Colles - Semaine 3

Série 1

Question de cours

Quelle est la nature de la série $\sum \ln \left(1 + \frac{1}{n}\right)$.

Exercice

Si
$$a = (a_1, a_2, a_3, a_4) \in \mathbb{R}^4$$
, on pose $M(a) = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & 0 & a_2 \\ 0 & 0 & 0 & a_3 \\ a_1 & a_2 & a_3 & a_4 \end{pmatrix}$.

On note F le sous-espace vectoriel de $\mathcal{M}_4(\mathbb{R})$ constitué des matrices M(a) lorsque a parcourt \mathbb{R}^4 .

On note
$$J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
.

- 1. Soit E un espace vectoriel de dimension finie égale à n.
 - a) Question de cours : Rappeler la définition du sous-espace vectoriel engendré par une famille (x_1, \ldots, x_p) de vecteurs de E. Dans quel cas la famille (x_1, \ldots, x_p) est-elle une base de $\operatorname{Vect}(x_1, \ldots, x_p)$?
 - b) Soit E_1 de base (x_1, \ldots, x_p) et E_2 de base (y_1, \ldots, y_q) deux sous-espaces vectoriels de E tels que $E_1 \cap E_2 = \{0_E\}$. Montrer que la famille $(x_1, \ldots, x_p, y_1, \ldots, y_q)$ est libre. Qu'en déduit-on sur p + q?
- 2. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_4(\mathbb{R})$ et en donner la dimension.
- 3. Soit (e_1, e_2, e_3, e_4) la base canonique de \mathbb{R}^4 . Pour $i \in [1, 4]$, on pose $M_i = M(e_i)$. Montrer que $\forall i \in [1, 4]$, la matrice $M_i + J$ est inversible et que la famille $(M_i + J)_{1 \le i \le 4}$ est libre.
- 4. Soit $a \in \mathbb{R}^4$. Montrer que si pour tout réel θ non nul, la matrice $M(a) + \theta J$ est non inversible, alors a = (0,0,0,0).
- 5. Soit G un sous-espace vectoriel de $\mathcal{M}_4(\mathbb{R})$ qui ne contient aucune matrice inversible et tel que $J \in G$.
 - a) Déterminer $G \cap F$ et en déduire que la dimension de G est inférieure ou égale à 12.
 - b) Existe-t-il un sous-espace vectoriel de $\mathcal{M}_4(\mathbb{R})$ de dimension 12 ne contenant aucune matrice inversible et contenant J?

Série 2

Question de cours

Calculer
$$\sum_{k=0}^{n} \frac{k^2}{(-5)^k}$$
.

Exercice

Un péage comporte 10 guichets numérotés de 1 à 10. Le nombre de voitures N, arrivant au péage en 1 heure, suit une loi de Poisson de paramètre $\lambda > 0$. On suppose de plus que les conducteurs choisissent leur file au hasard et indépendamment des autres. Soit X_1 la variable aléatoire égale au nombre de voitures se présentant au guichet n°1 en une heure.

- 1. Déterminer le nombre moyen de voitures arrivant au péage en une heure.
- 2. Quelle est la proba qu'une voiture qui arrive au péage se dirige vers le guichet n°1?
- 3. Calculer $\mathbb{P}_{[N=n]}([X_1=k])$ pour tout $0 \leqslant k \leqslant n$. Et pour k > n?

4. Justifier que
$$\mathbb{P}([X_1=k])=\sum_{n=k}^{+\infty}\mathbb{P}_{[N=n]}([X_1=k])\times\mathbb{P}([N=n])$$

puis montrer que
$$\mathbb{P}([X_1 = k]) = e^{-\lambda} \left(\frac{1}{10}\right)^k \frac{\lambda^k}{k!} \sum_{n=0}^{+\infty} \left(\frac{9}{10}\right)^n \frac{\lambda^n}{n!}.$$

5. En déduire la loi de X_1 , son espérance et sa variance

Série 3

Question de cours

Démonstration de « Une application linéaire est un isomorphisme si et seulement si elle envoie bases sur bases »

Exercice

On lance successivement une pièce truquée dont la probabilité de faire face est de $p \in]0,1[$. Pour $n \ge 1$, notons F_n : « Obtenir Face au n-ième lancer », et

 P_n : « Obtenir Pile au n-ième lancer ».

On note T_n : « le premier Pile est obtenu au n-ième lancer ».

- 1. Pour $n \ge 1$, exprimer l'événement T_n en fonction des F_i et P_i .
- 2. Donner $\mathbb{P}(T_n)$ en fonction de p et n.
- 3. On lance la pièce une infinité de fois. Écrire les événements suivants :
 - $-A_n$: « obtenir au moins un pile au cours des n premiers lancers. »,
 - -A: « obtenir au moins un pile ».
- 4. Parmi les suites (F_n) , (P_n) , (T_n) et (A_n) , lesquelles sont croissantes? décroissantes?
- 5. Parmi les suites (F_n) , (P_n) , (T_n) et (A_n) , lesquelles sont constituées d'événements mutuellement indépendants?
- **6.** Donner la probabilité $\mathbb{P}(A)$. Que peut-on dire de l'événement A?

Exercice supplémentaire

- 1. Un tirage au Loto est une combinaison (l'ordre ne compte pas) de 6 numéros distincts compris entre 1 et 49. Quelle est la probabilité (on donne : $\binom{49}{6} = 13983816$), notée p dans la suite, de gagner (c-à-d d'avoir les 6 bons numéros) au Loto?
- 2. On joue au loto indéfiniment et on définit un événement en posant : $A=\ll$ on gagne au moins une fois », et pour tout $n\in\mathbb{N}^*$:
 - $A_n =$ « on gagne pour la première fois au $n^{\text{ème}}$ tirage »,
 - $B_n =$ « on gagne au n-ème tirage ».

Exprimer A_n à l'aide des B_k . En déduire $\mathbb{P}(A_n)$ en fonction de p.

3. En déduire $\mathbb{P}(A)$ en exprimant A à l'aide des A_n . Comment appelle-t-on un tel événement A?