1. Formulating queries in Relational Algebra, RA SQL and TRC

- 1. Find each triple (c, p, s) where c is the cname of a company, p is the pid of a person who earns the lowest salary at that company and knows at least someone who has Operating Systems skill, and s is the salary of p.
- (a) Formulate this query in Relational Algebra in standard notation. (4.5 points) ANSWER:

 π cname, pid, salary((Company $\triangleright \triangleleft$ worksFor) \bowtie worksFor) \bowtie Knows \bowtie (π pid, skill(personSkill) \bowtie σskill=Operating Systems(personSkill)))

(c) Formulate this query in Tuple Relational Calculus. (4.5 points) ANSWER:

 $\{(c, p, s) \mid Company(c) \land worksFor(w) \land w.cname = c.cname \land pid = w.pid \land s = w.salary \land Knows(k) \land k.pid1 = w.pid \land \exists (p2)(personSkill(ps) \land ps.pid = k.pid2 \land ps.skill = 'Operating Systems')\}$

- 2. Find the name, salary and city of each person who (a) lives in a city where no one has the Networks skill and (b) earns the highest salary in his/her company.
- (a) Formulate this query in Relational Algebra in standard notation. (4.5 points) ANSWER:

 π pname, salary, city(Person $\triangleright \triangleleft$ worksFor \bowtie worksFor) - π pname, salary, city(π city(π city(personLocation \bowtie π pid, skill(personSkill) \bowtie σskill=Networks(personSkill)))

(c) • Formulate this query in Tuple Relational Calculus. (4.5 points) ANSWER:

{(pname, salary, city) | Person(p) \land worksFor(w) \land p.pid = w.pid \land w.salary = $(\pi \max Salary(\sigma w.cname = w.cname(MaxSalaries))) <math>\land$ \exists (c)(companyLocation(cl) \land cl.cname = w.cname \land cl.city = city) \land city \notin (π city(σ ps.skill = 'Networks'(personSkill)) \cap π city(personLocation))}

- 3. Find each pair (c1, c2) of cnames of different companies such that no employee of c1 and no employee of c2 live in Chicago.
- (a) Formulate this query in Relational Algebra in standard notation. (4.5 points) ANSWER:

 π c1.cname, c2.cname(π w1.cname(σ city \neq 'Chicago'(worksFor $\bowtie \pi$ pid, city(personLocation)))) $\bowtie \pi$ w2.cname(σ city \neq 'Chicago'(worksFor $\bowtie \pi$ pid, city(personLocation))))

(c) • Formulate this query in Tuple Relational Calculus. (4.5 points) ANSWER:

 $\{(c1, c2) \mid worksFor(w1) \land worksFor(w2) \land w1.cname < w2.cname \land \forall (p1)(personLocation(pl1) \land pl1.pid = w1.pid \rightarrow pl1.city \neq 'Chicago') \land \forall (p2)(personLocation(pl2) \land pl2.pid = w2.pid \rightarrow pl2.city \neq 'Chicago') \}$

4. Formulate these query in Relational Algebra in standard notation:

(a) • Find the pid, pname of each person who lives in MountainView, works for a company which is headquartered in MountainView , and has a salary less than or equal to 60000 (4 points)

ANSWER:

- 4a) π pid, pname(σ city=MountainView(Person) \bowtie worksFor \bowtie companyLocation \bowtie σ headquarter=MountainView(Company) \bowtie σ salary \leq 60000(worksFor)))
- (b) Find the pid, pname, and city of a person who knows at least one person who knows another person who earns more than 65000. Let us consider 3 people p1,p2, and p3. p1 knows p2 and p2 knows p3. p3 earns more than 65000. The query returns the pid, pname, and city of p1. (4 points)

ANSWER:

 π pid, pname, city(π pid, pname, city(Person) ⋈ Knows ⋈ π pid2, pname2, city2(Knows ⋈ π pid3, salary(worksFor ⋈ σ salary>65000(worksFor))))

5. Formulate these query in Tuple Relational Calculus:

(a) • Find the pid, pname, cname, and salary of a person who lives in Bloomington, earns at least 40000, and works for a company headquartered in Seattle. (4 points) ANSWER:

{p.pid, p.pname, w.cname, w.salary | Person(p) \land worksFor(w) \land companyLocation(cL) \land p.pid = w.pid \land w.cname = cL.cname \land p.city = 'Bloomington' \land w.salary \ge 40000 \land cL.headquarter = 'Seattle'}

(b) • Find the name of all skills of persons who don't live in Bloomington but their managers live in Bloomington. (4 points)

ANSWER:

 $\{sk.skill \mid Person(p1) \land Person(p2) \land hasManager(hm) \land personSkill(ps) \land ps.pid = p1.pid \land ps.skill = sk.skill \land p1.city \neq 'Bloomington' \land p2.pid = hm.mid \land p2.city = 'Bloomington' \}$

2. Formulating constraints using Relational Algebra

6. Each manager knows all of his/her employees. (3 points) ANSWER:

 $\pi \operatorname{eid}(M) \subseteq \pi \operatorname{mid1}(K1) \bowtie \pi \operatorname{mid2}(K2) \bowtie ... \bowtie \pi \operatorname{midn}(Kn)$

7. No person who works at Amazon knows at-most 2 people. (3 points) ANSWER:

 $\pi \operatorname{pid}(P) \subseteq \pi \operatorname{pid1}(K1) \bowtie \pi \operatorname{pid2}(K2)$

8. • Some person who works for a company headquartered at Cupertino has a salary less than person with no skills. (3 points) (Assumption: Only 1 person with no skills)

ANSWER:

 $\pi \text{pid1}(W1) \subseteq \pi \text{pid2}(W2) \bowtie \pi \text{pid3}(\sigma \text{skill} = \emptyset(P3))$

3. Formulating constraints in the Tuple Relational Calculus

9. Each Manager manages at least two people. (3 Points) ANSWER:

 \forall m (Manager(m) $\rightarrow \exists$ e1 \exists e2 (hasManager(hm1) \land hm1.mid = m.mid \land hm1.eid = e1.eid \land \exists hm2 (hasManager(hm2) \land hm2.mid = m.mid \land hm2.eid = e2.eid \land e1.eid \neq e2.eid)))

10. Some person has a salary that is strictly lower than the salary of each of his or her managers. (3 Points)

ANSWER:

 $\exists p \ \exists m1 \ \exists m2 \ (Person(p) \land hasManager(hm1) \land hm1.eid = p.pid \land worksFor(w1) \land w1.pid = p.pid \land hasManager(hm2) \land hm2.mid = hm1.mid \land worksFor(w2) \land w2.pid = hm2.eid \land w1.salary < w2.salary)$

11. Each employee and his or her managers work for the same com□pany. (3 Points)

ANSWER:

 \forall e \exists m (Employee(e) \land hasManager(hm) \land hm.eid = e.eid \land worksFor(w1) \land w1.pid = e.eid \land worksFor(w2) \land w2.pid = hm.mid \land w1.cname = w2.cname)