Übungsblatt 13 zur Algebraischen Zahlentheorie

Aufgabe 1. Triviales zu Bewertungen

Sei $|\cdot|$ eine Bewertung auf einem Körper K.

a) Zeige, dass $|\cdot|$ genau dann die verschärfte Dreiecksungleichung $|x+y| \leq \max\{|x|,|y|\}$ erfüllt, wenn für alle $x \in K$ aus $|x| \leq 1$ folgt, dass $|x+1| \leq 1$.

Gelte von nun an die verschärfte Dreiecksungleichung.

- b) Seien $x, y \in K$ mit $|x| \neq |y|$. Zeige, dass $|x + y| = \max\{|x|, |y|\}$.
- c) Zeige, dass alle Dreiecke in K gleichschenklig sind.

Tipp. Dividiere durch |x| oder |y|. Schreibe sowas wie "|x+(y-x)|".

Aufgabe 2. Triviale Bewertungen

Sei L|K eine algebraische Körpererweiterung. Sei w eine Exponentialbewertung auf L, welche auf K trivial ist (d. h. w(x) = 0 für alle $x \in K^{\times}$). Zeige, dass w auf L trivial ist.

Aufgabe 3. Charakterisierung nichtarchimedischer Bewertungen

Sei $|\cdot|$ eine nichtarchimedische Bewertung auf einem Zahlkörper K.

- a) Sei zunächst $K=\mathbb{Q}$. Zeige, dass es eine Primzahl p mit $|\cdot|=|\cdot|_p$ gibt.
- b) Zeige, dass es ein Primideal $\mathfrak{p} \subseteq \mathcal{O}_K$ mit $\mathfrak{p} \neq (0)$ und $|\cdot| = |\cdot|_{\mathfrak{p}}$ gibt.

 $\begin{array}{l} \textit{Hinweis}. \ \ \text{Die Bewertung erfüllt die verschärfte Dreiecksungleichung}. \ \ \text{Zeige zunächst}, \ \text{dass} \ |x| \leq 1 \ \text{für alle} \ x \in \mathbb{Z}. \ \ \text{Zeige dann, dass} \ \{x \in \mathbb{Z} \ | \ |x| < 1\} \ \text{ein nichttriviales Primideal von } \mathbb{Z} \ \text{ist. Es ist also von der Form } (p) \ \text{für eine Primizahl} \ p. \ \text{Für diese Primizahl} \ p \ \text{kannst die Behauptung nachweisen}. \ \text{Der Beweis im allgemeinen Fall verläuft analog, mit } \mathcal{O}_K \ \text{statt } \mathbb{Z}. \end{array}$

Aufgabe 4. Bewertung irreduzibler Polynome

Sei K ein vollständig diskret bewerteter Körper. Sei $\mathcal{O}:=\{x\in K\,|\,|x|\leq 1\}$ sein Bewertungsring. Sei $f(X)=a_nX^n+\cdots+a_1X+a_0\in K[X]$ ein irreduzibles Polynom.

- a) Zeige, dass $|f(X)|=\max\{|a_0|,|a_n|\}$. Hinweis. Nach Definition ist $|f(X)|=\max\{|a_0|,\dots,|a_n|\}$. Verwende Hensels Lemma in seiner allgemeinen Formulierung.
- b) Folgere: Ist f(X) normiert und $a_0 \in \mathcal{O}$, so gilt schon $f(X) \in \mathcal{O}[X]$.

Aufgabe 5. Fortsetzung von Bewertungen

Sei K ein vollständig diskret bewerteter Körper K. Sei L|K eine Erweiterung vom Grad n. Zeige, dass die Setzung $|x|:=\sqrt[n]{|N_{L|K}(x)|}$ für $x\in L$ eine Bewertung auf L definiert, welche die gegebene Bewertung auf K fortsetzt.

 $\it Tipp.$ Zeige zunächst, dass der ganze Abschluss des Bewertungsrings $\it O_K$ von $\it K$ in $\it L$ gleich $\it \{x\in L\,|\,N_{\it L\,|\,K}(x)\in \it O_K\it \}$ ist. Verwende dazu die bekannte Formel, die Norm und den konstanten Koeffizienten des Minimalpolynoms miteinander in Beziehung setzt. Die Inklusion " \subseteq " wurde schon vor langer Zeit behandelt. Nutze für die andere Inklusion die Folgerung aus der vorherigen Teilaufgabe.