University of Southern California

Viterbi School of Engineering

EE577A VLSI System Design

Data Path Design

References: Professor Massoud Pedram's lecture slides, books listed in the syllabus, and online resources

Shahin Nazarian

Spring 2013

Single-Bit Addition

Half Adder

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder

$$S = A \oplus B \oplus C$$

$$C_{\text{out}} = MAJ(A, B, C) = AB + (A + B)C$$

$$= AB + (A \oplus B)C$$

Α	В	С	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

PGK

For a full adder, define what happens to carries

• Generate: $C_{out} = 1$ independent of C

$$G = A \cdot B$$

• Propagate: $C_{out} = C$

$$P = A \oplus B$$

• Kill: $C_{out} = 0$ independent of C

$$K = \overline{A} \cdot \overline{B}$$

Note that

$$\overline{P} = A.B + \overline{A.B} = G + K$$

Full Adder Design I

Brute force implementation from equations

$$S = A \oplus B \oplus C$$
$$C_{\text{out}} = MAJ(A, B, C)$$

Full Adder Design II

• Factor S in terms of C_{out}

$$S = ABC + (A + B + C)\overline{C_{out}}$$

• Critical path is usually C to C_{out} in a ripple adder

Layout

- Clever layout circumvents usual line of diffusion
 - Use wide transistors on critical path
 - Eliminate output inverters

Full Adder Design III

- Complementary Pass Transistor Logic (CPL)
 - Slightly faster, but more area

Carry Propagate Adders (CPA)

- N-bit adder called CPA
 - Each sum bit depends on all previous carries
 - · How do we compute all these carries quickly?

Carry-Ripple Adder (CRA)

- Simplest design: cascade full adders
 - Critical path goes from C_{in} to C_{out}
 - Design full adder to have fast carry delay

Inversions

- Critical path passes through majority gate
 - Built from minority + inverter
 - · Eliminate inverter and use inverting full adder

Generate / Propagate

- Equations often factored into G and P
- Generate and propagate for groups spanning i:j ($j \le i$)

$$\forall k = i, i - 1, ..., j + 1$$
:

$$G_{i:j} = G_{i:k} + P_{i:k} \cdot G_{k-1:j}$$
 $P_{i:j} = P_{i:k} \cdot P_{k-1:j}$

$$G_{i:j} \cdot P_{i:j} = 0$$
$$G_i \cdot P_i = 0$$

$$G_i \cdot P_i = 0$$

Base case

$$G_{i:i} \equiv G_i = A_i B_i$$
 $P_{i:i} \equiv P_i = A_i \oplus B_i$

$$G_{0:0} \equiv G_0 = C_{in}$$
$$P_{0:0} \equiv P_0 = 0$$

Because the carry into bit i is the carry-out of bit i-1, which is: $C_{i-1} = G_{i-1:0}$, the sum is: $S_i = P_i \oplus G_{i-1:0}$

Comment on Calculating the Generate/Propagate Signals

 In some textbooks, you will find the following:

$$G_{i:i} \equiv G_i = A_i B_i$$

$$P_{i:i} \equiv P_i = A_i + B_i$$
 $G_i \cdot P_i \neq 0 \text{ and } G_{i:i} \cdot P_{i:i} \neq 0$

• If you use these equations, then therefore, we must calculate the sum bit as follows: $S_i = P_i \oplus G_i \oplus G_{i-1:0}$

• Expressions for $G_{i:j}$ and $P_{i:j}$ remain the same, including $G_{i:0} = G_i + P_i \cdot G_{i-1:0}$

Efficient Realization of XOR Gate

XOR function:

If A=0, pass input B; Otherwise, invert input B

PG Logic

CRA Revisited

$$C_{i} = A_{i}B_{i} + (A_{i} + B_{i})C_{i-1}$$

$$= A_{i}B_{i} + (A_{i} \oplus B_{i})C_{i-1}$$

$$= G_{i} + P_{i}C_{i-1}$$

$$G_{i:0} = G_i + P_i \cdot G_{i-1:0}$$

CRA PG Diagram

- Adding two operands:
 A[1:16] and B[1:16]
- The Bitwise PG Logic and Sum Logic blocks are not shown
- Gray cells contain only the group generate logic
- Final sum is computed as:

$$S_{16} = P_{16} \oplus G_{15:0} = P_{16} \oplus C_{15}$$

Final carry-out is computed as:

$$C_{16} = G_{16:0} = G_{16} + P_{16}C_{15}$$

 The critical path delay from carry-in to sum bit is:

$$t_{\text{ripple}} = t_{pg} + (N-1)t_{AO} + t_{\text{xor}}$$

PG Diagram Notation

Notice that, for the Gray cell, vertical input line carries both $G_{i:k}$ and $P_{i:k}$ signals whereas the diagonal input line only provides the $G_{k-1:j}$ signal

Carry Chain Designs (Optional)

Recall that:

$$P = A \oplus B$$
, $G = A \cdot B$, $K = \overline{A} \cdot \overline{B}$

С	A, B	Y	G	K	C _{out}
1	A+B	0	-	0	1
1	$\overline{A} \cdot \overline{B}$	float	0	1	0
0	$\overline{A} + \overline{B}$	1	0	-	0
0	$A \cdot B$	float	1	0	1

Static Version

Dynamic Version

$$C_{out} = C_{in} \cdot (A + B) + G = MAJ(A, B, C_{in})$$

$$= C_{in} \cdot P + G$$

$$\overline{C}_{out} = \overline{C}_{in} \cdot (\overline{A} + \overline{B}) + K = MIN(A, B, C_{in})$$

$$= \overline{C}_{in} \cdot P + K$$

Manchester Carry Chain (Optional)

Manchester carry chains

 $C_0(G_{0:0})$ $C_1(G_{1:0})$ $C_2(G_{2:0})$

One may also use the static version of Manchester Carry Chain (MCC)

(b)

MCC Adder PG Network (Optional)

Manchester carry chain adder group PG network

With valency-n MCC stages i.e., N=(n-1).k:

$$t_{\text{mcca}} = t_{pg} + kt_{mcc(n)} + t_{\text{xor}}$$

Carry-Bypass Adder (CBA)

- Carry-bypass allows carry to skip over groups of n bits
 - Decision is based on the n-bit propagate signal
 - The bypass speeds up the addition because either the carry-in propagates through the bypass path, or the carry-in is (first killed and subsequently re-) generated in the chain. In both cases, the delay is smaller than the normal ripple carry adder

Example: n=4

$$C_{12} = \overline{P}_{12:9} \cdot G_{12:9} + P_{12:9} \cdot C_{8}$$
Since $G_{12:9} \subseteq \overline{P}_{12:9}$,
$$C_{12} = G_{12:9} + P_{12:9} \cdot C_{8}$$

This means that the MUX gate may be replaced with a simple AO gate

CBA PG Diagram

For k groups of n bits each (N = k.n) and replacing MUX's w/AO gates:

$$t_{\rm skip} = t_{pg} + 2(n-1)t_{AO} + (k-1)t_{mux} + t_{\rm xor} = t_{pg} + (2n+k-3)t_{AO} + t_{\rm xor}$$

CBA w/ Variable Group Size

Group sizes: (2,3,4,4,3)

Delay grows as $O(\sqrt{N})$

CBA Manchester Stage (Optional)

Carry-skip adder Manchester stage

Skips across carry groups of 4 bits at a time

Carry-Lookahead Adder (CLA)

- · Carry-lookahead adder computes $G_{i:0}$ for many bits in parallel
- Uses higher-valency cells with more than two inputs

Higher-Valency Group PG Cells

$$G_{i:j} = G_{i:k} + P_{i:k} \cdot (G_{k-1:l} + P_{k-1:l} \cdot (G_{l-1:m} + P_{l-1:m} \cdot G_{m-1:j}))$$

$$P_{i:j} = P_{i:k} \cdot P_{k-1:l} \cdot P_{l-1:m} \cdot P_{m-1:j}$$

Valency-4 black cell

CLA PG Diagram

Carry-lookahead adder group PG network

For k groups of n-bits each :

$$t_{\text{CLA}} = t_{pg} + t_{pg(n)} + [(n-1)+(k-1)]t_{AO} + t_{\text{xor}}$$

Improved CLA with MCCs (Optional)

• For k groups of n-bits each and valency-n MCC blocks:

$$t_{\text{CLA+MCC}} = t_{pg} + t_{pg(n)} + (k-1)t_{AO} + t_{mcc(n)} + t_{xor}$$

Carry-Select Adder (CSA)

- For critical paths which are dependent on late input X,
 - Precompute two possible outputs for X = 0, 1
 - Select proper output when X arrives
- Carry-select adder precomputes n-bit sums for both possible carries into the n-bit group

$$t_{\text{select}} = t_{pg} + [n + (k - 2)]t_{AO} + t_{\text{mux}}$$

Example Delay Optimization

Consider designing an N-bit carry select adder (CSA) comprising of k groups of n-bits each (N=k×n). Write the expression for the worst-case delay from any input to any output in this adder. What are the optimum value for n and k which minimize the delay of the N-bit adder? What is the minimum delay of this adder?

$$\begin{split} Delay &= t_{pg} + \left(\frac{N}{k} + k - 2\right) t_{AO} + t_{mux} \\ \frac{\partial Delay}{\partial k} &= -\frac{N}{k^2} + 1 = 0 \Rightarrow k = \sqrt{N} \\ Delay_{opt} &= t_{pg} + 2\left(\sqrt{N} - 1\right) t_{AO} + t_{mux} \end{split}$$

Carry-Increment Adder (CIA)

- It uses a short ripple chain of black cells to compute the PG signals for bits within a group
- When the carry-out from the previous group becomes available, the final gray cells in each column determine the carry-out
- Higher-valency group PG cells can be used to speed up the ripple operation to produce the first group generate signals

$$t_{\text{increment}} = t_{pg} + [(n-1) + (k-1)]t_{AO} + t_{\text{xor}}$$

$$t_{\text{increment+CL}} = t_{pg} + t_{pg(n)} + (k-1)t_{AO} + t_{\text{xor}}$$

Variable-Length CIA

Use variable-length groups to utilize the fact that the more significant bits complete early

$$t_{\text{increment}} = t_{pg} + \sqrt{2N}t_{AO} + t_{\text{xor}}$$

 Also do critical signal isolation by buffering along the noncritical signal paths

(Prefix) Tree Adders

- If lookahead is good, lookahead across lookahead!
 - Recursive lookahead gives O(log N) delay
- Many variations on tree adders (also known as logarithmic adders, multilevel-lookahead adders, and parallel-prefix adders)

Brent-Kung

Sklansky

Kogge-Stone

Han-Carlson

Ladner-Fischer

Area vs. Delay Tradeoffs

Area vs. delay of synthesized adders

Multi-input Adders

Suppose we want to add k N-bit words

- Straightforward solution: k-1 N-input CPAs
 - Large and slow

Carry Save Addition

- A full adder sums 3 inputs and produces 2 outputs
 - · Carry output has twice the weight of sum output
- N full adders in parallel are called carry save adder
 - Produce N sums and N carry outs

CSA Application

- Use k 2 stages of CSAs
 - Keep result in carry-save redundant form

Final CPA computes actual result

Two's Complement

- A two's-complement system or two's-complement arithmetic is a system in which negative numbers are represented by the two's complement of the absolute value
- The two's complement of a binary number is the value obtained by subtracting the number from a large power of two (i.e., from 2^N for an N-bit two's complement number)
- To negate a two's complement number, invert all the bits (which yields the one's complement), then add 1 to the result. Bit overflow is ignored, which is the normal case with zero

sign bit									
0	1	1	1	1	1	1	1	=	127
0	0	0	0	0	0	1	0	=	2
0	0	0	0	0	0	0	1	=	1
0	0	0	0	0	0	0	0	=	0
1	1	1	1	1	1	1	1	=	-1
1	1	1	1	1	1	1	0	=	-2
1	0	0	0	0	0	0	1	=	-127
1	0	0	0	0	0	0	0	=	-128

8-bit two's complement integers

$$111111011_2 = -128 + 64 + 32 + 16 + 8 + 0 + 2 + 1 = (-2^7 + 2^6 + \ldots) = -5$$

Sign Extension

When turning a two's complement number with a certain number of bits into one with more bits (e.g., when copying from a 1 byte variable to a two byte variable), the sign bit must be repeated in all the extra bits

Decimal	4-bit two's complement	
5	0101	0000 0101
-3	1101	1111 1101

sign-bit repetition in 4 and 8-bit integers

 Similarly, when a two's complement number is shifted to the right, the sign bit must be maintained. However when shifted to the left, a 0 is shifted in. These rules preserve the common semantics that left shifts multiply the number by two and right shifts divide the number by two

Addition

Adding two's complement numbers requires no special processing if the operands have opposite signs, that is, the sign of the result is determined automatically

- This process depends upon restricting to N bits of precision; a carry to the (nonexistent) $N+1^{st}$ most significant bit is ignored, resulting in the arithmetically correct result
- If the last two carry bits (the ones on far left of the top row) are both 1's or both 0's, the result is valid; if the last two carry bits are "1 0" or "0 1", a sign overflow has occurred

Subtraction

 Like addition, the advantage of using two's complement is the elimination of the need to examine signs of the operands to determine if addition or subtraction is needed

```
      11110 000 (borrow)
      11100 000 (borrow)

      0000 1111 (15)
      0000 1111 (15)

      - 1111 1011 (-5)
      - 0010 0011 (35)

      =========
      1110 1100 (-20)
```

 Overflow is detected the same way as for addition, by examining the two leftmost (most significant) bits of the borrows; overflow has occurred when these two bits are different

Subtraction Circuit

Subtracters

Multiplication

• Example:

```
1100 : 12_{10} multiplicand 0101 : 5_{10} multiplier 0000 partial products 0000 00111100 : 60_{10} product
```

- M × N-bit multiplication
 - Produce N M-bit partial products
 - Sum these to produce M+N-bit product

General Form

- Multiplicand: $Y = (y_{M-1}, y_{M-2}, ..., y_1, y_0)$
- Multiplier: $X = (x_{N-1}, x_{N-2}, ..., x_1, x_0)$
- Product:

$$P = \left(\sum_{j=0}^{M-1} y_j 2^j\right) \left(\sum_{i=0}^{N-1} x_i 2^i\right) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} x_i y_j 2^{i+j}$$

multiplicand multiplier

partial products

product

Dot Diagram

Each dot represents a bit

Four-Bit Multiplier

2's Complement Array MUL

 Recall that the MSB of a 2's complement number has a negative weight

$$P = \left(-y_{M-1}2^{M-1} + \sum_{j=0}^{M-2} y_j 2^j\right) \left(-x_{N-1}2^{N-1} + \sum_{i=0}^{N-2} x_i 2^i\right)$$

$$= \sum_{i=0}^{N-2} \sum_{j=0}^{M-2} x_i y_j 2^{i+j} + x_{N-1} y_{M-1} 2^{M+N-2} - \left(\sum_{i=0}^{N-2} x_i y_{M-1} 2^{i+M-1} + \sum_{j=0}^{M-2} x_{N-1} y_j 2^{j+N-1}\right)$$

Baugh-Wooley MUL

Partial products for 2's complement multiplier

Simplified Partial Products

 Precompute the sums of the constant 1's and push some of the terms upward into extra columns

Simplified partial products for 2's complement multiplier

Four-Bit 2's Complement Multiplier

Pipelining

- Maintains latency, but increases the throughput
 - Before pipelining: $t_{clk} = t_F + t_R + t_X + t_M + t_W$

$$t_{clk} = t_F + t_R + t_X + t_M + t_W$$

• After pipelining:
$$t_{clk} = max(t_F, t_R, t_X, t_M, t_W) + t_{ck2q} + t_{setup}$$

Increase Throughput with Pipelining

Before pipelining: Throughput = $\sim 1/(2N) = \Theta(1/N)$

After pipelining: Throughput = $\sim 1/N = \Theta(1/N)$