Conjuntos

Conjuntos.

Relações binárias.

Referência: Discrete Mathematics with Graph Theory

Edgar Goodaire e Michael Parmenter, 3rd ed 2006

Capítulo: 2

CONJUNTOS

Conjuntos

- Conjunto é uma coleção de objetos chamados elementos ou membros
 - Definição ingénua
 - Base da linguagem da matemática
- Descrição em extensão
 - {minho, douro, mondego, tejo, sado, guadiana} principais rios
 - {x} conjunto com um elemento
 - $-\mathbb{N}=\{1,2,3,\ldots\}$ números naturais, sem 0
 - $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ números inteiros
- Descrição em compreensão
 - $\{x \mid P(x)\}$ conjunto dos elementos x tais que P(x) é verdade
 - {r | r é um dos rios principais}

Mais definições

- Definições alternativas de conjunto dos ímpares positivos
 - $\{n \mid n \text{ \'e um inteiro \'impar, n>0}\}\ \{2k-1 \mid k=1,2,3,...\}\ \{2k-1 \mid k \in \mathbb{N}\}\$
- □ Predicado de pertença a um conjunto
 - $k \in \mathbb{N}$ verdade se k for um **elemento** do conjunto \mathbb{N}
- \square $\mathbb{Q} = \{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \} \text{números racionais} \}$
 - Dízimas finitas ou infinitas periódicas
- \square \mathbb{R} números reais
 - Da forma $a.a_1a_2...$ em que $a ∈ \mathbb{Z}$ e $a_i ∈ \{0,1,...,9\}$
 - Contém racionais e irracionais (qual o maior?)
 - o Irracionais não representáveis como fração, dízimas infinitas não periódicas
 - $\sigma = 3.14159...$ e = 2.71... $\sqrt{3} = 1.732...$
 - o Não se sabe se πe é um irracional ou não
- \square $\mathbb{C}=\{a+bi \mid a,b \in \mathbb{R}, i^2=-1\}$ números complexos

Subconjuntos

- **Igualdade** A=B dois conjuntos A e B são iguais se e só se ambos contiverem os mesmos elementos ou nenhum tiver elementos
- □ Conjunto vazio \emptyset é o conjunto sem elementos {}
- **Subconjunto** A ⊆ B − A é um subconjunto de B se e só se cada elemento de A for elemento de B $\forall a (a \in A \rightarrow a \in B)$
 - A está contido em B, B é um superconjunto de A
 - A ⊂ B \Leftrightarrow A ⊆ B \land A ≠ B A é um subconjunto próprio de B

Teorema. Para cada conjunto A, $A \subseteq A$ e $\emptyset \subseteq A$.

Prova. Se a ∈ A então a ∈ A, pelo que A ⊆ A. Assumindo, por contradição, que \emptyset ⊆ A é falso então tem que existir um x ∈ \emptyset tal que x \notin A. Mas isto é absurdo pois não existe x ∈ \emptyset . Logo \emptyset ⊆ A.

Igualdade e subconjuntos

- □ Teorema. $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$
- □ Para provar a equivalência é necessário prová-la nos dois sentidos
 - $A = B \implies A \subseteq B \land B \subseteq A$
 - $-A = B \Leftarrow A \subseteq B \land B \subseteq A$
 - o Esta última implicação obriga a provar que $A \subseteq B$ e que $B \subseteq A$ para concluir a identidade

Verdade ou falso?

Conjunto das partes

- □ O conjunto das partes de A, designado ℘(A), é o conjunto de todos os subconjuntos de A. (Power set de A)
 - $\wp(A) = \{ B \mid B \subseteq A \}$
 - $A = \{a,b,c\}$
 - $\wp(A) = {\emptyset, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}$
- □ Cardinalidade de A |A|
 - Número de elementos de A, se A for finito
 - Se |A| = n então $|\wp(A)| = 2^n$

Operações sobre conjuntos

- Reunião de dois conjuntos A e B é o conjunto que contém os elementos em A e os elementos em B
 - $A \cup B = \{x \mid x \in A \lor x \in B\}$
- □ Interseção de dois conjuntos A e B é o conjunto que contém os elementos que pertencem tanto a A como a B
 - $A \cap B = \{x \mid x \in A \land x \in B\}$
- ☐ A reunião e a interseção são **associativas**
 - $(A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \cap B) \cap C = A \cap (B \cap C)$
- e comutativas
 - $-A \cup B = B \cup A$
 - $-A \cap B = B \cap A$

$$A \cup B \cup C = A \cup (B \cup C)$$

$$A \cap B \cap C = A \cap (B \cap C)$$

$$A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$$

$$A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$$

$$A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$$

Podem ser generalizadas sem ambiguidade

Diagramas de Venn

Ambiguidade

$$(A \cap B) \cup C = ? A \cap (B \cup C)$$

3+4 \cup 2+3+5+7 = ?
1+2+3+4 \cap 2+3+4+5+6+7
2+3+4+5+7 \neq 2+3+4
Parênteses imprescindíveis.

Propriedade distributiva

- $-A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $-A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $0 \quad 1+2+3+4 \cup 3+5 = 1+2+3+4+5+6 \cap 1+2+3+4+5+7$
 - 01+2+3+4+5=1+2+3+4+5

Mais operações sobre conjuntos

- □ A diferença de dois conjuntos A e B é o conjunto dos elementos de A que não estão em B
 - $A \setminus B = \{ x \mid x \in A \land x \notin B \}$
- □ O **complemento** de um conjunto A é o conjunto dos elementos de um conjunto universal U que não estão em A
 - $A^{c} = U \setminus A = \{ x \mid x \notin A \land x \in U \}$
 - O conjunto universal U depende do contexto
- Exemplo do diagrama de Venn
 - A \ B = 1+2
 - $A^{c} = 5+6+7+8$ (U é todo o diagrama)

Verdadeiro ou falso?

$$\triangle$$
 A \cup \emptyset = A

$$\triangle$$
 A \cap \emptyset = A

$$\triangle$$
 A \cap \emptyset = \emptyset

$$\Box$$
 A \cup U = U

$$\Box$$
 A \cap U = U

$$\Box$$
 $A \cap U = A$

$$\Box$$
 $(A^c)^c = A$

- □ Elemento neutro da reunião
- □ Falso
- □ Elemento absorvente da interseção
- □ Elemento absorvente da reunião
- □ Falso
- Elemento neutro da interseção
- □ Falso
- Dupla complementação
- □ Diferença e interseção complementar
- ☐ Interseção e diferença
- Leis de De Morgan

Diferença simétrica

- □ A diferença simétrica de dois conjuntos A e B é o conjunto de elementos que estão em A ou em B mas não nos dois
 - $-A \oplus B = \{ x \mid (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \}$
 - $-A \oplus B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

$$\Box$$
 {a,b,c} \oplus {x,y,a} =

$$= \{b,c,x,y\}$$

$$\Box$$
 {a,b,c} $\oplus \emptyset =$

$$= \{a,b,c\}$$

$$\Box$$
 {a,b,c} \oplus { \emptyset } =

$$= \{a,b,c,\varnothing\}$$