

Prática 3

Objetivo

Distinguir las características de la organización y arquitectura del microprocesador de una computadora de propósito general, analizando sus recursos de hardware y software, para conocer capacidades y limitaciones de forma organizada y responsable.

Desarrollo

Responda los siguientes cuestionamientos.

1. Explique las diferencias entre una unidad de control por hardware y por microprograma.

Control por hardware	Microcódigo	
Implementado por medio de un circuito	Implementado por medio de programación	
Instrucciones estilo RISC	Instrucciones estilo CISC	
Difícil modificación ya que requiere	Modificaciones sencillas ya que solo	
modificación de circuitería	requiere cambio en el código	
Funciona bien con instrucciones simples	Funciona bien con instrucciones simples y	
	complejas	
No necesita memoria de control	Necesita memoria de control	
Ejecución rápida	Ejecución relativamente lenta	

- 2. Una computadora tiene una unidad de memoria con 32 bits por palabra. Su conjunto de instrucciones consiste en 110 operaciones diferentes. Todas las instrucciones se componen de un código de operación (opcode) y dos campos operandos: uno para una dirección de memoria y otro para una dirección de registro. La computadora tiene 8 registros de propósito general. Los registros pueden cargar datos de memoria, y la memoria se puede actualizar con datos de los registros. No hay soporte para movimientos de datos de memoria a memoria. Cada instrucción se almacena en una palabra de memoria.
 - a) ¿Cuántos bits de instrucción se necesitan para el opcode? 7
 - b) ¿Cuántos bits de instrucción se necesitan para especificar el registro? 3
 - c) ¿Cuántos bits de instrucción quedan para especificar la dirección de memoria? 22
 - d) ¿Cuál es el tamaño máximo de memoria que puede tener el sistema? 16MB
 - e) ¿Cuál es número sin signo más grande que se puede representar con una palabra de memoria? **4,294,967,295**

3. Escriba el código máquina del siguiente programa del simulador MARIE.

Dirección (HEX)	Etiqueta	Instrucción Código Maquina (HE	
100		LOAD A	1108
101		ADD ONE	3109
102		JUMP S1	9106
103	S2,	ADD ONE	3109
104		STORE A	2108
105		HALT	7000
106	S1,	ADD A	3108
107		JMP S2	9103
108	Α,	HEX 0023	0023
109	One,	HEX 0001	0001

Tabla 1. Programa en lenguaje ensamblador de MARIE.

- 4. Escriba el lenguaje ensamblador (mnemónicos) equivalente a las siguientes instrucciones en código máquina de MARIE.
 - a) 011100000000000 HALT

5. Escriba un programa que contenga la subrutina **Pirámide**, la cual despliega el patrón que se muestra en la Figura 1. El usuario ingresa en el código principal la cantidad de niveles a desplegar.

```
/Piramide
Input
store x
Subt TEN
Skipcond 000
Jump @End
                /Terminamos el programa
@Loop, Load number /número de ciclos
        Store cycles/Numero a ciclar
@Loop2, Load number /Cargamos el número a ciclar
        add Unicode /Convertimos dec a Unicode
        Output
        Load cycles /Decrementamos numero ciclos
        Subt ONE
        Store cycles
        Skipcond 800
                         /Si no, cerramos ciclo
        Jump @EndLoop2
        Jump @Loop2
@EndLoop2, Load lineFeed
        Output
        Load number
                        /Aumentamos el numero
        Add ONE
        Store number
        Load x
        Subt ONE
        Store x
        Skipcond 800
        jump @End /si no, terminamos programa
        Jump @Loop
@End, Halt
lineFeed, HEX 0A
                    /Salto de línea
Unicode, HEX 30
number, dec 1 /Numero a ciclar (Comenzamos en 1)
cycles, dec 0
                   /Numero de ciclos
ONE, DEC 1
TEN, DEC 10
  DEC 0
```


6. Escriba un programa que contenga la subrutina **Distancia Manhattan**, la cual recibe dos coordenadas en el plano cartesiano y despliega su distancia Manhattan en base a la fórmula:

$$|x_1 - x_2| + |y_1 - y_2|$$

El usuario ingresa en el código principal las coordenadas (x_1, y_1) y (x_2, y_2) .

/Distancia Man	hattan		$x_1 = 10, y_1 = 12, x_2 =$	$20, y_2 = 1$	24
/ x1 - x2 +	y1 - y2				
Input			OUTPUT MODE:	DEC 🗸	
Store x1					
Input				6	-
Store y1					
Input			$x_1 = 10$, $y_1 = 30$, $x_2 = 1$	$-20, y_2 =$	40
Store x2				· , , <u>, , , , , , , , , , , , , , , , ,</u>	
Input					
Store y2			OUTPUT MODE:	DEC 🗸	
Load x1					
Subt x2				40	_
Store tempX			l		
Skipcond 000	/Si la resta da negativo	χ_1	$= 50, y_1 = -50, x_2 = 6$	$50, \nu_2 = -$	-60
Jump @Next	,		23, 51	7,5,2	
Load x2	/Cambiamos el orden de los		OUTPUT MODE:	DEC 🗸	
Subt x1	/operandos para obtener un valor		COTT OT WICEE.	DLC +	
positivo				20	
Store tempX				20	
@next, Load y1					
Subt y2					
Skipcond 000	/Si la resta da negativo				
Jump @End					
Load y2	/Cambiamos el orden de los operar	ndos	para obtener un valor positivo		
Subt y1	V.				
@end, Store te	трү				
Add tempX Store distance					
Output					
Halt					
Hait					
distance, DEC	0				
tempX, DEC 0					
tempY, DEC 0					
x1, DEC 1					
x2, DEC 2					
y1, DEC 3					
y2, DEC 4					

Emmanuel Alberto Gómez Cárdenas ORGANIZACIÓN Y ARQUITECTURA DE LAS COMPUTADORAS

28/02/2022

Conclusiones y comentarios

RISC y CISC son las arquitecturas inicialmente utilizadas para facilitar el trabajo de los microprocesadores y homogeneizar las computadoras, debido a que RISC nació unos cuantos años después que CISC y que tenía un conjunto de instrucciones más sencilla, esta mejora el rendimiento y la capacidad de crear programas más largos y difíciles de desarrollar.

Dificultades en el desarrollo

La parte que más se me dificultó fue intentar obtener el valor absoluto de la resta en la distancia Manhattan ya que normalmente se hace (si x < 0, x *= -1), sin embargo, en Marie no tenemos la opción de multiplicar por negativos así que tuve que tomar una idea completamente diferente. Terminé optando por cambiar el orden de los operandos si el resultado fue negativo. Ej. 5-9 = -4; 9-5 = 4.

Referencias

T, N. (2022). Difference Between Hardwired and Microprogrammed Control Unit - Binary Terms. Retrieved 28 February 2022, from https://binaryterms.com/difference-between-hardwired-and-microprogrammed-control-unit.html

Anexos

Carpeta google drive con los códigos fuentes y videos de ejecución de código. https://drive.google.com/drive/folders/1vOKPpDuD6ZsblUTMpfRJLEzhnNxixPui?usp=sharing