Optimierung eines PID-gesteuerten DC-DC-Konverters mit maschinellem Lernen

Patryk Krzyzanski

Erstprüfer: Prof. Dr.-Ing. Bernhard Wicht Zweitprüfer: Dr.-Ing. Markus Olbrich

Leibniz Universität Hannover Abteilung: Institut für Mikroelektronische Systeme

October 17, 2023

Abstract

In dieser Arbeit wird die Verwendung neuronaler Netze zur Optimierung und Steuerung eines PID-regulierten DC-Konverters untersucht. Das Ziel besteht darin, ein System zu entwickeln, das in der Lage ist, die altersbedingte Degradation von Schaltungskomponenten wie Kapazität und Induktivität zu überwachen und anzupassen, um die Leistung des Konverters aufrechtzuerhalten. Ein besonderer Fokus liegt auf dem Trainingsprozess und der Architektur des neuronalen Netzes. Der Trainingsprozess wird mithilfe von Methoden wie Deep Deterministic Policy Gradient (DDPG) und Bayesscher Optimierung umgesetzt. Das Training und die Schaltungssimulation werden unter Einsatz von Transientenanalyse mit SystemC durchgeführt, um eine präzise Bewertung und Auswertung der Simulationsergebnisse zu ermöglichen. Es werden Techniken zur Optimierung der Hyperparameter des neuronalen Netzes vorgestellt. Herausforderungen und Lösungsansätze im Kontext der neuronalen Netzarchitektur und des Trainings werden diskutiert. Abschließend werden die erzielten Ergebnisse und ihre Implikationen für zukünftige Forschungen präsentiert.

Chapter 1

Einleitung

1.1 Hintergrund und Motivation

Die effiziente Übertragung elektrischer Energie von einer Quelle zu einem Verbraucher stellt eine entscheidende Herausforderung in der Elektrotechnik dar. Im Mittelpunkt stehen dabei Gleichspannungswandler (DC-DC Konverter), die in vielfältigen Anwendungen von Energieübertragungssystemen bis hin zu mobilen Geräten eine Rolle spielen [7, p. 70].

1.2 Problemstellung

Jedoch werden diese Systeme durch Degradationseffekte, besonders von Schlüsselkomponenten wie Kapazitäten, zunehmend beeinträchtigt. Solche Degradationen können die Lebensdauer und Effizienz von elektronischen Systemen nachhaltig schädigen und erfordern dringende wissenschaftliche Untersuchung [4, p. 1].

1.3 Relevanz und Forschungslage

Erste Studien in diesem Bereich, wie die von Jeong et al. und Kulkarni et al., haben bereits die drastischen systemischen Auswirkungen solcher Degradationen demonstriert [6, p. 3]. Dadurch wird die Notwendigkeit unterstrichen, innovative Lösungsansätze für dieses Problem zu entwickeln.

1.4 Forschungsmethode und Ansatz

Ein vielversprechender Lösungsansatz ist die Nutzung von künstlichen neuronalen Netzen (KNN). Diese bieten, wie die Arbeiten von Brunton und Kutz sowie Almawlawe et al. nahelegen, eine hervorragende Plattform für die Steuerung komplexer Systeme und könnten somit eine Alternative zu traditionellen Reglern bieten [2, p. 270] [1, p. 8].

1.5 Ziele und Aufbau der Arbeit

Diese Arbeit zielt darauf ab, die Anwendungsmöglichkeiten von KNN zur Überwachung und Kompensation der Degradation in DC-Konvertern systematisch zu untersuchen. Im Fokus stehen dabei die Architektur des neuronalen Netzes, verschiedene Trainingsmethoden und -umgebungen, sowie die spezifischen Herausforderungen und Lösungsansätze im Kontext des Trainingsprozesses.

Chapter 2

Grundlagen

Einleitung zum Kapitel

Dieses Kapitel dient als umfassende Grundlage für die Erforschung der Rolle neuronaler Netze in der Optimierung und Steuerung von PID-regulierten DC-Konvertern. Im Fokus stehen sowohl die Grundlagen der DC-DC-Konvertertechnologie als auch spezielle Herausforderungen, die in diesem Kontext auftreten können, wie beispielsweise die altersbedingte Degradation von Schaltungskomponenten. Darüber hinaus bietet das Kapitel einen Überblick über moderne Optimierungsmethoden wie DDPG (Deep Deterministic Policy Gradients) und Bayessche Optimierung, die in der aktuellen Forschung Bedeutung erlangt haben.

Der Inhalt dieses Kapitels zielt darauf ab, den Leser umfassend auf die Herausforderungen, technischen Lösungen und innovativen Ansätze in diesem sich schnell entwickelnden Forschungsfeld vorzubereiten.

2.0.1 Grundlagen des Buck-Konverters in DC-DC-Wandlern

Die Wandlung von Gleichspannung (DC) in eine andere Gleichspannung ist ein kritischer Aspekt in der Elektronik und Energieversorgung. Ein weit verbreitetes Schaltungsdesign, das diese Funktion ausführt, ist der Buck-Konverter. In der Literatur wird dieser als eine Standardmethode für DC-DC-Wandlung beschrieben [7, p. 66].

Hauptkomponenten und Funktionen

2.0.2 Hauptkomponenten und Funktionen eines DC-DC-Konverters

MOSFET-Transistor

Der MOSFET-Transistor agiert als elektronischer Schalter, der den Stromfluss in der Schaltung reguliert. Im Vergleich zu alternativen Schaltelementen bietet der MOSFET eine signifikante Effizienzsteigerung durch minimale Leistungsverluste. Dies wird durch Phänomene wie Trägermobilität und die damit verbundene Widerstandsfähigkeit gegenüber thermischen Ausfällen ermöglicht [3, p. 29].

Induktivität (Spule)

Die Induktivität dient der temporären Energiespeicherung in Form eines magnetischen Feldes, das beim Stromfluss durch die Spule generiert wird. Dies ist insbesondere relevant in Anwendungen wie Solenoid-Antriebsschaltungen, wo die Induktivität als Energiespeicher und -überträger fungiert [3, p. 54].

Diode

Die Diode ist so ausgerichtet, dass sie den Strom nur in einer Richtung passieren lässt. Dies ist insbesondere wichtig, wenn der MOSFET-Transistor deaktiviert ist. Als passive Schalter werden oftmals schnelle Erholungsdioden oder Schottky-Dioden aufgrund ihrer exzellenten Schalteigenschaften verwendet [3, p. 29].

Kondensator

Der Kondensator dient der Glättung der Ausgangsspannung und speichert Energie für die Last. Er spielt eine wichtige Rolle in der Dynamik der Schaltung und ermöglicht eine stabilere Energieversorgung [5, p. 54].

Regelung und Anwendungen

In der Praxis werden Buck-Konverter oft von einer nicht-idealen Spannungsquelle gespeist und müssen daher unter variablen Eingangsspannungen und Lastströmen arbeiten [3, p. 124, 120, 113].. Daher ist eine geschlossene Regelungsschleife erforderlich, um eine konstante Ausgangsspannung sicherzustellen.

Buck-Konverter finden eine breite Anwendung in verschiedenen elektronischen Geräten und Systemen. Ihr hoher Wirkungsgrad, der in der Regel zwischen 75% und 98% liegt, macht sie besonders attraktiv.

Figure 3.2 Buck converter and major waveforms.

Figure 2.1: Schematische Darstellung eines DC-DC Konverters. Quelle: $[3,\,$ Seite 88]

Appendix A

Anhang

Bibliography

- [1] Muhanad D. Hashim Almawlawe, Muhammad Al-badri, and Issam Hayder Alsakini. "Performance Improvement of a DC/DC Converter Using Neural Network Controller in comparison with Different Controllers". In: *Unknown Journal* Unknown Volume. Unknown Number (2023), Unknown Pages.
- [2] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. University Printing House, Cambridge CB2 8BS, United Kingdom: Cambridge University Press, 2019. ISBN: 978-1-108-42209-3. DOI: 10.1017/9781108380690. URL: https://www.cambridge.org/9781108422093.
- [3] Byungcho Choi. Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs. IEEE Press series on power engineering. Hoboken, New Jersey: IEEE Press, Wiley, 2013. ISBN: 978-1-118-18063-1.
- [4] Jaeyoon Jeong, Sangshin Kwak, and Seungdeog Choi. "Degradation-Sensitive Control Algorithm Based on Phase Optimization for Interleaved DC-DC Converters". In: *Machines* 11 (2023). Received: 1 May 2023, Revised: 29 May 2023, Accepted: 30 May 2023, Published: 5 June 2023, p. 624. DOI: 10.3390/machines11060624. URL: https://www.mdpi.com/journal/machines.
- [5] Nihal Kularatna. DC Power Supplies: Power Management and Surge Protection for Power Electronic Systems. Version Date: 2011916, No claim to original U.S. Government works. Boca Raton, London, New York: CRC Press, Taylor & Francis Group, 2012. ISBN: 978-0-415-80248-2.
- [6] Chetan Kulkarni et al. "Model-based Avionics Systems Fault Simulation and Detection". In: [Journal Name Not Provided] (2023).
- [7] Mike Wens and Michiel Steyaert. Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS. Series Editors: Mohammed Ismail; Mohamad Sawan. ESAT-MICAS, Dept. Elektrotechniek, K.U. Leuven. Leuven, Belgium: [Publisher Name Not Provided], 2022.