

ARKUSZ ĆWICZENIOWY Z MATEMATYKI

POZIOM PODSTAWOWY

- 1. Sprawdź, czy arkusz ćwiczeniowy zawiera 22 strony (zadania 1–32).
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (22–32) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

MARZEC 2012

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź.

Zadanie 1. (1 pkt)

Liczbę √32 można przedstawić w postaci

A.
$$8\sqrt{2}$$

B.
$$12\sqrt{3}$$

C.
$$4\sqrt{8}$$

D.
$$4\sqrt{2}$$

Zadanie 2. (1 pkt)

Potęga $\left(\frac{y}{x}\right)^3$ (gdzie x i y są różne od zera) jest równa

A.
$$-5 \cdot \frac{x}{y}$$

B.
$$\left(\frac{x}{y}\right)^{-5}$$

$$\mathbf{C.} \quad \frac{y^5}{x}$$

D.
$$-\left(\frac{x}{y}\right)^5$$

Zadanie 3. (1 pkt)

Liczba $\log_3 \frac{1}{27}$ jest równa

A.
$$-3$$

B.
$$-\frac{1}{3}$$

C.
$$\frac{1}{3}$$

Zadanie 4. *(1 pkt)*

Wyrażenie ||x|+1| dla x < 0 jest równe

A.
$$x+1$$

B.
$$x-1$$

C.
$$-x+1$$

D.
$$-x-1$$

Zadanie 5. (1 pkt)

W pewnym sklepie ceny wszystkich płyt CD obniżono o 20%. Zatem za dwie płyty kupione w tym sklepie należy zapłacić mniej o

Zadanie 6. (1 pkt)

Wielomian $4x^2 - 100$ jest równy

A.
$$(2x-10)^2$$

B.
$$(2x-10)(2x+10)$$
 C. $4(x-10)^2$ **D**. $4(x-10)(x+10)$

C.
$$4(x-10)^2$$

D.
$$4(x-10)(x+10)$$

Zadanie 7. (1 pkt)

Równanie $\frac{x^2 + 36}{x - 6} = 0$

A. nie ma rozwiązań.

B. ma dokładnie jedno rozwiązanie.

C. ma dokładnie dwa rozwiązania.

D. ma dokładnie trzy rozwiązania.

Zadanie 8. *(1 pkt)*

Największą liczbą całkowitą spełniającą nierówność $(4+x)^2 < (x-4)(x+4)$ jest

A. −5

C. -3

D. -2

Zadanie 9. (1 pkt)

Funkcja liniowa $f(x) = \frac{1}{2}x - 6$

A. jest malejąca i jej wykres przechodzi przez punkt (0,6).

B. jest rosnąca i jej wykres przechodzi przez punkt (0,6).

C. jest malejąca i jej wykres przechodzi przez punkt (0,-6).

D. jest rosnąca i jej wykres przechodzi przez punkt (0,-6).

Zadanie 10. (1 pkt)

Liczby x_1, x_2 są rozwiązaniami równania 4(x+2)(x-6) = 0. Suma $x_1^2 + x_2^2$ jest równa

A. 16

B. 32

C. 40

D. 48

Zadanie 11. *(1 pkt)*

Na rysunku jest przedstawiony wykres funkcji y = f(x).

Zbiorem wartości tej funkcji jest

A. $\langle -4, 3 \rangle$

B. $\langle -4, -1 \rangle \cup \langle 1, 3 \rangle$ **C.** $\langle -4, -1 \rangle \cup \langle 1, 3 \rangle$ **D.** $\langle -5, 6 \rangle$

Zadanie 12. *(1 pkt)*

W trójkącie prostokątnym dane są kąty ostre: $\alpha = 27^{\circ}$ i $\beta = 63^{\circ}$. Wtedy $\frac{\cos \alpha + \sin \beta}{\cos \alpha}$ równa się

A. $1 + \sin 63^{\circ}$

B. sin 63°

C. 1

D. 2

Zadanie 13. *(1 pkt)*

Ciąg arytmetyczny (a_n) jest określony wzorem $a_n = -2n+1$ dla $n \ge 1$. Różnica tego ciągu jest równa

A. -1

B. 1

C. −2

D. 3

Zadanie 14. (1 pkt)

W ciągu geometrycznym (a_n) dane są $a_2 = \frac{\sqrt{3}}{2}$ i $a_3 = -\frac{3}{2}$. Wtedy wyraz a_1 jest równy

A. $-\frac{1}{2}$

B. $\frac{1}{2}$ **C.** $-\frac{\sqrt{3}}{2}$ **D.** $\frac{\sqrt{3}}{2}$

Zadanie 15. (1 pkt)

Dane są punkty A = (6, 1) i B = (3,3). Współczynnik kierunkowy prostej AB jest równy

B. $-\frac{3}{2}$

C. $\frac{3}{2}$

Zadanie 16. *(1 pkt)*

Pole prostokąta jest równe 40. Stosunek długości jego boków jest równy 2:5. Dłuższy bok tego prostokata jest równy

A. 10

B. 8

C. 7

D. 6

Zadanie 17. *(1 pkt)*

Dany jest trójkat prostokatny o przyprostokatnych 5 i 12. Promień okregu opisanego na tym trójkacie jest równy

A. 12

B. 8,5

C. 6,5

D. 5

Zadanie 18. *(1 pkt)*

Dane są dwa okręgi o promieniach 12 i 17. Mniejszy okrąg przechodzi przez środek większego okręgu. Odległość między środkami tych okręgów jest równa

A. 5

В. 12 **C.** 17

D. 29

Zadanie 19. *(1 pkt)*

Stożek powstał w wyniku obrotu trójkąta prostokątnego o przyprostokątnych 13 i 15 wokół dłuższej przyprostokatnej. Promień podstawy tego stożka jest równy

A. 15

B. 13

C. 7.5

D. 6,5

Zadanie 20. (1 pkt)

Dany jest sześcian ABCDEFGH. Siatką ostrosłupa czworokątnego ABCDE jest

Zadanie 21. (1 pkt)

Jeżeli A jest zdarzeniem losowym oraz A' jest zdarzeniem przeciwnym do zdarzenia A i $P(A) = 5 \cdot P(A')$, to prawdopodobieństwo zdarzenia A jest równe

A.
$$\frac{4}{5}$$

B.
$$\frac{1}{5}$$

C.
$$\frac{1}{6}$$

D.
$$\frac{5}{6}$$

ZADANIA OTWARTE

Rozwiązania zadań o numerach 22. do 32. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 22. *(2 pkt)*

Rozwiąż nierówność $-3x^2 + 3x + 36 \ge 0$.

Odpowiedź:

Zadanie 23. *(2 pkt)*

Funkcja f jest określona wzorem $f(x) = \frac{2x-b}{x-9}$ dla $x \neq 9$. Ponadto wiemy, że f(4) = -1. Oblicz współczynnik b.

Odpowiedź:

Zadanie 24. *(2 pkt)*

Podstawy trapezu prostokątnego mają długości 6 i 10 oraz tangens kąta ostrego jest równy 3. Oblicz pole tego trapezu.

Odpowiedź:

Zadanie 25. *(2 pkt)*

Trójkąt ABC przedstawiony na poniższym rysunku jest równoboczny, a punkty B, C, N są współliniowe. Na boku AC wybrano punkt M tak, że $\left|AM\right| = \left|CN\right|$. Wykaż, że $\left|BM\right| = \left|MN\right|$.

Zadanie 26. (2 pkt)

Liczby 64, x, 4 są odpowiednio pierwszym, drugim i trzecim wyrazem malejącego ciągu geometrycznego. Oblicz piąty wyraz tego ciągu.

Odpowiedź:

Zadanie 27. (2 pkt)

Uzasadnij, że dla każdej dodatniej liczby całkowitej n liczba $3^{n+2}-2^{n+2}+3^n-2^n$ jest wielokrotnością liczby 10.

Zadanie 28. *(2 pkt)*

Tabela przedstawia wyniki uzyskane na sprawdzianie przez uczniów klasy III.

Oceny	6	5	4	3	2	1
Liczba uczniów	1	2	6	5	9	2

Oblicz średnią arytmetyczną i kwadrat odchylenia standardowego uzyskanych ocen.

Odpowiedź:

Zadanie 29. (2 pkt)

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że liczba oczek w drugim rzucie jest o 1 większa od liczby oczek w pierwszym rzucie.

Odpowiedź:

Zadanie 30. *(4 pkt)*

Podstawą ostrosłupa ABCDS jest romb ABCD o boku długości 4. Kąt ABC rombu ma miarę 120° oraz |AS| = |CS| = 10 i |BS| = |DS|. Oblicz sinus kąta nachylenia krawędzi BS do płaszczyzny podstawy ostrosłupa.

Odpowiedź:

Zadanie 31. *(4 pkt)*

Wyznacz równanie okręgu przechodzącego przez punkt A = (2, 1) i stycznego do obu osi układu współrzędnych. Rozważ wszystkie przypadki.

Odpowiedź:

Zadanie 32. (5 pkt)

Z dwóch miast A i B, odległych od siebie o 18 kilometrów, wyruszyli naprzeciw siebie dwaj turyści. Pierwszy turysta wyszedł z miasta A o jedną godzinę wcześniej niż drugi z miasta B. Oblicz prędkość, z jaką szedł każdy turysta, jeżeli wiadomo, że po spotkaniu pierwszy turysta szedł do miasta B jeszcze 1,5 godziny, drugi zaś szedł jeszcze 4 godziny do miasta A.

Odpowiedź: