Solution Section 3.1 – Inverse Functions

Exercise

Find the inverse relation of the given set: $A = \{(-2, 2), (1, -1), (0, 4), (1, 3)\}$

Solution

$$A^{-1} = \{(2, -2), (-1, 1), (4, 0), (3, 1)\}$$

Exercise

Find the inverse relation of the given set: $B = \{(1, -1), (2, -2), (3, -3), (4, -4)\}$

Solution

$$B^{-1} = \{(-1, 1), (-2, 2), (-3, 3), (-4, 4)\}$$

Exercise

Find the inverse relation of the given set: $C = \{(a, -a), (b, -b), (c, -c)\}$

Solution

$$C^{-1} = \{(-a, a), (-b, b), (-c, c)\}$$

Exercise

Find the inverse relation of the given set: $D = \{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)\}$

Solution

$$D^{-1} = \{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)\}$$

Exercise

Find the inverse relation of the given set: $E = \{(-a, a), (-b, b), (-c, c), (-d, d)\}$

$$E^{-1} = \{(a, -a), (b, -b), (c, -c), (d, -d)\}$$

Determine whether the function is one-to-one: f(x) = 3x - 7

Solution

$$f(a) = f(b)$$

$$3a - 7 = 3b - 7$$

$$3a = 3b - 7 + 7$$

$$3a = 3b$$
Divide both sides by 3
$$a = b$$

.. The function is one-to-one

Exercise

Determine whether the function is one-to-one: $f(x) = x^2 - 9$

Solution

$$1 \neq -1$$

$$1^{2} - 9 \neq (-1)^{2} - 9$$

$$-8 = -8 \rightarrow \text{ Contradict the definition}$$

$$f(a) = f(b)$$

$$a^{2} - 9 = b^{2} - 9$$

$$a^{2} = b^{2}$$

$$a = \pm b$$

: The function is *not* one-to-one

Exercise

Determine whether the function is one-to-one: $f(x) = \sqrt{x}$

Solution

$$f(a) = f(b)$$

$$\sqrt{a} = \sqrt{b}$$

$$(\sqrt{a})^2 = (\sqrt{b})^2$$
Square both sides
$$a = b$$

... The function is one-to-one

Determine whether the function is one-to-one:

$$f(x) = \sqrt[3]{x}$$

Solution

$$f(a) = f(b)$$

$$\sqrt[3]{a} = \sqrt[3]{b}$$

$$(\sqrt[3]{a})^3 = (\sqrt[3]{b})^3$$
cube both sides
$$a = b$$

∴ The function is one-to-one

Exercise

Determine whether the function is one-to-one:

f(x) = |x|

Solution

$$1 \neq -1$$

$$|1| \neq |-1|$$

$$1 \neq 1 \text{ (false)}$$

... The function is *not* one-to-one

Exercise

Determine whether the function is one-to-one $f(x) = \frac{2}{x+3}$

Solution

$$f(a) = f(b)$$

$$\frac{2}{a+3} = \frac{2}{b+3}$$

$$2(b+3) = 2(a+3)$$

$$b+3 = a+3$$

$$a = b$$

$$f(a) = f(b)$$

$$b+3 = a+3$$

$$f(a) = f(b)$$

Exercise

Determine whether the function is one-to-one $f(x) = (x-2)^3$

$$f(\mathbf{a}) = f(\mathbf{b})$$

$$(a-2)^{3} = (b-2)^{3}$$

$$[(a-2)^{3}]^{1/3} = [(b-2)^{3}]^{1/3}$$

$$a-2=b-2$$

$$a=b$$
Add 2 on both sides

∴ Function is one-to-one

Exercise

Determine whether the function is one-to-one $y = x^2 + 2$

Solution

$$f(a) = f(b)$$

$$a^{2} + 2 = b^{2} + 2$$

$$a^{2} = b^{2}$$

$$a = \pm \sqrt{b^{2}}$$
Subtract 2

: Function is *not* a one-to-one

The inverse function doesn't exist.

Exercise

Determine whether the function is one-to-one $f(x) = \frac{x+1}{x-3}$

Solution

$$f(a) = f(b)$$

$$\frac{a+1}{a-3} = \frac{b+1}{b-3}$$

$$(a+1)(b-3) = (b+1)(a-3)$$

$$ab-3a+b-3 = ab-3b+a-3$$

$$-4a = -4b$$

$$a = b$$
Cross multiplication
$$Divide by -4$$

∴ Function is one-to-one

Given that f(x) = 5x + 8, use composition of functions to show that $f^{-1}(x) = \frac{x - 8}{5}$

Solution

$$(f^{-1} \circ f)(x) = f^{-1}(f(x))$$

$$= f^{-1}(5x+8)$$

$$= \frac{(5x+8)-8}{5}$$

$$= \frac{5x+8-8}{5}$$

$$= \frac{5x}{5}$$

$$= x \rfloor$$

$$(f \circ f^{-1})(x) = f(f^{-1}(x))$$

$$= f^{-1}(\frac{x-8}{5})$$

$$= 5(\frac{x-8}{5})+8$$

$$= x-8+8$$

$$= x \mid$$

Exercise

Given the function $f(x) = (x+8)^3$

- a) Find $f^{-1}(x)$
- b) Graph f and f^{-1} in the same rectangular coordinate system
- c) Find the domain and the range of f and f^{-1}

Solution

a)
$$y = (x+8)^3$$
 Replace $f(x)$ with y

$$x = (y+8)^3$$
 Interchange x and y

$$(x)^{1/3} = ((y+8)^3)^{1/3}$$

$$x^{1/3} = y+8$$
 Subtract 8 from both sides.
$$f^{-1}(x) = x^{1/3} - 8$$

b)

c) Domain of
$$f = \text{Range of } f^{-1} : (-\infty, \infty)$$

Range of $f = \text{Domain of } f^{-1} : (-\infty, \infty)$

Prove that f(x) and g(x) are inverse functions of each other f(x) = 4x; $g(x) = \frac{x}{4}$

Solution

$$f(g(x)) = f\left(\frac{x}{4}\right)$$

$$= 4\left(\frac{x}{4}\right)$$

$$= x$$

$$g(f(x)) = g(4x)$$

$$= \frac{4x}{4}$$

$$= x$$

 \therefore f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other f(x) = 2x; $g(x) = \frac{1}{2x}$

$$f(g(x)) = f(\frac{1}{2x})$$

$$= 2\left(\frac{1}{2x}\right)$$

$$= \frac{1}{x} \mid \neq x$$

Exercise

Prove that f(x) and g(x) are inverse functions of each other f(x) = 4x - 1; $g(x) = \frac{x+1}{4}$

Solution

$$f(g(x)) = f\left(\frac{x+1}{4}\right)$$

$$= 4\left(\frac{x+1}{4}\right) - 1$$

$$= x + 1 - 1$$

$$= x$$

$$g(f(x)) = g(4x - 1)$$

$$= \frac{4x - 1 + 1}{4}$$

$$= \frac{4x}{4}$$

$$= x$$

 \therefore f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = \frac{1}{2}x - \frac{3}{2}$; g(x) = 2x + 3

$$f(g(x)) = f(2x+3)$$

$$= \frac{1}{2}(2x+3) - \frac{3}{2}$$

$$= x + \frac{3}{2} - \frac{3}{2}$$

$$= x$$

$$= x$$

$$g(f(x)) = g(\frac{1}{2}x - \frac{3}{2})$$

$$= 2(\frac{1}{2}x - \frac{3}{2}) + 3$$

$$= x - 3 + 3$$

$$=x$$

f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = -\frac{1}{2}x - \frac{1}{2}$; g(x) = -2x + 1

Solution

$$f(g(x)) = f(-2x+1)$$

$$= -\frac{1}{2}(-2x+1) - \frac{1}{2}$$

$$= x - \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{x} - 1 \qquad \neq x$$

 \therefore f(x) and g(x) are **not** inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other f(x) = 3x + 2; $g(x) = \frac{1}{3}(x - 2)$

Solution

$$f(g(x)) = f\left(\frac{x-2}{3}\right)$$

$$= 3\left(\frac{x-2}{3}\right) + 2$$

$$= x - 2 + 2$$

$$= x$$

$$g(f(x)) = g(3x + 2)$$

$$= \frac{1}{3}(3x + 2 - 2)$$

$$= \frac{1}{3}(3x)$$

$$= x$$

 \therefore f(x) and g(x) are inverse functions to each other

Prove that f(x) and g(x) are inverse functions of each other $f(x) = \frac{5}{x+3}$; $g(x) = \frac{5}{x} - 3$

Solution

$$f(g(x)) = f\left(\frac{5}{x} - 3\right)$$

$$= \frac{5}{\frac{5}{x} - 3 + 3}$$

$$= \frac{5}{\frac{5}{x}}$$

$$= 5\frac{x}{5}$$

$$= x \rfloor$$

$$g(f(x)) = g\left(\frac{5}{x + 3}\right)$$

$$= \frac{5}{\frac{5}{x + 3}} - 3$$

$$= 5\left(\frac{x + 3}{5}\right) - 3$$

$$= x + 3 - 3$$

=x

 \therefore f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = \frac{2x}{x+1}$; $g(x) = \frac{-x}{x-2}$

$$f(g(x)) = f\left(\frac{-x}{x-2}\right)$$

$$= 2\left(\frac{-x}{x-2}\right) \frac{1}{\frac{-x}{x-2} + 1}$$

$$= \left(\frac{-2x}{x-2}\right) \frac{x-2}{-x+x-2}$$

$$= \frac{-2x}{-2}$$

$$= x \rfloor$$

$$g(f(x)) = g\left(\frac{2x}{x+1}\right)$$

$$= -\left(\frac{2x}{x+1}\right) \frac{1}{\frac{2x}{x+1} - 2}$$

$$= -\left(\frac{2x}{x+1}\right) \frac{x+1}{2x - 2x - 2}$$

$$= \frac{-2x}{-2}$$

$$= x$$

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = \frac{3x}{x-1}$; $g(x) = \frac{x}{x-3}$

Solution

$$f(g(x)) = f\left(\frac{x}{x-3}\right)$$

$$= 3\left(\frac{x}{x-3}\right) \frac{1}{\frac{x}{x-3} - 1}$$

$$= \left(\frac{3x}{x-3}\right) \frac{x-3}{x-x+3}$$

$$= \frac{3x}{3}$$

$$= x \rfloor$$

$$g(f(x)) = g\left(\frac{3x}{x-1}\right)$$

$$= \left(\frac{3x}{x-1}\right) \frac{1}{\frac{3x}{x-1} - 3}$$

$$= \left(\frac{3x}{x-1}\right) \frac{x-1}{3x-3x+3}$$

$$= \frac{3x}{3}$$

=x

f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = x^3 + 2$; $g(x) = \sqrt[3]{x-2}$

$$f(g(x)) = f(\sqrt[3]{x-2})$$

$$= (\sqrt[3]{x-2})^3 + 2$$

$$= x-2+2$$

$$= x \rfloor$$

$$g(f(x)) = g(x^3+2)$$

$$= \sqrt[3]{x^3} + 2 - 2$$

$$= \sqrt[3]{x^3}$$

$$= x \rfloor$$

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = (x+4)^3$; $g(x) = \sqrt[3]{x} - 4$

Solution

$$f(g(x)) = f(\sqrt[3]{x} - 4)$$

$$= (\sqrt[3]{x} - 4 + 4)^3$$

$$= (\sqrt[3]{x})^3$$

$$= x \rfloor$$

$$g(f(x)) = g((x+4)^3)$$

$$= \sqrt[3]{(x+4)^3} - 4$$

$$= x + 4 - 4$$

$$= x \rfloor$$

 \therefore f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = x^3 - 1$; $g(x) = \sqrt[3]{x+1}$

$$f(g(x)) = f(\sqrt[3]{x+1})$$

$$= \left(\sqrt[3]{x+1}\right)^3 - 1$$
$$= x+1-1$$
$$= x$$

$$g(f(x)) = g(x^3 - 1)$$

$$= \sqrt[3]{x^3 - 1 + 1}$$

$$= \sqrt[3]{x^3}$$

$$= x$$

Exercise

Prove that f(x) and g(x) are inverse functions of each other f(x) = 3x - 2; $g(x) = \frac{x+2}{3}$

$$f(x) = 3x - 2;$$
 $g(x) = \frac{x+2}{3}$

Solution

$$f(g(x)) = f\left(\frac{x+2}{3}\right)$$
$$= 3\left(\frac{x+2}{3}\right) - 2$$
$$= x + 2 - 2$$
$$= x$$

$$g(f(x)) = g(3x-2)$$

$$= \frac{3x-2+2}{3}$$

$$= \frac{3x}{x}$$

$$= x \mid$$

f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other

$$f(x) = x^2 + 5, x \le 0$$
 $g(x) = -\sqrt{x-5}, x \ge 5$

$$f(g(x)) = f(-\sqrt{x-5})$$
$$= (-\sqrt{x-5})^{2} + 5$$

$$= x - 5 + 5$$

$$= x$$

$$g(f(x)) = g(x^2 + 5)$$

$$= -\sqrt{x^2 + 5 - 5}$$

$$= -\sqrt{x^2}$$

$$= -|x| \quad x \le 0$$

$$= -(-x)$$

$$= x$$

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = x^3 - 4$; $g(x) = \sqrt[3]{x+4}$

Solution

$$f(g(x)) = f(\sqrt[3]{x+4})$$

$$= (\sqrt[3]{x+4})^3 - 4$$

$$= x+4-4$$

$$= x$$

$$g(f(x)) = g(x^3 - 4)$$

$$= \sqrt[3]{x^3 - 4 + 4}$$

$$= \sqrt[3]{x^3}$$

$$= x$$

 \therefore f(x) and g(x) are inverse functions to each other

Exercise

Find the inverse of $f(x) = (x-2)^3$

$$y = (x-2)^3$$

$$x = (y-2)^3$$

$$x^{1/3} = \left[\left(y - 2 \right)^3 \right]^{1/3}$$

$$x^{1/3} = y - 2$$

$$\sqrt[3]{x} + 2 = y$$

$$f^{-1}(x) = \sqrt[3]{x} + 2$$

Find the inverse of $f(x) = \frac{x+1}{x-3}$

Solution

$$y = \frac{x+1}{x-3}$$

$$x = \frac{y+1}{y-3}$$

$$x(y-3) = y+1$$

$$xy - 3x = y + 1$$

$$xy - y = 3x + 1$$

$$y(x-1) = 3x + 1$$

$$f^{-1}(x) = \frac{3x+1}{x-1}$$

Exercise

Find the inverse of $f(x) = \frac{2x+1}{x-3}$

$$y = \frac{2x+1}{x-3}$$

$$x = \frac{2y+1}{y-3}$$

$$xy - 3x = 2y + 1$$

$$y(x-2) = 3x + 1$$

$$f^{-1}(x) = \frac{3x+1}{x-2}$$

Determine the domain and range of f^{-1} : $f(x) = -\frac{2}{x-1}$ (*Hint*: first find the domain and range of f)

Solution

$$x-1 \neq 0 \Longrightarrow x \neq 1$$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R} - \{1\}$ $(-\infty, 1) \cup (1, \infty)$

Domain of
$$f^{-1}$$
 = Range of $f: \mathbb{R} - \{0\}$ $(-\infty, 0) \cup (0, \infty)$

Exercise

Determine the domain and range of f^{-1} : $f(x) = \frac{5}{x+3}$ (*Hint*: first find the domain and range of f)

Solution

Domain of
$$f^{-1} = \text{Range of } f \colon \mathbb{R} - \{0\}$$
 $(-\infty, 0) \cup (0, \infty)$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R} - \{-3\}$ $\left(-\infty, -3\right) \cup \left(-3, \infty\right)$

Exercise

Determine the domain and range of f^{-1} : $f(x) = \frac{4x+5}{3x-8}$ (*Hint*: first find the domain and range of f)

Solution

Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} - \left\{ \frac{8}{3} \right\} \qquad \left(-\infty, \frac{8}{3} \right) \cup \left(\frac{8}{3}, \infty \right)$$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R} - \left\{ \frac{4}{3} \right\}$ $\left(-\infty, \frac{4}{3} \right) \cup \left(\frac{4}{3}, \infty \right)$

Exercise

For the given function $f(x) = \frac{2x}{x-1}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

$$\frac{2a}{a-1} = \frac{2b}{b-1}$$

$$2ab - 2a = 2ab - 2b$$

$$-2a = -2b$$

$$\underline{a} = \underline{b}$$

$$f(x)$$
 is one-to-one function.

$$b) \quad y = \frac{2x}{x-1}$$

$$x = \frac{2y}{y - 1}$$

$$xy - x = 2y$$

$$(x-2)y = x$$

$$y = \frac{x}{x-2} = f^{-1}(x)$$

c) Domain of
$$f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{1\}$$

Range of
$$f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{2\}$$

For the given function $f(x) = \frac{x}{x-2}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

$$a) \quad f(a) = f(b)$$

$$\frac{a}{a-2} = \frac{b}{b-2}$$

$$ab - 2a = ab - 2b$$

$$-2a = -2b$$

$$\underline{a} = \underline{b}$$

$$\therefore$$
 $f(x)$ is one-to-one function.

b)
$$y = \frac{x}{x-2}$$

$$x = \frac{y}{y - 2}$$

$$xy - 2x = y$$

$$(x-1)y = 2x$$

$$f^{-1}(x) = \frac{2x}{x-1}$$

c) Domain of $f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{2\}$ Range of $f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{1\}$

Exercise

For the given function $f(x) = \frac{x+1}{x-1}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{a+1}{a-1} = \frac{b+1}{b-1}$$

$$ab-a+b-1 = ab-b+a-1$$

$$-2a = -2b$$

$$a = b$$

f(x) is one-to-one function.

b)
$$y = \frac{x+1}{x-1}$$

 $x = \frac{y+1}{y-1}$
 $xy - x = y+1$
 $(x-1)y = x+1$
 $f^{-1}(x) = \frac{x+1}{x-1}$

c) Domain of $f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{1\}$ Range of $f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{1\}$

Exercise
$$f(x) = \frac{2x+1}{x+3}$$

For the given function

a) Is f(x) one-to-one function

- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{2a+1}{a+3} = \frac{2b+1}{b+3}$$

$$2ab+6a+b+3 = 2ab+6b+a+3$$

$$5a = 5b$$

$$a = b$$

f(x) is one-to-one function.

b)
$$y = \frac{2x+1}{x+3}$$

 $x = \frac{2y+1}{y+3}$
 $xy + 3x = 2y+1$
 $(x-2)y = -3x+1$
 $f^{-1}(x) = \frac{-3x+1}{x-2}$

c) Domain of $f^{-1}(x) = \text{Range of } f(x)$: $\mathbb{R} - \{-3\}$ Range of $f^{-1}(x) = \text{Domain of } f(x)$: $\mathbb{R} - \{2\}$

Exercise

For the given function $f(x) = \frac{3x-1}{x-2}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{3a-1}{a-2} = \frac{3b-1}{b-2}$$

$$3ab-6a-b+2 = 3ab-6b-a+2$$

$$-5a = -5b$$

$$a = b$$

 $\therefore f(x)$ is one-to-one function.

b)
$$y = \frac{3x-1}{x-2}$$

 $x = \frac{3y-1}{y-2}$
 $xy - 2x = 3y - 1$
 $(x-3)y = 2x - 1$

$$f^{-1}(x) = \frac{2x-1}{x-3}$$

c) Domain of
$$f^{-1}(x) = \text{Range of } f(x): \quad \mathbb{R} - \{2\}$$

Range of
$$f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{3\}$$

For the given function $f(x) = \frac{3x - 2}{x + 4}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{3a-2}{a+4} = \frac{3b-2}{b+4}$$

$$3ab+12a-2b-8 = 3ab+12b-2a-8$$

$$14a = 14b$$

$$\underline{a} = \underline{b}$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{3x-2}{x+4}$$

 $x = \frac{3y-2}{y+4}$
 $xy + 4x = 3y-2$
 $(x-3)y = -4x-2$
 $f^{-1}(x) = \frac{-4x-2}{x-3}$

c) Domain of
$$f^{-1}(x) = \text{Range of } f(x): \quad \mathbb{R} - \{-4\}$$

Range of
$$f^{-1}(x) = \text{Domain of } f(x) : \underline{\mathbb{R}} - \{3\}$$

For the given function $f(x) = \frac{-3x-2}{x+4}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{-3a-2}{a+4} = \frac{-3b-2}{b+4}$$

$$-3ab-12a-2b-8 = -3ab-12b-2a-8$$

$$-10a = -10b$$

$$a = b$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{-3x - 2}{x + 4}$$

 $x = \frac{-3y - 2}{y + 4}$
 $xy + 4x = -3y - 2$
 $(x + 3)y = -4x - 2$

$$f^{-1}(x) = \frac{-4x - 2}{x + 3}$$

c) Domain of $f^{-1}(x) = \text{Range of } f(x): \quad \mathbb{R} - \{-4\}$

Range of $f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{-3\}$

Exercise

For the given function $f(x) = \sqrt{x-1}$ $x \ge 1$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$
$$\sqrt{a-1} = \sqrt{b-1}$$

$$\left(\sqrt{a-1}\right)^2 = \left(\sqrt{b-1}\right)^2$$
$$a-1=b-1$$

$$\underline{a} = b$$

 \therefore f(x) is one-to-one function.

b)
$$y = \sqrt{x-1}$$

$$x = \sqrt{y-1}$$

$$x^{2} = y-1$$

$$y = x^{2}+1$$

$$f^{-1}(x) = x^{2}+1 \quad x \ge 0$$

c) Domain of
$$f(x) = \text{Range of } f^{-1}(x)$$
: $[1, \infty)$

Range of
$$f(x) = \text{Domain of } f^{-1}(x)$$
: $[0, \infty)$

Exercise

For the given function $f(x) = \sqrt{2-x}$ $x \le 2$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\sqrt{2-a} = \sqrt{2-b}$$

$$(\sqrt{2-a})^2 = (\sqrt{2-b})^2$$

$$2-a = 2-b$$

$$a = b \mid \checkmark$$

 $\therefore f(x)$ is one-to-one function.

$$b) \quad y = \sqrt{2 - x}$$

$$x = \sqrt{2 - y}$$

$$x^2 = 2 - y$$

$$y = 2 - x^2$$

$$f^{-1}(x) = 2 - x^2 \quad x \ge 0$$

c) Domain of $f(x) = \text{Range of } f^{-1}(x)$: $(-\infty, 2]$

Range of $f(x) = \text{Domain of } f^{-1}(x)$: $[0, \infty)$

Exercise

For the given function $f(x) = x^2 + 4x$ $x \ge -2$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$x_{vertex} = -\frac{4}{2}$$
$$= -2$$

$$f(-2) = 4 - 8$$
$$= -4 \mid$$

 $Vertex = \begin{pmatrix} -2, & -4 \end{pmatrix}$

a) Since, f(x) is a restricted function with $x \ge -2$. x = -2 is the line symmetry, therefore; f(x) is one-to-one function.

c) Domain of $f(x) = \text{Range of } f^{-1}(x)$: $[-2, \infty)$

Range of $f(x) = \text{Domain of } f^{-1}(x)$: $[-4, \infty)$

For the given function f(x) = 3x + 5

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a) \quad f(a) = f(b)$$

$$3a + 5 = 3b + 5$$

$$3a = 3b$$

$$a = b$$

:
$$f(x)$$
 is 1-1 & $f^{-1}(x)$ exists

b)
$$y = 3x + 5$$

$$x = 3y + 5$$

$$x - 5 = 3v$$

$$\frac{x-5}{3} = y$$

$$f^{-1}(x) = \frac{x-5}{3}$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$

Range of f^{-1} = Domain of $f: \mathbb{R}$

Exercise

For the given function $f(x) = \frac{1}{3x - 2}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{1}{3a-2} = \frac{1}{3b-2}$$

$$3b - 2 = 3a - 2$$

$$3b = 3a$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

Interchange x and y

Solve for y

b)
$$y = \frac{1}{3x - 2}$$

$$x = \frac{1}{3y - 2}$$

Interchange x and y

$$x(3y-2)=1$$

Solve for y

$$3xy - 2x = 1$$

$$3xy = 1 + 2x$$

$$f^{-1}(x) = \frac{1+2x}{3x}$$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} - \left\{ \frac{2}{3} \right\}$$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R} - \{0\}$

Exercise

For the given function $f(x) = \frac{3x+2}{2x-5}$

a) Is
$$f(x)$$
 one-to-one function

b) Find
$$f^{-1}(x)$$
, if it exists

c) Find the domain and range of
$$f(x)$$
 and $f^{-1}(x)$

Solution

$$a) \quad f(a) = f(b)$$

$$\frac{3a+2}{2a-5} = \frac{3b+2}{2b-5}$$

$$6ab - 15a + 4b - 10 = 6ab - 15b + 4a - 10$$

$$19a = 19b$$

$$a = b$$

:
$$f(x)$$
 is **1-1 &** $f^{-1}(x)$ exists

b)
$$y = \frac{3x+2}{2x-5}$$

$$x = \frac{3y+2}{2y-5}$$

Interchange x and y

$$2xy - 5x = 2y + 2$$

Solve for y

$$(2x-3)y = 5x + 2$$

$$f^{-1}(x) = \frac{5x+2}{2x-3}$$

c) Domain of
$$f^{-1} = \text{Range of } f \colon \mathbb{R} - \left\{ \frac{5}{2} \right\}$$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R} - \left\{ \frac{3}{2} \right\}$

For the given function

$$f(x) = \frac{4x}{x - 2}$$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a) \quad f(a) = f(b)$$

$$\frac{4a}{a-2} = \frac{4b}{b-2}$$

$$4ab - 8a = 4ab - 8b$$

$$-8a = -8b$$

$$a = b$$

:
$$f(x)$$
 is 1–1 & $f^{-1}(x)$ exists

b)
$$y = \frac{4x}{x-2}$$

$$x = \frac{4y}{y-2}$$

$$xy - 2x = 4y$$

$$(x-4)y=2x$$

$$f^{-1}(x) = \frac{2x}{x-4}$$

c) Domain of $f^{-1} = \text{Range of } f \colon \mathbb{R} - \{2\}$

Range of f^{-1} = Domain of $f: \mathbb{R} - \{4\}$

Exercise

For the given function $f(x) = 2 - 3x^2$; $x \le 0$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

$$2 - 3a^2 = 2 - 3b^2$$

$$-3a^2 = -3b^2$$

$$a^2 = b^2$$

$$a = b$$
 since $x \le 0$

f(x) is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = 2 - 3x^2$$

 $x = 2 - 3y^2$
 $3y^2 = 2 - x$
 $y^2 = \frac{2 - x}{3}$
 $f^{-1}(x) = -\sqrt{\frac{2 - x}{3}}$ | Since $x < 0$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$

Range of f^{-1} = Domain of $f: \mathbb{R}$

Exercise

For the given function $f(x) = 2x^3 - 5$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

 $2a^3 - 5 = 2b^3 - 5$

$$a^3 = b^3$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = 2x^3 - 5$$

$$y + 5 = 2x^3$$

$$\frac{y+5}{2} = x^3$$

$$x = \sqrt[3]{\frac{y+5}{2}}$$

$$f^{-1}(x) = \sqrt[3]{\frac{x+5}{2}}$$

c) Domain of f^{-1} = Range of $f: \mathbb{R}$

Range of f^{-1} = Domain of $f: \mathbb{R}$

For the given function $f(x) = \sqrt{3-x}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a) f(a) = f(b)

$$\left(\sqrt{3-a}\right)^2 = \left(\sqrt{3-b}\right)^2$$

$$3 - a = 3 - b$$

a = b

: f(x) is 1-1 & $f^{-1}(x)$ exists

b) $y = \sqrt{3-x}$ $y \ge 0$

$$v \geq 0$$

$$y = \sqrt{3 - x}$$

$$y^2 = 3 - x$$

$$x = 3 - v^2$$

$$x \ge 0$$

$$f^{-1}(x) = 3 - x^2$$

c) Domain of f^{-1} = Range of $f: (-\infty, 3]$

Range of f^{-1} = Domain of $f: [0, \infty)$

Exercise

For the given function $f(x) = \sqrt[3]{x} + 1$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a) f(a) = f(b)

$$\sqrt[3]{a} + 1 = \sqrt[3]{b} + 1$$

$$\left(\sqrt[3]{a}\right)^3 = \left(\sqrt[3]{b}\right)^3$$

a = b

: f(x) is **1–1 &** $f^{-1}(x)$ exists

b) $v = \sqrt[3]{x} + 1$

$$y = \sqrt[3]{x} + 1$$

$$y - 1 = \sqrt[3]{x}$$

$$(y - 1)^3 = x$$

$$f^{-1}(x) = (x - 1)^3$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$ Range of $f^{-1} = \text{Domain of } f : \mathbb{R}$

Exercise

For the given function $f(x) = (x^3 + 1)^5$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

 $(a^3 + 1)^5 = (b^3 + 1)^5$
 $a^3 + 1 = b^3 + 1$
 $a^3 = b^3$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = (x^3 + 1)^5$$

 $y = (x^3 + 1)^5$
 $\sqrt[5]{y} = x^3 + 1$
 $\sqrt[5]{y} - 1 = x^3$
 $x = \sqrt[3]{\sqrt[5]{y} - 1}$
 $f^{-1}(x) = \sqrt[3]{\sqrt[5]{x} - 1}$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R}$$

Range of $f^{-1} = \text{Domain of } f : \mathbb{R}$

For the given function $f(x) = x^2 - 6x$; $x \ge 3$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

 $a^2 - 6a = b^2 - 6b$
 $a^2 - b^2 = 6a - 6b$
 $(a - b)(a + b) = 6(a - b)$
 $a = b$

:
$$f(x)$$
 is 1–1 & $f^{-1}(x)$ exists

b)
$$y = x^2 - 6x$$

 $x^2 - 6x - y = 0$

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-y)}}{2(1)}$$

$$= \frac{6 \pm 4\sqrt{9 + y}}{2}$$

$$= 3 \pm \sqrt{9 + y}$$

Since $x \ge 3 \Rightarrow$ we can select $x = 3 + \sqrt{y+9}$ $\therefore f^{-1}(x) = 3 + \sqrt{x+9}$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} : \geq 3$$

Range of $f^{-1} = \text{Domain of } f : \geq -9$

Exercise

For the given function $f(x) = (x-2)^3$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

 $(a-2)^3 = (b-2)^3$
 $a-2 = b-2$

$$a = b$$

: f(x) is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = (x-2)^3$$

 $x = (y-2)^3$
 $x^{1/3} = \left[(y-2)^3 \right]^{1/3}$
 $x^{1/3} = y-2$
 $\sqrt[3]{x} + 2 = y$
 $\therefore f^{-1}(x) = \sqrt[3]{x} + 2$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$ Range of $f^{-1} = \text{Domain of } f : \mathbb{R}$

Exercise

For the given function $f(x) = \frac{x+1}{x-3}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

$$\frac{a+1}{a-3} = \frac{b+1}{b-3}$$

$$ab - 3a + b - 3 = ab - 3b + a - 3$$

$$-4a = -4b$$

$$a = b$$

:
$$f(x)$$
 is 1–1 & $f^{-1}(x)$ exists

b)
$$y = \frac{x+1}{x-3}$$

 $x = \frac{y+1}{y-3}$
 $x(y-3) = y+1$
 $xy-3x = y+1$
 $xy-y = 3x+1$
 $y(x-1) = 3x+1$

$$y = \frac{3x+1}{x-1} = f^{-1}(x)$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R} - \{3\}$

Range of f^{-1} = Domain of $f: \mathbb{R} - \{1\}$

Exercise

For the given function $f(x) = \frac{2x+1}{x-3}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(\mathbf{a}) = f(\mathbf{b})$$

$$\frac{2a+1}{a-3} = \frac{2b+1}{b-3}$$

$$2ab - 6a + b - 3 = 2ab - 6b + a - 3$$

$$-7a = -7b$$

$$a = b$$

:
$$f(x)$$
 is 1–1 & $f^{-1}(x)$ exists

b)
$$y = \frac{2x+1}{x-3}$$

$$x = \frac{2y+1}{v-3}$$

$$xy - 3x = 2y + 1$$

$$y(x-2) = 3x + 1$$

$$y = \frac{3x+1}{x-2} = f^{-1}(x)$$

c) Domain of f^{-1} = Range of $f: \mathbb{R} - \{3\}$

Range of f^{-1} = Domain of $f: \mathbb{R} - \{2\}$

The function w(x) = 2x + 24 can be used to convert a U.S. women's shoe size into an Italian women's shoe size. Determine the function $w^{-1}(x)$ that can use to convert an Italian women's shoe size to its equivalent U.S. shoe size.

Solution

$$x = 2w^{-1}(x) + 24$$

$$2w^{-1}(x) = x - 24$$

$$w^{-1}(x) = \frac{1}{2}x - 12$$

Exercise

The function m(x) = 1.3x - 4.7 can be used to convert a U.S. men's shoe size into an U.K. women's shoe size. Determine the function $m^{-1}(x)$ that can used to convert an U.K. men's shoe size to its equivalent U.S. shoe size.

Solution

$$x = 1.3m^{-1}(x) - 4.7$$

$$1.3m^{-1}(x) = x + 4.7$$

$$\frac{13}{10}m^{-1}(x) = x + \frac{47}{10}$$

$$m^{-1}(x) = \frac{10}{13}x + \frac{47}{13}$$

$$w^{-1}(x) = \frac{1}{2}x - 12$$

Exercise

A catering service use the function $c(x) = \frac{300 + 12x}{x}$ to determine the amount, in *dollars*, it charges per person for a sit-down dinner, where x is the number of people in attendance.

- a) Find c(30) and explain what it represents
- b) Find $c^{-1}(x)$
- c) Use $c^{-1}(x)$ to determine how many people attended a dinner for which the cost per person was \$15.00

a)
$$c(30) = \frac{300 + 12(30)}{30}$$

= $\frac{30 + 36}{3}$
= $\frac{66}{3}$
= \$22

Catering service will charge \$22 per person to a sit-down dinner.

b)
$$cx = 300 + 12x$$

 $(c-12)x = 300$
 $c^{-1}(x) = \frac{300}{x-12}$

c)
$$c^{-1}(15) = \frac{300}{15 - 12}$$

= $\frac{300}{3}$
= 100 |

Exercise

A landscaping service use the function $c(x) = \frac{600 + 140x}{x}$ to determine the amount, in *dollars*, it charges per tree to deliver, where x is the number of trees.

- a) Find c(5) and explain what it represents
- b) Find $c^{-1}(x)$
- c) Use $c^{-1}(x)$ to determine how many trees were delivered for which the cost per tree was \$160.00

Solution

d)
$$c(5) = \frac{600 + 140(5)}{5}$$

= $\frac{1,300}{5}$
= \$260

Landscaping service will charge \$260 per tree to deliver.

e)
$$y = \frac{600 + 140x}{x}$$

 $x = \frac{600 + 140y}{y}$
 $xy = 600 + 140y$
 $(x - 140)y = 600$

$$c^{-1}(x) = \frac{600}{x - 140}$$

$$c^{-1}(x) = \frac{600}{x - 140}$$

$$f) \quad c^{-1}(160) = \frac{600}{160 - 140}$$

$$= \frac{600}{20}$$

$$= 30$$

Solution Section 3.2 - Exponential Functions

Exercise

Evaluate to four decimal places using a calculator $2^{3.4}$

Solution

$$2^{3.4} = 10.5561$$

Exercise

Evaluate to four decimal places using a calculator $5^{\sqrt{3}}$

Solution

$$5^{\sqrt{3}} = 16.2425$$

Exercise

Evaluate to four decimal places using a calculator $6^{-1.2}$

Solution

$$6^{-1.2} = 0.1165$$

Exercise

Evaluate to four decimal places using a calculator: $e^{-0.75}$

Solution

$$e^{-0.75} = .4724$$

Exercise

Evaluate to four decimal places using a calculator: $e^{2.3}$

Solution

$$e^{2.3} = 9.9742$$

Exercise

Evaluate to four decimal places using a calculator: $e^{-0.95}$

Solution

$$e^{-0.95} = 0.3867$$

Exercise

Evaluate to four decimal places using a calculator: $\pi^{\sqrt{\pi}}$

Solution

$$\pi^{\sqrt{\pi}} = 7.6063$$

Exercise

Evaluate to four decimal places using a calculator: $e^{\sqrt{2}}$

Solution

$$e^{\sqrt{2}} = 4.1133$$

Exercise

Sketch the graph: $f(x) = 2^x + 3$

Solution

Asymptote: y = 3

Domain: $(-\infty, \infty)$

Range: $(3, \infty)$

х	f(x)
-1	3.5
0	4
1	5
2	7

Sketch the graph: $f(x) = 2^{3-x}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)		
1	4		
2	2		
0	8		

Exercise

Sketch the graph: $f(x) = \left(\frac{2}{5}\right)^{-x}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

x	f(x)		
-1	0.4		
0	1		
1	2.5		

Exercise

Sketch the graph: $f(x) = -\left(\frac{1}{2}\right)^x + 4$

Solution

Asymptote: y = 4

Domain: $(-\infty, \infty)$

Range: $(-\infty, 4)$

X	f(x)		
-2	0		
-1	2		
0	3		

Sketch the graph of $f(x) = 4^x$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)
0	1
1	4

Exercise

Sketch the graph of $f(x) = 2 - 4^x$

Solution

Asymptote: y = 2

Domain: $(-\infty, \infty)$

Range: $(-\infty, 2)$

X	f(x)			
0	1			
1	-2			

Exercise

Sketch the graph of $f(x) = -3 + 4^{x-1}$

Solution

Asymptote: y = -3

Domain: $(-\infty, \infty)$

Range: $(-3, \infty)$

x	f(x)		
1	-2		
2	1		

Sketch the graph of $f(x) = 1 + \left(\frac{1}{4}\right)^{x+1}$

Solution

Asymptote: y = 1

Domain: $(-\infty, \infty)$

Range: $(1, \infty)$

х	f(x)		
-1	2		
0	<u>5</u>		

Exercise

Sketch the graph of $f(x) = e^{x-2}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

\boldsymbol{x}	f(x)
2	1
3	2.7

Exercise

Sketch the graph of $f(x) = 3 - e^{x-2}$

Solution

Asymptote: y = 3

Domain: $(-\infty, \infty)$

Range: $(-\infty, 3)$

x	f(x)		
2	2		
3	.3		

Sketch the graph of $f(x) = e^{x+4}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

x	f(x)			
-4	1			
-3	2.7			

Exercise

Sketch the graph of $f(x) = 2 + e^{x-1}$

Solution

Asymptote: y = 2

Domain: $(-\infty, \infty)$

Range: $(2, \infty)$

х	f(x)
1	3
2	4.7

Exercise

The exponential function $f(x) = 1066e^{0.042x}$ models the gray wolf population of the Western Great Lakes, f(x), in *billions*, *x years* after 1978. Project the gray population in the recovery area in 2012.

$$x = 2012 - 1978 = 34$$

 $f(x = 34) = 1066e^{0.042(34)}$
 $= 4445.6$
 $\approx 4446 \ billions$

The function $f(x) = 6.4e^{0.0123x}$ describes world population, f(x), in billions, x years after 2004 subject to a growth rate of 1.23% annually. Use the function to predict world population in 2050.

Solution

$$x = 2050 - 2004 = 46$$

 $f(x = 46) = 6.4e^{0.0123(46)}$
 $\approx 11.27 \ billion$

Exercise

A cup of coffee is heated to $160^{\circ}F$ and placed in a room that maintains a temperature of $70^{\circ}F$. The temperature T of the coffee, in *degree Fahrenheit*, after t minutes is given by

$$T(t) = 70 + 90e^{-0.0485t}$$

- a) Find the temperature of the coffee 20 minutes after it is placed in the room
- b) Determine when the temperature of the coffee will reach $90^{\circ}F$

Solution

a)
$$T(20) = 70 + 90e^{-0.0485(20)}$$

 $\approx 104^{\circ}F$

b)
$$T(t) = 70 + 90e^{-0.0485t} = 90$$

 $90e^{-0.0485t} = 20$
 $e^{-0.0485t} = \frac{2}{9}$

 \therefore The temperature of the coffee will reach 90°F in about 31.01 minutes.

A cup of coffee is heated to $180^{\circ}F$ and placed in a room that maintains a temperature of $65^{\circ}F$. The temperature T of the coffee, in *degree Fahrenheit*, after t minutes is given by

$$T(t) = 65 + 115e^{-0.042t}$$

- a) Find the temperature of the coffee 10 minutes after it is placed in the room
- b) Determine when the temperature of the coffee will reach $100^{\circ}F$

Solution

a)
$$T(10) = 65 + 115e^{-0.042(10)}$$

 $\approx 141^{\circ}F$

b)
$$T(t) = 65 + 115e^{-0.042t} = 100$$

 $115e^{-0.042t} = 35$
 $e^{-0.042t} = \frac{7}{23}$

 \therefore The temperature of the coffee will reach $100^{\circ}F$ in about 31.01 minutes.

Exercise

The percent I(x) of the original intensity of light striking the surface of a lake that is available *x feet* below the surface of the lake is given by the equation

$$I(x) = 100e^{-.95x}$$

- a) What percentage of the light is available 2 feet below the surface of the lake?
- b) At what depth is the intensity of the light one-half the intensity at the surface?

a)
$$I(2) = 100e^{-.95(2)}$$

: The percentage of the light is available 2 feet below the surface of the lake is 15%

 \therefore The depth is 0.73 feet when the intensity of the light one-half the intensity at the surface

Exercise

Starting on the left side of a standard 88-key piano, the frequency, in *vibrations* per *second*, of the *n*th note is given by

$$f(n) = (2.75) 2^{\frac{n-1}{12}}$$
Middle D E

- a) Determine the frequency of middle C, key number 40 on an 88-key piano.
- b) Is the difference in frequency between middle C (key number 40) and D (key number 42) the same as the difference in frequency between D (key number 42) and E (key number 44)?

a)
$$f(40) = (2.75) 2^{\frac{40-1}{12}}$$

the frequency of middle C is ≈ 26 vibrations per second.

b)
$$f(42) = (2.75) 2^{(41/12)}$$

 ≈ 29.37

The difference between the frequency of middle ${\cal C}$ and ${\cal D}$ is:

$$29.37 - 26.16 \approx 3.21$$

$$f(44) = (2.75) 2^{(43/12)}$$

 ≈ 32.96

The difference between the frequency of middle D and E is:

$$32.96 - 29.37 \approx 3.59$$

: the differences are *not* the same since the function is *not* linear function

Starting on the left side of a standard 88-key piano, the frequency, in *vibrations* per *second*, of the *n*th note is given by

- c) Determine the frequency of middle C, key number 40 on an 88-key piano.
- *d)* Is the difference in frequency between middle *C* (key number 40) and *D* (key number 42) the same as the difference in frequency between *D* (key number 42) and *E* (key number 44)?

Solution

c)
$$f(40) = (27.5) \ 2^{\frac{40-1}{12}}$$

 ≈ 261.63

the frequency of middle C is ≈ 262 vibrations per second.

d)
$$f(42) = (27.5) 2^{(41/12)}$$

 ≈ 293.66

The difference between the frequency of middle C and D is: $293.66 - 261.66 \approx 32$

$$f(44) = (27.5) 2^{(43/12)}$$

 ≈ 329.63

The difference between the frequency of middle D and E is: $329.63 - 293.66 \approx 36$

: The differences are *not* the same since the function is *not* linear function.

Solution

Section 3.3 – Logarithmic Functions

Exercise

Write the equation in its equivalent logarithmic form $2^6 = 64$

Solution

$$6 = \log_2 64$$

Exercise

Write the equation in its equivalent logarithmic form $5^4 = 625$

Solution

$$4 = \log_5 625$$

Exercise

Write the equation in its equivalent logarithmic form $5^{-3} = \frac{1}{125}$

Solution

$$-3 = \log_5 \frac{1}{125}$$

Exercise

Write the equation in its equivalent logarithmic form $\sqrt[3]{64} = 4$

Solution

$$64^{1/3} = 4$$

$$\log_{64} = \frac{1}{3}$$

Exercise

Write the equation in its equivalent logarithmic form $b^3 = 343$

$$\log_b 343 = 3$$

Write the equation in its equivalent logarithmic form $8^{y} = 300$

Solution

$$\log_8 300 = y$$

Exercise

Write the equation in its equivalent logarithmic form: $\sqrt[n]{x} = y$

Solution

$$(x)^{1/n} = y$$

$$\log_x(y) = \frac{1}{n}$$

Exercise

Write the equation in its equivalent logarithmic form: $\left(\frac{2}{3}\right)^{-3} = \frac{27}{8}$

Solution

$$\log_{\frac{2}{3}}\left(\frac{27}{8}\right) = -3$$

Exercise

Write the equation in its equivalent logarithmic form: $\left(\frac{1}{2}\right)^{-5} = 32$

Solution

$$\log_{\frac{1}{2}}(32) = -5$$

Exercise

Write the equation in its equivalent logarithmic form: $e^{x-2} = 2y$

$$x - 2 = \ln |2y|$$

Write the equation in its equivalent logarithmic form: e = 3x

Solution

$$1 = \ln |3x|$$

Exercise

Write the equation in its equivalent logarithmic form: $\sqrt[3]{e^{2x}} = y$

Solution

$$e^{2x/3} = y$$

$$\frac{2x}{3} = \ln|y|$$

Exercise

Write the equation in its equivalent exponential form $\log_5 125 = y$

Solution

$$5^y = 125$$

Exercise

Write the equation in its equivalent exponential form $\log_4 16 = x$

Solution

$$16 = 4^{x}$$

Exercise

Write the equation in its equivalent exponential form $\log_5 \frac{1}{5} = x$

Solution

$$\frac{1}{5} = 5^x$$

Exercise

Write the equation in its equivalent exponential form $\log_2 \frac{1}{8} = x$

$$\frac{1}{8} = 2^x$$

Write the equation in its equivalent exponential form $\log_6 \sqrt{6} = x$

Solution

$$\sqrt{6} = 6^x$$

Exercise

Write the equation in its equivalent exponential form $\log_3 \frac{1}{\sqrt{3}} = x$

Solution

$$3^{-1/2} = 3^x$$

Exercise

Write the equation in its equivalent exponential form: $6 = \log_2 64$

Solution

$$6 = \log_2 64 \iff \underline{2^6 = 64}$$

Exercise

Write the equation in its equivalent exponential form: $2 = \log_9 x$

Solution

$$2 = \log_9 x \iff \underline{x = 2^9}$$

Exercise

Write the equation in its equivalent exponential form: $\log_{\sqrt{3}} 81 = 8$

$$\log_{\sqrt{3}} 81 = 8 \iff 81 = \left(\sqrt{3}\right)^8$$

Write the equation in its equivalent exponential form: $\log_4 \frac{1}{64} = -3$

Solution

$$\log_4 \frac{1}{64} = -3 \iff \frac{1}{64} = x^{-3}$$

Exercise

Write the equation in its equivalent exponential form: $\log_4 26 = y$

Solution

$$\log_4 26 = y \iff \underline{26 = 4^y}$$

Exercise

Write the equation in its equivalent exponential form: $\ln M = c$

Solution

$$\ln M = c \iff \underline{M = e^c}$$

Exercise

Evaluate the expression without using a calculator: $\log_4 16$

Solution

$$\log_4 16 = \log_4 4^2 \qquad \qquad \log_b b^x = x$$

$$= 2$$

Exercise

Evaluate the expression without using a calculator: $\log_2 \frac{1}{8}$

$$\log_2 \frac{1}{8} = \log_2 \frac{1}{2^3}$$

$$= \log_2 2^{-3}$$

$$= -3$$

$$\log_b b^x = x$$

Evaluate the expression without using a calculator: $\log_6 \sqrt{6}$

Solution

$$\log_6 \sqrt{6} = \log_6 6^{1/2}$$
$$= \frac{1}{2}$$

Exercise

Evaluate the expression without using a calculator: $\log_3 \frac{1}{\sqrt{3}}$

Solution

$$\log_3 \frac{1}{\sqrt{3}} = \log_3 \frac{1}{3^{1/2}}$$

$$= \log_3 3^{-1/2} \qquad \log_b b^x = x$$

$$= -\frac{1}{2}$$

Exercise

Evaluate the expression without using a calculator: $\log_3 \sqrt[7]{3}$

Solution

$$\log_3 3^{1/7} = x$$

$$3^{1/7} = 3^x$$

$$x = \frac{1}{7}$$

$$\log_3 \sqrt[7]{3} = \frac{1}{7}$$

Exercise

Evaluate the expression without using a calculator: $\log_3 \sqrt{9}$

$$\log_3 \sqrt{9} = \log_3 3 \qquad \log_b b^x = x$$

$$= 1$$

Evaluate the expression without using a calculator: $\log_{\frac{1}{2}} \sqrt{\frac{1}{2}}$

Solution

$$\log_{\frac{1}{2}} \sqrt{\frac{1}{2}} = \log_{\frac{1}{2}} \left(\frac{1}{2}\right)^{\frac{1}{2}} \qquad \log_b b^x = x$$

$$= \frac{1}{2}$$

Exercise

Simplify $\log_5 1$

Solution

$$\log_5 1 = 0$$

Exercise

Simplify $\log_{7} 7^2$

Solution

$$\log_7 7^2 = 2$$

Exercise

Simplify $3^{\log_3 8}$

Solution

$$\frac{\log_3 8}{3} = 8$$

Exercise

Simplify $10^{\log 3}$

$$10^{\log 3} = 3$$

 $e^{2+\ln 3}$ Simplify

Solution

$$e^{2+\ln 3} = e^2 e^{\ln 3}$$
$$= 3e^2$$

Exercise

 $\ln e^{-3}$ Simplify

Solution

$$\ln e^{-3} = -3$$

Exercise

 $\ln e^{x-5}$ Simplify

Solution

$$\ln e^{x-5} = x-5$$

Exercise

 $\log_b b^n$ Simplify

Solution

$$\log_b b^n = n$$

Exercise

Simplify

In positive in
$$e^{x^2+3x}$$

Solution

$$\ln e^{x^2+3x} = x^2+3x$$

Find the domain of $f(x) = \log_5(x+4)$

Solution

Domain: x > -4

Exercise

Find the domain of $f(x) = \log_5 (x+6)$

Solution

Domain: x > -6

Exercise

Find the domain of $f(x) = \log(2 - x)$

Solution

Domain: x < 2

Exercise

Find the domain of $f(x) = \log(7 - x)$

Solution

Domain: x < 7

Exercise

Find the domain of $f(x) = \ln(x-2)^2$

Solution

Domain: $\frac{\mathbb{R}-\{2\}}{}$

 $(-\infty, 2) \cup (2, \infty)$

Exercise

Find the domain of $f(x) = \ln(x-7)^2$

Domain:
$$\mathbb{R} - \{7\}$$
 $(-\infty, 7) \cup (7, \infty)$

Find the domain of $f(x) = \log(x^2 - 4x - 12)$

Solution

$$x^{2} - 4x - 12 > 0$$

$$x = \frac{4 \pm \sqrt{16 + 48}}{2}$$

$$= \begin{cases} \frac{4 - 8}{2} = -2\\ \frac{4 + 8}{2} = 6 \end{cases}$$

Domain: x < -2 x > 6 $(-\infty, -2) \cup (6, \infty)$

Exercise

Find the domain of $f(x) = \log(\frac{x-2}{x+5})$

Solution

$$\begin{cases} x \neq 2 \\ x \neq -5 \end{cases}$$

Domain: x < -5 x > 2 $(-\infty, -5) \cup (2, \infty)$

	-5	0	2	
+		_		+

Exercise

Find the domain of $f(x) = \log(\frac{3-x}{x-2})$

Solution

$$\begin{cases} x \neq 3 \\ x \neq 2 \end{cases}$$

Domain: 2 < x < 3

Find the domain of $f(x) = \ln(x^2 - 9)$

Solution

$$x^2 - 9 > 0$$

Domain: x < -3 x > 3

Exercise

Find the domain of $f(x) = \ln\left(\frac{x^2}{x-4}\right)$

Solution

$$\frac{x^2}{x-4} > 0$$

$$x^2 \to \mathbb{R}$$

Domain: x > 4

Exercise

Find the domain of $f(x) = \log_3(x^3 - x)$

Solution

$$x^3 - x > 0$$

x = 0, 0, 1

Domain: x > 1

0,0 1 2

Exercise

Find the domain of $f(x) = \log \sqrt{2x-5}$

Solution

$$2x - 5 > 0$$

Domain: $x > \frac{5}{2}$

Find the domain of $f(x) = 3 \ln (5x - 6)$

Solution

$$5x - 6 > 0$$

Domain: $x > \frac{6}{5}$

Exercise

Find the domain of $f(x) = \log(\frac{x}{x-2})$

Solution

$$\frac{x}{x-2} > 0$$

$$x = 0, 2$$

Domain: $x < 0 \quad x > 2$

Exercise

Find the domain of $f(x) = \log(4 - x^2)$

Solution

$$4 - x^2 > 0$$

$$4 - x^2 = 0 \quad \rightarrow \quad x = \pm 2$$

Domain: $\underline{-2 < x < 2}$

Exercise

Find the domain of $f(x) = \ln(x^2 + 4)$

Solution

 $x^2 + 4$ always positive.

Domain: R

Find the domain of $f(x) = \ln |4x - 8|$

Solution

$$4x - 8 = 0 \quad \rightarrow \quad x = 2$$

Domain: $\mathbb{R}-\{2\}$

Exercise

Find the domain of $f(x) = \ln |5 - x|$

Solution

$$5 - x = 0 \quad \rightarrow \quad x = 5$$

Domain: $\mathbb{R}-\{5\}$

Exercise

Find the domain of $f(x) = \ln(x-4)^2$

Solution

$$x-4=0 \rightarrow x=4$$

Domain: $\mathbb{R}-\{4\}$

Exercise

Find the domain of $f(x) = \ln(x^2 - 4)$

Solution

$$x^2 - 4 > 0$$

$$x^2 - 4 = 0 \quad \rightarrow \quad x = \pm 2$$

Domain: x < -2 x > 2

Exercise

Find the domain of $f(x) = \ln(x^2 - 4x + 3)$

$$x^2 - 4x + 3 = 0 \rightarrow x = 1, 3$$

$$x^2 - 4x + 3 > 0$$

Domain:
$$x < 1$$
 $x > 3$

Find the domain of
$$f(x) = \ln(2x^2 - 5x + 3)$$

Solution

$$2x^2 - 5x + 3 = 0 \rightarrow x = 1, \frac{3}{2}$$

$$2x^2 - 5x + 3 > 0$$

Domain: x < 1 $x > \frac{3}{2}$

Exercise

Find the domain of
$$f(x) = \log(x^2 + 4x + 3)$$

Solution

$$x^2 + 4x + 3 = 0 \rightarrow x = -1, -3$$

$$x^2 + 4x + 3 > 0$$

Domain: x < -3 x > -1

Exercise

Find the domain of $f(x) = \ln(x^4 - x^2)$

Solution

$$x^4 - x^2 = 0$$

$$x^2\left(x^2-1\right)=0$$

$$x = 0, 0, \pm 1$$

$$x^4 - x^2 > 0$$

Domain: x < -1 x > 1

-1 0,0 1 2			2	
+	_	_		+

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \log_{A} (x-2)$

Solution

Asymptote: x = 2

Domain: $(2, \infty)$

Range: $(-\infty, \infty)$

X	f(x)
-2-	
3	0
4	.5

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \log_{a} |x|$

Solution

Asymptote: x = 0

Domain: $(-\infty, 0) \cup (0, \infty)$

Range: $(-\infty, \infty)$

х	f(x)	
-0- -		
±1	0	
±4	1	

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = (\log_4 x) - 2$

Solution

Asymptote: x = 0

Domain: $(0, \infty)$

Range: $(-\infty, \infty)$

x	f(x)	
<u> </u>		
1	0	
4	-1	

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \log(3-x)$

Solution

Asymptote: x = 3

Domain: $(-\infty, 3)$

Range: $(-\infty, \infty)$

х	f(x)
-3- -	
2	0

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = 2 - \log(x + 2)$

Solution

Asymptote: x = -2

Domain: $(-2, \infty)$

Range: $(-\infty, \infty)$

х	f(x)
2_	
-1	2

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \ln(x-2)$

Solution

Asymptote: x = 2

Domain: $(2, \infty)$

Range: $(-\infty, \infty)$

X	f(x)
-2	
3	0

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \ln(3-x)$

Solution

Asymptote: x = 3

Domain: $(-\infty, 3)$

Range: $(-\infty, \infty)$

X	f(x)
-3-	
2	0

Exercise

Find the asymptote, domain, and range of the given function. Then, sketch the graph

$$f(x) = 2 + \ln(x+1)$$

Solution

Asymptote: x = -1

Domain: $(-1, \infty)$

Range: $(-\infty, \infty)$

X	f(x)
1	
0	2

Exercise

Find the asymptote, domain, and range of the given function. Then, sketch the graph

$$f(x) = 1 - \ln(x - 2)$$

Solution

Asymptote: x = 2

Domain: $(2, \infty)$

Range: $(-\infty, \infty)$

X	f(x)
-2-	
3	1

On a study by psychologists Bornstein and Bornstein, it was found that the average walking speed w, in feet per second, of a person living in a city of population P, in **thousands**, is given by the function

$$w(P) = 0.37 \ln P + 0.05$$

- a) The population is 124,848. Find the average walking speed of people living in Hartford.
- b) The population is 1,236,249. Find the average walking speed of people living in San Antonio.

Solution

124,848 = 124.848 thousand
a)
$$w(124.848) = 0.37 \ln(124.848) + 0.05$$

 $\approx 1.8 \text{ ft/sec}$
b) $w(1,236.249) = 0.37 \ln(1,236.249) + 0.05$
 $\approx 2.7 \text{ ft/sec}$

Exercise

The loudness of sounds is measured in a unit called a decibel. To measure with this unit, we first assign an intensity of I_0 to a very faint sound, called the threshold sound. If a particular sound has intensity I, then the decibel rating of this louder sound is

$$d = 10\log \frac{I}{I_0}$$

Find the exact decibel rating of a sound with intensity $10,000I_0$

Solution

$$d = 10 \log \frac{10000I_0}{I_0}$$
= 10 \log 10000
= 40 \ db \ |

Exercise

Students in an accounting class took a final exam and then took equivalent forms of the exam at monthly intervals thereafter. The average score S(t), as a percent, after t months was found to be given by the function

$$S(t) = 78 - 15 \log(t+1); t \ge 0$$

- a) What was the average score when the students initially took the test, t = 0?
- b) What was the average score after 4 months? 24 months?

Solution

- a) $S(0) = 78 15 \log(1)$ $\approx 78\%$
- **b)** After 4 months

$$S(4) = 78 - 15 \log(5)$$

$$\approx 67.5\%$$

After 24 months

$$S(24) = 78 - 15 \log(25)$$

$$\approx 57\%$$

Exercise

A model for advertising response is given by the function

$$N(a) = 1,000 + 200 \ln a, \quad a \ge 1$$

Where N(a) is the number of units sold when a is the amount spent on advertising, in *thousands* of dollars.

- a) N(1)
- b) N(5)

- a) $N(1) = 1,000 + 200 \ln(1)$
 - =1,000 units
- **b)** $N(5) = 1,000 + 200 \ln(5)$
 - =1,322 units

Solution Section 3.4 – Properties of Logarithms

Exercise

Express the following in terms of sums and differences of logarithms: $\log_3(ab)$

Solution

$$\log_3(ab) = \log_3 a + \log_3 b$$

Exercise

Express the following in terms of sums and differences of logarithms: $\log_{7}(7x)$

Solution

$$\log_7(7x) = \log_7 7 + \log_7 x$$

$$= 1 + \log_7 x$$

Exercise

Express the following in terms of sums and differences of logarithms: $\log \frac{x}{1000}$

Solution

$$\log \frac{x}{1000} = \log x - \log 10^3$$
$$= \log x - 3$$

Exercise

Express the following in terms of sums and differences of logarithms $\log_5 \left(\frac{125}{y} \right)$

Solution

$$\log_5 \left(\frac{125}{y} \right) = \log_5 5^3 - \log_5 y$$

$$= 3 - \log_5 y$$

Exercise

Express the following in terms of sums and differences of logarithms $\log_h x^7$

$$\log_b x^7 = 7\log_b x$$

Express the following in terms of sums and differences of logarithms $\ln \sqrt[7]{x}$

Solution

$$\ln \sqrt[7]{x} = \ln x^{1/7}$$
$$= \frac{1}{7} \ln x$$

Exercise

Express the following in terms of sums and differences of logarithms $\log \frac{x^2 y}{z^4}$

Solution

$$\log_{a} \frac{x^{2} y}{z^{4}} = \log_{a} x^{2} y - \log_{a} z^{4}$$

$$= \log_{a} x^{2} + \log_{a} y - \log_{a} z^{4}$$

$$= 2\log_{a} x + \log_{a} y - 4\log_{a} z$$
Power Rule

Power Rule

Exercise

Express the following in terms of sums and differences of logarithms $\log_b \frac{x^2y}{b^3}$

$$\log_{b} \left(\frac{x^{2}y}{b^{3}}\right) = \log_{b} x^{2}y - \log_{b} b^{3}$$

$$= \log_{b} x^{2} + \log_{b} y - \log_{b} b^{3}$$

$$= 2\log_{b} x + \log_{b} y - 3\log_{b} b$$

$$= 2\log_{b} x + \log_{b} y - 3$$

Express the following in terms of sums and differences of logarithms $\log_b \left(\frac{x^3 y}{z^2} \right)$

Solution

$$\log_b \left(\frac{x^3 y}{z^2}\right) = \log_b \left(x^3 y\right) - \log_b z^2$$

$$= \log_b x^3 + \log_b y - \log_b z^2$$

$$= 3\log_b x + \log_b y - 2\log_b z$$

Exercise

Express the following in terms of sums and differences of logarithms $\log_b \left(\frac{\sqrt[3]{xy^4}}{z^5} \right)$

Solution

$$\log_{b} \left(\frac{\sqrt[3]{x}y^{4}}{z^{5}} \right) = \log_{b} \left(\sqrt[3]{x}y^{4} \right) - \log_{b} \left(z^{5} \right)$$

$$= \log_{b} \left(x^{1/3} \right) + \log_{b} \left(y^{4} \right) - \log_{b} \left(z^{5} \right)$$

Exercise

Express the following in terms of sums and differences of logarithms $\log \left(\frac{100x^3 \sqrt[3]{5-x}}{3(x+7)^2} \right)$

Solution

$$\log\left(\frac{100x^3 \sqrt[3]{5-x}}{3(x+7)^2}\right) = \log\left(100x^3 \sqrt[3]{5-x}\right) - \log\left(3(x+7)^2\right)$$

$$= \log 10^2 + \log x^3 + \log\left(5-x\right)^{1/3} - \left[\log 3 + \log\left((x+7)^2\right)\right]$$

$$= 2\log 10 + 3\log x + \frac{1}{3}\log\left(5-x\right) - \log 3 - 2\log(x+7)$$

$$= 2 + 3\log x + \frac{1}{3}\log\left(5-x\right) - \log 3 - 2\log(x+7)$$

Exercise

Express the following in terms of sums and differences of logarithms $\log_a \sqrt[4]{\frac{m^8 \ n^{12}}{a^3 \ b^5}}$

$$\log_{a} \sqrt[4]{\frac{m^{8} n^{12}}{a^{3} b^{5}}} = \log_{a} \left(\frac{m^{8} n^{12}}{a^{3} b^{5}}\right)^{1/4}$$

$$= \frac{1}{4} \log_{a} \left(\frac{m^{8} n^{12}}{a^{3} b^{5}}\right)$$

$$= \frac{1}{4} \left[\log_{a} m^{8} n^{12} - \log_{a} a^{3} b^{5}\right]$$

$$= \frac{1}{4} \left[\log_{a} m^{8} + \log_{a} n^{12} - \left(\log_{a} a^{3} + \log_{a} b^{5}\right)\right]$$

$$= \frac{1}{4} \left[8 \log_{a} m + 12 \log_{a} n - 3 - 5 \log_{a} b\right]$$

$$= 2 \log_{a} m + 3 \log_{a} n - \frac{3}{4} - \frac{5}{4} \log_{a} b$$

Use the properties of logarithms to rewrite: $\log_p \sqrt[3]{\frac{m^5 n^4}{t^2}}$

Solution

$$\log_{p} \sqrt[3]{\frac{m^{5}n^{4}}{t^{2}}} = \log_{p} \left(\frac{m^{5}n^{4}}{t^{2}}\right)^{1/3}$$

$$= \frac{1}{3}\log_{p} \left(\frac{m^{5}n^{4}}{t^{2}}\right)$$

$$= \frac{1}{3}\left(\log_{p} m^{5}n^{4} - \log_{p} t^{2}\right)$$

$$= \frac{1}{3}\left(\log_{p} m^{5} + \log_{p} n^{4} - \log_{p} t^{2}\right)$$

$$= \frac{1}{3}\left(\log_{p} m^{5} + \log_{p} n^{4} - \log_{p} t^{2}\right)$$

$$= \frac{1}{3}\left(\log_{p} m + 4\log_{p} n - 2\log_{p} t\right)$$

$$= \frac{5}{3}\log_{p} m + \frac{4}{3}\log_{p} n - \frac{2}{3}\log_{p} t$$

Exercise

Express the following in terms of sums and differences of logarithms $\log_b \sqrt[n]{\frac{x^3 y^5}{z^m}}$

$$\log_b \sqrt[n]{\frac{x^3 y^5}{z^m}} = \log_b \left(\frac{x^3 y^5}{z^m}\right)^{1/n}$$

$$= \frac{1}{n} \log_b \left(\frac{x^3 y^5}{z^m} \right)$$

$$= \frac{1}{n} \left(\log_b x^3 y^5 - \log_b z^m \right)$$

$$= \frac{1}{n} \left(\log_b x^3 + \log_b y^5 - \log_b z^m \right)$$

$$= \frac{1}{n} \left(3\log_b x + 5\log_b y - m\log_b z \right)$$

$$= \frac{3}{n} \log_b x + \frac{5}{n} \log_b y - \frac{m}{n} \log_b z$$
Power Rule
$$= \frac{3}{n} \log_b x + \frac{5}{n} \log_b y - \frac{m}{n} \log_b z$$

Express the following in terms of sums and differences of logarithms $\log_a \sqrt[3]{\frac{a^2 b}{c^5}}$

Solution

$$\log_{a} \sqrt[3]{\frac{a^{2} b}{c^{5}}} = \log_{a} \left(\frac{a^{2} b}{c^{5}}\right)^{1/3}$$

$$= \frac{1}{3} \log_{a} \left(\frac{a^{2} b}{c^{5}}\right)$$

$$= \frac{1}{3} \left[\log_{a} a^{2} b - \log_{a} c^{5}\right]$$

$$= \frac{1}{3} \left[\log_{a} a^{2} + \log_{a} b - \log_{a} c^{5}\right]$$

$$= \frac{1}{3} \left[\log_{a} a^{2} + \log_{a} b - \log_{a} c^{5}\right]$$
Product Rule
$$= \frac{1}{3} \left[2\log_{a} a + \log_{a} b - 5\log_{a} c\right]$$
Power Rule
$$= \frac{2}{3} \log_{a} a + \frac{1}{3} \log_{a} b - \frac{5}{3} \log_{a} c$$

$$= \frac{2}{3} + \frac{1}{3} \log_{a} b - \frac{5}{3} \log_{a} c$$

Exercise

Express the following in terms of sums and differences of logarithms $\log_{h} \left(x^{4} \sqrt[3]{y}\right)$

$$\log_b \left(x^4 \sqrt[3]{y} \right) = \log_b \left(x^4 \right) + \log_b \left(\sqrt[3]{y} \right)$$
$$= \log_b \left(x^4 \right) + \log_b \left(y^{1/3} \right)$$

$$= 4\log_b x + \frac{1}{3}\log_b y$$

Express the following in terms of sums and differences of logarithms $\log_5 \left(\frac{\sqrt{x}}{25y^3} \right)$

Solution

$$\log_{5} \left(\frac{\sqrt{x}}{25y^{3}} \right) = \log_{5} \left(x^{1/2} \right) - \log_{5} \left(25y^{3} \right)$$

$$= \log_{5} \left(x^{1/2} \right) - \left[\log_{5} \left(5^{2} \right) + \log_{5} \left(y^{3} \right) \right]$$

$$= \log_{5} \left(x^{1/2} \right) - \log_{5} \left(5^{2} \right) - \log_{5} \left(y^{3} \right)$$

$$= \frac{1}{2} \log_{5} \left(x \right) - 2 \log_{5} \left(5 \right) - 3 \log_{5} \left(y \right)$$

$$= \frac{1}{2} \log_{5} \left(x \right) - 2 - 3 \log_{5} \left(y \right)$$

Exercise

Express the following in terms of sums and differences of logarithms $\log_a \frac{x^3 w}{v^2 z^4}$

Solution

$$\log_a \frac{x^3 w}{y^2 z^4} = \log_a x^3 w - \log_a y^2 z^4$$

$$= \log_a x^3 + \log_a w - \left(\log_a y^2 + \log_a z^4\right)$$

$$= \log_a x^3 + \log_a w - \log_a y^2 - \log_a z^4$$

$$= 3\log_a x + \log_a w - 2\log_a y - 4\log_a z$$
Power rule

Product rule

Power rule

Exercise

Express the following in terms of sums and differences of logarithms $\log_a \frac{\sqrt{y}}{x^4 \sqrt[3]{z}}$

$$\log_a \frac{\sqrt{y}}{x^4 \sqrt[3]{z}} = \log_a y^{1/2} - \log_a x^4 z^{1/3}$$

$$= \log_a y^{1/2} - \left(\log_a x^4 + \log_a z^{1/3}\right)$$
Product rule

$$= \log_a y^{1/2} - \log_a x^4 - \log_a z^{1/3}$$

$$= \frac{1}{2} \log_a y - 4 \log_a x - \frac{1}{3} \log_a z$$
Power rule

Express the following in terms of sums and differences of logarithms $\ln 4 \frac{x^7}{y^5 z}$

Solution

$$\ln 4\sqrt{\frac{x^7}{y^5z}} = \ln\left(\frac{x^7}{y^5z}\right)^{1/4}$$

$$= \frac{1}{4}\ln\left(\frac{x^7}{y^5z}\right)$$

$$= \frac{1}{4}\left(\ln x^7 - \ln y^5z\right)$$

$$= \frac{1}{4}\left(\ln x^7 - \left(\ln y^5 + \ln z\right)\right)$$

$$= \frac{1}{4}\left(\ln x^7 - \ln y^5 - \ln z\right)$$

$$= \frac{1}{4}\left(\ln x^7 - \ln y^5 - \ln z\right)$$

$$= \frac{1}{4}\left(7\ln x - 5\ln y - \ln z\right)$$

$$= \frac{7}{4}\ln x - \frac{5}{4}\ln y - \ln z$$
Power rule

Exercise

Express the following in terms of sums and differences of logarithms $\ln x \sqrt[3]{\frac{y^4}{z^5}}$

$$\ln x \sqrt[3]{\frac{y^4}{z^5}} = \ln x + \ln \left(\frac{y^4}{z^5}\right)^{1/3}$$

$$= \ln x + \ln \left(\frac{y^{4/3}}{z^{5/3}}\right)$$

$$= \ln x + \ln y^{4/3} - \ln z^{5/3}$$

$$= \ln x + \frac{4}{3} \ln y - \frac{5}{3} \ln z$$
Product rule

Power rule

Express the following in terms of sums and differences of logarithms $\log_b \sqrt[5]{\frac{m^4 n^5}{r^2 a h^{10}}}$

Solution

$$\begin{split} \log_b \sqrt[5]{\frac{m^4 n^5}{x^2 a b^{10}}} &= \log_b \left(\frac{m^4 n^5}{x^2 a b^{10}}\right)^{1/5} \\ &= \frac{1}{5} \log_b \left(\frac{m^4 n^5}{x^2 a b^{10}}\right) \\ &= \frac{1}{5} \left(\log_b \left(m^4 n^5\right) - \log_b \left(x^2 a b^{10}\right)\right) \\ &= \frac{1}{5} \left(\left(\log_b \left(m^4\right) + \log_b \left(n^5\right)\right) - \left(\log_b \left(x^2\right) + \log_b \left(a\right) + \log_b \left(b^{10}\right)\right)\right) \\ &= \frac{1}{5} \left(4 \log_b m + 5 \log_b n - 2 \log_b x - \log_b a - 10\right) \\ &= \frac{4}{5} \log_b m + \log_b n - \frac{2}{5} \log_b x - \frac{1}{5} \log_b \left(a\right) - 2 \right] \end{split}$$

Exercise

Express the following in terms of sums and differences of logarithms $\log_b \frac{a^5 b^{10}}{c^2 \sqrt[4]{d^3}}$

<u>Solution</u>

$$\log_{b} \frac{a^{5}b^{10}}{c^{2} \sqrt[4]{d^{3}}} = \log_{b} \left(a^{5}b^{10} \right) - \log_{b} \left(c^{2} d^{3/4} \right)$$

$$= \log_{b} \left(a^{5} \right) + \log_{b} \left(b^{10} \right) - \left(\log_{b} \left(c^{2} \right) + \log_{b} \left(d^{3/4} \right) \right)$$

$$= 5\log_{b} a + 10 - 2\log_{b} c - \frac{3}{4}\log_{b} d$$

Exercise

Express the following in terms of sums and differences of logarithms $\ln\left(x^2\sqrt{x^2+1}\right)$

$$\ln\left(x^{2}\sqrt{x^{2}+1}\right) = \ln x^{2} + \ln\left(x^{2}+1\right)^{1/2}$$
$$= 2\ln x + \frac{1}{2}\ln\left(x^{2}+1\right)$$

Express the following in terms of sums and differences of logarithms $\ln \frac{x^2}{x^2+1}$

Solution

$$\ln \frac{x^2}{x^2 + 1} = \ln x^2 - \ln (x^2 + 1)$$

$$= 2 \ln x - \ln (x^2 + 1)$$

Exercise

Express the following in terms of sums and differences of logarithms

$$\ln\left(\frac{x^2(x+1)^3}{(x+3)^{1/2}}\right)$$

Solution

$$\ln\left(\frac{x^2(x+1)^3}{(x+3)^{1/2}}\right) = \ln\left(x^2(x+1)^3\right) - \ln\left(x+3\right)^{1/2}$$
$$= \ln x^2 + \ln\left(x+1\right)^3 - \frac{1}{2}\ln\left(x+3\right)$$
$$= 2\ln x + 3\ln\left(x+1\right) - \frac{1}{2}\ln\left(x+3\right)$$

Exercise

Express the following in terms of sums and differences of logarithms

$$\ln\sqrt{\frac{\left(x+1\right)^5}{\left(x+2\right)^{20}}}$$

$$\ln \sqrt{\frac{(x+1)^5}{(x+2)^{20}}} = \ln \left(\frac{(x+1)^5}{(x+2)^{20}}\right)^{1/2}$$

$$= \frac{1}{2} \ln \left(\frac{(x+1)^5}{(x+2)^{20}}\right)$$

$$= \frac{1}{2} \left(\ln (x+1)^5 - \ln (x+2)^{20}\right)$$

$$= \frac{1}{2} \left(5 \ln (x+1) - 20 \ln (x+2)\right)$$

$$= \frac{5}{2} \ln (x+1) - 10 \ln (x+2)$$

Express the following in terms of sums and differences of logarithms $\ln \frac{\left(x^2 + 1\right)^5}{\sqrt{1 - x}}$

Solution

$$\ln \frac{\left(x^2 + 1\right)^5}{\sqrt{1 - x}} = \ln \left(x^2 + 1\right)^5 - \ln \left(1 - x\right)^{1/2}$$
$$= 5 \ln \left(x^2 + 1\right) - \frac{1}{2} \ln \left(1 - x\right)$$

Exercise

Express the following in terms of sums and differences of logarithms

$$\ln \left(3 \frac{x(x+1)(x-2)}{(x^2+1)(2x+3)} \right)$$

Solution

$$\ln\left(\frac{3}{\sqrt[3]{(x^2+1)(x-2)}}\right) = \ln\left(\frac{x(x+1)(x-2)}{(x^2+1)(2x+3)}\right)^{1/3}$$

$$= \frac{1}{3}\ln\left(\frac{x(x+1)(x-2)}{(x^2+1)(2x+3)}\right)$$

$$= \frac{1}{3}\left(\ln\left(x(x+1)(x-2)\right) - \ln\left(\left(x^2+1\right)(2x+3)\right)\right)$$

$$= \frac{1}{3}\left(\ln x + \ln(x+1) + \ln(x-2) - \left(\ln\left(x^2+1\right) + \ln(2x+3)\right)\right)$$

$$= \frac{1}{3}\left(\ln x + \ln(x+1) + \ln(x-2) - \ln\left(x^2+1\right) - \ln(2x+3)\right)$$

$$= \frac{1}{3}\ln x + \frac{1}{3}\ln(x+1) + \frac{1}{3}\ln(x-2) - \frac{1}{3}\ln(x^2+1) - \frac{1}{3}\ln(2x+3)$$

Exercise

Express the following in terms of sums and differences of logarithms $\ln\left(\sqrt{\frac{1}{x(x+1)}}\right)$

$$\ln\left(\sqrt{\frac{1}{x(x+1)}}\right) = \ln\left(\frac{1}{x(x+1)}\right)^{1/2}$$

$$= \frac{1}{2} \left(\ln 1 - \ln \left(x (x+1) \right) \right)$$

$$= -\frac{1}{2} \left(\ln x + \ln \left(x+1 \right) \right)$$

$$= -\frac{1}{2} \ln x - \frac{1}{2} \ln \left(x+1 \right)$$

Express the following in terms of sums and differences of logarithms $\ln\left(\sqrt{(x^2+1)(x-1)^2}\right)$

Solution

$$\ln\left(\sqrt{(x^2+1)(x-1)^2}\right) = \ln\left((x^2+1)(x-1)^2\right)^{1/2}$$

$$= \frac{1}{2}\ln\left((x^2+1)(x-1)^2\right)$$

$$= \frac{1}{2}\left(\ln(x^2+1) + \ln(x-1)^2\right)$$

$$= \frac{1}{2}\left(\ln(x^2+1) + 2\ln(x-1)\right)$$

$$= \frac{1}{2}\ln(x^2+1) + \ln(x-1)$$

Exercise

Write the expression as a single logarithm and simplify if necessary: $\log(x+5) + 2\log x$

Solution

$$\log(x+5) + 2\log x = \log(x+5) + \log x^{2}$$
$$= \log(x^{2}(x+5))$$

Exercise

Write the expression as a single logarithm and simplify if necessary: $3 \log_b x - \frac{1}{3} \log_b y + 4 \log_b z$

$$3\log_b x - \frac{1}{3}\log_b y + 4\log_b z = \log_b x^3 + \log_b z^4 - \log_b y^{1/3}$$
$$= \log_b \left(x^3 z^4\right) - \log_b \sqrt[3]{y}$$

$$= \log_b \left(\frac{x^3 z^4}{\sqrt[3]{y}} \right)$$

Write the expression as a single logarithm and simplify if necessary: $\frac{1}{2}\log_b(x+5) - 5\log_b y$

Solution

$$\frac{1}{2}\log_b(x+5) - 5\log_b y = \log_b(x+5)^{1/2} - \log_b y^5$$

$$= \log_b\left(\frac{\sqrt{x+5}}{y^5}\right)$$

Exercise

Write the expression as a single logarithm and simplify if necessary: $\ln(x^2 - y^2) - \ln(x - y)$

Solution

$$\ln\left(x^2 - y^2\right) - \ln\left(x - y\right) = \ln\frac{x^2 - y^2}{x - y}$$
$$= \ln\frac{\left(x - y\right)\left(x + y\right)}{x - y}$$
$$= \ln\left(x + y\right)$$

Exercise

Write the expression as a single logarithm and simplify if necessary: $\ln(xz) - \ln(x\sqrt{y}) + 2\ln\frac{y}{z}$

$$\ln(xz) - \ln(x\sqrt{y}) + 2\ln\frac{y}{z} = \ln(xz) + \ln\left(\frac{y}{z}\right)^2 - \ln(x\sqrt{y})$$

$$= \ln\left(\frac{xzy^2}{z^2}\right) - \ln(x\sqrt{y})$$

$$= \ln\left(\frac{xy^2}{z} + \frac{1}{x\sqrt{y}}\right)$$

$$= \ln\left(\frac{y^{3/2}}{z}\right)$$

Write the expression as a single logarithm and simplify if necessary: $\log(x^2y) - \log z$

Solution

$$\log(x^2y) - \log z = \log\left(\frac{x^2y}{z}\right)$$

Exercise

Write the expression as a single logarithm and simplify if necessary: $\log(z^2\sqrt{y}) - \log z^{1/2}$

Solution

$$\log(z^{2}\sqrt{y}) - \log z^{1/2} = \log\left(\frac{z^{2}\sqrt{y}}{z^{1/2}}\right)$$
$$= \log(z^{3/2}\sqrt{y})$$
$$= \log\left(\sqrt{z^{3}y}\right)$$

Exercise

Write the expression as a single logarithm and simplify if necessary:

$$2\log_a x + \frac{1}{3}\log_a (x-2) - 5\log_a (2x+3)$$

Solution

$$2\log_{a} x + \frac{1}{3}\log_{a} (x-2) - 5\log_{a} (2x+3) = \log_{a} x^{2} + \log_{a} (x-2)^{1/3} - \log_{a} (2x+3)^{5}$$

$$= \log_{a} x^{2} (x-2)^{1/3} - \log_{a} (2x+3)^{5}$$

$$= \log_{a} \frac{x^{2} (x-2)^{1/3}}{(2x+3)^{5}}$$

Exercise

Write the expression as a single logarithm and simplify if necessary:

$$5\log_a x - \frac{1}{2}\log_a (3x - 4) - 3\log_a (5x + 1)$$

$$5\log_{a} x - \frac{1}{2}\log_{a} (3x - 4) - 3\log_{a} (5x + 1) = \log_{a} x^{5} - \log_{a} (3x - 4)^{1/2} - \log_{a} (5x + 1)^{3}$$

$$= \log_{a} x^{5} - \left[\log_{a} (3x - 4)^{1/2} + \log_{a} (5x + 1)^{3}\right]$$

$$= \log_{a} x^{5} - \left[\log_{a} (3x - 4)^{1/2} (5x + 1)^{3}\right]$$

$$= \log_{a} \frac{x^{5}}{(3x - 4)^{1/2} (5x + 1)^{3}}$$

Write the expression as a single logarithm and simplify if necessary:

$$\log\left(x^3y^2\right) - 2\log\left(x\sqrt[3]{y}\right) - 3\log\left(\frac{x}{y}\right)$$

$$\log(x^{3}y^{2}) - 2\log(x\sqrt[3]{y}) - 3\log(\frac{x}{y}) = \log(x^{3}y^{2}) - \log(xy^{1/3})^{2} - \log(xy^{-1})^{3}$$

$$= \log(x^{3}y^{2}) - \left[\log(x^{2}y^{2/3}) + \log(x^{3}y^{-3})\right]$$

$$= \log(x^{3}y^{2}) - \log(x^{2}y^{2/3}x^{3}y^{-3})$$

$$= \log(x^{3}y^{2}) - \log(x^{5}y^{-7/3})$$

$$= \log\left(\frac{x^{3}y^{2}}{x^{5}y^{-7/3}}\right)$$

$$= \log\left(\frac{y^{2}y^{7/3}}{x^{2}}\right)$$

$$= \log\left(\frac{y^{13/3}}{x^{2}}\right)$$

$$= \log\left(\frac{\sqrt[3]{y^{13}}}{x^{2}}\right)$$

$$= \log\left(\frac{\sqrt[3]{y^{13}}}{x^{2}}\right)$$

$$= \log\left(\frac{y^{4}\sqrt[3]{y}}{x^{2}}\right)$$

Write the expression as a single logarithm and simplify if necessary:

$$\ln y^3 + \frac{1}{3} \ln \left(x^3 y^6 \right) - 5 \ln y$$

Solution

$$\ln y^{3} + \frac{1}{3}\ln(x^{3}y^{6}) - 5\ln y = \ln y^{3} + \ln(x^{3}y^{6})^{1/3} - \ln y^{5}$$

$$= \ln y^{3} + \ln(x^{3/3}y^{6/3}) - \ln y^{5}$$

$$= \ln y^{3} + \ln(xy^{2}) - \ln y^{5}$$

$$= \ln(y^{3}xy^{2}) - \ln y^{5}$$

$$= \ln\left(\frac{y^{5}x}{y^{5}}\right)$$

$$= \ln x$$

Exercise

Write the expression as a single logarithm and simplify if necessary:

$$2\ln x - 4\ln\left(\frac{1}{y}\right) - 3\ln(xy)$$

$$2\ln x - 4\ln\left(\frac{1}{y}\right) - 3\ln(xy) = \ln x^2 - \ln\left(\frac{1}{y}\right)^4 - \ln(xy)^3$$

$$= \ln x^2 - \left[\ln\left(y^{-4}\right) + \ln\left(x^3y^3\right)\right]$$

$$= \ln x^2 - \ln\left(y^{-4}x^3y^3\right)$$

$$= \ln x^2 - \ln\left(y^{-1}x^3\right)$$

$$= \ln\frac{x^2}{y^{-1}x^3}$$

$$= \ln\frac{y}{x}$$

Write the expression as a single logarithm and simplify if necessary:

$$4\ln x + 7\ln y - 3\ln z$$

Solution

$$4 \ln x + 7 \ln y - 3 \ln z = \ln x^{4} + \ln y^{7} - \ln z^{3}$$
$$= \ln \left(x^{4} y^{7} \right) - \ln z^{3}$$
$$= \ln \left(\frac{x^{4} y^{7}}{z^{3}} \right)$$

Exercise

Write the expression as a single logarithm and simplify if necessary:

$$\frac{1}{3} \left[5 \ln(x+6) - \ln x - \ln(x^2 - 25) \right]$$

Solution

$$\frac{1}{3} \left[5 \ln(x+6) - \ln x - \ln(x^2 - 25) \right] = \frac{1}{3} \left[5 \ln(x+6) - \left(\ln x + \ln(x^2 - 25) \right) \right]$$

$$= \frac{1}{3} \left[\ln(x+6)^5 - \ln x(x^2 - 25) \right]$$

$$= \frac{1}{3} \left[\ln \frac{(x+6)^5}{x(x^2 - 25)} \right]$$

$$= \ln \left(\frac{(x+6)^5}{x(x^2 - 25)} \right)^{1/3}$$

Exercise

Write the expression as a single logarithm and simplify if necessary:

$$\frac{2}{3}\left[\ln\left(x^2-4\right)-\ln\left(x+2\right)\right]+\ln(x+y)$$

$$\frac{2}{3} \left[\ln \left(x^2 - 4 \right) - \ln \left(x + 2 \right) \right] + \ln (x + y) = \frac{2}{3} \left[\ln \frac{x^2 - 4}{x + 2} \right] + \ln (x + y)$$

$$= \frac{2}{3} \left[\ln \frac{(x + 2)(x - 2)}{x + 2} \right] + \ln (x + y)$$

$$= \frac{2}{3} \ln (x - 2) + \ln (x + y)$$
577

$$= \ln(x-2)^{2/3} + \ln(x+y)$$

$$= \ln(x-2)^{2/3}(x+y)$$

$$= \ln(x+y) \sqrt[3]{(x-2)^2}$$

Write the expression as a single logarithm and simplify if necessary:

$$\frac{1}{2}\log_b m + \frac{3}{2}\log_b 2n - \log_b m^2 n$$

Solution

$$\frac{1}{2}\log_b m + \frac{3}{2}\log_b 2n - \log_b m^2 n = \log_b m^{1/2} + \log_b (2n)^{3/2} - \log_b m^2 n$$

$$= \log_b \left(m^{1/2} (2n)^{3/2}\right) - \log_b m^2 n$$

$$= \log_b \frac{m^{1/2} 2^{3/2} n^{3/2}}{m^2 n}$$

$$= \log_b \frac{2^{3/2} n^{1/2}}{m^{3/2}}$$

$$= \log_b \left(\frac{2^3 n}{m^3}\right)^{1/2}$$

$$= \log_b \sqrt{\frac{8n}{m^3}}$$

Exercise

Write the expression as a single logarithm and simplify if necessary:

$$\frac{1}{2}\log_{y}p^{3}q^{4} - \frac{2}{3}\log_{y}p^{4}q^{3}$$

$$\frac{1}{2}\log_{y} p^{3}q^{4} - \frac{2}{3}\log_{y} p^{4}q^{3} = \log_{y} \left(p^{3}q^{4}\right)^{1/2} - \log_{y} \left(p^{4}q^{3}\right)^{2/3}$$

$$= \log_{y} \frac{\left(p^{3}q^{4}\right)^{1/2}}{\left(p^{4}q^{3}\right)^{2/3}}$$

$$= \log_{y} \frac{\left(p^{3}\right)^{1/2} \left(q^{4}\right)^{1/2}}{\left(p^{4}\right)^{2/3} \left(q^{3}\right)^{2/3}}$$

$$= \log_y \frac{p^{3/2}q^2}{p^{8/3}q^2}$$

$$= \log_y \frac{p^{3/2}}{p^{8/3}}$$

$$= \log_y \frac{1}{p^{8/3 - 3/2}}$$

$$= \log_y \frac{1}{p^{7/6}}$$

Write the expression as a single logarithm and simplify if necessary:

$$\frac{1}{2}\log_a x + 4\log_a y - 3\log_a x$$

Solution

$$\frac{1}{2}\log_{a} x + 4\log_{a} y - 3\log_{a} x = 4\log_{a} y - \frac{5}{2}\log_{a} x$$

$$= \log_{a} y^{4} - \log_{a} x^{5/2}$$

$$= \log_{a} \frac{y^{4}}{\sqrt{x^{5}}}$$

Exercise

Write the expression as a single logarithm and simplify if necessary:

$$\frac{2}{3}\left[\ln\left(x^2-9\right)-\ln\left(x+3\right)\right]+\ln\left(x+y\right)$$

$$\frac{2}{3} \left[\ln \left(x^2 - 9 \right) - \ln \left(x + 3 \right) \right] + \ln \left(x + y \right) = \frac{2}{3} \ln \frac{x^2 - 9}{x + 3} + \ln \left(x + y \right)$$

$$= \frac{2}{3} \ln \frac{\left(x + 3 \right) (x - 3)}{x + 3} + \ln \left(x + y \right)$$

$$= \frac{2}{3} \ln \left(x - 3 \right) + \ln \left(x + y \right)$$

$$= \ln \left((x - 3)^{2/3} + \ln \left(x + y \right) \right)$$

$$= \ln \left((x - 3)^{2/3} (x + y) \right)$$

$$= \ln \left((x + y) \sqrt[3]{(x - 3)^2} \right)$$

Write the expression as a single logarithm and simplify if necessary:

$$\frac{1}{4}\log_b x - 2\log_b 5 - 10\log_b y$$

Solution

$$\begin{split} \frac{1}{4}\log_b x - 2\log_b 5 - 10\log_b y &= \log_b x^{1/4} - \log_b 5^2 - \log_b y^{10} \\ &= \log_b x^{1/4} - \left[\log_b 5^2 + \log_b y^{10}\right] \\ &= \log_b x^{1/4} - \log_b \left(5^2 y^{10}\right) \\ &= \log_b \frac{\sqrt[4]{x}}{25y^{10}} \end{split}$$

Exercise

Write the expression as a single logarithm and simplify if necessary:

$$2 \ln (x+4) - \ln x - \ln (x^2-3)$$

Solution

$$2\ln(x+4) - \ln x - \ln(x^2 - 3) = \ln(x+4)^2 - (\ln x + \ln(x^2 - 3))$$
$$= \ln(x+4)^2 - \ln(x(x^2 - 3))$$
$$= \ln\frac{(x+4)^2}{x(x^2 - 3)}$$

Exercise

Write the expression as a single logarithm and simplify if necessary:

$$\ln x + \ln (y+3) + \ln (y+2) - \ln (y^2 + 5y + 6)$$

$$\ln x + \ln (y+3) + \ln (y+2) - \ln (y^2 + 5y + 6) = \ln (x(y+3)(y+2)) - \ln ((y+3)(y+2))$$

$$= \ln \left(\frac{x(y+3)(y+2)}{(y+3)(y+2)} \right)$$

$$= \ln x$$

Write the expression as a single logarithm and simplify if necessary:

$$\ln x + \ln (x+4) + \ln (x+1) - \ln (x^2 + 5x + 4)$$

Solution

$$\ln x + \ln (x+4) + \ln (x+1) - \ln (x^2 + 5x + 4) = \ln (x(x+4)(x+1)) - \ln ((x+4)(x+1))$$

$$= \ln \left(\frac{x(x+4)(x+1)}{(x+4)(x+1)} \right)$$

$$= \ln x$$

Exercise

Write the expression as a single logarithm and simplify if necessary:

$$\ln(x^2 - 25) - 2\ln(x + 5) + \ln(x - 5)$$

Solution

$$\ln(x^{2} - 25) - 2\ln(x + 5) + \ln(x - 5) = \ln(x^{2} - 25) + \ln(x - 5) - \ln(x + 5)^{2}$$

$$= \ln\frac{(x - 5)(x + 5)(x - 5)}{(x + 5)^{2}}$$

$$= \ln\left(\frac{(x - 5)^{2}}{x + 5}\right)$$

Exercise

Assume that $\log_{10} 2 = .3010$. Find each logarithm $\log_{10} 4$, $\log_{10} 5$

a)
$$\log_{10} 4 = \log_{10} 2^2$$

= $2\log_{10} 2$
= $2(.301)$
= $.6020$

b)
$$\log_{10} 5 = \log_{10} \frac{10}{2}$$

= $\log_{10} 10 - \log_{10} 2$
= $1 - .03010$

Given that: $\log_a 2 \approx 0.301, \log_a 7 \approx 0.845$, and $\log_a 11 \approx 1.041$ find each of the following:

- a) $\log_a \frac{2}{11}$
- c) $\log_a 98$
- e) $\log_a 9$

- b) $\log_a 14$
- d) $\log_a \frac{1}{7}$
- f) $\log_a \frac{77}{8}$

Solution

a)
$$\log_a \frac{2}{11} = \log_a 2 - \log_a 11$$

= 0.301-1.041
 ≈ 1.342

b)
$$\log_a 14 = \log_a 2(7)$$

= $\log_a 2 + \log_a 7$
= $0.301 + 0.845$
 ≈ 1.146

c)
$$\log_a 98 = \log_a 2(7^2)$$

 $= \log_a 2 + \log_a 7^2$
 $= \log_a 2 + 2\log_a 7$
 $= 0.301 + 2(0.845)$
 ≈ 1.991

d)
$$\log_a \frac{1}{7} = \log_a 1 - \log_a 7$$

 $\approx 0 - 0.845$
 ≈ -0.845

e) $\log_a 9$ Can't be found from the given information

$$\int \log_a \frac{77}{8} = \log_a 77 - \log_a 8$$

$$= \log_a (7 \times 11) - \log_a 2^3$$

$$= \log_a 7 + \log_a 11 - 3\log_a 2$$

$$\approx 0.845 + 1.041 - 3(0.301)$$

$$\approx 1.886 - 0.903$$

$$\approx 0.983$$

Solution

Section 3.5 – Exponential and logarithmic Equations

Exercise

Solve the equation: $2^x = 128$

Solution

$$2^x = 2^7$$

$$x = 7$$

Exercise

Solve the equation: $3^x = 243$

Solution

$$3^x = 3^5$$

$$x = 5$$

Exercise

Solve the equation: $5^x = 70$

Solution

$$x = \log_5 70$$

Exercise

Solve the equation: $6^x = 50$

Solution

$$x = \log_6 50$$

Exercise

Solve the equation: $5^x = 134$

$$x = \log_5 134$$

Solve the equation: $7^x = 12$

Solution

$$x = \log_7 12$$

Exercise

Solve the equation: $9^x = \frac{1}{\sqrt[3]{3}}$

Solution

$$\left(3^{2}\right)^{x} = \frac{1}{3^{1/3}}$$

$$3^{2x} = 3^{-1/3}$$

$$2x = -\frac{1}{3}$$

$$x = -\frac{1}{6}$$

Exercise

Solve the equation: $49^x = \frac{1}{343}$

Solution

$$\left(7^2\right)^x = \frac{1}{7^3}$$

$$7^{2x} = 7^{-3}$$

$$2x = -3$$

$$x = -\frac{3}{2}$$

Exercise

Solve the equation: $2^{5x+3} = \frac{1}{16}$

$$2^{5x+3} = 2^{-4}$$

$$5x + 3 = -4$$

$$5x = -7$$

$$x = -\frac{7}{5}$$

Solve the equation: $\left(\frac{2}{5}\right)^x = \frac{8}{125}$

Solution

$$\left(\frac{2}{5}\right)^x = \left(\frac{2}{5}\right)^3$$

$$x = 3$$

Exercise

Solve the equation: $2^{3x-7} = 32$

Solution

$$2^{3x-7} = 32$$
$$= 2^5$$

$$3x - 7 = 5$$

add 7 on both sides

$$3x = 12$$

Divide by 3

$$x = 4$$

Exercise

Solve the equation: $4^{2x-1} = 64$

Solution

$$4^{2x-1} = 4^3$$

$$2x - 1 = 3$$

$$2x = 4$$

$$x = 2$$

Exercise

Solve the equation: $3^{1-x} = \frac{1}{27}$

$$3^{1-x} = \frac{1}{3^3}$$

$$3^{1-x} = 3^{-3}$$

$$1 - x = -3$$

$$x = 4$$

Solve the equation:
$$2^{-x^2} = 5$$

Solution

$$\ln 2^{-x^2} = \ln 5$$

$$-x^2 \ln 2 = \ln 5$$

$$x^2 = -\frac{\ln 5}{\ln 2} \implies \text{No Solution}$$

Exercise

Solve the equation:
$$2^{-x} = 8$$

Solution

$$2^{-x} = 2^3$$
$$-x = 3$$
$$x = -3$$

Exercise

Solve the equation:
$$\left(\frac{1}{3}\right)^x = 81$$

Solution

$$\left(\frac{1}{3}\right)^{x} = 81$$

$$\left(3^{-1}\right)^{x} = 3^{4}$$

$$3^{-x} = 3^{4}$$

$$-x = 4$$

$$x = -4$$

Exercise

Solve the equation:
$$3^{-x} = 120$$

$$-x = \log_3 120$$
 Convert to Log
 $x = -\log_3 120$

$$= \log_3 \frac{1}{120}$$

Solve the equation: $27 = 3^{5x} 9^{x^2}$

Solution

$$3^{3} = 3^{5x} \left(3^{2}\right)^{x^{2}}$$

$$= 3^{5x} 3^{2x^{2}}$$

$$= 3^{5x+2x^{2}}$$

$$2x^{2} + 5x = 3$$

$$2x^{2} + 5x - 3 = 0$$

$$x = \frac{-5 \pm \sqrt{25 + 24}}{6}$$

$$x = \begin{cases} \frac{-5 - 7}{6} = -2 \\ \frac{-5 + 7}{6} = \frac{1}{3} \end{cases}$$

Exercise

Solve the equation: $4^{x+3} = 3^{-x}$

Solution

$$\ln 4^{x+3} = \ln 3^{-x}$$

$$(x+3) \ln 4 = -x \ln 3$$

$$x \ln 4 + 3 \ln 4 = -x \ln 3$$

$$x \ln 4 + x \ln 3 = -3 \ln 4$$

$$x(\ln 4 + \ln 3) = -3 \ln 4$$

$$x = \frac{-3 \ln 4}{(\ln 4 + \ln 3)}$$

Exercise

Solve the equation: $2^{x+4} = 8^{x-6}$

$$2^{x+4} = (2^3)^{x-6}$$
$$2^{x+4} = 2^{3x-18}$$
$$x+4=3x-18$$

$$2x = 22$$

$$x = 11$$

Solve the equation: $8^{x+2} = 4^{x-3}$

Solution

$$(2^3)^{x+2} = (2^2)^{x-3}$$

$$2^{3(x+2)} = 2^{2(x-3)}$$

$$3(x+2) = 2(x-3)$$

$$3x + 6 = 2x - 6$$

$$3x - 2x = -6 - 6$$

$$x = -12$$

Exercise

Solve the equation: $7^x = 12$

Solution

$$x = \log_7 12$$

Convert to Log

Exercise

Solve the equation: $5^{x+4} = 4^{x+5}$

$$\ln 5^{x+4} = \ln 4^{x+5}$$

$$(x+4)\ln 5 = (x+5)\ln 4$$

$$x \ln 5 + 4 \ln 5 = x \ln 4 + 5 \ln 4$$

$$(\ln 5 - \ln 4)x = 5 \ln 4 - 4 \ln 5$$

$$x = \frac{5 \ln 4 - 4 \ln 5}{\ln 5 - \ln 4}$$

Solve the equation: $5^{x+2} = 4^{1-x}$

Solution

$$\ln 5^{x+2} = \ln 4^{1-x}$$

$$(x+2)\ln 5 = (1-x)\ln 4$$

$$x\ln 5 + 2\ln 5 = \ln 4 - x\ln 4$$

$$(\ln 5 + \ln 4)x = \ln 4 - 2\ln 5$$

$$x = \frac{\ln 4 - 2\ln 5}{\ln 5 + \ln 4}$$

Exercise

Solve the equation: $3^{2x-1} = 0.4^{x+2}$

Solution

$$\ln 3^{2x-1} = \ln \left(0.4^{x+2} \right)$$

$$(2x-1)\ln 3 = (x+2)\ln \frac{4}{10}$$

$$2x\ln 3 - \ln 3 = x\ln \frac{2}{5} + 2\ln \frac{2}{5}$$

$$\left(2\ln 3 - \ln \frac{2}{5} \right) x = \ln 3 + 2\ln \frac{2}{5}$$

$$x = \frac{\ln 3 + 2\ln 0.4}{2\ln 3 - \ln 0.4}$$

Exercise

Solve the equation: $4^{3x-5} = 16$

$$4^{3x-5} = 4^{2}$$

$$3x-5=2$$

$$3x = 7$$

$$x = \frac{7}{3}$$

Solve the equation: $4^{x+3} = 3^{-x}$

Solution

$$\ln 4^{x+3} = \ln 3^{-x}$$

$$(x+3)\ln 4 = -x\ln 3$$

$$x \ln 4 + 3 \ln 4 = -x \ln 3$$

$$(\ln 4 + \ln 3)x = -3 \ln 4$$

$$x = -\frac{3\ln 4}{\ln 4 + \ln 3}$$

Exercise

Solve the equation: $7^{2x+1} = 3^{x+2}$

Solution

$$\ln 7^{2x+1} = \ln 3^{x+2}$$

$$(2x+1) \ln 7 = (x+2) \ln 3$$

$$2x \ln 7 + \ln 7 = x \ln 3 + 2 \ln 3$$

$$2x \ln 7 - x \ln 3 = 2 \ln 3 - \ln 7$$

$$x(2 \ln 7 - \ln 3) = 2 \ln 3 - \ln 7$$

$$x = \frac{2 \ln 3 - \ln 7}{2 \ln 7 - \ln 3}$$

Exercise

Solve the equation: $3^{x-1} = 7^{2x+5}$

$$\ln 3^{x-1} = \ln 7^{2x+5}$$

$$(x-1)\ln 3 = (2x+5)\ln 7$$

$$x \ln 3 - \ln 3 = 2x \ln 7 + 5 \ln 7$$

$$x \ln 3 - 2x \ln 7 = \ln 3 + 5 \ln 7$$

$$x(\ln 3 - 2\ln 7) = \ln 3 + 5\ln 7$$

$$x = \frac{\ln 3 + 5 \ln 7}{\ln 3 - 2 \ln 7}$$

Solve the equation: $4^{x-2} = 2^{3x+3}$

Solution

$$\left(2^{2}\right)^{x-2} = 2^{3x+3}$$

$$2^{2x-4} = 2^{3x+3}$$

$$2x - 4 = 3x + 3$$

$$2x - 3x = 4 + 3$$

$$-x = 7$$

$$x = -7$$

Exercise

Solve the equation: $3^{5x-8} = 9^{x+2}$

Solution

$$3^{5x-8} = \left(3^2\right)^{x+2}$$

$$3^{5x-8} = 3^{2x+4}$$

$$5x - 8 = 2x + 4$$

$$5x - 2x = 8 + 4$$

$$3x = 12$$

$$x = 4$$

Exercise

Solve the equation: $3^{x+4} = 2^{1-3x}$

Solution

$$\ln 3^{x+4} = \ln 2^{1-3x}$$

$$(x+4)\ln 3 = (1-3x)\ln 2$$

$$x \ln 3 + 4 \ln 3 = \ln 2 - 3x \ln 2$$

$$x \ln 3 + 3x \ln 2 = \ln 2 - 4 \ln 3$$

$$x(\ln 3 + 3 \ln 2) = \ln 2 - 4 \ln 3$$

$$x = \frac{\ln 2 - 4 \ln 3}{\ln 3 + 3 \ln 2}$$

'In' both sides

Power Rule

Distribute

Solve the equation: $3^{2-3x} = 4^{2x+1}$

Solution

$$\ln 3^{2-3x} = \ln 4^{2x+1}$$

 $(2-3x)\ln 3 = (2x+1)\ln 4$

 $2 \ln 3 - 3x \ln 3 = 2x \ln 4 + \ln 4$

$$-3x \ln 3 - 2x \ln 4 = \ln 4 - 2 \ln 3$$

$$-x(3 \ln 3 + 2 \ln 4) = \ln 4 - 2 \ln 3$$

$$x = -\frac{\ln 4 - 2\ln 3}{3\ln 3 + 2\ln 4}$$

$$= -\frac{\ln 4 - \ln 3^2}{\ln 3^3 + \ln 4^2}$$

$$= \frac{\ln 9 - \ln 4}{\ln 27 + \ln 16}$$

$$= \frac{\ln \frac{9}{4}}{\ln 432}$$

$$= \log_{\frac{432}{4}} \frac{9}{4}$$

Power Rule

In' both sides

Exercise

Solve the equation: $4^{x+3} = 3^{-x}$

Solution

$$\ln 4^{x+3} = \ln 3^{-x}$$

$$(x+3)\ln 4 = -x\ln 3$$

$$x \ln 4 + 3 \ln 4 = -x \ln 3$$

$$x \ln 4 + x \ln 3 = -3 \ln 4$$

$$x(\ln 4 + \ln 3) = -3\ln 4$$

$$x = \frac{-3\ln 4}{(\ln 4 + \ln 3)}$$

Exercise

Solve the equation: $7^{x+6} = 7^{3x-4}$

$$x+6=3x-4$$

$$4+6=3x-x$$

$$10=2x$$

$$x=5$$

Solve the equation: $2^{-100x} = (0.5)^{x-4}$

Solution

$$2^{-100x} = \left(\frac{1}{2}\right)^{x-4}$$

$$2^{-100x} = \left(2^{-1}\right)^{x-4}$$

$$2^{-100x} = 2^{-x+4}$$

$$-100x = -x+4$$

$$-100x + x = 4$$

$$-99x = 4$$

$$x = -\frac{4}{99}$$

Exercise

Solve the equation: $4^x \left(\frac{1}{2}\right)^{3-2x} = 8 \cdot \left(2^x\right)^2$

$$(2^{2})^{x}(2^{-1})^{3-2x} = 2^{3} \cdot 2^{2x}$$

$$2^{2x}2^{2x-3} = 2^{3+2x}$$

$$2^{2x+2x-3} = 2^{3+2x}$$

$$2^{4x-3} = 2^{3+2x}$$

$$4x-3=3+2x$$

$$4x-2x=3+3$$

$$2x=6$$

$$x=3$$

Solve the equation: $5^x + 125(5^{-x}) = 30$

Solution

$$5^{x}5^{x} + 125(5^{-x})5^{x} = 30(5^{x})$$

$$5^{2x} + 125 = 30(5^{x})$$

$$5^{2x} - 30(5^{x}) + 125 = 0$$
Solve for 5^{x}

$$5^{x} = 5$$

$$x = 1$$

$$5^{x} = 25 = 5^{2}$$

$$x = 2$$

$$x = 1, 2$$

Exercise

Solve the equation: $4^x - 3(4^{-x}) = 8$

Solution

$$4^{x}4^{x} - 3(4^{-x})4^{x} = 8(4^{x})$$

$$4^{2x} - 3 = 8(4^{x})$$

$$4^{2x} - 8(4^{x}) - 3 = 0$$

$$4^{x} = 4 + \sqrt{19}$$

$$x \ln 4 = \ln(4 + \sqrt{19})$$

$$x = \frac{\ln(4 + \sqrt{19})}{\ln 4}$$

Exercise

Solve the equation: $5^{3x-6} = 125$

$$5^{3x-6} = 5^3$$
$$3x - 6 = 3$$
$$3x = 9$$
$$x = 3$$

Solve the equation: $e^x = 15$

Solution

$$\underline{x = \ln 5}$$
 Convert to Log

Exercise

Solve the equation: $e^{x+1} = 20$

Solution

$$x + 1 = \ln 20$$
 Convert to Log
 $x = -1 + \ln 20$

Exercise

Solve the equation: $9e^x = 107$

Solution

$$e^{x} = \frac{107}{9}$$

$$\ln e^{x} = \ln\left(\frac{107}{9}\right)$$

$$x \ln e = \ln\left(\frac{107}{9}\right)$$

$$x = \ln\left(\frac{107}{9}\right)$$

Exercise

Solve the equation: $e^{x \ln 3} = 27$

$$x \ln 3 = \ln 27$$

$$x \ln 3 = \ln 3^{3}$$

$$x = \frac{3 \ln 3}{\ln 3}$$

$$= 3$$

Solve the equation: $e^{x^2} = e^{7x-12}$

Solution

$$e^{x^2} = e^{7x-12}$$

$$x^2 = 7x - 12$$

$$x^2 - 7x + 12 = 0$$

$$x = 3, 4$$

Exercise

Solve the equation: $f(x) = xe^x + e^x$

Solution

$$xe^{x} + e^{x} = 0$$

$$e^{x}(x+1)=0$$

$$e^x \neq 0$$
 $x+1=0$

$$\underline{x = -1}$$
 (*Only solution*)

Exercise

Solve the equation $f(x) = x^3 \left(4e^{4x}\right) + 3x^2e^{4x}$

Solution

$$x^3 \left(4e^{4x} \right) + 3x^2 e^{4x} = 0$$

$$x^2 e^{4x} (4x + 3) = 0$$

$$x^2 = 0 \qquad 4x + 3 = 0$$

$$x = 0, \ 0$$
 $x = -\frac{3}{4}$

The solutions are: $x = 0, 0, -\frac{3}{4}$

Exercise

Solve the equation: $e^{2x} - 2e^x - 3 = 0$

$$\left(e^x\right)^2 - 2e^x - 3 = 0$$

$$\begin{cases} e^{x} = -1 \times \rightarrow Impossible \\ e^{x} = 3 \rightarrow \underline{x} = \ln 3 \end{cases}$$

Solve the equation: $e^{0.08t} = 2500$

Solution

$$\ln\left(e^{0.08t}\right) = \ln 2500$$

$$0.08t = \ln\left(50\right)^2$$

$$t = \frac{200 \ln 50}{8}$$

= 25 \ln 50 \rightarrow

Exercise

Solve the equation: $e^{x^2} = 200$

Solution

$$\ln e^{x^2} = \ln 200$$
 Natural Log both sides

$$x^2 = \ln 200 \qquad \qquad \ln e = 1$$

$$x = \pm \sqrt{\ln 200}$$

Exercise

Solve the equation: $e^{2x+1} \cdot e^{-4x} = 3e$

$$e^{2x+1-4x} = 3e$$

$$e^{-2x+1} = 3e$$

$$e^{-2x}e = 3e$$
 Divide by e

$$e^{-2x} = 3$$

$$\ln e^{-2x} = \ln 3$$

$$-2x = \ln 3$$

$$x = -\frac{1}{2} \ln 3$$

Solve the equation: $e^{2x} - 8e^x + 7 = 0$

Solution

$$(e^{x})^{2} - 8e^{x} + 7 = 0 \qquad a + b + c = 0 \rightarrow x = 1, \frac{c}{a}$$

$$\begin{cases} e^{x} = 1 \rightarrow \underline{x} = 0 \\ e^{x} = 7 \rightarrow \underline{x} = \ln 7 \end{cases}$$

Exercise

Solve the equation without using the calculator: $e^{2x} + 2e^x - 15 = 0$

Solution

$$(e^{x})^{2} + 2e^{x} - 15 = 0$$

$$e^{x} = 3$$

$$x = \ln 3$$
Solve for e^{x}

$$e^{x} \neq -5 < 0$$

Exercise

Solve the equation: $e^x + e^{-x} - 6 = 0$

$$e^{x}e^{x} + e^{x}e^{-x} - e^{x}6 = e^{x}0$$

$$e^{2x} + 1 - 6e^{x} = 0$$

$$\left(e^{x}\right)^{2} - 6e^{x} + 1 = 0$$

$$e^{x} = \frac{6 \pm \sqrt{36 - 4}}{2}$$

$$= \frac{6 \pm 4\sqrt{2}}{2}$$

$$e^{x} = 3 \pm 2\sqrt{2}$$

$$x = \ln\left(3 \pm 2\sqrt{2}\right)$$

Solve the equation: $e^{1-3x} \cdot e^{5x} = 2e$

Solution

$$e^{1-3x+5x} = 2e$$

$$e^{1+2x} = 2e$$

$$e^1 e^{2x} = 2e$$

Divide by e

$$e^{2x} = 2$$

Natural Log both sides

$$\ln e^{2x} = \ln 2$$

$$2x = \ln 2$$

$$x = \frac{1}{2} \ln 2$$

Exercise

Solve the equation: $6 \ln (2x) = 30$

Solution

$$\ln\left(2x\right) = \frac{30}{6}$$

$$\ln(2x) = 5$$

$$2x = e^5$$

$$x = \frac{1}{2}e^5$$

Exercise

Solve the equation: $\log_5(x-7) = 2$

Solution

$$x - 7 = 5^2$$

$$x = 25 + 7$$

$$x = 32$$

Exercise

Solve the equation: $\log_4 (5+x) = 3$

Solve the equation: $\log(4x-18) = 1$

Solution

$$4x - 18 = 10$$
$$4x = 28$$

$\underline{x=7}$

Exercise

Solve the equation: $\log(x^2 + 19) = 2$

Solution

$$x^{2} + 19 = 10^{2}$$

$$x^{2} = 81$$

$$\underline{x = \pm 9} \qquad (\pm 9)^{2} + 19 > 0$$

Exercise

Solve the equation: $\ln(x^2 - 12) = \ln x$

Solution

$$\ln(x^{2} - 12) = \ln x$$

$$x^{2} - 12 = x$$

$$x^{2} - x - 12 = 0$$

$$x = -3, 4$$

$$Check: \quad x = -3 \quad \ln(9 - 12) = \ln(-3) \times x = 4 \quad \ln(16 - 12) = \ln(4)$$

∴ *Solution*: x = 4

Solve the equation:
$$\log(2x^2 + 3x) = \log(10x + 30)$$

Solution

$$\log(2x^{2} + 3x) = \log(10x + 30)$$

$$2x^{2} + 3x = 10x + 30$$

$$2x^{2} - 7x - 30 = 0$$

$$x = \frac{7 \pm \sqrt{49 + 240}}{4}$$

$$= \begin{cases} \frac{7 - 17}{4} = -\frac{5}{2} \\ \frac{7 + 17}{4} = 6 \end{cases}$$
Check: $x = -\frac{5}{2} \log(\frac{25}{2} - \frac{15}{2}) = \log(-25 + 30)$

$$x = 4 \log(32 + 12) = \log(40 + 30)$$

$$\therefore Solution: x = -\frac{5}{2}, 4$$

Exercise

Solve the equation:
$$\log_5 (2x+3) = \log_5 11 + \log_5 3$$

Solution

$$\log_5 (2x+3) = \log_5 (11\times 3)$$

$$2x+3=33$$

$$2x = 30$$

$$\underline{x=15}$$
Check: $\log_5 (30+3)$

Exercise

Solve the equation:
$$\log_3 x - \log_9 (x + 42) = 0$$

$$\frac{\log x}{\log 3} - \frac{\log(x+42)}{\log 9} = 0$$
$$\frac{\log x}{\log 3} - \frac{\log(x+42)}{\log 3^2} = 0$$

$$\frac{\log x}{\log 3} - \frac{1}{2} \frac{\log (x + 42)}{\log 3} = 0$$

$$\log x - \frac{1}{2} \log (x + 42) = 0$$

$$2 \log x = \log (x + 42)$$

$$\log x^2 = \log (x + 42)$$

$$x^2 = x + 42$$

$$x^2 - x - 42 = 0$$

$$x = -6, 7$$

$$\frac{x = -6, 7}{2}$$
Check: $x = -6$ $\log_3 (-6) - \log_9 (-6 + 42)$

 $x = 7 \quad \log_3 7 - \log_9 (7 + 42) = 0$

 \therefore *Solution*: x = 7

Exercise

Solve the equation: $\log_5 x + \log_5 (4x - 1) = 1$

Solution

$$\log_{5} x(4x-1) = 1$$

$$4x^{2} - x = 5$$

$$4x^{2} - x - 5 = 0 \qquad a - b + c = 0 \rightarrow x = -1, -\frac{c}{a}$$

$$x = -\frac{5}{2}, 4$$

$$\frac{x = -\frac{5}{2}}{2} \log_{5} \left(-\frac{5}{2}\right) + \log_{5} (10 - 1) \times x = 4 \log_{5} (4) + \log_{5} (15)$$

 \therefore *Solution*: x = 4

Exercise

Solve the equation: $\log x - \log(x+3) = 1$

$$\log \frac{x}{x+3} = 1$$

$$\frac{x}{x+3} = 10$$

$$x = 10x + 30$$

$$9x = -30$$

$$x = -\frac{10}{3}$$

$$Check: \quad x = -\frac{10}{3} \quad \log\left(-\frac{10}{3}\right) - \log\left(x + 3\right) \times$$

$$\therefore \text{ No Solution}$$

Solve the equation: $\log x + \log(x - 9) = 1$

Solution

$$\log x(x-9) = 1$$

$$x^{2} - 9x = 10$$

$$x^{2} - 9x - 10 = 0$$

$$a - b + c = 0 \rightarrow x = -1, -\frac{c}{a}$$

$$x = -1, 10$$

$$Check: x = -1 \log(-1) + \log(x-9) \times x = 10 \log(10) + \log(10-9)$$

 \therefore *Solution*: x = 10

Exercise

Solve the equation:
$$\log_2(x+1) + \log_2(x-1) = 3$$

Solution

$$\log_{2}(x+1)(x-1) = 3$$

$$x^{2} - 1 = 2^{3}$$

$$x^{2} = 9$$

$$x = \pm 3$$
Check: $x = -3 \log_{2}(-2) + \log_{2}(x-1) \times 3$

$$x = 3 \log_{2}(4) + \log_{2}(2)$$

 \therefore *Solution*: x = 3

Solve the equation: $\log_8 (x+1) - \log_8 x = 2$

Solution

$$\log_8 \frac{x+1}{x} = 2$$

$$\frac{x+1}{x} = 8^2$$

$$x + 1 = 64x$$

$$63x = 1$$

$$x = \frac{1}{63}$$

Check:
$$x = \frac{1}{63} \log_8 \left(\frac{1}{63} + 1 \right) - \log_8 \frac{1}{63}$$

$$\therefore Solution: x = \frac{1}{63}$$

Exercise

Solve the equation: $\ln(x+8) + \ln(x-1) = 2 \ln x$

Solution

$$\ln(x+8)(x-1) = \ln x^2$$

$$x^2 + 7x - 8 = x^2$$

$$7x - 8 = 0$$

$$x = \frac{8}{7}$$

Check:
$$x = \frac{8}{7} \ln \left(\frac{8}{7} + 8 \right) + \ln \left(\frac{8}{7} - 1 \right) = 2 \ln \frac{8}{7}$$

$$\therefore Solution: x = \frac{8}{7}$$

Exercise

Solve the equation: $\ln(4x+6) - \ln(x+5) = \ln x$

$$\ln \frac{4x+6}{x+5} = \ln x$$

$$\frac{4x+6}{x+5} = x$$

$$4x + 6 = x^2 + 5x$$

$$x^{2} + x - 6 = 0$$

 $x = -3, 2$
Check: $x = -3$ $\ln(-6) - \ln(x + 5) = \ln x$
 $x = 2$ $\ln(14) - \ln(7) = \ln 2$

 \therefore *Solution*: x = 2

Exercise

Solve the equation: $\ln(5+4x) - \ln(x+3) = \ln 3$

Solution

$$\ln \frac{5+4x}{x+3} = \ln 3$$

$$\frac{5+4x}{x+3} = 3$$

$$5+4x = 3x+9$$

$$x = 4$$

Check:
$$x = 4 \ln(21) - \ln(7) = \ln 3$$

 \therefore *Solution*: x = 4

Exercise

Solve the equation: $\ln \sqrt[4]{x} = \sqrt{\ln x}$

Solution

Domain: $x \ge 1$

$$\ln x^{1/4} = \sqrt{\ln x}$$

$$\frac{1}{4}\ln x = \sqrt{\ln x}$$

$$\left(\frac{1}{4}\ln x\right)^2 = \left(\sqrt{\ln x}\right)^2$$

$$\frac{1}{6}\ln^2 x = \ln x$$

$$\ln^2 x = 6 \ln x$$

$$\ln^2 x - 6 \ln x = 0$$

$$(\ln x)(\ln x - 6) = 0$$

$$\begin{cases} \ln x = 0 \rightarrow \underline{x = 1} \\ \ln x = 6 \rightarrow x = e^6 \end{cases}$$

 $\therefore Solution: \underline{x=1, e^6}$

Solve the equation: $\sqrt{\ln x} = \ln \sqrt{x}$

Solution

Domain: $x \ge 1$

$$\sqrt{\ln x} = \ln x^{1/2}$$

$$\sqrt{\ln x} = \frac{1}{2} \ln x$$

$$\left(\sqrt{\ln x}\right)^2 = \left(\frac{1}{2}\ln x\right)^2$$

$$\ln x = \frac{1}{4} \ln^2 x$$

$$4 \ln x = \ln^2 x$$

$$\ln^2 x - 4 \ln x = 0$$

$$\ln x(\ln x - 4) = 0$$

$$\begin{cases} \ln x = 0 \rightarrow \underline{x = 1} \\ \ln x = 4 \rightarrow \underline{x = e^4} \end{cases}$$

$$\therefore Solution: x = 1, e^4$$

Exercise

Solve the equation: $\log x^2 = (\log x)^2$

Solution

Domain: $x \ge 1$

$$2\log x = (\log x)^2$$

$$\left(\log x\right)^2 - 2\log x = 0$$

$$\log x (\log x - 2) = 0$$

$$\begin{cases} \log x = 0 \rightarrow \underline{x = 1} \\ \log x = 2 \rightarrow \underline{x = 100} \end{cases}$$

$$\therefore$$
 Solution: $x = 1, 100$

Exercise

Solve the equation: $\log x^3 = (\log x)^2$

Domain: $x \ge 1$

$$3\log x = (\log x)^2$$

$$(\log x)^2 - 3\log x = 0$$

$$\log x (\log x - 3) = 0$$

$$\begin{cases} \log x = 0 \rightarrow \underline{x = 1} \\ \log x = 3 \rightarrow \underline{x = 10^3} \end{cases}$$

Convert to exponential

 $\therefore Solution: x = 1, 10^3$

Exercise

Solve the equation: $\log(\log x) = 1$

Solution

$$\log x = 10$$

Convert to exponential

$$\therefore Solution: x = 10^{10}$$

Exercise

Solve the equation: $\log(\log x) = 2$

Solution

$$\log x = 10^2$$

Convert to exponential

$$\therefore Solution: x = 10^{100}$$

Exercise

Solve the equation: $\ln(\ln x) = 2$

Solution

$$\ln x = e^2$$

Convert to exponential

$$\therefore Solution: \underline{x = e^{e^2}}$$

Solve the equation: $\ln\left(e^{x^2}\right) = 64$

Solution

$$e^{x^2} = e^{64}$$

Convert to exponential

$$x^2 = 64$$

 $\therefore Solution: \underline{x = \pm 8}$

Exercise

Solve the equation: $e^{\ln(x-1)} = 4$

Solution

$$x - 1 = 4$$

 \therefore *Solution*: x = 5

Exercise

Solve the equation: $10^{\log(2x+5)} = 9$

Solution

$$2x + 5 = 9$$

$$2x = 4$$

 \therefore *Solution*: x = 2

Exercise

Solve the equation: $\log \sqrt{x^3 - 9} = 2$

Solution

$$\sqrt{x^3 - 9} = 10^2$$

$$x^3 - 9 = 10^4$$

$$x^3 = 10,009$$

: **Solution**: $x = \sqrt[3]{10,009}$

Solve the equation: $\log \sqrt{x^3 - 17} = \frac{1}{2}$

Solution

$$\log(x^{3} - 17)^{1/2} = \frac{1}{2}$$

$$\frac{1}{2}\log(x^{3} - 17) = \frac{1}{2}$$

$$\log(x^{3} - 17) = 1$$

$$x^{3} - 17 = 10$$

$$x^{3} = 27$$

$$x = 3$$
Check: $x = 3 \log \sqrt{27 - 17}$

Exercise

Solve the equation: $\log_4 x = \log_4 (8 - x)$

Solution

$$x = 8 - x$$

$$x + x = 8$$

$$2x = 8$$

$$x = 4$$

$$Check: x = 4 log4 4 = log4 (8 - 4)$$

∴ *Solution*: x = 4

 \therefore *Solution*: x = 3

Exercise

Solve the equation: $\log_{7} (x-5) = \log_{7} (6x)$

Solution

$$x-5=6x$$
$$x-6x=5$$
$$-5x=5$$
$$x=-1$$

Check:
$$x = -1 \log_{7} (-6) = \log_{7} (6x)$$

: No Solution

Solve the equation: $\ln x^2 = \ln (12 - x)$

Solution

$$\ln x^{2} = \ln (12 - x)$$

$$x^{2} = 12 - x$$

$$x^{2} + x - 12 = 0$$

$$x = -4, 3$$
Check: $x = -4 \ln (16) = \ln (16)$

$$x = 3 \ln (9) = \ln (12 - 3)$$

 $\therefore Solution: x = -4, 3$

Exercise

Solve the equation $\log_2(x+7) + \log_2 x = 3$

Solution

$$\log_2 x(x+7) = 3$$

 $x(x+7) = 2^3$
Convert to Exponential Form
 $x^2 + 7x = 8$
 $x^2 + 7x - 8 = 0$
 $x = 1, -8$
Check: $x = -8 \log_2 (x+7) + \log_2 (-8) \times 1$
 $x = 1 \log_2 (1+7) + \log_2 1$

 \therefore *Solution*: x = 1

Exercise

Solve the equation $\ln x = 1 - \ln (x + 2)$

$$\ln x + \ln (x+2) = 1$$

$$\ln x(x+2) = 1$$

$$x^2 + 2x = e$$

$$x^2 + 2x - e = 0$$

$$x = \frac{-2 \pm \sqrt{4 + 4e}}{2}$$
$$= \frac{-2 \pm 2\sqrt{1 + e}}{2}$$
$$= \begin{cases} -1 - \sqrt{1 + e} < 0\\ -1 + \sqrt{1 + e} > 0 \end{cases}$$

$$\therefore Solution: \underline{x = -1 + \sqrt{1 + e}}$$

Solve the equation $\ln x = 1 + \ln (x+1)$

Solution

$$\ln x - \ln (x+1) = 1$$

$$\ln \frac{x}{x+1} = 1$$

$$\frac{x}{x+1} = e^1$$

$$x = (x+1)e$$

$$x = ex + e$$

$$x - ex = e$$

$$x(1-e)=e$$

$$x = \frac{e}{1 - e} < 0$$

: No solution

Exercise

Solve the equation $\log_6 (2x-3) = \log_6 12 - \log_6 3$

$$\log_6\left(2x-3\right) = \log_6\frac{12}{3}$$

$$\log_6 \left(2x - 3\right) = \log_6 4$$

$$2x - 3 = 4$$

$$2x = 7$$

$$x = \frac{7}{2}$$

Check:
$$x = \frac{7}{2} \log_6 (7-3) = \log_6 12 - \log_6 3$$

$$\therefore Solution: x = \frac{7}{2}$$

Solve the equation: $\log(3x+2) + \log(x-1) = 1$

Solution

Domain: x > 1

$$\log(3x+2)(x-1)=1$$

Convert to exponential form

$$3x^2 - x - 2 = 10$$

$$3x^2 - x - 12 = 0$$

Solve for x

$$x = \frac{1 \pm \sqrt{1 + 144}}{6}$$

$$= \begin{cases} \frac{1 - \sqrt{145}}{6} < 0\\ \frac{1 + \sqrt{145}}{6} > 1 \end{cases}$$

$$\therefore Solution: x = \frac{1 + \sqrt{145}}{6}$$

Exercise

Solve the equation: $\log_5(x+2) + \log_5(x-2) = 1$

Solution

$$\log_5(x+2)(x-2) = 1$$

$$(x+2)(x-2) = 5^1$$

$$x^2 - 4 = 5$$

$$x^2 = 5 + 4$$

$$x^2 = 9$$

$$x = \pm 3$$

Check: $x = -3 \log_5(-1) + \log_5(x - 2) \times$

$$x = 3 \log_5 (3+2) + \log_5 (3-2)$$

 \therefore *Solution*: x = 3

Exercise

Solve the equation: $\log_2 x + \log_2 (x - 4) = 2$

Domain:
$$x > 4$$

$$\log_2 x(x-4) = 2$$

$$x^2 - 4x = 2^2$$

$$x^2 - 4x - 4 = 0$$

$$x = \frac{4 \pm \sqrt{32}}{2}$$

$$= \begin{cases} 2 - 2\sqrt{2} < 4 \times \\ 2 + 2\sqrt{2} > 4 \end{cases}$$

 $\therefore Solution: \underline{x = 2 + 2\sqrt{2}}$

Exercise

Solve the equation: $\log_3 x + \log_3 (x+6) = 3$

Solution

Domain: x > 0

$$\log_3 x(x+6) = 3$$

$$x^2 + 6x = 3^3$$

$$x^2 + 6x - 27 = 0$$

$$x = \frac{-6 \pm \sqrt{36 + 108}}{2}$$

$$= \begin{cases} \frac{-6-12}{2} = -9 < 0 \times \\ \frac{-6+12}{2} = 3 > 0 \end{cases}$$

 \therefore *Solution*: x = 3

Exercise

Solve the equation: $\log_3(x+3) + \log_3(x+5) = 1$

Solution

Domain: x > -3

$$\log_3(x+3)(x+5) = 1$$

$$x^2 + 8x + 15 = 3$$

$$x^2 + 8x + 12 = 0$$

$$x = \frac{-8 \pm \sqrt{64 - 48}}{2}$$

$$= \begin{cases} \frac{-8-4}{2} = -6 < -3 \\ \frac{-8+4}{2} = -2 > -3 \end{cases}$$

∴ *Solution*: x = -2

Exercise

Solve the equation: $\ln x = \frac{1}{2} \ln \left(2x + \frac{5}{2}\right) + \frac{1}{2} \ln 2$

Solution

Domain: x > 0

$$2\ln x = \ln\left(2x + \frac{5}{2}\right) + \ln 2$$

$$\ln x^2 = \ln 2\left(2x + \frac{5}{2}\right)$$

$$x^2 = 4x + 5$$

$$x^2 - 4x - 5 = 0$$

$$a-b+c=0 \rightarrow x=-1, -\frac{c}{a}$$

$$x = -1, 5$$

 \therefore *Solution*: x = 5

Exercise

Solve the equation $\ln(-4-x) + \ln 3 = \ln(2-x)$

Solution

Domain: x < 5

$$\ln 3\left(-4-x\right) = \ln\left(2-x\right)$$

$$-12 - 3x = 2 - x$$

$$-12-2=3x-x$$

$$-14 = 2x$$

∴ *Solution*: x = -7

Exercise

Solve the equation: $\log_4 x + \log_4 (x-2) = \log_4 (15)$

Solution

Domain: x > 2

$$\log_4 x(x-2) = \log_4 (15)$$

$$x^2 - 2x = 15$$

$$x^2 - 2x - 15 = 0$$

$$x = \frac{2 \pm \sqrt{4 + 60}}{2}$$

$$= \begin{cases} \frac{2 - 8}{2} = -4 < 2 \\ \frac{2 + 8}{2} = 5 > 2 \end{cases}$$

 \therefore *Solution*: x = 5

Exercise

Solve the equation: $\ln(x-5) - \ln(x+4) = \ln(x-1) - \ln(x+2)$

Solution

Domain: x > 5

$$\ln \frac{x-5}{x+4} = \ln \frac{x-1}{x+2}$$

$$\frac{x-5}{x+4} = \frac{x-1}{x+2}$$

$$(x-5)(x+2) = (x-1)(x+4)$$

$$x^2 + 2x - 5x - 10 = x^2 + 4x - x - 4$$

$$x^2 - 3x - 10 = x^2 + 3x - 4$$

$$x^2 - 3x - 10 - x^2 - 3x + 4 = 0$$

$$-6x - 6 = 0$$

$$x = -1$$

: No solution

Exercise

Solve the equation:
$$\log(x^2+4) - \log(x+2) = 2 + \log(x-2)$$

Solution

Domain: x > -2

$$\log(x^{2} + 4) - \log(x + 2) - \log(x - 2) = 2$$
$$\log(x^{2} + 4) - \left[\log(x + 2) + \log(x - 2)\right] = 2$$
$$\log(x^{2} + 4) - \log(x + 2)(x - 2) = 2$$

$$\log\left(\frac{x^2+4}{x^2-4}\right) = 2$$

$$\frac{x^2+4}{x^2-4}=10^2$$

$$x^2 + 4 = 100x^2 - 400$$

$$400 + 4 = 100x^2 - x^2$$

$$99x^2 = 404$$

$$x^2 = \frac{404}{99}$$

$$\therefore Solution: x = \frac{2\sqrt{101}}{3\sqrt{11}}$$
 is the only solution

Solve the equation $\log_3(x-2) = \log_3 27 - \log_3(x-4) - 5^{\log_5 1}$

Solution

Domain: x > 4

$$\log_3(x-2) + \log_3(x-4) = \log_3 3^3 - 1$$

$$\log_3(x-2)(x-4) = 3-1$$

$$\log_3\left(x^2 - 6x + 8\right) = 2$$

$$x^2 - 6x + 8 = 3^2$$

$$x^2 - 6x + 8 = 9$$

$$x^2 - 6x - 1 = 0$$

$$\rightarrow x = 3 \pm \sqrt{10}$$

Check: $x = 3 + \sqrt{10} > 4$

$$x = 3 - \sqrt{10} < 4$$

$$\therefore Solution: x = 3 + \sqrt{10}$$

Exercise

Solve the equation $\log_2(x+3) = \log_2(x-3) + \log_3 9 + 4^{\log_4 3}$

Solution

Domain: x > 3

$$\log_{2}(x+3) - \log_{2}(x-3) = 2+3$$

$$\log_{2}\frac{x+3}{x-3} = 5$$

$$\frac{x+3}{x-3} = 2^{5}$$

$$x+3 = 32(x-3)$$

$$x+3 = 32x-96$$

$$96+3 = 32x-x$$

$$31x = 99$$

$$x = \frac{99}{31} > 3$$

$$\therefore Solution: x = \frac{99}{31}$$

Solve for *t* using logarithms with base *a*: $2a^{t/3} = 5$

Solution

$$a^{t/3} = \frac{5}{2}$$

$$\log a^{t/3} = \log \frac{5}{2}$$

$$\frac{t}{3} \log a = \log \frac{5}{2}$$

$$\frac{t}{3} = \frac{\log \frac{5}{2}}{\log a}$$

$$\frac{t}{3} = \log_{a} \frac{5}{2}$$

$$t = 3\log_{a} \frac{5}{2}$$

Exercise

Solve for *t* using logarithms with base *a*: $K = H - Ca^t$

$$Ca^{t} = H - K$$

$$a^{t} = \frac{H - K}{C}$$

$$\log a^{t} = \log \frac{H - K}{C}$$

$$t \log a = \log \frac{H - K}{C}$$

$$t = \frac{\log \frac{H - K}{C}}{\log a}$$
$$= \log_a \frac{H - K}{C}$$

Solution Section 3.6 – Exponential Growth and Decay

Exercise

Suppose that \$10,000 is invested at interest rate of 5.4% per year, compounded continuously.

- a) Find the exponential growth function
- b) What will the balance be after, 1 yr 10 yrs?
- c) After how long will the investment be double?

Solution

a)
$$P(t) = 10000e^{0.054t}$$

b)
$$P(t=1) = 10000e^{0.054(1)}$$
 $\approx $10,555$

$$P(t = 10) = 10000e^{0.054(10)}$$

$$\approx $17,160$$

c)
$$T = \frac{\ln 2}{k}$$
$$= \frac{\ln 2}{0.054}$$
$$\approx 12.8 \text{ yrs}$$

Exercise

In 1990, the population of Africa was 643 million and by 2000 it had grown to 813 million

- a) Use the exponential growth function $A(t) = A_0 e^{kt}$, in which t is the number of years after 1990, to find the exponential growth function that models data
- b) By which year will Africa's population reach 2000 million, or two billion?

a)
$$A(t) = A_0 e^{kt}$$
 From 1990 to 2000, is 10 years $813 = 643e^{k(10)}$ $\frac{813}{643} = e^{10k}$ $\ln \frac{813}{643} = \ln e^{10k}$

$$\ln \frac{813}{643} = 10k$$

$$\frac{1}{10}\ln\frac{813}{643} = k$$

$$k \approx 0.023$$

$$\underline{A(t) = 643e^{0.023t}}$$

b)
$$2000 = 643e^{0.023t}$$
$$\frac{2000}{643} = e^{0.023t}$$
$$\ln \frac{2000}{643} = \ln e^{0.023t}$$
$$\ln \frac{2000}{643} = 0.023t$$
$$\frac{\ln \frac{2000}{643}}{0.023} = t$$
$$t \approx 49$$

 $0.777P_0 = P_0 e^{-0.00012t}$

Africa's population reach 2000 *million* in <u>Year: 2039</u>

Exercise

The radioactive element carbon-14 has a half-life of 5750 yr. The percentage of carbon-14 present in the remains of organic matter can be used to determine the age of that organic matter. Archaeologists discovered that the linen wrapping from one of the Dead Sea Scrolls had lost 22.3% of its carbon-14 at the time it was found. How old was the linen wrapping?

When
$$t = 5750$$
 (half-life) $\rightarrow P(t)$ will be half $P_0 \rightarrow P(t) = \frac{1}{2}P_0$

$$P(t) = P_0 e^{-kt}$$

$$\frac{1}{2}P_0 = P_0 e^{-k(5750)}$$

$$\frac{1}{2} = e^{-k(5750)}$$

$$\ln \frac{1}{2} = \ln e^{-k(5750)}$$

$$\ln \frac{1}{2} = -k(5750)$$

$$k = -\frac{\ln \frac{1}{2}}{5750}$$

$$\approx 0.00012$$

$$P(t) = P_0 e^{-(0.00012)t}$$
Lost 22.3% $\Rightarrow 100 - 22.3 = 77.7\%$ left from it is original.

$$0.777 = e^{-0.00012t}$$

$$\ln 0.777 = \ln e^{-0.00012t}$$

$$\ln 0.777 = -0.00012t$$

$$-0.00012t = \ln 0.777$$

$$t = \frac{\ln 0.777}{-0.00012}$$

$$\approx 2103$$

Suppose that \$2000 is invested at interest rate k, compounded continuously, and grows to \$2983.65 in 5 yrs.

- a) What is the interest rate?
- b) Find the exponential growth function
- c) What will the balance be after 10 yrs.?
- d) After how long will the \$2000 have doubled?

a)
$$P(t) = P_0 e^{kt}$$

 $P(t = 5) = P_0 e^{k5} = 2983.65$
 $2000e^{k5} = 2983.65$
 $e^{5k} = \frac{2983.65}{2000}$
 $\ln e^{5k} = \ln\left(\frac{2983.65}{2000}\right)$
 $5k \ln e = \ln\left(\frac{2983.65}{2000}\right)$
 $k = \frac{1}{5}\ln\left(\frac{2983.65}{2000}\right)$
 ≈ 0.08
or $k = 8\%$
b) $P(t) = 2000e^{0.08t}$
 $P(t = 10) = 2000e^{0.08(10)}$
 $\approx 4451.08

d)
$$T = \frac{\ln 2}{0.08}$$
 $T = \frac{\ln 2}{k}$ $\approx 8.7 \text{ yrs}$

In 2005, the population of China was about 1.306 *billion*, and the exponential growth rate was 0.6% per *year*.

- a) Find the exponential growth function
- b) Estimate the population in 2008
- c) After how long will the population be double what it was in 2005?

Solution

a) In
$$2005 \Rightarrow t = 0$$

 $k = \frac{0.6}{100}$
 $= 0.006$ \downarrow
 $P_0 = 1.306$
 $P(t) = 1.306e^{0.006t}$

b)
$$P(t=3) = 1.306e^{0.006(3)}$$
 ≈ 1.33

c)
$$2(1.306) = 1.306e^{0.006t}$$

 $2 = e^{0.006t}$
 $e^{0.006t} = 2$
 $\ln e^{0.006t} = \ln 2$
 $0.006t = \ln 2$
 $t = \frac{\ln 2}{0.006}$
 $\approx 116 \ yrs$

Exercise

How long will it take for the money in an account that is compounded continuously at 3% interest to double?

$$T = \frac{\ln 2}{0.03}$$

$$\approx 23 \text{ yrs}$$

If 600 g of radioactive substance are present initially and 3 yrs later only 300 g remain, how much of the substance will be present after 6 yrs?

Solution

$$y(t) = 600e^{kt}$$

$$y(t) = y_0 e^{kt}$$
When $t = 3 \rightarrow y = 300$

$$300 = 600e^{k}(3)$$

$$\frac{300}{600} = e^{3k}$$

$$\ln \frac{300}{600} = \ln e^{3k}$$

$$\ln e = 1$$

$$3k = \ln \frac{300}{600}$$

$$k = \frac{1}{3} \ln \frac{300}{600}$$

$$\approx -.231 \mid y(t) = 600e^{-.231t}$$

$$y(6) = 600e^{-.231(6)}$$

$$\approx 150 \mid g \mid$$

Exercise

The population of an endangered species of bird was 4200 in 1990. Thirteen years later, in 2003, the bird population declined to 3000. The population of the birds is decreasing exponentially according to the function $A(t) = 4200e^{kt}$ where A is the bird population t years after 1990. Use this information to find the value of k.

$$k = \frac{\ln\left(\frac{3000}{4200}\right)}{13}$$

$$\approx -0.26$$

A city had a population of 21,400 in 2000 and a population of 23,200 in 2005.

- a) Find the exponential growth function for the city.
- b) Use the growth function to predict the population of the city in 2018.

Solution

a) Given:
$$P(0) = 21,400$$
 $P(5) = 23,200$

$$k = \frac{1}{5} \ln \frac{23,200}{21,400}$$

$$= \frac{1}{5} \ln \frac{116}{107}$$

$$\approx 0.01615$$

$$P(t) = 21,400e^{\frac{1}{5} \ln \left(\frac{116}{107}\right)t}$$

$$P(t) = 21,400e^{0.01615t}$$
b) $P(18) = 21,400e^{0.01615(18)}$

Exercise

A city had a population of 53,700 in 2002 and a population of 58,100 in 2006.

a) Find the exponential growth function for the city.

≈ 28,620

b) Use the growth function to predict the population of the city in 2013.

a) Given:
$$P(0) = 53,700$$
 $P(4) = 58,100$

$$k = \frac{1}{4} \ln \frac{58,100}{53,700}$$

$$= \frac{1}{4} \ln \frac{581}{537} \Big|_{\approx 0.019688 \, |}$$

$$P(t) = 53,700e^{\frac{1}{4} \ln \left(\frac{581}{537}\right)t}$$

$$t = 2013 - 2002 = 11$$

$$P(11) = 53,700e^{0.019688(11)}$$

$$\approx 66,685 \, |$$

The population of Charlotte, North Carolina, is growing exponentially. The population of Charlotte was 395,934 in 1990 and 610,949 in 2005. Find the exponential growth function that models the population of Charlotte and use it to predict the population of Charlotte in 2017.

Solution

Given:
$$P(0) = 395,934$$
 $P(15) = 610,949$
 $k = \frac{1}{15} \ln \frac{610,949}{395,934}$ $kT = \ln \frac{P}{P_0}$
 ≈ 0.02892 $|$
 $P(t) = 395,934e^{0.02892t}$ $|$
 $P(27) = 395,934e^{0.02892(27)}$
 $\approx 864,392$ $|$

Exercise

The population of Las Vegas, Nevada, is growing exponentially. The population of Las Vegas was 258,295 in 1990 and 545,147 in 2005. Find the exponential growth function that models the population oc Las Vegas and use it to predict the population of Las Vegas in 2017.

Solution

Given:
$$P(0) = 258,295$$
 $P(15) = 545,147$

$$k = \frac{1}{15} \ln \frac{545,147}{258,295}$$
 $kT = \ln \frac{P}{P_0}$

$$\approx 0.049797 \rfloor$$

$$P(t) = 258,295e^{0.049797t}$$

$$P(27) = 258,295e^{0.049797(27)}$$

$$\approx 990,908 \rfloor$$

Exercise

Find the decay function for the amount of Polonium $\binom{210}{Po}$ that remains in a sample after t days.

$$k = \frac{\ln\frac{1}{2}}{138} \qquad k = \frac{\ln\frac{1}{2}}{T}$$

$$= -0.005023 \$$
$$A(t) = A_0 e^{-0.005023t} \$$

Estimate the percentage of polonium $\binom{210}{Po}$ that remains in a sample after 2 years.

Solution

$$k = \frac{\ln \frac{1}{2}}{138}$$

$$= -0.005023 \rfloor$$

$$A(t) = A_0 e^{-0.005023t}$$

$$\ln \frac{A}{A_0} = -\frac{0.005023}{2}$$

$$= .0025115 \rfloor$$

$$\frac{A}{A_0} = e^{-.0025115}$$

$$\approx 0.9975 \rfloor$$

: The percentage of polonium that remains in a sample after 2 years is about 99.75%.

Exercise

Estimate the age of a bone if it now contains 65% of its original amount of carbon-14.

Solution

Given:
$$A = .65A_0$$

$$k = \frac{\ln \frac{1}{2}}{5730}$$

$$= -\frac{\ln 2}{5730}$$

$$tk = \ln \frac{0.65A_0}{A_0}$$

$$t = -\frac{5730 \ln (0.65)}{\ln 2}$$

$$\approx 3561$$

∴ The age of a bone is approximately 3561 years old.

Geologists have determined that Crater Lake inn Oregon was formed by a volcanic eruption. Chemical analysis of a wood chip assumed to be from a tree that died during the eruption has shown that it contains approximately 45% of its original carbon-14. Estimate how long ago the volcanic eruption occurred.

Solution

Given:
$$A = .45A_0$$

$$k = \frac{\ln \frac{1}{2}}{5730}$$

$$k = -\frac{\ln 2}{5730}$$

$$tk = \ln \frac{0.45A_0}{A_0}$$

$$t = -\frac{5730 \ln (0.45)}{\ln 2}$$

$$\approx 6,600 \mid$$

∴ The age of a bone is approximately 6,600 *years* old.

Exercise

Lead shielding is used to contain radiation. The percentage of a certain radiation that can penetrate x millimeters of lead shielding is given by $I(x) = 100e^{-1.5x}$

- a) What percentage of radiation will penetrate a lead shield that is 1 millimeter thick?
- b) How many *millimeters* of lead shielding are required so that less than 0.02% of the radiations penetrates the shielding?

Solution

a)
$$I(1) = 100e^{-1.5}$$

 ≈ 22.313

: The percentage of radiation will penetrate a lead shield is approximately 22.313%

b)
$$I(x) = 100e^{-1.5x} = .02$$

 $e^{-1.5x} = .02$
 $-1.5x = \ln(2 \times 10^{-4})$
 $x = -\frac{1}{1.5}\ln(2 \times 10^{-4})$
 $\approx 5.68 \ mm$

After a race, a runner's pulse rate R, in beats per minute, decreases according to the function

$$R(t) = 145e^{-0.092t}, \quad 0 \le t \le 15$$

Where *t* is measured in minutes.

- a) Find the runner's pulse rate at the end of the race and 1 minute after the end of the race.
- b) How long after the end of the race will the runner's pulse rate be 80 beats per minute?

Solution

a)
$$R(15) = 145e^{-0.092(15)}$$

 ≈ 36.48 $|$
 $R(16) = 145e^{-0.092(16)}$
 ≈ 33.27 $|$

b)
$$R(t) = 145e^{-0.092t} = 80$$

$$e^{-0.092t} = \frac{80}{145}$$

$$-0.092t = \ln \frac{16}{29}$$

$$t = -\frac{1}{0.092} \ln \frac{16}{29}$$

$$\approx 6.46 \quad min$$

Exercise

A can of soda at $79^{\circ}F$ is placed in a refrigerator that maintains a constant temperature of $36^{\circ}F$. The temperature T of the soda t minutes after it is placed in the refrigerator is given by

$$T(t) = 36 + 43e^{-0.058t}$$

- a) Find the temperature of the soda 10 minutes after it is placed in the refrigerator.
- b) When will the temperature of the soda be $45^{\circ}F$

a)
$$T(10) = 36 + 43e^{-0.058(10)}$$

 $\approx 60^{\circ}F$

b)
$$36 + 43e^{-0.058t} = 45$$

 $43e^{-0.058t} = 9$
 $e^{-0.058t} = \frac{9}{43}$

$$-0.058t = \ln \frac{9}{43}$$
$$t = \frac{-1}{0.058} \ln \frac{9}{43}$$
$$\approx 27 \quad min \mid$$

During surgery, a patient's circulatory system requires at least 50 *milligrams* of an anesthetic. The amount of anesthetic present *t hours* after 80 *milligrams* of anesthetic is administered is given by

$$T(t) = 80(0.727)^t$$

- a) How much of the anesthetic is present in the patient's circulatory system 30 *minutes* after the anesthetic is administered?
- b) How long can the operation last if the patient does not receive additional anesthetic?

Solution

a)
$$T(30 = \frac{1}{2}hr) = 80(0.727)^{1/2}$$

 $\approx 68 \text{ mg}$

b)
$$T(t) = 80(0.727)^t = 50$$

 $(0.727)^t = \frac{5}{8}$
 $t = \log_{.727} \left(\frac{5}{8}\right)$
 $\approx 1.47 \ hrs$
 $= 1 \ hr$ 28' 12"

Exercise

The following function models the average typing speed *S*, in *words* per *minute*, for a student who has been typing for *t months*.

$$S(t) = 5 + 29 \ln(t+1), \quad 0 \le t \le 9$$

Use S to determine how long it takes the student to achieve an average speed of 65 words per minute.

$$S(t) = 5 + 29 \ln(t+1) = 65$$

 $29 \ln(t+1) = 60$
 $\ln(t+1) = \frac{60}{29}$

$$t+1=e^{\frac{60}{29}}$$

$$\underline{t = e^{\frac{60}{29}} - 1}$$

 $t \approx 7 \quad months$

Exercise

The exponential function

$$S(x) = 8320(0.73)^x$$
, $10 \le x \le 20$

models the speed of the dragster during the 10-second period immediately following the time when the dragster crosses the finish line. This is the deceleration period.

How long after the start of the race did the dragster attain a speed of 275 miles per hour?

Solution

$$S(x) = 8320(0.73)^x = 275$$

$$(0.73)^x = \frac{275}{8320}$$

$$x = \log_{0.73} \left(\frac{275}{8320} \right) \text{ minutes}$$

≈11 minutes

Exercise

If \$8.000 is invested at an annual interest rate of 5% and compounded annually, find the balance after

Given:
$$P = 8,000$$
 $r = 0.05$ $n = 1$

a)
$$t = 4$$

$$A = 8,000 \left(1 + \frac{.05}{1}\right)^{4}$$

$$= 8,000 \left(1.05\right)^{4}$$

$$= \$9,724.05$$

b)
$$t = 8$$

$$A = 8,000 \left(1 + \frac{.05}{1}\right)^4$$
 $A = P\left(1 + \frac{r}{n}\right)^{tn}$

$$= 8,000 (1.05)^{8}$$

 $\approx $11,819.64$

If \$20.000 is invested at an annual interest rate of 4.5% and compounded annually, find the balance after

Solution

Given:
$$P = 20,000 \quad r = 0.045 \quad n = 1$$

a)
$$t = 3$$

$$A = 20,000 \left(1 + \frac{.045}{1}\right)^{3}$$

$$= 20,000 \left(1.045\right)^{3}$$

$$= \$22,823.32$$

b)
$$t = 5$$

$$A = 20,000 \left(1 + \frac{.045}{1}\right)^{5}$$

$$= 20,000 \left(1.045\right)^{5}$$

$$\approx $24,923.64$$

Exercise

If \$10.000 is invested at an annual interest rate of 3% for 5 *years*, find the balance if the interest rate is compounded

- *a)* Annually.
- c) Quarterly
- e) Daily (365)
- g) Continuously

- b) Semi-annually.
- d) Monthly
- f) Hourly

Given:
$$P = 10,000 \quad r = 0.03 \quad t = 5$$

a) Annually:
$$n = 1$$

$$A = 10,000 \left(1 + \frac{.03}{1}\right)^{5}$$

$$= 10,000 \left(1.03\right)^{5}$$

$$\approx $11,592.74$$

b) Semi-annually:
$$n = 2$$

$$A = 10,000 \left(1 + \frac{.03}{2}\right)^{10}$$

$$= 10,000 \left(1.015\right)^{10}$$

$$\approx \$11,605.41$$

c) Quarterly: n = 4

$$A = 10,000 \left(1 + \frac{.03}{4}\right)^{20}$$

$$\approx \$11,611.84$$

d) Monthly: n = 12

$$A = 10,000 \left(1 + \frac{.03}{12}\right)^{60}$$

$$\approx \$11,616.17$$

e) Daily: n = 365

$$A = 10,000 \left(1 + \frac{.03}{365}\right)^{365(5)}$$

$$\approx $11,618.27 \mid$$

f) Hourly: $n = 365 \times 24 = 8,760$

$$A = 10,000 \left(1 + \frac{.03}{8,760} \right)^{43,800}$$

$$\approx \$11,618.34 \mid$$

g) Continuously

$$A = 10,000e^{(.03)(5)}$$

 $\approx $11,618.34$

Exercise

If \$20.000 is invested at an annual interest rate of 2% for 10 *years*, find the balance if the interest rate is compounded

- a) Annually.
- c) Quarterly
- e) Daily (365)
- g) Continuously

- b) Semi-annually.
- d) Monthly
- f) Hourly

Solution

Given:
$$P = 20,000 \quad r = 0.02 \quad t = 10$$

a) Annually: n = 1

$$A = 20,000 \left(1 + \frac{.02}{1}\right)^{10}$$
 $A = P\left(1 + \frac{r}{n}\right)^{tn}$

=
$$10,000(1.02)^{10}$$

 $\approx $24,379.89$

b) Semi-annually: n = 2

$$A = 20,000 \left(1 + \frac{.02}{2}\right)^{20}$$

$$\approx $24,403.80 \$$

c) Quarterly: n = 4

$$A = 20,000 \left(1 + \frac{.02}{4}\right)^{40}$$

$$\approx $24,416.88$$

d) Monthly: n = 12

$$A = 20,000 \left(1 + \frac{.02}{12}\right)^{120}$$

$$\approx $24,423.99 \mid$$

e) Daily: n = 365

$$A = 20,000 \left(1 + \frac{.02}{365}\right)^{3650}$$

$$\approx $24,427.92 \mid$$

f) Hourly: $n = 365 \times 24 = 8,760$

$$A = 20,000 \left(1 + \frac{.02}{8,760} \right)^{87,600}$$

$$\approx \$24,428.05 \mid$$

g) Continuously

$$A = 20,000e^{(.02)(10)}$$

 $\approx $24,428.05$

Exercise

Find the accumulated value of an investment of \$10,000 for 5 years at an interest rate of 5.5% if the money is

- a) Compounded semiannually
- b) Compounded quarterly
- c) Compounded monthly
- d) Compounded Continuously

Given:
$$P = 10000$$

$$t = 5$$
$$r = 0.055$$

a) Semiannually: n = 2

$$A = 10000 \left(1 + \frac{0.055}{2} \right)^{2(5)}$$
$$= \$13,116.51$$

b) Quarterly: n = 4

$$A = 10000 \left(1 + \frac{0.055}{4} \right)^{4(5)}$$
$$= \$13,140.67 \mid$$

c) Monthly: n = 12

$$A = 10000 \left(1 + \frac{0.055}{12} \right)^{12(5)}$$
$$= \$13,157.04 \mid$$

d)
$$A = 10000e^{(0.055)(5)}$$

= \$13,165.31

Exercise

Suppose \$1,000 is deposited in an account paying 4% interest per year compounded quarterly.

- a) Find the amount in the account after 10 years with no withdraws.
- b) How much interest is earned over the 10 years period?

Solution

Given:
$$P = 1000$$
 $r = .04$ $n = 4$

a)
$$t = 10$$

$$A = 1000 \left(1 + \frac{.04}{4} \right)^{10(4)}$$

$$= \$1,488.86$$

b) The interest earned: \$1488.86 - \$1000 = \$488.86

Becky must pay a lump sum of \$6000 in 5 yrs.

- a) What amount deposited today at 3.1% compounded annually will grow to \$6000 in 5 yrs.?
- b) If only \$5000 is available to deposit now, what annual interest rate is necessary for the money to increase to \$6000 in 5 yrs.?

Solution

a)
$$A = P\left(1 + \frac{r}{n}\right)^{tn}$$

 $6000 = P\left(1 + \frac{.031}{1}\right)^{5(1)}$
 $6000 = P(1.031)^{5}$
 $\frac{6000}{(1.031)^{5}} = P$
 $P \approx \$5,150.60$

b)
$$A = P\left(1 + \frac{r}{n}\right)^{tn}$$

 $6000 = 5000\left(1 + \frac{r}{1}\right)^{5(1)}$
 $\frac{6000}{5000} = (1+r)^{5}$
 $\frac{6}{5} = (1+r)^{5}$
 $\left(\frac{6}{5}\right)^{1/5} = 1+r$
 $r = \left(\frac{6}{5}\right)^{1/5} - 1$ $(6/5) \land (1/5) - 1$
 $\approx .0371$

The interest rate of 3.71% will produce enough to increase the \$5,000 to \$6,000 by the end of 5 yrs.

Exercise

An investment of 1,000 increased to \$13,464 in 20 years. If the interest was compounded continuously, find the interest rate.

$$A = Pe^{rt}$$

$$13464 = 1000e^{20r}$$

$$13.464 = e^{20r}$$

$$\ln(13.464) = \ln e^{20r}$$

$$20r = \ln 13.464$$

$$r = \frac{\ln 13.464}{20}$$

$$\approx 0.13$$

The interest rate is 13%.

Exercise

Find the present value of \$4,000 if the annual interest rate is 3.5% compounded quarterly for 6 years.

Solution

Given:
$$A = 4000.00$$
, $r = 0.035$, $t = 6$, $n = 4$

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$4000 = P\left(1 + \frac{0.035}{4}\right)^{4(6)}$$

$$P = \frac{4000}{\left(1 + \frac{0.035}{4}\right)^{4(6)}}$$

$$= \$3,245.30$$

Exercise

How much money will there be in an account at the end of 8 *years* if \$18,000 is deposited at 3% interest compounded *semi-annually*?

Solution

$$A = 18000 \left(1 + \frac{0.03}{2} \right)^{2(8)}$$

$$= \$22,841.74$$

Exercise

The function defined by $P(x) = 908e^{-0.0001348x}$ approximates the atmospheric pressure (in *millibars*) at an altitude of x meters. Use P to predict the pressure:

- a) At 0 meters
- b) At 12,000 meters

a) At 0 meters

$$P(x=0) = 908e^{-0.0001348(0)}$$

= 908 millibars |

b) At 12,000 meters

$$P(x = 12,000) = 908e^{-0.0001348(12,000)}$$

$$\approx 180 \text{ millibars}$$

Exercise

How long, to the nearest tenth of a year, will it take \$1000 to grow to \$3600 at 8% annual interest compounded quarterly?

Solution

Given:
$$A = \$3600$$

 $P = \$1000$
 $r = 8\% = 0.08$
 $n = 4$
 $A = P\left(1 + \frac{r}{n}\right)^{nt}$
 $3600 = 1000\left(1 + \frac{0.08}{4}\right)^{4t}$
 $3.6 = (1.02)^{4t}$
 $\ln 3.6 = \ln (1.02)^{4t}$
 $\ln 3.6 = 4t \ln (1.02)$
 $\frac{\ln 3.6}{4 \ln 1.02} = t$
 $t \approx 16.2 \ yrs$

Exercise

The annual revenue R, in dollars, of a new company can be closely modeled by the logistic function

$$R(t) = \frac{625,000}{1 + \frac{3}{10}e^{-.045t}}$$

Where the natural number t is the time, in *years*, since the company was founded.

- a) According to the model, what will the company's annual revenue for its first year and its second year?
- b) According to the model, what will the company's annual revenue approach in the long-term future?

Solution

a) First year:

$$R(1) = \frac{625,000}{1 + \frac{3}{10}e^{-.045}}$$
$$\approx $485,701.25 \mid$$

Second year:

$$R(1) = \frac{625,000}{1 + \frac{3}{10}e^{-.045(2)}}$$

$$\approx $490,511.79$$

b)
$$\lim_{t \to \infty} R(t) = \lim_{t \to \infty} \frac{625,000}{1 + \frac{3}{10}e^{-.045t}}$$

$$= \frac{625,000}{1 + \frac{3}{10}\lim_{t \to \infty} e^{-.045t}}$$

$$= \frac{625,000}{1 + \frac{3}{10}(0)} \qquad \lim_{t \to \infty} e^{-\infty} = 0$$

$$= \$625,000 \mid$$

Exercise

The number of cars A sold annually by an automobile dealership can be closely modeled by the logistic function

$$A(t) = \frac{1,650}{1 + \frac{12}{5}e^{-.055t}}$$

- a) According to the model, what number of cars will the dealership sell during its first year and its second year?
- b) According to the model, what will the dealership's car sales approach in the long-term future?

Solution

a) First year:

$$A(1) = \frac{1,650}{1 + \frac{12}{5}e^{-.055}}$$

$$\approx 504 \ cars \mid$$

Second year:

$$A(2) = \frac{1,650}{1 + \frac{12}{5}e^{-.055(2)}}$$

b)
$$\lim_{t \to \infty} A(t) = \lim_{t \to \infty} \frac{1,650}{1 + \frac{12}{5}e^{-.055t}}$$

$$= \frac{1,650}{1 + \frac{12}{5} \lim_{t \to \infty} e^{-.055t}}$$

$$= \frac{1,650}{1 + \frac{12}{5}(0)} \qquad \lim_{t \to \infty} e^{-\infty} = 0$$

$$= 1,650 \ cars \mid$$

The population of wolves in a preserve satisfies a logistic model in which $P_0 = 312$ in 2008, c = 1,600, and P(6) = 416.

- a) Determine the logistic model for this population, where t is the number of years after 2008.
- b) Use the logistic model from part (a) to predict the size of the groundhog population in 2014.

Given:
$$P_0 = 312$$
 $c = 1,600$ $P(6) = 416$

a) $P(t) = \frac{1,600}{1 + ae^{-bt}}$ $P(t) = \frac{c}{1 + ae^{-bt}}$

$$P(0) = \frac{1,600}{1 + a} = 312$$

$$1 + a = \frac{1,600}{312}$$

$$a = \frac{200}{39} - 1$$

$$= \frac{161}{39}$$

$$P(t) = \frac{1,600}{1 + \frac{161}{39}e^{-bt}}$$

$$P(6) = \frac{1,600}{1 + \frac{161}{39}e^{-6b}} = 416$$

$$1 + \frac{161}{39}e^{-6b} = \frac{1,600}{416}$$

$$\frac{161}{39}e^{-6b} = \frac{50}{13} - 1$$

$$\frac{161}{39}e^{-6b} = \frac{37}{13}$$

$$e^{-6b} = \frac{37}{13} \frac{39}{161}$$

$$e^{-6b} = \frac{111}{161}$$

$$-6b = \ln \frac{111}{161}$$

$$b = -\frac{1}{6} \ln \left(\frac{111}{161}\right)$$

$$\approx .062$$

$$P(t) = \frac{1,600}{1 + \frac{161}{39}e^{-.062t}}$$

b)
$$t = 2014 - 2008 = 6$$

$$P(6) = \frac{1,600}{1 + \frac{161}{39}e^{-.062(6)}}$$

$$\approx 416.04$$

The population of walruses on an island satisfies a logistic model in which $P_0 = 800$ in 2006, c = 5,500, and P(1) = 900.

- a) Determine the logistic model for this population, where t is the number of years after 2006.
- b) Use the logistic model from part (a) to predict the year in which the walrus population will first exceed 2000.

Given:
$$P_0 = 800 \quad c = 5,500 \quad P(1) = 900$$

a)
$$P(t) = \frac{5,500}{1 + ae^{-bt}}$$
 $P(t) = \frac{c}{1 + ae^{-bt}}$
 $P(0) = \frac{5,500}{1 + a} = 800$
 $1 + a = \frac{5,500}{800}$
 $a = \frac{55}{8} - 1$
 $= \frac{47}{8}$

$$P(t) = \frac{5,500}{1 + \frac{47}{8}e^{-bt}}$$

$$P(1) = \frac{5,500}{1 + \frac{47}{8}e^{-b}} = 900$$

$$1 + \frac{47}{8}e^{-b} = \frac{5,500}{900}$$

$$\frac{47}{8}e^{-b} = \frac{55}{9} - 1$$

$$e^{-b} = \frac{46}{9} \frac{8}{47}$$

$$e^{-b} = \frac{368}{423}$$

$$-b = \ln\left(\frac{368}{423}\right)$$

$$b = -\ln\left(\frac{368}{423}\right)$$

$$\approx 0.139$$

$$P(t) = \frac{5,500}{1 + \frac{47}{9}e^{-0.139t}}$$

b)
$$P(t) = \frac{5,500}{1 + \frac{47}{8}e^{-0.139t}} = 2,000$$

$$1 + \frac{47}{8}e^{-0.139t} = \frac{5,500}{2,000}$$
$$\frac{47}{8}e^{-0.139t} = \frac{11}{4} - 1$$

$$e^{-0.139t} = \frac{7}{4} \frac{8}{47}$$

$$-0.139t = \ln\left(\frac{14}{47}\right)$$

$$t = -\frac{1}{0.139} \ln \left(\frac{14}{47} \right)$$

$$\approx 8.8 \ years \ |$$

∴ The walrus population will first exceed 2000 in year 2015

Newton's Law of Cooling states that is an object at temperature T_0 is placed into an environment at constant temperature A, then the temperature of the object, T(t) (in degrees Fahrenheit), after t minutes is given by $T(t) = A + (T_0 - A)e^{-kt}$, where k is a constant that depends on the object.

- a) Determine the constant k for a canned soda drink that takes 5 minutes to cool from 75°F to 65°F after being placed in a refrigerator that maintains a constant temperature of 34°F
- b) What will be the temperature of the soda after 30 minutes?
- c) When will the temperature of the soda drink be $36^{\circ}F$?

a)
$$T(5) = 34 + (75 - 34)e^{-5k} = 65$$

 $41e^{-5k} = 31$
 $e^{-5k} = \frac{31}{41}$
 $-5k = \ln\left(\frac{31}{41}\right)$
 $k = -\frac{1}{5}\ln\left(\frac{31}{41}\right)$
 ≈ 0.0559

b)
$$T(t) = 34 + 41e^{-0.0559t}$$

 $T(30) = 34 + 41e^{-0.0559(30)}$
 $\approx 42^{\circ}F$ |
c) $T(t) = 34 + 41e^{-0.0559t} = 36$
 $41e^{-0.0559t} = 2$
 $e^{-0.0559t} = \frac{2}{41}$
 $-0.0559t = \ln(\frac{2}{41})$
 $t = -\frac{1}{0.0559}\ln(\frac{2}{41})$
 $\approx 54 \ min$ |

According to a software company, the users of its typing tutorial can expect to type N(t) words per minute after *t hours* of practice with the product, according to the function $N(t) = 100(1.04 - 0.99^t)$

- a) How many words per minute can a student expect to type after 2 hours of practice?
- b) How many words per minute can a student expect to type after 40 hours of practice?
- c) How many hours of practice will be required before a student can expect to type 60 words per minute?

a)
$$N(2) = 100(1.04 - 0.99^2)$$

 ≈ 6 words per minute

b)
$$N(40) = 100(1.04 - 0.99^{40})$$

 ≈ 70 | words per minute

c)
$$N(t) = 100(1.04 - 0.99^t) = 60$$

 $1.04 - 0.99^t = \frac{60}{100}$
 $-0.99^t = 0.6 - 1.04$
 $0.99^t = 0.44$
 $t = \log_{.99}(.44)$
 $\approx 82 \ hours$

A lawyer has determined that the number of people P(t) in a city of 1.2 million people who have been exposed to a news item after t days is given by the function

$$P(t) = 1,200,000(1 - e^{-0.03t})$$

- a) How many days after a major crime has been reported has 40% of the population heard of the crime?
- b) A defense lawyer knows it will be difficult to pick an unbiased jury after 80% of the population has heard of the crime. After how many days will 80% of the population have heard of the crime?

a)
$$P(t) = 1,200,000 \left(1 - e^{-0.03t}\right) = .4(1,200,000)$$

 $1 - e^{-0.03t} = 0.4$
 $e^{-0.03t} = 0.6$
 $-0.03t = \ln(0.6)$
 $t = -\frac{\ln(0.6)}{0.03}$
 $\approx 17 \ days$