Evaluating hypotheses

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.

Books

 Chapter 5 of "Machine learning" by Tom M. Mitchel

Estimating accuracy of a hypothesis

- Straightforward given a large dataset.
- Two key difficulties in limited data
 - Bias in the estimate
 - Biased by examples only.
 - May not be the same on unseen data.
 - More problematic in a rich hypothesis space.
 - Estimate using test data only.
 - Variance in the estimate
 - May vary with test data set.
 - Smaller the size, greater the expected variance.

Two key questions

- Given a hypothesis h over n examples randomly drawn from a distribution D, the best estimate of accuracy of h?
- Probable error in the estimate of accuracy?
 - Probable range of estimates?
 - So that true estimate lies within it with high probability of confidence (say 95%).

Error of hypothesis

- x: an instance,
 - an element of D
- S: a data sample
 - Size=n
- h: a hypothesis
 - h: $X \to \{0,1\}$
- f: a target function
 - f: $X \to \{0,1\}$
- e: the error function:

•
$$e(x,y)=1$$
, if $x \sim =y$, $E_S(h)=r/n$
= 0 otherwise

Sample error

$$E_S(h) = \frac{1}{n} \sum_{x \in S} e(f(x), h(x))$$

True error

$$E_D(h) = Pr_{x \in D} \{ f(x) \neq h(x) \}$$

Given r errors in n samples:

$$E_S(h) = r/n$$

Statistical theory

- Given r errors in n samples $(n \ge 30)$, $E_S(h)$?
 - $E_S(h)=r/n$
- Given no other information, most probable $E_D(h)$?
 - $\bullet E_D(h) = E_S(h)$
- With approximately 95% prob., $E_D(h)$ lies between

Confidence
$$E_S(h) \pm 1.96 \sqrt{\frac{E_S(h)(1 - E_S(h))}{n}}$$

Above approximation works well for $n E_S(h)(1-E_S(h)) \ge 5$ minimum $n \sim 30$ when $E_S(h) = .213$.

Smaller estimate value requires larger sample size.

An example

- n=40, r=12
 - $E_S(h) = r/n = 0.3$
 - Confidence interval: $0.3 \pm 1.96 \times .07 = 0.3 \pm .14$
 - **[**0.16, 0.44]
 - With 95% probability, $E_D(h)$ lies within [0.16, 0.44]
 - With 97.5% probability $E_D(h)$ is less than 0.44.
 - From the properties of Binomial (~ Normal for large n) distribution.

Probabilistic analysis: Bias and variance of an estimate

- Prob. of error for a sample: $E_D(h) = p$
- Prob. of r errors in n samples: $\binom{n}{r} p^r (1-p)^{n-r}$
- E(estimate)=param
- Unbiased estimate E(r)=np, and var(r)=np(1-p)
 - E(r/n)=p, and Variance of estimate $E_S(h)$ $var(p) \simeq var(r/n)=(np(1-p))/n^2=(p(1-p))/n$

Bias of estimate: E(estimate) – true-parameter-value

Inductive bias: A set of assertions.

Bias of estimate: A numerical quantity

Confidence interval

- N% Confidence interval:
 - interval containing the true value with probability N%.
- For large sample, Binomial distribution approximates Normal Distribution.

N%	50 %	68%	80%	95%	98%	99%
Z_N	0.67	1.0	1.28	1.96	2.33	2.58

A general approach for deriving C.I. of an estimate

- Let Y be the estimator of a parameter p.
- Determine the probability distribution D_Y of Y
 - its mean and variance.
- Determine the N% C.I.
 - by finding thresholds L and U such that N% mass of D_Y falls between L and U.
 - Use of Central Limit Theorem
 - Estimating mean of a distribution
 - Estimation problem mapped to an estimation of a parameter following Normal distribution.

Central Limit Theorem

- $Y \sim D(\mu, \sigma)$ Any arbitrary probability distribution.
 - μ : E(Y), and $\sigma^2 = E((Y-E(Y))^2)$
- n independent observation of Y
 - $Y_1, Y_2, \dots Y_n$
- Y_a =Average $(Y_1, Y_2, ..., Y_n)$
- $Y_a \sim N(\mu, \sigma/\sqrt{n}) \text{ (as } n \rightarrow \infty)$
 - Normal distribution
 - $(Y_a \mu) / (\sigma/\sqrt{n}) \sim N(0,1)$

Comparing two hypotheses

- h_1 , h_2 : Two competing hypotheses.
- d: Difference of their errors in the distribution D.
 - \bullet $d = E_D(h_1) E_D(h_2)$
- d': Observed d while they are tested on two independent samples S1 and S2 of sizes n_1 , $n_2 \ge 30$.
 - $d'=E_{S1}(h_1)-E_{S2}(h_2)$
- $E(d') = d \qquad \sigma_{d'}^2 = \frac{E_{S1}(h)(1 E_{S1}(h))}{n_1} + \frac{E_{S2}(h)(1 E_{S2}(h))}{n_2}$
 - as both $E_{S1}(h_1)$ and $E_{S2}(h_2)$ follow Normal Distr.
- Var(d') is the sum of variances of $E_{S1}(h_1)$ and $E_{S2}(h_2)$.
 - N% CI = $d' \pm Z_N \sigma_{d'}$

d'>0 with (N+(100-N)/2)% confidence if the range lies in the +ve side.

Comparing two learning schemes

- Y= Diff. of a perf. measure of LS1 and LS2 on the same data set (both training and test data).
- Let there be k observations.

$$Y_1, Y_2, ... Y_k$$

$$Y_a = \text{Avg}(Y_1, Y_2, ..., Y_k)$$

$$\sigma_Y^2 = \frac{1}{k-1} \sum_{i=1}^{K} (Y_i - Y_a)^2$$

$$\sigma_Y = \text{Unbiased estimate of s.d. of Y}$$

- N% C.I.: $Y_a + T_{N,(k-1)}$. σ_Y/\sqrt{k}

A constant from t-distribution of (k-1) d.f. for N% probability sum within the interval.

As
$$k \rightarrow \infty$$
, $T_{N,(k-1)} \rightarrow Z_N$

K-fold cross validation and comparison

- Partition data set S in k disjoint sets, $S_1, S_2, ... S_K$.
- Use i th partition as a test data set and the rest as training set and observe Y_i, i=1,2,..k.
- Compute the N% confidence interval.
 - For any statistics, use similar technique to determine the confidence interval.
- A value without such probabilistic interpretation is not statistically accepted.

Summary

- Unbiased estimate of error as a fraction of test samples not satisfying target function, i.e. $E_S(h)=r/n$.
 - Compute also its variance as: $E_S(h) \cdot (1-E_S(h))/n$
 - N% Confidence interval defined using them.
- Evaluate competing hypothesis by using the probability distribution of the difference of errors.
- Central limit theorem used for estimating average of a statistics with a C.I.
- The same approach used in comparing two learning schemes by applying k-fold cross-validation.

