Functional Dependency

8. Functional Dependency

A "good" database schema should not lead to update anomalies.

- update anomalies,
- functional dependencies,
- Armstrong Axioms,
- closures.

8.1 Update Anomalies

- Redundancy in a database means storing a piece of data more than once.
- Redundancy is often useful for efficiency and semantic reasons, but creates the potential for consistency problems.
- A poor redundancy control may cause update anomalies.
- Consider the example relation below (adapted from "An Introduction to Database Systems" by Desai):

STUDENTS					
Name	Course	Phone_no	Major	Prof	Grade
Jones	353	237-4539	Comp Sci	Smith	А
Ng	329	427-7390	Chemistry	Turner	В
Jones	328	237-4539	Comp Sci	Clark	В
Martin	456	388-5183	Physics	James	А
Dulles	293	371-6259	Decision Sci	Cook	С
Duke	491	823-7293	Mathematics	Lamb	В
Duke	356	823-7293	Mathematics	Bond	UN
Jones	492	237- 4539	Comp Sci	Cross	UN
Baxter	379	839-0827	English	Broes	

• *Modification anomalies*: e.g. Jones's phone number appears 3 times. When a phone number is changed, it must be changed in all 3 places, or the data will be inconsistent.

Insertion anomalies:

- If Jones enrolls in another course, and a different phone number is entered, again the data will be inconsistent.
- Also, if the only way that the association between course and professor is stored in this relation, we can only enter the association when someone enrolls in the course.

Deletion anomalies: If the last student in a course is deleted, the association between professor and course is lost.

8.2 Functional dependencies

A function f from S_1 to S_2 has the property

if
$$x, y \in S_1$$
 and $x = y$, then $f(x) = f(y)$.

A generalization of keys to avoid design flaws violating the above rule.

Let X and Y be sets of attributes in R.

X (functionally) determines Y, $X \rightarrow Y$, iff $t_1[X] = t_2[X]$ implies $t_1[Y] = t_2[Y]$.

i.e.,
$$f(t(X)) = t[Y]$$

We also say $X \rightarrow Y$ is a *functional* dependency, and that Y is *functionally* dependent on X.

X is called the *left side*, Y the *right side* of the dependency.

Examples:

• For every Name, there is a unique Phone_no and Major, assume Name is unique

• For every Course, there is a unique Prof

• For every Name and Course, there is a unique Grade

• In this example:

2018/3/24

$$\{Name\} \rightarrow \{Phone_no, Major\}$$
 $\{Course\} \rightarrow \{Prof\}$
 $\{Name, Course\} \rightarrow \{Grade\}$

• We can also show these in a diagram like this one:

• Notice that other FD's follow from these:

$$\{Name\} \rightarrow \{Major\}$$

 $\{Course, Grade\} \rightarrow \{Prof, Grade\}$

• Let F be a set of FD's.

Definition 1: $X \to Y$ is inferred from F (or that F infers $X \to Y$), written in

$$F \models X \rightarrow Y$$

- if any relation instance satisfying F must also satisfy $X \to Y$.
- Impossible to list every relation to verify if $X \to Y$ is inferred from F.
- A set ρ of derivation rules are required, such that:

a $X \rightarrow Y$ is inferred from F according to Definition 1 iff it can be derived using ρ .

8.3 Armstrong's axioms (1974)

Notation: If X and Y are sets of attributes, we write XY for their union.

e.g.
$$X = \{A, B\}, Y = \{B, C\}, XY = \{A, B, C\}$$

- F1 (Reflexivity) If $X \supseteq Y$ then $X \rightarrow Y$.
- F2 (Augmentation) $\{X \rightarrow Y\} = XZ \rightarrow YZ$.
- F3 (Transitivity) $\{X \to Y, Y \to Z\} \models X \to Z$.

- F4 (Additivity) $\{X \rightarrow Y, X \rightarrow Z\} = X \rightarrow YZ$.
- F5 (Projectivity) $\{X \rightarrow YZ\} = X \rightarrow Y$.
- F6 (Pseudotransitivity)

$$\{X \to Y, YZ \to W\} = XZ \to W.$$

Example: Given $F = \{A \rightarrow B, A \rightarrow C, BC \rightarrow D\}$, derive $A \rightarrow D$:

- $1. A \rightarrow B$ (given)
- $2. A \rightarrow C$ (given)
- $3. A \rightarrow BC$ (by F4, from 1 and 2)
- 4. $BC \rightarrow D$ (given)
- 5. $A \rightarrow D$ (by F3, from 3 and 4)

- F4 (Additivity) $\{X \rightarrow Y, X \rightarrow Z\} = X \rightarrow YZ$.
- F5 (Projectivity) $\{X \rightarrow YZ\} = X \rightarrow Y$.
- F6 (Pseudotransitivity)

$${X \rightarrow Y, YZ \rightarrow W} \models XZ \rightarrow W.$$

In fact, F4, F5, and F6 can be derived from F1-F3.

Example: Prove $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$.

- 1) $X \rightarrow Y$ is given.
- 2) $XX \rightarrow XY$ (by F2); that is, $X \rightarrow XY$
- 3) $X \rightarrow Z$ is given.
- 4) $XY \rightarrow YZ$ (by F2)
- 5) $X \rightarrow YZ$ (by F3, 2) and 4))

We can prove that Armstrong's axioms are sound and complete:

• Sound: if *F* derives $A \rightarrow B$ by using Armstrong's axioms, then $F \mid= A \rightarrow B$ by Definition 1.

• Complete: if $F = M \rightarrow N$ by Definition 1, then F derives $M \rightarrow N$ by using Armstrong's axioms.

8.4 Algorithm to Check a FD

Given F, how do we check if $X \rightarrow Y$ is in F^+ ?

 F^+ denotes the smallest set of FD's that

- contains F, and
- is *closed* under Armstrong's axioms.

 F^+ is the *closure* of F.

$$F = \{ A \rightarrow B, B \rightarrow C, A \rightarrow C \}$$

F⁺ always has an exponential size regarding |F|.

- Too expensive to compute F^+ to verify a membership.
- Instead we can compute the *closure* X⁺ of X under F,
 X⁺ is the largest set of attributes functionally
 determined by X.

It can be proven (using additivity) that

S1:
$$X^+ = \bigcup_{\forall X \to A \in F^+} A$$
.

 $S2: X \rightarrow Y \subseteq F^+$ iff (if and only if) $Y \subseteq X^+$.

$$F = \{ A \rightarrow B, BC \rightarrow D, A \rightarrow C \}, compute \{A\}^+$$

1st scan of F:

$$X^+ := \{A\}$$

$$X^+ := \{A, B\}$$

$$X^+ := \{A, B, C\}$$

2nd scan of F:

$$X^+ := \{A, B, C, D\}$$

3rd scan of F: no change, therefore the algorithm terminates.

$$\{A\}^+ := \{A, B, C, D\}$$

```
• Algorithm to compute X<sup>+</sup>:
        X^{+} := X;
        change := true;
        while change do
                 begin
                 change := false;
                 for each FD W \rightarrow Z in F do
                         begin
                         if (W \subseteq X^+) and (\not\subseteq X^+) then do
                                  begin
                                  X^+ := X^+ \cup Z;
                                  change := true;
                                  end
                         end
                 end
```

8.5 Algorithm to Compute a Candidate Key

- Given a relational schema *R* and a set *F* of functional dependencies on *R*.
- A key *X* of *R* must have the property that $X^+ = R$.

Algorithm to compute a candidate key

Step 1: Assign *X* a superkey in F.

Step 2: Iteratively remove attributes from X while retaining the property X^+

= R till no reduction on X.

The remaining *X* is a key.

$$R = \{A, B, C, D\}$$
 and $F = \{A \rightarrow B, BC \rightarrow D, A \rightarrow C\}$

X = {A, B, C} if the left hand side of F is a super key.

A cannot be removed because {BC}+ = {B, C, D} ≠ R

B can be removed because $\{AC\}^+ = \{A, B, C, D\} = R$ $\longrightarrow X = \{A, C\}$

C can be further removed because $\{A\}^+ = \{A, B, C, D\}$ $X = \{A\}$