Polar Coordinates

Polar coordinates are an alternative way of representing Cartesian coordinates or Complex Numbers.

A complex number z

is completely determined by its real part $m{x}$ and imaginary part $m{y}$. Here, $m{j}$ is the imaginary unit.

A polar coordinate (r, φ)

is completely determined by modulus ${m r}$ and phase angle ${m arphi}.$

If we convert complex number z to its polar coordinate, we find:

r: Distance from z to origin, i.e., $\sqrt{x^2+y^2}$

 φ : Counter clockwise angle measured from the positive x-axis to the line segment that joins z to the origin.

Python's cmath module provides access to the mathematical functions for complex numbers.

$cmath.\,phase$

This tool returns the phase of complex number z (also known as the argument of z).

```
>>> phase(complex(-1.0, 0.0))
3.1415926535897931
```

abs

This tool returns the modulus (absolute value) of complex number z.

```
>>> abs(complex(-1.0, 0.0))
1.0
```

Task

You are given a complex z. Your task is to convert it to polar coordinates.

Input Format

A single line containing the complex number z. Note: complex() function can be used in python to convert the input as a complex number.

Constraints

Given number is a valid complex number

Output Format

Output two lines:

The first line should contain the value of r.

The second line should contain the value of φ .

Sample Input

1+2j

Sample Output

2.23606797749979 1.1071487177940904

Note: The output should be correct up to 3 decimal places.