The Curse of Dimensionality

- Term coined by Bellman in 1961
- Refers to the problems associated with multivariate data analysis as the dimensionality increases
- As the number of features or dimensions within a dataset increases, the amount of data needed to effectively generalize or make accurate predictions increases exponentially.
 - Models learn from limited information

Curse of Dimensionality - Example

Use 1 feature to divide the following data:

Too much overlap between triangle and square

• Add another dimension (feature):

Do we maintain the number of samples?

- yes then we have bins we can't identify what class
- no when we increase the training samples, we see more overlap

Curse of Dimensionality - Example

• What about 3 dimensions (features):

Number of bins grows $3^3 = 27$

For the same density in each bin, we would need 81 training samples

If we keep the same training set, we have a lot of empty space. How do we classify something that falls in an empty space we haven't seen?

Curse of Dimensionality

- How do we beat it?
 - Incorporating domain knowledge
 - Reducing the dimensionality
- In practice, the curse of dimensionality means that, for a given sample size, there is a maximum number of features above which the performance of a classifier will degrade rather than improve.

Feature Selection and Feature Reduction

- Given *n* original features, it is often advantageous to reduce this to a smaller set of features for actual training
 - Can improve/maintain accuracy if we can preserve the most relevant information while discarding the most irrelevant information
 - And/or can make the learning process more computationally and algorithmically manageable by working with less features
 - Curse of dimensionality requires an exponential increase in data set size in relation to the number of features to learn without overfit – thus decreasing features can be critical
- Feature Selection seeks a subset of the n original features which retains most of the relevant information
 - Filters, Wrappers
- Feature Reduction <u>combines/fuses</u> the *n* original features into a smaller set of newly created features which hopefully retains most of the relevant information from *all* the original features Data fusion (e.g. LDA, PCA, t-SNE, UMAP etc.)

Feature Selection - Filters

- Given *n* original features, how do you select size of subset
 - User can preselect a size p < n not usually as effective
 - Usually try to find the smallest size where adding more features does not yield improvement
- 1-Feature Accuracy Feature Selection
 - Create model with each feature independent of the others
 - Select top p features ordered by 1-feature scores
- Score subsets of features together?
 - Exponential number of subsets requires a more efficient, suboptimal search approach
 - How to score features is independent of the ML model to be trained on and is an important research area
 - Decision Tree or other ML model pre-process

Feature Selection - Wrappers

- Optimizes for a specific learning algorithm
- The feature subset selection algorithm is a "wrapper" around the learning algorithm
 - 1. Pick a feature subset and pass it to learning algorithm
 - 2. Create training/test set based on the feature subset
 - 3. Train the learning algorithm with the training set
 - 4. Find accuracy (objective) with validation set
 - 5. Repeat for all feature subsets and pick the feature subset which gives the highest predictive accuracy (or other objective)
- Basic approach is simple
- Variations are based on how to select the feature subsets,
 since there are an exponential number of subsets

Feature Selection - Wrappers

- Exhaustive Search Exhausting
- Forward Search $O(n^2 \cdot \text{learning/testing time})$ Greedy
 - 1. Score each feature by itself and add the best feature to the initially empty set *FS* (*FS* will be our final Feature Set)
 - 2. Try each subset consisting of the current FS plus one remaining feature and add the best feature to FS
 - 3. Continue until stop getting significant improvement (over a window)
- Backward Search $O(n^2 \cdot \text{learning/testing time})$ Greedy
 - 1. Score the initial complete *FS*
 - 2. Try each subset consisting of the current FS minus one feature in FS and drop the feature from FS causing least decrease in accuracy
 - 3. Continue until dropping any feature causes a significant decreases in accuracy
- Branch and Bound and other heuristic approaches available

PCA – Principal Components Analysis

- PCA is one of the most common feature reduction techniques
- A linear method for dimensionality reduction
- Allows us to combine much of the information contained in n features into p features where p < n
- PCA is unsupervised in that it does not consider the output class/value of an instance There are other algorithms which do (e.g. Linear Discriminant Analysis)
- PCA works well in many cases where data features have mostly linear correlations
- Non-linear dimensionality reduction is also a successful area and can give better results for data with significant non-linear correlations between the data features

PCA Overview

- Seek new set of bases (coordinate system) which correspond to the highest variance in the data
- Transform *n*-dimensional *normalized* data to a new *n*-dimensional basis
 - The new dimension with the most variance is the first principal component
 - The next is the second principal component, etc.
 - Note z_1 combines/fuses significant information from both x_1 and x_2

Figure 6.1 Principal components analysis centers the sample and then rotates the axes to line up with the directions of highest variance. If the variance on z_2 is too small, it can be ignored and we have dimensionality reduction from two to one.

Explaining Variance

- All PC's are some linear combination of current features
- Largest PC is the new axis that shows the most variance

PCA Overview

Can drop dimensions for which there is little variance

Variance and Covariance

- Variance is a measure of data spread in one feature/dimension
 - n features, m instances in data set
 - Note n in variance/covariance equations is number of instances in the data set, apologies
- Covariance measures how two dimensions (features) vary with respect to each other
- Standardize data features so they have similar magnitudes else covariance may not be as informative

Covariance and the Covariance Matrix

- Considering the sign (rather than exact value) of covariance:
 - Positive value means that as one feature increases or decreases the other does also (positively correlated)
 - Negative value means that as one feature increases the other decreases and vice versa (negatively correlated)
 - A value close to zero means the features are independent
 - If highly covariant, are both features necessary?
- Covariance matrix is an $n \times n$ matrix containing the covariance values for all pairs of features in a data set with n features (dimensions)
- The diagonal contains the covariance of a feature with itself which is the variance (i.e. the square of the standard deviation)
- The matrix is symmetric

 First step is to standardize the data by subtracting the mean in each dimension and then dividing by the standard deviation

Data	X	y	<i>x'</i>	y'
	2.5	2.4	0.92	0.61
	0.5	0.7	-1.79	-1.51
	2.2	2.9	0.52	1.23
	1.9	2.2	0.11	0.36
	3.1	3.0	1.74	1.36
	2.3	2.7	0.65	0.98
	2.0	1.6	0.24	-0.39
	1.0	1.1	-1.11	-1.01
	1.5	1.6	-0.43	-0.39
	1.2	0.9	-0.84	-1.26
Mean	1.82	1.91		
StDev	0.736	0.803		

Can Normalize rather than standardize

- Second: Calculate the covariance matrix of the centered data
- Only 2×2 for this case

Data	X	у	<i>x'</i>	y'
	2.5	2.4	0.92	0.61
	0.5	0.7	-1.79	-1.51
	2.2	2.9	0.52	1.23
	1.9	2.2	0.11	0.36
	3.1	3.0	1.74	1.36
	2.3	2.7	0.65	0.98
	2.0	1.6	0.24	-0.39
	1.0	1.1	-1.11	-1.01
	1.5	1.6	-0.43	-0.39
	1.2	0.9	-0.84	-1.26
Mean	1.82	1.91		
StDev	0.736	0.803		

$$cov(X,Y) = \frac{\overset{n}{\circ} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1)}$$

Covariance	Matrix
1.111111	1.022377
1.022377	1.111111

- Third: Calculate the unit eigenvectors and eigenvalues of the covariance matrix (remember your linear algebra)
 - Covariance matrix is always square $n \times n$ and positive semi-definite, thus n non-negative eigenvalues will exist
 - All eigenvectors (principal components) are orthogonal to each other and form the new set of bases/dimensions for the data (columns)
 - The magnitude of each eigenvalue corresponds to the variance along each new dimension – Just what we wanted!
 - We can sort the principal components according to their eigenvalues
 - Just keep those dimensions with the largest eigenvalues

Principal Component	Eigenvalues	Eigenvectors	
1	2.13348836	0.70710678	0.70710678
2	0.08873385	-0.70710678	0.70710678

- Below are the two eigenvectors overlaying the centered data
- Which eigenvector has the largest eigenvalue?
- Fourth Step: Just keep the p eigenvectors with the largest eigenvalues
 - Do lose some information, but if we just drop dimensions with small eigenvalues then we lose only a little information, hopefully noise
 - We can then have p input features rather than n
 - The p features contain the most pertinent combined information from all n original features
 - How many dimensions p should we keep?

- Last Step: Transform the n features to the p (< n) chosen bases (Eigenvectors)
- Transform data (*m* instances) with a matrix multiply $T = A \times B$
 - A is a $p \times n$ matrix with the p principal components in the rows, component one on top
 - B is a $n \times m$ matrix containing the transposed centered original data set
 - T^{T} is a $m \times p$ matrix containing the transformed data set
- Now we have the new transformed data set with p features
- Keep matrix A to transform future centered data instances
- Below is the transform of both dimensions. What if we just kept the 1st component for this case?

PCA Algorithm Summary

- 1. Standardize the TS features
- 2. Calculate the covariance matrix of the standardized TS
- 3. Calculate the unit eigenvectors and eigenvalues of the covariance matrix
- 4. Keep the $p \ll n$ eigenvectors with the largest eigenvalues
- 5. Matrix multiply the *p* eigenvectors with the standardized TS to get a new TS with only *p* features
- Given a novel instance during execution
 - 1. Standardize the instance (use the mean and std. dev. of the TS)
 - 2. Do the matrix multiply (step 5 above) to change the new instance from *n* to *p* features

PCA Algorithm Summary

1. Standardize the TS features

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X)
scaled_data = scaler.transform(X)
```

2. Calculate the covariance matrix of the standardized TS

```
cov_matrix = np.cov(scaled_data.T)
```

3. Calculate the unit eigenvectors and eigenvalues of the covariance matrix

```
eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)
```

4. Keep the $p \ll n$ eigenvectors with the largest eigenvalues

```
projection_matrix = (eigenvectors.T[:][:num_components]).T
```

1. Matrix multiply the *p* eigenvectors with the standardized TS to get a new TS with only *p* features

```
X_pca = scaled_data.dot(projection_matrix)
```

PCA with sklearn

```
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
# We will start from the original data in X
# We need to scale the data
scaler = StandardScaler()
scaler.fit(X)
new scaled data = scaler.transform(X)
# Create a PCA object using a reduced number of components
pca = PCA(n components=num components)
pca.fit(new_scaled_data)
X pca = pca.transform(new scaled data)
```

PCA Homework

Terms					
m	5	Number of instances in data set			
n	2	Number of input features			
p	1	Final number of principal components chosen			

Or			
	x1	<i>x</i> 2	Out
m1	.2	3	-
m2	-1.1	2	-
m3	1	-2.2	-
m4	.5	-1	-
m5	6	1	-
mean			

- Use PCA on the given data set to get a transformed data set with just one feature (the first principal component (PC)). Show your work along the way.
- Show what % of the total information is contained in the 1st PC.
- Do not use a PCA package to do it. You need to go through the steps yourself, or program it yourself. You may use a spreadsheet, Matlab, etc. to do the arithmetic for you.
- You may use Python or any web tool to calculate the eigenvectors/eigenvalues from the covariance matrix.
- Optional: After, use any PCA solver (e.g. sklearn) and use it to solve the problem and check your answers.

PCA Summary

- PCA is a linear transformation, so if the features have highly non-linear correlations, the transformed data will be less useful
 - Non linear dimensionality reduction techniques can sometimes handle these situations better (e.g. LLE, Isomap, Manifold-Sculpting)
 - PCA is good at removing redundant linearly correlated features
- With high dimensional data the eigenvector is a hyper-plane
- Interesting note: The 1st principal component is the multiple regression plane that delta rule will always discover
- Caution: Not a "cure all" and can lose important info in some cases
 - How would you know if it is effective?
 - Just compare accuracies of original vs transformed data set

Practical Feature Reduction

- Assume you have a data set with 50 features
- You might like to reduce if possible (you might hope for 10 or so, but let the results decide)
- Could try PCA Compare with non-PCA results to see how effective PCA is for the particular data set
- Could also try a wrapper (e.g. backward greedy) and compare its results and then go with what gives the best accuracy
- PCA
 - Pro: Potentially fuses most information from all features into new smaller set of features
 - Con: Will fail if features have lots of non-linear correlations
- Wrappers
 - Pro: Can handle data features with arbitrary non-linear correlations
 - Con: Does not fuse info, those features which are dropped are completely gone

Other Dimensionality Reduction Techniques

- LDA (Linear Discriminant Analysis)
 - projects data from a higher-dimensional space to a lower-dimensional space, but it aims to maximize the separation between classes while minimizing the variance within each class.
- t-SNE (t-Distributed Stochastic Neighbor Embedding)
 - non-linear dimensionality reduction technique commonly used for visualizing highdimensional data in a lower-dimensional space.
 - works by minimizing the divergence between two probability distributions: a
 Gaussian distribution that represents pairwise similarities between data points in
 the high-dimensional space and a Student's t-distribution that represents pairwise
 similarities in the low-dimensional space.
- UMAP (Uniform Manifold Approximation and Projection)
 - similar to t-SNE, but with better scalability and preservation of global structure.
 - Generally faster than t-SNE

t-SNE

- t-distributed Stochastic Neighbor Embedding
- Non-linear
- Based on all-to-all table of pairwise distances

0	10	10	295	158	153
9	0	1	217	227	213
1	8	0	154	225	238
205	189	260	0	23	45
248	227	246	44	0	54
233	176	184	41	36	0

t-SNE

- Perplexity hyperparameter
 - Expected number of neighbors within a cluster
- Distances are scaled relative to perplexity cluster neighbors

0	4	6	586	657	836
4	0	4	815	527	776
9	3	0	752	656	732
31	28	29	0	4	7
31	24	25	4	0	7
40	37	32	8	8	0

t-SNE

- Pick a new dimensionality
- Randomly scatter points in the new space.
- Shuffle points based on how well they match the original distance matrix
- Continue until distances converge

- Goal is to keep the distance within the perpexity cluster the same
 - Minimize the distance difference locally but not globally
 - The distances within a perplexity group are meaningful, but not between perplexity groups
- t-SNE is a stochastic algorithm and won't produce the same output twice
 - Can set the random seed
- To add more data, you need to re-run the algorithm from the beginning

t-SNE Perplexity

Original

Perplexity=2

Perplexity=30 Perplexity=100

UMAP

- Uniform Manifold Approximation and Projection
- Similar to t-SNE but assumes the data is distributed on a manifold in less dimensions
 - Topological structures in multidimensional space
- Faster than t-SNE
- Can preserve more global structure than t-SNE
- Can allow new data to be added to the projection
- Instead of perplexity
 - The expected number of nearest neighbors (very similar to perplexity)
 - Minimum distance to pack the points which are close together.
 - Points are connected if they are within the minimum distance

UMAP

- Learns the global data structure
- Doesn't depend on random initial values
- Can recreate the lower dimensional embedding regardless of the dataset size

(a) UMAP

(b) t-SNE

UMAP

Can be great for the right data

3D mammoth skeleton projected into 2D

tSNE: Perplexity 2000 2h 5min

UMAP: Nneigh 200, mindist 0.25, 3min

Summary

- Dimensionality reduction techniques can be very beneficial
- PCA yields linear transformations → interpretable
- t-SNE and UMAP are non-linear
 - Can provide better dimensionality reduction especially for visualization
- Can be used in concert
 - PCA first to reduce dimensionality with linear transformations
 - t-SNE or UMAP to further reduce
 - Very good for visualization