20104016

DEENA

Importing Libraries

In [1]: import numpy as np
import pandas as pd
import seaborn as sns

Importing Datasets

In [2]: df=pd.read_csv("madrid_2013.csv")

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	тсн	TOL
0	2013-11-01 01:00:00	NaN	0.6	NaN	NaN	135.0	74.0	NaN	NaN	NaN	7.0	NaN	NaN
1	2013-11-01 01:00:00	1.5	0.5	1.3	NaN	71.0	83.0	2.0	23.0	16.0	12.0	NaN	8.3
2	2013-11-01 01:00:00	3.9	NaN	2.8	NaN	49.0	70.0	NaN	NaN	NaN	NaN	NaN	9.0
3	2013-11-01 01:00:00	NaN	0.5	NaN	NaN	82.0	87.0	3.0	NaN	NaN	NaN	NaN	NaN
4	2013-11-01 01:00:00	NaN	NaN	NaN	NaN	242.0	111.0	2.0	NaN	NaN	12.0	NaN	NaN
209875	2013-03-01 00:00:00	NaN	0.4	NaN	NaN	8.0	39.0	52.0	NaN	NaN	NaN	NaN	NaN
209876	2013-03-01 00:00:00	NaN	0.4	NaN	NaN	1.0	11.0	NaN	6.0	NaN	2.0	NaN	NaN
209877	2013-03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	4.0	75.0	NaN	NaN	NaN	NaN	NaN
209878	2013-03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	11.0	52.0	NaN	NaN	NaN	NaN	NaN
209879	2013-03-01 00:00:00	NaN	NaN	NaN	NaN	1.0	10.0	75.0	3.0	NaN	NaN	NaN	NaN

209880 rows × 14 columns

Data Cleaning and Data Preprocessing

```
Out[4]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25
                              'SO_2', 'TCH', 'TOL', 'station'],
                            dtype='object')
In [5]: (C)
                <class 'pandas.core.frame.DataFrame'>
                RangeIndex: 209880 entries, 0 to 209879
                Data columns (total 14 columns):
                         Column Non-Null Count Dtype
                 --- ----- ------- -----
                 0 date 209880 non-null object
1 BEN 209880 non-null float64
2 CO 209880 non-null float64
3 EBE 209880 non-null float64
4 NMHC 209880 non-null float64
5 NO 209880 non-null float64
6 NO_2 209880 non-null float64
7 O_3 209880 non-null float64
7 O_3 209880 non-null float64
8 PM10 209880 non-null float64
9 PM25 209880 non-null float64
10 SO_2 209880 non-null float64
11 TCH 209880 non-null float64
11 TCH 209880 non-null float64
12 TOL 209880 non-null float64
13 station 209880 non-null int64
                  13 station 209880 non-null int64
                dtypes: float64(12), int64(1), object(1)
                memory usage: 22.4+ MB
```

```
In [6]: data=df[['CO' ,'station']]
Out[6]:
                 CO
                        station
               0 0.6 28079004
                 0.5 28079008
                     28079011
                 0.5 28079016
                  1.0 28079017
          209875
                 0.4 28079056
          209876 0.4 28079057
          209877
                 1.0 28079058
          209878 1.0 28079059
          209879 1.0 28079060
```

209880 rows × 2 columns

Line chart

150000

200000

Line chart

50000

100000

Bar chart

Histogram

1e7

Area chart

Box chart

station

Pie chart

In [14]:

Out[14]: <AxesSubplot:ylabel='station'>

Scatter chart

7 of 17

```
In [15]:
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='station'>

In [16]:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 209880 entries, 0 to 209879 Data columns (total 14 columns):

#	Column	Non-Nul	ll Count	Dtype
0	date	209880	non-null	object
1	BEN	209880	non-null	float64
2	CO	209880	non-null	float64
3	EBE	209880	non-null	float64
4	NMHC	209880	non-null	float64
5	NO	209880	non-null	float64
6	NO_2	209880	non-null	float64
7	0_3	209880	non-null	float64
8	PM10	209880	non-null	float64
9	PM25	209880	non-null	float64
10	S0_2	209880	non-null	float64
11	TCH	209880	non-null	float64
12	TOL	209880	non-null	float64
13	station	209880	non-null	int64
J.L	C1	(4/12)	+ (1/1)	-1

NO	NO	NMHC	EBE	СО	BEN	
209880.0000	209880.000000	209880.000000	209880.000000	209880.000000	209880.000000	count
34.5864	20.101401	0.900223	0.954744	0.721695	0.931014	mean
27.8665	44.319112	0.267139	0.301074	0.361528	0.430684	std
1.0000	1.000000	0.040000	0.100000	0.100000	0.100000	min
14.0000	2.000000	1.000000	1.000000	0.300000	1.000000	25%
27.0000	5.000000	1.000000	1.000000	1.000000	1.000000	50%
48.0000	17.000000	1.000000	1.000000	1.000000	1.000000	75%
388.0000	1081.000000	1.000000	11.800000	10.400000	12.100000	max

EDA AND VISUALIZATION

In [19]:

Out[19]: <seaborn.axisgrid.PairGrid at 0x1b7069c4880>


```
In [20]:
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]: <AxesSubplot:xlabel='station', ylabel='Density'>

In [21]:

Out[21]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

11 of 17 03-08-2023, 11:42

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

Linear Regression

```
In [24]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
Out[24]: LinearRegression()
In [25]:
          lr.intercept_
Out[25]: 28078974.774991233
In [26]:
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[26]:
                 Co-efficient
            BEN
                    2.279250
             CO
                   18.361725
            EBE
                    9.781230
           NMHC
                   18.723701
           NO_2
                   -0.056757
            0_3
                    0.009418
           PM10
                    0.207129
           SO_2
                   -0.935167
            TCH
                   27.084232
            TOL
                   -3.705202
```

```
In [27]: prediction =lr.predict(x_test)
```

Out[27]: <matplotlib.collections.PathCollection at 0x1b712d01970>

ACCURACY

```
In [28]:
Out[28]: 0.2969731290074158
Out[29]: 0.3009959817638057
    Ridge and Lasso
In [30]:
In [31]: rr=Ridge(alpha=10)
Out[31]: Ridge(alpha=10)
    Accuracy(Ridge)
In [32]:
Out[32]: 0.2969761035146333
In [33]:
Out[33]: 0.3009928209761411
In [34]: la=Lasso(alpha=10)
Out[34]: Lasso(alpha=10)
In [35]:
Out[35]: 0.04573400320033738
    Accuracy(Lasso)
In [36]:
Out[36]: 0.044374626416004426
In [37]: from sklearn.linear_model import ElasticNet
    en=ElasticNet()
    en.fit(x_train,y_train)
Out[37]: ElasticNet()
```

Evaluation Metrics

```
In [42]: from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))

13.747897675434553
262.88770639903544
16.2138122105517
```

Logistic Regression

```
In [51]:
        prediction=logr.predict(observation)
        [28079008]
In [52]: -
Out[52]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
               28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
               28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
               28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
              dtype=int64)
In [53]:
Out[53]: 0.6612921669525443
In [54]:
Out[54]: 9.49253547859177e-217
In [55]: -
Out[55]: array([[9.49253548e-217, 6.03969072e-001, 1.69773000e-169,
                1.44179094e-134, 1.71060740e-074, 3.96021369e-001,
                9.55808997e-006, 5.22717178e-089, 5.48319507e-081,
                1.32436170e-079, 1.07294134e-076, 3.50636612e-129,
                1.69529056e-079, 3.82520459e-158, 4.22872970e-161,
                3.57928159e-187, 2.10845766e-164, 8.33937392e-188,
                1.12752042e-082, 7.42692411e-129, 7.66872499e-080,
                6.30044443e-191, 4.32093567e-191, 3.26054498e-071]])
```

Random Forest

```
In [59]: from sklearn.model selection import GridSearchCV
        grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="ac
Out[59]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                     param_grid={'max_depth': [1, 2, 3, 4, 5],
                                 'min_samples_leaf': [5, 10, 15, 20, 25],
                                'n_estimators': [10, 20, 30, 40, 50]},
                     scoring='accuracy')
In [60]:
Out[60]: 0.6941041139154347
In [61]:
In [63]: from sklearn.tree import plot_tree
        plt.figure(figsize=(80,40))
        plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b'
Out[63]: [Text(2243.16, 1993.2, '0_3 <= 1.5\ngini = 0.958\nsamples = 93062\nvalue = [6</pre>
         290, 5960, 5974, 5955, 6065, 6155, 6034, 6250, 6087\n6196, 6111, 6085, 6076,
         6255, 6177, 6181, 6149, 6150\n6178, 6064, 6116, 6098, 6098, 6212\nclass = a
         Text(1227.6, 1630.8000000000002, 'SO_2 <= 1.5\ngini = 0.904\nsamples = 3966
         9\nvalue = [6290, 46, 5974, 10, 44, 150, 30, 7, 181, 6196\n6111, 36, 6076, 62
         55, 6177, 361, 6149, 31, 6178, 48\n6116, 111, 53, 86]\nclass = a'),
         Text(714.24, 1268.4, 'NMHC <= 0.8\ngini = 0.844\nsamples = 22695\nvalue = [2
         2, 40, 5974, 10, 18, 13, 22, 7, 2, 3340, 10, 36\n882, 6255, 6177, 361, 6149,
         31, 6178, 48, 32, 111\n53, 86\nclass = n'),
         Text(357.12, 906.0, 'TCH <= 1.335\ngini = 0.004\nsamples = 3870\nvalue = [0,
         0, 0, 0, 0, 0, 9, 4, 0, 0, 0, 0, 0\n0, 0, 0, 0, 6089, 0, 0, 0, 0]\nclas
         s = s'),
         Text(178.56, 543.59999999999, 'EBE <= 0.85\ngini = 0.349\nsamples = 35\nva
         lue = [0, 0, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0]
         0] \nclass = s'),
         Text(89.28, 181.199999999999, 'gini = 0.484 \times 12 = 12 \times 12 = 12
         04000000000 404 40000000000 1-2-2 0 40\-----1--
```

Conclusion

Accuracy

Linear Regression :0.3009959817638057

Ridge Regression :0.04573400320033738

Lasso Regression :0.044374626416004426

ElasticNet Regression: 0.15081708322622445

Logistic Regression : 0.6612921669525443

Random Forest is suitable for this dataset

17 of 17