HUMAN-MACHINE TEAMING

MATT GENTZEL. LEO KLENNER. ROB WIMBERLY. JJ LEE.

Why HMT?

> Comparative advantage of human and machine performance characteristics

Performance Graph

- > Black line represents the performance curve of a machine (M)
- > **Red** line represents the performance curve of a **human** (H)
- > Blue line represents the performance curve a human-machine team (HMT)

Conceptualizing HMT Alternatives

- > HMT can take places during both the **deployment** and the **development** phases of a machine
- > The deployment phase is shaped by **horizontal alternatives** to HMT, e.g. should we deploy a manned system or a manned-unmanned team?
- > The development phase is shaped by **vertical alternatives** inside HMT, e.g. what type of algorithms should we use to build the machine?
- > Criteria for assessing these alternatives:

Dependence on human input

Degree of generative behavior

Execution capabilities

Robustness

Predictability

Horizontal Alternatives

> What system do we deploy?

Vertical Alternatives

> How do we build the machine?

Rule-based Architecture

- > **Design process**: Developer defines fixed rules of behavior for machine based on assumptions about the environment of deployment.
- > **Execution**: Machine follows the rules based on a linear mapping of inputs to outputs.
- > **Limitations**: Machine depends completely on defined rules, cannot adapt.
- > **Evaluation**: Dependence on human input: high, generative behavior: none, execution capabilities: high, robustness: low, predictability: high to medium.

Rule-based protocol:

- > move forward for n steps,
- > turn left, move forward for k steps
- > turn right, move forward for r steps
- > turn left, move forward for e steps

Environment changes = substantial loss of performance

Reinforcement learning

- > **Design process**: Developer specifies goal that she wants the machine to achieve and an algorithm that allows the machine to translate the goal into goal-achieving behavior, again based on assumptions about the environment of deployment.
- > **Execution**: Machine evolves behavior to optimally reach the goal through elaborate trial-and-error process.
- > **Limitations**: The developer has no control over what type of behavior the machine evolves.
- > **Evaluation**: Dependence on human input: low, generative behavior: high, execution capabilities: high, robustness: medium, predictability: medium to low.

Reinforcement learning protocol:

- > reach red flag to receive high reward
- > trial-and-error search process starts
- > results in optimal way of behavior

Environment changes = limited loss of performance

Human-in-the-Loop RL

- > **Design process**: Same as for reinforcement learning, but a human can now intervene during the machine's learning stage by overwriting specific actions deemed undesirable.
- > **Execution**: Machine again evolves behavior to optimally reach the goal through elaborate trial-and-error process, but a human can guide the machine's exploration.
- > **Limitations**: The process of real-time human control of the machine's learning process is labor intensive.
- > **Evaluation**: Dependence on human input: medium, generative behavior: medium, execution capabilities: high, robustness: high, predictability: high.

Human-in-the-loop RL protocol:

- > reach red flag to receive high reward
- > trial-and-error search process starts
- > action jump over wall blocked by human
- > results in optimal way of behavior

Environment changes = no loss of performance, if human remains in the loop

Summary of Vertical Alternatives

Rule-based

Give the system rules and it will adhere to them

Reinforcement learning

Give the system a goal and it will find a way to achieve it

Human-in-the loop reinforcement learning

Give the system a goal and a supervisor and it will find a way to achieve the goal it a manner that aligns with the preferences of the supervisor

Logistics

Safety and predictability most important

Speed less critical due to expanded timescale

 Optimum level of automation depends on proximity to the battlefield, context need for multiple modes

Logistics Concepts of Operations

- Adaptive logistics provision
 - o Ensuring that resupply is efficient during periods of tactical surprise
- Semi-autonomous convoys
 - Lowering the number of people at risk
- Reduced manning for cargo aircraft
 - Saving pilots for other positions to make up for shortages

ISR

 Must be "auditable" to understand why it behaves a certain way

Accuracy can be corrected by trained operators

 Optimum level of automation depends on speed of application and mission importance

ISR Concepts of Operations

• Persistent swarm ISR for supporting ground operations

 Penetrating drones for sending back information via datalink from above A2AD Zones

Strike

Ethics derives from safety and predictability

Speed may not be as important as we thought

 Humans currently required to exercise "appropriate level of human judgment" per DOD Directive 3000.09

Strike Concepts of Operations

- IR drone teams or swarms with human target labelers
 - Enemy, civilian, friendly, and uncertain markers can be placed allow drones to efficiently attack following the laws of armed conflict, while helping the labellers avoid collateral damage
- Networked picket drones for protecting manned aircraft

Strategic Considerations

> National Innovation Capacity

New model of government and industry collaboration and fusion

> Adoption Capacity

- Military
 - Bureaucratic inertia and organizational culture
 - Aligning new HMT operational concepts with existing human ones.
 - Where does HMT fit? Willingness to cede control?
- If overcome:
 - Instant training & "ready-made" veterans
 - Does not require time for trust and integration into chain of command
- Political and Ethical Considerations

Strategic Considerations

> Extended Duration of Conflict

- Dangerous, dull, "dirty" tasks left to machines
- Operator fatigue
- Minimize loss of life and human suffering through improved target discrimination, risk analysis, direct human engagement, and collateral damage mitigation
- Cost-effective

> Accelerated Pace of Conflict

- Compressed engagement timelines from missiles and short-warning saturation attacks
- Near instantaneous assembly and configuration into new fighting formation

> New Actors

- Lower barriers for entry and diffusion of capabilities for violence
- Enhanced end strength through "small, smart, many" strategy

Geopolitical Considerations

> Geo-space and Space + Cyberspace

Changing security models and economic growth model:
Technological trajectory determined by digital, data, and AI infrastructure

> Autocratic Regimes v. Democracies

- Top-down "civil-military fusion" and rapid adoption
- State-sponsored innovation & IP theft

> Weapon of the Weak or Powerful?

- Great Power Conflict: inequality of technological capabilities
- Asymmetrical Warfare