CHAPTER 9:

Decision Trees

- Induce a general rule by observing labeled instances
- Structure
 - Each internal node specifies a test on attributes
 - Branch represents an attribute value or condition
 - Leaves represent a class

Example: Tree Uses Nodes, and Leaves

General Idea

- Select best Attribute for root node. Construct a branch for every possible value of that feature.
- Split data into mutually exclusive subsets for each branch
- Repeat this process recursively using only the portion of data arriving at each node
- Stop when training examples can be classified and create a leaf node with the class decision

- Internal decision nodes
 - Univariate: Uses a single attribute, x_i
 - Numeric x_i: Binary split: x_i > w_m
 - Discrete x_i: n-way split for n possible values
 - Multivariate: Uses all attributes, x
- Leaves
 - Classification: Class labels, or proportions
 - Regression: Numeric; r average, or local fit

Best Split: Selecting an attribute

- Information Gain (used in ID3, C4.5)
 - Information" an attribute gives us about the class.
- GiniMeasure (used in CART): $1-\sum_{i=k}^{K} p_k^2$ K = number of classes
- Misclassification error : $1 \max_{k} p_k$

There are others criteria to select best split

Information gain

- attributes that perfectly partition should give maximal information
- It measures the reduction in entropy
 - Entropy: (im)purity in an arbitrary collection of examples

$$I_m = -\sum_{i=1}^K p_m^i \log_2 p_m^i$$

 N_m instances reach m, N_m^i belong to C

• Probability of class C_i:

$$\hat{P}(C_i \mid \mathbf{x}, m) \equiv p_m^i = \frac{N_m^i}{N_m}$$

Node m is pure if pⁱ_m is 0 or 1

- If node m is pure, generate a leaf and stop, otherwise split and continue recursively
- Impurity after split: N_{mj} of N_m take branch j. N_{mj}^i belong to C_i

$$\hat{P}(C_{i} | \mathbf{x}, m, j) \equiv p_{mj}^{i} = \frac{N_{mj}^{i}}{N_{mj}}$$

$$I'_{m} = -\sum_{i=1}^{n} \frac{N_{mj}}{N_{m}} \sum_{i=1}^{K} p_{mj}^{i} \log_{2} p_{mj}^{i}$$

- Find the variable and split with min impurity (among all variables -- and split positions for numeric variables)
 - High entropy: uniform distribution
 - Low entropy: varied distribution (more desirable)

Outlook	Temp	Humidity	Windy	Play?
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No


```
GenerateTree(\mathcal{X})
     If NodeEntropy(\mathcal{X})< \theta_I /* eq. 9.3
         Create leaf labelled by majority class in \mathcal{X}
         Return
      i \leftarrow \mathsf{SplitAttribute}(\mathcal{X})
      For each branch of x_i
         Find \mathcal{X}_i falling in branch
         GenerateTree(\mathcal{X}_i)
SplitAttribute(X)
      MinEnt← MAX
      For all attributes i = 1, \ldots, d
            If x_i is discrete with n values
                Split \mathcal{X} into \mathcal{X}_1, \ldots, \mathcal{X}_n by \boldsymbol{x}_i
                e \leftarrow SplitEntropy(\mathcal{X}_1, \dots, \mathcal{X}_n) /* eq. 9.8 */
                If e < MinEnt MinEnt \leftarrow e; bestf \leftarrow i
            Else /* \mathbf{x}_i is numeric */
                For all possible splits
                      Split \mathcal{X} into \mathcal{X}_1, \mathcal{X}_2 on \boldsymbol{x}_i
                      e \leftarrow SplitEntropy(\mathcal{X}_1, \mathcal{X}_2)
                      If e < MinEnt MinEnt \leftarrow e; bestf \leftarrow i
      Return bestf
```


When no more attributes to split on

- When you have too few examples
 - To minimize variance or generalization error
- When minimum node impurity is reached

When the node is pure.

Continuous values

Partition into discrete set of intervals

 Consider all possible splits and pick the one that gives minimum impurity.

Pruning Trees

- Remove subtrees for better generalization (decrease variance)
 - Prepruning: Early stopping
 - Postpruning: Grow the whole tree then prune subtrees which overfit on the pruning set
- Prepruning is faster, postpruning is more accurate (requires a separate pruning set)

Rule Extraction from Trees

- R1: IF (age>38.5) AND (years-in-job>2.5) THEN y = 0.8
- R2: IF (age>38.5) AND (years-in-job \leq 2.5) THEN y = 0.6
- R3: IF (age \leq 38.5) AND (job-type='A') THEN y = 0.4
- R4: IF (age \leq 38.5) AND (job-type='B') THEN y = 0.3
- R5: IF (age \leq 38.5) AND (job-type='C') THEN y = 0.2

TROJANS

Multivariate Trees

