Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
						/Oral		
ITC403	Operating System	03			03			03

Course	Course	Examination Scheme						
Code Name		Theory Marks						
		Internal assessment End Torm World		Term Work	Pract. /Oral	Total		
		Test1	Test 2	Avg.	Sem. Exam	Term work	r ract. /Orar	Total
ITC403	Operating System	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives
The cours	se aims:
1	To understand the major components of Operating System &its functions.
2	To introduce the concept of a process and its management like transition, scheduling, etc.
3	To understand basic concepts related to Inter-process Communication (IPC) like mutual
	exclusion, deadlock, etc. and role of an Operating System in IPC.
4	To understand the concepts and implementation of memory management policies and virtual
	memory.
5	To understand functions of Operating System for storage management and device management.
6	To study the need and fundamentalsof special-purpose operating system with the advent of new
	emerging technologies.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	J J
1	Understand the basic concepts related to Operating System.	L1, L2
2	Describe the process management policies and illustrate scheduling of processes by CPU.	L1
3	Explain and apply synchronization primitives and evaluate deadlock conditions as handled by Operating System.	L2
4	Describe and analyze the memory allocation and management functions of Operating System.	L1
5	Analyze and evaluate the services provided by Operating System for storage management.	L4, L5
6	Compare the functions of various special-purpose Operating Systems.	L2

Prerequisite: Programming Language C

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content		CO Mapping
0	Prerequisite	Programming Language C; Basic of Hardware i.e. ALU, RAM, ROM, HDD, etc.; Computer-System Organization.	02	-
I	Fundamentals of Operating System	Introduction to Operating Systems; Operating System Structure and Operations; Functions of Operating Systems; Operating System Services and Interface; System Calls and its Types; System Programs; Operating System Structure; System Boot.	03	CO1
		Self-learning Topics: Study of any three different OS. System calls with examples for different OS.		
II	Process Management	Basic Concepts of Process; Operation on Process; Process State Model and Transition; Process Control Block; Context Switching; Introduction to Threads; Types of Threads, Thread Models; Basic Concepts of Scheduling; Types of Schedulers; Scheduling Criteria; Scheduling Algorithms.	06	CO2
		Self-learning Topics: Performance comparison of Scheduling Algorithms, Selection of Scheduling Algorithms for different situations, Real-time Scheduling		
III	ProcessCoordinati on	Basic Concepts of Inter-process Communication and Synchronization; Race Condition; Critical Region and Problem; Peterson's Solution; Synchronization Hardware and Semaphores; Classic Problems of Synchronization; Message Passing; Introduction to Deadlocks; System Model, Deadlock Characterization; Deadlock Detection and Recovery; Deadlock Prevention; Deadlock Avoidance.	09	CO3
		Self-learning Topics: Study a real time case study for Deadlock detection and recovery.		
IV	Memory Management	Basic Concepts of Memory Management; Swapping; Contiguous Memory Allocation; Paging; Structure of Page Table; Segmentation; Basic Concepts of Virtual Memory; Demand Paging, Copy-on Write; Page Replacement Algorithms; Thrashing.	09	CO4
		Self-learning Topics: Memory Management for any one Operating System, Implementation of Page Replacement Algorithms.		

V	Storage Management	Basic Concepts of File System; File Access Methods; Directory Structure; File-System Implementation; Allocation Methods; Free Space Management; Overview of Mass-Storage Structure; Disk Structure; Disk Scheduling; RAID Structure; Introduction to I/O Systems. Self-learning Topics: File System for Linux and Windows, Features of I/O facility for	06	CO5
VI	Special-purpose Operating Systems	Open-source and Proprietary Operating System; Fundamentals of Distributed Operating System; Network Operating System;Embedded Operating Systems;Cloud and IoT Operating Systems; Real-Time Operating System;Mobile Operating System; Multimedia Operating System;Comparison between Functions of various Special-purpose Operating Systems. Self-learning Topics: Case Study on any one Special-purpose Operating Systems.	04	CO6

Text Books:

- 1. A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts, 10th ed., Wiley, 2018.
- 2. W. Stallings, Operating Systems: Internal and Design Principles, 9th ed., Pearson, 2018.
- 3. A. Tanenbaum, Modern Operating Systems, Pearson, 4th ed., 2015.

Reference Books:

- 1. N. Chauhan, Principles of Operating Systems, 1st ed., Oxford University Press, 2014.
- 2. A. Tanenbaum and A. Woodhull, Operating System Design and Implementation, 3rd ed., Pearson.
- 3. R. Arpaci-Dusseau and A. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, CreateSpace Independent Publishing Platform, 1st ed., 2018.

Online References:

Sr. No.	Website Name	
1.	https://www.nptel.ac.in	
2.	https://swayam.gov.in	
3.	https://www.coursera.org/	

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered