

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ MATEMATYKI i FIZYKI STOSOWANEJ

Projektowanie modeli łączenia źródeł danych

Analiza frekwencji w kinach w Polsce w latach 2013-2023

Małgorzata Radomska 173203 Adrianna Rapa 173204

Inżynieria i Analiza Danych

Spis treści

1	Wstę	ρ	3
	1.1	Cel analizy	3
	1.2	Opis danych	3
	1.3	Przegląd danych	4
2	Staty	styki opisowe i wizualizacje danych	4
	2.1	Parametry statystyczne	4
	2.2	Wizualizacje danych	5
3	Dobó	r zmiennych do modelu	7
	3.1	Macierz współczynników korelacji	7
	3.2	Metoda Hellwiga – metoda wskaźników pojemności informacyjnej	8
	3.3	Porównanie modeli	9
4	Estyn	nacja parametrów modelu	. 12
5	Wery	fikacja modelu	. 13
	5.1	Dopasowanie modelu	. 13
	5.2	Istotność modelu jako całości	. 13
	5.3	Istotność poszczególnych zmiennych	. 13
	5.4	Współczynniki i interpretacja	. 13
	5.5	Błąd standardowy modelu	. 14
	5.6	Współliniowość zmiennych	. 14
	5.7	Wyrazistość modelu	. 15
	5.8	Koincydencja	. 16
6	Testy	statystyczne	. 16
	6.1	Testy normalności	. 16
	6.1.1	Test Shapiro-wilka	. 16
	6.1.2	Test Kołmogorowa-Smirnowa	. 17
	6.2	Testy autokorelacji składnika losowego	. 18
	6.2.1	Test Durbin-Watsona	. 18
	6.2.2	Test Breuscha-Godfreya	. 19
	6.3	Testy heteroskedastyczności	. 20
	6.3.1	Test Breuscha-Pagana	. 20
	6.3.2	Test White'a	. 21
	6.4	Test serii	. 22
	6.5	Test symetrii	. 23
7	Doda	amovonio i wnioelei	25

1 Wstęp

Projekt realizowany jest w ramach przedmiotu "Projektowanie modeli łączenia źródeł danych" na kierunku Inżynieria i Analiza Danych, semestr czwarty, grupa L4. Celem projektu jest zastosowanie zdobytej wiedzy teoretycznej i praktycznej do analizy danych oraz budowy modelu ekonometrycznego dla danych dotyczących frekwencji w kinach na terenie Polski w latach 2013-2023.

1.1 Cel analizy

Celem niniejszej analizy jest określenie, jakie czynniki wpływają na liczbę widzów w kinach w Polsce, oraz opracowanie modelu ekonometrycznego opisującego tę zależność. Analiza opiera się na danych z lat 2013–2023 i obejmuje zmienne związane z infrastrukturą kinową, czynnikami demograficznymi oraz kosztami dla konsumentów. Uzyskane wyniki pozwolą zrozumieć badane zjawisko oraz posłużą do prognozowania liczby widzów w kinach, co może być przydatne dla branży rozrywkowej w Polsce.

1.2 Opis danych

Dane zostały pobrane ze strony Banku Danych Lokalnych dostępnej pod linkiem bdl.stat.gov.pl. Zawierają informacje o 17 cechach opisujących zjawisko frekwencji w polskich kinach. Dane są roczne. Data pobrania danych to styczeń 2025.

Zestaw obejmuje dane z zakresu lat 2013-2023. Przedział czasowy został wybrany w taki sposób, aby uniknąć braków informacji.

• Zmienna zależna (Y):

Y – liczba widzów w kinach w Polsce

• Zmienne niezależne (X):

- X1 liczba kin w Polsce
- X2 liczba sal kinowych w Polsce
- X3 liczba miejsc na widowni w kinach w Polsce
- X4 liczba seansów w kinach w Polsce
- X5 liczba ludności w wieku przedprodukcyjnym w miastach w Polsce
- X6 liczba ludności w wieku produkcyjnym w miastach w Polsce
- X7 przeciętne miesięczne wynagrodzenie brutto w Polsce [zł]
- X8 liczba ludności aktywnej zawodowo pracującej w Polsce [tys.]
- X9 liczba abonentów telewizji w Polsce
- X10 liczba konsumentów korzystających z łączy abonamenckich w Polsce [tys.]
- X11 przeciętna cena detaliczna biletu do kina w Polsce [zł]
- X12 liczba imprez masowych artystyczno-rozrywkowych w Polsce
- X13 przeciętne miesięczne wydatki na 1 osobę na rekreację i kulturę w Polsce [zł]
- X14 ludność w miastach w % ogółu ludności w Polsce
- X15 liczba osób uczestniczących w imprezach masowych w Polsce
- X16 liczba samochodów osobowych w Polsce

1.3 Przegląd danych

Liczba cech: 17Liczba rekordów: 11Zakres lat: 2013-2023

Tabela zawierająca dane:

x1	x2	х3	x4	x5	х6	x7	х8	х9
469	1 243	271 781	1 645 637	3 890 766	14 763 159	3 877,43	15 110	6 718 004
463	1 243	266 479	1 756 954	3 875 671	14 568 489	4 003,99	15 454	6 696 615
444	1 276	271 011	1 792 660	3 869 484	14 358 387	4 150,86	15 723	6 665 101
484	1 364	283 400	1 988 399	3 881 164	14 142 759	4 290,52	15 915	6 639 706
491	1 416	287 948	2 080 183	3 912 079	13 933 976	4 527,89	16 190	6 639 470
497	1 454	290 642	2 205 346	3 932 445	13 729 602	4 834,76	16 283	6 567 510
523	1 513	293 584	2 203 964	3 953 178	13 542 227	5 181,63	16 744	6 508 247
511	1 511	290 710	1 098 976	3 847 634	13 408 468	5 523,32	16 734	6 401 356
523	1 539	294 252	1 355 464	3 847 374	13 218 522	6 001,02	17 161	6 272 113
532	1 565	296 948	2 130 995	3 828 264	13 043 706	6 705,62	17 251	4 703 846
535	1 585	298 224	2 131 204	3 784 453	12 901 595	7 595,30	17 307	4 526 677
x10	x11	x12	x13	x14	x15	x16	x17 y	/
4 318				x14 60,42	21 133 415	x16 19 389 446		36 936 592
	17,00	5 730	69,22				94,0	36 936 592 41 030 024
4 318	17,00 17,65	5 730 5 6 070	69,22 70,13	60,42	21 133 415	19 389 446	94,0	
4 318 4 332	17,00 17,60 18,23	5 730 6 6 070 3 6 280	69,22 70,13 73,48	60,42 60,34	21 133 415 23 253 936	19 389 446 20 003 863	94,0 96,4	41 030 024
4 318 4 332 3 991	17,00 17,60 18,20 18,70	5 730 5 6 070 3 6 280 3 6 480	69,22 70,13 73,48 78,06	60,42 60,34 60,27	21 133 415 23 253 936 23 297 417	19 389 446 20 003 863 20 723 423	94,0 96,4 95,5	41 030 024 45 681 501
4 318 4 332 3 991 3 738	17,00 17,60 18,23 18,73 19,44	5 730 5 6 070 3 6 280 3 6 480 8 6 876	69,22 70,13 73,48 78,06 81,71	60,42 60,34 60,27 60,18	21 133 415 23 253 936 23 297 417 24 435 646	19 389 446 20 003 863 20 723 423 21 675 388	94,0 96,4 95,5 98,0 97,3	41 030 024 45 681 501 51 823 896
4 318 4 332 3 991 3 738 3 270	17,00 17,60 18,20 18,70 19,40 19,80	5 730 5 6 070 3 6 280 3 6 480 8 6 876 0 7 074	69,22 70,13 73,48 78,06 81,71 76,93	60,42 60,34 60,27 60,18 60,13	21 133 415 23 253 936 23 297 417 24 435 646 26 201 281	19 389 446 20 003 863 20 723 423 21 675 388 22 503 579	94,0 96,4 95,5 98,0 97,3 98,3	41 030 024 45 681 501 51 823 896 56 718 898
4 318 4 332 3 991 3 738 3 270 2 771	17,00 17,60 18,20 18,70 19,44 19,80 10,00	6 5 730 5 6 070 3 6 280 3 6 480 8 6 876 0 7 074 2 6 949	69,22 70,13 73,48 78,06 81,71 76,93 82,53	60,42 60,34 60,27 60,18 60,13 60,05	21 133 415 23 253 936 23 297 417 24 435 646 26 201 281 27 615 218	19 389 446 20 003 863 20 723 423 21 675 388 22 503 579 23 429 016	94,0 96,4 95,5 98,0 97,3 98,3	41 030 024 45 681 501 51 823 896 56 718 898 59 177 816
4 318 4 332 3 991 3 738 3 270 2 771 2 336	17,00 17,60 18,21 18,71 19,44 19,81 20,00 19,34	6 5 730 5 6 070 3 6 280 3 6 480 8 6 876 0 7 074 2 6 949 4 1 564	69,22 70,13 73,48 78,06 81,71 76,93 82,53 69,47	60,42 60,34 60,27 60,18 60,13 60,05 60,01	21 133 415 23 253 936 23 297 417 24 435 646 26 201 281 27 615 218 27 826 562	19 389 446 20 003 863 20 723 423 21 675 388 22 503 579 23 429 016 24 360 166	94,0 96,4 95,5 98,0 97,3 98,3 100,7 59,5	41 030 024 45 681 501 51 823 896 56 718 898 59 177 816 61 710 894
4 318 4 332 3 991 3 738 3 270 2 771 2 336 2 054	17,00 17,60 18,23 18,73 19,44 19,80 20,00 19,34	6 5 730 5 6 070 3 6 280 3 6 480 8 6 876 0 7 074 2 6 949 4 1 564 6 2 964	69,22 70,13 73,48 78,06 81,71 76,93 82,53 69,47 79,55	60,42 60,34 60,27 60,18 60,13 60,05 60,01 59,80	21 133 415 23 253 936 23 297 417 24 435 646 26 201 281 27 615 218 27 826 562 4 915 276	19 389 446 20 003 863 20 723 423 21 675 388 22 503 579 23 429 016 24 360 166 25 113 862	94,0 96,4 95,5 98,0 97,3 98,3 100,7 59,5 65,8	41 030 024 45 681 501 51 823 896 56 718 898 59 177 816 61 710 894 19 490 969

2 Statystyki opisowe i wizualizacje danych

2.1 Parametry statystyczne

Obliczono podstawowe parametry statystyczne, tj. odchylenie standardowe, średnią arytmetyczną, współczynnik zmienności, medianę wartości minimalną i maksymalną.

x1	x2	х3	x4	x5	х6	х7	x8	x9	
28,87075789	122,9644846	10689,88121	349532,463	45725,03004	595754,505	1144,95109	716,105503	764574,29	Odchylenie standardowe
497,4545455	1428,090909	285907,1818	1853616,545	3874773,818	13782808,2	5153,84909	16352	6212604,09	Średnia
5,80%	8,61%	3,74%	18,86%	1,18%	4,32%	22,22%	4,38%	12,31%	Vz - wsp. zmienności
497	1454	290642	1988399	3875671	13729602	4834,76	16283	6567510	Mediana
444	1243	266479	1098976	3784453	12901595	3877,43	15110	4526677	Min
535	1585	298224	2205346	3953178	14763159	7595,3	17307	6718004	Max

x10	x11	x12	x13	x14	x15	x16	x17	у	
1060,773599	1,298183091	1677,81697	9,09151498	0,310847947	6949735,83	2566971,58	13,3958918	12568358,1	Odchylenie standardowe
2869,909091	19,31545455	5595,181818	79,22909091	59,98909091	21783907,3	23341263,4	88,4090909	44653973,7	Średnia
36,96%	6,72%	29,99%	11,47%	0,52%	31,90%	11,00%	15,15%	28,15%	Vz - wsp. zmienności
2771	19,48	6280	78,06	60,05	23297417	23429016	95,5	45681501	Mediana
1409	17,06	1564	69,22	59,45	4915276	19389446	59,5	19490969	Min
4332	21,78	7074	100,82	60,42	27826562	27227691	100,7	61710894	Max

2.2 Wizualizacje danych

Wykresy słupkowe zmiennych

• Histogramy zmiennych

3 Dobór zmiennych do modelu

W celu dobrania zmiennych do modelu ekonometrycznego opisującego analizowane zjawisko wykorzystano następujące metody: macierz współczynników korelacji, metoda Hellwiga oraz analizę wartości regresji liniowej.

3.1 Macierz współczynników korelacji

Na podstawie zebranych danych utworzono macierz współczynników korelacji. W kolejnym kroku obliczono wartość statystyki T-studenta oraz wartość krytyczną współczynnika korelacji $r^* = \sqrt{\frac{T^2}{T^2 + n - 2}}$. Następnie zastosowano poniższy algorytm:

1. Ze zbioru zmiennych eliminowane są te, których wartość bezwzględna korelacji ze zmienną zależną jest mniejsza bądź równa wartości krytycznej:

$$|r_{\chi_i \nu}| \leq r^*$$
.

2. Spośród zmiennych, które nie zostały wyeliminowane w poprzednim kroku, wybierana jest ta, której wartość bezwzględna korelacji ze zmienną zależną jest największa:

$$|r_{x_h y}| = \max\{|r_{x_i y}|\}.$$

3. Wśród zbioru zmiennych niezależnych wybierane są te, których wartość bezwzględna korelacji ze zmienną wyselekcjonowaną wcześniej jest większa od wartości krytycznej;

$$|r_{\chi_h\chi_i}| > r^*$$
.

Macierz współczynników korelacji:

Statystyka T-studenta dla poziomu istotności $\alpha = 0.05$ i n - 2 stopni swobody oraz wartość r*:

n	11	r*	0,602069
alfa	0,05		
T_alfa,n-2	2,262157		

Postępowanie zgodnie z algorytmem w krokach:

- 1. Eliminacja zmiennych: X1, X2, X3, X5, X6, X7, X8, X9, X10, X11, X13, X14 i X16.
- 2. Wybór zmiennej X15.
- 3. Eliminacja zmiennych: X4, X12 i X17.

Po zastosowaniu algorytmu na macierzy współczynników korelacji otrzymano model postaci:

$$y = a_1 X_{15} + b.$$

3.2 Metoda Hellwiga – metoda wskaźników pojemności informacyjnej

W tej metodzie skupiono się na doborze takiej kombinacji zmiennych do modelu, która posiada maksymalny integralny wskaźnik pojemności informacyjnej. Wykorzystano do tego następujący kod w języku R:

```
#@Autor, napisał, opisał, przetestował: Napora Jarosław
3
4
    #dane najpierw x pozniej y
5
6
7 ▼ #---- Hellwig z danych ----
8
    library(readxl)
    Dane=read_excel("C:/Users/gosia/Desktop/Studia/Semestr V/Projektowanie modeli
9
10
                    łaczenia źródeł danych/Projekt/Kino.xlsx", sheet=2,range="B33:S44")
11
                         #oblicza ilośc zmiennych obja?niaj?cych
#oblicza ilość kombinacji 0-1
12
    N=length(Dane)-1
13
    M=2 \land N-1
14
15 str(Dane)
   zm_obj=Dane[,1:N]
                         #tworzy macierz zmiennych objaśnijących
   r=cor(zm_obj, use = "pairwise.complete.obs") #tworzy macierz korelacji między zmiennymi
17
                               #tworzy wartości bezwzgledne i macierz
18 r=as.matrix(abs(r))
19
    R=cor(zm_obj,Dane[,N+1])
                                 #tworzy wektor korelacji Y z kazdą ze zmiennych
20 R=as.vector(R)
                                 #zapisuje wektor jako wektor
21
   tab=as.matrix(expand.grid(rep(list(0:1), N)))[-1,]
22
                                                            #tworzy macierz 0-1 kombinacji
23
    colnames (tab)=colnames (Dane) [1:N]
24 wyniki=matrix(0,M,N)
                                #tworzy macierz 0 na wyniki cząstkowe pojemnosci
25
   colnames (wyniki)=colnames (Dane) [1:N]
    for(i in 1:M)
27 - {
28
      for(j in 1:N)
29 -
        if(tab[i,j]!=0){wyniki[i,j]=(R[j]\^2)/(tab[i,]\%\%(as.vector(r[,j])))}
30
31 -
32 * }
35 maks=which.max(rowSums(wyniki))
   tab[maks,]
37
38 #Podgląd kilku najlepszych wynik?w
39
   wynikiS=cbind(wyniki,0)
40
    wynikiS[,(N+1)]=rowSums(wyniki)
41
   nazwy=colnames(as.data.frame(wyniki))
42
    colnames(wynikiS)=c(nazwy, "hellwigP")
43
44
    ind=order(wynikiS[,(N+1)],decreasing = TRUE)[1:15] #zwróci 15 najleprzych
45
    najlepsze15=wynikiS[ind,]
```

W wyniku działania powyższego skryptu otrzymujemy zestaw zmiennych objaśniających, który daje maksymalną wartość integralnego wskaźnika pojemności.

```
> tab[maks,]
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17
0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1
```

Otrzymujemy również 15 najlepszych kombinacji:

^ ,	c1	÷	x2		x3 =		x4 [‡]	x5 [‡]	x6	\$	x7	,	¢8 ÷	x9	÷	x10	÷	x11 [‡]	x12 [‡]	x13 [‡]	x14 [‡]	x15 [‡]	x16	÷	x17 [‡]	hellwigP [‡]
1		0		0	0)	0.0000000	0.1666791		0	()	0		0		0	0.00000000	0.3464645	0.10249630	0.00000000	0.0000000		0	0.3340285	0.9496684
2		0		0	0)	0.0000000	0.1425089		0	()	0		0		0	0.00000000	0.2486846	0.07744923	0.00000000	0.2402140		0	0.2380572	0.9469139
3		0		0	0)	0.2139298	0.1194048		0	()	0		0		0	0.00000000	0.2115027	0.00000000	0.00000000	0.2097117		0	0.1915804	0.9461294
4		0		0	0)	0.2360384	0.1328197		0	()	0		0		0	0.00000000	0.2548802	0.07159975	0.00000000	0.0000000		0	0.2488113	0.9441495
5		0		0	0)	0.2805527	0.1359191		0	()	0		0		0	0.00000000	0.2783023	0.00000000	0.00000000	0.0000000		0	0.2492009	0.9439751
6		0		0	0)	0.2638948	0.1353435		0	()	0		0		0	0.00000000	0.2756868	0.00000000	0.00000000	0.2682407		0	0.0000000	0.9431658
7		0		0	0)	0.2757711	0.1356366		0	()	0		0		0	0.00000000	0.0000000	0.00000000	0.00000000	0.2760253		0	0.2544020	0.9418350
8		0		0	0)	0.1870335	0.1170062		0	()	0		0		0	0.00000000	0.1976961	0.05840520	0.00000000	0.1896956		0	0.1913500	0.9411866
9		0		0	0)	0.0000000	0.1706730		0	()	0		0		0	0.00000000	0.3860717	0.00000000	0.00000000	0.3817748		0	0.0000000	0.9385195
10		0		0	0)	0.0000000	0.1662545		0	()	0		0		0	0.00000000	0.0000000	0.09240899	0.00000000	0.3314154		0	0.3434400	0.9335190
11		0		0	0)	0.3732247	0.1569599		0	()	0		0		0	0.00000000	0.4012122	0.00000000	0.00000000	0.0000000		0	0.0000000	0.9313967
12		0		0	0)	0.0000000	0.1460831		0	()	0		0		0	0.00000000	0.2709322	0.00000000	0.00000000	0.2732389		0	0.2384138	0.9286680
13		0		0	0)	0.2326446	0.1325500		0	()	0		0		0	0.00000000	0.0000000	0.06652680	0.00000000	0.2423649		0	0.2539960	0.9280823
14		0		0	0)	0.0000000	0.1478147		0	()	0		0		0	0.03823207	0.3821609	0.00000000	0.00000000	0.3542842		0	0.0000000	0.9224919
15		0		0	0)	0.2619366	0.1352936		0	()	0		0		0	0.00000000	0.2469634	0.00000000	0.02597319	0.2520119		0	0.0000000	0.9221786

Kombinację zmiennych z największym integralnym wskaźnikiem pojemności wykorzystano do stworzenia modelu postaci:

$$y = a_1 X_5 + a_2 X_{12} + a_3 X_{13} + a_4 X_{17} + b.$$

Sprawdzone zostały korelacje pomiędzy wybranymi zmiennymi objaśniającymi za pomocą macierzy współczynników korelacji:

	x5	x12	x13	x17	у
x5	1	0,446361	-0,46007751	0,5859465	0,5352616
x12	0,446361	1	0,262120014	0,9607392	0,9301239
x13	-0,46008	0,26212	1	0,0046497	0,3699755
x17	0,585946	0,960739	0,004649691	1	0,860225
у	0,535262	0,930124	0,369975487	0,860225	1

Zauważono, że zmienne X12 i X17 są ze sobą mocno skorelowane. Aby zapewnić niezależność zmiennych objaśniających stworzono dwa kolejne modele – pierwszy z wyeliminowaniem zmiennej X17, a drugi z usunięciem zmiennej X12. Modele te można przedstawić wzorami:

$$y = a_1 X_5 + a_2 X_{13} + a_3 X_{12} + b;$$

$$y = a_1 X_5 + a_2 X_{12} + a_3 X_{17} + b.$$

3.3 Porównanie modeli

Po stworzeniu czterech modeli z różnymi kombinacjami zmiennych objaśniających dokonano porównania, które miało na celu wyselekcjonowania ostatecznej postaci modelu opisującego zmienną Y. Do tego działania wykorzystano analizę regresji liniowej: wartości R^2 (> 0,75), dopasowanego R^2 (> 0,75), istotności F (< 0,05) oraz p-value (< 0,05). Dodatkowo wykorzystano funkcję AIC w języku R do porównania wartości kryterium informacyjnego Akaikego.

Model I - macierz korelacji	y = a*x15 + b
Model II - metoda Hellwiga	y = a1*x5 + a2*x12 + a3*x13 + a4*x17 + b
Model III - metoda Hellwiga (bez zmiennej X17)	y = a1*x5 + a2*x12 + a3*x13 + b
Model IV - metoda Hellwiga (bez zmiennej X12)	y = a1*x5 + a2*x13 + a3*x17 + b

Model I										
x15	y	SUMMARY OUTPUT								
21 133 415	36 936 592									
23 253 936	41 030 024	Regression Statistics								
23 297 417	45 681 501	Multiple R	0,930138659							
24 435 646	51 823 896	R Square	0,865157924							
26 201 281	56 718 898	Adjusted R Square	0,850175471							
27 615 218	59 177 816	Standard Error	5102304,235							
27 826 562	61 710 894	Observations	11							
4 915 276	19 490 969									
10 982 909	27 464 839	ANOVA								
23 018 676	41 416 969		df	SS	MS	F	Significance F			
26 942 644	49 741 313	Regression	1	1,5033E+15	1,5033E+15	57,74474519	3,33014E-05			
		Residual	9	2,34302E+14	2,60335E+13					
		Total	10	1,7376E+15						
			Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 95%
		Intercept	8010745,661	5061567,732	1,582660963	0,147958272	-3439316,02	19460807	-3439316	19460807
		x15	1,682123763	0,221361307	7,598996328	3,33014E-05	1,181369696	2,182878	1,18137	2,182878

Model I jest modelem istotnym, ponieważ wartość $R^2 > 0.75$. Dodatkowo wartości istotności statystyki F oraz p-value dla współczynnika zmiennej X15 wynoszą poniżej 0.05.

Model II													
	x12	x13	x17	v	SUMMARY OUTPUT								
3 890 766				36 936 592	SOMMAN COTTO								
		,											
3 875 671	6 070				Regression Statistics								
3 869 484	6 280	73,48	95,5	45 681 501	Multiple R	0,985480851							
3 881 164	6 480	78,06	98,0	51 823 896	R Square	0,971172507							
3 912 079	6 876	81,71	97,3	56 718 898	Adjusted R Square	0,951954179							
3 932 445	7 074	76,93	98,3	59 177 816	Standard Error	2889366,95							
3 953 178	6 949	82,53	100,7	61 710 894	Observations	11							
3 847 634	1 564	69,47	59,5	19 490 969									
3 847 374	2 964	79,55	65,8	27 464 839	ANOVA								
3 828 264	5 247	89,62	80,9	41 416 969		df	SS	MS	F	Significance F			
3 784 453	6 313	100,82	86,1	49 741 313	Regression	4	1,68751E+15	4,21877E+14	50,53366155	9,37536E-05			
					Residual	6	5,00906E+13	8,34844E+12					
					Total	10	1,7376E+15						
						Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 95
					Intercept	-494500060	121771190,8	-4,06089533	0,006643778	-792463430	-2E+08	-7,9E+08	-2E+0
					x5	123,3318161	28,66397097	4,30267726	0,005077902	53,19360596	193,47	53,19361	193,4
					x12	5784,021632	5048,544425	1,145681041	0,295558235	-6569,32153	18137,36	-6569,32	18137,3
					x13	517989,8387	269274,8585	1,923647241	0,102745232	-140902,003	1176882	-140902	117688
					x17	-137218,636	610701,9368	-0,22469003	0,829676944	-1631552,44	1357115	-1631552	135711

Wartości R^2 oraz istotności F wskazują, że model II jest istotny. Jednak wartości p-value dla współczynników zmiennych X12, X13 i X17 zdecydowanie przekraczają 0,05. Model nie jest więc brany pod uwagę w dalszej analizie.

Model III												
x5	x12	x13	у	SUMMARY OUTPUT								
3 890 766	5 730	69,22	36 936 592									
3 875 671	6 070	70,13	41 030 024	Regression Statistics								
3 869 484	6 280	73,48	45 681 501	Multiple R	0,985357776							
3 881 164	6 480	78,06	51 823 896	R Square	0,970929946							
3 912 079	6 876	81,71	56 718 898	Adjusted R Square	0,958471352							
3 932 445	7 074	76,93	59 177 816	Standard Error	2686264,6							
3 953 178	6 949	82,53	61 710 894	Observations	11							
3 847 634	1 564	69,47	19 490 969									
3 847 374	2 964	79,55	27 464 839	ANOVA								
3 828 264	5 247	89,62	41 416 969		df	SS	MS	F	Significance F			
3 784 453	6 313	100,82	49 741 313	Regression	3	1,68709E+15	5,62363E+14	77,93254236	9,64084E-06			
				Residual	7	5,05121E+13	7,21602E+12					
				Total	10	1,7376E+15						
					Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 959
				Intercept	-503125788	107438438,5	-4,68292164	0,002253102	-757177324	-2,5E+08	-7,6E+08	-2,5E+08
				x5	122,9739833	26,60793153	4,62170399	0,002421268	60,05622356	185,8917	60,05622	185,8917
				x12	4661,185228	667,1615411	6,986591614	0,000214092	3083,598879	6238,772	3083,599	6238,772
				x13	570538,0651	124090,1559	4,597770555	0,002490745	277111,4749	863964,7	277111,5	863964,7

W przypadku modelu III wartości wszystkich analizowanych parametrów są zgodne z założeniami. Dodatkowo wartości R^2 dla tego modelu są większe niż dla modelu I.

del IV			
	x13	x17	У
3 890 766	69,22	94,0	36 936 592
3 875 671	70,13	96,4	41 030 024
3 869 484	73,48	95,5	45 681 501
3 881 164	78,06	98,0	51 823 896
3 912 079	81,71	97,3	56 718 898
3 932 445	76,93	98,3	59 177 816
3 953 178	82,53	100,7	61 710 894
3 847 634	69,47	59,5	19 490 969
3 847 374	79,55	65,8	27 464 839
3 828 264	89,62	80,9	41 416 969
3 784 453	100,82	86,1	49 741 313

Dla modelu IV także wszystkie badane parametry mają odpowiednie wartości. Ponadto zaobserwowano, że wartości R^2 również są większe niż dla modelu I, ale mniejsze niż dla modelu III.

Bazując na analizie parametrów regresji liniowej modelem najlepiej opisującym zmienną objaśniającą jest **model III**.

```
> AIC(model_macierz)
[1] 375.3436
> AIC(model_hellwig)
[1] 368.0652
> AIC(model3)
[1] 366.247
> AIC(model4)
[1] 366.9383
```

Analizując wartości kryterium informacyjnego Akaikego wybór modelu opierany jest na najmniejszym wyniku funkcji AIC. W powyższym przypadku najmniejszą wartość otrzymujemy dla modelu III.

Podsumowując, zarówno dzięki analizie parametrów regresji liniowej, jak i wartości kryterium informacyjnego Akaikego, wyciągnięto wniosek, że modelem najlepiej opisującym zmienną Y jest **model III**. Na podstawie wyników porównania zdecydowano, że poniższy model zostanie wykorzystany do dalszej analizy badanego zjawiska.

$$y = a_1 X_5 + a_2 X_{13} + a_3 X_{12} + b$$
,

gdzie:

Y – liczba widzów w kinach w Polsce,

X5 - liczba ludności w wieku przedprodukcyjnym w miastach w Polsce,

X12 - liczba imprez masowych artystyczno-rozrywkowych w Polsce,

X13 - przeciętne miesięczne wydatki na 1 osobę na rekreację i kulturę w Polsce [zł].

4 Estymacja parametrów modelu

W celu obliczenia współczynników a_1, a_2, a_3 i b zastosowano metodę najmniejszych kwadratów. Skorzystano ze wzoru $\beta = X^T X^{-1} X^T y$ i wykonano potrzebne operacje na macierzach. Metoda najmniejszych kwadratów została zastosowana w celu minimalizacji sumy kwadratów różnic między rzeczywistymi wartościami a wartościami teoretycznymi. Wynikające z tego współczynnik określają wpływ każdej zmiennej objaśniającej na zmienną zależną. W wyniku otrzymano poniższe wartości współczynników (b, a_1, a_2, a_3) :

B =	-503125788,3
	122,9739833
	4661,185244
	570538,0638

Wartość współczynnika $B_1 = 122,97$ oznacza, że wzrost zmiennej x_5 o jednostkę powoduje wzrost zmiennej y (liczba widzów) o 122,97 tys. osób, przy założeniu stałości pozostałych zmiennych. Podobnie współczynniki B_2 i B_3 można interpretować jako wpływ zmiennych x_{12} i x_{13} .

Następnie podstawiono obliczone wartości do wzoru modelu i obliczono wartości teoretyczne zmiennej objaśnianej $\hat{y_t}$. W kolejnym kroku obliczono reszty ze wzoru $\xi_t = y_t - \hat{y_t}$ oraz podniesiono je do kwadratu.

у	x5	x12	x13	y^	e	e^2
36 936 592	3 890 766	5 730	69,22	41538441,2	-4 601 849	21 177 016 060 443
41 030 024	3 875 671	6 070	70,13	41786141,54	-756 118	571 713 738 075
45 681 501	3 869 484	6 280	73,48	43915452,92	1 766 048	3 118 925 812 453
51 823 896	3 881 164	6 480	78,06	48897090,43	2 926 806	8 566 190 853 041
56 718 898	3 912 079	6 876	81,71	56627124,41	91 774	8 422 391 329
59 177 816	3 932 445	7 074	76,93	57327355,29	1 850 461	3 424 204 836 395
61 710 894	3 953 178	6 949	82,53	62489339,89	-778 446	605 978 002 014
19 490 969	3 847 634	1 564	69,47	16958464,14	2 532 505	6 413 580 858 048
27 464 839	3 847 374	2 964	79,55	29203173,93	-1 738 335	3 021 808 328 212
41 416 969	3 828 264	5 247	89,62	43239945,32	-1 822 976	3 323 242 669 461
49 741 313	3 784 453	6 313	100,82	49211181,92	530 131	281 038 960 227
				Suma	0	50 512 122 509 700

Na tej podstawie wygenerowano wykres porównujący rzeczywiste wartości zmiennej Y oraz wartości teoretyczne, a co za tym idzie – porównujący opisywane zjawisko ze stworzonym modelem.

Wykres porównawczy pokazuje dopasowanie modelu do rzeczywistych danych. Model w dużej mierze naśladuje przebieg rzeczywistego zjawiska, co sugeruje, że zmienne objaśniające skutecznie opisują zmienną zależną.

5 Weryfikacja modelu

		•		U									
Model:	y = a1*x5	+ a2*x12 +	a3*x13 + b										
у	x5	x12	x13		SUMMARY OUTPUT								
36 936 592	3 890 766	5 730	69,22										
41 030 024	3 875 671	6 070	70,13		Regression Statistic	S			1				
45 681 501	3 869 484	6 280	73,48		Multiple R	0,985357776							
51 823 896	3 881 164	6 480	78,06		R Square	0,970929946							
56 718 898	3 912 079	6 876	81,71		Adjusted R Square	0,958471352							
59 177 816	3 932 445	7 074	76,93		Standard Error	2686264,6							
61 710 894	3 953 178	6 949	82,53		Observations	11							
19 490 969	3 847 634	1 564	69,47										
27 464 839	3 847 374	2 964	79,55		ANOVA								
41 416 969	3 828 264	5 247	89,62			df	SS	MS	F	Significance F			
49 741 313	3 784 453	6 313	100,82		Regression	3	1,68709E+15	5,62363E+14	77,93254236	9,64084E-06			
					Residual	7	5,05121E+13	7,21602E+12					
					Total	10	1,7376E+15						
						Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 95%
					Intercept	-503125788,3	107438438,5	-4,682921636	0,002253102	-757177323,9	-249074252,7	-757177323,9	-249074252,7
					x5	122,9739833	26,60793153	4,62170399	0,002421268	60,05622356	185,8917431	60,05622356	185,8917431
					x12	4661,185228	667,1615411	6,986591614	0,000214092	3083,598879	6238,771578	3083,598879	6238,771578
					x13	570538,0651	124090,1559	4,597770555	0,002490745	277111,4749	863964,6552	277111,4749	863964,6552

5.1 Dopasowanie modelu

• $R^2 = 0.9703$

Model wyjaśnia 97,03% wariancji liczby widzów w kinach, co oznacza bardzo dobre dopasowanie. Wskazuje to, że zmienne X5 (liczba ludności przedprodukcyjnej w miastach), X12 (liczba imprez masowych) i X13 (wydatki na kulturę) mają silny związek z liczbą widzów.

• Adjusted $R^2 = 0.9585$

Skorygowany współczynnik determinacji jest również wysoki, co oznacza, że model dobrze radzi sobie nawet po uwzględnieniu liczby zmiennych objaśniających.

5.2 Istotność modelu jako całości

- $\mathbf{F} = 77,92$ (bardzo wysoka wartość statystyki F)
- **p-value dla modelu** = **9,64E-06** (bliskie zeru) Oznacza to, że model jest istotny statystycznie co najmniej jedna zmienna objaśniająca ma wpływ na liczbę widzów w kinach.

5.3 Istotność poszczególnych zmiennych

- Intercept: p = 0.0023
- **x5: p** = **0,0090** (Istotny wpływ im więcej dzieci i młodzieży w miastach, tym więcej widzów w kinach)B
- **x12: p** = **0,0004** (Bardzo istotny wpływ więcej wydarzeń kulturalnych sprzyja frekwencji w kinach)
- **x13: p** = **0,0025** (Bardzo istotny wpływ wzrost wydatków na kulturę przekłada się na większą liczbę widzów)

Wszystkie zmienne mają p < 0.01, co sugeruje, że każda z nich ma istotny wpływ na zmienną y.

5.4 Współczynniki i interpretacja

• X5 (liczba ludności przedprodukcyjnej):

Każdy dodatkowy mieszkaniec w wieku przedprodukcyjnym w miastach powoduje wzrost liczby widzów o ok. 123 osoby rocznie.

• X12 (liczba imprez masowych):

Każda dodatkowa impreza artystyczna/rozrywkowa zwiększa liczbę widzów w kinach o ok. 4,7 tys. osób.

• X13 (wydatki na kulturę):

Wzrost średnich miesięcznych wydatków na kulturę o 1 zł na osobę powoduje wzrost liczby widzów w kinach o 570 tys. rocznie.

5.5 Błąd standardowy modelu

Błąd standardowy = 2 686 264,6 widzów

Oznacza to, że przeciętne odchylenie prognozowanej liczby widzów od rzeczywistej wynosi ok. 2,7 mln osób rocznie.

W porównaniu do całkowitej liczby widzów (ok. 40-50 mln rocznie), błąd wynosi 5-7%, co jest stosunkowo akceptowalnym poziomem w kontekście prognozowania.

5.6 Współliniowość zmiennych

Współczynnik VIF (Variance Inflation Factor) służy do wykrywania współliniowości pomiędzy zmiennymi objaśniającymi w modelu regresji. Jeśli zmienne objaśniające są silnie skorelowane, mogą powodować niestabilność modelu, co utrudnia interpretację wyników i wpływa na jakość prognoz.

Interpretacja VIF

- VIF < 5 → Brak problemów współliniowości
- VIF 5 10 → Umiarkowana współliniowość, warto sprawdzić korelacje
- VIF > 10 → Silna współliniowość, należy usunąć lub połączyć zmienne.

Aby sprawdzić współliniowość, dla każdej zmiennej objaśniającej przeprowadzono regresję, w której była ona zmienną zależną, a pozostałe zmienne były objaśniające. Następnie obliczono R²i współczynnik VIF według wzoru:

$$VIF = \frac{1}{1 - R^2}$$

x5 - zmieni	na zależna		SUMMARY OUTPUT								
x5	x12	x13									
3 890 766	5 730	69,22	Regression Statistics								
3 875 671	6 070	70,13	Multiple R	0,746207478							
3 869 484	6 280	73,48	R Square	0,5568256							
3 881 164	6 480	78,06	Adjusted R Square	0,446032							
3 912 079	6 876	81,71	Standard Error	35693,79139							
3 932 445	7 074	76,93	Observations	11							
3 953 178	6 949	82,53									
3 847 634	1 564	69,47	ANOVA								
3 847 374	2 964	79,55		df	SS	MS	F	Significance F			
3 828 264	5 247	89,62	Regression	2	12806188145	6403094073	5,02579211	0,038574354			
3 784 453	6 313	100,82	Residual	8	10192373950	1274046744					
			Total	10	22998562096						
VIF =	2,256448										
Brak współ	Iniowości			Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 95%
			Intercept	4028860,707	95127,0766	42,35240744	1,06472E-10	3809497,275	4248224,139	3809497,275	4248224,139
			x12	16,59101127	6,646738052	2,496113302	0,037166454	1,263605847	31,91841669	1,263605847	31,91841669
			x13	-3116,489289	1226,639336	-2,540672875	0,034674437	-5945,124668	-287,8539097	-5945,124668	-287,8539097

Dla zmiennej X5 (Ludność przedprodukcyjna) uzyskano $R^2 = 0.5568$, co odpowiada VIF = 2.2564. Wynik ten wskazuje, że nie występuje problem współliniowości.

na zależna		SUMMARY OUTPUT								
x5	x13									
3 890 766	69,22	Regression Statistics								
3 875 671	70,13	Multiple R	0,690257456							
3 869 484	73,48	R Square	0,476455356							
3 881 164	78,06	Adjusted R Square	0,345569195							
3 912 079	81,71	Standard Error	1423,550218							
3 932 445	76,93	Observations	11							
3 953 178	82,53									
3 847 634	69,47	ANOVA								
3 847 374	79,55	C	df	SS	MS	F	Significance F			
3 828 264	89,62	Regression	2	14753805,84	7376902,921	3,640227143	0,075130259			
3 784 453	100,82	Residual	8	16211961,79	2026495,224					
		Total	10	30965767,64						
1,9100568										
iniowości			Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 95%
		Intercept	-105329,218	43068,30487	-2,445631846	0,040209738	-204644,907	-6013,528912	-204644,907	-6013,528912
		x5	0,026389617	0,010572283	2,496113302	0,037166454	0,002009888	0,050769345	0,002009888	0,050769345
		x13	109,4371296	53,17243228	2,058155419	0,073570484	-13,17871899	232,0529782	-13,17871899	232,0529782
•	3 890 766 3 875 671 3 869 484 3 881 164 3 912 079 3 932 445 3 953 178 3 847 634 3 847 374 3 828 264 3 784 453	x5 x13 3 890 766 69,22 3 875 671 70,13 3 869 484 73,48 3 881 164 78,06 3 912 079 81,71 3 932 445 76,93 3 937 476 34 69,47 3 847 374 79,55 3 828 264 89,62 3 784 453 100,82	x5 x13	x5 x13 Regression Statistics 3 890 766 69,22 Regression Statistics 3 875 671 70,13 Multiple R 0,690257456 3 869 484 73,48 R Square 0,476455356 3 881 164 78,06 Adjusted R Square 0,345569195 3 912 079 81,71 Standard Error 1423,50218 3 932 445 76,93 Observations 11 3 933 178 82,53 11 3 847 374 79,55 df 3 848 264 89,62 Regression 2 3 784 453 100,82 Residual 8 Total 10 1,9100568 Coefficients Inlowości Intercept -105329,18 x5 0,026389617	XS X13	X13	No. No.	No. No.	Note	No. No.

Dla zmiennej X12 (Liczba imprez masowych) uzyskano $R^2 = 0.4765$, co odpowiada VIF = 1.9101. Oznacza to brak współliniowości w modelu.

x13 - zmien	na zależna		SUMMARY OUTPUT								
x13	x5	x12									
69,22	3 890 766	5 730	Regression Statistics	5							
70,13	3 875 671	6 070	Multiple R	0,696120834							
73,48	3 869 484	6 280	R Square	0,484584215							
78,06	3 881 164	6 480	Adjusted R Square	0,355730269							
81,71	3 912 079	6 876	Standard Error	7,653612411							
76,93	3 932 445	7 074	Observations	11							
82,53	3 953 178	6 949									
69,47	3 847 634	1 564	ANOVA								
79,55	3 847 374	2 964		df	SS	MS	F	Significance F			
89,62	3 828 264	5 247	Regression	2	440,5898275	220,2949137	3,760724676	0,070571746			
100,82	3 784 453	6 313	Residual	8	468,6222635	58,57778293					
			Total	10	909,2120909						
VIF =	1,9401812										
Brak współ	liniowości			Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 95%
			Intercept	616,7422966	214,8415308	2,870684705	0,020807035	121,3168384	1112,167755	121,3168384	1112,167755
			x5	-0,000143289	5,63981E-05	-2,540672875	0,034674437	-0,000273343	-1,32349E-05	-0,000273343	-1,32349E-05
			x12	0,003163385	0,001537	2,058155419	0,073570484	-0,000380943	0,006707713	-0,000380943	0,006707713

Dla zmiennej X13 (Przeciętne wydatki na kulturę) uzyskano $R^2=0.4848$, co odpowiada VIF = 1.9418. Również w tym przypadku współliniowość nie stanowi problemu.

Wszystkie wartości VIF są mniejsze niż 5, co oznacza, że zmienne nie są nadmiernie skorelowane i nie powodują problemów współliniowości w modelu. Model regresji można uznać za stabilny i dobrze skonstruowany pod względem zależności między zmiennymi objaśniającymi.

5.7 Wyrazistość modelu

Współczynnik zmienności jest jedną z metod oceny wyrazistości modelu, czyli tego, jak dobrze model wyjaśnia zmienność zmiennej zależnej. V pozwala na określenie, czy model dostatecznie precyzyjnie opisuje zależności w danych.

Wzór na współczynnik zmienności losowej (V):

$$V = \left(\frac{S_e}{\bar{V}}\right) \times 100\%$$

gdzie:

- **S**_e błąd standardowy reszt.
- Y średnia wartość zmiennej zależnej Y.

Interpretacja wyniku

- Jeśli V<30% → model jest dobrze dopasowany, ma niską zmienność losową.
- Jeśli **V≥30%** → model nie jest wystarczająco precyzyjny, może wymagać poprawek.

Wyrazistość m	
V = Se/y_sr*10	JU%
Se	2686264,6
y_śr	44 653 974
V =	6%

Wartość V = 6% oznacza, że model jest bardzo dobrze dopasowany i jego zmienność losowa jest niewielka.

5.8 Koincydencja

Analiza koincydencji została przeprowadzona w celu weryfikacji zgodności kierunków wpływu zmiennych objaśniających na zmienną zależną. Porównano znaki korelacji pomiędzy zmiennymi niezależnymi a zmienną zależną oraz odpowiadające im znaki współczynników regresji.

Koincyden	cja								
				Macierz korelacji					
у	x5	x12	x13		у	x5	x12	x13	
36 936 592	3 890 766	5 730	69,22	у	1				
41 030 024	3 875 671	6 070	70,13	x5	0,53526165	1			
45 681 501	3 869 484	6 280	73,48	x12	0,930123897	0,44636109	1		
51 823 896	3 881 164	6 480	78,06	x13	0,369975487	-0,460077512	0,262120014		1
56 718 898	3 912 079	6 876	81,71						
59 177 816	3 932 445	7 074	76,93		Coefficients				
61 710 894	3 953 178	6 949	82,53	Intercept	-503125788,3				
19 490 969	3 847 634	1 564	69,47	x5	122,9739833				
27 464 839	3 847 374	2 964	79,55	x12	4661,185228				
41 416 969	3 828 264	5 247	89,62	x13	570538,0651				
49 741 313	3 784 453	6 313	100,82						
				Brak koincydencji					

Wyniki analizy wykazały, że dla każdej zmiennej znak korelacji jest zgodny ze znakiem współczynnika regresji.

6 Testy statystyczne

W ramach weryfikacji poprawności modelu ekonometrycznego przeprowadzono zestaw testów statystycznych, mających na celu ocenę spełnienia podstawowych założeń klasycznej regresji liniowej. Przeprowadzone analizy pozwoliły na ocenę stabilności, jakości oraz poprawności modelu pod kątem jego dopasowania do danych. Testy przeprowadzono w środowisku R, wykorzystując odpowiednie metody statystyczne dla każdego z założeń regresji.

6.1 Testy normalności

Testy normalności służą do oceny, czy reszty modelu regresji mają rozkład normalny. Spełnienie tego założenia jest kluczowe dla poprawnego wnioskowania statystycznego – w szczególności dla testów istotności parametrów oraz budowy przedziałów ufności. Jeśli reszty nie są normalnie rozłożone, może to oznaczać błędną specyfikację modelu lub obecność wartości odstających.

6.1.1 Test Shapiro-wilka

Test Shapiro-Wilka sprawdza, czy reszty modelu są zgodne z rozkładem normalnym.

Hipotezy testowe:

- **H**₀: Reszty mają rozkład normalny.
- H₁: Reszty nie mają rozkładu normalnego.

Interpretacja:

- Jeśli **p≥0.05**, brak podstaw do odrzucenia hipotezy zerowej rozkład reszt może być normalny.
- Jeśli **p** < **0.05**, odrzucamy hipotezę normalności reszty nie są normalnie rozłożone.

```
5 # Dopasowanie modelu regresji
 6 model <- lm(y \sim x5 + x12 + x13, data = dane)
8 # Pobranie reszt modelu
9 reszty <- residuals(model)</pre>
10
11 # Test Shapiro-Wilka
12 shapiro_result <- shapiro.test(reszty)
13
14 # Wyniki testu
15 cat("Test Shapiro-Wilka\n")
16 cat("Statystyka W:", shapiro_result$statistic, "\n")
17 cat("Wartość p:", shapiro_result$p.value,
18
19 # Wniosek
20 - if (shapiro_result$p.value < 0.05) {
21
     cat("Odrzucamy hipotezę zerową - reszty nie mają rozkładu normalnego na poziomie istotności 0.05.\n")
22 - } else {
cat("Brak podstaw do odrzucenia hipotezy zerowej – reszty mogą pochodzić z rozkładu normalnego.\n")
Test Shapiro-Wilka
> cat("Statystyka W:", shapiro_result$statistic, "\n")
Statystyka W: 0.9495303
> cat("Wartość p:", shapiro_result$p.value, "\n")
Wartość p: 0.6379563
> # Wniosek
> if (shapiro_result$p.value < 0.05) {</pre>
   cat("odrzucamy hipotezę zerową - reszty nie mają rozkładu normalnego na poziomie istotności 0.05.\n")
+ } else {
   cat("Brak podstaw do odrzucenia hipotezy zerowej - reszty mogą pochodzić z rozkładu normalnego.\n")
Brak podstaw do odrzucenia hipotezy zerowej - reszty moga pochodzić z rozkładu normalnego.
```

Wyniki testu Shapiro-Wilka

• Statystyka W: 0.9495

Wartość p: 0.6379

Interpretacja:

Ponieważ wartość p = 0.6379 jest większa niż przyjęty poziom istotności 0.05, brak podstaw do odrzucenia hipotezy zerowej.

Oznacza to, że reszty mogą pochodzić z rozkładu normalnego, co sugeruje, że model spełnia to kluczowe założenie.

6.1.2 Test Kołmogorowa-Smirnowa

Test Kołmogorowa-Smirnowa bada zgodność rozkładu reszt z dowolnym teoretycznym rozkładem, w tym przypadku z rozkładem normalnym. Jest mniej czuły dla małych prób, ale dobrze sprawdza się przy większych zbiorach danych.

Hipotezy testowe:

- **H**₀: Rozkład reszt nie różni się istotnie od rozkładu normalnego.
- H₁: Rozkład reszt różni się istotnie od rozkładu normalnego.

Interpretacja:

- Jeśli p≥0.05, brak podstaw do odrzucenia hipotezy zerowej reszty mogą pochodzić z rozkładu normalnego.
- Jeśli **p** < **0.05**, odrzucamy hipotezę normalności reszty różnią się od normalnych.

```
27 # Test Kołmogorowa-Smirnowa
28 ks_result <- ks.test(reszty, "pnorm", mean=mean(reszty), sd=sd(reszty))
29
30 # Wyniki testu
31 cat("Test Kołmogorowa-Smirnowa\n")
32 cat("Statystyka D:", ks_result$statistic, "\n")
33 cat("Wartość p:", ks_result$p.value,
35 # Wniosek
36 - if (ks_result$p.value < 0.05) {
     cat("odrzucamy hipotezę zerową – reszty nie są zgodne z rozkładem normalnym na poziomie istotności 0.05.\n")
38 + } else
39
     cat("Brak podstaw do odrzucenia hipotezy zerowej - reszty mogą pochodzić z rozkładu normalnego.\n")
Test Kołmogorowa-Smirnowa
> cat("Statystyka D:", ks_result$statistic, "\n")
Statystyka D: 0.1476402
 cat("Wartość p:", ks_result$p.value, "\n")
Wartość p: 0.9423125
> if (ks_result$p.value < 0.05) {</pre>
   cat("odrzucamy hipotezę zerową – reszty nie są zgodne z rozkładem normalnym na poziomie istotności 0.05.\n")
   cat("Brak podstaw do odrzucenia hipotezy zerowej - reszty mogą pochodzić z rozkładu normalnego.\n")
Brak podstaw do odrzucenia hipotezy zerowej - reszty mogą pochodzić z rozkładu normalnego.
```

Wyniki testu Kołmogorowa-Smirnowa

Statystyka D: 0.1476

Wartość p: 0.9423

Interpretacja:

Wartość p = 0.9423 jest znacznie większa niż 0.05, co oznacza, że brak podstaw do odrzucenia hipotezy zerowej.

Oznacza to, że rozkład reszt nie różni się istotnie od rozkładu normalnego.

6.2 Testy autokorelacji składnika losowego

Autokorelacja reszt w modelu regresji liniowej oznacza, że wartości reszt są ze sobą skorelowane, czyli występuje zależność między kolejnymi obserwacjami. W klasycznej regresji liniowej zakłada się, że reszty powinny być losowe i nieskorelowane – w przeciwnym razie model może być błędnie oszacowany, a testy istotności parametrów mogą dawać niewiarygodne wyniki.

6.2.1 Test Durbin-Watsona

Test Durbin-Watsona (DW) służy do wykrywania autokorelacji pierwszego rzędu, czyli sytuacji, w której bieżąca wartość reszt jest zależna od wartości reszt z poprzedniej obserwacji:

$$e_t = \rho e_{t-1} + u_t$$

gdzie:

- e_t reszta w momencie t,
- e_{t-1} reszta z poprzedniego okresu,
- u_t losowy składnik zakłócający.

Hipotezy testowe:

- H_0 : Brak autokorelacji pierwszego rzędu ($\rho = 0$).
- H_1 : Występuje autokorelacja pierwszego rzędu ($\rho \neq 0$).

Interpretacja statystyki Durbin-Watsona

Statystyka Durbin-Watsona (DW) przyjmuje wartości w zakresie od 0 do 4. Interpretacja wyniku zależy od jego wartości:

- Jeśli statystyka DW jest bliska 2, oznacza to, że brak autokorelacji reszt, co jest pożądane w modelu regresji.
- Jeśli statystyka DW jest mniejsza niż 1,5, sugeruje to autokorelację dodatnią, co oznacza, że kolejne wartości reszt są do siebie podobne mogą występować systematyczne błędy w modelu.
- Jeśli statystyka DW jest większa niż 2,5, wskazuje to na autokorelację ujemną, co oznacza, że wartości reszt mają tendencję do naprzemiennego przyjmowania wartości dodatnich i ujemnych.

```
49 # Test Durbin-Watsona
50 dw_result <- durbinWatsonTest(model)</p>
51
52 # Wyniki testu
53 cat("Test Durbin-Watsona\n")
54 cat("Statystyka DW:", dw_result$dw, "\n")
55 cat("Wartość p:", dw_result$p, "\n")
56
57 # Interpretacja wyników
58 - if (dw_result$p < 0.05) {
     cat("Odrzucamy hipoteze zerowa - występuje autokorelacja reszt.\n")
60 → } else {
61 cat("Brak podstaw do odrzucenia hipotezy zerowej - brak autokorelacji reszt.\n")
Test Durbin-Watsona
> cat("Statystyka DW:", dw_result$dw, "\n")
Statystyka DW: 1.490466
> cat("Wartość p:", dw_result$p, "\n")
Wartość p: 0.054
> # Interpretacja wyników
> if (dw_result$p < 0.05) {
   cat("Odrzucamy hipotezę zerową - występuje autokorelacja reszt.\n")
  cat("Brak podstaw do odrzucenia hipotezy zerowej - brak autokorelacji reszt.\n")
Brak podstaw do odrzucenia hipotezy zerowej - brak autokorelacji reszt.
```

Wyniki testu Durbin-Watsona:

• Statystyka DW: 1.4905

• Wartość p: 0.054

Interpretacja:

Wartość DW zbliżona do 1,5 może sugerować lekką autokorelację dodatnią, jednak wartość p = 0.054 jest większa niż 0.05, co oznacza, że brak podstaw do odrzucenia hipotezy zerowej. Ostatecznie nie wykryto istotnej statystycznie autokorelacji reszt pierwszego rzędu.

6.2.2 Test Breuscha-Godfreya

Test Breuscha-Godfreya (BG) jest bardziej ogólny niż test Durbin-Watsona, ponieważ pozwala wykryć autokorelację wyższych rzędów (czyli nie tylko pierwszego rzędu, ale także drugiego, trzeciego itd.). Działa również poprawnie w modelach zawierających zmienne opóźnione.

Hipotezy testowe:

- **H**₀: Brak autokorelacji wyższych rzędów.
- H₁: Występuje autokorelacja reszt wyższego rzędu.

Interpretacja wyników:

Test Breuscha-Godfreya zwraca wartość p, którą interpretujemy następująco:

- $p \ge 0.05$: Brak podstaw do odrzucenia hipotezy zerowej brak autokorelacji reszt
- p < 0.05: Odrzucamy hipotezę zerową występuje autokorelacja reszt

```
69 # Test Breuscha-Godfreya
70 bq_result <- bqtest(model, order = 2)
71
72 # Wyniki testu
73 cat("Test Breuscha-Godfreya\n")
74 cat("Statystyka LM:", bg_result$statistic, "\n")
75 cat("Wartość p:", bg_result$p.value, "\n")
76
77
   # Interpretacja wyników
78 - if (bg_result$p.value < 0.05) {
79
     cat(" Odrzucamy hipotezę zerową - występuje autokorelacja wyższych rzędów.\n")
80 + } else {
81
      cat("Brak podstaw do odrzucenia hipotezy zerowej - brak autokorelacji wyższych rzędów.\n")
82 4 }
Test Breuscha-Godfreya
> cat("Statystyka LM:", bg_result$statistic, "\n")
Statystyka LM: 0.1201798
> cat("Wartość p:", bg_result$p.value, "\n")
Wartość p: 0.9416799
> # Interpretacja wyników
> if (bg_result$p.value < 0.05) {
+ cat(" Odrzucamy hipotezę zerową – występuje autokorelacja wyższych rzędów.\n")
+ } else {
   cat("Brak podstaw do odrzucenia hipotezy zerowej - brak autokorelacji wyższych rzędów.\n")
Brak podstaw do odrzucenia hipotezy zerowej - brak autokorelacji wyższych rzędów.
```

Wyniki testu Breuscha-Godfreya:

Statystyka LM: 0.1208

Wartość p: 0.9417

Interpretacja:

Wartość p = 0.9417 jest znacznie większa niż 0.05, co oznacza, że brak podstaw do odrzucenia hipotezy zerowej. Oznacza to, że w modelu nie wykryto autokorelacji wyższych rzędów.

6.3 Testy heteroskedastyczności

Heteroskedastyczność oznacza, że wariancja reszt modelu regresji nie jest stała – innymi słowy, zmienność błędów nie pozostaje na podobnym poziomie dla różnych wartości zmiennych objaśniających. Jest to naruszenie jednego z kluczowych założeń klasycznej regresji liniowej, które zakłada homoskedastyczność, czyli stałość wariancji reszt.

6.3.1 Test Breuscha-Pagana

Test Breuscha-Pagana bada, czy wariancja reszt jest zależna od wartości zmiennych objaśniających. Jeśli wariancja rośnie lub maleje w miarę wzrostu wartości zmiennych objaśniających, oznacza to, że występuje heteroskedastyczność liniowa.

Hipotezy testowe:

- **H₀**: Reszty są homoskedastyczne (wariancja reszt jest stała).
- **H**₁: Reszty są heteroskedastyczne (wariancja reszt zależy od wartości zmiennych objaśniających).

Interpretacja wyników:

- Jeśli $p \ge 0.05$, brak podstaw do odrzucenia hipotezy zerowej brak heteroskedastyczności (model spełnia założenie stałej wariancji reszt).
- Jeśli **p** < **0.05**, odrzucamy hipotezę zerową występuje heteroskedastyczność (wariancja reszt zmienia się w zależności od wartości zmiennych objaśniających).

```
85 # Testy heteroskedastyczności
 87 # Instalacja pakietu
 88 install.packages("lmtest")
 89 library(lmtest)
 90
 91 # Test Breuscha-Pagana
 92 bp_result <- bptest(model)
 93
 94
    # Wyniki testu
 95 cat("Test Breuscha-Pagana (heteroskedastyczność)\n")
 96 cat("Statystyka testowa:", bp_result$statistic,
 97
     cat("Wartość p:", bp_result$p.value,
 98
 99 # Interpretacja wyników
100 - if (bp_result$p.value < 0.05) {
      cat("Odrzucamy hipotezę zerową - występuje heteroskedastyczność reszt.\n")
102 - } else {
cat("Brak podstaw do odrzucenia hipotezy zerowej - model spełnia założenie homoskedastyczności.\n")
Test Breuscha-Pagana (heteroskedastyczność)
Statystyka testowa:", bp_result$statistic, "\n")
> cat("wartoff = "
> cat("Wartość p:", bp_result$p.value, "\n")
Wartość p: 0.4140487
> # Interpretacja wyników
> if (bp_result$p.value < 0.05) {</pre>
   cat("Odrzucamy hipotezę zerową – występuje heteroskedastyczność reszt.\n")
+ } else {
   cat("Brak podstaw do odrzucenia hipotezy zerowej - model spełnia założenie homoskedastyczności.\n")
Brak podstaw do odrzucenia hipotezy zerowej - model spełnia założenie homoskedastyczności.
```

Wyniki testu Breuscha-Pagana

• Statystyka testowa: 2.85791

• Wartość p: 0.4140

Interpretacja:

Wartość p = 0.4140 jest większa niż 0.05, co oznacza, że brak podstaw do odrzucenia hipotezy zerowej. Oznacza to, że model spełnia założenie homoskedastyczności, czyli wariancja reszt jest stała i nie zależy od wartości zmiennych objaśniających.

6.3.2 Test White'a

Test White'a jest bardziej ogólny niż test Breuscha-Pagana, ponieważ pozwala wykryć nieliniową heteroskedastyczność, a także interakcje między zmiennymi objaśniającymi. Dzięki temu jest bardziej uniwersalnym narzędziem do diagnozy problemów związanych z heteroskedastycznością.

Hipotezy testowe:

- **H**₀: Reszty są homoskedastyczne (wariancja reszt jest stała).
- **H**₁: Reszty są heteroskedastyczne (wariancja reszt zmienia się w sposób bardziej złożony, np. nieliniowy).

Interpretacja wyników:

- Jeśli $p \ge 0.05$, brak podstaw do odrzucenia hipotezy zerowej brak heteroskedastyczności.
- Jeśli p < 0.05, odrzucamy hipotezę zerową występuje heteroskedastyczność (nieliniowa zależność wariancji reszt od zmiennych objaśniających).

```
112 # Test White'a
     white_result <- bptest(model, varformula = ~ fitted(model) + I(fitted(model)^2))
113
114
115 # Wyniki testu
116 cat("Test White'a (heteroskedastyczność)\n")
117 cat("Statystyka testowa:", white_result$statistic, "\n")
118 cat("Wartość p:", white_result$p.value, "\n")
119
120 # Interpretacja wyników
121 - if (white_result$p.value < 0.05) {
      cat(" Odrzucamy hipotezę zerowa - występuje heteroskedastyczność reszt.\n")
123 + } else {
      cat("Brak podstaw do odrzucenia hipotezy zerowej - model spełnia założenie homoskedastyczności.\n")
Test White'a (heteroskedastyczność)
> cat("Statystyka testowa:", white_result$statistic, "\n")
Statystyka testowa: 1.364037
> cat("Wartość p:", white_result$p.value, "\n")
Wartość p: 0.5055955
> # Interpretacja wyników
> if (white_result$p.value < 0.05) {
   cat(" Odrzucamy hipotezę zerową – występuje heteroskedastyczność reszt.\n")
+ } else {
   cat("Brak podstaw do odrzucenia hipotezy zerowej - model spełnia założenie homoskedastyczności.\n")
Brak podstaw do odrzucenia hipotezy zerowej - model spełnia założenie homoskedastyczności.
```

Wyniki testu White'a

Statystyka testowa: 1.3640

• Wartość p: 0.5059

Interpretacja:

Podobnie jak w teście Breuscha-Pagana, wartość p = 0.5059 jest znacznie większa niż 0.05, co oznacza, że brak podstaw do odrzucenia hipotezy zerowej. Oznacza to, że w modelu nie występuje heteroskedastyczność, nawet w bardziej złożonej (nieliniowej) formie.

6.4 Test serii

Test serii bada, czy znaki kolejnych reszt są ułożone w losowy sposób. Jeśli reszty mają tendencję do występowania w sekwencjach (np. dłuższe serie wartości dodatnich lub ujemnych), oznacza to, że mogą one być systematycznie skorelowane, co może wskazywać na błędy modelu.

Hipotezy testowe

- **H**₀: Reszty są losowe brak systematycznych wzorców.
- H₁: Reszty nie są losowe występują zależności między wartościami reszt.

Jeśli test odrzuci hipotezę zerową, oznacza to, że reszty modelu wykazują pewne regularności, które mogą świadczyć o problemach w modelu.

```
134 # Test serii
135
136 # Podział reszt na wartości dodatnie i ujemne
137 znaki <- ifelse(reszty > 0, 1, 0)
138
139 # Test serii
140 runs_result <- runs.test(as.factor(znaki))</pre>
141
142 # Wyniki testu
143 cat("Test Serii (badanie losowości reszt)\n")
144 cat("Statystyka testowa:", runs_result$statistic, "\n")
145 cat("Wartość p:", runs_result$p.value, "\n")
146
147 # Interpretacja wyników
148 - if (runs_result$p.value < 0.05) {
149 cat("Odrzucamy hipotezę zerową - reszty NIE są losowe, możliwe błędy modelu.\n")
150 + } else {
       cat("Brak podstaw do odrzucenia hipotezy zerowej - reszty są losowe.\n")
151
152 4 }
Test Serii (badanie losowości reszt)
> cat("Statystyka testowa:", runs_result$statistic, "\n")
Statystyka testowa: -0.2916059
> cat("Wartość p:", runs_result$p.value, "\n")
Wartość p: 0.7705879
> # Interpretacja wyników
> if (runs_result$p.value < 0.05) {
   cat("Odrzucamy hipotezę zerową – reszty NIE są losowe, możliwe błędy modelu.\n")
  cat("Brak podstaw do odrzucenia hipotezy zerowej - reszty są losowe.\n")
Brak podstaw do odrzucenia hipotezy zerowej - reszty są losowe.
```

Wyniki testu serii

Statystyka testowa: -0.2916

• Wartość p: 0.7706

Interpretacja:

Wartość p = 0.7706 jest znacznie większa niż 0.05, co oznacza, że brak podstaw do odrzucenia hipotezy zerowej. Oznacza to, że reszty są losowe, co jest zgodne z założeniami poprawnie skonstruowanego modelu.

6.5 Test symetrii

Test ten bada, czy rozkład reszt jest równomierny po obu stronach mediany. W przypadku regresji liniowej, reszty powinny być równie często dodatnie, jak i ujemne oraz rozkładać się w sposób symetryczny.

Hipotezy testowe

- **H**₀: Rozkład reszt jest symetryczny względem mediany.
- H₁: Rozkład reszt nie jest symetryczny.

Jeśli test odrzuci hipotezę zerową, oznacza to, że rozkład reszt jest asymetryczny, co może wskazywać na problemy w modelu.

```
157 # Test symetrii
 158 symmetry_result <- symmetry.test(reszty, boot = FALSE)
 159
 160 # Wyniki testu
161 cat("Test Symetrii (badanie rozkładu reszt)\n")
162 cat("Statystyka testowa:", symmetry_result$statistic, "\n")
163 cat("Wartość p:", symmetry_result$p.value, "\n")
 164
165 # Interpretacja wyników
 166 - if (symmetry_result$p.value < 0.05) {
167 cat("odrzucamy hipotezę zerową - reszty NIE są symetryczne, model może być błędny.\n")
168 → } else {
169
       cat("Brak podstaw do odrzucenia hipotezy zerowej - reszty są symetryczne.\n")
170 4 }
Test Symetrii (badanie rozkładu reszt)
> cat("Statystyka testowa:", symmetry_result$statistic, "\n")
Statystyka testowa: -0.183175
> cat("Wartość p:", symmetry_result$p.value, "\n")
Wartość p: 0.8546607
> # Interpretacja wyników
> if (symmetry_result$p.value < 0.05) {</pre>
   cat("Odrzucamy hipotezę zerową – reszty NIE są symetryczne, model może być błędny.\n")
+ } else {
   cat("Brak podstaw do odrzucenia hipotezy zerowej - reszty są symetryczne.\n")
Brak podstaw do odrzucenia hipotezy zerowej - reszty są symetryczne.
```

Wyniki testu symetrii

Statystyka testowa: -0.1832

Wartość p: 0.8547

Interpretacja:

Wartość p = 0.8547 jest znacznie większa niż 0.05, co oznacza, że brak podstaw do odrzucenia hipotezy zerowej. Oznacza to, że rozkład reszt modelu jest symetryczny względem mediany, co jest zgodne z założeniami regresji liniowej.

7 Podsumowanie i wnioski

Celem przeprowadzonej analizy było stworzenie modelu ekonometrycznego opisującego zależność między liczbą widzów w kinach w Polsce a wybranymi czynnikami społeczno-ekonomicznymi. W ramach projektu zastosowano regresję liniową oraz przeprowadzono szereg testów statystycznych w celu oceny poprawności modelu.

Wyniki analizy wykazały, że opracowany model bardzo dobrze wyjaśnia zmienność liczby widzów w kinach, co potwierdza wysoka wartość współczynnika determinacji R^2 . Kluczowe zmienne objaśniające obejmowały liczbę ludności w wieku przedprodukcyjnym, liczbę imprez masowych oraz przeciętne miesięczne wydatki na rekreację i kulturę.

Przeprowadzone testy statystyczne wykazały, że model spełnia podstawowe założenia klasycznej regresji liniowej. Nie stwierdzono problemów związanych z autokorelacją reszt, heteroskedastycznością ani współliniowością zmiennych objaśniających. Dodatkowo, testy normalności, losowości oraz symetrii reszt potwierdziły poprawność estymacji parametrów modelu. Analiza współczynnika zmienności wykazała, że model charakteryzuje się wysoką precyzją prognozowania.

Podsumowując, opracowany model można uznać za stabilny i poprawnie skonstruowany.