



# Lecture 5 Interpolation

Ye Ding (丁烨)

Email: y.ding@sjtu.edu.cn

School of Mechanical Engineering Shanghai Jiao Tong University



# Interpolation

- References for Interpolations
  - [1] Timothy Sauer, Numerical analysis (2nd ed.), Pearson Education, 2012. Chapter 3
  - [2] Cleve Moler, Numerical Computing with MATLAB, Society for Industrial and Applied Mathematics, 2004. Chapter 3
  - [3] Richard L. Burden, J. Douglas Faires, Numerical analysis (9th ed.), Brooks/Cole, 2011. Chapter 3
  - [4] 李庆扬等,数值分析(第5版),清华大学出版社,2008. 第二章



# Interpolation

## Why Interpolation? Robotics



A manipulator moves from its initial position to a desired goal position in a smooth manner.





## Interpolation

Why Interpolation? Finite Element Method





## Why Interpolation?

```
x = 1:6;
y = [16, 18, 21, 17, 15, 12];
plot(x,y,'o')
```





## Why Interpolation?

```
x = 1:6; y = [16, 18, 21, 17, 15, 12];
u = linspace(1,6,100); v = interp1(x,y,u,'linear');
plot(x,y,'o',u,v,'g-')
```





## Aim of Interpolations

Given a set of pairs of values  $(x_i, y_i)$ , i = 0,1,...,n, we construct a continuous function y = P(x) that in some sense represents an underlying function implied by the data points.

The function y = P(x) interpolates the data points  $(x_0, y_0), ..., (x_n, y_n)$ , if  $P(x_i) = y_i$  for each  $0 \le i \le n$ .



- Popular Methods for Interpolations
  - **Lagrange Interpolation Method**
  - > Newton's Divided Differences
  - > Hermite Interpolation
  - Cubic Spline Interpolation



Basic Idea

The function y = P(x) interpolates the data points  $(x_0, y_0), ..., (x_n, y_n)$  if  $P(x_i) = y_i$  for each  $0 \le i \le n$ .

We want to find the coefficients of an *n*th-degree polynomial function to match them:

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$



Basic Idea: Direct Method

The function y = P(x) interpolates the data points  $(x_0, y_0),...,(x_n, y_n)$  if  $P(x_i) = y_i$  for each  $0 \le i \le n$ .

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$\begin{cases} a_0 + x_0 a_1 + x_0^2 a_2 + \dots + x_0^n a_n = y_0 \\ a_0 + x_1 a_1 + x_1^2 a_2 + \dots + x_1^n a_n = y_1 \\ \vdots \\ a_0 + x_n a_1 + x_n^2 a_2 + \dots + x_n^n a_n = y_n \end{cases}$$



In matrix form, the system is

$$Xa = y$$

where

$$\mathbf{X} = \begin{bmatrix} x_i^j \end{bmatrix}, i, j = 0, 1, \dots, n$$

$$\mathbf{a} = \begin{bmatrix} a_0 & \cdots & a_n \end{bmatrix}^T, \mathbf{y} = \begin{bmatrix} y_0 & \cdots & y_n \end{bmatrix}^T$$

- The matrix X is known as the Vandermonde matrix.
- Solving the system Xa = y is equivalent to solving the polynomial interpolation problem.



Lagrange Interpolating Polynomial: Example 1

Suppose that we are given two points  $(x_k, y_k)$ ,  $(x_{k+1}, y_{k+1})$ .

The Lagrange polynomial of degree 1 in the variable x for these points:

$$P_{1}(x) = y_{k} \frac{x - x_{k+1}}{x_{k} - x_{k+1}} + y_{k+1} \frac{x - x_{k}}{x_{k+1} - x_{k}}$$

$$\triangleq y_{k} \cdot \ell_{k}(x) + y_{k+1} \cdot \ell_{k+1}(x)$$

$$\begin{cases} \ell_{k}(x_{k}) = 1, \ \ell_{k}(x_{k+1}) = 0 \\ \ell_{k+1}(x_{k}) = 0, \ell_{k+1}(x_{k+1}) = 1 \end{cases}$$



Lagrange Interpolating Polynomial: Example 2

Suppose that we are given three points  $(x_1, y_1)$ ,  $(x_2, y_2)$ ,  $(x_3, y_3)$ .

The Lagrange polynomial of degree 2 in the variable *x* for these points:

$$P_{2}(x) = y_{1} \frac{(x - x_{2})(x - x_{3})}{(x_{1} - x_{2})(x_{1} - x_{3})} + y_{2} \frac{(x - x_{1})(x - x_{3})}{(x_{2} - x_{1})(x_{2} - x_{3})} + y_{3} \frac{(x - x_{1})(x - x_{2})}{(x_{3} - x_{1})(x_{3} - x_{2})}$$

$$\ell_{1}(x)$$

$$\ell_{2}(x)$$

$$\ell_{2}(x)$$

$$\ell_{3}(x)$$

$$\ell_{3}(x)$$

$$\ell_{3}(x_{1}) = 0$$

$$\ell_{1}(x_{2}) = 0$$

$$\ell_{1}(x_{3}) = 0$$

$$\ell_{1}(x_{3}) = 0$$

$$\ell_{2}(x_{3}) = 0$$

$$\ell_{3}(x_{2}) = 0$$

$$\ell_{3}(x_{2}) = 0$$



Lagrange Interpolating Polynomial: General Case

Suppose that we are given n+1 points  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ 

The Lagrange polynomial of degree n in the variable x for these points:

$$P_n(x) = \sum_{k=0}^n y_k \cdot \ell_k(x)$$

$$\ell_k(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)} = \prod_{\substack{j=0 \ j \neq k}}^n \frac{(x - x_j)}{(x_k - x_j)}$$



## Numerical Example 1

```
x = 1:6; y = [16, 18, 21, 17, 15, 12];
u = linspace(0.75,6.25,100); v = Lagrange(x,y,u);
plot(x,y,'o',u,v,'b-')
```





## Numerical Example 2

```
x = [-1,-0.5,0,0.5,1]; y = exp(x);
u = linspace(-3,2,20); v = Lagrange(x,y,u);
plot(x,y,'o',u,exp(u),'k-.',u,v,'b-')
```







Lagrange Interpolating Polynomial: Theorems

Main Theorem of Polynomial Interpolation. Let  $(x_0, y_0),...,(x_n, y_n)$  be n+1 points in the plane with distinct  $x_k$ . Then there exists one and only one polynomial P of degree n or less that satisfies  $P(x_k) = y_k$  for k = 0,...,n.

Proof. cf. P. 141 in Ref. [1]



Lagrange Interpolating Polynomial: Theorems

Assume that P(x) is the (degree n or less) interpolating polynomial fitting the n+1 points  $(x_0, y_0), ..., (x_n, y_n)$  sampled from f(x). The interpolation error is

$$f(x) - P_n(x) = \frac{(x - x_0)(x - x_1)\cdots(x - x_n)}{(n+1)!} f^{(n+1)}(\xi)$$

cf. P. 152 in Ref. [1]



- Popular Methods for Interpolations
  - Lagrange Interpolation Method
  - > Newton's Divided Differences
  - > Hermite Interpolation
  - Cubic Spline Interpolation



#### Basic Idea

The function y = P(x) interpolates the data points  $(x_0, y_0),...,(x_n, y_n)$  if  $P(x_i) = y_i$  for each  $0 \le i \le n$ .

Consider the first two data points  $(x_0, y_0)$  and  $(x_1, y_1)$ :

$$P_{1}(x) = a_{0} + a_{1}(x - x_{0})$$

$$a_{0} + a_{1}(x_{0} - x_{0}) = y_{0}$$

$$a_{0} + a_{1}(x_{1} - x_{0}) = y_{1}$$

$$a_{1} = \frac{y_{1} - a_{0}}{x_{1} - x_{0}} = \frac{y_{1} - y_{0}}{x_{1} - x_{0}}$$



#### Basic Idea

Consider the first three data points  $(x_0, y_0)$ ,  $(x_1,y_1)$ , and  $(x_2,y_2)$ :

$$P_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

$$a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) \equiv y_2$$

$$a_2 = \frac{y_2 - a_0 - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} = \frac{y_2 - y_0 - \frac{y_1 - y_0}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$= \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0}}{x_2 - x_0}$$

$$= \frac{\frac{y_2}{x_2 - x_1} - \frac{y_1}{x_1 - x_0}}{x_2 - x_0} \stackrel{\underline{\triangle}}{=} \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} \triangleq f[x_0, x_1, x_2]$$



#### General Formula

The function y = P(x) interpolates the data points  $(x_0, y_0), ..., (x_n, y_n)$  if  $P(x_i) = y_i$  for each  $0 \le i \le n$ .

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0)$$

$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$+ f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2)$$

$$+ \cdots$$

$$+ f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \cdots (x - x_{n-1})$$



General Formula: the Divided Differences

## List the data points in a table:

$$x_1$$
  $f(x_1)$   
 $x_2$   $f(x_2)$   
 $\vdots$   $\vdots$   
 $x_n$   $f(x_n)$ 

Divided 
$$f[x_k] = f(x_k)$$
  
Differences:  $f[x_k \ x_{k+1}] = \frac{f[x_{k+1}] - f[x_k]}{x_{k+1} - x_k}$   
 $f[x_k \ x_{k+1} \ x_{k+2}] = \frac{f[x_{k+1} \ x_{k+2}] - f[x_k \ x_{k+1}]}{x_{k+2} - x_k}$   
 $f[x_k \ x_{k+1} \ x_{k+2} \ x_{k+3}] = \frac{f[x_{k+1} \ x_{k+2} \ x_{k+3}] - f[x_k \ x_{k+1} \ x_{k+2}]}{x_{k+3} - x_k}$ 



General Formula: the Divided Differences Recursive Table:



## Numerical Example 3

Use divided differences to find the interpolating polynomial passing through the points (0,1), (2,2), (3,4).

| $x_i$ | $f(x_i)$ | $f[x_{i-1},x_i]$ | $f[x_{i-2}, x_{i-1}, x_i]$ |
|-------|----------|------------------|----------------------------|
| 0     | 1        |                  |                            |
| 2     | 2        | 1/2              |                            |
| 3     | 4        | 2                | 1/2                        |

$$P(x) = 1 + \frac{1}{2}(x - 0) + \frac{1}{2}(x - 0)(x - 2)$$



## Numerical Example 3

Use divided differences to find the interpolating polynomial passing through the points (0,1), (2,2), (3,4), and (1,0).

| $x_i$ | $f(x_i)$ | $f[x_{i-1},x_i]$ | $f[x_{i-2}, x_{i-1}, x_i]$ | $f[x_{i-3}, x_{i-2}, x_{i-1}, x_i]$ |
|-------|----------|------------------|----------------------------|-------------------------------------|
| 0     | 1        |                  |                            |                                     |
| 2     | 2        | 1/2              |                            |                                     |
| 3     | 4        | 2                | 1/2                        |                                     |
| 1     | 0        | 2                | 0                          | -1/2                                |

$$P_3(x) = 1 + \frac{1}{2}(x - 0) + \frac{1}{2}(x - 0)(x - 2) - \frac{1}{2}(x - 0)(x - 2)(x - 3)$$



Evaluating a Polynomial

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Method 1: The most straightforward approach Arithmetic operations:

**Method 2: Nested multiplication** 

$$P(x) = a_0 + x(... + x(a_{n-2} + x(a_{n-1} + a_n x)) ...)$$

**Arithmetic operations:** 



## Numerical Example 4

```
x = 1:6; y = [16, 18, 21, 17, 15, 12];
u = linspace(0.75,6.25,100); v = Newton(x,y,u);
plot(x,y,'o',u,v,'m-')
```





- Popular Methods for Interpolations
  - **Lagrange Interpolation Method**
  - **Newton's Divided Differences**
  - > Hermite Interpolation
  - Cubic Spline Interpolation



#### Motivation

We want to find the polynomial function that not only passes through the given points, but also has the specified derivatives at every data point.

The function y = H(x) interpolates the data points  $(x_0, y_0), ..., (x_n, y_n)$  if  $H(x_i) = y_i$  and  $H'(x_i) = y'_i$  for each  $0 \le i \le n$ .

$$H(x) = h_0 + h_1 x + h_2 x^2 + h_3 x^3$$



Basic Idea

Consider just two points  $(x_0, y_0)$ ,  $(x_1, y_1)$  and having the specified first derivatives  $y'_0$ ,  $y'_1$  at the points.

We want to find the coefficients of the 3rd-degree polynomial function to match them:

$$H(x) = h_0 + h_1 x + h_2 x^2 + h_3 x^3$$



Basic Idea: Direct Method

Consider just two points  $(x_0, y_0)$ ,  $(x_1, y_1)$  and having the specified first derivatives  $y'_0$ ,  $y'_1$  at the points.

$$H(x) = h_0 + h_1 x + h_2 x^2 + h_3 x^3$$



#### Alternative Method

Consider just two points  $(x_k, y_k)$ ,  $(x_{k+1}, y_{k+1})$  and having the specified first derivatives  $y'_k = m_k$ ,  $y'_{k+1} = m_{k+1}$  at the points.

$$H(x) = \alpha_k(x)y_k + \alpha_{k+1}(x)y_{k+1} + \beta_k(x)m_k + \beta_{k+1}(x)m_{k+1}$$

$$\begin{cases} \alpha_{k}(x_{k}) = 1, & \alpha_{k}(x_{k+1}) = 0, & \alpha'_{k}(x_{k}) = 0, & \alpha'_{k}(x_{k+1}) = 0; \\ \alpha_{k+1}(x_{k}) = 0, & \alpha_{k+1}(x_{k+1}) = 1, & \alpha'_{k+1}(x_{k}) = 0, & \alpha'_{k+1}(x_{k+1}) = 0; \\ \beta_{k}(x_{k}) = 0, & \beta_{k}(x_{k+1}) = 0, & \beta'_{k}(x_{k}) = 1, & \beta'_{k}(x_{k+1}) = 0; \\ \beta_{k+1}(x_{k}) = 0, & \beta_{k+1}(x_{k+1}) = 0, & \beta'_{k+1}(x_{k}) = 0, & \beta'_{k+1}(x_{k+1}) = 1. \end{cases}$$



#### Alternative Method

$$\alpha_k(x_k) = 1, \alpha_k(x_{k+1}) = 0, \alpha'_k(x_k) = 0, \alpha'_k(x_{k+1}) = 0;$$

Let 
$$\alpha_k(x) = (ax+b)\left(\frac{x-x_{k+1}}{x_k-x_{k+1}}\right)^2$$

$$\begin{cases} \alpha_k(x_k) = ax_k + b = 1 \\ \alpha'_k(x_k) = 2\frac{ax_k + b}{x_k - x_{k+1}} + a = 0 \end{cases} \Rightarrow \begin{cases} a = -\frac{2}{x_k - x_{k+1}} \\ b = 1 + \frac{2x_k}{x_k - x_{k+1}} \end{cases}$$

$$\alpha_{k}(x) = \left(1 + 2\frac{x - x_{k}}{x_{k+1} - x_{k}}\right) \left(\frac{x - x_{k+1}}{x_{k} - x_{k+1}}\right)^{2}$$



#### Alternative Method

$$\alpha_{k+1}(x_k) = 0, \alpha_{k+1}(x_{k+1}) = 1, \alpha'_{k+1}(x_k) = 0, \alpha'_{k+1}(x_{k+1}) = 0$$



$$\alpha_{k+1}(x) = \left(1 + 2\frac{x - x_{k+1}}{x_k - x_{k+1}}\right) \left(\frac{x - x_k}{x_{k+1} - x_k}\right)^2$$



#### **Alternative Method**

$$\beta_k(x_k) = 0, \beta_k(x_{k+1}) = 0, \beta_k'(x_k) = 1, \beta_k'(x_{k+1}) = 0$$

Let 
$$\beta_k(x) = a(x - x_k) \left( \frac{x - x_{k+1}}{x_k - x_{k+1}} \right)^2$$

$$\beta_k'(x_k) = 1 \qquad a = 1$$



$$a = 1$$

$$\beta_k(x) = (x - x_k) \left( \frac{x - x_{k+1}}{x_k - x_{k+1}} \right)^2$$



#### Alternative Method

$$\beta_{k+1}(x_k) = 0, \beta_{k+1}(x_{k+1}) = 0, \beta'_{k+1}(x_k) = 0, \beta'_{k+1}(x_{k+1}) = 1$$



$$\beta_{k+1}(x) = (x - x_{k+1}) \left( \frac{x - x_k}{x_{k+1} - x_k} \right)^2$$



#### Alternative Method

Consider just two points  $(x_k, y_k)$ ,  $(x_{k+1}, y_{k+1})$  and having the specified first derivatives  $y'_k = m_k$ ,  $y'_{k+1} = m_{k+1}$  at the points.

$$H(x) = \alpha_{k}(x)y_{k} + \alpha_{k+1}(x)y_{k+1} + \beta_{k}(x)m_{k} + \beta_{k+1}(x)m_{k+1}$$

$$= \left(1 + 2\frac{x - x_{k}}{x_{k+1} - x_{k}}\right) \left(\frac{x - x_{k+1}}{x_{k} - x_{k+1}}\right)^{2} y_{k} + \left(1 + 2\frac{x - x_{k+1}}{x_{k} - x_{k+1}}\right) \left(\frac{x - x_{k}}{x_{k+1} - x_{k}}\right)^{2} y_{k+1}$$

$$+ (x - x_{k}) \left(\frac{x - x_{k+1}}{x_{k} - x_{k+1}}\right)^{2} m_{k} + (x - x_{k+1}) \left(\frac{x - x_{k}}{x_{k+1} - x_{k}}\right)^{2} m_{k+1}$$



#### Numerical Example 5

```
x = 1:6;y = [16, 18, 21, 17, 15, 12];dy = [1,0,0,0,0,1];

u = linspace(0.75,6.25,100);v\_Her = Hermite(x,y,dy,u);

plot(x,y,'o',u,v\_Her, 'k-')
```





#### Numerical Example 5: VS. PCHIP

```
x = 1:6;y = [16, 18, 21, 17, 15, 12];dy = [1,0,0,0,0,1];

u = linspace(0.75,6.25,100); v_pchip = pchip(x,y,u);

hold on; plot(u,v_pchip,'y-','LineWidth',2)
```





# **Interpolation Using MATLAB**

- Popular Methods for Interpolations
  - Lagrange Interpolation Method
  - > Newton's Divided Differences
  - Hermite Interpolation
  - Cubic Spline Interpolation



**Motivation:** Consider a function  $f(x) = 1/(1 + x^2)$ 

```
x = -3:1:3;y = 1./(1+x.^2);
u = linspace(-3.2,3.2,100);v = Lagrange(x,y,u);
plot(x,y, 'o', u,1./(1+u.^2),'g--',u,v,'b-')
```



Basic Idea

Given the data points  $(x_0, y_0), \dots, (x_n, y_n), (x_0 < x_1 < \dots < x_n)$ 

In each subinterval  $[x_i, x_{i+1}]$ , (i = 0,1,...,n-1) we want to construct the cubic spline:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

with 
$$S_i(x_i) = y_i$$
,  $S_i(x_{i+1}) = y_{i+1}$ ,  $(i = 0,1,...,n-1)$   
 $S'_{i-1}(x_i) = S'_i(x_i)$ ,  $(i = 1,...,n-1)$   
 $S''_{i-1}(x_i) = S''_i(x_i)$ ,  $(i = 1,...,n-1)$ 



- Basic Idea: Endpoint conditions
  - (1) Natural spline

$$S''_0(x_0) = 0; S''_{n-1}(x_n) = 0$$

(2) Clamped cubic spline

$$S'_0(x_0) = v_0; S'_{n-1}(x_n) = v_n$$

(3) Not-a-knot cubic spline (MATLAB's default *spline* command)

$$S'''_{0}(x_{1}) = S'''_{1}(x_{1});$$
  
 $S'''_{n-2}(x_{n-1}) = S'''_{n-1}(x_{n-1})$ 



**Solution Procedure: Method 1** 

$$S_i(x) = y_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
  
on  $[x_i, x_{i+1}], (i = 0,1,...,n-1)$   
(1) Constraint #1:

$$S_{i}(x_{i+1}) = y_{i+1}, (i = 0,1,...,n-1)$$

$$\delta_{i} = x_{i+1} - x_{i}, \quad \Delta_{i} = y_{i+1} - y_{i}$$

$$\Delta_{i} = \delta_{i}b_{i} + \delta_{i}^{2}c_{i} + \delta_{i}^{3}d_{i}$$

$$C_{i} = S_{i}b_{i} + S_{i}^{2}c_{i} + S_{i}^{3}d_{i}$$

$$\Delta_i / \delta_i = b_i + \delta_i c_i + \delta_i^2 d_i \qquad (*)$$

Solution Procedure: Method 1

$$S_i(x) = y_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
  
on  $[x_i, x_{i+1}], (i = 0,1,...,n-1)$ 

(2) Constraint #2:  $S'_{i-1}(x_i) = S'_i(x_i)$ , (i = 1,...,n-1)

$$S_i'(x) = b_i + 2c_i(x - x_i) + 3d_i(x - x_i)^2$$

$$x = x_i$$

$$S_i'(x_i) = b_i$$



Solution Procedure: Method 1

$$S_i(x) = y_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
  
on  $[x_i, x_{i+1}], (i = 0,1,...,n-1)$ 

(2) Constraint #2:  $S'_{i-1}(x_i) = S'_i(x_i)$ , (i = 1,...,n-1)

$$S'_{i-1}(x) = b_{i-1} + 2c_{i-1}(x - x_{i-1}) + 3d_{i-1}(x - x_{i-1})^{2}$$

$$x = x_{i}$$

$$S'_{i-1}(x_i) = b_{i-1} + 2\delta_{i-1}c_{i-1} + 3\delta_{i-1}^2d_{i-1} = S'_i(x_i) = b_i \quad (**)$$

Solution Procedure: Method 1

$$S_i(x) = y_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
  
on  $[x_i, x_{i+1}], (i = 0,1,...,n-1)$ 

(3) Constraint #3:  $S''_{i-1}(x_i) = S''_i(x_i), (i = 1,...,n-1)$ 

$$S_i''(x) = 2c_i + 6d_i(x - x_i)$$

$$x = x_i$$

$$S_i''(x_i) = 2c_i$$



Solution Procedure: Method 1

$$S_i(x) = y_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
  
on  $[x_i, x_{i+1}], (i = 0,1,...,n-1)$ 

(3) Constraint #3: 
$$S''_{i-1}(x_i) = S''_i(x_i), (i = 1,...,n-1)$$

$$S''_{i-1}(x) = 2c_{i-1} + 6d_{i-1}(x - x_{i-1})$$

$$x = x_i$$

$$S''_{i-1}(x_i) = 2c_{i-1} + 6\delta_{i-1}d_{i-1} = S''_i(x_i) = 2c_i$$

$$d_{i-1} = \frac{1}{3\delta_{i-1}}(c_i - c_{i-1}) \qquad d_i = \frac{1}{3\delta_i}(c_{i+1} - c_i)$$



**Solution Procedure: Method 1** 

Substituting 
$$d_i = \frac{1}{3\delta_i}(c_{i+1} - c_i)$$
 into (\*)

$$\Delta_i / \delta_i = b_i + \delta_i c_i + \delta_i^2 d_i$$

$$\underline{b_i} = \Delta_i / \delta_i - \delta_i c_i - \frac{\delta_i}{3} (c_{i+1} - c_i)$$

$$= \Delta_i / \delta_i - \frac{2}{3} \delta_i c_i - \frac{\delta_i}{3} c_{i+1}$$



**Solution Procedure: Method 1** 

Substituting 
$$d_i = \frac{1}{3\delta_i}(c_{i+1} - c_i)$$

into (\*\*)

$$b_i = \Delta_i / \delta_i - \frac{2}{3} \delta_i c_i - \frac{\delta_i}{3} c_{i+1}$$

$$b_{i-1} + 2\delta_{i-1}c_{i-1} + 3\delta_{i-1}^2d_{i-1} = b_i$$

$$\delta_{i-1}c_{i-1} + 2(\delta_{i-1} + \delta_i)c_i + \delta_i c_{i+1} = 3\left(\frac{\Delta_i}{\delta_i} - \frac{\Delta_{i-1}}{\delta_{i-1}}\right)$$



Solution Procedure: Method 1

$$\delta_{i-1}c_{i-1} + 2\left(\delta_{i-1} + \delta_{i}\right)c_{i} + \delta_{i} c_{i+1} = 3\left(\frac{\Delta_{i}}{\delta_{i}} - \frac{\Delta_{i-1}}{\delta_{i-1}}\right)$$

$$(i = 1, ..., n-1)$$

$$\begin{bmatrix} \delta_0 & 2(\delta_0 + \delta_1) & \delta_1 \\ & \delta_1 & 2(\delta_1 + \delta_2) & \delta_2 \\ & & \ddots & \ddots \\ & & \delta_{n-2} & 2(\delta_{n-2} + \delta_{n-1}) & \delta_{n-1} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = 3 \begin{bmatrix} \frac{\Delta_1}{\delta_1} - \frac{\Delta_0}{\delta_0} \\ \frac{\Delta_2}{\delta_2} - \frac{\Delta_1}{\delta_1} \\ \vdots \\ \frac{\Delta_{n-1}}{\delta_{n-1}} - \frac{\Delta_{n-2}}{\delta_{n-2}} \end{bmatrix}$$

$$(n-1) \times (n+1)$$



#### **Solution Procedure: Method 1**

Solution Procedure: Method 1
$$\begin{bmatrix} \delta_0 & 2(\delta_0 + \delta_1) & \delta_1 \\ & \delta_1 & 2(\delta_1 + \delta_2) & \delta_2 \\ & & \ddots & \ddots \\ & & \delta_{n-2} & 2(\delta_{n-2} + \delta_{n-1}) & \delta_{n-1} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = 3 \begin{bmatrix} \frac{\Delta_1}{\delta_1} - \frac{\Delta_0}{\delta_0} \\ \frac{\Delta_2}{\delta_2} - \frac{\Delta_1}{\delta_1} \\ \vdots \\ \frac{\Delta_{n-1}}{\delta_{n-1}} - \frac{\Delta_{n-2}}{\delta_{n-2}} \end{bmatrix}$$

$$(n-1) \times (n+1)$$

### $(n-1)\times(n+1)$

### → Natural spline

$$S''_0(x_0) = 0; S''_{n-1}(x_n) = 0$$

$$\begin{cases} 2c_0 = 0 \\ 2c_n = 0 \end{cases}$$



- Solution Procedure: Method 1
  - → Clamped cubic spline

$$S'_0(x_0) = v_0; S'_{n-1}(x_n) = v_n$$

$$\begin{cases} 2\delta_0 c_0 + \delta_0 c_1 = 3\left(\frac{\Delta_0}{\delta_0} - v_0\right) \\ \delta_{n-1} c_{n-1} + 2\delta_{n-1} c_n = 3\left(v_n - \frac{\Delta_{n-1}}{\delta_{n-1}}\right) \end{cases}$$



Solution Procedure: Method 2

Since the spline is of degree 3, its secondorder derivative must be continuous. Introduce the following notation:

$$M_{j} = S''(x_{j}), j = 0, 1, \dots, n$$

On the interval  $[x_j, x_{j+1}]$ ,  $S''_j(x)$  is linear:

$$S_{j}''(x) = M_{j} \frac{x_{j+1} - x}{h_{j}} + M_{j+1} \frac{x - x_{j}}{h_{j}}$$

where 
$$h_{j} = x_{j+1} - x_{j}$$



#### Solution Procedure: Method 2

$$S''_{j}(x) = M_{j} \frac{x_{j+1} - x}{h_{j}} + M_{j+1} \frac{x - x_{j}}{h_{j}}$$
  $j = 0, 1, \dots, n-1$ 

### Integrating it twice and use $S_j(x_j) = y_j, S_j(x_{j+1}) = y_{j+1}$

$$\begin{split} S_{j}(x) &= M_{j} \frac{(x_{j+1} - x)^{3}}{6h_{j}} + M_{j+1} \frac{(x - x_{j})^{3}}{6h_{j}} + \left(y_{j} - \frac{M_{j}h_{j}^{2}}{6}\right) \frac{x_{j+1} - x}{h_{j}} \\ &+ \left(y_{j+1} - \frac{M_{j+1}h_{j}^{2}}{6}\right) \frac{x - x_{j}}{h_{j}} \end{split}$$



#### Solution Procedure: Method 2

$$\begin{split} S_{j}(x) &= M_{j} \frac{(x_{j+1} - x)^{3}}{6h_{j}} + M_{j+1} \frac{(x - x_{j})^{3}}{6h_{j}} + \left(y_{j} - \frac{M_{j}h_{j}^{2}}{6}\right) \frac{x_{j+1} - x}{h_{j}} \\ &+ \left(y_{j+1} - \frac{M_{j+1}h_{j}^{2}}{6}\right) \frac{x - x_{j}}{h_{j}} \end{split}$$

#### The first derivatives:

$$S'_{j}(x) = -M_{j} \frac{(x_{j+1} - x)^{2}}{2h_{j}} + M_{j+1} \frac{(x - x_{j})^{2}}{2h_{j}} + \frac{y_{j+1} - y_{j}}{h_{j}}$$
$$-\frac{M_{j+1} - M_{j}}{6}h_{j}$$



#### Solution Procedure: Method 2

$$S'_{j}(x) = -M_{j} \frac{(x_{j+1} - x)^{2}}{2h_{j}} + M_{j+1} \frac{(x - x_{j})^{2}}{2h_{j}} + \frac{y_{j+1} - y_{j}}{h_{j}}$$
$$-\frac{M_{j+1} - M_{j}}{6}h_{j}$$

#### We obtain:

$$S'_{j}(x_{j}) = -\frac{h_{j}}{3}M_{j} - \frac{h_{j}}{6}M_{j+1} + \frac{y_{j+1} - y_{j}}{h_{j}}$$



#### Solution Procedure: Method 2

$$S'_{j}(x_{j}) = -\frac{h_{j}}{3}M_{j} - \frac{h_{j}}{6}M_{j+1} + \frac{y_{j+1} - y_{j}}{h_{j}}$$

#### Similarly, we have

$$S'_{j-1}(x_j) = \frac{h_{j-1}}{6} M_{j-1} + \frac{h_{j-1}}{3} M_j + \frac{y_j - y_{j-1}}{h_{j-1}}$$



Solution Procedure: Method 2

Using 
$$S'_{j}(x_{j}) = S'_{j-1}(x_{j})$$
  $f[x_{j}, x_{j+1}]$ 

$$S'_{j}(x_{j}) = -\frac{h_{j}}{3}M_{j} - \frac{h_{j}}{6}M_{j+1} + \frac{y_{j+1} - y_{j}}{h_{j}}$$

$$S'_{j-1}(x_{j}) = \frac{h_{j-1}}{6}M_{j-1} + \frac{h_{j-1}}{3}M_{j} + \frac{y_{j} - y_{j-1}}{h_{j-1}}$$

$$f[x_{j-1}, x_{j}]$$



Solution Procedure: Method 2

$$\mu_j M_{j-1} + 2M_j + \lambda_j M_{j+1} = d_j, \ j = 1, 2, \dots, n-1$$

#### where

$$\mu_{j} = \frac{h_{j-1}}{h_{j-1} + h_{j}}, \ \lambda_{j} = \frac{h_{j}}{h_{j-1} + h_{j}}$$

$$d_{j} = 6 \frac{f[x_{j}, x_{j+1}] - f[x_{j-1}, x_{j}]}{h_{j-1} + h_{j}} = 6f[x_{j-1}, x_{j}, x_{j+1}]$$

(n + 1) unknows, while (n – 1) equations.



Solution Procedure: Method 2

### For the clamped cubic spline

$$S'_0(x_0) = v_0; S'_{n-1}(x_n) = v_n$$

#### we have

$$2M_0 + M_1 = \frac{6}{h_0} (f[x_0, x_1] - v_0) \triangleq d_0$$

$$M_{n-1} + 2M_n = \frac{6}{h_{n-1}} (v_n - f[x_{n-1}, x_n]) \triangleq d_n$$



Solution Procedure: Method 2

For the clamped cubic spline, the spline interpolation can be obtained from:

$$\begin{bmatrix} 2 & \lambda_{0} & & & & \\ \mu_{1} & 2 & \lambda_{1} & & & \\ & \ddots & \ddots & \ddots & \\ & & \mu_{n-1} & 2 & \lambda_{n-1} \\ & & & \mu_{n} & 2 \end{bmatrix} \begin{bmatrix} M_{0} \\ M_{1} \\ \vdots \\ M_{n-1} \\ M_{n} \end{bmatrix} = \begin{bmatrix} d_{0} \\ d_{1} \\ \vdots \\ d_{n-1} \\ d_{n} \end{bmatrix}$$



**Re-Consider the function**  $f(x) = 1/(1 + x^2)$ 

```
x = -3:1:3;y = 1./(1+x.^2);

u = linspace(-3.2,3.2,100); v_Spl = spline(x,y,u);

hold on; plot(u,v_Spl,'k-','LineWidth',2)
```





#### Numerical Example 6

```
x = 1:6; y = [16, 18, 21, 17, 15, 12];
u = linspace(0.75,6.25,100); v = spline(x,y,u);
plot(x,y, 'o',u,v,'k-')
```





### **MATLAB Built-in Functions**

- MATLAB Built-in Functions for Interpolation
  - ✓ 1-D data interpolation: *interp1*
  - ✓ 2-D data interpolation: *interp2*
  - ✓ Cubic spline data interpolation: *spline*
  - ✓ Polynomial evaluation: *polyval*



# Summary

- ✓ Lagrange Interpolation Method
- **✓** Newton's Divided Differences
- **✓** Hermite Interpolation
- **✓ Cubic Spline Interpolation**





# Thank You!