CSC165H1: Problem Set 0

Pan Chen

January 17, 2019

My Courses

- CSC165H1, Mathematical Expression and Reasoning for Computer Science, Francois Pitt
- CSC207H1, Software Design, Lindsey Shorser
- JGI216H1, Globalization and Urban Change, Tim Ross
- MAT224H1, Linear Algebra II, Nicholas Hoell
- STA247H1, Probability with Computer Applications, Karen Huynh Wong
- MAT237Y1, Multivariable Calculus, Luis Emilio Garcia Martinez

Set notation

$$S_1 \cap S_2 = \{2, 4, 6, 8, 10, 12, 14\}$$

A truth table

p	q	r	$p \lor \neg q$	$p \Leftrightarrow r$	$(p \lor \neg q) \Rightarrow (p \Leftrightarrow r)$
F	F	F	Т	Т	T
F	F	Т	T	F	F
F	Т	F	F	Τ	T
F	Т	Т	F	F	T
Τ	F	F	T	\mathbf{F}	F
Τ	F	Т	Т	${ m T}$	T
Τ	Τ	F	T	\mathbf{F}	F
Τ	Т	$\mid T \mid$	T	Τ	T

A calculation

$$\log_{x}(3\sqrt{x}) = k$$

$$\log_{x}(3) + \log_{x}(\sqrt{x}) = k$$

$$\log_{x}(3) + \log_{x}(x^{\frac{1}{2}}) = k$$

$$\log_{x}(3) + \frac{1}{2} = k$$

$$\log_{x}(3) = k - \frac{1}{2}$$

$$x^{\frac{2k-1}{2}} = 3$$

$$x = 3^{\frac{2}{2k-1}}$$