Week 1

Classifying Critical Points

Theorem 1.1 2nd Derivative Test

Let $f \in C^2(\Omega)$ and let $a \in \Omega(\Omega \subseteq \mathbb{R}^n)$ be a critical point of f.

- 1. If $H_f(a)$ is positive definite then f has a local minimum at a.
- 2. If $H_f(a)$ is negative definite then f has a local maximum at a.
- 3. If $H_f(a)$ is indefinite then f has a saddle point at a.

Recall: Any symmetric $n \times n$ matrix A can be diagonalized, i.e., \exists an orthonormal basis u_1, u_2, \ldots, u_n in \mathbb{R}^n and real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $Au_i = \lambda_i u_i \forall i = 1, 2, \ldots, n$.

Proposition 1.2

Let Q be the quadratic form associated with an $n \times n$ symmetric matrix A. Then:

- 1. Q is positive \iff all the eigenvalues of A are positive,
- 2. Q is negative \iff all the eigenvalues of A are negative,
- 3. Q is indefinite \iff A has both positive and negative eigenvalues.

Corollary 1.3

Let a be a critical point of a C^2 function $f: \Omega \to \mathbb{R}$. If $\det H_f(a) \neq 0$, then f has either a local minimum or a local minimum or a saddle point at a.

Definition of degenerate critical points:

A critical point a of a C^2 function f is called non-degenerate if $\det H_f(a) \neq 0$ and degenerate otherwise.

Example of a degenerate critical point:

When $f(x,y) = x^3$ then (0,0) is a degenerate critical point of f, and f has neither a local extremum at (0,0) nor a saddle point.

Definition of the principal minors of a matrix:

Let $A = (a_{ij})_{i,j=1}^n$ be an $n \times n$ matrix. Given $k = 1, 2, \ldots, n$, we will denote by A_k the $k \times k$ submatrix $A_k = (a_{ij})_{i,j=1}^k$. The determinants $\det A_k$ are called the **principal minors of A**.

Proposition 1.4

Let A be a symmetric $n \times n$ matrix with $\det A \neq 0$. Then:

- 1. A is positive definite \iff det $A_k > 0 \forall k = 1, 2, ..., n$.
- 2. A is negative definite \iff $(-1)^k \det A_k > 0 \forall k = 1, 2, ..., n$.
- 3. A is indefinite \iff A is neither positive definite nor negative definite.