A Network Model for Dynamic Textual Communications with Application to Government Email Corpora

Bomin Kim¹ Aaron Schein³ Bruce Desmarais ¹ Hanna Wallach^{2,3}

July 10, 2017

Work supported by NSF grants SES-1558661, SES-1619644, SES-1637089, and CISE-1320219)

¹ The Pennsylvania State University

² Microsoft Research NYC

³ University of Massachusetts Amherst

Interaction-Partitioned Topic Model (IPTM)

- Probablistic model for time-stamped textual communications
- Integration of two generative models:
 - Latent Dirichlet allocation (LDA) for topic-based contents
 - Dynamic exponential random graph model (ERGM) for ties

"who communicates with whom about what, and when?"

Content Generating Process: LDA (Blei et al., 2003)

- For each topic k = 1, ..., K:
 - 1. Choose a topic-word distribution over the word types
 - 2. Choose a topic-interaction pattern assignment
- For each document d = 1, ..., D:
 - 3-1. Choose a document-topic distribution
 - 3-2. For each word in a document n=1 to $N^{(d)}$:
 - (a) Choose a topic from document-topic distribution
 - (b) Choose a word from topic-word distribution
 - 3-3 Calculate the distribution of interaction patterns within a document:

Dynamic Network Features (Perry and Wolfe, 2012)

Model accounts for dyadic, node, structural tendencies to form ties via e-mail sending

• Partition the past 384 hours (=16 days) into 3 sub-intervals

$$[t-384h,t) = [t-384h,t-96h) \cup [t-96h,t-24h) \cup [t-24h,t),$$

then define the interval-based dynamic network statistics (l = 1, 2, 3)

- $m{x}_{t,l}^{(c)}(i,j)$ is the network statistics at time t, for interaction pattern c
 - Degree: outdegree and indegree
 - Dyadic: send and receive
 - Triadic: 2-send, 2-receive, sibling and cosibling

Dynamic Network Features (Perry and Wolfe, 2012)

currently implemented statistics

• Partition the past 384 hours (=16 days) into 3 sub-intervals

$$[t-384h,t) = [t-384h,t-96h) \cup [t-96h,t-24h) \cup [t-24h,t),$$

then define the interval-based dynamic network statistics $\left(l=1,2,3\right)$

- $m{x}_{t,l}^{(c)}(i,j)$ is the network statistics at time t, for interaction pattern c
 - Degree: outdegree and indegree
 - Dyadic: send and receive
 - Triadic: 2-send, 2-receive, sibling and cosibling

Dynamic Network Features (Perry and Wolfe, 2012)

Conditioning statistics on recency

• Partition the past 384 hours (=16 days) into 3 sub-intervals

$$[t - 384h, t) = [t - 384h, t - 96h) \cup [t - 96h, t - 24h) \cup [t - 24h, t),$$

then define the interval-based dynamic network statistics $\left(l=1,2,3\right)$

- $m{x}_{t,l}^{(c)}(i,j)$ is the network statistics at time t, for interaction pattern c
 - Degree: outdegree and indegree
 - Dyadic: send and receive
 - Triadic: 2-send, 2-receive, sibling and cosibling

Tie Generating Process: Receivers

1. For each sender $i \in \{1, ..., A\}$ and receiver $j \in \{1, ..., A\}$ $(i \neq j)$, calculate the stochastic indensity between i and j:

$$\lambda_{ij}^{(d)} = \sum_{c=1}^{C} p_c^{(d)} \cdot \exp\Bigl\{ \pmb{b}_0^{(c)} + \pmb{b}^{(c)T} \pmb{x}_{t^{(d-1)}}^{(c)}(i,j) \Bigr\},$$

which is a mixture of contents, baseline interaction rate, and network effects.

2. For each sender $i\in\{1,...,A\}$, choose a binary vector $J_i^{(d)}$ of length (A-1), by applying Gibbs measure (Fellows and Handcock, 2017)

$$\mathsf{P}(J_i^{(d)}) \propto \exp\Big\{\sum_{j \in \mathcal{A}_{\backslash i}} (\delta + \log(\lambda_{ij}^{(d)})) J_{ij}^{(d)}\Big\},\,$$

where δ is a real-valued intercept controlling the recipient size

Tie Generating Process: Sender and Time

3. For each sender $i \in \{1,...,A\}$, generate the time increments for document d

$$\Delta T_{iJ_i}^{(d)} \sim \mathsf{Exponential}(\lambda_{iJ_i}^{(d)}),$$

where $\lambda_{iJ_i}^{(d)} = \sum\limits_{c=1}^C p_c^{(d)} \cdot \exp\Bigl\{\lambda_0^{(c)} + \frac{1}{|J_i|} \sum\limits_{j \in J_i} b^{(c)T} x_{t^{(d-1)}}^{(c)}(i,j)\Bigr\}$ is the updated sender-specific stochastic intensity given the receivers.

4. Set the observed sender, receivers and timestamp simultaneously:

$$\begin{split} i^{(d)} &= i_{\min(\Delta T_{iJ_i}^{(d)})} \\ J^{(d)} &= J_{i^{(d)}} \\ t^{(d)} &= t^{(d-1)} + \min(\Delta T_{iJ_i}^{(d)}) \end{split}$$

Joint Generating Process

Joint Generating Process

Bayesian Inference using Markov Chain Monte Carlo (MCMC)

```
Algorithm 1 MCMC Set initial values \mathcal{Z}^{(0)}, \mathcal{C}^{(0)}, and (\mathcal{B}^{(0)}, \delta^{(0)}) for o{=}1 to O do Sample the latent receivers J^{(d)}_{ij} via Gibbs sampling Sample the topic assignments \mathcal{Z} via Gibbs sampling Sample the interaction pattern assignments \mathcal{C} via Gibbs sampling Sample the network effect parameters \mathcal{B} via Metropolis-Hastings Sample the receiver size parameter \delta via Metropolis-Hastings end
```

Bayesian Inference

Joint Generating Process

Bayesian Inference using Markov Chain Monte Carlo (MCMC)

```
Algorithm 2 MCMC

Set initial values \mathcal{Z}^{(0)}, \mathcal{C}^{(0)}, and (\mathcal{B}^{(0)}, \delta^{(0)})

for o=1 to O do

Sample the latent receivers J^{(d)}_{ij} via Gibbs sampling

Sample the topic assignments \mathcal{Z} via Gibbs sampling

Sample the interaction pattern assignments \mathcal{C} via Gibbs sampling

Sample the network effect parameters \mathcal{B} via Metropolis-Hastings

Sample the receiver size parameter \delta via Metropolis-Hastings

end
```

Data: North Carolina Dare county email data

• D=1456 emails between A=27 county government managers, covering 2 month periods (October 1 - November 30) in 2012

• Hurricane Sandy passed by NC: October 26 - October 30

Exploratory Data Analysis: Effect of Sandy

IPTM Result: Contents

• IPTM result with C=2, K=20 and $O=20^{*}$:

IP	1	1	1	2	2	2
Topic	2	13	7	10	9	12
Word	winds	track	offices	sanitation	marshall	morning
	flooding	offices	hurricane	billed	human	fema
	policy	obx	sandy	long	collins	weather
	mph	shore	update	bill	phone	ems
	moving	winds	force	question	resources	risks
	outer	exam	reading	staff	phr	sure
	banks	area	contact	vehicles	drive	tomorrow
	rain	change	updates	additional	box	opening
	will	continues	amount	form	fax	address
	duration	expect	northwest	estimate	bridge	elections
	monday	curves	tuesday	total	director	thought
	ocean	side	expected	doors	monday	minutes
	open	east	good	services	manteo	starting
	heads	better	well	tomorrow	summary	wrote
	late	mile	night	haterras	october	operation

^{*}Preliminary results with small outer iterations. Model results subject to change.

IPTM Result: Dynamic Network Effects

• IPTM result with C=2, K=20 and $O=20^{\dagger}$:

†Preliminary results with small outer iterations. Model results subject to change.

Conclusion

- Joint modeling of ties (sender, receiver, time) and contents
- Allowance of multicast single sender and multiple receivers
- Possible application to various political science data
- Developement of R package 'IPTM'