Unsupervised Person Re-identification by Soft Multilabel Learnin

Hong-Xing Yu, Wei-Shi Zheng, Ancong Wu, Xiaowei Guo, Shaogang Gong, and Jian-Huang Lai

https://arxiv.org/pdf/1903.06325.pdf

Intelligent Information Fusion Research Group

引言

learning without forgetting

- (1)旧模型在新的数据集上跑,得出这个时候的旧分类的相应的输出,保存下来当作接下来蒸馏训练中的老师
- (2)对于新的数据集的新增加的分类采用one-hot"硬监督"的形式进行训练,作为第一个loss
- (3)训练过程中旧分类的输出按照第一步中的结果以"软监督"的形式进行训练,作为第二个loss

软标签可以来辅助domain记忆,但在行人重识别领域,更多的是domain迁移问题。

那么在无监督情况下,没有硬监督,只有软标签的时候,怎么利用软标签提高跨 domain效果呢?

引言

总体框架 3

$$L_{AL} = \Sigma_k - \log l(f(z_k), \{a_i\})^{(w_k)} = \Sigma_k - \log \frac{\exp(a_{w_k}^T f(z_k))}{\Sigma_j \exp(a_j^T f(z_k))}$$
(7)

a: 2048 * w_k, w_k 个人

f(): 2048*1*1

z_k: 辅助数据集

x_j: 目标数据集

$$L_{RJ} = \sum_{i} \sum_{j \in \mathcal{M}_{i}} \sum_{k:w_{k}=i} [m - \|a_{i} - f(x_{j})\|_{2}^{2}]_{+} + \|a_{i} - f(z_{k})\|_{2}^{2}$$
(8)

$$\mathcal{M}_i = \{j | \|a_i - f(x_j)\|_2^2 < m\}$$

center loss

$$L_{RAL} = L_{AL} + \beta L_{RJ}$$

Camera 1

compare

Camera 2

inner prod & softmax

multilabels

$$y^{(k)} = l(f(x), \{a_i\}_{i=1}^{N_p})^{(k)} = \frac{\exp(a_k^{\mathrm{T}} f(x))}{\Sigma_i \exp(a_i^{\mathrm{T}} f(x))}$$
(1)

FC

$$L_{CML} = \Sigma_v d(\mathbb{P}_v(y), \mathbb{P}(y))^2$$

数值为对数正态分布

$$L_{CML} = \sum_{v} ||\mu_{v} - \mu||_{2}^{2} + ||\sigma_{v} - \sigma||_{2}^{2}$$

原始feature相似,**软多标签**(类似上下文)也相似,为**正样本:P** 原始feature相似,但是**软多标签**(类似上下文)不相似,为**hard负样本:N**

feature是否相似:

$$f(x_i)^{\mathrm{T}} f(x_j)$$

软多标签(类似上下文)是否相似: $A(y_i,y_j) = y_i \wedge y_j = \Sigma_k \min(y_i^{(k)},y_j^{(k)}) = 1 - \frac{||y_i-y_j||_1}{2}$

原始feature相似,**软多标签**(类似上下文)也相似,为**正样本:P** 原始feature相似,但是**软多标签**(类似上下文)不相似,为**hard负样本:N**

$$L_{MDL} = -\log \frac{\overline{P}}{\overline{P} + \overline{N}},$$

where

Hard Triplet Loss

$$\widehat{P} = \frac{1}{|\mathcal{P}|} \Sigma_{(i,j) \in \mathcal{P}} \exp(-||f(z_i) - f(z_j)||_2^2),$$

$$\overline{N} = \frac{1}{|\mathcal{N}|} \Sigma_{(k,l) \in \mathcal{N}} \exp(-||f(z_k) - f(z_l)||_2^2).$$

总体框架 10.

_	
$\overline{}$	7 6
`	
	711
7	1111
_	

Table 3. Ablation study. Please refer to the text in Sec. 4.4.

		= 0				
	-	Methods	Market-1501			
		Wethous	rank-1	rank-5	rank-10	mAP
softmax	< ←	Pretrained	46.2	64.4	71.3	24.6
	_	Baseline	44.4	62.5	69.8	21.5
无软多标签在不同		MAR w/o L_{CML}	60.0	75.9	81.9	34.6
camera分布接近		MAR w/o $L_{CML}\&L_{RAL}$	53.9	71.5	77.7	28.2
		MAR w/o L_{RAL}	59.2	76.4	82.3	30.8
		MAR	67.7	81.9	87.3	40.0
	-	Methods		DukeMT	MC-reID	
		Wethous	rank-1	rank-5	rank-10	mAP
无软多标签在不同	_	Pretrained	43.1	59.2	65.7	28.8
camera分布接近	-	Baseline	50.0	66.4	71.7	31.7
和	4	MAR w/o L_{CML}	63.2	77.2	82.5	44.9
	MAR w/o $L_{CML}\&L_{RAL}$	60.1	73.0	78.4	40.4	
无源域数据+	(MAR w/o L_{RAL}	57.9	72.6	77.8	37.1
	C -	MAR	67.1	79.8	84.2	48.0
+ center loss	100					

Baseline 包括1, 2, 但是3最后选正样本和hard负样本的时候,**没用软多标签**。 而是原始feature相似,那么用**阈值**选出前多少个为正样本,后多少个为hard负 样本

Table 1. Comparison to the state-of-the-art unsupervised results in the Market-1501 dataset. **Red** indicates the best and **Blue** the second best. Measured by %.

Methods	Reference	Market-1501			
		rank-1	rank-5	mAP	
LOMO [20]	CVPR'15	27.2	41.6	8.0	
BoW [58]	ICCV'15	35.8	52.4	14.8	
DIC [16]	BMVC'15	50.2	68.8	22.7	
ISR [21]	TPAMI'15	40.3	62.2	14.3	
UDML [29]	CVPR'16	34.5	52.6	12.4	
CAMEL [52]	ICCV'17	54.5	73.1	26.3	
PUL 8	ToMM'18	45.5	60.7	20.5	
TJ-AIDL 48	CVPR'18	58.2	74.8	26.5	
PTGAN 50	CVPR'18	38.6	57.3	15.7	
SPGAN [7]	CVPR'18	51.5	70.1	27.1	
HHL 62	ECCV'18	62.2	78.8	31.4	
MAR	This work	67.7	81.9	40.0	

Table 2. Comparison to the state-of-the-art unsupervised results in the DukeMTMC-reID dataset. Measured by %.

Methods	Reference	DukeMTMC-reID		
		rank-1	rank-5	mAP
LOMO 20	CVPR'15	12.3	21.3	4.8
BoW [58]	ICCV'15	17.1	28.8	8.3
UDML 29	CVPR'16	18.5	31.4	7.3
CAMEL [52]	ICCV'17	40.3	57.6	19.8
PUL 8	ToMM'18	30.0	43.4	16.4
TJ-AIDL [48]	CVPR'18	44.3	59.6	23.0
PTGAN 50	CVPR'18	27.4	43.6	13.5
SPGAN [7]	CVPR'18	41.1	56.6	22.3
HHL [62]	ECCV'18	46.9	61.0	27.2
MAR	This work	67.1	79.8	48.0

Visual results

