Lecture 6: Regular Expressions

CSC 320: Foundations of Computer Science

Quinton Yong

quintonyong@uvic.ca

Regular Expressions

- To prove **if a language is regular**, is there a way to avoid constructing an entire DFA or NFA? Maybe just by describing the language as an **expression**
- Expressions can also be used **describe regular languages** in a **shorter way**, rather than writing full sentences
 - E.g. $(0 \cup 1)^*0$ for the language of all strings over the binary alphabet that end with 0
- Regular Expression: a language is regular if and only if we can describe it using a regular expression
- What syntax / operations should we have to create expressions that describe regular languages?

Regular Expression: Inductive Definition

 \boldsymbol{R} is a **regular expression** if \boldsymbol{R} is equal to:

```
• a for some a \in \Sigma e.g. 1 where \Sigma = \{0,1\} , the language with only the string 1
```

- &
- Ø
- $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions e.g. $(0 \cup 1)$, the language with strings 0 or 1
- (R_1R_2) where R_1 and R_2 are regular expressions e.g. (11), the language with string 11 e.g. $(11)(0 \cup 1)$, the language with strings 110 and 111
- (R_1^*) where R_1 is a regular expression e.g. (1^*) , the language with strings of **zero or more** concatenations of **1**s e.g. $(0 \cup 1)^*$, the language Σ^* where $\Sigma = \{0, 1\}$

Regular Expression: Conventions and Identities

Parentheses can be omitted

```
e.g. (1*) can just be written as 1*
e.g. (11)(00) can just be written as 1100
```

- If no parentheses, order to evaluate is: **star**, **concatenation**, **union** e.g. **1*****10** ∪ **1** is evaluated as $((1^*)10)$ ∪ **1**
- $R^+ := RR^*$ Basically R^* but without the "zero concatenation" case e.g. 1^+ , the language with strings of **one or more** concatenations of **1**
- $R \cup \emptyset = R$
- $R\varepsilon = \varepsilon R = R$
- $R\emptyset = \emptyset$

Language Recognized by a Regular Expression

Let R_1 and R_2 be regular expressions.

The language L(R) for a **regular expression** R is defined as:

- If R = a, for some $a \in \Sigma$, then $L(R) = \{a\}$
- If $R = \varepsilon$, then $L(R) = \{\varepsilon\}$
- If $R = \emptyset$, then $L(R) = \emptyset$
- If $R=(R_1\cup R_2)$, then $L(R)=L(R_1)\cup L(R_2)$
- If $R = (R_1R_2)$, then $L(R) = L(R_1)L(R_2)$
- If $R = (R_1^*)$, then $L(R) = L(R_1)^*$

Regular Expression Examples

Describe the languages of the following regular expressions:

Let $\Sigma = \{a, b\}$:

•
$$L(a \cup b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$$

•
$$L(a(a \cup b)) = L(a)L(a \cup b) = \{a\}\{a,b\} = \{aa,ab\}$$

•
$$L((a \cup b)^*) = L(a \cup b)^* = \{a, b\}^* = \Sigma^*$$

Language of regular expressions:

•
$$L(a) = \{a\}$$

•
$$L(\varepsilon) = \{\varepsilon\}$$

•
$$L(\emptyset) = \emptyset$$

$$L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$$

$$L(R_1R_2) = L(R_1)L(R_2)$$

•
$$L(R^*) = L(R)^*$$

•
$$L(a(a \cup b)^*) = L(a)L((a \cup b)^*) = \{a\}\{a,b\}^* = \{a,aa,ab,...\}$$

• i.e. *a* followed by anything

Equivalence of Regular Expressions

We will show that the set of languages **describable by regular expression** is the same as the **regular languages** (languages representable by DFAs)

Theorem: A language is regular if and only if there exists some regular expression that describes it

Proof consists of two parts:

- 1. If a language is described by a **regular expression**, then it is **regular** (can be recognized by a DFA / NFA)
- 2. If a language is **regular** (can be recognized by a DFA / NFA), then it can be described by a **regular expression**

1. Given a **regular expression** R we show that there exists a **finite automaton** M with L(M) = L(R)

We distinguish the following cases:

- 1. $R = \alpha$, $\alpha \in \Sigma$ 2. $R = \varepsilon$ 3. $R = \emptyset$
- 4. $R = (R_1 \cup R_2)$, where R_1 , R_2 are regular expressions
- 5. $\mathbf{R} = (\mathbf{R_1}\mathbf{R_2})$, where $\mathbf{R_1}$, $\mathbf{R_2}$ are regular expressions
- 6. $\mathbf{R} = (\mathbf{R_1}^*)$, where $\mathbf{R_1}$ is a regular expression
- We show that we can build NFAs to recognize case 1 to 3
- Then, we show that we can combine those NFAs to recognize cases 4 to 6

Case 1: R = a, $a \in \Sigma$

Show that L(R) is regular:

• $L(a) = \{a\}$

- **NFA** $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$ with
 - $\delta(q_1, a) = \{q_2\}$
 - $\delta(r,b) = \emptyset$ for $(r,b) \neq (q_1,a)$ No other transitions

Case 2: $R = \varepsilon$

Show that L(R) is regular:

•
$$L(\varepsilon) = \{\varepsilon\}$$

- **NFA** $N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$ with
 - $\delta(q_1, b) = \emptyset$ for any $b \in \Sigma \cup \{\varepsilon\}$

Case 3: $R = \emptyset$

Show that L(R) is regular:

•
$$L(\emptyset) = \emptyset$$

- NFA $N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$ with
 - $\delta(q_1, b) = \emptyset$ for any $b \in \Sigma \cup \{\varepsilon\}$

Case 4: $R = R_1 \cup R_2$

Show that L(R) is regular:

(Induction Step) Assume that $L(R_1)$ and $L(R_2)$ are regular languages

- By definition, $L(R) = L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$
- Since regular languages are closed under union, $\boldsymbol{L}(\boldsymbol{R})$ is regular

Case 5: $R = R_1 R_2$

Show that L(R) is regular:

(Induction Step) Assume that $L(R_1)$ and $L(R_2)$ are regular languages

- By definition, $L(R) = L(R_1R_2) = L(R_1)L(R_2)$
- Since regular languages are closed under concatenation, $\boldsymbol{L}(\boldsymbol{R})$ is regular

Case 6: $R = R_1^*$

Show that L(R) is regular:

(Induction Step) Assume that $L(R_1)$ is a regular languages

- By definition, $L(R) = L(R_1^*) = L(R_1)^*$
- Since regular languages are closed under Kleene star, $\boldsymbol{L}(\boldsymbol{R})$ is regular

Equivalence of Regular Expressions

Proof consists of two parts:

- If a language is described by a **regular expression**, then it is **regular** (can be recognized by a DFA / NFA)
- 2. If a language is **regular** (can be recognized by a DFA / NFA), then it can be described by a **regular expression**

DFA to Regular Expression

2. If a language is **regular** (can be recognized by a DFA / NFA), then it can be described by a **regular expression**

We convert a DFA M which recognizes the language into a regular expression R

- **Transform** *M* into a **generalized NFA** (**GNFA**): a hybrid between an automaton and a regular expression
- Shrink the GNFA until we obtain the regular expression R which recognizes the same language as M

Generalized NFA (GNFA)

A **GNFA** *G* is almost like an NFA except:

- G has exactly one start state
- G has exactly one accept state
- Transitions are labeled with regular expressions
- Exactly one transition from every state to every other state (and self loops)

• Exceptions: No transitions to start state, no transitions from accept state

DFA to GNFA

Given **DFA** $M = (Q, \Sigma, \delta, q_0, F)$, create **GNFA** G as follows:

- Add **new start state** s and arepsilon-transition from s to q_0
- *G* needs only one accept state:
 - Add **new accept state** f and ϵ -transitions from all states in F to f
 - Change M's accept states into non-accept states in G
- Transform label on each transition into regular expression
 - Single symbols stay the same
 - Combine multiple transitions into one transition (e.g. a, b turns into $a \cup b$)
- Between pairs of states with no transition, add transition with label Ø

GNFA to Regular Expression

- We gradually shrink G by removing states
- Replace removed states with a more **complex regular expression** representing "strings created" by going through that state
- Finally, the only states left are s and f with a single regular expression R transition

Removing a State from GNFA

Remove states from G (not S or S) one by one, while not changing the **language**

- Consider state to be removed: q_{rip}
- When removed, transitions through $q_{\rm rip}$ must be replaced

- The strings obtained from some q_i going through $q_{\rm rip}$ to some q_j look like: R_1 , concatenated with zero or more repeats of R_2 , concatenated with R_3
- So, transitions going through q_{rip} must be replaced by:

GNFA to Regular Expression

- Let $G = (Q \cup \{s, f\}, \Sigma, \delta, s, f)$ be a **GNFA** (converted from **DFA** $M = (Q, \Sigma, \delta, q_0, F)$)
- Choose a state q_{rip} and turn G to $G'=(Q',\Sigma,\delta',s,f)$ with $Q'=Q\cup\{s,f\}\setminus\{q_{rip}\}$ and update δ to δ' as follows:
 - Let $\operatorname{reg}(q_i,q_j)$ denote the regular expression transition between q_i and q_j
 - For each $q_i, q_j \in Q'$, set $\operatorname{reg} \left(q_i, q_j\right) \coloneqq (R_1)(R_2)^*(R_3) \cup (R_4)$ where
 - $R_1 = \operatorname{reg}(q_i, q_{\operatorname{rip}})$
 - $R_2 = \operatorname{reg}(q_{\operatorname{rip}}, q_{\operatorname{rip}})$
 - $R_3 = \operatorname{reg}(q_{\operatorname{rip}}, q_j)$
 - $R_4 = \operatorname{reg}(q_i, q_j)$

• Note: even though conversion says for each $q_i, q_j \in Q'$, we really only have to do this for each q_i, q_j where q_i can get to q_j through $q_{\rm rip}$

GNFA to Regular Expression Example

GNFA to Regular Expression Example

DFA to GNFA to Regular Expression Example

Equivalence of Regular Expressions

Theorem: A language is regular if and only if there exists some regular expression that describes it

Proof consists of two parts:

If a language is described by a **regular expression**, then it is **regular** (can be recognized by a DFA / NFA)

If a language is **regular** (can be recognized by a DFA / NFA), then it can be described by a **regular expression**

DFA to Regular Expression Example 2

Describe the language recognized by the DFA M as a regular expression R

DFA to Regular Expression Example 2

Describe the language recognized by the DFA M as a regular expression R

DFA to Regular Expression Example 2

Describe the language recognized by the DFA M as a regular expression R

The remaining steps are left for you as an exercise...