

FP7 Support Action - European Exascale Software Initiative

European Exascale Software Initiative EESI2

Towards exascale roadmap implementation

2nd IS-ENES Workshop on

"High-performance computing for Climate Models"

Toulouse, January 30&31, 2013

Philippe RICOUX (TOTAL)
EESI2 Coordinator

Agenda

EESI objectives

Build and consolidate a vision and roadmap at the European level, including applications, both from academia and industry to address the challenge of performing scientific computing on the new generation of super-computers, hundreds of Petaflop/PBytes in 2015 and Exaflop/ExaBytes in 2020

Toward

EFFICIENT APPLICATIONS

Why Exascale?

EXAFLOP (capability and capacity)

Drug design: realistic cell membrane models, including **drug permeation and binding**

Oil&Gas: huge 3D seismic wave inversion, reservoir modelling, robust optimization

Materials: material properties identification

Aeronautics-Greening the aircraft

Astronomy: Square Kilometre Array,

Earth Sciences: Natural hazard mitigation

Fundamental Sciences, Life Sciences,

Engineering sciences (Turbulence, Combustion, acoustics, Mechanical, chemical engineering, ...)

Climate: satellite sensors create floods of data (x 1000), leading to Exa-scale archives, ex. projected frequency of intense tropical cyclones in some region of the globe

Quantum Chemistry: discover a material and properties: ab initio databases of materials and molecular properties connected to existing databases of experimental properties

Industrial applications: management of data generated from micro/macro sensors and automated measurement devices

Industrial Roadmaps

Wing prototypes: **77**

Boeing From 767 to 787

- 40% less wind-tunnel days
- 25% saving in aerodynamics development time
- 20% saving on wind-tunnel tests cost

Thanks to HPC-enabled CFD runs, especially in highspeed regime, even providing better representation of aerodynamics phenomenon turned into better design choices.

But ... Digital Aircraft will require at least 1 ZetaFlop!

Wing prototypes: **11** (2008) → **7** by new methods and HPC (2015)

Industrial Roadmaps

American Nuclear Plant vision

Computational Challenges and Needs for Academic and Industrial

Computations with smaller and smaller scales. In larger and larger geometries a better understanding of physical phenomena a more effective help for decision making.

A better optimisation of the production (margin benefits)

10° cells	10 ⁷ cells	10° cells	10° cells	10 ¹⁰ cells
3.10° operations	6.10 ¹⁴ operations	10° operations	3.10 ¹⁷ operations	5.10 ¹⁰ operations
Fujistu VPP 5000 1 of 4 vector processors 2 month length computation	Cluster, IBM PowerS 400 processors 9 days	IBM Blue Gene/L « Frontier » 20 Tflopsduring 1 month	600 Triops during 1 month	10 Pflopsduring 1 month
# 1 Gb of storage	# 15 Gb of storage	# 200 Gb of storage	# 1 To of storage	# 10 To of storage
2 Gb of memory	25 Gb of memory	250 Gb of memory	2,5 To of memory	25 To of memory
Power of the computer	Pre-processing not parallelized	Pre-processing not parallelized Mesh generation IESP/Application Subgroup	lold lold Scalability / Solver	lold lold lold Visualisation

EESI Motivations and Organization

Origins of EESI: IESP (Jack Dongarra)

www.exascale.org

IESP meetings

Nov 2008

Apr 2009

Jun 2009

Oct 2009

Nov 2009

EESI proposal

Apr 2010

EESI start

Oct 2010

Nov 2010

Apr 2011

Build an international plan for developing the next generation open source software_for scientific highperformance computing

www.exascale.org

EESI Motivations and Organization

Exascale, a technological breakthrough

- □ Compare to Petascale computers: memory per core 1/10, CPU heterogeneity, total node interconnect BW & node memory 1/10, concurrency *10
- Software layer and applications need to exploit these new hardware trends by existing software stack that cannot be handled
- □ Community codes unprepared for sea change in architecture while:
 - designing and developing a new generation of Scientific Applications takes 5 to 10 years,
 - lifetime of Scientific Applications are several decades

EESI: 150 experts, 100 entities

Leader: Dr. Jean Yves BERTHOU
8 contractual partners
Large support of TOTAL
14 countries covering Europe
Participation of 2 US, 1 Israeli and 1 Lithuanian

EESI Motivations and Organization

It is time NOW to

- Evaluate the key missing components in the software stack
- Coordinate hardware development with software and applications communities
- Engage the redesign and development of the new generation of software stack and applications

A several decades program(s)

Main goals:

- investigate how Europe is located, its strengths and weaknesses, in the overall international HPC landscape and competition
- identify priority actions
- identify the sources of competitiveness for Europe induced by the development of Peta/Exascale solutions and usages
- investigate and propose programs in education and training for the next generation of computational scientists
- identify and stimulate opportunities of worldwide collaborations

EESI Main Challenge

Academy and industries, are looking for multi-peta and exaflopic computing resources

not only the next supercomputers themselves but also and mainly the ways to know how programming on millions cores machine.

Industrial and academic applications are in fact expecting for the best coupling between Architecture / Algorithm / Application,

in order to address and solve crucial issues in many fields.

EESI vision and recommendations

European Strengths

- PRACE: HPC already intensively used in academy thanks to PRACE and in industry: Energy (TOTAL, EDF), Aeronautic(AIRBUS), Finance, Defense&Security, ...
- Applications (2011 IDC survey): Leader in various scientific fields, supported by community organizations (CECAM, ENES, ELIXIR/European Bioinformatics Institute): astrophysics/cosmology, fusion research, materials sciences, life science, i.e Ab initio, combustion codes, bioinformatics tools for data mining, Full Wave Inversion (seismic)
- Applied math.: dense and sparse Solvers, direct or iterative (i.e AMG)
- □ Software: programming models, validation & correctness, performance tools design and development, system design, simulation frameworks/coupling tools, meshing tools

EESI vision and recommendations

European weaknesses

- Not clear how European ISV are preparing the coming of Exascale
- **□** Europe: 30% HPC market, 1% of HPC revenue
- Simulation as a single program is not as strongly supported as observations and experiments (ITER, LHC)

From a technical point of view:

- Lack of coordination in development of HPC software, i.e developed within Europe scientific libraries which are integrated in US *de facto* standard.
- Not enough participation in the definition of new standards for programming (MPI, OpenMP, C++, Fortran, ...), of OS, compilers, File system, hybrid core design
- Lack of data management (most of databases are non-European)
- Applications in various areas where European has a leadership position, will need to be redesigned, i.e Climate models, Life Science (molecular dynamics, Sequence Analysis, ...), engineering structural mechanics ...

These applications represent X1000 man.year of development

EESI vision and recommendations

R&D projects

System software:

- Europe having critical mass: programming model & runtime, performance, validation & correctness tools.
- Strategic areas but Europe lack of critical mass: resilience, OS, compilers, msg passing libraries, File system, hybrid core design, energy efficiency, programming models, Cloud
- Unified Multiscale/Multiphysics simulation framework, enabling coupling of (parts) legacy and new generation codes, component based architecture
- □ Pre and post treatment tools and "Big DATA" management: meshing (up to x100 billions cells, adaptive, automatic refinement, ...), visualization (of large data set, of statistical data, measured or computed), data mining, unified data layer for Bio-data
- □ Code redesign, rewriting for Exascale: Materials/Molecular Mechanics, Climate models, Life Science (molecular dynamics, Quantum Chemistry, Sequence Analysis, Protein docking,/3D strucure, Chemoinformatics)
- Applied mathematics: scientific libraries, innovative algorithmic developments and numerical methods (ultra-scalable, multi-level and type of parallelism, fault tolerant, memory thrifty), e.g iterative methods for handling resilience issue
- □ Verification & Validation, Uncertainty Quantification, Data Assimilation climate high degree of freedom, in earth science and engineering apps lower dof but accurary, optimal sensors network, probabilistic and stochastic models (earth science), coupling between stochastic and deterministic methods, robust optimization, data validation and reconciliation 2nd IS-ENES Workshop, Toulouse, January 30, 2013

Common main issues to be addressed

At the level of the simulation environment:

- Unified Simulation Framework and associated services: CAD, mesh generation, data setting tools, computational scheme editing aids, visualization, etc.
- Multi-physics simulation: establishment of standard coupling interfaces and software tools, mixing legacy and new generation codes
- common (jointly developed)
 mesh-generation tool, automatic and adaptive meshing, highly parallel
- Standardized efficient parallel IO and data management (sorting memory for fast access, allocating new memory as needed in smaller chunks, treat parts of memory that are rarely/never needed based on heuristic algorithms, ...)

At the level of codes/applications:

- New numerical methods, algorithms, solvers/libraries, improved efficiency
- coupling between stochastic and deterministic methods
- Numerical scheme involving Stochastic HPC computing for uncertainty and risk quantification
- meshless methods and particle simulation
- Scalable program, strong and weak scalability, load balancing, fault-tolerance techniques, multi-level parallelism (issues identified with multi-core with reduced memory bandwidth per core, Collective communications, Efficient parallel IO)
- Development of standards programming models (MPI, OpenMP, C++, Fortran, ...) handling multi-level parallelism and heterogeneous architecture
- □ Human resources, training (what level?)

EESI Conclusions

■ EESI recommendations – general statement

- Fund strategic projects and, whenever Europe lacks critical mass, coordinate European efforts with those of the rest of the world
- Reinforce multi-disciplinary HPC Centers and foster the development of community organizations
- Promote open source development while enabling commercial exploitation.

EESI recommendations – funding strategy and organization

- Funding of Exascale projects should not be limited to DG INFSO but supported by relevant Directorates
- These efforts should be coordinated with national funding agencies in Europe.

□ EESI recommendations – funding targets

- Fund R&D projects according to the EESI/IESP Technological Exascale roadmaps coordinated by a High level European body dedicated to HPC-Exascale
- Reinforce multi-disciplinary HPC Centers
- Fund co-design programs
- Create a European Exascale Software Center in charge of increasing the status of the funded R&D projects.

■ EESI recommendations – budget

2,5 to 3,5 billion euros over the next 10 years.

EESI Documents

All documents on EESI

- WP, WG Reports
- **All Final Reports**
- Final Roadmap, Vision & Recommendations
- Available on:

http://www.eesiproject.eu/pages/menu/homepage.php

EESI also largely participated to the new PRACE Scientific Case Update (2012 - 2020), available on:

http://www.prace-ri.eu/PRACE-The-Scientific-Case-for-HPC

Lead Author:

Martyn Guest – Cardiff University, UK

Panel Chairs:

Giovanni Aloisio – University of Salento and ENES-CMCC, Italy Stefan Blügel – Forschungszentrum Jülich, Germany

Modesto Orozco – Institute for Research in Biomedicine, Spain Philippe Ricoux – TOTAL, France

Andreas Schäfer - University of Regensburg, Germany

Deliverable D5.6 Final report on roadmap and recommendations development

INSTRUMENT

EESI 261513

CSA (Support and Collaborative Action

INFRASTRUCTURE

Actual submission date: 23 December 2011

Publication date: January 2012

Name of lead contractor for this deliverable; J.Y Berthou / EDF

ame of reviewers for this deliverable: Mike Ashworth (STFC), Stephane Requena (GENCI), Berno Mohr (JUELICH) Thierry Bidot (ARTTIC)

Abstract: This document is a consolidation of all main outputs of the project with a particular focu

Project co-funded by the European Commission within the Seventh Framework Programme (FP7/2007-2013)						
Dissemination Level						
PU	Public	X				
PP	Restricted to other programme participants (including the Commission Services)					
RE	Restricted to a group specified by the consortium (including the Commission Services)					
co	Confidential, only for members of the consortium (including the Commission Services)					

From

EESI

Agenda

From EESI to EESI2

EESI roadmaps, vision and recommendations need to be monitored, updated, on a dynamical way

Key issues to be addressed are pointed out in EESI1 ... Now EESI2 must recommend R&D actions how to tackle them

Extend, refine, and update Exascale cartography (directly in the dedicated WG for better analysis of each WG) and roadmaps from HPC community, on software, tools, methods, R&D and industrial applications, ...

With a Gap Analysis.

Including WG on disruptive technologies

Address "Cross Cutting issues": Data management and exploration, Uncertainties - UQ&VQ, Power & Performance, Resilience, Disruptive technologies

Investigation on funding scheme and opportunities, education, co-design centres, international coordination

Operational **Software maturity** level methodology, evaluation

EESI2 general picture

Contractual partners: TOTAL (coordinator), PRACE AISBL (acting for third parties LZR, GENCI, BSC, CINECA, EPCC, SARA...)

Contributing partners, involved in the management of EESI2 tasks but not associated to PRACE AISBL: INTEL, DLR, EDF, ANR, CERFACS, ...

Supporting partners: more than 50 letters of Support

EESI2 proposal submitted in November to INFRA-2012-3.3: Coordination actions, conferences and studies supporting policy development, including international cooperation, for e-Infrastructures.

Requested funding: 1.5 M€ → 1.36 M€ accepted by EC

Duration: 30 months, Start 1st September 2012 - kick off 18th September 2012

EESI2 Working Groups

EESI2 WP brief tasks (1/2)

Education, strategic scientific coordination:

- State-of-the-art, trends, and future needs in HPC training and education.
- Recommendations for EU co-design centers in the area of Exascale computing.

Application Work Groups:

- Key application breakthroughs, and performing a gap analysis and integrating international cartography
- R&D activities, especially in applications redesigning and development of multiscale/multiphysics frameworks;
- Assessing the feasibility of setting up Applications Co Design Centers
- structuring of scientific communities at the European level.

Enabling technologies Work Groups:

- Numerical analysis, with aspects such as dense linear algebra, graph and hypergraph partitioning, sparse direct methods, Iterative methods
- Disruptive technologies and Integration of international cartography

Cross cutting issues Work Groups:

- Data management and exploration specific issues roadmap
- actions and follow up of projects on uncertainties and roundings
- power management impact on the system design and on programmability
- achieve the best coupling Architecture-Algorithm-Application
- fault tolerance at system and application level
- Survey new hardware and software technologies

EESI2 WP brief tasks (2/2)

Operational software maturity level methodology, WP6:

- Develop and document a methodology for estimating the level of maturity of Exascale software components
- Identify 3 software stack components from existing and near future European Exascale projects and apply the defined methodology

ALL previous WP will converge in WP7

- EESI2 vision and roadmap
- Annual recommendations synchronized with EC R&D projects decision agenda

Dissemination, WP8

- Organization of technical workshops
- Organization of European Exascale conference
- Information Dissemination
- EESI in Europe and world-wide
- Involvement in International community workshops

	EESI2 Main Resouces							
	Working Package	Working Group	Title	Chair	Vice Chairs			18
UE	WP1		Management	Philippe RICOUX TOTAL FR	Jean Yves BERTHOU ANR FR			
		T1.1	Project Global Management	Philippe RICOUX TOTAL FR				
			Project	Philippe RICOLIX				
	w	ocated						
		0.11.5	MD	•	unding allo		l Europe	
		All \		•	ernational		•	se
			(Out of	f initial pa	rtners and	third pai	rties)	
		C .		romioni di				
Center of	Specific overview document Specific Scientific expert							
	WP3		Application Work Groups	REQUENA GENCI FR	Norbert KROLL DLR GER			
	T3.1 engineering REQUENA EDF FR DLR GER							
		T3.2	Weather, Climatology and Earth Sciences	Giovani ALOISIO Salente Univ. IT	Jean Claude ANDRE CERFACS FR			
		T3.3	Fundamental Sciences	Godehard SUTMANN JSC GER	Romain TEYSSIER CEA FR			
		T3.4	Life Science & Health	Modesto OROZCO BSC SP	Charles LAUGHTON Birmingham Univ. UK			
Need Externa	l Expertises	T3.5	Disruptive technologies	Godehard SUTMANN JSC GER	Ulrich RUEDE Erlingen Univ. GER			KEY ISSUE
2nd IS EN	ES Workshop	Tablence	, 9 2110iary 30,	Stephane 201R§QUENA	Norbert KROLL	Per OSTER		
(24) 2nd IS-EN	L2 WOLKSHOP	, routouse	, salidary 50,	GENCI FR	DLR GER	CSC FIN		

		WP4		Enabling technologies Work Groups	Rosa Maria BADIA BSC SP	Herbert HUBER LRZ GER			
		Open	T4.1	Numerical analysis	Andreas GROTHEY Edinhburg Univ. UK	lain DUFF STFC UK			
			T4.2	Scientific software engineering, programmabilit y	Felix WOLF GRS GER	Mathias MUELLER Dresden Univ. GER			
	Need External	Expertises	T4.3	Disruptive technologies	lain DUFF STFC UK	Serge GRATTON CERFACS FR			KEY ISSUE
l		Open	T4.4	Hardware and operating software vendors	Herbert HUBER LRZ GER	Lee MARGETTS Manchester Univ. UK			
			T4.5	Coordination	Rosa Maria BADIA BSC SP	Herbert HUBER LRZ GER	Per OSTER CSC FIN		
		WP5		Cross cutting issues Work Groups	Giovanni ERBACCI CINECA IT	Franck CAPELLO INRIA FR			
			T5.1	a management and exploration	Jean Pierre VILOTTE CNRS FR	Christian HASSE Frieberg Univ. GER			
		Open	T5.2	Uncertainties	Vincent BERGEAUD CEA FR	Alberto PASANINI EDF FR			KEY ISSUE
			T5.3	Power & Performance	Simon McINTOCH- SMITH Bristol Uinv. UK	Jesus LABERTA BSC SP	Thomas LUDWIG DKRZ GER	Mark BULL EPCC UK	
			T5.4	Resilience	Franck CAPELLO INRIA FR				
N	leed External Ex	pertises	T5.5	Disruptive technologies	Carlo CAVAZZONI CINECA IT	Karl SOLCHENBACH INTEL GER			KEY ISSUE
2nd	IS-ENES Work	shop, Toulou	T5.6 Ise, Janua	Coordination ary 30, 2013	Giovanni ERBACCI CINECA IT	Franck CAPELLO INRIA FR	Per OSTER CSC FIN		

	WP6		Operational software maturity level methodology	Bern MOHR JSC GER	Lee MARGETTS Manchester Univ. UK		
		Evaluation T6.1 methodology set up		Bern MOHR JSC GER	Francois BODIN CAPS Entre. FR		
		T6.2	Perform evaluation on 3 components,	Lee MARGETTS Manchester Univ. UK	Andrew JONES NAG UK		
Г			EESI2 vision	Philippe RICOUX	Jean Yves BERTHOU		
	WP7		and roadmap	TOTAL FR	ANR FR		
ı		T7.1	Vision and roadmap.	Philippe RICOUX TOTAL FR	Franck CAPELLO INRIA FR		
		T7.2 recommendation ns to European		Philippe RICOUX TOTAL FR	Jean Yves BERTHOU ANR FR		
	WP8 Dissemination		Dissemination	Peter MICHIELSE SARA NL	Sergi GIRONA BSC SP		
		T8.1	Organization of technical workshops	Philippe RICOUX TOTAL FR	Giovanni ERBACCI CINECA IT	Herve MOUREN TERATEC FR	
		T8.2	Organization of European Exascale conference	Peter MICHIELSE SARA NL	Jean Yves BERTHOU ANR FR		
		T8.3	Information Dissemination	Sergi GIRONA BSC SP	Philippe RICOUX TOTAL FR		
	Open	T8.4	EESI in Europe and world-wide	Franck CAPELLO INRIA FR	Peter MICHIELSE SARA NL		

EESI2 Outputs (1/2)

Based on detailed cartographies and roadmaps shared by the EU HPC community on key issues challenges:

A detailed evaluation of how Europe is located, its strengths and weaknesses, in the overall international HPC landscape and competition, including: Identification of main HPC European actors and users, Identification of main European and international HPC existing or planned initiatives and strategies, Links with funding agencies, Links with vendors, ISV and service providers, for leading to

Periodic Exascale VISION and ROADMAP, RECOMMENDATIONS

- A cartography of existing education courses and training needs and proposition for new programs adapted to Exascale
- A complete overview of existing worldwide Co-design centres (New from EESI1) and recommendations for Europe on such structures
 Real Actor in very new EC "Centres of Excellence" program
- A methodology to evaluate the maturity of results of projects that implement software components (New from EESI1)

EESI2 Outputs (2/2)

- Detailed periodic roadmaps on the key challenges identified in EESI1, including:
 - Gap analysis, Breakthroughs, (New from EESI1), Identification of priority actions, Identification of the main sources of competitiveness for Europe
 - Uncertainties propagation, roundings calculation model
- Dissemination actions, including:
 - Meeting with Funding agencies, A public web site, 2 large public international conference
- Strengthening of worldwide collaborations, including:
 - Representing Europe in the international Exascale community
 - Contribution to the International dialogs between US, Europe and Asia including EU organisations, the European commission and IESP.
 - Contributing to build an international Exascale software Organization

EESI2 Work Plan

EESI2 FOCUS

- Scientific key issues to be tackled
 - Fundamental, Industrial, Engineering, eco software, ...
 - Cross Cutting
 - Funding specific expertises
 - Not only need or objectives but technical propositions
- Detailed periodic roadmaps on the key challenges, including:
 - Gap analysis,
 - Breakthroughs,
 - Identification of priority actions,
 - Recommendations to R&D project
- Define educational programs for Exascale
- Contributing to build an international Exascale software Organization

EESI2

