Supplementary Note 6: Detailed statistical document of article figures (v 141)

Atanu Giri

August 10, 2023

Contents

1	Figu		
	1.1	Figure 2a: BL Approachavoid (FvM)	
	1.2	Figure 2b: BL Effect of cost (FvM)	3
	1.3	Figure 2c: Safa bar plot	4
	1.4	Figure 2d: BL Approach time (FvM)	4
	1.5	Figure 2e: BL Distance (FvM)	4
	1.6	Figure 2f: BL Fr. of stops (FvM)	5
	1.7	Figure 2g: BL Fr. of high sp. runs (FvM)	5
	1.8	Figure 2h: BL Time OS feeder (FvM)	Ĵ
2	Figu	are 3	6
	2.1	Figure 3e: Lara fig	6
	2.2	Figure 3f: Lara fig	6
	2.3	Figure 3g: Lara fig	
	2.4	Figure 3h: Lara fig	
3	Figu	ro 5	7
J	3.1	Figure 5a: FD vs BL approachavoid	
	3.2	Figure 5b: Safa bar plot (Left)	
	$\frac{3.2}{3.3}$	Figure 5b: Safa bar plot (Right)	
	3.4	Figure 5c: Approach time (FD vs BL)	
	$3.4 \\ 3.5$	Figure 5d: Distance (FD vs BL)	
	3.6	Figure 5e: Fr. of stops (FD vs BL)	
	3.7	Figure 5f: Fr. of high sp. runs (FD vs BL)	
	3.8	Figure 5g: Time OS feeder (FD vs BL)	
	3. 0	riguic og. Time Ob reeder (1 D vs DD)	,
4	Figu		
	4.1	Figure 6b: BA Approachavoid (FvM)	
	4.2	Figure 6c: PA Approachavoid (FvM)	
	4.3	Figure 6d: BA Approach time (FvM)	
	4.4	Figure 6e: PA Approach time (FvM)	4
	4.5	Figure 6f: BA Fr. of high sp. runs (FvM)	
	4.6	Figure 6g: PA Fr. of high sp. runs (FvM)	ã
	4.7	Figure 6j: During Oxy Approachavoid (FvM)	
	4.8	Figure 6k: During Oxy Fr. of stops (FvM)	
	4.9	Figure 6l: After Oxy Approachavoid (FvM)	J
	4.10	Figure 6m: After Oxy Fr. of stops (FvM)	
5	Sup	plemental Figure 1: Safa fig 23	3
		Figure S.11	

6	Sup	plemental Figure 2	23
	6.1	Figure S.2i: BL Distance with approach trials (FvM)	23
	6.2	Figure S.2j: BL Fr. of Stops With approach trials (FvM)	
	6.3	Figure S.2k: BL Fr. of high sp. runs With approach trials (FvM)	24
	6.4	Figure S.2l: BL Time OS feeder With approach trials (FvM)	
	6.5	Figure S.2m. BL Distance with reject trials (FvM)	
	6.6		
	6.7	Figure S.20. BL Fr. of high sp. runs With reject trials (FvM)	
	6.8	Figure S.2p. BL Time OS feeder With reject trials (FvM)	
7	Sup	plemental Figure 4: Safa plot	27
	7.1	Figure S.4d	27
8	Sup	plemental Figure 5	27
	8.1	Figure S.5a: FD Approachavoid (FvM)	27
	8.2	Figure S.5b: FD Distance (FvM)	29
	8.3	Figure S.5c: FD Fr. of stops (FvM)	30
	8.4	Figure S.5d: FD Fr. of high sp. runs (FvM)	31
	8.5	Figure S.5e: FD Time OS feeder (FvM)	33
	8.6	Figure S.5f. BL vs FD Distance traveled (Approach trials)	34
	8.7	Figure S.5g. BL vs FD Number of stopping points (Approach trials)	34
	8.8	Figure S.5h. BL vs FD Number of high speed runs (Approach trials)	34
	8.9	Figure S.5i. BL vs FD Proportion of trials outside all reward zone (Approach trials)	34
	8.10	Figure S.5j. BL vs FD Distance traveled (Reject trials)	35
	8.11	Figure S.5k. BL vs FD Number of stopping points (Reject trials)	35
	8.12	Figure S.5l. BL vs FD Number of high speed runs (Reject trials)	35
	8.13	Figure S.5m. BL vs FD Proportion of trials outside all reward zone (Reject trials) \dots	35
9	Sup	plemental Figure 6	35
	9.1	Figure S.6a: BA Distance (FvM)	
	9.2	Figure S.6b: PA Distance (FvM)	36
	9.3	Figure S.6c: Fraction of sigmoid	38
	9.4		
	9.5	Figure S.6e: During Oxy Time OS Feeder (FvM)	39
	9.6	Figure S.6f: During Oxy Fr. of high sp. runs	41
	9.7	Figure S.6g: During Oxy Distance (FvM)	42
	9.8	Figure S.6h: After Oxy Approach time (FvM)	43
	9.9	Figure S.6i: After Oxy Time OS Feeder (FvM)	
	9.10	Figure S.6j: After Oxy Fr. of high sp. runs	46
		Figure S.6k: After Oxy Distance (FvM)	
	9.12	Figure S.6m: Fraction of sigmoid	49

A repeated measures analysis of variance (ANOVA) was conducted using the MATLAB ranova function to examine the effects of within-subject factors, such as sucrose concentration, and between-subject factors, including gender and experimental conditions (baseline vs. food deprivation). To assess the between-subject differences, a two-sample Kolmogorov-Smirnov test was employed with the MATLAB kstest2 function. Additionally, pairwise comparisons were conducted to further explore the differences between groups using a post-hoc analysis, specifically the Tukey's honestly significant difference method, implemented with the MATLAB multcompare function.

1 Figure 2

1.1 Figure 2a: BL Approachavoid (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

```
Effect of concentration: d.f. = 3, F = 118.5268, p = 7.3397e-26. Effect of gender: d.f. = 1, F = 3.8265, p = 0.0639. kstest2 results: h=0, p=8.2894e-02, ks2stat=0.2557 (overall gender difference)
```

Post-hoc analysis:

```
0.5\%: p = 0.5994, \quad 2\%: p = 0.0203, \quad 5\%: p = 0.1014, \quad 9\%: p = 0.5338.
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.3032,ks2stat=0.3788
RStest:Conc1:h=0,p=0.4049
KStest2:Conc2:h=1,p=0.0087,ks2stat=0.6439
RStest:Conc2:h=1,p=0.0187
KStest2:Conc3:h=0,p=0.2812,ks2stat=0.3864
RStest:Conc3:h=0,p=0.1314
KStest2:Conc4:h=0,p=0.9465,ks2stat=0.2045
RStest:Conc4:h=0,p=0.5156
```

1.2 Figure 2b: BL Effect of cost (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

```
p-value for concentration: 2.061e-10.
```

p-value for gender: 0.15301.

kstest2 results: h=0, p=9.9819e-02, ks2stat=0.2481 (overall gender difference)

```
240lux: 1.8263e - 01, 260lux: 5.1534e - 02, 290lux: 8.8968e - 01, 320lux: 3.7194e - 01
```

```
KStest2:Conc1:h=0,p=0.5833,ks2stat=0.3030\\RStest:Conc1:h=0,p=0.2815\\KStest2:Conc2:h=0,p=0.2407,ks2stat=0.4015\\RStest:Conc2:h=0,p=0.0602\\KStest2:Conc3:h=0,p=0.6484,ks2stat=0.2879\\RStest:Conc3:h=0,p=1.0000\\KStest2:Conc4:h=0,p=0.7136,ks2stat=0.2727\\RStest:Conc4:h=0,p=0.4235
```

1.3 Figure 2c: Safa bar plot

Statistical significance was determined using **Statistical Package for the Social Sciences (SPSS)** package (F = 12, M = 9)

p-value for concentration: <0.0001.

Sex differences across all concentrations p = 0.8.

Post-hoc analysis:

```
15Lux\%: p = 0.000627, \quad 240Lux\%: p = 0.0000893, \quad 260Lux\%: p = 0.0000658, \\ 290Lux\%: p = 0.2045, \quad 320Lux\%: p = 0.405.
```

1.4 Figure 2d: BL Approach time (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

Effect of concentration: d.f. = 3, F = 6.4355, p = 7.8859e-04.

Effect of gender: d.f. = 1, F = 0.6365, p = 0.4348.

kstest2 results: h=0, p=3.1096e-01, ks2stat=0.1986 (overall gender difference)

Post-hoc analysis:

```
0.5\%: 8.9816e - 01, \quad 2\%: 4.5069e - 01, \quad 5\%: 5.3396e - 01, \quad 9\%: 5.9227e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.7358,ks2stat=0.2727\\RStest:Conc1:h=0,p=0.6458,zval=-0.4597\\KStest2:Conc2:h=0,p=0.4896,ks2stat=0.3333\\RStest:Conc2:h=0,p=0.6682,zval=-0.4286\\KStest2:Conc3:h=0,p=0.8286,ks2stat=0.2500\\RStest:Conc3:h=0,p=0.7169,zval=-0.3627\\KStest2:Conc4:h=0,p=0.7136,ks2stat=0.2727\\RStest:Conc4:h=0,p=0.7350,zval=-0.3385
```

1.5 Figure 2e: BL Distance (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

Effect of concentration: d.f. = 3, F = 2.2699, p = 8.9008e-02.

Effect of gender: d.f. = 1, F = 11.8146, p = 0.0025.

kstest2 results: h=1, p=9.4199e-06, ks2stat=0.5019 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 1.2707e - 03$$
, $2\%: 1.1033e - 02$, $5\%: 3.5299e - 03$, $9\%: 8.9459e - 03$

KStest2 and wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0258,ks2stat=0.5758\\RStest:Conc1:h=1,p=0.0051,zval=2.8003\\KStest2:Conc2:h=1,p=0.0361,ks2stat=0.5530\\RStest:Conc2:h=1,p=0.0151,zval=2.4311\\KStest2:Conc3:h=1,p=0.0230,ks2stat=0.5833\\RStest:Conc3:h=1,p=0.0051,zval=2.8003\\KStest2:Conc4:h=1,p=0.0361,ks2stat=0.5530\\RStest:Conc4:h=1,p=0.0062,zval=2.7388
```

1.6 Figure 2f: BL Fr. of stops (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

Effect of concentration: d.f. = 3, F = 0.0544, p = 9.8312e-01.

Effect of gender: d.f. = 1, F = 2.1682, p = 0.1557.

kstest2 results: h=1, p=2.5533e-05, ks2stat=0.4811 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 7.9690e - 02$$
, $2\%: 2.5673e - 01$, $5\%: 1.4691e - 01$, $9\%: 2.0322e - 01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0067,ks2stat=0.6591\\RStest:Conc1:h=1,p=0.0028,zval=-2.9850\\KStest2:Conc2:h=0,p=0.2604,ks2stat=0.3939\\RStest:Conc2:h=0,p=0.1029,zval=-1.6310\\KStest2:Conc3:h=1,p=0.0323,ks2stat=0.5606\\RStest:Conc3:h=1,p=0.0289,zval=-2.1849\\KStest2:Conc4:h=0,p=0.0915,ks2stat=0.4848\\RStest:Conc4:h=0,p=0.0905,zval=-1.6925
```

1.7 Figure 2g: BL Fr. of high sp. runs (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

Effect of concentration: d.f. = 3, F = 23.4392, p = 2.6239e-10.

Effect of gender: d.f. = 1, F = 12.8352, p = 0.0018.

kstest2 results: h=1, p=3.0470e-05, ks2stat=0.4773 (overall gender difference)

```
0.5\%: 1.6629e - 04, \quad 2\%: 2.5835e - 03, \quad 5\%: 5.1037e - 03, \quad 9\%: 6.0776e - 02
```

```
KStest2:Conc1:h=1,p=0.0003,ks2stat=0.8258\\RStest:Conc1:h=1,p=0.0006,zval=-3.4158\\KStest2:Conc2:h=1,p=0.0059,ks2stat=0.6667\\RStest:Conc2:h=1,p=0.0042,zval=-2.8619\\KStest2:Conc3:h=1,p=0.0323,ks2stat=0.5606\\RStest:Conc3:h=1,p=0.0106,zval=-2.5541\\KStest2:Conc4:h=0,p=0.1213,ks2stat=0.4621\\RStest:Conc4:h=0,p=0.1481,zval=-1.4463
```

1.8 Figure 2h: BL Time OS feeder (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

```
Effect of concentration: d.f. = 3, F = 14.3852, p = 3.0392e-07.
```

Effect of gender: d.f. = 1, F = 1.5082, p = 0.2330.

kstest2 results: h=0, p=3.3508e-01, ks2stat=0.1913 (overall gender difference)

Post-hoc analysis:

```
0.5\%: 2.6980e - 01, \quad 2\%: 7.5679e - 01, \quad 5\%: 8.5789e - 02, \quad 9\%: 3.0110e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.8067,ks2stat=0.2500\\RStest:Conc1:h=0,p=0.4044,zval=0.8338\\KStest2:Conc2:h=0,p=0.9982,ks2stat=0.1515\\RStest:Conc2:h=0,p=0.8292,zval=0.2157\\KStest2:Conc3:h=0,p=0.1006,ks2stat=0.4773\\RStest:Conc3:h=1,p=0.0483,zval=1.9743\\KStest2:Conc4:h=0,p=0.4595,ks2stat=0.3333\\RStest:Conc4:h=0,p=0.4219,zval=0.8031
```

2 Figure 3

2.1 Figure 3e: Lara fig

Statistical significance was determined by one-way analysis of variance. (group 1 = 60, group 2 = 61, group 3 = 58, group 4 = 64, group 5 = 22, group 6 = 22, group 7 = 25, group 8 = 18) p-value for significance of difference between the groups (utility): 0.0429.

Post-hoc analysis by Tukey's HSD method:

No group difference is statistically significant.

2.2 Figure 3f: Lara fig

Statistical significance was determined by one-way analysis of variance. (group 1 = 60, group 2 = 61, group 3 = 58, group 4 = 64)

p-value for significance of difference between the groups (concentration): 0.9599.

Post-hoc analysis by Tukey's HSD method:

No group difference is statistically significant.

2.3 Figure 3g: Lara fig

Statistical significance was determined by one-way analysis of variance. (group 1 = 22, group 2 = 22, group 3 = 25, group 4 = 18)

p-value for significance of difference between the groups (concentration): 0.5523.

Post-hoc analysis by Tukey's HSD method:

No group difference is statistically significant.

2.4 Figure 3h: Lara fig

Statistical significance was determined by one-way analysis of variance. (group 1 = 243, group 2 = 87) p-value for significance of difference between the groups (concentration): 0.0012.

3 Figure 5

3.1 Figure 5a: FD vs BL approachavoid

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 22, FD N = 22).

```
Effect of concentration: d.f. = 3, F = 281.8850, p = 1.0842e-55.
```

Effect of Condition: d.f. = 1, F = 19.0789, p = 0.0001. kstest2 results: h=1, p=1.0816e-02, ks2stat=0.2386 (overall difference in BL vs FD)

Post-hoc analysis:

```
0.5\%:6.8154e-01, 2\%:5.2118e-01, 5\%:5.0500e-04, 9\%:4.8848e-03
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.1746,ks2stat=0.3182\\RStest:Conc1:h=0,p=0.3038,zval=1.0283\\KStest2:Conc2:h=0,p=0.3320,ks2stat=0.2727\\RStest:Conc2:h=0,p=0.3820,zval=0.8743\\KStest2:Conc3:h=1,p=0.0138,ks2stat=0.4545\\RStest:Conc3:h=1,p=0.0011,zval=-3.2659\\KStest2:Conc4:h=1,p=0.0000,ks2stat=0.6818\\RStest:Conc4:h=1,p=0.0003,zval=-3.6583
```

3.2 Figure 5b: Safa bar plot (Left)

```
Statistical significance was determined using SPSS software package (F = 12, M = 9) p-value for gender: p < 0.001) p-value for acceptance rate: 0.723
```

3.3 Figure 5b: Safa bar plot (Right)

Statistical significance was determined using **SPSS** software package (F = 12, M = 10) p-value for gender: 0.873)

p-value for acceptance rate: 0.018

3.4 Figure 5c: Approach time (FD vs BL)

Statistical significance was determined by Repeated measures analysis of variance. (BL N=22, FD N=22).

Effect of concentration: d.f. = 3, F = 20.1324, p = 6.3645e-10.

Effect of Condition: d.f. = 1, F = 1.7659, p = 0.1946.

kstest2 results: h=0, p=3.5436e-01, ks2stat=0.1435 (overall difference in BL vs FD)

Post-hoc analysis:

$$0.5\%: 1.0418e - 02, 2\%: 3.2611e - 01, 5\%: 7.3375e - 01, 9\%: 1.0336e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.0647,ks2stat=0.4286\\RStest:Conc1:h=1,p=0.0127,zval=-2.4921\\KStest2:Conc2:h=1,p=0.0395,ks2stat=0.4286\\RStest:Conc2:h=0,p=0.0883,zval=-1.7044\\KStest2:Conc3:h=0,p=0.7388,ks2stat=0.1991\\RStest:Conc3:h=0,p=0.6885,zval=0.4009\\KStest2:Conc4:h=0,p=0.3320,ks2stat=0.2727\\RStest:Conc4:h=0,p=0.1625,zval=1.3966
```

3.5 Figure 5d: Distance (FD vs BL)

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 22, FD N = 22).

Effect of concentration: d.f. = 3, F = 12.6199, p = 2.8777e-07.

Effect of Condition: d.f. = 1, F = 11.2464, p = 0.0017.

kstest2 results: h=1, p=7.5537e-08, ks2stat=0.4318 (overall difference in BL vs FD)

Post-hoc analysis:

$$0.5\%: 3.7073e - 04$$
, $2\%: 7.5759e - 04$, $5\%: 3.3233e - 02$, $9\%: 1.3234e - 02$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0015,ks2stat=0.5455\\RStest:Conc1:h=1,p=0.0008,zval=-3.3683\\KStest2:Conc2:h=1,p=0.0356,ks2stat=0.4091\\RStest:Conc2:h=1,p=0.0028,zval=-2.9928\\KStest2:Conc3:h=1,p=0.0138,ks2stat=0.4545\\RStest:Conc3:h=1,p=0.0151,zval=-2.4294\\KStest2:Conc4:h=1,p=0.0356,ks2stat=0.4091\\RStest:Conc4:h=1,p=0.0151,zval=-2.4294
```

3.6 Figure 5e: Fr. of stops (FD vs BL)

Statistical significance was determined by Repeated measures analysis of variance. (BL N=22, FD N=22).

Effect of concentration: d.f. = 3, F = 1.2986, p = 2.7791e-01.

Effect of Condition: d.f. = 1, F = 4.3492, p = 0.0431.

kstest2 results: h=1, p=7.5537e-08, ks2stat=0.4318 (overall difference in BL vs FD)

Post-hoc analysis:

$$0.5\%: 3.9999e - 02, \quad 2\%: 3.3272e - 02, \quad 5\%: 5.5036e - 02, \quad 9\%: 5.9155e - 02$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0001,ks2stat=0.6364\\RStest:Conc1:h=1,p=0.0003,zval=3.6265\\KStest2:Conc2:h=1,p=0.0138,ks2stat=0.4545\\RStest:Conc2:h=1,p=0.0028,zval=2.9928\\KStest2:Conc3:h=0,p=0.0828,ks2stat=0.3636\\RStest:Conc3:h=1,p=0.0109,zval=2.5468\\KStest2:Conc4:h=1,p=0.0138,ks2stat=0.4545\\RStest:Conc4:h=1,p=0.0032,zval=2.9458
```

3.7 Figure 5f: Fr. of high sp. runs (FD vs BL)

Statistical significance was determined by Repeated measures analysis of variance. (BL N=22, FD N=22).

Effect of concentration: d.f. = 3, F = 45.2054, p = 6.6926e-20.

Effect of Condition: d.f. = 1, F = 5.4125, p = 0.0249.

kstest2 results: h=1, p=1.0816e-02, ks2stat=0.2386 (overall difference in BL vs FD)

Post-hoc analysis:

```
0.5\%:7.3584e-04, 2\%:1.0250e-01, 5\%:2.0052e-01, 9\%:1.2278e-01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0015,ks2stat=0.5455\\RStest:Conc1:h=1,p=0.0012,zval=3.2275\\KStest2:Conc2:h=0,p=0.0828,ks2stat=0.3636\\RStest:Conc2:h=0,p=0.0689,zval=1.8191\\KStest2:Conc3:h=0,p=0.3320,ks2stat=0.2727\\RStest:Conc3:h=0,p=0.4455,zval=0.7629\\KStest2:Conc4:h=0,p=0.1746,ks2stat=0.3182\\RStest:Conc4:h=0,p=0.1424,zval=1.4670
```

3.8 Figure 5g: Time OS feeder (FD vs BL)

Statistical significance was determined by Repeated measures analysis of variance. (BL N=22, FD N=22).

Effect of concentration: d.f. = 3, F = 51.5773, p = 8.1104e-22.

Effect of Condition: d.f. = 1, F = 2.5126, p = 0.1204.

kstest2 results: h=1, p=1.7572e-02, ks2stat=0.2273 (overall difference in BL vs FD)

Post-hoc analysis:

```
0.5\%: 5.6817e - 03, 2\%: 1.9624e - 02, 5\%: 5.4119e - 01, 9\%: 7.4789e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0049,ks2stat=0.5000\\RStest:Conc1:h=1,p=0.0068,zval=-2.7047\\KStest2:Conc2:h=1,p=0.0356,ks2stat=0.4091\\RStest:Conc2:h=1,p=0.0186,zval=-2.3536\\KStest2:Conc3:h=0,p=0.3320,ks2stat=0.2727\\RStest:Conc3:h=0,p=0.2485,zval=1.1541\\KStest2:Conc4:h=0,p=0.3320,ks2stat=0.2727\\RStest:Conc4:h=0,p=0.9156,zval=-0.1059
```

4 Figure 6

4.1 Figure 6b: BA Approachavoid (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

Effect of concentration: d.f. = 3, F = 49.9905, p = 2.5457e-16.

Effect of gender: d.f. = 1, F = 0.5183, p = 0.4799.

kstest2 results: h=0, p=8.0438e-01, ks2stat=0.1333 (overall gender difference)

Post-hoc analysis:

```
0.5\%:8.0114e-01, 2\%:8.8708e-01, 5\%:5.7254e-01, 9\%:5.0164e-01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.8848,ks2stat=0.2333 RStest:Conc1:h=0,p=0.8621,zval=0.1736 KStest2:Conc2:h=0,p=1.0000,ks2stat=0.1167 RStest:Conc2:h=0,p=1.0000,zval=-0.0000 KStest2:Conc3:h=0,p=0.9304,ks2stat=0.2167 RStest:Conc3:h=0,p=0.9467,zval=0.0668 KStest2:Conc4:h=0,p=0.8848,ks2stat=0.2333 RStest:Conc4:h=0,p=1.0000,zval=-0.0000
```

BL vs Initial Task

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Initial Task N=12).

p-value for BL vs initial task of female: 0.17699.

kstest2 results: h=0, p=4.8027e-01, ks2stat=0.1667.

```
0.5\%: 4.7801e - 01, \quad 2\%: 8.2100e - 01, \quad 5\%: 2.6400e - 02, \quad 9\%: 9.4445e - 01
```

$$KStest2:Conc1:h=0,p=0.1862,ks2stat=0.4167\\RStest:Conc1:h=0,p=0.5008\\KStest2:Conc2:h=0,p=0.0656,ks2stat=0.5000\\RStest:Conc2:h=0,p=0.3827\\KStest2:Conc3:h=0,p=0.1862,ks2stat=0.4167\\RStest:Conc3:h=0,p=0.0526\\KStest2:Conc4:h=0,p=0.4333,ks2stat=0.3333\\RStest:Conc4:h=0,p=0.7708$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Initial Task N=10).

p-value for BL vs initial task of male: 0.066116. kstest2 results: h=0, p=6.6144e-01, ks2stat=0.1545

Post-hoc analysis:

$$0.5\%: 3.4193e - 01, \quad 2\%: 2.3440e - 01, \quad 5\%: 2.4745e - 02, \quad 9\%: 3.3059e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.2890,ks2stat=0.4000\\RStest:Conc1:h=0,p=0.9153\\KStest2:Conc2:h=0,p=0.6490,ks2stat=0.3000\\RStest:Conc2:h=0,p=0.7219\\KStest2:Conc3:h=1,p=0.0259,ks2stat=0.6000\\RStest:Conc3:h=1,p=0.0150\\KStest2:Conc4:h=0,p=0.2890,ks2stat=0.4000\\RStest:Conc4:h=0,p=0.8039$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 5.7305, p = 0.0178. Effect of concentration: d.f. = 3, F = 137.6882, p = 6.153256e-45. Effect of gender: d.f. = 1, F = 2.8631, p = 0.0925.

4.2 Figure 6c: PA Approachavoid (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=10, Male N=10).

Effect of concentration: d.f. = 3, F = 65.1004, p = 6.1134e-18.

Effect of gender: d.f. = 1, F = 6.0131, p = 0.0246.

kstest2 results: h=0, p=3.6131e-01, ks2stat=0.2000 (overall gender difference)

```
0.5\%: 8.8484e - 01, 2\%: 1.0123e - 01, 5\%: 7.5526e - 02, 9\%: 3.3494e - 01
```

 $KStest2:Conc1:h=0,p=0.9748,ks2stat=0.2000\\RStest:Conc1:h=0,p=0.5004,zval=0.6739\\KStest2:Conc2:h=0,p=0.3129,ks2stat=0.4000\\RStest:Conc2:h=0,p=0.1315,zval=1.5083\\KStest2:Conc3:h=0,p=0.6751,ks2stat=0.3000\\RStest:Conc3:h=0,p=0.1233,zval=1.5411\\KStest2:Conc4:h=0,p=0.9748,ks2stat=0.2000\\RStest:Conc4:h=0,p=0.4201,zval=0.8062$

BL vs Late Task

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, Late Task N = 10).

p-value for BL vs initial task of female: 0.024429.

kstest2 results: h=0, p=2.2658e-01, ks2stat=0.2167.

Post-hoc analysis:

$$0.5\%: 3.7745e - 01, \quad 2\%: 1.4453e - 01, \quad 5\%: 6.0921e - 02, \quad 9\%: 2.1423e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.5564,ks2stat=0.3167\\RStest:Conc1:h=0,p=0.5960\\KStest2:Conc2:h=0,p=0.0706,ks2stat=0.5167\\RStest:Conc2:h=0,p=0.0703\\KStest2:Conc3:h=0,p=0.1582,ks2stat=0.4500\\RStest:Conc3:h=0,p=0.0688\\KStest2:Conc4:h=0,p=0.0873,ks2stat=0.5000\\RStest:Conc4:h=0,p=0.2595$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 11, Late Task N = 10).

p-value for BL vs initial task of male: 0.2364.

kstest2 results: h=0, p=3.0854e-01, ks2stat=0.2045

Post-hoc analysis:

$$0.5\%:5.0440e-01$$
, $2\%:4.2998e-01$, $5\%:2.9060e-01$, $9\%:5.8461e-01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

KStest2:Conc1:h=0,p=0.0978,ks2stat=0.5000RStest:Conc1:h=0,p=0.3548KStest2:Conc2:h=0,p=0.3548KS

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 6.8126, p = 0.0099.

Effect of concentration: d.f. = 3, F = 173.9008, p = 5.479031e-50.

Effect of gender: d.f. = 1, F = 10.4186, p = 0.0015.

Initial Task vs Late Task:

Effect of condition: d.f. = 1, F = 0.0013, p = 0.9710. Effect of concentration: d.f. = 3, F = 111.1738, p = 1.904706e-38. Effect of gender: d.f. = 1, F = 4.6943, p = 0.0318.

4.3 Figure 6d: BA Approach time (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

Effect of concentration: d.f. = 3, F = 3.0746, p = 5.4017e-02.

Effect of gender: d.f. = 1, F = 0.7937, p = 0.4073.

kstest2 results: h=0, p=4.6263e-01, ks2stat=0.2016 (overall gender difference)

Post-hoc analysis:

$$0.5\%:7.1363e-01$$
, $2\%:7.6787e-01$, $5\%:7.5464e-02$, $9\%:6.6465e-01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2: Conc1: h = 0, p = 0.2141, ks2stat = 0.5000$$

$$RStest: Conc1: h = 0, p = 0.3462$$

$$KStest2:Conc2:h=0,p=0.3180,ks2stat=0.5000$$

$$RStest: Conc2: h = 0, p = 0.3701$$

$$KStest2: Conc3: h = 1, p = 0.0032, ks2stat = 0.7167$$

$$RStest: Conc3: h = 1, p = 0.0192$$

$$KStest2:Conc4:h=0,p=0.2503,ks2stat=0.4545$$

$$RStest: Conc4: h = 0, p = 0.5360$$

BL vs Initial Task

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, Late Task N = 12).

p-value for BL vs initial task of female: 0.95393.

kstest2 results: h=0, p=1.0029e-01, ks2stat=0.2570

Post-hoc analysis:

$$0.5\%:6.0495e-01$$
, $2\%:7.3330e-02$, $5\%:1.0644e-02$, $9\%:6.9342e-01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2: Conc1: h = 0, p = 0.0876, ks2stat = 0.5091$$

$$RStest: Conc1: h = 0, p = 0.5968$$

$$KStest2: Conc2: h = 0, p = 0.0799, ks2stat = 0.5833$$

$$RStest: Conc2: h = 1, p = 0.0320$$

$$KStest2: Conc3: h = 0, p = 0.0656, ks2stat = 0.5000$$

$$RStest:Conc3:h=0,p=0.0606$$

$$KStest2: Conc4: h = 0, p = 0.2812, ks2stat = 0.3864$$

$$RStest: Conc4: h = 0, p = 0.3099$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Late Task N=10).

p-value for BL vs initial task of male: 0.3337.

kstest2 results: h=0, p=3.8605e-01, ks2stat=0.2110

$$0.5\%:7.3182e-01$$
, $2\%:1.6792e-01$, $5\%:9.4946e-01$, $9\%:6.1620e-01$

KStest2: Conc1: h = 0, p = 0.2290, ks2stat = 0.4848RStest: Conc1: h = 0, p = 0.2696KStest2: Conc2: h = 0, p = 0.2696KStest2: h = 0, p = 0.2

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 0.5848, p = 0.4457.

Effect of concentration: d.f. = 3, F = 10.0285, p = 4.818959e-06.

Effect of gender: d.f. = 1, F = 0.0008, p = 0.9775.

4.4 Figure 6e: PA Approach time (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=10, Male N=10).

Effect of concentration: d.f. = 3, F = 1.0838, p = 3.8602e-01.

Effect of gender: d.f. = 1, F = 0.1609, p = 0.7049.

kstest2 results: h=0, p=1.7336e-01, ks2stat=0.2745 (overall gender difference)

Post-hoc analysis:

$$0.5\%:5.2868e-01$$
, $2\%:4.4209e-01$, $5\%:5.2319e-01$, $9\%:4.8906e-01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0204,ks2stat=0.8000\\RStest:Conc1:h=1,p=0.0303\\KStest2:Conc2:h=0,p=0.5070,ks2stat=0.4250\\RStest:Conc2:h=0,p=0.2844\\KStest2:Conc3:h=0,p=0.4892,ks2stat=0.3556\\RStest:Conc3:h=0,p=0.3562\\KStest2:Conc4:h=0,p=0.1076,ks2stat=0.5417$$

RStest: Conc4: h = 1, p = 0.0274

BL vs Late Task

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, Late Task N = 10).

p-value for BL vs initial task of female: 0.58585.

kstest2 results: h=0, p=2.9353e-01, ks2stat=0.2134

Post-hoc analysis:

$$0.5\%:6.6412e-01$$
, $2\%:7.3010e-01$, $5\%:9.4083e-02$, $9\%:2.9966e-01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.2503,ks2stat=0.4545\\RStest:Conc1:h=0,p=0.4111\\KStest2:Conc2:h=0,p=0.9978,ks2stat=0.1667\\RStest:Conc2:h=0,p=0.9692\\KStest2:Conc3:h=0,p=0.1582,ks2stat=0.4500\\RStest:Conc3:h=0,p=0.0698\\KStest2:Conc4:h=0,p=0.8520,ks2stat=0.2500\\RStest:Conc4:h=0,p=1.0000$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Late Task N=10).

p-value for BL vs initial task of male: 0.74017. kstest2 results: h=0, p=2.2511e-01, ks2stat=0.2487

Post-hoc analysis:

$$0.5\%:6.3673e-01$$
, $2\%:4.9689e-01$, $5\%:8.2142e-01$, $9\%:5.9077e-01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.1019,ks2stat=0.6000\\RStest:Conc1:h=0,p=0.1149\\KStest2:Conc2:h=0,p=0.5402,ks2stat=0.4000\\RStest:Conc2:h=0,p=0.3710\\KStest2:Conc3:h=0,p=0.4114,ks2stat=0.3778\\RStest:Conc3:h=0,p=0.4470\\KStest2:Conc4:h=0,p=0.2147,ks2stat=0.4545\\RStest:Conc4:h=0,p=0.1518$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 0.0505, p = 0.8225.

Effect of concentration: d.f. = 3, F = 16.6626, p = 2.758445e-09.

Effect of gender: d.f. = 1, F = 4.5491, p = 0.0347.

4.5 Figure 6f: BA Fr. of high sp. runs (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

Effect of concentration: d.f. = 3, F = 1.8924, p = 1.4050e-01.

Effect of gender: d.f. = 1, F = 0.8500, p = 0.3675.

kstest2 results: h=0, p=1.2139e-01, ks2stat=0.2458 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 7.7450e - 01, \quad 2\%: 9.1269e - 01, \quad 5\%: 3.6064e - 03, \quad 9\%: 5.6181e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.9304,ks2stat=0.2167\\RStest:Conc1:h=0,p=0.7667\\KStest2:Conc2:h=0,p=0.8286,ks2stat=0.2500\\RStest:Conc2:h=0,p=0.7667\\KStest2:Conc3:h=1,p=0.0101,ks2stat=0.6500\\RStest:Conc3:h=1,p=0.0111\\KStest2:Conc4:h=0,p=0.1072,ks2stat=0.4833\\RStest:Conc4:h=0,p=0.3734$$

BL vs Initial Task

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, Initial

Task N = 12).

p-value for BL vs initial task of female: 0.013.

kstest2 results: h=1, p=4.8054e-02, ks2stat=0.2708

Post-hoc analysis:

$$0.5\%: 8.0719e - 02, \quad 2\%: 1.3341e - 02, \quad 5\%: 3.6748e - 02, \quad 9\%: 7.0275e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2: Conc1: h = 0, p = 0.0656, ks2stat = 0.5000$$

$$RStest: Conc1: h = 1, p = 0.0351$$

$$KStest2:Conc2:h=1,p=0.0191,ks2stat=0.5833$$

$$RStest: Conc2: h = 1, p = 0.0086$$

$$KStest2: Conc3: h = 0, p = 0.0656, ks2stat = 0.5000$$

$$RStest: Conc3: h = 1, p = 0.0262$$

$$KStest2: Conc4: h = 0, p = 0.1862, ks2stat = 0.4167$$

$$RStest: Conc4: h = 0, p = 0.5067$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Initial Task N=10).

p-value for BL vs initial task of male: 0.49907.

kstest2 results: h=0, p=5.7150e-01, ks2stat=0.1659

Post-hoc analysis:

$$0.5\%: 8.6648e - 01, \quad 2\%: 7.4849e - 01, \quad 5\%: 1.6437e - 02, \quad 9\%: 7.9965e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2: Conc1: h = 0, p = 0.2646, ks2stat = 0.4091$$

$$RStest: Conc1: h = 0, p = 0.5035$$

$$KStest2: Conc2: h = 0, p = 0.6114, ks2stat = 0.3091$$

$$RStest: Conc2: h = 0, p = 0.6985$$

$$KStest2: Conc3: h = 1, p = 0.0198, ks2stat = 0.6182$$

$$RStest: Conc3: h = 1, p = 0.0183$$

$$KStest2: Conc4: h = 0, p = 0.8290, ks2stat = 0.2545$$

$$RStest: Conc4: h = 0, p = 0.9719$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 9.1971, p = 0.0028.

Effect of concentration: d.f. = 3, F = 4.0014, p = 8.777480e-03.

Effect of gender: d.f. = 1, F = 13.5543, p = 0.0003.

4.6 Figure 6g: PA Fr. of high sp. runs (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=10, Male N=10).

Effect of concentration: d.f. = 3, F = 0.5016, p = 6.8275e-01.

Effect of gender: d.f. = 1, F = 1.8180, p = 0.1943.

kstest2 results: h=0, p=1.3925e-01, ks2stat=0.2500 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 4.4173e - 01, \quad 2\%: 1.5443e - 01, \quad 5\%: 4.3851e - 01, \quad 9\%: 8.8666e - 02$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.3129,ks2stat=0.4000\\RStest:Conc1:h=0,p=0.3075\\KStest2:Conc2:h=0,p=0.6751,ks2stat=0.3000\\RStest:Conc2:h=0,p=0.1620\\KStest2:Conc3:h=0,p=0.6751,ks2stat=0.3000\\RStest:Conc3:h=0,p=0.9698\\KStest2:Conc4:h=0,p=0.1108,ks2stat=0.5000\\RStest:Conc4:h=0,p=0.0890$$

BL vs Late Task

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Late Task N=10).

p-value for BL vs late task of female: 0.062741.

kstest2 results: h=0, p=1.6019e-01, ks2stat=0.2333

Post-hoc analysis:

$$0.5\%: 1.4081e - 01, \quad 2\%: 8.1374e - 03, \quad 5\%: 1.3291e - 02, \quad 9\%: 4.2351e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.6259,ks2stat=0.3000\\RStest:Conc1:h=0,p=0.3390\\KStest2:Conc2:h=1,p=0.0076,ks2stat=0.6667\\RStest:Conc2:h=1,p=0.0062\\KStest2:Conc3:h=0,p=0.1902,ks2stat=0.4333\\RStest:Conc3:h=1,p=0.0321\\KStest2:Conc4:h=0,p=0.2270,ks2stat=0.4167\\RStest:Conc4:h=0,p=0.2485$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 11, Late Task N = 10).

p-value for BL vs late task of male: 0.36436.

kstest2 results: h=0, p=1.1714e-01, ks2stat=0.2523

Post-hoc analysis:

$$0.5\%:6.9166e-01$$
, $2\%:5.0927e-02$, $5\%:5.4199e-01$, $9\%:5.5656e-01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

KStest2:Conc1:h=0,p=0.2646,ks2stat=0.4091RStest:Conc1:h=0,p=0.4597KStest2:Conc2:h=0,p=0.4597KS

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 9.0263, p = 0.0031.

Effect of concentration: d.f. = 3, F = 1.1525, p = 3.298113e-01.

Effect of gender: d.f. = 1, F = 21.8951, p = 0.0000.

4.7 Figure 6j: During Oxy Approachavoid (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5).

Effect of concentration: d.f. = 3, F = 3.2073, p = 4.1083e-02.

Effect of gender: d.f. = 1, F = 0.0521, p = 0.8251.

kstest2 results: h=0, p=7.7095e-01, ks2stat=0.2000 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 8.0968e - 01, 2\%: 2.1173e - 01, 5\%: 4.2256e - 01, 9\%: 2.2622e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2: Conc1: h = 0, p = 0.6974, ks2stat = 0.4000$$

 $RStest: Conc1: h = 0, p = 0.6429$

$$KStest2: Conc2: h = 0, p = 0.2090, ks2stat = 0.6000$$

$$RStest2:Conc2: h = 0, p = 0.2090, ks2stat = 0.0000$$

 $RStest:Conc2: h = 0, p = 0.2063$

$$KStest2: Conc3: h = 0, p = 0.6974, ks2stat = 0.4000$$

$$RStest: Conc3: h = 0, p = 0.6349$$

$$KStest2: Conc4: h = 0, p = 0.6974, ks2stat = 0.4000$$

$$RStest: Conc4: h = 0, p = 0.3016$$

BL vs Self admin. Oxy

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Self admin. Oxy N=5).

p-value for BL vs Self admin. Oxy of female: 0.052962.

kstest2 results: h=0, p=5.1949e-02, ks2stat=0.3458

Post-hoc analysis:

$$0.5\%:4.0723e-04$$
, $2\%:3.0385e-01$, $5\%:8.8902e-02$, $9\%:1.2880e-05$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2: Conc1: h = 1, p = 0.0089, ks2stat = 0.8000$$

$$RStest: Conc1: h = 1, p = 0.0039$$

$$KStest2: Conc2: h = 0, p = 0.5074, ks2stat = 0.4000$$

$$RStest: Conc2: h = 0, p = 0.7757$$

$$KStest2: Conc3: h = 0, p = 0.1545, ks2stat = 0.5500$$

$$RStest: Conc3: h = 0, p = 0.1296$$

$$KStest2: Conc4: h = 1, p = 0.0004, ks2stat = 1.0000$$

$$RStest: Conc4: h = 1, p = 0.0003$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Self admin. Oxy N=5).

p-value for BL vs Self admin. Oxy of male: 0.74837.

kstest2 results: h=0, p=5.2181e-02, ks2stat=0.3500

$$0.5\%: 1.1302e - 02$$
, $2\%: 5.2769e - 04$, $5\%: 3.4051e - 01$, $9\%: 7.5302e - 05$

 $KStest2:Conc1:h=1,p=0.0313,ks2stat=0.7091\\RStest:Conc1:h=1,p=0.0124\\KStest2:Conc2:h=1,p=0.0079,ks2stat=0.8182\\RStest:Conc2:h=1,p=0.0018\\KStest2:Conc3:h=0,p=0.2005,ks2stat=0.5273\\RStest:Conc3:h=0,p=0.3608\\KStest2:Conc4:h=1,p=0.0005,ks2stat=1.0000\\RStest:Conc4:h=1,p=0.0005$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 3.7568, p = 0.0550.

Effect of concentration: d.f. = 3, F = 50.3587, p = 4.372402e-21.

Effect of gender: d.f. = 1, F = 0.6013, p = 0.4396.

4.8 Figure 6k: During Oxy Fr. of stops (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5).

Effect of concentration: d.f. = 3, F = 0.3109, p = 8.1732e-01.

Effect of gender: d.f. = 1, F = 2.9124, p = 0.1263.

kstest2 results: h=1, p=8.1617e-03, ks2stat=0.5000 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 2.1755e - 01, \quad 2\%: 9.1185e - 02, \quad 5\%: 1.8516e - 01, \quad 9\%: 9.4228e - 02$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=0,p=0.6974,ks2stat=0.4000\\RStest:Conc1:h=0,p=0.2222\\KStest2:Conc2:h=1,p=0.0361,ks2stat=0.8000\\RStest:Conc2:h=1,p=0.0317\\KStest2:Conc3:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc3:h=0,p=0.1508\\KStest2:Conc4:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc4:h=0,p=0.0952$

BL vs Self admin. Oxy

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Self admin. Oxy N=5).

p-value for BL vs initial task of female: 0.013864. kstest2 results: h=1, p=1.6985e-04, ks2stat=0.5542

Post-hoc analysis:

0.5%:6.5797e-03, 2%:2.4568e-02, 5%:3.1498e-02, 9%:1.3492e-02

$$KStest2:Conc1:h=0,p=0.0950,ks2stat=0.6000\\RStest:Conc1:h=1,p=0.0485\\KStest2:Conc2:h=0,p=0.0671,ks2stat=0.6333\\RStest:Conc2:h=1,p=0.0365\\KStest2:Conc3:h=0,p=0.3153,ks2stat=0.4667\\RStest:Conc3:h=0,p=0.1037\\KStest2:Conc4:h=0,p=0.1545,ks2stat=0.5500\\RStest:Conc4:h=0,p=0.1037$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Self admin. Oxy N=5).

p-value for BL vs initial task of male: 0.38653. kstest2 results: h=1, p=4.2681e-03, ks2stat=0.4545

Post-hoc analysis:

$$0.5\%:4.9541e-01$$
, $2\%:3.2649e-01$, $5\%:3.7954e-01$, $9\%:3.6035e-01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.1019,ks2stat=0.6000\\RStest:Conc1:h=0,p=0.3196\\KStest2:Conc2:h=0,p=0.2342,ks2stat=0.5091\\RStest:Conc2:h=0,p=0.1451\\KStest2:Conc3:h=0,p=0.2005,ks2stat=0.5273\\RStest:Conc3:h=0,p=0.2212\\KStest2:Conc4:h=0,p=0.1019,ks2stat=0.6000\\RStest:Conc4:h=0,p=0.1451$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 2.0112, p = 0.1588. Effect of concentration: d.f. = 3, F = 0.0203, p = 9.960489e-01. Effect of gender: d.f. = 1, F = 1.5922, p = 0.2095.

4.9 Figure 6l: After Oxy Approachavoid (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=6, Male N=6).

Effect of concentration: d.f. = 3, F = 19.9665, p = 2.6307e-07.

Effect of gender: d.f. = 1, F = 0.2008, p = 0.6637.

kstest2 results: h=0, p=6.2161e-01, ks2stat=0.2083 (overall gender difference)

```
0.5\%:7.5735e-01, 2\%:3.7013e-01, 5\%:8.0930e-01, 9\%:6.4244e-01
```

KStest2:Conc1:h=0,p=0.8096,ks2stat=0.3333 RStest:Conc1:h=0,p=1.0000 KStest2:Conc2:h=0,p=0.3180,ks2stat=0.5000 RStest:Conc2:h=0,p=0.3095 KStest2:Conc3:h=0,p=0.8096,ks2stat=0.3333 RStest:Conc3:h=0,p=0.8182 KStest2:Conc4:h=0,p=0.3180,ks2stat=0.5000 RStest:Conc4:h=0,p=0.5887

BL vs Abstinence

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Abstinence N=6).

p-value for BL vs initial task of female: 0.18211. kstest2 results: h=1, p=1.5846e-02, ks2stat=0.3750

Post-hoc analysis:

$$0.5\%: 9.8839e - 05, \quad 2\%: 2.3068e - 04, \quad 5\%: 8.7695e - 01, \quad 9\%: 1.7166e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0007,ks2stat=0.9167\\RStest:Conc1:h=1,p=0.0002\\KStest2:Conc2:h=1,p=0.0028,ks2stat=0.8333\\RStest:Conc2:h=1,p=0.0018\\KStest2:Conc3:h=0,p=0.9290,ks2stat=0.2500\\RStest:Conc3:h=0,p=0.9636\\KStest2:Conc4:h=0,p=0.1877,ks2stat=0.5000\\RStest:Conc4:h=0,p=0.4225$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Abstinence N=6).

p-value for BL vs initial task of male: 0.033933. kstest2 results: h=1, p=8.7249e-04, ks2stat=0.4811

Post-hoc analysis:

$$0.5\%:4.0393e-05,\quad 2\%:6.3068e-04,\quad 5\%:3.1164e-01,\quad 9\%:5.9881e-03$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0002,ks2stat=1.0000\\RStest:Conc1:h=1,p=0.0002\\KStest2:Conc2:h=1,p=0.0033,ks2stat=0.8333\\RStest:Conc2:h=1,p=0.0031\\KStest2:Conc3:h=0,p=0.5232,ks2stat=0.3788\\RStest:Conc3:h=0,p=0.5249\\KStest2:Conc4:h=1,p=0.0042,ks2stat=0.8182\\RStest:Conc4:h=1,p=0.0074$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 10.3954, p = 0.0016.

Effect of concentration: d.f. = 3, F = 77.2692, p = 1.664070e-28.

Effect of gender: d.f. = 1, F = 3.0165, p = 0.0848.

4.10 Figure 6m: After Oxy Fr. of stops (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=6, Male N=6).

Effect of concentration: d.f. = 3, F = 0.9612, p = 4.2378e-01.

Effect of gender: d.f. = 1, F = 1.1444, p = 0.3099.

kstest2 results: h=1, p=9.3124e-04, ks2stat=0.5417 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 3.2581e - 01, \quad 2\%: 3.9929e - 01, \quad 5\%: 2.7256e - 01, \quad 9\%: 2.6367e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.0766,ks2stat=0.6667\\RStest:Conc1:h=0,p=0.1320\\KStest2:Conc2:h=1,p=0.0122,ks2stat=0.8333\\RStest:Conc2:h=0,p=0.0649\\KStest2:Conc3:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc3:h=0,p=0.3095\\KStest2:Conc4:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc4:h=0,p=0.2403$$

BL vs Abstinence

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Abstinence N=6).

p-value for BL vs initial task of female: 0.23108.

kstest2 results: h=0, p=4.4421e-01, ks2stat=0.2083

Post-hoc analysis:

$$0.5\%: 2.0036e - 01, \quad 2\%: 3.5578e - 01, \quad 5\%: 2.1478e - 01, \quad 9\%: 1.7829e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.9290,ks2stat=0.2500\\RStest:Conc1:h=0,p=0.8201\\KStest2:Conc2:h=0,p=0.6693,ks2stat=0.3333\\RStest:Conc2:h=0,p=0.8201\\KStest2:Conc3:h=0,p=0.3842,ks2stat=0.4167\\RStest:Conc3:h=0,p=0.2129\\KStest2:Conc4:h=0,p=0.6693,ks2stat=0.3333\\RStest:Conc4:h=0,p=0.3355$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Abstinence N=6).

p-value for BL vs initial task of male: 0.38794. kstest2 results: h=1, p=7.4300e-03, ks2stat=0.4091

Post-hoc analysis:

$$0.5\%:5.3937e-01, \quad 2\%:3.3053e-01, \quad 5\%:4.3710e-01, \quad 9\%:2.8029e-01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=0,p=0.4238,ks2stat=0.4091\\RStest:Conc1:h=0,p=0.5908\\KStest2:Conc2:h=0,p=0.4238,ks2stat=0.4091\\RStest:Conc2:h=0,p=0.2161\\KStest2:Conc3:h=0,p=0.4238,ks2stat=0.4091\\RStest:Conc3:h=0,p=0.5249\\KStest2:Conc4:h=0,p=0.1106,ks2stat=0.5606\\RStest:Conc4:h=0,p=0.1215$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 7.7409, p = 0.0062.

Effect of concentration: d.f. = 3, F = 0.0335, p = 9.917408e-01.

Effect of gender: d.f. = 1, F = 12.7578, p = 0.0005.

5 Supplemental Figure 1: Safa fig

5.1 Figure S.11

statistical significance was determined by paired t-test using **SPSS** software package (F = 12, M = 11). p-vale for gender difference: 0.01.

6 Supplemental Figure 2

6.1 Figure S.2i: BL Distance with approach trials (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

Effect of concentration: d.f. = 3, F = 7.9201, p = 1.6745e-04.

Effect of gender: d.f. = 1, F = 10.8854, p = 0.0038.

kstest2 results: h=1, p=7.1912e-04, ks2stat=0.4103 (overall gender difference)

Post-hoc analysis:

 $0.5\%: 1.2870e - 02, \quad 2\%: 2.5797e - 01, \quad 5\%: 2.5247e - 02, \quad 9\%: 1.7835e - 02$

```
KStest2:Conc1:h=1,p=0.0121,ks2stat=0.6364\\RStest:Conc1:h=1,p=0.0104\\KStest2:Conc2:h=0,p=0.2270,ks2stat=0.4167\\RStest:Conc2:h=0,p=0.3734\\KStest2:Conc3:h=1,p=0.0452,ks2stat=0.5500\\RStest:Conc3:h=1,p=0.0192\\KStest2:Conc4:h=1,p=0.0289,ks2stat=0.5682\\RStest:Conc4:h=1,p=0.0074
```

6.2 Figure S.2j: BL Fr. of Stops With approach trials (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

Effect of concentration: d.f. = 3, F = 5.8431, p = 1.4948e-03.

Effect of gender: d.f. = 1, F = 0.5058, p = 0.4856.

kstest2 results: h=0, p=6.2873e-02, ks2stat=0.2710 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 5.8083e - 02$$
 $2\%: 8.8005e - 01$, $5\%: 5.5419e - 01$, $9\%: 1.6653e - 01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.1473,ks2stat=0.4545\\RStest:Conc1:h=0,p=0.0878\\KStest2:Conc2:h=0,p=0.4896,ks2stat=0.3333\\RStest:Conc2:h=0,p=0.5310\\KStest2:Conc3:h=0,p=0.2689,ks2stat=0.4000\\RStest:Conc3:h=0,p=0.1985\\KStest2:Conc4:h=0,p=0.0915,ks2stat=0.4848\\RStest:Conc4:h=0,p=0.0905
```

6.3 Figure S.2k: BL Fr. of high sp. runs With approach trials (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

Effect of concentration: d.f. = 3, F = 33.6668, p = 1.1834e-12.

Effect of gender: d.f. = 1, F = 1.6147, p = 0.2192.

kstest2 results: h=0, p=4.3505e-01, ks2stat=0.1793 (overall gender difference)

```
0.5\%: 1.9769e - 01, \quad 2\%: 5.3803e - 01, \quad 5\%: 4.1293e - 01, \quad 9\%: 1.8367e - 01
```

```
KStest2:Conc1:h=0,p=0.3744,ks2stat=0.3636\\RStest:Conc1:h=0,p=0.1486\\KStest2:Conc2:h=0,p=0.8286,ks2stat=0.2500\\RStest:Conc2:h=0,p=0.9212\\KStest2:Conc3:h=0,p=0.4268,ks2stat=0.3500\\RStest:Conc3:h=0,p=0.1985\\KStest2:Conc4:h=0,p=0.1328,ks2stat=0.4545\\RStest:Conc4:h=0,p=0.1661
```

6.4 Figure S.2l: BL Time OS feeder With approach trials (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

Effect of concentration: d.f. = 3, F = 7.3360, p = 3.0532e-04.

Effect of gender: d.f. = 1, F = 0.0233, p = 0.8803.

kstest2 results: h=0, p=7.5063e-01, ks2stat=0.1393 (overall gender difference)

Post-hoc analysis:

```
0.5\%:6.6119e-01, \quad 2\%:4.6695e-01, \quad 5\%:5.8985e-01, \quad 9\%:6.5657e-01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.9852,ks2stat=0.1818 RStest:Conc1:h=0,p=0.8422 KStest2:Conc2:h=0,p=0.8848,ks2stat=0.2333 RStest:Conc2:h=0,p=0.3834 KStest2:Conc3:h=0,p=0.5564,ks2stat=0.3167 RStest:Conc3:h=0,p=0.4681 KStest2:Conc4:h=0,p=0.9610,ks2stat=0.1970 RStest:Conc4:h=0,p=0.5588
```

6.5 Figure S.2m. BL Distance with reject trials (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

Effect of concentration: d.f. = 3, F = 2.7997, p = 4.7581e-02.

Effect of gender: d.f. = 1, F = 7.3378, p = 0.0135.

kstest2 results: h=1, p=2.2098e-04, ks2stat=0.4351 (overall gender difference)

Post-hoc analysis:

 $0.5\%:0.0048, \quad 2\%:0.0168, \quad 5\%:0.0162, \quad 9\%:0.1742$

 $KStest2:Conc1:h=1,p=0.0289,ks2stat=0.5682\\RStest:Conc1:h=1,p=0.0074\\KStest2:Conc2:h=1,p=0.0361,ks2stat=0.5530\\RStest:Conc2:h=1,p=0.0127\\KStest2:Conc3:h=1,p=0.0403,ks2stat=0.5455\\RStest:Conc3:h=1,p=0.0089\\KStest2:Conc4:h=0,p=0.2270,ks2stat=0.4167\\RStest:Conc4:h=0,p=0.2766$

6.6 Figure S.2n. BL Fr. of Stops With reject trials (FvM)

Effect of concentration: d.f. = 3, F = 1.4054, p = 2.5002e-01. Effect of gender: d.f. = 1, F = 1.5795, p = 0.2233.

kstest2 results: h=1, p=2.3013e-04, ks2stat=0.4341 (overall gender difference)

Post-hoc analysis:

 $0.5\%:0.0987, \quad 2\%:0.2915, \quad 5\%:0.1825, \quad 9\%:0.3455$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

KStest2:Conc1:h=1,p=0.0289,ks2stat=0.5682

RStest: Conc1: h = 1, p = 0.0062

KStest2: Conc2: h = 0, p = 0.1006, ks2stat = 0.4773

RStest: Conc2: h = 0, p = 0.1316

KStest2: Conc3: h = 1, p = 0.0361, ks2stat = 0.5530

RStest: Conc3: h = 1, p = 0.0089

KStest2: Conc4: h = 0, p = 0.3162, ks2stat = 0.3833

RStest: Conc4: h = 0, p = 0.3390

6.7 Figure S.20. BL Fr. of high sp. runs With reject trials (FvM)

Effect of concentration: d.f. = 3, F = 1.7438, p = 1.6766e-01.

Effect of gender: d.f. = 1, F = 12.3666, p = 0.0022.

kstest2 results: h=1, p=4.1576e-07, ks2stat=0.5654 (overall gender difference)

Post-hoc analysis:

0.5%:0.0003, 2%:0.0025, 5%:0.0054, 9%:0.0742

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

KStest2: Conc1: h = 1, p = 0.0003, ks2stat = 0.8258

RStest: Conc1: h = 1, p = 0.0006

KStest2: Conc2: h = 1, p = 0.0059, ks2stat = 0.6667

RStest: Conc2: h = 1, p = 0.0028

KStest2: Conc3: h = 1, p = 0.0098, ks2stat = 0.6364

RStest: Conc3: h = 1, p = 0.0062

KStest2: Conc4: h = 0, p = 0.1902, ks2stat = 0.4333

RStest: Conc4: h = 0, p = 0.0806

6.8 Figure S.2p. BL Time OS feeder With reject trials (FvM)

Effect of concentration: d.f. = 3, F = 1.0197, p = 3.9035e-01.

Effect of gender: d.f. = 1, F = 1.2575, p = 0.2754.

kstest2 results: h=0, p=6.1613e-02, ks2stat=0.2689 (overall gender difference)

Post-hoc analysis:

 $0.5\%:0.4147, \quad 2\%:0.7963, \quad 5\%:0.0463, \quad 9\%:0.7952$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

KStest2:Conc1:h=0,p=0.7136,ks2stat=0.2727

RStest: Conc1: h = 0, p = 0.4060

KStest2:Conc2:h=0,p=0.9094,ks2stat=0.2197

RStest:Conc2:h=0,p=0.7582

KStest2: Conc3: h = 1, p = 0.0289, ks2stat = 0.5682

RStest: Conc3: h = 1, p = 0.0310

KStest2: Conc4: h = 0, p = 0.1582, ks2stat = 0.4500

RStest: Conc4: h = 0, p = 0.3551

7 Supplemental Figure 4: Safa plot

7.1 Figure S.4d

statistical significance was determined by chi-squared test using **SPSS** software package (F = 12, M = 11).

p-value for Sigmoidal and U-shape for initial 1-3 months: 0.016.

p-value for Sigmoidal and U-shape after a year: 0.0009.

8 Supplemental Figure 5

8.1 Figure S.5a: FD Approachavoid (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

Effect of concentration: d.f. = 3, F = 182.0357, p = 4.3911e-30.

Effect of gender: d.f. = 1, F = 2.1437, p = 0.1587.

kstest2 results: h=0, p=9.3097e-01, ks2stat=0.1125 (overall gender difference)

Post-hoc analysis:

0.5%:7.8880e-01, 2%:2.2787e-01, 5%:2.6929e-01, 9%:7.6084e-01

$$KStest2:Conc1:h=0,p=0.9636,ks2stat=0.2000$$
 $RStest:Conc1:h=0,p=0.5631$
 $KStest2:Conc2:h=0,p=0.8286,ks2stat=0.2500$
 $RStest:Conc2:h=0,p=0.2840$
 $KStest2:Conc3:h=0,p=0.6961,ks2stat=0.2833$
 $RStest:Conc3:h=0,p=0.2892$
 $KStest2:Conc4:h=0,p=0.8848,ks2stat=0.2333$
 $RStest:Conc4:h=0,p=0.8991$

BL vs FD

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, FD N = 12).

p-value for BL vs FD of female: 0.0042028.

kstest2 results: h=1, p=2.6487e-02, ks2stat=0.2917

Post-hoc analysis:

$$0.5\%:6.2877e-01$$
, $2\%:4.9942e-01$, $5\%:9.7466e-03$, $9\%:4.6536e-02$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.4333,ks2stat=0.3333\\RStest:Conc1:h=0,p=0.4504\\KStest2:Conc2:h=0,p=0.1862,ks2stat=0.4167\\RStest:Conc2:h=0,p=0.3354\\KStest2:Conc3:h=0,p=0.0656,ks2stat=0.5000\\RStest:Conc3:h=1,p=0.0140\\KStest2:Conc4:h=1,p=0.0002,ks2stat=0.8333\\RStest:Conc4:h=1,p=0.0028$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 11, FD N = 10).

p-value for BL vs FD of male: 0.0027308.

kstest2 results: h=0, p=2.9608e-01, ks2stat=0.2068

Post-hoc analysis:

$$0.5\%:7.4398e-01$$
, $2\%:9.6105e-01$, $5\%:1.0232e-02$, $9\%:4.9382e-02$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.2890,ks2stat=0.4000\\RStest:Conc1:h=0,p=0.3734\\KStest2:Conc2:h=0,p=0.9884,ks2stat=0.1818\\RStest:Conc2:h=0,p=0.9716\\KStest2:Conc3:h=0,p=0.0551,ks2stat=0.5455\\RStest:Conc3:h=1,p=0.0166\\KStest2:Conc4:h=0,p=0.0697,ks2stat=0.5273\\RStest:Conc4:h=1,p=0.0301$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 18.1580, p = 0.0000.

Effect of concentration: d.f. = 3, F = 319.2341, p = 6.545945e-69.

Effect of gender: d.f. = 1, F = 4.7591, p = 0.0305.

8.2 Figure S.5b: FD Distance (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

Effect of concentration: d.f. = 3, F = 12.1087, p = 2.6791e-06.

Effect of gender: d.f. = 1, F = 21.4749, p = 0.0002.

kstest2 results: h=1, p=1.3139e-08, ks2stat=0.6375 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 4.0070e - 04$$
, $2\%: 1.4910e - 05$, $5\%: 9.2678e - 03$, $9\%: 2.5464e - 03$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=1,p=0.0076,ks2stat=0.6667\\RStest:Conc1:h=1,p=0.0033\\KStest2:Conc2:h=1,p=0.0001,ks2stat=0.9167\\RStest:Conc2:h=1,p=0.0003\\KStest2:Conc3:h=0,p=0.0567,ks2stat=0.5333\\RStest:Conc3:h=1,p=0.0229\\KStest2:Conc4:h=1,p=0.0076,ks2stat=0.6667\\RStest:Conc4:h=1,p=0.0051$

BL vs FD

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, FD N=12).

p-value for BL vs FD of female: 0.0011858.

kstest2 results: h=1, p=1.7074e-05, ks2stat=0.4792

Post-hoc analysis:

$$0.5\%: 5.1267e - 04$$
, $2\%: 4.0099e - 05$, $5\%: 1.0567e - 01$, $9\%: 1.7728e - 02$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0046,ks2stat=0.6667\\RStest:Conc1:h=1,p=0.0017\\KStest2:Conc2:h=1,p=0.0009,ks2stat=0.7500\\RStest:Conc2:h=1,p=0.0005\\KStest2:Conc3:h=0,p=0.0656,ks2stat=0.5000\\RStest:Conc3:h=0,p=0.0531\\KStest2:Conc4:h=0,p=0.0656,ks2stat=0.5000\\RStest:Conc4:h=1,p=0.0226$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 11, FD N

```
= 10).
```

p-value for BL vs FD of male: 0.016738.

kstest2 results: h=1, p=2.1901e-04, ks2stat=0.4523

Post-hoc analysis:

$$0.5\%: 4.2001e - 03$$
, $2\%: 8.3414e - 02$, $5\%: 2.0879e - 02$, $9\%: 8.0063e - 02$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0198,ks2stat=0.6182\\RStest:Conc1:h=1,p=0.0067\\KStest2:Conc2:h=0,p=0.2006,ks2stat=0.4364\\RStest:Conc2:h=0,p=0.1300\\KStest2:Conc3:h=0,p=0.0978,ks2stat=0.5000\\RStest:Conc3:h=1,p=0.0317\\KStest2:Conc4:h=0,p=0.2205,ks2stat=0.4273\\RStest:Conc4:h=0,p=0.0845$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 62.6439, p = 0.0000.

Effect of concentration: d.f. = 3, F = 3.6016, p = 1.475601e-02.

Effect of gender: d.f. = 1, F = 106.6057, p = 0.0000.

8.3 Figure S.5c: FD Fr. of stops (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

Effect of concentration: d.f. = 3, F = 3.9968, p = 1.1616e-02.

Effect of gender: d.f. = 1, F = 8.8810, p = 0.0074.

kstest2 results: h=1, p=1.8518e-05, ks2stat=0.5000 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 1.8703e - 02, \quad 2\%: 4.5455e - 04, \quad 5\%: 2.3150e - 01, \quad 9\%: 1.1937e - 02$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0076,ks2stat=0.6667\\RStest:Conc1:h=1,p=0.0111\\KStest2:Conc2:h=1,p=0.0003,ks2stat=0.8333\\RStest:Conc2:h=1,p=0.0014\\KStest2:Conc3:h=0,p=0.2270,ks2stat=0.4167\\RStest:Conc3:h=0,p=0.4098\\KStest2:Conc4:h=1,p=0.0452,ks2stat=0.5500\\RStest:Conc4:h=1,p=0.0092$$

BL vs FD

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, FD N = 12).

p-value for BL vs FD of female: 0.010394.

kstest2 results: h=1, p=4.6080e-05, ks2stat=0.4583

Post-hoc analysis:

$$0.5\%: 3.0300e - 03$$
, $2\%: 7.5065e - 03$, $5\%: 1.1942e - 01$, $9\%: 1.3927e - 02$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0191,ks2stat=0.5833\\RStest:Conc1:h=1,p=0.0043\\KStest2:Conc2:h=1,p=0.0191,ks2stat=0.5833\\RStest:Conc2:h=1,p=0.0024\\KStest2:Conc3:h=0,p=0.1862,ks2stat=0.4167\\RStest:Conc3:h=0,p=0.2366\\KStest2:Conc4:h=0,p=0.0656,ks2stat=0.5000\\RStest:Conc4:h=1,p=0.0194$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 11, FD N = 10).

p-value for BL vs FD of male: 0.1438.

kstest2 results: h=1, p=4.8245e-06, ks2stat=0.5386

Post-hoc analysis:

$$0.5\%: 9.9947e - 02$$
, $2\%: 1.9939e - 01$, $5\%: 1.1572e - 01$, $9\%: 1.9212e - 01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0009,ks2stat=0.8000\\RStest:Conc1:h=1,p=0.0022\\KStest2:Conc2:h=0,p=0.0697,ks2stat=0.5273\\RStest:Conc2:h=0,p=0.0725\\KStest2:Conc3:h=1,p=0.0173,ks2stat=0.6273\\RStest:Conc3:h=1,p=0.0028\\KStest2:Conc4:h=1,p=0.0198,ks2stat=0.6182\\RStest:Conc4:h=1,p=0.0448$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 19.5858, p = 0.0000.

Effect of concentration: d.f. = 3, F = 0.0367, p = 9.905584e-01.

Effect of gender: d.f. = 1, F = 14.1124, p = 0.0002.

8.4 Figure S.5d: FD Fr. of high sp. runs (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

Effect of concentration: d.f. = 3, F = 33.4826, p = 7.6444e-13.

Effect of gender: d.f. = 1, F = 5.9221, p = 0.0245.

kstest2 results: h=1, p=6.8336e-03, ks2stat=0.3500 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 1.1326e - 02, \quad 2\%: 1.2677e - 04, 5\%: 9.3261e - 01, \quad 9\%: 1.6538e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0358,ks2stat=0.5667\\RStest:Conc1:h=1,p=0.0111\\KStest2:Conc2:h=1,p=0.0001,ks2stat=0.9167\\RStest:Conc2:h=1,p=0.0003\\KStest2:Conc3:h=0,p=0.9989,ks2stat=0.1500\\RStest:Conc3:h=0,p=0.9212\\KStest2:Conc4:h=0,p=0.5564,ks2stat=0.3167\\RStest:Conc4:h=0,p=0.2485$$

BL vs FD

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, FD N = 12).

p-value for BL vs FD of female: 0.13035.

kstest2 results: h=0, p=8.3415e-02, ks2stat=0.2500

Post-hoc analysis:

$$0.5\%: 1.5506e - 02$$
, $2\%: 1.7542e - 02$, $5\%: 5.6165e - 01$, $9\%: 1.9334e - 01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0191,ks2stat=0.5833\\RStest:Conc1:h=1,p=0.0194\\KStest2:Conc2:h=1,p=0.0046,ks2stat=0.6667\\RStest:Conc2:h=1,p=0.0102\\KStest2:Conc3:h=0,p=0.7864,ks2stat=0.2500\\RStest:Conc3:h=0,p=0.5834\\KStest2:Conc4:h=0,p=0.4333,ks2stat=0.3333\\RStest:Conc4:h=0,p=0.2145$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 11, FD N = 10).

p-value for BL vs FD of male: 0.025096.

kstest2 results: h=1, p=3.0081e-03, ks2stat=0.3818

$$0.5\%: 4.9411e - 04$$
, $2\%: 4.0639e - 01$, $5\%: 1.5711e - 02$, $9\%: 2.2641e - 01$

 $KStest2:Conc1:h=1,p=0.0046,ks2stat=0.7091\\RStest:Conc1:h=1,p=0.0028\\KStest2:Conc2:h=0,p=0.5376,ks2stat=0.3273\\RStest:Conc2:h=0,p=0.3418\\KStest2:Conc3:h=0,p=0.0551,ks2stat=0.5455\\RStest:Conc3:h=1,p=0.0448\\KStest2:Conc4:h=0,p=0.4339,ks2stat=0.3545\\RStest:Conc4:h=0,p=0.2178$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 25.5890, p = 0.0000.

Effect of concentration: d.f. = 3, F = 18.7077, p = 1.645782e-10.

Effect of gender: d.f. = 1, F = 52.8710, p = 0.0000.

8.5 Figure S.5e: FD Time OS feeder (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

Effect of concentration: d.f. = 3, F = 45.0059, p = 2.3011e-15.

Effect of gender: d.f. = 1, F = 0.7749, p = 0.3892.

kstest2 results: h=0, p=2.6677e-01, ks2stat=0.2083 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 2.8309e - 01, \quad 2\%: 1.3761e - 02, \quad 5\%: 8.4288e - 01, \quad 9\%: 5.6653e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=0,p=0.4896,ks2stat=0.3333\\RStest:Conc1:h=0,p=0.3891\\KStest2:Conc2:h=0,p=0.0567,ks2stat=0.5333\\RStest:Conc2:h=1,p=0.0149\\KStest2:Conc3:h=0,p=0.9636,ks2stat=0.2000\\RStest:Conc3:h=0,p=0.8940\\KStest2:Conc4:h=0,p=0.3689,ks2stat=0.3667\\RStest:Conc4:h=0,p=0.5716$

BL vs FD

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, FD N = 12).

p-value for BL vs FD of female: 0.23688.

kstest2 results: h=1, p=4.8054e-02, ks2stat=0.2708

Post-hoc analysis:

 $0.5\%: 2.8018e - 02, \quad 2\%: 8.2300e - 03, \quad 5\%: 3.6018e - 01, \quad 9\%: 7.4730e - 01$

KStest2: Conc1: h = 0, p = 0.1862, ks2stat = 0.4167 RStest: Conc1: h = 1, p = 0.0399 KStest2: Conc2: h = 0, p = 0.0656, ks2stat = 0.5000 RStest: Conc2: h = 1, p = 0.0163 KStest2: Conc3: h = 0, p = 0.1862, ks2stat = 0.4167 RStest: Conc3: h = 0, p = 0.1651 KStest2: Conc4: h = 0, p = 0.7864, ks2stat = 0.2500 RStest: Conc4: h = 0, p = 0.4510

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 11, FD N = 10).

p-value for BL vs FD of male: 0.19499.

kstest2 results: h=0, p=7.2583e-02, ks2stat=0.2727

Post-hoc analysis:

0.5%:5.5760e-02, 2%:4.2774e-01, 5%:6.6086e-01, 9%:2.2116e-01

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=1,p=0.0227,ks2stat=0.6091\\RStest:Conc1:h=1,p=0.0342\\KStest2:Conc2:h=0,p=0.4339,ks2stat=0.3545\\RStest:Conc2:h=0,p=0.2872\\KStest2:Conc3:h=0,p=0.8603,ks2stat=0.2455\\RStest:Conc3:h=0,p=0.6961\\KStest2:Conc4:h=0,p=0.0876,ks2stat=0.5091\\RStest:Conc4:h=0,p=0.1675$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 9.3414, p = 0.0026. Effect of concentration: d.f. = 3, F = 20.1509, p = 3.395296e-11. Effect of gender: d.f. = 1, F = 6.1638, p = 0.0140.

8.6 Figure S.5f. BL vs FD Distance traveled (Approach trials)

Effect of condition: d.f. = 1, F = 10.2599, p = 0.0033.

8.7 Figure S.5g. BL vs FD Number of stopping points (Approach trials)

Effect of condition: d.f. = 1, F = 5.9745, p = 0.0208.

8.8 Figure S.5h. BL vs FD Number of high speed runs (Approach trials)

Effect of condition: d.f. = 1, F = 0.6510, p = 0.4263.

8.9 Figure S.5i. BL vs FD Proportion of trials outside all reward zone (Approach trials)

Effect of condition: d.f. = 1, F = 3.2717, p = 0.0809.

8.10 Figure S.5j. BL vs FD Distance traveled (Reject trials)

Effect of condition: d.f. = 1, F = 17.8994, p = 0.0002.

8.11 Figure S.5k. BL vs FD Number of stopping points (Reject trials)

Effect of condition: d.f. = 1, F = 2.2523, p = 0.1424.

8.12 Figure S.5l. BL vs FD Number of high speed runs (Reject trials)

Effect of condition: d.f. = 1, F = 9.8747, p = 0.0034.

8.13 Figure S.5m. BL vs FD Proportion of trials outside all reward zone (Reject trials)

Effect of condition: d.f. = 1, F = 7.0077, p = 0.0121.

9 Supplemental Figure 6

9.1 Figure S.6a: BA Distance (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

Effect of concentration: d.f. = 3, F = 2.4366, p = 7.3371e-02.

Effect of gender: d.f. = 1, F = 17.9034, p = 0.0004.

kstest2 results: h=1, p=2.4759e-06, ks2stat=0.5417 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 1.2714e - 02$$
, $2\%: 5.9126e - 02$, $5\%: 8.5187e - 04$, $9\%: 1.1225e - 03$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

KStest2:Conc1:h=1,p=0.0220,ks2stat=0.6000

RStest: Conc1: h = 1, p = 0.0092

KStest2: Conc2: h = 0, p = 0.0567, ks2stat = 0.5333

RStest: Conc2: h = 0, p = 0.0806

KStest2: Conc3: h = 1, p = 0.0076, ks2stat = 0.6667

RStest: Conc3: h = 1, p = 0.0022

KStest2: Conc4: h = 1, p = 0.0076, ks2stat = 0.6667

RStest: Conc4: h = 1, p = 0.0041

BL vs Initial Task

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Initial Task N=12).

p-value for BL vs initial task of female: 0.01429.

kstest2 results: h=1, p=4.6080e-05, ks2stat=0.4583

Post-hoc analysis:

0.5%: 6.7266e - 02, 2%: 1.6070e - 02, 5%: 3.1394e - 01, 9%: 9.0362e - 03

$$KStest2:Conc1:h=0,p=0.0656,ks2stat=0.5000\\RStest:Conc1:h=0,p=0.0999\\KStest2:Conc2:h=1,p=0.0191,ks2stat=0.5833\\RStest:Conc2:h=1,p=0.0304\\KStest2:Conc3:h=0,p=0.0656,ks2stat=0.5000\\RStest:Conc3:h=0,p=0.1749\\KStest2:Conc4:h=0,p=0.0656,ks2stat=0.5000\\RStest:Conc4:h=1,p=0.0086$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Initial Task N=10).

p-value for BL vs initial task of male: 0.013586. kstest2 results: h=1, p=1.3560e-03, ks2stat=0.4045

Post-hoc analysis:

$$0.5\%: 1.3573e - 02, \quad 2\%: 3.4304e - 02, \quad 5\%: 4.5088e - 02, \quad 9\%: 5.5697e - 02$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.0782,ks2stat=0.5182\\RStest:Conc1:h=1,p=0.0221\\KStest2:Conc2:h=1,p=0.0259,ks2stat=0.6000\\RStest:Conc2:h=1,p=0.0265\\KStest2:Conc3:h=0,p=0.2006,ks2stat=0.4364\\RStest:Conc3:h=0,p=0.0528\\KStest2:Conc4:h=0,p=0.2418,ks2stat=0.4182\\RStest:Conc4:h=0,p=0.1300$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 35.7328, p = 0.0000. Effect of concentration: d.f. = 3, F = 1.6025, p = 1.907367e-01. Effect of gender: d.f. = 1, F = 75.0599, p = 0.0000.

9.2 Figure S.6b: PA Distance (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=10, Male N=10).

Effect of concentration: d.f. = 3, F = 0.7077, p = 5.5161e-01.

Effect of gender: d.f. = 1, F = 4.6430, p = 0.0450.

kstest2 results: h=1, p=1.0793e-02, ks2stat=0.3500 (overall gender difference)

```
0.5\%: 9.3255e - 02, \quad 2\%: 8.9902e - 02, \quad 5\%: 5.4953e - 01, \quad 9\%: 6.7305e - 03
```

 $KStest2:Conc1:h=1,p=0.0310,ks2stat=0.6000\\RStest:Conc1:h=0,p=0.0890\\KStest2:Conc2:h=0,p=0.3129,ks2stat=0.4000\\RStest:Conc2:h=0,p=0.1212\\KStest2:Conc3:h=0,p=0.3129,ks2stat=0.4000\\RStest:Conc3:h=0,p=0.6232\\KStest2:Conc4:h=1,p=0.0069,ks2stat=0.7000\\RStest:Conc4:h=1,p=0.0113$

BL vs Late Task

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, Late Task N = 10).

p-value for BL vs late task of female: 0.72859. kstest2 results: h=0, p=3.6205e-01, ks2stat=0.1917

Post-hoc analysis:

 $0.5\%: 8.6636e - 01, \quad 2\%: 5.2765e - 01, \quad 5\%: 4.3035e - 01, \quad 9\%: 2.4643e - 01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=0,p=0.7647,ks2stat=0.2667\\RStest:Conc1:h=0,p=0.6682\\KStest2:Conc2:h=0,p=0.6259,ks2stat=0.3000\\RStest:Conc2:h=0,p=0.5310\\KStest2:Conc3:h=0,p=0.4896,ks2stat=0.3333\\RStest:Conc3:h=0,p=0.5752\\KStest2:Conc4:h=0,p=0.3689,ks2stat=0.3667\\RStest:Conc4:h=0,p=0.1985$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 11, Late Task N = 10).

p-value for BL vs late task of male: 0.13682.

kstest2 results: h=1, p=1.1240e-02, ks2stat=0.3409

Post-hoc analysis:

0.5%: 9.0183e - 02, 2%: 5.1266e - 01, 5%: 9.7800e - 02, 9%: 2.6146e - 01

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=0,p=0.0876,ks2stat=0.5091\\RStest:Conc1:h=0,p=0.0845\\KStest2:Conc2:h=0,p=0.2890,ks2stat=0.4000\\RStest:Conc2:h=0,p=0.5035\\KStest2:Conc3:h=0,p=0.0978,ks2stat=0.5000\\RStest:Conc3:h=0,p=0.2178\\KStest2:Conc4:h=0,p=0.5742,ks2stat=0.3182\\RStest:Conc4:h=0,p=0.4181$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 4.8163, p = 0.0296.

Effect of concentration: d.f. = 3, F = 0.5512, p = 6.480692e-01.

Effect of gender: d.f. = 1, F = 46.8601, p = 0.0000.

9.3 Figure S.6c: Fraction of sigmoid

Statistical significance was determined by one-way analysis of variance. (Female BL = 10, Male BL = 10, Female Oxy = 5, Male Oxy = 5, Female Incub = 6, Male Incub = 6, Female PA = 10, Male PA = 10)

p-value for significance of difference between the groups: 1.0469e-09.

Post-hoc analysis by Tukey's HSD method:

Female B Land Male BL: 0.9981 Female B Land Female PA: 0.9993 Male B Land Male PA: 0.3631

9.4 Figure S.6d: During Oxy Approach time (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5, Male N=5).

Effect of concentration: d.f. = 3, F = 2.4534, p = 8.7784e-02.

Effect of gender: d.f. = 1, F = 6.7698, p = 0.0315.

kstest2 results: h=1, p=2.3213e-02, ks2stat=0.4500 (overall gender difference)

Post-hoc analysis:

 $0.5\%: 3.1246e - 03, \quad 2\%: 5.8901e - 01, \quad 5\%: 3.6169e - 02, \quad 9\%: 9.2633e - 01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

KStest2: Conc1: h = 1, p = 0.0038, ks2stat = 1.0000

RStest: Conc1: h = 1, p = 0.0079

KStest2: Conc2: h = 0, p = 0.9996, ks2stat = 0.2000

RStest: Conc2: h = 0, p = 0.6905

KStest2: Conc3: h = 1, p = 0.0361, ks2stat = 0.8000

RStest:Conc3:h=0,p=0.0556

KStest2: Conc4: h = 0, p = 0.6974, ks2stat = 0.4000

RStest: Conc4: h = 0, p = 1.0000

BL vs Self admin. Oxy

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, Self admin. Oxy N = 5).

p-value for BL vs Self admin. Oxy of female: 0.95625.

kstest2 results: h=0, p=8.3454e-01, ks2stat=0.1596

Post-hoc analysis:

0.5%: 2.0591e - 01, 2%: 9.2070e - 01, 5%: 6.9608e - 01, 9%: 1.7620e - 01

$$KStest2:Conc1:h=0,p=0.1707,ks2stat=0.5455\\RStest:Conc1:h=0,p=0.2674\\KStest2:Conc2:h=0,p=0.9887,ks2stat=0.2167\\RStest:Conc2:h=0,p=0.7990\\KStest2:Conc3:h=0,p=0.4046,ks2stat=0.4333\\RStest:Conc3:h=0,p=0.5074,ks2stat=0.4000\\KStest2:Conc4:h=0,p=0.5074,ks2stat=0.4000\\RStest:Conc4:h=0,p=0.3284$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Self admin. Oxy N=5).

p-value for BL vs Self admin. Oxy of male: 0.11333. kstest2 results: h=0, p=6.9831e-02, ks2stat=0.3381

Post-hoc analysis:

$$0.5\%: 2.1225e - 01, \quad 2\%: 2.2855e - 01, \quad 5\%: 7.6955e - 02, \quad 9\%: 5.4354e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.6450,ks2stat=0.3636\\RStest:Conc1:h=0,p=0.3773\\KStest2:Conc2:h=0,p=0.5402,ks2stat=0.4000\\RStest:Conc2:h=0,p=0.4396\\KStest2:Conc3:h=1,p=0.0388,ks2stat=0.7000\\RStest:Conc3:h=0,p=0.0553\\KStest2:Conc4:h=0,p=0.4648,ks2stat=0.4182\\RStest:Conc4:h=0,p=0.4409$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 1.6963, p = 0.1954. Effect of concentration: d.f. = 3, F = 6.5884, p = 3.762867e-04. Effect of gender: d.f. = 1, F = 4.8286, p = 0.0300.

9.5 Figure S.6e: During Oxy Time OS Feeder (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5, Male N=5).

Effect of concentration: d.f. = 3, F = 0.5016, p = 6.8473e-01.

Effect of gender: d.f. = 1, F = 2.4942, p = 0.1529.

kstest2 results: h=1, p=2.3213e-02, ks2stat=0.4500 (overall gender difference)

Post-hoc analysis:

```
0.5\%: 3.2600e - 01, \quad 2\%: 1.2515e - 01, \quad 5\%: 3.5598e - 01, \quad 9\%: 1.0995e - 01
```

$$KStest2:Conc1:h=0,p=0.2090,ks2stat=0.6000$$
 $RStest:Conc1:h=0,p=0.3095$
 $KStest2:Conc2:h=0,p=0.2090,ks2stat=0.6000$
 $RStest:Conc2:h=0,p=0.2222$
 $KStest2:Conc3:h=0,p=0.2090,ks2stat=0.6000$
 $RStest:Conc3:h=0,p=0.3968$
 $KStest2:Conc4:h=0,p=0.2090,ks2stat=0.6000$
 $RStest:Conc4:h=0,p=0.2020$

BL vs Self admin. Oxy

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Self admin. Oxy N=5).

p-value for BL vs Self admin. Oxy of female: 0.096217.

kstest2 results: h=1, p=4.6360e-03, ks2stat=0.4458

Post-hoc analysis:

$$0.5\%: 2.1543e - 01, \quad 2\%: 3.5559e - 02, \quad 5\%: 2.7408e - 01, \quad 9\%: 2.8956e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.3153,ks2stat=0.4667\\RStest:Conc1:h=0,p=0.1542\\KStest2:Conc2:h=1,p=0.0259,ks2stat=0.7167\\RStest:Conc2:h=1,p=0.0343\\KStest2:Conc3:h=0,p=0.7348,ks2stat=0.3333\\RStest:Conc3:h=0,p=0.6299\\KStest2:Conc4:h=0,p=0.0671,ks2stat=0.6333\\RStest:Conc4:h=0,p=0.1503$$

Male:

Post-hoc analysis:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 11, Self admin. Oxy N = 5).

p-value for BL vs Self admin. Oxy of male: 0.2521. kstest2 results: h=0, p=1.3724e-01, ks2stat=0.3000

 $0.5\%: 3.6395e - 01, \quad 2\%: 5.1022e - 01, \quad 5\%: 1.7972e - 01, \quad 9\%: 3.6020e - 02$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.7677,ks2stat=0.3273\\RStest:Conc1:h=0,p=0.7628\\KStest2:Conc2:h=0,p=0.7072,ks2stat=0.3455\\RStest:Conc2:h=0,p=0.4592\\KStest2:Conc3:h=0,p=0.4648,ks2stat=0.4182\\RStest:Conc3:h=0,p=0.2088\\KStest2:Conc4:h=1,p=0.0101,ks2stat=0.8000\\RStest:Conc4:h=0,p=0.0641$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 0.2763, p = 0.6001.

Effect of concentration: d.f. = 3, F = 1.4758, p = 2.246270e-01.

Effect of gender: d.f. = 1, F = 1.7476, p = 0.1887.

9.6 Figure S.6f: During Oxy Fr. of high sp. runs

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5, Male N=5).

Effect of concentration: d.f. = 3, F = 0.5993, p = 6.2169e-01.

Effect of gender: d.f. = 1, F = 3.7946, p = 0.0873.

kstest2 results: h=1, p=8.1617e-03, ks2stat=0.5000 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 1.9249e - 01$$
, $2\%: 1.3288e - 01$, $5\%: 5.9820e - 02$, $9\%: 5.9578e - 02$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=0,p=0.6974,ks2stat=0.4000\\RStest:Conc1:h=0,p=0.2222\\KStest2:Conc2:h=0,p=0.6974,ks2stat=0.4000\\RStest:Conc2:h=0,p=0.2222\\KStest2:Conc3:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc3:h=0,p=0.0952\\KStest2:Conc4:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc4:h=0,p=0.0952$

BL vs Self admin. Oxy

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Self admin. Oxy N=5).

p-value for BL vs Self admin. Oxy of female: 0.026023.

kstest2 results: h=1, p=1.3666e-02, ks2stat=0.4042

Post-hoc analysis:

$$0.5\%: 2.8828e - 02, \quad 2\%: 2.3955e - 02, \quad 5\%: 8.6383e - 02, \quad 9\%: 6.4387e - 02$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=0,p=0.2086,ks2stat=0.5167\\RStest:Conc1:h=0,p=0.1296\\KStest2:Conc2:h=0,p=0.2406,ks2stat=0.5000\\RStest:Conc2:h=0,p=0.0637\\KStest2:Conc3:h=0,p=0.2086,ks2stat=0.5167\\RStest:Conc3:h=0,p=0.2786\\KStest2:Conc4:h=0,p=0.5074,ks2stat=0.4000\\RStest:Conc4:h=0,p=0.3284$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 11, Self

admin. Oxy N = 5).

p-value for BL vs Self admin. Oxy of male: 0.0071297.

kstest2 results: h=1, p=1.6397e-05, ks2stat=0.6273

Post-hoc analysis:

$$0.5\%: 1.6520e - 02, 2\%: 1.9696e - 02, 5\%: 2.7185e - 03, 9\%: 1.8464e - 02$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0313,ks2stat=0.7091\\RStest:Conc1:h=0,p=0.0687\\KStest2:Conc2:h=0,p=0.1019,ks2stat=0.6000\\RStest:Conc2:h=1,p=0.0380\\KStest2:Conc3:h=1,p=0.0252,ks2stat=0.7273\\RStest:Conc3:h=1,p=0.0055\\KStest2:Conc4:h=0,p=0.0848,ks2stat=0.6182$$

RStest: Conc4: h = 1, p = 0.0380

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 0.0009, p = 0.9763.

Effect of concentration: d.f. = 3, F = 1.8354, p = 1.444206e-01.

Effect of gender: d.f. = 1, F = 3.4630, p = 0.0652.

9.7 Figure S.6g: During Oxy Distance (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5, Male N=5).

Effect of concentration: d.f. = 3, F = 0.8971, p = 4.5703e-01.

Effect of gender: d.f. = 1, F = 4.6420, p = 0.0633.

kstest2 results: h=1, p=7.2529e-04, ks2stat=0.6000 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 1.7344e - 01, \quad 2\%: 9.6526e - 02, \quad 5\%: 5.1225e - 02, \quad 9\%: 4.6853e - 02$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc1:h=0,p=0.2222\\KStest2:Conc2:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc2:h=0,p=0.0952\\KStest2:Conc3:h=1,p=0.0361,ks2stat=0.8000\\RStest:Conc3:h=0,p=0.0556\\KStest2:Conc4:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc4:h=0,p=0.0952$$

BL vs Self admin. Oxy

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, Self admin. Oxy N = 5).

p-value for BL vs Self admin. Oxy of female: 0.044575.

kstest2 results: h=1, p=7.5094e-04, ks2stat=0.5083

Post-hoc analysis:

$$0.5\%: 9.0352e - 02, \quad 2\%: 3.8910e - 02, \quad 5\%: 8.9572e - 02, \quad 9\%: 3.1966e - 02$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.3153,ks2stat=0.4667$$

$$RStest:Conc1:h=0,p=0.1946$$

$$KStest2:Conc2:h=0,p=0.0950,ks2stat=0.6000$$

$$RStest:Conc2:h=0,p=0.1037$$

$$KStest2:Conc3:h=0,p=0.2086,ks2stat=0.5167$$

$$RStest:Conc3:h=0,p=0.0818$$

$$KStest2:Conc4:h=0,p=0.0671,ks2stat=0.6333$$

$$RStest:Conc4:h=1,p=0.0365$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Self admin. Oxy N=5).

p-value for BL vs Self admin. Oxy of male: 0.0032032.

kstest2 results: h=1, p=6.9107e-06, ks2stat=0.6500

Post-hoc analysis:

$$0.5\%: 5.9931e - 03$$
, $2\%: 2.1350e - 02$, $5\%: 1.3194e - 03$, $9\%: 9.8642e - 03$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0313,ks2stat=0.7091\\RStest:Conc1:h=1,p=0.0275\\KStest2:Conc2:h=0,p=0.0703,ks2stat=0.6364\\RStest:Conc2:h=0,p=0.0517\\KStest2:Conc3:h=1,p=0.0252,ks2stat=0.7273\\RStest:Conc3:h=1,p=0.0087\\KStest2:Conc4:h=0,p=0.0848,ks2stat=0.6182\\RStest:Conc4:h=1,p=0.0275$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 0.1576, p = 0.6921.

Effect of concentration: d.f. = 3, F = 0.3760, p = 7.704671e-01.

Effect of gender: d.f. = 1, F = 0.0742, p = 0.7858.

9.8 Figure S.6h: After Oxy Approach time (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=6, Male N=6).

Effect of concentration: d.f. = 3, F = 8.5277, p = 3.0232e-04.

Effect of gender: d.f. = 1, F = 0.5135, p = 0.4900.

kstest2 results: h=0, p=8.6076e-01, ks2stat=0.1667 (overall gender difference)

Post-hoc analysis:

$$0.5\%:6.9253e-01$$
, $2\%:6.3994e-01$, $5\%:6.0961e-01$, $9\%:7.4470e-01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

KStest2:Conc1:h=0,p=0.8096,ks2stat=0.3333 RStest:Conc1:h=0,p=0.5887 KStest2:Conc2:h=0,p=0.8096,ks2stat=0.3333 RStest:Conc2:h=0,p=0.6991 KStest2:Conc3:h=0,p=0.3180,ks2stat=0.5000 RStest:Conc3:h=0,p=0.4848 KStest2:Conc4:h=0,p=0.8096,ks2stat=0.3333 RStest:Conc4:h=0,p=0.8182

BL vs Abstinence

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Abstinence N=6).

p-value for BL vs initial task of female: 0.8104.

kstest2 results: h=0, p=5.1065e-01, ks2stat=0.1986

Post-hoc analysis:

$$0.5\%: 9.1448e - 01, \quad 2\%: 8.9431e - 01, \quad 5\%: 7.9708e - 01, \quad 9\%: 6.4577e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=0,p=0.2971,ks2stat=0.4545\\RStest:Conc1:h=0,p=0.7325\\KStest2:Conc2:h=0,p=0.9290,ks2stat=0.2500\\RStest:Conc2:h=0,p=0.7503\\KStest2:Conc3:h=0,p=0.9290,ks2stat=0.2500\\RStest:Conc3:h=0,p=0.8916\\KStest2:Conc4:h=0,p=0.9290,ks2stat=0.2500\\RStest:Conc4:h=0,p=0.6820$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 11, Abstinence N = 6).

p-value for BL vs initial task of male: 0.8535.

kstest2 results: h=0, p=7.5068e-01, ks2stat=0.1667

Post-hoc analysis:

0.5%:8.1127e-01, 2%:9.0195e-01, 5%:9.8759e-01, 9%:7.9737e-01

KStest2:Conc1:h=0,p=0.7395,ks2stat=0.3182 RStest:Conc1:h=0,p=0.4623 KStest2:Conc2:h=0,p=0.8163,ks2stat=0.3000 RStest:Conc2:h=0,p=0.7925 KStest2:Conc3:h=0,p=0.4725,ks2stat=0.4000 RStest:Conc3:h=0,p=0.7925 KStest2:Conc4:h=0,p=0.2971,ks2stat=0.4545 RStest:Conc4:h=0,p=0.6605

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 0.2225, p = 0.6379.

Effect of concentration: d.f. = 3, F = 11.7345, p = 8.060344e-07.

Effect of gender: d.f. = 1, F = 1.4499, p = 0.2308.

9.9 Figure S.6i: After Oxy Time OS Feeder (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=6, Male N=6).

Effect of concentration: d.f. = 3, F = 7.6904, p = 5.9005e-04.

Effect of gender: d.f. = 1, F = 2.5630, p = 0.1405.

kstest2 results: h=0, p=2.1598e-01, ks2stat=0.2917 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 3.2825e - 01, \quad 2\%: 4.1626e - 01, \quad 5\%: 5.1375e - 02, \quad 9\%: 3.6430e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc1:h=0,p=0.3939\\KStest2:Conc2:h=0,p=0.8096,ks2stat=0.3333\\RStest:Conc2:h=0,p=0.5887\\KStest2:Conc3:h=0,p=0.0766,ks2stat=0.6667\\RStest:Conc3:h=0,p=0.0649\\KStest2:Conc4:h=0,p=0.8096,ks2stat=0.3333\\RStest:Conc4:h=0,p=0.4848$

BL vs Abstinence

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Abstinence N=6).

p-value for BL vs initial task of female: 0.42819. kstest2 results: h=0, p=6.9487e-02, ks2stat=0.3125

Post-hoc analysis:

 $0.5\%: 3.6147e - 01, \quad 2\%: 8.1315e - 01, \quad 5\%: 5.1536e - 01, \quad 9\%: 4.0850e - 01$

$$KStest2:Conc1:h=0,p=0.6693,ks2stat=0.3333\\RStest:Conc1:h=0,p=0.3731\\KStest2:Conc2:h=0,p=0.6693,ks2stat=0.3333\\RStest:Conc2:h=0,p=0.9462\\KStest2:Conc3:h=0,p=0.1877,ks2stat=0.5000\\RStest:Conc3:h=0,p=0.2579\\KStest2:Conc4:h=0,p=0.3842,ks2stat=0.4167\\RStest:Conc4:h=0,p=0.3704$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Abstinence N=6).

p-value for BL vs initial task of male: 0.50339. kstest2 results: h=0, p=4.1694e-01, ks2stat=0.2159

Post-hoc analysis:

$$0.5\%: 3.3679e - 01, \quad 2\%: 8.9578e - 01, \quad 5\%: 4.9842e - 01, \quad 9\%: 3.3823e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.4722,ks2stat=0.3939\\RStest:Conc1:h=0,p=0.2455\\KStest2:Conc2:h=0,p=0.9857,ks2stat=0.2121\\RStest:Conc2:h=0,p=0.8641\\KStest2:Conc3:h=0,p=0.1106,ks2stat=0.5606\\RStest:Conc3:h=0,p=0.1708\\KStest2:Conc4:h=0,p=0.4722,ks2stat=0.3939\\RStest:Conc4:h=0,p=0.3108$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 3.0791, p = 0.0817. Effect of concentration: d.f. = 3, F = 8.0279, p = 6.104453e-05. Effect of gender: d.f. = 1, F = 7.7287, p = 0.0063.

9.10 Figure S.6j: After Oxy Fr. of high sp. runs

Statistical significance was determined by Repeated measures analysis of variance. (Female N=6, Male N=6).

Effect of concentration: d.f. = 3, F = 6.9387, p = 1.1029e-03. Effect of gender: d.f. = 1, F = 1.0006, p = 0.3408.

kstest2 results: h=0, p=5.0588e-02, ks2stat=0.3750 (overall gender difference)

Post-hoc analysis:

```
0.5\%:5.1260e-01, 2\%:3.1392e-01, 5\%:2.5092e-01, 9\%:3.6439e-01
```

 $KStest2:Conc1:h=0,p=1.0000,ks2stat=0.1667\\RStest:Conc1:h=0,p=0.8182\\KStest2:Conc2:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc2:h=0,p=0.2403\\KStest2:Conc3:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc3:h=0,p=0.1797\\KStest2:Conc4:h=1,p=0.0122,ks2stat=0.8333\\RStest:Conc4:h=1,p=0.0411$

BL vs Abstinence

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Abstinence N=6).

p-value for BL vs initial task of female: 0.81023. kstest2 results: h=0, p=1.0713e-01, ks2stat=0.2917

Post-hoc analysis:

$$0.5\%: 7.6146e - 01, \quad 2\%: 3.6133e - 01, \quad 5\%: 5.3077e - 01, \quad 9\%: 4.9879e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.9994,ks2stat=0.1667\\RStest:Conc1:h=0,p=0.8916\\KStest2:Conc2:h=0,p=0.6693,ks2stat=0.3333\\RStest:Conc2:h=0,p=0.4371\\KStest2:Conc3:h=0,p=0.3842,ks2stat=0.4167\\RStest:Conc3:h=0,p=0.5532\\KStest2:Conc4:h=0,p=0.0799,ks2stat=0.5833\\RStest:Conc4:h=0,p=0.1025$$

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Abstinence N=6).

p-value for BL vs initial task of male: 0.36093. kstest2 results: h=1, p=6.6954e-03, ks2stat=0.4129

Post-hoc analysis:

$$0.5\%:8.8333e-02,\quad 2\%:6.2386e-01,\quad 5\%:1.2699e-01,\quad 9\%:5.0279e-01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0125,ks2stat=0.7424\\RStest:Conc1:h=1,p=0.0477\\KStest2:Conc2:h=0,p=0.9495,ks2stat=0.2424\\RStest:Conc2:h=0,p=0.8075\\KStest2:Conc3:h=0,p=0.1106,ks2stat=0.5606\\RStest:Conc3:h=0,p=0.0983\\KStest2:Conc4:h=0,p=0.5232,ks2stat=0.3788\\RStest:Conc4:h=0,p=0.4623$$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 3.0081, p = 0.0853.

Effect of concentration: d.f. = 3, F = 4.3876, p = 5.656823e-03.

Effect of gender: d.f. = 1, F = 26.0124, p = 0.0000.

9.11 Figure S.6k: After Oxy Distance (FvM)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=6).

Effect of concentration: d.f. = 3, F = 16.2563, p = 1.8477e-06.

Effect of gender: d.f. = 1, F = 1.0727, p = 0.3247.

kstest2 results: h=0, p=2.1598e-01, ks2stat=0.2917 (overall gender difference)

Post-hoc analysis:

$$0.5\%: 4.5320e - 01, \quad 2\%: 4.5178e - 01, \quad 5\%: 3.0428e - 01, \quad 9\%: 2.1404e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2: Conc1: h = 0, p = 0.8096, ks2stat = 0.3333$$

 $RStest: Conc1: h = 0, p = 0.4848$

$$KStest2: Conc2: h = 0, p = 0.8096, ks2stat = 0.3333$$

$$RStest:Conc2:h=0,p=0.4848$$

$$KStest2:Conc3:h=0,p=0.0766,ks2stat=0.6667$$

$$RStest:Conc3:h=0,p=0.3939$$

$$KStest2:Conc4:h=0,p=0.3180,ks2stat=0.5000$$

$$RStest: Conc4: h = 0, p = 0.2403$$

BL vs Abstinence

Female:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=12, Abstinence N=6).

p-value for BL vs initial task of female: 0.44479.

kstest2 results: h=0, p=1.0713e-01, ks2stat=0.2917

Post-hoc analysis:

$$0.5\%: 1.4870e - 01, \quad 2\%: 2.5012e - 01, \quad 5\%: 9.4955e - 01, \quad 9\%: 9.9174e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.6693,ks2stat=0.3333$$

$$RStest: Conc1: h = 0, p = 0.1797$$

$$KStest2: Conc2: h = 0, p = 0.6693, ks2stat = 0.3333$$

RStest: Conc2: h = 0, p = 0.3355

$$KStest2: Conc3: h = 0, p = 0.1877, ks2stat = 0.5000$$

RStest: Conc3: h = 0, p = 0.4371

$$KStest2:Conc4:h=0,p=0.9290,ks2stat=0.2500$$

RStest: Conc4: h = 0, p = 0.7503

Male:

Statistical significance was determined by Repeated measures analysis of variance. (BL N=11, Abstinence N=6).

p-value for BL vs initial task of male: 0.0092961. kstest2 results: h=1, p=1.2593e-04, ks2stat=0.5379

Post-hoc analysis:

$$0.5\%: 1.2197e - 03$$
, $2\%: 1.8008e - 02$, $5\%: 2.3136e - 02$, $9\%: 1.0416e - 01$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=1,p=0.0125,ks2stat=0.7424$$
 $RStest:Conc1:h=1,p=0.0071$
 $KStest2:Conc2:h=0,p=0.1997,ks2stat=0.5000$
 $RStest:Conc2:h=1,p=0.0365$
 $KStest2:Conc3:h=1,p=0.0480,ks2stat=0.6364$
 $RStest:Conc3:h=0,p=0.0616$
 $KStest2:Conc4:h=1,p=0.0401,ks2stat=0.6515$
 $RStest:Conc4:h=0,p=0.0616$

3-way ANOVA Results:

Effect of condition: d.f. = 1, F = 21.5238, p = 0.0000.

Effect of concentration: d.f. = 3, F = 3.6650, p = 1.418832e-02.

Effect of gender: d.f. = 1, F = 27.9576, p = 0.0000.

9.12 Figure S.6m: Fraction of sigmoid

Statistical significance was determined by one-way analysis of variance. (Female BL = 10, Male BL = 10, Female Oxy = 5, Male Oxy = 5, Female Incub = 6, Male Incub = 6, Female PA = 10, Male PA = 10)

p-value for significance of difference between the groups: 1.0469e-09.

Post-hoc analysis by Tukey's HSD method:

Female B Land Male B L: 0.9981 Female B Land Female Oxy: 6.5947e-06 Female B Land Female Incub: 0.0132 Male B Land Male Oxy: 4.0017e-06 Male B Land Male Incub: 3.3984e-04