Ingegneria Elettronica e Informatica

Esercizio 1: Una cilindro dielettrico di raggio R = 10 cm e lunghezza indefinita ha una delle sue basi che giace sul piano xy, mentre il suo asse coincide con l'asse z. Il cilindro possiede una densità volumetrica di carica costante $\rho = 10^{-9}$ C/cm³.

- i. Calcolare le componenti del campo \vec{E} in un generico punto P dell'asse z.
- ii. Una particella avente carica 3.2×10^{-19} C giace sull'asse z a distanza $z_0 = 2$ mm dal piano xy in equilibrio sotto l'azione della forza peso e della repulsione coulombiana da parte del cilindro. Calcolare l'espressione della forza elettrostatica \vec{F} che agisce sulla particella.
- iii. Calcolare la massa m della particella affinché essa stia in equilibrio sotto l'azione della forza peso e della repulsione coulombiana.
- iv. Nell'ipotesi che la base del cilindro si potesse approssimare ad un piano infinito, calcolare la densità superficiale di carica σ che occorrerebbe fornire al piano per mantenere la particella in equilibrio sotto l'azione della forza peso.

Esercizio 2: Un condensatore piano ha le armature circolari di raggio r_1 = 25 cm, distanti tra di loro h = 2.5 cm; nello spazio tra le armature, coassiale all'asse di simmetria e ortogonale a questo, è inserito un avvolgimento toroidale di N = 10^3 spire a sezione rettangolare di lati a = 2 cm e b = 1 cm, il cui raggio medio è r_2 = 20 cm. Il condensatore è collegato attraverso una resistenza R_0 = 0 Ω (TRASCURARE LA RESISTENZA) ad un generatore di f.e.m. alternata di valore efficace 100 V e frequenza υ = 13.56 MHz. Si consideri la f.e.m. ai capi del generatore come una onda sinusoidale.

- i. Trascurando gli effetti di bordo, calcolare l'espressione del modulo del campo \vec{E} tra le armature del condensatore.
- ii. Calcolare la funzione che descrive la corrente di spostamento tra le armature del condensatore.
- iii. Calcolare il campo modulo e direzione \vec{B} all'istante t = 1 ms ad una distanza r_2 dall'asse di simmetria del condensatore (inferiore a r_1).
- iv. Calcolare la forza elettromotrice indotta del solenoide toroidale in funzione del tempo ed indicarne il valore per t = 1 ms.

Teoria: La legge di Faraday-Neumann-Lenz e la relativa equazione di Maxwell.

