Electrical Specification Document

Block Diagram	
Buck Converter	
Connections helper	
Soldering helper	
Orange Cube+	
Main Out connections	
RC IN Connection.	8

Block Diagram

Figure 1: Block Diagram of the electrical components (some small changes are needed when more testing)

Buck Converter

Here is the buck used: <u>link</u>.

Connections helper

Figure 2: Buck Converter Ports Name

Note: Those port attributions are made by me, they are not part of the datasheet of the buck. It was to make sure we all can identify which ports from which.

Name of Port	On the buck specification	Where it connects
Vout1	Vout1 is short circuit with Vout2	Raspberry PI
Vout2	Vout2 is short circuit with Vout1	N/A
GND1	All grounds are shorted together	Ground of Raspberry PI
GND2	All grounds are shorted together	N/A
GND3	All grounds are shorted together	N/A
GND4	All grounds are shorted together	Negative of the battery (black wire)
Vin1	Vin1 is shorted with Vin2	Positive of the battery (red wire)
Vin2	Vin 2 is shorted with Vin1	N/A
Vin3	Vin3 is shorted with Vin4	N/A
Vin4	Vin4 is shorted with Vin3	N/A

Note: any ports that are short circuit with each other can be used for the same connection, but only use one of them. For example, just use one of the Vout to connect to the Raspberry PI.

Soldering helper

Connection Y-Connector to Buck

The wires on the Y connectors are quite thick (AWG-12) and do not fit into the small through-holes of the buck converter. To address this, we soldered them to smaller AWG-20 wires. Even then, the diameter of the AWG-20 wires was slightly larger than the converter's through-holes, so we trimmed a few strands at the ends to allow proper insertion and soldering.

Connection Buck to Raspberry PI

To make the Raspberry Pi easier to handle, we avoided soldering wires directly onto its pins. Instead, we ordered standard Raspberry Pi jumper wires and soldered the AWG wire from the buck converter to these jumpers. This approach allows the Raspberry Pi to be easily disconnected and moved by simply unplugging the jumper wires.

From	То		
Y-Connector to Buck Soldering			
Black wire Y connector	Black Wire AWG 20		
Black Wire AWG 20	GND 1		
Red Wire Y connector	Red Wire AWG 20		
Red Wire AWG 20	Vin1		
Buck To Raspberry PI Connection			
GND2	Black wire AWG 20		
Black wire AWG 20	Black Jumper wire Raspberry PI		
Vout 1	Red wire AWG 20		
Red wire AWG 20	Red Jumper wire Raspberry PI		

Orange Cube+

Figure 3: OrangeCube+ picture of ports (source)

Main Out connections

Main Number	Connection to what	Orientation
1	Servo responsible for (dont know)	Top: Black Middle: Red Bottom: Yellow
2	Servo responsible for (dont know)	Top: Black Middle: Red Bottom: Yellow
3	ESC Note that there are two outputs for the ESC, pick the output with 3 wires for this connection.	Top: Black Middle: Red Bottom: Yellow
4		
5		

6		
7		
8		
Picture include here		

RC IN Connection

RC IN connection to OrangeCube+

SB2/B port in the RC

Top OrangeCube+ → Exterior pin of RC Middle OrangeCube+ → Middle pin of RC Bottom OrangeCube+ → Close to the writing of RC

