HAlg Note

1 Basic Knowledge

```
Def of Group (G, *): A set G with a operator * is a group if: Closure: \forall g, h \in G, g * h \in G; Associativity: \forall g, h, k \in G, (g * h) * k = g * (h * k); Identity: \exists e \in G, \forall g \in G, e * g = g * e = g; Inverse: \forall g \in G, \exists g^{-1} \in G, g * g^{-1} = g^{-1} * g = e. G, H groups, then G \times H also. Field (F): A set F is a field with two operators: (addition)+: F \times F \to F; (\lambda, \mu) → \lambda + \mu (multiplication)·: F \times F \to F; (\lambda, \mu) → \lambda \mu if: (F, +) and (F \setminus \{0_F\}, \cdot) are abelian groups with identity 0_F, 1_F. and \lambda(\mu + \nu) = \lambda \mu + \lambda \nu e.g.Fields : \mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z} F-Vector Space (V): A set V over a field F is a vector space if: V is an abelian group V = (V, +) and \forall \vec{v}, \vec{w} \in V \lambda, \mu \in F \exists map F \times V \to V : (\lambda, \vec{v}) \to \lambda \vec{v} satisfies: I: \lambda(\vec{v} + \vec{w}) = (\lambda \vec{v}) + (\lambda \vec{w}) II: (\lambda + \mu)\vec{v} = (\lambda \vec{v}) + (\mu \vec{v}) III: \lambda(\mu \vec{v}) = (\lambda \mu)\vec{v} IV: 1_F\vec{v} = \vec{v} Vector Subspaces Criterion: U \subseteq V is a subspace of V if: I. \vec{0} \in U II. \forall \vec{u}, \vec{v} \in U, \forall \lambda \in F: \vec{u} + \vec{v} \in U and \lambda \vec{u} \in U (or: \lambda \vec{u} + \mu \vec{v} \in U) \cdot property: If U, W are subspaces of V, then U \cap W and U + W are also subspaces of V. ps: U + W := \{\vec{u} + \vec{w} : \vec{u} \in U, \vec{w} \in W\} Complement-wise Operations: \phi : V_1 \times V_2 \to V_1 \oplus V_2 by \mathbf{I}: (\vec{v}_1, \vec{u}_1) + (\vec{v}_2, \vec{u}_2) := (\vec{v}_1 + \vec{v}_1, \vec{u}_1 + \vec{u}_2), \lambda(\vec{v}, \vec{u}) := (\lambda \vec{v}, \lambda \vec{u}) (ps:V_1, V_2 in \mathcal{I}) \phi in \mathcal{I} is \mathcal{I}. \mathcal{I} by \mathcal{I} in \mathcal{I} in \mathcal{I} is \mathcal{I}. \mathcal{I} in \mathcal{I}
```

2 Vector Spaces/Subspaces | Generating Set | Linear Independent | Basis

Generating (subspaces) $\langle T \rangle$: $\langle T \rangle := \{ \alpha_1 \vec{v_1} + \dots + \alpha_n \vec{v_n} : \alpha_i \in F, \vec{v_i} \in T, r \in \mathbb{N} \}$ $\langle \emptyset \rangle := \{ \vec{0} \}$ If T is subspace $\Rightarrow \langle T \rangle = T$.

- 1. **Proposition**: $\langle T \rangle$ is the smallest subspace containing T. (i.e. $\langle T \rangle$ is the intersection of all subspaces containing T)
- 2. **Generating Set**: *V* is vector space, $T \subseteq V$. *T* is generating set of *V* if $\langle T \rangle = V$. **Finitely Generated**: \exists finite set T, $\langle T \rangle = V$
- 3. **External Direct Sum**: 一个" 代数结构", 定义为 set 是 $V_1 \oplus \cdots \oplus V_n := V_1 \times \cdots \times V_n$ 且有一组运算法则 component-wise operations
- 4. **Connect to Matrix**: Let $E = \{\vec{v_1}, ..., \vec{v_n}\}$, E is GS of V. Let $A = [\vec{v_1}, ..., \vec{v_n}] \Rightarrow \forall \vec{b} \in V$, $\exists \vec{x} = (x_1, ..., x_n)^T$ s.t. $A\vec{x} = \vec{b}$ (i.e. linear map: $\phi : \vec{x} \mapsto A\vec{x}$ is surjective) **Linearly Independent**: $L = \{\vec{v_1}, \vec{v_2}, ..., \vec{v_r}\}$ is linearly independent if: $\forall c_1, ..., c_r \in F$, $c_1\vec{v_1} + \cdots + c_r\vec{v_r} = \vec{0} \Rightarrow c_1 = \cdots = c_r = 0$.
- Connect to Matrix: Let $L = \{\vec{v_1}, ..., \vec{v_n}\}$, L is LI of V. Let $A = [\vec{v_1}, ..., \vec{v_n}] \Rightarrow \forall \vec{x} \in F^n$, $A\vec{x} = 0$ (or $\vec{0}$) $\Rightarrow \vec{x} = 0$ (or $\vec{0}$) (i.e. linear map $\phi: \vec{x} \mapsto A\vec{x}$ is injective)

Basis & Dimension: If *V* is finitely generated. $\Rightarrow \exists$ subset $B \subseteq V$ which is both LI and GS. (*B* is basis) **Dim**: dim V := |B|

- · Connect to Matrix: Let $B = \{\vec{v_1}, ..., \vec{v_n}\}$ is basis of V. Let $A = [\vec{v_1}, ..., \vec{v_n}] \Rightarrow \forall \vec{x} = (x_1, ..., x_n)^T$ s.t. $\phi : \vec{x} \mapsto A\vec{x}$ is 1-1 & onto (Bijection) Relation|GS,LI,Basis,dim: Let V be vector space. L is linearly independent set, E is generating set, E is basis set.
- 1. **GS**|**LI**: $|L| \le |E|$ (can get: dim unique) **LI** \rightarrow **Basis**: If V finite generate $\Rightarrow \forall L$ can extend to a basis. If $L = \emptyset$, prove $\exists B$
- 2. **Basis**|max,min: $B \Leftrightarrow B$ is minimal GS (E) $\Leftrightarrow B$ is maximal LI (L). **Uniqueness**|Basis: 每个元素都可以由 basis 唯一表示.
- 3. **Proper Subspaces**: If $U \subset V$ is proper subspace, then $\dim U < \dim V$. \Rightarrow If $U \subseteq V$ is subspace and $\dim U = \dim V$, then U = V.
- 4. **Dimension Theorem**: $\dim(U+W) = \dim U + \dim W \dim(U \cap W)$
- 3 Linear Mapping | Rank-Nullity | Matrices | Change of Basis
- 4 Rings | Polynomials | Ideals | Subrings
- 5 Inner Product Spaces | Orthogonal Complement / Proj | Adjoints and Self-Adjoint
- 6 Jordan Normal Form | Spectral Theorem