

LSI, SVD and Data Management

Based on the Slides from CS276: Information Retrieval and Web Search Christopher Manning and Pandu Nayak

Latent Semantic Indexing

- Term-document matrices are very large
- But the number of topics that people talk about is small (in some sense)
 - Clothes, movies, politics, ...
- Can we represent the term-document space by a lower dimensional latent space?

Linear Algebra Background

Eigenvalues & Eigenvectors

Eigenvectors (for a square $m \times m$ matrix S)

Example
$$\begin{pmatrix} 6 & -2 \\ 4 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

• How many eigenvalues are there at most? $\mathbf{S}\mathbf{v} = \lambda\mathbf{v} \iff (\mathbf{S} - \lambda\mathbf{I})\,\mathbf{v} = \mathbf{0}$ only has a non-zero solution if $|\mathbf{S} - \lambda\mathbf{I}| = 0$ This is a mth order equation in λ which can have at most m distinct solutions (roots of the characteristic polynomial) - can be complex even though \mathbf{S} is real.

Matrix-vector multiplication

$$S = \begin{pmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. has eigenvalues corresponds to the corresponding section of the corresponding to the corresponding section of the

 $S = \begin{pmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. has eigenvalues $\lambda_1 = 30$, $\lambda_2 = 20$, $\lambda_3 = 1$ with corresponding eigenvectors

$$\vec{x_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{x_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ and } \vec{x_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

On each eigenvector, S acts as a multiple of the identity matrix: but as a different multiple on each.

Any vector (say v =
$$\begin{pmatrix} 2 \\ 1 \\ 6 \end{pmatrix}$$
 can be viewed as a combination of the eigenvectors: $\begin{pmatrix} 2 \\ 1 \\ 6 \end{pmatrix}$ v = $2x_1 + 4x_2 + 6x_3$

Matrix-vector multiplication

Thus a matrix-vector multiplication such as Sv (S matrix, v a vector) can be rewritten in terms of the eigenvalues/vectors:

$$S\vec{v} = S(2\vec{x_1} + 4\vec{x_2} + 6\vec{x_3})$$

$$= 2S\vec{x_1} + 4S\vec{x_2} + 6S\vec{x_3}$$

$$= 2\lambda_1\vec{x_1} + 4\lambda_2\vec{x_2} + 6\lambda_3\vec{x_3}$$

$$= 60\vec{x_1} + 80\vec{x_2} + 6\vec{x_3}.$$

 Even though v is an arbitrary vector, the action of S on v is determined by the eigenvalues/vectors.

Matrix-vector multiplication

If we ignored the smallest eigenvalue (1), then instead of

$$\begin{pmatrix} 60 \\ 80 \\ 6 \end{pmatrix} \quad \text{we would get} \quad \begin{pmatrix} 60 \\ 80 \\ 0 \end{pmatrix}$$

These vectors are similar (in cosine similarity, etc.)

Eigenvalues & Eigenvectors

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal

$$Sv_{\{1,2\}} = \lambda_{\{1,2\}} v_{\{1,2\}} \text{ and } \lambda_1 \quad \lambda_2 \neq > v_1 * v_2 = 0$$

All eigenvalues of a real symmetric matrix are real.

All eigenvalues of a positive semidefinite symmetric matrix are non-negative

$$w^TSw > = 0$$
, for all w

Example

Let
$$S = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 Real, symmetric.

Then

$$S - \lambda I = \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \Rightarrow$$

$$|S - \lambda I| = (2 - \lambda)^2 - 1 = 0.$$

- The eigenvalues are 1 and 3 (nonnegative, real).
- The eigenvectors are orthogonal (and real):

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Eigen/diagonal Decomposition

- Let $S \in \mathbb{R}^{m \times m}$ be a symmetric **square** matrix with *m* linearly independent eigenvectors (a "non-defective" matrix)
- Theorem: Exists an eigen decomposition

$$\mathbf{S} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1}$$

Unique

for

distinct

eigen-

values

- (cf. matrix diagonalization theorem)
- Columns of U are the eigenvectors of S
- Diagonal elements of Λ are eigenvalues of S

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \ \lambda_i \ge \lambda_{i+1}$$

Diagonal decomposition - example

Recall
$$S = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 ith eigenvalues 3 and 1

The eigenvectors
$$\binom{1}{1}$$
 and $\binom{1}{-1}$ define: $U = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Inverting, we have
$$U^{-1} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$$
 Recall $UU^{-1} = I$.

Recall
$$UU^{-1} = I$$
.

Then,
$$\mathbf{S} = \mathbf{U} \wedge \mathbf{U}^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$$

Example continued

Let's divide **U** (and multiply **U**⁻¹) by
$$\sqrt{2}$$

Then,
$$\mathbf{S} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

$$\mathbf{U} \qquad \qquad \not\subset \qquad (\mathbf{U}^{-1} = \mathbf{U}^{\mathsf{T}})$$

Why? Stay tuned ...

Symmetric Eigen Decomposition

- If $S \in \mathbb{R}^{m \times m}$ is a symmetric matrix:
- Theorem: There exists a (unique)
 eigen decomposition S=QVQ^T
- where Q is orthogonal:
 - $Q^{-1} = Q^{\mathsf{T}}$
 - Columns of Q are normalized eigenvectors
 - Columns are orthogonal.
 - (everything is real)

Singular Value Decomposition

-

For an M \times N matrix **A** of rank r there exists a factorization (Singular Value Decomposition = **SVD**) as follows:

 $\begin{array}{c|c}
A = U \Sigma V^T \\
\hline
M \times M & M \times N
\end{array}$ V is N × N

(Not proven here.)

Singular Value Decomposition

- $AA^T = Q\Lambda Q^T$
- $AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = (U\Sigma V^T)(V\Sigma U^T) = U\Sigma^2 U^T$

The columns of **U** are orthogonal eigenvectors of **AA**^T.

The columns of V are orthogonal eigenvectors of A^TA .

Eigenvalues $\lfloor_1 \dots \rfloor_r$ of **AA**^T are the eigenvalues of **A**^T**A**.

$$\sigma_i = \sqrt{\lambda_i}$$

 $\Sigma = diag(\sigma_1...\sigma_r)$ Singular values

Singular Value Decomposition

Illustration of SVD dimensions and sparseness

$$\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix} = \begin{bmatrix}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & *
\end{bmatrix}$$

$$\begin{bmatrix}
* & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{bmatrix}$$

$$\begin{bmatrix}
* & * & * & * \\
* & * & * & * & *
\end{bmatrix}$$

$$\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}$$

$$\begin{bmatrix}
* & * & * & * \\
* & * & * & *
\end{bmatrix}$$

$$\begin{bmatrix}
* & * & * & * \\
* & * & * & *
\end{bmatrix}$$

$$\begin{bmatrix}
* & * & * & * \\
* & * & * & *
\end{bmatrix}$$

$$V^{T}$$

$$\begin{bmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{bmatrix} = \begin{bmatrix}
\star & \star & \star \\
\star & \star & \star \\
\star & \star & \star
\end{bmatrix}$$

$$\underbrace{\begin{bmatrix}
\star & \star & \star & \star \\
\star & \star & \star \\
\star & \star & \star
\end{bmatrix}}_{U}$$

$$\underbrace{\begin{bmatrix}
\star & \star & \star & \star \\
\star & \star & \star & \star \\
\star & \star & \star & \star
\end{bmatrix}}_{V^{T}}$$

SVD example

Thus M=3, N=2. Its SVD is

$$\begin{bmatrix} 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Typically, the singular values arranged in decreasing order.

Low-rank Approximation

- SVD can be used to compute optimal low-rank approximations.
- Approximation problem: Find $\mathbf{A}_{\mathbf{k}}$ of rank \mathbf{k} such that

 A_k and X are both m × n matrices. Typically, want k << r.

Low-rank Approximation

Solution via SVD

$$A_k = U \operatorname{diag}(\sigma_1, ..., \sigma_k, 0, ..., 0) V^T$$

set smallest r-k singular values to zero

$$\begin{bmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{bmatrix} = \begin{bmatrix}
\star & \star \\
\star & \star
\end{bmatrix}
\begin{bmatrix}
\bullet & \bullet \\
\star & \star
\end{bmatrix}$$

$$\Sigma$$

$$A_k = \sum_{i=1}^{K} \sigma_i u_i v_i^T - \cdots$$

column notation: sum of rank 1 matrices

Reduced SVD

- If we retain only k singular values, and set the rest to 0, then we don't need the matrix parts in color
- Then Σ is $k \times k$, U is $M \times k$, V^T is $k \times N$, and A_k is $M \times N$
- This is referred to as the reduced SVD
- It is the convenient (space-saving) and usual form for computational applications
- It's what Matlab gives you

Approximation error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error:

$$\min_{X: rank(X)=k} A - X$$

where the \int_i are ordered such that $\int_i \varepsilon \int_{i+1}$. Suggests why Frobenius error drops as k increases.

SVD Low-rank approximation

- 4
- Whereas the term-doc matrix A may have M=50000,
 N=10 million (and rank close to 50000)
- We can construct an approximation A₁₀₀ with rank
 100.
 - Of all rank 100 matrices, it would have the lowest Frobenius error.
- Great ... but why would we??
- Answer: Latent Semantic Indexing

Latent Semantic Indexing via the SVD

What it is

- From term-doc matrix A, we compute the approximation A_k.
- There is a row for each term and a column for each doc in A_k
- Thus docs live in a space of k<<r dimensions</p>
 - These dimensions are not the original axes
- But why?

Vector Space Model: Pros

- Automatic selection of index terms
- Partial matching of queries and documents (dealing with the case where no document contains all search terms)
- Ranking according to similarity score (dealing with large result sets)
- Term weighting schemes (improves retrieval performance)
- Various extensions
 - Document clustering
 - Relevance feedback (modifying query vector)
- Geometric foundation

Problems with Lexical Semantics

- Ambiguity and association in natural language
 - Polysemy: Words often have a multitude of meanings and different types of usage (more severe in very heterogeneous collections).
 - The vector space model is unable to discriminate between different meanings of the same word.

$$\sin_{\text{true}}(d, q) < \cos(\angle(\vec{d}, \vec{q}))$$

Latent Semantic Indexing (LSI)

- Perform a low-rank approximation of document-term matrix (typical rank 100–300)
- General idea
 - Map documents (and terms) to a lowdimensional representation.
 - Design a mapping such that the low-dimensional space reflects semantic associations (latent semantic space).
 - Compute document similarity based on the inner product in this latent semantic space

Goals of LSI

- LSI takes documents that are semantically similar (= talk about the same topics), but are not similar in the vector space (because they use different words) and re-represents them in a reduced vector space in which they have higher similarity.
- Similar terms map to similar location in low dimensional space
- Noise reduction by dimension reduction

Example of $C = U\Sigma V^T$: The matrix C

С	d_1	d_2	d_3	d_4	d_5	d_6
ship boat	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

This is a typical term-document matrix. Actually, we use a non-weighted (binary) matrix here to simplify the example.

Example of $C = U\Sigma V^T$: The matrix U

U	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.30 -0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
		0.65			

Example of $C = U\Sigma V^T$: The matrix Σ

Σ	1	2	3	4	5
1	2.16	0.00	0.00	0.00 0.00 0.00 1.00 0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00	0.00	0.00	0.39

Example of $C = U\Sigma V^T$: The matrix V^T

V^T	d_1	d_2	d_3	d_4	d_5	d_6
		-0.28				
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

Example of $C = U\Sigma V^T$: All four matrices

C		d_1	d_2	d_3	d_4	d_5	d_6					
ship		1	0	1	0	0	0					
boat		0	1	0	0	0	0	=				
ocea	n	1	1	0	0	0	0	_				
wood	ł	1	0	0	1	1	0					
tree		0	0	0	1	0	1					
U			1		2	3			4		5	
ship		- 0.	.44	− 0.	30	0.57		0.	58	0.2	25	
boat		-0.	13	-0.	33	-0.59		0.	00	0.	73	~
ocea	n	-0.	48	-0.	51	-0.37		0.	00	-0.6	61	×
wood	ŀ	-0.	70	0.	35	0.15	-	-0.	58	0.3	16	
tree		-0.	26	0.	65	-0.41		0.	58	-0.0	09	
Σ	1		2	3		4	5					
1	2.	16	0.00	0.	.00	0.00	0.	00	-			
2	0.	.00	1.59	0.	.00	0.00	0.	00	Ü			
3	0.	.00	0.00	1.	.28	0.00	0.0	00	×			
4	0.	.00	0.00	0.	.00	1.00	0.0	00				
5	0.	.00	0.00	0.	.00	0.00	0.3	39				
V^T		d_1	l	d_2		d_3		d_4	,	d_5		d_6
1	-	-0.75	j –	0.28	-	0.20	-0	.45		-0.33		-0.12
2	-	-0.29) –	0.53	_	0.19	0	.63	,	0.22		0.41
3		0.28	3 –	0.75	,	0.45	-0	.20)	0.12		-0.33
4		0.00)	0.00)	0.58	0	.00)	-0.58		0.58
5	-	-0.53	3	0.29)	0.63	0	.19)	0.41		-0.22

LSI: Summary

- •We've decomposed the term-document matrix *C* into a product of three matrices.
- •The term matrix U consists of one (row) vector for each term
- •The document matrix V^T consists of one (column) vector for each document
- •The singular value matrix Σ diagonal matrix with singular values, reflecting importance of each dimension
- •Next: Why are we doing this?

How we use the SVD in LSI

- Key property: Each singular value tells us how important its dimension is.
 - •By setting less important dimensions to zero, we keep the important information, but get rid of the "details".
 - These details may
 - be noise in that case, reduced LSI is a better representation because it is less noisy
 - •make things dissimilar that should be similar again reduced LSI is a better representation because it represents similarity better.
 - •Analogy for "fewer details is better"
 - •Image of a bright red flower
 - •Image of a black and white flower
 - Omitting color makes is easier to see similarity

35

Reducing the dimensionality to 2

U		1	2	3	4	5	
ship	-0.4	14 –	-0.30	0.00	0.00	0.00	
boat	-0.3	13 –	-0.33	0.00	0.00	0.00	
ocear	n	48 –	0.51	0.00	0.00	0.00	
wood	−0.7	70	0.35	0.00	0.00	0.00	
tree	-0.2	26	0.65	0.00	0.00	0.00	
Σ_2	1	2	3	4	5		
1	2.16	0.00	0.00	0.00	0.00	_	
2	0.00	1.59	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00		
V^T	d_1		d_2	d_3	d_4	d_5	d_6
1	-0.75	- 0.	28 –	0.20	-0.45	-0.33	-0.12
2	-0.29	-0.	53 –	0.19	0.63	0.22	0.41
3	0.00	0.	.00	0.00	0.00	0.00	0.00
4	0.00	0.	.00	0.00	0.00	0.00	0.00
5	0.00	0.	.00	0.00	0.00	0.00	0.00

Actually, we only zero out singular values in Σ. This has the effect of setting the corresponding dimensions in U and V^T to zero when computing the product $C = U \Sigma V^T$.

Reducing the dimensionality to 2

C_2	d	1	d_2	d_3	d_4	d_5	d_6
ship	0.8	5 0.	52	0.28	0.13	0.21	-0.08
boat	0.36	5 0.	36	0.16	-0.20	-0.02	-0.18
ocean	1.0	1 0.	72	0.36	-0.04	0.16	$-0.21^{=}$
wood	0.9	7 0.	12	0.20	1.03	0.62	0.41
tree	0.12	2 -0.	.39 -	-0.08	0.90	0.41	0.49
U	İ	1	2	3		4	5
ship	-0.	44 –	0.30	0.57	0.5	8 0.2	.5
boat	-0.	13 -	0.33	-0.59	0.0	0.7	
ocean	n	48 –	0.51	-0.37	0.0	-0.6	1 ×
wood	-0.	70	0.35	0.15	-0.5	8 0.1	.6
tree	-0.	26	0.65	-0.41	0.5	8 -0.0	9
Σ_2	1	2	3	4	5		
1	2.16	0.00	0.00	0.00	0.00	•	
2	0.00	1.59	0.00	0.00	0.00	V	
3	0.00	0.00	0.00	0.00	0.00	×	
4	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00		
V^T	d_1		d_2	d_3	d_4	d_5	d_6
1	-0.75	-0.	28 –	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.	53 –	-0.19	0.63	0.22	0.41
3	0.28	-0.5	75	0.45	-0.20	0.12	-0.33
4	0.00	0.	00	0.58	0.00	-0.58	0.58
5	-0.53	0.	29	0.63	0.19	0.41	-0.22

Original matrix C vs. reduced $C_2 = U\Sigma_2 V^T$

С	d_1	d_2	d_3	d_4	d_5	d_6		
ship	1	0	1	0	0	0		
boat	0	1	0	0	0	0		
ocean	1	1	0	0	0	0		
wood	1	0	0	1	1	0		
tree	0	0	0	1	0	1		
C_2	d_1		d_2		d_3	d_4	d_5	d_6
ship	0.85	,	0.52		0.28	0.13	0.21	-0.08
boat	0.36	j	0.36		0.16	-0.20	-0.02	-0.18
ocean	1.01		0.72		0.36	-0.04	0.16	-0.21
wood	0.97	,	0.12		0.20	1.03	0.62	0.41
tree	0.12		-0.39	_	0.08	0.90	0.41	0.49

We can view

C₂ as a two-dimensional representation of the matrix.

We have performed a dimensionality reduction to two dimensions.

Why the reduced matrix is "better"

С	d_1	d_2	d_3	d_4	d_5	d_6		
ship	1	0	1	0	0	0		
boat	0	1	0	0	0	0		
ocean	1	1	0	0	0	0		
wood	1	0	0	1	1	0		
tree	0	0	0	1	0	1		
C_2	d_1		d_2		d_3	d_4	d_5	d_6
ship	0.85	,	0.52		0.28	0.13	0.21	-0.08
boat	0.36	j	0.36		0.16	-0.20	-0.02	-0.18
ocean	1.01		0.72		0.36	-0.04	0.16	-0.21
wood	0.97	,	0.12		0.20	1.03	0.62	0.41
tree	0.12		-0.39	_	0.08	0.90	0.41	0.49

Similarity of d2 and d3 in the original space: 0. Similarity of d2 und d3 in the reduced space: $0.52 * 0.28 + 0.36 * 0.16 + 0.72 * 0.36 + 0.12 * 0.20 + - 0.39 * - 0.08 <math>\approx 0.52$

Why the reduced matrix is "better"

С	d_1	d_2	d_3	d_4	d_5	d_6		
ship	1	0	1	0	0	0		
boat	0	1	0	0	0	0		
ocean	1	1	0	0	0	0		
wood	1	0	0	1	1	0		
tree	0	0	0	1	0	1		
C_2	d_1		d_2		d_3	d_4	d_5	d_6
ship	0.85		0.52		0.28	0.13	0.21	-0.08
boat	0.36		0.36		0.16	-0.20	-0.02	-0.18
ocean	1.01		0.72		0.36	-0.04	0.16	-0.21
wood	0.97	•	0.12		0.20	1.03	0.62	0.41
tree	0.12		-0.39	_	0.08	0.90	0.41	0.49

"boat" and "ship" are semantically similar.
The "reduced" similarity measure reflects this.

Why we use LSI in information retrieval

- •LSI takes documents that are semantically similar (= talk about the same topics), . . .
- . . . but are not similar in the vector space (because they use different words) . . .
- . . . and re-represents them in a reduced vector space . .
- . . . in which they have higher similarity.
- •Thus, LSI addresses the problems of synonymy and semantic relatedness.
- •Standard vector space: Synonyms contribute nothing to document similarity.
- Desired effect of LSI: Synonyms contribute strongly to document similarity.

How LSI addresses synonymy and semantic relatedness

- •The dimensionality reduction forces us to omit a lot of "detail".
- •We have to map differents words (= different dimensions of the full space) to the same dimension in the reduced space.
- •The "cost" of mapping synonyms to the same dimension is much less than the cost of collapsing unrelated words.
- SVD selects the "least costly" mapping (see below).
- Thus, it will map synonyms to the same dimension.
- But it will avoid doing that for unrelated words.

Implementation

- Compute SVD of term-document matrix
- •Reduce the space and compute reduced document representations $\vec{q}_2^T = \Sigma_2^{-1} U_2^T \vec{q}^T$.
- •Map the query into the reduced space $C_2 = U\Sigma_2V^T \Rightarrow \Sigma_2^{-1}U^TC = V_2^T$
- This follows from:
- •Compute similarity of q_2 with all reduced documents in V_2 .
- Output ranked list of documents as usual
- •Exercise: What is the fundamental problem with this approach?

Resources

- Chapter 18 of IIR
- Resources at http://ifnlp.org/ir
 - Original paper on latent semantic indexing by Deerwester et al.
 - Paper on probabilistic LSI by Thomas Hofmann
 - Word space: LSI for words