SCRIBE

2

Instructors: Purushottam Kar Authors: Gurpreet Singh Date: January 17, 2018

Parametric Learning and Convergence

Parametric Learning

Before we understand parametric learning theory, it is best to know the standard notation we will be using in this text.

Notations

- 1. Instance/Feature Space (\mathcal{X}) This is the space of the random variable that defines the data distribution.
- 2. Output Space (y) This defines the space of the label or value mapped to each data point.
 There can be different Output Spaces depending on the problem
 - Labelling: $\{-1,1\}, \mathbb{R}^p$
 - Permutation: S_n
 - Hierarchy / Tree
 - Alternate Representation: $\mathbb{R}^D \to \mathbb{R}^d$ (e.g. Dimensionality Reduction)
- **3. Hypothesis/Model Space** (\mathcal{F}) This defines the set of all functions $\{f: \mathcal{X} \to \mathcal{Y}\}$ belonging to a certain function class, for example, all linear functions or all neural networks. Generally equal to $\mathcal{Y}^{\mathcal{X}}$.
- **4. Distribution** (\mathcal{D}) In case of noisy setting or agnostic setting, this is the probability distribution over $\mathcal{X} \times \mathcal{Y}$, typically unknown.

However, if the setting is realizable (non-agnostic), then the distribution is only over \mathcal{X} , and we map $f^*: x \mapsto y$.

5. Training Sample (S) — This is a tuple of n data points and their mapped label/parameter sampled from the distribution or randomly obtained. $S = ((x^1, y^1), (x^2, y^2) \dots (x^n, y^n)) \in (\mathcal{X} \times \mathcal{Y})^n$

If the setting is agnostic, then $S \stackrel{iid}{\sim} \mathcal{D}$

- **6. Loss Function** (l) Loss function defines the similarity / dissimilarity in the estimated label value and the actual / observed label value. We say $l:(f(\mathcal{X}),\mathcal{Y})\to\mathbb{R}$. There are different types of loss functions, for example the squared loss function l^{sq} and the 0-1 loss function l^{0-1} .
- **7. Algorithm** (A) We say that the algorithm maps the generated / sampled training sample to a function belonging in the hypothesis space i.e.

$$A: S \mapsto \hat{f}_s \in \mathcal{F}$$
$$A: \bigcup_{s=1}^{\infty} (\mathcal{X}, \mathcal{Y})^n \mapsto \mathcal{F}$$

8. l-risk (er $_D^l[f]$) — This is defined as the expected loss/error that is obtained for a function $f \in \mathcal{F}$ given a loss function $l:(f(\mathcal{X}),\mathcal{Y}) \to \mathbb{R}$.

$$\operatorname{er}_{D}^{l}[f] \stackrel{\triangle}{=} \underset{(x,y) \sim D}{\mathbb{E}}[l(f(x),y)]$$

9. emperical risk $(\operatorname{er}_D^l[f])$ — This is defined as the weighted loss/error on the training sample that is obtained for a function $f \in \mathcal{F}$ given a loss function $l : (f(\mathcal{X}), \mathcal{Y}) \to \mathbb{R}$

$$\operatorname{er}_{S}^{l}[f] \stackrel{\Delta}{=} \frac{1}{n} \sum_{i=1}^{n} l(f(x^{i}), y^{i})$$

Exercise 2.1. Show that $\operatorname{er}_D^l[f] = \mathbb{E}\left[\operatorname{er}_S^l[f]\right]$

Exercise 2.2. Show that $\operatorname{er}_D^{l^{0-1}}[f] = \operatorname{er}_S^{0-1}[f]$ where

$$l^{0-1}(\hat{y}, y) = 1 - \mathbb{I}[y = \hat{y}]$$

Exercise 2.3. Find out $\operatorname{er}_{D}^{l_{\alpha}^{0-1}}[f]$ in terms of the emerical risk where

$$l_{\alpha}^{0-1} = \begin{cases} \alpha & \hat{y} \neq y, y = 1\\ 1 - \alpha & \hat{y} \neq y, y = 0\\ 0 & \hat{y} = y \end{cases}$$

Toy Binary Classification Example

Assume we have a binary classification problem, with a finite hypothesis space $\mathcal{F} = \{f_1, f_2 \dots f_m\}$, where $\forall f \in \mathcal{F}, f : \mathcal{X} \to \mathcal{Y}$

We first sample a training sample, $S \stackrel{iid}{\sim} D^n$. Then, we find the best model in \mathcal{F} i.e.

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{F}} \, \operatorname{er}_D^{0-1} \left[\, f \, \right]$$

One possible solution is to estimate the l-risk using emperical risk. Hence, we now minimize emperical risk (Emperical Risk Minimization)

$$f^* \approx \hat{f} = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \operatorname{er}_S[f]$$

Pointwise and Uniform Convergence

We continue with our analysis of the toy binary classification example. As stated earlier, we had defined the best function f^* and \hat{f} as

$$\begin{array}{lcl} f^* & = & \displaystyle \mathop{\arg\min}_{f \in \mathcal{F}} \, \operatorname{er}_D^l \left[f \right] \\ \\ \hat{f} & = & \displaystyle \mathop{\arg\min}_{f \in \mathcal{F}} \, \operatorname{er}_S^l \left[f \right] \\ \\ f^* & \approx & \hat{f} \end{array}$$

Since our hypothesis space is finite, we can, without loss of generality, say that $f^* = f_1$. Then,

- (i) we do not want $f_2, f_3 \dots f_m$ to perform well on S i.e. have high(er) emperical risk or training error.
- (ii) we do not want f_1 to perform poorly on S i.e. have low(er) emperical risk.
- (iii) we try to ensure all f_i give faithful and honest performance on S i.e. $\forall f \in \mathcal{F}, \operatorname{er}_D^l[f] \approx \operatorname{er}_S^l[f]$

We say that we need f_1 to give good performance, however we need to define what is "good". We say that S is good with respect to a function $f \in \mathcal{F}$ $(S \in \text{good}_f(\epsilon))$ if

$$\left|\operatorname{er}_{D}^{l}\left[f\right] - \operatorname{er}_{S}^{l}\left[f\right]\right| \leq \epsilon$$

This is known as pointwise convergence. We define it more formally below.

Definition 2.1. We say that a hypothesis class, \mathcal{F} has pointwise convergence for a given ϵ and a loss function l, if for all functions $f \in \mathcal{F}$, and a sample S of size n, the property

$$\left|\operatorname{er}_{D}^{l}\left[f\right] - \operatorname{er}_{S}^{l}\left[f\right]\right| \leq \epsilon$$

holds true.

Theorem 2.1. If $S \stackrel{iid}{\sim} D^n$, then $\forall f \in \mathcal{F}$,

$$\mathbb{P}\left[S \in \operatorname{good}_{f}(\epsilon)\right] \geq 1 - 2\exp\left(\frac{-n\epsilon^{2}}{3}\right)$$

or equivalently

$$\mathbb{P}\left[\,\left|\,\operatorname{er}_D^l\left[\,f\,\right] - \operatorname{er}_S^l\left[\,f\,\right]\,\right| > \epsilon\,\right] \quad \leq \quad 2\exp\left(\frac{-n\epsilon^2}{3}\right)$$

Exercise 2.4. Prove Theorem 2.1

Hint: Take a Bernoulli random variable and use Chernoff's Bound

Pointwise convergence is a good property for individual functions, however, we want such a property to hold for all functions collectively. Hence, we define a much stronger convergence property, called uniform convergence.

In order to define Uniform Convergence, we must first define a desired situation for the defined hypothesis class.

$$\mathbb{P}\left[\operatorname{er}_{D}^{l}[\hat{f}] > \operatorname{er}_{D}^{l}[f^{*}]\right] < \delta$$

First, let us define the "goodness" of a sample in terms of uniform convergence. We say a sample S is good i.e. $S \in \text{good}(\epsilon)$ if for all functions $f \in \mathcal{F}$, $S \in \text{good}_f(\epsilon)$

Since we define $\hat{f} = \arg\min_{f \in \mathcal{F}} \operatorname{er}_{S}^{l}[f]$, we can say

$$\operatorname{er}_{S}^{l}[\,\hat{f}\,] \quad \leq \quad \operatorname{er}_{S}^{l}\,[\,f^{*}\,]$$

Suppose $S \in \text{good}(\epsilon)$, then

$$\begin{array}{ll} \operatorname{er}_D^l[\hat{f}] & \leq & \operatorname{er}_S^l[\hat{f}] + \epsilon \\ & \leq & \operatorname{er}_S^l[f^*] + \epsilon \\ & \leq & \operatorname{er}_D^l[f^*] + 2\epsilon \end{array}$$

Hence, we can say that if

$$\begin{split} S \in \operatorname{good}\left(\epsilon\right) &\implies &\operatorname{er}_D^l\left[\widehat{f}\right] \leq \operatorname{er}_D^l\left[f^*\right] + \frac{\epsilon}{2} \\ & \therefore &\operatorname{er}_D^l\left[\widehat{f}\right] > \operatorname{er}_D^l\left[f^*\right] + \frac{\epsilon}{2} &\implies & S \notin \operatorname{good}\left(\epsilon\right) \end{split}$$

Here, we use an identity, the proof of which is left as an exercise.

If
$$A \implies B$$
 then $\mathbb{P}[A] \leq \mathbb{P}[B]$

Therefore, we can say

$$\mathbb{P}\left[\left.\operatorname{er}_{D}^{l}\left[\hat{f}\right.\right]>\operatorname{er}_{D}^{l}\left[\left.f^{*}\right.\right]\right]\quad\leq\quad\mathbb{P}\left[\left.S\notin\operatorname{good}\left(\frac{\epsilon}{2}\right)\right.\right]$$

We can further reduce the RHS of the above inequality in terms of the size of the sample S, ϵ and the size of the hypothesis set, and hence state the condition for uniform convergence.

Theorem 2.2. A hypothesis function, \mathcal{F} is said to have the uniform convergence property if for some sample S of size n, and some ϵ

$$\mathbb{P}\left[\,\left|\,\operatorname{er}_D^l\left[\,\hat{f}\,\right] - \operatorname{er}_D^l\left[\,f^*\,\right]\,\right| > 2\epsilon\,\right] \quad \leq \quad \mathbb{P}\left[\,S \notin \operatorname{good}\left(\epsilon\right)\,\right] \quad \leq \quad 2\exp\left(\frac{-n\epsilon^2}{3}\right) \cdot m$$

Proof. From earlier, we know that if pointwise convergence holds, then uniform convergence also holds

$$\begin{array}{ll} \forall \, f \in \mathcal{F}, S \in \operatorname{good}_f\left(\epsilon\right) & \Longrightarrow \quad S \in \operatorname{good}\left(\epsilon\right) \\ & \therefore \quad \mathbb{P}\left[\, S \in \operatorname{good}\left(\epsilon\right) \,\right] & \geq \quad \mathbb{P}\left[\, \forall \, f \in \mathcal{F}, S \in \operatorname{good}_f\left(\epsilon\right) \,\right] \\ & \Longrightarrow \, \mathbb{P}\left[\, S \notin \operatorname{good}\left(\epsilon\right) \,\right] & \leq \quad \mathbb{P}\left[\, \exists \, f \in \mathcal{F}, S \notin \operatorname{good}_f\left(\epsilon\right) \,\right] \end{array}$$

Since on the RHS, we just have a union, using basic probability theory inequalities, we can write

$$\mathbb{P}[S \notin \operatorname{good}(\epsilon)] \leq \sum_{k=1}^{m} \mathbb{P}[S \notin \operatorname{good}_{f_{k}}(\epsilon)]$$
$$\leq \sum_{k=1}^{m} 2 \exp\left(\frac{-n\epsilon^{2}}{3}\right)$$
$$= 2 \exp\left(\frac{-n\epsilon^{2}}{3}\right) \cdot m$$

Hence, we can say that the theorem is valid.

<++>