Discrete Time System Simulation

The System is defined by the following set of equations and simulated for 100 time samples. Then a Gaussian process noice is added with each component having a covariance of 0.1 i.e., Q=0.1I

$$x_{k+1} = \begin{bmatrix} 0 & 1 \\ -0.9 & 1.85 \end{bmatrix} x_k + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k$$

a. MATLAB Code

```
function discretesystemsimulation
x(1,2)=0;
u=1;
for k=1:1:100
x(k+1,1)=x(k,2);
x(k+1,2)=-0.9*x(k,1)+1.85*x(k,2)+u;
end
t=1:1:100;
figure(1)
plot(t,x(1:100,1),t,x(1:100,2))
figure(2)
hold on
stairs(t,x(1:100,1))
stairs(t,x(1:100,2))
end
```

Plots

b. MATLAB code

```
function discretesystemsimulationwithnoise
x(1,2)=0;
u=1;
for k=1:1:100
    mu = [0 \ 0];
    sigma = [0.1 0; 0 0.1];
    R = chol(sigma);
    z = repmat(mu, 1, 1) + randn(1, 2) *R;
    x(k+1,1)=x(k,2)+z(1,1);
    x(k+1,2) = -0.9*x(k,1)+1.85*x(k,2)+u+z(1,2);
end
t=1:1:100;
figure(1)
plot(t, x(1:100,1), t, x(1:100,2))
figure(2)
hold on
stairs(t, x(1:100, 1))
stairs(t, x(1:100, 2))
end
```

Plots

Recursive Least Squares System Identification

a. MATLAB code

%output from estimated parameters

for k=1:601

```
function systemidentificationwithRLS
%fixed and initial values
cov=0.1; Pk1=10000*eye(3); thetak1=zeros(3,1);
%retrieving data
filename='Input Output data.xls';
T=readtable(filename);
uin=str2double(T{3:603,3});
yout=str2double(T{3:603,5});
%estimating system parameters
for k=3:601
    hk1 = [-yout(k-1); -yout(k-2); uin(k-2)];
    Pk1=Pk1-Pk1*hk1*(inv(transpose(hk1)*Pk1*hk1+cov))*(transpose(hk1))*Pk1;
    thetak1=thetak1+Pk1*(hk1/cov)*(yout(k)-(transpose(hk1))*thetak1);
end
Sys=thetak1
end
                                       Output
Sys =
   -1.9000
    0.9500
    0.2000
  b. MATLAB Code
function ComparisonofEstimatedandActualOutputs
%fixed and initial values
cov=0.1; Pk1=1e6*eye(3); thetak1=zeros(3,1); Yhat=zeros(601,1); xp=zeros(2,1);
%retrieving data
filename='Input Output data.xls';
T=readtable(filename);
uin=str2double(T{3:603,3});
yout=str2double(T{3:603,5});
%estimating system parameters
for k=3:601
    hk1 = [-yout(k-1); -yout(k-2); uin(k-2)];
    Pk1=Pk1-Pk1*hk1*(inv(transpose(hk1)*Pk1*hk1+cov))*(transpose(hk1))*Pk1;
    thetak1=thetak1+Pk1*(hk1/cov)*(yout(k)-(transpose(hk1))*thetak1);
end
```

```
Yhat(k) = [thetak1(3) 0] *xp;
    xp=[0 1;-thetak1(2) -thetak1(1)]*xp+[0;1]*uin(k);
end
%comparison plots
figure(1)
plot(1:601, yout, 'r')
figure(2)
plot(1:601, Yhat, '')
figure (3)
subplot(1,2,1)
plot(1:601, yout, 'r')
subplot(1,2,2)
plot(1:601, Yhat, '')
figure(4)
subplot(2,1,1)
plot(1:601, yout, 'r')
subplot(2,1,2)
plot(1:601, Yhat, '')
figure(5)
hold on
plot(1:601, yout, 'r', 'linewidth', 1)
plot(1:601, Yhat, 'k:', 'linewidth', 2)
end
```

Note: I have drawn so many comparison plots to ensure that I didn't miss out on anything and to show better that both the plots are same. The plots are given on the next page.

Side by Side Comparison

Top Bottom Comparison

Comparison on the same axes

References

