AlexNet 应用于 cifar 数据集实验报告

15331416 赵寒旭

	=
	T
\blacksquare	/

1.	修改	的 AlexN	let 结构		2
	1)	AlexNet	详细结构		2
	2)	参数初如	台化		2
	3)	测试及网	网络参数调整		3
		(1) ‡	曾强数据集		3
		(2) 作	多改学习率		3
	4)	结果对比	比展示		3
		(1) 5	F数据增强,	无学习率调整	3
		(2) 5	F数据增强,	有学习率调整	4
		(3) 7	有数据增强,	无学习率调整	6
		(4) 7	有数据增强,	有学习率调整	7
2.	全连	接层结构]调整		9
	1)	AlexNet	详细结构		9
	2)	参数初如	台化		9
	3)	测试及网	网络参数调整		9
		(1) ‡	曾强数据集		9
		(2) 作	修 改学习率		10
	4)	结果对比	比展示		10
		$(1) = \bar{2}$	F数据增强,	无学习率调整	10
		(2) 5	F数据增强,	有学习率调整	11
		(3) 7	有数据增强,	无学习率调整	12
			1	有学习率调整	14

1. 修改的 AlexNet 结构

1) AlexNet 详细结构

L) AlexNet 详细结例 ————————————————————————————————————						
Modified AlexNet for Cifar(3FC)						
input		32*32*3				
	Conv2d	kernel	channel	padding	stride	
	COTIVEG	11*11*3	64	5	4	
layer1	Relu	inplace=		e=True		
	MaxPool2d	kerne	el_size	stri	stride	
	IVIAXPOUIZU	2:	*2		2	
	Conv2d	kernel	channel	padding	stride	
	CONVZU	5*5*64	192	2	default	
layer2	Relu		inplace	e=True		
	MaxPool2d	kerne	el_size	stri	ide	
	IVIAXPOOIZU	2:	*2	2	2	
	ConvOd	kernel	channel	padding	stride	
layer3	Conv2d	3*3*192	384	1	default	
	Relu	inplace=True				
	Conv2d	kernel	channel	padding	stride	
layer4		3*3*384	256	1	default	
	Relu	inplace=True				
	Conv2d	kernel	channel	padding	stride	
	Convzu	3*3*256	256	1	default	
layer5	Relu	inplace=True				
	MayDool2d	kernel_size		stride		
	MaxPool2d	2:	*2	2	2	
		Dropout				
	Linear		256->	>4096		
C 11	Relu		inplace	e=True		
fully-			Dropout			
connected	Linear		4096-	>4096		
	Relu		inplace	e=True		
	Linear	4096->10				

2) 参数初始化

learning_rate = 0.1

momentum = 0.9

 $weight_decay = 0.0005$

损失函数使用交叉熵,训练过程使用带动量的随机梯度下降法。

- 230 # 交叉熵损失函数 231 criterion = nn.CrossEntropyLoss() 232 # 随机梯度下降 233 optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)

3) 测试及网络参数调整

(1) 增强数据集

4) 结果对比展示

(1) 无数据增强, 无学习率调整

Best Accuracy			
train	Top-1	79.48	
train	Top-5	98.044	
toot	Top-1	67.65	
test	Top-5	96.01	

(2) 无数据增强, 有学习率调整

Best Accuracy			
train	Top-1	100	
train	Top-5	100	
toot	Top-1	72.17	
test	Top-5	96.46	

(3) 有数据增强, 无学习率调整

Best Accuracy			
train	Top-1	64.344	
train	Top-5	95.28	
toot	Top-1	65.25	
test	Top-5	95.73	

(4) 有数据增强, 有学习率调整

Best Accuracy			
train	Top-1	92.35	
train	Top-5	99.904	
toot	Top-1	77.61	
test	Top-5	98.43	

2. 全连接层结构调整

1) AlexNet 详细结构

Modified AlexNet for Cifar(1FC)						
input	32*32*3					
	0 01	kernel	channel	padding	stride	
	Conv2d	11*11*3	64	5	4	
layer1	Relu	inplace=True				
	MaxPool2d	kerne	l_size	stri	de	
	IVIANT UUIZU	2+	<u>*</u> 2	2	2	
	Conv2d	kernel	channel	padding	stride	
	COTIVZO	5*5*64	192	2	default	
layer2	Relu		inplace	e=True		
	MaxPool2d	kernel_size		stride		
	IVIUXI OOIZU	2+	2*2		2	
	Conv2d	kernel	channel	padding	stride	
layer3	COTIVEG	3*3*192	384	1	default	
	Relu	inplace=True				
	Conv2d	kernel	channel	padding	stride	
layer4	COTIVZU	3*3*384	256	1	default	
	Relu	inplace=True				
	Conv2d	kernel	channel	padding	stride	
	Convad	3*3*256	256	1	default	
layer5	Relu	inplace=True				
	MaxPool2d	kernel_size		stride		
	IVIANT UUIZU	2,	* 2		2	
fully-connected		256 -> 10				

2) 参数初始化

learning_rate = 0.1

momentum = 0.9

weight_decay = 0.0005

损失函数使用交叉熵,训练过程使用带动量的随机梯度下降法。

```
230 # 交叉熵损失函数
```

- 231 criterion = nn.CrossEntropyLoss()
 232 # 随机梯度下降
 233 optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)

3) 测试及网络参数调整

(1) 增强数据集

```
####数据预处理
transform = transforms.Compose([
                               transforms.RandomCrop(<mark>32, padding=4</mark>), # 随机剪裁
                               transforms.RandomHorizontalFlip(), # 随机水平翻转
                               transforms.ToTensor(),#转为tensor
                               transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5)),#2—1
                           ])
```

(2) 修改学习率

4) 结果对比展示

(1) 无数据增强, 无学习率调整

Best Accuracy		
train	Top-1	84.674
trairi	Top-5	99.444
toot	Top-1	67.31
test	Top-5	96.51

(2) 无数据增强, 有学习率调整

Best Accuracy			
train	Top-1	100	
trairi	Top-5	100	
toot	Top-1	72.26	
test	Top-5	96.96	

(3) 有数据增强, 无学习率调整

Best Accuracy			
train	Top-1	67.524	
	Top-5	96.974	
test	Top-1	67.33	
	Top-5	96.9	

(4) 有数据增强, 有学习率调整

Best Accuracy			
train	Top-1	95.164	
train	Top-5	99.984	
toot	Top-1	78.2	
test	Top-5	98.56	

