UNIVERSITY OF TECHNOLOGY SYDNEY SCHOOL OF MATHEMATICAL AND PHYSICAL SCIENCES

37233 Linear Algebra

Tutorials 2019 — Assignment 6 (40 marks)

Question 1 (10 marks)

- (a) Find the standard matrix **T** for a mapping which action (shown in red) on a unit square (blue) is depicted in the picture (the corners are mapped as shown by the arrows).
- (b) Use **T** to verify the image of the top-right corner of the unit square is where expected.
- (c) Apply **T** to the image of the original square, and depict the resulting secondary image.
- (d) Describe the result obtained in (c) in terms of a linear transformation from the unit square, finding the corresponding standard matrix.

Question 2 (10 marks)

Consider vectors

$$\mathbf{b}_1 = \begin{bmatrix} -2\\1 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 7\\-2 \end{bmatrix}; \qquad \mathbf{c}_1 = \begin{bmatrix} -1\\-1 \end{bmatrix}, \quad \mathbf{c}_2 = \begin{bmatrix} 4\\1 \end{bmatrix}.$$

- (a) Show that $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ are bases for \mathbb{R}^2 .
- (b) Find the \mathcal{B} -coordinates of $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- (c) Find the change of coordinates matrix $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ from \mathcal{B} to \mathcal{C} and use it to find $[\mathbf{x}]_{\mathcal{C}}$.
- (d) Find the \mathcal{C} -coordinates of $\mathbf{y} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$.
- (e) Find the change of coordinates matrix $\mathbf{P}_{\mathcal{B}\leftarrow\mathcal{C}}$ from \mathcal{C} to \mathcal{B} and use it to find $[\mathbf{y}]_{\mathcal{B}}$.

Question 3 (10 marks)

Suppose $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ are bases for a vector space V, even though we do not know the coordinates of all those vectors relative to the standard basis.

However, we know that $\mathbf{b}_1 = -\mathbf{c}_1 + 3\mathbf{c}_2$ and $\mathbf{b}_2 = 2\mathbf{c}_1 - 4\mathbf{c}_2$.

- (a) Show that if C is a basis, then B is also a basis.
- (b) Find $[\mathbf{x}]_{\mathcal{C}}$ given that $\mathbf{x} = 5\mathbf{b}_1 + 3\mathbf{b}_2$.
- (c) Find $[\mathbf{y}]_{\mathcal{B}}$ given that $\mathbf{y} = 3\mathbf{c}_1 5\mathbf{c}_2$.

Question 4 (10 marks)

The first four of the Hermite polynomials are:

$$h_1 = 1$$
, $h_2 = 2t$, $h_3 = 4t^2 - 2$, and $h_4 = 8t^3 - 12t$.

As it was shown at the tutorials, the above set forms a basis \mathcal{H} for \mathbb{P}^3 .

Consider another set of polynomials in \mathbb{P}^3 :

$$q_1 = 1$$
, $q_2 = 1 + t$, $q_3 = 1 + t + t^2$, and $q_4 = 1 + t + t^2 + t^3$.

- (a) Check whether or not the set $\{q_i\}$ forms a basis \mathcal{Q} in \mathbb{P}^3 .
- (b) Find the change of coordinates matrix from basis \mathcal{H} to basis \mathcal{Q} .
- (c) Find the coordinates of $r = 3t^3 + 2t^2 + t$ relative to \mathcal{H} .
- (d) Use the $\mathbf{P}_{\mathcal{Q}\leftarrow\mathcal{H}}$ matrix found in (b) to find $[r]_{\mathcal{Q}}$.