Analysis

Andrew

Information for Finding Model

 $\alpha = 0.05$

Model with interaction:

 $Y_{ijk} = \mu_{..} + \gamma_i + \delta_j + (\gamma \delta)_{ij} + \epsilon_{ijk}$

Model with factor A and factor B:

 $Y_{ijk} = \mu_{\cdot \cdot} + \gamma_i + \delta_j + \epsilon_{ijk}$

Model with factor A only:

 $Y_{ijk} = \mu_{\cdot \cdot} + \gamma_i + \epsilon_{ijk}$

Model with factor B only:

 $Y_{ijk} = \mu_{..} + \delta_j + \epsilon_{ijk}$

Final model after conducting F-statistic tests:

 $Y_{ijk} = \mu_{..} + \gamma_i + \delta_j + \epsilon_{ijk}$

With constraints: $\sum \gamma_i = 0$, $\sum \delta_j = 0$

 H_0 : Use full model

 H_a : Use reduced model

Model Selection Table

Model	Interaction Effect	Factor A Effect (Region)	Factor B Effect (House Size)
R^2	0.002130082	0.005056614	0.007065998
F_s	0.9463521	6.7747240	3.1620011
p	0.41742959	0.00934836	0.02380460
$p \le \alpha$	FALSE	TRUE	TRUE
Include	FALSE	TRUE	TRUE

Analysis - Pairwise CIs for Factor A

	3
Bonferroni	2.642
Tukey	2.854

	2
Scheffe	3.332

We can pick Bonferroni, Tukey, or Scheffe multiplier. We pick the smallest multiplier, Bonferroni (2.642), for more precision.

	Mean	Lower	Upper	Significant
$\mu_{1.} - \mu_{6.}$	3673.709	-6580.687	13928.105	FALSE
$\mu_{2.} - \mu_{1.}$	358.6957	-1866.5624	2583.9538	FALSE
$\mu_{5.} - \mu_{2.}$	1145.627	-5538.021	7829.275	FALSE
$\mu_{3.} - \mu_{5.}$	1268.732	-5498.189	8035.653	FALSE
$\mu_{4.} - \mu_{3.}$	189.2347	-3103.4618	3481.9311	FALSE
$\mu_{4.} - \mu_{6.}$	6635.998	-3848.402	17120.398	FALSE

Analysis - Pairwise CIs for Factor B

Х
2.501
2.572
2.799

We can pick Bonferroni, Tukey, or Scheffe multiplier. We pick the smallest multiplier, Bonferroni (2.501), for more precision.

	Mean	Lower	Upper	Significant
$\mu_{.2} - \mu_{.4}$	-81.73664	-6362.72614	6199.25286	FALSE
$\mu_{.1}-\mu_{.2}$	717.9974	-5970.7391	7406.7339	FALSE
$\mu_{.3} - \mu_{.1}$	1552.632	-3400.924	6506.188	FALSE
$\mu_{.3} - \mu_{.4}$	2188.893	-2198.516	6576.301	FALSE

Appendix

```
# Setup
alpha <- 0.05

data <- read.csv("insurance.csv")
selected_columns <- c("charges", "children", "region")
data <- subset(data, select = selected_columns)
colnames(data) <- c("Y", "A", "B")

AB <- lm(Y ~ A * B, data = data)
A.B <- lm(Y ~ A, data = data)
A <- lm(Y ~ A, data = data)
B <- lm(Y ~ B, data = data)
N <- lm(Y ~ 1, data = data)</pre>
```

```
# Functions
# Give me means
find.means = function(data,fun.name = mean){
  a = length(unique(data[,2]))
 b = length(unique(data[,3]))
  means.A = by(data[,1], data[,2], fun.name)
  means.B = by(data[,1],data[,3],fun.name)
  means.AB = by(data[,1],list(data[,2],data[,3]),fun.name)
 MAB = matrix(means.AB, nrow = b, ncol = a, byrow = TRUE)
  colnames(MAB) = names(means.A)
  rownames(MAB) = names(means.B)
 MA = as.numeric(means.A)
  names(MA) = names(means.A)
  MB = as.numeric(means.B)
  names(MB) = names(means.B)
 MAB = t(MAB)
 results = list(A = MA, B = MB, AB = MAB)
 return(results)
}
# Partial R^2
Partial.R2 = function(small.model,big.model){
 SSE1 = sum(small.model$residuals^2)
 SSE2 = sum(big.model$residuals^2)
 PR2 = (SSE1 - SSE2) / SSE1
 return(PR2)
# Give me multipliers
find.mult = function(alpha,a,b,dfSSE,g,group){
  if(group == "A"){
    Tuk = round(qtukey(1-alpha,a,dfSSE)/sqrt(2),3)
    Bon = round(qt(1-alpha/(2*g), dfSSE), 3)
   Sch = round(sqrt((a-1)*qf(1-alpha, a-1, dfSSE)),3)
  }else if(group == "B"){
   Tuk = round(qtukey(1-alpha,b,dfSSE)/sqrt(2),3)
   Bon = round(qt(1-alpha/(2*g), dfSSE), 3)
   Sch = round(sqrt((b-1)*qf(1-alpha, b-1, dfSSE)),3)
  }else if(group == "AB"){
   Tuk = round(qtukey(1-alpha,a*b,dfSSE)/sqrt(2),3)
   Bon = round(qt(1-alpha/(2*g), dfSSE),3)
    Sch = round(sqrt((a*b-1)*qf(1-alpha, a*b-1, dfSSE)),3)
  results = c(Bon, Tuk,Sch)
  names(results) = c("Bonferroni", "Tukey", "Scheffe")
  return(results)
}
# Give me CI
give.me.CI = function(data, MSE, equal.weights = TRUE, multiplier, group, cs) {
   if(sum(cs) != 0 & sum(cs !=0) != 1){
    return("Error - you did not input a valid contrast")
  }else{
```

```
the.means = find.means(data)
the.ns =find.means(data,length)
nt = nrow(data)
a = length(unique(data[,2]))
b = length(unique(data[,3]))
if(group =="A"){
  if(equal.weights == TRUE){
    a.means = rowMeans(the.means$AB)
    est = sum(a.means*cs)
    mul = rowSums(1/the.ns$AB)
    SE = sqrt(MSE/b^2 * (sum(cs^2*mul)))
   N = names(a.means)[cs!=0]
    CS = paste("(",cs[cs!=0],")",sep = "")
    fancy = paste(paste(CS,N,sep =""),collapse = "+")
    names(est) = fancy
  } else{
    a.means = the.means$A
    est = sum(a.means*cs)
    SE = sqrt(MSE*sum(cs^2*(1/the.ns$A)))
    N = names(a.means)[cs!=0]
    CS = paste("(",cs[cs!=0],")",sep = "")
    fancy = paste(paste(CS,N,sep =""),collapse = "+")
    names(est) = fancy
}else if(group == "B"){
  if(equal.weights == TRUE){
    b.means = colMeans(the.means$AB)
    est = sum(b.means*cs)
    mul = colSums(1/the.ns$AB)
    SE = sqrt(MSE/a^2 * (sum(cs^2*mul)))
    N = names(b.means)[cs!=0]
    CS = paste("(", cs[cs!=0],")", sep = "")
    fancy = paste(paste(CS, N, sep =""), collapse = "+")
    names(est) = fancy
  } else{
    b.means = the.means$B
    est = sum(b.means*cs)
    SE = sqrt(MSE*sum(cs^2*(1/the.ns$B)))
    N = names(b.means)[cs!=0]
    CS = paste("(",cs[cs!=0],")",sep = "")
    fancy = paste(paste(CS, N, sep =""), collapse = "+")
   names(est) = fancy
} else if(group == "AB"){
  est = sum(cs*the.means$AB)
  SE = sqrt(MSE*sum(cs^2/the.ns$AB))
  names(est) = "someAB"
the.CI = est + c(-1,1)*multiplier*SE
results = c(est, the.CI)
names(results) = c(names(est), "lower bound", "upper bound")
return(results)
```

```
# Model Selection Table
model_selection <- data.frame(</pre>
  "Model" = c(
    "Interaction Effect",
    "Factor A Effect (Region)",
    "Factor B Effect (House Size)"
  )
)
model_selection$"$R^2$" <- c(</pre>
  Partial.R2(A.B, AB),
  Partial.R2(B, A.B),
  Partial.R2(A, A.B)
)
model_selection$"$F_s$" <- c(</pre>
  anova(A.B, AB) $F[2],
  anova(B, A.B)$F[2],
  anova(A, A.B) $F[2]
model_selection$"$p$" <- c(</pre>
  anova(A.B, AB)$"Pr(>F)"[2],
  anova(B, A.B)"Pr(>F)"[2],
  anova(A, A.B)$"Pr(>F)"[2]
model_selection$"$p \\leq \\alpha$" <- model_selection$"$p$" <= alpha</pre>
model_selection$Include <- model_selection$"$p \\leq \\alpha$"</pre>
knitr::kable(t(model_selection))
# Get SSE
all.models = list(AB, A.B, A, B, N)
SSE = t(as.matrix(sapply(all.models,function(M) sum(M$residuals^2))))
colnames(SSE) = c("AB","(A+B)","A","B","Empty/Null")
rownames(SSE) = "SSE"
# Analysis Setup
# Get relavent values for CI based on model choice
n_T <- nrow(data)</pre>
a <- length(unique(data$A))
b <- length(unique(data$B))</pre>
sse <- SSE["SSE", "(A+B)"]</pre>
df_sse \leftarrow n_T - a - b + 1
mse <- sse / df_sse
# Get Multiplier for Factor A
all.mult <- find.mult(alpha = alpha, a = a, b = b, dfSSE = df_sse, g = 6,
                       group = "A")
```

```
the.mult <- min(all.mult)
knitr::kable(all.mult)
# Do Confidence Intervals for Factor A
# Get combinations of all potential confidence intervals
CIs.A <- data.frame(Values = c("Mean", "Lower", "Upper"))</pre>
CIs.A$"$\\mu_{1.} - \\mu_{6.}$" <- give.me.CI(
  data, mse, equal.weights = TRUE,
  the.mult, "A", c(1, 0, 0, 0, 0, -1)
CIs.A$"$\mu_{2.} - \mu_{1.}$" <- give.me.CI(
  data, mse, equal.weights = TRUE,
  the.mult, "A", c(-1, 1, 0, 0, 0, 0)
CIs.A\$"\$\mu_{5.} - \mu_{2.}\$" \leftarrow give.me.CI(
  data, mse, equal.weights = TRUE,
  the.mult, "A", c(0, -1, 0, 0, 1, 0)
CIs.A$"$\\mu_{3.} - \\mu_{5.}$" <- give.me.CI(
  data, mse, equal.weights = TRUE,
  the.mult, "A", c(0, 0, 1, 0, -1, 0)
CIs.A$"$\mu_{4.} - \mu_{3.}$" <- give.me.CI(
  data, mse, equal.weights = TRUE,
  the.mult, "A", c(0, 0, -1, 1, 0, 0)
CIs.A$"$\\mu_{4.} - \\mu_{6.}$" <- give.me.CI(
  data, mse, equal.weights = TRUE,
  the.mult, "A", c(0, 0, 0, 1, 0, -1)
CIs.A <- as.data.frame(t(CIs.A))</pre>
colnames(CIs.A) <- CIs.A[1, ]</pre>
CIs.A <- CIs.A[-1, ]
CIs.A$Significant <- FALSE
knitr::kable(CIs.A)
# Get Multiplier for Factor B
all.mult <- find.mult(alpha = alpha, a = a, b = b, dfSSE = df_sse, g = 4,
                       group = "B")
the.mult <- min(all.mult)
knitr::kable(all.mult)
# Do Confidence Intervals for Factor B
# Get combinations of all potential confidence intervals
CIs.B <- data.frame(Values = c("Mean", "Lower", "Upper"))</pre>
```

```
CIs.B$"$\\mu_{.2} - \\mu_{.4}$" <- give.me.CI(
  data, mse, equal.weights = TRUE,
  the.mult, "B", c(0, 1, 0, -1)
CIs.B$"\\mu_{.1} - \\mu_{.2}\$" <- give.me.CI(
 data, mse, equal.weights = TRUE,
 the.mult, "B", c(1, -1, 0, 0)
)
CIs.B$"$\\mu_{.3} - \\mu_{.1}$" <- give.me.CI(
 data, mse, equal.weights = TRUE,
 the.mult, "B", c(-1, 0, 1, 0)
CIs.B$"\\mu_{.3} - \\mu_{.4}\$" <- give.me.CI(
 data, mse, equal.weights = TRUE,
  the.mult, "B", c(0, 0, 1, -1)
)
CIs.B <- as.data.frame(t(CIs.B))</pre>
colnames(CIs.B) <- CIs.B[1, ]</pre>
CIs.B <- CIs.B[-1, ]
CIs.B$Significant <- FALSE
knitr::kable(CIs.B)
```