Cirq Basics

2
3
3

State Representations

Concept	Example
Creating a vector.	Python vec = [1,0]
Putting a vector in ket notation.	Python cirq.dirac_notation(vec)
Placing a vector on the Bloch Sphere	<pre>Python bloch_sphere.BlochSphere(state_v ector = vec)</pre>
Finding the final state vector of a quantum circuit.	<pre>Python sv = cirq.final_state_vector(my_circu it)</pre>

Creating a histogram of state measurements. **NOTE**: You must specify how many qubits are in your circuit in the part: tick_label=binary_labels(NUM QUBITS).

```
Python
hist =
cirq.plot_state_histogram(result
, plt.subplot(), title = 'Qubit
States', xlabel = 'States', ylabel
= 'Occurrences',
tick_label=binary_labels(2))
plt.show()
```

Creating Qubits

Concept	Example
Creating a Named Qubit	Python my_qubit = cirq.NamedQubit("q0")
Creating a list of qubits.	<pre>Python my_qubits = [cirq.NamedQubit("q0"), cirq.NamedQubit("q1"), cirq.NamedQubit("q2")]</pre>
Using the range() method.	<pre>Python my_qubits = cirq.NamedQubit.range(3 prefix = "q")</pre>

Quantum Circuits

Concept	Example
Creating a quantum circuit.	<pre>Python my_circuit = cirq.Circuit()</pre>
Simulating a quantum circuit.	<pre>Python sim = cirq.Simulator() result = sim.run(my_circuit) result</pre>
Repeating the simulation of a quantum circuit.	<pre>Python sim = cirq.Simulator() result = simulator.run(my_circuit, repetitions=10) results</pre>

Gates and Measurements

Concept	Example
Adding a measurement to a single qubit.	<pre>Python my_circuit.append(cirq.measure(my_qu it))</pre>
Adding an X gate to a single qubit.	

	Python qc.append(cirq.X(cirq.NamedQubit("q0)))
Adding a Z gate to a single qubit.	Python qc.append(cirq.Z(cirq.NamedQubit("q0)))
Adding an H gate to a single qubit.	Python qc.append(cirq.H(cirq.NamedQubit("q0)))
Adding a measurement to each qubit.	Python my_circuit.append(cirq.measure(m y_qubits)
Adding a quantum gate to each qubit.	<pre>Python my_circuit.append(cirq.X.on_each (my_qubits)</pre>
Adding a CNOT gate to a quantum circuit.	Python my_circuit.append(cirq.CNOT(cirq .NamedQubit("q0"), cirq.NamedQubit("q1")))