ALJABAR LINIER

Vektor

Muhammad Afif Hendrawan, S.Kom., M.T.

Outlines

- Apa itu vector?
- Penjumlahan dan pengurangan pada vektor
- Perkalian skalar pada vektor
- Perkalian vektor → Dot product

Apa itu Vector?

Scalar vs. Vector

Skalar

- Skalar adalah sebuah nilai angka
- Cth., temparatur, jarak, speed, atau masa
- Semua kuantitas nilai skalar memiliki magnitudo tapi tidak memiliki arah (kecuali mungkin, tanda plus dan minus)

Vektor

- Vektor adalah kumpulan nilai angka
- Dapat di interpretasikan (paling tidak) dengan dua cara,
 - Vektor adalah titik pada bidang → Setiap angka mewakili posisi vektor pada bidang (dimensi) tertentu
 - Vektor adalah magnitudo dan arah; cth., velocity (250mph north-by-northwest)
- Jadi, vektor adalah nilai yang menunjukkan sebuah arah dari titik awal ke titik akhir pada sebuah bidang (dimensi)

Vektor – Notasi dan Representasi

- Vektor dinotasikan dengan \vec{a} atau $a \rightarrow$ disebut sebagai vektor a
- Contoh, vektor $\vec{a} = [4,3] \rightarrow$ pada bidang 2d, vektor ini adalah array pada bidang x y menunjukkan dari titik awal ke titik x = 4; y = 3
- Vektor juga dapat dinotasikan dengan,

$$\vec{a} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \text{ atau } \vec{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

$$\vec{a} = (4,3)$$

- Ukuran vektor adalah jumlah nilai dalam vektor tersebut
- Vektor dapat berupa dimensi berapapun $\rightarrow n$

Magnitudo dari Vektor

- Magnitudo dari vektor → jarak dari titik akhir ke titik awal → panjanganya
- Contoh, hitung magnitudo dari vektor $\vec{a} = [4,3]$

$$\|\vec{a}\| = \sqrt{x^2 + y^2} = \sqrt{4^2 + 3^2} = 5$$

- Magnitude dari vektor adalah nilai scalar

 merepresentasikan panjang vektor yang independen terhadap arahnya
- Contoh: Velocities (vektor) → Speeds (magnitudo); Displacements (vektor) → distances (magnitudo)

Unit Vektor

- Magnitudo → Panjang vektor yang independen terhadap arahnya
- Unit Vektor → Arah dari vektor yang independen terhadap panjangnya
- Notasi unit vektor,

$$\hat{a} = \frac{\vec{a}}{\|\vec{a}\|}$$

Magnitudo dari unit vektor adalah 1

The Unit Vector – Example

• Kembali ke contoh vektor $\vec{a} = [4,3]$ dan $||\vec{a}|| = 5$, maka unit vektor-nya,

$$\hat{a} = \frac{[4,3]}{5} = \left[\frac{4}{5}, \frac{3}{5}\right]$$

Kita dapat membuktikan magnitudo unit vektor adalah 1 dengan,

$$\|\vec{a}\| = \left(\frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2 = \left(\frac{16}{25}\right) + \left(\frac{9}{25}\right) = 1$$

• Dan juga, kita dapat membentuk ulang vektor \vec{a} , dengan

$$\vec{a} = \hat{a} * ||\vec{a}||$$

• Ingat, $\|\vec{a}\|$ adalah nilai skalar

Penjumlahan dan Pengurangan Pada Vektor

- Secara grafis, bayangkan menambahkan dua vektor dengan meletakkan dua segmen, dengan mempertahankan panjang dan arah
- Contoh, \vec{c} adalah penjumlahan dari \vec{a} dan $\vec{b} \rightarrow \vec{a} + \vec{b} = \vec{c}$
- Operasi penjumlahan dilakukan berdasarkan elemen / komponen \rightarrow cth., x dengan x dan y dengan y pada \mathbb{R}^2
- Contoh, $\vec{a}=[4,3]$ dan $\vec{b}=[1,2]$, sehingga

$$\vec{c} = \vec{a} + \vec{b}$$

$$\vec{c} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

Cara yang sama berlaku untuk pengurangan ©

Vektor – Perkalian dengan Nilai Skalar

- Sebetulnya Anda sudah tahu guys ©
- Diberikan vektor \vec{a} dan bilangan riil $c \rightarrow$ Perkalian skalar vektor \vec{a} dengan c adalah vektor $c\vec{a}$ dengan mengkalikan setiap elemen \vec{a} dengan c
- Contoh,

$$c = 5$$
; $\vec{a} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \rightarrow c\vec{a} = 5 \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 15 \\ -5 \end{bmatrix}$

Perkalian Vektor: Dot Product (Scalar Product)

- Dot product $\rightarrow d = \vec{a} \cdot \vec{b}$
- Dot product dikalkulasi dengan mengkalikan elemen x, selanjutnya mengkalian elemen y secara terpisah, dan seterusnya (tergantung dari dimensi vektor) dan dilanjutkan dengan menjumlahkan hasil kali setiap elemen.
- Contoh,

$$\vec{a} \cdot \vec{b} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = (4 * 1) + (3 * 2) = 11$$

Dapat juga dikalkulasi dengan,

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \theta$$

• Dimana θ adalah sudut antar vektor

Latihan

Given
$$\vec{a} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, compute

- \bullet $\vec{a} + \vec{b}$
- $3\vec{a} + 5\vec{b}$
- $\vec{a} \vec{b}$
- $\vec{b} \vec{a}$
- $\vec{b} + \vec{a}$
- $\vec{a} \cdot \vec{b}$
- $\vec{b} \cdot \vec{a}$

Referensi

- Lay, D.C., Lay, S.R. and McDonald, J. (2021) Linear algebra and its applications.
 Boston: Pearson.
- Handout Chapter 4: Vectors, Matrices, and Linear Algebra by Scott Owen & Greg Corrado, Standford University
- Boyd, Stephen., Vandenberghe, Lieven. (2018) Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. Cambridge: Cambridge University Press.