Definition. A Context-Free Grammar, CFG, is a structure, G such that:

 $G = (N, \Sigma, P, S), where$

N is a finite set of "non-terminal symbols or variables".

 Σ is a finite set of "terminal symbols".

P is a finite subset of $N \times (N \cup \Sigma)^*$, the "productions or rules".

 $S \in N$ is the "start symbol or variable".

We will use:

 A,B,C,\ldots for nonterminals. a,b,c,\ldots for terminals. $\alpha,\beta,\gamma,\ldots$ for strings in $(N\cup\Sigma)^*$.

 $A \to \alpha$ for (A, α) .

 $A \to \alpha_1 |\alpha_2| \alpha_3$ for $A \to \alpha_1, A \to \alpha_2, A \to \alpha_3$.

We say β is derivable in one step from α , if β can be obtained from α by replacing some occurrence of a non-terminal, say A in α with γ , where $A \to \gamma \in P$. That is, if there exists $\alpha_1, \alpha_2 \in (N \cup \Sigma)^*$ and production $A \to \gamma \in P$, such that $\alpha = \alpha_1 A \alpha_2$ and $\beta = \alpha_1 \gamma \alpha_2$. We can write this as: $\alpha \xrightarrow{1}_{C} \beta$.

We define derivable in n steps, $\frac{n}{G}$, inductively as

$$\alpha \xrightarrow{0}_{G} \alpha$$
 for all α

$$\alpha \xrightarrow{n+1}_{G} \beta$$
 if there exists γ , such that, $\alpha \xrightarrow{n}_{G} \gamma$ and $\gamma \xrightarrow{1}_{G} \beta$.

We say β is **derivable** from α , $\alpha \stackrel{*}{\underset{G}{\rightarrow}} \beta$, if $\alpha \stackrel{n}{\underset{G}{\rightarrow}} \beta$ for some $n \geq 0$. Note $\stackrel{1}{\underset{G}{\rightarrow}}$ is a relation on $(N \cup \Sigma)^*$ and $\stackrel{*}{\underset{G}{\rightarrow}}$ is its reflexive transitive closure.

If $S \stackrel{*}{\underset{G}{\longrightarrow}} x$, that is x is derivable from the start symbol, we say x is a **sentential form**. If x consists only of terminal symbols, that is, if $x \in \Sigma^*$, we say x is a **sentence**.

The language generated by a grammar G, L(G), is the set of strings $\{x \in \Sigma^* \mid S \xrightarrow{*}_G x\}$. A subset $S \subseteq \Sigma^*$ is a Context-Free Language, CFL, if S = L(G) for some CFG, G.