Projet d'optimisation en Matlab

Équilibre d'une chaîne articulée

Séance 5: Version quasi-newtonienne

Dans cette séance, on poursuit le développement du code d'optimisation quadratique successive (OQS, SQP en anglais, pour Sequential Quadratique Programming) en y introduisant une version quasi-newtonienne. Le problème-test consiste toujours à trouver une position d'équilibre d'une chaîne au repos en présence d'un plancher.

1 Méthode de quasi-Newton

Dans les méthodes de quasi-Newton, on remplace le hessien du lagrangien qui intervient dans le problème quadratique osculateur de l'OQS par une matrice M_k , symétrique définie positive, mise à jour par l'algorithme. Dans le cadre de l'OQS, cette approche a plusieurs intérêts: il ne faut pas calculer les dérivées secondes des fonctions intervenant dans la définition du problème d'optimisation à résoudre et le problème quadratique osculateur (PQO) est toujours «mieux» posé (il a au plus une solution). Bien que la convergence soit «légèrement» plus lente qu'avec la méthode de Newton (elle n'est plus «que superlinéaire »; c'est très bien quand même) et malgré les difficultés conceptuelles rencontrées par cette approche (voir plus loin), le second avantage cité ci-dessus fait que c'est souvent l'approche utilisée dans les codes commerciaux.

La version quasi-newtonienne de l'OQS génère donc une suite primale-duale $\{(x_k, \lambda_k)\}$ et une suite de matrices symétriques définies positives $\{M_k\}$ de la manière suivante. À l'étape k, on calcule d'abord la solution primale-duale $(d_k, \lambda_k^{\text{PQ}})$ du problème quadratique osculateur (voir la question 5.2)

$$\uparrow \uparrow \downarrow \vdots \quad \lambda_{k+1} = \lambda_{k+1} + \lambda_{$$

dans lequel M_k joue le rôle de $L_k := L(x_k, \lambda_k) := \nabla^2_{xx} \ell(x_k, \lambda_k)$, le hessien du lagrangien ℓ , $c'_E(x_k)$ et $c'_I(x_k)$ sont les jacobiennes des contraintes d'égalité c_E et c_I . Ensuite on prend $x_{k+1} := x_k + \underline{\alpha}_k d_k, \ \lambda_{k+1} := \lambda_k + \underline{\alpha}_k (\lambda_k^{PQ} - \lambda_k) \ (\alpha_k \in]0,1]$ est le pas calculé par recherche linéaire) et on met à jour M_k par la formule de BFGS (c'est la formule la plus utilisée).

La formule de BFGS s'écrit :

$$M_{k+1} = M_k - \frac{M_k \delta_k \delta_k^{\mathsf{T}} M_k}{\delta_k^{\mathsf{T}} M_k \delta_k} + \frac{\gamma_k \gamma_k^{\mathsf{T}}}{\gamma_k^{\mathsf{T}} \delta_k}.$$
 (5.2)

Les vecteurs γ_k et δ_k sont déterminés de pranière à forcer M_{k+1} à rester définie positive et à se rapprocher de L_{k+1} , ce qui, dans certains cas, peut être contradictoire (voir la question 5.3). Pour cela, on prend pour δ_k le déplacement en x: $\delta_k = x_{k+1} - x_k.$

$$\delta_k = x_{k+1} - x_k.$$

Le vecteur γ_k devrait idéalement être la variation du gradient du lagrangien

$$\frac{\gamma_k^{\ell} = \nabla \ell(x_{k+1}, \lambda_{k+1}) - \nabla \ell(x_k, \lambda_{k+1}).}{57}$$
(5.3)

Mais, pour conserver la définie positivité de M_k , on doit avoir $\gamma_k^{\mathsf{T}} \delta_k > 0$, ce qui n'est pas garanti avec $\gamma_k = \gamma_k^{\ell}$ (voir la question 5.4). Si bien que l'on utilisera la correction de Powell (1936-2015) qui consiste à prendre

$$\gamma_k = (1 - \theta) M_k \delta_k + \theta \gamma_k^{\ell}, \qquad (5.4)$$

où
$$\theta$$
 est pris paximal dans $]0,1]$ de manière à avoir $\gamma_k^{\mathsf{T}} \delta_k \geqslant 0.2 \, \delta_k^{\mathsf{T}} M_k \delta_k$. On trouve
$$\theta = \begin{cases} 0.8 \, \frac{\delta_k^{\mathsf{T}} M_k \delta_k}{\delta_k^{\mathsf{T}} M_k \delta_k - (\gamma_k^{\ell})^{\mathsf{T}} \delta_k} & \text{si } (\gamma_k^{\ell})^{\mathsf{T}} \delta_k < 0.2 \delta_k^{\mathsf{T}} M_k \delta_k \\ 1 & \text{sinon.} \end{cases}$$
(5.5)

Il reste à dire ce que l'on doit prendre comme matrice initiale. On prendra $M_1 = I$ (matrice identité) à la première itération (on a pas d'autre information). Mais, après le calcul de x_2 et avant le calcul de M_2 , on modifie la valeur de M_1 en $\eta_1 I$, où η_1 a une valeur reflétant l'échelle du problème (ou la «valeur moyenne» de L_1 , voir la question 5.5):

$$\eta_1 := \frac{\|\gamma_1\|_2^2}{\gamma_1^\mathsf{T} \delta_1}.\tag{5.6}$$

Il faut en effet attendre que la première itération soit terminée pour évaluer cette grandeur. Puis on calcule M_k , pour $k \ge 2$, par la formule de BFGS.

Implémentation

Le paramètre options.deriv

Pour ne pas perdre le travail fait aux séances précédentes, on introduit un nouveau paramètre d'entrée pour la fonction sqp, appelé options.deriv, permettant de préciser le mode d'exécution désiré de sqp. L'optimiseur se présentera donc toujours comme suit

```
function [x, lme, lmi, info] = sqp (simul, x, lme, lmi, options)
```

L'optimiseur interprétera la valeur de options.deriv comme suit:

```
options.deriv = 1: methode de quasi-Newton (utilisation des dérivées premières),
             = 2: methode de Newton (utilisation des dérivées secondes),
```

2.2Soin des sorties

On n'insistera jamais assez sur les informations pertinentes à faire afficher par l'algorithme. En ce qui concerne la version quasi-newtonienne, il est bon de savoir quand est-ce que la correction de Powell entre en jeu. Quelques informations sur le spectre de la matrice mise à jour peut aussi être une information précieuse (mais coûteuse). En mode peu bavard (une ligne par itération), on pourra avoir

iter	gl	ce	(ci,lmi)	x	lm	Powell	cond(M)
1	1.13e+00	1.36e+00	0.00e+00	1.2e+00	6.25e-01	4.1e-02	7.5e+01
2	1.04e+02	8.08e+00	3.74e-09	2.7e+00	1.11e+01		4.8e+01
3	1.89e+00	2.17e+00	1.43e-08	1.7e+00	3.08e-01		3.8e+01

```
      4
      9.40e-01
      7.97e-01
      7.03e-10
      1.4e+00
      9.81e-01
      2.1e+01

      5
      1.65e+00
      5.20e-01
      9.20e-09
      1.4e+00
      2.18e+00
      3.7e+01

      6
      4.25e+00
      5.35e-01
      3.08e-15
      1.1e+00
      1.89e+00
      3.2e+01

      7
      1.28e+00
      1.62e-01
      2.22e-16
      1.0e+00
      1.98e+00
      4.4e+01

      8
      4.30e-01
      5.17e-02
      1.56e-19
      1.0e+00
      2.02e+00
      9.7e+01

      9
      3.20e-01
      7.53e-03
      1.11e-16
      9.9e-01
      1.89e+00
      6.5e-01
      1.9e+02

      10
      4.16e-01
      1.66e-02
      4.50e-11
      9.7e-01
      1.84e+00
      6.1e-01
      6.6e+02
```

où, en plus des étiquettes décrites dans d'autres séances, Powell est le coefficient θ de la formule (5.5) (s'il est différent de 1) et cond(M) est le conditionnement de M (reste raisonnable ici).

3 Cas-tests

• Cas-test 5.a: 6 barres de longueur

$$L = [0.5 \ 0.3 \ 0.4 \ 1.2 \ 0.3 \ 0.3]$$
;

Deuxième point de fixation de la chaîne:

$$A = 0;$$

 $B = 0;$

Position initiale des nœuds:

$$xy = [0.2 \ 0.5 \ 0.8 \ 1.0 \ 1.2 \dots \\ -0.4 \ -0.6 \ -0.4 \ -0.2 \ 0.]$$
;

Plancher:

$$R = [-1]';$$

 $S = [-0.1]';$

• Cas-test 5.b: 3 barres de longueur

$$L = [3 \ 2.5 \ 2.5]$$
';

Deuxième point de fixation de la chaîne:

$$A = 0;$$

 $B = -4;$

Position initiale des nœuds:

$$xy = [-2 \quad 0 \quad \dots \\ 1 \quad -2];$$

Plancher:

$$R = [-6 -10]$$
;
 $S = [-2 100]$;

• Cas-test 5.c: ranger une chaîne dans un seau...

$$L = [0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.4 \ 0.3 \ 0.1]$$
;

Deuxième point de fixation de la chaîne:

```
A = 0;

B = 0;
```

Position initiale des nœuds: à trouver.

Plancher:

```
R = [-1.0; -0.2; -1.0];

S = [-7.0; 0.0; 7.0];
```

• Cas-test 5.d: trouvez une configuration avec plancher originale et trouvez la position d'équilibre de la chaine.

4 Questions

- **5.1.** Comment déterminer la vitesse de convergence d'une suite $\{(x_k, \lambda_k)\}$ convergeant vers une solution $z_* = (x_*, \lambda_*)$ sans connaître cette dernière? Démontrez mathématiquement que votre test fonctionne et spécifiez dans quelles conditions il en est ainsi. (Réponse longue.)
- **5.2.** Caractère bien posé du PQO. Comme $M_k \succ 0$, que peut-il encore se passer, empêchant de calculer une solution du PQO (5.1)? (Réponse courte.)
- **5.3.** Approximation du hessien du lagrangien par la formule de BFGS. Il est dit après (5.2) qu'il peut-être contradictoire d'approcher le hessien du lagrangien par une matrice définie positive. Pourquoi? (Réponse courte.)
- **5.4.** Sur le choix de γ_k dans la formule de BFGS. Un certain nombre d'affirmations sont faites autour de (5.3) et (5.4):
 - que le vecteur γ_k pris dans la formule (5.2) devrait être idéalement γ_k^{ℓ} ,
 - que l'on doit avoir $\gamma_k^\mathsf{T} \delta_k > 0$ pour que M_{k+1} soit définie positive,
 - que le choix $\gamma_k = \gamma_k^{\ell}$ ne garantit pas la définie positivité de M_{k+1} .

Pouvez-vous clarifier ces affirmations et dire en quoi la formule (5.4) de γ_k est préférable?

5.5. Initilisation M_1 par $\eta_1 I$. Pouvez-vous donner un sens à l'initialisation de $M_1 := \eta_1 I$ où η_1 est donné par (5.6)?