We claim:

35

40

45

A carboxylic acid derivative of the formula I 5

where R is formyl, tetrazole [sic], nitrile [sic], a COOH group 15 or a radical which can be hydrolyzed to COOH, and the other substituents have the following meanings:

- R² hydrogen, hydroxyl, NH₂, NH(C₁-C₄-alkyl), N(C₁-C₄-alkyl)₂,
 halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy,
 C₁-C₄-haloalkoxy or C₁-C₄-alkylthio;
- X nitrogen or CR¹⁴ where R¹⁴ is hydrogen or C₁₋₅-alkyl, or CR¹⁴ forms together with CR³ a 5- or 6-membered alkylene or alkenylene ring which can be substituted by one or two C₁₋₄-alkyl groups and in which in each case a methylene group can be replaced by oxygen, sulfur, -NH or -NC₁₋₄-alkyl;
- R³ hydrogen, hydroxyl, NH₂, NH(C₁-C₄-Alkyl), N(C₁-C₄-alkyl)₂,
 halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy,

 C₁-C₄-haloalkoxy, -NH-O-C₁₋₄-alkyl, C₁-C₄-alkylthio or CR³ is
 linked to CR¹⁴ as indicated above to give a 5- or 6-membered
 ring;
 - R^4 and R^5 (which can be identical or different):

phenyl or naphthyl, which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, phenoxy, C_1 - C_4 -alkylthio, amino, C_1 - C_4 -alkylamino or C_1 - C_4 -dialkylamino; or

phenyl or naphthyl, which are connected together in the ortho positions via a direct linkage, a methylene, ethylene or ethenylene group, an oxygen or sulfur atom or an SO₂, NH or N-alkyl group

or C₃-C₇-cycloalkyl;

R⁶ hydrogen, C₁-C₈-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl or
C₃-C₈-cycloalkyl, where each of these radicals can be
substituted one or more times by: halogen, nitro, cyano,
C₁-C₄-alkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyloxy, C₁-C₄-alkylthio, C₁-C₄-haloalkoxy, C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl, C₃₋₈-alkylcarbonylalkyl, C₁-C₄-alkylamino,
di-C₁-C₄-alkylamino, phenyl or phenyl or phenoxy which is
substituted one or more times, eg. one to three times, by
halogen, nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,
C₁-C₄-alkoxy, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio;

phenyl or naphthyl, each of which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, amino, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkylamino, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino or dioxomethylene [sic] or dioxoethylene [sic];

20

25

15

a five- or six-membered heteroaromatic moiety containing one to three nitrogen atoms and/or one sulfur or oxygen atom, which can carry one to four halogen atoms and/or one or two of the following radicals: C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, phenyl, phenoxy or phenylcarbonyl, it being possible for the phenyl radicals in turn to carry one to five halogen atoms and/or one to three of the following radicals: C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy and/or

30 C_1-C_4 -alkylthio;

with the proviso that R^6 can be hydrogen only when Z is not a single bond;

- 35 Y sulfur or oxygen or a single bond;
 - z sulfur, oxygen, -SO-, -SO₂- or a single bond.

40