(Ω, \mathcal{U}, P) a probability space.

Problem 1

 $Z: \Omega \to \{0,1\}$, measurable, $P(Z^{-1}(\{1\})) = P(Z^{-1}(\{0\})) = 0.5$, so let $A = Z^{-1}(\{1\}), B = A^c$, then $A := \{\phi, A, B, A \cup B\}$ is a σ -algebra, $\Omega = A \cup B, A \cap B = \phi$, and Z is A-measurable, so we have $Z = \mathbf{1}_A$.

Let $X_n: \Omega^n \to \{1, 2, ..., n\}$, for $\omega \in \Omega^n$, write $\omega = (\omega_k)$, then set $X_n((\omega_k)) = \sum_{k=1}^n Z(\omega_k)$.

Let P^n be the product measure on \mathcal{A}^n , i.e., $P^n = P \times P \times ... \times P$, n-times. Then $E_{P^n}[f] = \int_{\Omega^n} f \, dP^n = \int$. By Fubini's theorem, $E_{P^n}[\mathbf{1}_A] = \int_{\Omega} \left(... \left(\int_{\Omega} \mathbf{1}_A \, dP \right) ... \right) dP = \int_{\Omega} \left(... \int_{\Omega} \left(P(A) \right) dP ... \right) dP = P(A) \int_{\Omega} \left(... \int_{\Omega} \left(1 \right) dP ... \right) dP = P(A) \cdot 1 = P(A)$. Thus $E_{P^n}[X_n] = \sum_{k=1}^n E_{P^n}[Z] = \sum_{k=1}^n E_{P^n}[\mathbf{1}_A] = \sum_{k=1}^n P(A) = \frac{1}{2}n$

So, with $X(\omega', (\omega_k)) = \sum_{k=1}^{N(\omega')} Z(\omega_k)$, where $N(\omega') = \sum_{k=1}^4 k \mathbf{1}_{A_k}(\omega')$, $P(A_1) = 0.5$, $P(A_2) = 0.1$, $P(A_3) = 0.2$, $P(A_4) = 0.2$, and $\{A_k\}$ are independent events, $\Omega = \bigcup_k A_k$. So $E[X|N] = \sum_{k=1}^4 \frac{1}{P(A_k)} E[\mathbf{1}_{A_k} X] \mathbf{1}_{A_k}$. Now $E[\mathbf{1}_{A_k} X] = \int_{\Omega \times \Omega^4} \mathbf{1}_{A_k} X \, d(P \times P^4) = \int_{\Omega \times \Omega^4} \mathbf{1}_{A_k} (\omega') \sum_{k=1}^{N(\omega')} \mathbf{1}_{A}(\omega_k) \, d(P \times P^4)$

Problem 2

Consider the discrete stochastic process, $X: \mathbb{N} \times \Omega \to \mathbb{Z}$, where $X_0 > 0$, $X_{n+1} = 0$ if $X_n = 0$, and if $X_n > 0$, then $X_{n+1} = X_n \pm 1$ with each half probability.

1) X is a non-negative martingale. First, we already have that X_0 is positive, suppose that $X_n > 0$, then by definition, $X_{n+1} = X_n \pm 1 > 0$, then and if $X_n = 0$ then $X_{n+1} = 0 \ge 0$, so by induction, $X_n \ge 0$ for all $x \in \mathbb{N}$.