A. Krzyzak

Assignment 1

Amiani Johns 26388620

1. Figures 1 and 2 show the behaviour of the harmonic sum for various values of N. Note that the N values are plotted on a log scale. In both plots we see that the sum continues to grow as N increases.

The sum of a geometric series with constant ratio r less than 1 sum can be calculated using the formula[1]

$$\sum_{k=1}^{N} r^k = \frac{r(1-r^N)}{1-r}$$

Our series has $r = \frac{1}{3}$, so the sum is

$$\frac{\frac{1}{3}(1 - (\frac{1}{3})^N)}{1 - \frac{1}{3}} = \frac{1}{2}(1 - \frac{1}{3^N})$$

In the limit of large N, the sum of a geometric series with constant ratio less than 1 can be calculated using the formula[1]

$$\sum_{k=1}^{\infty} = \frac{r}{1-r}$$

Which for $r = \frac{1}{3}$ is $\frac{1}{2}$.

2.

We see from the above figure that sequence initially rises before settling to a fixed point x^* after k = 5. We find this fixed point by solving

$$x = f(x)$$

where

$$f(x) = \frac{2x^3 + 5}{3x^2}$$

therefore

$$x^* = \sqrt[3]{5}$$

This fixed point does not depend on $x^{(0)}$.

When c = 0.95, the sequence is attacted to the fixed point at 0.

When c=1.55, the sequence is attracted to the fixed point at $1-\frac{1}{1.55}=0.355$. When c=2, the sequence is attracted to the fixed point at $1-\frac{1}{2}=\frac{1}{2}$.

When c = 3.6, $|f'(x^*)| = 1.6 > 1$, so the sequence is repelled from the fixed point at $1 - \frac{1}{3.6} = 0.722.$

When c = 3.98, $|f'(x^*)| = 1.98 > 1$, so the sequence is repelled from the fixed point at $1 - \frac{1}{3.98} = 0.749.$

References

Eric W. Weisstein. Geometric Series. From MathWorld-A Wolfram Web Resource. Visited on 6/2/21. URL: http://mathworld.wolfram.com/GeometricSeries.html.