Transportation of Company workers for the reduction of traffic and pollution

Felipe Ríos López Santiago Gil Zapata Medellín, 16/05/2019

Data Structures

	1	2	3	4	5
1	0	5	4	3	2
2	5	0	13	21	1
3	4	13	0	20	2
4	3	21	20	0	7
5	2	1	2	7	0

Figure 1: A matrix with the weights of the paths.

Figure 2: Structure of a complete graph

Algorithm and Complexity

332 333	Algorithm assign (Graph, initial, increment) assigned cars = new List	Method	Complexity
334 335 336 337 338	Successors = new List in range(2, size of Graph) ordered successors = sort(Successors) While ordered successors not empty do driver = last from ordered successors car = new List	Graph creation	O(n2)
339	time limit = increment * get Weight(Graph, driver, initial)	Sorting	O(n2)
340 341 342	<pre>closest from driver = sort(ordered successors) for every successor in closest from driver do if size of car = 5 then</pre>	Erase	O(n)
343 344 345	stop end if if can take (successor, car, time limit, Graph) then	canTake	O(n)
346 347	<pre>push(successor, car) erase(successor, ordered successors)</pre>	Assign	O(n3)
348 349 350	end if end for push(car, assigned cars)		
351 352 353	end while return assigned cars end	Total =	O(n3)

Algorithm design criteria

- -It is fast
- -Only uses the related data, and that reduces completely the needed storage.
- -Reduces the traffic in a 69.5% for the worst case P=1.1

Execution

```
-/otras materias/datos2/finalProject
 zsan@Santiago-s-PC ~/otras_materias/datos2/finalProject
$ ./carsMobility -n 11 -p 1.3
For a set U with size = 11 and P = 1.3, there have been assigned 4 cars.
 zsan@Santiago-s-PC -/otras_materias/datos2/finalProject
$ ./carsMobility -n 11 -p 1.2
For a set U with size = 11 and P = 1.2, there have been assigned 4 cars.
 zsan@Santiago-s-PC ~/otras_materias/datos2/finalProject
 ./carsMobility -n 11 -p 1.1
 or a set U with size = 11 and P = 1.1, there have been assigned 4 cars.
 zsan@Santiago-s-PC ~/otras_materias/datos2/finalProject
 ./carsMobility -n 205 -p 1.3
 or a set U with size = 205 and P = 1.3, there have been assigned 50 cars.
 zsan@Santiago-s-PC ~/otras_materias/datos2/finalProject
 ./carsMobility -n 205 -p 1.2
 for a set U with size = 205 and P = 1.2, there have been assigned 52 cars.
 zsan@Santiago-s-PC -/otras_materias/datos2/finalProject
 ./carsMobility -n 205 -p 1.1
for a set U with size = 205 and P = 1.1, there have been assigned 61 cars.
 zsan@Santiago-s-PC ~/otras_materias/datos2/finalProject
```


Time and Memory Consumption

j) Time: 0.456 seconds

Memory consumption: 3.4 MB


```
Structure complexity: O(N^2)

In the biggest dataset= (32*205)^2 = 43.033.600 bits

Algorithm complexity: O(N)

In the biggest dataset= (32*205) = 6560 bits
```

