Egzamin z Podstaw Matematyki

lipiec 2013 seria 3

Imię

Nazwisko

Grupa

Nr. indeksu

Zad 1. (10 p.)

Napisz zaprzeczenie zdania: $(p \lor \neg q) \land (p \Rightarrow r)$ w taki sposób by znak negacji nie stał przed żadnym nawiasem. Dla jakich wartości zdań p, q i r zaprzeczenie to jest prawdziwe?

Zad 2. (10 p.)

Znajdź takie podzbiory liczb naturalnych A, B i C by:

$$B \setminus (A \cap C) \neq (B \setminus C) \cup (A \setminus C).$$

Zad 3. (16 p.)

Niech A_n będzie odcinkiem $\left(-3 - \frac{6}{n}, 2 + \frac{4}{n}\right)$. Opisz zbiory:

a)
$$\bigcap_{n=2}^{6} A_n$$
, b) $\bigcup_{n=2}^{9} A_n$

b)
$$\bigcup_{n=2}^{9} A_n$$

c)
$$\bigcap_{n=3}^{\infty} A_n$$
, d) $\bigcup_{n=4}^{\infty} A_n$.

d)
$$\bigcup_{n=4}^{\infty} A_n$$

Zad 4. (16 p.)

Udowodnij lub znajdź kontrprzykład na następujące twierdzenia:

a)
$$\forall_{n \in \mathbb{N}} \quad n < n^2 + 1$$

b)
$$\exists_{t \in R} \ t + 2 = t^2 + t$$

a)
$$\forall_{n \in \mathbb{N}} \quad n < n^2 + 1$$

b) $\exists_{t \in \mathbb{R}} \ t + 2 = t^2 + t$
c) $\forall_{t \in \mathbb{R}} \ \exists_{n \in \mathbb{N}} \ n - 5 \ge t$
d) $\exists_{n \in \mathbb{N}} \ \forall_{t \in \mathbb{R}} \ n - 5 \ge t$

$$\mathbf{d}) \; \exists_{n \in N} \; \forall_{t \in R} \; \; n - 5 \ge 1$$

gdzie N oznacza zbiór liczb naturalnych, zaś R zbiór liczb rzeczywistych.

Zad 5. (16 p.)

Niech $\varphi : \mathbb{R} \to \mathbb{R}$ będzie określona wzorem:

$$\varphi(x) = \begin{cases} -3x - 8, & x \le -2 \\ -x - 4, & x > -2 \end{cases}$$
a) Naszkicuj wykres funkcji $\varphi(x)$.

- b) Napisz wzór na φ^{-1}
- c) Napisz wzór na $\varphi \circ \varphi$.

Zad 6. (16 p.)

Niech $\tau \in \mathbb{R} \times \mathbb{R}$ będzie relacją określoną wzorem:

$$\tau = \{(x, y) \in \mathbb{R} \times \mathbb{R} ; |y| = |x| \}$$

- a) Narysuj wykres τ .
- b) Zbadaj czy τ jest: i) relacją symetryczną, ii) relacją zwrotną, iii) funkcją.
- c) Opisz τ^{-1} i narysuj jej wykres.

Zad 7. (16 p.)

Badamy następujące elementy grupy S_{10}

- a) Przedstaw g i h^{-1} w postaci iloczynów cykli rozłącznych,
- b) Oblicz rzędy elementów: q, h^{-1} i qh,
- c) Sprawdź które z elementów: g, h i gh są permutacjami parzystymi,
- d) Sprawdź czy qh = hq.
- e) Przedstaw w postaci iloczynów cykli rozłącznych permutacje g^2 i g^3 .

Odpowiedzi

Zad 1. $(\neg p \land q) \lor (p \land \neg r)$ prawdziwe gdy: p=0,q=1 lub p=1,r=0.

Zad 2. Np.
$$A = \{1\}$$
 i $B = C = \emptyset$

Zad 3.

Zad 3.
a)
$$\bigcap_{n=2}^{6} A_n = (-4, 2\frac{2}{3}),$$
 b) $\bigcup_{n=2}^{9} A_n = (-6, 4)$
c) $\bigcap_{n=3}^{\infty} A_n = \langle -3, 2 \rangle,$
d) $\bigcup_{n=4}^{\infty} A_n = (-4\frac{1}{2}, 3).$

c)
$$\bigcap_{n=3}^{\infty} A_n = \langle -3, 2 \rangle$$
,

d)
$$\bigcup_{n=4}^{\infty} A_n = (-4\frac{1}{2}, 3).$$

Zad 4.

a)
$$\forall_{n \in \mathbb{N}}$$
 $n < n^2 + 1$ Prawda bo $\Delta < 0$ b) $\exists_{t \in \mathbb{R}} t + 2 = t^2 + t$ Prawda np. $t = \sqrt{2}$

a)
$$\forall_{n \in \mathbb{N}} \quad n < n^2 + 1$$
 Prawda bo $\Delta < 0$ b) $\exists_{t \in \mathbb{R}} \ t + 2 = t^2 + t$ Prawda np. $t = \sqrt{2}$ c) $\forall_{t \in \mathbb{R}} \ \exists_{n \in \mathbb{N}} \quad n - 5 \ge t$ Prawda np. $n = \max\{1, \lfloor t + 6 \rfloor d\}$ $\exists_{n \in \mathbb{N}} \ \forall_{t \in \mathbb{R}} \quad n - 5 \ge t$ Falsz np. $t = n + 1$.

Zad 5.
b)
$$\varphi^{-1} = \begin{cases} -x - 4, & x \le -2 \\ -\frac{x+8}{3}, & x > -2 \end{cases}$$

Zad 6.

$$\tau = \tau^{-1} \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} \; ; \; y = xluby = -x \; \right\}$$

wykresem są dwie proste prostopadłe.

b) τ jest: relacją symetryczną, relacją zwrotną, nie jest funkcją.

Zad 7. (16 p.)

Badamy następujące elementy grupy S_{10}

a)
$$g = (1, 8, 6)(2, 5, 7, 3, 9, 4)$$
 i $h^{-1} = (4, 5)(6, 7, 8, 9, 10)$

b)
$$rz g = 6$$
, $rz h^{-1} = 10$ i $rz gh = 8$,

d)
$$gh \neq hg$$
.

e)
$$g^2 = (1, 6, 8)(2, 7, 9)(3, 4, 5)$$
 i $g^3 = (2, 3)(4, 7)(5, 9)$