ENGR-3000:

Renewable Energy, Technology, and Resource Economics

Supplemental Lecture: Average Power in the Wind

S. David Dvorak. Ph.D, P.E.

Wind Speed Frequency Distribution

- Each vertical bar indicates how many hours/year the wind is blowing at that speed.
- The total adds up to 8760 hours.

v (m/s)	Hrs/yr	1000 -7	
0	24		
1	276	1	
2	527		
3	729		
2 3 4 5 6 7 8	869	800 -	
5	941		
6	946		
7	896	_	
8	805	5	
9	690	8 200	
10	565	Hours per year windspeed v	
11	444	ě	
12	335	£ }	
13	243	ğ.	
14	170	9	
15	114	g 400 -	
16	74	5 1	
17	46	Ī	
18	28		
19	16		
20	9	200 -	_8888888888888
21	9 5 3		
22	3	- 1	
22 23	1		
24	1		
25	o l	_	_ I I I I I I I I I I I I I I I I I I I
Total hrs	8,760	0 -	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2

Wiebull Distribution

For different values of the shape parameter k:

Wiebull Distribution

For different values of the scale parameter c:

Rayleigh Disribution. (Weibull with k=2)

Higher c implies higher average windspeeds

Rayleigh p.d.f.

 When using a Rayleigh p.d.f., there is a direct relationship between average windspeed v and scale parameter c

$$v_{avg} = \overline{v} = \int_{0}^{\infty} v \cdot f(v) dv$$
 $f(v) = \frac{2v}{c^2} \cdot e^{-\left(\frac{v}{c}\right)^2}$

The Rayleigh pdf into the integral for v_{avg}:

$$v_{\text{avg}} = \overline{v} = \int_{0}^{\infty} v \cdot \frac{2v}{c^{2}} \cdot e^{-\left(\frac{v}{c}\right)^{2}} dv \quad \Longrightarrow \quad v_{\text{avg}} = \frac{\sqrt{\pi}}{2} c \approx 0.886 \cdot c$$

Thus our Rayleigh distribution function can be written as

$$f(v) = \frac{\pi v}{2\overline{v}^2} \cdot e^{-\frac{\pi}{4} \left(\frac{v}{\overline{v}}\right)^2}$$

Power in the Wind

Power =
$$\frac{1}{2}\rho AV^3$$

- Where:
 - $-\rho = air density (kg/m^3)$
 - Area (m²)
 - V = upstream (undisturbed) wind velocity (m/s)
 - Power (Watts)

 To figure out average power in the wind, we need to know the average value of the *cube* of velocity:

$$P_{\text{avg}} = \left(\frac{1}{2}\rho A v^3\right)_{\text{avg}} = \frac{1}{2}\rho A \left(v^3\right)_{\text{avg}}$$

For a wind speed distribution function f(v):

$$\left(v^{3}\right)_{\text{avg}} = \int_{0}^{\infty} v^{3} \cdot f(v) dv$$

Assume the wind speed distribution is a Rayleigh distribution

$$f(v) = \frac{2v}{c^2} \cdot e^{-\left(\frac{v}{c}\right)^2} \qquad \overline{v} = \frac{\sqrt{\pi}}{2}c \qquad f(v) = \frac{\pi v}{2\overline{v}^2} \cdot e^{-\frac{\pi}{4}\left(\frac{v}{\overline{v}}\right)^2}$$

$$\left(v^{3}\right)_{avg} = \int_{0}^{\infty} v^{3} \cdot f(v) dv = \int_{0}^{\infty} v^{3} \cdot \frac{2v}{c^{2}} \cdot e^{-\left(\frac{v}{c}\right)^{2}} dv = \frac{3}{4}c^{3}\sqrt{\pi}$$

• This is $(v^3)_{avq}$ in terms of c, but we can

$$\left(v^3\right)_{avg} = \frac{3}{4}c^3\sqrt{\pi}$$

$$c = \frac{2}{\sqrt{\pi}} v_{avg}$$

• Then we have $(v^3)_{avg}$ in terms of v_{avg} :

$$\left(v^{3}\right)_{avg} = \frac{6}{\pi} \left(v_{avg}\right)^{3}$$

• With *Rayleigh assumptions*, we can write the $(v^3)_{avg}$ in terms of v_{avg} , and the expression for average power in the wind is just

$$P_{avg} = \frac{6}{\pi} \cdot \frac{1}{2} \rho A \left(v_{avg} \right)^3$$