

TEORÍA DE LA INFORMACIÓN Fuentes de Información (1)

Fuentes de información

Diversos fenómenos se pueden modelar y estudiar como **fuentes de información**: textos, imágenes, videos, sonido y otras señales (meteorológicas, sismológicas, biomédicas, satelitales, etc.)

No es relevante la semántica del mensaje sino las probabilidades de emisión

Tipos de Fuentes de Información

En cada instante t la fuente genera un símbolo $s_i(t)$ elegido del conjunto de todos los posibles símbolos, según sus probabilidades de emisión (modelo)

Tipos de fuentes:

Según el rango de valores que genera

Según la relación entre sus símbolos

F. continua

F. discreta

F. sin memoria (o de memoria nula) F. con memoria (de orden k) k=1

Ejemplo

Un dispositivo industrial genera valores correspondientes a los siguientes estados: **V** en funcionamiento normal, **A** en alerta y **R** en riesgo de falla

- Un observador A monitorea las sucesivas salidas del dispositivo por un largo tiempo y registra que:
 - el estado **V** se da con probabilidad 8/11 ≈0,728
 - el estado A aparece con probabilidad 2/11 ≈0,182
 - es estado **R** se da con probabilidad 1/11 ≈0,09

→ Fuente sin memoria

 Un observador B presta más atención a cómo se van dando las transiciones entre los sucesivos estados y luego de analizarlas durante un largo tiempo informa que:

- luego que aparece V, en la emisión siguiente generalmente vuelve a aparecer V, un 25% de las veces se registra el estado A y nunca se da R
- luego de registrarse **A**, a continuación se restablece el estado **V** un 75% de las veces, pero se pasa a **R** las ocasiones restantes
- cuando se da R, para la salida siguiente el problema se soluciona la mitad de las veces y se vuelve a V, pero el resto se continúa en R.

→ Fuente con memoria

Fuentes sin memoria

- Los símbolos son estadísticamente independientes → no hay relación entre lo que emite la fuente en un instante y lo que emitió en el instante previo
- Se describe mediante:
 - el conjunto de símbolos posibles s_i
 - las probabilidades de ocurrencia p(s_i) de cada s_i (constantes en el tiempo)

Ejemplo

Una fuente S emite símbolos a, b y c con probabilidades 0.3, 0.5, 0.2, respectivamente

$$S = \{a, b, c\} p(S) = \{0.3, 0.5, 0.2\}$$

esas serán sus probabilidades de emisión a lo largo del tiempo

$$P\left[\frac{S(t+1)=j}{S(0)=s_0, S(1)=s_1,...,S(t)=i}\right] = P\left[\frac{S(t+1)=j}{S(t)=i}\right] = p(s_j/s_i)$$

Fuentes con memoria

- Proceso estocástico → fenómeno aleatorio que evoluciona en el tiempo de manera impredecible desde el punto de vista del observador
- Los símbolos emitidos son estadísticamente dependientes → la probabilidad de emitir un símbolo en el instante t+1 depende de la ocurrencia de los símbolos emitidos anteriormente (en t, t-1, ...)

 Propiedad de Markov: la probabilidad de emitir un símbolo depende <u>sólo</u> del símbolo emitido en el instante anterior → fuente con memoria de orden 1 (fuente markoviana o cadena de Markov)

Fuentes con memoria (orden 1)

La fuente de memoria (de orden 1) o fuente markoviana se describe mediante:

- el conjunto de símbolos posibles s_i
- las <u>probabilidades condicionales</u> de transición entre símbolos $p(s_i/s_j)$

Nota: Se considera que las $p(s_i/s_i)$ son constantes en el tiempo (fuente markoviana homogénea)

Matriz de pasaje

$$\sum_{j} P(S(t+1) = s_{j} / S(t) = s_{i}) = \sum_{j} p(s_{j} / s_{i}) = 1$$

Grafo de transición

Nodos → símbolos Arcos (dirigidos) → transiciones posibles entre símbolos

Fuentes con memoria (orden 1)

Una fuente markoviana emite 3 símbolos 0, 1, 2 con las siguientes probabilidades de transición:

		0	1	2
	0	0	2/3	1/4
M =	1	1/2	1/3	1/4
	2	1/2	0	1/2

- $V_t \rightarrow$ Distribución de probabilidades de emisión $P(s_i,t) \rightarrow$ Vector de estado en el tiempo t
- conocido $V_t \rightarrow$ se puede obtener $V_{t+1} = M.V_t$ (M= matriz de pasaje de la Fuente)
- dada una condición inicial $\mathbf{V}_0 \to \mathbf{V}_1 = \mathbf{M} \cdot \mathbf{V}_0$ $\mathbf{V}_2 = \mathbf{M} \cdot \mathbf{V}_1 = \mathbf{M} \cdot (\mathbf{M} \cdot \mathbf{V}_0) = \mathbf{M}^2 \cdot \mathbf{V}_0$

$$\mathbf{V}_{t+1} = \mathbf{M}. \ \mathbf{V}_{t} = \mathbf{M}^{t+1}. \mathbf{V}_{0}$$

0	1	2						
	2/3	1/47		V _o	V ₁			
			0	1				
1/2	1/3	1/4	1	0				
1/2	0	1/2	2	0				
	1/2	1/2 1/3	0 1 2 0 2/3 1/4 1/2 1/3 1/4 1/2 0 1/2	1/2 1/3 1/4	1/2 1/3 1/4 0 0	1/2 1/3 1/4 0 1 0	1/2 1/3 1/4 0 1 0	1/2 1/3 1/4 0 1 0

- $V_t \rightarrow$ Distribución de probabilidades de emisión $P(s_i,t) \rightarrow$ Vector de estado en el tiempo t
- conocido $V_t \rightarrow$ se puede obtener $V_{t+1} = M.V_t$ (M= matriz de pasaje de la Fuente)
- dada una condición inicial $\mathbf{V}_0 \to \mathbf{V}_1 = \mathbf{M} \cdot \mathbf{V}_0$ $\mathbf{V}_2 = \mathbf{M} \cdot \mathbf{V}_1 = \mathbf{M} \cdot (\mathbf{M} \cdot \mathbf{V}_0) = \mathbf{M}^2 \cdot \mathbf{V}_0$

$$\mathbf{V}_{t+1} = \mathbf{M}. \ \mathbf{V}_{t} = \mathbf{M}^{t+1}.\mathbf{V}_{0}$$

/ 0	1	2						
Γ	2/3	1 / 47		V _o	V ₁			
			0	1	0			
1/2	1/3	1/4	1	0	1/2			
1/2	0	1/2	2	0	1/2			
	1/2	1/2 1/3	0 1 2 0 2/3 1/4 1/2 1/3 1/4 1/2 0 1/2	1/2 1/3 1/4	$\begin{bmatrix} 1/2 & 1/3 & 1/4 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1/2 & 1/3 & 1/4 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & \mathbf{1/2} \end{bmatrix}$	$\begin{bmatrix} 1/2 & 1/3 & 1/4 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & \mathbf{1/2} \end{bmatrix}$	1/2 1/3 1/4 0 1 0 1/2 0 1/2

- $V_t \rightarrow$ Distribución de probabilidades de emisión $P(s_i,t) \rightarrow$ Vector de estado en el tiempo t
- conocido $\mathbf{V_t} \rightarrow \text{se puede obtener}$ $\mathbf{V_{t+1}} = \mathbf{M.V_t}$ (M= matriz de pasaje de la Fuente)
- dada una condición inicial $V_0 \rightarrow V_1 = M . V_0$ $V_2 = M . V_1 = M . (M.V_0) = M^2 . V_0$

$$\mathbf{V}_{t+1} = \mathbf{M}.\ \mathbf{V}_{t} = \mathbf{M}^{t+1}.\mathbf{V}_{0}$$

Ejer	nplo	0	1	2					
	0	Γο	2/3	1/47		V _o	V ₁	V ₂	
					0	1	0	11/24	
	M = 1	1/2	1/3	1/4	1	0	1/2	7/24	
	2	1/2	0	1/2	2	0	1/2	1/4	

- $V_t \rightarrow$ Distribución de probabilidades de emisión $P(s_i,t) \rightarrow$ Vector de estado en el tiempo t
- conocido $V_t \rightarrow$ se puede obtener $V_{t+1} = M.V_t$ (M= matriz de pasaje de la Fuente)
- dada una condición inicial $V_0 \rightarrow V_1 = M . V_0$ $V_2 = M . V_1 = M . (M.V_0) = M^2 . V_0$

$$\mathbf{V}_{t+1} = \mathbf{M}.\ \mathbf{V}_{t} = \mathbf{M}^{t+1}.\mathbf{V}_{0}$$

Ejer	npio	/ 0	1	2
	0	$\begin{bmatrix} 0 \end{bmatrix}$	2/3	1/4
	M = 1	1/2	1/3	1/4
		1/2		

V _o	V ₁	V ₂	V ₃	
1	0	11/24	0,257	
0	1/2	7/24	0,389	
0	1/2	1/4	0,354	

Estado Estacionario

Los vectores de estado van variando a medida que evoluciona la emisión de símbolos de la fuente hasta estabilizarse o estacionarse → estado estacionario (V*)

- El estado estacionario es <u>independiente</u>
 de las condiciones iniciales (V₀)
- El instante en que se estaciona sí puede variar según V_o

	mnlo			est
E	emplo	/ 0	1	2
	Ó	$\begin{bmatrix} 0 \end{bmatrix}$	2/3	1/4
	M = 1	1/2	1/3	1/4
	2	1/2	0	1/2

V _o	V ₁	V ₂	V ₃	V *
1	0	11/24	0,257	 8/25
0	1/2	7/24	0,389	 9/25
0	1/2	1/4	0,354	 8/25

Comprobación: $V^* = M.V^*$

Estado Estacionario

¿Cómo obtener V* analíticamente?

Sistema de ecuaciones

$$V^* = M \cdot V^* \rightarrow (M - I) V^* = 0$$
 — eliminar una de las ecuaciones
$$\Sigma v_i^* = 1$$
 — incorporar necesariamente

Condiciones de existencia de V*:

- Conjunto finito de estados (Fuente discreta)
- Fuente ergódica (todos los estados alcanzables desde otro estado → sin estados o clases absorbentes)

Estado Estacionario

$$(M - I) V^* = 0$$

y $\sum v_i^* = 1$

$$M - I = \begin{bmatrix} -1 & 2/3 & 1/4 \\ 1/2 & -2/3 & 1/4 \\ 1/2 & 0 & -1/2 \end{bmatrix}$$
(1)

Resolver el sistema de ecuaciones:

(1)
$$-v0 + 2/3 v1 + 1/4 v2 = 0$$
 $\rightarrow v0 = 2/3 v1 + 1/4 v2$

(2)
$$1/2 \text{ v0} - 1/2 \text{ v2} = 0$$
 $\rightarrow 1/2 \text{ v0} = 1/2 \text{ v2} \rightarrow \text{v0} = \text{v2}$

(3)
$$v0 + v1 + v2 = 1$$

en (1):
$$v0 = 2/3 v1 + 1/4 v0 \rightarrow 3/4 v0 = 2/3 v1 \rightarrow v0 = 8/9 v1$$

en (3):
$$8/9 \text{ v1} + \text{v1} + 8/9 \text{ v1} = 1 \rightarrow 25/9 \text{ v1} = 1 \rightarrow \text{v1} = 9/25$$

ents:
$$v0 = v2 = 8/25$$

estado estacionario:

$$V^* = \begin{bmatrix} 8/25 \\ 9/25 \\ 8/25 \end{bmatrix}$$

Bibliografía

Abramson N., **Teoría de la Información y Codificación**, Ed. Paraninfo, 1981

Papoulis A., **Probability Random Variables and Stochastic Processes**, McGraw-Hill, 1991

Cover T., Thomas J., **Elements of Information Theory**, 2nd ed., John Wiley & Sons, 2006

Shannon C., Weaver W., **Teoría Matemática de la Comunicación**, Ed.Forja, 1981

