Markov, Chebyshev inequalidies and LLN (7.2, 7.3) Readl [X & 7 implie E/x) (E(Y)) 1. Markor inequality. For any 270, $P(|V| \neq a) \leq \frac{E(|V|)}{a}.$ $Proof. \quad For \quad a > 0,$ $a \neq |V| \quad Hence$ $a = \{a \leq |V|\}$ $a = P((V| \neq a)) \leq E(|V|).$ 2. Cheby her inequality. Let E(V) = M, Vor(V) = 52. Then for each $\varepsilon > 0$, $P(|V-\mu|>\varepsilon) = \frac{Vor(V)}{\varepsilon^2} = \frac{\sigma^2}{\varepsilon^2}$ $P(|V-\mu|>\varepsilon) = P((V-\mu)^2 > \varepsilon^2) = \frac{E[(V-\mu)^2]}{\varepsilon^2} = \frac{\sigma^2}{\varepsilon^2}$ Chebysher impurdety and weat LLN Then for any \$ >0, by Chebysher, $V = X_n$), (1) $P(|X_n-|^n|^2, E) \leq \frac{Vor(X_n)}{E^2} = \frac{5^2}{nE^2}$ | weak 2.CNComment on (1): E[(X -- M)2] = 52 n -> 0. We say

Xn mean square sense. Def. $V_n \rightarrow V$ in mean spusse if $\mathbb{E}\left[\left(V_n - V\right)^2\right] \stackrel{\sim}{\longrightarrow} 0$. Note men square convergence implies convergence in probability: $P(|V_n-V|^2, \Sigma) = P(|V_n-V|^2, \Sigma^2) \leq \frac{E[(V_n-V)^2]}{\Sigma^2} \xrightarrow{\alpha \to \infty} 0.$ Some useful facts Claim 1. If In -> V in probability and & in continuous, then g / Va) -> p(V) Claim? If V. D. V and g is continuous, then g (Vn) D g (V). Ex1. Let X,, X,... X, be i.i.d. E(X)=1, Var(X)=62. Show that sample reviewe (and $S_n = [S_n^2 \rightarrow G_2 = 6]$ $S_n^2 : \sum_{i=1}^n (X_i - X_n)^2 \longrightarrow G^2 \text{ in population}$ Answer. Expending numerator and using Claim 1, $\widetilde{S}_{n}^{2} = \sum_{i=1}^{n} (X_{i}^{2} - 2X_{i} X_{n} + \overline{X}_{n}^{2})/n$ $= \frac{\sum_{i=1}^{n} \chi_{i}^{2}}{n} = \frac{\sum_{i=1}^{n} \chi_{i}}{n} = \frac{\sum_{i=1}^{n} \chi_{i}^{2}}{n} = \frac{\sum_{i$ $\Rightarrow E(X^2/-M^2=Ver(X)=0^2.$ Slutshy thus. Let Yn Dy and Vn -> 1 in probability. Then Vn Yn Dy.

probability.	. Then	$V_n Y_n \xrightarrow{D} Y$.		
Ex L. Let X.	,, X. he	i.i.d., E(x	1=1, Var (X)	= C ₃
Show that	X n - M	D) Z~A	1(0,1)	
1 5	Th		D _	
Answer. Xn	- Marian - Company	$\frac{\overline{z}}{\overline{z}}$ $\frac{\overline{z}}{\overline{z}}$	<u> </u>	V(0,1).
Comment on	E × 2. , no	te		
P(1× n- M1	(3) 2 F	0(12143)	= 0.837	
P(X - 3 Sm = /				
0.997	contidence i	- te vel for	ч.	
Coucly - Schur				
= c + 2bt +				
Hence discri.	minont = (2	-6/2-40c=		
$\frac{ b }{E \times 3}$. Show	2 hat F	-(1V1) < \E(Y ²)	
An) who . Co	u dy - schwar	rz with U	= 14, V=1.	