

Basic Structures: Sets, Functions, Sequences, and Summation

Chapter 2

Edited by: Dr. Meshal Alfarhood

Functions

Section 2.3

Section Summary

Definition of a Function

- Domain, Codomain
- Image, Preimage

Types of Functions

- One-to-one
- Onto
- One-to-one correspondence

Inverse Function

Function Composition

Functions₁

Definition: Let A and B be nonempty sets. A **function** f from A to B, denoted $f: A \rightarrow B$ is an assignment of exactly one element of B to each element of A.

Functions₂

Given a function $f: A \rightarrow B$:

- A is called the domain of f.
- B is called the codomain of f.
- If f(a) = b,
 - *b* is called the *image* of *a* under *f*.
 - a is called the **preimage** of b.
- The range of f is the set of all images of points in A under f.
 - We denote it by $f(\mathbf{A})$.
 - Range is always a subset of the codomain.

One-to-one

Definition: A function f is called **one-to-one** if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f.

Each b ∈ B receives at most 1 arrow.

Onto

Definition: A function f is called **onto** if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

Each b ∈ B receives at least 1 arrow.

One-to-one correspondence

Definition: A function *f* is called a *one-to-one correspondence* if it is both one-to-one and onto.

Each b ∈ B receives <u>exactly</u> 1 arrow.

Example of different types

One-to-one

and onto

(c)

(d) Neither one-to-one

nor onto

Not a function

(a)

One-to-one,

not onto

(b)

Onto,

not one-to-one

Determine if the following functions are **one-to-one** or **onto**, where $f: \mathbb{Z} \rightarrow \mathbb{Z}$:

1.
$$f(x) = x+1$$

- It's one-to-one.
- It's onto.

2.
$$f(x) = x^2$$

- It's NOT one-to-one; because 1 and -1 give the same result.
- It's NOT onto; because no x such that $x^2 = -1$.

3.
$$f(x) = x^3$$

- It's one-to-one.
- It's NOT onto; because no x such that $x^3 = 2$.

Determine if the following functions are **one-to-one** or **onto**, where $f: \mathbb{Z} \rightarrow \mathbb{Z}$:

4.
$$f(x) = \left[\frac{x}{2}\right]$$

Ceiling Function: [1.2] = 2Floor Function: [1.2] = 1

- It's NOT one-to-one; because 1 and 2 give the same result.
- It's onto.

5.
$$f(x) = 2\left[\frac{x}{2}\right]$$

- It's NOT one-to-one; because 1 and 2 give the same result.
- It's NOT onto; because we can't reach odd numbers.

Inverse Functions

Definition: Let f be a **1-1 correspondence** from A to B. Then the *inverse* of f, f^{-1} , is the function from B to A defined as $f^{-1}(y) = x$ iff f(x) = y

No inverse exists unless f is a 1-1 correspondence

Is the following functions invertible?

- 1. f(x) = x+1, such that $f: \mathbb{Z} \to \mathbb{Z}$.
- **Solution**: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence, so $f^{-1}(y) = y 1$.
- 2. $f(x) = x^2$, such that $f: \mathbb{Z} \to \mathbb{Z}$.
- **Solution**: The function *f* is not invertible because it is not one-to-one correspondence.
- 3. $f(x) = x^2$, such that $f: \mathbb{R}^+ \to \mathbb{R}^+$.
- **Solution**: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence, so $f^{-1}(y) = \sqrt{y}$.

Compositions of Functions

Definition: Let $g: A \rightarrow B$, $f: B \rightarrow C$. The **composition** of f and g, denoted $f \circ g$ is the function from A to C defined by $f \circ g(x) = f(g(x))$

The composition $f \circ g$ cannot be defined unless the range of g is a subset of the domain of f.

Let f and g be functions from $\mathbb{Z} \to \mathbb{Z}$ defined by

$$f(x) = 2x + 3$$
 and $g(x) = 3x + 2$.

What is the composition of f and g, and also the composition of g and f?

Solution:

- $(f \circ g)(x) = f(g(x)) = f(3x+2) = 2(3x+2)+3 = 6x+7$
- $(g \circ f)(x) = g(f(x)) = g(2x+3) = 3(2x+3)+2 = 6x+11$