

Mathematics Specialist

Test 1 2016

Complex Numbers

Resource FREE

NAME: ______TEACHER: MLA

28 marks 28 minutes

SCSA formulae sheets may be used in this section

Question 1 [3, 2, 2 and 2 = 9 marks]

Represent the following regions on separate Argand diagrams:

(a)
$$\Im(z) \le 2\Re(z) + 1 \cap 1 \le \Im(z) < 2$$

(b)
$$arg(z-3i)=arg \ \ \ \ \ \ \)+\pi$$

(c)
$$|z| = arg(z)$$

Im(z)

Question 2 [3, 2 & 3 = 8 marks]

(a) If $z = r cis(\alpha)$, prove that $z^{-1} = \frac{\overline{z}}{r^2}$

(b) Show that $\cos(\theta) - i\sin(\theta) = cis(-\theta)$

(c) Express $z+\overline{z}=(z)(\overline{z})$ in Cartesian form. Describe the locus of z.

Question 3 [3 & 2 = 5 marks]

(a) Use de Moivre's theorem to solve $z^3 = -8$, leaving answers in polar form.

Question 4 [6 marks]

Consider the identities
$$z^n + \frac{1}{z^n} = 2\cos(n\theta)$$
 and $z^n - \frac{1}{z^n} = 2i\sin(n\theta)$.

Use one or both of these identities to prove that $6\sin(2\theta) + 3\sin(4\theta) = 12\sin(2\theta)\cos^2(\theta)$.

End of Section 1

Mathematics Specialist Test 1 2016

Complex Numbers

Resource RICH

NAME:	
TEACHER: ML	4

22 marks 22 minutes

SCSA formulae sheets, ClassPads and a single A4 sheet of notes may be used in this section

Clear working must be shown in order to be awarded full marks

Question 5 [3 & 3 = 6 marks]

(a) The polynomial $2x^3+bx^2+c$ has a factor (x+1) and leaves a remainder of 16 when it is divided by (x-3). Find the values of b and c.

(b) If $(x-a)^2$ is a factor of the real polynomial f(x), then (x-a) is a factor of f'(x), where f'(x) is the derivative of f(x) with respect to x.

Knowing this, if $(x+2)^2$ is a factor of $2x^4+bx^3+cx^2-4$, determine the values of b and c.

 $Question \ 6 \quad [2, \, 1, \, 2 = 5 \ marks \}$

For [z:|z+5-2i|=2], determine:

(a) The exact maximum possible value of |z|

- (b) The maximum possible value of arg(z)
- (c) The minimum possible value of arg(z), correct to 1 decimal place.

Question 7 [4 & 1 = 5 marks]

(a) Determine the Cartesian equation represented by |z:|z-(10+5i)|=3|z-(2-3i)|

(b) Sketch the locus defined in (a)

Question 8 [6 marks]

 $\operatorname{Solvez}^3 + \left(1+i\right)z^2 + \left(2+i\right)z + 2 = 0, \; \forall \; z \in \mathcal{C}, \; \operatorname{leaving \; answers \; in \; exact \; form}.$

End of Section 2