EE 421 / C\$ 425 Digital System Design

Fall 2024

Shahid Masud

Topics

- Barrel Shifter
- Asynchronous Sequential Circuits
- Types of Asynchronous Circuits:
 - Pulse mode Asynchronous Circuits
- Analysis of Pulse Mode Circuits
- Design of Pulse Mode Circuits

Quiz 6 Today

Barrel Shifter

What is a Barrel Shifter?

Barrel Shifter

- Example: 4-bit barrel shifter, can shift input by 0, 1, 2 or 3 bits.
- S₀S₁ determines how many bits to shift (left).
- Use 4 4-to-1 multiplexers.

An Architecture of a Barrel Shifter

- 32-bit barrel shifter: can use 32 32-to-1multiplexers
- However, large fan-in undesirable. So, use layers of multiplexers

Example: Use 2 layers of 4 2-to-1 multiplexers for 4-bit barrel shifter

A 4-bit Barrel Shifter Design

4-Bit Barrel Shifter

- A rotate is a shift in which the bits shifted out are inserted into the positions vacated
- · The circuit rotates its contents left from 0 to 3 positions depending on Selector S.

Function Table for 4-Bit Barrel Shifter

Select Output		Output				
S,	S _o	Υ,	Ya	Υ,	Ye	Operation
0	0	D_3	D_2	D_1	D_0	No rotation
0	1	D_2	D_1	D_0	D_3	Rotate one position
1	0	D_1	D_0	D_3	D_2	Rotate two positions
1	1	D_0	D_3	D_2	D_1	Rotate three positions

Note that a left rotation by three (3) positions is the same as a right rotation by one position in this 4 bit barrel shifter

Asynchronous Sequential Circuits

- A clock is **not** utilized to synchronize state changes
- Only external inputs and current states are available to cause state changes

Fundamental Mode Asynchronous Circuits

- These circuits have level inputs and unclocked memory elements
- Uses inherent delays present in logic circuit elements
- Assume that each delay element has same delay Δt

Other conditions for Fundamental Mode cct

- \bullet All delays in a circuit branch are lumped to a single Δt
- The delay is always Δt
- Inputs are restricted so that only one input variable is allowed to change value at a given instant to ensure correct behavior
- For predictable operations, input changes should be spaced in time by at least Δt ; the time needed for the circuit to settle down to a stable state following an input change

Pulse Mode Asynchronous Circuits

- Pulses will not occur simultaneously on two or more input lines
- Memory element transitions are limited only by input pulses
- Input variables are used either only in uncomplemented or in the complemented forms, but not both together

Pulse Mode Asynchronous Sequential

Pulse Mode Asynchronous Circuits:

- In the pulsed mode, the input variables are allowed to be applied in the form of pulses, rather than in the form of levels.
- But the width of input pulses is a critical parameter. There are two restrictions on the width of the input pulses.
 - The first requirement is that the pulses should be long enough so that the circuit can respond to them.
 - The second requirement is that the pulses should not be too long so that they are still present after the new secondary state is reached.
- The base of calculating the minimum pulse width is the propagation delay of the excitation logic.
- The maximum pulse width is calculated based on the total propagation delay through the excitation logic and the memory.

Conditions for Pulse mode circuits

- Input pulses should be spaced in time by at least the response time of the slowest memory element
- No memory element will be in process of changing state when a new input pulse arrives

Analysis of a Pulse Mode Ascnchronous Sequential Circuit

Input X is made up of asynchronous pulses

Initial state y1=y2=0

Present states = y1, y2 (small y)

Next states = Y1, Y2 (capital Y)

Logic Equations:

D1=y1'

D2=y1'

Z=X.y1.y2

C1=X.y2

C2=X

Contd: Analysis Pulse Mode Ascynch Seq Cct

- Define:
- Inputs:
 - $I_0 = \frac{\text{no pulse}}{\text{on X}}$
 - $I_1 = \frac{\text{pulse}}{\text{on X}}$
- States:
 - A = 00 (y1y2)
 - B = 01
 - C = 10
 - D = 11
- Outputs:
 - Z = 0
 - Z = 1

14

Timing Diagram of Pulsed Sequential Circuit

State Table and STG for Pulsed Sequential Circuit

Present state	I _o	I ₁
Α	A/0	B/0
В	B/0	D/0
C	C/0	C/0
D	D/0	A/1

Next State / Output

I₀ = <mark>no pulse</mark> on X I₁ = <mark>pulse</mark> on X

Embedded Systems Lab (EESL)

Present state	I _o	l ₁
Α	A/0	B/0
В	B/0	D/0
С	C/0	C/0
D	D/0	A/1

For D1

_	• Inputs:		
	X=1	• $I_0 = \frac{1}{1}$ no pulse on X • $I_1 = \frac{1}{1}$ pulse on X	
		States:	

y1	yZ	X=0	X=1	• I ₁ = <mark>pulse</mark> on X
00		1	1	States: • A = 00 (y1y2) • B = 01
01		1	1	• C = 10 • D = 11
11		0	0	Outputs: • Z = 0 • Z = 1
10		0	0	

on X (y1y2	X=0	X=1
	00	0	0
	01	0	1
	11	0	1
	10	0	0

For C1

For D2

y1y2	X=0	X=1
00	1	1
01	1	1
11	0	0
10	0	0

For C2

y1y2	X=0	X=1
00	0	1
01	0	1
11	0	1
10	0	1

For Y1

y1y2	X=0	X=1
00	0	0
01	0	1
11	1	0
10	1	1

For Y2

y1y2	X=0	X=1
00	0	1
01	1	1
11	1	0
10	0	0

For Z

y1y2	X=0	X=1
00	0	0
01	0	0
11	0	1
10	0	0

Design of Pulse Mode Asynchronous Circuits

- To remember:
 - No clock is present
 - Inputs occur as pulses on any one input line at one time
 - Only un-complemented or complemented forms are used as inputs throughout
 - Triggering of Latches or flip flops is accomplished by utilizing information in input pulses

Design Steps in Pulse Mode Asynchronous

- 1. Derive a state diagram or a state table
- 2. Minimize the state table through State Reduction
- 3. Choose a state assignment and generate the transition/output table
- 4. Select the type of flipflop and determine the excitation equations
- 5. Determine the output equations
- 6. Choose appropriate circuit elements and draw the circuit diagram

Example - Design of Pulse Mode circuit

- Problem Statement: Design a pulse mode circuit that has two input lines, X1 and X2. There is one output line Z.
- The circuit should produce an output pulse to coincide with the last input pulse in the sequence X1 X2 X2 (Sequence Detector)
- No other input sequence should produce an output pulse

Block diagram of the desired system

Example – Pulse mode – Step 1

- Define the following three states of the circuit:
- A: indicates that the last input was X1
- B: indicates that the sequence X1 X2 has occurred
- C: indicates that the sequence X1 X2 X2 has occurred

Block diagram of the desired system

Example – Pulse Mode – STG and State Table

Present State	Next State/Output	
	When X1 appears	When X2 appears
Α	A/0	B/0
В	A/0	C/1
С	A/0	C/0

Example Pulse Mode – State Assignments

Assign States: A=00, B=01, C=10 and generate the transition/output table

Present State	Next State/Output		
	When X1 appears	When X2 appears	
А	A/0	B/0	
В	A/0	C/1	
С	A/0	C/0	

Present State	Next State/Output Y1Y2/Z		
y1y2	When X1 appears	When X2 appears	
00	00/0	01/0	
01	00/0	10/1	
10	00/0	10/0	

23

Example – Pulse mode implement using T FF

Next State/Output Present Y1Y2/Z State y1y2 When X1 When X2 appears appears 00/0 01/0 00 01 00/0 10/1 00/0 10/0 10

State Table for Y1

Present State	Next State	
y1y2	X1	X2
00	0	0
01	0	1
11	d	d
10	0	1

State Table for T1

Present State	Next State Y1, Y2		
y1y2	When X1 When		
00	0	0	
01	0	1	
11	d	d	
10	1	0	

T1 = X1.y1 + X2.y2

Example – Pulse Mode Implement using TFF (contd)

Next State/Output Present Y1Y2/Z State When X2 y1y2 When X1 appears appears 00 00/0 01/0 00/0 10/1 01 00/0 10/0 10

State Table for Y2

Present St	ate	Next State		
y1y2		When X1	V	Vhen X2
00		0		1
01		0		0
11		d		d
10		0		0

State Table for T2

Present State	Next State		
y1y2	When X1	When X2	
00	0	1	
01	1	1	
11	d	d	
10	0	0	

State Table for Z output

Present State	Next State		
y1y2	When X1	When X2	
00	0	0	
01	0	1	
11	d	d	
10 Digital System Desig	O In Lecture 28 Fall 2	024	

$$T2 = X1.y2 + X2.y1'$$

Example - Pulse mode Circuit diagram

