CS528 Big Data Analytics Midterm

Part I: Composite questions (100%) (Select 4 questions)

Q1. The Air Quality Index (AQI) is based on the concentrations of 5 pollutants. The index is calculated from the concentrations of the following pollutants: O3, NO2, SO2, PM2.5 and PM10. The breakpoints between index values are defined for each pollutant separately and the overall index is defined as the maximum value of the index. Different averaging periods are used for different pollutants (Figure 1). Please write a program to calculate the AQI of each air pollutants.

Note 1: Here, we change SO2 to hourly mean (ug/m³).

Note 2: You need to convert units from "ppb" to "ug/m3" of NO2, O3 and SO2 (Figure 2)

Note 3: An example shown in Figure 3

Index	Ozone, Running 8 hourly mean (µg/m³)	Nitrogen Dioxide, Hourly mean (µg/m³)	Sulphur Dioxide, 15 minute mean (μ g/m³)	PM2.5 Particles, 24 hour mean (µg/m³)	PM10 Particles, 24 hour mean (µg/m³)
1	0-33	0-67	0-88	0-11	0-16
2	34-66	68-134	89-177	12-23	17-33
3	67-100	135-200	178-266	24-35	34-50
4	101-120	201-267	267-354	36-41	51-58
5	121-140	268-334	355-443	42-47	59-66
6	141-160	335-400	444-532	48-53	67-75
7	161-187	401-467	533-710	54-58	76-83
8	188-213	468-534	711-887	59-64	84-91
9	214-240	535-600	888-1064	65-70	92-100
10	≥ 241	≥ 601	≥ 1065	≥ 71	≥ 101

Figure 1. AQI Index

SO ₂	1 ppb = $2.62 \mu g/m^3$
NO ₂	1 ppb = $1.88 \mu g/m^3$
NO	1 ppb = $1.25 \mu g/m^3$
O ₃	1 ppb = $2.00 \mu g/m^3$
CO	1 ppb = $1.145 \mu g/m^3$
Benzene	1 ppb = $3.19 \mu g/m^3$

Figure 2. Convert units from "ppb" to "ug/m3"

innut	-											
Date Station	Type	(1	2	3	4	5	6	7	8	9	10 11
2011/1/1 SongS	Shang NO2	20) 26	27	16	11	14	16	18	34	19	14 15
2011/1/1 SongS	Shang O3	23	17	17	22	27	23	23	20	10	21 :	28 28
2011/1/1 SongS	Shang PM10	92	2 83	54	54	55	57	56	54	56	66	53 63
2011/1/1 SongS	Shang PM2.5	32	30	34	22	26	27	22	14	10	22	30 32
2011/1/1 SongS	Shang SO2	6.3	3.6	3.2	3.1	2.7	2.6	3.3	4.1	4.4	3.5 3	.2 3.3
12	13	14	15	16	1	7	18	19	20	21	22	23
14	14	15	16	28	3.	4	35	32	24	25	21	15
29	31	30	29	19	1-	4	13	12	18	16	18	22
61	50	48	31	49	5.	5	30	42	52	65	64	41
27	27	23	28	27	3.	4	28	30	30	31	29	27
2.9	2.6	2.5	2.5	3	3.:	2	3.4	3.8	3.9	3.7	3.1	2.9

_{Type} outp	out Value	value (ug/m3)	AQI
NO2	35 ppb	65.8	1
03	26.875 ppb	53.75	2
PM10	55.46 ug/m3	55.46	4
PM2.5	26.75 ug/m3	26.75	3
SO2	6.3 ppb	16.506	1

Figure 3 An example of this question

- (a) Convert ppb to ug/m³ of NO2, O3 and SO2 (9%)
- (b) Each AQI of air pollutants

b.1 O3 (4%)

b.2 NO2 (3%)

b.3 SO2 (3%)

b.4 PM2.5 (3%)

b.5 PM10 (3%)

Save as: SID_Q1.r (e.g s1001234_Q1.r)

Q2. The three dataset, Q2_Summary.csv, Q2_Type_info.csv, and Q2_Dist_info.csv, are the actual price registration in Taoyuan. Please integrate those tables using TYPEID and DistrictID. Please use for loop and boxplot in Plotly package to implement the data visualization. (Figure 4)

Note: Please upload the files to server.

- (a) Merger Data (5%)
- (b) Use for loop (5%)
- (c) Use Plotly package (5%)
- (d) Implement in Rshiny (10%)

Save as: SID_Q2_server.r, SID_Q2_ui.r

(e.g s1001234_Q2_server.r, s1001234_Q2_ui.r)

Figure 4.

- Q3. The dataset, Q3_data.csv, is the MRT information in Taipei
- (a) Please use Rshiny show the MRT information in the map like Figure 5. (15%)
- (b) Please show the nearest 5 MRT stations when user input the lat and lon. (10%) Hint: Use longitude and latitude information

Save as: SID_Q3_server.r, SID_Q3_ui.r

(e.g s1001234_Q3_server.r, s1001234_Q3_ui.r)

Figure 5.

Q4: In homework1, we introduce the confusion matrix. Please use the confusion matrix to calculate the accuracy, precision, sensitivity, specificity and Fscore of the clustering result.

- (a) Accuracy (5%)
- (b) Precision (5%)
- (c) Sensitivity (5%)
- (d) Specificity (5%)
- (e) Fscore (5%)

Save as: SID_Q4.r (e.g s1001234_Q4.r)

		Predict					
		A	В	С	Others		
	A	TPA	E _{AB}	E _{AC}	E _{AO}		
Actual	В	E_{BA}	TP_B	E _{BC}	E _{BO}		
	С	Eca	E _{CB}	TP _C	E _{CO}		

$$TP_{m} = TP_{m}$$

$$FP_{m} = \sum_{i \in K} E_{im} - TP_{m}$$

$$FN_{m} = \sum_{i \in K} E_{mi} - TP_{m}$$

$$TN_{m} = \text{\#samples} - TP_{m} - FP_{m} - FN_{m}$$

$$Accuracy = \frac{\sum_{m \in K} TP_{m}}{\# case}, K \in \{A, B, C\}$$

$$Precision = \frac{\sum_{m \in K} TP_{m}}{\sum_{m \in K} (TP_{m} + FP_{m})}$$

$$Sensitivity = \frac{\sum_{m \in K} TP_{m}}{\sum_{m \in K} (TP_{m} + FN_{m})}$$

$$Specificity = \frac{\sum_{m \in K} TN_{m}}{\sum_{m \in K} (FP_{m} + TN_{m})}$$

$$Fscore = \frac{\sum_{m \in K} 2TP_{m}}{\sum_{m \in K} (2TP_{m} + FP_{m} + FN_{m})}$$

Q5: The dataset, Q5_death.csv, is the cause of death in Taiwan in 2013. And the datasets Q5_cause.csv, Q5_county.csv and Q5_sex.csv are the information of cause of death, county id and sex id, respectively. Please integrate those tables by sex, cause and county.

- (a) Calculate the number of cause of death in female and male and create a barplot in plotly package (Figure 5). (15%)
- (b) Calculate the number of cause of death in each county and create a table like Figure6. (10%)

Save as: SID_Q5.r (e.g s1001234_Q5.r)

Figure 5.

> head(out)											
	County1	County2 (County3 :	County4	Cour	nty5 Coun	ty6 County	/7 County/	B County9	County10	County11
Intestinal infectious diseases	1	2	0	C)	2	0	1 (0 0	3	2
Chronic lower respiratory diseases	39	72	32	52		56	20 !	8 6	2 49	31	5.7
Tuberculosis	4	8	3	6		4	1	9 9	9 8	5	5
Cerebrovascular diseases	95	136	59	88		109	62 14				
Hypertensive diseases	46	46	20	5.7		31	19 !	50 5:	1 29	23	60
Diseases of the musculoskeletal system and connective tissue	15	17	11	17		16	9 :	L7 14	4 21	16	21
	County12	County1	3 County	14 Cour	ity15	County16	County17	County18	County19	County20	County21
Intestinal infectious diseases	1		2	0	0	2	0	1	0	0	1
Chronic lower respiratory diseases	45	4:	2	20	23	22	18	8	24	18	18
Tuberculosis	5		2	0	3	1	0	0	3	4	1
Cerebrovascular diseases	122	71	0	34	37	46	35	11	40	34	23
Hypertensive diseases	61	41	0	25	21	13	10	5	9	7	19
Diseases of the musculoskeletal system and connective tissue	17		5	3	6	6	1	4	4	1	3
	County22	County2	3 County	24 Cour	ity25	County26	County27	County28	County29	County30	County31
Intestinal infectious diseases	0		0	0	0	0	1	0	2	0	1
Chronic lower respiratory diseases	22	1	3	4	14	8	21	11	24	20	46
Tuberculosis	0		1	1	2	2	4	1	1	0	2
Cerebrovascular diseases	30	13		9	27	15	23	29	33		
Hypertensive diseases	16	1	0	7	3	5	21	15	12	16	3.5
Diseases of the musculoskeletal system and connective tissue	3		3	1	1	2	7	5	5	1	7

Figure 6.

Q6: The dataset, Q6_data.csv, is the patients' data in NHIRD (The National Health Insurance Research Database). Please create demographic table like figure 7.

Note:

id_date: Date of hospitalization

diag_amt: Diagnosis fees room_amt: Room fees

amin_amt: Examination fees

sgry_amt: Surgical fees

age = (id date - birthday) / 365.25

age group: <15 y/o, 15~29 y/o, 30 ~ 44 y/o, 45~64 y/o and >= 65 y/o

- (a) Age_group 5%
- (b) Sex 4%
- (c) Average diag_amt 4%
- (d) Average room_amt 4%
- (e) Average amin_amt 4%
- (f) Average sgry_amt 4%

```
<15y/o
                   15~29y/o
                              30~44y/o
                                        45~64y/o
                                                    >=65y/o
                     339.000
           137.00
                              1699.000
                                        6110.000
                                                   5909.000
Male
           112.00
                     214.000
                               601.000
                                         2979.000
                                                   4548.000
Female
                              7779.258
                                                   8148.632
diag_amt 12489.64
                   7607.325
                                        7669.699
room_amt 83620.19 45173.320 45199.457 44289.199 47975.748
amin_amt 16460.43 10982.617
                              9100.175
                                        8034.153
                                                   9268.775
sgry_amt 28851.13 22179.854 14674.443 10864.875
                                                   7478.414
```

Figure 7

Part II: Bonus (25%)

1. Please fill in the questionnaire (5%). https://goo.gl/forms/upQqfE2lfMCqlgxX2

CS528 Mid	term Questi	ionnaire	
*必填			
Name *			
Student ID *			
Linux Experience *			
•			

Figure 8.

- 2. Please describe your final project.
 - (a) Title (2%)
 - (b) Your idea or method (8%)
- 3. Please describe your homework2
 - (a) Dataset (Name, URL)(5%)
 - (b) Your idea (5%)

Save as: SID_Bonus.docx (e.g s1001234_Bonus.docx)

Note:

If you select 5 questions in Part I., Score = Total – Median.

If you select 6 questions in Part I., Score = Total – Max – min

For example: Q1:20, Q2:15, Q3:25, Q4:20, Q5:10, Q6:5, Score = 95 - 25 -5 = 65