Control Automático

El lugar de las raíces en tiempo discreto

Contenido

- Transformación del plano s al plano z
- El lugar de las raíces en tiempo discreto
- Ejemplos y ejercicios

Transformación de s a z

Partimos de la definición de **z** en términos de **s**

$$z = e^{sT}$$

Que se puede escribir de la siguiente forma

$$z = e^{(\sigma + j\omega)T} = e^{\sigma T} \cdot e^{j\omega T} = e^{\sigma T} \left[\cos \omega T + j \sin \omega T \right]$$

Puede observarse que el número complejo z depende de ω periódicamente con una frecuencia angular de muestreo ω_s = $2\pi/T$ y que su magnitud es $e^{\sigma T} < 1$, cuando $\sigma < 0$

$$z = e^{\sigma T} \angle (\omega T + 2\pi k)$$

Transformación de s a z (2)

E. Interiano

Con σ < 0, si variamos la parte imaginaria j ω desde -j ω_s /2 hasta +j ω_s /2 obtenemos la franja primaria. Si lo hacemos con σ = 0, que corresponde al eje imaginario, obtenemos el círculo unitario.

Transformación de s a z (3)

E. Interiano

5

Las franjas secundarias también se transforman dentro del círculo unitario

La periferia de la franja primaria

En la franja primaria, siguiendo la secuencia de puntos a-b-c-d-e-a obtenemos en el plano z la trayectoria mostrada

El eje real negativo

En la franja primaria, siguiendo la secuencia de puntos a-f, con $\sigma \le 0$ obtenemos en el plano z la trayectoria mostrada

Una recta con $\zeta \omega_n$ constante

E. Interiano

En la franja primaria, variando j ω desde -j ω_s /2 hasta +j ω_s /2 con σ = cte. = - $\zeta \omega_n$ obtenemos en el plano z el círculo mostrado

Re

Rectas con ζ constante

Las rectas con ζ = cte. se transforman también

Semicírculos con ω_n constante

E. Interiano

Los semicírculos con ω_n = cte. se transforman también dentro del círculo unitario. Ej. con T = 1s

La transformación $z=e^{sT}$ es conforme o isogonal; por lo que la relación entre los ángulos se mantiene, como puede observarse en la figura con las curvas de $\zeta=$ cte. y $\omega_n=$ cte., que se mantienen perpendiculares entre sí, tal como en el plano **s**

El punto z para ζ y ω_n dados

12

Podemos obtener el valor de un punto z que corresponde a valores de amortiguamiento relativo y frecuencia natural dados, para un periodo de muestreo T, de dos maneras:

- a) Evaluando primero el punto s y luego sustituyendo en $z = e^{sT}$
- b) Directamente evaluando z para valores de ζ y ω_n

$$s = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$$
$$z = e^{sT}$$

$$\Rightarrow z = e^{\left(-\zeta\omega_n \pm j\omega_n\sqrt{1-\zeta^2}\right)T}$$

$$|z| = e^{-\zeta \omega_n T}$$

$$\angle z = T \omega_n \sqrt{1 - \zeta^2}$$

El lugar de las raíces en z

Debido a que la transformación es conforme, para realizar el lugar de las raíces en el plano \mathbf{z} , se emplean las mismas reglas que para el lugar de las raíces en el plano \mathbf{s} . El límite de estabilidad se encuentra en el borde del círculo de radio 1. Se muestra un sistema con los límites de la zona Γ en la que se deben ubicar los polos de lazo cerrado

El lugar de las raíces en z (2)

Un sistema en tiempo continuo, que es estable para cualquier valor de K > 0, es inestable en tiempo discreto para valores de K mayores que $K_{crítica}$, la cual depende de manera inversa del periodo de muestreo T.

Encuentre en el plano z, con T = 0.1s, el punto z_1 en el cual el sistema tiene:

- a) Un valor de amortiguamiento relativo $\zeta = 0.75$
- b) Una frecuencia natural $\omega_n = 4$ rad/s.

Solución al ejemplo 1

Solución al ejemplo 1

El punto z_1 para $\zeta = 0.75$, $\omega_n = 4$ rad/s, T = 0.1

En el tiempo continuo encontramos el punto s_1 adecuado y lo convertimos con $z = e^{sT}$

$$s_1 = -\zeta \omega_n + \omega_n^* j (1 - \zeta^2)^{1/2}$$

$$s_1 = -3.0 + j2.646$$

$$z_1 = e^{s1*T} = 0.715 + j0.194$$

Referencias

Ogata, Katsuhiko. "Sistemas de Control en tiempo discreto", Prentice Hall, 1996, 2ª Ed., México.