Calculus I Homework Trigonometric derivatives

1. Compute the derivative.

(a)
$$f(x) = 2x^3 - 3\cos x$$
.

(b)
$$f(x) = \sqrt{x} \cos x$$
.

nswer:
$$-x \overline{\overline{\zeta}} - x \underline{\underline{\zeta}} + x$$
 aris $\overline{\overline{\zeta}} x - \overline{z}$ cos x

(c)
$$f(x) = \sin x + \frac{1}{3} \cot x$$
.

$$\frac{-\frac{1}{3}\cos x \sin^2 x}{\sin^2 x} = \cos x - \frac{1}{3}\cos x - \frac{1}{3}\cos x$$

(d)
$$y = 2 \sec x - \csc x$$
.

mswer:
$$\frac{\cos_3 x + 2\sin_3 x}{\cos_3 x + \cos_3 x}$$

(e)
$$y = \frac{1 + \sin^2 \theta}{\cos^3 \theta}$$
.

$$\frac{\theta \sin \theta + \theta \sin^2 \theta + 3\sin \theta \cos^2 \theta}{\theta \cos^2 \theta + 3\sin \theta} = \frac{1}{2}$$

(f)
$$g(t) = 4 \sec t + \tan t - \csc t + 3 \cot t$$
.

is welt 4 sec
$$t$$
 tan t + sec t + csc t cof t - 3 csc t

(g)
$$y = c \cos t + t^2 \sin t$$
.

(h)
$$y = u(a\cos u + b\cot u)$$
.

$$\frac{n}{v} \underbrace{\sum_{\text{UIS}} n \sin v + v \cos v + n \sin v + n \sin v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \sin v + v \cos v + n \sin v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \sin v + v \cos v + n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \sin v + v \cos v + n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \sin v + v \cos v + n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v + n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v + n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v + n \cos v}_{\text{UIS}} = \frac{n}{v} \underbrace{\sum_{\text{UIS}} n \cos v$$

(i)
$$y = \frac{x}{2 - \tan x}.$$

answer:
$$\frac{x - \cos x \sin x + 2 \cos^2 x}{(2 \cos x - \sin x)^2}$$

(j) $y = \sin \theta \cos \theta$.

answer:
$$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$$

(k)
$$f(\theta) = \frac{\sec \theta}{1 + \sec \theta}$$
.

answer:
$$\frac{\sin \theta}{1+\cos \theta}$$

$$(1) \ \ y = \frac{\cos x}{1 - \sin x}.$$

$$\text{(m) } y = \frac{t \sin t}{1+t}.$$

answer:
$$\frac{1+t}{2}\cos \frac{t}{t+1}$$
 cos $\frac{t}{t+1}$ cos $\frac{t}{t+1}$

$$\text{(n) } y = \frac{1 - \sec x}{\tan x}.$$

(o)
$$h(\theta) = \theta \csc \theta - \cot \theta$$
.

(p)
$$y = x^2 \sin x \tan x$$
.

(i) $f(x) = (\sec x)e^x$.

(j) $f(x) = (\tan x)e^x$

answer:
$$\frac{2x\cos x\sin^2 x + 2x^2\sin x\cos^2 x + x\cos^2 x}{\cos^2 x}$$

2. Differentiate.

(a) $\tan x$.

(b) $\cot x$.

(c) $\sec x$.

(d) $\csc x$.

(e) $\sec x \tan x$.

(f) $\sec x + \tan x$.

(g) $\sec^2 x$.

 $x_{\varepsilon^{\text{Des}} + x_{\overline{\zeta}}}$ urth x_{ζ} described (m) $x(\cos x)e^x$.

(h) $\csc^2 x$.

(k) $\frac{\sin x}{x}$.

(1) $\frac{\sin x}{e^x}$.

(n)
$$\frac{e^x}{\tan x}$$
.

$$\operatorname{nnswer:} \operatorname{e}_x \left(\cot x - \csc x \right)$$

(o)
$$\frac{e^x}{\sec x} + \sec x$$
.

Solution. 2i

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((\sec x)e^x\right) = \left(\frac{\mathrm{d}}{\mathrm{d}x}\left(\sec x\right)\right)e^x + (\sec x)\frac{\mathrm{d}}{\mathrm{d}x}\left(e^x\right) \quad \middle| \text{ product rule}$$

$$= \sec x \tan x e^x + \sec x e^x$$

$$= (\tan x + 1)\sec x e^x$$

Solution. 2j

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((\tan x)e^x\right) = \left(\frac{\mathrm{d}}{\mathrm{d}x}\left(\tan x\right)\right)e^x + (\tan x)\frac{\mathrm{d}}{\mathrm{d}x}\left(e^x\right) \quad \middle| \text{ product rule}$$

$$= \left(\sec^2 x\right)e^x + (\tan x)e^x$$

$$= \left(\sec^2 x + \tan x\right)e^x.$$