logistic

Xinran Sun, Haotian Wu, Lin Yang, Shengzhi Luo

3/17/2022

```
ggplot2::theme_set(theme_minimal() + theme(legend.position = "bottom"))
```

data import and data clean

```
#load the data
breast = read.csv("breast-cancer.csv") %>%
    janitor::clean_names() %>%
    dplyr::select(-1, -33) %>% #drop id and NA columns
    mutate(diagnosis = recode(diagnosis, "M" = 1, "B" = 0))

#check collinearity
corr = breast[2:31] %>%
    cor()

ggcorrplot(corr, type = "upper", tl.cex = 8)
```



```
#remove some highly correlated variables
breast_dat <- breast %>% dplyr::select(-area_se, -perimeter_se, -area_worst, -perimeter_mean, -perimeter
corr1 = breast_dat[2:20] %>%
    cor()
ggcorrplot(corr1, type = "upper", tl.cex = 8)
```



```
#partition data into training and test data
trainRows <- createDataPartition(y = breast_dat$diagnosis, p = 0.8, list = FALSE)
breast_train <- breast_dat[trainRows, ]
breast_test <- breast_dat[-trainRows, ]
head(breast_dat, 5)</pre>
```

```
##
     diagnosis radius mean texture mean smoothness mean concavity mean
## 1
                                    10.38
                                                   0.11840
             1
                      17.99
                                                                    0.3001
## 2
                      20.57
                                    17.77
                                                   0.08474
                                                                    0.0869
             1
## 3
                      19.69
                                    21.25
                                                   0.10960
                                                                    0.1974
             1
## 4
             1
                      11.42
                                    20.38
                                                   0.14250
                                                                    0.2414
## 5
             1
                      20.29
                                    14.34
                                                   0.10030
                                                                    0.1980
     symmetry_mean fractal_dimension_mean radius_se texture_se smoothness_se
## 1
                                                1.0950
                                                           0.9053
                                                                        0.006399
            0.2419
                                    0.07871
## 2
            0.1812
                                    0.05667
                                                0.5435
                                                           0.7339
                                                                        0.005225
## 3
            0.2069
                                    0.05999
                                                0.7456
                                                           0.7869
                                                                        0.006150
## 4
            0.2597
                                    0.09744
                                                0.4956
                                                           1.1560
                                                                        0.009110
## 5
            0.1809
                                    0.05883
                                                0.7572
                                                           0.7813
                                                                        0.011490
##
     compactness_se concavity_se concave_points_se symmetry_se
## 1
            0.04904
                          0.05373
                                              0.01587
                                                          0.03003
## 2
                                              0.01340
                                                          0.01389
            0.01308
                          0.01860
## 3
            0.04006
                          0.03832
                                              0.02058
                                                          0.02250
## 4
            0.07458
                          0.05661
                                              0.01867
                                                          0.05963
## 5
            0.02461
                          0.05688
                                              0.01885
                                                          0.01756
     fractal_dimension_se smoothness_worst compactness_worst concave_points_worst
```

```
## 1
                 0.006193
                                     0.1622
                                                        0.6656
                                                                              0.2654
## 2
                 0.003532
                                     0.1238
                                                        0.1866
                                                                              0.1860
## 3
                                                        0.4245
                 0.004571
                                     0.1444
                                                                              0.2430
## 4
                                                                              0.2575
                 0.009208
                                     0.2098
                                                        0.8663
## 5
                 0.005115
                                     0.1374
                                                        0.2050
                                                                              0.1625
## symmetry_worst fractal_dimension_worst
## 1
             0.4601
                                     0.11890
             0.2750
## 2
                                     0.08902
## 3
             0.3613
                                     0.08758
## 4
             0.6638
                                     0.17300
## 5
             0.2364
                                     0.07678
r = dim(breast_dat)[1] #row number
c = dim(breast_dat)[2] #column number
var_names = names(breast_dat)[-c(1,2)] #variable names
standardize = function(col) {
  mean = mean(col)
  sd = sd(col)
  return((col - mean)/sd)
}
stand_df = breast_dat %>%
 dplyr::select(radius_mean:fractal_dimension_worst) %>%
  map_df(.x = ., standardize) #standardize
X = stand df #predictors
y = as.vector(ifelse(breast_dat[,2] == "M", 1, 0)) #response
x_train <- breast_train[2:20] #predictors</pre>
y_train <- breast_train[1] #response</pre>
x_train_stan <- cbind(rep(1, nrow(x_train)), scale(x_train))</pre>
x_test <- breast_test[2:20]</pre>
```

Full logistic model

x_test_stan <- cbind(rep(1, nrow(x_test)), scale(x_test))</pre>

```
Median
                   1Q
                                                Max
                                  0.00015
                                            2.86393
## -1.43985 -0.02891 -0.00199
##
## Coefficients:
##
                            Estimate Std. Error z value Pr(>|z|)
                                        16.7820 -2.267 0.02337 *
## (Intercept)
                           -38.0509
## radius mean
                              0.5227
                                        0.4952
                                                 1.055 0.29120
                                                  2.782 0.00540 **
## texture_mean
                              0.4617
                                         0.1660
                                                  0.001 0.99897
## smoothness mean
                             0.1289
                                        99.8365
                                                  2.036 0.04178 *
## concavity_mean
                             58.3640
                                        28.6695
## symmetry_mean
                            -51.9111
                                        37.6106
                                                -1.380 0.16752
                                                -0.362 0.71713
## fractal_dimension_mean
                            -87.0197
                                       240.1909
## radius_se
                             20.2642
                                         7.6415
                                                 2.652 0.00801 **
## texture_se
                                                 0.893 0.37184
                              1.0909
                                         1.2215
                                       403.9299
                                                  0.718 0.47287
## smoothness_se
                            289.9465
## compactness_se
                            56.8072
                                       149.7642
                                                  0.379
                                                         0.70446
                                                -0.908 0.36409
## concavity_se
                           -40.3851
                                        44.4970
## concave_points_se
                           -100.3727
                                       329.2203
                                                -0.305 0.76046
                                                -1.723 0.08491
                                       157.0858
## symmetry_se
                           -270.6388
## fractal dimension se
                           -793.6856 1414.6402
                                                 -0.561 0.57476
## smoothness_worst
                             -5.8424
                                        76.1926
                                                -0.077 0.93888
                                        20.7176 -1.113 0.26573
## compactness_worst
                            -23.0579
                                                  1.791
## concave_points_worst
                             74.0151
                                        41.3274
                                                         0.07330 .
                                        30.0863
                                                  2.351
## symmetry worst
                             70.7299
                                                         0.01873 *
## fractal_dimension_worst
                             83.8086
                                       196.5715
                                                  0.426 0.66985
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 603.346 on 455
                                       degrees of freedom
## Residual deviance: 47.131 on 436
                                       degrees of freedom
## AIC: 87.131
##
## Number of Fisher Scoring iterations: 10
pred <- predict(glm.fit, newdata = breast_test, type = "response")</pre>
y_test <- factor(breast_test$diagnosis)</pre>
auc_full <- auc(y_test, pred)</pre>
auc_full
```

Area under the curve: 0.9946

Newton-Raphson algorithm

coordinate-wise optimization of a logistic-lasso model

```
#soft threshold
sfxn <- function(beta, lambda) {
  if (abs(beta) > lambda) {
    return(sign(beta) * (abs(beta) - lambda))
```

```
}
else {
   return(0)
}
```

```
#coordinate-wise optimization function
coordwise_lasso <- function(lambda, x, y, betastart, tol = exp(-10), maxiter = 5000) {
  i <- 0
  n <- length(y)
  pnum <- length(betastart)</pre>
  betavec <- betastart
  loglik <- 0
  res <- c(0, loglik, betavec)
  prevloglik <- -Inf</pre>
  while (i < maxiter & abs(loglik - prevloglik) > tol & loglik < Inf) {</pre>
    i <- i + 1
    prevloglik <- loglik
    for (j in 1:pnum) {
      theta <- x %*% betavec
      p <- exp(theta) / (1 + exp(theta)) #probability of malignant cases
      w <- p*(1-p) #working weights
      w \leftarrow ifelse(abs(w-0) < 1e-5, 1e-5, w)
      z <- theta + (y - p)/w #working response
      zwoj \leftarrow x[, -j] \%*\% betavec[-j]
      \texttt{betavec[j]} \leftarrow \texttt{sfxn}(\texttt{sum}(\texttt{w*}(\texttt{x[,j]})*(\texttt{z - zwoj})), \texttt{ lambda}) \ / \ (\texttt{sum}(\texttt{w*x[,j]}*\texttt{x[,j]}))
    }
    theta <- x %*% betavec
    p <- exp(theta) / (1 + exp(theta)) #probability of malignant cases
    w <- p*(1-p) #working weights
    w \leftarrow ifelse(abs(w-0) < 1e-10, 1e-10, w)
    z \leftarrow theta + (y - p)/w
    loglik <- sum(w*(z - theta)^2) / (2*n) + lambda * sum(abs(betavec))</pre>
    res <- rbind(res, c(i, loglik, betavec))</pre>
  return(res)
}
\#coordwise\_res \leftarrow coordwise\_lasso(lambda = 0.006, x\_train\_stan, y\_train, betastart = rep(0, \#20))
#coordwise_res[nrow(coordwise_res), ]
```

We need to calculate lambdamax first to define a sequence of lambda.

```
x.matrix <- scale(x_train) %>% as.matrix()
y.matrix <- as.matrix(y_train)
lambdamax <- max(abs(t(x.matrix) %*% y.matrix)) #/ nrow(y.matrix)
lambda_seq1 <- exp(seq(log(lambdamax), -5, length = 50))
lambda_seq2 <- exp(seq(log(lambdamax), -5, length = 50))</pre>
```

```
#a path of solutions
pathwise <- function(x, y, lambda) {
   n <- length(lambda)
   betastart <- rep(0, 20)
   betas <- NULL</pre>
```

lambd\v2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19 V20	— V21
$\overline{176.380.00}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00 0	$\frac{-}{0.00}$
143.310.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30 0.00 0	0.00
116.450.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0.52\ 0.00\ 0$	0.00
$94.62\ 0.00$	0.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.67 0.00 (0.00
$76.88\ 0.00$	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.81 0.00 (0.00
$62.47\ 0.00$	0.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$0.95\ 0.00\ 0$	0.00
$50.75\ 0.00$	0.61	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.09 0.00 0	0.00
41.24 -	0.74	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.21 0.00 (0.00
0.05																		
33.51 -	0.82	0.12	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$1.33\ 0.00\ 0$	0.00
0.13																		
27.23 -	0.90	0.19	0.00	0.00	0.00	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.42 0.02 (0.00
0.20																		
22.12 -	0.99	0.27	0.00	0.00	0.00	0.00	0.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.47 0.10 (0.00
0.26																		
17.97 -	1.09	0.34	0.00	0.00	0.00	0.00	0.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	1.52 0.17 (0.00
0.31																		
14.61 -	1.23	0.42	0.00	0.00	0.00	0.00	0.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00	1.52 0.23 (0.00
0.35																		
11.87 -	1.38	0.50	0.00	0.00	0.00	0.00	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.00	1.54 0.29 (0.00
0.38																		
9.64 -	1.53	0.58	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.22	0.00	1.56 0.35 (0.00
0.42																		
7.83 -	1.65	0.66	0.00	0.00	0.00	0.00	0.82	0.00	0.00	0.00	0.00	0.00	0.00		0.28	0.00	1.62 0.41 0	0.00
0.45														0.03				
6.37 -	1.73	0.74	0.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00	-	0.32	0.00	1.71 0.46 (0.00
0.47														0.09				
5.17 -	1.82	0.82	0.00	0.03	0.00	0.00	1.15	0.00	0.00		0.00	0.00	0.00	-	0.37	0.00	1.80 0.51 (0.00
0.49										0.02				0.15				
4.20 -	1.90	0.91	0.00	0.20	0.00	0.00	1.29	0.00	0.00		0.00	0.00	0.00	-	0.39	0.00	1.85 0.56 (0.00
0.49										0.15				0.17				
3.41 -	2.00	1.00	0.00	0.36	0.00	0.00	1.43	0.00	0.00		0.00	0.00	0.00		0.41	0.00	1.90 0.61 (ე.00
0.49										0.28				0.19				
2.77 -	2.11	1.10	0.00	0.53	0.00	0.00	1.57	0.00	0.00		0.00	0.00	0.00		0.45	0.00	1.95 0.66 (0.00
0.49										0.40				0.21				

lambd \ 2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19 V20 V21
2.25 -		1.18	0.00	0.72	0.00	0.00	1.73	0.00	0.00		0.00	0.00			0.48	0.00	1.95 0.74 0.00
0.49 1.83 -		1.27	0.00	0.92	0.00	-	1.89	0.00	0.00	0.48	0.00	0.00	0.06		0.53	0.00	1.94 0.83 0.00
0.50		1 94	0.00	1 11	0.00	0.04		0.00	0.00	0.55	0.00	0.00	0.15		0.50	0.00	1 04 0 09 0 00
1.49 - 0.50		1.34	0.00	1.11	0.00	- 0.13	2.07	0.00	0.00	- 0.60	0.00	0.00	0.25		0.59	0.00	1.94 0.93 0.00
1.21 -		1.40	0.00	1.30	0.00	-	2.24	0.04	0.05		0.00	0.00			0.61	0.00	$1.97\ 1.08\ 0.00$
0.51 0.98 -		1.44	0.00	1.48	_	0.18	2.43	0.11	0.10	0.67	_	0.00	0.37		0.60	0.00	2.05 1.27 0.00
0.50						0.23				0.76	0.01		0.48	0.39			
0.80 - 0.47		1.46	0.00	1.66		0.26	2.65	0.18	0.17		0.02	- 0.05			0.57	0.00	2.16 1.45 0.00
0.65 -		1.49	0.00	1.85	-	-	2.89	0.25	0.26	-	-	-	-	-	0.53	0.00	$2.31\ 1.62\ 0.00$
0.42 0.53 -		1 51	0.00	2.04		0.30	3 13	0.31	0.34		0.04				0.48	0.00	2.46 1.79 0.00
0.38		1.01	0.00	2.01		0.34				0.97	0.06		0.75	0.46			
0.43 - 0.33		1.54	0.00	2.21		- 0.38	3.36	0.36	0.41		- 0.09	- 0.28			0.45	0.00	2.60 1.96 0.00
0.35 -		1.57	0.00	2.40		-	3.60	0.41	0.47		-	-			0.40	-	2.77 2.15 0.00
0.29		1 69	0.00	2 66		0.40	2 00	0.44	0.51		0.13				0.24	0.07	2.06.2.42.0.00
0.28 - 0.24		1.02	0.00	2.00		- 0.38	3.82	0.44	0.51		0.26				0.34	- 0.43	3.06 2.42 0.00
0.23 -		1.66	0.00	2.90		-	4.03	0.47	0.54			-			0.28		$3.34\ 2.67\ 0.00$
0.20		1.71	0.00	3.13		0.35	4.23	0.50	0.57		0.37				0.23	0.74	3.58 2.90 0.00
0.16					0.84	0.33				0.55	0.48					1.01	
0.15 - 0.12		1.75	0.01	3.33		0.31	4.43	0.52	0.60		- 0.57		- 1 48		0.18	- 1.26	3.80 3.11 0.00
0.12		1.78		3.52	-	-	4.61	0.55	0.62						0.17	_	3.99 3.30 0.00
0.08		1 21	0.04	3.68		0.28	1 77	0.56	0.63		0.67		1.59		0.15	1.48	4.14 3.45 0.10
0.10		1.01	0.07	3.0 0		0.29	4.11	0.50	0.00		0.75				0.10	1.72	4.14 0.40 0.10
0.08 - 0.02		1.84	0.08	3.83		- 0.31	4.92	0.57	0.65		0.83				0.14	- 1.96	4.25 3.58 0.22
0.02 0.07 0.00		1.86		3.93		-	5.06	0.60	0.67		-				0.11	-	4.35 3.68 0.26
0.05.0.00	0.01										0.86						
0.05 0.00																	4.39 3.76 0.37
0.04 0.00	2.01	1.89	-	4.06	-	-	5.20	0.63	0.70	0.00	-	-	-	-	0.09	-	$4.43\ 3.82\ 0.42$
0.04 0.02	2.01	1.90	0.08	4.13	1.23	0.39	5.30	0.64	0.72	0.00	0.91	0.65	1.87	1.00	0.07	2.21	4.50 3.89 0.46
			0.09		1.26	0.40					0.93	0.66	1.90	1.02		2.26	
0.03 0.03											0.99						4.56 3.97 0.55
0.02 0.05	1.97	1.93	-	4.28	-	-	5.45	0.65	0.75	0.15	-	-	-	-	0.04	-	$4.62\ 4.01\ 0.59$
0.02 0.06	1.05	1.04	0.09	1 21	1.32	0.43	5 52	0.65	0.76	0.20	1.01	0.66	1.98	1.16	0.03	2.49	4.66 4.06 0.63
0.02 0.00	1.90	1.94	0.10	4.34	1.34	0.44	5.52	0.05	0.70	0.20	1.04	0.67	2.01	1.21	0.03	2.57	4.00 4.00 0.03
	1.94	1.95	-	4.39	-	-	5.57	0.65	0.77	0.26	-	-	-	-	0.02	-	$4.70\ 4.10\ 0.68$
0.01 0.04	1.93	1.96	-	4.49	-	-	5.58	0.62	0.79	0.60	1.07	-	-	-	0.00	-	$4.69\ 4.12\ 1.03$
			0.07		1.37	0.51					1.15	0.62	2.10	1.65		3.04	

```
lambd\( V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21
0.01 0.04 1.92 1.96
                    - 4.53 -
                                        5.61\ 0.62\ 0.80\ 0.67
                                                                               0.00 - 4.71 \ 4.14 \ 1.10
                    0.07
                             1.38 \ 0.53
                                                           1.17 \ 0.61 \ 2.12 \ 1.72
                                                                                    3.13
                                    - 5.63 0.62 0.80 0.67
0.01 \ 0.05 \ 1.92 \ 1.97 \ - \ 4.53 \ -
                                                                - -
                                                                           - 0.00 - 4.72 4.14 1.10
                    0.08
                             1.38 \ 0.53
                                                           1.17 \ 0.62 \ 2.12 \ 1.72
                                                                                    3.13
0.01 0.04 1.90 1.98
                    - 4.60 -
                                    - 5.66 0.61 0.83 0.79
                                                                                     - 4.75 4.18 1.23
                   0.05
                             1.40 \ 0.56
                                                           1.21 \ 0.61 \ 2.16 \ 1.88 \ 0.04 \ 3.28
```

cross-validation

```
set.seed(2022)
cv = function(data, lambda) {
  n <- nrow(data)</pre>
  data <- data[sample(n), ] #shuffle the data</pre>
  folds <- cut(seq(1, nrow(data)), breaks = 5, labels = FALSE) #Create 5 equal size folds
 # mse <- data.frame() #a data frame storing mse results</pre>
  #mse_lambda <- vector()</pre>
  #se <- vector() #a vector storing test errors</pre>
  res <- lambda
  #se <- vector() #a vectro storing test errors</pre>
    #Perform 5 fold cross validation
  for (i in 1:5) {
    #partition the data into train and test data
    testRows <- which(folds == i, arr.ind = TRUE)</pre>
    data test <- data[testRows, ]</pre>
    data_train <- data[-testRows, ]</pre>
    x_train <- data_train[2:20]</pre>
    x_train_stan <- cbind(rep(1, nrow(x_train)), scale(x_train))</pre>
    y_train <- data_train[1]</pre>
    x_test <- data_test[2:20]</pre>
    #standardized test data
    x_test_stan <- cbind(rep(1, nrow(x_test)), scale(x_test))</pre>
    y_test <- data_test %>% mutate(diagnosis = factor(diagnosis))
    y_test <- y_test$diagnosis</pre>
    #Use the test and train data partitions to perform lasso
    path_sol <- pathwise(x = x_train_stan,</pre>
                           y = y_train,
                           lambda = lambda)
    auc <- vector()</pre>
    for (j in 1:length(lambda)) {
      curbeta <- as.numeric(path_sol[j, 2:21])</pre>
      theta <- x_test_stan %*% curbeta
      p \leftarrow exp(theta) / (1 + exp(theta))
      auc[j] <- auc(y_test, p)</pre>
      #y.pred <- ifelse(p > 0.5, 1, 0)
      \#accuracy[j] \leftarrow mean(y.pred == y_test)
    }
    print(auc)
    res <- cbind(res, auc)
```

```
print(res)
 }
  return(res)
    #se[j] <- sqrt(var(error)/5)</pre>
  #cv.auc.lambda <- rowMeans(mse)</pre>
  #return(cv.auc.lambda)
}
cv_test = cv(data = breast_train, lambda_seq2)
   [1] 0.5000000 0.5000000 0.9429688 0.9484375 0.9651042 0.9687500 0.9734375
  [8] 0.9739583 0.9765625 0.9770833 0.9822917 0.9838542 0.9864583 0.9875000
## [15] 0.9880208 0.9911458 0.9911458 0.9911458 0.9911458 0.9916667 0.9921875
## [22] 0.9916667 0.9911458 0.9911458 0.9906250 0.9916667 0.9911458 0.9916667
## [29] 0.9927083 0.9927083 0.9932292 0.9927083 0.9916667 0.9916667 0.9916667
## [36] 0.9911458 0.9906250 0.9906250 0.9895833 0.9885417 0.9880208 0.9880208
## [43] 0.9875000 0.9875000 0.9864583 0.9864583 0.9864583 0.9864583 0.9864583
##
  [50] 0.9864583
##
                  res
                            auc
  [1,] 1.763784e+02 0.5000000
## [2,] 1.433124e+02 0.5000000
## [3,] 1.164454e+02 0.9429688
## [4,] 9.461516e+01 0.9484375
## [5,] 7.687748e+01 0.9651042
## [6,] 6.246511e+01 0.9687500
## [7,] 5.075466e+01 0.9734375
## [8,] 4.123959e+01 0.9739583
## [9,] 3.350833e+01 0.9765625
## [10,] 2.722646e+01 0.9770833
## [11,] 2.212226e+01 0.9822917
## [12,] 1.797496e+01 0.9838542
## [13,] 1.460516e+01 0.9864583
## [14,] 1.186711e+01 0.9875000
## [15,] 9.642357e+00 0.9880208
## [16,] 7.834687e+00 0.9911458
## [17,] 6.365903e+00 0.9911458
## [18,] 5.172476e+00 0.9911458
## [19,] 4.202782e+00 0.9911458
## [20,] 3.414879e+00 0.9916667
## [21,] 2.774685e+00 0.9921875
## [22,] 2.254510e+00 0.9916667
## [23,] 1.831853e+00 0.9911458
## [24,] 1.488432e+00 0.9911458
## [25,] 1.209393e+00 0.9906250
## [26,] 9.826656e-01 0.9916667
## [27,] 7.984434e-01 0.9911458
## [28,] 6.487578e-01 0.9916667
## [29,] 5.271339e-01 0.9927083
## [30,] 4.283112e-01 0.9927083
## [31,] 3.480149e-01 0.9932292
## [32,] 2.827719e-01 0.9927083
## [33,] 2.297601e-01 0.9916667
## [34,] 1.866865e-01 0.9916667
```

```
## [35,] 1.516881e-01 0.9916667
## [36,] 1.232508e-01 0.9911458
## [37,] 1.001448e-01 0.9906250
## [38,] 8.137044e-02 0.9906250
## [39,] 6.611577e-02 0.9895833
## [40,] 5.372093e-02 0.9885417
## [41,] 4.364976e-02 0.9880208
## [42,] 3.546666e-02 0.9880208
## [43,] 2.881766e-02 0.9875000
## [44,] 2.341516e-02 0.9875000
## [45,] 1.902548e-02 0.9864583
## [46,] 1.545873e-02 0.9864583
## [47,] 1.256066e-02 0.9864583
## [48,] 1.020589e-02 0.9864583
## [49,] 8.292571e-03 0.9864583
## [50,] 6.737947e-03 0.9864583
   [1] 0.5000000 0.5000000 0.9669625 0.9723866 0.9763314 0.9778107 0.9792899
    [8] 0.9797830 0.9822485 0.9837278 0.9881657 0.9911243 0.9945759 0.9955621
## [15] 0.9965483 0.9965483 0.9980276 0.9990138 1.0000000 1.0000000 1.0000000
## [22] 1.0000000 1.0000000 0.9995069 0.9990138 0.9985207 0.9975345 0.9970414
## [29] 0.9960552 0.9955621 0.9945759 0.9945759 0.9945759 0.9916174 0.9911243
  [36] 0.9906312 0.9896450 0.9881657 0.9871795 0.9861933 0.9852071 0.9827416
   [43] \quad 0.9827416 \quad 0.9827416 \quad 0.9817554 \quad 0.9817554 \quad 0.9817554 \quad 0.9817554 \quad 0.9817554
##
   [50] 0.9827416
##
                             auc
    [1,] 1.763784e+02 0.5000000 0.5000000
    [2,] 1.433124e+02 0.5000000 0.5000000
    [3,] 1.164454e+02 0.9429688 0.9669625
   [4,] 9.461516e+01 0.9484375 0.9723866
   [5,] 7.687748e+01 0.9651042 0.9763314
##
    [6,] 6.246511e+01 0.9687500 0.9778107
   [7,] 5.075466e+01 0.9734375 0.9792899
   [8,] 4.123959e+01 0.9739583 0.9797830
   [9,] 3.350833e+01 0.9765625 0.9822485
## [10,] 2.722646e+01 0.9770833 0.9837278
## [11,] 2.212226e+01 0.9822917 0.9881657
## [12,] 1.797496e+01 0.9838542 0.9911243
## [13,] 1.460516e+01 0.9864583 0.9945759
## [14,] 1.186711e+01 0.9875000 0.9955621
## [15,] 9.642357e+00 0.9880208 0.9965483
## [16,] 7.834687e+00 0.9911458 0.9965483
## [17,] 6.365903e+00 0.9911458 0.9980276
## [18,] 5.172476e+00 0.9911458 0.9990138
## [19,] 4.202782e+00 0.9911458 1.0000000
## [20,] 3.414879e+00 0.9916667 1.0000000
## [21,] 2.774685e+00 0.9921875 1.0000000
## [22,] 2.254510e+00 0.9916667 1.0000000
## [23,] 1.831853e+00 0.9911458 1.0000000
## [24,] 1.488432e+00 0.9911458 0.9995069
## [25,] 1.209393e+00 0.9906250 0.9990138
## [26,] 9.826656e-01 0.9916667 0.9985207
## [27,] 7.984434e-01 0.9911458 0.9975345
## [28,] 6.487578e-01 0.9916667 0.9970414
## [29,] 5.271339e-01 0.9927083 0.9960552
```

```
## [30,] 4.283112e-01 0.9927083 0.9955621
## [31,] 3.480149e-01 0.9932292 0.9945759
## [32,] 2.827719e-01 0.9927083 0.9945759
## [33,] 2.297601e-01 0.9916667 0.9945759
## [34,] 1.866865e-01 0.9916667 0.9916174
## [35,] 1.516881e-01 0.9916667 0.9911243
## [36,] 1.232508e-01 0.9911458 0.9906312
## [37,] 1.001448e-01 0.9906250 0.9896450
## [38,] 8.137044e-02 0.9906250 0.9881657
## [39,] 6.611577e-02 0.9895833 0.9871795
## [40,] 5.372093e-02 0.9885417 0.9861933
## [41,] 4.364976e-02 0.9880208 0.9852071
## [42,] 3.546666e-02 0.9880208 0.9827416
## [43,] 2.881766e-02 0.9875000 0.9827416
## [44,] 2.341516e-02 0.9875000 0.9827416
## [45,] 1.902548e-02 0.9864583 0.9817554
## [46,] 1.545873e-02 0.9864583 0.9817554
## [47,] 1.256066e-02 0.9864583 0.9817554
## [48,] 1.020589e-02 0.9864583 0.9817554
## [49,] 8.292571e-03 0.9864583 0.9817554
## [50,] 6.737947e-03 0.9864583 0.9827416
   [1] 0.5000000 0.5000000 0.9644049 0.9655172 0.9733037 0.9755284 0.9760845
   [8] 0.9760845 0.9766407 0.9783092 0.9777531 0.9799778 0.9810901 0.9822024
##
   [15] 0.9827586 0.9833148 0.9844271 0.9877642 0.9877642 0.9883204 0.9888765
   [22] 0.9894327 0.9894327 0.9894327 0.9894327 0.9894327 0.9883204 0.9877642
   [29] 0.9877642 0.9872080 0.9877642 0.9888765 0.9883204 0.9877642 0.9877642
   [36] 0.9860957 0.9855395 0.9855395 0.9866518 0.9866518 0.9855395 0.9860957
   [43] 0.9860957 0.9849833 0.9855395 0.9827586 0.9827586 0.9827586 0.9827586
##
   [50] 0.9827586
##
                  res
                            auc
                                      auc
                                                auc
##
    [1,] 1.763784e+02 0.5000000 0.5000000 0.5000000
    [2,] 1.433124e+02 0.5000000 0.5000000 0.5000000
    [3,] 1.164454e+02 0.9429688 0.9669625 0.9644049
##
    [4,] 9.461516e+01 0.9484375 0.9723866 0.9655172
    [5,] 7.687748e+01 0.9651042 0.9763314 0.9733037
##
   [6,] 6.246511e+01 0.9687500 0.9778107 0.9755284
   [7,] 5.075466e+01 0.9734375 0.9792899 0.9760845
   [8,] 4.123959e+01 0.9739583 0.9797830 0.9760845
   [9,] 3.350833e+01 0.9765625 0.9822485 0.9766407
## [10,] 2.722646e+01 0.9770833 0.9837278 0.9783092
## [11,] 2.212226e+01 0.9822917 0.9881657 0.9777531
## [12,] 1.797496e+01 0.9838542 0.9911243 0.9799778
## [13,] 1.460516e+01 0.9864583 0.9945759 0.9810901
## [14,] 1.186711e+01 0.9875000 0.9955621 0.9822024
## [15,] 9.642357e+00 0.9880208 0.9965483 0.9827586
## [16,] 7.834687e+00 0.9911458 0.9965483 0.9833148
## [17,] 6.365903e+00 0.9911458 0.9980276 0.9844271
## [18,] 5.172476e+00 0.9911458 0.9990138 0.9877642
## [19,] 4.202782e+00 0.9911458 1.0000000 0.9877642
## [20,] 3.414879e+00 0.9916667 1.0000000 0.9883204
## [21,] 2.774685e+00 0.9921875 1.0000000 0.9888765
## [22,] 2.254510e+00 0.9916667 1.0000000 0.9894327
## [23,] 1.831853e+00 0.9911458 1.0000000 0.9894327
## [24,] 1.488432e+00 0.9911458 0.9995069 0.9894327
```

```
## [25,] 1.209393e+00 0.9906250 0.9990138 0.9894327
## [26,] 9.826656e-01 0.9916667 0.9985207 0.9894327
## [27,] 7.984434e-01 0.9911458 0.9975345 0.9883204
## [28,] 6.487578e-01 0.9916667 0.9970414 0.9877642
## [29,] 5.271339e-01 0.9927083 0.9960552 0.9877642
## [30,] 4.283112e-01 0.9927083 0.9955621 0.9872080
## [31,] 3.480149e-01 0.9932292 0.9945759 0.9877642
## [32,] 2.827719e-01 0.9927083 0.9945759 0.9888765
## [33,] 2.297601e-01 0.9916667 0.9945759 0.9883204
## [34,] 1.866865e-01 0.9916667 0.9916174 0.9877642
## [35,] 1.516881e-01 0.9916667 0.9911243 0.9877642
## [36,] 1.232508e-01 0.9911458 0.9906312 0.9860957
## [37,] 1.001448e-01 0.9906250 0.9896450 0.9855395
## [38,] 8.137044e-02 0.9906250 0.9881657 0.9855395
## [39,] 6.611577e-02 0.9895833 0.9871795 0.9866518
## [40,] 5.372093e-02 0.9885417 0.9861933 0.9866518
## [41,] 4.364976e-02 0.9880208 0.9852071 0.9855395
## [42,] 3.546666e-02 0.9880208 0.9827416 0.9860957
## [43,] 2.881766e-02 0.9875000 0.9827416 0.9860957
## [44,] 2.341516e-02 0.9875000 0.9827416 0.9849833
## [45,] 1.902548e-02 0.9864583 0.9817554 0.9855395
## [46,] 1.545873e-02 0.9864583 0.9817554 0.9827586
## [47,] 1.256066e-02 0.9864583 0.9817554 0.9827586
## [48,] 1.020589e-02 0.9864583 0.9817554 0.9827586
## [49,] 8.292571e-03 0.9864583 0.9817554 0.9827586
## [50,] 6.737947e-03 0.9864583 0.9827416 0.9827586
   [1] 0.5000000 0.5000000 0.9892857 0.9933673 0.9954082 0.9964286 0.9964286
   [8] 0.9964286 0.9964286 0.9974490 0.9979592 0.9979592 0.9989796 0.9994898
## [15] 0.9994898 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [22] 1.0000000 1.0000000 1.0000000 0.9994898 0.9994898 0.9994898
## [29] 0.9994898 0.9994898 0.9994898 0.9994898 0.9994898 0.9994898 0.9989796
   [36] 0.9989796 0.9989796 0.9989796 0.9984694 0.9984694 0.9984694
   [43] 0.9984694 0.9984694 0.9984694 0.9984694 0.9984694 0.9984694 0.9984694
##
   [50] 0.9984694
##
                  res
                            auc
                                      auc
                                                auc
##
   [1,] 1.763784e+02 0.5000000 0.5000000 0.5000000 0.5000000
   [2,] 1.433124e+02 0.5000000 0.5000000 0.5000000 0.5000000
   [3,] 1.164454e+02 0.9429688 0.9669625 0.9644049 0.9892857
##
    [4,] 9.461516e+01 0.9484375 0.9723866 0.9655172 0.9933673
##
   [5,] 7.687748e+01 0.9651042 0.9763314 0.9733037 0.9954082
   [6,] 6.246511e+01 0.9687500 0.9778107 0.9755284 0.9964286
   [7,] 5.075466e+01 0.9734375 0.9792899 0.9760845 0.9964286
##
   [8,] 4.123959e+01 0.9739583 0.9797830 0.9760845 0.9964286
  [9,] 3.350833e+01 0.9765625 0.9822485 0.9766407 0.9964286
## [10,] 2.722646e+01 0.9770833 0.9837278 0.9783092 0.9974490
## [11,] 2.212226e+01 0.9822917 0.9881657 0.9777531 0.9979592
## [12,] 1.797496e+01 0.9838542 0.9911243 0.9799778 0.9979592
## [13,] 1.460516e+01 0.9864583 0.9945759 0.9810901 0.9989796
## [14,] 1.186711e+01 0.9875000 0.9955621 0.9822024 0.9994898
## [15,] 9.642357e+00 0.9880208 0.9965483 0.9827586 0.9994898
## [16,] 7.834687e+00 0.9911458 0.9965483 0.9833148 1.0000000
## [17,] 6.365903e+00 0.9911458 0.9980276 0.9844271 1.0000000
## [18,] 5.172476e+00 0.9911458 0.9990138 0.9877642 1.0000000
## [19,] 4.202782e+00 0.9911458 1.0000000 0.9877642 1.0000000
```

```
## [20,] 3.414879e+00 0.9916667 1.0000000 0.9883204 1.0000000
## [21,] 2.774685e+00 0.9921875 1.0000000 0.9888765 1.0000000
## [22,] 2.254510e+00 0.9916667 1.0000000 0.9894327 1.0000000
## [23,] 1.831853e+00 0.9911458 1.0000000 0.9894327 1.0000000
## [24,] 1.488432e+00 0.9911458 0.9995069 0.9894327 1.0000000
## [25,] 1.209393e+00 0.9906250 0.9990138 0.9894327 1.0000000
## [26,] 9.826656e-01 0.9916667 0.9985207 0.9894327 0.9994898
## [27,] 7.984434e-01 0.9911458 0.9975345 0.9883204 0.9994898
## [28,] 6.487578e-01 0.9916667 0.9970414 0.9877642 0.9994898
## [29,] 5.271339e-01 0.9927083 0.9960552 0.9877642 0.9994898
## [30,] 4.283112e-01 0.9927083 0.9955621 0.9872080 0.9994898
## [31,] 3.480149e-01 0.9932292 0.9945759 0.9877642 0.9994898
## [32,] 2.827719e-01 0.9927083 0.9945759 0.9888765 0.9994898
## [33,] 2.297601e-01 0.9916667 0.9945759 0.9883204 0.9994898
## [34,] 1.866865e-01 0.9916667 0.9916174 0.9877642 0.9994898
## [35,] 1.516881e-01 0.9916667 0.9911243 0.9877642 0.9989796
## [36,] 1.232508e-01 0.9911458 0.9906312 0.9860957 0.9989796
## [37,] 1.001448e-01 0.9906250 0.9896450 0.9855395 0.9989796
## [38,] 8.137044e-02 0.9906250 0.9881657 0.9855395 0.9989796
## [39,] 6.611577e-02 0.9895833 0.9871795 0.9866518 0.9989796
## [40,] 5.372093e-02 0.9885417 0.9861933 0.9866518 0.9984694
## [41,] 4.364976e-02 0.9880208 0.9852071 0.9855395 0.9984694
## [42,] 3.546666e-02 0.9880208 0.9827416 0.9860957 0.9984694
## [43.] 2.881766e-02 0.9875000 0.9827416 0.9860957 0.9984694
## [44,] 2.341516e-02 0.9875000 0.9827416 0.9849833 0.9984694
## [45,] 1.902548e-02 0.9864583 0.9817554 0.9855395 0.9984694
## [46,] 1.545873e-02 0.9864583 0.9817554 0.9827586 0.9984694
## [47,] 1.256066e-02 0.9864583 0.9817554 0.9827586 0.9984694
## [48,] 1.020589e-02 0.9864583 0.9817554 0.9827586 0.9984694
## [49,] 8.292571e-03 0.9864583 0.9817554 0.9827586 0.9984694
## [50,] 6.737947e-03 0.9864583 0.9827416 0.9827586 0.9984694
   [1] 0.5000000 0.5000000 0.9616162 0.9676768 0.9757576 0.9792929 0.9797980
   [8] 0.9818182 0.9843434 0.9863636 0.9873737 0.9878788 0.9898990 0.9909091
## [15] 0.9914141 0.9904040 0.9904040 0.9909091 0.9909091 0.9904040 0.9909091
  [22] 0.9904040 0.9904040 0.9904040 0.9904040 0.9909091 0.9909091 0.9898990
## [29] 0.9883838 0.9873737 0.9868687 0.9803030 0.9772727 0.9732323 0.9686869
  [36] 0.9676768 0.9676768 0.9676768 0.9656566 0.9656566 0.9656566
  [43] \ \ 0.9656566 \ \ 0.9651515 \ \ 0.9646465 \ \ 0.9646465 \ \ 0.9646465 \ \ 0.9646465 \ \ 0.9611111
   [50] 0.9611111
##
##
                  res
                            auc
                                      auc
                                                auc
   [1,] 1.763784e+02 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000
   [2,] 1.433124e+02 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000
##
##
   [3,] 1.164454e+02 0.9429688 0.9669625 0.9644049 0.9892857 0.9616162
##
   [4,] 9.461516e+01 0.9484375 0.9723866 0.9655172 0.9933673 0.9676768
   [5,] 7.687748e+01 0.9651042 0.9763314 0.9733037 0.9954082 0.9757576
    [6,] 6.246511e+01 0.9687500 0.9778107 0.9755284 0.9964286 0.9792929
##
    [7,] 5.075466e+01 0.9734375 0.9792899 0.9760845 0.9964286 0.9797980
   [8,] 4.123959e+01 0.9739583 0.9797830 0.9760845 0.9964286 0.9818182
   [9,] 3.350833e+01 0.9765625 0.9822485 0.9766407 0.9964286 0.9843434
## [10,] 2.722646e+01 0.9770833 0.9837278 0.9783092 0.9974490 0.9863636
## [11,] 2.212226e+01 0.9822917 0.9881657 0.9777531 0.9979592 0.9873737
## [12,] 1.797496e+01 0.9838542 0.9911243 0.9799778 0.9979592 0.9878788
## [13,] 1.460516e+01 0.9864583 0.9945759 0.9810901 0.9989796 0.9898990
## [14,] 1.186711e+01 0.9875000 0.9955621 0.9822024 0.9994898 0.9909091
```

```
## [15,] 9.642357e+00 0.9880208 0.9965483 0.9827586 0.9994898 0.9914141
## [16,] 7.834687e+00 0.9911458 0.9965483 0.9833148 1.0000000 0.9904040
## [17,] 6.365903e+00 0.9911458 0.9980276 0.9844271 1.0000000 0.9904040
## [18,] 5.172476e+00 0.9911458 0.9990138 0.9877642 1.0000000 0.9909091
## [19,] 4.202782e+00 0.9911458 1.0000000 0.9877642 1.0000000 0.9909091
## [20,] 3.414879e+00 0.9916667 1.0000000 0.9883204 1.0000000 0.9904040
## [21,] 2.774685e+00 0.9921875 1.0000000 0.9888765 1.0000000 0.9909091
## [22,] 2.254510e+00 0.9916667 1.0000000 0.9894327 1.0000000 0.9904040
## [23,] 1.831853e+00 0.9911458 1.0000000 0.9894327 1.0000000 0.9904040
## [24,] 1.488432e+00 0.9911458 0.9995069 0.9894327 1.0000000 0.9904040
## [25,] 1.209393e+00 0.9906250 0.9990138 0.9894327 1.0000000 0.9904040
## [26,] 9.826656e-01 0.9916667 0.9985207 0.9894327 0.9994898 0.9909091
## [27,] 7.984434e-01 0.9911458 0.9975345 0.9883204 0.9994898 0.9909091
## [28,] 6.487578e-01 0.9916667 0.9970414 0.9877642 0.9994898 0.9898990
## [29,] 5.271339e-01 0.9927083 0.9960552 0.9877642 0.9994898 0.9883838
## [30,] 4.283112e-01 0.9927083 0.9955621 0.9872080 0.9994898 0.9873737
## [31,] 3.480149e-01 0.9932292 0.9945759 0.9877642 0.9994898 0.9868687
## [32,] 2.827719e-01 0.9927083 0.9945759 0.9888765 0.9994898 0.9803030
## [33,] 2.297601e-01 0.9916667 0.9945759 0.9883204 0.9994898 0.9772727
## [34,] 1.866865e-01 0.9916667 0.9916174 0.9877642 0.9994898 0.9732323
## [35,] 1.516881e-01 0.9916667 0.9911243 0.9877642 0.9989796 0.9686869
## [36,] 1.232508e-01 0.9911458 0.9906312 0.9860957 0.9989796 0.9676768
## [37,] 1.001448e-01 0.9906250 0.9896450 0.9855395 0.9989796 0.9676768
## [38,] 8.137044e-02 0.9906250 0.9881657 0.9855395 0.9989796 0.9676768
## [39,] 6.611577e-02 0.9895833 0.9871795 0.9866518 0.9989796 0.9656566
## [40,] 5.372093e-02 0.9885417 0.9861933 0.9866518 0.9984694 0.9656566
## [41,] 4.364976e-02 0.9880208 0.9852071 0.9855395 0.9984694 0.9656566
## [42,] 3.546666e-02 0.9880208 0.9827416 0.9860957 0.9984694 0.9656566
## [43,] 2.881766e-02 0.9875000 0.9827416 0.9860957 0.9984694 0.9656566
## [44,] 2.341516e-02 0.9875000 0.9827416 0.9849833 0.9984694 0.9651515
## [45,] 1.902548e-02 0.9864583 0.9817554 0.9855395 0.9984694 0.9646465
## [46,] 1.545873e-02 0.9864583 0.9817554 0.9827586 0.9984694 0.9646465
## [47,] 1.256066e-02 0.9864583 0.9817554 0.9827586 0.9984694 0.9646465
## [48,] 1.020589e-02 0.9864583 0.9817554 0.9827586 0.9984694 0.9646465
## [49,] 8.292571e-03 0.9864583 0.9817554 0.9827586 0.9984694 0.9611111
## [50,] 6.737947e-03 0.9864583 0.9827416 0.9827586 0.9984694 0.9611111
cv_res <- as.data.frame(cv_test) #colnames(c("auc1", "auc2", "auc3", "auc4", "auc5"))</pre>
colnames(cv_res) <- c("res", "auc1", "auc2", "auc3", "auc4", "auc5")</pre>
cv_lambda <- cv_res[1]</pre>
mean_auc <- cv_res %>% dplyr::select(-1) %>% rowMeans()
cv_auc <- cbind(cv_lambda, mean_auc)</pre>
maxauc <- max(cv_auc$mean_auc)</pre>
bestlambda <- cv_auc[which(cv_auc$mean_auc == maxauc ),]$res
cv auc %>%
  ggplot(x = res, y = mean_auc) +
 geom\_line(aes(x = res, y = mean\_auc), col = "blue") +
  geom_vline(xintercept = bestlambda, linetype = "dashed", col = "red") +
  labs(title = "Mean AUC vs. Lambda",
       x = "Lambda",
       v = "Mean AUC")
```


Compare full model and lasso model

```
#corresponding betas of best lambda
lasso_beta <- pathwise_sol[which(pathwise_sol$lambda == bestlambda ),][2:21] %>% as.numeric()

#prediction performance function
predict <- function(x, y, betavec) {
   theta <- x %*% betavec
   p <- exp(theta) / (1 + exp(theta))
   auc <- auc(y, p)
}

auc_lasso <- predict(x_test_stan, y_test, lasso_beta)
auc_lasso</pre>
```

Area under the curve: 0.9932

cbind(auc_full, auc_lasso) %>% knitr::kable()

auc_full	auc_lasso
0.9945799	0.9932249

#coefficients of full and lasso models

glm_beta <- glm.fit\$coefficients %>% as.vector()
coefnames <- rownames(coef(summary(glm.fit)))
cbind(coefnames, glm_beta, lasso_beta) %>% knitr::kable()

coefnames	glm_beta	lasso_beta
(Intercept)	-38.0508879315254	-0.491575282868433
radius_mean	0.522652718986337	2.1061341199202
texture_mean	0.461723878543842	1.09553982152909
$smoothness_mean$	0.1289206136156	0
concavity_mean	58.3639721687468	0.531755692852326
symmetry_mean	-51.9110605975334	0
fractal_dimension_mean	-87.0196726852845	0
radius_se	20.2642224845343	1.57060392035703
texture_se	1.09086865732585	0
smoothness_se	289.946465559794	0
$compactness_se$	56.8072085913126	-0.39710032709783
concavity_se	-40.3851421619712	0
$concave_points_se$	-100.372695041936	0
symmetry_se	-270.638750016476	0
fractal_dimension_se	-793.685579711044	-0.214263582015782
$smoothness_worst$	-5.84243418974478	0.446429427867803
$compactness_worst$	-23.0578666420758	0
$concave_points_worst$	74.0151310096505	1.95085661565962
symmetry_worst	70.7298970265517	0.662947487333
$fractal_dimension_worst$	83.8086140810761	0