

Department of Computer Science California State University, Channel Islands

MATHCOMPPH-546: Pattern Recognition Lesson 3 phys546 Non-Metric Methods HW_3

Student Name: Sandipta Subir Khare

Student Major: Computer Science

1.1 Suppose that the probability of five events are P(1) ½ 0.5, and P(2) ½ P(3) ½ P (4)½ P(5) ½ 0.125. Calculate the entropy. Explain in words what this means.

Ans.

<u> </u>	The source entropy, H is given by H= pulog_2(1/pu) substituting the known values,
	H=0.5 log2 (1/0.5)+0.125 log2 (1/0.125)+ 0.125 log2 (1/0.125)+0.125 log2(1/0.125)+ 0.125 log2 (1/0.125)= 2
	It means the average amount of information from the event is 2

1.2 Three binary nodes, N1, N2, and N3, split examples into (0, 6), (1,5), and (3,3), respectively. For each node, calculate its entropy, Gini impurity, and classification error.

Ans.

1.2	Using the Bormula:
	for NI - Entropy = 0, Gini impurity = 0 and Classification ever = 0
	and classification error = 1/6
July	for N3-Entropy = 1, Gini impusity = 1/2 and classification error = 05

1.3 Build a decision tree that computes the logical AND function.

Ans.

7113.	
1.3	· Cloing to Pub
197	The seamples out manage to
	Gioing to Paular sing along ant
	· studying -= local
	1.24
Y 30%	1. It assignment rest day- study
	2. Feeling Jary - No Pub.
	2. Feeling Jazy - No Pub
	3. No Party scheduled - cannot go
) seek	to party
	yes Stray (19)
	No (TV % pub)
	Hove pasts
	Have party (29) Resignment (party) (29) Resignment (party) (24)
- May	750000 1es No (90 to) (26)
$-\mu$	that to Prob. Feeling Yes watch
	dazy TV
	(90 kg) =
	105 (90 kg) (30 mg) (30
	Party No (water) 2
	Scheduled TV 36

1.4 Imagine that there are four things that you like to do in the evening: going to a pub, watching TV, going to a party, or studying (!). The choice is sometimes made for you—if you have an assignment due the next day, you need to study, if you're feeling lazy then the pub isn't for you, and if there isn't a party then you can't got it. You are looking for a decision tree which will help you decide what to do each evening. Here is a list of everything you've done in the past 10 days.

Deadline?	Is there a party?	Lazy?	Activity
Urgent	Yes	Yes	Party
Urgent	No	Yes	Study
Near	Yes	Yes	Party
None	Yes	No	Party
None	No	Yes	Pub
None	Yes	No	Party
Near	No	No	Study
Near	No	Yes	TV
Near	Yes	Yes	Party
Urgent	No	No	Study

(The first thing to do is to work out which feature to use as the starting (root) node. For this you need to compute the entropy, and then find out which feature has the maximal information gain).

Ans.

1.4	1D3 (Examples, Target_Attribute, Attributes)
7	create a most rode for the
bw	It all examples are positive, Return the single-node tree lod, with Label = f.
	the Single-node tree Roof with
<u> </u>	Id number of predicting attribut is empty, then Return the Single node tree Root,
	with dabel = most common value of the farget attribute in the examples.

Otherwise Begin
A - The attribute that best classified examples.
Decision Tree attribute for root 2A
Add a possible value, Vi, of A,
A = Vi
Let Examples (Vi) be the subset of examples that have the value vitor
Then below this now branch add a Leaf node with Label = most common target
most common target
values in the examples
else, below this new blanch add the Bubbson IDS (Example (Vi) target - attribute, attributes-EAZ)
target - attribute, attributes - [A]
End
Return, Root