## 计算机科学与技术 学院

## 机器学习 课程实验报告

| 学号:                                               |       | 班级:       |
|---------------------------------------------------|-------|-----------|
| 实验题目: Linear Regression                           |       |           |
| 实验学时: 2.0                                         | 实验日期: | 2018/9/28 |
| 实验目的:                                             |       |           |
| 学习线性回归的基本算法应用,熟悉 matla 等软件的使用,锻炼解决实际问题的能力。        |       |           |
| ++-/                                              |       |           |
| 软件环境:<br>Win10 + matlabR2016a                     |       |           |
| WiniO + matiabKZ                                  | .010a |           |
| 实验步骤与内容:                                          |       |           |
|                                                   |       |           |
| 1.1 可视化数据集:                                       |       |           |
| >> load('matlab.mat')                             |       |           |
| >> x=load('ex1x.dat');                            |       |           |
| >> y=load('ex1y.dat');                            |       |           |
| >> figure                                         |       |           |
| >> plot(x,y,'o');                                 |       |           |
| >> ylabel('Height in meters');                    |       |           |
| >> xlabel('Age in years');                        |       |           |
| ☐ Figure 1                                        |       |           |
| 文件(F) 编辑(E) 查看(V) 插入(I) 工具(T) 桌面(D) 窗口(W) 帮助(H) → |       |           |
|                                                   |       |           |
|                                                   |       |           |
| 1.4                                               | 1 1   | ,         |
| 4.0                                               |       |           |
| 1.3                                               |       | 0 0       |
| 12                                                |       | . 0 0     |
| 1.2                                               | 0 000 | 0 1       |
| Height in meters                                  | 0 2 0 | o °° ]    |
| Ē                                                 |       |           |
| ght i                                             |       | _         |
| <u>ā</u>                                          | 0000  |           |
| 0.9                                               | 8     | -         |
|                                                   |       |           |
| 0.8                                               |       | -         |
|                                                   |       |           |
| 0.7 2 3 4 5 6 7 8                                 |       |           |
| 2 3 4 5 6 7 8  Age in years                       |       |           |
| rigo in youro                                     |       |           |

```
1.2 梯度下降:
 >> m=length(y);
 >> x=[ones(m,1),x];
 \rightarrow theta=zeros(2,1)
 theta =
 >> iterations=1500;
 >> alpha=0.07;
 >> computeCost(x,y,theta);
 >> theta=gradientDescent(x,y,theta,alpha,iterations);
 (其中 computeCost 和 gradientDescent 函数见文件夹或附件)
1.3 显示最优 theta 参数和可视化 J(\theta)进行预测:
 >> theta
 theta =
     0.7502
     0.0639
 >> hold on;
 >> plot(x(:,2),x*theta,'-')
 >> legend('Training data','Linear regression')
 >> hold off
 >> pre1=[1,3.5]*theta
 pre1 =
     0.9737
 >> pre2=[1,7]*theta
 pre2 =
     1.1973
Figure 1
                                              文件(F) 编辑(E) 查看(V) 插入(I) 工具(T) 桌面(D) 窗口(W) 帮助(H)
🖺 🗃 🔒 \mid 🔈 🔍 🤏 🔭 🗑 🐙 🔏 - 🗔 📗 🔡 🖿 🖽
    1.3
    1.2
  Height in meters
    1.1
    0.9
    0.8
                                      Training data
                                      Linear regression
                           5
                        Age in years
```

```
1.4 可视化 J(\theta):
 >> J vals=zeros(100,100);
 >> theta0_vals=linspace(-3,3,100);
 >> theta1_vals=linspace(-1,1,100);
 >> for i=1:length(theta0_vals)
 for j=1:length(theta1 vals)
 t=[theta0_vals(i);theta1_vals(j)];
 J_vals(i,j)=computeCost(x,y,t);
 end
 end
 >> J vals=J vals';
 >> figure;
 >> surf(theta0 vals,theta1 vals,J vals)
 >> xlabel('\theta_0');
 >> ylabel('\theta_1');
Figure 2
                                                    \times
文件(F) 编辑(E) 查看(V) 插入(I) 工具(T) 桌面(D) 窗口(W) 帮助(H)
🖺 🗃 🔒 👂 🔍 🤏 🔭 🗑 🗜 🔏 - 🗔 📗 🖽 🖿 🖽
     50
     40
     30
     20
     10
     0
         0.5
                                                 2
                                          0
                   -0.5
                                    -2
                \theta_1
                         -1 -4
                                      \theta_0
```



## 附录:程序源代码 主要算法函数:

1. compute Cost:

```
function J = computecost(x,y,theta)
%UNTITLED2 此处显示有关此函数的摘要
% 此处显示详细说明
m=length(y);
```

J = 0;

% 初始化

 $J = sum((x*theta - y).^2) / (2 * m);$ 

% 计算损失

## end

2. gradientDescent:

```
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
m = length(y);
% 样本数量
J_history = zeros(num_iters, 1);
% 记录 J 最优化的过程, (1500,1),all elements is zero
for iter = 1:num_iters
H = X * theta;
%(97,2)*(2*1)=(97,1)
T = [0 ; 0];
%(2,1),记录梯度
```

```
for i = 1 : m,
    T = T + (H(i) - y(i)) * X(i,:)';
    % (1,1)*(1*2)的转置,结果为(2,1)
end
theta = theta - (alpha * T) / m;

J_history(iter) = computeCost(X, y, theta);
    % theta带入,调用损失函数,计算损失,并记录在J_history中
end
end
```