FJFI ČVUT V Praze

Sériový a vázaný rezonanční obvod

Michal Červeňák		
dátum merania: 28.11. 2016		
skupina: 4		
Klasifikace:	 	

1 Pracovní úkol

- DU: Vypište diferenciální rovnice pro mechanický a elektrický harmonický os- ´ cilátor. Porovnáním členů určete, která veličiny si v obou oscilátorech odpovídají, a pokuste se vysvětlit roli jednotlivých prvků v RLC obvodu. Nápověda na Obr. 2[1]
- 2. Sestavte sáriový rezonanční obvod dle Obr. 9. Pozorujte vliv změny parametrů R, L a C na obvod. Určete frekvenci vlastních kmitů RLC obvodu pro hodnoty $R=50~\Omega, L=1~\text{mH}$ a C=500~pF. Porovnejte s předpokládanou hodnotou získanou z Thompsonova vzorce (10).
- Zobrazte v módu rozmítání proudovou rezonanční křivku na osciloskopu a slovně popište její změny při zasouvání jádra do cívky. Na základě toho odhadněte magnetický charakter jádra.
- 4. Proměřte proudovou rezonanční křivku v závislosti na frekvenci. Měření proveď te dvakrát: pro vzduchovou cívku a cívku s jádrem. Znázorněte obě rezonanční křivky do společnáho grafu a fitováním stanovte činitele jakosti obou rezonančních obvodů. Na základě toho určete indukčnost cívky s jádrem.
- 5. Určete kapacitu neznámáho kondenzátoru, o němž víte, že má kapacitu menší, než je maximální hodnota kapacity kondenzátoru Tesla.
- 6. Sestavte induktivně vázaný obvod a v módu rozmítání zobrazte jeho napěťovou rezonanční křivku. Cívky posouvejte tak, abyste dosáhli vazby nadkritická, kritická a podkritická. Nalezněte vzdálenost, při níž dochází k vazbě kritická, a vzdálenost, při níž k vazbě již nedochází. Nepovinná: Proměřte napěťovou rezonanční křivku pro vazbu nadkritickou a znázorněte do grafu.

2 Pomôcky

Frekvenční generátor UNI-T UTG9020A, osciloskop GoldStar, odporová dekáda CMT R1-1000 (1 $\Omega-11M\Omega$), indukčná dekáda CMT L3-250 (1 $\mu H-11$ H),

vzduchová cívka PHYWE $(1mH, 0.4m\Omega)$, jádro cívky, ladicí kapacitní normál Tesla $(100-1100~\rm pF)$, kapacitní normál Ulrich $(1000~\rm pF)$, kondenzátor neznámé kapacity, dva koaxiální kabely, spojovací vodiče, dvě cívky pro vázané obvody s ladicím kondenzátorem na stavebnicových dílech PHYWE.

3 Teória

Rezonančnú frekvenciu Ω_0 môžeme určiť pomocou Thomsonova vzorca

$$\Omega_0 = \frac{1}{\sqrt{LC}},\tag{1}$$

kde L je indukčnosť cievky a C je kapacita kondenzátoru.

V našom prípade z zapojenia z úlohy 1. môžeme pre $L=1\,\mathrm{mH}$ a $C=\mu F$ vypočítať podľa vzťahu 1 vlastnú frekvenciu $\Omega_0=1,41\,\mathrm{MHz}.$

Pre RLC obvod závislosť prúdu I na frekvencií f môžeme opísať vzťahom

$$I_{(f)} = \frac{I_m ax}{\sqrt{1 + Q^2 \left(\frac{f_0}{f} - \frac{f_0}{f}\right)^2}},$$
(2)

kde f_0 je rezonančná frekvencia a ${\cal Q}$ činiteľ akosti obvodu.

Kapacitu neznámeho kondenzátoru ${\cal C}_x$ zapojenie paralelne ku kondenzátoru so známou kapacitou vypočítame

$$C_x = C_1 - C_2, (3)$$

kde C_1 je kapacita bez paralelného neznámeho kondenzátoru a C_2 je kapacita so zapojeným paralelným kondenzátorom.

Činiteľ akosti Q vypočítame ako

$$Q = \frac{\alpha}{R} \sqrt{\frac{L}{C}},\tag{4}$$

kde L je indukčnosť, C je kapacita, R je odpor a α je parameter pre koreláciu. Pre výpočet indukčnosti cievky môžeme odvodiť zo vzťahu 4

$$\left(\frac{Q_2}{Q_1}\right)^2 = \frac{C_1 L_1}{C_2 L_1} \,.$$
(5)

3.0.1 Spracovanie chýb merania

Označme $\langle t \rangle$ aritmetický priemer nameraných hodnôt t_i , a Δt hodnotu $\langle t \rangle - t$, pričom

$$\langle t \rangle = \frac{1}{n} \sum_{i=1}^{n} t_i \,, \tag{6}$$

a chybu aritmetického priemeru

$$\sigma_0 = \sqrt{\frac{\sum_{i=1}^n (t_i - \langle t \rangle)^2}{n(n-1)}},$$
(7)

pričom n je počet meraní.

4 Postup merania

- 1. Bol zostavený obvod podľa Obr. 1 [1] a odmeraná dĺžka jednej periódy kmitu a frekvencia kmitania.
- 2. Generátor frekvencií bol nastavený na mód rozmítaní a pozorované zmeny amplitúdy pri vkladaní a vyberaní jadra cievky
- 3. Pre rozsah 20 hodnôt frekvencie v okolí vlastnej frekvencie sa zistila amplitúda s jadrom a bez jadra cievky.
- 4. Obvod sa pomocou zmeny kapacity na normále uviedol do rezonancie a následne sa paralelne k normále umiestnil kondenzátor s neznámou kapacitou. A opäť bol obvod uvedený do rezonancie.
- Obvod bol zostavený podľa Obr. 4. [1], nameraná hodnota vzdialeností pre maximum a úplný útlm.

5 Výsledky merania

5.1 Úloha 1.

V tabuľke 1 sú zaznamenané odmerané hodnoty vlastnenej frekvencie. Z týchto hodnôt bola vypočítaná podľa vzťahu 6 priemerná hodnota

$f_0[\mathrm{kHz}]$	$T_0[\mu s]$
217.4	4.6
217.4	4.6
213.7	4.68

Tab. 1: Namerané hodnoty frekvencie f_0 a periódy T_0 vlastných kmitov RLC obvodu

5.2 Úloha 3.

Pre vzdušnú cievku s a bez jadra boli namerané hodnoty napätia U v okolí vlastnej frekvencie obvodu, tie boli vynesené do grafov Obr. 1 bez jadra a 2 s jadrom a spoločne do Obr. 3.

Hodnoty získané pre cievku bez jadra $Q=(8,5\pm0,3)$ a pre cievku s jadrom $Q=(2,5\pm0,1)$ Pre výpočet indukčnosti cievky sme využili vzťah 5 pričom C1=C2. Z toho dostávame indukčnosť cievky $L_2=0,085\,\mathrm{mH}$.

5.3 Úloha 2.

Pre cievku bez jadra sme činiteľ akosti Q vypočítal podľa vzťahu 4,

$$Q = 28,28\alpha$$
,

pre cievku s jadrom sme využili hodnotu 5.2a dosadili opäť do vzťahu 4 a tým určili koeficient akosti

$$Q = 8.32\alpha$$
 .

Obr. 1: Závislosť veľkosti prúdu I na rezonančnej frekvencií f pre cievku bez jadra, preložená funkciou $I = \frac{36.8 \pm 0.4}{\sqrt{1 + (8.5 \pm 0.3) \cdot \left(\frac{f}{218.1 \pm 0.2} - \frac{218.1 \pm 0.2}{f}\right)^2}}.$

5.4 Úloha 4.

Pri zisťovaní neznámej kapacity C_x sme namerali hodnoty $C_1=406\,\mathrm{pF}$ a $C_2=327\,\mathrm{pF}$, následne podľa vzťahu 3 sme dopočítali neznámu kapacitu

$$C_x = 79 \,\mathrm{pF}$$
.

5.5 Úloha 5.

K maximálnej amplitúde došlo vo vzdialenosti $x_1=(4,4\pm0,1)$ mm. Úplný útlm nastal vo vzdialenosti $x_2=(14,3\pm0,1mm)$.

6 Diskusia

V Prvej časti sme spočítali teoretickú rezonančnú frekvenciu obvodu ako $\Omega_0 = 1,41\,\mathrm{MHz}$ ale nameraná hodnota je $f_0 = (216\pm1)\,\mathrm{kHz}$. Čo je chyba o skoro celý rád. Vyzerá to pravdepodobne na chybu vo výpočtoch alebo použitých hodnôt pre výpočet.

V druhej časti sa pri vložení jadra do cievky sa zmenšil pretekajúci prúd a teda zmenšila akosť. Teda môžeme predpokladať, že jadro je za paramagnetického materiálu.

Dátam z predchádzajúceho bodu odpovedajú aj dáta vynesené v grafe Obr. 3 kde je jasne vidieť pokles prídu v oblasti rezonančnej frekvencie pri vloženom jadre v cievke.

Pri meraní kapacity neznámeho kondenzátoru bolo meranie uskutočnené len raz, však podľa [1] sme mali meranie previesť 5 krát.

Obr. 2: Závislosť veľkosti prúdu I na rezonančnej frekvencií f pre cievku s jadrom, preložená funkciou $I=\frac{11.5\pm0.14}{\sqrt{1+(2.5\pm0.1)\cdot\left(\frac{f}{212.2\pm0.1}-\frac{212.2\pm0.1}{f}\right)^2}}.$

Obr. 3: Závislosť veľkosti prúdu I na rezonančnej frekvencií f pre cievku bez jadra, preložená funkciou $I = \frac{36.8 \pm 0.4}{\sqrt{1 + (8.5 \pm 0.3) \cdot \left(\frac{f}{218.1 \pm 0.2} - \frac{218.1 \pm 0.2}{f}\right)^2}} \text{ a závislosť veľkosti prúdu } I$ na rezonančnej frekvencií f pre cievku s jadrom, preložená funkciou $I = \frac{11.5 \pm 0.14}{\sqrt{1 + (2.5 \pm 0.1) \cdot \left(\frac{f}{212.2 \pm 0.1} - \frac{212.2 \pm 0.1}{f}\right)^2}}.$

Posledné meranie vzdialenosti je predovšetkým pri hľadaní maxima zaťažené mnohými systematickými chybami. V prvej rade sú obe cievky za v plastovom obale teda neviem odmerať ich presnú vzdialenosť ale len vzdialenosť krytov. Cievky niesu dokonalé rovnobežné voči sebe a teda ich vzdialenosť sa v rôznych miestach po obvode líši, odhadom $\sim 0.2\,\mathrm{cm}$.

7 Záver

Vlastná frekvencia obvodu bola určená $f_0=(216\pm1)$ kHz. Cievka s jadrom má indukčnosť $L_2=0.085\,\mathrm{mH}$. Neznámy kondenzátor má kapacitu $C_x=79\,\mathrm{pF}$.

Reference

[1] Sériový a vázaný rezonanční obvod [cit. 4.12.2016]Dostupné po prihlásení z Kurz: Fyzikální praktikum I:https://praktikum.fjfi.cvut.cz/pluginfile.php/123/mod_resource/content/7/navod_rezonancni_obvody_161005.pdf