ORCS 4529: Reinforcement Learning

Shipra Agrawal

Columbia University Industrial Engineering and Operations Research

Contents I

MDP

Dynamic Programming (DP) based algorithms for RL

Q-learning

Deep Q-learning (DQN)

Policy-iteration with TD-learning Deep TD-learning

Convergence of Q-learning, TD-learning

Policy Gradient Methods

Contents I

MDP

Dynamic Programming (DP) based algorithms for RL

Q-learning

Deep Q-learning (DQN)

Policy-iteration with TD-learning

Deep I D-learning

Convergence of Q-learning, TD-learning

Policy Gradient Methods

Recall: Q-value iteration

- 1. Start with an arbitrary initialization $\mathbf{Q}^0 \in \mathbb{R}^{S \times A}$.
- 2. In every iteration k, improve the Q-value vector as:

$$\mathbf{Q}^{k}(s,a) = R(s,a) + \gamma \sum_{s'} P(s,a,s') \left(\max_{a'} Q^{k-1}(s',a') \right), \forall s, a$$

- 3. Stop if $||Q^k Q^{k-1}||_{\infty}$ is small.
- 4. Output policy π^k defined as $\pi^k(s) = \arg \max_a Q^k(s, a)$

Recall: Policy iteration using Q-values

- 1. Initialize policy π^0 .
- 2. In every iteration $k = 0, 1, 2, \ldots$,
 - ▶ (Policy evaluation) Compute value $Q^{\pi^k}(s, a)$, the Q-values of policy π^k for all s, a.
 - ► (Greedy Policy improvement) Compute new policy

$$\pi^{k+1}(s) := \arg\max_{a} Q^{\pi_k}(s, a), \forall s$$

3. Stop when $\pi^{k+1} = \pi^k$.

Relaxed stopping criteria: not much change in policy or its value.

Learning from observations

Unknown MDP model (R,P) of the environment, but can interact with the environment (take action a_t) to observe sample reward r_t and transition $s_t \to s_{t+1}$

$$\mathbb{E}[r_t|s_t = s, a_t = a] = R(s, a)$$
 $\Pr(s_{t+1} = s'|s_t = s, a_t = a) = P(s, a, s')$

Reinforcement Learning: DP based Algorithms

How to implement Q-value iteration and policy iteration using samples?

How to interact with the environment to generate useful samples?

Contents I

MDP

Dynamic Programming (DP) based algorithms for RL

Q-learning

Deep Q-learning (DQN)

Policy-iteration with TD-learning Deep TD-learning

Convergence of Q-learning, TD-learning

Policy Gradient Methods

Recall: Q-value iteration

- 1. Start with an arbitrary initialization $\mathbf{Q}^0 \in \mathbb{R}^{S \times A}$.
- 2. In every iteration k, improve the Q-value vector as:

$$\mathbf{Q}^{k}(s,a) = R(s,a) + \gamma \sum_{s'} P(s,a,s') \left(\max_{a'} Q^{k-1}(s',a') \right), \forall s, a$$

- 3. Stop if $||Q^k Q^{k-1}||_{\infty}$ is small.
- 4. Output policy π^k defined as $\pi^k(s) = \arg \max_a Q^k(s, a)$

First attempt: Implementing Q-VI with samples from environment

- 1. Start with an arbitrary initialization $\mathbf{Q}^0 \in \mathbb{R}^{S \times A}$.
- 2. For $t = 1, 2, \ldots$, observe s_t , take action a_t , observe reward r_t , next state s_{t+1} improve the Q-value at s_t , a_t only as:

$$\mathbf{Q}^{t}(s_{t}, a_{t}) = r_{t} + \gamma \left(\max_{a'} Q^{t-1}(s_{t+1}, a') \right)$$

- 3. Stop if $||Q^t Q^{t-1}||_{\infty}$ is small.
- 4. Output policy π^t defined as $\pi^t(s) = \arg \max_a Q^t(s, a)$

Justification

For the state action pair s_t , a_t , we have an unbiased estimator of the DP update

$$\mathbb{E}[r_t + \gamma \left(\max_{a'} Q^{t-1}(s_{t+1}, a')\right) | s_t = s, a_t = a]$$

$$= R(s, a) + \gamma \sum_{s'} P(s, a, s') \left(\max_{a'} Q^{t-1}(s', a')\right)$$

Concerns

- Error in update: Single sample used in every update.
 - ► We have an unbiased estimate of the Q-VI update but a large variance
 - (Why not take multiple samples before updating?)
 - Do not have unbiased estimate of Q-value
- Coverage: Update of only one component s_t , a_t : the visited state and action

Will it still converge? How to explore and update all states and actions? How to get more samples for important states and actions?

Q-learning

Mitigating the concerns

▶ Idea 1: Slow down the update

$$\mathbf{Q}^{t}(s_{t}, a_{t}) = (1 - \alpha_{t})Q^{t-1}(s_{t}, a_{t}) + \alpha_{t} \left(r_{t} + \gamma \left(\max_{a'} Q^{t-1}(s_{t+1}, a') \right) \right)$$

where $\alpha_t \in [0, 1]$ acts as a "learning rate".

Q-learning

Mitigating the concerns

▶ Idea 1: Slow down the update

$$\mathbf{Q}^{t}(s_{t}, a_{t}) = (1 - \alpha_{t})Q^{t-1}(s_{t}, a_{t}) + \alpha_{t} \left(r_{t} + \gamma \left(\max_{a'} Q^{t-1}(s_{t+1}, a') \right) \right)$$

where $\alpha_t \in [0, 1]$ acts as a "learning rate".

▶ Idea 2: Choose action a_t smartly:

Greedy:

$$a_t = \max_a Q^{t-1}(s_t, a_t)$$

Or ϵ -**Greedy**: Set a_t as a random action with probability ϵ , and

$$a_t = \max_a Q^{t-1}(s_t, a_t), \text{ w.p. } 1 - \epsilon$$

Or, other exploration-exploitation based methods

Q-learning algorithm (tabular setting)

- 1. Start with an arbitrary initialization $\mathbf{Q}^0 \in \mathbb{R}^{S \times A}$.
- 2. For $t = 1, 2, \ldots$, Observe s_t , take action a_t using a smart policy , observe reward r_t , next state s_{t+1} Improve the Q-value at s_t , a_t only as:

$$\mathbf{Q}^{t}(s_{t}, a_{t}) = (1 - \alpha_{t})Q^{t-1}(s_{t}, a_{t}) + \alpha_{t}(r_{t} + \gamma \left(\max_{a'} Q^{t-1}(s_{t+1}, a')\right))$$

- 3. Stop if $||Q^t Q^{t-1}||_{\infty}$ is small.
- 4. Output policy π^t defined as $\pi^t(s) = \arg \max_a Q^t(s, a)$

How to pick the actions? If ϵ -greedy that which ϵ ? How to set the learning rate? Varies across implementations.

SGD interpretation of Q-learning update

Recall goal is to have $Q^t \to_{t\to\infty} Q^*$ where for all s,a

$$Q^*(s,a) = R(s,a) + \sum_{s'} P(s,a,s') (\max_{a'} Q^*(s',a'))$$

At the time t, we get an estimates z_t of rhs at $s = s_t$, $a = a_t$.

$$z_t := r_t + \gamma \left(\max_{a'} Q^{t-1}(s_{t+1}, a') \right)$$

 $(z_t s \text{ are referred to as } target).$

We want to find \hat{Q} such that

$$\hat{Q}(s_t, a_t) \approx z_t, \forall t$$

Supervised learning view: find best fit by minimizing the squared loss over all samples:

$$\min_{\hat{Q}} \sum_{t} (\hat{Q}(s_t, a_t) - z_t)^2$$

SGD interpretation

$$\min_{\hat{Q}} \sum_{t} (\hat{Q}(s_t, a_t) - z_t)^2$$

Gradient of t^{th} term in objective with respect to \hat{Q}

$$2(\hat{Q}(s_t,a_t)-z_t)\mathbf{1}_{s_t,a_t}$$

SGD or online gradient descent: At iteration *t*:

$$\begin{split} \hat{Q}(s_t, a_t) &\leftarrow & \hat{Q}(s_t, a_t) - \alpha_t \underbrace{\left(\hat{Q}(s_t, a_t) - z_t\right)}_{\text{temporal difference}} \\ &= & (1 - \alpha_t) \hat{Q}(s_t, a_t) + \alpha_t z_t \end{split}$$

Useful interpretation for studying convergence and extensions to deep learning.

Temporal difference (TD) in Q-learning

Temporal difference: Difference of current estimate compared to one-lookahead estimate

$$\delta_t = r_t + \gamma \left(\max_{a'} Q^{t-1}(s_{t+1}, a') \right) - Q^{t-1}(s_t, a_t)$$

Q-learning

$$Q^{t}(s_{t}, a_{t}) = Q^{t-1}(s_{t}, a_{t}) + \alpha_{t}\delta_{t}$$

Why one-lookhead? Could we play out the further future? More on this later in TD-learning.

Lab 1 Problem 1

Implement Tabular Q-learning for a simple OpenAl Gym (gymnasium) environment "Frozen-lake".

Q-learning with function approximation and deep learning

How to handle large state space?

Large-scale Q-learning

Use a parametric approximation $Q_{\theta}(s, a) = f_{\theta}(x_{s,a})$ for Q(s, a).

- Example 1 Linear regression: Given feature embedding $x_{s,a}$ for state-action pair s, a, define $Q_{\theta}(s, a) = \theta_0 + \theta_1 x_1(s, a) + \ldots + \theta_n x_n(s, a)$
- ► Example 2 DNN: $Q_{\theta}(s, a) = f_{\theta}(x_{s,a})$ with θ being the parameters of the DNN

How do we find a good parameter θ ?

Recall supervised learning basics

 $x \rightarrow$

► Prediction Model (e.g. linear model or DNN)

► Training: Given labeled dataset (x_i, y_i) a training algorithm (e.g., training in tensorflow, pytorch etc.) fits model parameters θ such that a loss function (e.g. square loss or cross-entropy loss) is minimized

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(f_{\theta}(x_i), y_i)$$

 $\rightarrow f_{\theta}(x)$

Q-learning via supervised learning

▶ Task: Find a θ such that for every s, a, the Bellman equation,

$$Q(s, a) = \mathbb{E}_{s' \sim P(\cdot|s, a)}[R(s, a, s') + \gamma \max_{a'} Q(s', a')]$$

can be approximated well for all s, a, i.e.,

$$f_{\theta}(x_{s,a}) \approx \mathbb{E}_{s' \sim P(\cdot|s,a)}[R(s,a,s') + \gamma \max_{a'} f_{\theta}(x_{s',a'})]$$

Q-learning via supervised learning

▶ Task: Find a θ such that for every s, a, the Bellman equation,

$$Q(s, a) = \mathbb{E}_{s' \sim P(\cdot|s, a)}[R(s, a, s') + \gamma \max_{a'} Q(s', a')]$$

can be approximated well for all s, a, i.e.,

$$f_{\theta}(x_{s,a}) \approx \mathbb{E}_{s' \sim P(\cdot|s,a)}[R(s,a,s') + \gamma \max_{a'} f_{\theta}(x_{s',a'})]$$

▶ Given an observation (s_t, a_t, r_t, s_{t+1}) and current θ_t , construct sample

$$(x_t, z_t) = \{x_{s_t, a_t}, \quad r_t + \gamma \max_{a'} f_{\theta_t}(x_{s_{t+1}, a'})\}$$

Q-learning via supervised learning

▶ Task: Find a θ such that for every s, a, the Bellman equation,

$$Q(s, a) = \mathbb{E}_{s' \sim P(\cdot|s, a)}[R(s, a, s') + \gamma \max_{a'} Q(s', a')]$$

can be approximated well for all s, a, i.e.,

$$f_{\theta}(x_{s,a}) \approx \mathbb{E}_{s' \sim P(\cdot|s,a)}[R(s,a,s') + \gamma \max_{a'} f_{\theta}(x_{s',a'})]$$

▶ Given an observation (s_t, a_t, r_t, s_{t+1}) and current θ_t , construct sample

$$(x_t, z_t) = \{x_{s_t, a_t}, \quad r_t + \gamma \max_{a'} f_{\theta_t}(x_{s_{t+1}, a'})\}$$

Find θ to minimize a loss function, e.g., square loss (or later cross-entropy loss)

$$\min_{\theta} \sum_{t} (f_{\theta}(x_t) - z_t)^2$$

Can do batch update or online update of θ (e.g. by stochastic gradient descent).

Deep Q-learning algorithm (DQN)

Let L(x,y) be a loss function like squared loss function $L(x,y)=(x-y)^2$. Let $Q_{\theta}(s,a)=f_{\theta}(x_{s,a})$ be the function approximation, e.g., a DNN.

Repeat for t = 1, 2, ..., T,

- \triangleright Observe state s_t , take an action a_t
 - ϵ -greedy policy $a_t = \arg\max_a Q_{\theta_t}(s_t, a) = \arg\max_a f_{\theta_t}(x_{s_t, a})$ with probability 1ϵ and random action with probability ϵ
- ▶ Observe reward r_t , transition to state s_{t+1} .
- ▶ Construct feature embedding $x_t = x_{s_t,a_t}$. Use current θ_t to construct target

$$z_t = r_t + \gamma \max_{a'} Q_{\theta_t}(s_{t+1}, a') = r_t + \gamma \max_{a'} f_{\theta_t}(x_{s_{t+1}, a'})$$

 \triangleright Set learning rate α_t , and perform one stochastic gradient step

$$\theta_{t+1} \leftarrow \theta_t - \alpha_t \nabla_{\theta|_{\theta_t}} L(f_{\theta}(x_t), z_t)$$

Output parameter θ_T (learned policy $\pi(s) = \arg\max_a f_{\theta_T}(x_{s,a})$).

Remark on large action spaces

Can embed them using neural network just like states,

$$Q_{\theta}(s,a) = f_{\theta}(x_{s,a})$$

but in order to compute the policy and the target, we need to be able to compute

$$\max_{a} Q_{\theta}(s, a) \equiv \max_{a} f_{\theta}(x_{s,a})$$

Many practical scenarios: actions space is large but only few of them available in a given state, so above can be done by enumerating all feasible actions.

DQN: Tricks and tips

▶ No manual computation of gradient required: Autograd :

Exploration:

Batch learning and experience replay:

Lazy update of target network:

DQN: Tricks and tips

- No manual computation of gradient required: Autograd:
 Deep learning packages provide autograd (efficient automatic differentiation) using backpropagation
- Exploration: Through the adaptive setting of ϵ in ϵ -greedy or other advanced exploration-exploitation schemes like Posterior Sampling.
- ▶ Batch learning and experience replay: Reuse older samples with current θ_t , and batch them for efficient updates.
- Lazy update of target network: If the parameters of the network (Q_{θ_t}) used to compute the target (z_t) are changed frequently with each update, an unstable target function will make training difficult.

Lab 3

Deep Q-learning and the OpenAl gym environment Cartpole

Contents I

MDP

Dynamic Programming (DP) based algorithms for RL

Q-learning

Deep Q-learning (DQN)

Policy-iteration with TD-learning

Deep TD-learning

Convergence of Q-learning, TD-learning

Policy Gradient Methods

Recall: Policy iteration using Q-values

- 1. Initialize policy π^0 .
- 2. In every iteration $k = 0, 1, 2, \ldots$,
 - ▶ (Policy evaluation) Compute value $Q^{\pi^k}(s, a)$, the Q-values of policy π^k for all s, a.
 - ► (Greedy Policy improvement) Compute new policy

$$\pi^{k+1}(s) := \arg\max_{a} Q^{\pi_k}(s, a), \forall s$$

3. Stop when $\pi^{k+1} = \pi^k$.

Relaxed stopping criteria: not much change in policy or its value.

Computing Q-values of a fixed policy π

► Monte Carlo method:

$$Q^{\pi}(s, a) = \mathbb{E}[r_1 + \gamma r_2 + \gamma^2 r_3 + \cdots | s_1 = s, a_1 = a; a_t = \pi(s)]$$

Simulate the policy π starting from every state s and action a, and use the discounted sum of sample rewards to estimate the expected value.

Easy extension to learning from observations

Q-value-iteration : Based on Bellman equation (DP)

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P^{\pi}(s,a,s') \mathbb{E}_{a' \sim \pi(s)}[Q^{\pi}(s',a')]$$

TD-learning uses ideas similar to Q-learning

Q-value iteration for learning value of a policy π

A subroutine of policy iteration

- 1. Start with an arbitrary initialization $\mathbf{Q}^0 \in \mathbb{R}^{S \times A}$.
- 2. In every iteration k, improve the Q-value vector as:

$$\mathbf{Q}^{k}(s,a) = R(s,a) + \gamma \sum_{s'} P(s,a,s') \mathbb{E}_{a' \sim \pi(s)} \left[Q^{k-1}(s',a') \right], \forall s, a$$

- 3. Stop if $||Q^k Q^{k-1}||_{\infty}$ is small.
- 4. Output policy π^k defined as $\pi^k(s) = \arg \max_a Q^k(s, a)$

TD (Temporal difference) learning algorithm for learning Q-values of policy π

A subroutine of policy iteration

- 1. Start with an arbitrary initialization $\mathbf{Q}^0 \in \mathbb{R}^{S \times A}$.
- 2. For $t=1,2,\ldots$, Observe s_t , take action a_t using a smart policy, observe reward r_t , next state s_{t+1} Update the Q-value at s_t , a_t only as:

$$\mathbf{Q}^{t}(s_{t}, a_{t}) = (1 - \alpha_{t})Q^{t-1}(s_{t}, a_{t}) + \alpha_{t}(r_{t} + \gamma \left(\mathbb{E}_{\mathbf{a}' \sim \pi(\mathbf{s}_{t+1})}[Q^{t-1}(s_{t+1}, a')]\right))$$

3. Stop if $||Q^t - Q^{t-1}||_{\infty}$ is small.

Question: What's the difference compared to Q-learning? Why is this learning Q^{π} and not Q^* ?

Concerns and Choices

Concerns

- Sampling estimation error in update
- Coverage of all state-action pairs (Why?)

Choices

▶ How do we set learning rate α_t ?

► How do we pick the actions a_t ? Should we use the policy π ? Why? Why not?

Concerns and Choices

Concerns

- Sampling estimation error in update
- Coverage of all state-action pairs (Why?)

Choices

▶ How do we set learning rate α_t ?

A hyper-parameter that is tuned, but in theory decreasing with time, e.g. 1/t or $1/\sqrt{t}$.

► How do we pick the actions a_t ? Should we use the policy π ? Why? Why not?

A Common choice is a randomized policy (perturbed version of π): with probability $1 - \epsilon$, play the action according to π , with probability $(1 - \epsilon)$ play a random action.

Monte Carlo Method for estimating Q-values of a fixed policy

Simulate policy π for T steps for a large enough T such that γ^T is very small.

- For $t=1,2,\ldots,T$ Observe s_t , take action $a_t \sim \pi(s_t)$, observe reward r_t , next state s_{t+1}
- $lackbox{ Output sample trajectory } au = (s_1, a_1, r_1, s_2, a_2, s_3, \dots, s_T)$
- ▶ For each (s_t, a_t) in the trajectory τ ,

$$\hat{Q}^{\pi}(s_t, a_t) \leftarrow r_t + \gamma r_{t+1} + \cdots + \gamma^{T-1} r_T$$

Comparison to TD-learning

- Sampling estimation error
- Coverage of state-action pairs:

Comparison to TD-learning

- Sampling estimation error in certain cases can be better than TD-learning due to larger lookahead \equiv less bias
- ► Coverage of state-action pairs: Perturbing the policy needed for exploration but will introduce bias in the estimation of Q^{π} .

Unlike TD-learning, in MC Sample collection policy has to be the same as the policy being evaluated.

Examples: TD-learning vs. Monte Carlo

Comparison of estimation error

Figure: Source: Algorithms for Reinforcement Learning by Csaba Szepasvari

Lab 1 Problem 2

Implement Tabular Policy iteration with TD-learning on a simple OpenAI gym environment "Frozen-lake".

Policy iteration with function approximation

- Initialize θ^0 , initialize policy $\pi^1 = \arg\max_a f_{\theta_0}(x_{s,a})$.
- ln every iteration k = 1, 2, ...
 - Policy evaluation): Use Deep TD-learning, train DNN $Q^{\pi_k}(s,a) := f_{\theta_k}(x_{s,a})$ to learn the value of policy π_k .
 - (Policy improvement): New policy π_{k+1} is defined by

$$\pi^{k+1}(s) := rg \max_{a} Q^{\pi_k}(s,a) = rg \max_{a} f_{\theta_k}(x_{s,a})$$

Note: Only the parameter θ_k needs to be stored.

Deep TD-learning subroutine

Learn the Q-value of given policy π using function approximation.

Repeat for t = 1, 2, ..., T,

- ▶ Observe state s_t , take an action a_t
 - $ightharpoonup \epsilon$ -perturbed policy $a_t = \pi(s_t)$ w.p. 1ϵ , random action w.p. ϵ .
- ▶ Observe reward r_t , transition to state s_{t+1} .
- Use current θ_t to construct (1-lookahead) target

$$z_t = r_t + \gamma f_{\theta_t}(x_{s_{t+1}, a_{t+1}})$$

or use larger look-ahead up to au+1 steps or Monte-Carlo

$$z_t = \sum_{i=t}^{t+\tau} \gamma^{i-1} r_i + \gamma^{\tau+1} f_{\theta_t} (x_{s_{t+\tau+1}, a_{t+\tau+1}})$$

where $a_{t+\tau+1} = \pi(s_{t+\tau+1})$.

lacktriangle Set learning rate α_t , and perform one stochastic gradient step

$$\theta_{t+1} \leftarrow \theta_t - \alpha_t \nabla_{\theta|_{\theta_t}} L(f_{\theta}(x_{s_t,a_t}), z_t)$$

Output θ_T , where $Q^{\pi}(s, a) \approx f_{\theta_T}(x_{s,a})$.

Contents I

MDP

Dynamic Programming (DP) based algorithms for RL

Q-learning

Deep Q-learning (DQN)

Policy-iteration with TD-learning

Deep I D-learning

Convergence of Q-learning, TD-learning

Policy Gradient Methods

Convergence of Tabular Q-learning, TD-learning

- ▶ We use the connections to the Stochastic Approximation method [Robbins and Monroe 1951]
- ► Asymptotic convergence proved in "Asynchronous Stochastic Approximation and Q-Learning" by John N. Tsitsiklis, 1994
- More recent works provide finite sample bounds:
 - Sheng Zhang, Zhe Zhang, Siva Theja Maguluri, Finite Sample Analysis of Average-Reward TD Learning and Q-Learning, NeurIPS 2021.
 - (... and other more recent works by the last author)
 - Guannan Qu and Adam Wierman, Finite-time analysis of asynchronous stochastic approximation and Q-learning. COLT 2020.
 - Rayadurgam Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation and TD-learning. COLT 2019.

Stochastic Approximation (SA):

A method for finding a solution $x^* \in \mathbb{R}^n$ to

$$h(x) = 0$$

using noisy observations $\delta_t = h(x_t) + \omega_t$.

The SA method

• At time t on seeing sample δ_t , update

$$x_{t+1} \leftarrow x_t + \alpha_t \delta_t$$

Classic convergence theorems show $h(x_t) \to 0$ under certain conditions on $h(\cdot)$, the distribution of noise ω_t , and α_t s.

Examples of SA method

▶ Find solution to $\nabla f(x) = 0$ for $f(x) = \mathbb{E}_y[g(x,y)]$ using samples. SA is essentially the stochastic gradient descent method. (Derive!)

Examples of SA method

- ▶ Find solution to $\nabla f(x) = 0$ for $f(x) = \mathbb{E}_y[g(x,y)]$ using samples. SA is essentially the stochastic gradient descent method. (Derive!)
- ▶ Q-learning: Find a solution to Bellman equation for Q^* : LQ = Q. SA is the asynchronous version of the Q-learning method. (Derive!)

Note: Classic convergence proofs for SA are for synchronous versions, Tsitsiklis 1994, and more recent finite sample results extend them to asynchronous versions, assuming enough exploration.

Examples of SA method

- ▶ Find solution to $\nabla f(x) = 0$ for $f(x) = \mathbb{E}_y[g(x,y)]$ using samples. SA is essentially the stochastic gradient descent method. (Derive!)
- ▶ Q-learning: Find a solution to Bellman equation for Q^* : LQ = Q. SA is the asynchronous version of the Q-learning method. (Derive!)
- ▶ TD-learning: Find solution to $L^{\pi}Q = Q$, or $L^{\pi}V = V$. SA is the asynchronous version of the TD-learning method.

Note: Classic convergence proofs for SA are for synchronous versions, Tsitsiklis 1994, and more recent finite sample results extend them to asynchronous versions, assuming enough exploration.

SA method convergence

Essential Assumptions:

On step sizes:

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$
 (1)

On noise: martingale zero-mean and sub-Guassian:

$$\mathbb{E}[\omega_t | \mathcal{F}_{t-1}] = 0, \quad \mathbb{E}[\|\omega_t\|^2 | \mathcal{F}_{t-1}] \le A + B \|x_n\|^2$$
 (2)

for some constant A, B.

Here \mathcal{F}_{n-1} is the σ -algebra defined by the history $\{x_1,\alpha_1,\omega_1,\ldots,x_{n-1},\alpha_{n-1},\omega_{n-1},x_n,\alpha_n\}$. Noise ω_n is measurable with respect to \mathcal{F}_n . Note that Guassian noise $\omega_n\sim\mathcal{N}(\mathbf{0},AI)$ satisfies the above assumption.

Classic SA convergence theorem

Theorem

Given conditions (1) and (2), and further assume that

$$(h(x_n) - h(x^*))^{\top}(x_n - x^*) \le -c\|x_n - x^*\|^2$$
 (3)

$$||h(x_n) - h(x^*)||^2 \le K_1 + K_2 ||x_n - x^*||^2$$
 (4)

where θ^* is the parameter value such that $h(\theta^*) = 0$, and $\|\cdot\|$ denotes 2-norm. Then, we have that SA method converges under above assumptions. i.e.,

$$\lim_{n\to\infty}\|\theta_n-\theta^*\|=0$$

A corollary

Corollary (Corollary of Theorem 1)

Given conditions (1) and (2), and further assume that h(V) = LV - V, where the L operator satisfied Euclidean norm contraction, ie.,

$$||LV - LV'||_2 \le \gamma ||V - V'||_2, \forall V, V'$$

and V^* is such that $LV^* = V^*$. Then, we have that SA method converges, i.e.,

$$\lim_{n\to\infty}\|V_n-V^*\|=0$$

Proof.

Both conditions of the previous theorem are satisfied (Check)

Convergence proofs relevant to Q-learning, TD-learning Synchronous version

Theorem (Tsitsiklis 1994, Corollary of Proposition 4.5 in Bertsekas, 1996)

Given conditions (1) and (2), and further assume that h(V) = LV - V, where L is a contraction mapping under infinity-norm, i.e., for all iterates V_n

$$||LV_n - LV^*||_{\infty} \le \gamma ||V_n - V^*||_{\infty}$$

for some scalar $\gamma \in [0,1)$, then $V_n \to V^*$ as $n \to \infty$ with probability 1.

Convergence counterexample under function approximation

Contents I

MDP

Dynamic Programming (DP) based algorithms for RL

Q-learning

Deep Q-learning (DQN)

Policy-iteration with TD-learning
Deep TD-learning

Convergence of Q-learning, TD-learning

Policy Gradient Methods