Tree Adjoining Grammars

Долгополова Мария СПБГУ, 2019

Tree Adjoining Grammars

 (N, Σ, I, A, S)

Elementary trees

initial tree

auxiliary tree

Operations

Substitution

Adjunction

Пример

aⁿbⁿ

elementary trees

derived trees

Место в иерархии

- $\{a^nb^nc^nd^n \mid n>=1\}$
- { ww }

• $\{a^nb^nc^nd^ne^n \mid n>=1\}$

Лемма о накачке

$$L ∈ TAL => ∃ n: если z ∈ L и |z| ≥ n, то$$

$$z = u_1 v_1 w_1 v_2 u_2 v_3 w_2 v_4 u_3$$
:

- 1. $|v_1 w_1 v_2 v_3 w_2 v_4| \le n$
- 2. $|v_1 v_2 v_3 v_4| \ge 1$
- 3. $\forall i \ge 0 \ u_1 v_1^i w_1 v_2^i u_2 v_3^i w_2 v_4^i u_3 \in L$

Лемма о накачке

 $\{a^nb^nc^nd^ne^n \mid n>=1\}$ - He TAL

Доказательство:

n = k, рассмотрим $a^k b^k c^k d^k e^k$

 $a^{k}b^{k}c^{k}d^{k}e^{k} = u_{1}v_{1}w_{1}v_{2}u_{2}v_{3}w_{2}v_{4}u_{3}$

 $|v_1w_1v_2v_3w_2v_4| \le k =>$ не более 4 различных символов

=> после накачки количество a, b, c, d, e не будет одинаковым

Свойства

Замкнут относительно:

- Объединения
- Конкатенации
- Звезды Клини
- Подстановки
- Пересечения с регулярными
- Гомоморфизма

Литература

- 1. Aravind Joshi, Owen Rambow "A Formalism for Dependency Grammar Based on Tree Adjoining Grammar"
- 2. K. Vijayashanker "A study of tree adjoining grammars"