



## **EXAMEN PARCIAL PYTHON**

# GBI6-2021II: BIOINFORMÁTICA

Apellidos, Nombres <--- CAMBIE POR LOS QUE CORRESPONDA A SUS DATOS

03-08-2022

Molossa Pugu?

Color de texto

## REQUERIMIENTOS PARA EL EXAMEN

Utilice de preferencia Jupyter de Anaconda, dado que tienen que hacer un control de cambios en cada pregunta.

Para este examen se requiere dos documentos:

- 1. Archivo miningscience.py donde tendrá dos funciones:
- 2. Archivo 2022I\_GBI6\_ExamenPython donde se llamará las funciones y se obtendrá resultados.

## Ejercicio 0 [0.5 puntos]

Realice cambios al cuaderno de jupyter:

- · Agregue el logo de la Universidad
- · Coloque sus datos personales
- Escriba una tabla con las características de su computador

# Ejercicio 1 [2 puntos]

Cree el archivo miningscience.py con las siguientes dos funciones:

- i. download\_pubmed : para descargar la data de PubMed utilizando el **ENTREZ** de Biopython. El parámetro de entrada para la función es el keyword .
- ii. science\_plots : la función debe
  - utilizar como argumento de entrada la data descargada por download\_pubmed
  - ordenar los conteos de autores por país en orden ascedente y
  - seleccionar los cinco más abundantes. Con esta selección debe graficar un pie\_plot . Como guía para el conteo por países puede usar el ejemplo de <a href="MapOfScience">MapOfScience</a> (<a href="https://github.com/CSB">https://github.com/CSB</a><a href="mapoista">book/CSB/blob/master/regex/solutions/MapOfScience</a> solution.jpynb).

iii Cree un docstring para cada función.

localhost:8888/notebooks/GDrive/lKIAM/CLASES/2022I/2022I\_GBI6/2022I\_GBI6\_Examen\_Python/2022I\_GBI6G01\_ExamenPython.ipynb

Luego de crear las funciones, cargue el módulo miningscience como msc e imprima docstring de ca función.

## In [1]:

```
# Escriba aquí su código para el ejercicio 1
  import manageciènce as mose
help (mose download-priemed)
```

# Ejercicio 2 [2 puntos]

Utilice dos veces la función download\_pubmed para:

- Descargar la data, utilizando los keyword de su preferencia.
- Guardar el archivo descargado en la carpeta data.

Para cada corrida, imprima lo siguiente:

'El número artículos para KEYWORD es: XX' # Que se cargue con inserción de texto o valor que correspondea KEYWORD y XX

### In [2]:

```
# Escriba aquí su código para el ejercicio 2
                                                         sa produl
                                                        or bregns
  import os
 1 moore re
C= ms c-download-promed ("chicungunya")
                                                        Z=msc.downlood pubmod ("zickis)
                                                        b=len(2)
point ("Elnimoror anticulos parako y wardes b)
 prad(iel remande articulos para KEJWOEDES:), b)
                                                        with open ("Data/ zika + at", "w") ast x1:
 with open ("Doto/chocongunya.tx/","w") as txt:
       Axt. water
```

# Ejercicio 3 [1.5 puntos]

Utilice dos veces la función science\_plots para:

- Visualizar un pie\_plot para cada data descargada en el ejercicio 2.
- Guardar los pie\_plot en la carpeta img

2/4

#### In [3]:

```
# Escriba aquí su código para el ejercicio 6
Luon Bes suboy Enters
Row BS Entert Philo
from Bi-Dhylo. TrecConstruction input DistanceColalator
from Bio, Phylo. Tree Construction imput Distance Tree Construction
from Bio import AlignIO
from Bio import ScriTO
From Bio, Align. Applications import Clustel w Commondian
                                                 import Clustal w (ommord) to
 to segue
text = 12, 3020 dext (:102)
 hondle = Entres. aftech (do = "nucleofte," rettype = "gb", ret mode = "tox", 3d = t ox)
 records = seq IO. pouse ("...lado/sequema.gb"), gasak")
count - sop IO. write (records, "sopurce. Pasta"), "fasta")
```

Escriba aquí la interpretación del árbol

Cluster Align - Align IO med ("sequence, al n') "clustal") alignment = Align TO. read (al, "cluster") ignact = Tighto. Teas (and they)

colorator = Darbara (acd ator ('i dorthy')

ordence motive = colorator . get - darbara (alcolorator)

constructor = Darbara (acd ator ('i dorthy')

constructor = Darbara ('i dorthy

# Ejercicio 6 [1 punto]

- 2. Cree un archivo Readme.md que debe tener lo siguiente:
- Datos personales
- Características del computador
- Versión de Python/Anaconda y de cada uno de los módulos/paquetes y utilizados
- Explicación de la data utilizada
- Un diagrama de procesos del módulo miningscience
- 3. Asegurarse que su repositorio tiene las carpetas data e img con los archivos que ha ido guardando en las preguntas anteriores.
- 4. Realice al menos 1 control de la versión (commits) por cada ejercicio (del 1 al 5), con un mensaje que inicie como:

Carlitos Alimaña ha realizado el ejercicio 1

Carlitos Alimaña ha realizado el ejercicio 2

In [ ]: