Churn Analysis & Prediction

Pongthawat Hanwathanawong

Agenda

Introduction

Data Exploration & Wrangling

Customer Churn Analysis

Customer Churn Prediction

Q&A

Introduction

Why we need Churn Analysis & Prediction?

Customer churn refer to lose of customer

- To retain current customer often cheaper than to acquire a new customer also come up with loyalty benefit and better customer experience

- **It wasted money if** you target retention campaign to all the customer or customer who not going to churn
- Target retention campaign to customer who have high risk of churning

To identify risk of Churning → Churn analysis & prediction

Data Exploration and Wrangling

Data description

	Variable	Descripttion		Variable	Descripttion
0	CustomerID	Unique customer ID	12	PreferedOrderCat	Preferred order category of customer in last month
1	Churn	Churn Flag	13	SatisfactionScore	Satisfactory score of customer on service
2	Tenure	Tenure of customer in organization	14	MaritalStatus	Marital status of customer
3	PreferredLoginDevice	Preferred login device of customer	15	NumberOfAddress	Total number of added added on particular customer
4	CityTier	City tier	16	Complain	Any complaint has been raised in last month
5	WarehouseToHome	Distance in between warehouse to home of customer	17	OrderAmountHikeFromlastYear	Percentage increases in order from last year
			18	CouponUsed	Total number of coupon has been used in last month
6	PreferredPaymentMode	Preferred payment method of customer	19	OrderCount	Total number of orders has been places in last month
7	Gender	Gender of customer	20	DaySinceLastOrder	Day Since last order by customer
8	Age	Age of customer	21	CashbackAmount	Average cashback in last month
9	SizeofFamily	Gender of customer	22	DayLogin	Day of Login on mobile app
10	HourSpendOnApp	Number of hours spend on mobile application or website	23	QTY	Number of quantity
11	NumberOfDeviceRegistered	Total number of deceives is registered on particular customer	24	LastDate	Last date

	CustomerID	Tenure	PreferredLoginDevice	City Tier	Warehouse To Home	PreferredPaymentMode	Gender	Age	SizeofFamily	HourSpendOnApp	···
0	50001	4.0	Mobile Phone	3	6.0	Debit Card	Female	NaN	2	3.0	
1	50002	NaN	Phone	1	8.0	UPI	Male	21.0	2	3.0	0.5750
2	50003	NaN	Phone	1	30.0	Debit Card	Male	52.0	5	2.0	1575
3	50004	0.0	Phone	3	15.0	Debit Card	Male	63.0	1	2.0	
4	50005	0.0	Phone	1	12.0	СС	Male	23.0	1	NaN	
			1440	344	***	(944)	866		***		***
5625	55626	10.0	Computer	1	30.0	Credit Card	Male	19.0	1	3.0	
5626	55627	13.0	Mobile Phone	1	13.0	Credit Card	Male	44.0	5	3.0	
5627	55628	1.0	Mobile Phone	1	11.0	Debit Card	Male	53.0	1	3.0	1
5628	55629	23.0	Computer	3	9.0	Credit Card	Male	72.0	3	4.0	
5629	55630	8.0	Mobile Phone	1	15.0	Credit Card	Male	56.0	2	3.0	

RangeIndex: 5630 entries, 0 to 5629 Data columns (total 25 columns):

Data	columns (total 25 columns):		
#	Column	Non-Null Count	Dtype
	FFFFF		
0	CustomerID	5630 non-null	int64
1	Tenure	5366 non-null	float64
2	PreferredLoginDevice	5630 non-null	object
3	CityTier	5630 non-null	int64
4	WarehouseToHome	5379 non-null	float64
5	PreferredPaymentMode	5630 non-null	object
6	Gender	5630 non-null	object
7	Age	5629 non-null	float64
8	SizeofFamily	5630 non-null	int64
9	HourSpendOnApp	5375 non-null	float64
10	NumberOfDeviceRegistered	5630 non-null	int64
11	PreferedOrderCat	5630 non-null	object
12	SatisfactionScore	5630 non-null	int64

- 5630 Observations
- 25 Attributes
- No duplicated CustomerID
- Some missing value

Categorize attribute name by characteristic

Spelling Mistake on categorical data

```
-- Gender --
Male
            3382
Female
            2242
ผู้หญิง
             3
ชาย
หญิง
-- MaritalStatus --
Married
                2985
Single
                1792
Divorced
                 848
โสด
แต่งงานแล้ว
                 1
Name: MaritalStatus, dtype: int64
```

```
-- Gender --
Male 3384
Female 2246
Name: Gender, dtype: int64
```

-- MaritalStatus --Married 2986 Single 1796 Divorced 848

Name: MaritalStatus, dtype: int64

	count	mean	std	min	25%	50%	75%	max
Tenure	5366.0	10.189899	8.557241	0.0	2.00	9.000000	16.000000	61.00
Warehouse To Home	5379.0	15.639896	8.531475	5.0	9.00	14.000000	20.000000	127.00
Age	5629.0	47.283176	19.183838	-1.0	30.00	47.000000	64.000000	80.00
SizeofFamily	5630.0	3.019183	1.428707	1.0	2.00	3.000000	4.000000	5.00
HourSpendOnApp	5375.0	2.931535	0.721926	0.0	2.00	3.000000	3.000000	5.00
NumberOfDeviceRegistered	5630.0	3.688988	1.023999	1.0	3.00	4.000000	4.000000	6.00
NumberOfAddress	5630.0	4.214032	2.583586	1.0	2.00	3.000000	6.000000	22.00
OrderAmountHikeFromlastYear	5365.0	15.707922	3.675485	11.0	13.00	15.000000	18.000000	26.00
CouponUsed	5374.0	1.751023	1.894621	0.0	1.00	1.000000	2.000000	16.00
OrderCount	5372.0	3.008004	2.939680	1.0	1.00	2.000000	3.000000	16.00
Day SinceLastOrder	5323.0	4.543491	3.654433	0.0	2.00	3.000000	7.000000	46.00
CashbackAmount	5630.0	3249.088887	902.128997	0.0	2672.45	2993.466667	3600.529167	5958.15
DayLogin	5630.0	50.991119	29.112787	1.0	26.00	51.000000	77.000000	100.00
QTY	5630.0	5082.244760	7194.051053	-500.0	2519.00	4987.500000	7445.000000	500000.00

Abnormal on Numerical data

Treat as a missing value (Replace with null)

Dealing with it later

Customer Churn Analysis

Relation between Numeric Data and Target (Churn)

Box-plot

- Orange Churn
- Blue Not Churn

mostly no significant different that customer Churn or Not through each value of Numeric data

Tenure

Customer with "short tenure" have significantly "higher churn rate"

Short-term customer are much more likely to Churn

Bar chart

- **Tenure** vs Churn/Not churn

Customer with 0 - 1 tenure have much higher Churn rate than customer with longer Tenure

If we can retain customer with 0, 1 long tenure to be 2 or more tenure the customer are more likely to become long-term customer

Relation between Category Data - Target (Churn)

Bar Chart - Churn rate (%) of each value in each attribute

Relation between Category Data - Target (Churn)

Bar Chart - Churn rate (%) of each value in each variable (cont.)

Preferred Payment Method

 More convenient payment method may cause lower risk of churning

If you can make the customer connect with some payment method customer are more likely to have lower risk of churning

Complain

Obviously complaining refer to dissatisfaction of the customer which cause of churning

If there is any complaining occurs, you may need to suddenly handle it

PreferedOrderCat

Customer who preferred order in Mobile, Mobile Phone category in last month have higher Churn rate

It possible that the customer buy and switch to new mobile phone may not download and back to use the application

You may need to track the customer who buy a new phone and offer them to promotion of Mobile accessory

Customer Churn Prediction

Handle Outlier

Handle missing data

Modeling

Handle Outlier

valid but extreme value

Some machine learning model are easily impacted by outliers

Removing → lost in information "Trade-off"

DayLogin

More than half of the variables have right skew distribution

Use Box-plot with [Q3+3*IQR, Q1-3*IQR] as upper and lower limit

Number of observations below lower limit and above upper limit

Tenure
2
WarehouseToHome
2
NumberOfAddress
4
CouponUsed
303
OrderCount
263
DaySinceLastOrder
3

Not consider as Outlier

Consider as Outliers

Not consider as Outlier

After Drop the observations that I considered as a outlier

Handle Missing

Dropping is not a good idea - lost too much information Impute with a measure of central tendency: **Median**

Number of Observation Before drop missing values: 5617 After drop missing values: 3761

Missing Values	
Tenure	263
WarehouseToHome	251
Age	2
HourSpendOnApp	255
OrderAmountHikeFromlastYear	264
CouponUsed	255
OrderCount	258
DaySinceLastOrder	307
YTQ	3
dtype: int64	

Looking for relationship between variable with missing value and all other variable

Order >= Coupon

Use this constraint to impute both OrderCount and CouponUsed

0-	Couponosea	OrderCount
467	NaN	3.0
782	NaN	3.0

Impute with median of CouponUsed which lower than 3

	CouponUsed	OrderCount		
419	7.0	NaN		
713	7.0	NaN		

Impute with median of OrderCount which higher than 7

Modelling

Classification Method

- Logistic Regression
- Decision Tree
- Random Forest

Interpretable well-know

Metric to evaluate the model

low precision - **Predicted** Churn, **True** is Not Churn wasted money on retention target

low recall - **Predicted** Not Chrun, **True** is Churn

lose customer

both are importance decide to use **f-1 score** as a metrics

F1 = harmonic mean ระหว่าง precision และ recall

Process

Training: 80 %

Testing: 20%

with Oversampling (1)

Find the best hyperparameter of each algorithm

Find the best hyperparameter of each algorithm

Compare and select the model with higher f1 score

with Oversampling (1)

Pipeline

One-hot encoding

Oversampling

Standard Scalar

GridsearchCV

- for categorical data

- for numeric data

- use **f1** to select the best hyperparameter

Imbalance dataset impact on some ML algorithm

without Oversampling (2)

Pipeline

One-hot encoding

- for categorical data

 Ω

Standard Scalar

- for numeric data

1

gridsearchCV

- use **f1** to select the best hyperparameter

Logistic Regression

	precision	recall	f1-score	support
0	0.92	0.92	0.92	928
1	0.62	0.63	0.63	196
accuracy			0.87	1124
macro avg	0.77	0.78	0.77	1124
weighted avg	0.87	0.87	0.87	1124

Decision Tree

	precision	recall	f1-score	support
0	0.95	0.94	0.95	928
1	0.74	0.78	0.76	196
accuracy			0.91	1124
macro avg	0.85	0.86	0.85	1124
weighted avg	0.92	0.91	0.91	1124

Random Forest

	precision	recall	f1-score	support
0	0.94	0.99	0.96	928
1	0.94	0.70	0.80	196
у			0.94	1124
g	0.94	0.84	0.88	1124
g	0.94	0.94	0.94	1124
	1 y	0 0.94 1 0.94 y	0 0.94 0.99 1 0.94 0.70 by g 0.94 0.84	0 0.94 0.99 0.96 1 0.94 0.70 0.80 cy 0.94 0.84 0.88

Q&A