

Подбор переменных и алгоритмов для модели

Сергей Аксёнов, к.т.н., доцент кафедры Теоретических основ информатики ТГУ

Плохое и хорошее обучение (регрессия)

Плохое и хорошее обучение (Классификация)

Недообучение

Хорошее обучение

Переобучение

• Класс А • Класс В

Линейно разделимые и линейно неразделимые классы

Бинарный линейный классификатор

Результат обучения: входной вектор относится либо к положительному $(\hat{y}=+1)$, либо отрицательному $(\hat{y}=-1)$ классу

Вектор признаков:

$$x = (x_1, x_2, x_3, ..., x_N)$$

Выход модели:

$$\hat{y} = \hat{y}(x, w) = sign\left(w_0 + \sum_{i=1}^{N} w_i x_i\right) = sign(w^T x)$$

Логистическая регрессия

Прогнозируют вероятность p_+ отнесения примера х r к классу +1

$$z=\sum_{i}^{N} w_{i}x_{i}$$

Функция стоимости

$$J(w) = \sum_{i} \frac{1}{2} (\phi(z^{(i)}) - y^{(i)})^{2}$$

Функция правдоподобия

$$L(\boldsymbol{w}) = P(\boldsymbol{y} \mid \boldsymbol{x}; \boldsymbol{w}) = \prod_{i=1}^{n} P(y^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{w}) = \prod_{i=1}^{n} (\phi(z^{(i)}))^{y^{(i)}} (1 - \phi(z^{(i)}))^{1 - y^{(i)}}$$

Логарифмическая функция правдоподобия

$$l(\boldsymbol{w}) = \log L(\boldsymbol{w}) = \sum_{i=1}^{n} \left[y^{(i)} \log \left(\phi(z^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - \phi(z^{(i)}) \right) \right]$$

Регуляризация в логистической регрессии

Функция, использующаяся для поиска параметров модели

$$J(w) = \sum_{i=1}^{n} \left[-y^{(i)} \log \left(\phi(z^{(i)}) \right) - \left(1 - y^{(i)} \right) \log \left(1 - \phi(z^{(i)}) \right) \right]$$

Регуляция переобучения выполняется при помощи регуляризации. Наложение штрафов на экстремальные значения параметров.

$$\frac{\lambda}{2} \|\boldsymbol{w}\|^2 = \frac{\lambda}{2} \sum_{j=1}^{m} w_j^2 \qquad \text{L2 - регуляризация}$$

Новая функция, учитывающая штрафы

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left[-y^{(i)} \log(\phi(z^{(i)})) - (1 - y^{(i)}) \log(1 - \phi(z^{(i)})) \right] + \frac{\lambda}{2} \|\mathbf{w}\|^{2}$$

Дерево решений

Разбиение данных на подмножества, приводящему к самому большому приросту информации (получению однородных регионов решения)

Функция прироста информации:

$$IG(D_p, f) = I(D_p) - \frac{N_{left}}{N_p}I(D_{left}) - \frac{N_{right}}{N_p}I(D_{right})$$

Меры неоднородности:

Энтропия:
$$I_G(t) = 1 - \sum_{i=1}^{c} p(i|t)^2$$

Мера неопределенности Джини: $I_H(t) = -\sum_{i=1}^t p(i|t)log_2p(i|t)$

Ошибка классификации: $I_E(t) = 1 - \max(p(i|t))$

p(i|t) -доля образцов, принадлежащая классу i для узла t

Построение деревьев решений. Пример-1

$$IG(D_p, f) = I(D_p) - \frac{N_{left}}{N_p} I(D_{left}) - \frac{N_{right}}{N_p} I(D_{right})$$

В качестве критерия взята ошибка классификации:

$$I_E(t) = 1 - \max(p(i|t))$$

Неоднородность корневого узла:
$$I(D_0) = 1 - \max\left(\frac{10}{20}, \frac{10}{20}\right) = 1 - 0.5 = 0.5$$

Для расщепления
$$x_1 = 20$$
: $IG(D_0, x_1 = 20) = 0.5 - \frac{9}{20} \left(1 - \frac{7}{9}\right) - \frac{11}{20} \left(1 - \frac{8}{11}\right) = 0.25$

Для расщепления
$$x_1 = 28$$
: $IG(D_0, x_1 = 28) = 0.5 - \frac{13}{20} \left(1 - \frac{7}{13}\right) - \frac{7}{20} \left(1 - \frac{4}{7}\right) = 0.05$

Построение деревьев решений. Пример-2

Примеры классов из Scikit-learn. Параметры

```
class sklearn.tree.DecisionTreeClassifier(criterion='gini', splitter='best',
max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, random_state=None,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
class_weight=None, presort=False)
```

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

<u>Хорошая модель</u> должна использовать не параметры алгоритмов по умолчанию, а исследование результатов алгоритмов с разными параметрами!!!

Случайный лес. Выборки для обучения

Случайный лес

Объединение работы нескольких деревьев. Мажоритарное голосование

Случайный лес

Определение важности признаков на случайном лесе

Основано на критерии прироста информации для всех деревьев в случайном лесе

$$IG(D_p, f)$$

Пример: Оценка важности признаков для задачи оценки состояния тяжести заболевания по результатам общего анализа крови (из собств. практики)

	истерстве Здравоскране циального развития РФ		Код формы по ОКУД				
Наим Либо	ветория изнование учреждения	74 BF		циновя документация Форма № 224/у надравом СССР 04.19.80 № 1030			
	илия, И.О. Л-		(POBM No. 1.05.00 2	0_ r.	-		
Bost	заст 41						
7490		M	медицинская карта Nr			2284	
		Pesyma	H		орма		
		-rar	Единиц	NO N		подпения	
Гемаглабин М Ж		110	130,0-160,0 120,0-140,0	nn	13,0-16,0 12,0-14,0	1%	
Эритроциты М Ж		3.75	4,0-5,0 3,9-4,7	*10 ¹⁰ /m	4,0-5.0	MPW, B T N (NWP)	
Цветовой показатель:		0.88	0,85-1,05	1000000	0.85-1,05	- 41100	
Среднее содержание гемоглобина (в 1 эритроците)		29.33	30-35	nr	39-35	m	
эритроците) Ретикулоциты		10	2-10	160	2-10	%0	
Тромбоциты		210	180,0-320,0	*10 ⁰ /m	180,0-	Tuic a 1 w (wwn)	
Лейкоциты		13	4,0-9.0	*10 ⁸ /m	4,0-9,0	THIC B T M (WWN)	
	Миелоциты	0		*10 ⁵ /n		n t see to	
MUIN	Метамиелоциты	0		*10°/n		# 1 MW (M	
чейтрофилы	Папочкоядерные	33	1-6 0,040- 0,360	*105/11	1-6 40-300	# 1 MM (M	
Ŧ	Сегментоядерные	52	47-72 2,000- 5,500	*107/л	47-72 2000-5000	11 MM ² (M	
Эозинофилы		1	0,5-5 0,020- 0,300	*10°/n	0,5-6 20-300	s t wat to	
Базофилы		0	0-1 0-0,065	*10 7/11	0-1 0-65	# 1 MM ² (M	
Лимфоциты		3	19-37 1,200- 3,000	*10°/m	19-37 1200-3000	# 1 MM ² (M	
Моноциты		11	3-11 0,090- 0,600	*10°/m	3-11 99-600	# 1 MM ² (M	
Плазматические клетки		0	-	*10 ³ /m	1	# 7 MM DA	
Скорость (реакция) М Оседания эритроцитов Ж Гематокрит		65	2-10 2-15	nasahi	2-10 2-15	unahasc	

Как изменилось состояние пациента?

К-блочная перекрестная проверка

Мажоритарное голосование в ансамбле

Номер модели	Пример 1	Пример 2	Пример 3	Пример 4	Пример 5	Количество ошибок
Модель 1	+	-	+	-	+	2
Модель 2	+	+	-	+	-	2
Модель 3	-	-	+	+	-	2
Модель 4	+	-	-	+	+	2
Модель 5	-	+	+	-	+	2
Мажорит.	+	-	+	+	+	1
голосование						

[&]quot;+" – Правильно классифицированные примеры

[&]quot;-" – Ошибочно классифицированные примеры

Пример мажоритарного голосования

