

103

SEQUENCE LISTING

(1)GENERAL INFORMATION:

(i) APPLICANT:

Ullrich, Axel Aoki, Naohito Kim, Yeong Woong Wang, Hong Yang Chen, Zhengjun Naylor, Oliver

Kharitonenkov, Alexei Igorevich

(ii) TITLE OF INVENTION:

NOVEL PTP20, PCP-2, BDP1, CLK, AND SIRP POLYPEPTIDES AND RELATED

PRODUCTS AND METHODS

(iii) NUMBER OF SEQUENCES:

35

CORRESPONDENCE ADDRESS: (iv)

> (A) ADDRESSEE:

(B) STREET: Lyon & Lyon 633 West Fifth Street

Suite 4700 Los Angeles

(C) CITY: STATE:

California

(D) (E) COUNTRY:

U.S.A.

(F) ZIP:

90071-2066

(v) COMPUTER READABLE FORM:

> MEDIUM TYPE: (A)

3.5" Diskette, 1.44 Mb

torage

COMPUTER: (B)

IBM Compatible

(C) OPERATING SYSTEM: BM P.C. DOS 5.0

(D) SOFTWARE:

HastSEQ for Windows 2.0

CURRENT APPLICATION DATA: (vi)

> (A) APPLICATION NUMBER:

FILING DATE: (B)

08/877,150 JUNE 17, 1997

(C) CLASSIFICATION:

PRIOR APPLICATION DATA: (vii)

> APPLICATION NUMBER: (A)

U.S. 60/019,629

June 17, 1996

(B) FILING DATE:

APPLICATION NUMBER: (A)

U.S. 60/023,485

FILING DATE: (B)

August 9, 1996

APPLICATION NUMBER: (A)

U.S. 60/030,860

(B) FILING DATE: November 13, 1996

SD-88184.1

(A) APPLICATION NUMBER: U.S. 60/030,964
(B) FILING DATE: November 15, 1996

(A) APPLICATION NUMBER: U.S. 60/034,286 (B) FILING DATE: December 19, 1996

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Warburg, Richard J.

(B) REGISTRATION NUMBER: 32,327 (C) REFERENCE/DOCKET NUMBER: 225/298

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (213) 489-1600 (B) TELEFAX: (213) 955-0440

(C) TELEX: 67-3510

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(ix) FEATURE:

(D) OTHER INFORMATION: "Xaa" in positions 3 and 5 stands for an unspecified amino acid.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Phe Trp Xaa Met Xaa Trp

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(ix) FEATURE:

(D) OTHER INFORMATION: "Xaa" in position 6 stands for either Ser, Ile or Val.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: His Cys Ser Ala Gly Xaa Gly (2) INFORMATION FOR SEQ ID NO: 3: SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: Phe Leu Glu Arg Leu Glu (2) INFORMATION FOR SEQ ID NO: 4: SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 6 amino acids (B) TYPE: amino acid STRANDEDNESS: single (C) (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: "Xaa" in positions 3 and 5 stands for an unspecified amino acid. (D) OTHER INFORMATION: SEQUENCE DESCRIPTION: SEQ ID NO: 4: Arg Trp Xaa Met Xaa Trp INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

peptide

(ii) MOLECULE TYPE:

- (ix) FEATURE:
 - (D) OTHER INFORMATION: "Xaa" in position 6 stands for either Ser, Ile or Val.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

His Cys Ser Ala Gly Xaa Gly
1 5

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CTCTGTGTCC ACAGCAGTGC TGGCTGT

27

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

His Arg Asp Leu Ala Ala Arg

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (ix) FEATURE:
 - (D) OTHER INFORMATION: "Xaa" in position 2 stands for Val or Met. "Xaa" in position 5 stands for Tyr or Phe.

```
(xi) SEQUENCE DESCRIPTION: SEO ID NO: 8:
Asp Xaa Trp Ser Xaa Gly
(2) INFORMATION FOR SEQ ID NO: 9:
     (i)
         SEQUENCE CHARACTERISTICS:
                             28 base pairs
          (A)
              LENGTH:
              TYPE:
          (B)
                             nucleic acid
          (C)
              STRANDEDNESS: single
          (D)
              TOPOLOGY:
                             linear
         SEQUENCE DESCRIPTION: SEQ ID NO: 9:
CGGGATCCCT TCGCCTTGCA GCTTTGTC
                                                            28
(2) INFORMATION FOR SEQ ID NO: 10:
         SEQUENCE CHARACTERISTICS:
                             30 base pairs
          (A)
              LENGTH:
                             nucleic acid
          (B)
              TYPE:
          (C)
              STRANDEDNESS: single
              TOPOLOGY:
          (D)
                             linear
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
CGGAATTCCT AGACTGATAC AGTCTGTAAG
                                                            30
(2)
    INFORMATION FOR SEQ ID NO: 11:
     (i)
         SEQUENCE CHARACTERISTICS:
          (A)
              LENGTH:
                             6 amino acids
          (B)
              TYPE:
                             amino acid
              STRANDEDNESS: single
          (C)
          (D)
              TOPOLOGY:
                             linear
   (ii) MOLECULE TYPE:
                             peptide
         SEQUENCE DESCRIPTION: SEQ ID NO: 11:
Asp Leu Lys Pro Glu Asn
                 5
   INFORMATION FOR SEQ ID NO: 12:
         SEQUENCE CHARACTERISTICS:
     (i)
              LENGTH:
                             6 amino acids
          (A)
          (B)
                             amino acid
          (C)
              STRANDEDNESS: single
                             linear
          (D) TOPOLOGY:
```

	(ii)	MOLECU	LE TYPE:	pe	eptic	le		
	(xi)	SEQUEN	CE DESCRIP	TION:	SEQ	ID NO): 12:	
Ala 1	Met	Met Glu	Arg Ile 5					
(2)	INF	ORMATION	FOR SEQ I	D NO:	13:			
	(i)	SEQUEN	CE CHARACT	ERIST	ICS:			
		(B) T' (C) S'	ENGTH: YPE: TRANDEDNES OPOLOGY:	nı S: s:	0 bas uclei ingle inear		rs d	
	(xi)	SEQUEN	CE DESCRIP	TION:	SEQ	ID NO): 13:	
TAT	'AGCG(GCC GCTA	GACTGA TAC.	AGTCT(GT			30
(2)	INFO	ORMATION	FOR SEQ I	D NO:	14:			
	(i)	SEQUEN	CE CHARACT	ERIST	ics:			
		(B) T' (C) S'	ENGTH: YPE: TRANDEDNES OPOLOGY:	nı S: s:	uclei	c aci		
	(xi)	SEQUEN	CE DESCRIP	TION:	SEQ	ID NO): 14:	
TCC	CCCG	GGA TGCC	CCATCC CCG.	AAGGT <i>I</i>	AC CA			32
(2)	INFO	RMATION	FOR SEQ I	D NO:	15:			
	(i)	SEQUEN	CE CHARACT	ERIST	ICS:			
		(B) T' (C) S'	ENGTH: YPE: TRANDEDNES: OPOLOGY:	nı S: si				
	(xi)	SEQUEN	CE DESCRIP	rion:	SEQ	ID NO	: 15:	
TAT	AGCGC	CC GCTC	ACCGAC TGA	ratcco	CG AC	TGGAG	TC	39
(2)	INFO	RMATION	FOR SEQ I	ONO:	16:			
	(i)	SEQUEN	CE CHARACTI	ERISTI	cs:			
		(B) TY (C) SY	ENGTH: YPE: TRANDEDNES:	nu S: si		e pai c aci		

	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
TCC	cccgg	GG AGACGATGCA TCACTGTAAG	30
(2)	INFO	RMATION FOR SEQ ID NO: 17:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
TAT	'AGCGG	CC GCGCTGGCCT GCACCTGTCA TCTGCTGGG	39
(2)	INFO	RMATION FOR SEQ ID NO: 18:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
CGG	SAATTC.	AT GCGGCATTCC AAACGAACTC	30
(2)	INFO	RMATION FOR SEQ ID NO: 19:	
	(i)	SEQUENCE CHARACTERISTICS:	
	(and)	(A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
መልመ	(xi)		2.0
IAI	AGCGG	CC GCCCTGACTC CCACTCATTT CCTTTTTAA	39
(2)	INFO	RMATION FOR SEQ ID NO: 20:	
,	(i)	SEQUENCE CHARACTERISTICS:	
	,,	(A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

	(xi)	SEQUI	ENCE DESCRIPTION	N: SEQ ID NO:	20:	
CGG	SAATTC	CG CC	ACCATGGC CCCTATA	ACTA GGTTAT		36
(2)	INFO	RMATI	ON FOR SEQ ID NO	0: 21:		
	(i)	SEQUI	ENCE CHARACTERI	STICS:		
		(A) (B) (C) (D)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	36 base pairs nucleic acid single linear		
	(xi)	SEQUI	ENCE DESCRIPTION	N: SEQ ID NO:	21:	
GCC	AAGCT'	rg cc	ACCATGGC CCCTATA	ACTA GGTTAT		36
(2)	INFO	RMATIO	ON FOR SEQ ID NO	0: 22:		
	(i)	SEQUI	ENCE CHARACTERI	STICS:		
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	21 base pairs nucleic acid single linear		
	(xi)	SEQUI	ENCE DESCRIPTION	N: SEQ ID NO:	22:	
GTA	GCAGT	AA GAZ	ATAGTTAA A			21
(2)	INFO	RMATIO	ON FOR SEQ ID NO	D: 23:		
	(i)	SEQUI	ENCE CHARACTERIS	STICS:		
		(B)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	24 base pairs nucleic acid single linear		
	(xi)	SEQUI	ENCE DESCRIPTION	N: SEQ ID NO:	23:	
GTI	GCCCT	GA GG	ATCATTAA GAAT			24
(2)	INFO	RMATIO	ON FOR SEQ ID NO	D: 24:		
	(i)	SEQUE	ENCE CHARACTERIS	STICS:		
		(A) (B) (C) (D)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	24 base pairs nucleic acid single linear		

GTT	GCCCI	GA GGATCATCCG GAAT		24
(2)	INFO	DRMATION FOR SEQ ID N	NO: 25:	
	(i)	SEQUENCE CHARACTER	STICS:	
		(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	30 base pairs nucleic acid single linear	
	(xi)	SEQUENCE DESCRIPTION	ON: SEQ ID NO: 25:	
TAC	CAATTO	CTC ACTGCTACAT GTAAGO	CCATC	30
(2)	INFO	DRMATION FOR SEQ ID N	NO: 26:	
	(i)	SEQUENCE CHARACTER	STICS:	
		(A) LENGTH:(B) TYPE:(C) STRANDEDNESS:(D) TOPOLOGY:	13 amino acids amino acid single linear	
	(ii)	MOLECULE TYPE:	peptide	
	(xi)	SEQUENCE DESCRIPTION	ON: SEQ ID NO: 26:	
Pro 1) Ile	Tyr Ser Phe Ile Gly 5	Gly Glu His Phe Pro Arg 10	
(2)	INFO	ORMATION FOR SEQ ID N	IO: 27:	
	(i)	SEQUENCE CHARACTERI	STICS:	
		(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	9 amino acids amino acid single linear	
	(ii)	MOLECULE TYPE:	peptide	
	(xi)	SEQUENCE DESCRIPTION	ON: SEQ ID NO: 27:	
Ile 1	Val	Glu Pro Asp Thr Glu 5	Ile Lys	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

- (2) INFORMATION FOR SEQ ID NO: 28:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

Tyr Gly Phe Ser Pro Arg

- (2) INFORMATION FOR SEQ ID NO: 29:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 12 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

Ile Lys Glu Val Ala His Val Asn Leu Glu Val Arg 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 30:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

Val Ala Ala Gly Asp Ser Ala Thr

- (2) INFORMATION FOR SEQ ID NO: 31:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2226 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ix) FEATURE:

(A) NAME/KEY: Coding Sequence (B) LOCATION: 28...1386

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

(XI) SEQUENCE DESCRIPTION: SEQ ID NO: SI:								
GAATTCCGGC AC	CGAGGCGGG TTGC		GC CAA TCG GA rg Gln Ser As					
	GAG CAG CAG GAG Glu Gln Gln Glu 15							
	GAG TTC AGC GAG Glu Phe Ser Asp 30							
Thr Glu Gly V	GTG TGC TCC AC Val Cys Ser Th 45		Ser Gln Gln					
	CGC TAC AAA GA Arg Tyr Lys As _l							
	CTG CTC CAG GA(Leu Leu Gln Gli 80							
	CGG GGC ACA GA Arg Gly Thr Asp 95							
GGA CCC CTG (Gly Pro Leu F	CCT CAC ACT CTO Pro His Thr Let 110	G TTG GAC TTC Leu Asp Phe 115	Trp Arg Leu	GTT TGG GAG 390 Val Trp Glu 120				
Phe Gly Ile I	AAG GTG ATC TTO Lys Val Ile Leo 125	ATG GCC TGT Met Ala Cys 130	Gln Glu Thr	GAA AAT GGA 438 Glu Asn Gly 135				
	TGT GAA CGC TAG Cys Glu Arg Ty							
	TTC TGC ATC ACC Phe Cys Ile Thi 160	Leu Thr Lys						
	CTC AGG ACC CTC Leu Arg Thr Leu 175							
	CAG CTA CAG TAG Gln Leu Gln Ty 190		Pro Asp His (

					ATT Ile											678
					GGA Gly											726
					TTG Leu											774
					CCA Pro 255											822
					CGA Arg											870
					ACA Thr											918
AAC Asn	AAC Asn	AGT Ser 300	CCC Pro	CTC Leu	TAC Tyr	CAG Gln	AAC Asn 305	CTC Leu	AAG Lys	GAG Glu	AAC Asn	CGC Arg 310	GCT Ala	CCA Pro	ATC Ile	966
TGC Cys	AAG Lys 315	GAC Asp	TCC Ser	TCG Ser	TCC Ser	CTC Leu 320	AGG Arg	ACC Thr	TCC Ser	TCA Ser	GCC Ala 325	CTG Leu	CCT Pro	GCC Ala	ACA Thr	1014
TCC Ser 330	CGC Arg	CCA Pro	CTG Leu	GGT Gly	GGC Gly 335	GTT Val	CTC Leu	AGG Arg	AGC Ser	ATC Ile 340	TCG Ser	GTG Val	CCT Pro	GGG Gly	CCA Pro 345	1062
CCG Pro	ACC Thr	CTT Leu	CCC Pro	ATG Met 350	GCT Ala	GAC Asp	ACT Thr	TAC Tyr	GCT Ala 355	GTG Val	GTG Val	CAG Gln	AAG Lys	CGT Arg 360	GGC Gly	1110
					GGG Gly											1158
ACC Thr	CCG Pro	ATC Ile 380	TAC Tyr	AGC Ser	CAG Gln	GTG Val	GCT Ala 385	CCA Pro	CGT Arg	ATC Ile	CAG Gln	CGG Arg 390	CCC Pro	GTG Val	TCA Ser	1206
					CAG Gln											1254
					GGG Gly 415											1302
					CTA Leu											1350

					Pro							TAA	IGAG	IGC .	IGIACC	1402
GTCT AAAAA TAAC CATC TGAC GGGA ACCC GACA GCAC ATCA	TTATO ACCA ACCA ACCA ACCA ACCA ACCA ACCA	AAT	TGAG'AGGGAGGT(CTCCTCAAAACCTCAAAACCTCAAAACCTCAAACCTCAAACCTCAAACCTCAAACTCAAACTCAAACTCAAACTCAA	TGGGZACTT' GGTGGTGCCC' CTAGGACACACCC' AATGGCCC' TAGTGCCC' TAGTGCCC'	AC TO GGA TO CA TA AG GCA TO CA TO CA TC AO CA TC AO CCA TC CO CCA TCC TO	CATGO CCAGO CTACO ACACO CCGCO CGTAAA GGTAAA GGTAAA CTCAC CCTCCTC CCTTGA	GGCCTGGCTTGGTTGCCTACTTGCCGACTTGCCGACTGCCGACTGCCAACTTGAACTTGCAACTTGCAACTTGCAACTTGCAACTTGCAACTTGCAACTTGCAACTTGAACT	I GAA	ATCAA AGCAC AAGT AAAGT ATGGA ATGAC CTCAA AATGT GCCTC TGAAA AGAGT	AAAT GTCA ITAG IGCA ACAT GCTA ATCC AGAA ICAC CTGC AGCT IGGG	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AGTT' AGCAG CAGAG CAGATG AGACA ATGTA CAAG CTCAG ACCGG AAAAG	CTC (CAGA ATG (C	CAGGGCCTAGGCCAAGAGTCCCAGCCCAGCTGACAACTGCAACTGCAACTGCAACTGCAACTGCAACTGCAACTTCAACTTCCAACTTCAACTTCCAACTTCCAACTTCCAACTTCCAACTTCCAACTTCCAACTTCCAACTTCCAACTTCCAACTTCCAACTTCCAACTTCCAACTTCCAACTTCAACT	IGTGCT GTAGAA GAGGGG AGTGAG CTAACT PAGAGA PGGTCA CAAGAT ATGCTC CTATAT CCTTCT GTAAAC AAAAAA	1462 1522 1582 1642 1702 1762 1882 1942 2002 2062 2122 2182 2226
(2)	INF	ORMA'	rion	FOR	SEQ	ID	NO:	32:								
	(i)	SE	QUEN	CE CI	HARA	CTER										
		(A (B (C (D) T`) S'	ENGTI YPE: IRANI OPOLO	DEDNI	ESS:	nuo sii		ase p c ac:	pair: id	5					
	(ix)	FE	ATURI	€:												
		(A (B		AME/I	KEY: ION:			ding		ence	Э					
	(xi)	SE	QUEN	CE DI	ESCR:	EPTIC	: NC	SEQ :	ID NO): 3	32:					
															CCGGCT ACGCGC	60 120
CGAG	CCTC	CAA (Me				la G						la Le		CC TTC nr Phe	171
Gln	Leu	Cys	Ala	Pro		Thr	Glu	Thr	Pro	Ala	Ala	Gly		ACC Thr		219
														GCC Ala		267
														ACC Thr 60		315
														ACT Thr		363
														CTG Leu		411

		GAT Asp														459
GAC Asp 110	GGC Gly	ACA Thr	GGC Gly	GGC Gly	ACC Thr 115	CTG Leu	CGC Arg	GTC Val	TAC Tyr	GTG Val 120	CGC Arg	GTT Val	AAT Asn	GGG Gly	GGC Gly 125	`507
		GCG Ala														555
		CAG Gln														603
		CTG Leu 160														651
		GAT Asp														699
		TCC Ser														747
		CAG Gln														795
		CGG Arg														843
		ACC Thr 240														891
		CAG Gln														939
GTC Val 270	TCT Ser	AAC Asn	TTC Phe	CCG Pro	GAG Glu 275	CTC Leu	ATC Ile	GTC Val	AAG Lys	GAG Glu 280	CCC Pro	CCA Pro	ACT Thr	CCC Pro	ATC Ile 285	987
GCG Ala	CCC Pro	CCA Pro	CAG Gln	CTG Leu 290	CTG Leu	CGT Arg	GCT Ala	GGC Gly	CCC Pro 295	ACC Thr	TAC Tyr	CTC Leu	ATC Ile	ATC Ile 300	CAG Gln	1035
		ACC Thr														1083
		TAC Tyr 320														1131

AGC CI Ser Le	u Gln														1179
GAG AT Glu Il 350															1227
TGG GC Trp Al	CC ACC a Thr	CCT Pro	CAT His 370	CAG Gln	CCG Pro	CAC His	CAA Gln	ATG Met 375	CGC Arg	AGA Arg	GCC Ala	CAT His	GAG Glu 380	GGC Gly	1275
CCC AP															1323
CAG TO Gln Tr		Pro													1371
GTG TC Val Se 41	er Leu														1419
ATC CO Ile Ar 430															1467
AAG AA Lys As															1515
AAC CC Asn Pr	T GAG O Glu	GGG Gly 465	CGC Arg	AAA Lys	GAG Glu	GGC Gly	AAG Lys 470	GAG Glu	GTC Val	ACT Thr	TTC Phe	CAG Gln 475	ACG Thr	GAT Asp	1563
GAG GA Glu As	T GTG p Val 480	CCC Pro	AGT Ser	GGG Gly	ATT Ile	GCA Ala 485	GCC Ala	GAG Glu	TCC Ser	CTG Leu	ACC Thr 490	TTC Phe	ACT Thr	CCA Pro	1611
CTG GA Leu Gl 49	u Asp	ATG Met	ATC Ile	TTC Phe	CTC Leu 500	AAG Lys	TGG Trp	GAG Glu	GAG Glu	CCC Pro 505	CAG Gln	GAG Glu	CCC Pro	AAT Asn	1659
GGT CT Gly Le 510	C ATC u Ile	ACC Thr	CAG Gln	TAT Tyr 515	GAG Glu	ATC Ile	AGC Ser	TAC Tyr	CAG Gln 520	AGC Ser	ATC Ile	GAG Glu	TCA Ser	TCA Ser 525	1707
GAC CC Asp Pr	G GCA o Ala	GTG Val	AAC Asn 530	GTG Val	CCA Pro	GGC Gly	CCA Pro	CGA Arg 535	CGT Arg	ACC Thr	ATC Ile	TCC Ser	AAG Lys 540	CTC Leu	1755
CGC AA Arg As	T GAG n Glu	ACC Thr 545	TAC Tyr	CAT His	GTC Val	TTC Phe	TCC Ser 550	AAC Asn	CTG Leu	CAC His	CCA Pro	GGC Gly 555	ACC Thr	ACC Thr	1803
TAC CT Tyr Le	G TTC u Phe 560	TCC Ser	GTG Val	CGG Arg	GCC Ala	CGC Arg 565	ACA Thr	GGC Gly	AAA Lys	GGC Gly	TTC Phe 570	GGC Gly	CAG Gln	GCG Ala	1851

					ACC Thr											1899
					CCC Pro 595											1947
					CAG Gln											1995
					GAG Glu											2043
ACA Thr	GGA Gly	CTG Leu 640	CTT Leu	CCC Pro	AGT Ser	GCC Ala	ATT Ile 645	GAC Asp	CTT Leu	CGA Arg	GGC Gly	GGC Gly 650	GCT Ala	GGC Gly	CCC Pro	2091
					TTC Phe											2139
					ACC Thr 675											2187
					GAG Glu											2235
					AAG Lys											2283
GCC Ala	AGG Arg	AAA Lys 720	GCT Ala	GCC Ala	TGC Cys	AAG Lys	GAA Glu 725	AGC Ser	AAG Lys	CGG Arg	CCC Pro	CTG Leu 730	GAG Glu	GTG Val	TCC Ser	2331
CAG Gln	AGA Arg 735	TCG Ser	GAG Glu	GAG Glu	ATG Met	GGG Gly 740	CTT Leu	ATC Ile	CTG Leu	GGC Gly	ATC Ile 745	TGT Cys	GCA Ala	GGG Gly	GGG Gly	2379
CTT Leu 750	GCT Ala	GTC Val	CTC Leu	Ile	CTT Leu 755	CTC Leu	CTG Leu	GGT Gly	GCC Ala	ATC Ile 760	ATT Ile	GTC Val	ATC Ile	ATC Ile	CGC Arg 765	2427
					AAC Asn											2475
GAG Glu	AAG Lys	ACA Thr	CAC His 785	ATG Met	ATC Ile	AGC Ser	GCC Ala	GTG Val 790	GAC Asp	CGC Arg	AGC Ser	TTC Phe	ACA Thr 795	GAC Asp	CAG Gln	2523
AGC Ser	ACC Thr	CTG Leu 800	CAG Gln	GAG Glu	GAC Asp	GAG Glu	CGG Arg 805	CTG Leu	GGC Gly	CTG Leu	TCC Ser	TTC Phe 810	ATG Met	GAC Asp	ACC Thr	2571

					CGG Arg											2619
					GGG Gly 835											2667
					ACG Thr											2715
					ATC Ile											2763
					GAG Glu											2811
					AAG Lys											2859
					AAA Lys 915											2907
GAC Asp	TAC Tyr	ATT Ile	AAT Asn	GCC Ala 930	AAC Asn	TAC Tyr	ATA Ile	GAT Asp	GGT Gly 935	TAC Tyr	CAC His	AGG Arg	TCA Ser	AAC Asn 940	CAC His	2955
					GGG Gly											3003
					GAG Glu											3051
CTG Leu	GTC Val 975	GAG Glu	GTG Val	GGC Gly	AGG Arg	GTG Val 980	AAA Lys	TGC Cys	TCA Ser	CGG Arg	TAC Tyr 985	TGG Trp	CCG Pro	GAG Glu	GAC Asp	3099
TCA Ser 990	GAC Asp	ACC Thr	TAC Tyr	GGG Gly	GAC Asp 995	ATC Ile	AAG Lys	ATT Ile	Met	CTG Leu 1000	GTG Val	AAG Lys	ACA Thr	Glu	ACC Thr 1005	3147
CTG Leu	GCT Ala	GAG Glu	Tyr	GTC Val 1010	GTG Val	CGC Arg	ACT Thr	Phe	GCC Ala 1015	CTG Leu	GAG Glu	CGG Arg	Arg	GGC Gly 1020	TAC Tyr	3195
TCT Ser	GCC Ala	Arg	CAC His 1025	GAG Glu	GTC Val	CGC Arg	Gln	TCC Ser 1030	CAC His	TTC Phe	ACA Thr	Ala	TGG Trp 1035	CCA Pro	GAG Glu	3243
CAT His	Gly	GTC Val 1040	CCC Pro	TAC Tyr	CAT His	Ala	ACG Thr .045	GGG Gly	CTG Leu	CTG Leu	Ala	TTC Phe 1050	ATC Ile	CGG Arg	CGG Arg	3291

GTG AAG GCC TCC Val Lys Ala Ser 1055				
AGC GCG GGC ACC Ser Ala Gly Thr 1070		Arg Cys Tyr		
CTG GAC ATG GCA Leu Asp Met Ala				
AAG ACT CTC TGC Lys Thr Leu Cys 1105				ı Glu Gln
TAC ATC TTC ATT Tyr Ile Phe Ile 1120	His Asp Ala	ATC CTG GAG Ile Leu Glu 1125	GCC TGC CTG TGT Ala Cys Leu Cys 1130	GGG GAG 3531 Gly Glu
ACC ACC ATC CCT Thr Thr Ile Pro 1135				
CGC ATT GAT CCT Arg Ile Asp Pro 1150		Ser Ser Gln		
			GTG GAG GAG TGC Val Glu Glu Cys	
GCC CTG TTG CCC Ala Leu Leu Pro 1185				Val Leu
CCG CCC GAC CGC Pro Pro Asp Arg 1200	Cys Leu Pro			
AAC AAC TAC ATT Asn Asn Tyr Ile 1215				
GCC TTC ATG GTG Ala Phe Met Val 1230	ACC CTG CAC Thr Leu His 1235	Pro Leu Gln	AGC ACC ACG CCC Ser Thr Thr Pro 1240	GAC TTC 3867 Asp Phe 1245
TGG CGG CTG GTC Trp Arg Leu Val				
CAG CTG AAC CAG Gln Leu Asn Gln 1265	TCC AAC TCC Ser Asn Ser	GCC TGG CCC Ala Trp Pro 1270	TGC CTG CAG TAC Cys Leu Gln Tyr 1275	Trp Pro
GAG CCA GGC CGG Glu Pro Gly Arg 1280	Gln Gln Tyr			

GGC ACA GCT GAT GAA GAC TTA GTG GCT CGA GTC TTC CGG GTG CAG AAC Gly Thr Ala Asp Glu Asp Leu Val Ala Arg Val Phe Arg Val Gln Asn 1295 1300 1305	4059
ATC TCT CGG TTG CAG GAG GGA GAC CTG CTG GTG CGG CAC TTC CAG TTC Ile Ser Arg Leu Gln Glu Gly Asp Leu Leu Val Arg His Phe Gln Phe 1310 1325	4107
CTG CGC TGG TCT GCA TAC CGG GAC ACA CCT GAC TCC AAG AAG GCC TTC Leu Arg Trp Ser Ala Tyr Arg Asp Thr Pro Asp Ser Lys Lys Ala Phe 1330 1335 1340	4155
TTG CAC CTG CTG GCT GAG GTG GAC AAG TGG CAG GCC GAG AGT GGG GAT Leu His Leu Leu Ala Glu Val Asp Lys Trp Gln Ala Glu Ser Gly Asp 1345 1350 1355	4203
GGG CGC ACC ATC GTG CAC TGC CTA AAC GGG GGA GGA CGC AGC GGC ACC Gly Arg Thr Ile Val His Cys Leu Asn Gly Gly Gly Arg Ser Gly Thr 1360 1365 1370	4251
TTC TGC GCC TGC GCC ACG GTC CTG GAG ATG ATC CGC TGC CAC AAC TTG Phe Cys Ala Cys Ala Thr Val Leu Glu Met Ile Arg Cys His Asn Leu 1375 1380 1385	4299
GTG GAC GTT TTC TTT GCT GCC CAA ACC CTC CGG AAC TAC AAA CCC AAC Val Asp Val Phe Phe Ala Ala Gln Thr Leu Arg Asn Tyr Lys Pro Asn 1390 1395 1400 1405 .	4347
ATG GTG GAG ACC ATG GAT CAG TAC CAC TTT TGC TAC GAT GTG GCC CTG Met Val Glu Thr Met Asp Gln Tyr His Phe Cys Tyr Asp Val Ala Leu 1410 1415 1420	4395
GAG TAC TTG GAG GGG CTG GAG TCA AGA TAGCGGGGCC CTGGCCTGGG GCACCCA Glu Tyr Leu Glu Gly Leu Glu Ser Arg 1425 1430	4449
CTGCACACTC AGGGCCAGAC CCACCATCCT GGACTGGCGA GGAAGATCAG TGCCTCCTGC TCTGCCCAAA CACACTCCCA TGGGGCAAGC ACTGGAGTGG ATGCTGGCCT ATCTTGCTCC CCCTTCCACT GTGGGCAGGG CCTTTCGCTT GTCCCATGGG CGGGTGGTGG GCCAAGGAGG AGCTTAGCAA GTCTGCACCC CACCCCCACC TCCATAGGGT CCTGCAGGCC TGTGCTGAGA GGCCTGGTGC TGCCTGGCAG AGTGACAAAG GCTCAGGAGG GCTGGCTCTG GGGGACTCAG GCCAAGGGGG TTGGCAGGAT CCTGGGTTTT GGGAAGGAG GCTGGCTCTG GGGGACTCAG GCCAAGGGGG TTGGCAGGAT CCTCAGCCTGC CCCCTCTGCA TGTGGGTAGA GGATGTACTG GGACTTGGCA TTTAGGATTC CATCTGGGGG ACCCCCTGAA GGTCCCCCC AAGCAGGTCT CAATTCTGAT AGCCAGTGGG GCACACTGAC TGTCCTCCC AGGGGAACTG CAGCGCCCTC CTCCCCACTG CCCCCTCAG CCCCTGAGAT ATTTTGCTCA CTATCCCTC CCACTTGCTT CCCTGATATG TGCTCTGACT TCCCTGAACC AGGATCTGCC TATCCCTCC CCACTTGCTT CCCTGATATG TGCTCTGACT TCCCTGAACC AGGATCTGCC TATTACTGCT GTCCATGGG GGGCTCCTTC CCTGCCTGAC CCACTGTTGC AGAATGAAGT CACCTCGCC CCCTCTTCCT TTAATCTTCA GGCCTCACTG GCCTGTCCTG CTCAGCTTGG GCCAGTGACA ATCTGCAAGG CTGAACAACA GCCCCTGGGG TTGAGGCCCC TGTGGCTCCT GGTCAGGCTG CCCCTTTCCT TTAATCTTCA GCCCTCACTG GCCTGGTCA TACCCTCTG GCCAGTGACA ATCTGCAAGG CTGAACAACA GCCCCTGGGG TTGAGGCCC TGTGGCTCCT GGTCAGGCTG CCCCTTTCCT TTAATCTTCA GCCCTCACTG CCTGTCCTG CTCAGCTTGG GCCAGTGACA ATCTGCAAGG CTGAACAACA GCCCCTGGGG TTGAGGCCC TGTGGGT GGCTGGGAAG GTCTCTTTAA AATGGGGCAG GCCACACCCC CATTCCGTGC CTCAATTTCC CCATCTGTAA ACTGTAGATA TGACTACTGA CCTACCTCGC AGGGGCTGT GGGGAGGCAT AAGCTGATGT TTTGTAAAAAAAAAA	4509 4569 4689 4749 4869 4869 4989 5049 5169 5169 52289 5349 5469 5529 5581

(2) INF	ORMAI	CION	FOR	SEQ	ID 1	10:	33:								
(i)	SEÇ	QUEN	CE CI	HARA	CTER	ISTIC	cs:								
	(B) (C)	(A) LENGTH: 2810 base pairs (B) TYPE: nucleic acid (C) STRANDEDNES: single (D) TOPOLOGY: linear													
(ix)	FE <i>P</i>	ATURI	Ξ:			,									
	(A) (B)		AME/I CAT:				Coding Sequence 441417								
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:											•				
GAATTCG	GCA C	CGAG	CGGG(CT G(GACC'	rtgc:	r cgo	CCCG	CGGC	GCC			CGC Arg		55
CTG GAC Leu Asp 5															103
CGG GAG Arg Glu	GGG Gly	GCA Ala	GTC Val 25	CTC Leu	GCC Ala	GGC Gly	GAG Glu	TTC Phe 30	AGC Ser	GAC Asp	ATC Ile	CAG Gln	GCC Ala 35	TGC Cys	151
TCG GCC Ser Ala	GCC Ala	TGG Trp 40	AAG Lys	GCT Ala	GAC Asp	GGC Gly	GTG Val 45	TGC Cys	TCC Ser	ACC Thr	GTG Val	GCC Ala 50	GGC Gly	AGT Ser	199
CGG CCA Arg Pro															247
GAT CAG Asp Gln 70	ACG Thr	CGA Arg	GTA Val	ATC Ile	CTC Leu 75	TCC Ser	CTG Leu	CTC Leu	CAG Gln	GAA Glu 80	GAG Glu	GGA Gly	CAC His	AGC Ser	295
GAC TAC Asp Tyr 85	ATT Ile	AAT Asn	GGC Gly	AAC Asn 90	TTC Phe	ATC Ile	CGG Arg	GGC Gly	GTG Val 95	GAT Asp	GGA Gly	AGC Ser	CTG Leu	GCC Ala 100	343
TAC ATT Tyr Ile															391
AGA CTG Arg Leu	GTC Val	TGG Trp 120	GAG Glu	TTT Phe	GGG Gly	GTC Val	AAG Lys 125	GTG Val	ATC Ile	CTG Leu	ATG Met	GCC Ala 130	TGT Cys	CGA Arg	439
GAG ATA Glu Ile															487
CAG GAG Gln Glu 150	Pro	CTG Leu	CAG Gln	ACT Thr	GGG Gly 155	CTT Leu	TTC Phe	TGC Cys	ATC Ile	ACT Thr 160	CTG Leu	ATA Ile	AAG Lys	GAG Glu	535

					GAC Asp 170											583
					TCT Ser											631
					AGC Ser											679
					CAG Gln											727
					GGG Gly										TAT Tyr	775
					CTG Leu 250											823
TTT Phe	GAT Asp	GTG Val	GTC Val	CTT Leu 265	AAG Lys	ATG Met	AGG Arg	AAG Lys	CAG Gln 270	CGG Arg	CCT Pro	GCG Ala	GCC Ala	GTG Val 275	CAG Gln	871
					AGG Arg											919
					AAT Asn											967
AAT Asn	TGT Cys 310	GCC Ala	CCA Pro	CTC Leu	TAC Tyr	GAC Asp 315	GAT Asp	GCC Ala	CTC Leu	TTC Phe	CTC Leu 320	CGG Arg	ACT Thr	CCC Pro	CAG Gln	1015
GCA Ala 325	CTT Leu	CTC Leu	GCC Ala	ATA Ile	CCC Pro 330	CGC Arg	CCA Pro	CCA Pro	GGA Gly	GGG Gly 335	GTC Val	CTC Leu	AGG Arg	AGC Ser	ATC Ile 340	1063
TCT Ser	GTG Val	CCC Pro	GGG Gly	TCC Ser 345	CCG Pro	GGC Gly	CAC His	GCC Ala	ATG Met 350	GCT Ala	GAC Asp	ACC Thr	TAC Tyr	GCG Ala 355	GAG Glu	1111
					GCT Ala											1159
					GCG Ala											1207
AAG Lys	GTG Val 390	ACG Thr	CCG Pro	CGC Arg	GCC Ala	CAG Gln 395	CGA Arg	CCC Pro	GGG Gly	GCG Ala	CAC His 400	GCG Ala	GAG Glu	GAC Asp	GCG Ala	1255

AGG GGG ACG CTG CCT GGC CGC GTT CCT GCT GAC CAA AGT CCT GCC GGA Arg Gly Thr Leu Pro Gly Arg Val Pro Ala Asp Gln Ser Pro Ala Gly 405 410 415 420	1303
TCT GGC GCC TAC GAG GAC GTG GCG GGT GGA GCT CAG ACC GGT GGG CTA Ser Gly Ala Tyr Glu Asp Val Ala Gly Gly Ala Gln Thr Gly Gly Leu 425 430 435	1351
GGT TTC AAC CTG CGC ATT GGG AGG CCG AAG GGT CCC CGG GAC CCT Gly Phe Asn Leu Arg Ile Gly Arg Pro Lys Gly Pro Arg Asp Pro Pro 440 445 450	1399
GCT GAG TGG ACC CGG GTG TAAGTCTAAC GCCAGTTCCT GCCTGTTGCC TCTTGTGA Ala Glu Trp Thr Arg Val 455	1455
GCTCGGACTG CTGATGCCCC GGTGCTGCTG AGCGCCGTGC CGAGAATGGA AACAGTGGGC	1515
CTGGATCAAA GTTAAAGTTT CTCAGGGTGG GAAATGTGGG GGCTTTGCCC AATGACTGTA	1575
GCATTCAAGG CTTGAGGCTG GAGGAGGTAG CTAGGGTATA GTGGCTGGTG AGGCTGCACA	1635
GAGCAGATTC AAGAAAGAAG ATCAGGAAGG GGCATGACCC CTGAGTTATG AAGGGGAGAA	1695
GGGACAGATG AGCTTCCGGA GACTGCTCTC CTCACCACAC AGCACTAGTC CATCCTCAGC	1755
ACCTGAGCCT CCCTCACTTG GACACTCAGG GGACCACACA GAGAAGTGGA TGGACACTTC	1815
GCCATCCAGG CAGAACTAAG CCAGGCATAA CCACAGCCAA GCAGATTAAC CCCAGGCAGA	1875
CCGATAAAAA GACCTCCAGA TAGGCAGACA GACAGATGGA CCACCAACCT GGACAGACAG	1935
CCAAAGCTTC AGAGATACAG TCCACAGGTG GACAAAGGAT CCCCCAGCCA GAGAGAGAGA	1995
GACCAGCCAA CAGCTTGATA GACCAGTGCA GCCAGAGAGA CCACCAAACA CAGCCCCCAA	2055
AAGACAGACA TCTCTGCTAG CTGGACAGCC AGGTGGACCC CCTAAGTTAG TCAGATTACT	2115
AGACAGATAT AAACAGATCC CCTGCTGAAC AGATATACAG AGTTCTCAGA CCCCACTCCC	2175
TCAGGTGGGC TGGCTGGCTG ACAGACCTTC TGGCCAGACA GACTCCTAAC CAACCAGATG GACTGCCAGA CAGGCAGACA TCAGTCCACA TGGAATCCTG ACATCCCAGC CAGCCGGCCA	2235
GACTOTOATO TTGATGTOTT GATGGATGGA CCCCAGCTAG TCAGACATGA TCCTCCAGAT	2295 2355
TGACAGACAA GTCCCCCAAA TGAGGTACACA TCTCCAGCTA TTCAGACAGA TGGAGCCCCA	2333
GCAAATCAGG ACCTATCTAG GCAGACCCCA GCCAGACCC CGCCAGACAG ACTCCCAACC	2415
AGACTGACCC CTTGCTGTTC ACACAGCCTG CCGAGTAGCT GGGACTACAG GTCTAATTTT	2535
TTTTTTTTT AAGAAATGAG TTTTTGCCAT GTTGCCCAGA CTGGTCTTGA ACTCCCAACC	2595
TCAAGCAATC CTCCTGCCTC AGCCTCCCAA AGTGCTGAGA TTACAGGTGT GAGCCACCAG	2655
GCTCAGCCCC CTAAGATTTG AAACACTTTA AATGGCCCAT GGTAGGGTTC CTGCTAGGAT	2715
AAAACATTAA GTGGCTGTTA AAAGAAATAA AAGGAGGACA CGTCTCTGTG CAAAAAAAAA	2775
AAAAAAAAA AAAAAAAAA AAAAAAAAA AAAAA	2810
	2010

(2) INFORMATION FOR SEQ ID NO: 34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 503 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

Met Glu Pro Ala Gly Pro Ala Pro Gly Arg Leu Gly Pro Leu Cys
1 10 15

Leu Leu Leu Ala Ala Ser Cys Ala Trp Ser Gly Val Ala Gly Glu Glu 20 25 30

Glu Leu Gln Val Ile Gln Pro Asp Lys Ser Val Ser Val Ala Ala Gly Glu Ser Ala Ile Leu His Cys Thr Val Thr Ser Leu Ile Pro Val Gly Pro Ile Gln Trp Phe Arg Gly Ala Gly Pro Ala Arg Glu Leu Ile Tyr Asn Gln Lys Glu Gly His Phe Pro Arg Val Thr Thr Val Ser Glu Ser 90 Thr Lys Arg Glu Asn Met Asp Phe Ser Ile Ser Ile Ser Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr Tyr Cys Val Lys Phe Arg Lys Gly Ser Pro Asp Thr Glu Phe Lys Ser Gly Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Pro Val Val Ser Gly Pro Ala Ala Arg Ala Thr 155 Pro Gln His Thr Val Ser Phe Thr Cys Glu Ser His Gly Phe Ser Pro 170 Arg Asp Ile Thr Leu Lys Trp Phe Lys Asn Gly Asn Glu Leu Ser Asp 180 185 Phe Gln Thr Asn Val Asp Pro Val Gly Glu Ser Val Ser Tyr Ser Ile His Ser Thr Ala Lys Val Val Leu Thr Arg Glu Asp Val His Ser Gln Val Ile Cys Glu Val Ala His Val Thr Leu Gln Gly Asp Pro Leu Arg 230 235 Gly Thr Ala Asn Leu Ser Glu Thr Ile Arg Val Pro Pro Thr Leu Glu Val Thr Gln Gln Pro Val Arg Ala Glu Asn Gln Val Asn Val Thr Cys Gln Val Arg Lys Phe Tyr Pro Gln Arg Leu Gln Leu Thr Trp Leu Glu 280 Asn Gly Asn Val Ser Arg Thr Glu Thr Ala Ser Thr Val Thr Glu Asn 290 Lys Asp Gly Thr Tyr Asn Trp Met Ser Trp Leu Leu Val Asn Val Ser 315 Ala His Arg Asp Val Lys Leu Thr Cys Gln Val Glu His Asp Gly Gln Pro Ala Val Ser Lys Ser His Asp Leu Lys Val Ser Ala His Pro Lys Glu Gln Gly Ser Asn Thr Ala Ala Glu Asn Thr Gly Ser Asn Glu 360 365

Arg Asn Ile Tyr Ile Val Val Gly Val Val Cys Thr Leu Leu Val Ala 370 380

Leu Leu Met Ala Ala Leu Tyr Leu Val Arg Ile Arg Gln Lys Lys Ala 385 390 395 400

Gln Gly Ser Thr Ser Ser Thr Arg Leu His Glu Pro Glu Lys Asn Ala 405 410 415

Arg Glu Ile Thr Gln Asp Thr Asn Asp Ile Thr Tyr Ala Asp Leu Asn 420 425 430

Leu Pro Lys Gly Lys Lys Pro Ala Pro Gln Ala Ala Glu Pro Asn Asn 435 440 445

His Thr Glu Tyr Ala Ser Ile Gln Thr Ser Pro Gln Pro Ala Ser Glu
450 455 460

Asp Thr Leu Thr Tyr Ala Asp Leu Asp Met Val His Leu Asn Arg Thr 465 470 475 480

Pro Lys Gln Pro Ala Pro Lys Pro Glu Pro Ser Phe Ser Glu Tyr Ala 485 490 495

Ser Val Gln Val Pro Arg Lys 500

(2) INFORMATION FOR SEQ ID NO: 35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH:

398 amino acids

(B) TYPE:

amino acid

(C) STRANDEDNESS:

single

(D) TOPOLOGY:

linear

(ii) MOLECULE TYPE:

peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

Met Pro Val Pro Ala Ser Trp Pro His Leu Pro Ser Pro Phe Leu Leu 1 5 10 15

Met Thr Leu Leu Gly Arg Leu Thr Gly Val Ala Gly Glu Asp Glu 20 25 30

Leu Gln Val Ile Gln Pro Glu Lys Ser Val Ser Val Ala Ala Gly Glu 35 40 45

Ser Ala Thr Leu Arg Cys Ala Met Thr Ser Leu Ile Pro Val Gly Pro 50 55 60

Ile Met Trp Phe Arg Gly Ala Gly Ala Gly Arg Glu Leu Ile Tyr Asn 65 70 75 80

Gln Lys Glu Gly His Phe Pro Arg Val Thr Thr Val Ser Glu Leu Thr 85 90 95

Lys Arg Asn Asn Leu Asn Phe Ser Ile Ser Ile Ser Asn Ile Thr Pro 100 105 Ala Asp Ala Gly Thr Tyr Tyr Cys Val Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys Ser Gly Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Pro Val Val Ser Gly Pro Ala Val Arg Ala Thr Pro Glu His Thr Val Ser Phe Thr Cys Glu Ser His Gly Phe Ser Pro Arg Asp Ile Thr Leu Lys Trp Phe Lys Asn Gly Asn Glu Leu Ser Asp Phe Gln Thr Asn Val Asp Pro Ala Gly Asp Ser Val Ser Tyr Ser Ile His Ser Thr Ala Arg Val Val Leu Thr Arg Gly Asp Val His Ser Gln 215 Val Ile Cys Glu Met Ala His Ile Thr Leu Gln Gly Asp Pro Leu Arg 230 Gly Thr Ala Asn Leu Ser Glu Ala Ile Arg Val Pro Pro Thr Leu Glu 250 Val Thr Gln Gln Pro Met Arg Ala Glu Asn Gln Ala Asn Val Thr Cys Gln Val Ser Asn Phe Tyr Pro Arg Gly Leu Gln Leu Thr Trp Leu Glu Asn Gly Asn Val Ser Arg Thr Glu Thr Ala Ser Thr Leu Thr Glu Asn 295 300 Lys Asp Gly Thr Tyr Asn Trp Met Ser Trp Leu Leu Val Asn Thr Cys Ala His Arg Asp Asp Val Val Leu Thr Cys Gln Val Glu His Asp Gly Gln Gln Ala Val Ser Lys Ser Tyr Ala Leu Glu Ile Ser Ala His Gln 345 Lys Glu His Gly Ser Asp Ile Thr His Glu Pro Ala Leu Ala Pro Thr Ala Pro Leu Leu Val Ala Leu Leu Leu Gly Pro Lys Leu Leu Val 375 Val Gly Val Ser Ala Ile Tyr Ile Cys Trp Lys Gln Lys Ala

Smb Smb