Preface

These are solutions for Hungerford's Algebra text. Any theorems cited in the exercises or hints will be included.

Contents

1.1 Semigroups, Monoids, and Groups	1 Groups
1.2 Homomorphisms and Subgroups	1.1 Semigroups, Monoids, and Groups
3 1	1.2 Homomorphisms and Subgroups

Last update: 2025 May 27

Chapter 1

Groups

§ 1.1. Semigroups, Monoids, and Groups

Exercise 1.1.1. Give examples other than those in the text of semigroups and monoids that are not groups.

Exercise 1.1.2. Let G be a group (written additively), S a nonempty set, and M(S,G) the set of all functions $f:S\to G$. Define addition in M(S,G) as follows: $(f+g):S\to G$ is given by $s\mapsto f(s)+g(s)\in G$. Prove that M(S,G) is a group, which is abelian if G is.

Proof. Clearly M(S,G) is closed under addition defined as above. Assocativity can be seen as follows:

$$\begin{split} [f + (g + h)](s) &= f(s) + (g + h)(s) \\ &= f(s) + [g(s) + h(s)] \\ &= [f(s) + g(s)] + h(s) \quad \text{Since G is a group.} \\ &= (f + g)(s) + h(s) \\ &= [(f + g) + h](s). \end{split}$$

Define $\mathbf{0}: S \to G$ by $\mathbf{0}(s) = 0$, the additive identity of G. Then:

$$(f + \mathbf{0})(s) = f(s) = \mathbf{0}(s)$$

$$= f(s) + 0$$

$$= f(s)$$

$$= 0 + f(s)$$

$$= \mathbf{0}(s) + f(s)$$

$$= (\mathbf{0} + f)(s).$$

Whence $\mathbf{0} \in M(S,G)$ is the identity element. Given $f \in M(S,G)$, define $f^{-1}: S \to G$ by $s \mapsto -f(s)$. We can see:

$$(f+f^{-1})(s) = f(s) + f^{-1}(s)$$

$$= 0$$

$$= (-f(s)) + f(s)$$

$$= f^{-1}(s) + f(s)$$

$$= (f^{-1} + f)(s).$$

Thus M(S,G) is a group. If G is abelian, then:

$$(f+g)(s) = f(s) + g(s)$$

= $g(s) + f(s)$ Since G is abelian.
= $(g+f)(s)$.

Thus M(S,G) is an abelian group.

Exercise 1.1.3. Is it true that a semigroup which has a *left* identity element and in which every element has a *right* inverse is a group?

Proof. No. Consider $G = \{a, e\}$ with a binary operation defined as follows:

$$ea = a,$$

 $ae = e.$

Note that, for any $a, b, c \in G$:

$$a(bc) = bc = c,$$
$$(ab)c = bc = c.$$

Thus G is a semigroup. By construction G admits a left identity element and every element admits a right inverse. Note that G is not a group, since $ae = e \neq a$; i.e., G does not admit a right identity.

Exercise 1.1.4. Write out the multiplication table for the group D_4^* .

Exercise 1.1.5. Prove that the symmetric group on n letters, S_n , has order n!.

Proof. Starting at $1 \in S$, there are n different elements which 1 can be mapped to. For $2 \in S$, there are n-1 different elements which 2 can be mapped to (both 1 and 2 cannot be mapped to the same element, otherwise our function is not bijective). This process continues until we reach $n \in S$, which will only have one element which it can be mapped to. Thus there are n! different permutations on the set S; i.e., $|S_n| = n!$.

Exercise 1.1.6. Write out an addition table for $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ is called the **Klein four group**.

Proof.

+	(0,0)	(0,1)	(1,0)	(1,1)
(0,0)	(0,0)	(0,1)	(1,0)	(1,1)
(0,1)	(0,1)	(0,0)	(1,1)	(1,0)
(1,0)	(1,0)	(1,1)	(0,0)	(0,1)
(1,1)	(1,1)	(1,0)	(0,1)	(0,0)

Exercise 1.1.7. *** If p is prime, then the nonzero elements of $\mathbb{Z}/p\mathbb{Z}$ form a group of order p-1 under multiplication. [Hint: $[a]_p \neq [0]_p \Rightarrow \gcd(a,p) = 1$; use Introduction, Theorem 6.5] Show that this statement is false if p is not prime.

Proof. Denote the nonzero elements of $\mathbf{Z}/p\mathbf{Z}$ as $\mathbf{Z}/p\mathbf{Z}^*$. Since there are p-1 nonzero elements of $\mathbf{Z}/p\mathbf{Z}$, then $|\mathbf{Z}/p\mathbf{Z}^*| = p-1$. Moreover, since $\mathbf{Z}/p\mathbf{Z}$ is a commutative monoid under multiplication by Introduction, Theorem 6.8 and Groups, Theorem 1.5, it must be that multiplication in $\mathbf{Z}/p\mathbf{Z}^*$ is well-defined.

We must first show that multiplication is closed in $\mathbf{Z}/p\mathbf{Z}^*$. Let $[a]_p$, $[b]_p \in \mathbf{Z}/p\mathbf{Z}^*$. Suppose that $[ab]_p = [0]_p$. Then $p \mid ab$. Since $[a]_p \in \mathbf{Z}/p\mathbf{Z}^*$, we know that $[a]_p \neq [0]_p$; i.e., $\gcd(a,p)=1$. By Introduction, Theorem 6.6, it must be the case that $p \mid b$. But this contradicts the fact that $[b]_p \in \mathbf{Z}/p\mathbf{Z}^*$. Thus $[ab]_p \neq [0]_p$, giving that $\mathbf{Z}/p\mathbf{Z}^*$ is closed under multiplication.

Again, since $\mathbf{Z}/p\mathbf{Z}$ is a commutative monoid under multiplication, it must be that multiplication in $\mathbf{Z}/p\mathbf{Z}^*$ is associative. The identity element is $[1]_p \in \mathbf{Z}/p\mathbf{Z}^*$; observe that for any $[a]_p \in \mathbf{Z}/p\mathbf{Z}^*$:

$$[a]_p[1]_p = [a \cdot 1]_p$$

= $[a]_p$
= $[1 \cdot a]_p$
= $[1]_p[a]_p$.

It remains to show that each element in $\mathbb{Z}/p\mathbb{Z}^*$ has an inverse. Let $[a]_p \in \mathbb{Z}/p\mathbb{Z}^*$ be arbitrary. Then $\gcd(a,p)=1$. There exists integers r,s so that ar+ps=1. This is equivalent to $ar=ra\equiv 1\pmod{p}$. We've shown there exists some r such that $[a]_p[r]_p=[ar]_p=[1]_p=[ra]_p=[r]_p[a]_p$. Thus $\mathbb{Z}/p\mathbb{Z}^*$ is a group.

Suppose that m is a composite integer...

Exercise 1.1.8.

- (a) The relation given by $a \sim b \iff a b \in \mathbf{Z}$ is a congruence relation on the additive group \mathbf{Q} [see Groups, Theorem 1.5].
- (b) The set \mathbf{Q}/\mathbf{Z} of equivalence classes is an infinite abelian group.

Proof. (a) Our relation \sim is clearly reflexive: $a-a=0\in \mathbf{Z}$, whence $a\sim a$. If $a\sim b$, then $a-b\in \mathbf{Z}$. Since \mathbf{Z} is a group under addition, the additive inverse of a-b exists; i.e., $-(a-b)=b-a\in \mathbf{Z}$. So $b\sim a$, showing that \sim is symmetric. If $a\sim b$ and $b\sim c$, then $a-b\in \mathbf{Z}$ and $b-c\in \mathbf{Z}$. Since addition is closed under \mathbf{Z} , $(a-b)+(b-c)=a-c\in \mathbf{Z}$, giving $a\sim c$. Thus \sim is transitive, and altogether it is an equivalence relation. If $a\sim b$ and $c\sim d$, then $a-b\in \mathbf{Z}$ and $c-d\in \mathbf{Z}$. Again by the closure of \mathbf{Z} , $(a-b)+(c-d)=(a+c)-(b+d)\in \mathbf{Z}$. Thus \sim is a congruence relation, as we've shown $a+c\sim b+d$.

(b) It is routine to show that all of the group axioms are satisfied by the elements of \mathbb{Q}/\mathbb{Z} . Define $f: \mathbb{N} \to \mathbb{Q}/\mathbb{Z}$ by $n \mapsto \frac{\overline{1}}{n}$. Observe that:

$$f(n_1) = f(n_2) \implies \frac{\overline{1}}{n_1} = \frac{\overline{1}}{n_2}$$

$$\implies \frac{\overline{1}}{n_1} = \frac{\overline{1}}{n_2}$$

Define $\pi: \mathbf{Q} \to \mathbf{Q}/\mathbf{Z}$ by $q \mapsto \overline{q}$.

Exercise 1.1.9. Let p be a fixed prime. Let R_p be the set of all those rational numbers whose denominator is relatively prime to p. Let R^p be the set of rationals whose denominator is a power of p (p^1 , $i \ge 0$). Prove that both R_p and R^p are abelian groups under ordinary addition of rationals.

Exercise 1.1.10. Let p be prime and let $Z(p^{\infty})$ be the following subset of the group \mathbb{Q}/\mathbb{Z} (see pg. 27):

$$Z(p^{\infty}) = \{\overline{a_b} \in \mathbf{Q}/\mathbf{Z} \mid a, b \in \mathbf{Z}, b = p^i \text{ for some } i \geqslant 0\}.$$

Show that $Z(p^{\infty})$ is an infinite group under the addition operation of \mathbb{Q}/\mathbb{Z} .

Exercise 1.1.11. The following conditions on a group G are equivalent:

- (i) G is abelian;
- (ii) $(ab)^2 = a^2b^2$ for all $a, b \in G$;
- (iii) $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$:
- (iv) $(ab)^n = a^n b^n$ for all $n \in \mathbf{Z}$ and all $a, b \in G$;
- (v) $(ab)^n = a^n b^n$ for three consecutive integers n and all $a, b \in G$;

Show that $(v) \Rightarrow (i)$ is false if "three" is replaced by "two."

Exercise 1.1.12. If G is a group, $a, b \in G$ and $bab^{-1} = a^r$ for some $r \in \mathbb{N}$, then $b^j ab^{-j} = a^{r^j}$ for all $j \in \mathbb{N}$.

Exercise 1.1.13. If $a^2 = e$ for all elements a of a group G, then G is abelian.

Exercise 1.1.14. If G is a finite group of even order, then G contains an element $a \neq e$ such that $a^2 = e$.

Exercise 1.1.15. Let G be a nonempty finite set with an associative binary operation such that for all $a, b, c \in G$ $ab = ac \Rightarrow b = c$ and $ba = ca \Rightarrow b = c$. Then G is a group. Show that this conclusion may be false if G is infinite.

Exercise 1.1.16. Let $a_1, a_2, ...$ be a sequence of elements in a semigroup G. Then there exists a unique function $\psi : \mathbf{N}^* \to G$ such that $\psi(1) = a_1, \ \psi(2) = a_1 a_2, \ \psi(3) = (a_1 a_2) a_3$ and for $n \ge 1$, $\psi(n+1) = (\psi(n)) a_{n+1}$. Note that $\psi(n)$ is precisely the standard n product $\prod_{i=1}^n a_i$. [Hint: Applying the Recursion Theorem 6.2 of Introduction with $a = a_1, S = G$, and $f_n : G \to G$ given by $x \mapsto x a_{n+2}$ yields a function $\varphi : \mathbf{N} \to G$. Let $\psi = \varphi \theta$, where $\theta : \mathbf{N}^* \to \mathbf{N}$ is given by $k \mapsto k-1$.]

§ 1.2. Homomorphisms and Subgroups

Exercise 1.2.1. If $f: G \to H$ is a homomorphism of groups, then $f(e_G) = e_H$ and $f(a^{-1}) = f(a)^{-1}$ for all $a \in G$. Show by example that the first conclusion may be false if G, H are monoids that are not groups.

Appendix

Introduction, Theorem 6.5 If $a_1, a_2, ..., a_n$ are integers, not all 0, then $gcd(a_1, a_2, ..., a_n)$ exists. Furthermore there are integers $k_1, k_2, ..., k_n$ such that

$$\gcd(a_1, a_2, ..., a_n) = k_1 a_1 + k_2 a_2 + ... + k_n a_n.$$

Introduction, Theorem 6.6 If a and b are relatively prime integers (that is, gcd(a,b) = 1) and $a \mid bc$, then $a \mid c$. If p is prime and $p \mid a_1a_2...a_n$, then $p \mid a_i$ for some i.

Introduction, Theorem 6.8 *Let* m > 0 *be an integer and* $a, b, c, d \in \mathbb{Z}$.

- (i) Congruence modulo m is an equivalence relation on the set of integers **Z**, which has precisely m equivalence classes.
- (ii) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.
- (iii) If $ab \equiv ac \pmod{m}$ and a and m are relatively prime, then $b \equiv c \pmod{m}$.

Groups, Theorem 1.5 Let \sim be an equivalence relation on a monoid G such that $a_1 \sim a_2$ and $b_1 \sim b_2$ imply $a_1b_1 \sim a_2b_2$ for all $a_i, b_i \in G$. Then the set G/\sim of all equivalence classes of G under \sim is a monoid under the binary operation defined by $\overline{ab} = \overline{ab}$, where \overline{x} denotes the equivalence class of $x \in G$. If G is an (abelian) group, then so is G/\sim .