Ejercicios optimización polinomial

Agosto 8 - agosto 18 de 2017

Problema general

Consideremos el siguiente problema: sea $\mathbf{K} \subseteq \mathbb{R}$ y $p(\bar{x}) \in \mathbb{R}[x_1, \dots, x_n]$. Queremos encontrar, si se puede, un número $\alpha \in \mathbb{R} \cup \{-\infty\}$ tal que

$$\alpha = \inf_{\bar{x} \in \mathbf{K}} p(\bar{x}) \tag{1}$$

y donde encontrar quiere decir construir una sucesión $(\alpha_n)_n \subset \mathbb{R}$ con $\alpha_n \leq \alpha$ y

$$\lim_{n\to\infty}\alpha_n=\alpha$$

si $\alpha \in \mathbb{R}$. O, en caso contrario, construir también $(\alpha_n)_n$ tal que $\alpha_n \to -\infty$ si $\alpha = -\infty$.

Ejercicio 1. Encontrar un ejemplo donde 1 sea finito y construir la sucesión correspondiente. Así mismo, hallar otro ejemplo donde 1 sea $-\infty$ y una sucesión asociada.

Formas bilineales

Definición 1. Dado k un campo y V un espacio vectorial (finito) sobre k, decimos que una forma cuadrática en V es una función $q:V\to k$ de la forma

$$q(u) = \psi(u, u)$$

donde ψ es una forma bilineal simétrica.

Ejercicio 2. Dada $q: V \to k$ una forma cuadrática:

- 1. Mostrar que existe ψ forma bilineal simétrica tal que $\psi(u,u)=q(u)$ para todo $u\in V$, si la característica de k no es 2.
- 2. ¿Es posible encontrar ψ si la característica del campo k=2?

Definición 2. Dadas dos formas bilineales simétricas $\psi, \phi : V \times V \to k$ ($V \neq k$ como antes), decimos que ψ es equivalente a ϕ (notado por $\psi \sim \phi$) si y sólo si existe $T : V \to V$ isomorfismo de espacios vectoriales tal que para todo $a, b \in V$:

$$\psi(a,b) = \phi(Ta,Tb).$$

Ejercicio 3. 1. Si $k = \overline{k}$, y la característica de $k \neq 2$, mostrar que

$$\psi \sim \phi$$

 $si \ y \ s\'olo \ si \ rango(\psi) = rango(\phi).$

2. ¿Cuáles son todas las formas cuadráticas en \mathbb{R}^n ?

Por el teorema de la signatura de Sylvester sabemos que dos formas bilineales simétricas son equivalentes si y sólo si sus signaturas (los vectores de valores (n_+, n_0, n_-)) son iguales.

Ejercicio 4. Dada $\psi: V \times V \to k$ una forma bilineal simétrica, mostrar que $n_-(A_\psi)$ es la máxima dimensión de un subespacio $W \leq V$ en el que $\psi|_W$ (la restricción de ψ a W) satisface

$$\psi(a,a) < 0$$

para todo $a \in W \setminus \{\vec{0}\}$. De forma análoga, hacer una caracterización de $n_+(A_{\psi})$

Definición 3. Supongamos que k[x] es un espacio vectorial de dimensión finita. Definimos la **forma traza** o **forma de Hermite** como la forma bilineal $\psi : k[x] \times k[x] \to k$ definida por:

$$\psi(p,q) = \operatorname{tr}(m_{pq}).$$

Ejercicio 5. ¿Cuál es la forma traza en el espacio $\frac{\mathbb{C}}{(x^3+2x-1)}$ y en la base $1, x, x^2$?.