Cours d'Équations aux Dérivées Partielles

Séance VIII - Résolution théorique et numérique des problèmes elliptiques via l'analyse matricielle.

Séance VIII - Analyse matricielle

CentraleSupélec - Cursus ingénieur

25 février 2020

Amphis EDP 8

Ludovic Goudenège

Chargé de Recherche CNRS

Fédération de Mathématiques de CentraleSupélec.

Bâtiment Bouygues. Laboratoire MICS. Bureau SC.102.

goudenege @math.cnrs.fr

Des questions?

daskit.com/edp19-20 puis section "Amphi 8'.

Support

- Support amphi VIII en version vierge disponible dès à présent sur edunao.
- Support amphi VIII en version annotée disponible ultérieurement.

Quelques éléments des CMs et TDs précédents

- Formes bilinéaires coercives
- Lax-Milgram
- Méthodes des éléments finis

Programme

- Propriétés spectrales des matrices
- Étude des méthodes récurrentes
- Résolution de systèmes linéaires

Objectifs de la séance

- Je sais caractériser une matrice symétrique définie positive.
- Je sais déterminer une région du plan contenant toutes les valeurs propres d'une matrice.
- Je sais programmer une méthode qui me donne le rayon spectral d'une matrice.
- Je connais la différence entre une méthode directe et une méthode itérative de résolution de système linéaire, et comment les utiliser.
- Je sais utiliser la notion de conditionnement d'une matrice.
- Je sais comment évaluer la complexité d'une méthode numérique.

Généralités Propriétés spectrales Etude des récurrence Systèmes linéaires

- 1 Analyse numérique matricielle
 - Généralités
 - Propriétés spectrales
 - Etude des récurrences
 - Systèmes linéaires

Motivation : problèmes discrétisés

Problèmes:

- Discrétisation de problèmes évolutifs
 - problème approché : suites récurrentes $\rightarrow z_{n+1} = Mz_n + c_n$
- Discrétisation de problèmes stationnaires
 - problème approché : résolution de grands systèmes linéaires (raffinement) $\rightarrow AZ = b$

Concepts:

- Etude des valeurs propres des matrices d'itération.
- Décomposition des matrices.

Exemples issus de la bibliothèque Boeing :

https://www.cise.ufl.edu/research/sparse/matrices/Boeing/index.html

Normes vectorielles

On se place sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Rappel VIII.1.1

Une norme $\|\cdot\|$ sur un \mathbb{K} -espace vectoriel E satisfait à :

- (a) $\forall x \in E, \forall \lambda \in \mathbb{K}, \quad \|\lambda x\| = |\lambda| \|x\|,$
- (b) $\forall x, y \in E$, $||x + y|| \le ||x|| + ||y||$,
- (c) $\forall x \in E$, $||x|| = 0 \iff x = 0$.

Définition VIII.1.2

Une norme vectorielle est une norme sur l'espace \mathbb{K}^q , $q \ge 1$.

Exemple: Normes d'ordre $p \in [1, +\infty]$: $||x|| = (\sum_{k=1}^{q} |x_k|^p)^{1/p}$.

Equivalence des normes

Théorème VIII.1.3

En dimension finie, toutes les normes sont équivalentes : soient N_1 et N_2 deux normes sur \mathbb{K}^q . Alors il existe des constantes $c_q > 0$ et $C_q > 0$ ne dépendant que de la dimension q telles que

$$\forall x \in \mathbb{K}^q$$
, $c_q N_1(x) \le N_2(x) \le C_q N_1(x)$.

ATTENTION!

$$\forall x \in \mathbb{K}^q, \quad \frac{\|x\|_1}{q} \le \|x\|_{\infty} \le \|x\|_1$$

Généralités Propriétés spectrales Etude des récurrence

Normes matricielles

On note $\mathcal{M}_{m,q}(\mathbb{K})$ l'ensemble des matrices à m lignes et q colonnes, $m,q\geq 1$.

Définition VIII.1.4

Une norme matricielle est une norme sur l'e.v. $\mathcal{M}_{m,q}(\mathbb{K})$.

Définition-Théorème VIII.1.5

Soit $\|\cdot\|$ *une norme vectorielle sur* \mathbb{K}^q .

La norme matricielle subordonnée à $\|\cdot\|$ est définie par

$$A \in \mathcal{M}_{q,q}(\mathbb{K}) = \mathcal{M}_q(\mathbb{K}) \longmapsto \max_{x \in \mathbb{K}^q, x \neq 0} \frac{\|Ax\|}{\|x\|}.$$

Exemple : Normes matricielles d'ordre $p \in [1, +\infty]$.

Généralités

Soit M une matrice à q lignes et p colonnes, $q, p \ge 1$.

Notations Matlab

Pour 1 < i < q, 1 < j < p, $1 < i_1, i_2 < q$ et $1 < i_1, i_2 < p$,

- M(i, j) coefficient de M sur la i^e ligne et la i^e colonne
- M(i,:) i^e ligne de M; M(:,i) i^e colonne de M
- $M(i_1 : i_2, j_1 : j_2)$ sous-matrice de $M \ abla \ i_2 i_1 + 1$ lignes et $i_2 i_1 + 1$ colonnes de premier coefficient $M(i_1, i_1)$; par convention v(-1) = []

Multiplication par blocs à étendre au cas où X est une matrice

Soient
$$1 \le q_1 \le q$$
 et $1 \le p_1 \le p$.

Soient
$$M_1 = M(1:q_1,1:p_1)$$
, $M_2 = M(1:q_1,p_1+1:p)$,

$$M_3 = M(q_1 + 1 : q, 1 : p_1)$$
 et $M_4 = M(q_1 + 1 : q, p_1 + 1 : p)$.

Soient $X \in \mathbb{R}^q$, $X_1 = X(1:q_1)$ et $X_2 = X(q_1 + 1:q)$. Alors

$$MX = \begin{bmatrix} M_1 & M_2 \\ M_3 & M_4 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} M_1X_1 + M_2X_2 \\ M_3X_1 + M_4X_2 \end{bmatrix}$$

Notation

Soit $M \ni q$ lignes et p cols. $M^* = (\operatorname{conj}(M))^T : (M^*)(i,j) = \operatorname{conj}(M(j,i))$.

Rappel: orthonormalisation

Toute famille linéairement indépendante de vecteurs d'un espace vectoriel réel ou complexe peut être complétée et transformée en base orthonormée pour (\cdot,\cdot) (méthode d'orthonormalisation de Gram-Schmidt) : soient $n \leq q$, et (x_1,\ldots,x_n) une famille lin. indép. de vecteurs de E un \mathbb{K} -ev de dim. q. Alors il existe une base (y_1,\ldots,y_q) de E telle que

- $\forall i, j \in \{1, \ldots, q\}, \ y_i^* y_j = \delta_{i,j} \ \text{et}$
- $\forall i \in \{1, \dots, q\}$, $\text{vect}_{\mathbb{K}}(x_1, \dots, x_i) = \text{vect}_{\mathbb{K}}(y_1, \dots, y_i)$.

Interprétation matricielle

Cela implique que toute matrice inversible A peut s'écrire A = QR où Q unitaire et R triangulaire à diagonale strictement positive.

Valeurs propres, vecteurs propres (eigenelements)

Rappel

Toute matrice carrée $A \in \mathcal{M}_q(\mathbb{K})$ admet q valeurs propres dans \mathbb{C} .

Définition VIII.1.6

Le spectre de $A \in \mathcal{M}_q(\mathbb{K})$, $\operatorname{Sp}(A)$, est l'ensemble des q valeurs propres de A dans \mathbb{C} .

Théorème VIII.1.7 (Décomposition de Schur)

Soit $A \in \mathcal{M}_q(\mathbb{K})$. Alors il existe

- une matrice triangulaire supérieure $T \in T_{q,sup}(\mathbb{C})$ et
- ullet une matrice unitaire $U\in U_q(\mathbb C)$, c'est-à-dire que $U^*U=I_q$, ...

telles que

$$A = UTU^*$$
.

Localisation du spectre

Il est DIFFICILE de calculer numériquement le spectre d'une matrice.

Théorème VIII.1.8 (Gershgörin-Hadamard)

Soient $A \in \mathcal{M}_q(\mathbb{K})$ et, pour tout $k \in \{1, \ldots, q\}$,

$$D_k := \left\{ z \in \mathbb{C}, \ |z - a_{kk}| \leq \sum_{1 \leq j \leq q, j \neq k} |a_{kj}| \right\}.$$

Alors

$$\operatorname{Sp}(A) \subset \bigcup_{k=1}^q D_k.$$

Rayon spectral

Définition VIII.1.9

Soit $A \in \mathcal{M}_q(\mathbb{K})$. On appelle rayon spectral de $A \in \mathcal{M}_q(\mathbb{K})$ le réel $\rho(A)$ positif

$$\rho(A) := \max\{|\lambda|, \quad \lambda \in \operatorname{Sp}(A)\}.$$

Propriété VIII.1.10

Soit $\|\cdot\|$ une norme matricielle subordonnée sur $\mathcal{M}_{\mathfrak{a}}(\mathbb{K})$. Alors, pour toute matrice $A \in \mathcal{M}_{q}(\mathbb{K})$,

$$\rho(A) \le \|A\|.$$

A noter : $\forall A \in \mathcal{M}_q(\mathbb{K}), \|A\|_2 := \sqrt{\rho(A^*A)}.$

En particulier, si $A \in \mathcal{M}_{q}(\mathbb{R})$ est SDP, $||A||_{2} = \rho(A)$.

Cours d'EDP

Suites récurrentes linéaires

Définition VIII.1.11

Soient $M \in \mathcal{M}_q(\mathbb{K})$, $b, x_0 \in \mathbb{K}^q$. On appelle suite récurrente linéaire la suite $(x_n)_{n \in \mathbb{N}} \subset \mathbb{K}^{\mathbb{N}}$ définie par

$$\forall n \geq 0, \quad x_{n+1} = Mx_n + b.$$

La matrice M est appelée matrice d'itération.

Définition VIII.1.12

Une méthode numérique définie par $M \in \mathcal{M}_q(\mathbb{K})$ et $C \subset \mathbb{K}^q$ de conditions initiales données converge si, pour tout $b \in \mathbb{K}^q$, pour tout $x_0 \in C$, la suite suivante converge :

$$\begin{cases} x_0 \in C \\ \forall n \geq 0, \quad x_{n+1} = Mx_n + b. \end{cases}$$

Erreur de convergence

Définition VIII.1.13

Soit (x_n) une suite convergeant vers x. L'erreur de convergence est la suite définie par $e_n = x_n - x$ pour tout $n \ge 0$. Le taux de convergence de (x_n) est le taux de décroissance vers 0 de (e_n) .

Exemple : Soit q=1. Soit $m\in\mathbb{C}$. On considère la méthode numérique associée à la « matrice » m et $C=\mathbb{C}$:

$$\begin{cases} x_0 \in \mathbb{C} \\ \forall n \geq 0, \quad x_{n+1} = mx_n. \end{cases}$$

Cette méthode converge si et seulement si |m| < 1 ou m = 1. Si |m| < 1, on a $e_n = m^n x_0$. Le taux de décroissance est |m|.

Convergence des méthodes numériques

Théorème VIII.1.14

Soit $M \in \mathcal{M}_q(\mathbb{K})$. Les points suivants sont équivalents :

- (i) $\forall x \in \mathbb{K}^q$, la suite (x_n) définie par $x_0 = x$ et $\forall n \geq 0 \ x_{n+1} = Mx_n$ converge vers 0
- (ii) $\lim_{n\to\infty} M^n = 0$
- (iii) $\rho(M) < 1$
- (iv) il existe une norme matricielle subordonnée $\|\cdot\|$ tq $\|M\| < 1$

Application : récurrence en temps (EDP évolutives) ; systèmes linéaires

Problème : comment exploiter ce théorème en pratique ?

Le théorème de GH n'apporte qu'une réponse partielle.

Calcul numérique du rayon spectral

Théorème VIII.1.15 (Méthode de la puissance)

Soient $M \in \mathcal{M}_q(\mathbb{K})$, $\|\cdot\|$ une norme vectorielle sur \mathbb{K}^q , $\lambda_1, \ldots, \lambda_q$ les valeurs propres de M.

On suppose $|\lambda_1| \ge \ldots \ge |\lambda_q|$ et

$$|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_q|.$$

On note e_1 un vecteur propre associé à λ_1 et $F = \operatorname{Im}(M - \lambda_1 I)$.

Soient $x_0 = \mu e_1 + f$, avec $\mu \neq 0$ et $f \in F$.

Alors la suite (x_n) définie par

$$\forall n \ge 0, \quad x_{n+1} = \frac{Mx_n}{\|Mx_n\|}$$

est telle que $\lim_{n\to\infty} ||Mx_n|| = \rho(M)$.

Résolution de grands systèmes linéaires Ax = b

Enjeu:

Résoudre en temps « raisonnable » des systèmes linéaires de taille $10^6\,$ Deux grandes familles de méthodes :

- les méthodes directes (LU, QR)
 - principe : décompositions A = BC
 - résolution de $(Ax = b \iff (By = b \text{ et } Cx = y))$
- les méthodes itératives (Jacobi, Gauss-Seidel)
 - principe : suites, A = M N et théorème sur la convergence
 - $\forall n \geq 0, \ Mx_{n+1} = Nx_n + b$

Sensibilité aux variations

Définition VIII.1.16

Pour $A \in GL_q(\mathbb{K})$ (inversible), on appelle conditionnement relatif à la norme $\|\cdot\|$ le nombre

$$cond_{\|\cdot\|}(A) = \|A\| \|A^{-1}\|.$$

 $Si \parallel \cdot \parallel$ est subordonnée, $cond_{\parallel \cdot \parallel}(A) \geq 1$. Un système est bien conditionné si $cond_{\parallel \cdot \parallel}(A)$ est proche de 1.

Théorème VIII.1.17 (Erreur relative)

Soient $A \in GL_q(\mathbb{K})$, b, Δb des vecteurs de \mathbb{K}^q , $b \neq 0$, et $\|\cdot\|$ une norme sur \mathbb{K}^q . Notons $x = A \setminus b$ et $\Delta x = A \setminus (b + \Delta b) - x$. Alors

$$\frac{\|\Delta x\|}{\|x\|} \leq cond_{\|\cdot\|}(A) \frac{\|\Delta b\|}{\|b\|}.$$

Décomposition LU

Définition VIII.1.18

Soit $A \in GL_q(\mathbb{K})$. A admet une décomposition LU s'il existe

- $L \in T_{q,inf}$, $diag(L) = (1, \ldots, 1)$
- $U \in T_{q,sup}$

telles que A = LU.

Principe: Pivot de Gauss!

Complexité : $O(q^3)$ (11 jours de calculs pour $q=10^6$)

Avantage 1 : très utile en cas de seconds membres multiples

Avantage 2 : structure préservée pour certaines matrices creuses

ATTENTION: on ne calcule JAMAIS l'inverse de la matrice

Généralités Propriétés spectrales Etude des récurrence Systèmes linéaires

Existence

Théorème VIII.1.19

Il existe une décomposition LU si les pivots de Gauss sont tous non nuls. La décomposition est alors unique.

Démonstration

Décomposition de Cholesky

Théorème VIII.1.20

Soit $A \in GL_q(\mathbb{R})$ une matrice symétrique définie positive. Alors il existe une unique matrice $B \in T_{inf}$, $B_{ii} > 0 \ \forall i \in \{1, \dots, q\}$ telle que

$$BB^T = A$$
.

Application : Démonstration de la décomposition QR.

Définition-Théorème VIII.1.21 (Décomposition QR)

Toute matrice $A \in GL_q(\mathbb{R})$ s'écrit de manière unique comme

$$A = QR$$

avec $Q \in O_q(\mathbb{R})$ et $R \in T_{sup}(\mathbb{R})$ à diagonale positive stricte.

Méthodes itératives

Théorème VIII.1.22

Une méthode itérative consiste à écrire A = M - N où M est supposée inversible. On définit alors la méthode numérique par :

$$\begin{cases} x_0 \in \mathbb{K}^q \\ \forall n \geq 0, \quad Mx_{n+1} = Nx_n + b. \end{cases}$$

Si $\rho(M^{-1}N) < 1$, la méthode converge.

Définition VIII.1.23

Méthode de Jacobi : M = diag(A) et N = diag(A) - A. Méthode de Gauss-Seidel : M = triu(A) et N = triu(A) - A = tril(A, -1).

Attention : résolution de systèmes linéaires « simples » à chaque étape

Conclusion

- Enjeu :
 - Etude de suites récurrentes linéaires
 - Résolution de grands systèmes linéaires
- Méthodes pratiques :
 - G-H, rayon spectral : convergence des méthodes itératives
 - LU, QR, Jacobi, Gauss-Seidel : résolution d'un système linéaire
 - conditionnement, taux de convergence : estimation de l'erreur

Bibliographie

- Philippe G. Ciarlet, Introduction to numerical linear algebra and optimisation, Cambridge Texts in Applied Mathematics, Cambridge University Press, 1989.
- P. Lascaux and R. Théodor, Analyse numérique matricielle appliquée à l'art de l'ingénieur, Analyse numérique matricielle appliquée à l'art de l'ingénieur, no. vol. 1, Dunod, 2004.
- Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri, Méthodes numériques pour le calcul scientifique, Edition Springer, ('00) (2000).