Praktikum Eksplorasi dan Visualisasi Data Pertemuan 6

Uji Hipotesis Rata-Rata Populasi Satu Angkatan

A. Peta Konsep

B. Konsep Uji Hipotesis

Teori

Uji Hipotesis : proses menentukan apakah karakteristik populasi didukung oleh data sampel atau tidak.

Prosedur Uji

- 1. Hipotesis Statistik: pernyataan tentang parameter populasi.
 - Hipotesis nol

 H_0 : hipotesis awal yang akan diuji menggunakan suatu prosedur statistik

• Hipotesis alternatif

 H_1 : hipotesis yang diambil menjadi kesimpulan apabila H_0 ditolak

2. Tingkat signifikansi (α)

Dua tipe kesalahan dalam pengambilan keputusan uji hipotesis

V oputuson uii	Kenyataan		
Keputusan uji	H0 benar	H0 salah	
H0 tidak	Benar	Salah (tipe II) = β	
ditolak	Бена		
H0 ditolak	Salah (tipe I) = α	Benar	

Idealnya, kesalahan tipe I maupun tipe II harus diperkecil seminimal mungkin. Akan tetapi, kondisi yang terjadi adalah apabila satu dibuat kecil maka yang lain akan membesar. Dalam praktik, meminimalkan kesalahan tipe I lebih penting. Maka dari itu, nilai yang ditetapkan dalam uji hipotesis adalah α (umumnya bernilai 0,05).

3. Statistik uji

Variabel random yang digunakan untuk menentukan apakah H_0 ditolak atau tidak ditolak. Bila statistik uji masuk dalam daerah penolakan maka H_0 ditolak dan sebaliknya.

P-value:

Suatu harga yang dihitung dari data yang menunjukkan harga α terkecil untuk menolak H0

4. Daerah kritik

Daerah/interval harga-harga dimana H0 ditolak.

5. Kesimpulan

Dua macam kemungkinan kesimpulan yang diambil:

- H_0 ditolak
- H_0 tidak ditolak

Hubungan antara interval konfidensi dan uji hipotesis

Interval konfidensi dapat digunakan menjadi daerah kritik yang menjadi penentuan pengambilan kesimpulan dalam uji hipotesis.

Uji hipotesis dengan P-value

P-value adalah nilai α terkecil dari data yang masih menolak H_0 . Besarnya α telah ditentukan sebelumnya, sedangkan p-value dihitung dari statistik penguji. Jika p-value $< \alpha$ maka dapat disimpulkan bahwa data mendukung penolakan H_0 .

C. Uji Hipotesis Rata-Rata Populasi Satu Angkatan

Teori

Uji hipotesis rata-rata 1 angkatan, adalah uji inferensi statistik untuk mendapatkan kesimpulan mengenai satu populasi, berdasarkan informasi sampel yang dimiliki. Sebagai salah satu uji parametrik, maka sebelum melakukan uji ini terdapat asumsi yang harus dipenuhi, yakni dalam hal ini asumsi normalitas.

<u>Uji Hipotesis</u>

Hipotesis

- A. H_0 : $\mu = \mu \theta$ (Uji dua sisi)
 - H_1 : $\mu \neq \mu 0$
- B. H_{θ} : $\mu \leq \mu \theta$ (Uji satu sisi)
 - $H_1: \mu > \mu 0$
- C. $H_0: \mu \ge \mu \theta$ (Uji satu sisi)
 - $H_1: \mu < \mu 0$

• Tingkat Signifikansi

 α atau (1-Tingkat Kepercayaan)

• Statistik Uji

Berdasarkan nilai p-value dan nilai Z hitung sebagai berikut:

I.
$$Z = \frac{\overline{x} - u0}{\sigma/\sqrt{n}}$$
, dengan Z berdistribusi normal standar

II.
$$Z = \frac{\bar{x} - u0}{s/\sqrt{n}}$$
, dengan Z berdistribusi normal standar

III.
$$t = \frac{\bar{x} - u0}{s/\sqrt{n}}$$
, dengan t berdistribusi t dengan derajat bebas n-1

• Daerah Kritik

Jika menggunakan perhitungan Z atau t.

 H_0 ditolak jika,

- Untuk Statistik uji : i dan ii

A.
$$|Z| > Z_{a/2}$$

B.
$$Z > Z_a$$

C.
$$Z < -Z_a$$

- Untuk Statistik uji: iii

A.
$$|t| > t_{(n-1;a/2)}$$

B.
$$t > t_{(n-1;a)}$$

C.
$$t < -t_{(n-1;a)}$$

Kesimpulan

Karena nilai P-Value = (</>) $0.05 = \alpha$, dan Z = ...(</>)...=Zcrit maka H_{θ} (ditolak / diterima) Sehingga dapat disimpulkan ... (kesimpulan harus memberikan jawaban dari persoalan).

*contoh minimal kesimpulan (Gunakan bahasa dan pemahaman sendiri dalam menjelaskan uji yang telah dilakukan)

• Interpretasi

Berdasarkan pengujian yang telah dilakukan dengan $software\ R$. dilakukan uji ...(nama uji) dengan data ... (nama datanya), ingin diuji apakah ... (persoalan), dengan hipotesis H_0 : ... (kalimat isi H0). Dengan tingkat signifikansi (α) sebesar ... (nilai alpha). Didapatkan hasil P-Value = (</>) $0.05 = \alpha$, dan $Z = ... (</>)...=Zcrit maka <math>H_0$ (ditolak / diterima) Sehingga dapat disimpulkan ... (kesimpulan harus memberikan jawaban dari persoalan). .*contoh minimal interpretasi (Gunakan bahasa dan pemahaman sendiri dalam menjelaskan uji yang telah dilakukan)

D. Prosedur Uji

1. Uji Normalitas Data

Sebelum dilakukannya Uji Hipotesis Rata-rata Populasi Satu Angkatan, diperlukan dahulu Asumsi Normalitas. Data yang diperoleh perlu diuji dulu apakah data tersebut

berasal dari populasi yang berdistribusi normal atau tidak. Hal ini akan berpengaruh terhadap uji hipotesis yang akan digunakan selanjutnya. Pada praktikum Analisis Data Eksploratif ini, digunakan boxplot untuk melakukan uji asumsi normalitas. Sehingga, jika boxplot yang dihasilkan tidak memenuhi asumsi normalitas (tidak berdistribusi normal/mendekati), maka perlu dilakukan transformasi terhadap data terlebih dahulu.

2. Uji Hipotesis Rata-rata Populasi Satu Angkatan

Setelah mendapatkan Asumsi Normalitas dari data, maka pengujian dilanjutkan ke Uji Hipotesis Rata-rata Populasi Satu Angkatan. Saat akan melakukan uji hipotesis, perlu diperhatikan data mana yang akan diuji. Jika data asli yang digunakan tidak berdistribusi normal dan setelah dilakukan transformasi menjadi berdistribusi normal, maka data hasil transformasilah yang akan diuji (hal ini juga akan mempengaruhi nilai yang dihipotesiskan/diujikan). Namun, apabila data asli sudah berdistribusi normal, maka data asli yang digunakan dalam uji hipotesis ini. Dalam Uji Hipotesis Rata-rata Populasi Satu Angkatan umumnya digunakan Uji Z atau Uji T. Secara ringkas, penggunaan kedua uji tersebut dapat digunakan jika memenuhi beberapa syarat sebagai berikut:

No	Uji Z	Uji T
1.	Variansi atau standar deviasi populasi (σ) diketahui.	Variansi atau standar deviasi populasi (σ) tidak diketahui.
2.	Variansi atau standar deviasi populasi dapat diacu dari penelitian sebelumnya.	Variansi atau standar deviasi populasi dapat diestimasi dari variansi atau standar deviasi sampel (s).
3.	Distribusi populasi tidak diketahui atau sembarang (bisa berdistribusi normal atau tidak), dan ukuran sampel (n) besar ($n \ge 30$).	Distribusi populasi sembarang. Ukuran sampel (n) besar (n ≥ 30). Namun jika populasi berdistribusi normal, dapat digunakan untuk data kecil maupun besar.

*Catatan:

- Jika terdapat kasus data tidak berdistribusi normal dan ukuran sampel kecil, maka data tersebut ditransformasi agar berdistribusi normal, sehingga dapat dilakukan uji T.
- Jika Variansi atau standar deviasi populasi (σ) tidak diketahui dan sampel besar lazimnya menggunakan uji Z. Namun, uji T juga bisa digunakan.

E. Uji Z

Uji Z rata-rata satu populasi adalah uji statistik yang digunakan untuk mengetahui apakah suatu populasi memiliki rata-rata yang sama dengan, lebih kecil atau lebih besar dari suatu nilai rata-rata tertentu sesuai dengan hipotesis yang telah ditetapkan.

Syarat:

- 1. Sampel data berasal dari populasi yang berdistribusi normal
- 2. Variansi populasi diketahui
- 3. Ukuran sampel cukup besar biasanya (n) \geq 30

Karena Uji Z hanya dapat dilakukan ketika asumsi data diambil dari populasi yang berdistribusi normal maka uji Z ini termasuk dalam uji statistik parametrik dimana uji statistik parametrik ini hanya dapat digunakan jika asumsi analisis data yang akan diuji sudah terpenuhi. Dalam R *library* yang digunakan untuk melakukan uji z adalah *library* BSDA dengan fungsi z.test() dan zsum.test()

```
Z-test
Description
This function is based on the standard normal distribution and creates confidence intervals and tests hypotheses for both one and two sample
Usage
   x,
y = NULL,
alternative = "two.sided",
    mu = 0,
sigma.x = NULL,
    sigma.y = NULL,
conf.level = 0.95
Arguments
                       numeric vector: NAs and Infs are allowed but will be removed.
                       numeric vector: NAs and Infs are allowed but will be removed
alternative character string, one of "greater", "less" or "two.sided", or the initial letter of each, indicating the specification of the alternative hypothesis. For one-sample tests, alternative refers to the true mean of the parent population in relation to the hypothesized value mu. For the standard two-sample tests, alternative refers to the difference between the true population mean for x and that for y, in relation to mu.
                       a single number representing the value of the mean or difference in means specified by the null hypothesis
 mu
 sigma.x
                       a single number representing the population standard deviation for x
 sigma.y
                       a single number representing the population standard deviation for \mathbf{y}
 conf.level confidence level for the returned confidence interval, restricted to lie between zero and one
```

Contoh:

Berikut adalah data sampel hasil panen kacang tanah (kg) dari 50 lahan yang diambil secara random di DIY pada tahun 2014.

17741.3184089251	14553.1519077289	7619.29863643743	27114.2533196392	17997.3402651831
28668.2491265625	13420.9965821991	20030.4305505424	16987.6000697145	19591.1359052585
11088.3697921896	24209.7796543913	28473.1353822056	25340.1444480665	11891.8605734786
25103.9097156267	20991.6683119757	18226.8722428233	5466.29405746326	28937.6845671151
19451.0746280427	28405.9147211264	8079.42089072235	7700.46058698526	9782.80731611443
17731.9744911732	14545.4056412395	1354.42967245615	20646.3495122669	1535.2920347063
17604.9851286688	30162.3065105	12630.4060164844	17651.4510017119	8353.47830884606
12149.4051886339	18132.481521968	6109.44757854347	28892.897904185	3711.39480016918
24479.4288816739	18527.9107794748	34449.8858761593	22423.9554053862	9750.55214115939
30638.7944247152	20957.9451370462	24602.8005405353	26324.0910880527	31882.1938547028

Berdasarkan data diatas, jika diketahui $\sigma = 10000$, dengan tingkat signifikansi 5%, apakah dapat disimpulkan bahwa rata rata hasil panen kacang tanah di DIY pada 2014 kurang dari 19500 kg?

Uji Normalitas:

Boxplot Hasil Panen Kacang Tanah (kg)

Kacang Tanah

Interpretasi:

Berdasarkan output boxplot diatas yang diperoleh dengan menggunakan software R, dengan menggunakan data hasil panen kacang tanah di DIY pada 2014. Didapatkan informasi bahwa hasil panen kacang tanah di DIY pada 2014 diambil dari populasi yang berdistribusi normal (atau dapat dikatakan berdistribusi normal) hal ini dapat diketahui dengan garis horizontal tengah (median) terletak di antara garis horizontal bawah (Q1) dan garis horizontal atas (Q3) yang relatif sama besar jaraknya. Atau dapat disebut dengan jarak antara median ke Q1 relatif sama dengan jarak antara median ke Q3. maka dari itu populasi hasil panen kacang tanah di DIY pada 2014 berdistribusi normal.

Uji Hipotesis Rata-Rata Populasi 1 Angkatan (Uji Z)

• Hipotesis

 H_0 : $\mu \ge 19500$ (rata rata populasi tidak kurang dari 19500 kg) H_1 : $\mu < 19500$ (rata rata populasi kurang dari 19500 kg)

• Tingkat Signifikansi

 $\alpha = 0.005$

• Statistik Uji

```
> z.test(data1$hasilpanen,alternative="less",mu=19500,sigma.x=10000,
conf.level = 0.95)

          One-sample z-Test

data: data1$hasilpanen
z = -0.88922, p-value = 0.1869
alternative hypothesis: true mean is less than 19500
95 percent confidence interval:
          NA 20568.62
sample estimates:
mean of x
18242.45
```

> qnorm(0.05,lower.tail = F) [1] 1.644854

P-Value = 0.1869Z = -0.88922 $Z_a = 1.644854$

Daerah Kritik

 $Z < -Z_{\alpha}$ (Zcrit) atau P-Value $< \alpha$

Kesimpulan

Karena nilai P-Value = $0.1869 > 0.05 = \alpha$, dan Z = -0.88922 > -1.644854 = Zcrit maka H_0 diterima Sehingga dapat disimpulkan rata rata hasil panen kacang tanah di DIY pada 2014 tidak kurang dari 19500 kg.

• Interpretasi

Berdasarkan pengujian yang telah dilakukan dengan *software R*. dilakukan uji hipotesis rata-rata populasi 1 angkatan (Uji Z) dengan data sampel hasil panen kacang tanah (kg) dari 50 lahan yang diambil secara random di DIY pada tahun 2014, ingin diuji dapat disimpulkan bahwa rata rata hasil panen kacang tanah di DIY pada 2014 kurang dari 19500 kg atau tidak, dengan hipotesis H_0 : $\mu \geq 19500$ (*rata rata populasi tidak kurang dari* 19500 kg). Dengan tingkat signifikansi (α) sebesar 0.005. Didapatkan hasil P-Value = 0.1869 > 0,05 = α , dan $Z = -0.88922 > -1.644854 = Zcrit maka <math>H_0$ diterima Sehingga dapat disimpulkan **rata rata hasil panen kacang tanah di DIY pada 2014 tidak kurang dari 19500 kg**.

Contoh 2: Seorang manajer HRD melakukan penelitian dimana didapatkan tersebut:

77	74	33	30	45
55	49	36	76	36
57	60	54	57	42
46	56	48	67	73
56	70	38	55	41
52	53	47	45	67
69	74	72	59	65
62	51	59	60	63
64	67	66	43	48
63	66	31	55	57

Dimana dari penelitian sebelumnya bahwa populasi berdistribusi normal, dengan tingkat signifikansi 5% tentukan apakah rata-rata usia pegawai di kantor tersebut lebih dari 50 tahun?

<u>Uji Hipotesis Rata-Rata Populasi 1 Angkatan (Uji Z)</u>

• Hipotesis

 H_0 : $\mu \leq 50$ (rata-rata usia pegawai di kantor tersebut tidak lebih dari 50 tahun)

 H_1 : $\mu > 50$ (rata-rata usia pegawai di kantor tersebut lebih dari 50 tahun)

• Tingkat Signifikansi

 $\alpha = 0.005$

• Statistik Uji

```
One-sample z-Test

data: data2$`Usia Pegawai Kantor`
z = 3.3052, p-value = 0.0004746
alternative hypothesis: true mean is greater than 50
95 percent confidence interval:
52.90353

NA
sample estimates:
mean of x
55.78
```

P-Value = 0.0004746Z = 3.3052 $Z_a = 1.644854$

• Daerah Kritik

 $Z > Z_a$ (Zcrit) atau P-Value $\leq \alpha$

• Kesimpulan

Karena nilai P-Value = $0.0004746 < 0.05 = \alpha$, dan Z = 3.3052 > 1.644854 = Zcrit maka H_0 ditolak Sehingga dapat disimpulkan rata-rata usia pegawai di kantor tersebut lebih dari 50 tahun.

• Interpretasi

Berdasarkan pengujian yang telah dilakukan dengan *software R*. dilakukan uji hipotesis rata-rata populasi 1 angkatan (Uji Z) dengan data sampel usia 50 pegawai di suatu kantor, ingin diuji dapat disimpulkan bahwa rata-rata usia pegawai di kantor tersebut lebih dari 50 tahun atau tidak, dengan hipotesis H_0 : $\mu \leq 50$ (*rata-rata usia pegawai di kantor tersebut tidak lebih dari 50 tahun*). Dengan tingkat signifikansi (α) sebesar 0.005 . Didapatkan hasil P-Value = 0.0004746 < 0,05 = α , dan Z = 3.3052 > 1.644854 = Zcrit, maka H_0 ditolak. Sehingga dapat disimpulkan **rata-rata usia pegawai di kantor tersebut lebih dari 50 tahun**.

F. Uji T

Uji T di Sofware R

Contoh 1. Kasus Data Berdistribusi Normal

Diketahui data yang ada di sofware R, yaitu chickwts, data chickwt berisi salah satunya berat anak ayam. Uji lah apakah berat anak ayam = 150?

Syntax

1. Asumsi Normalitas Data

Cek Normalitas

Anak ayam

(*Data berat anak ayam berdistribusi normal*) Interpretasi lengkap akan dijelaskan pada saat kelas.

2. Uji t

Karena asumsi normalitas terpenuhi maka dilanjutkan dengan uji hipotesis. Pada kasus ini digunakan uji t karena data berdistribusi normal dan sampel besar.

Secara kelaziman, contoh soal ini digunakan uji Z.

Uji Hipotesis

• Hipotesis

 H_0 : $\mu = 150$ H_1 : $\mu \neq 150$

Tingkat Signifikansi

 $\alpha = 0.05$

• Statistik Uji

One Sample t test

One Sample t-test

```
data: chick$weight
   t = 12.013, df = 70, p-value < 2.2e-16
   alternative hypothesis: true mean is not equal to 150
   95 percent confidence interval:
        242.8301 279.7896
   sample estimates:
   mean of x
        261.3099

P-value < 2.2e-16
thit = 12.013</pre>
```

• Daerak kritik

```
H0 ditolak jika p-value < \alpha atau |t| > t_{(n-1;a/2)}
Dengan terit dapat diperoleh sebagai berikut,
> #daerah kritis
> qt(0.975,70)
[1] 1.994437
```

• Kesimpulan

Karena P-value sebesar $< 2.2e-16 < \alpha = 0.05$ atau thit = 12.013 > tcrit = 1.994437, maka H0 ditolak. Jadi disimpulkan bahwa tidak cukup bukti bahwa berat anak ayam = 150.

Jangan lupa interpretasi seperti contoh diatas

Contoh 2. Kasus Data Berdistribusi Tidak Normal

Suatu prosedur pendaftaran baru di perguruan tinggi yang menggunakan mesin modern sedang dicoba. Dari sampel sebanyak 12 mahasiswa memerlukan waktu pendaftaran (dalam menit) sebagai berikut :

```
10, 100, 500, 18.8, 67.4, 46, 56, 47, 58.9, 50.2, 25, 25
```

Ujilah hipotesis bahwa rata-rata waktu pendaftaran kurang dari 50 menit. Gunakan tingkat signifikansi = 0,01.

Syntax

```
#Contoh 2, Data tidak berdistribusi normal
#Kasus: Ujilah hipotesis bahwa rata-rata waktu pendaftaran
kurang dari 50
#menit. Gunakan tingkat signifikansi 0.01

#Library yang dibutuhkan
library(AID)
library(MASS)
library(car)
library(tidyverse)
```

```
#menyiapkan data
my data<-data.frame(waktu=c(10,100,500,18.8,67.4,
                            46, 56, 47, 58.9, 50.2, 25, 25))
#Cek Normalitas
boxplot(my_data$waktu,col="blue",border="skyblue",
        main="Cek Normalitas",
        ylab="Waktu")
#transformasi dengan boxcox
#1. Transformasi Box-cox dengan library AID
out = boxcoxnc(my_data$waktu, method = "mle",
               lambda = seq(-2,2,0.001), verbose = F, plot
out$lambda.hat
#2.Transformasi Box-cox dengan library MASS
out = boxcox(my data$waktu~1, lambda =
                     seq(-2,2,0.0001), plotit = F)
out$x[which.max(out$y)]
#3. Transformasi Box-cox dengan library Car
out = powerTransform(my_data$waktu, family =
                              "bcPower")
out$lambda
#Data ditransformasi dengan dantum^-0.3
transformasi.bc=function(data, lambda) {
        for(i in 1:length(data)){
                data[i] = -1*(data[i]^lambda)
        return(data)
}
my data2=my data %>%
        mutate(tfbc=transformasi.bc(my data$waktu,-0.3))
#melihat boxplot setelah transformasi
boxplot(my data2$tfbc,col="blue",border="skyblue",
        main="Cek Normalitas",
        ylab="Waktu")
#Suplemen Secara Inferensi
shapiro.test(my data$waktu)
shapiro.test(my data2$tfbc)
#Uji Hipotesis Satu Angkatan
```

```
t.test(my_data2$tfbc,alternative = "less", mu=-50^{(-0.3)}, conf.level = 0.99)
```

```
#t table
qt(0.99,11)
```

1. Asumsi Normalitas Data

Cek Normalitas

Dari boxplot diatas dapat dilihat bahwa terdapat outlier pada data. Pada kasus ini dipandang seluruh data sehingga distribusi data menceng kanan/menjurai ke atas.

2. Transformasi Data

Karena data tidak berdistribusi normal, dilakukan transformasi dengan metode boxcox. Dari metode boxcox diperoleh nilai lamda = -0.3. Maka dari itu, setiap dantum dikenakan -1*dantum^-0.3. Kemudian, dicek data setelah transformasi,

Cek Normalitas

Dari boxplot diatas, terlihat bahwa data menjurai kebawah karena nilai median lebih dekat dengan kuartil atas. Namun, jika dilihat secara keseluruhan distribusi data mendekati normal. Untuk meyakinkan hal ini, bisa dilakukan inferensi sebagai berikut,

Shapiro-Wilk normality test

(Data berdistribusi Normal)

Interpretasi Lengkap akan dijelaskan dipraktikum

3. Uji t

Alasan menggunakan Uji t???

Uji Hipotesis

• Hipotesis

$$H_0: \mu \ge -50^{-0.3}$$

 $H_1: \mu < -50^{-0.3}$

Tanda minus menunjukkan besar kecilnya data

• Tingkat Signifikansi

$$\alpha = 0.05$$

• Statistik Uji

One Sample t test

One Sample t-test

• Daerak kritik

H0 ditolak jika p-value $< \alpha$ atau $t < -t_{(n-1;a)}$ Dengan terit dapat diperoleh sebagai berikut,

• Kesimpulan

Karena P-value sebesar $0.2713 > \alpha = 0.05$ atau thit = -0.62842 > - tcrit = -2.718079, maka H0 tidak ditolak. Jadi, tidak cukup bukti bahwa rata-rata waktu pendaftaran kurang dari 50 menit (karena inferensi terhadap kasus real).

Interpretasi seperti contoh diatas

G. Latihan Soal

1. Berikut diberikan data sampel panen padi (kg) di beberapa lahan yang diambil secara random di DIY pada tahun 2015.

5463.44702037800	24055.55485355360	17354.21766915270	2555.29906591801	18450.63155673520
38704.31902856210	15735.82072371510	17874.39735396610	25391.13191585660	31883.67052553690
2129.11505616334	23704.46260273530	10853.95168397640	29432.54069663520	37207.85513635520
19595.21743094060	10798.26202916500	19306.98649269380	20839.99673218700	20754.41294759570
12761.88082395630	28118.39029074010	13612.69330698740	20420.93012618950	37323.06700286660
6246.62529827368	28998.35887584670	14839.66592154300	13889.07882498260	21675.94482587370
16418.76140296540	7267.12536294737	8896.93751222111	22328.32958880300	21695.60863520820
11663.17306913600	23945.25946867340	30862.63570991240	20122.20740575900	39657.08884470930
5371.48497382665	28403.04262861330	22391.79696776990	20587.59290193790	31212.51639952560
11085.30944734080	37869.66087315210	15521.95297738540	3266.14221323282	14662.79264470000
16006.03748231320	8044.65731047615	7355.27455869351	22093.48536449170	19272.76871262210
35009.61483395810	26318.63646804370	14772.50551454830	16052.17797958500	4176.62387624775
7059.51703154646	33602.17021970490	18665.33677403720	32254.92214607560	29865.47544451110
14566.08552618790	30894.12618171170	32796.59861403860	16130.32779539150	39804.72605287370
9702.31478941893	12960.85326270330	31281.55008461240	22229.41912005290	20236.35647715170
9812.34401771445	18684.85036142630	14238.21135832300	19323.92773116450	4177.66657962338
24120.62576859240	6567.29558164564	30326.21255145190	21949.68574723320	1436.29630469250
31555.19757648690	15708.47848578940	26124.02293993390	28040.42942886100	22932.08380457060
11265.16346090660	21416.79305819460	34908.85146755500	27826.43265821770	18495.78114261430
9138.09745428401	24273.27326011150	14582.02670373990	22383.09179931290	24434.05069997090

Jika diketahui standar deviasi populasi sebesar 10000 dengan tingkat signifikansi 10%, dari data dan keterangan tersebut jawablah :

- a. Tentukan uji apa yang digunakan dan alasan.
- b. Lakukan uji asumsi secara eksploratif.
- c. Apakah dapat disimpulkan bahwa rata-rata hasil panen padi di DIY pada tahun 2015 lebih dari 18700 kg?
- 2. Setiap hari, suatu jenis tanaman lokal menghasilkan rata rata 880 ton selama beberapa tahun terakhir. Manajer pengendalian kualitas ingin mengetahui apakah hasil tersebut berubah dalam beberapa bulan terakhir. Dia mengambil secara acak data hasil tanaman tersebut dalam 200 hari, dan diperoleh rata ratanya 871 ton dengan variansi 441. (diketahui populasi berdistribusi normal)
 - a. Tentukan uji apa yang digunakan dan alasan.
 - b. Lakukanlah uji hipotesis yang cocok dengan menggunakan tingkat signifikansi 0,05
- **3.** Dalam label kaleng cat, tertera waktu yang dibutuhkan cat menjadi kering dan luas yang dapat dilapisi setiap 1 galon. Kebanyakan merk cat mempunyai kemampuan menutup luas 250 hingga 500 kaki persegi setiap galonnya, tergantung pada tekstur permukaan yang diinginkan. Sebuah perusahaan mengklaim bahwa cat produksinya

dapat menutup permukaan seluas lebih dari 350 kaki persegi. Untuk menguji klaim tersebut diambil sampel 10 galon cat, dan diperoleh hasil sebagai berikut,

310	311	412	368	447
376	303	410	365	350

Lakukan uji dengan tingkat signifikansi 5%!