Dr. Brigitte Breckner Dr. Anca Grad

Winter semester 2013-2014

Exercise Sheet no.14

Analysis for CS

GROUPWORK:

(G 33) (Integration over normal domains)

Let $\emptyset \neq M \subseteq \mathbb{R}^2$ be bounded and let $f: M \to \mathbb{R}$ be continuous. Represent M in a Cartesian coordinate system and compute $I := \int \int_M f(x,y) dx dy$ in the following cases:

a)
$$M = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 1, -1 \le x \le y\}, f(x, y) = xy - y^3,$$

b) M = the domain in the first quadrant which lies between the line y = x and the parabola $y = x^2$, f(x, y) = xy,

c)
$$M = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le x\}, f(x, y) = y + \sin(\pi x^2).$$

(G 34) (Improper integrals)

Using the formula of Leibniz-Newton for improper integrals, study the improper integrability of the following functions on their domains and, in case they are improperly integrable, compute the corresponding improper integrals.

a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = e^{-2x}$,

b)
$$f: [2, \infty) \to \mathbb{R}$$
, $f(x) = \frac{1}{x(\ln x)^{\alpha}}$, where $\alpha \in \mathbb{R}$ is a parameter.

(G 35) (Limits of real-valued functions of several variables)

1) Show that, in each of the following cases, the function $f: \mathbb{R}^2 \setminus \{0_2\} \to \mathbb{R}$ does not have a limit at 0_2 :

a)
$$f(x,y) = \frac{y^2}{x^2 + y^2}$$
, b) $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$.

2) Show that the function $g: \mathbb{R}^2 \setminus \{0_2\} \to \mathbb{R}$, defined by $g(x,y) = \frac{xy^3}{x^2+y^2}$, has a limit at 0_2 and determine this limit.

(G 36) (Pythagoras' theorem in \mathbb{R}^n)

Let $x, y \in \mathbb{R}^n$ be two orthogonal vectors, i.e., $\langle x, y \rangle = 0$. Prove that then the equality

$$||x + y||^2 = ||x||^2 + ||y||^2$$

holds true.