na English eguivalent aveilable

COMPOUND FOR MANUFACTURING FIBRE BOARDS

Patent number:

SU1177319

Publication date:

1985-09-07

Inventor:

MALTSEVA TATYANA V (SU); GAMOVA IRINA A (SU);

STRELKOV VITALIJ P (SU)

C08L61/24; C08L97/02

Applicant:

VNII DEREVOOBRABATYVAYUSHCHEJ (SU)

Classification:

international:

- european:

Application number: SU19833668578 19831124 Priority number(s): SU19833668578 19831124

Report a data error here

-Abstract not available for SU1177319

Data supplied from the esp@cenet database - Worldwide

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3668578/23-05
- (22) 24.11.83
- (46) 07.09.85. Бюл. № 33
- (72) Т.В.Мальцева, И.А.Гамова и В.П.Стрелков
- (71) Всесоюзный научно-исследовательский институт деревообрабатывающей промышленности
- (53) 674.817.41 (088.8)
- (56) Гамова И.А., Солечник Н.Я. Сверхтвердые древесноволокнистые плиты. Химическая переработка древесины, 1967, № 1, с. 11-12.

Авторское свидетельство СССР № 626979, кл. В 29 І 5/00, 1976. (54)(57) МАССА ДЛЯ ИЗГОТОВЛЕНИЯ ДРЕВЕСНОВОЛОКНИСТЫХ ПЛИТ, включаю~

щая древесное волокно, карбамидоформальдегидную смолу, фосфорную кислоту и уротропин, о т л и ч а ю щ а я с я тем, что, с целью повышения прочности плит, снижения их набухания в воде и сокращения количества отходов, масса дополнительно содержит карбамид и малеиновую кислоту при следующем соотношении компонентов, мас. %:

Древесное волокно	. 86,22-89,4
Карбамидоформаль-	
дегидная смола	5,0-6,5
Фосфорная кислота	0,10-0,13
Уротропин	0,50~0,65
Карбамид	4,0 -5,0
Малеиновая кислота	1,0 -1,5

Изобретение относится к массам для изготовления древесноволокнистых плит сухого способа формования средней плотности и может быть применено в деревообрабатывающей и целлюлозно- 5 бумажной промышленности.

Цель изобретения - повышение прочности плит, снижение их набухания в воде и сокращение количества отхо- 10 дов.

Технология получения связующего следующая: карбамид и малеиновую кислоту нагревают в водном растворе при концентрации сухих веществ 30% до достижения рН 3-4. Такой состав совмещается с карбамидоформальдегидной смолой, фосфорной кислотой и

Известная

3

уротропином. Полученное связующее не токсично, стабильно при кранении.

Связующее вводят в древесное волокно с помощью воздушного распыления через форсунки, в количестве
5-10% на абсолютно сухое волокно.
Обработанное волокно подсушивают
до влажности 8-10%, формируют ковер
и изготовляют плиты толщиной 10 мм,
прессуя при 180-200°С и удельном
давлении 3,0-3,5 МПа, продолжительность прессования составляет
0,94 мин/мм готовой плиты.

Составы массы для изготовления древесноволокнистых плит по примерам конкретного использования приведены в табл. 1, свойства плит в табл. 2.

Таблица 1

Таблица 2

Компоненты	Содержание, мас.%		Известная	
	.1	2	3	
Древесное волокно	89,40	87,81	86,22	89,40
Карбамидоформальдегидная смола	5,0	5,75	6,5.	10,0
Фосфорная кислота	0,10	0,115	0,13	0,10
Уротропин	0,50	0,575	0,65	0,50
Карбамид	4,0	4,5	5,0	-
Малеиновая кислота	. 1,0	1,25	1,5	_

Macca Толщина слоя Плотность. Предел прочности, МПа при Набухание, при шпифова-Kr/M3 % нии, мм статическом растяжении изгибе перпендикулярно поверхности 1 650 30,9 0,47 13,0 2 650 31,5 0,51 -12,6 3 650 36 0,56 12,1

30

0,43

690