Part 4: Capital Structure

- Static capital structure:
 - Leland, H., 1994, "Corporate Debt Value, Bond Covenants, and Optimal Capital Structure," JF.
- Dynamic capital structure:
 - Goldstein, R., Ju, N. and H. Leland, 2001, "An EBIT-Based Model of Dynamic Capital Structure," JB.
- Finite maturity debt:
 - Leland, H. and K. Toft, 1996, "Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads," JF.
 - Hilberink, B. and L. C. G. Rogers, 2002, "Optimal Capital Structure and Endogenous Default," F&S.
- Dynamic trade-off theory and empirics:
 - Strebulaev, I. A., 2007, "Do Tests of Capital Structure Theory Mean What They Say?," JF.

Static •000000 Dynamic 000

Finite Maturity

Trade-Off Theory

References

Notation:

- r = constant risk-free rate.
- X = cash flow (EBIT), GBM with coefficients $\mu < r$ and σ under RNP.
- C = constant coupon on consol.
- $\alpha =$ proportional deadweight costs of bankruptcy.
- τ_i = tax rate on interest payments.
- $\tau_{\rm eff} =$ effective tax rate on equity income:
 - τ_c = corporate tax rate.
 - τ_d = tax rate on dividends.
 - $1 \tau_{\text{eff}} \stackrel{\text{def}}{=} (1 \tau_c)(1 \tau_d)$.
- $x^* =$ default boundary. Firm defaults at

$$H \stackrel{\mathsf{def}}{=} \min\{t \mid X_t \leq x^*\}.$$

Distribution of Cash Flows and Present Values

	Cash Flow	Present Value
	Before <i>H</i>	At <i>H</i>
Shareholders	$(1- au_{ ext{eff}})(X-C)$	0
Deadweight Costs	0	$lpha x^*/(r-\mu)$
Bondholders	$(1- au_i)C$	$(1- au_{eff})(1-lpha)x^*/(r-\mu)$
Government	$ au_i C + au_{ ext{eff}}(X-C)$	$ au_{eff}(1-lpha)\mathbf{x}^*/(\mathbf{r}-\mu)$
Total	X	$x^*/(r-\mu)$

- Note: The firm has pre-tax losses when X < C. Above formula assumes full tax loss offsets.
- Restrictions on deducting losses implies strictly convex tax schedule, which could be incorporated.

Static OOOOOO

Dynamic 000 Finite Maturity

Trade-Off Theory

References

Valuation

Need to value:

- Value of receiving 1 at hitting time
- Value of receiving 1 until hitting time
 - Equals value of receiving 1 forever minus value of receiving 1 after hitting time
 - Equals 1/r minus value of receiving 1/r at hitting time
- Value of receiving X until hitting time
 - Equals value of receiving X forever minus value of receiving X after hitting time
 - Equals $X_t/(r-\mu)$ minus value of receiving $x^*/(r-\mu)$ at hitting time

Valuation cont.

Value V of receiving 1 at hitting time satisfies

$$x\mu V'(x) + \frac{1}{2}x^2\sigma^2 V''(x) = rV(x)$$

for
$$x > x^*$$
, $V(x^*) = 1$, and $\lim_{x \to \infty} V(x) = 0$.

• Solution is $V(x) = (x^*/x)^{\gamma}$, where γ is the absolute value of the negative root of

$$\frac{1}{2}\sigma^2\beta^2 + \left(\mu - \frac{1}{2}\sigma^2\right)\beta = r.$$

Static

Dynamic

Finite Maturity

Trade-Off Theory

References

Debt and Equity Values

Equity value is

$$E(x, x^*, C) = (1 - \tau_{\text{eff}}) \left[\frac{x}{r - \mu} - \frac{x^*}{r - \mu} \left(\frac{x^*}{x} \right)^{\gamma} - \frac{C}{r} + \frac{C}{r} \left(\frac{x^*}{x} \right)^{\gamma} \right].$$

Debt value is

$$\begin{split} D(x, x^*, C) &= (1 - \tau_i) \left[\frac{C}{r} - \frac{C}{r} \left(\frac{x^*}{x} \right)^{\gamma} \right] \\ &+ (1 - \tau_{\text{eff}}) (1 - \alpha) \left(\frac{x^*}{r - \mu} \right) \left(\frac{x^*}{x} \right)^{\gamma} \,. \end{split}$$

Optimal Default Boundary

- The optimal default boundary x^* is determined by $E_{x^*}(x, x^*, C) = 0$.
 - We always have value matching: $E(x^*, x^*, C) = 0$.
 - Therefore,

$$E_{x}(x,x^{*},C)\Big|_{x=x^{*}}+E_{x^{*}}(x,x^{*},C)\Big|_{x=x^{*}}=0.$$

• Therefore,

$$E_{x^*}(x,x^*,C)=0\Big|_{x=x^*}=0 \quad \Rightarrow \quad E_x(x,x^*,C)\Big|_{x=x^*}=0.$$

- The last condition is smooth pasting.
- Using either $E_{X^*}(x, X^*, C) = 0$ or smooth pasting, we find

$$x^* = (r - \mu) \frac{C}{r} \left(\frac{\gamma}{1 + \gamma} \right).$$

Static

Dynamic

Finite Maturity

Trade-Off Theory

References

Optimal Leverage

- Assume there are proportional flotation costs q. Let x*(C) denote the optimal default boundary.
- Given the initial value x_0 , the firm chooses C to maximize

$$E(x_0, x^*(C), C) + (1 - q)D(x_0, x^*(C), C)$$
.

- Agency problem:
 - x^* is chosen to maximize the equity value, not the equity cum debt value.
 - It is ex-post optimal (after debt is issued) not ex-ante optimal (before debt is issued).

Scaling

The optimal coupon is

$$C^* = x_0 \left(\frac{r}{r - \mu} \right) \left(\frac{1 + \gamma}{\gamma} \right) \left[\left(\frac{1}{1 + \gamma} \right) \left(\frac{A}{A + B} \right) \right]^{1/\gamma},$$

where

$$egin{aligned} A &= (1-q)(1- au_i) - (1- au_{ ext{eff}}) \,, \ B &= rac{\gamma}{1+\gamma} (1- au_{ ext{eff}}) [1-(1-q)(1-lpha)] \,. \end{aligned}$$

- An all-equity firm ($C^* = 0$) is optimal if A < 0.
- Note that C^* and $x^*(C^*)$ are proportional to x_0 .

Static 0000000

Dynamic

Finite Maturity

Trade-Off Theory

References

Re-Levering

- Suppose the firm can issue new debt whenever it wants.
 - Assume existing debt must be retired (called at face value) before new debt can be issued, due to covenants.
 - Re-issuing existing debt is a fixed cost. Option will be exercised at discretely spaced times.
- The firm chooses two boundaries $x_L < x_U$ with x_L the default boundary and x_U the refinance boundary.
- When the firm refinances, it chooses new coupon C' and new default and refinance boundaries x'_L and x'_U .
- Because of scaling,

$$\frac{C'}{x_U} = \frac{C}{x_0}, \qquad \frac{x'_L}{x_U} = \frac{x_L}{x_0}, \qquad \frac{x'_U}{x_U} = \frac{x_U}{x_0}.$$

• So, $C' = \lambda C$, $x'_L = \lambda x_L$, $x'_U = \lambda x_U$, where $\lambda = x_U/x_0$.

Valuation

- Can reduce to valuing:
 - Receive 1 at hitting time of x_L if x_L is hit before x_U ,
 - Receive 1 at hitting time of x_U if x_U is hit before x_L .
- Prior to hitting times, values satisfy

$$x\mu V'(x) + \frac{1}{2}x^2\sigma^2 V''(x) = rV(x)$$
.

Values are of form

$$V(x) = A_1 x^{\beta} + A_2 x^{-\gamma},$$

where β is positive root and γ is the absolute value of the negative root of the quadratic equation.

- Constants determined from
 - $V(x_L) = 1$ and $V(x_U) = 0$.
 - $V(x_L) = 0$ and $V(x_U) = 1$.

Static

Dynamic

Finite Maturity

Trade-Off Theory

References

Implications

Absent the option to relever, the optimal leverage ratio

$$\frac{D(x_0, x^*, C^*)}{D(x_0, x^*, C^*) + E(x_0, x^*, C^*)}$$

is much higher than observed empirically.

- Adding the option to relever reduces the optimal leverage ratio to levels observed empirically.
- Adding the option to relever also reduces the bankruptcy threshold, because it increases the value of keeping the firm alive.

Finite Maturity Debt

- In (t, t + dt), firm issues new debt with face value p dt and maturity profile ϕ , where $\phi \ge 0$ and $\int_0^\infty \phi(s) ds = 1$.
- The face value of debt outstanding at time t that matures in (s, s + ds) for $s \ge t$ is therefore

$$\left(\int_{-\infty}^{t} p\phi(s-v) \,\mathrm{d}v\right) \,\mathrm{d}s = p\Phi(s-t) \,\mathrm{d}s,$$

where

$$\Phi(s) \stackrel{\mathsf{def}}{=} \int_{s}^{\infty} \phi(y) \, \mathrm{d}y.$$

The total face value outstanding is constant and equal to

$$P=p\int_0^\infty \Phi(s)\,\mathrm{d}s$$
.

- Leland-Toft: ϕ is delta function at T.
- Leland (1994 working paper): $\phi(t) = me^{-mt}$.

Static

Dynamic

Finite Maturity

Trade-Off Theory

References

Valuing Debt

- Assume the coupon on all debt is the same constant c.
- Value of debt with face value 1 and maturity T:
 - Coupon c dt until T ∧ H, where

$$H \stackrel{\mathsf{def}}{=} \inf\{t \mid X_t \leq x^*\}.$$

- Face 1 at T if T < H,
- 1/P times $(1 \tau_{\text{eff}})(1 \alpha)x^*/(r \mu)$ at H if $H \leq T$.
- Can reduce everything to valuing
 - Receiving 1 at T if T < H,
 - Receiving 1 at H if $H \leq T$.
- Given c, p, and ϕ , calculate issue price d(x) of new debt.

Optimal Default and Rollover Risk

• Total coupons paid in (t, t + dt) equal C dt, where

$$C = c \int_0^\infty \Phi(s) \,\mathrm{d}s$$
.

Cash flows to shareholders equal

$$(1 - \tau_i)[d(X) - p + (1 - \tau_c)(X - C)]$$

until default.

- Can calculate optimal default boundary similar to before.
- When x is small, d(x) p < 0 is a cash outflow due to debt rollover. This induces earlier default.
- Deducting illiquidity premium in d(x) accelerates default.
 - He, Z. and W. Xiong, 2012, "Rollover Risk and Credit Risk," JF.
 - He, Z. and K. Milbradt, 2013, "Endogenous Liquidity and Defaultable Debt."

Static

Dynamic

Finite Maturity

○○●

Trade-Off Theory

References

Credit Spread Puzzle

- Model implies credit spread goes to zero as maturity approaches zero, which is counter-factual.
- Jump risk:
 - Hilberink, B. and L. C. G. Rogers, 2002, "Optimal Capital Structure and Endogenous Default," F&S.
- Incomplete information:
 - Duffie, D. and D. Lando, 2001, "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica.
- Illiquidity

Strebulaev, JF, 2007

- Consol debt.
- Relevering option
- Strictly convex tax schedule: $\tau_{\rm eff}$ takes two values, being lower when taxable income is small (negative)
- Proportional cost of negative dividends (raising equity):
 (1 + q_E)z is paid by shareholders to cover a cash flow deficit of z
- Asset sales to repay debt when in distress

Static 0000000

Dynamic 000 Finite Maturity

Trade-Off Theory

●●○○○○

References o

References

Asset Sales

- Strebulaev (JF, 2007) assumes firms can sell assets to retire debt when in distress.
 - Sell fraction 1 k of assets to all-equity firm.
 - Value to all equity firm is

$$(1-k)(1- au_{\mathsf{eff}})rac{x}{r-\mu}$$
 .

Firm sells at a discount (fire sale) and receives

$$(1-q_A)(1-k)(1- au_{\mathsf{eff}})rac{x}{r-\mu}$$
.

 Funds received are used to retire debt. Costly to retire debt, so only

$$(1-q_R)(1-q_A)(1-k)(1- au_{\sf eff})rac{x}{r-\mu}$$

in debt is retired.

• Firm chooses x_U at which to relever, x_L at which to sell assets, and x_B at which to default.

Source: Strebulaev, I. A., 2007, "Do Tests of Capital Structure Theory Mean What They Say?," *Journal of Finance* 62, 1747–1787.

Static

Dynamic

Finite Maturity

Trade-Off Theory

References

Trade-Off Theory and Implications

Trade-off theory: firms choose leverage to balance the tax advantage of debt with deadweight costs of distress. Some implications:

- Firms should have high leverage
 - Deadweight costs of distress and bankruptcy are small compared to taxes
- More profitable firms should have higher leverage
 - More profitable firms have more income in need of tax sheltering.
 - More profitable firms are less likely to experience distress and deadweight bankruptcy costs.
- Firms should issue debt when the market value of equity increases
- Leverage ratios should mean revert

Empirics Re Trade-Off Theory

- Average quasi-market leverage ratio around 30%, which seems small
- More profitable firms have lower leverage
- Oebt levels do not change in response to one-year changes in market equity
- Leverage mean reverts "at a snail's pace" (Fama and French, 2002)

Static 0000000

Dynamic 000

Finite Maturity

Trade-Off Theory

○○○○●○

References

Strebulaev's Simulation

- Calibrate model.
- Generate 300 quarters of data for 3,000 firms.
 - Normal (Brownian) shock simulated as sum of common shock and idiosyncratic shock
- Discard first 148 quarters, leaving 38 years of "data"
- Calculate sample statistics including panel regressions
- Repeat 1,000 times to obtain sampling distribution of statistics

Results

- Average leverage ratios are small
 - Due to relevering option
- More profitable firms have lower leverage
 - Firms refinance infrequently
 - More profitable firms experience increases in market equity
 - Book debt responds with a delay (costly refinancing)
 - Market debt responds slightly but mostly with a delay
- Orrelation between one-year changes in market equity and debt issues are small
 - Refinancing is driven by long-term changes in profitability and market equity
- Mean reversion of leverage is slow

Static

Dynamic

Finite Maturity

Trade-Off Theory

References

Some Additional References

- Hennessy, C. A. and T. M. Whited, 2005, "Debt Dynamics," Journal of Finance 60, 1129–1165.
- Strebulaev, I. A. and T. M. Whited, 2012, "Dynamic Models and Structural Estimation in Corporate Finance," Foundations and Trends in Finance 6, 1–163.
- Welch, I., 2013, "A Critique of Recent Quantitative and Deep-Structure Modeling in Capital Structure and Beyond," Critical Finance Review.
- Strebulaev, I. A. and T. M. Whited, 2013, "Dynamic Corporate Finance is Useful: A Comment on Welch (2013)," Working Paper.
- Hugonnier, J., S. Malamud, and E. Morellec, 2012, "Credit Market Frictions and Capital Structure Dynamics," Working Paper.