POWERED BY Dialog

Basic Patent (Number, Kind, Date): NO 9602361 A0 960606

Patent Family:

 Patent Number
 Kind
 Date
 Application Number
 Kind
 Date

 NO 9602361 A0
 960606
 NO 962361 A
 960606 (Basic)

 NO 301243 B1
 970929
 NO 962361 A
 960606

Priority Data:

Patent Number Kind Date NO 962361 A 960606

PATENT FAMILY:

Norway (NO)

Patent (Number, Kind, Date): NO 9602361 A0 960606

FREMGANGSMAATE OG ANORDNING FOR ANBRINGELSE AV

VANNTETNINGSPRODUKTER (Numberrwegian)

Patent Assignee: FJERBY AS (NO)

Author (Inventor): HABBERSTAD BENT (NO) Priority (Number, Kind, Date): NO 962361 A 960606 Applic (Number, Kind, Date): NO 962361 A 960606

IPC: * E04B

Language of Document: Norwegian

Patent (Number, Kind, Date): NO 301243 B1 970929

FREMGANGSMAATE OG ANORDNING FOR PLASSERING AV ET VANNTETNINGSPRODUKT I EN STOEPESKJOET (Numberrwegian)

Patent Assignee: FJERBY AS (NO)

Author (Inventor): HABBERSTAD BENT (NO) Priority (Number, Kind, Date): NO 962361 A 960606 Applic (Number, Kind, Date): NO 962361 A 960606

IPC: * E04B-001/68; E02D-029/16 Derwent WPI Acc No: ; G 97-501114 Language of Document: Norwegian

INPADOC/Family and Legal Status

© 2004 European Patent Office. All rights reserved. Dialog® File Number 345 Accession Number 13086323

(12) UK Patent Application (19) GB (11) 2 217 760(13)A

(43) Date of A publication 01.11.1989

- (21) Application No 8909634.1
- (22) Date of filing 27.04.1989
- (30) Priority data

(31) 63108512

(32) 28.04.1988

(33) JP

(71) Applicant

Takenaka Corporation

(incorporated in Japan)

1-13, 4-Chome, Hom-machi, Chuo-ku, Osaka 541, Japan

(72) Inventor

Yoshifumi Takahel

(74) Agent and/or Address for Service Baron & Warren 18 South End, Kensington, London, WB 5BU, **United Kingdom**

- (51) INT CL4 E02D 31/02 37/00
- (52) UK CL (Edition J) E1H HHB E1E E4
- (56) Documents cited
- (58) Field of search UK CL (Edition J) E1E, E1H HHA HHB INT CL E02D

(54) Method of forming a joint between upper and lower concrete sections

(57) A method of treating construction joints in a top-down construction method, in which a lower concrete section (C_a) is constructed below an upper concrete section (C₁) using a framework (1) to form an injection hole (2) after the lower concrete section (C2) is set. The injection hole (2) formed is subsequently filled with an expansive and non-shrinkage injection material (3). The framework (1) is brought into close proximity to the bottom surface (S₁) of the upper concrete section (C₁) at upper sides (p) of both left and right surfaces (S) thereof, and it has a longitudinal sectional shape forming an obtuse angle (0) between each of the right and left side surfaces (S) and the bottom surface (S,) of the upper concrete section (C,).

This print takes account of replacement documents submitted after the date of filing to enable the application to comply with the formal requirements of the Patents Rules 1982.

1/6

Fig. 1

Fig. 2

()

Fig.3 Fig.4 Fig.5 Fig.6 Fig_.7

Fig. 8 3/6

į

Fig.9

4/6
Fig.10 PRIOR ART

Fig.11 PRIOR ART

Fig.12 5/6

(C)

(D)

Fig.13 6/6
PRIOR ART

Fig. 14 PRIOR ART

Fig. 15

C1
S1
S1
S
S

METHOD OF TREATING CONSTRUCTION JOINTS IN A TOP-DOWN CONSTRUCTION METHOD

5

10

15

20

25

30

The present invention relates to a method of treating construction joints in an up-down construction method in which an injection hole is intentionally formed in a minute clearance which is produced in vertical construction joints of concretes of pillars, walls and the like in the case where the up-down construction method is applied to the underground construction of buildings (a clearance produced between an upper concrete and a lower concrete, which is constructed below the upper concrete, due to the sinking of a surface of the lower concrete by the rise of seeping water) and an injection material, such as cement paste containing expansive additive and non-shrinkage additive, is injected through said injection hole to integrally construct the upper and lower concretes.

It can not be avoided that not only some clearance is produced between an upper concrete and a lower concrete due to the sinking of a surface of the lower concrete by the rise of seeping water in vertical construction joints create. by top-down concreting but also a laitance is accumulated in an upper portion of the clearance however carefully the lower concrete may be constructed.

Accordingly, it has been necessary that the above described construction joints are subjected to some treatments to fill up the above described clearance, whereby integrating the upper and lower concretes.

One of these treatment methods is a so-called "injection method".

This "injection method" includes a method, in which the lower concrete C_2 is constructed and then the injection hole 2 is formed from the direction crossing the construction joints by means of a drill, as shown in

-2-

Fig. 10(A), a method, in which the injection hole 2 is formed along the construction joints by means of a drill and the injection materials, such as cement paste containing expansive additive, epoxy resin and isocyanate resin, are injected through said injection hole 2, as shown in Fig. 10(B), and a method, in which an injection groove 8 opening downward is previously formed in the bottom surface S_1 of the upper concrete C_1 and the lower concrete C_2 is constructed followed by injecting the similar injection materials 3 through said injection groove 8, as shown in Fig. 11.

However, in the above described methods, in which the injection hole 2 is formed by the use of a drill, steel frames and the like exist within the construction joints, so that a deep hole can not be drilled, and as a result, the injection is conducted merely in portions close to the surface, whereby the injection can not be achieved up to surroundings of the internal steel frames according to circumstances.

In addition, in the method, in which the injection groove 8 is previously formed, the injection groove 8 is stopped up by constructing the lower concrete ${\rm C_2}$, whereby the injection is impossible or incomplete, in many cases.

The present inventor has proposed an "injection method" capable of eliminating the above described disadvantages in Japanese Patent Publication No. Sho 58-5346 (Japanese Patent No. 117639).

This is a method of treating construction joints, in which a lower concrete \mathbf{C}_2 is constructed below an

30

25

5

10

15

-3-

upper concrete C₁ under the condition that a framework 1 for forming an injection hole is mounted on a bottom surface S₁ of said upper concrete C₁, as shown in Fig. 12(A) to (D), and after the lower concrete C₂ is set, said framework 1 is taken off to form the injection hole 2 followed by injecting the injection materials 3, such as cement paste containing expansive additive, through said injection hole 2. Referring to Fig. 12, reference numeral 4 designates a framework for the lower concrete.

In addition, a measure for taking off the framework 1 for forming an injection hole includes a method, in which said framework 1 is pulled out, and a method, in which said framework 1 is dissolved in solvents.

The present inventor has conducted many experiments aiming at the practical use and the still further improvement in reliability of the method of treating construction joints in the up-down construction method proposed in Japanese Patent Publication No. Sho 58-5346 and found from the results of these experiments that the following problems occur according to a longitudinal sectional shape of the framework 1 for forming an injection hole in the above described method.

That is to say, in the case where the longitudinal section of the framework 1 for forming an injection have has a circular shape, a shape with rounded corners on right and left side surfaces S and the upper surface S' or a trapezoidal shape, as shown in Fig. 13, even though the lower concrete C₂ is set followed by taking off (pulling off or dissolving) the framework 1 to accurately form the injection hole 2, the injection

30

5

10

15

20

material 3 has been incompletely injected. It is for this reason that when a surface S_2 of the lower concrete C_2 is settled with the rise of seeping water, the settlement of concrete portions positioned above the right and left side surfaces S of the framework 1 (portions designated by marks (a), (a) in Fig. 14) is hindered by said side surfaces S, whereby said concrete portions (a), (a) are set under the condition that they are brought into close contact with or close to the bottom surface S_1 of the upper concrete C_1 , and as a result, the continuity of the injection hole 2 and the clearance in the construction joint is deteriorated, whereby the injection material 3 cannot be injected into the clearance through the injection hole 2.

Also in the case where the section of the framework 1 has a regular square shape or similar and both the right and left side surfaces S of the framework 1 meet at right angles with the bottom surface \mathbf{S}_1 of the upper concrete \mathbf{C}_1 , the similar problem has occurred according to circumstances.

That is to say, the bottom surface S_1 of the upper concrete C_1 is inclined for easy escaping of seeping water and air bubbles, as shown in Fig. 12, so that, if the framework 1 is installed obliquely relative to the inclination of the bottom surface S_1 or the bottom surface S_1 is inclined in right and left directions due to the poor assembling accuracy of the framework for the upper concrete, as shown in Fig. 15, both the right and left side surfaces S of the framework 1 do not become vertical planes but have an inclination even though they meet at right angles with the bottom surface S_1 .

30

5

10

15

20

-5-

Accordingly, in these cases, when the surface S₂ of the lower concrete C₂ is settled, the settlement of a portion positioned above one side surface S of the framework 1 (a portion designated by a mark (a) in Fig. 15) is hindered, whereby the similar problem to the above described one occurs on one side of the injection hole.

The present invention has been achieved in view of the above described knowledge. Thus, it is a main ojbect of the present invention to improve the continuity of an injection hole and a clearance in construction joints and completely carry out the injection of injection materials up to the depths by a remarkably simple construction in which merely a sectional shape of a framework for forming an injection hole is devised.

It is another object of the present invention angles formed between both side surfaces of the framework and a bottom surface of an upper concrete obtuse which-ever surface of the framework for forming an injection hole is struck to the bottom surface of the upper concrete, whereby being capable of improving the continuity of the injection hole and the clearance in construction joints and to be able to get along without paying attention not so as to misinstall the framework for forming an injection hale.

It is a further e.ject of the present invention to make the formation of the injection hole by taking off the framework and the direct injection of injection materials onto a back side of a steel frame possible even though the framework for forming an injection hole is arranged under the condition that it is bent so as

15

5

10

20

25

to go round the steel frame and the like.

5

10

15

20

25

30

It is a still further object of the present invention to curtail a quantity of solvents used for taking off said framework in spite of the use of the framework for forming an injection hole having a sufficient size.

In order to achieve the above described object, the present invention takes the following measures. That is to say, the present invention provides a method of treating construction joints in a top-down construction method, in which a lower concrete is constructed below an upper concrete under the condition that a framework for forming an injection hole in a bottom surface of said upper concrete, after said lower concrete is set, said framework being removed to form an injection hole, and an injection material, such as cement paste containing expansive additive and non-shrinkage additive, being injected through said injection hole, characterised in that said framework for forming an injection hole is brough into close contact with or close to the bottom surface of said upper concrete at upper sides of both right and left side surfaces thereof and has a longitudinal sectional shape so that an angle formed between both said right and left side surfaces and the bottom surface of said concrete may be obtuse.

The longitudinal sectional shape of the framework for forming an injection hole meeting the above described conditions includes an inversed trapezoidal shape, a semicircular shape and similar but it is effective to select the regular triangular longitudinal sectional shape of the framework for forming an injection hole by the reason which will be mentioned later.

In addition, the framework for forming an injection hole may be removed by pulling off said framework but it is effective to dissolve with solvents by the reason which will be mentioned later.

-7-

5

10

15

20

In this case, the framework for forming an injection hole may be solid or hollow but the latter is desirable by the reason which will be mentioned later.

With the above described construction, since the upper edges of both the right and left side surfaces of the framework for forming an injection hole is brought into close contact with or close to the bottom surface of the upper concrete, a part of the lower concrete does not go round onto the upper surface side of the framework for forming an injection hole when the lower concrete

is constructed below the upper concrete.

Since the angle formed between both the right and left side surfaces of the framework for forming an injection hole and the bottom surface of the upper concrete is obtuse, the natural settlement of the concrete portions brough into contact with both the right and left side surfaces of the framework by the gravity is not hindered by both the right and left side surfaces when the surface of the lower concrete is settled with the rise of seeping water.

25

Accordingly, the continuity of the injection hole formed by removing said framework for forming an injection hole and the clearance in the construction joints can be secured.

The invention will be described by way of example with reference to the accompanying drawings, in which:-

Fig. 1 is a perspective view showing one example of a framework for forming an injection hole used in the present invention;

Fig. 2(A) to (C) is a longitudinal sectional view showing principal parts to explain an injection treatment method of construction joints by the use of said framework;

Figs. 3 to 7 are longitudinal sectional views showing principal parts to explain other preferred embodiments of the present invention;

Fig. 8 is a cross sectional plan view showing principal parts in the basement of buildings to explain in example of the arrangement of the framework for forming an injection hole;

Fig. 9 i perspective view showing an extractable framework for ...ming an injection hole according to another preferred embodiment of the present invention;

Fig. 10(A), (B) and Fig. 11 are longitudinal sectional views showing principal parts to explain the conventional methods, as referred to hereinabove;

Fig. 12(A) to (D) is a rough longitudinal sectional view used for the explanation of both another conventional method and the present invention; and

Figs. 13 to 15 are diagrams of points at issue in the conventional methods.

As shown in Fig. 1, the framework 1 for for ing an injection hole formed of synthetic resins, such as foam styrene, and having the appointed longitudinal sectional shape (for example inverse trapezoidal shape) is stuck to the bottom surface S₁ of the upper concrete C₂ by the use of adhesives, adhesive tapes and the like, as shown in

30

25

5

10

15

5

10

15

20

25

30

Fig. 12(A). Under this condition, as shown in Fig. 2(A), the upper sides p of both the right and left side surfaces S of the said framework 1 are brought into close contact with or close to said bottom surface S_1 . And, as shown in Fig. 2(A), the obtuse angle Θ is formed between said both right and left side surfaces S and said bottom surface S_1 .

Subsequently, as shown in Fig. 12(B), a suitable framework 4 is constructed below the upper concrete $\rm C_1$ and the lower concrete $\rm C_2$ is casted.

The surface of the lower concrete C_2 is gradually settled with the rise of seeping water but the obtuse angle Θ is formed between both the right and left side surfaces S of the framework 1 for forming an injection hole and the bottom surface S_1 of the upper concrete C_1 , so that both the right and left side surfaces S do not hinder the settlement of the surface of the lower concrete C_2 , as shown in Fig. 2(A), and also the concrete portions brought into contact with both the right and left side surfaces S are almost uniformly settled.

After the lower concrete C_2 is set, said framework 4 is dismembered and the solvents, such as thinner, are poured into the position of the framework 1 for forming an injection hole to dissolve said framework 1, whereby forming the injection hole 2, as shown in Fig. 12(C). As above described, also the concrete portions brought into contact with both the right and left side surfaces S are almost uniformly settled, so that the injection hole 2 can be surely connected with the clearance of the construction joint.

5

10

15

20

25

30

Then, the injection material 3 is injected through said injection hole 2, as shown in Fig. 12(D). In this case, as above described, the superior continuity is achieved between the injection hole 2 and the clearance, so that the injection material 3 can be surely injected into the clearance on both sides through the injection hole 2.

In addition, dissolved leavings of the framework 1 for forming an injection hole are almost negligible in quantity, so that the injection material 3 may be injected immediately after the dissolution of the framework 1 but water may be poured into the injection hole 2 prior to the injection of the injection material 3 to wash the injection hole 2 and the clearance. Resinous injection materials, such as epoxy resins and isocyanate resins, and cement pastes containing expansive additive and nonshrinkage additive can be used as said injection material Every synthetic resin soluble in the solvents without leaving harmful substances can'be used as a material of the framework 1 for forming an injection hole formed of synthetic resins. Its typical example is foam styrene. Aromatic solvents, such as thinner, toluene, benzene and xylene, halogenated hydrocarbons, such as ethylene dichloride and trichloroethylene, ethers, such as butyl acetate, and the like, that is, various kinds of substance, can be used as the solvents.

The longitudinal sectional shape of the framework 1 for forming an injection hole may be triangular, as shown in Fig. 3, or may be semicircular or similar, as shown in Fig. 4. In addition, as shown in Fig. 5, the

vicinity of the upper sides p of both the right and left side surfaces S may be pleated so as to be elastically deformed, whereby the pleated portion is continued to be brought into close contact with the bottom surface S_1 by the elastic stability thereof under the condition that the upper surface S' of the framework 1 is struck to the bottom surface S_1 of the upper concrete C_1 .

5

10

15

20

25

30

Fig. 6 shows another preferred embodiment of the present invention. This preferred embodiment is characterised in that the quantity of the solvents used is reduced with securing the thickness necessary for the formation of said injection hole 2 by forming the framework 1 for forming an injection hole in a hollow shape (a shape having a hollow portion 1').

Fig. 7 shows a further preferred embodiment. This preferred embodiment is characterised in that the longitudinal sectional shape of the framework l for forming an injection hole is regular triangular so that the above described condition may be satisfied whichever surface is stuck to the bottom surface S₁. The hollow portion l' intends to reduce the quantity of the solvents used in the same manner as in the preferred embodiment shown in Fig. 6.

In the above described respective preferred embodiments, the framework 1 for forming an injection hole is removed by dissolving said framework 1 with the solvents, so that it is not required to arrange the framework 1 linearly. Accordingly, as shown in for example Fig. 8, the bent injection hole 2 can be formed to directly inject the injection material on the back side of the

5

10

15

20

25

30

steel frame 5. In addition, in the case where the injection hole 2 is formed in the construction joint of an underground outer wall 6, the inclined arrangement of the respective frames 1 in the same direction is effective for uniformly injecting the injection material into the clearance of the construction joint, as shown in Fig. 8. Referring to Fig. 8, reference numeral 7 designates a barrier-wall.

In addition, after the lower concrete C₂ is set, the framework 1 for forming an injection hole may be pulled out to form the injection hole 2. For example, the framework 1 is formed of materials, to which concrete is not stuck, or the surface of the framework 1 is coated with grease, that is, the framework 1 is subjected to a suitable measure for preventing concrete from sticking thereto, and after the lower concrete is set to some extent, in short, at a point of time when it is still early to dismember the framework 4 for use in the lower concrete but the molding is possible because no big force is applied to the construction joints from above, the framework 1 can be pulled out from a hole which is previously formed in said framework 4 to form said injection hole 2.

In addition, if the framework 1 for forming an injection hole comprising a resinous tape la spirally wound in an appointed sectional shape is used, as shown in Fig. 9, the overlap of the resinous tape la is reduced and the diamter of the framework 1 is reduced by pulling one end of the framework 1 in the axial direction, so that it can be pulled out by a slight force even after

î

5

10

15

20

25 .

30

the lower concrete is completely set. Although it is not shown, if the framework 1 for forming an injection hole is formed of rubber, its diameter is reduced by pulling one end thereof, so that it can be easily pulled out even though it has a sectional shape as shown in Figs. 2 to 7.

According to the present invention, since the upper sides of both the right and left side surfaces of the framework for forming an injection hole are brought into close contact with or close to the bottom surface of the upper concrete, a part of the lower concrete does not go round up to the upper surface side of the framework for forming an injection hole when a lower concrete is constructed below an upper concrete, and, since the angles formed between both the right and left side surfaces of the framework for forming an injection hole and the bottom surface of the upper concrete are obtuse, the settlement of the concrete portions brought into contact with both the right and left side surfaces of the framework is not hindered by said right and left side surfaces when the surface of the lower concrete is settled with the rise of seeping water.

Accordingly, the continuity between the injection hole, which is formed by removing said framework for forming an injection hole, and the clearance of construction joint can be secured to completely inject the injection material.

In the method according to claim (2), the longitudinal sectional shape of the framework for forming an injection hole is a regular triangle, so that the angles formed between both the right and left side surfaces of the framework and the bottom surface of the upper concrete are obtuse whichever surface of said framework is stuck to the bottom surface of the upper concrete. Accordingly, it is not required to pay attention so that the framework may not be misinstalled and thus the efficiency and reliability of the installation of the framework are improved.

5

10

15

20

In the method according to claim (3), since the framework for forming an injection hole is removed by dissolving it with solvents, it is not required to give the extractable shape to the framework. Accordingly, for example the framework can be arranged so as to go round the steel frame to directly inject the injection material up to the back side of the steel frame.

In the method according to claim (4), since the framework for forming an injection hole is hollow, the quantity of the solvents used can be reduced and thus the method is economical even though the sufficient size is given to said framework so that the injection hole may be formed easily in the injecting operation.

ş

2.

CLAIMS

5

10

15

20

25

- 1. A method of treating construction joints in a topdown construction method, in which a lower concrete is constructed below an upper concrete under the condition of a framework for forming an injection hole in a bottom surface of said upper concrete after said lower concrete is set, said framework being removed to form an injection hole, and an injection material, such as cement paste containing expansive additive and non-shrinkage additive, being injected through said injection hole, characterised in that said framework for forming an injection hole is brought into close contact with or close to the bottom surface cf said upper concrete at upper sides of both right and left side surfaces threreof and has a longitudinal sectional shape so that an angle formed between both said right and left side surfaces and the bottom surface of said upper concrete may be obtuse.
- 2. A method as claimed in claim 1, wherein said longitudinal sectional shape of the framework for forming an injection hole is a regular triangle.
- 3. A method as claimed in claim 1 or 2, wherein the framework for forming an injection hole is formed of synthetic resins easily soluble in solvents and said framework is dissolved in the solvents after the lower concrete is set, whereby forming the injection hole.
- 4. A method as claimed in any preceding claim, wherein the framework for forming an injection hole is hollow.
- 5. A method of treating construction joints in a top-down construction method substantially are herein described with reference to Figures 1, and 2(A) to 2(C), or any one of Figures 3 to 9 and Figure 12 of the accompanying drawings.