REPORT DOCUMENTATION PAGE				OMB No. 0704-0188	
Public reporting burden for the	is collection of information is e	stimated to average 1 hour per re	sponse, including the time for re-	viewing instructions, se	arching existing data sources, gathering and maintaining the collection of information, including suggestions for reducing
this burden to Depertment of 4302. Respondents should be	Defense, Washington Headque e eware that notwithstanding a	arters Services, Directorate for In	formation Operations end Report son shall be subject to any penal	ts (0704-0188), 1215 J	efferson Davis Highway, Suite 1204, Arington, VA 22202- with a collection of information if it does not display e currently
1. REPORT DATE (D		2. REPORT TYPE Interim Research P			DATES COVERED (From - To)
4. TITLE AND SUBTI				5.	a. CONTRACT NUMBER
Expeditionary Ligh	nt Armor Seeding [Development		_	ODANT WINDS
					b. GRANT NUMBER 00014-13-1-0219
					c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)	In Deale Heave			5	d. PROJECT NUMBER
Shridhar Yarlagadda, Bazle Haque					e. TASK NUMBER
				5	f. WORK UNIT NUMBER
7. PERFORMING OR	GANIZATION NAME(S	S) AND ADDRESS(ES)		8.	PERFORMING ORGANIZATION REPORT
UNIVERSITY OF					NUMBER
OFFICE OF THE		OR RESEARCH		М	ONTHLY-4
220 HULLIHEN H					
NEWARK, DE 197	'16-0099				
9. SPONSORING / MO	ONITORING AGENCY	NAME(S) AND ADDRES	SS(ES)	11	D. SPONSOR/MONITOR'S ACRONYM(S)
Office of Naval Re	search			lo	NR
875 North Randolp				1	1. SPONSOR/MONITOR'S REPORT
Arlington, VA 2220	3-1995			1	NUMBER(S)
12. DISTRIBUTION /	AVAILABILITY STATE	MENT		<u>l</u>	
Approved for Publi	ic Release; distribi	ution is Unlimited.			
13. SUPPLEMENTAR	Y NOTES				
14. ABSTRACT					
HyperMesh which Quarter-symmetric targets with .30cal	will be used in difformodel is used in A AP M2 projectile u	erent FEA simulation AutoDyn to simulate using SPH.	ns. DoP experiments o	on aluminum ta	en developed for both projectiles in argets and ceramic-faced aluminum reference - ARL-TR-2219, 2000.
15. SUBJECT TERMS					
		Projectile, SPH, Alur	minum 5083, SiC, D	oP Expemine	ts, AutoDyn Simulations
16. SECURITY CLASS			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Shridhar Yarlagadda
a. REPORT	b. ABSTRACT	c. THIS PAGE	υυ	22	19b. TELEPHONE NUMBER (include area code) 302-831-4941
		1	1		

MONTHLY REPORT JULY 2013

MODELING AND SIMULATION OF CERAMIC ARRAYS TO IMPROVE BALLAISTIC PERFORMANCE

MONTHLY REPORT FOR JULY 2013

- ☐ Two projectile IGES geometry files are provided by ONR. Finite element models have been developed for both projectiles in HyperMesh which will be used in different FEA simulations.
- Quarter-symmetric model is used in AutoDyn to simulate DoP experiments on aluminum targets and ceramic-faced aluminum targets with .30cal AP M2 projectile using SPH.
- □ Future work will provide model validation runs based on the DoP experiments described in reference ARL-TR-2219, 2000.

DOP OF .30cal PROJECTILE INTO MONOLITHIC ALUMINUM (Ref: ARL-TR-2219, 2000.)

 $V_P = 400 - 900 \text{ m/s}$

2013 © University of Delaware

DOP OF .30cal PROJECTILE INTO CERAMIC-FACED TARGET (Ref: ARL-TR-2219, 2000.)

 $t_{Al} = 76.2 \text{ mm}$

H = 20.0 mm

 $V_P = 841 \pm 15 \text{ m/s}$

2013 © University of Delaware

30AP-M2 PROJECTILE MASS PROPERTIES

Component	Material	Weight (g)
Jacket	Gilding Metal	4.2
Core	Hardened Steel - RC 63	5.3
Point Filler	Lead	0.8
Base Filler	Lead	0.5
Total Weight		10.8

7.62x39 PS PROJECTILE PROPERTIES

Component	Material
Jacket	Copper-Plated Steel
Core	Steel
Filler	Lead

PROJECTILE GEOMETRIES (Ref: ONR, 2013.)

.30cal AP M2

7.62x39 PS

2013 © University of Delaware

SOLID MODEL OF .30cal AP M2 PROJECTILE

MATERIAL PROPERTIES – AI 5083

Experimental Al 5083

	AI 5083
Density (g/cm ³)	2.65
Tensile Strength (MPa)	377.1
Yield Strength (MPa)	318.5
Elongation (%)	9.3

Ref:

MTL TR-86-14, 1986. ARL-TR-2219, 2000.

AutoDyn Al 5083

Equation of State	Linear
Reference density	2.70000E+00 (g/cm3)
Bulk Modulus	5.83300E+11 (ubar)
Reference Temperature	2.93000E+02(K)
Specific Heat	9.10000E+06 (erg/gK)
Thermal Conductivity	0.00000E+00()
Strength	Johnson Cook
Shear Modulus	2.69200E+11 (ubar)
Yield Stress	1.67000E+09 (ubar)
Hardening Constant	5.96000E+09 (ubar)
Hardening Exponent	5.51000E-01 (none)
Strain Rate Constant	1.00000E-03 (none)
Thermal Softening Exponent	8.59000E-01 (none)
Melting Temperature	8.93000E+02 (K)
Ref. Strain Rate (/s)	1.00000E+00 (none)
Strain Rate Correction	1st Order
Failure	None
Erosion	None
Material Cutoffs	
Maximum Expansion	1.00000E-01 (none)
Minimum Density Factor	1.00000E-05 (none)
Minimum Density Factor (SPH)	2.00000E-01 (none)
Maximum Density Factor (SPH)	3.00000E+00 (none)
Minimum Soundspeed	1.00000E-04 (cm/s)
Maximum Soundspeed (SPH)	1.01000E+20 (cm/s)
Maximum Temperature	1.00000E+16(K)

 $2013 \\ \textcircled{o} \\ \textbf{University of Delaware} \\$

MATERIAL PROPERTIES - SiC

Experimental SiC

	SiC
Density (g/cm ³)	3.20
Elastic Modulus (GPa)	455
Shear Modulus (GPa)	195
Longitudinal Wave Velocity (km/s)	12.3
Poisson's Ratio	0.14
Hardness (kg/mm²)	2700
Compressive Strength (MPa)	3410

Ref:

ARL-TR-2219, 2000.

AutoDyn SiC

Equation of State	Polynomial
Reference density	3.21500E+00 (g/cm3)
Bulk Modulus A1	2.20000E+12 (ubar)
Parameter A2	3.61000E+12 (ubar)
Parameter A3	0.00000E+00 (ubar)
Parameter B0	0.00000E+00 (none)
Parameter B1	0.00000E+00 (none)
Parameter T1	2.20000E+12 (ubar)
Parameter T2	0.00000E+00 (ubar)
Reference Temperature	2.93000E+02 (K)
Specific Heat	0.00000E+00 (erg/gK)
Thermal Conductivity	0.00000E+00 ()
Strength	Johnson-Holmquist
Shear Modulus	1.93500E+12 (ubar)
Model Type	Segmented (JH1)
Hugoniot Elastic Limit, HEL	1.17000E+11 (ubar)
Intact Strength Constant, S1	7.10000E+10 (ubar)
Intact Strength Constant, P1	2.50000E+10 (ubar)
Intact Strength Constant, S2	1.22000E+11 (ubar)
Intact Strength Constant, P2	1.00000E+11 (ubar)
Strain Rate Constant, C	9.00000E-03 (none)
Max. Fracture Strength, SFMAX	1.30000E+10 (ubar)
Failed Strength Constant, ALPHA	4.00000E-01 (none)
Failure	Johnson Holmquist
Hydro Tensile Limit	-7.50000E+09 (ubar)
Model Type	Segmented (JH1)
Damage Constant, EFMAX	1.20000E+00 (none)
Damage Constant, P3	9.97500E+11 (ubar)
Bulking Constant, Beta	1.00000E+00 (none)
Damage Type	Instantaneous (JH1)
Tensile Failure	Hydro (Pmin)

AUTODYN QUARTER-SYMMETRIC MODEL

- ☐ Smoothed-particle hydrodynamics (SPH) used for all parts
- ☐ Particle size = 0.30-mm totaling 351k elements
- ☐ Clamp boundary condition used at end of aluminum to secure the target
- ☐ Material strength and damage properties will be varied to validate ARL-DoP data in future

SHOT NO. 2802, V=701.6 m/s

t = 0.0153 ms

t = 0.0402 ms

t = 0.0715 ms

2013 © University of Delaware

SHOT NO. 2802, V=701.6 m/s

t = 0.1427 ms

AutoDyn DOP = 37.785 mmExperimental DOP = 33.8 mm

Conclusion: Reasonable result since yaw and pitch are not considered in AutoDyn run while present in experiment

SHOT NO. 2802 PROJECTILE KINETIC ENERGY vs. TIME

SHOT NO. 3002, V=834 m/s, t_c =1.25 mm

t = 0.01587 ms

t = 0.03314 ms

2013 © University of Delaware

t = 0.04902 ms

SHOT NO. 3002, V=834 m/s, t_c =1.25 mm

AutoDyn DOP = 42.38 mmExperimental DOP = 40.1 mm

Conclusion: Reasonable result since yaw and pitch are not considered in AutoDyn run while present in experiment

SHOT NO. 3002 PROJECTILE KINETIC ENERGY vs. TIME

SUMMARY

- □ Quarter-symmetric model is used in AutoDyn to validate projectile model and ceramic properties using data from ARL-DoP experiments
- □ Both monolithic aluminum and ceramic-faced aluminum targets match results found in literature with reasonable accuracy
- Mesh size will be reduced and material properties (strength and damage) will be adjusted to improve results
- ☐ Further analysis will be done to validate the 7.62x39 PS projectile using a similar approach

Experimental Results from REF: ARL-TR-2219, 2000

ADDITIONAL SLIDES

PENETRATION INTO MONOLITHIC ALUMINUM vs. STRIKE VELOCITY (Ref: ARL-TR-2219, 2000.)

RESIDUAL PENETRATION AREAL DENSITY vs. CERAMIC AREAL DENSITY (Ref: ARL-TR-2219, 2000.)

