Plonk Arithmetization

January 09, 2025

Distributed Lab

zkdl-camp.github.io

github.com/ZKDL-Camp

Plan

1 Introduction. PlonK: Five Ws

2 PlonK Arithmetization

- 3 Polynomial Form
 - Formulating Conditions
 - Permutation Check

Introduction. PlonK: Five Ws

What is PlonK?

PlonK is a type of zkSNARK:

- Groth16
- Halo2
- Marlin
- PlonK
- . . .

Who and When invented Plonk?

Ariel Gabizon, Zachary Williamson, Oana Ciobotaru introduced paper "PLONK: Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge" in 2019

PlonK: Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge

Ariel Gabizon* Aztec Zachary J. Williamson Aztec

Oana Ciobotaru

February 23, 2024

Figure: PlonK Paper. Date in Paper reflects the last update :)

Why use Plonk?

Focus on what you want:

- ZKP for different tasks?
- Efficient proving times?
- Small-medium proof sizes?
- Flexibility?

Where Plonk is used?

zkVMs love Plonk!

- Aztek Protocol (Noir)
 - zkSync
 - Dusk Network
 - Mina Protocol

PlonK Arithmetization

Goal: Write some program (computation) into math processing-prone form.

Example

Public Input: $x \in \mathbb{F}$ Private Input: $e \in \mathbb{F}$ Output: $e \times x + x - 1$

Goal: Write some program (computation) into math processing-prone form.

Example

Public Input: $x \in \mathbb{F}$ Private Input: $e \in \mathbb{F}$ Output: $e \times x + x - 1$

Let's split our program into the sequence of gates with left, right operands and output - circuit.

Example

We need three gates to encode our program:

1. **Gate** #1: left e, right x, output $u = e \times x$

Goal: Write some program (computation) into math processing-prone form.

Example

Public Input: $x \in \mathbb{F}$ Private Input: $e \in \mathbb{F}$ Output: $e \times x + x - 1$

Let's split our program into the sequence of gates with left, right operands and output - circuit.

Example

We need three gates to encode our program:

- 1. **Gate** #1: left e, right x, output $u = e \times x$
- 2. **Gate** #2: left u, right x, output v = u + x

Goal: Write some program (computation) into math processing-prone form.

Example

Public Input: $x \in \mathbb{F}$ Private Input: $e \in \mathbb{F}$ Output: $e \times x + x - 1$

Let's split our program into the sequence of gates with left, right operands and output - circuit.

Example

We need three gates to encode our program:

- 1. **Gate** #1: left e, right x, output $u = e \times x$
- 2. **Gate** #2: left u, right x, output v = u + x
- 3. **Gate** #3: left v, right x, output w = v + (-1)

Execution Trace

Then, form execution trace table — a matrix T with columns L, R and O.

Example

Α	В	С
2	3	6
6	3	9
9	X	8

Execution Trace

Then, form execution trace table — a matrix T with columns L, R and O.

Example

Α	В	С
2	3	6
6	3	9
9	X	8

Remark

Notice how the last row has no value in B column (marked by X) — this is reasoned by the fact it is not a variable, but rather a constant, meaning it doesn't depend on execution.

Encode the Program

Suppose you were given random matrix T. How could you tell if it is suitable for your circuit?

Solution

Encode the circuit. Check *T* using encoding:

- 1. Gates (gate constraints) using matrix Q.
- 2. Wires (copy constraints) using matrix V.

Encode the Program

Suppose you were given random matrix T. How could you tell if it is suitable for your circuit?

Solution

Encode the circuit. Check T using encoding:

- 1. Gates (gate constraints) using matrix Q.
- 2. Wires (copy constraints) using matrix V.

Definition (Gate Matrix)

Q matrix has one row per each gate with columns Q_L , Q_R , Q_O , Q_M , Q_C . If columns A, B and C of the execution trace table form valid evaluation of the circuit,

$$A_i Q_{Li} + B_i Q_{Ri} + A_i B_i Q_{Mi} + C_i Q_{Oi} + Q_{ci} = 0$$

Q Matrix

Example

For our program, we would have a following Q table:

Q_L	Q_R	Q_M	Q_O	Q_c
0	0	1	-1	0
1	1	0	-1	0
1	0	0	-1	-1

You can verify that our claim holds for aforementioned trace matrix:

$$2 \times 0 + 3 \times 0 + 2 \times 3 \times 1 + 6 \times (-1) + 0 = 0$$
$$6 \times 1 + 3 \times 1 + 6 \times 3 \times 0 + 9 \times (-1) + 0 = 0$$
$$9 \times 1 + 0 \times 0 + 9 \times 0 \times 0 + 8 \times (-1) + (-1) = 0$$

V Matrix

Definition

 ${\it V}$ consists of indices of all inputs and intermediate values, so that if ${\it T}$ is a valid trace,

$$\forall i,j,k,l: (V_{i,j}=V_{k,l}) \Rightarrow (T_{i,j}=T_{k,l})$$

Example

For our program, V would look like following:

L	R	0
0	1	2
2	1	3
3		4

Here 0 is an index of e, 1 is an index of x, 2 — u, 3 — v and 4 — output w.

Custom Gates

Default Plonk: addition and multiplication gates. How to make it more *interesting*?

Solution

 ${\it Q}$ with it's 5 columns already allows for custom gates, however it is possible to include out own columns.

Example

Our entire program may be encoded as one custom gate.

$$2 \times 0 + 3 \times 1 + 2 \times 3 \times 1 + 8 \times (-1) + (-1) = 0$$

Public Inputs

Also need to encode public inputs.

Idea

Consider, as if we added new *selector* rows to Q and tied them in V and \mathcal{T} .

Example

	Q_L	Q_R	Q_M	Q_o	Q_c
	-1	0	0	0	3
Q:	-1	0	0	0	8
	1	1	1	-1	1
	1	-1	0	0	0

	L	R	0
	0		
V:	1		
	2	0	3
	1	3	

	Α	В	С
	3		
<i>T</i> :	8		
	2	3	8
	8	8	

Public Inputs

Also need to encode public inputs.

Idea

Consider, as if we added new *selector* rows to Q and tied them in V and T.

Example

Q:	Q_L	Q_R	Q_M	Q_o	Q_c
	-1	0	0	0	3
	-1	0	0	0	8
	1	1	1	-1	1
	1	-1	0	0	0

	L	R	0
	0		
V:	1		
	2	0	3
	1	3	

	Α	В	С
	3		
:	8		
	2	3	8
	8	8	

Now Q and V are not independent of evaluations.

Solution

We introduce another one-column matrix named Π (public inputs).

Wrap-Up

Example

With only Q modified, we have:

Q:

3 8 0

, , , , , , , , , , , , , , , , , , , ,						
Q_L	Q_R	Q_M	Q_o	Q_c		
-1	0	0	0	0		
-1	0	0	0	0		
1	1	1	-1	1		
1	-1	0	0	0		
	Q _L -1 -1 1	$\begin{array}{c cccc} Q_L & Q_R & \\ -1 & 0 & \\ -1 & 0 & \\ 1 & 1 & \\ 1 & -1 & \\ \end{array}$	$\begin{array}{c cccc} Q_L & Q_R & Q_M \\ -1 & 0 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 0 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Wrap-Up

Example

With only Q modified, we have:

only Q modified, we have:						
	Q_L	Q_R	Q_M	Q_o	Q_c	
	-1	0	0	0	0	
Q:	-1	0	0	0	0	
	1	1	1	-1	1	
	1	-1	0	0	0	

Definition (Interim Summary)

Matrix T with columns A, B and C encodes correct execution of the program, if the following two conditions hold:

1.
$$\forall i : A_i Q_{Li} + B_i Q_{Ri} + A_i B_i Q_{Mi} + C_i Q_{Oi} + Q_{ci} + \Pi_i = 0$$

2.
$$\forall i, j, k, l : (V_{i,j} = V_{k,l}) \Rightarrow (T_{i,j} = T_{k,l})$$

Matrices to Polynomials

Encode matrices into a few equations on polynomials.

Let ω be a primitive N-th root of unity and let $\Omega = \{\omega^j : 0 \leq j < N\}$. Let $a, b, c, q_L, q_R, q_M, q_O, q_C, \pi$ be polynomials of degree at most N that interpolate corresponding columns from matrices at the domain Ω . This means, that $\forall j : a(\omega^j) = A_j$ and the same for other columns.

Matrices to Polynomials

Encode matrices into a few equations on polynomials.

Let ω be a primitive N-th root of unity and let $\Omega = \{\omega^j : 0 \leq j < N\}$. Let $a, b, c, q_L, q_R, q_M, q_O, q_C, \pi$ be polynomials of degree at most N that interpolate corresponding columns from matrices at the domain Ω . This means, that $\forall j : a(\omega^j) = A_j$ and the same for other columns.

Proposition

Now we can reduce down our first condition to checking valid execution trace into the following claim over polynomials:

$$\exists t \in \mathbb{F}[X] : aq_L + bq_R + abq_M + cq_O + q_C + \pi = z_\Omega t,$$

where $z_{\Omega}(X)$ is the vanishing polynomial $X^{N}-1$.

Copy constraints in polynomial form.

Spoiler: we can use the concept of permutation to encode V wirings.

A permutation is a rearrangement of the set:

$$\mathcal{I} = \{(i,j) : \text{such that } 0 \le i < N, \text{ and } 0 \le j < 3\}$$

Permutation of the set is commonly denoted as σ .

Copy constraints in polynomial form.

Example

The matrix V induces a permutation of this set where $\sigma((i,j))$ is equal to the indices of the next occurrence of the value at position (i,j). So, for our example:

$$\sigma((0,0)) = (2,1), \sigma((0,1)) = (0,3), \sigma((0,2)) = (0,2)$$

$$\sigma((0,3)) = (0,1), \sigma((2,1)) = (0,0), \sigma((3,1)) = (2,2)$$

Permutation Check. Having defined permutation, we can now reduce a condition 2 of valid execution trace matrix into the following check:

$$\forall (i,j) \in \mathcal{I} : T_{i,j} = T_{\sigma(i,j)}$$

You may have noticed how this can be reformulated as equality of *A* and *B*:

$$A = \{((i,j), T_{i,j}) : (i,j) \in \mathcal{I}\}$$
$$B = \{(\sigma((i,j)), T_{i,j}) : (i,j) \in \mathcal{I}\}$$

We can reduce this check down to polynomial equations.

Suppose we have sets $A = \{a_0, a_1\}$ and $B = \{b_0, b_1\}$. We can consider polynomials $A' = \{a_0 + X, a_1 + X\}, B' = \{b_0 + X, b_1 + X\}.$ So, A' = B', only if $(a_0 + X)(a_1 + X) = (b_0 + X)(b_1 + X)$. This is true because of linear polynomial unique factorization property, working as prime factors. Now, we can utilize Schwartz-Zippel lemma to replace the latter formula with $(a_0 + \gamma)(a_1 + \gamma) = (b_0 + \gamma)(b_1 + \gamma)$ for some random γ with overwhelming probability. If we wish to generalize this for arbitrary sets $A = \{a_0, \dots, a_{k-1}\}\$ and $B = \{b_0, \dots, b_{k-1}\}\$, apply the following check:

$$\prod_{i=0}^{k-1} (a_i + \gamma) = \prod_{i=0}^{k-1} (b_i + \gamma)$$

Let Ω be a domain of the form $\{1, \omega, \dots, \omega^{k-1}\}$ for some k-th root of unity ω . Let f and g be polynomials that interpolate the following values at Ω :

$$f: (a_0 + \gamma, ..., a_{k-1} + \gamma)$$

 $g: (b_0 + \gamma, ..., b_{k-1} + \gamma)$

Then $\prod_{i=0}^{k-1}(a_i+\gamma)=\prod_{i=0}^{k-1}(b_i+\gamma)$ if and only if exists a polynomial $Z\in\mathbb{F}[X]$ such that for all $h\in\Omega$ we have $Z(\omega^0)=1$ and $Z(h)f(h)=g(h)Z(\omega h)$.

Now that we can encode equality of sets of field elements, let's expand this to sets of tuples of field elements. Let $A = \{(a_0, a_1), (a_2, a_3)\}$ and $B = \{(b_0, b_1), (b_2, b_3)\}$, then, similarly:

$$A' = \{a_0 + a_1 Y + X, a_2 + a_3 Y + X\}$$
$$B' = \{b_0 + b_1 Y + X, b_2 + b_3 Y + X\}$$
$$A = B \leftrightarrow A' = B'$$

As before, we can leverage Schwartz-Zippel lemma to reduce this down into sampling random β and γ and checking equality of:

$$(a_0 + \beta a_1 + \gamma)(a_2 + \beta a_3 + \gamma) = (b_0 + \beta b_1 + \gamma)(b_2 + \beta b_3 + \gamma)$$

Let's make (i,j) into one field element, so that we can use statement above for encoding.

Recall that $i \in [0; N-1]$ and $j \in [0; 2]$; we can take 3N-th primitive root of unity η and define our field element as $a_0 = \eta^{3i+j}$:

$$A = \{ (\eta^{3i+j}, T_{i,j}) : (i,j) \in \mathcal{I} \}$$

$$B = \{ (\eta^{3k+l}, T_{i,j}) : (i,j) \in \mathcal{I}, \sigma((i,j)) = (k,l) \}$$

Let η be a 3N-th primitive root of unity, β and γ random field elements. Let $\mathcal{D}=\{1,\eta,\eta^2,\ldots,\eta^{3N-1}\}$. Then let f and g interpolate at \mathcal{D} :

$$f : \{ T_{i,j} + \eta^{3i+j} \beta + \gamma : (i,j) \in \mathcal{I} \}$$

$$g : \{ T_{i,j} + \eta^{3k+l} \beta + \gamma : (i,j) \in \mathcal{I}, \sigma((i,j)) = (k,l) \}$$

So,
$$\exists Z \in \mathbb{F}[X]$$
 s.t. $\forall h \in \Omega$ we have $Z(\eta^0) = 1$ and $Z(h)f(h) = g(h)Z(\eta h) \leftrightarrow A = B$ w.h.p.

Notice, that $\omega=\eta^3$ is a primitive *N*-th root of unity. Let $\Omega=\{1,\omega,\omega^2,\ldots,\omega^{N-1}\}$. We will define three polynomials, which interpolate following sets:

$$S_{\sigma 1}: \{\eta^{3k+l}: (i,0) \in \mathcal{I}, \sigma((i,0)) = (k,l)\}$$

$$S_{\sigma 2}: \{\eta^{3k+l}: (i,1) \in \mathcal{I}, \sigma((i,0)) = (k,l)\}$$

$$S_{\sigma 3}: \{\eta^{3k+l}: (i,2) \in \mathcal{I}, \sigma((i,0)) = (k,l)\}$$

Copy constraints via polynomials

Let ω be an N-th root of unity. Let $\Omega = \{1, \omega, \omega^2, \dots, \omega^{N-1}\}$. Let k_1 and k_2 be two field elements such that $\omega^i \neq \omega^j k_1 \neq \omega^l k_2$ for all i, j, l. Let β and γ be random field elements. Let f and g be the polynomials that interpolate, respectively, the following values at Ω :

$$f: \{ (T_{0,j} + \omega^{i}\beta + \gamma) (T_{1,j} + \omega^{i}k_{1}\beta + \gamma) (T_{2,j} + \omega^{i}k_{2}\beta + \gamma) : 0 \le i < N \}$$

$$g: \{ (T_{0,j} + S_{0,1}(\omega^{i})\beta + \gamma) (T_{0,j} + S_{0,2}(\omega^{i})\beta + \gamma) (T_{0,j} + S_{0,3}(\omega^{i})\beta + \gamma) \}$$

So, $\exists Z \in \mathbb{F}[X]$ such that $\forall d \in \mathcal{D}$ we have $Z(\omega^0) = 1$ and $Z(d)f(d) = g(d)Z(\omega d) \leftrightarrow A = B$ w.h.p.

Summary | Matrices

Definition

Let T be a $N \times 3$ matrix with columns A, B, C and Π a $N \times 1$ matrix where N is the number of gates. They correspond to a valid execution instance with public input given by Π if and only if:

1.
$$\forall i : A_i Q_{Li} + B_i Q_{Ri} + A_i B_i Q_{Mi} + C_i Q_{Oi} + Q_{Ci} + \Pi_i = 0$$

2.
$$\forall i, j, k, l : V_{i,j} = V_{k,l} \implies T_{i,j} = T_{k,l}$$

3.
$$\forall i > n : \Pi_i = 0$$

Summary | Polynomials

Definition

Let $z_{\Omega} = X^N - 1$. Let T be a $N \times 3$ matrix with columns A, B, C and Π a $N \times 1$ matrix. They correspond to a valid execution instance with public input given by Π if and only if:

- 1. $\exists t_1 \in \mathbb{F}[X]$: $aq_L + bq_R + abq_M + cq_O + q_C + \pi = z_\Omega t_1$
- 2. $\exists t_2, t_3, z \in \mathbb{F}[X] : zf gz' = z_{\Omega}t_2 \text{ and } (z-1)L_1 = z_{\Omega}t_3$, where $z'(X) = z(X\omega)$.

Thank you for your attention

zkdl-camp.github.io
 github.com/ZKDL-Camp

