Example of two spinors-rotation

orthogonal transformation corresponding to vectors are rotations on angle π . Transformation corresponding to the product of vectors in Clifford algebra looks in \mathbf{E}^3 as a rotation on the angle 2φ around the axis which is orthogonal to these vectors. In the case if dimension is higher than 3, still this has a meaning.

In the previous blog we considered the group pin generated by product of vectors of V.

For every vector unit $\mathbf{v} \in V$

$$\mathbf{v}\mathbf{x}\mathbf{v}^{-1} = L_{\mathbf{v}}(\mathbf{x}) = 2(\mathbf{v}, \mathbf{x})\mathbf{v} - \mathbf{x},$$

where $Q(\mathbf{x}) = (\mathbf{x}, \mathbf{x})$ is quadratic form, which defines Clifford algebra.

The transformation $L_{\mathbf{v}}$ has axis directed along vector \mathbf{v} and all the vectors orthogonal to \mathbf{v} it rotates on the angle π

Consider the action of two rotations of this type: let $\mathbf{v}_1, \mathbf{v}_2$ be two unit vectors, we calculate

$$\mathbf{v}_1 \mathbf{v}_2 x \mathbf{v}_2^{-1} \mathbf{v}_1^{-1} = P(\mathbf{x})$$

Consider how looks operator P first in \mathbf{E}^3

Theorem The rotation $P_{\mathbf{v}_1\mathbf{v}_2} = L_{\mathbf{v}_1}L_{\mathbf{v}_2}$ in \mathbf{E}^3 this is the element of the group Spin (Spin contains even elements of the group pin)

 $P_{\mathbf{v}_1\mathbf{v}_2}$ rotates the space around axis which is orthogonal to the plane $\mathbf{v}_1, \mathbf{v}_2$ on the angle 2φ , where φ is the angle between vectors \mathbf{v}_1 and \mathbf{v}_2 . which is orthogonal to the plane

Choose orthonormal basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ such that \mathbf{e} is directed along \mathbf{v}_1 , and vector \mathbf{g} is orthogonal to plane formed by vectors $\mathbf{v}_1, \mathbf{v}_2$. Then

$$L_{\mathbf{v}_1}$$
:
$$\begin{cases} L_{\mathbf{v}_1}(\mathbf{e}) = \mathbf{e} \\ L_{\mathbf{v}_1}(\mathbf{f}) = -\mathbf{f} \\ L_{\mathbf{v}_1}(\mathbf{g}) = -\mathbf{g} \end{cases}$$

Now consider the second rotation. It is around the vector $\mathbf{e}' = \mathbf{v}_2$, The corresponding basis $\{\mathbf{e}', \mathbf{f}', \mathbf{g}'\}$, where

$$\begin{cases} \mathbf{e}' = \cos \varphi \mathbf{e} + \sin \varphi \mathbf{f}, \\ \mathbf{f}' = -\sin \varphi \mathbf{e} + \cos \varphi \mathbf{f}, \Leftrightarrow \begin{cases} \mathbf{e} = \cos \varphi \mathbf{e}' - \sin \varphi \mathbf{f}', \\ \mathbf{f} = \sin \varphi \mathbf{e}' + \cos \varphi \mathbf{f}', \\ \mathbf{g}' = \mathbf{g}. \end{cases}$$

For the second rotation we have

$$L_{\mathbf{v}_2}$$
:
$$\begin{cases} L_{\mathbf{v}_2}(\mathbf{e}') = \mathbf{e}' \\ L_{\mathbf{v}_1}(\mathbf{f}') = -\mathbf{f}' \\ L_{\mathbf{v}_1}(\mathbf{g}) = -\mathbf{g} \end{cases}$$

These elements form subspace in the orthogonal group (see Etude about fantom peines....)

Thus we have

$$P = P_{\mathbf{v}_1 \mathbf{v}_2} = L_{\mathbf{v}_1} L_{\mathbf{v}_2}:$$

$$\begin{cases} P(\mathbf{e}) = L_{\mathbf{v}_1} L_{\mathbf{v}_2}(\mathbf{e}) = L_{\mathbf{v}_1} L_{\mathbf{v}_2}(\cos \varphi \mathbf{e}' - \sin \varphi \mathbf{f}') = L_{\mathbf{v}_1}(\cos \varphi \mathbf{e}' + \sin \varphi \mathbf{f}') = \\ L_{\mathbf{v}_1}(\cos 2\varphi \mathbf{e} + \sin 2\varphi \mathbf{f}') = \cos 2\varphi \mathbf{e} - \sin 2\varphi \mathbf{f} \\ P(\mathbf{f}) = L_{\mathbf{v}_1} L_{\mathbf{v}_2}(\mathbf{f}) = L_{\mathbf{v}_1} L_{\mathbf{v}_2}(\sin \varphi \mathbf{e}' + \cos \varphi \mathbf{f}') = L_{\mathbf{v}_1}(\sin \varphi \mathbf{e}' - \sin \varphi \mathbf{f}') = \\ L_{\mathbf{v}_1}(\sin 2\varphi \mathbf{e} - \cos 2\varphi \mathbf{f}) = \sin 2\varphi \mathbf{e} + \cos 2\varphi \mathbf{f} \\ P(\mathbf{g}) = L_{\mathbf{v}_1} L_{\mathbf{v}_2}(\mathbf{g}) = L_{\mathbf{v}_1}(-\mathbf{g}) = \mathbf{g} \end{cases}$$

Thus matrix of the operator P in the basis $\{e, f, g\}$ is

$$\begin{pmatrix}
\cos 2\varphi & -\sin 2\varphi & 0 \\
\sin 2\varphi & \cos 2\varphi & 0 \\
0 & 0 & 1
\end{pmatrix}$$

sio f is finished.

In the case of arbitrary \mathbf{E}^n the transformation look :

$$\begin{cases} P(\mathbf{e}) = L_{\mathbf{v}_1} L_{\mathbf{v}_2}(\mathbf{e}) = L_{\mathbf{v}_1} L_{\mathbf{v}_2}(\cos \varphi \mathbf{e}' - \sin \varphi \mathbf{f}') = L_{\mathbf{v}_1}(\cos \varphi \mathbf{e}' + \sin \varphi \mathbf{f}') = \\ L_{\mathbf{v}_1}(\cos 2\varphi \mathbf{e} + \sin 2\varphi \mathbf{f}') = \cos 2\varphi \mathbf{e} - \sin 2\varphi \mathbf{f} \\ P(\mathbf{f}) = L_{\mathbf{v}_1} L_{\mathbf{v}_2}(\mathbf{f}) = L_{\mathbf{v}_1} L_{\mathbf{v}_2}(\sin \varphi \mathbf{e}' + \cos \varphi \mathbf{f}') = L_{\mathbf{v}_1}(\sin \varphi \mathbf{e}' - \sin \varphi \mathbf{f}') = \\ L_{\mathbf{v}_1}(\sin 2\varphi \mathbf{e} - \cos 2\varphi \mathbf{f}) = \sin 2\varphi \mathbf{e} + \cos 2\varphi \mathbf{f} \\ P(\mathbf{g}_i) = L_{\mathbf{v}_1} L_{\mathbf{v}_2}(\mathbf{g}) = L_{\mathbf{v}_1}(-\mathbf{g}) = \mathbf{g}_i \end{cases}$$

Here $\{\mathbf{e}, \mathbf{f}, \mathbf{g}_i\}$ orthonormal basis. Matrix of the operator P in the basis $\{\mathbf{e}, \mathbf{f}.\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_{n-2}\}$ is

$$\begin{pmatrix}
\cos 2\varphi & -\sin 2\varphi & 0 & 0 & \dots & 0 \\
\sin 2\varphi & \cos 2\varphi & 0 & 0 & \dots & 0 \\
0 & 0 & 1 & 0 & \dots & 0 \\
0 & 0 & 0 & 1 & \dots & 0 \\
\dots & \dots & \dots & \dots & \dots & 0 \\
0 & 0 & 0 & 0 & \dots & 1
\end{pmatrix}$$