

jc862 U.S. PTO  
08/22/00

Attorney's Docket No. P1188

8-24-00

A

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

jc862 U.S. PRO  
09/644221  
08/22/00

**Box Patent Application**

**Assistant Commissioner for Patents**

**Washington, D.C. 20231**

**NEW APPLICATION TRANSMITTAL**

Transmitted herewith for filing is the patent application of Inventor(s):

ABHA AHUJA; MATT AYERS; BEN BLACK; CHRIS BROWN; DANIEL T. COHN;  
STEPHEN RAMSEY; OPHIR RONEN; PAUL J. SCHACHTER;  
OSCAR B. STIFFELMAN; CHRISTOPHER D. WHEELER

For (title):

METHOD AND SYSTEM FOR OPTIMIZING ROUTING THROUGH MULTIPLE  
AVAILABLE INTERNET ROUTE PROVIDERS

**1. Type of Application**

This new application is for a(n):

- Original (nonprovisional)  
 Design  
 Plant  
 Divisional  
 Continuation  
 Continuation-in-part (CIP)

**CERTIFICATION UNDER 37 CFR 1.10**

I hereby certify that this New Application Transmittal and the documents referred to as enclosed therein are being deposited with the United States Postal Service on this date AUGUST 22, 2000 in an envelope as "Express Mail Post Office to Addressee" Mailing Label Number EL641403592US addressed to the: Assistant Commissioner for Patents, Washington, D.C. 20231.

John P. O'Banion

(Type or print name of person mailing paper)

  
(Signature of person mailing paper)

NOTE: Each paper or fee referred to as enclosed herein has the number of the "Express Mail" label placed thereon prior to mailing. 37 CFR 1.10(b).

**2. Papers Enclosed Which Are Required For Filing Date Under 37 CFR 1.53(b) (Regular) or 37 CFR 1.153 (Design) Application**

46 Pages of specification

21 Pages of claims

1 Pages of Abstract

13 Sheets of drawing

X formal

— informal

— The enclosed drawing(s) include photograph(s), and there is also attached a "PETITION TO ACCEPT PHOTOGRAPH(S) AS DRAWING(S)." 37 C.F.R. 1.84(b).

**3. Additional papers enclosed**

- Preliminary Amendment
- Information Disclosure Statement
- Form PTO - 1449
- Citations
- Authorization of Attorney(s) to Accept and Follow Instructions from Representative
- Special Comments
- Other

**4. Declaration Or Oath**

- Enclosed

executed by:

- inventor(s)
- legal representative of inventor(s). 37 CFR 1.42 or 1.43.
- joint inventor or person showing a proprietary interest on behalf of inventor who refused to sign or cannot be reached.
- this is the petition required by 37 CFR 1.47 and the statement required by 37 CFR 1.47 is also attached. (See item 18 below for fee.)

- Copy from a prior application (37 CFR 1.63(d)) (divisional or continuation only)
- Not Enclosed.
- Application is made by a person authorized under 37 CFR 1.41(c) on behalf of all of the above named inventor(s). (The declaration or oath, along with the surcharge required by 37 CFR 1.16(e) can be filed subsequently).
- Attached is a showing that the filing is authorized. (Not required unless called into question. 37 CFR 1.41(d)).

## 5. Inventorship Statement

The inventorship for all the claims in this application are:

- The same
  - or
- Are not the same. An explanation, including the ownership of the various claims at the time the last claimed invention was made,
  - is submitted.
  - will be submitted.

## 6. Language

- English
- non-English
  - the attached translation is a verified translation. 37 CFR 1.52(d).

## 7. Assignment

- An assignment of the invention to: INTERNAP NETWORK SERVICES
  - is attached. A separate "ASSIGNMENT COVER LETTER ACCOMPANYING NEW PATENT APPLICATION" is also attached.
- will follow.

**8. Fee Calculation (37 CFR 1.16)**

**A.  Regular Application**

| CLAIMS AS FILED                                      |              |   |              |   |          |           |
|------------------------------------------------------|--------------|---|--------------|---|----------|-----------|
|                                                      | Number filed |   | Number Extra |   | Rate     | Basic Fee |
| Total                                                |              |   |              |   |          | \$ 690.00 |
| Claims 37 CFR 1.16(c)                                | 66 - 20      | = | 46           | X | \$18.00  | = 828.00  |
| Independent Claims (37 CFR 1.16(b))                  | 8 - 3        | = | 5            | X | \$78.00  | = 390.00  |
| Multiple dependent claim(s), if any (37 CFR 1.16(d)) |              |   |              | + | \$260.00 | =         |

- Amendment canceling extra claims enclosed.
- Amendment deleting multiple-dependencies enclosed.
- Fee for extra claims is not being paid at this time.

Filing Fee Calculation \$ 1,908.00

B.  **Design application**  
(\$310.00 - 37 CFR 1.16(f))

Filing Fee Calculation \$

C.  **Plant application**  
(\$480.00 - 37 CFR 1.16(g))

Filing Fee Calculation \$

**9. Small Entity Statement(s)**

- Verified Statements(s) that this is a filing by a small entity under 37 CFR 1.9 and 1.27
  - is(are) attached.
  - will follow.
- Status as a small entity was claimed in prior application serial number \_\_\_\_\_ filed on \_\_\_\_\_, from which benefit is being claimed for this application under 35 U.S.C. 119(e), 120, 121 or 365(c) and which status as a small entity is still proper and desired. A copy of the verified statement in the prior application is included.

Filing Fee Calculation (50% of A, B or C above) \$

**10. Fee Payment Being Made At This Time**

Not Enclosed

No filing fee is to be paid at this time. (This and the surcharge required by 37 CFR 1.16(e) can/will be paid subsequently.)

Enclosed

|                          |                                                                                                                                                                                      |    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <input type="checkbox"/> | basic filing fee                                                                                                                                                                     | \$ |
| <input type="checkbox"/> | recording assignment (\$40.00; 37 CFR 1.21(h))                                                                                                                                       | \$ |
| <input type="checkbox"/> | petition fee for filing by other than all the inventors or person on behalf of the inventor where inventor refused to sign or cannot be reached. (\$130.00; 37 CFR 1.47 and 1.17(h)) | \$ |
| <input type="checkbox"/> | for processing an application with a specification in a non-English language. (\$130.00; 37 CFR 1.52(d) and 1.17(k))                                                                 | \$ |
| <input type="checkbox"/> | processing and retention fee (\$130.00; 37 CFR 1.53(d) and 1.21(l))                                                                                                                  | \$ |
| <input type="checkbox"/> | fee for international-type search report. (\$40.00; 37 CFR 1.21(e))                                                                                                                  | \$ |
| Total Fees Enclosed      |                                                                                                                                                                                      | \$ |

**11. Method of Payment of Fees**

- Check in the amount of \$ \_\_\_\_\_.
- Charge Account No. \_\_\_\_\_ in the amount of \$ \_\_\_\_\_.  
A duplicate of this transmittal is attached.

**12. Authorization to Charge Additional Fees**

- The Commissioner is hereby authorized to charge the following additional fees by this paper and during the entire pendency of this application to Account No. \_\_\_\_\_:
  - 37 CFR 1.16(a), (f) or (g) (filing fees)
  - 37 CFR 1.16(b), (c) and (d) (presentation of extra claims)

- 37 CFR 1.16(e) (surcharge for filing the basic filing fee and/or declaration on a date later than the filing date of the application)
- 37 CFR 1.18 (application processing fees)
- 37 CFR 1.18 (issue fee at or before mailing of Notice of Allowance, pursuant to 37 CFR 1.311(b))

**13. Instructions As To Overpayment**

- credit Account No.
- refund

**14. Incorporation By Reference of Papers Identified Herein**

Applicant(s) hereby incorporate(s) by reference all papers which are identified in this New Application Transmittal.

**23. Correspondence Address**

**Please use the following correspondence address for all communications:**

**F. David LaRiviere, Reg. No. 27,207  
LaRIVIERE, GRUBMAN & PAYNE LLP  
P.O. Box 3140  
Monterey, CA 93942  
(831) 649-8800**

Dated: 8/22/00.

SIGNATURE OF ATTORNEY

John P. O'Banion, Reg. No. 33,201

**CERTIFICATION UNDER 37 CFR 1.10**

I hereby certify that this New Application Transmittal and the documents referred to as enclosed therein are being deposited with the United States Postal Service on this date AUGUST 22, 2000 in an envelope as "Express Mail Post Office to Addressee" Mailing

5 Label Number EL641403592US addressed to the: Assistant Commissioner for Patents, Washington, D.C. 20231.

JOHN P. O'BANION

(Type or print name of person mailing paper)

10



(Signature of person mailing paper)

**TITLE OF THE INVENTION**

15 **METHOD AND SYSTEM FOR OPTIMIZING ROUTING THROUGH MULTIPLE  
AVAILABLE INTERNET ROUTE PROVIDERS**

**CROSS-REFERENCE TO RELATED APPLICATIONS**

Not Applicable

20

**STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH**

**OR DEVELOPMENT**

Not Applicable

25

REFERENCE TO A MICROFICHE APPENDIX

Not Applicable

BACKGROUND OF THE INVENTION

5    1. Field of the Invention

The present invention pertains generally to routing in interconnected networks, such as the Internet, and more particularly to using a cost function to select among a plurality of alternative routing tables.

2. Description of the Background Art

10       The Internet Protocol (IP) defines a space of addresses. In IP version 4 (IPv4), the address space is all integers in the range  $[0, 2^{32}]$  (approximately 4 billion addresses). There exists a one-to-one mapping between “nodes” on the Internet and addresses. A node is usually assigned to a single computer, but there are many exceptions. For example, there could be multiple computers acting as a single node on the Internet, or, more commonly, a single computer acting as multiple nodes (i.e., assigned multiple IP addresses). A node is connected to an adjacent or “neighboring” node if it is possible for data packets to move between the two nodes without transiting any intermediate nodes. The process of selecting which neighbor to use when sending data packets to any given node is referred to as routing. In particular, the Internet  
15      Protocol’s strategy of only selecting which adjacent node to use, as opposed to the entire path, is termed “Hop-By-Hop Routing.”

20

Reachability is the most important criteria in making a routing selection. By definition, any neighboring nodes are reachable from each other. In general, node B is reachable from node A if either node B is a neighbor of node A, or node B is reachable from some neighbor of node A. If node B is reachable from more than one neighbor of node A (excluding those neighbors that would use node A to reach node B), then node A must select the next hop node based on the path offered by each. Historically, the Autonomous System (AS) path length, in terms of the number of hops, has been the primary characteristics used in making that selection.

Due to the technical difficulty of storing and communicating reachability and other path information to every node, given the enormous number of nodes, a mechanism of aggregating using subnetworks was devised. Subnetting breaks up the address space into several subnetworks (which are identified by address prefixes), each of which represents a contiguous block of addresses. An AS contains a collection of subnets. Each such collection is disjoint in that a given prefix can be found in only one AS. The unique AS that contains a given prefix is responsible for delivering packets to all of the IP addresses in that prefix. This abstraction reduces the complexity of routing because rather than requiring each node to know about the paths to every other node on the Internet, it is only necessary for nodes to know how to get to the “borders” of their AS. The nodes on the borders (also known as border gateways) are responsible for selecting neighboring border nodes in other ASes that will deliver the packets to the destination AS. Unlike the case with IP addresses, it is possible for border gateways to

communicate and store reachability and other path information to all ASes, because the space of ASes is much smaller than the space of IP addresses. The protocol used to exchange this reachability and path information between border gateway nodes is known as the Border Gateway Protocol (BGP), the current version of which is BGP

5    Version 4 (BGP4).

Although BGP successfully reduces the complexity of routing on the Internet to a manageable granularity, it makes necessary tradeoffs in deciding what path characteristics should be available to route selection algorithms. The path information that is exchanged between border gateways includes a list of the ASes in the paths, and 10 most route selection algorithms used in practice usually select the path with the fewest AS hops. While it is possible to make selections based on criteria other than path length (number of AS hops), there is usually not sufficient justification, from the information provided by BGP, not to select the shortest path.

The use of path length is heuristic, in that path length is not necessarily indicative 15 of performance. If all ASes were equivalent and therefore contributed the same penalty when used to reach a given destination AS, then minimizing the AS path length would be a correct strategy for finding an optimal route. Even if the ASes are not equivalent, if the routing algorithm does not have access to any path characteristics besides path length, then selecting the path with the minimal length is a justifiable strategy. However, 20 empirical evidence has demonstrated significant performance differences between ASes. The path with the fewest ASes is often not the fastest to reach a given prefix.

Similarly, there will often be several paths with equal AS path length, but with unequal performance because of differences in the ASes. It is because of these differences that additional path characteristics need to be added to the path selection algorithm.

For example, FIG. 1 shows five ASes 10 through 18. As can be seen, there are

- 5 two paths from AS1 10 to AS5 18; namely, from AS1 10 to AS2 12 to AS5 18 and, alternatively, from AS1 10 to AS3 14 to AS5 18. Note that both paths are shown as having the same number of AS hops and, therefore, have the same BGP path length. As a result, BGP would consider the two paths to be equivalent, in which case the route might be selected by simply employing an arbitrary tie breaking mechanism. Also note  
10 that there are two paths from AS1 10 to AS4 16; namely, from AS1 10 to AS2 12 to AS4 16 and, alternatively, from AS1 10 to AS3 14 to AS5 18 to AS2 12 to AS4 16. Here, BGP would typically minimize the number of AS hops and select the route from AS1 10 to AS2 12 to AS4 16. In each of the scenarios outlined above, however, BGP route  
15 selection could lead to inferior performance, such as that which might result from high latency or packet loss. BGP has no way to know of the existence of either condition, and simply routes traffic by minimizing the number AS hops to a destination. Therefore, there is a need for a method that routes traffic based on performance and other path characteristics. The present invention satisfies that need, as well as others, as will be described herein.

## BRIEF SUMMARY OF THE INVENTION

The present invention overcomes the inability of BGP to optimize route selection when multiple paths are available by incorporating performance and other path characteristics into the route selection process. The present invention is a performance based routing system and method that can be utilized with any network having one or more multi-homed ASes or equivalent. In addition, as the number of connections from an AS to other ASes increases, more routing choices are available and performance based routing according to the present invention become even more advantageous.

According to one aspect of the invention, a mechanism is provided for controlling routing through the use of a cost function that describes the cost of using any combination of routes. According to another aspect of the invention, a method is provided for minimizing said cost function, for the purpose of finding superior combinations of routes, as defined by said cost function. According to a still further aspect of the invention, a mechanism is provided for interoperating with standard BGP.

By way of example, and not of limitation, at a high level the invention can be described in terms of three components; a performance monitoring and inference component, a routing optimization component, and a BGP bridge.

The performance monitoring and inference component measures the performance of the available paths to a large set of subnetworks, and it uses those measurements to infer the performance of all available paths to an even larger set of subnetworks. There are several kinds of performance measurements that could be

relevant, such as latency and packet loss. The output of the performance monitoring and inference component is a table of each type of performance for every available path to every destination.

The routing optimization component uses the table of performance generated by

- 5 the performance monitoring and inference component, as well as other important information such as the amount of traffic that will be sent to any destination, the capacity available on each path, and the economic price of using any path. The routing optimization component contains a cost function that can assign a cost to any routing table, based on the input information. The routing optimization component uses a
- 10 minimization methodology to find a routing table with a very low cost, as defined by the cost function. Altering the cost function is the primary way of changing what routing table will be selected by the minimization methodology. The output of the routing optimization component is the routing table found by the minimization methodology.

The BGP bridge takes the routing table generated by the routing optimization

- 15 component and communicates that information to the routers using BGP, thereby ensuring that the routers will route traffic in accordance with the routing table.

An object of the invention is to make routing decisions based on performance measurements associated with a plurality of alternative paths.

Another object of the invention is to make routing decisions based on operational

- 20 and/or economic characteristics of a plurality of alternative paths.

Another object of the invention is to determine the cost associated with a routing table.

Another object of the invention is to select a routing table based on minimizing cost.

5 Another object of the invention is optimize routing decisions when multiple paths to a destination are available.

Another object of the invention is to communicate routing information derived from optimized routing tables to BGP routers.

Further objects and advantages of the invention will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing preferred embodiments of the invention without placing limitations thereon.

#### BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more fully understood by reference to the following drawings which are for illustrative purposes only and where like reference numbers denote like elements:

FIG. 1 is a schematic diagram of a network with multiple ASes.

FIG. 2 is a functional block diagram of a performance based routing system according to the present invention.

20 FIG. 3 is a diagram depicting the conversion of a latency measurement from a single source to a single destination into a physical distance.

FIG. 4 is diagram depicting the determination of a geographical region derived from the latency and distance measurements depicted in FIG. 3.

FIG. 5 is a diagram depicting the conversion of latency measurements from multiple sources to a single destination into physical distances.

5 FIG. 6 is a diagram depicting a circular intersection locating technique according to the present invention.

FIG. 7 is a diagram depicting an inference technique according to the present invention.

FIG. 8A through FIG. 8D are diagrams depicting an alternative embodiment of  
10 the circular intersection technique shown in FIG. 6 which uses approximations running in linear time.

FIG. 9 is a schematic diagram of a network having an AS that is highly multi-homed.

FIG. 10 is an example of a routing table for the network configuration shown in  
15 FIG. 9.

FIG. 11 is an example of a routing table for a single source AS in the network configuration shown in FIG. 9.

FIG. 12 is a first alternative of the routing table shown in FIG. 11.

FIG. 13 is a second alternative of the routing table shown in FIG. 11.

20 FIG. 14 is a third alternative of the routing table shown in FIG. 11.

FIG. 15 is a graph depicting parameters of an embodiment of headroom function

according to the invention.

FIG. 16 shows the routing table of FIG. 10 partitioned for optimization.

FIG. 17 is a schematic diagram showing an interconnected network with two PNAPs and two multi-homed customers connected to the Internet.

5 FIG. 18 is a block diagram of an example of a router configuration in connection with which the invention can be employed wherein core and border routers are used.

FIG. 19 is a block diagram of an example of a router configuration in connection with which the invention can be employed wherein edge routers are used.

FIG. 20 is a schematic diagram showing two interconnected PNAPs and  
10 addressable devices associated with backbone providers for probing specific  
backbones.

#### DETAILED DESCRIPTION OF THE INVENTION

Referring more specifically to the drawings, for illustrative purposes the present invention is embodied in the system and methods generally described in relation to FIG. 2 through FIG. 20. It will be appreciated that the system may vary as to configuration and as to details of the components, and that the methods may vary as to the specific steps and their sequence, without departing from the basic concepts as disclosed herein.

#### SYSTEM CONFIGURATION AND OPERATION

20 Referring first to FIG. 2, a functional block diagram of a preferred embodiment of a performance based routing system 100 according to the present invention is shown.

In the example shown, the invention comprises a performance monitoring and inference component 102, a routing optimization component 104, and a BGP bridge component 106.

In general terms, performance monitoring and inference component 102 measures the performance of specific paths available to a set of subnetworks, and then uses those measurements to infer the performance of all available paths to a larger set of subnetworks. Examples of performance measurements that can be made by monitoring and inference component 102 include, but are not limited to, latency and packet loss. Performance monitoring and inference component 102 generates a table of each type of performance measured or inferred for each available path to each destination.

Routing optimization component 104 then uses the performance table generated by performance monitoring and inference component 102 and, optionally, additional path characteristics, to determine the "cost" associated with a routing table. The aforementioned additional path characteristics that might typically be used includes the amount of traffic 108 to each destination, the available capacity 110 on each path, the economic price 112 of using any path, and the path length 114. Even the type of traffic (e.g., data vs. voice over IP) could be used as input to routing optimization component 102. The foregoing list is not all inclusive, but is provided by way of example only.

Based on the performance table and any additional path characteristics deemed pertinent to include, a cost function is used to assign a cost to routing tables. An

DRAFT - 4/20/2015

associated minimization process is then carried out to identify a routing table with a "low cost" as defined by the cost function. Note that altering the cost function is the primary way of changing what routing table will be selected by the minimization process. The output of routing optimization component 104 is the routing table found by the

- 5 minimization methodology to have a low cost.

BGP bridge 106 takes the routing table generated by routing optimization component 104 and communicates that information to routers 116 using BGP, thereby ensuring that the routers will route traffic in accordance with the routing table.

Each of the three components of performance based routing system 100 of the present

10 invention will now be discussed in more detail. It should be appreciated that the description of each of these components is provided by way of example, and not of limitation, and that there are many alternative configurations and implementations that those skilled in the art will appreciate can be derived from the description herein.

1. Performance Monitoring and Inference Component

15 Because BGP does not exchange performance information between ASes, it is necessary to measure the performance of available AS paths independently from the BGP protocol. In the present invention, performance monitoring and inference component 102 measures path characteristics, such as latency and packet loss, which can generally be described as performance characteristics. It will be appreciated,

20 however, that latency and packet loss are presented by way of example, and not of limitation, and that there could be any number of path characteristics relevant to

network routing. When possible, the measurements should be performed over all available paths to all destinations, and they should be updated in real time. However, because collecting so many performance measurements may be impractical, performance measurement and inference component 102 uses an inference

5 methodology to predict the performance to some set of destinations based on actual performance to some other set of destinations.

Performance monitoring and inference component 102 is preferably implemented as software that is executed within the AS that is using this invention to control its routing. Furthermore, the performance measurements should be taken from the

10 perspective of the AS so that they accurately describe the performance that the AS is likely to observe as a result of using any neighboring AS to reach any destination subnetwork. Therefore, if multiple ASes are using this invention to control their routing, the performance monitoring and inference component should be executed from within each such AS.

15 (a) Performance Monitoring

By way of further explanation, examples of methods for measuring latency and packet loss will now be described. It should be appreciated, however, that different techniques may be required to measure other path characteristics.

Those skilled in the art will appreciate that both round-trip latency and packet

20 loss to a specific IP address can be measured using ping, which is a well-known technique. Ping works by sending an Internet Control Message Protocol (ICMP) echo

message to a destination host and timing how long it takes to receive an ICMP echo reply from that host. If the response is not received after some specified amount of time, it is treated as a lost packet. An alternative technique is to measure the time between the synchronization (SYN) and acknowledgement (ACK) packets that are used

- 5 in the three-way handshake to establish a Transmission Control Protocol (TCP) session. The advantage of this technique over classical pings is that it generally provides a more accurate measurement of performance since routers and hosts often deprioritize ICMP traffic. It also provides more visibility into the network because many hosts accept TCP connections that do not accept ICMP messages or cannot receive such messages because of firewalls.

Even more visibility can be provided by a variation of the TCP handshake method. Some firewalls prevent external hosts from initiating TCP sessions by blocking the first SYN packet in the TCP handshake. However, those firewalls usually allow internal hosts to initiate connections with the outside so they allow ACKs to penetrate the firewall. If an ACK is sent to a host that was not expecting it because the host never sent the corresponding SYN, that host will generally respond with a reset (RST) packet indicating that the ACK packet was invalid. Using this behavior, the round trip latency can be determined by measuring the time between the ACK and the RST. This technique does not work for all destinations, however, as some networks are protected

- 20 by “stateful” firewalls that drop the unexpected ACK before it can reach the host. For machines that willingly accept connections on well-known TCP ports, such as web

servers, the SYN ping is the most effective and is the preferred method for obtaining such measurements.

The foregoing measurement techniques assume that the hosts in the network use the TCP/IP protocols. It will be appreciated, however, that if other protocols are developed, there should be comparable methods for establishing the latency and packet loss to a destination. Furthermore, it will also be appreciated that there may be other suitable methods for making such measurements that can be used as well, and that the invention is not limited to the methods which are given by way of the foregoing examples.

10        Performance and other path characteristics as described above will generally be measured by probing to specific IP addresses using the path offered by a specific next-hop AS. However, routing on the Internet is specified at the granularity of subnetworks (also known as prefixes), which are ranges of IP addresses. Therefore, for the purpose of applying this invention to routing on the Internet, it is necessary to describe the 15 characteristics of the path offered by a given next-hop AS to reach a subnetwork. By way of example, but not of limitation, the preferred method of doing so is to average the individual measurements to specific, representative IP addresses within a given subnetwork to describe the performance to that subnetwork. While there may be alternative ways to define the performance or other characteristics to a subnetwork, 20 averaging the measurements to specific addresses within that subnetwork is preferred because a superior route to a specific subnetwork is one that provides superior

performance to the specific addresses within that subnetwork.

(b) Performance Inference

Even though there may be many destinations that cannot be probed using any of the available ping methods for various reasons, the number of destinations that can be

- 5 probed is still enormous. For example, there are approximately eighty thousand prefixes in use; therefore, the number of measurements that could be made is eighty thousand times the number of ASes from which measurements could be taken. Ideally, measurements of the path offered by each neighboring AS to reach any given subnetwork would be available in real time. However, making so many measurements would require substantial resources. Furthermore, many hosts in those subnetworks, which are the actual recipients of those subnet probes, might treat such frequent probes suspiciously. It can also be technically difficult to monitor performance to a node in a subnetwork over the path offered by a neighboring AS without also shifting all outgoing traffic for that subnetwork onto the neighboring AS. It is therefore useful to be able to 10 infer the performance to a large number of subnetworks over all available paths using measurements to a much smaller number of subnetworks, and over fewer paths. 15

To reduce the number of measurements that have to be made, performance

monitoring and inference component 102 employs a performance inference

methodology that extrapolates the performance to some set of subnetworks using

- 20 measurements to some smaller set of subnetworks. In this regard, note that the performance to two subnetworks should be similar if the difference between the paths

used to reach each subnetwork is small. For example, if the paths to reach two different IP addresses are identical except for some divergence near the end, then any difference in performance to those two IP addresses must be attributable to the performance differences over the portions of the paths that are different, provided the

5 destination hosts are considered part of the path. On the other hand, as the paths to the two different addresses diverge, the correlation of the performance to the two addresses should approach zero. Using this principle, addresses that are close to each other in both a geographic and a topological sense should exhibit similar performance.

Furthermore, since subnetworks represent a collection of IP addresses, the same reasoning applies to subnetworks. However, when referring to the geographic or topological location of a subnetwork, it should be appreciated that what is meant is the general geographic or topological location of the hosts in that subnetwork.

Note that the topological location of an IP address can often be determined using the standard "traceroute" tool, which attempts to identify all of the router hops on a path selected to reach a destination. However, traceroute frequently provides incomplete information, particularly, because many routers do not respond to traceroute.

While it can be difficult to determine the precise topological location of an IP address, and by extension a subnetwork, the approximate geographic location nevertheless can be identified through the intersection of latency measurements to the same IP address from different sources. Referring to FIG. 3 for example, the observed latency to an IP address from a single source 200 can be converted to an approximation

of the distance between the source 200 and the destination IP address 202. The estimated distance D is determined by combining the observed latency, such as 53 ms in the example shown, with an estimate of the speed (in distance per time) of the packets. For example, in fiber-optic cables, packets are known to travel at roughly two-

5 thirds the speed of light in a vacuum. This rate will be affected by several factors including changes in the physical medium, curvature in the network paths, and latency added by routers or other devices. Given these variations, it is more reliable to determine the average rate through statistical observations than through analysis. An upper bound of this speed is easy to specify, however, since no packets can move

10 faster than the speed of light. In this context, latency to a subnetwork is again defined as the average of the latencies to some set of representative IP addresses in that subnetwork.

Once the distance is estimated between a source and the destination, a circle can be defined with radius equal to that distance and with a center located at the geographic location of the source. This is illustrated by circle 204 in FIG. 4 wherein source 200 is in the center and the radius of the circle is distance estimate D. If the distance estimate is known to be an upper bound of the actual distance, then the destination must lie within that circle. Additional circles can be created using distance estimates from other sources to the same destination. For example, FIG. 5 shows three  
15 sources 200, 206, 208 having distance estimates D1, D2, and D3 to destination 202, respectively. The source locations and distance estimates can be used to define  
20

intersecting circles 204, 210, 212, respectively, as shown in FIG. 6. If all of the distance estimates are upper bounds on the actual distances, then the destination must lie within the intersection of all such circles. This is also illustrated in FIG. 6, wherein destination 202 lies within the intersection of circles 204, 210, 212. Note, that the diameters of  
5 circles 204, 210, 212 are not drawn proportionally in this example.

Note that a tight upper bound of each distance will result in a smaller intersection region and hence a more precise estimate of the geographic location of the destination. In addition, adding more sources, especially ones that are geographically diverse with respect to the destination, will further reduce the intersection region and increase the precision of the estimate. In addition, making more measurements and selecting the lowest latency measurement will further decrease the size of the region of intersection.  
10 Furthermore, this method can be used both for specific IP addresses and for subnetworks, with the appropriate distance used in each case. Note also, that the sources used in these latency measurements for the purpose of identifying geographic  
15 location do not have to be the same sources that are used for monitoring performance and other path characteristics. Whereas the latencies that are collected for monitoring performance and other path characteristics need to be collected from the perspective of the AS that is using those measurements to make routing decisions, the geographic location of any IP address or subnetwork is not relative to the source, and so could be  
20 determined from the perspective of any AS.

After estimating the geographic location of each destination, an estimate of the distance between all pairs of destinations can be easily computed. If the distance between two destinations is extremely small, then it may be reasonably accurate to only measure the performance to one of the destinations and to assume that the other

- 5 destination will have the same performance. The accuracy of this inference depends on how close the two points are to each other, both topologically and geographically.

However, if they are geographically very close, they are more likely to be topologically close. Therefore, the confidence in the inference should increase as the distance

between the two points decreases. Using this observation, it is possible to combine the

10 performance measurements for several sample destinations into a weighted average that more accurately estimates the performance to a single target destination. The

weight assigned to each performance measurement would be the inverse of the distance between the target destination and the sample destination. The inverse of the

distance is used to weight each performance measurement because it describes the

15 relative confidence that the performance measurement is the same as the unmeasured performance to the target destination.

For example, referring to FIG. 7, if there are three prefixes, PR1, PR2, and PR3, and if latency or measurements of other path characteristics have been made from some source AS1 to each of PR1 and PR2 using a specific next-hop AS2, then it is

- 20 possible to infer the latency or path characteristic to PR3 using the path offered by AS2.

Let  $L(AS\_X, AS\_Y, PR\_Z)$  represent the latency from the AS  $AS\_X$  to the prefix  $PR\_Z$

when the path offered by AS\_Y is used. Also let D(PR\_X, PR\_Y) represent the distance between prefix PR\_X and prefix PR\_Y. It is possible to infer the latency from AS1 to PR3 using AS2 as the next-hop AS using the equation

$$L(AS1, AS2, PR3) \cong \left( \frac{L(AS1, AS2, PR1)}{D(PR1, PR3)} + \frac{L(AS1, AS2, PR2)}{D(PR2, PR3)} \right) \left( \frac{\frac{1}{\frac{1}{D(PR1, PR3)} + \frac{1}{D(PR2, PR3)}}}{\frac{1}{D(PR1, PR3)} + \frac{1}{D(PR2, PR3)}} \right).$$

- 5 Although measurements to only two prefixes were used in this example, in practice a large number of measurements should be used to make any single inference. Note also that the measurements used in the inference equation must all have been performed using the same next-hop AS, and that AS must match the next-hop AS in the path that is being inferred. In the example, AS2 is the next hop AS both for the
- 10 measurements and for the inference. This example assumes that there was only one path for sending traffic from the source AS to the destination. However, an AS may be connected to multiple ASes and, therefore, it is likely that more than one next-hop AS will be available for sending traffic to a destination. Therefore, for further clarification, if L(AS1, AS3, PR3) were being inferred, then the measurements would also have to use
- 15 AS3 as the next hop. A similar computation would be carried out for each of the next-hop ASes. Also, it will be appreciated that the averaging technique described herein is by way of example, only, and that other techniques, including non-averaging techniques, could be used as well. Furthermore, instead of using the inverse of distance to weight each term in the above example, the amount of shared topology as

measured by the number of routers that are shared over the path could be used to weight each term.

While there is no guarantee that this technique will accurately estimate the performance to any given destination, its effectiveness is easy to determine using a 5 collection of actual measurements. Using such measurements, it is straightforward to determine the ratio of measurements to inferences that is required for any given degree of accuracy. For example, some randomly selected portion of the measurements can be treated as “out-of-sample” that must be predicted by the remaining “in-sample” measurements. The relative size of the “out-of-sample” data can be decreased until the 10 root-mean-square (RMS) of the error is within an acceptable threshold.

Furthermore, while the foregoing technique for inferring path characteristics is preferred, it will be appreciated that inferences can be made in other ways, including, but not limited to, the following:

1. Monitoring sets of prefixes and then treating all prefixes in the set in the same fashion.
2. Aggregating prefix sets based on similarities and treating all such aggregated prefix sets in the same fashion.
3. Deaggregating prefix sets into subsets that have similar characteristics and treating the subsets in the same fashion.
- 20 4. Placing prefixes into sets based on some criteria of similarity such as, but not limited to, performance, geographical location, and other correlation factors, and

treat all prefixes in the sets in the same fashion.

Note that a set can be a single prefix, a group of prefixes, the union of two sets wherein the two sets are geographically close, the union of two sets wherein the two sets experience similar performance in relation to ASes, sets of sets and the like.

5        Lastly, additional improvements to the technique for inferring path characteristics described herein can include, but are not limited to, the following:

1.        Making the performance measurement over the same AS path as the AS path of the destination for which path characteristics are to be inferred.

2.        Adding topology, as determined by traceroute, to the inference technique.

10      In that event, each measurement can be weighted by the length of the path that is common to both the measured destination and to the destination for which the inference is being performed.

(c)        Intersection of Circles

15      Although the inference process needs to be executed frequently in order to account for the changes in performance of different AS paths, the geographic location of subnetworks does not change very frequently. Therefore, the process for determining the geographic location of subnetworks does not need to be carried out very frequently. However, when that process is carried out, it needs to run in a reasonably short amount of time. Most of the computational work of that process involves finding  
20      the intersection of a set of circles representing the distance from each source to the destination, so finding that intersection must be done efficiently.

It will be appreciated that the intersection of any two circles can be computed from simple algebra and, assuming the circles actually do intersect, can be described by the two points of intersection. Intersecting a set of circles can be done in two phases.

First, the two points of intersection can be computed for all pairs of circles. If any circle

- 5 is completely contained inside a larger circle, then the larger circle can be discarded. In the second phase, all of the points from the first phase can be tested to determine if they are contained within every circle. The intersection of any two circles runs in constant time, and there are  $N^*(N-1)/2$  ways to form pairs of N circles, each of which generates two points. The first phase therefore generates  $2^*N^*(N-1)/2 = N^*(N-1)$  points.

10 The second phase performs a constant time comparison between each of those points and each of the circles. Since there are  $N(N-1)$  points from the first phase, there will be  $N^*N^*(N-1)$  comparisons, so it runs in  $O(N^3)$  time. The entire process therefore runs in  $O(N^2 + N^3) = O(N^3)$  steps, where N is the number of circles.

15 If the number of sources is large, then the  $O(N^3)$  process for intersecting a set of circles may be too slow. However, it is possible to speed up the intersection process using a straightforward approximation that runs in linear time. After intersecting any two circles from the set, a rectangle can be constructed that bounds the region of their intersection. The intersection of the rectangle and any remaining circle, selected arbitrarily, can be represented by a new rectangle. This step can be repeated for all 20 remaining circles, with the rectangle generated at each step used for the intersection at the next step. If the rectangle that is generated to describe each of the intersections

completely encloses the region of intersection, then the final rectangle generated at the last step will completely enclose the intersection of the regions of each circle. The first intersection between two circles runs in constant time. Similarly, each of the remaining N-2 steps is a constant time intersection between a circle and a rectangle. Therefore,

5 the entire process runs in O(N) steps where N is the number of circles.

An example of the aforementioned "rectangle approximation" process applied to three intersecting circles 300, 302, 304 is illustrated in FIG. 8A through FIG. 8D. First, the intersection 306 of two of the circles, such as circles 300, 302 would be determined as shown in FIG. 8A. Next, the area of intersection can be circumscribed by an

10 intersection object 308, which is preferably rectangular in shape as shown in FIG. 8B. The intersection object 308 should represent the smallest bounding box that encloses the intersection. Referring also to FIG. 8C, the estimated intersection is the cross-hatched 310 area inside intersection object 308. Now, when the third circle 304 is drawn, the intersection of circle 304 and intersection object 308 can be determined. In  
15 the example shown in FIG. 8D, the intersection of circle 304 and intersection object 308 is shown as the cross-hatched area 312.

As can be seen, therefore, the above-described method summarizes previous intersections with an intersection object. The intersection object is then intersected with a subsequent circle or an object representing the subsequent circle. While the  
20 intersection objects are preferably rectangular-shaped as described above, they could alternatively have other shapes that are also polygons. The method reduces

computational complexity and increases computational speed by employing a computational technique that runs in linear time at the expense of accuracy.

2. Routing Optimization Component

Referring again to FIG. 2, routing optimization component 104 preferably comprises software that generates routing tables based on any data that could be relevant to route selection. It has access to the tables of path characteristics provided by performance monitoring and inference component 102 as well as other pertinent information such as the amount of traffic 108 that is sent to each prefix, the capacity 110 available to each next-hop AS, and the price 112 of using any next-hop AS. Traffic 108 is easily obtained using Netflow™ or like. The "pipe size" or capacity 110 is available from system design information. Price 112 is available from contracts or other service agreements with backbone providers or others. If there is no other information about the characteristics of a specific path, it is useful to at least know the length 114 of the path in terms of AS hops, so this is also provided to routing optimization component 104 for all paths. This information is readily available from BGP. Similarly, whether a given subnetwork is reachable from a neighboring AS has to be provided to routing optimization component 104 so that certain routes can be excluded from the selection process. If other variables are deemed relevant to the route selection process, such as the type of traffic, then they should also be made available to routing optimization component 104. Those skilled in the art will appreciate that there are many ways to make the data available to routing optimization component 104, but the most generally

applicable solution is to store it in a database.

Given all of the available path information, and any other relevant information, the goal of routing optimization component 104 is to generate a routing table that is as "good" as possible. However, each user of this invention may have a different definition 5 of what is meant by "good" routing. For example, some users may be more concerned about packet loss than latency, and so they would want routing optimization component 104 to generate routing tables that minimize packet loss, even if that means increased latency. Other users may be more concerned with the price of selecting any route, and so they may prefer routing tables that result in higher packet loss and latency if that 10 means they will not have to pay as much. In order to account for different preferences in the route selection process, routing optimization component 104 allows the users to specify a routing table cost function. The cost function must be able to evaluate any routing table and assign it some non-negative, real-valued cost with smaller costs 15 interpreted to mean superior routing tables. The cost function could use the path characteristics or any other relevant information to determine the cost.

While the user of this invention has the freedom to define any cost function, it is the responsibility of the routing optimization component to find a routing table with a small cost as defined by that cost function. Given the enormous space of possible routing tables, the routing optimization component uses a minimization algorithm, rather 20 than exhaustive search, to find routing tables with small cost.

(a) Routing Tables

A routing table is a matrix of which next-hop AS will be used to reach any given prefix. There is a row for each source AS and a column for each destination prefix. For any routing matrix R, the notation  $R[i,j]$  will indicate the next-hop AS used by source AS 5 i to reach destination j. If this invention is only controlling routing for a single AS, then there will be only one row in the matrix. However, one of the benefits of this invention is that it can optimize routing over a plurality of source ASes to allow them to more collaboratively use the Internet's resources, such as the available bandwidth.

For example, FIG. 9 shows a schematic diagram of an example of a network 10 configuration in which there are eight ASes: AS1 400, AS2 402, AS3 404, AS4 406, AS5 408, AS6 410, AS7 412 and AS8 414. AS6 410 is shown as including prefixes PR<sub>1</sub> and PR<sub>2</sub>, AS7 412 is shown as including prefix PR<sub>3</sub>, and AS8 414 is shown as including prefix PR<sub>4</sub>. However, it will be appreciated that a network might include fewer or greater 15 ASes and that each AS would include at least one prefix. Note also that FIG. 9 shows that AS1 400 has several neighboring ASes. In this regard, AS 400 is what is referred to as a "highly multi-homed" AS; that is, it is directly connected to a large number of other ASes.

Assuming that each of the eight ASes is considered to be a source AS, a possible routing table for this configuration is shown in FIG. 10. It will be appreciated, 20 however, that the routing table shown in FIG. 10 is merely an example, and that there are many other routing tables that could be used as well due to the number of

alternative paths that are available.

Focusing on source AS1 400, FIG. 9 also shows that a number of routes from AS1 400 to AS6 410 or AS7 412 or AS8 414 are available. This means that the first row of the routing table shown in FIG. 10 could have a number of alternative entries as 5 shown in FIG. 11 through FIG. 14. For example, in FIG. 11 traffic to prefixes PR<sub>1</sub> and PR<sub>2</sub> (which both reside within AS6 410) is routed through AS2 402 as the next-hop AS. Or, traffic to both prefixes could be routed through AS3 404 as shown in FIG. 12. In the event of a tie between AS2 402 and AS3 404 based on performance, the tie can be broken arbitrarily. Alternatively, we can break the tie by balancing load over that portion 10 of the network. For example, in the routing table of FIG. 13, traffic to prefixes PR<sub>1</sub> and PR<sub>2</sub> is split between AS2 402 and AS3 404, respectively. It will be appreciated, however, that load balancing is not limited to the case where there is a tie between routes based on performance; the load, or alternatively the headroom, over a particular route can be an additional factor for purposes of optimizing routing in general.

15 Referring also to FIG. 14, a still further alternative routing table based on FIG. 9 is given that assumes that AS5 408 is suboptimal as the next-hop AS for routing traffic to prefix PR<sub>4</sub>. In the routing table of FIG. 14, AS4 406 is chosen as the next-hop AS for routing traffic to prefix PR<sub>4</sub> (i.e., through AS7 412 instead of directly to AS8 414). Those skilled in the art will appreciate that the foregoing routing tables are by way of example 20 only, that many alternative routing tables could be generated for the network configuration shown in FIG. 9.

As can be seen, therefore, a number of alternative routing tables may be applicable to sending traffic from a source AS to a destination. With the foregoing discussion pertaining to routing tables in mind, the cost function for determining the cost associated with a routing matrix will now be discussed.

(b) Cost Function

5 The cost function determines the cost of using any routing matrix. Note that it is possible to apply the same cost function to a routing matrix regardless of how many rows are present in the routing matrix. In other words, it is not necessary to modify the cost function if the number of source ASes that use the same routing optimization component increases.

10 An example cost function that incorporates some of the terms most relevant to routing can be described as

$$C(R) = k1 \bullet \text{Latency}(R) + k2 \bullet \text{Headroom}(R) + k3 \bullet \text{Price}(R),$$

where R is the routing matrix, C is the cost of the routing matrix, and k1, k2 and k3 are coefficients to allow for convenient tuning of the relative significance of that term.

15 An example of the form of the first term, *Latency*(R), is

$$\frac{\sum \text{Traffic}[i, j] \bullet \text{Latency}[i, j, R[i, j]]}{\sum \text{Traffic}[i, j]},$$

where *Traffic*[i,j] represents the amount of traffic that is being sent to prefix j from AS i, and *Latency*[i,j,R[i,j]] represents the amount of latency that is expected when reaching prefix j from AS i, using the next-hop AS *R*[i,j]. The reason this is a good choice for

20 describing *Latency*(R) is that it represents the average latency per byte, so a small

value represents a small average latency.

The second term, *Headroom(R)* refers to the queuing effects that are encountered when the amount of traffic routed over any path is large compared to the available capacity. Although it is difficult to know the precise capacity along an entire

5 path, the capacity between the source ASes and their neighbors should be available.

The queuing effects could be described using a very accurate queuing model, but for the purpose of this invention, a simple piecewise linear function is sufficient. Such a function should account for the fact that when the ratio of traffic to capacity is small, the queuing effects are negligible, but when that ratio is large, the queuing effects are

10 significant. For example, the following function uses 70% of total capacity as the threshold where the *Headroom(R)* term becomes significant as depicted in FIG. 15:

$$\begin{aligned} \text{Headroom}[R] = & \text{If}[\text{TrafficToCapacityRatio}[i, k] < .7, \\ & \text{then } k_{\text{Small}} \bullet \text{TrafficToCapacityRatio}[i, k], \\ & \text{else } k_{\text{Large}} \bullet \text{TrafficToCapacityRatio}[i, k] \end{aligned}$$

where

$$\text{TrafficToCapacityRatio}[i, k] = \frac{\sum \text{If}[R[i, j] = k, \text{Traffic}[i, j], \text{else } 0]}{\text{Capacity}[i, k]},$$

15 and  $k_{\text{Small}}$  is some small number and  $k_{\text{Large}}$  is some large number, with respect to the magnitudes of the other terms in the equation. Using this headroom function to account for queuing has the advantage that when the amount of traffic compared to the available capacity is large, the headroom will be the most significant factor in the equation, but when that ratio is small, the term will be small compared to the other factors. Note that

the values of  $kSmall$  and  $kLarge$ , as well as the threshold level, are arbitrarily selected.

Other weights and thresholds could be used as well, since the goal is simply to have the cost function grow quickly as the traffic to capacity ratio increases to a point that the headroom term should be considered significant.

- 5        The price term  $Price(R)$  is simply the dollar amount that it would cost to route traffic according to the routing matrix. This will depend on the economic agreements between each source AS and each next-hop AS, as well as the amount of traffic that the routing matrix would cause each source AS to deliver to each next-hop AS.

There are several other terms that might appear in the cost function. For

10      example, packet loss is very relevant to route selection and can be added to the cost function in a manner that is exactly analogous to latency. A less obvious example of a term that might be useful is a Route-Change term where  $Route-Change(R)$ =the number of routes that would be changed if this routing matrix is used in practice. The Route-Change term may be useful to avoid making unnecessary changes, or to help prevent  
15      oscillations over time.

(c)     Minimization Algorithm

There are several well-known algorithms that could be used to minimize the cost function. Each such algorithm offers different tradeoffs between speed, optimality, and resource requirements. Some examples are Genetic Algorithms, Simulated Annealing,

20      and Gradient Search. Genetic algorithms are probably too memory intensive to be practical, given the size of the routing tables. Although Simulated Annealing does not

require very much memory in comparison to Genetic Algorithms, it is probably too slow given the rate at which new routing tables will need to be generated to respond to changing network conditions. Gradient Search is not memory intensive, and it is very fast compared to Simulated Annealing, but its solutions are often suboptimal because it

- 5 can get trapped in local minima.

While it is clear that many techniques can be used to find routing matrices with small cost, as defined by the cost function, the preferred algorithm is a surprisingly simple biased random walk with occasional up-hill moves to escape from local minima.

To be more specific, the algorithm works by randomly generating a starting routing

10 matrix. It then proceeds for some number of iterations by randomly selecting some source AS, i, and some destination prefix, j. With some probability, it either randomly assigns a new next-hop AS to  $R[i,j]$ , or it assigns the next-hop AS to  $R[i,j]$  that results in the lowest cost. To find the next-hop AS that results in the lowest cost, it iterates over all alternative next-hop ASes, assigns them to  $R[i,j]$ , and then evaluates the cost  
15 function over the new routing matrix. Like gradient search, this algorithm only makes local moves. However, it does not get trapped on local minima as easily because of the occasional random moves.

A practical problem with the biased random walk algorithm is that it in each iteration, unless it is randomly assigning the next-hop AS, it has to evaluate the cost

20 function one time for each next-hop AS selection. If the cost function is slow to compute, then this can limit the number of iterations of the algorithm that can be

computed in a reasonable amount of time. This is an issue because if the algorithm is not able to run for many iterations, then the routing matrix at the final iteration will not be very optimal. It is often possible to speed up the evaluation of the cost function by caching information at each stage in the evaluation and just updating that information.

- 5        For example, consider a cost function

$$C(R) = k1 \cdot \text{Latency}(R) + k2 \cdot \text{Headroom}(R),$$

with the latency and headroom terms defined as before. Assume there is some routing matrix R0 with  $R0[\text{AS1}, \text{PR1}] = \text{AS2}$ , and with  $C(R0) = C_0$ . Construct R1 to be identical to R0, except that  $R1[\text{AS1}, \text{PR1}] = \text{AS3}$ . It is possible to compute  $C(R1)$  much more quickly than simply applying the cost function to the new R1. From the definition of the cost function,  $C(R0) = k1 * \text{Latency}(R0) + k2 * \text{Headroom}(R0)$ , and  $C(R1) = k1 * \text{Latency}(R1) + k2 * \text{Headroom}(R1)$ . The speedup of the latency term comes from the observation that  $k1 * \text{Latency}(R1) = k1 * \text{Latency}(R0) - \text{Latency}[\text{AS1}, \text{PR1}, R0[\text{AS1}, \text{PR1}]] + \text{Latency}[\text{AS1}, \text{PR1}, R1[\text{AS1}, \text{PR1}]]$ . Therefore, it is possible to compute the new latency term by simply caching the previous latency term  $\text{Latency}(R0)$ .

The headroom term is slightly more complicated because of the non-linear queuing effects. However, if a matrix is used to keep track of the amount of traffic that is sent to each neighboring AS, then the headroom term can also be computed quickly. If  $\text{NeighborTraffic\_R0}$  is a matrix indicating the amount of traffic that is sent to each AS from any other AS, then  $\text{NeighborTraffic\_R1}$  can be defined as

$$\text{NeighborTraffic\_R1}[\text{AS1}, \text{AS2}] = \text{NeighborTraffic\_R0}[\text{AS1}, \text{AS2}] - \text{Traffic}[\text{AS1}, \text{PR1}].$$

In addition,

$$\text{NeighborTraffic\_R1[AS1, AS3]} = \text{NeighborTraffic\_R0[AS1, AS3]} + \text{Traffic[AS1, PR1]}.$$

For all other pairs of ASes,  $\text{NeighborTraffic\_R1}[i,k] = \text{NeighborTraffic\_R0}[i,k]$ . From the  $\text{NeighborTraffic\_R1}$  matrix, it is easy to compute the headroom term. Whereas the

- 5 previous headroom term computed the TrafficToCapacityRatio from

$$\text{TrafficToCapacityRatio}[i,k] = \frac{\sum \text{If}[R[i,j] = k, \text{Traffic}[i,j], \text{else } 0]}{\text{Capacity}[i,k]}, \text{ using the}$$

NeighborToTraffic matrix it is possible to compute that value from

$$\text{TrafficToCapacityRatio}[i,k] = \frac{\text{NeighborToTraffic\_R}[i,k]}{\text{Capacity}[i,k]}.$$

This approach will not work for certain kinds of cost functions, but whenever the cost is  
10 just the sum of the cost contributions from each of the variables, it is correct to say that  
 $\text{Cost}(R1) = \text{Cost}(R0) - \text{CostContribution}(\text{OldValue}) + \text{CostContribution}(\text{NewValue})$ . If those  
individual contributions are fast to compute, then finding the new cost from the old cost  
is also fast, provided there are a small number of changes.

(d) Multiple Source ASes

15 As indicated previously, the present invention can be used to optimize routing  
tables for a system with multiple source ASes. An example of such a routing table was  
given in FIG. 10. The routing table that is generated by optimizing a system of multiple  
source ASes is potentially more optimal than what could be generated by making the  
routing decisions independently. For example, the optimization algorithm could assign  
20 routes to each of the source ASes such that the traffic from all of those source ASes

does not exceed the available capacity on any path. If the decisions were made independently, however, then a source AS might route traffic along a path even if the capacity for that path had already been consumed by some other source's traffic. However, if a single instance of the routing optimization algorithm selects the routes for 5 several source ASes, then those source ASes may lose functionality if they cannot communicate with that routing optimization algorithm to receive the routing decisions. In addition to added failure possibilities from centralizing the routing, the optimization algorithm could become too slow if the number of rows in the routing matrix is very large.

When optimizing the routing for several source ASes, this invention partitions the routing matrix so that portions can be solved in parallel. FIG. 16 shows an example of the routing table of FIG. 10 where ovals depict partitions. Each instance of the routing optimization algorithm uses the entire routing matrix, but it is only allowed to modify some of the entries in that matrix. The source ASes each run an instance of the algorithm that is allowed to modify any element in the row corresponding to that source AS. There is also a "central" instance of the algorithm that is allowed to modify any element in any column corresponding to a prefix that is contained in any source AS. Note that the portion of the matrix that an instance of the algorithm running at a source AS is allowed to modify overlaps with the portion of the matrix that the central algorithm 20 is allowed to modify. However, there is no overlap between the portions of the matrix that can be modified by the algorithms running at each source AS.

The central instance of the algorithm must periodically retrieve a copy of the routing matrix from each source AS and send a copy of its routing matrix to each source AS. When the central instance of the algorithm obtains a copy of the routing matrix from some source AS, it copies certain entries from that routing matrix into its own routing matrix. Specifically, it copies those entries from the row corresponding to that source AS that are not in columns corresponding to prefixes contained in other source ASes. When the instance of the algorithm running at a source AS receives a copy of the routing matrix from the central algorithm instance, it also copies certain entries into its own routing matrix. It copies all entries from all rows that do not correspond to that source AS. From the row corresponding to that source AS, it copies all entries from all columns that correspond to prefixes contained in other source ASes.

3. BGP Bridge Component

At this point it should be appreciated that the decisions made by routing optimization component 104 in a source AS need to be propagated to each of the routers in that AS. This is accomplished using BGP bridge component 106.

In operation, routing optimization component 104 sends the row in the routing matrix corresponding to that AS to BGP bridge 106 which is a route server that uses external BGP (EBGP) to peer with each of the neighboring ASes as well as with a route reflector within the AS. The route server is modified to include a non-BGP bi-directional communication channel to routing optimization component 104 that allows BGP bridge 106 to communicate all BGP views to routing optimization component 104, and further

allows routing optimization component 104 to communicate a routing table to BGP bridge 106. An optional modification would be to make BGP bridge 106 communicate in IBGP as well. Based on the paths it receives from the neighboring ASes as well as the routing table it receives from routing optimization component 104, BGP bridge 106

- 5 selects which next hop should be used to reach any given prefix. In most circumstances, BGP bridge 106 will just select the next-hop specified by routing optimization component 104. Because BGP bridge 106 peers with the neighboring ASes, however, it may learn that a route specified by routing optimization component 104 is invalid, possibly as a result of a route withdrawal. If a route specified by routing  
10 optimization component 104 cannot be used, then BGP bridge 106 will make the selection based on information received from the neighboring ASes using standard BGP path selection algorithms and will convey this information to routing optimization component 104. The selection is communicated to the route reflector using EBGP, and the route reflector communicates that decision to all of the other routers in the AS using  
15 internal BGP (IBGP).

#### DEPLOYMENT IN PNAPS

Thus far the invention has been described in connection with ASes in general, and particularly in connection with ASes that are multi-homed. The invention is also particularly suitable for use in connection with a network employing a private network access point (PNAP), which is a highly multi-homed AS. In general terms, a PNAP can be thought of as being made up of two halves. One half connects to customers; the

other half connects to NSPs or "Network Service Providers". These NSP's are in turn connected to destinations, which may be customers of the NSPs or customers of other PNAPs. For example, FIG. 17 shows a schematic diagram of an interconnected

network 500 with a first PNAP 502 and a second PNAP 504 connected to the Internet

- 5 506 through a plurality of backbones B1 through Bn provided by NSPs. Each PNAP is shown with a vertical dashed line dividing it into a customer side CS and a provider side PS which is connected to a plurality of backbones. In the example shown, the provider sides of the PNAPs are connected to each other through backbones B1 through Bn, which in turn are connected to the Internet 506. Note that, while only two PNAPs are
- 10 shown, there could be one or any other number of PNAPs in the network.

To simplify the diagram, only two customers 508, 510 are shown connected to the customer side of PNAP 502 and only two customers 512, 514 are shown connected to the customer side of PNAP 504. It will be appreciated, however, that more customers would typically be connected to the customer sides of the PNAPs. Note that 15 customers 508, 510 are shown connected to the customer sides of both PNAPs and, therefore, are considered to be "multi-homed". However, a customer alternatively may be connected to only one PNAP or any number of PNAPs at the same time. Note also that customers 508, 510 are shown connected to links 516, 518, respectively, to Internet 506. This is also considered to be a "multi-homed" configuration. It will be appreciated, 20 however, that it is not necessary for any customer to be multi-homed.

As indicated above, the provider sides of the PNAPs are connected to a plurality of backbones provided by NSPs. These backbones in turn form a large portion of the fabric of the Internet 506 to which Internet users such as destinations 520, 522 are also connected. Only two such destinations are shown to simplify the diagram, although

- 5 there may be any number of destinations. Note that the NSPs do not exchange traffic among themselves through the PNAPs over these backbones. Traffic exchanges between the NSPs providing backbones B<sub>1</sub> through B<sub>n</sub> take place at public or private peering points (not shown). For example, customer 508 would typically route its traffic through PNAP 502 from the customer side to the provider side. PNAP 502 would then  
10 select the path from the customer to a destination on another PNAP, or to a non-PNAP destination such as destination 520, over one of the backbones B<sub>1</sub> through B<sub>n</sub>.

It will be appreciated that, in order for traffic to be routed from a PNAP customer to a destination, one or more routers in the PNAP must have a routing table that specifies a next-hop AS to the destination. Referring again to FIG. 2, and as discussed previously, BGP bridge 106 communicates routing information from routing optimization component 104 to routers 116 in a BGP compatible format. It will be appreciated that when the present invention is implemented in a PNAP, routers 116 would reside in the PNAP. Note also that, in the configuration shown, any change in the routing table can be propagated by BGP bridge 106 to every router in the PNAP. It is also possible for  
20 BGP bridge 106 to propagate the information to every router in every PNAP.

Note that this is different than the manner in which routing tables are propagated in U.S. Patent No. 6,009,081 which is incorporated herein by reference. In that system, each PNAP has a unique AS, all routers in a PNAP communicate with each other and have the same AS as the PNAP, and each backbone has a unique AS. A route reflector is used to collate all of the routes, apply a policy, and propagate a filtered set of routes to all routers in the PNAP based on the policy applied. In the present invention, however, route reflectors are not required; instead, BGP bridge 106 can be logically tied to each core router or edge router, as the case may be, and propagate the routes directly. The core routers and edge routers simply forward packets and do not make policy decisions. If routing optimization component 104 fails, BGP bridge 106 will continue with the existing routing table.

By way of further explanation of the interface between BGP bridge 106 and the routers in a PNAP, FIG. 18 gives an example of an expanded router configuration 600 in which core and border routers are employed. In the example shown in FIG. 18, a pair of BGP bridges 106a, 106b are connected to routing optimization component 104 for redundancy. BGP bridges 106a, 106b are in turn connected to switches 602a, 602b, which are in turn connected to a plurality of core routers 604<sub>1</sub> through 604<sub>n</sub>, each of which is in turn connected to an NSP router 606<sub>1</sub> through 606<sub>n</sub>. In addition, border routers 608a, 608b are connected to switches 602a, 602b, and customers 610<sub>1</sub> through 610<sub>n</sub> are connected to border routers 608a, 608b.

In operation, BGP bridges 106a, 106b obtain the paths to destinations from NSP routers 606 through normal BGP peering sessions. BGP bridges 106a, 106b then communicate that information to routing optimization component 104 for optimization as previously described. After optimization, routing optimization component 104 in turn

5     communicates a routing table for each destination prefix to BGP bridges 106 for determining path selection. In the event that routing optimization component 104 becomes inoperational for any reason, the BGP bridges will continue to make path selection decisions based on the last routing table received and the dynamic information received from the NSPs.

10       Border routers 608 are connected to core routers 604 through switches 602 and peer with BGP bridges 106. Core routers 604 also peer with BGP bridges 106. Peering between the cores/borders and the BGP bridges is through IBGP, while EBGP is used for communication between NSP routers 606 and BGP bridges 106. Traffic forward decisions are made by border routers 608 which get a single path from BGP bridges

15       106. Core routers 604, which get the same single path as the border routers, forward the traffic to NSP routers 606.

Note that, by communicating a routing table to the BGP bridge, routing optimization component 104 has a great deal of flexibility in routing including, but not limited to, taking into account routing decisions based on optional levels or qualities of

20     service.

Referring now to FIG. 19, a more generic example of a router configuration 700 is shown to further illustrate how the invention can be implemented in a PNAP. Here, the core and border routers shown in FIG. 18 have been eliminated. Instead, BGP bridges 106 peer with edge routers 704<sub>1</sub> through 704<sub>n</sub> through switches 702 using 5 IBGP. BGP bridges 106 also peer with NSP routers 706 and customers 708 using EBGP. Note that customer peering is permitted only if the customer has a BGP compatible router, in which event the customers can be provided with routing information for routing decisions by the customer. Note also that the BGP bridges do not send all information regarding the network of which they are aware to all peers.

10 Instead, only customer routes are sent to the NSP routers. If NSP routes were also sent, traffic could inadvertently be transited between NSPs through the PNAP.

As can be seen, therefore, BGP bridges 106 receive prefixes for all available paths from the NSP routers and communicate that information to routing optimization component 104. Routing optimization component 104 in turn influences path selection 15 by communicating a routing table to the BGP bridge for determining path selection.

An additional characteristic of implementing the present invention in a PNAP pertains to obtaining performance measurements. As discussed previously, latency is a significant factor in determining the performance of a particular route and there are several ways in which to determine latency, such as using pings as described 20 previously. Since a PNAP can be connected to multiple backbones, however, there is a need to be able to make latency measurements over a particular backbone. One way

of doing so is by specifying the next-hop AS in the ping, using what is referred to as the "loose source routing" feature of IP. However, loose source routing is not uniformly supported. Referring to FIG. 20, an alternative approach is to place an addressable device at the PNAP end of each backbone connection, with an address that is unique to

5 the particular backbone provider. As shown in FIG. 20, for example, PNAP1 800 and PNAP2 802 are interconnected through backbone B1 established by a first provider and backbone B2 established by a second provider. A first addressable device 804 is placed in PNAP2 802 with an address that is unique to the provider of backbone B1.

Similarly, a second addressable device 806 is placed in PNAP2 802 with an address

10 that is unique to the provider of backbone B2. Each addressable device can then be probed over its associated backbone for making a latency measurement from PNAP1 to PNAP2. Note also that the circular intersection and inferences methods described previously can be used as well to infer latency to a particular destination that cannot be probed. Accordingly, it will be seen that this invention optimizes the routing of traffic

15 over the Internet. While the invention has been described in the context of a network employing ASes, including PNAPs, those skilled in the art will appreciate that the invention can be applied to any data communications network. It will also be appreciated that, while the discussion has focused on AS to prefix traffic flows, the techniques described herein can be applied to traffic flows between any points on a

20 network. Furthermore, it will be appreciated that the invention described herein can be used as a network monitoring tool to determine if a problem exists on the network.

Since every performance monitoring and inference component is a testing station for every other point on the network, the routing optimization component can use this information to monitor network traffic flow and the cost of sending the traffic over particular routes. Therefore, a high relative cost for a particular route can be used as an

5 indicator of a problem on the network.

It will be appreciated that the method and system would preferably be computer implemented using a conventional computer system that includes associated software, hardware, communications interfaces and the like to carry out the functions described herein. Those skilled in the art will appreciate that the actual code to implement the

10 invention as described herein can be written for various platforms using conventional programming techniques. Accordingly, the details of the code are not presented herein.

Although the description above contains many specificities, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Thus the scope of this

15 invention should be determined by the appended claims and their legal equivalents. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not

20 intended to mean "one and only one" unless explicitly so stated, but rather "one or more." All structural, chemical, and functional equivalents to the elements of the above-

described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be

5 encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase "means for."

DRAFT - NOT FOR FILING

CLAIMS

What is claimed is:

1. A method for routing traffic from a source to a routing destination in a network where a plurality of routes are available, comprising:
  - 5 assigning a cost to each of said routes and selecting the route with the lowest cost as defined by a cost function.
  2. A method as recited in claim 1, further comprising: propagating the selected route to a router.
  3. A method as recited in claim 2, further comprising: causing the router to route traffic from said source to said routing destination over said selected route.
  - 15 4. A method as recited in claim 1, wherein said cost is a function of a path characteristic over the route to which said cost is assigned.
  - 20 5. A method as recited in claim 4, wherein said path characteristic is selected from the group consisting of latency, packet loss, headroom, price, path length, Route-Change, and BGP reachability.

6. A method as recited in claim 4, further comprising determining the location of said routing destination and inferring said path characteristic based on measurement of said path characteristic associated with sending traffic from said source to another destination over said available routes.

5

7. A method as recited in claim 6, wherein the location of said routing

destination is determined by a circular intersection method comprising:

measuring the time that it takes for traffic to move from a plurality of source locations to said routing destination;

10 converting said times to distance equivalents;

forming a plurality of intersecting circles using said distance equivalents as the radius of circles with said source locations as the center; and

15 determining the physical location of said routing destination from the intersection of said circles.

8. A method as recited in claim 4, further comprising inferring said path

characteristic by determining a weighted average of said path characteristic from said source to other destinations based on physical proximity of said other destinations said routing destination.

20

9. A method as recited in claim 1, further comprising:  
measuring latency between said source and a plurality of other destinations;  
determining physical distances between said routing destination and said other

destinations;

5 computing a weighted average of said latency measurements as a function of  
said distances; and

using said weighted average as an estimate of the latency between said source  
and said routing destination.

10 10. A method for routing traffic from a source to a routing destination in a  
network where a plurality of routes are available, comprising:

for each available route, obtaining a measurement of a path characteristic  
associated with routing traffic from said source to said routing destination;

15 using a cost function, assigning a cost to each available route as a function of the  
path characteristic associated with said route;

minimizing said cost function over said available routes; and

routing said traffic according to the lowest cost route determined by minimizing  
said cost function.

20 11. A method as recited in claim 10, further comprising:

propagating said lowest cost route to a router.

12. A method as recited in claim 11, further comprising:

causing the router to route traffic from said source to said routing destination over  
said lowest cost route.

5

13. A method as recited in claim 10, wherein said path characteristic is  
selected from the group consisting of latency, packet loss, headroom, price, path length,  
Route-Change, and BGP reachability.

10 14. A method as recited in claim 10, further comprising determining the  
location of said routing destination and inferring said path characteristic based on  
measurement of said path characteristic associated with sending traffic from said  
source to another destination over said available routes.

15 15. A method as recited in claim 14, wherein the location of said routing  
destination is determined by a circular intersection method comprising:

measuring the time that it takes for traffic to move from a plurality of source  
locations to said routing destination;

converting said times to distance equivalents;

20 forming a plurality of intersecting circles using said distance equivalents as the  
radius of circles with said source locations as the center; and

determining the physical location of said routing destination from the intersection of said circles.

16. A method as recited in claim 10, further comprising inferring said path

5 characteristic by determining a weighted average of said path characteristic from said source to other destinations based on physical proximity of said other destinations said routing destination.

17. A method as recited in claim 10, further comprising:

10 measuring latency between said source and a plurality of other destinations; determining physical distances between said routing destination and said other destinations;

computing a weighted average of said latency measurements as a function of said distances; and

15 using said weighted average as an estimate of the latency between said source and said routing destination.

18. A method for routing traffic from a source to a routing destination in a network where a plurality of routes are available, comprising:

20 for each available route, obtaining a measurement of a path characteristic associated with routing traffic from said source to said routing destination;

using a cost function, assigning a cost to each available route as a function of the path characteristic associated with said route;  
selecting the route with the lowest cost as defined by said cost function; and  
routing said traffic according to the lowest cost route.

5

19. A method as recited in claim 18, further comprising:  
propagating said lowest cost route to a router.
20. A method as recited in claim 19, further comprising:  
causing the router to route traffic from said source to said routing destination over  
said lowest cost route.
21. A method as recited in claim 18, wherein said path characteristic is  
selected from the group consisting of latency, packet loss, headroom, price, path length,  
Route-Change, and BGP reachability.
22. A method as recited in claim 18, further comprising determining the  
location of said routing destination and inferring said path characteristic based on  
measurement of said path characteristic associated with sending traffic from said  
source to another destination over said available routes.

23. A method as recited in claim 22, wherein the location of said routing destination is determined by a circular intersection method comprising:  
measuring the time that it takes for traffic to move from a plurality of source locations to said routing destination;  
5 converting said times to distance equivalents;  
forming a plurality of intersecting circles using said distance equivalents as the radius of circles with said source locations as the center; and  
determining the physical location of said routing destination from the intersection of said circles.

10  
24. A method as recited in claim 18, further comprising inferring said path characteristic by determining a weighted average of said path characteristic from said source to other destinations based on physical proximity of said other destinations said routing destination.

15  
25. A method as recited in claim 18, further comprising:  
measuring latency between said source and a plurality of other destinations;  
determining physical distances between said routing destination and said other destinations;  
20 computing a weighted average of said latency measurements as a function of said distances; and

using said weighted average as an estimate of the latency between said source and said routing destination.

26. A method for routing traffic from a source to a routing destination in a

5 network where a plurality of routes are available, comprising:

for each available route, obtaining a measurement of a path characteristic associated with routing traffic from said source to said routing destination;

using a cost function, assigning a cost to each available route as a function of the path characteristic associated with said route;

10 minimizing said cost function over said routes and identifying a route with the lowest cost of routing said traffic as defined by said cost function; and generating a routing table containing said lowest cost route.

27. A method as recited in claim 26, further comprising:

15 propagating the routing table to a router.

28. A method as recited in claim 27, further comprising:

causing the router to apply said routing table to said routes.

29. A method as recited in claim 26, wherein said path characteristic is selected from the group consisting of latency, packet loss, headroom, price, path length, Route-Change, and BGP reachability.

5        30. A method as recited in claim 26, further comprising determining the location of said routing destination and inferring said path characteristic based on measurement of said path characteristic associated with sending traffic from said source to another destination over said available routes.

10        31. A method as recited in claim 30, wherein the location of said routing destination is determined by a circular intersection method comprising:  
            measuring the time that it takes for traffic to move from a plurality of source locations to said routing destination;  
            converting said times to distance equivalents;  
            forming a plurality of intersecting circles using said distance equivalents as the radius of circles with said source locations as the center; and  
            determining the physical location of said routing destination from the intersection of said circles.

20        32. A method as recited in claim 26, further comprising inferring said path characteristic by determining a weighted average of said path characteristic from said

source to other destinations based on physical proximity of said other destinations said routing destination.

33. A method as recited in claim 26, further comprising:

- 5 measuring latency between said source and a plurality of other destinations;  
determining physical distances between said routing destination and said other destinations;  
computing a weighted average of said latency measurements as a function of said distances; and

10 using said weighted average as an estimate of the latency between said source and said routing destination.

34. A computer implemented system for routing traffic from a source to a routing destination in a network where a plurality of routes are available, comprising:

15 a computer system; and  
programming associated with said computer system for assigning a cost to each of said routes and selecting the route with the lowest cost as defined by a cost function.

35. A system as recited in claim 34, further comprising programming

20 associated with said computer system for propagating the selected route to a router.

36. A system as recited in claim 35, further comprising programming associated with said computer system for causing the router to route traffic from said source to said routing destination over said selected route.

5 37. A system as recited in claim 34, wherein said cost is a function of a path characteristic over the route to which said cost is assigned.

38. A system as recited in claim 37, wherein said path characteristic is selected from the group consisting of latency, packet loss, headroom, price, path length,

10 Route-Change, and BGP reachability.

39. A system as recited in claim 37, further comprising programming associated with said computer system for determining the location of said routing destination and inferring said path characteristic based on measurement of said path characteristic associated with sending traffic from said source to another destination over said available routes.

40. A system as recited in claim 39, further comprising programming associated with said computer system for:

20 measuring the time that it takes for traffic to move from a plurality of source locations to said routing destination;

converting said times to distance equivalents;  
forming a plurality of intersecting circles using said distance equivalents as the  
radius of circles with said source locations as the center; and  
determining the physical location of said routing destination from the intersection  
5 of said circles.

41. A system as recited in claim 37, further comprising programming  
associated with said computer system for inferring said path characteristic by  
determining a weighted average of said path characteristic from said source to other  
destinations based on physical proximity of said other destinations said routing  
destination.

42. A system as recited in claim 34, further comprising programming  
associated with said computer system for:  
measuring latency between said source and a plurality of other destinations;  
determining physical distances between said routing destination and said other  
destinations;  
computing a weighted average of said latency measurements as a function of  
said distances; and  
20 using said weighted average as an estimate of the latency between said source  
and said routing destination.

43. A computer implemented system for routing traffic from a source to a routing destination in a network where a plurality of routes are available, comprising:

a computer system; and

5       programming associated with said computer system for

            for each available route, obtaining a measurement of a path characteristic associated with routing traffic from said source to said routing destination;

            using a cost function, assigning a cost to each available route as a function of the path characteristic associated with said route;

10       minimizing said cost function over said available routes; and

            routing said traffic according to the lowest cost route determined by minimizing said cost function.

44. A system as recited in claim 43, further comprising programming

15       associated with said computer system for propagating said lowest cost route to a router.

45. A system as recited in claim 44, further comprising programming  
associated with said computer system for causing the router to route traffic from said source to said routing destination over said lowest cost route.

46. A system as recited in claim 43, wherein said path characteristic is selected from the group consisting of latency, packet loss, headroom, price, path length, Route-Change, and BGP reachability.

5

47. A system as recited in claim 43, further comprising programming for determining the location of said routing destination and inferring said path characteristic based on measurement of said path characteristic associated with sending traffic from said source to another destination over said available routes.

10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
689  
690  
691  
692  
693  
694  
695  
696  
697  
697  
698  
699  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
797  
798  
799  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
897  
898  
899  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
997  
998  
999  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1097  
1098  
1099  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1197  
1198  
1199  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1297  
1298  
1299  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1397  
1398  
1399  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1497  
1498  
1499  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1597  
1598  
1599  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1697  
1698  
1699  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1797  
1798  
1799  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889

49. A system as recited in claim 43, further comprising programming associated with said computer system for inferring said path characteristic by determining a weighted average of said path characteristic from said source to other 5 destinations based on physical proximity of said other destinations said routing destination.

50. A system as recited in claim 43, further comprising programming associated with said computer system for:

10 measuring latency between said source and a plurality of other destinations; determining physical distances between said routing destination and said other destinations;

computing a weighted average of said latency measurements as a function of said distances; and

15 using said weighted average as an estimate of the latency between said source and said routing destination.

51. A computer implemented system for routing traffic from a source to a routing destination in a network where a plurality of routes are available, comprising:

20 a computer system; and  
programming associated with said computer system for

P1188

for each available route, obtaining a measurement of a path characteristic associated with routing traffic from said source to said routing destination; using a cost function, assigning a cost to each available route as a function of the path characteristic associated with said route;

5           selecting the route with the lowest cost as defined by said cost function;

and

routing said traffic according to the lowest cost route.

52. A system as recited in claim 51, further comprising programming

10         associated with said computer system for propagating said lowest cost route to a router.

53. A system as recited in claim 52, further comprising programming

associated with said computer system for causing the router to route traffic from said source to said routing destination over said lowest cost route.

15         54. A system as recited in claim 51, wherein said path characteristic is

selected from the group consisting of latency, packet loss, headroom, price, path length, Route-Change, and BGP reachability.

20         55. A system as recited in claim 51, further comprising programming

associated with said computer system for determining the location of said routing

destination and inferring said path characteristic based on measurement of said path characteristic associated with sending traffic from said source to another destination over said available routes.

5        56. A system as recited in claim 55, further comprising programming associated with said computer system for:

measuring the time that it takes for traffic to move from a plurality of source locations to said routing destination;

converting said times to distance equivalents;

10        forming a plurality of intersecting circles using said distance equivalents as the radius of circles with said source locations as the center; and

determining the physical location of said routing destination from the intersection of said circles.

15        57. A system as recited in claim 51, further comprising programming associated with said computer system for inferring said path characteristic by determining a weighted average of said path characteristic from said source to other destinations based on physical proximity of said other destinations said routing destination.

58. A system as recited in claim 51, further comprising programming associated with said computer system for:

measuring latency between said source and a plurality of other destinations;

5 determining physical distances between said routing destination and said other destinations;

computing a weighted average of said latency measurements as a function of said distances; and

using said weighted average as an estimate of the latency between said source and said routing destination.

59. A computer implemented system for routing traffic from a source to a routing destination in a network where a plurality of routes are available, comprising:

a computer; and

15 programming associated with said computer for

for each available route, obtaining a measurement of a path characteristic associated with routing traffic from said source to said routing destination;

using a cost function, assigning a cost to each available route as a function of the path characteristic associated with said route;

20 minimizing said cost function over said routes and identifying a route with the lowest cost of routing said traffic as defined by said cost function; and

generating a routing table containing said lowest cost route.

60. A system as recited in claim 59, further comprising programming associated with said computer system for propagating the routing table to a router.

5

61. A system as recited in claim 60, further comprising programming associated with said computer system for causing the router to apply said routing table to said routes.

10 62. A system as recited in claim 59, wherein said path characteristic is selected from the group consisting of latency, packet loss, headroom, price, path length, Route-Change, and BGP reachability.

15 63. A system as recited in claim 59, further comprising programming associated with said computer system for determining the location of said routing destination and inferring said path characteristic based on measurement of said path characteristic associated with sending traffic from said source to another destination over said available routes.

64. A system as recited in claim 63, further comprising programming associated with said computer system for:

measuring the time that it takes for traffic to move from a plurality of source locations to said routing destination;

5 converting said times to distance equivalents;

forming a plurality of intersecting circles using said distance equivalents as the radius of circles with said source locations as the center; and

determining the physical location of said routing destination from the intersection 10 of said circles.

65. A system as recited in claim 59, further comprising programming associated with said computer system for inferring said path characteristic by determining a weighted average of said path characteristic from said source to other 15 destinations based on physical proximity of said other destinations said routing destination.

66. A system as recited in claim 59, further comprising programming associated with said computer system for:

20 measuring latency between said source and a plurality of other destinations;

determining physical distances between said routing destination and said other

destinations;

computing a weighted average of said latency measurements as a function of  
said distances; and

using said weighted average as an estimate of the latency between said source

5 and said routing destination.

00000000000000000000000000000000

## ABSTRACT OF THE DISCLOSURE

- A method and system for optimizing routing traffic to a destination when multiple routes are available. A performance monitoring and inference component measures the performance of the available paths to a large set of subnetworks, and uses those
- 5 measurements to infer the performance of all available paths to an even larger set of subnetworks. A routing optimization component uses a cost function that assigns a cost to a routing table based on information from the performance monitoring and inference component, as well as other path characteristics, and further uses a minimization methodology to find a routing table with a very low cost, as defined by the cost function.
- 10 A BGP bridge takes the routing table generated by the routing optimization component and communicates that information to the routers using BGP, thereby ensuring that the routers will route traffic in accordance with the routing table.

DRAFT - PRELIMINARY



**FIG. 1**

**FIG. 2**





**FIG. 3**



**FIG. 4**



**FIG. 5**



**FIG. 6**



**FIG. 7**



**FIG. 8A**



**FIG. 8B**



**FIG. 8C**



**FIG. 8D**



FIG. 9

|     | PR1 | PR2 | PR3 | PR4 |
|-----|-----|-----|-----|-----|
| AS1 | AS2 | AS2 | AS4 | AS5 |
| AS2 | AS6 | AS6 | AS1 | AS1 |
| AS3 | AS6 | AS6 | AS1 | AS1 |
| AS4 | AS1 | AS1 | AS7 | AS7 |
| AS5 | AS8 | AS1 | AS8 | AS8 |
| AS6 | -   | -   | AS3 | AS2 |
| AS7 | AS4 | AS8 | -   | AS8 |
| AS8 | AS5 | AS7 | AS7 | -   |

**FIG. 10**

| PR <sub>1</sub> | PR <sub>2</sub> | PR <sub>3</sub> | PR <sub>4</sub> |
|-----------------|-----------------|-----------------|-----------------|
| AS1             | AS2             | AS4             | AS5             |
| PR <sub>1</sub> | PR <sub>2</sub> | PR <sub>3</sub> | PR <sub>4</sub> |
| AS3             | AS3             | AS4             | AS5             |

**FIG. 11**

| PR <sub>1</sub> | PR <sub>2</sub> | PR <sub>3</sub> | PR <sub>4</sub> |
|-----------------|-----------------|-----------------|-----------------|
| AS1             | AS2             | AS4             | AS5             |
| PR <sub>1</sub> | PR <sub>2</sub> | PR <sub>3</sub> | PR <sub>4</sub> |
| AS3             | AS3             | AS4             | AS5             |

**FIG. 12**

| PR <sub>1</sub> | PR <sub>2</sub> | PR <sub>3</sub> | PR <sub>4</sub> |
|-----------------|-----------------|-----------------|-----------------|
| AS1             | AS2             | AS3             | AS4             |
| PR <sub>1</sub> | PR <sub>2</sub> | PR <sub>3</sub> | PR <sub>4</sub> |
| AS2             | AS3             | AS4             | AS5             |

**FIG. 13**

| PR <sub>1</sub> | PR <sub>2</sub> | PR <sub>3</sub> | PR <sub>4</sub> |
|-----------------|-----------------|-----------------|-----------------|
| AS1             | AS2             | AS3             | AS4             |
| PR <sub>1</sub> | PR <sub>2</sub> | PR <sub>3</sub> | PR <sub>4</sub> |
| AS2             | AS3             | AS4             | AS4             |

**FIG. 14**



**FIG. 15**

**FIG. 16**

|     | PR1 | PR2 | PR3 | PR4 |
|-----|-----|-----|-----|-----|
| AS1 | AS2 | AS4 | AS5 |     |
| AS2 | AS6 | AS1 | AS1 |     |
| AS3 | AS6 | AS1 | AS1 |     |
| AS4 | AS1 | AS7 | AS7 |     |
| AS5 | AS8 | AS1 | AS8 |     |
| AS6 | -   | -   | AS3 | AS2 |
| AS7 | AS4 | AS8 | -   | AS8 |
| AS8 | AS5 | AS7 | AS7 | -   |



**FIG. 17**



FIG. 18

**FIG. 19**





**FIG. 20**

**DRAWING(S)**

There is attached thirteen (13) sheets of drawings.

## EXECUTED OATH OR DECLARATION

An executed declaration will follow.

## SEQUENCE LISTING

Not Applicable