*** Applied Machine Learning Fundamentals *** Decision Trees and Ensembles

Daniel Wehner

SAPSE

October 22, 2019

Agenda October 22, 2019

- Introduction
- Wrap-Up Summary

Lecture Overview Self-Test Questions Recommended Literature and further Reading

Section: Introduction

What we want...

Outlook	Temperature	Humidity	Wind	PlayGolf
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rainy	mild	high	weak	yes
rainy	cool	normal	weak	yes
rainy	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rainy	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rainy	mild	high	strong	no
rainy	mild	normal	strong	???

What are Decision Trees?

- Decision trees are induced in a supervised fashion
- Originally invented by Ross Quinlan (1986)
- Decision trees are grown recursively → 'divide-and-conquer'
- A decision tree consists of:

Nodes Each node corresponds to an attribute test

Edges One edge per possible test outcome

Leaves Class label to predict

Classifying new Instances

• Suppose we get a new instance:

Outlook rainy
Temperature mild
Humidity normal
Wind strong

What is its class?

• Answer: No

Another Decision Tree...

Inductive Bias of Decision Trees

- Complex models tend to overfit the data and do not generalize well
- Small decision trees are preferred

Occam's razor:

'More things should not be used than are necessary.'

• Prefer the simplest hypothesis that fits the data!

The Root of all Evil... Which Attribute to choose?

Finding a proper Attribute

- Simple and small trees are preferred
 - Data in successor node should be as pure as possible
 - I. e. nodes containing one class only are preferable
- Question: How can we express this thought as a mathematical formula?
- Answer:
 - Entropy (Claude E. Shannon)
 - Originates in the field of information theory

Measure of Impurity: Entropy

- Entropy is a measure of chaos in the data (measured in bits)
- **Example:** Consider two classes A and B ($\mathcal{C} = \{A, B\}$)

```
\begin{array}{lll} E(\{ \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A} \}) & \to 0 & \textit{Bits} \\ E(\{ \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{B}, \textit{B}, \textit{B} \}) & \to 0.81 & \textit{Bits} \\ E(\{ \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B} \}) & \to 1 & \textit{Bit} \\ E(\{ \textit{A}, \textit{A}, \textit{A}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B} \}) & \to 0.81 & \textit{Bits} \\ E(\{ \textit{B}, \textit{B} \}) & \to 0 & \textit{Bits} \end{array}
```

If both classes are equally distributed, the entropy function E reaches its maximum. Pure data sets have minimal entropy.

Measure of Impurity: Entropy (Ctd.)

Measure of Impurity: Entropy (Ctd.)

Entropy formula:

$$E(\mathcal{D}) = -\sum_{c \in \mathcal{C}} p_c \cdot \log_2 p_c \tag{1}$$

- p_c denotes the relative frequency of class $c \in \mathcal{C}$
- Weather data:

$$C = \{yes, no\}$$
 i.e. $p_{ves} = \frac{9}{14}$ and $p_{no} = \frac{5}{14}$

$$E(\mathcal{D}) = -\sum_{c} p_{c} \cdot \log_{2} p_{c} = -(\frac{9}{14} \cdot \log_{2} \frac{9}{14} + \frac{5}{14} \cdot \log_{2} \frac{5}{14}) = \mathbf{0.9403}$$

Quality of the Split: Average Entropy

- We still don't know which attribute to use for the split
- Calculate the entropy after each potential split
- Average Entropy after splitting by attribute A:

$$E(\mathcal{D}, \mathbf{A}) = \sum_{\mathbf{v} \in \mathsf{dom}(\mathbf{A})} \frac{|\mathcal{D}_{\mathbf{A} = \mathbf{v}}|}{|\mathcal{D}|} \cdot E(\mathcal{D}_{\mathbf{A} = \mathbf{v}})$$
(2)

Legend:

A Attribute

dom(A) Possible values attribute A can take (domain of A)

 $|\mathcal{D}_{\mathtt{A}=v}|$ Number of examples satisfying $\mathtt{A}=v$

Quality of the Split: Average Entropy (Ctd.)

Example: Attribute Outlook

$$E(\mathcal{D}, \mathtt{Outlook}) = \sum_{v \in \mathsf{dom}(\mathtt{Outlook})} \frac{|\mathcal{D}_{\mathtt{Outlook}=v}|}{|\mathcal{D}|} \cdot E(\mathcal{D}_{\mathtt{Outlook}=v})$$

$$= \frac{5}{14} \cdot 0.9710 + \frac{5}{14} \cdot 0.9710 + \frac{4}{14} \cdot 0 = \mathbf{0.6936}$$

$$E(\mathcal{D}_{\texttt{Outlook}=\textit{sunny}}) = -(2/5 \cdot \log_2(2/5) + 3/5 \cdot \log_2(3/5)) \\ \hspace{1cm} = 0.9710$$

$$E(\mathcal{D}_{\text{Outlook}=\text{rainy}}) = -(\frac{3}{5} \cdot \log_2(\frac{3}{5}) + \frac{2}{5} \cdot \log_2(\frac{2}{5})) = 0.9710$$

$$E(\mathcal{D}_{\text{Outlook}=\text{overcast}}) = -(\frac{4}{4} \cdot \log_2(\frac{4}{4}) + \frac{0}{4} \cdot \log_2(\frac{0}{4})) = 0$$

Information Gain

- We have calculated the entropy before and after the split
- The difference of both is called the information gain (IG)
- Select the attribute with the highest IG

Attribute	E _{before}	E_{after}	IG			
Outlook	0.9403	0.6936	0.2464			
Temperature	0.9403	0.9111	0.0292			
Humidity	0.9403	0.7885	0.1518			
Wind	0.9403	0.8922	0.0481			

- Attribute Outlook maximizes IG
- After the split: Remove attribute Outlook

Training Data after the Split by Attribute Outlook

Outlook	Temperature	Humidity	Wind	PlayGolf		
sunny	hot	high	weak	no		
sunny	hot	high	strong	no		
sunny	mild	high	weak	no		
sunny	cool	normal	weak	yes		
sunny	mild	normal	strong	yes		
rainy	mild	high	weak	yes		
rainy	cool	normal	weak	yes		
rainy	cool	normal	strong	no		
rainy	mild	normal	weak	yes		
rainy	mild	high	strong	no		
overcast	cool	normal	strong	yes		
overcast	hot	high	weak	yes		
overcast	mild	high	strong	yes		
overcast	hot	normal	weak	yes		

- Data set \mathcal{D} after the split
- We obtain three subsets (one per attribute value)
- Attribute Outlook is removed

How to proceed?

- The algorithm is recursively applied to the resulting subsets
 - Calculate entropy (before and after the split)
 - 2 Calculate information gain for each attribute
 - 3 Choose the attribute with max. information gain for the split
 - 4 In the current branch: Do not consider the attribute any more
 - 6 Recursion ♂ (Go to 1)
- Recursion stops as soon as the subset is pure
- In the example above the subset $\mathcal{D}_{\mathtt{Outlook}=\mathit{overcast}}$ is already pure
- This algorithm is referred to as ID3 (Iterative Dichotomizer)

- *IG*(Temperature) = 0.571
- *IG*(Humidity) = **0.971**
- IG(Wind) = 0.020

Algorithm 1: ID3 Algorithm (Iterative Dichotomizer)

```
Input: Training set \mathcal{D}, Attribute list Attr\_List
```

- 1 Create a node N
- 2 **if** all tuples in $\mathfrak D$ have class c **then**
- return N as leaf node labeled with class c
- 4 if |Attr List| = 0 then
- f return N as leaf node labeled with majority class in ${\mathfrak D}$
- 6 Find best split attribute A* and label node N with A*
- 7 Attr List \leftarrow Attr List \{A*}
- 8 forall $v \in dom(A^*)$ do
- 9 Let $\mathcal{D}_{\mathtt{A}^*=\mathtt{v}}$ be the set of tuples in $\mathcal D$ that satisfy $\mathtt{A}^*=\mathtt{v}$
- if $|\mathcal{D}_{A^*=v}| = 0$ then
- 11 Attach leaf labeled with majority class in ${\mathfrak D}$ to node ${\it N}$
- 12 else
- 13 Attach node returned by $ID3(\mathcal{D}_{\mathbb{A}^*=\nu}, Attr_List)$
- 14 return N

An Alternative to Information Gain: Gini Index

Gini index:

$$Gini(\mathcal{D}) = \sum_{c \in \mathcal{C}} p_c \cdot (1 - p_c) = 1 - \sum_{c \in \mathcal{C}} p_c^2$$
(3)

- Used e.g. in CART (Classification and Regression Trees)
- Gini gain could be defined analogously to IG (usually not done)

Why not use the Error as a splitting Criterion?

- The bias towards pure leaves is not strong enough
- Example:

Error without splitting:

20 %

Error after splitting:

20 %

Both splits don't improve the error. But together they give a perfect split!

Summary: Impurity Measures

Highly-Branching Attributes

Attributes with a large number of values are problematic, since the leaves are not 'backed' with sufficient data examples.

In extreme cases only one example per node (e.g. IDs)

This may lead to:

- Overfitting (Selection of attributes which are not optimal for prediction)
- Fragmentation (Data is fragmented into (too) many small sets)

Highly-Branching Attributes (Ctd.)

- Entropy before was 0.9403, Entropy after split is 0
- $IG(\mathcal{D}, Day) = 0.9403$
- Attribute Day would be chosen for the split ⇒ Bad for prediction

Highly-Branching Attributes (Ctd.)

• Calculate the intrinsic information (Intl):

$$Intl(\mathcal{D}, A) = -\sum_{v \in dom(A)} \frac{|\mathcal{D}_{A=v}|}{|\mathcal{D}|} \cdot \log_2 \frac{|\mathcal{D}_{A=v}|}{|\mathcal{D}|}$$
(4)

- Attributes with high Intl are less useful (high fragmentation)
- New splitting heuristic Gain ratio (GR):

$$GR(\mathcal{D}, A) = \frac{IG(\mathcal{D}, A)}{IntI(\mathcal{D}, A)}$$
 (5)

Highly-Branching Attributes (Ctd.)

• Intrinsic information for attribute Day:

$$IntI(\mathcal{D}, Day) = 14 \cdot (-1/14 \cdot \log_2(1/14)) = 3.807$$
 (6)

Gain ratio for attribute Day:

$$GR(\mathcal{D}, Day) = \frac{0.9403}{3.807} = 0.246$$
 (7)

In this case the attribute Day would still be chosen. Be careful what features to include into the training data set! (Feature engineering is important!)

Handling numeric Attributes

- Usually, only **binary splits** are considered, e.g.:
 - Temperature < 48
 - CPU > 24
 - Not: 24 ≤ Temperature ≤ 31
- To support multiple splits, the attribute is not removed (the same attribute can be used again for another split)
- Problem: There is an infinite number of possible splits!
- **Solution**: Discretize range (fixed step size, ...)
- Splitting on numeric attributes is computationally demanding!

Handling numeric Attributes (Ctd.)

Consider the attribute Temperature:
 Use numerical values instead of discrete values like cool, mild, hot:

• Temperature < 71.5 yes: 4 | no: 2

Temperature ≥ 71.5
 yes: 5 | no: 3

$$E(\mathcal{D}, \text{Temp.}) = \frac{6}{14} \cdot E(\text{Temp.} < 71.5) + \frac{8}{14} \cdot E(\text{Temp.} \geqslant 71.5) = \mathbf{0.939}$$

Handling numeric Attributes (Ctd.)

Sorted Values												
No No No Yes Yes Yes No No No No												
	Taxable Income											
60 70 75 85 90 95 100 120 125 2									220			

Split	5	5	65 72		80 87		92 97		110		122		172		230							
	\leq	>	\leq	>	\leq	>	\leq	>	\leq	>	\leq	>	\leq	>	\leq	>	\leq	>	\leq	>	\leq	>
Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini	0.4	20	0.4	0.400 0.375 0.343		0.417 0.40		0.400 0.300		0.343		0.375		0.400		0.420						

Regression Trees

- Prediction of continuous variables
- Predict average value of all examples in the leaf
- Split the data such that variance in the leaves is minimized
- Termination criterion is important, otherwise single point per leaf!

Standard deviation reduction (SDR):

$$SDR(\mathcal{D}, A) = SD(\mathcal{D}) - \sum_{v \in dom(A)} \frac{|\mathcal{D}_{A=v}|}{|\mathcal{D}|} \cdot SD(\mathcal{D}_{A=v})$$
(8)

Introduction Ensemble Methods

- Key Idea: Don't learn a single classifier but a set of classifiers
- Combine the predictions of the single classifiers to obtain the final prediction

Problem: How can we induce multiple classifiers from a single data set without getting the same classifier over and over again? We want to have diverse classifiers, otherwise the ensemble is useless!

- Basic techniques:
 - Bagging
 - Boosting
 - Stacking

What is the Advantage?

- Consider the following:
 - There are 25 **independent** base classifiers
 - Independence assumption: Probability of misclassification does not depend on other classifiers in the ensemble
 - Usually, this assumption does not fully hold in practice
 - Each classifier has an error rate of $\epsilon = 0.35$
- The ensemble makes a wrong prediction if the majority is wrong
 (⇒ i. e. at least 13)

$$\epsilon_{ensemble} = \sum_{i=13}^{25} {25 \choose i} \cdot \epsilon^i \cdot (1 - \epsilon)^{25 - i} \approx 0.06 \ll \epsilon$$
(9)

Bagging: General Approach

 $\mathsf{Bagging} \; \widehat{=} \; \mathsf{Bootstrap} \; \mathsf{Aggregating}$

Creating the Bootstrap Samples

- How to generate multiple data sets which are different?
- Solution: Use sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Some examples may appear in more than one set
- Some examples may appear more than once in one set
- Some examples may not appear at all

Algorithm 2: Bagging Algorithm

Input: Training set \mathcal{D} , number of base classifiers n

1 Training:

- **2 forall** $i \in \{1, 2, ..., k\}$ **do**
- Draw a bootstrap sample \mathcal{D}_i with replacement from \mathcal{D}
- Learn a classifier C_i from D_i
- Add classifier C_i to the ensemble
- 6 Prediction:
- 7 forall unlabeled instances do
- Get predictions from all classifiers C_i
- 9 **return** Class which receives the majority of votes (combined classifier C*)

Bagging Variations

- The bootstrap samples had equal size and were drawn with replacement
- Also conceivable:
 - Varying the size of the bootstrap samples
 - ② Sampling without replacement ⇒ Pasting
 - Sampling of features, not instances
 - Not all features are available in all bootstrap samples
 - This is how random forests work
 - 4 Creating heterogeneous ensembles (Neural networks, decision trees, support vector machines, ...)

Section: Wrap-Up

Summary

Lecture Overview

Unit I: Machine Learning Introduction

Self-Test Questions

Recommended Literature and further Reading

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Decision Trees and Ensembles

Date: October 22, 2019

Contact:

Daniel Wehner (D062271)

SAPSE

daniel.wehner@sap.com

Do you have any questions?

