# Отчет о выполнении лабораторной работы 1.1.1

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Студент: Копытова Виктория

Сергеевна

Группа: Б03-304

#### 1 Аннотация

**Цель работы:** измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

В работе используются: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, волтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

### 2 Теоретические сведения

Удельное сопротивление материала проволоки круглого сечения, изготовленной из однородного материала и имеющей всюду одинаковую толщину, может быть определено по формуле:

$$\rho = \frac{R_{\rm np}}{l} \frac{\pi d^2}{4} \tag{1}$$

где  $R_{\rm np}$  — сопротивление измеряемого отрезка проволоки, l — его длина, d — диаметр проволоки.

Необходимо учесть, что при изготовлении проволоки не удается выдержать постоянным ее диаметр. Он немного меняется по длине случайным образом. Поэтому в формулу (1) надо подставлять среднее значение ее диаметра и учитывать в дальнейшем соответствующую случайную погрешность этого значения.

В данной работе величину сопротивления  $R_{\rm np}$  предлагается измерить с помощью одной из схем, представленных на рис. 1. Здесь R — переменное сопротивление (реостат),  $R_a$  — сопротивление амперметра,  $R_V$  — сопротивление вольтметра,  $R_{\rm np}$  — сопротивление исследуемой проволоки.

Пусть V и I — показания вольтметра и амперметра. Рассчитанные по этим показаниям величины сопротивления проволоки  $R_{\rm np} = V_{\rm a}/I_{\rm a}$  для схемы (a) и  $R_{\rm np2} = V_{\rm 6}/I_{\rm 6}$  для схемы (б) будут отличаться друг от друга и от искомого  $R_{\rm np}$  из-за влияния внутренних сопротивлений приборов. Однако с помощью рис. 1 нетрудно найти связь между сопротивлением проволоки  $R_{\rm np}$  и полученными значениями  $R_{\rm np1}$  и  $R_{\rm np2}$ .

В случае схемы (a) вольтметр правильно измеряет падение напряжения на концах проволоки, а амперметр измеряет сумму токов, прошедших через проволоку и вольтметр. Отсюда:

$$R_{\rm np1} = R_{\rm np} \frac{R_V}{R_V + R_{\rm np}}; R_{\rm np} = R_{\rm np1} \frac{R_V}{R_V - R_{\rm np1}} \approx R_{\rm np1} \left(1 + \frac{R_{\rm np1}}{R_V}\right)$$
 (2)



Рис. 1: Схемы для измерения сопротивления при помощи амперметра и вольтметра

В случае схемы (б) амперметр измеряет силу тока, прошедшего через проволоку, но вольтметр измеряет суммарное падение напряжения на проволоке и на амперметре. Отсюда:

$$R_{\text{np2}} = R_A + R_{\text{np}}; R_{\text{np}} = R_{\text{np2}} \left( 1 - \frac{R_A}{R_{\text{np2}}} \right)$$
 (3)

Для контрольных измерений сопротивления проволоки будет использоваться метод моста постоянного тока Уитстона.

## 3 Ход работы

1. Измеряем диаметр проволоки штангециркулем  $(d_1)$  и микрометром  $(d_2)$  на десяти различных участках (таблица 1).

Таблица 1: Результаты измерения диаметра проволоки

|            | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|------------|------|------|------|------|------|------|------|------|------|------|
| $d_1$ , mm | 0,5  | 0,4  | 0,4  | 0,4  | 0,4  | 0,3  | 0,4  | 0,4  | 0,4  | 0,4  |
| $d_2$ , mm | 0,35 | 0,36 | 0,36 | 0,35 | 0,35 | 0,36 | 0,35 | 0,35 | 0,35 | 0,35 |

Средние значения:

$$\overline{d_1} = 0,40 \text{ mm}$$

$$\overline{d_2}=0,354~\mathrm{mm}$$

При измерении диаметра проволоки штангельциркулем случайная погрешность измерения отсутствует. Следовательно, точность результата определяется только точностью штангельциркуля (систематической погрешностью):

$$d_1 = (0, 4 \pm 0, 1)$$
 mm.

Измерения с помощью микрометра содержат как систематическую, так и случайную погрешности:

$$\sigma_{\text{cmct}} = 0,01 \text{ mm}, \qquad \sigma_{\text{cj}} = \frac{1}{N} \sqrt{\sum_{i=1}^n (d - \overline{d}_2)^2} = \frac{1}{10} \sqrt{2, 4 \cdot 10^{-4}} \approx 1,5 \cdot 10^{-3} \text{mm},$$

$$\sigma = \sqrt{\sigma_{\text{chct}}^2 + \sigma_{\text{ch}}^2} = \sqrt{(0,01)^2 + (0,0015)^2} \approx 0,01 \text{ mm}$$

Поскольку  $\sigma_{\rm cn}^2 \ll \sigma_{\rm cuct}^2$ , то можно считать проволоку однородной по диаметру, а погрешность диаметра  $\sigma_d$  определяется только  $\sigma_{\rm cuct}$  микрометра:

$$d_2 = \overline{d}_2 \pm \sigma_d = (0,354 \pm 0,01) \text{ mm} = (3,54 \pm 0,1) \cdot 10^{-2} \text{ cm}$$

2. Определим площадь поперечного сечения проволоки:

$$S = \frac{\pi d_2^2}{4} = \frac{3.14 \cdot (3.54 \cdot 10^{-2})^2}{4} \approx 9,8 \cdot 10^{-4} \text{ cm}^2.$$

Величину погрешности  $\sigma_S$  найдем по формуле

$$\sigma_S = 2 \frac{\sigma_d}{d} = 2 \frac{0.01}{0.354} \cdot 9, 8 \cdot 10^{-4} \approx 5, 5 \cdot 10^{-5} \text{ cm}^2.$$

Итак,  $S = (0.98 \pm 0.055) \cdot 10^{-3} \text{ см}^2$ , т. е. площадь поперечного сечения проволоки определена с точностью 6%.

Таблица 2: Основные характеристики приборов

|                                   | Вольтметр            | Амперметр                       |
|-----------------------------------|----------------------|---------------------------------|
| Предел измерений $x_{\rm n}$      | 750 мВ               | 2 A                             |
| Число делений шкалы <i>п</i>      | 150                  | -                               |
| Цена делений $x_{\rm n}/n$        | 5 мВ                 | -                               |
| Чувствительность $n/x_{\text{п}}$ | 200 дел В            | -                               |
| Абсолютная погрешность            | $\pm 2.5 \text{ MB}$ | $\pm$ (0,002 · X + 2k), где X – |
| $\Delta x_M$                      |                      | измеряемая величина, k –        |
|                                   |                      | единица младшего разря-         |
|                                   |                      | да ( $k=0.01 \; { m MA}$ )      |
| Внутреннее сопротивле-            | 5 кОм                | 10 мОм                          |
| ние прибора(на данном             |                      |                                 |
| пределе измерений)                |                      |                                 |

3. Известно, что  $R_{\rm np}\approx 5~{\rm Om}$  ,  $R_V=5~{\rm кOm}$  ,  $R_A=1~10~{\rm mOm}$  . Оценим по формулам (2) и (3) величину поправок при измерении  $R_{\rm np}$ : Для схемы (а):  $R_{\rm np}/R_V=5/5000=0,001,$  т. е. 0,1% Для схемы (б): $R_A/R_{\rm np}=1/500,$  т. е. 0,2%

Вывод: при измерении относительно небольших сопротивлений меньшую ошибку дает схема (а).

4. Соберем схему рис. 1(а) и проведем измерения для следующих длин проволоки (цена деления линейки = 1 мм):

$$l_1 = 20.0 \pm 0.1$$
 см;  $l_2 = 30.0 \pm 0.1$  см;  $l_3 = 50.0 \pm 0.1$  см .

Измерения проведем при возрастающих и убывающих значениях тока и запишем в таблицу 3. Также измерим сопротивления данных участков с помощью моста Уинстона и занесем их в таблицу 4.

Таблица 3: Показания вольтметра и амперметра

| $l_1 = 20 \text{ cm}$          |     |       | $l_2 = 30$                     | ) см |       | $l_3 = 50 \text{ cm}$ |     |       |
|--------------------------------|-----|-------|--------------------------------|------|-------|-----------------------|-----|-------|
| V,                             | V,  | ІмА   | V,                             | V,   | ІмА   | V,                    | V,  | ІмА   |
| дел                            | мВ  |       | дел                            | мВ   |       | дел                   | мВ  |       |
| $\frac{\text{мB}}{\text{дел}}$ |     |       | $\frac{\text{мB}}{\text{дел}}$ |      |       | <u>мВ</u><br>дел      |     |       |
| Act.                           |     |       | Asir                           |      |       | Aou                   |     |       |
| 39                             | 195 | 94,4  | 41                             | 205  | 65,1  | 48                    | 240 | 43,4  |
| 41                             | 205 | 99,3  | 52                             | 260  | 82,6  | 74                    | 370 | 73,9  |
| 43                             | 215 | 107,4 | 63                             | 315  | 104,0 | 89                    | 445 | 85,0  |
| 70                             | 350 | 169,7 | 68                             | 340  | 113,8 | 91                    | 455 | 89,3  |
| 111                            | 555 | 280,7 | 75                             | 375  | 124,7 | 112                   | 560 | 105,5 |
| 129                            | 645 | 315,0 | 82                             | 410  | 137,3 | 118                   | 590 | 113,6 |
| 61                             | 305 | 150,0 | 148                            | 740  | 247,6 | 136                   | 680 | 131,7 |
| 51                             | 255 | 123,5 | 136                            | 680  | 226,0 | 131                   | 655 | 124,8 |
| 38                             | 190 | 92,0  | 120                            | 600  | 202,7 | 130                   | 650 | 122,8 |
| 35                             | 175 | 81,6  | 91                             | 455  | 153,3 | 119                   | 595 | 112,5 |
| 30                             | 150 | 72,2  | 71                             | 355  | 118,7 | 82                    | 410 | 77,8  |
| 28                             | 140 | 67,8  | 64                             | 320  | 107,8 | 71                    | 355 | 67,5  |

Таблица 4: Результаты измерения сопротивления проволоки

| $l_1 = 20 \text{ cm}$                                 | $l_2=30~{ m cm}$                                      | $l_3 = 50 \text{ cm}$                                 |
|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| $R_0 = 2{,}042 \; { m Om} \; ({ m mo} \; { m P4833})$ | $R_0 = 3{,}009 \; { m Om} \; ({ m пo} \; { m P4833})$ | $R_0 = 5{,}194 \; { m Om} \; ({ m пo} \; { m P4833})$ |
| $R_{ m cp} = 2{,}033~{ m Om}$                         | $R_{ m cp}=2{,}995~{ m O}{ m M}$                      | $R_{ m cp}=5{,}229~{ m Om}$                           |
| $R_{ m np} = 2{,}034~{ m Om}$                         | $R_{ m np}=2{,}996~{ m O}{ m M}$                      | $R_{ m np}=5{,}235~{ m O}{ m M}$                      |
| $\sigma_{	ext{cлуч}}=0.011~	ext{Om}$                  | $\sigma_{ m cлуч}=0{,}011~{ m Om}$                    | $\sigma_{ m c, nyq} = 0.025 \;  m O_M$                |
| $\sigma_{	ext{cuct}} = 0.006 \; 	ext{Om}$             | $\sigma_{	ext{cuct}} = 0{,}009 \; 	ext{Om}$           | $\sigma_{	ext{chct}} = 0.017$                         |
| $\sigma_R=0.013~{ m Om}$                              | $\sigma_R=0.014~{ m Om}$                              | $\sigma_R=0.03~{ m Om}$                               |

5. Построим графики зависимостей V=f(I) для всех трех отрезков проволоки, проводя прямые через экспериментальные точки (рис. 2). Из графиков видно, что нет различия между значениями, полученными при возрастании и при уменьшении тока.



Рис. 2: Вольт-амперная характеристика

6. Для каждой длины l проведем расчет методом наименьших квадратов для прямой, проходящей через начало координат. Сопротивление находится, как

$$R_{\rm cp} = \frac{\langle VI \rangle}{\langle I^2 \rangle}$$

а его среднеквадратичная ошибка, как

$$\sigma_{\rm Rcp}^{\rm c, yyq} = \frac{1}{\sqrt{12}} \sqrt{\frac{\langle V^2 \rangle}{\langle I^2 \rangle} - R_{\rm cp}^2}$$

где 12 - число экспериментальных точек. Результаты запишем в таблицу 4.

7. Возможную систематическую погрешность оцениваем по формуле:

$$\frac{\sigma_{\rm Rcp}^{\rm cmct}}{R_{\rm cp}} = \sqrt{\left(\frac{\sigma_V}{V}\right)^2 \! + \! \left(\frac{\sigma_I}{I}\right)^2}$$

где I и V максимальные значения силы тока и напряжения, полученные в результате эксперимента, а  $\sigma_V$  и  $\sigma_I$  - ошибки измерения вольтметром и ампертметром. Ошибка  $\sigma_V$  равна половине абсолютной погрешности вольтметра.

$$\sigma_V = 1.25 \text{ MA}.$$

Ошибка  $\sigma_I$  зависит от измеренной величины, ее максимальное значение:

$$\sigma_I = \sigma_I^{max} = 0.65$$
 мА.

Расчитаем  $\sigma_{R_{\rm cp}}$  для проволоки длиной  $l_1=20$  см; из табл. 3 и 4  $R_{\rm cp}=2,02$  Ом, V=645 мВ, I=315 мА.

$$\sigma_{R_{\rm cp}} = R_{\rm cp} \sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2} = 2,02 \cdot \sqrt{\left(\frac{1,25 \cdot 10^{-3}}{0,645}\right)^2 + \left(\frac{0,65 \cdot 10^{-3}}{0,315}\right)^2} = 6 \cdot 10^{-3} \; {\rm Om}.$$

Складываем случайную и систематические ошибки по формуле:

$$\sigma_R = \sqrt{(\sigma_{ ext{c,луч}})^2 + (\sigma_{ ext{cuct}})^2}$$

и заносим результаты в таблицу 5.

Таблица 5: Результаты расчетов

| l, см             | 20    | 30    | 50    |
|-------------------|-------|-------|-------|
| $R_{\rm cp}$ , Om | 2,033 | 2,995 | 5,229 |
| $\sigma_R$ , Om   | 0,013 | 0,014 | 0,03  |

8. Для всех трех длин l вносим поправку в измеренное значение сопротивления по формуле:

$$R_{\rm np} = R_{\rm cp} + \frac{R_{\rm cp}^2}{R_V}$$

Ввиду малости поправки, считаем  $\sigma_{\rm Rnp} = \sigma_{\rm Rcp}$ . Данные заносим в таблицу 4.

6

9. Сравниваем результаты измерения сопротивления с помощью вольтметра и амперметра с результатами измерения мостом. В пределах погрешностей опыта результаты совпадают.

Определяем удельное сопротивление проволоки по формуле (1) и погрешность  $\sigma_{\rho}$  по формуле:

$$\frac{\sigma_{\rho}}{\rho} = \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}$$

и заносим результаты в таблицу 6.

Таблица 6: Удельное сопротивление и его погрешность

| l, см | $\rho, 10^{-6}$ Om · M | $\sigma_{\rho}, 10^{-8} \text{ Om} \cdot \text{m}$ |
|-------|------------------------|----------------------------------------------------|
| 20    | 1,00                   | 6                                                  |
| 30    | 1,00<br>0,98<br>1,03   | 6                                                  |
| 50    | 1,03                   | 6                                                  |

Окончательно:  $\rho = (1,00 \pm 0,06) \cdot 10^{-4} \text{ Ом} \cdot \text{см}.$ 

### 4 Вывод

Основной вклад в ошибку  $\sigma_{\rho}$  вносит погрешность измерения диаметра проволоки, составляющая  $\sim 3\%$ , но так как из-за возведения в квадрат она удва-ивается, вклад в погрешность окончательного результата составляет  $\sim 6\%$ . Поэтому при измерении сопротивления проволоки достаточна точность 3-4%.

Полученное значение удельного сопротивления сравниваем с табличными значениями. В справочнике (Физические величины. М.:Энергоиздат, 1991. С. 444) для удельного сопротивления нихрома при  $20^{\circ}$ С значения в зависимоти от массового содержания компонент сплава меняются от  $1,12\cdot 10^{-4}$  Ом  $\cdot$  см до  $0,97\cdot 10^{-4}$  Ом  $\cdot$  см. Наиболее близкое значение к получившемуся в работе для сплава: 20% Ni, 55% Fe, 25% Cr (проценты по массе).