Last time: . paths f,g: I = [0,1] -> X from xoto x, are poth-homotopic, f = pg, if $\exists H: I \times I \longrightarrow X$, H(s, 0) = f(s) $H(0,t) = x_0$ s, t H(s, 1) = g(s) $H(1,t) = x_1$

• composition of paths f from x to y, g from y to z: $(f*g)(s) = \begin{cases} f(2s) & \text{if } s \in (0, \frac{1}{2}) \\ g(2s-1) & \text{if } s \in [\frac{1}{2}, 1] \end{cases}$

. This product is well-defined on path-homotopy classes, as long as f(1) = g(0): if f = f' and g = g' here f * g = f * g'. Define [f] * [g] = [f * g].

· The operation * on paths homotopy classes is associative, and has identify & investes, identity; $\forall x \in X$, $e_x = constant path at <math>x$, $f(s) = e_x$. inverse: $\overline{f}(s) = f(1-s)$ reverse path. Given f from x to y, $f \times \overline{f} \stackrel{\sim}{=} e_x$ associative: if f(1) = g(0) + g(1) = h(0). (fxg) $\times h \stackrel{\sim}{=} f \times (g \times h)$ $\xrightarrow{f \times f} \stackrel{\sim}{=} e_y$. associative: if f(i) = g(0) + g(i) = h(0), $(f * g) * h \simeq_p f * (g * h)$.

To get a group out of this, we fix a base point $x_0 \in X$ and only consider loops based at xo, ie. palls from xo to itself

Def. The set of path-homotopy classes of loops board at x_0 , with operation x_0 , is called the fundamental group of X, denoted $\pi_1(X,x_0)$. (check; it is a group)

Ex: in IR" (or a convex domain in IR"), every loop at xo is path homotopic to the identity (i.e. the contrast path at x_0) by the straight. Une homotopy $F(f,s) = (1-t)f(s) + t \times_0$ $F(f,s) = (1-t)f(s) + t \times_0$

Def: $X ext{ is simply-connected}$ if $X \neq \emptyset$ is path-connected, and for $x_0 \in X$, $\pi_1(X, x_0) = \{i\}$.

Ex; well see at some point; $\pi_1(S^1, z_0) \simeq \mathbb{Z}$ ("#turns of a loop around the circle")

* Dependence on the base point:

If x_0, x_1 are in the same path-composed of X, let x be a path from x_0 to x_1 . Then for any loop of based at xo, we get a loop at x1 by taking \alpha x f + \alpha,

and so we get a map $\hat{\alpha}: \pi_1(X, X_0) \to \pi_1(X, X_1)$ [F] $\longmapsto [\bar{\alpha}_* f * \bar{\alpha}] = [\bar{\alpha}] * [f] * f$ [f] $\longrightarrow [\overline{\alpha} * f * \alpha] = [\overline{\alpha}] * [f] * [\alpha]$ (recall , \times well deform path homotopy classes).

Prop: $(x, x_i) \rightarrow \pi_i(X, x_i)$ is a grap isomorphism.

· let $\beta = \overline{\alpha}$ reverse gath from x_i to x_o , then $\widehat{\beta} : \pi_i(X, x_i) \to \pi_i(X, x_o)$. We claim $\hat{\beta}$ and $\hat{\alpha}$ are investor of each other. Indeed; for $\alpha \in \pi_1(X,x_0)$, $\hat{\beta}(\hat{\alpha}(a)) = \hat{\beta}(\bar{\alpha}) * \alpha * (\alpha) = [\beta] * [\bar{\alpha}] * \alpha * [\alpha] * [\beta]$ = [x]*[x] * a*[x]*[x] = a.

Hence $\hat{\beta} \circ \hat{\alpha} = id$ (and similarly $\hat{\alpha} \circ \hat{\beta} = id$ as well), so $\hat{\alpha}$ is an isomorphism. Corday: | if X is path-corrected, then $\pi_1(X, x_0)$ is integerher of xo up to isomorphism. Rah: when α is a loop at x_0 , we get an automorphism $\widehat{\alpha}$ of $\pi_1(X,x_0)$. This is in fact an inner automorphism = conjugation by [x]: a -> [x] + a + [x].

* The as a functor: Consider the category of pointed topological spaces;

- objects = top space + choice of box point, (X, x_0) morphisms = continuous maps processing box points: $f:(X, x_0) \rightarrow (Y, y_0)$ means $f: X \rightarrow Y$ continuous & st. $f(x_0) = y_0$.

Def/Prop: A continuous map $h: (X, X_0) \rightarrow (Y, Y_0)$ induces a group horromorphism $h_{\chi}: \pi_{\eta}(X, X_0) \rightarrow \pi_{\eta}(Y, Y_0)$ defined by $h_{\chi}(f) = [h \circ f]$.

$$I \xrightarrow{f} X \xrightarrow{h} Y$$

$$I \xrightarrow{h \circ f} X \xrightarrow{h} Y$$

$$I \xrightarrow{h \circ f} X \xrightarrow{h} Y$$

Check: if f = f' via F then hof = hof' via hoF So he is well-defined.

- $h \circ (f * g) = (h \cdot f) * (h \cdot g)$ (conjuitor w/h compatible with concatenation) So he is a grap homomorphism, he ([f] * [g]) = he ([f]) * he ([g]).
- Prop. | given $(X, \chi_0) \xrightarrow{h} (Y, y_0) \xrightarrow{k} (Z, z_0)$, $(k \circ h)_{\chi} = k_{\chi} \circ h_{\chi} : \pi_1(X, \chi_0) \rightarrow \pi_1(Z, z_0)$.

 hence. π_1 is a further (maps composition $k \circ h$ to composition $k_{\chi} \circ h_{\chi}$). (his is just: $(k \circ h) \circ f = k \circ (h \circ f)$).

This implies: Coollays if h: (X, x0) -> (Y, y0) is a homeomorphism, then he is an isomorphism. But we can do better!

Recall: . a retraction of X onto a subset ACX is r: X -> A st. TA = idA, ie. roi=idA. Then, taking a base point anoEA, $\pi_1(A, a_0) \stackrel{i_*}{\rightleftharpoons} \pi_1(X, a_0)$ $r_* \circ i_* = id \Rightarrow \ker(i_*) = \{i\}, ie. i_* injective$ a deformation retraction: assume morrore that ion: X-1X is homotopic to idx by a homotopy that fixes A. Then we claim ix, ix are invested ison's. $\pi_1(A, a_0) \simeq \pi_1(X, a_0)$. $\frac{E_{K1}}{S^{1} \rightarrow P}$ $\frac{e^{s^{2}_{+}}}{ior \neq id_{X}}$ $\frac{e^{hackons}}{S^{2}_{+}}$ $\frac{e^{hackons}}{S^{2}_{+}}$ $S^1 \rightarrow P$ $S^2 \rightarrow S^2_+$ $R^2_-\{0\} \rightarrow S^1$ Mibitus band $\rightarrow S^1$ $(x,y,z) \mapsto (x,y,|z|)$ $x \mapsto x/|x|$ · Nove generally, recall a homotopy equivalence is $X = \frac{f}{g} y$ st. $f \circ g \simeq id_{X}$. Thus: Homotopy equivalences induce isomorphisms $\pi_1(X, x_0) \xrightarrow{\sim} \pi_1(Y, f(x_0))$ This follows from the fact that homotopic maps induce the same honomorphisms on TI, namely: Prop: (1) let h, k: $X \longrightarrow Y$ homotopic via a homotopy $H: X \times I \longrightarrow Y$ starting $H(x_0,t) = y_0 \ \forall t$. Then $h_{\kappa} = k_{\kappa} : \pi_1(X,x_0) \longrightarrow \pi_1(Y,y_0)$. (2) If the homotopy H doesn't fix base points, let x be the path $y_0 \rightarrow y_1$ def! by $\alpha(t) = H(x_0,t) = y_t$. Then $h_a: \pi_1(X,x_0) \longrightarrow \pi_1(Y,y_0)$ $k_k \mapsto \pi_1(X,x_0) \longrightarrow \pi_1(Y,y_1)$ are related by the ison. $\hat{\alpha}: \pi_1(Y, y_0) \rightarrow \pi_1(Y, y_1)$. $k_{\sharp} = \hat{\alpha} \circ h_{\sharp}$. Pf: (1) given a loop $f: I \rightarrow X$ based at x_0 , $I \times I \xrightarrow{f \times id} X \times I \xrightarrow{H} Y$ $(s,t) \longmapsto (f(s),t) \mapsto H(f(s),t)$ Ho (frid): IxI-sy gives a path homotopy (Gosed of yo) hof $\simeq_{P} k \circ f$, here $h_{*}([f]) = k_{*}([f])$. (2) now conider $I \times I \longrightarrow X \times I$ deft by concernating $\{path (x_0,1) \rightarrow (x_0,t)\}$ Then HoF is a path horotopy in $(7, 9_1)$ from $\{path (x_0,1) \rightarrow (x_0,t)\}$. Then HoF is a path horotopy in (Y, y1) from x'* (hof) * x to e* (kof) * e. X < I $(x_0, 0)$ $f = f \text{ in } (X \times I, (x_0, 1))$ $f = h \circ f \text{ in } (X \times I, (x_0, 1))$

 $\rightarrow \underline{Pf-H_m}: if (X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (X, x_1)$ homotopy invesco, gof $\simeq id_X$ (4) \Rightarrow by the part, $\pi_1(X, x_0) \xrightarrow{f_*} \pi_1(Y, y_0) \xrightarrow{g_*} \pi_1(X, x_1) \xrightarrow{f_*} \pi_1(Y, y_1)$ $(g \circ f)_{\alpha} = \widehat{\alpha}$ for some path $\alpha: x_0 \rightarrow x_1$ Hence f_{α} is injective k g_{α} is sujective. Similarly, (fog), isom. TI(4,4) -> TI(4,4) => g, injective, f, sujective. Here g_{*} is an iso, and $f_{*} = (g_{*})^{-1} \circ \hat{\alpha}$ is also an isom. At some point we'd like to show $\pi_1(S') \cong \mathbb{Z}$. We'll do this by introducing a key bol for the

study of \$1: the notion of covering spaces.

Def: Let $p: E \rightarrow B$ be a continuous sinjective map. We say p evenly covers an open subset $U \subset B$ if $p^{-1}(U) = U \vee_{\alpha}$ where $\vee_{\alpha} \subset E$ are disjoint open subsets, and for each $\alpha \in A$.

Piva: $\vee_{\alpha} \to U$ is a homeomorphism. The \vee_{α} are called <u>slives</u>.

If every point of B has a neighborhood which is evenly covered by p, we say E is a covering space of B and p is a covering map.

B is called the base of the covering.

Ex: define p: R-151 $p(t) = (\cos t, \sin t)$ This is a covering map! for instance consider (1,0) ∈ S1

and the neighborhood $U = \{(x,y) \in S^1 \mid x > 0\}$. Then $p'(U) = \bigsqcup_{n \in \mathbb{Z}} \left(2\pi n - \frac{\pi t}{2}, 2\pi n + \frac{\pi t}{2}\right)$ and p is a homeo on each slice.

P; E→B, q: E'→B' Gung maps ⇒ Pxq; ExE'→ BxB' is a coving map.

Pf: given (b,b') & B*B', let U>b and U'>b' be neighborhoods st. p'(U) = 11 /2, q'(U') = 11 Vp stice, her (pxq) (UzU') = p'(U) x q'(U') = U Vx x V's mior of open stress homes to UzU'.