UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE EDUCAÇÃO DO PLANALTO NORTE - CEPLAN BACHARELADO EM SISTEMAS DE INFORMAÇÃO

INTERPRETADOR DE ALGORITMOS PORTUGOL EM HTML5

GILBERTO EDMUNDO TAVARES

INTERPRETADOR DE ALGORITMOS PORTUGOL EM HTML5

Trabalho de Conclusão apresentado ao Curso de Bacharelado em Sistemas de Informação, da Universidade do Estado de Santa Catarina, como requisito para a obtenção do grau de Bacharel em Sistemas de Informação

Orientador: Dr. Luiz Cláudio Dalmolin

São Bento do Sul, SC

GILBERTO EDMUNDO TAVARES

INTERPRETADOR DE ALGORITMOS PORTUGOL EM HTML5

Trabalho de Conclusão apresentado ao Curso de Bacharelado em Sistemas de Informação, da Universidade do Estado de Santa Catarina, como requisito para a obtenção do grau de Bacharel em Sistemas de Informação

Banca Examinadora	
Orientador:	
	Dr. Luiz Cláudio Dalmolin
	Universidade do Vale do Itajaí
Membros:	
	(titulação + nome completo)
	IES de origem
	(titulação + nome completo)
	IES de origem

São Bento do Sul SC, 24/11/2016

Dedico este aos meus familiares falecidos:

Meu irmão que sempre apoiou minha formação superior e carreira até oferecendo certa colaboração financeira.

E ainda mais recente meu pai que financiou meu pré ingresso e não pude compartilhar com ele esta conquista.

AGRADECIMENTOS

A minha mãe me apoiou em minha decisão de cursar faculdade em outra cidade. E sempre que possível, mesmo com dificuldade, ajudou como pode com móveis para meu primeiro quarto, algumas compras e mercado e algum dinheiro quando ficava mais crítico. Inclusive isso tudo pode ter sido um dos motivos da decisão dela em vender o imóvel em morávamos.

A toda a família Lischka que me acolheu inicialmente como hóspede na residência do casal Arnaldo e Jacira (prima da minha mãe). Foi também na empresa familiar deles juntos com seus filhos que tive meu primeiro emprego na cidade e me cedido para moradia o quartinho e dependências junto à empresa.

"A maioria dos bons programadores programa não por esperar ser pago ou adulado pelo público, mas porque é divertido programar." (tradução nossa) Linus Torvalds

RESUMO

Palavras-chaves: Lógica da programação. Algoritmos. Portugol. Interpretador. HTML5.

ABSTRACT

Key-words: Programming logic. Algorithms. Portugol. Interpreter. HTML5.

LISTA DE ILUSTRAÇÕES

LISTA DE TABELAS

LISTA DE ABREVIATURAS E SIGLAS

HTML HyperText Markup Language

UAL UNESA Algorithmic Language

UNESA Universidade Estácio de Sá

SUMÁRIO

1	INTRODUÇÃO	13
1.1	OBJETIVOS DO TRABALHO	13
1.1.1	Objetivo Geral	13
1.1.2	Objetivos Específicos	13
1.2	JUSTIFICATIVA DO TRABALHO	13
1.3	ESTRUTURA DO TRABALHO	13
2	FUNDAMENTAÇÃO TEÓRICA	14
2.1	ALGORITMOS	14
2.1.1	Ensino Aprendizagem	14
2.2	PSEUDOLIGUAGEM E PORTUGOL	14
2.3	FERRAMENTAS EXISTENTES	14
2.3.1	UAL e Editor UAL	15
2.3.2	Demais Aplicativos	15
2.3.3	Ambiente Virtual de Aprendizagem - AVA	15
2.3.3.1	Udacity	15
2.3.3.2	Codeacademy	15
2.3.3.3	SoloLearn	15
2.3.3.4	Code School	15
2.3.4	Programação em Blocos	15
2.3.4.1	Blockly	15
2.4	ONLINE JUDGE	15
2.5	TECNOLOGIAS WEB	16
2.5.1	Linguagem de Marcação de Texto	16
2.5.2	Liguagem de Programação para Web	16
2.5.2.1	ECMAScript	16
2.5.2.2	WebAssembly	16
2.5.3	Navegadores Web	16
2.5.4	Aprimoramentos para Uso Offline	16
2.6	COMPILADORES E INTERPRETADORES	16
2.6.1	Análise Morfológica	16
2.6.2	Análise Léxica	16
2.6.3	Tokenização e Parseamento	16
2.6.4	Análise Sintática	16
2.6.5	Análise Semantica	16
3	MÉTODOS DE PESQUISA	17
3.1	ESTUDO DA FERRAMENTA EDITORUAL	17

3.2	ESTUDO DA OUTRAS FERRAMENTA RELACIONADAS	17
3.3	DEFINIÇÃO DE REQUISITOS	17
3.4	DESENVOLVIMENTO	17
3.4.1	Interface Gráfica	17
3.4.2	Módulo de Classificação	17
3.4.3	Módulo de Interpretação	17
4	DESENVOLVIMENTO DA APLICAÇÃO	18
4.1	FERRAMENTAS UTILIZADAS	18
4.1.1	Editor de Código ACE	18
4.1.2	Parser Acorn	18
4.1.3	JS-Interpreter	18
4.2	PROCESSO CRIACIONAL	18
4.2.1	Git e Github	18
4.2.2	Node.js e Grunt	18
4.2.3	SASS	18
4.2.4	TDD	18
4.3	INTERFACE GRÁFICA	18
4.3.1	Material Design	18
4.3.1.1	MDL	18
4.3.2	Inspirações	18
5	CONSIDERAÇÕES FINAIS	19
5.1	RELAÇÃO ENTRE OS OBJETIVOS E OS RESULTADOS OBTIDOS	19
5.2	LIMITAÇÕES DA PESQUISA	19
5.3	SUGESTÕES PARA TRABALHOS FUTUROS	19
	REFERÊNCIAS	20

1 INTRODUÇÃO

1.1 OBJETIVOS DO TRABALHO

1.1.1 Objetivo Geral

Apresentar o conceito de ferramenta computadorizada para se tornar referência em criação, edição, visualização e interpretação de algoritmos em pseudolinguagem, como alternativa às existentes. Sendo seu diferencial o acesso nativo a partir de navegadores *Web* modernos. Inclusive acessível quando uma conexão com a internet esteja indisponível.

1.1.2 Objetivos Específicos

Visando atingir o objetivo geral em sua totalidade lista-se a seguir objetivos específicos de modo sucinto:

- Desenvolver o protótipo, sendo seu código fonte aberto e disponível para que outros possam manter, ampliar e evoluir a aplicação;
- Fazê-lo compatível com a sintaxe desenvolvida na Universidade Estácio de Sá (UNESA) a UNESA *Algorithmic Language* (UAL). E mínimo produto viável para a primeira lição de ensino aprendizagem;
- Permitir o acesso via navegadores *Web* modernos, sem necessidade de instalações complementares;
- Aplicar aprimoramentos introduzidos na versão 5 da *HyperText Markup Language* (HTML) para uso sem conexão com a internet.

1.2 JUSTIFICATIVA DO TRABALHO

1.3 ESTRUTURA DO TRABALHO

2 FUNDAMENTAÇÃO TEÓRICA

2.1 ALGORITMOS

A última das notas de Ada Lovelace, que foram republicadas em 1953, apresenta os primeiros conceitos sobre programação, descrevendo um algoritmo. Desde então estes foram difundidos, sendo utilizados até a atualidade (SANTIAGO; DAZZI, 2003).

2.1.1 Ensino Aprendizagem

2.2 PSEUDOLIGUAGEM E PORTUGOL

2.3 FERRAMENTAS EXISTENTES

- Portugol/Plus
- Visual Alg
- G-Portugol
- Portugol IDE
- Portugol Studio
- ASA
- ATMUF
- AWTM
- AMBAP
- CIFluxProg
- RAFF
- SistLog
- Ambiente SICAS
- C-Tutur
- PL-Detective

2.3.1 UAL e Editor UAL

2.3.2 Demais Aplicativos

2.3.3 Ambiente Virtual de Aprendizagem - AVA

Udacity

Codeacademy

SoloLearn

Code School

2.3.4 Programação em Blocos

Blockly

2.4 ONLINE JUDGE

Sistema de Apoio a Competições de Programação é a denominação em português de *Online Judge* por Campos e Ferreira (2004), nomeado como BOCA. E mais recente foi desenvolvido por acadêmico da URI (Universidade Regional Integrada do Alto Uruguai e das Missões) com base nesse trabalho anterior o URI *Judge Online* (TONIN; BEZ, 2012).

2.5 TECNOLOGIAS WEB

- 2.5.1 Linguagem de Marcação de Texto
- 2.5.2 Liguagem de Programação para Web

ECMAScript

WebAssembly

- 2.5.3 Navegadores Web
- 2.5.4 Aprimoramentos para Uso Offline
- 2.6 COMPILADORES E INTERPRETADORES
- 2.6.1 Análise Morfológica
- 2.6.2 Análise Léxica
- 2.6.3 Tokenização e Parseamento
- 2.6.4 Análise Sintática
- 2.6.5 Análise Semantica

3 MÉTODOS DE PESQUISA

- 3.1 ESTUDO DA FERRAMENTA EDITORUAL
- 3.2 ESTUDO DA OUTRAS FERRAMENTA RELACIONADAS
- 3.3 DEFINIÇÃO DE REQUISITOS
- 3.4 DESENVOLVIMENTO
- 3.4.1 Interface Gráfica
- 3.4.2 Módulo de Classificação
- 3.4.3 Módulo de Interpretação

4 DESENVOLVIMENTO DA APLICAÇÃO

- 4.1 FERRAMENTAS UTILIZADAS
- 4.1.1 Editor de Código ACE
- 4.1.2 Parser Acorn
- 4.1.3 JS-Interpreter
- 4.2 PROCESSO CRIACIONAL
- 4.2.1 Git e Github
- 4.2.2 Node.js e Grunt
- 4.2.3 SASS
- 4.2.4 TDD
- 4.3 INTERFACE GRÁFICA
- 4.3.1 Material Design

MDL

4.3.2 Inspirações

5 CONSIDERAÇÕES FINAIS

- 5.1 RELAÇÃO ENTRE OS OBJETIVOS E OS RESULTADOS OBTIDOS
- 5.2 LIMITAÇÕES DA PESQUISA
- 5.3 SUGESTÕES PARA TRABALHOS FUTUROS

REFERÊNCIAS

CAMPOS, Cassio P. de; FERREIRA, Carlos E. Boca: um sistema de apoio a competições de programação. In: XII WEI - Workshop de Educação em Computação no XXIV Congresso da Sociedade Brasileira de Computação, Salvador, UFBA - Universidade Federal da Bahia. Salvador: Anais do XXIV Congresso da Sociedade Brasileira de Computação, 2004.

FUEGI, J.; FRANCIS, J. Lovelace babbage and the creation of the 1843 'notes'. **IEEE Annals of the History of Computing**, v. 25, n. 4, p. 16–26, Oct 2003. ISSN 1058-6180.

SANTIAGO, Rafael de; DAZZI, Rudimar Luís Scaranto. Ferramentas que auxiliam o desenvolvimento da lógica de programação. In: **XII SEMINCO - Seminário de Computação, 2003, Blumenau. Anais do XII SEMINCO**. Blumenau: Furb, 2003. p. 113–120.

TONIN, Neilor A.; BEZ, Jean Luca. Uri online judge: a new classroom tool for interactive learning. In: WORLDCOMP'12 - The 2012 World Congress in Computer Science, Computer Engineering, and Applied Computing, 2012, Las Vegas, NV. The 2012 International Conference on Frontiers in Education: Computer Science and Computer Engineering (FECS 2012). USA: CSREA Press, 2012. v. 1, p. 242–246.