Learning Vector Quantization and K-Nearest Neighbor

Jia Li

Department of Statistics The Pennsylvania State University

> Email: jiali@stat.psu.edu http://www.stat.psu.edu/~jiali

Learning Vector Quantization

- Developed by Kohonen. A package with document is available at:
 - http://www.cis.hut.fi/nnrc/nnrc-programs.html .
- ▶ When position the prototypes, use information given by class labels, as a contrast to k-means which selects prototypes without using class labels.
- Often works better than k-means.
- ► The idea is to move a prototype close to training samples in its class, and move away from samples with different classes.

Figure 13.1: Simulated example with three classes and five prototypes per class. The data in each class are generated from a mixture of Gaussians. In the upper panel, the prototypes were found by applying the K-means clustering algorithm separately in each class. In the lower panel, the LVQ algorithm (starting from the K-means solution) moves the prototypes away from the decision boundary. The broken purple curve in the background is the Bayes decision boundary.

LVQ - 5 Prototypes per Class

The Algorithm

- 1. Start from a set of initial prototypes with classes assigned. Denote the M prototypes by $\mathcal{Z} = \{z_1, ..., z_M\}$ and their associated classes by $C(z_m)$, m = 1, 2, ..., M.
 - The initial prototypes can be provided by k-means.
- 2. Sweep through the training samples and update z_m after visiting each sample.
 - Suppose x_i is assigned to the mth prototype z_m by the nearest neighbor rule:

$$|| x_i - z_m || \le || x_i - z_{m'} ||, \forall m' \ne m, 1 \le m' \le M$$

- ▶ If $g_i = C(z_m)$, move z_m towards the training sample: $z_m \leftarrow z_m + \epsilon(x_i z_m)$ where ϵ is the *learning rate*.
- If $g_i \neq C(z_m)$, move z_m away from the training sample: $z_m \leftarrow z_m \epsilon(x_i z_m)$
- 3. Step 2 can be repeated a number of times.

Experiments

- ▶ Use the diabetes data set.
- ▶ Use prototypes obtained by k-means as initial prototypes.
- ▶ Use LVQ with $\epsilon = 0.1$.
- ▶ Results obtained after 1, 2, and 5 passes are shown below.
- Classification is not guaranteed to improve after adjusting prototypes.
- lackbox One pass with a small ϵ usually helps. But don't over do it.

Comments:

- Fine tuning often helps:
 - Select initial prototypes.
 - Adjust learning rate ϵ .
- Read the package documents for details.

K-Nearest Neighbor Classifiers

- ▶ Given a query point x_0 , find the k training samples $x_{(r)}$, r = 1, ..., k closest in distance to x_0 , and then classify using majority vote among the k neighbors.
- ▶ Feature normalization is often performed in pre-processing.
- ▶ Classification boundaries become smoother with larger *k*.

15-Nearest Neighbors

Figure 13.3: k-nearest-neighbor classifiers applied to the simulation data of Figure 13.1. The broken purple curve in the background is the Bayes decision boundary.

1-Nearest Neighbor

Figure 13.4: k-nearest-neighbors on the two-class mizture data. The upper panel shows the misclassification errors as a function of neighborhood size. Standard error bars are included for 10-fold cross validation. The lower panel shows the decision boundary for 7-nearestneighbors, which appears to be optimal for minimizing test error. The broken purple curve in the background is the Bayes decision boundary.

7-Nearest Neighbors

A Comparative Study (ElemStatLearn)

- Two simulated problems.
- ▶ There are 10 independent features X_j , each uniformly distributed on [0,1].
- ▶ The two-class 0-1 target variable is defined as follows:

problem 1: "easy"

$$Y=I(X_1>\frac{1}{2});$$

problem 2: "difficult"

$$Y = I\left(sign\left\{\prod_{j=1}^{3}(X_j - \frac{1}{2})\right\} > 0\right).$$

- ▶ For problem 1 (2), except X_1 (and X_2 , X_3), all the other features are "noise".
- ▶ The Bayes error rates are zero.
- In each run, 100 samples used in training and 1000 used in testing.

- ▶ The figure shows the mean and standard deviation of the misclassification error for nearest-neighbors, K-means and LVQ over 10 realizations (10 simulated data sets), as the tuning parameters change.
- K-means and LVQ give almost identical results.
- For the first problem, K-means and LVQ outperform nearest neighbors, assuming the best choice of tuning parameters for each. For the second problem, they perform similarly.
- ► The optimal *k* for the k-nearest neighbor classification differs significantly for the two problems.

Figure 13.5: Mean ± one standard error of misclassification error for nearest-neighbors, K-means (blue) and LVQ (red) over ten realizations for two simulated problems: "easy" and "difficult," described in the text.

Adaptive Nearest-Neighbor Methods

- ▶ When dimension is high, data become relatively sparse.
- Implicit in nearest-neighbor classification is the assumption that the class probabilities are roughly constant in the neighborhood, and hence simple averages give good estimates.
- ▶ In high dimensional space, the neighborhood represented by the few nearest samples may not be local.
 - Consider N data points uniformly distributed in the unit cube $[-\frac{1}{2},\frac{1}{2}]^p$. Let R be the radius of a 1-nearest-neighborhood centered at the origin. Then

median
$$(R) = v_p^{-1/p} \left(1 - \frac{1}{2}^{1/N}\right)^{1/p}$$
,

where $v_p r^p$ is the volume of the sphere of radius r in p dimensions.

► The median radius quickly approaches 0.5, the distance to the edge of the cube, when dimension increases.

▶ Adjust distance metric locally, so that the resulting neighborhoods stretch out in directions for which the class probabilities don't change much.

Figure 13.12: Median radius of a 1-nearest-neighborhood, for uniform data with N observations in p dimensions.

5-Nearest Neighborhoods

Figure 13.13: The points are uniform in the cube, with the vertical line separating class red and green. The vertical strip denotes the 5-nearest-neighbor region using only the horizontal coordinate to find the nearestneighbors for the target point (solid dot). The sphere shows the 5-nearest-neighbor region using both coordinates, and we see in this case it has extended into the class-red region (and is dominated by the wrong class in this instance).

Discriminant Adaptive Nearest-Neighbor (DANN)

- ► At each query point, a neighborhood of say 50 points is formed.
- Class probabilities are NOT assumed constant in this neighborhood. This neighborhood is used only to decide how to define the adapted metric.
- After the metric is decided, a normal k-nearest neighbor rule is applied to classify the query.
- ▶ The metric changes with the query.

▶ The DANN metric at a query point x_0 is defined by

$$D(x,x_0) = (x-x_0)^T \Sigma(x-x_0)$$
,

where

$$\Sigma = \mathbf{W}^{-1/2}[(\mathbf{W}^{-1/2})^T \mathbf{B} \mathbf{W}^{-1/2} + \epsilon \mathbf{I}](\mathbf{W}^{-1/2})^T$$

= $\mathbf{W}^{-1/2}[\mathbf{B}^* + \epsilon \mathbf{I}](\mathbf{W}^{-1/2})^T$.

▶ **W** is the pooled within-class covariance matrix and **B** is the between class covariance matrix.

Intuition

- ▶ We compute **W** and **B** in LDA.
- ► Recall we did similar computation when deriving discriminant coordinates.
- ▶ Eigen decomposition of $\mathbf{B}^* = \mathbf{V}^* D_B \mathbf{V}^{*T}$.

$$\Sigma = \mathbf{W}^{-1/2}[\mathbf{B}^* + \epsilon \mathbf{I}](\mathbf{W}^{-1/2})^T$$

$$= \mathbf{W}^{-1/2}[\mathbf{V}^*D_B\mathbf{V}^{*T} + \epsilon \mathbf{I}](\mathbf{W}^{-1/2})^T$$

$$= \mathbf{W}^{-1/2}\mathbf{V}^* \cdot (D_B + \epsilon \mathbf{I}) \cdot (\mathbf{W}^{-1/2}\mathbf{V}^*)^T$$

- Note that the column vectors of W^{-1/2}V* are simply the discriminant coordinates.
- $ightharpoonup \epsilon \mathbf{I}$ is added to avoid using samples far away from the query point.

Geometric interpretation:

- ➤ To compute DNAA metric, x x₀ is projected onto the discriminant coordinates.
- The projection values on the significant discriminant coordinates are magnified; those on the insignificant DCs are shrunk.
- The implication is that the neighborhood is stretched in the directions of the insignificant DCs and squeezed in those of the significant ones.
- ▶ $(\mathbf{W}^{-1/2})^T$ is introduced to sphere the data so that the within-class covariance matrix is the identity matrix.

- ➤ Significant discriminant coordinates represent directions in which class probabilities change substantially. Hence when we form a neighborhood, we want it to have small span in these directions. On the opposite, we want the neighborhood to have large span in directions in which class probabilities don't change much.
- ➤ To summarize: we want to form a neighborhood that contains as many samples as possible but in the mean while has approximately constant class probabilities.

► To summarize: we want to form a neighborhood that contains as many samples as possible but in the mean while has approximately constant class probabilities.

Figure 13.14: Neighborhoods found by the DANN procedure, at various query points (centers of the crosses). There are two classes in the data, with one class surrounding the other. 50 nearest-neighbors were used to estimate the local metrics. Shown are the resulting metrics used to form 15-nearest-neighborhoods.

Global Dimension Reduction

- ▶ At each training sample x_i , the between-centroids sum of squares matrix \mathbf{B}_i is computed, using a neighborhood of say 50 points.
- Average B_i over all training samples:

$$\bar{\mathbf{B}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{B}_{i} .$$

Let $v_1, v_2, ..., v_p$ be the eigenvectors of the matrix $\bar{\bf B}$, ordered from largest to smallest eigenvalues θ_k . Then a rank-L, L < p, approximation to $\bar{\bf B}$ is

$$\bar{\mathbf{B}}_{[L]} = \sum_{l=1}^{L} \theta_l \mathbf{v}_l \mathbf{v}_l^T .$$

 $\mathbf{\tilde{B}}_{[L]}$ is optimal in the sense of solving the least square problem:

$$\min_{rank(M)=L} trace(\mathbf{B} - \mathbf{M})^2$$
.

And hence solves:

$$\min_{rank(M)=L} \sum_{i=1}^{N} trace(\mathbf{B}_i - \mathbf{M})^2.$$

