PART 1 Questions and Answers

a. How many arithmetic operations are required to multiply a 4 by 4 matrix with a vector of length 4? Then, generalize this: how many arithmetic operations are required to multiply a k by k with a vector of length k?

If we have 4 by 4 matrix with a vector with 4 x values in it, then

- With the first row of the w matrix and the first x value of a vector, there will be 4 multiplication and 3 additions, meaning that it needs 7 arithmetic operations to deal with each row of w and each x value of the vector. In other words, the first output, y_0 , would be $y_0 = w_{0.0}x_0 + w_{0.1}x_1 + w_{0.2}x_2 + w_{0.3}x_3$.
- It will require repeating the same procedure for the other remaining 3 outputs, y_1, y_2 and y_3 . To make these outputs, 21 arithmetic operations will need to take place.
- In total, 28 arithmetic operations are required to do 4 by 4 matrix-vector multiplication.

To generalize, for each row we do k multiplications and (k-1) addition to get the final result. With k rows, we do a total of k(k+k-1) operations.

Using inductive reasoning,

2 by 2 matrix vector multiplication needs 6 operations

$$2(2+2-1)=6$$

3 by 3 matrix vector multiplication needs 15 operations

$$3(3+3-1) = 15$$

4 by 4 matrix vector multiplication needs 28 operations

$$4(4+4-1) = 28$$

So, if we have k by k matrix then we would need $k^2+(k-1)k$ or $2k^2-k$ operations for k by k matrix-vector multiplication.

b. Explain how your control module works. What are the steps it goes through? How does it keep track of its place in execution?

Our Control Module consists of 5 different FSM states:

State 0 is Reset State,

State 1 is Load Matrix,

State 2 is Load Vector,

State 3 is Compute,

State 4 is Output.

The conditions and directions to travel through the states are shown on the diagram below.

At positive clk edge, when reset is asserted state is 0, otherwise state becomes next state.

c. Explain how you verified your system. What problems or bugs did you encounter? Did you write any other testbenches besides those provided to you? (If you did, please include them with your submission.)

-Our simulation went smoothly with the provided testbenches except a few syntax errors which were alerted during the compile time, for example 'end module', which is not right, instead of 'endmodule'. At the end we could simulate our part1.sv without an error using the provided random testbench for part 1 following the vlog and vsim procedures shown below with various seeds.

The post-synthesis simulation generated some errors we weren't able to explain and solve, but these are likely due to non-design problems so we decided to proceed.

```
[jilee@labs50 proj2]$ source ese507setup-csh
[jilee@labs50 proj2]$ which vlib
//usr/local/mgc/modelsim_dlx/bin/vlib
[jilee@labs50 proj2]$ vlib work

** Warning: (vlib-34) Library already exists at "work".
[jilee@labs50 proj2]$ dir
[jilee@labs50 proj2]$ dir
ese507setup-csh mac_unit.sv memory.sv mvm4_partl.sv partl_random_tb.sv partl_simple_tb.sv partl.sv transcript work
[jilee@labs50 proj2]$ vlog memory.sv
Model Technology Modelsim DE vlog 2019.3 Compiler 2019.07 Jul 24 2019
Start time: 03:53:52 on Oct 22,2020
vlog memory.sv
 vlog memory.sv
-- Compiling module memory
 Top level modules:
 memory
End time: 03:53:53 on Oct 22,2020, Elapsed time: 0:00:01
 Ernors: 0, Warnings: 0
[jilee@labs50 proj2]$ vlog part1_random_tb.sv
Model Technology ModelSim DE vlog 2019.3 Compiler 2019.07 Jul 24 2019
Start time: 03:53:59 on Oct 22,2020
 vlog part1 random tb.sv
-- Compiling module tbench1
** Warning: part1_random_tb.sv(39): (vlog-2240) Treating stand-alone use of function 'randomize' as an implicit VOID cast.
 Top level modules:
                    tbench1
 End time: 03:53:59 on Oct 22,2020, Elapsed time: 0:00:00
 Errors: 0, Warnings: 1
[jilee@labs50 proj2]$ vlog part1.sv
Model Technology Modelsim DE vlog 2019.3 Compiler 2019.07 Jul 24 2019
Start time: 03:54:03 on Oct 22,2020
 Start time. Os. on the start time. Os. of the start time.
 Top level modules:
 mvm4_part1
End time: 03:54:03 on Oct 22,2020, Elapsed time: 0:00:00
Errors: 0, Warnings: 0
[jilee@labs50 proj2]$ vlog mvm4_part1.sv
Model Technology ModelSim DE vlog 2019.3 Compiler 2019.07 Jul 24 2019
Start time: 03:54:08 on Oct 22,2020
 vlog mvm4_part1.sv
-- Compiling module mvm4_part1
-- Compiling module datapath
-- Compiling module control
 Top level modules:
 mvm4_part1
End time: 03:54:08 on Oct 22,2020, Elapsed time: 0:00:00
 Errors: 0, Warnings: 0
[jilee@labs50 proj2]$ vlog mac_unit.sv
Model Technology ModelSim DE vlog 2019.3 Compiler 2019.07 Jul 24 2019
Start time: 03:54:13 on Oct 22,2020
 vlog mac_unit.sv
-- Compiling module mac
 Top level modules:
 mac
End time: 03:54:13 on Oct 22,2020, Elapsed time: 0:00:00
```

```
[jilee@labs50 proj2]$ vsim tbench1 -c -do "run -all"
Reading pref.tcl
# 2019.3
# vsim tbench1 -c -do "run -all"
# Start time: 03:57:50 on Oct 22,2020
      ModelSim DE 2019.3 Jul 24 2019 Linux 3.10.0-1127.19.1.el7.x86 64
# //
# //
      Copyright 1991-2019 Mentor Graphics Corporation
     All Rights Reserved.
# //
      ModelSim DE and its associated documentation contain trade
      secrets and commercial or financial information that are the property of
      Mentor Graphics Corporation and are privileged, confidential, and exempt from disclosure under the Freedom of Information Act,
     5 U.S.C. Section 552. Furthermore, this information
     is prohibited from disclosure under the Trade Secrets Act,
      18 U.S.C. Section 1905.
# //
# ** Warning: License feature 'msimpevsimvlog' will expire in 9 days.
# Loading sv std.std
# Loading work.tbenchl
# Loading work.mvm4 part1
# Loading work.datapath
# Loading work.memory
# Loading work.mac
# Loading work.control
# run -all
# ------ simulation finished ------
# Simulated 100000 matrix-vector products
# No errors detected
# ** Note: $finish : part1_random_tb.sv(129)
     Time: 80007435 ns Iteration: 2 Instance: /tbenchl
# End time: 03:58:19 on Oct 22,2020, Elapsed time: 0:00:29
# Errors: 0, Warnings: 0
[jilee@labs50 proj2]$
```

d. Report the area, power, frequency, and critical path location you determined from your synthesis report. Explain the critical path location descriptively; in other words, explain where the path flows through your design and why it makes sense that it is the critical path.

Area of Combinational (logic gates) cells is $1809.066012~\mu m^2$ Non-combinational (flip flops and registers) is $1660.105940~\mu m^2$

Total Cell Area of estimate, which is the sum of combinational and non-combinational, is 3469.171952 μm^2

```
486
    report area
487
    **********
488
489 Report : area
490 Design : mvm4 part1
491
    Version: J-2014.09-SP5-2
492
    Date
           : Thu Oct 29 21:25:18 2020
493
    ***********
494
495
    Information: Updating design information... (UID-85)
496
    Library(s) Used:
497
498
        NangateOpenCellLibrary (File: /home/home4/pmilder/ese507/synthes
499
500
    Number of ports:
                                             42
501
    Number of nets:
                                           1991
502
    Number of cells:
                                           1885
503 Number of combinational cells:
                                           1518
504
    Number of sequential cells:
                                            367
505
    Number of macros/black boxes:
                                              0
506
    Number of buf/inv:
                                            192
507
    Number of references:
                                             36
508
509
                                    1809.066012
    Combinational area:
510 Buf/Inv area:
                                     114.912001
511 Noncombinational area:
                                    1660.105940
                                       0.000000
512 Macro/Black Box area:
513 Net Interconnect area:
                             undefined (Wire load has zero net area)
514
515 Total cell area:
                                    3469.171952
516 Total area:
                               undefined
```

The **Total Dynamic power is 1.4197 mW** and it is the sum of Cell Internal(logic) and Net Switching Power(wires). Total dynamic power is almost linearly correlated with the clock frequency. Static power does not correlate with the clock frequency and it is affected by the area proportionally instead.

Total Power is Total Dynamic Power plus Cell Leakage Power:

7	mW	+	75.8424	$\mu \mathrm{W}$	=	1.4	196		тW
report_po	wer								
*******	*****	******	******						
Report :									
		sis effort low							
Design :									
Version:									
		t 29 21:25:18							
*******	*****	******	****						
Library(s) Used	d:							
5									
Nanga	teOper	nCellLibrary (F	ile: /home/home4/p	milder/ese507/sy	nthesis/l	ib/Nangat	eOp	enCellLi	ibrary
Onorating	Condi	tional tumical	Library: Nangat	oOmonCollTibrary	9				
		L Mode: top	Library: Nangau	eobeucerrrrbrary					
Wile Boad	Hodel	riode. cop							
Design	V	Vire Load Model	Librar	У					
mvm4_part	1	5K_hvr	atio_1_1 Nangat	eOpenCellLibrary	*				
Global On	eratir	ng Voltage = 1.	1						
		unit informati							
		its = 1V							
		Units = 1.000	000ff						
		= 1ns		STATE OF STREET					
		ver Units = luW ver Units = lnW	(derived from	V,C,T units)					
Leaka	ge Pow	ver units - inw							
Cell In	ternal	Power = 1.	3342 mW (94%)						
Net Swi	tching	g Power = 85.	5490 uW (6%)						
Total Dyn	amic E	Power = 1.	4197 mW (100%)						
Cell Leak	are Do	ower = 75.	8424 11W						
CCII Boak	age re	75.	0121 411						
		Internal	Switching	Leakage		Total			
Power Gro			Power	Power		Power	(용)	Attr
io pad		0.0000	0.0000	0.0000		0.0000	(0 00%)	
		0 0000	0.0000	0.0000		0.0000	33		
black box		0.0000	0.0000	0.0000		0.0000			
clock net	work	0.0000	0.0000	0.0000		0.0000	(0.00%)	
register	800	1.3082e+03 0.0000	11.1918	2.8797e+04		482e+03			
sequentia	1	0.0000	0.0000	0.0000		0.0000			
		25.9396	74.3572	4.7046e+04		47.3423			
			85.5489 uW						
ACCUPATION OF THE PERSON OF TH			un				100		

Critical Path: from the input register (b_reg) to the output register(f_reg) of our MAC unit, same as in Project 1. We were able to modify our MAC unit since we received feedback on Project 1 before the due date but it still contains the critical path spanning through the multiply and add logic.

Our requested clock period was 1.3 ns, which is about 769MHz in frequency.

FF setup time was 0.05ns. So, data is required to arrive in less than or equal to 1.25 ns. Data arrives right on time at 1.25 ns. This makes 0 ns of slack which meets the timing requirement. The critical path goes from data out reg, gates to testf reg.

```
**********
575 Report : timing
            -path full
-delay max
576
            -max_paths 1
579 Design : mvm4_part1
    Version: J-2014.09-SP5-2
    Date : Fri Oct 30 17:53:22 2020
584
    Operating Conditions: typical Library: NangateOpenCellLibrary
    Wire Load Model Mode: top
586
      Startpoint: dp/mc/b_r_reg[1]
                  (rising edge-triggered flip-flop clocked by clk)
589
      Endpoint: dp/mc/f_reg[3]
                (rising edge-triggered flip-flop clocked by clk)
      Path Group: clk
591
      Path Type: max
594
      Des/Clust/Port
                       Wire Load Model
                                            Library
                       5K_hvratio_1_1
596
      mvm4 part1
                                            NangateOpenCellLibrary
599
600
      clock clk (rise edge)
                                            0.00
                                                       0.00
601
      clock network delay (ideal)
                                                        0.00
                                         0.00
0.09
0.07
      dp/mc/b r reg[1]/CK (DFF X1)
602
                                                        0.00 r
603
      dp/mc/b r reg[1]/Q (DFF X1)
                                                        0.09 r
      U1197/ZN (XNOR2 X1)
604
                                                        0.16 r
                                             0.04
      U1199/ZN (NAND2 X1)
                                                        0.20 f
      U1200/Z (BUF_X2)
606
                                                        0.26 f
                                             0.04
607
      U1487/ZN (A0I21_X1)
                                                        0.30 r
      U1488/ZN (INV X1)
                                                        0.33 f
609
      U1529/CO (FA X1)
                                             0.10
                                                        0.42 f
610
      U1533/ZN (XNOR2 X1)
                                             0.06
                                                        0.49
611
      U1535/ZN (XNOR2 X1)
                                             0.06
                                                        0.55 f
612
      U1565/ZN (OAI21 X1)
                                             0.04
                                                        0.58 r
      U1567/ZN (NAND2 X1)
                                             0.04
                                                        0.62 f
613
      U1600/S (FA X1)
                                                        0.77 r
614
                                             0.15
      U1585/ZN (OR2 X1)
615
                                             0.05
                                                        0.82 r
                                             0.05
616
      U1631/ZN (NAND3 X1)
                                                        0.87 f
617
      U1642/ZN (NOR2 X1)
                                                        0.92 r
618
      U1643/ZN (NAND3_X1)
                                             0.04
                                                        0.95 f
619
      U1677/ZN (NAND3 X1)
                                             0.03
                                                        0.98 r
      U1682/ZN (XNOR2_X1)
                                                        1.05 r
620
                                             0.06
621
      U1043/ZN (AND2 X2)
                                             0.06
                                                        1.11 r
622
      U1763/ZN (NOR2 X1)
                                             0.02
                                                        1.13 f
623
      U1764/ZN (AND2 X2)
                                                        1.18 f
                                             0.04
      U1787/ZN (NAND2 X1)
624
                                             0.03
                                                        1.21 r
                                             0.04
      U1788/ZN (OAI211_X1)
625
                                                        1.25 f
626
      dp/mc/f_reg[3]/D (DFF_X1)
                                                        1.25 f
627
      data arrival time
                                                        1.25
628
                                                        1.30
629
      clock clk (rise edge)
                                            1.30
630
      clock network delay (ideal)
                                                        1.30
      dp/mc/f_reg[3]/CK (DFF X1)
631
                                             0.00
                                                        1.30 r
632
                                             -0.05
                                                        1.25
      library setup time
633
      data required time
                                                        1.25
634
635
      data required time
                                                        1.25
636
      data arrival time
                                                       -1.25
637
      slack (MET)
                                                         0.00
638
```

e. From your simulation (and your understanding of your design), determine how many clock cycles the system takes to load one set of inputs, compute one matrix-vector product of size k=4 (that is, a 4x4 matrix), and output the result, assuming that the testbench does not stall your design (that is, the testbench ensures that input_valid and output_ready are always asserted). Count from the first cycle of loading the input until the last cycle of outputting the result. Then, multiply this by the fastest clock period you could reach to find the minimum delay of the system (in nanoseconds).

The fastest clock period we found after several synthesis was 1.3 ns. As shown below, we determined that it takes 56 clock cycles in total to load, compute and output the results without stall. Then,

1.3 ns \times 56 clks = 72.8 ns

Meaning that 72.8 ns is required to process a 4 by 4 matrix vector multiplication.


```
lclk(reset->state0) +
lclk(state0->state1) +
l6clks(state1) +
lclk(state1->state2) +
4clks(state2) +
lclk(state2->state3) +
(4clks(state3) + 4clks(state4)) × 4(iterations)
```

= 56 clocks in total

As shown in the annotated waveform above, manually counting clock cycles by hands also results in 56 clocks.

f. A joint metric that combines the effects of area and speed in a single value is the area-delay product. The area-delay product is found by multiplying the area of the system times its delay. (Since these are both metrics that we want to minimize, lower area-delay products are better than higher ones.) Calculate the area-delay product of your system.

Total Cell Area is $3469.171952 \mu m^2$.

The delay from the critical path reported is 1.25 ns. Then,

$$3469.171952 \,\mu m^2 \times 1.25 \, ns = 4.336 \times 10^{-18} m^2 s$$

would be the area-delay product of our system.

g. Based on the synthesis power estimate, how much energy is consumed by your system while computing one matrix-vector product (using the delay you found in part e)?

For 1ns the total power required is **1.4956 mW**.

The time required to process one 4by4 matrix-vector product is 67.2ns. Then,

$$1.49 \, mW \times 72.8 \, ns = 1.08472 \times 10^{-10} \, joules$$

- h. We can define the arithmetic operation count as the number of useful additions and multiplications required to perform one matrix-vector product. What is the operation count for your system? How much energy does your system consume per arithmetic operation?
- 4 by 4 matrix vector multiplication needs 28 arithmetic operations. joules is consumed to do one 4by4 matrix-vector multiplication. Dividing it by 28 arithmetic operations can be calculated as following:

$$\frac{1.08472\times\,10^{-10} \text{joules}}{28\ arithemetic\ operations} = 3.874\times10^{-12} \text{joules/arithmetic operation}$$

PART 2 Questions and Answers

a. What changes did you make to your prior design to complete this task? How did your control module change?

- Got rid of parameter WIDTH = 12; i nmvm4_part1 module and changed signed [WIDTH-1:0] input_data; output signed [WIDTH*2-1:0] output_data; to input_signed [11:0] input_data; output signed [23:0] output_data;
 - Added .new matrix(new matrix) to the inputs of control instantiation.
 - Added an input port for new_matrix in control module.
 - Changed addr_count_x from 3 bit binary to 4 bit binary in Vector Addressor
 - Changed state 0 to go to state 1 if in valid == 1 AND new_matrix == 1(if new matrix needs to be loaded we go to state 1)
 - Made it go from state 0 from state 2 if in_valid == 1 and new_matrix !=0. (if not, it goes to state 2 to load new vector values) The FSM for part 2 is shown as following:

b. Report the area, power, frequency, and critical path location you determined from your synthesis report. Explain the critical path location descriptively; in other words, explain where the path flows through your design and why it makes sense that it is the critical path.

For Part 2, Area of Combinational (logic gates) cells is $1781.934012~\mu m^2$ Non-combinational (flip flops and registers) is $1660.105940~\mu m^2$

Total Cell Area is 3442.039951 µm²

```
report area
485
    **********
486
487
    Report : area
488 Design : mvm4 part2
489 Version: J-2014.09-SP5-2
490 Date : Thu Oct 29 21:31:17 2020
    **********
491
492
493
    Information: Updating design information... (UID-85)
494
    Library(s) Used:
495
496
        NangateOpenCellLibrary (File: /home/home4/pmilder/ese507/synthes:
497
498
   Number of ports:
                                           43
499 Number of nets:
                                         1968
500 Number of cells:
                                         1851
501
    Number of combinational cells:
                                         1484
502 Number of sequential cells:
                                          367
503 Number of macros/black boxes:
                                            0
504 Number of buf/inv:
                                          169
505
   Number of references:
                                           39
506
507
   Combinational area:
                                   1781.934012
508 Buf/Inv area:
                                     99.750000
509 Noncombinational area:
                                   1660.105940
510 Macro/Black Box area:
                                      0.000000
   Net Interconnect area: undefined (Wire load has zero net area)
511
512
513 Total cell area:
                                   3442.039951
514 Total area:
                             undefined
515 1
```

For Part 2, the Total Dynamic power is 1.4187 mW.

Total Power is 1.4941 mW

1.4187 mW (Total Dynamic power) + 75.3522 μ W (Cell Leakage Power) = **1.4941 mW (Total Power)**

```
*********
Report : power
        -analysis effort low
Design : mvm4 part2
Version: J-2014.09-SP5-2
Date : Thu Oct 29 21:31:17 2020
Library(s) Used:
    NangateOpenCellLibrary (File: /home/home4/pmilder/ese507/synthesis/lib/NangateOpenCellLibrary t
Operating Conditions: typical Library: NangateOpenCellLibrary
Wire Load Model Mode: top
             Wire Load Model
                                            Library
mvm4 part2 5K hvratio 1 1 NangateOpenCellLibrary
Global Operating Voltage = 1.1
Power-specific unit information :
    Voltage Units = 1V
    Capacitance Units = 1.000000ff
    Time Units = 1ns
    Dynamic Power Units = 1uW
                                   (derived from V,C,T units)
    Leakage Power Units = 1nW
  Cell Internal Power = 1.3063 mW (92%)
  Net Switching Power = 112.3808 uW
                                          (88)
Total Dynamic Power = 1.4187 mW (100%)
Cell Leakage Power = 75.3522 uW
Internal Switching Leakage Total
Power Group Power Power Power Power (%) Attrs
io_pad 0.0000 0.0000 0.0000 0.0000 (0.00%)
memory 0.0000 0.0000 0.0000 0.0000 (0.00%)
black_box 0.0000 0.0000 0.0000 0.0000 (0.00%)
clock_network 0.0000 0.0000 0.0000 0.0000 (0.00%)
register 1.2598e+03 16.4882 2.8872e+04 1.3051e+03 (87.35%)
sequential 0.0000 0.0000 0.0000 0.0000 (0.00%)
combinational 46.5801 95.8927 4.6481e+04 188.9534 (12.65%)
Total 1.3063e+03 uW 112.3808 uW 7.5352e+04 nW 1.4941e+03 uW
```

For part 2, our requested clock period was 1.3 ns, which is **769 MHz in frequency.**

~	**********		
573	Report : timing		
574	-path full		
575	-delay max		
576	-max_paths 1		
577	Design : mvm4_part2		
578	Version: J-2014.09-SP5-2		
579	Date : Thu Oct 29 21:31:17 2020		
580	*********		
581			
582	Operating Conditions: typical Library: N	NangateOpen	CellLibrary
583	Wire Load Model Mode: top		
584	The second secon		
585	Startpoint: dp/mc/b_r_reg[3]		
586	(rising edge-triggered flip-	flop clock	ed by clk)
587	Endpoint: dp/mc/f_reg[3]		
588	(rising edge-triggered flip-fl	lop clocked	by clk)
589	Path Group: clk		
590	Path Type: max		
591			
592	Des/Clust/Port Wire Load Model	Library	
593			
594	mvm4_part2 5K_hvratio_1_1	NangateOp	enCellLibrary
595			
596	Point	Incr	Path
597			
598	clock clk (rise edge)	0.00	0.00
599	clock network delay (ideal)	0.00	0.00
600	dp/mc/b_r_reg[3]/CK (DFF_X1)	0.00	0.00 r
601	dp/mc/b_r_reg[3]/QN (DFF_X1)	0.08	0.08 r
602	U1110/Z (BUF_X2)	0.08	0.16 r
603	U1036/ZN (XNOR2_X1)	0.08	0.24 r
604	U1035/ZN (OAI22_X1)	0.05	0.29 f
605	U1196/S (FA_X1)	0.14	0.43 r
606	U1246/S (FA_X1)	0.11	0.54 f
607	U1254/CO (FA_X1)	0.11	0.65 f
608	U1252/ZN (XNOR2_X1)	0.07	0.72 f
609	U1253/ZN (XNOR2_X1)	0.06	0.77 r
610	U1273/ZN (NOR2_X1)	0.03	0.80 f
611	U1274/ZN (NOR2_X1)	0.05	0.86 r
612	U1332/ZN (NAND2_X1)	0.04	0.89 f
613	U1426/ZN (NOR2_X1)	0.04	0.93 r
614	U1571/ZN (AOI21_X1)	0.03	0.96 f
615	U1600/ZN (NAND3_X1)	0.04	1.00 r
616	U1605/ZN (XNOR2_X1)	0.06	1.06 r
617	U1680/ZN (NOR2_X1)	0.03	1.09 f
618	U1681/ZN (NOR2_X1)	0.03	1.12 r
619	U1685/ZN (AND2_X2)	0.07	1.19 r
620	U1754/ZN (NAND2_X1)	0.04	1.23 f
621	U1756/ZN (NAND3_X1)	0.03	1.26 r
622	dp/mc/f_reg[3]/D (DFF_X1)	0.01	1.27 r
623	data arrival time		1.27
624			
625	clock clk (rise edge)	1.30	1.30
626	clock network delay (ideal)	0.00	1.30
627	dp/mc/f_reg[3]/CK (DFF_X1)	0.00	1.30 r
628	library setup time	-0.03	1.27
629	data required time		1.27
630			Ge A Processor
631	data required time		1.27
632	data arrival time		-1.27
633	V 2 AVENUE		
634	slack (MET)		0.00

The critical path again is in the MAC unit going from input register b, through the multiplier and adder, finally to the output register f_reg.

c. Did you observe any meaningful difference in the critical path (relative to Part 1)? If yes, explain why the change makes sense. If there was not a meaningful change, explain why the modification you made for Part 2 shouldn't change the critical path.

Critical path reported for Part 2 is again from input register (b_r_reg) to output register (f_reg). It should not change the critical path because our modification added to the FSM to account for the "new matrix" situation and the MAC unit was the same as before. The longest path is still from the input registers of MAC, through the multiplier and adder, finally to the output register. Unless we add some more complicated combinatorial logic that has longer delay, the MAC unit will still contain the critical path of the design.

d. In Part 1 (Question 4.e), you computed the delay of your system, including the time it takes to load a matrix. Now, your system can operate in two modes: one where it must load a matrix and one where it uses the old matrix. Determine the delay of your system when it does not need to load a new matrix (again assuming the testbench does not stall the system). Count from the first cycle of loading the input vector until the last cycle of outputting the result. Compare the result with the delay you found for your Part 1 design.

To do process the mode without loading a new matrix, 4 clocks for loading a vector, 1 clock to transit from state 2 to 3 and 32 clocks to do a matrix-multiplication are needed. So, 37 clocks in total are needed assuming no stall(once out_valid = 1, it is done for state 4) as expected as shown in the calculation and the annotated waveform below:

4 clks (state 2 to load a vector) +

1clks (state $2 \rightarrow \text{state } 3) +$

 $(4clks(state3) + 4clks(state4)) \times 4(iterations)$

= 37 clocks in total

So, the the dealy taken when it does not load a new matrix is then,

1.3 ns \times 37 = 48.1ns

We could compare and verify that this no new matrix loading mode requires less clocks (37 clocks) than the Part 1 mode, which always loads a new matrix, does (56 clocks). Therefore, not loading a new matrix requires less delay.

e. Compute the system's energy consumption and area-delay product as in Part 1 (Question 4.f and g), now assuming that you are not loading a new matrix. (That is, new_matrix == 0.)

Total Cell Area is 3469.171952 μm^2 . The delay from the critical path is 1.27 ns. Then, $3469.171952~\mu m^2\times 1.27~ns=4.406\times 10^{-18}m^{2s}$

In Part 2, for 1 ns, the total power required is **1.4941 mW**

is the area-delay product for Part2 of our system.

The time required to process a 4 by 4 matrix-vector multiplication without loading a new matrix is **48.1ns**. Then,

 $1.4941 \text{ mW} \times 48.1 \text{ns} = 7.186621 \times 10^{-11} \text{ joules}$

PART 3 Questions and Answers

1. How did your design change? What changes did you have to make?

From Part 2, to accommodate 8 by 8 matrix vector multiplication,

```
The address bits, addr_x and addr_w, had to be modified from logic [1:0] addr_x; logic [3:0] addr_w; to logic [2:0] addr_w; logic [5:0] addr_w; The parameters were changed from datapath #(12, 4, 16) dp (...); control #(12, 4, 16) ctrl (...); to datapath #(12, 8, 64) dp (...); control #(12, 8, 64) ctrl (...);
```

2. Are values in this system more likely to saturate than in your Part 2 design? Why or why not? What could you do to reduce the likelihood of saturation? What could you do to the system to guarantee that saturation can never happen? (Be specific)

The values in this part are more likely to saturate since we are accumulating more values for each valid result (8 instead of previous 4). One way to prevent saturation is to not take any more inputs that will cause a saturation. For example if currently the output value is 6 and saturation value is 8, only inputs <2 will be accepted. However in reality this will probably mess up the design functionality, so a more straightforward way would be to analyze the system expected input values and choose a big enough register size to prevent overflow/underflow of a value.

3. If you wanted to build a design for much larger values of k, how would you do so? Would it be easy or difficult to change? In your report, explain exactly how your design would change as k. Be specific.

Since our design specifies k as a parameter when instantiating modules, it should be fairly easy to modify our design to account for different sizes of k.

For example, to instantiate a design with k = 80, data width = 32 bits,

We could do:

```
datapath #(32, 80, 6400) dp(...)
control #(32, 80, 6400) ctrl(...)
```

4. Repeat steps 2b-2e from Part 2 on your new design. When you find the delay, compute it for both possible use-cases (new_matrix == 0 and new_matrix == 1). This will mean you will have two different measurements for delay, area-delay product, and energy consumption. Compare all of your results to the measurements from Parts 1 and 2.

For Part 3, Area of Combinational is $3807.258064~\mu m^2$ Non-combinational is $4508.965837~\mu m^2$ **Total Cell Area** is $8316.223901~\mu m^2$

```
536 report area
537
538 ***********************
539 Report : area
540 Design : mvm8 part3
541 Version: J-2014.09-SP5-2
542 Date : Thu Oct 29 21:42:02 2020
    **********
543
544
545 Information: Updating design information... (UID-85)
546 Library(s) Used:
547
548
        NangateOpenCellLibrary (File: /home/home4/pmilder/ese507/synthes:
549
550 Number of ports:
                                           43
551 Number of nets:
                                          4683
552 Number of cells:
                                         4570
553 Number of combinational cells:
                                        3573
554 Number of sequential cells:
                                         997
555 Number of macros/black boxes:
                                            0
556 Number of buf/inv:
                                         1108
557 Number of references:
                                           34
558
559 Combinational area:
                                  3807.258064
560 Buf/Inv area:
                                   605.948004
561 Noncombinational area:
562 Macro/Black Box area:
                                  4508.965837
562 Macro/Black Box area:
                                   0.000000
563 Net Interconnect area: undefined (Wire load has zero net area)
564
565 Total cell area:
                                   8316.223901
                         undefined
566 Total area:
567
568 report_power
569
570 *********************
571 Report : power
572
           -analysis effort low
573 Design : mvm8 part3
574 Version: J-2014.09-SP5-2
575 Date : Thu Oct 29 21:42:02 2020
576 *************************
```

The Total Dynamic power is 4.4034 mW.

Total Power is 4.56 mW

4.4034 mW (Total Dynamic power) + $156.5640 \mu\text{W}$ (Cell Leakage Power) = **4.56 mW** (Total Power)

```
report_power
569
      **********
570
571 Report : power
572
             -analysis_effort low
 573 Design : mvm8 part3
 574 Version: J-2014.09-SP5-2
576
 579 Library(s) Used:
           NangateOpenCellLibrary (File: /home/home4/pmilder/ese507/synthesis/lib/NangateOpenCellLibrary_t
 584 Operating Conditions: typical Library: NangateOpenCellLibrary
 585 Wire Load Model Mode: top
 587 Design
               Wire Load Model Library
 589 mvm8 part3
                                5K hvratio 1 1 NangateOpenCellLibrary
 592 Global Operating Voltage = 1.1
 593 Power-specific unit information:
 594
        Voltage Units = 1V
          Capacitance Units = 1.000000ff
 596
          Time Units = 1ns
          Dynamic Power Units = luW
                                            (derived from V, C, T units)
          Leakage Power Units = 1nW
 599
       Cell Internal Power = 4.3242 mW
                                                 (98%)
      Net Switching Power = 79.2219 uW
                                                  (2%)
 604 Total Dynamic Power = 4.4034 mW (100%)
 606 Cell Leakage Power = 156.5640 uW
                       Internal
                                                                 Leakage
 609
                                           Switching
                                                                                         Total
                                                                                                 ( % ) Attrs
 610 Power Group
                         Power
                                            Power
                                                                   Power
                                                                                         Power
613 memory 0.0000
614 black_box 0.0000
615 clock_network 0.0000
616 register 4.2880e+03
617 sequential 0.0000
 611
612 io_pad 0.0000 0.0000 0.0000 0.0000 (0.00%)
613 memory 0.0000 0.0000 0.0000 0.0000 (0.00%)
614 black_box 0.0000 0.0000 0.0000 0.0000 (0.00%)
615 clock_network 0.0000 0.0000 0.0000 0.0000 (0.00%)
616 register 4.2880e+03 14.4271 7.7334e+04 4.3798e+03 (96.05%)
617 sequential 0.0000 0.0000 0.0000 0.0000 (0.00%)
618 combinational 36.1655 64.7947 7.9230e+04 180.1910 (3.95%)
620 Total 4.3242e+03 uW
                                             79.2218 uW 1.5656e+05 nW 4.5600e+03 uW
```

For Part 3, our requested clock period was 1.3 ns, which is 769 MHz in frequency.

```
************
625
        Report : timing
626
        -path full
-delay max
627
                   -max paths 1
629 Design : mvm8_part3
630 Version: J-2014.09-SP5-2
       Date : Thu Oct 29 21:42:02 2020
631
633
634
       Operating Conditions: typical Library: NangateOpenCellLibrary
635
       Wire Load Model Mode: top
636
637
         Startpoint: dp/mc/b r reg[3]
                             (rising edge-triggered flip-flop clocked by clk)
639 Endpoint: dp/mc/f_reg[0]
640
                          (rising edge-triggered flip-flop clocked by clk)
641
         Path Group: clk
642
        Path Type: max
643
644
         Des/Clust/Port Wire Load Model
                                                                         Library
645
         mvm8_part3 5K_hvratio_1_1 NangateOpenCellLibrary
646
647
648
         Point
649

      clock clk (rise edge)
      0.00
      0.00

      clock network delay (ideal)
      0.00
      0.00

      dp/mc/b_r_reg[3]/CK (DFF_X1)
      0.00
      0.00

      dp/mc/b_r_reg[3]/Q (DFF_X1)
      0.09
      0.09

      U2367/Z (BUF_X2)
      0.08
      0.17

      U2517/ZN (XNOR2_X1)
      0.06
      0.22

      U2555/ZN (A0121_X1)
      0.06
      0.28

      U2556/ZN (INV_X1)
      0.03
      0.31

      U2607/CO (FA_X1)
      0.11
      0.42

      U2611/ZN (XNOR2_X1)
      0.06
      0.48

      U2613/ZN (XNOR2_X1)
      0.07
      0.55

      U2683/ZN (NAND2_X1)
      0.04
      0.59

      U2683/ZN (NAND2_X1)
      0.04
      0.63

      U2714/CO (FA_X1)
      0.11
      0.74

      U2715/ZN (OR2_X2)
      0.07
      0.81

651
652
654
655
656
657
658
659
660
                                                                        0.11
0.07
0.05
0.03
0.04
0.04
0.07
0.06
0.08
664
         U2715/ZN (OR2 X2)
                                                                                            0.81 f
         U2898/ZN (A0I21_X1)
                                                                                            0.87 r
         U2904/ZN (OAI21 X1)
                                                                                          0.90 f
666
         U2913/ZN (A0I21_X1)
                                                                                           0.94 r
0.98 f
         U2914/ZN (NAND3 X1)
         U2919/ZN (XNOR2 X1)
                                                                                           1.05 r
669
         U2393/ZN (AND2 X2)
                                                                                           1.11 r
1.19 f
670
         U3054/ZN (NAND2 X4)
         U3055/ZN (NANDZ_X4)
671
                                                    0.06
0.01
                                                                                           1.25 r
672
                                                                                           1.26 r
673
         dp/mc/f_reg[0]/D (DFF_X1)
674
         data arrival time
                                                                                            1.26
675
        clock clk (rise edge) 1.30
clock network delay (ideal) 0.00
dp/mc/f_reg[0]/CK (DFF_X1) 0.00
library setup time -0.04
676
                                                                                            1.30
                                                                                           1.30
677
678
                                                                                           1.30 r
679
                                                                       -0.04
         library setup time
                                                                                             1.26
680
         data required time
                                                                                             1.26
681
                                                                                             1.26
         data required time
          data arrival time
                                                                                            -1.26
684
685 slack (MET)
```

The critical path for Part 3 again starts from input register (b_r_reg) to output register (f_reg). The reason is because the MAC unit has been the same as before and not necessary to be modified to accomplish 8by8 matrix vector multiplication, meaning that the longest path goes through in the order of the input registers of MAC, the multiplier, the adder and the output register.

```
To carry out an 8 by 8 matrix multiplication with a new matrix loading in, we expected that lclk(reset->state0) + lclk(state0->state1) + 64clks(state1) + lclk(state1->state2) + 8clks(state2) + lclk(state2->state3) + (4clks(state3) + 4clks(state4)) × 8(iterations)
```

= 140 clocks in total

We manually annotated and counted the clocks like following and the number total clocks counted by hand was 140 clocks as well. The delay for this case is then, 140×1.3 ns = **182 ns**.

To carry out an 8 by 8 matrix multiplication **without loading a new matrix**, counting from the first cycle of loading the input vector until the last cycle of outputting the result, we expected that,

```
8clks(state2) +
1clk(state2->state3) +
(4clks(state3) + 4clks(state4)) × 8(iterations)
```

= 73 clocks in total.

We could confirm that 73 clocks need to take place to calculate an 8 by 8 vector multiplication without a new matrix. The delay without loading a new matrix is then, 73×1.3 ns **94.9 ns.**

For Part 3, the system's energy consumption and area-delay product assuming no loading a new matrix can be calculated as following:

Total Cell Area is 8316.223901 µm²

The delay from the critical path is 1.26 ns. Then,

$$8316.223901 \,\mu m^2 \times 1.26 \, ns = 1.048 \times 10^{-17} \, m^2 s$$

is the area-delay product for Part3.

In Part 3, per 1 ns, the total power required is **4.56 mW**.

The time required to process a 8 by 8 matrix-vector multiplication with loading a new matrix is **182 ns.** And, without loading a new matrix, it is **94.9 ns.** Then,

$$4.56 \, mW \, \times \, 182 \, ns \, = \, 8.2992 \, \times \, 10^{-10} \, joules$$

of energy is consumed for the mode calculating with a new 8 by 8 matrix loading in.

$$4.56 \, mW \, \times \, 94.9 \, ns \, = \, 4.32744 \, \times \, 10^{-10} \, joules$$

of energy is consumed for the mode calculating without a new 8 by 8 loading in.

The Collection all the results from Part 1,2 and 3 is shown in the table below.

	Part 1	Part2	Part 3		
Mode	Loading a new 4 by 4 matrix	No loading a new 4 by 4 matrix	Sometimes loading a new 8 by 8 matrix		
Total Cell Area	3469.171952 μm² 3442.039951 μm²		8316.223901 μm²		
Total Power	1.496 mW	1.4941 mW	4.56 mW		
Area-delay Product	4.336×10 ⁻¹⁸ m ² s	4.406×10 ⁻¹⁸ m ² s	1.048×10 ⁻¹⁷ m ² s		
Energy	1.08472× 10 ⁻¹⁰ joules	7.186621 × 10 ⁻¹¹ joules	8.2992×10^{-10} joules, when loaded. 4.32744×10^{-10} joules, when not loaded.		
Frequency	769MHz	769MHz	769MHz		

- Total Cell Area, Total Power, and Area-delay product significantly increase when the size of the matrix and vector increases from 4 to 8.
- When a new matrix is not loaded, the energy consumed significantly decreases compared to when a new matrix is loaded due to the difference in their time delays that are necessary to carry out the longer or the shorter version of matrix vector multiplication.
- The frequency stays the same as the critical path stays the same as we have not modified the MAC.

PART 4 Questions and Answers

a. How did you change your design to reduce its delay? If you tried multiple things, explain what they were and whether or not they helped.

For part4 we tried multiple approaches suggested in the project description. The first thing we did was parallelizing the compute stage by adding more MAC units and memories (our final system has 8 MAC units to compute outputs at the same time). By parallelizing, we were able to eliminate the need to go back and forth between the output state and the compute state since now all 8 outputs are generated concurrently. This change increased our design area greatly as there are additional logic and parts and reduced the computation time needed to generate all outputs to 1/8 of that of Part 3. We then realized that since the system must stall during both input and output states, these states are actually consuming most of the processing time, so we decided to overlap the input and output states. By doing this, we completely got rid of the output state in the FSM and instead we load all the outputs to an output vector (since they are generated at the same time this was fairly easy to do) when they are ready, and output them one by one while we load the inputs for the next iteration. With every change the power and area of our design also increased, but we then realized that the delay of the system is constrained by the input and output ports. In order to achieve a significant boost, we need to be able to run at a might higher frequency. So our last modification was adapting a 3-stage pipelined multiplier from DesignWare into our MAC unit. By doing this, our system's new minimum period reached to about 0.8ns, which gives us a 1.25GHz frequency. However, this step increased the power of our system from about 800uW to almost 1.8mW.

b. Collect the information requested in steps 2b–2e from Part 2 for your new design and include them in your report. When you find the delay, compute it for both possible use-cases (new_matrix == 0 and new_matrix == 1). This will mean you will have two different measurements for delay, area-delay product, and energy consumption. Compare all results to your measurements from Part 3.

For the energy consumed in Part 2 of when loading a new matrix with 56 clocks

- $1.3 \text{ ns} \times 56 \text{ clocks} = 72.8 \text{ ns}$
- $(72.8 \text{ ns}) \times 1.4941 \text{ mW} = 1.0877048 \times 10^{-10} \text{ joules}$

To calculate the area-delay product for Part 4:

- data required time reported is 0.77. Total Cell Area is 20548.7657μm²
- $20548.7657 \,\mu\text{m}^2 \times 0.77 \,\text{ns} = 1.581 \times 10^{-17} \,\text{m}^2\text{s}$

We counted the clock cycles needed for each state.

To count clocks from the waveform, we had to take several screenshots.

This waveform above shows the two modes:

State 0->State 1->State 2->State 3->State 0 when a new matrix is loaded

or

State 0->State 2->State 3->State 0 when a new matrix is not loaded.

As shown in the zoomed-in screenshots with annotations above we could verify that

In State 1, it needs 64 clocks to load a new 8 by 8 matrix

In State 2, it need 8 clocks to load a vector

In State 3, it need 14 clocks to compute

Then,

1 clk (from state 0 to state 1) + 64 clks (state 1 to load a matrix)

- + 1clk(from state 1 to state 2) + 8 clks (state 2 to load a vector)
- + 1 clk (from state 2 to state 3) +14 clks (state 3 to compute)
- = 89 clks in total, when a new 8 by 8 matrix is loaded

The **delay** with loading a new matrix is and the energy consumed with loading a new matrix is then, $0.8 \text{ ns} \times 89 \text{ clks} = 71.2 \text{ns}$

71.2 ns \times 18.63 mW = **1.326456** \times **10**⁻⁹ **joules**

Also, counting from the first cycle of loading the input vector until the last cycle of outputting the result, 8 clks (state 2 to load a vector)

1 clk (from state 2 to state 3) +14 clks (state 3 to compute)

= 23 clks in total, when a new matrix is not loaded

The **delay** without loading a new matrix is and the energy consumed without loading a new matrix is then,

 $0.8 \text{ns} \times 23 \text{ clks} = 18.4 \text{ ns}$

18.4 ns \times 18.63 mW = 3.42792 \times 10⁻¹⁰ joules

	Pai	rt 2	Part 3		Part 4	
Mode	No loading a new 4 by 4 matrix	Yes loading a new 4 by 4 matrix	No loading a new 8 by 8 matrix	Yes loading a new 8 by 8 matrix	No loading a new 8 by 8 matrix	Yes loading a new 8 by 8 matrix
Total Cell Area	3442.0399 µm²	3442.0399 µm²	8316.2239 µm²	8316.2239 µm²	20548.7657µm²	20548.7657µm²
Total Power	1.49 mW	1.49 mW	4.56 mW	4.56 mW	18.63 mW	18.63 mW
Area-delay Product	4.406×10 ⁻¹⁸ m ² s	4.406×10 ⁻¹⁸ m ² s	1.048×10 ⁻¹⁷ m ² s	1.048×10 ⁻¹⁷ m ² s	1.581×10 ⁻¹⁷ m ² s	1.581×10 ⁻¹⁷ m ² s
Energy	7.1866 × 10 ⁻¹¹ joules	1.0877 × 10 ⁻¹⁰ joules	4.3274 × 10 ⁻¹⁰ joules	8.2992 × 10 ⁻¹⁰ joules	3.4279 × 10 ⁻¹⁰ joules	1.3264 × 10 ⁻⁹ joules
Frequency	769MHz	769MHz	769MHz	769MHz	1.25 GHz	1.25 GHz

- The total cell area of Part 4 is greater than those of Part 2 and Part 3.
- The total power (18.63 mW) and area-delay product (1.581×10⁻¹⁷ m2s) of Part 4 are greater than those of Part 2 and Part3.
- The energy consumed without loading a new matrix in Part 4 (3.4279 \times 10⁻¹⁰ joules) is smaller than that of Part 3(4.3274 \times 10⁻¹⁰ joules) but bigger than that of part 2 (7.1866 \times 10⁻¹¹ joules).

c. Your new design performs the same computation as your design in Part 3, but it should be faster, larger, and consume higher power. In step b you compared your new design's area-delay product and energy consumption with your Part 3 design. Based on these metrics, is your delay-optimized design better or worse than your previous design?

The Area-Delay product of Part 4 $(1.581 \times 10^{-17} \text{m}^2\text{s})$ is bigger than that of Part 3 $(1.048 \times 10^{-17} \text{ m}^2\text{s})$. However, when a new matrix is not loaded, the energy consumed for Part 4 is 3.4279×10 -10 joules and it is smaller than that of Part 3, 4.3274×10 -10 joules. So, Part 4 is better than Part 3 when a new matrix is not loaded. In contrast, when a new matrix is loaded, Part 4 consumes more energy $(1.3264 \times 10^{-9} \text{ joules})$ than that of Part 3(8.2992 \times 10⁻¹⁰ joules), so Part 4 was worse when a new matrix had to be loaded, in terms of energy consumption.

d. If instead of optimizing for delay, what if your goal was to optimize for the overall lowest energy-per-operation? How would you build a matrix-vector multiplication system to minimize energy?

One way is to run at a slower frequency, since power is affected by switching activity. In previous syntheses we noticed great variance in factors when running our design at its maximum frequency (1.3ns period) and a much slower one (5ns period). Another way is to use simpler logic while retaining the desired functionality. Reducing on-chip activity will also reduce dynamic power, which usually contributes to a great portion of the power consumption.

e. Because you are constrained by the number of input and output ports, the maximum speed (minimum delay) of your design here is limited. What could you do to make a design even faster, if you were allowed to change the input/output timing and ports? Estimate (quantitatively) how fast such a system could be.

Because the input and output ports are streaming data, the time it takes to load all data is proportional to the number of data we need to load. For the system in part4, if we could modify the input and output ports, the fastest way would be to parallelize it with multiple input and output signals. For instance, send 8 inputs at a time (either a row of matrix or the vector) indicated by one in_valid signal. Since our part4 design is parallelized, we could also modify the output port to accept all 8 outputs at the same time. This would reduce the input and output time by an order of magnitude depending on the number of signals. In this case, if we are able to transfer 8 data values each time, input would take ½ of the previous time, though this may vary due to the control signals *in_valid* and *out_ready*. This approach would reduce input and output latency but to run the whole system even faster, we would want to shorten the critical path.