

01/04/2021

Prepared by: Marvin Mills

Analyzing Terry Stop Data To Predict "Frisk" Event

AGENDA

Business Case
Dataset Context

Pre-model Insights & Visualizations

MODELING

Best Performing Model
Post-modeling Analysis
Can "Frisk Events" Be
Predicted?

RECOMMENDATIONS + CONCLUSION

BUSINESS CASE

• Filed & Won case in NYC

(2013) where judge ruled
that New York City Police
department was liable for a
pattern and practice of
racial profiling when it
came to "stop & frisk"

 Goal -- analyze for "stop & frisk" bias in Terry Stop data, and identify whether a "Frisk Event" can be predicted, to support their ongoing efforts to combat injustice

ABOUT THE DATA

TERRY STOPS - DATA.GOV

Publicly Available
No use of any API
> 45,000 entries
Timeframe: 2015-2020
1 entry = 1 "stop"

MISSING DETAILS

> 13,000 entries for "Call Type" where no info on the "Call Type" was provided

CLASS IMBALANCE

With respect to:

Arrest Flag Frisk Flag (~1:3.4)

EDA -VARIABLES

Additional goal: to do soft analysis for "police quotas" and "time of day" effect

The Predictor: Frisk / No Frisk

Time_Of_Day	Reported_Quarter	Reported_Year	
МО	Q4	2015	
МО	Q1	2015	
EV	Q1	2015	
OV	Q2	2015	
OV	Q2	2015	
OV	Q4	2020	
EV	Q4 2020		
AF	Q4	2020	
МО	Q4	2020	
EV	Q4	2020	

Added Features

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45196 entries, 0 to 45195
Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype		
0	Subject Age Group	45196 non-null	object		
1	Subject ID	45196 non-null	int64		
2	GO / SC Num	45196 non-null	int64		
3	Terry Stop ID	45196 non-null	int64		
4	Stop Resolution	45196 non-null	object		
5	Weapon Type	45196 non-null	object		
6	Officer ID	45196 non-null	object		
7	Officer YOB	45196 non-null	int64		
8	Officer Gender	45196 non-null	object		
9	Officer Race	45196 non-null	object		
10	Subject Perceived Race	45196 non-null	object		
11	Subject Perceived Gender	45196 non-null	object		
12	Reported Date	45196 non-null	object		
13	Reported Time	45196 non-null	object		
14	Initial Call Type	45196 non-null	object		
15	Final Call Type	45196 non-null	object		
16	Call Type	45196 non-null	object		
17	Officer Squad	44612 non-null	object		
18	Arrest Flag	45196 non-null	object		
19	Frisk Flag	45196 non-null	object		
20	Precinct	45196 non-null	object		
21	Sector	45196 non-null	object		
22	Beat	45196 non-null	object		
dtypes: int64(4), object(19)					
memory usage: 7.9+ MB					

Class Imbalance of the Variable "Frisk Flag" in dataset

N = Not Frisked
Y = Frisked

N 34660 Y 10058 - 478

Name: Frisk Flag, dtype: int64

FRISK VS. ARREST

All Variables

EDA -INSIGHTS

#1: 911 Calls in the evening / overnight

#2: Ages 26-35 in the evening / overnight

MODELING

Recall score is: 0.7059190031152648

Baseline: higher accuracy and lower for all other scores

GOAL: improve F1 & Recall scores

Feature: Call Type
Not Reported

MODELING

LOGISTIC REGRESSION + SMOTE DATA

As the test size increased, the SMOTE Data decreased, and Recall score showed the strongest sensitivity to this effort.

As True Positives go up, False Positives go up

MODELING

F1, Recall & Precision

Post-Modeling Analysis

Key Takeaways:

- Slight hyperparameter tuning didn't improve model significantly
- Models seem optimized for accuracy

CONCLUSION

To Close:

Recommendations & Next Steps

- Analysis shows "frisk events" are not predictable given the data construction
- 2. Use dataset more skewed to non-emergency stops
- 3. Over & Undersampling using SMOTE

Any Questions? Thank you. github.com/elem333

CREDITS

Appreciation:

- ◆ Presentation template by Slidesgo
- ◀ Icons by Flaticon
- Data.gov Terry Stops Data
- ◄ Yish Lim, Flatiron Instructor