Stroke Prediction

Group 10

Why strokes?

- Strokes are the 2nd leading cause of death in developed countries after heart disease (WHO)
- The #5 cause of death in the US
- One of the leading causes of disability
- Sometimes can be prevented

What is a stroke?

- Blood vessel that supplies nutrients to the brain is hindered by a clot (Ischemic -- 87 % of strokes)
- Blood vessel bursts (Hemorrhagic)
- Brain tissues can't receive necessary nutrients
- Leads to brain cells dying in only a few minutes
- Difficulty walking, speaking and understanding, paralysis of the face and or extremities
- Deadly if not treated immediately.

mage source Image source

Stroke Risk Factors

- Age -- Especially for people > 65
- Gender -- women > men
- Hypertension
- High Cholesterol
- Smoking
- Diabetes
- Obesity high BMI (over 30)
- Stress (work, marriage, location of residence)

Data Sources:

<u>Kaggle</u>

Analytics Vidhya

McKinsey Analytics Online Hackathon - Healthcare Analytics

Question we hope to answer:

Can we reliably predict a stroke based on certain features of a person's medical history?

Features

- Gender (Male, Female, Unknown)
- Age
- Hypertension (high blood pressure)
- Heart Disease (yes or no)
- Has ever been married (yes or no)
- Work type (Private, self-employed, government job, etc.)
- Residence type (Urban or Rural)
- Avg glucose level
- BMI (>30 considered high risk)
- Smoking status
- Has patient ever experienced a stroke

Exploring the data:

- Nearly 2% of people in the dataset had a stroke
- Slight gender imbalance toward women
- Average age is 68.35 years

Total Stroke Percentage

- Higher number of strokes for former smokers compared to current smokers (180 : 112)
- 28% or 162 people had hypertension
- 22% or 125 people had heart disease
- 329 (57%) Private company employers and 176 self-employed (31%) had strokes

Analysis

- Random Forest Classifier
- Logistic Regression

Random Forest Classifier

```
forest = RandomForestClassifier(n_estimators = 100)
forest.fit(X train, y train)
forest_score = forest.score(X train, y train)
forest_test = forest.score(X_test, y_test)
y pred = forest.predict(X test)
print('Training Score', forest_score)
print('Testing Score \n', forest_test)
print(cm)
print(classification_report(y_test, y_pred))
Training Score 0.99937777777778
Testing Score
 0.81733333333333334
[[5848
 [1652
          0]]
              precision
                            recall f1-score
                                               support
                   0.84
                              0.94
                                        0.89
                   0.65
                              0.37
                                        0.47
                                                  1652
                                        0.82
                                                  7500
    accuracy
                                                  7500
   macro avg
                   0.75
                              0.66
                                        0.68
weighted avg
                   0.80
                              0.82
                                        0.80
                                                  7500
```

Logistic Regression

```
model = LogisticRegression(solver="lbfgs", max iter=200)
model.fit(X train, y train)
y pred = model.predict(X test)
print('Testing Score \n',score)
print(classification report(y test, y pred))
cm = confusion_matrix(y_test,y_pred)
print(cm)
Testing Score
 0.7797333333333333
              precision
                          recall f1-score
                                            support
                   0.78
                            1.00
                                      0.88
                                                5848
                   0.00
                            0.00
                                      0.00
                                                1652
                                      0.78
                                                7500
    accuracy
                  0.39
                            0.50
                                      0.44
                                                7500
   macro avq
weighted avg
                  0.61
                            0.78
                                      0.68
                                                7500
[[5848
         0]
 [1652
         0]]
```

Neural Network

239/239 - 1s - loss: 0.0930 - accuracy: 0.9811 Loss: 0.09303482621908188, Accuracy: 0.9811444282531738

Model: "sequential"			
Layer (type)	Output	Shape	Param #
dense (Dense)	(None,	80)	880
dense_1 (Dense)	(None,	30)	2430
dense_2 (Dense)	(None,	1)	31
Total params: 3,341 Trainable params: 3,341 Non-trainable params: 0			

Analysis Tools Used

- GitHub
- Python
- Jupyter Notebook
- PostgreSQL
- Scikit learn library
- Keras library
- Tensorflow
- Tableau
- SqlAlchemy
- Visual Studio Code