Monte Carlo experiments	PDF
542-44	
Experiment 1	
PRM: Vi = B1 + B2 x2; + Wi SRM: Vi = b1 + b2 x2; + ei	
$B_1 = 20$ } $E(y_1 x_{2i}) = 20 + 2x_{2i}$; 0 $y_1 = 10$ Monke Carlo We prepare 50 samples, $R = 50$:	< ×zi<30 o replications
We prepare 50 samples, R=50:	
y; = 20 +2 × z; + u; ; i = 1,, 10	
where u ~ N(0,82), &u=8 and y ~ N(20+2×2i,82).	thus
We estimate the PRM on R=50 and analyze the distribution of e	samples.
Experiment 2	
1 R= 1000, the rest as in E1.	

Slide 46
Experiment 3 In=50, the rest as in E2.
Experiment 4
Experiment 5
Var (xz), such that 0 < xzi < 100, the rest as in E4.

Estimator of the var-cov matr	ix of b:
$Var - Cov(b) = 3^{2} \cdot (x^{T}x)^{-1}$	
$\underline{Var} - \underline{cov}(b) = \underline{Se}^{2} \cdot (X^{T}X)^{-1}$	Slide 51
Testing a regression coefficier	ot'
Ho: Bj=Bjo Ha: Bj+Bjo	Slide 52-53
n-k: degrees of freedom	
Decomposition of sum of squa	ves: Slide 58
Total SS = Explained SS + Re TSS = ESS +	esidual SS RSS
Multiple determination coeffic	cient:
$0 \leq R^2 \leq 1$	Slide 53

Example:	Slide 60
$R^2 = 0.25$ $n = 12$ $k = 5$	
$ \overline{R}^2 = R_{ad}^2 = 1 - (1 - R)^2 = 1 - 0.75 \cdot 1.571 = -1 $	$\frac{n-1}{n-1} = 0.179$
Testing stat. sign. of	the model as a whole:
for every Ho: $\beta j = 0$, $\forall j = 2,, l$ Ho: $\beta j \neq 0$, $\exists j = 2,, l$ for at least one	Slide 62