Lead Conversion Analysis Using Logistic Regression

Predicting Lead Conversion Likelihood with Data Insights

Adarsh M Shetty B

Arnab Biswas

Bhavya Jain

Problem Statement

• Objective:

To predict the likelihood of lead conversion based on historical data, enabling efficient lead prioritization and better resource allocation.

Expected Key Challenges After Initial Data Analysis:

- Handling missing data in key features like Lead Quality and Last Activity.
- Managing class imbalance with a conversion rate of 38.5%.
- Identifying meaningful predictors from numerous features, including categorical variables.

```
# 2. Data Loading
 data = pd.read_csv('leads.csv') # Replace with actual file path
                                                 1 2.0 1532 2.0 ... No Potential
```

5 rows × 37 columns

Approach Overview

- Data Understanding and Quality Checks: Addressed missing values, ensured data consistency, and removed redundant columns.
- Exploratory Data Analysis (EDA): Analyzed conversion trends and identified key predictors.
- Data Preprocessing: Imputed missing values, created dummy variables, and scaled numerical features.
- Feature Engineering: Selected features based on logistic regression coefficients and domain-specific insights.
- Model Building and Evaluation: Developed a logistic regression model and evaluated using metrics like accuracy, precision, recall, and ROC-AUC.
- Lead Scoring: Assigned a lead score (0-100) to each lead based on the predicted probability of conversion.

Data Preparation

Missing Value Treatment:

- Lead Quality and Last Activity were imputed with mode and placeholder values, respectively.
- Applied "Not Available" placeholders for categorical null values.

Feature Transformation:

- Dummy variables were created for categorical features like Lead Source and Tags.
- Numerical columns like Total Time Spent on Website were scaled for model compatibility.

EDA Insights

Conversion rate = 38.5% (3561 out of 9240 leads).

No significant linear correlation between selected features

Visualizations [Categorical Features]

Visualizations[Numerical Features]

250

Model Development

- Logistic regression was chosen for interpretability and efficiency.
- Class imbalance addressed using weighted loss functions.
- Lead scores were computed as:
 - lead_scores = y_pred_prob * 100
 - data_test['Lead Score'] = lead_scores
- Thresholds adjusted for specific strategies: Aggressive conversion: Threshold = 0.3 (Targeted leads = 1123).
- Minimized calls: Threshold = 0.7 (Targeted leads = 967).

Model Evaluation

Confusion Matrix:

```
[[1571 133]
[ 118 950]]
```

- Classification Report:
 - Accuracy: **91%**
 - Precision (Converted Leads): 88%
 - Recall (Converted Leads): 89%
 - F1 Score (Converted Leads): 88%
- ROC-AUC Score: 0.958

- Threshold Impact (Customize on Need Basis):
 - Threshold = 0.3: Higher sensitivity for aggressive conversion.
 - Threshold = 0.7: Focused targeting with minimized waste.

Business Implications

1.Lead Scoring:

- 1. Assigning lead scores (0-100) for prioritization.
- 2. Example: Leads with scores >70 are "hot" and should be prioritized.

2.Actionable Insights:

- **1.Tags_Ringing**: Indicates less promising leads; adjust follow-up strategies.
- 2.Total Time Spent on Website: Key metric for identifying engaged leads.

3. Campaign Optimization:

1. Reallocate resources to effective lead sources and Tags categories.

Business Key Insights after using prediction Model

- Top Predictors (Numerical):
 - ✓ Total Time Spent on Website: Positively correlated with conversion (Coefficient: 1.35).
- Top Predictors (Categorical):
 - ✓ Tags_Ringing: Strong negative impact on conversion (Coefficient: -1.71).
 - ✓ Tags_Will revert after reading the email: Positive correlation with conversion (Coefficient: 1.59).
 - ✓ Tags_Lost to EINS: Positive impact (Coefficient: 0.93).

Conclusion and Recommendations

Summary of Findings:

- Logistic regression model achieved 91% accuracy and 0.958 ROC-AUC, providing actionable insights.
- Top predictors (numerical and categorical) were identified to guide lead prioritization.

Recommendations:

- 1. Focus on leads with high scores for conversion campaigns.
- Adjust follow-up intensity based on thresholds (e.g., aggressive vs. focused strategy).
- 3. Regularly retrain the model with new data to adapt to changing trends.

Thank You