Résumé 12 - Structures algébriques

Structure de groupe

→ Groupes et sous-groupes

Définition : Groupe

Un groupe est un couple (G,*) où G est un ensemble et * une loi de composition interne tels que :

(i) la loi * est associative:

$$\forall x, y, z \in G$$
, $x*(y*z)=(x*y)*z$

(ii) il existe un élément neutre :

$$\forall x \in G, \quad x * e = e * x = x$$

(iii) tout élément de G possède un inverse :

$$\forall x \in G, \quad \exists y \in G, \quad x * y = y * x = e$$

Proposition

Soit (G,*) un groupe. $H \subset G$ est un sous-groupe de G si H est *non vide* et si :

$$\forall x, y \in H, \quad x * y^{-1} \in H$$

- Le produit fini de groupes est encore un groupe.
- L'intersection (quelconque) de sous-groupes de *G* est un sous-groupe de *G*.

- Théorème : Sous-groupes de $\mathbb Z$ -

Si G est un sous-groupe de $(\mathbb{Z}, +)$, alors il existe un unique $n \in \mathbb{N}$ tel que $G = n\mathbb{Z}$.

→ Morphismes de groupes

Définition : Morphisme de groupes

Un morphisme du groupe (G,*) dans le groupe (G',*) est une application $\phi: G \to G'$ qui vérifie :

$$\forall x, y \in G, \quad \phi(x * y) = \phi(x) \star \phi(y)$$

Parmi les morphismes classiques, on rencontre exp, ln, det et la signature d'une permutation.

Les images directe et réciproque d'un sous-groupe par un morphisme de groupes est un sous-groupe.

- Définition: Noyau et image d'un morphisme Soit ϕ un morphisme du groupe (G,*) dans le groupe (G',*).

- On appelle image de ϕ et on note $\text{Im}(\phi)$ le sousgroupe $\phi(G) = \{\phi(x), x \in G\}$.
- On appelle noyau de ϕ et on note $Ker(\phi)$ le sousgroupe $\phi^{-1}(\{e'\}) = \{x \in G, \phi(x) = e'\}$.

Le noyau permet de caractériser l'injectivité.

\rightarrow Groupe $(\mathbb{Z}/n\mathbb{Z},+)$

On suppose ici $n \in \mathbb{N}^*$. Rappelons que si $a, b \in \mathbb{Z}$,

$$a \equiv b [n] \iff n | (a-b) \iff a-b \in n\mathbb{Z}$$

La congruence modulo n est une relation d'équivalence. On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes d'équivalence de \mathbb{Z} pour cette relation.

On munit alors $\mathbb{Z}/n\mathbb{Z}$ d'une addition et d'une multiplication (qui ne dépendent pas du choix du représentant).

- Théorème

Pour tout $n \in \mathbb{N}^*$, $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe abélien.

→ Groupes monogènes et groupes cycliques

Définition

Un groupe (G,*) est dit :

• monogène s'il est engendré par un élément :

$$G = \langle a \rangle = \{a^k, k \in \mathbb{Z}\}$$

• cyclique s'il est monogène et fini.

- Théorème -

- Le groupe $(\mathbb{Z}/n\mathbb{Z},+)$ est cyclique.
- $\mathbb{Z}/n\mathbb{Z} = \langle \overline{k} \rangle$ si et seulement si $k \wedge n = 1$.

- Théorème : Classification des groupes monogènes

Soit *G* un groupe monogène.

- Si *G* est infini, $G \simeq \mathbb{Z}$.
- Si G est cyclique, $G \simeq \mathbb{Z}/n\mathbb{Z}$ avec card(G) = n.

→ Ordre d'un élément dans un groupe

Définition -

Soient (G,*) un groupe dont l'élément neutre est noté e et a un élément de G.

- a est d'ordre fini s'il existe $n \in \mathbb{N}^*$ tel que $a^n = e$.
- L'ordre de a est alors min $\{n \in \mathbb{N}^* \mid a^n = e\}$.

L'ordre de a est aussi le cardinal du sous-groupe engendré par a. De plus, si a est d'ordre fini d, alors,

$$a^n = e \iff d \mid n$$

Théorème

L'ordre d'un élément d'un groupe fini divise le cardinal du groupe.

Structures d'anneau et de corps

→ Anneaux et corps

- Définition : Anneau —

Un anneau est un triplet $(A, +, \times)$ où l'ensemble A est muni de deux lois de composition de sorte que :

- (i) (A, +) est un groupe commutatif;
- (ii) la loi × est associative, admet un élément neutre et est distributive sur + :

$$\forall x, y, z \in A$$
, $x \times (y+z) = x \times y + x \times z$
et $(x+y) \times z = x \times z + y \times z$

- L'anneau est *commutatif* si la loi × est commutative.
- Un anneau commutatif est dit intègre si :

$$\forall (x, y) \in A^2$$
, $x \times y = 0_A \implies x = 0_A \text{ ou } y = 0_A$

- Tout produit fini d'anneaux est un anneau.
- Si *x* et *y* commutent,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}; \ x^n - y^n = (x-y) \sum_{k=0}^{n-1} x^k y^{n-1-k}$$

Proposition: Caractérisation d'un sous-anneau

Soit $(A, +, \times)$ un anneau. B est un sous-anneau de A si et seulement si $1_A \in B$ et :

$$\forall x, y \in B, \quad x - y \in B \quad \text{et} \quad x \times y \in B$$

- Définition : Corps

Un corps \mathbb{K} est un anneau commutatif pour lequel tout élément non nul admet un inverse pour la loi \times .

Dans le cadre du programme, les corps sont supposés commutatifs. Un corps est un anneau intègre.

Définition : Sous-corps

Soit \mathbb{K} un corps. $\mathbb{K}' \subset \mathbb{K}$ est un sous-corps de \mathbb{K} si :

$$\forall x, y \in \mathbb{K}' \times \mathbb{K}'^*, \quad x - y \in \mathbb{K}' \quad \text{et} \quad x \times y^{-1} \in \mathbb{K}'$$

→ Morphismes d'anneaux

Définition : Morphisme d'anneaux

Soient A et B deux anneaux. On appelle morphisme de A dans B toute application $\phi:A\to B$ qui vérifie :

(i)
$$\forall x, y \in G, \ \phi(x+y) = \phi(x) + \phi(y)$$

(ii)
$$\forall x, y \in G, \ \phi(x \times y) = \phi(x) \times \phi(y)$$

(iii)
$$\phi(1_A) = 1_B$$
.

Un morphisme d'anneaux est un morphisme de groupes.

Définition : Noyau et image d'un morphismeSi ϕ un morphisme de l'anneau A dans l'anneau B,

•
$$Im(\phi) = \phi(A) = {\phi(x), x \in A};$$

•
$$\operatorname{Ker}(\phi) = \phi^{-1}(\{0_B\}) = \{x \in A, \phi(x) = 0_B\}.$$

L'image d'un morphisme d'anneaux est un anneau, mais pas le noyau.

→ Idéaux d'un anneau commutatif

– Définition : Idéal d'un anneau commutatif –

Soit $(A,+,\times)$ un anneau commutatif. On appelle idéal de A toute partie I de A tel que :

- (i) (I,+) est un sous-groupe de (A,+);
- (ii) $\forall x \in I$, $\forall a \in A$, $xa \in I$.

Le noyau d'un morphisme d'anneaux est un idéal.

Si I_1 et I_2 sont deux idéaux d'un anneau commutatif A, $I_1 \cap I_2$ et $I_1 + I_2$ sont des idéaux de A.

Soit *x* un élément d'un anneau commutatif *A*.

$$(x) = xA = \{xa \mid a \in A\}$$

est le plus petit idéal de A contenant x. De plus,

$$x \mid y \iff yA \subset xA \iff (y) \subset (x)$$

\rightarrow Arithmétique dans \mathbb{Z}

Théorème

Les idéaux de \mathbb{Z} sont les $n\mathbb{Z}$, où $n \in \mathbb{N}$.

Soient $a, b \in \mathbb{Z}$ non nuls. On appelle :

- plus grand diviseur commun de a et b l'unique entier naturel d tel que $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$. Notation : $a \wedge b$.
- plus petit commun multiple de a et b l'unique entier naturel c tel que $a\mathbb{Z} \cap b\mathbb{Z} = c\mathbb{Z}$. Notation : $a \vee b$.

- Théorème : Théorème de Bézout -

Soient $a, b \in \mathbb{Z}$. Alors $a \wedge b = 1$ si et seulement s'il existe un couple $(u, v) \in \mathbb{Z}^2$ tel que au + bv = 1.

L'algorithme d'Euclide permet de déterminer le pgcd de deux entiers ou une relation de Bézout.

- Théorème : Lemme de Gauss -

Soient $a, b, c \in \mathbb{Z}$. Si $a \mid bc$ et $a \land b = 1$, alors $a \mid c$.

Si p est premier et $p \mid ab$, alors $p \mid a$ ou $p \mid b$.

\rightarrow L'anneau ($\mathbb{Z}/n\mathbb{Z},+,\times$)

– Théorème [.]

 $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau.

- Théorème -

Les assertions suivantes sont équivalentes :

- (i) $\mathbb{Z}/n\mathbb{Z}$ est un corps.
- (ii) $\mathbb{Z}/n\mathbb{Z}$ est un anneau intègre.
- (iii) n est premier.

L'élément \overline{k} est inversible dans l'anneau $\mathbb{Z}/n\mathbb{Z}$ si et seulement si $k \wedge n = 1$.

Année 2022/2023

Théorème : Lemme chinois

Si m et n sont deux entiers premiers entre eux,

 $\mathbb{Z}/mn\mathbb{Z}$ est isomorphe à $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$

- Définition : Indicatrice d'Euler

Pour $n \in \mathbb{N}^*$, on pose $\varphi(n) = \operatorname{card}\{k \in [1, n] \mid k \wedge n = 1\}$. La fonction φ est appelée indicatrice d'Euler.

$\varphi(n)$ représente :

- le nombre d'entiers inférieurs à n et premiers avec n;
- le nombre d'éléments inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$;
- le nombre de générateurs du groupe ($\mathbb{Z}/n\mathbb{Z},+$), donc celui de (\mathbb{U}_n,\times).

Proposition -

Soient $m, n \in \mathbb{N}^*$. Si $m \wedge n = 1$, $\varphi(mn) = \varphi(m)\varphi(n)$.

- Proposition

Pour tout
$$n \in \mathbb{N}^*$$
, $\varphi(n) = n \cdot \prod_{\substack{p \text{ premier} \\ n|n}} \left(1 - \frac{1}{p}\right)$.

Proposition: Théorème d'Euler

Soient $a \in \mathbb{Z}$ et $n \in \mathbb{N} \setminus \{0, 1\}$. Si $a \wedge n = 1$, alors :

$$a^{\varphi(n)} \equiv 1 [n]$$

Corollaire : Petit théorème de Fermat

Soient p un entier premier et $a \in \mathbb{Z}$. Alors,

$$a^p \equiv a[p]$$

Si de plus p ne divise pas a, $a^{p-1} \equiv 1 [p]$.

Structure d'algèbre

Définition : K-algèbre

Une algèbre sur un corps \mathbb{K} , ou \mathbb{K} -algèbre, est un ensemble \mathscr{A} munis de trois lois +, \times et \cdot tels que :

- (i) $(\mathcal{A}, +, \cdot)$ est un \mathbb{K} -espace vectoriel;
- (ii) $(\mathcal{A}, +, \times)$ est un anneau;
- (iii) les lois \times et \cdot sont compatibles :

$$\forall a, b \in \mathbb{K}, \forall x, y \in \mathcal{A}, (a \cdot x) \times (b \cdot y) = ab \cdot (x \times y)$$

Une sous-algèbre de $\mathscr A$ est une partie $\mathscr B$ de $\mathscr A$ telle que $\mathscr B$ est à la fois un sous-anneau de $\mathscr A$ et un sous-espace vectoriel de $\mathscr A$.

Définition : Morphisme d'algèbres

Soient \mathscr{A} et \mathscr{B} deux \mathbb{K} -algèbres. On appelle morphisme de \mathscr{A} dans \mathscr{B} toute application $\phi: \mathscr{A} \to \mathscr{B}$ telle que ϕ est un morphisme d'anneaux et ϕ un morphisme d'espaces vectoriels.