Performing Feature Normalization

Xavier Morera
HELPING DEVELOPERS UNDERSTAND SEARCH & BIG DATA

@xmorera www.xaviermorera.com

Understanding Feature Normalization

Feature Normalization

Data preparation technique

Change values of numeric columns

- To a common scale

Without distorting differences in the ranges

Encoding to discrete values

Combine multiple features

Benefits of Feature Normalization

Accuracy improvements

Overfitting risk reduction

Speeds up in training

Improved data visualization

Feature Normalization

Clip Values

Detects outliers

- Clips or replaces values

Set boundaries

- Upper and lower
- Constant or percentile

Substitute values

Generate new column

Detecting Outliers and Replacing Them Using the Clip Values Module

Group Data into Bins

Puts numerical data into bins

- Group numbers
- Change distribution of continuous data

Specify binning mode

- Manual or other methods, i.e. quantiles

Binning on training data

- Same binning on testing and prediction

Binning Numeric Data Using the Group Data into Bins Module

Normalize Data

Rescales numeric data

- To constrain dataset values
- To a standard range

Common scale

- Without distorting differences

May be required for some algorithms

Normalize Data

Zscore

MinMax

Logistic

LogNormal

TanhZ

Rescaling Numeric Data Using the Normalize Data Module

Principal Component Analysis

Computes a set of features

- Reduced dimensionality
- For more efficient learning

Reduce large set of variables

- While retaining most of the information

Combine features

- Provide better information
- Than if used separately

Reducing Dimensionality Using the Principal Component Analysis Module

Features

5.0 3.6 1.4

4.9 3.0 1.4

4.7 3.2 1.3

4.6 3.1 1.5

5.0 3.6 1.4

Features

 Audi
 3.6
 1.4

 BMW
 3.0
 1.4

 MB
 3.2
 1.3

 Tesla
 3.1
 1.5

 LR
 3.6
 1.4

Encoding Features

Convert a categorical value

- Into a numerical value

Able to perform operations

One-hot encoding

- Vectors with 0 and 1
- Number of vectors depends on categories

Encoding Features

make	hp	pk rpm	price	audi	bmw	dodge	hp	pk rpm	price	
audi	0,10	5,50	13,90	1	Ο	0	0,10	5,50	13,90	
bmw	0,10	4,20	16,40	0	1	Ο	0,10	4,20	16,40	
dodge	0,06	5,00	5,50	0	Ο	1	0,06	5,00	5,50	

Encoding Features in the Automobile Price Data

Takeaway

What is feature normalization?

Modules

- Clip values
- Group values into bins
- Normalization
- Principal component analysis
- Encoding features

