CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 24 GIUGNO 2014

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di divisore e di multiplo di un elemento di \mathbb{Z} , e poi quello di massimo comun divisore tra due numeri interi. Elencare i divisori in \mathbb{Z} di 28 e dire quanto valgono MCD(28,6) e mcm(28,6).

Esercizio 2. Per ogni numero intero n > 1, indichiamo con f_n il massimo degli esponenti che appaiono nella decomposizione di n in prodotto di potenze di primi a due a due distinti. Più esplicitamente, se $n := p_1^{\lambda_1} p_2^{\lambda_2} \cdots p_k^{\lambda_k}$, dove p_1, \ldots, p_k sono primi (positivi) tra loro distinti e $k, \lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{N}^{\#}$, poniamo $f_n = \max \{\lambda_1, \lambda_2, \ldots, \lambda_k\}$. Posto $Y = \mathbb{N} \setminus \{0, 1\}$, sia f l'applicazione: $n \in Y \mapsto f_n \in \mathbb{N}^{\#}$.

- (i) f è suriettiva?
- (ii) f è iniettiva?

Sia \mathcal{R} il nucleo di equivalenza di f. Allora:

- (iii) Determinare gli elementi di $[30]_{\mathcal{R}}$ e di $[7]_{\mathcal{R}}$;
- (iv) [4]_{\Re} è finito o infinito?
- (v) Y/\Re è finito o infinito?

Sia ora Σ la relazione d'ordine definita in Y da: $(\forall x, y \in Y)(x \Sigma y \iff (f(x) < f(y) \lor x = y))$.

- (vi) Σ è totale?
- (vii) (Y, Σ) ha minimo? Ha massimo? Descriverne gli eventuali elementi minimali o massimali.
- (viii) Determinare minoranti, maggioranti, estremo inferiore ed estremo superiore di $\{49,88\}$ in (Y,Σ) ;
 - (ix) (Y, Σ) è un reticolo?

Posto $X = \{12, 16, 18, 49, 77, 80\},\$

- (x) Disegnare il diagramma di Hasse di (X, Σ) .
- (xi) Determinare eventuali elementi minimali, massimali, minimo, massimo in (X, Σ) .
- (xii) (X,Σ) è un reticolo?
- (xiii) Determinare, se esiste, un elemento $a \in X$ tale che $(X \setminus \{a\}, \Sigma)$ sia un reticolo. Nel caso a esista, questo reticolo è distributivo? È complementato?

Esercizio 3. Per ogni intero positivo m, si definisca in $T_m := \mathbb{Z} \times \mathbb{Z}_m$ un'operazione binaria * come segue: per ogni $a, b \in \mathbb{Z}$ e $c, d \in \mathbb{Z}_m$, $(a, c) * (b, d) = (a + b - 5, \bar{3}cd)$.

- (i) Verificare che $(T_{14}, *)$ è un monoide commutativo, indicandone l'elemento neutro.
- (ii) Caratterizzare gli elementi simmetrizzabili di $(T_{14}, *)$. Calcolare il simmetrico di $(9, \bar{9})$.
- (iii) $\mathbb{Z} \times \{\bar{7}\}$ è una parte chiusa di $(T_{14}, *)$?
- (iv) Quali sono gli interi positivi m tali che $(T_m, *)$ sia un monoide?

Esercizio 4. Per ogni primo p, sia $f_p = 30x^4 + 10x^3 + 11x^2 + 5x + 4 \in \mathbb{Z}_p[x]$. Determinare i primi p tali che f_p sia monico, di grado al più 3 e divisibile per $x^2 - 1$. Detto q il minimo tale primo, decomporre f_q nel prodotto di polinomi irriducibili monici.