CSE 204

Offline: Graph Date: 16/01/2023

Due: 20/01/2023Time: 23:30 pm

Task 1: Implement Breadth First Search Algorithm and output the BFS tree

Task 2: Implement Depth First Search Algorithm and output the DFS tree

Input: The first line of the input file will contain the number of vertices $n \leq 1000$ and the number of edges $m \leq 10000$ followed by m lines each containing origin u, end v of an edge of the directed graph. The last line will contain a source vertex s.

Output:

• The *predecessor subgraph* of G as $G_{\pi} = (V, E_{\pi})$, where

$$V = \{v \in V : v.\pi \neq NIL\} \cup \{s\} \text{ and } E_{\pi} = \{(v.\pi, v) : v \in V_{\pi} - \{s\}\}\}$$

The predecessor subgraph G_{π} is a *breadth-first tree* if V_{π} consists of the vertices reachable from s and, for all $v \in V_{\pi}$, the subgraph G_{π} contains a unique simple path from s to v that is also a shortest path from s to v in G

• Predecessor subgraph of G as $G_{\pi} = (V, E_{\pi})$, where

 $E_{\pi} = \{(v.\pi, v) : v \in V \text{ and } v.\pi \neq NIL\}.$ (The edges in E_{π} are called tree edges.)