Question 2: critical pts & determine local max/min

(1)
$$f(x) = 3x^2 + x - 2$$
.
 $f(x) = 6x + 1 = 0 \Rightarrow x = -\frac{1}{6}$
 $f(-1) = 6(-1) + 1 = -5 < 0$.
 $f'(0) = 6(0) + 1 = 1 > 0$.

local min x==6.

 $g'(v) = 3v^2 - 12 = 0$ => $3v^2 = 12$ => $v^2 = 4$ => $v = \pm 2$.

max min.

+ 1 + 1 +

$$g'(-3) = 3(-3)^2 - 12 = 3.9 - 12 > 0.$$

 $g'(0) = -12 < 0$

(c)
$$f(x) = 3x^4 + 8x^3$$

 $f(x) = 12x^3 + 24x^2 = 12x^2(x+2) = 0$

x-0 or x--2

min neither
$$-1+1+$$

$$f'(-3) = 12(-3)^{2}(-3+2) < 0$$

$$f'(-1) = 12(-1)^{2}(-1+2) > 0$$

x--2: local min .

X=0: neither

f(-5) = 12(-5)(-5+4)(-5-2) < 0 f(-1) = 12(-1)(-1+4)(-1-2) > 0 f(-1) = 12(1)(1+4)(1-2) < 0 f(-1) = 12(1)(1+4)(1-2) < 0 he col | max | point . f(3) = 12(3)(3+4)(3-2) > 0

(e)
$$g(t) = t^{9} + 5t^{3} + 50t$$
.
 $g'(t) = 5t^{4} + 15t^{2} + 50 = 5(t^{4} + 3t^{2} + 10) = 0$.
 $t^{4} + 3t^{2} + 10$. let $f = t^{2} \Rightarrow p^{2} + 3p^{2} + 10$.
 $\alpha = 1$ $b^{2} - 4\alpha < 0$.
 $b = 3$ $c = 10$ $q - 40 = -31 < 0$.
No untical point.

(+)
$$f(x) = |x|$$
 $x = 0$ Continuous

But not differentiable

$$f(y) = \begin{cases} x & x > 0 \\ -x & x < 0 \end{cases}$$

(9) $f(y) = \frac{(y-1)'(y^2-y+1)}{(y^2-y+1)} - \frac{(y-1)'(y^2-y+1)'}{(y^2-y+1)^2}$

$$= \frac{(y-1)'(y^2-y+1)}{(y^2-y+1)^2}$$

$$= \frac{(y^2-y+1)^2}{(y^2-y+1)^2}$$

$$= \frac{(y^2-y+1)^2}{(y^2-y+1)^2} = \frac{-y^2+2y}{(y^2-y+1)^2}$$

$$= \frac{(y^2-y+1)^2}{(y^2-y+1)^2} = \frac{-y^2+2y}{(y^2-y+1)^2} = 0$$

$$= -y^2+2y = 0 \Rightarrow y(-y+2) = 0$$

$$h'(-1) = \frac{-(1)^{2} + 2(-1)}{[(-1)^{2} - (-1) + 1]^{2}} \times 0 \qquad y = 0 \quad \text{local min}$$

$$h'(1) = \frac{-(1)^{2} + 2(1)}{[(1^{2} - (-1) + 1]^{2})} \times 0 \qquad y = 2 \quad \text{local max}$$

$$h'(3) = \frac{-3^{2} + 2x^{3}}{3^{2} - 3 + 1} \times 0$$

$$(h) \quad p(x) = \frac{x^{2} + 2}{2x - 1}$$

$$p'(x) = \frac{(x^{2} + 2)^{2}(2x - 1) - (x^{2} + 2)(2x - 1)^{2}}{(2x - 1)^{2}}$$

$$= \frac{4x^{2} - 2x - 2x^{2} - 4}{(2x - 1)^{2}} = \frac{2x^{2} - 2x - 4}{(2x - 1)^{2}}$$

$$= \frac{4x^{2} - 2x - 2x^{2} - 4}{(2x - 1)^{2}} = \frac{2x^{2} - 2x - 4}{(2x - 1)^{2}} = 0$$

$$2(x^{2} - 2x - 2) = 0 \Rightarrow 2(x - 2)(x + 1) = 0$$

$$|x = 2 \quad \text{or} \quad x = -1.$$

$$|x = 2 \quad \text{or} \quad x = -1.$$

$$|x = 2 \quad \text{or} \quad x = -1.$$

$$|x = 2 \quad \text{local max}$$

$$|x = 2 \quad \text{local min point.}$$

$$|x = 2 \quad \text{local min point.}$$

$$|x = 2 \quad \text{local min point.}$$

(i)
$$f(x) = x + \frac{4}{\sqrt{2}}$$
.
 $f'(x) = |+(-2) A(x)^{-3}$
 $= |-\frac{8}{x^3} = 0$. $x = 2$.
 $x = 0$ is also or critical point.
 $x = 0$ is a local min.
 $x = 0$ is not a local extreme point become $x = 0$ for is not defined.
(i) $g(x) = |-\frac{4}{3}| = |-\frac{1}{2}| = 0$. $g'(x) = \frac{4}{3}(x-4)^2 + \frac{4}{3}(x-4) = 0$.
 $= x - \frac{1}{3}(x-4) \left[\frac{4}{5}(x-4) + x \cdot 2 \right]$.
 $= x - \frac{1}{3}(x-4) \left[\frac{4}{5}(x-4) + x \cdot 2 \right]$.
 $= x - \frac{1}{3}(x-4) \left[\frac{4}{5}(x-4) + x \cdot 2 \right]$.
 $= x - \frac{1}{3}(x-4) \left[\frac{4}{5}(x-4) + x \cdot 2 \right]$.
 $= x - \frac{1}{3}(x-4) \left[\frac{4}{5}(x-4) + x \cdot 2 \right]$.
 $= x - \frac{1}{3}(x-4) \left[\frac{4}{5}(x-4) + x \cdot 2 \right]$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}$$

(k).
$$f(x) = x^4 e^{-x}$$

 $f'(x) = 4x^3 e^{-x} + x^4 \cdot - e^{-x}$
 $= x^3 e^{-x} (4 - x) = 0$
 $x = 0$ or $x = 4$.
 $x = 0$ or $x = 0$.

X=0. local min point ix=4 local max pent.

(1) gix)= xtn x.

 $g'(x) = 2x \ln x + \chi^2 \cdot \frac{1}{x} = 2x \ln x + \chi = \chi(2\ln x + 1)$

 $\chi=0$ or $2\ln x=-1$ $\ln x=-\frac{1}{2}$ $\chi=e^{-\frac{1}{2}}=\frac{1}{\sqrt{e}}$

9(e) = e(2|ne+1) >0

9((0,1)=0,1(2|n(0,1)+1)<01

X= ve : local minimum point