Theory of Computation

Claire Driedger Feb-June, 2025

References: Lectures by Stephen Cranefield in COSC341 at the University of Otago, New Zealand; tikz tutorial by Satyaki Sikdar

Contents

1 Deterministic Finite State Automaton (DFAs)

 $\mathbf{2}$

1 Deterministic Finite State Automaton (DFAs)

DEF: A deterministic finite state automaton (DFA), **A**, consists of the following:

- A finite set Σ called its alphabet,
- A finite set S called its states,
- A function $T: \mathcal{S} \times \Sigma \to \mathcal{S}$ called its <u>transition function</u>,
- A single element $s \in \mathcal{S}$ called its start state,
- A subset $A \subseteq \mathcal{S}$ called its <u>final states</u> or accepting states.

We begin with an example. Consider a light with two switches. Flipping either switch changes the state of the light.

Figure 1: Two buttons, one light

another example:

