

Comité de pilotage ProtoBeamLine

Monitorage faisceau moyenne et haute intensité

Samuel Salvador

Groupe Applications Médicales et Industrielles Laboratoire de Physique Corpusculaire de Caen Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France

04 mars 2016

La chambre d'ionisation DOSION III

Adaptation d'IC2/3 équipant les têtes d'irradiation IBA des ProteusOne

- Air à pression atmosphérique,
- Mesures de la position x et y indépendantes (2 x 32 pistes de 2,8 mm),
- Surface d'irradiation de 9 × 9 cm²,
- \blacktriangleright WET de 116 μ m
- Acquisition FASTER, chassis μTCA et cartes électromètres

DOSION III : Fonctionnalités/performances

- Plusieurs modes d'intégration (de 40 μs à 2,4 ms),
- Limitation à 24 pC/40 μ s par piste (électromètres),
- \Rightarrow Max. 5,5×10⁹ protons/s (@25 MeV)
- Calibration absolue par un détecteur à scintillation (intensité < 10⁶)
- ► Mesure de la dose à mieux que 5 %,

- Résolution spatiale de 40 μm (σ),
- Homogénéité de la dose sur la surface active : 1%_{RMS},
- Profil de fluence et distribution de dose en temps réel

Thèse de G. Boissonnat, LPC Caen, 2015

La problématique des très hautes intensités faisceau

Irradiation conventionnelle vs. S2C2

Le débit de dose peut aller jusqu'à 1 kGy/s,

Radiothérapie

Hadronthérapie (S2C2)

Au-delà de 10⁶ protons par occurrence faisceau

- ► Effets de charges d'espace,
- Modification du champ électrique,
- Vitesses de dérive modifiées,
- Efficacité de collection dégradée

Monitorage faisceau

DOSION III

- Linéaire jusqu'à 60 Gy/min,
- Précision sur la dose à mieux que 3 %,
- Au-delà :
 - Non-linéarité (problématique ?),
 - Erreur sur la dose > 10 %.

Modifications profondes du système :

- Dérivation d'une partie de la charge des électromètres,
- Développement d'une nouvelle électronique ?
- Changement au niveau du détecteur :
- ⇒ Changement de gap/gaz/pression ?
- ⇒ Autre type de détecteur ?

Tests, calibrations, fabrication, développements...

⇒ Besoin en ressources humaines

Prérequis

Chronologie

Utilisation de DOSION III

- Supports mécaniques fournis,
- Idéalement : alignement faisceau,
- De la salle d'irradiation vers la salle de commande.
 - Réseau Ethernet,
 - Câblage haute-tension (SHV) (facultatif),

- DOSION en cours de fabrication (avril/mai 2016),
- Acquisition (FASTER) en cours de commande (juin 2016)

Monitorage THI (sous réserves)

► Idem que DOSION

- Fin 2016 : technologie la plus appropriée,
- Printemps 2017 : premier prototype,
- Mi-2017 : test en faisceau

Moyens humains

Coûts prévisionnels

Utilisation de DOSION III

- 0,1 ETP: fabrication d'un DOSION,
- 0,1 ETP: mise en place de DOSION, transfert de compétences,

- Détecteur :
 - ~8 k€ matière première et fabrication,
- Système d'acquisition FASTER :
 - 4 k€ châssis μTCA,
 - 3,5 k€ carte électromètres
 - 3,5 k€ carte calibration intensité/TEL
- Missions : ~ 1-2 k€/an
- ⇒ ~20 k€ DOSION clés en main!

Monitorage THI (sous réserves)

- ▶ 1 ETP pour 2 ans.
- 0,2 ETP : prototype (design et tests), fabrication

- ~ 120 k€ CDD chercheur (2 ans),
- ~ 20 k€ détecteur/électronique