

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Název školy	Střední průmyslová škola elektrotechnická, Havířov, Příspěvková organizace, Makarenkova 513/1, Havířov		
Název a číslo OP	OP Vzdělávání pro konkurenceschopnost, CZ.1.5		
Název projektu	Podpora odborných kompetencí		
Registrační číslo	CZ.1.07/1.5.00/34.0946		
Název šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT		
Číslo materiálu (sady)	VY_32_INOVACE_08-08		
Název sady	Paměti RAM_4 – latence pamětí, technologie Dual Channel a další vlastnosti paměťových modulů a jejich odlišnosti		
Autor	Ing. Peter Ralbovský		
Tématický celek	Komponenty základní desky PC - Paměti RAM - typy a jejich charakteristiky		
Předmět	HARDWARE		
Ročník	4. ročník SPŠE		
Datum tvorby	Leden 2013		
Ověření ve výuce	Říjen – Listopad 2013		
Anotace	Popis významu a souvislostí mezi taktováním pamětí a jejich latencemi – vliv na celkovou rychlost přenosu dat a jejich testování, zvyšování datové propustnosti a odlišnosti jednotlivých typů z hlediska podpory chipsetu základní desky.		
Metodický pokyn	Prezentace je určena jako pomocný materiál k výkladu do 1- 2 hodin a částečně s využitím odkazů na zdroje a internetu i k samostudiu. Při výuce má každý student před sebou základní desku, paměť ové moduly a s využitím manuálu k základní desce a s ohledem na zvýšení kapacity i datové propustnosti tyto instaluje.		
Zdroje a odkazy	Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů		

Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Peter Ralbovský. Střední průmyslová škola elektrotechnická, Havířov, příspěvková organizace, Makarenkova 513/1, Havířov. Tento výukový materiál byl zpracován v rámci projektu EU peníze středním školám- OP VK, CZ.1.5.

Latence – dopravní spoždění

Latence pamětí

PC3200 2-3-4-6 1T

typ

CL-tRCD-tRP-tRAS Command

- Udává počty taktů potřebné k různým operacím, které jsou prováděny v průběhu přístupu k paměti
- Operace:
 - t_{RCD} : <u>RAS</u> to <u>CAS</u> <u>Delay</u>:
 - časová prodleva (počet taktů) od okamžiku, kdy je vybrán (aktivován) řádek do doby, kdy je možné vybrat sloupec a potvrdit jej signálem CAS
 - při sekvenčním čtení (zápisu) nemá příliš velký dopad, protože data jsou čtena (zapisována) na stejném řádku, který je stalé aktivní

- t_{CL}: <u>C</u>AS <u>L</u>atency:
 - počet taktů potřebný k získání informace z paměťové buňky poté, kdy byl vybrán její sloupec
 - uplatňuje se při každém přístupu k paměti ⇒ má největší vliv na rychlost paměti
- t_{RP} : \overline{RAS} Precharge Time:
 - počet taktů nutný pro ukončení přístupu k jednomu řádku paměti a pro zahájení přístupu k řádku jinému
 - ve spojení s t_{RCD} udává počet taktů nezbytných k přechodu z jednoho řádku paměti na řádek druhý, kde již může být vybrán požadovaný sloupec

- t_{RAS}: Active to Precharge Delay:
 - nejmenší počet taktů, po které musí být řádek aktivní, než může opět deaktivován
 - vyjadřuje minimální dobu, po kterou musí být signál RAS v aktivní úrovni
- Výše uvedené údaje bývají zapisovány ve čtyřčlenné notaci vyjadřující časování dané paměti:

 t_{CL} - t_{RCD} - t_{RP} - t_{RAS}

■ Např.: 2-3-3-6

Testy – porovnání typu a vlivu latencí

Testy – porovnání typu a vlivu latencí

- Nejedná se o nový typ paměti, ale o novou architekturu základních desek využívající paměti DDR, DDR2 a DDR3 SDRAM
- Pro práci s pamětí se využívají dva kanály
- Data jsou přenášena po 128 bitech (64 bitů pro každý kanál)
- Tímto se minimalizují doby, kdy není možné k paměti přistupovat (memory latencies)

Single Channel Memory:

Dual Channel Memory:

- Pro využití architektury Dual Channel DDR je zapotřebí:
 - čipová sada podporující Dual Channel DDR
 - paměťové moduly (DIMM) musí být osazovány po dvojicích
 - oba moduly ve dvojici musí mít stejné parametry
- Použití Dual Channel DDR teoreticky zdvojnásobuje přenosovou rychlost paměti

Dual Channel – praktické zapojení

Při použití různých typů pamětí dostáváme níže uvedené maximální přenosové rychlosti:

Typ paměti	Označení	Přenosová ryclost Single Channel	Přenosová ryclost Dual Channel
DDR200	PC1600	1600 MB/s	3200 MB/s
DDR266	PC2100	2100 MB/s	4200 MB/s
DDR333	PC2700	2700 MB/s	5400 MB/s
DDR400	PC3200	3200 MB/s	6400 MB/s
DDR2 400	PC2 3200	3200 MB/s	6400 MB/s
DDR2 533	PC2 4300	4266 MB/s	8533 MB/s
DDR2 667	PC2 5300	5333 MB/s	10666 MB/s
DDR2 800	PC2 6400	6400 MB/s	12800 MB/s
DDR2 1000	PC2 8000	8000 MB/s	16000 MB/s
DDR2 1066	PC2 8500	8500 MB/s	17000 MB/s

Typ paměti	Označení	Přenosová ryclost Single Channel	Přenosová ryclost Dual Channel
DDR3 800	PC3 6400	6400 MB/s	12800 MB/s
DDR3 1066	PC3 8500	8500 MB/s	17000 MB/s
DDR3 1333	PC3 10600	10670 MB/s	21340 MB/s
DDR3 1600	PC3 12800	12800 MB/s	25600 MB/s

Již se používá: Triple Channel a Quad Channel

Další vlastnosti modulů DIMM

- ECC(Error Checking and Correcting)
- znamená, že modul používá samoopravný kód, který dokáže zjistit a opravit jednobitovou nebo u některých typu i dvoubitovou chybu v paměti (pomocí kontrolních součtů), musí podporovat zákl. deska
- ECC nebo non-ECC.
- Registered (také Buffered Unbuffered).
 - Tyto moduly obsahují navíc speciální I/O buffery (registry), přes které jdou čtená/zapisovaná data. Účelem je zvýšení spolehlivosti přenosu dat
 - Opět nutná podpora zákl. desky
 - Označení v názvu modulu REG nebo U
- Fully-Buffered (FB-DIMM)
- Tyto paměti obsahují čip AMB(Advanced Memory Buffer), vylepšení obvodů pro buffered paměti, který je jakýmsi bezpečnostním a stabilizačním rozhraním.
- Mezi AMB a pamětmi na modulu se data přenášejí sériově, kdežto mezi AMB a paměťovou sběrnicí paralelně
- FM-DIMM moduly jsou mnohem dražší a navíc jsou nekompatibilní s běžně prodávanými základními deskami do desktopů a notebooků (jsou určeny pro servery).

KVR1333D3E9S/4G

4GB 512M x 72-Bit PC3-10600 CL9 ECC 240-Pin DIMM

DESCRIPTION:

This document describes ValueRAM's 512M x 72-bit 4GB (4096MB) DDR3-1333MHz CL9 SDRAM (Synchronous DRAM) ECC memory module, based on eighteen 256M x 8-bit DDR3-1333MHz FBGA components. The SPD is programmed to JEDEC standard latency 1333MHz timing of 9-9-9 at 1.5V. This 240-pin DIMM uses gold contact fingers and requires +1.5V. The electrical and mechanical specifications are as follows:

- Každý modul DIMM se skládá na jedné straně z osmi (v případě ECC devíti) čipů. Každý čip má datovou šířku 8 bitů a nějakou danou kapacitu udávanou běžně v Mbitech (ale někdy i v MBytech). Jak postupuje výrobní technologie, tato kapacita se zvyšuje.
- Z obr. výše se dozvíme několik podstatných věcí:
 - Modul má datovou kapacitu 4 GB.
 - Sestává z osmnácti čipů o kapacitě 256 Mbyte a datové šířce 8 bitů. Jedná se tedy o 2Gbit čipy. Protože je čipů osmnáct, je modul oboustranný.
 Ostatně 18 * 8 bitů / 2 = 72 bitů.

17

■ Jedná se o ECC modul s datovou šířkou 72 bitů. Ostatně 18 * 256 Mbyte 2013-11-158/9 = 4 GB.

Technologie: Fully Buffered FB-DIMM

Teorie skrytá za pojmem plně bufferovaného DIMM modulu není nic jiného než nahrazení současného paralelního DIMM modulu s šířkou 64 bitů sériovým rozhranním pracujícím s mnohem vyšší frekvencí.

Effects on Power

Pro's

· Increased Memory Capacity

Con's

- · More Latency
- · Increased Power

Example

32 FBDIMM modules = ~333 watts

32 DDR2 modules = ~140 watts

Perspective

FBDIMM can consume and dissipate over 236% more power & heat in contrast to RDIMM (DDR2)

 $FBDIMM = \sim 10.4 \text{ watts}$

8

FB-DIMM Solution Details

Technologie: Fully Buffered FB-DIMM

- Každý DIMM modul je vybaven další elektronikou bufferem (AMB -Advanced Memory Buffer). Tento buffer obstarává celou komunikaci modulu a zároveň také distribuuje hodinový signál do čipů.
- Celé spojení je formou point-to-point s oddělenými směry dovnitř a ven. Buffer prvního modulu je spojen s řadičem v čipsetu, buffer druhého modulu je spojen s bufferem prvního modulu, buffer třetího modulu s bufferem druhého modulu atd. Tímto způsobem může jeden kanál obhospodařovat až 8 FB-DIMMů. A to více méně bez ohledu na frekvenci.

DDR4 až na 4266 MHz. Jaké budou?

- V průběhu příštího roku chce organizace JEDEC stanovit standard pro paměti DDR SDRAM čtvrté generace, v roce 2012 má začít komerční výroba. Většina uživatelů ale na nový typ operační paměti přejde až kolem roku 2015.
- změna topologie z "multidrop" na dvoubodové spoje (point to point). To znamená, že na jeden paměťový kanál řadiče bude možné připojit pouze jeden DIMM modul.

Technologie TSV (můstky procházející skrz čipy)

Copyright (c) 2010 Hiroshige Goto All rights reserved.

Power @ Maximum Frequency

DRAM Type

Kontrolní otázky:

- Vysvětlete pojem Latence pamětí.
- Uveďte příklad latencí
- Vysvětlete souvislost mezi taktovací frekvencí a latencemi pamětí.
- Co je to Dual Channel?
- Vysvětlete nutné podmínky a princip fungování Dual Channel.
- Jak zapojíte moduly pamětí do základní desky, aby jste využili dvojnásobné přenosové rychlosti i kapacity

Kontrolní otázky:

- Co znamená označení Registered (resp.
 Buffered, Unbuffered případně REG nebo U) a kde lze použít tyto moduly
- Co prakticky znamená označení ECC na modulu a vysvětlete souvislost se základní deskou.
- Vysvětlete princip technologie Fully Buffered.

Použité zdroje:

- HORÁK, Jaroslav. *Hardware učebnice pro pokročilé*. Brno: CPRESS, 2007, ISBN 978-80-251-1741-5.
- DEMBOWSKI, Klaus. *Mistrovství v HARDWARU*. Brno: CPRESS, 2009, ISBN 978-80-251-2310-2.
- PETŘÍČEK, Lukáš. Vývoj modulů DRAM a operační paměti [online]. [cit. 16.2.2013]. Dostupný na WWW: http://www.svethardware.cz/art_doc-A6F55FA383F23A0EC1257206006DD3D3.html
- KWOLEK, Jirka. Nastavení paměti a dopad na výkon celého systému [online]. [cit. 16.2.2013]. Dostupný na WWW: http://pctuning.tyden.cz/component/content/4829?task=view&limit=1&start=2
- EAGLE. Technologie: Fully Buffered FB-DIMM [online]. [cit. 16.2.2013]. Dostupný na WWW: http://www.svethardware.cz/art_doc-78014566F350DC89C1256E9000482DDB.html
- MUMI.CZ. Vnitřní paměti [online]. [cit. 16.2.2013]. Dostupný na WWW: http://www.fi.muni.cz/usr/pelikan/ARCHIT/TEXTY/INTPAM.HTML
- CARDA, Jakub. Test tří nadupaných motherboardů s Intel P67 pro Sandy Bridge [online]. [cit. 16.2.2013]. Dostupný na WWW: http://www.fi.muni.cz/usr/pelikan/ARCHIT/TEXTY/INTPAM.HTML

2013-11-15 27