PROGRAMACIÓN FUNCIONAL

Lambda Cálculo: Definición - Sustitución

- Definición de λ-cálculo
- Noción de binding
- Sustitución vs. reemplazo

- → ¿Cómo definimos un lenguaje de programación?
 - Sintaxis (qué forma tienen los programas)
 - Semántica (qué significan los programas)
- → ¿Qué es lo mínimo necesario para tener un lenguaje de programación (funcional)?
 - Variables
 - Abstracción funcional
 - Aplicación de funciones

- ¿Qué sintaxis podemos usar para escribir funciones y su aplicación?
 - Notación λ (lambda) para funciones
 - Ej: usamos (λx.x) para representar una función que retorna su argumento sin alterarlo (identidad)
 - Yuxtaposición para aplicación
 - Ej: (λx.x)(λx.x) representa la aplicación de la función identidad a sí misma
- ♦ Y las variables?
 - Cualquier conjunto infinito de identificadores

- Conjunto de strings para dar sintaxis
 - Sea V un conjunto infinito de identificadores
 - Usaremos las letras x, y, z, ..., x₀, x₁, ... para denotar elementos de V
 - Definimos el conjunto Λ por inducción
 - si $x \in V$ entonces, también se cumple que $x \in \Lambda$
 - si $x \in V$ y $M \in \Lambda$, entonces $(\lambda x.M) \in \Lambda$
 - si $M,N \in \Lambda$, entonces $(MN) \in \Lambda$
 - De manera sintética
 - $\Lambda ::= V \mid (\lambda V.\Lambda) \mid (\Lambda \Lambda)$ $V ::= x \mid y \mid z \mid ... \mid x_0 \mid x_1 \mid ...$

- Ejemplos: x (xy) ($\lambda x.(xy)$) ($\lambda x.(\lambda y.((xy)x))$)
 - ¡Hay demasiados paréntesis!
- Convenciones de notación
 - La aplicación asocia a izquierda
 - ◆ Así (xyz) significa ((xy)z) y no (x(yz))
 - La aplicación tiene más precedencia que la abstracción
 - Así ($\lambda x.xy$) significa ($\lambda x.(xy)$) y no (($\lambda x.x)y$)
 - Los paréntesis externos pueden omitirse
 - Así (λx.(λy.xyz)) puede escribirse λx.λy.xyz
 - Pueden juntarse varios λs consecutivos
 - Así (λx.λy.λz.xyz) puede escribirse (λxyz.xyz)

- ¿Es suficiente con esto para programar?
 - Sí. El λ-cálculo tiene el mismo poder computacional que cualquier lenguaje de programación tradicional
- → ¿Por qué es interesante tener tan poco?
 - Permite definiciones simples
 - Facilita el estudio de aspectos computacionales
 - Facilita la demostración de propiedades

- Historia del λ-cálculo y lenguajes funcionales
 - ~1930 Haskell B. Curry (lógica combinatoria)
 Alonzo Church (λ-cálculo)
 Kurt Gödel (incompletitud)
 - → ~1940 Alan Turing (Máquina de Turing) John von Neumann (Arquitectura)
 - → ~1950 John McCarthy (LISP)
 - ~1960 Peter Landin (λ-cálculo en programación)
 - → ~1970 Robin Milner (ML)
 - → ~1980 John Hughes, Simon Peyton Jones (Haskell)

- Usos del λ-cálculo
 - Para compilación de lenguajes funcionales
 - Para dar semántica a lenguajes imperativos e.g. Algol, LIS
 - Como formalismo para definir otras teorías e.g. lógicas, sistemas de reescritura
 - $(\forall x.P(x))$ se representaría como $\forall (\lambda x.P)$
 - Como inspiración para otros cálculos e.g. π -cálculo (concurrencia), σ -cálculo (objetos)

- Estilos de presentación
 - Versión concreta
 - Sintaxis concreta + definiciones con detalles
 - Ejemplo: paréntesis, diferencias de variables
 - Versión abstracta
 - Sintaxis abstracta + definiciones generales
 - Ejemplo: renombre de variables gratis
- Características
 - La visión concreta es más realista (¡pero ineficiente!)
 - La visión abstracta es más intuitiva
 - Intentaremos ir de una a la otra...

- Versión concreta
 - - Los símbolos rojos son terminales
 - La interpretación es como strings
- Versión abstracta
 - $\bullet M ::= x \mid \lambda x.M \mid MN$
 - La interpretación es como árboles
 - Sólo se concentra en la estructura
 - Hay otras versiones concretas con la misma estructura

- Binding (Ligadura de variables)
 - Es un concepto recurrente en programación
 - Las apariciones (ocurrencias) de variables en una expresión son de tres tipos:
 - ocurrencias de ligadura (binders)
 - ocurrencias ligadas (bound occurrences)
 - ocurrencias libres (free occurrences)
 - Cada binder tiene un alcance (scope), y toda ocurrencia de esa misma variable en el scope está <u>ligada</u> (bounded) a dicho binder (si hay colisión, se liga al de menor scope)

- → ¿Para qué sirve la idea de binding?
 - ◆ Un binder identifica y define a una entidad (se lo suele llamar parámetro formal)
 - ◆ Las ocurrencias ligadas de una variable denotan la entidad asociada al *binder* a la que están ligadas
 - Ejemplo: procedure Reset (var x : Integer)
 begin x := 0; binder y su scope
 - Y las ocurrencias libres ¿a qué corresponden?

- ¿Cómo es el *binding* en λ -cálculo?
 - Cada ocurrencia que sigue a un λ es un *binder*
 - ❖ Su scope es el cuerpo de la abstracción
 - Las demás son ocurrencias libres
- Formalmente:
 - ◆ la ocurrencia de x en x es libre
 - ◆ toda ocurrencia en M y N permanece igual en (MN)
 - la ocurrencia de x que sigue al λ en $(\lambda x.M)$ es un *binder*
 - toda ocurrencia libre de x en M es una ocurrencia ligada en $(\lambda x.M)$ (y se liga a ese *binder*)
 - toda oc. que no es ligada ni *binder* en $(\lambda x.M)$ es libre en $(\lambda x.M)$

◆ Ejemplos

- Observamos que
 - una misma variable puede ocurrir libre y ligada
 - distintas ocurrencias pueden ligarse a distintos binders
 - la ligadura depende de toda la expresión

 (una ocurrencia cambia de "status" de una subexpresión a
 la expresión final; ej: x vs. (λx.x))

- Las variables libres
 - Dependen de toda la expresión
 - Una variable libre en una expresión puede ser ligada en otra que la contiene
 - Son variables cuyo significado depende del contexto
 - No deben confundirse con "variables globales"
 - Que sería mejor llamar "variables de alcance global"

$$f x = x+1$$

 $g y = let h z = z + 2 in f y + h y$
Variables de
alcance global Variables de
alcance local

- Variables libres de un término
 - $FV :: \Lambda \to \wp(V)$
 - $FV(x) = \{ x \}$
 - ▶ $FV(MN) = FV(M) \cup FV(N)$
 - $FV(\lambda x.M) = FV(M) / \{ x \}$
- Conceptos
 - Si $FV(M) = \emptyset$, M se dice cerrado
 - Sólo llamamos programas a los términos cerrados
 - Significan algo independientemente del contexto

- ◆ ¿Cómo modelamos el cambio de un parámetro formal por uno real en un término?
 - Un parámetro formal corresponde a una variable ligada y sus ocurrencias
 - Por lo tanto, podemos cambiar cada ocurrencia ligada de esa variable por el término que representa al parámetro real
 - Ej: siendo f(x) = 2*x+1, f(3) es igual a 2*3+1
- ¿Y en λ-cálculo?

- Reemplazo (search&replace)
 - Cambiar una variable por un término
 - Ej: reemplazar x por (λy.y) en xz da (λy.y)z
 - ¿Qué pasa con los bindings?
 - Ej: reemplazar x por $(\lambda y.yz)$ en $(\lambda z.xz)$ da $(\lambda z.(\lambda y.yz)z)$
 - → ¿Es el resultado esperado? ¿Por qué?
 - ¡¡El binding de z en (λy.yz) cambió!!
 - ¿Qué significa que un binding cambie?
 - ¡La entidad denotada por la variable es otra!
 - ¿Qué debemos hacer para no capturar variables?

- Sustitución
 - Cambiar una variable por un término, teniendo en cuenta los bindings
 - → Dado que el nombre de una variable ligada no es importante, podemos renombrarla
 - Ej: sustituir x por (λy.yz) en (λz.xz) da (λw.(λy.yz)w)
 (observar que la z del término (λz.xz) cambió a w para evitar la captura de la z de (λy.yz))
 - Las entidades denotadas, ¿son las mismas? O sea, ¿cambió algún binding?

- Sustitución (definición)
 - ▶ Dados $M,N \in \Lambda$, y $x \in V$, se define $M\{x \leftarrow N\}$ (el término resultante de sustituir x por N en M) por inducción *en el tamaño* de M
 - $) x\{x \leftarrow N\} = N$
 - a) $y\{x \leftarrow N\}$ = y , si $y \neq x$
 - b) $(PQ)\{x\leftarrow N\} = (P\{x\leftarrow N\}Q\{x\leftarrow N\})$
 - c) $(\lambda x.P)\{x\leftarrow N\} = (\lambda x.P)$
 - d) $(\lambda y.P)\{x\leftarrow N\} =$
 - 1) $(\lambda y.P\{x\leftarrow N\})$, si $y\neq x$ e $y \notin FV(N)$
 - 2) $(\lambda z.P\{y\leftarrow z\}\{x\leftarrow N\})$, si $y\neq x$ e $y \in FV(N)$ (donde $z \notin FV(N) \cup FV(P)$)

- Explicación
 - ◆ Los casos a), b) y c) son simples
 - ◆ En d), la x ligada en M es distinta de la que se sustituye y por ello M no cambia
 - → En e1), no hay peligro de captura, y se procede inductivamente
 - \bullet En e2), para evitar la captura de y en N se renombra y a una nueva variable z, antes de proseguir inductivamente
- \bullet Ej: $(\lambda z.xz)\{x\leftarrow(\lambda y.yz)\}$ es igual a $(\lambda w.(\lambda y.yz)w)$
 - ❖ Se aplica e2), obteniendo $(\lambda w.(xz)\{z\leftarrow w\}\{x\leftarrow (\lambda y.yz)\})$
 - ❖ Aplicando c), luego b) y a) obtenemos $(λw.(xw){x \leftarrow (λy.yz)})$
 - → Finalmente, c) y luego b) y a) dan el resultado final

- ¿Qué propiedades tiene la sustitución?
- Lema de sustitución
 - si $x \notin FV(Q)$, entonces $M\{x \leftarrow P\} \{y \leftarrow Q\} = M\{y \leftarrow Q\} \{x \leftarrow P\{y \leftarrow Q\}\}\}$
- ◆ <u>Propiedad</u> (a veces llamada garbage collection)
 - si $x \notin FV(M)$, entonces $M\{x \leftarrow N\} = M$

¡Estos iguales no quieren decir idéntico! ¿Por qué?

Resumen

- Hacen falta muy pocos conceptos bien ensamblados para tener un lenguaje de programación
- El λ-cálculo es importante para el estudio de lenguajes de programación
- Las nociones de binding, sustitución y renombre de variables son útiles en toda teoría de lenguajes que considere abstracción