36702 TA Session 4

April 24, 2022 Lisheng Su

lisheng@uchicago.edu

The views expressed are the author's and do not necessarily represent the views of the management of the Federal Reserve Bank of Chicago or the Federal Reserve System.

Part I. Homework 3 Review

Q1. LGD PDF Derivation & Plotting

- Suppose that the default rate of a portfolio has the triangular distribution: $pdf_{dr}[dr] = 2 2dr$. Suppose that in this portfolio lgd is a function of dr: $lgd[dr] = dr^{1/2}$.
- Part 1. Derive and state the function $pdf_{lgd}[lgd]$, L2.S38-39, change of variable.
 - Step 1: Since $lgd = dr^{1/2}$, we have $dr = lgd^2$
 - Step 2: Then $\frac{\partial dr}{\partial lgd} = \frac{\partial lgd^2}{\partial lgd} = 2lgd$
 - Step 3: Apply change of variable (or the chain rule) to derive PDF of lgd based on PDF of dr, $pdf_{lgd}[lgd] = \left|\frac{\partial dr}{\partial lgd}\right| pdf_{dr}[dr] = 2lgd(2 2dr) = 2lgd(2 2lgd^2) = 4lgd 4lgd^3$
 - Sanity check (not required): The area under the PDF of LGD, $pdf_{lad}[lgd] = \int_0^1 (4u 4u^3) du = 1$.

• Part 2. Plot two functions: $pdf_{dr}[dr] \ and \ pdf_{lgd}[lgd] \ on \ [0, 1]$

Q2. Loss PDF Derivation & Plotting

- Same as Q1. Suppose that the default rate of a portfolio has the triangular distribution: $pdf_{dr}[dr] = 2 2dr$. Suppose that in this portfolio lgd is a function of dr: $lgd[dr] = dr^{1/2}$.
- Part 1. Derive and state the function $pdf_{loss}[loss]$, L2.S38–39, change of variable.
 - Since $loss = dr \cdot ldg = dr \cdot dr^{1/2} = dr^{3/2}$, we have $dr = loss^{2/3}$
 - Therefore, $\frac{\partial dr}{\partial loss} = \frac{\partial loss^{2/3}}{\partial loss} = \frac{2}{3}loss^{-1/3}$
 - Apply the chain rule to derive PDF of loss from PDF of dr, $pdf_{loss}[loss] = \left|\frac{\partial dr}{\partial loss}\right| pdf_{dr}[dr] = \frac{2}{3}loss^{-1/3}(2-2dr) = \frac{2}{3}loss^{-1/3}(2-2loss^{2/3}) = \frac{4}{3}loss^{-1/3} \frac{4}{3}loss^{1/3}$
 - Sanity check (not required): the area under $pdf_{loss}[loss] = \int_0^1 \left(\frac{4}{3}u^{-1/3} \frac{4}{3}u^{1/3}\right)du = 1$

• Part 2. Plot three functions: $pdf_{dr}[dr]$, $pdf_{lgd}[lgd]$ and $pdf_{loss}[loss]$ on [0, 1]

Q2 Part 3. Credit Identities of a Loan

• L4.S17-24

- Need to know: $PD = \mathbb{E}[dr] = \int_0^1 dr \cdot PDF_{dr} \cdot d[dr] = 0.3333$
- State the values of
 - Expected loss, $EL = \mathbb{E}[loss] = \int_0^1 loss \cdot PDF_{loss} \cdot d[loss] = 0.2286$
 - Expected LGD, $ELGD = \frac{EL}{PD} = \frac{0.2286}{0.3333} = 0.6857$
 - "Time-weighted" LGD = $\mathbb{E}[lgd] = \int_0^1 lgd \cdot PDF_{lgd} \cdot d[lgd] = 0.5333$

Q3. Std. of a Vasicek distribution and Plotting

- Part 1. Express the standard deviation of a Vasicek distribution as an integral that involves the Vasicek PDF.
 - Let $f_{CPD}[r]$ denote PDF of Vasicek distribution, then

•
$$f_{cPD}[r] = \frac{\sqrt{1-\rho}}{\sqrt{\rho} \phi[\Phi^{-1}[r]]} \phi\left[\frac{\sqrt{1-\rho} \Phi^{-1}[r]-\Phi^{-1}[PD]}{\sqrt{\rho}}\right]$$

• Let $SD_{cPD}[r]$ denote the standard deviation then

•
$$SD_{cPD}[r]=\sqrt{\mathbb{E}[(r-\mu)^2]}=\sqrt{\int_0^1 f_{cPD}[r]\cdot (r-\mu)^2 dr}$$
 , and $\mu=PD$

• Therefore,
$$SD_{cPD}[PD, \rho] = \sqrt{\int_0^1 \frac{\sqrt{1-\rho}}{\sqrt{\rho} \, \phi[\Phi^{-1}[r]]} \phi\left[\frac{\sqrt{1-\rho} \, \Phi^{-1}[r] - \Phi^{-1}[PD]}{\sqrt{\rho}}\right] (r - PD)^2 dr}$$

Q3 Parts 2 & 3. Plotting

• Plot the standard deviation for $0.05 < \rho < 0.95$

• Plot two Vasicek distributions: PD = 0.10, ρ = 0.05 and PD = 0.10, ρ = 0.95

Modeling Thinking: Parameter Tests

• Sensitivity analysis: Which parameter is a larger driver of std, PD or ρ ?

Q4. Unexpected Behaviors of cPD

• Two loans ~ Vasicek[PD, ρ]. PD₁ = 0.06, ρ_1 = 0.06; PD₂ = 0.03, ρ_2 = 0.20. Part A: Plot and compare the two inverse CDF's.

... The first loan has twice the PD, and in 98% of the years, it has a greater default rate. Only in the 2 % (=1 - 0.9782) of worst years does the other loan have greater conditional default since its ρ value is much higher.

Part II. Perspectives and Hints for Homework 4

Q1. Loan Identities from Data

A loan can take one of four states as follows:

State	A	В	С	D
Probability of state	0.40	0.30	0.20	0.10
cDR	0.02	0.04	0.06	0.08
cLGD	0.10	0.30	0.50	0.70

- What is the value of
 - The expected loss of the loan (EL)?
 - The expected LGD of the loan (ELGD)?
 - The "time-weighted LGD" of the loan?
- L4.S17-24

Q2. Alternative Hypothesis for LGD Function

- Let PD = 5%, ELGD = 30%, and ρ = 15%.
- Assume the alternative LGD function (L4.S57 63), and plot the function within the unit square for four values of the "a" parameter: {-2, 0, 1, 2}
 - Hint: L4.S62

Q3. Parameters Testing

- Suppose that cPD \sim Vasicek [PD = 0.02, ρ = 0.10]. Assuming that cPD and cLoss are comonotonic.
- Part 1. Plot three LGD functions for three possible distributions of cLoss:
 - a. cLoss ~ Vasicek [EL = 0.01, ρ = 0.05]
 - b. cLoss \sim Vasicek [EL = 0.01, ρ = 0.1]
 - c. cLoss ~ Vasicek [EL = 0.01, ρ = 0.15]
 - Limit the default axis to {0, 0.5} and limit the vertical axis to {0, 1.2}.
- Part 2. Comment on the usefulness of each possible LGD function.
 - Hint: You should be plotting three cLGD functions against cPD. X-axis must cover the range [0, 0.5].

Q3. Technical Notes

- Key formulas on L2.S32,S36
- What is a quantile, q?
 - q = 0 : .01 : 1, or $q \in \{0, 0.01, 0.02, ..., 0.99, 1\}$
- How to compute *q*?
 - Let CDF: $F_X(x) = P(X \le x) = q$ and is monotonic
 - Then, $x = F_X^{-1}(q)$

Q4. ELGD = ?

- Using the assumptions of Question 3(b), what is the value of ELGD?
 - Hint: You should know the identities of a loan well and try not to over think!