複数解探索を考慮した分散型 Bat Algorithm できない。 「中国の 佐藤宮之 高玉圭樹 (電気通信大学)

多峰性最適化における複数解探索

複数の解を保持することで環境変化に適用可能 例) 複数ロボットによる協調的探査

従来

Bat Algorithm(BA) [X.S. Yang, 2010]

€は[-1, 1]の乱数

if
$$rand > r_i$$

$$x_{loc} = x_* + \epsilon A_i^t$$

endif

STEP3: ランダム探索

$$x_{rnd} = x_{lb} + (x_{ub} - x_{lb}) * rand$$

STEP4: 評価と更新

if
$$rand < A_i^t \&$$

$$min(F(\boldsymbol{x_i}), F(\boldsymbol{x_{loc}}), F(\boldsymbol{x_{rnd}})) < F(\boldsymbol{x_{i*}})$$
 東新する毎に

$$A_i^{t+1} = lpha A_i^t$$
 評価回数 🍱 局所探索 📠

$$r_i^{t+1} = r_i^t [1 - exp(-\gamma t)]$$

endif

提案

Niche Radius-based Bat Algorithm(NRBA)

$$\lambda = \frac{1}{2}\sqrt{(x_{ub} - x_{lb})^2}$$

$$NR = \frac{\lambda}{\sqrt[p]{q}}$$

探索範囲の上限と下限: xub, xlb

次元数: D 解の数: q

STEP1: 最良個体から離れる方向へ探索

$$v_i^{t+1} = v_i^t + (x_i^t - x_{NR*}) * rand$$

$$x_i^{t+1} = \begin{cases} x_i^t + v_i^{t+1} & \text{(if } d_i < NR) \\ x_i^t & \text{(otherwise)} \end{cases}$$

STEP2: NR内で局所探索

if $rand > r_i$

$$x_{loc} = x_{NR*} + \epsilon A_i^t$$

endif

STEP3: NR内でランダム探索

$$x_{rnd} = x_{NR*} + *rand(-NR, NR)$$

STEP4: 評価と更新

if $rand < A_i^t \&$ $min(F(\boldsymbol{x_i}), F(\boldsymbol{x_{loc}}), F(\boldsymbol{x_{rnd}})) < F(\boldsymbol{x_{i*}})$

$$x_{i*}$$
を更新

$$r_i^{t+1} = r_i^t [1 - exp(-\gamma t)]$$

endif

実験内容

複数解探索性能の比較

評価指標

 $\sum_{run=1}^{MR}$ 発見した解の数

全最適解及び最適解数 * MR

BA vs NRBA

解発見率 =

解発見の定義:(解座標) - (最近傍個体座標) < 0.1

パラメータ設定

個体数: N	50	実験回数: MR	30
世代数:	10000	ラウドネス: A ⁰	1
Iteration	10000	パルスレート: r^0	rand [0,1]
次元数: D	2	α, γ	0.9

問題設定

○:個体候補x;^{t+}

★:個体候補x,,,

最良解(

収束

関数	F ₁ : Griewank	F ₂ : Six-Hump Camel	F ₃ : Michalewicz	F ₄ : Himmelblau
探索範囲	$x_i \in [-10, 10]$	$x_1 \in [-2, 2]$ $x_2 \in [-1, 1]$	$x_i \in [0, 4]$	$x_i \in [-5, 5]$
最適解の座標	$x_* = [0, 0]$	$x_* = \begin{bmatrix} \pm 0.0898, \\ \mp 0.7126 \end{bmatrix}$	$x_* = [2.20, 1.57]$	$x_* = [3,2],$ $[-2.8051, 3.2832],$ $[-3.7793, -3.2832],$ $[3.5845, -1.8481]$
最適解数 / 局所解数	1 / 16	2/2	1 / 1	4/0

実験結果

の粉(202)ドの取場は

光兄した胖の数(30ンートの平均値)						
	BA		NRBA			
関数	Mean ± SD	解発 見率	Mean ± SD	解発 見率		
F_1	1.0 ± 0	5.88 %	11.77 ± 1.67	69.22 %		
F_2	2.0 ± 0.18	49.17 %	3.97 ± 0.18	99.17 %		
F_3	1.0 ± 0	50.00 %	1.4 ± 0.49	70.00 %		
F_4	0.97 ± 0.55	24.17 %	3.43 ± 0.50	85.83 %		

全ての関数においてNRBAの方が 複数解探索性能が高い

F_1 F_2

最適解+局所解に分散

最適解, 局所解付近に分散