Généralités et concepts de base

Séance 3. Théorie des graphes Enseignant: K.Meslem

U.S.T.H.B, le 20 Octobre 2021

3ème LIC RO Section A

• Peut-on avoir un graphe G d'<u>ordre 4</u> et de taille 10 ? Si oui proposer un

- Peut-on avoir un graphe *G* d'ordre 4 et de taille 10 ? Si oui proposer un tel graphe
- 2 Donner un graphe simple d'ordre 4 avec un nombre minimum d'arêtes;

- Peut-on avoir un graphe *G* d'ordre 4 et de taille 10 ? Si oui proposer un tel graphe
- 2 Donner un graphe simple d'ordre 4 avec un nombre minimum d'arêtes;
- 3 Donner un graphe simple d'ordre 4 avec un nombre maximum d'arêtes;

- Peut-on avoir un graphe *G* d'ordre 4 et de taille 10 ? Si oui proposer un tel graphe
- 2 Donner un graphe simple d'ordre 4 avec un nombre minimum d'arêtes;
- 3 Donner un graphe simple d'ordre 4 avec un nombre maximum d'arêtes;
- Soit G = (X, U) où $X = \{1, 2, 3\}$. Sachant que G est 2-graphe symétrique, proposer G;

wha

- Peut-on avoir un graphe *G* d'ordre 4 et de taille 10 ? Si oui proposer un tel graphe
- 2 Donner un graphe simple d'ordre 4 avec un nombre minimum d'arêtes;
- **Solution** Donner un graphe simple d'ordre 4 avec un nombre maximum d'arêtes;
- Soit G = (X, U) où $X = \{1, 2, 3\}$. Sachant que G est 2-graphe symétrique, proposer G;
- **3** Rappeler nous ce qu'est la multiplicité d'une paire de sommet x, y du graphe G = (X, U)

Les graphes complets

Définition

Un graphe G = (X, U) est dit **complet** si: $m_G(x, y) = m_G^+(x, y) + m_G^-(x, y) \ge 1$ pour tout $x, y \in X$ $x \ne y$

Les graphes complets

Définition

Un graphe G = (X, U) est dit **complet** si:

$$m_G(x, y) = m_G^+(x, y) + m_G^-(x, y) \ge 1$$
 pour tout $x, y \in X$ $x \ne y$

- Si G est un 1-graphe, il est complet ssi $(x,y) \notin U \Rightarrow (y,x) \in U$
- Un graphe simple complet à n sommets se dénote par K_n .

Les graphes complets

Définition

Un graphe G est dit biparti si l'ensemble de ses sommets peut être partitionné en deux sous-ensembles non vides X_1, X_2 i.e.

$$X = X_1 \cup X_2$$
;

$$X_1 \cap X_2 = \emptyset$$

Définition

Un graphe G est dit **biparti** si l'ensemble de ses sommets peut être partitionné en deux sous-ensembles non vides X_1, X_2 i.e:

$$X = X_1 \cup X_2$$
;

$$X_1 \cap X_2 = \emptyset$$

de sorte que tous deux sommets dans X_1 (ou X_2) ne sont pas adjacents. Ainsi, le graphe est noté $G = (X_1 \cup X_2, U)$ (ou $G = (X_1 \cup X_2, E)$).

Définition

Un graphe G est dit **biparti** si l'ensemble de ses sommets peut être partitionné en deux sous-ensembles non vides X_1, X_2 i.e:

$$X = X_1 \cup X_2$$
;

$$X_1 \cap X_2 = \emptyset$$

de sorte que tous deux sommets dans X_1 (ou X_2) ne sont pas adjacents. Ainsi, le graphe est noté $G = (X_1 \cup X_2, U)$ (ou $G = (X_1 \cup X_2, E)$).

Questions:

Le graphe des glaces est-il biparti?

Définition

Un graphe G est dit **biparti** si l'ensemble de ses sommets peut être partitionné en deux sous-ensembles non vides X_1, X_2 i.e:

$$X = X_1 \cup X_2$$
;

$$X_1 \cap X_2 = \emptyset$$

Définition

Un graphe G est dit **biparti** si l'ensemble de ses sommets peut être partitionné en deux sous-ensembles non vides X_1, X_2 i.e:

$$X = X_1 \cup X_2$$
;

$$X_1 \cap X_2 = \emptyset$$

Ouestions:

Le graphe suivant est-il biparti?

Définition

Un graphe G est dit **biparti** si l'ensemble de ses sommets peut être partitionné en deux sous-ensembles non vides X_1, X_2 i.e:

$$X = X_1 \cup X_2$$
;

$$X_1 \cap X_2 = \emptyset$$

Questions:

Le graphe suivant est-il biparti?

Il est biparti: $X = \{1, 3\}$ et $Y = \{2, 4\}$

Définition

Un graphe G est dit **biparti** si l'ensemble de ses sommets peut être partitionné en deux sous-ensembles non vides X_1, X_2 i.e:

$$X = X_1 \cup X_2$$
;

$$X_1 \cap X_2 = \emptyset$$

Ouestions:

Lemme

Soit $G = (X \cup Y, U)$ un graphe biparti d'ordre $n = n_1 + n_2$ et de taille m avec

$$X = \{x_1, ..., x_{n_1}\}$$
 et $Y = \{y_1, ..., y_{n_2}\}$. On a:

$$\sum_{i=1}^{i=n_1} d_G(x_i) = m = \sum_{i=1}^{i=n_2} d_G(y_i)$$

6/20

Lemme

Soit $G = (X \cup Y, U)$ un graphe biparti d'ordre $n = n_1 + n_2$ et de taille m avec $X = \{x_1, ..., x_{n_1}\}$ et $Y = \{y_1, ..., y_{n_2}\}$. On a:

$$\sum_{i=1}^{i=n_1} d_G(x_i) = m = \sum_{i=1}^{i=n_2} d_G(y_i)$$

Preuve

Tout arc du graphe biparti a une extrémité dans le sous-ensemble *X* et l'autre extrémité dans le sous-ensemble *Y*.

Lemme

Soit $G = (X \cup Y, U)$ un graphe biparti d'ordre $n = n_1 + n_2$ et de taille m avec $X = \{x_1, ..., x_{n_1}\}$ et $Y = \{y_1, ..., y_{n_2}\}$. On a:

$$\sum_{i=1}^{i=n_1} d_G(x_i) = m = \sum_{i=1}^{i=n_2} d_G(y_i)$$

Preuve

Tout arc du graphe biparti a une extrémité dans le sous-ensemble *X* et l'autre extrémité dans le sous-ensemble *Y*.

En comptant la somme des degrés des sommets d'un des sous-ensembles, on retrouve le nombre des arcs de G.

Définition

Un graphe
$$G = (X_1 \cup X_2, U)$$
 biparti est dit **biparti-complet** si : $\forall x_1 \in X_1 \text{ et } \forall x_2 \in X_2 \text{: } m_G(x_1, x_2) \geq 1.$

Définition

Un graphe $G = (X_1 \cup X_2, U)$ biparti est dit **biparti-complet** si :

$$\forall x_1 \in X_1 \text{ et } \forall x_2 \in X_2 : m_G(x_1, x_2) \ge 1.$$

Si de plus, le graphe $G = (X_1 \cup X_2, E)$ est simple:

G est dit biparti-complet et est noté $K_{p,q}$ où $|X_1| = p$ et $|X_2| = q$ si:

$$\forall x_1 \in X_1 \ \forall x_2 \in X_2 \colon x_1 x_2 \in E.$$

Exemples

Exemples

• Le K_2 peut être considéré comme $K_{1,1}$

Exemples

- Le K_2 peut être considéré comme $K_{1,1}$
- Le $K_{1,p}$ $(p \ge 2)$ est dit étoile

Exemples

- Le K_2 peut être considéré comme $K_{1,1}$
- Le $K_{1,p}$ $(p \ge 2)$ est dit étoile
- Caractérisons ces deux graphes

Figure:

Définition

Soit G = (X, E) un graphe simple.

Le **graphe complémentaire** de G, est $\overline{G} = (X, \overline{E})$ dont l'ensemble des sommets est X et :

Définition

Soit G = (X, E) un graphe simple.

Le graphe complémentaire de G, est $\overline{G} = (X, \overline{E})$ dont l'ensemble des sommets est X et :

$$xy \in \overline{E} \Leftrightarrow xy \notin E$$

Définition

Soit G = (X, E) un graphe simple.

Le graphe complémentaire de G, est $\overline{G} = (X, \overline{E})$ dont l'ensemble des sommets est X et :

$$xy \in \overline{E} \Leftrightarrow xy \notin E$$

Exemples

• Le complémentaire d'un graphe complet K_n est noté D_n (ou N_n)

Д

Définition

Soit G = (X, E) un graphe simple.

Le graphe complémentaire de G, est $\overline{G} = (X, \overline{E})$ dont l'ensemble des sommets est X et :

$$xy \in \overline{E} \Leftrightarrow xy \notin E$$

Exemples

• Le complémentaire d'un graphe complet K_n est noté D_n (ou N_n)

Figure:

• Considérons l'exemple de jeu des allumettes

Figure:

• Considérons l'exemple de jeu des allumettes

Figure:

 Si dans l'énoncé, on disposait au départ de deux tas d'allumettes dont chacun contient deux allumettes.
 Comment sera le graphe associé?

La réponse: Le graphe sera le graphe G'

Figure:

La réponse: Le graphe sera le graphe G'

Figure:

- Ce nouveau graphe noté G' contient <u>une partie des sommets</u> de G, qu'on note A
- Le graphe G' contient tous les arcs de G reliant les sommets de A

La réponse: Le graphe sera le graphe G'

Figure:

- Ce nouveau graphe noté G' contient un partie des sommets de G, qu'on note A
- Le graphe G' contient tous les arcs de G reliant les sommets de A
- Un tel graphe est dit sous-graphe induit par A

Une autre question!!

En considérant le même jeu, on dispose, cette fois-ci:

- Deux tas de trois allumettes chacun au départ.
- La règle du jeu est d'enlever uniquement une allumette à un tas.

Une autre question!!

En considérant le même jeu, on dispose, cette fois-ci:

- Deux tas de trois allumettes chacun au départ.
- La règle du jeu est d'enlever uniquement une allumette à un tas.

Quel est le graphe modélisant cette situation?

La réponse: Le graphe sera le graphe G''

Figure:

La réponse: Le graphe sera le graphe G''

Figure:

- Ce nouveau graphe noté G'' contient un partie tous les sommets de G
- Le graphe G'' contient une partie des arcs de G reliant les sommets de A

La réponse: Le graphe sera le graphe G''

Figure:

- Ce nouveau graphe noté G'' contient un partie tous les sommets de G
- Le graphe G'' contient une partie des arcs de G reliant les sommets de A
- Un tel graphe est dit graphe partiel

Soit G = (X, U) un graphe; $A \subset X$ et $V \subset U$ avec $A \neq \emptyset$ et $V \neq \emptyset$.

Soit G = (X, U) un graphe; $A \subset X$ et $V \subset U$ avec $A \neq \emptyset$ et $V \neq \emptyset$.

- Le sous-graphe de G engendré (ou sous-graphe de G induit par A) est le graphe G_A dont :
 - les sommets sont les éléments de A
 - les arcs sont tous les arcs de G ayant les deux extrémités dans A

On note
$$G_A = (A, \Gamma_A)$$
.

Soit G = (X, U) un graphe; $A \subset X$ et $V \subset U$ avec $A \neq \emptyset$ et $V \neq \emptyset$.

- Le sous-graphe de G engendré (ou sous-graphe de G induit par A) est le graphe G_A dont :
 - les sommets sont les éléments de A
 - les arcs sont tous les arcs de G ayant les deux extrémités dans A

On note
$$G_A = (A, \Gamma_A)$$
.

 Le graphe partiel de G engendré par V est le graphe dont l'ensemble des sommets est X et l'ensemble des arcs est V
 Autrement dit, le graphe partiel de G est obtenu à partir de G en éliminant les arcs qui sont dans U \ V.

Soit G = (X, U) un graphe; $A \subset X$ et $V \subset U$ avec $A \neq \emptyset$ et $V \neq \emptyset$.

- Le sous-graphe de G engendré (ou sous-graphe de G induit par A) est le graphe G_A dont :
 - les sommets sont les éléments de A
 - les arcs sont tous les arcs de G ayant les deux extrémités dans A

On note
$$G_A = (A, \Gamma_A)$$
.

- Le graphe partiel de G engendré par V est le graphe dont l'ensemble des sommets est X et l'ensemble des arcs est V Autrement dit, le graphe partiel de G est obtenu à partir de G en éliminant les arcs qui sont dans $U \setminus V$.
- Le sous-graphe partiel de G est le graphe partiel de G_A engendré par V. Autrement dit, c'est le graphe dont tous les sommets sont tous les éléments de l'ensemble A et les arcs sont ceux de V ayant les deux extrémités dans A.

Sous-graphes de *G*: récapitulons!!

Sous-graphes

• Prendre une partie de sommets et tous les arcs (ou arêtes) de G

• Prendre une partie des arcs ou arêtes et tous les sommets de G

• Prendre une partie de *X* et quelques arcs ou arêtes qui relient ces sommets

Définition

Soit
$$G = (X, U)$$
 un graphe sans boucle où $X = \{x_1, x_2, ..., x_n\}$ et $U = \{u_1, ..., u_m\}$.

La matrice d'incidence sommets-arcs de G est la matrice $A = (a_{ij})_{i=1,m}$ à coefficients 1,-1 ou 0 telle que:

Définition

Soit G = (X, U) un graphe sans boucle où $X = \{x_1, x_2, ..., x_n\}$ et $U = \{u_1, ..., u_m\}$.

La matrice d'incidence sommets-arcs de G est la matrice $A = (a_{ij})_{i=1,n}$ à j=1,m

coefficients 1,-1 ou 0 telle que:

$$a_{ij} = \begin{cases} 1 & I(u_j) = x_i \\ -1 & T(u_j) = x_i \\ 0 & \text{sinon} \end{cases}$$

Définition

Soit
$$G = (X, U)$$
 un graphe sans boucle où $X = \{x_1, x_2, ..., x_n\}$ et $U = \{u_1, ..., u_m\}$.

La matrice d'incidence sommets-arcs de G est la matrice $A = (a_{ij})_{i=1,m}$ à coefficients 1,-1 ou 0 telle que:

$$a_{ij} = \begin{cases} 1 & I(u_j) = x_i \\ -1 & T(u_j) = x_i \\ 0 & \text{sinon} \end{cases}$$

Exemple

Figure:

Exemple

Figure:

La matrice d'incidence est

Remarques

• Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 2 = d_{G'}^-(x_4)$

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 3 = d_{G'}^-(x_4)$

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 3 = d_{G'}^-(x_4)$

Définition

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 3 = d_{G'}^-(x_4)$

Définition

• Une matrice régulière *M* d'ordre *p* est dite **unimodulaire** si son déterminant est soit +1 soit -1.

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 3 = d_{G'}^-(x_4)$

Définition

- Une matrice régulière *M* d'ordre *p* est dite **unimodulaire** si son déterminant est soit +1 soit -1.
- Une matrice rectangulaire *M* à coefficients $n \times m$ est dite **totalement unimodulaire** ssi les sous-matrices carrées régulières extraites de *M* sont unimodulaires.

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 3 = d_{G'}^-(x_4)$

Définition

- Une matrice régulière *M* d'ordre *p* est dite **unimodulaire** si son déterminant est soit +1 soit -1.
- Une matrice rectangulaire *M* à coefficients *n* × *m* est dite **totalement unimodulaire** ssi les sous-matrices carrées régulières extraites de *M* sont unimodulaires.

Toute matrice A d'incidence sommets-arcs d'un graphe G = (X, U) est totalement unimodulaire.

Définition

Soit G = (X, E) un graphe non orienté avec $X = \{x_1, ..., x_n\}$ et $E = \{e_1, ..., e_m\}$ sans boucles.

La matrice d'incidence sommets-arêtes de G est la matrice $A = (a_{ij})_{i=1,m}$ à coefficients 0 et 1 telle que:

$$a_{ij} = \begin{cases} 1 & \text{l'arête } e_j \text{ incidente au sommet } x_i \\ 0 & \text{sinon} \end{cases}$$

Remarque

En considérant le graphe complet K_3 induit par x_1, x_2, x_3 ayant $e_1 = x_1x_2$; $e_2 = x_1x_3$ et $e_3 = x_2x_3$ comme arêtes, la matrice d'incidence sommets-arêtes est donnée comme suit:

Remarque

En considérant le graphe complet K_3 induit par x_1, x_2, x_3 ayant $e_1 = x_1x_2$; $e_2 = x_1x_3$ et $e_3 = x_2x_3$ comme arêtes, la matrice d'incidence sommets-arêtes est donnée comme suit:

$$\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)$$

Cette matrice n'est pas totalement unimodulaire sachant que son déterminant vaut -2.

Graphes: concepts de base

Graphes: concepts de base

Fini pour aujourd'hui!!

- Revoir le cours et prendre note dans un papier!!
- Préparer ses exercices pour demain et jeudi prochain
- A mercredi prochain en présentiel ☺