#### 微生物组—扩增子16S分析研讨会第21期





# 1 31表型预测BUGBASE

易生信 2024年4月14日



## BugBase —— 基于16S OTU表预测细菌表型数据库



- o 官网: <u>https://bugbase.cs.umn.edu/</u>
- 此文于17年5月2日发布在预印本杂志bioRxiv上面,还没有正式发表。目前己被引用347次。

BugBase predicts organism-level microbiome phenotypes

T Ward, J Larson, J Meulemans, B Hillmann, J Lynch, D Sidiropoulos, JR Spear...

BioRxiv, 2017 · biorxiv.org

#### Abstract

Shotgun metagenomics and marker gene amplicon sequencing can be used to directly measure or predict the functional repertoire of the microbiota *en masse*, but current methods do not readily estimate the functional capability of individual microorganisms. Here we present BugBase, an algorithm that predicts organism-level coverage of functional pathways as well as biologically interpretable phenotypes such as oxygen tolerance. Gram staining and pathogenic potential, within complex microbiomes using

SHOW MORE V

☆ Save ワワ Cite Cited by 347 Related articles All 5 versions ≫

o <u>中文教程详见: 16S预测细菌表型-bugbase: 革兰氏阴阳》生物膜、</u>

致病力、移动元件、氧气消耗等



### BugBase



o BugBase是一款分析微生物组样品表型的工具,此网站可以基于OTU

表和Mapping files, 预测大量信息和比较,包括以下七方面:

革兰氏阳性 Gram Positive

革兰氏阴性 Gram Negative

生物膜形成 Biofilm Forming

致病潜力 Pathogenic Potential

移动元件含量 Mobile Element Containing

氧的利用 Oxygen Utilizing

氧化胁迫耐受 Oxidative Stress Tolerant









## BugBase工作流程图





## 使用实例——自然子刊: 洁净环境中耐药性比例增加





使用BugBase基于16S预测样品中革兰氏阳/阴性、胁迫和致病力菌的相对丰度。Phenotype prediction of Gram positive/negative、Potential stress、Potential pathogens bacteria based on 16S rRNA gene amplicon analysis.

毒力、疾病(P=0.008)、防御( $P=5.2\times10^{-5}$ )和抵抗(P=0.08)有关的革兰氏阴性细菌在CB中富集(P值由Kruskal–Wallis检验计算**;附图8—11**)



#### 输入文件要求



#### o OTU表

BIOM 1.0格式; 16S以GreenGenes 13.5 为参数数据库(Reference); 宏基因组以IMG为参考; 在线提交要求小于15 MB (本地版无限制)

#### Maping File

制表符分隔;第一行必须以#SampleID起始;第一行全为列标题;第一列必须为SampleID;只允许使用字母、数字、下划线和连字符;不允许包含空格,逗号、引号、括号;不要包含机密信息

| SampleID | Group | Site    | Date      | BarcodeSequence | LinkerPrimerSequence | ReversePrimer      |
|----------|-------|---------|-----------|-----------------|----------------------|--------------------|
| KO1      | KO    | Beijing | 2017/6/30 | ACGCTCGACA      | AACMGGATTAGATACCCKG  | ACGTCATCCCCACCTTCC |
| KO2      | KO    | Beijing | 2017/6/30 | ATCAGACACG      | AACMGGATTAGATACCCKG  | ACGTCATCCCCACCTTCC |
| KO3      | KO    | Sanya   | 2017/7/2  | ATATCGCGAG      | AACMGGATTAGATACCCKG  | ACGTCATCCCCACCTTCC |
| KO4      | KO    | Sanya   | 2017/7/2  | CACGAGACAG      | AACMGGATTAGATACCCKG  | ACGTCATCCCCACCTTCC |
| KO5      | KO    | Harbin  | 2017/7/4  | CTCGCGTGTC      | AACMGGATTAGATACCCKG  | ACGTCATCCCCACCTTCC |



## 方法1. Windows本地运行



- o 代码和包进行重新基于R 4.x更新
- 在pipeline.sh中指定软件目录为bugbase变量,输入gg OTU表、元数据、指定分组列名和输出目录

bugbase=C:/EasyMicrobiome/script/BugBase

Rscript \${bugbase}/bin/run.bugbase.r -L \${bugbase} \

-i result/gg/otutab.txt -m result/metadata.txt -c Group -o result/bugbase/

- [1] "Loading Inputs..."
- [1] "16S copy number normalizing OTU table..."
- [1] "Predicting phenotypes..."
- [1] "2035 OTUs from the input table matched the 203452 available database OTUs"
- [1] "Plotting thresholds..."
- [1] "Plotting predictions..."
- [1] "Plotting OTU contributions..."
- [1] "BugBase analysis complete"





# 方法2. ImageGP在线——BugBase一键分析





Make plot be easy and exquisite

woodcorpse@163.com ∨

#### BugBase

如果操作中遇到问题或想添加新功能,请扫码拉您入群

BugBase is a tool for measuring high-level premotypes in your microbiome. Please refer to BugBase for input formats, results explanation and citation information.

#### GreenGenes based OTU abundance table for BugBase analysis

| OTUID    | KO1  | KO2 | КОЗ  | KO4  | KO5  | KO6  | OE1 | OE2  | OE3 | OE4 | OE5 | OE6 | WT1  | WT2  | WT3 | WT4 |   |
|----------|------|-----|------|------|------|------|-----|------|-----|-----|-----|-----|------|------|-----|-----|---|
| WT5 WT6  |      |     |      |      |      |      |     |      |     |     |     |     |      |      |     |     |   |
| 57759    | 214  | 132 | 1225 | 366  | 1297 | 291  | 130 | 1206 | 833 | 503 | 192 | 219 | 798  | 918  | 546 | 214 |   |
| 579 856  |      |     |      |      |      |      |     |      |     |     |     |     |      |      |     |     |   |
| 810167   | 1361 | 394 | 559  | 756  | 1310 | 515  | 520 | 586  | 461 | 616 | 670 | 432 | 1116 | 1463 | 555 | 593 |   |
| 1116 915 |      |     |      |      |      |      |     |      |     |     |     |     |      |      |     |     |   |
| 1134692  | 968  | 764 | 981  | 1056 | 1732 | 1160 | 299 | 319  | 445 | 469 | 452 | 413 | 650  | 710  | 537 | 678 |   |
| 599 594  |      |     |      |      |      |      |     |      |     |     |     |     |      |      |     |     |   |
| 546343   | 11   | 4   | 8    | 0    | 3    | 22   | 9   | 5    | 4   | 7   | 1   | 8   | 3    | 2    | 12  | 2   |   |
| 2 6      |      |     |      |      |      |      |     |      |     |     |     |     |      |      |     |     |   |
| 48487    | 390  | 431 | 234  | 262  | 32   | 926  | 290 | 238  | 245 | 442 | 195 | 222 | 333  | 133  | 297 | 264 | - |
| 1/10 202 |      |     |      |      |      |      |     |      |     |     |     |     |      |      |     |     |   |



http://www.ehbio.com/ImageGP/index.php/Home/Index/BugBase.html https://www.bic.ac.cn/ImageGP/index.php/Home/Index/BugBase.html

# 方法3. Linux系统中安装和使用(选学)



- o Linux本地分析1. 软件安装
- # 方法1. git下载,需要有gitgit clone <a href="https://github.com/knights-lab/BugBase">https://github.com/knights-lab/BugBase</a>
- #安装依赖包
   cd BugBase
   export BUGBASE\_PATH=`pwd`
   export PATH=\$PATH:`pwd`/bin
- o #测试数据

run.bugbase.r -i doc/data/HMP\_s15.txt -m doc/data/HMP\_map.txt -c HMPBODYSUBSITE -o output





## 2. 准备输入文件



cd ~/amplicon/result

- # 输入文件: 基于greengene OTU表的biom格式(本地分析支持txt格式无需转换)和mapping file(design.txt首行添加#)
- o #上传实验设计+刚才生成的otutab\_gg.txt
- # 生成在线分析使用的biom1.0格式
   biom convert -i gg/otutab.txt -o otutab\_gg.biom --table-type="OTU table" to-json
   sed '1 s/^/#/' metadata.txt > MappingFile.txt
- # 下载otutab\_gg.biom 和 MappingFile.txt用于在线分析



## 3. 设定参数和运行



- # 设计BUGBASE\_PATH变量为程序要求 export BUGBASE\_PATH=`pwd`
- #添加r脚本到环境变量export PATH=\$PATH:`pwd`/bin
- #基于OTU表和实验设计预测和组间比较
   run.bugbase.r -i gg/otutab.txt -m MappingFile.txt -c Group -o phenotype/
- o # 结果位于phenotype目录





# 方法4. Bugbase官网在线分析



# Welcome to BugBase.



#### About Bugbase

BugBase is a tool for measuring high-level phenotypes in your microbiome.



#### Parse Data

Upload your microbiome data and run it through our pipeline.



#### Downloads

Download BugBase and see sample analyses.



Visit the <u>documentation</u> to get started!



#### 在线分析

- Error connecting to server -- please check your network connection. If this error persists, please contact us for assistance.
  - A

- https://bugbase.cs.umn.edu/
- o 选择Parse Data
- o 选择本地biom OTU表和MappingFile
- Column Header填写group
- o 点击最下方Parse Data运行
- 目前显示网络中断
- 。 但测试数据可成功

| error persists, pieas      | e contact us for assistance.                    |        |
|----------------------------|-------------------------------------------------|--------|
| OTU File Upload 🔞          |                                                 |        |
| otutab_gg.biom             | ±                                               | Browse |
|                            | Whole genome sequencing (shotgun)? ②            |        |
|                            | Output prediction table only? (no plots) ②      |        |
|                            | Use KEGG modules? 🔞                             |        |
|                            | CLR transform data? 🔞                           |        |
| Specific Traits or Modules | (required for KEGG) ②                           |        |
| Module list is required fo | or KEGG. Leave blank for default BugBase traits | i.     |
|                            | Use coefficient of variance? ②                  |        |
| Threshold (optional) 🔞     |                                                 |        |
| Value 0 to 1. Leave blank  | for automatic.                                  |        |
|                            | Proceed without mapping file? ②                 |        |
| Mapping File Upload 🔞      |                                                 |        |
| MappingFile.txt            | <b>±</b>                                        | Browse |
| Column Header 🔞            |                                                 |        |
| group                      |                                                 |        |
|                            |                                                 |        |

#### 结果文件



- normalized\_otus # 按16S拷贝数标准化的OTU表 16s\_normalized\_otus.txt
- o otu\_contributions # 功能由哪些OTU贡献
  Aerobic/Anaerobic/../Stress\_Tolerant.pdf # 每组功能门水平组成堆叠图和图例 contributing\_otus.txt # 每个OTU对应每类功能的有无矩阵
- predicted\_phenotypes # 表型的相对丰度
   Aerobic/Anaerobic/../Stress\_Tolerant.pdf # 每组功能的箱线图
   Aerobic/Anaerobic/../Stress\_Tolerant\_stat.txt # 各组均值和组间比较原值
- o thresholds # 不同阈值下可注释的丰度
  Aerobic/Anaerobic/../Stress\_Tolerant.pdf # 不同阈值的分类比例与相对丰度折线图



## 功能由哪些OTU贡献





#### 表型的相对丰度和统计



基因科技(北京)有限公司 Forms\_Biofilms.pdf

Forms\_Biofilms
Number of samples in each treatment group:
KO OE WT



6 6 6

Proportion with phenotype (mean):

KO OE WI

0.9158879 0.8511340 0.8755880

Proportion with phenotype (median):

KO OE WT

0.9162921 0.8486079 0.8700309

Standard deviation:

KO OE WT

0.009292643 0.013062136 0.015858715

Pairwise Mann-Whitney-Wilcoxon Tests were performed.

Pairwise p-values are:

KO\_vs\_OE KO\_vs\_WT OE\_vs\_WT

0.0021645 0.0021645 0.0259740

FDR-corrected pairwise p-values are:

KO\_vs\_OE KO\_vs\_WT OE\_vs\_WT

0.003246753 0.003246753 0.025974026

Kruskal-Wallis Test was performed.

Group p-value is:0.001080416

Forms\_Biofilms\_stats.txt



#### 总结



- BUGBASE是著名的Dan Knight实验室出品,仅在预印本发布,他们还发布过微生物来源分析软件SourceTracker、微生物组机器学习数据库等。
- o BUGBASE有网络版,但要求biom格式,而且我用自己数据没成功;
- o BUGBASE本地版较大,依赖包较多,但支持txt格式且容易运行成功;
- 推荐使用方法:基于易生信定制的Windows本地版或ImageGP在线版;
- o 不推荐使用:Linux安装或官方在线版。





## 进一步学习



- <u>0概述</u>:根据16S预测微生物群落功能最全攻略,对以下4种常用的功能预测工具进行简介、实例说明和点评,必读;
- o 1KO通路PICRUSt: 本地和在线分析,及统计分析可视化指导;
- 2元素循环FAPROTAX : 元素循环相关菌代谢预测,只有本地版python脚本;识别菌种名称;
- o <u>3表型bugbase</u> : 表型预测、革兰氏、氧气利用等; 有在线和本地版, 基乎 Greengene数据库;
- o <u>4KO通路Tax4Fun</u>: R包基于作者整理的Sliva123数据,准确率不可知,输出结果 为百分比;最新版<u>Tax4Fun2</u>
- o PICRUSt2: OTU/ASV等16S序列随意预测宏基因组,参考数据库增大10倍





扫码关注生信宝典, 学习更多生信知识



扫码关注宏基因组, 获取专业学习资料

易生信,没有难学的生信知识



# 常见问题:找不到biom包



- o Error in library(biom): 不存在叫'biom'这个名字的程辑包
- 在CRAN和Bioconductor上都没有biom包,因为已经在Bioconductor上面更新为biomformat包
- o 参考主软件主原则同意安装最新版biomformat
- http://www.bioconductor.org/packages/release/bioc/html/biomformat.
   html
- o 修改run.bugbase.r脚本中library(biom)为library(biomformat)



