Universidade de São Paulo – Instituto de Ciências Matemáticas e de Computação (USP - ICMC)

ENIAC 2025

FCKAN: Evaluating KAN for Time Series Classification and Extrinsic Regression

Gabriel da Costa Merlin, Adilson Medronha, Diego Furtado Silva

What is a time series?

A time series is a sequence of n ordered values, as shown in the following equation:

 $S = (s_1, s_2, ..., s_n)$, such that $s_t \in \mathbb{R}^d$ for all $t \in [1, n]$, $d \in \mathbb{N}^*$. When d = 1, we have the so-called **univariate** series, while if d > 1, it is called **multivariate**.

Tan, C.W., Bergmeir, C., Petitjean, F., Webb, G.I.: Monash University, UEA, UCR Time Series Extrinsic Regression Archive. arXiv preprint arXiv:2006.10996 (2020)

Time Series Classification (TSC)

For TSC, the **task** is to predict the label/class of each time series.

Bagnall, A., Dau, H.A., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam, P., Keogh, E.: The UEA multivariate time series classification archive, 2018. arXiv preprint arXiv:1811.00075 (2018)

Time Series Extrinsic Regression (TSER)

For TSER, the **task** is to estimate a continuous value x_i that is not part of the time series domain (whereas in forecasting, the prediction is within the time series domain).

Tan, C.W., Bergmeir, C., Petitiean, F., Webb, G.I.: Monash University, UEA, UCR Time Series Extrinsic Regression Archive. arXiv preprint arXiv:2006.10996 (2020)

ICMC - USP

Kolmogorov-Arnold Network (KAN)

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T.Y., Tegmark, M.: KAN: Kolmogorov-Arnold Networks. arXiv preprint arXiv:2404.19756 (2025)

MultiLayer Perceptron (MLP) X KAN

MLP (Multi-Layer Perceptron)

Fixed activation functions
Train weights

Universal Approximation Theorem

KAN (Kolmogorov-Arnold Network)

Fixed weights
Train activation functions

Kolmogorov–Arnold Representation Theorem

Adapted from the YouTube video "Kolmogorov-Arnold Networks (KANs) – What are they and how do they work?", at timestamp 2:07.

Related Work (KAN for TSC)

Recent studies [1] show that MLP and KANs have similar performance.

(a) Test Accuracy of five models

(b) Test F1 Score of five models

[1] Dong, C., Zheng, L., Chen, W.: Kolmogorov-Arnold Networks (KAN) for time series classification and robust analysis. In: International Conference on Advanced Data Mining and Applications, pp. 342–355. Springer (2024)

Fully Convolutional Network (FCN)

Adapted from: Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585. IEEE (2017)

Gabriel Merlin

FCKAN

Hybrid FCN-KAN 🗱

Experimental Setup

Task	Dataset
TSC	UEA Multivariate Time Series Classification Archive (128)
TSER	Monash University, UEA, UCR Time Series Extrinsic Regression Archive (19)

Experimental Setup

Model	Number of epochs	Early Stopping	
MLP	100	10 epochs	
KAN	100	10 epochs	
FCN	2000	50 epochs	
Hybrid FCN-KAN 🗱	100	10 epochs	
FCKAN	2000	50 epochs	

Experimental Results (TSC)

Critical Difference Diagram - Nemenyi post hoc

Experimental Results (TSC)

Pairwise Win/Tie/Loss counts

	MLP	KAN	FCN	Hybrid FCN-KAN	FCKAN
MLP	-	49/2/77	28/2/98	24/5/99	38/1/89
KAN	-	-	46/4/78	42/4/82	51/2/75
FCN	_	-	-	56/10/62	70/4/54
Hybrid FCN-KAN	-	-	-	-	70/4/54
FCKAN	-	-	-	-	-

Experimental Results (TSER)

Critical Difference Diagram - Nemenyi post hoc

Experimental Results (TSER)

Pairwise Win/Tie/Loss counts

	MLP	KAN	FCN	Hybrid FCN-KAN	FCKAN	
MLP	-	10/0/9	6/0/13	7/0/12	4/0/15	
KAN	-	-	5/0/14	5/0/14	8/0/11	
FCN	-	-	-	10/0/9	10/0/9	
Hybrid FCN-KAN	※ -	-	_	-	9/0/10	
FCKAN	-	-	-	-	-	

Conclusion

- KANs are effective for TSER, achieving performance comparable to MLPs
- Temporal feature extraction is key: temporal models outperform non-temporal baselines in both TSC and TSER
- Observed gradient propagation issues during end-to-end FCKAN training

Universidade de São Paulo – Instituto de Ciências Matemáticas e de Computação (USP - ICMC)

Thanks!

FCKAN: Evaluating KAN for Time Series Classification and Extrinsic Regression

