Seminář fyziky plazmatu

Solovjevovo řešení Gradovy-Šafranovovy rovnice pro rovnováhu plasmatu v tokamaku

Radek Kubíček

May 6, 2024

Popis tokamaku

- 2 osy symetrie
 - ► Hlavní na ose Z
 - Vedlejší skrz centrum komory
- popis souřadnic: Toroidální a poloidální směr φ , Θ . Hlavní a vedlejší poloměr R_0 , a_0 . $a_0 \ / \ R_0 = \epsilon$ inverzní aspekt standartně $\epsilon < 1$

Gradova-Šafranovova rovnice

$$\frac{\partial^2 \psi}{\partial Z^2} + R \frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial \psi}{\partial R} \right) = -\mu_0 R^2 \frac{\partial p}{\partial \psi} - F \frac{\partial F}{\partial \psi}.$$

- nelineární difr. rovnice bez obecného analytického řešení
- $\psi(\mathsf{R},\,\mathsf{Z})$ funkce magnetického povrchu, $F(\psi)$ funkce poloidálního proudu, μ_0 permeabilita vakua, $p(\psi)$ tlak

Solovjevovo řešení

- Hledáme analytické řešení Gradovy-Šafranovovy rovnice
- Solovievovo řešení $\Psi = [x \frac{\epsilon}{2}(1 x^2)]^2 + (1 \frac{\epsilon^2}{4})[1 + \tau \epsilon x(2 + \epsilon x)] \frac{y^2}{\sigma^2}$
- Šafranovův posun $\delta = \frac{1}{\epsilon} [\sqrt{1+\epsilon^2} 1]$
- Transformace souřadnic [x, y] <=> [R, Z]kde $x = \frac{R - R_0}{\epsilon R_0}, \quad y = \frac{Z}{\epsilon R_0}$

Solovjevovo řešení

- Vytvoření interaktivní webové aplikace pro vizualizaci Solovjevova řešení
- možnost nastavení konstant pomocí posuvníků

Použitá literatura

Ing. Jiří Kocman, *Řízení polohy plazmatického prstence na tokamaku GOLEM*, [online, cit. May 6, 2024].