Problem 1.3 Consider the gaussian distribution

$$\rho(x) = Ae^{-\lambda(x-a)^2},$$

where A, a, and λ are positive real constants. (The necessary integrals are inside the back cover.)

- (a) Use Equation 1.16 to determine A.
- **(b)** Find $\langle x \rangle$, $\langle x^2 \rangle$, and σ .
- (c) Sketch the graph of $\rho(x)$.

HW2

Problem 1.8 Suppose you add a constant V_0 to the potential energy (by "constant" I mean independent of x as well as t). In *classical* mechanics this doesn't change anything, but what about *quantum* mechanics? Show that the wave function picks up a time-dependent phase factor: $\exp(-iV_0t/\hbar)$. What effect does this have on the expectation value of a dynamical variable?

Problem 1.9 A particle of mass m has the wave function

$$\Psi(x,t) = Ae^{-a\left[\left(mx^2/\hbar\right) + it\right]},$$

where A and a are positive real constants.

- (a) Find A.
- (b) For what potential energy function, V(x), is this a solution to the Schrödinger equation?
- (c) Calculate the expectation values of x, x^2 , p, and p^2 .
- (d) Find σ_x and σ_p . Is their product consistent with the uncertainty principle?

Problem 1.16 A particle is represented (at time t = 0) by the wave function

$$\Psi(x,0) = \begin{cases} A(a^2 - x^2), & -a \le x \le +a, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Determine the normalization constant A.
- **(b)** What is the expectation value of x?
- (c) What is the expectation value of p? (Note that you *cannot* get it from $\langle p \rangle = md\langle x \rangle/dt$. Why not?)

Problem 2.1 Prove the following three theorems:

- (a) For normalizable solutions, the separation constant E must be *real*. *Hint*: Write E (in Equation 2.7) as $E_0 + i\Gamma$ (with E_0 and Γ real), and show that if Equation 1.20 is to hold for all t, Γ must be zero.
- **(b)** The time-independent wave function $\psi(x)$ can always be taken to be *real* (unlike $\Psi(x,t)$, which is necessarily complex). This doesn't mean that every solution to the time-independent Schrödinger equation *is* real; what it says is that if you've got one that is *not*, it can always be expressed as a linear combination of solutions (with the same energy) that *are*. So you *might as well* stick to ψ s that are real. *Hint:* If $\psi(x)$ satisfies Equation 2.5, for a given E, so too does its complex conjugate, and hence also the real linear combinations ($\psi + \psi^*$) and $i(\psi \psi^*)$.
- (c) If V(x) is an **even function** (that is, V(-x) = V(x)) then $\psi(x)$ can always be taken to be either even or odd. *Hint*: If $\psi(x)$ satisfies Equation 2.5, for a given E, so too does $\psi(-x)$, and hence also the even and odd linear combinations $\psi(x) \pm \psi(-x)$.

Problem 2.2 Show that E must exceed the minimum value of V(x), for every normalizable solution to the time-independent Schrödinger equation. What is the classical analog to this statement? *Hint:* Rewrite Equation 2.5 in the form

$$\frac{d^2\psi}{dx^2} = \frac{2m}{\hbar^2} \left[V(x) - E \right] \psi;$$

if $E < V_{\min}$, then ψ and its second derivative always have the *same sign*—argue that such a function cannot be normalized.

Problem 2.6 Although the *overall* phase constant of the wave function is of no physical significance (it cancels out whenever you calculate a measurable quantity), the *relative* phase of the coefficients in Equation 2.17 *does* matter. For example, suppose we change the relative phase of ψ_1 and ψ_2 in Problem 2.5:

$$\Psi(x,0) = A \left[\psi_1(x) + e^{i\phi} \psi_2(x) \right],$$

where ϕ is some constant. Find $\Psi(x, t)$, $|\Psi(x, t)|^2$, and $\langle x \rangle$, and compare your results with what you got before. Study the special cases $\phi = \pi/2$ and $\phi = \pi$. (For a graphical exploration of this problem see the applet in footnote 9 of this chapter.)

Problem 2.7 A particle in the infinite square well has the initial wave function

$$\Psi(x,0) = \begin{cases} Ax, & 0 \le x \le a/2, \\ A(a-x), & a/2 \le x \le a. \end{cases}$$

- (a) Sketch $\Psi(x, 0)$, and determine the constant A.
- **(b)** Find $\Psi(x, t)$.
- (c) What is the probability that a measurement of the energy would yield the value E_1 ?
- (d) Find the expectation value of the energy, using Equation 2.21.²¹

Problem 2.10

- (a) Construct $\psi_2(x)$.
- **(b)** Sketch ψ_0 , ψ_1 , and ψ_2 .
- (c) Check the orthogonality of ψ_0 , ψ_1 , and ψ_2 , by explicit integration. *Hint:* If you exploit the even-ness and odd-ness of the functions, there is really only one integral left to do.

Problem 2.13 A particle in the harmonic oscillator potential starts out in the state

$$\Psi(x,0) = A [3\psi_0(x) + 4\psi_1(x)].$$

- (a) Find A.
- (b) Construct $\Psi(x, t)$ and $|\Psi(x, t)|^2$. Don't get too excited if $|\Psi(x, t)|^2$ oscillates at exactly the classical frequency; what would it have been had I specified $\psi_2(x)$, instead of $\psi_1(x)$?³¹
- (c) Find $\langle x \rangle$ and $\langle p \rangle$. Check that Ehrenfest's theorem (Equation 1.38) holds, for this wave function.
- **(d)** If you measured the energy of this particle, what values might you get, and with what probabilities?

HW5

Problem 2.14 In the ground state of the harmonic oscillator, what is the probability (correct to three significant digits) of finding the particle outside the classically allowed region? *Hint:* Classically, the energy of an oscillator is $E = (1/2) ka^2 = (1/2) m\omega^2 a^2$, where a is the amplitude. So the "classically allowed region" for an oscillator of energy E extends from $-\sqrt{2E/m\omega^2}$ to $+\sqrt{2E/m\omega^2}$. Look in a math table under "Normal Distribution" or "Error Function" for the numerical value of the integral, or evaluate it by computer.

Problem 2.17 Show that $[Ae^{ikx} + Be^{-ikx}]$ and $[C\cos kx + D\sin kx]$ are equivalent ways of writing the same function of x, and determine the constants C and D in terms of A and B, and vice versa. *Comment:* In quantum mechanics, when V = 0, the exponentials represent *traveling* waves, and are most convenient in discussing the free particle, whereas sines and cosines correspond to *standing* waves, which arise naturally in the case of the infinite square well.

Problem 2.19 This problem is designed to guide you through a "proof" of Plancherel's theorem, by starting with the theory of ordinary Fourier series on a *finite* interval, and allowing that interval to expand to infinity.

(a) Dirichlet's theorem says that "any" function f(x) on the interval [-a, +a] can be expanded as a Fourier series:

$$f(x) = \sum_{n=0}^{\infty} \left[a_n \sin\left(\frac{n\pi x}{a}\right) + b_n \cos\left(\frac{n\pi x}{a}\right) \right].$$

Show that this can be written equivalently as

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{in\pi x/a}.$$

What is c_n , in terms of a_n and b_n ?

(b) Show (by appropriate modification of Fourier's trick) that

$$c_n = \frac{1}{2a} \int_{-a}^{+a} f(x) e^{-in\pi x/a} dx.$$

(c) Eliminate n and c_n in favor of the new variables $k = (n\pi/a)$ and $F(k) = \sqrt{2/\pi} ac_n$. Show that (a) and (b) now become

$$f(x) = \frac{1}{\sqrt{2\pi}} \sum_{n = -\infty}^{\infty} F(k) e^{ikx} \Delta k; \quad F(k) = \frac{1}{\sqrt{2\pi}} \int_{-a}^{+a} f(x) e^{-ikx} dx,$$

where Δk is the increment in k from one n to the next.

(d) Take the limit $a \to \infty$ to obtain Plancherel's theorem. *Comment:* In view of their quite different origins, it is surprising (and delightful) that the two formulas—one for F(k) in terms of f(x), the other for f(x) in terms of F(k)—have such a similar structure in the limit $a \to \infty$.

Problem 2.20 A free particle has the initial wave function

$$\Psi(x,0) = Ae^{-a|x|},$$

where A and a are positive real constants.

- (a) Normalize $\Psi(x, 0)$.
- **(b)** Find $\phi(k)$.
- (c) Construct $\Psi(x, t)$, in the form of an integral.
- (d) Discuss the limiting cases (a very large, and a very small).

Problem 2.22 Evaluate the following integrals:

(a)
$$\int_{-3}^{+1} (x^3 - 3x^2 + 2x - 1) \delta(x + 2) dx$$
.

(b)
$$\int_0^\infty [\cos(3x) + 2] \, \delta(x - \pi) \, dx$$
.

(c)
$$\int_{-1}^{+1} \exp(|x| + 3)\delta(x - 2) dx$$
.

Problem 2.31 The Dirac delta function can be thought of as the limiting case of a rectangle of area 1, as the height goes to infinity and the width goes to zero. Show that the delta-function well (Equation 2.117) is a "weak" potential (even though it is infinitely deep), in the sense that $z_0 \to 0$. Determine the bound state energy for the delta-function potential, by treating it as the limit of a finite square well. Check that your answer is consistent with Equation 2.132. Also show that Equation 2.172 reduces to Equation 2.144 in the appropriate limit.

HW7

Problem 2.44 If two (or more) distinct⁵⁶ solutions to the (time-independent) Schrödinger equation have the same energy E, these states are said to be **degenerate**. For example, the free particle states are doubly degenerate—one solution representing motion to the right, and the other motion to the left. But we have never encountered *normalizable* degenerate solutions, and this is no accident. Prove the following theorem: *In one dimension*⁵⁷ ($-\infty < x < \infty$) there are no degenerate bound states. [Hint: Suppose there are two solutions, ψ_1 and ψ_2 , with the same energy E. Multiply the Schrödinger equation for ψ_1 by ψ_2 , and the Schrödinger equation for ψ_2 by ψ_1 , and subtract, to show that $(\psi_2 d\psi_1/dx - \psi_1 d\psi_2/dx)$ is a constant. Use the fact that for normalizable solutions $\psi \to 0$ at $\pm \infty$ to demonstrate that this constant is in fact zero. Conclude that ψ_2 is a multiple of ψ_1 , and hence that the two solutions are not distinct.]

Problem 2.45 In this problem you will show that the number of nodes of the stationary states of a one-dimensional potential always increases with energy. ⁵⁸ Consider two (real, normalized) solutions (ψ_n and ψ_m) to the time-independent Schrödinger equation (for a given potential V(x)), with energies $E_n > E_m$.

(a) Show that

$$\frac{d}{dx}\left(\frac{d\psi_m}{dx}\,\psi_n-\psi_m\,\frac{d\psi_n}{dx}\right)=\frac{2m}{\hbar^2}\left(E_n-E_m\right)\,\psi_m\psi_n.$$

(b) Let x_1 and x_2 be two adjacent nodes of the function $\psi_m(x)$. Show that

$$\psi'_m(x_2)\,\psi_n(x_2)-\psi'_m(x_1)\,\psi_n(x_1)=\frac{2m}{\hbar^2}\,(E_n-E_m)\int_{x_1}^{x_2}\psi_m\psi_n\,dx.$$

- (c) If $\psi_n(x)$ has no nodes between x_1 and x_2 , then it must have the same sign everywhere in the interval. Show that (b) then leads to a contradiction. Therefore, between every pair of nodes of $\psi_m(x)$, $\psi_n(x)$ must have *at least* one node, and in particular the number of nodes increases with energy.
- **Problem 2.46** Imagine a bead of mass m that slides frictionlessly around a circular wire ring of circumference L. (This is just like a free particle, except that $\psi(x+L) = \psi(x)$.) Find the stationary states (with appropriate normalization) and the corresponding allowed energies. Note that there are (with one exception) *two* independent solutions for each energy E_n —corresponding to clockwise and counter-clockwise circulation; call them $\psi_n^+(x)$ and $\psi_n^-(x)$. How do you account for this degeneracy, in view of the theorem in Problem 2.44 (why does the theorem fail, in this case)?