Various generalizations of the Upper-Lower Index and their critical values

Psychoco 2019

Lubomír Štěpánek¹

Patrícia Martinková^{2, 3}

¹Institute of Biophysics and Informatics First Faculty of Medicine Charles University, Prague

²Faculty of Education Charles University, Prague

³Institute of Computer Science Czech Academy of Sciences

Content

Introduction

- Introduction
- 2 Revisiting the Upper-Lower Indices
- 3 Critical values for Upper-Lower Indices
- 4 Future work
- Summary

Concept of item discrimination

Introduction

- one of the item parameters characterizing item properties
 - besides item difficulty, pseudo-guessing, inattention
- describes how accurately an item can discriminate between individuals with high vs. with low ability
- item discrimination can be evaluated using both <u>Classical Test</u> <u>Theory (CTT) and Item-Response Theory (IRT)</u>

Indicators of item discrimination

- based on (Pearson's) correlation
 - item-test correlation (RIT)
 - item-rest correlation (RIR)
 - tetrachoric coefficient of correlation, χ^2 statistics
- based on difference of proportions of correct answers
 - Kelley's discrimination index (classical <u>Upper-Lower Index</u>, ULI)
 - its variants and generalizations (generalized Upper-Lower Index, gULI)

Motivation

Introduction

- traditional methods
 - easily explainable to practitioners
 - easily calculated
- methods based on IRT
 - ullet sophisticated models using p-values, information criterions etc.

Motivation (con't)

00000

Aims of the study

Introduction

- to do literature review
- to look into properties of generalizations of ULI (gULI)
- to find reasoning behind suggested critical values

Kelley's item discrimination index

- ullet let's assume a test with n test-takers and k binary items
- \bullet using ordered total scores of the n test-takers, the group is divided into three parts considering only highest m and lowest m of the test-takers
- ullet assuming that p_U , or p_L is a proportion of correct answers in the highest, or lowest m test-takers, then¹

$$ULI \equiv p_U - p_L$$

• Kelley suggests to choose m such that $\frac{m}{n} \doteq 0.27$, but did not offer any critical values for the calculated ULI

¹T. L. Kelley. "The selection of upper and lower groups for the validation of test items." In: Journal of Educational Psychology 30.1 (1939), pp. 17–24. DOI: 10.1037/h0057123. URL: https://doi.org/10.1037/h0057123 4 3 + 4 3 +

- firstly let's assume there are n test-takers with scores sorted increasingly, $(x_{(1)}, x_{(2)}, \dots, x_{(n)})^T$ such that $\forall i \in \{1, 2, \dots, n\}$ is $x_{(i)} \in \mathbb{R}$ and the scores follow $\mathcal{N}(0, 1^2)$
- Kelley searched for $q = \frac{m}{n}$ in order to maximize t statistics of two sample t-test
- assuming that μ_U and μ_L are mean scores of upper and lower m test-takers, σ is a pooled standard deviation of test scores.

$$t = \frac{\mu_U - \mu_L}{\frac{\sigma}{\sqrt{m}}}$$

• given the assumed $\mathcal{N}(0,1^2)$ distribution, therefore and equal size we get $\mu_{IJ} = -\mu_{I_c}$ and

$$t = \frac{2\mu_U \cdot \sqrt{m}}{\sigma} \propto \mu_U \cdot \sqrt{m}$$

Kelley's optimal splitting of a group of test takers

• since mean of the truncated normal distribution is $\mu_U = \frac{z_q}{a}$ where z_q is q-th quantile and $q = \frac{m}{n}$ we get

$$t \propto \mu_U \cdot \sqrt{m} \propto \frac{z_q}{q} \cdot \sqrt{m} \propto \frac{z_q}{q} \cdot \sqrt{qn} \propto \frac{z_q}{\sqrt{q}} \cdot \sqrt{n} \propto \frac{z_q}{\sqrt{q}}$$

• the first derivative with respect to x where x and -x are points of division in a unit normal distribution is

$$\frac{\mathrm{d}t}{\mathrm{d}x} \propto \frac{z}{\sqrt{q}} \left(-x + \frac{z}{2q} \right)$$

setting the derivation equal to zero we get

$$q = \frac{z}{2x}$$

and using tables for the truncated normal distribution we could find q = 0.270

Generalized Upper-Lower Index for binary items by Brennan

- Brennan generalized the ULI (here assigned ULI_B) by relaxing the assumption of equal sizes of the upper/lower group of test-takers²
- let's assume a test with n test-takers and k binary items
- \bullet using ordered total scores of the n test-takers, the group is divided into three parts considering only highest n_U and lowest n_L of the test-takers
- assuming that m_{U} , or m_{L} is a number of correct answers in the highest n_U , or lowest n_L test-takers, then

$$ULI_B \equiv \frac{m_U}{n_U} - \frac{m_L}{n_L}$$

²Robert L. Brennan. "A Generalized Upper-Lower Item Discrimination Index". In: Educational and Psychological Measurement 32.2 (July 1972), pp. 289-303. DOI: 10.1177/001316447203200206. URL:

- Brennan also offered critical values for the ULI_B searching for the minimal values of ULI_B for which z statistic of z-test for two proportions becomes significant
- under null hypothesis $H_0: p = p_U = p_L$ where p_U and p_L is a proportion of correct answers in both upper and lower part

$$z = \frac{\left(\frac{m_U}{n_U} - \frac{m_L}{n_L}\right) - 0}{\sqrt{\frac{n_U + n_L}{n_U n_L} p(1 - p)}}$$

follows standard normal distribution

ullet for $n_U=n_L=30$ and $p=p_U=p_L=0.5$ such that $\mathbb{E}\left(rac{m_U}{n_U}
ight)=p_U$ and $\mathbb{E}\left(\frac{m_L}{n_L}\right)=p_L$ he got the well-known critical value for the ULI (or $UL\dot{I}_B$) equal to 0.3 (approx.)

Generalized Upper-Lower Index for polytomous items by Metsämuuronen

• Metsämuuronen generalized the ULI in order to make it applicable to polytomous items

$$GDI_{m} = \frac{\sum_{i=1}^{m} O_{i}^{U} - \sum_{i=1}^{m} O_{i}^{L}}{m(\max(O_{i}) - \min(O_{i}))}$$

where O_i^U and O_i^L refer to the score of the *i*-th highest and lowest test-taker given m highest and lowest observations³

³Jari Metsämuuronen. "Generalized Discrimination Index". en. In: (2018). DOI: 10.13140/rg.2.2.30933.88804/1. URL:

Simulated optimal splitting of a group of test takers

- ullet based on Kelley, let's assume a test with n test-takers and k binary items
- ullet using ordered total scores of the n test-takers, the group is divided into three parts considering only highest m and lowest m of the test-takers
- ullet assuming that p_U , or p_L is a proportion of correct answers in the highest, or lowest m test-takers, then

$$ULI \equiv p_U - p_L$$

• let's suppose a probability of correct answer is given by $\frac{\exp(\theta)}{1+\exp(\theta)}$ where $\theta \sim \mathcal{N}(0, 1^2)$ and $p_L \sim \mathrm{Bernoulli}\left(\frac{\exp(\theta)}{1+\exp(\theta)}\right)$ as well as $p_U \sim \mathrm{Bernoulli}\left(\frac{\exp(\theta)}{1+\exp(\theta)}\right)$

```
n := 1000 // size of a sample of test-takers (or their scores);
k := 200 // number of repetitions per one given proportion i;
z := \{\emptyset\} // a list of z-statistics;
for i=1: \left|\frac{n}{2}\right| do
    z-vector := \{\emptyset\} // vector of z-statistics for given i;
    for j = 1 : k do
          abilities := vector of n numbers following \sim \mathcal{N}(0, 1^2);
         scores := \{\emptyset\};
         for \theta in abilities do
              scores = \left\{ scores, Bernoulli \left( \frac{\exp(\theta)}{1 + \exp(\theta)} \right) \right\};
         end
          z-statistic := z-statistic of test of two proportions based on lower i and upper
           i number of the vector scores:
         z-vector = {z-vector, z-statistic};
    z = \{z, z\text{-vector}\};
end
```

Simulated optimal splitting of a group of test takers

- ullet based on Brennan, let's assume a test with n test-takers and kbinary items
- \bullet using ordered total scores of the n test-takers, the group is divided into three parts considering only highest n_U and lowest n_L of the test-takers
- assuming that m_U , or m_L is a number of correct answers in the highest n_U , or lowest n_L test-takers, then

$$ULI_B \equiv \frac{m_U}{n_U} - \frac{m_L}{n_L}$$

- assuming n, $n_U = \frac{1}{5}n$, $n_L = \frac{1}{5}n$ is given in our case, there is $|\{0,1,\ldots,n_L\}\times\{0,1,\ldots,n_U\}|$ combinations of possible ULI_B
- we search for the lowest value of ULI_B such that z statistic of z-test of two proportions is significant given n, n_U , n_L

```
n_{\min} := 10 // minimal size of a sample of test-takers or their scores;
n_{\rm max}:=300 // maximal size of a sample of test-takers or their scores;
ULI := \{\emptyset\} // a list of ULI's;
for n = n_{\min} : n_{\max} do
   n_{\text{lower}} := 0.2n // a size of lower part of test-takers' sample;
   n_{\text{upper}} := 0.2n // a size of upper part of test-takers' sample;
   significant ULI:= \{\emptyset\} // a vector of significant ULI's for given n;
   for i = 0 : n_{lower} do
       for j = 0 : n_{\text{upper}} do
   end
       end
   ULI = \{ULI, significant ULI\};
end
```

Critical values for gULI using the 5th and 4th fifth of scores

Critical values for gULI using the 5th and 4th fifth of scores

• values for gULI between the 5th and 4th fifth of scores for given n guaranteed the z statistics using the gULI would be significant, $\alpha=0.05$, regardless of p_L , p_U

\overline{n}	gULI (5 th , 4 th fifth)
25	0.833
30	0.714
40	0.556
50	0.455
80	0.352
100	0.286
150	0.194

- deriving analytically (optimally) properties of distribution of minimal values of significant ULI's
- more IRT-based approach
 - using the approach based on searching for lowest values of discrimination coefficient a of a selected IRT model such that $H_0: \hat{a} = 0$ is rejected
- taking account into the fact that z statistic does not respect an order or "closeness" of the upper and lower part of scores, e. g. the 5th and 4th fifth of scores vs. the 5th and 1st fifth of scores and their gULI's

Conclusion

- there are still good reasons to use traditional item analysis approaches
- Upper-Lower index could be generalized to tailor this descriptive statistics to the needs of the individual test
- critical values for generalized ULI's are not usually provided or published
- relatively simple concepts and ideas such as basic inference hypotheses tests could help to search for the critical values
- some older concepts were revisited analytically and new one were derived using simulations in R language

References

- Brennan, Robert L. "A Generalized Upper-Lower Item Discrimination Index". In: Educational and Psychological Measurement 32.2 (July 1972), pp. 289-303. DOI: 10.1177/001316447203200206. URL: https://doi.org/10.1177/001316447203200206.
- Kelley, T. L. "The selection of upper and lower groups for the validation of test items." In: Journal of Educational Psychology 30.1 (1939), pp. 17-24. DOI: 10.1037/h0057123. URL: https://doi.org/ 10.1037/h0057123.
- Metsämuuronen, Jari. "Generalized Discrimination Index". en. In: (2018). DOI: 10.13140/rg.2.2.30933.88804/1. URL: http: //rgdoi.net/10.13140/RG.2.2.30933.88804/1.

Thank you for your attention!

lubomir.stepanek@lf1.cuni.cz