## ESC 201 Assignment 12 Solutions

## anos.

## Characteristic Table:

| P | N | Q(t+1) | State  |
|---|---|--------|--------|
| 0 | 0 | 0      | Reset  |
| 0 | ı | Q(t)   | Hold   |
| 1 | 0 | ā(t)   | Toggle |
| 1 | 1 | 1      | set    |

## Excitation table:

| au) | alt+1) | P | N |
|-----|--------|---|---|
| 0   | 0      | 0 | X |
| 0   | al     | 1 | X |
| 1   | 0      | X | 0 |
| ī   | 1      | × | 1 |

general circuit for converting a FF with inputs XI, X2 into a different FF with inputs YI, Y2:

| Y1 →<br>Y2 → | $\times$ 10 $\rightarrow$ |
|--------------|---------------------------|
| Ø→ CC        | ×2                        |
| D->          | Pa                        |
| 2            | N                         |

| D | Q   | Q(t+1) | P | N |
|---|-----|--------|---|---|
| 0 | 0   | 0      | 0 | Χ |
| 0 | - 1 | 0      | × | 0 |
| 1 | 0   | 1      | 1 | X |
| 1 | 1   | 1      | 1 | 1 |

Therefore, PN FF can be converted to a D FF by:



Ans 2.



| Present | state | Inp | nut | Next | state |   |
|---------|-------|-----|-----|------|-------|---|
| A       | В     | x   | y   | Α    | В     | 2 |
| D       | 0     | 0   | O   | 0    | 0     | 0 |
| 0       | 0     | 0   | -1  | 1    | 0     | 0 |
| 0       | 0     | 1   | 0   | 0    | 0     | 0 |
| 0       | 0     | 1   | -1  | 0    | 0     | 0 |
| 0       | 1     | 0   | 0   | 0    | 1     | 0 |
| 0       | 1     | 0   | 1   | - 1  | 1     | 0 |
| 0       | 1     | 1   | 0   | 0    | 0     | 0 |
| 0       | 1     | 1   | ١   | 0    | 0     | 0 |
|         | 0     | 0   | 0   | 0    | 0     | 1 |
| -1      | 0     | 0   | 1   | 1    | 0     | 1 |
| 1       | 0     | 1   | 0   | 1    | -1    | 1 |
| 1       | 0     | 1   | 1   | 1    | 1     | 1 |
| 1       | 1     | 0   | 0   | 0    | 1     | 1 |
| 1       | 1     | 0   | 1   | 1    | 1     | 1 |
| 1       | 1     | 1   | 0   | 1    | 1     | 1 |
| Ĩ       | 1     | 1   | 1   | 1    |       | 1 |



Ans 3.

| Poresen | t state | Input | Next. | state |    |    |
|---------|---------|-------|-------|-------|----|----|
| A       | В       | x     | A     | В     | DA | DB |
| 0       | O       | 0     | 0     | O     | 0  | 0  |
| 0       | 0       | 1     | 0     | l.    | 0  | 1  |
| 0       | 1       | 0     | 0     | 1     | 0  | 1  |
| 0       | 1 -     | 1     | 1     | 1     | 1  | 1  |
| 1       | 0       | 0     | )     | 0     | 1  | 0  |
| 1       | 0       | 1     | 0     | 0     | D  | 0  |
| 1       | 1       | 0     | 1     | 1     | 1  | 1  |
| i       | 1       | Ī     | 1     | 0     | 1  | 0  |



$$D_A = A.\overline{x} + B.x$$

$$D_{B} = \overline{A} \cdot x + B \cdot \overline{x}$$



Ans4. There are 8 states. So, 3 ffs are required. Let the FFs be D type.



State transition table:

| Bier | ent | etale | Nex | KN | tate |    |    |    |
|------|-----|-------|-----|----|------|----|----|----|
| A    | B   | C     | A   | В  | C    | DA | DB | Do |
| 0    | .0  | 0     | 0   | 1  | 0    | 0  | I  | 0  |
| 0    | 1   | 0     | 0   | 0  | 1    | 0  | 0  | ١  |
| 0    | 0   |       | 1   | 0  | 0    | 1  | 0  | 0  |
| 1    | 0   | 0     | 0   | 1  | 1    | 0  | -1 | 1  |
| O    | 1   | 1     | 1   | ١  | 0    | 1  | 1  | 0  |
| 1    | 1   | 0     | 1   | 0  | 1    | 1  | 0  | 1  |
| 1    | 0   | 1     | 1   | 1  | 1    | F  | 1  | 1  |
| 1    | 1   | 1     | 0   | 0  | 0    | 0  | 0  | 0  |

$$D_{A} = C \cdot (\overline{A \cdot B}) + \overline{C} \cdot (AB); D_{B} = B \cdot (\overline{A + \overline{c}}) + \overline{B} \cdot (A + \overline{c});$$

$$D_{C} = A \cdot \overline{B} + B \cdot \overline{C}$$



| Bres | ent | state | Next | tst | ate |    |    |    |
|------|-----|-------|------|-----|-----|----|----|----|
| A    | В   | C     | A    | В   | C   | TA | TB | Te |
| 0    | 0   | 0     | 0    | 0   | 1   | 0  | 0  | 1  |
| O    | 0   | 1     | 0    | ı   | 1   | 0  | 1  | 0  |
| 0    | 1   | 1     | 5.1  | 1   | 1   | 1  | 0  | 0  |
| 1    | 1   | 1     | 1 3  | 1   | 0   | 0  | 0  | 1  |
| 1    | 1   | 0     | 1    | 0   | 0   | 0  | 1  | 0  |
| 1    | 0   | 0     | 0    | 0   | 0   | 1  | 0  | 0  |
|      |     |       |      |     |     |    |    |    |

A BC 
$$T_A$$
00 01 11 10
0 0 0  $\overline{11}$   $\overline{X}$ :  $T_A = \overline{A} \cdot B + A \cdot \overline{B}$ 
1  $\overline{11}$   $\overline{X}$ : 0 0

Unused states are ABC = 010 and 101. For 010,  $T_A=1$ ,  $T_B=1$ ,  $T_C=1$ , so the next state is 101 which is also an unused state. For ABC = 101 state:  $T_A=T_B=T_C=1$ . So, the next state

will be 010 which is an unused state. Thus, we see that if the counter goes into one of the unused states, it will not be able to recover to a proper used state.



A way to avoid this peroblem is to modify the transition table so that if the counter goes to an unused state, it then transitions to a used state, like 000. To

| Pres | ente | stati | Nes | ets | itali |    |    |    |
|------|------|-------|-----|-----|-------|----|----|----|
| A    | B    | C     | A   | B   | C     | TA | TB | Tc |
| 0    | 0    | 0     | 0   | 0   | 1     | 0  | 0  | 1  |
| 0    | 0    | 1     | 0   | 1   | 1     | 0  | 1  | 0  |
| 0    | 1    | 1     | - 1 | 1   | 1     | 1  | 0  | 0  |
| 1    | 1    | 1     | 1   | 1   | 0     | 0  | 0  | I  |
| 1    | 1    | 0     | ı   | 0   | 0     | 0  | 1  | 0  |
| 1    | 0    | 0     | 0   | 0   | 0     | 1  | 0  | 0  |
| 0    | 1    | 0     | 0   | 0   | 0     | ō  | 1  | 01 |
| 11   | 0    | 1     | 0   | 0   | 0     | 1  | 0  | 11 |

| 10  | 30 |    | IA |    |    |     |     |    |     |      |
|-----|----|----|----|----|----|-----|-----|----|-----|------|
| A   | 0  | 0  | 01 | 11 | 10 | , 7 |     | 70 |     | L 10 |
| 0   | 1  | 0  | 0  | 1  | 0  | 1   | A - | AL | 50  | FAR  |
| 1   | 1  | 1  | 1] | 0  | 0  |     |     |    |     |      |
| 0 5 | BC | Te | ,  |    | 11 | 2   |     | -  | _   |      |
| A   | 1  | 00 | 01 | 11 | 1  | *   | IB= | -A | BC- | +BC  |
| 0   |    | 0  | 1  | 0  |    | 11  |     |    |     |      |
| 1   |    | 0  | 0  | 0  | 1- |     |     |    |     |      |
| BC  |    |    | T  | C  |    |     |     |    |     |      |
| A   | 00 | 01 | 11 |    | 10 | ()  |     |    |     |      |
| 0   | )  | 0  | 0  | 0  |    | Tc= | - A | BC | ,+, | AC   |
| 1   | 0  | E  |    | 10 |    |     |     |    |     |      |
|     |    |    |    |    |    |     |     |    |     |      |

Ans 6. We need a divide by 10 counter. So, 4 ffs are required. It possible state transition of the counter:

| A | В | CD    |
|---|---|-------|
| 0 | 0 | 0 0   |
| 0 | 0 | 0 1   |
| 0 | 0 | 1 0   |
| į | 0 | 1 1   |
| 1 | 1 | 0 0   |
| 1 | 1 | 0 1   |
| 1 | 1 | 1 0   |
| 1 | 1 | 1 1 . |
| 1 | 0 | 00    |
| 1 | 0 | 0 1   |

| Bu | uen | t et | ate | Ne | Next state |   |     |   |    |    |    |     |
|----|-----|------|-----|----|------------|---|-----|---|----|----|----|-----|
| A  | В   | C    | D   | A  |            | B | C   | D | TA | TB | Tc | TD  |
| D  | 0   | 0    | 0   | 0  |            | 0 | 0   | 1 | 0  | 0  | 0  | 1   |
| 0  | D   | 0    | 1   | 0  | (          | ) | 1   | 0 | 0  | 0  | İ  | 1   |
| 0  | D   | 1    | 0   | 1  | (          | ) | 1   | 1 | 1  | 0  | 0  | - 1 |
|    | 0   | 1    | 1   | 1  | 1          |   | 0   | 0 | 0  | 1  | 1  | 1   |
| 1  |     | 0    | 0   | 1  | ١          |   | 0   | ١ | 0  | 0  | 0  | 1   |
| 1  | 1   | 0    |     | ı  | ١          |   | 1 ( | ) | 0  | 0  | 1  | 1   |
| 1  | 1   | 10   | )   | 1  | ١          |   | 1   |   | 0  | 0  | 0  | 1   |
| 1  | 1   | 1 1  |     | 1  | 0          | C | 0   | ) | 0  | 1  | 1  | 1   |
| 1  | 0 0 | 0    |     | 1  | 0          | C |     |   | 0  | 0  | 0  | 1   |
| 1  | 6 0 | 1    |     | 0  | O          |   | 0 0 | ) | 1  | 0  | 0  | 1_, |

TD=1

FFA output will have the required waveform.

| CA T |    |     | A    | 0  | CO |    |          | ATO CO |    |    | C  |     |      |     |     |     |   |
|------|----|-----|------|----|----|----|----------|--------|----|----|----|-----|------|-----|-----|-----|---|
| AB \ | 00 | 01  | - 11 | 10 | AB | 00 | 01       | 11     | 10 | \  | 00 | 01  | 11   | 10  |     |     |   |
| 00   | 0  | 0   | ĭX   | 1  | 00 | 0  | 0        | : X:   | 0  | 00 | 0  | ē î | 1×1  | 0   |     |     |   |
| 01   | ×  | X   | (X   | X  | 01 | ×  | X        | :X:    | X  | 01 | Х  | X   | X    | Х   |     |     |   |
| 11   | 0  | 0   | 0    | 0  | 1) | 0  | 0        |        | 0  | 11 | O  |     | 111  | D   |     |     |   |
| 10   | 0  | 1   | 0    | X  | 10 | 0  | 0        |        | X  | 10 | 0  | 0   | 11   | ×   |     |     |   |
| TA = | ĀC | + A | BE   | D  |    | 7  | -<br>B = | CD     | 45 |    | 1  | c = | - 01 | 1+6 | BD- | + Ā | D |



The combinational circuit can be synthesized using the durined expressions.