COMP 546

Lecture 3

Color, Photoreceptors

Thurs. Jan. 18, 2018

Weeks 1 & 2

image formation and measurement

Weeks 3 & 4

- computational modelling (early vision)
- Assignment 1 to be posted by end of week 3

What is light?

Light consists of electromagnetic waves from 400-700 nm.

Radiance (intensity of a light ray)

Depends on 3D position XYZ and orientation \vec{L} and wavelength λ

Light Spectrum

For a fixed position XYZ and direction \vec{L} , the radiance is a function only of wavelength $\lambda.$

Three types of spectra

(fraction)

Emission spectra

Spectra From Common Sources of Visible Light

Reflectance spectra

For each wavelength, what is the fraction of light reflected from each surface?

https://foundationsofvision.stanford.edu/chapter-9-color

Six samples (and model fit) from standard paper color Chart.

I'm not sure which six squares these plots correspond to.

Absorption spectra

(coming soon) photoreceptors **Neurons** Cornea Pupil Leńs Optic nerve retina

Photoreceptors: Rods and Cones

Photoreceptor response: transduction

Rod Cell

Light is absorbed by a pigment in photoreceptor cell.

This leads to opening and closing of ion channels, causing:

- changes in electrical potential across cell membrane. (We can measure this.)
- release of neurotransmitters which binds to neighbor cell, i.e. communication. (We cannot measure this.)

Rods

- night (dark)
- "grey level"
- peripheral vision
- high noise

low resolution

Cones

- day (bright)
- color
- central vision
- low noise
- high resolution (in center)

Rods and cones: light levels

Spectral sensitivity (absorption) of rods

Fraction of light of wavelength λ absorbed by rod pigment.

(Normalized to 1 for illustration purposes)

Spectral sensitivity (absorption) of cones

Fraction of light of wavelength λ absorbed by cone pigments.

(Normalized to 1 for illustration purposes,.)

"Principle of Univariance" (1D)

Once a photon of some wavelength is absorbed ("caught") by the photoreceptor, detailed information about spectrum is lost.

How to express this mathematically?

 $E(x, \lambda)$ - spectrum of light arriving at cone x

 $C_{LMS}(\lambda)$ - spectral sensitivity of a photoreceptor (either L, M, or S)

$$I_{LMS}(x) = \int C_{LMS}(\lambda) E(x, \lambda) d\lambda$$

Metamers

Two different spectra can map to the same LMS triplet, i.e.

$$C_{LMS} E_1 = C_{LMS} E_2$$

Such spectra are visually indistinguishable, and are called "metamers".

Color blindness

 $E(x, \lambda^2)$

Cone mosaic

Normal

Color blind (e.g. missing L cones)

Rod (night) vision is an extreme case of metamerism

Rod sensitivity

 $E(x, \lambda^2)$

Application: RGB images and color displays

Emitted spectra from color displays

Anaglyph 3D Displays

Anaglyph (definition): a photograph with the two images superimposed and printed in different colors, producing a 3D effect when viewed through correspondingly colored filters.

left and right eye image

Absorption by photoreceptors (fraction)

Emission from 3DTV

Transmission (fraction)

Simplified anaglyph model

emitted * transmitted (RBG) (filter)

Examples:

$$=$$
 $(1,0,0)$ * $(1,0,0)$

$$=$$
 $(1, 1, 1) * (1, 0, 0)$

$$=$$
 $(0, 1, 1) * (1, 0, 0)$

$$=$$
 $(1,0,0)$ * $(0,1,1)$

$$=$$
 $(0, 1, 1) * (0, 1, 1)$

Simplified anaglyph model

$$(1,0,0) = (1,0,0) * (1,0,0)$$

$$(1, 0, 0) = (1, 1, 1) * (1, 0, 0)$$

$$(0, 0, 0) = (0, 1, 1) * (1, 0, 0)$$

$$(0,0,0) = (1,0,0) * (0,1,1)$$

$$(0, 1, 1) = (0, 1, 1) * (0, 1, 1)$$

$$(0, 1, 1) = (1, 1, 1) * (0, 1, 1)$$

Summary of today

- Types of spectra
- Rods and cones
- Metamers and color blindness
- Color displays

- Temporal issues
- Spatial issues (next class)

Photoreceptor response to a brief flash of light

(depends on intensity, duration, background level)

Response of photoreceptor* (non-linear)

^{*}You get the same sigmoidal behavior for cameras.

Response of photoreceptor* (non-linear)

^{*}You get the same sigmoidal behavior for cameras.

Adaptation

Look at dot for 30 sec

Then, look at this dot.

Adaptation Time Scales

fraction of a second

as we scan a scene with eye movements

- minutes

as we change environments

light adaptation: rods to cones

dark adaptation: cones to rods

Pupil Response

Partly compensates for changes in average light level over the whole image.

Diameter of pupil ~2 - 8 mm.

This is only a small contribution to huge operating range of the visual system.