Fonctions réelles

Technique obsolète

Exercice 1 [03223] [Correction] Montrer que lorsque $x \to +\infty$

$$\int_0^x e^{t^2} dt \sim \frac{e^{x^2}}{2x}.$$

Difféomorphisme

Exercice 2 [02818] [Correction] Soit $f: [-1; +\infty[\to \mathbb{R} \text{ donn\'ee par}]$

$$f(x) = \frac{\ln(1+x)}{1+x}.$$

- (a) Trouver le plus grand intervalle ouvert I contenant 0 sur lequel f est un \mathcal{C}^{∞} -difféomorphisme.
- (b) On note g l'application réciproque de $f_{\uparrow I}$. Montrer que les coefficients du développement limité de g en 0 à un ordre quelconque sont positifs.

Étude de branche asymptotique

Exercice 3 [01409] [Correction] Soit $f: [0; +\infty[\rightarrow \mathbb{R}]$ définie par

$$f(x) = \frac{\ln x}{x}.$$

Montrer que f admet un point d'inflexion.

Étudier les branches infinies de la courbe représentative de f et en donner l'allure.

Exercice 4 [01408] [Correction]

Étudier la fonction

$$f \colon x \mapsto \frac{x^2 + x}{|x| + 1}$$

en vu d'en réaliser la représentation graphique.

Exercice 5 [01407] [Correction]

Étudier la fonction

$$f \colon x \mapsto \frac{2\ln x + 3}{x}$$

en vu d'en réaliser la représentation graphique.

Exercice 6 [01406] [Correction]

Étudier la fonction

$$f \colon x \mapsto x^2 e^{-x}$$

en vu d'en réaliser la représentation graphique.

Exercice 7 [01467] [Correction]

Soit

$$f \colon x \mapsto (x+1)e^{1/x}$$

définie sur \mathbb{R}_{+}^{*} .

Former un développement asymptotique de f à la précision 1/x en $+\infty$.

En déduire l'existence d'une droite asymptote en $+\infty$ à la courbe représentative de f.

Étudier la position relative de la courbe et de son asymptote en $+\infty$.

Exercice 8 [01468] [Correction]

Soit

$$f \colon x \mapsto x(\ln(2x+1) - \ln(x))$$

définie sur \mathbb{R}_+^* .

Former un développement asymptotique de f à la précision 1/x en $+\infty$.

En déduire l'existence d'une droite asymptote en $+\infty$ à la courbe représentative de f.

Étudier la position relative de la courbe et de son asymptote en $+\infty$.

Exercice 9 [01469] [Correction]

Étudier les asymptotes de

$$x \mapsto \sqrt[3]{(x^2 - 2)(x + 3)}$$

Exercice 10 [01825] [Correction]

Étudier les branches infinies de

$$f(x) = \frac{(x+1)\ln(x+1)}{\ln x}.$$

Exercice 11 [01826] [Correction]

Étudier les branches infinies de

$$f(x) = \frac{x^2 + 2x}{|x - 1| + x}.$$

Fonctions hyperboliques inverses

Exercice 12 [01867] [Correction]

Simplifier les expressions suivantes :

- (a) ch(argsh x)
- (c) $sh(2 \operatorname{argsh} x)$
- (e) $th(\operatorname{argch} x)$

- (b) th(argsh x)
- (d) $sh(\operatorname{argch} x)$
- (f) $ch(\operatorname{argth} x)$

Exercice 13 [01868] [Correction]

Simplifier:

(a) $\operatorname{argch}(2x^2 - 1)$

(b) $\operatorname{argsh}(2x\sqrt{1+x^2})$

Exercice 14 [01870] [Correction]

Résoudre l'équation

$$\operatorname{argsh} x + \operatorname{argch} x = 1.$$

Exercice 15 [01871] [Correction]

Soit $G:]-\frac{\pi}{2}; \frac{\pi}{2}[\to \mathbb{R} \text{ définie par } G(t) = \operatorname{argsh}(\tan t).$ Montrer que G est dérivable et que pour tout $t \in]-\frac{\pi}{2}; \frac{\pi}{2}[, G'(t) = \operatorname{ch} G(t).$

Exercice 16 [02454] [Correction]

Convergence et calcul de la série entière $\sum_{n=0}^{+\infty} a_n x^n$ où $a_n = \int_0^1 (1-t^2)^n dt$.

Exercice 17 [02846] [Correction]

Pour $n \in \mathbb{N}$, on pose

$$a_n = \frac{n!}{1 \times 3 \times \dots \times (2n+1)}.$$

Rayon de convergence et somme de la série entière $\sum_{n=0}^{+\infty} a_n x^n$?

Exercice 18 [01567] [Correction]

Résoudre

$$(1+x^2)y'' + xy' - 4y = 0$$

en posant $x = \operatorname{sh}(t)$.

Corrections

Exercice 1 : [énoncé]

On découpe l'intégrale en deux

$$\int_0^x e^{t^2} dt = \int_0^1 e^{t^2} dt + \int_1^x e^{t^2} dt$$

et on procède à une intégration par parties

$$\int_{1}^{x} e^{t^{2}} dt = \int_{1}^{x} \frac{2t}{2t} e^{t^{2}} dt = \left[\frac{e^{t^{2}}}{2t} \right]_{1}^{x} + \frac{1}{2} \int_{1}^{x} \frac{e^{t^{2}}}{t^{2}} dt.$$

Ainsi

$$\int_0^x e^{x^2} = \frac{e^{x^2}}{2x} + \frac{1}{2} \int_1^x \frac{e^{t^2}}{t^2} dt + C^{te}.$$

Quand $x \to +\infty$, sachant que la constante est négligeable devant $e^{x^2}/2x \to +\infty$, il suffit pour conclure de montrer

$$\int_1^x \frac{e^{t^2}}{t^2} dt = o\left(\int_1^x e^{t^2} dt\right).$$

Soit $\varepsilon > 0$. Il existe $A \ge 1$ tel que

$$\forall t \geq A, \frac{1}{t^2} \leq \varepsilon$$

et alors

$$0 \le \int_1^x \frac{e^{t^2}}{t^2} dt \le \int_1^A \frac{e^{t^2}}{t^2} dt + \varepsilon \int_A^x e^{t^2} dt$$

puis

$$0 \le \int_{1}^{x} \frac{e^{t^{2}}}{t^{2}} dt \le \int_{1}^{A} \frac{e^{t^{2}}}{t^{2}} dt + \varepsilon \int_{1}^{x} e^{t^{2}} dt.$$

Or

$$\int_{1}^{x} e^{t^{2}} dt \ge \int_{1}^{x} 1 dt \ge x - 1 \to +\infty$$

donc pour x assez grand

$$\int_{1}^{A} \frac{e^{t^{2}}}{t^{2}} dt \le \varepsilon \int_{1}^{x} e^{t^{2}} dt$$

puis

$$0 \le \int_1^x \frac{e^{t^2}}{t^2} dt \le 2\varepsilon \int_1^x e^{t^2} dt$$

et on peut conclure.

Exercice 2 : [énoncé]

(a) La fonction f est de classe \mathcal{C}^{∞} et

$$f'(x) = \frac{1 - \ln(1+x)}{(1+x)^2}$$

 $f'(x) \neq 0$ si, et seulement si, $x \neq e - 1$.

Le plus grand intervalle cherché est I =]-1; $\mathrm{e}-1[$ sur lequel f est de classe \mathcal{C}^{∞} et sa dérivée ne s'annule pas, f réalise donc un \mathcal{C}^{∞} difféomorphisme de I vers $]-\infty$; $1/\mathrm{e}[$.

(b) On a

$$ln(1 + g(x)) = x(1 + g(x)).$$

En dérivant

$$g'(x) = 1 + 2g(x) + g^{2}(x) + xg'(x) + xg'(x)g(x)$$

En dérivant à l'ordre $n \in \mathbb{N}^*$ et en évaluant en 0 on obtient

$$g^{(n+1)}(0) = 2g^{(n)}(0) + \sum_{k=0}^{n} \binom{n}{k} g^{(k)}(0)g^{(n-k)}(0) + ng^{(n)}(0) + n\sum_{k=0}^{n-1} \binom{n-1}{k} g^{(k+1)}(0)g^{(n-k)}(0) + n\sum_{k=0}^{n-1} \binom{n-1}{k} g^{(k+1)}(0)g^{(n-k)}(0) + n\sum_{k=0}^{n-1} \binom{n-1}{k} g^{(k)}(0)g^{(n-k)}(0) + n\sum_{k=0}^{n-1} \binom{n-1}{k} g^{(k)}(0) +$$

On peut alors appliquer un raisonnement par récurrence forte pour obtenir

$$\forall n \in \mathbb{N}, g^{(n)}(0) \ge 0.$$

Ceci suffit pour conclure via la formule de Taylor-Young.

Exercice 3: [énoncé]

f est de classe \mathcal{C}^{∞} . Ses dérivées premières et secondes sont

$$f'(x) = \frac{1 - \ln x}{x^2}, f''(x) = -\frac{1}{x^3} - 2\frac{1 - \ln x}{x^3} = \frac{-3 + 2\ln x}{x^3}.$$

On en déduit les variations suivantes

$$\begin{array}{c|ccccc}
x & 0 & e & +\infty \\
\hline
f(x) & -\infty & \nearrow & 1/e & \searrow & 0
\end{array}$$

$$\begin{array}{c|cccccc}
x & e^{3/2} \\
\hline
f''(x) & - & 0 & +
\end{array}$$

La fonction f présente un point d'inflexion en $e^{3/2}$.

Puisque $\lim_{x \to \infty} f = -\infty$, il y a une asymptote d'équation x = 0.

Puisque $\lim_{t\to\infty} f = 0$, il y a une asymptote d'équation y = 0.

f:=x->ln(x)/x:

a := exp(3/2) :

plot([f(x), D(f)(a)*(x-a)+f(a)], x=0..2*a, y=-2..1);

FIGURE 1 – La fonction $x \mapsto (\ln x)/x$

Figure 2 – La fonction $x \mapsto \frac{x^2 + x}{|x| + 1}$

Exercice 4: [énoncé]

f est définie sur $\mathbb R$ et dérivable (par opérations) sur $\mathbb R^*$.

Par limite de taux de variation on constate que f est aussi dérivable en 0 avec f'(0) = 1.

Sur \mathbb{R}_+ , f(x) = x ce qui achève l'étude sur \mathbb{R}_+ . Sur \mathbb{R}_- ,

$$f(x) = \frac{x^2 + x}{1 - x}$$

présente un minimum en $1-\sqrt{2}$ de valeur $2\sqrt{2}-3$ et f présente une asymptote d'équation y=-x-2, courbe au dessus.

$$plot([(x^2+x)/(abs(x)+1), -x-2], x=-5..2, y=-1..3);$$

Exercice 5 : [énoncé]

f est définie et de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .

$$f'(x) = \frac{-1 - 2\ln x}{x^2}$$
 et $f''(x) = \frac{4\ln x}{x^3}$.

Figure 3 – La fonction $x \mapsto \frac{2 \ln x + 3}{x}$

$$\begin{array}{c|cccc} x & 0 & 1/\sqrt{e} & +\infty \\ \hline f(x) & -\infty & \nearrow & 2\sqrt{e} & \searrow & 0 \\ \end{array}$$

En 0:(Oy) est asymptote.

En $+\infty$: (Ox) est asymptote.

En 1 : f'' s'annule avec changement de signe, point d'inflexion. L'équation de la tangente en ce point est y = -(x-1) + 3.

plot([(2*ln(x)+3)/x, -(x-1)+3], x=0..4, y=-1..4);

Exercice 6: [énoncé]

f est définie et de classe \mathcal{C}^{∞} sur \mathbb{R} .

$$f'(x) = x(2-x)e^{-x}$$
 et $f''(x) = (x^2 - 4x + 2)e^{-x}$

f présente un minimum absolu en 0 de valeur 0 et un maximum local en 2 de valeur $4/\mathrm{e}^2.$

f présente des points d'inflexion en $2 + \sqrt{2}$ et $2 - \sqrt{2}$.

f présente une asymptote horizontale d'équation y=0 en $+\infty.$

f présente une branche parabolique verticale en $-\infty$.

 $f:=x->x^2*exp(-x):$

a:=2+sqrt(2):b:=2-sqrt(2):

plot([f(x), D(f)(a)*(x-a)+f(a), D(f)(b)*(x-b)+f(b)], x=-1..5, color=[red, blue, green]);

Exercice 7: [énoncé]

On a

$$f(x) = (x+1)e^{1/x} = x+2+\frac{3}{2}\frac{1}{x} + o\left(\frac{1}{x}\right)$$

FIGURE 4 – La fonction $x \mapsto x^2 e^{-x}$

Par suite, la droite d'équation y = x + 2 est asymptote à la courbe et la courbe est au dessus de celle-ci.

Exercice 8 : [énoncé]

On a

$$f(x) = x(\ln(2x+1) - \ln(x)) = \ln 2x + \frac{1}{2} - \frac{1}{8}\frac{1}{x} + o\left(\frac{1}{x}\right).$$

La droite d'équation $y = \ln 2.x + \frac{1}{2}$ est asymptote à la courbe et la courbe est en dessous de celle-ci.

Exercice 9: [énoncé]

On a

$$\sqrt[3]{(x^2-2)(x+3)} = x\sqrt[3]{1 + \frac{3}{x} - \frac{2}{x^2} - \frac{6}{x^3}} = x + 1 - \frac{5}{3x} + o\left(\frac{1}{x}\right).$$

La droite d'équation y = x + 1 est asymptote à la courbe en $+\infty$ (resp. $-\infty$). Courbe en dessous (resp. au dessus) de l'asymptote en $+\infty$ (resp. $-\infty$).

Exercice 10: [énoncé]

f est définie et continue sur $]0;1[\cup]1;+\infty[$. Quand $x \to +\infty$,

$$\frac{f(x)}{x} \sim \frac{x \ln x}{x \ln x} = 1, f(x) - x = \frac{\ln(x+1) + x \ln(1+1/x)}{\ln x} \sim \frac{\ln x}{\ln x} = 1$$

et

$$f(x) - (x+1) = \frac{(x+1)\ln(1+1/x)}{\ln x} \sim \frac{1}{\ln x} \to 0^+.$$

La droite d'équation y=x+1 est asymptote en $+\infty$ et la courbe y=f(x) est au dessus.

Quand $x \to 1^+$, $f(x) \to +\infty$, la droite d'équation x = 1 est asymptote.

Quand $x \to 1^-$, $f(x) \to -\infty$, la droite d'équation x = 1 est asymptote.

Quand $x \to 0$, $f(x) \to 0$, on prolonge par continuité en posant f(0) = 0.

Exercice 11: [énoncé]

f est définie et continue sur \mathbb{R} .

Quand $x \to +\infty$,

$$f(x) = \frac{x^2 + 2x}{2x - 1}.$$

On a

$$\frac{f(x)}{x} \to \frac{1}{2}, f(x) - \frac{1}{2}x = \frac{5x}{4x - 2} \to \frac{5}{4} \text{ et } f(x) - \left(\frac{1}{2}x + \frac{5}{4}\right) = \frac{5}{8x - 4} \to 0^+.$$

La droite d'équation $y = \frac{1}{2}x + \frac{5}{4}$ est asymptote en $+\infty$ courbe au dessus. Quand $x \to -\infty$,

$$f(x) = x^2 + 2x.$$

Il y a une branche parabolique verticale. plot([f(x), x/2+5/4], x=-3..5);

Exercice 12: [énoncé]

- (a) $\operatorname{ch} a = \sqrt{1 + \operatorname{sh}^2 a} \operatorname{donc} \operatorname{ch}(\operatorname{argsh} x) = \sqrt{1 + x^2}$
- (b) $th(\operatorname{argsh} x) = \frac{x}{\sqrt{1+x^2}}$.
- (c) $\operatorname{sh}(2\operatorname{argsh} x) = 2\operatorname{sh}(\operatorname{argsh} x)\operatorname{ch}(\operatorname{argch} x) = 2x\sqrt{1+x^2}$.
- (d) $sh(argch x) = \sqrt{x^2 1}$.
- (e) th(argch x) = $\frac{\sqrt{x^2-1}}{x}$.
- (f) $\tanh^2 a = 1 \frac{1}{\cosh^2 a}$ donc $\cosh(\operatorname{argth} x) = \frac{1}{\sqrt{1-x^2}}$

Exercice 13: [énoncé]

Figure 5 – La fonction $x \mapsto \frac{x^2 + 2x}{|x-1| + x}$

(a) Pour $x \ge 1$, posons $\alpha = \operatorname{argch} x$ On a

$$\operatorname{argch}(2x^2 - 1) = \operatorname{argch}(2\operatorname{ch}^2\alpha - 1) = \operatorname{argch}(\operatorname{ch}2\alpha) = 2\alpha = 2\operatorname{argch}x.$$

Par parité, pour $x \in]-\infty; -1] \cup [1; +\infty[$,

$$\operatorname{argch}(2x^2 - 1) = 2\operatorname{argch}|x|.$$

(b) Posons $\alpha = \operatorname{argsh} x$.

On a $2x\sqrt{1+x^2} = 2 \operatorname{sh} \alpha \operatorname{ch} \alpha = \operatorname{sh} 2\alpha \operatorname{donc}$

$$\operatorname{argsh}(2x\sqrt{1+x^2}) = 2\alpha = 2\operatorname{argsh} x.$$

Exercice 14: [énoncé]

La fonction $f: x \mapsto \operatorname{argsh} x + \operatorname{argch} x$ est continue et strictement croissante sur $[1; +\infty[$.

 $f(1) = \operatorname{argsh}(1)$ et $\lim_{\infty} f = +\infty$. Puisque sh $1 \ge 1$, $\operatorname{argsh}(1) \le 1$.

L'équation possède donc une unique solution a. Déterminons-la.

$$sh(1) = sh(argsh a + argch a) = a^2 + \sqrt{1 + a^2} \sqrt{a^2 - 1} = a^2 + \sqrt{a^4 - 1}$$

 $_{
m donc}$

$$\sqrt{a^4 - 1} = \operatorname{sh}(1) - a^2$$

puis

$$a^2 = \frac{\operatorname{ch}^2 1}{2 \operatorname{sh} 1}$$

et enfin

$$a = \frac{\operatorname{ch} 1}{\sqrt{2 \operatorname{sh} 1}}.$$

Exercice 15 : [énoncé]

G est dérivable par composition et $G'(t) = \sqrt{1 + \tan^2 t}$. Or $\operatorname{ch} G(t) = \sqrt{1 + \sinh^2 G(t)} = \sqrt{1 + \tan^2 t}$.

Exercice 16: [énoncé]

À l'aide d'une intégration par partie :

$$a_{n+1} = 2(n+1) \int_0^1 t^2 (1-t^2)^n dt = 2(n+1)(a_n - a_{n+1})$$

donc

$$a_{n+1} = \frac{2n+2}{2n+3}a_n.$$

 $a_n \neq 0$ et $\left| \frac{a_{n+1}}{a_n} \right| \to 1$ donc R = 1. Pour $x \in]-1;1[$,

$$\sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} \int_0^1 ((1-t^2)x)^n \, \mathrm{d}t.$$

On peut permuter somme infinie et intégrale (par un argument de convergence uniforme par exemple) et affirmer

$$\sum_{n=0}^{+\infty} a_n x^n = \int_0^1 \frac{\mathrm{d}t}{1 - x + xt^2}.$$

Pour x = 0:

$$\sum_{n=0}^{+\infty} a_n x^n = 1.$$

Pour x > 0:

$$\sum_{n=0}^{+\infty} a_n x^n = \frac{1}{x} \int_0^1 \frac{\mathrm{d}t}{\frac{1-x}{x} + t^2} = \frac{1}{\sqrt{x(1-x)}} \arctan\left(\sqrt{\frac{x}{1-x}}\right).$$

Pour x < 0:

$$\sum_{n=0}^{+\infty} a_n x^n = \frac{1}{x} \int_0^1 \frac{\mathrm{d}t}{t^2 - \frac{x-1}{x}} = \frac{1}{\sqrt{x(x-1)}} \operatorname{argth}\left(\sqrt{\frac{x}{x-1}}\right).$$

Exercice 17: [énoncé]

On a $a_{n+1} = \frac{n+1}{2n+3}a_n$. Par application de la règle de d'Alembert, on obtient R = 2. La relation $(2n+3)a_{n+1} - (n+1)a_n$ avec $a_0 = 1$ permet d'affirmer que la somme S de la série entière $\sum a_n x^n$ est solution sur]-2;2[de l'équation différentielle

$$x(x-2)S'(x) + (x-1)S(x) + 1 = 0.$$

La recherche de solution définie et continue en 0 donne

$$S(x) = \frac{\arcsin(x-1) + \frac{\pi}{2}}{\sqrt{x(2-x)}} \text{ pour } x > 0$$

et

$$S(x) = \frac{\arg \cosh(1-x)}{\sqrt{x(x-2)}} \text{ pour } x < 0.$$

Exercice 18: [énoncé]

Soit y une fonction deux fois dérivable définie sur \mathbb{R} .

Posons z la fonction définie sur \mathbb{R} par $z(t)=y(\operatorname{sh}(t))$. z est deux fois dérivable. Après calculs : y est solution de l'équation différentielle proposée si, et seulement si, z est solution de l'équation z''-4z=0.

On obtient

$$z(t) = C_1 e^{2t} + C_2 e^{-2t}$$

puis

$$y(x) = C_1 e^{2 \operatorname{argsh} x} + C_2 e^{-2 \operatorname{argsh} x} = C_1 (x + \sqrt{1 + x^2})^2 + \frac{C_2}{(x + \sqrt{1 + x^2})^2}.$$