MODUL V PERSAMAAN DIFFERENSIAL BIASA NUMERIK

Tujuan:

- Dapat menentukan penyelesaian Persamaan differensial Biasa secara Numerik dengan metode Euler, metode Heun, dan Metode Runge Kutta
- Mencari besarnya kesalahan dari suatu perhitungan solusi Persamaan Differensial Biasa secara Numerik dengan Dengan Metode Euler, Metode Heun, dan Metode Runge Kutta

Petunjuk Praktikum:.

Buatlah laporan praktikum. Adapun isi laporan meliputi :

- a. Dasar teori untuk menentukan penyelesaian Persamaan Differensial Biasa tersebut di atas
- b. Program dan Pembahasan Program
- c. Pembahasan hasil/keluaran

Pendahuluan

Bentuk umum suatu persamaan diferensial biasa orde n adalah :

$$\frac{d^ny}{dt^n} = f\left(t,y,\frac{dy}{dt},\frac{d^2y}{dt^2},\dots,\frac{d^{n-1}y}{dt^{n-1}}\right), a \le t \le b$$

Jika harga y dan turunan pertamanya diberikan pada t = a, maka persamaan diferensial di atas disebut problem harga awal (Initial Value Problem). Jika beberapa suku

$$\left(y, \frac{dy}{dt}, \frac{d^2y}{dt^2}, \dots, \frac{d^{n-1}y}{dt^{n-1}}\right)$$

Ditentukan pada t = a dan suku-suku lainnya pada t=b, persamaan diferensial itu disebut problem harga batas dua titik (Two-point boundary-value problem).

Dalam modul ini diperkenalkan 3 metode popular untuk menyelesaikan persamaan diferensial biasa: metode Euler, metode Heun, dan metode Runge-Kutta orde empat dengan algoritma masing-masing dan implementasinya.

a. Algoritma Euler

Masukan

Waktu awal t_a

Waktu akhir t_b

Interval dt

Harga fungsi pada t_a , $y(t_a) = y_0$

Keluaran: t, y

Fungsi dy/dt dinyatakan sebagai dy(t, y)

1.
$$n = (t_a - t_b)/dt$$

2.
$$y(0) = y_0, t(0) = t_a$$

3. Untuk
$$i = 0$$
 sampai $n - 1$

3.a.
$$y(i + 1) = y(i) + dt * dy(t(i), y(i))$$

3.b.
$$t(i + 1) = t(i) + dt$$

4.
$$y_euler = y(n)$$
 { $t_b = t(n), y(t_b)$ }

- 5. Selesai
- b. Algoritma Heun

Masukan

Waktu awal t_a

Waktu akhir t_h

Interval dt

Harga fungsi pada t_a , $y(t_a) = y_0$

Keluaran: t, y

Fungsi dy/dt dinyatakan sebagai dy(t, y)

1.
$$n = (t_a - t_b)/dt$$

2.
$$y(0) = y_0, t(0) = t_a$$

3. Untuk
$$i = 0$$
 sampai $n - 1$

3.a.
$$k1 = dt * dy(t(i), y(i))$$

3.b.
$$k2 = dt * dy(t(i), y(i) + k1)$$

3.c.
$$y(i + 1) = y(i) + 0.5 * (k1 + k2)$$

3.d.
$$t(i + 1) = t(i) + dt$$

4.
$$y_{euler-perbaiki} = y(n)$$
 $\{t_b = t(n), y(t_b)\}$

5. Selesai

c. Algoritma Runge-Kutta Orde Empat

Masukan

Waktu awal t_a

Waktu akhir t_b

Interval dt

Harga fungsi pada t_a , $y(t_a) = y_0$

Keluaran : t, y

Fungsi dy/dt dinyatakan sebagai dy(t, y)

1.
$$n = (t_a - t_b)/dt$$

2.
$$y(0) = y_0, t(0) = t_a$$

3. Untuk
$$i = 0$$
 sampai $n - 1$

3.a.
$$k1 = dt * dy(t(i), y(i))$$

3.b.
$$k2 = dt * dy(t(i) + 0.5 * dt, y(i) + 0.5 * k1)$$

3.c.
$$k3 = dt * dy(t(i) + 0.5 * dt, y(i) + 0.5 * k2)$$

3.d.
$$k4 = dt * dy(t(i) + dt, y(i) + k3)$$

3.e.
$$y(i + 1) = y(i) + 1/6 * (k1 + 2 * k2 + 2 * k3 + k4)$$

3.f.
$$t(i+1) = t(i) + dt$$

- 4. $y_rungekutta_orde4 = y(n)$ { $t_b = t(n), y(t_b)$ }
- 5. Selesai

Tugas 08:

Diberikan persamaan differensial biasa derajad satu $\frac{dy}{dx}=x+y$, y(0)=1. Hitung y(0.10) dengan ukuran langkah h = 0.01. jumlah angka bena =5. Jika diketahui solusi sejati PDB tersebut adalah $y(x)=e^x-x-1$.

	Format	Luarannya
--	---------------	-----------

Program untuk Menyelesaian Persamaan Differensial

$$dy/dx = x+y$$
; syarat $y(0) = 1$

dengan Metode Euler, Heun, dan Runge Kutta4

Dibuat oleh:

NIM :

Prog.Studi :

Solusi PDB dy/dx=
$$x + y$$
, $y(0) = 1$.

Х	h	y_Analitik	y_Euler	Error %	y_Heun	Error %	y_RungeKuta4	Error %