UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Discussion 12

Spring 2023

1. Exponential MLE, MAP, and Hypothesis Testing

Let X be Exponentially distributed with rate 1. Given X, the random variable Y is Exponentially distributed with parameter X.

- a. Find $MLE(X \mid Y)$.
- b. Find $MAP(X \mid Y)$.
- c. Let c > 1. Suppose that
 - The null hypothesis is X = 1: $Y \sim \text{Exponential}(1)$, and
 - The alternative hypothesis is X = c: $Y \sim \text{Exponential}(c)$.

Find the decision rule \hat{X} (a function of Y) that maximizes $\mathbb{P}(\hat{X}=1\mid X=1)$ subject to $\mathbb{P}(\hat{X}=1\mid X=c)\leq 5\%$.

2. Hypothesis Testing for Bernoulli Random Variables

Suppose that

- The null hypothesis is X = 0: $Y \sim \text{Bernoulli}(\frac{1}{4})$, and
- The alternative hypothesis is X = 1: $Y \sim \text{Bernoulli}(\frac{3}{4})$.

Using the Neyman–Pearson formulation of hypothesis testing, find the optimal randomized decision rule \hat{X} with respect to the criterion

$$\begin{aligned} & \text{min} & & \mathbb{P}(\hat{X}=0 \mid X=1) \\ & \text{s.t.} & & \mathbb{P}(\hat{X}=1 \mid X=0) \leq \beta, \end{aligned}$$

where $\beta \in [0, 1]$ is a given upper bound on the probability of false alarm (PFA).

3. Hypothesis Testing for Uniform Random Variables

Suppose that

- The null hypothesis is X = 0: $Y \sim \text{Uniform}([-1, 1])$, and
- The alternative hypothesis is X = 1: $Y \sim \text{Uniform}([0, 2])$.

Using the Neyman–Pearson formulation of hypothesis testing, find the optimal randomized decision rule \hat{X} with respect to the criterion

$$\begin{aligned} & \text{min} & & \mathbb{P}(\hat{X}=0 \mid X=1) \\ & \text{s.t.} & & \mathbb{P}(\hat{X}=1 \mid X=0) \leq \beta, \end{aligned}$$

where $\beta \in [0,1]$ is a given upper bound on the probability of false alarm (PFA).