NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC1971 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 10dB$ $@V_{CC} = 13.5V$, $P_0 = 6W$, f = 175MHz
- Emitter ballasted construction, gold metallization for high reliability and good performances.
- TO-220 package similar is combinient for mounting.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_{O} = 6W, f = 175MHz.

APPLICATION

4 to 5 watts output power amplifiers in VHF band applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
1c	Collector current		2	Α
Pc	Collector dissipation	Ta = 25°C	1.5	w
		T _C = 25°C	12.5	w
Tj	Junction temperature		150	°C
Tstg	Storage temperature		-55 to 150	°C
Rth-a		Junction to ambient	83	°C/W
Rth-c	Thermal resistance	Junction to case	10	°C/W

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			111
			Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _F =5mA, I _C =0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	17			V
'сво	Collector cutoff current	V _{CB} =25V, I _E =0	!		500	μА
EBO	Emitter cutoff current	V _{EB} =3V, I _C =0			500	μА
hfE	DC forward current gain *	V _{CE} = 10 V , I _C = 0.1A	10	50	180	_
Po	Output power	V _{CC} =13.5V, P _{IN} =0.6W, f=175MHz	6	7		w
η_{C}	Collector efficiency		60	70		%

Note. *Pulse test, $P_W = 150 \mu s$, duty=5%

Above parameters, ratings, limits and conditions are subject to change.

NPN EPITAXIAL PLANAR TYPE

TEST CIRCUIT

TYPICAL PERFORMANCE DATA COLLECTOR DISSIPATION VS.

D: Inner diameter of coil
T: Turn number of coil
P: Pitch of coil

AMBIENT TEMPERATURE T_a (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE V_{CB} (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)