Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра <u>Систем управления и информати</u>	<u>ки Группа Р4235</u>
ЛАБОРАТОРНАЯ РАБОТА №1	
по курсу: «Адаптивное и робастное управление нелинейными	
системами»	
Принцип построения систем адаптивного управления	
невозмущенными объектами	
D N 2	
Вариант №2	
Авторы работы:	Антонов Е.С.,
	Артемов К.А.
Преподаватель:	Герасимов Д.Н.
« <u>08</u> » сентября 2017 г.	

Санкт-Петербург 2017 г.

Работа выполнена с оценкой _____

Дата защиты «___» _____ 2017 г.

1 Цель работы

Освоение принципов построения систем адаптивного управления на примере задачи слежения выхода скалярного объекта за эталонным сигналом.

2 Теоретические сведения

Рассматриваемый объект управления:

$$\dot{x} = \theta x + u,\tag{1}$$

где x — переменная состояния объекта, u — сигнал управления, θ — неизвестный постоянный параметр.

Цель управления заключается в компенсации неопределенности θ и обеспечении следующего целевого равенства:

$$\lim_{t \to \infty} (x_m(t) - x(t)) = \lim_{t \to \infty} \varepsilon(t) = 0, \tag{2}$$

где $\varepsilon = x_m - x$ — ошибка управления, x_m — эталонный сигнал, являющийся выходом динамической модели вида (т.н. эталонной модели)

$$\dot{x}_m = \lambda x_m + \lambda g,\tag{3}$$

где g — сигнал задания, λ — параметр, задающий желаемое время переходного процесса. Решающие поставленную задачу настраиваемый регулятор

$$u = -\hat{\theta}x - \lambda x + \lambda g \tag{4}$$

и алгоритм адаптации

$$\dot{\hat{\theta}} = -\gamma x \varepsilon. \tag{5}$$

3 Исходные данные

Варианту №2 соответствует следующий набор исходных данных:

$$\theta = 2, \qquad \lambda = 2, \qquad g(t) = \cos 4t.$$
 (6)

4 Результаты экспериментов

См. рисунки 1–8 и подписи к ним.

Рисунок 1 — Схема моделирования процесса управления с помощью ненастраиваемого регулятора.

Рисунок 2 — Результаты моделирования процесса управления с помощью ненастраиваемого регулятора.

Рисунок 3 — Схема моделирования процесса управления с помощью настраиваемого регулятора.

Рисунок 4 — Результаты моделирования процесса управления с помощью настраиваемого регулятора при $\gamma=100$.

Рисунок 5 — Схема моделирования, которая использовалась в экспериментах по выяснению влияния величины γ на переходные процессы (THETA=2).

Рисунок 6 – Графики выходной величины идентификатора при разных значениях коэффициента адаптации.

Рисунок 7 — График отражающий экспериментальную зависимость между временем переходного процесса кривой $\hat{\theta}(t)$ и значением коэффициента адаптации.

Рисунок 8 – Графики переходных процессов по состоянию объекта при разных значениях коэффициента адаптации.

5 Выводы по работе

В результате проделанной работы экспериментальным путем было установлено, что

- ненастраиваемый регулятор (получается из (4) заменой $\hat{\theta}$ на θ) в случае несовпадения значения θ , используемого им для формирования управляющего воздействия u, со значением одноименного параметра ОУ не только не выполняет целевого равенства (2), но и может не обеспечивать даже устойчивость ОУ (см. рисунок 2);
- настраиваемый регулятор (4) вкупе с алгоритмом адаптации (5) решает поставленные задачи, заключающиеся в выполнении целевого условия (2) и оценке значения неизвестного параметра θ объекта (см. рисунок 4);
- значение коэффициента адаптации влияет на скорость (время) сходимости оценки $\hat{\theta}$ к истинному значению параметра θ ОУ (см. рисунок 6), при этом указанная зависимость имеет характер, иллюстрируемый графиком с рисунка 7.