Analysis II

22. November 2020

Teil I Ordinary Differential Equations

Def. A differential equation is an equation where the unknown is a function f, and the equation relates f(x) with values of derivatives $f^{(i)}$ at the same point x.

Def. Ordinary ⇔ One variable only

Def. A Linear ODE is an equation of the form

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_0y = D(y) = b$$

where y = f(x) is the unknown function $a_{k-1}(x), ..., a_0(x), b(x)$ are continuous functions.

Def. Homogenous $\iff b(x) = 0$

Def. (Initial Condition) A set of equations

$$y(x_0) = y_0, y'(x_0) = y_1, ..., y^{(k-1)}(x_0) = y_{k-1}$$

Thm. (2.2.3) $I \subset \mathbb{R}$, linear ODE of order $k \geq 1$

- (1) Let S_0 be the set of solutions for b = 0. Then is S_0 a vector space of dimension k.
- (2) For any initial conditions, there is a unique solution $f \in S_0$, s.t.

$$y(x_0) = y_0, y'(x_0) = y_1, ..., y^{(k-1)}(x_0) = y_{k-1}$$

- (3) For an arbitrary b, the set of solutions is $S_b = \{f + f_p | f \in S_0\}$, where f_p is a particular solution
- (4) For any initial value problem, there is a unique solution $f \in S_b$

Remark: If $b \neq 0$, then S_b is not a vector space **Remark:** If f_1, f_2 are solutions for $b_1(x), b_2(x), f_1 + f_2$ is a solution for $b_1(x) + b_2(x)$

1 Linear ODEs of order 1

Procedure: Consider y' + ay = b

1. Solve homogeneous equation y' + ay = 0

$$f_0(x) = z \cdot e^{-A(x)}$$
 for $z \in \mathbb{C}$

- 2. Find a solution of the inhomogeneous equation f_p , then $S_b = f_p + S_0$.
 - Guess: b(x) should resemble f_p
 - Variation of Constants (Assume constants of S_0 are functions)
 - Formula: $f_n(x) = \int b(x) \cdot e^{A(x)} dx \cdot e^{-A(x)}$

Remark: The solutions are given by $f_0 + zf_1$, where $z \in \mathbb{C}$ and f_1 is a basis of S

Remark: To solve the real value problem $f(x_0) = y_0$, one can solve $f_0(x_0) + z f_1(x_0) = y_0$ **Remark:** If $a \in \mathbb{R}$, then there exists $f_0, f_1 \in \mathbb{R}$

2 Lin. ODE with constant coefs.

The equation takes the form: Let $a_{k-1},...,a_0 \in \mathbb{C}$

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_0y = b(x)$$

Intuition: We look for solutions of the form $f(x) = e^{\lambda x}, \lambda \in \mathbb{C}$

$$0 = y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_0y$$

= $e^{\lambda x}(\lambda^k + a_{k-1}\lambda^{k-1} + \dots + a_1\lambda + a_0)$
= $e^{\lambda x}P(\lambda)$

 \implies f is a solution if and only if $P(\lambda) = 0$. \implies According to the Fundamental Theorem

 \implies According to the Fundamental Theorem of Algebra, there are k roots for P in \mathbb{C} .

Remark: $P(\lambda)$ is the characteristic polynomial and the roots are called eigenvalues

Thm. Let $\lambda_1, ..., \lambda_r$ be the pairwise distinct roots of $P(\lambda)$ with corresponding multiplicity $m_1, ..., m_r$. Then the functions

$$x^l e^{\lambda_j x}$$
 $1 \le j \le r$, $0 \le l < m_j$

form a basis of the space of solutions of the homogeneous equation.

E.g. for k distinct roots we get:

$$f(x) = z_1 e^{\lambda_1 x} + \dots + z_k e^{\lambda_k x}$$
, with $z_1, \dots, z_2 \in \mathbb{C}$

Remark: If we are only interested in real solutions, the solutions based on complex roots, the basis can be transformed. For $\lambda = a + bi$:

$$\operatorname{span}(e^{\lambda x}, e^{\bar{\lambda}x}) = \operatorname{span}(e^{ax}\cos(bx), e^{ax}\sin(bx))$$

2.1 Solving the inhomogenous eqn.

Procedure: (Ansatz)

b(x)	Ansatz $y_p(x)$
$P_n(x)$	$Q_n(x)$
$P_n(x)e^{\mu x}$	$Q_n(x)e^{\mu x}$
$P_n(x)\sin(\nu x)$	$R_n(x)\sin(\nu x)$
$+Q_n(x)\cos(\nu x)$	$+S_n(x)\cos(\nu x)$
$P_n(x)e^{\mu x}\sin(\nu x)$	$e^{\mu x}(R_n(x)\sin(\nu x))$
$+Q_n(x)e^{\mu x}\cos(\nu x)$	$+S_n(x)\cos(\nu x)$

Insert $y_p(x)$ in the inhomogeneous eqn. and solve for the constants. $P_n(x), Q_n(x), \ldots$ are polynomials of degree n.

Remark: If $y_p(x)$ is a root of $P(\lambda)$ of multiplicity m, multiply $y_p(x)$ by x^m .

Procedure: (Variation of constants)

This method can be derived from the matrix describing the problem. Assume n=2.

Try $y_p = z_1(x)f_1 + z_2(x)f_2$ after solving the system:

$$\begin{cases} z'_1(x)f_1 + z'_2(x)f_2 = 0 \\ z'_1(x)f'_1 + z'_2(x)f'_2 = b \end{cases}$$

2.2 Other Methods

Separation -; See Assistance Summary

Teil II

Differential calculus in \mathbb{R}^n

If not specified, f is a function $f \colon X \subset \mathbb{R}^n \to \mathbb{R}^m$ and we denote

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{pmatrix}$$

1 Continuity

Prop. (Sequences) The sequence $(x_k)_{k\in\mathbb{N}}, x_k \in \mathbb{R}^n$ converges to $y \in \mathbb{R}^n$ as $k \to +\infty$ iff the following two equivalent conditions hold:

- 1. $\forall i, \lim_{k \to +\infty} (x_k)_i = y_i.$
- 2. $\lim_{k \to +\infty} ||x_k y|| = 0$.

Prop. (Limit) Let $x_0 \in X, y \in \mathbb{R}^m$.

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = y$$

iff for every sequence x_k which converges to x_0 , $f(x_k)$ converges to y.

Def. (Continuity)

f is continuous at $x_0 \iff \lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = f(x_0)$

Def. (Bounded, Closed, Open, Compact)

A subset $X \subset \mathbb{R}^n$ is called

- bounded $\iff \exists M \forall x \in X ||x|| < M$.
- $\begin{array}{c} \cdot \text{ closed} \iff \text{Every sequence in } X \text{ converges} \\ \text{in } X \end{array}$
- open \iff For any $x \in X$ there exists a ball around x in X
- \cdot compact \iff closed and bounded.

2 Derivatives

Def. (Partial derivatives) Let $X \subset \mathbb{R}^n$ be an open set, $f: X \to \mathbb{R}^m$ be a function. Then we decompose f into m functions f_i in order to write

$$\frac{\partial f}{\partial x_i}(x_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_i}(x_0) \\ \vdots \\ \frac{\partial f_m}{\partial x_i}(x_0) \end{pmatrix}$$

where $\frac{\partial f_j}{\partial x_i}(x_0) = \lim_{h \to 0} \frac{f_j(x_0 + he_i) - f_j(x_0)}{h}$

Def. (Directional derivative) Given $u \in \mathbb{R}^n$ with ||u|| = 1, the directional derivative at a is

$$D_u f(a) := \lim_{h \to 0} \frac{f(a+hu) - f(a)}{h} = \frac{d}{dh} f(a+hu) \Big|_{h=0}$$

If f is differentiable in a

$$D_u f(a) = \vec{u} \cdot \nabla f(a)$$

Def. (Gradient) For $f: X \to \mathbb{R}$

$$\nabla f(x_0) := \begin{pmatrix} \partial_{x_1} f(x_0) \\ \vdots \\ \partial_{x_n} f(x_0) \end{pmatrix}$$

The gradient is the direction of $steepest\ ascent.$

Def. (Jacobi Matrix)

$$J_f(x) = \left(\frac{\partial f_i}{\partial x_j}(x)\right)_{\substack{i=1,\dots,m;\\j=1,\dots,n}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Def. (Hessian Matrix) Let $f \in C^2(X; \mathbb{R}^n)$.

then $\operatorname{Hess}_f(x_0)$ is given by

$$\begin{pmatrix}
\frac{\partial^2 f}{\partial x_1 x_j} (x_0) \\
\vdots \\
j=1,\dots,n; \\
j=1,\dots,n
\end{pmatrix} = \begin{pmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots \\
\vdots & \vdots & \ddots
\end{pmatrix}$$

3 The Differential

Def. (Differentiability) Let $u: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and $x_0 \in X$. We say that f is differentiable at x_0 if

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0) - u(x - x_0)}{\|x - x_0\|} = 0$$

The linear map u is then called the differential of f at x_0 and is denoted by $df(x_0) = d_{x_0} f$.

Intuition: This means that we can approximate f(x) by a linear map df such that $R(x, x_0)$ goes faster to zero than $||x - x_0||$.

Thm. If f is differentiable at x_0 then

- 1. f is continuous at x_0
- 2. All partial derivatives exist.
- 3. $df(x_0): \mathbb{R}^n \to \mathbb{R}^m$ is given by $x \mapsto Ax$

$$A = J_f(x_0)$$

Thm. (Continuous Partials) If f has all partial derivatives and they are continuous on X, then f is differentiable on X

Def. (Tangent Space) Let f be differentiable then the tangent space of f at x_0 is

$$\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m \mid y = f(x_0) + u(x - x_0)\}$$

(\approx shifted image of the differential)

Thm. (Chain rule) Let $Y \subset \mathbb{R}^m$ be an open set and $f: X \to Y$ and $g: Y \to \mathbb{R}^p$ be differentiable functions on X and Y, respectively. Then $g \circ f: X \to \mathbb{R}^p$ is differentiable on X and the differential for $x_0 \in X$ is given by

$$d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0)$$

In particular, the Jacobi matrix satisfies

$$J_{g \circ f}(x_0) = J_g(f(x_0))J_f(x_0)$$

Thm. (Change of Variables) If f is differentiable and $\det(J_f(x_0)) \neq 0$ then f is a change of variables around x_0 .

Thm. (Order of Diff.) Let $f \in C^k$ for $k \geq 2$.

Then the partial derivatives of order $\leq k$ are independent of the order of differentiation.

4 Taylor polynomials

Def. (Taylor Polynomial) Let $f: \mathbb{R}^n \to \mathbb{R}$ and $f \in C^k(X; \mathbb{R})$. The *k-th Taylor polynomial of f at point* x_0 is a polynomial in n variables of degree $\leq k$ given by $T_k f(y; x_0) =$

$$\sum_{m_1+\ldots+m_n\leq k}\frac{1}{m_1!\cdots m_n!}\frac{\partial^k f}{\partial_1^{m_1}\cdots\partial_n^{m_n}}y_1^{m_1}\cdots y_n^{m_n}$$

For the 2nd degree case we have:

$$T_2 f(y; x_0) = f(x_0) + \nabla f(x_0) \cdot \vec{y} + y^T \cdot \operatorname{Hess}_f(x_0) \cdot \vec{y}$$

5 Critical Points