First/Second Semester B.E. Degree Examination, June / July 2014 Basic Electrical Engineering

	Basic	Electrical	Engineering	
Time: 3 hr	s,			Max. Marks:100
Notes 1 4	nswer any FIVE full (mestions, choosing	at least two from ed	ach part.
7 4	secon all objective two	e auestions only of	OMR sheet page 5	of the answer booklet.
2. /1/	nswer to objective type	auestions on shee	ts other than OMR	will not be valued.
5, 11	isiver ar rojective type	4		7
		PART-	A	
1 a Cl	hoose the correct answe			(04 Marks)
i)	The resistance of a	conductor is directly	y proportional to its	and inversly
1)	proportional to its_		, , ,	eq.
	A) Length & Area		B) Area & Leng	tb
	C) Length & Currer	nt .	D) Length & Vo	
ii)	When the conducto	r moves perpendicul	ar to the lines of flux,	
11)	A) Minimum	B) Maximum	C) Zero	D) None of these
Si.		nce between two co		0.8 H and 0.2 H, have a
jij	co-efficient of coup		, , , , , , , , , , , , , , , , , , , ,	-
	5	B) 0.4 H	C) 0 16 H	D) 0.144 H
	A) 0.36 H	B) 0.7 D	V. The resistance of t	the heater coil is
1V		Stated to 2 kW, 200	C) 20 Ω	D) 200 Ω
	Α) 10 Ω	Β) 0.1 Ω	enistana ganagetad in :	parallel in the ratio of the
b. Si	how that the equivalent	resistance of two r	esistors connected in	parallel in the ratio of the
pı	roduct of these two resi	stances divided by the	ne sum of those two to	(04 Marks)
		decoming the indexes	dant	(06 Marks)
c. D	erive an expression for	tynamicany more	recugatively are place	d close to each other such
d. T	wo coils naving 1000 to	ums and 1000 turns	If a surrent of 10 A	flowing the first coll.
th	hat 60% of the flux pro	duced by one con.	-u- afthe econd coil	flowing in he first coll, (06 Marks)
p.	roduces a flux of 0.5 m	wh. Find the moucia	ince of the second con	(00 111110)
		C 4 C 11		(04 Marks)
2 a. C	choose the correct answ	ers for the following	; ·	(04 1122 113)
i)	An alternating curr	ent is given by i=1	$4.14\sin\left[\omega t + \frac{\pi}{-}\right]$ has	an rms value of
,U,	All atternating cas,	one is given by	(6)	
	amperés.			a s
	A) 10 A	B) 14.14	C) 20 A	D) 0.707
ij	N In an a c circuit th	e ratio of kW/KVA	represents	_
	A) Power factor	B) Load factor	C) Form factor	D) Peak factor
i	ii) A current drawn b	v a capacitor of 20	μF is 1.382 A from a	a 220 V A.C. supply. The
	supply frequency is		•	
	A) 25 Hz	B) 60 Hz	C) 50 Hz	D) 40 Hz
į.	v) The unit of appare	,		3
7	A) kW	B) KVAR	C) KVA	D) Joules
b. I	Define: (i) Instantaneo	•		Cycle (iv) Period with
	espect to sinusoidally v			(04 Marks)
A 7	Complete to shiusoidary v	1157) O and (100 +	- i11()) Ω are connecte	ed in parallel across 200 V
Ç.]	Wo impedances (130 -	nah currente total o	urrent and total now	er consumed in the circuit
			The same total port	(06 Marks
i a	Draw the phasor diagram	III.	series sircuit is VIcas	φ. Draw the waveform fo
			ocites offent to 1 feet	(06 Marks)
1	voltage, current and pov	∧ € 1.		(00 1:

The torque produced by DC motor is directly proportional to

B) I_aR_a

Derive the expression for the c.m.f of a DC generator. (04 Marks)

Sketch the various characteristics of DC shunt motor and mention its applications.

d. A DC shunt motor takes an armature current of 110 A at 480 V. The armature resistance is $0.2~\Omega.$ The machine has 6 poles and armature is lap connected with 864 conductors. The flux per pole is 0.05 Wb. Calculate i) speed ii) the torque developed by the armature.

(06 Marks)

U	a.	C HOOSE the	(04 Marks)				
		i) The	ransformatio	n ratio in a transfo	rmer is equal	to 🐷	
							D) $\frac{I_2}{I_1}$
		A) $\frac{I}{I}$	<u></u>	B) $\frac{N_1}{N_2}$	C) $\frac{1}{1}$	<u>12</u>	D) $\frac{r_2}{r_2}$
		ľ	2	N^{5}		N ₁	I
		ii) The	efficiency of	a transformer is ma	aximum when	1 .	
				re than copper los			al to copper loss
				s than copper loss			ar to copper toss
				formers are used to			
		A) L	ow and High	B) Low and Me	dium C) Hig	th and Medius	m D) None of these
		iv) Copp	er loss in a tr	ansformer is a	loss	S.	
		A) C	onstant loss	B) Variable lo			D) None of these
	ь.			and working of a		1000	(06 Marks)
	Ç.					su side of o 1	40/230 V, 50 Hz single
	• -						
				e net area of cross	s section of t	ne core is 30	cm ² and the maximum
	,		y is 1Wh/m².				(04 Marks)
	d.	A single p	hase transform	ner working at 0.8	l pf has an ef	ficiency 94%	at both three fourth full
		load and fi	ill load of 600	kW. Determine t	he efficiency	at half full -l	oad, unity power factor.
							(06 Marks)
7	.a.	Choose the	correct answ	ers for the following	ng :		(04 Marks)
				rotor is used in		r	(v- nim us)
				B) High speed			D) A d D
			peed at wind	n a 4-poic aiternat	or has to be	driven to gene	erate a voltage at 50 Hz
		is		*	8		
			000 rpm	B) 1500 rpm	C) 20	00 0 грт	D) 1440 rpm
		jii) The I	E. M. F. induc	ed in an alternator	is given by t	he equation	
		A) 4.	44 fozkoka	B) 2.22 k _p f of an alternator is	z C) 2.	22 f d z k, kd	174.44£d z
		iv) The i	ield winding	of an alternator is	excite	d	
		(A)	OC	B) AC	CIR	oth DC and A	(C D) None of these
	b.	_					ence between them.
		now are a	ternators cas	sitted: With a nea	t diagram, sir	ow the amen	(08 Marks)
	C.	$\Delta 2 - \text{nole}$	3 _ nhace alt	arnatar hinning at	2000 rom ha	oʻarmot, ma ill	ots with 2 conductors in
	٠.						
						generate a lir	ne voltage of 2300 V.
				52 and pitch facto	r is 0.956		(06 Marks)
	-Д.	Define reg	ulation of an	alternator.			(02 Marks)
8	a.	Choose the	correct answ	ers for the followi	ng:		(04 Marks)
		i) The f	requency of t	he rotor current is			,
			,			, ³	D'AL CI
		A) §	f	B) sf	C) si		D) None of these
		ii) In a 3	– phase indu	ction motor, the s	in speed is gi	ven by	320
		A) N	p man b and a	R) N	C) N	- N	D) N No
		in) The s	smahranawa e	nood of three phor	a industran n	s — IV	b) 14 - 145
		ing Tile S	ynemonous s	peed of fillee phas	e manchon n	boor is given	оу
			1701	TO 1 3 1 100 0		20P	D+
		A) N	10 = 1201	$B \setminus N_c = 120 \text{ f}$	P (1)	$\frac{1}{2}$ = N_{\sim}	D) $N_{-} = \frac{11}{11}$
		A) N	$I_{\rm S} = \frac{1201}{\rm P}$	B) $N_S = 120 \text{ f}$	P C) -	$\frac{1}{f} = N_S$	D) $N - N_S$ by
		A) N iv) A 3-	$N_{\rm S} = \frac{1201}{P}$ $- \phi \text{induction}$	B) $N_S = 120 \text{ f}$ motor having 4 –	P C) = poles, 50 Hz	$\frac{1}{f} = N_S$ runs at 1440 i	D) $N_S = \frac{11}{120}$
		iv) A 3-	• o induction	motor having 4 -	poles, 50 Hz	runs at 1440 i	pm, the slip is
	10	iv) A 3- A) 39	- opinduction	motor having 4 – B) 5%	poles, 50 Hz C) 49	runs at 1440 i %	pm. the slip is D) 1%
	b.	iv) A 3- A) 39 With a nea	· φ induction % t diagram, ex	motor having 4 – B) 5% plain the working p	poles, 50 Hz C) 49 principle of 3	runs at 1440 i % - ¢ induction	pm. the slip is D) 1% motor. (06 Marks)
	b . c ,	iv) A 3- A) 39 With a nea A 10 pole	- \$\phi induction \$\phi\$ t diagram, expinduction mo	motor having 4 – B) 5% plain the working p tor is supplied by:	poles, 50 Hz C) 49 principle of 3 a 6 – pole alt	runs at 1440 i % - ¢ induction	pm. the slip is D) 1% motor. (06 Marks) is driven at 1200 rpm.
		iv) A 3- A) 39 With a nea A 10 pole If the motor	 induction t diagram, expinduction more runs with a 	motor having 4 – B) 5% plain the working p tor is supplied by a slip of 3%, what is	poles, 50 Hz C) 49 principle of 3 a 6 – pole alt s its speed?	runs at 1440 i % - ¢ induction	pm. the slip is D) 1% motor. (06 Marks)
		iv) A 3- A) 39 With a nea A 10 pole If the motor	 induction t diagram, expinduction more runs with a 	motor having 4 – B) 5% plain the working p tor is supplied by:	poles, 50 Hz C) 49 principle of 3 a 6 – pole alt s its speed?	runs at 1440 i % - ¢ induction	pm. the slip is D) 1% motor. (06 Marks) is driven at 1200 rpm.

3 of 3