677 midterm

order statistic

Uniform Distribution

Consider the uniform distribution U(a, b). The PDF and CDF are given by:

- PDF: $f(x) = \frac{1}{b-a}$, for $a \le x \le b$ CDF: $F(x) = \frac{x-a}{b-a}$, for $a \le x \le b$

For the k-th order statistic $X_{(k)}$ from a sample of size n:

• PDF:
$$f_{(k)}(x) = \frac{n!}{(k-1)!(n-k)!} [F(x)]^{k-1} [1 - F(x)]^{n-k} f(x)$$

Applying the CDF and PDF of the uniform distribution:

• PDF of
$$X_{(k)}$$
: $f_{(k)}(x) = \frac{n!}{(k-1)!(n-k)!} \left(\frac{x-a}{b-a}\right)^{k-1} \left(1 - \frac{x-a}{b-a}\right)^{n-k} \frac{1}{b-a}$

Exponential Distribution

For the exponential distribution with rate λ , the PDF and CDF are:

- PDF: $f(x) = \lambda e^{-\lambda x}$, for $x \ge 0$ CDF: $F(x) = 1 e^{-\lambda x}$, for $x \ge 0$

The PDF of the k-th order statistic $X_{(k)}$:

• PDF of
$$X_{(k)}$$
: $f_{(k)}(x) = \frac{n!}{(k-1)!(n-k)!} [1 - e^{-\lambda x}]^{k-1} e^{-\lambda x [n-k]} \lambda e^{-\lambda x}$

Normal distribution

For the normal distribution, deriving the distribution of order statistics analytically is more complex due to the non-linearity of its CDF. Instead, we often use numerical methods or simulations to study the order statistics of normal samples

1