Lecture 1 Dynamic Nature of Relationships, Serial Correlation

- When modeling relationships between variables, the nature of the data that have been collected has an important bearing on the appropriate choice of an econometric model
 - Two features of time-series data to consider:
 - 1. Time-series observations on a given economic unit, observed over a number of time periods, are likely to be correlated
 - 2. Time-series data have a natural ordering according to time

- There is also the possible existence of dynamic relationships between variables
 - A dynamic relationship is one in which the change in a variable now has an impact on that same variable, or other variables, in one or more future time periods
 - These effects do not occur instantaneously but are spread, or **distributed**, over future time periods

FIGURE 9.1 The distributed lag effect

9.1.1 Dynamic Nature of Relationships

■ Ways to model the dynamic relationship:

1. Specify that a dependent variable *y* is a function of current and past values of an explanatory variable *x*

$$y_t = f(x_t, x_{t-1}, x_{t-2}, \dots)$$

• Because of the existence of these lagged effects, Eq. 9.1 is called a distributed lag model

9.1.1 Dynamic Nature of Relationships

■ Ways to model the dynamic relationship (Continued):

2. Capturing the dynamic characteristics of timeseries by specifying a model with a lagged dependent variable as one of the explanatory variables

 $y_t = f(y_{t-1}, x_t)$

• Or have:

$$y_t = f(y_{t-1}, x_t, x_{t-1}, x_{t-2})$$

-Such models are called **autoregressive distributed lag** (**ARDL**) models, with "autoregressive" meaning a regression of y_t on its own lag or lags

Eq. 9.2

9.1.1 Dynamic Nature of Relationships

■ Ways to model the dynamic relationship (Continued):

3. Model the continuing impact of change over several periods via the error term

$$y_t = f(x_t) + e_t \qquad e_t = f(e_{t-1})$$

- In this case e_t is correlated with e_{t-1}
- We say the errors are **serially correlated** or **autocorrelated**

■ The primary assumption is Assumption MR4:

$$cov(y_i, y_i) = cov(e_i, e_i) = 0$$
 for $i \neq j$

• For time series, this is written as:

$$cov(y_t, y_s) = cov(e_t, e_s) = 0$$
 for $t \neq s$

The dynamic models in Eqs. 9.2, 9.3 and 9.4 imply correlation between y_t and y_{t-1} or e_t and e_{t-1} or both, so they clearly violate assumption MR4

9.1.2a Stationarity

■ A stationary variable is one that is not explosive, nor trending, and nor wandering aimlessly without returning to its mean

FIGURE 9.2 (a) Time series of a stationary variable

9.1.2a Stationarity

FIGURE 9.2 (b) time series of a nonstationary variable that is "slow-turning" or "wandering"

9.1.2a Stationarity

9.1.2a Stationarity

Consider a linear model in which, after *q* time periods, changes in *x* no longer have an impact on *y*

Eq. 9.5

$$y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + \dots + \beta_q x_{t-q} + e_t$$

– Note the notation change: β_s is used to denote the coefficient of x_{t-s} and α is introduced to denote the intercept

- Model 9.5 has two uses:
 - Forecasting

$$y_{T+1} = \alpha + \beta_0 x_{T+1} + \beta_1 x_T + \beta_2 x_{T-1} + \dots + \beta_q x_{T-q+1} + e_{T+1}$$

- Policy analysis
 - What is the effect of a change in x on y?

Eq. 9.7
$$\frac{\partial E(y_t)}{\partial x_{t-s}} = \frac{\partial E(y_{t+s})}{\partial x_t} = \beta_s$$

- Assume x_t is increased by one unit and then maintained at its new level in subsequent periods
 - The immediate impact will be β_0
 - the total effect in period t + 1 will be $\beta_0 + \beta_1$, in period t + 2 it will be $\beta_0 + \beta_1 + \beta_2$, and so on
 - These quantities are called interim multipliers
 - The **total multiplier** is the final effect on y of the sustained increase after q or more periods have elapsed $\sum_{s}^{q} \beta_{s}$

- The effect of a one-unit change in x_t is **distributed** over the current and next q periods, from which we get the term "distributed lag model"
 - It is called a finite distributed lag model of order q
 - It is assumed that after a finite number of periods q, changes in x no longer have an impact on y
 - The coefficient β_s is called a **distributed-lag** weight or an *s*-period delay multiplier
 - The coefficient β_0 (s = 0) is called the **impact** multiplier

ASSUMPTIONS OF THE DISTRIBUTED LAG MODEL

9.2.1 Assumptions

TSMR1.
$$y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + \dots + \beta_q x_{t-q} + e_t, \qquad t = q + 1, \dots, T$$

TSMR2. y and x are stationary random variables, and e_t is independent of current, past and future values of x.

TSMR3.
$$E(e_t) = 0$$

TSMR4.
$$var(e_t) = \sigma^2$$

TSMR5.
$$cov(e_t, e_s) = 0$$
 $t \neq s$

TSMR6.
$$e_t \sim N(0, \sigma^2)$$

9.2.2 An Example: Okun's Law

■ Consider Okun's Law

- In this model the change in the unemployment rate from one period to the next depends on the rate of growth of output in the economy:

$$U_t - U_{t-1} = -\gamma (G_t - G_N)$$

- We can rewrite this as:

$$DU_t = \alpha + \beta_0 G_t + e_t$$

where
$$DU = \Delta U = U_t$$
 - U_{t-1} , $\beta_0 = -\gamma$, and $\alpha = \gamma G_N$

9.2.2 An Example: Okun's Law

■ We can expand this to include lags:

Eq. 9.10

$$DU_{t} = \alpha + \beta_{0}G_{t} + \beta_{1}G_{t-1} + \beta_{2}G_{t-2} + \dots + \beta_{q}G_{t-q} + e_{t}$$

 \blacksquare We can calculate the growth in output, G, as:

$$G_t = \frac{GDP_t - GDP_{t-1}}{GDP_{t-1}} \times 100$$

FIGURE 9.4 (a) Time series for the change in the U.S. unemployment rate: 1985Q3 to 2009Q3

9.2.2 An Example: Okun's Law

FIGURE 9.4 (b) Time series for U.S. GDP growth: 1985Q2 to 2009Q3

9.2.2 An Example: Okun's Law

Table 9.1 Spreadsheet of Observations for Distributed Lag Model

9.2.2 An Example: Okun's Law

t	Quarter	U_t	U_{t-1}	DU_t	G_t	G_{t-1}	G_{t-2}	G_{t-3}
1	1985Q2	7.3	•	•	1.4	•	•	•
2	1985Q3	7.2	7.3	-0.1	2.0	1.4	•	•
3	1985Q4	7.0	7.2	-0.2	1.4	2.0	1.4	•
4	1986Q1	7.0	7.0	0.0	1.5	1.4	2.0	1.4
5	1986Q2	7.2	7.0	0.2	0.9	1.5	1.4	2.0
96	2009Q1	8.1	6.9	1.2	-1.2	-1.4	0.3	0.9
97	2009Q2	9.3	8.1	1.2	-0.2	-1.2	-1.4	0.3
98	2009Q3	9.6	9.3	0.3	0.8	-0.2	-1.2	-1.4

Table 9.2 Estimates for Okun's Law Finite Distributed Lag Model

9.2.2 An Example: Okun's Law

Lag Length $q=3$									
Variable	Coefficient	Std. Error	t-value	<i>p</i> -value					
Constant	0.5810	0.0539	10.781	0.0000					
G_t	-0.2021	0.0330	6.120	0.0000					
G_{t-1}	-0.1645	0.0358	-4.549	0.0000					
G_{t-2}	-0.0716	0.0353	-2.027	0.0456					
G_{t-3}	0.0033	0.0363	0.091	0.9276					
Observations = 95	$R^2=0.652$		$\hat{\sigma}=0.1743$						
	Lag L	ength $q=2$							
Variable	Coefficient	Std. Error	t-value	<i>p</i> -value					
Constant	0.5836	0.0472	12.360	0.0000					
G_t	-0.2020	0.0324	-6.238	0.0000					
G_{t-1}	-0.1653	0.0335	-4.930	0.0000					
G_{t-2}	-0.0700	0.0331	-2.115	0.0371					
Observations = 96	$R^2 =$	0.654	$\hat{\sigma} = 0.1726$						

- When is assumption TSMR5, $cov(e_t, e_s) = 0$ for $t \neq s$ likely to be violated, and how do we assess its validity?
 - When a variable exhibits correlation over time,
 we say it is autocorrelated or serially
 correlated
 - These terms are used interchangeably

FIGURE 9.5 Scatter diagram for G_t and G_{t-1}

9.3.1 Serial Correlation in Output Growth

■ Recall that the population correlation between two variables *x* and *y* is given by:

$$\rho_{xy} = \frac{\text{cov}(x, y)}{\sqrt{\text{var}(x) \text{var}(y)}}$$

9.3.1a Computing Autocorrelation

■ For the Okun's Law problem, we have:

$$\rho_1 = \frac{\text{cov}(G_t, G_{t-1})}{\sqrt{\text{var}(G_t) \text{var}(G_{t-1})}} = \frac{\text{cov}(G_t, G_{t-1})}{\text{var}(G_t)}$$

- The notation ρ_1 is used to denote the population correlation between observations that are one period apart in time
 - This is known also as the population autocorrelation of order one.
 - The second equality in Eq. 9.12 holds because $var(G_t) = var(G_{t-1})$, a property of time series that are stationary

9.3.1a Computing Autocorrelation

■ The first-order sample autocorrelation for G is obtained from Eq. 9.12 using the estimates:

$$cov(\widehat{G_t}, \widehat{G_{t-1}}) = \frac{1}{T-1} \sum_{t=2}^{T} (G_t - \bar{G}) (G_{t-1} - \bar{G})$$

$$var(\widehat{G_t}) = \frac{1}{T-1} \sum_{t=1}^{T} (G_t - \bar{G})^2$$

9.3.1a Computing Autocorrelation

■ Making the substitutions, we get:

$$r_1 = \frac{\sum_{t=2}^{T} (G_t - \bar{G}) (G_{t-1} - \bar{G})}{\sum_{t=1}^{T} (G_t - \bar{G})^2}$$

9.3.1a Computing Autocorrelation

correlation between observations that are k periods apart is:

Eq. 9.14

$$r_k = \frac{\sum_{t=k+1}^{T} (y_t - \bar{y}) (y_{t-k} - \bar{y})}{\sum_{t=1}^{T} (y_t - \bar{y})^2}$$

autocorrelation for a series y that gives the

■ More generally, the *k*-th order sample

9.3.1a Computing Autocorrelation

■ Applying this to our problem, we get for the first four autocorrelations:

$$r_1 = 0.494$$
 $r_2 = 0.411$ $r_3 = 0.154$ $r_4 = 0.200$

9.3.1a Computing Autocorrelation

- How do we test whether an autocorrelation is significantly different from zero?
 - The null hypothesis is H_0 : $\rho_k = 0$
 - A suitable test statistic is:

 $Z = \frac{r_k - 0}{\sqrt{\frac{1}{T}}} = \sqrt{T}r_k \sim N(0,1)$

9.3.1a Computing Autocorrelation

■ For our problem, we have:

$$Z_1 = \sqrt{98} \times 0.494 = 4.89$$
, $Z_2 = \sqrt{98} \times 0.414 = 4.10$
 $Z_3 = \sqrt{98} \times 0.154 = 1.52$, $Z_4 = \sqrt{98} \times 0.200 = 1.98$

- We reject the hypotheses H_0 : $\rho_1 = 0$ and H_0 : $\rho_2 = 0$
- We have insufficient evidence to reject H_0 : $\rho_3 = 0$
- $-\rho_4$ is on the borderline of being significant.
- We conclude that *G*, the quarterly growth rate in U.S. GDP, exhibits significant serial correlation at lags one and two

- The **correlogram**, also called the **sample autocorrelation function**, is the sequence of autocorrelations r_1 , r_2 , r_3 , ...
 - It shows the correlation between observations that are one period apart, two periods apart, three periods apart, and so on

FIGURE 9.6 Correlogram for *G*

9.3.1b The Correlagram

9.3.2 Serially Correlated Errors

> The correlogram can also be used to check whether the multiple regression assumption $cov(e_t, e_s) = 0$ for $t \neq s$ is violated

9.3.2a A Phillips Curve

■ Consider a model for a Phillips Curve:

$$INF_t = INF_t^E - \gamma (U_t - U_{t-1})$$

– If we initially assume that inflationary expectations are constant over time ($\beta_1 = INF_t^E$) set $\beta_2 = -\gamma$, and add an error term:

$$INF_t = \beta_1 + \beta_2 DU_t + e_t$$

FIGURE 9.7 (a) Time series for Australian price inflation

9.3.2a A Phillips Curve

FIGURE 9.7 (b) Time series for the quarterly change in the Australian unemployment rate

9.3.2a A Phillips Curve

9.3.2a A Phillips Curve

■ To determine if the errors are serially correlated, we compute the least squares residuals:

$$\hat{e}_t = INF_t - b_1 - b_2 DU_t$$

FIGURE 9.8 Correlogram for residuals from least-squares estimated Phillips curve

9.3.2a A Phillips Curve

> 9.3.2a A Phillips Curve

■ The k-th order autocorrelation for the residuals can be written as:

Eq. 9.21

$$r_k = \frac{\sum_{t=k+1}^{T} \hat{e}_t \hat{e}_{t-k}}{\sum_{t=1}^{T} \hat{e}_t^2}$$

– The least squares equation is:

$$\widehat{INF} = 0.7776 - 0.5279DU$$

(se) (0.0658) (0.2294)

9.3.2a A Phillips Curve

■ The values at the first four lags are:

$$r_1 = 0.549$$
 $r_2 = 0.456$ $r_3 = 0.433$ $r_4 = 0.420$

9.4 Other Tests for Serially Correlated Errors

■ An advantage of this test is that it readily generalizes to a joint test of correlations at more than one lag

■ If e_t and e_{t-1} are correlated, then one way to model the relationship between them is to write:

$$e_t = \rho e_{t-1} + v_t$$

We can substitute this into a simple regression equation:

$$y_t = \beta_1 + \beta_2 x_t + \rho e_{t-1} + v_t$$

Eq. 9.23

■ To derive the relevant auxiliary regression for the autocorrelation LM test, we write the test equation as:

Eq. 9.25

$$y_t = \beta_1 + \beta_2 x_t + \rho \hat{e}_{t-1} + v_t$$

– But since we know that $y_t = b_1 + b_2 x_t + \hat{e}_t$, we get:

$$b_1 + b_2 x_t + \hat{e}_t = \beta_1 + \beta_2 x_t + \rho \hat{e}_{t-1} + v_t$$

■ Rearranging, we get:

$$\hat{e}_t = (\beta_1 - b_1) + (\beta_2 - b_2)x_t + \rho \hat{e}_{t-1} + v_t$$

= $\gamma_1 + \gamma_2 x_t + \rho \hat{e}_{t-1} + v$

- If H_0 : $\rho = 0$ is true, then LM = $T \times R^2$ has an approximate $\chi^2_{(1)}$ distribution
 - T and R^2 are the sample size and goodness-of-fit statistic, respectively, from least squares estimation of Eq. 9.26

■ Then:

 \hat{e}_0

$$LM = T \times R^2 = 90 \times 0.3066 = 27.59$$

- These value is much larger than 3.84, which is the 5% critical value from a $\chi^2_{(1)}$ -distribution
 - We reject the null hypothesis of no autocorrelation
- Alternatively, we can reject H_0 by examining the p-value for LM = 27.61, which is 0.000