Analysis of Clinical Trials Data: Investigating Study Areas, Collaborators Availability, Interventions, Enrollment, Funder Types, and Masking Types

Presented By: TEAM 5

- 1. Kelvin Kiplagat
- 2. Thomas Muriuki

Colab Code (link): <u>DTE Team 5 Phase II.ipynb</u>

Google Colaboratory: Python Version 3.10.12

Powered by DTE & Mentor Owuonda Julius

Observations | Conclusion

Our Observations

- Outliers and anomalies were present. Some trials had no enrollment figures yet others were completed others had more than a million.
- Trend-wise, enrollment peaks were observed in 2002, 2019, 2020, and 2021
 COVID-19 and SARS-COV2
- Time to completion for clinical trials took between 700 and 1400 days to complete.
- We discovered that different masking types were common in different study areas.
- We discovered Collaborator availability was found not to affect study status..
- We found that the Number of interventions used per study area were different. However few category pairs illustrated no difference. For example Covid and Pneumonia had no differences in the number of interventions used because they are nearly similar.
- Age, sex, and the interaction between age and sex were all found to have significant differences in mean number of interventions.
- Masking type, Intervention model, and the interaction between masking type, and intervention model were all found to have significant differences in the mean number of interventions used.
- Funder type was found to affect study status. We found that clinical trials funded by the industry were more likely to be terminated.
- We came up with a model that identified the primary themes within each study area (diseases), shedding light on the content and focus of clinical trials.

Conclusion

- Given anomalies and outliers observed in the data, it is essential
 to implement robust data quality assurance processes during
 data collection to help maintain data integrity.
- There should be Continuous monitoring of trends in clinical trial enrollments, especially in response to significant events like pandemics.
- Encouraging collaboration among research groups will lead to more balanced research efforts and improved resource allocation to mitigate differences in collaborator availability.
- The funder type Influences the success of a research status. This means that the amount of resources a clinical trial receives affects the general outcome of the research.
- Differences in interventions and masking types in clinical trials may indicate varying approaches across study areas. This means different research methodologies should be used to avoid bias.

Introduction

Problem Statement

- Clinical trials embody a universal force in modern healthcare where studies encompass a plethora of therapeutic and diagnostic interventions and bear consequences far-reaching and enduring.
- We comprehensively examine clinical trials, traversing their geographic, temporal (time), and thematic diversity.
- ➤ We address questions that illuminate facets often concealed within the complexities of clinical research.
- Our inquiry extends to topics such as the impact of masking types in different study areas, the allocation of collaborators, the prevalence of interventions, the influence of demographics, the role of funding sources, and the diversity of interventions employed as well as thematic/topic modeling analysis

Research Objective

→ We aim to comprehensively explore and gain insights into the diverse landscape of clinical trials across different study areas and their associated attributes, including collaborators, interventions, enrollment, demographics, funder types, and masking, with the ultimate goal of informing evidence-based decision-making, healthcare policies, and future research priorities.

Research Questions

- Are there masking types common in different study areas than others?
- a) Are there differences in the number of collaborators different study areas get? b) Does the availability of collaborators affect study status in completed, terminated, and suspended studies?
- Does the number of interventions differ in different study areas?
- ☐ Are there differences in enrollment across sex and age?
- ☐ Does the funder type affect the study status?
- Are there differences in the number of interventions used in masking type and intervention model categories?

Chi-Square Tests, Analysis of Variance (ANOVA) together with Post-Hoc tests (Tukey HSD) and topic modelling using Latent Dirichlet Allocation were used to gain the relevant answers to these questions.

Data Exploration Cleaning

- Originally 161863 observations (clinical trials) from all the six study areas (datasets). 159008 actionable trials remained after removing trials with no start date and those that were to begin in 2024 going forward.
- Study areas were; HIV, Malaria, Heart, Cancer, COVID, Pneumonia
- Some trials had no enrollment, however majority of them
 had been withdrawn as seen on the right. although, there
 were completed trials with no enrollment. Data ingestion
 errors? Probably.
- NIH was the common funder type for completed trials with no enrollment.
- There were heavily pronounced outliers. Outliers were derived from time taken to completion (days) and enrollment features.
- COVID-19 trials had the highest enrollment figures treated as outliers on average
- Other outliers exploration can be seen on the visualizations to the right.

Descriptive Visualizations

- Clinical trial numbers have been increasing over time.
- 2002, 2019, 2020, and 2021 saw concerning increases.
- Trial time to completion, enrollments, number of interventions are skewed to the right.
- Distribution of days to completion exhibits multimodality.
- Male trials take the most number of days to completion. All sex trials take least days.
- However, differences sex-wise are miniscule. \rightarrow
 - Cancer takes the most number of days by far.
- \rightarrow COVID took the least number of days.

1) Are there masking types more common in different study areas than others?

- The Chi-square findings below the Contingency table are significant.
- Aside from NONE, which means no masking type was used, common in all areas, we can see that SINGLE masking type is common in HIV and heart study areas. QUADRUPLE masking type is common in COVID and Malaria studies. DOUBLE masking type is common in Cancer studies. TRIPLE masking type is barely preferred since it doesn't rank at least third in all the study areas

F(20) = 458.95, p = 0.0000

2 a) Are there differences in the number of collaborators different study areas get?

- We can evidently see that different study areas received different numbers of collaborators with Cancer having the highest number of collaborators and the least number of collaborators in Malaria.
- However, these disparities may not be representative because of the differences in samples per study area.

2 b) Does the availability of collaborators affect study status in completed, terminated, and suspended studies?

- The Chi-square findings are not significant at $\alpha = 0.05$.
- We limited the study status to only completed and terminated trials and undersampled the terminated studies to match the completed studies.
- The findings (F(1) = 0.32, p = 0.5704) show that collaborator availability does not affect the study status.

F(1) = 0.32, p = 0.5704

3) Does the number of interventions differ in different study areas?

		sum_	sq	df	F	PR(>
(study_	area) 1	1565.4367	86	5.0 8	18.958946	0
Residual	L 43	5274.8176	70 154:	111.0	NaN	N
Post-Hoo	Test					
Multip	le Compar	ison of M	eans - 1	Tukey HS	D, FWER=0	.05
group1	group2	meandiff	p-adj	lower	upper	reject
HIV	cancer	0.2377	0.0	0.1812	0.2942	True
HIV	covid	-0.3028	0.0	-0.3771	-0.2284	True
HIV	heart	-0.3925	0.0	-0.4533	-0.3317	True
HIV	malaria	0.1918	0.0021	0.0475	0.336	True
HIV	pneumonia	-0.2769	0.0	-0.3507	-0.203	True
cancer	covid	-0.5404	0.0	-0.5934	-0.4874	True
cancer	heart	-0.6302	0.0	-0.6615	-0.5989	True
cancer	malaria	-0.0459	0.9267	-0.1804	0.0886	False
cancer	pneumonia	-0.5145	0.0	-0.5669	-0.4622	True
covid	heart	-0.0897	0.0001	-0.1473	-0.0322	True
covid	malaria	0.4945	0.0	0.3516	0.6374	True
covid	pneumonia	0.0259	0.9057	-0.0453	0.0971	False
heart	malaria	0.5843	0.0	0.4479	0.7206	True
heart	pneumonia	0.1156	0.0	0.0587	0.1725	True
					-0.326	

- The findings from the one-way ANOVA (F = 818.96, p = 0.0000) show that the number of interventions used in different study areas differs in means.
- The significance of the findings and the post-hoc tests supports majority of the differences seen in the bar chart with heart studies receiving the least number of interventions on average while Cancer received the most number of interventions.
- However, the post-hoc tests show that only cancer and malaria, and covid and pneumonia didn't have a difference in means in the number of interventions used in the trials

4) Are there differences in enrollment across sex and age?

- The findings: Age (p = 6.26e-21), Sex (p = 2.09e-79), and Interaction between Sex and Age (p = 4.63e-21) are significant.
- Hence there are differences in means between majority of the categories in all the features

WAY (Enrollment	vs Age and	Sex)	
sum_sq	df	F	PR(>F)
1.374004e+06	2.0	46.544276	6.219414e-21
5.580503e+06	5.0	75.615633	2.091036e-79
) 1.774867e+06	10.0	12.024696	4.625982e-21
1.809274e+09	122578.0	NaN	NaN
	sum_sq 1.374004e+06 5.580503e+06 1.774867e+06	sum_sq df 1.374004e+06 2.0 5.580503e+06 5.0	1.374004e+06 2.0 46.544276 5.580503e+06 5.0 75.615633) 1.774867e+06 10.0 12.024696

Post-Hoc Test - Age

Multiple Comparison of Means - Tukey HSD, FWER=0.05

reject	upper	lower	p-adj	meandiff	group2	group1
Tru	16.8923	7.7641	0.0	12.3282	ADULT, OLDER_ADULT	ADULT
Tru	32.5551	15.6869	0.0	24.121	CHILD	ADULT
Fals	13.1936	-1.3007	0.1788	5.9464	CHILD, ADULT	ADULT
Tru	35.0475	23.6433	0.0	29.3454	CHILD, ADULT, OLDER_ADULT	ADULT
Tru	54.4194	34.0058	0.0	44.2126	OLDER_ADULT	ADULT
Tru	19.053	4.5326	0.0001	11.7928	CHILD	ADULT, OLDER ADULT
Tru	-0.5425	-12.221	0.0227	-6.3817	CHILD, ADULT	ADULT, OLDER_ADULT
Tru	20.7708	13.2636	0.0	17.0172	CHILD, ADULT, OLDER_ADULT	ADULT, OLDER_ADULT
Tru	41.1448	22.6241	0.0	31.8844	OLDER_ADULT	ADULT, OLDER_ADULT
Tru	-8.9876	-27.3615	0.0	-18.1745	CHILD, ADULT	CHILD
Fals	13.2489	-2.8001	0.4301	5.2244	CHILD, ADULT, OLDER_ADULT	CHILD
Tru	31.756	8.4273	0.0	20.0916	OLDER_ADULT	CHILD
Tru	30.165	16.6329	0.0	23.3989	CHILD, ADULT, OLDER ADULT	CHILD, ADULT
Tru	49.1033	27.429	0.0	38.2662	OLDER ADULT	CHILD, ADULT
Tru	24.7382	4.9962	0.0003	14.8672	OLDER ADULT	CHILD, ADULT, OLDER ADULT

Post-Hoc Test - Sex

Multiple Comparison of Means - Tukey HSD, FWER-0.05

group1 group2 meandiff p-adj lower upper reject

ALL FEMALE 5.3391 0.0 2.6791 7.999 True
ALL MALE -12.3849 0.0 -16.3725 -8.3972 True
FEMALE MALE -17.7239 0.0 -22.3516 -13.0962 True

To check the significance of the results, the post-hoc tests show that all group pairs show differences
in means except for categories in the age variable; there were no differences in the means of CHILD
and ADULT enrollment and CHILD and CHILD, ADULT, OLDER ADULT group.

5) Does the funder type affect the study status?

F(14) = 36.44, p = 0.0009

- → Chi-square findings from the analysis (F(14) = 36.44, p = 0.0009) are significant at $\alpha = 0.05$.
- → Thus funder type actually influences study status given the significance of the results.
- → From the contingency table, the majority of the trials that were terminated received had the largest number of funders in the Industry category while completed trials had the largest number of funders in the "other" category.
- → The NIH category had the most funders in the Suspended category.

6) Are there differences in the number of interventions used in masking type and intervention model categories?

- The findings from the table above Masking type (p = 5.28e-139), intervention model (p < 0.005), masking:intervention model (p = 1.32e-16) are significant showing that there are differences in mean interventions used between the different groups.
- To determine the significance of the results category pair-wise, all pairs were true to the findings except the QUADRUPLE and TRIPLE pair in masking type and PARALLEL and SEQUENTIAL pair in intervention models

ANOVA - TWO WAY (Masking Intervention)						
	sum_sq	df	F	PR(>F)		
C(masking)	1883.414058	4.0	162.549689	5.275200e-139		
C(intervention_model)	11035.670755	5.0	761.954534	0.000000e+00		
C(masking):C(intervention_model)	353.009026	20.0	6.093350	1.315702e-16		
Residual	330965.320519	114257.0	NaN	NaN		

Post-Hoc Test - Masking Group

					, , ,,,,,,,	
group1	group2	meandiff	p-adj	lower	upper	reject
DOUBLE	NONE	-0.1039	0.0	-0.1586	-0.0491	True
DOUBLE	QUADRUPLE	0.1766	0.0	0.0981	0.2551	True
DOUBLE	SINGLE	-0.3426	0.0	-0.414	-0.2712	True
DOUBLE	TRIPLE	0.1144	0.0043	0.0251	0.2036	True
NONE	QUADRUPLE	0.2805	0.0	0.2198	0.3412	True
NONE	SINGLE	-0.2387	0.0	-0.2898	-0.1876	True
NONE	TRIPLE	0.2182	0.0	0.1442	0.2923	True
QUADRUPLE	SINGLE	-0.5192	0.0	-0.5952	-0.4432	True
QUADRUPLE	TRIPLE	-0.0622	0.3588	-0.1553	0.0308	False
SINGLE	TRIPLE	0.457	0.0	0.3699	0.544	True

Multiple Comparison of Means - Tukev HSD, FWER=0.05

Post-Hoc Test - Intervention Model

reject	upper	lower	p-adj	meandiff	group2	group1
True	0.9192	0.5951	0.0	0.7571	FACTORIAL	CROSSOVER
True	1.0958	0.8613	0.0	0.9785	NONE	CROSSOVER
True	0.2292	0.0546	0.0001	0.1419	PARALLEL	CROSSOVER
True	0.2891	0.0653	0.0001	0.1772	SEQUENTIAL	CROSSOVER
True	-0.2442	-0.4198	0.0	-0.332	SINGLE_GROUP	CROSSOVER
True	0.3815	0.0614	0.0011	0.2214	NONE	FACTORIAL
True	-0.4756	-0.7548	0.0	-0.6152	PARALLEL	FACTORIAL
True	-0.4238	-0.7361	0.0	-0.5799	SEQUENTIAL	FACTORIAL
True	-0.9492	-1.2291	0.0	-1.0891	SINGLE GROUP	FACTORIAL
True	-0.7531	-0.9202	0.0	-0.8367	PARALLEL	NONE
True	-0.6924	-0.9104	0.0	-0.8014	SEQUENTIAL	NONE
True	-1.2265	-1.3946	0.0	-1.3106	SINGLE GROUP	NONE
False	0.1112	-0.0406	0.7709	0.0353	SEQUENTIAL	PARALLEL
True	-0.4433	-0.5046	0.0	-0.4739	SINGLE GROUP	PARALLEL
True	-0.4328	-0.5856	0.0	-0.5092	SINGLE GROUP	SEQUENTIAL

Topic Modelling - Thematic Analysis

Latent Dirichlet Allocation (LDA)

- Selecting the most frequent topic per study area, we underscored that Pneumonia and COVID shared a single topic (1) while HIV, Cancer, Heart, and Malaria assumed topics 4, 2, 0, and 3 respectively.
- Ideally the Table to the right shows the frequency of the predicted topic per study area.
- The table below shows the top 10 words per topic and the study area that had the highest frequency in the first crosstab (table to the right).

Predicted T	opic	Frequ	ency	per S	tudy	Area	
topic_pred study_area	0	1	2	3	4	5	_
HIV	137	96	70	111	268	247	
cancer	142	77	547	37	6	83	
covid	93	417	53	220	18	99	
heart	683	93	22	25	19	62	
malaria	37	20	173	311	297	52	
pneumonia	114	378	86	205	12	87	

Study Area	Predicted Topic	Top 10 Words
HIV	4	15,2023, discharge assessment, days who, occluder, 14 geometric, minutes volatile, discharge occurence, avoided, bfi-t, hads-anxiety
cancer	2	care-pc, somatization, work-related, i1-1, keeping, 25-o-desacetyl, phonemic, 0-28., baseline-48, vestibular
covid	1	i-124 tetracthib™, approximately18, boost, dha+pqp, full-length, urogenital., re-transfusion, microscopists, pf-specific
heart	0	84 gmfr, morally, telehealth, years estimate, phobia-adult, 393 number, rehabilition, factors/coping, pharmacies, delivery perinatal
malaria	3	conduction., 0,3,6, delisting, patients'sleep, dose period, claim, 90 hospital, fatique, pleura, tlc-101
pneumonia	1	i-124 tetracthib™, approximately18, boost, dha+pqp, full-length, urogenital., re-transfusion, microscopists, pf-specific

Colab Code Link, Report and Data Sources

Data Source(s)		Link
	ClinicalTrials.gov	https://classic.clinicaltrials.gov/ct2/resources/download#UseURL
Colab		
	DTE Team 5 Phase II	https://colab.research.google.com/drive/1fXLmlrRFpxeAzdAH0mmEbLNNrDk00pY5?usp=sharing
Report		
	DTE Datathon TEAM 5 Report	https://docs.google.com/document/d/1vc8SieUmyII2XHHwoVsOru4InUNnYNRvsEnGZEb0n8s/edit?usp=sharing

The place for Data, Technology and Expertise

e entirely grateful for the entire DTE Consultan with us at the very step of the W

Python

Clinical Trials.gov

)wuonda for bein

