·相抵标理A eFmm] PEGLMF) QEGLM(F)
A=P(Irp)Q.
· Smith 标理:说 R= Z. IF[X], ··· (ED).
AERMAN, RIJPEGLM(R), REGL(R).
B di,, dr EM. di dia.
$5.t A = P \begin{pmatrix} d_1 & \dots & d_r \\ 0 & 0 \end{pmatrix} Q$
RK: R=F[X], Dx:= d, dx. 行列式因子
d; 不喜国J.
Pdi的初等因了组】: A(X)的初等因了组
(1) (1) (1) (1) (1) (2)
(2) \(\lambda \\ \lam
·正交相抵 击异值分解
·正友相抵 奇异值分解 AER****](P,Q)E Om (R) × On(R), A= P(oro)Q.
$6_{i} > 6_{i+1}$

·相小· A、BEF ^{nxn}
A.B相(15年) ヨPEGLn(1F), s.t. A=pTBP
P·P公基变换。
·相合: A实对称矩阵.
·A、B相会 〇 ヨP, A=PTBP.
· A,B相合 () ∃P, A=P ^T BP. · Thm.相合对角化: A=P(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
P.(9)证(员) 摆性指数.
· Thm: A 实对称方阵, 3 PE On (R).
$5.t P^T A P = \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{pmatrix} + \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{pmatrix}$
$\langle \lambda_n \rangle$
正定,半正定。
命题:设A,B实对称方阵、牛正定、1871 A,B可
同时相合于对角阵,
·IA:
① A.B中有一个正定、WLOG A>O.
RI 3 PEGLn(R), st PAPT = In.
$\exists \exists PBP^T, \exists Q \in O_n(P), st Q(PBP^T)Q^T = \begin{pmatrix} \lambda_{i,j_0} \end{pmatrix}$
RI To Po= QP, TRI) POAPO = In. P.BP. = (10)

$\overline{\mathcal{P}}$	AB均等	上正定	115上放法不对	. 也无法使用摄动法
\bigcirc				

$$C := A+B > 0. \quad \exists Q \in GL_n(\mathbb{R}), \quad Q^T \in Q = \begin{pmatrix} Ir & 0 \\ 0 & 0 \end{pmatrix}$$

$$\overline{V}_{\mathcal{R}} \quad Q^T \wedge Q = \begin{pmatrix} A_1 & A_2 \\ A_2 & A_3 \end{pmatrix} \quad \overline{R}_{\mathcal{R}} \quad Q^T \wedge Q = \begin{pmatrix} Ir & A_1 & A_2 \\ -A_2 & A_3 \end{pmatrix}$$

· 由于A、B正定、知 A320;A330 => A3=0.

· 若 Az to.刚] u e Rr, s.t V= AI u to

YXER.

取入一一四、与半正定矛盾。

· 取 U C Or (IR) s.t UTA, U = D 对角阵.

R) 按 P'= Q(U)

 $\mathbb{R} \setminus (P')^{\mathsf{T}} \wedge P' = (D_{\circ}) \cdot (P')^{\mathsf{T}} \wedge P' = (D_{\circ}) \cup D$

RK: C的情形, 类比.

推说:说 ABB30. 求证: [A 3 JB 30.

证明。见小河等家

						ļ
RK: JAB =	JA - JB					
Rk: 32 =:	Ster 1:	A	3 B > 0)		
	Step 2:				+ B > 0	
	step3:					え
	x^{T} ($\sqrt{5}$)					
	C	<u> </u>	•	,		
	χ^{T} (JA	- JB)x >	, 0	
12: 7岁 A E R"	in D fi	Ž 1	-1 1 ³ / ₂ 1	肠序注	77 47	7 5 .
De det A 30		•			32 V1	<u> </u>
A OUT A 70	· YIF DIG	⁷ P	4112	٠.		

2021 秋线性代数(B2)期中

授课教师: 陈发来 欧阳毅 时间: 2 小时

-(10') 求三次有理系数多项式f(x)使得 $f(x) + 1被(x-1)^2$ 整除,且f(x) - 1被

二(10') 设复系数多项式 $f(x) = x^2 + ax + 1, g(x) = x^3 + x^2 + b$, 其中a, b是常

数。给出f(x)与g(x)有公因子(不互素)的充要条件(用a,b表示)。

 $\Xi(10')$ 设A为n阶方阵,且rank(A) = n - 1.证明: $rank(A^k) \ge n - k$ (k为正整

四(20')给定矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
.

1. 求出所有满足条件 $AB = BA$ 的实矩阵 B .

- 2. 用W记由1求得的所有矩阵全体。证明: W是ℝ⁴×⁴的子空间, 并求其维数与一组基。
- 3. 求 $\mathbb{R}^{4\times4}$ 的子空间W'使得 $\mathbb{R}^{4\times4} = W \oplus W'$ 。

五(15')设矩阵 $A = (a_{ij})_{n \times n}$,其中 $a_{ij} = \delta_{ij} + i + j$, δ_{ij} 为 Kronecker 记号。求矩阵A的行列式。 $A = I_n + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

六(15')试求多项式矩阵A的 Smith 标准型、不变因子和初等因子组,这里

$$A = \begin{bmatrix} x & 1 & \cdots & 1 & 1 \\ 0 & x & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & x & 1 \\ 0 & 0 & \cdots & 0 & x \end{bmatrix}$$

七(20')设 $A \in \mathbb{F}^{m \times n}$,称矩阵 $X \in \mathbb{F}^{n \times m}$ 为矩阵A的广义逆,如果AXA = A, XAX =

Χ.

- 2. 证明: 对矩阵 $A \in \mathbb{F}^{m \times n}$,其每一个广义逆都可以表示为 $X = \tilde{Q}^{-1}\begin{pmatrix} I_r & O \\ O & O \end{pmatrix} \tilde{P}^{-1}$,这里 \tilde{P} , \tilde{Q} 是满足 $A = \tilde{P}\begin{pmatrix} I_r & O \\ O & O \end{pmatrix} \tilde{Q}$ 的可逆方阵。

$$X = Q^{-1} \begin{pmatrix} I_{r} & 0 \\ X_{3} & I_{n-r} \end{pmatrix} \begin{pmatrix} I_{r} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_{r} & X_{2} \\ I_{n-r} \end{pmatrix} P^{-1}$$

$$\stackrel{\sim}{Q}^{-1} = Q^{-1} \begin{pmatrix} I_{r} \\ X_{3} & I_{n-r} \end{pmatrix} \stackrel{\sim}{P}^{-1} = \begin{pmatrix} I_{r} & X_{2} \\ I_{n-r} \end{pmatrix} \stackrel{\sim}{P}^{-1}$$

$$|R_{1}| \stackrel{\sim}{P} \begin{pmatrix} I_{r} \\ -X_{3} & I_{n-r} \end{pmatrix} \stackrel{\sim}{Q} = P \begin{pmatrix} I_{r} -X_{2} \\ I_{n-r} \end{pmatrix} \begin{pmatrix} I_{r} \\ -X_{3} & I_{n-r} \end{pmatrix} \stackrel{\sim}{Q}$$

$$= P \begin{pmatrix} I_{r} \\ 0 \end{pmatrix} \stackrel{\sim}{Q} = A$$