技术报告

1、编程语言: python

2、主要参考的经典算法: 进化算法-遗传算法 GA

3、算法设计与实现

(1) 算法描述

描述算法的工作原理、主要步骤和逻辑,200字以内

该算法基于进化算法,通过交叉、变异等操作在给定坐标点之间找到最短路径。算法从 生成包含坐标点随机选择的初始种群开始,每代通过适应度函数计算路径总距离,以负值最 小化路径。通过一种特殊的交叉方式实现交叉繁殖,使基因中一部分保留父母基因。移动端 点和交换变化闭环选点作为变异操作,调整路径节点。每代保留表现最好的个体,同时通过 "锦标赛"选择产生新个体,直到找到最佳解决方案。最终可视化展示最短路径的连接方式。

(2) 关键函数或模块

使用流程图或伪代码展示关键函数,并给出注释或说明


```
Algorithm 1: Evolutionary Algorithm for Path Optimization
    Input: Population size population_size, Generations
            generation_times, Fitness limit fitness_limit, Task
            task, Probability parameters p\_shift, p\_swop, p\_up,
            p_down
     Output: Optimal genome best_genome
  1 Initialize population with genomes of random points;
  2 best_fitness_seen \leftarrow -\infty;
  3 for i \leftarrow 1 to generation_times do
       Sort population by fitness in descending order;
        fitness \leftarrow fitness of best genome;
        if fitness > best\_fitness\_seen then
        best\_fitness\_seen \leftarrow fitness;
        end
        if fitness \ge fitness\_limit then
         Break loop;
 10
 11
 12
        Select top n\_top genomes as next\_generation;
        for k \leftarrow 1 to n\_perturb do
 13
           Randomly select candidate from top genomes;
  14
           if rand < p\_shift then
 15
            Apply shift_to_end to candidate;
           end
 17
           if rand < p\_swop then
 18
            Apply swop to candidate;
 20
           if rand < p\_up then
 21
            Increment position in candidate if within bounds;
 22
           end
 23
           if rand < p\_down then
 24
              Decrement position in candidate if within bounds;
 25
           end
 26
           Add candidate to next_generation;
 27
       end
 28
        for j \leftarrow 1 to (population\_size - n\_top - n\_perturb)/2 do
           Select parents using tournament selection;
 30
           Perform partial map crossover with probability 0.9;
 31
 32
           Apply swop with probability 0.9 to offspring;
           Add offspring to next_generation;
 33
        end
       Update population with next_generation;
 35
 37 Return best_genome from population;
以上代码是进化算法的迭代函数伪代码
```

(3)参数设置

列表说明参数及最终值

n_top	保留原种群中最优的 fitness (个)
n_perturb	设定最差基因的变异比例(个)

p_shift	设定移动顶点到顺序顶端的几率(0 [~] 1)			
p_swop	设定移动顶点交换的几率(0~1)			
eps	设定最差的保留比率 (相当小的数)			
p_up	设定升高的概率(0 [~] 1)			
p_down	设定降低的概率(0 [~] 1)			
population_size	设定种群大小(个)			
generation_times	设定迭代次数 (次)			

4、调试过程记录

1张表:包含参数变化下10次运行结果(针对示例输入或自定义输入)

1张图:包含上述表中某次运行结果的迭代曲线

文字描述参数效果,200字以内

结果	n_top	n_perturb	p_shift	p_swop	eps	p_up	p_down	population_size	generation_times
3	100	30	0. 1	0. 2	0. 1	0. 4	0. 4	1000	1000
5	10	8	0. 1	0. 2	0. 1	0. 4	0. 4	100	1000
			0. 1	0. 2	0. 1	0. 4	0. 4		
			0. 1	0. 2	0. 1	0. 4	0. 4		
			0. 1	0. 2	0. 1	0. 4	0. 4		
32	5	2	0. 1	0. 2	0. 1	0. 4	0. 4	10	100
不正确	-	-	0. 1	0. 2	0. 1	0. 4	0. 4	-	3
无法收敛	10	8	0. 9	0. 9	0.9	0. 9	0. 9	1000	1000
	10	10	0. 2	0. 2	0. 1	0. 4	0. 41		

结果表示几次之后收敛

在种群数量较高时,迭代很快收敛,相对应的开销很大,在种群数量较小时,相对应的提高迭代次数能够增加准确率,通过修改 n_{top} 、p 系列值能增加收敛速度 p_{top} p_{top} 电加与收敛到误差解呈现相反概率。

修改 p 系列值、eps 过高会导致无法收敛。

下面为表格中第一次实验, 最优基因组的迭代过程, 三次收敛到最佳结果

5、诚信声明

本人申明,该报告中的工作为参赛者独立完成,未使用任何人工智能代码生成或补全工具,未取得任何第三方帮助。将及时配合组委会调查完成算法的独立性,知晓并同意承担因技术报告完成质量及其他原因造成的责任。

参赛者姓名: 孙港

学校: 江西理工大学

签名:

日期: 2024/10/31