Lecture 1 Exercise Solutions

- 1.1 Potential outcomes and treatment effects. See Lecture 1 exercises do file for code.
- 1.2 Estimating treatment effects with randomization. See Lecture 1 exercises do file for code.
- 1.3 Simulated data with selection into treatment on X. See Lecture 1 exercises do file for code.
- 1.4 RCT of private school vouchers. In a well-known study, Howell and Peterson (2006) evaluated the effects of a private school voucher in NYC from the School Choice Scholarships Foundation (SCSF). This program provided scholarships of up to \$1,400 for 1,300 children from low-income families to attend a private elementary school. There were more applicants to the program than vouchers, so a random lottery was used to award the scholarships. Ultimately, 1,300 families received the voucher and 960 didn't.
 - (a) Let $D_i = 1$ if the student was offered a voucher and $D_i = 0$ if not. Suppose we wanted to estimate the simple population regression function below, where Y_i represents student achievement after three years of the program:

$$Y_i = \beta_0 + \beta_1 D_i + u_i$$

Under what conditions would this regression describe "differences in average potential outcomes for a well-defined population" (our criteria for causal interpretation)? Do those conditions hold here? How would you describe the relevant population? What is our *estimand* of interest (ATE, ATT, ATU, something else)?

In the population, $\beta_1 = E[Y(1)|D_i = 1] - E[Y(0)|D_i = 0]$. If the $D_i = 1$ and $D_i = 0$ groups have the same distribution of potential outcomes (e.g., $(Y_{i1}, Y_{0i}) \perp \!\!\! \perp D_i$) then this simplifies to $\beta_1 = E[Y(1) - Y(0)]$. If the randomization was successful, this condition should hold here—that is, mean potential outcomes for the treated and untreated groups should be the same. The relevant population is low-income families in NYC who applied for a private school voucher. (Note the population of applicants may differ from the general population of low-income families in NYC). The estimand of interest here would probably be considered an ATT since the focus is on applicants to a voucher program (families

that presumably would use the voucher if given the opportunity). We should also be careful about how we define "treatment." Students were offered a voucher at random but did not necessarily use the voucher to attend a private school. So the treatment here is the voucher "offer," not attending a private school. One could think of this exercise as estimating the "intent-to-treat" effect of attending a private school with a voucher.

(b) Read the following dataset from Github which contains a subsample of 521 African-American students who participated in the lottery:

use https://github.com/spcorcor18/LPO-8852/raw/main/data/nyvoucher.dta, clear

(c) Use ttest and the simple regression model above to estimate the effects of the voucher (voucher) on student achievement after three years of the program (post_ach). Is the estimated effect statistically significant? Practically significant? (The outcome variable is a composite measure of reading and math achievement, expressed as a national percentile score).

See output below. Students offered the private school voucher scored 4.9 percentile points higher, on average, than students not offered the voucher. (Note the point estimate, standard error, t-statistic and p-value are the same in this case whether one uses a t-test or simple regression.) The difference is statistically significant (p < 0.004). To assess practical significance, it is useful to compare the magnitude of the difference (4.9 points) to the overall standard deviation in the outcome (19.2). This is an effect size of 0.255, a rather large effect size in education.

. ttest post_ach, by(voucher) rev

Two-sample t test with equal variances

Group		Mean	Std. err.	Std. dev.	[95% conf.	interval]
1	291 230	21.13043	1.158 1.198249		23.75006 18.76943	28.30836 23.49144
Combined	521	23.8666	.841557	19.2089	22.21333	25.51987
diff			1.682719		1.592998	8.204552
diff =	= mean(1) = 0	- mean(0)		Degrees	t of freedom	= 2.9112 = 519
	iff < 0) = 0.9981	Pr(Ha: diff !=			iff > 0) = 0.0019

. reg post_ach voucher

Source	SS	df	MS	Number	of obs	=	521
+				F(1, 5	19)	=	8.48
Model	3082.89021	1	3082.89021	Prob >	F	=	0.0038
Residual	188787.589	519	363.752579	R-squa	red	=	0.0161
+				Adj R-	squared	=	0.0142
Total	191870.479	520	368.98169	Root M	SE	=	19.072
	Coefficient			P> t		:. 	interval]
voucher		1.682719		0.004	1.592998		8.204552
_cons	21.13043	1.25759	16.80	0.000	18.65984		23.60103

. summ post_ach

Variable	Obs	Mean	Std. dev.	Min	Max
post_ach	521	23.8666	19.2089	0	89

- display b/r(sd)
- .25502636
- (d) Randomization in theory should prevent omitted variables bias. However, in finite samples, there may be incidental (chance) correlation between treatment assignment and other predictors of the outcome. The first step in the analysis of any RCT is to "check for balance" between the treated and untreated group on a host of baseline predictors. (This can also be revealing about whether the randomization "worked.") The only other variable in this dataset is a measure of baseline achievement, pre_ach. How does this measure differ between the treated and untreated group? (You can compare both means and other features of the distribution).

See output below. At baseline, students offered the voucher scored 1.17 percentile points higher than students not offered the voucher. The difference is not statistically significant, however (p = 0.4698). In larger samples, one would not expect to see a mean difference between these groups. However, in finite samples, there may be chance differences between them. It is good practice to compare more than just the means of the two groups. The code below includes an overlapping kernel densities for the voucher and no voucher groups.

. ttest pre_ach, by(voucher) rev

Two-sample	t	test	with	equal	variances

Group		Mean	Std. err.	Std. dev.	[95% conf.	interval]
1	291 230	20.67869 19.51304	1.097621 1.164686	18.72401 17.66333	18.51838 17.21817	22.83901 21.80791
Combined	521	20.16411	.799776	18.25523	18.59292	21.7353
diff		1.165651	1.611368		-1.999956	4.331257
diff =	= mean(1) - = 0	- mean(0)		Degrees	t of freedom	= 0.7234 = 519
	iff < 0) = 0.7651	Pr(Ha: diff != T > t) =			iff > 0) = 0.2349

. twoway (kdensity pre_ach if voucher==1) (kdensity pre_ach if voucher==0)

(e) Add the pre_ach measure to the regression function below (as X). What purpose does this serve? How does this additional covariate change your point estimate for β_1 (if at all)? How does it change the standard error for β_1 (if at all)?

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + u_i$$

See results below. If the randomization was successful, inclusion of pre_ach as a covariate should have little effect on the point estimate of voucher. However, as noted above, in finite samples there can be incidental correlation between treatment status and the baseline covariates. Controlling for these can help "purge" any chance correlation.

Inclusion of baseline covariates should also increase the precision of your estimator of the treatment effect. Note that the standard error fell from 1.68 (without covariates) to 1.27 (with the pre_ach control).

. reg post_ach voucher pre_ach

Source	SS	df	MS		er of obs	=	521
Model Residual 	84863.1705 107007.308	2 518 520	42431.585 206.57781	52 Prob .5 R-sq - Adj	uared R-squared	= = =	205.40 0.0000 0.4423 0.4401 14.373
post_ach	Coef.	 Std. Err.		P> t	[95% Cd	 onf.	 Interval]
voucher pre_ach _cons	4.097609 .6873125 7.718877	1.26873 .0345439 1.162978	3.23 19.90 6.64	0.001 0.000 0.000	1.605 .6194 5.4341	19	6.590097 .7551759 10.00361