The Fast Algorithm for the Charge Conserving Poisson-Boltmann Equation in Elliptic Domain

國立成功大學應用數學研究所

學生:辛承威

指導教授:舒宇宸

Jan 10, 2018

Outline

- 1 介紹問題
- 2 數值方法
- 3 數值結果
- 4 結論

Outline

- 1 介紹問題
- 2 數值方法
- 3 數值結果
- 4 結論

Charge Conserving Poisson-Boltmann Equation

近幾十年來,建立的泊松-玻茲曼方程,幫助處理了各式的問題,以下為電荷守恆的泊松-玻茲曼 (Charge Conserving Poisson-Boltzmann) 方程來描述多種離子在離子溶液中的形式,簡稱為 CCPB 方程:

Charge Conserving Poisson-Boltmann Equation

$$\begin{cases} \Delta u = \sum_{k=1}^{N_1} \frac{a_k \alpha_k e^{a_k u}}{\int_{\Omega} e^{a_k u} dx} - \sum_{l=1}^{N_2} \frac{b_l \beta_l e^{-b_l u}}{\int_{\Omega} e^{-b_l u} dx} & \text{in} \quad \Omega \\ u + \eta \frac{\partial u}{\partial \vec{v}} = u_{\partial \Omega} & \text{on} \quad \partial \Omega \end{cases}$$
(1)

Charge Conserving Poisson-Boltmann Equation

其 u 是靜電勢, Δ 是拉普拉斯算子在 \mathbb{R}^N 空間, Ω 是在 \mathbb{R}^N 上某一個有界範圍, $\partial\Omega$ 代表的是光滑邊界,和 V 是邊界上朝外的單位法向量,常數 $a_k \cdot \alpha_k \cdot b_l$ 和 β_l 需要满足

$$\begin{cases} 0 < a_1 < a_2 < \dots < a_{N_1} \\ 0 < b_1 < b_2 < \dots < b_{N_2} \end{cases}$$

邊界 $\partial\Omega$ 可以視為電雙層,這個邊界條件也是所謂的 Robin boundary condition, η 是一個非負常數而且跟表層的介電常數和離子溶液的表面電容有關。

目標問題

因為如果要直接要解這個方程是很困難的,於是我們簡化了這個方程,如果我們只單純看氯化鈉 (NaCl) 溶液,因為鈉離子是帶正 1 價、氯離子是帶負 1 價,而將 η 假設為 0,而且選擇定義域為一個橢圓,所以 Eq. (1) 將會被簡略。

目標問題

但是這樣還是難以去求解。

$$\begin{cases} \Delta u = \frac{e^{u} - e^{-u}}{2}, & \text{in } \Omega \\ u = u_{\partial\Omega} \end{cases}$$
 (2)

因此,對於這個區域外加一個外力 f,例如電場等,這樣將會 改變成

$$\begin{cases} \Delta u = \frac{e^{u} - e^{-u}}{2} + f, & \text{in } \Omega \\ u = u_{\partial\Omega} \end{cases}$$
 (3)

Eq. (3) 就是這篇論文要解決的目標

Outline

- 1 介紹問題
- 2 數值方法
- 3 數值結果
- 4 結論

要先介紹橢圓座標系,橢圓座標系為二維正交座標系,其橢圓 座標的最常見的定義為:

要先介紹橢圓座標系,橢圓座標系為二維正交座標系,其橢圓 座標的最常見的定義為:

$$\begin{cases} x = A \cosh \phi \cos \theta \\ y = A \sinh \phi \sin \theta \end{cases} \tag{4}$$

要先介紹橢圓座標系,橢圓座標系為二維正交座標系,其橢圓 座標的最常見的定義為:

$$\begin{cases} x = A \cosh \phi \cos \theta \\ y = A \sinh \phi \sin \theta \end{cases} \tag{4}$$

其中 $\phi \geq 0$ 為非負之實數,而且 $\theta \in [0, 2\pi)$ 。

(a) 如果現在分別給定 $A=1 \cdot \phi=1$, 那麼我們令:

$$\begin{cases} \tilde{a} = \cosh(1) \\ \tilde{b} = \sinh(1) \end{cases}$$
 (5)

(a) 如果現在分別給定 $A=1 \cdot \phi=1$, 那麼我們令:

$$\begin{cases} \tilde{a} = \cosh(1) \\ \tilde{b} = \sinh(1) \end{cases}$$
 (5)

分別把 \tilde{a} 、 \tilde{b} 代入 Eq. (5),得到了

$$\begin{cases} x = \tilde{a} \cdot \cos \theta \\ y = \tilde{b} \cdot \sin \theta \end{cases} \tag{6}$$

這個其實是一個橢圓的參數式。

(b) 另一方面,如果分別給定 A=1、 $\theta=\frac{1}{3}\pi$,那麼我們令:

$$\begin{cases} \tilde{c} = \cos\left(\frac{1}{3}\pi\right) \\ \tilde{d} = \sin\left(\frac{1}{3}\pi\right) \end{cases}$$
 (7)

(b) 另一方面,如果分別給定 A=1、 $\theta=\frac{1}{3}\pi$,那麼我們令:

$$\begin{cases} \tilde{c} = \cos\left(\frac{1}{3}\pi\right) \\ \tilde{d} = \sin\left(\frac{1}{3}\pi\right) \end{cases}$$
 (7)

分别把 c、d 代入 Eq. (4),得到了

$$\begin{cases} x = \tilde{c} \cdot \cosh \phi \\ y = \tilde{d} \cdot \sinh \phi \end{cases} \implies \begin{cases} \frac{x}{\tilde{\xi}} = \cosh \phi \\ \frac{x}{\tilde{\xi}} = \sinh \phi \end{cases}$$
(8)

Eq. (8) 上下同時平方後相減,可以得到

$$\frac{x^2}{\tilde{c}^2} - \frac{y^2}{\tilde{d}^2} = (\cosh \phi)^2 - (\sinh \phi)^2 = 1$$
 (9)

這個其實是一個雙曲線的方程式。

因為我們主要的問題是一個非線性的偏微分方程,首先,先回到 最簡單的 Poisson Equation 來看

$$\begin{cases}
\Delta u = u_{xx} + u_{yy} = f, & \text{in } \Omega = \left\{ (x, y) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\} \\
u|_{\partial\Omega} = u
\end{cases} \tag{10}$$

 $u = u(x, y) \cdot f = f(x, y) \cdot u|_{bd} = u$ 是其邊界條件,a 和 b 屬於非零實數且 a > b。

$$u_{\phi\phi} + u_{\theta\theta} = u_{xx} \cdot (x_{\phi})^{2} + u_{yy} \cdot (x_{\theta})^{2}$$

$$= \left[(A \sinh \phi \cos \theta)^{2} + (A \cosh \phi \sin \theta)^{2} \right] \cdot (u_{xx} + u_{yy}) \quad (11)$$

$$= A^{2} \cdot (\sinh^{2} \phi + \sin^{2} \theta) \cdot (u_{xx} + u_{yy})$$

做完變數變換後,Poisson Equation 可以改寫成

$$\begin{cases}
\Delta u = u_{\phi\phi} + u_{\theta\theta} = f \cdot A^2 \cdot (\sinh^2 \phi + \sin^2 \theta) = \tilde{f} \\
u|_{\partial\Omega} = u
\end{cases}$$
(12)

做完變數變換後,Poisson Equation 可以改寫成

$$\begin{cases}
\Delta u = u_{\phi\phi} + u_{\theta\theta} = f \cdot A^2 \cdot (\sinh^2 \phi + \sin^2 \theta) = \tilde{f} \\
u|_{\partial\Omega} = u
\end{cases}$$
(12)

原本 (x,y) 的定義域是在橢圓 Ω 內部,但變數改變後, (ϕ,θ) 的定義域為何呢?!

從 Eq. (10),最外側的橢圓的長軸為 a、短軸為 b,要如何對應到 $\phi - \theta$ 直角座標系,可由橢圓參數式推得

$$\begin{cases} x = a \cdot \cos \theta = A \cosh \phi \cos \theta \\ y = b \cdot \sin \theta = A \sinh \phi \sin \theta \end{cases} \implies \begin{cases} a = A \cdot \cosh \phi \\ b = A \cdot \sinh \phi \end{cases}$$
(13)

將兩式子相除後,可以得到 ϕ

$$\frac{b}{a} = \tanh \phi \Longrightarrow \phi = \tanh^{-1} \left(\frac{b}{a} \right) \tag{14}$$

最外側的橢圓對應到 ϕ - θ 直角座標系上是一條線段 L , 此線段 $L = \left\{ (\phi, \theta) \mid \phi = \tanh^{-1}\left(\frac{b}{a}\right), \text{ and } \theta \in [0, 2\pi) \right\}$ 並且令 $\phi_{max} = \tanh^{-1}\left(\frac{b}{a}\right)$

因為橢圓座標系的定義 Eq. (4) 的結果,(x,y) 的定義域對應到 $\phi - \theta$ 直角座標系,為以下四條線段構成的封閉區間 H

$$\begin{cases}
L_{1} = \{(\phi, \theta) \mid \phi = \phi_{max}, \text{ and } \theta \in [0, 2\pi)\} \\
L_{2} = \{(\phi, \theta) \mid \phi \in [0, \phi_{max}], \text{ and } \theta = 0\} \\
L_{3} = \{(\phi, \theta) \mid \phi \in [0, \phi_{max}], \text{ and } \theta = 2\pi\} \\
L_{4} = \{(\phi, \theta) \mid \phi = 0, \text{ and } \theta \in [0, 2\pi)\}
\end{cases}$$
(15)

我們可以得到定義域的對應關係

$$\Omega: \left\{ (\mathbf{x}, \mathbf{y}) \mid \frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2} \le 1 \right\}$$

$$\iff \mathsf{H}: \left\{ (\phi, \theta) \mid \phi \in [0, \phi_{\max}], \text{ and } \theta \in [0, 2\pi] \right\}$$

$$\tag{16}$$

有了前兩個小節的結果,我們的問題 (Eq. (10)) 改變成

$$\begin{cases} \Delta u = u_{\phi\phi} + u_{\theta\theta} = f \cdot A^2 \cdot (\sinh^2 \phi + \sin^2 \theta) = \tilde{f}, \text{ and in H} \\ u|_{\partial\Omega} = u \end{cases}$$
(17)

要直接解出函數 u。要直接解出 u 非常的不容易,因此,改給有限的點,且按照以下方式選取

$$\tilde{f}_{i,j} = \tilde{f}\left(\left(i - \frac{1}{2}\right) \cdot \left(\frac{2}{2M+1}\right) \phi_{\max}, \ (j-1) \cdot \left(\frac{2\pi}{N}\right)\right) \\
= \tilde{f}(\phi_{i}, \theta_{j}) \\
u_{i,j} = u\left(\left(i - \frac{1}{2}\right) \cdot \left(\frac{2}{2M+1}\right) \phi_{\max}, \ (j-1) \cdot \left(\frac{2\pi}{N}\right)\right) \\
= u(\phi_{i}, \theta_{j}) \tag{18}$$

$$\tilde{f}_{i,j} = \tilde{f}\left(\left(i - \frac{1}{2}\right) \cdot \left(\frac{2}{2M+1}\right) \phi_{\max}, \ (j-1) \cdot \left(\frac{2\pi}{N}\right)\right) \\
= \tilde{f}(\phi_{i}, \theta_{j}) \\
u_{i,j} = u\left(\left(i - \frac{1}{2}\right) \cdot \left(\frac{2}{2M+1}\right) \phi_{\max}, \ (j-1) \cdot \left(\frac{2\pi}{N}\right)\right) \\
= u(\phi_{i}, \theta_{j}) \tag{19}$$

 $i=1,2\dots M$ 、 $j=1,2\dots N$, M 為沿著 ϕ 方向切的點數, N 為 沿著 θ 方向切的點數,我們為了以後方便表示,先令 $\Delta\phi=\left(\frac{2}{2M+1}\right)\phi_{max}$ 、 $\Delta\theta=\left(\frac{2\pi}{N}\right)$

藉由有限差分法,可以知道

$$\Delta u$$

$$\approx \frac{1}{\Delta \theta^2} \cdot (u_{i,j+1} + u_{i,j-1}) + \frac{1}{\Delta \phi^2} \cdot (u_{i+1,j} + u_{i-1,j})$$

$$- \left(\frac{2}{\Delta \theta^2} + \frac{2}{\Delta \phi^2}\right) \cdot u_{i,j}$$

$$= \tilde{f}_{i,j}$$
(20)

令
$$v_k = u_{i,j} \cdot e_k = \tilde{f}_{i,j}$$
 而 $k = j + (i-1)(N)$, 我們可以改寫成

我們簡單表示為以下的式子:

$$Bv = e (22)$$

而我們把所選的格子點做分類探討:

當
$$i=1, j=1$$
,會出現 $u_{1,0} \cdot u_{0,1}$

$$\begin{split} &u_{1,0}=u\left(\frac{1}{2}\cdot\left(\frac{2}{2M+1}\right)\phi_{\max},\;(\textit{N}-1)\cdot\frac{2\pi}{\textit{N}}\right)=u_{1,\textit{N}}\\ &u_{0,1}=u\left(-\frac{1}{2}\cdot\left(\frac{2}{2M+1}\right)\phi_{\max},\;0\right)=u_{1,1} \end{split}$$

所以 $u_{1,0} \cdot u_{0,1}$ 由 $u_{1,N} \cdot u_{1,1}$ 取代。

當
$$i=1, j=N$$
,會出現 $u_{1,N+1} \cdot u_{0,N}$
$$u_{1,N+1} = u\left(\frac{1}{2}\cdot\left(\frac{2}{2M+1}\right)\phi_{\max},\ 0\right) = u_{1,1}$$

$$u_{0,N} = u\left(\frac{1}{2}\cdot\left(\frac{2}{2M+1}\right)\phi_{\max},\ \frac{2\pi}{N}\right) = u_{1,2}$$

所以 $u_{1,N+1} \cdot u_{0,N}$ 由 $u_{1,1} \cdot u_{1,2}$ 取代。

當
$$i = M, j = 1$$
,會出現 $u_{M,0}$

$$\textit{\textbf{u}}_{\textit{M},0} = \textit{\textbf{u}}\left(\frac{1}{2}\cdot\left(\frac{2}{2\textit{M}+1}\right)\phi_{\textit{max}},\;\left(\textit{N}-1\right)\cdot\frac{2\pi}{\textit{N}}\right) = \textit{\textbf{u}}_{\textit{M},\textit{N}}$$

所以 $U_{M,0}$ 由 $U_{M,N}$ 取代。

當
$$i = M, j = N$$
,會出現 $u_{M,N+1}$

$$u_{\scriptscriptstyle M,N+1} = u\left(\frac{1}{2}\cdot\left(\frac{2}{2M+1}\right)\phi_{\scriptscriptstyle max},\ 0\right) = u_{\scriptscriptstyle M,1}$$

所以 $U_{M,N+1}$ 由 $U_{M,1}$ 取代。

當
$$i = 2 \cdots (M-1), j = N$$
,會出現 $u_{i,N+1}$

$$u_{\scriptscriptstyle i,N+1} = u\left(\left(i-rac{1}{2}
ight)\cdot\left(rac{2}{2M+1}
ight)\phi_{\it max},\;0
ight) = u_{\scriptscriptstyle i,1}$$

所以 $U_{i,N+1}$ 由 $U_{i,1}$ 取代。

當
$$i = 2 \cdots (M-1), j = 1$$
,會出現 $u_{i,0}$

$$u_{\scriptscriptstyle i,0} = u\left(\left(i-rac{1}{2}
ight)\cdot\left(rac{2}{2M+1}
ight)\phi_{
m max},\;\left({
m N}-1
ight)\cdotrac{2\pi}{{
m N}}
ight) = u_{\scriptscriptstyle i,N}$$

所以 U_{i,0} 由 U_{i,N} 取代。

當
$$i=1, j=2\cdots ({\it N}-1)$$
,會出現 $u_{0,j}$
$$u_{0,j}=u\left(\left(i-\frac{1}{2}\right)\cdot\left(\frac{2}{2M+1}\right)\phi_{\it max},\;\left({\it N}-1\right)\cdot\frac{2\pi}{\it N}\right)=u_{1,{\it N}+2-j}$$
 所以 $u_{0,j}$ 由 $u_{1,{\it N}+2-j}$ 取代。

其餘的點按照著有限差分法擺放好,所以我們最後要解的其實就 是

$$v = B^{-1}e {\circ} {23}$$

這邊我們選擇使用快速傅立葉轉換,那麼最重要的就是要找出特徵函數,而我們找到兩個特徵函數,為以下

這邊我們選擇使用快速傅立葉轉換,那麼最重要的就是要找 出特徵函數,而我們找到兩個特徵函數,為以下

(1)

$$u_{l,m} = \cos(A_l \cdot \phi) \cos(m \cdot \theta), A_l = \frac{\pi \cdot (2l-1)}{2 \cdot \phi_{max}} \text{ and } l, m \in \mathbb{N}$$
 (24)

(2)

$$u_{l,m} = \sin(B_l \cdot \phi) \sin(m \cdot \theta), \ B_l = \frac{\pi}{\phi_{max}} \cdot l \ \text{ and } \ l, m \in \mathbb{N} \ (25)$$

如果 $u_{l,m}$ 等於 Eq. (15), 並且做拉普拉斯

$$\Delta u_{l,m} = \frac{\partial^2 u_{l,m}}{\partial \phi^2} + \frac{\partial^2 u_{l,m}}{\partial \theta^2} = \left(-A_l^2 - m^2 \right) \cdot u_{l,m} \tag{26}$$

那麼 $(-A_I^2 - m^2)$ 也可以視為這個特徵函數的特徵值 $\lambda_{I,m}$

 $u_{l,m}$ 會滿足在定義域 H (Eq. (15)) 在邊界的條件,如以下

$$u_{l,m}(\phi, \theta + 2\pi) = \cos(A_l \cdot \phi) \cos(m \cdot \theta) = u_{l,m}(\phi, \theta)$$

$$u_{l,m}(\phi_{max}, 0) = \cos\left(\frac{\pi}{2} \cdot (2l - 1)\right) \cos(m \cdot \theta) = 0$$

$$u_{l,m}(-\phi, 2\pi - \theta) = \cos(A_l \cdot \phi) \cos(m \cdot \theta) = u_{l,m}(\phi, \theta)$$
(27)

如果 u,,, 等於 Eq. (25)

$$\Delta u_{l,m} = \frac{\partial^2 u_{l,m}}{\partial \phi^2} + \frac{\partial^2 u_{l,m}}{\partial \theta^2} = \left(-B_l^2 - m^2 \right) \cdot u_{l,m} \tag{28}$$

那麼 $(-B_I^2 - m^2)$ 也可以視為這個特徵函數的特徵值 $\lambda_{I,m}$

 $u_{l,m}$ 也會滿足在定義域 H (Eq. (16)) 在邊界的條件,如以下

$$u_{l,m}(\phi, \theta + 2\pi) = \sin(B_l \cdot \phi) \sin(m \cdot \theta) = u_{l,m}(\phi, \theta)$$

$$u_{l,m}(\phi_{max}, 0) = \sin(\pi \cdot l) \sin(m \cdot \theta) = 0$$

$$u_{l,m}(-\phi, 2\pi - \theta) = \sin(B_l \cdot \phi) \sin(m \cdot \theta) = u_{l,m}(\phi, \theta)$$
(29)

但這裡所找到的特徵值不是我們要的,因為我們已經離散化了,所以應該是用有限差分法去找到我們所需要的特徵值,所以當 $u_{l,m}$ 等於

$$\Delta u_{l,m} \approx \frac{1}{\Delta \theta^{2}} \cdot (u_{l,m}(\phi_{i}, \theta_{j+1}) + u_{l,m}(\phi_{i}, \theta_{j-1}) - 2u_{l,m}(\phi_{i}, \theta_{j}))
+ \frac{1}{\Delta \phi^{2}} \cdot (u_{l,m}(\phi_{i+1}, \theta_{j}) + u_{l,m}(\phi_{i-1}, \theta_{j}) - 2u_{l,m}(\phi_{i}, \theta_{j}))
= \left(\frac{1}{\Delta \theta^{2}} (2\cos(m\Delta\theta) - 2) + \frac{1}{\Delta \phi^{2}} (2\cos(A_{l}\Delta\phi) - 2)\right) u_{l,m}
= \lambda_{l,m} \cdot u_{l,m}$$

那麼 $\lambda_{l,m}$ 為離散後的特徵值。

如果 U,,, 等於

如果 U,,, 等於

$$\begin{split} \Delta u_{_{l,m}} &\approx \frac{1}{\Delta \theta^2} \cdot \left(u_{_{l,m}}(\phi_{i},\theta_{j+1}) + u_{_{l,m}}(\phi_{i},\theta_{j-1}) - 2u_{_{l,m}}(\phi_{i},\theta_{j}) \right) \\ &+ \frac{1}{\Delta \phi^2} \cdot \left(u_{_{l,m}}(\phi_{i+1},\theta_{j}) + u_{_{l,m}}(\phi_{i-1},\theta_{j}) - 2u_{_{l,m}}(\phi_{i},\theta_{j}) \right) \\ &= \left(\frac{1}{\Delta \theta^2} (2\cos(m\Delta\theta) - 2) + \frac{1}{\Delta \phi^2} (2\cos(B_l\Delta\phi) - 2) \right) u_{_{l,m}} \\ &= \lambda_{l,m} \cdot u_{_{l,m}} \end{split}$$

那麼 $\lambda_{l,m}$ 為離散後的特徵值。

最後,或許會有一些疑問,兩種特徵函數都可以使用,為什麼還要特別舉出第二個特徵函數,因為在兩個特徵值表示式中都有 $\cos(m\Delta\theta)$ 這項,週期減半,如果 I 固定下,是沒有辦法找到所有的特徵值。所以才需要兩個不同特徵函數

終於要來解決此報告想要解決的問題如下:

$$\begin{cases} \Delta u + \sinh(u) = (u_{xx} + u_{yy}) + \sinh(u) = f, \text{ in } \Omega \\ u|_{\partial\Omega} = u \end{cases}$$
 (30)

我們可以改寫成

$$B \times v + \begin{pmatrix} \sinh(v_1) \\ \sinh(v_2) \\ \sinh(v_3) \\ \vdots \\ \sinh(v_{MN-N+1}) \\ \sinh(v_{MN-N+2}) \\ \vdots \\ \sinh(v_{MN}) \end{pmatrix}_{MN \times 1} = e$$
(31)

我們簡單表示為以下的式子:

$$Bv + s = e (32)$$

我們先把 Eq. (32) 另外改寫成一個聯立非線性方程組的形式

$$\begin{cases}
F_{1}(v) = \sum_{j=1}^{MN} B_{1,j} \cdot v_{j} + s_{1} - e_{1} \\
F_{2}(v) = \sum_{j=1}^{MN} B_{2,j} \cdot v_{j} + s_{2} - e_{2} \\
\vdots \\
F_{MN}(v) = \sum_{j=1}^{MN} B_{2,j} \cdot v_{j} + s_{MN} - e_{MN}
\end{cases}$$
(33)

在這裡我們使用兩種方法做迭代

(a) 固定點迭代 (Fixed Point Iteration)

從 Eq. (32), 我們做一些操作

$$Bv + \sinh(v) = e$$

$$\Rightarrow Bv = e - \sinh(v)$$

$$\Rightarrow v = B^{-1} \times (e - \sinh(v))$$
(34)

因此,我們的迭代方程式為

$$\Rightarrow \mathbf{v}^{k+1} = B^{-1} \times (\mathbf{e} - \sinh(\mathbf{v}^k)) \tag{35}$$

這裡的 k 為迭代次數。

(b) 牛頓法 (Newton's Method)

利用牛頓法解多變數非線性方程組,可以用矩陣表示:

$$v^{k+1} = v^k - [J(v^k)]^{-1} \times F(v^k)$$
(36)

其中 $J(v^k)$ 是 Jacobian 矩陣,F 等於 $[F_1, F_2, \cdots F_{MN}]^T$,這裡的 k 為迭代次數,而且

$$J(v^{k}) = \begin{pmatrix} \frac{\partial F_{1}}{\partial v_{1}}(v^{k}) & \frac{\partial F_{1}}{\partial v_{2}}(v^{k}) & \cdots & \frac{\partial F_{1}}{\partial v_{MN}}(v^{k}) \\ \frac{\partial F_{2}}{\partial v_{1}}(v^{k}) & \frac{\partial F_{2}}{\partial v_{2}}(v^{k}) & \cdots & \frac{\partial F_{2}}{\partial v_{MN}}(v^{k}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_{MN}}{\partial v_{1}}(v^{k}) & \frac{\partial F_{MN}}{\partial v_{2}}(v^{k}) & \cdots & \frac{\partial F_{MN}}{\partial v_{MN}}(v^{k}) \end{pmatrix} = B + \cosh(v^{k})$$
(37)

因此,我們的迭代方程式為

$$v^{k+1} = v^k - (B + \cosh(v^k))^{-1} \times F(v^k)$$
 (38)

Outline

- 1 介紹問題
- 2 數值方法
- 3 數值結果
- 4 結論

真實解與數值解的誤差

這邊我們估計誤差的方法有兩種:

- (1) error1 : $max(|u_{real} u_{num}|)$
- (2) error2: $||u_{real} u_{num}||_2$

另外一方面,以下也會呈現線性與非線性方程求解的結果,這裡 測試橢圓長軸皆為 4、短軸為 3。

	N=101	N=201	N=301	N=401	N=501
error1	6.230E-02	1.553E-02	6.885E-03	3.875E-03	2.481E-03
error2	1.6297	0.7969	0.5293	0.3966	0.3171
	N=601	N=701	N=801	N=901	N=1001
error1	1.723E-03	1.627E-03	9.695E-04	7.665E-04	6.207E-04
error2	0.2642	0.2665	0.1982	0.1761	0.1585

Table: 測試函數 $u = \sin \pi x \cdot \sin 2\pi y$ 與數值解的誤差表格

Figure: $u = \sin \pi x \cdot \sin 2\pi y$ 、線性方程、error1

	N=101	N=201	N=301	N=401	N=501
error1	1.411E-04	3.563E-05	1.589E-05	8.954E-06	5.736E-06
error2	7.125E-03	3.575E-03	2.387E-03	1.791E-03	1.433E-03
	N=601	N=701	N=801	N=901	N=1001
error1	3.986E-06	2.930E-06	2.244E-06	1.774E-06	1.437E-06
error2	1.195E-03	1.024E-03	8.964E-04	7.968E-04	7.172E-04

Table: 測試函數 $u = x^2 + y^2$ 與數值解的誤差表格

Figure: $u = x^2 + y^2$ 、線性方程、error1

固定點迭代

	N=101	N=201	N=301	N=401	N=501
error1	6.204E-02	1.547E-02	6.859E-03	3.860E-03	2.472E-03
error2	1.6233	0.7939	0.5274	0.3951	0.3160
	N=601	N=701	N=801	N=901	N=1001
error1	1.716E-03	1.262E-03	9.659E-04	7.636E-04	6.184E-04
error2	0.2633	0.2257	0.1974	0.1755	0.1580

Table: 測試函數 $u = \sin \pi x \cdot \sin 2\pi y$ 與數值解的誤差表格

固定點迭代

Figure: $u = \sin \pi x \cdot \sin 2\pi y$ 、固定點、error1

牛頓法

	N=101	N=201	N=301	N=401	N=501
error1	1.190E-04	3.005E-05	1.340E-05	7.548E-06	4.836E-06
error2	6.154E-03	3.088E-03	2.061E-03	1.547E-03	1.238E-03
	N=601	N=701	N=801	N=901	N=1001
error1	3.360E-06	2.473E-06	1.894E-06	1.497E-06	1.213E-06
error2	1.032E-03	8.849E-04	7.744E-04	6.884E-04	6.196E-04

Table: 測試函數 $u = x^2 + y^2$ 與數值解的誤差表格

Figure: $u = \sin \pi x \sin 2\pi y$ 、牛頓法、error1

固定點迭代

	N=101	N=201	N=301	N=401	N=501
error1	1.190E-04	3.005E-05	1.340E-05	7.548E-06	4.836E-06
error2	6.154E-03	3.088E-03	2.061E-03	1.547E-03	1.238E-03
	N=601	N=701	N=801	N=901	N=1001
error1	3.360E-06	2.473E-06	1.894E-06	1.497E-06	1.213E-06
error2	1.032E-03	8.849E-04	7.744E-04	6.884E-04	6.196E-04

Table: 測試函數 $u = x^2 + y^2$ 與數值解的誤差表格

Figure: $u = x^2 + y^2$ 、固定點、error1

牛頓法

	N=101	N=201	N=301	N=401	N=501
error1	1.190E-04	3.005E-05	1.340E-05	7.548E-06	4.836E-06
error2	6.154E-03	3.088E-03	2.061E-03	1.547E-03	1.238E-03
	N=601	N=701	N=801	N=901	N=1001
error1	3.360E-06	2.473E-06	1.894E-06	1.497E-06	1.213E-06
error2	1.032E-03	8.849E-04	7.744E-04	6.884E-04	6.196E-04

Table: 測試函數 $u = x^2 + y^2$ 與數值解的誤差表格

Figure: $u = x^2 + y^2$ 、牛頓法、error1

既然誤差是有收斂的,那麼接下來就是要看是否有加速的效果, 這邊我分成幾個方向來探討:

	N=101	N=201	N=301	N=401	N=501
inv	0.0325	0.1213	0.3244	0.5978	0.9703
FFT	0.0076	0.0279	0.0847	0.1711	0.2787
	N=601	N=701	N=801	N=901	N=1001
inv	1.4417	2.1402	3.1355	4.0380	5.4382
FFT	0.4092	0.5969	0.7458	0.9564	1.1671

Table: 測試函數 $u = \sin \pi x \cdot \sin 2\pi y$ 、線性、運算時間

Figure: 測試函數 $u = \sin \pi x \cdot \sin 2\pi y$ 、線性、運算時間

Figure: 測試函數 $u = \sin \pi x \cdot \sin 2\pi y$ 、線性、運算時間

	N=101	N=201	N=301	N=401	N=501
inv	0.0317	0.1195	0.3158	0.5786	0.9740
FFT	0.0074	0.0286	0.1050	0.1773	0.3418
	N=601	N=701	N=801	N=901	N=1001
inv	1.4668	2.1450	2.8691	3.7619	5.5389
FFT	0.4172	0.6473	0.7729	1.2176	1.1832

Table: 測試函數 $u = x^2 + y^2$ 、線性、運算時間

Figure: 測試函數 $u = x^2 + y^2$ 、線性、運算時間

Figure: 測試函數 $u = x^2 + y^2$ 、線性、運算時間

	N=101	N=201	N=301	N=401	N=501
固定點	0.0272	0.1146	0.3730	0.7536	1.2222
牛頓法	0.0581	0.2293	0.5341	1.0192	1.6166
	N=601	N=701	N=801	N=901	N=1001
固定點	1.6933	1.9833	2.3298	3.2408	3.6442
牛頓法	2.4666	3.367	3.1203	3.9997	4.9720

Table: 測試函數 $u = \sin \pi x \cdot \sin 2\pi y$ 、非線性、運算時間

Figure: 測試函數 $u = \sin \pi x \cdot \sin 2\pi y$ 、非線性、固定點

Figure: 測試函數 $u = \sin \pi x \cdot \sin 2\pi y$ 、非線性、牛頓法

	N=101	N=201	N=301	N=401	N=501
固定點	0.0532	0.2167	0.6340	0.8676	1.4719
牛頓法	0.0668	0.2559	0.6784	1.5125	1.9254
	N=601	N=701	N=801	N=901	N=1001
固定點	2.058992	2.3817	3.0976	4.043	4.7639
牛頓法	2.8953	3.0163	3.8346	5.7810	8.2694

Table: 測試函數 $u = x^2 + y^2$ 、非線性、運算時間

Figure: 測試函數 $u = x^2 + y^2$ 、非線性、固定點

Figure: 測試函數 $u = x^2 + y^2$ 、非線性、牛頓法

迭代次數

因為有運用到迭代的步驟,所以好奇迭代的的次數會怎麼變化, 因此實際測試過後結果如下:

	N=101	N=201	N=301	N=401	N=501
固定點	5	4	4	4	4
牛頓法	2	2	1	1	1
	N=601	N=701	N=801	N=901	N=1001
固定點	4	3	3	3	3
牛頓法	1	2	1	1	1

Table: 測試函數 $u = \sin \pi x \cdot \sin 2\pi y$ 、非線性、迭代次數

迭代次數

	N=101	N=201	N=301	N=401	N=501
固定點	8	7	6	5	5
牛頓法	1	1	1	2	1
	N=601	N=701	N=801	N=901	N=1001
固定點	5	4	4	4	4
牛頓法	1	1	1	1	1

Table: 測試函數 $u = x^2 + y^2$ 、非線性、迭代次數

Outline

- 1 介紹問題
- 2 數值方法
- 3 數值結果
- 4 結論

結論

在本篇論文,我們簡略說明了 CCPB 方程,但由於變數被定 義在一橢圓中,要先透過橢圓座標轉換,且再利用有限差分法求 出解,由於此求解過程需要求出反矩陣,會拖慢運算速度,因此 我們透過快速傅立葉轉換加速求解的過程,數值結果顯示,不管 是解線性或非線性的方程,兩種預設的誤差結果都非常的接近二 階收斂,不只如此,結果中也可以看運算時間與總點數有著線性 關係,比較特別的地方是,牛頓法雖然迭代次數比起固定點迭代 少,卻不一定比較快;這個問題其實不只要考慮速度、誤差,對 於一開始的輸入初始值、算出特徵值大小,如果輸入的切割點數 太多,還要考慮記憶體空間配置問題,所以程式還利用了 Matlab 中的函式 Sparse 大幅減少記憶體空間,尤其稀疏矩陣。

感謝聆聽