The case of 2

a is an odd number. Is there a solution for the cogruence $x^2 \equiv a \pmod{2^k}$

k units QR

1 1

2 1,3

3 1,3,5,7 1

4 1,3,5,7,9,11,13,15 1,9

1,3,5,7,9,11,13,15 1,9,17,25 17,19,21,23,25,27,29,31

Theorem: Let $k \geqslant 3$, then a is a QR modulo 2^k if and only $a \equiv 1 \pmod{8}$. Therefore, there are 2^{k-3} QR modulo 2^k and $3 \cdot 2^{k-3}$ QNR modulo 2^k .

Proof: The second part is an immediate result of the first part.

We prove by induction on k.

Base case k=3 ✓

Assume true for some $k \ge 3$, then prove for k+1.

 (\Rightarrow) If a is a QR, then $x^2 \equiv a \pmod{2^{k+1}}$

 \Rightarrow $\chi^2 = a \pmod{8}$

=> a=1 (mod 8)

(\Leftarrow): Suppose $a \equiv 1 \pmod{8}$. By induction hypothesis $x^2 \equiv a \pmod{2^k}$ for some $x \pmod{k}$ where $x \pmod{k}$ and $x \pmod{k}$ be odd obviously)

we have $x^2 \equiv a \pmod{2^{k+1}}$ or $x \equiv a+2^k \pmod{2^{k+1}}$ (we are done)

Suppose $x^2 \equiv a + 2^k \pmod{2^{k+1}}$

Let $y = x + 2^{k-1}$, then

 $y^{2} = x^{2} + 2 + 2 + 2 \cdot x = (a + 2^{k}) + (0) + 2^{k}$ $0 \pmod{2^{k+1}} \quad 2^{k} \pmod{2^{k+1}}$ $2k-2 \ge k+1 \qquad \equiv a \pmod{2^{k+1}}.$

The general case $n = p_1 p_2 \cdots p_k$

Suppose (a, n) = 1.

a is a QR modulo n if and only if a is a QR modulo each P_i .

Remark: $QR \times QR = QR$, but $QNR \times QNR$ might not be a QR in the general case. For example; $5 \pmod{12}$, $7 \pmod{12}$ are QNR but $35 = 11 \pmod{12}$ also a QNR.

Law of Quadratic Reciprocity

p ≠ q odd primes.

$$p \text{ or } q \text{ or both } \equiv l \pmod{4} \Rightarrow \left(\frac{q}{p}\right) = \left(\frac{P}{q}\right)$$

$$p \equiv q \equiv 3 \pmod{4} \Rightarrow \left(\frac{q}{p}\right) = -\left(\frac{P}{q}\right).$$

Proof

Consider the set

$$S = \left\{ 1 \leq n \leq \frac{pq-1}{2} : (n,pq) = 1 \right\}.$$

We'll look at the product of the elements of S mod (pq) (or equiv. mod (p) and mod (q)). Step-1

In mod p: The product is $\frac{p \cdot q^{-1} = pq^{-p}}{2}$ $\frac{(1 \cdot 2 \cdot ... \cdot (p-1)) \cdot (1 \cdot 2 \cdot ... \cdot (p-1)) \cdot (1 \cdot 2 \cdot ... \cdot (p-1)) \cdot (1 \cdot 2 \cdot ... \cdot \frac{p^{-1}}{2} \cdot q)}{q \cdot 2q \cdot 3q \cdot ... \cdot \frac{p^{-1}}{2} \cdot q}$

modulo p, which is equivalent to $\frac{(p-1)!}{q^{\frac{p-1}{2}} \cdot (\frac{p-1}{2})!} = \frac{\frac{q-1}{2}}{(\frac{q}{p})} \equiv (-1)^{\frac{q-1}{2}} \cdot (\frac{q}{p}) \pmod{p}$

The product is $(-1)^{\frac{q-1}{2}} \cdot \left(\frac{q}{p}\right)$ modulo pIn mod q: Similarly, $(-1)^{\frac{p-1}{2}} \cdot \left(\frac{p}{q}\right)$ modulo q.

Step-2 In mod pg using a different method

Claim: The product is 1 or -1 (mod pq) if and only if $p=q=1 \pmod{4}$

Proof of the claim:

For any $n \in S$, we have $n^{-1} \pmod{pq} \in S$ or $-n^{-1} \pmod{pq} \in S$ Pairing up n with n^{-1} or $-n^{-1}$, we get 1 or -1 modulo pq.

The only issue is $n^2 \equiv -1$, 1 (mod pq)

- $n^2 \equiv 1 \pmod{pq}$ have 4 solutions by CRT Say 1, x, -x, -1 are these solutions (suppose $x \in S$)
- $n^2 = -1 \pmod{pq}$ have no solution unless $p = q = 1 \pmod{4}$. In this case, the product of elements of S is $\pm \times \pmod{pq}$ which is not $\pm 1 \pmod{pq}$

• $n^2 = -1$ (mod pq) have four solutions by CRT when p = q = 1 (mod 4). Actually they will be y, -y, xy, -xy for some y. \Rightarrow Then the product will be $(\pm x) \cdot (\pm y \cdot \pm xy) = \pm (xy)^2 = \pm 1$ (mod pq).

Step-3: (added after lecture)

Say s is the product of the elements of S

In Step-1, we showed

S = something = - l or l (mod p)

S = something = - | or | (mod q)

In Step-2, we showed

This means either

90

So, we have

$$(-1)^{\frac{q-1}{2}}, \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}}, \left(\frac{p}{q}\right) \iff p \equiv q \equiv 1 \pmod{4}$$

- If $P \equiv q \equiv 1 \pmod{4} \Rightarrow LHS = RHS$ $\Rightarrow \left(\frac{q}{P}\right) = \left(\frac{P}{q}\right)$
- If $P \equiv 1$, $q \equiv 3 \pmod{4} \Rightarrow LHS \neq RHS$ $\Rightarrow -\left(\frac{q}{P}\right)_{\neq} \left(\frac{P}{q}\right)$ $\Rightarrow \left(\frac{q}{P}\right)_{\equiv} \left(\frac{P}{q}\right)$
- If $p \equiv 3$, $q \equiv 1 \pmod{4}$: similar as above $\Rightarrow \left(\frac{q}{p}\right) = \left(\frac{p}{q}\right)$
- If $P = q = 3 \pmod{4}$ \Rightarrow LHS \neq RHS $\Rightarrow -\left(\frac{q}{P}\right)_{\#} \left(\frac{P}{q}\right)$ $\Rightarrow \left(\frac{q}{P}\right)_{\#} + \left(\frac{P}{q}\right)$ $\Rightarrow \left(\frac{q}{P}\right)_{\#} = -\left(\frac{P}{q}\right)$