

Cutting Electricity Cost For Service Provider Networks

Muhammad Saqib Ilyas

FDC

Zartash Afzal Uzmi Tariq Mahmood Jadoon Ihsan Ayyub Qazi Muhamad Fareed Zaffar Aamir Qayyum

Agenda

- Background and motivation
- Opportunity and key idea
- Case studies:
 - Data centers (e.g., Facebook and Google)
 - Cellular networks (e.g., Sprint and Verizon)
- Conclusions and future work

Source: freeimages.com

The Interne

Source: cnet.com

Source: flaticon.com

Image source: http://bit.ly/1awWnLn

1 Data Center ~ 50,000 - 80,000 servers

Google's data center locations http://bit.ly/1Wblvbe

1 Data Center ~ 50,000 - 80,000 servers

Microsoft Azure's data center locations http://bit.ly/1mqvi26

Parameter	Microsoft	Amazon	Google
Servers	Millions	2.8 – 5.6 M	900000
Data Centers	> 26	~ 87	14

Google's B4 SDN

Image Source: Jain et. al, "B4: Experience with a globally-deployed software defined WAN"

Google's B4 SDN

Image Source: Jain et. al, "B4: Experience with a globally-deployed software defined WAN"

Google's B4 SDN

Image Source: Jain et. al, "B4: Experience with a globally-deployed software defined WAN"

Telenor: 8000 cell sites

Massive infrastructure

Massive infrastructure Massive power draw

Annual DC Opex

\$951 M

Annual DC Opex

\$951 M

Electricity Cost

\$143 M

Google

Annual DC Opex

\$951 M

Electricity Cost

\$143 M

Annual DC Opex

\$951 M

Electricity Cost

\$143 M

Electricity Cost 2012

\$81 M

Google

Annual DC Opex

\$951 M

Electricity Cost

\$143 M

Electricity Cost 2012

\$81 M

Source: GREENNETS

Google

Annual DC Opex

\$951 M

Electricity Cost

\$143 M

Electricity Cost 2012

\$81 M

Significant electricity costs

Agenda

- Background and motivation
- Opportunity and key idea
- Case studies:
 - Data centers (e.g., Facebook and Google)
 - Cellular networks (e.g., Sprint and Verizon)
- Conclusions and future work

Opportunity

Opportunity

Opportunity

Barroso et. al, "The Case for Energy Proportional Computing", IEEE Computer, 2007 Peng et. al, "Traffic-Driven Power Savings in Operational 3G Cellular Networks", MOBICOM 2011

Opportunity

Peak and trough are quite pronounced

Network provisioned according to peak

Opportunity

Network provisioned according to peak

Opportunity

Google: Enough servers, storage and bw to handle peak

Opportunity

Source: Emerson, "Energy Logic: Reducing Data Center Power Consumption..."

Opportunity

Source: Emerson, "Energy Logic: Reducing Data Center Power Consumption..."

Deactivate idle equipment

CA: California

CA: California

NY: New York

CA: California NY: New York

CA: California

NY: New York

CA: California

NY: New York

TX: Texas

Resource pruning cuts electricity cost

CA: California NY: New York

CA: California NY: New York

CA: California NY: New York

CA: California

NY: New York

CA: California

NY: New York

CA: California

NY: New York

TX: Texas

Workload relocation cuts electricity cost *further*

CA: California NY: New York

CA: California

NY: New York

CA: California NY: New York

RP and WR can cut electricity costs

RP and WR can cut electricity costs

Ain't no such thing as a free lunch

- Workload relocation overheads
 - E.g., Cost of data transfers
 - Expensive inter-data center links

- Workload relocation overheads
 - E.g., Cost of data transfers
 - Expensive inter-data center links
- Equipment activation and de-activation overheads
 - E.g., Energy spent while resuming and sleeping

- Workload relocation overheads
 - E.g., Cost of data transfers
 - Expensive inter-data center links
- Equipment activation and de-activation overheads
 - E.g., Energy spent while resuming and sleeping
- Must consider transition costs while optimizing

- Workload relocation overheads
 - E.g., Cost of data transfers
 - Expensive inter-data center links
- Equipment activation and de-activation overheads
 - E.g., Energy spent while resuming and sleeping
- Must consider transition costs while optimizing
- Relocate Energy Demand to Better Locations (RED-BL)

This Thesis

Towards systematic minimization of network electricity cost

using Workload Relocation (WR) and Resource Pruning (RP)

while considering transition costs

Contributions

- Optimal state trajectory formulation [1]
- Considered transition costs [1]
- Evaluation of cost savings under various scenarios using real traces [1]
- Evaluated impact of prediction accuracy on savings [1]

[1] "RED-BL: Energy Solution for Loading Data Centers", Infocom 2013 mini-conference

Contributions

- Evaluation of RED-BL with:
 - Partial data center shutdown [2]
 - Sleep modes [2]
- Sliding window re-optimization [2]
- Granular deactivation of data center equipment
 [2]
- Showed that RED-BL (for data centers) is the NP-Complete unit commit problem [2]

[2] "RED-BL: Evaluating Dynamic Right Sizing for Data Center Networks", Elsevier Computer Networks, 2014

Contributions

- Application of state trajectory optimization to cellular networks [2, 3]
- Showed that RED-BL for cellular networks is NP-Hard
 [4]
- Evaluated RED-BL using traces from a live network [3, 4]

[3] "Electricity Cost Efficient Workload Mapping", IEEE INFOCOM 2013 Computer Communications Workshop [4] "Low-Carb: Reducing Energy Consumption in Operational Cellular Networks" IEEE GLOBECOM 2013

Agenda

- Background and motivation
- Opportunity and key idea
- Case studies:
 - Data centers (e.g., Facebook and Google)
 - Cellular networks (e.g., Sprint and Verizon)
- Conclusions and future work

Source: http://bit.ly/1mrli7o

- Data center operator
 - Geographically distributed data centers

- Data center operator
 - Geographically distributed data centers
- Data center equipment

IT Load	Non-IT Load
Servers	Lighting
Storage	Cooling
Network	Power distribution

- Data center operator
 - Geographically distributed data centers
- Data center equipment

IT Load	Non-IT Load
Servers	Lighting
Storage	Cooling
Network	Power distribution

Power drawn is affine function of workload

- Data center operator
 - Geographically distributed data centers
- Data center equipment

IT Load	Non-IT Load
Servers	Lighting
Storage	Cooling
Network	Power distribution

Power drawn is affine function of workload

Let's recap how we can use WR and RP

Interval - 1

Electricity price driven workload assignment

Interval - 1

Interval - 1

Sum of all data centers' electricity cost

Interval - 1

Interval - 2

Problem Mod Data center

Data center deactivation

Interval - 1

Interval - 2

Data center activation

Locally optimal

Locally optimal

Might not be globally optimal

An alternative workload mapping

An alternative workload mapping

Total cost: 46

Optimal State Trajectory Problem

Optimal State Trajectory Problem

Relocate Energy Demand to *Better* Locations (RED-BL)

Subject to several constraints (please see the thesis)

Experimental Setup

- Workload from 3 popular Facebook apps
- Electricity prices from 33 US locations
- Simulated a week-long deployment plan
- Compared RED-BL against various schemes

UNIFORM: Equally distribute workload

LO: Local Optimal Ignoring Transition Costs

Theoretical lower bound

LD: Local Optimal with Deactivation

LO: Local Optimal Ignoring Transition Costs

Theoretical lower bound

LD: Local Optimal with Deactivation

LS: Local Optimal with Selection

LO: Local Optimal Ignoring Transition Costs

Theoretical lower bound

LD: Local Optimal with Deactivation

Sometimes idling is better

LS: Local Optimal with Selection

LO: Local Optimal Ignoring Transition Costs

Theoretical lower bound

LD: Local Optimal with Deactivation

Sometimes idling is better

LS: Local Optimal with Selection

Best practical variant of local optimal

Cost Savings vs Over-provisioning RED-BL close to

Granular (De)activation

Granular (De)activation

DVFS Instead of Deactivation

Reserve Margin

 Significant cost savings are possible using RED-BL

- Significant cost savings are possible using RED-BL
- Finer granularity of resource (de)activation increases savings

- Significant cost savings are possible using RED-BL
- Finer granularity of resource (de)activation increases savings
- Low-power mode instead of shutdown also helps considerably

- Significant cost savings are possible using RED-BL
- Finer granularity of resource (de)activation increases savings
- Low-power mode instead of shutdown also helps considerably
- Cost savings decrease sharply with reserve margin

- Significant cost savings are possible using RED-BL
- Finer granularity of resource (de)activation increases savings
- Low-power mode instead of shutdown also helps considerably
- Cost savings decrease sharply with reserve margin

Can we apply this optimization "machinery" to other networks?

Agenda

- Background and motivation
- Opportunity and key idea
- Case studies:
 - Data centers (e.g., Facebook and Google)
 - Cellular networks (e.g., Sprint and Verizon)
- Conclusions and future work

Case Study II Cellular Networks

Case Study II Cellular Networks

Case Study II Cellular Networks

TRXs Power amplifiers Air conditioning

Handing off some calls may enable greater power savings

Is Workload Relocation Possible?

Parameter Cellular network Data centers

Parameter

Cellular network

Data centers

Network resource

Parameter

Cellular network

Data centers

Network resource

Servers

Parameter Cellular network Data centers

Network resource TRX Servers

Parameter

Cellular network

Data centers

Network resource

TRX

Servers

Workload relocation

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation		Client redirect

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning		

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning		Server shutdown / idle / hibernate

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning	BTS Power Saving	Server shutdown / idle / hibernate

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning	BTS Power Saving	Server shutdown / idle / hibernate

Transition costs

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning	BTS Power Saving	Server shutdown / idle / hibernate
Transition costs		(De)activation overheads

Parameter	Cellular network	Data centers
Network resource	TRX	Servers
Workload relocation	Call hand off	Client redirect
Resource pruning	BTS Power Saving	Server shutdown / idle / hibernate
Transition costs	Negligible	(De)activation overheads

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_{i} e_{i}^{j} (p_{i}^{j} \lambda (f + (1-f) \frac{x_{i}^{j}}{c_{i}}) + b_{i}^{j} \sigma + s_{i}^{j} \delta)$$

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \sum_{i=1}^{m} -f) \frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

minimize
$$\sum_{j=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \sum_{i=1}^{m} -f) \frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

$$minimize \sum_{j=1}^{m} p_i^j$$

For every interval, minimize # TRXs

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \sum_{i=1}^{m} -f) \frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

$$minimize \sum_{j=1}^{m} p_i^j$$

minimize
$$\sum_{i=1}^{n} \sum_{i=1}^{m} c_i e_i^j (p_i^j \sum_{i=1}^{m} -f) \frac{x_i^j}{c_i}) + b_i^j \sigma + s_i^j \delta)$$

$$minimize \sum_{j=1}^{m} p_i^j$$

- $(\delta + 1)$ th call incurs a sudden jump in power
- Other calls bring a small increase in power (ϵ)

• $(\delta + 1)$ th call incurs a sudden jump in power

• Other calls bring a small increase in power (ϵ)

- $(\delta + 1)$ th call incurs a sudden jump in power
- Other calls bring a small increase in power (ϵ)

- $(\delta + 1)$ th call incurs a sudden jump in power
- Other calls bring a small increase in power (ϵ)

Minimum Dominating Set (MDS)

Smallest subset V' of vertices V such that every other vertex is adjacent to at least one vertex in V'

1. Make two copies of vertices

1. Make two copies of vertices

1. Make two copies of vertices

- 1. Make two copies of vertices
- Place edges between each vertex and its copy

В

B'

C

C'

D

D'

Set K (BTSs)

Set J (Calls)

- 1. Make two copies of vertices
- Place edges between each vertex and its copy

- Make two copies of vertices
- 2. Place edges between each vertex and its copy
- 3. Replicate other edges in original graph

- 1. Make two copies of vertices
- Place edges between each vertex and its copy
- 3. Replicate other edges in original graph

- 1. Make two copies of vertices
- Place edges between each vertex and its copy
- 3. Replicate other edges in original graph

- 1. Make two copies of vertices
- Place edges between each vertex and its copy
- 3. Replicate other edges in original graph

- 1. Make two copies of vertices
- Place edges between each vertex and its copy
- 3. Replicate other edges in original graph
- 4. Solve Modified MDS on new graph

- 1. Make two copies of vertices
- Place edges between each vertex and its copy
- 3. Replicate other edges in original graph
- 4. Solve Modified MDS on new graph

- 1. Make two copies of vertices
- Place edges between each vertex and its copy
- 3. Replicate other edges in original graph
- 4. Solve Modified MDS on new graph

RED-BL for cellular

RED-BL for cellular solves Modified MDS

RED-BL for cellular solves Modified MDS solves MDS B' В MDS Solved! В Set K Set J Minimum Dominating Set (MDS) (BTSs) (Calls)

Experimental Setup

Experimental Setup

Call volume traces for 2 days at 26 urban BTSs

Experimental Setup

- Call volume traces for 2 days at 26 urban BTSs
- Trace driven simulation:
 - Periodically obtain optimal call placement
 - Place BTSs with low-traffic in power-saving mode

BTS Power Consumption Models

Parameter	Value		
	Model 1	Model 2	Model 3
Idle Power (W)	1425	2401.8	2341.5
Peak Power (W)	1500	3887.5	2973.9
Power Saving per TRX (W)	20	50	100

Results: Power-Saving Feature Only

Energy savings	Model 1	Model 2	Model 3
Percentage	4.73%	5.43%	12.89%
Daily energy savings (kWh)	43.28	109.68	217.12
Country-wide daily savings -31000 sites (MWh)	51.6	130.77	258.87

Results: Power-Saving Feature Only

Energy savings	Model 1	Model 2	Model 3
Percentage	4.73%	5.43%	12.89%
Daily energy savings (kWh)	43.28	109.68	217.12
Country-wide daily savings -31000	51.6	130.77	258.87
sites (MWh)			

Results: Power-Saving + Handoff Absolute Energy Savings (%)

Results: Power-Saving + Handoff Absolute Energy Savings (kWh)

Effect of Granular Deactivation

Granularity	Model 1	Model 2	Model 3
2-state	5.38%	6.29%	14.94%
3-state	6.81%	7.73%	18.62%
6-state	8.70%	9.65%	23.37%

Effect of Granular Deactivation

Granularity	Model 1	Model 2	Model 3
2-state	5.38%	6.29%	14.94%
3-state	6.81%	7.73%	18.62%
6-state	8.70%	9.65%	23.37%

Savings increase with finer granularity

Effect of Late Deactivation

While there are BTSs in high-power mode

- While there are BTSs in high-power mode
 - Pick a random BTS

- While there are BTSs in high-power mode
 - Pick a random BTS

- While there are BTSs in high-power mode
 - Pick a random BTS
 - For each call being handled by this
 BTS

- While there are BTSs in high-power mode
 - Pick a random BTS
 - For each call being handled by this
 BTS
 - Hand-over to a candidate BTS in low-power mode

- While there are BTSs in high-power mode
 - Pick a random BTS
 - For each call being handled by this
 BTS
 - Hand-over to a candidate BTS in low-power mode

While there are BTSs
in high-power mode

- Pick a random BTS
- For each call being handled by this
 BTS
 - Hand-over to a candidate BTS in low-power mode

- While there are BTSs in high-power mode
 - Pick a random BTS
 - For each call being handled by this
 BTS
 - Hand-over to a candidate BTS in low-power mode

- While there are BTSs in high-power mode
 - Pick a random BTS
 - For each call being handled by this BTS
 - Hand-over to a candidate BTS in low-power mode

While there are BTSs in high-power mode

- Pick a random BTS
- For each call being handled by thisBTS
 - Hand-over to a candidate BTS in low-power mode

Performance of Heuristic Algorithm

Case Study II - Summary

- Traffic has limited geo-flexibility compared to data centers
- No geo-diversity in electricity prices
- Activation of power savings feature in hardware helps
- RED-BL achieves greater savings even for relatively conservative settings

Agenda

- Background and motivation
- Opportunity and key idea
- Case studies:
 - Data centers (e.g., Facebook and Google)
 - Cellular networks (e.g., Sprint and Verizon)
- Conclusions and future work

Conclusions

- Opportunities for electricity cost savings using:
 - Workload relocation
 - Resource pruning
- WR and RP are applicable to:
 - Data centers
 - Cellular networks
 - Others (need to explore)

Conclusions

- Modeled electricity cost minimization as an optimal state trajectory problem
- Showed the problem to be NP-Hard in the two case studies
- Studied the sensitivity of the problem to various parameters

Conclusions

- Data centers and cellular networks:
 - Sets of geo-diverse resources
- Contrasts:
 - Availability of geo-diversity in electricity prices
 - Geo-flexibility in traffic
 - Magnitude of transition costs

Future Work

- Factor in other forms of transition costs:
 - Cost of change in latency
 - Cost of replication
 - Cost of increase in call blocking probability
- Implementation on software BTS
- Incorporation into an OA&M framework
- Adaptation to recent generations of cellular networks
- Consider expensive diesel-generated power in cellular BTSs

Questions and Answers

If you can read this

Murphy's law was violated

List of Papers

Published:

- A simulation study of GELS for Ethernet over WAN, GLOBECOM 2007
- RED-BL: Energy solution for loading data centers, INFOCOM Mini-Conference, 2012
- Electricity cost efficient workload mapping, INFOCOM Computer Communications Workshop, 2013
- Low-Carb: Reducing energy consumption in operational cellular networks, GLOBECOM 2013
- RED-BL: Evaluating dynamic right sizing for data centers,
 Computer Networks, vol. 72, 2014

• Submitted:

 Low-Carb: A practical scheme for improving energy efficiency in cellular networks

Questions 1

- Why not have one data center at the cheapest locations?
 - There is no single cheapest location
 - Diversity for:
 - Disaster
 - Latency

Question 2

- Why can't DVFS be used?
 - It can certainly be used
 - It does not achieve fine grained energy proportionality
 - Granularity of VF scaling is coarse
 - Other components are also energy proportional