What is Claimed is:

1	1.	A meth	nod of selecti	ing paths comprising the steps of:
2		a)	computing	a plurality of first shortest paths from a source point to a destination point
3			each includ	ling of a serial chain of at least one communications link;
4		b)	selecting K	first shortest paths from the plurality;
5		c)	ordering th	e selected K first shortest paths from shortest to longest;
6		d)	for each fire	st shortest path of K,
7			i)	computing the cost of the first shortest path as substantially equal to the
8				combined cost of the links included in the first shortest path;
9			ii)	selecting a lowest estimated cost second shortest path from the
10				remainder of the elements of K, where the estimated cost of the second
11				shortest path is computed as substantially equal to the combined
12				estimated cost of the links included in the second shortest path and the
13				cost of a link corresponds to the cost of using the link scaled by a
14				probability that the link can be shared by the second shortest path and a
15				path already provisioned using a channel of the link;
16		e)	selecting th	ne lowest estimated combined cost first and second shortest path pair.
1	2.	The m	ethod accord	ding to claim 1, wherein for a second shortest path, the cost of a link is
2		estimat	ted by;	
3		a)	assigning a	n infinite cost to a link included in an associated first shortest path;
4		b)	assigning a	n infinite cost to a link that traverses at least one shared-risk-group (SRG)
5			traversed b	y an associated first shortest path;

6	c)	assigning	g to a link not having an available shared protection channel a cost
7		substanti	ially equal to the cost of allocating an additional shared protection channel to
8		the link;	
9	d)	estimatin	g for a link having at least one available shared protection channel a cost
10		correspo	nding to the cost of using the link scaled by a probability that the link can be
11		shared b	by the second path under consideration and no backup paths already
12		provision	ed using the link.
1	3. The m	ethod of cla	aim 2 wherein the probability that the link can be shared by the second path
2	under	considerat	ion and no backup path already provisioned using the link is determined
3	accord	ling to a me	ethod comprising;
4	a)	creating	a variable M, and assigning as its value the number of available shared
5		protection	n channels in the link;
6	b)	for each j	from 1 to N;
7	•	i)	creating an array of N elements, SRG_{j} , consisting of the N SRGs
8			
_			traversed by a proposed primary path;
9		ii)	traversed by a proposed primary path; $ \\ \text{creating an array of N elements, } \\ n_{j}, \\ \text{consisting of the number of times} $
		ii)	
9		ii)	creating an array of N elements, n _j , consisting of the number of times
9	c)	ŕ	creating an array of N elements, n_j , consisting of the number of times SRG_j is traversed by a primary path protected by a backup path already
9 10 11	c)	computing	creating an array of N elements, n_j , consisting of the number of times SRG_j is traversed by a primary path protected by a backup path already provisioned using channels of the link;
9 10 11	c)	computing be shared	creating an array of N elements, n _j , consisting of the number of times SRG _j is traversed by a primary path protected by a backup path already provisioned using channels of the link; g a probability, p, that one available shared protection channel of a link can
9 10 11 12 13	c)	computing be shared the chann	creating an array of N elements, n _j , consisting of the number of times SRG _j is traversed by a primary path protected by a backup path already provisioned using channels of the link; g a probability, p, that one available shared protection channel of a link can by a second shortest path and one backup path already provisioned using
9 10 11 12 13 14	,	computing be shared the chann computing	creating an array of N elements, n_j , consisting of the number of times SRG_j is traversed by a primary path protected by a backup path already provisioned using channels of the link; g a probability, p, that one available shared protection channel of a link can d by a second shortest path and one backup path already provisioned using the las $p=\prod_j (1-n_j/M)$, for j from 1 to N;

13		ii) creating a	second graph substantially based on the first graph wherein
14		the second	graph includes edges and estimated edge costs and an edge
15		associated associated	with the first shortest path is modified from the first graph;
16		iii) selecting a	lowest estimated cost second shortest path from source
17		vertex to de	stination vertex from the second graph wherein the estimated
18		cost of the	second shortest path is substantially equal to the combined
19		estimated o	osts of the edges comprising the second shortest path and
20		the estimate	d cost of an edge corresponds to the cost of using the edge
21		scaled a pro	bability that the edge can be shared by the second shortest
22		path and a p	ath already provisioned using a channel of the edge;
23		e) selecting the lowest esting	nated combined cost first and second shortest path pair.
1	6.	6. The method according to claim	5 wherein an edge associated with the first shortest path is
2		modified by removing it from the	second graph.
1	7.	7. The method according to claim	5 wherein an edge associated with the first shortest path is
2		modified by setting its estimated	edge cost to a very high value.
1	8.	3. The method according to claim	5 wherein an edge associated with the first shortest path is
2		modified by setting its estimated	edge cost to an infinite value.
1			
2	9.	The method according to claim t	wherein the K first shortest paths are ordered from lowest
3			to elements w_i , of set K, where i ranges from 1 to K.
1	10.	0. The method according to claim 5	, wherein for each first shortest path a least estimated cost
2		second shortest path is chosen fr	om the second graph and for each second shortest path in a
3		second graph, the cost of a link is	estimated according to a method comprising;
4		i) assigning an inf	inite cost to an edge that traverses at least one SRG
5		traversed by	the first shortest path;

0	ii) assigning to an edge without an available shared protection channel a cost
7	substantially equal to the cost of adding an additional shared protection
8	channel to the edge;
9	iii) estimating for an edge having at least one available shared protection
10	channel a cost corresponding to the cost of using the edge scaled by a
11	probability that the edge can be shared by the second path under
12	consideration and no backup paths already provisioned using the edge.
1	11. The method of claim 10 wherein a probability that an edge can be shared by a second
2	shortest path and no backup paths already provisioned using channels of an edge is
3	estimated by;
4	a) creating a variable, M, and setting its value to the number of available shared
5	protection channels in the edge;
6	b) for each j, where j ranges from 1 to N;
7	i) creating an array of N elements, SRG _j , consisting of the N SRGs
8	traversed by a proposed primary path;
9	ii) creating an array of N elements, n_j , each consisting of the number of
10	times SRG _j is traversed by a primary path protected by a backup path
11	already provisioned using channels of the edge;
12	c) computing a probability, p, that one available shared protection channel of an edge
13	can be shared by a second shortest path and one backup path already provisioned
14	using the channel as $p=\prod_j(1-n_j/M)$;
, 15	d) computing a probability, P, that no available shared protection channel of an edge
16	can be shared by a second shortest path with a backup path already provisioned
17	using a channel of the edge as P=(1-p) ^M .

1	12. The m	method of claim 5, wherein a lowest estimated combined cost first and second shortest	
2	path p	air is selected according to a method comprising;	
3	a)	creating a set, S, with K elements $\{w_i, s_i\}$, where i ranges from 1 to K, including the K	
4		first shortest paths, w_{i} , and K associated selected second shortest paths, s_{i} ;	
5	b)	for each first shortest path, w _i , where i ranges from 1 to K;	
6		i) computing a cost substantially equal to the combined cost of the links	
7		included in the first shortest path;	
8		ii) computing an estimated cost for the associated selected second shortest	
9		path substantially equal to the combined estimated cost of the links	
10		comprising the selected second shortest path;	
11	c)	ordering the elements of set S from lowest combined estimated cost to highest	
. 12		combined estimated cost;	
13	d)	selecting the lowest combined estimated cost path pair.	
1	13. A shared mesh protection network wherein paths are provisioned according to a method		
2	compri	sing;	
3	a)	generating a list of at least one candidate pair of paths including one primary path	
4		and one associated backup path between a source network element and a	
5		destination network element;	
6	b)	selecting a lowest estimated path pair from the list where the cost of the primary path	
7		is substantially equal to the cost of the network resources included in the primary	
8		path and the estimated cost of a backup path corresponds to the cost of the network	
9		resources included in the backup path scaled by the probability that existing network	
10		resources can be shared by the backup path;	

11	c) using signaling to attempt to establish the selected path pair;
12	d) eliminating the selected path pair from the list if it can not be established and
13	attempting to establish a new lowest estimated cost path pair;
14	e) returning an error signal to a network operator if no candidate path pair from the lis
15	can be allocated.
1	14. The network of Claim 13 wherein path provisioning is controlled by the source networl
2	element and signaling is used between the source network element and each network
3	element in a proposed pair of primary and backup paths to establish links between adjacen
4	network elements.
1	15. The network of claim 14, wherein said signaling is comprised of the steps of;
2	a) for each network element in the primary path, sending from the source network
3	element to the network element a request for the network element to establish a link
4	with adjacent network elements;
5	b) for each network element in the backup path, sending from a source network element
6	to the network element a request for the network element to establish a link with
7	adjacent network elements;
8	c) for each network element in the primary path that can not establish a link to an
9	adjacent network element, sending from the network element to the source network
10	element an error signal;
11	d) for each network element in the primary path that can establish a link to an adjacent
12	network element, sending from the network element to the source network element a
13	valid link signal;
1	16. The network of Claim 13 wherein the network has a single network controller and signaling
2	between the controller and network elements is used to provision primary and backup paths

- 1 17. The network of claim 13, wherein reallocation of existing network resources is initiated at any
- 2 time.
- 1 18. The network of claim 13, wherein reallocation of existing network resources is initiated at
- 2 each request of new communications service.
- 1 19. The network of claim 13, wherein reallocation of existing network resources is initiated at
- 2 regularly scheduled intervals.

3