Diagonalisation

Table des matières

1.	Déterminants.	2
	1.1. forme n-linéaires alternée. · · · · · · · · · · · · · · · · · · ·	2
	1.2. Déterminant d'une famille de E^n	4
	1.3. Déterminant d'un endomorphisme.	4
	1.4. Déterminant d'une matrice carrée.	5
	1.5. Déterminant d'une matrice triangulaire par blocs. · · · · · · · · · · · · · · · · · · ·	7
	1.6. Développements d'un déterminant par rapport à une colonne. · · · · · · · · · · · · · · · · · · ·	7
	1.7. Formule de Cramer.	8
2.	Reduction d'endomorphisme.	9
	2.1. Rappels sur les équations linéaires.	9
	2.2. Décomposition d'un espace vectoriel en sous-espace vectoriels stables. · · · · · · ·	9
	2.3. Sous- espaces propres. · · · · · · · · · · · · · · · · · · ·	10
	2.4. Polynomes caractéristique.	10
3.	Diagonalisation.	11
4.	Polynômes d'endomorphismes.	13
5.	Applications aux suites récurrentes.	14
6.	Système linéaire d'équations differentielles du 1^er ordre.	14
7.	Equations differentielles linéaires à coefficients constants.	14

Chapitre 1

1. Déterminants.

1.1. forme n-linéaires alternée.

Définition 1.1 (forme n-linéaire). Soit E un espace vectoriel, et $\varphi: E^n \to \mathbb{R}$ une application. On dit que φ est une **forme n-linéaire** si φ est linéaire par rapport à chaque variable i.e, $\forall x_1, -, x_i, -, x_n, y_i \in E, \forall \alpha, \beta \in \mathbb{R}$,

$$\varphi(x_1, -, x_{i-1}, \alpha x_i + \beta y_i, -, x_n) = \alpha \varphi(x_1, -, x_{i-1}, x_i, -, x_n) + \beta \varphi(x_1, -, x_{i-1}, y_i, -, x_n)$$

Exemples 1.2.

1. Montrons que $\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}; (x_1, x_2) \mapsto x_1 x_2$ est 2-linéaire. Soit $\alpha, \beta \in \mathbb{R}$. On a

$$(\alpha x_1 + \beta y_1)x_2 = \alpha(x_1x_2) + \beta(y_1y_2)$$
 et $x_1(\alpha x_2 + \beta y_2) = \alpha(x_1x_2) + \beta(x_1y_2)$.

- 2. $\varphi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}; (u^{\rightarrow}, v^{\rightarrow}) \mapsto u^{\rightarrow} \times v^{\rightarrow} \text{ est 2-linéaire (et symétrique)}.$
- 3. Le déterminant 2-2 est 2-linéaire.

Remarque 1.3. $\varphi(x_1, -, 0, -, x_n) = 0$.

Définition 1.4 (alternée). Soit φ une application n-linéaire. On dit que φ est **alternée** si

$$\forall i, j \in \{1, -, n\} \text{ avec } i \neq j, x_i = x_j \Rightarrow \varphi(x_1, -, x_n) = 0.$$

Proposition 1.5. Soit $f_1, -, f_n : E \to F$ n applications linéaires. Soit $\varphi : F^n \to \mathbb{R}$ n-linéaire. Alors

$$\varphi \circ (f_1, -, f_n) : E^n \to \mathbb{R}; x_1, -, x_n \mapsto \varphi(f_1(x_1), -, f_n(x_n))$$

est *n*-linéaire.

Démonstration. Puisque les f_1 , -, f_n sont linéaires, et que φ est n-linéaire, il est évident que $\varphi \circ (f_1, -, f_n)$ est n-linéaire.

Définition 1.6 (antisymétrie). Soit φ une application n-linéaire. On dit que φ est **antisymétrique** si

$$\forall i, j \in [1, n] \text{ avec } i \neq j, \varphi \big(x_1, -, x_i, -, x_j, -, x_n \big) = -\varphi \big(x_1, -, x_j, -, x_i, -, x_n \big)$$

Proposition 1.7. Soit φ une application n-linéaire et alternée. On ne change pas la valeur de $\varphi(x_1,-,x_n)$ en ajoutant à un des vecteurs de la famille une combinaison linéaire des autres. i.e, $\forall i \in \{1,-,n\}, \forall a_1,-,a_{i-1},a_{i+1},-,a_n \in \mathbb{R},$

$$\varphi\left(x_{1}, -, x_{i} + \sum_{j=1, j \neq i}^{n} \alpha_{j} x_{j}, -, x_{n}\right) = \varphi(x_{1}, -, x_{n})$$

Démonstration. Sans perte de généralité, on montre le cas où i = 1.

$$\varphi\left(x_1 + \sum_{j=2}^n \alpha_j x_j, -, x_n\right) = \varphi(x_1, -, x_n) + \sum_{j=2}^n \alpha_j \varphi(x_j, -, x_j, -, x_n)$$
$$= \varphi(x_1, -, x_n)$$

Car φ est alternée.

Proposition 1.8. Soit φ une application n-linéaire. φ est alternée si et seulement si φ est antisymétrique.

Démonstration.

 \Rightarrow Supposons que φ soit alternée. On pose $x_i = x_i$ Alors on a $\varphi(x_1, -, x_i, -, x_i, -, x_n) = 0$

$$\varphi(x_{1}, -, x_{i}, -, x_{j}, -, x_{n}) = \varphi(x_{1}, -, x_{i} + x_{j}, -, x_{j} + x_{i}, -, x_{n})$$

$$= \varphi(x_{1}, -, x_{i}, -, x_{j} + x_{i}, -, x_{n}) + \varphi(x_{1}, -, x_{j}, -, x_{j} + x_{i}, -, x_{n})$$

$$= \varphi(x_{1}, -, x_{i}, -, x_{j}, -, x_{n}) + \underline{\varphi(x_{1}, -, x_{i}, -, x_{i}, -, x_{n})}$$

$$+\underline{\varphi(x_{1}, -, x_{j}, -, x_{j}, -, x_{n})} + \varphi(x_{1}, -, x_{j}, -, x_{i}, -, x_{n}) \text{ car } \varphi \text{ est alternée.}$$

$$= \varphi(x_{1}, -, x_{i}, -, x_{i}, -, x_{i}, -, x_{n}) + \varphi(x_{1}, -, x_{i}, -, x_{i}, -, x_{n})$$

D'où

$$0 = \varphi(x_1, -, x_i, -, x_j, -, x_n) + \varphi(x_1, -, x_j, -, x_i, -, x_n)$$

$$\Leftrightarrow \varphi(x_1, -, x_i, -, x_j, -, x_n) = -\varphi(x_1, -, x_j, -, x_i, -, x_n)$$

Donc φ est antisymetrique.

 \Leftarrow Supposons que φ soit antisymétrique. Alors on a :

$$\varphi(x_1, -, x_i, -, x_j, -, x_n) = -\varphi(x_1, -, x_j, -, x_i, -, x_n)$$

En particulier, en posant $x_i = x_i$ on a :

$$\begin{split} \varphi(x_1,-,x_i,-,x_i,-,x_n) &= -\varphi(x_1,-,x_i,-,x_i,-,x_n) \\ &\Leftrightarrow 2\varphi(x_1,-,x_i,-,x_i,-,x_n) = 0 \\ &\Leftrightarrow \varphi(x_1,-,x_i,-,x_i,-,x_n) = 0 \end{split}$$

Proposition 1.9. Soit φ une application n-linéaire et alternée. Si $(x_1, -, x_n)$ est une famille liée alors $\varphi(x_1, -, x_n) = 0$

Démonstration. $(x_1,-,x_n)$ est liée donc il existe $\alpha_1,-,\alpha_n\in\mathbb{R}$ tel que $\alpha_1x_1+\ldots+\alpha_nx_n=0$ avec $\alpha_i\neq 0$ cas $\alpha_1\neq 0, x_1=-\frac{\alpha_2}{\alpha_1}x_2-\ldots-\frac{\alpha_n}{\alpha_1}x_n$, alors

$$\varphi(x_1, -, x_n) = \varphi\left(-\frac{\alpha_2}{\alpha_1}x_2 - \dots - \frac{\alpha_n}{\alpha_1}x_n, x_2, -, x_n\right)$$
$$= \text{TODO} = 0$$

Corollaire 1.10. Si $\dim(E) < n$ toutes les formes n-linéaires alternées sur E sont nulles.

Démonstration. Soit E un espace vectoriel, $x_1, -, x_n \in E$. Alors $(x_1, -, x_n)$ est liée donc $\varphi(x_1, -, x_n) = 0$.

Théorème 1.11. Si dim $(E \ge n)$ alors il existe des formes n-linéaires alternées sur E non nulles. De plus, si dim(E) = n deux formes n-linéaires alternées sur $E \varphi_1$ et φ_2 non nulles sont proportionnelles i.e, $\exists \lambda \in \mathbb{R}$ tel que $\forall x_1, -, x_n \in E, \varphi_2(x_1, -, x_n) = \lambda \varphi_1(x_1, -, x_n)$.

1.2. Déterminant d'une famille de E^n .

Lemme 1.12. Soit $m: E^2 \to \mathbb{R}$. Alors $a_m: E^2 \to \mathbb{R}$ définie par

$$a_m(x_1, x_2) = m(x_1, x_2) - m(x_2, x_1)$$

est bilinéaire antisymétrique.

Démonstration. Soit $x_1, x_2 \in E$. On montre l'antisymétrie.

$$a_m(x_1, x_2) = m(x_1, x_2) - m(x_2, x_1) = -(m(x_2, x_1) - m(x_1, x_2))$$
$$= -a_m(x_2, x_1)$$

П

La linéarité est évidente.

Théorème 1.13. Soit E un espace vectoriel de dimension n, et $B = (e_1, -, e_n)$ une base de E. Alors il existe une unique forme n-linéaire alternée: $\det_B : E^n \to \mathbb{R}$ telle que $\det_B(e_1, -, e_n) = 1$.

Démonstration. « cas n=2 » TODO VOIR MAXIME

Définition 1.14 (Déterminant). Soit E un espace vectoriel de dimension n, et $B = (e_1, -, e_n)$ une base de E. On appelle **déterminant** dans la base B la forme n-linéaire du Théorème 1.13 précédent

Théorème 1.15. Soit *E* un espace vectoriel de dimension *n*, et *B* une base de *E*.

Une famille $F = \{f_1, -, f_n\}$ de E est libre si et seulement si $\det_B(f_1, -, f_n) \neq 0$.

Dans ce cas on a:

$$\forall x_1, -, x_n \in E, \det_B(x_1, -, x_n) = \det_B(F)\det_F(x_1, -, x_n).$$

Démonstration. Soit $F = (f_1, -, f_n)$ une famille, $B = (e_1, -, e_n)$.

Si F est liée on a det_B est n-linéaire alternée. Alors det_B $(f_1, -, f_n) = 0$.

Si F est libre alors F est une base donc $\exists \lambda \in \mathbb{R}$, $\det_B = \lambda \det_F \text{ voir (Th\'eor\`eme 1.11)}$. En particulier,

$$\det_{B}(f_{1}, -, f_{n}) = \lambda \det_{F}(f_{1}, -, f_{n}) \underset{\text{par definition}}{=} \lambda \cdot 1$$

Or
$$1 = \det_B(e_1, -, e_n) = \lambda \det_F(e_1, -, e_n) \text{ d'où } \lambda \neq 0$$

D'où $\det_B(f_1, -, f_n) \neq 0$.

1.3. Déterminant d'un endomorphisme.

Théorème 1.16. Soit E un espace vectoriel de dimension n et $f: E \to E$ un endomorphisme. Alors il existe un unique réel $\det(f)$ tel que pour toute application φ n-linéaire alternée, et pour tout $(x_1, -, x_n) \in E$,

$$\varphi(f(x_1), f(x_n)) = \det(f)\varphi(x_1, -, x_n).$$

Remarque 1.17. En prenant $x_1, -, x_n = e_1, -, e_n,$

$$\det_{B}(f(B)) = \det F.$$

Démonstration. Existence: Soit φ une forme n-linéaire alternée non-nulle et

 $\psi: E^n \to \mathbb{R}; x_1, -, x_n \mapsto (f(x_1), -, f(x_n))$ qui est une forme n-linéaire alternée. Alors φ et ψ sont proportionnelles, i.e il existe $\lambda \in \mathbb{R}$ tel que $\psi = \lambda \varphi$ (Théorème 1.11).

Soit Φ une forme n-linéaire alternée quelconque, alors il existe $\alpha \in \mathbb{R}$ tel que $\Phi = \alpha \varphi$, et $\forall x_1, -, x_n \in E$,

$$\Phi(f(x_1), -, f(x_n)) = \alpha \varphi(f(x_1), -, f(x_n)) = \alpha \varphi(\psi(x_1, -, x_n))) = \lambda \Phi(x_1, -, x_n)$$

MYSTIQUE

Définition 1.18. Soit E un espace vectoriel de dimension n et $f: E \to E$ un endomorphisme. On appelle **déterminant de** f le réel $\det(f)$ du Théorème 1.16 précédent.

Proposition 1.19. Soit $f: E \to E$ et $g: E \to E$ deux endomorphismes. Alors, $\det(f \circ g) = \det(f) \det(g)$.

Démonstration. Soit $\varphi: E^n \to \mathbb{R}$ une application n-linéaire alternée, $x_1, -, x_n \in E$. On a:

$$\varphi(f \circ g(x_1), -, f \circ g(x_n)) = \det(f)\varphi(g(x_1), -, g(x_n)) \text{ par definition de det } (f).$$

$$= \det(f) \det(g)\varphi(x_1, -, x_n) \text{ par definition de } \det(g)$$

De plus:

$$\varphi(f \circ g(x_1), -, f \circ g(x_n)) = \det(f \circ g)\varphi(x_1, -, x_n)$$

Par unicité de det $(f \circ g)$, det $(f \circ g) = \det f \det (g)$.

Proposition 1.20. Soit E et F deux espaces vectoriels, $f: E \to F$ un isomorphisme d'espace vectoriel, et B une base de E. Alors f(B) est une base de F et

$$\det_{f(B)} f(F) = \det_B F.$$

Démonstration. $\det_{f(B)} f$ et \det_B sont deux formes n-linéaires alternées sur E qui valent 1 sur B donc elles sont égales.

Théorème 1.21. Soit $f: E \to E$ un endomorphisme. Alors, f est bijectif si et seulement si det $(f) \neq 0$ et on a :

$$\det(f^{-1}) = \frac{1}{\det(f)}.$$

Démonstration. Soit *B* une base de *E* un espace vectoriel.

On rappelle f est bijectif $\Leftrightarrow f(B)$ est une base. $\Leftrightarrow \det_B f(B) \neq 0$. Si f est bijectif, $f \circ f^{-1} = \mathrm{id}_E$ donc $\det(f \circ f^{-1}) = \det(\mathrm{id}_E) = \det f \det f^{-1}$ or $\det(\mathrm{id}_E) = 1$ D'où $\det(f^{-1}) = \frac{1}{\det(f)}$.

1.4. Déterminant d'une matrice carrée.

Définition 1.22. Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. On appelle **déterminant de** A

$$\det(A) = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots \\ a_{n1} & \cdots & a_{n,n} \end{vmatrix} := \det_{(e_1, -, e_n)}((a_{11}, -, a_{n1}), -, (a_{1n}, -, a_{nn}))$$

le déterminant dans la base canonique de \mathbb{R}^n des n vecteurs colonnes de A.

Théorème 1.23. Soit E un espace vectoriel de dimension finie, $f:E\to E$ un endomorphisme. Alors

$$\det f = \det M_{B,B}(f).$$

Où $M_{B,B}(f)$ est la matrice associée à f dans la base B.

Proposition 1.24. Soit $A, B \in M_{n \times n}(\mathbb{R}), \lambda \in \mathbb{R}$

- $(1) \det(AB) = \det(A) \det(B).$
- (2) A inversible $\Leftrightarrow \det A \neq 0$. Si A est inversible alors $\det(A^{-1}) = \frac{1}{\det(A)}$.
- (3) $\det(\lambda A) = \lambda^n \det(A)$.

Démonstration.

(1) Soit $f: E \to E$, $g: E \to E$, A, B les matrices associées respectivement à f et g. Alors la matrice associée a $f \circ g$ est $M_{B,B}(f \circ g) = AB$. Ainsi,

$$\det(AB) = \det M(f \circ g) = \det(f \circ g) = \det f \det g = \det A \det B.$$

- (2) De même en considérant les endomorphismes associés.
- (3) Par n-linéarité.

Remarque 1.25 (ATTENTION). $det(A + B) \neq det(A) + det(B)$

Théorème 1.26. Soit $A \in M_{n \times n}(\mathbb{R})$, E un espace vectoriel de dimension n, B une base de E, et $x_1, -, x_n$ tels que $x_i := a_{1i}e_1 + ... + a_{ni}e_n$. Alors

$$\det A = \det_B(x_1, -, x_n).$$

Démonstration. Soit $f: \mathbb{R}^n \to E$; base canonique \mapsto base $B = y_1, -, y_n \mapsto y_1 e_1 + ... + y_n e_n$. f est bien un isomorphisme. On a : $f(a_{1i}, -, a_{ni}) = x_i$. D'après la proposition,

$$\det_{f(C)} f(a_{1i}, -, a_{ni}) = \det_{C}(a_{1i}, -, a_{ni}) = \det_{A} = \det_{B}(x_{1}, -, x_{n}).$$

Remarque 1.27. Le déterminant est indépendant de la base *B* choisie.

Définition 1.28 (transposée). Soit $A \in M_{p,q}(\mathbb{K})$ avec

$$A = \begin{pmatrix} a_{1,1}, -, a_{1,q} \\ |, -, | \\ a_{p,1}, -, a_{p,q} \end{pmatrix}$$

Alors la transposée est notée ${}^tA \in M_{p,q}(\mathbb{K})$ est la matrice

$${}^{t}A = \begin{pmatrix} a_{1,1}, -, a_{p,1} \\ |, -, | \\ a_{1,q}, -, a_{p,q} \end{pmatrix}.$$

Théorème 1.29 (Admis). Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice carrée. Alors :

$$\det^t A = \det A$$
.

Remarque 1.30. Conséquence directe: Toutes les propriétés des déterminants qui ont éténdues sur les colonnes sont aussi valables en opérant sur les lignes.

Proposition 1.31. Le déterminant est une forme n-linéaire alternée. Ainsi :

- (1) Il y a n-linéarité du déterminant par rapport aux vecteurs colonnes (ou lignes).
- (2) Soit $\alpha \in \mathbb{R}$.

$$\alpha \det(\cdot) = \det(\alpha C_i)$$
.

- (3) Si on échange deux colonnes, le déterminant est multiplié par -1.
- (4) $\det A \neq 0 \Leftrightarrow \ker n$ vecteurs colonnes forment une famille libre

1.5. Déterminant d'une matrice triangulaire par blocs.

Théorème 1.32. Soit $A, B \in \text{Mat}(\mathbb{R})$ des matrices carrées, M une matrice carrée de la forme $M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. Alors :

$$\det M = \det A \det B$$
.

Démonstration. Soit B, C des matrices de dimension n,

 $\varphi_{B,C}: \mathbb{R}^n \to \mathbb{R}; (c_1, -, c_n)_{\text{vecteurs colonnes}} \mapsto \begin{vmatrix} A & C \\ 0 & B \end{vmatrix}. \Phi_{B,C} \text{ est } n\text{-linéaire alternée donc}$

$$\forall A \in \operatorname{Mat}(\mathbb{R}), \begin{vmatrix} A & C \\ 0 & B \end{vmatrix} = \varphi_{B,C}(c_1, -, c_n) = \lambda_{B,C} \det A.$$

En prenant $A=I_n$, det $A=1c_1$... incompréhensible... En faisant des opérations sur les colonnes, λ_B , $C=\begin{bmatrix}I_n & 0\\0 & B\end{bmatrix}$

Théorème 1.33 (même généralisé). Soit M une matrice carrée de la forme

$$M = \begin{pmatrix} A_1 & * & \cdots & * \\ 0 & A_2 & * & \vdots \\ 0 & \cdots & 0 & A_k \end{pmatrix} \text{ avec } (A_i)_{i \in \{1, -, k\}} \in \text{Mat}_{n \times n}(\mathbb{R}). \text{ Alors}$$

Remarque 1.34 (Cas particulier). Déterminant d'une matrice triangulaire (ou diagonale):

$$\begin{vmatrix} a_{11} & 0 & \cdots & \cdots \\ 0 & a_{22} & 0 & \cdots \\ 0 & \cdots & 0 & a_{nn} \end{vmatrix} = a_{11}a_{22} \cdot \ldots \cdot a_{nn}$$

1.6. Développements d'un déterminant par rapport à une colonne.

Définition 1.35 (Déterminant mineur). Soit $A = (a_{ij})_{i,j \in \{1,-,n\}} \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. On appelle **déterminant mineur** de A, relatif à a_{ij} , le determinant d'ordre n-1 obtenu en rayant dans A la i-ème ligne et la i-ème colonne. On le note Δ_{ij} .

Définition 1.36 (Cofacteur). Soit $A = (a_{ij})_{i,j \in \{1,-,n\}} \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. On appelle **cofacteur** de A relatif à a_{ij} ,

$$c(ij) = (-1)^{i+j} \Delta_{ij}.$$

Définition 1.37 (Comatrice). Soit $A = (a_{ij})_{i,j \in \{1,-,n\}} \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. On appelle **comatrice** de A la matrice des cofacteurs $(c_{ij})_{i,j \in \{1,-,n\}}$. On la note com A.

Théorème 1.38. Développement par rapport à la j-ième colonne.

Soit
$$A = (a_{ij})_{i,j \in \{1,-,n\}} \in \operatorname{Mat}_{n \times n}(\mathbb{R}).$$

$$\det A = a_{1j}c_{1j} + \dots + a_{nj}c_{nj}$$

Remarque 1.39. On a toujours intéret à développer suivant la ligne ou la colonne avec le plus de 0.

Exemple 1.40. Développement d'un déterminant par rapport à la deuxième colonne.

$$\begin{vmatrix} 1 & 0 & 1 & 0 \\ 2 & 4 & -2 & 1 \\ -3 & -3 & 3 & 2 \\ 1 & 0 & 5 & -3 \end{vmatrix} = -0 * \begin{vmatrix} 2 & -2 & 1 \\ -3 & 3 & 2 \\ 1 & 5 & -3 \end{vmatrix} + 4 * \begin{vmatrix} 1 & 1 & 0 \\ -3 & 3 & 2 \\ 1 & 5 & -3 \end{vmatrix} - (-3) * \begin{vmatrix} 1 & 1 & 0 \\ 2 & -2 & 1 \\ 1 & 5 & -3 \end{vmatrix} + 0 * \begin{vmatrix} 1 & 1 & 0 \\ 2 & -2 & 1 \\ -3 & 3 & 2 \end{vmatrix}.$$

Cette méthode reste très longue, on privilégira donc de faire d'abord en amont un pivot de Gauss sur la matrice afin d'intégrer le plus de 0 à la matrice: $\begin{vmatrix} 1 & 0 & 1 & 0 \\ 2 & 4 & -2 & 1 \\ -3 & -3 & 3 & 2 \\ 1 & 0 & 5 & -3 \end{vmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 4 & -4 & 1 \\ -3 & -3 & 6 & 2 \\ 1 & 0 & 4 & 9 \end{bmatrix}$ D'où

$$= -11 * 4 - 3 * 12 = -44 - 36 = -80.$$

Corollaire 1.41. Soit $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. On a :

$$A^{t}(\text{com}A) = \det(A)I_{n} = {}^{t}(\text{com} A)A$$

En particulier, si A est inversible,

$$A^{-1} = \frac{{}^{t}(\text{com}A)}{\det A}$$

Démonstration. $com(A)_{ij} = C_{ij}$ donc $^t com(A)_{ij} = C_{ji}$. Les coefficients du produit matriciel $A^t com(A)$ sont égaux à

$$(A({}^{t}\text{com }A))_{ij} = \sum_{k=1}^{n} a_{ik}({}^{t}\text{com }A)_{kj} = \sum_{k=1}^{n} a_{ik}c_{jk} = \begin{cases} \det A \text{ si } i = j\\ 0 & \text{si } i \neq j \end{cases}$$

Car le déterminant comporte deux fois les lignes a_{11}, a_{1k}, a_{in} ... On obtient l'autre formule en développant par rapport à une colonne.

Exemple 1.42. $A = \begin{pmatrix} a & b \\ a' & b' \end{pmatrix}$ Alors com $A = \begin{pmatrix} b' & -a' \\ -b & a \end{pmatrix}$.

 $\det(A) = ab' - ba'. A^{-1} = \frac{1}{ab' - ba'} \binom{b}{-a'} \binom{-b'}{a}$ En déduire si $ab' - ba' \neq 0$. $\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$ admet comme unique solution

$$\begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} \begin{pmatrix} c \\ c' \end{pmatrix} = \frac{1}{ab' - ba'} \begin{pmatrix} b'c - c'b \\ -a'c + ac' \end{pmatrix} => x = \frac{\begin{vmatrix} c & b \\ c' & b' \end{vmatrix}}{\begin{vmatrix} a & b \\ a' & b' \end{vmatrix}} \text{ et } y = \frac{\begin{vmatrix} a & c \\ a' & c' \end{vmatrix}}{\begin{vmatrix} a & b \\ a' & b' \end{vmatrix}}$$

1.7. Formule de Cramer.

Théorème 1.43. Soit (S) le système de n équations à n inconnues: $\begin{cases} a_{11}x_1 + ... + a_{1n}x_n = y_1 \\ ... & = ... \\ a_{n1}x_1 + ... + a_{nn}x_n = y_n \end{cases}$ Soit $A = (a_{ij})_{i,j \in \{1,-,n\}}$ (S) admet une unique solution si et seuleument si $\det A \neq 0$. Dans ce cas, la solution est donnée par

$$x_k = \frac{1}{\det(A)} \begin{vmatrix} a_{11} & \cdots & a_{1,k-1} & y_1 & a_{1,k+1} & \cdots & a_{1n} \\ & \cdot & \cdot & \cdot & & \cdot \\ a_{n1} & \cdots & a_{n,k-1} & y_n & a_{n,k+1} & \cdots & a_{nn} \end{vmatrix}$$

La *k*-ième colonne est remplacée par le vecteur de second membre.

Chapitre 2

2. Reduction d'endomorphisme.

2.1. Rappels sur les équations linéaires.

Proposition 2.1. Soit E, F deux sous espaces vectoriels, $y \in F$ l'ensemble des solutions $x \in E$ de l'équation linéaire de second membre f(x) = y est vide si $y \notin \text{Im}(f)$, est de la forme $x_0 + \text{ker}(f)$, x_0 solution particulière si $y \in \text{Im}(f)$.

Démonstration. Si l'ensemble des solutions $x \in E$ de f(x) = y n'est pas vide, il existe $x_0 \in E$ telle que $f(x_0) = y$. Soit $x \in E$. Alors x est solution de

$$f(x) = y \Leftrightarrow f(x) = f(x_0) \Leftrightarrow f(x - x_0) = 0 \Leftrightarrow x - x_0 \in \ker(f).$$

П

Définition 2.2. Soit E un espace vectoriel, F_1 , -, F_p des sous espaces vectoriels de E. On appelle **somme de Minkowski** l'ensemble des vecteurs de la forme $x_1 + ... + x_p$ avec $x_i \in F_i$ est un sous-espace vectoriel de E noté $F_1 + ... + F_p$.

Proposition 2.3. La somme de Minkowski est associative, commutative et 0 est l'unique élément neutre.

Définition 2.4. On dit que la somme $F_1 + ... + F_p$ est **directe** si pour tout vecteur $x_1 \in F_1, -, x_n \in F_n$ on a l'implication $x_1 + ... + x_p = 0 \Rightarrow x_1 = ... = x_p = 0$. Dans ce cas on la note $F_1 \oplus ... \oplus F_p$.

Proposition 2.5. La somme $F_1 + ... + F_p$ est directe si pour tout vecteur x_1 « de » F_1 , ..., x_n de F_n , l'ecriture $x_1 + ... + x_n$ est unique

Démonstration. Supposons par absurde que
$$x_1 + ... + x_n = y_1 + ... + y_n$$
 avec $x_i, y_i \in F_i$. $(x_1 - y_1) + ... + (x_n - y_n) = 0$. Comme $F_1 \oplus ... \oplus F_p, x_1 - y_1 = 0, -, x_n - y_n = 0$

Proposition 2.6. Soit F_1 , F_2 des espaces vectoriels de dimension p et q, $B_1 = (e_1, -, e_p)$ et $B_2 = (e_{p+1}, -, e_{p+q})$ des bases resepctives de F_1 et F_2 . Alors la réunion des bases est une base de la somme $F_1 + F_2$ si et seulement si la somme est directe. En particulier,

$$\dim(F_1 \oplus F_2) = \dim(F_1) + \dim(F_2).$$

Démonstration. Montrons que $(e_1, -, e_n)$ est une famille génératrice de la somme $F_1 + F_2$. Soit $y \in F_1 + F_2 \Rightarrow \exists x_1 \in F_1, x_2 \in F_2, y = x_1 + x_2$. Comme $(e_1, -, e_n)$ engendre F_1 ,

$$\exists \alpha_1, -, \alpha_p \in \mathbb{R}, x_1 = \sum_{i=0}^p \alpha_i e_i \text{ de même, } \exists \alpha_{p+1}, -, \alpha_{p+q} \in \mathbb{R}, x_1 = \sum_{i=p+1}^{p+q} \alpha_i e_i$$

2.2. Décomposition d'un espace vectoriel en sous-espace vectoriels stables.

Définition 2.7 (stable). Soit E un esapce vectoriel de dimension finie. Soit $u: E \to E$ une application linéaire. Soit F un sous espace vectoriel de E. On dit que F est stable par u si $u(F) \subset F$, i.e,

$$\forall x \in F, u(x) \in F.$$

9

Définition 2.8. Soit F un sous-espace vectoriel de E stable par u. La restriction de u à F, définie par: $u|_F: F \to E$ induit une application linéaire de F dans F que par abus de notation on notera $u|_F$. VOIR COURS

2.3. Sous- espaces propres.

Définition 2.9 (Valeur propre). Soit E un espace vectoriel de dimension finie ou infini, $u : E \to E$, et $\lambda \in \mathbb{R}$. On dit que λ est une **valeur propre** de u s'il existe un vecteur x non nul de E tel que $u(x) = \lambda x$.

Définition 2.10. Soi λ une valeur propre de u. On appelle vecteur de u (associé a la valeur propre λ) tout vecteur x non nul de E tel que $u(x) = \lambda x$.

Proposition 2.11. Soi $\lambda \in \mathbb{R}$, λ est une valeur propre de u si et seulement si

$$\ker(u + \lambda \operatorname{id}_E) \neq \{0\} \Leftrightarrow (u - \lambda \operatorname{id}_E)$$
 n'est pas injectif.

Démonstration. Soit $x \in E$.

$$u(x) = \lambda x \Leftrightarrow u(x) = \lambda \operatorname{id}_{E}(x) \Leftrightarrow u(x) - \lambda \operatorname{id}_{E}(x) = 0 \Leftrightarrow X \in \ker(u - \lambda \operatorname{id}_{E})$$

Définition 2.12 (sous-espaces propres). Soit $u: E \to E$, et λ une valeur propre de u. On appelle sous-espace propre associé à la valeur propre λ le sous-espace vectoriel stable par u, $\ker(u - \lambda \operatorname{id}_E)$.

Théorème 2.13. Soit $\lambda_1, -, \lambda_p$ p valeurs propres distinctes de u. Alors

$$\ker(u - \lambda_1 \operatorname{id}_E) \oplus ... \oplus \ker(u - \lambda_p \operatorname{id}_E).$$

Démonstration. Initialisation : p = 1. Il n'y a rien a démontrer.

Hérédité. Supposons la proposition vraie à un rang p-1 l'est-elle au rang p?

Soit $x_i \in \ker(u - \lambda_i \operatorname{id}_E)$ tels que $\sum x_i = 0$. En appliquant u à cette équation, on obtient $\lambda_1 x_1 + \ldots + \lambda_p x_p = 0$.

$$\begin{cases} x_1 + \dots + x_p &= 0 \\ \lambda_1 x_1 + \dots + \lambda_p x_p &= 0 \end{cases} \begin{cases} x_1 + \dots + x_p &= 0 \\ (\lambda_1 - \lambda_p) x_1 + \dots + \lambda_{p-1} x_{p-1} &= 0 \end{cases}$$

Comme la somme est directe, on a $(\lambda_1 - \lambda_p)x_1 = \dots = (\lambda_p - 1 - \lambda_p)x_{p-1} = 0$.

Comme λ_i sont distincts, $x_1 = ... = x_{p-1} = 0$, on obtient $x_p = 0$. On a montré que la somme $\ker(u - \lambda_1 \operatorname{id}_E) + ... + \ker(u - \lambda_p \operatorname{id}_E)$ est directe.

Proposition 2.14. Soit *E* un espace vectoriel de dimension $n, u : E \to E$ une application linéaire et $\lambda \in \mathbb{R}$. λ est une valeur propre si et seulement si $\det(u - \lambda \operatorname{id}_E) = 0$.

2.4. Polynomes caractéristique.

Définition 2.15. On appelle polynôme caractéristique de u noté χ_u la fonction $\chi_u(X) := \det(X \operatorname{id}_E - u)$.

Proposition 2.16. Soit E un espace vectoriel de dimension n, et $u: E \to E$ une application linéaire. Le polynome caractéristique de u, χ_u est un polynome unitaire de la forme

$$\chi_u(X) = X^n - \text{Tr}(u)X^{n-1} + \dots + (-1)^n \det(u).$$

avec Tr u :=« somme des éléments sur la diagonale de la matrice »

Exemple 2.17. Considérons $f: \mathbb{R}^4 \to \mathbb{R}^4$; $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \mapsto \begin{pmatrix} 3x+y+z+t \\ x+3y+z+t \\ x+y+3z+t \\ x+y+z+3t \end{pmatrix}$. Soit A la matrice associée à f dans la base canonique de \mathbb{R}^4 . $A = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix}$.

$$\chi_f(X) = \det(X \operatorname{id}_{\mathbb{R}^4} - f) = \det(XI_4 - A) = \det\left(X \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} - A\right) = \begin{vmatrix} X - 3 & -1 & -1 & -1 \\ -1 & X - 3 & -1 & -1 \\ -1 & -1 & X - 3 & -1 \\ -1 & -1 & X - 3 & -1 \\ -1 & -1 & X - 3 & -1 \end{vmatrix}$$

$$= \begin{pmatrix} X - 6 & -1 & -1 & -1 \\ X - 6 & X - 3 & -1 & -1 \\ X - 6 & -1 & X - 3 & -1 \\ X - 6 & -1 & X - 3 & -1 \\ X - 6 & -1 & X - 3 & -1 \end{vmatrix} = (x - 6) \begin{vmatrix} 1 & -1 & -1 & -1 \\ 1 & X - 3 & -1 & -1 \\ 1 & -1 & X - 3 & -1 \\ 1 & -1 & X - 3 & -1 \\ 1 & -1 & X - 3 & -1 \end{vmatrix}$$

$$= (X - 6) \begin{vmatrix} 1 & -1 & -1 & -1 \\ 0 & X - 2 & 0 & 0 \\ 0 & 0 & X - 2 & 0 \\ 0 & 0 & X - 2 & 0 \\ 0 & 0 & X - 2 & 0 \end{vmatrix} L_{1}_{L_3 - L_1}$$

$$= (X - 6)(X - 2)^3.$$

Corollaire 2.18. Les racines du polynome caracteristique d'une application u sont exactement les valeurs propres de u.

Théorème 2.19. Soit E un espace vectoriel de dimension finie n, F un sous espace vectoriel de E, $u: E \to E$ une application linéaire. F est tel qu'il soit stable par u. Alors $\chi_{u|_F}$, le polynome caractéristique de $u|_F$ divise le polynome caractéristique de u, χ_u .

Définition 2.20. Soit $u: E \to E$, λ une valeur propre de u. On appelle multiplicité de la valeur propre sa multiplicité en tant que racine du polynome caractéristique de u.

Théorème 2.21. Soit
$$u: E \to E$$
, λ une valeur propre de u de multiplicité k . Alors $1 \le \dim \ker(u - \lambda \operatorname{id}_E) \le k$.

Démonstration. Soit $F = \ker(u - \lambda \operatorname{id}_E)$ le sous-espace propre associé à al valeur propre λ , d sa dimension. Comme F n'est pas réduit à $\{0\}$, d>=1. F est stable par u.

Soit $x \in F$, alors $u(x) = \lambda x \in F$ car $x \in F$ et F est un sous-espace vectoriel. D'après le théorème préc&dent, $\chi_{u|_F}$ divise χ_u . Comme $u|_F$ est égale à $\lambda \operatorname{id}_F$,

$$\chi_{u|_F}(X) = (X - \lambda)^d$$

Puisque $(X-\lambda)^d$ divise $\chi(X),\lambda$ est une racine de χ_X de multiplicité d, supérieure ou égale à d. \square

3. Diagonalisation.

Définition 3.1 (Diagonalisable). Soit E un espace vectoriel et $u: E \to E$ un endomorphisme. On dit que u est diagonalisable si E est la somme (nécessairement directe) de tous les espaces propres de u.

Lemme 3.2. Soit E un espace vectoriel de dimension n, $u: E \to E$ une application linéaire, et $\lambda_1, -, \lambda_p$ les valeurs propres de u.

$$E = F_1 \oplus \cdots \oplus F_p \Leftrightarrow \sum_{i=1}^p \dim \ker(u - \lambda_i \operatorname{id}) = n.$$

Démonstration. Comme la somme des sous-espaces propres est directe, on a

$$\dim(\ker(u-\lambda_1 \operatorname{id}) \oplus \cdots \oplus \ker(u-\lambda_p \operatorname{id})) = \sum_{i=1}^p \dim \ker(u-\lambda_i \operatorname{id}).$$

De plus, un sous-espace de E coincide avec E si et seulement si sa dimension est égale à celle de E.

Corollaire 3.3. Soit $u: E \to E$ une application linéaire. Si u admet n valeurs propres distinctes, $\lambda_1, -, \lambda_n$, alors u est diagonalisable.

Démonstration. Comme λ_i est une valeur propre, $\dim(u - \lambda \operatorname{id}) \geq 1$ donc

$$n \ge \sum_{i=1}^{n} \dim \ker(u - \lambda_i \operatorname{id}).$$

Ainsi, d'après le lemme, *u* est diagonalisable.

Théorème 3.4. Soit E un espace vectoriel, $u: E \to E$ uen application linéaire. Les propriétés suivantes sont équivalentes.

- (1) *u* est diagonalisable.
- (2) Il existe une base de *E* formée de vecteurs propres de *u*.
- (3) Il existe une base de *E* dans laquelle la matrice de *u* est diagonale.
- (4) Le polynôme caracteristique de u est scindée dans $\mathbb{K}[X]$ et pour toute valeur propre, la mulitplicité est égale à la dimension du sous-espace propre associé.

Démonstration.

* 1. \Rightarrow 2. Soit λ_1 , -, λ_p toutes les valeurs propres u, et $(B_i)_{i \in \{1, -, p\}}$ des bases respectives de $\ker(u - \lambda_i \operatorname{id})$. Supposons que u est diagonalisable. Alors

$$E = \sum_{i=1}^{p} \ker(u - \lambda_i).$$

Comme la réunion des bases B_i est une base B de E.

- * 2. \Rightarrow 3. Soit $B=(e_1,-,e_n)$ une base de E formée de vecteurs propres de u. Comme e_i est un vecteur propre de u, il existe $\alpha_i \in \mathbb{K}$, $u(e_i)=\alpha_i e_i$ donc la matrice de u dans cette base est la matrice diagonale : mat.
- * 3. \Rightarrow 4. Supposons qu'il existe une base $B=(e_1,-,e_n)$ de E telle que la matrice D de E dans E soit diagonale donc E est un vecteur propre de E. Soit E0, E1 les éléments de la diagonale distincts deux à deux qui se retrouvent respectivement E1 fois , ... , E2 fois En échengeant les éléments de la base, nous pouvons supposer que E2 est la matrice par blocs :

$$u = \begin{pmatrix} \lambda_1 I_{m_1} & 0 & \cdots & 0 \\ 0 & \lambda_2 I_{m_2} & \cdots & 0 \\ 0 & 0 & \cdots & \lambda_p & I_{m_p} \end{pmatrix}$$

i.e nous pouvons supposer que $e_1, -, e_{m_1}$ sont m_1 vecteurs propres associés à λ_1 . $e_{m_1+1}, -, e_{m_1+m_2}$ sont m_2 vecteurs propres associés à λ_2 ... etc En calculant le polynome caractéristique de D,

$$\chi_u(X) = \prod_{i=1}^p (X - \lambda_i)^{m_i}$$

Donc $\chi_u(X)$ est scindé et a pour racines $\lambda_1, -, \lambda_p$ de multiplicité m_i . Soit $d_i = \dim \ker(u - \lambda_i \operatorname{id}_E)$.

Proposition 3.5. Soit E un espace vectoriel, $u: E \to E$ une application diagonalisable, $\lambda_1, -, \lambda_n$ les n valeurs propres de u (chacune étant écrite autant de fois que sa multiplicité). Alors :

Tr
$$u = \sum_{i=1}^{n} \lambda_i$$
 et det $u = \prod_{i=1}^{n} \lambda_i$.

 $D\acute{e}monstration$. Supposons que u soit diagonalisable. Alors il existe une base de E dans laquelle la matrice de u est diagonale.

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n1} \end{pmatrix}, \chi_A(X) = \prod_{i=1}^n (X - a_{ii})$$

docn les a_{ii} sont les valeurs propres de u.

$$\operatorname{Tr} u = \operatorname{Tr} A = \sum_{i=1}^{n} a_{ii} \text{ et det } A = \prod_{i=1}^{n} a_{ii}.$$

Corollaire 3.6. Soit u un endomorphisme tel que $\chi_u(X)$ soit scindé. Alors

Tr
$$(u) = \sum_{i=1}^{n} m_i \lambda_i$$
 et $det(u) = \prod_{i=1}^{n} \lambda_i^{m_i}$.

4. Polynômes d'endomorphismes.

Remarque 4.1 (Notation). Soit E un espace vectoriel, $u: E \to E$ une application linéaire. Pour tout $p \in \mathbb{N}$, on note u^p la composée p fois de u.

Définition 4.2. Soit u une application linéaire et A sa matrice associée On appelle valeur de P en u, l'application linéaire de E dans E, $P(u) := \alpha_q u^q + ... + \alpha_1 u + \alpha_0 \operatorname{id}_E$.

De même, on appelle valeur de P en A la matrice carrée $P(A) = \alpha_q A^q + ... + \alpha_1 A + \alpha_0$

Remarque 4.3. De manière générale, on peut remarquer que ces définitions ont un sens pour une \mathbb{K} -algèbre

Proposition 4.4. Soit E un esapce vectoriel de dimension n finie, B une base de E, $u: E \to E$, et A la matrice associée à u dans la base B. Alors A^p est la matrice de u^p dans la base B et P(A) est la matrice de P(u) dans la base B.

Démonstration. Considérons l'application $M: L(E) \to M_{n(\mathbb{R})}; u \mapsto A := M(u)$ est un isomorphisme de \mathbb{K} —algèbre.

Théorème 4.5. Soient $D, N \in M_{n \times n}(\mathbb{R})$ 2 matrices qui commuttent entre elles. Alors la formule du binôme de Newton s'applique.

$$(D+N)^r = \sum_{k=0}^r \binom{r}{k} D^k N^{r-k}$$

5. Applications aux suites récurrentes.

Théorème 5.1.

Soit
$$a_0, -, a_{k-1} \in \mathbb{C}$$
, et $\chi = X^k - a_{k-1}X^{k-1} - \dots - a_1X - a_0$.
On considère l'ensemble $\varepsilon \coloneqq \left\{ \left(u_n \right)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+k} = a_{k-1}u_{n+k-1} + \dots + a_0u_n \right\}$. Alors $\{ v_n = \lambda^n, \lambda \in \mathbb{R} \setminus 0 \} \in \varepsilon \Leftrightarrow \chi(\lambda) = 0$.

Théorème 5.2. Supposons que ce polynome admettent k racines distinctes simples $\lambda_1, -, \lambda_k$ Alors les k suites géométriques $(\lambda_1^n)_{n \in \mathbb{N}}, -, (\lambda_k^n)_{n \in \mathbb{N}}$ forment une base de ε .

6. Système linéaire d'équations differentielles du 1\er ordre.

Pour cette partie du cours, on notera S le système suivant définit pour tout $\alpha_1, -, \alpha_n \in \mathbb{R}^n$:

$$S := \begin{cases} x_1' = \alpha_{1,1} x_1 + \dots + \alpha_{n,1} x_n \\ \dots \\ x_n' = \alpha_{1,n} x_1 + \dots + \alpha_{n,n} x_n \end{cases}$$

Proposition 6.1. Soit
$$A \in M_{n \times n}, X : R \to \mathbb{R}^n; t \mapsto \begin{pmatrix} x_1(t) \\ \dots \\ x_n(t) \end{pmatrix}, \alpha_1, -, \alpha_n \in \mathbb{R}.$$

Les applications $x_1(t),...,x_n(t)$ sont solutions du système diffenrentielle (S) si et seulement si $\forall t \in \mathbb{R}, X'(t) = AX(t)$.

Démonstration. On rappelle que $X = \begin{pmatrix} x_1(t) \\ \dots \\ x_n(t) \end{pmatrix}$ est dérivable si et seulement si les $(x_i)_{i \in \{1, -, n\}}$ le sont. Dans ce cas, $X'(t) = \begin{pmatrix} x_{1'}(t) \\ \dots \\ x_{n'}(t) \end{pmatrix}$ La suite résulte donc d'une simple solution de système.

Proposition 6.2. Soit *E* un espace vectoriel, *B* et *C* deux bases de *E*.Un système différentielle admet des solutions dans la base *B* si et seulement si il en admet dans la base *C*.

Théorème 6.3. Soit $A \in M_{n \times n}$ diagonalisable, $\lambda_1, -, \lambda_n \in \mathbb{R}$ ses valeurs propres, $D = (v_1, -, v_n)$ une base de vecteurs propres.

(1) Les solutions du système différentiel S sont les fonctions de la forme:

$$X(t) = \sum_{i=1}^{n} C_i \exp(\lambda_i t) v_i, \quad (C_i)_{i \in \{1, -, n\}} \in \mathbb{R}.$$

- (2) Il existe une unique solution du système différentiel S vérifiant une condition initiale $X(0) = \Gamma$. Les constantes sont alors les $C_i = P^{-1}\Gamma$ où P^{-1} est la matrice de passage de D à la base canonique.
- (3) L'ensemble des solutions du système différentiel *S* est un espace vetcoriel de dimension *n*.

7. Equations differentielles linéaires à coefficients constants.

On notera S l'équation différentielle linéaire à coefficients constants d'ordre k,

$$(S) \coloneqq \left(y^{(k)} = a_{k-1} y^{(k-1)} + \dots + a_1 y' + a_0 y \right)$$

14

Théorème 7.1. Soit S le système d'équations précédent. Soit $P := X^k - a_{k-1}X^{k-1} - \dots - a_0$. Si P admet k racines,

(1) Les solutions de (E) sont de la forme

$$y(t) = \sum_{i=1}^{n} C_i \exp(\lambda_i t) v_i, \quad (C_i)_{i \in \{1, -, n\}} \in \mathbb{R}.$$

(2) Il existe une unique solution y de (E) vérifiant la condition initiale

$$\begin{cases} y(0) &= y_0 \\ y'(0) &= y_1 \\ \dots \\ y^{(k-1)}(0) &= y_{k-1} \end{cases}$$

(3) L'nesmble des solutions de (E) est un espace vectoriel de dimension k de base $\left(e^{\lambda_i t}\right)_{i\in\{1,-k\}}$ où λ_i désignent les racines de P.

Démonstration. Pour arriver à ce resultat on cehrche directement les solutions de la forme $y(t) = e^{\lambda t}$ en remplacant dans le système et divisant par $e^{\lambda t}$, on obtient que y est solution si et seulement si λ est solution du polynôme P.

Proposition 7.2. Toute équation différentielle linéaire d'ordre k est équivalente à un système de k équations du 1^{er} ordre.