Déterminants et systèmes linéaires

Dans tout ce chapitre, $K = \mathbb{R}$ ou \mathbb{C} . De plus tous les espaces vectoriels considérés sont de dimension finie.

I. Déterminant : définition et propriétés fondamentales

1. Déterminant de taille 2

Définition I.1. Soit $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{M}_2(K)$. On appelle **déterminant** de A et on note $\det(A)$ ou $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$ l'élément de K défini par **ad -bc**.

Il satisfait les trois propriétés fondamentales suivantes :

Proposition I.2. (1) $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$

- (2) Le déterminant dépend linéairement de chaque ligne. Par exemple $\begin{vmatrix} \lambda a & \lambda c \\ b & d \end{vmatrix} = \lambda \begin{vmatrix} a & c \\ b & d \end{vmatrix}$ et $\begin{vmatrix} a+a' & c+c' \\ b & d \end{vmatrix} = \begin{vmatrix} a & c \\ b & d \end{vmatrix} + \begin{vmatrix} a' & c' \\ b & d \end{vmatrix}$.
- (3) Si on échange deux lignes de la matrice A, le déterminant de la matrice obtenue est l'opposé de celui de la matrice A.

 $D\'{e}monstration. \qquad (1) \ \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \times 1 - 0 \times 0$

(2)
$$\begin{vmatrix} \lambda a & \lambda c \\ b & d \end{vmatrix} = \lambda ad - b\lambda c = \lambda (ad - bc) = \lambda \begin{vmatrix} a & c \\ b & d \end{vmatrix}$$

(3)
$$\begin{vmatrix} b & d \\ a & c \end{vmatrix} = bc - ad = -(ad - bc) = - \begin{vmatrix} a & c \\ b & d \end{vmatrix}$$

2. Déterminant de taille 3

Soit $A \in \mathcal{M}_3(K)$, on définit son déterminant en se ramenant à des déterminants de taille 2 :

$$\begin{vmatrix} a & a' & a'' \\ b & b' & b'' \\ c & c' & c'' \end{vmatrix} = a \begin{vmatrix} b' & b'' \\ c' & c'' \end{vmatrix} - b \begin{vmatrix} a' & a'' \\ c' & c'' \end{vmatrix} + c \begin{vmatrix} a' & a'' \\ b' & b'' \end{vmatrix}.$$

On vérifie aisément qu'avec cette définition, les propriétés vues pour $A \in \mathcal{M}_2(K)$ restent vraies pour $A \in \mathcal{M}_3(K)$.

3. Déterminant de taille $n \ge 2$

Nous allons définir les déterminants par récurrence sur leur taille. Supposons le déterminant défini jusqu'à la taille n-1 et supposons que ce déterminant vérifie les trois propriétés fondamentales du déterminant de taille 2. Soit $A=(a_{i,j})\in\mathcal{M}_n(K)$ et $i\in\{1,2,\ldots,n\}$ on note A_i la matrice qui se déduit de A en supprimant sa première colonne et sa i-ième ligne L_i (A_i est donc de taille n-1.

Définition I.3.

$$\det(A) = \sum_{i=1}^{n} a_{i,1} (-1)^{i+1} \det(A_i)$$

Le scalaire det(A) ainsi défini vérifie les propriétés suivantes :

Proposition I.4. (1) det $I_n = 1$

- $(2) \det(A) d$ épend linéairement de chaque ligne.
- (3) Si on échange deux lignes de la matrice A, le déterminant de la matrice obtenue est l'opposé de celui de la matrice A.

Démonstration. (1) Pour $A = I_n$, on a $a_{1,1} = 1$ et $a_{i,1} = 0$ pour $i \neq 1$. Ainsi, $\det(I_n) = a_{1,1}(-1)^{1+1} \det(A_1) = \det I_{n-1} = 1$.

(2) Soit
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$
 et $\lambda \in K$.

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ \lambda a_{k1} & \cdots & \lambda a_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = (-1)^{1+1} a_{11} \begin{vmatrix} a_{21} & \cdots & a_{2n} \\ \vdots & & \vdots \\ \lambda a_{k1} & \cdots & \lambda a_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} + \cdots + (-1)^{k+1} \lambda a_{k1} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k-1,1} & \cdots & a_{k-1,n} \\ a_{k+1,1} & \cdots & a_{k+1,n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} + \cdots$$

$$= (-1)^{1+1}a_{11}\lambda \det(A_1) + \ldots + \lambda(-1)^{k+1}a_{k1}\det(A_k) + \ldots + (-1)^{n+1}a_{n1}\lambda \det(A_n) = \lambda \det(A).$$

(3) Montrons d'abord que si A possède deux lignes L_p et L_q ($p \neq q$) identiques alors $\det(A) = 0$. Tout d'abord, remarquons que si $i \neq p$ et $i \neq q$ alors $\det(A_i) = 0$. En effet, $\det(A_i)$ est un déterminant de taille n-1 tel que lorsque l'on échange L_p et L_p , il change de signe (hypothèse de récurrence) mais reste pourtant le même puisque les deux lignes échangées sont identiques : $\det(A_i) = -\det(A_i) = 0$. On en déduit que

$$det(A) = a_{p1}(-1)^{p+1} \det(A_p) + a_{q1}(-1)^{q+1} \det(A_q).$$

Or, A_p se déduit de A_q par q-p-1 échanges de lignes, donc q-p-1 changements de signe. Ainsi,

$$det(A) = a_{p1}(-1)^{p+1}(-1)^{q-p-1} \det(A_q) + a_{q1}(-1)^{q+1} \det(A_q) = 0.$$

Montrons maintenant que si l'on échange deux lignes de la matrice A, le déterminant

de la matrice obtenue est l'opposé de celui de la matrice
$$A$$
. Posons $A = \begin{pmatrix} \vdots \\ L_i + L_j \\ \vdots \\ L_i + L_j \\ \vdots \\ L_n \end{pmatrix}$

On obtient
$$0 = \det(A) = \begin{vmatrix} L_1 \\ \vdots \\ L_i \\ \vdots \\ L_i + L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} = \begin{vmatrix} L_1 \\ \vdots \\ L_i \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \begin{vmatrix} L_1 \\ \vdots \\ L_n$$

On a prouvé la propriété suivante :

Proposition I.5. Soit $A \in \mathcal{M}_n(K)$. Si A possède deux lignes identiques, alors $\det(A) = 0$.

Corollaire I.6. Si $A \in \mathcal{M}_n(K)$ possède une ligne dont les coefficients sont tous nuls, alors det(A) = 0.

Démonstration. La multiplication de la ligne nulle par 2 ne change pas la matrice donc ne change pas son déterminant. Ainsi, $\det(A) = 2 \det(A)$ d'où $\det(A) = 0$.

Proposition I.7. Le déterminant d'une matrice ne change pas si on ajoute à une ligne un multipls d'un autre ligne.

$$D\'{e}monstration. \begin{vmatrix} L_1 \\ \vdots \\ L_i + \lambda L_j \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} = \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} + \lambda \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix} = \begin{vmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_n \end{vmatrix}.$$

II. Déterminant et opérations élémentaires

1. Déterminant des matrices d'opération élémentaire

Proposition II.1. Si E est la matrice d'une opération élémentaire alors $\det(E) = \det({}^tE) \neq 0$ et pour toute $A \in \mathcal{M}_n(K)$, $\det(EA) = \det(E) \det(A)$.

Démonstration. (1) Opération $L_i \leftrightarrow L_j$

Soit E la matrice correspondant à cet échange (référez-vous au chapitre sur les matrice). On vérifie que $E = {}^t E$. De plus, pour toute $A \in \mathcal{M}_n(K)$, $\det(EA) = -\det(A)$. En posant $A = I_n$, on obtient $\det(E) = -1$. Ainsi, pour cette opération $\det(EA) = \det(E) \det(A)$.

(2) **Opération** $L_i \leftrightarrow L_i + \lambda L_j$

Soit E la matrice correspondant à cette opération. Soit $A \in \mathcal{M}_n(K)$, comme $\det(A)$ ne change pas si on ajoute à une ligne i un multiple d'une autre ligne j, si E est la matrice correspondant à cette opération, $\det(EA) = \det(A)$. De nouveau lorsque $A = I_n$, on obtient $\det(E) = 1$. Par ailleurs, $E = I_n + \lambda E_{ij}$ donc ${}^tE = I_n + \lambda E_{ji}$: tE est donc la matrice de l'opération qui ajoute à la ligne j d'une matrice le multiple λ de la ligne i. On obtient

$$\det({}^t EA) = \det(A)$$

d'où pour $A = I_n$, $\det({}^tE) = 1$. Ainsi, $\det(E) = \det({}^tE) \neq 0$ et $\det(EA) = \det(E) \det(A)$.

(3) Opération $L_i \leftrightarrow \lambda L_i$

Soit E la matrice correspondant à cette opération (E est symétrique). D'après la seconde propriété fondamentale des déterminants, si on multiplie une ligne d'une matrice A par $\lambda \in K$ son déterminant est multiplié par λ . Pour toute $A \in \mathcal{M}_n(K)$, $\det(EA) = \lambda \det(A)$. En particulier, lorsque $A = I_n$, $\det(E) = \lambda$. Ainsi $\det(EA) = \det(E) \det(A)$.

2. Déterminant du produit et de l'inverse d'une matrice

Théorème II.2. – Pour toutes $A, B \in \mathcal{M}_n(K)$,

$$\det(AB) = \det(A)\det(B).$$

Si A est inversible,

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

- Pour toute $A \in \mathcal{M}_n(K)$

$$A \ est \ inversible \Leftrightarrow \det(A) \neq 0$$

Démonstration. Si A est inversible, il existe des opérations élémentaires E_1, E_2, \ldots, E_k sur les lignes telles que $E_1E_2\ldots E_kA=I_n$. Puis $\det(E_1E_2\ldots E_kA)=\det(I_n)$. On obtient

$$\det(E_1 E_2 \dots E_k) \det(A) = 1$$

Le déterminant de A est donc non nul. De plus, $A^{-1} = E_1 E_2 \dots E_k$ donc $\det(A^{-1}) = \frac{1}{\det(A)}$. Puis, pour tout $B \in \mathcal{M}_n(K)$, $E_1 E_2 \dots E_k AB = B$ donc $\det(E_1) \det(E_2) \dots \det(E_k) \det(AB) = \det(B)$ d'où

$$(\det(A))^{-1}\det(AB) = \det(B)$$

on obtient alors

$$\det(AB) = \det(A)\det(B).$$

Si A n'est pas inversible, les vecteurs lignes forment une famille liée: il existe donc une ligne combinaison linéaire des autres. En ajoutant à cette ligne l'opposé de cette combinaison linéaire, elle devient nulle mais le déterminant reste inchangé : det(A) = 0. Par ailleurs, si A n'est pas inversible, pour tout $B \in \mathcal{M}_n(K)$, AB n'est pas inversible :

$$\det(AB) = 0 = \det(A)\det(B).$$

3. Déterminant et transposition

Proposition II.3. Si $A \in \mathcal{M}_n(K)$ alors

$$\det({}^t A) = \det(A)$$

Démonstration. Si A est inversible, ^tA l'est aussi (le rang d'une matrice étant le même que celui de sa transposée). On sait que A est un produit de matrice élémentaires :

$$A=E_1\dots E_k$$

$${}^tA = {}^tE_k \dots {}^tE_1$$

mais toute matrice d'opération élémentaire vérifie $\det({}^tE) = \det(E)$ d'où

$$\det({}^tA) = \det({}^tE_k \dots {}^tE_1) = \det({}^tE_k) \dots \det({}^tE_1) = \det(E_k) \dots \det(E_1) = \det(A)$$

Si A n'est pas inversible, ${}^{t}A$ ne l'est pas non plus :

$$\det({}^t A) = \det(A) = 0$$

Remarque. Dans toutes les propriétés concernant les déterminants, on peut remplacer le mot "ligne" par le mot "colone".

Proposition II.4. Soit $A = (a_{ij}) \in \mathcal{M}_n(K)$. Notons A_{ij} la matrice obtenue à partir de A en supprimant sa lique d'indice i et sa colonne d'indice j. Le déterminant de A est donné par les formules suivantes:

$$\det(A) = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det(A_{ij})$$

$$\det(A) = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det(A_{ij})$$

La première formule correspond à celle du développement par rapport la ligne d'indice i de A et la seconde à celle du développement par rapport à la colonne d'indice j de A.

Démonstration. Pour obtenir la première formule, on utilise la définition de det(A) et le fait qu'en échangeant deux lignes d'un déterminant, celui-ci change de signe. Par des changements

Exemple II.5. Calculer
$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & 0 & 0 \\ -1 & 4 & 5 \end{vmatrix}$$
.

• Déterminant d'une matrice triangulaire supérieure ou inférieure

Proposition II.6. Le déterminant d'une matrice triangulaire supérieure ou inférieure est le produit des termes situés sur la diagonale.

 $D\acute{e}monstration$. Il suffit de développer successivement par rapport à la première ligne. \Box

• Déterminant d'une matrice "par blocs"

Proposition II.7. Soit $A \in \mathcal{M}_r(K)$ et $B, C \in \mathcal{M}_{n-r}(K)$

$$\begin{vmatrix} A & B \\ 0 & C \end{vmatrix} = \det(A)\det(B)$$

Exemple II.8. Calculer $\begin{vmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 1 & 4 \end{vmatrix}.$

III. Application des déterminants

1. Calcul de l'inverse d'une matrice

Nous avons vu qu'une matrice $A \in \mathcal{M}_n(K)$ est inversible si et seulement son déterminant est non nul. Dans cette partie, on se propose de montrer comment utiliser les déterminants pour calculer l'inverse d'une matrice inversible.

Définition III.1. Soit $A = (a_{ij}) \in \mathcal{M}_n(K)$. Pour chaque $(i, j) \in \{1, ..., n\}^2$, on appelle **mineur de la place** (i, j) **dans** A, le déterminant de la matrice A_{ij} obtenue en supprimant dans A la i-ième ligne et la j-ième colonne.

Définition III.2. Soit $A = (a_{ij}) \in \mathcal{M}_n(K)$. Pour chaque $(i,j) \in \{1,\ldots,n\}^2$, on appelle **cofacteur de la place** (i,j) **dans** A, le produit b_{ij} de $(-1)^{i+j}$ par le mineur de la place (i,j) dans A:

$$b_{ij} = (-1)^{i+j} \det(A_{ij})$$

Définition III.3. Soit $A = (a_{ij}) \in \mathcal{M}_n(K)$. On appelle **comatrice de** A la matrice carée d'ordre n, notée Com(A) définie par

$$Com(A) = (b_{ij})$$

où b_{ij} est la cofacteur de place (i,j) dans A.

Théorème III.4. Pour toute $A \in \mathcal{M}_n(K)$, $A \times^t \operatorname{Com}(A) =^t \operatorname{Com}(A) \times A = \det(A)I_n$

Démonstration. Soit $A = (a_{ij}) \in \mathcal{M}_n(K)$. Posons $A \times^t \text{Com}(A) = c_{ij}$. par définition du produit de deux matrices on a

$$c_{ij} = \sum_{k=1}^{n} = a_{ik}b_{kj} = \sum_{k=1}^{n} (-1)^{k+j}a_{ik}(-1)^{k+j}\det(A_{jk}).$$

Si i = j, c_{ii} est égal au déterminant de A et si $i \neq j$, on voit que c_{ij} n'est autre que le déterminant de la matrice obtenue en remplaçant dans A la j-ième par la i-ième sans toucher aux autres. Cette matrice ayant deux lignes identiques, son déterminant est nul. Donc $c_{ij} = 0$

lorsque $i \neq j$. On a donc prouvé que $A \times^t \operatorname{Com}(A) = \det(A)I_n$. On montrerait de même que $\times^t \operatorname{Com}(A)A = \det(A)I_n$.

Corollaire III.5. Pour toute $A \in GL_n(K)$,

$$A^{-1} = \frac{1}{\det(A)}^t \operatorname{Com}(A)$$

Exemple III.6. Pour n = 2, si $ad - bc \neq 0$ alors $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ est inversible et

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Remarque. La formule précédente donnant A^{-1} à l'aide de la comatrice est quasi-inutilisable dès que $n \ge 3$. En effet, l'application de cette formule nécessite apparemment le calcul d'un déterminant d'ordre n (det(A)) et de n^2 déterminant d'ordre n-1.

2. Calcul du rang d'une matrice

Rappelons que

- le rang d'une famille de vecteurs d'un espace vectoriel est la dimention du sous-espace vectoriel engendré par ces vecteurs,
- le rang d'une application linéaire $f: E \to F$ est la dimension de $\mathrm{Im}(f)$,
- le rang d'une matrice $A \in \mathcal{M}_{n,p}(K)$ est la dimension du sous-espace vectoriel engendré par ses vecteurs colonnes, c'est aussi la dimension de celui engendré par ses vecteurs lignes puisque le rang d'une matrice est égal à celui de sa transposée.

Dans tous les cas, un calcul de rang peut se ramener à un calcul de rang matriciel. Voici une méthode qui vous permet de calculer la rang d'une matrice de taille quelconque.

Définition III.7. Soit $A \in \mathcal{M}_{n,p}(K)$.

- On appelle **matrice extraite de** A, toute matrice obtenue en supprimant un certain nombre de lignes et un certain nombre de colonne de A.
- On appelle **déterminant extrait de** A, tout déterminant d'une matrice carrée extraite de A.

Exemple III.8. Le déterminant
$$\begin{vmatrix} a & d \\ a'' & d'' \end{vmatrix}$$
 est extrait de la matrice $\begin{pmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \end{pmatrix}$.

Théorème III.9. Soit $A \in \mathcal{M}_{n,p}(K)$. Le rang de A est égal à l'ordre maximum des sousmatrices carrées inversibles extraites de A.

Exemple III.10. Quel est le rang de $A = \begin{pmatrix} 2 & 1 & 4 & -3 \\ 4 & 0 & 6 & 1 \end{pmatrix}$? D'une part, $rg(A) \leq 2$ car $A \in \mathcal{M}_{2,4}(K)$. D'autre part la matrice $\begin{pmatrix} 2 & 1 \\ 4 & 0 \end{pmatrix}$ extraite de A, d'ordre 2 est inversible, donc le rang de A est au moins égal à 2. On en conclut que A est de rang 2.

IV. Résolution de système d'équations linéaires

Dans cette partie, nous allons définir ce qu'est un système d'équations linéaires puis nous allons donner une interprétation d'un tel système.

1. Définitions

Définition IV.1. On appelle système de n équations linéaires à p inconnues un système de la forme

$$\begin{cases} a_{11}x_1 + \dots + a_{1p}x_p = b_1 \\ a_{21}x_1 + \dots + a_{2p}x_p = b_2 \\ \vdots \\ a_{n1}x_1 + \dots + a_{np}x_p = b_n \end{cases}$$

Les $a_{ij} \in K$ sont appelés **coefficients** du système, les $b_i \in K$ sont appelés **seconds membres** du système et les $x_j \in K$ sont appelés **les inconnues**.

On appelle **solution** du système tout p-uplet (x_1, \ldots, x_p) pour lequel toutes les égalités sont vraies. On dit que le système est **compatible** s'il admet au moins une solution, on dit qu'il est **incompatible** sinon.

On dit que le système est homogène ou sans second membre lorsque $b_1 = \ldots = b_n = 0$.

Notons (Σ) ce système. On peut le représenter de différentes manières :

1) Avec des vecteurs de K^n : posons $c_1 = (a_{11}, ..., a_{n1}), ..., c_p = (a_{1p}, ..., a_{np})$ et $b = (b_1, ..., b_n)$. Alors:

$$(x_1,\ldots,x_p)$$
 solution de $(\Sigma) \Leftrightarrow x_1c_1+\ldots+x_nc_n=b$.

2) Avec des matrices : posons
$$A = \begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{np} \end{pmatrix}, B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
 et $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$. Alors : (x_1, \dots, x_p) solution de $(\Sigma) \Leftrightarrow AX = B$.

3) Avec une application linéaire : soit u_A l'application linéaire de K^p dans K^n canoniquement associée à A et soit $x = (x_1, \ldots, x_p)$. Alors :

$$(x_1,\ldots,x_p)$$
 solution de $(\Sigma) \Leftrightarrow u_A(x) = B$.

Définition IV.2. On dit que A est la **matrice** du système (Σ) . Le **rang** \mathbf{r} de (Σ) est définicomme étant le rang de A.

2. Structure de l'ensemble des solutions

• Système homogène

Proposition IV.3. Soit (Σ_0) un système linéaire homogène à p inconnues de rang r. Alors l'ensemble des solutions est un sous-espace vectoriel de K^p de dimension p-r.

Démonstration. On reprend les notations du paragraphe précédent. Puisque le système est homogène, $x = (x_1, \ldots, x_p)$ est solution si et seulement si $u_A(x) = 0$, ce qui signifie que $x \in \text{Ker } u_A$. Or le théorème du rang dit que $\dim(\text{Ker } u_A) = \dim(K^p) - \operatorname{rg}(u_A) = p - r$.

Remarque. Résoudre un système homogène revient donc à déterminer une base du noyau de u_A où A est la matrice du système linéaire.

• Système non homogène

Proposition IV.4. Soit (Σ) un système linéaire. Soit (Σ_0) le système homogène associé. Si (Σ) possède une solution, alors on obtient toutes les solutions de (Σ) en additionnant à cette solution les solutions de (Σ_0) .

On reprend les notations du paragraphe précédent : le système correspond à l'équation $u_A(x) = b$.

Démonstration. Si $b \notin \operatorname{Im} u_A$, alors il n'y a aucune solution. Supposons que $b \in \operatorname{Im} u_A$. Soit $x_0 \in K^p$ tel que $u_A(x_0) = b$. Alors, pour tout $x \in K^p$, on a :

$$u_A(x) = b \Leftrightarrow u_A(x) = u_A(x_0) \Leftrightarrow u_A(x - x_0) = 0 \Leftrightarrow x - x_0$$
 solution de (Σ_0) .

Par conséquent, x est solution de (Σ_0) si et seulement s'il existe une solution y de (Σ_0) telle que $x = x_0 + y$.

Il y a donc deux cas possibles : soit (Σ) n'a aucune solution, soit il en a et on peut alors écrire que :

Solution générale de (Σ) = solution particulière de (Σ) + solution générale de (Σ_0)

Remarque. Pour savoir si le système (Σ) est compatible, si on a déterminé une base de l'image de u_A , on vérifie que $b \in \text{Im } u_A$ (cas dans lequel le système est compatible).

Exemple IV.5. Résoudre les systèmes $\begin{cases} x_1 - 2x_2 + 3x_3 + 2x_4 = 6 \\ -x_1 + 2x_3 + 3x_4 = 5 \\ 4x_1 + 2x_2 - x_3 + x_4 = 5 \end{cases}, \begin{cases} 2x_1 - x_2 = 4 \\ -x_1 + 3x_2 = 1 \end{cases} \text{ et }$

$$\begin{cases} 2x_1 - x_2 = 4 \\ -x_1 + 3x_2 = 3 \\ x_1 + x_2 = 5 \end{cases}.$$

3. Méthodes pratiques de résolution

Gardons les notations du paragraphe précédent :

3.1. Système de Cramer : cas n = p = r

Définition IV.6. On dit qu'un système de n équations à n inconnues est un système de Cramer si la matrice A de ce système est inversible, c'est-à-dire si n = p = r.

Proposition IV.7. Un système de Cramer AX = B possède une unique solution donnée par $X = A^{-1}B$.

Démonstration. A est inversible $\Leftrightarrow u_A$ est bijective $\Leftrightarrow b$ possède donc un unique antécédent par u_A

Déterminer les solutions du système revient donc à calculer A^{-1} puis $A^{-1}B$. Il existe cependant les **formules** dites **de Cramer** qui permettent d'éviter d'inverser la matrice A:

Proposition IV.8. Soit $A = (a_{ij}) \in GL_n(K)$ et $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$, le système

$$\begin{cases} a_{11}x_1 + \dots + a_{1p}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n \end{cases}$$

d'inconnue (x_1, \ldots, x_n) admet une unique solution et pour tout $k \in \{1, \ldots, n\}$

$$x_k = \frac{1}{\det(A)} \begin{vmatrix} a_{11} & \cdots & a_{1,k-1} & b_1 & a_{1,k+1} & \cdots & a_{1n} \\ \vdots & & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{n,k-1} & b_n & a_{n,k+1} & \cdots & a_{nn} \end{vmatrix}$$

Ces formules donnant x_k pour tout $k \in \{1, ..., n\}$ s'appelent les formules de Cramer.

Exemple IV.9. Résoudre le système

$$\begin{cases} x+y=1\\ x+z=2\\ x+y=0 \end{cases}$$

Lorsque $n \ge 3$, les formules de Cramer deviennent rapidement impraticables : on préferera mettre le système sous forme triangulaire à l'aide de combinaisons des équations et d'éliminations d'inconnues.

3.2. Cas
$$r = n < p$$

Le rang de u_A est n, u_A est donc surjective, l'équation $u_A(x) = B$ admet donc au moins une solution. En pratique, on mettra le système sous forme dite échelonnée puis on fera passer les n-p dernières inconnues dans le second membre pour finir par résoudre par substitution.

3.3. Cas r < n

On procède par combinaisons linéaires d'équations pour ramener le système à un système relevant du cas précédent ou à un système n'ayant pas de solution.

3.4. Cas des systèmes linéaires homogènes

Le système à résoudre est de la forme

$$\begin{cases} a_{11}x_1 + \dots + a_{1p}x_p = 0 \\ a_{21}x_1 + \dots + a_{2p}x_p = 0 \\ \vdots \\ a_{n1}x_1 + \dots + a_{np}x_p = 0 \end{cases}$$

Evidemment, (0, ..., 0) est solution du système. Plus généralement, l'ensemble des solutions est Ker(A) où $A = (a_{ij})$. Si le rang de A est r, dès que r < p, le système admettra donc une infinité de solutions en plus de (0, ..., 0).