Train a model with bike rental data using XGBoost algorithm

Training log1p(count) dataset

Model is trained with XGBoost installed in notebook instance

In the later examples, we will train using SageMaker's XGBoost algorithm

```
In [1]: # Install xgboost in notebook instance.
        #### Command to install xgboost
        !pip install xgboost
        Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazonaws.com
        Requirement already satisfied: xgboost in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (1.7.6)
        Requirement already satisfied: numpy in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from xgb
        oost) (1.22.3)
        Requirement already satisfied: scipy in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from xgb
        oost) (1.10.1)
In [2]: import sys
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.metrics import mean squared error, mean absolute error
        # XGBoost
        import xgboost as xgb
        column_list_file = 'bike_train_column_list.txt'
        train_file = 'bike_train.csv'
        validation_file = 'bike_validation.csv'
        test file = 'bike test.csv'
In [4]: columns = ''
        with open(column list file, 'r') as f:
            columns = f.read().split(',')
```

```
In [5]:
         columns
Out[5]: ['count',
          'season',
          'holiday',
          'workingday',
          'weather',
          'temp',
          'atemp',
          'humidity',
          'windspeed',
          'year',
          'month',
          'day',
          'dayofweek',
          'hour']
         # Specify the column names as the file does not have column header
         df_train = pd.read_csv(train_file,names=columns)
         df validation = pd.read_csv(validation_file,names=columns)
         df_train.head()
In [7]:
Out[7]:
              count season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour
         0 4.477337
                         3
                                             0
                                                                                                                   5
                                 0
                                                      2 26.24
                                                              30.305
                                                                           73
                                                                                   7.0015 2011
                                                                                                    9
                                                                                                                         0
         1 5.517453
                         3
                                 0
                                             1
                                                     1 32.80
                                                              34.850
                                                                           33
                                                                                  7.0015 2012
                                                                                                   8
                                                                                                       13
                                                                                                                   0
                                                                                                                        14
         2 5.814131
                                             0
                                                                                                                        17
                         4
                                 0
                                                     1 15.58
                                                             19.695
                                                                           40
                                                                                  11.0014 2011
                                                                                                   11
         3 6.436150
                         3
                                 0
                                             1
                                                             37.880
                                                                                  12.9980 2012
                                                                                                                   3
                                                     1 32.80
                                                                           55
                                                                                                    8
                                                                                                        9
                                                                                                                        19
         4 4.262680
                         2
                                 0
                                             1
                                                     1 13.94 17.425
                                                                           76
                                                                                  7.0015 2011
                                                                                                                   3
                                                                                                                         6
                                                                                                    4 14
In [8]: df_validation.head()
```

```
Out[8]:
              count season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour
         0 6.095825
                         3
                                0
                                                   2 28.70 33.335
                                                                              12.9980 2011
                                                                                              7 7
                                                                                                                   8
                                                                       79
         1 5.961005
                                                   1 32.80
                                                           37.880
                                                                       55
                                                                              12.9980
                                                                                    2011
                                                                                                 11
                                                                                                                  13
                                                                                               6
                                           1
                                                                              19.9995 2011
         2 1.098612
                         1
                                0
                                                   1 14.76
                                                           16.665
                                                                       40
                                                                                               2 14
                                                                                                             0
                                                                                                                  2
         3 3.891820
                                0
                                           1
                                                      9.02
                                                            9.090
                                                                              36.9974 2011
                         1
                                                                       47
                                                                                                             1
                                                                                                                  10
         4 4.025352
                                0
                                           0
                                                                       87
                                                                              0.0000 2011
                                                                                              12
                                                                                                             6
                                                                                                                  8
                         4
                                                      10.66
                                                           15.150
                                                                                                   4
In [9]: X_train = df_train.iloc[:,1:] # Features: 1st column onwards
         y_train = df_train.iloc[:,0].ravel() # Target: 0th column
         X validation = df validation.iloc[:,1:]
         y validation = df validation.iloc[:,0].ravel()
In [10]: # XGBoost Training Parameter Reference:
         # https://github.com/dmlc/xqboost/blob/master/doc/parameter.md
         #regressor = xgb.XGBRegressor(max_depth=5,eta=0.1,subsample=0.7,num_round=150)
         regressor = xgb.XGBRegressor(max_depth=5,n_estimators=150)
In [11]:
         regressor
Out[11]: ▼
                                              XGBRegressor
         XGBRegressor(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample_bytree=None, early_stopping_rounds=None,
                       enable_categorical=False, eval_metric=None, feature_types=None,
                       gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
                       interaction constraints=None, learning rate=None, max bin=None,
                       max_cat_threshold=None, max_cat_to_onehot=None,
                       max_delta_step=None, max_depth=5, max_leaves=None,
                       min_child_weight=None, missing=nan, monotone_constraints=None,
```

In [12]: regressor.fit(X_train,y_train, eval_set = [(X_train, y_train), (X_validation, y_validation)])

[0]	validation_0-rmse:3.06460	validation_1-rmse:3.07128
[1]	validation_0-rmse:2.18561	validation_1-rmse:2.18977
	-	-
[2]	validation_0-rmse:1.57973	validation_1-rmse:1.58729
[3]	validation_0-rmse:1.15916	validation_1-rmse:1.16584
[4]	validation_0-rmse:0.86291	validation_1-rmse:0.87348
[5]	validation_0-rmse:0.67593	validation_1-rmse:0.68940
[6]	validation_0-rmse:0.55710	validation_1-rmse:0.57295
[7]	validation_0-rmse:0.47210	validation_1-rmse:0.49133
[8]	validation_0-rmse:0.41153	validation_1-rmse:0.43610
[9]	validation_0-rmse:0.37590	validation_1-rmse:0.40111
[10]	validation_0-rmse:0.34717	validation_1-rmse:0.37443
[11]	validation_0-rmse:0.33554	validation_1-rmse:0.36382
[12]	validation_0-rmse:0.32311	validation_1-rmse:0.35253
[13]	validation_0-rmse:0.31561	validation_1-rmse:0.34656
[14]	validation_0-rmse:0.31065	validation_1-rmse:0.34307
[15]	validation_0-rmse:0.30379	validation_1-rmse:0.33729
[16]	validation_0-rmse:0.30120	validation_1-rmse:0.33574
[17]	validation_0-rmse:0.29738	validation_1-rmse:0.33265
[18]	validation_0-rmse:0.29363	validation_1-rmse:0.33012
[19]	validation_0-rmse:0.28230	validation_1-rmse:0.31960
[20]	validation_0-rmse:0.28065	validation_1-rmse:0.31865
[21]	validation_0-rmse:0.27929	validation_1-rmse:0.31837
[22]	validation_0-rmse:0.27543	validation_1-rmse:0.31537
[23]	validation_0-rmse:0.27240	validation_1-rmse:0.31359
[24]	validation_0-rmse:0.27125	validation_1-rmse:0.31330
[25]	validation_0-rmse:0.26807	validation_1-rmse:0.31087
[26]	validation_0-rmse:0.26695	validation_1-rmse:0.31061
[27]	validation_0-rmse:0.26557	validation_1-rmse:0.30983
[28]	validation_0-rmse:0.26483	validation_1-rmse:0.30959
[29]	validation_0-rmse:0.26218	validation_1-rmse:0.30775
[30]	validation_0-rmse:0.26009	validation_1-rmse:0.30638
[31]	validation_0-rmse:0.25702	validation 1-rmse:0.30447
[32]	validation_0-rmse:0.25219	validation_1-rmse:0.30066
[33]	validation_0-rmse:0.25082	validation_1-rmse:0.30016
[34]	validation_0-rmse:0.25006	validation_1-rmse:0.30001
[35]	validation_0-rmse:0.24881	validation_1-rmse:0.29997
[36]	validation_0-rmse:0.24700	validation_1-rmse:0.29957
[37]	validation 0-rmse:0.24604	validation 1-rmse:0.29944
[38]	validation_0-rmse:0.24537	validation_1-rmse:0.29931
[39]	validation_0-rmse:0.24505	validation_1-rmse:0.29909
[40]	validation_0-rmse:0.24388	validation_1-rmse:0.29895
[41]	validation_0-rmse:0.24261	validation_1-rmse:0.29857
[44]	Validacion_0-1 III36.0.24201	validacion_1-1 m3e.0.2903/

F 4 2 3	1:1.1: 0 0.24427	1:11: 4 0.20070
[42]	validation_0-rmse:0.24127	validation_1-rmse:0.29878
[43]	validation_0-rmse:0.23997	validation_1-rmse:0.29840
[44]	validation_0-rmse:0.23906	validation_1-rmse:0.29831
[45]	validation_0-rmse:0.23720	validation_1-rmse:0.29806
[46]	validation_0-rmse:0.23589	validation_1-rmse:0.29711
[47]	validation_0-rmse:0.23477	validation_1-rmse:0.29711
[48]	validation_0-rmse:0.23410	validation_1-rmse:0.29720
[49]	validation_0-rmse:0.23378	validation_1-rmse:0.29726
[50]	validation_0-rmse:0.23307	validation_1-rmse:0.29714
[51]	validation_0-rmse:0.23290	validation_1-rmse:0.29719
[52]	validation_0-rmse:0.23238	validation_1-rmse:0.29728
[53]	validation_0-rmse:0.23174	validation_1-rmse:0.29745
[54]	validation_0-rmse:0.23019	validation_1-rmse:0.29654
[55]	validation_0-rmse:0.22935	validation_1-rmse:0.29631
[56]	validation_0-rmse:0.22672	validation_1-rmse:0.29506
[57]	validation_0-rmse:0.22604	validation_1-rmse:0.29503
[58]	validation_0-rmse:0.22533	validation_1-rmse:0.29528
[59]	validation_0-rmse:0.22463	validation_1-rmse:0.29480
[60]	validation_0-rmse:0.22409	validation_1-rmse:0.29477
[61]	validation_0-rmse:0.22325	validation_1-rmse:0.29470
[62]	validation_0-rmse:0.22239	validation_1-rmse:0.29470
[63]	validation_0-rmse:0.22142	validation_1-rmse:0.29461
[64]	validation_0-rmse:0.22079	validation_1-rmse:0.29465
[65]	validation_0-rmse:0.21931	validation_1-rmse:0.29375
[66]	validation_0-rmse:0.21840	validation_1-rmse:0.29406
[67]	validation_0-rmse:0.21726	validation_1-rmse:0.29411
[68]	validation_0-rmse:0.21638	validation_1-rmse:0.29398
[69]	validation_0-rmse:0.21593	validation_1-rmse:0.29391
[70]	validation_0-rmse:0.21451	validation_1-rmse:0.29330
[71]	validation_0-rmse:0.21333	validation_1-rmse:0.29310
[72]	validation_0-rmse:0.21286	validation_1-rmse:0.29275
[73]	validation_0-rmse:0.21211	validation 1-rmse:0.29260
[74]	validation_0-rmse:0.21102	validation_1-rmse:0.29255
[75]	validation_0-rmse:0.20990	validation_1-rmse:0.29237
[76]	validation_0-rmse:0.20917	validation_1-rmse:0.29246
[77]	validation_0-rmse:0.20814	validation_1-rmse:0.29266
[78]	validation_0-rmse:0.20762	validation_1-rmse:0.29285
[79]	validation_0-rmse:0.20734	validation_1-rmse:0.29269
[80]	validation_0-rmse:0.20727	validation_1-rmse:0.29276
[81]	validation_0-rmse:0.20645	validation_1-rmse:0.29244
[82]	validation_0-rmse:0.20502	validation 1-rmse:0.29156
[83]	validation_0-rmse:0.20409	validation_1-rmse:0.29175
	_	

[84]	validation 0-rmse:0.20323	validation_1-rmse:0.29154
[85]	validation_0-rmse:0.20222	validation_1-rmse:0.29140
[86]	validation_0-rmse:0.20213	validation_1-rmse:0.29135
[87]	validation_0-rmse:0.20202	validation_1-rmse:0.29122
[88]	validation_0-rmse:0.20184	validation_1-rmse:0.29115
[89]	validation_0-rmse:0.20122	validation 1-rmse:0.29113
[90]	validation_0-rmse:0.20085	validation_1-rmse:0.29121
[91]	validation_0-rmse:0.20008	validation 1-rmse:0.29090
[92]	validation_0-rmse:0.19988	validation_1-rmse:0.29101
	validation_0-rmse:0.19970	validation 1-rmse:0.29110
[93]	-	_
[94]	validation_0-rmse:0.19913	validation_1-rmse:0.29120
[95]	validation_0-rmse:0.19850	validation_1-rmse:0.29104
[96]	validation_0-rmse:0.19787	validation_1-rmse:0.29102
[97]	validation_0-rmse:0.19706	validation_1-rmse:0.29103
[98]	validation_0-rmse:0.19631	validation_1-rmse:0.29085
[99]	validation_0-rmse:0.19620	validation_1-rmse:0.29079
[100]	validation_0-rmse:0.19551	validation_1-rmse:0.29071
[101]	validation_0-rmse:0.19493	validation_1-rmse:0.29062
[102]	validation_0-rmse:0.19440	validation_1-rmse:0.29044
[103]	validation_0-rmse:0.19425	validation_1-rmse:0.29045
[104]	validation_0-rmse:0.19393	validation_1-rmse:0.29034
[105]	validation_0-rmse:0.19326	validation_1-rmse:0.29036
[106]	validation_0-rmse:0.19307	validation_1-rmse:0.29041
[107]	validation_0-rmse:0.19251	validation_1-rmse:0.29033
[108]	validation_0-rmse:0.19186	validation_1-rmse:0.29065
[109]	validation_0-rmse:0.19124	validation_1-rmse:0.29053
[110]	validation_0-rmse:0.19090	validation_1-rmse:0.29066
[111]	validation_0-rmse:0.19012	validation_1-rmse:0.29036
[112]	validation_0-rmse:0.18899	validation_1-rmse:0.28999
[113]	validation_0-rmse:0.18818	validation_1-rmse:0.28995
[114]	validation_0-rmse:0.18750	validation_1-rmse:0.28975
[115]	validation_0-rmse:0.18727	validation_1-rmse:0.28975
[116]	validation_0-rmse:0.18677	validation_1-rmse:0.28989
[117]	validation_0-rmse:0.18672	validation_1-rmse:0.28990
[118]	validation_0-rmse:0.18605	validation_1-rmse:0.28986
[119]	validation_0-rmse:0.18557	validation_1-rmse:0.28999
[120]	validation_0-rmse:0.18498	validation_1-rmse:0.28981
[121]	validation_0-rmse:0.18473	validation_1-rmse:0.28989
[122]	validation_0-rmse:0.18469	validation_1-rmse:0.28996
[123]	validation_0-rmse:0.18452	validation_1-rmse:0.28997
[124]	validation_0-rmse:0.18382	validation_1-rmse:0.28962
[125]	validation_0-rmse:0.18352	validation_1-rmse:0.28963
	-	-

```
validation 0-rmse:0.18330
                                        validation 1-rmse:0.28963
[126]
[127]
        validation 0-rmse:0.18261
                                        validation 1-rmse:0.28935
[128]
        validation 0-rmse:0.18253
                                        validation 1-rmse:0.28934
[129]
        validation 0-rmse:0.18190
                                        validation 1-rmse:0.28933
[130]
        validation 0-rmse:0.18108
                                        validation 1-rmse:0.28946
[131]
        validation 0-rmse:0.18010
                                        validation 1-rmse:0.28909
[132]
        validation 0-rmse:0.17941
                                        validation 1-rmse:0.28895
[133]
        validation 0-rmse:0.17879
                                        validation 1-rmse:0.28896
[134]
        validation 0-rmse:0.17859
                                        validation 1-rmse:0.28877
[135]
        validation 0-rmse:0.17844
                                        validation 1-rmse:0.28871
[136]
        validation 0-rmse:0.17802
                                        validation 1-rmse:0.28904
[137]
        validation 0-rmse:0.17735
                                        validation 1-rmse:0.28903
[138]
        validation 0-rmse:0.17673
                                        validation 1-rmse:0.28922
[139]
        validation 0-rmse:0.17636
                                        validation 1-rmse:0.28915
[140]
        validation 0-rmse:0.17586
                                        validation 1-rmse:0.28900
[141]
        validation 0-rmse:0.17579
                                        validation 1-rmse:0.28905
[142]
        validation 0-rmse:0.17521
                                        validation 1-rmse:0.28906
[143]
        validation 0-rmse:0.17483
                                        validation 1-rmse:0.28913
[144]
        validation 0-rmse:0.17444
                                        validation 1-rmse:0.28919
[145]
        validation 0-rmse:0.17414
                                        validation 1-rmse:0.28917
[146]
        validation 0-rmse:0.17365
                                        validation 1-rmse:0.28909
[147]
        validation 0-rmse:0.17327
                                        validation 1-rmse:0.28922
[148]
        validation 0-rmse:0.17273
                                        validation 1-rmse:0.28917
[149]
        validation 0-rmse:0.17217
                                        validation 1-rmse:0.28913
                                     XGBRegressor
```

Out[12]:

```
XGBRegressor(base score=None, booster=None, callbacks=None,
             colsample bylevel=None, colsample bynode=None,
             colsample bytree=None, early stopping rounds=None,
             enable categorical=False, eval metric=None, feature types=None,
             gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
             interaction_constraints=None, learning_rate=None, max_bin=None,
             max cat threshold=None, max cat to onehot=None,
             max delta step=None, max depth=5, max leaves=None,
             min_child_weight=None, missing=nan, monotone constraints=None.
```

```
In [13]: df_train['count'].describe()
```

```
Out[13]: count
                  7620.000000
                     4.583886
         mean
         std
                     1.429959
         min
                     0.693147
         25%
                     3.737670
         50%
                     4.976734
         75%
                     5.652489
                     6.885510
         max
         Name: count, dtype: float64
         eval_result = regressor.evals_result()
In [14]:
        training_rounds = range(len(eval_result['validation_0']['rmse']))
In [15]:
         plt.scatter(x=training_rounds,y=eval_result['validation_0']['rmse'],label='Training_Error')
         plt.scatter(x=training_rounds,y=eval_result['validation_1']['rmse'],label='Validation_Error')
         plt.grid(True)
         plt.xlabel('Iteration')
         plt.ylabel('RMSE')
         plt.title('Training Vs Validation Error')
         plt.legend()
         plt.show()
```


xgb.plot_importance(regressor) plt.show()


```
In [18]: # Updated - Changed to validation dataset
         # Compare actual vs predicted performance with dataset not seen by the model before
         df = pd.read_csv(validation_file,names=columns)
```

In [19]: df.head()

```
Out[19]:
              count season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour
          0 6.095825
                                                                                                                        8
                          3
                                  0
                                             1
                                                      2 28.70 33.335
                                                                                 12.9980 2011
                                                                                                   7
                                                                                                                   3
          1 5.961005
                          2
                                  0
                                             0
                                                      1 32.80
                                                              37.880
                                                                           55
                                                                                 12.9980 2011
                                                                                                   6
                                                                                                      11
                                                                                                                       13
                                             1
          2 1.098612
                          1
                                  0
                                                      1 14.76
                                                              16.665
                                                                           40
                                                                                 19.9995 2011
                                                                                                   2 14
                                                                                                                  0
                                                                                                                        2
          3 3.891820
                          1
                                  0
                                             1
                                                         9.02
                                                               9.090
                                                                                 36.9974 2011
                                                                                                   2
                                                                                                                  1
                                                                                                                       10
                                                     1
                                                                           47
          4 4.025352
                          4
                                  0
                                             0
                                                                           87
                                                                                  0.0000 2011
                                                                                                  12
                                                                                                                   6
                                                                                                                        8
                                                      1 10.66 15.150
                                                                                                       4
In [20]: X_test = df.iloc[:,1:]
          print(X_test[:5])
             season holiday
                              workingday
                                          weather
                                                     temp
                                                            atemp
                                                                   humidity
                                                                              windspeed
                  3
                           0
                                                    28.70
                                                           33.335
                                                                          79
                                                                                12.9980 \
                  2
          1
                           0
                                        0
                                                    32.80 37.880
                                                                          55
                                                                                12.9980
          2
                  1
                           0
                                        1
                                                 1 14.76 16.665
                                                                          40
                                                                                19.9995
          3
                  1
                                        1
                                                     9.02
                                                            9.090
                                                                          47
                                                                                36.9974
                  4
                                        0
                                                 1 10.66 15.150
                                                                          87
                                                                                 0.0000
                          day
                               dayofweek
             year month
            2011
                       7
                            7
                                              8
             2011
                       6
                           11
                                             13
             2011
                           14
                                              2
             2011
                       2
                            8
                                             10
          4 2011
                      12
                            4
                                              8
         result = regressor.predict(X_test)
In [21]:
In [22]:
          result[:5]
Out[22]: array([6.259567 , 5.966802 , 1.3931606, 3.9536645, 4.000689 ],
                dtype=float32)
In [23]: df.head()
```

Out[23]:		count	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	year	month	day	dayofweek	hour	
	0	6.095825	3	0	1	2	28.70	33.335	79	12.9980	2011	7	7	3	8	
	1	5.961005	2	0	0	1	32.80	37.880	55	12.9980	2011	6	11	5	13	
	2	1.098612	1	0	1	1	14.76	16.665	40	19.9995	2011	2	14	0	2	
	3	3.891820	1	0	1	1	9.02	9.090	47	36.9974	2011	2	8	1	10	
	4	4.025352	4	0	0	1	10.66	15.150	87	0.0000	2011	12	4	6	8	
In [24]:	df	['count_	predict	ed'] = r	result											
In [25]:	df	head()														
Out[25]:		count	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	year	month	day	dayofweek	hour	count_pre
	0	6.095825	3	0	1	2	28.70	33.335	79	12.9980	2011	7	7	3	8	6.2
	1	5.961005	2	0	0	1	32.80	37.880	55	12.9980	2011	6	11	5	13	5.9
	2	1.098612	1	0	1	1	14.76	16.665	40	19.9995	2011	2	14	0	2	1.3
	3	3.891820	1	0	1	1	9.02	9.090	47	36.9974	2011	2	8	1	10	3.9
	4	4.025352	4	0	0	1	10.66	15.150	87	0.0000	2011	12	4	6	8	4.0
4																>
In [26]:	6]: # Negative Values are #DWB# NOT!! #DWB# predicted df['count_predicted'].describe()															
Out[26]:	me st mi 25 50 75 ma	an d n % % %	266.000 4.592 1.380 0.626 3.790 4.991 5.625 6.830 t_predi	924 849 428 787 671 294 800	:ype: float6	4										

```
In [27]: df[df['count_predicted'] < 0]</pre>
           count season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour count_predicte
Out[27]:
In [28]: def adjust_count(x):
             if x < 0:
                  return 0
              else:
                  return x
         df['count_predicted'] = df['count_predicted'].map(adjust_count)
         df[df['count_predicted'] < 0]</pre>
In [30]:
           count season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour count_predicte
Out[30]:
         df['count'] = df['count'].map(np.expm1)
         df['count_predicted'] = df['count_predicted'].map(np.expm1)
In [32]: # Actual Vs Predicted
          plt.plot(df['count'], label='Actual')
         plt.plot(df['count_predicted'],label='Predicted')
          plt.xlabel('Sample')
          plt.ylabel('Count')
          plt.xlim([100,150])
          plt.title('Validation Dataset - Predicted Vs. Actual')
          plt.legend()
          plt.show()
```



```
In [33]: # Over prediction and Under Prediction needs to be balanced
         # Training Data Residuals
         residuals = (df['count'] - df['count_predicted'])
         plt.hist(residuals)
         plt.grid(True)
         plt.xlabel('Actual - Predicted')
         plt.ylabel('Count')
         plt.title('Residuals Distribution')
         plt.axvline(color='r')
         plt.show()
```



```
In [34]: value_counts = (residuals > 0).value_counts(sort=False)
         print(' Under Estimation: {0:.2f}'.format(value_counts[True]/len(residuals)))
         print(' Over Estimation: {0:.2f}'.format(value_counts[False]/len(residuals)))
          Under Estimation: 0.53
          Over Estimation: 0.47
         import sklearn.metrics as metrics
In [35]:
         print("RMSE: {0:.2f}".format(metrics.mean_squared_error(df['count'],
                                                             df['count_predicted'])**.5))
         RMSE: 42.41
         # Metric Use By Kaggle
In [36]:
         def compute_rmsle(y_true, y_pred):
```

```
if type(y_true) != np.ndarray:
                  y_true = np.array(y_true)
              if type(y_pred) != np.ndarray:
                  y_pred = np.array(y_pred)
              return(np.average((np.log1p(y_pred) - np.log1p(y_true))**2)**.5)
         print("RMSLE: {0:.2f}".format(compute_rmsle(df['count'],df['count_predicted'])))
          RMSLE: 0.29
         # Prepare Data for Submission to Kaggle
In [38]:
          df_test = pd.read_csv(test_file,parse_dates=['datetime'])
         df_test.head()
In [39]:
Out[39]:
                  datetime season holiday workingday weather temp atemp humidity windspeed year month day dayofweek hour
                 2011-01-20
                                        0
                                                                                        26.0027 2011
          0
                                1
                                                   1
                                                            1 10.66 11.365
                                                                                 56
                                                                                                         1
                                                                                                             20
                                                                                                                         3
                                                                                                                              0
                   00:00:00
                 2011-01-20
                                        0
                                                   1
                                                           1 10.66 13.635
                                                                                 56
                                                                                        0.0000 2011
                                                                                                             20
                   01:00:00
                 2011-01-20
          2
                                        0
                                                   1
                                                                                 56
                                                                                        0.0000 2011
                                                                                                                         3
                                                                                                                              2
                                                           1 10.66 13.635
                                                                                                             20
                   02:00:00
                 2011-01-20
                                        0
                                                   1
                                                           1 10.66 12.880
                                                                                 56
                                                                                       11.0014 2011
                                                                                                         1 20
                                                                                                                              3
                   03:00:00
                 2011-01-20
          4
                                1
                                        0
                                                   1
                                                           1 10.66 12.880
                                                                                 56
                                                                                       11.0014 2011
                                                                                                         1
                                                                                                             20
                                                                                                                         3
                                                                                                                              4
                   04:00:00
In [40]: X_test = df_test.iloc[:,1:] # Exclude datetime for prediction
In [41]: X_test.head()
```

ut[41]:		season	holiday	workingday	weather	temp	atemp	humidity	windspeed	year	month	day	dayofweek	hour
	0	1	0	1	1	10.66	11.365	56	26.0027	2011	1	20	3	0
	1	1	0	1	1	10.66	13.635	56	0.0000	2011	1	20	3	1
	2	1	0	1	1	10.66	13.635	56	0.0000	2011	1	20	3	2
	3	1	0	1	1	10.66	12.880	56	11.0014	2011	1	20	3	3
	4	1	0	1	1	10.66	12.880	56	11.0014	2011	1	20	3	4
[43]:	re	result = regressor.predict(X_test) result[:5] array([2.0552852, 1.5469345, 1.3397862, 1.1393155, 1.051079],												
:	np	np.expm1(result)												
[44]:	ar			5 , 3.6970 , 44.861					962 ,					
45]:				<pre>to actual = np.expm1</pre>										
46]:	df	_test.h	ead()											

Out[46]:		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	year	month	day	dayofweek	hour	count
	0	2011-01- 20 00:00:00	1	0	1	1	10.66	11.365	56	26.0027	2011	1	20	3	0	6.809065
	1	2011-01- 20 01:00:00	1	0	1	1	10.66	13.635	56	0.0000	2011	1	20	3	1	3.697049
	2	2011-01- 20 02:00:00	1	0	1	1	10.66	13.635	56	0.0000	2011	1	20	3	2	2.818227
	3	2011-01- 20 03:00:00	1	0	1	1	10.66	12.880	56	11.0014	2011	1	20	3	3	2.124629
	4	2011-01- 20 04:00:00	1	0	1	1	10.66	12.880	56	11.0014	2011	1	20	3	4	1.860736
4																•
In [47]:	<pre>df_test[df_test["count"] < 0]</pre>															
Out[47]:		datetime :	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	year	month	day	dayofweek	hour	count
In [48]:	<pre>df_test[['datetime','count']].to_csv('predicted_count.csv',index=False)</pre>															
In [49]:	# RMSLE (Kaggle) Score # Test 1: 0.62 # Chandra #DWB# Test 1: 0.71796 # Test 2(Log of count): 0.40 # Chandra #DWB# Test2 (Log of count): 0.42225															
In []:																