

Design of a diagnosis and follow-up platform for patients with chronic headaches

Kiani Lannoye & Gilles Vandewiele

Supervisors: prof. dr. ir. Sofie Van Hoecke, dr. ir. Vincent Keereman Counsellor: ing. Olivier Janssens

Faculty of Engineering and Architecture

Intro

Current process Ghent University Hospital

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

2 / 53

Headaches

Headaches

(Headaches)

Headaches

Headaches

Initial call for appointment

Headache Patient

UH Secretary

Intro

Current process Ghent University Hospital

Current process at Ghent University Hospital is:

- ► Not digital
- cumbersome
- ► time consuming

So there is need for a better (digital) alternative! This alternative has to:

- ▶ capture at least the same information as current solution
- ▶ be more efficient.
- ▶ support doctors in forming a diagnosis

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

Platform requirements

Intro

Platform requirements

Mobile application Chronicals

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

Mobile application 9 / 53

Mobile Application

Mobile application 10 / 53

Mobile application 10 / 53

Why create a new application?

Competition

- ► Migraine Buddy
- ► Headache Diary
- ► Pfizer headache journal

Mobile application 11 / 53

Why create a new application?

Competition

- ► Migraine Buddy
- ► Headache Diary
- ► Pfizer headache journal

All good, but:

Mobile application 11 / 53

Why create a new application?

Competition

- ► Migraine Buddy
- ► Headache Diary
- ► Pfizer headache journal

All good, but:

- ▶ none captures all data needed
- ▶ none offers usable data export

Mobile application 11 / 53

Cross platform vs Native

	Native	Cross-platform
+	+ Native UX	+ 1 language
	+ device-specific features	+ Write once, run everywhere
	+ Better performance	+ Less maintenance
-		- Slower (lower performance)
	- Multiple languages	- Less device specific
	- Time consuming	features
	(development)	- Harder to release online
		(Play Store/App Store)

Mobile application 12 / 53

Cross platform vs Native

	Native	Cross-platform
+	+ Native UX	+ 1 language
	+ device-specific features	+ Write once, run everywhere
	+ Better performance	+ Less maintenance
-		- Slower (lower performance)
	- Multiple languages - Time consuming	- Less device specific
	- Time consuming	features
	(development)	- Harder to release online
		(Play Store/App Store)

Mobile application 12 / 53

ARCHITECTURE

Chronicals

ARCHITECTURE

Chronicals

Chronicals

ARCHITECTURE

Chronicals

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

Backend and data exposure

Backend and data exposure

Backend and data exposure

Components

- ► Database
- ▶ Connection to App
- ► Connection to Doctor Dashboard
- ► Connection Machine learning module

System

System

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

Machine learning 19 / 53

FACULTY OF ENGINEERING AND ARCHITECTURE

Machine learning

Machine learning 20 / 53

ACULTY OF ENGINEERING AND ARCHITECTURE

Machine learning

Machine learning 20 / 53

1. Introduction

Why white box models? - Flaws of current approaches

2. Decision tree merging

Merging decision trees in a single, interpretable tree

3. Genetic approach

Meta-heuristic to find optimal merging combination

4. Evaluation

Used datasets - Results - Our headache dataset

Machine learning 21 / 53

Machine Learning

Decision support (\neq decision making) \Rightarrow White box model

Possible models

- ▶ Decision trees
- ► Random Forests (Gray box)
- ► Bayesian networks

Machine Learning

Decision support (\neq decision making) \Rightarrow White box model

Possible models

- ▶ Decision trees
- ► Random Forests (Gray box)
- ► Bayesian networks

Many different DT induction algorithms

→ Which tree is the most beautiful?

Machine learning Introduction 23 / 53

Current ensembles lack interpretability

Boosting, bagging, random forests, etc. require majority voting (classification) or mean calculation (regression) to obtain prediction

Machine learning Introduction 24 / 53

Current ensembles lack interpretability

The final decision tree obtained by **stacking** contains uninterpretable internal nodes

Machine learning Introduction 25 / 53

ARCHITECTURE

An ensemble technique WITH interpretability

Current ensemble techniques - Lack comprehensibility - Combine algorithms - Increase classification Convert to Convert to performance Decision Space Decision Space Calculate intersection Convert to Decision Tree Prune

Decision tree \rightarrow decision space

Converting decision trees to decision spaces

We can define a one-to-one mapping between a decision tree and a set of k-dimensional hyperplanes (k = # features), called **decision space**. Each node in the decision tree corresponds to a hyperplane in the decision space.

Decision tree \rightarrow decision space

Machine learning Decision tree merging 28 / 53

FACULTY OF ENGINEERING AND ARCHITECTURE

Merging decision spaces

FACULTY OF **ENGINEERING AND ARCHITECTURE**

Merging decision spaces

Machine learning Decision tree merging 29 / 53

FACULTY OF ENGINEERING AND ARCHITECTURE

Pruning decision spaces

Machine learning Decision tree merging 29 / 53

FACULTY OF **ENGINEERING AND ARCHITECTURE**

Pruning decision spaces

Machine learning Decision tree merging 29 / 53

Decision space \rightarrow decision tree

Converting decision spaces to decision trees

One-to-one mapping from decision tree to space is gone because the order is lost during conversion from DT to DS. Therefore, a **heuristic** approach must be taken, identifying **hyperplane candidates** and calculating a metric to choose the 'best' plane.

ARCHITECTURE

Decision space \rightarrow decision tree

Machine learning Decision tree merging 31 / 53

FACULTY OF **ENGINEERING AND**ARCHITECTURE

${\sf Decision \ space} \to {\sf decision \ tree}$

Machine learning Decision tree merging 31 / 53

Decision space \rightarrow decision tree

Finding 'best' candidate hyperplane

Apply metric function to each plane, these include:

- ▶ information gain and Gini
- ▶ pick plane from most correlated feature
- ▶ pick plane that divide space in two most equal subspaces
- combination

FACULTY OF **ENGINEERING AND ARCHITECTURE**

RECAP

Current ensemble techniques

- Combine algorithms
- Increase classification performance
- Lack comprehensibility

But which decision trees to merge?

Many different algorithms → Trying all combinations takes time

 \rightarrow Genetic algorithms to the rescue!

FACULTY OF ENGINEERING AND ARCHITECTURE

FACULTY OF ENGINEERING AND ARCHITECTURE

Splitting the data

Generate different decision trees

Machine learning Genetic algorithm 37 / 53

FACULTY OF ENGINEERING AND
ARCHITECTURE

Generate different decision trees

Machine learning Genetic algorithm 38 / 53

Genetic merging

Damulatian Damles

PopulationRanker

Fitness function

A high accuracy is the most important property of a decision tree, followed by its' size (\rightarrow comprehensibility). Genetic algorithms are well suited for **multi-objective optimization**.

Machine learning Genetic algorithm 40 / 53

Final iteration

Evaluating our algorithm

5 datasets from UCI optimal parameters, feature selection when needed and k-fold CV

Name	#Samples	#Disc	#Cont	#Class	Imbalance rate
Heart	270	7	6	2	0.058
Car	1728	6	0	4	0.225
Iris	150	0	4	3	0
Shuttle	14500	0	9	7	0.18308
Nursery	12960	8	0	5	0.1498

Machine learning Evaluation 42 / 53

ARCHITECTURE

C4.5 **CART QUEST Folds** Genetic Dataset 0.8067 0.8067 5 0.78440.7844Heart disease 10 0.8104 0.7732 0.7881 0.7993 3 0.9533 0.9467 0.9467 0.96 Iris 5 0.9467 0.9333 0.9467 0.9533 3 0.9722 0.9693 0.9229 0.9693 Cars 5 0.9711 0.9682 0.9241 0.9786 10 0.9756 0.9751 0.9265 0.9803 3 0.99870.99830.9964 0.9988 Shuttle 5 0.99860.9981 0.9962 0.998810 0.9990 0.99870.99410.9992 3 0.98900.9431 0.91470.9914 5 Nursery 0.9918 0.9498 0.9251 0.99580.9568 0.9954 10 0.9937 0.9259

ARCHITECTURE

Accuracy on nursery dataset using 10 folds

Headache dataset

- ► Extract features from the collected headache data
- ▶ Run the proposed algorithm to obtain a decision tree
- Visualize the decision tree in the doctor dashboard to support doctors

Machine learning Evaluation 44 / 53

FACULTY OF ENGINEERING AND
ARCHITECTURE

Headache dataset

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

Doctor dashboard 46 / 53

FACULTY OF ENGINEERING AND
ARCHITECTURE

Doctor dashboard

Doctor dashboard 47 / 53

Doctor dashboard

ARCHITECTURE

Doctor dashboard 47 / 53

Doctor Dashboard

- ► Web application in order for the doctors to access the data exposed by our REST API
- ► Preferably in the form of visualizations, which allow to process a lot of data in a small amount of time
- ► Developed by Maarten Vanden Berghe

Doctor dashboard 48 / 53

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

Conclusion

The current process in the UH of Ghent can be completely digitized:

- ► Collect information using a mobile application
 - → More efficient than paper calendars
- ▶ Present the data through a web application
 - → Visualizations allow to process a lot of information quickly

This leads to an increased efficiency and reduced frequency of consults, resulting in lower health care costs.

Conclusion & future work 50 / 53

Conclusion

A new ensemble technique was developed and tested on very varying datasets:

- ► increases classification performance
- preserves excellent interpretability in contrast to current ones
 - ightarrow Can easily be visualized

When a higher number of headache patients are registered in our system, the resulting decision tree can be used to support physicians in forming a diagnosis

Conclusion & future work 51 / 53

Future work

- ► Develop native applications for iOS and Android to enhance look-&-feel
- ► Re-evaluate our machine learning models on a larger headache dataset
- ► Implement more induction algorithms and ensemble techniques to create a more diverse initial population
- ► Experiment with other selection techniques and fitness functions
- ► Optimize the heuristic approach to convert decision spaces to decision trees

Conclusion & future work 52 / 53

Thank you for your attention!

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work