Does Natural Gas Generation Buildout Cause Carbon Lock-In?

A Social Planner's Perspective for Grid Optimization Using PJM Data

Thomas Lee thomlee@wharton.upenn.edu

May 9, 2018
Energy Economics and Finance Seminar
Kleinman Center, University of Pennsylvania

Based on Senior Capstone Submitted December 10, 2017 Advisors: Monique Guignard-Spielberg, Andrew Huemmler

Motivation

- Social cost of carbon is not fully included.
 - RGGI: \$3.79 / short ton (2018 March 14 auction)
 - What is priced in?
- Natural gas combined-cycle generation buildout
 - ~15 GW constructed for 2017-18
 - Another ~22 GW under development
 - PJM total installed capacity ~200 GW

Question: Does new gas generation capacity "lock out" or "crowd out" new renewables investment, even if/when a fuller carbon price is introduced later?

Outline

• Main conclusion: New natural gas capacity investment in PJM is consistent with a \$50 / ton carbon price. For the current grid system with existing capacities, the potential for carbon lock-in based purely on sunk costs is minimal.

- Prior work
- Limits of carbon lock-in potential
 - LCOE: carbon price range
 - Load intermittency
 - Renewables intermittency
- Numerical results
 - Greenfield
 - Existing capacities

Summary of Average PJM Emissions by Scenario (kg CO2 equivalent / MWh)						
No carbon price	No carbon price Delayed carbon price Full pricing now					
396	181	181				
(119% higher)	(0.2% higher)					

Prior work

- Arthur 1989: path dependence from increasing returns, network effects
 - E.g. QWERTY, 29.97 frames per second
- <u>Liebowitz & Margolis 1995</u>: "third-degree" path dependence "ex ante path inefficient"
- Unruh 2000: "carbon lock-in"
- <u>Erickson et al. 2015</u>: carbon price where new renewable energy source is competitive with existing conventional source
- Mignone et al. 2017: natural gas combined cycle investments are robust to rising carbon prices

Arthur, W. Brian. 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events." *The Economic Journal* 99 (March): 116-131. Royal Economic Society. Dixit, Avinash. 1989. "Entry and Exit Decisions under Uncertainty." *Journal of Political Economy* 97 (June): 620-638. The University of Chicago Press. Liebowitz, Stan J., Stephen E. Margolis. 1995. "Path Dependence, Lock-In, and History." Journal of Law, Economics and Organization 11 (1995): 205-226. SSRN. Unruh, Gregory C. 2000. "Understanding carbon lock-in." Energy policy 28, no. 12 (October): 817-830.

Erickson, Peter, Sivan Kartha, Michael Lazarus, Kevin Tempest. 2015. "Assessing carbon lock-in." Environmental Research Letters 10, no. 8 (August): 1-7. Mignone, Bryan K., Sharon Showalter, Frances Wood, Haewon McJeon, Daniel Steinberg. 2017. "Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations." Energy Policy 110 (November): 518-524.

Regret function: carbon lock-in

- Some vector of pre-existing capacities x^0
- A full carbon price C
 - Optimal capacities $\rightarrow x^{*full} = opt(x^0, C^{full})$
- A delayed carbon price trajectory: first 0, then C
 - Initial "optimal" capacities $\rightarrow x^{*myopic} = opt(x^0, 0)$
 - After carbon price included $\rightarrow x^{*delay} = opt(x^{*myopic}, C)$
- Regret = $emissions(x^{*delay}) emissions(x^{*full})$

Impact of delaying a carbon price vs. cap

Externality Policy	Carbon Price	Carbon Cap
Initial period without full policy	 Higher emissions Possibly overbuild capacity that will be unnecessary later 	 Higher emissions Possibly overbuild capacity that will be unnecessary later
After full policy is included	Higher emissions locked-in	 No carbon lock-in by construction Need higher carbon price vs. no delay

- Dual problems (equivalent carbon price is optimal dual variable for carbon cap constraint)
- Focus on carbon price as benchmark

Sunk cost lock-in occurs over carbon price range

- For lock-in to exist, carbon price:
 - Can't be too high → otherwise alternatives are competitive (Erickson et al.)
 - Can't be too low → otherwise counterfactual would not have any alternatives

Load intermittency reduces lock-in potential

- Assume load duration curve, 2 perfectly dispatchable resources
- How much capacity of each type is optimal?
 - FOC → higher variable cost resource should run for hours

$$h^* = \frac{k_2 - k_1}{v_1 - v_2}$$
 (\$/MWh)

• If "a lot" of higher variable cost resource already built

$$h^{*path} = \frac{k_2}{v_1 - v_2} \frac{(\$/MW)}{(\$/MWh)} > x^*$$

• For lock-in to exist, need to build more than the optimal amount under the all-in-price scenario

Renewables intermittency reduces lock-in potential

Numerical results

LP: Capacity Expansion Optimization

minimize	$C_{cap} + C_{fin} + C_{ext}$	(Objective function)
subject to	$\forall i: X_i = X_{old,i} + X_{new,i}$	
	$C_{cap} = \sum_{i} A_{r,n_i} k_i X_{new,i}$	(Capital costs)
	$C_{fin} = \sum_{i} \left(f_i X_i + \frac{1}{N} v_i \sum_{t} P_{i,t} \right)$	(Operating monetary costs)
	$C_{ext} = \sum_{i} \left(\frac{1}{N} s_i \sum_{t} P_{i,t} \right)$	(Operating externality costs)
	$\forall t: \sum_{i=1}^{n} P_{i,t} - P_{stor,t}^{+} + P_{stor,t}^{-} \ge L_t$	(Hourly load balance)
	$\forall i, t: P_{i,t} \leq X_i a_{i,t}$	(Generation resource adequacy)
	$\forall i, t: -r_i X_i \le P_{i,t} - P_{i,t-1} \le r_i X_i$	(Ramping constraint)
	$Q_0 = 0$	(Zero initial storage charge)
	$0 \le P^{stor,t} \le \gamma Q_{t-1}$	(Energy available to be discharged)
	$0 \le P_{stor,t}^+ \le \sum_{i=1}^n P_{i,t}$	(Energy available to be stored)
	$0 \le Q_t \le Q_{max}$	(Finite, positive energy capacity)
	$Q_t = \gamma Q_{t-1} + P_{stor,t}^+ - P_{stor,t}^-$	(Conservation of energy)

	•	
\sim		_
ทต	ICE	١.

i	Resource type: coal, gas (CT and CC), wind, solar, nuclear, hydro
t	Time hour of the year (Size 8760 * N years)

Decision Variables

$X_{new}(i)$	New power capacity to be constructed, in MW
	MW
P(i,t)	Dispatch of each resource type for each hour, in MWh
	hour, in MWh

Cost Parameters

k(i)	Capital cost for power capacity, in \$ / kW
f(i)	Annual fixed operating and maintenance cost, in \$ / kW
v(i)	Variable fuel costs for energy generation, in \$ / MWh
s(i)	Variable externality costs for energy generation, in \$ / MWh

$X_{old}(i)$	Existing power nameplate capacity at start of period, in MW
r(i)	Ramp rate, in MWh output that can be adjusted up or down
	in 1 hour per MW capacity (%)
l(t)	Load demand (RTO-level metered load) in given hour, in
	MWh
a(i,t)	Physically available capacity value of resource, in
	dimensionless %
	(Assumed to be always 1 for resources that are not wind or
	solar.)

Starting from 0 existing capacities

	Capacity (GW)			Ene	rgy Share	(%)
CO ₂ Price	Always	First 0,	Always 50	Always 0	First 0,	Always 50
(\$ / ton)	0	Then 50			Then 50	
CT	57.63	51.87	52.01	3.92	1.77	2.38
CC	98.53	98.53	81.36	96.08	72.63	56.71
Wind	0	57.74	79.02	0	25.60	35.00
Solar	0	0	22.56	0	0	5.90
Average CO2 equivalent (kg / MWh)			449.41	331.61	265.71	

→ Lock-out of wind: 21.3 GW, 9.4% generation

→ Lock-out of solar: 22.56 GW, 5.9% generation

→ Carbon lock-in: 65.9 kg CO2 equivalent / MWh (~25% total)

What happens at different "true" carbon prices?

What happens at different carbon prices?

Starting from existing capacities

Start with existing – Assume some exogenous retirements of both coal and nuclear

	Capacity (GW)				Energy Share (%)				
CO ₂ Price	Existing	Always 0	First 0,	Always	Always 0	First 0,	Always 50	∆ from Delay	
(\$ / ton)			Then 50	50		Then 50			
CC	41.05	48.12	48.12	46.68	29.36	33.16	32.47	+0.69%	
Wind	7.92	7.92	56.61	57.63	3.36	24.01	24.44	-0.43%	
Solar	0.88	0.88	5.07	5.01	0.22	1.28	1.26	+0.02%	
Coal	47.62	47.62	31.14	32.57	29.10	3.56	3.86	-0.30%	
Nuclear	25.27	25.27	25.27	25.27	27.07	27.07	27.01	+0.06%	
Hydro	9.91	9.91	9.91	9.91	10.62	10.53	10.51	+0.02%	
CT	25.25	25.25	25.25	25.25	0.27	0.40	0.39	+0.10%	
Ave	erage CO2	equivalent (kg / MWh)	395.83	181.02	180.65	+0.37 kg/MWh	

[→] Very minimal lock-out effect (~0.2% of emissions)

[→] First order effect from including carbon price – even if delayed

Existing capacities assuming higher NGCC

Optimal Capacity Expansion and Generation Shares for Coal and Renewables, Under Increasing Levels of Initial Gas Combined-Cycle Capacity

	Starting CC (GW)	48	55	60	70	90	100
A Consoity	Coal	-16.48	-23.16	-23.39	-35.58	-47.62	-47.62
△ Capacity	Solar	4.19	3.95	0	0	0	0
(GW)	Wind	48.69	47.80	47.23	47.23	19.64	0
Engage	Coal	3.56	2.30	1.84	0.74	0	0
Energy	Solar	1.28	1.22	0.22	0.22	0.22	0.22
Share (%)	Wind	24.01	23.63	23.39	23.39	11.70	3.36
	Emissions aivalent / MWh)	180.15	176.16	179.46	174.29	222.24	258.94

- New gas displaces old coal immediately
- Solar starts to get displaced but optimal share was small to start
- Wind gets displaced only after 90 GW 49 GW existing = ~49GW new gas CC

Model limitations / extensions

Factors that affect optimal renewables share:

- Transmission system, power flow
- Scale effects: siting, reserve requirements, etc.
- Inter-annual uncertainty (using 2012 meteorological year)
- Heterogeneity: offtake customers, etc.

Factors that affect lock-in mechanism:

- Optionality, capital structure: right now discount rate can represent r_{WACC} , but treated as fixed income annuity
- Strategic investment behavior: not social planner
- Endogenous fuel prices
- Improving alternative technologies in between periods
- Infrastructure network effects (Unruh)

Takeaway: Don't need to worry about sunk cost lock-in, worry about pricing the externality.

- Theoretical framework diminishes carbon lock-in potential
 - "True" carbon price can't be too low or high versus actual or expected
 - Lock-in can only exist after sunk costs exceed "always full price" optimal
 - Intermittent renewables need capacity backup
- Numerical analysis using LP optimization suggests minimal carbon lock-in in PJM due to NGCC generation buildout, due to pre-existing resource capacity consistent with Mignone et al.
- First order effect is including externality pricing, even if delayed

Summary of Average PJM Emissions by Scenario (kg CO2 equivalent / MWh)						
Carbon Price	Zero	Delayed	Full			
No Existing Resources	449	332	266			
	(69% higher)	(25% higher)				
Pre-Existing Resources	396	181	181			
	(119% higher)	(0.2% higher)				

Appendix

Mignone et al.

Table 1: Natural Gas Generation and Capacity in Optimal Solutions Under Capped and Rising Carbon Regulation Scenarios, from Mignone et al.

	Generation (TWh)			Capacity (GW)			Capacity Factor		
	2015	2030	2050	2015	2030	2050	2015	2030	2050
Capped Price	1092	1260	1753	226	277	386	55%	52%	52%
Rising Price		1328	1525		299	406		51%	43%

Carbon lock-in range

$$\left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{new}} - \left(\frac{K_{old} \cdot a_{old} + F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{new}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{new}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{new}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{new}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{new}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{new}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{new}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} - \left(\frac{F_{old}}{h \cdot P_{old}} + V_{old}\right)\right] / E_{old} < C < \left[\frac{K_{new} \cdot a_{new} + F_{new}}{h \cdot P_{old}} +$$

- C = carbon cost (\$ / tons)
- E = emission rate (tons / MWh)
- K = capital cost (\$ / MW)
- F = fixed costs (\$ / MW)
- V = variable costs (\$ / MWh)
- P = capacity factor of power generation (%)
- a = annuity factor = $\frac{r}{1-(1+r)^{-n}}$
- h = hours in year = 8760 hours

Conditions for Lock-In (LCOE)

- Load duration curve for PJM
- Inverse CDF

Assume 2 resources. Then total costs:

$$J = k_1 d1 + k_2 d_2 + v_1 A + v_2 (B + C)$$

$$= k_1 [f(0) - f(x)] + k_2 f(x) + v_1 \left[\int_0^x f(s) ds - x f(x) \right] + v_2 \left[\int_x^{x_{max}} f(s) ds + x f(x) \right]$$

FOC:

$$\frac{\partial J}{\partial x} = -k_1 \frac{\partial f(x)}{\partial x} + k_2 \frac{\partial f(x)}{\partial x} + v_1 \left[f(x) - f(x) - x \frac{\partial f(x)}{\partial x} \right] + v_2 \left[-f(x) + f(x) + x \frac{\partial f(x)}{\partial x} \right]$$
$$= (k_2 - k_1) \frac{\partial f(x)}{\partial x} + (v_2 - v_1) x^* \frac{\partial f(x)}{\partial x} = 0$$

$$x^* = \frac{k_2 - k_1}{v_1 - v_2}$$

- What if we have <u>a little</u> existing amounts of resource 1, that does <u>not</u> <u>exceed</u> the "greenfield" optimal?
- $\bullet \ \theta_1 < f(0) f(x^*)$

$$J_{pre} = k_1[f(0) - f(x) - \theta_1] + k_2f(x) + v_1[...] + v_2[...]$$

- The derivative does not change.
- NO LOCK-IN

- What if we have <u>lots of</u> existing amounts of resource 1, that <u>does exceed</u> the "greenfield" optimal?
- $\theta_1 >> f(0) f(x^*)$
- No capital cost incurred for resource 1

$$J_{pre} = k_2 f(x) + v_1[...] + v_2[...]$$

New optimal

$$x^{*(1)} = \frac{k_2}{v_1 - v_2} > x^*$$

$$d_2^{*(1)} = f(x^{*(1)}) < f(x^*)$$

LOCK-IN

- 1. Zero storage
- Level of wind capacity exactly determines necessary gas capacity

$$P_{var,t} = X_{var}A_t$$

$$P_{disp,t} = NL_t = \max\{0, L_t - P_{var,t}\}$$

$$X_{disp} = \max_t \{NL_t\} \quad (1)$$

- 2. Finite storage capacity
- Only charge storage if excess renewables

```
Let S_0=0 For time t=1\dots T: P_{stor,t}^+=\min\{S_{max}-\gamma S_{t-1},\ \max\{0,P_{var,t}-L_t\}\} \qquad \text{(Store into battery)} P_{stor,t}^-=\min\{\gamma S_{t-1},\ \max\{0,\ L_t-P_{var,t}\}\} \qquad \text{(Discharge from battery)} S_t=\gamma S_{t-1}+P_{stor,t}^+-P_{stor,t}^- NL_t=L_t-P_{var,t}-P_{stor,t}^-+P_{stor,t}^+
```

- 3. Finite storage capacity
- Optimize charge this might end up using more energy

```
minimize X_{disp} such that S_0 = 0 (Zero initial charge) 0 \leq P_{stor,t}^- \leq \gamma S_{t-1} \qquad \text{(Amount of energy available to be discharged)} 0 \leq P_{stor,t}^+ \leq P_{var,t} + X_{disp} \qquad \text{(Amount of energy available to be stored)} 0 \leq S_t \leq S_{max} \qquad \text{(Finite energy capacity)} S_t = \gamma S_{t-1} + P_{stor,t}^+ - P_{stor,t}^- \qquad \text{(Conservation of energy across time)} P_{var,t} + X_{disp} - P_{stor,t}^+ + P_{stor,t}^- \geq L_t \qquad \text{(Resource adequacy to cover load)}
```

- 4. Infinite storage capacity
- Stored energy can "time travel" with no decay

$$X_{disp} = \frac{1}{T} \sum_{t} (L_t - P_{var,t})$$

* This is equivalent to the LCOE-only analysis

Cost Parameters for Numerical Analysis

Table 7: Natural Gas and Coal Variable Cost Assumptions by Chemical Energy Content

	, 1 - V	. 6/
Fuel Type	Natural Gas	Coal
Fuel Price (\$ / MMBtu)	4	2
Combustion Emission Rate (kg CO ₂ / MMBtu)	53.07	93.35
Natural Gas Energy Density (kg CH ₄ / MMBtu)	$(1/53.4)10^3 = 18.73$	
Natural Gas Fugitive Emission Rate	1%	NA
Global Warming Potential Multiplier of CH ₄ vs. CO ₂	86	

Table 8: Cost Assumptions by Resource Types

Resource Type	Units	Gas	Onshore	Solar	Gas	Coal	Nuclear	Hydro
		CC	Wind	PV	CT			
Overnight Capital	\$/kW	1283	2271	2524				
Assumed Lifetime	years	20	20	30	Assume no new buildout			
Capital Annuity	\$/kW/year	121.11	171.51	162.70				
Fixed O&M	\$/kW/year	9.94	46.71	21.66	6.76	70	100	15
Fixed Cost	\$/kW/year	131	209	180	6.76	70	166	15
Variable O&M	\$/MWh	1.99	0	0	10.63	7.06	2.29	2.66
Heat Rate	MMBtu/MWh	6.3	0	0	9.8	9.75	0	0
Variable Fin. Cost	\$/MWh	27	0	0	50	27	0	0
Variable Carbon Cost	\$/MWh	21.79	0	0	33.91	43.58	0	0
Total Variable Cost	\$/MWh	58	0	0	97	88	2.3	2.7

Including Energy Storage

Table 12: Effect of Exogenous Inclusion of Energy Storage Capacity on Lock-In Effect

	Storage Capacity		10 GWh			262 GWh	
	Carbon Price (\$/ton)	0	FZTF	50	0	50	
△ Capacity (GW)	Gas CC	4.27	0	0	0	0	
	Wind	0	50.64	53.92	0	62.58	
	Solar	0	0	0	0	0	
Energy Share (%)	Gas CC	28.44	32.58	30.16	27.03	28.68	
	Wind	3.36	24.83	26.22	3.36	29.77	
	Solar	0.22	0.22	0.22	0.22	0.22	

No Exogenous Nuclear Retirements

Table 13: Effect of nuclear retirements.

Start with existing – Assume exogenous retirements of only coal, but not nuclear

	Capacity (GW)			Energy Share (%)		
Carbon Price	Existing	Always 0	Always 50	Always 0	Always 50	
(\$ / ton)						
CC	41.05	41.05	41.05	23.24	25.52	
Wind	7.92	7.92	54.56	3.36	23.13	
Solar	0.88	0.88	4.82	0.22	1.22	
Coal	47.62	46.23	30.29	26.16	3.86	
Nuclear	33.73	33.73	33.73	36.14	36.12	
Hydro	9.91	9.91	9.91	10.62	10.23	
CT	25.25	25.25	25.25	0.27	0.39	