Chapter 1: Elements of Probability

1. Notation

Intersection: $(\cap)', (\cdot)',$ "and"

Union: 'U', '+', "or"

Complement of A: \overline{A} or A^c or A^*

2. Probability

Probability of an event A

$$P(A) = \frac{\text{number of elements in } A}{\text{number of elements in } \Omega} = \frac{|A|}{|\Omega|}$$

Probability of a complement event A^c

$$P(A^c) = 1 - P(A)$$

3. Properties

Table 1: Properties of probabilities.

Name	Property
A or B	$P(A \cup B) = P(B \cup A) = P(A) + P(B) - P(A \cap B)$
A and B	$P(A \cap B) = P(B \cap A) = P(A) + P(B) - P(A \cup B)$
A exclude B	$P(A \setminus B) = P(A) - P(A \cap B)$
Independence	P(AB) = P(A)P(B)
De Morgan's laws	$P(\overline{A \cdot B}) = P(\overline{A} + \overline{B})$ $P(\overline{A + B}) = P(\overline{A} \cdot \overline{B})$
A given B	$P(A B) = \frac{P(A \cap B)}{P(B)}$
Conditional complement	$P(\overline{A} B) = 1 - P(A B)$
Changing order	$P(A B) = \frac{P(B A)P(A)}{P(B)}$
Total B	$P(B) = P(B A)P(A) + P(B A^c)P(A^c)$

(Nguyên tắc đếm: Trường hợp là cộng, đi tiếp là nhân)

Chapter 2: Random Variables (RV)

Note:

- cdf: cumulative distribution function.
- pmf: probability mass function.
- pdf: probability density function.
- Expectation (Expected value or Mean): $\mu = E[X]$.
- Variance: $\sigma^2 = \text{Var}[X] = \text{E}[X^2] \text{E}^2[X]$.
- Standard deviation: σ .

1. Cumulative Distribution Function

A cumulative distribution function (c.d.f or cdf) of a random variable X, evaluated at x, is the probability that X will take a value less than or equal to x, or

$$F(x) = P(X \le x)$$

If a random variable X is absolutely continuous univariate distributions then the pdf of X is

$$f(x) = \frac{d}{dx}F(x)$$

2. Probability Mass Function

A probability mass function (p.m.f or pmf) is a function which **gives** us **directly probability** of a **Discrete RV** at a certain value. Denote that

$$P(X = x_i) = p(x_i)$$

Normalized condition

$$\sum_{X} P(X = x_i) = p(x_1) + p(x_2) + \dots = 1$$

Pmf to cdf

$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$$

3. Probability Density Function

A probability density function (p.d.f or pdf) is a function that **gives** us **density** of a **Continuous RV**. Denote that f(x) or p(x).

Normalized condition

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

Pdf to cdf

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(\tau) d\tau$$

4. Expectation and Variance of RV

4. 1. Definition

 Table 2: Definition of Expectation and Variance.

	Discrete RV	Continuous RV
Expectation	$E[X] = \sum_{X} X_i p(x_i)$	$E[X] = \int_X x p(x) dx$
Variance	$Var[X] = E[X^2] - E^2[X]$	$Var[X] = E[X^2] - E^2[X]$

4. 2. Properties

Table 3: Properties of expectation.

Name	Property
Constant	E[c] = c
Linearity	E[aX + bY] = aE[X] + bE[Y]
Independent	$E[XY] = E[X] \cdot E[Y]$

Table 4: Properties of variance.

Name	Property
Constant	Var[c] = 0
Invariant	Var[X + c] = Var[X]
Non-Linearity	$Var[aX + c] = a^2 Var[X]$
Independent	Var[X + Y] = Var[X] + Var[Y]

5. Special Discrete RV

5. 1. Bernoulli RV

Discrete RV *X* is called Bernoulli RV with parameter *p* if its pmf is

$$X: \begin{cases} P(X = 0) = 1 - p \\ P(X = 1) = p \end{cases}$$

Denote: $X \sim \text{Ber}(p)$.

Property: E[X] = p; Var[X] = p(1-p).

5. 2. Geometric RV

Discrete RV with X is number of independent trials until the first success, each is Ber(p) is called Geometric RV.

Denote: $X \sim \text{Geo}(p)$.

Property: E[X] = 1/p; $Var[X] = (1-p)/p^2$.

The pmf of Geometric RV

$$P(X = i) = (1 - p)^{i-1}p, \quad i \ge 1$$

5.3. Binomial RV

Discrete RV with X is number of successes in n independent trials, each is Ber(p) is called Binomial RV.

Denote: $X \sim \text{Bino}(n, p)$.

Property: E[X] = np; Var[X] = np(1-p).

Probability of event that X = i

$$P(X = i) = \binom{n}{i} p^{i} (1 - p)^{n-i}$$

Probability of event that $a \le X \le b$

$$P(a \le X \le b) = \sum_{i=a}^{b} {n \choose i} p^{i} (1-p)^{n-i}$$

5.4. Poisson RV

Discrete RV X is called Poisson RV with parameter λ if the pmf is (Poisson RV can be considered as Binomial RV with large n and small p and $\lambda = np$)

$$P(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

Denote: $X \sim \text{Poisson}(\lambda)$.

Property: $E[X] = \lambda$; $Var[X] = \lambda$.

6. Special Continuous RV

6. 1. Uniform RV

Continuous RV X is uniform RV on [a, b] if its pdf is

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & \text{otherwise} \end{cases}$$

Denote: $X \sim \text{Uni}[a, b]$.

Property: E[X] = (a + b)/2; $Var[X] = (b - a)^2/12$.

6.2. Exponential RV

Continuous RV X is called exponential RV with parameter λ if its pdf is

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

Denote: $X \sim \varepsilon(\lambda)$.

Property: $E[X] = 1/\lambda$; $Var[X] = 1/\lambda^2$.

This random variable is used for modeling arrival time (or date) of some event.

6.3. Normal RV

Continuous RV X is normally distributed with parameters μ and σ^2 if its pdf is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

Denote: $X \sim \mathcal{N}(\mu, \sigma^2)$.

Property: $E[X] = \mu$; $Var[X] = \sigma^2$.

Probabilities

1.
$$P(X < a) = P\left(\frac{X - \mu}{\sigma} < \frac{a - \mu}{\sigma}\right) = P(Z < z_0)$$

2.
$$P(a \le X < b) = P(z_1 \le Z < z_2) = P(Z < z_2) - P(Z < z_1)$$

6. 3. 1. Calculating z-value

- 1. For FX570, VinaCal II:
 - Go to statistics mode: MODE \rightarrow 3 \rightarrow AC.
 - $P(Z < z_0)$: $P(z_0)$, Shift $\to 1 \to 5 \to 1$.
 - $P(Z > z_0)$: $R(z_0)$, Shift $\rightarrow 1 \rightarrow 5 \rightarrow 3$.
- 2. For FX580:
 - Go to statistics mode: MODE \rightarrow 6 \rightarrow AC.
 - OPTN $\rightarrow \mathbb{J} \rightarrow$ "4: Norm Dist".
 - $P(Z < z_0)$: $P(z_0)$, Press 1.
 - $P(Z > z_0)$: $R(z_0)$, Press 3.
- 6. 3. 2. Sum of Normal RV $X_i \sim \mathcal{N}(\mu, \sigma^2)$:

$$E[X] = \sum_{n} E[X_i] = n\mu$$

$$Var[X] = \sum_{n} Var[X_i] = n\sigma^2$$

6. 3. 3. Average of Normal RV $X_i \sim \mathcal{N}(\mu, \sigma^2)$:

$$E[\bar{X}] = E[X] = \mu$$

$$Var[\bar{X}] = \frac{1}{n^2} \sum_{n} Var[X_i] = \frac{\sigma^2}{n}$$

The above properties for sum and average is only applied for identical independent normal random variables X_i , i = 0,1,...,n. If X_i are difference only the first equal sign are valid.

6.3.4. Chebyshev's Inequality

Let X be a random variable with finite expected value μ and finite non-zero variance σ^2 . Then for any real number k > 0,

$$P(|X - \mu| \ge k\sigma) \ge \frac{1}{k^2}$$

Chapter 3: Statistic

1. Introduction

 Table 5: Statistic parameters.

	Sample	Population
Mean	\overline{X}	μ
Variance	s ²	σ^2
Standard deviation	S	σ

Data Processing for Single Row/Column Data:

- 1. For FX570, VinaCal II:
 - Insert data: MODE \rightarrow 3 \rightarrow 1.
 - \bar{X} : Shift $\rightarrow 1 \rightarrow 4 \rightarrow 2$.
 - $s: Shift \rightarrow 1 \rightarrow 4 \rightarrow 4$.
- 2. For FX580:
 - Insert data: MODE \rightarrow 6 \rightarrow 1.
 - OPTN \rightarrow 3.

2. Linear Regression

2. 1. Cartesian Data $(Y_i = \beta_0 + \beta_1 X_i)$

$$\begin{split} & \bar{X}, \bar{Y} \rightarrow S_{XY}, S_{XX}, S_{YY}, SS \rightarrow \beta_0, \beta_1 \\ & S_{XY} = \sum X_i Y_i - n \bar{X}. \bar{Y}; \quad S_{XX} = \sum X_i^2 - n \bar{X}^2; \quad S_{YY} = \sum Y_i^2 - n \bar{Y}^2 \\ & SS = \frac{S_{XX}.S_{YY} - S_{XY}^2}{S_{XX}} \\ & \beta_1 = \frac{S_{XY}}{S_{XX}}; \quad \beta_0 = \bar{Y} - \beta_1 \bar{X} \end{split}$$

2. 2. Modeling Linear Regression

Table 6: Instructions for modeling non-linear model.

Function Form	Transformation	Linear Regression	
Exponential: $y = \beta_0 e^{\beta_1 x}$	$\hat{y} = \ln y$	$\hat{y} = \ln \beta_0 + \beta_1 x$	
Power: $y = \beta_0 x^{\beta_1}$	$\hat{y} = \log y; \ \hat{x} = \log x$	$\hat{y} = \log \beta_0 + \beta_1 \hat{x}$	
Reciprocal: $y = \beta_0 + \beta_1 \frac{1}{x}$	$\hat{x} = \frac{1}{x}$	$y = \beta_0 + \beta_1 \hat{x}$	
Hyperbolic: $y = \frac{x}{\beta_0 + \beta_1 x}$	$\hat{y} = \frac{1}{y}; \ \hat{x} = \frac{1}{x}$	$\hat{y} = \beta_1 + \beta_0 \hat{x}$	

3. Parameter Estimation

 $\begin{array}{ll} \mbox{Significant level:} & \alpha \\ \mbox{Confidence interval:} & 1-\alpha \end{array}$

Table 7: Frequently used z-value.

α	0.005	0.01	0.025	0.05	0.1
z_{lpha}	2.58	2.33	1.96	1.65	1.28

 Table 8: Parameter estimation table.

Estimation	Given	Confidence interval				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		• $\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ • $\mu \geqslant \overline{X} \mp z_{\alpha} \frac{\sigma}{\sqrt{n}}$				
μ		• $\overline{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}$ • $\mu \ge \overline{X} \mp t_{\alpha, n-1} \frac{S}{\sqrt{n}}$				
σ^2	s ²	• $\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$ • $\sigma^2 > \frac{(n-1)s^2}{\chi^2_{\alpha,n-1}}$ • $\sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha,n-1}}$				
p		• $\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} • p \ge \hat{p} \mp z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$				

4. Hypothesis Testing

 Table 9: Hypothesis testing table.

		y cabic.		1	
	$T = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$H_0: \mu \le \mu_0$ $H_1: \mu > \mu_0$	$H_0: \mu \ge \mu_0$ $H_1: \mu < \mu_0$	
Test μ	Given: σ	Reject, $ t > z_{\alpha/2}$	Reject, $t > z_{\alpha}$	Reject, $t < -z_{\alpha}$	
	<i>p</i> -value	p = 2P(T > t)	p = P(T > t)	p = P(T < t)	
	$T = \frac{\bar{X} - \mu_0}{s / \sqrt{n}}$	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$H_0: \mu \le \mu_0$ $H_1: \mu > \mu_0$	$H_0: \mu \ge \mu_0$ $H_1: \mu < \mu_0$	
	Given: s	Reject, $ t > t_{\alpha/2,n-1}$	Reject, $t > t_{\alpha,n-1}$	Reject, $t < -t_{\alpha,n-1}$	
	<i>p</i> -value	p = 2P(T > t)	p = P(T > t)	p = P(T < t)	
Test	$T = \frac{(n-1)s^2}{\sigma_0^2}$	$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	$H_0: \sigma^2 \le \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$ Reject H_0 ,	$H_0: \sigma^2 \ge \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$ Reject H_0 ,	
σ^2	Given: s ²	Accept H_0 , $X_{1-\alpha/2,n-1}^2 < t < X_{\alpha/2,n-1}^2$	$t > \mathcal{X}_{\alpha,n-1}^2$	$t < \mathcal{X}_{1-\alpha,n-1}^2$	
	<i>p</i> -value	$p = 2\min\{P(T < t), P(T > t)\}$	p = P(T > t)	p = P(T < t)	
Test	$T = \frac{p_0 - \hat{p}}{\sqrt{\hat{p}(1-\hat{p})/n}}$	$H_0: p = p_0$ $H_1: p \neq p_0$	$H_0: p \le p_0$ $H_1: p > p_0$	$H_0: p \ge p_0$ $H_1: p < p_0$	
p	Given: \hat{p}	Reject, $ t > z_{\alpha/2}$	Reject, $t>z_{\alpha}$	Reject, $t < -z_{\alpha}$	
	<i>p</i> -value	p = 2P(T > t)	p = P(T > t)	p = P(T < t)	
Test $\mu_x = \mu_y$	$T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}}$	Test for equality of means of two normal population: $H_0: \mu_x = \mu_y \to \mu_x - \mu_y = 0$ $H_1: \mu_x \neq \mu_y$			
ra ry	Given: $\sigma_x^2, \sigma_y^2, n, m$	Reject H_0 , $ t > z_{\alpha/2}$, p -value: $p = 2P(T > t)$			
Test β	$T = \sqrt{\frac{(n-2)S_{XX}}{SS}} B $	Test whether or not Y-data depends on X-data $(Y = \alpha + \beta X + \varepsilon)$: $H_0: \beta = 0$ $H_1: \beta \neq 0$			
	Given data	Reject H_0 , $ t > t_{\alpha/2, n-2}$, p -value: $p = 2P(T_{n-2} > t)$			
Test m	$T = \frac{n_0 - 0.5n}{0.5\sqrt{n}}$	Test whether or not the median is equal to a given value: $ H_0 \colon m = m_0 \\ H_1 \colon m \neq m_0 $			
111	Given: n_0	Reject H_0 , $\alpha > p$ -v	$value, p = 2 \min\{P(Z)\}$ (Usin	Z < t, $P(Z > t)$	