Midterm Correction

Hanzhang Yin

November 6, 2024

Question Correction:

1 Part A

Question 1

1.0.1 (a)

For this question, I made a misconception on the inequality relationship between absolute error and relative error. Although I have correctly identitied it out, I sub the incorrect values in it during calculations

Corrections:

NOTE: $\kappa(A) = ||L|| \cdot ||L^{-1}||$

$$\frac{|x-\tilde{x}|}{|x|} \le \kappa(L) \frac{|b-\tilde{b}|}{|b|} \le 4 \times \left(\frac{1}{2}\right) \times 0.1 = 0.2.$$

1.0.2 (b)

For this question, I have confused and forget the relationship between absolute and relative error. (Which should not happened...)

Corrections:

The system of equations given is Lx = b, where L is a matrix, x is the solution vector, and b is the right-hand side vector. However, we only have an estimate \tilde{b} for b, so we ended up solving $L\tilde{x} = \tilde{b}$, where \tilde{x} is the approx. solution corresponding to \tilde{b} .

To analyze the effect of the error b on x, we subtract the two equations $Lx = b, L\tilde{x} = \tilde{b}$, giving that:

$$L(x - \tilde{x}) = b - \tilde{b} \Rightarrow x - \tilde{x} = L^{-1}(b - \tilde{b})$$

To bound the error, we take the norm of both sides here:

$$\Rightarrow |x - \tilde{x}| = |L^{-1}(b - \tilde{b})|$$

By triangle inequality and definition of matrix norm, we can further have:

$$\Rightarrow |x - \tilde{x}| \le ||L^{-1}|||b - \tilde{b}|$$

$$= \frac{1}{2} \times 4,$$

$$= 2.$$

1.0.3 (c)

Similarly to (b), I have failed recognize using the given system of linear equation is sufficient during examination.

Corrections:

Since Lx = b, we can express x as:

$$x = L^{-1}b$$

To bound |x|, we take the norm:

$$|x| = |L^{-1}b|$$

Using the traingle inequality and definition of matrix norm $|L^{-1}b| \leq ||L^{-1}|||b|$, we get:

$$|x| \le ||L^{-1}|||b||$$

Substitute $||L^{-1}|| = \frac{1}{2}$ and |b| = 40:

$$|x| \le \frac{1}{2} \times 40 = 20$$

Question 2

1.0.4 (a)

Forgot to specify that degree k spline must be polynomial. Here I will provide a more formal definition as a correction:

Corrections:

A degree k spline on an interval [a, b] is a function S(x) composed of polynomial segments $S_i(x)$ of degree k, defined on subintervals $[x_i, x_{i+1}]$, where $a = x_0 < x_1 < \cdots < x_n = b$. The spline satisfies the following properties:

• Piecewise Polynomial: On each subinterval $[x_i, x_{i+1}], S(x)$ is a polynomial of degree k:

$$S(x) = S_i(x)$$
 for $x \in [x_i, x_{i+1}]$

• Continuity of Function and Derivatives: The function S(x) is continuous on [a, b], and its derivatives up to order k-1 are also continuous across the subinterval boundaries (knots):

$$S(x_i^-) = S(x_i^+), \quad S'(x_i^-) = S'(x_i^+), \quad \dots, \quad S^{(k-1)}(x_i^-) = S^{(k-1)}(x_i^+)$$

for each knot x_i , where $S(x_i^-)$ and $S(x_i^+)$ denote the left-hand and right-hand limits at x_i , respectively.

Question 3

1.0.5 (b)

For this question, I have no time to perform further steps as the time runs up, so that in this case I could only make a somehow plausible guess after all.

Corrections:

2 Part B

Question 4

2.0.1 (b)

I have made a misconception between the graph of L_2 norm and ∞ norm. During exam I don't have sufficient time to think carefully, but after revisit this question I found out the graph is straight-forward.

Corrections:

For the L^{∞} norm on \mathbb{R}^2 , the unit disk forms a square with vertices at (1,1), (1,-1), (-1,1), and (-1,-1), as it includes all points where $\max(|x|,|y|) \leq 1$.

Question 5

2.0.2 (b)

For this question, I misuse the characteristics of Markov matrix and matrix norm, and forgot the continuity of matrix-vector multiplication w.r.t. the limits.

Corrections:

We use the continuity of matrix-vector multiplication with respect to limits in here for further analysis

are given that $\lim_{k\to\infty} M^k v = x$ for some nonzero vector x, meaning repeated applications of M to v converge to x.

Continuity of Matrix-Vector Multiplication: Since matrix-vector multiplication is continuous, we have:

$$Mx = M \lim_{k \to \infty} M^k v = \lim_{k \to \infty} M^{k+1} v = x$$

Thus, Mx = x, showing that x is an eigenvector of M with eigenvalue 1.

2.0.3 (c)

For this question, since the question does not specify whether the markov matrix have the column or the row sum to 1, so that I assumed the former and showed that there is a right

eigenvector with eigenvalue 1. I think both will work but since it diverged with what the answer key said, here is the modified answer.

Corrections:

Let u = [1, 1, ..., 1], a row vector with each entry equal to 1.

When we multiply y on the left by M, we get yM. This operation sums each column of M, resulting in y again:

$$uM = u$$

Since uM = u, u is a left eigenvector of M with eigenvalue 1. Therefore, 1 is an eigenvalue of M.

Question 6

2.0.4 (c)

For this question, I think it is sufficient to use sequence a_k and b_k is increasing and decreasing resp. without stating out as given they are given monotonic. Hence ended with my a circular reasoning within my proof.

Corrections:

In each step of the bisection method, we start with an interval $[a_k, b_k]$ where $f(a_k)$ and $f(b_k)$ have opposite signs. We compute the midpoint $x_k = \frac{a_k + b_k}{2}$. If $f(x_k) = 0$, then x_k is the root, and we stop. Otherwise, depending on the sign of $f(x_k)$, we replace either a_k or b_k with x_k to ensure the new interval $[a_{k+1}, b_{k+1}]$ still contains the root.

By construction, a_k is updated only when $f(x_k)$ has the same sign as $f(a_k)$. In this case, we set $a_{k+1} = x_k$, meaning a_k is non-decreasing. Similarly, b_k is updated only when $f(x_k)$ has the same sign as $f(b_k)$. In this case, we set $b_{k+1} = x_k$, making b_k non-increasing. Therefore, a_k forms a non-decreasing sequence and b_k forms a non-increasing sequence, with both sequences bounded within $[a_0, b_0]$.

Each iteration halves the interval size, so $|a_k - b_k| = \frac{|a_0 - b_0|}{2^k}$, which approaches zero as $k \to \infty$. Given the fact that if two monotonic sequences a_k and b_k are contained in a closed interval and $\lim_{k\to\infty}(a_k - b_k) = 0$, then $\lim_{k\to\infty}a_k = \lim_{k\to\infty}b_k$ and these limits are equal.

Since $a_k \leq x_k \leq b_k$ at each step, the Squeeze Theorem implies that x_k also converges to the same limit as a_k and b_k . Therefore, $\lim_{k\to\infty} x_k$ exists, lies in [a,b], and is equal to the root of f.

Question 7 - Long Proof Part (b)

For this question, I did not state clear with a little vagueness about how to use Taylor's theorem in this proof, and made a small typo in exponent listed in the expanded polynomial. This probably due to that I missed some details that need to remembered in the proof detial.

Corrections:

To show that $|e_{n+1}| \leq \frac{C}{2B}e_n^2$, we start by expanding the error e_{n+1} in terms of e_n , using Newton's method.

Using Newton's update formula, we have:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Since $e_{n+1} = x - x_{n+1}$, we can rewrite e_{n+1} as:

$$e_{n+1} = x - \left(x_n - \frac{f(x_n)}{f'(x_n)}\right) = (x - x_n) + \frac{f(x_n)}{f'(x_n)}.$$

Substituting $e_n = x - x_n$, we get:

$$e_{n+1} = e_n + \frac{f(x_n)}{f'(x_n)}.$$

To approximate $f(x_n)$ in terms of e_n , we use Taylor's theorem to expand $f(x_n)$ around x (the root we are converging to), where f(x) = 0. Taylor's theorem gives:

$$f(x_n) = f(x) + (x_n - x)f'(x) + \frac{f''(\zeta_n)}{2}(x_n - x)^2,$$

for some ζ_n between x and x_n . Since f(x) = 0, this simplifies to:

$$f(x_n) = (x_n - x)f'(x) + \frac{f''(\zeta_n)}{2}(x_n - x)^2.$$

Substituting $e_n = x - x_n$, we get:

$$f(x_n) = -f'(x_n)e_n + \frac{f''(\zeta_n)}{2}e_n^2.$$

Now, we substitute this expression for $f(x_n)$ into the formula for e_{n+1} :

$$e_{n+1} = e_n + \frac{-f'(x_n)e_n + \frac{f''(\zeta_n)}{2}e_n^2}{f'(x_n)}.$$

Simplifying, we find:

$$e_{n+1} = e_n - \frac{f'(x_n)}{f'(x_n)}e_n + \frac{f''(\zeta_n)}{2f'(x_n)}e_n^2.$$

The terms involving e_n cancel out, leaving:

$$e_{n+1} = \frac{f''(\zeta_n)}{2f'(x_n)}e_n^2.$$

Taking the absolute value of both sides, we obtain:

$$|e_{n+1}| = \left| \frac{f''(\zeta_n)}{2f'(x_n)} \right| e_n^2.$$

By the assumptions of the theorem, |f'| > B on [a, b], so $|f'(x_n)| > B$. Also, since f'' is bounded by C on [a, b], we have $|f''(\zeta_n)| < C$ for all ζ_n in [a, b]. Therefore:

$$|e_{n+1}| \le \frac{C}{2B}e_n^2.$$

Write Your Own:

I am willing to design a problem related to Secant Method that we have discussed currently.

Problem

Consider the function $f(x) = x^3 - 2x^2 + x - 3$.

- (a) Explain how the secant method differs from the Newton method in finding roots of nonlinear equations.
- (b) Prove that the order of convergence of the secant method is approximately ϕ , where $\phi = \frac{1+\sqrt{5}}{2}$ (the golden ratio). Provide the derivation for this order of convergence.

Solution

Part (a): Differences Between Secant Method and Newton-Raphson Method

- Derivative Requirement:
 - Newton-Raphson Method: Requires the calculation of the derivative f'(x) at each iteration.

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Secant Method: Does not require the derivative. Instead, it approximates the
derivative using two previous function values.

$$x_{n+1} = x_n - f(x_n) \left(\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \right)$$

- Initial Guesses:
 - Newton-Raphson Method: Requires a single initial guess x_0 .
 - **Secant Method:** Requires two initial guesses x_0 and x_1 to start the iteration.
- Convergence Rate:
 - Newton-Raphson Method: Has quadratic convergence (p = 2) near the root if the function is sufficiently smooth.
 - **Secant Method:** Has a convergence rate of approximately $p \approx 1.618$ (superlinear but less than quadratic).
- Computational Costs:

- Newton-Raphson Method: Requires evaluation of both f(x) and f'(x) at each step, which can be computationally expensive if f'(x) is complex.
- Secant Method: Only requires evaluation of f(x), saving computational resources when f'(x) is difficult to compute.

Part (a): Differences Between Secant Method and Newton's Method

• Derivative Requirement:

- Newton's Method: Requires the calculation of the derivative f'(x) at each iteration.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- **Secant Method:** Does not require the derivative. Instead, it approximates the derivative using two previous function values.

$$x_{n+1} = x_n - f(x_n) \left(\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \right)$$

• Initial Guesses:

- Newton's Method: Requires a single initial guess x_0 .
- Secant Method: Requires two initial guesses x_0 and x_1 to start the iteration.

• Convergence Rate:

- **Newton's Method**: Has quadratic convergence (p = 2) near the root if the function is sufficiently smooth.
- **Secant Method:** Has a convergence rate of approximately $p \approx 1.618$ (superlinear but less than quadratic).

• Computational Effort:

- Newton's Method: Requires evaluation of both f(x) and f'(x) at each step, which can be computationally expensive if f'(x) is complex.
- **Secant Method:** Only requires evaluation of f(x), saving computational resources when f'(x) is difficult to compute.

Part (b): Order of Convergence of the Secant Method

Objective: Show that the order of convergence p of the secant method is approximately $\phi = \frac{1+\sqrt{5}}{2}$ (the golden ratio).

Proof: Suppose that we are solving the equation f(x) = 0 using the secant method. Let the iterations

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}, \quad n = 1, 2, 3, \dots, (1)$$

be successful and approach a solution α , $f(\alpha) = 0$, as $n \to \infty$. We want to find how find it converges. I.e. We want to find the exponent p such that:

$$|x_{n+1} - \alpha| \approx C|x_n - \alpha|^p$$
,

Equation (1) expresses x_{n+1} as a function of x_n and x_{n-1} iteratively. Let $x_n = \alpha + \epsilon_n$. Since $x_n \to \alpha$, the sequence of errors ϵ_n approaches 0 as $n \to \infty$. Hence, in terms of α and ϵ_n , the formula becomes

$$\epsilon_{n+1} = \epsilon_n - \frac{f(\alpha + \epsilon_n)(\epsilon_n - \epsilon_{n-1})}{f(\alpha + \epsilon_n) - f(\alpha + \epsilon_{n-1})}$$
(2)

Assume that f(x) is a twice differentiable function and $f'(\alpha)$, $f''(\alpha) \neq 0$. The Taylor Expansion of the formula will be:

$$f(\alpha + \epsilon) = f(\alpha) + f'(\alpha)\epsilon + \frac{f''(\alpha)}{2}\epsilon^2 + R_2(\epsilon).$$

NOTE: $f(\alpha) = 0$, ϵ is small, and $R_2(\epsilon)$ is the remainder term.

Since $R_2(\epsilon)$ vanishes at $\epsilon = 0$ at a faster rate than ϵ^2 , we neglect the terms of order higher than ϵ^2 , we have the approximation:

$$f(\alpha + \epsilon) \approx f'(\alpha)\epsilon + \frac{f''(\alpha)}{2}\epsilon^2$$
.

For clarity of the following proof, we let:

$$N = \frac{f''(\alpha)}{2f'(\alpha)},$$

and use the approximate equalities:

$$f(\alpha + \epsilon_n) \approx f'(\alpha)\epsilon_n(1 + N\epsilon_n),$$

$$f(\alpha + \epsilon_n) - f(\alpha + \epsilon_{n-1}) \approx f'(\alpha)(\epsilon_n - \epsilon_{n-1})(1 + N(\epsilon_n + \epsilon_{n-1}))$$

to simplify equation (2):

$$\epsilon_{n+1} \approx \epsilon_n - \frac{\epsilon_n f'(\alpha)(1 + N\epsilon_n)(\epsilon_n - \epsilon_{n-1})}{f'(\alpha)(\epsilon_n - \epsilon_{n-1})(1 + M(\epsilon_n + \epsilon_{n-1}))}$$

$$= \epsilon_n - \frac{\epsilon_n (1 + N\epsilon_n)}{1 + N(\epsilon_n + \epsilon_{n-1})}$$

$$= \frac{\epsilon_{n-1} \epsilon_n N}{1 + N(\epsilon_n + \epsilon_{n-1})}$$

$$\approx \epsilon_{n-1} \epsilon_n N.$$

At this stage, we have obtained a relation for the errors:

$$\epsilon_{n+1} \approx \frac{f''(\alpha)}{2f'(\alpha)} \epsilon_n \epsilon_{n-1}, (3)$$

where the terms of order higher than ϵ are neglected.

Compare this to the corresponding formula for Newton's method:

$$\epsilon_{n+1} \approx \frac{f''(\alpha)}{2f'(\alpha)}\epsilon_n^2.$$

Formula (3) tells us that, as $n \to \infty$, the error tends to zero faster than linear function and yet not quadratically.

$$\epsilon_{n+1} \approx C |\epsilon_n|^p$$

If $\epsilon_{n+1} \approx C |\epsilon_n|^p$ then

$$C|\epsilon_n|^p \approx |N| |\epsilon_n| |\epsilon_{n-1}|,$$

$$|\epsilon_n|^{p-1} \approx \frac{|N|}{C} |\epsilon_{n-1}|,$$

$$|\epsilon_n| \approx \left(\frac{|N|}{C}\right)^{\frac{1}{p-1}} |\epsilon_{n-1}|^{\frac{1}{p-1}}.$$

Therefore, $C = \left(\frac{|N|}{C}\right)^{\frac{1}{p-1}}$ and $p = \frac{1}{p-1} \Rightarrow p^2 - p - 1 = 0$. Because p > 0, the condition on p gives

$$\Rightarrow p = \frac{1 + \sqrt{5}}{2} \approx 1.618.$$

Referring back to the relationship we have on C, we can conclude that:

$$C^p = |N| \quad \text{or} \quad C = |N|^{1/p} = \left| \frac{f''(\alpha)}{2f'(\alpha)} \right|^{p-1}.$$

We conclude that for the secant method (NOTE: $\phi=p$ as shown)

$$|x_{n+1} - \alpha| \approx \left| \frac{f''(\alpha)}{2f'(\alpha)} \right|^{\frac{\sqrt{5}-1}{2}} |x_n - \alpha|^{\phi}.$$

We finish the proof at this stage.