Azzolini Riccardo 2019-03-05

Limiti di funzioni

1 Definizione di limite

Sia $f: D \to \mathbb{R}$ e sia $x_0 \in \mathbb{R}^*$ un punto di accumulazione per D. Allora, f(x) **tende** a $l \in \mathbb{R}^*$ per x che **tende** a x_0 se $\forall V(l)$ intorno di $l \exists U(x_0)$ intorno di x_0 tale che

$$x \in (U(x_0) \setminus \{x_0\}) \cap D \implies f(x) \in V(l)$$

Si dice quindi che l è il **limite di** f(x) **per** x **che tende a** x_0 , e si scrive:

$$\lim_{x \to x_0} f(x) = l$$

Osservazione: se x_0 non fosse un punto di accumulazione per D, alcuni degli insiemi $(U(x_0) \setminus \{x_0\}) \cap D$ sarebbero vuoti, cioè la funzione non sarebbe definita per i valori di x appartenenti a questi insiemi, e in tal caso non avrebbe senso calcolare il limite.

1.1 Interpretazione grafica

 $\lim_{x\to x_0} f(x) = l$, con $x_0, l \in \mathbb{R}$:

In questo caso, f(x) tende a l per x che tende a x_0 perché, per ogni intorno V di l ("fascia" verde), per quanto piccolo, esiste un intorno U di x_0 ("fascia" rossa) tale che tutti i valori della funzione per $x \in U$ appartengono a V, cioè la parte di grafico nella fascia rossa è contenuta interamente anche dalla fascia verde.

Analogamente per le altre combinazioni di x_0 e l finiti e infiniti, come ad esempio $\lim_{x\to x_0} f(x) = +\infty$, con $x_0 \in \mathbb{R}$:

1.2 Esempi

$$\lim_{x \to 0} x^2 = 0$$

perché, $\forall V$ intorno di 0, cioè $\forall \varepsilon > 0, V = (-\varepsilon, \varepsilon)$, si ha $f(x) \in V$ se:

$$\lim_{x \to 0} \frac{1}{x^4} = +\infty$$

perché, $\forall V$ intorno di $+\infty$, cioè $\forall a \in \mathbb{R}, V = (a, +\infty)$, con a > 0 (per comodità), si ha $f(x) \in V$ se:

$$\begin{split} \frac{1}{x^4} > a &\iff x^4 < \frac{1}{a} \\ &\iff |x| < \frac{1}{\sqrt[4]{a}} \\ &\iff -\frac{1}{\sqrt[4]{a}} < x < \frac{1}{\sqrt[4]{a}} \\ &\iff x \in \left(-\frac{1}{\sqrt[4]{a}}, \frac{1}{\sqrt[4]{a}}\right) = U(0) \quad \exists \end{split}$$

2 Unicità del limite

Teorema: Sia $f: D \to \mathbb{R}$ e sia $x_0 \in \mathbb{R}^*$ un punto di accumulazione per D. Se esiste $\lim_{x \to x_0} f(x)$, allora questo limite è unico.

Dimostrazione: Supponiamo che esistano $l_1, l_2 \in \mathbb{R}^*$, con $l_1 \neq l_2$, tali che $\lim_{x \to x_0} f(x) = l_1$ e $\lim_{x \to x_0} f(x) = l_2$.

Siano V_1 un intorno di l_1 e V_2 un intorno di l_2 , tali che $V_1 \cap V_2 = \emptyset$ (siccome $l_1 \neq l_2$, ciò è sempre possibile).

Dato che $\lim_{x\to x_0} f(x) = l_1$, $\exists U_1$ intorno di x_0 tale che

$$x \in (U_1 \setminus \{x_0\}) \cap D \implies f(x) \in V_1$$

Analogamente, dato che $\lim_{x\to x_0} f(x) = l_2$, $\exists U_2$ intorno di x_0 tale che

$$x \in (U_2 \setminus \{x_0\}) \cap D \implies f(x) \in V_2$$

Siccome l'intersezione di due intorni dello stesso numero non è mai vuota, si ha che

$$x \in (U_1 \cap U_2 \setminus \{x_0\}) \cap D \implies f(x) \in V_1 \cap V_2 = \emptyset \quad \Box$$

3 Punto di accumulazione destro e sinistro

Sia $D \subseteq \mathbb{R}$ e sia $x_0 \in \mathbb{R}$. x_0 è un **punto di accumulazione destro** (**sinistro**) per D se è un punto di accumulazione per $D \cap (x_0, +\infty)$ $(D \cap (-\infty, x_0))$.

Osservazione: x_0 non può essere $\pm \infty$ perché non ha senso parlare di "destra di $+\infty$ " o "sinistra di $-\infty$ ".

3.1 Esempio

I punti di accumulazione per D sono tutti i punti appartenenti a [1,5]. Di questi:

- 1 è un punto di accumulazione destro, ma non sinistro, perché i suoi intorni intersecano D solo a destra;
- 5 è un punto di accumulazione sinistro, ma non destro, perché alcuni i suoi intorni intersecano D solo a sinistra;
- ogni punto interno, cioè appartenente a (1,5), è un punto di accumulazione sia destro che sinistro.

4 Intorno destro e sinistro

Sia $x_0 \in \mathbb{R}$.

- Un **intorno destro** di x_0 è un intervallo del tipo $[x_0, x_0 + \varepsilon)$.
- Un intorno sinistro di x_0 è un intervallo del tipo $(x_0 \varepsilon, x_0]$.

5 Limite destro e sinistro

Sia $f: D \to \mathbb{R}$ e sia $x_0 \in \mathbb{R}$ un punto di accumulazione destro (sinistro) per D. f(x) tende a $l \in \mathbb{R}^*$ per x che tende a x_0 da destra (da sinistra) se $\forall V$ intorno di l $\exists [x_0, x_0 + \varepsilon)$ intorno destro $(\exists (x_0 - \varepsilon, x_0]$ intorno sinistro) di x_0 tale che se $x \in (x_0, x_0 + \varepsilon)$ $(x \in (x_0 - \varepsilon, x_0))$ si ha $f(x) \in V$. Si scrive allora

$$\lim_{x \to x_0^+} f(x) = l \qquad \left(\lim_{x \to x_0^-} f(x) = l\right)$$

5.1 Esistenza del limite

Osservazione: Sia $f: D \to \mathbb{R}$ e sia $x_0 \in \mathbb{R}$ un punto di accumulazione destro e sinistro per D. Allora

$$\lim_{x \to x_0} f(x) = l \in \mathbb{R}^* \iff \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = l$$

altrimenti il limite per $x \to x_0$ non esiste.

5.2 Esempio: funzione parte intera

$$f(x) = [x]$$
 parte intera di x

$$\begin{split} &\lim_{x\to 2^-}[x]=1 & \lim_{x\to 2^+}[x]=2\\ &\lim_{x\to 2^-}[x]\neq \lim_{x\to 2^+}[x] \Longrightarrow \ \nexists \lim_{x\to 2}[x] \end{split}$$

5.3 Esempio: funzione definita a tratti

$$f(x) = \begin{cases} 2x^2 & \text{se } x \ge 1\\ ax & \text{se } x < 1, \text{ con } a \in \mathbb{R} \end{cases}$$

Si vuole trovare il valore di a, se esiste, tale che $\lim_{x\to 1} f(x)$ esista:

$$\exists \lim_{x \to 1} f(x) \iff \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$$
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} ax = a$$
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 2x^{2} = 2$$

quindi il limite esiste per a=2.

6 Permanenza del segno

Teorema: Sia $f: D \to \mathbb{R}$ e sia $x_0 \in \mathbb{R}^*$ un punto di accumulazione per D. Se $\lim_{x \to x_0} f(x) = l \in \mathbb{R}^*$ e se l > 0 (l < 0), allora $\exists U$ intorno di x_0 tale che

$$f(x) > 0 \ (f(x) < 0) \quad \forall x \in (U \setminus \{x_0\}) \cap D$$

Dimostrazione:

• Sia $l \in \mathbb{R}$, l > 0. Per la definizione di limite, $\forall \varepsilon > 0 \quad \exists U(x_0)$ intorno di x_0 tale che, $\forall x \in (U(x_0) \setminus \{x_0\}) \cap D$,

$$f(x) \in (l - \varepsilon, l + \varepsilon) \iff l - \varepsilon < f(x) < l + \varepsilon$$

Siccome l>0, è sempre possibile scegliere un $\varepsilon>0$ tale che $l-\varepsilon>0$. Allora

$$0 < l - \varepsilon < f(x) < l + \varepsilon$$

• Sia invece $l = +\infty$. Se a > 0, $(a, +\infty]$ è un intorno di $+\infty$ e, per la definizione di limite, $\exists U(x_0)$ intorno di x_0 tale che, $\forall x \in (U(x_0) \setminus \{x_0\}) \cap D$,

$$f(x) \in (a, +\infty] \iff f(x) > a \ge 0$$

• Per l < 0, la dimostrazione è analoga.

7 Algebra dei limiti

Siano $f, g: D \to \mathbb{R}$, sia $x_0 \in \mathbb{R}^*$ un punto di accumulazione per D e siano $l_1, l_2 \in \mathbb{R}$ (quindi non $\pm \infty$).

Se $\lim_{x\to x_0} f(x) = l_1$ e $\lim_{x\to x_0} g(x) = l_2$, allora:

$$\lim_{x \to x_0} (f(x) \pm g(x)) = l_1 \pm l_2$$

$$\lim_{x \to x_0} cf(x) = cl_1 \quad \forall c \in \mathbb{R}$$

$$\lim_{x \to x_0} f(x)g(x) = l_1 l_2$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l_1}{l_2} \quad \text{se } l_2 \neq 0$$