ยานักทชก^ลู่เลื

พาวิทยาลัยเทคในใสยีพระจอมเกล้าอนรุธิ

Name	ID No.	 Seat No

King Mongkut's University of Technology Thonburi Midterm Examination Semester 1/2013

MEE 221 Thermodynamics

Second year student

Mechanical Engineering student

Mon.30 September 2013

Time: 13.00-16.00

Instructions 1.

- 1. Total of 8 pages (Including cover page)
- 2. A calculator is permitted by university registration
- 3. All notes and books are not allowed
- 4. Write your name and student ID on every page.
- 5. Write your answer in the space provided

Provided by:

Dr.Atikorn Wongsatanawarid

Asst.Prof.Dr.Wishasanuruk Wechsatol

Department of Mechanical Engineering

Tel. 9123-9124

ชานักทอสนุ _ณ	
งหาวิทยาลัยเทคใน โลยีพระลอบแลลัง	

Name	ID No.	 Seat No

1. A piston-cylinder device has 10 cm in bore size with maximum stroke of 30 cm. At the initial state, 0.5 kg of air with 50 MPa in the piston stays at one-third of the height which touches to the spring applied no force. Then a hot plate heater attached to the bottom to increase temperature to 400°C with spring loaded to the piston. Determine the total boundary work when the piston reach to two-third of the maximum stroke. The air gas contant is 0.287 kJ/kg.K (20 marks)

อานิทหย _{์สังผ}	
--------------------------	--

	_ •
(M)711014 - T	T -
ווו הודוטוטו טיייי	7 HINENA *
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
C ())	ไลยีพระจอมเกล้า ะบง

2. A well-insulated rigid tank contains 2 kg of a saturated liquid-vapor mixture of water at 200 kPa. Initially a half of mass is in the liquid phase. An electric resistor attached to the bottom of the tank is connected to a 110-V source and a current of 10 A flows through the resistor while heat transfers to the inner tank with 10 percent loss. Determine how long it will take to vaporize all the liquid in the tank. (15 marks)

อานักพอกรุ้น บหาวิทอาลัยเทคในใลยีพระจอบเกล้าะนบ:

Name	ID No.	 Seat No

3. Steam enters to a nozzle at inlet temperature of 400°C and 800 kPa of velocity 10 m/s. The outlet measures of temperature 300°C and 200 kPa with heat loss steadily 40 kW during the process. At the inlet area of 800 cm², determine (a) outlet velocity, and (b) compare to the adiabatic nozzle how much percentage we can increase the outlet velocity. (20 marks)

ตาที่ที่ทอสมุล งหาวิทยาลัยเทค ใน ใดยีพระจอบแกล้าธนบุง

Name	ID No	Seat No
Name	ID NO.	 Jeal NO

4. A well-insulated mixing device which requires outlet is saturated liquid water at 120°C. An inlet water at 30°C flows in the chamber with the rate of 5 L/min. There is built-in electric heater inside the chamber operated all along the process with rated of 50 kW. The other inlet is saturated steam of 7 bar,g, determine the steam mass flow rate required to complete the outlet task. An atmospheric pressure could be rounded up to 100 kPa. (15 marks)

0010101	ed water—	Specii	fic volume.	I	Internal energy,			Enthalp	y.		Entropy,	
			n³/kg	kJ/kg				kJ/kg		kJ/kg·K		
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v _r	Sat. vapor, v _s	Sat. liquid, u,	Evap.,	Sat. vapor, u _g	Sat. liquid, h,	Evap.,	Sat. vapor. h _g	Sat. liquid, s,	Evap.,	Sat. vapor, s _g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	9.1556 8.9487 8.7488 8.5559 8.3696	9.1556 9.0249 8.8999 8.7803
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188,43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.1895 8.0152 7.8466 7.6832 7.5247	8,5561 8,4520 8,3511 8,2556
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.3710 7.2218 7.0769 6.9360 6.7989	7.9898 7.9082 7.8296
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.6655 6.5355 6.4089 6.2853 6.1647	7.611 7.543! 7.478
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	6.0470 5.9319 5.8193 5.7092 5.6013	7.2952 7.2382 7.1829
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.2901 5.1901	7.0265 6.9773
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4 9953 4.9002 4.8066 4.7143 4.6233	6.792 6.749 6.706
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996 2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.5335 4.4448 4.3572 4.2705 4.1847 4.0997	6.584 6.544 6.505 6.467

TABLE A	5											
Saturate	ed water-	-Pressure 1	table									
			Specific volume, m³/kg		Internal energy, kJ/kg			Enthalpy, kJ/kg			<i>Entropy,</i> kl/kg + K	
Press., F kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _i	Sat. vapor, v _s	Sat. liquid, u _l	Evap.,	Sat. vapor. u _g	Sat. liquid, h _l	Evap.,	Sat. vapor. h _g	Sat. liquid,	Evap.,	Sat. vapor, s _e
1.0 1.5 2.0 2.5 3.0	5.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003	129.19 87.964 66.990 54 242 45.654	29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2532.9 2539.4	0 1059 0.1956 0.2606 0 3118 0.3543	8.4621 8.3302	8.8270 8.7227 8.6421
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34,791 28,185 19,233 14,670 10,020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2560.7 2574.0 2583.9	0.4224 0.4762 0.5763 0.6492 0.7549	7.9176 7.6738 7.4996	8.3938 8.2501 8.1488
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2617 5 2624.6 2636.1	0.8320 0.8932 0.9441 1.0261 1.0912	6.9370 6.8234 6.6430	7.8302 7.7675 7.6691
75 100 101,325 125 150	91.76 99.61 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0	2675.0 2675.6	1.2132 1.3028 1.3069 1.3741 1 4337	6.0562 6.0476	7.3589 7.3549 7.284
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	520.47 535.08	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.5 2191.0 2181.2 2172.0	2706.3 2711.7	1.4850 1.5302 1.5706 1.6072 1.6408	5.5968 5.5171 5.4453	7.087 7.052
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	572.84 583.89 594.32	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2165.4 2147.7 2140.4 2133.4	2732,0 2735.1	1.7005 1.7274 1.7526	5.2128	6.9650 6.9400 6.917
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.34261 0.31560	639.54 655.16 669.72	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096,6 2085.8 2075,5	2748 1 2752 4 2756.2	1.8205 1.8604 1.8970 1.9308 1.9623	4.9603 4.8916 4.8285	6.820 6.788 6.759
700 750	164.95 167.75	0.001108 0.001111	0.27278 0.25552		1875.6 1865.6	2571.8 2574.0	697.00 709.24	2065.8 2056.4		1.9918 2 0195		
850 900 950	170,41 172,94 175,35 177,66 179,88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	731.00 741.55 751.67	1856.1 1846.9 1838.1 1829.6 1821.4	2579.6	720,87 731,95 742,56 752,74 762,51	2047.5 2038.8 2030.5 2022.4 2014 6	2770.8 2773.0 2775.2	2.0457 2.0705 2.0941 2.1166 2.1381	4.6160 4.5705 4.5273 4.4862	6.6213 6.6213
1200 1300 1400	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	796.96 813.10 828.35	1805.7 1790.9 1776.8 1763.4 1750.6	2585.5 2587.8 2589.9 2591.8 2593.4	781 03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971 9 1958 9 1946 4	2783.8 2786.5 2788.9	2.1785 2.2159 2.2508 2.2835 2.3143	4.3058 4.2428 4.1840	6 521 6 493 6 467
2000 2250 2500	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0,11344 0,099587 0,088717 0,079952 0,066667	906,12 933,54 958,87	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2		1917.1 1889.8 1864.3 1840.1 1794.9	2798.3 2800.5 2801.9	2.3844 2.4467 2.5029 2.5542 2.6454	3.8923 3.7926 3.7016	6,339 6,295 6,255
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.049779 0.039448 0.032449	1082.4 1148.1 1205.8	1557 6 1519.3 1448.9 1384.1 1323 0	2597 0 2589.9	1087.4 1154 5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2800.8 2794.2 2784.6	2.7253 2.7966 2.9207 3.0275 3.1220	3 2731 3.0530 2.8627	6.069 5 973 5 890

NameID N	lo เทาริยองสัยเทคโนโตยีพระจอบเกล้า
----------	------------------------------------

TABLE A-6

Superh	ea <u>ted</u> water											
T	V	и	ħ	s	V	u	ħ	s	V	и	h	5
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg-K
	P =	0.01 MP	a (45.81°	C)*	P =		P = 0.10 MPa (99.61°C)					
Cat !		2437.2		8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6		7.3589
Sat.† 50	14.670 14.867		2592.0	8.1741	3.2403	2403,2	2045.2	7.5931	1.0941	2303.6	2675.0	7,3009
100	17.196		2687.5	8,4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	7.3611
150	19.513		2783.0	8.6893	3.8897	2585.7	2780.2	7.9413		2582.9	2776.6	
200	21.826		2879.6	8.9049	4.3562	2660.0	2877.8	8,1592	2.1724		2875.5	
250	24.136		2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062		2974.5	
300	26,446		3076.7	9.2827	5.2841	2811.6	3075.8		2.6389		3074.5	
400	31.063		3280.0	9.6094	6.2094	2968.9	3279.3		3.1027		3278.6	
500	35.680		3489.7	9.8998	7,1338	3132.6	3489.3			3132.2	3488.7	
600	40.296		3706.3	10.1631	8.0577	3303.1	3706.0			3302.8	3705.6	
700	44.911		3929.9	10.4056	8.9813	3480.6	3929.7		4.4900		3929.4	
800	49.527		4160.6	10.6312	9.9047	3665.2	4160.4			3665.0	4160.2	
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000	5.4137	3856.7	4398.0	9.7800
1000	58,758			11.0429	11.7513	4055.2	4642.7	10,3000	5.8755	4055.0		9,9800
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9	4893.7	10.4897	6.3372	4259.8	4893.6	10.1698
1200	67.989	4470.9	5150.8	11.4132	13.5977	4470.8	5150.7	10.6704	6.7988	4470.7	5150.6	10.3504
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
	P ≃	0.20 MP	a (120.2)	l°C)	P =	°C)	$P \approx 0.40 \text{ MPa } (143.61^{\circ}\text{C})$					
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986	2577.1	2769.1	7.2810	0.63402		2761.2	7.0792	0.47088	3 2564.4	2752.8	6.9306
200	1.08049	2654.6	2870.7	7.5081	0.71643	2651.0	2865.9	7.3132	0.53434	2647.2	2860.9	7.1723
250	1.19890			7.7100	0.79645		2967.9			2726.4	2964.5	7.3804
300	1.31623			7.8941	0.87535		3069.6		0.65489	2805.1	3067.1	
400	1,54934			8.2236	1.03155		3275.5			2964.9	3273.9	
500	1.78142			8.5153	1.18672		3486.6		l	3129.8	3485.5	
600	2.01302			8.7793	1.34139		3704.0			3301.0	3703.3	
700	2.24434			9.0221	1.49580		3928.2			3479.0	3927.6	
800	2.47550			9.2479	1.65004		4159.3			3663.9	4158.9	
900	2.70656			9.4598	1.80417		4397.3			3 3855.7	4396.9	
1000	2.93755			9.6599	1,95824		4642.0			4054.3	4641.7	
1100		4259.6		9.8497	2.11226		4893.1	9.6624		4259.2	4892.9	
1200 1300	3.39938 3.63026			10.0304 10.2029	2.26624 2.42019		5150.2 5413.0	9.8431 10.0157		5 4470 <i>.</i> 2 5 4686.7	5150.0 5412.8	
1000			Pa (151.8		P =		P = 0.80 MPa (170.41°C)					
Sat.	0.37483			6.8207	0.31560		2756.2			2576.0	2768.3	
200		2643.3		7.0610	0.35212		2850.6		ı	3 2631.1	2839.8	
250	0.47443	2723.8	2961.0	7.2725	0.39390	2721.2	2957.6			2715.9	2950.4	
300	0.52261		3064.6	7.4614	0.43442	2801.4	3062.0	7.3740	0.32416	2797.5	3056.9	
350	0.57015	2883.0	3168.1	7.6346	0.47428	2881.6	3166.1	7.5481	0.3544	2 2878.6	3162.2	7.4107
400	0.61731	2963.7	3272.4	7.7956	0.51374	2962.5	3270.8	7.7097	0.3842	9 2960.2	3267.7	7.5735
500	0.71095	3129.0	3484.5	8.0893	0.59200	3128.2	3483.4		0.4433	2 3126.6	3481.3	7.8692
600	0.80409	3300.4	3702.5	8.3544		3299.8	3701 <i>.</i> 7		0.5018	5 3298 <i>.</i> 7	3700.1	8.1354
700	0.89696	3478.6	3927.0	8.5978		3478.1	3926.4	8.5132	0.5601	1 3477.2	3925.3	8.3794
800			4158.4	8.8240		3663.2				3662.5		
900			4396.6	9.0362		3855.1	4396.2			9 3854.5		
1000			4641.4	9.2364		4053.8				1 4053.3		
1100			4892.6	9,4263		4258.8	4892.4			7 4258.3		
1200			5149.8			4469.8						9.3898
1300	1.45214	4686.6	5412.6	9.7797	1.21012	4686.4	5412.5	9.6955	0.9076	1 4686.1	5412.2	9.5625

^{*}The temperature in parentheses is the saturation temperature at the specified pressure.

Properties of saturated vapor at the specified pressure.