CLRS 17-2

Peter Danenberg

October 15, 2008

a. Search through the preliminary elements of $A_0, \ldots, A_{\lg n-1}$, finding $A_i[0] \le x$; search A_i for x: if x is not found, search the next $A_{i < j < \lg n}$ such that $A_j[0] \le x$ or declare "not found."

Worst case, must search through all $A_0, \ldots, A_{\lg n}$ arrays in $\Theta(\lg n)$; each of which must be binary-searched in $\Theta(\lg n)$ (since already sorted): for a total of $\Theta(\lg^2 n)$.

b. Insert an element as follows:

```
\begin{array}{ll} \operatorname{INSERT}(A,x) \\ 1 & \text{if } \lceil \lg n + 1 \rceil > k \\ 2 & \text{then Allocate new array } A_{k+1} \\ 3 & k \leftarrow k+1 \\ 4 & \text{while } i < k \text{ and } n[i] = 1 \\ 5 & \text{do Merge}(A_i, A_{i+1}) \\ 6 & n[i] \leftarrow 0 \\ 7 & i \leftarrow i+1 \\ 8 & n[i] \leftarrow 1 \end{array}
```

Worst case merge and remerge arrays in $\Theta(2^{\lg n}) \in \Theta(n)$ time; alternatively, merge sorted lists in $\Theta(n)$:

$$\sum_{i=0}^{k-1} 2^i = \left(\frac{2^{k+1} - 1}{2 - 1}\right) \tag{1}$$

$$\in \Theta(2^k) \tag{2}$$

$$\in \Theta(n)$$
 (3)

Since, for every bit set, there are worst-case $\Theta(\lg n)$ merge operations; we can define modify the potential function in the counter example followingly:

$$\Phi(D_i) - \Phi(D_{i-1}) \le \lg n \cdot (b_{i-1} - t_i + 1) - \lg n \cdot b_{i-1} \tag{4}$$

$$= \lg n \cdot (t_i - 1) \tag{5}$$

And analyze the amortized complexity:

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \tag{6}$$

$$= \lg n \cdot t_i + \lg n \cdot (1 - t_i) \tag{7}$$

$$=\lg n\tag{8}$$

The amortized cost of each Insert is therefore $\Theta(\lg n)$.

c. For Delete(x): find A_j , the first full array; and A_i , the array to which x belongs. Remove an element y from A_j and replace x in A_i with it; distribute the remaining items from A_j into A_0, \ldots, A_{j-1} .

Worst case analysis: $\Theta(\lg n)$ to find A_j ; $\Theta(\lg^2 n)$ to find A_i ; $\Theta(2^{\lg n}) \in \Theta(n)$ to insert y into A_i ; and $\Theta(2^{\lg n-1}) \in \Theta(n)$ to distribute A_j to its underarrays: for $\Theta(n)$ total in the worst case.