SCHOOL OF COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE			DEPARTMENT OF COMPUTER SCIENCE ENGINEERING			
ProgramName: <mark>B. Tech</mark>		Assignment Type: Lab Acad		AcademicYear:2025-2026		
CourseCoordinatorName		Venkataramana	a Veeramsetty	1		
Instructor(s)Name CourseCode 24CS002PC215		 Dr. Mohammed Ali Shaik Dr. T Sampath Kumar Mr. S Naresh Kumar Dr. V. Rajesh Dr. Brij Kishore Dr Pramoda Patro Dr. Venkataramana Dr. Ravi Chander Dr. Jagjeeth Singh CourseTitle Al Assisted Coding				
Year/Sem	II/I	Regulation	R24			
Date and Day of Assignment		Time(s)				
Duration	2 Hours	Applicableto Batches				
AssignmentNumber: 3.3 (Present assignment number)/24 (Total number of assignments)						
_						

Q.No.	Question	Expected
		Time
		to
		complete
	Lab 3: Prompt Engineering – Improving Prompts and Context Management	
	Lab Objectives:	
	 To understand how prompt structure and wording influence AI-generated code. To explore how context (like comments and function names) helps AI generate relevant output. 	
	 To evaluate the quality and accuracy of code based on prompt clarity. To develop effective prompting strategies for AI-assisted programming. 	
1		03.08.2025
	Lab Outcomes (LOs):	EOD
	After completing this lab, students will be able to:	
	 Generate Python code using Google Gemini in Google Colab. Analyze the effectiveness of code explanations and suggestions by Gemini. Set up and use Cursor AI for AI-powered coding assistance. 	
	 Evaluate and refactor code using Cursor AI features. 	
	Compare AI tool behavior and code quality across different platforms.	

Task Description#1

• Try 3 different prompts to generate a factorial function.

Expected Output#1

• Comparison of AI-generated code styles

PROMPT 1: WRITE A PYTHON CODE TO GENERATE A FACTORIAL FUNCTION.

OUTPUT:

```
Factorial of 0:
Iterative approach: 1
Recursive approach: 1
Recursive approach: 1
Math module approach: 1
Math module approach: 1
Math module approach: 1
Factorial of 5:
Iterative approach: 1
Factorial of 5:
Iterative approach: 120
Recursive approach: 120
Recursive approach: 120
Recursive approach: 120
Returnive approach: 120
Factorial of 10:
Iterative approach: 3628800
Returnive approach: 3628800
Math module approach: 3628800
Factorial of 10:
Iterative approach: 3628800
Factorial of 6 is: 720
PS C:\Users\MEGHANA\Documents\AIAC>

### Ports

### Ports

### Python Debug Console + >
```

PROMPT 2: WRITE A FUNCTION TO FIND THE FACTORIAL OF THE GIVEN NUMBER.

```
v 4 H Ø 4 Q €
                  def factorial(n):
   Run and Debug
OUTPUT:
  Enter a number to calculate factorial: 6
  Enter a number to calculate factorial: 6
  Factorial of 6 is: 720
  Enter a number to calculate factorial: 6
  Factorial of 6 is: 720
  Factorial of 6 is: 720
  PS C:\Users\MEGHANA\Documents\AIAC> ^C
  PS C:\Users\MEGHANA\Documents\AIAC>
  PS C:\Users\MEGHANA\Documents\AIAC> c:; cd 'c:\Users\MEGHANA\Documents\AIAC'; & 'c:
PROMPT 3: WRITE A PYTHON CODE TO KNOWN THE FACTORIAL OF THE GIVEN
INPUT
                                                 Task prompt3.py X
      def factorial(n):
           """Calculate factorial of a number"""
           if n < 0:
              return "Error: Factorial is not defined for negative numbers"
           elif n == 0 or n == 1:
              return 1
           else:
             for i in range(2, n + 1):
                  result *= i
             return result
       def main():
           try:
              num = int(input("Enter a number to calculate factorial: "))
              result = factorial(num)
               if isinstance(result, str):
                 print(result)
                  print(f"Factorial of {num} is: {result}")
           except ValueError:
              print("Error: Please enter a valid integer")
           except Exception as e:
             print(f"An error occurred: {e}")
       if __name__ == "__main__":
           main()
```

Enter a number to calculate factorial: 5
Factorial of 5 is: 120
PS C:\Users\MEGHANA\Documents\AIAC>

USE OF USING THREE DIFFERENT PROMPTS:

To explore alternative solutions or specific programming paradigms and we will be getting a knowledge of writing a different types of codes.

Task Description#2

• Provide a clear example input-output prompt to generate a sorting function. **PROMPT:** WRITE A PYTHON CODE TO GENERATE A SORTING FUNCTION.

Generates a comprehensive sorting function with multiple algorithms Returns a function that can sort lists using different methods import random
import time def bubble_sort(arr): def quick_sort(arr):
 if len(arr) <= 1:
 return arr
 pivot = arr[len(arr) // 2]
 left = [x for x in arr if x < pivot]
 middle = [x for x in arr if x > pivot]
 right = [x for x in arr if x > pivot]
 return quick_sort(left) + middle + quick_sort(right) def merge_sort(arr):
 if len(arr) <= 1:
 return arr
 mid = len(arr) // 2
 left = merge_sort(arr[:mid])
 right = merge_sort(arr[mid:])
 return merge(left, right)</pre> def merge(left, right): 1 = J = 0
while i < len(left) and j < len(right):
while i < len(left) and j < len(right):
 if left[i] <= right[j]:
 result.append(left[i])
 i +- 1
 else:
 result.append(right[j])
 j +- 1
 result.extend(left[i:])
result.extend(right[j:])
return result</pre> smart sort(arr, algorithm='auto'):
if algorithm == 'auto':
 il len(arr) <= 10:
 algorithm = 'bubble'
 etif len(arr) <= 100:
 algorithm = 'merge'
 etse;
 algorithm = 'quick'</pre> if algorithm == 'bubble':
 return bubble sort(arr.copy())
elif algorithm == 'quick':
 return quick.sort(arr.copy())
elif algorithm == 'merge':
 return merge_sort(arr.copy())
else:
 return sorted(arr)

and test the sorting function
= generate_sorting_function()

```
sort_func = generate_sorting_function()
test_lists = [
    [64, 34, 25, 12, 22, 11, 90],
    [5, 2, 4, 6, 1, 3],
         [1],
[]
    for lst in test_lists:
         original = lst.copy()
         sorted_list = sort_func(lst)
print(f"Original: {original}")
print(f"Sorted: {sorted_list}")
         print(f"Algorithm: {'auto'}")
         print("-" * 30)
```

```
Originai: [64, 34, 25, 12, 22, 11, 90]
Sorted: [11, 12, 22, 25, 34, 64, 90]
Algorithm: auto
Original: [5, 2, 4, 6, 1, 3]
Sorted: [1, 2, 3, 4, 5, 6]
Algorithm: auto
Original: [1]
Sorted: [1]
Algorithm: auto
Original: []
Sorted: []
Algorithm: auto
```

Expected Output#2

Functional sorting code from AI

Task Description#3

Start with the vague prompt "Generate python code to calculate power bill" and improve it step-by-step

```
# Get usage details
current_reading = float(input("Enter current meter reading (kWh): "))
previous_reading = float(input("Enter previous meter reading (kWh): "))
                                 # Define rate structure (stab-based pricing)
if units_consumed <= 100:
    rate_per_unit = 2.50
    elif units_consumed <= 300:
    rate_per_unit = 3.75
    elf units_consumed << 500:
    rate_per_unit = 5.25
    elso:</pre>
                                 # calculate charges
energy_charge = units_consumed * rate_per_unit
fixed charge = 150.00  # Monthly fixed charge
tax_rate = 0.08  # 8% tax
tax_amount = (energy_charge + fixed_charge) * tax_rate
total_bill = energy_charge + fixed_charge + tax_amount
```

```
Enter customer name: MEGHANA
Enter customer ID: 13
Enter current meter reading (kwh): 2000
Enter previous meter reading (kwh): 1000

POWER BILL STATEMENT

Customer Name: MEGHANA
Customer ID: 13
Previous Reading: 1000.00 kwh
Current Reading: 2000.00 kwh
Units Consumed: 1000.00 kwh
Rate per Unit: ₹7.50
Energy Charge: ₹7500.00
Fixed Charge: ₹150.00
Tax (8%): ₹612.00

TOTAL BILL: ₹8262.00
```

Expected Output#3

• Enhanced AI output with clearer prompts

Task Description#4

Write structured comments to help AI generate two linked functions (e.g., login_user() and register user()).

PROMPT: GENERATE A PYTHON FUNCTION TO LINK THE LOGIN USER AND REGISTER USER.

```
3. Exit
Enter your choice (1-3): 2
Enter username: MEGHANA
Enter password: MEGHAN
Invalid username or password!

=== USER AUTHENTICATION SYSTEM ===
1. Register
2. Login
3. Exit
Enter your choice (1-3): 1
Enter username to register: MEGHA
Username already exists!

=== USER AUTHENTICATION SYSTEM ===
1. Register
2. Login
3. Exit
Enter your choice (1-3): 2
Enter username: MEGHA
Enter password: MEGHANA
Welcome back, MEGHAN
```

Expected Output#4

• Consistent functions with shared logic

Task Description#5

 Analyzing Prompt Specificity: Improving Temperature Conversion Function with Clear Instructions

PROMPT: GENERATE A PYTHON CODE TO CALCULATE TEMPERATURE CONVERSION.

o pricari in the connected branc tades to except

Temperature Converter

- 1. Celsius to Fahrenheit
- 2. Fahrenheit to Celsius
- 3. Celsius to Kelvin
- 4. Kelvin to Celsius
- 5. Fahrenheit to Kelvin
- 6. Kelvin to Fahrenheit

Enter choice (1-6): 1

Enter temperature: 123

 $123.0^{\circ}C = 253.4^{\circ}F$

Expected Output#5

• Code quality difference analysis for various prompts

Note: Report should be submitted a word document for all tasks in a single document with prompts, comments & code explanation, and output and if required, screenshots

Evaluation Criteria:

Criteria	Max Marks
Factorial Function (Task#1)	0.5
Sorting Function (Task#2)	0.5
Vogue Vs. Specific Prompting (Task #3)	0.5
Linked Functions (Task #4)	0.5
Temperature Conversion Function (Task #5)	0.5
Total	2.5 Marks