DESIGN & ANALYSIS OF SWIMMING POOL LIFT

ME6221: THEORY OF MECHANISMS

PROF. SUJATHA SRINIVASAN

Group Members:

- 1. ED15B001 ADARSH S.
- 2. ME15B044 AKSHAY M.
- 3. ME15B048 NIKHIL S.
- 4. ME15B079 ABHIJEET V.

- Design a swimming pool lift for a wheelchair user in accordance with American with Disability

 Act 2010
- Perform four position motion synthesis to develop a four bar mechanism
- Balance the mechanism against toppling
- Propose a driver dyad for actuation with high mechanical advantage with optimal link lengths for least force of actuation
- **■** Incorporate spring balancing into the design to minimize torque requirements

METHODOLOGY

■ Criteria:

- ▶ Wheelchair accessibility
- ▶ Depth of the pool
- Space availability for accommodating mechanism

Initial & final positions chosen based on ADA requirements

$$(x0,y0) = (-405 \text{ mm}, 485 \text{ mm})$$

$$(xf,yf) = (700mm,-455mm)$$

Position synthesis was initially performed to find approximate location of fixed pivots

4 position synthesis performed afterward to generate best locations for fixed pivots

Link	Length(m)	Direction(deg) at initial pose
Crank length I1	0.941	179.18
Dyad 1 length I2	1.976	-54.73
Follower length 13	1.235	-166.32
Dyad 2 length I4	1.351	-42.21
Coupler length 15	0.719	-78.77
Base length 16	0.565	-45.00

COUNTERBALANCING

2 extreme scenarios:

- The person is seated & the mechanism is at its extreme position into the water
- There is no one sitting on the mechanism &
 the mechanism is at its initial position
- If we are counterbalancing purely by a mass, then required mass = 150 kgs

COUNTERBALANCING

- **Alternate proposal:** Attach buoys to the frame/mechanism through rigid links
- Buoys can be lowered into the water only when necessary & then removed
- With a counterbalance of 20 kgs, the buoys need to displace a volume of water equal to around 65 litres at a distance 1.5 m into the pool to provide sufficient counter-moment
- As we have control over how the buoys are lowered into the pool, we can ensure the system doesn't topple in the other direction
- Buoys can be actuated by the same linkage

STATIC BALANCING

- Potential energy P = $f(\theta 2)$, $\theta min < \theta 2 < \theta max$
- Torque T = -f'(θ 2) ~ (P(θ 2) P(θ 2 d θ))/d θ
- **Mean square torque G = \Sigma T^2/N**
- Minimize G, subject to:
 - ► Variable bounds for spring parameters as per catalogue & practical considerations
 - Spring compression at any point should be within the specified range

STATIC BALANCING

Case	RMS Value of Input Torque(Nm)
Without balancing	364.92
With SL06 & SL08 gas spring series	319.97
With SL10 gas spring series	14.93
With SL14 gas spring series	28.60

STATIC BALANCING

FORCE ANALYSIS

- Quasi-static assumption
- **■** Linear mass density : 1 Kg/m
- Initial configuration is found & operational range of angle is given as input
- Iterate over input angles for force and moment calculations
- A*F=B

B= input matrix (accelerations of links)

F= force matrix [τ Fox Foy F1x F1y F2x F2y F3x F3y]

A= coefficient matrix

METHOD OF ACTUATION

- The driver dyad synthesis is done by optimizing the link lengths for maximum mechanical advantage
- The algorithm compares input torque required with the driver dyad output torque
- The output of the synthesis is a Grashofneutral mechanism

THANK YOU

This Project was done under the guidance of Prof. Sujatha

Srinivasan as part of the course ME6221: Theory of Mechanisms