University of applied science

Presentation by Abdoulie Drammeh

Matriculation: 92125450 Customer ID: 10542955

Cohort: OI SP BADSC + BAEE

From

<https://mycampus.iubh.de/local/iubh_user_ profile/view.php?id=159104>

Emile:abdouliedrammeh01@gmail.com

Oral Assignment:

Topic: of discussion is machine learning

Task 3: Machine learning

DEFINATION: Machine learning is a subset of artificial intelligence (AI) that focuses on the development of algorithms and statistical models that enable computer systems to improve their performance on a specific task through learning and experience, without being explicitly programmed. In other words, machine learning allows computers to automatically discover patterns, make predictions, or optimize processes based on data.

- characteristics
 and components
 of machine
 learning include:
 - 1. Data:raw facts
 - 2. Algorithms:rules design to solve a problem
 - 3. Training:teaching a machine to solve problems
 - 4. Testing and Evaluation:

Day I's Care and Day's a

- IMPORTANCE OF machine learning paradigms
- Diversity of Applications:
- Customization to Problem Characteristics:
- Innovation and Advancement:
- Problem Complexity
 Handling:
- Interdisciplinary
 Collaboration:
- Balanced Use of Resources:

KEY machine learning paradigms

Supervised Learning: Unsupervised Learning: Semi-Supervised Learning: Reinforcement Learnin g: Reinforcement Learnin g:

Supervised Learning:

- What It Does: In supervised learning, the algorithm is trained on a labelled dataset, where both the input data and the desired output are provided. The goal is to learn a mapping from inputs to outputs.
- Common Use Cases:
 Classification (e.g., email spam detection), regression (e.g., predicting house prices).

SUPERVISED LEARNING

Supervised machine learning is a branch of artificial intelligence that focuses on training models to make predictions or decisions based on labeled training data.

Unsupervised Learning:

- What It Does: Unsupervised learning involves working with unlabelled data to discover patterns or structures within the data. It doesn't have access to predefined output labels.
- Common Use Cases: Clustering (e.g., customer segmentation), dimensionality reduction (e.g., principal component analysis).

Supervised vs. Unsupervised Learning

Classification

Supervised learning

Clustering

Unsupervised learning

Input Data Machine Learning Model Prediction It's an Apple Partial Labels Orange Banana Unlabelled Data

Semi-Supervised Learning:

- What It Does: This paradigm combines elements of both supervised and unsupervised learning. It leverages a small amount of labelled data and a larger amount of unlabelled data for training.
- Common Use Cases: Anomaly detection, text classification with limited labelled data.

How does K-Means clustering works.

- 1. Initialization:
- 2. Assignment:
- 3. Update:
- 4. Convergence Check:
- 5. Results:
- 6. Assignment:
- 7. Update:
- 8.<mark>link</mark>

Real-life problem using K-Means clustering to analysis it.

- Certainly, here's a real-life analytical problem where K-Means clustering can be applied:
- Problem: Customer Segmentation for an E-commerce Platform
- Background: Imagine you are working for a large e-commerce platform, and the company wants to better understand and segment its customer base for more effective marketing and customer service. The platform has a vast customer dataset, and the company wants to group customers based on their purchasing behaviour and preferences.

- Objective:
- Data:
- Data Pre-processing:
- Choosing K:
- ► Interpretation: