

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number:	WO 99/64394
C07C 321/02, 311/00, C07D 211/96, A61K 31/10, 31/18, 31/445		(43) International Publication Date:	16 December 1999 (16.12.99)
(21) International Application Number:	PCT/US99/11795	(74) Agents:	MAGATTI, Anita, W. et al.; Schering-Plough Corporation, Patent Dept. K-6-I 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
(22) International Filing Date:	7 June 1999 (07.06.99)	(81) Designated States:	AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MD, MG, MK, MN, MX, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(30) Priority Data:	09/093,132 8 June 1998 (08.06.98) US	(71) Applicant (for all designated States except US):	SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application	US 09/093,132 (CIP) Filed on 8 June 1998 (08.06.98)	(72) Inventors; and	
(71) Applicant (for all designated States except US): SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).	(75) Inventors/Applicants (for US only): DUGAR, Sundeep [IN/US]; 749 Wingate Drive, Bridgewater, NJ 08807 (US). NEUSTADT, Bernard, R. [US/US]; 24 Brook Place, West Orange, NJ 07052 (US). STAMFORD, Andrew, W. [US/US]; 27 Overlook Road, Chatham Township, NJ 07928 (US). WU, Yusheng [CN/US]; Apartment 20C, 235 East 40th Street, New York, NY 10016 (US).	Published	With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: NEUROPEPTIDE Y5 RECEPTOR ANTAGONISTS

(57) Abstract

Compounds of formula (I) or a pharmaceutically acceptable salt thereof, wherein a and b are 0–2, provided that the sum is 0–3; Q is (i) or ($\text{--N}=\text{}$); X is --O-- , --S-- , $\text{--SO}_2\text{--}$, $\text{--CH}(\text{OR}^8)\text{--}$, --C(O)-- , $\text{--C(R}^{23}\text{)}_2\text{--}$, optionally substituted alkenyl, alkynyl or (ii); R¹ is optionally substituted aryl, heteroaryl, substituted amino, alkyl-OC(O)R⁸, aryloxalkyl, (iii) wherein m is 1–4, or (iv) wherein d and e are 0–2; R², R³, R⁴ and R⁵ are H, alkyl, optionally substituted cycloalkyl, halogen, --OR^8 , $\text{--N}(\text{R}^8)_2$, $\text{--CO}_2\text{R}^8$ or CF₃; R⁶ and R⁷ are H, alkyl, alkenyl, hydroxyalkyl, aminoalkyl, alkoxyalkyl, cycloalkyl or cycloalkylalkyl, or R⁶ and R⁷, form a 3–7-membered carbocyclic ring, or a 4–7-membered heterocyclic ring; R⁸ is H, alkyl, cycloalkyl, optionally substituted aryl or heteroaryl; R⁹ is alkyl, cycloalkyl, optionally substituted aryl or heteroaryl; R¹¹ is H, alkyl or cycloalkyl; and R²³ is R⁸ or halogen; are claimed, as well as additional novel compounds; also claimed are pharmaceutical compositions and methods of using said novel compounds in the treatment of eating disorders and diabetes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

5

10

15

NEUROPEPTIDE Y5 RECEPTOR ANTAGONISTS

20

BACKGROUND OF THE INVENTION

The present invention relates to selective neuropeptide Y Y5 receptor antagonists useful in the treatment of eating disorders and diabetes, pharmaceutical compositions containing the compounds, and methods of treatment using the compounds.

Neuropeptide Y is a 36 amino acid peptide that is widely distributed in the central and peripheral nervous systems. This peptide mediates a number of physiological effects through its various receptor subtypes. Studies in animals have shown that neuropeptide Y is a powerful stimulus of food intake, and it has been demonstrated that activation of neuropeptide Y Y5 receptors results in hyperphagia and decreased thermogenesis. Therefore compounds that antagonize neuropeptide Y at the Y5 receptor subtype represent an approach to the treatment of eating disorders such as obesity and hyperphagia.

Phenyl amides and ureas are known as antiatherosclerotic agents, see for example U.S. 4,623,662, and benzoic acid amides are disclosed as antidiabetic agents in U.S. 5,378,728. N,N-alkylenebis-(benzamides) are known as endocrinological agents, see U.S. 4,009,208. WO 98/35957, published August 20, 1998, discloses amide derivatives as selective neuropeptide Y receptor antagonists.

-2-

SUMMARY OF THE INVENTION

The present invention relates to compounds represented by the structural formula I

- 5 or a pharmaceutically acceptable salt thereof, wherein
 a and b are independently 0, 1 or 2, provided that the sum of a
 and b is 0 to 3;

Q is $\begin{array}{c} =\text{C}- \\ | \\ \text{R}^4 \end{array}$ or $-\text{N}=\text{ }$;

X is -O-, -S-, -SO-, -SO₂-, -CH(OR⁸)-, -C(O)-, -C(R²³)₂-,

- 10 -C(R²⁵)=C(R²⁵)-, $-\text{C}\equiv\text{C}-$ or $-\text{C}=\text{N}^{\text{OR}^8}$;
 R¹ is R¹⁵-aryl, R²⁴-heteroaryl, -NHR¹², -N(R¹²)₂, -(C₁-C₉)alkyl-

where m is 1-4, or

wherein d and e are independently 0, 1 or 2;

- R², R³, R⁴ and R⁵ are independently selected from the group
 15 consisting of H, C₁-C₅ straight or branched alkyl, (C₃-C₁₂)cycloalkyl,
 R¹⁴-(C₃-C₁₂)cycloalkyl, halogen, -OR⁸, -N(R⁸)₂, -CO₂R⁸ and CF₃;
 R⁶ and R⁷ are independently selected from the group consisting
 of H, (C₁-C₉)alkyl, (C₁-C₉)alkenyl, hydroxy-(C₁-C₉)alkyl, amino-(C₁-C₉)-
 20 alkyl, (C₁-C₉)alkoxy-(C₁-C₉)alkyl, (C₃-C₁₂)cycloalkyl and (C₃-C₁₂)-
 cycloalkyl-(C₁-C₆)alkyl, or R⁶ and R⁷, together with the carbon to which
 they are attached, form a 3, 4, 5, 6 or 7-membered carbocyclic ring, or a
 4, 5, 6 or 7-membered heterocyclic ring, wherein 1, 2 or 3 ring members
 are independently selected from the group consisting of O, S and N;
 R⁸ is independently selected from the group consisting of H,
 25 (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, R¹⁵-aryl and R²⁴-heteroaryl;
 R⁹ is (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, R¹⁵-aryl or R²⁴-heteroaryl;
 R¹¹ is independently selected from the group consisting of H, (C₁-
 C₆)alkyl and (C₃-C₁₂)cycloalkyl;

-3-

R¹² is independently selected from the group consisting of straight or branched (C₁-C₉)alkyl, hydroxy(C₂-C₉)alkyl, (C₁-C₉)alkoxy-(C₂-C₉)-alkyl, N(R¹¹)(R¹⁹)-(C₂-C₉)-alkyl, HS(C₂-C₉)-alkyl, (C₁-C₉)-alkylthio-(C₂-C₉)-alkyl, (C₃-C₁₂)-cycloalkyl, R¹⁴-(C₃-C₁₂) cycloalkyl,

5 R¹⁵-aryl,

R²⁴-heteroaryl, R¹⁵-aryl(C₁-C₆)-alkyl, R²⁴-heteroaryl(C₁-C₆)-alkyl,

wherein j and k are independently 0, 1 or 2,

and wherein q is 1 or 2, and s is 0, 1 or 2; or two R¹² groups, together with the nitrogen to which they are attached, form a ring

10 of the formula

wherein p is 0, 1 or 2;

R¹⁰ is -NR¹⁸, -O- or -S-;

15 R¹³ is 1 to 3 substituents independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, halogen, (C₁-C₆)alkoxy and CF₃;

R¹⁴ is 1 to 3 substituents independently selected from the group consisting of (C₁-C₆)alkyl, benzyl, R¹³-aryl and R¹³-heteroaryl;

20 R¹⁵ is 1 to 3 substituents independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, halo, polyhalo(C₁-C₆)alkyl, R¹⁷O-, -N(R¹⁷)₂, -S(R¹⁷), R¹⁷O-(C₁-C₆)alkyl, (R¹⁷)₂N-(C₁-C₆)alkyl, formyl, -C(O)R¹⁷, -COOR¹⁷, -CON(R¹⁷)₂, -OC(O)N(R¹⁷)₂, -N(R¹⁷)C(O)N(R¹⁷)₂, -NR¹⁷C(O)R¹⁷, -NR¹⁷C(O)OR¹⁴, R¹⁷S(O)-, R¹⁷SO₂-, R¹⁷SO₂NR¹⁷- and tri(C₁-C₆)-alkylsilyl;

25 R¹⁶ is 1-3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)spirocycloalkyl, (C₃-C₄)spiro-alkylenedioxy, R¹⁵-aryl, R²⁴-heteroaryl, benzyl, N-piperidinyl, -COR⁸, -C(O)NR⁸R⁹, -NR⁸R⁹ and -NR⁸C(O)R⁹, or when two R¹⁶ groups are attached to adjacent ring carbon atoms, together with said carbon atoms, they can form a (C₅-C₇)cycloalkyl ring;

-4-

R₁₇ is independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl(C₁-C₆)alkyl, R¹³-aryl and R¹³-heteroaryl;

5 R₁₈ is independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl-(C₁-C₆)alkyl, R¹⁵-aryl, R²⁴-heteroaryl, -CO₂R⁹, -C(O)N(R⁸)₂, -COR⁸ and -SO₂R⁹;

10 R₁₉ is H, (C₃-C₁₂)cycloalkyl-(C₁-C₆)alkyl, R¹⁵-aryl, R²⁴-heteroaryl, -CO₂R⁹, -C(O)N(R⁸)₂, -COR⁸ or -SO₂R⁹;

15 R₂₀ is (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl-(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, oxo(C₁-C₆)alkyl or polyhalo(C₁-C₆)alkyl;

20 R₂₁ and R₂₂ are independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl-(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, R¹⁵-aryl, R²⁴-heteroaryl, R¹⁵-aryl(C₁-C₆)alkyl or R²⁴-heteroaryl(C₁-C₆)-alkyl;

25 R₂₃ is independently selected from the group consisting of H, halogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, R¹⁵-aryl, and R²⁴-heteroaryl;

20 R₂₄ is 1 to 2 substituents independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, halo, polyhalo(C₁-C₆)alkyl, R¹⁷O-, -N(R¹⁷)₂, -S(R¹⁷), R¹⁷O-(C₁-C₆)alkyl, (R¹⁷)₂N-(C₁-C₆)alkyl, formyl, -C(O)R¹⁷, -COOR¹⁷, -CON(R¹⁷)₂, -OC(O)N(R¹⁷)₂, -N(R¹⁷)C(O)N(R¹⁷)₂, -NR¹⁷C(O)R¹⁷, -NR¹⁷C(O)OR¹⁴, R¹⁷S(O)-, R¹⁷SO₂-, R¹⁷SO₂NR¹⁷- and tri(C₁-C₆)-alkylsilyl; and

25 R₂₅ is independently selected from the group consisting of hydrogen, halogen, (C₁-C₆)-alkyl and polyhalo(C₁-C₆)alkyl.

In a preferred group of compounds of formula I, Q is
wherein R⁴ is H. Also preferred are compounds wherein R³ is H, and
wherein R² and R⁵ are independently H or halogen. R⁶ and R⁷ are
preferably (C₁-C₆)alkyl, especially methyl, or R⁶ and R⁷, together with
the carbon to which they are attached, form a C₃-C₆ carbocyclic ring.

30 In compounds of formula I, X is preferably -S-; -C(O)-; or -C(R⁸)₂, especially wherein R⁸ is H. More preferably, X is -C(R⁸)₂-, and compounds wherein X is -CH₂- are especially preferred.

35 In compounds of formula I, a is preferably 1 or 2 and b is
preferably 0.

-5-

In compounds of formula I, R¹ is preferably -NHR¹² or -N(R¹²)₂,

wherein R¹⁸ is (C₁-C₆)alkyl or -SO₂R⁹; R⁹ is (C₁-C₆)alkyl or aryl; and R²² is (C₁-C₆)-alkyl or (C₃-C₁₂)cycloalkyl(C₁-C₆)alkyl.

Another aspect of the invention is a pharmaceutical composition for treating eating disorders or diabetes which comprises an effective amount of a compound of formula I in combination with a pharmaceutically acceptable carrier.

10 Yet another aspect of this invention is a method of treating an eating disorder or diabetes comprising administering an effective amount of a compound of formula I to a patient in need of such treatment.

15 Also claimed are novel compounds similar to those of formula I wherein b is 0, X is -O- or -S- and the substituent corresponding to R¹ is optionally substituted alkyl.

DETAILED DESCRIPTION

Except where stated otherwise the following definitions apply throughout the present specification and claims. These definitions apply regardless of whether a term is used by itself or in combination with other terms. Hence the definition of "alkyl" applies to "alkyl" as well as the "alkyl" portions of "alkoxy", etc.

20 Alkyl represents a straight or branched saturated hydrocarbon chains having the designated number of carbon atoms. If the number of carbon atoms is not specified, e.g., if the term lower alkyl is used, chain lengths of 1 to 6 carbons are intended.

25 When X is -C(R²⁵)=C(R²⁵)-, both cis and trans configurations are contemplated.

30 Cycloalkyl represents a saturated carbocyclic ring having 3 to 12 carbon atoms. Preferred are C₃-C₆cycloalkyl rings.

In the definition of R¹⁶, the term (C₃-C₁₂)spirocycloalkyl refers to a (C₂-C₁₁)alkylene chain joined at both ends to the same ring carbon, i.e.,

-6-

Similarly, the term (C₃-C₄)spiroalkylenedioxy refers to a (C₂-C₃)alkylenedioxy group joined at both ends to the same ring carbon atom, i.e.,

In the definition of R⁶ and R⁷, the term "heterocyclic ring" refers to

- 5 4- to 7-membered saturated rings comprising 1 to 3 heteroatoms independently selected from the group consisting of -O-, -S- and -NH-, with the remaining ring members being carbon. Where a heterocyclic ring comprises more than one heteroatom, no rings are formed where there are adjacent oxygen atoms, adjacent sulfur atoms, or three consecutive heteroatoms. Examples of heterocyclic rings are tetrahydrofuranyl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl and piperazinyl.
- 10

When two R¹² groups form a ring of the formula those skilled in the art will recognize that -NR⁸R⁹ and -NR⁸C(O)R⁹

- 15 substituents cannot be attached to a carbon adjacent to the piperazinyl nitrogen.

Halogen represents fluoro, chloro, bromo or iodo.

- Polyhalo(C₁-C₆)alkyl refers to a straight or branched alkyl chain substituted by 1 to 5 halogen atoms, which can be attached to the same
- 20 or different carbon atoms, e.g., -CH₂F, -CHF₂, -CF₃, F₃CCH₂- and -CF₂CF₃.

Hydroxy(C₁-C₆)alkyl refers to an alkyl chain substituted on any substitutable carbon by a hydroxy group. Similarly, oxo(C₁-C₆)alkyl refers to an alkyl chain substituted by an =O moiety.

- 25 Aryl represents phenyl or naphthyl.

- Heteroaryl refers to 5- to 10-membered single or benzofused aromatic rings comprising 1 to 3 heteroatoms independently selected from the group consisting of -O-, -S- and -N=, provided that the rings do not include adjacent oxygen and/or sulfur atoms.. Examples of single-ring heteroaryl groups are pyridyl, isoxazolyl, oxadiazolyl, furanyl,
- 30

-7-

pyrrolyl, thienyl, imidazolyl, pyrazolyl, tetrazolyl, thiazolyl, thiadiazolyl, pyrazinyl, pyrimidinyl, pyridazinyl and triazolyl. Examples of benzofused heteroaryl groups are quinolinyl, isoquinolinyl, quinazolinyl, thianaphthenyl (i.e., benzothienyl), indolyl, benzimidazolyl, benzofuranyl and benzofurazanyl. N-oxides of nitrogen-containing heteroaryl groups are also included. All positional isomers are contemplated, e.g., 2-pyridyl, 3-pyridyl and 4-pyridyl. Preferred heteroaryl groups are pyridyl, isoxazolyl, thienyl, thiazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, quinolinyl, isoquinolinyl and quinazolinyl.

10 When a variable appears more than once in the structural formula, for example R⁸, the identity of each variable appearing more than once may be independently selected from the definition for that variable.

For compounds of the invention having at least one asymmetrical carbon atom, all isomers, including diastereomers, enantiomers and rotational isomers are contemplated as being part of this invention. The invention includes d and l isomers in both pure form and in admixture, including racemic mixtures. Isomers can be prepared using conventional techniques, either by reacting optically pure or optically enriched starting materials or by separating isomers of a compound of formula I.

Compounds of formula I can exist in unsolvated as well as solvated forms, including hydrated forms. In general, the solvated forms, with pharmaceutically acceptable solvents such as water, ethanol and the like, are equivalent to the unsolvated forms for purposes of this invention.

A compound of formula I may form pharmaceutically acceptable salts with organic and inorganic acids. Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids well known to those skilled in the art. The salts are prepared by contacting the free base forms with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution such as

-8-

dilute aqueous sodium hydroxide, potassium carbonate, ammonia or sodium bicarbonate. The free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the salts are otherwise equivalent to their respective free base forms for purposes of the invention.

5 Compounds of formula I may be produced by processes known to those skilled in the art as shown in the examples below. Typically, the claimed compounds wherein X is -S- or -O- can be prepared as shown in the following reaction scheme:

10 wherein an amine of formula II is reacted with an acid chloride or carbamoyl chloride in the presence of a base, or with a carboxylic acid in the presence of standard amide coupling agents such as EDC and DMAP. Starting materials of formula II can be prepared using known methods.

15 The compounds of formula I exhibit selective neuropeptide Y5 antagonizing activity, which has been correlated with pharmacological activity for treating eating disorders such as obesity and hyperphagia.

20 The compounds of formula I display pharmacological activity in test procedures designated to indicate neuropeptide Y5 receptor antagonist activity. The compounds are non-toxic at pharmaceutically therapeutic doses. Following are descriptions of the test procedures.

cAMP Assay

25 CHO cells expressing the various NPY receptor subtypes were maintained in Ham's F-12 media (Gibco-BRL) supplemented with 10% FCS (ICN), 1% penicillin-streptomycin, 1% non-essential amino acids and 200 µg/ml Geneticin® (GibcoBRL #11811-031) under a humidified 5% CO₂ atmosphere. Similarly, HEK-293 cells expressing the various NPY receptor subtypes were maintained in Dulbecco's modified Eagle's media (Gibco-BRL) supplemented with 10% FCS (ICN), 1% penicillin-streptomycin and 200 µg/ml Geneticin® (GibcoBRL #11811-031) under a humidified 5% CO₂ atmosphere. Two days prior to assay, cells were

-9-

- released from T-175 tissue culture flasks using cell dissociation solution (1X; non-enzymatic [Sigma #C-5914]) and seeded into 96-well, flat-bottom tissue culture plates at a density of 15,000 to 20,000 cells per well. After approximately 48 hours, the cell monolayers were rinsed with
- 5 Hank's balanced salt solution (HBSS) then preincubated with approximately 150 µl/well of assay buffer (HBSS supplemented with 4 mM MgCl₂, 10 mM HEPES, 0.2% BSA [HH]) containing 1 mM 3-isobutyl-1-methylxanthine ([IBMX] Sigma #I-5879) with or without the antagonist compound of interest at 37°C. After 20 minutes the 1 mM IBMX-HH
- 10 assay buffer (\pm antagonist compound) was removed and replaced with assay buffer containing 1.5 µM (CHO cells) or 5 µM (HEK-293 cells) forskolin (Sigma #F-6886) and various concentrations of NPY in the presence or absence of one concentration of the antagonist compound of interest. At the end of 10 minutes, the media were removed and the
- 15 cell monolayers treated with 75 µl ethanol. The tissue culture plates were agitated on a platform shaker for 15 minutes, after which the plates were transferred to a warm water bath in order to evaporate the ethanol. Upon bringing all wells to dryness, the cell residues were resolubilized with 250 µl FlashPlate® assay buffer. The amount of cAMP in each well
- 20 was quantified using the [¹²⁵I]-cAMP FlashPlate® kit (NEN #SMP-001) and according to the protocol provided by the manufacturer. Data were expressed as either pmol cAMP/ml or as percent of control. All data points were determined in triplicate and EC₅₀'s (nM) were calculated using a nonlinear (sigmoidal) regression equation (GraphPad Prism™).
- 25 The K_B of the antagonist compound was estimated using the following formula:

$$K_B = [B] / (1 - \{[A'] / [A]\})$$

where [A] is the EC₅₀ of the agonist (NPY) in the absence of antagonist, [A'] is the EC₅₀ of the agonist (NPY) in the presence of antagonist,

30 and

[B] is the concentration of the antagonist.

NPY R receptor Binding Assay

Human NPY receptors were expressed in CHO cells. Binding assays were performed in 50 mM HEPES, pH. 7.2, 2.5 mM CaCl₂, 1 mM

-10-

MgCl₂ and 0.1% BSA containing 5-10 ug of membrane protein and 0.1 nM ¹²⁵I-peptide YY (for NPY1, NPY2 and NPY5 receptors) or 0.1 nM ¹²⁵I-pancreatic polypeptide (NPY4 receptor) in a total volume of 200 ul. Non-specific binding was determined in the presence of 1 uM NPY. The 5 reaction mixtures were incubated for 90 minutes at 30° C (NPY1 receptor) or at room temperature (NPY2, NPY4 and NPY5 receptors), then filtered through Millipore MAFC glass fiber filter plates which had been pre-soaked in 0.5% polyethyleneimine. The filters were washed with phosphate-buffered saline, and radioactivity was measured in a 10 Packard TopCount scintillation counter.

For the compounds of this invention, a range of neuropeptide Y5 receptor binding activity from about 0.1 to about 1000nM was observed. Compounds of this invention preferably have a binding activity in the 15 range of about 0.1 to 250 nM, more preferably about 0.1 to 100 nM, and most preferably about 0.1 to 10 nM.

For preparing pharmaceutical compositions from the compounds of formula I, pharmaceutically acceptable, inert carriers are admixed with 20 the active compounds. The pharmaceutically acceptable carriers may be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. A solid carrier can be one or more substances which may also act as dilutents, flavoring agents, solubilizers, lubricants, suspending agents, 25 binders or tablet disintegrating agents; it may also be an encapsulating material.

Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection.

30 Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions. These particular solid form preparations are most conveniently provided in unit dose form and as such are used 35 to provide a single liquid dosage unit.

-11-

The invention also contemplates alternative delivery systems including, but not necessarily limited to, transdermal delivery. The transdermal compositions can take the form of creams, lotions and/or emulsions and can be included in a transdermal patch of the matrix or 5 reservoir type as are conventional in the art for this purpose.

Preferably, the pharmaceutical preparation is in unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete 10 quantities of preparation such as packeted tablets, capsules and powders in vials or ampules. The unit dosage form can also be a capsule, cachet or tablet itself, or it may be the appropriate number of any of these in a packaged form.

The quantity of active compound in a unit dose preparation may 15 be varied or adjusted from about 0.5 mg to 500 mg, preferably about 0.5 to 100 mg, according to the particular application and the potency of the active ingredient and the intended treatment. The composition may, if desired, also contain other therapeutic agents.

The daily dosage is about 0.01 to about 20 mg/kg. The dosage 20 may be varied depending on the requirement of the patient, the severity of the condition being treated and the particular compound being employed. Determination of the proper dosage for a particular situation is within the skill of those in the medical art. For convenience, the total daily dosage may be divided and administered in portions throughout 25 the day or by means providing continuous delivery.

The invention disclosed herein is exemplified by the following examples which should not be construed to limit the scope of the disclosure. Alternative mechanistic pathways and analogous structures may be apparent to those skilled in the art.

30 In the examples, the following abbreviations are used: phenyl (Ph), acetyl (Ac), ether (Et₂O), ethyl acetate (EtOAc), dimethylformamide (DMF) and ethanol (EtOH). Room temperature is RT.

Preparation 1

1

-12-

To a stirred mixture of 4-aminothiophenol (12.52 g, 0.100 mol) and 2-methyl-1-pentene (25.30 g, 0.300 mol) in anhydrous Et₂O (100 ml) was added concentrated H₂SO₄ (15.3 ml, 0.300 mol) cautiously. The clear solution was stirred for 45 min, then poured into cold sat'd

- 5 NaHCO₃ (200 ml). The resultant white solid was collected, washed with cold water several times and dried *in vacuo* to afford 1 (100%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, 2H, J = 8.7 Hz, ArH), 6.68 (d, 2H, J = 8.6 Hz, ArH), 1.47 (m, 4H, CH₂CH₂CH₃), 1.24 (s, 9H, (CH₃)₃C), 0.97 (t, 3H, J = 7.0 Hz, CH₂CH₃).

10

Preparation 2

- A mixture of 3,4-difluoronitrobenzene (1.0 ml, 9.03 mmol) and Na₂S•9H₂O (3.25 g, 13.5 mmol) in DMF (10 ml) was stirred at RT for 20 h, then poured into cold water. The whole was extracted with CH₂Cl₂ (3x100 ml). The combined organic layers were dried (Na₂SO₄), filtered and concentrated. To the residue was added 2-methyl-1-pentene (2.2 ml, 18.1 mmol) and Et₂O (5.0 ml). To the vigorously stirred mixture was slowly added concentrated H₂SO₄ (1.0 ml). After 1 h the reaction mixture was poured into cold water. The whole was extracted with CH₂Cl₂ (3x100 ml), and the combined organic layers were dried (Na₂SO₄), filtered and evaporated. Purification of the residue by flash column chromatography (1:20 EtOAc/hexanes) afforded 2 (100%). ¹H NMR (CDCl₃, 400 MHz) δ 8.07 (m, 2H, ArH), 7.34 (t, 1H, ArH), 1.59 (m, 4H, CH₂CH₂CH₂), 1.37 (s, 6H, C(CH₃)₂S), 1.01 (m, 3H, CH₂CH₂CH₂).

15

Preparation 3

- A mixture of S-(1,1-dimethylbutyl)thiuronium 4-toluene-sulfonate (prepared as described: Evans, M. B. et al., *J. Chem. Soc.*, (1962), p. 5045) (5.00 g, 15.0 mmol), KOH (2.10 g, 37.5 mmol) and concentrated NH₃ (1 drop) in EtOH (20 ml) was refluxed for 1 h. To the reaction mixture was added 3-chloro-4-fluoronitrobenzene in EtOH (10 ml). The mixture was refluxed for 0.5 h, allowed to cool and poured into cold water. The whole was extracted with CH₂Cl₂ (3x100 ml). The combined

-13-

organic layers were dried (Na_2SO_4), filtered and concentrated to afford 3 (84%) which was used without further purification. ^1H NMR (CDCl_3 , 400 MHz) δ 8.35 (d, 1H, $J=2.4$ Hz, ArH), 8.09 (dd, 1H, $J = 2.4, 8.5$ Hz, ArH), 7.78 (d, 1H, $J=8.5$ Hz, ArH), 1.62 (m, 4H, $\text{CH}_3\text{CH}_2\text{CH}_2$), 1.40 (s, 5 H, $\text{C}(\text{CH}_3)_2\text{S}$), 0.98 (m, 3H, $\text{CH}_3\text{CH}_2\text{CH}_2$).

Preparation 4

A mixture of 4-nitrothiophenol (500 mg, 3.22 mmol), 1-iodo-2,2-dimethylpropane (0.43 ml, 4.8 mmol), and NaH (80%, 97 mg, 3.2 mmol) 10 in DMF (10 ml) was stirred for 3 days. The reaction mixture was poured into H_2O and the whole was extracted with CH_2Cl_2 . The combined organic layers were dried (Na_2SO_4), filtered and evaporated. The residue was subjected to flash chromatography (1:50 EtOAc/hexanes) to afford 4 (190 mg, 26%) as a solid. ^1H NMR (CDCl_3 , 400 MHz) δ 8.07 (m, 2H, ArH), 7.31 (m, 2H, ArH), 2.93 (s, 2H, CH_2S), 1.05 (s, 9H, $(\text{CH}_3)_3$).
15

Preparation 5

Step 1:

20 To an ice-cold solution of 2-methyl-2-pentanol (1.5 ml, 15 mmol) in DMF (20 ml) was added NaH (60% dispersion in mineral oil, 600 mg, 15 mmol) under a N_2 atmosphere. The cold bath was removed and the suspension was stirred for 4h. The mixture was cooled in an ice bath, 4-fluoronitrobenzene (1.1 ml, 10 mmol) was added in one portion, and the 25 reaction mixture was stirred at RT. After 18 h, the reaction mixture was poured onto an ice-water slurry (300 ml) and extracted with Et_2O (3x200 ml). The combined Et_2O extracts were washed with H_2O (6x200 ml) and saturated NaCl , dried (MgSO_4), filtered and evaporated to afford an oil (2.4 g). Flash chromatography (3:1 hexanes/ CH_2Cl_2) of the crude 30 product gave 6 (1.50 g, 67%) as an oil. ^1H NMR (CDCl_3 , 400 MHz) δ 8.22 (2H, m, ArH), 7.09 (2H, m, ArH), 1.77 (2H, m, $-\text{OC}(\text{CH}_3)_2\text{CH}_2-$), 1.52

-14-

(2H, m, -CH₂CH₃), 1.47 (6H, s, -OC(CH₃)₂-), 1.03 (3H, t, J = 7.3 Hz, -CH₂CH₃). MS (Cl) m/e 224 (M+H)⁺.

Step 2: A mixture of **6** (1.40 g, 6.3 mmol) and 10% Pd/C (0.14 g) in CH₃OH (40 ml) was stirred under a balloon of H₂. After 16 h, the catalyst 5 was removed by filtration through celite, and the filter pad was washed with CH₃OH. The combined filtrate and washings were evaporated to afford **5** as an oil (1.21 g, 100%). ¹H NMR (CDCl₃, 400 MHz) δ 6.83 (2H, m, ArH), 6.66 (2H, m, ArH), 1.61 - 1.50 (4H, m, -CH₂CH₂-), 1.25 (6H, s, -OC(CH₃)₂-), 0.98 (3H, t, J = 7.1 Hz, -CH₂CH₃).

10

Preparation 6

Step 1:

To a solution of 2-chloro-5-nitropyridine (1.00 g, 6.3 mmol) in EtOH (10 ml) was added a solution of potassium 2-methyl-2-propanethiolate prepared from 2-methyl-2-propanethiol (0.71 ml, 6.3 mmol) and KOH (0.56 g, 10 mmol) in EtOH (10 ml). The reaction mixture was refluxed for 0.25 h, then cooled in ice. The solid was removed by filtration through celite and the filtrate was evaporated to a syrup, which was dissolved in CH₂Cl₂ (100 ml) and washed with sat'd NH₄Cl. The organic layer was dried (MgSO₄), filtered, and evaporated. Purification of the residue by flash chromatography (1:4 CH₂Cl₂/hexanes) gave **8** (0.80 g, 60%) as a waxy solid. ¹H NMR (CDCl₃, 400 MHz) δ 9.31 (1H, d, J = 2.8 Hz, ArH), 8.23 (1H, dd, J = 8.9, 2.8 Hz, ArH), 7.28 (1H, d, J = 8.9 Hz, ArH), 1.70 (9H, s, -S(CH₃)₃).

Step 2: To a solution of **8** (414 mg, 1.95 mmol) and NiCl₂.6H₂O (950 mg, 4.0 mmol) in CH₃OH (20 ml) was added NaBH₄ (301 mg, 8.0 mmol) in small portions. After 20 min. the reaction mixture was concentrated and the residue was purified by flash chromatography (3:97 CH₃OH/CH₂Cl₂) to give **7** (120 mg, 34%). ¹H NMR (CDCl₃, 400 MHz) δ 8.35 (1H, d, J = 2.4 Hz, ArH), 7.43 (1H, d, J = 8.3 Hz, ArH), 7.30 (1H, dd, J = 8.3, 2.4 Hz, ArH), 6.9 (2H, bs, NH₂), 1.43 (9H, s, -S(CH₃)₃).

-15-

Preparation 7

Step 1: A mixture of 3,3-dimethylpentanoic acid (11.00 g, 84.0 mmol; Synthesis (1985), 493) and SOCl_2 (80.0 g, 678 mmol) was refluxed for 2

- 5 h. The reaction mixture was concentrated *in vacuo* to afford the acid chloride as a colorless oil (10.0 g, 80%). ^1H NMR (CDCl_3 , 400 MHz) δ 2.83 (2H, s, CH_2CO), 1.39 (2H, q, $J = 7.3$ Hz, CH_3CH_2), 1.02 (6H, s, $\text{C}(\text{CH}_3)_2$), 0.86 (3H, t, $J = 7.3$ Hz, CH_3CH_2).

Step 2:

- 10 To an ice-cold solution of the product of Step 1 (6.00 g, 41.0 mmol) in dry Et_2O (40 ml) was slowly added 1.0 M 4-fluorophenylmagnesium bromide in THF (37 ml, 37 mmol). The reaction mixture was stirred at 0 °C for 3 h, then poured into 1N HCl solution (100 ml). The whole was

- 15 extracted with EtOAc (3x100 ml) and the combined organic layers were dried (Na_2SO_4), filtered and evaporated. Purification of the residue by flash chromatography (hexane) afforded the product (7.00 g, 82%) as colorless oil. ^1H NMR (CDCl_3 , 400 MHz) δ 7.90 (2H, m, ArH), 7.05 (2H, m, ArH), 2.80 (2H, s, CH_2CO), 1.4 (2H, q, $J = 8.0$ Hz, CH_3CH_2), 0.87 (6H, s, $\text{C}(\text{CH}_3)_2$), 0.85 (3H, t, $J = 7.6$ Hz, CH_3CH_2). MS (ES) m/e 209 ($\text{M}+\text{H}$)⁺.

- 20 Step 3: To a solution of the product of Step 2 (2.00 g, 9.60 mmol) in DMSO (20.0 ml) in a sealed tube was added NaN_3 (6.24 g, 96.0 mmol). The vigorously stirred reaction mixture was heated at 140 °C for 5 days, then allowed to cool to RT and poured into 1N NaOH (100 ml). The

- 25 whole was extracted with EtOAc (3x100 ml). The combined organic layers were dried (Na_2SO_4), filtered, and concentrated. Flash chromatography of the residue (1:4 $\text{EtOAc}/\text{hexane}$) afforded Preparation 7 (0.66g, 33%) as a light brown oil. ^1H NMR (CDCl_3 , 400 MHz) δ 7.80 (2H, d, $J = 8.8$ Hz, ArH), 6.70 (2H, d, $J = 8.8$ Hz, ArH), 2.74 (2H, s, CH_2CO), 1.40 (2H, q, $J = 7.6$ Hz, CH_2CH_3), 0.98 (6H, s, $\text{C}(\text{CH}_3)_2$), 0.86 (3H, t, $J = 7.6$ Hz, CH_3CH_2). MS (FAB) m/e 206 ($\text{M}+\text{H}$)⁺.

-16-

Preparation 8

Using 2,2-dimethylpentanoic acid as the starting material and the three-step procedure described for Preparation 7, the title compound
 5 was prepared: ^1H NMR (CDCl_3 , 400 MHz) δ 7.76 (2H, m), 6.61 (2H, m),
 4.05 (2H, bs), 1.76 (2H, m), 1.30 (6H, s), 1.20 (4H, m), 0.83 (3H, t, J = 7.8 Hz). MS m/e 206 ($\text{M}+\text{H})^+$.

Preparation 9

10 Step 1:

To an ice-cold solution of cyclopropylacetonitrile (4.7 g, 58 mmol) in anhydrous Et_2O (30ml) was added 2M 4-fluorophenylmagnesium bromide in Et_2O (25 ml, 50 mmol), and the reaction mixture was stirred at 15 0°C for 2 h. The reaction mixture was allowed to warm to RT and stirred for an additional 2 h. The pH was adjusted to 3 by addition of 1N HCl and the whole was extracted with Et_2O (4x50 ml). The combined Et_2O layers were washed with saturated Na_2CO_3 and NaCl , dried (MgSO_4), filtered and concentrated. Flash chromatography (2:98 EtOAc/hexane)
 20 of the residue afforded the product (5.02g, 56%). ^1H NMR (CDCl_3 , 400 MHz) δ 7.98(2H, m), 7.13 (2H, t), 2.85 (2H, d), 1.15 (1H, m), 0.61 (2H, m), 0.19 (2H, m). MS m/e 179 ($\text{M}+\text{H})^+$.

Step 2:

25 To a stirred, ice-cold solution of the product of Step 1 (5.0 g, 28 mmol) in anhydrous THF (100 ml) under N_2 was added KH (16.0 g, 35% in mineral oil, 140 mmol), and the reaction mixture was stirred for 0.5 h. Then CH_3I (16 ml, 280 mmol) was added dropwise to the ice-cold reaction mixture. After stirring at RT for 4h, the reaction mixture was

-17-

cooled in an ice-bath and sat'd NH₄Cl was cautiously added. The whole was extracted with EtOAc (3x100 mL), washed with H₂O and sat'd NaCl, dried (MgSO₄), filtered, and concentrated. Flash chromatography (hexanes, then 1:9 EtOAc/hexanes) afforded the product (3.96 g, 68%).

- 5 ¹H NMR (CDCl₃, 400 MHz) δ 7.84 (2H, m), 7.07 (2H, m), 1.14 (6H, s), 1.13 (1H, m), 0.51 (2H, m), 0.42 (2H, m).

- Step 3: Using the procedure of Preparation 7, Step 3, reaction of the product of Step 2 with NaN₃ afforded Preparation 9. ¹H NMR (CDCl₃, 400 MHz) δ 7.86 (2H, m), 6.67 (2H, m), 4.42 (2H, bs), 1.16 (1H, m), 1.15 (6H, s), 0.49 (2H, m), 0.42 (2H, m).

Preparation 10

Step 1:

- 15 A mixture of 4-fluoronitrobenzene (10.0 g, 70.9 mmol), 4-methoxybenzylmercaptan (14.8 mL, 106 mmol), and K₂CO₃ (19.6 g, 142 mmol) in acetone (150 mL) was refluxed for 4h. The cooled reaction mixture was poured into H₂O and extracted with CH₂Cl₂ (3x100 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated to afford an oil (17.1 g, 87%) that was used without further purification.
- 20 ¹H NMR (CDCl₃, 400 MHz) δ 8.18 (m, 2H, ArH), 7.38 (m, 4H, ArH), 6.94 (m, 2H, ArH), 4.28 (s, 2H, -CH₂-), 3.87 (s, 3H, CH₃O-).

- Step 2: Reduction of the product from Step 1 (17 g, 62 mmol) with NiCl₂.6H₂O/ NaBH₄ according to the procedure of Preparation 6, step 2, gave the product aniline (6.67 g, 44%). ¹H Nmr (CDCl₃, 400 MHz) δ 7.18 (m, 4H, ArH), 6.82 (m, 2H, ArH), 6.61 (m, 2H, ArH), 3.95 (s, 2H, -CH₂-), 3.85 (s, 3H, CH₃O-).

Step 3:

-18-

- A mixture of the product of Step 2 (6.67 g, 27.2 mmol), trimethylacetyl chloride (5.0 mL, 40 mmol), and DMAP (6.64 g, 54.4 mmol) in CH_2Cl_2 (100 mL) was stirred for 0.3 h. Then CH_2Cl_2 (200 mL) was added and the mixture was washed with 1M HCl. The organic layer was dried (5) (Na_2SO_4), filtered, and evaporated. Recrystallization of the residue from $\text{Et}_2\text{O}/\text{hexane}/\text{CH}_2\text{Cl}_2$ afforded the product (4.6 g, 51%) as a white solid. MS (Cl) m/e 330 ($\text{M}+\text{H}$)⁺.
- Step 4: To a stirred, ice-cold mixture of the product of Step 3 (500 mg, 1.46 mmol) in CH_2Cl_2 (25 mL), was added CF_3COOH (6 mL) and (10) $\text{Hg}(\text{OAc})_2$ (465 mg, 1.46 mmol). After 1.3 h, the reaction mixture was poured into H_2O , aqueous Na_2S was added, and the mixture was extracted with 1:2 EtOAc/hexanes. The organic layer was dried (15) (Na_2SO_4), filtered, and evaporated. The residue was subjected to flash chromatography (1:2 EtOAc/hexanes) to give the product (305 mg, 100%). ^1H NMR (CDCl_3 , 400 MHz) δ 7.51 (m, 2H, ArH), 7.33 (m, 2H, ArH), 1.49 (s, 3H, $(\text{CH}_3)_3\text{C}$).

Example 1

- (20) To a mixture of Preparation 1 (10.00 g, 47.7 mmol) and pyridine (7.70 ml, 95.5 mmol) in CH_2Cl_2 (100 ml) was added trimethylacetyl chloride (8.80 ml, 71.6 mmol). The reaction mixture was stirred at RT for 0.5 h, then poured into 2 M HCl (100 ml). The mixture was extracted with CH_2Cl_2 (3x100 ml), dried (Na_2SO_4), filtered, and concentrated. The (25) residue was subjected to flash column chromatography (1:10 EtOAc/hexanes) to afford the title compound (76%). ^1H NMR (CDCl_3 , 400 M Hz) δ 7.50–7.39 (m, 4H, ArH), 7.32 (s, 1H, NH), 1.50–1.35 (m, 4H, CH_2CH_2), 1.29 (s, 9H, $(\text{CH}_3)_3\text{C}$), 1.17 (s, 6H, $(\text{CH}_3)_2\text{C}$), 0.88 (t, 3H, CH_3CH_2). MS (Cl) m/e 294 ($\text{M}+\text{H}$)⁺.
- (30) Using appropriate starting materials and essentially the same procedure the following compounds can be prepared (Table 1).

-19-

Table 1

Ex.		R1	<i>m/e</i> Cl (M+H) ⁺
1A			280
1B			404
1C			309
1D			343
1E			292
1F			341
1G			279
1H			402
1I			294
1J			343
1K			281
1L			404
1M			253

-20-

1N			266
1O			376
1P			315
1Q			306
1R			306
1S			320
1T			280
1U			308
1V			278
1W			356
1X			322
1Y			396
1Z			386
1AA			336
1AB			308
1AC			418
1AD			382

-21-

1AE			338
1AF			320
1AG			308
1AH			370
1AI			354
1AJ			348
1AK			348
1AL			348
1AM			314
1AN			328
1AO			342
1AP			336

Example 2

- A mixture of Preparation 1 (1.03 g, 4.92 mmol), Et₃N (3.40 ml, 5 24.6 mmol) and triphosgene (0.585 g, 1.97 mmol) in toluene (60 ml) was refluxed for 2 h, then allowed to cool to RT. (CH₃)₂NH (2.0 M in THF) (4.90 ml, 9.84 mmol) was added. The reaction mixture was allowed to stir at RT for 1.5 h, then poured into cold water. The whole was extracted

-22-

with CH_2Cl_2 (3x100 ml), dried (Na_2SO_4), filtered and concentrated. Purification of the residue by flash chromatography (1:1 EtOAc/hexanes) afforded the title compound (1.03 g, 74%) as a white solid. ^1H NMR (CDCl_3 , 400 MHz) δ 7.43 (m, 4H, ArH), 6.39 (s, 1H, NHCO), 3.07 (s, 6H, 5 N(CH_3)₃), 1.45 (m, 4H, $\text{CH}_2\text{CH}_2\text{CMe}_2\text{S}$), 1.23 (s, 6H, (CH_3)₂CS), 0.93 (t, 3H, J=6.88 Hz, CH_3CH_2). MS (Cl) m/e 281 (M+H)⁺.

Using appropriate starting materials and essentially the same procedure the following compounds can be prepared (Table 2).

Table 2

10

Ex.	R ¹	m/e Cl (M+H) ⁺
2A		349
2B		357
2C		379
2D		369
2E		309
2F		335
2G		335
2H		357
2I		309
2J		336

-23-

2K		363
2L		339
2M		335
2N		335
2O		372
2P		404
2Q		364
2R		375
2S		335
2T		377
2U		371
2V	Me ₂ N	414
2W		309
2X	Me ₂ N	352
2Y	HO	311
2Z		372

-24-

2AA		338
2AB		325
2AC		411
2AD		377
2AE		366
2AF		361
2AG		352
2AH		408
2AI		350
2AJ		398
2AK		399

Example 3

To an ice-cold mixture of Preparation 2 (2.32 g, 9.03 mmol) and NiCl₂•6H₂O (4.83 g, 20.3 mmol) in CH₃OH (100 ml) was added NaBH₄ (1.53 g, 40.6 mmol) in portions. After 1.5 h, the reaction mixture was poured into water and the whole was extracted with CH₂Cl₂ (3x100 ml). The combined organic extracts were dried (Na₂SO₄), filtered, and

-25-

concentrated in vacuo to give the desired 3-fluoro-4-(1',1'-dimethylbutylthio)aniline (56%). A mixture of the aniline (60 mg, 0.264 mmol), pyridine (0.11 ml, 1.32 mmol), and $(CH_3)_3CCOCl$ (0.065 ml, 0.528 mmol) in CH_2Cl_2 (1.0 ml), was stirred overnight, then subjected to plc (1:6

- 5 EtOAc/hexanes) to give the title compound (41%). 1H NMR ($CDCl_3$, 400 MHz) δ 7.65 (m, 1H, ArH), 7.45 (m, 2H, ArH & NH), 7.20 (m, 1H, ArH), 1.52(m, 4H, $CH_3CH_2CH_2$), 1.37(s, 9H, $C(CH_3)_3$), 1.27(s, 6H, $C(CH_3)_2S$), 0.96 (t, 3H, J=6.8 Hz, $CH_3CH_2CH_2$). MS (Cl) m/e 312 ($M+H^+$).

Similarly prepared were compounds of the formula:

10

Ex.	R ¹	m/e Cl ($M+H^+$)
3A		299
3B		422
3C		361

Using the compound of Preparation 3 and the appropriate acid chloride or carbamyl chloride, the procedure of Example 3 afforded the following compounds:

15

Ex.	R ¹	m/e Cl ($M+H^+$)
3D		314
3E		438
3F		342
3G		328

-26-

3H		343
3I		357
3J		439

Example 4

- Step 1: A mixture of 2,4-difluoronitrobenzene (2.6 ml, 23.3 mmol), *p*-methoxybenzyl mercaptan (2.00 g, 11.7 mmol), K₂CO₃ (6.47 g, 46.8 mmol) in acetone (50 ml) was refluxed for 20 h. The reaction mixture was poured into cold water. The whole was extracted with CH₂Cl₂ (3x100 ml), and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash chromatography (1:30→1:20 EtOAc/hexanes) to give the desired 2-fluoro-4-(4'-methoxybenzylmercapto)nitrobenzene containing a small amount of 4-fluoro-2-(4'-methoxybenzylmercapto)nitrobenzene.
- MS (CI) *m/e* 294 (M+H)⁺.
- Step 2: To a vigorously stirred ice-cold mixture of 2-fluoro-4-(4'-methoxybenzylmercapto)nitrobenzene and NiCl₂•6H₂O (6.08 g, 25.6 mmol) in CH₃OH was added NaBH₄ (1.93 g, 51.1 mmol) in portions. The reaction mixture was stirred for 1 h at 0 °C, then poured into cold water. The whole was extracted with CH₂Cl₂ (3x100 ml) and the combined organic layers were dried (Na₂SO₄), filtered, and evaporated to give 2-fluoro-4-(4'-methoxybenzylmercapto)aniline.
- MS (CI) *m/e* 264 (M+H)⁺.

- Step 3: A mixture of the product of step 2, pyridine (3.1 ml, 38.4 mmol) and (CH₃)₃CCOCl (3.2 ml, 25.6 mmol) in CH₂Cl₂ (100 ml) was stirred for 2 h, then poured into cold water. The whole was extracted with CH₂Cl₂ (3x100 ml) and the combined organic layers were dried (Na₂SO₄), filtered and concentrated to afford 2-fluoro-4-(4'-methoxybenzylmercapto)phenyl-2,2-dimethylpropanamide. MS (CI) *m/e* 348 (M+H)⁺.

-27-

Step 4: A solution of the product of Step 3 in $\text{CF}_3\text{CO}_2\text{H}$ (20 ml) was heated at 80 °C for 28 h, then concentrated. The residue (963 mg) was dissolved in Et_2O (2 ml). 2-Methyl-1-pentene (2.0 ml) and concentrated H_2SO_4 (0.5 ml) were added with stirring. After 20 min. the reaction

- 5 mixture was poured into CH_2Cl_2 (200 ml), and washed with water and sat'd NaCl. The organic layer was dried (Na_2SO_4), filtered and concentrated. The residue was purified by plc (1:10 EtOAc/hexanes) to afford the title compound in 16% overall yield starting from 2,4-difluoro-nitrobenzene. ^1H NMR (CDCl_3 , 400 MHz) δ 8.37 (t, 1H, $J=8.5$ Hz, ArH), 7.71 (s, 1H, NH), 7.30 (m, 2H, ArH), 1.50 (m, 4H, $\text{CH}_3\text{CH}_2\text{CH}_2$), 1.37 (s, 9H, $\text{C}(\text{CH}_3)_3$), 1.25 (s, 6H, $\text{C}(\text{CH}_3)_2\text{S}$), 0.95 (t, 3H, $J=7.0$ Hz, $\text{CH}_3\text{CH}_2\text{CH}_2$). MS(Cl) m/e 312 ($\text{M}+\text{H}^+$).
- 10

Example 5

- 15 To a refluxing suspension of $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ (3.95 g, 14.2 mmol) and Fe powder (397 mg, 7.1 mmol) in 1:1 $\text{H}_2\text{O}/\text{EtOH}$ (100 ml) was added a hot solution of Preparation 4 (319 mg, 1.42 mmol) in EtOH (10 ml). The suspension was refluxed for 6h, allowed to cool, and filtered through celite. The filtrate was extracted with CH_2Cl_2 and the organic extract
- 20 was dried (Na_2SO_4), filtered, and concentrated to afford the aniline (185 mg). A portion of the aniline (30 mg, 0.15 mmol), trimethylacetyl chloride (47 mg, 0.38 mmol), pyridine (62 mg, 0.77 mmol), and 4-dimethylamino-pyridine (19 mg, 0.15 mmol) in CH_2Cl_2 (2 ml) was stirred overnight. The reaction mixture was subjected to flash chromatography (1:10
- 25 EtOAc/hexanes) to afford the title compound (37 mg, 95%) as white solid. MS (Cl) m/e 280 ($\text{M}+\text{H}^+$).

Example 6

- 30 Using the procedure of Example 1, the reaction of Preparation 5 (97 mg, 0.5 mmol) and trimethylacetyl chloride (0.12 ml, 1.0 mmol) afforded the title compound (137 mg, 99%) as a white solid. ^1H NMR

-28-

(CDCl₃, 400 MHz) δ 7.43 (2H, m, ArH), 6.97 (2H, m, ArH), 1.64 - 1.48 (4H, m, -CH₂CH₂-), 1.34 (9H, s, -C(CH₃)₃), 1.28 (6H, s, -OC(CH₃)₂-), 0.97 (3H, t, J = 7.1 Hz, -CH₂CH₃). MS (Cl) m/e 278 (M+H)⁺.

5 Using appropriate starting materials and essentially the same procedure, the following compounds can be prepared:

Ex.		a	R ¹	m/e Cl (M+H) ⁺
6A		0		388
6B		0		264
6C		0		292
6D		0		304
6E		0		414
6F		1		250
6G		0		318
6H		0		428
6I		0		290
6J		0		400

-29-

6K		1		264
6L		1		374
6M		0		265
6N		0		367
6O		0		327
6P		0		353
6Q		0		319
6R		0		305
6S		0		339
6T		1		279
6U		1		251
6V		1		313
6W		1		317
6X		1		303
6Y		1		277
6Z		1		291

-30-

The following compounds can also be prepared using appropriate starting materials and similar methods:

Ex.	R ¹	<i>m/e</i> Cl (M+H) ⁺
6AA		299
6AB		449
6AC		361
6AD		298
6AE		355
6AF		422
6AG		341
6AH		326
6AI		423
6AJ		327

Example 7

5

Using the procedure of Example 1, the reaction of the product of Preparation 6 (21 mg, 0.11 mmol) and trimethylacetyl chloride (25 μ l, 0.20 mmol) afforded the title compound (20 mg, 65%) as a white solid.
¹H NMR (CDCl_3 , 400 MHz) δ 8.59 (1H, s, ArH), 8.17 (1H, d, J = 8.6 Hz,

-31-

ArH), 7.47 (1H, d, J = 8.6 Hz, ArH), 1.49 (9H, s, -CO(CH₃)₃), 1.30 (9H, s, -S(CH₃)₃). MS (Cl) *m/e* 267 (M+H)⁺.

Using appropriate starting materials and essentially the same
5 procedure the following compounds can be prepared:

Example 8

10

Step 1:

To a mixture of Preparation 1 (2.00 g, 9.55 mmol) and pyridine (1.50 ml, 19.1 mmol) in CH₂Cl₂ (100 ml) was added 2-bromoisobutyryl bromide (1.80 ml, 14.3 mmol). The reaction mixture was stirred at RT for 15 min, then poured into 1N HCl and extracted with CH₂Cl₂ (3x100 ml). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was subjected to flash chromatography (1:10 EtOAc/hexanes) to afford 13 (99%) as a white solid. ¹H NMR (CDCl₃, 400 MHz) δ 8.55 (s, 1H, NHCO), 7.55 (m, 4H, ArH), 2.10 (s, 6H, (CH₃)₂CBr), 1.51 (m, CH₂CH₂), 1.26 (s, 6H, (CH₃)₂CS), 0.96 (t, 3H, CH₃CH₂). MS (Cl) *m/e* 358 (M+H)⁺.

20 Step 2: To a stirred solution of Et₂NH (58 μ l, 0.558 mmol) in THF (2.0 ml) was added NaH (8.0 mg, 0.307 mmol), followed by 13 (100 mg, 0.279 mmol). The reaction mixture was stirred at RT for 30 min. and then subjected directly to plc (1:15 EtOAc/hexanes) to afford the title

25

-32-

compound (61%). ^1H NMR (CDCl_3 , 400 MHz) δ 9.63 (s, 1H, NHCO), 7.52 (m, 4H, ArH), 2.62 (q, 4H, $J=7.15$ Hz, $\text{N}(\text{CH}_2\text{CH}_3)_2$), 1.48 (m, 4H, $\text{CH}_2\text{CH}_2\text{CMe}_2\text{S}$), 1.36 (s, 6H, $(\text{CH}_3)_2\text{CN}$), 1.24 (s, 6H, $(\text{CH}_3)_2\text{CS}$), 1.17 (t, 6H, $J=7.09$ Hz, $\text{N}(\text{CH}_2\text{CH}_3)_2$), 0.94 (t, 3H, $J=6.88$ Hz, 5 $\text{CH}_3(\text{CH}_2)_2\text{CMe}_2\text{S}$). MS (Cl) m/e 351 ($\text{M}+\text{H})^+$.

Using the same procedure and the appropriate amine, the following compounds were also prepared:

Ex.	Z	m/e Cl ($\text{M}+\text{H})^+$
8A		365
8B		446
8C		381
8D		440
8E		337
8F		366

10

Example 9

Step 1:

Using the product of Preparation 1 (210 mg, 1.0 mmol) and 2-bromo-15 propionyl bromide (0.10 ml, 1.0 mmol) as starting materials, the procedure described for 13 (Example 8, Step 1) afforded 14 (218 mg, 64%). ^1H NMR (400 MHz, CDCl_3) δ 8.13 (1H, bs, NH), 7.55 (4H, m, ArH), 4.61 (1H, q, $J=7$ Hz, $-\text{CHCH}_3$), 2.03 (3H, d, $J=7$ Hz, $-\text{CHCH}_3$).

-33-

1.60-1.45 (4H, m, CH₂CH₂CH₃), 1.26 (6H, s, (CH₃)₂C), 0.97 (t, 3H, J=7 Hz, CH₂CH₃).

- Step 2: A mixture of **14** (102 mg, 0.30 mmol), benzylamine (65 μ l, 0.59 mmol), and K₂CO₃ (83 mg, 0.60 mmol) in DMSO (1 ml) was stirred. After 5 2 h, H₂O (10 ml) was added and the whole was extracted with CH₂Cl₂. The combined organic layers were washed with sat'd NaCl, dried (MgSO₄), filtered and evaporated. The residue was subjected to plc (1:1 EtOAc/ hexanes) to afford the title compound (70 mg, 62%) as a glass.
- 10 ¹H NMR (400 MHz, CDCl₃) δ 9.60 (1H, bs, NH), 7.62 (2H, m, ArH), 7.52 (2H, m, ArH), 7.48-7.30 (5H, m, ArH), 3.90 (2H, s, CH₂Ph), 3.51 (1H, m, -CHCH₃), 1.60-1.45 (7H, m, -CHCH₃, CH₂CH₂CH₃), 1.26 (6H, s, (CH₃)₂C), 0.97 (t, 3H, J=7 Hz, CH₂CH₃). MS (Cl) *m/e* 371 (M+H)⁺.

Using the appropriate amine and essentially the same
15 procedures, the following compounds can also be prepared:

Ex.	R ^a	R ^b	N(R ¹²) ₂	<i>m/e</i> Cl (M+H) ⁺
9A	H	H		323
9B	H	H		357
9C	H	H		371
9D	CH ₃	H		309
9E	CH ₃	H		323
9F	CH ₃	H		385
9G	CH ₃	H		337
9H	CH ₃	H		363

-34-

Example 10

To a solution of Preparation 10 (50 mg, 0.24 mmol) and 3-cyclopentyl-2-methylprop-1-ene (59 mg, 0.48 mmol) in Et₂O (0.5 ml) was 5 added conc. H₂SO₄ (26 µl, 0.48 mmol). The reaction mixture was stirred for 18 h, then subjected to plc (1:6 EtOAc/hexanes) to give the product (28 mg, 35%). ¹H NMR (CDCl₃, 400 MHz) δ 7.57 (m, 4H, ArH), 7.45 (s, 1H, NH), 2.13 (m, 1H, aliphatic H), 1.96 (m, 2H, aliphatic H), 1.62 (m, 4H, aliphatic H), 1.41 (s, 9H, (CH₃)₃C-), 1.31 (s, 6H, (CH₃)₂C), 1.19 (m, 4H, aliphatic). MS (Cl) m/e 334 (M+H)⁺.

Using appropriate starting materials and essentially the same procedure the following compounds are prepared.

15

Example 11

Step 1:

To a mixture of Preparation 1 (2.00 g, 9.56 mmol) and N-t-butoxycarbonylpiperidine-4-carboxylic acid (2.40 g, 10.5 mmol) in DMF (50 ml) was added DMAP (0.082 g, 0.67 mmol) and EDC (1.83 g, 11.6 mmol). The reaction mixture was stirred at RT for 16 h, then partitioned between H₂O (300 ml) and EtOAc (300 ml). The organic layer was washed with H₂O, dried (MgSO₄), filtered, and evaporated. The residue was

-35-

subjected to flash chromatography (1:5 EtOAc/ hexanes) to afford the product (2.16 g, 54%) as a white solid. ^1H NMR (CDCl_3 , 400 MHz) δ 7.50 (4H, m, ArH), 7.26 (1H, s, -NH), 4.23 (2H, m, -CH₂), 2.83 (2H, m, -CH₂), 2.42 (1H, m, -CH), 1.93 (2H, m, -CH₂), 1.78 (2H, m, -CH₂), 1.50 (9H, s, -C(CH₃)₃), 1.50-1.42 (4H, m, -(CH₂)₂-), 1.23 (6H, s, (CH₃)₂C-), 0.94 (3H, t, J = 7.3 Hz, CH₃).

Step 2:

To the product of Step 1 (2.16 g, 5.1 mmol) was added 4M HCl in 1,4-dioxane (70 ml) and the reaction mixture was stirred for 0.5 h. The mixture was concentrated under reduced pressure to afford a white solid (1.80 g) that was used without further purification. ^1H NMR ($\text{CDCl}_3 + \text{CD}_3\text{OD}$, 400 MHz) δ 7.45 (4H, m, ArH), 3.32 (2H, m, -CH₂), 3.06 (2H, m, -CH₂), 2.71 (1H, m, -CH), 2.02 (2H, m, -CH₂), 1.91 (2H, m, -CH₂), 1.45-1.32 (4H, m, -(CH₂)₂-), 1.14 (6H, s, (CH₃)₂C-), 0.84 (3H, t, J = 7.3 Hz, CH₃).

Step 3: To a mixture of the product of Step 2 (0.10 g, 0.28 mmol) and Et₃N (0.06 ml, 0.43 mmol) in CH₂Cl₂ (1.5 ml) was added benzene-sulfonyl chloride (63 mg, 0.36 mmol). The reaction mixture was stirred for 3 days, then diluted with CH₂Cl₂. The mixture was washed with 10% NH₄OH, 1M HCl, and saturated NaCl, then dried (MgSO₄), filtered and evaporated. The residue was subjected to plc (1:99 CH₃OH/CH₂Cl₂) to afford the product (90 mg, 70%) as a white solid. Anal. calcd for C₂₄H₃₂N₂O₃S₂: C, 62.58; H, 7.00; N, 6.08; S, 13.92. Found: C, 62.20; H, 7.05; N, 6.07; S, 13.72%. MS (FAB) m/e 461 (M+H)⁺.

Using the appropriate sulfonyl chloride starting material and the procedure of Step 3, the following compounds were prepared:

-36-

Ex.	R ¹	m/e Cl (M+H) ⁺
11A		399
11B		413
11C		427
11D		427
11E		475
11F		441
11G		511
11H		475
11I		511
11J		475
11K		529

-37-

Example 12

Step 1:

- 5 To a mixture of N-t-butoxycarbonyl-4-piperidone (10.0 g, 0.050 mol) and aqueous CH₃NH₂ (40% w/w, 10 ml) in 1,2-dichloroethane (125 ml) was added NaBH(OAc)₃ (16.0 g, 0.075 mol). The reaction mixture was stirred overnight, then 1M NaOH (250 ml) was added and the whole was extracted with Et₂O (700 ml). The organic layer was washed with sat'd
10 NaCl, dried (MgSO₄), filtered, and concentrated to give the product (10.5 g, 97%) as an oil that was used directly in Step 2. ¹H NMR (CDCl₃, 400 MHz) δ 4.09 (2H, m), 2.86 (2H, m), 2.55 (1H, m), 2.50 (3H, s), 1.90 (2H, m), 1.51 (9H, s), 1.30 (2H, m).

Step 2:

- 15 Using the procedure of Example 2, the product of Step 1, triphosgene, and the product of Preparation 1 were reacted to give the product.
¹H NMR (CDCl₃, 400 MHz) δ 7.32 (4H, m, ArH), 6.32 (1H, s, NH), 4.35 (1H, m, CH), 4.15 (2H, m, CH₂), 2.81 (3H, s, NCH₃), 2.73 (2H, m, CH₂),
20 1.65-1.32 (8H, m, CH₂×4), 1.90 (2H, m), 1.40 (9H, s, C(CH₃)₃), 1.13 (6H, s, (CH₃)₂), 0.83 (3H, t, J = 6.9 Hz, CH₃).

Step 3:

- Using the procedure of Example 11, Step 2, the product of Step 2 was
25 reacted with 4M HCl in 1,4-dioxane to give the product. ¹H NMR
(CD₃OD, 400 MHz) δ 7.38 (4H, m, ArH), 4.38 (1H, m, CH), 3.50 (2H, m, CH₂), 3.12 (2H, m, CH₂), 2.96 (3H, s, NCH₃), 2.03 (2H, m, CH₂), 1.93

-38-

(2H, m, CH₂), 1.55-1.38 (4H, m, CH₂x2), 1.18 (6H, s, (CH₃)₂), 0.91 (3H, t, J = 7.2 Hz, CH₃).

- Step 4: To a suspension of the product of Step 3 (200 mg, 0.52 mmol) and NaBH(OAc)₃ (155 mg, 0.73 mmol) in 1,2-dichloroethane (2.5 ml)
- 5 was added cyclopropane carboxaldehyde (0.12 ml, 1.6 mmol). After stirring for 16 h, the reaction mixture was added to 1M NaOH (10 ml) and extracted with CH₂Cl₂ (20 ml). The organic layer was dried (MgSO₄), filtered and evaporated. The residue was subjected to plc (1:9
- 10 CH₃OH/CH₂Cl₂ saturated with conc. NH₄OH) to afford the product (166 mg, 79%) as a white solid. Anal. calcd for C₂₃H₃₇N₃OS: C, 68.44; H, 9.24; N, 10.41; S, 7.94. Found: C, 68.09; H, 9.18; N, 10.36; S, 7.56%. MS (Cl) *m/e* 404 (M+H)⁺.

Treatment of the product with excess 1M HCl in Et₂O followed by evaporation of the Et₂O under reduced pressure gave the HCl salt.

- 15 Anal. calcd for C₂₃H₃₈N₃OSCl·0.5H₂O: C, 61.38; H, 8.96; N, 9.34; S, 7.12. Found: C, 61.72; H, 8.65; N, 9.30; S, 6.81%.

Using the appropriate ketone or aldehyde starting material and the procedure of step 4, the following compounds were prepared:

20

Ex.	R ¹	<i>m/e</i> Cl (M+H) ⁺
12A		378
12B		392
12C		440
12D		432

-39-

Example 13

Using the procedure of Example 11, Step 3, reaction of the product of Example 12, Step 3 with 1-naphthalenesulfonyl chloride 5 afforded the product. Anal. calcd for $C_{23}H_{37}N_3OS \cdot 0.25H_2O$: C, 64.03; H, 6.90; N, 7.70; S, 11.88. Found: C, 63.75; H, 6.77; N, 7.70; S, 12.05%. MS (Cl) m/e 540 ($M+H$)⁺.

Using the appropriate sulfonyl chloride starting material, the following compounds were prepared:

Example 14

15

Step 1:

To a stirred mixture of 1,4-cyclohexanedione monoethylene ketal (4.68 g, 30 mmol) and 40% w/w aq. CH_3NH_2 (6.0 ml) in 1,2-dichloroethane (75 ml), was added $Na(OAc)_3BH$ (9.6 g, 45 mmol) in portions.

-40-

- The reaction mixture was vigorously stirred for 16 h, then 1N NaOH (75 ml) was added. The organic layer was washed with sat'd NaCl, dried (MgSO_4), filtered and evaporated to give an oil (4.60 g, 90%) that was used without further purification. ^1H NMR (CDCl_3 , 400 MHz) δ 3.97 (4H, s), 2.47 (1H, m), 2.46 (3H, s), 1.91 (2H, m), 1.80 (2H, m), 1.59 (2H, m), 1.45 (2H, m).
- 5 Step 2:

- Using the procedure of Example 2, reaction of the product of Step 10 with the isocyanate derived from Preparation 1 afforded the product. MS m/e 407 ($\text{M}+\text{H})^+$.

Step 3:

- A mixture of the product of Step 2 (1.13 g, 2.8 mmol) and 3M HCl (10 ml) in THF (20 ml) was stirred at RT for 1 h. The reaction mixture was neutralized with 1M NaOH and extracted with CH_2Cl_2 (2x50 ml). The combined organic layers were dried (MgSO_4), filtered and evaporated. Flash chromatography (1:99 $\text{CH}_3\text{OH}/\text{CH}_2\text{Cl}_2$) of the residue afforded the product (0.90 g, 88%). MS m/e 363 ($\text{M}+\text{H})^+$.
- 15 Step 4: To a stirred mixture of the product of Step 3 (100 mg, 0.28 mmol) and 40% w/w $(\text{CH}_3)_2\text{NH}$ (0.09 ml, 0.9 mmol) in CH_2Cl_2 (1 ml) was added $\text{Na(OAc)}_3\text{BH}$ (88 mg, 0.42 mmol). After 16 h, 1M NaOH (5 ml) was added and the whole was extracted with CH_2Cl_2 (2x10 ml). The combined organic layers were dried (MgSO_4), filtered, and concentrated. Purification of the residue by preparative tlc (1:7:92 conc. $\text{NH}_4\text{OH}/\text{CH}_3\text{OH}/\text{CH}_2\text{Cl}_2$) afforded the less polar *cis* isomer, 14A (48 mg, 45%) and the more polar *trans* isomer, 14B (31 mg, 29%).
- 20 25

- 14A, Cis isomer: ^1H NMR ($\text{CDCl}_3 + \text{CD}_3\text{OD}$, 400 MHz) δ 7.22 (4H, m), 4.08 (1H, m), 2.79 (3H, s), 2.13 (6H, s), 2.08 (1H, m), 1.83 (2H, m), 1.60 (2H, m), 1.40 – 1.23 (8H, m), 1.03 (6H, s), 0.74 (3H, t, $J = 7.3$ Hz). MS m/e 392 ($\text{M}+\text{H})^+$.

-41-

14B, Trans isomer : ^1H NMR ($\text{CDCl}_3 + \text{CD}_3\text{OD}$, 400 MHz) δ 7.22 (4H, m), 3.92 (1H, m), 2.72 (3H, s), 2.13 (6H, s), 1.96 (1H, m), 1.93 (2H, m), 1.63 (2H, m), 1.45 – 1.22 (8H, m), 1.04 (6H, s), 0.74 (3H, t, $J = 7.2$ Hz). MS m/e 392 ($\text{M}+\text{H})^+$.

5 Using the appropriate amine and essentially the same procedure outlined in Example 14, Step 4, the following compounds were prepared.

Ex.	Z	m/e
14C		364
14D		378
14E		392
14F		406
14G		406
14H		404
14I		420
14J		418
14K		408
14L		432
14M		447

-42-

14N		434
14O		364
14P		378
14Q		392
14R		406
14S		406
14T		404
14U		420
14V		418
14W		408
14X		432
14Y		447

Example 15

Using the procedure of Example 2, Preparation 7, *i*Pr₂NEt, triphosgene, and 4-(2-methylamino)ethylpyridine were reacted to give the product. ¹H NMR (CDCl₃, 400 MHz) δ 8.50 (2H, s, ArH), 7.85 (2H, m, ArH), 7.41 (2H, m, ArH), 7.19 (2H, m, ArH), 6.60 (1H, s, NH), 3.60 (2H, t, *J* = 6.8 Hz, CH₂N), 2.97 (3H, s, CH₃N), 2.95 (2H, t, *J* = 7.2 Hz, NCH₂CH₂), 2.77 (2H, s, CH₂CO), 1.40 (2H, q, *J* = 7.6 Hz, CH₃CH₂), 1.03 (6H, s, (CH₃)₂C), 0.85 (3H, t, *J* = 7.6 Hz, CH₃CH₂). MS (ES) *m/e* 368 (M+H)⁺.

-43-

Reaction of Preparation 7,8, or 9, triphosgene, and the appropriate amine by essentially the same procedure afforded the following compounds:

5 wherein a, R⁶, R⁷, R²⁰ and R¹² are as defined in the table

Ex.		a	R ¹²	MS m/e (M+H)
15A		0		368
15B		0		368
15C		0		366
15D		0		366
15E		0		360
15F		1		360
15G		0		358
15H		0		446
15I		1		446
15J		0		444

-44-

Example 16

- Step 1: Using the procedure described in Example 11, Step 2, the compound of Example 15H was treated with HCl to obtain the hydrochloride. MS m/e 346 ($M-Cl$) $^+$.
- Step 2: Using the procedure described in Example 12, Step 4, cyclopropane carboxaldehyde was reacted with the product of Step 1 to obtain the title compound. MS m/e 400 ($M+H$) $^+$.
- Using the appropriate starting materials and essentially the same procedure, the following compounds were prepared:

Example 17

- Step 1: To a mixture of t-butyldiphenylchlorosilane (9.3 g, 34 mmol) and Et₃N (5.12 g, 51 mmol) in CH₃CN (50 ml) was slowly added N-methyl-ethylenediamine (5.0 g, 67 mmol). The reaction mixture was stirred for 2 h. After removal of CH₃CN, the residue was dissolved in CH₂Cl₂ and washed with sat'd NaHCO₃ and H₂O. The organic layer was dried (MgSO₄), filtered and evaporated to give a colorless oil (10.2 g) which was used directly in Step 2.

-45-

Step 2:

Using the procedure of Example 2, reaction of Preparation 8, triphosgene, and the product of Step 1 afforded the product. MS *m/e* 5 306.1 ($M+H$)⁺.

Step 3: To a solution of the product of Step 2 (95 mg, 0.31 mmol) and Et₃N (63 mg, 0.62 mmol) in CH₂Cl₂ (2 ml) was added CH₃SO₂Cl (72 mg, 0.63 mmol) dropwise. After 5 min, the reaction mixture was subjected to preparative TLC (CH₂Cl₂/CH₃OH/conc. NH₄OH 10:1:0.1) to afford the product (70 mg, 59%). ¹H NMR (CDCl₃, 400 MHz) δ 7.76 (2H, m, ArH), 7.47 (2H, m, ArH), 7.20 (1H, s, NH), 5.90 (1H, bs, NH), 3.50 (2H, m, CH₂CH₂), 3.30 (2H, m, CH₂CH₂), 2.98 (3H, s, CH₃), 2.97 (s, 3H, CH₃), 1.70 (m, 2H, CH₂), 1.05-1.4 (8H, m, (CH₃)₂ & CH₂), 0.9 (t, 3H, *J* = 7.3 Hz, CH₃). MS *m/e* 384.1 ($M+H$)⁺.

15

Example 18

To a solution of Example 15 (330 mg, 0.90 mmol) in CH₃OH (10 ml) at RT was added NaBH₄ (68 mg, 18 mmol) in portions. The reaction was stirred at room temperature for 2 h, then poured into sat.'d NaHCO₃.
20 The whole was extracted with CH₂Cl₂ (3x50 ml), the combined organic layers were washed with H₂O and brine, dried (Na₂SO₄), filtered and concentrated. The crude product (230 mg, 69%) was used in the next step without further purification. ¹H NMR (CDCl₃, 400 MHz) δ 8.50 (2H, br, ArH), 7.10 – 7.30 (6H, m, ArH), 6.30 (1H, s, NH), 4.75 (1H, m, HOCH), 3.60 (2H, t, *J* = 7.2 Hz, CH₂N), 2.93 (3H, s, CH₃N), 2.88 (2H, t, *J* = 7.6 Hz, NCH₂CH₂), 2.22 (1H, br, OH), 1.70 (1H, m, HOCHCH₂Hb), 1.50 (1H, m, HOCHCH₂Hb), 1.31 (m, 2H, CH₃CH₂), 0.89 (6H, s, (CH₃)₂C), 0.80 (3H, t, *J* = 7.2 Hz, CH₃CH₂).

Use of the appropriate starting material and essentially the same procedure afforded the following compounds:
30

-46-

wherein a, R⁶, R⁷, R²⁰ and R¹² are as defined in the table

Ex.		a	R ¹²	MS <i>m/e</i> (M+H)
18A		0		370
18B		0		370
18C		0		362
18D		1		362
18E		1		402
18F		0		402
18G		0		376
18H		0		368
18I		0		368
18J		0		360
18K		0		400
18L		0		386

-47-

Example 19

To a solution of Example 18 (230 mg, 0.62 mmol) in dry CH₂Cl₂ (20 ml) was added Et₃SiH (723 mg, 6.2 mmol) and CF₃CO₂H (142 mg,

- 5 1.2 mmol). The reaction mixture was stirred at RT for 16 h, then concentrated. The residue was subjected to preparative TLC (1:10 (2M NH₃ in CH₃OH)/CH₂Cl₂) to afford the product (180 mg, 82%) as colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 8.50 (2H, m, ArH), 7.0 – 7.25 (6H, m, ArH), 6.20 (1H, s, NH), 3.60 (2H, t, J = 7.2 Hz, CH₂N), 2.94 (3H, s, CH₃N), 2.85 (2H, t, J = 7.2 Hz, CH₂CH₂N), 2.45 (2H, m, CH₂CH₂CMe₂), 1.40 (2H, m, CH₂CH₂CMe₂), 1.30 (2H, q, J = 7.2 Hz, CH₃CH₂), 0.88 (6H, s, C(CH₃)₂), 0.80 (3H, t, J = 7.6 Hz, CH₃CH₂). MS (ES) m/e 354 (M+H)⁺.
- 10 Using appropriate starting materials and essentially the same procedure the following compounds were prepared:

15

wherein a, R⁶, R⁷, R²⁰ and R¹² are as defined in the table

Ex.		a	R ¹²	MS m/e (M+H)
19A		0		354
19B		0		354
19C		0		346
19D		1		346
19E		1		386

-48-

19F		0		386
19G		0		360
19H		0		352
19I		0		352
19J		0		344
19K		0		384
19L		0		370
19M		1		--
19N		1		--
19O		1		--

Example 20Step 1:

5

Reaction of Preparation 8 with the product of Example 14, Step 1 according to the procedure of Example 2 afforded the product.

-49-

¹H NMR (CDCl₃, 400 MHz) δ 7.76 (2H, m), 7.42 (2H, m), 6.48 (1H, s), 4.28 (1H, m), 3.95 (4H, s), 2.91 (3H, s), 1.75 (10H, m), 1.30 (6H, s), 1.21 (2H, m), 0.83 (3H, t). MS m/e 403 (M+H)⁺.

Step 2:

Reaction of the product of Step 1 with HCl by the procedure of Example 14, Step 3, afforded the product. ¹H NMR (CDCl₃, 400 MHz) δ 7.77 (2H, m), 7.44 (2H, m), 6.58 (1H, s), 4.81 (1H, m), 2.91 (3H, s), 2.57 (2H, m), 2.46 (2H, m), 2.03 (2H, m), 1.90 (2H, m), 1.75 (2H, m), 1.30 (6H, s), 1.21 (2H, m), 0.83 (3H, t). MS m/e 359 (M+H)⁺.

Step 3: Reaction of the product of Step 2 with cyclopropanemethyl-amine by the procedure of Example 14, Step 4, afforded the product as a mixture of *cis* and *trans* isomers that was separated by preparative tlc (1:9 (2M NH₃ in CH₃OH)/CH₂Cl₂).

15 **20A, less polar *Cis* isomer** : ¹H NMR (CDCl₃, 400 MHz) δ 7.75 (2H, m), 7.44 (2H, m), 6.58 (1H, s), 4.14 (1H, m), 2.94 (3H, s), 2.93 (1H, m), 2.46 (2H, m), 1.85 (4H, m), 1.74 (2H, m), 1.59 (2H, m), 1.46 (2H, m), 1.29 (6H, s), 1.20 (2H, m), 0.98 (1H, m), 0.82 (3H, t, J = 7.2 Hz), 0.51 (2H, m), 0.14 (2H, m). MS m/e 414 (M+H)⁺.

20 **20B, more polar *trans* isomer** : ¹H NMR (CDCl₃, 400 MHz) δ 7.75 (2H, m), 7.45 (2H, m), 6.64 (1H, s), 4.16 (1H, m), 2.89 (3H, s), 2.50 (3H, m), 2.05 (2H, m), 1.74 (4H, m), 1.51 (2H, m), 1.38 (2H, m), 1.29 (6H, s), 1.23 (2H, m), 0.98 (1H, m), 0.82 (3H, t, J = 7.3 Hz), 0.49 (2H, m), 0.15 (2H, m). MS m/e 414 (M+H)⁺.

25 Similarly prepared from the product of Step 2 were:

¹H NMR (CDCl₃, 400 MHz) δ 7.77 (2H, m), 7.42 (2H, m), 6.50 (1H, s), 4.14 (1H, m), 2.93 (3H, s), 2.72 (1H, m), 2.39 (3H, s), 1.84 (4H, m), 1.76

-50-

(2H, m), 1.59 (2H, m), 1.46 (2H, m), 1.30 (6H, s), 1.21 (2H, m), 0.82 (3H, t, $J = 7.2$ Hz). MS m/e 374 ($M+H$)⁺.

- 5 ^1H NMR (CDCl_3 , 400 MHz) δ 7.76 (2H, m), 7.42 (2H, m), 6.48 (1H, s),
 4.17 (1H, m), 2.89 (3H, s), 2.44 (3H, s), 2.35 (1H, m), 2.05 (2H, m), 1.75
 (4H, m), 1.50 (2H, m), 1.46 (2H, m), 1.30 (6H, s), 1.21 (2H, m), 0.83 (3H, t,
 $J = 7.3$ Hz). MS m/e 374 ($M+H$)⁺.

- 10 ^1H NMR (CDCl_3 , 400 MHz) δ 7.75 (2H, m), 7.43 (2H, m), 6.51 (1H, s),
 4.14 (1H, m), 3.70 (2H, m), 2.93 (3H, s), 2.80 (2H, m), 2.52 (1H, m), 1.88
 (4H, m), 1.75 (2H, m), 1.71 (2H, m), 1.51 (2H, m), 1.30 (6H, s), 1.21 (2H,
 m), 0.83 (3H, t, $J = 7.3$ Hz). MS m/e 404 ($M+H$)⁺.

- 15 ^1H NMR (CDCl_3 , 400 MHz) δ 7.75 (2H, m), 7.43 (2H, m), 6.54 (1H, s),
 4.14 (1H, m), 3.70 (2H, m), 2.88 (3H, s), 2.86 (2H, m), 2.51 (3H, m), 2.08
 (2H, m), 1.75 (4H, m), 1.51 (2H, m), 1.30 (6H, s), 1.21 (2H, m), 0.83 (3H, t,
 $J = 7.3$ Hz). MS m/e 404 ($M+H$)⁺.

Example 21

- 20 Reduction of Example 20A with NaBH_4 by the procedure of
 Example 18 afforded the title compound. ^1H NMR (CDCl_3 , 400 MHz) δ
 7.34 (2H, m), 7.20 (2H, m), 6.32 (1H, s), 4.40 (1H, s), 4.16 (1H, m), 2.93
 (4H, s), 2.46 (2H, m), 1.88 (4H, m), 1.60 (2H, m), 1.49 (2H, m), 1.31 (4H,
 m), 0.99 (1H, m), 0.87 (6H, s), 0.79 (3H, m), 0.51 (2H, m), 0.15 (2H, m).
- 25 MS m/e 416 ($M+H$)⁺.

-51-

Similarly prepared was:

- 1H NMR (CDCl_3 , 400 MHz) δ 7.34 (2H, m), 7.21 (2H, m), 6.31 (1H, s),
4.41 (1H, s), 4.18 (1H, m), 2.93 (3H, s), 2.78 (1H, m), 2.43 (3H, s), 1.87
5 (4H, m), 1.62 (2H, m), 1.49 (2H, m), 1.31 (4H, m), 0.87 (6H, s), 0.79 (3H,
m). MS m/e 376 ($M+\text{H}^+$).

Example 22

- Reduction of Example 20 with $\text{Et}_3\text{SiH}/\text{TFA}$ by the procedure of
10 Example 19 afforded the title compound. 1H NMR (CDCl_3 , 400 MHz) δ
7.28 (2H, m), 7.10 (2H, m), 6.26 (1H, s), 4.16 (1H, m), 2.93 (3H, s), 2.89
(1H, m), 2.47 (2H, m), 2.43 (2H, s), 1.87 (4H, m), 1.60 (2H, m), 1.48 (2H,
m), 1.31 (2H, m), 1.16 (2H, m), 0.99 (1H, m), 0.88 (3H, t, $J = 7.3$ Hz), 0.81
(6H, s), 0.50 (2H, m), 0.15 (2H, m). MS m/e 400 ($M+\text{H}^+$).

- 15 Similarly, the following compound was prepared:

- 1H NMR (CDCl_3 , 400 MHz) δ 7.27 (2H, m), 7.01 (2H, m), 6.26 (1H, s),
4.18 (1H, m), 2.92 (3H, s), 2.77 (1H, m), 2.43 (5H, s), 1.88 (4H, m), 1.66
(2H, m), 1.50 (2H, t), 1.30 (2H, m), 1.11 (2H, m), 0.88 (3H, s), 0.81 (6H,
s). MS m/e 360 ($M+\text{H}^+$).

Example 23

Step 1:

-52-

Using the procedure of Example 1, reaction of Preparation 8, trimethyl acetyl chloride and pyridine gave the product. ^1H NMR (CDCl_3 , 400 MHz) δ 7.76 (d, 2H, $J=8.8$ Hz, ArH), 7.57 (d, 2H, $J=8.4$ Hz, ArH), 7.41 (s, 1H, NH), 1.75 (m, 2H, $\text{CH}_3\text{CH}_2\text{CH}_2$), 1.32 (s, 9H, $(\text{CH}_3)_3\text{C}$), 1.30 (s, 6H, $(\text{CH}_3)_2\text{C}$), 1.26 (m, 2H, CH_2CH_3), 0.84 (t, 3H, $J = 7.2$ Hz, CH_3CH_2).
MS m/e 290 ($\text{M}+\text{H})^+$.

Step 2: To a solution of the product of Step 1 (100 mg, 0.346 mmol) in dry CH_2Cl_2 (1.0 ml) was added (diethylamino)sulfur trifluoride (557 mg, 3.46 mmol). The reaction mixture was heated at 80 °C overnight, then allowed to cool to RT. The crude mixture was subjected to plc (1:6 EtOAc/hexanes) to give the product (25.0 mg, 23%) as a colorless oil. ^1H NMR (CDCl_3 , 400 MHz) δ 7.37 (m, 2H, ArH), 7.26 (m, 2H, ArH), 1.32 (m, 13H, $(\text{CH}_3)_3\text{C}$ & $\text{CH}_3\text{CH}_2\text{CH}_2$), 0.98 (s, 6H, $(\text{CH}_3)_2\text{C}$), 0.87 (m, 3H, CH_3CH_2). MS m/e 312 ($\text{M}+\text{H})^+$.

-53-

What is Claimed:

1. A compound having the structural formula

- 5 or a pharmaceutically acceptable salt thereof, wherein
a and b are independently 0, 1 or 2, provided that the sum of a
and b is 0 to 3;

X is -O-, -S-, -SO-, -SO₂-, -CH(OR⁸)-, -C(O)-, -C(R²³)₂-,

- 10 -C(R²⁵)=C(R²⁵)-, $-C\equiv C-$ or $\begin{matrix} NOR^8 \\ || \\ -C- \end{matrix}$;
R¹ is R¹⁵-aryl, R²⁴-heteroaryl, -NHR¹², -N(R¹²)₂, -(C₁-C₉)alkyl-

OC(O)R⁸, aryloxy(C₁-C₉)alkyl,

wherein m is 1-4, or

wherein d and e are independently 0, 1 or 2;

- R², R³, R⁴ and R⁵ are independently selected from the group
15 consisting of H, C₁-C₅ straight or branched alkyl, (C₃-C₁₂)cycloalkyl,
R¹⁴-(C₃-C₁₂)cycloalkyl, halogen, -OR⁸, -N(R⁸)₂, -CO₂R⁸ and CF₃;
R⁶ and R⁷ are independently selected from the group consisting
of H, (C₁-C₉)alkyl, (C₁-C₉)alkenyl, hydroxy-(C₁-C₉)alkyl, amino-(C₁-C₉)-
alkyl, (C₁-C₉)alkoxy-(C₁-C₉)alkyl, (C₃-C₁₂)cycloalkyl and (C₃-C₁₂)-
20 cycloalkyl-(C₁-C₆)alkyl, or R⁶ and R⁷, together with the carbon to which
they are attached, form a 3, 4, 5, 6 or 7-membered carbocyclic ring, or a
4, 5, 6 or 7-membered heterocyclic ring, wherein 1, 2 or 3 ring members
are independently selected from the group consisting of O, S and N;

- R⁸ is independently selected from the group consisting of H,
25 (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, R¹⁵-aryl and R²⁴-heteroaryl;
R⁹ is (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, R¹⁵-aryl or R²⁴-heteroaryl;
R¹¹ is independently selected from the group consisting of H, (C₁-
C₆)alkyl and (C₃-C₁₂)cycloalkyl;

-54-

R^{12} is independently selected from the group consisting of straight or branched (C_1 - C_9)alkyl, hydroxy(C_2 - C_9)alkyl, (C_1 - C_9)alkoxy- $(C_2$ - C_9)-alkyl, $N(R^{11})(R^{19})-(C_2$ - $C_9)$ -alkyl, $HS(C_2$ - $C_9)$ -alkyl, (C_1 - C_9)-alkylthio- $(C_2$ - $C_9)$ -alkyl, (C_3 - C_{12})-cycloalkyl, $R^{14}-(C_3$ - $C_{12})$ cycloalkyl,

5 R^{15} -aryl,

R^{24} -heteroaryl, R^{15} -aryl(C_1 - C_6)-alkyl, R^{24} -heteroaryl(C_1 - C_6)-alkyl,

wherein j and k are independently 0, 1 or 2,

and

wherein q is 1 or 2, and s is 0, 1 or 2; or two R^{12} groups, together with the nitrogen to which they are attached, form a ring of the formula

10

wherein p is 0, 1 or 2;

R^{10} is $-NR^{18}-$, $-O-$ or $-S-$;

15 R^{13} is 1 to 3 substituents independently selected from the group consisting of hydrogen, (C_1 - C_6)alkyl, halogen, (C_1 - C_6)alkoxy and CF_3 ;

R^{14} is 1 to 3 substituents independently selected from the group consisting of (C_1 - C_6)alkyl, benzyl, R^{13} -aryl and R^{13} -heteroaryl;

20 R^{15} is 1 to 3 substituents independently selected from the group consisting of hydrogen, (C_1 - C_6)alkyl, halo, polyhalo(C_1 - C_6)alkyl, $R^{17}O-$, $-N(R^{17})_2$, $-S(R^{17})$, $R^{17}O-(C_1-C_6)alkyl$, $(R^{17})_2N-(C_1-C_6)alkyl$, formyl, $-C(O)R^{17}$, $-COOR^{17}$, $-CON(R^{17})_2$, $-OC(O)N(R^{17})_2$, $-N(R^{17})C(O)N(R^{17})_2$, $-NR^{17}C(O)R^{17}$, $-NR^{17}C(O)OR^{14}$, $R^{17}S(O)-$, $R^{17}SO_2-$, $R^{17}SO_2NR^{17}-$ and tri(C_1 - C_6)-alkylsilyl;

25 R^{16} is 1-3 substituents independently selected from the group consisting of H, (C_1 - C_6)alkyl, (C_3 - C_{12})-cycloalkyl, (C_3 - C_{12})-spirocycloalkyl, (C_3 - C_4)-spiro-alkylenedioxy, R^{15} -aryl, R^{24} -heteroaryl, benzyl, N -piperidinyl, $-COR^8$, $-C(O)NR^8R^9$, $-NR^8R^9$ and $-NR^8C(O)R^9$, or when two

-55-

- R¹⁶ groups are attached to adjacent ring carbon atoms, together with said carbon atoms, they can form a (C₅-C₇)cycloalkyl ring;
- R¹⁷ is independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl(C₁-C₆)alkyl,
- 5 R¹³-aryl and R¹³-heteroaryl;
- R¹⁸ is independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl-(C₁-C₆)alkyl, R¹⁵-aryl, R²⁴-heteroaryl, -CO₂R⁹, -C(O)N(R⁸)₂, -COR⁸ and -SO₂R⁹;
- R¹⁹ is H, (C₃-C₁₂)cycloalkyl-(C₁-C₆)alkyl, R¹⁵-aryl, R²⁴-heteroaryl, -CO₂R⁹, -C(O)N(R⁸)₂, -COR⁸ or -SO₂R⁹;
- 10 R²⁰ is (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₂)cycloalkyl-(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, oxo(C₁-C₆)alkyl or polyhalo(C₁-C₆)alkyl;
- R²¹ and R²² are independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl-(C₁-C₆)alkyl,
- 15 hydroxy(C₁-C₆)alkyl, R¹⁵-aryl, R²⁴-heteroaryl, R¹⁵-aryl(C₁-C₆)alkyl or R²⁴-heteroaryl(C₁-C₆)-alkyl;
- R²³ is independently selected from the group consisting of H, halogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, R¹⁵-aryl, and R²⁴-heteroaryl;
- R²⁴ is 1 to 2 substituents independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, halo, polyhalo(C₁-C₆)alkyl, R¹⁷O-, -N(R¹⁷)₂, -S(R¹⁷), R¹⁷O-(C₁-C₆)alkyl, (R¹⁷)₂N-(C₁-C₆)alkyl, formyl, -C(O)R¹⁷, -COOR¹⁷, -CON(R¹⁷)₂, -OC(O)N(R¹⁷)₂, -N(R¹⁷)C(O)N(R¹⁷)₂, -NR¹⁷C(O)R¹⁷, -NR¹⁷C(O)OR¹⁴, R¹⁷S(O)-, R¹⁷SO₂-, R¹⁷SO₂NR¹⁷- and tri(C₁-C₆)-alkylsilyl; and
- 25 R²⁵ is independently selected from the group consisting of hydrogen, halogen, (C₁-C₆)-alkyl and polyhalo(C₁-C₆)alkyl.

2. A compound of claim 1 wherein Q is
- 30 3. A compound of claim 1 wherein R³ and R⁴ are each H; and R² and R⁵ are independently selected from the group consisting of hydrogen and halogen.
- 35 4. A compound of claim 1 wherein X is -S-; -C(O)-; -CH(OR⁸)- or -C(R²³)₂.

-56-

5. A compound of claim 4 wherein X is -C(R²³)₂- and R²³ is hydrogen.

6. A compound of claim 1 wherein a is 1 or 2 and b is 0.

5

7. A compound of claim 1 wherein R¹ is -NHR¹² or -N(R¹²)₂.

8. A compound of claim 7 wherein R¹ is (C₁-C₆)alkyl; (CH₂)₀₋₆(R²⁴-heteroaryl);

 ; ; or

10. wherein R¹⁸ is (C₁-C₆)alkyl or -SO₂R⁹; R⁹ is (C₁-C₆)alkyl or aryl; and R²² is (C₁-C₆)alkyl or (C₃-C₁₂)cycloalkyl(C₁-C₆)alkyl.

15. 9. A compound of claim 1 wherein R⁶ and R⁷ are each (C₁-C₆)alkyl, or R⁶ and R⁷, together with the carbon to which they are attached, form a C₃-C₆ carbocyclic ring.

10. 10. A compound of claim 1 selected from the group consisting of those having the structural formula

20. wherein R²⁰, R⁶, R⁷, a, X, and R¹² are as defined in the following table:

R ⁷ R ⁶	a	X	R ¹²
	0	S	
	0	S	
	0	S	

-57-

	0	S	
	0	S	
	0	S	
	0	S	
	0	CH ₂	
	0	CH ₂	
	1	CH ₂	
	0	CH ₂	
	0	CH ₂	
	1	CH ₂	
	0	CH ₂	
	1	CH ₂	
	1	CH ₂	

-58-

11. A compound selected from the group consisting of those having the structural formula

wherein R²⁰, R⁶, R⁷, a, X, R⁵, R², R³, Q and R¹ are as defined in the following table:

	a	X	Q	R ²	R ³	R ⁵	R ¹
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	

-59-

	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	

-60-

	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	F	
	0	S	C	H	H	F	
	0	S	C	H	H	Cl	
	0	S	C	H	H	Cl	
	0	S	C	H	H	Cl	
	0	S	C	H	H	Cl	
	1	S	C	H	H	H	
	0	O	C	H	H	H	
	0	O	C	H	H	H	

-61-

	0	O	C	H	H	H	
	0	O	C	H	H	H	
	0	O	C	H	H	H	
	0	O	C	H	H	H	
	1	O	C	H	H	H	
	0	O	C	H	H	H	
	0	O	C	H	H	H	
	0	O	C	H	H	H	
	0	O	C	H	H	H	
	1	O	C	H	H	H	
	1	O	C	H	H	H	
	1	O	C	H	H	H	
	1	O	C	H	H	H	
	1	O	C	H	H	H	

-62-

	O	O		H	H	H	
	O	O		H	H	H	
	O	O		H	H	H	
	O	S	N	H	H	H	
	O	S	N	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	
	O	S	C	H	H	H	

-63-

	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	S	C	H	H	H	
	0	-CF ₂ -	C	H	H	H	

12. A pharmaceutical composition comprising a compound as defined in claim 1 in combination with a pharmaceutically acceptable carrier.

5

13. The use of a compound of claim 1 for the preparation of a medicament for treating an eating disorder or diabetes.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 99/11795

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 6	C07C321/02	C07C311/00	C07D211/96	A61K31/10	A61K31/18
A61K31/445					

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6	C07C	C07D	A61K
-------	------	------	------

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 97 20821 A (CIBA GEIGY AG ;RUEEGER HEINRICH (CH); SCHMIDLIN TIBUR (CH); RIGOLL) 12 June 1997 (1997-06-12) the whole document ----	1
P, A	WO 98 35957 A (BAYER AG) 20 August 1998 (1998-08-20) cited in the application the whole document -----	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

27 September 1999

Date of mailing of the international search report

12/10/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Goetz, G

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/US 99/11795

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9720821	A 12-06-1997	AU 7692696	A	27-06-1997
WO 9835957	A 20-08-1998	AU 6144098	A	08-09-1998
		CA 2251368	A	20-08-1998
		EP 0910565	A	28-04-1999