

Recursion-tree method

- Substitution method is useful, but it could be difficult to come up with a good guess.
- Draw a *recursion tree* to devise a good guess.
- In a recursion tree, each *node* represents the cost of a single <u>subproblem</u>.
- We sum the costs within each level to get a set of <u>per-level costs</u>.
- We sum all the per-level costs to determine the total cost.

An example of recursion-tree method

- Given $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$, what's the upper bound of T(n)?
- Tolerate some sloppiness: draw a recursion tree for $T(n) = 3T(n/4) + cn^2$

Continue expanding

Sum of level i?

Questions about the recursion tree

 When does the expanding end? I.e., What's the number of levels when it reaches the subproblem of the smallest size?

Subproblem sizes decrease by a factor of 4:

$$T(n) \longrightarrow T(\frac{n}{4}) \longrightarrow T(\frac{n}{4^2}) \longrightarrow T(\frac{n}{4^3})$$
 ...

The <u>subproblem size</u> for a node at depth i is $\frac{n}{4^i}$.

The subproblem size hits 1 when:

$$\frac{n}{4^i} = 1 \qquad \text{i.e., } i = \log_4 n$$

Thus, the tree has $\log_4 n + 1$ levels (at depth $0,1,2,\cdots,\log_4 n$)

What's the per-level cost?

- Each level has three times more nodes than the level above
- Thus, the <u>number of nodes</u> at depth i is 3^i
- The subproblem sizes reduce by a factor of 4 for each level
- Thus, the cost for each node at depth i is $c\left(\frac{n}{4^i}\right)^2$

T(1)

T(1)

The total cost for the level at depth i is:

$$3^i \cdot c \left(\frac{n}{4^i}\right)^2 = \left(\frac{3}{16}\right)^i cn^2$$

Bottom level cost

- Bottom level is at the depth $i = \log_4 n$
- The the number of leaf nodes: $3^i = 3^{\log_4 n} = n^{\log_4 3}$
- Each leaf node costs T(1)
- Thus, the total cost for bottom level is: $T(1)n^{\log_4 3} = \Theta(n^{\log_4 3})$

Total cost

A geometric series

T(1) T(1)T(1) T(1) T(1) T(1) T(1) T(1) T(1)

> $\Theta(n^{\log_4 3})$ Bottom level

Total cost

Summation of a geometric series

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4}n - 1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \sum_{i=0}^{\log_{4}n - 1} \left(\frac{3}{16}\right)^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{\left(\frac{3}{16}\right)^{\log_{4}n - 1} - 1}{\frac{3}{16} - 1}cn^{2} + \Theta(n^{\log_{4}3})$$

Find an upper bound for T(n)

Use the property of geometric series

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$<\sum_{i=0}^{3} \left(\frac{3}{16}\right)^{i} cn^{2} + \Theta(n^{\log_{4} 3})$$

$$= \frac{\left(\frac{3}{16}\right)^{\infty} - 1}{\frac{3}{16} - 1}cn^{2} + \Theta(n^{\log_{4} 3}) = \frac{-1}{\frac{3}{16} - 1}cn^{2} + \Theta(n^{\log_{4} 3}) = \frac{16}{13}cn^{2} + \Theta(n^{\log_{4} 3})$$

$$= \frac{0}{13}cn^{2} + \Theta(n^{\log_{4} 3}) = \frac{1}{13}cn^{2} + \Theta(n^{\log_{4}$$

Now, we have derived a guess $T(n) = O(n^2)$ for the original recurrence:

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

 ≈ 0.792

Some observation

- Recall the recurrence: $T(n) = 3T(n/4) + cn^2$
- The solution is: $T(n) < \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta\left(n^{\log_4 3}\right) = \frac{16}{13} cn^2 + \Theta\left(n^{\log_4 3}\right) = O(n^2)$
- The cost of the root node dominates the total cost.
- Think: What if the root node costs less?
 - For example: *n*, or constant *c*?
- How does the solution change?

The master method (Master theorem)

• It provides a "cookbook" for solving recurrences of the form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- where $a \ge 1$ and b > 1 are constants and f(n) is an asymptotically positive function.
 - \circ It divides a problem of size n into a subproblems, each of size n/b.
 - o f(n): the cost of dividing and combining.
- Then T(n) has the following asymptotic bounds:
- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Intuitive understanding of master method

- In each of the three cases, we compare f(n) with the function $n^{\log_b a}$.
- If case 1, $n^{\log_b a}$ is the larger, then $T(n) = \Theta(n^{\log_b a})$.
- If case 3, f(n) is the larger, then $T(n) = \Theta(f(n))$.
- If case 2, the two functions are the same size, we just multiply by a logarithmic factor, and the solution is $T(n) = \Theta(f(n) \lg n) = \Theta(n^{\log_b a} \lg n)$.

Some technicalities

- In case 1, not only must f(n) be smaller than $n^{\log_b a}$, it must be **polynomially** smaller.
 - E.g., f(n) must be asymptotically smaller than $n^{\log_b a}$ by a factor of n^{ϵ} .
- In case 3, not only must f(n) be greater than $n^{\log_b a}$, it must also be **polynomially** larger,
- And in addition satisfy the "regularity" condition that $af\left(\frac{n}{b}\right) \le cf(n)$ (which is satisfied by most of the polynomially bounded fucntions).
- The three cases do not cover all the possibilities for f(n).
 - There is a gap between case 1 and 2 when f(n) is smaller than $n^{\log_b a}$, but not polynomially smaller.
 - There is a gap between case 2 and 3 when f(n) is larger than $n^{\log_b a}$, but not polynomially larger.
- We cannot use master method when f(n) falls into the gaps.

Example with master method

Maximum subarray problem (and merge sort)

$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1\\ 2T(n/2) + \Theta(n), & \text{if } n > 1 \end{cases}$$

- We have a = 2, b = 2, $f(n) = \Theta(n)$.
- Thus, we have $n^{\log_b a} = n = \Theta(n)$
- And thus case 2 applies.
- Therefore the solution is $T(n) = \Theta(n \lg n)$.

Other examples

- Consider the recurrence $T(n) = 2T(\frac{n}{2}) + n \lg n$
- a=2, $b=2 \rightarrow n^{\log_b a}=n$, which means $f(n)=n \lg n$ is asymptotically larger than $n^{\log_b a}$.
- Does case 3 apply?
- It looks like so, but the problem is that f(n) is **not** polynomially larger.
- Can we find a $\epsilon > 0$, such that $f(n) \ge c n^{\log_b a + \epsilon}$
- I.e., $n \lg n \ge c n^{1+\epsilon} \rightarrow \lg n \ge c n^{\epsilon}$
- However, we cannot find such a c, because $\lg n$ grows slower than any polynomial function n^{ϵ} when $\epsilon > 0$.

Other examples (cont.)

- Consider $T(n) = 9T\left(\frac{n}{3}\right) + n$
- $a = 9, b = 3 \rightarrow n^{\log_b a} = n^2$
- $f(n) = n = O(n^{\log_b a \epsilon}) = O(n^{2 \epsilon})$, when $\epsilon = 1$
- Thus, case 1 can be applied, and $T(n) = \Theta(n^2)$.

Other examples (cont.)

- Consider $T(n) = T\left(\frac{2n}{3}\right) + 1$
- $a = 1, b = 3/2, \rightarrow n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1 = f(n)$
- Case 2 applies, and the solution is $T(n) = \Theta(\lg n)$.

Other examples (cont.)

- Consider $T(n) = 3T(\frac{n}{4}) + n \lg n$
- $a = 3, b = 4 \rightarrow n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$
- Since $f(n) = n \lg n = \Omega(n^{\log_4 3 + \epsilon})$ is satisfied as long as $\epsilon < 0.207$, because $\lg n$ is smaller than any polynomial function
- Then case 3 applies if we can also show that the regularity condition holds

•
$$af\left(\frac{n}{b}\right) = 3\left(\frac{n}{4}\right)\lg\left(\frac{n}{4}\right) = \frac{3}{4}n\lg n - \frac{3n}{2} \le cf(n) = cn\lg n$$

- The above holds if $c = \frac{3}{4}$, for sufficiently large n.
- Therefore, the solution is $T(n) = \Theta(n \lg n)$.

- The proof has two steps: lemma 1 and lemma 2.
- Lemma 1 reduces the problem of solving the recurrence to the problem of evaluating an expression that contains a <u>summation</u>.
- Lemma 2 determines <u>bounds</u> on this summation.
- Lemma 1
- Let $a \ge 1$ and b > 0 be constants, and let f(n) be a nonnegative function defined on exact power of b (simplification). Define T(n) as:

$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1\\ aT\left(\frac{n}{b}\right) + f(n), & \text{if } n = b^i \end{cases}$$

• Then
$$T(n) = \Theta\left(n^{\log_b a}\right) + \sum_{j=0}^{\log_b n-1} a^j f(\frac{n}{b^j})$$

Draw the recursion tree

Summing the costs of all nodes

- Leaf nodes
 - When $\frac{n}{b^j} = 1$, $\rightarrow j = \log_b n$, \rightarrow Leaf nodes are at depth $\log_b n$
 - o There are $a^{\log_b n} = n^{\log_b a}$ leaf nodes
 - o Sum of all leaf nodes: $n^{\log_b a} \cdot \Theta(1) = \Theta(n^{\log_b a})$
- Internal nodes
 - o Depth j ranges from 0 to $\log_b n 1$
 - Sum of all internal nodes:

$$\sum_{j=0}^{\log_b n - 1} a^j f(\frac{n}{b^j})$$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n - 1} a^j f(\frac{n}{b^j})$$

Lemma 1 is proved

What does Lemma 1 tell us?

Master theorem actually describes how the total cost is distributed:

Case 1: dominated by the costs in leaf nodes

Case 2: evenly distributed among all levels of the recursion tree

Case 3: dominated by the cost of the root

Lemma 2 gives the bounds

- Let $g(n) = \sum_{j=0}^{\log_b n-1} a^j f(\frac{n}{b^j})$, it has the following asymptotic bounds:
- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $g(n) = O(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $g(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $g(n) = \Theta(f(n))$.

Proof of Lemma 2 (case 1)

• For case 1, $f(n) = O(n^{\log_b a - \epsilon})$ implies that $f\left(\frac{n}{b^j}\right) = O(\left(\frac{n}{b^j}\right)^{\log_b a - \epsilon})$. Substituting into g(n):

$$g(n) = \sum_{j=0}^{\log_b n - 1} a^j f(\frac{n}{b^j}) = O\left(\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a - \epsilon}\right)$$

$$= n^{\log_b a - \epsilon} \sum_{j=0}^{\log_b n - 1} \left(\frac{a}{b} \cdot \frac{b^{\epsilon}}{b^{\log_b a}}\right)^j = n^{\log_b a - \epsilon} \sum_{j=0}^{\log_b n - 1} (b^{\epsilon})^j$$

$$= n^{\log_b a - \epsilon} \left(\frac{b^{\epsilon \log_b n} - 1}{b^{\epsilon} - 1}\right)$$

$$= n^{\log_b a - \epsilon} \left(\frac{n^{\epsilon} - 1}{b^{\epsilon} - 1}\right) = n^{\log_b a - \epsilon} O(n^{\epsilon}) = O(n^{\log_b a})$$

Proof of Lemma 2 (case 2)

• For case 2, $f(n) = \Theta(n^{\log_b a})$ implies that $f\left(\frac{n}{b^j}\right) = \Theta(\left(\frac{n}{b^j}\right)^{\log_b a})$. Substituting into g(n):

$$g(n) = \sum_{j=0}^{\log_b n - 1} a^j f(\frac{n}{b^j}) = \Theta\left(\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a}\right)$$

$$= n^{\log_b a} \sum_{j=0}^{\log_b n-1} \left(\frac{a}{b^{\log_b a}}\right)^j$$

$$= n^{\log_b a} \sum_{j=0}^{\log_b n-1} (1)^j$$

$$= n^{\log_b a} \cdot \log_b n$$

$$= \Theta(n^{\log_b a} \log_b n)$$

Proof of Lemma 2 (case 3)

- For case 3, $af\left(\frac{n}{b}\right) \le cf(n) \to f\left(\frac{n}{b}\right) \le \frac{c}{a}f(n)$
- Iterate many times: $f\left(\frac{n}{b^2}\right) \le \frac{c}{a} f\left(\frac{n}{b}\right)$, $f\left(\frac{n}{b^3}\right) \le \frac{c}{a} f\left(\frac{n}{b^2}\right)$, ..., $f\left(\frac{n}{b^i}\right) \le \frac{c}{a} f\left(\frac{n}{b^{i-1}}\right)$
- $\rightarrow f\left(\frac{n}{b^i}\right) \le \left(\frac{c}{a}\right)^i f(n)$, or $a^i f\left(\frac{n}{b^i}\right) \le c^i f(n)$. Substituting into g(n):

$$g(n) = \sum_{j=0}^{\log_b n - 1} a^j f(\frac{n}{b^j}) \le \sum_{j=0}^{\log_b n - 1} c^j f(n) \qquad \le f(n) \sum_{j=0}^{\infty} c^j \qquad = f(n) \frac{1}{1 - c} = O(f(n))$$

From the form of g(n), we know that $g(n) = \Omega(f(n))$

Therefore, $g(n) = \Theta(f(n))$

Lemma 2 is proved!

Combining Lemma 1 and 2

- Lemma 1 tells: $T(n) = \Theta(n^{\log_b a}) + g(n)$
- Case 1, $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$,
- $T(n) = \Theta(n^{\log_b a}) + O(n^{\log_b a}) = \Theta(n^{\log_b a})$
- Case 2, $f(n) = \Theta(n^{\log_b a})$,
- $T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \lg n) = \Theta(n^{\log_b a} \lg n)$
- Case 3, $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$,
- $T(n) = \Theta(n^{\log_b a}) + \Theta(f(n)) = \Theta(f(n))$
- Master theorem proved!