Theoretische Informatik: Blatt 6

 Abgabe bis 9. Oktober 2015 Assistent: Sacha Krug, CHN D $42\,$

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 16

Wir wollen zeigen, dass $L_{q_i} \notin \mathcal{L}_R$, also nicht rekursiv ist. Dazu machen wie einen Widerspruchsbeweis. Annahme: L_{qi} sei rekursiv. Wir zeigen $L_u \leq_R L_{q_i}$.

Algorithums B für L_U

Für ein Wort w entscheiden wir zuerst, ob die Syntax einem Wort in L_u entspricht. Falls nein, ist $w \notin L_u$. Falls ja, wählen wir als i die Nummer des Zustands q_{accept} in der Kodierung von M und erzeugen daraus w'. Falls die Anzahl Zustände de TM M nicht $\geq i+1$ ist, verwerfen wir w. (Diese Arbeit führt der Algorithmus A aus.) Ansonsten fahren wir fort, wie folgt: Da eine TM aus q_{accept} nicht mehr herausgeht, ist $w \in L_u$, falls M_{q_i} w' akzeptiert, also M den i-ten Zustand erreicht. Falls M_{q_i} w' verwirft akzeptiert M also w nicht. Da M_{q_i} immer hält (da rekursiv), hält auch M_{q_i} immer. Also gilt M_{q_i} aus M_{q_i} et M_{q_i} immer hält (da rekursiv), hält auch M_{q_i} immer. Also gilt M_{q_i} immer. Also gilt M_{q_i} immer hält und nach M_{q_i} immer hält (da rekursiv), hält auch M_{q_i} immer. Also gilt M_{q_i} immer hält und nach M_{q_i} immer hält (da rekursiv), hält auch M_{q_i} immer. Also gilt M_{q_i} immer hält und nach M_{q_i} immer hält (da rekursiv), hält auch M_{q_i} immer. Also gilt M_{q_i} immer hält und nach M_{q_i} immer hält (da rekursiv), hält auch M_{q_i} immer. Also gilt M_{q_i} immer hält und nach M_{q_i} immer hält (da rekursiv), hält auch M_{q_i} immer. Also gilt M_{q_i} immer hält und nach M_{q_i} immer hält (da rekursiv), hält auch M_{q_i} immer.

Aufgabe 17

Wir wollen zeigen, dass ${L_{q_i}}'$ nicht in \mathcal{L}_R ist. Dazu genügt es nach Lemma 5.4 zu zeigen, dass $({L_{q_i}}')^C \notin \mathcal{L}_R$.

$$(L_{q_i}{}')^C = \left\{ \begin{array}{l} w \neq \operatorname{Kod}(M) \# x \# 0^i \\ w = \operatorname{Kod}(M) \# x \# 0^i \text{ und M hat weniger als } i+1 \text{ Zust"ande} \\ w = \operatorname{Kod}(M) \# x \# 0^i, \text{ M hat mehr als } i \text{ Zust"ande, M erreicht den } i\text{-ten Zust"and nicht} \end{array} \right.$$

Um zu zeigen, dass $(L_{q_i}{}')^C \not\in \mathcal{L}_R$ benutzen wir einen Widerspruchsbeweis. Annahme: L_H ist rekursiv. Wir zeigen $L_H \leq_R (L_{q_i}{}')^C$.

Algorithums B für L_U

