Tutorial 5

Problem 5.1

Let D_{θ} be the discrete distribution with the PMF $f(1|\theta) = \theta$, $f(2|\theta) = 1 - \theta$, and $f(x|\theta) = 0$ otherwise, where $\theta \in [0,1]$ is an unknown parameter.

- a) Find the maximum likelihood estimator (MLE) for θ , based on i.i.d. $X_1,\ldots,X_n\sim D_\theta$. [Hint: $f(x|\theta)=\theta^{2-x}(1-\theta)^{x-1}$ for x=1,2, and zero otherwise.
- b) For n=3, the observations $x_1=1$, $x_2=2$, $x_3=2$ are given. What is the MLE for θ based on these observations?

Problem 5.2

Let $X_1, ..., X_n$ be an i.i.d. sample drawn from a $Gamma(2, \theta)$ distribution. The PDF of $Gamma(2, \theta)$ is given as

$$f(x|\theta) = \frac{1}{\theta^2} x e^{-x/\theta}$$
 for $x > 0$

and zero otherwise, where $\theta \in (0, \infty)$ is an unknown parameter

- a) Find the maximum likelihood estimator $\hat{\theta}$ (MLE) for θ based on X_1, \dots, X_n .
- b) Compute the expected value and variance of $\hat{\theta}$.
- c) For n=3, the observations $x_1=120$, $x_2=130$, $x_3=128$ are given. Find the MLE for θ , with an estimated standard error, based on these observations.

Problem 5.3

Let D_{θ} , $0 \le \theta \le 1$, be the discrete distribution with the following PMF:

x	0	1	2	3
f(x)	$\frac{2}{3}\theta$	$\frac{1}{3}\theta$	$\frac{2}{3}(1-\theta)$	$\frac{1}{3}(1-\theta)$

and f(x) = 0 otherwise. Let $X_1, ..., X_n$ be an i.i.d. random sample drawn from D_θ and let \overline{X} denote the sample mean. We consider the following estimators for θ .

$$\hat{\theta}_{1}(n) = -\frac{1}{2}\bar{X}$$

$$\hat{\theta}_{2}(n) = \frac{1}{6}[7 - (X_{1} + X_{2} + X_{3})]$$

$$\hat{\theta}_{3}(n) = \frac{1}{6}[7 - 3\bar{X}]$$

$$\hat{\theta}_4(n) = \frac{1}{16} \left(17 - \frac{3}{n} \sum_{i=1}^n X_i^2 \right)$$

- a) Which of these estimators are unbiased?
- b) Which of these estimators satisfy $\lim_{n \to \infty} Var \big[\hat{\theta}_i(n) \big] = 0$?
- c) For each of these estimators, compute the standard error and the mean squared error.
- d) The following observations for $X_1, ..., X_n$ are given with n=10: 3,0,2,1,3,2,1,0,2,1

For each unbiased estimator form above, substitute the observations into the estimator to obtain an estimation of θ . What do the respective estimated standard errors tell us about the accuracy of these estimations?