Индуктивная площадь

- **1.** При n > 1 и $\alpha > -1$ докажите неравенство $(1 + \alpha)^n > 1 + n\alpha$.
- 2. Плоскость разита на части несколькими а) прямыми; б) окружностями. Докажите, что эти части можно раскрасить в 2 цвета правильным образом (т.е. так, чтобы никакие две области одного цвета не имели обшей границы)
- 3. Точка C лежит на отрезке AE. C одной стороны от прямой AE построены не имеющие общих внутренних точек треугольники ABC и CDE так, что $\angle ABC = \angle BCD = \angle CDE$. Найдите отношение площадей треугольников ACD и EBC.
- **4.** Известно, что $\frac{a}{b}=\frac{c}{d}$. Докажите, что $\frac{a-c}{b-d}=\frac{a}{b}$.
- **5.** Найдите все точки X Внутри треугольника ABC такие, что $\frac{S_{ABX}}{S_{CDX}}=1.$
- **6.** Докажите, что (3n)! делится на $3^n n!$.
- **7.** Докажите, что при любом натуральном n существует n-угольник у которого ровно три острых угла.
- **8.** В выпуклом четырехугольнике соединили середины противоположных сторон, и получившиеся части раскрасили в шахматном порядке. Докажите, что сумма площадей черных частей равна сумме площадей белых
- **9.** Диагонали выпуклого четырёхугольника ABCD пересекаются в точке P. Известны площади треугольников ABP, BCP, CDP. Найдите площадь треугольника ADP.