MSBD 5004

Assignment #3 Solution

Instructor: Jianfeng CAI

Mane: ID:

Question I

(a) Let
$$\alpha = \beta = 1$$
, $\alpha = \{0,1\}$, $y = \{1,0\}$
then $f(\alpha x + \beta y) = \max\{(1,1) - \min\{(1,1)\} = 0\}$
 $\alpha f(x) + \beta f(y) = [\max\{(0,1) - \min\{(0,1)\}] + [\max\{(1,0) - \min\{(1,0)\}] = 1 + 1 = 2\}$
 $f(\alpha x + \beta y) \neq \alpha f(x) + \beta f(y)$.

(b) Let $\alpha = \text{diag}\{(-1, 0, 0, \dots, 0, 1)\}$
 $(n-2) \text{ times.}$
then $f(\alpha) = \alpha - \alpha = \alpha = \alpha = \alpha = \alpha$.

Question 2

$$\beta : |R^2 \rightarrow |R| = f(x) + b$$
, where $f(\alpha)$ is a linear function.
$$\delta(1,0) = f(1,0) + b$$
.
$$\phi(1,-2) = f(1,-2) + b$$
.

(') $\phi(1,-1) = f(1,-1) + b = \frac{1}{2} f(2,-2) + b = \frac{1}{2} [f(2,-2) + 2b]$

$$= \frac{1}{2} [f(1,0) + b + f(1,-2) + b] = 1.5. \implies f(2,-2) = 3-2b$$
while b is unknown, we can't get $\beta(2,-2)$.

Question 3

(a)
$$E_{st}(X) = \chi_{st} = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{pmatrix}$$
(S,t)-entry

$$A = (1)^{-1}$$
, only the anti-diagonals entries are 1, others 0.
(C) $f(x) = |\langle \alpha, x_7|^2 = x^T \alpha \alpha^T x \in \mathbb{R}$.

$$\begin{array}{lll}
(C) & f(x) = |Za, x > | = x uu x Cx. \\
x^{T} \alpha a^{T} x = tr (x^{T} \alpha a^{T} x) = tr (\alpha a^{T} x x^{T}) & (tr(ABC) = tr(BCA)) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) = tr(BCA) \\
& = \sum_{n = 1}^{\infty} \sum_{n = 1}^{\infty} (x^{T} \alpha a^{T} x) =$$

Question 4

(a)
$$S_1 \cap S_2 = \left\{ x \in V \mid \langle \alpha_1, x \rangle = b_1, \langle \alpha_2, x \rangle = b_2 \right\}$$

 $X \in S_1 \cap S_2$, $\Rightarrow \langle a_1, X_7 = b_1, \langle a_2, X_7 = b_2 \rangle$ $Z \in S_1 \cap S_2$, $\Rightarrow \langle a_1, z_7 = b_1, \langle a_2, z_7 = b_2 \rangle$

$$X \in V \Rightarrow -t \times \in V, \forall t \in \mathbb{R}$$
 $Z \in V \Rightarrow (Ht) \ge \in V, \forall t$

$$\langle Q_2, (Ht) \rangle - t \times 7 = (Ht) \langle Q_2, 2 \rangle - t \langle Q_1, 2 \rangle = (Ht) b_2 - t b_2 = b_2$$

Thus, $(Ht) \geq -t \times \in S_1 \prod S_2$.

(b) proof

If z is the solution of min ||x-y||, then Z∈ S₁ ∏Sz.

we have:
$$\langle \langle a_1, \mathcal{Z} \rangle = b_1, \langle a_2, \mathcal{Z} \rangle = b_2$$

 $\langle (1+t)\mathcal{Z} - tx \in S_1 \cap S_2, \forall x \in S_1 \cap S_2, t \in IR.$

$$||z-y||^2 \le ||(1+t)z-tx-y||^2 = ||(z-y)+t(z-x)||^2$$

i.e.
$$t < z - y$$
, $z - x > 3 - \frac{1}{2}t^{2}||z - x||^{2}$
if we choose $t > 0$: $< z - y$, $z - x > 3 - \frac{1}{2}t||z - x||^{2}$

let
$$t \to 0^+$$
, $\langle z - y, z - x \rangle \geq_0$
if we choose $t < 0 : \langle z - y, z - x \rangle \leq_0 - \frac{1}{2} t / |z - x||^2$
let $t \to 0^-$, $\langle z - y, z - x \rangle \leq_0$

Altogether, \geq satisfies $\langle 2-y, 2-x \rangle = 0$.

if $z \in S_1 \cap S_2$ and $\langle z - x, z - y \rangle = 0$, $\forall x \in S_1 \cap S_2$,

min $||x - y|| \iff \min_{x \in S_1 \cap S_2} ||x - y||^2 = \min_{x \in S_1 \cap S_2} ||x - z + z - y||^2$

(C) $2 \in S_1 \cap S_2 \Rightarrow \langle a_1, 2 \rangle = b_1, \langle a_2, 2 \rangle = b_2 \rangle = \langle 2 - \chi, a_1 \rangle = 0$ (D) $\chi \in S_1 \cap S_2 \Rightarrow \langle a_1, \chi_7 = b_1, \langle a_2, \chi_7 = b_2 \rangle = \langle 2 - \chi, a_2 \rangle = 0$ (2)

 $Z = \underset{\chi \in S_1 \Pi S_2}{\operatorname{argmin}} ||\chi - y|| \Rightarrow \langle Z - \chi, Z - y \rangle = 0$ According to 0@3, we can get: $Z - y = Na + Ba \Rightarrow Z = U + Na + Ba$

According to $\mathbb{O} \otimes \mathbb{G}$, we can get: $Z-y=\lambda a_1+\beta a_2\Rightarrow Z=y+\lambda a_1+\beta a_2$. $\langle a_1, 2\rangle = b_1 \Rightarrow \langle y+\lambda a_1+\beta a_2, a_1\rangle = b_1$

 $<a_1,y>+\alpha<a_1,a_1>+\beta<a_1,a_2>=b_1$ $<a_1,a_1>\alpha+<a_1,a_2>\beta=b_1-<a_1,y>$

 $(a_2, 27 = b_2 =)$ $(y + \alpha a_1 + \beta a_2, a_2) = b_2$ $(a_2, y) + \alpha (a_1, a_2) + \beta (a_2, a_2) = b_2$

 $\langle a_1, a_2 \rangle \alpha + \langle a_2, a_2 \rangle \beta = b_2 - \langle a_2, y \rangle \delta$

According to \oplus and \oplus , we have: $\begin{cases}
\langle \alpha_1, \alpha_1 \rangle & + \langle \alpha_1, \alpha_2 \rangle & = b_1 - \langle \alpha_1, y \rangle \\
\langle \alpha_1, \alpha_2 \rangle & + \langle \alpha_2, \alpha_2 \rangle & = b_2 - \langle \alpha_2, y \rangle
\end{cases}$

 $\langle a_{1}, a_{2} \rangle \alpha + \langle a_{2}, a_{2} \rangle \beta = b_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \alpha + \langle a_{2}, a_{2} \rangle \beta = b_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{1} - \langle a_{1}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$ $\langle a_{1}, a_{2} \rangle \beta_{2} - \langle a_{2}, y \rangle$

Thus, $Z = y + \alpha \cdot a_1 + \beta \cdot a_2$, where $\alpha \cdot \beta$ is shown above.

Suppose we have $\angle 1$, $\angle 2$ two solutions, $\angle 2$, is a solution \Rightarrow $\angle 2$, -y, $\angle 1$, -22, = 0

 Z_1 is a solution \Rightarrow $\langle z_2 - y_1, z_2 - z_1 \rangle = 0 \Rightarrow \langle z_2 - y_1, z_1 - z_2 \rangle = 0$ taking difference: $\langle z_1 - z_2, z_1 - z_2 \rangle = 0 \Rightarrow z_1 = z_2$

(a) $y = x^{7}a + b = a_{1}x_{1} + a_{2}x_{2} + \cdots + a_{8}x_{8} + b$. if $a_{3} > 0$, $x_{3} > 0 \Rightarrow a_{3}x_{3} > 0$ can't get y > 0. FALSE. (b) $a_{2} = 0$, $y = a_{1}x_{1} + a_{3}x_{3} + \cdots + a_{8}x_{8} + b$. doesn't depend on x_{2}

TRUE.

(c) $a_6 = -0.8$, $y = M - 0.8 x_6$, where $|M = a_1 x_1 + \cdots + a_5 x_5 + a_7 x_7 + a_8 x_8 + b$. $y_1 = M - 0.8 x_6$ $y_1 - y_2 = a > 0 \Rightarrow y_1 > y_2$ $y_2 = M - 0.8 (x_6 + a)$, a > 0 TRUE

TRUE

Question b

(a) Let
$$\alpha = \alpha_S + \sum_{i=1}^{N} C_i \chi_i$$
, where $C = [C_1; ..., C_N]^T \in \mathbb{R}^N < \alpha_S, \chi_i > = 0$ for $i = 1, 2, ..., N$.

Proof of the decomposition:

 $O \text{ For } N = 1$, $S = \{v \mid < v, \chi_{1,7} = 0\}$ is a hyperplane, $co \text{-dim} = 1$.

For any α , $\alpha = P_S \alpha + (\alpha - P_S \alpha)$, where $P_S \alpha = 0$ is a projection of a conto S .

 $(\alpha - P_S \alpha, P_S \alpha - v) > = 0 \xrightarrow{\text{let } v = 0} (\alpha - P_S \alpha, P_S \alpha) > = 0 \Rightarrow \alpha - P_S \alpha \perp P_S \alpha$.

 $\langle \alpha - \beta_5 \alpha, \beta_5 \alpha - \mathcal{V} \rangle = 0 \Longrightarrow \langle \alpha - \beta_5 \alpha, \beta_5 \alpha \rangle = 0 \Longrightarrow 0 - \beta_5 \alpha \perp \beta_5 \alpha.$ Also, $\alpha - \beta_5 \alpha = \frac{\langle \alpha, \chi_1 \rangle - 0}{||\alpha||^2} \chi_1$, define $C_1 \equiv \frac{\langle \alpha, \chi_1 \rangle}{||\alpha||^2}$, then $\alpha - \beta_5 \alpha = C_1 \chi_1$, $\alpha = \beta_5 \alpha + C_1 \chi_1$, define $\alpha_5 \equiv \beta_5 \alpha$, $\alpha = \alpha_5 + \alpha_5 \chi_1$

 $a-\beta_s a=c_1 x_1$, $a=\beta_s a+c_1 x_1$, define $a_s=\beta_s a$, $a=\alpha_s+c_1 x_1$. $for N \ge 2$, $S=S_N | < V, x_{i,7} = 0$, i=1,2,...,N is a hyperplane, co-dim=N. similarly, we can get $a-\beta_s a=\sum_{i=1}^N C_i x_i$.

Thus $\alpha = \hat{u}_s + \sum_{i=1}^{N} C_i \chi_i$.

Thus $\alpha = \hat{u}_s + \sum_{i=1}^{N} C_i \chi_i$.

Thus $\sum_{i=1}^{N} (\langle \alpha_{i} \chi_{i} \rangle - y_{i})^{2} + \lambda ||\alpha_{i}||_{2}^{2}$ $= \sum_{i=1}^{N} (\langle \alpha_{s} + \sum_{i=1}^{N} G_{i} \chi_{i}, \chi_{i} \rangle - y_{i})^{2} + \lambda ||\alpha_{s} + \sum_{i=1}^{N} G_{i} \chi_{i}||_{2}^{2}$ $= \sum_{i=1}^{N} (\sum_{j=1}^{N} G_{j} \langle \chi_{i}, \chi_{j} \rangle - y_{i})^{2} + \lambda (||\alpha_{s}||_{2}^{2} + \sum_{i=1}^{N} \sum_{j=1}^{N} G_{i} G_{i} \langle \chi_{i}, \chi_{j} \rangle)$ $= \frac{1}{N} (\sum_{j=1}^{N} G_{j} \langle \chi_{i}, \chi_{j} \rangle - y_{i})^{2} + \lambda (||\alpha_{s}||_{2}^{2} + \sum_{i=1}^{N} \sum_{j=1}^{N} G_{i} G_{i} \langle \chi_{i}, \chi_{j} \rangle)$

Let $F_1(c) = ||K^T c - y||^2 + \lambda c^T k C$, $F_2(a_s) = \lambda ||a_s||^2$. min $F_1(c) + F_2(a_s) \iff \min_{c \in |R^N|} F_1(c)$ and $\min_{c \in |R^N|} F_2(a_s)$.

min $F_{2}(as)$ can be solved as $a_{5} = 0$. $(a_{5}, \chi_{i}) = 0$ $i = 1, \dots, N$ So the solution must be in the form of $a = \sum_{i=1}^{N} C_{i} \chi_{i}$, where $C = [C_{1}, \dots, C_{N}] \in IR^{N} = \underset{C \in IR^{N}}{\operatorname{argmin}} I|K^{T}C - y|I^{2} + \lambda C^{T}KC$.

$$\min_{\alpha \in \mathbb{R}^{N}} \frac{\sum_{i=1}^{N} (\langle \alpha_{i} \chi_{i} \rangle - y_{i})^{2} + \lambda ||\alpha||_{2}^{2}}{(\varepsilon ||R^{N}||_{2})^{2}} = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N}} (\langle \alpha_{i} \chi_{i} \rangle - \langle \chi_{i} \chi_{i} \rangle) = \sum_{\alpha \in \mathbb{R}^{N$$

where K= (: < Xu, X1> ... < Xu, Xu>).