

## Blocs Fonctionnels pour les Mobiles

Révision

(18/4/2014)



## Emetteur/ Récepteur Basic





### Antenne

Antenne: transforme un signal électrique en onde EM, et vice versa.

### <u>Paramètres fondamentaux :</u>

- > Fréquence de résonance, bande passante
- > Impédance d'entrée
- > Polarisation
- Diagramme de rayonnement
- Directivité, Gain, Efficacité

Longueur d'onde :  $\lambda = c/f$ 







### **Antenne: Polarisation**





## Différents types d'antenne

#### Antenne filaire



Dipôle



Hélice



Yagi-Uda

### Antenne à ouverture Antenne planaire













# Antenne à réflecteur





## Antenne patch



### **Patch rectangulaire**

Sans prendre en compte l'effet fringing :





$$(f_r)_{010} = \frac{1}{2L\sqrt{\epsilon_r}\sqrt{\mu_0\epsilon_0}} = \frac{\nu_0}{2L\sqrt{\epsilon_r}}$$

Prendre en compte l'effet fringing :

$$(f_{rc})_{010} = \frac{1}{2L_{\text{eff}}\sqrt{\epsilon_{\text{reff}}}\sqrt{\mu_0\epsilon_0}}$$

$$\epsilon_{\text{reff}} = \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2} \left[ 1 + 12 \frac{h}{W} \right]^{-1/2}$$

$$\frac{\Delta L}{h} = 0.412 \frac{(\epsilon_{\text{reff}} + 0.3) \left(\frac{W}{h} + 0.264\right)}{(\epsilon_{\text{reff}} - 0.258) \left(\frac{W}{h} + 0.8\right)}$$

$$L_{\rm eff} = L + 2\Delta L$$



## Antenne patch



#### **Patch circulaire**



#### Sans prendre en compte l'effet fringing :

$$(f_r)_{110} = \frac{1.8412}{2\pi a \sqrt{\mu \epsilon}} = \frac{1.8412 \nu_0}{2\pi a \sqrt{\epsilon_r}}$$

#### Prendre en compte l'effet fringing :

$$(f_{rc})_{110} = \frac{1.8412\nu_0}{2\pi a_e \sqrt{\epsilon_r}}$$

$$a_e = a \left\{ 1 + \frac{2h}{\pi a \epsilon_r} \left[ \ln \left( \frac{\pi a}{2h} \right) + 1.7726 \right] \right\}^{1/2}$$



### Bilan de puissance d'une liaison HF

#### **Equation de transmission de Friis**





## Unité dB, dBw, dBm

$$dB = 10log_{10}(x)$$
 x : sans unité  $\rightarrow$  rapport, coefficient

$$P(dBw) = 10log_{10}(P/1W) \rightarrow simplifié en dB$$

$$P(dBm) = 10log_{10}(P/1mW)$$



## Emetteur/ Récepteur Basic





## Mélangeur









→ diode, transistor



## Mélangeur





### Oscillateur

### produire un signal périodique

Chaîne directe: H(p)

Chaîne de retour : K(p)

Gain de boucle : T(p) = H(p).K(p)



#### Condition de Barkhausen:

$$\underline{T}(j\omega_0) = \underline{H}(j\omega_0)\underline{K}(j\omega_0) = 1$$

ou

« gain de boucle = 1 »

Sur le module :  $T(j\omega_0) = H(j\omega_0) | K(j\omega_0) = 1$ 

Sur la phase :  $\arg(\underline{T}(j\omega_0)) = \arg(\underline{H}(j\omega_0)) + \arg(\underline{K}(j\omega_0)) = 0$ 



## Emetteur/ Récepteur Basic







## **Filtre**

- > Type de filtres:
  - filtre passe-haut
  - filtre passe-bas
  - filtre passe-bande
  - filtre coupe-bande









- > Type de filtres:
  - Filtre éléments discrets R L C
  - Filtre piézoélectrique : SAW, BAW
  - Filtre céramique
  - Filtre micro-ruban

**–** ...







### **Filtre**



- > Fonction de transfert T(jω) : rapport Vs/Ve
  - ✓ Fréquence de coupure −3dB par rapport au Gain max
  - ✓ Bande passante
  - ✓ Ordre du filtre
- Deux courbes de réponse : amplitude/fréquence et phase/fréquence
  - → Diagrammes de Bode



## Emetteur/ Récepteur Basic



oscillator



### Modulation

 $s(t) = S_0(t) \sin[\omega_0(t)t + \varphi_0(t)]$ 

Modulation d'amplitude

**Modulation angulaire** 

- fréquence
- phase





modulation de fréquence



modulation de phase





### Modulation

$$s(t) = S_0(t) \sin[\omega_0(t) t + \varphi_0(t)]$$

m(t): signal modulant

**Modulation d'amplitude** :  $S_0(t) = E(1 + k.m(t))$ 

$$S_{AM}(t) = E (1 + k.m(t)) \sin\Phi(t)$$

Modulation de fréquence : 
$$f_p(t) = f_0 + k_f m(t)$$
  $\longrightarrow$   $\Phi_p(t) = \omega_0 t + \int 2\pi k_f m(t)$  dt

$$S_{FM}(t) = S_0 \sin(\omega_0 t + \int 2\pi k_f m(t) dt + \phi_0)$$

Modulation de phase: 
$$\Phi_{S}(t) = \omega_{0}t + k_{p} m(t)$$
  $\Longrightarrow$   $f_{p}(t) = f_{0} + k_{p} \frac{d m(t)}{dt}$ 

$$S_{PM}(t) = S_0 \sin(\omega_0 t + k_p m(t) + \phi_0)$$



## Effets des ondes EM

- > Effet thermique
  - ✓ Pourquoi?
  - ✓ DAS
- > Effet athermique



1 On réalise le filtre RC suivant, avec R = 10 kΩ et C = 10 nF, et on injecte à l'entrée un signal sinusoïdal :



|                                                                                         | Vrai | Faux |
|-----------------------------------------------------------------------------------------|------|------|
| a) il s'agit d'un filtre passe-bas                                                      | V    |      |
| b) le signal de sortie est toujours sinusoïdal quelle que soit la fréquence             | V    |      |
| c) le signal de sortie a une amplitude indépendante de la fréquence                     |      | V    |
| d) un signal e(t) de fréquence 1Hz est transmis sans atténuation                        | V    |      |
| e) la fréquence de coupure est de 159 kHz                                               |      | V    |
| f) aux fréquences élevées, le signal de sortie est en opposition de phase avec l'entrée |      | V    |
| g) si le signal d'entrée a une amplitude trop élevée, la sortie est écrêtée             |      | V    |



On injecte maintenant dans le filtre précédent un signal carré :

a) le signal de sortie a la même forme que le signal d'entrée

b) tous les harmoniques du signal carré sont atténués de la même façon

c) le signal de sortie est formé d'impulsions très brèves

d) le signal de sortie présente un temps de montée qui dépend des valeurs de R et C

e) un signal carré à 1 Hz n'est pratiquement pas déformé

Vrai Faux

e(t) R c s(t)

#### Un filtre a un gain qui évolue en fonction de la fréquence de la manière suivante :



L'étude d'un signal e(t) de fréquence fo = 100 kHz modulé en AM par un signal BF sinusoïdal de fréquence F = 2,5 kHz a donné les courbes suivantes (signal modulant, porteuse pure, porteuse modulée, porteuse démodulée par un détecteur crête) :



- 1) A partir de la fréquence de la porteuse, graduer l'axe des temps pour les 4 courbes.
- La porteuse modulée a une amplitude crête à crête minimale de V<sub>min</sub> = 1,75 V et maximale de V<sub>max</sub> = 6,03V
   En déduire la valeur de l'indice de modulation m et de l'amplitude E de la porteuse.

3) La porteuse est démodulée par le détecteur crête suivant :



Préciser les instants de conduction et de blocage de la diode. Dessiner

### **Solution**:

- 1) T = 1/F = 1/2,5k = 0,4 ms  $T_0 = 1/f_0 = 1/100k = 10\mu\text{s}$ Il y a 40 périodes de la porteuse dans 1 période du signal modulant.
- 2) indice de modulation vaut m = 0,55

Lorsque le signal modulant est sinusoïdal, on a  $s(t) = acos(\Omega t)$  et la porteuse modulée s'écrit :

$$e(t) = E(1 + kacos(\Omega t)) cos(\omega t) = E(1 + mcos(\Omega t)) cos(\omega t)$$
 m: indice de modulation

3) D conduit quand C se charge, D est bloquée quand C se décharge