刀

2 040 367 (13) C1

(51) M∏K⁶

B 22 F 3/02

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 93009553/02, 16.03.1993
- (46) Дата публикации: 25.07.1995
- (56) Ссылки: И.Д. Малиновская, А.Б.Демин. Исследование технологического процесса утилизации титановых отходов компактированием. Современные ресурсосберегающие технологии получения и обработки материалов в машиностроении, Киев, 1991, c.12-14.
- (71) Заявитель: Центральный научно-исследовательский институт материалов
- (72) Изобретатель: Вихман В.Б., Косилов А.А., Лопухин Б.И., Подпалкин А.М., Трещевский А.Н.
- (73) Патентообладатель: Центральный научно-исследовательский институт материалов

(54) СПОСОБ УТИЛИЗАЦИИ МЕТАЛЛИЧЕСКОЙ СТРУЖКИ

(57) Реферат:

Изобретение относится к области утилизации отходов промышленности, а переработке металлической стружки. Продукт переработки может найти применение в производстве вторичных сплавов, в металлургическом производстве Способ легировании. утилизации заключается в том, что металлическую

стружку, преимущественно титановую, прессуют с одновременным отжигом, при этом остаточное давление в камере составляет 1,33 (10⁻¹-10⁻³) Па температура нагрева 0,6 0,8 от температуры плавления металла стружки и при удельном усилии прессования 1 3 от предела текучести металла стружки при температуре прессования. 1 з.п. ф-лы, 2 табл.

ဖ

2

(19) RU (11) 2 040 367 (13) C1

(51) Int. Cl.⁶ B 22 F 3/02

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 93009553/02, 16.03.1993

(46) Date of publication: 25.07.1995

- (71) Applicant:
 Tsentral'nyj nauchno-issledovateľskij
 institut materialov
- (72) Inventor: Vikhman V.B., Kosilov A.A., Lopukhin B.I., Podpalkin A.M., Treshchevskij A.N.
- (73) Proprietor: Tsentral'nyj nauchno-issledovatel'skij institut materialov

(54) METHOD OF RECOVERY OF METALLIC CHIPS

(57) Abstract:

刀

FIELD: industry waste recovery, recovery products may be used at production of secondary alloys, at metallurgical production for alloying procedures. SUBSTANCE: method comprises steps of pressing metallic chip, mainly titanium chip, with simultaneous annealing of it,

providing a residual pressure in a pressing chamber, equal to 1,33 (10⁻¹-10⁻³) Pa, heating temperature, consisting (0.6-0.8) of a melting temperature value of the chip metal and specific pressing effort, consisting (1-3) values of yielding strength of the chip metal at pressing temperature. EFFECT: enhanced efficiency. 2 cl, 2 tbl

Изобретение относится к области утилизации отходов промышленности, а именно к переработке металлической, в частности титановой, стружки. Продукт переработки может найти применение в производстве вторичных титановых сплавов, в черной металлургии при легировании и раскислении сталей.

Наиболее распространенным (45% от общей массы отходов) и труднее всего перерабатываемым видом отходов является стружка. Сложности, возникающие при ее подготовке к применению, обусловлены тем, что она занимает большой объем, прочна, загрязнена маслами и эмульсиями. Известны способы утилизации отходов металлов путем переработки их в брикеты, например брикеты для модифицирования чугуна, брикеты для производства металлов.

Наиболее близким к предлагаемому является способ утилизации титановых отхолов -С помощью холодного брикетирования фигурным пуансоном при удельном усилии прессования 450-600 МПа. Полученные брикеты затем использовать в виде электрода при выплавке слитков. Этот способ позволяет вводить в электрод до 70% стружки. Получаемые брикеты имеют изгиб _{бизг}≥4МПа, плотность 0,6-0,7 от теоретической.

Существенным недостатком аналогов и прототипа являются ограничения по объему вводимых отходов (до 70%), малая плотность электрода (0,6-0,7), что заметно снижает прочностные свойства брикета и производительность процесса при плавке; вызывает необходимость проведения отдельной операции вакуумного отжига стружки, без которого плавку практически вести невозможно из-за сильного газовыделения.

Целью изобретения является создание способа утилизации металлических отходов, обеспечивающего получение продукта со 100% содержанием отходов, повышение прочностных свойств и плотности.

ᄁ

0

w

G

Цель достигается тем, что шихту, состоящую исключительно из металлических температуре, прессуют при составляющей 0,6-0,8 Т пл металла отходов, удельном усилии прессования. составляющим 1-3 от предела текучести металла при температуре прессования, при остаточном давлении В камере 1,33 (10⁻¹-10⁻³) Па в течение 30-60 мин, одновременно в процессе нагрева под прессование проводится вакуумный отжиг стружки для удаления газов.

Способ осуществляют следующим образом.

Металлическую стружку, например титанового сплава, дробят в молотковой дробилке типа 188 ДР до размеров отдельных частиц (5-10)х(5-15) мм. Размолотую стружку подвергают магнитной сепарации установке типа ПБСУ-40 для удаления железных частиц, затем промывают в обезжиривающем растворе, например, содержащем 20 г/л кальцинированной соды и 30 г/л тринатрий фосфата, после чего промывают в воде и сушат. Подготовленную таким образом стружку брикетируют на прессе усилием 6300 кН с вакуумированием зоны прессования до давления

1,33(10 -1-10-3) Па, в течение 30-60 мин. Температуру брикетирования для титановых сплавов выбирают в интервале 1000-1150°С, при этом удельное усилие прессования составляет от 10 до 30 МПа. В процессе прессования до плотности брикета 0,8-0,9 от теоретической происходит диффузионная сварка частиц.

Материалы, использованные для шихты, указаны в табл.1, где приведены параметры предлагаемого способа и свойства полученных брикетов.

При соблюдении заявленных параметров по минимуму, среднему значению, максимуму (вариант 1-3) в брикете обеспечивается по сравнению с прототипом, повышение плотности на 30-50% и прочности на изгиб в 5-6 раз. В случае, когда параметры техпроцесса выходят за нижний предел (вариант 4), брикет по свойствам в сравнении с прототипом преимуществ не имеет. При выходе параметров за верхний предел (вариант 5) свойства брикета отражаются на уровне материала, получаемого заявляемым параметрам. Обеспечение же этих параметров связано с усложнением техпроцесса (в частности, вакуумного оборудования) и заметным повышением энергозатрат, которые не компенсируются получаемым эффектом.

Варианты 6-9 показывают, что аналогичным образом можно утилизировать стружку титановых сплавов и других активных металлов, таких как цирконий и ниобий.

Предлагаемый способ позволяет использовать металлические отходы на 100% по сравнению с прототипом.

Полученные брикеты пригодны для выплавки вторичных слитков, при этом выплавка слитков производится в стандартных вакуумно-дуговых печах, в которых выплавляются практически все титановые сплавы.

При реализации предлагаемого способа нет необходимости в создании новых дорогостоящих металлургических печей с электронно-лучевым или плазменным источником тепла.

Вторичные сплавы, выплавленные на базе стружки технического титана марки ВТ1-0, имеют повышенное по сравнению с серийным сплавом на 0,05-0,1% содержание примесей внедрения, таких как киспород, азот и углерод (табл.2), что снижает их пластические характеристики. Однако применять такие материалы для нужд народного хозяйства целесообразно и экономически оправдано.

Указанные брикеты с успехом могут использоваться в черной металлургии вместо ферротитана для легирования и раскисления сталей. ферротитана Замена брикетированную титановую стружку дает возможность получить значительный экономический эффект в результате резкого снижения энергоемкости процессов по подготовке титаносодержащих материалов, применяемых в черной металлургии. высвобождении плавильных мощностей по производству ферротитана.

Формула изобретения:

1. СПОСОБ УТИЛИЗАЦИИ МЕТАЛЛИЧЕСКОЙ СТРУЖКИ, включающий подготовку шихты, вакуумный отжиг и прессование, отличающийся тем, что

-3-

RU 2040367 (

прессование проводят в вакууме с одновременным отжигом.

2. Способ по п.1, отличающийся тем, что прессование проводят при . остаточном давлении в камере \cdot 1,33(10 $^{-1}$ 10 $^{-3}$) Па,

температуре 0,6 0,8 от температуры плавления материала стружки, при удельном усилии прессования 1 3 от предела текучести материала стружки.

10

15

20

25

30

35

40

45

50

55

en.

RU 204036

-4

R ⊂	
2	
0	
4 0	
ယ တ	
7	
C	

Вариант техпро-	Сплав	Параметры способа				Результаты экспери- мента, свойства бри- кета	
цесса -		давление. Па	тѐмпера- тура; °С	удельное усилие, МПа	выдерж- ка. ч	Плот- ность, до- ля от теоретиче- ской	<i>σ</i> изг, МПа
	BT1-0		150-200	450-500	0,5	0,6-0,7	4,2-4,3
Прототип	BT1-0	1,33 · 10 ⁻¹	1000	10	0,5	0,80	22,3
	BT1-0	1,33 · 10 ⁻²	1100	20	0,5	0,85	23,6
2	BT1-0	1,33 · 10 · 3	1150	30	0,5	0,90	25,0
3	BT1-0	1,33	900	8	0,5	0.70	9.5
4	BT1-0	1,33 · 10 -4	1180	35	0,5	0,90	25.7
5	ПТ-3В	1,33 · 10 ⁻²	1100	20	0,5	0,85	24,2
6 7	BT6	1,33 10	1100	20	0,5	0,85	25,0
		1,33 10 2	1100	20	0,5	0.85	23.9
8 9	Zr Nb	1,33·10 1,33·10 ⁻²	I.	20	0,5	08,0	22,5

Таблица 2

Состав, мас.%										
Марка	Ti	Al	Fe	С	0	N ·	H			
сплава Вторич-	Основное	0,3	0.4	0,1	0,25	0,1	0.010			
ный титан ВТ1-0 ГОСТ	То же	<u>-</u> ·	0,3	0,07	0,20	0,04	0,010			
19807-74	1						<u></u>			