Continuity of asymptotic entropy on groups

Eduardo Silva University of Münster

18 February 2025
Winter School "Geometric and
Harmonic Analysis" - TU Chemnitz

Harmonic functions and the Poisson boundary

 ${\it G}$ a countable group, ${\it \mu}$ a probability measure on ${\it G}$.

A function $f: G \to \mathbb{R}$ is called μ -harmonic if $f(g) = \sum_{h \in G} f(gh)\mu(h)$ for all $g \in G$.

$$H^{\infty}(G,\mu) := \{f : G \to \mathbb{R} \mid f \text{ bounded and } \mu\text{-harmonic}\}$$

The Poisson boundary (B, v) of (G, μ) is a probability space endowed with a G-action such that $v = \mu * v$ (i.e., v is μ -stationary) and

$$H^{\infty}(G,\mu)\cong L^{\infty}(B,\nu).$$

Examples of Poisson boundaries

Example 1: $G = F_2$ the free group of rank 2.

For any (non-degenerate) $\mu \in \text{Prob}(F_2)$ there is a unique μ -stationary prob. measure v on ∂F_2 .

If $H(\mu) = -\sum_{g \in F_2} \mu(g) \log \mu(g) < \infty$, then $(\partial F_2, \nu)$ is the Poisson boundary of (G, μ) . [Dynkin-Maljutov '61, Derriennic '75, Ancona '87, Kaimanovich '94, Chawla-Forghani-Frisch-Tiozzo '22]

(true more generally for hyperbolic groups)

Examples of Poisson boundaries

Example 2: $G = \mathbb{Z}/2\mathbb{Z} \wr B$ the wreath product with $\mathbb{Z}/2\mathbb{Z}$ lamps and base group B.

$$\mathbb{Z}/2\mathbb{Z}\wr B:=\bigoplus_{B}\mathbb{Z}/2\mathbb{Z}\rtimes B.$$

where $\bigoplus_B \mathbb{Z}/2\mathbb{Z} = \{f : B \to \mathbb{Z}/2\mathbb{Z} \mid f \text{ with finite support} \}$ and B acts on $f \in \bigoplus_B \mathbb{Z}/2\mathbb{Z}$ by:

$$(b\cdot f)(x)=f(b^{-1}x),\ x,b\in B.$$

Lamplighter interpretation

Multiplying an element (f,x) on the right by elements of $\mathbb{Z}/2\mathbb{Z}$ changes the lamp configuration f at the current position x, while multiplying by elements of B changes said current position.

Examples of Poisson boundaries

Example 2: $G = \mathbb{Z}/2\mathbb{Z} \wr B$ the wreath product with $\mathbb{Z}/2\mathbb{Z}$ lamps and base group B.

$$\mathbb{Z}/2\mathbb{Z} \wr B := \bigoplus_{B} \mathbb{Z}/2\mathbb{Z} \rtimes B.$$

Consider $\mu \in \text{Prob}(\mathbb{Z}/2\mathbb{Z} \wr B)$ non-degenerate with $H(\mu) < \infty$.

Kaimanovich-Vershik '83, Erschler '04: the Poisson boundary of $(\mathbb{Z}/2\mathbb{Z} \wr B, \mu)$ is non-trivial if and only if the projection to B is transient.

Under general hypotheses on μ (e.g., a finite first moment), there is a μ -stationary prob. measure ν on $\prod_B \mathbb{Z}/2\mathbb{Z}$ such that $(\prod_B \mathbb{Z}/2\mathbb{Z}, \nu)$ is the Poisson boundary of $(\mathbb{Z}/2\mathbb{Z} \wr B, \mu)$. [Kaimanovich '00, Erschler '11, Lyons-Peres '21, Frisch-S. '24]

 Λ In general there will be multiple μ -stationary measures (e.g., if B is amenable).

Entropy

Consider G a countable group and $\mu \in \operatorname{Prob}(G)$ non-degenerate with $H(\mu) = -\sum_{g \in G} \mu(g) \log \mu(g) < \infty$.

The asymptotic entropy of (G, μ) is defined as

$$h(\mu) := \lim_{n \to \infty} \frac{H(\mu^{*n})}{n}.$$

The entropy criterion [Avez '72, Derriennic '81, Kaimanovich-Vershik '83]

The Poisson boundary of (G, μ) is non-trivial $\iff h(\mu) > 0$.

Entropy

Consider G a countable group and $\mu \in \operatorname{Prob}(G)$ non-degenerate with $H(\mu) = -\sum_{g \in G} \mu(g) \log \mu(g) < \infty$.

The asymptotic entropy of (G, μ) is defined as

$$h(\mu) := \lim_{n \to \infty} \frac{H(\mu^{*n})}{n}.$$

The entropy criterion [Avez '72, Derriennic '81, Kaimanovich-Vershik '83]

The Poisson boundary of (G, μ) is non-trivial $\iff h(\mu) > 0$.

Question: Fix *G* and consider μ , $\{\mu_k\}_{k\geq 1} \in \operatorname{Prob}(G)$ with finite entropy such that:

- ▶ $\lim_{k\to\infty} \mu_k(g) = \mu(g)$ for each $g \in G$ and
- $Iim_{k\to\infty}H(\mu_k)=H(\mu).$

Is it true that $\lim_{k\to\infty} h(\mu_k) = h(\mu)$?

Discontinuity of asymptotic entropy

Example: FSym(\mathbb{N}) := { $\sigma : \mathbb{N} \to \mathbb{N} \mid \sigma$ bijective and finitely supported}

- ▶ Kaimanovich '83: there are infinitely supported probability measures μ on FSym($\mathbb N$) with $H(\mu) < \infty$ and $h(\mu) > 0$.
- Any finitely supported probability measure μ on FSym(N) has $h(\mu) = 0$.

Discontinuity of asymptotic entropy

Example: FSym(\mathbb{N}) := { $\sigma : \mathbb{N} \to \mathbb{N} \mid \sigma$ bijective and finitely supported}

- ▶ Kaimanovich '83: there are infinitely supported probability measures μ on FSym($\mathbb N$) with $H(\mu) < \infty$ and $h(\mu) > 0$.
- Any finitely supported probability measure μ on FSym(N) has $h(\mu) = 0$.

Example: $\mathbb{Z}/2\mathbb{Z} \wr D_{\infty}$, where $D_{\infty} = \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$

- ▶ Gilch '08: any non-degenerate finitely supported prob. measure on D_{∞} is recurrent.
- ▶ D_{∞} has \mathbb{Z} as a finite index subgroup (that admits finitely supported transient probability measures).
- ► There are μ , $\{\mu_k\}_{k\geq 1} \in \operatorname{Prob}(\mathbb{Z}/2\mathbb{Z} \wr D_{\infty})$ finitely supported such that $h(\mu) > 0$ and $h(\mu_k) = 0$ for all $k \geq 1$, with $\mu_k \xrightarrow[k \to \infty]{} \mu$.

Continuity of asymptotic entropy on wreath products

Theorem [S. '25]

Let B be a virtually nilpotent group of at least cubic growth (e.g. $B = \mathbb{Z}^d$, $d \ge 3$). For any non-degenerate probability measures μ , $\{\mu_k\}_{k\ge 1}$ on $\mathbb{Z}/2\mathbb{Z} \wr B$ such that

- $\blacktriangleright \mu_k(g) \xrightarrow[k \to \infty]{} \mu(g)$ for all $g \in \mathbb{Z}/2\mathbb{Z} \wr B$ and
- $H(\mu_k) \xrightarrow[k \to \infty]{} H(\mu)$

we have $h(\mu_k) \xrightarrow[k \to \infty]{} h(\mu)$.

Continuity of asymptotic entropy on wreath products

Theorem [S. '25]

Let B be a virtually nilpotent group of at least cubic growth (e.g. $B = \mathbb{Z}^d$, $d \ge 3$). For any non-degenerate probability measures μ , $\{\mu_k\}_{k\ge 1}$ on $\mathbb{Z}/2\mathbb{Z} \wr B$ such that

- $\mu_k(g) \xrightarrow[k \to \infty]{} \mu(g) \text{ for all } g \in \mathbb{Z}/2\mathbb{Z} \wr B \text{ and } g \in \mathbb{Z}/2\mathbb{Z} \wr B$
- $H(\mu_k) \xrightarrow[k \to \infty]{} H(\mu)$

we have $h(\mu_k) \xrightarrow[k \to \infty]{} h(\mu)$.

Intuition: Entropy at time n on $\mathbb{Z}/2\mathbb{Z} \wr B \longleftrightarrow$ number of distinct points visited by the projection to the base B up to time n.

Continuity of escape probability

Definition

Let μ be a prob. measure on a countable group G. Denote by $(X_n)_{n\geq 0}$ the μ -random walk on G. We define the escape probability

$$p_{\mathrm{esc}}(\mu) := \mathbb{P}(X_n \neq e_G \text{ for all } n \geq 1).$$

It holds almost surely that $\lim_{n\to\infty}\frac{\#\left|\{X_0,X_1,\ldots,X_n\}\right|}{n}=p_{\rm esc}(\mu).$

Theorem [S. '25]

Let G be a group of at least cubic growth (e.g. $G=\mathbb{Z}^d$, $d\geq 3$). For any non-degenerate probability measures μ , $\{\mu_k\}_{k\geq 1}$ on G such that $\mu_k(g)\xrightarrow[k\to\infty]{}\mu(g)$ for all $g\in G$ we have $p_{\rm esc}(\mu_k)\xrightarrow[k\to\infty]{}p_{\rm esc}(\mu)$.

Continuity of escape probability

Definition

Let μ be a prob. measure on a countable group G. Denote by $(X_n)_{n\geq 0}$ the μ -random walk on G. We define the escape probability

$$p_{\mathrm{esc}}(\mu) := \mathbb{P}(X_n \neq e_G \text{ for all } n \geq 1).$$

It holds almost surely that $\lim_{n\to\infty}\frac{\#\left|\{X_0,X_1,\ldots,X_n\}\right|}{n}=p_{\mathrm{esc}}(\mu).$

Theorem [S. '25]

Let G be a group of at least cubic growth (e.g. $G=\mathbb{Z}^d, d\geq 3$). For any non-degenerate probability measures $\mu, \{\mu_k\}_{k\geq 1}$ on G such that $\mu_k(g) \xrightarrow[k\to\infty]{} \mu(g)$ for all $g\in G$ we have $p_{\mathrm{esc}}(\mu_k) \xrightarrow[k\to\infty]{} p_{\mathrm{esc}}(\mu)$.

Uses (a uniform version of) a comparison lemma of heat kernels of symmetric and non-symmetric Markov operators due to Coulhon and Saloff-Coste (late 80's).

Theorem [S. '25]

Let G be a countable group and consider non-degenerate prob. measures μ , $\{\mu_k\}_{k\geq 1}$ on G with finite entropy and such that $\mu_k \xrightarrow[k\to\infty]{} \mu$. Suppose that there is a Polish space X such that

there are prob. measures v (resp. v_k) on X such that (X, v) (resp. (X, v_k)) is the Poisson boundary of (G, μ) (resp. (G, μ_k)).

If $v_k \xrightarrow[k \to \infty]{} v$ weakly, then $h(\mu_k) \xrightarrow[k \to \infty]{} h(\mu)$.

Theorem [S. '25]

Let G be a countable group and consider non-degenerate prob. measures μ , $\{\mu_k\}_{k\geq 1}$ on G with finite entropy and such that $\mu_k \xrightarrow[k\to\infty]{} \mu$. Suppose that there is a Polish space X such that

there are prob. measures v (resp. v_k) on X such that (X, v) (resp. (X, v_k)) is the Poisson boundary of (G, μ) (resp. (G, μ_k)).

If
$$v_k \xrightarrow[k \to \infty]{} v$$
 weakly, then $h(\mu_k) \xrightarrow[k \to \infty]{} h(\mu)$.

Starting point: Kaimanovich-Vershik '83:

$$h(\mu) = -\sum_{g \in G} \mu(g) \int_{X} \log \left(\frac{dg_*^{-1} v}{dv} (\xi) \right) dv(\xi).$$

Theorem [S. '25]

Let G be a countable group and consider non-degenerate prob. measures μ , $\{\mu_k\}_{k\geq 1}$ on G with finite entropy and such that $\mu_k\xrightarrow[k\to\infty]{}\mu$. Suppose that there is a Polish space X such that

there are prob. measures v (resp. v_k) on X such that (X, v) (resp. (X, v_k)) is the Poisson boundary of (G, μ) (resp. (G, μ_k)).

If
$$v_k \xrightarrow[k \to \infty]{} v$$
 weakly, then $h(\mu_k) \xrightarrow[k \to \infty]{} h(\mu)$.

If X is furthermore compact and admits a unique μ -stationary prob. measure, then the weak convergence $v_k \xrightarrow[k \to \infty]{} v$ always holds.

Applications:

- ► Hyperbolic groups (Previously proved with different methods by Erschler-Kaimanovich '13, Gouëzel-Mathéus-Maucourant '18, Choi '24).
- Acylindrically hyperbolic groups [Choi '24] (e.g. mapping class groups, $Out(F_n)$, etc...)
- ▶ $SL_d(\mathbb{Z})$ for $d \ge 3$.
- Many groups acting on CAT(0)-spaces.