第二章 插值法

- > 引言
- 线性插值
- **)** 二次插值
- ▶ n次插值
- 分段线性插值
- Hermite插值
- ▶ 分段三次Hermite插值
- > 三次样条函数
- 三次样条函数插值
- 数值微分

引言

> 提法

- 。已知函数表 $y_i = f(x_i)$ 即n个点 (x_i, y_i) , $i = 0,1,2,\cdots,n$,找近似函数 $\phi(x)$ 满足 $\phi(x_i) = y_i$, $i = 0,1,2,\cdots,n$
- 插值节点(互异): x_i , $i = 0,1,2,\cdots,n$
- 插值函数: $\phi(x)$

背景

- 。函数表达式太繁不便使用
- 。函数由表给出
- 代数插值、三角插值

线性插值

线性插值问题

已知
$$y_i = f(x_i), i = 0,1,\dots,n$$

求 $\phi(x) = a_0 + a_1 x$
滿足 $\phi(x_i) = y_i, i = 0,1$
。二元一次方程组 $a_0 + a_1 x_0 = y_0$
 $a_0 + a_1 x_1 = y_1$

。过两点作一直线

线性插值惟一性

- ▶解的存在惟一性
 - 。根据Cramer法则解存在而且惟一

$$D = \begin{vmatrix} 1 & x_0 \\ 1 & x_1 \end{vmatrix} = x_1 - x_0 \neq 0$$

。几何上过两点有一条且 仅有一条直线

线性插值: Newton公式

▶ 点斜式:Newton公式

$$\phi(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

= $f(x_0) + f[x_0, x_1](x - x_0)$

。一阶均差(差商)

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

- 均差是对称的: $f[x_1,x_0] = f[x_0,x_1]$
 - 定义可见
 - 都是线性插值函数首项系数(惟一)

线性插值: Lagrange公式

▶ 两点式:Lagrange公式

$$\phi(x) = y_0 l_0(x) + y_1 l_1(x)$$

。线性插值基函数

$$l_0(x) = \frac{x - x_1}{x_0 - x_1}, l_1(x) = \frac{x - x_0}{x_1 - x_0}$$

。特解

\mathcal{X}_i	x_0	x_1
$l_0(x)$	1	0
$l_1(x)$	0	1

线性插值: Aitken公式

▶ Aitken公式

$$\phi(x) = \frac{1}{x_0 - x_1} \begin{vmatrix} y_0 & x - x_0 \\ y_1 & x - x_1 \end{vmatrix}$$

- 余项定理
 - 设 $\phi(x)$ 是f(x)过 x_0, x_1 的线性插值函数, $f(x) \in C^2[a,b], x_0, x_1, x \in [a,b],$ 则有 $\xi \in (a,b)$,使

$$R(x) = f(x) - \phi(x) = \frac{1}{2!}f''(\xi)(x - x_0)(x - x_1)$$

•特别,若 $x_0 \le x \le x_1$,则有

$$|R(x)| \le \frac{1}{8}(x_1 - x_0)^2 \max |f''(x)|$$

二次插值

二次插值问题

・ 求
$$\phi(x) = a_0 + a_1 x + a_2 x^2$$
 満足 $\phi(x_i) = y_i, i = 0,1,2$

。三元一次方程组

$$a_0 + a_1 x_0 + a_2 x_0^2 = y_0$$

 $a_0 + a_1 x_1 + a_2 x_1^2 = y_1$
 $a_0 + a_1 x_2 + a_2 x_2^2 = y_2$

二次插值惟一性

- 解的惟一性
 - 。根据Cramer法则解存在而且惟一

$$D = \begin{vmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{vmatrix} = (x_1 - x_0)(x_2 - x_0)(x_2 - x_1) \neq 0$$

• 由代数基本定理: 设 $\psi(x)$ 也是插值函数,则 差 $h(x) = \phi(x) - \psi(x)$ 是二次多项式,並有 三个零点 x_0, x_1, x_2 。由代数基本定理可知 $h(x) \equiv 0, \phi(x) \equiv \psi(x)$

二次插值:Newton公式

▶ Newton公式

$$\phi(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

。二阶均差(差商)

$$f[x_0, x_1, x_2] = \frac{f[x_0, x_2] - f[x_0, x_1]}{x_2 - x_1}$$

。对称性:二阶均差自变量任意排列时不变。因为二阶均差都等于 a_2 ,二次插值函数首项系数惟一.

Newton公式推导

)推导

二次插值函数可由一次插值函数加一个二次项:

$$\varphi(x) = f(x_0) + f[x_0,x_1](x-x_0) + C(x-x_0)(x-x_1)$$

只要选择 C 使得 $\varphi(x_2)=y_2$,即

$$f(x_2)=f(x_0)+f[x_0,x_1](x_2-x_0)+C(x_2-x_0)(x_2-x_1)$$

可得

$$C = (f[x_0,x_2]-f[x_0,x_1])/(x_2-x_1)$$

引入函数在 x₀,x₁,x₂ 的二阶均差(差商)的定义:

$$f[x_0, x_1, x_2] = \frac{f[x_0, x_2] - f[x_0, x_1]}{x_2 - x_1}$$

可有 $\varphi(x)=f(x_0)+f[x_0,x_1](x-x_0)+f[x_0,x_1,x_2](x-x_0)(x-x_1)$

二次插值:Lagrange公式

Lagrange公式

。二次插值基函数

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)},$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)},$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

x_i	x_0	x_1	x_2
$l_0(x)$	1	0	0
$l_1(x)$	0	1	0
$l_2(x)$	0	0	1

二次插值:Aitken公式

▶Aitken公式

$$\phi_{012}(x) = \frac{1}{x_1 - x_2} \begin{vmatrix} \phi_{01}(x) & x - x_1 \\ \phi_{02}(x) & x - x_2 \end{vmatrix}$$

- ▶余项定理
 - 。设 $\phi(x)$ 是f(x)过 x_0, x_1, x_2 的二次插值函数 $f(x) \in C^3[a,b], x_0, x_1, x_2, x \in [a,b],$ 则有 $\xi \in (a,b),$ 使

$$R(x) = f(x) - \phi(x)$$

$$= \frac{1}{3!} f^{(3)}(\xi)(x - x_0)(x - x_1)(x - x_2)$$

插值举例

- ▶ 例: 取节点 $x_0 = 0, x_1 = 1,$ 对函数 e^x 作一次插值.
 - Newton型

$$f[x_0, x_1] = \frac{f(x_0) - f(x_1)}{x_0 - x_1} = e^{-1} - 1$$

$$\varphi_1(x) = f(x_0) + (x - x_0)f[x_0, x_1] = 1 + x(e^{-1} - 1)$$

Lagrange型

$$l_0(x) = \frac{x - x_1}{x_0 - x_1} = -(x - 1)$$

$$l_1(x) = \frac{x - x_1}{x_1 - x_0} = x$$

$$\varphi_1(x) = y_0 l_0(x) + y_1 l_1(x) = -(x - 1) + xe^{-1}$$

。逐次线性插值

$$\varphi_{01}(x) = \frac{1}{x_0 - x_1} \begin{vmatrix} f(x_0) & x - x_0 \\ f(x_1) & x - x_1 \end{vmatrix} = -(x - 1) + xe^{-1}$$

二次插值例

- 例: 取节点 $x_0 = 0, x_1 = 1$ 和 $x_2 = \frac{1}{2}$,对 e^x 作二次插值多项式
 - Newton型

$$f[x_0, x_1] = \frac{f(x_0) - f(x_1)}{x_0 - x_1} = e^{-1} - 1$$

$$f[x_1, x_2] = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = 2(e^{-1} - e^{-\frac{1}{2}})$$

$$f[x_0, x_1, x_2] = \frac{f[x_0, x_1] - f[x_1, x_2]}{x_0 - x_2} = 2 + 2e^{-1} - 4e^{-\frac{1}{2}}$$

$$\varphi_2(x) = 1 + x(e^{-1} - 1) + x(x - 1)(2 + 2e^{-1} - 4e^{-1/2})$$

• Lagrange型

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = 2(x - 1)\left(x - \frac{1}{2}\right)$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = 2x\left(x - \frac{1}{2}\right)$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = -4x(x - 1)$$

$$\varphi_2(x) = 2(x - 1)\left(x - \frac{1}{2}\right) + 2x\left(x - \frac{1}{2}\right)e^{-1} - 4x(x - 1)e^{-1/2}$$

二次插值例

逐次线性插值

$$\varphi_{01}(x) = \frac{1}{x_0 - x_1} \begin{vmatrix} f(x_0) & x - x_0 \\ f(x_1) & x - x_1 \end{vmatrix} = -(x - 1) + xe^{-1}$$

$$\varphi_{02}(x) = \frac{1}{x_0 - x_2} \begin{vmatrix} f(x_0) & x - x_0 \\ f(x_2) & x - x_2 \end{vmatrix} = -2\left(x - \frac{1}{2}\right) + 2xe^{-\frac{1}{2}}$$

$$\varphi_{012}(x) = \frac{1}{x_1 - x_2} \begin{vmatrix} \varphi_{01}(x) & x - x_1 \\ \varphi_{02}(x) & x - x_2 \end{vmatrix} =$$

$$= 2(x-1)\left(x-\frac{1}{2}\right) + 2x\left(x-\frac{1}{2}\right)e^{-1} - 4x(x-1)e^{-\frac{1}{2}}$$

n次插值

- ▶ n次插值问题
 - 求 $\phi(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ 滿足 $\phi(x_i) = y_i, i = 0,1,2,\dots,n$
 - n+1元一次方程组

$$a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_0$$

$$a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = y_1$$

$$\dots$$

$$a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = y_n$$

n次插值惟一性

- 解的惟一性
 - 。根据Cramer法则解存在而且惟一 系数行列式是Vandermonde行列式,非零
 - 。由代数基本定理: 设 $\psi(x)$ 也是插值函数,则差 $h(x) = \phi(x) \psi(x)$ 是次数不超过n的多项式,並有n+1个零点 x_0, x_1, \cdots, x_n .由代数基本定理可知 $h(x) \equiv 0, \phi(x) \equiv \psi(x)$

n次插值:Newton公式

▶ Newton公式

。 易对 $n = 2,3, \dots$ 导出下列各项 $\phi(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_0)$

均差表

• Newton公式计算须均差表.求值应使用秦九韶算法,均差 表(n=3)

χ_{i}	yi	一阶均差	二阶均差	三阶均差
χ_0	<u>yo</u>			
χ_1	y ₁	$f[x_0,x_1]$		
χ_2	y2	$f[x_1,x_2]$	$f[x_0,x_1,x_2]$	
<i>X</i> 3	<i>y</i> 3	$f[x_2,x_3]$	$f[x_1,x_2,x_3]$	$f[x_0,x_1,x_2,x_3]$

n次插值:Lagrange公式

▶ Lagrange公式

$$\phi(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x) + \dots + y_n l_n(x)$$

• n次插值基函数

$$l_{i}(x) = \frac{(x - x_{0}) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{n})}{(x_{i} - x_{0}) \cdots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \cdots (x_{i} - x_{n})}$$

$$= \frac{\omega_{n}(x)}{(x - x_{i})\omega'_{n}(x_{i})}, i = 0, 1, \dots, n$$

$$(x) = (x - x_{0}) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{i-1})$$

其中
$$\omega_n(x) = (x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)$$

X_i	x_0	x_1		\mathcal{X}_n
$l_0(x_i)$	1	0	•••	0
$l_1(x_i)$	0	1		0
$l_n(x_i)$	0	0	•••	1

n次插值:Aitken公式

▶ Aitken公式

$$\phi_{01\cdots n}(x) = \frac{1}{x_{n-1} - x_n} \begin{vmatrix} \phi_{01\cdots(n-2)(n-1)}(x) & x - x_{n-1} \\ \phi_{01\cdots(n-2)n}(x) & x - x_n \end{vmatrix}$$

x_i	y_i	一次插值	二次插值	三次插值	$x-x_i$
x_0	y_0				$x-x_0$
x_1	y_1	$\varphi_{01}(x)$			$x-x_1$
x_2	y_2	$\varphi_{02}(x)$	$\varphi_{012}(x)$		$x-x_2$
x_3	y_3	$\varphi_{03}(x)$	$\varphi_{013}(x)$	$\varphi_{0123}(x)$	$x-x_3$

N次插值:余项

- >余项:微商形式、差商形式
 - 。设 $\phi(x)$ 是f(x)过 x_0,x_1,\cdots,x_n 的n次插值函数, $f(x)\in C^{n+1}[a,b],x_0,x_1,\cdots,x_n\in [a,b]$ 则有 $\xi\in (a,b)$,使 $R(x)=f(x)-\phi(x)$

$$= \frac{1}{(n+1)!} f^{(n+1)}(\xi)(x - x_0)(x - x_1) \cdots (x - x_n)$$

= $f[x_0, x_1, \cdots, x_n, x](x - x_0)(x - x_1) \cdots (x - x_n)$

- > 差商与微商关系
- $f[x_0, x_1, \dots, x_n] = \frac{1}{n!} f^{(n)}(\xi)$