Scanner

Selected Fun Problems of the ACM Programming Contest SS25 04./05.06.2025

David Knöpp

About questions

- Please ask questions if you don't understand an important aspect
- Otherwise, please save your questions for after the presentation

Contents

3 /	60

1 Problem Definition	4
2 Solution	14
3 Discussion	50
4 Summary	59

1 Problem Definition

Result Matrix 5/60

Result Matrix 6/60

Result Matrix 7/60

. # # . . # # . # # # .

This is our actual output.

But what is our input?

2 2 3 2

2 2 3 2 0 1 3 3 2 0 0

2 2 3 2 0 1 3 3 2 0 0 2 4 3 0


```
2 2 3 2
0 1 3 3 2 0 0
2 4 3 0
1 2 1 2 2 1 0
```

The number at the top represents the number of matrices that will follow.

In our case, it's just one.

```
1
2 2 3 2
0 1 3 3 2 0 0
2 4 3 0
1 2 1 2 2 1 0
```

And that's our input!

Live Demo

2 Solution

Tools 15 / 60

- Python
 - Personal experience
- Numpy
 - Convenient and efficient matrix operations
 - Personal experience

Example 16 / 60


```
1

2 2 3 2

0 1 3 3 2 0 0

2 4 3 0

1 2 1 2 2 1 0
```

Example 17 / 60


```
1
2 2 3 2
0 1 3 3 2 0 0
2 4 3 0
1 2 1 2 2 1 0
```

Example 18 / 60


```
1
2 2 3 2
0 1 3 3 2 0 0
2 4 3 0
1 2 1 2 2 1 0
```

Example 19 / 60


```
1
2 2 3 2
0 1 3 3 2 0 0
2 4 3 0
1 2 1 2 2 1 0
```

Example 20 / 60


```
1
2 2 3 2
0 1 3 3 2 0 0
2 4 3 0
1 2 1 2 2 1 0
```

Example 21 / 60


```
1
2 2 3 2
0 1 3 3 2 0 0
2 4 3 0
1 2 1 2 2 1 0
```

Example 22 / 60

1						
2	2	3	2			
0	1	3	3	2	0	0
2	4	3	0			
1	2	1	2	2	1	0

Example 23 / 60


```
1
2 2 3 2
0 1 3 3 2 0 0
2 4 3 0
1 2 1 2 2 1 0
```

Example 24 / 60


```
1
2 2 3 2
0 1 3 3 2 0 0
2 4 3 0
1 2 1 2 2 1 0
```

Example 25 / 60


```
1
1 1 2 2
0 1 0 3 2 0 0
1 3 2 0
1 1 1 1 2 0 0
```



```
1

1 1 2 2

0 1 0 3 2 0 0

1 3 2 0

1 1 1 1 2 0 0
```



```
1
1 1 2 2
0 1 0 3 2 0 0
1 3 2 0
1 1 1 1 2 0 0
```



```
1
1 1 <mark>2 2</mark>
0 1 0 3 2 0 0
1 3 2 0
1 1 1 1 2 0 0
```



```
1
1 1 2 2
0 1 0 3 2 0 0
1 3 2 0
1 1 1 1 2 0 0
```


35 / 60

1						
0	0	0	0			
0	0	0	0	0	0	0
0	0	0	0			
0	0	0	0	0	0	0

- Snippets of the actual Python-program
- Highly simplified treat it like pseudo-code

Fill known cells

```
def compare_and_fill(sensor_data_point, arr):
        # number of unassigned elements
        n of unassigned = n of unassigned(arr)
        # Declare all unassigned as empty
        if sensor_data_point == 0:
            for cell in arr:
                if cell == UNASSIGNED:
                    cell = EMPTY
        # Declare all unassigned as full
        elif sensor data point == n of unassigned:
            for cell in arr:
                if cell == UNASSIGNED:
                    cell = FULL
                    update sensor data(cell.x, cell.y)
```

Main Loop 38 / 60

```
while(not is done()):
            diag lr = get diagonal lr(matrix)
            diag rl = get diagonal rl(matrix)
            # Horizontals
            for i in range(height):
                compare and fill(sensor data horizontal[i], matrix[i,:])
            # LR-Diags
            for i in range(height + width - 1):
                compare and fill(sensor data diagonal lr[i], diag lr[i])
            # Verticals
            for i in range(width):
                compare and fill(sensor data vertical[i], matrix[:,i])
            # RL-Diags
            for i in range(height + width - 1):
                compare and fill(sensor data diagonal rl[i], diag rl[i])
```

Are we done? 39 / 60

• Does the algorithm always find a solution?

- What if there is no solution?
- What if there are multiple solutions?

Are we done? 40 / 60

- Does the algorithm always find a solution?
- What if there is no solution?
- What if there are multiple solutions?

Let's first answer a different question:

• How do we know whether we found a solution?

How do we know whether we found a solution?

1						
0	0	0	0			
0	0	0	0	0	0	0
0	0	0	0			
0	0	0	0	0	0	0

All input_datas-entries are zero

42 / 60

Invalid state

Every cell is assigned, but there is one input_data-entry left!

 \Rightarrow contradiction

Termination Condition

1. Check whether all input_data is zero

```
def is_data_used(sensor_data):
    return not np.any(sensor_data != 0)
```

2. Check whether all cells are assigned

```
def is_all_assigned(matrix):
    return not np.any(matrix.cell == UNASSIGNED)
```

3. Check whether we're done

```
def is_done():
    return is_data_used(sensor_data) or is_all_assigned(matrix)
```

Demo: No Solution 44 / 60

Multiple solutions

- We always only assign EMPTY or FULL to a cell if we know it's state for certain
- Therefore, with our current method, we can only detect certain solutions
- If multiple solutions exist for a given input, we should get stuck

Multiple Solutions: Local Search

```
# value is either FULL or FMPTY
def search in branch(idx, value, matrix, sensor data):
        # save old data
        old matrix = matrix.copy()
        old sensor data = sensor data.copy()
        # assign variable
        matrix[idx] = value
        if value == FULL:
            update sensor data(idx[1], idx[0])
        fill loop()
        # re-assign old data
        matrix = old matrix
        sensor_data = old_sensor_data
```

Multiple Solutions: Local Search

```
# ... inside fill loop()
if not has change occured:
            # indices of unassigned fields
            indices of unassigned = np.argwhere(matrix.cell == UNASSIGNED)
            for idx in indices_of_unassigned:
                # recursive calls
                for assignment in [EMPTY, FULL]:
                    search in branch(idx, value, matrix, sensor data)
                    if solutions found > 1:
                        # the solution is ambiguous -> leave loop
                        return
```

Demo: Local Search

Are we done?

Does the algorithm always find a solution?

Answer: No!

A full assignment is valid only if all entries of sensor_data become zero

• We can get stuck \Rightarrow perform local search

What if there is no solution?

Answer: Data will be contradictory

What if there are multiple solutions?

Answer: We get stuck \Rightarrow perform local search

3 Discussion

$$2 = 0 + 1 + 1 + 0$$

$$2 = 0 + 1 + 1 + 0$$

$$3 = 1 + 1 + 1 + 0$$

$$2 = 1 + 1 + 0 + 0$$

More general:

$$2 = x_0 + x_1 + x_2 + x_3$$

$$2 = x_4 + x_5 + x_6 + x_7$$

$$3 = x_8 + x_9 + x_{10} + x_{11}$$

$$2 = x_{12} + x_{13} + x_{14} + x_{15}$$

For a matrix of dimension $(n \times n)$, we get

- 2^n variables $x_0, ..., x_{2^n-1} \in \{0, 1\}$
- n + n + (2n 1) + (2n 1) = 6n 2 linearly independent equations

For a matrix of dimension $(n \times n)$, we get

- 2^n variables $x_0, ..., x_{2^n-1} \in \{0, 1\}$
- n + n + (2n 1) + (2n 1) = 6n 2 linearly independent equations

Question: For which $n \in \mathbb{N}$ is the linear system of equations under determined?

$$\Rightarrow$$
 Solve $2^n > 6n - 2$

Theory indicates:

- For all $n \geq 5$, the LSE is underdetermined \Rightarrow Possibly no solution

Experiment confirms this!

- For all valid inputs of n < 5, a solution is found
- For some $n \ge 5$, the algorithm gets stuck (we have seen an example) \Rightarrow perform local search

Why it's a good algorithm for this problem

The problem definition states that we are working with a "body" scanner

- Matrix property: Most FULL cells are located next to each other
- Our algorithm uses this property
- ⇒ Most inputs can be solved in sub-exponential time

Demo: Chunk Inputs

4 Summary

Summary 60 / 60

TODO