

MA0301 Elementary discrete mathematics Spring 2018

Norwegian University of Science and Technology Department of Mathematics

Solutions — exercise 3

 $\boxed{7} \ \text{Use a truth table to show that } \Big((a \wedge b) \longrightarrow c\Big) \Leftrightarrow \Big((a \longrightarrow c) \vee (b \longrightarrow c)\Big).$

a	b	c	$(a \to c)$	$(b \to c)$	$(a \to c) \lor (b \to c)$	$(a \wedge b) \to c$
F	F	F	${ m T}$	Τ	Τ	${ m T}$
F	F	Τ	${ m T}$	${ m T}$	${ m T}$	${ m T}$
F	Τ	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$
F	Τ	Τ	${ m T}$	${ m T}$	${ m T}$	${ m T}$
T	F	F	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$
T	F	Τ	${ m T}$	${ m T}$	${ m T}$	${ m T}$
T	Τ	F	\mathbf{F}	\mathbf{F}	F	\mathbf{F}
Τ	Τ	Τ	${ m T}$	${ m T}$	${ m T}$	${f T}$

Section 3.1

 $\boxed{6}$ Consider the following six subsets of \mathbb{Z} .

$$A = \{2m + 1 \mid m \in \mathbb{Z}\}$$

$$C = \{2p - 3 \mid p \in \mathbb{Z}\}\$$

$$E = \{3s + 1 \mid s \in \mathbb{Z}\}\$$

$$B = \{2n + 3 \mid n \in \mathbb{Z}\}$$

$$D = \{2r + 1 \mid r \in \mathbb{Z}\}$$

$$F = \{3t - 2 \mid t \in \mathbb{Z}\}$$

Which of the following statements are true, and which are false?

a)
$$A = B$$
 True

b)
$$A = C$$
 True

c)
$$B = C$$
 True

d)
$$D = E$$
 False

e)
$$D = F$$
 True

f)
$$E = F$$
 False

Section 3.2

- 6 Prove each of the following results without using Venn diagrams or membership tables.
 - a) If $A \subseteq B$ and $C \subseteq D$, then $A \cap C \subseteq B \cap D$ and $A \cup C \subseteq B \cup D$.

Assume $x \in A \cap C$, then $x \in A$ and $x \in C$. Now $x \in A \Rightarrow x \in B$ since $A \subseteq B$, similarly $x \in C \Rightarrow x \in D$ since $C \subseteq D$. As $x \in B$ and $x \in D$ then $x \in B \cap D$. Thus $A \cap C \subseteq B \cap D$. To see that the reverse implication fails, choose x such that $x \in (B/A) \cap (D/C)$ then $x \in B \cap D$, but $x \notin A \cap C$. This proves $A \cap C \subseteq B \cap D$.

Let $x \in A \cup C$. Then $x \in A \lor x \in C$. If $x \in A$ then $x \in B$ since $A \subseteq B$, similarly if $x \in C$ then $x \in D$ since $C \subseteq D$. This shows that $x \in B \cup D$. For the reverse implication choose $x \in (B/A) \cup (C/D)$, then $x \in B \cup D$, however $x \notin A \cup C$. This proves $A \cup C \subseteq B \cup D$.

- 7 Prove or disprove each of the following:
 - **b)** For sets $A, B, C \subseteq \mathcal{U}$, $A \cup C = B \cup C \implies A = B$.

Let $A \neq B$ and $C = \mathcal{U}$, then $A \cup C = B \cup C$.

More concretely let $\mathscr{U} = C = \mathbb{N}$, $A = \{p\}$, $B = \{q\}$, $p, q \in \mathbb{N}$. Then $A \cup C = B \cup C$, however $A \neq B$ when $p \neq q$.

d) For sets $A, B, C \subseteq \mathcal{U}$, $A \Delta C = B \Delta C \implies A = B$.

Assume that $x \in A$, then either x lies in C or not in C. If $x \in C$ then $x \notin A\Delta C \Rightarrow \notin B\Delta C \Rightarrow x \in B$. Else if $x \notin C$ then $x \in A\Delta C \Rightarrow B\Delta C \Rightarrow x \in B$, as $x \notin C$. Thus, $A \subseteq B$.

The other direction is shown in precicely the same way. Assume that $x \in B$, then either x lies in C or outside C. If $x \in C$, then $x \notin B\Delta C \Rightarrow x \notin A\Delta C \Rightarrow x \in A$. Else if $x \notin C$ then $x \in B\Delta C \Rightarrow A\Delta C \Rightarrow x \in A$, as $x \notin C$. Thus, $B \subseteq A$.

As $A \subseteq B$ and $B \subseteq A$, then A = B, which is what was to be proven.

16 Provide the justifications for the steps that are needed to simplify the set

$$(A\cap B)\cup [B\cap ((C\cap D)\cup (C\cap \overline{D}))]$$

where $A, B, C, D \subseteq \mathcal{U}$.

Steps	${f Reasons}$
$(A\cap B)\cup [B\cap ((C\cap D)\cup (C\cap \overline{D}))]$	
$= (A \cap B) \cup [B \cap (C \cap (D \cup \overline{D}))]$	Distributive Laws
$= (A \cap B) \cup [B \cap (C \cap \mathscr{U})]$	Inverse Laws
$=(A\cap B)\cup (B\cap C)$	Domination Laws
$= (B \cap A) \cup (B \cap C)$	Commutative Laws
$=B\cap (A\cup C)$	Distributive Laws

Section 2.5

8 a) Let p(x), q(x) be open statements in the variable x, with a given universe. Prove that

$$\forall x \ p(x) \lor \forall x \ q(x) \implies \forall x [p(x) \lor q(x)]$$

Universe \mathscr{U} . Assume that $\forall x \ p(x) \lor \forall x \ q(x)$ is true $x \in \mathscr{U}$. Assume that $\forall x \ p(x)$ is true, then there exists some $c \in \mathscr{U}$ such that p(c) is true, and thus $p(c) \lor q(c)$ is true. Since c can be choosen arbitarily, we have shown that $\forall x [p(x) \lor q(x)]$, which is what we wanted to show. If we instead assume that $\forall x \ q(x)$ is true, the exact same argument can be made.

b) Find a counterexample to the converse in part **a)**. That is, find open statements p(x), q(x), and a universe such that $\forall x[p(x) \lor q(x)]$ is true, while $\forall x \ p(x) \lor \forall x \ q(x)$ is false.

Let \mathscr{U} be some universe such that there exists non-empty disjunctive subsets A, B such that $(A \cap B = \emptyset)$ and $\mathscr{U} = A \cup B$.

Let $p(x): x \in A$, and similarly $q(x): x \in B$. If $y \in B$, then p(y) is false (as $A \cap B = \emptyset$), thus p(x) can not hold for all x in other words $\forall x \ p(x)$ is false. Similarly, let $y \in A$ then q(y) is false (again since $A \cap B = \emptyset$), thus $\forall x \ q(x)$ is false. However, $\forall x [p(x) \lor q(x)]$ is true as for every $x \in \mathcal{U} = A \cup B$.

For a concrete example let $\mathscr{U} = \mathbb{N}$, $n \in \mathbb{N}$, and let p(n): n is odd, q(n): n is even. Then, p(n) is not true for every n as there exists even numbers, and similarly q(n) is not true for every n as there exists odd numbers. However, every n is either even or odd. 10 Provide the missing reasons for the steps verifying the following argument:

$$\forall x [p(x) \lor q(x)]$$

$$\exists x \neg p(x)$$

$$\forall x [\neg q(x) \lor r(x)]$$

$$\forall x [s(x) \to \neg r(x)]$$

$$\therefore \exists x \neg s(x)$$

\mathbf{Steps}

- 1) $\forall x [p(x) \lor q(x)]$
- $\mathbf{2)} \quad \exists \, x \, \neg p(x)$
- 3) $\neg p(a)$
- **4)** $p(a) \vee q(a)$
- **5)** q(a)
- **6)** $\forall x \left[\neg q(x) \lor r(x) \right]$
- 7) $\neg q(a) \lor r(a)$
- 8) $q(a) \rightarrow r(a)$
- **9)** r(a)
- **10)** $\forall x [s(x) \rightarrow \neg r(x)]$
- 11) $s(a) \rightarrow \neg r(a)$
- 12) $r(a) \rightarrow \neg s(a)$
- **13)** $\neg s(a)$
- **14)** $\therefore \exists x \neg s(x)$

Reasons

Premisse

Premisse

Step (2) and the definition of truth for $\exists x \ p(x)$. The reason for this step is also referred to as the *Rule of Existential Specification*

Step (1) and the Rule of Universal Specifica-

Steps (3) and (4) and the Rule of Disjunctive Syllogism

Premisse

Step (6) and the Rule of Universal Specification

Step (7) and the rule of Material Implication $(P \to Q \Leftrightarrow \neg P \lor Q)$.

Modus Ponens on Steps (5) and (8).

Premisse

Step (10) and the Rule of Universal Specification

Transposition $(P \to Q \Leftrightarrow \neg Q \to \neg P)$ and step (11)

Modus Tollens on steps (9) and (12)

Step (13) and the definition of the truth for $\exists x \neg s(x)$. The reason for this step is also referred to as the *Rule of Existential Generalization*.