Ballot order	J	В	J	В	В	J	J	J	В	J
Jane's running total	1	1	2	2	2	3	4	5	5	6
Bob's running total	0	1	1	2	3	3	3	3	4	4

Ballot orde	r	В	J	В	В	J	J	J	В	J
Jane's runni total	ng 1	1	2	2	2	3	4	5	5	6
Bob's runni total	ng O	1	1	2	3	3	3	3	4	4

Ballot order	J	В	J	В	В	J	J	J	В	J
Jane's running total	1	1	2	2	2	3	4	5	5	6
Bob's running total	0	1	1	2	3	3	3	3	4	4

n m 51 49

Ballot order	J	В	J	В	В	J	J	J	В	J
Jane's running total	1	1	2	2	2	3	4	5	5	6
Bob's running total	0	1	1	2	3	3	3	3	4	4

1	2	3						n+m-1	n+m
---	---	---	--	--	--	--	--	-------	-----

• Sample space: all sequences of n Js and m Bs.

1	2	3	11 11 20			n+m-1	n+m

- Sample space: all sequences of n Js and m Bs.
- Probability measure: combinatorial, all atoms have equal probability.

1	2	3			n+m-1	n+m	

- Sample space: all sequences of n Js and m Bs.
- Probability measure: combinatorial, all atoms have equal probability.
- Events of interest:

1 2 3 n+m-1	40 1 400
	n+m

- Sample space: all sequences of n Js and m Bs.
- Probability measure: combinatorial, all atoms have equal probability.
- Events of interest:
 - H := Jane leads at each step of the count.

- Sample space: all sequences of n Js and m Bs.
- Probability measure: combinatorial, all atoms have equal probability.
- Events of interest:
 - H := Jane leads at each step of the count.

- Sample space: all sequences of n Js and m Bs.
- Probability measure: combinatorial, all atoms have equal probability.
- Events of interest:
 - H := Jane leads at each step of the count.

- Sample space: all sequences of n Js and m Bs.
- Probability measure: combinatorial, all atoms have equal probability.
- Events of interest:
 - H := Jane leads at each step of the count.

- Sample space: all sequences of n Js and m Bs.
- *Probability measure*: combinatorial, all atoms have equal probability.
- Events of interest:
 - H := Jane leads at each step of the count.
 - A := Jane gets the last ballot.

- Sample space: all sequences of n Js and m Bs.
- Probability measure: combinatorial, all atoms have equal probability.
- Events of interest:
 - H := Jane leads at each step of the count.
 - A := Jane gets the last ballot.

- Sample space: all sequences of n Js and m Bs.
- *Probability measure*: combinatorial, all atoms have equal probability.
- Events of interest:
 - H := Jane leads at each step of the count.
 - A := Jane gets the last ballot.

 $P(H) =: P_{n,m}$

- Sample space: all sequences of n Js and m Bs.
- *Probability measure*: combinatorial, all atoms have equal probability.
- Events of interest:
 - H := Jane leads at each step of the count.
 - A := Jane gets the last ballot.

$$P(H) =: P_{n,m}$$

$$\mathbf{P}(\mathbf{H} \mid \mathbf{A}) = \mathbf{P}_{n-1,m}$$

- Sample space: all sequences of n Js and m Bs.
- *Probability measure*: combinatorial, all atoms have equal probability.
- Events of interest:
 - H := Jane leads at each step of the count.
 - A := Jane gets the last ballot.

$$\mathbf{P}(\mathbf{H}) =: \mathbf{P}_{n,m}$$

$$\mathbf{P}(\mathbf{H} \mid \mathbf{A}) = \mathbf{P}_{n-1,m}$$

$$\mathbf{P}(\mathbf{H} \mid \mathbf{A}^{\mathbf{c}}) = \mathbf{P}_{n,m-1}$$

- Sample space: all sequences of n Js and m Bs.
- Probability measure: combinatorial, all atoms have equal probability.
- Events of interest:
 - H := Jane leads at each step of the count.
 - A := Jane gets the last ballot.

$$P(H) =: P_{n,m}$$

$$\mathbf{P}(\mathbf{H} \mid \mathbf{A}) = \mathbf{P}_{n-1,m}$$

$$\mathbf{P}(\mathbf{H} \mid \mathbf{A}^{\mathbf{c}}) = \mathbf{P}_{n,m-1}$$

$$\mathbf{P}(A) = \frac{\binom{n+m-1}{m}}{\binom{n+m}{m}} = \frac{n}{n+m}$$

- Sample space: all sequences of n Js and m Bs.
- Probability measure: combinatorial, all atoms have equal probability.
- Events of interest:
 - H := Jane leads at each step of the count.
 - A := Jane gets the last ballot.

$$\mathbf{P}(\mathbf{H}) =: \mathbf{P}_{n,m}$$

$$\mathbf{P}(\mathbf{H} \mid \mathbf{A}) = \mathbf{P}_{n-1,m}$$

$$\mathbf{P}(\mathbf{H} \mid \mathbf{A}^{\mathbf{c}}) = \mathbf{P}_{n,m-1}$$

$$\mathbf{P}(A) = \frac{\binom{n+m-1}{m}}{\binom{n+m}{m}} = \frac{n}{n+m}$$

$$\mathbf{P}(\mathbf{A}^{c}) = 1 - \mathbf{P}(\mathbf{A}) = \frac{\mathbf{m}}{\mathbf{n} + \mathbf{m}}$$