Chapter 4.

The Greedy Approach

Foundations of Algorithms, 5th Ed. Richard E. Neapolitan

Contents

- 4.1 Minimum Spanning Trees
- 4.2 Dijkstra's Algorithm for Single-Source Shortest Paths
- 4.3 Scheduling Problem
- 4.4 Huffman Code
- 4.5 The Knapsack Problem: Greedy .vs. Dynamic Programming

Greedy Algorithm

- arrives at a solution by making a sequence of choices,
 - each of which simply *looks the best at the moment*.
- That is, each choice is *locally optimal*.
- The hope is that a *globally optimal* solution will be obtained,
 - but this is *not always* the case.
- For a given (greedy) algorithm,
 - we *must determine* whether the (greedy) solution is *always optimal*.

- The problem of *giving change* for a purchase:
 - Our goal is to give the correct change with *as few coins as possible*.
 - A *greedy approach* to the problem:
 - Initially, there are no coins in the change.
 - (selection procedure) Look for the largest coin (in value) you can find.
 - (feasibility check) If the total change does not exceed the amount owed,
 - add the coin to the change
 - (solution check) Check if the change is now equal to the amount owed.
 - If the values are not equal, repeat the process until
 - the value of the change equals the amount owed,
 - or there is no coins left.

• High-level algorithm for the greedy approach:

```
while (there are more coins and the instance is not solved) {
 grab the largest remaining coin; // selection procedure
  if (adding the coin makes the change exceed the amount owed)
    reject the coin;
                                 // feasibility check
  else
    add the coin to the change;
  if (the total value of the change equals the amount owed)
                              // solution check
    the instance is solved;
```


• An example:

- coins = [quarter, dime, dime, nickel, penny, penny] = [25, 10, 10, 5, 1, 1]
- amount owed = 36 cents.
- A greedy algorithm for giving change.
 - change = [25] < 36. Grab.
 - change = [25, 10] < 36. Grab.
 - change = $[25, 10, \frac{10}{10}] > 36$. Reject.
 - change = [25, 10, 5] > 36. Reject.
 - change = [25, 10, 1] = 36. Grab and terminate.

- Does it always result in an optimal solution?
 - Notice here that if we include a 12-cent coin with the U.S. coins,
 - the greedy algorithm *does not always* give an *optimal* solution.
 - coins = [12, 10, 5, 1, 1, 1, 1]
 - amount owed = 16 cents.
 - A greedy algorithm for giving change.
 - change = [12] < 16. Grab.
 - change = $[12, \frac{10}{10}] > 16$. Reject.
 - change = [12, 5] > 16. Reject.
 - change = [12, 1, 1, 1, 1] = 16. Grab and terminate.
 - optimal change = [10, 5, 1]

■ The *Greedy Algorithm*

- starts with an *empty set* and adds items to the set *in sequence*
 - until the set represents a solution to an instance of a problem.
- Each iteration consists of three steps:
 - 1. Selection Procedure:
 - chooses the next item to add to the set.
 - 2. Feasibility Check:
 - determines if the new set if feasible.
 - 3. Solution Check:
 - determines whether the new set constitutes a solution.

- Minimum Spanning Tree Problem:
 - The problem of removing edges
 - from a connected, weighted, undirected graph G
 - to form a *subgraph* such that *all the vertices* remains *connected*, and
 - the *sum of the weights* on the remaining edges is *as small as possible*.
 - A *spanning tree* for *G* is a connected subgraph
 - that contains all the vertices in G and is a tree.
 - A minimum spanning tree (MST) is
 - a spanning tree of *minimum weight*.

• If (v_4, v_5) were removed, the graph would remain connected.

• A spanning tree for *G*.

• A minimum spanning tree for *G*.

- Formal Definition of the MST Problem:
 - Given a connected, weighted, undirected graph G = (V, E).
 - A spanning tree T for G has the same vertices V as G,
 - but the set of edges of *T* is a subset *F* of *E*.
 - Denote a spanning tree by T = (V, F).
 - Our problem is to find a subset F of E
 - such that T = (V, F) is a minimum spanning tree for G.

High-level greedy algorithm for the MST problem

```
F = \emptyset;
while (the instance is not solved) {
  select an edge according to some locally optimal consideration;
  if (adding the edge to F does not create a cycle)
     add it;
  else
     add the coin to the change;
  if (T = (V, F) \text{ is a spanning tree})
     the instance is solved;
```


Prim's Algorithm

- starts with an *empty set* of edges F
 - and a subset of vertices Y initialized to contain an arbitrary vertex (v_1) .
- A vertex *nearest* to Y is a vertex in V-Y
 - that is connected to a vertex in *Y* by an edge of *minimum weight*.
- The *vertex* that is *nearest* to Y is added to Y
 - and the *edge* is added to *F*. (Ties are broken arbitrarily)
- This process of adding nearest vertices is
 - repeated until Y = V.

• High-level pseudo-code for the Prim's algorithm

```
F = \emptyset;
Y = \{v_1\};
while (the instance is not solved) {
  select a vertex in V - Y that is nearest to Y;
  add the vertex to Y;
  add the edge to F;
  if (Y = V)
     the instance is solved;
```


• Determine a minimum spanning tree

1. Vertex v_1 is selected first

2. Vertex v_2 is selected because it is nearest to $\{v_1\}$

3. Vertex v_3 is selected because it is nearest to $\{v_1, v_2\}$

4. Vertex v_5 is selected because it is nearest to $\{v_1, v_2, v_3\}$

Vertex v_4 is selected because it is nearest to $\{v_1, v_2, v_3, v_5\}$

- Implementing the Prim's algorithm:
 - Represent a weighted graph by its adjacency matrix.

$$- W[i][j] = \begin{cases} weight \ on \ edge \\ \infty \end{cases} \text{ if there is an edge between } v_i \text{ and } v_j \\ 0 \text{ if } i = j \end{cases}$$

- We maintain two arrays, *nearest* and *distance*, where, for i = 2, ..., n,
 - $nearest[i] = index of the vertex in Y nearest to <math>v_i$
 - distance[i] = weight on edge between v_i and the vertex indexed by nearest[i]

ALGORITHM 4.1: Prim's Algorithm

```
void prim(int n, matrix_t& W, set_of_edges& F)
    int vnear, min;
    vector<int> nearest(n + 1), distance(n + 1);
    F.clear(); // F = \emptyset;
    for (int i = 2; i <= n; i++) {
        nearest[i] = 1;
        distance[i] = W[1][i];
```


ALGORITHM 4.1: Prim's Algorithm (continued)

```
repeat (n - 1 times) {
    min = \infty;
    for (int i = 2; i <= n; i++)
        if (0 <= distance[i] && distance[i] < min) {</pre>
            min = distance[i];
            vnear = i;
    e = edge connecting vertices indexed by vnear and nearest[vnear];
    add e to F;
    distance[vnear] = -1;
    for (int i = 2; i <= n; i++)
        if (distance[i] > W[i][vnear]) {
            distance[i] = W[i][vnear];
            nearest[i] = vnear;
```



```
#define INF 0xffff
typedef vector<vector<int>> matrix t;
typedef vector<pair<int, int>> set_of_edges;
typedef pair<int, int> edge t;
// e = edge connecting vertices indexed by vnear and nearest[vnear];
// add e to F;
F.push_back(make_pair(vnear, nearest[vnear]));
set_of_edges F;
prim(n, W, F);
for (edge_t e: F) {
    u = e.first; v = e.second;
    cout << u << " " << v << " " << W[u][v] << endl;
```


	ı				
W	1	2	3	4	5
1	0	1	3	∞	∞
2	1	0	3	6	∞
3	3	3	0	4	2
4	∞	2 1 0 3 6 ∞	4	0	5
5	∞	∞	2	5	0
	•				

ini	it:	
ер	1:	
ер	2:	
ер	3:	
on	1.	

i	2	3	4	5	е	
nearest[i]	1	1	1	1		
distance[i]	1	3	∞	∞		
nearest[i]	1	1	2	1	(2 1 1)	
distance[i]	-1	3	6	∞	(2, 1, 1)	
nearest[i]	1	1	3	3	(2 1 2)	
distance[i]	-1	-1	4	2	(3, 1, 3)	
nearest[i]	1	1	3	3	/r 2 2)	
distance[i]	-1	-1	4	-1	(5, 3, 2)	
nearest[i]	1	1	3	3	(4 2 4)	
distance[i]	-1	-1	-1	-1	(4, 3, 4)	

step

step

step

- Time Complexity of Algorithm 4.1:
 - Basic Operation: the *instructions* inside each of two loops.
 - Input Size: *n*, the *number of vertices*.
 - Note that there are two (nested) loops,
 - and the *repeat* loop has n-1 iterations.
 - Therefore,
 - $T(n) = 2(n-1)(n-1) \in \Theta(n^2)$

- Does it always produce an optimal solution?
 - We need to prove that
 - Prim's algorithm *always* produces a minimum spanning tree.
 - Given an undirected graph G = (V, E),
 - A subset *F* and *E* is called *promising*
 - if edges can be added to it so as to *form* a *minimum spanning tree*.

- The subset $\{(v_1, v_2), (v_1, v_3)\}$ is promising.
- The subset $\{(v_2, v_4)\}$ is not promising.

• Lemma:

- If *F* is a *promising* subset of *E*
 - then $F \cup \{e\}$ is *promising*,
 - where *e* is an edge of minimum weight that
 - connects a vertex in Y and a vertex in V-Y.
- Proof:
 - Let F' be a set edges in an MST s.t. $F \subseteq F'$.
 - If $e \in F'$, then $F \cup \{e\} \subseteq F'$.
 - If $e \notin F'$, then $F' \cup \{e\}$ must have a cycle.
 - There is an edge $e' \notin F'$ in the cycle
 - Remove e', then the cycle disappears.
 - Hence, $F' \cup \{e\} \{e'\}$ is an MST.
 - Hence, $F \cup \{e\} \subseteq F' \cup \{e\} \{e'\}$.

$$F = \{(v_1, v_2)\}$$

$$F' = \{(v_1, v_2), (v_1, v_3), (v_3, v_4), (v_3, v_5)\}$$

$$F' \cup \{e\} \text{ has a cycle: } [v_1, v_2, v_4, v_3]$$

• Theorem:

- Prim's algorithm *always produces* a minimum spanning tree.
- Proof:
 - Clearly, the *empty set* Ø is *promising*.
 - Assume that, after a given iteration,
 - the selected edges *F* is *promising*.
 - The set $F \cup \{e\}$ is *promising*,
 - where *e* is the edge selected in the next iteration.
 - Because the e is an edge of minimum weight that
 - connects a vertex in Y to a vertex in V Y. (by the Lemma)

Kruskal's Algorithm

- starts by creating *disjoint subsets* of *V*,
 - one for *each vertex* and containing *only that vertex*.
- If then, inspects the edge according to nondecreasing weight
 - ties are broken arbitrarily.
- If an edge *connects* two vertices in *disjoint subsets*,
 - the edge is *added* and the subsets are *merged into one set*.
- This process is repeated
 - until all the subsets are merged into one set.

High-level pseudo-code for the Kruskal's algorithm

```
F = \emptyset;
create disjoint subsets of V, one for each vertex and containing only that vertex;
sort the edges in E in nondecreasing order;
while (the instance is not solved) {
  select next edge;
  if (the edge connects two vertices in disjoint subsets) {
    merge the subsets;
    add the edge to F;
  if (all the subsets are merged)
    the instance is solved;
```


• Determine a minimum spanning tree.

1. Edges are sorted by their 2. Disjoint sets are created. weights.

edges	weight
(v_1, v_2)	1
(v_3, v_5)	2
(v_1, v_3)	3
(v_2, v_3)	3
(v_3, v_4)	4
(v_4, v_5)	5
(v_2, v_4)	6

v_1	v_2
v_3	v_4

 v_5

- 3. The first edge (v_1, v_2) is selected
- 4. Next edge (v_3, v_5) is selected
- 5. Next edge (v_1, v_3) is selected

 v_5

6. Next edge (v_2, v_3) is *discarded*, 7. Next edge (v_3, v_4) is because it creates a cycle

selected

 (v_4, v_5) is not considered, because all the subsets are merged

- Abstract Data Type: Disjoint Set
 - To write a formal version of Kruskal's algorithm,
 - we need a *disjoint set* abstract data type: Refer to *Appendix C*.
 - The ADT of the disjoint set defines two data types:
 - *- index i*;
 - set_pointer p, q;
 - Then the routines are defined:
 - initial(n): initialzes n disjoint subsets.
 - p = find(i): makes p point to the set containing index i.
 - merge(p,q): merges the two sets, to which p and q point, into the set.
 - equal(p,q): returns true if p and q both point to the same set.

• Let $U = \{A, B, C, D, E\}$ be a universe of elements

```
for i in U:
                                                             (disjoint sets)
                                    {C}
                                            {D}
                                                     {E}
    initial(i); {A}
                           {B}
   p = find(B);
   q = find(C);
                          {B, C}
                                                     {E}
                                             {D}
   merge(p, q); \{A\}
    p = find(C);
                                                           equal(C, E);
    q = find(E);
                                                              returns false;
                         \{B,C,E\}
   merge(p, q); \{A\}
                                             {D}
   p = find(C);
                                                           equal(C, E);
                              \boldsymbol{q}
   q = find(E);
                                                              returns true;
```


initial(10);

merge(find(4), find(10);

After several union and find:

- Analyze the complexity of union (merge) and find,
 - and improve the efficiency to $\Theta(m \lg m)$,
 - where *m* is the *number of passes* to call the routines(*merge* and *find*).


```
vector<int> dset;
void dset_init(int n) {
    dset.resize(n + 1);
    for (int i = 1; i <= n; i++)
        dset[i] = i;
int dset_find(int i) {
    while (dset[i] != i)
        i = dset[i];
    return i;
void dset_merge(int p, int q) {
    dset[p] = q;
```


ALGORITHM 4.2: Kruskal's Algorithm

```
void kruskal(int n, int m, set of edges& E, set of edges& F) {
    int p, q;
    edge t e;
    PriorityQueue PQ;
    sort the m edges in E by weight in nondecreasing order;
    F.clear(); // F = \emptyset;
    dset init(n);
    while (number of edges in F is less than n - 1) {
         e = PQ.top(); PQ.pop(); // edge with least weight not yet considered;
        p = dset find(e.u);
        q = dset_find(e.v);
        if (p != q) {
            dset merge(p, q);
            F.push back(e); // add e to F
```


4.1 Minimum Spanning Trees

```
typedef struct edge {
    int u, v, w;
} edge t;
struct edge_compare {
    bool operator()(edge_t e1, edge_t e2) {
        if (e1.w > e2.w) return true;
        else return false;
};
typedef vector<edge t> set of edges;
typedef priority_queue<edge_t, vector<edge_t>, edge_compare> PriorityQueue;
// sort the m edges in E by weight in nondecreasing order;
for (edge_t e: E)
    PQ.push(e);
```


4.1 Minimum Spanning Trees

- Time Complexity of Algorithm 4.2:
 - Basic Operation: a *comparison* instruction.
 - Input Size: *n*, the *number of vertices*, and *m*, the *number of edges*.
 - Three considerations in this algorithm:
 - 1. The time to sort the edges: $\Theta(m \lg m)$
 - 2. The time to initialize n disjoint sets: $\Theta(n)$.
 - 3. The time in the while loop: $\Theta(m \lg m)$
 - The time complexity of *Union-Find* (Appendix C)
 - Since $m \ge n 1$, $W(m, n) \in \Theta(m \lg m)$
 - In worst-case, the number of edges is m = n(n-1)/2
 - $w(m,n) \in \Theta(n^2 \lg n^2) = \Theta(n^2 \lg n)$

4.1 Minimum Spanning Trees

- Comparing Prim's Algorithm with Kruskal's Algorithm:
 - The time complexity of two algorithms:
 - Prim's: $T(n) \in \Theta(n^2)$
 - Kruskal's: $W(m, n) \in \Theta(m \lg m) = \Theta(n^2 \lg n)$
 - We can show that $n-1 \le m \le \frac{n(n-1)}{2}$.
 - For a *sparse graph*,
 - whose number of edges m is near the low end of these limits,
 - Kruskal's algorithm is $\Theta(n \lg n)$, which is *faster than Prim's*.
 - For a dense graph,
 - whose number of edges *m* is near the high end of those limits,
 - Kruskal's algorithm is $\Theta(n^2 \lg n)$, which is *slower than Prim's*.

- The Problem of *Single-Source-Shortest-Paths*
 - Find a shortest path from *one particular vertex* to *all the others*.
 - *Dijkstra's Algorithm* uses the *greedy approach*
 - to develop a $\Theta(n^2)$ algorithm for this problem.

Dijkstra's Algorithm

- initializes a set Y to contain only the source vertex v_1 ,
 - and initializes a set *F* of edges to being empty.
- First, choose a vertex v that is *nearest* to v_1 ,
 - add it to Y, and add the edge $\langle v_1, v \rangle$ (a *shortest edge*) to F.
- Next, check the paths from v_1 to the vertices in V-Y
 - that allow only vertices in *Y* as intermediate vertices.
- The vertex at the end of such a path is added to *Y*,
 - and the edge (on the path) that *touches* that vertex is added to *F*.
- Continue this procedure, until *Y* equals *V*.
 - At this point, *F* contains the edges in *shortest paths*.

• High-level pseudo-code for the Dijkstra's algorithm:

```
Y = \{v_1\};
F = \emptyset;
while (the instance is not solved) {
  select a vertex v from V-Y that has a shortest path from v_1,
      using only vertices in Y as intermediates;
  add the new vertex v to Y;
  add the edge (on the shortest path) that touches v to F;
  if (Y = V)
     the instance is solved;
```


• Compute shortest paths from v_1 .

1. Vertex v_5 is selected because it is nearest to v_1 .

2. Vertex v_4 is selected because it has the shortest path from v_1 using only vertices in $\{v_5\}$ as intermediates.

- 3. Vertex v_3 is selected because it has the shortest path from v_1 using only vertices in $\{v_4, v_5\}$ as intermediates.
 - v_5 v_2 6 v_4 v_3

The shortest path from v_1 to v_2 is $[v_1, v_5, v_4, v_2].$

- Implementation of Dijkstra's Algorithm
 - It is very *similar* to *Prim's* Algorithm.
 - The difference is that, instead of the arrays *nearest* and *distance*,
 - we have arrays *touch* and *length*, where for $i = 2, \dots, n$.
 - Let us define:
 - touch[i] = index of $vertex\ v$ in Y such that the edge $\langle v, v_i \rangle$ is the $last\ edge$ on the $current\ shortest\ path$ from v_1 to v_i using $only\ vertices$ in Y as intermediates.
 - length[i] = length of the current shortest path from v_1 to v_i using only vertices in Y as intermediates.

ALGORITHM 4.3: Dijkstra's Algorithm

```
void dijkstra(int n, matrix_t& W, set_of_edges& F)
    int vnear, min;
    vector<int> touch(n + 1), length(n + 1);
    F.clear();
    for (int i = 2; i <= n; i++) {
        touch[i] = 1;
        length[i] = W[1][i];
```


ALGORITHM 4.3: Dijkstra's Algorithm (continued)

```
repeat (n - 1 times) {
    min = INF;
    for (int i = 2; i <= n; i++)
        if (0 <= length[i] && length[i] < min) {</pre>
            min = length[i];
            vnear = i;
    e = edge from vertex indexed by touch[vnear];
    add e to F;
    for (int i = 2; i <= n; i++)
        if (length[i] > length[vnear] + W[vnear][i]) {
            length[i] = length[vnear] + W[vnear][i];
            touch[i] = vnear;
    length[vnear] = -1;
```


	1				
W	1	2	3	4	5
1	0	7	4	6	1
2	∞	0	∞	∞	∞
3	∞	2	0	5	∞
4	∞	3	∞	0	∞
5		∞	∞	1	0

	i	2	3	4	5	е
init:	touch[i]	1	1	1	1	
IIII.	length[i]	7	4	6	1	
step 1:	touch[i]	1	1	5	1	(1 E 1)
step 1.	length[i]	7	4	2	-1	(1, 5, 1)
step 2:	touch[i]	4	1	5	1	/E / 1)
3сер 2.	length[i]	5	4	-1	-1	(5, 4, 1)
step 3:	touch[i]	4	1	5	1	(1 2 4)
зсер э.	length[i]	5	-1	-1	-1	(1, 3, 4)
step 4:	touch[i]	4	1	5	1	(4 2 2)
эсср т.	length[i]	-1	-1	-1	-1	(4, 2, 3)

- The Lengths of Shortest Paths:
 - Algorithm 4.3 determines only the edges in the shortest paths.
 - It does not produce the lengths of those paths.
 - These lengths could be obtained from the edges.
 - Alternatively, they can be computed and stored in an array as well.
- Time Complexity of Algorithm 4.3
 - is the same with that of Algorithm 4.1 (Prim's Algorithm)
 - $T(n) = 2(n-1)^2 \in \Theta(n^2)$

• The **Scheduling** Problem:

- The time in the system is
 - the time spent both waiting and being served.
- The problem of *minimizing* the *total time in the system*
 - has many applications.
 - ex) scheduling users' access to a bank counter or a disk drive.
- You would learn it in detail
 - when you study the schedulers of operating system.

Scheduling with Deadlines:

- Another scheduling problem
 - occurs when each job takes the same amount of time to complete,
 - but has a *deadline* by which it must start to *yield a profit*
 - associated with the job.
- The goal is
 - to schedule the jobs to *maximize* the *total profit*.

- The Problem of Scheduling with Deadlines:
 - Each job *takes one unit* of time to finish
 - and has a *deadline* and a *profit*.
 - If the job starts *before or at* its deadline, the profit is obtained.
 - Therefore, not all jobs have to be scheduled.
 - A schedule is called *impossible*,
 - if a job is scheduled *after its deadline*.
 - We need not consider any impossible schedule
 - because the job in that schedule does not yield any profit.

Job	Deadline	Profit
1	2	30
2	1	35
3	2	25
4	1	40

1	2	3	4
Job 1	Job 2 (i	mpossible))
Job 1	Job 3		
Job 1	Job 4 (i	mpossible))
Job 2	Job 1		
Job 2	Job 3		
Job 2	Job 4 (i	mpossible))

ofit	Total Pr	Schedule	
	55	[1, 3]	
	65	[2, 1]	
	60	[2, 3]	
	55	[3, 1]	
(optimal)	70	[4, 1]	
	65	[4, 3]	

$$profit([1,3]) = 30 + 25 = 55$$

 $profit([4,1]) = 40 + 30 = 70$

- The Greedy Approach to the Problem:
 - To consider all schedules, a brute-force approach,
 - takes *factorial* time. (worse than exponential)
 - A reasonable greedy approach for solving the problem would be:
 - First, *sort* the jobs in *non-increasing* order *by profit*.
 - Next, *inspect* each job in sequence
 - and *add* it to the *schedule* if it is *possible*.

- The Greedy Approach to the Problem:
 - A sequence is called a **feasible sequence**
 - if all the jobs in the sequence *start by their deadlines*.
 - ex) [4, 1]: feasible sequence, [1, 4]: not a feasible sequence.
 - A set of jobs is called a **feasible set**
 - if there exists at least one feasible sequence for the jobs in the set.
 - ex) $\{1, 4\}$: feasible set, $\{2, 4\}$ not a feasible set.
 - Our goal is to find an *optimal* sequence,
 - which is a feasible sequence with maximum total profit.
 - An *optimal set of jobs* is the set of jobs in an optimal sequence.

• High-level greedy algorithm for the problem:

```
sort the jobs in nonincreasing order by profit;
S = \emptyset;
while (the instance is not solved) {
  select next job;
  if (S is feasible with this job added)
    add this job to S;
  if (there are no more jobs)
    the instance is solved;
```


Job	Deadline	Profit
1	3	40
2	1	35
3	1	30
4	3	25
5	1	20
6	3	15
7	2	10

1.
$$S = \phi$$

- 2. $S = \{1\}, [1]$ is feasible
- 3. $S = \{1, 2\}, [2, 1]$ is feasible
- 4. $S = \{1, 2, 3\}$, rejected there is no feasible sequence for this set : $S = \{1, 2\}$
- 5. $S = \{1, 2, 4\}, [2, 1, 4]$ is feasible
- 6. $S = \{1, 2, 4, 5\}$, rejected $S = \{1, 2, 4\}$
- 7. $S = \{1, 2, 4, 6\}$, rejected $S = \{1, 2, 4\}$
- 8. $S = \{1, 2, 4, 7\}$, rejected $S = \{1, 2, 4\}$ (feasible set) [2, 1, 4] (feasible sequence)

- An efficient way to *determine* whether a set is *feasible*:
 - Lemma:
 - Let S be a set of jobs, then S is feasible
 - if and only if the sequence obtained by ordering
 - the jobs in *S* according to *nondecreasing deadlines*

We need only check the feasibility of the sequence:

• is feasible.

 $S = \{1, 2, 4, 7\}$: feasible? [2, 7, 1, 4]not feasible

ALGORITHM 4.4: Scheduling with Deadlines

```
void schedule(int n, int dealine[], sequence_of_integer &J) {
    int i;
    sequence of integer K;
    J = [1];
    for (i = 2; i <= n; i++) {
        K = J with i added according to nondecreasing values of deadline[i];
        if (K is feasible)
            J = K;
```


Job	Deadline	Profit
1	3	40
2	1	35
3	1	30
4	3	25
5	1	20
6	3	15
7	2	10

The jobs are already sorted by the profit

1.
$$J = [1]$$

- 2. K = [2,1], K is feasible J = [2,1]
- 3. K = [2,3,1] is rejected, because K is not feasible
- 4. K = [2,1,4], K is feasible J = [2,1,4]
- 5. K = [2,5,1,4] is rejected
- 6. K = [2,1,4,6] is rejected
- 7. K = [2,7,1,4] is rejected
- J = [2, 1, 4] is the final result
- $Total\ Profit = 35 + 40 + 25 = 100$


```
typedef vector<int> sequence_of_integer;
bool is_feasible(sequence_of_integer& K, sequence_of_integer& deadline) {
    for (int i = 1; i < K.size(); i++)
        if (i > deadline[K[i]])
            return false;
    return true;
```



```
void schedule(int n, sequence of integer& deadline, sequence of integer &J) {
    sequence of integer K;
    J.clear();
    J.push back(0); // for an empty job
    J.push back(1);
    for (int i = 2; i <= n; i++) {
        // K = J with i added according to nondecreasing values of deadline[i];
        K.resize(J.size());
        copy(J.begin(), J.end(), K.begin());
        int j = 1;
        while (j < K.size() && deadline[K[j]] <= deadline[i])</pre>
            j++;
        K.insert(K.begin() + j, i);
        if (is_feasible(K, deadline)) {
            //J = K
            J.resize(K.size());
            copy(K.begin(), K.end(), J.begin());
```


- Time Complexity of Algorithm 4.4 (Worst-Case)
 - Basic Operation: the operation of comparisons to *sort*, to do K = I, and to *check* if K is *feasible*.
 - Input Size: *n*, the *number of jobs*.
 - In each iteration of the for—i loop, we need to do
 - at most i 1 comparisons to add the *i*th job of K,
 - and at most *i* comparisons to *check* if *K* is *feasible*.
 - Therefore, the worst case is

$$W(n) = \sum_{i=2}^{n} [(i-1) + i] = n^2 - 1 \in \Theta(n^2)$$

- The problem of *data compression*
 - is to find an *efficient method* for *encoding a data file*.
 - A *binary code* is a common way to represent a data file.
 - A codeword is a unique binary string
 - representing *each character* in a binary code.
 - A *fixed-length* binary code
 - represents each character using the *same number of bits*.
 - A *variable-length* binary code is a more efficient coding.
 - It represents different characters using different number of bits.

 $File = ababcbbbc, character set = \{a, b, c\}$

Character	Fixed-lengh Binary Code
a	00
b	01
c	10

Character	Variable-length Binary Code		
a	10		
b	0		
С	11		

a b a b c b b c c 00 01 00 01 10 01 01 10

a b a b c b b c
10 0 10 0 11 0 0 0 11

• It takes 18 bits with this encoding

- 'b' occurs most frequently:
 - Encode 'b' with one bit (0)
- Encode 'a' and 'c' starting with 1 to distinguish from 'bb'
 'a': 10, 'c': 11
- It takes only 13 bits with this encoding

- The Problem of the *Optimal Binary Code*:
 - Given a file (or a string of characters),
 - find a *binary character code* for the characters in the file,
 - which represents the file in the *least number of bits*.
 - We discuss the encoding method, called *Huffman code*,
 - then we develop *Huffman's algorithm* for solving this problem.

Prefix Code

- is one particular type of variable-length code.
- In a prefix code, *no codeword* for one character
 - constitutes the *beginning of the codeword* for another character.
- Every prefix code can be represented by
 - a binary tree whose leaves are the characters that are to be encoded.
- The advantage of a prefix code is that
 - we *need not look ahead* when parsing the file.

- a: 10
- c: 11

S	= {	$\{a,$	b,	С,	d,	е,	f
_			~ ,	-,	••,	· , .	, j

$Code_2$	
0 1	
f	
0 1	
a 0 1	
d	
0 1	
	\

Character	Frequency	$Code_1$	$Code_2$	$Code_3$
a	16	000	10	00
b	5	001	11110	1110
c	12	010	1110	110
d	17	011	110	01
e	10	100	11111	1111
f	25	101	0	10

- *Code*₁: Fixed-Length
- *Code*₃: Huffman code

- Computing the *number of bits* for *encoding*:
 - Given the binary tree T corresponding to some code
 - the number of bits it takes to encode a file is given by
 - bits(T) = $\sum_{i=1}^{n} frequency(v_i) \times depth(v_i)$
 - where $\{v_1, v_2, \dots, v_n\}$ is the set of characters in the file,
 - $frequency(v_i)$ is the number of times v_i occurs in the file,
 - and $depth(v_i)$ is the depth of v_i in T.

- $bits(Code_1) = 255$
- $bits(Code_2) = 231$
- $bits(Code_3) = 212$

- Huffman's Algorithm
 - Huffman developed a greedy algorithm
 - that produces an *optimal binary character code* by constructing
 - a *Huffman code*, a *binary tree* corresponding to an *optimal code*.
 - We need a *type declaration* for the node of binary tree.
 - We also need to use a *priority queue*
 - in which the character with the *lowest frequency* is *removed next*.
 - It can be implemented as a *min-heap*.

• High-level pseudo-code for the Huffman's algorithm:

```
n = number of characters in the file;
Arrange n pointers to nodetype records in a PQ;
for (i = 1; i <= n - 1; i++) {
    remove(PQ, p);
    remove(PQ, q);
    r = new nodetype;
    r \rightarrow left = p;
    r->right = q;
    r->frequency = p->frequency + q->frequency;
    insert(PQ, r);
remove(PQ, r);
return r;
```



```
typedef struct node *node_ptr;
typedef struct node {
    char symbol; // the value of a character.
    int frequency; // the number of times the character is in the file.
    node ptr left;
   node_ptr right;
} node t;
struct compare {
    bool operator()(node_ptr p, node_ptr q) {
        return p->frequency > q->frequency;
};
typedef priority queue<node ptr, vector<node ptr>, compare> PriorityQueue;
```



```
void huffman(int n, PriorityQueue& PQ)
    for (int i = 1; i <= n - 1; i++) {
        node_ptr p = PQ.top(); PQ.pop();
        node_ptr q = PQ.top(); PQ.pop();
        node_ptr r = create_node(' ', p->frequency + q->frequency);
        r \rightarrow left = p;
        r \rightarrow right = q;
        PQ.push(r);
```


- Time Complexity of Huffman's Algorithm
 - If a priority queue is implemented as a min-heap,
 - each heap operation (insert & remove) requires $\Theta(\lg n)$ time.
 - Since there are n-1 passes through the for-i loop,
 - the algorithm runs in $\Theta(n \lg n)$ time.
- It is *provable* that
 - Huffman's algorithm always produces an optimal binary code.
 - based on Lemma:
 - The binary tree corresponding to an *optimal binary prefix code* is *full*.
 - That is, every nonleaf node has two children.

- How to decode an encoded binary string?
 - Given with an encoded binary string, 001001111011011111,
 - you can *traverse* the binary tree to decode it into *afdbce*.


```
void decode(node ptr root, vector<int>& code, map<char, vector<int>>& decoder)
    if (root->symbol != ' ') {
        vector<int> ret;
        ret.resize(code.size());
        copy(code.begin(), code.end(), ret.begin());
        decoder.insert(make pair(root->symbol, ret));
    else if (root != NULL) {
        code.push_back(0);
        decode(root->left, code, decoder);
        code.pop_back();
        code.push_back(1);
        decode(root->right, code, decoder);
        code.pop_back();
```


- The greedy approach and dynamic programming
 - are two ways to solve optimization problems.
 - For example, the Single-Source-Shortest-Paths problem
 - is solved using *dynamic programming* in Algorithm 3.3 (Floyd's)
 - and is solved using the *greedy approach* in Algorithm 4.3 (Dijkstra's).
 - However, the D.P. algorithm is *overkill* in that
 - it produces the shortest paths from all sources.
 - Floyd's (D.P.): $\Theta(n^3)$, Dijkstra's (Greedy): $\Theta(n^2)$.
 - *Often* when the *greedy* approach solves a problem,
 - the result is a *simpler*, *more efficient* than *dynamic programming*.

- The greedy approach and dynamic programming
 - On the other hand, it is usually *more difficult* to determine
 - whether a *greedy* algorithm *always* produces an *optimal* solution.
 - A proof is needed to show that it does.
 - In the case of *dynamic programming*, we need only determine
 - whether the *principle of optimality* applies.

- Two Similar Problems for the *Knapsack Problem*:
 - The Fractional Knapsack Problem
 - concerns a thief breaking into a jewelry store carrying a knapsack.
 - In this case, the thief does not have to steal all of an item,
 - but rather can take any fraction of the item.
 - We can think of the items as being *bags of gold or silver dust*.
 - The 0-1 *Knapsack Problem*
 - In this case, the thief can not take some fraction of the item.
 - We can think of the items as being gold or silver ingots.

- The Knapsack Problem:
 - The knapsack will break
 - if the *total weight of the items* stolen exceeds some *maximum weight*.
 - Each item has a *value* and a *weight*.
 - The goal of the thief is to *maximize the total value of the items*
 - while *not making* the total weight *exceed the maximum weight W*.

- Formal definition of the Knapsack Problem:
 - Suppose there are *n* items, and let
 - $S = \{item_1, item_2, \dots, item_n\}$
 - $w_i = \text{weight of } item_i$
 - $p_i = \text{profit of } item_i$
 - W = M = maximum weight the knapsack can hold,
 - where w_i , p_i , and W are positive integers.
 - Then, *determine a subset A* of *S* such that
 - $\sum_{item_i \in A} p_i$ is maximized subject to $\sum_{item_i \in A} w_i \leq W$.

- *Greedy Approach* to the 0-1 Knapsack Problem:
 - Our greedy strategy is
 - to choose the items with the *largest profit per unit weight first*.
 - That is, *order the items* in nonincreasing order by the profit/unit weight,
 - and select them in sequence.
 - An item is put in the knapsack
 - if its weight does not bring the *total weight* above W.
 - Note that this strategy can waste some capacities of an item.
 - Therefore, greedy algorithm *does not solve* the 0-1 Knapsack Problem.

$$-item_1 = \frac{\$50}{5} = \$10$$

$$-item_2 = \frac{\$60}{10} = \$6$$

-
$$item_2 = \frac{\$60}{10} = \$6$$

- $item_3 = \frac{\$140}{20} = \7

- *Greedy Approach* to the *Fractional* Knapsack Problem:
 - If our greedy strategy is again
 - to *choose* the items with the *largest profit per unit weight first*,
 - all of $item_1$ and $item_3$ will be taken as before.
 - However, we can use
 - the 5 kg of remaining capacity to take 5/10 of item₂.
 - Our total profit is
 - $\$50 + \$140 + \frac{5}{10} \times (\$60) = \$220.$
 - Our greedy algorithm never wastes any capacity.
 - It is *provable* that it *always* yields an *optimal* solution.

$$-item_1 = \frac{\$50}{5} = \$10$$

-
$$item_2 = \frac{\$60}{10} = \$6$$

-
$$item_2 = \frac{\$60}{10} = \$6$$

- $item_3 = \frac{\$140}{20} = \7


```
typedef struct item *item_ptr;
typedef struct item {
    int id;
    int weight;
    int profit;
    int profit_per_unit; // = profit / weight
} item t;
int n, W;
vector<item_t> items;
bool compare_item(item_t i, item_t j) {
    if (i.profit_per_unit > j.profit_per_unit)
        return true;
    return false;
};
```



```
/* Greedy Algorithm for the Fractional Knapsack Problem */
void knapsack1(int& maxprofit, int& totweight) {
    maxprofit = totweight = 0;
    for (int i = 1; i <= n; i++) {
        if (totweight + items[i].weight <= W) {</pre>
            maxprofit += items[i].profit;
            totweight += items[i].weight;
        } else {
            maxprofit += (W - totweight) * items[i].profit_per_unit;
            totweight += (W - totweight);
            break; // Need not to continue.
```


- Solving the 0-1 *Knapsack Problem* with *Dynamic Programming*:
 - To show that the *principle of optimality* applies,
 - let *A* be an optimal subset of the *n* items.
 - There are two cases: either *A contains item*_n *or not*.
 - If A does not, A is equal to an optimal subset of the first n-1 items.
 - If *A does*, the *total profit* of the items in *A* is equal to
 - p_n + the *optimal profit* obtained when the items can be chosen from the first n-1 items,
 - under the restriction that the total weight cannot exceed $W w_n$.
 - Therefore, the *principle of optimality* applies.

- The design of an algorithm using dynamic programming:
 - Let P[i][w] be the *optimal profit* obtained
 - when choosing items only from the first *i* items
 - under the restriction that the total weight cannot exceed w.

•
$$P[i][w] = \begin{cases} \max(P[i-1][w], \ p_i + P[i-1][w-w_i]), & \text{if } w_i \leq w \\ P[i-1][w], & \text{if } w_i > w \end{cases}$$

- Then, the *maximum profit* is equal to P[n][W].
- We compute the values in the *rows* of the array *P* in sequence
 - using the previous expression for P[i][w].
 - The values of P[0][w] and P[i][0] are set to 0.


```
/* Simple dynamic programming for the 0-1 Knapsack Problem */
int knapsack2(map<pair<int, int>, int> &P) {
    for (int i = 0; i <= n; i++)
        P[i][0] = 0;
    for (int j = 1; j <= W; j++)
        P[0][j] = 0;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= W; j++)
            P[i][j] = (w[i] > j) ? P[i - 1][j] :
                                   \max(P[i - 1][j], p[i] + P[i - 1][j - w[i]]);
    return P[0][W];
```


- Time Complexity of Simple Implementation
 - It is straightforward that
 - the number of array entries computed is $nW \in \Theta(nW)$.
 - Note that there is no relationship between *n* and *W*.
 - Therefore, for a given n, it can take arbitrarily large running times
 - by taking arbitrarily large number of W.
 - ex) If W = n!, then $nW \in \Theta(n!)$.
 - This algorithm should be improved so that
 - the worst-case number of entries computed is in $\Theta(2^n)$.
 - With this improvement, it never performs
 - worse than the *brute-force algorithm* and often performs much better.

- Enhancing the Simple Algorithm:
 - The improvement is based on the fact that it is not necessary
 - to determine the entries in the *i*th row for every *w* between 1 and *W*.
 - Rather, in the *n*th row we need only determine P[n][W].
 - The only entries needed in the (n-1)st row are the ones needed
 - to compute P[n][W]: P[n-1][W] and $P[n-1][W-w_n]$.
 - We continue to backward from n to determine which entries are needed.
 - That is, determine entries needed in the *i*th row,
 - determine entries needed in the (i-1)st row using the fact that
 - P[i][w] is computed from P[i-1][w] and $P[i-1][w-w_n]$.
 - We stop when n = 1 or $w \le 0$.


```
• n = 3, W = 30
• w = [5, 10, 20]
                                         P[3][W] = P[3][30]
• p = [50, 60, 140]
                       P[3-1][30]
                                                                P[3-1][30-w_3]
                        = P[2][30]
                                                                    = P[2][10]
            P[2-1][30]
                            P[2-1][30-w_2] P[2-1][10] P[2-1][10-w_2]
             = P[1][30]
                                                        = P[1][10]
                                  = P[1][20]
                                                                               = P[1][0]
                 $50
                                      $50
                                                             $50
                                                                                   $0
                     P[1][w] = \begin{cases} \max(P[0][w], & \$50 + P[0][w - 5]), & \text{if } w_1 = 5 \le w \\ & P[0][w], & \text{if } w_1 = 5 > w \end{cases}
```


$$P[2][30] = \begin{cases} \max(P[1][30], & \$60 + P[1][20]), & \text{if } w_2 = 10 \le 30 \\ & P[1][30], & \text{if } w_2 = 10 > 30 \end{cases}$$

$$P[2][10] = \begin{cases} \max(P[1][10], & \$60 + P[1][0]), & \text{if } w_2 = 10 \le 10 \\ P[1][10], & \text{if } w_2 = 10 > 10 \end{cases}$$

$$P[3][W] = P[3][30]$$
 \$200

$$P[3][30] = \begin{cases} \max(P[2][30], & \$140 + P[2][10]), & \text{if } w_3 = 20 \le 30 \\ P[2][30], & \text{if } w_1 = 20 > 30 \end{cases}$$

- The Efficiency of the Improved Algorithm:
 - Notice that we compute at most 2^i entries in the (n-1)th row.
 - Therefore, *at most* the *total number of entries computed* is

$$-1+2+2^i+\cdots+2^{n-1}=2^n-1\in\Theta(2^n).$$

- Consider a bound *in terms of n* and *W combined*.
- It is provable that if n = W + 1 and $w_i = 1$ for all i,
 - then the total number of entries computed is about

$$-1+2+\cdots+n=\frac{n(n+1)}{2}=\frac{(W+1)(n+1)}{2}\in\Theta(nW).$$

- Combining these two results,
 - the worst-case number of entries computed is $O(minimum(2^n, nW))$

- Space Complexity of the Improved Algorithm:
 - We do not need to create the *entire array* to implement the algorithm.
 - Instead, we can *store* just *the entries* that are *needed*.
 - Then, the worst-case memory usage has the same bounds
 - $O(minimum(2^n, nW))$.


```
/* Enhanced dynamic programming for the 0-1 Knapsack Problem */
int knapsack3(int n, int W, int w[], int p[], map<pair<int, int>, int> &P) {
    if (n == 0 || W <= 0)
        return 0;
    int lvalue = (P.find(make pair(n-1, W)) != P.end()) ?
        P[make pair(n-1, W)] : knapsack3(n-1, W, w, p, P);
    int rvalue = (P.find(make_pair(n-1, W-w[n])) != P.end()) ?
        P[make\_pair(n-1, W)] : knapsack3(n-1, W-w[n], w, p, P);
    P[make\_pair(n, W)] = (w[n] > W) ? lvalue : max(lvalue, p[n] + rvalue);
    return P[make pair(n, W)];
```

Any Questions?

