Bebida, com Gelo

Contest Local, Universidade de Ulm Alemanha

Timelimit: 3

Uma boa bebida é sempre servida com gelo. Dito isto, a quantidade de gelo é o que faz a diferença. Se for muito, a bebida será bem gelada, no entanto, isso é um pouco de fraude já que poderia haver menos gelo (e mais Vodka, por exemplo). Por outro lado, se há muito pouco gelo a bebida fica quente, o que é inaceitável. Você deve ajudar o garçom, é claro que não com a mistura nem com a bebida, mas com o cálculo do resultado esperado de tais misturas.

Para facilitar as coisas, vamos supor que a água pura é misturada com gelo em um sistema fechado, isto é, não há nenhum problema com a temperatura exterior ou o aquecimento da garrafa, etc. Portanto, depois de um algum tempo passou, o sistema pode ser considerado como equilibrado (não há nenhuma outra alteração na temperatura e não há mais derretimento ou congelamento). Sua tarefa é calcular a temperatura final deste sistema balanceado e a quantidade de gelo e de água neste estado de equilíbrio.

Como você conhece da física, é necessário 4.19 Joules para aquecer um grama de água em um Kelvin, enquanto é necessário 2.09 Joules se for gelo. Nós definimos as capacidades $c_w = 4.19 \text{ J/(g*K)}$ e $c_i = 2,09 \text{ J/(g*K)}$. Para derreter um grama de gelo é necessário 335 Joules, onde a temperatura permanece constante em zero. Nós definimos a constante $e_m = 335 \text{ J/g}$. A energia térmica total do gelo e da água antes do experimento são iguais à energia térmica ao final da mistura.

A figura abaixo mostra a energia de um grama de gelo, mistura-gelo-água, ou água, onde a temperatura é medida em relação a -30 graus Celsius. O salto em 0 graus representa o derretimento do gelo para a água. A quantidade de energia obtida é proporcional à quantidade de gelo já derretido.

Entrada

A entrada contém vários casos de teste. Cada caso de teste consiste de quatro números reais $\mathbf{m}_{\mathbf{w}}$, $\mathbf{m}_{\mathbf{i}}$, $\mathbf{t}_{\mathbf{w}}$, $\mathbf{t}_{\mathbf{i}}$. A massa de água $\mathbf{m}_{\mathbf{w}}$ e a massa de gelo $\mathbf{m}_{\mathbf{i}}$ são ambas não-negativas, dados em gramas, e $\mathbf{m}_{\mathbf{w}}$ + $\mathbf{m}_{\mathbf{i}}$ > 0. A temperatura da água $\mathbf{t}_{\mathbf{w}}$ e a temperatura do gelo $\mathbf{t}_{\mathbf{i}}$ são informadas na sequencia, ambos em graus Celsius, e você pode assumir que -30 < $\mathbf{t}_{\mathbf{i}}$ < 0 < $\mathbf{t}_{\mathbf{w}}$ < 100. O último caso de teste é seguido por quatro zeros.

Saída

Para cada caso de teste imprima a quantidade de gelo e água, em gramas, e a temperatura final da mistura em graus Celsius. Todos os números devem ser arredondados para um dígito. Adote a saída de exemplo como o formato esperado.

Exemplo de Entrada	Exemplo de Saída
100 20 50 -10	0.0 g of ice and 120.0 g of water at
100 22 0 0	27.5 C
100 35 25 -10.5	22.0 g of ice and 100.0 g of water at
10 90 25 -28	0.0 C
0 0 0 0	6.0 g of ice and 129.0 g of water at
	0.0 C
	100.0 g of ice and 0.0 g of water at -
	4.2 C

Univeristy of Ulm Local Contest 2003/2004