Art Of Problem Solving - AMC 10 Week 6

Patrick & James Toche

July 17, 2021

Abstract

Notes on the AMC-10 Course by Art Of Problem Solving (AOPS). Copyright restrictions may apply. Written for personal use. Please report typos and errors over at https://github.com/ptoche/Math/tree/master/aops.

In quadrilateral ABCD, AB=5, BC=17, CD=5, DA=9, and BD is an integer. What is BD?

(,	A) 11	(B) 12	(C) 13	(D) 14	(E) 15

2.

Rectangle ABCD has AB=4 and BC=3. Segment EF is constructed through B so that $EF\perp DB$, and A and C lie on DE and DF, respectively. What is EF?

(A) 9 (B) 10 (C)
$$\frac{125}{12}$$
 (D) $\frac{103}{9}$ (E) 12

Points A, B, C, D, E, and F lie, in that order, on AF, dividing it into five segments, each of length 1. Point G is not on line AF. Point H lies on GD, and point J lies on GF. The line segments HC, JE, and AG are parallel. Find HC/JE.

4.

In rectangle ABCD, AB = 5 and BC = 3. Points F and G are on CD so that DF = 1 and GC = 2. Lines AF and BG intersect at E. Find the area of triangle AEB.

(A) 10 (B) $\frac{21}{2}$ (C) 12 (D) $\frac{25}{2}$ (E) 15

5.

Points E and F are located on square ABCD so that triangle BEF is equilateral. What is the ratio of the area of triangle DEF to that of triangle ABE?

(A)
$$\frac{4}{3}$$
 (B) $\frac{3}{2}$ (C) $\sqrt{3}$ (D) 2 (E) $1 + \sqrt{3}$

In triangle ABC points D and E lie on BC and AC, respectively. If AD and BE intersect at T so that AT/DT=3 and BT/ET=4, what is CD/BD?

(A)
$$\frac{1}{8}$$
 (B) $\frac{2}{9}$ (C) $\frac{3}{10}$ (D) $\frac{4}{11}$ (E) $\frac{5}{12}$

7.

Triangle ABC has a right angle at B, AB = 1, and BC = 2. The bisector of $\angle BAC$ meets BC at D. What is BD?

(A)
$$\frac{\sqrt{3}-1}{2}$$
 (B) $\frac{\sqrt{5}-1}{2}$ (C) $\frac{\sqrt{5}+1}{2}$ (D) $\frac{\sqrt{6}+\sqrt{2}}{2}$ (E) $2\sqrt{3}-1$

Right triangle ABC has AB = 3, BC = 4, and AC = 5. Square XYZW is inscribed in triangle ABC with X and Y on AC, W on AB, and Z on BC. What is the side length of the square?

9.

A triangle with sides of 5, 12, and 13 has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?

(A)
$$\frac{3\sqrt{5}}{2}$$
 (B) $\frac{7}{2}$ (C) $\sqrt{15}$ (D) $\frac{\sqrt{65}}{2}$ (E) $\frac{9}{2}$

10.

In triangle ABC we have AB = 25, BC = 39, and AC = 42. Points D and E are on AB and AC respectively, with AD = 19 and AE = 14. What is the ratio of the area of triangle ADE to the area of the quadrilateral BCED?

(A)
$$\frac{266}{1521}$$
 (B) $\frac{19}{75}$ (C) $\frac{1}{3}$ (D) $\frac{19}{56}$ (E) 1