Plan Manuscript

Marius Duvillard

12 février 2024

Table des matières

1	Intr	roduction / Bibliographie	2	
	1.1	Contexte industriel	2	
		1.1.1 Fabrication du combustible de fission	2	
		1.1.2 Broyeur à boulet	2	
		1.1.3 Régimes d'écoulement	2	
		1.1.4 Méthodes de mesures	2	
		1.1.5 Concept de Jumeau Numérique	2	
		1.1.6 Objectif : Appliquer assimilation de données à ces modèles	2	
	1.2	Assimilation de données	2	
		1.2.1 Approches stochastiques	2	
		1.2.2 Filtre Bayésien	2	
		1.2.3 Filtre de Kalman	3	
2	Mo	délisation physique (Méthodes particulaires)	3	
	2.1	Méthode de simulation des écoulements granulaires dans un tam-	_	
		bour en rotation	3	
	2.2	Présentation DEM	3	
	2.3	Méthode SPH	3	
	2.4	Méthode MPM-PIC	3	
	2.5	Méthode VM \rightarrow Problème fluide incompressible et similarité avec		
		SPH / VIC et MPM	3	
	2.6	Contenu et objectif	3	
3	Ensemble Data Assimilation pour la simulation particulaire -			
		Article 1		
	3.1	Adaptation du Filtre de Kalman d'Ensemble	3	
	3.2	Focus approximation des méthodes particulaires	3	
	3.3	Schéma de remaillage	3	
	3.4	Focus problème VM	3	
	3.5	Filtres adaptés	4	
1	Dat	a Assimilation : modification de la distribution particulaire	1	

5 Conclusion 4

1 Introduction / Bibliographie

1.1 Contexte industriel

1.1.1 Fabrication du combustible de fission

- voir Giraud : p.1-6 - voir Orozco : p.3-9

1.1.2 Broyeur à boulet

- Orozco?

1.1.3 Régimes d'écoulement

- voir pouliquen.pdf - voir Orozco

1.1.4 Méthodes de mesures

- voir Bastien + dossier mesures

1.1.5 Concept de Jumeau Numérique

- voir session FJOH

1.1.6 Objectif : Appliquer assimilation de données à ces modèles

1.2 Assimilation de données

1.2.1 Approches stochastiques

 $\begin{tabular}{ll} \bf Modèle\ stochastique\ du\ système & - inspirer\ de\ 3.4.2\ de\ Asch,\ et\ Carpentier\ p.41 \\ \end{tabular}$

Probability formula

Estimation - Carpentier, chap 2, p27 -36 - Asch p.78-82 - Evensen 2.1.7 inférence bayésienne

1.2.2 Filtre Bayésien

- Carpentier p42 - Asch p 91 - Evensen 2.2

Filtre particulaire - 3.7 de Asch - CoursEC section 5

Formulation variationnelle (3DVar)

Méthodes Hybrides - RML

1.2.3 Filtre de Kalman

Filtre de Kalman d'Ensemble - Bocquet, Lecture 2 - CoursEC 7.2

2 Modélisation physique (Méthodes particulaires)

2.1 Méthode de simulation des écoulements granulaires dans un tambour en rotation

- voir Arseni 2020 - voir EFEM - Mishra / Orozco / Chong / Chandra / Zuo / Zhu - Présenter les méthodes continues et discrètes (voir cours PARTICLES) dans une perspective d'assimilation de données

- 2.2 Présentation DEM
- 2.3 Méthode SPH
- 2.4 Méthode MPM-PIC
- 2.5 Méthode VM \rightarrow Problème fluide incompressible et similarité avec SPH / VIC et MPM
- 2.6 Contenu et objectif
- 3 Ensemble Data Assimilation pour la simulation particulaire - Article 1
- 3.1 Adaptation du Filtre de Kalman d'Ensemble
 - -¿ choix d'une formulation in ensemble space à partir des mesures
- 3.2 Focus approximation des méthodes particulaires
 - −¿ approximation et regression
- 3.3 Schéma de remaillage
 - -; Redistribution
- 3.4 Focus problème VM
 - –¿ Cas test

3.5 Filtres adaptés

4 Data Assimilation : modification de la distribution particulaire

5 Conclusion