Workshop Kaskade 7 & Applications A Tour of Kaskade 7

M. Weiser, L. Lubkoll

Zuse Institute Berlin

MATHEON

Contents

Installation

- download
- installation scripts

Grids

- Dune grid interface
- creating grids
- modifying grids

Finite element spaces

- mathematical concepts
- reference elements
- Lagrangian, hierarchical, constant spaces
- continuous / discontinuous spaces

Variational problems

- problem definition
- Newton perspective
- assembly process and options
- accessing data

Solvers

- Dune ISTL interface
- direct solvers
- iterative solvers, adaptive PCG

IO

Error estimation

- mathematical concepts
- embedded and hierarchical error estimators
- coarsening

Time stepping

- implicit Euler
- extrapolation

Installation

Installation in 2 steps:

• Third-party libraries, e.g.,

```
suitable compiler
boost
Dune
UG
ACML (BLAS, LAPACK)
UMFPACK
MUMPS
SuperLU
ITSOL
HYPRE
TAUCS
amiramesh
```

• Kaskade 7 library and tutorial examples

MATHEON

View doyxgen documentation online!

Installation

- Go to the Kaskade 7 website http://www.zib.de/en/numerik/ software/kaskade-7.html
- download and unpack Kaskade7.2
- download and unpack installer shellscripts for the installation of needed third-party software
- run installer script

Next steps:

- change to Install_Kaskade7 directory
 use some install-xxx.Local file as a template for the install.Local file
- execute shellscript: ./install.sh

prompts for some additional information, e.g., directory with Kaskade7 source files

installs the required third-party software

creates a suitable Makefile.Local in the Kaskade7 directory

And finally run the commands

make install make tutorial

completing the installation of the Kaskade7 code

Some details:

- review the install.Local file, adapt it to your installation needs,
 e.g.,name and location of your LAPACK/BLAS library
- on Linux 64bit systems we recommend to use a ACML library instead of LAPACK/BLAS
- read the file README_BEFORE_STARTING before starting the installation, check for availability of the prerequites mentioned in this file
- take special attention to other notes marked by ***

• ...

Dune Grids

Dune Grid Interface

Motivation

- implementing grid management is hard
- several FE codes with unstructured grid manager available (UG, Alberta, ...)
- but different interfaces for accessing them (lock-in)

create uniform interface to existing grid managers to be re-used (P. Bastian)

Current state

- comprehensive grid interface to several grid managers
- additional modules:
 - sparse linear algebra & iterative solvers (ISTL)
 - IO for different file formats
 - FE discretizations (dune-FEM, dune-PDElab, dune-fufem)
 - subgrid, multidomainsubgrids

Abstract Grid Concept

reference elements: convex polytopes $E_r \subset \mathbb{R}^k, \quad k = 0, \dots, d$

- points, lines
- triangles, squares
- tetrahedra, cubes, prisms, pyramids

grid: set of entities $E \subset \overline{\Omega} \subset \mathbb{R}^d$

- vertices, edges, faces, cells

Abstract Grid Concept

grid hierarchy: grids G_0,\ldots,G_j covering $\Omega_0\supset\cdots\supset\Omega_j$ such that each cell in G_i is a union of cells from G_{i+1} or not contained in Ω_{j+1}

leaf grid: grid consisting of all non-refined cells of a grid hierarchy

View Concept

viewing data from different perspectives without involving recomputations leads to many copies of the same data

Name	peter	petra	piotr	petrus	biera
Salary	25000	40000	30000	35000	50000
Age	30	25	27	28	45

Data

Who earns most?

Name	biera	petra	petrus	piotr	peter
Salary	50000	40000	35000	30000	25000
Age	45	25	28	27	30

First Copy

Who is oldest?

Name	biera	peter	petrus	piotr	peter
Salary	50000	25000	35000	30000	40000
Age	45	30	28	27	25

Second Copy

View Concept

instead of copying and rearranging data, use a view object to change the perspective

Name	peter	petra	piotr	petrus	biera	Data
Salary	25000	40000	30000	35000	50000	
Age	30	25	27	28	45	
	Who ea	arns mos	st?			
Name						No copy,
Salary						correct co
Age						

No copy, just remember the correct column

Who is oldest?

Name		
Salary		
Age		

No copy, just remember the correct column

View Concept

instead of copying and rearranging data, use a view object to change the perspective

Name	peter	petra	piotr	petrus	biera	Data
Salary	25000	40000	30000	35000	50000	
Age	30	25	27	28	45	
	Who ea	arns mos	st?			
Name						No copy, just remember the
Salary					correct column	
Age						
	Who is	oldest?			•	
Name						No copy, just remember the
Salary						correct column
Age						

View Concept

instead of copying and rearranging data, use a view object to change the perspective

Here:

Leaf View

only show leaf entities of grid hierarchy (most refined cells)

 G_1 — G_{leaf}

Level View

only show entities of one level of the grid hierarchy

 G_2 = = = = =

 G_1

 G_0

Grid Creation

Dune Grid factory

generic factory class for unstructured grids provides unified interface for grid creation

More examples on grid creation: io/amirameshreader.hh

```
// two-dimensional space: dim=2
typedef Dune::UGGrid<dim> Grid;
Dune::GridFactory<Grid> factory;
// insert vertices
Dune::FieldVector<double,dim> v;
                                                                  // vertex id: 0
v[0]=0; v[1]=0; factory.insertVertex(v);
                                                                  // vertex id: 1
v[0]=1; v[1]=0; factory.insertVertex(v);
                                                                  // vertex id: 2
v[0]=1; v[1]=1; factory.insertVertex(v);
                                                                  // vertex id: 3
v[0]=0; v[1]=1; factory.insertVertex(v);
// triangle defined by 3 vertex indices
                                                                  // connectivity
std::vector<unsigned int> vid(dim+1);
Dune::GeometryType gt(Dune::GeometryType::simplex,dim);
vid[0]=0; vid[1]=1; vid[2]=2; factory.insertElement(gt,vid);
vid[0]=0; vid[1]=2; vid[2]=3; factory.insertElement(gt,vid);
// factory.createGrid() return type is Grid*
std::unique ptr<Grid> grid( factory.createGrid() );
// access leaf grid
auto leafGrid = grid->leafView();
```

Grid Creation

Grid manager

- manages communication between grid and FE-functions, i.e. guarantees consistency of FE-function after grid refinement/coarsening
- 2 Types: GridManager (default)
 - DeformingGridManager (with capabilities to move grid points)
- Constructor arguments:
 - 1. pointer to grid, this can be a
 - Dune::GridPtr<Grid>,
 - std::unique_ptr<Grid>&& or
 - Grid*&& (r-value reference of pointer to Grid)
 - 2. bool verbose=false

```
// a gridmanager is constructed
// as connector between geometric and algebraic information
GridManager<Grid> gridManager( factory.createGrid() );
```

Index and Id Set Concept

index set: mapping from grid entities of same dimension to 0,...,n

- contiguous numbering
- convenient for associating data with cells/vertices (store in arrays)
- mapping changes on grid refinement/coarsening

id set: mapping from grid entities to 0,...

- non-contiguous numbering
- mapping preserved on grid refinement/coarsening
- use this to associate data with cells/vertices during mesh modifications (hash maps)

Accessing Grid Entities


```
GridView view:
                                                           see also
                                                           fem/forFach.hh:
// iterate over all cells (codimension 0 entities)
                                                           forEachCell(...)
for (auto ci = view.template begin<0>();
                                                           forEachFace(...)
          ci != view.template end<0>();
          ++ci)
{
   auto& cell = *ci; // obtain reference to cell
   std::cout << "cell number: " << view.indexSet().index(cell);</pre>
}
// iterate over all vertices (codimension dim entities)
int const dim = GridView::dimension;
for (auto vi = view.template begin<dim>();
          vi != view.template end<dim>();
          ++vi)
{
   auto& vertex = *vi; // obtain reference to vertex
   std::cout << "vertex number: " << view.indexSet().index(vertex);</pre>
```

Geometries


```
// obtaining a geometry for a cell
auto geo = cell.geometry();

// the Jacobian determinant
double dx = geo.integrationElement();

// global coordinate of local
auto x = geo.global(xi);

// local coordinate of global
auto xi = geo.local(x);

// type of reference element
auto gt = geo.type();
```

Intersections

intersections: segments of

cell boundary

Intersections depend on the grid level!

Intersection are **not** codim-1-geometries!

```
// step through all intersections
for (auto face=cell.ileafbegin();
          face!=cell.ileafend(); ++face {
  // obtain outer normal vector
  auto n = face->unitOuterNormal();
  // for integration over the boundary
  auto ndx = face->integrationOuterNormal();
  // access neighbor cell
  if (face->neighbor())
    auto co = face->outside();
  // access own cell
  auto ci = face->inside();
```

Example: Finding Cells in the Grid


```
template <class Grid>
typename Grid::template Codim<0>::EntityPointer
findCell(Grid const& grid, FieldVector<typename Grid::ctype,</pre>
                                     Grid::dimensionworld> global)
  typedef typename Grid::template Codim<0>::Entity Cell;
 // Do linear search on coarse grid (level 0).
  auto inside = [&](Cell const& cell){
      return checkInside(cell.type(),cell.geometry().local(global)) < tol;</pre>
 };
  auto coarseIterator = std::find if(grid.template lbegin<0>(0),
                                      grid.template lend<0>(0),
                                      inside);
  // Do a hierarchical search for a leaf cell containing the point.
  typename Grid::template Codim<0>::EntityPointer ci(coarseIterator);
  for(int level=0; level<=grid.maxLevel(); level++) {</pre>
    if(ci->isLeaf()) return ci;
    for (auto hi=ci->hbegin(level+1); hi!=ci->hend(level+1); ++hi)
      if (checkInside(hi->type(),hi->geometry().local(global)) < tol) {
        ci = typename Grid::template Codim<0>::EntityPointer(hi);
       break;
      }}}
```


Finite Element Spaces

Finite Element Concepts

Math concepts

FE spaces

 $V_h = \{ u \in C(\Omega) \mid \forall T : u |_T \in \mathbb{P}_k \}$ scalar:

scalar

Nedelec: $V_h = \{u \in L^2(\Omega)^d \mid \forall F : [t^T u] = 0\}$

vectorial

bases

$$V_h = \operatorname{span}\{\varphi_i \in V_h \mid i = 1, \dots, n\}$$

global basis functions defined in terms of local shape functions on reference elements

shape functions on reference element

global basis function

converter: linear mapping of shape function values

combiner: linear combination of shape functions

Finite Element Spaces

Example 1D linear FE

$$\phi_T \equiv 1$$

trivial converter

$$\phi_T \equiv 1 \qquad K_T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

trivial combiner

Finite Element Spaces

$$\varphi_i(x) = \psi_T(x) \left(\sum_j K_{T,ij} \phi_j(\xi(x)) \right)$$

Example

2D hierarchic FE

$$V_h = \{ u \in C(\Omega) \mid u|_T \in \mathbb{P}_3 \}$$

shape functions

$$\operatorname{span}\{\phi_0,\phi_1,\phi_2\} = \mathbb{P}_1$$

 $\mathbb{P}_1 \oplus \operatorname{span}\{\phi_3, \phi_4, \phi_5\} = \mathbb{P}_2$

$$\mathbb{P}_2 \oplus \operatorname{span}\{\phi_6, \dots, \phi_9\} = \mathbb{P}_3$$

linear FE quadratic bubbles

cubic bubbles

on triangle edge $\left[0,1\right]$

$$\phi_6 = x(x - \frac{1}{2})(x - 1)$$

globally continuous ansatz functions

$$\phi|_{T_1} = \phi_6 \qquad \phi|_{T_2} = -\phi_6$$

$$K_{T,ij} \in \{-1,1\}$$

Shape functions

```
// Abstract base class for shape functions
// G: grid type
// T: scalar field type (usually double)
// comp: number of vectorial components (scalar=1)
template <class G, class T, int comp=1>
class ShapeFunction
  typedef FieldVector<typename G::ctype,G::dimension> Position;
 virtual FieldVector<T,comp>
 evaluateFunction(Position const& x) const = 0;
 virtual FieldMatrix<T,comp,G::dimension>
 evaluateDerivative(Position const& x) const = 0;
};
```


Shape function sets

```
// Base class for shape function sets
// G: grid type
// T: scalar field type (usually double)
// comp: number of vectorial components (scalar=1)
template <class G, class T, int comp=1>
class ShapeFunctionSet
{
   virtual ShapeFunction<G,T,comp> const& operator[](int i) const;
   int order() const; // maximal polynomial order
   Dune::GeometryType type() const;
};
```

available shape function sets:

scalar:

- Lagrange shape functions arbitrary order on simplices, up to 2 on hexahedra

 hierarchic shape functions arbitrary order on simplices

vectorial: - Nedelec

first order on simplices

Finite Element spaces

```
// Class for all finite element spaces
// LocalToGlobalMapper: defines shape & ansatz functions
template <class LocalToGlobalMapper>
class FEFunctionSpace {
  // Constructor
  template <typename... Args>
  FEFunctionSpace (GridManagerBase < Grid> @ gridMan,
                  GridView const& gridView ,
                  Args... args);
  // type of m-component FE functions from this space
  template <int m>
  struct Element {
      typedef FunctionSpaceElement<FEFunctionSpace,m> type;
  };
  // helper class for efficient evaluation of FE functions
  struct Evaluator;
};
```


Finite Element spaces

Local to global mapper: - manages (global) degrees of freedom

- converts between global ansatz functions and

local shape functions by defining

shape function set, combiner, converter

available mappers: scalar: - (dis-)continuous Lagrange

- (dis-)continuous hierarchic

- constant

- boundary spaces

vectorial: - Nedelec

Finite Element Functions


```
// create a scalar FE function
                                                              \in L^2(\Omega)
typename L2::Element<1>::type heatCapacity(12);
// create a multi-component FE function
                                                              \in H^1(\Omega)^3
typename H1::Element<3>::type displacement(h1);
// create a vectorial FE function
                                                              \in H_{\mathrm{rot}}(\Omega)
typename Nedelec::Element<1>::type efield(nedelec);
```

FE functions register at their space for

- access to basis functions for evaluation
- being informed about prolongation on mesh refinement

use scalar spaces for

- scalar functions
- multi-component (tensor product valued) functions

use vectorial spaces for - vectorial functions (with special connection between vectorial components)

Finite Element Functions


```
// assign constant value to all FE coefficients
heatCapacity = 1.0;
// evaluate at point x in domain (SLOW!)
FieldVector<double,2> x; x[0]=8.5; x[1]=3.8;
FieldVector<double,1> c = heatCapacity.value(x);
// evaluate derivative at local coordinate in cell
FieldVector<double, 2> xi; xi[0]=0.5; xi[1]=0.2;
FieldMatrix<double,1,2> dc = heatCapacity.gradient(cell,xi);
// efficient evaluation of multiple functions
typename H1::Evaluator eval(h1);
eval.moveTo(cell);
eval.evaluateAt(xi);
auto c = heatCapacity.value(eval);
auto dp = pressure.gradient(eval);
// access FE coefficients
heatCapacity.coefficients()[0] = 0.0;
```


Variational Problems

Problem Definition

Variational functionals

$$\min_{u \in U} \int_{\Omega} f(x,u_1,
abla u_1,\dots,u_n,
abla u_n) \, dx + \int_{\partial\Omega} g(x,u_1,\dots,u_n) \, ds$$

Kaskade problem definition: a class implementing f,g and providing meta information

Weak formulations

$$\int_{\Omega} (F_i(x,u,
abla u)v_i + \hat{F}_i(x,u,
abla u)
abla v_i)\,dx + \int_{\partial\Omega} G(x,u)v_i\,ds = 0, \quad i=1,\ldots,m$$

Newton's Perspective

 $\min_{u} J(u)$

Newton's method: $J''(u_k)\delta u_k = -J'(u_k)$ $u_{k+1} = u_k + \delta u_k$

linearization point (origin)

quadratic functionals: one Newton step gives exact solution

Linear equations
$$Au=b \Leftrightarrow J''(0)\delta u=-J'(0), \quad u=0+\delta u$$

for consistency: evaluate
$$-b$$
 solve $Au = -(-b)$

Problem Definition

Poisson problem

$$J(u) = \int_{\Omega} \left(\frac{1}{2}|\nabla u|^2 - fu\right) dx + \int_{\partial\Omega} 10^9 u^2 ds$$

```
// Poisson problem definition
template <class Variables>
struct Poisson {

   // define types of ansatz and test variables
   typedef Variables AnsatzVars;
   typedef Variables TestVars;
   typedef Variables OriginVars;

   // define kind of problem
   static ProblemType const type = VariationalFunctional;
   static constexpr int dim = AnsatzVars::Grid::dimension;
...
```


$$J(u) = \int_{\Omega} \left(\frac{1}{2}|\nabla u|^2 - fu\right) dx + \int_{\partial\Omega} 10^9 u^2 ds$$

```
// implement f
struct DomainCache : public CacheBase<Poisson,DomainCache> {
  // for computed gradient of uh
 Dune::FieldMatrix<double,1,dim> du;
 Dune::FieldVector<double,1> f;
 LinAlg::EuclideanScalarProduct sp;
 DomainCache() { }
  // specify evaluation point x & gradient of uh
 void moveTo(Cell& cell) { } // nothing to do
 void evaluateAt(Position& xi, Evaluators const& evals) {
    du = at c<0>(vars.data).gradient(at c<0>(evals));
  // evaluate f
 double d0() const { return 0.5 * sp(du,du); }
```


$$J(u) = \int_{\Omega} \left(\frac{1}{2}|\nabla u|^2 - fu\right) dx + \int_{\partial\Omega} 10^9 u^2 ds$$

```
// evaluate f' (directional derivative)
  template <int row>
 double d1 impl (VariationalArg<double, dim, 1> const& arg) const
    return sp(du, arg.gradient);
  };
  // evaluate f'' (directional second derivative)
  template <int row, int col>
  double d2 impl(VariationalArg<double,dim,1> const& test,
               VariationalArg<double,dim,1> const& ansatz) const
    return sp(test.gradient,ansatz.gradient);
}: // end of DomainCache
```


$$J(u) = \int_{\Omega} \left(\frac{1}{2}|\nabla u|^2 - fu\right) dx + \int_{\partial\Omega} 10^9 u^2 ds$$

```
// implement q
struct BoundaryCache {
  // for computed value of uh
 Dune::FieldVector<double,1> u;
 BoundaryCache();
 // specify evaluation point x & compute value of uh
 void moveTo(Intersection& bdry) { } // nothing to do
 void evaluateAt(Position& xi, Evaluators const& evals) {
   u = at c<0>(vars.data).value(at c<0>(evals));
 // evaluate q
 double d0() const { return 0.5e9 * u*u; }
```


$$J(u) = \int_{\Omega} \left(\frac{1}{2}|\nabla u|^2 - fu\right) dx + \int_{\partial\Omega} 10^9 u^2 ds$$

```
// evaluate g' (directional derivative)
 template <int row>
 double d1 impl(VariationalArg<double,dim,1> const& arg) const
   return 1e9 * u * arg.value;
 };
 // evaluate g'' (directional second derivative)
 template <int row, int col>
 double d2 impl(VariationalArg<double,dim,1> const& test,
                 VariationalArg<double,dim,1> const& ansatz) const
   return 1e9 * test.value * ansatz.value;
}; // end of BoundaryCache
```



```
// provide static meta information
 template <int row>
 struct D1
   static bool const present = true; // structurally nonzero
 };
 template <int row, int col>
 struct D2
   static bool const present = true; // structurally nonzero
   static bool const symmetric = true;
   static bool const lumped = false; // consider only diagonal
 };
}; // end of variational functional
```



```
// evaluate f' (directional derivative)
  template <int row>
  FieldVector<double, TestVars::template Components<row>::m>
  d1 (VariationalArg<double, dim> const& arg) const {
    return du * arg.gradient;
  };
```

Remember: scalar ansatz functions are used for multi-component variables!

arg is scalar, but d1 returns an m-vector

Problem Definition Utilities


```
#include "fem/functional_aux.hh"

// convenience base class for variational functionals
template <ProblemType Type>
class FunctionalBase;
```

Defines type member and default D1/D2 meta information.

```
// interface wrapper for domain/boundary caches
template <class Functional, class Cache>
class CacheBase;
```

Defines domain/boundary caches in terms of provided class **Cache** with simpler interface using vectorial test functions: r = f'(x, u)v

```
template <int row>
double d1_impl(VariationalArg<double,dim,m> const& arg);
```

Assembly Process


```
Assemble linearization \rightarrow F'_h(x), F''_{hh}(x)
```

specify what to assemble

Accessing Data – d1

Accessing the first derivative (vector)
(Functional::DomainCache::d1 + Functional::BoundaryCache::d1)

Newton Method


```
// second termination criterion:
for(int step=1; step<101; ++step) {</pre>
                                                           // max. 100 steps
  std::cout << "Step " << step << std::flush;</pre>
                                                       // assemble linearization at u
  assembler.assemble(linearization(F,u));
  CoefficientVectors rhs(assembler.rhs());
  rhs *= -1.0;
  AssembledGalerkinOperator<Assembler> A (assembler); // get differential operator
  // compute Newton step F''(u) du=-F'(u)
  directInverseOperator(A, directType, property).apply(rhs, solution);
                                                           // new iterate u = u + du
  boost::fusion::at c<0>(u.data) +=
  boost::fusion::at c<0>(solution.data);
  double energyNorm = sqrt(rhs*solution);
  std::cout << ". Energy norm of du: " << energyNorm << std::endl;
                                                           // stop if energy norm of
  if (energyNorm < 2e-15) break;
                                                           // du is small
```

Newton Method

Grid: 65536 triangles, 98560 edges, 33025 points

number of degrees of freedom = 131585 number of nonzero elements in the stiffness matrix: 820481

Step 1. Energy norm of solution:0.187468

Step 2. Energy norm of solution:0.00155002

Step 3. Energy norm of solution:3.70296e-07

Step 4. Energy norm of solution:2.13386e-14

Step 5. Energy norm of solution:2.27793e-15

Step 6. Energy norm of solution:2.04263e-15

Step 7. Energy norm of solution:1.99053e-15

quadratic convergence (to discrete solution)

machine accuracy reached

total computing time: 25.54s

Accessing Data – d2

Accessing the second derivative (matrix)
(Functional::DomainCache::d2 + Functional::BoundaryCache::d2)

assemble only lower triangle of matrix

Accessing data supports move-semantics

```
MatrixAsTriplet<double> M1 = A.template get<MatrixAsTriplet<double> > ();
std::unique_ptr<Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> > M2 =
A.template getPointer<Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> > >();
```

does not (yet) support move-semantics

Multithreaded Assembly

Strong Scaling

- unit cube Poisson problem
- ~ 10⁶ degrees of freedom
- 4 x Octacore Xeon E5-4640

Solvers

Motivation

use Dune concepts to define InverseLinearOperator and DirectSolver

Dune::LinearOperator concept (used for InverseLinearOpertor) $X \rightarrow Y$

- template parameters: X = domain function space element, Y = range function space element
- public template types:

```
typedef X domain_type;
typedef Y range_type;
typedef typename X::field_type field_type;
```

virtual functions

```
void apply(const X& x, Y& y) const;
void applyscaleadd(field_type alpha, const X& x, Y& y) const;
```


Motivation

use Dune concepts to define InverseLinearOperator and DirectSolver

Dune::InverseOperator concept (used for DirectSolver)

 $X \to Y$

- template parameters:
 X = domain function space element, Y = range function space element
- public template types:

```
typedef X domain_type;
typedef Y range_type;
typedef typename X::field_type field_type;
```

virtual functions

```
void apply(X& x, Y& y, Dune::InverseOperatorResult& res);
void apply(X& x, Y& y, double reduction, ◀

Dune::InverseOperatorResult& res);

Solvers
```

some information, especially for iterative solvers

Motivation

use Dune concepts to define InverseLinearOperator and DirectSolver

Dune::Preconditioner concept (used for DirectSolver)

 $X \to Y$

• template parameters:

```
X = domain function space element (of forward operator),Y = range function space element (of forward operator)
```

• public template types:

```
typedef X domain_type;
typedef Y range_type;
typedef typename X::field_type field_type;
```

virtual functions

```
void pre(X& x, Y& y);
void apply(X& x, const Y& y);
void post(X& x);
```


Motivation

- use Dune concepts to define InverseLinearOperator and DirectSolver
- wrap different direct solvers into DirectSolver via implementation of Factorization concept

```
class DirectSolver : public Dune::InverseLinearOperator<Domain,Range>, public Dune::Preconditioner<Domain,Range> X \to Y
```

- template parameters:
 Domain = domain function space element, Range = range function space element
- public template types:

```
typedef Domain domain_type;
typedef Range range_type;
typedef typename Domain::field_type field_type;
arguments
```

concept

Motivation

- use Dune concepts to define InverseLinearOperator and DirectSolver
- wrap different direct solvers into DirectSolver via implementation of Factorization concept

class InverseLinearOperator : public Dune::LinearSolver<Domain,Range> X o Y

- template parameters: InverseOperator, i.e. DirectSolver<...>
- public template types:

```
typedef typename InverseOperator::domain_type domain_type;
typedef typename InverseOperator::range_type range_type;
typedef typename domain_type::field_type field_type;
```

concept

```
template <class AssembledGOP>
explicit InverseLinearOperator(InverseOperator const& op);
void apply(Domain const& x, Range& y);
void applyscaleadd(field type alpha, Domain const& x, Range& y);
```


Available direct solvers: MUMPS, UMFPACK, UMFPACK3264, UMFPACK64, SUPERLU

Available matrix properties (for MUMPS only!): GENERAL, SYMMETRIC,
POSITIVEDEFINITE,
SYMMETRICSTRUCTURE

UMFPACK solver (default), general matrix (default)
directInverseOperator(A).apply(rhs, solution);

Available direct solvers: MUMPS, UMFPACK, UMFPACK3264, UMFPACK64, SUPERLU

Available matrix properties (for MUMPS only!): GENERAL, SYMMETRIC,
POSITIVEDEFINITE,
SYMMETRICSTRUCTURE

SUPERLU solver, general matrix (default)
directInverseOperator(A, SUPERLU) .apply (rhs, solution);

Available direct solvers: MUMPS, UMFPACK, UMFPACK3264, UMFPACK64, SUPERLU

Available matrix properties (for MUMPS only!): GENERAL, SYMMETRIC,
POSITIVEDEFINITE,
SYMMETRICSTRUCTURE

MUMPS solver, symmetric matrix

directInverseOperator(A,MUMPS,SYMMETRIC).apply(rhs,solution);

Available direct solvers: MUMPS, UMFPACK, UMFPACK3264, UMFPACK64, SUPERLU

Available matrix properties (for MUMPS only!): GENERAL, SYMMETRIC,
POSITIVEDEFINITE,
SYMMETRICSTRUCTURE

MUMPS solver, symmetric matrix

directInverseOperator(A,MUMPS,SYMMETRIC).apply(rhs,solution);

If factorization shall be reused (type of auto: InverseLinearOperator<DirectSolver<...>>)
auto solver = directInverseOperator(A,MUMPS,SYMMETRIC);
solver.apply(rhs,solution);

or

Iterative Solvers

Implemented inexact solvers

- Dune:
 - Krylov-subspace solvers: CG, BICGSTAB, MINRES, RestartedGMRES
 - other: gradient solver, loop solver
- Kaskade:
 - Uzawa (for saddle point systems, see tutorial/stokes/stokes.cpp)
 - improved implementations of some of the Dune-Krylov solvers
 - Multigrid

Parameters (except multi grid solver)

- linear operator (derived from Dune::LinearOperator)
- preconditioner (derived from Dune::Preconditioner)
- termination criteria, i.e. max. #steps, (relative) tolerance criterion

Iterative Solvers

CG with Jacobi preconditioner (from tutorial/stationary_heattransfer/ht.cpp) (=> http://www.dune-project.org/doc-2.2.1/doxygen/html/modules.html => Iterative Solvers)

CG (Dune)

- 1. termination criterion: rel. residual l^2 decrease
- 2. termination criterion: max #steps reached
- 3. optionally: provide own scalar product

more advanced termination criteria available in Kaskade 7

Multigrid: Smoothers

Multigrid

Basic idea for elliptic (diffusive) equations

iterative solvers (damped Jacobi, Gauß-Seidel) remove only spatially high-frequent error components

remaining low-frequent error components are themselves high-frequent on coarser grids

- use smoother on fine grid to remove oscillatory error components
- use smoother on coarse grid to remove low-frequent error

for more details see

Multigrid V-Cycle

Ankara 2013-10-02 M. Weiser, L. Lubkoll 68

Kaskade Multigrid

Parameters (exemplary with default parameters)

Usage

```
// solve Ax=b by multigrid
using namespace boost::fusion;
MultigridSolver<Grid> mgSolver(A,gridManager.grid(),parameter);
mgSolver.apply(at_c<id>(x.data),at_c<id>(b.data));
// or
MultigridSolver<Grid>(A,gridManager.grid()).apply(...);
```

Kaskade Multigrid

Notes

- type of A: Dune::BCRSMatrix<...> or AssembledGalerkinOperator<...> representing the stiffness matrix on the leaf level
- Works on block-structured data structures
 Use for PDEs only, in applications to systems with variables that differ in the
 - number of components or the underlying grid dimension code does not compile!
 - => Use Dune::BlockVector<...> (i.e. the return type of

boost::fusion::at_c<id>(x.data)) instead of

VariableSetDescription::CoefficientVectorRepresentation!

Input/Output

Grid generation

- grid factory (Dune, already seen)
- "utilities/gridGeneration.hh":
- createCuboid, createRectangle, createLShape, i.e.

```
GridManager<Grid>
gridManager( createRectangle<Grid>(c0,dc,1.0,true) );
```

Read grid from file

- read output files of 'triangle' (2d): readPolyData
- read Ansys files (works for simplicial and quadrilateral grids): AnsysMeshReader
- read Amira files: AmiraMeshReader, i.e.
 GridManager<Grid>
 gridManager(AmiraMeshReader::readGrid<Grid>(fileName));
- AmiraMeshReader also admits reading different types of data (i.e. function space element's coefficients, material ids, boundary ids, ...)

Output

Write complete VariableSet to VTK-file

```
writeVTKFile(leafView,u,"temperature",options,order);
```

Write function space element to VTK-file

```
auto element = boost::fusion::at_c<0>(u.data);
writeVTK(leafView,element,"temperature",options,order);
```

Write complete VariableSet to AMIRA-file (only linear elements, i.e. point-wise data)

```
writeAMIRAFile(leafView,u,"temperature",options);
```


Error Estimation

Error Estimation Concepts

$$-\Delta u = f$$

Residual error estimators

$$||u_h - u||_A^2 \le c \left(\sum_{T \in \mathcal{T}} h_T ||\Delta u_h + f||_{L^2(T)}^2 + \sum_{E \in \mathcal{E}} h_E^{1/2} ||[n^T \nabla u_h]||_{L^2(E)}^2 \right)$$

Averaging error estimators

 ∇u_h discontinuous, but ∇u is continuous

project gradient into continuous FE space (improving consistency), difference is gradient error estimator

for more details see

Error Estimation Concepts

Hierarchical error estimators

$$u_h \in V_h, \quad u_h^+ \in V_h^+, \quad V_h \oplus V_h^{\oplus} = V_h^+$$

 $\|u_h - u\|_A \approx \|u_h - u_h^+\|_A \quad \text{if} \quad \|u_h^+ - u\|_A \ll \|u_h - u\|_A$

embedded: - solve for u_h^+

- obtain u_h by interpolation

DLY: - solve for u_h

- obtain u_h^\oplus by approximately solving

$$\int_{\Omega} \nabla v^T \nabla u_h^{\oplus} \, dx = \int_{\Omega} (vf - \nabla v^T \nabla u_h) \, dx$$

Kaskade Embedded Estimator


```
#include "fem/embedded errorest.hh"
  // u is VariableSet representation (i.e. bag of FE functions)
  // obtain coarser interpolant
  auto err = u;
 projectHierarchically(varDesc,err);
  // difference is approximate error (of coarser approximation)
  err -= u;
                                                  absolute relative
  // define tolerances
  std::vector<std::pair<double,double> > tol = { {1e1, 1e-2} };
  // estimate the error & mark & refine
  EmbeddedErrorEstimator<VarDesc> estimator(gridManager,varDesc);
 bool accurate = estimator.setTolerances(tol).estimate(err,u);
```

accurate: $||e_i||_{L^2(\Omega)} \leq \operatorname{aTOL}_i^2 + \operatorname{rTOL}_i^2 ||u_i||_{L^2(\Omega)} \quad \forall i$

Kaskade Embedded Error Estimator

Example: Stokes driven cavity on P3/P2 elements

Kaskade DLY Estimator


```
typedef FEFunctionSpace<
           ContinuousHierarchicMapper<double,LeafView>> SpaceL;
SpaceL sl(gridManager,gridManager.grid().leafView(),1); // linear FE
typedef FEFunctionSpace<
           ContinuousHierarchicExtensionMapper<double,LeafView>> SpaceQ;
SpaceL sl(gridManager,gridManager.grid().leafView(),2); // guadratic FE
// define VariableSet for quadratic extension
... ExVariableSetDesc;
// define variational functional for extension
typedef HierarchicErrorEstimator<LinearizationAt<Functional>,
                                  ExVariableSetDesc, ExVariableSetDesc> EFunc;
// assemble extension system
VariationalFunctionalAssembler<EFunc> eAssembler(gridManager.signals,spaces);
eAssembler.assemble(Efunc(linearization(func,u0),u));
                                                            linear FF
             original variational
                                         linearization
                                                             solution
                 functional
                                             point
```

Adaptive Mesh Refinement

calls FE spaces to automatically prolongate all FE functions

Time Stepping

Parabolic Problems


```
general form B(u,t)\dot{u}=F(u,t) d1 examples \dot{u}=\operatorname{div}(\sigma\nabla u) (heat equation) \dot{u}=\operatorname{div}(\sigma\nabla u)+u(u-.1)(u-1) (Kolmogorov equation) \dot{u}=s+\nu\Delta u-u_xu-\nabla p (Navier Stokes) 0=\operatorname{div} u
```

Problem definition

Time Stepping

$$B\dot{u}=F(u)$$

Linearly implicit Euler

$$Brac{u_{k+1}-u_k}{ au}=F(u_{k+1})pprox F(u_k)+F'(ilde u)(u_{k+1}-u_k).$$

$$(B - au F'(ilde{m{u}}))\delta u_k = au F(m{u}_k)$$

Example: heat equation
$$(I- au\Delta)\delta u_k= au\Delta u_k$$

elliptic differential operator

solve a stationary 2nd order PDE (method of time layers, Rothe's method)

Implementation

need a variational functional / weak formulation of stationary linearly implicit Euler problem

typedef SemiImplicitEulerStep<ParabolicEquation> EulerProblem; EulerProblem eulerProblem(heatEquation, tau);

Assembly Process

Assemble time layers (i.e. for semi-linear time stepping schemes)

```
#include "fem/assemble.hh"
...

typedef SemiImplicitEulerStep<HeatEquation> EulerStep;
typedef VariationalFunctionalAssembler<SemiLinearizationAt<EulerStep> > Assembler;
Assembler assembler(spaces);
...
assembler.assemble(semilinearization(EulerStep(heatEquation,dt),x_t,x_d,dx));
```

Assembly Process

Assemble time layers (i.e. for semi-linear time stepping schemes)

```
#include "fem/assemble.hh"

...

typedef SemiImplicitEulerStep<HeatEquation> EulerStep;
typedef VariationalFunctionalAssembler<SemiLinearizationAt<EulerStep> > Assembler;
Assembler assembler(spaces);
...
assembler.assemble(semilinearization(EulerStep(heatEquation,dt),x_t,x_d,dx));
```

point of linearization for (abstract) time differential operator

point of linearization spatial differential operator

correction of last time step only relevant if B depends on u

Assembly Process

Assemble time layers (i.e. for semi-linear time stepping schemes)

```
#include "fem/assemble.hh"

...

typedef SemiImplicitEulerStep<HeatEquation> EulerStep;
typedef VariationalFunctionalAssembler<SemiLinearizationAt<EulerStep> > Assembler;
Assembler assembler(spaces);
...

// assemble Euler step
assembler.assemble(semilinearization(EulerStep(heatEquation,dt),x_t,x_d,dx));
AssembledGalerkinOperator<Assembler> a;

// solve system
VariableSetDescription::CoefficientVectorRepresentation<>::type sol(...);
directInverseOperator(a).apply(assembler.rhs(),sol);

// add increment
x_t += sol;
```

Higher Order Integrators

Extrapolation

stiff problems (parabolic): linearly implicit Euler (LIMEX)

non-stiff (hyperbolic): explicit midpoint rule (DIFEX)

asymptotic expansion

$$u(T;\tau) = u(T) + \sum_{i=1}^{r} c_i \tau^i + \tau^{r+1} R(T,\tau)$$

polynomial interpolation

$$\hat{u}(T;\tau) = u_0 + \sum_{i=1}^r \hat{c}_i \tau^i$$

evaluate at $\tau_i = T/i, \quad i = 1, \dots, r+1$

$$u(T) = u(T; 0) \approx \hat{u}(T; 0) = u_0$$

LIMEX

