Теория функций комплексного переменного

Конспект лекций. Автор: Темплин К.Э (qnbhd)

Содержание

1	Осн	новные сведения о комплексных числах	3
	1.1	Введение	3
	1.2	Геометрическая интерпретация	4
	1.3	Тригонометрическая форма	5
	1.4	Экспоненциальная форма	6
		1.4.1 Тождество Эйлера	6
		1.4.2 Запись числа	7
2	Множества точек комплексной плоскости		8
3	Рец	шение уравнений	8
4	Дис	фференцируемость	9
5	Инт	гегрирование	10
6	Инт	тегральная теорема Коши	12
7	Teo	орема об обратной функции	13

1 Основные сведения о комплексных числах

1.1 Введение

Определение. Комплексным числом назовем пару $(x,y) \in \mathbb{R}$, и обозначим как z = x + iy.

Определение. *Мнимой единицей* назовем такое число i, что $i^2 = -1$.

Определение. Действительной частью комплексного числа z = x + iy назовем x и обозначим как $\Re(z) = x$

Определение. *Мнимой частью* комплексного числа z = x + iy назовем y и обозначим как $\Im(z) = y$

Определение. Суммой двух комплексных чисел назовем такую бинарную операцию, что

$$+ : \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$$

$$+ : (z_1 = x_1 + iy_1, z_2 = x_2 + iy_2) \longrightarrow x_1 + x_2 + i(y_1 + y_2)$$

Определение. Произведением двух комплексных чисел назовем такую бинарную операцию, что

$$: \mathbb{C} \times \mathbb{C} \mapsto \mathbb{C}$$

$$: (z_1 = x_1 + iy_1, z_2 = x_2 + iy_2) \longrightarrow x_1 x_2 - y_1 y_2 + i(x_1 y_2 + x_2 y_1)$$

Определение. Modynem комплексного числа назовём $|z|=\sqrt{x^2+y^2}$

Определение. Сопряженным числом назовём z*=x-iy

 \triangleright Основным свойством сопряженного числа является то, что при умножении z на z^* получаем действительное число. $z^*z=|z|^2$

Предположим, что нам необходимо решить уравнение $zz_1=z_2$. Домножим обе части на z^* . Тогда

$$zz_1z_1^* = z_2z_1^*$$

Отсюда

$$z = \frac{z_2 z_1^*}{|z_1|^2}$$

Такую операцию называют делением комплексных чисел.

Пример. Поделим два числа $z_1 = 2 - 5i \ u \ z_2 = -3 + 4i$

$$\frac{2-5i}{-3+4i} = \frac{(2-5i)(-3-4i)}{25} = \frac{7i-26}{25}$$

1.2 Геометрическая интерпретация

Комплексные числа изображаются на плоскости $(\Re\{z\},\Im\{z\})$ как радиус-векторы из начала координат. Соотвественно, сложением комплексных чисел соответствует сложению векторов.

Рис. 1: Изображено комплексное число 2+3i

Также комплексные числа записываются в **тригонометрической форме** (переход к полярной системе координат)

1.3 Тригонометрическая форма

Обозначим φ как угол между вектором и положительным направлением $\Re\{z\}$, а r - длиной вектора.

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \tag{1}$$

$$z = r(\cos\varphi + i\sin\varphi)$$

Определение. *Аргументом* комплексного числа назовем φ .

$$\arg z = \varphi \in (-\pi; \pi)$$

Теорема. (Формула Муавра) гласит, что:

$$(\cos\varphi + i\sin\varphi)^n = \cos n\varphi + i\sin n\varphi$$

Следствие.

$$z^n = |z|^n (\cos n\varphi + i\sin n\varphi)$$

Следствие.

$$\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right)$$
$$k = 0, \dots, n - 1$$

- \triangleright Отсюда следует, что корней из комплексного числа степени n имеется всего n штук.
- \triangleright Эти корни на комплексной области образуют правильный n-угольник. Также вспомним основную теорему алгебры.

Определение. (Основная теорема алгебры) Всякий многочлен, степень которого не меньше единицы, имеет хотя бы один корень, в общем случае комплексный.

Следствие. Любой многочлен $p(z) = a_n z_n + a_{n-1} z^{n-1} + \dots + a_0$ степени $n > 1, a_n \neq 0$ представим в виде:

$$p(z) = a_n \prod_{i=0}^{s} (z - z_i)^{k_i}$$

1.4 Экспоненциальная форма

1.4.1 Тождество Эйлера

Рассмотрим такой объект, как мнимая экспонента:

$$f(\theta) = e^{i\theta}$$

Этот объект проще всего понимать, как сумму ряда Тейлора. Данный ряд сходится очень быстро. (по признаку Даламбера)

$$f(z) = e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

$$f(x) = 1 + i\frac{\theta}{f'} + \frac{i^2\theta^2}{2!} + \frac{i^3\theta^3}{3!} + \dots$$

Коэффициенты этого ряда обладают некоторой периодичностью. (Из-за того, что $i^2=-1, i^3=-i, i^4=1,\ldots$). Похожей периодичностью обладают функции синуса, косинуса. Сгруппируем действительные и мнимые члены ряда:

$$f(\theta) = \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots\right)$$

Можно заметить что первая скобка соответствует $\cos z,$ а вторая $i\sin z.$ Остюда получим, что

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

В частности, при $\varphi = \pi$

$$e^{i\pi} = -1$$

Это называется тождеством Эйлера.

1.4.2 Запись числа

Из тождества Эйлера следует, что любое комплексное число можно представить в виде:

$$z = |z|e^{i\theta}$$

Легко определяются операции сложения и умножения комплексных чисел:

$$z_1 z_2 = |z_1|e^{i\theta_1}|z_2|e^{i\theta_2} = |z_1||z_2|e^{i(\theta_1 + \theta_2)}$$

Также из тождества Эйлера следуют формулы:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$e^{-i\theta} = \cos\theta - i\sin\theta$$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

2 Множества точек комплексной плоскости

1. **Прямая** задается уравнением Ax + By + C = 0

$$z = x + iy, \ \overline{z} = x - iy$$
$$x = \frac{z + \overline{z}}{2}, \ y = \frac{z - \overline{z}}{2i}$$

Подставляя в уравнение окружности, получаем уравнение прямой в комплексной форме:

$$\bar{M}z + M\bar{z} + C = 0$$

Где
$$M = \frac{A}{2} + i\frac{B}{2}$$

2. **Окружность** задается уравнением $Ax^2 + Ay^2 + Bx + Cy + F = 0$ В комплексной форме задаётся как:

$$Az\bar{z} + \bar{M}z + M\bar{z} + F = 0$$

Где
$$M = \frac{B}{2} + i\frac{C}{2}$$

Прямую можно воспринимать как окружность бесконечно-большого радиуса.

3 Решение уравнений

Допустим нам необходимо решить уравнение:

$$z^n = w$$

при $z \neq 0$ решение для $w = \rho e^{i\alpha}$

$$\sqrt[n]{\rho} \exp\left(i\frac{\alpha + 2\pi k}{n}\right)$$

Корень, как можно заметить является функцией - многозначной. Вообще, говоря в данном выражении мы выбираем $k=0,\ldots,n-1$, хотя можно выбрать любые n подряд идущих чисел.

Будет отделять корень многозначный от обычного фигурными скобками:

$$\{\sqrt[n]{w}\}$$

Рассматривая тригонометрические функции можно выбрать один из способов введения данных функций.

Например, можно просто по определению сказать:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

Все формулы тригонометрии для них работают, правда не совсем корректно доказывать в таком случае данные свойства. Но тоже рабочая версия. С другой стороны можно ввести данные понятия просто через сумму ряда Тейлора.

Если нам необходимо решить уравнение вида:

$$e^z = w$$

причем w=0 нас неособо интересует. Применяя экспоненциальное представление, получаем такое решение:

$$z = \ln \rho + i(\alpha + 2\pi k)$$

Будем обозначать комплексный логарифм символом $\operatorname{Ln} z$

$$\operatorname{Ln} z = \ln|z| + i(\arg z + 2\pi k)$$

4 Дифференцируемость

Вообще, большинство определений в комплексном анализе, связанном с дифференцированием повторяют определения из анализа ФНП. В данном конспекте не будет хорошего доказательства теорем, но будут примерные описания их. Будем концентрироваться на выводах, которые мы получаем для решения задач.

Определение. Функция f(z) = u(x,y) + iv(x,y) называется дифференцируемой, тогда и только тогда, когда дифференцируемы функции u,v а также выполняются так называемые условия **Коши-Римана**

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Данное утверждение доказывается в обе стороны. Применяется следующее опредение дифференцируемости из анализа:

$$f(z+h) = Ah + O(h), h \rightarrow 0$$

$$u(x+h,y+k) = u(x,y) + Ah + Bk + O(\sqrt{h^2 + k^2}), h, k \to 0$$

Определение. Функция называется **голоморфной** (регулярной) в некоторой точке, если она непрерывна и дифференцируема в некоторой окрестности данной точки.

Определение. Функция называется **голоморфной** (регулярной) в некоторой области D - если она голоморфна в каждой точке данной области.

Область - открытое множество, а следовательно ее границы не включаются.

Если функция голомофорфна, то её лаплассианы вещественной и мнимой части равны нулю. То есть функции удовлетворяют уравнению Лапласа:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Или $\Delta u = 0$, $\Delta v = 0$

Интересный пример связан с функцией $f(z) = \bar{z}$. Для неё не выполняются условия Коши-Римана. Более того, с помощь подстановок

$$x = \frac{z + \bar{z}}{2}, \ y = \frac{z - \bar{z}}{2i}$$

Можно убедиться в том, что если в функции содержится \bar{z} тогда функция не будет дифференцируемой.

 \triangleright В заданиях на использование условий Коши-Римана часто необходимо перейти к виду f(z) от вида u+iv для этого также используются данные подстановки. Что примечательно, сопряженные слагаемые должны уйти \bar{z} . А если не уйдут функция не удовлетворяет условиям Коши-Римана.

5 Интегрирование

Если каждая функция u, v комплексной функции f(t) = u(t) + iv(t) является зависимой от действительной переменной, а $t \in [a;b]$, то вообще говоря интеграл от данной функции:

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt$$

Доказывается оценочное утверждение:

Теорема.

$$\left| \int_{a}^{b} f(t)dt \right| \le \int_{a}^{b} |f(t)|dt$$

Но в курсе чаще всего работают с другими интегралами. Это так называемые контурные интегралы.

Пусть у нас есть кусочно-гладкая кривая γ (непрерывная, имеет конечное число участков гладкости, непрерывную производную, которая не обращается в ноль) тогда имеет смысл интеграл:

$$\int_{\gamma} f(z)dz$$

Дадим определение данному интегралу. Пусть наша кривая запараметризована. То есть она описывается функцией z=z(t) причём $t\in [\alpha;\beta]$. Тогда:

$$\int_{\gamma} f(z)dz = \int_{\alpha}^{\beta} f(z(t))z'(t)dt$$

И для данного интеграла справедлива следующая оценка:

Теорема.

$$\left| \int_{\gamma} f(z)dz \right| \le \int_{\gamma} |f(z)||dz|$$

Рассмотрим пример:

$$\oint_{\omega_R} \frac{dz}{(z-a)^k}$$

где
$$\omega_R = \{z : |z - a| = R\}$$

► Если кривая - замкнута, интеграл пишут с кружочком по середине. Также на нем иногда обозначают направление. По умолчанию, будем считать, что направление против часовой стрелки.

Первым делом нужно запараметризовать нашу кривую. Сделаем замену переменной:

$$z = a + Re^{it}$$

где $t \in [0; 2\pi]$. Тогда дифференциал:

$$dz = Rie^{it}dt$$

Значит, наш интеграл равен интегралу

$$I = \int_{0}^{2\pi} \frac{Rie^{it}dt}{(Re^{it})^k} = \frac{i}{R^{k-1}} \int_{0}^{2\pi} e^{it(k-1)}dt$$

при k=1 этот интеграл равен $2\pi i$, а иначе он равен 0.

Рассмотрим также ещё один пример:

$$I = \oint_{C_R} \frac{P_n(z)}{Q_m(z)} dz$$

Где $C_R = \{z : |z| = R\}$. А $m \ge n + 2$. Докажем, что он стремится к нулю при $R \to +\infty$. Для начала заметим, что корни знаменателя могут попасть на границу контура. Но мы всегда можем найти такую окружность, которая накроет все корни знаменателя, ведь их конечное число.

Используя оценку:

$$|I| \le \int_{C_R} \frac{|P_n(z)|}{|Q_m(z)|} |dz|$$

Используя свойство $|a+b| \geq ||a|-|b||$. А также, зная что $z \leq R$. В пределе при $R \to +\infty$ будем получать ноль, так как степень знаменателя как минимум на 2 больше степени знаменателя.

Справедливо следующее утверждение:

$$\oint_{\gamma} \frac{dz}{z-a} = 2\pi i k, \ k \in \mathbb{Z}$$

6 Интегральная теорема Коши

Данная теорема является одной из фундаментальных теорем комплексного анализа. Теорема доказывается постепенно, начиная с простых случаев, например сначала рассматривается выпуклая область, а в ней рассматривается контур, представляющий собой треугольник (**Лемма Гурса (Goursat)**). Рассматриваются оценки и интеграл по абсолютной величине всегда становится меньше некоторого произвольного ε . Сформулируем теорему без доказательств:

Теорема. Если функция f(z) голоморфна в односвязной области γ , ограниченной замкнутым контуром L, а также в точках этого контура, тогда:

$$\oint_{\gamma} f(z)dz = 0$$

7 Теорема об обратной функции

Теорема. Если f(z) голоморфна в области D, f'(z) непрерывна в данной области, а также $f'(z_0) \neq 0$. А $f(z_0) = w_0$. Тогда $\exists O_{\delta}(w_0) : f^{-1}(w), \exists O_{\varepsilon}(z_0)$. Тогда $\forall w \in O_{\delta}(w_0) \ g(w) \in O_{\varepsilon}(z_0)$. Где

$$g(w) = f^{-1}(w)$$

$$g'(w) = \frac{1}{f'(z)}$$

Рассмотрим пример:

Пусть $f(z)=z^2$ а наша область - 1<|z|<2 - кольцо. Посмотрим во что переходит данная область при таком отображении f. Изначально, $z=\rho e^{i\varphi}$, где $\rho\in(1;2)$, а $\varphi\in[0;2\pi]$. При отображении:

$$z^2 = \rho^2 e^{2i\varphi}$$

$$\rho^2 \in (1;4), \ 2\varphi \in [0;4\pi]$$

Как видим, область также перешла в кольцо, но оно как было пройдено 2 раза. Значит, нет взаимной однозначности. Пример

$$\left(\frac{3}{2}i\right)^2 = -\frac{9}{4} = \left(-\frac{3}{2}i\right)^2$$

Определение. Функция f(z) называется однолистной в области G, если $\forall z_1, z_2 \in G$ причём $z_1 \neq z_2$ выполняется $f(z_1) \neq f(z_2)$

В предыдущем примере, как видно, функция таковой не является.