The DADA2 Method

The amplicon inference problem

Infer the sample types and abundances {(s, a)} from error-ful amplicon reads {r}.

Motivation: Lingering problems with "OTU"

Motivation: Lingering problems with "OTU"

Error Model

An Error Model

s: ATTAACGAGATTATAACCAGAGTACGAATA...

r: ATCAACGAGATTATAACAAGAGTACGAATA...

An Error Model

s: ATTAACGAGATTATAACCAGAGTACGAATA...

r: ATCAACGAGATTATAACAAGAGTACGAATA...

$$p(r|s) = \prod_{i=1}^{L} p(r(i)|s(i), q_r(i), Z)$$

An Error Model

s: ATTAACGAGATTATAACCAGAGTACGAATA...

r: ATCAACGAGATTATAACAAGAGTACGAATA...

$$p(r|s) = \prod_{i=1}^{L} p(r(i)|s(i), q_r(i), Z)$$

Error process is independent across nucleotides.

Per-nucleotide transition rate depends on:

- Sample nucleotide
- Read nucleotide
- Read quality at that position
- Batch effect (eg. run)

Quantifying overabundance

Assuming reads are independent:

$$p_A(r|s) = \frac{\sum_{a=a_r}^{\infty} \rho_{pois}(a_s p(r|s), a)}{1 - \rho_{pois}(a_s p(r|s), 0)}$$

Quantifying overabundance

Assuming reads are independent:

$$p_A(r|s) = \frac{\sum_{a=a_r}^{\infty} \rho_{pois}(a_s p(r|s), a)}{1 - \rho_{pois}(a_s p(r|s), 0)}$$

The **abundance p-value** p_A quantifies the notion that there are too many reads with sequence r to be explained by sequencing errors.

Quantifying overabundance

Assuming reads are independent:

$$p_A(r|s) = \frac{\sum_{a=a_r}^{\infty} \rho_{pois}(a_s p(r|s), a)}{1 - \rho_{pois}(a_s p(r|s), 0)}$$

The **abundance p-value** p_A quantifies the notion that there are too many reads with sequence r to be explained by sequencing errors.

This is our criteria to distinguish biology from errors.

Learning Errors

Study A

Study B

Study A

Study B

But How?

Initial guess: one real sequence + errors

Infer initial error model under this assumption.

$$Pr(i \rightarrow j) = \begin{bmatrix} A & C & G & T \\ A & 0.97 & 10^{-2} & 10^{-2} & 10^{-2} \\ C & 10^{-2} & 0.97 & 10^{-2} & 10^{-2} \\ G & 10^{-2} & 10^{-2} & 0.97 & 10^{-2} \\ T & 10^{-2} & 10^{-2} & 10^{-2} & 0.97 \end{bmatrix}$$

Reject unlikely error under model. Recruit errors.

	Α	С	G	Т
A	0.97	10-2	10-2	10-2
C	10 ⁻²	0.97	10-2	10-2
G	10-2	10-2	0.97	10-2
T	10-2	10-2	10-2	0.97

Update the model.

	Α	С	G	T
A	0.997	10-3	10 ⁻³	10 ⁻³
C	10 ⁻³	0.997	10 ⁻³	10 ⁻³
G	10 ⁻³	10-3	0.997	10 ⁻³
T	10 ⁻³	10-3	10-3	0.997

Reject more sequences under *new* model

	Α	С	G	T
A	0.997	10-3	10-3	10-3
C	10-3	0.997	10 ⁻³	10 ⁻³
G	10 ⁻³	10-3	0.997	10-3
T	10-3	10-3	10-3	0.997

Update model again

	Α	С	G	T
A	0.998	1x10 ⁻⁴	2x10 ⁻³	2x10 ⁻⁴
С	6x10 ⁻⁵	0.999	3x10 ⁻⁶	1x10 ⁻³
G	1x10 ⁻³	3x10 ⁻⁶	0.999	6x10 ⁻⁵
T	2x10 ⁻⁴	2x10 ⁻³	1x10 ⁻⁴	0.998

Convergence: all errors are plausible

	A	С	G	Т
A	0.998	1x10 ⁻⁴	2x10 ⁻³	2x10 ⁻⁴
C	6x10 ⁻⁵	0.999	3x10 ⁻⁶	1x10 ⁻³
G	1x10 ⁻³	3x10 ⁻⁶	0.999	6x10 ⁻⁵
T	2x10 ⁻⁴	2x10 ⁻³	1x10 ⁻⁴	0.998

Speed

Efficient Sequence Alignment

 $Kmer-dist(i,j) > K^*$

Vectorized Banded
Needleman-Wunsch

~200X speedup

Independent Sample Processing

Exactly inferred sequences are comparable across samples. Separable processing.

De novo sample inference in linear time.

Accuracy and Resolution

Accuracy: Simulated data

TP: 978

FP: 272

FN: 77

cor: 0.935

Data: Kopylova, et al. mSystems, 2016.

Accuracy: Simulated data

cor: 0.935

Data: Kopylova, et al. mSystems, 2016.

cor:

0.999

Accuracy: Mock community

Credit: Kopylova, et al. mSystems, 2016.

Accuracy: Arsenic treatment

Variance explained by

Credit: Dylan Dahan & Gabriel G. Perron

Resolution: Mock Community

Callahan et al., Nature Methods, 2016.

Resolution: Petrel aDNA

QIIME: De novo

DADA2

Credit: Kealoha Kinney, Michael Bunce, Andreanna Welch

Resolution: L. crispatus

Data: MacIntyre et al. Scientific Reports, 2015.

Resolution: L. crispatus

Data: MacIntyre et al. Scientific Reports, 2015.

Simulated - Staggered

17 1

Kopylova, et al. mSystems, 2016.

QIIME1/uclust

Kozich, et al. AEM, 2013.

Kozich, et al. AEM, 2013.

Acknowledgements

Susan Holmes

Joey McMurdie

Michael Rosen

National Institutes of Health