• A Better CMOS Gain Stage:

- > No body effect issue
- ➤ However, there are *some*design issues
- $ightharpoonup M_n$ -M_p have same magnitude of the threshold voltage:

$$V_{TN0} = |V_{TP0}|$$

> Process transconductance parameters:

$$k'_{N} = \mu_{n}C'_{ox}$$
 and $k'_{P} = \mu_{p}C'_{ox}$

Circuit Schematic

- ightharpoonup Oxide capacitance per unit area $\left(C'_{ox} = \varepsilon_{ox}/t_{ox}\right)$ same for both devices, since they have same t_{ox}
- \triangleright However, $\mu_n \sim 2\mu_p$ (for Si)
- ightharpoonup Thus, $k'_N = 2k'_P$
- ► Ideal DC bias point of the circuit is $V_I = V_0 = V_{DD}/2$ (yields $V_{GSn} = V_{GSp}/2$ and $V_{DSn} = V_{DSp}/2$)
- Can be achieved only if the stage is *completely* balanced (same threshold voltage magnitude and same device transconductance parameter)
- \triangleright Thus, k_N and k_P need to be matched

- \triangleright Can be achieved by making $(W/L)_p = 2(W/L)_n$
- ightharpoonup If *CLM effect* is *not that important*, or if $\lambda_n = \lambda_p$, then this procedure works out *just fine*
- However, if $\lambda_n \neq \lambda_p$, then for balancing the circuit, the following relation must hold (show!):

$$k_{P}(1 + \lambda_{p}V_{DD}/2) = k_{N}(1 + \lambda_{n}V_{DD}/2)$$

- \succ Under this condition, $k_N \neq k_P$, but the circuit will be *perfectly matched and balanced*
- > Known as: Stage unmatched by nature, but matched by performance

> ac Analysis:

ac Midband Equivalent

Simplified Equivalent

> By inspection:

$$A_{v} = -(g_{mn} + g_{mp})R_{0}$$

$$= -(g_{mn} + g_{mp})/(g_{0n} + g_{0p})$$

$$R_{0} = r_{0n}||r_{0p} = (g_{0n} + g_{0p})^{-1}$$

- \triangleright Very high A_v and R_0
- > Extremely popular and widely used circuit
- Sometimes, *level shifters* are used at the *input* for *better ease* of application

• Actively Loaded DA:

BJT Implementation

MOS Implementation