Dual Fixed-Point

C. Ewe, P. Cheung, G. Constantinides Imperial College, London, UK

> ACME Seminar Mark L. Chang May 4, 2004

Floating-Point vs. Fixed-Point

- Fixed-point
 - Partition a binary word into integer and fractional
 - Radix point is in a fixed position
 - Two's complement:
 q (integer) + p (fractional) = n

$$X = -x_{q-1} \cdot 2^{q-1} + \sum_{i=-p}^{q-2} x_i 2^i$$

Floating-Point vs. Fixed-Point

- Floating-point
 - Large dynamic range
 - Composed of a mantissa and exponent

$$F = M \cdot \beta^E$$

- Fixed point good for most hardware designs
- Floating-point necessary for problems with large dynamic range

Dual FiXed-point (DFX)

Exponent E Signed Significand X \longleftarrow 1 bit \longrightarrow \leftarrow n - 1 bits \longrightarrow

- Single Exponent bit (E) selects between two scalings for significand
- Two possible ranges for the number
- Lower: Num0
- Higher: Num1

Scaling DFX Numbers

- Define two radix points
 - $-p_{0}$ and $p_{1}, p_{0} > p_{1}$
 - Represent number of bits from the LSB

$$D = \begin{cases} X \cdot 2^{-p_0} & \text{if } E = 0\\ X \cdot 2^{-p_1} & \text{if } E = 1 \end{cases}$$

• Boundary value, B used to decide scaling

$$E = \begin{cases} 0 & \text{if } -B \le D < B \\ 1 & \text{if } D < -B \text{ or } D \ge B \end{cases}$$

Range of DFX Numbers

- DFX Number: n_p₀_p₁
 - Number of bitsn
 - High radix position p_0 yields Num0
 - Low radix position p₁ yields Num1

Dynamic Range

- Dynamic range = | largest | / | smallest |
- Smallest DFX = 2^{-p0}
- Largest DFX = 2^{n-p1-2}

Dynamic range =
$$20 \log_{10}(2^{n+p_0-p_1-2}) dB$$

Number System	Dual FiXed- point	Dual FiXed- point	Fixed Point	Floating Point
Format	32_30_0	32_16_4	32-bit	32-bit IEEE
Dynamic Ranges	2 ⁶⁰ ≈ 361dB	$2^{46} \approx 276 \text{dB}$	$2^{31} \approx 187 dB$	$2^{254} \approx 1529 \text{dB}$

Range Detector

Generates exponent E based on fixed-point input

Range Detector Function

$$E = \overline{d_{n_{in}-1} \cdot d_{n_{in}-2} \cdot \dots \cdot d_{n_{in}-(n-p_0-2)-p_{in}}} + \overline{d_{n_{in}-1} \cdot \overline{d_{n_{in}-2} \cdot \dots \cdot \overline{d_{n_{in}-(n-p_0-2)-p_{in}}}}}$$

DFX Adder

Fixed-length shift for radix alignment

DFX Adder Rescaler

DFX Adder Results

Adder Type	Size (Slices)	Latency (ns)
Fixed-Point	17	2.5
DFX	64	10.28
Floating-Point (IEEE)	255	34.48

Xilinx Virtex XC2V80

Module	Size (Slices)	Latency (ns)
Encoder	17.5	7.8
Decoder	10	5.8

- 32-bit adders
- 4x larger and slower than fixed-point
- 4x smaller and faster than floating-point

DFX-H Multiplier

DFX-H and DFX-F designed

DFX Multiplier Rescaler

DFX Multiplier Results

Multiplier Type	Size (Slices)	Latency (ns)	
Fixed-point	43	13.946	
DFX-H Mult	58	17.308	
DFX-F Mult	76	19.149	
Floating-point	73	20.683	

- DFX-H 1.2x larger and slower than fixed-point
- DFX-H 1.2x smaller and faster than FP
- DFX-F 1.5 larger and slower than fixed-point
- DFX-F comparable to floating-point

Benchmark: IIR Filter

• 2nd order notch IIR filter

Benchmark Results

• Xilinx Virtex II XC2V500

Filter Type	Design	Format	Size (Slices)	Latency (ns)
DFX	D1	32_18_6	584	52.29
	D2	32_9_6	580	51.28
Fixed Point	X1	32_7	255	24.26
	X2	33_8	272	24.18
	X3	41_16	565	31.25
Floating	P1	32bit M23 E8	1459	127.39
Point	P3	17bit M10 E6	586	88.183

Benchmark Results

18

Error Analysis

Filter Type	Design	Format	Error Variance	Av % Relative Error	Max & Relative Error
DFX	D1	32_18_6	0.0005	0.0072%	0.89%
	D2	32_9_6	0.0001	3.2980%	450.43%
Fixed Point	X1	32_7	0.0002	12.2981%	1611.42%
	X2	33_8	0.0000	6.3465%	773.97%
	X3	41_16	0.0000	0.0268%	3.47%
Floating Point	P1	32bit M23 E8	0.0219	0.0051%	3.21%
	P2	17bit M10 E6	2.09E+06	43.4488%	25853.78%

