

EL 5206 Identificación Periocular

Claudio A. Perez Departamento de Ingeniería Eléctrica, Universidad de Chile

Modalidades Biométricas más Frecuentes

 Identificación de individuos o caracterización de su comportamiento en base a datos medidos sobre su anatomía (huellas dactilares, rostros, iris, palma de la mano, etc.) o su comportamiento (voz, firma, caminata, desplazamientos, etc.).

Feature extraction and matching

Gabor Jets

 Gabor Jet: Conjunto de funciones Gabor 2-D complejas que coinciden en posición y longitud de onda (λ), pero difieren en orientación

$$h(x, y; \sigma, \omega_0, \phi) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{1}{2} \frac{x^2 + y^2}{\sigma^2}\right) \cos\left(\omega_0 \left(x\cos\phi + y\sin\phi\right)\right)$$

Face feature extraction

Face feature extraction

Multi-resolution

Base de Datos GrayFeret

- Imágenes de 256x384 en tonos de grises
- 5 subconjuntos:
 - Fa: 1196, 1 foto/individuo. Se utiliza como galería
 - Fb: 1195, 1 foto/individuo, mismo día, cámara e iluminación
 - Fc: 194,~1 foto/individuo, mismo día, diferente cámara e iluminación
 - Dup1: 722, ~2 fotos/individuo, hasta 34 meses de diferencia
 - Dup2: 234, ~2 fotos/individuo, por lo menos 18 meses de diferencia

Ejemplos

Bases de datos

Base de datos - Partición

bb +60°

bc +40°

bd +25°

be +15°

ba 0°

bf −15°

bg −25°

bh -40°

bi -60°

FERET

CMU PIE

Table 4
Rank-1 face recognition rate on different subsets of FERET database for different face recognition algorithms published in the literature.

Methods	Accuracy (%)				Number of errors					
	Fb	Fc	Dup1	Dup2	Fb	Fc	Dup1	Dup2	Total	
LMG [43] ^a	99.5	99.5	85.0	79.5	6	1	108	48	163	
LGBPWP [41] ^a	98.1	98.9	83.8	81.6	23	2	117	43	185	
Weighted LLGP_FR [40] ^a	99.0	99.0	80.0	78.0	12	2	144	51	209	
Weighted HGPP [38] ^a	97.5	99.5	79.5	77.8	30	1	148	52	231	
Weighted LGBPHS [37] ^a	98.0	97.0	74.0	71.0	24	6	188	68	286	
LGT [39] ^a	97.0	90.0	71.0	67.0	36	19	209	77	341	
Weighted LBP [37,26] ^a	97.0	79.0	66.0	64.0	36	41	245	84	406	
GFC [37,35]b	97.2	79.9	68.3	46.6	33	39	229	125	426	
EBGM [37,34] ^b	95.0	82.0	59.1	52.1	60	35	295	112	502	

^a Results extracted from original source

^b Results extracted from the first referenced paper, and the original method is the second referenced paper.

Table 5

Face recognition rate on different subsets of the FERET database for our proposed methods and compared to the best results published up to date in the literature LMG [43]. Subindex 1 indicates FERET training set Train1, subindex 2 indicates FERET training set Train2.

Methods	Accuracy (%)				Number of errors					
	Fb	Fc	Dup1	Dup2	Fb	Fc	Dup1	Dup2	Total	
LMG [43]	99.5	99.5	85.0	79.5	6	1	108	48	163	
LMG-GSJ ₁	99.7	99.5	86.3	81.2	4	1	99	44	148	
LMG-GSJ ₂	99.7	99.5	86.3	82.1	3	1	99	42	145	
LMG-EJS _{1a}	99.8	100	88.0	84.2	2	0	87	37	126	
LMG-EJS _{1b}	99.4	99.5	88.0	87.2	7	1	87	30	125	
LMG-EJS ₂	99.5	99.5	87.0	85.9	6	1	94	33	134	
LMG-BIP ₁	99.6	99.5	86.0	82.9	5	1	101	40	147	
LMG-BTH ₁	99.7	99.5	86.8	82.1	4	1	95	42	142	

Table 6

Face recognition rate on different subsets of the FERET database for our proposed methods combined and compared to the best results published up to date in the literature LMG [43]. Subindex 1 indicates FERET training set Train1, subindex 2 indicates FERET training set Train2.

Methods	Accuracy ((%)			Number of errors					
	Fb	Fc	Dup1	Dup2	Fb	Fc	Dup1	Dup2	Total	
LMG [43]a	99.5	99.5	85.0	79.5	6	1	108	48	163	
LMG-GSJ-BTH-BIP ₁	99.7	99.5	86.6	83.8	4	1	97	38	140	
LMG-GSJ-BTH-BIP ₂	99.6	99.5	86.8	83.8	5	1	95	38	139	
LMG-EJS-BTH ₁	99.8	99.5	88.9	85.9	2	1	80	33	116	
LMG-EJS-BTH ₂	99.5	100	88.1	86.3	6	0	86	32	124	
LMG-EJS-BIP ₁	99.5	100	87.8	86.3	6	0	88	32	126	
LMG-EJS-BIP ₂	99.2	99.5	87.4	86.3	10	1	91	32	134	
LMG-EJS-BTH-BIP1a	99.5	100	88.8	87.6	6	0	81	29	116	
LMG-EJS-BTH-BIP1b	99.8	99.5	89.2	86.8	2	1	78	31	112	
LMG-EJS-BTH-BIP ₂	99.6	100	88.2	86.3	5	0	85	32	122	

^a Results extracted from original source.

Mallas deformables

Introduction

- Why gender classification?
 - The face provides crucial information about gender, age, ethnicity, age and identity
 - Retailers would like to know about the behavior of customers
 - Applications in real time electronic marketing, marketing research, demographic information collection, biometric authentication, social networks, and others

LBP

 Si h(I(xc,yc),I(x,y)) es un operador de comparación tal que h=1 si I(xc,yc)<I(x,y) y h=0 en otro caso, entonces

$$LBP(x, y) = \bigcup_{(x', y') \in N(x, y)} h(I(x, y), I(x', y'))$$

N(x,y) una vecindad de (x,y) y [] el operador de concatenación.

LBP Features

Total: Size of Vector 1x 20945 (c/traslape ventanas)

LBP Features

LBP

Feature extraction and fusion

