

Tecnologías de Información 2 Examen

4 de diciembre de 2018

Instrucciones:

- Indique su nombre y sección.
- Lea atentamente el enunciado de cada uno de los problemas
- Escriba con letra legible la respuesta.
- Duración: 2 horas

Nombre:				

(2 puntos) Problema 1

Programe el tipo de dato Reloj para que presente tiempo en un reloj de 24 horas. Por ejemplo, su tipo de dato debe ser capaz de representar 00:00, 13:30 o las 23:50. El tiempo es medido en horas (00 - 23) y minutos (00 - 59).

API para tipo de dato Reloj				
	Reloj(h, m)	(0.5pts) Crea un tipo de dato Reloj cuya tiempo es h horas y m minutos. Asuma h esté en el rango [0,23] y que m está en el rango [0,59].		
str	texto()	(0.5pts) Retorna una representación en string de este reloj. El formato que debe retornar es HH:MM (dos dígitos para la hora, y dos dígitos para minutos). Si la hora o minuto tiene sólo un dígito, debe anteponer un cero.		
bool	esMasTemprano(b)	(0.5pts) Retorna True si el reloj actual está más temprano que el reloj b. Debe retornar False en otro caso. El parámetro b debe ser de tipo Reloj.		
-	tic()	(0.5pts) Debe añadir un minuto al reloj actual.		

Asuma que probaremos su solución utilizando el siguiente código:

```
r = Reloj(9, 59)
print(r.texto()) #debería imprimir '09:59'
r.tic()
print(r.texto()) #debería imprimir '10:00'
b = Reloj(11, 20)
print(r.esMasTemprano(b)) #debería imprimir True
```

Escriba su respuesta en el recuadro de la siguiente página.

Respuesta Problema 1:

```
class Reloj:
    def __init__(self,h ,m ):
        self.h = h
        self.m = m
    def texto(self):
        r = ''
        if self.h <= 9:
            r += '0'
        r += str(self.h)
        r += ':'
        if self.m <= 9:</pre>
            r += '0'
        r += str(self.m)
        return r
        #solucion alternativa
        #return '{:02d}:{:02d}'.format(self.h, self.m)
    def tic(self):
        self.m += 1
        if self.m == 60:
            self.m = 0
            self.h += 1
        if self.h == 24:
            self.h = 0
    def esMasTemprano(self, b):
        if self.h < b.h:</pre>
            return True
        elif self.h == b.h and self.m < b.m:</pre>
            return True
        else:
            return False
        # solución alternativa
        #if self.h*60 + self.m < b.h*60 + b.m: return True
        #return False
```

(2 puntos) Problema 2

Analice el siguiente código y luego responda:

- a. (1 pto.) ¿Qué realiza la función f(s)? Demuéstrelo haciendo la traza del ciclo for en la línea 4 y 5 para s='aacgt'.
- b. (1 pto.) ¿Qué imprime el código? Hint: revise el ciclo for de las líneas 19 y 20.

```
1 def f(s):
2
       n = len(s)
        r = ''
 3
 4
       for i in range(n):
            r += s[n-i-1]
 5
 6
        return r
 7
 8 L = ['aacgt', 'tgcaa', 'aacgt', 'aacaa', 'aacaa']
 9
  d = dict()
  for b in L:
10
        r = f(b)
11
12
       if b in d:
            d[b] += 1
13
       elif r in d:
14
15
            d[r] += 1
16
       else:
            d[b] = 1
17
18
19
  for k,v in d.items():
       print(k, ':', v)
20
```

Complete la traza en el cuadro de la siguiente página.

Respuesta Problema 2

a) ¿Qué hace la función f(s)? Entrega el string s en orden reverso. (0.2 pts)

Escriba la traza de la función f ('aacgt') en el siguiente recuadro: (0.8 pts)

Línea	s	n	r	i
2	aacgt	5	-	-
3	aacgt	5	1.1	-
4	aacgt	5	1.1	0
5	aacgt	5	't'	0
4	aacgt	5	't'	1
5	aacgt	5	'tg'	1
4	aacgt	5	'tgc'	2
5	aacgt	5	'tgc'	2
4	aacgt	5	'tgca'	3
5	aacgt	5	'tgca'	3
4	aacgt	5	'tgcaa'	4
5	aacgt	5	'tgcaa'	4
6	aacgt	5	'tgcaa'	4

b) ¿Qué imprime el código? Complete su respuesta en el siguiente cuadro: (0.5 pts si tiene correcta las claves, 0.5 si tiene correcto los valores)

aacgt : 3 aacaa : 2			

(2 puntos) Problema 3

La función impar() recibe tres variables binarias (True o False) y retorna True si un número impar (1 o 3) son verdaderas; de otro modo, retorna False. Complete dos implementaciones de la función impar llenando la letra correspondiente a la expresión en los espacios correspondientes. Puede usar la misma letra una vez, más de una vez o ninguna vez. No puede usar código extra.

```
A. True C. x G.x and y K. count += 1

B. False D. y H. x or y

E.z I. x and y and z

F. not z J. x or y or z
```

a) (1 pto. por cada letra correcta, % de punto)

```
def impar(x, y, z):
    count = 0
    if C: K
    if D: K
    if E: K
    return (count%2) != 0
```

b) (1 pto. por cada letra correcta, % de punto)

```
def impar(x,y,z):
   if G: return E
   elif H: return F
   else: return E
```

(1 pto.) Bonus: resolver sistema de ecuaciones lineales usando biblioteca numpy.

Transforme el siguiente sistema de ecuaciones lineales

$$5x + y = 13$$
$$3x + 2y = 5$$

en una ecuación de la forma Ax = b, donde A corresponde a la matriz formada por los coeficientes que acompañan a $x \in y$; y b es un vector con los coeficientes al lado derecho de la igualdad.

Luego resuelva la ecuación calculando $x = A^{-1}b$ con el módulo numpy. Recuerde que np.linalg.inv(A) retorna la inversa de la matriz A.

Complete su solución en el siguiente cuadro:

(0.25 puntos por línea correcta)

```
1 import numpy as np
 2 A = np.array([[5, 1], [3,2]])
 3 b = np.array([13, 5])
 4 Ainv = np.linalg.inv(A)
 5 \times = Ainv.dot(b)
 6 print(x) #opcional
 8
 9
10
11
12
13
14
15
16
17
18
19
20
```