Bayesian Machine Learning

Evgeny Burnaev

Skoltech, Moscow, Russia

Burnaev, ML Skoltech

Outline

- Main Context
- 2 Reminder: Gaussian Distribution
- Bayesian Probability
- 4 Curve fitting re-visited
- 5 Linear Basis Function Models
- 6 Bayesian Linear Regression

Skoltech Stationa Institute all Science and Technology

- Main Context
- Reminder: Gaussian Distribution
- Bayesian Probability
- 4 Curve fitting re-visited
- 6 Linear Basis Function Models
- 6 Bayesian Linear Regression

Burnaev, ML Skoltech

Main Principles

Thomas Bayes (c. 1701 – 7 April 1761) was an English statistician, philosopher and Presbyterian minister

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$$

William of Ockham (c. 1287 – 1347) was an English Franciscan friar and scholastic philosopher and theologian

4/43

Burnaev, ML Skottech

Figure - Plot of a training data

Figure – Residuals

•
$$\mathcal{D}_m = \{\mathbf{X}_m, \mathbf{Y}_m\} = \{(x_i, y_i)\}_{i=1}^m$$
, where $y_i = \sin(2\pi x_i) + \varepsilon_i$, ε_i is a Gaussian white noise

Surface britished of Science and Technology 6/43

Example: Polynomial Curve Fitting

Figure – Plot of a training data

Figure – Residuals

We fit a model

$$f(x, \mathbf{w}) = \sum_{j=0}^{M} w_j x^j,$$

by minimizing the error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \{f(x_i, \mathbf{w}) - y_i\}^2$$

Plots of polynomials having various orders ${\cal M}$

koltech

8/43

Figure – $E_{RMS} = \sqrt{2E(\mathbf{w}^*)/n}$

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Figure – Coefficients w*

Skoltech

9/43

Overfitting vs. Sample size

 $\mathsf{Figure} - M = 9, m = 15$

 ${\color{red}\mathsf{Figure}} - M = 9, m = 100$

Skoltech Statione trattate of Science and Technology 10/43

- \bullet Limit the number of parameters M w.r.t. the size of the available training set?
- Instead choose the complexity of the model (effective model parameters)
 according to the complexity of the problem!

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \{ f(x_i, \mathbf{w}) - y_i \}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- ullet Limit the number of parameters M w.r.t. the size of the available training set?
- Instead choose the complexity of the model (effective model parameters) according to the complexity of the problem!

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \{ f(x_i, \mathbf{w}) - y_i \}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- \bullet Limit the number of parameters M w.r.t. the size of the available training set?
- Instead choose the complexity of the model (effective model parameters) according to the complexity of the problem!

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \{ f(x_i, \mathbf{w}) - y_i \}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Figure – $\lambda = e^{-18} \approx 0$

Figure – $\lambda = 1$

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
$\widetilde{w_9^\star}$	125201.43	72.68	0.01

Figure – Dependence of \mathbf{w}^* on λ

Figure – Dependence of E_{RMS} on λ

- We would have to find a way to determine a suitable value for the model complexity!
- Hold-out set to select a model complexity (either M or λ)? Too wasteful \Rightarrow Bayesian Learning!

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
$\widetilde{w_9^\star}$	125201.43	72.68	0.01

Figure – Dependence of \mathbf{w}^* on λ

Figure – Dependence of E_{RMS} on λ

- We would have to find a way to determine a suitable value for the model complexity!
- Hold-out set to select a model complexity (either M or λ)? Too wasteful \Rightarrow Bayesian Learning!

- Main Context
- 2 Reminder: Gaussian Distribution
- Bayesian Probability
- 4 Curve fitting re-visited
- 6 Linear Basis Function Models
- 6 Bayesian Linear Regression

13/43

Burnaev, ML

1d Gaussian distribution

• Gaussian distribution of $x \in \mathbb{R}^1$ with $\mathbb{E}[x] = \mu$, $\text{var}[x] = \sigma^2$

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

• Multivariate Gaussian distribution of $\mathbf{x} \in \mathbb{R}^d$ with $\mathbb{E}[\mathbf{x}] = \mu$ $\mathrm{cov}[\mathbf{x}] = \boldsymbol{\varSigma}$

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

←□ → ←□ → ← 글 → ← 글

Skoltech Institute of Science and Technology 14/43

1d Gaussian distribution

• Gaussian distribution of $x \in \mathbb{R}^1$ with $\mathbb{E}[x] = \mu$, $\mathrm{var}[x] = \sigma^2$

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

• Multivariate Gaussian distribution of $\mathbf{x} \in \mathbb{R}^d$ with $\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu}$, $\mathrm{cov}[\mathbf{x}] = \boldsymbol{\varSigma}$

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

14/43

Burnaev, ML Suban notice of Science and Technology

- The red curve shows the elliptical surface of constant probability density for $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}),\ d=2$
- \bullet Curve corresponds to the density $\exp(-1/2)$ of its value at $\mathbf{x}=\boldsymbol{\mu}$
- The major axes of the ellipse are defined by the eigenvectors \mathbf{u}_i of the covariance matrix Σ , with eigenvalues λ_i

15/43

Burnaev, ML Substitute of Second Individual

Gaussian MLE

ullet Likelihood of an i.i.d. Gaussian sample ${f X}_m=\{x_1,\ldots,x_m\}$

$$p(\mathbf{X}_m|\mu,\sigma^2) = \prod_{i=1}^m \mathcal{N}(x_i|\mu,\sigma^2)$$

Log-likelihood is equal to

$$\log p(\mathbf{X}_m | \mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^m (x_i - \mu)^2 - \frac{m}{2} \log \sigma^2 - \frac{m}{2} \log(2\pi) \to \max_{\mu, \sigma^2}$$

MLE is equal to

$$\mu_{ML} = \frac{1}{m} \sum_{i=1}^{m} x_i, \ \sigma_{ML}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{ML})$$

Gaussian MLE

• Likelihood of an i.i.d. Gaussian sample $\mathbf{X}_m = \{x_1, \dots, x_m\}$

$$p(\mathbf{X}_m|\mu,\sigma^2) = \prod_{i=1}^m \mathcal{N}(x_i|\mu,\sigma^2)$$

Log-likelihood is equal to

$$\log p(\mathbf{X}_m | \mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^m (x_i - \mu)^2 - \frac{m}{2} \log \sigma^2 - \frac{m}{2} \log(2\pi) \to \max_{\mu, \sigma^2}$$

$$\mu_{ML} = \frac{1}{m} \sum_{i=1}^{m} x_i, \ \sigma_{ML}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{ML})^2$$

Gaussian MLE

• Likelihood of an i.i.d. Gaussian sample $\mathbf{X}_m = \{x_1, \dots, x_m\}$

$$p(\mathbf{X}_m|\mu,\sigma^2) = \prod_{i=1} \mathcal{N}(x_i|\mu,\sigma^2)$$

Log-likelihood is equal to

$$\log p(\mathbf{X}_m | \mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^m (x_i - \mu)^2 - \frac{m}{2} \log \sigma^2 - \frac{m}{2} \log(2\pi) \to \max_{\mu, \sigma^2}$$

MLE is equal to

$$\mu_{ML} = \frac{1}{m} \sum_{i=1}^{m} x_i, \ \sigma_{ML}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{ML})^2$$

Burnaev, ML

- Main Context
- 2 Reminder: Gaussian Distribution
- Bayesian Probability
- 4 Curve fitting re-visited
- 5 Linear Basis Function Models
- 6 Bayesian Linear Regression

Burnaev, ML Skoltech

- Repeatable events ⇒ classical (frequentist) interpretation of probability
- Bayesian view: probabilities provide a quantification of uncertainty
- Consider an uncertain (non-repeatable) event
 - "whether the Arctic ice cap will have disappeared by the end of the century?"
 - we can generally have some idea how quickly we think the polar ice is melting
 - we obtain fresh data: e.g. from an Earth observation satellite we may revise our opinion on the rate of ice loss
 - we need to quantify our expression of uncertainty and make precise revisions of uncertainty in the light of new data

Skoltech
Skalkow Profit and all Science and Technology 18/43

Uncertainty

- Repeatable events ⇒ classical (frequentist) interpretation of probability
- Bayesian view: probabilities provide a quantification of uncertainty
- Consider an uncertain (non-repeatable) event:
 - "whether the Arctic ice cap will have disappeared by the end of the century?"
 - we can generally have some idea how quickly we think the polar ice is melting
 - we obtain fresh data: e.g. from an Earth observation satellite we may revise our opinion on the rate of ice loss
 - we need to quantify our expression of uncertainty and make

18/43

Burnaev. ML Skoltech

- Repeatable events ⇒ classical (frequentist) interpretation of probability
- Bayesian view: probabilities provide a quantification of uncertainty
- Consider an uncertain (non-repeatable) event:
 - "whether the Arctic ice cap will have disappeared by the end of the century?"
 - we can generally have some idea how quickly we think the polar ice is melting
 - we obtain fresh data: e.g. from an Earth observation satellite we may revise our opinion on the rate of ice loss
 - we need to quantify our expression of uncertainty and make precise revisions of uncertainty in the light of new data

Skoltech
Station retrieve at Science and Technology 18/43

- Repeatable events ⇒ classical (frequentist) interpretation of probability
- Bayesian view: probabilities provide a quantification of uncertainty
- Consider an uncertain (non-repeatable) event:
 - "whether the Arctic ice cap will have disappeared by the end of the century?"
 - we can generally have some idea how quickly we think the polar ice is melting
 - we obtain fresh data: e.g. from an Earth observation satellite we may revise our opinion on the rate of ice loss
 - we need to quantify our expression of uncertainty and make precise revisions of uncertainty in the light of new data

- ullet Repeatable events \Rightarrow classical (frequentist) interpretation of probability
- Bayesian view: probabilities provide a quantification of uncertainty
- Consider an uncertain (non-repeatable) event:
 - "whether the Arctic ice cap will have disappeared by the end of the century?"
 - we can generally have some idea how quickly we think the polar ice is melting
 - we obtain fresh data: e.g. from an Earth observation satellite we may revise our opinion on the rate of ice loss
 - we need to quantify our expression of uncertainty and make precise revisions of uncertainty in the light of new data

- Data model: $y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$, ε is a noise
- Quantify uncertainty about model parameters w?
- Prior $p(\mathbf{w})$ captures our assumptions about \mathbf{w} before observing the data!

- It is almost impossible to predict random rare events ⇒ their description is very long ⇒ complex
- w defines "complexity" of the model
- $-p(\mathbf{w})$ quantifies this complexity, as "small probability" \equiv "complex"

Figure – Kolmogorov A.N. (1903-1987)

- Data model: $y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$, ε is a noise
- Quantify uncertainty about model parameters w?
- Prior $p(\mathbf{w})$ captures our assumptions about \mathbf{w} before observing the data!

- It is almost impossible to predict random rare events ⇒ their description is very long ⇒ complex
- w defines "complexity" of the model
- $-p(\mathbf{w})$ quantifies this complexity, as "small probability" \equiv "complex"

Figure – Kolmogorov A.N. (1903-1987)

- Data model: $y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$, ε is a noise
- Quantify uncertainty about model parameters w?
- \bullet Prior $p(\mathbf{w})$ captures our assumptions about \mathbf{w} before observing the data!

- It is almost impossible to predict random rare events ⇒ their description is very long ⇒ complex
- w defines "complexity" of the model
- $-p(\mathbf{w})$ quantifies this complexity, as "small probability" \equiv "complex"

Figure – Kolmogorov A.N. (1903-1987)

- Data model: $y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$, ε is a noise
- Quantify uncertainty about model parameters w?
- Prior $p(\mathbf{w})$ captures our assumptions about \mathbf{w} before observing the data!

- It is almost impossible to predict random rare events ⇒ their description is very long ⇒ complex
- w defines "complexity" of the model
- $-p(\mathbf{w})$ quantifies this complexity, as "small probability" \equiv "complex"

Figure – Kolmogorov A.N. (1903-1987)

- Data model: $y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$, ε is a noise
- Quantify uncertainty about model parameters w?
- Prior $p(\mathbf{w})$ captures our assumptions about \mathbf{w} before observing the data!

- It is almost impossible to predict random rare events ⇒ their description is very long ⇒ complex
- w defines "complexity" of the model
- $-p(\mathbf{w})$ quantifies this complexity, as "small probability" \equiv "complex"

Figure – Kolmogorov A.N. (1903-1987)

• Observed data $\mathcal{D}_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ influences the conditional probability $p(\mathbf{w}|\mathcal{D}_m)$:

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

- $p(\mathcal{D}_m|\mathbf{w})$ is a likelihood function (how probable the observed data set is for different settings of the parameter vector \mathbf{w})
- Normalization constant (evidence)

$$p(\mathcal{D}_m) = \int p(\mathcal{D}_m | \mathbf{w}) p(\mathbf{w}) d\mathbf{w}$$

General form

posterior \sim likelihood \times prior

 \log posterior $~\sim~\log$ likelihood $+\log$ prior

• Observed data $\mathcal{D}_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ influences the conditional probability $p(\mathbf{w}|\mathcal{D}_m)$:

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

- $p(\mathcal{D}_m|\mathbf{w})$ is a likelihood function (how probable the observed data set is for different settings of the parameter vector \mathbf{w})
- Normalization constant (evidence)

$$p(\mathcal{D}_m) = \int p(\mathcal{D}_m | \mathbf{w}) p(\mathbf{w}) d\mathbf{w}$$

General form:

posterior \sim likelihood \times prior

 \log posterior $\,\sim\,\log$ likelihood $\,+\,\log$ prior

• Observed data $\mathcal{D}_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ influences the conditional probability $p(\mathbf{w}|\mathcal{D}_m)$:

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

- $p(\mathcal{D}_m|\mathbf{w})$ is a likelihood function (how probable the observed data set is for different settings of the parameter vector \mathbf{w})
- Normalization constant (evidence)

$$p(\mathcal{D}_m) = \int p(\mathcal{D}_m | \mathbf{w}) p(\mathbf{w}) d\mathbf{w}$$

• General form:

posterior \sim likelihood \times prior

 \log posterior $\,\sim\,\log$ likelihood $+\log$ prior

Example: curve fitting problem

• Observed data $\mathcal{D}_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ influences the conditional probability $p(\mathbf{w}|\mathcal{D}_m)$:

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

- $p(\mathcal{D}_m|\mathbf{w})$ is a likelihood function (how probable the observed data set is for different settings of the parameter vector \mathbf{w})
- Normalization constant (evidence)

$$p(\mathcal{D}_m) = \int p(\mathcal{D}_m | \mathbf{w}) p(\mathbf{w}) d\mathbf{w}$$

• General form:

posterior ~ likelihood × prior

 \log posterior $\,\sim\,\log$ likelihood $+\log$ prior

Example: curve fitting problem

• Observed data $\mathcal{D}_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ influences the conditional probability $p(\mathbf{w}|\mathcal{D}_m)$:

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

- $p(\mathcal{D}_m|\mathbf{w})$ is a likelihood function (how probable the observed data set is for different settings of the parameter vector \mathbf{w})
- Normalization constant (evidence)

$$p(\mathcal{D}_m) = \int p(\mathcal{D}_m | \mathbf{w}) p(\mathbf{w}) d\mathbf{w}$$

• General form:

posterior \sim likelihood \times prior

 \log posterior $\sim \log$ likelihood $+\log$ prior

Statistics Institute at Science and Technology 20/43

• Frequentist setting:

- $-\mathbf{w}$ is a fixed parameter,
- error bars on its estimates obtained by considering the distribution of possible data sets \mathcal{D}_m
- Bayesian setting:
 - the uncertainty in the parameters is expressed through a probability distribution over w,
 - we reduce uncertainty about w by observing more and more data
- The inclusion of prior knowledge arises naturally

• Frequentist setting:

- $-\mathbf{w}$ is a fixed parameter,
- error bars on its estimates obtained by considering the distribution of possible data sets \mathcal{D}_m

Bayesian setting:

- the uncertainty in the parameters is expressed through a probability distribution over w,
- we reduce uncertainty about ${\bf w}$ by observing more and more data
- The inclusion of prior knowledge arises naturally

• Frequentist setting:

- $-\mathbf{w}$ is a fixed parameter,
- error bars on its estimates obtained by considering the distribution of possible data sets \mathcal{D}_m

Bayesian setting:

- the uncertainty in the parameters is expressed through a probability distribution over \mathbf{w} ,
- we reduce uncertainty about ${f w}$ by observing more and more data
- The inclusion of prior knowledge arises naturally

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathcal{D}_m | \mathbf{w})$$

- MAP (Maximum posterior) estimate
 - Posterior

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

— Maf

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} p(\mathbf{w}|\mathcal{D}_m)$$

- $\mathbf{w}^* = \arg\max_{\mathbf{z}} \log p(\mathbf{w}|\mathcal{D}_m)$
- MAP ≡ regularized MLE

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} [\log p(\mathcal{D}_m | \mathbf{w}) + \log p(\mathbf{w})]$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathcal{D}_m | \mathbf{w})$$

- MAP (Maximum posterior) estimate
 - Posterior

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

- MAP

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} p(\mathbf{w}|\mathcal{D}_m)$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathbf{w}|\mathcal{D}_m)$$

— MAP ≡ regularized MLE:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} [\log p(\mathcal{D}_m | \mathbf{w}) + \log p(\mathbf{w})]$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathcal{D}_m | \mathbf{w})$$

- MAP (Maximum posterior) estimate
 - Posterior

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

- MAP

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} p(\mathbf{w}|\mathcal{D}_m)$$

$$\mathbf{w}^{\uparrow} = \arg\max_{\mathbf{w}} \log p(\mathbf{w}|\mathcal{D}_m)$$

- MAP \equiv regularized MLE:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} [\log p(\mathcal{D}_m | \mathbf{w}) + \log p(\mathbf{w})]$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathcal{D}_m | \mathbf{w})$$

- MAP (Maximum posterior) estimate
 - Posterior

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

- MAP

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} p(\mathbf{w}|\mathcal{D}_m)$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathbf{w}|\mathcal{D}_m)$$

— MAP ≡ regularized MLE:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} [\log p(\mathcal{D}_m | \mathbf{w}) + \log p(\mathbf{w})]$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathcal{D}_m | \mathbf{w})$$

- MAP (Maximum posterior) estimate
 - Posterior

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

— MAP

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} p(\mathbf{w}|\mathcal{D}_m)$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathbf{w}|\mathcal{D}_m)$$

— MAP ≡ regularized MLE:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} [\log p(\mathcal{D}_m | \mathbf{w}) + \log p(\mathbf{w})]$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathcal{D}_m | \mathbf{w})$$

- MAP (Maximum posterior) estimate
 - Posterior

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

— MAP

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} p(\mathbf{w}|\mathcal{D}_m)$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathbf{w}|\mathcal{D}_m)$$

- MAP \equiv regularized MLE:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} [\log p(\mathcal{D}_m | \mathbf{w}) + \log p(\mathbf{w})]$$

Skoltech

22/43

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathcal{D}_m | \mathbf{w})$$

- MAP (Maximum posterior) estimate
 - Posterior

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

MAP

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} p(\mathbf{w}|\mathcal{D}_m)$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathbf{w}|\mathcal{D}_m)$$

— MAP \equiv regularized MLE:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} [\log p(\mathcal{D}_m | \mathbf{w}) + \log p(\mathbf{w})]$$

Skoltech
Skilone treitzer et Science and Technology 22/43

- Main Context
- 2 Reminder: Gaussian Distribution
- Bayesian Probability
- 4 Curve fitting re-visited
- 6 Linear Basis Function Models
- 6 Bayesian Linear Regression

23/43

Burnaev, ML Skoltech

• Sample
$$\mathcal{D}_m = \{\mathbf{X}_m, \mathbf{Y}_m\} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$$
,
$$y_i = f(\mathbf{x}_i, \mathbf{w}) + \varepsilon_i, \text{ with i.i.d. } \varepsilon_i \sim \mathcal{N}(0, \beta^{-1})$$

Probabilistic model

$$p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

where

- the mean is given by a polynomial $f(\mathbf{x}, \mathbf{w})$
- the noise precision is given by the parameter $\beta^{-1} = \sigma^2$
- Likelihood

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|f(\mathbf{x}_i, \mathbf{w}), \beta^{-1})$$

Burnaev, ML Skoltec

• Sample
$$\mathcal{D}_m = \{\mathbf{X}_m, \mathbf{Y}_m\} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$$
, $y_i = f(\mathbf{x}_i, \mathbf{w}) + \varepsilon_i$, with i.i.d. $\varepsilon_i \sim \mathcal{N}(0, \beta^{-1})$

Probabilistic model

$$p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \beta^{-1}),$$

where

- the mean is given by a polynomial $f(\mathbf{x}, \mathbf{w})$
- the noise precision is given by the parameter $\beta^{-1} = \sigma^2$
- Likelihood

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|f(\mathbf{x}_i, \mathbf{w}), \beta^{-1})$$

• Sample
$$\mathcal{D}_m = \{\mathbf{X}_m, \mathbf{Y}_m\} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$$
, $y_i = f(\mathbf{x}_i, \mathbf{w}) + \varepsilon_i$, with i.i.d. $\varepsilon_i \sim \mathcal{N}(0, \beta^{-1})$

Probabilistic model

$$p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \beta^{-1}),$$

where

- the mean is given by a polynomial $f(\mathbf{x}, \mathbf{w})$
- the noise precision is given by the parameter $\beta^{-1} = \sigma^2$
- Likelihood

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|f(\mathbf{x}_i, \mathbf{w}), \beta^{-1})$$

Burnaev, ML Skoltec

Log-likelihood

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{i=1}^m (f(\mathbf{x}_i, \mathbf{w}) - y_i)^2 + \frac{m}{2} \log \beta - \frac{m}{2} (2\pi)$$

 \bullet MLE of β

$$\frac{1}{\beta_{ML}} = \frac{1}{m} \sum_{i=1}^{m} (f(\mathbf{x}_i, \mathbf{w}_{ML}) - y_i)^2$$

Predictive distribution

$$p(y|\mathbf{x}, \mathbf{w}_{ML}, \beta_{ML}) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}_{ML}), \beta_{ML}^{-1})$$

SKUILECII

Authors institute al Science and Technology 25/43

Log-likelihood

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{i=1}^m (f(\mathbf{x}_i, \mathbf{w}) - y_i)^2 + \frac{m}{2} \log \beta - \frac{m}{2} (2\pi)$$

 \bullet MLE of β

$$\frac{1}{\beta_{ML}} = \frac{1}{m} \sum_{i=1}^{m} (f(\mathbf{x}_i, \mathbf{w}_{ML}) - y_i)^2$$

Predictive distribution

$$p(y|\mathbf{x}, \mathbf{w}_{ML}, \beta_{ML}) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}_{ML}), \beta_{ML}^{-1})$$

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}\cdot\mathbf{w}^{\top}\right\}$$

Posterior

$$p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \alpha, \beta) \sim p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) \cdot p(\mathbf{w}|\alpha)$$

Maximum posterior

 $\mathbf{w}^* = \arg\max_{\mathbf{w}} p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) \cdot p(\mathbf{w} | \alpha)$

 $\mathbf{w}^* = \arg\max_{\mathbf{w}} [\log p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) + \log p(\mathbf{w} | \alpha)]$

SKOITECII
stone tratase al Science and Technology 26

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}\cdot\mathbf{w}^{\top}\right\}$$

Posterior

$$p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \alpha, \beta) \sim p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) \cdot p(\mathbf{w}|\alpha)$$

Maximum posterior

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) \cdot p(\mathbf{w} | \alpha)$$
$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \left[\log p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) + \log p(\mathbf{w} | \alpha) \right]$$

NOITECH Profitate el Science and Technology 26/43

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}\cdot\mathbf{w}^{\top}\right\}$$

Posterior

$$p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \alpha, \beta) \sim p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) \cdot p(\mathbf{w}|\alpha)$$

Maximum posterior

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) \cdot p(\mathbf{w} | \alpha)$$
$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \left[\log p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) + \log p(\mathbf{w} | \alpha) \right]$$

tase of Science and Technology 26/43

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}\cdot\mathbf{w}^{\top}\right\}$$

Posterior

$$p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \alpha, \beta) \sim p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) \cdot p(\mathbf{w}|\alpha)$$

Maximum posterior

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) \cdot p(\mathbf{w} | \alpha)$$
$$\mathbf{w}^* = \arg \max_{\mathbf{w}} [\log p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) + \log p(\mathbf{w} | \alpha)]$$

e at Science and Technology 26/43

Maximum posterior

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \left[-\frac{\beta}{2} \sum_{i=1}^{m} (f(\mathbf{x}_i, \mathbf{w}) - y_i)^2 + \frac{m}{2} \log \frac{\beta}{2\pi} + \frac{\alpha}{2} \mathbf{w} \cdot \mathbf{w}^\top + \frac{(M+1)}{2} \log \frac{\alpha}{2\pi} \right]$$

Thus we get that

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left[\frac{\beta}{2} \sum_{i=1}^{n} (f(\mathbf{x}_i, \mathbf{w}) - y_i)^2 + \frac{\alpha}{2} \mathbf{w} \cdot \mathbf{w}^\top \right]$$

• MAP $\equiv L_2$ -penalized regressions with $\lambda = rac{a}{eta}$

NOITECH no treatage of Science and Technology 27/43 Maximum posterior

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \left[-\frac{\beta}{2} \sum_{i=1}^{m} (f(\mathbf{x}_i, \mathbf{w}) - y_i)^2 + \frac{m}{2} \log \frac{\beta}{2\pi} + \frac{\alpha}{2} \mathbf{w} \cdot \mathbf{w}^\top + \frac{(M+1)}{2} \log \frac{\alpha}{2\pi} \right]$$

Thus we get that

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left[\frac{\beta}{2} \sum_{i=1}^{n} (f(\mathbf{x}_i, \mathbf{w}) - y_i)^2 + \frac{\alpha}{2} \mathbf{w} \cdot \mathbf{w}^\top \right]$$

ullet MAP $\equiv L_2$ -penalized regressions with $\lambda=rac{lpha}{eta}$

hose freezings and Technology 27.

Maximum posterior

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \left[-\frac{\beta}{2} \sum_{i=1}^{m} (f(\mathbf{x}_i, \mathbf{w}) - y_i)^2 + \frac{m}{2} \log \frac{\beta}{2\pi} + \frac{\alpha}{2} \mathbf{w} \cdot \mathbf{w}^\top + \frac{(M+1)}{2} \log \frac{\alpha}{2\pi} \right]$$

Thus we get that

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left[\frac{\beta}{2} \sum_{i=1}^{n} (f(\mathbf{x}_i, \mathbf{w}) - y_i)^2 + \frac{\alpha}{2} \mathbf{w} \cdot \mathbf{w}^\top \right]$$

ullet MAP $\equiv L_2$ -penalized regressions with $\lambda=rac{lpha}{eta}$

e at Science and Technology 27/43

- Given the training data \mathbf{X}_m and \mathbf{Y}_m , and a new test point \mathbf{x} , our goal is to predict the value of y
- We would like to evaluate the predictive distribution $p(y|\mathbf{x},\mathbf{X}_m,\mathbf{Y}_m)$
- The predictive distribution

$$p(y|\mathbf{x}, \mathbf{X}_m, \mathbf{Y}_m) = \int p(y|\mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m) d\mathbf{w}$$

- Given the training data X_m and Y_m , and a new test point x, our goal is to predict the value of y
- ullet We would like to evaluate the predictive distribution $p(y|\mathbf{x},\mathbf{X}_m,\mathbf{Y}_m)$
- The predictive distribution

$$p(y|\mathbf{x}, \mathbf{X}_m, \mathbf{Y}_m) = \int p(y|\mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m) d\mathbf{w}$$

- Given the training data \mathbf{X}_m and \mathbf{Y}_m , and a new test point \mathbf{x} , our goal is to predict the value of y
- ullet We would like to evaluate the predictive distribution $p(y|\mathbf{x},\mathbf{X}_m,\mathbf{Y}_m)$
- The predictive distribution

$$p(y|\mathbf{x}, \mathbf{X}_m, \mathbf{Y}_m) = \int p(y|\mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m) d\mathbf{w}$$

Skoltech

28/43

- Given the training data X_m and Y_m , and a new test point x, our goal is to predict the value of y
- ullet We would like to evaluate the predictive distribution $p(y|\mathbf{x},\mathbf{X}_m,\mathbf{Y}_m)$
- The predictive distribution

$$p(y|\mathbf{x}, \mathbf{X}_m, \mathbf{Y}_m) = \int p(y|\mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m) d\mathbf{w}$$

Figure – The predictive distribution for a polynomial with M=9, parameters $\alpha=5\times 10^{-3}$ and $\beta=11.1$ (known noise variance) are fixed

- Main Context
- 2 Reminder: Gaussian Distribution
- Bayesian Probability
- Curve fitting re-visited
- 5 Linear Basis Function Models
- Bayesian Linear Regression

Burnaev, ML Skoltech

Linear Basis Function Models

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})^{\top}$$

where $\phi_j(\mathbf{x})$ are known basis functions

Typical basis functions

$$\phi_j(\mathbf{x}) = x_{j_1}^{j_0}, \ \phi_j(\mathbf{x}) = \exp\left\{-\frac{\|\mathbf{x} - \boldsymbol{\mu}_j\|^2}{2s^2}\right\},$$
$$\phi(\mathbf{x}) = \sigma\left(\boldsymbol{\mu}_{j,1} \cdot \mathbf{x}^\top + \boldsymbol{\mu}_{j,0}\right), \ \sigma(a) = \frac{1}{1 + \frac{1}{2s^2}}$$

 We assume that parameters of basis functions are fixed to some known values

Linear Basis Function Models

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})^{\top}$$

where $\phi_i(\mathbf{x})$ are known basis functions

Typical basis functions

$$\phi_j(\mathbf{x}) = x_{j_1}^{j_0}, \ \phi_j(\mathbf{x}) = \exp\left\{-\frac{\|\mathbf{x} - \boldsymbol{\mu}_j\|^2}{2s^2}\right\},$$
$$\phi(\mathbf{x}) = \sigma\left(\boldsymbol{\mu}_{j,1} \cdot \mathbf{x}^\top + \mu_{j,0}\right), \ \sigma(a) = \frac{1}{1 + e^{-a}}$$

 We assume that parameters of basis functions are fixed to some known values

Skoltech
Stations for Example at Technology 30/43

Optimizing log-likelihood:

$$\mathbf{w}_{ML} = (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \mathbf{Y}_{m}, \quad \boldsymbol{\Phi} = \{(\boldsymbol{\phi}_{i}(\mathbf{x}_{j}))_{j=0}^{M-1}\}_{i=1}^{m}$$
$$\frac{1}{\beta_{ML}} = \frac{1}{m} \sum_{i=1}^{m} \{y_{i} - \mathbf{w}_{ML} \cdot \boldsymbol{\phi}(\mathbf{x}_{i})^{\top}\}^{2}$$

Regularized Least Squares

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w}) \to \min_{\mathbf{w}}$$

$$\frac{1}{2} \sum_{i=1}^m \{ y_i - \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)^\top \}^2 + \frac{\lambda}{2} \mathbf{w} \cdot \mathbf{w}^\top \to \min_{\mathbf{w}}$$

$$\mathbf{w}_{LS} = (\lambda \mathbf{I} + \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^\top \mathbf{Y}_m$$

ロト (個) (注) (注) 注 の(の

Optimizing log-likelihood:

$$\mathbf{w}_{ML} = (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \mathbf{Y}_{m}, \quad \boldsymbol{\Phi} = \{(\boldsymbol{\phi}_{i}(\mathbf{x}_{j}))_{j=0}^{M-1}\}_{i=1}^{m}$$
$$\frac{1}{\beta_{ML}} = \frac{1}{m} \sum_{i=1}^{m} \{y_{i} - \mathbf{w}_{ML} \cdot \boldsymbol{\phi}(\mathbf{x}_{i})^{\top}\}^{2}$$

Regularized Least Squares

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w}) \to \min_{\mathbf{w}}$$

$$\frac{1}{2} \sum_{i=1}^m \{ y_i - \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)^\top \}^2 + \frac{\lambda}{2} \mathbf{w} \cdot \mathbf{w}^\top \to \min_{\mathbf{w}}$$

$$\mathbf{w}_{LS} = (\lambda \mathbf{I} + \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^\top \mathbf{Y}_m$$

Skoltech
Stations Frotzer of Science and Technology 31/43

- Main Context
- 2 Reminder: Gaussian Distribution
- Bayesian Probability
- 4 Curve fitting re-visited
- 6 Linear Basis Function Models
- 6 Bayesian Linear Regression

Burnaev, ML Skoltech

Likelihood

$$p(\mathcal{D}_m|\mathbf{w}) = \prod_{i=1}^m \mathcal{N}(y_i|\mathbf{w} \cdot \phi(\mathbf{x}_i)^\top, \beta^{-1})$$

Thus the likelihood is Gaussian

$$p(\mathcal{D}_m|\mathbf{w}) = \mathcal{N}(\mathbf{Y}_m|\boldsymbol{\Phi}\cdot\mathbf{w}^\top, \beta^{-1}\mathbf{I})$$

The typical prior is Gaussian as well

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

Burnaev, ML 33/43

Parameter distribution

Likelihood

$$p(\mathcal{D}_m|\mathbf{w}) = \prod_{i=1}^m \mathcal{N}(y_i|\mathbf{w} \cdot \phi(\mathbf{x}_i)^\top, \beta^{-1})$$

• Thus the likelihood is Gaussian

$$p(\mathcal{D}_m|\mathbf{w}) = \mathcal{N}(\mathbf{Y}_m|\boldsymbol{\Phi}\cdot\mathbf{w}^\top, \beta^{-1}\mathbf{I})$$

The typical prior is Gaussian as well

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

soltane all Science and Technology 33/43

Likelihood

$$p(\mathcal{D}_m|\mathbf{w}) = \prod_{i=1}^m \mathcal{N}(y_i|\mathbf{w} \cdot \phi(\mathbf{x}_i)^\top, \beta^{-1})$$

• Thus the likelihood is Gaussian

$$p(\mathcal{D}_m|\mathbf{w}) = \mathcal{N}(\mathbf{Y}_m|\boldsymbol{\Phi}\cdot\mathbf{w}^\top, \beta^{-1}\mathbf{I})$$

The typical prior is Gaussian as well

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

state of Science and Technology 33/43

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
$$p(\mathbf{y}|\mathbf{z}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{z}, \mathbf{L}^{-1}),$$

we get that

$$p(\mathbf{z}|\mathbf{y}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\Sigma}\{\mathbf{A}^{\top}\mathbf{L}\mathbf{y} + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma})$$

where

$$\Sigma = (\Lambda + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1}$$

Thus the posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m)$$
$$\mathbf{S}_m = (\alpha^{-1}\mathbf{I} + \beta\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi})^{-}$$
$$\boldsymbol{\omega}_m = \beta\mathbf{S}_m\boldsymbol{\Phi}^{\top}\mathbf{Y}_m$$

Skoltech

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
$$(\mathbf{y}|\mathbf{z}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{z}, \mathbf{L}^{-1}),$$

we get that

$$p(\mathbf{z}|\mathbf{y}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\Sigma}\{\mathbf{A}^{\top}\mathbf{L}\mathbf{y} + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma})$$

where

$$\Sigma = (\Lambda + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1}$$

Thus the posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m)$$
$$\mathbf{S}_m = \left(\alpha^{-1}\mathbf{I} + \beta\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi}\right)^{-1}$$
$$\boldsymbol{\omega}_m = \beta\mathbf{S}_m\boldsymbol{\Phi}^{\top}\mathbf{Y}_m$$

Skoltech

34/43

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
$$p(\mathbf{y}|\mathbf{z}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{z}, \mathbf{L}^{-1}),$$

we get that

$$p(\mathbf{z}|\mathbf{y}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\Sigma}\{\mathbf{A}^{\top}\mathbf{L}\mathbf{y} + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma})$$

where

$$\boldsymbol{\varSigma} = (\boldsymbol{\varLambda} + \mathbf{A}^{\top} \mathbf{L} \mathbf{A})^{-1}$$

Thus the posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m)$$
$$\mathbf{S}_m = \left(\alpha^{-1}\mathbf{I} + \beta\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi}\right)^{-1}$$
$$\boldsymbol{\omega}_m = \beta\mathbf{S}_m\boldsymbol{\Phi}^{\top}\mathbf{Y}_m$$

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
$$p(\mathbf{y}|\mathbf{z}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{z}, \mathbf{L}^{-1}),$$

we get that

$$p(\mathbf{z}|\mathbf{y}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\Sigma}\{\mathbf{A}^{\top}\mathbf{L}\mathbf{y} + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma}),$$

where

$$\Sigma = (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1}$$

Thus the posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m)$$
$$\mathbf{S}_m = \left(\alpha^{-1}\mathbf{I} + \beta\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi}\right)^{-1}$$
$$\boldsymbol{\omega}_m = \beta\mathbf{S}_m\boldsymbol{\Phi}^{\top}\mathbf{Y}_m$$

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
$$p(\mathbf{y}|\mathbf{z}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{z}, \mathbf{L}^{-1}),$$

we get that

$$p(\mathbf{z}|\mathbf{y}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\Sigma}\{\mathbf{A}^{\top}\mathbf{L}\mathbf{y} + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma}),$$

where

$$\Sigma = (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1}$$

Thus the posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m)$$
$$\mathbf{S}_m = (\alpha^{-1}\mathbf{I} + \beta\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi})^{-1}$$
$$\boldsymbol{\omega}_m = \beta\mathbf{S}_m\boldsymbol{\Phi}^{\top}\mathbf{Y}_m$$

SKOITECH Bulloon trettare of Science and Technology 34/43

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
$$p(\mathbf{y}|\mathbf{z}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{z}, \mathbf{L}^{-1}),$$

we get that

$$p(\mathbf{z}|\mathbf{y}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\Sigma}\{\mathbf{A}^{\top}\mathbf{L}\mathbf{y} + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma}),$$

where

$$\Sigma = (\mathbf{\Lambda} + \mathbf{A}^{\top} \mathbf{L} \mathbf{A})^{-1}$$

• Thus the posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m)$$
$$\mathbf{S}_m = (\alpha^{-1}\mathbf{I} + \beta\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi})^{-1}$$
$$\boldsymbol{\omega}_m = \beta\mathbf{S}_m\boldsymbol{\Phi}^{\top}\mathbf{Y}_m$$

Skoltech

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
$$p(\mathbf{y}|\mathbf{z}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{z}, \mathbf{L}^{-1}),$$

we get that

$$p(\mathbf{z}|\mathbf{y}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\Sigma}\{\mathbf{A}^{\top}\mathbf{L}\mathbf{y} + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma}),$$

where

$$\Sigma = (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1}$$

• Thus the posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m)$$
$$\mathbf{S}_m = (\alpha^{-1}\mathbf{I} + \beta\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi})^{-1}$$
$$\boldsymbol{\omega}_m = \beta\mathbf{S}_m\boldsymbol{\Phi}^{\top}\mathbf{Y}_m$$

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
$$p(\mathbf{y}|\mathbf{z}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{z}, \mathbf{L}^{-1}),$$

we get that

$$p(\mathbf{z}|\mathbf{y}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\Sigma}\{\mathbf{A}^{\top}\mathbf{L}\mathbf{y} + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma}),$$

where

$$\Sigma = (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1}$$

Thus the posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m)$$
$$\mathbf{S}_m = (\alpha^{-1}\mathbf{I} + \beta\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi})^{-1}$$
$$\boldsymbol{\omega}_m = \beta\mathbf{S}_m\boldsymbol{\Phi}^{\top}\mathbf{Y}_m$$

on trottage of Science and Technology 34/43

Sequential Bayesian Learning

The Model $f(x, \mathbf{w}) = w_0 + w_1 x$

Skoltech

• Make prediction of y for new value of x:

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

• Since $p(y|\mathbf{x}, \mathbf{w}, \beta)$ is Gaussian and the posterior $p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta)$ is Gaussian, then

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$
$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$
$$\mathbf{S}_m = \left(\alpha^{-1} \mathbf{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi}\right)^{-1}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ depends on α and β ! How to define them? \Rightarrow Full Bayesian approach!

Skoltech

• Make prediction of y for new value of x:

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

• Since $p(y|\mathbf{x}, \mathbf{w}, \beta)$ is Gaussian and the posterior $p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta)$ is Gaussian, then

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$
$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$
$$\mathbf{S}_m = (\alpha^{-1}\mathbf{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ depends on α and β ! How to define them? \Rightarrow Full Bayesian approach!

Skoltech 36/43 Make prediction of y for new value of x:

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

• Since $p(y|\mathbf{x}, \mathbf{w}, \beta)$ is Gaussian and the posterior $p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta)$ is Gaussian, then

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$
$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$
$$\mathbf{S}_m = (\alpha^{-1} \mathbf{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ depends on α and β ! How to define them? \Rightarrow Full Bayesian approach!

□ > 《□ > 《토 > 《토 > · 토 · · · 오○

Burnaev, ML Subsentitive distriction and facilities and facilities

• Make prediction of y for new value of x:

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

• Since $p(y|\mathbf{x}, \mathbf{w}, \beta)$ is Gaussian and the posterior $p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta)$ is Gaussian, then

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$
$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$
$$\mathbf{S}_m = (\alpha^{-1} \mathbb{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ depends on α and β ! How to define them? \Rightarrow Full Bayesian approach!

ロ > 《御 > 《 差 > 《 差 > ~ 差 · の へ ②

Skoltech

36/43

• Make prediction of y for new value of x:

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

• Since $p(y|\mathbf{x}, \mathbf{w}, \beta)$ is Gaussian and the posterior $p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta)$ is Gaussian, then

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$
$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$
$$\mathbf{S}_m = (\alpha^{-1}\mathbf{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ depends on α and β ! How to define them? \Rightarrow Full Bayesian approach!

ロ ト (日) (注) (注) 注 り()

Koltech

Make prediction of y for new value of x:

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

• Since $p(y|\mathbf{x}, \mathbf{w}, \beta)$ is Gaussian and the posterior $p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta)$ is Gaussian, then

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$
$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$
$$\mathbf{S}_m = (\alpha^{-1}\mathbf{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ depends on α and β ! How to define them? \Rightarrow Full Bayesian approach!

Burnaev, ML Subar vitas of fices until street and subar vitas of fices

M=9 Gaussian functions

Plots of $f(\mathbf{x}, \mathbf{w})$ using samples from the posterior distributions over $\mathbf{w} \sim p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta)$ for some α and β

Skoltech

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$
$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$
$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$
$$\mathbf{S}_m = \left(\alpha^{-1}\mathbf{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi}\right)^{-1}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ depends on α and β ! We introduce hyperpriors over α and β !

ㅁ▶ ◀畵▶ ◀불▶ ◀불▶ 불 쒸٩♡

Skoltech
Sations from and Technology 39/43

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$

$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$

$$\mathbf{S}_m = (\alpha^{-1}\mathbf{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ depends on α and β ! We introduce hyperpriors over α and β !

ロト (個) (注) (注) 注 の(の

Skoltech
Sudhous brokkers at Science and Technology 39/43

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$

$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$

$$\mathbf{S}_m = (\alpha^{-1} \mathbf{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ depends on α and β ! We introduce hyperpriors over α and β !

ㅁㅏ ◀畵ㅏ ◀불ㅏ 4 불ㅏ / 월 / / / / / /

Skoltech

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$

$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$

$$\mathbf{S}_m = (\alpha^{-1} \mathbf{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ depends on α and β ! We introduce hyperpriors over α and β !

ロト (個) (注) (注) 注 の(の

Skoltech
Stations institute at Science and Technology 39/43

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$

$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$

$$\mathbf{S}_m = (\alpha^{-1}\mathbf{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}$$

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$
$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}(\mathbf{x})^\top, \sigma_m^2(\mathbf{x})),$$
$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}),$$
$$\mathbf{S}_m = (\alpha^{-1}\mathbf{I} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ depends on α and β ! We introduce hyperpriors over α and β !

Skoltech
Suddoos Institute at Science and Technology 39/43

ullet We introduce hyperpriors over lpha and eta

$$p(y|\mathbf{x}, \mathcal{D}_m) = \int \int \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) p(\alpha, \beta|\mathcal{D}_m) d\mathbf{w} d\alpha d\beta$$

- We assume that the posterior distribution $p(\alpha, \beta | \mathcal{D}_m)$ is sharply peaked around values $\widehat{\alpha}$ and $\widehat{\beta}$
- Then we simply marginalize over \mathbf{w} , where α and β are fixed to the values $\widehat{\alpha}$ and $\widehat{\beta}$, so that

$$p(y|\mathbf{x}, \mathcal{D}_m) \approx p(y|\mathbf{x}, \mathcal{D}_m, \widehat{\alpha}, \widehat{\beta}) = \int p(y|\mathbf{x}, \mathbf{w}, \widehat{\beta}) p(\mathbf{w}|\mathcal{D}_m, \widehat{\alpha}, \widehat{\beta}) d\mathbf{w}$$

ㅁ▶ ◀畵▶ ◀불▶ ◀불▶ 불 쒸٩♡

Burnaev, ML Skoltech

ullet We introduce hyperpriors over lpha and eta

$$p(y|\mathbf{x}, \mathcal{D}_m) = \int \int \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) p(\alpha, \beta|\mathcal{D}_m) d\mathbf{w} d\alpha d\beta$$

- We assume that the posterior distribution $p(\alpha,\beta|\mathcal{D}_m)$ is sharply peaked around values $\widehat{\alpha}$ and $\widehat{\beta}$
- Then we simply marginalize over \mathbf{w} , where α and β are fixed to the values $\widehat{\alpha}$ and $\widehat{\beta}$, so that

$$p(y|\mathbf{x}, \mathcal{D}_m) \approx p(y|\mathbf{x}, \mathcal{D}_m, \widehat{\alpha}, \widehat{\beta}) = \int p(y|\mathbf{x}, \mathbf{w}, \widehat{\beta}) p(\mathbf{w}|\mathcal{D}_m, \widehat{\alpha}, \widehat{\beta}) d\mathbf{w}$$

Burnaev, ML Subsection of Control

40/43

ullet We introduce hyperpriors over lpha and eta

$$p(y|\mathbf{x}, \mathcal{D}_m) = \int \int \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) p(\alpha, \beta|\mathcal{D}_m) d\mathbf{w} d\alpha d\beta$$

- We assume that the posterior distribution $p(\alpha, \beta | \mathcal{D}_m)$ is sharply peaked around values $\widehat{\alpha}$ and $\widehat{\beta}$
- Then we simply marginalize over \mathbf{w} , where α and β are fixed to the values $\widehat{\alpha}$ and $\widehat{\beta}$, so that

$$p(y|\mathbf{x}, \mathcal{D}_m) \approx p(y|\mathbf{x}, \mathcal{D}_m, \widehat{\alpha}, \widehat{\beta}) = \int p(y|\mathbf{x}, \mathbf{w}, \widehat{\beta}) p(\mathbf{w}|\mathcal{D}_m, \widehat{\alpha}, \widehat{\beta}) d\mathbf{w}$$

□ > 《□ > 《토 > 《토 > · 토 · · · 오○

Burnaev, ML

40/43

ullet The posterior for lpha and eta is given by

$$p(\alpha, \beta | \mathcal{D}_m) \sim p(\mathcal{D}_m | \alpha, \beta) \cdot p(\alpha, \beta)$$

• If the prior $p(\alpha, \beta)$ is relatively flat, then in the evidence framework

$$(\widehat{\alpha}, \widehat{\beta}) = \arg \max_{\alpha, \beta} p(\mathcal{D}_m | \alpha, \beta)$$

• To obtain $(\widehat{\alpha}, \widehat{\beta})$ iterative optimization is used

(ロ) (部) (注) (注) 注 り(C)

Burnaev, ML SKOITECT 41/43

• The posterior for α and β is given by

$$p(\alpha, \beta | \mathcal{D}_m) \sim p(\mathcal{D}_m | \alpha, \beta) \cdot p(\alpha, \beta)$$

ullet If the prior $p(\alpha, \beta)$ is relatively flat, then in the evidence framework

$$(\widehat{\alpha}, \widehat{\beta}) = \arg \max_{\alpha, \beta} p(\mathcal{D}_m | \alpha, \beta)$$

• To obtain $(\widehat{\alpha}, \widehat{\beta})$ iterative optimization is used

ロ ト (回) (注) (注) 注 り()

ullet The posterior for lpha and eta is given by

$$p(\alpha, \beta | \mathcal{D}_m) \sim p(\mathcal{D}_m | \alpha, \beta) \cdot p(\alpha, \beta)$$

• If the prior $p(\alpha, \beta)$ is relatively flat, then in the evidence framework

$$(\widehat{\alpha}, \widehat{\beta}) = \arg \max_{\alpha, \beta} p(\mathcal{D}_m | \alpha, \beta)$$

 \bullet To obtain $(\widehat{\alpha},\widehat{\beta})$ iterative optimization is used

Skoltech

• Let us calculate the evidence for (α, β)

$$p(\mathcal{D}_m|\alpha,\beta) = \int p(\mathcal{D}_m|\mathbf{w},\beta)p(\mathbf{w}|\alpha)d\mathbf{w}$$

• Let us denote by $E(\mathbf{w})$ the sum of the fit and the regularization on coefficients \mathbf{w}

$$E(\mathbf{w}) = \beta E_D(\beta) + \alpha E_W(\mathbf{w}) = \frac{\beta}{2} \|\mathbf{Y}_m - \boldsymbol{\Phi} \cdot \mathbf{w}^\top\|^2 + \frac{\alpha}{2} \mathbf{w} \cdot \mathbf{w}^\top$$

• Since $p(\mathcal{D}_m|\mathbf{w},\beta)$ and $p(\mathbf{w}|\alpha)$ are Gaussians with quadratic forms $E_D(\beta)$ and $E_W(\mathbf{w})$, we get that

$$p(\mathcal{D}_m | \alpha, \beta) = \left(\frac{\beta}{2\pi}\right)^{m/2} \left(\frac{\alpha}{2\pi}\right)^{M/2} \int \exp\{-E(\mathbf{w})\} d\mathbf{w}$$

Burnaev, ML 42/43

• Let us calculate the evidence for (α, β)

$$p(\mathcal{D}_m|\alpha,\beta) = \int p(\mathcal{D}_m|\mathbf{w},\beta)p(\mathbf{w}|\alpha)d\mathbf{w}$$

 \bullet Let us denote by $E(\mathbf{w})$ the sum of the fit and the regularization on coefficients \mathbf{w}

$$E(\mathbf{w}) = \beta E_D(\beta) + \alpha E_W(\mathbf{w}) = \frac{\beta}{2} \|\mathbf{Y}_m - \boldsymbol{\Phi} \cdot \mathbf{w}^\top\|^2 + \frac{\alpha}{2} \mathbf{w} \cdot \mathbf{w}^\top$$

• Since $p(\mathcal{D}_m|\mathbf{w},\beta)$ and $p(\mathbf{w}|\alpha)$ are Gaussians with quadratic forms $E_D(\beta)$ and $E_W(\mathbf{w})$, we get that

$$p(\mathcal{D}_m | \alpha, \beta) = \left(\frac{\beta}{2\pi}\right)^{m/2} \left(\frac{\alpha}{2\pi}\right)^{M/2} \int \exp\{-E(\mathbf{w})\} d\mathbf{w}$$

Skutkons Institute of Science and Technology 42/43

• Let us calculate the evidence for (α, β)

$$p(\mathcal{D}_m|\alpha,\beta) = \int p(\mathcal{D}_m|\mathbf{w},\beta)p(\mathbf{w}|\alpha)d\mathbf{w}$$

 \bullet Let us denote by $E(\mathbf{w})$ the sum of the fit and the regularization on coefficients \mathbf{w}

$$E(\mathbf{w}) = \beta E_D(\beta) + \alpha E_W(\mathbf{w}) = \frac{\beta}{2} \|\mathbf{Y}_m - \boldsymbol{\Phi} \cdot \mathbf{w}^\top\|^2 + \frac{\alpha}{2} \mathbf{w} \cdot \mathbf{w}^\top$$

• Since $p(\mathcal{D}_m|\mathbf{w},\beta)$ and $p(\mathbf{w}|\alpha)$ are Gaussians with quadratic forms $E_D(\beta)$ and $E_W(\mathbf{w})$, we get that

$$p(\mathcal{D}_m|\alpha,\beta) = \left(\frac{\beta}{2\pi}\right)^{m/2} \left(\frac{\alpha}{2\pi}\right)^{M/2} \int \exp\{-E(\mathbf{w})\} d\mathbf{w}$$

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ 쒸٩♡

Burnaev, ML

$$p(\mathcal{D}_m|\alpha,\beta) = \left(\frac{\beta}{2\pi}\right)^{m/2} \left(\frac{\alpha}{2\pi}\right)^{M/2} \int \exp\{-E(\mathbf{w})\} d\mathbf{w}$$

and we can get that

$$\log p(\mathcal{D}_m | \alpha, \beta) = \frac{M}{2} \log \alpha + \frac{m}{2} \log \beta$$
$$-E(\omega_N) - \frac{1}{2} \log |\mathbf{A}| - \frac{m}{2} \log(2\pi),$$

where

$$\mathbf{A} = \mathbf{S}_m^{-1} = \alpha^{-1} \mathbf{I} + \beta \mathbf{\Phi}^{\top} \mathbf{\Phi} \in \mathbb{R}^{M \times M},$$

$$\omega_m = \beta \mathbf{S}_m \mathbf{\Phi}^{\top} \mathbf{Y}_m$$

• **Seminar**: derivations of all formulas and an approach to optimize $\log p(\mathcal{D}_m | \alpha, \beta)$ w.r.t. (α, β)

Burnaev, ML SKOITECH

43/43

$$p(\mathcal{D}_m|\alpha,\beta) = \left(\frac{\beta}{2\pi}\right)^{m/2} \left(\frac{\alpha}{2\pi}\right)^{M/2} \int \exp\{-E(\mathbf{w})\} d\mathbf{w}$$

and we can get that

$$\log p(\mathcal{D}_m | \alpha, \beta) = \frac{M}{2} \log \alpha + \frac{m}{2} \log \beta$$
$$-E(\boldsymbol{\omega}_N) - \frac{1}{2} \log |\mathbf{A}| - \frac{m}{2} \log(2\pi),$$

where

$$\mathbf{A} = \mathbf{S}_m^{-1} = \alpha^{-1} \mathbf{I} + \beta \mathbf{\Phi}^{\top} \mathbf{\Phi} \in \mathbb{R}^{M \times M},$$

$$\mathbf{o}_m = \beta \mathbf{S}_m \mathbf{\Phi}^{\top} \mathbf{Y}_m$$

• **Seminar**: derivations of all formulas and an approach to optimize $\log p(\mathcal{D}_m|\alpha,\beta)$ w.r.t. (α,β)

◆ロ → ← 部 → ← き → を ● り へ で

43/43

Burnaev, ML Skalan Indian (Skalan Indian Ind

$$p(\mathcal{D}_m|\alpha,\beta) = \left(\frac{\beta}{2\pi}\right)^{m/2} \left(\frac{\alpha}{2\pi}\right)^{M/2} \int \exp\{-E(\mathbf{w})\} d\mathbf{w}$$

and we can get that

$$\log p(\mathcal{D}_m | \alpha, \beta) = \frac{M}{2} \log \alpha + \frac{m}{2} \log \beta$$
$$-E(\boldsymbol{\omega}_N) - \frac{1}{2} \log |\mathbf{A}| - \frac{m}{2} \log(2\pi),$$

where

$$\mathbf{A} = \mathbf{S}_m^{-1} = \alpha^{-1} \mathbf{I} + \beta \mathbf{\Phi}^{\top} \mathbf{\Phi} \in \mathbb{R}^{M \times M},$$
 $\omega_m = \beta \mathbf{S}_m \mathbf{\Phi}^{\top} \mathbf{Y}_m$

• **Seminar**: derivations of all formulas and an approach to optimize $\log p(\mathcal{D}_m | \alpha, \beta)$ w.r.t. (α, β)

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C

43/43

Burnaev, ML Skanni data elikarrania

$$p(\mathcal{D}_m|\alpha,\beta) = \left(\frac{\beta}{2\pi}\right)^{m/2} \left(\frac{\alpha}{2\pi}\right)^{M/2} \int \exp\{-E(\mathbf{w})\} d\mathbf{w}$$

and we can get that

$$\log p(\mathcal{D}_m | \alpha, \beta) = \frac{M}{2} \log \alpha + \frac{m}{2} \log \beta$$
$$-E(\boldsymbol{\omega}_N) - \frac{1}{2} \log |\mathbf{A}| - \frac{m}{2} \log(2\pi),$$

where

$$\mathbf{A} = \mathbf{S}_m^{-1} = \alpha^{-1} \mathbf{I} + \beta \mathbf{\Phi}^{\top} \mathbf{\Phi} \in \mathbb{R}^{M \times M},$$

$$\mathbf{\omega}_m = \beta \mathbf{S}_m \mathbf{\Phi}^{\top} \mathbf{Y}_m$$

• **Seminar**: derivations of all formulas and an approach to optimize $\log p(\mathcal{D}_m | \alpha, \beta)$ w.r.t. (α, β)

◆ロ → ← 部 → ← き → を ● り へ で

43/43

Burnaev, ML Salasi International Salasi Internation