

The T2K Experiment

Beatrice Crudele Jacopo Siniscalco

Department of Physics and Astronomy University College London

17th October 2022

Neutrinos in 2010 (Theory)

■ Theoretical basis for neutrino oscillations was well established - $U(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{cp})$

$$\begin{split} &P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \\ &-\frac{\sin2\theta_{12}\sin2\theta_{23}}{2\sin\theta_{13}}\sin\frac{\Delta m_{21}^{2}L}{4E}\sin^{2}2\theta_{13}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E}\sin\delta_{\mathrm{CP}} \\ &+ \text{ (CP even term, solar term, matter effect term),} \end{split}$$

Neutrinos in 2010

- 1998 Super Kamiokande (SK) finds evidence of oscillations in atmospheric and solar neutrinos
- Other evidence of oscillations from non-controlled sources (eg. nuclear reactors - KamLAND)
- However, no direct observation of flavor oscillations yet!

T2K to the rescue

- lacktriangle Produce ν_{μ} at JPARC
- If you see v_e at SK, you've seen oscillations!

Making the ν beam

- \blacksquare Positive signal is an excess of $\nu_{\it e}$ so need original neutrino beam to be very pure ν_{μ}
- \blacksquare Oscillation length depends on ν energy would be nice to tune this
- Beam intensity and direction needs to be measured to correlate signals from SK
- R&D from previous experiments helped a lot with beam characterisation (eg. MC simulations)

JPARC

SuperK

- Water Cherenkov detector: $\nu \rightarrow \text{lepton} \rightarrow \gamma$
- Light picked up by set of PMTs on detector wall
- Made up of inner (ID) and outer detector (OD)

Findings

- Appearance of electron neutrino in a muon neutrino beam
- 28 electron neutrino events detected with an energy distribution consistent with an appearance signal
- Further constraints on δ_{CP}
- Background: ≈ 5 electron neutrinos

How can we distinguish positive events?

- Timing cut based on status of neutrino beam
- Energy cut to beam momentum (calibrated with near detectors)
- Cuts on Cherenkov ring shape and direction
- Background estimated with MC simulations

Selection	Data	$ \begin{array}{c} \nu_{\mu} \rightarrow \nu_{e} \\ \text{CC} \end{array} $	$\nu_{\mu} + \overline{\nu}_{\mu}$ CC	$\nu_e + \overline{\nu}_e$ CC	NC	Total MC
Interactions in FV	-	27.1	325.7	16.0	288.1	656.8
FCFV	377	26.2	247.8	15.4	83.0	372.4
+Single-ring	193	22.7	142.4	9.8	23.5	198.4
+e-like PID	60	22.4	5.6	9.7	16.3	54.2
$+p_e > 100 \text{MeV/c}$	57	22.0	3.7	9.7	14.0	49.4
+No decay- e	44	19.6	0.7	7.9	11.8	40.0
$+E_{\nu}^{\rm rec} < 1250 { m MeV}$	39	18.8	0.2	3.7	9.0	31.7
$+ \text{Non-}\pi^0$ -like	28	17.3	0.1	3.2	1.0	21.6

Remaining uncertainty

- Errors on decay-electron rejection cut
- Uncertainty on Monte Carlo simulations
- Additional SK systematic uncertainties due to final-state interactions of pions

After the paper

- \blacksquare Measure ν_{μ} disappearance, and therefore θ_{23}
- JPARC can filter beam with pion charge $(\Pi^+ \to \nu_\mu, \Pi^- \to \bar{\nu}_\mu)$: can try to measure differences in oscillations related to CP violation
- Measured $\delta_{CP} > 0$ with some confidence
- Hyper Kamiokande comes into play

Conclusions

- Great success!
- First observation of electron neutrino appearance in a muon neutrino beam
- Step forward into costraining δ_{CP}
- Solid future effort with new experiments

References

- Observation of Electron Neutrino Appearance in a Muon Neutrino Beam (K.Abe et al.)
- Measurement of the muon beam direction and muon flux for the T2K neutrino experiment (K.Suzuki et al.)
- Remarks on the Unified Model of Elementary Particles (M.Nakagawa et al.)
- First combined analysis of neutrino and antineutrino oscillations at T2K (K.Abe et. al.)
- Recent results from the T2K experiment (Marat Khabibullin)
- *t2k-experiment.org* (The T2K Collaboration)