Manual for Package: open-channel-flow Revision 11:12M

Karl Kästner

September 2, 2021

Contents

1	@Back	kwater1D	9
	1.1	Backwater1D	9
	1.2	backwater_approximation	9
	1.3	backwater_curve_iterative	0
	1.4	backwater_length	0
	1.5	dh_dx	0
	1.6	dh_dx	0
	1.7	dzs_dx	0
	1.8	gvf_x_chow	0
	1.9	invert	.0
	1.10	solve	1
	1.11	solve_analytic	1
	1.12	solve_matrix	.1
2	@Com	apound_Cross_Section 1	1
	2.1	Compound_Cross_Section	.1
	2.2	-	1
	2.3	discharge	1
	2.4	=	2
3	@Cros	$_{ m ss_Section}$ 1	2
	3.1	Cross_Section	2
	3.2		2
	3.3	9	2
	3.4		2
	3.5		2
	3.6		2
	3.7		2
	3.8		2

	3.9	init	13
	3.10	invalidate	13
	3.11	parse_arguments	13
	3.12	wetted_cross_section	13
	3.13	$wetted_width \dots \dots$	13
4	bifurc	$ations-and-weirs/@Lateral_Diversion_Finite_Width$	13
	4.1	Jb	13
	4.2	Lateral_Diversion_Finite_Width	13
	4.3	dR	13
	4.4	derive	13
	4.5	evalk	14
	4.6	lateral_outflow_finite_width1	14
	4.7	load_functions	14
	4.8	stagnation_point	14
	4.9	streamline	14
	4.10	u_far	14
	4.11	v_far	14
	4.12	velocity	14
	4.13	velocity_near_bed	14
5	bifurc	${ m ations ext{-}and ext{-}weirs/@Lateral_Diversion_Finite_Width_G}$	radual 15
	5.1	Jb	15
	5.2	Lateral_Diversion_Finite_Width_Gradual	15
	5.3	coefficients	15
	5.4	$\operatorname{cond} A \dots \dots$	15
	5.5	dR	15
	5.6	derive	15
	5.7	evalk	15
	5.8	$evalk_{-}\ldots\ldots\ldots\ldots\ldots$	15
	5.9	$lateral_outflow_finite_width1 $	15
	5.10	load_functions	16
6	bifurc	${ m ations ext{-}and ext{-}weirs/@Lateral_Diversion_Finite_Width_G}$	radual/old 16
	6.1	coefficients_old	16
7	bifurc	${ m ations ext{-}and ext{-}weirs/@Lateral_Diversion_Finite_Width_G}$	radual 16
	7.1	stagnation_point	16
	7.2	streamline	16
	7.3	streamline_radius_of_curvature	16
	7.4	u_far	16
	7.5	uv1	16
	7.6	uv_side_branch	16
	77	n for	16

	7.8	velocity	17
	7.9	velocity_linear	17
	7.10	velocity_near_bed	17
	7.11	xp	17
8	bifurca	ations-and-weirs/@Lateral_Diversion_Wide_Channel	17
	8.1	Lateral_Diversion_Wide_Channel	17
	8.2	derive_lateral_outflow	17
	8.3	derive_lateral_outflow_finite_width	17
	8.4	load_functions	17
	8.5	stagnation_point	18
	8.6	$streamline_radius_of_curvature \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	18
9	bifurca	${f ations-}$ and ${f weirs/}$ ${f @Lateral_}$ ${f Diversion_}$ ${f Wide_}$ ${f Channel_}$	Map 18
	9.1	Lateral_Diversion_Wide_Channel_Map	18
	9.2	streamline	18
10	bifurca	${ m ations-and-weirs/@Side_Weir}$	18
	10.1	Side_Weir	18
	10.2	dzs_dx	18
	10.3	$surface_elevation \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	18
11	bifurca	ations-and-weirs	19
	11.1	$Lateral_Diversion_Finite_Width_Map $	19
12	bifurca	ations-and-weirs/bifurcation-empirical	19
	12.1	bifurcation_potential_flow_dividing_streamline_radius	19
	12.2	sediment_division_herrero	19
	12.3	sediment_division_meijer_ksiazek_1	19
	12.4	sediment_division_meijer_ksiazek_2	19
	12.5	sediment_division_raudkivi	19
	12.6	sediment_division_van_der_mark	19
	12.7	$sediment_division_wang \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	19
13	open-c	hannel-flow	20
	13.1	cdf_hydrograph	20
	13.2	derive_discharge_step_response	20
	13.3	discharge2stage	20
	13.4	eddy_diffusivity	20
	13.5	$eddy_viscosity_depth_averaged \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	20
	13.6	hfilter	21
	13.7	hydraulic_radius	21
	13.8	inv_hydrograph	21
11	kinems	atik-and-diffusion-wave	21

	14.1	diffusion_wave	21
	14.2	flood_wave_diffusion_coefficient	21
	14.3	linear_wave	21
15	meand	der-bend/@Equilibrium_Bend 2	2
	15.1	Equilibrium_Bend	22
	15.2		22
	15.3	bed_profile	22
	15.4	bed_profile_uniform	22
	15.5		22
	15.6	dD_dr	22
	15.7	dh_dr	22
	15.8	dh_dr_uniform	22
	15.9		23
16	meand	der-bend 2	3
	16.1		23
	16.2		23
	16.3	· ·	23
	16.4	·	23
	16.5		23
	16.6		23
	16.7	random_meander	24
	16.8		24
	16.9		24
	16.10		24
		•	
17		· · · / · · · · · · · · · · · · · · · ·	4
	17.1		24
	17.2		24
	17.3		24
	17.4		25
	17.5		25
	17.6	1	25
	17.7	o a constant of the constant o	25
	17.8	1	25
	17.9	1	26
	17.10	1	26
	17.11	1	26
	17.12		26
	17.13		26
	17.14		26
	17.15	o a constant of the constant o	26
	17.16	vertical_velocity	26

18	potent	tial-flow/@Potential_Flow_Analytic	27
	18.1	Potential_Flow_Analytic	27
	18.2	streamline	27
19	potent	${ m tial-flow/@Potential_Flow_SM}$	27
	19.1	Potential_Flow_SM	
	19.2	$assemble_discretization_matrix_rectilinear\ .\ .\ .\ .\ .\ .\ .\ .$	27
	19.3	assemble_potential_matrix	27
	19.4	boundary_condition_side_outflow	27
	19.5	boundary_condition_side_outflow_1	28
	19.6	cut_boundary	28
	19.7	cut_rectangle	28
20	potent	${ m tial-flow/@Potential_Flow_UM}$	28
	20.1	Potential_Flow_UM	28
	20.2	assemble_potential_matrix	28
21	potent	tial-flow	28
	21.1	poisseuille_flow_rate	28
22	rating	-curve	29
	22.1	ChezyRatingCurve	29
	22.2	DynamicKeuleganRC	29
	22.3	DynamicManningRC	29
	22.4	DynamicPowerRC	29
	22.5	KeuleganRatingCurve	29
	22.6	ManningRatingCurve	29
	22.7	PolyRatingCurve	29
	22.8	PowerRatingCurve	29
	22.9	PowerRatingCurveOffset	30
	22.10	RatingCurve	30
	22.11	csarea	30
	22.12	csdischarge	30
	22.13	csperimeter	30
	22.14	csradius	30
	22.15	cswidth	30
	22.16	test_PowerRatingCurve	30
	22.17	wfunc	31
23	open-o	channel-flow	31
	23.1	residual_swe	31
24	shallov	w-water/@SWE	31
	24.1	SWE	31
	24.2	bc_incoming_non_reflecting	

	24.3	bc_inflow	32
	24.4	bc_inflow_low_pass	32
	24.5		32
	24.6	bc_level	32
	24.7	bc_level_sommerfeld	32
	24.8	bc_nonreflecting	32
	24.9	bc_reflecting	32
	24.10	dot	33
	24.11	dt_cfl	33
	24.12	energy	33
	24.13	flux	33
	24.14	flux_lin	33
	24.15	fluxmateig	33
	24.16	jacobian	34
	24.17	lindot	34
	24.18	roe_average	34
	24.19	solve_analytic	34
	24.20	·	34
	24.21	source_bed_level	34
	24.22	source_friction	35
	24.23	source_width	35
	24.24	swe_geometry	35
	24.25	swe_ic	35
25	shallov	v -water/@SWE_2d 3	5
_0	25.1	,	35
	25.2		35
	25.3		35
	25.4		35
	_0,1		
26			6
	26.1		36
	26.2	sw_reflection_stepwise	36
27	open-c	hannel-flow 3	6
	27.1		36
28			7
	28.1	test_bw1d_solve_matrix	37
29	test	3	37
	29.1		37
	29.2		37
	20.2		7

30	open-c	hannel-flow	37
	30.1	test_hydrograph	38
31	turbul		38
	31.1	boundary_layer_height	38
	31.2	kolmogorov_length	38
	31.3	$kolmogorov_time \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	38
	31.4	kolmogorov_velocity	38
32	unifori	m-stationary-flow	38
-	32.1	chezy2drag	38
	32.2	chezy2f	38
	32.3	chezy2manning	38
	32.4	chezy2z0	38
	32.5	critical_flow_depth	39
	32.6	discharge_step_response	39
	32.7	drag2chezy	39
	32.8	f2chezy	39
	32.9	ks2z0	39
	32.10	manning2chezy	39
	32.11	manning2drag	39
	32.12	manning2kc	39
	32.13	$\frac{1}{2} \frac{1}{2} \frac{1}$	39
	32.14	normal_flow_depth	40
	32.15	normal_flow_discharge	40
	32.16	normal_flow_roughness	40
	32.17	normal_flow_slope	40
	32.18	normal_flow_velocity	40
	32.19	normal_flow_width	40
	32.20	normal_shear_velocity	40
	32.21	shear_velocity	40
	32.22	z02chezy	41
	32.23	z02ks	
	02.20	20243	11
33	velocit	y-profile/@Log_profile	41
	33.1	Log_profile	41
	33.2	$df_dh \ \dots $	41
	33.3	$dfdh \ldots \ldots$	41
	33.4	$df_dln_z0 \ \dots $	41
	33.5	$df_{-}dln_{-}z0_{-}\ldots\ldots\ldots\ldots\ldots\ldots$	41
	33.6	profile	41
	33.7	profile	42
	33.8	profile_bias	42
	33.0	recomty	42

	ubar	42
34 veloci	$ m ty ext{-}profile/@Log_profile_with_bend_correction}$	42
34.1	Log_profile_with_bend_correction	42
34.2	df_dc	43
34.3	$\mathrm{df}_{-}\mathrm{dc}_{-}\dots\dots\dots\dots\dots\dots\dots\dots$	43
34.4	du_dz	43
34.5	fit	43
34.6	profile	43
34.7	regmtx	43
34.8	u	43
34.9	$u \ \ldots \ $	43
35 veloci	ty-profile/@Log_profile_with_cubic_wake	44
35.1	Log_profile_with_cubic_wake	
35.2	df_dc	
35.3	$\mathrm{df}_{-}\mathrm{dc}_{-}\dots\dots\dots\dots\dots\dots\dots$	
35.4	profile	
35.5	regmtx	
n <i>o</i> 1 •		
	ty-profile/@Log_profile_with_dip	44
36.1	Log_profile_with_dip	
36.2	fit	44
37 veloci	ty -profile/ $@Log_profile_with_linear_bend_correction$	45
37.1	Log_profile_with_linear_bend_correction	45
37.2	df_dc	45
37.3	$dfdc \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	45
37.4	du_dz	45
37.5	profile	45
37.6	regmtx	
38 veloci	ty-profile/@Log_profile_with_wake	45
38.1	Log_profile_with_wake	
38.2	df_dc	46
38.3	$\mathrm{df}_{-}\mathrm{dc}_{-}\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots$	46
38.4	du_dz	46
38.5	profile	46
38.6	regmtx	46
	ty-profile/@VP	46
39.1	VP	46
39.2	process_joint	46
	process transverse profile	46
39.3	process_transverse_profile	40
	process_vertical_profile	47

	39.5	profile_prediction_error	47
40	velocit	cy-profile/@Vertical_profile	18
	40.1	Vertical_profile	48
	40.2	fit	48
	40.3		48
41	velocit	y-profile	18
	41.1	fit_displacement_profile	48
	41.2	lateral_division_method	48
	41.3		48
	41.4	transverse_profile_parameter	49
	41.5		49
	41.6		49
	41.7		49
	41.8		49
	41.9	transverse_velocity_profile_tidal_channel	50
	41.10		50
	41.11		50
	41.12		50
	41.13		50
42	wrapp	er 5	50
	42.1		50
	42.2	stage2discharge	50

1 @Backwater1D

1.1 Backwater1D

solve the gradually varied flow equation (backwater equation) in one dimension $\ \ \,$

c.f. Chow, Bresse

1.2 backwater_approximation

approximation of the backwater curve by an exponential function note: this is not necessarily a good approximation in the case of tide, $\mathbb{Q}t$ can be given

1.3 backwater_curve_iterative

analytic solution of the gradually varied flow equation ${\tt c.f.}$ Bresse, Chow

1.4 backwater_length

backwater length

$1.5 dh_dx$

change of depth along channel for the backwater equation beta : momentum coefficient this is effectively an equation in h^3

$1.6 \, dh_{-}dx_{-}$

$1.7 dzs_dx$

change of surface elevation along channel

1.8 gvf_x_chow

```
analytical solution to the gradually varied flow equation (
   backwater equation)
c.f. Chow, Bresse
```

1.9 invert

determine bed level from surface elevation
(inverse backwater equation)
this is ill conditioned, as the surface is smooth for subcritical
 flow,

even if the bed is not smoth

C : chezy
W : width
Q : discharge
S : bed slope

y0 : surface elevation at outflow

lateral inflow

1.10 solve

solve the gradually varied flow equation (backwater equation)

C : chezy
W : width
Q : discharge
S : bed slope

y0 : surface elevation at outflow

1.11 solve_analytic

```
analytical solution to the gradually varied flow equation (bresse method)  u\_. \hat{\ } (n-m)./(1-u\_. \hat{\ } n)
```

1.12 solve_matrix

2 @Compound_Cross_Section

2.1 Compound_Cross_Section

2.2 area

2.3 discharge

2.4 roughness @Cross_Section 3 3.1 Cross_Section 3.2 average_across_section 3.3 compute_discharge ${\bf 3.4}\quad compute_sediment_transport$ 3.5 expand 3.6 fit_bed_level 3.7 flat

3.8 grain_size

3.9	init
3.10	invalidate
3.11	parse_arguments
3.12	${\it wetted_cross_section}$
3.13	$\operatorname{wetted_width}$
4 l 4.1	oifurcations-and-weirs/@Lateral_Diversion_Finite_Width Jb
4.2	$Lateral_Diversion_Finite_Width$
4.3	$\mathrm{d}\mathrm{R}$
4.4	derive

4.5	evalk
4.6	lateral_outflow_finite_width1
4.7	${f load_functions}$
4.8	$stagnation_point$
	<pre>fdx = isnan(x);</pre>
4.9	streamline
4.10	u_far
4.11	v_far
4.12	velocity

 $4.13 \quad velocity_near_bed$

5	$bifurcations- and-weirs/@Lateral_Diversion_Finite_Width_Gradual$
5.1	Jb
5.2	$Lateral_Diversion_Finite_Width_Gradual$
5.3	coefficients
5.4	$\operatorname{cond} A$
5.5	dR
5.6	derive
5.7	evalk
5.8	evalk_
5.9	$lateral_outflow_finite_width1$

_	-	_	. 1	1	C	, •	
5.) I	oad	†111	neti	anc
		٠,		vau			CHO.

6 6.1	$bifurcations- and-weirs/@Lateral_Diversion_Finite_Width_Grace coefficients_old$
7	$bifurcations- and-weirs/@Lateral_Diversion_Finite_Width_Grades and additional content of the c$
7.1	$\operatorname{stagnation_point}$
	<pre>fdx = isnan(x);</pre>
7.2	streamline
7.3	$streamline_radius_of_curvature$
7.4	$\mathbf{u}_{-}\mathbf{far}$
7.5	${f uv1}$
7.6	uv_side_branch
7.7	$\mathbf{v}_{\mathtt{l}}$ far

- 7.8 velocity
- 7.9 velocity_linear
- 7.10 velocity_near_bed
- 7.11 xp
- 8 bifurcations-and-weirs/@Lateral_Diversion_Wide_Channel
- 8.1 Lateral_Diversion_Wide_Channel
- 8.2 derive_lateral_outflow

derive potential flow solution to lateral outlfow from an
 infinitely
wide main channel

8.3 derive_lateral_outflow_finite_width

derive coefficients for lateral outflow in the case of potential ${\tt flow}$

8.4 load_functions

load analytical solutions for potential flow field at a lateral
 diversion
with an infinitely wide main channel

- 8.5 stagnation_point
- 8.6 streamline_radius_of_curvature
 - ${f 9}$ bifurcations-and-weirs/@Lateral_Diversion_Wide_Channel_Magnetic constants.
- 9.1 Lateral_Diversion_Wide_Channel_Map

wrapper to store precomputed streamlines of potential flows

- 9.2 streamline
- $10 \quad bifurcations-and-weirs/@Side_Weir$
- 10.1 Side_Weir

side weir, analytical solution to (critical) lateral outflow

 $10.2 dzs_dx$

side weir, along channel surface gradient

10.3 surface_elevation

along-channel surface elevation for (critical) lateral outflow over a side-weir

11	bifurcations-and-weirs					
11.1	$Lateral_Diversion_Finite_Width_Map$					
12	bifurcations-and-weirs/bifurcation-empirical					
12.1	$bifurcation_potential_flow_dividing_streamline_radius$					
10.0	sediment_division_herrero					
12.2	sediment_division_nerrero					
12.3	$sediment_division_meijer_ksiazek_1$					
12.4	${ m sediment_division_meijer_ksiazek_2}$					
12.5	sediment_division_raudkivi					
12.6	$sediment_division_van_der_mark$					
12.7	${f sediment_division_wang}$					

13 open-channel-flow

```
functions for open channel flow, sub modules:
@Backwater1D
       gradually varied flow in 1D (backwater)
@Potential_Flow
       depth averaged potential flow, numerical solution
@Potential_Flow_Analytic
       depth averaged potential flow, analytical solution
rating-curve
       empirical rating curves
@Side_Weir
       analytical solution to lateral outflow over a side weir
@SWE
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 1D
@SWE_2d
       dynamical solution of the shallow water equation (saint-
          venant-equation)
       in 2D
velocity-profile
       vertical and transverse velocity profiles of the streamwise
           velocity
13.1
     cdf_hydrograph
```

13.2 derive_discharge_step_response

13.3 discharge2stage

13.4 eddy_diffusivity

13.5 eddy_viscosity_depth_averaged

13.6 hfilter

13.7 hydraulic_radius

13.8 inv_hydrograph

14 kinematik-and-diffusion-wave

14.1 diffusion_wave

```
propagation of a diffusion wave (flood wave), c.f. ponce advection diffusion where is the bed slope? friction slope eddy slope chow 1988 d(A+A0)/dt + dQ/dx = q dQ/dt + d/dx \ betaQ^2/A + gA(dh/dx + Sf + Se) - beta \ q_i \ v_i + Wf \ B = 0 A0 ignored inflow and wind shear ignored
```

14.2 flood_wave_diffusion_coefficient

14.3 linear_wave

linear wave routing (linearised kinematic wave)

15 meander-bend/@Equilibrium_Bend

15.1 Equilibrium_Bend

Transverse profile of the bed level and bed material grain size in an equilibrium (infintely long) meander bend

15.2 Qs

15.3 bed_profile

predict transverse bed profile of an equilibrium meander bend

15.4 bed_profile_uniform

transverse profile of the bed level of an equilibrium meander bend with uniform grain size $\,$

15.5 calibrate

calibrate bend geometry to given profile

$15.6 \, \mathrm{dD_dr}$

$15.7 \, \mathrm{dh_dr}$

across channel derivative of flow depth for a meandering river

15.8 dh_dr_uniform

transverse gradient of the bed level of an equilibrium meander bend for the case of uniform bed material

15.9 grain_size_profile

transverse (across channel) profile of the bed material grain size in a river meander $\,$

16 meander-bend

16.1 Kinoshita

- % Public properties
- % Public get properties
- % Private properties
- % Constructor
- $\mbox{\ensuremath{\mbox{\%}}}$ Setters and getters
- % generic methods

16.2 bend_transverse_velocity

transverse profile of the streamwise velocity in a meander bend

16.3 bend_velocity_near_bed

near-bed-velocity in a meander bend

16.4 kinoshita_

16.5 meander_bend_idealized

16.6 meander_centreline

16.7 random_meander

generate a pseudo random meander

16.8 secondary_velocity_profile_ikeda

- 16.9 test_rozovskii
- 16.10 transverse_slope_rozovskii

17 potential-flow/@Potential_Flow

17.1 Potential_Flow

numerical potential flow solver by various methods analytic (series) or FDM on non-orthogonal curvilinear grids or FEM by unstructured meshes

17.2 contour

contour plot of the potential flow solution

17.3 infer_bed_level

note: this is pretty much a broken function for the inference of stationary morphology

Missing:

- rolling down of transverse slope to balance secondary flow in bends

- quasi time steippong

at stationary state:

 changes of discharge along the streamlines of discharge are balanced

by a change in depth, to keep the velocity and sediment transport constant along the streamline

 $dz_b/dt = dqs/dx + dqs/dn = 0$ (i)

TODO this only true for infinite bends, as sediment can also move to the side $\ensuremath{\text{\text{to}}}$

 $dqs/ds = d/s(q/h) = 1/h dq/ds - q/h^2 dh/ds = 0$

TODO this is only true in an ifinite bend (ikeda)

dqs/dn = 0

streamlines along discharge or velocity -> does not matter eq (i) is direction independent

17.4 infer_bed_level2

infer the bed level

17.5 infer_bed_level3

17.6 infer_bed_level_loop

the bed level does not completely converge but starts to oscillate, this is presumably due to the non-compact kernel implementation of the laplacian oberator

17.7 objective_bed_level

objective function for determining the bed level

17.8 plot

surface plot

17.9 quiver

17.10 sediment_transport

compute the sediment transport

17.11 solve_potential

solve for the potential

17.12 streamline

compute a streamline

17.13 surface_elevation

compute surface elevation according to Bernoulli's law note: this is likely very different from the true surface elevation,

as streamline curvature causes a transverse pressure gradient

17.14 test_case

17.15 velocity_near_bed

determine the velocity near the bed

17.16 vertical_velocity

determine the vertical velocity by continuity

18 potential-flow/@Potential_Flow_Analytic

18.1 Potential_Flow_Analytic

analytical solutions to various depth-averaged potential flow $\ensuremath{\operatorname{problems}}$

18.2 streamline

numerically follow path along streamline by integrating the velocity $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

19 potential-flow/@Potential_Flow_SM

19.1 Potential_Flow_SM

numerical solver for flow on a curvilinear grid (not necessarilly
 orthogonal)
by means of the Finite Difference Method

19.2 assemble_discretization_matrix_rectilinear

assemble the discretisation matrix

19.3 assemble_potential_matrix

assemble the discretisation matrix for potential flow

19.4 boundary_condition_side_outflow

apply boundary conditions for side outflow
p*phi + (1-p)*d/db phi = rhs
y : along channel coordinate
TODO, make this return the bc-struct

19.5 boundary_condition_side_outflow_1

```
apply boundary conditions
p*phi + (1-p)*d/db phi = rhs

TODO, make this return the bc-struct
```

19.6 cut_boundary

```
cut the boundary from the domain
wa : width of inlet to side channel
wb : width of side channel
```

19.7 cut_rectangle

```
cut a rectangle from the domain
TODO, this requires also an adaptation of the derivative matrices
    -> step over to semi-unstructured mesh
```

$20 \quad potential_flow/@Potential_Flow_UM$

20.1 Potential_Flow_UM

numerical solver for flow on an unstructured mesh (triangulation) by means of the Finite Element Method

$20.2 \quad assemble_potential_matrix$

21 potential-flow

21.1 poisseuille_flow_rate

22 rating-curve

22.1 ChezyRatingCurve

rating curve, Chezy formalism

22.2 DynamicKeuleganRC

Dynamic Rating Curve, Keulegan roughness formulation (dynamic = correction for hysteresis loop)

22.3 DynamicManningRC

Dynamic Rating Curve, Manning roughness formulation (dynamic = correction for hysteresis loop)

22.4 DynamicPowerRC

Dynamic Power Law Rating curve
(dynamic = correction for hysteresis loop)

22.5 KeuleganRatingCurve

22.6 ManningRatingCurve

22.7 PolyRatingCurve

22.8 PowerRatingCurve

stationary rating curve, power law

22.9 PowerRatingCurveOffset

stationary rating curve, stage-discharge follows power law

22.10 RatingCurve

Fri Feb 13 10:02:52 CET 2015 rating curve superclass

22.11 csarea

predict cross sectional area from transverse bed level profile and surface elevation

22.12 csdischarge

compute discharge

22.13 csperimeter

compute wetted perimeter

22.14 csradius

compute hydraulic radius of the cross section

22.15 cswidth

determine cross section width

22.16 test_PowerRatingCurve

22.17 wfunc

determine channel width

23 open-channel-flow

```
functions for open channel flow, sub modules:
@Backwater1D
       gradually varied flow in 1D (backwater)
@Potential_Flow
       depth averaged potential flow, numerical solution
@Potential_Flow_Analytic
       depth averaged potential flow, analytical solution
rating-curve
       empirical rating curves
@Side_Weir
       analytical solution to lateral outflow over a side weir
@SWE
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 1D
@SWE_2d
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 2D
velocity-profile
       vertical and transverse velocity profiles of the streamwise
```

23.1 residual_swe

velocity

24 shallow-water/@SWE

24.1 SWE

```
Class to solve the (cross sectionally averaged) shallow water equation (st venant equation)
```

24.2 bc_incoming_non_reflecting

set non-reflecting boundary condition for the 1D SWE

24.3 bc_inflow

inflow boundary condition

24.4 bc_inflow_low_pass

set low frequency Dirichlet, high frequency pass boundary condition

24.5 bc_inflow_non_reflecting

set non-reflecting boundary condition

24.6 bc_level

set surface level as Dirichlet boundary condition

24.7 bc_level_sommerfeld

set surface level as boundary condition by sommerfeld method

24.8 bc_nonreflecting

set non-reflecting boundary condition extrapolate $0\text{-}\mathrm{order}$

24.9 bc_reflecting

set reflecting boundary condition extrapolate $0\text{-}\mathrm{order}$ and invert v

24.10 dot

```
time derivative (only for matlab internal ode-solver) TODO this is not swe specific continuity dA/dt + dQ/dx = I

momentum dQ/dt + d/dx(Qu + 1/2 gh^2) = gA(S_f - S_b)
S_b = dz_b/dx
S_f = tau_x/rho_w = C_f u|u|
```

$24.11 dt_cfl$

determine time step required by cfl

24.12 energy

determine total energy as sump of potential and kinetic energy this is preserved for fricitionless flows $\$

24.13 flux

st venant's shallow water equation fluw

24.14 flux_lin

linearised st-venant equation

24.15 fluxmateig

eigenvalues und vectors of the swe

24.16 jacobian

```
Jacobian of the SWE dq/dt + J dq/dx = sourceterm note: d/dx(A*q) = J dq/dx
```

24.17 lindot

24.18 roe_average

roe average for the SWE

24.19 solve_analytic

linearised analytic solution of the swe

24.20 solve_stationary

stationary solution to the ${\tt SWE}$

24.21 source_bed_level

source term of the SWE caused by a change of the bed level $\,$

Note: this term causes splitting and averaging methods to fail to give accurate predictions of the smooth surface at steps of the bed

24.22 source_friction

friction source term of the SWE

24.23 source_width

source term (reaction term) for channels with variable width

24.24 swe_geometry

predefined functions to set up channel geometry

24.25 swe_ic

predefined functions of channel geometries

25 shallow-water/@SWE_2d

$25.1 \quad SWE_2d$

Dynamic solution of the shallow water equation (depth average, 2D)

${\bf 25.2 \quad apply_boundary_condition_stationary}$

apply boundary condition for stationary flow

25.3 assemble_stationary

TODO, g should be replaced by gx,gy,gz, see chaudhri assemble discretisation matrix for stationary flow $\,$

25.4 solve_stationary

solve SWE for statinary flow (dU/dt = dQ/dt = 0)

26 shallow-water

26.1 sw_reflection

```
reflection coefficients of shallow water waves at a sudden change of the cross section (sudden change of admittance) c.f. lighthill, ippen-harleman
```

26.2 sw_reflection_stepwise

```
time passes and phase shifts
transmission and reflection coefficient depend on direction !
iterative (recursive) reflection and transmission
```

27 open-channel-flow

```
functions for open channel flow, sub modules:
@Backwater1D
       gradually varied flow in 1D (backwater)
@Potential_Flow
       depth averaged potential flow, numerical solution
@Potential_Flow_Analytic
       depth averaged potential flow, analytical solution
rating-curve
       empirical rating curves
@Side_Weir
       analytical solution to lateral outflow over a side weir
@SWE
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 1D
@SWE_2d
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 2D
velocity-profile
       vertical and transverse velocity profiles of the streamwise
           velocity
```

27.1 stage2discharge

28 test/test_Backwater1D

28.1 test_bw1d_solve_matrix

- 29 test
- 29.1 test_inverse_backwater_curve
- 29.2 test_normal_flow
- 29.3 test_nse_nz

30 open-channel-flow

```
functions for open channel flow, sub modules:
@Backwater1D
       gradually varied flow in 1D (backwater)
@Potential_Flow
       depth averaged potential flow, numerical solution
@Potential_Flow_Analytic
       depth averaged potential flow, analytical solution
rating-curve
       empirical rating curves
@Side_Weir
       analytical solution to lateral outflow over a side weir
@SWE
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 1D
@SWE_2d
       dynamical solution of the shallow water equation (saint-
          venant-equation)
       in 2D
velocity-profile
       vertical and transverse velocity profiles of the streamwise
           velocity
```

30.1	${ m test_hydrograph}$
	turbulence boundary_layer_height
31.2	${\bf kolmogorov_length}$
31.3	${\bf kolmogorov_time}$
31.4	${\bf kolmogorov_velocity}$
	uniform-stationary-flow chezy2drag
32.2	${ m chezy2f}$
32.3	chezy2manning

convert chezy to manning

32.4 chezy2z0

32.5 critical_flow_depth

critical flow depth in uniform stationary flow

32.6 discharge_step_response

Q(:) = 0;

32.7 drag2chezy

32.8 f2chezy

 $32.9 ext{ ks}2z0$

32.10 manning2chezy

manning to chezy conversion

32.11 manning2drag

32.12 manning2kc

32.13 manning2z0

32.14 normal_flow_depth

normal flow depth for uniform stationary flow function $H = normal_flow_depth(Q,W,C,S)$

32.15 normal_flow_discharge

normal flow discharge for uniform stationary flow

32.16 normal_flow_roughness

roughness coefficient from uniform stationary flow

32.17 normal_flow_slope

energy slope (surface slope) for uniform stationary flow normal flow slope in uniform stationary flow $\,$

32.18 normal_flow_velocity

normal flow velocity in uniform stationary flow

32.19 normal_flow_width

normal flow width for uniform stationary flow

32.20 normal_shear_velocity

32.21 shear_velocity

32.22 z02chezy

32.23 z02ks

33 velocity-profile/@Log_profile

33.1 Log_profile

logarithmic profile of the streamwise velocity

$33.2 df_dh$

sensitivity of profile with respect to depth

33.3 df_dh_

sensitivity of profile with respect to depth

$33.4 df_dln_z0$

sensitivity of velocity profile with respect to roughness length

$33.5 df_dln_z0_$

sensitivity of profile with respect to roughness length $% \left(1\right) =\left(1\right) \left(1$

33.6 profile

 ${\tt vertical\ profile\ of\ the\ streamwise\ velocity}$

33.7 profile_

```
scale of velocity at instrument depth to depth average velocity
roughness length and associated standard error can change in time,
i.e. may be passed as vectors
     : [1xn] water surface level
zs
     : [1x1] bottom level
     : [1xn] or [1x1]
       level of velocity measurement,
       i.e. level of HADCP beam bin centre, coincides with
           instrument level,
       if the HADCP is horizontally aligned
       only needs to be passed as vector if instrument is
           redeployed or
       becomes misaligned
ln_z0 : [1xn] or [1x1]
       natural logarithm of the roughness length
     : [1xn] or [1x1]
       standard error of ln_z0
function [fz_mu fz_s fz_sp fz_bias fz_eps] = log_profile(zs,zb,za,
   ln_z0,s,sp,e)
```

33.8 profile_bias

33.9 regmtx

regression matrix

33.10 ubar

depth averaged velocity

34 velocity-profile/@Log_profile_with_bend_correction

34.1 Log_profile_with_bend_correction

vertical velocity profile corrected for bend flow

$34.2 ext{d}f_{-}dc$

sensitivity of the velocity profile with respect to the bend correction parameter c

 $34.3 ext{d}f_{-}dc_{-}$

 $34.4 \quad du_{-}dz$

34.5 fit

fit the vertical velocity profile

34.6 profile_

vertical velocity profile

34.7 regmtx

regression matrix

34.8 u

streamwise velocity

34.9 u_

streamwise velocity

35 velocity-profile/@Log_profile_with_cubic_wake

$35.1 \quad Log_profile_with_cubic_wake$

log profile with cubic wake

$35.2 ext{d}f_{-}dc$

sensitivity of profile with respect to wave parameter

$35.3 ext{df_dc_}$

sensitivity of profile with respect to wake parameter

35.4 profile_

vertical velocity profile

35.5 regmtx

regression matrix

$36 \quad velocity-profile/@Log_profile_with_dip$

$36.1 \quad Log_profile_with_dip$

Logarithmic profile with dip

36.2 fit

fit the vertical velocity profile

37 velocity-profile/@Log_profile_with_linear_bend_correction

37.1 Log_profile_with_linear_bend_correction

log profile with linear bend correction

$37.2 ext{df_dc}$

sensitivity of profile with respect to wake parameter

$37.3 ext{df_dc_}$

sensitivity of velocity profile with respect to wave parameter

$37.4 \, du_dz$

velocity shear along vertical

37.5 profile_

velocity profile

37.6 regmtx

regression matrix

38 velocity-profile/@Log_profile_with_wake

$38.1 \quad Log_profile_with_wake$

logarithmic velocity profile with wake correction ${\tt c.f.}$ coles

$38.2 ext{d}f_{-}dc$

sensitivity of profile with respect to wake parameter

 $38.3 ext{df_dc_}$

sensitivity of velocity profile with respect to wake parameter

 $38.4 du_dz$

velocity shear

38.5 profile_

predict velocity profile

38.6 regmtx

```
log law with wake  u = us/k \ ln(z) - us/k \ ln(z0) + us/k \ (2/H^2 \ z - 3/H^3 \ z^2)
```

- 39 velocity-profile/@VP
- 39.1 VP

velocity profile

- 39.2 process_joint
- 39.3 process_transverse_profile

process the transverse velocity profile $% \left(1\right) =\left(1\right) \left(1\right)$

39.4 process_vertical_profile

predict vertical profile error distribution parameter for ${\tt HADCP}$ error estimate

39.5 profile_prediction_error

```
input :
      : [nbin x nens]
        - values for each bin (or across section) and ensemble (or
            reference measurement)
        this are estimates estimates of the discharge or the cross
            sectional averaged
        velocity from the raw values
        - the profile should be limited to the effective profiling
           range,
        abobj 75-100m for a 600kHz ADCP
      : distance between HADCP bins
width : cross section width
objput:
      sd_n : expected standard deviation for increasing profiling
          range
function [s_rel s_err s_dat rho res m2 u_pred fdx] =
   velocity_variation(U)
hadcp_prediction_error
TODO take scales and unscaled velocity to do combine with harmmean
    estimate
note: previus versions:
       residual was computed with respect to the predicted local
           velocity
       mse was not upscaled to cs, as profile was expected to cover
           entire cs
       finite width of cs was not considered
parametric estimate from moments, objliers should be filtered
    beforehand
Note that the median absolute deviation is not a good estimate,
because it may excludes rare events like reverse flow of floods
thus, the only acceptible more robust estimate would be mean
    absolute deviation
```

40 velocity-profile/@Vertical_profile

40.1 Vertical_profile

vertical profile of the streamwise velocity, superclass

40.2 fit

```
fit vertical velocity profile parameter
function obj = fit(obj,U,S,h,binmask)
```

40.3 u

predict velocity along the vertical based on profile

41 velocity-profile

41.1 fit_displacement_profile

fit the log profile to the vertical profile of the streamwise velocity $% \left(1\right) =\left(1\right) \left(1\right) \left($

41.2 lateral_division_method

41.3 test_law_of_the_wall_fit

41.4 transverse_profile_parameter

41.5 transverse_velocity_profile

```
transverse profile of the streamwise velocity c.f. shiono knight
```

41.6 transverse_velocity_profile_olesen

transverse profile of the streamwise velocity in a meander bend

41.7 transverse_velocity_profile_rozovskii

41.8 transverse_velocity_profile_shiono_knight

```
transverse profile of the streamwise velocity, determined
    analytically
by the method of shiono and knight
shape of velocity profile only dependent on lambda, f, H, not slope
```

41.9 transverse_velocity_profile_tidal_channel

$41.10 \quad transverse_velocity_profile_with_slope$

```
stationary 1D shallow water equation across a river section 0 = -g h SO - tau_b/rho + d/dn (nu h du/dn) 0 = -g h SO + g u^2/C^2 + d/dn (nu h du/dn) includes tranvese gradient term
```

note that shiono/knight 1991 provide an _analytic_ solution, which takes the form of an expontially decaying side wall effect

41.11 vertical_profile_of_velocity_vriend

vertical profile of the streamwise velocity, method of de vriend

41.12 vertical_velocity_profile

vertical profile of the streamwise velocity in non-uniform flow

41.13 z2s_rational

42 wrapper

42.1 discharge2stage

wrapper function

42.2 stage2discharge