Class 5: Data Viz with ggplot

Barry (PID: 911)

Table of contents

Background	1
Gene expression plot	7
Custom color plot	8
Using different geoms	9
Faceting	15

Background

There are many graphics systems available in R. These include "base" R and tones of add on packages like **ggplot2**.

Let's compare "base" and **ggplot2** briefly. We canuse some example data that is built-in with R called **cars**:

head(cars)

In base R I can just call plot()

plot(cars)

How can we do this with **gplot2**.

First we need to install the package. We do this install.packages("ggplot2"). I only need to do this once and then it will be available on my computer from then on.

Key point: I only install packages in the R console not withing quarto docs or R scripts.

Before I use any add-on package I must load it up with a call to library()

library(ggplot2)
ggplot(cars)

Every ggplot has at least 3 things:

- the data (in our case cars)
- the aesthetics (how the data map to the plot)
- the **geom**s that determine how the plot is drawn (lines, points, columns, etc.)

```
ggplot(cars) +
aes(x=speed, y=dist)
```



```
ggplot(cars) +
aes(x=speed, y=dist) +
geom_point()
```


For "simple" plots ggplot is much more verbose than base R but the defults are nicer and for complicated plots it becomes much more efficient and structured.

Q. Add a line to show the relationship of speed to stopping distance (i.e. add another "layer")

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_line()
```



```
p <- ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_smooth(se=FALSE, method="lm")</pre>
```

I can always save any ggplot object (i.e. plot) and then use it later for adding more layers.

```
p
```

[`]geom_smooth()` using formula = 'y ~ x'

Q. Add a title and subtile to the plot

[`]geom_smooth()` using formula = 'y ~ x'

My first ggplot Stopping distance of old cars

Gene expression plot

Read input data into R

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

Q. How many genes are in this wee dataset?

```
nrow(genes)
```

[1] 5196

Q. How many columns are there?

```
ncol(genes)
```

- [1] 4
 - Q. What are the column names?

```
colnames(genes)
```

- [1] "Gene" "Condition1" "Condition2" "State"
 - Q. How many "up" and "down" regulated genes are there?

```
table( genes$State )
```

```
down unchanging up
72 4997 127
```

Custom color plot

Q. Make a first plot of this data

Using different geoms

Let's plot some aspects of the in-built mtcars dataset.

head(mtcars)

```
mpg cyl disp hp drat
                                          wt qsec vs am gear carb
Mazda RX4
                 21.0
                           160 110 3.90 2.620 16.46
                           160 110 3.90 2.875 17.02
Mazda RX4 Wag
                 21.0
Datsun 710
                 22.8
                               93 3.85 2.320 18.61
Hornet 4 Drive
                 21.4
                        6
                           258 110 3.08 3.215 19.44 1 0
                                                           3 1
Hornet Sportabout 18.7
                        8
                           360 175 3.15 3.440 17.02 0 0
                                                           3
                                                                2
Valiant
                 18.1
                           225 105 2.76 3.460 20.22 1 0
                                                           3
                                                                1
```

Q. Scatter plot of mpg vs disp

```
p1 <- ggplot(mtcars) +
  aes(mpg, disp) +
  geom_point()

p1</pre>
```


$\mathbf{Q}.$ Boxplot of $\mathtt{gear}\ vs\ \mathtt{disp}$

```
p2 <- ggplot(mtcars) +
  aes(gear, disp, group=gear) +
  geom_boxplot()

p2</pre>
```


Q Barplot of carb

```
p3 <- ggplot(mtcars) +
  aes(carb) +
  geom_bar()

p3</pre>
```


Q. Smooth of disp vs qsec

```
p4 <- ggplot(mtcars) +
  aes(disp, qsec) +
  geom_smooth()

p4</pre>
```

 $[\]ensuremath{\mbox{`geom_smooth()`}}\ \ensuremath{\mbox{using method}}\ = \ensuremath{\mbox{'loess'}}\ \ensuremath{\mbox{and formula}}\ = \ensuremath{\mbox{'y}}\ \sim \ensuremath{\mbox{x'}}\ \ \ensuremath{\mbox{'}}\ \ensuremath{\mb$

I want to combine all these plots into one figure with multiple pannels.

We can use the ${f patchwork}$ package to do this.

```
library(patchwork)
( ( p1 | p2 | p3) / p4)
```

<code>`geom_smooth()`</code> using method = 'loess' and formula = 'y ~ x'

(p1 / p2 | p3 / p4)

 $\ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'$


```
ggsave(filename="myplot.png", width=5, height=3)

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
```

Faceting

```
# File location online
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.ts
gapminder <- read.delim(url)</pre>
```

And a wee peak

```
head(gapminder)
```

```
countrycontinentyearlifeExppopgdpPercap1AfghanistanAsia195228.8018425333779.44532AfghanistanAsia195730.3329240934820.85303AfghanistanAsia196231.99710267083853.10074AfghanistanAsia196734.02011537966836.19715AfghanistanAsia197236.08813079460739.98116AfghanistanAsia197738.43814880372786.1134
```

Q. How many countries are in this dataset?

```
length( table(gapminder$country) )
```

[1] 142

Q Plot gdpPercap vs lifeExp coloe by continent

```
ggplot(gapminder) +
  aes(x=gdpPercap, y=lifeExp, col=continent) +
  geom_point(alpha=0.3) +
  facet_wrap(~continent) +
  theme bw()
```


Warning: ggrepel: 624 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Warning: ggrepel: 359 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Warning: ggrepel: 300 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Warning: ggrepel: 24 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Warning: ggrepel: 396 unlabeled data points (too many overlaps). Consider increasing max.overlaps

