HIGHER ALGEBRA

MAXIMILIEN PÉROUX

Contents

1.	Lecture 1: Thursday, January 12th	2
2.	Lecture 2: Tuesday, January 17th	5
3.	Lecture 3: Thursday, January 19th	10
4.	Lecture 4: Tuesday, January 24th	14
5.	Lecture 5: Thursday, January 26th	20
6.	Lecture 6: Tuesday, January 31st	24
7.	Lecture 7: Thursday, February 2nd	28
8.	Lecture 8: Tuesday, February 7th	28
9.	Lecture 9: Thursday, February 9th	32
10.	Lecture 10: Thursday, February 16th	32

 $Date \hbox{: March 28, 2023.}$

11.	Lecture 11: Tuesday, February 21st	36
12.	Lecture 12: Thursday, February 23rd	36
13.	Lecture 13: February 28th	40
14.	Lecture 14: March 21st	40
15.	Lecture 15: March 23rd	45
16.	Lecture 16: March 28th	47
References		50

1. Lecture 1: Thursday, January 12th

Today: the **homotopy hypothesis**

Classical algebra: sets, monoids, groups, abelian groups, rings. Each of these are built up on the other. In higher courses, we may see groupoids, which are types of categories. A category is a generalization of a monoid, in some sense. We also have monoidal categories, which in some sense are a generalization of rings.

For higher algebra: spaces, \mathbb{E}_1 -spaces, spectra, \mathbf{E}_1 -ring spectra. Underlying this we have ∞ -groupoids, ∞ -categories, and monoidal ∞ -categories.

We study spaces, not up to homeomorphism, but up to *weak homotopy equivalence*. We will study this in a minute. "Spaces" in this class will always mean the study of topological spaces up to weak homotopy equivalence.

We'll give a synthetic definition of what an infinity category is, and circle back to a technical definition in about a month.

What is an ∞ -category?

An ∞ -category (or $(\infty, 1)$ -category) $\mathscr C$ should consist of:

- (1) a class of objects
- (2) a class of morphisms so that $\operatorname{Hom}_{\mathscr{C}}(X,Y)$ is a space
- (3) n-morphisms for $n \geq 2$, where for instance 2-morphisms are between 1-morphisms, 3-morphisms between 2-morphisms, etc.
- (4) morphisms can be composed in a suitable way
- (5) n-morphisms for $n \geq 2$ are invertible in some sense.

An ∞ -groupoid (or $(\infty, 0)$ -category) should be an ∞ -category where all the 1-morphisms are also invertible in some sense.

Why study spaces up to weak homotopy equivalence?

Recall by the Yoneda lemma, we have that

$$X \cong Y \Leftrightarrow \operatorname{Hom}_{\mathsf{Top}}(A, X) \cong \operatorname{Hom}_{\mathsf{Top}}(A, Y)$$

for all $A \in \text{Top.}$ Figuring out Hom(A, X) up to bijection for all A is very difficult, so we prefer to study continuous maps up to homotopy. For X and Y nice enough, we say that $f \simeq g$ in Hom(X,Y) if there exists some path $I \to \text{Map}(X,Y)$ so that $0 \mapsto f$ and $1 \mapsto g$. We define $[X,Y] = \text{Hom}_{\text{Top}}(X,Y)/\simeq$.

We see then that $X \simeq Y$ if and only if $[A, X] \cong [A, Y]$ for all $A \in Top$.

We may ask when $[A, -]: \mathsf{Top}_* \to \mathsf{Set}$ factors through Grp or Ab . We have that [A, -] factors through Grp if and only if A is a co-H-group in Top . That is, we have maps

$$A \to A \lor A$$

 $A \to *$.

which is coassociative, counital, coinvertible.

Example 1.1. S^n , when $n \geq 1$, is a co-H-space. The map $S^n \to S^n \vee S^n$ is the pinch map.

We say that X is weakly homotopy equivalent to Y, we write $X \sim Y$, if and only if there is a map $X \to Y$ inducing an isomorphism

$$\pi_n(X) = [S^n, X]_* \cong [S^n, Y]_* = \pi_n(Y),$$

for all $n \ge 0$ (for $n \ge 1$ this is a group isomorphism).

If $X \sim Y$, then $H_n(X) \cong H_n(Y)$ for any n.

Theorem 1.2. (Cellular approximation) For any X in Top, there exists \widetilde{X} a CW complex with a canonical map $\widetilde{X} \xrightarrow{\sim} X$ that is a weak equivalence.

Theorem 1.3. (Whitehead) If X, Y are CW complexes, then $X \xrightarrow{\simeq} Y$ is a homotopy equivalence if and only if $X \xrightarrow{\sim} Y$ is a weak homotopy equivalence.

Exercise 1.4. Find spaces X and Y which are weakly homotopy equivalent but not homotopy equivalent.

We denote by Δ the simplex category. Its objects are ordered sets of the form $[n] = \{0, 1, \ldots, n\}$, and its morphisms are order-preserving maps. We have that Δ is generated by *cofaces* and *codegeneracies*. The cofaces are of the form

$$d^0, d^1: [0] \to [1],$$

skipping 0 or 1 in [1], etc. The codegeneracies look like $s^0 : [1] \to [0]$ which "repeat" an element.

The cofaces and codegeneracies satisfy certain cosimplicial identities.

If \mathscr{C} is a category, we denote by $s\mathscr{C} = \mathscr{C}^{\Delta^{\mathrm{op}}}$ the simplicial objects in \mathscr{C} . If $\mathscr{C} = \mathtt{Set}$, we write \mathtt{sSet} as the category of simplicial sets. A simplicial set $X_{\bullet} \in \mathtt{sSet}$ consists of sets X_0, X_1, \ldots together with face and degeneracy maps satisfying the simplicial identities.

Example 1.5. The nerve of a small category. Let $\mathscr{C} \in \mathsf{Cat}$ a small category. We denote by $N_{\bullet}\mathscr{C}$ the simplicial set with $N_0\mathscr{C} = \mathsf{ob}\mathscr{C}$, $N_1\mathscr{C} = \mathsf{mor}\mathscr{C}$, and $N_n\mathscr{C}$ the set of n composable morphisms in \mathscr{C} . That is,

$$N_n\mathscr{C} = N_1\mathscr{C} \times_{N_0\mathscr{C}} \cdots \times_{N_0\mathscr{C}} N_1\mathscr{C}.$$

The face maps are source/target/composition. The degeneracies insert an identity morphism.

Example 1.6. Via Yoneda, we get a functor

$$\Delta^n := \operatorname{Hom}_{\Delta}(-, [n]) : \Delta^{\operatorname{op}} \to \operatorname{Set}.$$

If X_{\bullet} is a simplicial set, we get that the set of *n*-simplices X_n is in bijection with $\operatorname{Hom}_{\mathsf{sSet}}(\Delta^n, X_{\bullet})$.

Example 1.7. (Dold–Kan) We have $\operatorname{Ch}_R^{\geq 0} \xrightarrow{\Gamma} s\operatorname{Mod}_R$ is an isomorphism, where $\Gamma_m C_{\bullet} = \bigoplus_{[n] \to [k]} C_k$, with faces and degeneracies left as an exercise.

Example 1.8. Let $\Delta_{\mathsf{Top}}^n \subseteq \mathbb{R}^{n+1}$ be defined by

$$\{(t_0,\ldots,t_n)\in\mathbb{R}^{n+1}: 0\le t_i\le 1, \sum t_i=1\}.$$

We can view $[n] = \{v_0, \dots, v_n\}$, and $v_i = (0, \dots, 0, 1, 0, \dots, 0)$ with 1 at the *i*th place. Then if $\alpha : [m] \to [n]$ in Δ , we can define $\alpha(v_i) = v_{\alpha(i)}$. Extend linearly to get $\alpha_* : \Delta^m_{\mathsf{Top}} \to \Delta^n_{\mathsf{Top}}$. We get then that $\Delta^{\bullet}_{\mathsf{Top}}$ is a cosimplicial topological space.

Example 1.9. If $X \in \text{Top}$, we have $\operatorname{Sing}_{\bullet}(X) \in \text{sSet}$ defined by $\operatorname{Sing}_n(X) = \operatorname{Hom}_{\operatorname{Top}}\left(\Delta^n_{\operatorname{Top}},X\right)$.

Definition 1.10. If $X_{\bullet} \in sSet$, we define its geometric realization to be

$$|X_{\bullet}| = \coprod_{n>0} X_n \times \Delta_{\mathsf{Top}}^n / \sim,$$

where $(x,s) \sim (y,t)$ if and only if there is some $\alpha : [m] \to [n]$ so that $\alpha^* y = x$ and $\alpha_* s = t$.

Example 1.11. $|\Delta^n_{\bullet}| \cong \Delta^n_{\text{Top}}$.

Exercise 1.12. $|X_{\bullet}|$ is always a CW complex for any $X_{\bullet} \in sSet$.

Exercise 1.13. We have an adjunction |-|: $sSet \rightleftharpoons Top : Sing(-)$

Definition 1.14. $X_{\bullet} \to Y_{\bullet}$ is a weak homotopy equivalence in sSet if $|X_{\bullet}| \xrightarrow{\sim} |Y_{\bullet}|$ is a weak homotopy equivalence of spaces.

Theorem 1.15. (Quillen) Simplicial sets up to weak equivalence is equivalent to topological spaces up to weak homotopy equivalence. Moreover, for any $X \in \mathsf{Top}$, we have that $|\mathsf{Sing}(X)|$ is weakly equivalent to X.

2. Lecture 2: Tuesday, January 17th

Today: the homotopy hypothesis (continued).

Recall we are interested in studying Top up to weak homotopy equivalences. Equivalently, we are interested in studying sSet up to weak equivalence, and the relationship between the two was given by the geometric realization / singular complex adjunction.

Recall we've defined $\Delta^n = \operatorname{Hom}_{\Delta}(-, [n])$. We will define the kth horn $\Lambda^n_k \subseteq \Delta^n$ as a coequalizer in sSet

$$\left(\coprod_{0 \le i < j \le n} \Delta^{n-2} \rightrightarrows \coprod_{i \ne k} \Delta^{n-1}\right) \to \Lambda_k^n,$$

where the two maps are δ^{j-1} and δ^i . The geometric realization of Λ^n_k is the topological n-simplex, with the middle and the face opposite the kth edge removed.

Definition 2.1. We say that $Y \in \mathtt{sSet}$ is a $Kan\ complex$ if for all $k \leq n$, and for every $\Lambda^n_k \to Y$, there exists a (not necessarily unique) lift:

Exercise 2.2. Y is a Kan complex if and only if for any (n-1)-simplices $y_1, \ldots, y_{k-1}, y_{k+1}, \ldots, y_n$ such that $d_i y_j = d_{j-1} y_i$ for i < j, $i, j \neq k$, there exists an n-simplex y such that $d_i y = y_i$ for all $i \neq k$.

Exercise 2.3. We have that Sing(X) is always a Kan complex for any $X \in Top$.

Exercise 2.4. We have that Δ^n is not a Kan complex for $n \geq 1$.

Exercise 2.5. If $X \in sGrp$, then the underlying simplicial set of X is always a Kan complex.

Up to weak homotopy equivalence, every simplicial set is a Kan complex (will see this later).

Recall the Dold-Kan correspondence

$$s \mathtt{Mod}_{\mathbb{Z}} \cong \mathtt{Ch}^{\geq 0}_{\mathbb{Z}},$$

which sends weak homotopy equivalences to quasi-isomorphisms. Given a simplicial set X_* , we can take an associated simplicial abelian group $\mathbb{Z}[X_*]$ by taking the free group on n-simplices at level n. We can ask what $\mathbb{Z}[X_*]$ corresponds to as a chain complex. One answer is that

$$\mathbb{Z}[\operatorname{Sing}(X_*)] \leftrightarrow C_*(X; \mathbb{Z}).$$

This tells us that

$$\pi_* (\mathbb{Z} [\operatorname{Sing}(X)]) \cong H_*(X; \mathbb{Z}).$$

In some sense we can view $\mathbb{Z}[Sing(X)]$ as being (equivalent to) the *free commutative monoid* on X. This is what is known as the *Dold-Thom theorem*.

Homotopy hypothesis: Spaces (up to weak equivalence) are ∞ -groupoids. For us, spaces up to weak equivalences correspond to Kan complexes.

Given $X \in Kan$, we can call X_0 the objects, and X_1 the morphisms. The horn filling conditions on horns tell you that you can *compose* and *invert* morphisms in X_1 , witnessed by simplices in X_2 .

Definition 2.6. A quasi-category (i.e. ∞ -category) is a simplicial set with inner horn lifting property. That is, we can lift against horns Λ_k^n for 0 < k < n.

Exercise 2.7. A quasi-category has unique horn filling if and only if it is isomorphic to the nerve of a 1-category.

Model categories

Vista: Every nice infinity category is equivalent in some sense to a model category. This will pretty much be the goal of this class.

Notation 2.8. Let \mathcal{M} be a category, and $\chi \subseteq \mathcal{M}$ a class of morphisms. We define $LLP(\chi)$ to be the class of morphisms in \mathcal{M} so that f has left lifting property with respect to all morphisms in χ :

Similarly we can define $f \in RLP(\chi)$ by

Definition 2.9. A weak factorization system on a category \mathcal{M} consists of a pair $(\mathscr{C}, \mathscr{F})$ of classes of morphisms such that

(1) Given any $f: X \to Y$ in \mathcal{M} , it factors (not necessarily uniquely) as

$$X \xrightarrow{f} Y$$

$$\mathscr{C} \ni \qquad W$$

(2)
$$\mathscr{C} = LLP(\mathscr{F})$$
 and $\mathscr{F} = RLP(\mathscr{C})$.

Example 2.10. In Set, we have that mono and epimorphisms give a weak factorization system. A factorization is

$$X \xrightarrow{f} Y$$

$$id_X \times f \xrightarrow{\pi_Y} X$$

Definition 2.11. A model structure on \mathcal{M} consists of three classes of morphisms:

$$egin{array}{c|c} W & \text{weak equivalences} \\ \text{Cof} & \text{cofibrations} \\ \text{Fib} & \text{fibrations} \\ \end{array}$$

We denote by $\widetilde{\mathrm{Cof}} := \mathrm{Cof} \cap W$ and $\widetilde{\mathrm{Fib}} = \mathrm{Fib} \cap W$, and call these trivial cofibrations (resp. trivial fibrations). These are subject to the constraint that

- (1) \mathcal{M} is bicomplete (all limits and colimits)¹
- (2) W satisfies 2-out-of-3 property²
- (3) $\left(\operatorname{Cof}, \widetilde{\operatorname{Fib}}\right)$ and $\left(\widetilde{\operatorname{Cof}}, \operatorname{Fib}\right)$ are weak factorization systems.

Terminology 2.12. A category with a model structure is referred to as a *model category*.

Notation 2.13. We will decorate each class of morphisms as

$$\begin{array}{c|c} W & \stackrel{\sim}{\to} \\ \text{Cof} & \hookrightarrow \\ \text{Fib} & \twoheadrightarrow \end{array}$$

¹We might also require *finitely* bicomplete.

²If f and g are composable, and any two of f, g, gf are in W then so is the third.

Exercise 2.14. W, Cof, and Fib are closed under retracts: that is,

then if $g \in W$ (resp. Cof or Fib) then $f \in W$ (resp. Cof or Fib).

Definition 2.15. Let \mathcal{M} be a model category, and let $\emptyset \in \mathcal{M}$ the initial object and $* \in \mathcal{M}$ the terminal object.

- We say that $X \in \mathcal{M}$ is *cofibrant* if the unique map $\varnothing \to X$ is a cofibration.
- We say that $X \in \mathcal{M}$ is fibrant if the unique map $X \to *$ is a fibration.
- We say that \widetilde{X} is a cofibrant replacement of X if

• We say that \widetilde{X} is a fibrant replacement of X if

Example 2.16. $\mathcal{M} = \text{Top}$, W = weak homotopy equivalences, Cof = relative CW complexes³ The fibrations are determined by $\text{Fib} = \text{RLP}(\widetilde{\text{Cof}})$. The fibrations are equivalently $\text{RLP}(D^n \to D^n \times I)$. Every object here is fibrant, and the cofibrant objects are precisely the CW complexes. Cofibrant replacement is cellular approximation.

3. Lecture 3: Thursday, January 19th

Proposition 3.1. Identities and isomorphisms are weak equivalences in a model category.

Proof. For any $X \in \mathcal{M}$, we can fibrantly replace it to get $X \stackrel{\sim}{\hookrightarrow} \widetilde{X}$. Consider the commutative diagram

By 2-out-of-3, we have that id: $X \to X$ is also a weak equivalence.

More generally if $f: X \to Y$ is an isomorphism in \mathcal{M} , then by the diagram

$$X \xrightarrow{f} Y \xrightarrow{f} X$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$Y = Y = Y,$$

we see that f is contained in W.

If $(\mathscr{C}, \mathscr{F})$ is a weak factorization system, then both \mathscr{C} and \mathscr{F} are closed under retracts. Hence Cof, $\widetilde{\text{Cof}}$, $\widetilde{\text{Fib}}$ are closed under retracts. W is also closed under retracts (exercise).

Exercise 3.2. We have that \mathcal{M} is a model category if and only if \mathcal{M}^{op} is a model category.

Theorem 3.3. Cofibrations are closed under pushouts and coproducts.

 $[\]overline{{}^3A \hookrightarrow X}$ is a relative CW complex if X is built out of A by attaching cells.

Proof. Given any test square, we can try to lift:

$$X \longrightarrow Y \longrightarrow A$$

$$\downarrow \qquad \qquad \downarrow \sim$$

$$Z \longrightarrow P \longrightarrow B.$$

This map is constructed by universal property of the pushout:

For coproducts, we can take $X_i \hookrightarrow Y_i$ for $i \in J$. Let's try to lift:

We know that each $X_i \hookrightarrow Y_i$ is a cofibration hence it lifts against the big square. By universal property a map $\coprod_i Y_i \to A$ exists.

Example 3.4. If \mathscr{C} is a bicomplete category, then \mathscr{C} has a model structure where W is the isomorphisms, and $Cof = Fib = mor\mathscr{C}$.

Example 3.5. If $\mathcal{M} = \text{Top}$, we have the Quillen model structure, with

- W = weak homotopy equivalences
- Cof = retracts of relative CW complexes
- Fib = Serre fibrations (RLP($D^n \hookrightarrow D^n \times I$)).

Example 3.6. The Strøm (or Hurewicz) model structure on Top:

- W = homotopy equivalences
- Fib = Hurewicz fibrations (RLP($A \to A \times I$) for all $A \in \mathsf{Top}$)
- Cof = closed cofibrations in Top.

Fibrant replacement in the Strøm model structure looks like

Where $M_f = (X \times I) \cup_X Y$ is the mapping cylinder.

Example 3.7. The Kan model structure on sSet with

- W = weak homotopy equivalences
- Cof = monomorphisms (levelwise injections)
- Fib = Kan fibrations (RLP($\Lambda_k^n \to \Delta^n$) for all $0 \le k \le n$).

Everything is cofibrant here (since the empty simplicial set injects into everything). Fibrant things are Kan complexes. This tells us that every simplicial set is weakly equivalent to a Kan complex!

Theorem 3.8. (Milnor) The natural map $X \to \text{Sing}(|X|)$ is a weak homotopy equivalence for any simplicial set X. [Kerodon, 3.5.4.1]

Definition 3.9. Let \mathscr{C} be a cat, and $W \subseteq \mathscr{C}$ a subcategory. A functor $F : \mathscr{C} \to \mathscr{D}$ is called the *localization of* \mathscr{C} with respect to W if:

- (1) $F(f) \in iso \mathscr{D}$ if $f \in mor W$
- (2) For any other F' satisfying (1), we have

$$\begin{array}{c|c} \mathscr{C} & \xrightarrow{F'} \mathscr{D}' \\ \downarrow & & \downarrow \\ \mathscr{C} & & \exists ! \end{array}$$

We denote by $\mathscr{C} \to \mathscr{C}[W^{-1}]$ the localization.

Here is a naive way to construct $\mathscr{C}[W^{-1}]$: we take the free category on \mathscr{C} and " W^{-1} ." That is, we take the same objects, but allow morphisms to be "zigzags" of morphisms forward in \mathscr{C} and morphisms backwards in W, and we mod out by the relation that things in W become isomorphisms. There are size issues here.

Theorem 3.10. If \mathcal{M} is a model category, then localization $\mathcal{M} \to \mathcal{M}[W^{-1}]$ exists. We denote by $\text{Ho}(\mathcal{M}) = \mathcal{M}[W^{-1}]$ the homotopy category of \mathcal{M} .

Recall in Top that $f \simeq g: X \to Y$ if there is a map $H: X \times I \to Y$ so that H(-,0) = f and H(-,1) = g.

Definition 3.11. Le $t\mathcal{M}$ be a model category. A cylinder object on $X \in \mathcal{M}$ is defined to be

The construction of cylinder objects is *not functorial*.

A (left) homotopy from f to g is a map $H: \mathrm{Cyl}(X) \to Y$ such that $H \circ i_0 = f$ and $H \circ i_1 = g$. We denote this by $f \simeq g$.

Proposition 3.12. We have that $i_0: X \to \text{Cyl}(X)$ is a weak equivalence (and same for i_1).

Proof. We have

By 2-out-of-3 on the outside maps, the result follows.

Proposition 3.13. If X is cofibrant, then $i_0, i_1: X \to \text{Cyl}(X)$ are cofibrations.

Proof. Since cofibrations are preserved under pushouts, we have that i_0 and i_1 are cofibrations:

Theorem 3.14. (Exercise) If X is cofibrant, then homotopy \simeq gives an equivalence relation on $\operatorname{Hom}(X,Y)$ for any Y.

We can think of a map

$$\operatorname{Hom}_{\mathcal{M}}(X,Y)/\simeq \times \operatorname{Hom}_{\mathcal{M}}(Y,Z)/\simeq \to \operatorname{Hom}_{\mathcal{M}}(X,Z)/\simeq (f,g)\mapsto g\circ f.$$

In order for this to be well-defined, we need Z to be fibrant.

Lemma 3.15. If Z is fibrant, and $f \simeq g: X \to Z$, then if $h: X' \to X$, we have that $fh \simeq gh$.

Proof. We have $H: \text{Cyl}(X) \to Y$ with $H_0 = f$ and $H_1 = g$. By lifting, we get

$$X' \coprod X' \longrightarrow X \coprod X \longrightarrow \operatorname{Cyl}(X)$$

$$\downarrow \sim$$

$$\operatorname{Cyl}(X') \longrightarrow X' \longrightarrow X.$$

This gives the desired map. We used fibrancy of Z to ensure that the map $\mathrm{Cyl}(X) \to X$ was a trivial fibration (or could be replaced with a better cylinder object using a map to Z).

Theorem 3.16. In \mathcal{M} , given $f: X \to Y$ with X cofibrant and Y fibrant, then $f \in W$ if and only if f is a homotopy equivalence.⁴

Notation 3.17. $\mathcal{M}_c = \text{cofibrant objects in } \mathcal{M}, \text{ and } \mathcal{M}_f = \text{fibrant objects in } \mathcal{M}.$ We denote by $\mathcal{M}_{cf} = \text{objects which are } both \text{ cofibrant and fibrant.}$

Concretely, we can define $Ho(\mathcal{M})$ as the objects in \mathcal{M} , but where

$$\operatorname{Hom}_{\operatorname{Ho}(\mathcal{M})}(X,Y) = \operatorname{Hom}_{\mathcal{M}_{cf}/\simeq}(RQX,RQY),$$

where R is a fibrant replacement and Q is a cofibrant replacement.

Exercise 3.18. Given $X \to Y$ in \mathcal{M} , there exists $QX \xrightarrow{\widetilde{f}} QY$ such that

$$\begin{array}{ccc} QX & \stackrel{\widetilde{f}}{\longrightarrow} & QY \\ \downarrow \sim & & \downarrow \sim \\ X & \stackrel{f}{\longrightarrow} & Y. \end{array}$$

Here \widetilde{f} is well-defined up to left homotopy.

Given some $\mathcal{M} \to \text{Ho}(\mathcal{M})$, we just need to check that $W \mapsto \text{isos}$, and it is universal in that way.

4. Lecture 4: Tuesday, January 24th

Definition 4.1. Suppose \mathcal{M} and \mathcal{N} are model categories, and take a functor $F: \mathcal{M} \to \mathcal{N}$. A left derived functor of F is an (absolute) right Kan extension of F along

⁴Meaning that there is some $g: Y \to X$ with $fg \simeq id$ and $gf \simeq id$.

 $\gamma_{\mathcal{M}}: \mathcal{M} \to \mathrm{Ho}(\mathcal{M})$:

$$\begin{array}{c|c}
\mathcal{M} & \xrightarrow{F} & \mathcal{N} \\
\gamma_{\mathcal{M}} & & \ell & \uparrow \\
\text{Ho}(\mathcal{M}) & & & \uparrow \\
\end{array}$$

if $G: \text{Ho}(\mathcal{M}) \to \mathcal{N}$ and $s: G \circ \gamma_{\mathcal{M}} \Rightarrow F$, then there exists a unique $s': G \Rightarrow LF$ so that $\ell \circ (s' \circ \gamma_{\mathcal{M}}) = s$.

$$\begin{array}{c|c}
\mathcal{M} & \xrightarrow{F} & \mathcal{N} \\
\uparrow_{\mathcal{M}} & & \downarrow_{\kappa'}
\end{array}$$

$$\begin{array}{c}
\text{Ho}(\mathcal{M})
\end{array}$$

Definition 4.2. Let $F: \mathcal{M} \to \mathcal{N}$. A total left derived functor $\mathbb{L}F: \mathrm{Ho}(\mathcal{M}) \to \mathrm{Ho}(\mathcal{N})$ is the left derived functor of $\mathcal{M} \xrightarrow{F} \mathcal{N} \xrightarrow{\gamma_{\mathcal{N}}} \mathrm{Ho}(\mathcal{N})$.

Example 4.3. If $\mathcal{F}: \mathcal{M} \to \mathcal{N}$ where if $f \in W$ between cofibrant objects then Ff is a weak equivalence in \mathcal{N} , then $\mathbb{L}F$ exists:

$$\mathcal{N}$$
, then $\mathbb{L}F$ exists:
$$\mathcal{M} \xrightarrow{F} \mathcal{N} \longrightarrow \operatorname{Ho}(\mathcal{N})$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\operatorname{Ho}(\mathcal{M}) \xrightarrow{F} \mathcal{N} \longrightarrow \operatorname{Ho}(\mathcal{N})$$

We will have that $\mathbb{L}F(X) \xrightarrow{\sim} F(X)$ whenever X is cofibrant. In general, $\mathbb{L}F(X) = F(Q(X))$.

Definition 4.4. Let $F: \mathcal{M} \to \mathcal{N}$. We say that F is a left Quillen functor if

- (i) F is a left adjoint
- (ii) F preserves cofibrations and trivial cofibrations.

In this case if G is a right adjoint, then we say the adjunction is a Quillen adjunction / Quillen pair.⁵

Exercise 4.5. Show that L is left Quillen if and only if G is right Quillen.

Lemma 4.6. (Ken Brown's Lemma) If $F: \mathcal{M} \to \mathcal{N}$ is any functor between model categories which sends trivial cofibrations between cofibrant objects to weak equivalences in \mathcal{N} , then F sends any weak equivalence between cofibrant objects to weak equivalences.

⁵There is a dual notion of right Quillen functor, meaning it is a right adjoint which preserves fibrations and trivial fibrations.

Proof. Let $f: A \xrightarrow{\sim} B$, where $A, B \in \mathcal{M}_c$. We need F(f) to be a weak equivalence. Consider the factorization of the coproduct of f and the identity on B:

$$A \coprod B \xrightarrow{f \coprod \operatorname{id}_B} B$$

Then consider the pushout:

We have that

$$B \stackrel{i_B}{\hookrightarrow} A \coprod B \stackrel{q}{\hookrightarrow} C$$
$$A \stackrel{i_A}{\hookrightarrow} A \coprod B \stackrel{q}{\hookrightarrow} C$$

are both trivial cofibrations, hence their images under F are weak equivalences. We see that

$$F(p) \circ F(q \circ id_B) = F(p \circ q \circ id_B) = F(id_B).$$

Therefore F(p) is a weak equivalence by 2-out-of-3.

Theorem 4.7. Suppose that $F: \mathcal{M} \to \mathcal{M}$ is left Quillen. Then $\mathbb{L}F: \mathrm{Ho}(\mathcal{M}) \to \mathrm{Ho}(\mathcal{N})$ exists and can be defined as

$$\operatorname{Ho}(\mathcal{M}) \xrightarrow{Q} \operatorname{Ho}(\mathcal{M}_c) \xrightarrow{F} \operatorname{Ho}(\mathcal{N}).$$

Moreover, we obtain an adjunction on the homotopy categories:

$$\mathbb{L}F: \operatorname{Ho}(\mathcal{M}) \rightleftarrows \operatorname{Ho}(\mathcal{N}): \mathbb{R}G.$$

Proof idea. We have a natural iso

$$\operatorname{Hom}_{\mathcal{M}}(X, G(Y)) \cong \operatorname{Hom}_{\mathcal{N}}(F(X), Y),$$

compatible with homotopy equivalence:

$$\operatorname{Hom}_{\mathcal{M}}(X, G(Y))/\simeq \cong \operatorname{Hom}_{\mathcal{N}}(F(X), Y)/\simeq$$

Theorem/Definition: Take a Quillen adjunction $F: \mathcal{M} \rightleftharpoons \mathcal{N} : G$. Suppose that $f: X \xrightarrow{\sim} G(Y)$, with $X \in \mathcal{M}_c$ and $Y \in \mathcal{N}_f$ is a weak equivalence if and only if $f^{\flat}: F(X) \to Y$ is. Then $\mathbb{L}F$ and $\mathbb{R}G$ are equivalences of categories, we call this a Quillen equivalence.

Example 4.8. We have that

$$|-|: \mathtt{sSet}_{\mathrm{Kan}}
ightleftharpoons \mathtt{Top}_{\mathrm{Ouillen}} : \mathrm{Sing}(-)$$

is a Quillen equivalence.

Example 4.9. We have that

$$id : \mathsf{Top}_{\mathsf{Quillen}} \rightleftarrows \mathsf{Top}_{\mathsf{Strøm}} : id$$

is a Quillen adjunction but not a Quillen equivalence.

Q: If \mathcal{M} and \mathcal{N} are model categories such that there is an equivalence of categories $Ho(\mathcal{M}) \cong Ho(\mathcal{N})$, is this always coming from a Quillen equivalence?

A: No! Dugger-Shipley, 2009.

This indicates that Quillen equivalence is a good notion but it is not a perfect notion.

Guided example: chain complexes

Let's take $Ch_{\mathbb{Z}}$ to be homologically graded unbounded chain complexes. There are three model structures of interest. We first start with the projective one:

 $(\mathtt{Ch}_{\mathbb{Z}})_{\mathrm{projective}}$:

- weak equivalences are quasi-isomorphisms
- fibrations are levelwise epimorphisms
- cofibrations are levelwise monomorphisms such that the cokernel of each $f_n: X_n \to Y_n$ is free.

If $M \in Ab$, we define $S^n(M)$ to be the chain complex M[n] which is concentrated in M at degree n. If $M = \mathbb{Z}$, we call it S^n . We define $D^n(M)$ to be a chain complex

$$\cdots \to 0 \to M \xrightarrow{\mathrm{id}} M \to 0 \to \cdots$$

with two M's concentrated in degrees n and n-1. We call $D^n(\mathbb{Z})=:D^n$.

Exercise 4.10. Show that fibrations are RLP $(0 \to D^n)$ for all n. That is,

$$\begin{array}{ccc}
0 & \longrightarrow X \\
\downarrow & & \downarrow \\
D^n & \longrightarrow Y.
\end{array}$$

We claim this lifts iff $X \to Y$ is a levelwise epimorphism. We have that $\operatorname{Hom}_{\operatorname{Ch}}(D^n,Y) \cong Y_n$, so we are just asking if every element in Y_n lifts to an element in X_n .

Exercise 4.11. Show that $\widetilde{\text{Fib}} = \text{RLP}(S^n \hookrightarrow D^{n+1})$ for all n. Consider $\text{Hom}_{\mathsf{Ch}}(S^n, Y)$. A map looks like

$$\cdots \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow Y_n \longrightarrow Y_{n-1} \longrightarrow \cdots$$

That is, it picks out a class in Y_n which maps to zero under the differential. The data of a square

$$\begin{array}{ccc}
S^{n-1} & \longrightarrow X \\
\downarrow & & \downarrow^p \\
D^n & \longrightarrow Y
\end{array}$$

is the data of $(y, x) \in Y_n \oplus Z_{n-1}X$ so that p(x) = dy. Show that a lift exists if and only if p is a trivial fibration.

Other model structures.

 $(Ch_R)_{\text{injective}}$:

- W = quasi-isomorphisms
- Cof = fiberwise monomorphisms⁶
- $\bullet \ {\rm Fib} = {\rm fiberwise} \ {\rm epimorphisms} \ {\rm with} \ {\rm fibrant} \ {\rm kernel}$

We get a Quillen equivalence

$$id: (Ch_R)_{projective} \rightleftharpoons (Ch_R)_{injective}: id.$$

We also have have a third one which is *not* Quillen equivalent.

 $(Ch_R)_{Hurewicz}$:

- W = homotopy equivalences of chain complexes
- \bullet Cof = split levelwise monomorphisms

⁶Here we roughly have that Cof = LLP($D^n \to 0$) and $\widetilde{\text{Fib}} = \text{LLP}(D^{n+1} \to S^n)$.
18

• Fib = split levelwise epimorphisms

We denote by $\mathscr{D}(R) = \text{Ho}\left((\mathsf{Ch}_R)_{\mathrm{proj}}\right)$ the derived category of a ring R.

We can also think about *connective* chain complexes (which are zero in negative degrees). We have an adjunction

$$\operatorname{Ch}_R \rightleftharpoons \operatorname{Ch}_R^{>0}$$
.

This induces a model structure on $\mathtt{Ch}_R^{>0}$ making it into a Quillen adjunction but not a Quillen equivalence. We denote by $\mathtt{Ho}(\mathtt{Ch}_R^{\geq 0}) = \mathscr{D}^{\geq 0}(R)$.

We get a model structure: $(Ch_R^{>0})_{proj}$

- W = quasi-isomorphisms
- Fib = positive epimorphisms (may not be epi in degree 0)
- Cof = monomorphisms with projective cokernel. The cofibrant objects here are levelwise projective R-modules.

If we take $M \in Mod_R$, we can view $S^0(M) \in Ch_R^{\geq 0}$, and take a cofibrant replacement of it $P \stackrel{\sim}{\to} S^0(M)$. This is exactly a projective resolution of M!

Example 4.12. Let $M \in Mod_R$. Then we can take

$$S^0(M) \otimes_R - : \operatorname{Ch}_R^{\geq 0} \to \operatorname{Ch}_R^{\geq 0}.$$

We can check that this is left Quillen. We can look at its total left derived functor $S^0(M) \otimes_R^{\mathbb{L}} -$. We can see that

$$M \otimes_R^{\mathbb{L}} N := S^0(M) \otimes_R^{\mathbb{L}} S^0(N) \simeq S^0(M) \otimes_R P_{\bullet},$$

where P_{\bullet} is a projective resolution of N. We have that

$$H_i(M \otimes_R^{\mathbb{L}} N) = \operatorname{Tor}_i^R(M, N).$$

Exercise 4.13. In the same way, if we want to derive hom, we can check that

$$\operatorname{Hom}_{\mathscr{D}^{\geq 0}(R)}(S^m(M), S^n(N)) \cong \operatorname{Ext}_R^{n-m}(M, N).$$

Via Dold-Kan, we have a Quillen adjunction

$$R[-]: \mathtt{sSet}_{\mathrm{Kan}} \rightleftarrows \mathtt{sMod}_R: U,$$

with the model structure on sMod_R given by weak homotopy equivalences as underlying simplicial sets, and fibrations as underlying Kan fibrations.

Then Dold-Kan takes the form of a Quillen equivalence

$$N: (\mathtt{sMod}_R)_{\mathrm{Kan}} \rightleftarrows (\mathtt{Ch}_R^{\geq 0})_{\mathrm{proj}} : \Gamma.$$

In general $N(X \otimes_R Y) \not\cong N(X) \otimes_R N(Y)$, however $N(X \otimes Y) \cong N(X) \otimes_R N(Y)$. They both describe $\mathscr{D}^{\geq 0}(R)$ in a monoidal way.

5. Lecture 5: Thursday, January 26th

For Dold-Kan $Ch_{>0} \cong sMod_R$, we have

$$M \otimes N \rightleftharpoons M \otimes R \otimes N \rightleftharpoons M \otimes R^{\otimes 2}N \cdots$$

we denote this by $B_{\bullet}(M, R, N)$ and call it the bar construction.

Homotopy colimits

Motivation: Limits and colimits are not invariant under (weak) homotopy equivalence.

$$\begin{array}{cccc} X & \longleftarrow & CX & & X & \longrightarrow * \\ \downarrow & & \downarrow & & \downarrow & \downarrow \\ CX & \longrightarrow & \Sigma X & & * & \longrightarrow * \end{array}$$

However $\Sigma X \not\simeq *$.

Let \mathcal{M} be a model category, and \mathscr{C} a small category. Then we denote by $\operatorname{Fun}(\mathscr{C}, \mathcal{M}) = \mathcal{M}^{\mathscr{C}}$. Let $\mathscr{C}_0 \subseteq \mathscr{C}$ be the discrete subcategory spanned by $\operatorname{ob}(\mathscr{C})$. Let $\mathcal{M}^{\mathscr{C}_0} = \prod_{\mathscr{C}_0} \mathcal{M}$. This has a model structure where W, Fib, and Cof are determined objectwise.

Consider $\iota: \mathscr{C}_0 \hookrightarrow \mathscr{C}$. This induces a map

$$\iota^*: \mathcal{M}^{\mathscr{C}} \to \mathcal{M}^{\mathscr{C}_0}$$

$$F \mapsto F|_{\mathscr{C}_0}.$$

This admits adjoints:

$$\iota_{!}\dashv i^{*}\dashv i_{*}.$$

We have that ι^* creates W and Fib.

We have $(\mathcal{M}^{\mathscr{C}})_{\text{proj}}$:

 \bullet W = objectwise weak equivalence

- Fib = objectwise fib
- Cof = ? induced by $\iota_!$ Cof

We have that \mathcal{M} is cocomplete, so we get a tensoring

$$\mathcal{M} \times \mathtt{Set}^{\mathscr{C}} \to \mathcal{M}^{\mathscr{C}}$$

 $(X, F) \mapsto X \otimes F = \coprod_{F(-)} X.$

We have $(X \times F)(c) = \coprod_{F(c)} X$.

There are representable functors

$$\mathscr{C}(c,-):\mathscr{C} \to \mathtt{Set}$$

$$d \mapsto \mathscr{C}(c,d).$$

By Yoneda, there is a natural iso

$$\operatorname{Set}^{\mathscr{C}}(\mathscr{C}(c,-),F)\cong F(c).$$

Tensoring with a representable functor gives

$$X \otimes \mathscr{C}(c,-) = \coprod_{\mathscr{C}(c,-)} X.$$

This is the free diagram of X generated at c.

This gives an adjunction

$$-\otimes \mathscr{C}(c,-): \mathcal{M} \rightleftarrows \mathcal{M}^{\mathscr{C}}: ev_c.$$

In this case

$$\iota_!(F) = \coprod_c \coprod_{\mathscr{C}(c,-)} F(c),$$

which is the free diagram in \mathcal{M} generated by F. Evaluating at d gives

$$\iota_!(F)(d) = \coprod_{c \in \mathscr{C}} \coprod_{\mathscr{C}(c,d)} F(c).$$

This is the functor $\iota_!: \mathcal{M}^{\mathscr{C}_0} \to \mathcal{M}^{\mathscr{C}}$. We see that $\iota_! X$ is a left Kan extension

There is a diagonal functor

$$\mathcal{M} \xrightarrow{\Delta} \mathcal{M}^{\mathscr{C}}$$

 $C \mapsto \text{constant functor at } X.$

This admits adjoints

$$\begin{array}{c} \operatorname{colim} \dashv \Delta \dashv \lim. \\ 21 \end{array}$$

Proposition 5.1. The adjunction

$$\operatorname{colim}: \left(\mathcal{M}^{\mathscr{C}}\right)_{\operatorname{proj}} \rightleftarrows \mathcal{M}: \Delta$$

is Quillen.

We denote hocolim := \mathbb{L} colim. There is a map hocolim(-) \rightarrow colim(-), and

 $hocolim(F) \simeq colim(QF).$

Here QF denotes a cofibrant replacement in $(\mathcal{M}^{\mathscr{C}})_{\text{proj}}$. For a general \mathscr{C} , QF is very difficult to determine.

Consider $\mathscr{C} = a \leftarrow b \rightarrow c$, and let $X \in \mathcal{M}^{\mathscr{C}_0}$. Then $\iota_! X$ is equal to

$$X(b) \longrightarrow X(b) \coprod X(c)$$

$$\downarrow$$

$$X(a) \coprod X(b)$$

Cofibrant objects in $\mathcal{M}^{\mathscr{C}}$ are of the form

$$\begin{array}{c} X & \longleftarrow Z \\ \downarrow \\ Y \end{array}$$

with X cofibrant. Here cofibrant replacement is easy. We start with $Y \stackrel{f}{\leftarrow} X \stackrel{g}{\rightarrow} Z$, and we replace X with $\widetilde{X} \stackrel{\sim}{\rightarrow} X$ to get

$$\widetilde{X} \longrightarrow Y \\
\downarrow \\
Z$$

If we cofibrantly replace $\widetilde{X} \to Z$, and similarly for Y, we get

$$\widetilde{X} \longrightarrow \widetilde{Z}$$

$$\downarrow$$

$$\widetilde{Y}$$

The maps we used to fibrantly replace induces a fiberwise weak equivalence between this diagram and the one we started out with. In $(Top)_{Quillen}$, we can take $hocolim(* \leftarrow X \rightarrow *)$. We cofibrantly replace X if necessary, and replace $X \rightarrow *$ by $X \hookrightarrow CX$, which is a cofibration. In this case we see that

$$\operatorname{hocolim}(* \leftarrow X \to *) \simeq \operatorname{colim}(C\widetilde{X} \leftarrow \widetilde{X} \to C\widetilde{X}) = \Sigma \widetilde{X}.$$

More generally, $\operatorname{hocolim}(Y \xleftarrow{f} X \xrightarrow{g} Z)$ is the double mapping cylinder M(f,g).

Theorem 5.2. If \mathcal{M} is a left proper model category then

$$hocolim(Y \leftarrow X \rightarrow Z) \cong colim(Y \leftarrow X \rightarrow Z).$$

Proof. In the easy case, X is cofibrant, so we can factor the map to Z to get

The entire rectangle is a pushout, so $Z \to P$ is a cofibration, and the right square is a pushout by the pasting law, so $H \to P$ is a weak equivalence.

Example 5.3. Let $\mathscr{C} = * \to * \to \cdots$. Show that $X_0 \to X_1 \to \cdots$ is cofibrant in $\mathcal{M}^{\mathscr{C}}$ if and only if X_0 is cofibrant and $X_i \hookrightarrow X_{i+1}$ is a cofibration for each i.

There is a third model structure on $\mathcal{M}^{\mathscr{C}}$ called the *Reedy model structure* (need \mathscr{C} to be a Reedy cat). In this case, $\operatorname{hocolim}_{\Delta^{\operatorname{op}}}(X_{\bullet}) \cong |Q^{\operatorname{Reedy}}X_{\bullet}|$, for X a simplicial object in \mathcal{M} .

Bar construction: Let \mathcal{M} a model cat, \mathscr{C} a small cat, $F:\mathscr{C}^{op}\to\mathcal{M}$, and $G:\mathscr{C}\to\mathcal{M}$. Then we define

$$B_{\bullet}\left(F,\mathscr{C},G\right):=\coprod_{c_{0}\in\mathscr{C}}F(c_{0})\times G(c_{0}) \leftrightarrows \coprod_{c_{0}\leftarrow c_{1}}F(c_{0})\times G(c_{1}) \leftrightarrows \cdots$$

Example 5.4. If F = * = G, then

$$B_{\bullet}(*,\mathscr{C},*) \cong N_{\bullet}(\mathscr{C}^{\mathrm{op}}).$$

Pièce de résistance:

Theorem 5.5. (Bousfield-Kan) If $F: \mathcal{C} \to \mathcal{M}$ is a functor, then

$$\operatorname{hocolim}_{\mathscr{C}}(F) \simeq |B_{\bullet}(*, \mathscr{C}, F)|.$$

6. Lecture 6: Tuesday, January 31st

Combinatorial model categories

Definition 6.1. A model category is *combinatorial* if it is *presentable*⁷ and *cofibrantly generated*.

To motivate presentability, let X be a set. Then X is determined by its elements, meaning that

$$\operatorname{Hom}_{\operatorname{Set}}(*,X) \cong X.$$

Then we can present X as $X = \bigcup_{x \in X} \{*\}.$

Definition 6.2. A colimit is *filtered* if the diagram is filtered, meaning it is nonempty and every subdiagram has a cocone.

Theorem 6.3. (Exercise) In Set, filtered colimits commute with finite limits. That is, if $F: I \times J \to \text{Set}$ with I finite and J filtered, then

$$\operatorname{colim}_{J}\left(\lim_{I} F_{I}\right) \xrightarrow{\sim} \lim_{I} \left(\operatorname{colim}_{J} F_{J}\right)$$

is an isomorphism.

Proposition 6.4. A set X is finite if and only if

$$\operatorname{Hom}_{\operatorname{Set}}(X,-):\operatorname{Set}\to\operatorname{Set}$$

preserves filtered colimits.

Proof. For the backwards direction, let $I = \{X_i\}$ be the collection of finite subsets of X. Then $X = \operatorname{colim}_I X_i$. In particular, we have that

$$\operatorname{colim}_{I}\operatorname{Hom}(X, X_{i}) \cong \operatorname{Hom}(X, X)$$

$$(X \xrightarrow{f_i} X_i) \xrightarrow{\sim} \mathrm{id}_X?$$

For the forwards direction, $\operatorname{Hom}_{\operatorname{Set}}(*,-) \cong \operatorname{id}_{\operatorname{Set}}$ so it preserves colimits. Since X is finite, we have that $X = \{x_1, \ldots, x_n\}$, hence

$$\operatorname{Hom}(X,-) \cong \operatorname{Hom}(\cup_{i} \{x_{i}\},-) \cong \lim_{i} \operatorname{Hom}(\{x_{i}\},-).$$

Then we use finite limits commuting with filtered colimits.

Definition 6.5. An object $X \in \mathscr{C}$ is *compact* if $\operatorname{Hom}_{\mathscr{C}}(X,-) : \mathscr{C} \to \operatorname{Set}$ preserves filtered colimits.

⁷By this we mean "locally presentable."

Hence if $F: I \to \mathcal{C}$, with I filtered, then a map $X \to \text{colim}_I F$ factors through an F(i).

Examples 6.6. Compact objects:

- Set, compact = finite set
- $Vect_F$, compact = finite dimensional
- Mod_R , compact = finitely presented
- Grp, compact = finitely presented
- Top, compact = finite sets with discrete topology
- Ch, compact = perfect chain complexes (bounded, levelwise finitely generated and projective)
- sSet, compact = finite simplicial sets $(X_n \text{ finite for each } n, \text{ and there exists an } m \text{ so that all non-degenerate simplices have dimension } < m).$

A topological space is (topologically) compact if and only if $X \in \mathcal{O}(X)$ is (categorically) compact.

Lemma 6.7. Finite colimits of compact objects are compact.

Definition 6.8. A category \mathscr{C} is presentable if

- (1) \mathscr{C} is cocomplete
- (2) There exists a set S of compact objects in $\mathscr C$ such that every object in $\mathscr C$ is a filtered colimit of objects in S.

We also say the "ind-completion" of S is \mathscr{C} , denoted $\operatorname{Ind}(S) = \mathscr{C}$.

Theorem 6.9. \mathscr{C} is presentable if and only if there is an adjunction of the form

$$\operatorname{Fun}(K^{\operatorname{op}},\operatorname{Set})\rightleftarrows\mathscr{C},$$

where K is some small category, and the right adjoint is fully faithful and preserves filtered colimits.

We might take K for example to to be isomorphism classes of compact objects in \mathscr{C} , then we have

$$\begin{split} \mathscr{C} &\to \operatorname{Fun}(K^{\operatorname{op}},\operatorname{Set}) \\ X &\mapsto \left(K^{\operatorname{op}} \to \mathscr{C} \operatorname{op} \xrightarrow{\operatorname{Hom}(-,X)} \operatorname{Set} \right). \end{split}$$

Theorem 6.10. Suppose $\mathscr C$ and $\mathscr D$ presentable. Then $L:\mathscr C\to\mathscr D$ preserves colimits if and only if L is a left adjoint.

Cofibrantly generated model categories

Definition 6.11. Let I be a set of maps in a cocomplete category, fix λ to be an ordinal, and let $X : \lambda \to \mathscr{C}$ a functor, and suppose that $X(\alpha) \to X(\alpha+1)$ fits into

$$A_{\alpha} \longrightarrow X(\alpha)$$

$$\downarrow \qquad \qquad \downarrow$$

$$B_{\alpha} \longrightarrow X(\alpha+1),$$

where $A_{\alpha} \to B_{\alpha}$ is in I. Then we say that $X(0) \to \operatorname{colim}_{\lambda} X$ is a relative I-cell complex. We say an object $Y \in \mathscr{C}$ is an I-cell complex if $\varnothing \to Y$ is a relative I-cell complex.

If $I = \{S^n \hookrightarrow D^{n+1}\}_{n \geq 0}$, then we are recovering the idea of CW complexes in spaces. We denote by $\operatorname{Cell}_I(\mathscr{C})$ the class of relative *I*-cell complexes.

Exercise 6.12. We have that $\operatorname{Cell}_I(\mathscr{C})$ is the smallest class in \mathscr{C} closed under composition, pushouts, and filtered colimits.

Theorem 6.13. (Small object argument) Let \mathscr{C} be cocomplete, let I a set of maps in \mathscr{C} , and suppose that for all $A \to B$ in I, we have that A is compact with respect to the full subcategory of I-cells in \mathscr{C} . Then there exists a functorial factorization of maps in \mathscr{C} :

with $\gamma \in \operatorname{Cell}_{I}(\mathscr{C})$ and $\delta \in \operatorname{RLP}(I)$.

Proof idea. Start with X(0) = X, and take a map $X(0) \to Y$. Suppose $X(\beta) = \operatorname{colim}_{\alpha < \beta} X(\alpha)$ is constructed with $X(\beta) \to Y$. Look at the set⁸

$$S = \left\{ \begin{array}{l} A \longrightarrow X(\beta) \\ g \downarrow \qquad \qquad \downarrow \\ B \longrightarrow Y \end{array} \right\}.$$

⁸Note this set is nonempty because we can take g to be id: $X(\beta) \to X(\beta)$.

Denote by g_s the map $A \to B$ appearing in $s \in S$. Then we build

By UP of the pushout, there is an induced map $X(\beta+1) \to Y$. Then we claim that

$$X(0) \to \operatorname{colim}_{\beta} X(\beta) =: C$$

is in $\operatorname{Cell}_I(\mathscr{C})$. The only thing left to show is that $C \to Y$ is in $\operatorname{RLP}(I)$. Take

$$\begin{array}{ccc}
A & \longrightarrow & C = \operatorname{colim}_{\beta} X(\beta) \\
\downarrow & & \downarrow \\
B & \longrightarrow & Y.
\end{array}$$

Since A is compact with respect to I-cells, the map $A \to C$ factors through some $X(\beta)$. Since $B \to Y$ factors through $X(\beta+1)$, we see that it lifts to $B \to C$.

Definition 6.14. A model category \mathcal{M} is *cofibrantly generated* if there exist sets of maps I, J in \mathcal{M} so that

- Cof = retracts of *I*-cell complexes, denoted $\widehat{\text{Cell}_I(\mathscr{C})}^9$
- $\operatorname{Cof} = \widehat{\operatorname{Cell}_J(\mathscr{C})}$

and "I and J permit the small object argument."

Example 6.15. For Top_{Quillen}, we can take

$$I = \left\{ S^n \hookrightarrow D^{n+1} \right\}$$
$$J = \left\{ D^n \to D^n \times [0, 1] \right\}.$$

Example 6.16. For $sSet_{Kan}$, we can take

$$I = \{ \partial \Delta^n \to \Delta^n \}$$
$$J = \{ \Lambda_n^k \to \Delta^n \}.$$

Example 6.17. For $(Ch_R)_{proj}$,

$$I = \left\{ S^n \to D^{n+1} \right\}$$
$$J = \left\{ 0 \to D^n \right\}.$$

⁹The hat $\hat{-}$ means "retracts of -"

Example 6.18. The Strøm model structure is not cofibrantly generated in the definition above.

Theorem 6.19. (Kan — Right transfer) Let \mathcal{M} be a cofibrantly generated model category and \mathscr{C} is any category where there is an adjunction

$$F: \mathcal{M} \rightleftarrows \mathscr{C}: G$$
.

Then \mathscr{C} has a model structure where W and Fib are created by G. The model structure is cofibrantly generated by F(I) and F(J) if:

- (1) F(I) and F(J) permit the small object argument
- (2) $G(\operatorname{Cell}_{F(J)})$ are weak equivalences in \mathcal{M} .

For combinatorial model categories, we get an inductive argument for building cofibrant replacements.

[Rezk-Schwede-Shipley] Combinatorial model categories are always simplicially enriched.

[Dugger] Any combinatorial model category \mathcal{M} is Quillen equivalent to a localization of a projective Kan one:

$$L_{\tau}\operatorname{Fun}(K^{\operatorname{op}},\operatorname{sSet}) \rightleftarrows \mathcal{M}.$$

7. Lecture 7: Thursday, February 2nd

missed

8. Lecture 8: Tuesday, February 7th

Last time: We had \mathcal{M} a model category, and \otimes a monoidal structure. We used this to give a monoidal structure on $Ho(\mathcal{M})$, given by $\otimes^{\mathbb{L}}$, the *left derived tensor product*. We used this to give a homotopy theory on $Alg(\mathcal{M})$, and $Mod_R(\mathcal{M})$, etc.

Q: What are algebras in the homotopy category of a model structure \mathcal{M} ? An example of interest is $\mathcal{M} = \text{Top}$.

What are commutative algebras in Top?

Theorem 8.1. (Moore) If $X \in CAlg(Top)$, then there is a weak equivalence

$$\prod_{i=1}^{\infty} K(\pi_i(X), i) \to X.$$

Proof. Let $G_n = \pi_n(X)$. Then we take

$$0 \to F \to \mathbb{Z}[G_n] \to G_n \to 0.$$

Then we get that $\widetilde{H}_n(\vee_{g\in G_n}S^n)\cong \bigoplus_{g\in G_n}\widetilde{H}_n(S^n)=\mathbb{Z}[G_n]$. Using the Hurewicz theorem, there is an isomorphism

$$\pi_n(\vee S^n) \xrightarrow{\sim} \widetilde{H}_n(\vee S^n),$$

so we can pick $f_j \in \pi_n(S^n)$ for each e_j in a basis of F. This gives us a pushout

$$\bigvee_{j \in J} S^n \longrightarrow \bigvee_{g \in G_n} S^n$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow M(G_n, n)$$

This gives a map $\vee_{n\geq 1} M(G_n,n) \to X$. By universal property, we get an algebra homomorphism¹⁰¹¹

$$SP(\vee_{n\geq 1}M(G_n,n))\to X$$

The Dold–Thom theorem states that $\pi_* \mathrm{SP}(Y) \cong \widetilde{H}_*(Y)$, given some connectedness hypothesis (path-connected?). We get that

$$SP(\vee_{n\geq 1}M(G_n,n))\cong \prod_n SP(M(G_n,n))=\prod_n K(G_n,n).$$

Definition 8.2. We say that $X \in Alg(Ho(Top))$ if and only if X is a CW complex, with multiplication and unit

$$X \times X \to X$$
$$* \to X$$

which are associative and unital up to homotopy.

These are also called H-spaces. The most prototypical example is a loop space.

Example 8.3. If X is a based space, we can build ΩX as the homotopy pullback of the two maps from a point. Concatenation gives a map $\Omega X \times \Omega X \to \Omega X$.

¹⁰Here SP(-) denotes the infinite symmetric product, i.e. the free commutative algebra in Top. ¹¹The infinite symmetric product is left adjoint to the forgetful functor, i.e. SP: Top \rightleftharpoons CAlg(Top): U.

Example 8.4. Eilenberg-MacLane spaces K(G, n) are uniquely determined up to homotopy. We have that

$$\pi_k(\Omega K(G,n)) \cong \pi_{k+1}(K(G,n))$$

therefore $\Omega K(G, n) = K(G, n - 1)$.

Q: Given X an H-space, such that $\pi_0 X$ is a group, is X a loop space?

A: No, there are many grouplike H-spaces that are not equivalent to ΩX . For example $S^7 \subseteq \mathbb{O}$ the unit octonians.

Loop spaces have an extra condition. Given $w, x, y, z \in \Omega X$, there is an association $(xy)z \simeq x(yz)$. There is a pentagon witnessing the different ways to associate four elements.

We can keep going with 5 loops, 6 loops... and we get the Stasheff associahedra K(n), which tell us how to concatenate n loops. These give maps

$$K(n) \times (\Omega X)^n \to \Omega X$$
,

witnessing the higher associativities of concatenation. We call this an A_{∞} -algebra structure.

Theorem 8.5. (Stasheff) Given X connected, we have that $X \simeq \Omega Y$ for some Y if and only if X is an A_{∞} -algebra in spaces that is grouplike.

 $\mathbf{Rigidification} \text{: We have that } \mathrm{Ho}(\mathtt{Alg}(\mathtt{sSet}, \times)) \simeq \mathtt{Alg}_{A_\infty}(\mathrm{Ho}(\mathtt{Top})).$

Operads

Let $\mathscr{C} = (\mathscr{C}, \otimes, I, [-, -])$ be a closed monoidal category.

Definition 8.6. An operad in \mathscr{C} is a collection of objects $\{\mathcal{O}(j)\}_{j\geq 0}$ in \mathscr{C} such that

- (1) there is a right action of Σ_i on $\mathcal{O}(j)$
- (2) $\mathcal{O}(0) = I$
- (3) $I \to \mathcal{O}(1)$ exists in \mathscr{C}
- (4) composition

$$\mathcal{O}(k) \otimes \mathcal{O}(j_1) \otimes \cdots \otimes \mathcal{O}(j_k) \xrightarrow{\gamma} \mathcal{O}(j_1 + \ldots + j_k)$$

for all $k \geq 0$ and $j_1, \ldots, j_k \geq 0$ such that they are equivariant, unital, and associative.

We think about $\mathcal{O}(j)$ as an abstract way to compose j-ary operations.

Example 8.7. We let Assoc be the operad defined by

$$\operatorname{Assoc}(j) = \coprod_{\sigma \in \Sigma_j} I.$$

We can define Comm(j) = I.

Example 8.8. If $X \in \mathcal{C}$, the endomorphism operad is given by

$$\operatorname{End}_X(j) = [X^{\otimes j}, X].$$

Definition 8.9. A morphism of operads $\mathcal{O} \to \mathcal{O}'$ is a sequence of maps $\psi_j : \mathcal{O}(j) \to \mathcal{O}'(j)$ for $g \geq 0$ that are equivariant, associative, and unital.

Definition 8.10. Given \mathcal{O} an operad in \mathscr{C} , an \mathcal{O} -algebra (X, θ) in \mathscr{C} is $X \in \mathscr{C}$ together with a morphism of operads $\theta : \mathcal{O} \to \operatorname{End}_X$, sending $\mathcal{O}(j) \to \operatorname{End}_X(j)$. By adjointness, we think about this as $\mathcal{O}(j) \otimes X^{\otimes j} \to X$ which are associative and unital.

This gives us a category of $\mathcal{O}\text{-algebras},$ denoted $\mathtt{Alg}_{\mathcal{O}}(\mathscr{C}).$

Example 8.11. We have that

$$\begin{split} \mathtt{Alg}_{\mathrm{Assoc}}(\mathscr{C}) &\cong \mathtt{Alg}(\mathscr{C}) \\ \mathtt{Alg}_{\mathrm{Comm}}(\mathscr{C}) &\cong \mathtt{CAlg}(\mathscr{C}). \end{split}$$

We have that \mathcal{M} is a monoidal model category if θ is nice enough, i.e. we get an adjunction

$$\mathcal{M}
ightleftharpoons \mathtt{Alg}_{\mathcal{O}}(\mathcal{M}).$$

Definition 8.12. A monad in $\mathscr C$ is an algebra in $(\operatorname{Fun}(\mathscr C,\mathscr C),\circ,\operatorname{id}_\mathscr C)$. That is, $M\in\operatorname{Alg}(\operatorname{Fun}(\mathscr C,\mathscr C))$ if we have $M:\mathscr C\to\mathscr C$ together with $\mu:M\circ M\Rightarrow M$, and $\eta:\operatorname{id}_\mathscr C\Rightarrow\mathscr C$ that are associative and unital.

Example 8.13. Every adjunction $L: \mathscr{C} \rightleftharpoons \mathscr{D}: R$ defines a monad RL.

Definition 8.14. An algebra (X, θ) over a monad (M, μ, η) in \mathscr{C} is $X \in \mathscr{C}$ together with maps $\theta : M(X) \to X$ such that they are associative and unital, meaning that the diagrams commute:

Definition 8.15. If M is a monad, a morphism of M-algebras $(X, \theta) \to (X', \theta')$ is a map $f: X \to X'$ in \mathscr{C} so that the diagram commutes

$$\begin{array}{ccc}
MX & \xrightarrow{\theta} & X \\
Mf \downarrow & & \downarrow f \\
MX' & \xrightarrow{\theta'} & X'.
\end{array}$$

Example 8.16. Consider R a commutative ring, and the adjunction

$$-\otimes_{\mathbb{Z}} R$$
: Ab $ightleftharpoons$ $\operatorname{Mod}_R:U$.

This forms a monad $M := - \otimes_{\mathbb{Z}} R : Ab \to Ab$. Then $Alg_M(Ab)$ is equivalent to Mod_R .

This is not always true! When this happens we say the adjunction is monadic.

Given a monadic adjunction

$$\mathscr{C} \rightleftarrows \mathscr{D} = \mathtt{Alg}_{RL}(\mathscr{C}),$$

we get a ton of things for free:

- \bullet R will preserve colimits if RL does
- get things like free monadic resolutions, bar constructions, etc.
 - 9. Lecture 9: Thursday, February 9th

[missed]

10. Lecture 10: Thursday, February 16th

Definition 10.1. A simplicial set \mathscr{C} is an ∞ -category (or quasi-category) if it has inner horn filling — for all 0 < k < n, we have

We shall see that ∞ -categories are fibrant objects in \mathtt{sSet} with the Joyal model structure.

Example 10.2.

- (1) If \mathscr{C} is a Kan complex, then it is an ∞ -category
- (2) If \mathscr{C} is a category, then $N\mathscr{C}$ is an ∞ -category.

Definition 10.3. Given an ∞ -category \mathscr{C} , the *objects* of \mathscr{C} are the vertices, ¹² the *morphisms* are 1-simplices. We have *source* and *target* maps $d^1, d^0 : \mathscr{C}_1 \to \mathscr{C}_0$. ¹³ We define the *set of morphisms* from X to Y as the pullback

$$hom_{\mathscr{C}}(X,Y) \longrightarrow \mathscr{C}_{1}$$

$$\downarrow \qquad \qquad \downarrow^{(s,t)}$$

$$\mathscr{C}_{1} \xrightarrow{(X,Y)} \mathscr{C}_{0} \times \mathscr{C}_{0}.$$

We have that $\hom_{\mathscr{C}}(X,Y)$ is the set of vertices of a simplicial set $\hom_{\mathscr{C}}(X,Y)$, which forms a Kan complex.

Definition 10.4. Given $X \in \mathscr{C}$ we define $\mathrm{id}_X \in \mathscr{C}_1$ by $s^0(X)$.

How do we compose? Composition won't be unique, but it will be unique up to homotopy.

Given $f: X \to Y$ and $g: Y \to Z$ in \mathscr{C} , this determines a map of simplicial sets $\Lambda^2_1 \to \mathscr{C}$. By inner horn lifting, we have

We refer to the filling as a *composition*:

$$X \xrightarrow{f} X \xrightarrow{g} Z.$$

Exercise 10.5. Given an ∞ -category \mathscr{C} , how can we define \mathscr{C}^{op} ? Would want that $N(\mathscr{C}^{op}) \cong (N\mathscr{C})^{op}$. ¹⁴

Detour: Let $A \in \mathsf{Cat}$, and let \mathscr{C} be a cocomplete category. Recall that $\mathsf{Fun}(A^{\mathsf{op}}, \mathsf{Set})$ is the free cocompletion. Given a functor $A \to \mathscr{C}$, by universal property there is a

 $^{^{12}}X \in \mathscr{C}$ means $X \in \mathscr{C}_0$

¹³We write $f: X \to Y$ in $\mathscr C$ to mean $f \in \mathscr C_1$ with s(f) = X and t(f) = Y.

¹⁴Every Kan complex has that $\mathscr{C}^{op} \cong \mathscr{C}$.

map

This gives us an adjunction

$$|-|_Q:\operatorname{Fun}(A^{\operatorname{op}},\operatorname{Set})\rightleftarrows\mathscr{C}:\operatorname{Sing}_Q(-).$$

Here $\operatorname{Sing}_Q(-) = \operatorname{Hom}_{\mathscr{C}}(Q(-), X)$.

Example 10.6. If $\mathscr{C} = \text{Top}$, then we can take $\Delta_{\text{Top}} : \Delta \to \text{Top}$, sending [n] to Δ_{Top}^n . In this case, we recover the usual |-| and Sing(-) adjunction.

Example 10.7. If $\mathscr{C} = \mathsf{Cat}$, there is a functor $\Delta \to \mathsf{Cat}$ sending [n] to the associated poset category. We get an associated adjunction:

$$\tau: \mathtt{sSet} \rightleftarrows \mathtt{Cat}: N,$$

since $N = \operatorname{Hom}_{\mathtt{Cat}}([-], \mathscr{C}).$

Exercise 10.8. Describe $\tau : \mathtt{sSet} \to \mathtt{Cat}$ explicitly.

We call τ the fundamental category functor, essentially it will produce the homotopy category of an ∞ -category.

Definition 10.9. Given an ∞ -category \mathscr{C} , two morphisms $f: X \to Y$ and $g: Y \to Z$ are *homotopic*, written $f \simeq g$, if there exists a 2-simplex $\sigma: \Delta^2 \to \mathscr{C}$ with boundary (g, f, id_X) :

Example 10.10. If $\mathscr C$ is an ordinary category, then in $N\mathscr C$, we have that $f\simeq g$ if and only if f=g.

Proposition 10.11. Given \mathscr{C} an ∞ -category, and $X, Y \in \mathscr{C}$, the homotopy relation provides an equivalence relation on $\hom_{\mathscr{C}}(X,Y)$.

Definition 10.12. We denote by [f] the homotopy class of f.

Sketch. We first need to show reflexivity, so we want to find a 2-cell witnessing

We check that this is $s_0(f)$, where $f \in \mathscr{C}_1$, and $s_0 : \mathscr{C}_1 \to \mathscr{C}_2$.

For symmetry, suppose we have $f \simeq g$. We want to show $g \simeq f$. We can fill a Λ_2^3 witnessing this.

Transitivity is left as an exercise.

Definition 10.13. Given \mathscr{C} an ∞ -category, define the 1-category $\operatorname{Ho}(\mathscr{C})$ to be the homotopy category, given by

$$obHo(\mathscr{C}) = \mathscr{C}_0$$

$$Hom_{Ho(\mathscr{C})}(X, Y) = hom_{\mathscr{C}}(X, Y) / \simeq .$$

In order to show this, we need to argue that composition is well-defined up to homotopy.

Suppose we have two compositions

We want to argue that $h_1 \simeq h_2$. This can be done by filling the horn of a 3-simplex.

Proposition 10.14. When we restrict the adjunction $\tau \dashv N$ to ∞ -categories, we get an adjunction

$$\operatorname{Ho}(-): \operatorname{Cat}_{\infty} \rightleftarrows \operatorname{Cat}: N.$$

The way to compose arrows is contractible.

Theorem 10.15. The inclusion $\Lambda_1^2 \hookrightarrow \Delta^2$ induces a map

$$\operatorname{Hom}_*(\Delta^2,\mathscr{C}) \to \operatorname{Hom}_*(\Lambda_1^2,\mathscr{C})$$

which is a trivial Kan fibration for any $\mathscr{C} \in \mathsf{Cat}_{\infty}$.

Here Hom_* is the internal hom, where $\operatorname{Hom}_*(X,Y) := \operatorname{Hom}_{\mathtt{sSet}}(\Delta^* \times X,Y)$.

Proof. Exercise
$$\Box$$
 35

As a consequence, we can take a pullback diagram:

$$\begin{array}{ccc} P & \longrightarrow & \operatorname{Hom}_*(\Delta^2, \mathscr{C}) \\ \downarrow & & \downarrow \\ \Delta^0 & \longrightarrow & \operatorname{Hom}_*(\Lambda^2_1, \mathscr{C}). \end{array}$$

Then the pullback $P \to \Delta^0$ should be a trivial fibration, meaning that P is a contractible Kan complex.

Definition 10.16. Given \mathscr{C} an ∞ -category and $X,Y \in \mathscr{C}$, recall that a map $f: X \to Y$ corresponds to $\Delta^1 \to \mathscr{C}$ whose faces are X and Y. An n-morphism from X to Y is simply a map $\Delta^n \to \mathscr{C}$ such that $\Delta^{\{0,\dots,n-1\}} = X$ and $\Delta^{\{n\}} = Y$.

For $n \geq 2$, all n-morphisms are invertible in some sense.

Definition 10.17. Two objects X and Y in \mathscr{C} are *equivalent*, written $X \simeq Y$, if there exists a 1-morphism $f: X \to Y$ in \mathscr{C} such that [f] in $\operatorname{Ho}(\mathscr{C})$ is an *isomorphism*.

Definition 10.18. An ∞ -groupoid is an ∞ -category for which $\text{Ho}(\mathscr{C})$ is a groupoid, meaning all the 1-morphisms are equivalences.

Theorem 10.19. (Homotopy hypothesis) We get that \mathscr{C} is an ∞ -groupoid if and only if \mathscr{C} is a Kan complex.

11. Lecture 11: Tuesday, February 21st

[missed]

12. Lecture 12: Thursday, February 23rd

Adjoint functors and colimits

Last time: Recall that a 1-morphism in Fun $(\mathscr{C}, \mathscr{D})^{15}$ is precisely a natural transformation $\eta: F \to G$, where $F, G: \mathscr{C} \to \mathscr{D}$. In other words, it is $\eta: \Delta^1 \times \mathscr{C} \to \mathscr{D}$.

We have $hQCat = Ho(Cat_{\infty})$, where objects are infinity categories, and the morphisms are

$$\operatorname{Hom}_{\mathtt{hQCat}}(\mathscr{C},\mathscr{D}) = \Pi_0\left(\operatorname{Fun}(\mathscr{C},\mathscr{D})^{\simeq}\right).$$

That is, it is the set of equivalence classes of functors $\mathscr{C} \to \mathscr{D}$.

¹⁵The simplicial set Fun($\Delta^{\bullet} \times \mathscr{C}, \mathscr{D}$)

If \mathscr{C} is an ∞ -category, and $X, Y \in \mathscr{C}$, we defined $\operatorname{Hom}_{\mathscr{C}}(X, Y)_{\bullet}$ to be the simplicial set given by the pullback

$$\operatorname{Hom}_{\mathscr{C}}(X,Y)_{\bullet} \xrightarrow{\hspace{1cm}} \operatorname{Fun}(\Delta^{1},\mathscr{C})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Delta^{0} \xrightarrow{\hspace{1cm}} \operatorname{Fun}(\{0\},\mathscr{C})_{\bullet} \times \operatorname{Fun}(\{1\},\mathscr{C}).$$

Proposition 12.1. We have that $\operatorname{Hom}_{\mathscr{C}}(X,Y) \in \operatorname{Kan}$.

Sketch. This follows from a more general fact that for $A \hookrightarrow B$ a subsimplicial set with $A_0 = B_0$, and \mathscr{C} an ∞ -category, then P is always a Kan complex

$$P \xrightarrow{\longrightarrow} \operatorname{Fun}(B, \mathscr{C})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta^0 \xrightarrow{f} \operatorname{Fun}(A, \mathscr{C}).$$

Need to show that every u in $\operatorname{Fun}(B,\mathscr{C})_1$ in the pullback is a weak equivalence. We have an evaluation map for every $b \in B_0 = A_0$, given by $\operatorname{ev}_b : \operatorname{Fun}(B,\mathscr{C}) \to \operatorname{Fun}(\{b\},\mathscr{C})$, mapping u to $u_{f(b)}$. We claim that $u_{f(b)} = \operatorname{id}_{f(b)}$, since the diagram commutes

Adjoint functors

Definition 12.2. Let $F: \mathscr{C} \to \mathscr{D}$, and $G: \mathscr{D} \to \mathscr{C}$ be functors of ∞ -categories. We say that $F \dashv G$ if there exist natural transformations $\eta: \mathrm{id}_{\mathscr{C}} \to GF$ ad $\varepsilon: FG \to \mathrm{id}_{\mathscr{D}}$ so that:

(1) there exists $\Delta^2 \to \operatorname{Fun}(\mathscr{C}, \mathscr{D})$ witnessing

(2) there exists $\Delta^2 \to \operatorname{Fun}(\mathcal{D}, \mathscr{C})$ witnessing

Remark 12.3. We have that $\eta : \mathrm{id} \to GF$ depends only on $[\eta]$ in $\mathrm{Ho}(\mathrm{Fun}(\mathscr{C}, \mathscr{D}))$. If η is given, then ε is unique up to homotopy.

Example 12.4. If \mathscr{C} and \mathscr{D} are ordinary categories, then we have a 1-categorical adjunction

$$F:\mathscr{C}\rightleftarrows\mathscr{D}:G$$

if and only if we have an ∞ -categorical adjunction

$$NF: N\mathscr{C} \rightleftharpoons N\mathscr{D}: NG.$$

Example 12.5. If $X, Y \in \text{Kan}$, then $F : X \to Y$ is an adjoint if and only if F is a homotopy equivalence of simplicial sets. The unit and counit become the witnesses of homotopy equivalence.

Remark 12.6. If we have an adjunction $F:\mathscr{C}\rightleftarrows\mathscr{D}:G$ of ∞ -categories, then F and G are homotopy equivalences of simplicial sets. The converse is not true in general.

Exercise 12.7. If $F: \mathscr{C} \to \mathscr{D}$ is an equivalence of ∞ -categories, then it is both a left and right adjoint functor.

Proposition 12.8. Given $F: \mathscr{C} \rightleftharpoons \mathscr{D}: G$ of ∞ -categories, then

$$\operatorname{Ho}(F) : \operatorname{Ho}(\mathscr{C}) \rightleftarrows \operatorname{Ho}(\mathscr{D}) : \operatorname{Ho}(G)$$

is an adjunction of 1-categories. That is, **if** we know $F \dashv G$ in ∞ -categories, then to check if $\eta : \mathrm{id}_{\mathscr{C}} \to GF$ is a unit, it is enough to check that $\mathrm{Ho}(\eta)$ is the unit.

However the converse is not true!

Warning: Suppose we take $F: \Delta^0 \to X$ with $X \in Kan$ simply connected, and F picks $x \in X_0$. Then $Ho(F) \dashv Ho(G)$ because Ho(X) will be simply connected. But it does not imply that $F \dashv G$ unless X is contractible.

There $\operatorname{Hom}_{\operatorname{Ho}(\mathscr{D})}(FC,D) \cong \operatorname{Hom}_{\operatorname{Ho}(\mathscr{C})}(C,GD)$ for any $C \in \mathscr{C}$ and $D \in \mathscr{D}$.

Theorem 12.9. Take $F: \mathscr{C} \to \mathscr{D}$ and $G: \mathscr{D} \to \mathscr{C}$ functors of ∞ -categories. Then $F \dashv G$ with unit η if and only if the composite

$$\operatorname{Hom}_{\mathscr{D}}(FC,D) \xrightarrow{G} \operatorname{Hom}_{\mathscr{C}}(GFC,GD) \xrightarrow{\eta^{*}} \operatorname{Hom}_{\mathscr{C}}(C,GD)$$

is a weak homotopy equivalence between Kan complexes (aka a homotopy equivalence) for all C, D.

The forward direction is straightforward, but the backwards direction uses (co)cartesian fibration stuff.

Limits and colimits

Recall that if \mathscr{C} is an ordinary category, then $i \in \mathscr{C}$ is *initial* if for all $X \in \mathscr{C}$, there is a unique $i \stackrel{!}{\to} X$. That is, $\operatorname{Hom}_{\mathscr{C}}(i,X) = *$.

Definition 12.10. In an ∞ -category \mathscr{C} , we have that $i \in \mathscr{C}$ is *initial* if $\operatorname{Hom}_{\mathscr{C}}(i,X) \simeq *$ is contractible for all $X \in \mathscr{C}$.

Definition 12.11. Let \mathscr{C} be an ∞ -category, and $K_{\bullet} \in \mathsf{sSet}$. Then for any $X \in \mathscr{C}$, denote by $\underline{X} \in \mathsf{Fun}(K,\mathscr{C})$ the constant functor valued at X. The assignment $X \mapsto \underline{X}$ defines a diagonal map

$$\Delta: \mathscr{C} \to \operatorname{Fun}(K, \mathscr{C}).$$

This is defined by precomposing with $K \to \Delta^0$, and looking at $\mathscr{C} \simeq \operatorname{Fun}(\Delta^0, \mathscr{C}) \to \operatorname{Fun}(K, \mathscr{C})$.

Definition 12.12. Let $u: K \to \mathscr{C}$ be a diagram. We say a natural transformation $\alpha: \underline{L} \to u$ exhibits $L \in \mathscr{C}$ as a limit of u if for all $X \in \mathscr{C}$, we have that the composite

$$\operatorname{Hom}_{\mathscr{C}}(X,L) \xrightarrow{\Delta} \operatorname{Hom}_{\operatorname{Fun}(K,\mathscr{C})}(\underline{X},\underline{L}) \xrightarrow{\alpha_*} \operatorname{Hom}_{\operatorname{Fun}(K,\mathscr{C})}(\underline{X},u)$$

is a (weak) homotopy equivalence of Kan complexes.

Definition 12.13. We say that $\beta: u \to \underline{C}$ exhibits C as a *colimit of* u if, for all $Y \in \mathcal{C}$, the composite

$$\operatorname{Hom}_{\mathscr{C}}(C,Y) \xrightarrow{\Delta} \operatorname{Hom}_{\operatorname{Fun}(K,\mathscr{C})}(\underline{C},\underline{Y}) \xrightarrow{\beta^*} \operatorname{Hom}_{\operatorname{Fun}(K,\mathscr{C})}(u,\underline{C})$$

is a (weak) homotopy equivalence.

Note that if α or β exist, they are unique up to equivalence.

Example 12.14. If \mathscr{C} is an ordinary category, then $u: K \to N\mathscr{C}$ is equivalent to a map $\tau(u): \tau K \to \mathscr{C}$. We can check that $L \in \mathscr{C}$ is $\lim(\tau u)$ in a 1-categorical sense if and only if $L \in \mathscr{C}$ is a limit of u in an ∞ -categorical sense.

Example 12.15. Let $f: X \to Y$ in an ∞ -cat \mathscr{C} . Then f is an equivalence if and only if f exhibits Y as a colimit $\{X\} \to \mathscr{C}$, if and only if f exhibits X as a limit $\{Y\} \to \mathscr{C}$.

Example 12.16. Taking the identity diagram $\emptyset \to \mathscr{C}$, the notion of limit/colimit matches the notion of terminal/initial object.

Proposition 12.17. A limit $L \in \mathcal{C}$ is unique up to homotopy. Therefore we usually define it as $\lim_{K} (u)$.

Proposition 12.18. We have that \mathscr{C} admits all K-indexed limits if and only if

$$\Delta:\mathscr{C}\to\operatorname{Fun}(K,\mathscr{C})$$

is a left adjoint. The right adjoint is given by $\lim_{K}(-)$.

Equalizers are limits along $\Delta^1 \coprod_{\partial \Delta^1} \Delta^1$, pullbacks are limits along $\Delta^1 \times \Delta^1 - (0,0)$, etc.

13. Lecture 13: February 28th

[missed]

14. Lecture 14: March 21st

Straightening/unstraightening¹⁶

Motivation: Let X be a space, and let Cov(X) denote the 1-category of covering spaces of X, so that in particular the fibers f^{-1} of $f: E \to X$ are discrete sets. This defines a map in Top from

$$X \to \mathtt{Set}^{\cong}$$

to sets with the discrete topology. Another way to think about this is as a functor

$$\operatorname{St}:\operatorname{Cov}(X)\to\operatorname{Fun}(\Pi_1(X),\operatorname{Set})$$

$$(E \xrightarrow{p} X) \mapsto [x \mapsto f^{-1}(x)].$$

A path from x to y (a morphism in $\Pi_1(X)$) induces a set map $f^{-1}(x) \to f^{-1}(y)$.

This is an equivalence of categories! This is called the *fundamental theorem of covering spaces*.

This is a first instance of *straightening*.

If we view X as an ∞ -groupoid, then $\Pi_1(X) = \text{Ho}(X)$ is its homotopy category, and we have that

$$\operatorname{Fun}(\Pi_1(X),\operatorname{Set})\cong\operatorname{Fun}(X,N(\operatorname{Set})),$$

¹⁶Also called the *Grothendieck construction* or the ∞ -category of elements.

since nerve is right adjoint to the homotopy category.

We can denote by $Cov_X \subseteq \mathcal{S}/X$ to be the full subcategory of the infinity category of spaces over X spanned by covering spaces. Then we want to show that

$$Cov_X \simeq Fun(X, N(Set)).$$

We have an unstraightening functor

Unst:
$$\operatorname{Fun}(X, N(\operatorname{Set})) \to \operatorname{Cov}_X$$
,

given by sending some $F: X \to N(\mathtt{Set})$ to the pullback¹⁷

$$\begin{array}{ccc} E & \longrightarrow & N(\operatorname{Set}_*)^{\simeq} \\ \downarrow & & \downarrow \\ X & \longrightarrow & N(\operatorname{Set})^{\simeq} \end{array}$$

More generally, if we don't require the fibers to be discrete, then we can take $f: E \to X$ to be any continuous map. Then we get a functor¹⁸

$$\operatorname{St}: \mathcal{S}/X \to \operatorname{Fun}(X,\mathcal{S})$$

$$(E \xrightarrow{f} X) \mapsto [x \mapsto f^{-1}(x)].$$

Unstraightening is of the form

Unst:
$$\operatorname{Fun}(X, \mathcal{S}) \to \mathcal{S}/X$$

 $F \mapsto \operatorname{hocolim}_X F = \bigcup_{x \in X} F^{-1}(x)/\sim.$

Let X be connected and suppose $X \simeq BG$. Then we define G-modules in spaces to be

$$\operatorname{Mod}_G(\mathcal{S}) := \operatorname{Fun}(BG, \mathcal{S}) \xrightarrow{\sim} \mathcal{S}/BG.$$

If we take some $M: BG \to \mathcal{S}$, and we post-compose with sections $\mathcal{S}/BG \to \mathcal{S}$, then M maps to M^{hG} .

More generally, given $F: X \to \mathcal{S}$, the limit $\lim_X \mathcal{S}$ is given by

$$\operatorname{Fun}(X,\mathcal{S}) \xrightarrow{\operatorname{Unst}} \mathcal{S}/X \xrightarrow{\operatorname{sections}} \mathcal{S}.$$

Goal: Generalize this approach where X is replaced by an ∞ -category $\mathscr C$ and $\mathscr S$ is replaced by $\operatorname{Cat}_{\infty}$. That is, we want to relate $\operatorname{Fun}(\mathscr C,\operatorname{Cat}_{\infty})$ with some subcategory of $\operatorname{Cat}_{\infty}/\mathscr C$.

¹⁷Note that $N(\mathtt{Set}^{\simeq}) = N(\mathtt{Set})^{\simeq}$.

¹⁸By Fun(X, S) we might mean Fun(Sing(X), $N_{\Delta}(Kan)$).

If $f: \mathcal{E} \to \mathscr{C}$, what requirement do we need to make sense of an associated functor

$$F: \mathscr{C} \to \mathsf{Cat}_\infty$$

$$X \mapsto f^{-1}(X).$$

That is, how can we coherently choose our fibers.

Given $X \in \mathcal{C}$, we could take a pullback in Cat_{∞} :

$$f^{-1}(X) \longrightarrow \mathcal{E}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta^0 \longrightarrow X \longrightarrow \mathscr{C}.$$

If we choose \mathbf{sSet}_{Joyal} as our model, we would need $\mathcal{E} \to \mathscr{C}$ to be an inner fibration (RLP wrto inner horns) to get the pullback $f^{-1}(X)$ to be a quasi-category. If we instead say "pullback in quasi-categories," this requirement goes away.

Given $f: \mathcal{E} \to \mathscr{C}$ and $X \to Y$ in \mathscr{C} , how can we define $f^{-1}(X) \to f^{-1}(Y)$ in Cat_{∞} ?

Need: If $\phi: X \to Y$ in $\mathscr C$ and $E_X \in \mathcal E$ such that $f(E_X) = X$, then there exists some $E_Y \in \mathcal E$ and $\phi_!: E_X \to E_Y$ in $\mathcal E$ so that $f(\phi_!) = \phi$, and that is universal in the following sense: for all $Z \in \mathscr C$ and for all $\psi: X \to Z$ in $\mathscr C$ for all $\overline{\psi}: E_X \to E_Z$ in $\mathcal E$ where $f(\overline{\psi}) = \psi$, if there exists $\gamma: Y \to Z$ then there exists a unique map $\overline{\gamma}: E_Y \to E_Z$ in $\mathcal E$ so that $f(\overline{\gamma}) = \gamma$ and $\overline{\gamma} \circ \phi_! = \overline{\psi}$.

We say that $\phi_!: E_X \to E_Y$ is a cocartesian lift of ϕ .

Definition 14.1. We say that $f: \mathcal{E} \to \mathscr{C}$ is a *cocartesian fibration* if for all $E_X \in \mathcal{E}$, for all $\phi: X \to Y$ with $f(E_X) = X$, there exists a cocartesian lift of ϕ .

Two cocartesian lifts over the same map are equivalent.

Given $f: \mathcal{E} \to \mathcal{C}$, $X \in \mathcal{C}$, $\phi: X \to Y$ in \mathcal{C} , we say $\phi_!: E_X \to E_Y$ is a cocartesian lift if the following is a pullback diagram in spaces:

$$\operatorname{Hom}_{\mathcal{E}}(E_Y, E_Z) \xrightarrow{(\phi_!)^*} \operatorname{Hom}_{\mathscr{C}}(E_X, E_Z)$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$\operatorname{Hom}_{\mathscr{C}}(Y, Z) \xrightarrow{\phi^*} \operatorname{Hom}_{\mathscr{C}}(X, Z),$$

for any $Z \in \mathscr{C}$. In particular, taking maps from Δ^0 to the top right and bottom left picks out $\overline{\psi}$ and γ , respectively, so that $\gamma \circ \phi = \psi$, and the universal property of the pullback says that there exists $\overline{\gamma} : E_Y \to E_Z$ so that $\overline{\gamma}\phi_! = \overline{\psi}$ and $f(\overline{\gamma}) = \gamma$.

Definition 14.2. We define $\operatorname{coCart}(\mathscr{C}) \subseteq \operatorname{Cat}_{\infty}/\mathscr{C}$ to be the subcategory of cocartesian fibrations $\mathcal{E} \to \mathscr{C}$, with morphisms

$$\mathcal{E} \xrightarrow{G} \mathcal{E}'$$

$$\mathscr{C}, \qquad f'$$

so that G sends f-cocartesian lifts to f'-cocartesian lifts.

In this case, straightening defines a functor

$$\operatorname{St}:\operatorname{coCart}(\mathscr{C})\to\operatorname{Fun}(\mathscr{C},\operatorname{Cat}_{\infty}),$$

sending $f: \mathcal{E} \to \mathscr{C}$ to the functor

$$\begin{split} \mathscr{C} &\to \mathsf{Cat}_\infty \\ X &\mapsto f^{-1}(X) \\ (X \xrightarrow{\phi} Y) &\mapsto \left[f^{-1}(X) \xrightarrow{\phi_!} f^{-1}(Y) \right]. \end{split}$$

Example 14.3. Let $f: X \to Y$ in \mathcal{S} . All lifts are cocartesian lifts. We say that a *left fibration* is a cocartesian fibration where every lift is cocartesian.

Example 14.4. Suppose $\mathscr C$ is an ordinary category. Then we can define a new category whose objects are $f:X\to Y$ in $\mathscr C$, and whose morphisms are

$$X \xrightarrow{f} Y$$

$$u \uparrow \qquad \qquad \downarrow v$$

$$X' \xrightarrow{f'} Y'.$$

This defines what we call the twisted arrow category $\operatorname{Tw}(\mathscr{C})$. There is a natural functor

$$\operatorname{Tw}(\mathscr{C}) \xrightarrow{\operatorname{Ev}} \mathscr{C}^{\operatorname{op}} \times \mathscr{C}$$
$$(X \xrightarrow{f} Y) \mapsto (X, Y).$$

This is a left fibration, by composition. Straightening this, we get

$$\begin{array}{c} \mathrm{St}(\mathrm{Ev}):\mathscr{C}^\mathrm{op}\times\mathscr{C}\to\mathrm{Set}\\ (X,Y)\mapsto\mathrm{Ev}^{-1}(X,Y)=\mathrm{Hom}_\mathscr{C}(X,Y). \end{array}$$

Example 14.5. If \mathscr{C} is an ∞ -category, we can define a twisted arrow category in a similar way

$$\mathrm{Tw}(\mathscr{C}):\Delta^{\mathrm{op}} \to \mathtt{Set}$$

$$[n] \mapsto \mathrm{Hom}_{\mathtt{sSet}}(\Delta^{2n+1},\mathscr{C}),$$

where the *n*-simplices of $Tw(\mathscr{C})$ should be thought of as

$$X_0 \longleftarrow X_1 \longleftarrow X_2 \longleftarrow \cdots \longleftarrow X_n$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y_0 \longrightarrow Y_1 \longrightarrow Y_2 \longrightarrow \cdots \longrightarrow Y_n.$$

We can define

$$\ell: \mathrm{Tw}(\mathscr{C}) \to \mathscr{C}^{\mathrm{op}}$$

 $r: \mathrm{Tw}(\mathscr{C}) \to \mathscr{C},$

by precomposition with $\Delta^n \hookrightarrow \Delta^{2n+1}$. These assemble to give

$$\operatorname{Tw}(\mathscr{C}) \xrightarrow{\operatorname{Ev}} \mathscr{C}^{\operatorname{op}} \times \mathscr{C},$$

and we have $\operatorname{Hom}_{\mathscr{C}}(X,Y) = \operatorname{Ev}^{-1}(X,Y) \in \mathcal{S}$. This evaluation map is a left fibration, left fibrations are preserved under pullback, and left fibrations over Δ^0 are Kan complexes. Therefore $\operatorname{Ev}^{-1}(X)$ is a space.

Example 14.6. Let $X \in \mathscr{C}$. Then we can take

$$\begin{array}{ccc} \ell^{-1}(X) & \longrightarrow & \mathrm{Tw}(\mathscr{C}) \\ \downarrow & & \downarrow \ell \\ \Delta^0 & \xrightarrow{X} & \mathscr{C}^{\mathrm{op}}. \end{array}$$

We define $\mathscr{C}_{X/} := \ell^{-1}(X)$, and $r^{-1}(Y) := \mathscr{C}_{/Y}$.

Theorem 14.7. (Straightening/unstraightening) If \mathscr{C} is an ∞ -category, we can define its unstraightening as

$$\begin{aligned} \operatorname{Unst}: \operatorname{Fun}(\mathscr{C}, \operatorname{Cat}_{\infty}) &\to \operatorname{coCart}(\mathscr{C}) \\ F &\mapsto \operatorname{colim}\left(\operatorname{Tw}(\mathscr{C}) \xrightarrow{\operatorname{Ev}} \mathscr{C}^{\operatorname{op}} \times \mathscr{C} \xrightarrow{\mathscr{C}_{/\cdot} \times F} \operatorname{Cat}_{\infty}\right). \end{aligned}$$

That composite sends

$$\mathrm{Tw}(\mathscr{C}) \xrightarrow{\mathrm{Ev}} \mathscr{C}^\mathrm{op} \times \mathscr{C} \xrightarrow{\mathscr{C}_{/\cdot} \times F} \mathrm{Cat}_\infty$$

$$(X \xrightarrow{f} Y) \mapsto \mathscr{C}_{X/} \times F(Y).$$

$$44$$

This forms an equivalence with St.

There is an equivalence

$$\operatorname{St}: \operatorname{LFib}(\mathscr{C}) \leftrightarrows \operatorname{Fun}(\mathscr{C}, \mathcal{S}): \operatorname{Unst.}$$

If $\mathscr{C} = X \in \mathcal{S}$, then $\operatorname{coCart}(X) = \operatorname{Cat}_{\infty}/X$.

If $\mathscr{C} = N(\mathscr{D})$, this recovers the usual Grothendieck construction.

If $F: \mathscr{C} \to \mathsf{Cat}_{\infty}$, then

$$\operatorname{colim} F = \operatorname{Unst}(\mathscr{C})[\operatorname{cocart. edges}^{-1}]$$

15. Lecture 15: March 23rd

Unstraightening monoidal structures

Recall $S \simeq N(\mathtt{sSet})[W_{\mathrm{Kan}}^{-1}]$ the ∞ -category of spaces. If $X \to Y$ is a map in S we are meaning that $X \to Y$ is a map in Ho(sSet) not that $X \to Y$ is any map in sSet.

Example 15.1. If we have $X \to Y$ in \mathcal{S} , then $X \to Y$ is a left fibration. If X and Y are in Kan and $X \to Y$ this does not imply that $X \to Y$ must be a left fibration. What is true is that if $X \to Y$ is a Kan fibration, then $X \to Y$ is a left fibration.

We have $\operatorname{Cat}_{\infty} \simeq N(\operatorname{sSet})[W_{\operatorname{Joyal}}^{-1}]$, so $f: \mathscr{C} \to \mathscr{D}$ in $\operatorname{Cat}_{\infty}$ means

$$f^{-1}(X) \longrightarrow \mathscr{C}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta^0 \xrightarrow{X} \mathscr{D}.$$

So we always want it to be a fibration.

That is, a map $f:\mathscr{C}\to\mathscr{D}$ in Cat_∞ is not the same as $\mathscr{C}\to\mathscr{D}$ of quasi-categories in

In Cat_{∞} , $\mathscr{C} \to \mathscr{D}$ is a cocartesian fibration if there exists a cocartesian lift on any fiber.

If \mathscr{C}, \mathscr{D} are quasi-categories in $\mathsf{sSet}_{\mathsf{Joyal}}$, then $f : \mathscr{C} \to \mathscr{D}$ is a cocartesian fibration if f is an *inner fibration* (RLP inner horns) AND there is a cocartesian lift of any fiber. The inner fibration condition guarantees that the fibers are also infinity categories.

Straightening definition last time was wrong. Last time, we had

Unst:
$$\operatorname{Fun}(\mathscr{C}, \operatorname{Cat}_{\infty}) \xrightarrow{\sim} \operatorname{coCart}(\mathscr{C})$$

$$F \mapsto \left(\mathcal{E} \xrightarrow{\operatorname{Unst}(F)} \mathscr{C}\right).$$

is an equivalence of categories, where

$$\mathcal{E} = \operatorname{colim} \left(\operatorname{Tw}(\mathscr{C})^{\operatorname{op}} o \mathscr{C} imes \mathscr{C}^{\operatorname{op}} \xrightarrow{F imes \mathscr{C}_{ullet}/} \operatorname{Cat}_{\infty}
ight).$$

Example 15.2. Take $\mathscr{C} = *$. Then $\operatorname{Fun}(*,\operatorname{Cat}_{\infty}) = \operatorname{Cat}_{\infty}$. We have that $\operatorname{coCart}(*) = \operatorname{Cat}_{\infty}$, and that $\operatorname{Tw}(*) = *^{\operatorname{op}} = *$. The composite sends

$$\operatorname{Tw}(*)^{\operatorname{op}} \to * \times *^{\operatorname{op}} \to \operatorname{Cat}_{\infty} \ * \mapsto (*, *) \mapsto *A \times * = A.$$

Example 15.3. Take $\mathscr{C} = 1 = 0 \to 1$. A functor $F : 1 \to \mathsf{Cat}_{\infty}$ is exactly a functor $F : \mathscr{A} \to \mathscr{D}$ in Cat_{∞} . We see that $\mathsf{Tw}(1)$ has three objects, being $0 = 0, 0 \to 1$ and 1 = 1. The identity ones both map to $0 \to 1$ so it is a span-op category. When we op $\mathsf{Tw}(1)^{\mathrm{op}}$ we get the span category, so a colimit becomes a pushout. We see that $1_{0/} = 1$ and $1_{1/} = *$. Then

$$\mathcal{E} = \operatorname{colim} \begin{pmatrix} \mathcal{A} \times 1_{1/} \xrightarrow{\operatorname{id} \times (0 \to 1)} \mathcal{A} \times 1_{0/} \\ F \times \operatorname{id} \downarrow \\ \mathcal{B} \times 1_{1/} \end{pmatrix}$$

$$= \operatorname{colim} \begin{pmatrix} \mathcal{A} \xrightarrow{\operatorname{id} \times 1} \mathcal{A} \times 1 \\ \downarrow \\ \mathcal{B} \end{pmatrix}$$

Then \mathcal{E} is a cocartesian fibration over 1, whose fiber over 0 is \mathcal{A} , whose fiber over 1 is \mathcal{B} , and with maps $F(A) \to B$ over $0 \to 1$.

Goal: Redefine a symmetric monoidal category $(\mathscr{C}, \otimes, I)$ as a cocartesian fibration $\mathscr{C}^{\otimes} \to \operatorname{Fin}_*$ as certain "pseudo"functors $\operatorname{Fin}_* \to \operatorname{Cat}$. We could take $\operatorname{Fin}_* \to \operatorname{Cat}$ sending $\langle n \rangle$ to $\mathscr{C}^{\times n}$.

Q: Given a psuedofunctor $F : Fin_* \to Cat$, when is it defining a symmetric monoidal category?

We would need $F(\langle n \rangle) \cong F(\langle 1 \rangle)^{\times n}$ with Segal's condition $F(\langle 0 \rangle) = 0$.

Theorem 15.4. Symmetric monoidal categories are pseudofunctors $Fin_* \to Cat$ with the Segal condition.

16. Lecture 16: March 28th

Monoidal functors and algebra objects

Last time we defined a symmetric monoidal infinity category to be a cocartesian fibration over Fin_* with a Segal condition. Here $\mathscr{C} = f^{-1}(\langle 1 \rangle)$. We got this by straightening $N(\operatorname{Fin}_*) \to \operatorname{Cat}_{\infty}$, with $\langle n \rangle \mapsto \mathscr{C}^{\otimes n}$.

Suppose we had a natural transformation η between functors

$$\mathscr{C}, \mathscr{D}: N(\mathtt{Fin}_*) \to \mathtt{Cat}_{\infty}.$$

This corresponds to a map $\mathscr{C}^{\otimes} \to \mathscr{D}^{\otimes}$ over Fin, sending *p*-cocartesian lifts to *q*-cocartesian lifts:

Think about this as $F(X) \otimes F(Y) \xrightarrow{\sim} F(X \otimes Y)$.

Now suppose we have $F^{\otimes}: \mathscr{C}^{\otimes} \to \mathscr{D}^{\otimes}$ between symmetric monoidal ∞ -categories. Then we know the fiber over $\langle 1 \rangle$ must be sent to the fiber over $\langle 1 \rangle$. Then we get $F_{\langle n \rangle}^{\otimes}: \mathscr{C}_{\langle n \rangle}^{\otimes} \to \mathscr{D}_{\langle n \rangle}^{\otimes}$ for all n.

Denote $F = F_{\langle 1 \rangle}^{\otimes}$. Then $F_{\langle n \rangle}^{\otimes} \simeq F^{\times n}$.

Let $\rho_!^i:\langle n\rangle \to \langle 1\rangle$ send everything to 0 except i to 1.

$$\begin{array}{ccc} \mathscr{C}^{\otimes}_{\langle 2 \rangle} & \xrightarrow{F^{\otimes}_{\langle 2 \rangle}} & \mathscr{D}^{\otimes}_{\langle 2 \rangle} \\ & & \downarrow^{(\rho^1_!,\rho^2_!)} & & \downarrow^{(\rho^1_!,\rho^2_!)} \\ & \mathscr{C} \times \mathscr{C} & \xrightarrow{F \times F} & \mathscr{D} \times \mathscr{D}. \end{array}$$

 $F(\rho_!^1) \simeq \rho_!^1$ and $F(\rho_!^2) \simeq \rho_!^2$. For all i we need that $F(\rho_!^i)$ is a q-cocartesian lift of ρ^i . This means that for all n, $F_{\langle n \rangle}^{\otimes}(X_1, \ldots, X_n) \simeq (F(X_1), \ldots, F(X_n))$.

Definition 16.1. A map $\alpha:\langle n\rangle\to\langle k\rangle$ in Fin_{*} is *inert* if $\alpha^{-1}(i)$ is precisely a singleton for $1\leq i\leq n$.

Fact 16.2. Inert morphisms are generated by ρ^i and τ (here τ is the swap of 1 and 2 on $\langle 2 \rangle$).

Let $F^{\otimes}: \mathscr{C}^{\otimes} \to \mathscr{D}^{\otimes}$ that sends p-cocartesian lifts of inert maps to q-cocartesian lifts. We claim this already gives a lax monoidal structure. Consider $m: \langle 2 \rangle \to \langle 1 \rangle$ the multiplication, and consider $(X,Y) \in \mathscr{C}^{\times 2}$. There is a map $m_!: \mathscr{C} \times \mathscr{C} \to \mathscr{C}$ sending $(X,Y) \mapsto X \otimes Y$.

Note we're not saying that $F(m_!)$ is a cocartesian lift, we're saying that $m_!$ is. If $F(m_!)$ was a cocartesian lift, then this would give $F(X) \otimes F(Y) \to F(X \otimes Y)$ is an equivalence.

Exercise 16.3. Show that $\iota: \langle 0 \rangle \to \langle 1 \rangle$ induces $I_{\mathscr{D}} \to F(I_{\mathscr{C}})$.

Definition 16.4. For \mathscr{C}^{\otimes} and \mathscr{D}^{\otimes} symmetric monoidal ∞ -categories, a *lax symmetric monoidal functor* $F^{\otimes}: \mathscr{C}^{\otimes} \to \mathscr{D}^{\otimes}$ is a functor that sends lifts of *p*-cocartesian inert maps in Fin_{*} to *q*-cocartesian lifts.

Definition 16.5. We say F^{\otimes} is strong symmetric monoidal if it sends *all* p-cocartesian lifts to q-cocartesian lifts.

We can define

$$\begin{array}{ccc} \operatorname{Fun}_{N(\operatorname{Fin}_*)}(\mathscr{C}^{\otimes},\mathscr{D}^{\otimes}) & \longrightarrow & \operatorname{Fun}(\mathscr{C}^{\otimes},\mathscr{D}^{\otimes}) \\ & & \downarrow & & \downarrow q^* \\ & \Delta^0 & \xrightarrow{p} & \operatorname{Fun}(\mathscr{C}^{\otimes},\operatorname{Fin}_*). \end{array}$$

Define $\operatorname{Fun}^{\otimes,\operatorname{lax}}(\mathscr{C}^{\otimes},\mathscr{D}^{\otimes})$ to be the full subcategory of lax monoidal functors, and just $\operatorname{Fun}^{\otimes}(\mathscr{C}^{\otimes},\mathscr{D}^{\otimes})$ the full subcategory of strong monoidal functors.

Example 16.6. Commutative algebras. We have that Δ^0 is a symmetric monoidal ∞ -category with trivial structure, then we have

$$N(\mathtt{Fin}_*) o \mathtt{Cat}_\infty$$

sending everything to Δ^0 . The associated cocartesian fibration is $N(\mathtt{Fin}_*) \to N(\mathtt{Fin}_*)$.

We define $\mathrm{Alg}_{\infty}(\mathscr{C})$ to be $\mathrm{Fun}^{\otimes,\mathrm{lax}}(N(\mathrm{Fin}_*),\mathscr{C})$. That is,

That is, A^{\otimes} is a section of p that sends inert maps in Fin_{*} to p-cocartesian lifts. We have that $A^{\otimes}(\langle 1 \rangle) \in \mathscr{C}^{\otimes}_{\langle 1 \rangle} = \mathscr{C}$, and $A \otimes A \to A$. We have that $A^{\otimes}(\langle 0 \rangle) = I$.

Q: Can we localize a symmetric monoidal category in such a way that it preserves the symmetric monoidal structure?

Definition 16.7. (HA 4.1.7.4) Given \mathscr{C}^{\otimes} a symmetric monoidal ∞ -category, let $W \subseteq \mathscr{C}$ a collection of edges. Assume W is closed under \otimes (meaning that if $Y \to Y'$ is in W, and X is arbitrary, then $X \otimes Y \to X \otimes Y'$ and $Y \otimes X \to Y' \otimes X$ are in W as well). The *symmetric monoidal localization* of \mathscr{C}^{\otimes} with W is a symmetric monoidal ∞ -category $\mathscr{C}[W^{-1}]^{\otimes}$ together with a strong symmetric monoidal functor

$$\ell:\mathscr{C}^{\otimes}\to\mathscr{C}[W^{-1}]^{\otimes}$$

with the following universal property: for any symmetric monoidal ∞ -category \mathscr{D}^{\otimes} , we get an equivalence of ∞ -categories:

$$\operatorname{Fun}^{\otimes}(\mathscr{C}[W^{-1}]^{\otimes},\mathscr{D}^{\otimes}) \xrightarrow{\sim} \operatorname{Fun}_{W}^{\otimes}(\mathscr{C}^{\otimes},\mathscr{D}^{\otimes}),$$

where $\operatorname{Fun}_W(-)$ means sending W to equivalences.

References