All About Spinors

...on flat spacetime

Sean Ericson

UO

Theory meeting, June 27, 2024

Some Philisophical Motivation

Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries
 - Implies an action of the group of isometries on the space of physical states $\tilde{\phi}_{\mathbf{g}}: \mathcal{S} \to \mathcal{S}$

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries
 - Implies an action of the group of isometries on the space of physical states $\tilde{\phi}_{\mathbf{g}}: \mathcal{S} \to \mathcal{S}$
- General covariance: For a physical entity described by a tensor field $T^{a...}_{b...}$, the equations governing the field should be of the form $f(T, \partial T, \cdots, g_{ab}, \partial g_{ab}, \cdots)$

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries
 - Implies an action of the group of isometries on the space of physical states $\tilde{\phi}_{\mathbf{g}}: \mathcal{S} \to \mathcal{S}$
- General covariance: For a physical entity described by a tensor field $T^{a...}_{b...}$, the equations governing the field should be of the form $f(T, \partial T, \dots, g_{ab}, \partial g_{ab}, \dots)$
 - Expresses the invariance of physical laws under diffeomorphisms

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries
 - Implies an action of the group of isometries on the space of physical states $\tilde{\phi}_g:\mathcal{S}\to\mathcal{S}$
- General covariance: For a physical entity described by a tensor field $T^{a...}_{b...}$, the equations governing the field should be of the form $f(T, \partial T, \dots, g_{ab}, \partial g_{ab}, \dots)$
 - Expresses the invariance of physical laws under diffeomorphisms
 - ightharpoonup G.C. \Longrightarrow S.C.

- Special covariance: For any two families of inertial observes O and O' related by an isometry, any set of physical measurements observable by O is observable by O'
 - Expresses invariance of physical laws under isometries
 - Implies an action of the group of isometries on the space of physical states $\tilde{\phi}_{\mathbf{g}}:\mathcal{S}\to\mathcal{S}$
- General covariance: For a physical entity described by a tensor field $T^{a...}_{b...}$, the equations governing the field should be of the form $f(T, \partial T, \dots, g_{ab}, \partial g_{ab}, \dots)$
 - Expresses the invariance of physical laws under diffeomorphisms
 - ightharpoonup G.C. \Longrightarrow S.C.
- Special/General covariance →Special/General relativity

• Consider (\mathbb{R}^4,η_{ab}), $\mathcal{S}=\{\psi\in\mathcal{H}\ :\ \left|\psi\right|^2=1\}/\sim$

- lacksquare Consider (\mathbb{R}^4,η_{ab}) , $\mathcal{S}=\{\psi\in\mathcal{H}\ :\ \left|\psi\right|^2=1\}/\sim$
 - $\blacktriangleright \ \psi \sim \psi' \iff \psi = \mathrm{e}^{\mathrm{i}\theta}\psi'$

- lacksquare Consider (\mathbb{R}^4,η_{ab}), $\mathcal{S}=\{\psi\in\mathcal{H}\ :\ \left|\psi
 ight|^2=1\}/\sim$
 - $\qquad \qquad \psi \sim \psi' \iff \psi = \mathrm{e}^{\mathrm{i}\theta}\psi'$
- Isometry group: $G = ISO(3,1)^+$

- Consider $(\mathbb{R}^4, \eta_{ab})$, $S = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$
- Isometry group: $G = ISO(3,1)^+$
- \blacksquare Associate with $\tilde{\phi}_{\mathbf{g}}$ a map $U_{\mathbf{g}}:\mathcal{H}\to\mathcal{H}$ which preserves \sim

- Consider $(\mathbb{R}^4, \eta_{ab})$, $S = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$
 - $\psi \sim \psi' \iff \psi = e^{i\theta}\psi'$
- Isometry group: $G = ISO(3,1)^+$
- lacktriangle Associate with $ilde{\phi}_{m{g}}$ a map $U_{m{g}}: \mathcal{H}
 ightarrow \mathcal{H}$ which preserves \sim
 - $ightharpoonup U_g$ can be rephased to be (anti-)unitary

- Consider $(\mathbb{R}^4, \eta_{ab})$, $S = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$
 - $\psi \sim \psi' \iff \psi = e^{i\theta}\psi'$
- Isometry group: $G = ISO(3,1)^+$
- lacksquare Associate with $ilde{\phi}_{m{g}}$ a map $U_{m{g}}: \mathcal{H}
 ightarrow \mathcal{H}$ which preserves \sim
 - $ightharpoonup U_g$ can be rephased to be (anti-)unitary
- Composition: $\tilde{\phi}_{g_1} \circ \tilde{\phi}_{g_2} = \tilde{\phi}_{g_1g_2} \implies U_{g_1}U_{g_2} = e^{i\theta}U_{g_1g_2}$

- Consider $(\mathbb{R}^4, \eta_{ab})$, $S = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$
 - $\Psi \sim \psi' \iff \psi = e^{i\theta}\psi'$
- Isometry group: $G = ISO(3,1)^+$
- lacksquare Associate with $ilde{\phi}_g$ a map $U_g:\mathcal{H} o\mathcal{H}$ which preserves \sim
 - $ightharpoonup U_g$ can be rephased to be (anti-)unitary
- Composition: $\tilde{\phi}_{g_1} \circ \tilde{\phi}_{g_2} = \tilde{\phi}_{g_1g_2} \implies U_{g_1}U_{g_2} = e^{i\theta}U_{g_1g_2}$
 - lacktriangle Wigner ('39): can set phases so $heta=n\pi$, i.e. $U_{g_1}U_{g_2}=\pm U_{g_1g_2}$

- Consider $(\mathbb{R}^4, \eta_{ab})$, $\mathcal{S} = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$
- Isometry group: $G = ISO(3,1)^+$
- lacksquare Associate with $ilde{\phi}_{m{g}}$ a map $U_{m{g}}:\mathcal{H}
 ightarrow\mathcal{H}$ which preserves \sim
 - $ightharpoonup U_g$ can be rephased to be (anti-)unitary
- $\blacksquare \ \, \mathsf{Composition:} \ \, \tilde{\phi}_{g_1} \circ \tilde{\phi}_{g_2} = \tilde{\phi}_{g_1g_2} \ \, \Longrightarrow \ \, \mathit{U}_{g_1}\mathit{U}_{g_2} = \mathrm{e}^{\mathrm{i}\theta}\mathit{U}_{g_1g_2}$
 - lacktriangle Wigner ('39): can set phases so $heta=n\pi$, i.e. $U_{g_1}U_{g_2}=\pm U_{g_1g_2}$
- \mathcal{H} a rep. space for a unitary rep. (up to sign) of $ISO(3,1)^+!$

- Consider $(\mathbb{R}^4, \eta_{ab})$, $\mathcal{S} = \{\psi \in \mathcal{H} : |\psi|^2 = 1\}/\sim$ $\psi \sim \psi' \iff \psi = e^{i\theta}\psi'$
- Isometry group: $G = ISO(3,1)^+$
- lacksquare Associate with $ilde{\phi}_{m{g}}$ a map $U_{m{g}}:\mathcal{H}
 ightarrow\mathcal{H}$ which preserves \sim
 - $ightharpoonup U_g$ can be rephased to be (anti-)unitary
- $\blacksquare \ \, \mathsf{Composition:} \ \, \tilde{\phi}_{g_1} \circ \tilde{\phi}_{g_2} = \tilde{\phi}_{g_1g_2} \ \, \Longrightarrow \ \, U_{g_1}U_{g_2} = \mathrm{e}^{\mathrm{i}\theta}\,U_{g_1g_2}$
 - lacktriangle Wigner ('39): can set phases so $heta=n\pi$, i.e. $U_{g_1}U_{g_2}=\pm U_{g_1g_2}$
- \mathcal{H} a rep. space for a unitary rep. (up to sign) of $ISO(3,1)^+!$
- Bargmann ('54): reps up to sign are *exactly* the true reps of the universal cover

■ The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space \hat{M} which covers M

- The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space \hat{M} which covers M
- Construction:

- The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space \hat{M} which covers M
- Construction:
 - Cut M such that it becomes simply connected with boundary
- Lie group structure of M is naturally lifted to \hat{M}

- The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space \hat{M} which covers M
- Construction:
 - Cut M such that it becomes simply connected with boundary
 - Glue together copies to eliminate the boundaries
- Lie group structure of M is naturally lifted to \hat{M}
- Fundamental group of $ISO(3,1)^+$ is $\mathbb{Z}_2 \to \text{double cover}$

- The universal cover $\mathcal{U}(M)$ of a topological space M is a simply connected space \hat{M} which covers M
- Construction:
 - Cut M such that it becomes simply connected with boundary
 - ► Glue together copies to eliminate the boundaries
- Lie group structure of M is naturally lifted to \hat{M}
- Fundamental group of $ISO(3,1)^+$ is $\mathbb{Z}_2 \to \text{double cover}$
- In fact, $\widehat{ISO}(3,1)^+ \cong ISL(2,\mathbb{C})$

Let $W \cong \mathbb{C}^2$

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A : W \to \mathbb{C}$

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A : W \to \mathbb{C}$
 - lacktriangle Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W o\mathbb{C}$

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A : W \to \mathbb{C}$
 - Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W\to\mathbb{C}$
 - Conjugate space \overline{W} : the dual space of \overline{W}^*

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A:W\to \mathbb{C}$
 - Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W\to\mathbb{C}$
 - ► Conjugate space \overline{W} : the dual space of \overline{W}^*
- Tensor of type (k, l; k', l'):

$$T_{B_{1}...B_{l}B'_{1}...B'_{l'}}^{A_{1}...A'_{k'}}: (W^{*})^{k} \times (W)^{l} \times (\overline{W}^{*})^{k'} \times (\overline{W})^{l'} \to \mathbb{C}$$

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A : W \to \mathbb{C}$
 - Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W\to\mathbb{C}$
 - ► Conjugate space \overline{W} : the dual space of \overline{W}^*
- Tensor of type (k, l; k', l'):

$$T_{B_{1}...B_{l}B'_{1}...B'_{l'}}^{A_{1}...A'_{k'}}: (W^{*})^{k} \times (W)^{l} \times \left(\overline{W}^{*}\right)^{k'} \times \left(\overline{W}\right)^{l'} \to \mathbb{C}$$

■ Space of type (0,2;0,0) antisymmetric tensors is 1-dimensional

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A:W\to \mathbb{C}$
 - Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W\to\mathbb{C}$
 - Conjugate space \overline{W} : the dual space of \overline{W}^*
- Tensor of type (k, l; k', l'):

$$T_{B_{1}...B_{l}B'_{1}...B'_{l'}}^{A_{1}...A'_{k'}}: (W^{*})^{k} \times (W)^{l} \times \left(\overline{W}^{*}\right)^{k'} \times \left(\overline{W}\right)^{l'} \to \mathbb{C}$$

- Space of type (0,2;0,0) antisymmetric tensors is 1-dimensional
- Spinor space: (W, ϵ_{AB})

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A:W\to \mathbb{C}$
 - Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W\to\mathbb{C}$
 - ► Conjugate space \overline{W} : the dual space of \overline{W}^*
- Tensor of type (k, l; k', l'):

$$T_{B_{1}...B_{l}B'_{1}...B'_{l'}}^{A_{1}...A'_{k'}}: (W^{*})^{k} \times (W)^{l} \times \left(\overline{W}^{*}\right)^{k'} \times \left(\overline{W}\right)^{l'} \to \mathbb{C}$$

- Space of type (0,2;0,0) antisymmetric tensors is 1-dimensional
- Spinor space: (W, ϵ_{AB})
 - $ightharpoonup \lambda^A \in W$ is called a *spinor*

- Let $W \cong \mathbb{C}^2$
 - ▶ Dual space W^* : linear maps $\lambda_A:W\to \mathbb{C}$
 - Conjugate dual space \overline{W}^* : anti-linear maps $\lambda_{A'}:W\to\mathbb{C}$
 - ► Conjugate space \overline{W} : the dual space of \overline{W}^*
- Tensor of type (k, l; k', l'):

$$T_{B_{1}...B_{l}B'_{1}...B'_{l'}}^{A_{1}...A'_{k'}}: (W^{*})^{k} \times (W)^{l} \times \left(\overline{W}^{*}\right)^{k'} \times \left(\overline{W}\right)^{l'} \to \mathbb{C}$$

- Space of type (0,2;0,0) antisymmetric tensors is 1-dimensional
- Spinor space: (W, ϵ_{AB})
 - $\triangleright \lambda^A \in W$ is called a *spinor*
 - ► Tensors over *W* are called *spinoral tensors*

Spinor Conventions

• (Un)primed index order irrelevant: $T^{AD'B}_{C} \leftrightarrow T^{AB}_{C}^{D'}$

- (Un)primed index order irrelevant: $T^{AD'B}_{C} \leftrightarrow T^{AB}_{C}^{D'}$
- Conjugation maps (k, l; k', l') tensors to (k', l'; k, l) tensors:

$$T^{A}_{BC} \leftrightarrow \overline{T}^{A'}_{B'C'}$$

 \bullet ϵ^{AB} , ϵ_{AB} raise/lower unprimed indices; $\overline{\epsilon}_{A'B'}$ for primed

- (Un)primed index order irrelevant: $T^{AD'B}_{C} \leftrightarrow T^{AB}_{C}^{D'}$
- Conjugation maps (k, l; k', l') tensors to (k', l'; k, l) tensors:

$$T^A_{\ BC} \leftrightarrow \overline{T}^{A'}_{\ B'C'}$$

- \bullet ϵ^{AB} , ϵ_{AB} raise/lower unprimed indices; $\overline{\epsilon}_{A'B'}$ for primed
- Contraction occurs over *first* index of ϵ :

$$\phi_A = \epsilon_{BA} \phi^B = -\epsilon_{AB} \phi^B$$

- (Un)primed index order irrelevant: $T^{AD'B}{}_{C} \leftrightarrow T^{AB}{}_{C}{}^{D'}$
- Conjugation maps (k, l; k', l') tensors to (k', l'; k, l) tensors:

$$T^A_{\ BC} \leftrightarrow \overline{T}^{A'}_{\ B'C'}$$

- \bullet ϵ^{AB} , ϵ_{AB} raise/lower unprimed indices; $\overline{\epsilon}_{A'B'}$ for primed
- Contraction occurs over *first* index of ϵ :

$$\phi_A = \epsilon_{BA} \phi^B = -\epsilon_{AB} \phi^B$$

lacksquare $\delta^{A}_{\ \ B}=\mathbb{I}_{W}$ differs by a sign from $\delta^{\ \ D}_{\ \ C}=\mathbb{I}_{W^{*}}$

- (Un)primed index order irrelevant: $T^{AD'B}_{C} \leftrightarrow T^{AB}_{C}^{D'}$
- Conjugation maps (k, l; k', l') tensors to (k', l'; k, l) tensors:

$$T^A_{BC} \leftrightarrow \overline{T}^{A'}_{B'C'}$$

- \bullet ϵ^{AB} , ϵ_{AB} raise/lower unprimed indices; $\overline{\epsilon}_{A'B'}$ for primed
- Contraction occurs over *first* index of ϵ :

$$\phi_A = \epsilon_{BA} \phi^B = -\epsilon_{AB} \phi^B$$

- ullet $\delta^{A}_{\ \ B}=\mathbb{I}_{W}$ differs by a sign from $\delta^{\ \ D}_{\ \ C}=\mathbb{I}_{W^{*}}$
 - ightharpoonup use $\epsilon^A_{\ B}$, $\epsilon_C^{\ D}$ and their conjugates to avoid confusion

$$SL(2,\mathbb{C})$$
 and $SO(3,1)^+$

• Let $L_B^A:W\to W$ be a linear transformation

- Let $L_B^A: W \to W$ be a linear transformation

- Let $L_B^A: W \to W$ be a linear transformation
- $SL(2,\mathbb{C})$ is simply all L with det(L) = 1

- Let $L_B^A: W \to W$ be a linear transformation
- $SL(2,\mathbb{C})$ is simply all L with det(L) = 1
 - ▶ Polar decomp: $L = UH \rightarrow 6$ real d.o.f.

- Let $L_B^A: W \to W$ be a linear transformation
- $SL(2,\mathbb{C})$ is simply all L with det(L) = 1
 - ▶ Polar decomp: $L = UH \rightarrow 6$ real d.o.f.
 - ▶ Simply connected Lie group $\cong S^3 \times \mathbb{R}^3$

- Let $L_B^A: W \to W$ be a linear transformation
- $SL(2,\mathbb{C})$ is simply all L with det(L) = 1
 - ▶ Polar decomp: $L = UH \rightarrow 6$ real d.o.f.
 - ▶ Simply connected Lie group $\cong S^3 \times \mathbb{R}^3$

lacktriangle Tensors $\phi^{AA'} \in W_{1,0;1,0}$ comprise a \mathbb{C}^4 vector space

- Tensors $\phi^{AA'} \in W_{1,0;1,0}$ comprise a \mathbb{C}^4 vector space
 - ▶ Let $\{o^A, \iota^A\}$ be a basis for W with $o_A \iota^A = 1$

- Tensors $\phi^{AA'} \in W_{1,0;1,0}$ comprise a \mathbb{C}^4 vector space
 - Let $\{o^A, \iota^A\}$ be a basis for W with $o_A \iota^A = 1$
 - ▶ A basis for $W_{1,0;1,0}$ can be given by

$$\begin{split} t^{AA'} &= \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} + \iota^A \overline{\iota}^{A'} \right) & = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ x^{AA'} &= \frac{1}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} + \iota^A \overline{o}^{A'} \right) & = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ y^{AA'} &= \frac{i}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} - \iota^A \overline{o}^{A'} \right) & = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \\ z^{AA'} &= \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} - \iota^A \overline{\iota}^{A'} \right) & = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{split}$$

- Tensors $\phi^{AA'} \in W_{1,0;1,0}$ comprise a \mathbb{C}^4 vector space
 - Let $\{o^A, \iota^A\}$ be a basis for W with $o_A \iota^A = 1$
 - ▶ A basis for $W_{1,0;1,0}$ can be given by

$$t^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} + \iota^A \overline{\iota}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$x^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} + \iota^A \overline{o}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$y^{AA'} = \frac{i}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} - \iota^A \overline{o}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

$$z^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} - \iota^A \overline{\iota}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

■ Under conjugation, $\overline{W}_{1,0;1,0} = W_{1,0;1,0}$

- Tensors $\phi^{AA'} \in W_{1,0;1,0}$ comprise a \mathbb{C}^4 vector space
 - Let $\{o^A, \iota^A\}$ be a basis for W with $o_A \iota^A = 1$
 - ▶ A basis for $W_{1,0;1,0}$ can be given by

$$t^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} + \iota^A \overline{\iota}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$x^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} + \iota^A \overline{o}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$y^{AA'} = \frac{i}{\sqrt{2}} \left(o^A \overline{\iota}^{A'} - \iota^A \overline{o}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

$$z^{AA'} = \frac{1}{\sqrt{2}} \left(o^A \overline{o}^{A'} - \iota^A \overline{\iota}^{A'} \right) \qquad = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Under conjugation, $\overline{W}_{1,0;1,0} = W_{1,0;1,0}$
 - $ightharpoonup \phi^{AA'} \in W_{1,0;1,0} ext{ s.t. } \overline{\phi}^{AA'} = \phi^{AA'} ext{ are called } real$

 ${\color{red} \bullet} \; \{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real

- $\{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacktriangle They span a 4-real dimensional space $V\subset W_{1,0;1,0}$

- $\{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacktriangle They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$

- $\{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacksquare They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - ightharpoonup g is nondegenerate with signature (+,-,-,-); a Lorentz metric!

- $\{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacksquare They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - ightharpoonup g is nondegenerate with signature (+,-,-,-); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_{B} \overline{L}^{A'}_{B'}$

- $\{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacktriangle They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - ightharpoonup g is nondegenerate with signature (+,-,-,-); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_{B} \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$

- $\{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacksquare They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - ightharpoonup g is nondegenerate with signature (+,-,-,-); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_{B} \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$
 - ▶ But this means $\lambda \in O(3,1)$ (in fact, $SO(3,1)^+$)!!

- $\{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacksquare They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - ightharpoonup g is nondegenerate with signature (+,-,-,-); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_{B} \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$
 - ▶ But this means $\lambda \in O(3,1)$ (in fact, $SO(3,1)^+$)!!
 - $ightharpoonup L_1,\ L_2
 ightarrow\ \lambda \implies L_1=\pm L_2$ (a double cover)

- $\{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacksquare They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - ightharpoonup g is nondegenerate with signature (+,-,-,-); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_{B} \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$
 - ▶ But this means $\lambda \in O(3,1)$ (in fact, $SO(3,1)^+$)!!
 - $ightharpoonup L_1,\ L_2
 ightarrow\ \lambda \implies L_1=\pm L_2$ (a double cover)
- Let $\{t^a, x^a, y^a, z^a\}$ be a basis for $\mathbb{R}^{3,1}$

- $\{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacksquare They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - ightharpoonup g is nondegenerate with signature (+,-,-,-); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_B \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$
 - ▶ But this means $\lambda \in O(3,1)$ (in fact, $SO(3,1)^+$)!!
 - $ightharpoonup L_1$, $L_2
 ightharpoonup \lambda \implies L_1 = \pm L_2$ (a double cover)
- Let $\{t^a, x^a, y^a, z^a\}$ be a basis for $\mathbb{R}^{3,1}$
- Define $\sigma^a_{AA'} := t^a t_{AA'} x^a x_{AA'} y^a y_{AA'} z^a z_{AA'}$

- $\{t^{AA'}, x^{AA'}, y^{AA'}, z^{AA'}\}$ defined above are clearly real
- lacksquare They span a 4-real dimensional space $V\subset W_{1,0;1,0}$
- Define $g: V \times V \to \mathbb{R}$ by $g_{AA'BB'} \coloneqq \epsilon_{AB}\overline{\epsilon}_{A'B'}$
 - g is nondegenerate with signature (+, -, -, -); a Lorentz metric!
- Define $\lambda: V \to V$ by $\lambda^{AA'}_{BB'} := L^A_B \overline{L}^{A'}_{B'}$
 - Automatically, $\lambda^{AA'}_{CC'}\lambda^{BB'}_{DD'}g_{AA'BB'}=g_{CC'DD'}$
 - ▶ But this means $\lambda \in O(3,1)$ (in fact, $SO(3,1)^+$)!!
 - $ightharpoonup L_1,\ L_2
 ightarrow\ \lambda \implies L_1=\pm L_2$ (a double cover)
- Let $\{t^a, x^a, y^a, z^a\}$ be a basis for $\mathbb{R}^{3,1}$
- Define $\sigma^a_{AA'} := t^a t_{AA'} x^a x_{AA'} y^a y_{AA'} z^a z_{AA'}$
 - $ightharpoonup \sigma$ is an isomorphism between Re[$W_{1,0;1,0}$] and $\mathbb{R}^{3,1}$

Spinors and Null Vectors

Spinors and Null Vectors

The Universal Enveloping Algebra

The Universal Enveloping Algebra

Representations and Hilbert Space

Representations and Hilbert Space

Summary

Summary

