#### РТУ МИРЭА

### КЛАСТЕРИЗАЦИЯ. METOДЫ K-MEANS, FUZZY C-MEANS

## ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

## Что такое кластеризация?

**Кластер** — группа элементов, характеризуемых общим свойством, главная цель кластерного анализа — нахождение групп схожих объектов в выборке.

Кластерный анализ — задача разбиения заданной выборки объектов (ситуаций) на подмножества, называемые кластерами, так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались. Задача кластеризации относится к статистической обработке, а также к широкому классу задач обучения без учителя.



# В чем отличие кластеризации от классификации?

#### Кластеризация

- Неконтролируемое обучение
- Обучение без учителя
- Метки класса обучающего множества неизвестны
- Дано множество данных с целью установления существования классов или кластеров данных

#### Классификация

- Контролируемое обучение
- Обучение с учителем
- Обучающее множество сопровождается меткой, указывающей класс, к которому относится наблюдение
- Новые данные классифицируются на основании обучающего множества

# ЦЕЛИ КЛАСТЕРИЗАЦИИ

# Три основных направления кластеризации

#### Понимание данных

Предполагает разбиение выборки на группы схожих объектов, что позволяет упростить дальнейшую обработку данных и осуществлять принятие решений.

#### Обнаружение новизны

Нацелено на обнаружение новых или редких объектов в некоторых выборках.

#### Сжатие данных

Служит для уменьшения объемов данных с минимальными потерями информации.



## ЗАДАЧИ КЛАСТЕРИЗАЦИИ

#### Задачи кластерного анализа

- Разработка типологии или классификации.
- Исследование полезных концептуальных схем группирования объектов.
- Порождение гипотез на основе исследования данных.
- Проверка гипотез или исследования для определения, действительно ли типы (группы), выделенные тем или иным способом, присутствуют в имеющихся данных.

Формальная постановка задачи кластеризации описывается следующим образом:

«Требуется разбить множество X на непересекающиеся подмножества – кластеры – так, чтобы каждый кластер состоял из объектов схожих между собой, а объекты различных кластеров существенно отличались по своим свойствам.»

# ПРИМЕНЕНИЕ КЛАСТЕРНОГО АНАЛИЗА

# Области в которых используется кластерный анализ

- Биология
- Биоинформатика
- Медицина
- Информатика
- Экономика
- Маркетинг
- Лингвистика
- Астрономия





# ПРЕИМУЩЕСТВА КЛАСТЕРИЗАЦИИ

# Сравнение с другими методами классификации данных

- Он позволяет производить разбиение объектов не по одному, а по целому набору признаков. Причем, влияние каждого из параметров может быть достаточно просто усилено или ослаблено путем внесения в математические формулы соответствующих коэффициентов.
- Кластерный анализ не накладывает ограничений на вид группируемых объектов, и позволяет рассматривать множество исходных данных практически произвольной природы.
- Многие алгоритмы кластеризации способны самостоятельно определить число кластеров, на которое следует разбить данные, а так же выделить характеристики этих кластеров без участия эксперта только при помощи используемого алгоритма.

## ЭТАПЫ КЛАСТЕРИЗАЦИИ

## Порядок действий при кластеризации

Независимо от предмета изучения применение кластерного анализа предполагает следующие этапы:

- 1. Отбор выборки для кластеризации.
- 2. Определение множества переменных, по которым будут оцениваться объекты в выборке.
- 3. Вычисление значений той или иной меры сходства между объектами.
- 4. Применение метода кластерного анализа для создания групп сходных объектов.
- 5. Проверка достоверности результатов кластерного решения.

## ТРЕБОВАНИЯ ПРИ ПРОВЕДЕНИИ КЛАСТЕРИЗАЦИИ

### Требования к данным

- Показатели не должны коррелировать между собой.
- Показатели должны быть безразмерными.
- Их распределение должно быть близко к нормальному.
- Показатели должны отвечать требованию «устойчивости», под которой понимается отсутствие влияния на их значения случайных факторов.
- Выборка должна быть однородна, не содержать «выбросов».

## МЕРЫ СХОДСТВА

#### Основные меры сходства

Для вычисления расстояния между объектами используются различные меры сходства (меры подобия), называемые также метриками или функциями расстояний. Выделяют следующие меры сходства:

- Коэффициент корреляции.
- Мера расстояния.
- Коэффициенты ассоциативности.
- Вероятностные коэффициенты сходства.



### Коэффициент корреляции

Коэффициент корреляции — показатель характера взаимного влияния изменения двух случайных величин.

Коэффициент корреляции обозначается латинской буквой К и может принимать значения от -1 до +1. Если значение по модулю находится ближе к 1, то это означает наличие сильной связи, а если ближе к 0 – связь отсутствует или является существенно нелинейной. При коэффициенте корреляции равном по модулю единице говорят о функциональной связи (а именно линейной зависимости), то есть изменения двух величин можно описать линейной функцией.

### Мера расстояния

Мера расстояния устанавливает сходство или различие между объектами.

Для каждого типа данных существует несколько способов измерения расстояния или определения меры сходства объектов. Наиболее используемыми для интервальных данных являются:

• Евклидово расстояние (Euclidian Distance) =  $\left\{ \boldsymbol{\Sigma}_{i} (\boldsymbol{x}_{i} - \boldsymbol{y}_{i})^{2} \right\}^{1/2}$ 

Заметим, что евклидово расстояние (и его квадрат) вычисляется по исходным, а не по стандартизованным данным. Это обычный способ его вычисления, который имеет определенные преимущества (например, расстояние между двумя объектами не изменяется при введении в анализ нового объекта, который может оказаться выбросом).

• Квадрат Евклидова расстояния (Squared Euclidian distance) =  $\{\Sigma_i(x_i-y_i)^2\}$ 

Иногда может возникнуть желание возвести в квадрат стандартное евклидово расстояние, чтобы придать большие веса более отдаленным друг от друга объектам. Это расстояние вычисляется следующим образом

### Мера расстояния

• Расстояние городских кварталов (манхэттенское расстояние) =  $\Sigma_i |x_i - y_i|$ 

Это расстояние является просто средним разностей по координатам. В большинстве случаев эта мера расстояния приводит к таким же результатам, как и для обычного расстояния Евклида. Однако отметим, что для этой меры влияние отдельных больших разностей (выбросов) уменьшается (так как они не возводятся в квадрат).

• Расстояние Чебышева =  $max|x_i - y_i|$ 

Это расстояние может оказаться полезным, когда желают определить два объекта как "различные", если они различаются по какой-либо одной координате (каким-либо одним измерением).

### Коэффициенты ассоциативности

Применяются, когда необходимо установить сходство между объектами, описываемыми бинарными переменными, причем 1 указывает на наличие переменной, а 0 – на ее отсутствие.

Простой коэффициент ассоциативности имеет вид:  $S = \frac{(a+d)}{(a+b+c+d)}$ 

Коэффициент Жаккара:  $S = \frac{a}{(a+b+c)}$ 



# Вероятностные коэффициенты сходства

Вероятностные коэффициенты сходства – при образовании кластеров по этим мерам вычисляется информационный выигрыш от объединения двух объектов, а затем объекты с минимальным выигрышем рассматриваются как один



## КЛАССИФИКАЦИЯ КЛАСТЕРНЫХ МЕТОДОВ

#### Методы кластеризации

Единой системы классификации кластерных процедур на сегодняшний день не существует. Зачастую такие системы создаются отдельно в каждой отрасли применения кластерного анализа.

На рисунке приведена обобщенная классификация кластерных методов, характерная для большинства задач.



#### Иерархические методы кластеризации

Большинство современных кластерных методов относятся к семейству *иерархических*.

Главной отличительной особенностью таких методов является то, что процесс объединения объектов при их использовании имеет иерархический характер и может быть представлен виде дендрограммы (древовидной диаграммы), где каждый уровень соответствует одному шагу алгоритма. При этом на каждом шаге количество кластеров изменяется в сторону увеличения или уменьшения.



#### Неиерархические методы кластеризации

При большом количестве наблюдений иерархические методы кластерного анализа не пригодны. В таких случаях используют неиерархические методы, основанные на разделении, которые представляют собой итеративные методы дробления исходной совокупности. В процессе деления новые кластеры формируются до тех пор, пока не будет выполнено правило остановки.



## МЕТОД КЛАСТЕРИЗАЦИИ K-MEANS

#### Основная идея метода

Метод k-means так же известен как метод k-средних, hard-c-means.

Основная идея заключается в том, что на каждой итерации перечисляется центр масс для каждого кластера, полученного на предыдущем шаге, затем объекты снова разбиваются на кластеры в соответствии с тем, какой из новых центров оказался ближе по выбранной метрике. Алгоритм завершается, когда на какой-то итерации не происходит изменения внутрикластерного расстояния.



#### Базовые определения алгоритма k-means

Данный алгоритм является прообразом практически всех алгоритмов нечеткой кластеризации, и его формализация поможет лучшему понимаю принципов, заложенных в более сложные алгоритмы.

Базовые определения и понятия в рамках данного алгоритма имеют вид:

lacktriangle обучающее множество  $M = \left\{ m_j \right\}_{j=1}^d$  , d- количество точек (векторов) данных;

$$lack$$
 О вектор центров кластеров  $\mathbf{C} = \left\{c^{(i)}\right\}_{i=1}^c$  , где  $c^{(i)} = \frac{\sum_{j=1}^d (u_{ij})^w \cdot m_j}{\sum_{j=1}^d (u_{ij})^w}$  ,  $1 \leq i \leq c$ 

матрица разбиения  $\mathbf{U}=\{u_{ij}\}$ , где  $u_{ij}=\frac{1}{\displaystyle\sum_{k=1}^{c}\left(\frac{d_A^2\left(m_J,c^{(i)}\right)}{d_A^2\left(m_J,c^{(k)}\right)}\right)^{\frac{1}{W-1}}}$ 

#### Базовые определения алгоритма k-means

lackцелевая функция:  $J(M,U,C) = \sum_{i=1}^c \cdot \sum_{j=1}^d u_{ij}^w d_A^2 ig( m_j, c^{(i)} ig),$ 

где  $w \in (1, \infty)$  — показатель нечеткости (взвешивающий коэффициент), регулирующий нечеткость разбиения. Обычно используется w = 2;

■ Набор ограничений:  $u_{ij} \in [0,1]$ ;  $\sum_{i=1}^{c} u_{ij} = 1$ ;  $0 < \sum_{j=1}^{d} u_{ij} < d$ ,

который определяет, что каждый вектор данных может принадлежать различным кластерам с разной степенью принадлежности, сумма принадлежностей элемента данных всем кластерам пространства разбиения равна единице.

### Общее описание алгоритма k-means

- Шаг 1. Проинициализировать начальное разбиение, выбрать точность, при достижении которой алгоритм завершится.
- Шаг 2. Определить центры кластеров:

$$C_j^{(i)} = \frac{\sum_{j=1}^d u_{ij}^{(l-1)} \cdot m_j}{\sum_{j=1}^d u_{ij}^{(l-1)}}, 1 \le i \le C$$

- Шаг 3. Обновить разбиение.
- Шаг 4. Проверить условие завершения алгоритма:

$$||U^{(l)} - U^{(l-1)}|| < \delta$$

Если не выполняется, то перейти к шагу 2.



## Пример работы алгоритма

Рассмотрим алгоритм на примере набора данных, описывающих ирисы разных классов:

| $N_2$ | Длина<br>чашелистника | Ширина<br>чашелистника | Длина<br>лепестка | Ширина<br>лепестка | Класс           |
|-------|-----------------------|------------------------|-------------------|--------------------|-----------------|
| 1     | 5,1                   | 3,5                    | 1,4               | 0,2                | Iris setosa     |
| 2     | 4,9                   | 3,0                    | 1,4               | 0,2                | Iris setosa     |
| 3     | 4,7                   | 3,2                    | 1,3               | 0,2                | Iris setosa     |
| 4     | 4,6                   | 3,1                    | 1,5               | 0,2                | Iris setosa     |
| 5     | 5,0                   | 3,6                    | 1,4               | 0,2                | Iris setosa     |
| 51    | 7,0                   | 3,2                    | 4,7               | 1,4                | lris versicolor |
| 52    | 6,4                   | 3,2                    | 4,5               | 1,5                | Iris versicolor |
| 53    | 6,9                   | 3,1                    | 4,9               | 1,5                | Iris versicolor |
| 54    | 5,5                   | 2,3                    | 4,0               | 1,3                | lris versicolor |
| 55    | 6,5                   | 2,8                    | 4,6               | 1,5                | Iris versicolor |
| 101   | 6,3                   | 3,3                    | 6,0               | 2,5                | Iris virginica  |
| 102   | 5,8                   | 2,7                    | 5,1               | 1,9                | Iris virginica  |
| 103   | 7,1                   | 3,0                    | 5,9               | 2,1                | Iris virginica  |
| 104   | 6,3                   | 2,9                    | 5,6               | 1,8                | Iris virginica  |
| 105   | 6,5                   | 3,0                    | 5,8               | 2,2                | Iris virginica  |

Будем делать вывод о принадлежности классу на основании длины b ширины чашелистника.

- Выберем к произвольных центров классов из исходного множества.
- Это могут быть любые элементы множества. Пусть центрами кластеров будут точки 1, 2 и 3. В качестве метрики близости выберем евклидово расстояние.
- Набор исходных данных в графическом представлении и разбиение на кластеры после первой итерации:





Далее необходимо найти новые центры кластеров. Новый центр для каждого кластера – точка, координаты которой представляют собой среднее арифметическое для всех элементов в данном кластере. После этого необходимо повторить процедуру разбиения на кластеры.



| $N_2$ | Длина<br>чашелистника | Ширина<br>чашелистника | Длина<br>лепестка | Ширина<br>лепестка | Класс           |
|-------|-----------------------|------------------------|-------------------|--------------------|-----------------|
| 1     | 5,1                   | 3,5                    | 1,4               | 0,2                | Iris setosa     |
| 2     | 4,9                   | 3,0                    | 1,4               | 0,2                | Iris setosa     |
| 3     | 4,7                   | 3,2                    | 1,3               | 0,2                | Iris setosa     |
| 4     | 4,6                   | 3,1                    | 1,5               | 0,2                | lris setosa     |
| 5     | 5,0                   | 3,6                    | 1,4               | 0,2                | Iris setosa     |
| 51    | 7,0                   | 3,2                    | 4,7               | 1,4                | Iris versicolor |
| 52    | 6,4                   | 3,2                    | 4,5               | 1,5                | Iris versicolor |
| 53    | 6,9                   | 3,1                    | 4,9               | 1,5                | Iris versicolor |
| 54    | 5,5                   | 2,3                    | 4,0               | 1,3                | Iris versicolor |
| 55    | 6,5                   | 2,8                    | 4,6               | 1,5                | Iris versicolor |
| 101   | 6,3                   | 3,3                    | 6,0               | 2,5                | Iris virginica  |
| 102   | 5,8                   | 2,7                    | 5,1               | 1,9                | Iris virginica  |
| 103   | 7,1                   | 3,0                    | 5,9               | 2,1                | Iris virginica  |
| 104   | 6,3                   | 2,9                    | 5,6               | 1,8                | Iris virginica  |
| 105   | 6,5                   | 3,0                    | 5,8               | 2,2                | Iris virginica  |



После определятся новые центры кластеров. Процедура распределения по кластерам и переопределения центров кластеров будут повторяться до тех пор, пока значения центров перестанет меняться. Тогда можно будет сделать вывод, что кластеры внутри исходного определены.

#### Недостатки и достоинства метода

#### Достоинства

- Отлично работает, если данные по своей природе делятся на компактные, примерно сферические группы
- Простота использования
- Быстрота использования
- Понятность и прозрачность алгоритма

#### Недостатки

- Слишком чувствителен к выбросам, которые могут искажать среднее
- Медленная работа на больших базах данных
- Необходимо задавать количество кластеров

# МЕТОД КЛАСТЕРИЗАЦИИ FUZZY C-MEANS

#### Базовые определения алгоритма soft k-means

Soft k-means, метод нечеткой кластеризации с-средних.

Данный алгоритм – обобщение алгоритма k-means, рассмотренного ранее, но в отличие от алгоритма k-средних кластеры здесь *представлены в* виде нечетких множеств, каждая точка принадлежит различны кластерам с различной степенью принадлежности.

Точка считается принадлежащей данному кластеру по критерию максимума принадлежности данному кластеру (каждый из объектов не входит однозначно в какой-либо кластер, а принадлежит всем кластерам с различными степенями принадлежности).



## Общее описание алгоритма

Алгоритм включает в себя три основных этапа:

- 1. вычисление центров кластеров,
- 2. вычисление расстояний между центрами кластеров и точками данных (включающее в себя макрооперации вычитания векторов и вычисления их норм)
- 3. пересчёт матрицы принадлежности.



# Общее описание алгоритма

Шаг 1. Выбрать количество кластеров 2 ≤ c≤ d

Шаг 2. Выбрать скалярную метрику для отображения данных.

Шаг 3. Выбрать параметр остановки.

Шаг 4. Выбрать коэффициент нечеткости  $w \in (1, \infty)$ .

Шаг 5. Проинициализировать начальное разбиение.

Шаг 6. Вычислить центры кластеров:

$$C_l^{(i)} = \frac{\sum_{j=1}^d \left(u_{ij}^{(l-1)}\right)^n \cdot m_j}{\sum_{j=1}^d \left(n_{ij}^{(l-1)}\right)^w}, 1 \le i \le c$$

Шаг 7. Для всех элементов вычислить квадраты расстояний до всех центров кластеров:

$$d_A^2\left(m_j, c_l^{(i)}\right) = (c_l^{(i)} - m_j)^t A\left(c_l^{(i)} - m_j\right)$$

Шаг 8. Обновить разбиение.

Шаг 9. Проверить условие завершения алгоритма (параметр остановки). Если не выполняется, то прейти к шагу 7.

### Недостатки и достоинства метода

#### Достоинства

- лучше сходимость (по сравнению с алгоритмом k-средних)
- простота реализации
- интуитивная понятность

#### Недостатки

- ВЫЧИСЛИТЕЛЬНАЯ СЛОЖНОСТЬ
- необходимо знать количество кластеров
- чувствительность к начальному разбиению

# АЛГОРИТМ МАШИННОГО ОБУЧЕНИЯ T-SNE

#### Базовые определения алгоритма t-SNE

t-SNE (t-distributed stochastic neighbor embedding, стохастическое вложение соседей с распределением Стьюдента) - алгоритм уменьшения размерности.

Проще говоря, t-SNE дает вам представление о том, как данные расположены в многомерном пространстве.

Разработанный Лоренсом ван дер Маатеном и Джеффри Хинтоном в 2008 году, он был успешно применен ко многим реальным наборам данных.



Алгоритм t-SNE вычисляет меру сходства между парами экземпляров в пространстве с высокой размерностью и в пространстве с низкой размерностью. Затем он пытается оптимизировать эти два показателя сходства. Давайте разберем это на 3 основных шага.

Шаг 1 Для всех точек рассчитывается многомерное евклидово расстояние

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2 \sigma_i^2)}{\Sigma_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2 \sigma_i^2)}$$

Эта формула показывает близость точек  $x_i$  и  $x_j$  при гауссовом распределении вокруг  $x_i$  с заданным отклонением  $\sigma$ , вычисляемым для каждой точки отдельно таким образом, чтобы точки в областях с большей плотностью имели меньшую дисперсию.

Для этого используется оценка перплексии:

$$p_{erp}(p_i) = 2^{H(p_i)} = 2^{-\sum p_{j|i} \log_2(p_j|i)}$$

где  $H(p_i)$  — энтропия по Шеннону. На практике перплексия задается в качестве параметра метода.

**Шаг 2** Для двумерных или трехмерных соседей пары  $x_i$  и  $x_j$ , назовем их  $y_i$  и  $y_j$ , не представляет труда оценить условную вероятность, приняв стандартное отклонение равным  $\frac{1}{\sqrt{2}}$ :

$$q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$

Если точки отображения  $y_i$  и  $y_j$  корректно моделируют сходство между исходными точками высокой размерности  $x_i$  и  $x_j$  , то соответствующие условные вероятности  $p_{j|i}$  и  $q_{j|i}$  будут эквивалентны.

**Шаг 3** В качестве оценки качества в классическом SNE используется расстояние Кульбака-Лейблера. SNE минимизирует сумму таких расстояний для всех точек отображения при помощи градиентного спуска.

**Шаг 3** При реализации метода t-SNE в качестве альтернативы минимизации суммы дивергенций Кульбака-Лейблера между условными вероятностями  $p_{j|i}$  и  $q_{j|i}$  минимизирует одиночную дивергенцию между совместной вероятностью Р в многомерном пространстве и совместной вероятностью Q в пространстве отображения:

$$C_{ost} = KL(P||Q) = \sum_{i} p_{ij} \log \frac{p_{ij}}{q_{ij}},$$

где  $p_{ij}$  и  $q_{ij}$  = 0,  $p_{ij}$  =  $p_{ji}$ ,  $q_{ij}$  =  $q_{ji}$  для любых і и ј,

а  $p_{ij}$  определяется по формуле:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n},$$

где n — количество точек в наборе данных

Градиент для симметричного SNE получается существенно проще, чем для классического:

$$\frac{\partial C_{ost}}{\partial y_i} = 4 \sum_{i} (p_{ij} - q_{ij})(y_i - y_j)$$

Для того, чтобы избежать скученности точек, в t-SNE используется t-распределение с одной степенью свободы. Совместная вероятность для пространства отображения в этом случае будет определяться следующей формулой:

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\Sigma_{k=1}(1 + \|y_k - y_t\|^2)^{-1}}$$

А соответствующий градиент:

$$\frac{\partial Cost}{\partial y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

# Пример реализации алгоритма t-SNE на python 3

T-SNE - это алгоритм уменьшения размерности данных. Основанием для его создания является предположение, что, хотя многие наборы данных в реальном мире встроены в многомерное пространство, все они имеют очень низкие внутренние измерения.

Другими словами, после уменьшения размерности, многомерные данные могут показать свои **существенные** характеристики в низкоразмерном состоянии. Эта основная идея также известна как **Нелинейное уменьшение размерности.** 







### Выводы

Кластеризация и ее методы активно используются в современном мире в совершенно разных предметных областях, что позволяет более эффективно достигать поставленные цели.

Достоинства и недостатки метода определяют его спектр задач, выполняемых в определенных условиях. Несмотря на это, есть концепции при которых использование кластеризации невозможно или несущественно, но при должном развитии технологий и повышении уровня запросов в предметных областях, решение задач кластеризации имеет все шансы стать более приоритетной методологией в сравнении с другими вариантами в вопросах статистического анализа или при использовании машинного обучения.