Magnetic recording disk.

Patent Number:

___ EP0109481, A3, B1

Publication date:

1984-05-30

Inventor(s):

WEISS JOEL RICHARD

Applicant(s):

IBM (US)

Requested Patent:

I JP59096539

Application Number: EP19830105929 19830616

Priority Number(s):

US19820443515 19821122

IPC Classification:

G11B5/64; G11B5/82

EC Classification: Equivalents:

G11B5/64, G11B5/72 DE3375340D, JP1614291C, JP2041089B

Cited Documents:

GB2096647; EP0054640; JP58077027; JP57071518; JP57183633

Abstract

A magnetic recording disk is formed with a silicon substrate, the surfaces of which are essentially free of asperities. A non-magnetic undercoat layer is coated on one or both surfaces of the substrate. A magnetic layer is applied to the free surface of the or each undercoat layer. A non-magnetic overcoat layer is applied to the or each magnetic layer.

Data supplied from the esp@cenet database - I2

⑩ 日本国特許庁(JP)

① 特許出願公告

$\Psi 2 - 41089$ 許 公 報(B2) ⑫ 特

®Int. Cl. 5

€ 🕹

識別記号

庁内整理番号

2040公告 平成2年(1990)9月14日

G 11 B 5/82 7350-5D

発明の数 1 (全2頁)

60発明の名称 磁気配録デイスク

> 20特 顧 昭58-123548

JP-A 59-96539 多公 開 昭59-96539

頤 昭58(1983)7月8日 20出

@昭59(1984)6月4日

優先権主張 1982年11月22日 1983年11月22日 1983年11月122年11月22日 1983年11月122年11月122年11月22日 1983年11月122年11月122年11月122年11月12日 1983年11月122年11月122年11月122年11月122年11月122年11月122年11月122年11月122年11月122年11月122年11月122年11月122年11月122年11月122年11月122年11月122年11月12年11月122年11月122年11月122年11月122年11月122年11月12年11月12年11月12年11月12年11月122年11月12年11月122年11月12年11月12年11月12年11月122年11月12年11月12年11月12年11月12

@発明者 ジョエル・リチヤー アメリカ合衆国カリフオルニア州モーガン・ヒル・コパ

ド・ウエイス ー・ヒル・ドライブ17065番地

インターナショナル の出願人

アメリカ合衆国 10504 ニユーヨーク州 アーモンク

ビジネス マシーンズ (番地なし)

コーポレーション

70代 理 人 弁理士 山本 仁朗 外1名

審査官 相馬 多美子

99参考文献 特開 昭57-105826(JP,A)

特開 昭59-8141 (JP, A)

1

②特許請求の範囲

1 表面上に実質上凹凸のないシリコン基板と、 該シリコン基板上にスパツタされた非磁性の下地 層と、該下地屬上にスパツタされた磁性層と、該 気記録デイスク。

上記非磁性の下地層がCrである事を特徴と する特許請求の範囲第1項記載の磁気記録デイス ク。

発明の詳細な説明

本発明は一般的に磁気記録デイスクに関し、さ らに具体的にはシリコン基板を使用して形成され たこの様なデイスクに関する。

〔従来技術の説明〕

磁気記録において、アルミニウム基板上に微粒 15 体の重量を著しく重くする。 子もしくは薄膜磁気被膜を有するデイスクの使用 は周知である。この様な型の被膜の各々は、特に 現在及び将来使用される高ピット密度記録パター ンのために必要とされる極めて薄い被膜の場合に う問題を有する。

アルミニウム基板上の微粒子磁気被膜は、特に 極めて薄い場合に、デイスクに関連する磁気変換 2

器との接触によつて耐用性が限られる。アルミニ ウム基板上に磁気被膜をスパツタリング表着もし くは電着する事によつて通常形成される薄膜磁気 デイスクは一般に微粒子被膜の場合よりも薄い磁 磁性層上に設けられた非磁性保護層とより成る磁 5 気被膜を与える。しかしながら、薄膜デイスクは 主に重量と付着される薄膜層のためにアルミニウ ムである事が要求される金属基板との反応によっ て著しい腐食をしばしば生ずる。この様なディス クは基板と薄膜磁性層間及び薄膜磁性層上に2乃 10 至それ以上の保護層の付着を必要とする。明らか に、この様な保護層は薄膜デイスクのコストを著 しく高くする。さらに微粒子及び薄膜磁気デイス クは通常被膜の厚さと比較して実質上厚い基板を 使用し、この様なデイスクのいくつかを含む組立

金属もしくは重合体の薄膜は基板の表面の形状 をなぞらえるのでアルミニウム基板における表面 の完全性(即ち振幅の変調及びヘッドの衝突を防 止するための表面荒さ、平坦度等)を達成するた は、被膜を完全に満足のいかないものにするとい 20 めの試みがこれ迄になされて来た。基板の研摩及 び被覆方法の改善がなされて来たが、将来の主た るパホーマンスの改善も基板表面の完全性の増強 に依存する。

3

特願昭56-137895号(特開昭57-105826号) は、磁気配録デイスク基板としてシリコンを用い る構造を開示しているが、これはシリコン基板を 支持する強化コア部材を必要としている。

〔本発明の概要〕

本発明に従い、磁気記録デイスクは先ずシリコ ン上に或る材料の層を付着する事によってシリコ ン基板上に形成され、これによって磁気的パホー マンス及びその後に付着される磁性層の付着力が れる。強化コア部材は本発明にとつて必要とされ ない。

〔実施例の説明〕

本発明に従い、シリコン基板は半導体市場で容 易に利用可能な通常のシリコン板を切断する事に 15 見されている。 よつて形成され得る。基板は任意の適切な技法に よつてシリコン板からスライスされ得る。この様 なシリコン板はI5.24cmよりも大きな直径のもの が利用可能である。基板ウェフアは0.043乃至 が研摩され得る。これ等のシリコン基板の表面は 符に平坦で凹凸がない事が知られている。 シリコ ン基板に被膜を付着する前に、回転させるための 適切な構造体に対して仕上つた磁気記録デイスク をクランプさせるための中央開孔がシリコン基板 25 に与えられる事が好ましい。この開孔は例えばレ ーザ切断もしくはダイアモンド・コア穿孔によっ て発生され得る。シリコン基板が先ず形成された 後、基板の両表面にRFスパッタリングによって の厚さに昇華/蒸着されるCrである事が好まし い。このシリコン表面上の下地層の付着は上層の 磁性層の磁性を増強するが、AIMgの如きシリコ

ン以外の基板上の下地層としてCrが同様に付着 させられる時は、磁性の増強は生じない事が発見 された。

下地層の付着に続いて、磁性層が再びRFスパ 5 ツタリングによつて付着させられる。この磁性層 は米国特許第4245008号に説明されたFe、Co、 Cr磁性層の如き適切な型のものであり得る。こ の特許に関示されている如く、磁性層は重量%で 0 乃至55%のCo、 8 乃至22%のCr、及び残部の 増強される。磁性層には薄い保護層が付着させら 10 主にFeより成る。この様な磁性層はRFスパツタ リングによつて略300人の厚さに付着させられる。

上記の如く形成された磁性薄膜は300万至1000 エルステッドの範囲の保磁力及び略90%以上の磁 機方形比の如き優れた磁気的性質を有する事が発

上述の米国特許第4245008号に開示されたFe、 Co、Cr磁性層に代つて、他の磁性層を使用する こともできる。例えばFe₃O₄の層がRFスパツタ され、付着位置での酸化によって磁性FegOsにさ 0.081cmの範囲の適当な厚さに切断され、両表面 20 れる。適切な上層がこの磁性層を保護するために 与えられる。この様な上層は磁性層の磁気的特性 をを劣化させない様に十分薄く、硬くて耐久性の あるセラミツク、重合体もしくは金属薄膜であり 得る。

> 1つの特に魅力的な保護層は沈殿/浸漬プロセ スによつて付着させられる直径70人のSiOzピー ズ及び50Å乃至100ÅのアモルフアスSiOaの単~ 層によつて形成され得る事が発見された。

もし望まれるならば、変換器とディスク表面間 下地層が付着させられる。この下地層は略4500人 30 に有害な接触を与える事なく、回転するデイスク 表面に関して狭い空気ベアリングをはさんで変換 器が容易に浮遊する様に保護上層の表面には潤滑 剤が与えられ得る。