

Facultad Ingeniería y Ciencias Agropecuarias Carrera Ingeniería en Producción Industrial EIP 546/Mecanismos

Período académico 2016-2

1. Identificación

Número de sesiones: 48 Sesiones

Número total de horas de aprendizaje: 120 h= 48 presenciales + 72 h de trabajo

autónomo.

Créditos - malla actual: 3

Profesor: Ing. Omar Flor Unda. Msc.

Correo electrónico del docente (Udlanet): o.flor@udlanet.ec

Coordinador: Ing. Christian Chimbo

Campus: Queri

Pre-requisito: EIP 390 EIP 430 Co-requisito:

Paralelo: 1

Tipo de asignatura:

Optativa	
Obligatoria	X
Práctica	

Organización curricular

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	X
Unidad 3: Titulación	

Campo de formación:

Campo de formación							
Fundamentos teóricos	Praxis profesional	Epistemología y metodología de la investigación	Integración de saberes, contextos y cultura	Comunicación y lenguajes			
	X						

2. Descripción del curso

Se propone generar en el estudiante el criterio básico para el diseño y/o selección de elementos mecánicos elementales, para formar un sistema complejo y compuesto que permita solucionar necesidades planteadas.

3. Objetivo del curso

Elaborar diseños y construir sistemas mecánicos sencillos de transmisión de potencia empleando principios fundamentales de funcionamiento, aplicación, tipos de carga,

Sílabo pregrado

materiales y dimensiones, debido a la necesidad de satisfacer requerimientos de maquinaria en la industria y así solucionar problemas de procesos mecánicos reales.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
Analiza la aplicación de tecnologías manufactureras adecuadas para procesos productivos en la industria	7. Analiza, selecciona e integra con efectividad las tecnologías manufactureras (maquinaria, materiales, energía, etc.) adaptadas a cada proceso productivo, utilizando herramientas de alta tecnología y coordinando con especialistas del área (mecánica, eléctrica, automatismos, etc.).	` ,

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Reporte de progreso 1 35% Sub componentes:

- 1. Mapas mentales (evaluación formativa)
- 2. Portafolio de ejercicios (evaluación formativa).
- 3. Caso de estudio4. Prueba de control12%.
- 5. Prueba de progreso 1 20%

Reporte de progreso 2 35% Sub componentes

- 1. Mapas mentales (evaluación formativa)
- 2. Portafolio de ejercicios (evaluación formativa)

3. Caso de estudio 4%
4. Visita Técnica 1%
5. Prueba de control 10%
6. Prueba de progreso 2 20%

Evaluación final 30% Sub componentes

- 1. Caso de estudio 7%:
- 2. Portafolio (evaluación formativa)
- 3. Examen final 23%

Asistencia: A pesar de que la asistencia no tiene una nota cuantitativa, es obligatorio tomar asistencia en cada sesión de clase. Además, tendrá incidencia en el examen de recuperación.

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

En progreso 1:

- Mapas mentales (ESCENARIO DE APRENDIZAJE AUTONOMO, VIRTUAL evaluación formativa): El estudiante debe realizar una lectura de correspondiente a los temas indicados en cada resultado de aprendizaje, y luego realizará un mapa mental (ordenador gráfico) de cada uno de ellos, el cual se subirá a la plataforma virtual para registrar su entrega y evaluar el mismo, en las fechas previstas en el sílabo
- Portafolio (ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL evaluación formativa): Ejercicios a realizar durante los temas indicados, conforman el portafolio que se desarrollará a lo largo de cada progreso, y se indicarán el total de ejercicios a resolver para evidenciar los temas aprendidos, y deben ser enviados al moodle al finalizar cada período.
- Caso de estudio 3% (ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL, VIRTUAL): (2 presentaciones) El estudiante realizará las labores indicadas en la plataforma virtual para el progreso del caso de estudio de diseño y construcción de máquina simple. Enviará a la plataforma los avances realizados y realizará exposiciones de cada una de ellas. (se adjunta rúbrica)
- **Prueba de control 12% (ESCENARIO DE APRENDIZAJE PRESENCIAL)**: Acumulativa de temas desarrollados hasta el 70% del período (se adjunta rúbrica)
- **Prueba de progreso 1 20% (ESCENARIO DE APRENDIZAJE PRESENCIAL):**Acumulativa de los temas desarrollados en cada período. (Se adjunta rúbrica)

En progreso 2:

- Mapas mentales (ESCENARIO DE APRENDIZAJE AUTONOMO, VIRTUALevaluación formativa): El estudiante debe realizar una lectura de correspondiente a los temas indicados en cada resultado de aprendizaje, y luego realizará un mapa mental (ordenador gráfico) de cada uno de ellos, el cual se subirá a la plataforma virtual para registrar su entrega y evaluar el mismo, en las fechas previstas en el sílabo
- Portafolio (ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL evaluación formativa): Ejercicios a realizar durante los temas indicados, conforman el portafolio que se desarrollará a lo largo de cada progreso, y se indicarán el total de ejercicios a resolver para evidenciar los temas aprendidos, y deben ser enviados al moodle al finalizar cada período.
- Caso de estudio 4%(ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL, VIRTUAL): El estudiante realizará las labores indicadas en la plataforma virtual para el progreso del caso de estudio de diseño y construcción de máquina simple. Se presentará el prototipo de máquina en funcionamiento para verificar problemas presentados, se subirá a la plataforma virtual el informe de construcción del prototipo (se adjunta rúbrica)
- **Visita Técnica 1%(ESCENARIO DE APRENDIZAJE PRESENCIAL):** Informe de visita técnica
- **Prueba de control 10% (ESCENARIO DE APRENDIZAJE PRESENCIAL)**: Acumulativa de temas desarrollados hasta el 70% del período (se adjunta rúbrica)
- **Prueba 20% (ESCENARIO DE APRENDIZAJE PRESENCIAL):** Acumulativa de los temas desarrollados en cada período. **(**Se adjunta rúbrica**)**

Evaluación final:

- Caso de estudio 7%(ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL, VIRTUAL): El estudiante realizará las labores indicadas en la plataforma virtual, se presentará el prototipo de máquina en funcionamiento y se expondrá el proyecto final, se subirá a la plataforma virtual el informe final del proyecto (se adjunta rúbrica)
- Portafolio (ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL evaluación formativa): Ejercicios a realizar durante los temas indicados, conforman el portafolio que se desarrollará, y se indicarán el total de ejercicios a resolver para evidenciar los temas aprendidos, y deben ser enviados al moodle al finalizar el período de evaluación final. (Se adjunta rúbrica)
- **Examen final 23%(ESCENARIO DE APRENDIZAJE PRESENCIAL):** Implica la evaluación de toda la asignatura.
- 6.1. *Escenario de aprendizaje presencial*. Se efectuarán talleres en clase y realimentación de problemas generados en el portafolio de ejercicios que se resuelven en casa mediante la página virtual, trabajos grupales y exposiciones, y pruebas para complementar y asegurar el aprendizaje y el conocimiento práctico, evaluando periódicamente su esfuerzo.

6.2. Escenario de aprendizaje virtual.

El curso consiste en un aprendizaje continuo mediante estudio de caso final, lecturas programadas semanalmente sobre los temas especificados en la asignatura y presentados debidamente en el aula virtual, mapas mentales y organizadores gráficos relacionados a las lecturas, que permitan consolidar el aprendizaje de los temas a desarrollar durante el curso. Además se presentarán videos en el aula virtual para sustentar el conocimiento.

6.3. Escenario de aprendizaje autónomo.

Se realizaran lecturas semanales sobre temas pertinentes a la materia en el sistema de aulas virtuales, para estimular el conocimiento teórico y la aplicación de este en un trabajo práctico de estudio de casos, además de los trabajos de investigación y lectura para presentarlos en exposiciones continuas, portafolio de ejercicios, mapas mentales y organizadores gráficos, que permitan al estudiante evaluar su aprendizaje de forma periódica y continua, permitiendo un resultado de aprendizaje escalonado durante el semestre

7. Temas y subtemas del curso

RdA	Temas	Subtemas
1. Analiza la aplicación de tecnologías	1. Fundamentos del	1.1 Introducción a la ciencia de
manufactureras adecuadas para	Diseño y Análisis de	los mecanismos
procesos productivos en la industria.	Mecanismos	1.1.1 Topología de los
		mecanismos.
		1.2.2 Clasificación de los
		Mecanismos.
		1.1.3Grado de libertad
		1.1.4Condición de Grashof
		1.1.5 Inversión Cinemática y
		curvas de acoplador
		1.2 Análisis Cinemático
		1.2.1Análisis de movimiento
		1.2.2 Análisis de Velocidad y
		aceleración
		1.2.3 Ventaja mecánica
		1.2.4 Curvas de acoplador
		1.2.5 Aceleración de centros de
		gravedad
		1.2.6 Mecanismos de cuatro
		barras
		1.2.7 Tipos y aplicaciones de los
		mecanismos
		1.2.8 Análisis Dinámico
1. Analiza la aplicación de tecnologías	2. Síntesis de	2.1 Introducción a la síntesis de
manufactureras adecuadas para	Mecanismos	mecanismos 2.1.1 Generación
procesos productivos en la industria.		de funciones

		2420
		2.1.2 Generación de
		movimiento
		2.1.3 Generación de trayectoria
1. Analiza la aplicación de tecnologías	3. Levas y engranajes	3.1 Introducción al diseño y
manufactureras adecuadas para		aplicaciones de levas
procesos productivos en la industria.		3.1.1 Diagrama de
		desplazamiento del seguidor
		3.1.2 Diseño analítico de levas
		3.1.3 Leyes para movimiento de
		seguidor
		3.2 Estudio de los engranajes y
		ruedas dentadas
		3.2.1 Fundamentos Transmisión
		de potencia
		3.2.2 Tipos de Ruedas dentadas
		3.2.3 Tren de engranajes
		3.2.4 Consideraciones de
		fuerzas y resistencia en
		engranajes
1. Analiza la aplicación de tecnologías	4. Transmisión mediante	4.1 Definiciones de
manufactureras adecuadas para	elementos mecánicos	transmisiones de potencia por
procesos productivos en la industria.	flexibles	elementos mecánicos flexibles.
		4.2 Selección de bandas en V.
		4.3 Selección de bandas planas.
		4.4 Selección de Catarinas y
		Cadenas.
1. Analiza la aplicación de tecnologías	5. Ejes de transmisión de	5.1 Introducción y definiciones
manufactureras adecuadas para	Potencia	de ejes
procesos productivos en la industria.		5.2 Diseño estático de ejes.
		5.3 Diseño a fatiga de ejes
1. Analiza la aplicación de tecnologías	6. Juntas permanentes y	6.1 Juntas permanentes
manufactureras adecuadas para	no permanentes	6.1.1 Sujetadores Roscados
procesos productivos en la industria.	permanentes	6.1.2 Resortes
		6.1.3 Rodamientos
		6.1.4 Cuñas - Chaveteros
		J.1.4 Carias Chaveteros

8. Planificación secuencial del curso

	Semanas: 1 - 6 (7 de marzo del 2016 al 16 de abril del 2016)								
Rd A		Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo		MdE/Producto/ fecha de entrega		
1		Fundamento s del Diseño y Análisis de Mecanismos	1.1 Introducción a la ciencia de los mecanismos 1.1.1 Topología de los mecanismos. 1.2.2 Clasificación de los Mecanismos. 1.1.3Grado de libertad 1.1.4Condición de Grashof 1.1.5 Inversión Cinemática y	1. Presentación magistral: diseño en ingeniería mecánica, funciones requisitos, criterios de evaluación, cargas combinadas, teorías de falla	1.1 a 1.3 Lectura sobre diseño mecánico (Mott, 2006, pp 9-16) 1.4 Solución de ejercicios propuestos en el portafolio de	1. 2.	Mapa Mental sobre Diseño mecánico Organizador (Fecha de entrega: Semana 1: 11/03/2016) Portafolio de ejercicios: solución de ejercicios sobre Esfuerzos y cargas		

		curvas de acoplador		estática y fatiga.	ejercicios		combinadas,
		1.2 Análisis Cinemático	2.	Taller práctico en	(Budynas, 2008,		transmisiones
		1.2.1Análisis de movimiento		clase: Trabajo	pp 123-136)		mediante
		1.2.2 Análisis de Velocidad y		grupal solución de	pp 120 100)		elementos
		aceleración		ejercicios	1.1 a 1.4 Caso de		mecánicos
				propuestos sobre	estudio: análisis		flexibles, y
		1.2.3 Ventaja mecánica		cargas	de problemas a		transmisión de
		1.2.4 Curvas de acoplador		combinadas.	soluciona, lluvia		potencia mediante
		1.2.5 Aceleración de centros	3.	Caso de estudio:	de ideas		ruedas dentadas
		de gravedad	٥.	El docente plantea	ac racus		(Fecha de entrega:
		1.2.6 Mecanismos de cuatro		las condiciones			Semana 6:
		barras		del problema final			15/04/2016)
		1.2.7 Tipos y aplicaciones de		de diseño y		3.	Caso de estudio:
		los mecanismos		construcción de		٥.	entrega y
		1.2.8 Análisis Dinámico		máquina simple			exposición de
				para la solución			problema a
				de necesidades			solucionar
				reales			mediante el diseño
				presentadas.			y construcción de
			4.	Presentación			máquina simple.
				magistral:			(mínimo dos
				transmisión de			propuestas) (1%
				potencia			de progreso uno)
				mediante			(Fecha de entrega:
				elementos	2.1 a 2.4 Lectura		Semana 2:
				mecánicos	sobre		18/03/2016)(Rúbr
				flexibles:	transmisiones		ica)
				selección de	mediante	4.	Mapa Mental sobre
1				bandas planas,	elementos		Transmisiones
	_			bandas en V,	mecánicos		mediante
	2.			Catrinas y	flexibles		elementos
	Transmisiones		_	Cadenas.)	(Budynas, 2008,		mecánicos flexibles
	mediante		5.	Taller práctico en	pp 860-863)		(Fecha de entrega:
	elementos			clase: Trabajo	(Mott, 2006, pp		Semana 3:
	mecánicos flexibles			grupal solución de ejercicios	283-296)	5.	24/03/2016) Caso de estudio:
	Hexibles			propuestos sobre		Э.	entrega y
				selección de	2.1 a 2.4		exposición de
				transmisiones de	Solución de		lluvia de ideas para
				potencia	ejercicios		el diseño de
				mediante	propuestos en el		maquina simple.
				elementos	portafolio de		Descripción de
				mecánicos	ejercicios		funcionamiento,
				flexibles.	(Mott, 2006, pp		procesos (mínimo
			6.	Caso de estudio:	299), 17-10, 17-		dos propuestas)
				estudio de lluvias	18, 17-19 ((2% de progreso
				de ideas para cada	Budynas, 2008,		uno) (Fecha de
				diseño a generar.	pp 906-907		entrega: Semana 5:
			7.	Presentación			08/04/2016)(Rúbr
				magistral:			ica)
				transmisión de		6.	Mapa Mental sobre
				potencia			Transmisiones
				mediante ruedas			mediante ruedas
				dentadas			dentadas (Fecha de
			8.	Taller práctico en			entrega: Semana 4:
				clase: Trabajo		7	01/04/2016)
				grupal solución de		7.	Prueba de control
				ejercicios			(12%) (Rubrica) (Fecha
				propuestos sobre ruedas dentadas			
			9.	Caso de estudio:			de entrega: Semana 4: 01/14/2016)
			7.	avance del	3.1 a 3.5 Lectura	8.	4: 01/14/2016) Prueba de
				proyecto	sobre	Ο.	progreso 1(20%)
				proyecto	transmisiones	(R11	brica) (Fecha de
		l			a anomiorones	Livu	bireaj (i cena de

1	3. Transmisión de potencia mediante ruedas dentadas		mediante ruedas dentadas (Mott, 2006, pp 305-324) 3.1 a 3.5 Solución de ejercicios propuestos en el portafolio de ejercicios (Budynas, 2008, pp 761) 8.37, (Mott, 2006, pp 299) 3.1 a 3.5 Caso de estudio: avance del proyecto	entrega: Semana 6: 15/04/2016)

	Semana: 7 - 13 (18 de abril del 2016 a 3 de junio del 2016)										
RdA	Tema	Sub tema	Ac	tividad/	Tarea/		MdE/Producto/				
			est	rategia de clase	trabajo	fec	ha de entrega				
					autónomo						
1	4. Uniones no permanentes	4.1 Selección de sujetadores	1.	Presentación magistral: Selección de	4.1 a 4.3 Lectura sobre	1.	Mapa Mental sobre sujetadores roscados, tornillos				
	pormanentes	roscados. 4.2 Tornillos de transmisión de potencia. 4.3 Selección de resortes helicoidales. 4.4 Selección		sujetadores roscados, tornillos de trasmisión de potencia, selección de resortes helicoidales, cojinetes, cuñas	Sujetadores roscados, tornillos de transmisión de potencia, selección de resortes (Budynas, 2008, pp	2.	de potencia y cojinetes. Organizador gráfico (Fecha de entrega: Semana 7: 22/04/2016) Mapa Mental sobre Cojinetes y cuñas.				
		de cojinetes de contacto rodante. 4.5 Selección de cuñas.	3.	Taller práctico en clase: Trabajo grupal solución de ejercicios propuestos sobre Uniones no permanentes Caso de estudio: presentación	396-405, 445, 500 a 508) 4.4 a 4.5 Lectura sobre Cojinetes y cuñas (Mott, 2006, pp 494-499)	3.	Organizador gráfico (Fecha de entrega: Semana 9: 06/05/2016) Portafolio de ejercicios: solución de ejercicios sobre Uniones no permanentes y diseño estático de ejes (Fecha de				

			de prototipos de máquinas simples. Estudio de problemas y mejoras	4.1 a 4.5, 5.1 a 5.2 Solución de ejercicios propuestos en el portafolio de ejercicios (Budynas, 2008, pp 445, 543, 388-393) 2(Mott, 2006, pp 528) Caso de estudio: avance y construcción del prototipo	entrega: Semana 13: 03/06/2016) 4. Caso de estudio: entrega y exposición de prototipos de máquina simple. (4% de progreso uno) (Fecha de entrega: Semana 13: 03/06/2016 5. Prueba de control 2 (10%): (rubrica)(fecha de entrega semana 10: 13/05/2016) 6. Prueba de progreso 2(20%) (Rubrica) (Fecha de entrega: Semana 13: 03/06/2016) 7. Evaluación de visita técnica industrial (1%) (Fecha de entrega: Semana 12: 26/05/2016)
1	5. Ejes de transmisión de Potencia	5.1 Introducción y definiciones de ejes 5.2 Diseño estático de ejes.	 4. Presentación magistral: Ejes de transmisión de potencia, introducción y diseño de ejes: estático 5. Taller práctico en clase: Trabajo grupal solución de ejercicios propuestos sobre Diseño estático de ejes VISTA TECNICA INDUSTRIAL 		

	Semana: 14 - 16 (de 6 de junio del 2016 al 24 de junio del 2016)											
RdA	Tema	Sub	Actividad/ estrategia	Tarea/	MdE/Producto/							
		tema	de clase	trabajo	fecha de entrega							
				autónomo								
5	5. Ejes de	5.3	 Presentación 	4.3	Portafolio de							
	transmisión	Diseño	magistral: Ejes	Solución de	ejercicios:							
	de Potencia	a fatiga	de transmisión	ejercicios	solución de							
		de ejes	de potencia,	propuestos	ejercicios sobre							
			introducción y	en el	Diseño a fatiga de							

diseño de ejes: fatiga Taller práctico en clase: Trabajo grupal solución de ejercicios propuestos sobre Diseño a fatiga de ejes	portafolio de ejercicios (Budynas, 2008, pp (388-393) Caso de estudio: Entrega de la monografía, exposición final del proyecto	ejes de ejes (Fecha de entrega: Semana 16: 24/06/2016) 3. Caso de estudio: entrega y exposición de proyecto final de máquina simple máquina simple. (7% de progreso uno) (Fecha de entrega: Semana 16: 24/06/2016)(Rúb rica) 4. Examen final (23%) (Rubrica) (Fecha de entrega: Semana de
--	---	---

9. Normas y procedimientos para el aula

- 9.1. El docente ingresará al aula de clase, y en el momento que cierre la puerta y comience la misma, no se permitirá ingresar a estudiantes que estén atrasados.
- 9.2. Se prohíbe el uso de celular durante las sesiones de clase, estudiante que se encuentre empleando el mismo, se le solicitará que salga del aula y se registrará inasistencia.
- 9.3. El portafolio de ejercicios se entregará vía plataforma virtual en cada período, y se evaluará de acuerdo a la ponderación indicada en el sílabo, y su entrega se limitará a las condiciones y tiempos que la plataforma indique. No se receptarán entregas atrasadas.
- 9.4. Los mapas conceptuales, resultado de las lecturas propuestas por el docente sobre los temas a tratar en clase, serán subidas a la plataforma virtual para que se registre su evidencia de aprendizaje, y se evaluará de acuerdo a la ponderación indicada en el sílabo, y su entrega se limitará a las condiciones y tiempos que la plataforma indique. No se receptarán entregas atrasadas.
- 9.5. Las entregas de los avances y tareas asignadas para el caso de estudio se presentarán en las fechas previstas, no se aceptará entregas atrasadas de las mismas. La presencia de cada estudiante en las mismas es obligatoria, caso contrario (si no estaría presente el momento de la defensa) se evaluará con la nota mínima.
- 9.6. La entrega y defensa del proyecto final es obligatoria para cada estudiante. Su entrega es requisito en la asignatura, si no lo presenta no podrá aprobar la asignatura.
- 9.7. No se aceptarán la toma de pruebas atrasadas.

Sílabo pregrado

10. Referencias bibliográficas

10.1. Principales.

1. Budynas, R., Keith, J. (2008). *Diseño en Ingeniería Mecánica de Shigley*. (8va. Ed.). México, México: Mc Graw – Hill.

10.2. Referencias complementarias.

- 1. Mott, R. (2006) *Diseño de Elementos de Máquinas.* (4ta ed.). México. Pearson Educación
- 2. Larburu, N. (2001). Máquinas Prontuario: Técnicas, Máquinas, Herramientas. Madrid, España: Thomson Editores Spain Paraninfo S.A.
- 3. Shigley, J. (2002). Diseño en Ingeniería Mecánica. México, México: Mc Graw-Hill

11. Perfil del docente

Nombre de docente: Omar Flor Unda

"Maestría en Automática, Robótica y Telemática (Escuela Técnica de Ingenieros, Sevilla-españa), Ingeniero Mecánico (Escuela Politécnica del Ejército). Experiencia en:

- 1. Diseño de estructuras, elementos de máquina y simulación.
- 2. Sistemas Neumáticos e hidráulicos
- 3. Automatización, Robótica y programación.
- 4. Selección de Materiales de ingeniería.
- 5. Educación Superior: ESPE-UIDE-UDLA

Contacto: omar.flor@udla.edu.ec, o.flor@udlanet.ec

Teléfono: 3981000 ext 488

Horario de atención al estudiante:

Lunes 15:40-16-40 Martes 11:20 - 12:20 Miercoles 12:25 - 13:25 Jueves: 14:35 - 16:35