

Fig 2: Taxonomy of patterns

NOT Time Dependent Patterns Descriptions:

1. Datum Universality

- a. Formal Definition: The Boolean statement P always holds over scope S_1 .
- b. **Example:** During the daytime of May 12th, the dry bulb temperature should be smaller than or equal to 35.0 $^{\circ}C$
- c. Scope/Boolean Mappings:
 - i. Scope: Between L and RL: 05-12-2010 06:15:00.0R: 05-12-2010 20:00:00.0
 - ii. Boolean: Temperature <= 35

2. Datum Absence

- a. Formal Definition: The Boolean statement P never holds over scope S_1 .
- b. **Example:** During the daytime of May 12th, the dry bulb temperature should never smaller than or equal to 15.0 $^{\circ}C$
- c. Scope/Boolean Mappings:
 - i. Scope: Between L and RL: (05-12-2010 06:15:00.0)R: (05-12-2010 20:00:00.0))

DATA PROPERTY EXAMPLES February 19, 2013

ii. Boolean: (Temperature <= 15)

3. Datum Existence

- a. Formal Definition: The Boolean statement P never holds over scope S_1 .
- b. **Example:** During the daytime of May 12th, the dry bulb temperature must be between 20 °C and 30 °C at some point
- c. Scope/Boolean Mappings:
 - i. Scope: Between L and R
 L: (05-12-2010 06:15:00.0)
 R: (05-12-2010 20:00:00.0))
 ii. Boolean: (20 < Temperature < 30)

4. Relation Response

- a. Formal Definition: Given the calibrated scopes S_1 and S_2 , if P holds at sensor reading t_i in S_1 , then Q has to hold at the corresponding sensor reading t_i in S_2 or at sensor reading t_{i+1} .
- b. Example: If the temperature reaches 100°C, then the humidity must drop to 80% or less
- c. Scope/Boolean Mappings:
 - i. Scope: Global (calibrated temperature and humidity datasets)
 - ii. P: temperature = 100
 - iii. Q: humidity= 80