

Моделирование конкурентных стратегий гетерогенных фирм с помощью обучения с подкреплением

Выполнил: Перепелкин Владимир Андреевич БЭК205 Научный руководитель: Пильник Николай Петрович

Агентное моделирование: позволяет из описания взаимодействий на микроуровне понять, как будет развиваться вся система.

Обучение с подкреплением: позволяет агентам исследовать модель (среду) и выработать такую стратегию (политику) π , которая помогает решить задачу максимизации дисконтированной награды.

Проблемы агентного моделирования в экономике:

- Недостаток микроэкономических оснований.
- Большое количество гиперпараметров.
- Задание правил поведения агентов (стратегий, политик) извне. Они могут быть неадекватными их целям в конкретной среде. Это решается эндогенизацией поведения агентов по отношению к среде с помощью обучения с подкреплением.
- Производственный сектор экономики, как правило, довольно сильно упрощается.

Цель работы: разработка агентной модели многоотраслевой экономики несовершенной конкуренции с фирмами, политика которых вырабатывается с помощью обучения с подкреплением, а также последующий анализ динамики развития агентной модели и поведения фирм.

Агентное моделирование производственной экономики с использованием обучения с подкреплением

• Micro-Founded General Equilibrium Models with Many Agents using Deep Reinforcement Learning (Curry и др., 2022).

Переменные управления фирмы — зарплаты w, цены p, Δk

Производственные функции: $Y_{i,t} = A_i k_{i,t}^{1-\alpha} L_{i,t}^{\alpha}$ Формула для изменения капитала: $k_{i,t+1} = k_{i,t} + \Delta k_{i,t}$

• *ABIDES-Economist* (2024, февраль). (Dwarakanath и др., 2024) Объёмы производства зависят от случайного экзогенного фактора $\varepsilon_{t,j}$

$$\epsilon_{t,j} = (\epsilon_{t-1,j})^{\rho_j} \exp(\epsilon_{t,j})$$

$$y_{t,j} = \epsilon_{t,j} (L_{t,j})^{\alpha_j}$$

• Rational macro ABM (2024, май). (Brusatin и др., 2024) Два типа агентов: рациональные и следующие тренду.

 \mathcal{L} ве отрасли: средства производства и предметы потребления.

Переменные управления фирм — $Y_{i,t}^*, P_{i,t}$.

Производственные функции: $Y_{i,t} = \min(\alpha_N N_{i,t}, \alpha_K K_{i,t})$

Предметы потребления не хранятся на рынке больше одного периода.

Рынок TO. посредством чего фирмы взаимодействуют друг с другом.

Характеристики рынка	Обозначение	Пояснение
Количество фирм	n	
Количество отраслей	k	
Матрица цен	$P \in \mathbb{R}^{n \times k}$	$P_{i,j}$ — цена на j у фирмы i
Матрица объёмов	$V \in \mathbb{R}^{n imes k}$	$V_{i,j}$ — объёмы j у фирмы i

Фирма — единственный вид агента в модели.

Константа
(Гиперпараметр)
Переменная
состояния
Обучаемая
функция

Характеристика фирмы	Обозначение
Производственная функция	$f_{prod}(ec{x}_{in},\mathcal{K}) = \min(f^*_{prod}(ec{x}_{in}),\mathcal{K}) ightarrow ec{x}_{out}$
Инвестиционная функция	$f_{invest}(ec{x}_{in}) ightarrow \Delta \mathcal{K}$
Срок жизни основного капитала	d
Деньги	m
Запасы (резервы)	rës
Запасы (резервы) Основной капитал (лимит)	rēs Κ

где $\vec{x}_{in} \in \mathbb{R}^k$ — вектор входа. $\vec{x}_{out} \in \mathbb{R}^k$ — вектор выхода.

Ход одной фирмы:

Получает наблюдение. Фирма η получает наблюдение $o_{\eta} = (P, V, r\vec{e}s_{\eta}, m_{\eta}, \mathcal{K}_{\eta})$. Информации о $m, r\vec{e}s, \mathcal{K}$ других фирм у неё нет.

Получает параметры действий. Фирма применяет свою текущую политику к наблюдению и семплирует параметры действий:

$$\pi_{\eta}(o_{\eta}) o (A^{buy}, \bar{a}^{prod}, \bar{a}^{invest}, \bar{a}^{sale}, \bar{a}^{prices})$$

Действует:

- **Покупает товары на рынке**, пополняя запасы. Доля денег, которая тратится на товар j фирмы $i: A_{i,j}^{buy} \in [0,1].$
- lacktriangle Инвестирует. Доля запаса j, идущая на основной капитал: $a_i^{invest} \in [0,1].$
- igoplus Производит. Доля запаса j, идущая на производство: $a_i^{prod} \in [0,1]$
- ightharpoonup Выставляет товары на рынок. Доля запаса j, идущая на продажу: $a_i^{sale} \in [0,1]$
- 🎤 Назначает цены на свои товары. Цена на j: $a_j \cdot (p_{\sf max} p_{\sf min}) + p_{\sf min} \in [p_{\sf min}, p_{\sf max}]$

Амортизация. Капитал, приобретенный d периодов назад, пропадает.

Алгоритм: Multi-Agent Proximal Policy Optimzation

ightharpoons Используется для обучения функций π_1, \dots, π_n , задающих политику фирм.

ФФФФ Децентрализованные акторы
$$\pi_1(o_1; \theta_1), \ldots, \pi_n(o_n; \theta_n)$$
. Задача каждого актора i :

$$\pi_i pprox rg \max_{\pi_i} \mathbb{E}_{ au \sim \pi_1 \dots \pi_i \dots \pi_n} \left[\sum_{t=0}^{\infty} \gamma^t r_{i,t} \right]$$

где

 $au\sim\pi_1,\ldots,\pi_n$ — траектория системы (s_0,s_1,\ldots) при стратегиях π_1,\ldots,π_n $r_t=\mathbb{E}\left[R_t(s_t,a_t\sim\pi\left(s_t\right))\right]$ — ожидание награды на момент t, если действия фирмы a_t берутся из её текущей стратегии π_i

 s_t — состояние системы на момент t

ш Централизованный критик $V(o_1, \ldots, o_n; \phi)$. Предоставляет акторам оценку ожидаемой дисконтированной награды, получаемой при текущих стратегиях:

$$\hat{V}_{i}^{\pi_{1},...,\pi_{n}}(s) pprox \mathbb{E}_{ au \sim \pi_{1}...\pi_{i}...\pi_{n}} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{i,t} \mid s_{0} = s \right]$$

Функция награды (полезности, выигрыша)

- Критик учится по состоянию, в котором находится каждая фирма, оценивать её ожидаемую дисконтированную награду $V_i^{\pi_1,...,\pi_n}(s)$
- Каждая фирма i вырабатывает стратегию π_i , которая максимизирует оценку ожидаемой дисконтированной награды (полезности):

$$\pi_i pprox rg \max_{\pi_i} rac{1}{|\mathcal{B}|\cdot| au|} \sum_{j=0}^{|\mathcal{B}|} \sum_{t=0}^{| au_j|} \hat{V}_i^{\pi_{f 1},...,\pi_n}(s_{t, au_j})$$

где s_{t, au_i} — состояние системы на траектории au_i в момент t

• Проводятся эксперименты с разными функциями наград

Тип награды	Функция награды	
Производственная	$R_t^{prod} = \log\left(ext{const} + \sum_{j=1}^k f^{prod}(ec{x_{in}})_j ight)$	
Финансовая	$R_t^{fin} = \text{revenue}_{t+1} - \text{costs}_t$	
Смешанная	$R_t^{mix} = R_t^{fin} + \nu \cdot R_t^{prod}$	

- Награда производственная. Задача фирм максимизация производства.
- Производственные функции фирм симметричные. Первая фирма производит 2 товара x_2 из одного товара x_1 .
- Инвестиционные функции фирм одинаковые. x_1 и x_2 создают 2 единицы \mathcal{K} .

Фирма	f ^{prod}	f invest
1	$(2x_2,0)$	$2\min(x_1,x_2)$
2	$(0,2x_1)$	$2\min(x_1,x_2)$

Параметр	Значение
d (срок жизни \mathcal{K})	2
Начальные лимиты	2
Начальные резервы	(10, 10)
Начальные цены	50
Начальные финансы	500
Интервал цен	$p \in [1, 100]$
Итераций	32
Функция награды	R^{prod}
Тип чисел	Целые

- Производство растёт, лимиты тоже растут
- Фирмы торгуют на большие суммы
- Фирмы держат довольно высокие цены на свою продукцию

- Награда смешанная. Фирмам важны и прибыль, и производство.
- Производственные функции фирм симметричные. Первая фирма производит 2 товара x_2 из одного товара x_1 . Инвестиционные функции фирм одинаковые.
- Фирма 4 монополия.

Фирма	f ^{prod}	f ^{invest}
1	$(2x_2,0)$	$2\min(x_1,x_2)$
2	$(2x_2,0)$	$2\min(x_1,x_2)$
3	$(2x_2,0)$	$2\min(x_1,x_2)$
4	$(0,2x_1)$	$2\min(x_1,x_2)$

Параметр	Значение
d (срок жизни \mathcal{K})	2
Начальные лимиты	2
Начальные резервы	(10, 10)
Начальные цены	50
Начальные финансы	500
Интервал цен	$p \in [1, 100]$
Итераций	32
Функция награды	R ^{mix}
Тип чисел	Целые

- Финансы перетекают из конкурентной отрасли к монополии
- Фирмы назначают почти одинаковые цены на *производимые ими* товары

0.0	0.2	0.4	0.6	0.8	1.0

- Награда производственная. Фирмам важно производство.
- Производственные функции фирм симметричные. Фирма 1 производит 3 товара x_1 из x_2 и x_3 .
- Основной капитал создаётся только из ресурсов фирмы 3.

φρ		
Фирма	f ^{prod}	finvest
1	$(3 \min(x_2, x_3), 0, 0)$	X ₃
2	$(0, 3 \min(x_1, x_3), 0)$	X3
3	$(0,0,3\min(x_1,x_2))$	X3

Параметр	Значение
d (срок жизни $\mathcal K$)	2
Начальные лимиты	2
Начальные резервы	(10, 10)
Начальные цены	50
Начальные финансы	500
Интервал цен	$p \in [1, 100]$
Итераций	32
Функция награды	R ^{prod}
Тип чисел	Целые

- Фирма 3 держит более высокие цены на свою продукцию
- Объёмы производства и лимиты у фирмы 3 выше
- Переток финансов к фирме 3, производящей основной капитал.

Синергетические эффекты:

- Цены отражают дефицитность согласно производственным технологиям
- Ускоренный рост отрасли, производящей ресурсы для основного капитала
- Внутриотраслевая конкуренция \Rightarrow фирмы устанавливают приблизительно одинаковые цены
- Переток денежных ресурсов от конкурентной отрасли к монополии

Стратегии фирм:

- При усреднении, как правило, меняются несильно от эпохи к эпохе ⇒ агрегированные параметры действий можно описать константой или простым уравнением динамики
- Без усреднения могут сильно меняться от эпохи к эпохе, поскольку политика стохастична.
- При производственной награде иногда стратегии фирм отклоняются от гипотетической идеальной стратегии, лучшей для обоих агентов. Например, повышение цен.

Будущие исследования:

- **Изменение архитектуры рынка.** Текущая архитектура рынка не подходит для большого числа агентов.
- Добавление других видов агентов. Государство, банки, потребители.
- Адаптация модели для регулирования: данный подход позволяет понять, какие политики могут возникнуть у фирм в той или иной среде ⇒ можно использовать для выработки оптимальных механизмов регулирования хозяйственной деятельности.

Моделирование конкурентных стратегий гетерогенных фирм с помощью обучения с подкреплением

Выполнил: Перепелкин Владимир Андреевич БЭК205 Научный руководитель: Пильник Николай Петрович

- Brusatin, S. и др. (2024). Simulating the economic impact of rationality through reinforcement learning and agent-based modelling. arXiv: 2405.02161 [cs.LG].
- Curry, M. и др. (2022). Analyzing Micro-Founded General Equilibrium Models with Many Agents using Deep Reinforcement Learning. arXiv: 2201.01163 [cs.GT].
- Dwarakanath, К. и др. (2024). ABIDES-Economist: Agent-Based Simulation of Economic Systems with Learning Agents. arXiv: 2402.09563 [cs.MA].
- Leontief, W. (1986). Input-output economics. Oxford: Oxford University Press.
- Lowe, R. и др. (2020). Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. arXiv: 1706.02275 [cs.LG].
- Schulman, J. и др. (2017). Proximal Policy Optimization Algorithms. arXiv: 1707.06347 [cs.LG].
- Yu, C. и др. (2022). The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games. arXiv: 2103.01955 [cs.LG].
- Леонидов, А. В. и Е. Е. Серебрянникова (2017). «Динамическая модель несовершенной конкуренции в многосекторной экономике». В: Пробл. управл. 4, с. 8—16. URL: http://mi.mathnet.ru/pu1035.

Архитектуры

Рис.: Архитектура централизованного критика. $\phi = (W_1, b_1, W_2, b_2)$

Рис.: Архитектура актора для фирмы $\eta.~\theta_{\eta} = (W_1^{\eta}, \dots, W_6^{\eta}, b_1^{\eta}, \dots, b_6^{\eta})$

Алгоритм. Получение параметров действий.

- 1: $a_j^{sale} \sim \mathsf{Beta}(lpha_{1,j}^{\vec{}}, ec{eta}_{1,j})$
- 2: $a_i^{prices} \sim \text{Beta}(\alpha_{2,j}^{\vec{j}}, \vec{\beta}_{2,j})$
- 3: $(a_i^{prod}, a_i^{invest}, a_i^{save}) \sim \text{Dir}(\alpha_{3,j})$
- 4: $a^{buy} \sim Dir(\vec{\alpha_4})$
- 5: $A_{i,j}^{buy} \leftarrow a_{i+(j-1)\cdot k}^{buy}$

- ⊳ Доли резеревов на продажу
- ⊳ Параметры цен
- ⊳ Доли резервов на инвестиции и производство
 - ⊳ Доли затрат на покупки
 - Получение подходящей размерности

Алгоритм. Ход фирмы ч.1

Покупка товаров на рынке

- 1: $V_{i,j}^{bought} \leftarrow \min\{m_{\eta} \cdot \frac{A_{i,j}^{buy}}{P_{i,i}}, V_{i,j}\}$
- 2: $m_n \leftarrow m_n \operatorname{tr}(P^T V^{bought})$
- 3: $m_i \leftarrow m_i + \langle V_i^{bought}, P_i \rangle$
- 4: $\vec{res}_{i}^{\eta} \leftarrow \vec{res}_{i}^{\eta} + \sum_{i}^{k} V_{i,i}^{bought}$

- ⊳ Определение объёмов покупок
- ⊳ Уменьшение финансов фирмы
- ⊳ Получение выручки фирмами
 - ⊳ Обновление резервов

Алгоритм. Ход фирмы ч.2

Инвестиции

- 5: $\vec{x}_{invest} \leftarrow \dot{\vec{res}} \odot a^{invest}$
- 6: $\mathcal{K}_t^{\eta} \leftarrow f_{invest}^{\eta}(\vec{x}_{invest})$
- 7: $\mathcal{K}^{\eta} \leftarrow \mathcal{K}^{\eta} + \mathcal{K}^{\eta}_{t}$
- 8: $\vec{res}^{\eta} \leftarrow \vec{res}^{\eta} \vec{x}_{invest}$

Производство товаров

- 9: $\vec{x}_{in} \leftarrow \vec{res} \odot a_{prod}^{use}$
- 10: $\vec{x}_{out} \leftarrow f_{prod}^{\eta}(\vec{x}_{in})$
- 11: $r\vec{e}s^{\eta} \leftarrow r\vec{e}s^{\eta} + \vec{x}_{out} \vec{x}_{in}$

Выставление товаров на рынок

- 12: $\vec{x}_{sale} \leftarrow \vec{res} \odot a^{sale}$
- 13: $V_n \leftarrow V_n + \vec{x}_{sale}$
- 14: $\vec{res}^{\eta} \leftarrow \vec{res}^{\eta} \vec{x}_{sale}$

Назначение цен и амортизация

- 15: $P_{\eta} \leftarrow a^{prices} \cdot (p_{max} p_{min}) + p_{min}$
- 16: $\mathcal{K}^{\eta} \leftarrow \sum_{\tau=t-d}^{t} \mathcal{K}^{\eta}_{\tau}$

- > Определение резервов для инвестиций
 ⊳ Производство основного капитала
 - ⊳ Обновление лимитов
 - Обновление резервов
- ⊳ Определение резервов для производства
 - ⊳ Производство ресурсов
 - ⊳ Обновление резервов
- ⊳ Определение резервов, идущих на рынок
 - ⊳ Приращение на рынке
 - ⊳ Обновление резервов
 - ⊳ Изменение цен на рынке
 - ⊳ Изнашивание основного капитала

Алгоритм. Сбор траекторий

2: $R_{it} \leftarrow 0 \quad \forall i \in \{1, ..., n\}, t \in \{1, ..., T\}$

⊳ Запуск модели на Т периодов

⊳ Ход каждого агента

26 / 37

⊳ Сохранение траекторий

1: Инициализация модели 3: **for** t = 1 to T **do for** agent i = 1 to n **do** 4. Получение наблюдения $o_i(V, P, r\vec{e}s_i, m_i, \mathcal{K}_i, \mathcal{K}_{i+-d})$ 5: 6: Семплирование действий $a_i \sim \pi(o_i; \theta_i)$ 7: Получение вероятностей действий $p(a_i|o_i;\theta_i)$ 8: Выполнение a_i , обновление среды g. if финансовая награда then 10: $R_{t,i} \leftarrow R_{t,i} - \text{costs}_{t,i}$ $R_{t-1,i} \leftarrow R_{t-1,i} + \text{revenue}_{t,i}$ 11:

16: Подсчёт $\hat{A}^{GAE}(v,R)$ 17: $\hat{V}_{t,i} \leftarrow v_{t,i} + \hat{A}_{t,i}^{GAE}$

14:

15:

12: if производственная награда then $R_{t,i} \leftarrow R_{t,i} + \nu \cdot \log \left(\text{const} + \sum_{i=1}^{k} f^{prod}(\vec{x_{in}})_{j} \right)$ 13:

18: τ_t : $\leftarrow \{\hat{V}_t$: \hat{A}_t^{GAE} , s_t : s_t : p_t : a_t : v_t : $\{\hat{V}_t$: $\{\hat{V}_t\}\}$

 $p_{t,i}, s_{t,i}, a_{t,i}, \leftarrow p(a_i|o_i; \theta_i), o_i, a_i$

 $\mathsf{s}'_{t,i}, \mathsf{v}_{t,i} \leftarrow \mathsf{s}_{t-1,i}, V_i(\mathsf{s}_t; \phi)$

Алгоритм. Multi-Agent Proximal Policy Optimization

```
1: Собрать набор из K траекторий \mathcal{D} \leftarrow (\mathcal{D}_1, \dots \mathcal{D}_K)
 2: for случайный мини-батч b из D do
            s, s', a, p, v, \hat{V}, \hat{A}^{GAE} \leftarrow b
             for agent i = 1 to n do
                   V_{\star}^{old} \leftarrow v_{t,i}
 5:
 6:
                    a_{t,i}, p_{t,i} \leftarrow a_{t,i}, p_{t,i}
                   V_{t,i}^{clip} \leftarrow \text{clip}(V_{t,i}(s_t; \phi), V_{t,i}^{old} - 0.2, V_{t,i}^{old} + 0.2)
 7:
                   \mathcal{L}_{i}^{C}(\phi) \leftarrow \frac{1}{T} \sum_{t=1}^{T} \max\{L_{1}(V_{t,i}(s;\phi), \hat{V}_{t,i}), L_{1}(V_{t,i}^{clip}, \hat{V}_{t,i})\}
 8:
                   Нормализация \hat{A}^{GAE}
 g.
                    Получение вероятностей действий p(a_i|s_i;\theta_i) для актуальных параметров \theta_i
10:
                   \mathsf{ratios}_{t,i} \leftarrow \mathsf{exp}\left(\mathsf{log}\,p(a_i|s_i) - \mathsf{log}\,p_{old}(a_i|s_i)\right)
11:
                   ratios_{t,i}^{clip} \leftarrow clip(ratios_{t,i}, 0.8, 1.2)
12:
                   \mathcal{L}_{i}^{A}(\theta_{i}) \leftarrow -\sum_{t=1}^{T} \min\{\hat{A}_{t,i}^{GAE} \cdot \text{ratios}_{t,i}, \hat{A}_{t,i}^{GAE} \cdot \text{ratios}_{t,i}^{clip}\}
13:
                    Обновление параметров актора i: \theta_i \leftarrow \arg\min_{\theta_i} \mathcal{L}_i^A(\theta_i)
14:
                    Обновление параметров централизованного критика: \phi \leftarrow \arg\min_{\phi} \mathcal{L}_{i}^{C}(\phi)
15:
```

- Награда производственная. Фирмам важна только прибыль.
- Производственные функции фирм симметричные. Первая фирма производит 2 товара x_2 из одного товара x_1 .
- Основной капитал бесконечный, фирмы не инвестируют.

Фирма	f ^{prod}	f ^{invest}
1	$(2x_2,0)$	$2\min(x_1,x_2)$
2	$(0,2x_1)$	$2\min(x_1,x_2)$

Значение
∞
∞
(10, 10)
50
500
$p \in [1, 100]$
32
R ^{prod}
Целые

- Производство растёт очень интенсивно
- Фирмы держат низкие цены на свою продукцию

- Награда финансовая. Фирмам важна только прибыль.
- Производственные функции фирм симметричные. Первая фирма производит 2 товара x_2 из одного товара x_1 .
- Основной капитал бесконечный, фирмы не инвестируют.

Фирма	f ^{prod}	f ^{invest}
1	$(2x_2,0)$	$2\min(x_1,x_2)$
2	$(0,2x_1)$	$2\min(x_1,x_2)$

Параметр	Значение
d (срок жизни \mathcal{K})	∞
Начальные лимиты	∞
Начальные резервы	(10, 10)
Начальные цены	50
Начальные финансы	500
Интервал цен	$p \in [1, 100]$
Итераций	32
Функция награды	R ^{fin}
Тип чисел	Целые

- Доминирующая стратегия фирм не покупать товары у контрагента (это равновесие Нэша).
- Объёмы товаров почти не растут, несмотря на отсутствие лимитов.

- Награда смешанная. Фирмам важны и прибыль, и производство.
- Производственные функции фирм симметричные. Первая фирма производит 2 товара x_2 из одного товара x_1 .
- Инвестиционные функции фирм одинаковые. x_1 и x_2 создают 2 единицы \mathcal{K} .

Фирма	f ^{prod}	f ^{invest}
1	$(0,2x_1)$	$2\min(x_1,x_2)$
2	$(2x_2,0)$	$2\min(x_1,x_2)$

Параметр	Значение
d (срок жизни \mathcal{K})	2
Начальные лимиты	2
Начальные резервы	(10, 10)
Начальные цены	50
Начальные финансы	500
Интервал цен	$p \in [1, 100]$
Итераций	32
Функция награды	R ^{mix}
Тип чисел	Целые

