Démonstrations (parallélogrammes)

Dans chaque cas, les quadrilatères sont-ils forcément des parallélogrammes ? Réponds par Vrai ou Faux puis illustre chaque réponse par une figure à main levée codée.

	Je suis un quadrilatère	vrai	faux	Figure
a.	qui a deux côtés opposés parallèles.		×	
b.	qui a ses diagonales qui se coupent en leur milieu.	×		
c.	qui a ses côtés opposés deux à deux de même longueur.	×		<i>F</i>

	Je suis un quadrilatère	vrai	faux	Figure
d.	qui a ses côtés opposés parallèles.	×		
e.	non croisé qui a deux côtés opposés parallèles et de même longueur.	×		
f.	qui a deux côtés opposés et deux côtés de même longueur.		×	

2 Identification

a. Nomme tous les parallélogrammes de la figure ci-dessus, en sachant que les droites tracées en épais sont parallèles.

ABDC, AEFD, BCDF et AEBC.

b. Pour chacun, cite la propriété qui t'a permis de l'identifier.

ABDC : Si un quadrilatère a ses côtés opposés parallèles alors c'est un parallélogramme.

AEFD : si un quadrilatère a ses diagonales qui se coupent en leur milieu alors c'est un parallélogramme.

BCDF et AEBC : si un quadrilatère non croisé a deux côtés parallèles de même longueur alors c'est un parallélogramme.

Démontre que le quadrilatère IJKL est un parallélogramme.

On sait que M est le milieu de [KI] et de [LJ] donc IJKL est un quadrilatère qui a ses diagonales qui se coupent en leur milieu. Par suite, c'est un parallélogramme.

4 Démontre que le quadrilatère RSTU est un parallélogramme.

On sait que URS = UTS et RUT = RST donc RSTU est un quadrilatère qui a des angles opposés de même mesure. Par suite, c'est un parallélogramme.

Démonstrations (parallélogrammes)

ROSE est un parallélogramme de centre P tel que RS = 5 cm, OE = 8 cm et RO = 5,8 cm.

a. Construis une figure à main levée codée.

b. Quelle est la longueur du segment [PR] ? Justifie.

On sait que ROSE est un parallélogramme donc ses diagonales se coupent en leur milieu donc P est le milieu de [RS] d'où PR = $\frac{RS}{2}$ = $\frac{5}{2}$ = 2,5 cm.

c. Quelle est la longueur du segment [PO] ? Justifie.

[OE] est une diagonale du parallélogramme ROSE de centre P donc P est le milieu de [OE] d'où $PO = \frac{OE}{2} = \frac{8}{2} = 4 \text{ cm}.$

d. Construis cette figure en vraie grandeur et explique comment tu procèdes ci-dessous.

On trace le triangle ROP puis le point E tel que P soit le milieu de [OE] et le point S tel que P soit le milieu de [RS].

- STUV est un quadrilatère dont les diagonales se coupent en W tel que SW = UW et TW = VW. On donne UV = 11 cm.
- a. Complète la figure.

b. Calcule ST. Justifie.

On sait que les diagonales du quadrilatère STUV se coupent en W tel que SW = UW et TW = VW donc W est le milieu de [SU] et de [VT] donc STUV est un parallélogramme. Par suite, STUV a ses côtés opposés sont de même longueur donc ST = UV = 11 cm.

- 7 LMNO est un quadrilatère dont les diagonales se coupent en P tel que LM = NO et MN = LO. On donne PO = 8 cm.
- a. Complète la figure.

b. Calcule PM. Justifie.

On sait que LM = NO et MN = LO donc LMNO a ses côtés opposés de même longueur et pas suite c'est un parallélogramme.

Le parallélogramme LMNO a ses diagonales qui se coupent en leur milieu donc P est le milieu de [MO], d'où PM = PO = 8 cm.