Elementos de Cálculo Numérico/Cálculo Numérico

Clase 2

Primer Cuatrimestre 2021

Método de Euler

Problema de valores iniciales

$$\begin{cases} \dot{x}(t) = f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$$

Recta tangente

$$x = x(t_0) + \dot{x}(t_0)(t - t_0) = x_0 + f(t_0, x_0)(t - t_0)$$

Método de Euler:
$$x_1 = x_0 + f(t_0, x_0)(t - t_0) = x_0 + f(t_0, x_0)h$$

Solución aproximada:
$$x_n = x_{n-1} + f(t_{n-1}, x_{n-1})h$$

$$con t_n = t_0 + n h y h = T/N$$

Error local de truncamiento

Desarrollando en polinomio de Taylor en $t=t_0$

$$x(t_1) = x(t_0) + h \dot{x}(t_0) + \frac{h^2}{2} \ddot{x}(\tau_1)$$
 para $\tau_1 \in (t_0, t_1)$

Como $\dot{x}(t) = f(t, x(t))$ por regla de la cadena

$$\ddot{x}(t) = f_t(t, x(t)) + f_x(t, x(t)) \dot{x}(t)$$

$$\ddot{x}(t) = f_t(t, x(t)) + f_x(t, x(t)) f(t, x(t))$$

Obtenemos

$$x(t_1) = x_0 + hf(t_0, x_0) + \epsilon(\tau_1) = x_1 + \epsilon(\tau_1)$$

donde
$$\epsilon(\tau_1) = \frac{h^2}{2} (f_t(\tau_1, x(\tau_1)) + f_x(\tau_1, x(\tau_1)) f(\tau_1, x(\tau_1)))$$

Error global

Error global

En general

$$|E_n| \le |\epsilon_n| + (1 + Lh)|E_{n-1}| \quad L = \max |f_x|$$

Inductivamente

$$|E_n| \le |\epsilon_n| + (1 + Lh) |\epsilon_{n-1}| + \dots + (1 + Lh)^{n-1} |\epsilon_1|$$

Si definimos $\epsilon_{\max} = \max\{|\epsilon_1|, \dots, |\epsilon_n|\}$

$$|E_n| \le (1 + (1 + Lh) + \dots + (1 + Lh)^{n-1}) \epsilon_{\max}$$

$$|E_n| \le \frac{(1+Lh)^n - 1}{Lh} \epsilon_{\max} \le \frac{e^{Lnh} - 1}{Lh} \epsilon_{\max}$$

Error global

Como $nh \leq T$, obtenemos

$$E_n \le \frac{e^{LT} - 1}{L} \frac{\epsilon_{\max}}{h}.$$

Si
$$\epsilon_{\max} = o(h)$$
, entonces $E_n = o(1) \quad (E_n \to 0)$

Si
$$\epsilon_{\max} = O(h^{p+1})$$
, entonces $E_n = O(h^p)$

Ejemplo

t	x(t)	x_n	Error	x_n	Error
0.1	1.105	1.100	5.17×10^{-3}	1.105	5.49×10^{-4}
0.2	1.221	1.210	1.14×10^{-2}	1.220	1.21×10^{-3}
0.3	1.350	1.331	1.89×10^{-2}	1.348	2.01×10^{-3}
0.4	1.492	1.464	2.77×10^{-2}	1.489	2.96×10^{-3}
0.5	1.649	1.611	$3.82 imes 10^{-2}$	1.645	4.09×10^{-3}
0.6	1.822	1.772	$5.06 imes 10^{-2}$	1.817	5.42×10^{-3}
0.7	2.014	1.949	6.50×10^{-2}	2.007	6.99×10^{-3}
8.0	2.226	2.144	8.20×10^{-2}	2.217	8.83×10^{-3}
0.9	2.460	2.358	1.02×10^{-1}	2.449	1.10×10^{-2}
1.0	2.718	2.594	1.25×10^{-1}	2.705	1.35×10^{-2}

Tabla: Errores del método de Euler $\dot{x}=x, x(0)=1.$

Errores

Métodos de Taylor

Existe $\tau \in [t_0, t_1]$

$$x(t_1) = x_0 + h \dot{x}(t_0) + \frac{h^2}{2} \ddot{x}(t_0) + \frac{h^3}{6} \ddot{x}(\tau).$$

Como $\dot{x}(t) = f(t, x(t))$, por regla de la cadena

$$\ddot{x}(t) = f_t(t, x(t)) + f_x(t, x(t)) \dot{x}(t) \qquad f(t, x(t))$$

Entonces: $\ddot{x}(t_0) = f_t(t_0, x_0) + f_x(t_0, x_0) f(t_0, x_0)$

Podemos escribir

$$x(t_1) = x_0 + h f(t_0, x_0) + \frac{h^2}{2} \left(f_t(t_0, x_0) + f_x(t_0, x_0) f(t_0, x_0) \right) + \frac{h^3}{6} \ddot{x}(\tau)$$

Métodos de Taylor

Definimos

$$x_1 = x_0 + h f(t_0, x_0) + \frac{h^2}{2} \left(f_t(t_0, x_0) + f_x(t_0, x_0) f(t_0, x_0) \right)$$

Método de segundo orden: $\epsilon_n = O(h^3)$

Error global: $E_n = O(h^2)$

Se necesitan las derivadas de f(t,x)

Se puede generalizar a orden mayor