MERKE -Definitionen

Pumping Lemma für reguläre Sprachen

```
wenn L eine regulare Sprache ist, dann existiert eine natürliche Zahl n_L (Pumpingzahl), soolass für alle Wörter z\in L mil |z|\geq n_L eine Zerlegung der Form: z=uvw existiert.

mil folgenden Eigenschaften: 1) |uv|\leq n_L
2) |v|\geq 1
3) z_i=uvvw\in L für alle natürl. Zahlen i
```

Pumping Lemma für kontextfreie Sprachen

```
wenn L eine kontextfreie Sprache ist, olarm existiert eine natürliche Zahl n_L (Pumpingzahl), sodass für alle (wörter z \in L mit |z| \ge n_L eine Zerlegung der Form: z = uvwxy existiert. mit folgenden Eigenschaften: 1) |vwx| \le n_L
2) |vx| \ge n
3) z_i = uviwx'y \in L gill für alle natürlichen Zahlen
```

CS-Grammatik

Regeln gür kontextsensitive Grammatik

CF-Grammatik

Regeln für kontextfreie Grammatik

```
1) nicht-λ-Regel: haben die Form X→ω mit × ∈ IN und ω ∈ (N ∪ T)<sup>†</sup> → X→ YZ } X,Y,Z ∈ N; a ∈ T + dh.: - X steht alleine und had weder links noch rechts Kontext - ω ist mindestens ein Nichtterminal (Bsp: A) oder Terminal (a)

2) λ-Regel: es darf S→λ gelben (d.h. aim Anfang darf λ geochrieben werden)

→ wenn es λ-Regel gibt, dann darf S auf Reiner rechten Seite stehen
```

REG-Grammatik

Turing-berechenbar

```
eine m-stellige Wortfunktion f ict Turingberechenbar, wenn es TM gibt, die folgendes realisiert:

1) Wenn (ω1,...,ωm) ∈ D1, dann existiert eine terminale Berechnung von M,
die von der nomierten stortkonfiguration (q0) zu einer nomierten Finalkonfiguration (qF ∈ F) führt

2) Wenn (ω1,...,ωm) ∉ D1, dann existiert keine terminierende Berechnung mil Finalzuotamol
```

Turing-entscheidbar

- formale Sprache $L \subseteq E^*$ is T-entscheidlbar $L \subseteq E^*$ is T-entscheidlbar $L \subseteq E^*$ formale $L \subseteq E^*$ is all worther $L \subseteq E^*$ is all worther $L \subseteq E^*$ is all worther $L \subseteq E^*$ formales. A $L \subseteq E^*$ is $L \subseteq E^*$ is all worther $L \subseteq E^*$ is all worther $L \subseteq E^*$ is all worther $L \subseteq E^*$.
- Zahlenmenge $A \subseteq \mathbb{N}$ is $A \subseteq \mathbb{N}$ is $A \subseteq \mathbb{N}$ is $A \subseteq \mathbb{N}$ is als Zahlenjeh T-berechenbar charakt. First $X_A : \mathbb{N} \mapsto \{0,1\}$ mid $X_A(u) = \{1,1\}$ als Zahlenjeh T-berechenbar
- Zahlenmenge $A \subseteq IN$ ist T-entocheiolbor $A' = \{ dya(n) \mid n \in A \} \subseteq \{1,2\}^*$ ist als formal Sprache T-berechenbar

Turing-semi-entscheidbar

· bounds Proscho 1 & 5 id T- some - onder hair Donne

Turing-semi-entscheidbar

- formale Sprache $L \subseteq \Sigma^*$ ist T-semi-entscheidlogress formale sprache $L \subseteq \Sigma^*$ ist T-semi-entscheidlogress formale sprache $L \subseteq \Sigma^*$ ist als worth that T-berechenbour Es gill: $D_{\chi_L^p} = L$ / speciall: $L = \emptyset$? $D_{\chi_L^p} = \emptyset$ which $X_g^p = V$
- Zahlenmenge $A \subseteq |N|$ ist T-semi-endscheidbar \leftarrow_{N} ihre partiell-charatel. Filt $X_A^f: N \to \{1\}$ mid $X_A^f(n) = \{1\}$ sonst ist als Zahlenfilt T-berechenbar $= \{1\}$ and $= \{1\}$ and $= \{1\}$ sonst ist als Zahlenfilt $= \{1\}$ is als Zahlenfilt $= \{1\}$ is $= \{1\}$ is $= \{1\}$ is $= \{1\}$.
- tablenmenge $A \subseteq \mathbb{N}$ ist 7-semi-entscheidloor $\Leftrightarrow A' = \{dya(n) \mid n \in A\} \subseteq \{1,2\}^*$ ist allo formale sprache T-semi-entscheidloor

Turing-aufzählbar

- Sprache $L \subseteq \Sigma^*$ ist T-aufzählbor $L = \emptyset$ oder eo gibt total-definierte T-berechenbare $Fkl: f: \Delta^* \mapsto \Sigma^*$, sodass $f(\Delta^*) = L$ mil anderen Worlen: $f: \Delta^* \mapsto L$ (surjektiv)
- Zahlunmenge $A \subseteq \mathbb{N}$ ist T-autzāhlbos \iff $A = \emptyset$ adar eo gilht total-dufinierte. T-berechenbose Flet: $g: \mathbb{N} \mapsto \mathbb{N}$, sodans $g(\mathbb{N}) = A$ mit anderen Worten: $g: \mathbb{N} \mapsto A$ (surjektiv)
- Sprache $L \subseteq \mathcal{E}^*$ ist T-autahlbor $L = \emptyset$ odur eo gibt total-dutiniete T-berechenbare FRU: $N \mapsto \mathcal{E}^*$, access h(N) = Lmid anderen Worten: $h: N \mapsto L$ (surjektiv)