## Comp 3004: Neureset – Direct Neurofeedback EEG Device

Alvina Han, Aekus Trehan, James Yap, Lei Wu, Matthew Seto

### **Use Cases**

**Use Case 1: Turn Device On** 

<u>Primary Actor:</u> Device User <u>Scope:</u> Neureset Device

Level: User Goal

Stakeholders and Interests:

Neureset User - wants to utilize Neureset <u>Precondition:</u> User has a Neureset Device.

Minimal Guarantees: The device will not turn on if the battery is not charged.

Success Guarantee: The device has been turned on and is waiting on the main menu.

Main Success Scenario:

1. User presses the power button.

2. The device turns on.

#### **Extensions:**

2a. The device does not turn on.

• The user tries to charge the battery and if it still doesn't turn on, the device is faulty and the user contacts customer support.

#### **Use Case 2: Turn Device Off**

<u>Primary Actor:</u> Device User <u>Scope:</u> Neureset Device

Level: User Goal

Stakeholders and Interests:

Neureset User - wants to utilize Neureset

Precondition: User has a Neureset Device that is turned on.

Minimum Guarantees: Nothing happens.

Success Guarantee: The device has been turned off and is no longer consuming power.

Main Success Scenario:

- 1. User pressed the power button.
- 2. The device turns off.

#### Use Case 3: User Selects a Program

<u>Primary Actor:</u> Device User <u>Scope:</u> Neureset Device

Level: User Goal

Stakeholders and Interests:

Neureset User - wants to utilize Neureset

Precondition: User has a Neureset Device that is turned on and is on the main menu.

Minimum Guarantees: The device will turn off if it runs out of battery.

Success Guarantee:

The user has initiated one of the three programs of either:

- Starting a treatment
- Viewing past treatments
- · Change date and time.

#### Main Success Scenario:

- 1. User navigates through the menu and decides on what they want to do.
- 2. User selects their desired program by pressing a button.
  - a. User has selected to start a new session. Proceed to Use Case 4.
  - b. User has selected to View Past Session. Proceed to Use Case 5/6.
  - c. User has selected to Change Date and Time. Proceed to Use Case 7.

#### **Use Case 4: User Treatment**

<u>Primary Actor:</u> Device User <u>Scope:</u> Neureset Device

Level: User Goal

Stakeholders and Interests:

Neureset User - wants to utilize Neureset

#### Precondition:

- User has selected to start a treatment
- EEG electrodes contact is established (indicated by a blue light)

<u>Minimum Guarantees:</u> The device turns off if it runs out of battery or if electrodes are disconnected for too long.

<u>Success Guarantee:</u> The device has completed a treatment and logs the treatment into logged session/past treatments.

#### Main Success Scenario:

- 1. User contacts the Neureset and EEG electrodes are established.
- 2. User starts a new session.
- 3. Neureset device starts a timer.
- 4. Device displays session progress with an approximate time remaining and a percentage progress bar.
- 5. Electrodes read a signal from one of the 21(7) sites on the headset.
- 6. Device establishes a baseline average frequency.
- 7. Devices add an offset frequency of 5hz to the baseline frequency.
- 8. Device recalculates baseline frequency after the addition of the offset.
- 9. Device repeats step 5 until total offset frequency added is 20hz.

- 10. Repeat step 4 for each of the Electrodes.
- 11. Session ends when the timer reaches zero.
- 12. Device notifies the user that the treatment has been completed.
- 13. Device logs the previous treatment to the database (Past Treatments).

#### Extensions:

- 1a. Proceed to Use Case 9: Connection Lost Between Electrodes and the Device.
- 2ai. Users can voluntarily pause the session by pressing the pause button.
- 2aii. If contact is not reestablished within 5 minutes of pausing, the device automatically terminates the session and turns off.
- 2b. If the session is interrupted due to external factors (e.g., power outage), the device saves session progress and prompts the user to resume or start a new session upon power restoration.

#### Use Case 5: User View Past Treatments On Neureset

Primary Actor: Device User

Precondition:

- The device treatment has just concluded
- User selects View Past Treatments from the menu

Scope: Neureset Device

Level: User Goal

Stakeholders and Interests:

Neureset User - wants to utilize Neureset

Minimum Guarantee: A blank page is displayed when no previous treatments have been completed.

Success Guarantee: The device will display all the previous treatments completed.

#### Main Success Scenario:

- 1. Device displays the past treatments with timestamps (date and time).
- 2. User navigates the past treatments using a scroll.
- 3. When the user is done, they can press a different tab.

#### Use Case 6: User View Past Treatments on PC

Primary Actor: Device User

**Precondition:** 

- The device treatment has just concluded
- User selects View Past Treatments from the menu

Scope: PC Device Level: User Goal

Stakeholders and Interests:

PC User - wants to utilize PC to see baselines of past treatments

Minimum Guarantee: A blank page is displayed when no previous treatments have been completed.

Success Guarantee: The device will display all of the previous treatments completed.

#### Main Success Scenario:

1. Device displays the past treatments with timestamps (date and time).

- 2. User ensures that the Neureset is plugged into the PC.
- 3. User presses the sync changes button.
- 4. The Neureset will sync with the computer and upload its previous sessions with baselines.
- 5. User can now view past treatments with the timestamp and the starting and end baselines.

#### Use Case 7: User Changes Time and Date

Primary Actor: Device User

Precondition: User selects Set Time and Date from menu

Scope: Neureset Device

Level: User Goal

Stakeholders and Interests:

Neureset User - wants to utilize Neureset

Minimum Guarantee: The time and date remain unchanged on the device.

Success Guarantee: The time and date are changed on the device.

Main Success Scenario:

1. Device displays a time/date to the user.

- 2. The user can input a new time.
- 3. The device updates the display at the new updated time.
- 4. The new time should be reflected within new session logs.

#### Use Case 8: Battery Low Response of the Device

Primary Actor: Device User

Precondition: The device is low on battery

Scope: Neureset Device

Level: User Goal

Stakeholders and Interests:

Neureset User - wants to utilize Neureset

Minimum Guarantee: A blank page is displayed when no previous treatments have been completed.

Success Guarantee: The device will display all of the previous treatments completed.

#### Main Success Scenario:

- 1. Device battery is low.
- 2. Device battery is updated to showcase low battery.
- 3. Device displays text and audio to tell the user to charge the device.

#### Use Case 9: Connection Lost Between Electrodes and the Device

Primary Actor: Device User

Precondition:

- The device is performing a treatment
- Connection is lost between Electrodes and the Device

Scope: Neureset Device

Level: User Goal

#### Stakeholders and Interests:

Neureset User - wants to utilize Neureset

Minimum Guarantee: The device turns off and the session is terminated.

Success Guarantee: The device will continue performing the treatment.

#### Main Success Scenario:

- 1. Device loses contact with EEG electrodes.
- 2. The device flashes a red light.
- 3. The device pauses the session.
- 4. The display displays an error message and prompts the user to check electrode connections.
- 5. The device starts beeping until contact is reestablished.

#### **Extension:**

4a. If contact is not reestablished within 5 minutes, the device automatically turns off, and the session is terminated.



Figure 1: Use Case Diagram

It is mandatory for the user to turn the device on for executing any of the cases.

## **Design Documentation**

All diagrams are in their respective diagram folders under "Diagrams+Report" folder for reference (in GitHub).

- UML Class Diagram
- Sequence Diagram
- State Diagram
- (Use Case Diagram)

### **UML Class Diagram**



Figure 2: UML Class Diagram

The two main entities are Neureset Controller and EEG Simulator. The EEG Simulator is focused on the EEG waves and the offsets during the main scenario, user treatment. The Neureset Controller is a controller that controls the small entities that make up the device. Not a specific design is implemented but we have separated the functionalities into two: one handling the treatment and one that handles everything else.

## Sequence Diagram

UC1: Turn Device On



Figure 3 is success scenario of Use Case 1. It is a success scenario when an actor, user, presses the power button and once the device checks that it is not out of battery, it will turn on. One thing to note here is that it is assumed that the device can be turned off in middle of the session so once the device is turned on again, the session will be terminated and need to be restarted.



Figure 4 is success scenario of Use Case 2. It is a success scenario when an actor, user, presses the power button and once the device checks that it is not out of battery, it will turn off. One thing to note here is that it is assumed that the device can be turned off in middle of the session and if it does, it will end the session. Also, if contact is made at the point of turn off, the device will break contact with the user.



Figure 5 is success scenario of Use Case 4. It is a success scenario when an actor, user, receives treatment. First, the user gets in contact with the device and the corresponding EEG plot and set ups will be in place. Once the user starts the session, the baseline will be calculated, and following offsets will be added every round. After it executes four more times, the final baseline will be outputted, and the final offset will be saved. Then, the session will be added to the log. Note that throughout the treatment, battery is depleted, and it is twice as fast as when not in session.

Neureset Battery PC Electrodes EEG Simulator Session Logger

User clicks on the view History Tab

getLogEntries

UC5: Therapy History Viewing with Neureset

Figure 6 is success scenario of Use Case 5. It is a success scenario when an actor/user presses the view History Tab on the Neureset device. The device will go and ask the session logger which will display all the log entries. Here the log entries only display the date and time of treatments which would be the current time of using the machine or the manually set time had the user set their own time. If there are no log entries, then it will just display a blank page. Within this scenario, we assume that the user has the device powered on and is on the main menu.

UC6: Therapy History Viewing with PC



Figure 7 is a success scenario of Use Case 6. It is a success scenario when an actor/user presses the sync change button on the PC. We assume here that the Neureset device is plugged in/mounted onto the PC. The PC will go and ask the session logger for the log entries and then it will sync and display all log entries. Here the log entries have the starting baseline and ending baseline alongside the date and time of treatments which would be the current time of using the machine or the manually set time had the ser set their own time. If there are no log entries, then it will just display a blank page. Within this scenario we assume that the user has the PC powered on.

User clicks on the "Set Clock" tab

user inputs a date and time

setDateTime
toggleClockSetting

UC7: User Changes Time and Date

Figure 8 is a success scenario of Use Case 7. It is a success scenario when the actor/user presses on the "Set Clock" tab on the menu on the Neureset device. The Neureset will then get its current date and time.

But then if a user inputs a date and time, the Neureset will set the date and time and then toggle (sync) the clock setting for all other features within the Neureset. Within this scenario we assume that the user has the device powered on and on the main menu.



UC8: Battery Low Response

Figure 9 is a success scenario of Use Case 8. It is a safety scenario when the Neureset device is low on battery. Every second, the Neureset will lose battery and more when in use. After a certain threshold of the battery being low, it will announce that the battery is low through audio and text in the device. Eventually, the battery will run out and the device will turn off. If the device is in session while it runs out of battery, it will try to end the session and save progress before powering off.

Note that battery lasts 180 seconds at 100%. When not in session, the battery life goes down by 1 every second and during the session, it is doubled to 2 every second. If the device is off, battery stays constant.

UC9: Connection Lost between Electrodes and the Device



Figure 10 is a success scenario of Use Case 9. It is a safety scenario when the connection between the user and the device is lost. When the user breaks contact with the device in the middle of a session, the treatment is paused, and the red light starts flashing. If the contact is reestablished within 5 seconds (5 minutes in real device), the treatment is resumed. However, if contact is not reestablished within 5 seconds, the session will terminate and it will go back to the main menu, where it prompts the user to contact the device.

## State Diagram



Figure 11 is a state diagram for the Neureset Device for most of the functionalities other than the session log. Note that "Date/Time Change", and display of "past treatments" can be viewed except when in session.



Figure 12 is a state diagram for the connected PC. It will sync session logs and display treatment history on the PC screen.

# **Traceability Matrix**

| ID | Requirement                                                                                     | Related Use<br>Case                                           | Fulfilled By                                  | Tested by                                                                                                                                                                                                          | Description                                                                                                                                                                                                                                                                                                                   |
|----|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | The Neureset interface contains buttons, display, and electrodes.                               | N/A                                                           | Mainwindow.ui                                 | Run the simulator in Qt. View the UI that is titled "Neureset Device"                                                                                                                                              | Reconstructed the physical<br>Neureset device system using<br>QT's built in UI framework.                                                                                                                                                                                                                                     |
| 2  | The PC interface has a button to sync changes and a display for past treatments.                | Therapy<br>History<br>Viewing<br>with PC<br>(UC 6)            | pcwindow.ui                                   | Run the simulator in Qt. View the UI that is titled "Connected PC"                                                                                                                                                 | Reconstructed a PC interface that has a QPushButton that simulates synchronizing the PC Window with the NeuresetController device.  This is done because the PCWindow does not have direct access to the SessionLogger object, and must rely on interfacing with the NeuresetController to extract the LogEntry data objects. |
| 3  | The application battery level is dependent on time and whether the device in is session or not. | Turn Device<br>On (UC 1)<br>Battery Low<br>Response<br>(UC 8) | Battery, Neureset Controller                  | Run the simulator in Qt. In the "Neureset Device" UI, view the battery in the bottom right when the device is turned on – will visually go down as well as gives updates for every 10% decrease in the output logs | Used QTimer to track time passed, whenever time passes, the battery is decreased starting from 3 minutes going down every second. If the device is off, battery level will not change, if on but not in session, will go down by one and if in session then the battery will go down twice as fast.                           |
| 4  | Treatment cannot start unless user                                                              | User<br>Treatment<br>(UC 4)                                   | Mainwindow.ui<br>Electrode,<br>EEG simulator, | Run the<br>simulator in<br>Qt. In the                                                                                                                                                                              | Tracks if contact is made through the "make contact" / "break contact" button which                                                                                                                                                                                                                                           |
|    | นาแธงจ นจธา                                                                                     | (004)                                                         | Neureset Controller                           | "Neureset                                                                                                                                                                                                          | will be toggled to one or the                                                                                                                                                                                                                                                                                                 |

|   | 1                            | 1         | 1                    | I <b></b>      | I                                                                |
|---|------------------------------|-----------|----------------------|----------------|------------------------------------------------------------------|
|   | has contacted                |           |                      | Device" UI,    | other (based on if contact is                                    |
|   | the electrodes.              |           |                      | view how the   | made). If contact is not made,                                   |
|   |                              |           |                      | start session  | button to start a session will be                                |
|   |                              |           |                      | button         | disabled and the user will not be                                |
|   |                              |           |                      | cannot be      | able to start a session.                                         |
|   |                              |           |                      | pressed till   |                                                                  |
|   |                              |           |                      | contact is     |                                                                  |
|   |                              |           |                      | made by the    |                                                                  |
|   |                              |           |                      | user by        |                                                                  |
|   |                              |           |                      | pressing the   |                                                                  |
|   |                              |           |                      | make contact   |                                                                  |
|   |                              |           |                      | button.        |                                                                  |
| 5 | Treatment                    | User      | Mainwindow.ui        | Run the        | The <b>QTimer::singleShot()</b> API                              |
| 3 |                              | Treatment | Neureset Controller  | simulator in   | provided by the Qt library is used                               |
|   | displays the progress of the |           | EEG Simulator        |                | to create treatment sessions.                                    |
|   |                              | (UC 4)    | EEG SIIIIUldlui      | Qt. In the     | to create treatment sessions.                                    |
|   | treatment with               |           |                      | "Neureset      | Cina a than a see a lease.                                       |
|   | a bar and a                  |           |                      | Device" UI,    | Since there are always only one                                  |
|   | timer.                       |           |                      | first make     | treatment session happening at                                   |
|   |                              |           |                      | contact and    | a given time, the simplistic                                     |
|   |                              |           |                      | then start a   | interface provided by the                                        |
|   |                              |           |                      | session. View  | QTimer::singleShot function is                                   |
|   |                              |           |                      | how when a     | a good enough abstraction that                                   |
|   |                              |           |                      | session is     | satisfies all of our requirements.                               |
|   |                              |           |                      | started, a     | A singleShot timer is started to                                 |
|   |                              |           |                      | progress bar   | track the treatment progress (no                                 |
|   |                              |           |                      | and timer will | need for manual                                                  |
|   |                              |           |                      | appear         | multithreading).                                                 |
|   |                              |           |                      | displaying     | G,                                                               |
|   |                              |           |                      | the progress   |                                                                  |
|   |                              |           |                      | of the         |                                                                  |
|   |                              |           |                      | treatment as   |                                                                  |
|   |                              |           |                      | well as the    |                                                                  |
|   |                              |           |                      | time           |                                                                  |
|   |                              |           |                      | remaining in   |                                                                  |
|   |                              |           |                      | the            |                                                                  |
|   |                              |           |                      | treatment.     |                                                                  |
| 6 | The treetment                | User      | Mainwindow.ui        | Run the        | The EEGSimulator keeps treek of                                  |
| ٥ | The treatment                |           |                      |                | The EEGSimulator keeps track of a list of "state variables" like |
|   | will only                    | Treatment | Neureset Controller, | simulator in   |                                                                  |
|   | progress when                | (UC 4)    | EEG Simulator,       | Qt. In the     | inContact, inSession,                                            |
|   | the user has                 |           | Electrode            | "Neureset      | isFeedback, isPaused,                                            |
|   | contact with                 |           |                      | Device" UI,    | therapyRound, etc                                                |
|   | the electrodes.              |           |                      | before the     |                                                                  |
|   |                              |           |                      | session, the   | The <b>inContact</b> state variable in                           |
|   |                              |           |                      | graph will     | particular is used to track                                      |
|   |                              |           |                      | 'flatline'     | whether or not the treatment                                     |
|   |                              |           |                      | indicating     | should progress.                                                 |
|   |                              |           |                      | that contact   |                                                                  |
|   |                              |           |                      | is not         |                                                                  |
|   | 1                            |           | 1                    | 1              |                                                                  |

| 7 | The treatment will stop progressing if the user has elected to pause the treatment. | User<br>Treatment<br>(UC 4)                                                    | Mainwindow.ui<br>Neureset Controller,<br>EEG Simulator               | present. Click 'make contact' button and the electrodes will be in contact with the user and the graph will display waves. Run the simulator in Qt. In the "Neureset Device" UI, when in a session (same process as above) view how when the pause session button is clicked, the timer, progress bar and treatment will all pause. | We make use of a polling mechanism that polls the status of this state variable on every clock tick to ensure that treatment pauses as expected on contact lost.  Once the break contact in Mainwindow.ui is pressed the EEG Simulator will puaseTreatment(). The QTimer for the session and the treatment bar will stop. The clock is still going, Battery is still depleted, and the Electrodes are still being simulated. |
|---|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | The treatment will stop if the user breaks contact with the electrodes              | User Treatment (UC 4) Connection Lost between Electrodes and the Device (UC 9) | Mainwindow.ui<br>Neureset Controller,<br>EEG Simulator,<br>Electrode | Run the simulator in Qt. In the "Neureset Device" UI, when in a session (same process as above) view                                                                                                                                                                                                                                | A turnary operator is used in  `eegValue = inContact? generateEEGData(currentTime, electrode, 0): 0; `to manually override the EEG signal values to "0" to simulate contact loss (a.k.a flat-lining).  Once the break contact in Mainwindow.ui is pressed the EEG Simulator will pause                                                                                                                                       |

| 9  | The user can decide to end a treatment if they would like to choose | User<br>Treatment<br>(UC 4) | Mainwindow.ui Neureset Controller, EEG Simulator, Electrode | how when the break contact button is clicked, the treatment will stop and wait till contact is restored or a timeout occurs, and the session is stopped. Run the simulator in Qt. In the "Neureset Device" UI, when in a session (same process as above) view how there is an end session button that is available for users to end a session whenever they want. When clicked, the session treatment | treatment. The Electrode will stop adding offsets. The Mainwindow.ui will flash red lights for five seconds. If connect is reestablished in 5 seconds, EEG Simulator will continueTreatment(), if not it will endSession().  Once the end session in Mainwindow.ui is pressed, the EEG Simulator will endSession(). The Electrode is still being read. |
|----|---------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                     |                             |                                                             | will end.                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                        |
| 10 | Device                                                              | N/A                         | Electrode,                                                  | Run the                                                                                                                                                                                                                                                                                                                                                                                               | The 7 electrodes can be viewed                                                                                                                                                                                                                                                                                                                         |
|    | supports 7                                                          |                             | EEG Simulator,                                              | simulator in                                                                                                                                                                                                                                                                                                                                                                                          | from the drop-down menu                                                                                                                                                                                                                                                                                                                                |
|    | electrodes and<br>each of the                                       |                             | Mainwindow.ui<br>Electrode                                  | Qt. In the                                                                                                                                                                                                                                                                                                                                                                                            | provided by Mainwindow.ui. The EEG Simulator simulates the                                                                                                                                                                                                                                                                                             |

| have a waveform  have a waveform    Device" U, when in a session (same process as above) view how there is a dropdown menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrodes are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma    NAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | electrodes    |      |               | "Neureset      | seven different electrodes that |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|------|---------------|----------------|---------------------------------|
| waveform  when in a session (same process as above) view how there is a dropdown menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode are combination of frequencies from the five bands: alpha, beta, delta, beta, delta, beta, delta, theta, and gamma  when in a session (same process as above) view how there is a dropdown menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  Por each electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting, pdf).  The specific channels are alpha [8-12Hz], beta [12-30Hz], delta [1-4Hz], theta [4-8Hz], and gamma [25-14Dtz].  This is achieved using QRandomGenerator: global()-> bounded() to simulater andom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |               |      |               |                |                                 |
| session (same process as above) view how there is a dropdown menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  And Electrode, BEG Simulator  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  Will appear. You can change between the  This is achieved using QRandomGenerator::global() > bounded() to simulate random last is is mulater awaveform. Will si sachieved using QRandomGenerator::global() > bounded() to simulate random last is is mulater awaveform will appear. You can change QRandomGenerator::global() > bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |               |      |               | ·              |                                 |
| Same process as above) view how there is a dropdown menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrode to see different electrode waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma    Same process as above) view how there is a dropdown menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrode waveforms.    Por each electrode, random H2 values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).    Por each electrode, random H2 values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).    Por each electrode, random H2 values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).    Por each electrode, random H2 values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).    Por each electrode, random H2 values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).    Por each electrode, random H2 values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).    Por each electrode, random H2 values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).    Por each electrode, random H2 values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).    Por each electrode, random H2 values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).    Por each electrode, random H2 values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).   |     |               |      |               |                |                                 |
| process as above) view how there is a dropdown menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrode to see different electrode waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, aletta, theta, and gamma  Process as above) view how there is a dropdown menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrode waveforms.  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear.  Provide the device, a waveform will appear.  You can this is achieved using QRandomGenerator::global()-> between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |               |      |               |                |                                 |
| above) view how there is a dropdown menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  11 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, detta, theta, and gamma  All times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  For each electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8-12Hz], beta [12-30Hz], detta [1-4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |               |      |               | •              |                                 |
| how there is a dropdown menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrode to see different electrode waveforms.  11 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  N/A Electrode, EEG Simulator  EEG Simulator  N/A Electrode, Run the "simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can gamma gamma  N/A Electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8-12Hz], beta [12-30Hz], delta [1-4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |               |      |               | -              |                                 |
| a dropdown menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  The waveforms  are slightly different and are a combination of frequencies from the five bands: alpha, beta, detta, theta, and gamma  N/A  Electrode,  EEG Simulator  EEG Simulator  Authorized to the device, a waveform will appear.  You can change between the  This is achieved using QRandomGenerator::global()-> bounded() to simulate random  This is achieved using QRandomGenerator::global()-> bounded() to simulate random  To can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between the electrodes to see different electrode waveforms.  For each electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8-142], theta [4-8-Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |               |      |               | ·              |                                 |
| menu from which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrode to see different electrode waveforms.  11 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma    The waveforms are alpha and gamma   Position   Positi |     |               |      |               |                |                                 |
| which electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  N/A Electrode, Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8-12-30Hz], delta [1-4Hz], theta [4-8Hz], and gamma [25-140Hz].  You can witch between the lectrode respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8-12-30Hz], delta [1-4Hz], theta [4-8Hz], and gamma [25-140Hz].  Richards a litmes in a session, the waveform of the chosen electrode is displayed, and users can switch between the lectrode waveforms.  For each electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |               |      |               | a dropdown     |                                 |
| electrodes 1 to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  The waveforms are slightly different an are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  HVA  Electrode, EEG Simulator  Electrode, EEG Simulator  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change between the  Por each electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |               |      |               | menu from      |                                 |
| to 7 can be chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  11 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  12 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  13 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  14 The waveforms are slightly different electrode, random Hz simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change between the chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  15 The specific channels are alpha [8-12Hz], beta [12-30Hz], delta [1-4Hz], theta [4-8Hz], and gamma [25-140Hz].  16 The waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will appear. You can change between the chosen based on the device, a waveform will |     |               |      |               | which          |                                 |
| chosen. At all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  11 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma    N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |               |      |               | electrodes 1   |                                 |
| all times in a session, the waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  11 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  11 In the waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  11 In the waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  11 In the waveforms and users can switch between the waveforms.  12 Electrode, EEG Simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change between the waveform of the chosen electrode is displayed, and users can switch between the waveforms.  12 Electrode, EEG Simulator in Qt. In the "Neureset Device" UI, when contact is simulated [8- 12Hz], beta [12-30Hz], delta [1-4Hz], theta [4-8Hz], and gamma [25-140Hz].  13 This is achieved using QRandom Generator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |               |      |               | to 7 can be    |                                 |
| session, the waveform of the chosen electrode is displayed, and users can switch between electrode waveforms.  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  Separate Service and the session, the waveform of the chosen electrode is displayed, and users can switch between electrode waveforms.  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change between the lectrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |               |      |               | chosen. At     |                                 |
| waveform of the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  N/A  Electrode, EEG Simulator  EEG Simulator  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform, its is minulated to the device, a waveform witl appear.  You can change between the  waveforms.  For each electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8-12Hz], beta [12-30Hz], delta [1-4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |               |      |               | all times in a |                                 |
| the chosen electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  The specific channels are alpha [8-12Hz], beta [12-30Hz], delta [1-4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |               |      |               | session, the   |                                 |
| electrode is displayed, and users can switch between electrodes to see different electrode waveforms.  11 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  12 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  13 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  14 The waveforms are slightly different electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  15 The specific channels are alpha [8-12Hz], beta [12-30Hz], delta [1-4Hz], theta [4-8Hz], and gamma [25-140Hz].  16 The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma [25-140Hz].  17 This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |               |      |               | waveform of    |                                 |
| displayed, and users can switch between electrodes to see different electrode waveforms.  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  The waveforms are alpha, beta, delta, theta, and gamma  displayed, and users can switch between electrodes to see different electrode waveforms.  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change between the values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8-12Hz], beta [12-30Hz], delta [1-4Hz], theta [4-8Hz], and gamma [25-140Hz].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |               |      |               | the chosen     |                                 |
| and users can switch between electrodes to see different electrode waveforms.  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  The waveforms  N/A  Electrode, EEG Simulator  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change between the  Por each electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |      |               | electrode is   |                                 |
| and users can switch between electrodes to see different electrode waveforms.  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  The waveforms  N/A  Electrode, EEG Simulator  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change between the  Por each electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |      |               | displayed,     |                                 |
| between electrodes to see different electrode waveforms.  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  Detail and gamma  betaveen electrode see different electrode, random Hz waveforms.  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear.  You can change between the  between the  between electrodes to see different electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |               |      |               |                |                                 |
| between electrodes to see different electrode waveforms.  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  Detail and gamma  betaveen electrode see different electrode, random Hz waveforms.  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear.  You can change between the  between the  between electrodes to see different electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |               |      |               |                |                                 |
| electrodes to see different electrode waveforms.  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  N/A  Electrode, EEG Simulator  EEG Simulator  EEG Simulator  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change gamma  electrodes to see different electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8-12Hz], beta [12-30Hz], delta [1-4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |               |      |               | between        |                                 |
| see different electrode waveforms.  The waveforms N/A Electrode, EEG Simulator  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated bands: alpha, beta, delta, theta, and gamma  see different electrode waveforms.  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear.  You can change between the  see different electrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |               |      |               |                |                                 |
| The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma   Section 200      The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma   Section 200      The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, the delta, the device, a waveform will appear. You can change between the   Section 200      The specific channels are alpha is simulated to the device, a waveform will appear. You can change between the   Section 200      The specific channels are alpha is simulated to the device, a waveform will appear. You can change between the   Section 200      The specific channels are alpha is simulated to the device, a waveform will appear. You can change between the   Section 200      The specific channels are alpha is simulated to the device, a waveform will appear. You can change between the   Section 200      The specific channels are alpha is simulated to the device, a waveform will appear. You can change between the   Section 200      The specific channels are alpha is simulated to the device, a waveform will appear. You can change between the   Section 200      The specific channels are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).      The specific channels are alpha is simulated to the device, a waveform will appear.   Section 200      The specific channels are alpha is simulated to the device, a waveform will appear.   Section 200      The specific channels are alpha is simulated to the device, a waveform will appear.   Section 200      The specific channels are alpha is simulated to the device, a waveform will appear.   Section 200      The specific channels are alpha is simulated to the device, a waveform will appear.   Section 200      The specific channels are alpha is simulated to the device, a waveform will appear.   Section 200      The s   |     |               |      |               |                |                                 |
| The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  The waveforms.  Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change between the  Waveforms.  Run the spec delectrode, random Hz values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |               |      |               |                |                                 |
| The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  The waveforms are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  The waveforms are slightly simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change between the  The specific channels are alpha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |               |      |               |                |                                 |
| are slightly different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  EEG Simulator  Simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change between the  Simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device, a waveform will appear. You can change between the  Values are chosen based on the defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11  | The waveforms | NI/A | Flectrode     |                | For each electrode, random Hz   |
| different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  different and are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  defined list of channels and their respective ranges (see NeuresetTesting.pdf).  The specific channels are alpha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ' ' |               | IN/A | Ī             |                | · ·                             |
| are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  are a combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  are a combination of frequencies from the five bands: alpha, beta, delta, to the device, a waveform will appear.  You can change change of the device of t |     |               |      | 220 omidiator |                |                                 |
| combination of frequencies from the five bands: alpha, beta, delta, theta, and gamma  combination of frequencies from the five bands: alpha, beta, delta, to the device, theta, and gamma  combination Device" UI, when contact is simulated to the device, a waveform will appear.  You can change Change Device" UI, when contact is simulated to the device, a waveform will appear.  You can change QRandomGenerator::global()-> between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |               |      |               | -              |                                 |
| from the five bands: alpha, beta, delta, theta, and gamma  ma  when contact is simulated to the device, a waveform will appear.  You can change between the when contact is simulated  [8-  12Hz], beta [12-30Hz], delta [1-  4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | combination   |      |               |                | NeuresetTesting.pdf).           |
| bands: alpha, beta, delta, theta, and gamma  is simulated to the device, a waveform will appear.  You can change Change Detail to the device, a waveform will appear. You can change Detail the specific channets are dipha [8- 12Hz], beta [12-30Hz], delta [1- 4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using QRandomGenerator::global()-> between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | =             |      |               |                |                                 |
| beta, delta, theta, and gamma  to the device, a waveform will appear.  You can change between the to the device, a waveform will appear.  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |               |      |               |                | I - I                           |
| theta, and gamma gamma  a waveform will appear.  You can change change ochange between the determined a waveform will appear.  You can change ochange ochange between the determined between the determined a waveform will appear.  4Hz], theta [4-8Hz], and gamma [25-140Hz].  This is achieved using ochange ochang |     | · ·           |      |               |                | l <del>-</del>                  |
| gamma  will appear.  You can change between the  [25-140Hz].  This is achieved using QRandomGenerator::global()-> bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |               |      |               | -              |                                 |
| You can This is achieved using change QRandomGenerator::global()-> between the bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |               |      |               |                |                                 |
| change QRandomGenerator::global()-> between the bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 03            |      |               |                | [                               |
| change   QRandomGenerator::global()->   between the   bounded() to simulate random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |               |      |               |                | This is achieved using          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |               |      |               | _              | _                               |
| electrodes brainwave frequencies, while                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |               |      |               | between the    |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |               |      |               | electrodes     | brainwave frequencies, while    |

|                                                                    |     |                                                             | using the dropdown and see that they are all different. When a session is started you can also see more specifics on the waveforms printed in the program output.                                                                                                               | also reading each electrode's configured public member variables to determine the MAX_AMPLITUDE and MIN_AMPLITUDE for the sin wave generation.                                                                                                                                                                                   |
|--------------------------------------------------------------------|-----|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A realistic EEG waveform is displayed during the treatment process | N/A | Mainwindow.ui Neureset Controller, EEG Simulator, Electrode | Run the simulator in Qt. In the "Neureset Device" UI, when contact is simulated to the device and a session is in progress, there is a waveform displayed as well as a yellow overwritten wave when treatment is in progress showing the waveform during the treatment process. | In the "defs.h" a constant called NOISE_FACTOR can be configured to increase or decrease the noise level artificially induced into the system.  The Electrode class then makes use of QRandomGenerator::global()->generateDouble() * NOISE_FACTOR to simulate noise, causing the waveforms to appear more organic and realistic. |

|    | T                | T         |                      | 1              |                                  |
|----|------------------|-----------|----------------------|----------------|----------------------------------|
| 13 | During therapy   | N/A       | Neureset Controller, | Run the        | This is done by the              |
|    | output to        |           | EEG Simulator,       | simulator in   | EEGSimulator. The                |
|    | console device   |           | Electrode            | Qt. In the     | EEGSimulator interfaces with     |
|    | activities such  |           |                      | "Neureset      | the NeuresetController to        |
|    | as processing    |           |                      | Device" UI,    | simulate therapy sessions.       |
|    | input            |           |                      | when a         |                                  |
|    | waveform,        |           |                      | session is in  | For example, the EEGSimulator    |
|    | calculating      |           |                      | progress       | emits a "sessionCompleted"       |
|    | dominant         |           |                      | (following the | signal to the controller to      |
|    | frequency,       |           |                      | same steps     | indicate when a session has      |
|    | delivering the 1 |           |                      | as above), if  | completed successfully.          |
|    | sec feedback     |           |                      | you look at    | completed successfully.          |
|    | at 1/16 of       |           |                      | the console    |                                  |
|    |                  |           |                      |                |                                  |
|    | dominant +       |           |                      | output during  |                                  |
|    | offset,          |           |                      | the session,   |                                  |
|    | round 1 of       |           |                      | the            |                                  |
|    | therapy, round   |           |                      | calculations   |                                  |
|    | 2 of             |           |                      | as well as the |                                  |
|    | therapy,,        |           |                      | step in the    |                                  |
|    | therapy          |           |                      | treatment are  |                                  |
|    | finished.        |           |                      | all outputted. |                                  |
| 14 | Adjustment of    | User      | Neureset Controller, | Run the        | In "defs.h", there exist several |
|    | therapy timing   | Treatment | EEG Simulator,       | simulator in   | config constants such as         |
|    | for testing: one | (UC 4)    | Electrode            | Qt. In the     | OBSERVE_DURATION and             |
|    | round in a       |           |                      | "Neureset      | FEEDBACK_DURATION which          |
|    | treatment is 5   |           |                      | Device" UI,    | are respected by the             |
|    | sec for          |           |                      | when in a      | EEGSimulator class.              |
|    | analysis         |           |                      | session        |                                  |
|    | instead          |           |                      | (same steps    | The QTimer settings are set      |
|    | of 60sec, 1 sec  |           |                      | to start a     | dynamically based on these       |
|    | feedback and     |           |                      | session), in   | constants.                       |
|    | final analysis   |           |                      | the console    | oonstants.                       |
|    | of 5 sec for a   |           |                      | there will be  | To change the timing of each     |
|    | total of 29sec   |           |                      | specifics of   | therapy component, simply        |
|    | (4 rounds *6     |           |                      | what is        | update "defs.h" and recompile.   |
|    | sec + 5)         |           |                      | happening in   | apadie dels.ii alid leccilipite. |
|    | 350 1 3)         |           |                      | the session    |                                  |
|    |                  |           |                      | which is in    |                                  |
|    |                  |           |                      |                |                                  |
|    |                  |           |                      | sync with the  |                                  |
|    |                  |           |                      | timer and      |                                  |
|    |                  |           |                      | progress bar   |                                  |
|    |                  |           |                      | displayed in   |                                  |
|    |                  |           |                      | the UI.        |                                  |
| 15 | Before any       | N/A       | Electrode,           | Run the        | The EEGSimulator has multiple    |
|    | neurofeedback    |           | Neureset Controller  | simulator in   | state variables to keep track of |
|    | is done, the     |           |                      | Qt. In the     | the current state of the         |
|    | device will      |           |                      | "Neureset      | simulation.                      |
|    | have a starting  |           |                      | Device" UI,    |                                  |

|    |                 |           | T                    | ı              |                                  |
|----|-----------------|-----------|----------------------|----------------|----------------------------------|
|    | baseline        |           |                      | when in a      | One of the parameters tracked is |
|    | calculation for |           |                      | session        | the baselines of each electrode  |
|    | each of the     |           |                      | (same steps    | during the therapy.              |
|    | waveforms       |           |                      | as before),    |                                  |
|    |                 |           |                      | the output in  |                                  |
|    |                 |           |                      | the console    |                                  |
|    |                 |           |                      | will output    |                                  |
|    |                 |           |                      | the baselines  |                                  |
|    |                 |           |                      | for each       |                                  |
|    |                 |           |                      | electrode.     |                                  |
| 16 | After           | N/A       | Electrode,           | Like in the    | The EEGSimulator collects the    |
|    | neurofeedback   |           | Neureset Controller  | test above     | dominant freqs of each           |
|    | is done, the    |           |                      | this, using    | Electrode by calling the         |
|    | device will     |           |                      | the same       | getDominantFrequency()           |
|    | have an ending  |           |                      | steps to start | function of each electrode.      |
|    | baseline        |           |                      | the session,   |                                  |
|    | calculation for |           |                      | when the       | Then, the EEGSimulator           |
|    | each of the     |           |                      | session        | executes the                     |
|    | waveforms.      |           |                      | finishes, the  | calculateBaseline() function     |
|    |                 |           |                      | ending         | which uses the simplified        |
|    |                 |           |                      | baselines will | formula found in                 |
|    |                 |           |                      | automatically  |                                  |
|    |                 |           |                      | be displayed   | NeuresetTesting.pdf to compute   |
|    |                 |           |                      | in the         | an approximate ending baseline.  |
|    |                 |           |                      | console        |                                  |
|    |                 |           |                      | output.        |                                  |
| 17 | After the       | User      | Sessionlogger,       | Like in the    | A signal-slot mechanism is       |
|    | therapy is      | Treatment | Neureset Controller, | test above     | deployed to handle this one.     |
|    | complete, the   | (UC 4)    | Log Entry,           | this, using    |                                  |
|    | device will log | Therapy   | EEG Simulator,       | the same       | Notice `void                     |
|    | the completed   | Viewing   |                      | steps to start | sessionCompleted(double          |
|    | treatment to    | with      |                      | the session,   | startingBaseline, double         |
|    | be recorded.    | Neureset  |                      | after the      | endingBaseline);`as the signal   |
|    |                 | (UC 5)    |                      | session        | definition in EEGSimulator.      |
|    |                 | Therapy   |                      | finishes, the  |                                  |
|    |                 | History   |                      | ending         | This signal is connected to the  |
|    |                 | Viewing   |                      | baselines will | NeuresetController's `void       |
|    |                 | with PC   |                      | automatically  | handleSessionCompleted()`        |
|    |                 | (UC 6)    |                      | be displayed   | slot.                            |
|    |                 |           |                      | in the         |                                  |
|    |                 |           |                      | console        |                                  |
|    |                 |           |                      | output and     |                                  |
|    |                 |           |                      | recorded into  |                                  |
|    |                 |           |                      | the session    |                                  |
|    |                 |           |                      | logs on the    |                                  |
|    |                 |           |                      | computer       |                                  |
|    |                 |           |                      | which can be   |                                  |
|    |                 |           |                      | Willion Can bo | l l                              |

|    |                | 1        | T                    | T                   | Г                                   |
|----|----------------|----------|----------------------|---------------------|-------------------------------------|
|    |                |          |                      | "Connected          |                                     |
|    |                |          |                      | PC" UI after        |                                     |
|    |                |          |                      | syncing it.         |                                     |
| 18 | The user can   | Therapy  | Sessionlogger,       | Run the             | The NeuresetController              |
|    | view a history | Viewing  | Neureset Controller, | simulator in        | contains an instance of             |
|    | of treatments  | with     | Log Entry,           | Qt. In the          | SessionLogger, which in turn        |
|    | on Neureset    | Neureset | Mainwindow.ui        | "Neureset           | contains a list:                    |
|    | Device         | (UC 5)   |                      | Device" UI,<br>when | QVector <logentry>.</logentry>      |
|    |                |          |                      | treatments          | This <b>SessionLogger</b> instance  |
|    |                |          |                      | are finished,       | serves as the single source-of-     |
|    |                |          |                      | the history of      | truth for both the Neureset         |
|    |                |          |                      | treatments          | device as well as the PC Window     |
|    |                |          |                      | can be              | view.                               |
|    |                |          |                      | viewed by           | Note that the Neureset Device       |
|    |                |          |                      | clicking on         | only display the timestamp of       |
|    |                |          |                      | the "view           | the completed treatment and         |
|    |                |          |                      | history"            | none of the starting or ending      |
|    |                |          |                      | button. This        | baselines,                          |
|    |                |          |                      | will display        |                                     |
|    |                |          |                      | history of          |                                     |
|    |                |          |                      | treatments          |                                     |
|    |                |          |                      | on the              |                                     |
|    |                |          |                      | current             |                                     |
|    |                |          |                      | Neureset            |                                     |
|    |                |          |                      | Device.             |                                     |
| 19 | The user can   | Therapy  | Sessionlogger,       | Run the             | When trying to access the           |
|    | view a history | History  | Neureset Controller, | simulator in        | history of treatments on the PC.    |
|    | of treatments  | Viewing  | Log Entry,           | Qt. In the          | PC will first have to sync the logs |
|    | on connected   | with PC  | Pcwindow.ui          | "Connected          | with the Neureset device. The       |
|    | PC             | (UC 6)   |                      | PC" UI after        | pcwindow has a SessionLogger        |
|    |                |          |                      | running             | as well which will turn contains a  |
|    |                |          |                      | sessions and        | list: QVector< LogEntry>.           |
|    |                |          |                      | syncing them        | This <b>SessionLogger</b> instance  |
|    |                |          |                      | (using the          | serves as the single source-of-     |
|    |                |          |                      | sync changes        | truth for both the Neureset         |
|    |                |          |                      | button), the        | device as well as the PC Window     |
|    |                |          |                      | history of all      | View.                               |
|    |                |          |                      | session ran         | Note that in the PC viewing the     |
|    |                |          |                      | on the              | history of treatments will include  |
|    |                |          |                      | current             | the starting baseline and an        |
|    |                |          |                      | Neureset            | ending baseline                     |
|    |                |          |                      | Device will         |                                     |
|    |                |          |                      | be displayed        |                                     |
|    |                |          |                      | for the user        |                                     |
|    |                |          |                      | to see.             |                                     |

| 20 | The device has a low battery indicator                                            | Battery Low<br>Response<br>(UC 8)         | Battery, Mainwindow.uiNeureset Controller | Run the simulator in Qt. In the "Neureset Device" UI, when the battery reaches 20%, there will be an indicator in the bottom left of the UI as well as console output as the battery is decreasing (for every 10%).                                          | The battery <b>QObject</b> gets updated by <b>ticktime()</b> every second and eventually calls a function <b>lowBattery()</b> which has an announcement after a certain threshold which includes an audio and text in the mainwindow.ui.                                                                                                                     |
|----|-----------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21 | The device becomes non-functional when the battery level reaches                  | Battery Low<br>Response<br>(UC 8)         | Battery, Mainwindow.uiNeureset Controller | Run the simulator in Qt. In the "Neureset Device" UI, when the battery is at 0% (out of battery), the Neureset Device will automatically turn off and display that there is no battery left in the console as well as the flashing battery symbol indicator. | The battery <b>QObject</b> gets updated by <b>ticktime()</b> and eventually calls a function <b>turnOff()</b> which will turn the device off. The device then goes through its stages of trying to power off the device. If the device is in session while it runs out of battery, it will try to end the session and save the progress before powering off. |
| 22 | The user can<br>manually set<br>the date and<br>time of the<br>Neureset<br>device | User<br>Changes<br>Time and<br>Date (UC7) | Mainwindow.ui<br>Neureset Controller      | Run the simulator in Qt. In the "Neureset Device" UI, to change the time from the                                                                                                                                                                            | The clock starts with a <b>QDateTime</b> which is set to the current date and atime that matches the system. The user can manually set date/time with an input of a <b>QDateTime</b> . The Neureset will set the new date                                                                                                                                    |

|  |  | default time,  | and time and then toggle (sync) |
|--|--|----------------|---------------------------------|
|  |  | you can go to  | the clock setting for all other |
|  |  | the "Set       | features within the Neureset    |
|  |  | Clock" tab     | such as the timestamps for      |
|  |  | and then       | completed treatments.           |
|  |  | choose the     |                                 |
|  |  | time you       |                                 |
|  |  | want to set    |                                 |
|  |  | the device to  |                                 |
|  |  | and click "Set |                                 |
|  |  | Clock". This   |                                 |
|  |  | will update    |                                 |
|  |  | the time in    |                                 |
|  |  | the clock      |                                 |
|  |  | displayed as   |                                 |
|  |  | well as in the |                                 |
|  |  | device         |                                 |
|  |  | session        |                                 |
|  |  | history.       |                                 |