Gases Ideais

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

3A07

30 %

c 30%

Nível I

PROBLEMA 1.1

3A01

Assinale a alternativa que mais se aproxima da raiz da velocidade quadrática média das moléculas de nitrogênio a 20 °C.

- **A** $510 \, \text{m s}^{-1}$
- $B 540 \, \text{m s}^{-1}$
- $c 560 \,\mathrm{m}\,\mathrm{s}^{-1}$
- $D 600 \,\mathrm{m}\,\mathrm{s}^{-1}$
- $E 610 \,\mathrm{m}\,\mathrm{s}^{-1}$

PROBLEMA 1.6

10%

D 40%

lume constante do etano.

PROBLEMA 1.5

10%

40%

lume constante do HBr.

Assinale a alternativa que mais se aproxima da contribuição do movimento rotacional para a capacidade calorífica a vo-

B 20%

50%

Assinale a alternativa que mais se aproxima da contribuição

do movimento rotacional para a capacidade calorífica a vo-

20%

50%

Assinale a alternativa com o composto que possui maior ca-

B N₂

D NO₂

3A08

PROBLEMA 1.2

3A02

3A06

Assinale a alternativa com a temperatura em que uma amostra de hélio possui mesma velocidade média que uma amostra de oxigênio a 800 K.

- **A** 100 K
- **B** 200 K
- **c** 300 K

- **D** 400 K
- **E** 500 K

PROBLEMA 1.7

pacidade calorífica.

A Ar

c NO

E N₂O₄

3A09

PROBLEMA 1.3 3A05

São necessários 40 s para 30 mL de argônio efundirem por uma barreira porosa. O mesmo volume de vapor de um composto volátil extraído de esponjas do Caribe leva 120 s para efundir pela mesma barreira nas mesmas condições.

Assinale a alternativa que mais se aproxima da massa molar desse composto.

Assinale a alternativa com o composto que difunde 1,24 vezes mais lentamente do que o criptônio na mesma temperatura e

- $\mathbf{A} \quad 200 \,\mathrm{g} \,\mathrm{mol}^{-1}$
- **B** $280 \, \text{g mol}^{-1}$
- \mathbf{C} 360 g mol⁻¹
- \mathbf{D} 400 g mol⁻¹

 C_6H_6

E $440 \, \text{g mol}^{-1}$

PROBLEMA 1.4

PROBLEMA 1.8

3A10

Considere os processos químicos a seguir.

- 1. Formação da água gasosa a partir de H₂ e O₂.
- **2.** Formação da amônia a partir de H_2 e N_2 .
- **3.** Desidrogenação do etano forando eteno e H₂.
- 4. Combustão do metano.

Assinale a alternativa que relaciona os processos cujo valor absoluto da entalpia de reação aumenta com a temperatura.

A 3

B 4

 $\mathbf{C} \quad \mathsf{C}_8\mathsf{H}_8 \qquad \qquad \mathbf{D} \quad \mathsf{C}_{10}\mathsf{H}_{10}$

C 3 e 4

D 1, 3 e 4

 $\mathbf{E} \ C_{12}H_{12}$

A C_4H_4

pressão?

E 2, 3 e 4

Gases Ideais | Gabriel Braun, 2022

1

Considere a distribuição de velocidades dos gases A, B e C.

Assinale a alternativa com a identidade de **A**, **B** e **C**, respectivamente.

- A He, Ne, Ar
- **B** He, Ar, Ne
- C Ne, He, Ar
- **D** Ar, He, Ne
- E Ar, Ne, He

PROBLEMA 1.10

3A04

Considere a distribuição de velocidades de três amostras de hélio, A, B e C.

Assinale a alternativa com a temperatura de **A**, **B** e **C**, respectivamente.

- A 300 K, 700 K, 1100 K
- **B** 300 K, 1100 K, 700 K
- **c** 700 K, 300 K, 1100 K
- **D** 1100 K, 300 K, 700 K
- E 1100 K, 700 K, 300 K

em Pascal.

PROBLEMA 1.11

 $1 \times 10^4 \, \mathrm{Pa}$

A altura de uma coluna de mercúrio a 15 °C é 760 mm.

Assinale a alternativa mais próxima da pressão atmosférica

- **A** $1 \times 10^3 \, \text{Pa}$ **C** $1 \times 10^5 \, \text{Pa}$
- $1 \times 10^6 \, \text{Pa}$
- **E** $1 \times 10^7 \, \text{Pa}$

Dados

$$rho(Hg) = 13,6g.cm - 3$$

PROBLEMA 1.12

3A12

O raio médio da terra é de 6371 km.

Assinale a alternativa que mais se aproxima da massa da atmosfera terrestre.

- A 5×10^{13} ton
- \mathbf{B} 5 × 10¹⁴ ton
- $5 \times 10^{15} \text{ ton}$
- \mathbf{D} 5 × 10¹⁶ ton
- **E** 5×10^{17} ton

PROBLEMA 1.13

3A13

Uma amostra de 500 mL de gás medindo a 28 °C exerce pressão de 92 kPa.

Assinale a alternativa com a pressão exercida pela amostra quando for comprimida até $300\,\mathrm{mL}$ e resfriada até $25\,^{\circ}\mathrm{C}$.

- **A** 130 kPa
- **B** 140 kPa
- c 150 kPa
- **D** 160 kPa
- **E** 170 kPa

PROBLEMA 1.14

3A14

Uma amostra de butano foi aquecida lentamente sob pressão de 0,80 bar. O volume do gás foi medido em diferentes temperaturas, sendo $0,0208\,\mathrm{L\,K^{-1}}$ a variação do volume com a temperatura

Assinale a alternativa que mais se aproxima da massa da amostra.

- **A** 10,5 g
- **B** 11,6 g
- **c** 12,3 g

- **D** 11,9 g
- **E** 12,8 g

Um sistema fechado e sem fronteiras móveis contém uma determinada massa gasosa inerte, que sofre aquecimento, com aumento de 5 % na pressão e de 15 °C na temperatura.

Assinale a alternativa que mais se aproxima da temperatura inicial.

- **A** 20 °C
- 30 °C
- 40°C

- **D** 50 °C
- 60°C

PROBLEMA 1.16

3A16

3A15

Um recipiente de paredes rígidas, contendo apenas ar, aberto para a atmosfera, é aquecido de 27 °C a 127 °C.

Assinale a alternativa mais próxima da percentagem mássica de ar que saiu do recipiente, quando atingido o equilíbrio final.

- 79%
- 75 %
- **c** 30 %

- 25%
- 21 %

PROBLEMA 1.17

3A17

Assinale a alternativa que mais se aproxima da massa molar do geraniol, cuja densidade do vapor a 260 °C e 103 Torr $\acute{e} 0,480 \, \mathrm{g} \, \mathrm{L}^{-1}.$

- $\mathbf{A} \quad 125 \,\mathrm{g} \,\mathrm{mol}^{-1}$
- **B** $135 \,\mathrm{g} \,\mathrm{mol}^{-1}$
- $145 \,\mathrm{g} \,\mathrm{mol}^{-1}$
- **D** $155 \,\mathrm{g} \,\mathrm{mol}^{-1}$
- **E** $165 \,\mathrm{g} \,\mathrm{mol}^{-1}$

PROBLEMA 1.18

3A18

Uma amostra de 4,4 g de um gás ocupa um volume de 3,1 L a 10 °C e 566 Torr.

Assinale a alternativa que apresenta a razão entre as massas específicas deste gás e a do hidrogênio gasoso nas mesmas condições de pressão e temperatura.

- A 2,2

- **D** 22

PROBLEMA 1.19

3A19

Após inalar ar na superfície, uma pessoa mergulha até uma profundidade de 200 m em apneia, sem exalar.

Assinale a alternativa que mais se aproxima da pressão parcial de oxigênio no pulmão do mergulhador.

- A 3 atm
- **B** 4 atm
- c 5 atm

- 6 atm
- 7 atm

- - 1. 30,000 cm³ de hélio a 760 Torr e 27 °C
 - 2. 250 L de monóxido de carbono a 1140 Torr e −23 °C

Considere um recipiente de 320 L, ao qual são adicionados:

- 3. 2 m³ de monóxido de nitrogênio a 0,273 atm e 0 °C
- Assinale a opção que apresenta a pressão parcial do hélio na mistura gasosa cuja pressão total é de 4,5 atm.
 - **A** 0,1 atm
- **B** 0,2 atm
- 0,5 atm
- **D** 1 atm
- 2 atm

PROBLEMA 1.21

3A27

O superóxido de potássio, KO₂, pode ser utilizado como purificador de ar porque reage com o dióxido de carbono liberando oxigênio e formando carbonato de potássio.

Assinale a alternativa que mais se aproxima da massa de KO₂ necessária para a produção de 22,4 L de oxigênio em CNTP.

- 59 g
- **B** 68 g
- **C** 77 g

- **D** 86 g
- **E** 95 g

PROBLEMA 1.22

3A28

Em recipiente fechado, mantido a volume e temperatura constantes, ocorre a reação:

$$X(g) \longrightarrow 2\,Y(g) + \frac{1}{2}\,Z(g)$$

Assinale a alternativa com a pressão no recipiente, sendo P₀ a pressão inicial e α o grau de reação.

- $P = \left(1 + \frac{5}{2}\alpha\right)P_0$

PROBLEMA 1.23

3A23

Uma amostra de 1,264 g de Nitropenta (C5H8N4O12) é detonada num vaso fechado resistente de 0,05 dm3 de volume interno, pressurizado com quantidade estequiométrica de oxigênio puro, a 300 K.

Assinale a alternativa que mais se aproxima da pressão inicial do vaso.

- A 1 atm
- 2 atm
- c 3 atm

- **D** 4 atm
- 5 atm

PROBLEMA 1.24

Considere uma mistura gasosa constituída de propano, metano e monóxido de carbono. A combustão, com excesso de oxigênio, de 50 mL dessa mistura gasosa forma 70 mL de dióxido de carbono.

Assinale a alternativa que mais se aproxima da fração de propano na amostra.

- A 10%
- **B** 20%
- **c** 30%

- **D** 40%
- **E** 50%

PROBLEMA 1.25

3A25

3A24

Assinale a alternativa com a pressão parcial do oxigênio em uma amostra coletada sobre água a 25 °C e 745 Torr.

- A 321 Torr
- **B** 421 Torr
- **c** 521 Torr
- D 621 Torr
- **E** 721 Torr

Dados

• $P_{vap}^{298 \, K}(H_2 O) = 23,8 \, Torr$

PROBLEMA 1.26

3A26

A reação de $0,40\,\mathrm{g}$ de uma amostra de zinco impuro com excesso de ácido clorídrico, forma 127 mL de gás hidrogênio, coletado sobre água em $10\,^\circ\mathrm{C}$ sob pressão de 738 Torr.

Assinale a alternativa que mais se aproxima da pureza da amostra de zinco.

- A 56%
- **B** 66%
- **c** 76%

- **D** 86%
- **E** 96%

Nível II

PROBLEMA 2.1

3A29

Considere um tubo de 3 m de comprimento. Em uma das pontas do tubo é colocado um algodão com uma solução de ácido clorídrico e na outra é colocado um algodão com uma solução de amônia. Um aerossol branco é formado no interior do tubo. **Assinale** a alternativa que mais se aproxima da distância entre o aerossol branco e o algodão com amônia.

- **A** 1,22 m
- **B** 1,50 m
- **c** 1,78 m

- **D** 2,00 m
- **E** 2,22 m

PROBLEMA 2.2

3A46

No corredor de um laboratório são abertos, no mesmo instante, dois frascos. O frasco da esquerda contem etanoato de etila, enquanto o frasco da direita contem éter metílico. A distância entre os frascos é de 2,4 m.

Determine em que posições do laboratório é possível sentir o cheio dos compostos simultaneamente.

PROBLEMA 2.3

3A30

Considere duas garrafas, uma contendo 1 mol de He e outra 1 mol de Ar na mesma temperatura. Nessa temperatura, a raiz da velocidade quadrática média do Ar é $467~\mathrm{m\,s^{-1}}$. A distribuição de velocidades do argônio em diferentes temperaturas é apresentada a seguir.

- a. **Determine** a temperatura das garrafas.
- b. **Determine** a razão entre o número de átomos de hélio e de argônio com velocidade mais provável nessa temperatura.

Considere a distribuição de velocidades de uma amostra de hélio a 100 K e uma amostra de argônio.

Assinale a alternativa que mais se aproxima da temperatura da amostra de argônio.

- **A** 100 K
- 200 K
- **c** 300 K

- **D** 400 K
- 500 K

PROBLEMA 2.5

3A32

O sólido poroso A é preenchido com ar em CNTP e inserido no recipiente B, previamente evacuado. O recipiente B é carregado com gás hidrogênio.

Esboce o gráfico da pressão no recipiente **A** em função do tempo.

PROBLEMA 2.6

3A33

Considere um recipiente com dois compartimentos de volumes iguais separados por uma membrana de paládio, permeável apenas à passagem de hidrogênio. Inicialmente, o compartimento 1 contém 1 atm de hidrogênio e o compartimento 2 contém 1 atm de uma mistura de hidrogênio e nitrogênio. Assinale a alternativa correta.

- $A P(H_2, puro) = 0$
- $P(H_2, puro) = P(N_2, mistura)$
- $P(H_2, puro) = P(mistura)$
- $P(H_2, puro) = P(H_2, mistura)$
- \mathbf{E} P(mistura) = 2 atm

PROBLEMA 2.7

Um composto usado para preparar cloreto de polivinila (PVC) tem a composição 38,4% de carbono, 4,82% de hidrogênio e 56,8 % de cloro em massa. São necessários 7,73 min para um determinado volume do composto efundir por uma rolha porosa, enquanto apenas 6,18 min para a mesma quantidade de argônio difundir na mesma temperatura e pressão.

Assinale a alternativa com a fórmula molecular do composto.

- $A C_2H_5Cl$
- \mathbf{B} C_2H_3Cl
- c C₃H₅Cl
- D C₃H₇Cl

E C₄H₇Cl

PROBLEMA 2.8

3A35

Em 2 min, 29,7 mL de hélio efundem por um orifício. Nas mesmas condições, 10 mL de uma mistura de CO e CO2 efundem nesse mesmo intervalo de tempo.

- a. **Determine** a fração de CO₂ na mistura.
- b. **Determine** a composição dos gases que passam pelo orifício logo após o início da efusão.

PROBLEMA 2.9

3A37

Um balão selado feito de um material flexível deve ser projetado para transportar uma carga de 10 kg. O balão é preenchido com 22,4 m³ de argônio em CNTP.

Assinale a alternativa que mais se aproxima da temperatura mínima que o balão deve ser aquecido para que esse flutue na atmosfera em CNTP.

- 100°C
- **B** 150 °C
- 200°C
- **D** 250 °C
- **E** 300 °C

PROBLEMA 2.10

3A38

Assinale a alternativa que mais se aproxima da massa de carga útil que pode ser levantada por um balão de 10 kg de hidrogênio em CNTP.

- A 115 kg
- **B** 135 kg
- 155 kg
- **D** 175 kg
- **E** 195 kg

Um frasco fechado contém 20 g de uma mistura hidrogênio e monóxido de nitrogênio. A pressão parcial do monóxido de nitrogênio é 3/2 da pressão parcial do hidrogênio molecular. **Assinale** a alternativa que mais se aproxima da fração mássica do hidrogênio na mistura gasosa.

- A 4%
- **B** 6%
- **c** 8%

- **D** 10%
- E 12%

PROBLEMA 2.12

3A22

Todos os átomos de carbono de uma amostra de gás que contém 80 % de metano, 10 % de etano, 5 % de propano e 5 % de nitrogênio em volume são convertidos em butadieno.

Assinale a alternativa com a massa de butadieno formada a partir de 100 g do gás.

- **A** 50 g
- **B** 60 g
- **c** 70 g

- **D** 80 g
- **E** 90 g

PROBLEMA 2.13

3A39

Uma amostra de $115\,\mathrm{mg}$ de eugenol foi colocada em um balão evacuado de $500\,\mathrm{mL}$ a $280\,^\circ\mathrm{C}$. A pressão exercida pelo eugenol no balão, nessas condições, foi $48,3\,\mathrm{Torr}$. Em uma experiência de combustão, $18,8\,\mathrm{mg}$ de eugenol produziram $50\,\mathrm{mg}$ de dióxido de carbono e $12,4\,\mathrm{mg}$ de água.

- a. **Determine** a massa molar do eugenol.
- b. Determine a fórmula molecular do eugenol

PROBLEMA 2.14

3A40

Um cilindro contendo um hidrocarboneto ignitado. Os gases da exaustão são coletados em um cilindro a 375 K atingindo a pressão de 1,51 atm, com densidade de 1,391 g $\rm L^{-1}$.

- a. **Determine** a composição dos gases de exaustão.
- b. **Determine** a fórmula molecular do hidrocarboneto.

PROBLEMA 2.15

3A41

Um cilindro de ácido sulfídrico é conectado a outro de oxigênio em excesso, totalizando 24 L. Os produtos da reação ocupam um volume de 10 L nas mesmas condições.

Assinale a alternativa que mais se aproxima do volume do cilindro de ácido sulfídrico.

- **A** 14,7 L
- **B** 9,3 L
- **c** 12,0 L

- **D** 5,7 L
- **E** 15,7 L

Considere um recipiente de paredes reforçadas com dissecante granulado no fundo. Nesse recipiente, previamente evacuado, introduz-se 0,7 atm de uma mistura de hidrogênio e argônio a $20\,^{\circ}$ C. Excesso de O_2 é adicionado à mistura até que a pressão passe ao valor de 1,00 atm. A mistura é ignitada e resfriada até $20\,^{\circ}$ C, sendo a pressão final de 0,85 atm.

Assinale a alternativa que mais se aproxima da fração molar de hidrogênio na mistura inicial.

- **A** 0,07
- **B** 0,11
- **c** 0,14

- **D** 0,70
- **E** 1,00

PROBLEMA 2.17

3A43

Um reator batelada contem 5 mol de grafite e $112\,L$ de oxigênio em CNTP. A mistura é ignitada e todo grafite é convertido, formando uma mistura de CO e CO₂. O processo é realizado em temperatura constante e a pressão aumenta em $20\,\%$ ao final do processo.

Assinale a alternativa que mais se aproxima da pressão parcial de gás carbônico no reator após a reação.

- **A** 0,4 atm
- **B** 0,6 atm
- **c** 0,8 atm
- **D** 1,0 atm
- **E** 1,2 atm

PROBLEMA 2.18

3A44

Gás metano é bombeado para uma câmara de combustão a uma taxa $200\,\mathrm{L\,s^{-1}}$, a 1,5 atm e temperatura ambiente. Ar é adicionado à câmara a 1 atm, na mesma temperatura, e a mistura gasosa é ignitada. Para garantir que todo o metano sofra combustão, a quantidade de oxigênio bombeada é três vezes maior que a quantidade necessária para a combustão completa de todo o metano. Uma fração de 5 % do carbono na corrente de exaustão estava na forma de monóxido e o restante na forma de dióxido de carbono.

- a. Determine a vazão de ar necessária para fornecer a quantidade de oxigênio necessária.
- Verifique se a concentração de monóxido de carbono na corrente de saída está na faixa permitida

3A51

PROBLEMA 3.1

3A36

Esboce o gráfico da variação da capacidade calorífica molar em volume constante do iodo molecular em função da temperatura.

PROBLEMA 3.2

3A49

O sol é formado por plasma, um estado da matéria em que os elétrons foram removidos dos átomos de hidrogênio. No ponto médio entre o centro e a superfície do sol, a temperatura é $3,6\,\mathrm{MK}$ e a densidade é $1,2\,\mathrm{g\,cm^{-3}}$.

- a. Determine a pressão nesse ponto.
- b. **Determine** a densidade de energia nesse ponto.

PROBLEMA 3.3

3A50

Um feixe de átomos de bismuto é direcionado a um cilindro de 15 cm de diâmetro em rotação a 130 Hz no vácuo. Uma pequena abertura no cilindro permite que os átomos atinjam a área alvo. Em um experimento a 850 $^{\circ}$ C, alguns átomos de bismuto acertaram o alvo a 2,8 cm do centro.

- a. Esboce o gráfico da espessura da camada de bismuto na área alvo em função da distância do centro.
- b. **Determine** a velocidade dos átomos de bismuto.

PROBLEMA 3.4

3A47

O urânio é encontrado na natureza na forma de dois isotopos, urânio-235 e urânio-238. Para a construção de bombas nucleares, deve ser utilizado urânio enriquecido, isto é, contento pelo menos 99 % do isótopo urânio-235. Para o enriquecimento, o urânio é convertido em seu hexafluoreto, um gás, que efunde por uma barreira porosa. O processo é repetido até atingir a concentração desejada.

- a. **Determine** a fração de urânio-235 na natureza.
- b. Determine a fração de urânio-235 quando uma amostra de urânio natural passa por uma etapa de efusão.
- c. **Determine** o número de etapas necessárias para obter urânio enriquecido a partir do urânio natural.

PROBLEMA 3.5

3A48

Verifique a veracidade da frase: toda inspiração contém moléculas de ar que já estiveram nos pulmões de Wolfgang Amadeus Mozart (1756-1791).

Dados

- T_{corpo} = 37 °C
- $V_{pulmão} = 500 \, mL$
- f_{respiratória} = 12 min^{−1}

Determine a distância média entre as moléculas de vapor d'água

PROBLEMA 3.7

PROBLEMA 3.6

a 100 °C e 1 atm.

3A45

A transformação isovolumétrica de um gás triatômico hipotético A_3 em outro diatômico A_2 envolve a liberação de 54 kJ por mol de A_3 . A capacidade calorífica molar, a volume constante do gás A_2 , é de 30 J K $^{-1}$ mol $^{-1}$. Após a transformação isocórica de todo A_3 em A_2 ,

Determine o aumento percentual de pressão em um recipiente isolado quando o gás A_3 é convertido em A_2 em volume constante a 27 °C.

Gabarito

Nível I

- 1. A 2. A 3. C 4. D 5. D 6. E 7. E 8. C 9. E 10. A 12. C 13. C 14. B 15. B 16. D 17. D 18. D 19. B 20. D 21. E 22. C 23. B 24. B 25. E
- 26. D

Nível II

- 1. C
- 2. $17 \, \text{m}$ à esquerda ou $1 \, \text{m}$ à direita do frasco de etanoato de etila.
- **3.** a. 350 K
 - b. 0,32
- 4. C
- 5. Em temperatura constante, quanto mais leves as moléculas de gás, mais rápida é a velocidade média. Portanto, a pressão aumentará inicialmente porque as moléculas de $\rm H_2$, mais leves, serão efundidas no recipiente A mais rapidamente do que o ar escapará. No entanto, as pressões acabarão se igualando assim que os gases tiverem tempo de se misturar completamente.
- 6. D
- 7. B
- **8.** a. 50%
 - b. 55,6% CO e 44,4% CO₂
- 9. C
- 10. B
- 11. D
- 12. D
- **13.** a. $164 \,\mathrm{g} \,\mathrm{mol}^{-1}$
 - b. $C_{10}H_{12}O_2$
- **14.** a. $25\% CO_2$, $75\% H_2O$
 - b. C_2H_6
- 15. B
- 16. C
- 17. B
- **18.** a. $9000 \, \mathrm{L} \, \mathrm{s}^{-1}$
 - b. A concentração de monóxido de carbono está fora da faixa permitida, já que ${\rm x_{CO}}=24\,\%.$

Nível III

- 1. Esboço
- **2.** a. 354 atm
 - b. $53\,MJ\,m^{-3}$
- 3. a. Distribuição de Maxwell-Boltzmann
 - b. $61,28 \,\mathrm{m}\,\mathrm{s}^{-1}$
- **4.** a. 0,72 %
 - b. 0,723 %
 - c. 1148
- Verdadeiro, supondo que a atmosfera é uma mistura homogênea.
- **6.** 3,7 nm
- **7.** 650 %