PROBLEM 25

The rectified linear unit (ReLU) is a popular activation function for hidden layers. The activation function is a ramp function $f(z) = \max(0, z)$ where z = wx. This has the effect of simply thresholding its input at zero. Unlike the sigmoid, it does not saturate near 1 and is also simpler in gradient computations, resulting in faster convergence of SGD. Furthermore, ReLUs can allow networks to find sparse representations, due to their thresholding characteristic, whereas sigmoids will always generate non-zero values. However, ReLUs can have zero gradient when the activation is negative, blocking the backpropagation of gradients.

Here you use a very small neural network: it has one input unit, taking in a value x, one hidden unit (ReLU), and one output unit (sigmoid). We include a bias term of -0.2 on the sigmoid unit.

We use the following quantities in this problem:

$$z_1 = w_1 x$$
 $a_1 = \text{ReLU}(z_1)$
 $z_2 = w_2 a_1 - 0.2$
 $y = \sigma(z_2)$

The weights are initially $w_1 = \frac{1}{10}$ and $w_2 = -1$.

Let's consider one training example. For that training case, the input value is x=2 (as shown in the diagram), and the target output value t=1. We're using the following loss function:

$$E = \frac{1}{2}(y - t)^2$$

Please supply numeric answers; the numbers in this question have been constructed in such a way that you don't need a calculator. Show your work in case of mis-calculation in earlier steps.

(a) What is the output of the hidden unit for this input?

$$a=\mathsf{ReLU}(z_1)=\mathsf{max}(0,w_1x)=\mathsf{max}(0,\frac{1}{10}\times 2)=\frac{1}{5}$$

(b) What is the output of the output unit for this input?

$$y = \sigma(w_2 \max(0, w_1 x)) = \sigma(-1 \times \frac{1}{5} - 0.2) = \sigma(-.4) \approx \frac{2}{5}$$

(c) What is the loss, for this training example?

Solution:

$$E = \frac{1}{2}(y - t)^2 = \frac{1}{2}(\frac{2}{5} - 1)^2 = 9/50$$

(d) Write out an abstract symbolic expression for derivative of the loss with respect to w_1 as repeated applications of the chain rule. For example, for the derivative of the loss with respect to w_2 , we would write $\frac{\partial E}{\partial w_2} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial z_2} \frac{\partial z_2}{\partial w_2}$.

Solution:
$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial z_2} \frac{\partial z_2}{\partial a} \frac{\partial a}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

(e) Write the expression for each partial derivative in the chain rule expansion from the previous part. For example, $\frac{\partial y}{\partial z_2} = y(1-y)$.

Solution:
$$\frac{\partial E}{\partial y} = y - t$$

$$\frac{\partial y}{\partial z_2} = y(1 - y)$$

$$\frac{\partial z_2}{\partial a} = w_2$$

$$\frac{\partial a}{\partial z_1} = \begin{cases} 1 & \text{if } w_1 x > 0 \\ 0 & \text{if } w_1 x < 0. \end{cases} = I[w_1 x > 0] \text{ (indicator function)}$$

$$\frac{\partial z_1}{\partial w_1} = x$$

(f) What is the derivative of the loss with respect to w_1 , for this training example?

Solution:

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial z_2} \frac{\partial z_2}{\partial a} \frac{\partial a}{\partial z_1} \frac{\partial z_1}{\partial w_1} =$$

$$(y-t)\times y(1-y)\times w_2\times I[w_1x>0]\times x=$$

$$(\frac{2}{5} - 1) \times \frac{23}{55} \times -1 \times 1 \times 2 = 36/125 = .288$$

(g) What would the update rule for w_1 be? With $\eta =$

Solution:

$$w_1 := w_1 - \eta \frac{\partial \mathsf{E}}{\partial w_1} := w_1 - .288\eta$$

(h) If η is large enough, w_1 will update from its current value of 0.1 to a negative value. Assume our new value is $w_1 = -0.1$. What will be the output of the output unit for an input of x = 2?

Solution: The ReLU will output 0, since w_1 is negative, so only the bias term will remain in the sigmoid and the output will be $\sigma(-0.2)$

(i) What will happen when we try to update the weight, using this new example, for w_1 for any value of target? Why?

Solution: The ReLU gate is closed and gradients will not flow backwards through the ReLU unit. w_1 will not be updated with SGD. In fact, if the training examples are all positive, the input to the ReLU will be always be negative, effectively killing the ReLU.

(j) Is it a bad idea to have a ReLU activation at the output layer?

Solution: Yes, if the input to the ReLU is mostly negative, it will fail to backpropagate gradients through the entire network.

(k) Consider the following activation function:

$$f(z) = \begin{cases} z & \text{if } z > 0\\ \alpha z & \text{if otherwise.} \end{cases}$$

for some small alpha, e.g. $\alpha = 0.01$, and z = wx. Does this address the problem of dying ReLUs?

Solution: ReLU units don't backpropagate any error for negative inputs. The leaky ReLU allows a small error to backpropagate even with negative input.

Write out an abstract symbolic expression for the derivative of the loss with respect to w_1 for the network above with two output units, as repeated applications of the chain rule.

Solution:
$$\begin{split} E_{total} &= \frac{1}{2}(y_1 - t_1)^2 + \frac{1}{2}(y_2 - t_2)^2 = E_1 + E_2 \\ &\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_1}{\partial w_1} + \frac{\partial E_2}{\partial w_1} \\ &\frac{\partial E_1}{\partial w_1} = \frac{\partial E_1}{\partial y} \frac{\partial y}{\partial a_1} \frac{\partial a_1}{\partial w_1} \end{split}$$
 Similarly, for E₂

Multi-output (multi-class) networks are used in many settings such as object recognition, where we are trying to classify an image as being one of K objects. Each of the K possible objects would correspond to an output unit in the network. For this purpose, the sigmoid activation and squared loss are replaced by softmax activation and cross-entropy loss.

The softmax is given by:

$$y_i = \frac{e^{x_i}}{\sum_{j=1}^K e^{x_j}} \ .$$

(m) When K > 3, why might sigmoid units be a bad idea?

Solution: With sigmoid output units for multiple classes, we cannot guarantee that at most one output unit activates. The normalization in the softmax makes this happen