Open in Colab 🚀 Запуск модели в Google Colab Требования • Убедитесь, что выбрано **GPU** как тип оборудования. • Рекомендуется использовать **Tesla T4** — она доступна бесплатно в Google Colab. Инструкция по запуску 1. Откройте вкладку **«Среда выполнения»** (*Runtime*) в верхнем меню. 2. Выберите «Сменить тип среды выполнения» (Change runtime type). 3. В поле **Аппаратное ускорение** (Hardware accelerator) выберите **GPU** и нажмите **«Сохранить»**. 4. Затем снова откройте **«Среда выполнения»** и выберите **«Выполнить всё»** (Run all), чтобы запустить все ячейки. Подсказка При первом запуске Google Colab может запросить разрешение на выполнение кода — подтвердите, если уверены в источнике. Установка Unsloth на локальный компьютер Чтобы установить **Unsloth** на свой компьютер, следуйте инструкциям по установке на странице GitHub: **С** Официальная инструкция по установке После установки вы узнаете: • 🃂 Как подготовить данные • 🧠 Как обучить модель • 🥸 Как запустить модель для инференса • 💾 Как сохранить модель Инсталляцмя зависимостей In [1]: %capture import os if "COLAB_" not in "".join(os.environ.keys()): !pip install unsloth else: # Do this only in Colab notebooks! Otherwise use pip install unsloth !pip install --no-deps bitsandbytes accelerate xformers==0.0.29.post3 peft trl==0.15.2 triton cut_cross_entropy unsloth_zoo !pip install sentencepiece protobuf datasets huggingface hub hf transfer !pip install --no-deps unsloth Unsloth Unsloth — это фреймворк (или набор инструментов) с открытым исходным кодом, предназначенный для ускоренного и эффективного обучения больших языковых моделей (LLM), таких как LLaMA, Mistral и других, на вашем собственном железе (в том числе ноутбуках и локальных серверах). Основные особенности Unsloth: • 🔪 Поддержка LLaMA и Mistral: оптимизирована для LLaMA 2 и других моделей с открытым исходным кодом. • 🗲 Очень быстрая дообучаемость (fine-tuning): обещают 2–5× более быстрое обучение по сравнению с обычным PyTorch или Hugging Face. • 💾 Низкие требования к ресурсам: позволяет тренировать 7В моделей даже на одной GPU с 8 ГБ VRAM. • 🧠 Интеграция с PEFT/LoRA: обучение происходит с помощью LoRA (Low-Rank Adaptation), что делает его гораздо легче и дешевле. • 🄝 Совместим с Hugging Face: можно загружать модели и датасеты напрямую из Hugging Face Hub. • 🔁 Интеграция с Colab и Kaggle: можно запускать и обучать прямо в облаке. In []: from unsloth import FastLanguageModel import torch max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. # 4bit pre quantized models we support for 4x faster downloading + no 00Ms. fourbit_models = ["unsloth/Meta-Llama-3.1-8B-bnb-4bit", # Llama-3.1 15 trillion tokens model 2x faster! "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "unsloth/Meta-Llama-3.1-70B-bnb-4bit", "unsloth/Meta-Llama-3.1-405B-bnb-4bit", # We also uploaded 4bit for 405b! "unsloth/Mistral-Nemo-Base-2407-bnb-4bit", # New Mistral 12b 2x faster! "unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "unsloth/mistral-7b-v0.3-bnb-4bit", # Mistral v3 2x faster! "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "unsloth/Phi-3.5-mini-instruct", # Phi-3.5 2x faster! "unsloth/Phi-3-medium-4k-instruct", "unsloth/gemma-2-9b-bnb-4bit", "unsloth/gemma-2-27b-bnb-4bit", # Gemma 2x faster!] # More models at https://huggingface.co/unsloth model, tokenizer = FastLanguageModel.from pretrained(# Can select any from the below: # "unsloth/Qwen2.5-0.5B", "unsloth/Qwen2.5-1.5B", "unsloth/Qwen2.5-3B" # "unsloth/Qwen2.5-14B", "unsloth/Qwen2.5-32B", "unsloth/Qwen2.5-72B", # And also all Instruct versions and Math. Coding verisons! model_name = "unsloth/Qwen2.5-7B", max_seq_length = max_seq_length, dtype = dtype,load_in_4bit = load_in_4bit, # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf Добавление адаптеров LoRA Теперь мы добавляем LoRA-адаптеры, благодаря чему для обучения потребуется обновлять всего от 1 до 10% параметров модели! Это значительно снижает потребление памяти и ускоряет обучение, особенно на ограниченных ресурсах (например, на одной GPU). In []: |model = FastLanguageModel.get_peft_model(model, r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], $lora_alpha = 16,$ lora dropout = 0, # Supports any, but = 0 is optimized bias = "none", # Supports any, but = "none" is optimized # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context $random_state = 3407,$ use_rslora = False, # We support rank stabilized LoRA loftq config = None, # And LoftQ Подготовка данных 🦙 Использование датасета Alpaca Мы используем датасет **Alpaca** от yahma — это отфильтрованная версия оригинального датасета Alpaca (52K), созданного Стэнфордом. Вы можете заменить этот раздел кода своей собственной процедурой подготовки данных. Важные замечания [ПРИМЕЧАНИЕ] Чтобы обучать модель только на продолжениях (игнорируя пользовательский ввод), ознакомьтесь с документацией TRL: Train on completions only [ПРИМЕЧАНИЕ] Обязательно добавляйте EOS_TOKEN (токен конца последовательности) в токенизированный выход! Без него модель может генерировать бесконечный текст. Рекомендуемые ноутбуки • Ш Для использования шаблона llama-3 с датасетами в формате **ShareGPT**: Conversational Notebook (Llama 3, 8B)-Alpaca.ipynb) • 📝 Для генерации продолжений текста (например, написание новелл): Text Completion Notebook (Mistral, 7B)-Text_Completion.ipynb) In [4]: alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completely completely. ### Instruction: {} ### Input: {} ### Response: {}""" EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN def formatting_prompts_func(examples): instructions = examples["instruction"] = examples["input"] inputs = examples ["output"] outputs texts = [] **for** instruction, input, output in zip(instructions, inputs, outputs): # Must add EOS_TOKEN, otherwise your generation will go on forever! text = alpaca prompt.format(instruction, input, output) + EOS TOKEN texts.append(text) return { "text" : texts, } pass from datasets import load_dataset dataset = load_dataset("yahma/alpaca-cleaned", split = "train") dataset = dataset.map(formatting_prompts_func, batched = True,) In []: import pandas as pd # Преобразование в DataFrame df = dataset.to_pandas() df.head() Обучение модели Теперь воспользуемся SFTTrainer из библиотеки Hugging Face TRL! По умолчанию выполняется 60 шагов, чтобы ускорить процесс обучения. Однако вы можете задать полный проход по данным, установив: num_train_epochs=1 • и отключив ограничение по количеству шагов: max steps=None Также поддерживается обучение с использованием DP0Trainer от TRL для продвинутых сценариев тонкой настройки! In []: from trl import SFTTrainer from transformers import TrainingArguments from unsloth import is_bfloat16_supported trainer = SFTTrainer(model = model, tokenizer = tokenizer, train_dataset = dataset, dataset_text_field = "text", max_seq_length = max_seq_length, dataset_num_proc = 2, packing = False, # Can make training 5x faster for short sequences. args = TrainingArguments(per device train batch size = 2, gradient_accumulation_steps = 4, warmup_steps = 5, # num_train_epochs = 1, # Set this for 1 full training run. $max_steps = 60$, learning_rate = 2e-4, fp16 = not is bfloat16 supported(), bf16 = is_bfloat16_supported(), logging_steps = 1, optim = "adamw_8bit", weight decay = 0.01, lr scheduler type = "linear", seed = 3407,output_dir = "outputs", report_to = "none", # Use this for WandB etc), In []: # @title Show current memory stats gpu_stats = torch.cuda.get_device_properties(0) start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") print(f"{start qpu memory} GB of memory reserved.") In []: trainer_stats = trainer.train() In []: # @title Show final memory and time stats used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) used_memory_for_lora = round(used_memory - start_gpu_memory, 3) used_percentage = round(used_memory / max_memory * 100, 3) lora_percentage = round(used_memory_for_lora / max_memory * 100, 3) print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.") f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training." print(f"Peak reserved memory = {used_memory} GB.") print(f"Peak reserved memory for training = {used_memory_for_lora} GB.") print(f"Peak reserved memory % of max memory = {used percentage} %.") print(f"Peak reserved memory for training % of max memory = {lora percentage} %.") Инференс (использование модели) Запустим модель! Вы можете изменить инструкцию и ввод, оставив поле вывода пустым — модель сгенерирует ответ автоматически. Инференс (от англ. inference) в контексте машинного обучения и нейросетей — это процесс применения обученной модели для получения предсказаний на новых, ранее не виденных данных. 🔍 Другими словами: Если обучение — это то, когда модель "учится" на примерах, то инференс — это когда она "отвечает" на реальные запросы. 📌 Примеры инференса: • Вы вводите вопрос в чат-бот → модель генерирует ответ → это инференс. • Вы загружаете изображение в систему → она распознаёт, что на нём кот → тоже инференс. • Автокомплит текста в IDE → инференс модели кода. 🧠 Технически: Инференс включает: • Токенизацию входа • Прогон входа через обученную нейросеть • Получение выходных токенов (предсказаний) • Декодирование ответа In []: # alpaca_prompt = Copied from above FastLanguageModel.for_inference(model) # Enable native 2x faster inference inputs = tokenizer(alpaca_prompt.format("Continue the fibonnaci sequence.", # instruction "1, 1, 2, 3, 5, 8", # input "", # output - leave this blank for generation!], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) tokenizer.batch_decode(outputs) Использование TextStreamer для непрерывного инференса Для реализации непрерывного вывода токенов при генерации текста можно использовать компонент TextStreamer . Это позволяет получать результаты по мере их появления — токен за токеном — без необходимости ожидания завершения всей генерации. Преимущества использования TextStreamer: • Реализация стриминга вывода в реальном времени в интерфейсе пользователя. • Повышенная отзывчивость при работе с длинными запросами или большими языковыми моделями. • Удобство отладки и наблюдения за процессом генерации текста по шагам. In []: # alpaca_prompt = Copied from above FastLanguageModel.for_inference(model) # Enable native 2x faster inference inputs = tokenizer(alpaca_prompt.format("Continue the fibonnaci sequence.", # instruction "1, 1, 2, 3, 5, 8", # input "", # output - leave this blank for generation!], return_tensors = "pt").to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128) Сохранение и загрузка дообученных моделей Для сохранения результатов дообучения в формате LoRA-адаптеров используйте один из следующих методов: • push_to_hub() — для загрузки адаптеров напрямую в репозиторий Hugging Face. • save_pretrained() — для локального сохранения адаптеров на диск. [ПРИМЕЧАНИЕ] Эти методы сохраняют **только LoRA-адаптеры**, а не полную модель. Если требуется сохранить модель в формате 16-бит или GGUF, смотрите соответствующий раздел ниже. In []: model.save_pretrained("lora_model") # Local saving tokenizer.save_pretrained("lora_model") # model.push_to_hub("your_name/lora_model", token = "...") # Online saving # tokenizer.push_to_hub("your_name/lora_model", token = "...") # Online saving Загрузка LoRA-адаптеров для инференса Примечание: Переключение соответствующего флага (False → True) активирует использование LoRA-адаптеров при инференсе. Это позволяет использовать дообученные параметры без необходимости загружать полную модель. In []: if False: from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from_pretrained(model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, FastLanguageModel.for_inference(model) # Enable native 2x faster inference # alpaca_prompt = You MUST copy from above! inputs = tokenizer(alpaca prompt.format("What is a famous tall tower in Paris?", # instruction "", # input "", # output - leave this blank for generation!], return_tensors = "pt").to("cuda") from transformers import TextStreamer text streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128) Вопрос к fine-tune модели In []: if False: from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from pretrained(model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, FastLanguageModel.for_inference(model) # Enable native 2x faster inference # alpaca prompt = You MUST copy from above! inputs = tokenizer(alpaca_prompt.format("Дай три совета чтобы оставаться здоровым", "", # input "", # output - leave this blank for generation!], return_tensors = "pt").to("cuda") from transformers import TextStreamer text streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 200) Альтернатива: AutoModelForPeftCausalLM от Hugging Face Вы также можете использовать AutoModelForPeftCausalLM от Hugging Face для загрузки моделей с LoRA-адаптерами: from transformers import AutoModelForPeftCausalLM model = AutoModelForPeftCausalLM.from_pretrained("path/to/peft-model") Важные замечания Используйте этот подход только в случае, если у вас не установлен unsloth. Причины: Поддержка загрузки моделей в 4bit отсутствует, что приводит к значительному увеличению времени загрузки. Инференс через unsloth работает в 2 раза быстрее, особенно при использовании оптимизаций с bitsandbytes. In [5]: if False: # I highly do NOT suggest - use Unsloth if possible from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer model = AutoPeftModelForCausalLM.from pretrained("lora_model", # YOUR MODEL YOU USED FOR TRAINING load_in_4bit = load_in_4bit, tokenizer = AutoTokenizer.from_pretrained("lora_model") Сохранение в float16 для VLLM Поддерживается прямое сохранение модели в формате float16, совместимом с VLLM. Для этого выберите один из следующих режимов: • merged 16bit — сохраняет полную модель в формате float16. • merged_4bit — сохраняет модель в **int4** (для экономии памяти). • lora — сохраняет только **LoRA-адаптеры** (в качестве запасного варианта). Загрузка модели на Hugging Face Для публикации объединённой модели используйте метод push_to_hub_merged(): model.push_to_hub_merged("your-username/model-name", token="your_hf_token") In [17... # Merge to 16bit if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",) if False: model.push_to_hub_merged("hf/model", tokenizer, save_method = "merged_16bit", token = "") # Merge to 4bit if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",) if False: model.push_to_hub_merged("hf/model", tokenizer, save_method = "merged_4bit", token = "") # Just LoRA adapters if False: model.save_pretrained_merged("model", tokenizer, save_method = "lora",) if False: model.push_to_hub_merged("hf/model", tokenizer, save_method = "lora", token = "") Конвертация в GGUF / Ilama.cpp Теперь мы **нативно поддерживаем сохранение в формате GGUF** (совместимо с llama.cpp)! Основные возможности: • Автоматическое клонирование репозитория llama.cpp (если требуется). • По умолчанию модель сохраняется в формате q8_0. • Поддерживаются и другие схемы квантования, включая q4 k m, q5 k m и т.д. Методы сохранения: • save_pretrained_gguf() — локальное сохранение GGUF-модели. • push to hub qquf() — загрузка GGUF-файла в ваш репозиторий Hugging Face. Поддерживаемые методы квантования (подробнее в Wiki): • **q8 0** — Быстрая конвертация. Высокая точность, но требует больше ресурсов. • q4 k m — Рекомендуемый вариант. Использует Q6 K для половины тензоров (attention.wv, feed forward.w2), остальные — Q4 K. • q5_k_m — Также рекомендуется. Похож на q4_k_m, но с использованием Q5_K. Автоэкспорт в Ollama [HOBOE] Хотите дообучить модель и сразу экспортировать её в Ollama? Воспользуйтесь Colab-блокнотом-Ollama.ipynb) для автоматизации этого процесса. In [18... # Save to 8bit Q8_0 if False: model.save_pretrained_gguf("model", tokenizer,) # Remember to go to https://huggingface.co/settings/tokens for a token! # And change hf to your username! if False: model.push_to_hub_gguf("hf/model", tokenizer, token = "") # Save to 16bit GGUF if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16") if False: model.push_to_hub_gguf("hf/model", tokenizer, quantization_method = "f16", token = "") # Save to q4 k m GGUF if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m") if False: model.push_to_hub_gguf("hf/model", tokenizer, quantization_method = "q4_k_m", token = "") # Save to multiple GGUF options - much faster if you want multiple! if False: model.push to hub gguf("hf/model", # Change hf to your username! tokenizer, quantization_method = $["q4_k_m", "q8_0", "q5_k_m",],$ token = "", # Get a token at https://huggingface.co/settings/tokens Использование .gguf модели После конвертации модели вы можете использовать полученный файл: model-unsloth.gguf • или квантованную версию: model-unsloth-Q4_K_M.gguf Поддерживаемые окружения: • llama.cpp — CLI-интерфейс для запуска модели. • Jan — локальный UI для работы с LLM. • Open WebUI — удобный веб-интерфейс, совместимый с множеством LLM-бэкендов. Вы можете установить Jan и Open WebUI по следующим ссылкам: • Jan: https://github.com/janhq/jan Open WebUI: https://github.com/open-webui/open-webui **Всё готово!**