|                           | Utech                                     |
|---------------------------|-------------------------------------------|
| Name :                    |                                           |
| Roll No.:                 | An Agranus (y' Exercising 2 and Experient |
| Invigilator's Signature : |                                           |

#### **MATHEMATICS**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

# GROUP – A

( Multiple Choice Type Questions )

1. Choose the correct alternatives for any ten of the following :  $10\times 1=10$ 

- i) The generators of the cyclic group ( Z, + ) are
  - a) 1, -1

b) 0, 1

c) 0, -1

- d) 2, -2.
- ii) The mapping  $f : R \varnothing R$  given by  $f(x) = |x|, x \square R$  is
  - a) Injective
- b) Surjective
- c) Bijective
- d) None of these.
- iii) Let S be a finite set of n distinct elements. The number of bijective mapping from S to S is
  - a)  $n^2$

b) *n*!

c)  $2^n$ 

d) None of these.

4101 [ Turn over



- If three Boolean variables x, y and z are defined on Boolean Algebra B, then which one of the following is a fundamental product?
  - a)  $xy^{\prime}z$

- b) хy
- c) xy(x+y)
- d) none of these.
- If G is binary tree on n vertices, the G has edges v)
  - a) n(n-1)
- b) n-1

c) n

- d)  $\frac{n(n-1)}{2}$ .
- Solution of the recurrence relation  $S_n = 2S_{n-1}$  with vi)  $S_0 = 1 \text{ is } S_n =$ 
  - a)

b)  $2^{n-1}$ 

 $2^{n+1}$ c)

- d) none of these.
- vii) A complete graph is
  - regular a)
- connected simple b)

c) circuit

- d) planar graph.
- viii) On the set  $A = \{1, 2, 3\}$ , the relation  $R = \{ (2, 1), (1, 2), (3, 3) \}$ . Then R is
  - symmetric a)
- b) reflexive
- transitive
- d) not a relation at all.
- In the additive group  $Z_{\,6}\,$  the order of the element [ 4 ] is ix)
  - a) 0

b) 2

c) 3 d) 6.



| x) | Let G be a group and $a \ \square$ G. If $o$ ( $a$ ) | = 17, then              |
|----|------------------------------------------------------|-------------------------|
|    | o ( a <sup>8</sup> ) is                              | A American Constitution |

a) 17

b) 16

c) 8

- d) 5.
- xi) If S and T are two subgroup of a group G, then which of the following is a subgroup?
  - a)  $S \cup T$

- b)  $S \cap T$
- c) S Td

- G-S.
- xii) The dual of a planar graph is dual. It is
  - a) Trueb)

False.

- xiii) A binary tree should have at least
  - a) one vertex
- b) two vertices
- c) three vertices
- d) four vertices.
- xiv) A connected graph is Eulerian iff it has no vertex of odd degree. It is
  - a) Trueb)

False.

- xv) The number of idempotent element in Z is
  - a) 0

b) 1

c) 2

d) none of these.

#### **GROUP - B**

#### (Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$ 

- 2. Let  $G = \{ (a, b) : a \neq 0, b \mid R \}$  and \* be a binary compostion defined on G by (a, b) \* (c, d) = (ac, bc + d). Show that (G, \*) is a non Abelian group.
- 3. Show that for any two subgroups H and K of a group  $G H \cap K$  is also a subgroup of G.



- Let G be a group, if a, b  $\square$  G such that  $a^4 = e$ , the 4. element of G and  $ab = ba^2$ , prove that a = e.
- Prove that every cyclic group is an Abelian group. 5.
- Show that the mapping  $F:(Z, \bullet) \varnothing (R, \bullet)$  defined by 6.  $f(x) = x^2 \ \forall x \mid Z$  is a monomorphism but not isomorphism.
- If in a ring R with unity,  $(xy)^2 = x^2 y^2 \forall x, y \mid R$ , then 7. show that R is a commutative.

#### **GROUP - C**

## (Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

Examine whether the following two graphs are 8. isomorphic.

Dia.

5

Draw the dual of the graph. b)

Dia.

5



c) Determine the adjacency matrix of the following di-graph :

Dia.

5

9. a) Construct a simple logic circuit which would satisfy the truth table.

| х | у | f |
|---|---|---|
| 1 | 1 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 0 | 0 | 1 |

5

b) Prove that a graph G has a spanning tree if and only if G is connected.5

4101 5 [ Turn over



Dia.

5

- 10. a) Consider the lattice  $L = \{1, 2, 3, 4, 6, 12\}$ , the divisors of 12 ordered by divisibility. Find the lower and upper bound of L. Is L a complemented lattice?
  - b) For any Boolean Algebra, show that.

$$(xy' + xz') + x' = (x' + y + z)(x' + y + z')(x' + y' + z').$$

5

c) Using generating function solve the recurrence relation,  $a_n - 7a_{n-1} + 10a_{n-2} = 0, \text{ for } n > 1 \text{ and } a_0 = 3,$   $a_1 = 3.$ 



- 11. a) Prove that the number of vertices in a binary tree is always odd.
  - b) Find the truth table of the Boolean function

$$f = z'xy + xy' + y. 5$$

- c) Prove that a complete graph with n vertices consist of  $\frac{n(n-1)}{2}$  number of edges. 5
- 12. a) Prove that the identity elements and the inverse of an element in a group is unique. 5
  - b) Prove that in a group ( G, \* ), ( a \* b )  $^{-1}$  =  $b^{-1}$  \*  $a^{-1}$  .
  - c) Prove that the set of matrices

$$H = \left\{ \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} : x \, \Box \, R, \, x \neq 0 \right\} \text{ forms a normal}$$
 subgroup of  $GL$  (  $2$ ,  $R$  ), the group of all real non-singular  $2 \infty 2$  matrices under multiplication.

13. a) Using Ford-Fulkerson's algorithm, find the maximum flow in the following network :

Dia.



- i)  $w_2$  and  $w_6$
- ii)  $w_1$  and  $w_6$  .

Dia.

7