BIOS 7747: Machine Learning for Biomedical Applications

Training neural networks

Antonio R. Porras (antonio.porras@cuanschutz.edu)

Department of Biostatistics and Informatics
Colorado School of Public Health
University of Colorado Anschutz Medical Campus

Outline

- Vanishing and exploding gradients
 - Activation functions
 - Batch normalization
 - Weight initialization
- Reducing overfitting
 - Regularization
 - Dropout
- Optimization
 - Algorithms
 - Learning rate
 - Stop criteria

Vanishing and exploding gradients

Let
$$\hat{y} = f(x; w, b) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + b))}$$
, and $L(y, \hat{y}) = y - \log(\hat{y}) - (1 - y)\log(1 - \hat{y})$

Situation 1: the gradient of a node is very large ————— Backpropagated gradients can "explode" and cause numerical instability

Situation 2: the gradient of a node is very small ————— Backpropagated gradients can "vanish" and prevent optimization

It is very important to keep gradients in optimal ranges

Vanishing and exploding gradients

- Gradients are typically very variable between neurons, which makes it very hard to train deep neural networks
 - Both exploding and vanishing problems can occur during training on different neurons

- □ To prevent vanishing and exploding gradients:
 - All neurons have input/outputs within similar ranges
 - All neurons have gradients within similar ranges

All data should have similar distributions

Sigmoid

In Pytorch

torch.nn.Sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$
$$f'(x) = f(x)(1 - f(x))$$

- Limited output range: [0, 1]
- Optimal input and output ranges are different
- Zero-gradient problem if x is not in the linear region

□ Tanh (hyperbolic tangent)

In Pytorch

torch.nn.Tanh

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$f'(x) = \operatorname{sech}(x)^2 = \frac{1}{\cosh(x)^2}$$

- Output data are centered around 0
- Zero-gradient problem if x is not in the linear region

□ ReLU

In Pytorch

torch.nn.ReLU

$$f(x) = \max(0, x)$$

$$f'(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{otherwise} \end{cases}$$

- No gradient issues on activated neurons
- Computationally efficient
- Constant gradient speeds up convergence
- Zero-gradient problem on deactivated neurons

■ Leaky ReLU

$$f(x) = \begin{cases} x & \text{if } x \ge 0\\ 0.01x & \text{otherwise} \end{cases}$$

$$f'(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0.01 & \text{otherwise} \end{cases}$$

Slight slope

• Solves the problem of "dead" neurons with zero-gradient

In Pytorch

torch.nn.LeakyReLU(negative_slope=0.01)

Parametric ReLU

$$f(x) = \begin{cases} x & \text{if } x \ge 0\\ \alpha x & \text{otherwise} \end{cases}$$

$$f'(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ \alpha & \text{otherwise} \end{cases}$$

Slope: α

• α can be learned for an "optimal" gradient from deactivated neurons

In Pytorch

torch.nn.PReLU(num_parameters=1, init=0.25)

ELU (Exponential linear unit)

$$f(x) = \begin{cases} x & \text{if } x > 0\\ \alpha(e^x - 1) & \text{otherwise} \end{cases}$$

$$f'(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ \alpha e^x & \text{otherwise} \end{cases}$$

- α is a constant (hyperparameter)
- Unlike leaky ReLU, the deactivated values converge to a constant: less prone to overfitting

In Pytorch

torch.nn.ELU(alpha=1.0)

- □ The problem of data variability:
 - Operations with inputs or features with high variance will produce outputs of high variance and gradients with high variance
 - Training may be challenging
 - Some activation functions only work well within limited ranges
 - e.g., sigmoid, tanh
 - Other activation functions will not reduce the high variance in the data
 - e.g., ReLU, ELU
 - Batch normalization provides a tool to control the variance in every layer

- □ Batch normalization attempts to create feature maps with zero-mean and unit-variance
- □ If $x = [x^1, x^2, ..., x^d]$ is a set of activated features in a specific layer, the batch-normalized feature values are:

$$\hat{x}^k = \frac{x^k - E[x^k]}{\operatorname{std}(x^k)}$$

Note: $E[x^k]$ and $std(x^k)$ are the average and standard deviation of feature x^k in the training dataset

- Running mean and variances are normally used instead of minibatch-only data during training
 - RunninValue = momentum * learnedValue + (1 momentum) * batchValue

In Pytorch

torch.nn.BatchNorm1d(num_features, momentum=0.1)

 Useful to limit the activation range (e.g., linear activations)

- Useful to keep non-linear activation functions in the adequate range (e.g., sigmoid, tanh)
- Will also limit the range of linear activations

- Helps preventing exploding and vanishing gradients by keeping stability in data ranges
- Reduces overfitting by changing feature values during training
 - Adds "noise" during training
- Because of changing values during training, optimization becomes harder

Weight initialization

- Random initialization using normal or uniform distributions
 - If initialized weights are too small, then the variance of the input signal shrinks as it passes through each layer until it's too tiny to be useful [vanishing signal and gradients]
 - If initialized weights are too large, then the variance of the input signal grows as it passes through each layer until it's too large to be useful [exploding signal and gradients]
- How do we achieve a good weight initialization that preserves data variance?

- Xavier / Glorot initialization
 - Goal: to keep the same variance after every layer:

$$var(y) = var(w_1x_1 + w_2x_2 + \dots + w_nx_n + b)$$

$$var(w_ix_i) = E(x_i)^2 var(w_i) + E(w_i)^2 var(x_i) + var(w_i)var(x_i) \text{ Assuming that inputs and weights follow a Gaussian distributions}$$

$$var(w_ix_i) = var(w_i)var(x_i) \text{ Assuming zero-mean}$$

$$var(y) = var(w_1)var(x_1) + var(w_2)var(x_2) + \dots \text{ Substituting (b is a constant with zero variance)}$$

$$var(y) = N_{input} * var(w_i)var(x_i) \text{ Since all are identically distributed}$$

$$var(w_i) = \frac{1}{N_{input}} \text{ Since we want } var(y) = var(x_i)$$

- Xavier / Glorot initialization
 - Normal Xavier initialization that keeps a stable variance in the forward pass:

$$w \in N\left(0, \frac{1}{N_{input}}\right)$$

• If we want to preserve the variance during backpropagation too:

$$w \in N\left(0, \frac{2}{N_{input} + N_{outputs}}\right)$$

• Xavier uniform distribution:

$$w \in [-x, x], \qquad x = \sqrt{\frac{6}{N_{input} + N_{outputs}}}$$

In Pytorch

torch.nn.init.xavier_uniform_() # Initialize weights torch.nn.init.xavier_normal_() # Initialize weights

- □ Transfer learning:
 - Reuse of previously trained weights for a different task

Task 1

Task 2

□ Transfer learning:

• Two options after initialization:

Train last layers only

- Fewer weights to train will reduce overfitting
- Features in the first layers may not be too relevant for the current problem

□ Transfer learning:

• Two options after initialization:

Train entire network

- More weights to train will be more likely to cause overfitting
- Features will be problem-specific and may provide higher accuracy

Reducing overfitting: Regularization

- Regularization
 - Goal: to improve the performance of the network on unseen data (generalizability) by reducing overfitting
 - The performance improvement on unseen data usually comes at the expense of a worse training performance

Reducing overfitting: Regularization

■ Weight decay:

- L2 (Ridge) regularization: $R(W) = \sum_{\forall i} w_i^2$ Keeps weights uniformly small
- L1 (Lasso) regularization: $R(W) = \sum_{\forall i} |w_i|$ ————— Tends to eliminate weights (deactivate neurons)
- L2 is more commonly used

Reducing overfitting: Regularization

■ Weight decay:

In Pytorch

L1-normalization

```
I1_penalty = torch.nn.L1Loss()
reg_loss = 0
for param in model.parameters():
    reg_loss += I1_penalty(param)
Loss += reg_loss
```

L2-normalization

torch.optim.SGD(..., weight_decay=0)

Dropout

- Goal: To reduce overfitting by minimizing co-adaptation
- Co-adaptation: when multiple neurons extract the same or very similar information from the previous layer
- The problems of co-adaptation:
 - High correlation between extracted features (less meaningful independent information)
 - Extracting the same information in different neurons gives a higher significance to specific features that may only be that significant in the training dataset (promotes overfitting)

Dropout

- Dropout consists in eliminating (zeroing) the values of random neurons at each training step
- Dropout rate (r_D) : fraction of neurons deactivated
- Keep rate: $r_K = 1 r_D$
- ullet To preserve data variance, the activated values of the neurons kept is divided by r_K
- At test time all neurons are preserved

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Dropout

- When enough training data are available, a dropout rate of 50% is optimal
- Dropout can make training much more difficult
- One normally must find a balance between the amount of dropout at each layer, the training and the test performances

In Pytorch

torch.nn.Dropout(p=0.5)

Regular gradient descent approach: $w_t = w_{t-1} - \alpha \nabla L(w_{t-1})$

• May provide good results if gradient estimations are accurate

- Stochastic gradient descent (SGD):
 - Gradients are computed independently for every minibatch and training may be difficult
 - The smaller the minibatch, the harder the training

In Pytorch

torch.optim.SGD(params, Ir)

Stochastic gradient descent (SGD) with momentum:

$$V_t = \beta V_{t-1} + (1-\beta) \nabla L(W_t)$$
 Momentum
$$w_{t+1} = w_t - \alpha V_t$$

- Higher momentum achieves more stable gradients
- $\beta = 0$ is equivalent to regular SGD
- Typical values ≥ 0.9

In Pytorch

torch.optim.SGD(params, Ir, momentum=0)

□ Stochastic gradient descent (SGD) with momentum:

□ Root mean square propagation (RMSProp):

$$S_t = \beta S_{t-1} + (1 - \beta) \left(\nabla L(w_t) \nabla L(w_t) \right)$$

$$w_{t+1} = w_t - \alpha \frac{\nabla L(w_t)}{\sqrt{S_t + \epsilon}}$$

• Gradients are normalized to a uniform scale that is updated with momentum

In Pytorch β torch.optim.RMSprop(params, Ir=0.01, alpha=0.99)

- □ Adaptive momentum estimation (Adam):
 - Combines RMSProp and SGD with momentum

$$V_t = \beta_1 V_{t-1} + (1 - \beta_1) \nabla L(w_t)$$

$$S_t = \beta_2 S_{t-1} + (1 - \beta_2) \left(\nabla L(w_t) \nabla L(w_t) \right)$$

$$w_{t+1} = w_t - \alpha \frac{V_t}{\sqrt{S_t + \epsilon}}$$

In Pytorch

torch.optim.Adam(params, Ir=0.001, betas=(0.9, 0.999))

Example

□ Thoughts:

- Lower training loss is not always the best-case scenario
- One optimizer may provide lower training loss at the expense of higher degree of overfitting
- Many variables and design decisions affect training and comparisons are difficult (normalization, activation functions, dropout [rate], regularization, etc.)

Learning rate

- Hyperparameter that controls how much of the gradient is used to update parameters
- High values may cause divergence from the optimal solution
- Low values will likely cause getting trapped in local minima

Learning rate

- Step decay:
 - Reduction by a fraction every *k* iterations
- Simple continuous learning rate decay:

$$\alpha_t = \frac{\alpha_0}{1 + kt}$$

• Exponential decay:

$$\alpha_t = \alpha_0 e^{-kt}$$

Learning rate

Adaptive learning rate: AdaGrad

$$\alpha^{(i)} = \frac{\alpha_0^{(i)} \quad \text{Parameter gradient}}{\sqrt{\epsilon I + \sum_{\tau=1}^t g_\tau^{(i)2}}}$$

Accounts for total gradient magnitude during optimization

There is a different learning rate for each parameter

- Learning rate
 - Cyclical learning rate

Basic schedule

Triangular schedule with exponential decay

- Stop criterion
 - Fixed number of epochs
 - Problem-, model- and dataset-specific approach
 - Large number can ensure convergence

- Stop criterion
 - Threshold on loss function changes
 - The number of iterations will be different on every model, problem and dataset
 - Can significantly reduce the number of iterations

- Stop criterion
 - Maximum in validation accuracy
 - Requires a representative validation dataset
 - Reduces the size of the dataset used for training (overfitting is more likely) at the expense of having a direct estimation of the amount of overfitting

