R Event Study

David Zimmermann

Contents

1	Inti	roduction	2
2	Preparation		
	2.1	Load libraries	2
	2.2	Load data	2
	2.3	Inspect data	
	2.4	Merge Data	
	2.5		4
3	Est	imation	6
	3.1	Calculate the CMRM	6
	3.2	CAPM	
	3.3	Merge Returns	
	3.4	Calculate the Abnormal Returns	
	3.5	Calculate the Cumulative Abnormal Returns	
4	Testing 1		
	4.1	T-test	1
	4.2	Testing over Aggregated Times	
	4.3	Multiple Time Windows	

1 Introduction

The following script provides an application of an event study. The data and the script itself can be found here: https://github.com/DavZim/Classes/tree/master/Advanced%20Corporate%20Finance/Event%20Study

To run this notebook, make sure that you have at least RStudio version 1.0.44 installed and run R version 3.3.2 or higher.

The general outline for this document is to first load the data, merge the necessary data, inspect the data both visually and via tables, estimate a CMRM (constant-mean-return model), calculate the ARs (abnormal returns), and CARs (cumulative abnormal returns) and then test for significance using a t-test.

2 Preparation

2.1 Load libraries

```
library(tidyverse) # for most of the data and visualisation functions
library(scales)
                  # scales for plotting
library(lubridate) # easy date handling
############
# Alternatively, load the libraries individually
# library(dplyr) # for data manipulation
# library(ggplot2) # for plotting
# library(lubridate) # for dates
# library(readr) # for data loading
# library(scales)
                  # for plotting
# library(tidyr)
                  # for tidy data
# used for visualisation
theme_set(theme_light())
```

2.2 Load data

```
mar_wide <- read_csv("data/market.csv")
ret_wide <- read_csv("data/returns.csv")
events <- read_csv("data/events.csv")

# reshape returns and market to long format
returns <- ret_wide %>%
    pivot_longer(-date, names_to = "company", values_to = "ret")

market <- mar_wide %>%
    pivot_longer(-date, names_to = "country", values_to = "mret")

# date formatting
returns <- returns %>% mutate(date = dmy(date))
market <- market %>% mutate(date = dmy(date))
events <- events %>% mutate(event = dmy(event))
```

2.3 Inspect data

```
returns
## # A tibble: 26,604 x 3
```

```
##
     date
                                 ret
                company
     <date>
##
                <chr>
                               <dbl>
                             0.0341
## 1 1997-01-02 Chrysler
## 2 1997-01-02 BellSouth
                             0.0185
## 3 1997-01-02 Engelhard
                             0.00654
## 4 1997-01-02 Norsk Hydro -0.00481
## 5 1997-01-02 Pilkington -0.0120
## 6 1997-01-02 INA
                             0.00787
## 7 1997-01-03 Chrysler
                             0.0146
## 8 1997-01-03 BellSouth
                           -0.00607
## 9 1997-01-03 Engelhard
                             0.0195
## 10 1997-01-03 Norsk Hydro 0.00489
## # ... with 26,594 more rows
market
## # A tibble: 17,736 x 3
##
     date
                country
                             mret
##
      <date>
                <chr>
                            <dbl>
## 1 1997-01-02 us
                        -0.00751
## 2 1997-01-02 norway -0.00260
## 3 1997-01-02 uk
                        -0.0241
## 4 1997-01-02 italy -0.00600
## 5 1997-01-03 us
                        0.0149
## 6 1997-01-03 norway
                         0.00511
## 7 1997-01-03 uk
                         0.00795
## 8 1997-01-03 italy
                       -0.00366
## 9 1997-01-06 us
                         0.000372
## 10 1997-01-06 norway
                         0.0106
## # ... with 17,726 more rows
events
## # A tibble: 6 x 2
##
    company
                event
    <chr>
                <date>
## 1 Chrysler
                1998-05-06
## 2 BellSouth 2006-03-06
## 3 Engelhard
                2006-01-03
## 4 Norsk Hydro 2006-12-18
## 5 Pilkington 2005-10-31
## 6 INA
                1999-09-14
```

2.4 Merge Data

```
countries <- tibble(
  company = c("Chrysler", "BellSouth", "Engelhard", "Norsk Hydro", "Pilkington", "INA"),
  country = c("us", "us", "us", "norway", "uk", "italy")
)

# merge into one dataset
merged <- left_join(returns, countries, by = "company")
merged <- left_join(merged, market, by = c("date", "country"))
merged <- left_join(merged, events, by = "company")
merged</pre>
```

```
## # A tibble: 26,604 x 6
##
      date
                company
                                 ret country
                                                  mret event
                 <chr>
##
      <date>
                                <dbl> <chr>
                                                 <dbl> <date>
                                              -0.00751 1998-05-06
##
  1 1997-01-02 Chrysler
                              0.0341 us
##
   2 1997-01-02 BellSouth
                              0.0185 us
                                              -0.00751 2006-03-06
  3 1997-01-02 Engelhard
##
                              0.00654 us
                                              -0.00751 2006-01-03
  4 1997-01-02 Norsk Hydro -0.00481 norway
                                             -0.00260 2006-12-18
## 5 1997-01-02 Pilkington -0.0120 uk
                                              -0.0241 2005-10-31
##
   6 1997-01-02 INA
                              0.00787 italy
                                              -0.00600 1999-09-14
## 7 1997-01-03 Chrysler
                              0.0146 us
                                              0.0149
                                                      1998-05-06
## 8 1997-01-03 BellSouth
                             -0.00607 us
                                              0.0149
                                                       2006-03-06
## 9 1997-01-03 Engelhard
                              0.0195 us
                                              0.0149
                                                       2006-01-03
## 10 1997-01-03 Norsk Hydro 0.00489 norway
                                              0.00511 2006-12-18
## # ... with 26,594 more rows
```

2.5 Estimation and Events

```
# calculate the event-time as the difference in days to the event
merged <- merged %>%
  group_by(company) %>%
  mutate(
   date_index = 1:n(),
   event_index = max(ifelse(event == date, date_index, 0)),
   event_time = date_index - event_index
)
merged
```

```
## # A tibble: 26,604 x 9
## # Groups:
              company [6]
##
      date
                 company
                              ret country
                                              mret event
                                                              date_index
##
                                                                   <int>
                 <chr>
      <date>
                            <dbl> <chr>
                                             <dbl> <date>
  1 1997-01-02 Chrysl~
                         0.0341 us
                                          -0.00751 1998-05-06
                                                                       1
## 2 1997-01-02 BellSo~
                         0.0185
                                          -0.00751 2006-03-06
                                                                       1
## 3 1997-01-02 Engelh~ 0.00654 us
                                          -0.00751 2006-01-03
                                                                       1
## 4 1997-01-02 Norsk ~ -0.00481 norway -0.00260 2006-12-18
                                                                       1
## 5 1997-01-02 Pilkin~ -0.0120 uk
                                          -0.0241 2005-10-31
                                                                       1
## 6 1997-01-02 INA
                          0.00787 italy
                                          -0.00600 1999-09-14
                                                                       1
## 7 1997-01-03 Chrysl~ 0.0146 us
                                           0.0149
                                                   1998-05-06
                                                                       2
                                                                       2
## 8 1997-01-03 BellSo~ -0.00607 us
                                           0.0149
                                                   2006-03-06
## 9 1997-01-03 Engelh~ 0.0195 us
                                           0.0149 2006-01-03
                                                                       2
## 10 1997-01-03 Norsk ~ 0.00489 norway
                                           0.00511 2006-12-18
## # ... with 26,594 more rows, and 2 more variables: event_index <dbl>,
     event_time <dbl>
```

Now we want to split our sample into estimation-sample ([-230, -31]) and event-sample ([-30, +30]). We also want to have a quick visualization of the return correlations to the market.

```
# windows
estimation_window <- c(-230, -31)
event_window <- c(-30, 30)

# filter returns
estimation <- merged %>%
  filter(event_time >= estimation_window[1],
```

```
event_time <= estimation_window[2])</pre>
event <- merged %>%
 filter(event_time >= event_window[1],
        event_time <= event_window[2])</pre>
# have a look at the data
estimation
## # A tibble: 1,200 x 9
## # Groups: company [6]
                             ret country
     date
                company
                                             mret event
                                                             date index
##
     <date>
                <chr>
                           <dbl> <chr>
                                            <dbl> <date>
                                                                 <int>
## 1 1997-06-18 Chrysl~ 0.00384 us
                                         -4.62e-3 1998-05-06
                                                                    120
## 2 1997-06-19 Chrysl~ -0.00382 us
                                        9.95e-3 1998-05-06
                                                                    121
## 3 1997-06-20 Chrysl~ 0
                                         2.97e-4 1998-05-06
                                                                    122
                                 นธ
## 4 1997-06-23 Chrysl~ -0.0115 us
                                         -2.02e-2 1998-05-06
                                                                    123
## 5 1997-06-24 Chrysl~ 0.0234 us
                                         1.80e-2 1998-05-06
                                                                    124
## 6 1997-06-25 Chrysl~ -0.00381 us
                                         -7.57e-3 1998-05-06
                                                                    125
## 7 1997-06-26 Chrysl~ 0.0114 us
                                         -5.73e-3 1998-05-06
                                                                    126
## 8 1997-06-27 Chrysl~ -0.0113 us
                                         3.88e-3 1998-05-06
                                                                    127
## 9 1997-06-30 Chrysl~ 0.00382 us
                                         -2.63e-3 1998-05-06
                                                                    128
## 10 1997-07-01 Chrysl~ -0.00951 us
                                         6.59e-3 1998-05-06
                                                                    129
## # ... with 1,190 more rows, and 2 more variables: event_index <dbl>,
      event time <dbl>
event
## # A tibble: 366 x 9
## # Groups:
              company [6]
##
     date
                company
                             ret country
                                            mret event
                                                             date_index
##
      <date>
                <chr>
                           <dbl> <chr>
                                            <dbl> <date>
                                                                  <int>
## 1 1998-03-25 Chrysl~ -0.0173 us
                                         -2.22e-3 1998-05-06
                                                                    320
## 2 1998-03-26 Chrysl~ -0.0132 us
                                         -4.97e-4 1998-05-06
                                                                    321
## 3 1998-03-27 Chrysl~ 0.00149 us
                                         -4.67e-3 1998-05-06
                                                                    322
## 4 1998-03-30 Chrysl~ -0.00593 us
                                         -1.51e-3 1998-05-06
                                                                    323
## 5 1998-03-31 Chrysl~ -0.00598 us
                                         7.87e-3 1998-05-06
                                                                    324
## 6 1998-04-01 Chrysl~ 0.00601 us
                                        6.25e-3 1998-05-06
                                                                    325
## 7 1998-04-02 Chrysl~ -0.0209 us
                                         9.74e-3 1998-05-06
                                                                    326
## 8 1998-04-03 Chrysl~ -0.00305 us
                                         2.18e-3 1998-05-06
                                                                    327
## 9 1998-04-06 Chrysl~ 0.0214 us
                                                                    328
                                         -3.87e-3 1998-05-06
## 10 1998-04-07 Chrysl~ 0.00300 us
                                         -9.71e-3 1998-05-06
                                                                    329
## # ... with 356 more rows, and 2 more variables: event_index <dbl>,
## # event_time <dbl>
# Graph data
ggplot(estimation %>% filter(ret != 0), aes(x = mret, y = ret, color = company)) +
 geom_point() +
 facet_wrap(~company) +
 scale_x_continuous(labels = percent) +
 scale y continuous(labels = percent) +
  theme(legend.position = "none") +
 labs(title = "Correlations to Market Returns",
      subtitle = "The respective markets are USA, UK, Norway, and Italy",
      x = "Market Return", y = "Company Return")
```

Correlations to Market Returns

The respective markets are USA, UK, Norway, and Italy

3 Estimation

3.1 Calculate the CMRM

Although we have many options, this script uses the constant-mean-return model to calculate expected returns (for simplicity reasons mainy).

The expected return is given by

$$E\left[R_{i,t}|X_{t}\right]$$

using the CMRM (constant mean return model), we get

$$E[R_{i,t}|X_t] = \overline{R_{i,t}}$$

```
cmrm <- estimation %>% group_by(company) %>% summarise(cmrm = mean(ret))
cmrm
```

```
## # A tibble: 6 x 2
##
     company
                       cmrm
     <chr>
                       <dbl>
##
## 1 BellSouth
                  0.000395
## 2 Chrysler
                  0.00173
## 3 Engelhard
                 -0.0000261
## 4 INA
                  0.000112
## 5 Norsk Hydro
                  0.000419
## 6 Pilkington
                  0.00147
```

3.2 **CAPM**

To calculate the capm we can use the simplified market-model (estimates the intercept (risk-free rate) instead of imposing it) which uses a linear regression of the form $return \sim market return$, using the broom-library we can do the following:

```
capm <- estimation %>%
  group_by(company) %>%
  # "do" a regression using do() from the broom-package (tidyverse)
  # see https://qithub.com/tidyverse/broom
  do(fit = lm(ret ~ mret, data = .)) %>%
  # get the coefficients: intercept and slope (alpha and beta)
  # and discard the model itself (fit)
  mutate(alpha = coefficients(fit)[1],
         beta = coefficients(fit)[2],
         fit = NULL)
capm
## Source: local data frame [6 x 3]
## Groups: <by row>
##
## # A tibble: 6 x 3
##
     company
                       alpha beta
##
     <chr>>
                       <dbl> <dbl>
## 1 BellSouth
                 -0.00000498 0.681
## 2 Chrysler
                             0.851
                  0.000699
## 3 Engelhard
                 -0.000335
                             1.06
## 4 INA
                 -0.000117
                             0.870
## 5 Norsk Hydro -0.000616
                             1.27
## 6 Pilkington
                  0.000906
                             1.22
event_capm <- left_join(event, capm, by = "company") %>%
  # compute the expected return
  mutate(capm = alpha + mret * beta,
         alpha = NULL,
         beta = NULL)
event_capm
## # A tibble: 366 x 10
## # Groups:
               company [6]
##
      date
                                                               date_index
                 company
                                              mret event
                              ret country
##
      <date>
                 <chr>>
                            <dbl> <chr>
                                              <dbl> <date>
                                                                    <int>
##
   1 1998-03-25 Chrysl~ -0.0173 us
                                           -2.22e-3 1998-05-06
                                                                      320
##
   2 1998-03-26 Chrysl~ -0.0132 us
                                           -4.97e-4 1998-05-06
                                                                      321
##
  3 1998-03-27 Chrysl~ 0.00149 us
                                          -4.67e-3 1998-05-06
                                                                      322
  4 1998-03-30 Chrysl~ -0.00593 us
                                          -1.51e-3 1998-05-06
                                                                      323
  5 1998-03-31 Chrysl~ -0.00598 us
                                           7.87e-3 1998-05-06
                                                                      324
##
   6 1998-04-01 Chrysl~ 0.00601 us
                                           6.25e-3 1998-05-06
                                                                      325
##
  7 1998-04-02 Chrysl~ -0.0209 us
                                           9.74e-3 1998-05-06
                                                                      326
  8 1998-04-03 Chrysl~ -0.00305 us
                                           2.18e-3 1998-05-06
                                                                      327
## 9 1998-04-06 Chrysl~ 0.0214 us
                                          -3.87e-3 1998-05-06
                                                                      328
## 10 1998-04-07 Chrysl~ 0.00300 us
                                          -9.71e-3 1998-05-06
                                                                      329
## # ... with 356 more rows, and 3 more variables: event_index <dbl>,
       event time <dbl>, capm <dbl>
```

Nonetheless, we will continue the tests using the CMRM and leave the testing of the CAPM to the interested

reader.

3.3 Merge Returns

Next, we want to merge the expected returns into the event-dataset to be able to calculate the next steps.

```
# select only necessary variables
event <- event %>% select(company, ret, event_time)
event <- left_join(event, cmrm, by = "company")</pre>
event
## # A tibble: 366 x 4
## # Groups:
               company [6]
##
      company
                    ret event_time
                                       cmrm
##
      <chr>
                  <dbl>
                             <dbl>
                                     <dbl>
##
  1 Chrysler -0.0173
                               -30 0.00173
  2 Chrysler -0.0132
                               -29 0.00173
   3 Chrysler 0.00149
##
                               -28 0.00173
## 4 Chrysler -0.00593
                               -27 0.00173
## 5 Chrysler -0.00598
                               -26 0.00173
## 6 Chrysler 0.00601
                               -25 0.00173
## 7 Chrysler -0.0209
                               -24 0.00173
## 8 Chrysler -0.00305
                               -23 0.00173
## 9 Chrysler 0.0214
                               -22 0.00173
## 10 Chrysler 0.00300
                               -21 0.00173
## # ... with 356 more rows
```

3.4 Calculate the Abnormal Returns

The abnormal return in period t for company i is given by

$$AR_{i,t} = R_{i,t} - E\left[R_{i,t}\right]$$

which we can calculate in R like this

9 Chrysler 0.0214

10 Chrysler 0.00300 ## # ... with 356 more rows

```
event <- event %>% mutate(ar = ret - cmrm)
event
## # A tibble: 366 x 5
## # Groups:
               company [6]
##
      company
                   ret event_time
                                      cmrm
##
      <chr>
                  <dbl>
                             <dbl>
                                     <dbl>
                                               <dbl>
##
  1 Chrysler -0.0173
                               -30 0.00173 -0.0190
  2 Chrysler -0.0132
                               -29 0.00173 -0.0149
   3 Chrysler 0.00149
##
                               -28 0.00173 -0.000245
##
  4 Chrysler -0.00593
                               -27 0.00173 -0.00766
  5 Chrysler -0.00598
                               -26 0.00173 -0.00771
## 6 Chrysler 0.00601
                               -25 0.00173 0.00428
## 7 Chrysler -0.0209
                               -24 0.00173 -0.0226
## 8 Chrysler -0.00305
                               -23 0.00173 -0.00478
```

-22 0.00173 0.0197 -21 0.00173 0.00126

3.5 Calculate the Cumulative Abnormal Returns

The CARs are given by

$$CAR_{i,t} = \sum_{k=1}^{t} AR_{i,t-k}$$

with a known distribution of

$$CAR_{i,t} \sim N(0, \sigma_{i,t}^2)$$

In R we can calculate the CARs like this

```
indiv_event <- event %>% group_by(company) %>% mutate(car = cumsum(ar))
indiv_event
## # A tibble: 366 x 6
```

```
## # Groups:
              company [6]
##
     company
                   ret event_time
                                     cmrm
                                                       car
##
     <chr>>
                 <dbl> <dbl>
                                    <dbl>
                                             <dbl>
                                                     <dbl>
## 1 Chrysler -0.0173
                             -30 0.00173 -0.0190
                                                   -0.0190
## 2 Chrysler -0.0132
                             -29 0.00173 -0.0149
                                                   -0.0340
## 3 Chrysler 0.00149
                             -28 0.00173 -0.000245 -0.0342
## 4 Chrysler -0.00593
                             -27 0.00173 -0.00766 -0.0419
## 5 Chrysler -0.00598
                             -26 0.00173 -0.00771 -0.0496
## 6 Chrysler 0.00601
                             -25 0.00173 0.00428 -0.0453
## 7 Chrysler -0.0209
                             -24 0.00173 -0.0226
                                                   -0.0679
## 8 Chrysler -0.00305
                             -23 0.00173 -0.00478 -0.0727
## 9 Chrysler 0.0214
                             -22 0.00173 0.0197
                                                   -0.0530
## 10 Chrysler 0.00300
                              -21 0.00173 0.00126 -0.0518
## # ... with 356 more rows
```

Individual Cumulative Abnormal Returns

We can also calculate aggregated values (AAR) as the average abnormal return) per day, which is handy, for example for ploting

```
# aggregated
agg_event <- event %>% group_by(event_time) %>% summarise(aar = mean(ar))
agg_event <- agg_event %>% mutate(car = cumsum(aar))
agg_event
## # A tibble: 61 x 3
##
      event_time
                       aar
                                  car
##
           <dbl>
                     <dbl>
                                <dbl>
                            0.0112
##
   1
             -30 0.0112
             -29 -0.00671
                            0.00452
##
   2
##
   3
             -28 -0.00415
                            0.000364
                            0.00329
##
   4
             -27
                  0.00292
##
   5
             -26
                  0.00278
                            0.00607
##
   6
             -25 -0.000583 0.00549
             -24 -0.0127
                           -0.00719
             -23 0.00429
                           -0.00291
##
##
   9
             -22 0.00559
                            0.00269
## 10
             -21 -0.00326
                          -0.000577
## # ... with 51 more rows
ggplot(agg_event, aes(x = event_time, y = car)) +
  geom_vline(xintercept = 0, color = "red", linetype = "dashed") +
  geom_step() +
  scale_y_continuous(labels = percent) +
```


Aggregated Cumulative Abnormal Returns In the Event–Horizon

4 Testing

To test for signifiance, we mainly use t-test in this script, other tests include Boehmer et al. (1991) and Corrado (1989), among others.

The variance of the CARs, are known to be distributed with a variance of

$$\sigma_{i,t}^2 = \frac{1}{N(N-1)} \sum_{j=1}^{N} (CAR_{j,t} - \overline{CAR_{j,t}})^2$$

4.1 T-test

The first chunk uses a t-test to test the individual ARs (the question we are trying to answer: Is the abnormal return in time-period t different from zero?).

```
## # A tibble: 61 x 5
##
      event_time
                                 var_ar t_value p_value
                    mean_ar
##
            <dbl>
                      <dbl>
                                  <dbl>
                                           <dbl>
                                                   <dbl>
##
                                                  0.255
                   0.0112
                            0.0000795
                                         1.26
    1
              -30
##
    2
             -29 -0.00671
                            0.0000111
                                        -2.01
                                                  0.0907
##
    3
             -28 -0.00415
                            0.0000596
                                        -0.538
                                                  0.610
##
    4
             -27
                   0.00292
                            0.0000887
                                         0.311
                                                  0.767
##
    5
             -26
                   0.00278
                            0.00000740
                                         1.02
                                                  0.346
##
    6
             -25 -0.000583 0.0000349
                                        -0.0988
                                                  0.924
    7
##
             -24 -0.0127
                            0.0000297
                                        -2.33
                                                  0.0589
##
    8
             -23 0.00429
                            0.0000120
                                         1.24
                                                  0.262
             -22 0.00559
                                                  0.239
##
    9
                            0.0000183
                                         1.31
## 10
             -21 -0.00326
                            0.000118
                                        -0.301
                                                  0.774
## # ... with 51 more rows
```

The following chunk uses CARs to see if the price-development (which is represented by the CARs) is different from zero, instead of a snapshot of a single day as we did in the example above.

```
# test2 with CARs
stars <- function(p) {</pre>
  ifelse(p < 0.001, "***",
         ifelse(p < 0.01, "**",
                ifelse(p < 0.05, "*", " ")))
}
test2 <- indiv_event %>%
  group_by(event_time) %>%
  summarise(mean_car = mean(car),
         var_car = 1/(n()*(n() - 1)) * sum((car - mean_car)^2),
         t_value = mean_car / sqrt(var_car),
         p_value = pt(abs(t_value), df = n(), lower.tail = F)*2)
test2 %>% mutate(sign = stars(p_value),
                 car = cumsum(mean_car)) %>%
  select(event_time, car, t_value, sign) %>%
  filter(event_time %in% -3:6) # look only at the frame [-3, 6], to have less output
```

```
## # A tibble: 10 x 4
##
      event_time
                    car t_value sign
##
            <dbl> <dbl>
                           <dbl> <chr>
                           0.165 " "
##
    1
               -30.184
                           0.444 " "
##
    2
               -20.210
                           0.357 " "
##
    3
               -10.230
    4
                0 0.421
##
                           4.07
                                 **
##
    5
                1 0.625
                           4.55
##
    6
                2 0.840
                           4.52
                                  **
##
    7
                3 1.05
                           4.32
                                  **
##
    8
                4 1.26
                           3.90
##
    9
                5 1.48
                           3.96
                                 **
## 10
                6 1.69
                           3.90
```

4.2 Testing over Aggregated Times

In the next step we want to look not at a single time-point, but at aggregated times, in this example, we want to see if the price in the time-horizon [-3, +3] is different from zero.

```
time_window <- c(-3, 3)
test3 <- indiv_event %>% filter(event_time >= time_window[1] &
                                  event_time <= time_window[2]) %>%
  select(company, ar) %>%
  group_by(company) %>% summarise(car = sum(ar))
# using the same logic as before
test3 %>% summarise(mean car = mean(car),
                    var_car = 1/(n()*(n() - 1)) * sum((car - mean_car)^2),
                    t_value = mean_car / sqrt(var_car),
                    p_value = pt(abs(t_value), df = n(), lower.tail = F)*2,
                    sign = stars(p_value))
## # A tibble: 1 x 5
##
    mean_car var_car t_value p_value sign
##
                 <dbl>
                        <dbl>
                                  <dbl> <chr>
```

So we can see, that we have detected highly significant returns in the time-period [-3, +3]. If we want to test multiple time-periods we can do it like this.

6.89 0.000460 ***

4.3 Multiple Time Windows

0.206 0.000893

1

It may seem a bit more complicated, but we are essentially doing the same thing as before, but use a lapply-function to loop over the row-numbers and repeat the process.

```
time windows \leftarrow tibble(min = c(-1, 0, -1, -3),
                       \max = c(0, 1, 1, 3))
# map_dfr maps inputs to a function and returns a tibble with bind_rows
mult events <- map dfr(1:nrow(time windows), function(i) {</pre>
  tmp <- indiv_event %>% filter(event_time >= time_windows$min[i] &
                            event time <= time windows$max[i]) %>%
    select(company, ar) %>%
    group_by(company) %>%
    summarise(car = sum(ar)) %>%
    summarise(mean_car = mean(car),
              var_car = 1/(n()*(n() - 1)) * sum((car - mean_car)^2),
              t_value = mean_car / sqrt(var_car),
              p_value = pt(abs(t_value), df = n(), lower.tail = F)*2,
              sign = stars(p_value)) %>%
    mutate(range = paste0("[", time_windows$min[i], ", ",
                          time_windows$max[i], "]"))
  return(tmp %>% select(range, car = mean_car, t_value, p_value, sign))
})
mult_events
```

```
## # A tibble: 4 x 5
## range car t_value p_value sign
## <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 [-1, 0] 0.164 5.27 0.00188 **
## 2 [0, 1] 0.184 5.85 0.00110 **
## 3 [-1, 1] 0.178 5.06 0.00231 **
## 4 [-3, 3] 0.206 6.89 0.000460 ***
```