Tarea 3

Entrega: 28 de septiembre de 2023

Problema 1

Un anti-muón con 1 GeV de energía total cruza un blanco de silicio de 10 cm de longitud. Calcula la pérdida de energía tras cruzar dicha distancia.

Solución

Lo primero que debemos hacer es obtener el valor de la densidad del material del Si y la masa del anti-muón μ^+ , cuyos valores, respectivamente, son

$$\rho_{\rm Si} = 2.33\,{\rm g/cm^3}, \\ m_{\mu^+} = 105.658\,366\,{\rm MeV}/c^2 = 0.105\,658\,366\,{\rm GeV}/c^2. \\ \end{cases} \\ \begin{array}{l} \{ {\tt eq:SiDensity} \} {\tt eq:SiDensity} \} {\tt eq:AntimuonEnergy} \} {\tt e$$

Recordemos que la carga del anti-muón es +1e.

Y puesto que lo que queremos calcular es la pérdida de energía tras cruzar 10 cm en un medio material de densidad ρ_{Si} , que se obtiene a partir de la siguiente expresión

$$\Delta E_{\rm p\acute{e}rdida} = -\rho_{\rm Si} \int_0^{10} \left\langle \frac{{\rm d}E}{{\rm d}x} \right\rangle {\rm d}x. \quad \text{\{eq:EnergyLossThroughMaterial\}} \text{eq:EnergyLossThroughMaterial} \text{ (1.3)}$$

Sin embargo, antes debemos calcular la pérdida de energía, dada por la ec. de Bethe-Bloch reducida, sin considerar además las correcciones por efecto de la densidad,

$$-\left\langle\frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = Kz^2\frac{Z}{A}\frac{1}{\beta^2}\left[\ln\left(\frac{2m_\mathrm{e}c^2\beta^2\gamma^2}{I}\right) - \beta^2\right], \qquad \qquad \text{ {eq:EnergyLoss}eq:Energy}$$

donde, $K=0.3071\,\mathrm{MeV}\cdot\mathrm{cm^2/g},\ z$ la carga de la partícula incidente, Z el número de protones del medio, A el número de nucleones del medio, β,γ los factores relativistas de la partícula incidente e I el potencial de ionización.

Calculamos γ ,

$$\gamma = \frac{E_T}{E_R},$$

$$= \frac{1 \,\text{GeV}}{0.105 \,658 \,366 \,\text{GeV}},$$
 $\gamma = 9.4645,$

 $\Rightarrow \gamma^2 = 89.5768.$ {eq:LorentzFactorSquared}eq:LorentzFactorSquared}

Y β,

$$\beta = \sqrt{1-\frac{1}{\gamma^2}},$$

$$\beta = 0.994\,611,$$

$$\Longrightarrow \boxed{\beta^2 = 0.988\,836.}$$
 {eq:RelativeSpeedFactorSquared}eq:RelativeSpeedFactorSquared

Por otro lado, para el Si existen 3 isótopos estables, elegimos aquel con A=28 y Z=14. Además de la aproximación del potencial de ionización dada por

$$I = 10ZeV$$
,

tal que,

Ahora con todos elementos sí podemos calcular la pérdida de energía, por lo que sustituimos (1.5) a (1.7) en (1.4),

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = (0.3071 \,\mathrm{MeV} \cdot \mathrm{cm}^2/\mathrm{g})(1)^2 \frac{14}{28} \frac{1}{0.988\,836}$$
$$\left[\ln\left(\frac{2(0.511 \,\mathrm{MeV}/c^2)c^2(0.988\,836)(89.5768)}{140 \,\mathrm{eV}}\right) - 0.988\,836 \right],$$
$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = 1.924\,07 \,\mathrm{MeV} \cdot \mathrm{cm}^2/\mathrm{g}.$$

Ahora, sustituimos el resultado anterior en (1.3),

$$\Delta E_{\text{p\'erdida}} = -(2.33\,\text{g/cm}^3) \int_0^{10} (1.924\,07\,\text{MeV} \cdot \text{cm}^2/\text{g}) \,\text{d}x,$$

$$= (4.4831\,\text{MeV/cm}) \,x \Big|_0^{10},$$

$$= (4.4831\,\text{MeV/cm})(10\,\text{cm}),$$

$$\Delta E_{\text{p\'erdida}} = 44.831\,\text{MeV}.$$

Un fotón de 35 MeV pasa por una dispersión de Compton y sale con un ángulo de $\frac{\pi}{3}$. ¿Cuál es la energía del fotón al salir? ¿Cuál es la energía cinética del electrón dispersado?

Solución

Para conocer la energía del fotón al salir usamos la relación dada por:

$$h\nu' = \frac{h\nu}{1 + \gamma(1 - \cos\theta)},$$

con
$$\gamma = \frac{h\nu}{m_{\rm e}c^2}$$
. Así,

$$h\nu = \frac{35 \,\text{MeV}}{1 + \left(\frac{35}{0.511}\right)(1 - \cos\left(\frac{\pi}{3}\right))},$$

= 0.993 009 MeV,

$$h\nu \simeq 1\,\mathrm{MeV}.$$

{eq:PhotonEnergyAfterCollision}eq:Photo(2.1)

Por otro lado, para saber la energía cinética del electrón disparado usamos que

$$T_{\rm e} = h\nu - h\nu'.$$

Sustituyendo (2.1) en la expresión para $T_{\rm e}$,

$$T_e = 35 \,\mathrm{MeV} - 1 \,\mathrm{MeV},$$

$$T_{\rm e} = 34 \, {\rm MeV}.$$

Mencionan dos tipos de detectores de ionización y explica la base de su funcionamiento.

¿Cuáles son los ángulos de Cherenkov para electrones y piones con momento de $1000\,\mathrm{MeV/c}$ para un radiador con índice de refracción n=1.4?

Solución

Los ángulos de Cherenkov están dados por

$$\cos \theta_C = \frac{1}{\beta n},$$

donde β es el factor de la velocidad relativa y n es el índice de refracción.

Para obtener β fácilmente, primero obtenemos el factor γ dado como

$$\gamma = \frac{pc}{E} + 1,$$

 $con E = mc^2.$

Por un lado, para el electrón, cuya masa es $m_{\rm e}=0.511\,{\rm MeV}/c^2,$

$$\begin{split} \gamma_{\rm e} &= \frac{(1000\,{\rm MeV/c}\cdot c)}{(0.511\,{\rm MeV/c^2})\cdot c^2} + 1, \\ &= \frac{1000\,{\rm MeV/c}}{0.511\,{\rm MeV/c^2}} + 1, \\ \hline \gamma_{\rm e} &= 1957.95. \end{split}$$

Y el factor β_e ,

$$\beta_{\rm e} = \sqrt{1 - \frac{1}{(1957.95)^2}},$$

$$\beta_{\rm e} = 0.9999.$$

Por lo que los ángulos de Cherenkov para los electrones son

$$\theta_C = \arccos(\frac{1}{\beta_e n}),$$

$$= \arccos\left(\frac{1}{(0.9999)(1.4)}\right),$$

$$\theta_C = 44.4153^{\circ}.$$

Por el otro, para el pión, cuya masa es $m_{\pi^+}=140\,{\rm MeV}/c^2,$

$$\begin{split} \gamma_{\pi^+} &= \frac{(1000\,\mathrm{MeV/c})\cdot c}{(140\,\mathrm{MeV/c^2})\cdot c^2} + 1, \\ &= \frac{1000\,\mathrm{MeV}}{140\,\mathrm{MeV}} + 1, \\ \hline \gamma_{\pi^+} &= 8.142\,86. \end{split}$$

Y el factor β_{π^+} ,

$$\beta_{\pi^+} = \sqrt{1 - \frac{1}{(8.14286)^2}},$$

$$\beta_{\pi^+} = 0.992431.$$

Por lo que los ángulos de Cherenkov para los piones son

$$\theta_C = \arccos(\frac{1}{\beta_{\pi^+}n}),$$

$$= \arccos\left(\frac{1}{(0.992431)(1.4)}\right),$$
 $\theta_C = 43.9675^{\circ}.$

¿Cómo funciona y qué mide un calorímetro (en física de partículas)? ¿De qué materiales se pueden construir?