REVÊTEMENTS

Définition

Soient X et Y deux espaces topologiques. Une application surjective et continue $p: Y \to X$ s'appelle un revêtement, si $\forall x \in X$ il existe un voisinage Ude x tq

et $\forall \alpha \in A$ on a que $f|_{V_{\alpha}}: V_{\alpha} \to U$ est un homéomorphisme.

Notons que $\forall x \in X$ le sous-espace $p^{-1}(\{x\}) \subset Y$ est un espace discret.

Exemple (Revêtement trivial)

Si F est un espace discret, pour tout espace topologique X la projection $p: Y = X \times F \rightarrow X$, p(x, f) = x, est un revêtement.

Exemple (Revêtement universel du cercle)

L'hélice $H \subset \mathbb{R}^3$ est l'image d'application

$$h: \mathbb{R} \to \mathbb{R}^3$$
, $h(t) = (\cos 2\pi t, \sin 2\pi t, t)$.

Notons que H est homéomorphe à \mathbb{R} et, en fait, h est un homéomorphisme.

Exemple (suite)

Si $\Pi: \mathbb{R}^3 \to \mathbb{R}^2$ est la projection standard, càd $\Pi(x, y, z) = (x, y)$, on obtient par restriction une application continue $\Pi|_H: H \to S^1$. En identifiant H avec \mathbb{R} , on obtient

$$p = \Pi \circ h : \mathbb{R} \to S^1$$
, $p(t) = (\cos 2\pi t, \sin 2\pi t)$.

Pour démontrer que p est un revêtement, on observe que

$$S^1 = (S^1 \setminus \{(1,0)\}) \cup (S^1 \setminus \{(-1,0)\}) =: U_+ \cup U_-.$$

Puisque $\pi^{-1}(1,0) = \mathbb{Z}$, on a

$$p^{-1}(U_+) = \mathbb{R} \setminus \mathbb{Z} = \bigsqcup_{n \in \mathbb{Z}} (n, n+1)$$

et $p:(n,n+1)\to U_+$ est un homéomorphisme pour tout $n\in\mathbb{Z}$. De la même manière, on a

$$\pi^{-1}(U_-) = \bigsqcup_{m \in \mathbb{Z}} (m - 1/2, m + 1/2)$$

et $p:(m-1/2,\ m+1/2)\to U_-$ est un homéomorphisme pour tout $m\in\mathbb{Z}$. Ainsi, p est un revêtement.

Exercice

Prouver que les applications suivantes sont revêtements :

- $p: S^1 \to S^1, p(z) = z^2$. Ici, on considère S^1 comme un sous-ensemble de \mathbb{C} . Plus généralement, $p_n: S^1 \to S^1, p_n(z) = z^n$, est un revêtement pour tout $n \in \mathbb{Z}$.
- $p: \mathbb{R}^2 \to \mathbb{T} = S^1 \times S^1$, $p(s,t) = (e^{2\pi i s}, e^{2\pi i t})$.
- $p:S^2 \to \mathbb{RP}^2$, p(x) = [x] (la projection canonique).

Exercice

Supposons qu'un groupe (discret) G opère sur un espace topologique Y dans la manière que les hypothèses du théorème sur le sujet que l'espace quotient X := Y/G est Hausdorff sont satisfaites. Prouver que la projection canonique $\pi: Y \to X$ est un revêtement. En fait, tous les exemples ci-dessus peuvent être obtenus de cette manière (en choisissant Y et G de façon appropriée).

3/18

RELÈVEMENTS D'UNE APPLICATION

Soit $f: Z \to X$ une application continue quelconque.

Définition

On dit qu'une application $\tilde{f}: Z \to Y$ est un relèvement de f, si $p \circ \tilde{f} = f$.

On représente cette situation par le diagramme suivant

et on dit que ce diagramme est commutatif.

Exercice

Démontrer que tout relèvement d'une application continue est lui-même continue.

Exemple

Soit $f: \mathbb{R}^3 \setminus \{0\} \to \mathbb{RP}^2$ la projection canonique (qui n'est pas un revêtement! (Pourquoi?)), càd que f(x) est la droite passant par 0 et x.

L'application

$$\tilde{f}:\mathbb{R}^3\setminus\{0\}\to S^2,\qquad \tilde{f}(x)=\frac{x}{\|x\|}$$

est un relèvement de f, où $p: S^2 \to \mathbb{RP}^2$ est la projection canonique.

Lemme

Soit $p: Y \to X$ un revêtement et $f: Z \to X$ une application continue quelconque, où Z est connexe. Si \tilde{f}_1 et \tilde{f}_2 sont deux relèvements de f tq $\tilde{f}_1(z_0) = \tilde{f}_2(z_0)$ pour un point $z_0 \in Z$, alors $\tilde{f}_1 = \tilde{f}_2$, càd que $\tilde{f}_1(z) = \tilde{f}_2(z)$ pour tout $z \in Z$.

Démonstration.

Soient

$$S:=\left\{z\in Z\mid \tilde{f}_1(z)=\tilde{f}_2(z)\right\}\qquad\text{et}\qquad T:=\left\{z\in Z\mid \tilde{f}_1(z)\neq \tilde{f}_2(z)\right\}.$$

On va démontrer que S est ouvert. Pour tout $z \in S$ soit $U \subset X$ un voisinage de f(y) comme dans la définition d'un revêtement. Soit $V = V_{\alpha} \subset p^{-1}(U)$ tq $\tilde{f}_1(z) = \tilde{f}_2(z) \in V$.

5/18

Démonstration (suite).

Puisque f, \tilde{f}_1 , \tilde{f}_2 sont continues, il existe un voisinage $W \subset Z$ de Z tq

$$f(W) \subset U$$
, $\tilde{f}_1(W) \subset V$ $\tilde{f}_2(W) \subset V$.

Puisque $p:V\to U$ est un homéomorphisme et \tilde{f}_1,\tilde{f}_2 sont des relèvements, on a $\tilde{f}_1|_W=\left(p|_V\right)^{-1}\circ f|_W=\tilde{f}_2|_W$. Alors, $W\subset S$ et, donc, S est ouvert.

Maintenant, on va démontrer que T est ouvert. Choisissons donc un $z \in T$. Comme dans le cas précédent, il existe $V_1 = V_{\alpha_1}$ et $V_2 = V_{\alpha_2}$ tq $\tilde{f}_j(z) \in V_j$. Si $V_1 = V_2 =: V$, l'argument ci-dessus montre que

$$\tilde{f}_1(z) = (p|_V)^{-1} \circ f|_W = \tilde{f}_2(z),$$

ce qui est impossible parce que $z \in T$. Ainsi, V_1 et V_2 sont disjoints. Or, par la continuité de \tilde{f}_1 et \tilde{f}_2 , il existe un voisinage W de z tq

$$\tilde{f}_1(W) \subset V_1$$
 et $\tilde{f}_2(W) \subset V_2$ \Longrightarrow $\tilde{f}_1 \neq \tilde{f}_2$ nulle part sur W .

Cela montre que *T* est ouvert.

Puisque $S \neq \emptyset$ et Z est connexe, alors $T = \emptyset \Leftrightarrow Z = S$.

Théorème

Soit $p: Y \to X$ en revêtement, $x_0 \in X$. Pour tout $y_0 \in p^{-1}(x_0)$ et pour tout chemin $\gamma: I = [0, 1] \to X$ tq $\gamma(0) = x_0$ il existe un seul relèvement $\tilde{\gamma}: I \to Y$ tq $\tilde{\gamma}(0) = y_0$.

Démonstration.

L'unicité découle du lemme précédent parce que l est connexe.

Pour tout $x \in X$ on peut trouver un voisinage U_X de X comme dans la définition d'un revêtement, càd que $p^{-1}(U_X) = \bigsqcup_{\alpha \in A} V_\alpha$ et $p : V_\alpha \to U$ est un homéomorphisme.

$$\left\{\gamma^{-1}(U_X)\mid x\in X\right\}$$

est un recouvrement ouvert de *I*. Puisque *I* est un espace métrique, par le lemme A du cours précédent, il existe une subdivision

$$0 = t_0 < t_1 < t_2 < \cdots < t_n = 1 \qquad \text{tq} \qquad \gamma \big(\big[t_k, t_{k+1} \big] \big) \subset U_k = U_{\alpha_k}$$
 pour tout $k < n$.

7/18

Démonstration (suite).

On va construire un relèvement récursivement. Ainsi, tout d'abord $\gamma([t_0,t_1])\subset U_0$. Puisque $x_0=\gamma(0)\in U_0$ et $p^{-1}(U_0)=\bigsqcup_j V_{0j}\ni y_0$, il existe j_0 tq $y_0\in V_{0j_0}$. En utilisant que $p|_{V_{0j_0}}\colon V_{0j_0}\to U_0$ est un homéomorphisme, on peut définir

$$\tilde{\gamma}:[t_0,t_1]\to Y$$
 par $\tilde{\gamma}=\left(p|_{V_{0j_0}}\right)^{-1}\circ\gamma.$

Supposons qu'on a déjà construit le relèvement $\tilde{\gamma}$ sur $[0,t_k]$. Nous savons que $\gamma([t_k,t_{k+1}])\subset U_k$. Puisque $\pi^{-1}(U_k)=\bigsqcup_j V_{kj}$ et $\tilde{\gamma}(t_k)\in p^{-1}(U_k), \exists j_k$ tq $\tilde{\gamma}(t_k)\in V_{kj_k}$. Donc, on peut définir un prolongement de $\tilde{\gamma}$ sur $[t_k,t_{k+1}]$ par

$$\tilde{\gamma} = (p|_{V_{kj_{\nu}}})^{-1} \circ \gamma.$$

Après un nombre fini d'étapes, nous obtenons un relèvement de γ qui est défini sur [0,1].

Théorème

Soit $p: Y \to X$ un revêtement et $h: I \times I \to X$ une application continue quelconque. Pour tout $y_0 \in Y$ tq $p(y_0) = h(0,0)$ il existe un seul relèvement $\tilde{h}: I \times I \to Y$ tq $\tilde{h}(0,0) = y_0$.

On peut obtenir une démonstration de la même manière comme la démonstration du théorème précédent. Pour des détails, voyez Gamelin, Greene. Introduction to topology, Theorem 5.3.

Définition

Un espace topologique X est dit simplement connexe, si X est connexe par arcs et $\pi_1(X) = \{1\}$.

Par exemple, \mathbb{R}^n est simplement connexe. On va démontrer que S^1 n'est pas simplement connexe.

9/18

Théorème

La sphère S^n est simplement connexe lorsque $n \ge 2$.

Démonstration.

Étape 1. Si γ est un lacet sur S^n base en pôle sud S, alors γ est homotope à un lacet γ_1 tq Im $\gamma_1 \not\ni N$, où N est le pôle nord.

Considérons le recouvrement de Sⁿ suivant :

$$\mathcal{U} := \{U_N, U_P\}$$
 où $U_N := S^n \setminus \{P\}$ et $U_P := S^2 \setminus \{N\}$.

Notons que $\{\gamma^{-1}(U_N), \gamma^{-1}(U_P)\}$ est un recouvrement ouvert de [0,1]. Par un argument utilisé dans la preuve du théorème sur les relèvements de chemins, il existe une subdivision

$$0 = t_0 < t_1 < t_2 < \cdots < t_p = 1$$

tq $\gamma([t_k, t_{k+1}])$ est contenu dans U_N ou U_P . De plus, on peut supposer que $\gamma(t_k) \neq N$ pour tout k.

Démonstration (site).

On construit γ_1 en remplaçant γ sur chaque sous-intervalle. Si $\gamma \left([t_k, t_{k+1}] \right) \subset U_P$, on ne fait rien parce que $N \notin U_P$. Supposons donc que $\gamma \left([t_k, t_{k+1}] \right) \subset U_N$. Puisque $U_N \setminus \{N\}$ est homéomorphe à $\mathbb{R}^n \setminus \{0\}$ et $n \geq 2$, $U_N \setminus \{N\}$ est connexe par arcs. Donc, pour les deux points $p_0 = \gamma(t_k)$ et $p_1 := \gamma(t_{k+1})$, on peut trouver un chemin $\hat{\gamma} : [t_k, t_{k+1}] \to U_N \setminus \{N\}$ tq

$$\hat{\gamma}(t_k) = p_0 = \gamma(t_k)$$
 et $\hat{\gamma}(t_{k+1}) = p_1 = \gamma(t_{k+1})$.

Puisque U_N est homéomorphe à \mathbb{R}^n , si on considère $\hat{\gamma}$ comme un chemin sur U_N , $\hat{\gamma}$ et $\gamma|_{[t_k,t_{k+1}]}$ sont homotopes relativement à $\{t_k,t_{k+1}\}$. Ainsi, en remplacent $\gamma|_{[t_k,t_{k+1}]}$ par $\hat{\gamma}$, on obtient un chemin sur S^n qui est homotope à γ et dont image sur $[t_k,t_{k+1}]$ ne contient pas le pôle nord. Après un nombre fini de ces remplacements élémentaires, on obtient γ_1 .

Étape 2. Tout lacet sur S^n dont image ne contient pas le pôle nord, est homotope à lacet constant P.

La démonstration est à vous comme exercice.

11/18

Soit $p: Y \to X$ un revêtement. Supposons que $\gamma \in \Omega(X, x_0)$ et $y_0 \in p^{-1}(x_0)$. On obtient l'application

$$\Phi = \Phi_{y_0}: \Omega(X, x_0) \to p^{-1}(x_0), \qquad \Phi(\gamma) = \tilde{\gamma}(1),$$

où $\tilde{\gamma}$ est le relèvement tq $\tilde{\gamma}(0) = y_0$.

Remarque

Même si γ est un lacet, $\tilde{\gamma}$ n'a pas besoin d'être un lacet, càd que $\tilde{\gamma}(1) \neq y_0$ en général.

Proposition

 $\Phi(\gamma)$ dépend seulement de $[\gamma]$. En particulière, on a l'application $\Phi: \pi_1(X, x_0) \to p^{-1}(x_0)$.

Si Y est simplement connexe, cette application est bijective.

Démonstration.

Soit h une homotopie entre $\gamma_0 = \gamma$ et γ_1 . Par le théorème ci-dessus, il existe $\tilde{h}: I \times I \to Y$ tq $\tilde{h}(0,0) = y_0$. Puisque l'application

$$l \rightarrow X$$
, $s \mapsto h(0,s) = x_0$

est constante, $\tilde{h}(0,s) \in p^{-1}(x_0)$. Mais $p^{-1}(x_0)$ est un espace discret, donc l'application $s \to \tilde{h}(0,s)$ est aussi constante, car continue. Ainsi, $\tilde{h}(0,s) = y_0$ pour tout $s \in I$.

De la même manière, on obtient que l'application

$$I \to \pi^{-1}(x_0), \qquad s \mapsto \tilde{h}(1,s)$$

est aussi constante.

Maintenant, on observe que le chemin $t\mapsto \tilde{h}(t,0)$ est le seul relèvement de $t\mapsto h(t,0)=\gamma_0(t)$ avec le début en y_0 . De la même manière, $t\mapsto \tilde{h}(t,1)$ est le seul relèvement de $t\mapsto h(t,1)=\gamma_1(t)$ avec le début en $\tilde{h}(0,1)=y_0$. Mais on a déjà démontré que

$$\tilde{h}(1,0) = \tilde{h}(1,1)$$
 \Leftrightarrow $\Phi(\gamma_0) = \Phi(\gamma_1).$

Ainsi, Φ est bien définie comme l'application $\pi_1(X, x_0) \to p^{-1}(x_0)$. \square

13/18

Démonstration (suite).

Supposons maintenant que Y est simplement connexe. Puisque Y est connexe par arcs, $\forall y \in p^{-1}(x_0)$ il existe un chemin β joignant y_0 et y. Par conséquent, $\gamma := p \circ \beta \in \Omega(X, x_0)$ et β est le seul relèvement de γ avec le début en y_0 . Ainsi, $\Phi(\gamma) = y$ qui montre que Φ est surjective.

On va démontrer que Φ est injective. Supposons donc que $\Phi(\gamma_0) = \Phi(\gamma_1)$ pour certaines $\gamma_0, \gamma_1 \in \Omega(X, x_0)$. Soient $\tilde{\gamma}_j$ le relèvement de γ_j tq $\tilde{\gamma}_j(0) = y_0$. Par l'hypothèse, $\tilde{\gamma}_0(1) = \tilde{\gamma}_1(1)$ et donc $\tilde{\gamma}_0 * \overline{\tilde{\gamma}}_1 \in \Omega(Y, y_0)$. Puisque $\pi_1(Y, y_0) = \{1\}$, il existe une homotopie h tq

$$h(t,0) = \widetilde{\gamma}_0 * \overline{\widetilde{\gamma}}_1(t), \qquad h(t,1) = y_0$$

$$h(0,s) = y_0, \qquad h(1,s) = y_0.$$

Par conséquent, $\pi \circ h$ est une homotopie entre $\gamma_0 * \tilde{\gamma}_1$ et x_0 . Donc,

$$[\gamma_0][\gamma_1]^{-1} = 1 \implies [\gamma_0] = [\gamma_1].$$

14/18

Corollaire

$$\pi_1(\mathbb{RP}^2) \cong \mathbb{Z}_2.$$

Démonstration.

Puisque S^2 est un revêtement du plan projectif simplement connexe, la proposition précédente montre, que $\pi_1(\mathbb{RP}^2)$ contient deux éléments. Or, il existe un seul groupe avec deux éléments.

Corollaire

$$\pi_1(S^1)\cong \mathbb{Z}.$$

Démonstration.

Choisissons $x_0 = (0,1)$ comme un point de base. Soit $p : \mathbb{R} \to S^1$ le revêtement universel de cercle. Puisque \mathbb{R} est simplement connexe et $p^{-1}(x_0) = \mathbb{Z}$, on obtient une bijection

$$\Phi:\pi_1(S^1,x_0)\to\mathbb{Z},$$

où on choisit $y_0 = 0$ comme le point de base dans \mathbb{R} .

15/18

Démonstration (suite).

Soient $\beta, \gamma \in \Omega(S^1, x_0)$. Si $\tilde{\beta}$ et $\tilde{\gamma}$ sont les relèvements tq $\tilde{\beta}(0) = 0 = \tilde{\gamma}(0)$, le chemin

 $t\mapsto egin{cases} \tilde{eta}(2t) & ext{si } t\in[0,1/2], \\ \tilde{eta}(1)+\tilde{\gamma}(2t-1) & ext{si } t\in[1/2,1], \end{cases}$

est le relèvement de $\beta * \gamma$ avec le début en 0 et la fin en $\tilde{\beta}(1) + \tilde{\gamma}(1)$, càd $\Phi(\lceil \beta \rceil \lceil \gamma \rceil) = \Phi(\lceil \beta \rceil) + \Phi(\lceil \gamma \rceil).$

Ainsi, Φ est un morphisme de groupes.

Corollaire

 $\pi_1(\mathbb{T}) \cong \mathbb{Z}^2$, où \mathbb{T} est le tore.

Démonstration.

Cela découle par exemple du fait suivant (démontrer comme exercice!) :

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

Alternativement, nous avons vu qu'il y a un revêtement $p: \mathbb{R}^2 \to \mathbb{T}$. De la même manière comme si-dessus, on peut démontrer que $\Phi: \pi_1(\mathbb{T}) \to p^{-1}(x_0) \cong \mathbb{Z}^2$ est un morphisme de groupes.

Théorème

La sphere, le plan projectif et le tore sont non-homéomorphes par paire.

Remarque

De la même manière, on peut aussi prouver que la bouteille de Klein n'est isomorphe à aucun des espaces suivants : S^2 , \mathbb{RP}^2 et \mathbb{T} .

Théorème (Brouwer)

Soit $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ le disque fermé. Toute application continue $f : D \to D$ admet au moins un point fixe.

17/18

Démonstration.

Supposons qu'il existe une application continue $f: D \to D$ sans points fixes. Donc, on peut considérer l'application $r: D \to S^1$ définie par la règle : r(p) est le point d'intersection de la demi-droite [f(p),p) avec S^1 . Cette application est continue (exercice!) et satisfaite la propriété

$$r \circ \iota = id_{S^1}$$
, où $\iota : S^1 \to D$, $\iota(x, y) = (x, y)$.

Par conséquent,

$$r_* \circ \iota_* = id_* = id: \pi_1(S^1) \to \pi_1(S^1).$$

Or, cela est impossible, parce que $\pi_1(D) = \{1\}$ et, donc, $Im(r_*) = \{1\}$. \square

Remarque

Le théorème de Brouwer généralise le résultat bien connu du lecteur : pour toute fonction $f:[0,1] \to [0,1]$ il existe un point x tq f(x) = x. Le théorème de Brouwer est également valable pour la boule fermée dans \mathbb{R}^n , mais notre démonstration ne se généralise pas facilement parce que $\pi_1(S^n) = \{1\}$ lorsque $n \ge 2$.