CS698O: Quiz-1

Name:	
Roll No.:	
Please fill the square with blue ink. Check/Tick marks are NOT allowed. Each question is of 2 marks.	
1. Consider sequence of R.V.s in the following order: $X_1 \to X_2, \ldots, \to X_n$ Assume that these RV.s follow first order Markov assumption. Which of the following are correct? Fill all that you think are correct.	
$\square P(X_k \mid X_{k-1}, X_{k-2}, X_{k-3}) = P(X_k \mid X_{k-1})$	
$\square P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i \mid X_{i-1})$	
$\square P(X_1, X_2, X_3) = P(X_3 \mid X_2) \times P(X_2, X_1)$	
$\square P(X_3 \mid X_2) = P(X_2 \mid X_1)$	
2. For a bigram language model, which of the following are true? Fill all that you think are correct.	
$\square \sum_{w_i \in \mathcal{V}} C(w_i, w_{i-1}) = C(w_{i-1})$	
$\square \sum_{w_i \in \mathcal{V}} C(w_i, w_{i-1}) > C(w_{i-1})$	
$\square \sum_{w_i \in \mathcal{V}} C(w_i, w_{i-1}) < C(w_{i-1})$	
$\Box \sum_{w_i \in \mathcal{V}} C(w_i, w_{i-1}) = 2 * C(w_{i-1})$	

3. Which of the following statements about Maximum Likelihood Estimate (MLE) for Language Model are correct? Fill all that you think are correct.

☐ MLE estimates suffer from overfitting

☐ MLE underestimates probabilities for n-grams with high counts and overestimates probabilities for n-grams with low counts

 \square MLE does not suffer from sparsity problems

 \square MLE cannot be done for language models

4. Which of the following are correct MLE estimates for parameters of n(=1 or 2 or 3 or 4)-gram language models? Fill all that you think are correct.

 $\square \ \theta_{MLE}(w_i) = \frac{C(w_i)}{|\mathcal{V}|}$

 $\square \theta_{MLE}(w_i \mid w_{i-1}) = \frac{C(w_i, w_{i-1})}{C(w_i)}$

 $\square \ \theta_{MLE}(w_i \mid w_{i-1}, w_{i-2}) = \frac{C(w_i, w_{i-1}, w_{i-2})}{\sum\limits_{w_i \in \mathcal{V}} C(w_i, w_{i-1}, w_{i-2})}$

 $\square \ \theta_{MLE}(w_i \mid w_{i-1}, w_{i-2}, w_{i-3}, w_{i-4}) = \frac{C(w_i, w_{i-1}, w_{i-2}, w_{i-3}, w_{i-4})}{C(w_{i-1}, w_{i-2}, w_{i-3}, w_{i-4})}$

5. Which of the following are correct about perplexity measure? Fill all that you think are correct.

 \square The higher the perplexity of a language model the better

 \square The lower the perplexity of a language model the better

□ Perplexity of a LM can never be infinite

 \square Perplexity of a LM can never be zero

6. Which of the following are correct definition(s) of perplexity? Fill all that you think are correct.

$$\square \left(\prod_{i=1}^m p(S_i)\right)^{-\frac{1}{M}}$$

$$\square \left(\frac{1}{M}\prod_{i=1}^{m}p(S_i)\right)^{-\frac{1}{M}}$$

7. Which of the following strategies can be used for overcoming MLE limitations for LM? Fill all that you think are correct.

☐ Discounting

 \square Extrapolation

 \square Class Based Clustering of Words

☐ Look Ahead Technique

8. For a trigram language model, what are the **exact** number of parameters that need to be estimated? Assume $\mathcal{V} = \{STOP, \mathcal{V}\}$. Fill all that you think are correct.

 $\square \mid \mathcal{V} \mid^3$

 $\square \mid \mathcal{V} \mid^3 -1$

 $\square \mid \mathcal{V} \mid^2$

 $\square \mid \mathcal{V} \mid$

Name:	Roll No.:
g	ogarithm of Word frequencies vs Logarithm of word rank in natural lan- uages follows which of the following relationships? Fill all that you think re correct.
	□ Power law relationship
	□ Exponential relationship
	□ Square relationship
	□ Linear relationship
10. C	Consider the following corpus:
I	am John
I	am out today
J_{ϵ}	ohn I am
N	Iary I am
	The cat ran
	ohn and cat ran
Τ	The cat ran after the mouse
	What is the MLE estimate of $p(STOP \mid cat, ran)$ and $p(John \mid START, STAR)$ espectively. Fill all that you think are correct.
	$\square \frac{0}{2}, \frac{0}{6}$
	$ \Box \frac{0}{3}, \frac{0}{6} $ $ \Box \frac{2}{4}, \frac{2}{7} $ $ \Box \frac{2}{3}, \frac{2}{7} $
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\sqcup \frac{\pi}{3}, \frac{\pi}{7}$
	$\square \frac{0}{3}, \frac{1}{7}$