CSC 225 FALL 2022 ALGORITHMS AND DATA STRUCTURES I ASSIGNMENT 2 - SOLUTIONS UNIVERSITY OF VICTORIA

1. (a)
$$T(n) = 1A + 1A + (n^2 + 2)C + (n^2 + 1)(2A) = 3n^2 + 6$$

Or

$$T(n) = 3 + \sum_{i=1}^{n^2+1} 3 = 3 + 3(n^2 + 1) = 3n^2 + 6$$

(b)
$$T(n) = 1A + 1A + (n^2 + 2)C + (n^2 + 1)A + (n^2 + 1)A + (2 + 3 + \dots + (n^2 + 2))C + (1 + \dots + (n^2 + 1))A + (1 + \dots + (n^2 + 1))A$$

$$= 1 + 1 + n^2 + 2 + n^2 + 1 + n^2 + 1 + \frac{(n^2 + 2)(n^2 + 3)}{2} - 1 + \frac{(n^2 + 1)(n^2 + 2)}{2} + \frac{(n^2 + 1)(n^2 + 2)}{2}$$

$$= 5 + 3n^2 + \frac{n^4 + 5n^2 + 6}{2} + n^4 + 3n^2 + 2 = \frac{3}{2}n^4 + \frac{17}{2}n^2 + 10$$

Or

$$T(n) = 3 + \sum_{i=1}^{n^2+1} \left(4 + \sum_{j=1}^{i} 3\right) = 3 + 4 \sum_{i=1}^{n^2+1} 1 + 3 \sum_{i=1}^{n^2+1} i$$

$$= 3 + 4(n^2 + 1) + 3 \frac{(n^2 + 1)(n^2 + 2)}{2} = 7 + 4n^2 + 3\left(\frac{n^4 + 3n^2 + 2}{2}\right)$$

$$= 7 + 4n^2 + \frac{3}{2}n^4 + \frac{9}{2}n^2 + \frac{6}{2} = \frac{3}{2}n^4 + \frac{17}{2}n^2 + 10$$

2. Note that there are many ways to write this and that each of those will have a different runtime.

Algorithm $\operatorname{recMinMax}(A,n)$:

Input: An array A storing $n \ge 1$ elements.

Output: The pair (a, b) where $a = \min A$ and $b = \min A$.

if
$$n = 1$$
 then
return $(A[0], A[0])$
else
 $(a, b) \leftarrow \operatorname{recMinMax}(A, n - 1)$

if
$$A[n-1] < a$$
 then $a \leftarrow A[n-1]$

if
$$A[n-1] > b$$
 then $b \leftarrow A[n-1]$ return (a,b)

Here, for my version

$$T(n) = \begin{cases} 2, & \text{if } n = 1\\ T(n-1) + 6, & \text{if } n \ge 2 \end{cases}$$

3. a) Let
$$T(n) = \begin{cases} 1, & \text{if } n = 1 \\ T(n-1) + n, & \text{if } n \ge 2 \end{cases}$$
. We want to show that $T(n) = n(n+1)/2$.

For the base case, let n=1, then according to the recurrence equation T(1)=1. Also, the closed formula gives us $T(1)=\frac{1(2)}{2}=1$. So, the base case holds.

Assume now that it is true for some $n = k \ge 1$. That is, T(k) = k(k+1)/2. Now, we consider when $n = k+1 \ge 2$. By the recurrence,

$$T(k+1) = T(k) + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k^2 + k}{2} + \frac{2(k+1)}{2}$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

Therefore, by induction, T(n) = n(n+1)/2 for all $n \ge 1$.

b) Let
$$T(n) = \begin{cases} 1, & \text{if } n = 0 \\ T(n-1) + 2^n, & \text{if } n \ge 1 \end{cases}$$
. We want to show that $T(n) = 2^{n+1} - 1$.

For the base case, let n=0, then according to the recurrence equation T(0)=1. Also, the closed formula gives us $T(0)=2^{0+1}-1=2-1=1$. So, the base case holds. Assume now that it is true for some $n=k\geq 0$. That is, $T(k)=2^{k+1}-1$. Now, we consider when $n=k+1\geq 1$. By the recurrence,

$$T(k+1) = T(k) + 2^{k+1}$$

$$= 2^{k+1} - 1 + 2^{k+1}$$

$$= 2 \cdot 2^{k+1} - 1$$

$$= 2^{k+2} - 1$$

Therefore, by induction, $T(n) = 2^{n+1} - 1$ for all $n \ge 0$.

4. Using the definition of Big-Oh, I will prove each:

a) We want to show that there exists a c, $n_0 > 0$ such that $3n^2 - 100n + 6 \le cn^2$ for all $n \ge n_0$.

$$3n^2 - 100n + 6 \le 3n^2 + 6 \le 3n^2 + 6n^2 = 9n^2$$

For all $n \ge 1$. Therefore, for c = 9, $n_0 = 1$, $3n^2 - 100n + 6 \le cn^2$, for all $n \ge n_0$

b) We want to show that there exists a c, $n_0 > 0$ such that $2n^3 + n\sqrt{n} \le cn^3$ for all $n \ge n_0$.

$$2n^3 + n\sqrt{n} = 2n^3 + n^{3/2} \le 2n^3 + n^3 = 3n^3$$

For all $n \ge 1$. Therefore, for c = 3, $n_0 = 1$, $2n^3 + n\sqrt{n} \le cn^3$, for all $n \ge n_0$.

c) We want to show that there exists a c, $n_0 > 0$ such that $3n \log n + 2n\sqrt{n} \le cn\sqrt{n}$ for all $n \ge n_0$.

Here, we note that $\log n = \log \left(\left(\sqrt{n} \right)^2 \right) = 2 \log \sqrt{n} \le 2 \sqrt{n}$ for all $n \ge 1$. So,

$$3n\log n + 2n\sqrt{n} \le 3n(2\sqrt{n}) + 2n\sqrt{n} = 8n\sqrt{n}$$

For all $n \ge 1$. Therefore, for c = 8, $n_0 = 1$, $3n \log n + 2n\sqrt{n} \le cn\sqrt{n}$ for all $n \ge n_0$.

d) We want to show that there exists a $c, n_0 > 0$ such that $(x + y)^2 \le c(x^2 + y^2)$ for all $x, y \ge n_0$.

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$\leq x^{2} + 2 \max(x^{2}, y^{2}) + y^{2}$$

$$\leq x^{2} + 2x^{2} + 2y^{2} + y^{2}$$

$$= 3x^{2} + 3y^{2}$$

$$= 3(x^{2} + y^{2})$$

For all $x, y \ge 1$. Therefore, for c = 3, $n_0 = 1$, $(x + y)^2 \le c(x^2 + y^2)$ for all $x, y \ge n_0$

5. The order is as follows, from fastest to slowest, where if they are on the same line, they are Big-Theta of each other (I have also highlighted them):

 $\log \log n$ $\log n, \ln n$ $(\log n)^2$ \sqrt{n} n $n \log n$ $n^{1.375}$

$$n^{2}, n^{2} + \log n$$
 n^{3}
 $n - n^{3} + 7n^{5}$
 $2^{n}, 2^{n-1}$
 e^{n}
 $n!$