M05 : MESURE DE TEMPÉRATURE

Idées directrices à faire passer

- différencier mesure de température et repérage
- rôle des étalons de mesure absolue
- propriétés d'un thermomètre
- différents types de thermomètres

Commentaires du jury

- Ne pas faire un catalogue de capteur sans hiérarchie
- bien exploiter la notion de point fixe et son importance en thermométrie
- thermocouple : connaître le principe et le domaine de validité
- toujours fixer les thermomètres afin qu'ils ne touchent pas les bords et qu'ils soient correctement immergés
- montage orienté métrologie : discuter des performances et des incertitudes

Bibliographie

- [1] Thermodynamique, Diu, Hermann
- [2] Thermodynamique, BFR, Dunod
- [3] Expériences d'électronique, Duffait, Dunod
- [4] thermodynamique, Perez, Masson (excellent pour domaine de validité et limites des thermomètres)

Introduction:

- définir "thermomètre" (variation avec la température d'une grandeur facilement mesurable)
- nécessité d'équilibre thermique avec le corps mesuré : caractéristique d'un bon thermomètre (équilibre rapide et non perturbant pour le corps mesuré)
- la précision et la fidélité sont les qualités recherchées

I Recherche d'une échelle internationale de température

L'objet de la partie est de déterminer comment construire effectivement un thermomètre.

1 Position du problème [2]

- première expérience simple avec thermomètre à alcool
- dans ce thermomètre, la variation de température est reliée à la variation de volume : celle du liquide mais attention également celle de l'enveloppe
- dans ce cas, on repère la température de manière uniquement différentielle
- ce type de thermomètre ne fait pas une "mesure" mais un "repérage" de température
- pour avoir un thermomètre il faut donc : repérer la température de deux points fixes (on prendra eau/glace et eau/vapeur) et considérer une échelle (arbitraire) entre ces points. On suppose alors une relation linéaire entre accroissement de volume et de température -> on voit pour la première fois le principe d'un étalonnage et de la fixation d'une échelle
- l'échelle centésimale consiste à placer 100 graduations régulièrement espacées entre le point eau/glace et eau/vapeur
- on remarque enfin le long temps de réponse de ce genre de thermomètre (car haute capacité thermique)

2 Mesure de la température absolue : le thermomètre à gaz parfait [2] et [4]

- nous avons vu que l'étalonnage des thermomètres dits "secondaires" se fait par mesure de points fixes
- il a donc fallu préalablement déterminer la température de ces points fixes de manière absolue
- cela est rendu possible en utilisant les lois de la thermodynamique : ce sont les thermomètres à gaz parfait
- pour modéliser cela on utilise le thermomètre à gaz ${\rm SF}_6$

- noter que l'on ne peut pas atteindre de pression très basse, ce qui limite la qualité de l'étude
- on trace 2 isothermes d'Amagat (PV = f(1/V)) pour par exemple T = 5°C et T = 50°C
- on se place dans le cadre d'un développement du Viriel d'ordre 1, donc en 1/V. On doit donc obtenir des quasi droites
- leur prolongement à $1/V \rightarrow 0$ fournit une grandeur thermométrique comme une autre qui a le bon gout d'être linéaire en T (loi des gaz parfait)
- on définit ainsi une échelle absolue
- pour chaque température mesurée, traiter des incertitudes
- en pratique on utilise un thermomètre normal à hydrogène
- l'échelle légale fixe le point triple de l'eau à 273.16K, on a ainsi la valeur de plusieurs autres points triples, fixant les points triples légaux
- à partir de ces points triples, on étalonne des thermomètres d'interpolation qui fixe, chacun dans une gamme de température l'échelle internationale de température
- comme dans le cas du thermomètre à alcool, l'étalonnage se fait par mesure de la température de points fixes et par une interpolation polynomiale (souvent linéaire)
- dans le domaine qui nous intéresse, on utilise un thermomètre à fil de platine

La quantité de matière donnée n'est pas correcte. Il faudrait la remesurer avant l'agrégation

II Etude de deux capteurs de température : thermocouple et thermistance

1 Le thermocouple

1.1 l'effet Seebeck [3]

- apparition d'une ddp en circuit ouvert si les deux jonctions entre deux matériaux différents sont à des température différentes
- expérience de démonstration de l'effet Seebeck avec la petite boussole qui se place orthogonalement aux courants qui s'établissent dans le circuit (qui est ici en circuit fermé)

1.2 Etalonnage du thermocouple

- on utilise le thermocouple sur plaquette plexiglas
- pour l'étalonnage, faire la mesure sur des points fixes
- plonger une jonction dans eau/glace et l'autre dans azote liquide eau/glace et eau/vapeur
- on suppose un modèle linéaire

1.3 Mesure de température à l'aide d'un thermocouple

- on place une jonction dans eau/glace et une seconde dans de l'eau mélange eau/glace qu'on porte jusqu'à ébullition.
- on prend à la volée la température avec une sonde platine et la tension aux bornes du thermocouples
- on pourra tracer le signal d'erreur entre température réelle et celle mesurée au thermocouple à partir de notre étalonnage initial
- selon la forme de l'incertitude on pourra parler de fidélité et de justesse de l'appareil
- on peut comparer dans le Handbook la valeur de la pente avec celui d'un thermomètre commercial de type K
- dans un thermomètre commercial, la soudure froide est dans l'appareil. Il faut donc un second thermomètre pour connaître la température de la soudure froide

2 La thermistance à semi-conducteurs

2.1 Etalonnage de la thermistance

- le thermomètre de platine est à résistance métallique
- on peut choisir plutôt des semi-conducteurs, dans ce cas on aura une réponse exponentielle et donc une meilleure sensibilité par non linéarité

- placer la thermistance et un thermomètre de platine dans un bain d'huile dont on fait varier la température
- prendre les valeurs de la température et de la ddp
- faire un ajustement exponentiel
- attention : ne pas dire de bêtise : on ne peut pas remonter au gap de cette manière! le coefficient y est proportionnel mais difficile de savoir comment. Par ailleurs on connait mal notre semi-conducteur. Il n'est donc pas possible de comparer avec des valeurs tabulées
- insister sur la grande sensibilité de ce thermomètre

2.2 Mise en évidence du temps de réponse d'une thermistance

- ENSC 356
- expérience qualitative uniquement
- on utilise le petit système à thermistance que l'on peut plonger dans la pâte thermique près d'une résistance chauffante
- l'idée est de voir le temps de réponse de la thermistance selon la qualité du contact : très rapide dans la pâte thermique, assez rapide sous un courant d'eau, lente dans l'air
- utiliser une acquisition sur oscilloscope pour observer les temps de décroissance

Conclusion

- <u>bilan</u>: insister sur thermomètre primaire/secondaire, utilisation de divers types selon le domaine de température.
- <u>ouverture</u> : parler des pyromètres pour la mesure des hautes températures par rayonnement (utiliser le Sextant par exemple)

\mathbf{Q}/\mathbf{R}

- 1. définir "thermométrie primaire", "thermométrie secondaire".
- 2. thermocouple : principe, température de référence, domaine de validité