

細胞極性と細胞骨格

https://l-hospitalier.github.io

2020.6

<mark>【細胞極性 cell polarity】</mark>細胞極性とは、細胞のもつ空間的な指向性。

細胞内の成分は、細胞内に均一に分布するわけではなく、偏りをもって存在し、
これを極性とよぶ。極性は細胞内小器官の空間的配置に重要な役割をもつ。 小 腸上皮細胞は下図のように頂端領域(apical domain)に微絨毛を形成して栄養分の吸

<u>アクチンフィラメント</u> 微小管 細胞核

dendrites:
MAP2

ructeus:
NewN TAU, NF-L

MAP2

収にあたり、側底領域(基底膜側 basal domain)は養分を血液に伝達する。 細胞を取り出して培養するとストレスから極性が失われ、上皮細胞としての性質のいくつかが消失、ミトコンドリアは断片化しATP産生も減る(左図右側:極性崩壊)。 細胞が培地での成長に適応すると極性を回復、ミトコンドリアの網目構造も回復、ATP産生も回復。 神経細胞も特徴的な

極性をもち軸索突起や樹状突起を出す。 球状のリンパ球、不規則に見える繊維芽細胞も移動や活性化の際には細胞膜成分の再配置を起こし極性を持つ。この現象は多細胞生物だけでなく単細胞生物や卵でも見られる。細胞極性の形成機構については明

らかではないが、まず細胞接着によって細胞膜上に位置シグナルが形成されることが提案されている。 その後位置のシグナルに応じて細胞骨格の**アクチン繊維や微小管**などの分子が、種々のタンパク質を然るべき位置へと輸送していると考えられる。 この細胞接着には、特にタイトジャンクションが重要な役割を果たしていると考えられる。 また細胞膜上の脂質ラフトも極性の形成に重要であるとの報告あり。 【細胞骨格】には①

#242

アクチン繊維(actin filament, 5-9 nm)②核の近くの中心体(centrosome)から伸びる微小管:マイクロチュビュール(microtubule, 25 nm)③中間径フィラメント(intermediate filament, 10 nm)がある(右図)。 アクチンと微小管には方向性があり、ポリマー本体にモノマーが結合して成長するのは必ずプラスエンドから、アクチンエノスーは ATP と結合してか

のは必ずプラスエンドから。 **アクチンモノマー**は ATP と結合してか らポリマーに結合する。 ポリマーフィラメントになると ADP に加水分 解され解離しやすくなるが、フィラメントの途中では解離しない。 ポリマ

ー末端から乖離すると ADP は切り離され、モノマーは再びATP

と結合してまた会合できるようになる。 アクチンによる変化しやすい 会合でのフィラメント形成は微絨毛の刷子縁の形成や、細胞変形のための収縮性の繊維束、細胞が移動するための糸状や葉状の仮足形成を 行うのに都合がよい。 ③の中間径フィラメントは左図中段のように径 10 nm のケラチン(上皮)、グリア(グリア細胞)、デスミン(筋肉)、ビメンチン(繊維芽)などのモノマー繊維を数本撚り合わせた繊維状蛋白で、方向性はなくロープのような構造で細胞の強度やテンション

(張力)を受け持つ機能と考えられる(下図、左端の青)。 一番細い ①アクチンには方向性がありミオシンという結合蛋白とモーター蛋白を構成、筋肉として機能するほか、細胞の頂端領域の刷子縁の微絨毛を構成する(下図、右端の赤)。 さらに細胞膜ナノチューブ(#241)の中にアクチン繊維があることが分かっている。 ②の一

番太い微小管は 25 nm 径でチューブリン蛋白からなりダイニン(dynein)と移動方向が反対のキネシン(kinesin)という結合蛋白があり、ATP を使ってモーター蛋白として機能する(下図、中の緑)。 キネシンとダイニンはトロッコのように微小管上を移動して細胞内の物質輸送に携わる。

