Artificial Neural Networks (ANN)

- ANNs inspired by biological neural systems.
- Human brain consists of nerve cells called neurons
- According to neurologists the human brain learns by changing the strength of the synaptic connection between neurons upon repeated stimulation by the same impulse.

A Look at a Processing Node

• Sums up weighted inputs into it, adds bias and uses activation function to compute result.

Activation Functions; Examples

Function	Expression
Linear	σ(z)=kz
Sigmoid	$\sigma(z) = \frac{1}{1 + e^{-z}}$
Hyperbolic tan (tanh)	$\sigma(z) = \frac{e^{-z} - e^z}{e^{-z} + e^z}$
Gaussian/Radial Basis function	$\sigma(z)=e^{-\frac{z^2}{2}}$
Step function	$\sigma(z) = \begin{cases} 0, & z \le \theta \\ 1, & z > \theta \end{cases}$

A one-layer feed forward network

• Often, bias term represented as a weight with unit input.

- Used to separate linearly separable patterns.
 - E.g., In 2D, the boundary line is always a straight line...

Weights determine the slope of the line. Bias determines the y-intercept.

In 3D (i.e., 3 features, x₁, x₂ and x₃), discrimination boundary is a 2D plane:

$$w_1x_1+w_2x_2+w_3x_3+b=0$$

- In general, when we have n features, our decision boundary is n-1 dimensional.
- A hyperplane is a subspace of one dimension less than its ambient space
- Learning process of a perceptron classifier can be said to amount to learning a hyperplane classifier

Perceptron Learning Algorithm

- Learning Process is basically to find the vector \mathbf{w} of weights \mathbf{w}_o through \mathbf{w}_n that define a hyperplane separating the classes.
- Algorithm begins with some initial weights vector wi
- Algorithm cycles through the training set, a training sample at a time and makes decisions on adjustment of weights with each input sample.
- It's a mistake-driven algorithm
 - Only updates w when it makes a mistake; i.e., when it wrongly predicts the label of the current training example
 - Doesn't update w when it correctly predicts the label of the current training example

Perceptron Learning Algorithm

- 1. Initialize weight vector
- 2. Select random sample from training set as input
 - ✓ Lets denote each sample as (x_{train}, y_{target}) where x is the feature vector and y_{target} is the class label of the sample.
- 3. Compute the output $y_{classifier}$
- 4. If $y_{classifier} = y_{target}$, do nothing.
- 5. Otherwise compute the error $\delta = y_{target} y_{classifier}$ and the change in weight $\Delta w = \eta \times \delta \times x_{train}$ and update the weight vector using $w_{new} = w_{old} + \Delta w$
- 6. Repeat this until the entire training set is classified correctly.

 Perceptron that implements a logical AND

Input #1	Input #2	Output
0	0	0
0	1	0
1	0	0
1	1	1

- Initial weight vector: [-2 3 1];
 - First component of vector is bias term
- Learning rate: 0.4
- Activation function: $\sigma(z) = \begin{cases} 0, & z \le 0 \\ 1, & z > 0 \end{cases}$

• Notation: $[w_o w_1 w_2] = [-2 \ 3 \ 1]$ where w_o is weight of bias term; Features represented as $[x_o x_1 x_2]$, where x_o is the bias term (recall this equals 1), and $x_1 x_2$ are the input features for our training example. Denote, $y_t = y_{target}$; $y_c = y_{classifier}$

• Epoch #1

w=[w _o w ₁ w ₂]		x =	[x _o x ₁)	κ ₂]	y _t	Input, z to $\sigma(z)=y_c$ $\delta=y_t-y_c$ Activation function			Δw=	$\Delta w = [\Delta w_0 \ \Delta w_1 \ \Delta w_2]$		
-2	3	1	1	0	0	0	-2	0	0	0	0	0
-2	3	1	1	0	1	0	-1	0	0	0	0	0
-2	3	1	1	1	0	0	1	1	-1	-0.4	-0.4	0
-2.4	2.6	1	1	1	1	1	1.2	1	0	0	0	0
-2.4	2.6	1										

Epoch #2

$w=[w_0 \ w_1 \ w_2]$		x =	[x _o x ₁ x	κ ₂]	y _t	Z	$\sigma(z)=y_c$	$\delta = y_t - y_c$	Δw=	$\Delta w = [\Delta w_0 \ \Delta w_1 \ \Delta w_2]$		
-2.4	2.6	1	1	0	0	0	-2.4	0	0	0	0	0
-2.4	2.6	1	1	0	1	0	-1.4	0	0	0	0	0
-2.4	2.6	1	1	1	0	0	0.2	1	-1	-0.4	-0.4	0
-2.8	2.2	1	1	1	1	1	0.4	1	0	0	0	0
-2.8	2.2	1										

Epoch #3

$w=[w_0 \ w_1 \ w_2]$		x =	[x _o x ₁ x	(₂]	y _t	Z	$\sigma(z)=y_c$	$\delta = y_t - y_c$	$\Delta w = [\Delta w_0 \ \Delta w_1 \ \Delta w_2]$			
-2.8	2.2	1	1	0	0	0	-2.8	0	0	0	0	0
-2.8	2.2	1	1	0	1	0	-1.8	0	0	0	0	0
-2.8	2.2	1	1	1	0	0	-0.6	0	0	0	0	0
-2.8	2.2	1	1	1	1	1	0.4	1	0	0	0	0
-2.8	2.2	1										

Final Weight Vector, w =[-2.8 2.2 1]

Perceptron Convergence Theorem

- Given data with linearly separable classes, the perceptron learning rule is guaranteed to find the separating hyperplane in a finite number of iterations
 - Requirement: Learning rate sufficiently small