)
 - Quantiles (Percentiles):

$$\begin{split} x_p \text{ solves} : & Pr\{X \leq x_p\} = p \\ & \Longrightarrow \quad Pr\{X^\gamma \leq x_p^\gamma\} = p \\ & \Longrightarrow \quad Pr\{Y \leq x_p^\gamma\} = p \\ & \Longrightarrow \quad 1 - e^{-x_p^\gamma/\theta} = p \\ & \Longrightarrow \quad x_p = \left\{\theta \ln\left(\frac{1}{1-p}\right)\right\}^{1/\gamma}, \end{split}$$

- 2. Estimation of Parameters based on x_1, \ldots, x_n :
 - (Standard) Method of Moments (MOM): Solve system:

$$\theta^{1/\gamma}\Gamma\left(\frac{1}{\gamma}+1\right) = \overline{x}, \qquad \theta^{2/\gamma}\Gamma\left(\frac{2}{\gamma}+1\right) = \overline{x^2},$$

- \cdot Requires iterative (computer-based) solution.
- \cdot The MOM estimates for our data are found to be:

$$\hat{\theta}_{MOM} = 36.24$$
 $\hat{\gamma}_{MOM} = 0.4930.$

- 2. Estimation of Parameters based on x_1, \ldots, x_n (Continued):
 - Method of Percentiles (MOP): Solve:

$$\left\{\theta \ln \left(\frac{1}{1-p_1}\right)\right\}^{1/\gamma} = \hat{x}_{p_1}; \qquad \left\{\theta \ln \left(\frac{1}{1-p_2}\right)\right\}^{1/\gamma} = \hat{x}_{p_2},$$

for some choice of p_1 and p_2

So the MOP estimates are:

$$\hat{\gamma}_{MOP} = \frac{\ln\{-\ln(1-p_2)\} - \ln\{-\ln(1-p_1)\}}{\ln(\hat{x}_{p_2}) - \ln(\hat{x}_{p_1})}$$

$$\hat{\theta}_{MOP} = \exp\left[\hat{\gamma}_{MOP}\ln(\hat{x}_{p_1}) - \ln\{-\ln(1-p_1)\}\right]$$

- 2. Estimation of Parameters based on x_1, \ldots, x_n (Continued):
 - Method of Percentiles (MOP) (Continued):

For our data, MOP estimates based on upper and lower quartiles $(p_1=0.25,\,p_2=0.75)$ are:

$$\hat{\gamma}_{MOP} = \frac{\ln\{-\ln(0.25)\} - \ln\{-\ln(0.75)\}}{\ln(2836.75) - \ln(401)} = 0.8038$$

$$\hat{\theta}_{MOP} = \exp\left[0.8038\ln(401) - \ln\{-\ln(0.75)\}\right] = 429.94$$

since upper and lower quartiles of data are:

$$\hat{x}_{0.25} = x_{[24]} + 0.25(x_{[25]} - x_{[24]}) = 401$$

$$\hat{x}_{0.75} = x_{[72]} + 0.75(x_{[73]} - x_{[72]}) = 2836.75$$

- 2. Estimation of Parameters based on x_1, \ldots, x_n (Continued):
 - ullet Maximum Likelihood Estimate (MLE) Log-Likelihood Function:

$$l(\theta, \gamma) = n \ln \gamma - n \ln \theta + (\gamma - 1) \sum_{i=1}^{n} \ln x_i - \theta^{-1} \sum_{i=1}^{n} x_i^{\gamma}$$

Score equations:

$$\frac{\partial l(\theta, \gamma)}{\partial \theta} = -n\theta^{-1} + \theta^{-2} \sum_{i=1}^{n} x_i^{\gamma} = 0$$
$$\frac{\partial l(\theta, \gamma)}{\partial \gamma} = n\gamma^{-1} + \sum_{i=1}^{n} \ln x_i - \theta^{-1} \sum_{i=1}^{n} x_i^{\gamma} \ln x_i = 0$$

- · MLEs require iterative (computer-based) solution method.
- · For our data:

$$\hat{\gamma}_{MLE} = 0.7131; \qquad \hat{\theta}_{MLE} = 245.44$$

3. Goodness-of-Fit Testing:

- Pearson Chi-Squared Test:
 - \cdot Use equal-count bins from previous exponential calculations.

Table 2.5: Observed and Expected Claim Amounts (in \pounds 's) using the Weibull Distribution

Bin Range	O_i	$E_{i,MLE}$	$E_{i,MOM}$	$E_{i,MOP}$	Bin Range	O_i	$E_{i,MLE}$	$E_{i,MOM}$	$E_{i,MOP}$
0-260	12	18.6	33.4	17.7	2072-2618	5	5.9	3.9	6.5
260-545	18	10.7	10.7	11.9	2618-3285	6	5.6	3.7	6.0
545-860	10	8.7	7.5	10.0	3285 - 4145	6	5.4	3.6	5.5
860-1212	8	7.6	5.9	8.8	4145 - 5357	3	5.5	3.6	5.1
1212-1612	7	6.8	5.0	7.9	5357 - 7429	4	5.8	4.1	4.8
1612 - 2072	10	6.3	4.3	7.1	7429 +	7	9.2	10.3	4.8

$$X_{MLE}^2 = 12.07, df = 12 - 1 - 2 = 9, p$$
-value = 0.209

$$X_{MOM}^2 = 32.98, df = 12 - 1 - 2 = 9, p$$
-value = 0.000135

$$X_{MOP}^2 = 8.69, df = 12 - 1 - 2 = 9, p$$
-value = 0.466

- 3. Goodness-of-Fit Testing (Continued):
 - Pearson Chi-Squared Test (Continued):
 - · Calculating $E_{i,MLE}$'s:

$$E_{(a,b)} = nPr_{\theta,\gamma}(a < X \le b) = n\{F_X(b;\theta,\gamma) - F_X(a;\theta,\gamma)\}$$
$$= n\{e^{-a^{\gamma}/\theta} - e^{-b^{\gamma}/\theta}\}$$

· Using MLEs yields:

$$E_{(0,260.15),MLE} = 96 \left\{ 1 - e^{-260.15^{0.7131}/245.44} \right\} = 18.57$$

- 3. Goodness-of-Fit Testing (Continued):
 - Pearson Chi-Squared Test (Continued):
 - · Equal-count bin construction, 12 bins each with $E_i = 8$:
 - · For first bin, (0, b), solve:

$$8 = 96Pr_{\theta,\gamma}(0 < X \le b)$$
$$= 96\left\{1 - e^{-b^{\gamma}/\theta}\right\}$$
$$\implies b = \left\{\theta \ln(12/11)\right\}^{1/\gamma}$$

Using $\hat{\gamma}_{MLE}$ and $\hat{\theta}_{MLE}$ yields b = 73.16

· For next bin, (73.16, b), solve:

$$96 = 8\left\{e^{-73.16^{0.7131}/245.44} - e^{-b^{0.7131}/245.44}\right\}.$$

Yields b = 206.51. Continue.

·
$$X_{MLE}^2 = 16.5$$
, $df = 12 - 1 - 2 = 9$, p-value = 0.057

·
$$X_{MOM}^2 = 36$$
, $df = 12 - 1 - 2 = 9$, p-value = 0.0000396

$$X_{MOP}^{2} = 12, df = 12 - 1 - 2 = 9, p$$
-value = 0.213

- 3. Goodness-of-Fit Testing (Continued):
 - Pearson Chi-Squared Test (Continued):

ASIDE: Test
$$H_0: \gamma = 1$$
 vs. $H_A: \gamma \neq 1$.

- \cdot Tests whether Exponential is valid.
- \cdot Could use *MLE*-based confidence interval.
- \cdot Compare X^2 's for Weibull model vs. Exponential model.
 - · Difference in X^2 's should have χ^2 distribution with

$$df = \text{diff. in } \# \text{ of parameters for } H_0 \text{ and } H_A$$

 \cdot For our example, $d\!f\!=\!1$ and

$$X_{MLE,H_0}^2 - X_{MLE,H_A}^2 = 23 - 12.07 = 10.97$$

- p-value = 0.000926
- \cdot Must compare X^2 calculated using same bin structure.