Programozáselmélet – Tételek bizonyítással

Borsi Zsolt előadásai alapján

Utolsó módosítás: 2023. december 27.

1. Tétel. Tetszőleges feladatot megoldó program létezése.

Legyen A tetszőleges állapottér. Legyen $F \subseteq A \times A$ tetszőleges feladat. Minden feladathoz létezik egy olyan program, amelyik megoldja azt, azaz

$$\forall F \subseteq A \times A, \ \exists S \subseteq A \times (\overline{A} \cup \{\mathbf{fail}\})^{**} : S \text{ megoldja az } F \text{ feladatot}$$

Bizonyitás. Legyen S olyan, hogy p(S) = F. Ekkor a megoldás definíciója szerint, hogy

I.)
$$\mathcal{D}_F \subseteq \mathcal{D}_{p(S)} \iff \mathcal{D}_F \subseteq \mathcal{D}_F \checkmark$$

II.)
$$\forall a \in \mathcal{D}_F : p(S)(a) = F(a) \iff F(a) \subseteq F(a) \checkmark$$

$$P\'{e}lda$$
. Legyen $A := \{1, 2, 3, 4\}, F := \{(1, 1), (2, 2), (2, 3), (4, 4)\}$ és $p(S) := F$

Több ilyen megoldás is létezhet.

$$S_1 := \{1 \to \langle 1 \rangle, \ 2 \to \langle 2, 4, 2 \rangle, \ 2 \to \langle 2, 1, 4, 1, 3 \rangle, \ 3 \to \langle 3, 3, \ldots \rangle, \ 4 \to \langle 4, 1, 2, 3, 4 \rangle, \ 4 \to \langle 4, 3, 4 \rangle\}$$

$$S_2 := \{1 \to \langle 1, 3, 2, 1 \rangle, \ 2 \to \langle 2 \rangle, \ 2 \to \langle 2, 3 \rangle, \ 3 \to \langle 3, \mathbf{fail} \rangle, \ 4 \to \langle 4 \rangle\}$$

2. Tétel.

Legyen A tetszőleges alap-állapottér, $S_1, S_2 \subseteq A \times (\overline{A} \cup \{fail\})^{**}$ program és $F \subseteq A \times A$ feladat úgy, hogy S_1 megoldja az F feladatot. Továbbá legyen $S_2 \subseteq S_1$.

Ekkor az S_2 program szintén megoldja F feladatot.

Bizonyítás. Tudjuk, hogy S_1 megoldja az F feladatot, azaz a megoldás definíciója szerint

- I.) $\mathcal{D}_F \subseteq \mathcal{D}_{p(S_1)}$
- II.) $\forall a \in \mathcal{D}_F : p(S_1)(a) \subseteq F(a)$

Azt is tudjuk, hogy $S_2 \subseteq S_1$. Mivel S_2 is program A felett, ezért $\forall a \in A : S_2(a) \subseteq S_1(a)$.

Állítás: $\mathcal{D}_{p(S_1)} \subseteq \mathcal{D}_{p(S_2)}$. Tegyük fel, hogy egy állapot eleme $\mathcal{D}_{p(S_1)}$ -nek. Ha az S_2 legfeljebb ugyanezt csinálja, mint az S_1 (más sorozatokat – azaz többet – nem tud hozzárendelni), akkor ezek is csak végesek és hibátlanok lehetnek.

Lássuk be, hogy S_2 megoldja az F feladatot!

I.)
$$\mathcal{D}_F \subseteq \mathcal{D}_{p(S_2)}$$

Tudjuk, hogy
$$\mathcal{D}_F \subseteq \mathcal{D}_{p(S_1)} \wedge \mathcal{D}_{p(S_1)} \subseteq \mathcal{D}_{p(S_2)} \Longrightarrow \mathcal{D}_F \subseteq \mathcal{D}_{p(S_2)} \checkmark$$

II.) $\forall a \in \mathcal{D}_F : p(S_2)(a) \subseteq F(a)$. Jó lenne, ha hasonló módon be tudnánk látni.

$$\forall a \in A : p(S_2)(a) \stackrel{?}{\subseteq} p(S_1)(a) \to \text{sajnos nem igaz}$$

$$\forall a \in \mathcal{D}_F : p(S_1)(a) \subseteq F(a)$$

Ellenpéldával belátható:
$$A := \{1\}, S_1 := \{1 \to \langle 1 \rangle, 1 \to \langle 1, \mathbf{fail} \rangle\}, S_2 := \{1 \to \langle 1 \rangle\}.$$

Teljesül, hogy
$$S_2 \subseteq S_1$$
, azonban $\mathcal{D}_{p(S_1)} = \emptyset \implies p(S_2)(a) \nsubseteq p(S_1)(a)$

Valójában ezt kell vizsgálnunk:

$$\forall a \in \mathcal{D}_{p(S_1)} : p(S_2)(a) \subseteq p(S_1)(a)
\forall a \in \mathcal{D}_F : p(S_2)(a) \subseteq p(S_1)(a)
\forall a \in \mathcal{D}_F : p(S_1)(a) \subseteq F(a)$$

$$\Rightarrow \forall a \in \mathcal{D}_F : p(S_2)(a) \subseteq F(a) \checkmark$$

3. Tétel. Minden feladatnak létezik paramétertere.

Legyen A tetszőleges alap-állapottér, B tetszőleges paramétertér. Legyen $F\subseteq A\times A$ feladat úgy, hogy $F_1\subseteq A\times B,\, F_2\subseteq B\times A$ és $F_2\circ F_1=F$. Ekkor

 $\forall F \subseteq A \times A, \ \exists B \text{ paramétert\'er}, \ F_1 \subseteq A \times B, \ F_2 \subseteq B \times A : F_2 \circ F_1 = F$

Bizonyítás. Legyen $B=A,\,F_1=F$ és $F_2=id$ (identikus leképezés). Ekkor $F_2\circ F_1=id\circ F=F$. \square

2

4. Tétel. Minden feladatnak akárhány paramétertere van.

Minden feladatnak akárhány paramétertere van.

Bizonyítás. Pontos bizonyatás helyett ábrát szemlélgetünk (így szerepelt az előadásban is).

$$A := \{1, 2, 3, 4, 5\}, B := \{a, b\},\$$

 $F = F_2 \circ F_1$, ahol

 $F := \{(1,3), (2,3), (3,3), (4,1), (5,1), (4,4), (5,4)\})$

 $F_1 := \{(1, a), (2, a), (3, a), (4, b), (5, b)\}$

 $F_2 := \{(a,3), (b,1), (b,4)\}$

De csak ez az egy darab paramétertér létezik? Nem. Legyen $C:=\{\alpha,\beta,\gamma\}$ új paramétertér, ahol az α az a-nak, a β a b-nek felel meg – a γ meg üresen marad.

Egyszerűen a paraméterek **átnevezés**ével, vagy újak **hozzáadás**ával új paraméterteret kaphatunk.

5. Tétel. Specifikáció tétele

Legyen A tetszőleges alap-állapottér, $F \subseteq A \times A$ feladat és $S \subseteq A \times (\overline{A} \cup \{fail\})^{**}$ program. Legyen B tetszőleges paramétertere F-nek, ahol $b \in B$ egy paraméter. Ehhez definiáljunk két logikai függvényt. $Q_b, R_b : A \to \mathbb{L}$ úgy, hogy

$$\lceil Q_b \rceil := F_1^{(-1)}(b) = \{ a \in A \mid (a, b) \in F_1 \}$$

 $\lceil R_b \rceil := F_2(b) = \{ a \in A \mid (b, a) \in F_2 \}$

Ha $\forall b \in B : Q_b \Longrightarrow lf(S, R_b)$, akkor S megoldja az F feladatot.

Bizonyítás. Hasonlóan, mint eddig, itt is a megoldás definíciójának két pontját fogjuk belátni.

I.) $\mathcal{D}_F \subseteq \mathcal{D}_{p(S)}$

Legyen $a \in \mathcal{D}_F$ tetszőleges¹. Ha a-ról belátható, hogy $a \in \mathcal{D}_{p(S)}$, akkor $\mathcal{D}_F \subseteq \mathcal{D}_{p(S)}$.

Mivel
$$a \in \mathcal{D}_F \Longrightarrow a \in \mathcal{D}_{F_1} \Longleftrightarrow \exists b \in B : (a,b) \in F_1 \Longleftrightarrow a \in [Q_b]$$

és mivel
$$(Q_b \Longrightarrow lf(S, R_b)) \Longleftrightarrow [Q_b] \subseteq [lf(S, R_b)],$$

valamint tudjuk, hogy $[lf(S, R_b)] \subseteq \mathcal{D}_{p(S)}$ (lásd leggyengébb előfeltétel definíciója).

Így
$$\lceil Q_b \rceil \subseteq \lceil lf(S, R_b) \rceil \subseteq \mathcal{D}_{p(S)} \iff \lceil Q_b \rceil \subseteq \mathcal{D}_{p(S)}$$
, azaz röviden $\mathcal{D}_F \subseteq \mathcal{D}_{p(S)}$. \checkmark

II.) $\forall a \in \mathcal{D}_F : p(S)(a) \subseteq F(a)$

Legyen $a \in \mathcal{D}_F$ tetszőleges állapot. Be kell látnunk, hogy $p(S)(a) \subseteq \mathcal{D}_F$.

Mivel $a \in \mathcal{D}_F \Longrightarrow \exists b \in B : (a,b) \in F_1$ és $\lceil Q_b \rceil \subseteq \lceil lf(S,R_b) \rceil$, de így a definíció szerint az is következik, hogy $p(S)(a) \subseteq \lceil R_b \rceil = F_2(b)$.

$$F_2(b) \subseteq F(a)$$
 és $p(S)(a) \subseteq \lceil R_b \rceil = F_2(b) \subseteq F(a) \Longrightarrow p(S)(a) \subseteq F(a)$

Így beláttuk a specifikáció tételét!

Az, hogy a tetszőleges, fontos kikötés, ugyanis ez engedi meg nekünk, hogy ne kelljen a \mathcal{D}_F összes elemét megnézni.