МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №7

по дисциплине «Операционные системы»

Тема: Построение модуля оверлейной структуры

Студент гр. 7383	 Васильев А.И.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2019

Цель работы.

Исследование возможности построения загрузочного модуля оверлейной структуры. Исследуется структура оверлейного сегмента и способ загрузки и выполнения оверлейных сегментов. Для запуска вызываемого оверлейного модуля используется функция 4В03h прерывания int 21h. Все загруженные и оверлейные модули находятся в одном каталоге.

В этой работе также рассматривается приложение, состоящее из нескольких модулей, поэтому все модули помещаются в один каталог и вызываются с использованием полного пути.

Таблица 1 – Описание функций.

Название функции	Назначение	
OVL_PATH	формирование пути до оверлея	
MEM_FREE	очищение памяти по размеру	
	программы	
READ_OVL	определение размера оверлея, запрос	
	необходимой памяти	
LOAD_OVL	загрузка оверлея	
CLEAN_MEM	очищение памяти между загрузками	
	оверлеев	
ERRORS	вывод сообщений об ошибках	
WriteStr	вывод строки на экран	
BYTE_TO_HEX	перевод байта в AL в два числа	
	в 16-ой с/с в АХ, в АL старшая цифра,	
	в АН младшая	
TETR_TO_HEX	вспомогательная функция для	
	работы функции ВҮТЕ_ТО_НЕХ	

Результат работы программы.

- 1) Запуск программы lab7.exe (см. рис. 1);
- 2) Повторный запуск из другого каталога (см. рис. 2);
- 3) Запуск без оверлеев (см. рис. 3).

```
C:\>lab7.exe
Overlay loaded successfully
Overlay1 address:01E7H
Cleaned successfully
Overlay loaded successfully
Overlay2 address:01E7H
Cleaned successfully
```

Рисунок 1 – Загрузка оверлеев и очищение

```
C:\DIR>C:\lab7.exe
Overlay loaded successfully
Overlay1 address:01E7H
Cleaned successfully
Overlay loaded successfully
Overlay2 address:01E7H
Cleaned successfully
```

Рисунок 2 – Запуск lab7.exe из другого каталога

```
C:\>lab7.exe
Error: file not found
Error: file not found
```

Рисунок 3 – Запуск lab7.exe без оверлеев

Выводы.

В процессе выполнения данной лабораторной работы была исследована возможность построения загрузочного модуля оверлейной структуры.

Ответы на контрольные вопросы.

1) Как должна быть устроена программа, если в качестве оверлейного сегмента использовать .СОМ модули?

При загрузке сот модуля-оверлея сот сегмент загружается без смещения в 100h, из-за этого вызов функции происходит не по нулевому смещению, а по смещению 100h. Такое смещение нужно компенсировать уменьшением сегментного адреса на 100h.