

라즈베리 파이를 활용한 RC Car 모델

이지혜 | 이정환 | 성현기

목표 설정

데이터 흐름과 설계

역할 분담 | 단계

02 구현

카메라 활용

모터 제어

센서 조정 및 원격 핀제어

03 시연

04 질의응답

목표

데이터 흐름과 설계

역할 분담 | 단계

- 1 라즈베리 파이를 통한 RC 카 모터 제어
- 2 스트리밍 기능을 통해 원격으로 주행할 수 있도록 환경 조성
- 3 주행기능과 주차기능을 분리하여 실행
- 4 그 외 편의 기능

목표 데이터 흐름과 설계

역할 분담 | 일정

목표 데이터 흐름과 설계

역할 분담 | 일정

목표

데이터 흐름과 설계

역할 분담 | 단계

모터 제어 / 이지혜

- 주행
- 주행 중 위험대응

센서 조정 및 원격 핀 제어 / 이정환

- 거리 측정 및 충격 감지
- 센서 조정 및 테스트

카메라 활용 / 성현기

- 영상 스트리밍
- 주차 중 충격대응

목표

데이터 흐름과 설계

역할 분담 | 단계

02 | 구현

카메라 활용

모터 제어

센서 조정 및 원격 핀제어

모터 제어

센서 조정 및 원격 핀제어

실시간 동영상 스트리밍

Motion library

Logitech webcam

반응 속도가 느려 현실적으로 사용 불가

library

Mjpg

Pi camera

반응 속도 측면에서는 어느 정도 개선 되었으나 wifi 거리 의존도가 높음

Guvcview application

FPV camera

반응 속도나 거리 측면에서 매우 좋으나 종종 끊김 현상 발생

02| 구현

카메라 활용

모터 제어

센서 조정 및 원격 핀제어

블랙박스 동영상 촬영


```
#include<stdio.h>
#include<wiringPi.h>
#include<stdlib.h>
#include<time.h>
#define VIV 3
#define BUZZER 23
char* timeToString(struct tm *t);
int main() {
     if (wiringPiSetup() == -1)
           return 1;
     pinMode(VIV, INPUT);
                                  //진동감지센서 INPUT
     pinMode(BUZZER, OUTPUT);
                                 //부저 OUTPUT
     struct tm *t;
     time_t timer;
     //printf("%s\n", timeToString(t));
     while (1) {
                                      // a == 0 진동o, a == 1 진동x
           int a = digitalRead(VIV);
           printf("%d\n", a);
           digitalWrite(BUZZER, 0);
                                            // 평소에는 BUZZER을 LOW 시켜서 소리가
                                            // 진동이 울리면
           if (a == 0) {
                digitalWrite(BUZZER, 1);
                                                  // HIGH 시켜서 소리가 나게 함
                timer = time(NULL); // 현재 시각을 초 단위로 얻기
                t = localtime(&timer); // 초 단위의 시간을 분리하여 구조체에 넣기
                 char bash[40];
                 sprintf(bash, "%s %s", "sh black.sh", timeToString(t));
                printf("%s\n",timeToString(t));
                printf("%s\n", bash);
                                       // 카메라촬영하는 쉘 스크립트 실행.
                system(bash);
                delay(100);
           delay(10);
char* timeToString(struct tm *t) {
     static char s[20];
      sprintf(s, "%04d-%02d-%02d %02d-%02d-%02d", t->tm_year + 1900,
                t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
     return s;
```

모터 제어

센서 조정 및 원격 핀제어

블랙박스 동영상 촬영 / 저장 (날짜 포함)

```
1
1
1
1
1
1
1
0
2019-10-18 16-42-28
sh black.sh 2019-10-18 16-42-28
```

```
oi@raspberrypi188:~/Desktop $ ls
PCA9685.pv
                                 video2019-10-18 12-52-04.h264
                  buzzer
CA9685.pyc
                  rc_receiver
                                 video2019-10-18 12-52-58.h264
CAtest
                                 video2019-10-18 16-42-28.h264
                  rc receiver.c
RCcar_RunningMode
                  read PWM.py
                                 vidout2019-10-17 17-09-45.mp4
olack.sh
                  read PWM.pyc
                                 vidout2019-10-17_17-11-44.mp4
olackbox
                  vidcod.sh
```

모터 제어

센서 조정 및 원격 핀제어

부품 목록 (하드웨어)

Controller/dx5c & Receiver/sr415

Raspberry Pi 3 & Motor HAT

ESC/Electronic Speed Controller

DC Motor

SERVO Motor

Battery

모터 제어

센서 조정 및 원격 핀제어

pigpio

- GPIO 를 제어하기 위한 라즈베리 파이 라이브러리
- PWM/servo pulse 생성
- GPIO interrupt callback
- simple interface: thread, I2C, SPI...

pigpio Daemon

pipe 와 socket interface 의 명령을 받아 백그라운드에서 실행

Read PWM

- GPIO 에 인터럽트가 발생할 때 마다, 현재 LEVEL 과 TICK 전달
- LEVEL (HIGH / LOW) -> 시간 측정 (microseconds)
- 폭 (pulse width) 빈도 (frequency)

Write PWM

● I2C(확장보드 Motor HAT / PCA9685)

센서 조정 및 원격 핀제어

전방 장애물 충돌 방지

- ★음파 센서를 통해 전방 거리측정
- 스레드를 사용하여 실시간으로 반영
- EVENT 발생 시 , 정지 (경고등)
- 단시간 저속 주행으로 장애물을 회피 (경고등 _ 노랑)

모터 제어

센서 조정 및 원격 핀제어

오류 발생

Error 1 비정상 값 출력

Error 2 불규칙적인 거리

111.000000cm 120.0000000cm 99.000000cm 91.000000cm

108.000000cm

107.000000cm

83.000000cm

108.000000cm

88.000000cm

108.00000cm

86.000000cm

정상 작동

Solution 1 부품 교체

Solution 2 전압 변경 (3V -> 5V)

103.000000cm

104.000000cm

102.000000cm

103.000000cm

105.000000cm

104.000000cm

103.000000cm

103.000000cm

104.000000cm

103.000000cm

02| 구현

카메라 활용

모터 제어

센서 조정 및 원격 핀제어

모바일과 라즈베리 파이 (하드웨어)를 연동을 하기 위한 라이브러리

인터넷 (WiFi) 을 통해 통신

목표: raspberry pi 의 데이터를 앱에서 처리 Blynk <u>자체 함수의 문제로 생각됨</u>

TX : 5000287	
RX : 6973748	
34025.000000cm	
6973845	
6973881	34025
TX : 5000287	
RX : 6973911	
34028.000000cm	
6974007	34028
6974038	34028
TX : 5000287	
RX : 6974069	
34030.000000cm	
6974163	
6974196	34030
TX : 5000287	
RX : 6974227	
34033.000000cm	
6974321	34033
6974356	34033
TX : 5000287	
RX : 6974385	
34036.000000cm	
6974478	
6974510	34036
TX : 5000287	
RX : 6974541	
34038.000000cm	
6974664	
6974698	34038
TX : 5000287	
RX : 6974730	
34042.000000cm	
6974824	
6974857	34042
TX : 5000287	
RX : 6974889	
34044.000000cm	
6974986	
6975018	34044

03 | 시연

04 | 질의응답

