Funktionelle Genomanalysen 2023 Asynchrone Übung zu Heritabilität

Dr. Janne Pott

09.-11. Juni 2023

Definition

Heritabilität: Anteil der Varianz eines Merkmals, der durch die Genetik erklärt wird.

Beantwortet in wie fern Gene den Unterschied (Varianz) einer Eigenschaft erklären, **NICHT** welche Gene die Eigenschaft beeinflussen.

$$h^2 = rac{Var(G)}{Var(Merkmal)} = rac{Var(G)}{Var(G) + Var(U) + 2 \cdot Cov(G, U)}$$

Methoden

- Verwandtschaftstudien bzw Zwillingsstudien h^2
 - ▶ Falconers Formel $h^2 = 2 \cdot (r(MZ) r(DZ))$
 - Vergleich der Merkmalskonkordanz zwischen monozygoten (MZ) und dizygoten (DZ) Zwilligen
- \bullet Genomweit via Querschnittsstudien von unverwandten Personen h^2_{SNP}
 - Genetik-Daten vorhanden: GREML (z.B. in GCTA implementiert)
 - Nur Summary Statistics vorhanden: LD Score Regression (python-basiert, bislang nur für weiße Europäer/Amerikaner etabliert)
- SNP-basiert h_{sSNP}^2
 - ▶ r² aus linearen Regressionsmodell ohne weitere Adjustierung
 - Einzelschätzer pro SNP

Missing heritability

Was Heritabilität ist (1/3)

- Semi-formale Definition:
 - Heritabilität ist der Anteil der Variabilität eines Merkmals, der durch Genetik erklärt werden kann. Es misst also inwieweit Unterschiede in der DNA Unterschiede in einem Merkmal erklären können.
 - Heritabilität ist definiert zwischen 0 (Genetik erklärt nichts) und 1 (Genetik erklärt alles)
 - ▶ Beispiel Körpergröße: $h^2 \approx 0.8$
 - ▶ Beispiel Schlafdauer: $h^2 \approx 0.15 0.2$
- Heritabilität schätzt, wie gut wir ein Merkmal anhand der Genetik vorhersagen könnten
 - wenn wir alle relevanten genetischen Auswirkungen vollständig verstanden hätten (was wir jedoch noch nicht haben!)
 - quasi eine Obergrenze dafür, wie gut diese Vorhersage jemals sein könnte, wenn wir mehr über die Genetik des Merkmals erfahren.

Was Heritabilität ist (2/3)

- Heritabilität misst wie wichtig Genetik für ein Merkmal ist.
 - Hohe Heritabilität bedeutet nicht notwendigerweise dass es monogenetisch vererbt wird.
 - Hohe Heritabilität bedeutet, dass der Gesamtbeitrag direkter und indirekter kausaler Effekte und anderer Korrelationen zwischen bestimmten DNA-Varianten und dem Merkmal ausreichen, um informativ zu sein.
- Heritabilität ist eine Eigenschaft einer Population, nicht eines Individuums.
 - Heritabilität erklärt nicht, warum jemand eine Krankheit erleidet.

Was Heritabilität ist (3/3)

- Heritabilität ist abhängig von der Messmethode.
 - ▶ Je schwieriger ein Merkmal zu messen ist, desto größer wird der zufällige Messfehler. Als Konsequenz wird die Heritabilität kleiner, da der Messfehler nicht genetisch ist.
 - Heritabilität ist abhängig davon, wer misst (Selbstbericht vs. gesicherte Diagnose vs. echte Messung)
 - Heritabilität ist abhängig davon, wie man das Merkmal festlegt (Einnahme eines bestimmten Medikaments vs Diagnose)
- Heritabilität ist abhängig von der Population.
 - Heritabilität eines Merkmals in einer Population aus einer bestimmten Land, Ethnie, Alter, Sozioökonomischer Status, o.ä. kann sich von der aus einer anderen Population mit anderem genetischen Background unterscheiden.

Was Heritabilität nicht ist (1/2)

- Heritabilität ist nicht Schicksal.
 - Nur weil ein Merkmal eine hohe Heritabilität aufweist und in deinen Eltern vorkommt, heißt das nicht, dass man selbst das Merkmal hat.
 - Es mag wahrscheinlicher sein, aber es ist nicht unvermeidlich.
- Heritabilität misst nicht unsere Fähigkeit, das Merkmal zu beeinflussen.
 - Haarfarbe ist hoch heritabel, aber jeder von uns kann sich die Haare färben wie er oder sie will (inklusive Farben die es in der Natur nicht gibt).
 - ▶ BMI ist heritabel, aber durch Diät und Bewegung haben ebenfalls einen Einfluss auf BMI.
 - ▶ Heritabilität ist nicht die finale Antwort auf "nature vs. nurture".

Was Heritabilität nicht ist (2/2)

- Heritabilität ist nicht unveränderlich.
 - Änderung in der Umwelt wird eine Änderung in der Heritabilität erzeugen
- Hohe Heritabilität bedeutet nicht, dass Gruppenunterschiede auf Genetik basieren.
 - Historisch: Leider wurden "Rassenunterschiede" bei den IQ-Werten auf die Genetik zurückgeführt
 - ► **ABER**: Heritabilität hängt von der Messmethode, Population und Umgebung ab, und kann sich im Laufe der Zeit ändern!
 - Es ist daher nicht zulässig, die geschätzte Heritabilität eines Merkmals als Beweis für "inhärente" Unterschiede zwischen Populationen zu verwenden.

Additional Reading

- Heritability 101 by Raymond Walters with contributions from Claire Churchhouse and Rosy Hosking
- For more academic discussion of pitfalls and misconceptions in understanding heritability: Visscher et al 2008