UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

Tom Gornik Izrek Šarkovskega

Magistrsko delo

Mentor: izr. prof. dr. Aleš Vavpetič

Kazalo

Izrek Šarkovskega

POVZETEK

${\bf Sharkovsky\ theorem}$

Abstract

Math. Subj. Class. (2010):

Ključne besede:

Keywords: V tem poglavju bomo podali definicijo Štefanovega zaporedja točk.

Pokazali bomo, da te točke določajo intervale, s pomočjo katerih lahko zapišemo relacije pokritja in ustrezne zanke, ki zagotavljajo obstoj periodičnih točk. Če f-orbita vsebuje samo eno točko, je ta točka fiksna točka funkcije f. Perioda te točke je 1, kar je zadnji člen ureditve Šarkovskega in pri tej orbiti nimamo kaj dokazovati. Zato bomo obravnavali samo orbite oziroma cikle, ki vsebujejo vsaj dve točki. Naj bo $m \geq 2$ in \mathcal{O} m-cikel zvezne funkcije f. Preden definiramo Štefanovo zaporedje, moramo spoznati nekaj pojmov.

Definicija 0.1. Naj bo p najbolj desna točka m-cikla \mathcal{O} , za katero je f(p) > p in $q \in \mathcal{O}$ prva točka desno od p. Center c cikla \mathcal{O} definiramo kot $c = \frac{p+q}{2}$. Za vsako točko $x \in \mathcal{O}$ označimo množico točk iz cikla \mathcal{O} , ki ležijo v zaprtem intervalu omejenim z x in c, z \mathcal{O}_x . Natančneje, $\mathcal{O}_x = \mathcal{O} \cap [x, p]$, če je $x \leq p$ in $\mathcal{O}_x = \mathcal{O} \cap [q, x]$, če je $x \geq q$. Pravimo, da točka $x \in \mathcal{O}$ menja strani, če točka c leži med točkama x in f(x).

Poglejmo si definicijo Štefanovega zaporedja.

Definicija 0.2. Iz m-cikla \mathcal{O} izbrane točke x_0, x_1, \ldots, x_n tvorijo Štefanovo zaporedje, če je:

- $(\dot{S}1) \{x_0, x_1\} = \{p, q\},\$
- $(\mathring{S}2)$ točke x_0, x_1, \ldots, x_n ležijo alternirajoče na levi oziroma desni strani točke c,
- (Š3) zaporedji $\{x_{2j}\}_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor}$ in $\{x_{2j+1}\}_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor}$ sta strogo monotoni in se oddaljujeta od točke c,
- (Š4) če je $0 \le j \le n-1$, potem x_j menja strani in $x_{j+1} \in \mathcal{O}_{f(x_j)}$,
- $(\S5)$ točka x_n ne menja strani.

Opomba 0.3. Štefanovo zaporedje dobimo tako, da iz množice m točk, ki tvorijo \mathcal{O} -cikel izberemo n+1 točk, ki zadoščajo zgornjim pogojem. Pogoj $x_{j+1} \in \mathcal{O}_{f(x_j)}$ v (Š4) pomeni, da je točka x_{j+1} bližje centru kot slika $f(x_j)$ točke x_j . Velja ena od neenakosti: $c < x_{j+1} \le f(x_j)$ ali $f(x_j) \le x_{j+1} < c$. Pogoja (Š2) in (Š3) zagotavljata, da so točke x_0, x_1, \ldots, x_n paroma različne. Če sledimo točkam na način, ki je opisan v primeru ??, dobimo spiralo, zato za točke, ki ustrezajo pogojema (Š2) in (Š3) rečemo, da se spiralno oddaljujejo od centra c. Ker lahko pri izbiri točk iz cikla \mathcal{O} kakšno točko izpustimo, je število n+1 izbranih točk manjše ali enako številu vseh točk v \mathcal{O} -ciklu. Velja torej neenakost $n+1 \le m$. Če se vrnemo na primere iz prejšnjega poglavja, lahko vidimo, da v primerih ??, ?? in ?? Štefanovo zaporedje sestavljajo vse točke \mathcal{O} -cikla. V primeru ?? pa dve točki \mathcal{O} -cikla ne nastopata v Štefanovem zaporedju.

Trditev 0.4. Predpostavimo, da m-cikel \mathcal{O} vsebuje Štefanovo zaporedje. Če je $l \triangleleft m$, potem funkcija f vsebuje \mathcal{O} -vsiljeno elementarno l-zanko \mathcal{O} -intervalov in posledično tudi periodično točko s periodo l.

Pri danem Štefanovem zaporedju x_0, x_1, \ldots, x_n definiramo intervale $I_0, I_1, \ldots, I_{n-1}$ na nasledni način: Za $1 \leq j < n$ najkrajši \mathcal{O} -interval, ki vsebuje točke x_0, x_1 in x_j , označimo z I_j , medtem ko z I_0 označimo \mathcal{O} -interval s krajišči x_{n-2} in x_n . Iz lastnosti (Š2) lahko sklepamo, da je int $(I_0) \cap I_j = \emptyset$ za vsak $j \in \{1, 2, \ldots, n-1\}$.

Trditev 0.5. Za intervale izbrane na zgoraj opisan način veljajo naslednje relacije pokritja:

(1)
$$I_1 \to I_1 \text{ in } I_0 \to I_1$$
,

- (2) $I_1 \rightarrow I_2 \rightarrow \cdots \rightarrow I_{n-1} \rightarrow I_0$,
- (3) $I_0 \to I_{n-1}, I_{n-3}, I_{n-5} \dots$

Zaradi boljše predstave ponazorimo relacije pokritja na sliki 1.

SLIKA 1. Relacije pokritja v trditvi 0.5 lahko prikažemo z grafom.

Dokaz trditve 0.5. Dokazovali bomo vsako točko posebej.

Pri dokazu točke (1) bomo dokazali še močnejšo trditev, ki nam bo v pomoč tudi pri dokazu druge točke. Pokazali bomo, da za vsak $j=0,1,\ldots,n-1$ velja relacija pokritja $I_j \to I_1$. Za dokaz je dovolj, če se prepričamo, da za vsak $j=0,1,\ldots,n-1$ množica $f(I_j)$ vsebuje točki x_0 in x_1 . To je res, saj posledica $\ref{1}$? zagotavlja, da so v množici $f(I_j)$ vsebovane tudi vse točke iz intervala (x_0,x_1) . V primeru intervala $I_0=[x_n,x_{n-2}]$ ugotovimo, da obe krajišči I_0 ležita na isti strani točke c. Lastnost (Š4) pove, da krajišče x_{n-2} menja strani, medtem ko lastnost (Š5) pravi, da točka x_n ne menja strani, zato točki $f(x_n)$ in $f(x_{n-2})$ ležita na nasprotnih straneh točke c. V primeru intervala I_j za $j=1,2,\ldots,n-1$ iz lastnosti (Š2) izvemo, da krajišči intervala I_j ležita na nasprotnih straneh točke c. Lastnost (Š4) pove, da obe krajišči menjata strani. Torej za vsak $j=0,1,\ldots,n-1$ interval $f(I_j)$ vsebuje točke cikla \mathcal{O} , ki ležijo na obeh straneh centra c. Zagotovo vsebuje točki x_0 in x_1 in zato tudi interval I_1 .

Naj bo j tako naravno število, za katerega velja $1 \leq j \leq n-1$. Zelimo pokazati, da množica $f(I_j)$ vsebuje interval I_{j+1} . Vemo že, da interval $f(I_j)$ vsebuje točki x_0 in x_1 . Za dokaz točke (2) moramo pokazati samo še vsebovanost točke x_{j+1} v množici $f(I_j)$. Podobno kot prej posledica ?? zagotavlja, da je v množici $f(I_j)$ vsebovan celoten interval I_{j+1} . V množici $f(I_j)$ so vsebovane točke x_0, x_1 in $f(x_j)$, zato je v tej množici vsebovana tudi množica točk $\mathcal{O}_{f(x_j)}$. Iz lastnosti (Š3) ugotovimo točka x_{j+1} leži v množici $\mathcal{O}_{f(x_j)}$, zato velja $x_{j+1} \in \mathcal{O}_{f(x_j)} \subseteq f(I_j)$. Torej je interval I_{j+1} res vsebovan v množici $f(I_j)$.

Za dokaz točke (3) moramo pokazati, da je za vsako liho število $1 \leq d \leq n$ interval I_{n-d} vsebovan v množici $f(I_0)$. Ker že vemo, da $f(I_0)$ vsebuje točki x_0 in x_1 , preostane za dokazati še, da vsebuje točko x_{n-d} . Zaradi lastnosti (Š2) leži točka x_{n-d} na drugi strani točke c kot točki x_{n-2} in x_n . Iz lastnoti (Š3) sklepamo, da

je točka x_{n-1} bolj oddaljena od točke c, kot točka x_{n-d} za liho število $3 \leq d \leq n$, zato vsak interval, ki vsebuje točke x_0, x_1 in x_{n-1} , vsebuje tudi točko x_{n-d} . Pokazati moramo samo še, da množica $f(I_0)$ vsebuje točko x_{n-1} . Pri lastnosti (S4) namesto j pišemo n-2 in dobimo vsebovanost $x_{n-1} \in \mathcal{O}_{f(x_{n-2})}$. To pomeni, da je točka $f(x_{n-2})$ vsaj tako oddaljena od točke c, kot točka x_{n-1} . Dokazali smo, da množica $f(I_0)$ vsebuje točke x_0, x_1 in x_{n-1} , zato vsebuje vse intervale $x_{n-1}, x_{n-3}, x_{n-5}, \dots$

Dokaz trditve 0.4. Naj veljajo predpostavke v trditvi 0.4. Radi bi pokazali, da ima funkcija f za vsako naravno število l, za katero velja $l \triangleleft m$ točko periode l. Dokaz bomo razdelili na tri dele. Najprej bomo dokazali izrek za liha števila manjša od m, potem za soda števila manjša od m in na koncu še za vsa števila večja od m. Pri dokazu si bomo pomagali z naslednjimi zankami, ki jih preberamo s slike 1:

- (Z1) $I_1 \rightarrow I_1$,

Edino liho število l manjše od m, za katerega lahko velja $l \triangleleft m$ je število 1. Za l = 1uporabimo zanko (Z1), ki je zanka dolžine 1 in zato elementarna. Torej obstaja točka periode 1 v intervalu I_1 .

Naravno število $1 < l \le m$ je lahko v relaciji $l \triangleleft m$ samo, če je sodo. Za vsako sodo število $l \leq n$ uporabimo zanko (Z2). Iz konstrukcije intervalov I_0, I_1, \ldots, I_n vemo, da je notranjost intervala I_0 disjunktna z intervali $I_{n-(l-1)}, I_{n-(l-2)}, \ldots, I_{n-2}, I_{n-1}$. Krajišči intervala I_0 imata periodo m in zato ne moreta sledit zanki (Z2), katere dolžina je manjša od m. Z uporabo leme ?? ugotovimo, da je zanka (Z2) elementarna, zato obstaja točka iz I_0 , ki ima periodo l.

V primeru, ko je l > n, si pomagamo z l-zanko (Z3). Če je l = m, potem lahko izberemo poljubno točko iz cikla \mathcal{O} , saj imajo vse točke iz cikla \mathcal{O} periodo m. Predpostavimo, da je $l \neq m$. Podobno kot v prejšnjem primeru je notranjost intervala I_0 disjunktna z intervali $I_1, I_2, \ldots, I_{n-1}$. Pri dokazu, da kraišči intervala I_0 ne sledita zanki (Z3), bomo obravnavali dva primera. Ce velja n < l < m, potem krajišči intervala ne moreta slediti zanki (Z3), saj je njena dolžina manjša od m, perioda krajišč intervala I_0 pa je m. Če je l > m si pogledamo, koliko ponovitev intervala I_1 nastopa v zanki (Z3). Stevilo l je večje od števila m. Iz opombe 0.3 lahko preberemo, da je število m večje od števila n+1 in naredimo naslednje ocene:

$$l-n+1 > m-n+1 > n+1-n+1=2.$$

Stevilo ponovitev intervala I_1 je večje od 2, kar pomeni, da se v zanki (Z3) interval I_1 pojavi vsaj trikrat. Ker za nobeno točko iz cikla $\mathcal O$ v intervalu I_1 ne ležijo tri zaporedne iteracije, tudi krajišča intervala I_0 ne morejo slediti zanki (Z3). S pomočjo leme ?? sklepamo, da je zanka (Z3) elementarna, kar zagotavlja obstoj točke iz intervala I_0 , ki ima periodo l.

Pri pozornem spremljanju dokaza opazimo, da smo dokazali močnejšo trditev.

Trditev 0.6. Ce m-cikel \mathcal{O} vsebuje Štefanovo zaporedje dolžine n < m-1, potem ima obstaja periodična točka s periodo 1 (sledi iz zanke (Z1)), točka s sodo periodo l < n (sledi iz zanke (Z2)) in točka s periodo l > n (sledi iz zanke (Z3)).

S pomočjo trditve 0.6 lahko dokažemo tudi obstoj nekaterih periodo l, kjer je $l \triangleright m$. Ekstremen primer dobimo, če je točka q največja točka intervala $\mathcal O$ in točka

f(q) najmanjša točka intervala \mathcal{O} . V tem imamo cikel oblike: •••••••••••. Tri pri-kazane točke tvorijo Štefanovo zaporedje s tremi točkami, torej je n=2. Zaporedje zagotavlja obstoj periode 3 in zato obstoj vseh period.