Investigation of the behavior of single-model uncertainty estimation approaches on large-scale tasks

Author: Mihail Solotchii Advisors: Andrey Malinin, Artem Babenko

Master's thesis Higher School of Economics, Faculty of Computer Science

June 8, 2021

 We want our model to make predictions along with some uncertainty measure

- We want our model to make predictions along with some uncertainty measure
- We want uncertainty measures to correlate with quality of predictions

- We want our model to make predictions along with some uncertainty measure
- We want uncertainty measures to correlate with quality of predictions
- All theory behind ML models assumes the training and test distributions are the same

- We want our model to make predictions along with some uncertainty measure
- We want uncertainty measures to correlate with quality of predictions
- All theory behind ML models assumes the training and test distributions are the same
- We validate uncertainty estimation on Out-of-Distribution detection task (AUROC for quality measurement)

Known approaches

- Ensembles
 - Measure models' disagreement
 - Expensive

Known approaches

- Ensembles
 - Measure models' disagreement
 - Expensive
- Prior Networks
 - Emulate ensembles with a Dirichlet over predictions
 - Need both ID and OoD data for training

Known approaches

- Ensembles
 - Measure models' disagreement
 - Expensive
- Prior Networks
 - Emulate ensembles with a Dirichlet over predictions
 - Need both ID and OoD data for training
- Evidential Networks
 - Interpret networks' outputs as parameters of a Dirichlet
 - Don't use OoD data on training
 - Are tested using a simple architecture (LeNet) on simple datasets (e.g. MNIST)

Goals and questions

- Do Evidential models scale to large-scale tasks?
- We need to understand this method better (ideally, we would like to know why it works)

Evidential Networks

• Parameters of a Dirichlet are inferred as follows

$$\alpha = \text{ReLU}(f_{\theta}(x)) + 1$$

Uncertainty is measured by

$$u(\mathbf{x}) = \frac{K}{\sum\limits_{j=1}^{K} \alpha_j(\mathbf{x})}$$

Last-layer activation

Table: Validation accuracy (%)

Train dataset	Exponent	ReLU	Softplus
CIFAR10	96.17	59.31	95.79
CIFAR100	81.00	32.17	67.30

Evidential Networks

• Parameters of a Dirichlet are now inferred as follows

$$\alpha = \exp(f_{\theta}(x)) + 1$$

Uncertainty is measured by

$$u(x) = \frac{K}{\sum_{j=1}^{K} \exp(f_{\theta}(x))}$$

Evidential Networks

• Parameters of a Dirichlet are now inferred as follows

$$\alpha = \exp(f_{\theta}(x)) + 1$$

Uncertainty is measured by

$$u(x) = \frac{K}{\sum_{j=1}^{K} \exp(f_{\theta}(x))}$$

The loss function is

$$L(\mathbf{x}, \mathbf{y}) = \mathcal{L}(\mathbf{x}, y) + \lambda R_{\mathrm{KL}}(\mathbf{x}, y)$$

Regularization and loss function

Table: OOD detection performance (AUROC %)

Dat	Dataset			EoE			MI			
ID	OOD	Reg	CE	Gibbs	L ₂	CE	Gibbs	L ₂		
	SVHN	On Off	43.5 79.9	41.8 77.2	50.0 78.1	39.0 80.4	47.6 77.8	50.0 78.8		
C100	C10	On Off	51.6 81.3	59.2 81.4	50.0 78.2	50.6 80.8	59.0 81.1	50.0 77.0		
LSUN	On Off	54.3 75.5	53.4 75.8	50.0 71.3	56.6 74.0	57.2 74.8	50.0 69.1			
	TiM	On Off	51.2 81.7	58.4 81.6	50.0 78.6	51.2 81.1	58.2 81.1	50.0 76.6		

Large-scale experiments

Table: OOD detection performance (AUROC %) on ImageNet

ID set	OOD set	Evidential	MI		
iD set	OOD set	Single	Single	Ens	
ImNet-1k	ImNet-O	58.1	57.4	60.9	
	ImNet-A	85.8	85.7	87.0	
	ImNet-R	86.2	86.1	84.8	
	ImNet-C1	68.1	67.9	67.3	
	ImNet-C2	75.4	75.3	75.4	
	ImNet-C3	81.2	81.1	81.0	
	ImNet-C4	87.3	87.3	86.0	
	ImNet-C5	91.6	91.6	88.4	

Embedding space

Figure: Representations of the network's penultimate layer reduced to 2 dimensions with $t\text{-}\mathsf{SNE}$

Maximum cosine correlation with model performance

Table: Confidence measures and model performance on ImageNet-C

Corruption level	C0	C1	C2	C3	C4	C5
Evidential Maximum cosine Model accuracy (%)	17.4	14.4	13.1	12.0	10.8	10.0
	0.45	0.38	0.35	0.32	0.29	0.27
	75.9	59.7	48.7	38.4	27.1	17.8

Maximum cosine

Figure: ID embeddings and OoD embeddings around the prototypes (arrows)

Large-scale experiments

Table: OOD detection performance (AUROC %) on ImageNet

ID set	OOD set	MaxCos Single	Evidential Single	M Single	I Ens
ImNet-1k	ImNet-O	68.0	58.1	57.4	60.9
	ImNet-A	88.1	85.8	85.7	87.0
	ImNet-R	87.1	86.2	86.1	84.8
	ImNet-C1	66.7	68.1	67.9	67.3
	ImNet-C2	74.6	75.4	75.3	75.4
	ImNet-C3	80.5	81.2	81.1	81.0
	ImNet-C4	86.4	87.3	87.3	86.0
	ImNet-C5	90.6	91.6	91.6	88.4

Conclusions

- Do Evidential methods scale?
 - Evidential methods as they are do not scale
 - A simple modification to Evidential methods does scale

Conclusions

- Do Evidential methods scale?
 - Evidential methods as they are do not scale
 - A simple modification to Evidential methods does scale
- Properties of the method:
 - ID embeddings are closer to the prototypes by cosine distance
 - Maximum cosine between an embedding and prototypes is a good OoD detector