

# Conceptos previos: gramáticas y autómatas

Felipe Restrepo Calle

ferestrepoca@unal.edu.co

Departamento de Ingeniería de Sistemas e Industrial Facultad de Ingeniería Universidad Nacional de Colombia Sede Bogotá



Gramáticas

Autómatas

1. Gramáticas

2. Autómatas



Gramáticas

**Autómatas** 

# Concepto de gramática formal

¿Cómo se pueden definir las palabras/frases que pertenecen a un determinado lenguaje?

- Enumerando
  - algunos lenguajes son infinitos?
- Descripción informal:
  - a veces complicado y demasiado impreciso



Gramáticas

**Autómatas** 

# Concepto de gramática formal

Necesitamos un **formalismo** para definir los lenguajes (las frases que pertenecen a un lenguaje).

# Gramáticas formales

- Una gramática describe de forma inequívoca la estructura de las frases y palabras de un lenguaje a través del uso de reglas definidas.
- Proporcionan un mecanismo para generar todas las palabras que pertenecen a un determinado lenguaje (también se llaman gramáticas generadoras).



Gramáticas

**Autómatas** 

# Concepto de gramática formal

Ejemplo: español

La sintaxis del español se define mediante reglas:

- 1. Una oración consta de sujeto y predicado y termina con un punto.
- 2. Un sujeto es una frase nominal.
- Una frase nominal es un grupo nominal seguido de un calificativo (que puede faltar)
- 4. ...

Gramáticas

**Autómatas** 

# Concepto de gramática formal

Ejemplo: español

Podemos usar producciones para representar estas reglas:

```
<oración>::=<sujeto> <predicado>.
```

```
<sujeto>::=<frase_nominal>
```

```
<frase_nominal>::=<grupo_nominal> <calificativo>
```

• • •



Gramáticas

Autómatas

# Concepto de gramática formal

Ejemplo: español

Podemos analizar si una frase en español es correcta

gramaticalmente:





Gramáticas

Autómatas

### Gramática BNF

La notación formal usada para describir la gramática de un lenguaje es la Forma Backus-Naur (BNF).

$$G = (V_N; V_T; S; P)$$

- V<sub>N</sub> es el conjunto de símbolos no terminales (variables)
- V<sub>T</sub> es el conjunto de símbolos **terminales**
- S es el símbolo inicial de la gramática
- P es el conjunto de reglas de la gramática

Gramáticas

**Autómatas** 

### Gramática BNF

### Ejemplo:

$$G = (V_N; V_T; S; P)$$

- $V_N = \{S\}$  no terminales
- $V_T = \{0, 1\}$  terminales
- S símbolo inicial

• 
$$P = \{ reglas \\ S \rightarrow 0 S 0 | 1 S 1 | 0 | 1 \}$$

¡Números capicúas con 0 y 1!

0 101 00100 100101001

• • •

Gramáticas

Autómatas

### Gramática BNF

### Ejemplo:

$$G_2 = (V_N; V_T; S; P)$$

- $V_N = \{S, A\}$  no terminales
- $V_T = \{a, b\}$  terminales
- S símbolo inicial

• 
$$P = \{ reglas \\ S \rightarrow Ab \\ A \rightarrow aAb \mid \epsilon \}$$

$$\Rightarrow$$
 L(G<sub>2</sub>)={a<sup>n</sup>b<sup>n+1</sup> | n≥0}

b abb aabbb aaaaabbbbbb

• • •

Gramáticas

**Autómatas** 

### Gramática BNF

### Ejemplo:

$$G_3 = (V_N; V_T; S; P)$$

- $V_N = \{S, A\}$  no terminales
- $V_T = \{a, b\}$  terminales
- S símbolo inicial

• 
$$P = \{ reglas \\ S \rightarrow Ab \}$$

 $A \rightarrow aAb$  | ab

}

$$\Rightarrow L(G_3) = \{a^nb^{n+1} \mid n>0\}$$

abb aabbb aaaaabbbbbb

• •

Gramáticas

Autómatas

### Gramática BNF

### Ejemplo:

$$G_4 = (V_N; V_T; S; P)$$

- $V_N = \{S, A\}$  no terminales
- $V_T = \{a, b\}$  terminales
- S símbolo inicial

$$S \rightarrow Ab$$

$$A \rightarrow ab$$
 | a

}

$$\Rightarrow L(G_4) = \{abb \mid ab\}$$

abb ab

Gramáticas

**Autómatas** 

### Gramática BNF

### Ejemplo:

$$G_5 = (V_N; V_T; S; P)$$

- $V_N = \{S, A\}$  no terminales
- $V_T = \{a, b\}$  terminales
- S símbolo inicial

• 
$$P = \{ reglas \\ S \rightarrow Ab \}$$

 $A \rightarrow Aab$  | a

 $\Rightarrow$  L(G<sub>5</sub>)={a(ab)<sup>n</sup>b | n≥0}

ab aabb aababb aabababb

Gramáticas

Autómatas

# Jerarquía de gramáticas de Chomsky (1956)



Todas las gramáticas posibles:

$$G_3 \subset G_2 \subset G_1 \subset G_0$$

G<sub>3</sub>: Gramáticas regulares

G<sub>2</sub>: Gramáticas independientes del contexto

G<sub>1</sub>: Gramáticas sensibles al contexto

G<sub>0</sub>: Gramáticas recursivamente enumerables o sin restricciones



Gramáticas

**Autómatas** 

## Jerarquía de gramáticas

Según la forma de las reglas, las gramáticas son:

- Regulares (tipo 3):
  - En la parte izquierda sólo hay un no terminal
  - En la parte derecha puede haber:

no terminal  $\rightarrow$  terminal

no terminal  $\rightarrow$  terminal no terminal

no terminal  $\rightarrow \varepsilon$  (cadena vacía)

- Generan los lenguajes regulares
- Autómata finito



Gramáticas

**Autómatas** 

## Jerarquía de gramáticas

Según la forma de las reglas, las gramáticas son:

- Independientes del contexto (GIC tipo 2):
  - En la parte izquierda sólo hay un no terminal
  - En la derecha no hay restricciones
  - La mayor parte de los lenguajes de programación están generados por este tipo de gramáticas
  - Autómata de pila



Gramáticas

**Autómatas** 

## Jerarquía de gramáticas

Según la forma de las reglas, las gramáticas son:

- Dependientes del contexto (tipo 1):
  - En la izquierda puede haber terminales y no terminales, pero al menos debe haber un no terminal
  - La longitud de la parte derecha debe ser mayor o igual que la de la izquierda
  - Autómata linealmente acotado
- No restringidas (tipo 0)
  - Máquina de Turing



Gramáticas

**Autómatas** 

# Gramáticas independientes del contexto – GIC (tipo 2)

### Ejemplo:

$$S \rightarrow OB \mid 1A$$
  
 $A \rightarrow O \mid OS \mid 1AA$   
 $B \rightarrow 1 \mid 1S \mid OBB$ 

Representa el lenguaje formado por las cadenas que contienen igual número de ceros que de unos.



Gramáticas

**Autómatas** 

# Gramáticas independientes del contexto – GIC (tipo 2)

Ejemplo:

S → 0S1 | 01

¿Qué lenguaje genera?

Cadenas del tipo  $0^n1^n$ , con n > 0



Gramáticas

**Autómatas** 

# Gramáticas independientes del contexto – GIC (tipo 2)

Lenguajes independientes del contexto, LIC: son los lenguajes generados por GIC.

Si L es regular  $\rightarrow$  L es LIC (al revés no es cierto)

### Ejemplo:

 $S \rightarrow aSb \mid aSa \mid bSa \mid bSb \mid a \mid b \mid \epsilon$ 

No es una gramática regular, pero L(G) es regular

Gramáticas

**Autómatas** 

# Ejercicios de GIC para conjuntos sobre $\Sigma = \{0, 1\}$

1. Números binarios capicúa (cadena binaria palíndroma)

2. Cadenas que no son capicúa (o palíndromas)

Gramáticas

**Autómatas** 

# Ejercicios de GIC para conjuntos sobre $\Sigma = \{0, 1\}$

3. Cadenas del tipo  $0^{n-1}1^n$ , con n > 0

4. Cadenas del tipo 0<sup>n</sup>10<sup>2n</sup>, con n ≥ 0



Gramáticas

Autómatas

1. Gramáticas

2. Autómatas



Gramáticas

**Autómatas** 

### **Autómatas Finitos**

Los autómatas finitos sirven para describir lenguajes regulares.

Son **máquinas de estados** que tienen acceso a una secuencia de símbolos de entrada (mediante una cabeza lectora).

Según su forma de funcionamiento se dividen en:

- Deterministas (AFD): dada una entrada, existe un único estado al que se puede llegar.
- No deterministas (AFND o indeterministas AFI): dada una entrada, puede estar en más de un estado a la vez, pueden tener más de un estado inicial, pueden tener transiciones vacías (sin consumir entrada).

Gramáticas

**Autómatas** 

### Autómatas Finitos Deterministas (AFD)

- Se encuentra en cada momento en un estado determinado y puede transitar a otro estado. Para ello:
  - Se lee la cinta y se avanza la cabeza lectora.
  - En función del símbolo leído y del estado actual, el autómata transita a otro estado.
- Un AFD detiene el procesamiento cuando no le quedan más símbolos en la entrada.

Gramáticas

Autómatas

#### Definición de AFD

Un AFD es una quíntupla:

$$A=(Q, \sum, f, q_0, F)$$

#### donde:

- Q: es el conjunto de estados.
- ∑: es el alfabeto de entrada.
- $f: Q \times \sum \rightarrow Q$  es la función (total) de transición.
- $q_0 \in Q$  es el estado inicial.
- $F \subseteq Q$  es el conjunto de estados finales.

Gramáticas

Autómatas

### Representación de AFD

Existen 3 tipos de representación:

- a) Diagrama (grafo) de transiciones
- b) Tabla de transiciones
- c) Función de transición

Gramáticas

**Autómatas** 

### Representación de AFD: Diagrama de Transiciones

Grafo dirigido etiquetado que, dado un alfabeto ∑, consta de:

- un conjunto de nodos **Q** (estados del autómata)
- un subconjunto de arcos  $E_a \subset Q \times Q$ ,  $\forall a \in \Sigma$  (transiciones de estado del autómata)
- existe una flecha dirigida al estado inicial q<sub>1</sub>



Gramáticas

Autómatas

### Representación de AFD: Tabla de Transiciones

Contiene los cambios de estado que se producen al procesar un símbolo de la cadena de entrada:

|               |       | 0     | 1     |
|---------------|-------|-------|-------|
| $\rightarrow$ | $q_1$ | $q_1$ | $q_2$ |
|               | $q_2$ | $q_3$ | $q_1$ |
|               | $q_3$ | $q_2$ | $q_3$ |

Gramáticas

Autómatas

### Representación de AFD: Función de Transición

La tabla anterior es equivalente a un conjunto de funciones, una por cada columna, que asocia a cada estado de partida otro de llegada:

$$f: Q \times \sum \rightarrow Q$$

En el ejemplo:

$$f(q_1, 0) = q_1$$
  $f(q_1, 1) = q_2$   
 $f(q_2, 0) = q_3$   $f(q_2, 1) = q_1$   
 $f(q_3, 0) = q_2$   $f(q_3, 1) = q_3$ 

Gramáticas

**Autómatas** 

### Representación de AFD: Función de Transición

Un AFD realiza transiciones entre estados de forma que un estado de llegada es a su vez estado de partida para la siguiente transición.

Ejemplo:

$$f(q_1, 101) = (q_2, 01) = (q_3, 1) = q_3$$

Determinista: ¡sólo hay una opción en cada momento!

Gramáticas

Autómatas

### Grafos sencillos que NO corresponden a AFDs

- Carecen de transiciones para determinados estados y símbolos del alfabeto
- Algunas transiciones no están etiquetadas
- No tiene estado inicial (un AFD si puede carecer de estados finales)

Gramáticas

Autómatas

### Minimización de AFD: nodo útil

Nodo útil: es aquel que es utilizado en el proceso de reconocimiento de alguna cadena.

Los nodos no útiles o **inútiles** pueden ser eliminados sin que L(M) cambie.



Gramáticas

Autómatas

#### Minimización de AFD

La minimización de un autómata pasa por la minimización del conjunto de estados. Hay 2 formas:

- Eliminando estados inaccesibles
- Combinando estados equivalentes





Gramáticas

Autómatas

#### Uso de los AFD

Según la tarea, se pueden usar como:

- Clasificadores binarios (clasificación de cadenas en dos clases)
- Traductores (clasificación en multitud de grupos)

Gramáticas

Autómatas

### Uso de los AFD: Clasificador

Un AFD puede servir para discriminar palabras, observando el estado final en el que se encuentra.



Sólo acepta cadenas de ceros y unos que empiecen con 0

Gramáticas

Autómatas

Uso de los AFD: Clasificador

El lenguaje aceptado por un AFD es:

$$L(M) = \{ w \in \sum^* : f(q_1, w) \in F \}$$

Todo lenguaje reconocible mediante un AFD se llama lenguaje regular.

Gramáticas

Autómatas

### Uso de los AFD: Clasificador

Si  $\sum$  = {0, 1}, ¿cuál es el lenguaje aceptado por los siguientes AFD?



Cadenas binarias (incluye la cadena vacía)



Cadenas únicamente con un número par de ceros (incluye la cadena vacía)

Gramáticas

**Autómatas** 

### Uso de los AFD: Clasificador

### **Aplicaciones:**

- Análisis léxico en programas (búsqueda de palabras correctas)
- Búsqueda de patrones en textos

### Ejemplo:

A partir de  $\sum$  = { 0, 1, . . ., 9, E, +, -, . }, sólo algunas palabras serán literales numéricos válidos en lenguaje C.

Gramáticas

Autómatas

### Uso de los AFD: Clasificador

**Ejemplo:** dibujar un AFD que reconozca cadenas que, como mínimo, contengan dos ceros consecutivos o dos unos consecutivos para  $\Sigma = \{0,1\}$ 



Gramáticas

**Autómatas** 

### Uso de los AFD: Traductor

Son autómatas capaces de **generar una cadena de salida** a partir de una cadena de entrada.

Un traductor secuencial es un AFD en el que:

- Se ha incorporado:
  - Alfabeto de salida (\(\Lambda\) lambda mayúscula)
  - Función de salida (λ lambda minúscula)
- No se define el subconjunto de estados de aceptación F

$$M=(Q, \sum, \Lambda, f, \lambda, q_0)$$

Gramáticas

Autómatas

### Uso de los AFD: Traductor

Dependiendo de la forma de **λ**:

- Máquinas de Moore  $(\lambda : Q \rightarrow \Lambda)$
- Máquinas de Mealy  $(\lambda : Q \times \sum \rightarrow \Lambda)$

Gramáticas

**Autómatas** 

#### Uso de los AFD: Traductor

Dada  $w_{in} = a_1 a_2 a_3 \dots$  que produce transiciones en:

$$M: q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} q_3 \dots$$

• En las máquinas de Moore,  $w_{out} = \lambda(q_2) \lambda(q_3) \dots$ 

El símbolo de salida es función del estado en que se encuentra M. Después que M cambie de estado, se detecta un nuevo símbolo.

• En las máquinas de Mealy,  $w_{out} = \lambda_{a1}(q_1) \lambda_{a2}(q_2) \lambda_{a3}(q_3)...$ 

El símbolo de salida es función del estado y de la transición y varía simultáneamente con M cuando este cambia de estado.

Gramáticas

Autómatas

#### Uso de los AFD: Traductor

**Ejemplo:** máquina de Moore y de Mealy que traduzca cadenas de  $\sum^*$  = {0, 1} a cadenas de  $\Lambda^*$  = {a, b} de manera que se genere una "b" si el último número de unos leídos es impar, y "a" si dicho número es par.





Gramáticas

Autómatas

### Uso de los AFD: Traductor

**Ejercicio:** construir una máquina de Moore capaz de ir calculando la suma parcial de los números {0, 1, 2, 3} que va recibiendo, y producir como salida el módulo 5 de dicha suma parcial.

Por ejemplo, si se recibe la cadena 3 2 1 3 0, las sumas parciales serán: 3, 5, 6, 9 y 9, y la salida que deberá producir la máquina será 3 0 1 4 4.



Gramáticas

Autómatas

Uso de los AFD: Traductor

Solución: Moore

Gramáticas

**Autómatas** 

### Uso de los AFD: Traductor

**Ejercicio:** construir una máquina de Mealy que, para una cadena binaria de entrada, produzca como salida:

- a) una a si ninguno de los dos últimos símbolos leídos es un 1;
- b) una b si exclusivamente uno de los dos últimos símbolos leídos es un 1;
- c) la cadena vacía en otro caso.

Ej: la salida correspondiente a la entrada 01101001 sería bbbbab (=εbεbbbab).



Gramáticas

Autómatas

Uso de los AFD: Traductor

Solución: Mealy



Máquina de Mealy

Gramáticas

Autómatas

### Autómatas Finitos No Deterministas (AFND)

Son una generalización de los AFDs donde se permite:

- que de un nodo parta más de una transición con el mismo símbolo
- que exista más de un estado inicial
- que existan ε-transiciones (transiciones vacías)

Gramáticas

Autómatas

### Autómatas Finitos No Deterministas (AFND)

### Propiedades:

- puede existir más de un camino para una cadena (puede estar en más de un estado simultáneamente)
- todo AFND puede convertirse en un AFD (el problema será el número de estados necesarios)
- si  $M_{AFD} \equiv M_{AFND} \rightarrow L(M_{AFD}) = L(M_{AFND})$
- Suelen ser más compactos y fáciles de diseñar que los AFD

Gramáticas

**Autómatas** 

#### Definición de AFND

Un AFND es:

$$M = (Q, \sum, f, Q_0, F)$$

#### donde:

- $Q_0 \subseteq Q$  es un conjunto de estados iniciales
- f: Q × ( $\sum U \{\epsilon\}$ )  $\rightarrow$  P(Q) es la función de transición (permite hacer transiciones con cualquier símbolo y con  $\epsilon$  desde un estado a un conjunto de estados)
- Los demás elementos (Q, ∑, F) tienen el mismo significado que en los AFD

Gramáticas

Autómatas

#### Clausura nula

La clausura nula  $C_{\varepsilon}(q)$  del estado q es el conjunto de estados accesibles directamente mediante transiciones- $\varepsilon$ .

Si para algún q,  $C_{\varepsilon}(q) \neq \{q\}$  el AFND contiene transiciones nulas.



| δ                   | a              | b                | ε              |
|---------------------|----------------|------------------|----------------|
| $\mathbf{q}_{_{1}}$ | $\mathbf{q}_1$ |                  | $\mathbf{q}_2$ |
| $\mathbf{q}_2$      |                | $\mathbf{q}_{2}$ |                |

Gramáticas

**Autómatas** 

## Ejemplo AFND

$$AFND_1 = (\{q_0, q_1, q_2\}, \{0, 1\}, f, \{q_0\}, \{q_2\})$$

#### Con f:

$$f(q_0, 0) = \{q_0, q_1\}$$
  
 $f(q_0, 1) = \{q_0\}$   
 $f(q_0, \epsilon) = \emptyset$ 

$$f(q_1, 0) = \emptyset$$

$$f(q_1, 1) = \{q_2\}$$

$$f(q_1, \varepsilon) = \{q_0, q_1\}$$

$$f(q_2, 0) = \emptyset$$

$$f(q_2, 1) = \emptyset$$

$$f(q_2, \varepsilon) = \emptyset$$

Tabla de transiciones: AFND 
$$0$$
 1  $\epsilon$   $\rightarrow q_0 \{q_0,q_1\} \{q_0\} \{q_0,q_1\}$ 

Gramáticas

**Autómatas** 

## Ejemplo AFND

$$AFND_1 = (\{q_0, q_1, q_2\}, \{0, 1\}, f, \{q_0\}, \{q_2\})$$

#### Con f:

$$\begin{array}{ll} f(q_0,\,0) = \{q_0,\,q_1\} & f(q_1,\,0) = \emptyset & f(q_2,\,0) = \emptyset \\ f(q_0,\,1) = \{q_0\} & f(q_1,\,1) = \{q_2\} & f(q_2,\,1) = \emptyset \\ f(q_0,\,\epsilon) = \emptyset & f(q_1,\,\epsilon) = \{q_0,\,q_1\} & f(q_2,\,\epsilon) = \emptyset \end{array}$$

### Diagrama de transiciones:



Gramáticas

**Autómatas** 

### Ejemplo de procesamiento en un AFND





Con la cadena 11100 hemos llegado a dos estados del autómata, uno de aceptación y otro no, por lo tanto, la cadena es aceptada.

Gramáticas

Autómatas

### Lenguaje aceptado por un AFND

Un AFND acepta todas las palabras para las que puede transitar desde un estado inicial a un estado final.

Ejemplo: el AFND del ejemplo anterior



Acepta las palabras  $\{x \in \{0, 1\}^* \mid x \text{ termina en } 01\}$  $L(M) = \{x = ab \mid a \in \{0, 1\}^*, b = 01\}$ 



Gramáticas

Autómatas

### **Ejercicios AFND**

Construir un AFND con cuatro estados que reconozca el lenguaje L siguiente:

$$L = \{a^n \mid n \ge 0\} \cup \{b^n a \mid n \ge 1\}$$

Gramáticas

Autómatas

## **Ejercicios AFND**

¿Cuál es el lenguaje reconocido por el siguiente autómata?

