Numeryka i teorie z wyższymi członami krzywiznowymi

Received:	;	Accepted:	

Abstract

Rozwiązywanie numeryczne równań pola dla teorii z wyższymi członami krzywiznowymi

1. Rozwiązanie sferycznie symetryczne otrzymywane numerycznie

1.1 Rzowiązanie sferycznie symetryczne - równania pola

Najprostrza teorią wyższego rzędu która modyfikuje rozwiązania Schwarzschilda jest teoria szóstego rzędu

$$I_g = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left\{ -R + \alpha R^{ab}_{\ cd} R^{cd}_{\ ef} R^{ef}_{\ ab} \right\}, \tag{1}$$

Ponieważ rozważana jest czasoprzestrzeń sferycznie symetryczna i statyczna należy znaleźć tylko dwie składowe metryki: $g_{tt}^{(n)}(r)$ oraz $g_{rr}^{(n)}(r)$. Ze względów rachunkowych wygodnie jest stosować funkcje $m^{(n)}(r)$ i $\psi^{(n)}(r)$ zamiast metryki, z którą funkcje te związane są relacją

$$g_{tt}(r) = -(1 - 2m(r)/r)e^{2\psi(r)},$$

 $g_{rr}(r) = 1/(1 - 2m(r)/r).$ (2)

Związek reprezentacji $m^{(n)}\left(r\right)$, $\psi^{(n)}$ i reprezentacji metrycznej $g_{tt}^{(n)}\left(r\right)$, $g_{rr}^{(n)}\left(r\right)$ zadany jest przez tożsamość (2). Aby przejść z reprezentacji $m^{(n)}\left(r\right)$, $\psi^{(n)}$ do $g_{tt}^{(n)}\left(r\right)$, $g_{rr}^{(n)}\left(r\right)$ należy wstawić do równania (2) funkcje $m^{(n)}\left(r\right)$ i $\psi^{(n)}$ w postaci $m^{(n)}=m^{(0)}+\Delta m^{(1)}+\Delta m^{(2)}+\ldots+$

 $\Delta m^{(n)}$ i $\psi^{(n)} = \psi^{(0)} + \Delta \psi^{(1)} + \Delta \psi^{(2)} + ... + \Delta \psi^{(n)}$, gdzie $\Delta m^{(n)}$ i $\Delta \psi^{(n)}$ oznaczają poprawki pochodzące od n-tej perturbacji. Następnie należy wprowadzić bezwymiarowy parametr ε dokonując podstawienia $\Delta m^{(n)} (r) \to \varepsilon^n \Delta m^{(n)} (r)$, $\Delta \psi^{(n)} \to \varepsilon^n \Delta \psi^{(n)}$ i rozwinąć prawą stronę równania (2) w szereg Taylora względem ε do rzędu n. Parametr pomocniczy ε należy na końcu wyeliminować poprzez podstawienie $\varepsilon = 1$.

Zastosowanie nowej reprezentacji powoduje, że aby otrzymać poprawkę pierwszego rzędu do metryki Reissnera-Nordströma $\triangle m^{(1)}(r)$ i $\triangle \psi^{(1)}(r)$ należy rozwiązać dwa równania różniczkowe. Pierwsze z nich to

$$\Delta m^{(1)\prime} = f(\frac{\partial m^{(0)}}{\partial r}, ..., \frac{\partial^4 m^{(0)}}{\partial r^4}, \frac{\partial \psi^{(0)}}{\partial r}, ..., \frac{\partial^4 \psi^{(0)}}{\partial r^4}), \tag{3}$$

gdzie prim oznacza pochodną po r, natomiast drugie równanie ma postać

$$\Delta \psi^{(1)\prime} = g(\frac{\partial m^{(0)}}{\partial r}, ..., \frac{\partial^4 m^{(0)}}{\partial r^4}, \frac{\partial \psi^{(0)}}{\partial r}, ..., \frac{\partial^4 \psi^{(0)}}{\partial r^4}). \tag{4}$$

1.2 Rozwiązanie symboliczne

W przypadku poszukiwania analogonu rozwiazania Schwarzschilda dla teorii (1) metodą perturbacyjną do drugiego rzędu włącznie należy rozwiązać równania (3) i (4) dla pierwszego rzędu i analogiczne dla drugiego rzędu. Po przyjęciu warunkow $m\left(r\to\infty\right)=M$ czyli $m^{(n)}\left(r\to\infty\right)=0$ oraz $\psi(r\to\infty)=0$ czyli $\psi^{(n)}(r\to\infty)=0$ otrzymujemy rozwiązania

$$\triangle m^{(1)}(r) = 196 \frac{M^3}{r^6} - 108 \frac{M^2}{r^5}, \ \triangle \psi^{(1)}(r) = -108 \frac{M^2}{r^6}$$
 (5)

$$\Delta m^{(2)}(r) = 14808 \frac{M^5}{r^{12}} - \frac{98496}{11} \frac{M^4}{r^{11}}, \Delta \psi^{(2)}(r) = -29808 \frac{M^4}{r^{12}} + \frac{165888}{11} \frac{M^3}{r^{11}}$$
 (6)

1.3 Rozwiazanie numeryczne

Kluczowym powodem dla którego powyższe rozwiązania były możliwe do uzyskania jest bardzo prosta postać rozwiązania zerowego rzędu $m^{(0)}(r) = M$, $\psi^{(0)}(r) = 0$. Jeśli $m^{(0)}(r)$,

 $\psi^{(0)}(r)$ jest skomplikowaną funkcją uzyskanie przybliżenia dowolnego rzędu jest niemożliwe. Można zadać pytanie czy można pociągnąć dalej obliczenia za pomocą obliczeń numerycznych. Przypuśćmy, że mamy równania pola określające dowolny rząd obliczeń

$$\Delta m^{(n)\prime} = f_n(\frac{\partial m^{(0...n-1)}}{\partial r}, ..., \frac{\partial^4 m^{(0...n-1)}}{\partial r^4}, \frac{\partial \psi^{(0...n-1)}}{\partial r}, ..., \frac{\partial^4 \psi^{(0...n-1)}}{\partial r^4}), \tag{7}$$

$$\Delta \psi^{(n)\prime} = g_n(\frac{\partial m^{(0...n-1)}}{\partial r}, ..., \frac{\partial^4 m^{(0...n-1)}}{\partial r^4}, \frac{\partial \psi^{(0...n-1)}}{\partial r}, ..., \frac{\partial^4 \psi^{(0...n-1)}}{\partial r^4}). \tag{8}$$

Aby obliczyć $\triangle m^{(n)}$ i $\triangle \psi^{(n)}$ należy formalnie scałkować równania (7-8).

Aby poszukiwać rozwiązań metodą numeryczną należy matematyczne infinitezymalne wielkości odpowiednikami numerycznymi. Pochodne $\frac{\partial^n m^{(m)}}{\partial r^n}$ i $\frac{\partial^n \psi^{(m)}}{\partial r^n}$ należy zastąpić przybliżeniem różnicowym oznaczonym $D^n m^{(m)}$ i $D^n \psi^{(m)}$. Na przykład przybliżenie pierwszej pochodnej (ang. central difference) rzędu drugiego ma postać $D^1 m^{(m)} = \frac{-\frac{1}{2}m(x-h)+\frac{1}{2}m(x+h)}{h} + \mathcal{O}(h^2)$. Parametr h reprezentuje odstęp siatki. Całki równań (7-8) należy zastąpić wersją numeryczną na przykład obliczając je metodą trapezów z błędem rzędu $\mathcal{O}(h^2)$.

Jeśli policzymy $\Delta m^{(1)}$ i $\Delta \psi^{(1)}$ metodą numeryczną i porównamy z obliczeniami dokładnymi (5) wyniki pokrywają się (do pewnej dokładnosci) co obrazują Rysunki 1, 2, 3, 4.

Jeśli zdefiniujemy normę

$$||u^h|| = \left(J^{-1} \sum_{j=1}^{J} (u_j^h)^2\right)^{1/2},$$
 (9)

gdzie u^h oznacza rozwiązanie rownania różnicowego, u^h_j to j-ty element rozwiązania u^h , J to liczba elementow rozwiązania u^h to można obliczyć błąd

$$Err_{u^h} = \left\| u_{exact}^h - u^h \right\|, \tag{10}$$

gdzie $u_{exact\ j}^{h}=u_{exact}\left(x_{j}\right)$. Błędy $Err_{m^{(1)h}}$ i $Err_{\psi^{(1)h}}$ przedstawiono na rysunku 5, 6

Rysunek 1: M1 h=0.02

Rysunek 2: M1 h=0.02

Rysunek 3: Phi1 h=0.02

Rysunek 4: Phi1 h=0.02

Rysunek 5: M1 Error

Rysunek 6: Phil Error

Rysunek 7: M2 h=0.02

Jeśli policzymy $\Delta m^{(2)}$ i $\Delta \psi^{(2)}$ metodą numeryczną i porównamy z obliczeniami dokładnymi (6) wyniki pokrywają się (do pewnej dokładnosci) co obrazują Rysunki 7, 8, 3, 10.

Błędy $Err_{m^{(2)h}}$ i $Err_{\psi^{(2)h}}$ przedstawiono na rysunku 11, 12. Widac, że istnieje pewna minimalna wartość odległości siatki h ponizej ktorej błąd nie maleje ale zaczyna wzrastac. Dzieje sie tak prawdopodobnie (**sprawdzic !!!**) dlatego że mamy doczynienia z teorią z wysokimi pochodnymi. Wartości wysokich pochodnych generują błąd zaookrąglenia tym wyższy im wyższa pochodna. W przypadku liczenia poprawki $\Delta m^{(1)}$ i $\Delta \psi^{(1)}$ problem ten się nie pojawił poniewaz w całce równań 7 i 8 występowały pochodne funckcji stałej $\frac{\partial m^{(0.)}}{\partial r}, ..., \frac{\partial^4 m^{(0)}}{\partial r^4}, \frac{\partial \psi^{(0)}}{\partial r}, ..., \frac{\partial^4 \psi^{(0.)}}{\partial r^4}$ a te wynosiły dokładnie zero.

Rysunek 8: M2 h=0.02

Rysunek 9: Phi 2 h=0.003

Rysunek 10: Phi2 h=0.003

Rysunek 11: M2 error

Rysunek 12: Phi2 Error

1.4 Rozwiązanie numeryczne - curve fitting

Jeśli znaleziemy rozwiązanie numeryczne można przedstawić je w bazie funkcji

$$y_i = f(\alpha_s) = \sum_{k=0}^{M} \alpha_k \phi_k(x_i), \qquad (11)$$

gdzie (y_i, x_i) to numeryczne rozwiązanie, α_k współczynniki liczbowe, ϕ_k baza. W przypadku analogonu rozwiązania Schwarzschilda naturalnym jest wybór $\phi_k(r) = 1/r^k$. Zatem celem jest znalezienie $\Delta m^{(n)}(r) = \sum_{k=0}^{\infty} \alpha_k^n/r^k$, $\Delta \psi^{(n)} = \sum_{k=0}^{\infty} \beta_k^n/r^k$. Współczynniki α_k można znależć metodą najmniejszych kwadratów minimalizując błąd

$$Err = \sum_{i=1}^{J} (y_i - f(\alpha_s))^2$$
(12)

Z działania 1 można wywnioskować ze wymiar α wynosi $[\alpha]=m^4$. Informacja ta pozwala przewidziec z numerycznego rozwiązania, rozwiązanie ąnalityczne"dowolny element sumy $\Delta m^{(n)}\left(r\right)=...+\alpha_k^n/r^k+... \text{ musi miec postać}$

Rysunek 13: M1 a5

Błędy współczynników liczone według wzoru $Error = |w^{exact} - w^{approx}|$ gdzie w reprezentuje współczynnik a_n, b_n reprezentują wykresy 16, 17 i 18.

Rysunek 14: M1 a6

Rysunek 15: Phi1 b6

Rysunek 16: M1 Error a5

Rysunek 17: M1 Error A6

Rysunek 18: Phil Error B6

Rysunek 19: M2 a11

Rysunek 20: M2 A12

Rysunek 21: Phi2 B11

Rysunek 22: Phi2 B12

REFERENCES

1988 Balluch, M. 1988, A&A, 200, 58