Practice problem 4:Optimization in ML

Dr. Md Abu Talhamainuddin Ansary

- 1. Justify whether d is a descent direction of f at \overline{x} or not.
 - (i) $f(x) = 4x_1^2 + 5x_1x_2 + 2x_2^2 + x_1 3x_2, x = (1, 1)^T, d = (-1, 2)^T$
 - (ii) $f(x) = x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_2x_3 2x_1 4x_2 6x_3x = (0, 0, 0)^T, d = (1, 1, 0.5)^T$
 - (iii) $f(x) = (x_1 1)^2 + (x_1 x_2)^2$, $x = (2, 2)^T$, $d = (1, 1)^T$, $d = (-1, -2)^T$
 - (iv) $f(x) = (x_1 x_2)^2 + (x_2 3)^2$, $x = (2, 2)^T$, $d = (1, 1)^T$, $d = (-2, -1)^T$.
 - (v) $f(x) = x_1^4 + 2x_1^2x_2 + x_2^2 x_1^2 8x_1 8x_2 x = (0.5, 0.5)^T, d = (-1, -1)^T$
 - (vi) $f(x) = (1+x_3)(x_1^3 + x_2^2 10x_1 4x_2), x = (0,0,0)^T, d = (1,2,3)^T.$
- 2. Find the step length at x for \min_x f(x) with exact line search technique/Armijo-Wlofe-backtracking line search technique (using $\beta_1 = 10^{-4}$, $\beta_2 = 0.9$, r = 0.5) with $d = -\nabla f(x)$.
 - (i) $f(x) = 4x_1^2 + 5x_1x_2 + 2x_2^2 + x_1 3x_2, x = (2, 1)^T$
 - (ii) $f(x) = \sum_{i=1}^{2} (x_i 2)^2, x = (1, 1)^T$
 - (iii) $f(x) = (x_1 x_2)^2 + (x_1 3)^2, x = (1, 2)^T$
 - (iv) $f(x) = (x_1 x_2)^2 + (x_2 3)^2 x = (1, 1)^T$
- 3. Define $f(x) = 2x_1^2 + 3x_2^2 4x_1x_2 2x_1 + 6x_2$ Perform two iterations of steepest descent with Armijo-Wolfe backtracking line search technique with initial approximation $x^0 = (1,1)^T$. Consider $\beta_1 = 10^{-4}$, $\beta_2 = 0.9$, r = 0.5. Find the value of $d^{1T}d^0$.