

256K-Bit Static RAM

- Low Supply Current
- Access Time 70ns/85ns/100ns
- 32,768 Words×8-bit Asynchronous

■ DESCRIPTION

The SRM2A256LLMX70/85/10 is a 32,768 wordsx8-bit asynchronous, static, random access memory fabricated using an advanced CMOS technology. Its very low standby power requirement makes it ideal for applications requiring non-volatile storage with back-up batteries. The asynchronous and static nature of the memory requires no external clock or refresh circuit. Input and output ports are TTL compatible and the 3-state output allows easy expansion of memory capacity.

■ FEATURES

▲ Wide temperature range	05 to 050/
 Wide temperature range 	 – 20 lU 00%

● Low supply current LL Version

■ Completely static no clock required

● Single power supply 5V±10%

- TTL compatible inputs and outputs
- 3-state output
- Battery back-up operation
- Package SRM2A256LLCX70/85/10 DIP-28pin (plastic)
 SRM2A256LLMX70/85/10 SOP2-28pin (plastic)
 SRM2A256LLTMX70/85/10 TSOP(I)-28pin (plastic)
 SRM2A256LLRMX70/85/10 TSOP(I)-28pin-R1plastic)

■ BLOCK DIAGRAM

■ PIN CONFIGURATION

■ PIN DESCRIPTION

A0 to A14	Address Input
WE	Write Enable
ŌĒ	Output Enable
cs	Chip Select
I/01 to 08	Data Input/Output
VDD	Power Supply(+5V)
Vss	Power Supply(0V)

EPSON

■ ABSOLUTE MAXIMUM RATINGS

 $(V_{SS}=0V)$

Parameter	Symbol	Ratings	Unit
Supply voltage	V_{DD}	-0.5 to 7.0	V
Input voltage	Vı	-0.5* to 7.0	V
Input/Output voltage	$V_{I/O}$	-0.5* to V _{DD} +0.3	V
Power dissipation	P _D	1.0	W
Operating temperature	T _{opr}	-25 to 85	°C
Storage temperature	T _{stg}	-65 to 150	°C
Soldering temperature and time	T _{sol}	260°C, 10s(Lead only)	_

^{*} V_{I} , $V_{I/O}$ (Min.)= -3V when pulse width is less or equal to 50ns

■ DC RECOMMENDED OPERATING CONDITIONS

(V_{SS}=0V, Ta=-25 to 85°C)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage	V _{DD}		4.5	5.0	5.5	٧
Cappiy voltage	V_{SS}		0	0	0	٧
Input voltage	V _{IH}		2.2	_	V _{DD} +0.3	٧
Input voltage	V _{II}		-0.3*	0	0.8	٧

^{*}V_{IL} (Min.)= -3V when pulse width is less or equal to 50ns

■ ELECTRICAL CHARACTERISTICS

DC Electrical characyeristics

 $(V_{DD}=5V\pm10\%,\ V_{SS}=0V,\ Ta=-25\ to\ 85\bullet C)$

Doromotor	Cumbal	Canditions	SRM	2A256L	LMX70	SRM2	A256L	_MX85	SRM	Unit		
Parameter	Symbol	Conditions		Min. Typ.* Max.		Min.	Тур.*	Мах.	Min.	Тур.	Мах.	Unit
Input leakage	V_{LI}	V _I =0 to V _{DD}	_1	_	1	-1	_	1	-1	-	1	μΑ
Output leakage	<u>_</u> [0	$\overline{\text{CS}}=\text{V}_{\text{IH}}$ or $\overline{\text{WE}}=\text{V}_{\text{IL}}$ or $\overline{\text{OE}}=\text{V}_{\text{IH}}$ $\text{V}_{\text{I/O}}=0$ to V_{DD}	-1	ı	1	-1	-	1	– 1	I	1	μΑ
High level output voltage	V _{OH}	I _{OH} =-1.0mA	2.4	_	-	2.4	_	ı	2.4	_	_	٧
Low level output voltage	V _{OL}	I _{OL} =2.1mA	_	-	0.4	_	_	0.4	-	1	0.4	\
Standby supply current	I _{DDS}	CS=V _{IH}	_	0.5	3.0	_	0.5	3.0	-	0.5	3.0	mA
Standby supply current	I _{DDS1}	CS≥V _{DD} -0.2V	_	1	100	_	1	100	ı	1	100	μΑ
Average operating current	I _{DDA}	V _I =V _{IL,} V _{IH} I _{I/O} =0mA, tcyc=Min.	-	45	70	_	45	70	-	45	70	mA
Average operating current	I _{DDA1}	V _I =V _{IL,} V _{IH} I _{I/O} =0mA, tcyc=1μs	_	_	10	_	_	10	ı	ı	10	mA
Operating supply current	I _{DD0}	$V_{I=}V_{IL,}\ V_{IH}\ I_{I/O}=0$ mA	_	_	10	_	_	10	_	_	10	mA

^{*} Typical values are measured at Ta=25°C and $\ensuremath{V_{\text{DD}}}\!=\!5.0\ensuremath{V}$

● Terminal Capacitance

(f=1MHz, Ta=25°C)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Address Capacitance	C _{ADD}	V _{ADD} =0V	_	_	8	рF
Input Capacitance	Cı	V _I =0V	_	_	9	рF
I/O Capacitance	C _{I/O}	V _{I/O} =0V	-	_	10	pF

AC Electrical Characteristics

O Read Cycle

 $(V_{DD}=5V\pm10\%, V_{SS}=0V, Ta=-25 \text{ to } 85^{\circ}C)$

							- 00 ,		
Parameter	Symbol	Conditions	SRM2A2	56LLMX70	SRM2A2	56LLMX85	SRM2A25	56LLMX10	1.1
1 arameter	Symbol	Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read cycle time	t _{RC}		70	-	85	_	100	_	ns
Address access time	t _{ACC}	*1	_	70	_	85	_	100	ns
CS access time	t _{ACS}	'	_	70	_	85	_	100	ns
OE access time	t _{OE}		_	40	_	45	_	50	ns
CS output set time	t _{CLZ}		10	_	10	_	10	_	ns
CS output floating	t _{CHZ}	*2	_	30	_	30	_	35	ns
OE output set time	t _{oLZ}		0		0	_	0	_	ns
OE output floating	t _{OHZ}		_	30	_	30	_	35	ns
Output hold time	t _{OH}	*1	10	ı	10	_	10	_	ns

O Write Cycle

 $(V_{DD}=5V\pm10\%, V_{SS}=0V, Ta=-25 \text{ to } 85^{\circ}C)$

Parameter	Cumbal	Conditions	SRM2A2	56LLMX70	SRM2A2	56LLMX85	SRM2A2	6LLMX10	
Parameter	Symbol	Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write cycle time	t _{wc}		70	_	85	_	100	_	ns
Chip select time	t _{cw}		60	-	70	_	80	_	ns
Address valid to end of write	t _{AW}		60	_	70	_	80	_	ns
Address setup time	t _{AS}	Ī	0	-	0	_	0	_	ns
Write pulse width	t _{WP}	*1	55	ı	65	_	75	-	ns
Address hold time	t _{wR}		0	_	0	_	0	_	ns
Input data set time	t_{DW}		30	_	35	_	40	_	ns
Input data hold time	t _{DH}		0	_	0	_	0	_	ns
Write to Output floating	t _{wHZ}	*2	_	30	_	30	_	35	ns
Output Active from end to wirte	tow	*2	5	_	5	_	5	_	ns

- *1 Test Conditions
 - 1. Input pulse level: 0.6V to 2.4V
 - 2. tr=tf=5ns
 - 3. Input and output timing reference levels: 1.5V
 - 4. Output load : CL=100pF

*2 Test Conditions

- 1. Input pulse level: 0.6V to 2.4V
- 2. tr=tf=5ns
- 3. Input timing reference levels: 1.5V
- Output timing reference levels :
 200mV(the level displaced from stable output voltage level)
- 5. Output load: CL=5pF (Includes Jig Capacitance)

■ Timing chart

Note :

- *1 During read cycle time, WE is to be "H" level.
- *2 During write cycle time that is controlled by $\overline{\text{CS}}$, Output Buffer is in high impedance state, whether $\overline{\text{OE}}$ level is "H" or "L"
- *3 During write cycle time that is controlled by WE, Output Buffer is in high impedance state if OE is "L" level.
- *4 When I/O terminals are output mode, be careful that do not give the opposite signals to the I/O terminals.

EPSON

■ DARA RETENTION CHARACTERISTIC WITH LOW VOLTAGE POWER SUPPLY

(Vss=0V. Ta=-25 to 85°C)

Davas atau	Cumah al	Conditions		SRM	2A256L	LMX70	SRM2	A256LI	_MX85	SRM	2A256L	LMX10	l lmit
Parameter	Symbol	Conditio	ons	Min.	Тур.*	Max.	Min.	Тур.*	Мах.	Min.	Тур.*	Мах.	Unit
Data retention supply voltage	V_{DDR}			2.0		5.5	2.0	_	5.5	2.0	_	5.5	٧
Data retention current	I _{DDR}	$V_{DDR}=3V$ $\overline{CS} \ge V_{DD}=0.2V$	−25 to 85°C	_	0.5	50	_	0.5	50	_	0.5	50	μΑ
Chip select data hold time	t _{CDR}			0	-	-	0	-	_	0	_	_	ns
Operation recovery time	t _R			5		ı	5	-	_	5	-	_	ms

^{*:} Typical values are measured at 25°C

Data retention timing

^{*}When retaining data in standby mode, supply voltage can be lowered within a certain range, But read or write cycle cannot be performed while the supply voltage is low.

■ FUNCTIONS

Truth Table

CS	ŌĒ	WE	DATA I/O	Mode	I _{DD}
Н	X	Х	Hi-Z	Standby	I _{DDS} , I _{DDS1}
L	Х	L	D _{IN}	Write	I _{DDA} , I _{DDA1}
L	L	Н	D _{OUT}	Read	I _{DDA} , I _{DDA1}
L	Н	Н	Hi-Z	Output disable	I _{DDA} , I _{DDA1}

X : "H" or "L"

Read Mode

The data appear when the address is setted while holding \overline{CS} ="L", \overline{OE} ="L" and \overline{WE} ="H". When \overline{OE} ="H", DATA I/O terminals are in high impedance state, that makes circuit design and bus control easy.

Write Mode

There are the following 3 ways of writing data into memory.

- (1) Hold \overline{CS} ="L" and \overline{WE} ="L", set address.
- (2) Hold \overline{CS} ="L" then set address and give "L" pulse to \overline{WE} .
- (3) After setting addresses, give "L" pulse to both \overline{CS} and \overline{WE} .

In above any case data on the DATA I/O terminals are put into the SRM2A256LLMX70/85/10 when both \overline{CS} and \overline{WE} are in "L". Since DATA I/O terminals are high impedance when \overline{CS} or \overline{OE} ="H", bus contention between data driver and memory outputs can be avoided.

When I/O terminals are output mode, be careful that do not give the opposite signals to the I/O terminals.

Standby Mode

When \overline{CS} is "L" the SRM2A256LLMX70/85/10 become in the standby mode. In this mode, data I/O terminals are Hi-Z and all inputs of addresses, \overline{WE} and data can be any "H" or "L". When \overline{CS} is over than V_{DD} -0.2V, the SRM2A256LLMX70/85/10 is in the data retention battery back-up mode, in this case, there is a small current in the SRM2A256LLMX70/85/10 which flow through the high resistances of the memory cells.

■ PACKAGE DIMENSIONS

*: The same characteristics as SRM2A256LLMX70/85/10.

EPSON

*: The same characteristics as SRM2A256LLMX70/85/10.

■ CARACTERISTICS CURVES

