# Lezione 3

- L'identità e le sue regole di inferenza
- I connettivi «e», «o», «non».
- Intermezzo matematico

# L'identità e le sue regole di inferenza

#### Linguaggi con identità

In FOL il predicato binario \_ = \_ ha una interpretazione prefissata:

a = b è vero in una circostanza se e solo se in quella circostanza a, b sono nomi dello stesso individuo/oggetto.

Valgono le seguenti regole di inferenza:

(= Intro) la proposizione  $\mathbf{n} = \mathbf{n}$  è vera per qualsiasi costante  $\mathbf{n}$  in qualsiasi contesto e circostanza, per cui la posso inferire in qualunque punto della prova.

(= Elim) se nelle premesse o in passaggi precedenti ho ottenuto n = m, allora posso sostituire m al posto di qualche occorrenza di n in una proposizione P(n) già dimostrata, inferendo una nuova proposizione P(m).

# Regole Formali per l'identità (= Intro) e (= Elim) in Fitch

Identity Introduction (= Intro):

Identity Elimination (= Elim):

Riflessività dell'identità

Identità degli indiscernibili (indiscernibilità degli identici)

# ESEMPIO di dimostrazioni: dimostriamo che l'identità è una relazione di equivalenza.

```
riflessiva (a arbitraria costante):
a = a (= intro)
```

simmetrica (a,b arbitrarie costanti):da 1. a = b

**segue** 2. b = a

transitiva (a,b,c arbitrarie costanti)

**da** 1. a = b

2. b = c

**segue** 3. a = c

File Edit Proof Goal Window Help



File Edit Proof Goal Window Help





File Edit Proof Goal Window Help



# Identità e logica delle proposizioni atomiche

a è un cubo, e a e b sono due nomi dello stesso oggetto. Dunque anche b è un cubo.



Dunque, questo ragionamento è valido in ogni contesto.

# Identità e logica delle proposizioni atomiche

a giace a sinistra di b, b e c sono due nomi dello stesso oggetto. Dunque c giace a destra di a.

```
LeftOf(a,b)
b = c
RightOf(b,a)
RightOf(c,a)
✓ ▼ Ana Con
✓ ▼ = Elim
```

Questo ragionamento è valido nel contesto dei blocchi, ma vi sono contesti in cui non è valido.

I connettivi «e», «o», «non»

#### Vero-funzionalità

- La logica proposizionale riguarda le proposizioni (enunciati) e si occupa dei *connettivi linguistici* vero-funzionali.
  - Connettivo: costruisce enunciati composti a partire da enunciati più semplici, che chiameremo componenti.
  - Connettivo vero-funzionale: il valore di verità di un enunciato composto è funzione solo dei valori di verità degli enunciati componenti, cioè è definibile mediante una tavola di verità.

#### Vero-funzionalità

• Esempio di «connettivo» non vero-funzionale: **domani** \_\_\_\_\_\_1 le verità di «**domani** *piove*» non dipende da quella di «*piove*»; che piova o meno, domani potrebbe piovere o meno.

# I connettivi vero-funzionali «e», «o», «non».

Cominciamo dai connettivi le cui tavole di verità corrispondono in buona sostanza al loro significato nel linguaggio naturale:

A : congiunzione «e»

• V : disgiunzione inclusiva «o»

• ¬ : negazione «non»

#### La negazione.

In italiano la negazione può essere espressa da «non» davanti a un predicato, da «in-» seguita da un aggettivo, ecc.

|   | In italiano           | Traduzione in FOL  |
|---|-----------------------|--------------------|
| 1 | non piove             | ¬ Piove            |
| 2 | Gigi non ha la matita | ¬ Ha(gigi, matita) |
| 3 | Anna è infelice       | ¬ Felice(anna)     |

#### Connettivo «non»: La tavola di verità

La negazione «non P» è vera se P è falsa, falsa se P è vera.

| P | $\neg P$ |
|---|----------|
| Т | F        |
| F | T        |

### La congiunzione.

In italiano la congiunzione è «e», ma vi sono molti altri modi di esprimerla: «ma», «mentre», «inoltre», ecc.

|   | In italiano                                         | Traduzione in FOL                        |
|---|-----------------------------------------------------|------------------------------------------|
| 1 | Gigi ha 5 anni e Mario ha 7 anni                    | Anni(gigi,5) ∧ Anni(mario,7)             |
| 2 | Lea è stata promossa mentre<br>Ugo è stato respinto | Promossa(lea) \( \text{Respinto(ugo)} \) |
| 3 | Anna ha 90 anni ma è lucida                         | Anni(anna,90) \( \text{Lucida(anna)} \)  |
| 4 | Gigi ha la media del 29;<br>inoltre ha tre lodi     | Media(gigi,29) ∧ Lodi(gigi,3)            |

#### Connettivo «e»: La tavola di verità

La congiunzione «P e Q» è vera se entrambi i congiunti P, Q sono veri, falsa se almeno uno è falso.

| P | $\boldsymbol{Q}$ | $P \wedge Q$ |
|---|------------------|--------------|
| Т | Т                | Т            |
| Т | F                | F            |
| F | Т                | F            |
| F | F                | F            |

# La disgiunzione.

In italiano la disgiunzione è «o», «oppure»,...

|   | In italiano                                    | Traduzione in FOL           |
|---|------------------------------------------------|-----------------------------|
| 1 | Gigi ha 5 o 6 anni                             | Anni(gigi,5) ∨ Anni(gigi,6) |
| 2 | Lea è al lavoro <mark>oppure</mark> è ammalata | Lavora(lea) ∨ Ammalata(lea) |

#### Connettivo «o»: La tavola di verità

Una disgiunzione «P o Q» è vera se almeno uno dei disgiunti P, Q è vero, falsa se entrambi sono falsi.

| P | Q | $P \lor Q$ |
|---|---|------------|
| Т | Т | Т          |
| Т | F | Т          |
| F | Т | Т          |
| F | F | F          |

NOTA: la disgiunzione  $\vee$  è *inclusiva*.

# Sintassi: le formule ben formate (fbf)

DEF. Una fbf di un linguaggio (associato a un contesto) è

• (base) una proposizione atomica del linguaggio;

• (passo) o si ottiene riempiendo con *fbf del linguaggio* i posti dei costrutti:  $\bot$ ,  $(\neg \_\_)$ ,  $(\_\_ \land \_\_)$ ,  $(\_\_ \lor \_\_)$ ,  $(\_\_ \to \_\_)$ ,  $(\_\_ \leftrightarrow \_\_)$ .

Nient'altro è una fbf del linguaggio.

# Sintassi: le formule ben formate (fbf)

La definizione è ricorsiva. Come conseguenza ogni fbf è generabile per strati:

```
Strato 0: le atomiche;
```

```
Strato 1: riempio i posti di (\neg ___), (___ \land ___), (___ \lor ___) con fbf di strato 0;
```

```
Strato 2: riempio i posti di (\neg ___), (___ \land ___), (___ \lor ___) con fbf di strato 0 o 1;
```

• • •

Nient'altro è una fbf: se non è generabile per strati, non è una fbf.

# Esempio

Mostriamo che  $((\neg P) \land (P \lor (\neg S)))$  è una fbf.

Strato 0: P, S

sono atomiche

Strato 1:  $(\neg P)$ ,  $(\neg S)$ 

generate da P, S dello strato 0

Strato 2:  $(P \lor (\neg S))$ 

Strato 3:  $((\neg P) \land (P \lor (\neg S)))$ 

generata da ( $\neg$  P) :strato 1 e (P  $\vee$  ( $\neg$  S)):strato 2

#### Semantica: verità di una fbf in una circostanza

Il valore di verità di una fbf in una circostanza si ottiene come segue:

- 1. Si sostituiscono le atomiche con i rispettivi valori di verità
- 2. Si calcola il valore della espressione booleana così ottenuta applicando le tavole di verità.

b), d) *duali* di a),c), risp.

Si può valutare più rapidamente con le *regole di riscrittura*:

a) 
$$T \wedge Espr = Espr$$
  $Espr \wedge T = Espr$ 

b) 
$$F \vee Espr = Espr$$
  $Espr \vee F = Espr$ 

c) 
$$T \vee Espr = T$$
  $Espr \vee T = T$ 

d) 
$$F \wedge Espr = F$$
  $Espr \wedge F = F$ 

e) 
$$\neg T = F$$
  $\neg F = T$ 

#### Esempio

$$I(\neg(Tet(a) \land Large(a)) \land Cube(b)) =$$

$$= \neg(T \land F) \land T$$

$$= \neg(T \land F)$$

$$= \neg F = T$$



 $J(\neg(Tet(a) \land Large(a)) \land Cube(b)) =$ =  $\neg(T \land F) \land F$ = F



. |

#### Esercizio

- In TW, esiste una griglia che falsifichi Tet(a) ∨ Cube(a) ∨ Dodec(a) ?
- 2. E se prendiamo un TW esteso, in cui ci sono anche altri tipi di blocchi, ad es. aggiungiamo i cilindri?

- 3. In TW, esiste una griglia che falsifichi (Tet(a) ∧ Large(a)) ∨ ¬ Tet(a) ∨ ¬ Large(a)?
- 4. E se prendiamo un TW esteso in cui ci sono anche altri tipi di blocchi e altre dimensioni?

# Intermezzo matematico

# Insiemi, tuple, prodotti cartesiani

#### Insiemi:

$$S = \{2,3,5,7\}, T = \{pippo,pluto,topolino\}, X = \{k \in \mathbb{N} : k < 11\}$$

#### Tuple:

(3,2,2,5), (topolino, pluto, pippo, pluto)

#### Prodotti cartesiani:

$$A \times B = \{(a,b) : a \in A, b \in B\}$$
  
 $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) : a_i \in A_i\}$ 

Relazioni: sottoinsiemi di un prodotto cartesiano

$$R \subseteq A_1 \times A_2 \times ... \times A_n$$

# Relazioni

Relazioni: sottoinsiemi di un prodotto cartesiano

$$R \subseteq A_1 \times A_2 \times ... \times A_n$$

Relazioni unarie:  $R \subseteq A$ :

Es:  $P \subseteq \mathbb{N}$ ,  $P = \{ a \in \mathbb{N} : a = 2b \text{ per qualche } b \in \mathbb{N} \}$ 

Relazioni binarie  $R \subseteq A \times B$ :

Es: Persone = {Ada, Bruno, Carla}, Cibi = {Pizza, Pasta, Carne, Uova}

PiaceA ⊂ Cibi × Persone =

{(Pizza, Ada), (Pizza, Bruno), (Carne, Bruno), (Uova, Bruno), (Pasta, Ada)}

# Relazioni di Equivalenza e di Ordine

Relazioni di Equivalenza:  $R \subseteq A \times A$   $(R \subseteq A^2)$ 

- R riflessiva:  $(a,a) \in R$  per ogni  $a \in A$ ;
- R simmetrica:  $(a,b) \in R$  implica  $(b,a) \in R$  per ogni  $a,b \in A$ ;
- R transitiva:  $(a,b) \in R$  e  $(b,c) \in R$  implicano  $(a,c) \in R$ , per ogni  $a,b,c \in A$ .

Relazioni di Ordine (parziale):  $R \subseteq A \times A$   $(R \subseteq A^2)$ 

- R riflessiva:  $(a,a) \in R$  per ogni  $a \in A$ ;
- R antisimmetrica: (a,b) ∈ R e (b,a) ∈ R implicano a = b, per ogni a,b ∈ A;
- R transitiva:  $(a,b) \in R$  e  $(b,c) \in R$  implicano  $(a,c) \in R$ , per ogni  $a,b,c \in A$ .

#### **Funzioni**

Funzioni (totali):

$$f: A_1 \times A_2 \times ... \times A_n \longrightarrow B$$

Sono relazioni

$$f \subseteq A_1 \times A_2 \times ... \times A_n \times B$$

tali che, **per ogni** n-pla  $(a_1, a_2, ..., a_n) \in A_1 \times A_2 \times ... \times A_n$ 

esiste un unico  $b \in B$ 

per cui  $(a_1, a_2, ..., a_n, b) \in f$ 

Si scrive:  $f(a_1, a_2, ..., a_n) = b$  (o anche:  $f:(a_1, a_2, ..., a_n) \mapsto b$ )

# Per le interpretazioni (lo vedremo)

Useremo:

Relazioni n-arie  $R \subseteq A^n$ per interpretare simboli di predicato con n posti.

Funzioni *n*-arie  $f: A^n \longrightarrow A$ per interpretare simboli di funzioni con *n* posti.

#### Fissiamo le idee:

- Contesto: insieme di circostanze. Gli si associa un Linguaggio (NB: contesti diversi possono essere associati allo stesso linguaggio).
- Linguaggio: dato da costanti + predicati (n-ari) + funzioni (n-arie).
- Proposizioni atomiche: predicati completamente istanziati (in ogni posto) con costanti.
- Interpretazione (in una circostanza): fissato l'universo del discorso A:
  - Costanti: elementi dell'universo del discorso: I(c) ∈ A.
  - Predicati (n-ari): relazioni (n-arie) sull'universo del discorso:
     I(P) ⊆ A<sup>n</sup>.
  - Proposizione atomica:  $P(c_1,...,c_n)$ : è vera (nella data circostanza = nella data interpretazione) sse  $(I(c_1),...,I(c_n)) \in I(P)$ .



Un mondo

NB. Il dodecaedro

non ha nome

| Т | 1. Tet(a)   |
|---|-------------|
| Т | 2. Tet(b)   |
| F | 3. Tet(c)   |
| F | 4. Cube(a)  |
| F | 5. Cube(b)  |
| Т | 6. Cube(c)  |
| F | 7. Dodec(a) |
| F | 8. Dodec(b) |
| F | 9. Dodec(c) |

| Т | 10. SameShape(a,a) |
|---|--------------------|
| Т | 11. SameShape(a,b) |
| F | 12. SameShape(a,c) |
| Т | 13. SameShape(b,a) |
| Т | 14. SameShape(b,b) |
| F | 15. SameShape(b,c) |
| F | 16. SameShape(c,a) |
| F | 17. SameShape(c,b) |
| Т | 18. SameShape(c,c) |

L'interpretazione corrispondente

$$A = \{x,y,z,w\}, \qquad I(a), I(b), I(c) \in A, \\ I(Tet) \subseteq A, I(Cube) \subseteq A, I(Dodec) \subseteq A, I(SameShape) \subseteq A^2.$$

$$I(a) = x, I(b) = y, I(c) = z.$$
  
 $I(Tet) = \{x,y\}, I(Cube) = \{z\}, I(Dodec) = \{w\}, I(SameShape) = \{(x,x),(x,y),(y,x),(y,y),(z,z),(w,w)\}.$ 

| Т | 1. Tet(a)   |
|---|-------------|
| Т | 2. Tet(b)   |
| F | 3. Tet(c)   |
| F | 4. Cube(a)  |
| F | 5. Cube(b)  |
| Т | 6. Cube(c)  |
| F | 7. Dodec(a) |
| F | 8. Dodec(b) |
| F | 9. Dodec(c) |

| T  | 10. SameShape(a,a) |
|----|--------------------|
| Т  | 11. SameShape(a,b) |
| F  | 12. SameShape(a,c) |
| Т  | 13. SameShape(b,a) |
| ۲  | 14. SameShape(b,b) |
| F  | 15. SameShape(b,c) |
| F  | 16. SameShape(c,a) |
| H. | 17. SameShape(c,b) |
| Т  | 18. SameShape(c,c) |
|    |                    |

L'interpretazione corrispondente

Ecco, qui sopra, la formalizzazione in termini di Relazioni e Costanti dell'interpretazione qui a sinistra.

#### Riferimenti al libro di testo

• Chapter 3: fino a sec. 3.3 inclusa, poi 3.5, 3.7.

• Per l'intermezzo matematico: qualunque testo di algebra, analisi, logica matematica, matematica discreta, etc., dovrebbe avere una sezione, spesso introduttiva, su relazioni e funzioni.