# COSC 4368 Fundamentals of Artificial Intelligence

Lecture 2: Search August 23st, 2023

# Teaching Plan on Part I (Search)

- Search1: Classification of Search Problems, Terminology, and Overview (only partially covered in the textbook)
- Search2: Problem Solving Agents
- Search3: Heuristic Search and Exploration
- Search4: Randomized Hill Climbing and Backtracking (not covered in the textbook)
- Search5: Games (will cover this topic quite quickly)
- Search6: Constraint Satisfaction Problems
- Search7: Greedy Search and A\* Search
- Search8: Introduction to Evolutionary Computing (EC)
- Search9: Using EC to solve Travelling Salesman Problems

#### Classification of Search Problems

more difficult

• Depending on the nature of problems, search problems can be divided into multiple categories:



3

### Classical Search Problem – the 8-Puzzle



- Consists of a 3\*3 board with eight number tiles and a blank space
- A tile adjacent to the blank space can slide into the space
- State: specifies the location of the tiles and the blank space
- Action: movements of the blank space, Left, Right, Up, Down
- Goal: find a sequence of actions that leads from a start state to a specified goal state

#### A Search Tree for the 8-Puzzle



FIG. 3-2 The tree produced by a breadth-first search.

## Optimization Problem

• Find the best state according to an objective function, while the path followed by the search is not important



The 8-queens problem:

- place eight queens on a chessboard such that no queen attacks any other
- what matters in the final configuration of queens, not the order in which they are added

• Can be solved by using local search: only evaluate and modify the current states, not systematically exploring paths from an initial state

## Optimization Problem

- General optimization problem:
  - Denote state value as S
  - An objective function f(S) which evaluates the value of the state S
  - Objective: find the state S with the largest value f(S)



#### Basic local search:

modify the current state to its neighbor which has a larger value

#### Constraint Satisfaction Problem

- Each state can be represented as a set of variables
- A problem is solved when each variable has a value that satisfies all the constraints on this variable (corresponds to some goal state)
- Example: map coloring
  - Coloring each region either red, blue, or green, in such a way that no neighboring regions have the same color



State={WA, NT, SA, Q, NSW, V, T}
Domain of each variable={red, blue, green}
Constraints={WASA, WANT,.....}

Constraints can significantly reduce the state search space by identifying the values that violate the constraints (combined with global state space search)

# Classification of Search Algorithms



Informed search with domain knowledge (heuristic function)

Remark: Many other search algorithms exist that do not appear above

# Classification of Search Algorithms

#### Reading List:

- Chapter 3: mandatory: 63-92, 96-102, 104-106; optional: 92-96, 102-104
- Chapter 4: mandatory: 110-115, 141 optional: 116-119 (EC will be covered separately later), 119-122
- Chapter 5: mandatory: 146-158, 174-175 optional: 159-161, 164-168
- Chapter 6: mandatory: 180-193(skip 6.1.2) optional: 194-199
- There are some additional slides, discussing categories of search algorithms, backtracking, randomized hill climbing which are not covered in the textbook!

Remark: all page numbers refer to the 4th Edition from 2021...