

$$= \mathbf{x}^{t} \begin{pmatrix} 1/\sigma_{1}^{2} & 0 & \dots & 0 \\ 0 & 1/\sigma_{2}^{2} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & 1/\sigma_{d}^{2} \end{pmatrix} \mathbf{x}.$$

Thus, along each of the principal axes, the distance obeys $x_i^2 = \sigma_i^2 r^2$. Because the distance across the rectangular volume is twice that amount, the volume of the rectangular bounding box is

$$V_{rect} = (2x_1)(2x_2)\cdots(2x_d) = 2^d r^d \prod_{i=1}^d \sigma_i = 2^d r^d | ilde{oldsymbol{\Sigma}}|^{1/2}.$$

We let V be the (unknown) volume of the hyperellipsoid, V_d the volume of the unit hypersphere in d dimension, and V_{cube} be the volume of the d-dimensional cube having length 2 on each side. Then we have the following relation:

$$\frac{V}{V_{rect}} = \frac{V_d}{V_{cube}}.$$

We note that the volume of the hypercube is $V_{cube} = 2^d$, and substitute the above to find that

$$V = rac{V_{rect}V_d}{V_{cube}} = r^d | ilde{m{\Sigma}}|^{1/2}V_d,$$

where V_d is given by Eq. 47 in the text. Recall that the determinant of a matrix is unchanged by rotation of axes $(|\tilde{\Sigma}|^{1/2} = |\Sigma|^{1/2})$, and thus the value can be written as

$$V = r^d |\mathbf{\Sigma}|^{1/2} V_d$$
.

18. Let X_1, \ldots, X_n be a random sample of size n from $N(\mu_1, \sigma_1^2)$ and let Y_1, \ldots, Y_m be a random sample of size m from $N(\mu_2, \sigma_2^2)$.

(a) Let $Z = (X_1 + \cdots + X_n) + (Y_1 + \cdots + Y_m)$. Our goal is to show that Z is also normally distributed. From the discussion in the text, if $X_{d\times 1} \sim N(\mu_{d\times 1}, \Sigma_{d\times d})$

27

and A is a $k \times d$ matrix, then $A^tX \sim N(A^t\mu, A^t\Sigma A)$. Here, take

$$\mathbf{X}_{(n+m) imes 1} = \left(egin{array}{c} X_1 \ X_2 \ dots \ X_n \ Y_1 \ Y_2 \ dots \ Y_m \end{array}
ight);$$

Then, clearly X is normally distributed in $(n+m) \times 1$ dimensions. We can write Z as a particular matrix A^t operating on X:

$$Z = X_1 + \cdots + X_n + Y_1 + \cdots + Y_m = \mathbf{1}^t \mathbf{X},$$

where 1 denotes a vector of 1's. By the above fact, it follows that Z has a univariate normal distribution.

(b) We let μ_3 be the mean of the new distribution. Then, we have

$$\mu_3 = \mathcal{E}(Z)$$

$$= \mathcal{E}[(X_1 + \dots + X_n) + (Y_1 + \dots + Y_m)]$$

$$= \mathcal{E}(X_1) + \dots + \mathcal{E}(X_n) + \mathcal{E}(Y_1) + \dots + \mathcal{E}(Y_m)$$
(since $X_1, \dots, X_n, Y_1, \dots, Y_m$ are independent)
$$= n\mu_1 + m\mu_2.$$

(c) We let σ_3 be the variance of the new distribution. Then, we have

$$\sigma_3^2 = \operatorname{Var}(Z)$$

$$= \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n) + \operatorname{Var}(Y_1) + \dots + \operatorname{Var}(Y_m)$$

$$(\operatorname{since} X_1, \dots, X_n, Y_1, \dots, Y_m \text{ are independent})$$

$$= n\sigma_1^2 + m\sigma_2^2$$

(d) Define a column vector of the samples, as:

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_n \\ \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_m \end{pmatrix}.$$

Then, clearly X is $[(nd+md) \times 1]$ -dimensional random variable that is normally distributed. Consider the linear projection operator A defined by

$$\mathbf{A}^t = (\underbrace{\mathbf{I}_{d\times d} \ \mathbf{I}_{d\times d} \cdots \mathbf{I}_{d\times d}}_{(n+m) \ times}).$$

Then we have

$$\mathbf{Z} = \mathbf{A}^t \mathbf{X} = \mathbf{X}_1 + \dots + \mathbf{X}_n + \mathbf{Y}_1 + \dots + \mathbf{Y}_m,$$

which must therefore be normally distributed. Furthermore, the mean and variance of the distribution are

$$\mu_3 = \mathcal{E}(\mathbf{Z}) = \mathcal{E}(\mathbf{X}_1) + \dots + \mathcal{E}(\mathbf{X}_n) + \mathcal{E}(\mathbf{Y}_1) + \dots + \mathcal{E}(\mathbf{Y}_m)$$

$$= n\mu_1 + m\mu_2.$$

$$\Sigma_3 = \text{Var}(\mathbf{Z}) = \text{Var}(\mathbf{X}_1) + \dots + \text{Var}(\mathbf{X}_n) + \text{Var}(\mathbf{Y}_1) + \dots + \text{Var}(\mathbf{Y}_m)$$

$$= n\Sigma_1 + m\Sigma_2.$$

19. The entropy is given by Eq. 37 in the text:

$$H(p(x)) = -\int p(x) \ln p(x) dx$$

with constraints

$$\int b_k(x)p(x)dx=a_k \qquad \text{for } k=1,\ldots,q.$$

(a) We use Lagrange factors and find

$$egin{array}{ll} H_s &=& \int p(x) \mathrm{ln} p(x) dx + \sum_{k=1}^q \left[\int b_k(x) p(x) dx - a_k
ight] \ &=& - \int p(x) \left[\mathrm{ln} p(x) - \sum_{k=0}^q \lambda_k b_k(x)
ight] - \sum_{k=0}^q a_k \lambda_k. \end{array}$$

From the normalization condition $\int p(x)dx = 1$, we know that $a_0 = b_0 = 1$ for all x.

(b) In order to find the maximum or minimum value for H (having constraints), we take the derivative of H_s (having no constraints) with respect to p(x) and set it to zero:

$$rac{\partial H_s}{\partial p(x)} = -\int \left[\ln p(x) - \sum_{k=0}^q \lambda_k b_k(x) + 1
ight] dx = 0.$$

The argument of the integral must vanish, and thus

$$\ln p(x) = \sum_{k=0}^{q} \lambda_k b_k(x) - 1.$$

We exponentiate both sides and find

$$p(x) = \exp \left[\sum_{k=0}^{q} \lambda_k b_k(x) - 1 \right],$$

where the q+1 parameters are determined by the constraint equations.

33

where we used our common notation of I for the d-by-d identity matrix. 23. We have $p(\mathbf{x}|\omega) \sim N(\mu, \Sigma)$, where

$$\boldsymbol{\mu} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 2 \\ 0 & 2 & 5 \end{pmatrix}$$

(a) The density at a test point x_o is

$$p(\mathbf{x}_o|\omega) = \frac{1}{(2\pi)^{3/2}|\mathbf{\Sigma}|^{1/2}} \exp\left[-1/2(\mathbf{x}_o - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1}(\mathbf{x}_o - \boldsymbol{\mu})\right].$$

For this case we have

$$\begin{split} |\mathbf{\Sigma}| &= \begin{vmatrix} 1 & 0 & 0 \\ 0 & 5 & 2 \\ 0 & 2 & 5 \end{vmatrix} = 1 \begin{vmatrix} 5 & 2 \\ 2 & 5 \end{vmatrix} = 21, \\ \mathbf{\Sigma}^{-1} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 2 \\ 0 & 2 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \begin{pmatrix} 5 & 2 \\ 2 & 5 \end{pmatrix}^{-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5/21 & -2/21 \\ 0 & -2/21 & 5/21 \end{pmatrix}, \end{split}$$

and the squared Mahalanobis distance from the mean to $\mathbf{x}_o = (.5, 0, 1)^t$ is

$$(\mathbf{x}_{o} - \boldsymbol{\mu})^{t} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{o} - \boldsymbol{\mu})$$

$$= \begin{bmatrix} \begin{pmatrix} .5 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix}^{t} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5/21 & -2/21 \\ 0 & -2/21 & 5/21 \end{pmatrix}^{-1} \begin{bmatrix} \begin{pmatrix} .5 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} -0.5 \\ -8/21 \\ -1/21 \end{bmatrix}^{t} \begin{bmatrix} -0.5 \\ -2 \\ -1 \end{bmatrix} = 0.25 + \frac{16}{21} + \frac{1}{21} = 1.06.$$

We substitute these values to find that the density at x_o is:

$$p(\mathbf{x}_o|\omega) = \frac{1}{(2\pi)^{3/2}(21)^{1/2}} \exp\left[-\frac{1}{2}(1.06)\right] = 8.16 \times 10^{-3}.$$

(b) Recall from Eq. 44 in the text that $\mathbf{A}_w = \mathbf{\Phi} \mathbf{\Lambda}^{-1/2}$, where $\mathbf{\Phi}$ contains the normalized eigenvectors of $\mathbf{\Sigma}$ and $\mathbf{\Lambda}$ is the diagonal matrix of eigenvalues. The characteristic equation, $|\mathbf{\Sigma} - \lambda \mathbf{I}| = 0$, in this case is

$$\begin{vmatrix} 1-\lambda & 0 & 0 \\ 0 & 5-\lambda & 2 \\ 0 & 2 & 5-\lambda \end{vmatrix} = (1-\lambda)\left[(5-\lambda)^2-4\right]$$
$$= (1-\lambda)(3-\lambda)(7-\lambda) = 0.$$

The three eigenvalues are then $\lambda = 1, 3, 7$ can be read immediately from the factors. The (diagonal) Λ matrix of eigenvalues is thus

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{array}\right)$$

35

Under a general linear transformation T, we have that $x' = T^t x$. The transformed mean is

$$\boldsymbol{\mu}' = \sum_{k=1}^n \mathbf{x}_k' = \sum_{k=1}^n \mathbf{T}^t \mathbf{x}_k = \mathbf{T}^t \sum_{k=1}^n \mathbf{x}_k = \mathbf{T}^t \boldsymbol{\mu}.$$

Likewise, the transformed covariance matrix is

$$\Sigma' = \sum_{k=1}^{n} (\mathbf{x}'_k - \boldsymbol{\mu}') (\mathbf{x}'_k - \boldsymbol{\mu}')^t$$

$$= \mathbf{T}^t \left[\sum_{k=1}^{n} (\mathbf{x}_k - \boldsymbol{\mu}) (\mathbf{x}_k - \boldsymbol{\mu}) \right] \mathbf{T}$$

$$= \mathbf{T}^t \mathbf{\Sigma} \mathbf{T}.$$

We note that $|\Sigma'| = |\mathbf{T}^t \Sigma \mathbf{T}| = |\Sigma|$, and thus

$$p(\mathbf{x}_o|N(\boldsymbol{\mu}, \boldsymbol{\Sigma})) = p(\mathbf{T}^t\mathbf{x}_o|N(\mathbf{T}^t\boldsymbol{\mu}, \mathbf{T}^t\boldsymbol{\Sigma}\mathbf{T})).$$

(f) Recall the definition of a whitening transformation given by Eq. 44 in the text: $\mathbf{A}_w = \mathbf{\Phi} \mathbf{\Lambda}^{-1/2}$. In this case we have

$$\mathbf{y} = \mathbf{A}_{w}^{t} \mathbf{x} \sim N(\mathbf{A}_{w}^{t} \boldsymbol{\mu}, \mathbf{A}_{w}^{t} \boldsymbol{\Sigma} \mathbf{A}_{w}),$$

and this implies that

$$Var(\mathbf{y}) = \mathbf{A}_w^t (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^t \mathbf{A}_w$$

$$= \mathbf{A}_w^t \boldsymbol{\Sigma} \mathbf{A}$$

$$= (\boldsymbol{\Phi} \boldsymbol{\Lambda}^{-1/2})^t \boldsymbol{\Phi} \boldsymbol{\Lambda} \boldsymbol{\Phi}^t (\boldsymbol{\Phi} \boldsymbol{\Lambda}^{-1/2})$$

$$= \boldsymbol{\Lambda}^{-1/2} \boldsymbol{\Phi}^t \boldsymbol{\Phi} \boldsymbol{\Lambda} \boldsymbol{\Phi}^t \boldsymbol{\Phi} \boldsymbol{\Lambda}^{-1/2}$$

$$= \boldsymbol{\Lambda}^{-1/2} \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-1/2}$$

$$= \mathbf{I},$$

the dentity matrix.

24. Recall that the general multivariate normal density in d-dimensions is:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right].$$

(a) Thus we have if $\sigma_{ij} = 0$ and $\sigma_{ii} = \sigma_i^2$, then

$$oldsymbol{\Sigma} = \operatorname{diag}(\sigma_1^2, \dots, \sigma_d^2) \ = \left(egin{array}{ccc} \sigma_1^2 & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & \sigma_d^2 \end{array}
ight) oldsymbol{\Sigma}$$

Thus the determinant and inverse are particularly simple:

$$|\Sigma| = \prod_{i=1}^d \sigma_i^2,$$

 $\Sigma^{-1} = \operatorname{diag}(1/\sigma_1^2, \dots, 1/\sigma_d^2).$

This leads to the density being expressed as:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \operatorname{diag}(1/\sigma_1^2, \dots, 1/\sigma_d^2) (\mathbf{x} - \boldsymbol{\mu}) \right]$$

$$= \frac{1}{\prod\limits_{i=1}^{d} \sqrt{2\pi}\sigma_i} \exp \left[-\frac{1}{2} \sum\limits_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2 \right].$$

(b) The contours of constant density are concentric ellipses in d dimensions whose centers are at $(\mu_1, \ldots, \mu_d)^t = \mu$, and whose axes in the *i*th direction are of length $2\sigma_i\sqrt{c}$ for the density $p(\mathbf{x})$ held constant at

$$\frac{e^{-c/2}}{\prod\limits_{i=1}^{d}\sqrt{2\pi}\sigma_i}.$$

The axes of the ellipses are parallel to the coordinate axes. The plot in 2 dimensions (d=2) is shown:

(c) The squared Mahalanobis distance from x to μ is:

$$(\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^t \begin{pmatrix} 1/\sigma_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1/\sigma_d^2 \end{pmatrix} (\mathbf{x} - \boldsymbol{\mu})$$
$$= \sum_{i=1}^d \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2.$$

Section 2.6

25. A useful discriminant function for Gaussians is given by Eq. 52 in the text,

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln P(\omega_i).$$

We expand to get

$$g_{i}(\mathbf{x}) = -\frac{1}{2} \left[\mathbf{x}^{t} \mathbf{\Sigma}^{-1} \mathbf{x} - \boldsymbol{\mu}_{i}^{t} \mathbf{\Sigma}^{-1} \mathbf{x} - \mathbf{x}^{t} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{i} + \boldsymbol{\mu}_{i}^{t} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{i} \right] + \ln P(\omega_{i})$$

$$= -\frac{1}{2} \left[\underbrace{\mathbf{x}^{t} \mathbf{\Sigma}^{-1} \mathbf{x}}_{\text{indep. of } i} - 2\boldsymbol{\mu}_{i}^{t} \mathbf{\Sigma}^{-1} \mathbf{x} + \boldsymbol{\mu}_{i}^{t} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{i} \right] + \ln P(\omega_{i}).$$

and therefore we have:

$$\mathbf{w}^{t}(\mu_{1} - \mathbf{x}_{o}) > 0 \text{ and } \mathbf{w}^{t}(\mu_{2} - \mathbf{x}_{o}) > 0.$$

This last equation implies

$$(\mu_1 - \mu_2)^t \Sigma^{-1} (\mu_1 - \mu_2) > 2 \ln \left[\frac{P(\omega_1)}{P(\omega_2)} \right]$$

and

$$(\mu_1 - \mu_2)^t \Sigma^{-1} (\mu_1 - \mu_2) < -2 \ln \left[\frac{P(\omega_1)}{P(\omega_2)} \right]$$

Likewise, the conditions can be written as:

$$\mathbf{w}^{t}(\mu_{1} - \mathbf{x}_{o}) < 0 \text{ and } \mathbf{w}^{t}(\mu_{2} - \mathbf{x}_{o}) < 0$$

or

$$\begin{split} &(\mu_1-\mu_2)^t \boldsymbol{\Sigma}^{-1}(\mu_1-\mu_2) < 2 \text{ ln } \left[\frac{P(\omega_1)}{P(\omega_2)}\right] \text{ and} \\ &(\mu_1-\mu_2)^t \boldsymbol{\Sigma}^{-1}(\mu_1-\mu_2) > -2 \text{ ln } \left[\frac{P(\omega_1)}{P(\omega_2)}\right]. \end{split}$$

In sum, the condition that the Bayes decision boundary does not pass between the two means can be stated as follows:

Case 1 :
$$P(\omega_1) \le P(\omega_2)$$
. Condition: $(\mu_1 - \mu_2)^t \Sigma^{-1}(\mu_1 - \mu_2) < 2 \ln \left[\frac{P(\omega_1)}{P(\omega_2)} \right]$ and this ensures $\mathbf{w}^t(\mu_1 - \mathbf{x}_o) > 0$ and $\mathbf{w}^t(\mu_2 - \mathbf{x}_o) > 0$.

Case 2:
$$P(\omega_1) > P(\omega_2)$$
. Condition: $(\mu_1 - \mu_2)^t \Sigma^{-1} (\mu_1 - \mu_2) < 2 \ln \left[\frac{P(\omega_1)}{P(\omega_2)} \right]$ and this ensures $\mathbf{w}^t (\mu_1 - \mathbf{x}_2) < 0$ and $\mathbf{w}^t (\mu_2 - \mathbf{x}_2) < 0$.

28. We use Eqs. 42 and 43 in the text for the mean and covariance.

(a) The covariance obeys:

$$\sigma_{ij}^{2} = \mathcal{E}\left[(x_{i} - \mu_{i})(x_{j} - \mu_{j})\right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \underbrace{p(x_{i}, x_{j})}_{\text{by indep.}} (x_{i} - \mu_{i})(x_{j} - \mu_{j}) dx_{i} dx_{j}$$

$$= \int_{-\infty}^{\infty} (x_{i} - \mu_{i})p(x_{i}) dx_{i} \int_{-\infty}^{\infty} (x_{j} - \mu_{j})p(x_{j}) dx_{j}$$

$$= 0,$$

where we have used the fact that

$$\int\limits_{-\infty}^{\infty} x_i p(x_i) dx_i = \mu_i \quad ext{ and } \quad \int\limits_{-\infty}^{\infty} p(x_i) dx_i = 1.$$

(b) Suppose we had a two-dimensional Gaussian distribution, i.e.,

$$\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix} \right),$$

where $\sigma_{12} = \mathcal{E}[(x_1 - \mu_1)(x_2 - \mu_2)]$. Furthermore, we have that the joint density is Gaussian, that is,

$$p(x_1, x_2) = rac{1}{2\pi |\mathbf{\Sigma}|^{1/2}} \mathrm{exp} \left[-rac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})
ight].$$

If $\sigma_{12} = 0$, then $|\Sigma| = |\sigma_1^2 \sigma_2^2|$ and the inverse covariance matrix is diagonal, that is,

$$\boldsymbol{\Sigma}^{-1} = \left(\begin{array}{cc} 1/\sigma_1^2 & 0 \\ 0 & 1/\sigma_2^2 \end{array} \right).$$

In this case, we can write

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left[-\frac{1}{2} \left\{ \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right\} \right]$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left[-\frac{1}{2} \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 \right] \cdot \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left[-\frac{1}{2} \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right]$$

$$= p(x_1)p(x_2).$$

Although we have derived this for the special case of two dimensions and $\sigma_{12} = 0$, the same method applies to the fully general case in d dimensions and two arbitrary coordinates i and j.

(c) Consider the following discrete distribution:

$$x_1 = \left\{ egin{array}{ll} +1 & ext{with probability } 1/2 \ -1 & ext{with probability } 1/2, \end{array}
ight.$$

and a random variable x_2 conditioned on x_1 by

If
$$x_1 = +1$$
, $x_2 = \begin{cases} +1/2 & \text{with probability } 1/2 \\ -1/2 & \text{with probability } 1/2. \end{cases}$
If $x_1 = -1$, $x_2 = 0$ with probability 1.

It is simple to verify that $\mu_1 = \mathcal{E}(x_1) = 0$; we use that fact in the following calculation:

$$Cov(x_1, x_2) = \mathcal{E}[(x_1 - \mu_1)(x_2 - \mu_2)]$$

$$= \mathcal{E}[x_1 x_2] - \mu_2 \mathcal{E}[x_1] - \mu_1 \mathcal{E}[x_2] - \mathcal{E}[\mu_1 \mu_2]$$

$$= \mathcal{E}[x_1 x_2] - \mu_1 \mu_2$$

$$= \frac{1}{2} P(x_1 = +1, x_2 = +1/2) + \left(-\frac{1}{2}\right) P(x_1 = +1, x_2 = -1/2)$$

$$+0 \cdot P(x_1 = -1)$$

$$= 0.$$

Thus the Bayes decision rule is

Choose
$$\omega_2$$
 if $e^{\lambda_2 - \lambda_1} \left(\frac{\lambda_1}{\lambda_1}\right)^x > 1$, or equivalently if $x < \frac{(\lambda_2 - \lambda_1)}{\ln[\lambda_1] - \ln[\lambda_2]}$. Choose ω_1 otherwise,

as illustrated in the figure (where the x values are discrete).

(e) The conditional Bayes error rate is

$$P(error|x) = \min \left[e^{-\lambda_1} \frac{\lambda_1^x}{x!}, e^{-\lambda_2} \frac{\lambda_2^x}{x!} \right].$$

The Bayes error, given the decision rule in part (d) is

$$P_B(error) = \sum_{x=0}^{x^*} e^{\lambda_2} rac{\lambda_2^x}{x!} + \sum_{x=x^*}^{\infty} e^{-\lambda_1} rac{\lambda_1^x}{x!},$$

where
$$x^* = \lfloor (\lambda_2 - \lambda_1)/(\ln[\lambda_1] - \ln[\lambda_2]) \rfloor$$
.

Section 2.10

40

48. In two dimensions, the Gaussian distribution is

$$p(\mathbf{x}|\omega_i) = \frac{1}{2\pi |\mathbf{\Sigma}_i|^{1/2}} \mathrm{exp} \ \left[-1/2(\mathbf{x} - \boldsymbol{\mu}_i)^t \mathbf{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) \right].$$

- (a) By direct calculation using the densities stated in the problem, we find that for $\mathbf{x} = \binom{3}{3}$ that $p(\mathbf{x}|\omega_1)P(\omega_1) = 0.04849$, $p(\mathbf{x}|\omega_2)P(\omega_2) = 0.03250$ and $p(\mathbf{x}|\omega_3)P(\omega_3) = 0.04437$, and thus the pattern should be classified as category ω_1 .
- (b) To classify $\binom{*}{3}$, i.e., a vector whose first component is missing and its second component is 0.3, we need to marginalize over the unknown feature. Thus we compute numerically

$$P(\omega_i)p\left(\binom{*}{.3}\Big|\omega_i\right) = P(\omega_i)\int\limits_{-\infty}^{\infty}p\left(\binom{x}{.3}\Big|\omega_i\right) dx$$

and find that $P(\omega_1)p((*,.3)^t|\omega_1) = 0.12713$, $P(\omega_1)p((*,.3)^t|\omega_2) = 0.10409$, and $P(\omega_1)p((*,.3)^t|\omega_3) = 0.13035$. Thus the pattern should be categorized as ω_3 .

(c) As in part (a), we calculate numerically

$$P(\omega_i)\tilde{p}\left(\binom{.3}{*}\Big|\omega_i\right) = P(\omega_i)\int\limits_{-\infty}^{\infty}p\left(\binom{.3}{y}\Big|\omega_i\right)\ dy$$

and find that $P(\omega_1)p((.3,*)^t|\omega_1) = 0.12713$, $P(\omega_1)p((.3,*)^t|\omega_2) = 0.10409$, and $P(\omega_1)p((.3,*)^t|\omega_3) = 0.11346$. Thus the pattern should be categorized as ω_1 .

(d) We follow the above procedure:

$$\mathbf{x} = (.2, .6)^t$$

- $P(\omega_1)p(\mathbf{x}|\omega_1) = 0.04344$.
- $P(\omega_2)p(\mathbf{x}|\omega_2) = 0.03556.$
- $P(\omega_3)p(\mathbf{x}|\omega_3) = 0.04589.$

Thus $\mathbf{x} = (.2, .6)^t$ should be categorized as ω_3 .

$$\mathbf{x} = (*, .6)^t$$

- $P(\omega_1)p(\mathbf{x}|\omega_1) = 0.11108.$
- $P(\omega_2)p(\mathbf{x}|\omega_2) = 0.12276$.
- $P(\omega_3)p(\mathbf{x}|\omega_3) = 0.13232.$

Thus $\mathbf{x} = (*, .6)^t$ should be categorized as ω_3 .

$$\mathbf{x} = (.2,*)^t$$

- $P(\omega_1)p(\mathbf{x}|\omega_1) = 0.11108$.
- $P(\omega_2)p(\mathbf{x}|\omega_2) = 0.12276$.
- $P(\omega_3)p(\mathbf{x}|\omega_3) = 0.10247.$

Thus $\mathbf{x} = (*, .6)^t$ should be categorized as ω_2 .

49. PROBLEM NOT YET SOLVED

Section 2.11

- 50. We use the values from Example 4 in the text.
 - (a) For this case, the probabilities are:

$$P(a_1) = P(a_4) = 0.5$$

 $P(a_2) = P(a_3) = 0$
 $P(b_1) = 1$
 $P(b_2) = 0$
 $P(d_1) = 0$
 $P(d_2) = 1$

Then using Eq. 99 in the text we have

$$P_{\mathcal{P}}(x_1) \sim P(x_1|a_1,b_1)P(a_1)P(b_1) + 0 + 0 + 0 + 0 + P(x_1|a_4,b_1)P(a_4)P(b_1) + 0$$

$$= \frac{0.9 \cdot 0.65}{0.9 \cdot 0.65 + 0.1 \cdot 0.35} \cdot 0.5 \cdot 1 + \frac{0.8 \cdot 0.65}{0.8 \cdot 0.65 + 0.2 \cdot 0.35} 0.5 \cdot 1$$

$$= 0.472 + 0.441$$

$$= 0.913.$$