MATEMÁTICA UNINOVE

Módulo - IV

Função Polinomial

Divisão de polinômios

Objetivo: Ampliar as habilidades sobre divisão de polinômios

Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

Situação-problema

O que fazer para simplificar a expressão $\frac{2x^3+5x^2+7x+6}{2x+3}$?

Solução: Para simplificar a expressão, precisamos dividir o numerador pelo denominador e substituir o numerador pelo produto do quociente pelo divisor da divisão dos polinômios. Veja a solução:

$$2x^3 + 5x^2 + 7x + 6 = (x^2 + x + 6)(2x + 3)$$

$$\frac{2x^3 + 5x^2 + 7x + 6}{2x + 3} = \frac{(x^2 + x + 6)(2x + 3)}{2x + 3} = x^2 + x + 6$$

Para entender melhor os procedimentos utilizados nesta resolução, precisamos recordar os procedimentos da divisão de polinômios. É justamente sobreeste tema que trataremos.

Dados dois polinômios, não nulos, P(x) e D(x), então ao dividir o polinômio P(x) pelo polinômio D(x), obtemos um par de polinômios Q(X) e R(x), chamados, respectivamente, quociente e resto da divisão de P(x) por D(x), de modo que:

Veja um esquema gráfico do procedimento da divisão:

(dividendo)
$$P(x) \quad D(x) \quad (divisor)$$

$$Q(x) \quad (quociente)$$
 (resto) $R(x)$

Exemplo: Vamos dividir o polinômio da situação-problema, ou seja, vamos dividir $P(x) = 2x^3 + 5x^2 + 7x + 6$ por D(x) = 2x + 3.

Solução: Obtemos um monômio que multiplicado por D(x), elimina o monômio de maior potência do dividendo, por meio de uma subtração:

$$2x^{3} + 5x^{2} + 7x + 6$$

$$-2x^{3} - 3x^{2}$$

$$2x + 3$$

$$x^{2}$$

$$2x^{2} + 7x + 6$$

Realizamos o procedimento, com o polinômio obtido da subtração do processo anterior:

$$2x^{3} + 5x^{2} + 7x + 6$$

$$-2x^{3} - 3x^{2}$$

$$2x + 3$$

$$x^{2} + x$$

$$2x^{2} + 7x + 6$$

$$-2x^{2} - 3x$$

$$4x + 6$$

Como o grau do resto ainda não é menor que o divisor, repetimos oprocedimento com o polinômio obtido da subtração do processo anterior:

$$2x^{3} + 5x^{2} + 7x + 6$$

$$-2x^{3} - 3x^{2}$$

$$2x + 2$$

$$2x^{2} + 7x + 6$$

$$-2x^{2} - 3x$$

$$4x + 6$$

$$-4x - 6$$

Como o resto é igual a 0, então a divisão é exata. Assim, $2x^3 + 5x^2 + 7x + 6 = (x^2 + x + 6)(2x + 3)$

Divisão do polinômio P(x) pelo binômio D(x) = x - a

Este tipo de divisão é um caso particular das divisões de polinômios, muito utilizados no dia a dia.

Observe que, como o grau do binômio D(x) = x - a é igual a 1, então o resto da divisão é de grau zero, isto é, um polinômio constante, tipo R(x) = r. Além disso, se o grau de P(x) é maior o igual a 1, então o grau do quociente é igual ao grau de P(x) - 1

Divisibilidade de P(x) por x - a

O polinômio P(x) é divisível por x-a, isto é, a divisão será exata, se, e somente se, o valor do polinômio P, quando x=a, for igual a zero.

Cálculo do quociente utilizando o dispositivo de Briot-Ruffini

Além do método da chave, podemos utilizar o dispositivo de Briot-Ruffini para dividir um polinômio P(x) por um binomio (x - a).

Vamos apresentar, a seguir, os passos para utilizar o dispositivo de Briot-Ruffini ao dividir um polinômio P(x) por um binomio (x - a).

Seja $P(x) = a_3x^3 + a_2x^2 + a_1x^1 + a_0x^0 e D(x) = (x - a)$, então:

I) Colocamos o número a e os coeficientes de P(x) em uma tabela.

а	a_3	a_2	a_1	a_0	

II) Na linha seguinte, colocamos q₂, que é igual a a₃.

a	a_3	a_2	a_1	a_0	
	q_2				

III) Ao lado de q_2 , calculamos q_1 , que é $q_1 = q_2 \times a + a_2$.

a	a_3	a_2	a_1	a_0	
	q_2	q_1			

IV) Ao lado de q_1 , calculamos q_0 , que é $q_0 = q_1 \times a + a_1$.

а	a_3	a_2	a_1	a_0	
	q_2	q_1	q_0		

V) Ao lado de q0, calculamos R, que é $R = q_0 \times a + a_0$.

а	a_3	a_2	a_1	a_0	
	q_2	q_1	q_0	R	

Veja agora alguns exemplos, utilizando o dispositivo:

1) Dividir
$$P(x) = 4x^2 + 6x^2 + 8x + 10 \text{ por } (x-2)$$

$$a_3 = q_2 = 4$$

2	4	6	8	10
	4	14		

$$14 = (4 \times 2) + 6$$

2	4	6	8	10
	4	14	36	

$$36 = (14 \times 2) + 8$$

2	4	6	8	10
	4	14	36	82

Resto =
$$82 = (36 \times 2) + 10$$

Assim, o quociente é $Q(x) = 4x^2 + 14x + 36$, e o resto é R(x) = 82.

2) Dividir
$$P(x) = 2x^4 - 3x^3 + x^2 - 2x + 1 \text{ por } (x + 2)$$

Resolução:

Neste caso, o quociente é $Q(x) = 2x^3 - 7x^2 + 15x - 32$, e o resto é R(x)= 65.

Divisões Sucessivas

Vamos recordar:

Um polinômio P(x) é divisível por um polinômio D(x) se o Resto $R(x)\equiv 0$.

Desta maneira, se Q(x) é o quociente da divisão, então P(x) = D(x) Q(x)

Além disso, P(x) é divisível por (x - a), se, e somente se, a é a raiz de P(x).

Assim, P(a) = 0.

Ampliando estas afirmações, considere um polinômio P(x) de grau maior quel e $a, b \in C$, com $a \ne b$. Quando P(x) é divisível por (x - a) e o

quociente da divisão é divisível por (x - b), temos que P(x) é divisível por (x - a)(x - b).

Generalizando, esta afirmação vale para mais de dois fatores distintos: P(x) é divisível por $(x-a_1) \cdot (x-a_2) \cdot \cdots \cdot (x-a_n)$, em que a_1, a_2, \cdots, a_n são números distintos, se, e somente se, a_1, a_2, \cdots, a_n são raízes de P(x).

Exercícios Resolvidos

1) Verifique se $P(x) = x^3 - 2x^2 + 2x - 1$ é divisível por $(x^2 - 1)$, por (x + 1) e por (x - 1). Além disso, verifique se -1 e 1 são raízes de P(x).

Solução:

Como $(x^2 - 1) = (x + 1)(x - 1)$, então P(x) é divisível por $(x^2 - 1)$ se -1 e 1 são raízes de P(x). Desta forma:

P(1) =
$$1^3 - 2(1^2) + 2(1) - 1 = 0$$
, então P(x) é divisível por (x - 1)
P(-1) = $(-1)^3 - 2(-1)^2 + 2(-1) - 1 = -6$, então P(x) não é divisível por (x+1).
Portanto P(x) = $x^3 - 2x^2 + 2x - 1$ não é divisível por ($x^2 - 1$).

2) Mostre que $P(x) = x^3 - 2x^2 - 11x + 12$ é divisível por $(x^2 - 5x + 4)$.

Resolução:

Sabemos que $ax^2 + bx + c = (x - x_1)(x - x_2)$, em que x_1 e x_2 são as raízes de $ax^2 + bx + c$, então:

$$\Delta = 25 - 16 = 9$$

$$x = \frac{5 \pm 3}{2} \rightarrow x_1 = 4$$
; $x_2 = 1$

Assim:
$$x^2 - 5x + 4 = (x - 1)(x - 4)$$

Dividindo P(x), separadamente, por (x-1) e (x-4), temos:

Como o resto da divisão é igual a zero, então P(x) é divisível por (x-1).

Como o resto da divisão é igual a zero, então P(x) é divisível por (x-4). Portanto, como P(x) é divisível por (x-1) e por (x-4), então P(x) é divisível por $(x^2 - 5x + 4)$.

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

REFERÊNCIAS

IEZZI, Gelson. *Matemática – Ciência e aplicações –* Ensino Médio – 3° ano. 3. ed. São Paulo: Ática, 2010.

KIYUKAWA, Rokusaburo. *Os elos da Matemática Ensino Médio* – 3º ano. São Paulo: Saraiva, 2010.

MACHADO, Antonio dos Santos. *Matemática na escola do segundo grau.* 3º ano. São Paulo: Atual, 2001