UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO - UFES

Dionatas Santos Brito

DIODOS DE JUNÇÃO PN COM O QUCS (Quite Universal Circuit Simulator)

Vitória, 28 de setembro de 2020

1- OBJETIVO

Utilizar o software Ques para realizar simulações e verificar as características de condução e de chaveamento de um díodo de junção PN, a característica de ruptura do diodo zener e sua aplicação como estabilizador de tensão.

Antes de ir para a parte prática, é interessante ressaltar as curvas características de ambos diodos e suas diferenças;

A curva característica de diodo 1N4007 apresenta alta capacidade de corrente, baixa queda de tensão.

Corrente x Tensão do 1N4007

gráfico da curva característica do diodo 1N4007

Quando a tensão reversa está menor que a tensão de ruptura, o diodo zener funciona como um diodo comum, mas quando a tensão reversa aumenta o diodo zener conduz e passa a corrente elétrica, pois é destinado a trabalhar reversamente;

Corrente x Tensão diodo de Zener

gráfico da curva característica do diodo de Zener

Experimento

3.2.3 – Foi Criado o circuito no simulador e medido a corrente do resistor e a tensão na fonte e no diodo na polarização direta;

Tensão na Fonte CC (V)	Tensão no diodo (V)	Corrente no resistor (mA)
0,201	0,2	0,0001
0,403	0,4	0,033
0,547	0,5	0,00475
1,3	0,6	0.718
10.5	0,7	9.75

3.2.4 – aumentando a tensão de 5V a 20V foi observado que, quanto maior foi a tensão da fonte menor foi a variação da tensão do diodo, sendo assim, quão maior for a tensão aplicada ao circuito, menor vai ser a resistência do diodo.

Tensão na Fonte CC (V)	Tensão no diodo (V)	Corrente no resistor (mA)
5	0,669	0.00433
10	0,698	0.0093
15	0,714	0.0143
20	0,727	0.0193

3.2.6 – Invertendo a polaridade da fonte, o diodo a tensão no diodo ficou igual a da fonte e a corrente zerou, ou seja, se tornou um circuito aberto;

Tensão na Fonte CC (V)	Tensão no diodo (V)	Corrente no resistor (mA)
5	-5	0
10	-10	0
15	-15	0
20	-20	0
30	-30	0

3.2.7 – Usando o diodo zener, foi repetido os mesmos passos anteriores;

Quando foi aplicado tensões baixas, ocorreu o efeito da barreira de potencial do diodo zener, se comportando próximo a um circuito aberto e em tensões maiores que 0,721, se comportou como um curto-circuito;

Tensão na Fonte CC (V)	Tensão no diodo (V)	Corrente no resistor (mA)
0,2	0,2	0,00012
0,54	0,4	0,139
4,62	0,5	4,12
51,1	0,6	50,5
160	0,7	159

Quando aplicado tensões maiores que 0,721 V os valores encontrados foram bem próximos dos valores encontrados na montagem com o diodo 1N4007;

Tensão na Fonte CC (V)	Tensão no diodo (V)	Corrente no resistor (mA)
5	0,502	4,5
10	0,527	9,47
15	0,542	14,5
20	0,553	19,4

De acordo com o datasheet do diodo zener possui uma tensão de ruptura entre 5,2 e 6V, ou seja, com uma pequena diferença de tensão no diodo a corrente aumenta muito;

Tensão na Fonte CC (V)	Tensão no diodo (V)	Corrente no resistor (mA)
5	-3,57	-1,43
10	-3,68	-6,32
15	-3,73	-11,3
20	-3,76	-16,2
30	-3,81	-26,2

3.3.3 - Diodo com Chave

Simulando um circuito com diodo retificador 1N4007 alimentado por um sinal quadrático para a frequência de 200Hz

Simulando um circuito com diodo retificador 1N4007 alimentado por um sinal quadrático para a frequência de 5kHz

Simulando um circuito com diodo retificador 1N4007 alimentado por um sinal quadrático para a frequência de 20kHz

Simulando um circuito com diodo retificador 1N4148 alimentado por um sinal quadrático para a frequência de 200Hz

Simulando um circuito com diodo retificador 1N4148 alimentado por um sinal quadrático para a frequência de 5kHz

Simulando um circuito com diodo retificador 1N4148 alimentado por um sinal quadrático para a frequência de 20kHz

