Informatique Embarquée (IE)

(Embedded Systems)

Cours n°1

Définitions

Système à Microprocesseur, Microcontrôleur Architectures des Systèmes à Microprocesseur

olivier.lourme@univ-lille.fr

Organisation du module INFO2

Découpage CM / TD / TP :

• 4 CM de 1h30 • 10 TP de 3h00

Évaluation:

- 2 DS
- Plusieurs colles en TD
- 2 contrôles de TP

Coefficients: https://www.iuta-geii.univ-lille.fr/programme/

Déf. de l'Informatique « Classique » (IC)

(Computer Sciences, Data Processing)

« Science du traitement de l'information, notamment à l'aide de machines automatiques » (Source : Académie française)

- Exemple 1 : traitement statistique lors d'un recensement national
- Exemple 2 : traitement d'un formulaire html

Déf. de « Informatique Embarquée » (IE)

Traitement de l'information liée à des processus matériels :

• Électroménager, Domotique, Automobile, Transport, Téléphonie mobile, Médical, Multimédia, Objets connectés (IoT), Robotique, etc.

Exemples	Données d'entrée = signaux issus de :	Données de sortie = signaux à destination de :
Robot	Capteur de position	Actionneur
Photocopieur	Clavier, Réseau	Ecran, Actionneurs, Réseau

Par conséquent, l'IE est très proche de l'Informatique Industrielle (II) - processus matériels, environnement sévère, réactivité - mais avec en plus des notions de :

 Compacité, autonomie et économie énergétiques, peu d'intervention humaine pour maintenance et réglage.

Système à Microprocesseur (SM)

Notion de microcontrôleur ou calculateur

Dans un système d'IC, par exemple un ordinateur PC, chaque bloc du SM est implémenté par au moins une puce.

→ Dense et complexe, grand nombre de connexions (ex. : carte mère)

Dans ur système d'IE de petite taille, par ex. un lave-vaisselle, on s'arrange pour que l'intégralite du SM tienne dans une puce : le microcontrôleur (µC). On dit aussi « calculateur ».

- -> Augmentation de la fiabilité
- → Réduction du coût
- → Réduction du Time To Market

Le propos de INFO2

Les propos ne sont pas du tout les mêmes. En général :

- → Petite IE : calculs sur 8, 16 ou 32 bits, fréq. horloge de qq 10 MHz
- → IC : calculs sur 64 ou 128 bits, fréq. horloge de qq GHz.
- → Entre les deux, il existe beaucoup de systèmes intermédiaires.

3 exemples : N°1 – IE complexe

Netgear DG632 ADSL modem router

http://commons.wikimedia.org/wiki/File:ADSL_modem_router_internals_labeled.jpg http://en.wikipedia.org/wiki/TI-AR7

The labeled parts are as follows:

- 1. Telephone decoupling electronics (for ADSL).
- Multicolour LED (displaying network status).
- Single colour LED (displaying USB status).
- 4. Main processor, a TNETD7300GDU, a member of Texas Instruments'
- 5. JTAG (Joint Test Action Group) test and programming port.
- 6. RAM, a single ESMT M12L64164A 8 MB chip.
- 7. Flash memory, obscured by sticker.
- 8. Power supply regulator.
- 9. Main power supply fuse.
- 10. Power connector.
- 11. Reset button.
- 12. Quartz crystal.
- 13. Ethernet port.
- Ethernet transformer, Delta LF8505.
- 15. KS8721B ethernet PHY transmitter receiver.
- 16. USB port.
- 17. Telephone (RJ11) port.
- 18. Telephone connector fuses.

3 exemples : N°2 – IE simple

Distributeur automatique de boissons géré à distance

RTCC: Real Time Clock Calendar

3 exemples : N°3 – IE simples en réseau

Les systèmes embarqués dans l'automobile

http://synergeek.fr/les-systemes-embarques-dans-automobile

→ Environ 50 µC / véhicule :

- Capteur de pluie > Commande d'essuie-glaces : 1 µC
- Vitesse des roues > Système ABS : 1 μC
- Etc.
- → Electronique = 30% du prix d'une voiture
- → Il faut limiter les longueurs de câble (≈ 1 km) :
 - Les µC sont reliés en réseau par le bus CAN.
 - Des sous-réseaux sont réalisés par des bus LIN.

→ Notion de temps réel :

- Pas plus de 30 ms entre l'appui sur l'avertisseur et le signal sonore.
- ABS, etc.
- → Consommation électrique en très forte hausse dans les véhicules

Architecture des SM: N°1 – Harvard

La **mémoire de données** et la **mémoire de programme** sont nettement séparées et disposent chacune de trois groupes de conducteurs (2 * 3 bus parallèles ici) :

- un bus pour échanger des informations avec le microprocesseur : bus de données ;
- un bus pour désigner l'adresse de cette information : bus d'adresse ;
- un bus pour assurer l'entente entre les différents blocs : bus de contrôle.

*3 – Architecture des Systèmes à Microprocesseur

Architecture des SM: N°2 – von Neumann

- Pas de séparation de principe entre mémoire de données et mémoire de programme. Les 3 bus (parallèles) sont communs aux deux types de mémoire.
- A un moment donné, soit une instruction soit une donnée est rapatriée vers le microprocesseur par l'unique bus de données.
- A ce même moment, l'unique bus d'adresse contient l'adresse soit d'une instruction soit d'une donnée.

SM à arch. Harvard : µC PIC18F4520 (1)

PIC18F4520 : µC « 8 bits » utilisé en TP

Pas d'OS, un seul programme, 3.20 €, ce n'est pas un PC!

RS232 / RS485 / LIN

	Program Memory		Data Memory		40 Dit		CCP/	MSSP		R		Time = 0=
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	10-Bit A/D (ch)	ECCP (PWM)	SPI	Master I ² C™	EUSA	Comp.	Timers 8/16-Bit
PIC18F4520	32K	16384	1536	256	36	13	1/1	Υ	Y	1	2	1/3

SM à arch. Harvard : µC PIC18F4520 (2)

Mémoire de programme : héberge les instructions

- Organisée en octets chacun référencé par une adresse (@) unique : 0x0000, 0x0001, etc.
- Le bus d'adresse de la mémoire de programme est sur 21 bits donc Mo adressables.
- Dans les faits, seuls les 32 premiers Ko sont implémentés en technologie FlashROM.
- Les @ vont donc seulement de 0x à 0x .
- Il faut 16 bits (= *un single-word*) pour stocker une instr. élémentaire donc instr. MAX.
- On donne l'@ du premier octet de stockage d'une instruction : 0x0000, 0x0002, etc.

L'adresse de l'instruction à exécuter est fixée par les 21 bits du Bus d'Adresse de la mémoire de Programme (BAP).

	Adresse	Contenu sur 16 bits (code machine)		
	0x0000	0x6E20	Ici au <i>reset</i>	
>	0x0002	0x0E55	(matériel ou logiciel)	
	0x0004	0x6E8C		
_			1 1	_

Program Memory												Timers			
Device						0x7l	FFC			0xFF	FF			Comp.	8/16-Bit
	(bytes)	Instructions	(1	0.71	FFE			0xFF			_				
PIC18F4520	32K	16384	1000		1 00	10	1 1/1	UXI I	L	45		2	1/3		

SM à arch. Harvard : µC PIC18F4520 (3)

Mémoire de données : héberge les données par 8 bits

- Organisée en octets chacun référencé par une adresse (@) unique : 0x000, 0x001, etc.
- Le bus d'adresse de la mémoire de donnée est sur 12 bits donc 4 Ko adressables.
- Dans les faits, seuls les 1536 premiers octets sont implémentés en technologie SRAM.
- Microchip les appelle des General Purpose Registers => stockage des variables en langage C.
- Les @ des GPR vont donc seulement de 0x___ à 0x___.
- A l'autre extrémité des 4 Ko possibles figurent 128 octets appelés Special Function Registers.
- Les SFR configurent les interfaces / modules périphériques et le cœur du µC.

L'@ de la donnée à considérer est fixée par les 12 bits du Bus d'Adresse de la mémoire de Donnée (BAD).

Adresse	Contenu sur 8 bits
0x000	0x42
0x001	0x4F
0x002	0x4E

	Prog	ram Memory	Data		
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	The second secon	I/O
PIC18F4520	32K	16384	1536	256	36

Les @ des SFR vont de 0x à 0x .

0x5FE	0xFF
0x5FF	0xFF

SM à arch. Harvard : µC PIC18F4520 (4)

Mémoire de données :

Exemple d'utilisation du SFR LATA :

3 registres pour contrôler le timer 1 :

Remarque sur la notation des adresses en hexadécimal (base 16) : FFFh (Microchip) = 0xFFF (langage C)

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	CCPR1H	F9Fh	IPR1
SFFEH	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR2H	F9Ch	(2)
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR2L	F9Bh	OSCTUNE
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	(2)
FF9h	PCL	FD9h	FSR2L	FB9h	_(2)	F99h	_(2)
FF8h	TBLPTRU	FD8h	STATUS	FB8h	BAUDCON	F98h	(2)
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	PWM1CON(3)	F97h	(2)
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCP1AS(3)	F96h	TRISE(3)
FF5h	TABLAT	FD5h	T0CON	FB5h	CVRCON	F95h	TRISD(3)
FF4h	PRODH	FD4h	(2)	FB4h	CMCON	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	HLVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	(2)
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	(2)
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	(2)
FEEh	POSTINCO(1)	FCEh	TMR1L	FAEh	RCREG	F8Eh	(2)
FEDh	POSTDECO ⁽¹⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE(3)
FECh	PREINCO ⁽¹⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD(3)
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	(2)	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	_(2)
FE7h	INDF1 ⁽¹⁾	FC7h	SSPSTAT	FA7h	EECON2 ⁽¹⁾	F87h	(2)
FE6h	POSTINC1(1)	FC6h	SSPCON1	FA6h	EECON1	F86h	(2)
FE5h	POSTDEC1(1)	FC5h	SSPCON2	FA5h	(2)	F85h	(2)
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	(2)	F84h	PORTE(3)
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	(2)	F83h	PORTD(3)
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

SM à arch. Harvard : µC PIC18F4520 (5)

Diapo suivante : Architecture PIC18F4520. Cf. page 13 de 39631E.pdf

*3 - Architecture des Systèmes à Microprocesseur

FIGURE 1-2: PIC18F4420/4520 (40/44-PIN) BLOCK DIAGRAM Data Bus<8> Table Pointer<21> RA0/AN0 Data Latch inc/dec logic RA2/AN2/VREF-/CVREF Data Memory RA3/AN3/VREF+ (3.9 Kbytes) RA4/T0CKI/C1OUT PCLATU PCLATH ► X RA4/T0CKI/C1OUT ► X RA5/AN4/SS/HLVDIN/C2OUT ► X OSC2/CLKO⁽³⁾/RA6 ► X OSC1/CLKI⁽³⁾/RA7 21 Address Latch PCU PCH PCL Program Counter 12 Data Address<12> PORTB RB0/INT0/FLT0/AN
RB1/INT1/AN10
RB1/INT1/AN10
RB2/INT2/AN8
RB3/AN9/CCPp2(1)
RB4/KB10/AN11
RB5/KB11/PGM
RB6/KB12/PGC
RB7/KB13/PGD 31-Level Stack RB0/INT0/FLT0/AN12 Address Latch BSR Access Bank Program Memor (16/32 Kbytes) FSR0 STKPTR FSR1 FSR2 Data Latch incided logic Table Latch Address ROM Latch Decode RC0/T10SO/T13CKI Instruction Bus <16> RC1/T10SI/CCP2(1) RC2/CCP1/P1A RC3/SCK/SCL RC4/SDI/SDA RC5/SDO RC6/TX/CK RC7/RX/DT RC5/SDO Instruction Decode and Control Signals Control PRODH PRODL 8 x 8 Multiply RD0/PSP0:RD4/PSP4 BITOP 8 W RD5/PSP5/P1B RD6/PSP6/P1C RD7/PSP7/P1D OSC1(3) Internal Oscillator Power-up Timer Block OSC2(3) Oscillator ALUK8> tart-up Timer INTRO Oscillator Power-on T10SI 🖂 Reset 8 MHz Watchdog Timer T10SO Oscillator RE0/RD/AN5 Precision Band Gap Brown-out RE1/WR/AN6 MCLR(2) Single-Supply Reset RE2/CS/AN7 Programming In-Circuit Reference Fail-Safe MCLR/VPP/RE3(2) Voo, Vss X-Clock Monitor Debugger Data BOR EEPROM Timer0 Timer1 Timer2 Timer3 HLVD ADC 10-Bit ECCP CCP2 MSSP EUSART Comparato

(page 11 de 39631E.pdf)