Impact of capital raise on return of firms

Evidence from Tehran Stock Exchange

S.M. Aghajanzadeh M. Heidari

A. Ebrahim Nejad

Tehran Institute for Advanced Studies

February, 2021

Table of Contents

① Data

2 Abnormal Return

Results

Data

- Data consist of 3721 capital raise for 800 companies
 - Only 469 companies raise their capital after their IPO
 - Four different sources for capital rising: Cash, Saving, Revaluation, and premium

	Cash	Resereves	Premium	Revaluation	Hybrid
Event	1273	681	91	39	232
Percent	55.91	29.91	4	1.71	10.19

Value of Raised Capital for each Firm

Value of Raised Capital for each Firm

Percent of Raised Capital for each Firm

Number of Capital Raise for each Firm

Note: Number of Capital Raise from each source

Table of Contents

Data

Abnormal Return

Results

 Abnormal return is the difference between the observed return and the predicted return

$$AR_{i,t} = R_{i,t} - E(R_{i,t}|X_t)$$

- Predicted return
 - Mean-adjusted returns Model (MAR) $\longrightarrow \bar{R}_i$
 - Market-adjusted returns Model (MKAR) $\longrightarrow R_{M,t}$
 - Risk-adjusted returns Model (RAR) $\longrightarrow \alpha_i + \beta_i R_{M,t}$

Abnormal Return Calculation

First Step

- Event windows specifically 3-day, 7-day, and 11-day event periods
- Estimation window: Each event window implies a particular estimation window interval. (For example, 3-day event window [-1,+1] is associated with [-122,-2] estimation window)
- Fama, Fisher, Jensen, and Roll use Event Window as Estimation Window [IER-1969-The Adjustment of Stock Prices to New Information]

Abnormal Return Calculation

Second Step

For each Firm :

$$R_{i,t} - R_f = \hat{\alpha}_i + \hat{\beta}_i (R_{m,t} - R_f) + \overline{|\varepsilon_{i,t}|} \rightarrow AR_{i,t}$$

 $\bullet \ \, \text{Average abnormal return during period } t: \ \, \textit{N}_{t} \text{ is the number of firms in the sample during}$

period t

$$AAR_t = \sum_{i=1}^{N_t} \frac{AR_{it}}{N_t}$$

• Cumulative average abnormal return from period t_1 to period t_2

$$CAAR_{t_1,t_2} = \sum_{i=t_1}^{t_2} AAR_i$$

Abnormal Return Calculation

Cross-Sectional Test

• Hypothesis is
$$\begin{cases} H_0: CAAR = 0 \\ H_1: CAAR \neq 0 \end{cases}$$

- The t-statistics for this test is
 - $t_{CAAR} = \sqrt{N} \frac{CAAR}{S_{CAAR}}$
 - $S_{CAAR}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (CAR_i CAAR)^2$
 - $CAR_i = \sum_{i=t_1}^{t_2} AR_{i,t}$

Table of Contents

Data

Abnormal Return

Results

Abnormal return of raised capital from Revaluation

Abnormal return of raised capital from Saving

Abnormal return of raised capital from Cash

Abnormal return of raised capital from Hybrid

