

Cloud, Infrastructure and DevOps

Yulia Tenincheva

Senior Cloud Engineer, MentorMate

Agenda

- IT Infrastructure, on premise vs Cloud
- The Five pillars of Cloud Computing (Well-Architected Framework)
- Cloud Native Applications, Serverless
- DevOps Culture, DevSecOps
- DevOps Tools, Pipelines, CI / CD, Demo

Infrastructure

Cloud Computing

Ongoing Costs

- Apply patches, upgrades
- Downtime
- Performance tuning
- Rewrite customizations
- · Rewrite integrations

- Upgrade dependent applications
- Ongoing burden on IT (hardware)
- Maintain/upgrade network
- Maintain/upgrade security
- Maintain, applicate security
- Maintain/upgrade database

Ongoing Costs

- Subscription fees
- Training
- Configuration
- System Administration

"Cloud is about how you do computing, not where you do computing."

~ Paul Maritz, CEO of VMware

"Cloud computing is empowering, as anyone in any part of world with internet connection and a credit card can run and manage applications in the state of the art global data-centers; companies leveraging cloud will be able to innovate cheaper and faster." ~ Jamal Mazhar, Founder and CEO of Kaavo

Figure 1. Magic Quadrant for Cloud Infrastructure and Platform Services

THUNDER AND LIGHTHING ISN'T GOD BEING ANGRY! IT'S MICROSOFT AND GOOGLE FIGHTING IN THE CLOUDS.

OiOiO

Blockchain

Database

Internet of Things

Networking & Content

Delivery

Storage

Compliance

AWS Global Infrastructure

Cloud Native Applications

Cloud native is an approach to building and running applications that fully exploit the advantages of the cloud computing model.

Cloud-Native Apps Are Different

All functionality is published and consumed via web Services services Every Integration point will eventually fail one time Handling or another **Failures** Be prepared to handle all kind of failures **Horizontal** Design for Scale Out Scalability Break down the task, process requests asynchronously **Asynchronous Processing** Use queues to decouple functionality Eventual consistency model Build stateless services that can be scaled out and Stateless Model load balanced **Minimize** Go DevOps/NoOps Human Intervention

"Everything is in the Cloud."

Serverless

Serverless is a way to focus on business value

Remember:

Days of programming can

save hours of configuration

Remember:

Hours of troubleshooting can save

you 5 minutes of reading the

documentation

Well-Architected Framework

The 5 Pillars of the AWS Well-Architected - Link

Security

Project information, systems, and assets while delivering business value through risk assessments and mitigation strategies

Reliability

Recover from infrastructure or service failures, dynamically acquire computer resources to meet demand, mitigate disruptions

Performance Efficiency

Use computing resources efficiently to meet system requirements, and to maintain efficiency as demand changes and technologies evolve

Cost Optimization

Avoid and eliminate unneeded cost or suboptimal resources with cost effective resources, matched supply and demand, and expenditure awareness

Operational Excellence

Run and monitor systems to deliver business value and continually improve supporting processes and procedures

When architecting technology solutions on AWS, if you neglect the five pillars, it can become challenging to build a system that delivers on your expectations and requirements.

Prepare your application for deployment

- Stateless!
- Version control, git branches and tags
- External configuration, secrets, multi-env config
- Comprehensive logging
- Health-check endpoint (/healthz)
- Security, SSL
- Documentation how to run the application

DevOps

"Philosophy of the efficient development, deployment and operation of the highest quality software possible"

—A friend from RackSpace

DevOps Model Defined

DevOps is the combination of cultural philosophies, practices, and tools that **increases an organization's ability to deliver** applications and services at high velocity.

This speed enables organizations to better serve their customers and compete more effectively in the market.

Benefits of DevOps

- Speed
- Rapid Delivery
- Reliability
- Scale
- Improved Collaboration
- Security (DevSecOps)

The State of DevOps

PERFORMANCE METRICS

The actual metric of success:

To what degree (from 1 to 7)

do we fear doing deployments?

"Delivering software quickly, reliably, and safely is at the heart of technology transformation and organizational performance."

—State of DevOps 2019

DevOps Cultural Philosophy

- DevOps is about removing the barriers
- Teams work together to optimize both the productivity
 of developers and the reliability of operations
- Communicate frequently and improve the quality of services they provide to customers
- Take full ownership for their services
- Thinking about the end customer's needs and how
 YOU can contribute to solving those needs

"You build it, you run it"

—Werner Vogels, CTO, Amazon

WHAT DO WE WANT? WHEN DO WE WANT IT?

TO DELIVER BETTER SOFTWARE!

CONTINUOUSLY!!!

DevOps Practices

Continuous Integration (CI)

Very frequent but small updates is the key

Continuous Delivery (CD)

Always have a deployment-ready build artifact

- Microservices
- Infrastructure as Code (IaC)
- Monitoring & Logging
- Communication & Collaboration

List of Best **DevOps** Tools

CI/CD Pipelines

Abstract

CI/CD Pipeline

"It's when I wrote the code, pushed the button to deploy it, watched the metrics to see if it actually worked in production, and fixed it if it broke"

—Director of operations engineering Nike, Inc.

Gitlab CI

Example .gitlab.cifile

```
image: node:latest
stages:
  - lint
eslint:
  stage: lint
  script:
    # Install ESLint in this docker container
    - npm install -q eslint
   # Configure ESLint (will read your .eslintrc file)
    - eslint --init
   # Run ESLint
    - eslint <your_js_file>
```


Live Demo

Resources

- The Lean Startup by Eric Ries
- The DevOps Handbook
 by Gene Kim, Patrick Debois, John Willis and Jez Humble
- The Phoenix Project
- Accelerate
- The State of DevOps (2019)

