

The simplex method

The Simplex Method

To use the simplex method, we first convert all inequalities to equalities by adding slack variables to <= constraints and subtracting slack variables from >= constraints.

For example:
$$a_{k1}X_1 + a_{k2}X_2 + ... + a_{kn}X_n \le b_k$$

converts to: $a_{k1}X_1 + a_{k2}X_2 + ... + a_{kn}X_n + S_k = b_k$

And:
$$a_{k1}X_1 + a_{k2}X_2 + ... + a_{kn}X_n >= b_k$$
 converts to: $a_{k1}X_1 + a_{k2}X_2 + ... + a_{kn}X_n - S_k = b_k$

For Our Example Problem...

MAX:
$$350X_1 + 300X_2$$
 } profit
S.T.: $1X_1 + 1X_2 + S_1 = 200$ } pumps
 $9X_1 + 6X_2 + S_2 = 1566$ } labor
 $12X_1 + 16X_2 + S_3 = 2880$ } tubing
 $X_1, X_2, S_1, S_2, S_3 >= 0$ } nonnegativity

• If there are n variables in a system of m equations (where $n \ge m$) we can select any m variables and solve the equations (setting the remaining n-m variables to zero.)

For Our Example Problem...

MAX:
$$350X_1 + 300X_2$$
 } profit
S.T.: $1X_1 + 1X_2 + S_1 = 200$ } pumps
 $9X_1 + 6X_2 + S_2 = 1566$ } labor
 $12X_1 + 16X_2 + S_3 = 2880$ } tubing
 $X_1, X_2, S_1, S_2, S_3 >= 0$ } nonnegativity

• If there are n variables in a system of m equations (where $n \ge m$) we can select any m variables and solve the equations (setting the remaining n-m variables to zero.)

Possible Basic Feasible Solutions

	Basic Variables	Nonbasic Variables	Solution	Objective Value
1	S_1, S_2, S_3	X_1, X_2	$X_1=0, X_2=0, S_1=200, S_2=1566, S_3=2880$	0
2	X_1, S_1, S_3	X_2, S_2	$X_1=174, X_2=0, S_1=26, S_2=0, S_3=792$	60,900
3	X_1, X_2, S_3	S_1, S_2	$X_1=122$, $X_2=78$, $S_1=0$, $S_2=0$, $S_3=168$	66,100
4	X_1, X_2, S_2	S_1, S_3	$X_1=80, X_2=120, S_1=0, S_2=126, S_3=0$	64,000
5	X_2 , S_1 , S_2	X_1, S_3	$X_1=0, X_2=180, S_1=20, S_2=486, S_3=0$	54,000
6*	X_1, X_2, S_1	S_2, S_3	$X_1=108, X_2=99, S_1=-7, S_2=0, S_3=0$	67,500
7 *	X_1, S_1, S_2	X_2, S_3	$X_1=240, X_2=0, S_1=-40, S_2=-594, S_3=0$	84,000
8 *	X_1, S_2, S_3	X_2, S_1	$X_1=200$, $X_2=0$, $S_1=0$, $S_2=-234$, $S_3=480$	70,000
9 *	X_2, S_2, S_3	X_1, S_1	$X_1=0, X_2=200, S_1=0, S_2=366, S_3=-320$	60,000
10*	X_2 , S_1 , S_3	$X_1, S2$	$X_1=0, X_2=261, S_1=-61, S_2=0, S_3=-1296$	78,300

^{*} denotes infeasible solutions

Possible Basic Feasible Solutions

	Basic Variables	Nonbasic Variables	Solution	Objective Value
1	S_1, S_2, S_3	X_1, X_2	$X_1=0, X_2=0, S_1=200, S_2=1566, S_3=2880$	0
2	X_1, S_1, S_3	X_2, S_2	$X_1=174, X_2=0, S_1=26, S_2=0, S_3=792$	60,900
3	X_1, X_2, S_3	S_1, S_2	$X_1=122$, $X_2=78$, $S_1=0$, $S_2=0$, $S_3=168$	66,100
4	X_1, X_2, S_2	S_1, S_3	$X_1=80, X_2=120, S_1=0, S_2=126, S_3=0$	64,000
5	X_2 , S_1 , S_2	X_1, S_3	$X_1=0, X_2=180, S_1=20, S_2=486, S_3=0$	54,000
6*	X_1, X_2, S_1	S_2, S_3	$X_1=108, X_2=99, S_1=-7, S_2=0, S_3=0$	67,500
7 *	X_1, S_1, S_2	X_2, S_3	$X_1=240, X_2=0, S_1=-40, S_2=-594, S_3=0$	84,000
8 *	X_1, S_2, S_3	X_2, S_1	$X_1=200$, $X_2=0$, $S_1=0$, $S_2=-234$, $S_3=480$	70,000
9 *	X_2, S_2, S_3	X_1, S_1	$X_1=0, X_2=200, S_1=0, S_2=366, S_3=-320$	60,000
10*	X_2 , S_1 , S_3	$X_1, S2$	$X_1=0, X_2=261, S_1=-61, S_2=0, S_3=-1296$	78,300

^{*} denotes infeasible solutions

Basic Feasible Solutions & Extreme Points

Simplex Method Summary

- Identify any basic feasible solution (or extreme point) for an LP problem, then moving to an adjacent extreme point, if such a move improves the value of the objective function.
- Moving from one extreme point to an adjacent one occurs by switching one of the basic variables with one of the nonbasic variables to create a new basic feasible solution (for an adjacent extreme point).
- When no adjacent extreme point has a better objective function value, stop -- the current extreme point is optimal.

