1. Convergence in probability

Problem 1. Convergence in probability

8/8 points (graded)

For each of the following sequences, determine whether it converges in probability to a constant. If it does, enter the value of the limit. If it does not, enter the number "999".

- 1. Let X_1, X_2, \ldots be independent continuous random variables, each uniformly distributed between -1 and 1.
 - Let $U_i=rac{X_1+X_2+\cdots+X_i}{i}$, $i=1,2,\ldots$. What value does the sequence U_i converge to in probability? (If it does not converge, enter the number "999". Similarly in all below.)

0 **✓ Answer:** 0

ullet Let $\Sigma_i=X_1+X_2+\cdots+X_i$, $i=1,2,\ldots$. What value does the sequence Σ_i converge to in probability?

999 **✓ Answer:** 999

ullet Let $I_i=1$ if $X_i\geq 1/2$, and $I_i=0$, otherwise. Define,

$$S_i = \frac{I_1 + I_2 + \cdots + I_i}{i}.$$

What value does the sequence $oldsymbol{S_i}$ converge to, in probability?

1/4 **Answer**: 0.25

ullet Let $W_i = \max\{X_1,\ldots,X_i\},\, i=1,2,\ldots$. What value does the sequence W_i converge to in probability?

1 Answer:

ullet Let $V_i=X_1\cdot X_2\cdots X_i$, $i=1,2,\ldots$. What value does the sequence V_i converge to in probability?

0 **✓ Answer:** 0

- 2. Let X_1,X_2,\ldots , be independent identically distributed random variables with ${f E}[X_i]=2$ and ${f Var}(X_i)=9$, and let $Y_i=X_i/2^i$.
 - ullet What value does the sequence Y_i converge to in probability?

0 **✓ Answer:** 0

- Let $A_n = rac{1}{n} \sum_{i=1}^n Y_i$. What value does the sequence A_n converge to in probability?
 - 0 **✓ Answer:** 0

Let $Z_i=rac{1}{3}X_i+rac{2}{3}X_{i+1}$ for $i=1,2,\ldots$, and let $M_n=rac{1}{n}\sum_{i=1}^n Z_i$ for $n=1,2,\ldots$. What value does the sequence M_n converge to in probability?

2 **✓** Answer: 2

Solution:

- The sequence U_i converges to 0. From the weak law of large numbers, we have convergence in probability to $\mathbf{E}[X_i]$, which is zero in this case.
 - The sequence S_i does not converge in probability to any number. Let $\Sigma_n = X_1 + \cdots + X_n$, where the X_i are i.i.d. uniform random variables. Suppose that Σ_n converges, in probability, to a constant c. It then follows that Σ_{n-1} also converges, in probability, to a constant c. But this implies that $X_n = \Sigma_n \Sigma_{n-1}$ converges in probability to c c = 0, where we are using a fact shown in the <u>additional theoretical material</u>. But the sequence X_n does not converge to zero in probability. This contradiction establishes that Σ_n does not converge.
 - Observe that, I_i 's are i.i.d. random variables, and $\mathbf{P}(I_i=1)=\mathbf{P}(X_i\geq 1/2)=1/4$. Therefore, $\mathbf{E}[I_i]\triangleq \mu=1$, hence, S_i converges to μ in probability, by the weak law of large numbers.
 - The sequence converges to 1. Since $-1 \leq W_i \leq 1$, we have $|W_i 1| \leq 2$ and so for $\epsilon > 2$, we trivially have $\lim_{i \to \infty} \mathbf{P}(|W_i 1| \geq \epsilon) = \lim_{i \to \infty} 0 = 0$.

Assuming $\epsilon \in (0,2]$, we have,

$$egin{aligned} \lim_{i o \infty} \mathbf{P}(|W_i - 1| \geq \epsilon) &= \lim_{i o \infty} \mathbf{P}(1 - W_i \geq \epsilon) \ &= \lim_{i o \infty} \mathbf{P}(W_i \leq 1 - \epsilon) \ &= \lim_{i o \infty} \mathbf{P}(\max\{X_1, \dots, X_i\} \leq 1 - \epsilon) \ &= \lim_{i o \infty} \mathbf{P}(X_1 \leq 1 - \epsilon) \cdots \mathbf{P}(X_i \leq 1 - \epsilon) \ &= \lim_{i o \infty} \left(1 - rac{\epsilon}{2}
ight)^i \ &= 0. \end{aligned}$$

• The sequence converges to 0. Note that $|X_k| \leq 1$ for all k, and so $|V_i| = |X_1||X_2|\cdots|X_i| \leq \min\{|X_1|,|X_2|,\ldots,|X_i|\} \leq 1$.

Hence, for any $\epsilon>1$, we trivially have $\lim_{i\to\infty}\mathbf{P}(|V_i-0|\geq\epsilon)=\lim_{i\to\infty}0=0.$

For $\epsilon \in (0,1]$, we have

$$egin{aligned} \lim_{i o\infty}\mathbf{P}(|V_i-0|\geq\epsilon) &=\lim_{i o\infty}\mathbf{P}(|X_1X_2\cdots X_i|\geq\epsilon) \ &=\lim_{i o\infty}\mathbf{P}(|X_1||X_2|\cdots |X_i|\geq\epsilon) \ &\leq\lim_{i o\infty}\mathbf{P}(\min\{|X_1|,|X_2|,\ldots,|X_i|\}\geq\epsilon) \ &=\lim_{i o\infty}\mathbf{P}(|X_1|\geq\epsilon)\mathbf{P}(|X_2|\geq\epsilon)\cdots\mathbf{P}(|X_i|\geq\epsilon) \ &=\lim_{i o\infty}(1-\epsilon)^i \ &=0. \end{aligned}$$

• The sequence converges to 0. We have $\mathbf{E}[Y_i]=\mathbf{E}[X_i]/2^i=2/2^i=1/2^{i-1}$ and $\mathsf{Var}(Y_i)=\mathsf{Var}(X_i)/(2^i)^2=9/2^{2i}$. By the Chebyshev inequality, for any $\epsilon>0$,

$$\left|\mathbf{P}\left(\left|Y_i-rac{1}{2^{i-1}}
ight|\geq\epsilon
ight)\leqrac{9}{2^{2i}\cdot\epsilon^2}.$$

Taking the limit as $i \to \infty$, we have

$$\lim_{i o\infty}\mathbf{P}(|Y_i-0|\geq\epsilon)=0.$$

• The sequence converges to **0**. We have,

$$egin{aligned} \mathbf{E}[A_n] &= \left[rac{1}{n}\sum_{i=1}^n Y_i
ight] \ &= rac{1}{n}\left[\sum_{i=1}^n rac{X_i}{2^i}
ight] \ &= rac{1}{n}\left(\sum_{i=1}^n rac{2}{2^i}
ight) \ &= rac{1}{n}\left(2-rac{2}{2^n}
ight), \end{aligned}$$

and

$$egin{align} \mathsf{Var}(A_n) &= \mathsf{Var}\left(rac{1}{n}\sum_{i=1}^n Y_i
ight) \ &= rac{1}{n^2}\mathsf{Var}\left(\sum_{i=1}^n rac{X_i}{2^i}
ight) \ &= rac{1}{n^2}igg(\sum_{i=1}^n rac{9}{2^{2i}}igg) \ &= rac{1}{n^2}igg(3-rac{3}{2^{2n}}igg)\,. \end{split}$$

Note that $\lim_{n o \infty} \mathbf{E}[A_n] = 0$ and $\lim_{n o \infty} \mathsf{Var}(A_n) = 0$.

By the Chebyshev inequality, for any $\epsilon > 0$,

$$\left|\mathbf{P}\left(\left|A_n-rac{1}{n}\left(2-rac{2}{2^n}
ight)
ight|\geq\epsilon
ight)\leqrac{1}{n^2\epsilon^2}igg(3-rac{3}{2^{2n}}igg)\,.$$

Taking the limit as $n \to \infty$, we have

$$\lim_{n o\infty}\mathbf{P}(|A_n-0|\geq\epsilon)=0.$$

• The sequence converges to **2**. Note that

$$M_n = rac{1}{3} \cdot rac{1}{n} \sum_{i=1}^n X_i + rac{2}{3} \cdot rac{1}{n} \sum_{i=1}^n X_{i+1}.$$

By the weak law of large numbers, the first term converges in probability to $(1/3) \cdot \mathbf{E}[X_i]$ and the second term converges in probability to $(2/3) \cdot \mathbf{E}[X_i]$. As discussed in lecture, if two sequences of random variables each converge in probability, then their sum also converges in probability to the sum of the two limits. Therefore, M_n converges in probability to $(1/3) \cdot \mathbf{E}[X_i] + (2/3) \cdot \mathbf{E}[X_i] = 2$.

提交

你已经尝试了4次(总共可以尝试4次)