6.036 Introduction to Machine Learning

(meets with 6.862)

6.036 Information

- Lectures: Profs. Barzilay, Jaakkola, Matusik, Parrilo
- TAs (too many to list on the slide, sorry)
- ▶ Homeworks (0-5): 10% of grade in total
- Projects (1-3): 30% of grade
- Exams (midterm, final): 60% of grade
- courses.csail.mit.edu/6.036/ (general info)
- ▶ 6.036 Stellar page (assignments, material, submissions)
- piazza.com/mit/spring2017/6036 (all questions)
- 6036-staff@lists.csail.mit.edu (exceptions)

Things to note

 We will offer this course again in the fall. Consider taking it then.

 We cannot accept listeners, cross-registered students this time around because of the numbers involved

HW #0 (background) is due this Friday 9am

Machine learning

A brief definition

Machine learning as a discipline aims to design, understand and apply computer programs that learn from experience (i.e., data) for the purpose of modeling, prediction, or control

ML is everywhere...

E.g., access to information

ML is everywhere...

E.g., interactive access to information

Siri

ML is everywhere...

E.g., any kind of automation

(Mobileye)

Machine learning

- For the pragmatist
 - science/engineering
 - molecular biology, computer vision, robotics, natural language processing, computer systems, computational neuroscience, medical informatics, materials science, physics, education, social sciences, etc.
 - corporations, startups
 - Google, Microsoft, Netflix, Amazon, Facebook, IBM, etc.
 - financial, advertising industry, etc.
 - military, security, etc.
 - etc.
- For the idealist
 - goal to realize thinking, learning machines
 - how do they (or we) learn, how fast?
 - what is easy, hard or learnable?
 - etc.

Prediction problems

About future events

 Markets, collision avoidance, monitoring, medical risk, etc.

Prediction problems

About properties we don't yet know

would I like this movie?

soluble in water?

what is the image about?

"ML is very cool"

what is it in Spanish?

- It is easier to express tasks in terms of examples of what you want (rather than how to solve them)
- E.g., image classification (1K categories)

<u>Image</u>

Category

mushroom

cherry

- It is easier to express tasks in terms of examples of what you want (rather than how to solve them)
- E.g., image classification (1K categories)

<u>Image</u>

m

mushroom

Category

cherry

 Rather than specify the solution directly (hard), we automate the process of finding one based on examples

- It is easier to express tasks in terms of examples of what you want (rather than how to solve them)
- E.g., image classification (1K categories)

 Rather than specify the solution directly (hard), we automate the process of finding one based on examples

- It is easier to express tasks in terms of examples of what you want (rather than how to solve them)
- No limit to what you can learn to predict...

<u>English</u>		<u>Spanish</u>
$h($ Is it real? ; $\theta)$	=	¿Es real?
Will it continue?		¿Continuará?
For how long?		¿Por cuanto tiempo?

Already in production for some language pairs (Google)

Learning to predict preferences from just a little data...

Learning to predict preferences from just a little data...

-1

()

+1

+1

?, ?,

Learning to predict preferences from just a little data...

-1

-1

+1

+1

?, ?,

Learning to predict preferences from just a little data...

Supervised learning

Learning to predict preferences from just a little data...

 $x^{(2)}$

-1

 $x^{(3)}$

 $x^{(4)}$

+1

 $x^{(5)}, x^{(6)}, \dots$

?, ?,

Supervised learning

Learning to predict preferences from just a little data...

 $x^{(2)}$

 $x^{(3)}$

 $x^{(4)}$

+1

$$x^{(5)}, x^{(6)}, \dots$$

Training set

Test set

Supervised learning

Supervised learning: training set

Supervised learning: test set

Supervised learning: generalization

$$h(x) = -1$$

Supervised learning +

Multi-way classification (e.g., three-way classification)

$$h\left(\begin{array}{c} \downarrow \downarrow \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \end{array}\right) = \text{politics} \qquad h: \mathcal{X} \to \{\text{politics, sports, other}\}$$

Regression

$$h\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right) = \$1,349,000 \qquad h: \mathcal{X} \to \mathbb{R}$$

Structured prediction

$$h\left(\begin{array}{c} \text{A group of people} \\ = \text{shopping at an} \\ \text{outdoor market} \end{array}\right) = \begin{array}{c} \text{A group of people} \\ \text{shopping at an} \\ \text{outdoor market} \end{array} \qquad h: \mathcal{X} \to \{\text{English sentences}\}$$

Types of machine learning

- Supervised learning
 - prediction based on examples of correct behavior
- Unsupervised learning
 - no explicit target, only data, goal to model/discover
- Semi-supervised learning
 - supplement limited annotations with unsupervised learning
- Active learning
 - learn to query the examples actually needed for learning
- Transfer learning
 - how to apply what you have learned from A to B
- Reinforcement learning
 - learning to act, not just predict; goal to optimize the consequences of actions
- Etc.

Key things to understand

- Posing supervised machine learning problems
- Supervised classification
- The role of training/test sets
- A classifier
- A set of classifiers
- Errors, generalization