(1) [10 points] Chapter 1, Problem 1.5

For $f: \{-1,1\}^n \to \mathbb{R}$ and $S \subseteq [n]$, the Fourier coefficient of f on S is given by

$$\hat{f}(S) = \langle f, X_S \rangle$$

If we expand that, it is equal to

$$\frac{1}{N} \sum_{\vec{x} \sim \{-1,1\}^n} f(\vec{x}) X_S(\vec{x})$$

Given any non-empty $S \subseteq [n]$, the number of times X_S (the parity) is -1 across all $\vec{x} \sim \{-1,1\}^n$ is exactly $\frac{N}{2}$, because for each $i \in S$, x_i will be -1 and 1 an equal number of times across all \vec{x} . To put this mathematically,

Equation 2

$$\forall S \subseteq [n] \ such \ that \ |S| > 0, \sum_{\vec{x} \sim \{-1,1\}^n} X_S(x) = 0$$

If $\hat{f}(S)$'s magnitude exceeds $\frac{1}{2}$, that means the magnitude of the summation needs to exceed $\frac{N}{2}$, meaning one of two things needs to happen:

- 1. there needs to be more than $\frac{N}{2}\vec{x}$'s where $f(\vec{x}) = X_S(\vec{x})$: specifically, at least $\left[\frac{3N+2}{2}\right]$
- 2. there needs to be more than $\frac{N}{2}\vec{x}$'s where $f(\vec{x}) \neq X_S(\vec{x})$: specifically, at least $\left[\frac{3N+2}{2}\right]$

(this number was derived from the system of equations $x - y > \frac{N}{2}$, x + y = N, where x is the number of $\vec{x}'s$ where $f(\vec{x}) = X_S(\vec{x})$ for option 1 and $f(\vec{x}) \neq X_S(\vec{x})$ for option 2)

It is possible to have $f(\vec{x})$ satisfy one of these for one S, but neither of these conditions can be satisfied across two S's, because $f(\vec{x})$ for each \vec{x} stays the same for all S's, so that means the corresponding $X_S(\vec{x})$'s of the said \vec{x} 's in question need to stay the same, and because we said earlier half of each S's $X_S(\vec{x})$'s is -1, this would force the two S's to have the same $X_S(\vec{x})$'s for all \vec{x} 's, which is impossible. And satisfying either of these dissatisfies $S = \emptyset$.

For the case of when $S = \emptyset$, we need at least $\left\lceil \frac{3N+2}{2} \right\rceil$ of $f(\vec{x})$'s to be equal to 1 for the Fourier constant to be greater than $\frac{1}{2}$ in magnitude, because $X_{\emptyset}(\vec{x}) = 1$. In this case, no other S could satisfy it because of Equation 2.

This is not true for any $f: \{-1,1\}^n \to \mathbb{R}$ with $||f||_2 = 1$. For example:

$f(\vec{x})$	x_1	x_2	$X_S(\{x_1\})$	$X_S(\{x_2\})$	$X_{\mathcal{S}}(\{x_1,x_2\})$	Xø
$\sqrt{1.5}$	1	-1	1	-1	-1	1
$\sqrt{1.5}$	1	1	1	1	1	1
$\sqrt{0.5}$	-1	-1	-1	-1	1	1
$\sqrt{0.5}$	-1	1	-1	1	-1	1

As you can see, $\left|\hat{f}(\{x_1\})\right| > \frac{1}{2}$, and $\left|\hat{f}(X_{\emptyset})\right| > \frac{1}{2}$

- (2) [15 points] Chapter 1, Problem 1.9
 - a. Let's examine how to get the indicator function P_{a_1,a_2} for $f:\{0,1\}^2 \to \{0,1\}$ first.

$$P_{1,1}(x_1, x_2)$$
 { 1 if $x_1 = 1$ and $x_2 = 1$ 0 otherwise

It's easy to see $P_{1,1}(x_1, x_2) = x_1x_2$.

Now let's see $P_{0,1}$

$$P_{0,1}(x_1, x_2)$$
 { 1 if $x_1 = 0$ and $x_2 = 1$ 0 otherwise

We see that $P_{0,1}(x_1, x_2) = (1 - x_1)x_2$.

And so on.

Basically, when $a_i = 1$, have the term x_i ; when $a_i = 0$, have the term $1 - x_i$. To put this into purely mathematical terms,

$$P_{a_1,\dots,a_n}(x_1,\dots,x_n) = \prod_{i=1}^n [(2a_i - 1)x_i + (-a_i + 1)]$$

So, you get

$$f(\vec{x}) = \sum_{a_1, \dots a_n \in \{0,1\}} P_{a_1, \dots a_n}(\vec{x}) f(a_1, \dots a_n)$$

That is a real multilinear polynomial. When you expand that all out, you can see that you can also write it in the form of

$$f(\vec{x}) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i$$

b. Let's define $\Psi_S = \prod_{i \in S} x_i$ For $\vec{x} \in \{0,1\}^n$, the number $\Psi_S = \prod_{i \in S} x_i$ is in $\{0,1\}$. Thus, $\Psi_S \colon \{0,1\}^n \to \{0,1\}$ is a Boolean function; it computes the AND of the bits $(x_i)_{i \in S}$. The multilinear polynomial 1.11 given in this problem shows that any f can be represented as a linear combination of AND functions over $\{0,1\}$.

The set of all functions $f: \{0,1\}^n \to \mathbb{R}$ forms a vector space V, since we can pointwise add two functions and we can multiply a function by a real scalar. The vector space V is 2^n -dimensional. Here we illustrate the multilinear expansion of OR_2 from this perspective:

x_1	<i>x</i> ₂	$x_1 \vee x_2$	$P_{a_{1},a_{2}}$	P_{a_1,a_2} again	Ψø	$\Psi_{\{x_1\}}$	$\Psi_{\{x_2\}}$	$\Psi_{\{x_1,x_2\}}$
0	1	1	$(1-x_1)x_2$	$-x_1x_2+x_2$	1	0	1	0
0	0	0	$(1-x_1)(1-x_2)$	$x_1 x_2 - x_2 - x_1 + 1$	1	0	0	0
1	0	1	$x_1(1-x_2)$	$-x_1x_2+x_1$	1	1	0	0
1	1	1	x_1x_2	x_1x_2	1	1	1	1

$$f(\vec{x}) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i$$

$$= 1 * (-x_1 x_2 + x_2) + 0 * (x_1 x_2 - x_2 - x_1 + 1) + 1 * (-x_1 x_2 + x_1) + 1(x_1 x_2)$$

$$= (0 * 1) + (1 * x_1) + (1 * x_2) + (-1 * x_1 x_2)$$

$$OR_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + (-1) \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

More generally, the multilinear polynomial 1.11 given in this problem shows that every function $f:\{0,1\}^n \to \mathbb{R}$ in V is a linear combination of the AND functions; i.e. the AND functions are a spanning set for V. Since the number of AND functions is $2^n = \dim V$, we can deduce that they are in fact a linearly independent basis for V. In particular this justifies the uniqueness of equation 1.11.

c. Let's recall what we did in part a:

$$f(\vec{x}) = \sum_{a_1, \dots a_n \in \{0,1\}} P_{a_1, \dots a_n}(\vec{x}) f(a_1, \dots a_n)$$

All the coefficients are integers because we established in part a that $P_{a_1,\dots,a_n}(x_1,\dots,x_n)=\prod_{i=1}^n[(2a_i-1)x_i+(-a_i+1)]$: it's obvious that for this expression, since $a_i,x_i\in\{-1,1\}$, each term's coefficient must be either -1 or 1. When $P_{a_1,\dots,a_n}(x_1,\dots,x_n)$ is multiplied with f, which is either 0 or 1, then each coefficient would be either -1,0, or 1. And because there are 2^n S's such that $S\subseteq [n]$, the coefficients would be integers in the range $[-2^n,2^n]$.

d. The mapping from 1 to 0, and from -1 to 1, and vice versa can be modelled by these equations:

а	b	equation	b	а	equation
1	0	$b = -\frac{1}{2}a + \frac{1}{2}$	0	1	a = -2b + 1
-1	1	Σ Σ	1	-1	

Expressing q(x) in terms of p(x), we are translating from the $\{-1,1\}$ domain to the $\{1,0\}$ domain (i.e. a to b in the above chart). So it would be

$$\frac{1}{2} + \frac{1}{2}p(\overrightarrow{x'})$$

To express $\overrightarrow{x'}$ in terms of \overrightarrow{x} , we need to translate the other way (i.e. from b to a in the above chart):

$$\frac{1}{2} + \frac{1}{2}p(1 - 2x_1, ..., 1 - 2x_n)$$

(3) [15 points] Chapter 1, Problem 1.1

a.
$$\frac{1}{2}x_1x_2 + \frac{1}{2}x_2 + \frac{1}{2}x_1 - \frac{1}{2}$$

b.
$$min_3$$
: $-\frac{3}{4} + \frac{1}{4}x_1x_2x_3 + \frac{1}{4}x_1x_2 + \frac{1}{4}x_2x_3 + \frac{1}{4}x_1x_3 + \frac{1}{4}x_1 + \frac{1}{4}x_2 + \frac{1}{4}x_3$
 max_3 : $-\frac{3}{4} + \frac{1}{4}x_1x_2x_3 - \frac{1}{4}x_1x_2 - \frac{1}{4}x_2x_3 - \frac{1}{4}x_1x_3 + \frac{1}{4}x_1 + \frac{1}{4}x_2 + \frac{1}{4}x_3$

c. $\prod_{i=1}^n \frac{1+a_i x_i}{2}$ (not sure if you want another format but $\frac{1}{2^n} \sum_{S \subseteq [n]} a_i^{|S|} \cdot X_S$ works too.) In the following parts of the question I wrote all the indicator functions as the first one.

d.
$$\phi_{\{a\}} = \frac{1_{\{a\}}}{E[1_{\{a\}}]}$$
, $E[1_{\{a\}}] = 1 \times P(\vec{x} = \vec{a}) + 0 \times P(\vec{x} \neq \vec{a}) = P(\vec{x} = \vec{a}) = \frac{1}{2^n}$

$$\phi_{\{a\}} = 2^n \times 1_{\{a\}} = 2^n \prod_{i=1}^n \frac{1 + a_i x_i}{2}$$

e. The indicator function is the product we gave in part c, but should skip over i because x_i doesn't matter now (it could be either -1 or 1):

$$1_{\{a,a+e_i\}} = \prod_{j=1}^{i-1} \frac{1+a_j x_j}{2} \times \prod_{j=i+1}^{n} \frac{1+a_j x_j}{2}$$

$$E[1_{\{a,a+e_i\}}] = 1 \times P(\vec{x} = \vec{a}) + 0 \times P(\vec{x} \neq \vec{a}) = P(\vec{x} = \vec{a}) = \frac{1}{2^{n-1}}$$

$$\phi_{\{a,a+e_i\}} = 2^{n-1} \times \prod_{j=1}^{i-1} \frac{1 + a_j x_j}{2} \times \prod_{j=i+1}^{n} \frac{1 + a_j x_j}{2}$$

f. The indicator function is still the same. But the expectation $E(\vec{x}) = \prod_{i=1}^{n} E(x_i) = \rho^n$ because each x_i is independent.

$$\frac{1}{\rho^n} \prod_{i=1}^n \frac{1 + a_i x_i}{2}$$

g. $\forall i \in [n], x_i y_i \in \{1, -1\}.$

Let's look at the case when n is even. There are an even number of x_iy_i 's, let's say that n=2k. Of these 2k products, j of them have $f(\vec{x},\vec{y})=1$ and 2k-j of them have $f(\vec{x},\vec{y})=-1$. So, $\vec{x}\cdot\vec{y}=1\times j+(-1)\times(2k-j)=2j-2k$, which is an even number. -1 raised to an even number is 1.

Now let's look at the case when n is odd. So now let's have n=2k+1. Again, j of them have $f(\vec{x}, \vec{y}) = 1$ and 2k-j of them have $f(\vec{x}, \vec{y}) = -1$. So, $\vec{x} \cdot \vec{y} = 1 \times j + (-1) \times (2k+1-j) = 2j-2k-1$, which is an odd number. -1 raised to an even number is -1. We have thus proven that whenever n is an even number, $f(\vec{x}, \vec{y}) = 1$, and whenever n is an odd number, $f(\vec{x}, \vec{y}) = -1$.

$$f(\vec{x}, \vec{y}) = (-1)^n$$

I'm not sure if that's what you want because it doesn't have any products or summations or whatever but it's just as simple as that.

h. When we convert 1 to 0 and -1 to 1, this functional is basically

$$\bigwedge_{i=1}^n x_i \vee \bigwedge_{i=1}^n -x_i$$

i.e. AND(\vec{x}) OR AND($-\vec{x}$)

The conversion we just mentioned is like this:

$$\frac{1-x_i}{2}$$

And then the two AND's are

$$\prod_{i=1}^{n} \frac{1 - x_i}{2}, \quad \prod_{i=1}^{n} \frac{1 + x_i}{2}$$

The multilinear polynomial for OR in the $\{0,1\}$ domain is

$$-x_1x_2 + x_1 + x_2$$

So wrapping it all up, the answer is

$$-\prod_{i=1}^{n} \frac{1-x_i}{2} \times \prod_{i=1}^{n} \frac{1+x_i}{2} + \prod_{i=1}^{n} \frac{1-x_i}{2} + \prod_{i=1}^{n} \frac{1+x_i}{2}$$

$$= -\prod_{i=1}^{n} \frac{1-x_i^2}{4} + \prod_{i=1}^{n} \frac{1-x_i}{2} + \prod_{i=1}^{n} \frac{1+x_i}{2}$$

Or if you want this in terms of sums instead:

$$\left(-\frac{1}{4^{n}}\sum_{S\subseteq[n]}(-1)^{|S|}\prod_{j\in S}x_{j}^{2}\right) + \left(\frac{1}{2^{n}}\sum_{S\subseteq[n]}(-1)^{|S|}\prod_{j\in S}x_{j}\right) + \left(\frac{1}{2^{n}}\sum_{S\subseteq[n]}\prod_{j\in S}x_{j}\right)$$

i. This is just the opposite of part h. If the answer to part h is h, the answer to this would be 1 - h.

j.
$$\frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2 + \frac{1}{2}x_1x_3$$

k. That means if there's three or zero 1's, or, all 1's or all -1's. This is the same as part h, but for n=3.

$$\frac{1}{4} + \frac{1}{4}x_1x_2 + \frac{1}{4}x_1x_3 + \frac{1}{4}x_2x_3$$

1. $\frac{3}{4} - \frac{1}{4}x_1 - \frac{1}{4}x_2x_3 - \frac{1}{4}x_1x_2x_3$

m.
$$-\frac{1}{2}x_1x_2 + \frac{1}{2}x_1x_4 - \frac{1}{2}x_2x_3 - \frac{1}{2}x_3x_4$$

n. $\frac{1}{4}x_1x_4x_5 + \frac{1}{4}x_1x_5x_6 + \frac{1}{4}x_1x_2x_3 + \frac{1}{4}x_1x_2x_4 + \frac{1}{4}x_1x_3x_6 + \frac{1}{4}x_2x_4x_6 + \frac{1}{4}x_2x_5x_6 + \frac{1}{4}x_2x_3x_5 + \frac{1}{4}x_3x_4x_6 + \frac{1}{4}x_3x_4x_5 - x_1 - x_2 - x_3 - x_4 - x_5 - x_6$

0.

- p. Maj_5 : $\frac{3}{8} \left(\sum_{i \in [5]} x_i \right) \frac{1}{8} \left(\sum_{i \neq j \neq k \in [5]} x_i x_j x_k \right) + \frac{3}{8} \left(x_1 x_2 x_3 x_4 x_5 \right)$ Maj_7 : $\frac{5}{16} \left(\sum_{i \in [7]} x_i \right) - \frac{1}{16} \left(\sum_{i \neq j \neq k \in [7]} x_i x_j x_k \right) + \frac{1}{16} \left(\sum_{i \neq j \neq k \neq l \neq m \in [7]} x_i x_j x_k x_l x_m \right) - \frac{5}{16} \left(x_1 x_2 x_3 x_4 x_5 x_6 x_7 \right)$
- q. There are $\binom{n}{2}$ products $x_i x_j$. Let's say exactly m of the n x_i 's are -1, then there are m(n-m) products $x_i x_j$ that equal -1, and the remaining $\binom{n}{2} m(n-m)$ products that equal 1. This means

$$\sum_{1 \le i < j \le n} x_i x_j = 1 \left(\binom{n}{2} - m(n-m) \right) + (-1) \left(m(n-m) \right)$$
$$= \frac{n(n-1)}{2} - 2m(n-m)$$

We can determine that 2m(n-m) is even, but what about $\frac{n(n-1)}{2}$? We know n(n-1) is always even. We can see that if $\frac{n(n-1)}{2}$ is even, then $\sum_{1 \leq i < j \leq n} x_i x_j$ is even, making $X(\sum_{1 \leq i < j \leq n} x_i x_j) = 1$. If $\frac{n(n-1)}{2}$ is odd, then $\sum_{1 \leq i < j \leq n} x_i x_j$ is odd, making $X(\sum_{1 \leq i < j \leq n} x_i x_j) = -1$. So, in fact,

$$X\left(\sum_{1 \le i < j \le n} x_i x_j\right) = \begin{cases} 1 \text{ if } \frac{n(n-1)}{2} \% 2 = 0\\ -1 \text{ otherwise} \end{cases}$$

Which is

$$X\left(\sum_{1 \le i < j \le n} x_i x_j\right) = -1^{\frac{n(n-1)}{2}} = X\left(\frac{n(n-1)}{2}\right)$$