

- VC∈ NP: A nondeterministic Alg. needs only to guess a subset of vertices and check in polynomial time whether that subset contains at least one endpoint of every edge and has the appropriate size.
- The transformation from 3SAT to **VC:** Let $U=\{u_1, u_2, ..., u_n\}$ and $C=\{c_1, ..., c_n\}$ $c_2, ..., c_m$ } be any instance of 3SAT, the corresponding instance (G=(V, E), k) of VC is constructed as follows.

For each variable $u \in U$ there is a truth - setting component $T_i = (V_i, E_i)$ with $V_i = \{u_i, \overline{u_i}\}$ and $E_i = \{\{u_i, \overline{u_i}\}\}$.

For each clause $c_i \in C$ there is a satisfaction setting component $S_i = (V_i, E_i)$ where $V'_{j} = \{a_{1}[j], a_{2}[j], a_{3}[j]\}$ and

 $E_{j} = \{\{a_{1}[j], a_{2}[j]\}, \{a_{2}[j], a_{3}[j]\}, \{a_{3}[j], a_{1}[j]\}\}.$

For each clause $c_i = \{x_i, y_i, z_i\}$ there is a set of communication edges to reflect the relationship between the variables and the clauses

 $E_{i}^{"} = \{\{a_{1}[j], x_{i}\}, \{a_{2}[j], y_{i}\}, \{a_{3}[j], z_{i}\}\}$

Finally, let k=n+2m.

2007/10/19

CS,OUC

$U = \{u_1, u_2, u_3, u_4\}$ $\mathbf{C} = \{ \{u_1, \overline{u}_3, \overline{u}_4\}, \{\overline{u}_1, u_2, \overline{u}_4\} \}$ =n+2m=8To see that t satisfies each $c_i \in C$: Consider the 3 Polynomial time: It is easy to see how edges in E_i'' , only two of them can be covered by the construction can be accomplished in vertices from $V' \cap V'$, so one of them must be polynomial time. covered by a vertex from V_i that belongs to V'. But that implies that the corresponding literal, • (U,C) is YES to SAT \Leftrightarrow (G,k) is YES either u_i or \bar{u}_i , from clause c_i is true under t, and to VC: that is, C is satisfiable \Leftrightarrow G has a hence clause c_i is satisfied by t.

- It follows that C is satisfiable.
- vertex cover of size k or less.
- \leftarrow Suppose that $V' \subseteq V$ is a vertex cover for Gwith $|V'| \le k$.

2007/10/19

- V' must contain at least one vertex from each T_i and at least two vertices from each S_i ,
- giving a total of at least |V'| = n + 2m = k vertices.
- V' must contain exactly one vertex from each T_i and exactly two vertices from each S_i .
- We merely set $t(u_i)=T$ if $u_i \in V'$, and F otherwise. •
- satisfies every $c \in C$. Consider the $V' \subset V$ that • Includes u_i if $t(u_i)=T$ and \bar{u}_i if $t(u_i)=F$. This ensures
- \checkmark that the edge in each E_i is covered, and

 \implies Conversely, suppose that $t: U \rightarrow \{T,F\}$

- ✓ that at least one of the three edges from each E_i'' is covered.
- Include in V' the endpoints from S_i of the other two edges in E_i'' . V' covers the edges in $E_i'' \cup E_i''$.
- V' is the desired vertex cover of n+2m=k vertices.

CS,OUC

VERTEX COVER (VC)

- **Instance**: A graph G=(V, E) and a positive integer k.
- **Question:** Is there a vertex cover of size *k* or less for *G*?

_IQUE∈ NPC

- Despite the fact that VC and CLIQUE are independently useful for proving NP-completeness, they are really just different ways of looking at the the same problem.
- To see the above, it is convenient to consider them in conjunction with a third problem, called INDEPENDENT SET (IS).
 - **INDEPENDENT SET (IS)**
 - **Instance**: A graph G=(V, E) and a positive integer k.
 - **Question:** Is there an independent set of size k or more in G?

- CLIQUE
- Instance: A graph G=(V, E) and a positive integer k.
- **Question**: Does *G* contain a clique of size *k* or more?
- The following relationships between independent sets, cliques, and vertex covers are easy to verify.

For any graph G=(V,E) and subset $V'\subseteq V$, the following statements are equivalent.

- 1) V' is a vertex cover for G.
- 2) V V' is an independent set for G.
- 3) V V' is a clique in the *complement* G^c of G, where $G^c = (V, E^c)$ with $= \{ \{u, v\} \mid u, v \in V \text{ and } \{u, v\} \notin E \}.$
- Thus we see that, in a strong sense, these three problems might be regarded simply as "different versions" of one another.
- The relationships make it a trivial matter to transform any one of the problems to either of the others.

3

2007/10/19 CS.OUC