DSA 8070 R Session 11: Classification

Whitney Huang, Clemson University

Contents

Linear Discriminant Analysis, Logistic Regression, and Quadratic Discriminant Analysis
Iris data
Binary classification
Linear Discriminant Analysis (LDA)
Logistic Regression
Summarize the Result
LDA vs. QDA
Support Vector Machines
Simulating Example
Train a Support Vector Machine
Changing Cost to Allow for a Wider Margin
Cross-Validation
Predcition
Generate some data with nonlinear class boundary
Training an SVM Using a Non-Linear Kernel
Changing to a Higher Cost Value
Cross-Validation
Dissuining at Anglesia I suistia Damassian, and One dustia Dissuining at

Linear Discriminant Analysis, Logistic Regression, and Quadratic Discriminant Analysis

Iris data

```
data(iris)
head(iris)
```

##		Sepal.Length	Sepal.Width	Petal.Length	${\tt Petal.Width}$	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa

Binary classification

Linear Discriminant Analysis (LDA)

```
library(MASS)
par(las = 1)
scatterplot(PC2 ~ PC1 | Species , Z, smooth = F, regLine = F, legend = F, cex = 0.85,
            col = c("red", "blue"))
fit <- lda(Species ~ Z[, 1:2])</pre>
fit # show results
## Call:
## lda(Species ~ Z[, 1:2])
## Prior probabilities of groups:
## versicolor virginica
         0.5
##
## Group means:
              Z[, 1:2]PC1 Z[, 1:2]PC2
##
## versicolor 0.7930189 -0.1607571
## virginica -0.7930189 0.1607571
## Coefficients of linear discriminants:
##
                     LD1
## Z[, 1:2]PC1 -1.553249
## Z[, 1:2]PC2 3.060560
abline(0, -fit$scaling[1] / fit$scaling[2], pch = 5, lwd = 2)
points(2, 0.5, pch = "?", cex = 1.5)
points(1.8, 0.5, pch = "*", cex = 2)
```


Logistic Regression

```
logfit <- glm(irisv$Species ~ Z[, 1:2], family = binomial)
logpred <- predict(logfit, type = "response")
predCol <- ifelse(logpred <= 0.5, "blue", "red")
Col <- rep(c("blue", "red"), each = 50)</pre>
```

Summarize the Result


```
logisticPred <- ifelse(logpred <= 0.5, "versicolor", "virginica")
table(irisv$Species, logisticPred)</pre>
```

```
## logisticPred
## versicolor virginica
## versicolor 48 2
## virginica 1 49
```

LDA vs. QDA

```
#treat data as matrix
z = as.matrix(Z)
# LDA vs. QDA
lda <- lda(irisv$Species ~ Z[, 1:2])
qda <- qda(irisv$Species ~ Z[, 1:2])
fit.LDA = predict(lda)$class
table(irisv$Species, fit.LDA)</pre>
```

```
## fit.LDA

## versicolor virginica

## versicolor 47 3

## virginica 1 49
```

```
fit.QDA = predict(qda)$class
table(irisv$Species, fit.QDA)
##
               fit.QDA
##
                versicolor virginica
                        47
##
     versicolor
                                   3
                         2
##
     virginica
                                  48
# show results
library(klaR)
par(las = 1, mgp = c(2, 1, 0), mar = c(3.5, 3.5, 2, 1))
partimat(Species ~ Z[, 1:2], method = "lda")
```

Partition Plot

partimat(Species ~ Z[, 1:2], method = "qda")

Partition Plot

Support Vector Machines

This part of the lab is primarily adapted from ISLR Chapter 9 SVM Lab.

Here we demonstrate the use of the svm() function from the library e1071 on a two-dimensional toy example so that we can visualized the resulting decision boundary. We begin by generating the observations, which belong to two classes, and checking whether the classes are linearly separable.

Simulating Example

First, simulate two predictors that are independent of each other and follow a standard normal distribution. Set the first half of the response to -1 and the second half of the response to 1. Then, shift the predictor values by 1 when the response is 1.

Train a Support Vector Machine

SVM classification plot


```
# support points
svmfit$index
    [1]
          2
                   6
                       7
                            8
                                9
                                    10
                                        11
                                            13
                                                 15
                                                     18
                                                         19
                                                              20
                                                                  21
                                                                      22
                                                                           25
                                                                               26
                                                                                   31
   [20]
         39
              40
                  42
                      47
                           48
                               52
                                   53
                                        54
                                            55
                                                58
                                                     59
                                                         62
                                                              65
                                                                  67
                                                                      68
                                                                           69
                                                                               72
                                                                                   74
## [39]
                  88
                      89
                           90
                               91
                                   96
                                       97
                                            98
                                                99 100
# summary
summary(svmfit)
```

```
##
## Call:
## svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)
##
##
## Parameters:
##
      SVM-Type: C-classification
##
    SVM-Kernel:
                 linear
##
          cost:
                10
##
## Number of Support Vectors: 49
##
   ( 24 25 )
##
##
##
```

```
## Number of Classes: 2
##
## Levels:
## -1 1
```

Changing Cost to Allow for a Wider Margin

```
svmfit <- svm(y ~ ., data = dat , kernel = "linear",
cost = 0.1, scale = FALSE)
plot(svmfit, dat, col = c(4, 2))</pre>
```

SVM classification plot


```
svmfit$index
```

```
25
 [1]
                5
                     6
                                      10
                                          11
                                              12
                                                   13
                                                        15
                                                            18
                                                                 19
                                                                     20
                                                                          21
                                                                              22
                                                                                   23
[20]
      26
           27
               30
                    31
                        33
                             39
                                 40
                                      42
                                               47
                                                   48
                                                        52
                                                            53
                                                                     55
                                                                          58
                                                                              59
                                                                                   62
                                                                                       65
                                                                 54
                             75
[39]
      67
           68
               69
                    72
                        74
                                 76
                                     77
                                          80
                                              81
                                                   84
                                                        86
                                                            88
                                                                 89
                                                                     90
                                                                              93
                                                                                   95
               99 100
[58]
      97
           98
```

Cross-Validation

The e1071 library includes a built-in function, tune(), to perform cross-validation. Here we compare SVMs with a linear kernel, using a range of values of the cost parameter.

```
set.seed(1)
tune.out <- tune(svm, y ~., data = dat , kernel = "linear",</pre>
ranges = list(cost = c(0.001, 0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out)
## Parameter tuning of 'svm':
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
##
##
## - best performance: 0.2
## - Detailed performance results:
     cost error dispersion
## 1 1e-03 0.45 0.24152295
## 2 1e-02 0.24 0.10749677
## 3 1e-01 0.21 0.09944289
## 4 1e+00 0.21 0.08755950
## 5 5e+00 0.20 0.10540926
## 6 1e+01 0.20 0.10540926
## 7 1e+02 0.20 0.10540926
bestmod <- tune.out$best.model</pre>
summary(bestmod)
##
## Call:
## best.tune(METHOD = svm, train.x = y \sim ., data = dat, ranges = list(cost = c(0.001,
       0.01, 0.1, 1, 5, 10, 100)), kernel = "linear")
##
##
## Parameters:
##
     SVM-Type: C-classification
## SVM-Kernel: linear
##
         cost: 5
##
## Number of Support Vectors: 49
##
## ( 24 25 )
##
##
## Number of Classes: 2
## Levels:
## -1 1
```

Predcition

##

The predict() function can be used to predict the class label on a set of test observations, at any given value of the cost parameter.

```
xtest <- matrix(rnorm (20 * 2), ncol = 2)
ytest <- sample(c(-1, 1), 20, rep = TRUE)
xtest[ytest == 1, ] <- xtest[ytest == 1, ] + 1
testdat <- data.frame(x = xtest , y = as.factor(ytest))

ypred <- predict(bestmod, testdat)
table(predict = ypred, truth = testdat$y)

## truth
## predict -1 1
## -1 8 2</pre>
```

Generate some data with nonlinear class boundary

0 10

Training an SVM Using a Non-Linear Kernel

```
train <- sample (200, 100)
svmfit <- svm(y ~ ., data = dat[train , ], kernel = "radial",
gamma = 1, cost = 1)
plot(svmfit, dat[train , ], col = 1:2)</pre>
```

SVM classification plot

summary(svmfit)

```
##
## Call:
## svm(formula = y \sim ., data = dat[train, ], kernel = "radial", gamma = 1,
       cost = 1)
##
##
##
## Parameters:
##
     SVM-Type: C-classification
   SVM-Kernel: radial
##
         cost: 1
##
##
## Number of Support Vectors: 31
##
   ( 16 15 )
##
##
##
## Number of Classes: 2
## Levels:
## 1 2
```

Changing to a Higher Cost Value

```
svmfit <- svm(y ~ ., data = dat[train , ], kernel = "radial",
gamma = 1, cost = 1e5)
plot(svmfit, dat[train, ], col = 1:2)</pre>
```

SVM classification plot

Cross-Validation

- best parameters:

cost gamma

```
1 0.5
##
##
## - best performance: 0.07
## - Detailed performance results:
      cost gamma error dispersion
## 1 1e-01 0.5 0.26 0.15776213
            0.5 0.07 0.08232726
## 2 1e+00
## 3 1e+01
            0.5 0.07 0.08232726
## 4 1e+02
            0.5 0.14 0.15055453
## 5 1e+03
             0.5 0.11 0.07378648
## 6 1e-01
             1.0 0.22 0.16193277
## 7 1e+00
            1.0 0.07 0.08232726
## 8 1e+01
            1.0 0.09 0.07378648
             1.0 0.12 0.12292726
## 9 1e+02
## 10 1e+03
             1.0 0.11 0.11005049
## 11 1e-01
             2.0 0.27 0.15670212
## 12 1e+00
             2.0 0.07 0.08232726
## 13 1e+01
             2.0 0.11 0.07378648
## 14 1e+02
             2.0 0.12 0.13165612
## 15 1e+03
            2.0 0.16 0.13498971
## 16 1e-01
             3.0 0.27 0.15670212
## 17 1e+00
             3.0 0.07 0.08232726
## 18 1e+01
             3.0 0.08 0.07888106
## 19 1e+02
             3.0 0.13 0.14181365
## 20 1e+03
             3.0 0.15 0.13540064
## 21 1e-01
             4.0 0.27 0.15670212
## 22 1e+00
             4.0 0.07 0.08232726
## 23 1e+01
             4.0 0.09 0.07378648
## 24 1e+02
             4.0 0.13 0.14181365
## 25 1e+03
           4.0 0.15 0.13540064
table(true = dat[-train , "y"],
     pred = predict(tune.out$best.model, newdata = dat[-train , ])
)
##
     pred
## true 1 2
     1 67 10
##
##
     2 2 21
```