Chomsky Normal Form. (CNF) G = (N, 2, P, S) $S \rightarrow SS \mid 0 \mid 1 \mid E$ $S \xrightarrow{1} SS \xrightarrow{2} SSS \xrightarrow{3} SS \xrightarrow{4} SS \xrightarrow{5} S$

G= (N, E, P, S) is in CNF if all productions

A > BC A > a A, B, C ∈ N, a ∈ E.

Example. S > [S] | SS | E → G, not in CNF

S > AB | AC | SS C > SB A > [B >]

Claim. L(G,)=L(G2)

One step progress. 2 + of Nonterminals increase by 1.

Theorem. For any CFG G, there is a CFG G'

in CNF such that L(G') = L(G) - {E}.

Lemma 1. For any CFG G= (N, Z, P, S) there is a CFG G' with no E-productions or unit-productions Such that L(G') = L(G) - EE3 Proof. Let P be the smallest set of productions containing Pand closed under He rules: (a) if A → &BB and B → E are in P Han A→ &B EP (b) if A→B and B→V are in P Han A→V ∈P. Note: P is finite.

(Finitely many new production rules are added ?

Leach new RHS is a substring of an old RHS.) G = (N, E, P, S) We have $L(G) \subseteq L(G)$ Since $P \subseteq P$ L(G)=L(G)- Each new production was included be cause of rule (a) or (b) - con be simulated in 2 steps by two productions that caused it to be included.

Claim 2. For any non-null x E E, any devivation S *> x of minimum length does not use E-or unit productions.

Proof. Let $x \neq \epsilon$. Let $5 \xrightarrow{*} x$ be the minimum length derivation.

Suppose an E-production $B \rightarrow \epsilon$ is used at some point

At least one of 8 or S is non-null=> B was introduced from a production of the form A > & BB.

By rule (a) A -> &B &P.

But then we have a strictly shorter derivation of x $S \xrightarrow{M} NAO \xrightarrow{1} NABO \xrightarrow{n} 3S \xrightarrow{R} \propto$

This gives a contradiction.

Unit Productions

Let $x \neq G$. Consider a derivation $S \stackrel{*}{\Rightarrow} x$ of minimum/ength. Suppose a unit production $A \rightarrow B$ is used at some point $S \stackrel{*}{\Rightarrow} \lambda AB \stackrel{!}{\rightarrow} \lambda BB \stackrel{*}{\Rightarrow} x$.

B must be removed later by applying a production $B \rightarrow 8$.

S\$ dAB \$\frac{1}{\hat{G}} \dBB \frac{\hat{\hat{G}}}{\hat{G}} \dBB \frac{\hat{\hat{G}}}{\hat{G}} \dBB \frac{\hat{\hat{G}}}{\hat{G}} \dBB \frac{\hat{\hat{G}}}{\hat{G}} \dBB \frac{\hat{\hat{G}}}{\hat{G}} \dagger \dagger.

By rule (b), $A \rightarrow \forall \in \hat{P}$.

Claim 2 implies we can remove the E-productions and writ productions from P without changing the language.

Chomsky Normal Form.

By Lemma 1, $L(G) = L(\hat{G})$ and \hat{P} does not have ϵ -productions or unit productions.

For each terminal $a \in \Sigma$ introduce a new nonterminal Aa and add the production rule $Aa \rightarrow a$.

Replace all occurrences of a on the RHS of old productions (except productions of the form B-a) with Aa. Then all productions are of the form:

 $A \rightarrow a$ or $A \rightarrow B_1 B_2 - B_k$ $k \ge 2$

For any production of the form $A \rightarrow B_1B_2 - - B_k$ with $k \ge 3$, introduce a new nonterminal C and seplace with

 $A \rightarrow B_1 C$ and $C \rightarrow B_2 - B_k$

Repeat until all RHS of all productions ore of length of most 2.