데이터사이언스와인공지능

제주대학교 변 영 철

X

지난날짜, 키, 잎 너비, 잎 길이, 주인

1, 0, 0, 0, 1

1, 0, 0, 0, 2

1, 0, 0, 0, 3

5, 16, 28, 9, 1

5, 16, 2.8, 9, 2

5, 12, 2.9, 8, 3

7, 33, 4.5, 15, 1

7, 26, 3.8, 14, 2

7, 25, 4.5, 13, 3

10, 35, 5, 18, 1

10, 30, 4.6, 16, 2

10, 31, 5.5, 15, 3

14, 50, 6.5, 25, 1

14, 44, 5.8, 20, 2

14, 45.5, 6, 19, 3

20, 56, 6,8, 27, 1

20, 50, 6, 22, 2

20, 51, 6.5, 21, 3

지난날짜 vs. 잎 너비

스코어(score)

스코어(score)

Score =
$$1 - \frac{(\bullet - \bullet)^2}{(\bullet - \sqrt{2})^2} = 1 - \frac{10}{10} = 1 - 1 = 0$$

$$=(1-3)^{2}+(2-3)^{2}+(3-3)^{2}+(4-3)^{2}+(5-3)^{2}$$

$$=2^{2}+1^{2}+0^{2}+1^{2}+2^{2}=10$$

예측 알고리즘

Machine Learning

- KNeighborsRegressor (K-근접)
- DecisionTreeRegressor (결정 트리)
- RandomForestRegressor (랜덤 포레스트)
- Linear Regressor (선형 회귀)
- GradientBoostingRegressor (부스팅)
- XGBRegressor (부스팅)
- CatBoostRegressor (부스팅)
- NN-based LinearRegression
- MLPRegressor
- RNN/LSTM/GRU

Deep Learning

키 몸무게 발크기 학년 <mark>성</mark>별

번호, 키, 몸무<u>게,</u> 발 크기, 학년, 성별

- 1,166,57,240,1,0
- 2,178,92,265,1,1
- 3,167,80,270,1,1
- 4,168,52,245,2,1
- 5,155,60,235,2,0
- 6,163,45,230,2,0
- 7,160,53,235,3,0
- 8,180,77,260,4,1
- 9,167,71,260,2,1
- 10,160,51,245,2,0
- 11,162,53,240,2,0
- 12,180,82,280,6,1
- 13,172,90,255,6,1
- 14,160,51,245,5,0
- 15,155,66,245,5,0
- *16,163,54,242,5,0*
- 17,177,88,263,5,1
- 18,166,82,268,6,1
- 19,170,53,247,6,1
- 20,154,59,234,1,0
- 21,164,47,232,1,0

키에 따라 몸무게는 어떻게 변할까? (성별에 따라 다른 색으로 표시) Ot(df, '키', '몸무게', '성별')

키 vs. 몸무게

분류

Classification

violinplot(df, '성별', '키')

성별에 따라 키가 어떻게 변하는지 바이올린 모양으로 표시해보라!


```
키, 몸무게, 발 크기, 학년, 성별
            166,57,240,1,0
            178,92,265,1, 1
            167,80,270,1, 1
            168,52,245,2, 1
            155,60,235,2,0
            163,45,230,2, 0
 학습용
                           정답
            160,53,235,3 0
   문제
            180,77,260,4 1
            167,71,260,2, 1
            160,51,245,2,0
            162,53,240,2, 0
            180,82,280,6, 1
            172,90,255,6, 1
            160,51,245,5, 0
            155,66,245,5,0
           163,54,242,5,0
           177,88,263,5, 1
테스트용
           166,82,268,6, 1
                            정답
    문제
           170,53,247,6, 1
           154,59,234,1, 0
            164,47,232,1, 0
```

```
키, 몸무게, 발 크기, 학년, 성별
           166,57,240,1,0
                                   youngJa = svm.SVC()
           178,92,265,1, 1
                                   youngJa.fit('학습용문제', '정답')
           167,80,270,1, 1
            168,52,245,2, 1
                                   prediction=youngJa.predict('테스
           155,60,235,2,0
                                   트용 문제')
           163,45,230,2 0
           160,53,235,3 0 정답
 학습용
   문제
           180,77,260,4 1
           167,71,260,2, 1
            160,51,245,2,0
            162,53,240,2, 0
           180,82,280,6, 1
           172,90,255,6, 1
           160,51,245,5, 0
           155,66,245,5,0
           163,54,242,5, 0
           177,88,263,5, 1
테스트용
           166,82,268,6, 1
                           정답
    문제
           170,53,247,6, 1
           154,59,234,1,0
           164,47,232,1,0
```

분류 알고리즘

Machine Learning

- SVC (서포트벡터머신)
- DecisionTreeClassifier (결정트리)
- RandomForestClassifier (랜덤포레스트)
- XGBClassifier (XGBoost, eXtreme Gradient Boosting, Boosting or Additive Training) (부스팅)
- LogisticRegression (논리회귀)

Deep Learning

- Multilayer Neural Networks
- CNN/RCNN/GCNN

머신러닝 인공지능

지능이란?

(지능, intelligence, 知能) 새로운 사물 현상에 부딪쳐 그 의미를 이해하고 처리 방법을 알아내는 지적 활동 능력

인공지능

Al (Artificial Intelligence), 사람의 지능을 컴퓨터에 구현한 지능

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

上 *对*

지도학습 Supervised Learning

