```
import pandas as pd
# Read data. This data represents the cumulative known cases to date (https://covidtracking.com/about-data/faq)
url = 'https://raw.githubusercontent.com/COVID19Tracking/covid-tracking-data/master/data/states_daily_4pm_et.csv'
df = pd.read_csv(url,index_col=0,parse_dates=[0])

df.head(5)
```

С→ state positive negative pending hospitalizedCurrently hospitalizedCumulative inIcuCurrently inIcuCumulative onVentilatorCur date 2020-ΑK 365.0 21034.0 NaN 10.0 NaN NaN NaN 05-02 2020-84775.0 335.0 AL 7434.0 NaN NaN 1023.0 NaN 05-02 2020-AR 3372.0 48210.0 95.0 414.0 NaN NaN NaN 05-02 2020-AS 0.0 57.0 NaN NaN NaN NaN NaN 05-02 2020-718.0 1339.0 291.0 NaN Α7 8364 0 69633.0 NaN 05-02

Double-click (or enter) to edit

>		state	positive	negative	pending	${\color{blue} \textbf{hospitalizedCurrently}}$	${\bf hospitalizedCumulative}$	recovered	death	totalTestResults
	date									
2020-	-05-02	AK	365.0	21034.0	NaN	10.0	NaN	261.0	9.0	21399.0
2020-	-05-02	AL	7434.0	84775.0	NaN	NaN	1023.0	NaN	288.0	92209.0
2020-	-05-02	AR	3372.0	48210.0	NaN	95.0	414.0	1987.0	73.0	51582.0
2020-	-05-02	AS	0.0	57.0	NaN	NaN	NaN	NaN	0.0	57.0
2020-	-05-02	AZ	8364.0	69633.0	NaN	718.0	1339.0	1565.0	348.0	77997.0

```
# Create new features
# Divide positive by totalTestResults to get positive_percent
df_drop["percent_positive"] = ""
df_drop["percent_positive"] = 100*df_drop["positive"]/df_drop["totalTestResults"]
df_drop.head()
```

С→

state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent_positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults 2020-365.0 21034.0 AK 10.0 NaN 261.0 9 0 21399 0 NaN 1.70 05-02 2020-ΔI 7434.0 84775 0 NaN 1023.0 NaN 288.0 92209.0 8 Nf NaN 05-02 2020-AR 3372 0 48210 0 95 N 414 N 1987 0 73.0 51582 0 6.53 NaN 05-02 2020-AS 0.00 0.0 57.0 NaN NaN NaN NaN 0.0 57.0 05-02 2020-ΑZ 8364.0 69633.0 718.0 1339.0 1565.0 77997.0 NaN 348.0 10.72 05-02

```
# Divide hospitalized by positive to get hospitalized_percent
import numpy as np

df_drop["hospitalized_percent"] = ""

df_drop["hospitalized_percent"] = np.nanmax(df_drop[['hospitalizedCurrently','hospitalizedCumulative']], axis=1)

df_drop["hospitalized_percent"] = 100*df_drop["hospitalized_percent"]/df_drop["positive"]

df_drop.head()
```

_______/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: All-NaN axis encountered This is separate from the ipykernel package so we can avoid doing imports until

state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent positive date 2020-ΑK 365.0 21034.0 NaN 10.0 NaN 261.0 9.0 21399.0 1 7(05-02 2020-ΑL 7434.0 84775.0 NaN NaN 1023.0 NaN 288.0 92209.0 8.06 05-02 2020-AR 3372.0 48210.0 95.0 414.0 1987.0 73.0 51582.0 6.53 NaN 05-02 2020-AS 0.0 57.0 NaN NaN 0.0 0.00 NaN NaN 57.0 05-02 2020-ΑZ 8364.0 69633.0 NaN 718.0 1339.0 1565.0 348.0 77997.0 10.72 05-02

```
# Divide recovered by positive to get recovered_percent

df_drop["recovered_percent"] = ""

df_drop["recovered_percent"] = 100*df_drop["recovered"]/df_drop["positive"]

df_drop.head()
```

state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent_positive recovered death d date 2020-ΑK 365.0 21034.0 NaN 10.0 NaN 261.0 9.0 21399.0 1.70 05-02 2020-AL 7434.0 84775.0 NaN NaN 1023.0 NaN 288.0 92209.0 8.06 05-02 2020-95.0 51582 0 AR 3372 0 48210 0 NaN 414 0 1987 0 73.0 6.53 05-02 2020-AS 0.0 57.0 NaN NaN NaN NaN 0.0 57.0 0.00 05-02 2020-ΑZ 8364.0 69633.0 NaN 718.0 1339.0 1565.0 348.0 77997.0 10.72 05-02

```
# Divide death by positive to get death_percent
df_drop["death_percent"] = ""
df_drop["death_percent"] = 100*df_drop["death"]/df_drop["positive"]
df_drop.head()
```

₽

С→

```
state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent_positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults
2020-
                     365.0
                               21034.0
           AK
                                                                            10.0
                                                                                                          NaN
                                                                                                                       261.0
                                                                                                                                  90
                                                                                                                                                    21399 0
                                                                                                                                                                         1.70
                                              NaN
05-02
2020-
           ΔI
                    7434.0
                               84775.0
                                                                           NaN
                                                                                                        1023.0
                                                                                                                        NaN
                                                                                                                               288.0
                                                                                                                                                    92209.0
                                                                                                                                                                         8 Nf
                                              NaN
05-02
2020-
                    3372.0
                                                                                                                                                    51582.0
           AR
                               48210.0
                                                                           95.0
                                                                                                         414 N
                                                                                                                     1987 0
                                                                                                                                 73 O
                                                                                                                                                                         6.53
                                              NaN
05-02
2020-
                                                                                                                                                       57.0
           AS
                       0.0
                                                                                                          NaN
                                                                                                                                  0.0
                                                                                                                                                                         0.00
                                   57.0
                                              NaN
                                                                           NaN
                                                                                                                        NaN
05-02
2020-
           ΑZ
                    8364.0
                               69633.0
                                                                          718.0
                                                                                                       1339.0
                                                                                                                     1565.0 348.0
                                                                                                                                                    77997.0
                                                                                                                                                                        10.72
                                              NaN
05-02
```

```
# Fetch the latest state population data (nst-est2019-01.csv)
from google.colab import files
uploaded = files.upload()
```

```
Choose Files nst-est2019-01.csv
```

• nst-est2019-01.csv(application/vnd.ms-excel) - 676 bytes, last modified: 4/13/2020 - 100% done Saving nst-est2019-01.csv to nst-est2019-01.csv

```
# Load latest state population data
import io

df_state_pop = pd.read_csv(io.StringIO(uploaded['nst-est2019-01.csv'].decode('utf-8')))

df_state_pop["Population"] = pd.to_numeric(df_state_pop["Population"])

df_state_pop.head()
```

```
    State Population
    AK 731545.0
    AL 4903185.0
    AR 3017804.0
    AS NaN
    AZ 7278717.0
```

```
# Add column of state populations (population) to df_drop_total_posNeg
# Need to sort rows by state using index numbering from state_list

df_drop["population"] = ""

for i in range(len(df_drop)):
    for index in range(len(df_state_pop)):
        if df_drop.iloc[i, 0] == df_state_pop.iloc[index, 0]:
            df_drop.iloc[i, 13] = df_state_pop.iloc[index, 1]

df_drop[["population"]] = df_drop["population"].apply(pd.to_numeric)

df_drop.head()
```

₽		state	positive	negative	pending	${\color{blue} \texttt{hospitalizedCurrently}}$	${\color{blue} \textbf{hospitalizedCumulative}}$	recovered	death	totalTestResults	percent_posi
	date										
	2020- 05-02	AK	365.0	21034.0	NaN	10.0	NaN	261.0	9.0	21399.0	1.70
	2020- 05-02	AL	7434.0	84775.0	NaN	NaN	1023.0	NaN	288.0	92209.0	8.06
	2020- 05-02	AR	3372.0	48210.0	NaN	95.0	414.0	1987.0	73.0	51582.0	6.50
	2020- 05-02	AS	0.0	57.0	NaN	NaN	NaN	NaN	0.0	57.0	0.00
	2020- 05-02	AZ	8364.0	69633.0	NaN	718.0	1339.0	1565.0	348.0	77997.0	10.72

С→

```
# Normalize positive to state population

df_drop["positive_norm"] = ""

df_drop["positive_norm"] = df_drop["positive"]/df_drop["population"]

df_drop.head()
```

```
С→
            state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent positive
     2020-
               ΑK
                       365.0
                                21034.0
                                             NaN
                                                                      10.0
                                                                                               NaN
                                                                                                          261.0
                                                                                                                    9.0
                                                                                                                                   21399.0
                                                                                                                                                     1.70
     05-02
     2020-
               ΔI
                      7434.0
                                84775 0
                                                                     NaN
                                                                                             1023.0
                                                                                                           NaN
                                                                                                                  288.0
                                                                                                                                   92209.0
                                                                                                                                                     8 Nf
                                             NaN
     05-02
     2020-
                      3372.0
                                                                                                                                   51582.0
               AR
                                48210 0
                                                                     95.0
                                                                                              414 0
                                                                                                         1987 0
                                                                                                                   73.0
                                                                                                                                                     6.53
                                             NaN
     05-02
     2020-
               AS
                         0.0
                                   57.0
                                                                     NaN
                                                                                               NaN
                                                                                                           NaN
                                                                                                                    0.0
                                                                                                                                      57.0
                                                                                                                                                     0.00
                                             NaN
     05-02
     2020-
                      8364.0
                                                                     718.0
                                                                                             1339.0
                                                                                                         1565.0
                                                                                                                                   77997.0
               ΑZ
                                69633.0
                                             NaN
                                                                                                                  348.0
                                                                                                                                                    10.72
     05-02
```

```
# Normalize hospitalized to state population
df_drop["hospitalized_norm"] = ""
df_drop["hospitalized_norm"] = np.nanmax(df_drop[['hospitalizedCurrently','hospitalizedCumulative']], axis=1)
df_drop["hospitalized_norm"] = df_drop["hospitalized_norm"]/df_drop["population"]
df_drop.head()
```

() /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:2: RuntimeWarning: All-NaN axis encountered

```
state positive negative pending hospitalizedCurrently hospitalizedCumulative recovered death totalTestResults percent positive
date
2020-
          AK
                  365.0
                          21034 0
                                       NaN
                                                                10.0
                                                                                          NaN
                                                                                                     261.0
                                                                                                               9 0
                                                                                                                              21399 0
                                                                                                                                                1 7(
05-02
2020-
                 7434.0
                                                                                        1023.0
                                                                                                             288 0
                                                                                                                              92209.0
          AL
                          84775 0
                                       NaN
                                                                NaN
                                                                                                      NaN
                                                                                                                                                8.06
05-02
2020-
         AR
                 3372.0
                          48210.0
                                                                95.0
                                                                                         414.0
                                                                                                    1987.0
                                                                                                              73.0
                                                                                                                              51582.0
                                                                                                                                                6.53
                                       NaN
05-02
2020-
         AS
                    0.0
                              57.0
                                                                NaN
                                                                                          NaN
                                                                                                      NaN
                                                                                                               0.0
                                                                                                                                 57.0
                                                                                                                                                0.00
                                       NaN
05-02
2020-
          Δ7
                 8364 0
                          69633.0
                                       NaN
                                                               718 0
                                                                                        1339 0
                                                                                                    1565.0
                                                                                                             348 0
                                                                                                                              77997 N
                                                                                                                                                10.70
05-02
```

```
# Normalize recovered to state population
df_drop["recovered_norm"] = ""
df_drop["recovered_norm"] = df_drop["recovered"]/df_drop["population"]
df_drop.head()
```

;	state	positive	negative	pending	${\tt hospitalizedCurrently}$	${\bf hospitalized Cumulative}$	recovered	death	${\tt totalTestResults}$	percent_posi
date										
2020- 05-02	AK	365.0	21034.0	NaN	10.0	NaN	261.0	9.0	21399.0	1.70
2020- 05-02	AL	7434.0	84775.0	NaN	NaN	1023.0	NaN	288.0	92209.0	8.06
2020- 05-02	AR	3372.0	48210.0	NaN	95.0	414.0	1987.0	73.0	51582.0	6.53
2020- 05-02	AS	0.0	57.0	NaN	NaN	NaN	NaN	0.0	57.0	0.00
2020- 05-02	AZ	8364.0	69633.0	NaN	718.0	1339.0	1565.0	348.0	77997.0	10.72

```
# Normalize death to state population
df_drop["death_norm"] = ""
df_drop["death_norm"] = df_drop["death"]/df_drop["population"]
df_drop.head()
```

С→

	state	positive	negative	pending	hospitalizedCurrently	${\color{blue} \textbf{hospitalizedCumulative}}$	recovered	death	totalTestResults	percent_posi
date										
2020- 05-02	AK	365.0	21034.0	NaN	10.0	NaN	261.0	9.0	21399.0	1.70
2020- 05-02	AL	7434.0	84775.0	NaN	NaN	1023.0	NaN	288.0	92209.0	8.06
2020- 05-02	AR	3372.0	48210.0	NaN	95.0	414.0	1987.0	73.0	51582.0	6.50
2020- 05-02	AS	0.0	57.0	NaN	NaN	NaN	NaN	0.0	57.0	0.00
2020- 05-02	AZ	8364.0	69633.0	NaN	718.0	1339.0	1565.0	348.0	77997.0	10.72

```
df_drop.info()
┌⇒ <class 'pandas.core.frame.DataFrame'>
    DatetimeIndex: 3265 entries, 2020-05-02 to 2020-01-22
    Data columns (total 18 columns):
     # Column
                               Non-Null Count Dtype
                                3265 non-null object
     0 state
     1
         positive
                                3250 non-null
                                              float64
     2
         negative
                                3084 non-null
                                              float64
                                671 non-null
                                               float64
         pending
         hospitalizedCurrently 1152 non-null
                                               float64
         hospitalizedCumulative 1207 non-null
                                              float64
                                997 non-null
                                               float64
         recovered
         death
                                2538 non-null
                                               float64
         totalTestResults
                                3263 non-null
                                               float64
         percent positive
                                3219 non-null
                                               float64
     10 hospitalized_percent 1822 non-null
                                               float64
     11 recovered_percent
                                997 non-null
                                               float64
     12 death_percent
                                2486 non-null
                                               float64
     13 population
                                3073 non-null
                                               float64
     14 positive_norm
                                3073 non-null
                                               float64
     15 hospitalized norm
                               1783 non-null
                                               float64
                                               float64
                                913 non-null
     16 recovered norm
     17 death_norm
                                2395 non-null
                                              float64
    dtypes: float64(17), object(1)
    memory usage: 564.6+ KB
# Get the unique values of 'state' column
state_list = df.state.unique()
state_list
'NH', 'NJ', 'NM', 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'PR', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VA', 'VI', 'VT', 'WA', 'WI', 'WV',
           'WY'], dtype=object)
#create a data frame dictionary to store the state data frames
df_state_dict = {elem : pd.DataFrame for elem in state_list}
for key in df state dict.keys():
   df_state_dict[key] = df_drop[:][df_drop.state == key]
df_state_dict['AK'].head()
```

	state	positive	negative	pending	${\tt hospitalizedCurrently}$	$\verb hospitalizedCumulative $	recovered	death	${\tt totalTestResults}$	percent_posi
date										
2020- 05-02	AK	365.0	21034.0	NaN	10.0	NaN	261.0	9.0	21399.0	1.7(
2020- 05-01	AK	364.0	19961.0	NaN	25.0	NaN	254.0	9.0	20325.0	1.79
2020- 04-30	AK	355.0	18764.0	NaN	19.0	NaN	252.0	9.0	19119.0	1.8{
2020- 04-29	AK	355.0	18764.0	NaN	14.0	NaN	240.0	9.0	19119.0	1.8{
2020- 04-28	AK	351.0	16738.0	NaN	16.0	NaN	228.0	9.0	17089.0	2.0{

df_sta	<pre>f_state_dict['CA'].head()</pre>										
₽		state	positive	negative	pending	hospitalizedCurrently	hospitalizedCumulative	recovered	death	totalTestResults	percent_pos
	date										
	2020- 05-02	CA	52197.0	634606.0	NaN	4722.0	NaN	NaN	2171.0	686803.0	7.5
	2020- 05-01	CA	50442.0	604543.0	NaN	4706.0	NaN	NaN	2073.0	654985.0	7.7
	2020- 04-30	CA	48917.0	576420.0	NaN	4981.0	NaN	NaN	1982.0	625337.0	7.8
	2020- 04-29	CA	46500.0	556639.0	NaN	5011.0	NaN	NaN	1887.0	603139.0	7.7
	2020- 04-28	CA	45031.0	532577.0	NaN	4983.0	NaN	NaN	1809.0	577608.0	7.7

```
from matplotlib import pyplot as plt
```

```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].positive)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Number of Positive Tests in CA', fontsize=16)
plt.show()
```

No handles with labels found to put in legend. <Figure size 432x288 with 0 Axes>


```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].percent_positive)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Percentage of Positive Tests in CA', fontsize=16)
plt.show()
```

No handles with labels found to put in legend. ⟨Figure size 640x480 with 0 Axes⟩


```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].positive_norm)
plt.xticks(rotation='vertical')
```

```
plt.legend(†rameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Positive Tests Normalized to Population in CA', fontsize=16)
plt.show()
```

No handles with labels found to put in legend. ⟨Figure size 640x480 with 0 Axes⟩


```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].positive_norm, color="red", label="CA")
plt.plot(df_state_dict['NY'].positive_norm, color="blue", label="NY")
plt.plot(df_state_dict['GA'].positive_norm, color="green", label="GA")
plt.plot(df_state_dict['IN'].positive_norm, color="violet", label="IN")
plt.plot(df_state_dict['ME'].positive_norm, color="orange", label="ME")
plt.plot(df_state_dict['NJ'].positive_norm, color="cyan", label="NJ")
plt.plot(df_state_dict['NJ'].positive_norm, color="cyan", label="NJ")
plt.ticks(rotation='vertical')

plt.legend(frameon=False)
plt.ylabel('Date', fontsize=18)
plt.ylabel('Positive Tests Normalized to Population', fontsize=16)
plt.show()
```

<Figure size 640x480 with 0 Axes>


```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].hospitalizedCurrently)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Number Hospitalized in CA', fontsize=16)
plt.show()
```

No handles with labels found to put in legend. ⟨Figure size 640x480 with 0 Axes⟩

fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

```
plt.plot(df_state_dict['CA'].hospitalized_percent)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Percent Hospitalized in CA', fontsize=16)
plt.show()
```

No handles with labels found to put in legend. ⟨Figure size 640x480 with 0 Axes⟩


```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].hospitalized_norm)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Hospitalized Normalized to Population in CA', fontsize=16)
plt.show()
```

No handles with labels found to put in legend. <Figure size 640x480 with 0 Axes>


```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].hospitalized_norm, color="red", label="CA")
plt.plot(df_state_dict['NY'].hospitalized_norm, color="blue", label="NY")
plt.plot(df_state_dict['GA'].hospitalized_norm, color="green", label="GA")
plt.plot(df_state_dict['IN'].hospitalized_norm, color="violet", label="IN")
plt.plot(df_state_dict['ME'].hospitalized_norm, color="orange", label="ME")
plt.plot(df_state_dict['NJ'].hospitalized_norm, color="cyan", label="ME")
plt.vlate(s(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Hospitalized Normalized to Population', fontsize=16)
plt.show()
```

/Figure cize 6/00/180 with 0 Avec

In several states, population normalized hospitalizations plateau, although population normalized death rate continues to grow.

```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].death)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Number Died in CA', fontsize=16)
plt.show()
```

No handles with labels found to put in legend. ⟨Figure size 640x480 with 0 Axes⟩


```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].death_percent)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Percent Death in CA', fontsize=16)
plt.show()
```

No handles with labels found to put in legend. <Figure size 640x480 with 0 Axes>


```
fig = plt.figure()
fig, ax = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].death_norm)
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Death Normalized to Population in CA', fontsize=16)
plt.show()
```



```
fig = plt.subplots(figsize=(12, 6))
plt.rcParams.update(plt.rcParamsDefault)

plt.plot(df_state_dict['CA'].death_norm, color="red", label="CA")
plt.plot(df_state_dict['NY'].death_norm, color="blue", label="NY")
plt.plot(df_state_dict['GA'].death_norm, color="green", label="GA")
plt.plot(df_state_dict['IN'].death_norm, color="violet", label="IN")
plt.plot(df_state_dict['ME'].death_norm, color="orange", label="ME")
plt.plot(df_state_dict['NJ'].death_norm, color="cyan", label="ME")
plt.plot(df_state_dict['NJ'].death_norm, color="cyan", label="NJ")
plt.xticks(rotation='vertical')

plt.legend(frameon=False)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Death Normalized to Population', fontsize=16)
plt.show()
```


Note how the population normalized death curves relate closely to population normalized postive test curves

```
0
     AK
            1.331139
                      -95.882596
                                        2.0
           8.124937 -145.096536
                                        1.0
1
      AL
     AR
           1.444874 -108.708991
2
                                        3.0
3
     AS
               NaN
                            NaN
                                       NaN
     ΑZ
           4.374538 -129.204382
```

df_state_params.describe()

С→

	c (10^-4)	d	fit rank
count	51.000000	51.000000	51.000000
mean	28.922502	-142.879078	2.098039
std	53.235594	33.811201	2.156431
min	0.516899	-215.115296	1.000000
25%	3.745253	-165.040649	1.000000
50%	7.421743	-145.096536	1.000000
75%	20.958221	-123.240757	2.500000
max	231.216701	-47.945262	15.000000

df_state_params.hist(column='c (10^-4)', bins=20)

High value outliers here are NJ (fit rank 1), NY, (fit rank 1), RI (fit rank 5), and SD (fit rank 4)

df_state_params.hist(column='d', bins=10)

Low value outliers here are RI (fit rank 5) and SD (fit rank 4).

df state params.hist(column='fit rank')

The A*exp(B/x) functional form works extremely well for thirty of the 52 states (57.7%).

```
# Fetch static data for each state (CovidCompleteStateData.csv)
from google.colab import files
uploaded = files.upload()
```

Choose Files CovidCompl...teData.csv

• CovidCompleteStateData.csv(application/vnd.ms-excel) - 60510 bytes, last modified: 4/20/2020 - 100% done Saving CovidCompleteStateData.csv to CovidCompleteStateData.csv

```
# Load static data for each state (CovidCurrentStateData.csv)
import io
df_state_data = pd.read_csv(io.StringIO(uploaded['CovidCompleteStateData.csv'].decode('utf-8')))
df_state_data.head()
```

₽	State	Sum of NUM_Medicare_BEN	Sum of NUM_BEN_Age_Less_65	Sum of NUM_BEN_Age_65_to_74	Sum of NUM_BEN_Age_75_to_84	Sum of NUM_BEN_Age_Greater_84	Sum of NUM_Female_BEN	NUM_
	0 Ak	1820384.0	270970.0	809516.0	468255.0	175296.0	1034762.0	
	1 Al	10804823.0	2065353.0	4386595.0	2980828.0	1190504.0	6237445.0	2
	2 AF	15892716.0	2818665.0	6370265.0	4555468.0	1848506.0	9275039.0	ť
	3 AS	NaN	NaN	NaN	NaN	NaN	NaN	
	4 AZ	10786064.0	886596.0	4861035.0	3377040.0	1294375.0	5944519.0	4

5 rows × 116 columns

```
# Feature Engineering

Land Area/Water Area

# df_state_data['State Area Ratio'] = df_state_data['Land Area']/df_state_data['Water Area']

df_state_data['State Area Ratio'] = df_state_data['Land Area'].divide(df_state_data['Water Area'], fill_value=0)

# Elevation Ratio = Highest Elevation/Mean Elevation

# df_state_data['Elevation Ratio'] = df_state_data['Highest Elevation']/df_state_data['Mean Elevation']

df_state_data['Elevation Ratio'] = df_state_data['Highest Elevation'].divide(df_state_data['Mean Elevation'], fill_v.

# Capital Area Ratio = Capital Land Area/Capital Water Area

# df_state_data['Capital Area Ratio'] = df_state_data['Capital Land Area']/df_state_data['Capital Water Area']

df_state_data['Capital Land Area'] = df_state_data['Capital Land Area'].astype(float)

df_state_data['Capital Area Ratio'] = df_state_data['Capital Land Area'].divide(df_state_data['Capital Water Area'],

# Boundaries = Number of boarding states + On Coast + Borders Another Country

df_state_data['Boundaries'] = df_state_data['Number of bordering states'] + df_state_data['On Coast'] + df
```

```
# Latitude Difference to State Capital = Latitude - Capital Latitude

df_state_data['Latitude Difference to State Capital'] = df_state_data['Latitude'] - df_state_data['Capital Latitude']

# Longitude Difference to State Capital = Capital Longitude - Longitude

df_state_data['Longitude Difference to State Capital'] = df_state_data['Capital Longitude'] - df_state_data['Longitude']

# Latitude Difference to DC = Latitude - DC Latitude

df_state_data['Latitude Difference to DC'] = df_state_data['Latitude'] - 38.904722

# Longitude Difference to DC = DC Longitude - Longitude

df_state_data['Longitude Difference to DC'] = -77.016389 - df_state_data['Longitude']

# Latitude Difference to US Center = Latitude - Center Latitude

df_state_data['Latitude Difference to Center'] = df_state_data['Latitude'] - 39.833333

# Longitude Different to US Center = Center Longitude - Longitude

df_state_data['Longitude Difference to Center'] = -98.585522 - df_state_data['Longitude']

df_state_data.head()
```

.._scacc_c

₽

	State	Sum of NUM_Medicare_BEN	Sum of NUM_BEN_Age_Less_65	Sum of NUM_BEN_Age_65_to_74	Sum of NUM_BEN_Age_75_to_84	Sum of NUM_BEN_Age_Greater_84	Sum of NUM_Female_BEN	NUM_
0	AK	1820384.0	270970.0	809516.0	468255.0	175296.0	1034762.0	
1	AL	10804823.0	2065353.0	4386595.0	2980828.0	1190504.0	6237445.0	4
2	AR	15892716.0	2818665.0	6370265.0	4555468.0	1848506.0	9275039.0	(
3	AS	NaN	NaN	NaN	NaN	NaN	NaN	
4	AZ	10786064.0	886596.0	4861035.0	3377040.0	1294375.0	5944519.0	2

5 rows × 126 columns

df_state_data.shape

```
[→ (56, 126)
```

```
# Define variables for regression
df_temp1 = df_state_data.drop(df_state_data.index[[3, 12, 27, 42, 50, 55]])
X = df_temp1.drop('State', axis = 1)
df_temp2 = df_state_params.drop(df_state_data.index[[3, 12, 27, 42, 50, 55]])
y = df_temp2['d']
```

```
# Look at correlation coefficients
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', 1000)
X.corr()
```

	Sum of NUM_Medicare_BEN	Sum of NUM_BEN_Age_Less_65	Sum of NUM_BEN_Age_65_to_74	Sum of NUM_BEN_Age_75_to_84	
Sum of NUM_Medicare_BEN	1.000000	0.981244	0.998612	0.998085	
Sum of NUM_BEN_Age_Less_65	0.981244	1.000000	0.977935	0.969186	
Sum of NUM_BEN_Age_65_to_74	0.998612	0.977935	1.000000	0.996336	
Sum of NUM_BEN_Age_75_to_84	0.998085	0.969186	0.996336	1.000000	
Sum of NUM_BEN_Age_Greater_84	0.989852	0.960258	0.982527	0.992524	
Sum of NUM_Female_BEN	0.999917	0.982419	0.998360	0.997902	
Sum of NUM_Male_BEN	0.999896	0.979571	0.998622	0.998281	
Sum of NUM_Black_or_African_American_BEN	0.895536	0.925224	0.894585	0.882970	
Sum of NUM_Asian_Pacific_Islander_BEN	0.524429	0.473716	0.516336	0.528889	
Sum of NUM_Hispanic_BEN	0.894417	0.829126	0.903356	0.900554	
Sum of NUM_American_IndianAlaska_Native_BEN	0.077349	0.053905	0.086472	0.081806	
Sum of NUM_BEN_With_Race_Not_Elsewhere_Classified	0.821569	0.771437	0.801707	0.830466	
Sum of NUM_Non-Hispanic_White_BEN	0.996809	0.978655	0.994347	0.996101	
Sum of NUM_Minorities	0.958404	0.925675	0.961032	0.957614	
Sum of Average_Age_of_BEN	0.678752	0.726826	0.682844	0.659778	
Sum of NUM_BEN_Atrial_Fibrillation	0.990319	0.969220	0.985453	0.991337	
Sum of NUM_BEN_Asthma	0.995489	0.979353	0.991510	0.992852	
Sum of NUM_BEN_Cancer	0.994721	0.971958	0.992833	0.994822	
Sum of NUM_BEN_Heart_Failure	0.997108	0.985088	0.995323	0.993852	
Sum of NUM_BEN_Chronic_Kidney_Disease	0.997480	0.980181	0.997065	0.995383	
Sum of NUM_BEN_Chronic_Obstructive_Pulmonary_Disease	0.986081	0.980417	0.981434	0.983841	
Sum of NUM_BEN_Hyperlipidemia	0.996199	0.974138	0.994686	0.996386	
Sum of NUM_BEN_Diabetes	0.997736	0.981117	0.996508	0.995642	
Sum of NUM_BEN_Hypertension	0.998843	0.982162	0.998059	0.996914	
Sum of NUM_BEN_Ischemic_Heart_Disease	0.993954	0.974989	0.991463	0.994045	
Sum of NUM_BEN_Stroke	0.990470	0.971925	0.988713	0.989929	
Sum of PCT_MEDICARE	0.710503	0.759188	0.713882	0.692945	
% Urban Pop	0.239324	0.172542	0.233998	0.252295	
Density (P/mi2)	-0.099963	-0.110703	-0.100658	-0.096325	
Children 0-18	0.884945	0.844648	0.874846	0.887257	
Adults 19-25	0.864191	0.823977	0.851022	0.867408	
Adults 26-34	0.846985	0.802138	0.833617	0.851409	
Adults 35-54	0.860076	0.817671	0.846322	0.864281	
Adults 55-64	0.838622	0.799478	0.819933	0.843902	
65+	0.840633	0.793344	0.820862	0.850354	
Latitude	-0.395637	-0.392189	-0.398492	-0.402613	
Longitude	0.036162	0.081918	0.023777	0.029848	
Land Area	0.235431	0.200886	0.248419	0.236252	
Water Area	0.038411	0.051521	0.032297	0.034407	
Mean Elevation	-0.133770	-0.196098	-0.117766	-0.126100	
Highest Elevation	-0.038246	-0.115800	-0.018904	-0.028611	
Lowest elevation	-0.344113	-0.337087	-0.333651	-0.346722	
Number of bordering states	0.092703	0.153356	0.090523	0.073651	
On Coast	0.464164	0.497887	0.435913	0.455132	
Parallah rasaarah gapala sam/driya/17/1//Ph/WVI IOs5SthAg	0 054040	0 202022	0.057005	0.050755	10/27

Covid_1		DataD.ipynb - Colaborat	ory	
Borders Another Country	0.351913	0.303223	0.35/825	0.350755
Capital Latitude	-0.386561	-0.391908	-0.392011	-0.390199
Capital Longitude	0.018177	0.067248	0.005968	0.010624
Captial Land Area	0.003972	-0.007988	0.013931	0.004629
Capital Water Area	-0.091118	-0.100314	-0.086948	-0.090518
Capital Mean Elevation	-0.166033	-0.186941	-0.154788	-0.163860
Capital is the Largest City	-0.154074	-0.128106	-0.149158	-0.156946
Largest City Latitude	-0.419120	-0.419459	-0.423088	-0.422919
Largest City Longitude	0.048321	0.092830	0.035728	0.041774
Number of Counties	0.659574	0.706073	0.666432	0.641478
Became a State	-0.126570	-0.186422	-0.115157	-0.112935
DaysSinceStayatHomeOrder	-0.021086	-0.020186	-0.030817	-0.027800
DaysSinceFirstPositive	0.357249	0.306142	0.355519	0.364255
DaysSinceTestStart	0.273593	0.219953	0.272942	0.282120
15-49yearsAllcauses	0.886884	0.854562	0.873498	0.888773
15-49yearsAsthma	0.822646	0.785134	0.805485	0.825296
15-49yearsChronickidneydisease	0.917925	0.892317	0.908566	0.917956
15-49yearsChronicobstructivepulmonarydisease	0.895564	0.876357	0.879172	0.896199
15-49yearsDiabetesmellitus	0.911319	0.879991	0.899800	0.913356
15- 49yearsInterstitiallungdiseaseandpulmonarysarcoidosis	0.879916	0.862208	0.865322	0.878905
15-49yearsIschemicheartdisease	0.927678	0.926759	0.915842	0.922736
15-49yearsNeoplasms	0.886136	0.858150	0.871628	0.887471
15-49yearsOtherchronicrespiratorydiseases	0.905560	0.883613	0.891223	0.905653
15-49yearsRheumaticheartdisease	0.902424	0.891711	0.892262	0.897798
15-49yearsStroke	0.918867	0.897147	0.909310	0.918599
50-69yearsAllcauses	0.878744	0.853509	0.861522	0.880659
50-69yearsAsthma	0.799440	0.762340	0.778773	0.803715
50-69yearsChronickidneydisease	0.916387	0.896945	0.904561	0.915572
50-69yearsChronicobstructivepulmonarydisease	0.877906	0.870963	0.859255	0.877419
50-69yearsDiabetesmellitus	0.881134	0.855438	0.863901	0.883450
50- 69yearsInterstitiallungdiseaseandpulmonarysarcoidosis	0.861583	0.838312	0.844421	0.862487
50-69yearsIschemicheartdisease	0.904978	0.899635	0.888882	0.901757
50-69yearsNeoplasms	0.871034	0.851227	0.852407	0.872097
50-69yearsOtherchronicrespiratorydiseases	0.883753	0.873315	0.866185	0.882303
50-69yearsRheumaticheartdisease	0.891423	0.888783	0.879360	0.885632
50-69yearsStroke	0.906978	0.890724	0.893997	0.906473
70+yearsAllcauses	0.847442	0.816751	0.826481	0.852488
70+yearsAsthma	0.789028	0.744699	0.766961	0.797072
70+yearsChronickidneydisease	0.875670	0.856224	0.857657	0.876360
70+yearsChronicobstructivepulmonarydisease	0.865156	0.840259	0.845077	0.869812
70+yearsDiabetesmellitus	0.843401	0.812744	0.821754	0.849108
70+yearsInterstitiallungdiseaseandpulmonarysarcoidosis	0.831802	0.797053	0.811884	0.837251
70+years/schemicheartdisease	0.839315	0.817188	0.816155	0.842376
70+yearsNeoplasms	0.835509	0.805555	0.813851	0.840697
70+yearsOtherchronicrespiratorydiseases	0.874566	0.857451	0.856689	0.874418
70+yearsRheumaticheartdisease	0.842665	0.837198	0.824793	0.837776
70+yearsStroke	0.870071	0.847350	0.852618	0.871917

Covid_19NormedDeathsStateDataD.ipynb - Colaboratory						
AllAgesAllcauses	0.878588	0.849145	0.861845	0.881318		
AllAgesAsthma	0.831304	0.792231	0.813720	0.835086		
AllAgesChronickidneydisease	0.904402	0.883840	0.890334	0.904351		
AllAgesChronicobstructivepulmonarydisease	0.875803	0.858774	0.856544	0.878011		
AllAgesDiabetesmellitus	0.878317	0.849967	0.860647	0.881652		
AllAgesInterstitiallungdiseaseandpulmonarysarcoidosis	0.852165	0.823512	0.833849	0.855184		
AllAgesIschemicheartdisease	0.882192	0.869062	0.862943	0.881839		
AllAgesNeoplasms	0.863741	0.839097	0.844574	0.866307		
AllAgesOtherchronicrespiratorydiseases	0.902524	0.884302	0.887253	0.902007		
AllAgesRheumaticheartdisease	0.879079	0.873449	0.864765	0.873886		
AllAgesStroke	0.894221	0.873914	0.879380	0.894925		
AllAgesTotal	0.879105	0.851798	0.861916	0.881553		
Airpollution	0.887961	0.886816	0.873716	0.881728		
Highbody-massindex	0.892574	0.870891	0.875767	0.893521		
Highfastingplasmaglucose	0.885519	0.868208	0.867475	0.886276		
HighLDLcholesterol	0.892016	0.880761	0.874040	0.890927		
Highsystolicbloodpressure	0.896298	0.880918	0.879042	0.896085		
Impairedkidneyfunction	0.888684	0.870825	0.871779	0.888904		
Noaccesstohandwashingfacility	0.876183	0.855685	0.860915	0.875209		
Smoking	0.880256	0.864750	0.861340	0.881441		
Log10Pop	0.730625	0.738162	0.716041	0.724834		
DaysSinceInfection	0.412821	0.360632	0.410278	0.422147		
Children0-18	0.170467	0.184747	0.184614	0.162743		
Allriskfactors	0.881460	0.858902	0.864027	0.883001		
State Area Ratio	-0.128550	-0.166800	-0.113602	-0.122087		
Elevation Ratio	0.006435	-0.008386	0.016149	0.010278		
Capital Area Ratio	-0.107958	-0.139494	-0.098783	-0.101355		
Boundaries	0.500872	0.558822	0.480645	0.479234		
Latitude Difference to State Capital	-0.251296	-0.188306	-0.234552	-0.277897		
Longitude Difference to State Capital	-0.132644	-0.120676	-0.128482	-0.139685		
Latitude Difference to DC	-0.395637	-0.392189	-0.398492	-0.402613		
Longitude Difference to DC	-0.036162	-0.081918	-0.023777	-0.029848		
Latitude Difference to Center	-0.395637	-0.392189	-0.398492	-0.402613		
Laurituda Difference to Contan	0.000400	0.004040	0.000777	0.000040		

```
\# Note that there are many highly correlated features which need to be dropped
# Create absolute value correlation matrix
corr_matrix = X.corr().abs()
# Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
\# Find index of feature columns with correlation greater than 0.95
to_drop = [column for column in upper.columns if any(upper[column] > 0.95)]
# Drop features by index which were identified as being highly correlated
X = X.drop(X[to_drop], axis=1)
X.head()
```

-0.036162

-0.081918

-0.023777

₽

Longitude Difference to Center

-0.029848

	Sum of NUM_Medicare_BEN	Sum of NUM_Black_or_African_American_BEN	Sum of NUM_Asian_Pacific_Islander_BEN	Sum of NUM_Hispanic_BEN	! NUM_American_IndianAlaska_Nativ
0	1820384.0	62311.0	76773.0	46525.0	14
1	10804823.0	1549811.0	30624.0	65500.0	
2	15892716.0	1334245.0	19642.0	108428.0	6
4	10786064.0	221183.0	61840.0	689880.0	17
5	42579588.0	2072012.0	3276415.0	5674776.0	11

X.info()

C <class 'pandas.core.frame.DataFrame'>
Int64Index: 50 entries, 0 to 54
Data columns (total 38 columns):

#	Column	Non-Null Count	Dtype			
0	Sum of NUM_Medicare_BEN	50 non-null	float64			
1	Sum of NUM_Black_or_African_American_BEN	50 non-null	float64			
2	Sum of NUM_Asian_Pacific_Islander_BEN	50 non-null	float64			
3	Sum of NUM_Hispanic_BEN	50 non-null	float64			
4	Sum of NUM_American_IndianAlaska_Native_BEN	50 non-null	float64			
5	Sum of NUM_BEN_With_Race_Not_Elsewhere_Classified	50 non-null	float64			
6	Sum of Average_Age_of_BEN	50 non-null	float64			
7	Sum of PCT_MEDICARE	50 non-null	float64			
8	% Urban Pop	50 non-null	float64			
9	Density (P/mi2)	50 non-null	float64			
10	Children 0-18	50 non-null	float64			
11	Latitude	50 non-null	float64			
12	Longitude	50 non-null	float64			
13	Land Area	50 non-null	float64			
14	Water Area	50 non-null	float64			
15	Mean Elevation	50 non-null	float64			
16	Highest Elevation	50 non-null	float64			
17	Lowest elevation	50 non-null	float64			
18	Number of bordering states	50 non-null	float64			
19	On Coast	50 non-null	float64			
20	Borders Another Country	50 non-null	float64			
21	Captial Land Area	50 non-null	float64			
22	Capital Water Area	50 non-null	float64			
23	Capital Mean Elevation	50 non-null	float64			
24	Capital is the Largest City	50 non-null	float64			
25	Became a State	50 non-null	float64			
26	DaysSinceStayatHomeOrder	50 non-null	float64			
27	DaysSinceFirstPositive	50 non-null	float64			
28	DaysSinceTestStart	50 non-null	float64			
29	Log10Pop	50 non-null	float64			
30	DaysSinceInfection	50 non-null	float64			
31	Children0-18	50 non-null	float64			
32	State Area Ratio	50 non-null	float64			
33	Elevation Ratio	50 non-null	float64			
34	Capital Area Ratio	50 non-null	float64			
35	Boundaries	50 non-null	float64			
36	Latitude Difference to State Capital	50 non-null	float64			
37		50 non-null	float64			
dtypes: float64(38)						
memory usage: 15.2 KB						

X.describe()

	Sum of NUM_Medicare_BEN	Sum of NUM_Black_or_African_American_BEN	Sum of NUM_Asian_Pacific_Islander_BEN	Sum of NUM_Hispanic_BEN	NUM_American_IndianAlaska_!
count	5.000000e+01	5.000000e+01	5.000000e+01	5.000000e+01	
mean	1.057661e+07	9.653450e+05	1.439833e+05	5.412557e+05	39
std	1.317051e+07	1.280319e+06	4.765951e+05	1.644850e+06	88
min	1.655870e+05	2.960000e+02	1.660000e+02	4.130000e+02	
25%	2.518838e+06	6.328700e+04	6.770500e+03	3.269350e+04	2
50%	6.848160e+06	3.978665e+05	2.777200e+04	1.050865e+05	7
75%	1.479523e+07	1.548688e+06	7.370350e+04	2.012818e+05	28
max	7.644909e+07	7.011107e+06	3.276415e+06	1.007620e+07	560

```
# Train/validate split: random 75/25% train/validate split.
from sklearn.model_selection import train_test_split

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.25, random_state = 42)

X_train.shape, y_train.shape, X_val.shape
```

X train.describe()

С→

	Sum of NUM_Medicare_BEN	Sum of NUM_Black_or_African_American_BEN	Sum of NUM_Asian_Pacific_Islander_BEN	Sum of NUM_Hispanic_BEN	NUM_American_IndianAlaska_!
count	3.700000e+01	3.700000e+01	37.000000	3.700000e+01	
mean	1.157925e+07	1.130874e+06	98436.675676	5.365955e+05	41
std	1.384476e+07	1.398898e+06	171362.519286	1.696478e+06	97
min	1.655870e+05	2.960000e+02	166.000000	4.130000e+02	
25%	3.242760e+06	1.057920e+05	12709.000000	4.230000e+04	3
50%	8.517210e+06	5.217080e+05	30624.000000	1.112130e+05	7
75%	1.629170e+07	1.693845e+06	76800.000000	2.027260e+05	28
max	7.644909e+07	7.011107e+06	793067.000000	1.007620e+07	560

```
# Optimizing Hyperparameters
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestRegressor
# Define classifier
forest = RandomForestRegressor(random_state = 1)
# Parameters to fit
max_depth = [2, 3, 4]
n_estimators = [28, 29, 30]
min_samples_split = [1.5, 2, 2.5]
min_samples_leaf = [3.5, 4, 4.5]
max_leaf_nodes = [None]
max_features = ['auto']
ccp_alpha = [0.0, 0.00625, 0.0125]
min_weight_fraction_leaf = [0.0, 0.00625, 0.0125]
hyperF = dict(n_estimators = n_estimators, max_depth = max_depth,
              min_samples_split = min_samples_split,
              min_samples_leaf = min_samples_leaf,
              max_leaf_nodes = max_leaf_nodes,
              max_features = max_features,
              ccp_alpha=ccp_alpha,
              min_weight_fraction_leaf=min_weight_fraction_leaf)
```

```
gridF = GridSearchCV(forest, hyperF, cv = 3, verbose = 10,
                    scoring='r2', return_train_score=True,
                    n_{jobs} = -1)
bestF = gridF.fit(X train, y train)
# Output best accuracy and best parameters
print('The score achieved with the best parameters = ', gridF.best_score_, '\n')
print('The parameters are:', gridF.best_params_)
□→ Fitting 3 folds for each of 729 candidates, totalling 2187 fits
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
     [Parallel(n jobs=-1)]: Done 1 tasks
                                               l elapsed:
                                                             1.25
     [Parallel(n_jobs=-1)]: Done  4 tasks
                                                 elapsed:
                                                             1.4s
     [Parallel(n_jobs=-1)]: Done 9 tasks
                                                | elapsed:
                                                             1.5s
     [Parallel(n jobs=-1)]: Done 14 tasks
                                               elapsed:
                                                             1.6s
     [Parallel(n jobs=-1)]: Batch computation too fast (0.1862s.) Setting batch size=2.
     [Parallel(n_jobs=-1)]: Batch computation too fast (0.0837s.) Setting batch_size=4.
     [Parallel(n_jobs=-1)]: Done 24 tasks
                                               | elapsed:
                                                             1.7s
     [Parallel(n_jobs=-1)]: Batch computation too fast (0.1513s.) Setting batch_size=8.
     [Parallel(n jobs=-1)]: Done 58 tasks
                                                 elapsed:
     [Parallel(n jobs=-1)]: Done 130 tasks
                                                 elapsed:
                                                             3.9s
                                                 elansed:
     [Parallel(n jobs=-1)]: Done 202 tasks
                                                             4.75
     [Parallel(n_jobs=-1)]: Done 290 tasks
                                                 elansed:
                                                             6 05
     [Parallel(n jobs=-1)]: Done 378 tasks
                                                 elapsed:
                                                             7.7s
     [Parallel(n_jobs=-1)]: Done 482 tasks
                                                 elapsed:
                                                             9.1s
     [Parallel(n jobs=-1)]: Done 586 tasks
                                                 elapsed:
                                                            10.5s
     [Parallel(n_jobs=-1)]: Done 706 tasks
                                                 elansed:
                                                            12.8s
                                                 elapsed:
     [Parallel(n jobs=-1)]: Done 826 tasks
                                                            14.45
     [Parallel(n_jobs=-1)]: Done 962 tasks
                                                | elapsed:
                                                            16.8s
     [Parallel(n jobs=-1)]: Done 1098 tasks
                                                  elapsed:
                                                             19.2s
     [Parallel(n_jobs=-1)]: Done 1250 tasks
                                                  elapsed:
                                                             21.45
     [Parallel(n jobs=-1)]: Done 1402 tasks
                                                  elapsed:
                                                             24.1s
     [Parallel(n_jobs=-1)]: Done 1570 tasks
                                                  elapsed:
                                                             26.55
     [Parallel(n_jobs=-1)]: Done 1738 tasks
                                                  elapsed:
                                                             29.25
     [Parallel(n_jobs=-1)]: Done 1922 tasks
                                                  elapsed:
                                                             32.45
     [Parallel(n_jobs=-1)]: Done 2106 tasks
                                                elapsed:
     The score achieved with the best parameters = -0.1309525586842498
     The parameters are: {'ccp_alpha': 0.0, 'max_depth': 3, 'max_features': 'auto', 'max_leaf_nodes': None, 'min_samples_leaf': 4, 'min_sample
     [Parallel(n_jobs=-1)]: Done 2187 out of 2187 | elapsed: 36.6s finished
!pip install category_encoders==2.0.0
Collecting category_encoders==2.0.0
       Downloading https://files.pythonhosted.org/packages/6e/a1/f7a22f144f33be78afeb06bfa78478e8284a64263a3c09b1ef54e673841e/category_encoder
                                92kB 2.9MB/s
     Requirement already satisfied: statsmodels>=0.6.1 in /usr/local/lib/python3.6/dist-packages (from category_encoders==2.0.0) (0.10.2)
     Requirement already satisfied: patsy>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from category_encoders==2.0.0) (0.5.1)
     Requirement already satisfied: pandas>=0.21.1 in /usr/local/lib/python3.6/dist-packages (from category encoders==2.0.0) (1.0.3)
     Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.6/dist-packages (from category_encoders==2.0.0) (0.22.2.pos
     Requirement already satisfied: numpy>=1.11.3 in /usr/local/lib/python3.6/dist-packages (from category_encoders==2.0.0) (1.18.3)
     Requirement already satisfied: scipy>=0.19.0 in /usr/local/lib/python3.6/dist-packages (from category_encoders==2.0.0) (1.4.1)
     Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from patsy>=0.4.1->category_encoders==2.0.0) (1.12.0)
     Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.21.1->category encoders==2.0.0) (20
     Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.21.1->category_encoders==
     Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn>=0.20.0->category_encoders==2.0.
     Installing collected packages: category-encoders
     Successfully installed category-encoders-2.0.0
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import make_pipeline
import category_encoders as ce
from sklearn.impute import SimpleImputer
pipeline1 = make_pipeline(
   ce.OneHotEncoder(use_cat_names=True),
   SimpleImputer(strategy='mean'),
   RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
                      max_depth=3, max_features='auto', max_leaf_nodes=None,
                     max_samples=None, min_impurity_decrease=0.0,
                     min_impurity_split=None, min_samples_leaf=4,
                     min_samples_split=2, min_weight_fraction_leaf=0.0,
                     n_estimators=29, n_jobs=None, oob_score=False,
                      random_state=0, verbose=0, warm_start=False))
```

pipeline1.fit(X_train, y_train)

Get the model's training accuracy

```
print("Iraining Accurary: K^2 = ", pipelinel.score(X_train,y_train))
# Get the model's validation accuracy
print('Validation Accuracy: R^2 = ', pipeline1.score(X_val, y_val))
□ Training Accurary: R^2 = 0.6195488363328325
     Validation Accuracy: R^2 = 0.48283160859213214
print("Feature Importances =")
#print(RandomForestRegressor.feature_importances_)
print(pipeline1.steps[2][1].feature_importances_)
    Feature Importances =
                0.00426752 0.
                                                 0.07631863 0.00543221
     [0.
     0.00740174 0.
                           0.0467188 0.14111398 0.03505111 0.14622923
     0.00726956 0.00351066 0.
                                      0.01670479 0.07845557 0.
     0.01871196 0.00280924 0.
                                      0.11643129 0.00982198 0.03083072
```

```
# Plot of feature importances from pure Random Forest Regressor
%matplotlib inline
import matplotlib.pyplot as plt
# Get feature importances
encoder = pipeline1.named_steps['onehotencoder']
encoded = encoder.transform(X_train)
rf = pipeline1.named_steps['randomforestregressor']
importances1 = pd.Series(rf.feature_importances_, encoded.columns)
# Plot feature importances
n = 12
plt.figure(figsize=(10,n/2))
plt.title(f'Top {n} features pipeline1')
importances1.sort_values()[-n:].plot.barh(color='grey');
```


0.01720428 0.0157221 0.0044032 0.01288937 0. 0.03006819 0.00778861 0.00929704 0.08558693 0.02593157

0.01157612 0.03245364]

```
# Generate validation curves
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import validation_curve
pipeline2 = make pipeline(
   ce.OrdinalEncoder(),
   SimpleImputer(),
   RandomForestRegressor()
)
depth = range(1, 10, 2)
train_scores, val_scores = validation_curve(
   pipeline2, X_train, y_train,
   param name='randomforestregressor max depth',
   param_range=depth,
   cv=3.
   n_jobs=-1
)
plt.figure(dpi=150)
plt.plot(depth, np.mean(train_scores, axis=1), color='blue', label='training error')
```

C→

```
plt.plot(depth, np.mean(val_scores, axis=1), color='red', label='validation error')
plt.title('Validation Curve')
plt.xlabel('model complexity: RandomForestRegressor max_depth')
plt.ylabel('model score: Accuracy')
plt.legend();
```



```
# Get drop-column importances
column = 'Density (P/mi2)'
pipeline3 = make pipeline(
    ce.OneHotEncoder(use_cat_names=True),
    SimpleImputer(strategy = 'most_frequent'),
    RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
                      max_depth=3, max_features='auto', max_leaf_nodes=None,
                      max_samples=None, min_impurity_decrease=0.0,
                      min_impurity_split=None, min_samples_leaf=4,
                      min_samples_split=2, min_weight_fraction_leaf=0,
                      n\_estimators = 29, \ n\_jobs = None, \ oob\_score = False,
                      random_state=0, verbose=0, warm_start=False))
# Fit without column
pipeline3.fit(X_train.drop(columns=column), y_train)
score_without = pipeline3.score(X_val.drop(columns=column), y_val)
print(f'Validation Accuracy without {column}: {score_without}')
# Fit with column
pipeline3.fit(X_train, y_train)
score_with = pipeline3.score(X_val, y_val)
print(f'Validation Accuracy with {column}: {score_with}')
# Compare the error with & without column
print(f'Drop-Column Importance for {column}: {score_with - score_without}')

Arr Validation Accuracy without Density (P/mi2): 0.5009375902676718
     Validation Accuracy with Density (P/mi2): 0.48283160859213214
     Drop-Column Importance for Density (P/mi2): -0.018105981675539673
# Using Eli5 library which does not work with pipelines
transformers = make_pipeline(
    ce.OneHotEncoder(use_cat_names=True),
    SimpleImputer(strategy='most_frequent')
)
X_train_transformed = transformers.fit_transform(X_train)
```

X_val_transformed = transformers.transform(X_val)

```
# Get permutation importances
! pip install eli5
from eli5.sklearn import PermutationImportance
import eli5
permuter = PermutationImportance(
   model1.
   scoring='r2',
   n_iter=2,
   random state=42
)
permuter.fit(X_val_transformed, y_val)
feature_names = X_val.columns.tolist()
eli5.show_weights(
   permuter,
   top=None, # show permutation importances for all features
   feature_names=feature_names
)
```

```
Collecting eli5
```

```
Downloading https://files.pythonhosted.org/packages/97/2f/c85c7d8f8548e460829971785347e14e45fa5c6617da374711dec8cb38cc/eli5-0.10.1-py2.
                                 112kB 2.8MB/s
Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from eli5) (1.18.3)
Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from eli5) (1.4.1)
Requirement already satisfied: scikit-learn>=0.18 in /usr/local/lib/python3.6/dist-packages (from eli5) (0.22.2.post1)
Requirement already satisfied: graphviz in /usr/local/lib/python3.6/dist-packages (from eli5) (0.10.1)
Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from eli5) (1.12.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.6/dist-packages (from eli5) (2.11.2)
Requirement already satisfied: tabulate>=0.7.7 in /usr/local/lib/python3.6/dist-packages (from eli5) (0.8.7)
Requirement already satisfied: attrs>16.0.0 in /usr/local/lib/python3.6/dist-packages (from eli5) (19.3.0)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn>=0.18->eli5) (0.14.1)
Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages (from jinja2->eli5) (1.1.1)
Installing collected packages: eli5
Successfully installed eli5-0.10.1
/usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.metrics.scorer module is deprecated
  warnings.warn(message, FutureWarning)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.feature_selection.base module is dep
  warnings.warn(message, FutureWarning)
Using TensorFlow backend.
         Weight Feature
 0.1736 \pm 0.10\overline{30}
                  Capital Area Ratio
 0.1545 ± 0.2241
                  Density (P/mi2)
 0.0665 \pm 0.0669
                  Captial Land Area
 0.0546 ± 0.0414
                  Latitude
 0.0284 \pm 0.0096
                  % Urban Pop
                  Longitude Difference to State Capital
 0.0134 \pm 0.0002
 0.0128 \pm 0.0150
                  Became a State
 0.0094 ± 0.0061
                  DaysSinceStayatHomeOrder
 0.0072 \pm 0.0004
                  Latitude Difference to State Capital
 0.0068 ± 0.0193
                  Sum of NUM American IndianAlaska Native BEN
 0.0060 \pm 0.0121
                  Number of bordering states
 0.0056 \pm 0.0070
                  Boundaries
 0.0046 ± 0.0216
                  Capital Mean Elevation
 0.0034 \pm 0.0172
                  Longitude
 0.0027 ± 0.0078
                  Highest Elevation
 0.0022 \pm 0.0043
                  Land Area
 0.0021 \pm 0.0068
                  Sum of Average_Age_of_BEN
 0.0020 \pm 0.0000
                  Sum of NUM_Black_or_African_American_BEN
 0.0013 \pm 0.0088
                  DaysSinceTestStart
 0.0013 ± 0.0031
                  State Area Ratio
 0.0010 ± 0.0050
                  On Coast
 0.0009 \pm 0.0055
                  Capital Water Area
                  Sum of NUM Asian Pacific Islander BEN
      0.0000
      0 \pm 0.0000
                  Sum of NUM_Hispanic_BEN
      0 \pm 0.0000
                  Sum of PCT MEDICARE
      0 \pm 0.0000
                  Sum of NUM Medicare BEN
                  Water Area
      0 \pm 0.0000
      0 \pm 0.0000
                  Lowest elevation
      0 \pm 0.0000
                  DaysSinceInfection
      0 \pm 0.0000
                  Borders Another Country
      0 \pm 0.0000
                  Log10Pop
                  Capital is the Largest City
      0 + 0.0000
 -0.0004 ± 0.0009
                  DaysSinceFirstPositive
 -0.0035 ± 0.0032
                  Elevation Ratio
 -0.0060 ± 0.0175
                  Sum of NUM BEN With Race Not Elsewhere Classified
 -0.0186 ± 0.0044
                  Children 0-18
 -0.0193 ± 0.0076
                  Mean Elevation
 -0.0236 \pm 0.0123
                  Children0-18
```

```
from sklearn.metrics import mean_squared_error, r2_score
# Coefficient of determination r2 for the training set
pipeline score = permuter.score(X train transformed,y train)
print("Coefficient of determination r2 for the training set.: ", pipeline_score)
# Coefficient of determination r2 for the validation set
pipeline_score = permuter.score(X_val_transformed,y_val)
print("Coefficient of determination r2 for the validation set.: ", pipeline_score)
# The mean squared error
y_pred = permuter.predict(X_val_transformed)
print("Mean squared error: %.2f"% mean_squared_error(y_val, y_pred))
Coefficient of determination r2 for the training set.: 0.6195488363328325
     Coefficient of determination r2 for the validation set.: 0.48283160859213214
```

```
# Thus, Density remains important according to feature permutation than according to feature importance in the Rando
# Use importances for feature selection
```

```
nrint('Shane hefore removing features.' X train shane)
```

Mean squared error: 528.60

```
print shape before removing reacutes. , A_crain.shape,
Shape before removing features: (37, 38)
# Remove features of 0 importance
zero_importance = 0.0
mask = permuter.feature_importances_ > zero_importance
features1 = X_train.columns[mask]
X_train = X_train[features1]
print('Shape after removing features:', X_train.shape)
Shape after removing features: (37, 22)
# Random forest classifier with 22 features
X_val = X_val[features1]
pipeline4 = make_pipeline(
   ce.OneHotEncoder(use_cat_names=True),
   SimpleImputer(strategy = 'most_frequent'),
   RandomForestRegressor(bootstrap=True, ccp alpha=0,
                         max_depth=3, max_features='auto', max_leaf_nodes=None,
                         max_samples=None, min_impurity_decrease=0.0,
                         min_impurity_split=None, min_samples_leaf=4,
                         min_samples_split=2, min_weight_fraction_leaf=0,
                         n_estimators=29, n_jobs=None, oob_score=False,
                         random_state=0, verbose=0, warm_start=False)
# Fit on train, score on val
pipeline4.fit(X_train, y_train);
# Coefficient of determination r2 for the training set
pipeline_score = pipeline4.score(X_train,y_train)
print("Coefficient of determination r2 for the training set.: ", pipeline_score)
# Coefficient of determination r2 for the validation set
pipeline score = pipeline4.score(X val,y val)
print("Coefficient of determination r2 for the validation set.: ", pipeline_score)
# The mean squared error
y_pred = pipeline4.predict(X_val)
print("Mean squared error: %.2f"% mean squared error(y val, y pred))

Arr Coefficient of determination r2 for the training set.: 0.6266222750237471
    Coefficient of determination r2 for the validation set.: 0.4897612195667084
```

Mean squared error: 521.52

```
pipeline4.fit(X_val, y_val)
# Plot of features
%matplotlib inline
import matplotlib.pyplot as plt
# Get feature importances
encoder = pipeline4.named_steps['onehotencoder']
encoded = encoder.transform(X_val)
rf = pipeline4.named_steps['randomforestregressor']
importances2 = pd.Series(rf.feature_importances_, encoded.columns)
# Plot feature importances
plt.figure(figsize=(10,n/2))
plt.title(f'Top {n} features pipeline4')
importances2.sort_values()[-n:].plot.barh(color='grey');
```


Gradient boosting using XGboost with 15 estimators from xgboost import XGBRegressor

[3:45:31] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

```
# Coefficient of determination r2 for the training set
pipeline_score = pipeline5.score(X_train,y_train)
print("Coefficient of determination r2 for the training set.: ", pipeline_score)

# Coefficient of determination r2 for the validation set
pipeline_score = pipeline5.score(X_val,y_val)
print("Coefficient of determination r2 for the validation set.: ", pipeline_score)

# The mean squared error
y_pred = pipeline5.predict(X_val)
print("Mean squared error: %.2f"% mean_squared_error(y_val, y_pred))
```

Coefficient of determination r2 for the training set.: 0.7838756216629406 Coefficient of determination r2 for the validation set.: 0.605786244166149 Mean squared error: 402.93

The best validation score (0.605786) and lowest MSE (402.93) comes from using Gradient Boosting with 13 estimators.

```
pipeline5.fit(X_val, y_val)
# Plot of features
%matplotlib inline
import matplotlib.pyplot as plt

# Get feature importances
encoder = pipeline5.named_steps['ordinalencoder']
encoded = encoder.transform(X_val)
rf = pipeline5.named_steps['xgbregressor']
importances3 = pd.Series(rf.feature_importances_, encoded.columns)

# Plot feature importances
n = 6
plt.figure(figsize=(10,n/2))
plt.title(f'Top {n} features pipeline5')
importances3.sort_values()[-n:].plot.barh(color='grey');
```

🕒 [19:45:31] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

n_estimators=1000, # <= 1000 trees, depends on early stopping

model2 = XGBRegressor(

max depth=1,

```
learning_rate=0.41, # try higher learning rate
          n iobs=-1)
model2.fit(X_train_encoded, y_train, eval_set=eval_set, eval_metric='rmse',
          early stopping rounds=50)
r→ [19:45:31] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
             validation 0-rmse:91.9687
                                             validation 1-rmse:92.6396
     Multiple eval metrics have been passed: 'validation_1-rmse' will be used for early stopping.
     Will train until validation_1-rmse hasn't improved in 50 rounds.
             validation 0-rmse:59.8496
                                              validation 1-rmse:59.9746
             validation_0-rmse:41.644
     [2]
                                              validation_1-rmse:42.4277
     [3]
             validation 0-rmse:31.6015
                                              validation 1-rmse:32.9433
             validation_0-rmse:26.6825
     [4]
                                              validation_1-rmse:27.7771
             validation_0-rmse:24.0516
     [5]
                                              validation_1-rmse:26.4663
     [6]
             validation_0-rmse:22.2411
                                              validation_1-rmse:24.8219
             validation_0-rmse:20.9869
     [7]
                                              validation_1-rmse:23.9266
     [8]
             validation_0-rmse:19.944
                                              validation_1-rmse:22.0353
             validation_0-rmse:19.1823
     [9]
                                              validation 1-rmse:20.8479
             validation_0-rmse:18.435
     [10]
                                              validation_1-rmse:19.5501
     [11]
             validation_0-rmse:17.6743
                                              validation_1-rmse:20.4497
     [12]
             validation_0-rmse:17.0584
                                              validation_1-rmse:21.0673
     [13]
             validation 0-rmse:16.5325
                                              validation 1-rmse:20.8832
             validation 0-rmse:15.9991
                                              validation 1-rmse:20.0731
     [14]
             validation_0-rmse:15.4335
     [15]
                                              validation_1-rmse:20.1635
     [16]
             validation_0-rmse:15.0028
                                              validation 1-rmse:20.8857
     [17]
             validation_0-rmse:14.5576
                                              validation_1-rmse:20.6639
     [18]
             validation_0-rmse:14.2005
                                              validation_1-rmse:20.4452
     [19]
             validation 0-rmse:13.8148
                                              validation 1-rmse:20.5736
             validation_0-rmse:13.4191
     ۲201
                                              validation_1-rmse:20.8303
     [21]
             validation_0-rmse:13.098
                                              validation 1-rmse:20.5082
     [22]
             validation_0-rmse:12.765
                                              validation_1-rmse:20.4495
             validation_0-rmse:12.4537
     [23]
                                              validation 1-rmse:21.0325
     [24]
             validation_0-rmse:12.1802
                                              validation_1-rmse:20.8216
     [25]
             validation_0-rmse:11.8973
                                              validation_1-rmse:20.5977
             validation_0-rmse:11.6352
     [26]
                                              validation 1-rmse:20.8435
     [27]
             validation_0-rmse:11.3495
                                              validation_1-rmse:20.7061
     [28]
             validation_0-rmse:11.085
                                              validation_1-rmse:20.8546
             validation_0-rmse:10.8404
                                              validation_1-rmse:20.8113
     [29]
     [30]
             validation_0-rmse:10.6297
                                              validation_1-rmse:21.0464
             validation_0-rmse:10.3895
     [31]
                                              validation_1-rmse:21.3184
             validation_0-rmse:10.1956
     Г321
                                              validation 1-rmse:21.5471
     [33]
             validation_0-rmse:9.95444
                                              validation_1-rmse:21.5849
     [34]
             validation_0-rmse:9.76568
                                              validation_1-rmse:21.4027
     [35]
             validation 0-rmse:9.58377
                                              validation 1-rmse:21.4196
     T361
             validation 0-rmse:9.37852
                                              validation 1-rmse:21.3164
             validation_0-rmse:9.17668
     [37]
                                              validation_1-rmse:21.3223
     [38]
             validation_0-rmse:8.99263
                                              validation_1-rmse:21.0383
     [39]
             validation_0-rmse:8.84106
                                              validation_1-rmse:21.0943
     [40]
             validation 0-rmse:8.64903
                                              validation 1-rmse:21.1314
     [41]
             validation 0-rmse:8.47994
                                              validation 1-rmse:21.4191
             validation_0-rmse:8.29076
     [42]
                                              validation_1-rmse:21.471
     [43]
             validation_0-rmse:8.1178
                                              validation 1-rmse:21.5766
     [44]
             validation_0-rmse:7.96713
                                              validation 1-rmse:21.5596
     [45]
             validation_0-rmse:7.82337
                                              validation_1-rmse:21.6025
     [46]
             validation 0-rmse:7.67152
                                              validation 1-rmse:21.8777
             validation_0-rmse:7.51868
                                              validation_1-rmse:21.9137
     [47]
     [48]
             validation_0-rmse:7.36816
                                              validation 1-rmse:21.7134
     [49]
             validation_0-rmse:7.23374
                                              validation_1-rmse:21.6397
     [50]
             validation_0-rmse:7.09412
                                              validation 1-rmse:21.474
     [51]
             validation_0-rmse:6.95826
                                              validation_1-rmse:21.6141
     [52]
             validation_0-rmse:6.83248
                                              validation 1-rmse:21.7338
     [53]
             validation_0-rmse:6.68974
                                              validation_1-rmse:21.6532
             validation_0-rmse:6.55768
     [54]
                                              validation_1-rmse:21.6003
     [55]
             validation_0-rmse:6.44008
                                              validation_1-rmse:21.682
     [56]
             validation_0-rmse:6.32668
                                              validation_1-rmse:21.5601
     [57]
             validation 0-rmse:6.19023
                                              validation 1-rmse:21.7015
             validation_0-rmse:6.06951
     Γ58<sub>1</sub>
                                              validation 1-rmse:21.7155
             validation_0-rmse:5.95723
     [59]
                                              validation_1-rmse:21.6837
     [60]
             validation_0-rmse:5.83285
                                              validation_1-rmse:21.6631
     Stopping. Best iteration:
             validation 0-rmse:18.435
                                              validation 1-rmse:19.5501
     XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                  colsample_bynode=1, colsample_bytree=1, gamma=0,
                  importance_type='gain', learning_rate=0.41, max_delta_step=0,
                  max_depth=1, min_child_weight=1, missing=None, n_estimators=1000,
                  n_jobs=-1, nthread=None, objective='reg:linear', random_state=0,
                  reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
```

silent=None, subsample=1, verbosity=1)

```
# Plot the results
results = model2.evals_result()
train_error = results['validation_0']['rmse']
val_error = results['validation_1']['rmse']
epoch = range(1, len(train_error)+1)
plt.plot(epoch, train_error, label='Train')
plt.plot(epoch, val_error, label='Validation')
plt.ylabel('RMS Error')
plt.xlabel('Model Complexity (n_estimators)')
# plt.ylim((0.18, 0.22)) # Zoom in
plt.legend();
```



```
# Plot log classification error versus model complexity
import numpy as np
results = model2.evals_result()
log_train_error = np.log(results['validation_0']['rmse'])
log_val_error = np.log(results['validation_1']['rmse'])
epoch = range(1, len(train_error)+1)
plt.plot(epoch, log_train_error, label='Train')
plt.plot(epoch, log_val_error, label='Validation')
plt.ylabel('tog RMS Error')
plt.xlabel('Model Complexity (n_estimators)')
# plt.ylim((0.18, 0.22)) # Zoom in
plt.legend();
```


C→

```
Pipeline(memory=None,
         steps=[('ordinalencoder',
                 OrdinalEncoder(cols=[], drop invariant=False,
                                handle_missing='value', handle_unknown='value',
                                mapping=[], return_df=True, verbose=0)),
                 XGBRegressor(base_score=0.5, booster='gbtree',
                              colsample bylevel=1, colsample bynode=1,
                              colsample bytree=1, gamma=0,
                              importance_type='gain', learning_rate=0.41,
                              max_delta_step=0, max_depth=1, min_child_weight=1,
                              missing=None, n_estimators=15, n_jobs=-1,
                              nthread=None, objective='reg:squarederror',
                              random_state=42, reg_alpha=0, reg_lambda=1,
                              scale_pos_weight=1, seed=None, silent=None,
                              subsample=1, verbosity=1))],
         verbose=False)
```

```
# Coefficient of determination r2 for the training set
#pipeline_score = gb.score(X_train,y_train)
y_train_pred = gb.predict(X_train)
pipeline_score = r2_score(y_train, y_train_pred)
print("Coefficient of determination r2 for the training set.: ", pipeline_score)

# Coefficient of determination r2 for the validation set
#pipeline_score = gb.score(X_val,y_val)
y_val_pred = gb.predict(X_val)
pipeline_score = r2_score(y_val, y_val_pred)
print("Coefficient of determination r2 for the validation set.: ", pipeline_score)

# The mean squared error
#y_pred = gb.predict(X_val)
#print("Mean squared error: %.2f"% mean_squared_error(y_val, y_pred))
print("Mean squared error: %.2f"% mean_squared_error(y_val, y_val_pred))
```

Coefficient of determination r2 for the training set.: 0.7838756216629406
Coefficient of determination r2 for the validation set.: 0.605786244166149
Mean squared error: 402.93

```
#pipeline5.fit(X_val, y_val)
gb.fit(X_val, y_val)
# Plot of features
%matplotlib inline
import matplotlib.pyplot as plt
# Get feature importances
encoder = gb.named_steps['ordinalencoder']
encoded = encoder.transform(X_val)
rf = gb.named_steps['xgbregressor']
importances4 = pd.Series(rf.feature_importances_, encoded.columns)
# Plot feature importances
n = 6
plt.figure(figsize=(10,n/2))
#plt.title(f'Top {n} features pipeline5')
plt.title(f'Top {n} features Gradient Boosting')
importances4.sort_values()[-n:].plot.barh(color='grey');
```


!pip install pdpbox

C→

```
Collecting pdpbox
```

```
Downloading https://files.pythonhosted.org/packages/87/23/ac7da5ba1c6c03a87c412e7e7b6e91a10d6ecf4474906c3e736f93940d49/PDPbox-0.2.0.tar
                                     1 57.7MB 62kB/s
Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from pdpbox) (1.0.3)
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from pdpbox) (1.18.3)
Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from pdpbox) (1.4.1)
Requirement already satisfied: matplotlib>=2.1.2 in /usr/local/lib/python3.6/dist-packages (from pdpbox) (3.2.1)
Requirement already satisfied: joblib in /usr/local/lib/python3.6/dist-packages (from pdpbox) (0.14.1)
Requirement already satisfied: psutil in /usr/local/lib/python3.6/dist-packages (from pdpbox) (5.4.8)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from pdpbox) (0.22.2.post1)
Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas-ypdpbox) (2018.9)
Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas->pdpbox) (2.8.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2->pdpbox) (0.10.0)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2->pdpbox) (1.2.0)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.6.1->pandas->pdpbox) (1.12.0)
Building wheels for collected packages: pdpbox
 Building wheel for pdpbox (setup.py) ... done
 Created wheel for pdpbox: filename=PDPbox-0.2.0-cp36-none-any.whl size=57690722 sha256=9178ce1471a64bb075e7143d79a73f38354c202a78f9fb0f
 Stored in directory: /root/.cache/pip/wheels/7d/08/51/63fd122b04a2c87d780464eeffb94867c75bd96a64d500a3fe
Successfully built pdpbox
Installing collected packages: pdpbox
Successfully installed pdpbox-0.2.0
```

```
findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans. findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans. findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans. findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans.
```

PDP interact for "Latitude" and "Longitude Difference to State Capital"

Number of unique grid points: (Latitude: 10, Longitude Difference to State Capital: 10)

In order to establish feature importances, Shapley Force Plots are used. SHAP is both consistent and accurate as a way to allocate feature importances. The details are in a recent paper by Lundberg and Lee (papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf)

```
! pip install shap==0.23.0
! pip install -I shap
```

```
Collecting shap==0.23.0
  Downloading https://files.pythonhosted.org/packages/60/0d/8bd076821f7230edb2892ad982ea91ca25f2f925466563272e61eae891c6/shap-0.23.0.tar.
                              184kB 2.6MB/s
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (1.18.3)
Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (1.4.1)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (0.22.2.post1)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (3.2.1)
Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (1.0.3)
Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (4.38.0)
Requirement already satisfied: ipython in /usr/local/lib/python3.6/dist-packages (from shap==0.23.0) (5.5.0)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->shap==0.23.0) (0.14.1)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->shap==0.23.0) (1.2.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->shap=
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->shap==0.23.0) (2.8.1)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->shap==0.23.0) (0.10.0)
Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->shap==0.23.0) (2018.9)
Requirement already satisfied: pygments in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (2.1.3)
Requirement already satisfied: decorator in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (4.4.2)
Requirement already satisfied: pickleshare in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (0.7.5)
Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (4.3.3)
Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (0.8.1)
Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (4
Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (46.1.3)
Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.6/dist-packages (from ipython->shap==0.23.0) (1.0.1
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.1->matplotlib->shap==0.23.0) (
Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.6/dist-packages (from traitlets>=4.2->ipython->shap==0.23.0) (0
Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.6/dist-packages (from pexpect; sys_platform != "win32"->ipython-
Requirement already satisfied: wcwidth in /usr/local/lib/python3.6/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython->shap==0.23.
Building wheels for collected packages: shap
  Building wheel for shap (setup.py) ... done
  Created wheel for shap: filename=shap-0.23.0-cp36-cp36m-linux x86 64.whl size=235681 sha256=5603ae310a497a67d8b08f126db57be6be8b61f724c
  Stored in directory: /root/.cache/pip/wheels/c1/2c/aa/10d1782fe066536fcd564a2f8adea4dd05f57768236038855b
Successfully built shap
Installing collected packages: shap
Successfully installed shap-0.23.0
Collecting shap
 Downloading https://files.pythonhosted.org/packages/a8/77/b504e43e21a2ba543a1ac4696718beb500cfa708af2fb57cb54ce299045c/shap-0.35.0.tar.
Collecting numpy
  Downloading https://files.pythonhosted.org/packages/03/27/e35e7c6e6a52fab9fcc64fc2b20c6b516eba930bb02b10ace3b38200d3ab/numpy-1.18.4-cp3
                                20.2MB 63.7MB/s
Collecting scipy
  Downloading https://files.pythonhosted.org/packages/dc/29/162476fd44203116e7980cfbd9352eef9db37c49445d1fec35509022f6aa/scipy-1.4.1-cp36
                               26.1MB 1.5MB/s
Collecting scikit-learn
  Downloading https://files.pythonhosted.org/packages/5e/d8/312e03adf4c78663e17d802fe2440072376fee46cada1404f1727ed77a32/scikit learn-0.2
                      7.1MB 41.5MB/s
Collecting pandas
  Downloading https://files.pythonhosted.org/packages/bb/71/8f53bdbcbc67c912b888b40def255767e475402e9df64050019149b1a943/pandas-1.0.3-cp3
                                 | 10.0MB 175kB/s
Collecting tqdm>4.25.0
  Downloading https://files.pythonhosted.org/packages/c9/40/058b12e8ba10e35f89c9b1fdfc2d4c7f8c05947df2d5eb3c7b258019fda0/tqdm-4.46.0-py2.
                                   71kB 10.3MB/s
Collecting joblib>=0.11
  Downloading https://files.pythonhosted.org/packages/28/5c/cf6a2b65a321c4a209efcdf64c2689efae2cb62661f8f6f4bb28547cf1bf/joblib-0.14.1-py
                                  296kB 50.3MB/s
Collecting pytz>=2017.2
  Downloading https://files.pythonhosted.org/packages/4f/a4/879454d49688e2fad93e59d7d4efda580b783c745fd2ec2a3adf87b0808d/pytz-2020.1-py2.
                                 | 512kB 48.3MB/s
Collecting python-dateutil>=2.6.1
  Downloading https://files.pythonhosted.org/packages/d4/70/d60450c3dd48ef87586924207ae8907090de0b306af2bce5d134d78615cb/python_dateutil-
                                235kB 49.7MB/s
Collecting six>=1.5
  Downloading https://files.pythonhosted.org/packages/65/eb/1f97cb97bfc2390a276969c6fae16075da282f5058082d4cb10c6c5c1dba/six-1.14.0-py2.p
Building wheels for collected packages: shap
  Building wheel for shap (setup.py) ... done
  Created wheel for shap: filename=shap-0.35.0-cp36-cp36m-linux_x86_64.whl size=394118 sha256=0a0aa13f591a373298b5792d516d10896c3c2c014b4
  Successfully built shap
ERROR: google-colab 1.0.0 has requirement six~=1.12.0, but you'll have six 1.14.0 which is incompatible.
ERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3 which is incompatible.
ERROR: convertdate 2.2.0 has requirement pytz<2020,>=2014.10, but you'll have pytz 2020.1 which is incompatible.
ERROR: albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have imgaug 0.2.9 which is incompatible.
Installing collected packages: numpy, scipy, joblib, scikit-learn, pytz, six, python-dateutil, pandas, tqdm, shap
Successfully installed joblib-0.14.1 numpy-1.18.4 pandas-1.0.3 python-dateutil-2.8.1 pytz-2020.1 scikit-learn-0.22.2.post1 scipy-1.4.1 sh
WARNING: The following packages were previously imported in this runtime:
  [dateutil,joblib,numpy,pandas,pytz,scipy,six,sklearn,tqdm]
You must restart the runtime in order to use newly installed versions.
 RESTART RUNTIME
```

```
# Local Interpretation using SHAP (for prediction at State # = 4, row 32)
import shap
model shap =
                 XGBRegressor(n_estimators=15,
                               objective='reg:squarederror',
                               max_depth=1, # try deeper trees because of high cardinality categoricals
                               learning_rate=0.41, # try a higher learning rate
                                random state=42,
                               n_jobs=-1)
#encoder = ce.OrdinalEncoder()
#X_train_shap_encoded = encoder.fit_transform(X_train)
#X_val_shap_encoded = encoder.transform(X_val)
#eval_set = [(X_train_shap_encoded, y_train),
             (X_val_shap_encoded, y_val)]
eval_set = [(X_train, y_train),
            (X_val, y_val)]
#model_shap.fit(X_train_shap_encoded,
model_shap.fit(X_train,
               y_train,
               eval set=eval set,
               eval_metric='rmse'
               early stopping rounds=50)
shap.initis()
#explainer = shap.TreeExplainer(model2)
explainer = shap.TreeExplainer(model_shap)
#shap values = explainer.shap values(X train shap encoded)
shap_values = explainer.shap_values(X_train)
i = 32
shap.force_plot(explainer.expected_value,
                shap values[i].
#
                 features=X_train_shap_encoded.loc[i],
                features=X_train.loc[i],
                 feature_names=X_train_shap_encoded.columns)
                feature_names=X_train.columns)
                                              validation 1-rmse:92.6396
    [0]
             validation 0-rmse:91.9687
 ₽
     Multiple eval metrics have been passed: 'validation_1-rmse' will be used for early stopping.
     Will train until validation_1-rmse hasn't improved in 50 rounds.
     [1]
             validation_0-rmse:59.8496
                                              validation_1-rmse:59.9746
     [2]
             validation 0-rmse:41.644
                                              validation 1-rmse:42.4277
     [3]
             validation_0-rmse:31.6015
                                              validation_1-rmse:32.9433
     [4]
             validation_0-rmse:26.6825
                                              validation_1-rmse:27.7771
     [5]
             validation_0-rmse:24.0516
                                              validation_1-rmse:26.4663
     [6]
             validation_0-rmse:22.2411
                                              validation_1-rmse:24.8219
     [7]
             validation_0-rmse:20.9869
                                              validation_1-rmse:23.9266
     [8]
             validation_0-rmse:19.944
                                              validation_1-rmse:22.0353
             validation_0-rmse:19.1823
     [9]
                                              validation_1-rmse:20.8479
     [10]
             validation_0-rmse:18.435
                                              validation_1-rmse:19.5501
     [11]
             validation_0-rmse:17.6743
                                              validation_1-rmse:20.4497
     [12]
             validation_0-rmse:17.0584
                                              validation_1-rmse:21.0673
     [13]
             validation_0-rmse:16.5325
                                              validation_1-rmse:20.8832
     [14]
             validation_0-rmse:15.9991
                                              validation_1-rmse:20.0731
                 model output value
                                      base value
          -171.5
                    -1-159.48 -151.5
                                        -141.5
                                                  -131.5
                                                            -121.5
                                                                      -111.5
     ber of bordering states = 6 Density (P/mi2) = 25.42 Latitude = 41.13 Captial Land Area = 94.84 Sum
```

```
explainer = shap.TreeExplainer(model_shap)
        row_processed = processor.transform(row)
        shap_values_input = explainer.shap_values(row_processed)
        shap_values_array = np.concatenate((shap_values_array, shap_values_input), axis=0)
# Create a 3D plot of force as a function of state curve displacement from mean curve and features for validation sa
\# A two feature partical dependence plot in 3D
import plotly.graph_objs as go
surface = go.Surface(x=column_names,
                     y=y_train,
                     z=shap_values_array)
layout = go.Layout(
       scene=dict(
                 xaxis=dict(title= ''),
                 yaxis=dict(title= 'Value of d for state'),
                 zaxis=dict(title= 'Shapley Force')
fig = go.Figure(surface, layout)
fig.show()
```

