Lista 2: Análise Real - Instituto de Matemática e Estatística - Universidade de São Paulo (IME-USP)

Luiz Paulo Tavares Gonçalves

2. Prove usando a definição de limite

a)
$$(a_n) \to 7, a_n = 7 - \frac{1}{\sqrt{n}}$$

Pela definição temos que:

$$|a_n - L| < \epsilon, \forall \epsilon > 0$$

Então:

$$|a_n - 7| < \epsilon$$

$$|a_n - 7| = |(7 - \frac{1}{\sqrt{n}}) - 7| < \epsilon$$

$$|a_n - 7| = |-\frac{1}{\sqrt{n}}| = \frac{1}{\sqrt{n}} < \epsilon$$

Multiplicando ambos os lados por \sqrt{n} :

$$\frac{1}{\sqrt{n}}\sqrt{n} < \epsilon\sqrt{n}$$
$$1 < \epsilon\sqrt{n}$$

Dividindo ambos os lados por ϵ :

$$\frac{1}{\epsilon} < \frac{\epsilon \sqrt{n}}{\epsilon}$$

$$\frac{1}{\epsilon} < \sqrt{n}$$

Agora, elevando ambos os lados ao quadrado:

$$(\frac{1}{\epsilon})^2 < (\sqrt{n})^2$$

Portanto, para garantir que $|a_n - 7| < \epsilon$ basta escolher n tal que:

$$n > \frac{1}{\epsilon^2}$$

b)
$$(a_n \to \frac{2}{5}), a_n = \frac{2n-2}{5n-1}$$

$$|a_n - L| < \epsilon$$

$$|a_n - \frac{2}{5}| < \epsilon, \forall \epsilon > 0$$

$$|a_n - \frac{2}{5}| = |(\frac{2n-2}{5n-1}) - \frac{2}{5}| = \frac{2n-2}{5n-1} < \epsilon$$

Abrindo, temos:

$$\frac{5(2n-2)-2(5n-1)}{5(5n-1)} = \frac{10n-10-(10n-2)}{5(5n-1)} = |\frac{-8}{5(5n-1)}|$$

Portanto:

$$\frac{8}{5(5n-1)} < \epsilon$$

Vamos multiplicar ambos os lados por 5(5n-1):

$$\frac{8}{5(5n-1)}5(5n-1) < \epsilon 5(5n-1)$$

$$8 < \epsilon 5(5n-1)$$

$$\frac{8}{\epsilon 5} < \frac{\epsilon 5(5n-1)}{\epsilon 5}$$

$$\frac{8}{\epsilon 5} < 5n-1$$

$$\frac{8}{\epsilon 5} + 1 < 5n - 1 + 1$$
$$\frac{8}{\epsilon 5} + 1 < 5n$$

$$\frac{\frac{8}{\epsilon 5} + 1}{5} < \frac{5n}{5}$$

Portanto, para garantir que $|a_n-\frac{2}{5}|<\epsilon$ basta escolher ntal que:

$$\frac{\frac{8}{\epsilon 5} + 1}{5} < n$$

3. Dê um exemplo de uma sequência (a_n) onde $a_n<0,\,\forall n\in\mathbb{N}$ e $(a_n)\to 0$

Podemos tomar como exemplo:

$$a_n = -\frac{1}{n} < 0; \forall n \in \mathbb{N}$$

Para verificar, vamos tomar n=1 e depois com n suficientemente grande:

$$a_n = -\frac{1}{1} = -1$$

$$a_n = -\frac{1}{1000} = -0,001$$

De forma geral, considerando que conhecemos o conceito de limite:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(-\frac{1}{n} \right) = 0$$

Portanto, temos a sequência (a_n) onde $a_n<0,\,\forall n\in\mathbb{N}$ e $(a_n)\to 0$

4. Seja (x_n) uma sequência tal que as subsequências (x_{2n}) e (x_{2n-1}) ambas convergem para L. Mostre que (x_n) converge para L

Sabemos que:

$$(x_{2n}) \to L \iff \forall \epsilon > 0, \exists n_1 \in \mathbb{N} : n > n_0 \Rightarrow |x_{2n} - L| < \epsilon$$

 $(x_{2n-1}) \to L \iff \forall \epsilon > 0, \exists n_2 \in \mathbb{N} : n > n_0 \Rightarrow |x_{2n-1} - L| < \epsilon$

Podemos combinar as duas condições (pares e ímpares, respectivamente, x_{2n} e x_{2n-1}) para garantir que todos os n que satisfazem $|x_n - L| < \epsilon$:

$$n_0 = \max\{n_1, n_2\}$$

Então:

$$n > n_0 \Rightarrow |x_{2n} - L| < \epsilon \quad e \quad |x_{2n-1} - L| < \epsilon, \forall n \in \mathbb{N}$$

$$\iff |x_n - L| < \epsilon, \forall n \in \mathbb{N}$$

Segue que $x_n \to L$

5. Sejam (a_n) e (b_n) duas sequências tais que (a_n) é limitada e (b_n) converge para 0. Mostre que a sequência (a_nb_n) converge para 0

$$a_n, \exists M > 0$$
 tal que $|a_n| \le M, \forall n$

$$b_n\to 0\to \forall \epsilon>0 \quad \exists N\in \mathbb{N} \quad {\rm tal~que}~n>N, \quad {\rm ent\tilde{a}o}:$$

$$|a_nb_n|<\epsilon$$

Então:

$$|a_n b_n| \le M|b_n|$$

$$|b_n| < \frac{\epsilon}{M}$$

Portanto:

$$|a_n b_n| \le M|b_n| < M\frac{\epsilon}{M} = \epsilon$$

Para qualquer $\epsilon>0$, escolhemos $N_1=N$ para garantir que, se $n>N_1$, então:

$$|a_n b_n| < \epsilon$$

Isso mostra que $a_n, b_n \to 0$