Maintaining Robust Stability and Performance through Sampling and Quantization

Authors: Mircea Şuşcă, Vlad Mihaly, and Petru Dobra

Technical University of Cluj-Napoca

emails: {mircea.susca, vlad.mihaly, petru.dobra}@aut.utcluj.ro, American Control Conference, May 31 - June 2, 2023 — San Diego, CA, USA

Friday, 02.06.2023

Robust Control Context

The numeric regulator $\widetilde{K}_q(z)$ is obtained through:

- sampling with a fixed period $\tau \in \mathbb{R}_+$, with discretization;
- uniform coefficient quantization with fixed step $q \in \mathbb{R}_+$.

Denote $\xi = (\tau, q) \in \mathbb{R}^2_+$ single two-dimensional variable.

Robust Control: μ -Synthesis

Structured singular value (SSV):

$$\mu_{\Delta}(\text{LLFT}(P, K)) = \sup_{\omega \in \mathbb{R}_{+}} \frac{1}{\min_{\Delta \in \Delta} \{\overline{\sigma}(\Delta), \ \det(I - M_{\omega}\Delta) = 0\}}, \quad (1)$$

with $M_{\omega} = \text{LLFT}(P, K)(j\omega)$. μ -synthesis problem:

K stabilizing s.t.
$$\mu_{\Delta}(\text{LLFT}(P, K)) < 1.$$
 (2)

Assumed closed-loop properties imposed through K(s):

- robust stability (RS);
- robust performance (RP).

Key Questions

1 How to guarantee that $\widetilde{K}_q \in \mathcal{G}_D$ still maintains RS and RP?

2 How to select such $\widetilde{K}_q \in \mathscr{G}_D$ configurations?

Contributions

Lemma

Given the continuous models G_n , U, W, P and mappings \mathcal{T} , \mathcal{A} , the discrete augmented plant counterpart \widetilde{P} can be computed based on the discretization of its individual components \widetilde{G}_n , \widetilde{U} , \widetilde{W} through \mathfrak{D} $\{\cdot, \tau\}$, $\tau>0$. Moreover, the block Δ is invariant from the continuous domain to the discrete domain. As such:

$$\widetilde{G} = \mathscr{T}(\mathscr{D}\{G_n, \tau\}, \mathscr{D}\{U, \tau\}), \ \Delta \in \Delta;$$
(3)

$$\widetilde{P} = \mathscr{D}\{P, \tau\} = \mathscr{A}\left(\widetilde{G}, \mathscr{D}\{W, \tau\}\right).$$
 (4)

Main advantage: Reuse the models and weights from the continuous to discrete case. Reformulate the μ -synthesis problem in terms of the equivalent discrete-time models:

$$\mu_{\Delta}(\mathtt{LLFT}(\widetilde{P},\widetilde{K}_q)) = \sup_{\omega \in \Omega_N} \frac{1}{\min\limits_{\Delta \in \Delta} \{\overline{\sigma}(\Delta), \det(I - \widetilde{M}_{\omega}\Delta) = 0\}} < \mathbf{1} \; (\mathit{mandatory \; constraint}),$$

with $\widetilde{M}_{\omega}=\text{LLFT}(\widetilde{P},\widetilde{K}_q)(e^{j\omega\tau})$ and domain $\Omega_N=[0,\omega_N)$, where $\omega_N=\pi/\tau$ is the Nyquist frequency for the period τ .

Optimization Functionals

In addition to the mandatory SSV constraint, we are left with a separate degree of freedom to select the pairs $\xi=(\tau,q)\in\mathbb{R}^2_+$. Two dichotomic approaches are suggested:

Implementability functional:

$$\min_{\xi \in \mathbb{R}_{+}^{2}} f_{1}(\xi) = -\xi_{1}\xi_{2}. \tag{5}$$

• Fidelity functional:

$$\min_{\xi \in \mathbb{R}_+^2} f_2(\xi) = \mathcal{J}(\xi), \tag{6}$$

$$\mathscr{F}(\xi) = \int_{\Omega} \left| \overline{\sigma}(K) - \overline{\sigma}(\widetilde{K}_q) \right| \left(1 + \left\| \nabla^2 K \right\| \right) d\omega. \tag{7}$$

Hands-On Summary

Preconditions:

- **1** establish G_n , Δ , $U \rightarrow \mathcal{T}$, $W \rightarrow \mathcal{A} \Rightarrow K$:
- define discretization methods \mathcal{D}_p , \mathcal{D}_c ;
- **3** define quantization method Q for K_q :
- 4 discretize plant \widetilde{P} (Lemma 1);
- define cost functional $f: \mathbb{R}^2_+ \to \mathbb{R}_+$;
- define nonlinear constrained optimization problem:

$$\min_{\xi \in \mathbb{R}^2_+} f(\xi) \text{ s.t. } \mu_{\Delta}(\mathtt{LLFT}(\widetilde{P},\widetilde{K}_q)) < 1,$$

 \Leftrightarrow the interior-point function. $\rho > 0$:

$$F(\xi) = f(\xi) - \rho \ln \left(1 - \mu_{\Delta}(\text{LLFT}(\widetilde{P}, \widetilde{K}_q)) \right).$$

Algorithm 1: Optimal selection of sampling rate and quantization step for a continuous-time regulator K

Input: $K, G_n, U, W, T, A, \Delta, F \in \{F_1, F_2\}, \Omega, \rho$ Discretization operators $\mathcal{D}_{p} \{\cdot, \tau\}, \mathcal{D}_{c} \{\cdot, \tau\}.$ {For the plant and controller models} Solver algorithm $\xi_{k+1} = \Sigma(F, \xi_k)$.

- Output: Optimum $\xi^* = (\tau^*, q^*) \in \mathbb{R}^2_+$. Initialize ξ ← ξ₀ = (τ₀, q₀) ∈ ℝ²_±.
- 2 while stopping criterion is not satisfied do
- $\widetilde{G}_n \leftarrow \mathcal{D}_c \{G_n, \xi_1\}.$
- $\widetilde{U} \leftarrow \mathcal{D}_c \{U, \mathcal{E}_1\}; \ \widetilde{W} \leftarrow \mathcal{D}_c \{W, \mathcal{E}_1\}.$
- $\widetilde{G} \leftarrow \mathcal{T} \left\{ \widetilde{G}_n, \widetilde{U} \right\}; \widetilde{P} \leftarrow \mathcal{A} \left\{ \widetilde{G}, \widetilde{W} \right\}$ {Lemma 1}.
- $\widetilde{K}_a \leftarrow \mathcal{Q} \{ \mathcal{D} \{ K, \xi_1 \}, \xi_2 \} \{ \text{Eq. (9), (10)} \}.$
- Compute μ_{Δ} (LLFT $(\widetilde{P}, \widetilde{K}_q)$) approximation.
- Compute $F(\xi)$ {Eq. (16) or (21)}.
- Update $\xi \leftarrow \Sigma(F, \xi)$.
- Verify stopping criterion.
- 11 end

In our experiments: $\Sigma = \text{fmincon} + \text{GlobalSearch initialization}$.