Анализ категориальных данных

Занятия 3–4. Модели бинарного выбора: тестирование, оценка качества моделей, влиятельные наблюдения

5 марта 2020

Как сравнить вложенные логистические модели?

Как сравнить вложенные логистические модели?

Ответ

Тест отношения правдоподобия (likelihood-ratio test). Тест основан на следующей статистике: $2ln(L(long)) - 2ln(L(short)), \ \text{где L} - \ \text{функция правдоподобия,} \\ long - \ \text{менее экономная модель, short} - \ \text{более экономная} \\ \text{модель (меньше параметров)}. \ \text{Статистика распределена при} \\ \text{верной H0 в соответствии с } \chi^2 \ (\text{df} = \text{k, если long model} \\ \text{содержит на k параметров больше, чем short)}. \ \Pi$ ри

отвержении Н0 предпочитаем менее экономную модель.

Назовите еще один тест, использующийся для сравнения вложенных моделей.

Назовите еще один тест, использующийся для сравнения вложенных моделей.

Этвет

Wald test. Асимптотически (при большой выборке) при тестировании одного параметра дает идентичные результаты,

как привычный нам t-test (статистика:
$$\frac{b-b}{\sqrt{\hat{Var}(\hat{b})}}$$
).

На более ограниченных по размеру выборках результаты различаются. p-value рассчитывается на основе распределения

$$\chi^2$$
, а статистика имеет вид $\frac{(\hat{b}-b)^2}{\hat{Var}(\hat{b})}$

Примечание

Когда в данном случае речь идет про более ограниченные по размеру выборки, то все равно имеется в виду, что размер выборки не менее 250-500 наблюдений, на меньшей по объему выборке оценивать логит- и пробит-модели нельзя (помним, что метод оценивания — MLE).

4/14

Меры качества модели: R^2

Для логистических моделей, так же как и для классических линейных, существуют R^2 , только они псевдо- R^2 . Они основаны на функции правдоподобия модели и НЕ могут интерпретироваться как доля объясненной вариации. Подробнее про разные варианты pseudo- R^2 можно посмотреть здесь.

Что из себя представляет confusion matrix? Как ее построить?

6/14

Что из себя представляет confusion matrix? Как ее построить?

Ответ

- Сначала нужно сохранить предсказанные моделью вероятности P(Y=1)
- **2** Далее выбрать порог отсечения: к примеру, если P(Y=1) более 0.5 отнести наблюдение к классу 1, и в противном случае к классу 0.
- Далее на основе предсказанных и наблюдаемых значений можно построить аналог таблицы сопряженности

Рассмотрим элементы confusion matrix подробнее.

Daria Salnikova AKД 5 марта 2020 7/14

Рассмотрим элементы confusion matrix подробнее.

Ответ

$$egin{pmatrix} data:Y=1 & Y=0 \\ prediction:Y=1 & TP & FP \\ prediction:Y=0 & FN & TN \end{pmatrix}$$
, где

 $\overline{\text{TP}}$ – истинно «положительные» значения (в реальности относится к классу 1 и классифицировано моделью так же)

TN – по аналогии: истинно «отрицательные» значения

FP – допущена ошибка классификатором: отнесли к классу 1 («положительные»), а на самом деле – класс 0

FN – допущена ошибка классификатором: отнесли к классу 0

(«отрицательные»), а на самом деле – класс 1

Определите по этой confusion matrix ошибку I рода, ошибку II рода и мощность критерия.

 Daria Salnikova
 AKД
 5 марта 2020
 8 / 14

Определите по этой confusion matrix ошибку I рода, ошибку II рода и мощность критерия.

Ответ

$$\begin{pmatrix} data:Y=1&Y=0\\ prediction:Y=1&TP&FP\\ prediction:Y=0&FN&TN \end{pmatrix},$$
 ошибка I рода = $P(reject|H0)=\frac{FP}{FP+TN}$ ошибка II рода = $P(NOTreject|H1)=\frac{FN}{FN+TP}$ мощность = $P(reject|H1)=\frac{TP}{FN+TP}$

 Daria Salnikova
 AKД
 5 марта 2020
 8 / 14

Чтобы confusion matrix не смогла Bac confuse:

• Когда считаете ошибку I рода, вспоминайте, что теперь массив сужается только до НО (класс 0 по ИСХОДНЫМ ДАННЫМ): отвержение при условии верной НО. Мысленно оставляйте в матрице только тот столбец, который соответствует (data: Y = 1), то есть, TN + FP. A дальше зададимся вопросом, когда допускается ошибка? FP – это, конечно, же ошибка, поэтому и получаем FP

FP + TN

По аналогии делайте и при расчете ошибки II рода: только теперь Вас интересует подмассив «класс 1»

Что такое меры чувствительности (sensitivity) и специфичности (specificity)?

Daria Salnikova AKД 5 марта 2020 10/14

Что такое меры чувствительности (sensitivity) и специфичности (specificity)?

Ответ

Когда считаем эти меры, нас всегда будет интересовать, какую долю наблюдений мы классифицировали моделью ВЕРНО (относительно исходных данных). Осталось только запомнить, что чувствительность — это про верные «положительные» наблюдения, а специфичность — про верные «отрицательные». TD

Sensitivity =
$$\frac{TP}{TP + FN}$$
; Specificity = $\frac{TN}{TN + FP}$

10 / 14

Если запомнить совсем не получается:

Если запомнить совсем не получается:

Тогда представляем ЧУВСТВИТЕЛЬНУЮ барышню, плачущую по всяким пустякам (SENSITIVITY). Наша задача — найти для нее как можно больше ИСТИННО ПОЛОЖИТЕЛЬНЫХ эмоций. То есть, sensitivity — это про true positive!

Несложно заметить, что

Sensitivity – это мощность критерия (которую мы всегда хотим максимизировать).

Specificity – это (1 - ошибка I рода), эту величину тоже хочется максимизировать.

Однако одновременно это сделать на практике сложно, для того, чтобы найти подходящее пороговое значение (насколько это возможно, максимизирующее мощность и миниминизирующее ошибку I рода) нам пригодится ROC. См. полезный интерактив с бегунком по ROC – здесь.

Еще несколько полезных мер: что такое accuracy и precision?

 Daria Salnikova
 АКД
 5 марта 2020
 13 / 14

Еще несколько полезных мер: что такое accuracy и precision?

Ответ

Ассигасу – это доля всех верно классифицированных TP + TN

наблюдений: $\frac{TP + TN}{TP + TN + FP + FN}$

Precision (точность) — это доля истинно «положительных» наблюдений от всех наблюдений, классифицированных как «положительные». То есть, в отличие от чувствительности, нужно считать долю относительно массива НЕ по исходным данным, а по предсказанным значениям: $\frac{TP}{TP+FP}$

Как определить влиятельные наблюдения?

 Daria Salnikova
 AKД
 5 марта 2020
 14 / 14

Как определить влиятельные наблюдения?

Ответ

По аналогии с классическими линейными моделями, стоит разделять

- outliers наблюдения, имеющие нетипичные значения по Y (смотрим на остатки Пирсона! (studentized Pearson residuals)).
- leverage наблюдения, имеющие нетипичные значения по X. (hat-values)
- influential observations − общая мера (учитывает как outlier, так и leverage). Определяется по мере Кука.