Mesure et intégration

Quizz 2 (mesures et mesures extérieures)

0) Tout	oute mesure est une mesure extérieure.			
Vrai □	Faux \square			
1) Soit diamètre	(X, \mathcal{A}) un	$\mathcal A)$ un espace métrique mesurable. L'application μ qui à $A\in\mathcal A$ associe son		
diametre		$\mu(A) = d$	$iam(A) = \sup_{x,y \in A} d(x,y), \ \mu(\emptyset) = 0,$	
est une				
mesure \square	mesure	extérieure □	ni l'une ni l'autre \square	
Préciser s	i les μ défit μ par la	nis ci-dessous s	es personnes habitant sur terre, muni de la tribu discrète sont des mesures, mesures extérieures, ou ni l'un ni l'autre e affecte à une sous-population $A \in \mathcal{P}(X)$ (en affectant	
Mesure □	Mesure	extérieure \square	nombre total d'années vécues par les éléments de ${\cal A}$	
Mesure \square	Mesure	extérieure \square	âge moyen des individus dans A (avec $\mu(\emptyset) = 0$).	
Mesure \square	Mesure	extérieure \square	âge maximal parmi les individus dans A (avec $\mu(\emptyset) = 0$).	
Mesure \square	Mesure	extérieure \square	âge minimal parmi les individus dans A	
Mesure □ 1 pour to		extérieure \square (x,y) tel que x	nombre de "connections" entre individus de A (on compte et y se sont déjà rencontrés au moins une fois).	
qui à A a	associe le		mesurable. Soit $r > 0$. On définit $\mu(\cdot)$ comme l'application nal (éventuellement infini) de boules fermées de rayon r s μ est une	
mesure \square	mesure	extérieure \square	ni l'un ni l'autre \square	
4) On se		\mathbb{R} muni de la	mesure de Lebesgue $\lambda.$ Les assertions suivantes sont elles	
Vrai □	Faux \square	$\lambda(A) = \lambda(\mathring{A}) =$	$=\lambda(\bar{A})$ pour tout intervalle A	
Vrai □	Faux \square	$\lambda(A) = \lambda(\mathring{A})$ j	pour tout borélien A	
Vrai 🗆	Faux \square	$\lambda(\partial A) \le \lambda(A)$	pour tout borélien A	
Vrai 🗆	Faux \square	Tout borélien	borné est de mesure finie	
Vrai □	Faux \square	Tout borélien	de mesure finie est borné	
Vrai □	Faux □	Tout ouvert d	e mesure finie est borné	