

Composants mécaniques normalisés II

Clavettes, anneaux élastiques & segments d'arrêt, joints toriques

Dr. S. Soubielle

Dans ce cours, nous allons...

... Définir les composants d'assemblage usuels suivants :

- ... Clavettes
- ... Anneaux élastiques et segments d'arrêt
- ... Joints toriques

... Pour chaque type de composant, nous préciserons

- ... Les variantes et caractéristiques
- ... Les fonctions techniques et règles d'intégration
- ... Les dimensions normales (selon les normes)

Clavettes parallèles - DIN 6885-1 (1/4)

- Variantes de formes principales
 - Forme A → Forme de base
 - Forme C → Avec un trou lisse lamé
 - Forme E → Avec deux trous lisses lamés
 + un trou taraudé central

Fonction technique
 transmission de couple

(= Liaison arbre-moyeu en rotation)

- Interfaces dans arbre et moyeu
 - Logement oblong dans l'arbre (fraisage)
 - Rainure axiale dans l'alésage (brochage)

Clavettes parallèles – DIN 6885-1 (2/4)

Dimensions de la clavette, du logement, et de la rainure

Diamètre de l'arbre Cla		Clav	vette	Plage de]€	eu	F	Profondeur	de la rainur	re	
	d	ь	h	longueurs		5	Ar	bre	Mo	yeu	
au-des- sus de	jusqu'à	h9	□ h9 □ h11	L	min	max	t_1	Ecarts	t ₂	Ecarts	d ₁ ¹)
6 8 10	8 10 12	2 3 4	2 3 4	6 20 6 36 8 45	0,2 0,2 0,3	0,42 0,42 0,53	1,2 1,8 2,5	+0,1	1 1,4 1,8	+0,1	d + 2,5 d + 3,5 d + 4
12 17 22	17 22 30	5 6 8	5 6 7	10 56 14 70 18 90	0,3 0,3 0,3	0,53 0,53 0,79	3 3,5 4		2,3 2,8 3,3	0	d+5 d+6 d+8
30 38 44	38 44 50	10 12 14	8 8 9	22 110 28 140 36 160	0,3 0,3 0,3	0,79 0,79 0,79	5 5 5,5		3,3 3,3 3,8		d+8 d+8 d+9
50 58 65	58 65 75	16 18 20	10 11 12	45 180 50 200 56 220	0,3 0,4 0,4	0,79 0,91 0,91	6 7 7,5	+0,2	4,3 4,4 4,9	+0,2	d+11 d+11 d+12
75 85 95	85 95 110	22 25 28	14 14 16	63 250 70 280 80 320	0,4 0,4 0,4	0,91 0,91 0,91	9 9 10		5,4 5,4 6,4		d + 14 d + 14 d + 16

© Extrait de Normes 2018, p. 277, Fig. 277/1, Fig. 277/3, Tableau 277/1

Liste des longueurs normales L (en mm)

6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 56, 63, 70, 80, 90, 100, 110, 125, 140, 160, 180, 200, 220, 250, 280, 320

Clavettes parallèles - DIN 6885-1 (3/4)

Longueur du logement dans l'arbre

© Extrait de Normes 2018, p. 277, Tableau 277/2

Domaines de	s longueurs	6 28	32 80	90 320
Consta	Longueur de la rainure	+0,2 / 0	+0,3 / 0	+0,5 / 0
Ecarts	Longueur de la clavette	0 / -0,2	0 / -0,3	0 / -0,5

Largeur de la rainure (alésage) et du logement (arbre)

Largeur de rain	ure b	clavetage libre	clavetage léger	clavetage serré
Talámana	Arbre	H9	N9	P9
Tolérance	Alésage	Н9	JS9	P9

© Extrait de Normes 2018, p. 277, Tableau 277/3

- Quel clavetage choisir?
 - Clavetage libre

Jeu angulaire arbre / moyeu

- → Adapté aux faibles charges (sinon... ↑)
- Clavetage serré
 - → Adapté aux fortes charges
 - → Mais démontage compliqué → → → → → → →
 - → Privilégier forme E (démontage avec vis)

Clavettes parallèles – DIN 6885-1 (4/4)

Exercice d'application

On considère la portée Ø20g6 d'un arbre de transmission, équipé d'une clavette DIN 6885-A de longueur nominale 32 mm.

Sachant que le clavetage est léger, effectuer la cotation du logement de clavette dans l'arbre au moyen des deux vues ci-dessous.

Anneaux élastiques / Circlips (1/4)

Variantes de forme

- Pour arbres DIN 471
- Pour alésages DIN 472

Montage et fonction technique

- Montage axial, avec pince spéciale
- Fonction technique = Arrêt axial

© Extrait de Normes 2018, p. 282, Fig. 282/1

S. Soubielle

7

Anneaux élastiques / Circlips (2/4)

Pour arbres – dimensions normales (en mm) →

Cot	es nomina	les	Dime	ensions du	circlip		Dimensions de	la rainu	re	Limite de charge F_N de
Diamètre de l'arbre d ₁	Epaisse s	Écart admissible	b ≈	d ₃	d ₄		d ₂ Classes de tolérances	m ²)	n min.	la rainure kN max
12 14 15	1	admissible	1,8 2,1 2,2	11 12,9 13,8	19 21,4 22,6	11,5 13,4 14,3	0	1,1	0,8 0,9 1,1	1,53 2,15 2,66
16 17			2,2 2,3	14,7 15,7	23,8 25	15,2 16,2	-0,11 (h11)	*,*	1,2	3,26 3,46
18 20 22	1,2		2,4 2,6 2,8	16,5 18,5 20,5	26,2 28,4 30,8	17 19 21	0 -0,13 (h11)	1,3	1,5	4,58 5,06 5,65
25		0 -0,06	3	23,2	34,2	23,9	0		1,7	7,05
28 30			3,2 3,5	25,9 27,9	37,9 40,5	26,6 28,6	-0,21 (h12)	16	2,1	10 10,73
32 35	1,5		3,6 3,9	29,6 32,2	43 46,8	30,3 33		1,6	2,6	13,85 17,8
36			4	33,2	47,8	34	0 -0,25		3	18,33
40 45	1,75		4,4 4,7	36,5 41,5	52,6 59,1	37,5 42,5	(h12)	1,85	3,8	25,3 28,6
50 55 60	2		5,1 5,4 5,8	45,8 50,8 55,8	64,5 70,2 75,6	47 52 57		2,15		38 42 46
65 70		0 -0,07	6,3 6,6	60,8 65,5	81,4 87	62 67	0 -0,3 (h12)	2.65	4,5	49,8 53,8
75 80	2,5		7 7,4	70,5 74,5	92,7 98,1	72 76,5	(112)	2,65		57,6 71,6
85 90		0	7,8 8,2	79,5 84,5	103,3 108,5	81,5 86,5	0	2.15	5,3	76,2 80,8
95 100	3	-0,08	8,6 9	89,5 94,5	114,8 120,2	91,5 96,5	-0,54 (h13)	3,15		85,5 90

Anneaux élastiques / Circlips (3/4)

Pour alésages – dimensions normales (en mm) ->

Co	tes nomina	ales	Dime	nsions du	circlip		Dimensions de la rainure			
Diamètre d'alésage d ₁	Epaisso s	eur du circlip	b	<i>d</i> ₃	d ₄		d ₂	m ²)	п	charge F _N de la rainure kN
		Écart. admiss.	*				Classes de tolérances	H13	min	max.
28 30 32	1,2		2,9 3 3,2	30,1 32,1 34,4	17,9 19,9 20,6	29,4 31,4 33,7	+0,21/0 (H12)	1,3	2,1 2,1 2,6	10,5 11,3 14,6
35 37	1,5	0 -0,06	3,4 3,6	37,8 39,8	23,6 25,4	37 39	+0,25	1,6	3	18,8 19,8
40 42 45 47	1,75	-0,00	3,9 4,1 4,3 4,4	43,5 45,5 48,5 50,5	27,8 29,6 32 33,5	42,5 44,5 47,5 49,5	0 (H12)	1,85	3,8	27 28,4 30,2 31,4
50 52 55 60 62	2		4,6 4,7 5 5,4 5,5	54,2 56,2 59,2 64,2 66,2	36,3 37,9 40,7 44,7 46,7	53 55 58 63 65	+0,30	2,15		40,5 42 44,4 48,3 49,8
65 68 70 72 75	2,5	0 -0,07	5,8 6,1 6,2 6,4 6,6	69,2 72,5 74,5 76,5 79,5	49 51,6 53,6 55,6 58,6	68 71 73 75 78	0 (H12)	2,65		51,8 54,5 56,2 58 60
80 85 90 95 100	3	0 -0,08	7 7,2 7,6 8,1 8,4	85,5 90,5 95,5 100,5 105,5	62,1 66,9 71,9 76,5 80,6	83,5 88,5 93,5 98,5 103,5	+0,35 0 (H12)	3,15	5,3	74,6 79,5 84 88,6 93,1
110 115 120 125 130 140 145	4	0 -0,1	9 9,3 9,7 10 10,2 10,7 10,9 11,2	117 122 127 132 137 147 152 158	88,2 93 96,9 101,9 106,9 116,5 121 124,8	114 119 124 129 134 144 149	+0,54 0 (H13) +0,63 0 (H13)	4,15	6	117 122 127 132 138 148 153 191

Anneaux élastiques / Circlips (4/4)

Exercice d'application

Soit l'arbre de transmission ci-contre, sur lequel sont montés deux pignons d'épaisseurs respectives 40,875 mm et 32,500 mm, séparés par une entretoise d'ép. 19,720 mm.

Le circlip va-t-il pouvoir se monter, sachant que la gorge à circlip dans l'arbre est conforme à l'Extrait de Normes ?

Segment d'arrêt – DIN 6799

Bd.

- Montage et fonction technique
 - Montage radial (sur arbre uniquement), sans besoin de pince spéciale
 - Fonction technique = arrêt axial
 - Valable dès arbre de Ø1
- Dimensions normales (en mm) ->

Diamètre de l'arbre Dimensions du segment						Dimensi		Limite de charge F _N de la rainure			
de	d ₁ à	d ₂ Cote nominale	d ₃ monté	S		d ₂ Ecarts		m ²) Ecarts	n min.	kN	pour d ₁
1 1,4 2	1,4 2 2,5	0,8 1,2 1,5	2,25 3,25 4,25	0,2 0,3 0,4	0,8 1,2 1,5	0/-0,04 (h11)	0,24 0,34 0,44	+0,04	0,4 0,6 0,8	0,03 0,04 0,07	1,2 1,5 2
2,5 3	3 4	1,9 2,3	4,8 6,3	0,5 0,6	1,9 2,3	-0,06 (h11)	0,54 0,64		1 1	0,1 0,15	2,5
4 5	5 7	3,2 4	7,3 9,3	0,6 0,7	3,2 4	0	0,64 0,74	+0,05	1,2	0,22 0,25	4 5
6 7 8	8 9 11	5 6 7	11,3 12,3 14,3	0,7 0,7 0,9	5 6 7	-0,075 (h11)	0,74 0,74 0,94		1,2 1,2 1,5	0,9 1,1 1,25	7 8 9
9 10	12 14	8 9	16,3 18,8	1 1,1	8 9	0 -0,09 (h11)	1,05 1,15	.0.00	1,8	1,42 1,6	10 11
11 13 16	15 18 24	10 12 15	20,4 23,4 29,4	1,2 1,3 1,5	10 12 15	0 -0,11 (h11)	1,25 1,35 1,55	+0,08	2 2,5 3	1,7 3,1 7	12 15 20
20 25 35	31 38 42	19 24 30	37,6 44,6 52,6	1,75 2 2,5	19 24 30	0 -0,13 (h11)	1,8 2,05 2,55		3,5 4 4,5	10 13 16,5	25 30 36

© Extrait de Normes 2018, p. 280, Figure 280/1 et Tableau 280/1 →

Joints toriques – ISO 3601 (1/6)

Fonction technique

- Étanchéité par séparation hermétique
- Valable pour de l'étanchéité « statique » (sans mouvement relatif entre les pièces) ou « dynamique » (avec mouvement relatif entre les pièces)

Montages possibles

- Interface cylindre / cylindre
 - Étanchéité statique et dynamique possibles
 - Usinage d'une gorge dans l'arbre ou l'alésage

Interface plan / plan

- Plutôt réservé à de l'étanchéité statique
- Usinage d'une rainure circulaire sur le plan d'une des deux pièces d'interface

Joints toriques – ISO 3601 (2/6)

Dimensions (en mm) – AS 568 / BS 1806 / ISO 3601-1

Code dimen- sionnel	Dimensions d ₁ ×d ₂	Tol. A	Tol. B	Tol.	Code dimen- sionnel	Dimensions $d_1 \times d_2$	Tol. A	Tol. B	Tol.	Code dimen- sionnel	Dimensions $d_1 \times d_2$	Tol. A	Tol. B
005 006 007 008 009 010 011 012 013 014 015	2,57 × 1,78 2,90 × 1,78 3.68 × 1,78 4,47 × 1,78 5,28 × 1,78 6,07 × 1,78 7,65 × 1,78 9,25 × 1,78 10,82 × 1,78 12,42 × 1,78 14,00 × 1,78 15,60 × 1,78	±0,13 ±0,13 ±0,13 ±0,13 ±0,13 ±0,13 ±0,13 ±0,13 ±0,13 ±0,18 ±0,23	±0,13 ±0,14 ±0,15 ±0,15 ±0,16 ±0,17 ±0,18 ±0,20 ±0,21 ±0,22 ±0,23	±0,08	210 211 212 213 214 215 216 218 219 220 221 223	18,64 x 3,53 20,22 x 3,53 21,82 x 3,53 23,39 x 3,53 24,99 x 3,53 26,57 x 3,53 28,17 x 3,53 31,34 x 3,53 32,92 x 3,53 34,52 x 3,53 36,09 x 3,53	±0,25 ±0,25 ±0,25 ±0,25 ±0,25 ±0,30 ±0,30 ±0,30 ±0,30 ±0,30 ±0,30	±0,25 ±0,27 ±0,28 ±0,29 ±0,30 ±0,31 ±0,32 ±0,35 ±0,36 ±0,37 ±0,38	±0,10	335 336 337 339 340 345 352 363 368 445 446 447	69,22 x 5,33 72,39 x 5,33 75,57 x 5,33 81,92 x 5,33 100,97 x 5,33 123,19 x 5,33 164,47 x 5,33 196,22 x 5,33 202,57 x 6,99 215,27 x 6,99 227,97 x 6,99	±0,51 ±0,51 ±0,61 ±0,61 ±0,61 ±0,71 ±0,76 ±1,02 ±1,14 ±1,14 ±1,40 ±1,40	±0,61 ±0,64 ±0,66 ±0,70 ±0,72 ±0,83 ±0,98 ±1,26 ±1,47 ±1,51 ±1,59 ±1,67
113 114 115 116 117 118 119	13,94 x 2,62 15,54 x 2,62 17,12 x 2,62 18,72 x 2, 62 20,29 x 2,62 21,89 x 2,62 23,47 x 2,62	±0,18 ±0,23 ±0,23 ±0,23 ±0,25 ±0,25 ±0,25	±0,22 ±0,23 ±0,24 ±0,26 ±0,27 ±0,28 ±0,29	Tol. A ±0,08 Tol. B ±0,09	224 226 230 240 250 260 270	40,87 x 3,53 44,04 x 3,53 50,39 x 3,53 63,09 x 3,53 94,84 x 3,53 126,59 x 3,53 126,59 x 3,53 228,19 x 3,53	±0,38 ±0,46 ±0,51 ±0,51 ±0,89 ±1,02 ±1,27	±0,42 ±0,44 ±0,48 ±0,57 ±0,79 ±1,00 ±1,26 ±1,68	±0,10	451 454 461	278,77 x 6,99 316,87 x 6,99 405,26 x 6,99	±1,52 ±1,52 ±1,91	±2,00 ±2,25 ±2,81
121 122 123 124 125 126 127	26,64 x 2,62 28,24 x 2,62 29,82 x 2,62 31,42 x 2,62 32,99 x 2,62 34,59 x 2,62 36,17 x 2,62	±0,25 ±0,25 ±0,30 ±0,30 ±0,30 ±0,30 ±0,30	±0,31 ±0,33 ±0,34 ±0,35 ±0,36 ±0,37 ±0,38	Tol. A ±0,08 Tol. B	280 326 328 329 330 332	355,19 x 3,53 40,64 x 5,33 46,99 x 5,33 50,17 x 5,33 53,34 x 5,33 59,69 x 5,33	±1,65 ±0,38 ±0,38 ±0,46 ±0,46 ±0,46	±2,49 ±0,41 ±0,46 ±0,48 ±0,50 ±0,55	±0,13	8d2		-	ød

295/1 et Tableau 295/1 © Extrait de Normes 2018, 295, Fig. ġ.

Tol.

 d_2

±0,13

±0,15

--> Dimensions pour applications de « mécanique générale »

128

129

130

±0,30

±0,38

±0.38

±0,38

39.34 x 2.62

42,52 x 2,62

±0,39

 $\pm 0,40$

 ± 0.42

±0,43

Joints toriques – ISO 3601 (3/6)

- Matières utilisées = élastomères thermoplastiques
 - NBR (Élastomère Butadiène-Nitrile)
 - Usage général, en présence d'huile ou de graisse

- Joints bon marché
- EPDM (Éthylène Propylène Diène Monomère)
 - Résistance accrue au gonflement, en présence d'eau, d'acides, de bases, de cétones, etc.

- FKM, ou Viton® (Caoutchouc Fluorocarbonate)
 - Résistance chimique élevée aux solvants et fluides chimiquement agressifs
 - Joints haut de gamme... et chers!

Joints toriques – ISO 3601 (4/6)

Profil de la gorge (interface cylindre-cylindre)

Profil de la rainure circulaire (interface plan-plan)

© Extrait de Normes 2018, p. 298, Fig. 298/1 ->

Joints toriques – ISO 3601 (5/6)

16

- Règles générales de conception
 - Rugosités de surface de la gorge et de la contre-pièce (cas arbre / alésage)
 - Surfaces latérales a, chanfrein e → Ra 1,6 et Rz 6,3
 - Diamètre du fond de rainure c → Ra 1,6 et Rz 6,3
 - Surface de contact statique $d \rightarrow Ra$ 1,6 et Rz 6,3
 - Surface de contact dynamique *d* → Ra 0,4 et Rz 1,6
 - Déformation maximale du joint (NBR)
 - Dilatation permanente du diamètre intérieur d₁ → doit rester < 6 %
 - Contraction permanente du dia. ext. d₁ + 2d₂ (écrasement) → doit rester < 3 %

--> Conditions fonctionnelles sur le diamètre de l'alésage et le diamètre en fond de gorge

Joints toriques – ISO 3601 (6/6)

Dimensions des gorges et des rainures © Extrait de Normes 2018, p. 298, Tableau 298/1

Dia- mètre de		Étanchéité dynamique							Étanchéité statique fig. 298/1 Déformation axiale, pression de l'intérieur				
section des joints toriques d ₂ ²)	Application tige fig. 297/2	Application piston fig. 297/1		deur de jorge Pneum.	Largeur de la gorge Avec 0, 1 ou 2 bagues d'appui	gorge		Char 15°	ofrein 20°	Largeur de la gorge Liquides	Largeur de la gorge Gaz/vide	Profon- deur de la gorge	
	d ₅ /d ₁₀ f7/H8	d ₄ /d ₉ H8/f7	h	h	$+0,25$ $b_1/b_2/b_3$ 0	f_{\min}	f_{max}	Z	Z	+0,2 b ₄ 0	+0,2 b ₄ 0	+0,1 h 0	
1,78	28	412	The second second	rles	2,8/4,2/5,6	0,2	0,4	1,1	0,9	3,2	2,9	1,3	
2,62	>818	>12 24		ées du ricant	3,8/5,2/6,6	0,2	0,4	1,5	1,1	4,0	3,6	2,0	
3,53	>18 38	>24 46	ou la	norme	5,0/6,4/7,8	0,4	0,8	1,8	1,4	5,3	4,8	2,7	
5,33	>38 112	>46 124	150 30	501-2 5)	7,2/9,0/10,0	0,4	0,8	2,7	2,1	7,6	7,0	4,2	
6,99	>112 400	>124 500			9,5/12,3/15,1	0,8	1,2	3,6	2,8	9,0	8,5	5,7	

- \rightarrow Les tolérances H8 / f7 pour d_4 / d_9 et f7 / H8 pour d_5 / d_{10} sont valables pour les cas d'étanchéité statique et dynamique
- → Tolérances H9 / h9 pour d₇ / d₈

Des questions?

Récapitulatif des normes utilisées

DIN 471	Anneaux d'arrêt pour arbres - Type standard et type robuste
DIN 472	Anneaux d'arrêt pour alésages - Type standard et type robuste
DIN 6885-1	Clavetages - clavettes parallèles - rainures - forme haute
DIN 6799	Bagues de frein (bagues de retenue) pour arbres
ISO 3601-1	Transmissions hydrauliques et pneumatiques — Joints toriques — Partie 1: Diamètres intérieurs, sections, tolérances et codes d'identification dimensionnelle
ISO 3601-2	Transmissions hydrauliques et pneumatiques — Joints toriques — Partie 2: Dimensions des logements pour applications générales
ISO 8015	Spécification géométrique des produits (GPS) — Principes fondamentaux — Concepts, principes et règles
ISO 80000-3	Grandeurs et unités - Partie 3: Espace et temps