Image Processing @

Image Processing Fundamentals: Edge Detection 🝱

Basic Image Processing

- Image = 2D matrix of pixel values
- Each pixel represents brightness/color
- Example grayscale image:

$$X = egin{bmatrix} 10 & 10 & 80 & 10 & 10 & 10 \ 10 & 10 & 80 & 10 & 10 & 10 \ 10 & 10 & 80 & 10 & 10 & 10 \ 10 & 10 & 80 & 10 & 10 & 10 \ 10 & 10 & 80 & 10 & 10 & 10 \ 10 & 10 & 80 & 10 & 10 & 10 \end{bmatrix}$$

57	153	174	168	150	152	129	151	172	161	155	156
55	182	163	74	75	62	33	17	110	210	180	154
80	180	50	14	34	6	10	33	48	105	159	181
906	109	5	124	191	111	120	204	166	15	56	180
94	68	137	251	237	239	239	228	227	87	71	201
72	106	207	233	233	214	220	239	228	98	74	206
88	88	179	209	185	215	211	158	139	75	20	169
89	97	165	84	10	168	134	11	31	62	22	148
99	168	191	193	158	227	178	143	182	105	36	190
106	174	155	252	236	231	149	178	228	43	95	234
90	216	116	149	236	187	86	150	79	38	218	241
90	224	147	108	227	210	127	102	36	101	255	224
90	214	173	66	103	143	96	50	2	109	249	215
87	196	235	75	1	81	47	0	6	217	255	211
83	202	237	145	0	0	12	108	200	138	243	236
95	206	123	207	177	121	123	200	175	13	96	218

Convolution: Spatial Domain

- Slide kernel over image
- Multiply and sum values
- Example kernel (vertical edge detection):
- Demo

$$K = egin{bmatrix} 1 & 0 & -1 \ 1 & 0 & -1 \ 1 & 0 & -1 \end{bmatrix}$$

Convolution is Complicated

Example:

Suppose we have an image X and a kernel K as follows:

$$X = egin{bmatrix} X_1 & X_2 & X_3 & X_4 & X_5 & X_6 \end{bmatrix} \ K = egin{bmatrix} K_1 & K_2 & K_3 \end{bmatrix}$$

The convolution is given by

$$X*K = \sum_{i=1}^6 X_i K_{7-i}$$

Or equivalently,

$$X*K = [X_1K_3 + X_2K_2 + X_3K_1 \quad X_2K_3 + X_3K_2 + X_4K_1 \quad X_3K_3 + X_4K_2 + X_5K_1 \quad X_4K_3 + X_5K_2 + X_6K_1]$$

Let's make it simpler using the convolution theorem!

What is the convolution theorem?

Suppose two functions f and g and their Fourier transforms F and G. Then,

$$\underbrace{(f * g)}_{\text{convolution}} \leftrightarrow \underbrace{(F \cdot G)}_{\text{multiplication}}$$

The Fourier transform is a one-to-one mapping between f and F (and g and G).

But what is the Fourier transform ••?

Fourier Transform: The Basics C

Transform a signal from:

Time/Space domain
 Frequency domain

Key Concept:

- Any signal can be decomposed into sum of sine and cosine waves
- Each wave has specific frequency and amplitude

2D Fourier Transform

2D Fourier Transform decomposes image into sum of 2D waves.

$$\mathcal{F}(X)[h,w] = \sum_{k=0}^{H-1} \sum_{\ell=0}^{W-1} X[k,\ell] \cdot \underbrace{e^{-2\pi i \left(rac{hk}{H} + rac{w\ell}{W}
ight)}}_{2D ext{ wave}}$$

For image X with size $H \times W$.

Edge Detection in Frequency Domain 🔍

Original Image Description Fourier Transform Description Apply Filter Description Inverse Transform

```
# Convert to frequency domain
FX = np.fft.fft2(img_gray) # Image
FK = np.fft.fft2(kernel_padded) # Kernel

# Multiply
filtered = FX * FK

# Convert back
result = np.real(np.fft.ifft2(filtered))
```

JPEG Compression

- 1. Divide image into 8x8 blocks
- 2. Apply Discrete Cosine Transform (similar to Fourier)
- 3. Quantize frequencies
 - Keep low frequencies
 - Discard high frequencies
- 4. Encode efficiently

Benefits:

- Smaller file size
- Maintains visual quality
- Exploits human visual perception

Coding Exercise

Coding Exercise