Networks Lab Report - Lab 3

- Nilay Pochhi (15CS10033)
- Surya Sen Dwivedi (15CS10044)

TCP

The network application transfers a file from client to server using TCP as the underlying transport layer protocol. The protocol implemented at the application layer is as follows:

- 1. The client sends a hello message to the server along with the file name and file size. Format "<file_name> <file_size> hello"
- 2. The server acknowledges this message.
- 3. The client initiates the file transfer writing data in chunks of 256 bytes to the socket.
- 4. The server upon receiving the entire file calculates the MD5 hash sum of the file and sends it to the client.
- 5. The client matches the received hash sum with the hash sum of the original file and prints a message at the console accordingly.

Directions to use the network application

- 1. Start the server:
 - a. Compile using gcc TCPserver.c -lssl -lcrypto
 - b. Execute using ./a.out <server_port>
- 2. Start the client:
 - a. Compile using gcc TCPclient.c -lssl -lcrypto
 - b. Execute using ./a.out <server_ip> <server_port>

Experiment

The file transferred was a 5 MB pdf file. The server was running on a PC at LBS Hall, while the client was running on a PC at Azad Hall, both of which were connected to the Local Area Network.

The parameters observed were:

- Total number of segments received: 3880
- Packet Distribution:

*	Packet Lengths	3880	1345.27	66	1514	0.3007	100%	4.1200	243.538
	0-19	0	-	-	-	0.0000	0.00%	-	
	20-39	0	-	-	-	0.0000	0.00%	-	
	40-79	415	66.07	66	78	0.0322	10.70%	0.8400	243.417
	80-159	4	99.25	82	130	0.0003	0.10%	0.0200	241.286
	160-319	20	247.60	194	266	0.0016	0.52%	0.0500	244.254
	320-639	19	360.84	322	514	0.0015	0.49%	0.0400	243.691
	640-1279	0	2.51	-	870	0.0000	0.00%	2.5	11 7 1
	1280-2559	3422	1513.74	1322	1514	0.2652	88.20%	3.7900	243.538
	2560-5119	0	A= - - - - - - - - - - - - -	-	-	0.0000	0.00%	-	5 -
	5120 and greater	0	-	-		0.0000	0.00%	-	

• Number of retransmitted packets for TCP: 1

No.	Time	Source	Destination	Protocol	Length Info
0.00	9514 246.837566656	10.117.17.172	10.109.65.213	TCP	66 [TCP Retransmission] 7005 → 60392 [FIN, ACK] Seq=47 Ack=4963482

• Total time to receive the file for TCP: 246.853 - 233.954 secs = 12.899 secs

We observe that all the segments are not of the same size. TCP, being a connection oriented protocol sends SYN/ACK messages which are not of the same size as the actual data messages. The data messages are also not all of the same size.