Basic structure for analysis

The data matrix

Weight Height Sex Eyes

John

85	1.85	M	azul
			٠
	•	•	•

Rows: Individuals (study units) (i1....in)

Columns: Variables (characteristics of individuals) (X1..Xk)

Cells: Value of variables for individuals (xik)

Type of variables

Numerical: Quantitative, measure

Categorization continuous (real quantity): **Discretization**

discrete (natural quantity):

Categoric: Qualitative, adjective

(evenctually codified)

Ordinal (ordering over modalities):

Binary (two modalities):

Nominal (unordered modalitites)

ioecnonomic status **Percentages** wear glasses Hair color **Tables**

Mean/StDev

Histogram

shoes size

BarPlots

Date: Special formats, only some softwar

Other variables

(no standar rarely used in standard data mining applications)

bles

ariables 1.055

riables information

ariables

tris tional variables

•In erval variables/Ratio variables (means, standard ev, dotplots)

Textual data

Better avoid

From Data to Decisional Knowledge

data about data

what data are

how were measured,

sense of interpretation....

©K. Gibert

Metadata File

url: <u>www.xxx.ssss.www</u>

Inclusion criteria: People in [18,65] years, no hard attacks, no smoking, no cholesterol, married, with sons or daughters....

n: nro of rows

K: nro of columns

Variable	Modalities	meaning	Туре	Measuring unit	Missing code	Measuring procedure	Range	Role
Age		Age of marriage	Num	years	" *"		[1,105]	Explanat ory
Sex		Gender	Quali		Unknow n			Explanat ory
	M	Male						
	Н	Female						
FeC		Level of Iron in blood	Num	μg/dl	NA	Biochemical analysis on blood sample measuring transferrine	[30, 200]	Explanat oyr
Anemy		The person has anemy diagnosis	Boole an		Unknow n	Levels of Fec <xxx and<="" td=""><td>©K Giba</td><td>Respons e</td></xxx>	©K Giba	Respons e

First insight to Data

- Look at Metadata
- Determine rows and columns to be kept for the analysis
- Basic descriptive analysis of remanining variables
 - -Inspect anomalies, errors, missing data, outliers
- First report about data quality
- Preprocessing
- Verify after each processing step
- Final descriptive analysis (report data improvements)

Data, Metadata

Karina Gibert

Dpt. Statistics and Operation Research

Knowledge Engineering and Machine Learning Research group at Intelligent Data Science and Artificial Intelligence Specific Research Center

Institut Universitari de Recerca en Ciència y Tecnologia de la Sostenibilitat Universitat Politècnica de Catalunya-BarcelonaTech (Spain)

k<u>arina.gibert@upc.edu</u> www.eio.upc.edu/homepages/karina

Are there any questions?...

