## HW6-soln

March 11, 2025

- 1 Chem 30324, Spring 2025, Homework 6
- 2 Due March 7, 2025
- 2.0.1 The diatomic nitric oxide (NO) is an unusual and important molecule. It has an odd number of electrons, which is a rarity for stable molecule. It acts as a signaling molecule in the body, helping to regulate blood pressure, is a primary pollutant from combustion, and is a key constituent of smog. It exists in several isotopic forms, but the most common, <sup>14</sup>N= <sup>16</sup>O, has a bond length of 1.15077 Å and harmonic vibrational frequency of 1904 cm<sup>-1</sup>.
- 2.1 Statistical mechanics of vibrating NO
- 1. Using your knowledge of the harmonic oscillator and the Boltzmann distribution, complete the table below for the first four harmonic vibrational states of  $^{14}N=^{16}O$ .

| Quantum number     | Energy (kJ/mol) | Relative population at $400~\mathrm{K}$ | Relative            |  |
|--------------------|-----------------|-----------------------------------------|---------------------|--|
|                    |                 |                                         | population at 410 K |  |
| $\overline{v} = 0$ |                 |                                         |                     |  |
| v = 1              |                 |                                         |                     |  |
| v = 2              |                 |                                         |                     |  |
| v = 3              |                 |                                         |                     |  |

Energy calculation:

$$E = (v+1/2) * h\nu \tag{1}$$

Probability of  $E_i$ :

$$P(E_i) = e^{(-E_i/k_bT)} \tag{2}$$

```
freq = 1904*100*c #frequency in m-1 times speed of light, ending in Hz
hoenergy = lambda v:h*freq*(v+0.5)
boltzmann = lambda E,T:np.exp(-E/(k*T))

v = np.array([0,1,2,3])

relpop400 = boltzmann(hoenergy(v),400.)/boltzmann(hoenergy(0),400.)
relpop410 = boltzmann(hoenergy(v),410.)/boltzmann(hoenergy(0),410.)

print('v energy(J) relpop 400 relpop 410')
for i in v:
    print(i,hoenergy(i),relpop400[i],relpop410[i])
```

```
v energy(J) relpop 400 relpop 410
0 1.89114403108344e-18 1.0 1.0
1 5.67343209325032e-18 0.0 0.0
2 9.455720155417201e-18 0.0 0.0
3 1.323800821758408e-17 0.0 0.0
```

2. Use the table to estimate the average vibrational energy of a mole of  $^{14}N=^{16}O$  at 400 and 410 K.

```
[37]: E400 = 0.
E410 = 0.

for i in v:
    E400 += hoenergy(i)*relpop400[i]
    E410 += hoenergy(i)*relpop410[i]

print(E400,E410)
```

- 1.89114403108344e-18 1.89114403108344e-18
- 3. Use your answer to Question 2 to estimate the vibrational heat capacity (dE/dT) of a mole of  $^{14}N=^{16}O$  in this temperature range. How does your answer compare to the classical estimate, 8.314 J/mol K?

```
[43]: heatcapacity = (E410 - E400)/(410-400)

print(heatcapacity)

print('Result is completely inconsistent with classical result. Energy spacings

→are too large for HO to have a heat capacity')
```

0.0

Result is completely inconsistent with classical result. Energy spacings are too large for  ${\tt HO}$  to have a heat capacity

4. Predict the harmonic vibrational frequency of the heavier cousin of  $^{14}$ N= $^{16}$ O,  $^{15}$ N= $^{18}$ O, in cm<sup>-1</sup>. Assume the force constant is independent of isotope. Do you think these two isotopes could be distinguished using infrared spectroscopy? First we calculate the force constant based on  $^{14}$ N= $^{16}$ O, and its given  $\nu_1$  to find  $\nu_2$  where,  $\mu_1$  is the reduced mass of  $^{14}$ N= $^{16}$ O and  $\mu_2$  is the reduced mass of  $^{15}$ N= $^{18}$ O

Start with k for  ${}^{14}N = {}^{16}O$ :

$$k = \mu_1 (2\pi \nu_1)^2 \tag{3}$$

plug that into the expression for  $^{15}N=^{18}O$ 

$$\nu_2 = (1/2\pi) * \sqrt{(k/\mu_2)} \tag{4}$$

a little simplification before we plug our values in:

$$\nu_2 = (1/2\pi) * \sqrt{(\mu_1(2\pi\nu_1)^2/\mu_2)} = \sqrt{\mu_1/\mu_2} * \nu_1 \tag{5}$$

```
[9]: m1 = 1/(1/14+1/16)

m2 = 1/(1/15+1/18)

freq2=np.sqrt(m1/m2)*1904

print("calculated vibrational frequency of the heavier isotope: ",freq2,"cm-1")
```

calculated vibrational frequency of the heavier isotope: 1818.8857215746534 cm-1

Based off this calculated difference in wave numbers you should be able to distinguish between the two isotopes.

## 2.2 Spin the NO.

5. Calculate the moment of inertia of  $^{14}N=^{16}O$ , in amu Å<sup>2</sup>, the rotational energy constant,  $B=\hbar^2/2I$ , in kJ mol<sup>-1</sup>, and the rotational spectral constant,  $\tilde{B}=B/hc$ , in cm<sup>-1</sup>.

```
[10]: import numpy as np # Importing numpy for numerical operations

# Atomic masses in atomic mass units (amu)
N = 14.0067 # Atomic mass of Nitrogen (amu)
O = 15.999 # Atomic mass of Oxygen (amu)

# Reduced mass calculation (amu)
mu = N * O / (N + O) # Reduced mass formula: (m1 * m2) / (m1 + m2)

# Bond length in angstroms (Å)
r = 1.15077 # N-O bond length (angstroms)

# Fundamental constants
h = 6.62607E-34 # Planck's constant (J·s)
```

```
hbar = 1.05457E-34  # Reduced Planck's constant (J·s)

NA = 6.02214E23  # Avogadro's number (molecules/mol)

c = 299792458  # Speed of light in vacuum (m/s)

# Moment of inertia (amu·Å²)

I = mu * r**2  # Moment of inertia formula: I = * r²

print('The moment of inertia is', round(I, 2), 'amu*angstrom^2.')

# Rotational energy constant (B) in kJ/mol

B = hbar**2 / (2 * I) * 6.022e26 * (1e10)**2 * NA / 1000  # kJ/mol

print('The rotational energy constant is', round(B, 5), 'kJ/mol.')

# Rotational spectral constant (Btilde) in cm '

Btilde = B / (h * c) * 1000 / NA / 100  # cm '

print('The rotational spectral constant is', round(Btilde, 3), 'cm^-1.')
```

The moment of inertia is 9.89 amu\*angstrom^2. The rotational energy constant is 0.02039 kJ/mol. The rotational spectral constant is 1.704 cm^-1.

6. Imagine that the  $^{14}N=^{16}O$  molecule is adsorbed flat on a surface upon which it is free to rotate. Plot out the energies of the four lowest-energy rotational quantum states, in units of B, being sure to include appropriate quantum numbers and degeneracies. Also indicate the total rotational angular moment of each state, in units of  $\hbar$ . Since we are looking at a molecule adsorbed flat on a surface, we will use the 2-D rigid rotor model.

$$E_{ml} = \frac{\hbar^2}{2I} m_l^2$$

The four lowest-energy rotational quantum states are:  $m_l = \pm 0, \pm 1, \pm 2, \pm 3$ 

```
import pandas as pd
# Define quantum number m and corresponding energy levels using given equation
m_values = np.array([0, 1, 2, 3])
E_m = m_values**2  # Energy levels in terms of B
L_z = m_values  # Rotational angular momentum in ħ

# Define degeneracy
degeneracy = np.where(m_values == 0, 1, 2)

# Create table data
table_data = pd.DataFrame({
    "m": m_values,
    "E_m (in B)": E_m,
    "Degeneracy": degeneracy,
    "L_z (in ħ)": L_z
})

# Plot the rotational energy levels
```

```
plt.figure(figsize=(5, 6))
for m in m_values:
    E = E_m[m] # Energy value
    m_vals = [-m, m] if m != 0 else [0] # Magnetic quantum numbers

    for val in m_vals:
        plt.hlines(E, val-0.1, val+0.1, colors='black', linewidth=2)
        plt.text(val, E + 0.2, f"m={val}", ha='center', fontsize=10)

# Labels and formatting
plt.xlabel("m")
plt.ylabel("Energy (in B)")
plt.yticks(E_m, [f"{e}B" for e in E_m])
plt.title("")
plt.grid(False)

print(table_data)
plt.show()
```

|   | m | $E_m$ (in $B$ ) | Degeneracy | $L_z$ (in $\hbar$ ) |
|---|---|-----------------|------------|---------------------|
| 0 | 0 | 0               | 1          | 0                   |
| 1 | 1 | 1               | 2          | 1                   |
| 2 | 2 | 4               | 2          | 2                   |
| 3 | 3 | 9               | 2          | 3                   |



7. Now imagine the  $^{14}$ N= $^{16}$ O molecule is free to rotate in three-dimensional space. As in Question 6, plot out the energies of the four lowest-energy rotational quantum states, in units of B, being sure to include appropriate quantum numbers and degeneracies. Also indicate the total rotational angular moment of each state, in units of  $\hbar$ . For a 3-D model of a linear molecule,

$$E_J = BJ(J+1) \tag{6}$$

and the angular momentum (L) is given by

$$L = \sqrt{J(J+1)}\hbar \tag{7}$$

With the number of degeneracies for each of the J given by

$$g_J = 2J + 1 \tag{8}$$

```
[13]: \parallel Define rotational quantum number J and corresponding energy levels using E_{-}J_{-}
       \hookrightarrow = B * J(J+1)
      J_{values} = np.array([0, 1, 2, 3])
      E_J = J_values * (J_values + 1) # Energy levels in terms of B
      # Compute total rotational angular momentum L = sqrt(J(J+1)) \hbar
      L_values = np.round(np.sqrt(J_values * (J_values + 1)),2)
      # Define degeneracy g_J = 2J + 1
      degeneracy = 2 * J_values + 1
      # Create table data
      table_data_3D = pd.DataFrame({
          "J": J_values,
          "E_J (in B)": E_J,
          "Degeneracy": degeneracy,
          "L (in h)": L values
      })
      # Plot the rotational energy levels
      plt.figure(figsize=(5, 6))
      for J in range(len(J_values)):
          E = E_J[J] # Energy value
          m_values = np.arange(-J_values[J], J_values[J] + 1, 1) # Magnetic quantum_
       \rightarrownumbers
          for m in m_values:
              plt.hlines(E, m-0.1, m+0.1, colors='black', linewidth=2)
              plt.text(m, E + 0.2, f"m={m}", ha='center', fontsize=10)
      print(table_data_3D)
      # Labels and formatting
      plt.xlabel("Magnetic Quantum Number (m)")
      plt.ylabel("Energy (in B)")
      plt.yticks(E_J, [f"{e}B" for e in E_J])
      plt.title("Rotational Energy Levels for NO in 3D Space")
      plt.show()
```

```
J E_J (in B) Degeneracy L (in ħ)
                                0.00
              0
                          1
1 1
              2
                          3
                                1.41
2 2
              6
                          5
                                2.45
3 3
             12
                          7
                                3.46
```



8. Use the vector model to sketch the total angular momentum vectors consistent with l=1.

```
[14]: from mpl_toolkits.mplot3d import Axes3D

# Define angular momentum vectors for l = 1
1 = 1
L_magnitude = np.sqrt(l * (l + 1)) # Magnitude of L in units of h
m_values = np.array([-1, 0, 1]) # Allowed m values
Lz_values = m_values # Lz = mh

theta = np.arccos(Lz_values / L_magnitude) # Angle with z-axis

# Choose arbitrary x, y components for visualization
x_components = np.sin(theta)
```

```
y_components = np.zeros_like(x_components)
# Plot the vectors
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(111, projection='3d')
# Draw vectors
for i in range(len(m_values)):
   ax.quiver(0, 0, 0, x_components[i], y_components[i], Lz_values[i],
              color='b', arrow_length_ratio=0.1, linewidth=2)
# Labels and formatting
ax.set_xlabel("X-axis")
ax.set_ylabel("Y-axis")
ax.set_zlabel("Z-axis")
ax.set_title("Vector Model for l = 1")
ax.set_xlim([-1, 1])
ax.set_ylim([-1, 1])
ax.set_zlim([-1, 1])
ax.view_init(elev=20, azim=30) # Adjust view for better visualization
plt.show()
```

## Vector Model for I = 1



- 9. The gross and specific rotational spectroscopy selection rules are that a molecule must have a dipole and that  $\Delta l=\pm 1$ , respectively. Will  $^{14}{\rm N}{=}^{16}{\rm O}$  have a rotational spectrum? If so, what will it look like, and why? Yes, a rotational spectrum will be observed because NO is heteronuclear and thus has a dipole moment. The spectrum will consist of a series of equally spaced absorption lines, at frequencies  $2\tilde{B}(l+1)$ , with l=0,1,... corresponding to the starting l.
- 2.3 Quantum mechanics of an H atom:
- 2.3.1 Consider an excited hydrogen atom with a  $2s^1$  electron configuration. The 2s radial wavefunction is given by

$$R_{2,0} = \frac{1}{\sqrt{2a_0^3}}(1-\rho/2)e^{-\rho/2}, \rho = r/a_0$$

where  $a_0$  = bohr radius. (*Hint:* It's easiest to solve the following using  $a_0$  as the unit of length.)

10. Provide a complete set of possible quantum numbers for an electron with the 2s wavefunction. Principle Quantum Number: n=2

```
Angular Quantum Number: m_\ell=0 Azimuthal Quantum Number: \ell=0 Spin Quantum Number: m_s=1/2 (or m_s=-1/2)
```

11. Provide a hand sketch of the 3-D shape of a 2s wavefunction ("orbital"). Be sure to indicate the *sign* of the wavefunction in each region and the location(s) of nodes. How many radial and how many angular nodes does a 2s wavefunction have?

```
[55]: from IPython.display import Image

# Display GIF from a local file
Image(filename="./imgs/2sOrbital.gif")
```

- [55]: <IPython.core.display.Image object>
- []:
  - 12. Plot the radial probability function  $P_{20}(r) = r^2 |R_{2,0}(r)|^2$ . Be sure to label both axes appropriately. (*Hint:* Stick with  $a_0$  as the length unit.)  $P_{20}(r) = r^2 |R_{2,0}(r)|^2 = \rho^2 a_0^2 [\frac{1}{\sqrt{2a_0^3}} (1-\rho/2) e^{-\rho/2}]^2 = \frac{\rho^2}{2} (1-\rho/2)^2 e^{-\rho} \frac{1}{a_0}$ . Plot  $\frac{\rho^2}{2} (1-\rho/2)^2 e^{-\rho}$  vs  $\rho$ , the unit of P is  $\frac{1}{a_0}$ .

```
import numpy as np
import matplotlib.pyplot as plt

rho = np.linspace(0,16,100)
a = 1
R20 = 1/(np.sqrt(2*a**3))*(1-rho/2)*np.exp(-rho/2)
P20 = a**2*rho**2*R20**2

plt.plot(rho,P20)
plt.xlabel('Length Ratio ($r/a_0$)')
plt.ylabel('Probability ($1/a_0$)')
plt.axvline(x = 6, color = 'r', linestyle = '--', label = 'Expected')
plt.axvline(x = 3 + np.sqrt(5), color = 'g', linestyle = '--', label = 'Most_\(\frac{1}{2}\)
\[
\text{Probable'}\)
plt.axvline(x = 8, color = 'k', linestyle = '--', label = 'Classical Limit')
plt.legend()
plt.show()
```



13. Determine and indicate on your plot  $\langle r \rangle$ , the expectation value of the distance of the electron from the nucleus. (*Hint*: the course outline gives an expression for this expectation value.)  $\langle r \rangle = \int_0^\infty r P_{20} dr = \int_0^\infty \frac{\rho^3}{2} (1-\rho/2)^2 e^{-\rho} dr = a_0 \int_0^\infty \frac{\rho^3}{2} (1-\rho/2)^2 e^{-\rho} d\rho$ 

The expectation value of the distance of the electron from the nucleus is 6 \* a0.

14. Determine and indicate on your plot  $r_{MP}$ , the most probable distance of the electron from the nucleus.

Possible solutions are [0, 2, 3 - sqrt(5), sqrt(5) + 3]Comparing these solutions, the universal maximum occurs at sqrt(5) + 3 15. Determine and indicate on your plot the maximum classical distance of the electron from the nucleus in this orbital. Classical theory states that orbitals energy must equals to Coulombic energy:

$$\begin{split} -\frac{\hbar^2}{2m_ea_o^2}\frac{1}{N^2} = -\frac{e^2}{4\pi\epsilon_0}\frac{1}{r}, where \quad N=2 \quad and \quad a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_ee^2} \\ r_{max,classic} = 8a_0 \end{split}$$

16. (Extra credit) What is the probability of finding the electron beyond the classical distance? (Evaluate the necessary integral numerically.)

```
[18]: rho_ = symbols('rho_')
I = integrate(rho_**2/2*(1-rho_/2)**2*exp(-rho_),(rho_,8,00)) #intrgrate from 8_\( \text{sto infinity} \)
print("Prob = %f"%I)
```

Prob = 0.185511

17. Can a 2s electron undergo an allowed transition to a lower energy electronic state? If so, what frequency (in cm<sup>-1</sup>) of light would be emitted? NO! Quantum number  $(n, l, m_l)$  of 2s = 2,0,0 while 1s = 1,0,0. Since  $\Delta l \neq \pm 1$ , the transition is not allowed.

[]: