

SCC131: Digital Systems

Topic 3: information coding 2

From decimal to binary...

- Decimal-oriented circuitry is too complex to implement in hardware
 - Can we find a better radix than 10?
- It's "easy" (according to Alan Turing!) to design circuitry with two states, on and off
 - Using a radix of 2 is called binary (or base 2)
 - Only two digits: 0 and 1

Most Significant

Least Significant

Bit

n x 128	n x 64	n x 32	n x 16	n x 8	n x 4	n x 2	n x 1
n x 2 ⁷	n x 2 ⁶	n x 2 ⁵	n x 2 ⁴	n x 2 ³	n x 2 ²	n x 2 ¹	n x 2 ⁰

We call a binary digit a bit, and 8 bits a byte

Bit

What changes with binary?

- Everything works exactly as we saw earlier, except that we use multiples of 2 rather than multiples of 10
- Remember, each column can contain a number between 0 and radix-1 (inclusive)
 - So, in binary each column can only contain either a 0 or a 1 (for decimal: 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9)

128	64	32	16	8	4	2	1
0	0	1	0	1	0	0	1

Worked example of decimal to binary number conversion

- Convert 35_{decimal} to binary
 - Write out the powers of 2:... 64 32 16 8 4 2 1
 - Highlight the column with the largest number that is smaller than the number we are converting:
 64 32 16 8 4 2 1
 - Subtract this number from the number we are converting:
 35-32 = 3
 - Iterate the above two steps until the subtraction results in 0:
 64 32 16 8 4 2 1
 64 32 16 8 4 2 1
 - Map each highlighted column to a 1, the rest to a 0: $64\ 32\ 16\ 8\ 4\ 2\ 1 \rightarrow 100011$ (6-bit binary)
 - So $35_{decimal} = 100011_{binary}$

Worked example of decimal to binary number conversion

- Convert 189_{decimal} to binary
 - Write out the powers of 2:... 128 64 32 16 8 4 2 1
 - Highlight the column with the largest number that is smaller than the number we are converting:
 - **128** 64 32 16 8 4 2 1
 - Subtract this number from the number we are converting:
 189 128 = 61
 - Iterate the above two steps until the subtraction results in 0:

```
128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1 (32: 61 – 32 = 29)

128 64 32 16 8 4 2 1 (16: 29 – 16 = 13)

128 64 32 16 8 4 2 1 (8: 13 – 8 = 5)

128 64 32 16 8 4 2 1 (4: 5 – 4 = 1)

128 64 32 16 8 4 2 1 (1: 1 – 1 = 0)
```

- Map each highlighted column to a 1, the rest to a 0:
 128 64 32 16 8 4 2 1 → 10111101 (8-bit binary)
- So $189_{decimal} = 10111101_{binary}$

Worked example of binary to decimal number conversion

- Convert 100011_{binary} to decimal
 - Write out the powers of two, as many as we have digits in our source number:

32 16 8 4 2 1

— Highlight the columns where there is a 1 in our source number:

32 16 8 4 **2 1**

– Add up the highlighted numbers:

$$32+2+1=35$$

- So $100011_{binary} = 35_{decimal}$

Worked examples of binary to decimal number conversion

- Convert 10111101_{binary} to decimal
 - Write out the powers of two, as many as we have digits in our source number:

128 64 32 16 8 4 2 1

— Highlight the columns where there is a 1 in our source number:

128 64 **32 16 8 4** 2 **1**

- Add up the highlighted numbers:
 - 128+32+16+8+4+1 = 189
- So $10111101_{\text{binary}} = 189_{\text{decimal}}$

Worked example of binary addition

Add 100011_{binary} to 101011_{binary}

```
100011
101011 +
555555
```

- Start at rightmost end: $1 + 1 = 2_{decimal} = 10_{binary}$
 - So, "carry the 1"and put a 0 in the rightmost result column
- Now do next-right column: $1 + 1 + 1_{carry} = 3_{decimal} = 11_{binary}$
 - So, "carry the 1"and put a 1 in the next-right result column
- Now the next column: $0 + 0 + 1_{carry} = 1_{decimal} = 1_{binary}$
 - So, no carry, and put a 1 in the result column
- And so on...

Worked example: fixed point decimal to fixed point binary

Lets convert 11.375₁₀ to binary.

Final answer :1011.0110₂.

- Can we remove 0.25 from 0.375? Yes
- we get 0.125 = 1
 - Can we remove 0.125 from 0.125? Yes => 1And we are left with 0.125-0.125 = 0

1/16=

0.0625

Let's try some more radices...

Binary (base 2)

n x 128	n x 64	n x 32	n x 16	n x 8	n x 4	n x 2	n x 1
n x 2 ⁷	n x 2 ⁶	n x 2 ⁵	n x 2 ⁴	n x 2 ³	n x 2 ²	n x 2¹	n x 2 ⁰

Octal (base 8)

n x 32768	n x 4096	n x 512	n x 64	n x 8	n x 1
n x 8 ⁵	n x 8 ⁴	n x 8 ³	n x 8 ²	n x 8 ¹	n x 8 ⁰
$= n \times 2^{15}$	$= n \times 2^{12}$	$= n \times 2^9$	$= n \times 2^6$	$= n \times 2^3$	$= n \times 2^0$

Hexadecimal (base 16)

n x 65536	n x 4096	n x 256	n x 16	n x 1
n x 16 ⁴	n x 16 ³	n x 16 ²	n x 16 ¹	n x 16 ⁰
$= n \times 2^{16}$	$= n \times 2^{12}$	$= n \times 2^8$	$= n \times 2^4$	$= n \times 2^0$

Notice the nice, regular, binary (2^n) multipliers for octal and hex

Decimal to octal (via binary)

$$41_{\text{decimal}} = 32_{\text{decimal}} + 8_{\text{decimal}} + 1_{\text{decimal}}$$

Groups of 3 bits $(0 \times 4) + (0 \times 2) + (0 \times 1)$ $(1 \times 4) + (0 \times 2) + (1 \times 1)$ $(0 \times 4) + (0 \times 2) + (1 \times 1)$

Decimal to hexadecimal (via binary)

$$41_{\text{decimal}} = 32_{\text{decimal}} + 8_{\text{decimal}} + 1_{\text{decimal}}$$

S	128	64	32	16	8	4	2	1
bit	0	0	1	0	1	0	0	1
Groups of 4 bits		1				1	ļ	
35	8	4	2	1	8	4	2	1
d'n	0	0	1	0	1	0	0	1
Gro							3	
	(0 x 8)	+ (0 x 4) +	- (1 x 2) +	(0 x 1)	(1 x 8)	+ (0 x 4) +	- (0 x 2) +	(1 x 1)

 $= 29_{\text{hex}}$

Hexadecimal digits beyond 0..9

- We can hold numbers bigger than 9 in four binary digits (bits)
 - So we need more digit symbols for hex!

8's	4's	2's	1' s
1	0	1	1

$$(1 \times 8) + (0 \times 4) + (1 \times 2) + (1 \times 1) = 11_{decimal}$$

We could have chosen any symbols for the extra digits, but A to F are "convenient"

Why octal and hexadecimal?

- You may be wondering what is the point of octal and hex!
- Octal and hex, especially hex, are used very widely as a human-friendly way of dealing with binary bit patterns.
- You'll soon get to thinking of unwieldy things like: 11111111111111111(base 2),
 - as more straightforward things like: FFFF(base 16)
 - (This is a 16-bit pattern; recall that one hex digit corresponds to a group of 4 bits; so 4 hex digits)

Negative numbers in binary

- Approaches seen so far:
 - L n-1 bits of magnitude
 - 1. Sign and magnitude→
 - 2. Excess *n*
 - Same approach as seen previously: we code as number + excess

16	8	4	2	1
24	2 ³	2 ²	2 ¹	2 ⁰

• E.g. excess 16 for 5 columns (base 2) [for b columns, excess $2^b/2 = 2^{b-1}$ works well (as seen previously) so for b=5 columns, use excess 2^4 = excess 16]

Arithmetic in binary

• Everything seems to work as expected...

Dec	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

2 _{dec}	0	1	0	
+ 1 _{dec}	0	0	1	
	0	1	1	= 3

...But we have to be wary of our old friend *overflow*

... And here's a problem with excess n

- We already saw a couple of problems with sign and magnitude
 - We sacrifice a digit column for the sign indicator
 - We have two representations for zero
- Well, here's more bad news: there's a problem with excess n when it comes to arithmetic

$$x - y \neq x + (-y)$$
 !!??

The problem with excess *n*, *contd*.

• Let's see if (0 + -1) is as expected (in excess 4) $= 0_{\text{decimal}} + -1_{\text{decimal}}$ $= 100_{\text{excess4}} + 011_{\text{excess4}}$ $= 111_{\text{excess4}} \quad [\text{no overflow...}]$ $= 3_{\text{decimal}}$

"to code m using excess 4 we store m + 4"

This is very unfortunate: if we can't treat x - y as x + -y
we will need extra hardware (i.e. hardware for
subtraction as well as for addition)!

Introducing 2's complement

 Two's complement is achieved by (for negative number):

Step 1: starting with the equivalent positive number.

Step 2: inverting (or flipping) all bits – changing every 0 to 1, and every 1 to 0;

Step 3: adding 1 to the entire inverted number, ignoring any overflow.

Calculate 2's complement

Negative Number	Corresponding Positive binary	Invert bits	Add 1
-1	001	110	111
-2	010	101	110
-3	011	100	101
-4	100	011	100

2's complement

A positive number's 2's complement is itself

2's complement contd.

So, let's try...

So, **x** + -**y** seems to be same as **x** - **y** ...so, adder hardware can handle both addition and subtraction

IEEE 754 Floating Point

- This is the standard floating point representation that is used by almost all modern computers
- The mantissa is coded using sign and magnitude
 - Although we don't store the most significant bit (see later)
- The exponent is coded in excess n
 - For an exponent held in b bits, $n = (2^{b-1}) 1$ Different from what we've used so far
 - So, use excess 127 for an 8-bit exponent... $[(2^{8-1}) 1 = 2^7 1 = 127]$
- There are multiple formats available for different "precisions": half, **single**, double, quadruple

The "single precision" format (32 bits)

Normalising the mantissa: a space saving optimisation (saves 1 bit)

- IEEE 754 always normalises the mantissa to
 1.xxx... and just stores the fractional part
 - Leaves the "1." part as implicit: there's actually no need to store it explicitly!
- (It is *always possible* to normalise such that the most significant [first] bit is a 1) Assumed bit, not

explicitly represented

= $(-1)^{sign} \times 2^{(exponent-127)} \times (1 + mantissa)$

Convert decimal -> IEEE 754

10111111, 01000000, 00000000, 00000000

(Just for fun, let's look at that result from a different perspective...)

8+2+1=11
$$\rightarrow$$
 B

8+4+2+1=15 \rightarrow F

Result is: BF40 0000₁₆

= 4

1011, 1111, 0100, 0000, 0000, 0000, 0000, 0000

10111111, 01000000, 00000000, 00000000

Convert IEEE 754 decimal

01000010, 10101010, 00000000, 00000000

+1.328125 x 2⁶
= +1.328125 x 64
= 85_{decimal}

"Special" values in IEEE 754

- In practice, some bit patterns never appear...
 - So we can use them to indicate special cases, such as:

Meaning	Exponent	Mantissa
Zero	0	0
Infinity (∞)	28-1 (all 8 bits set)	0
Not a Number (NaN)	28-1 (all 8 bits set)	Non zero

("NaN" is used to indicate results for which there is no valid outcome, such as division by zero)

Equality testing with floating point numbers

 With numbers coded as floating point, we must never write code like this:

```
if (x == y) \{...\}
or, if (0.1 + 0.2 == 0.3) \{...\}
```

- Why not?
 - A possible rounding error resulting from lack of precision means that we can never be confident that two numbers that "should be" equal are actually coded as equal...
- Instead, we should take a cautious approach:

```
if (abs(x-y) < error_tolerance) {...}</pre>
```

Don't believe me?

• 0.1 + 0.2 = 0.3 ??

```
$ more check.c
#include <stdio.h>
main () {
    if ((0.1 + 0.2) == 0.3)
          printf ("ok");
    else printf ("oops!");
$ cc check.c -o check
$./check
oops!
```

Maybe Java is cleverer?

• 0.1 + 0.2 = 0.3 ??

```
C:\> more check.java
class check {
    public static void main ( String[] args) {
        if ((0.1 + 0.2) == 0.3)
               System.out.println ("ok");
        else System.out.println ("oops");
C:\> javac check.java
C:\> java check
oops
```

Summary

- When switching consideration from decimal to non-decimal number systems, it's "just" a matter of working with a different radix
- Octal and hex are useful mental tools for people
- We have discovered a problem with addition/subtraction in excess n: can't treat subtraction as addition of a negative
 - Two's complement is the fix for this
- We understand the IEEE 754 standard for representing floating point numbers
 - and, incidentally, we have seen in this a direct application of the excess n and sign-and-magnitude coding techniques
- Care is needed in using floating point numbers