

4 Gray Scale Dot Matrix LCD Controller/Driver

INTRODUCTION

The ST7541 is a driver & controller LSI for 4-level gray scale graphic dot-matrix liquid crystal display systems. This chip is connected directly to a microprocessor, accepts Serial Peripheral Interface (SPI),IIC or 8-bit parallel display data and stores in an on-chip display data RAM of 128 x 129 x 2 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components.

FEATURES

4-level (White, Light Gray, Dark Gray, Dark) Gray Scale Display with PWM and FRC Methods

DDRAM data [2n : 2n+1]		Cray Soole	
2n	2n + 1	Gray Scale	
0	0	White	
0	1	Light gray	
1	0	Dark gray	
1	1	Dark	

(Accessible column address, n = 0, 1, 2,, 125, 126, 127)

Driver Output Circuits

128 segment outputs / 128+1 common outputs

Applicable Duty Ratios

- Various partial display
- Partial window moving & data scrolling

On-chip Display Data RAM

- Capacity: 128 \times 129 \times 2= 33,024 bits

Microprocessor Interface

- 8-bit parallel bi-directional interface with 6800-series or 8080-series
- 4-line serial interface (4-line-SIF)
- 3-line serial interface (3-line-SIF)
- IIC serial interface

On-chip Low Power Analog Circuit

- On-chip oscillator circuit
- Voltage converter (x3, x4, x5 or x6)
- Voltage regulator (temperature coefficient: -0.144%/°C,
- or external input)
- On-chip electronic contrast control function

(64 steps X 8)

- Voltage follower (LCD bias : 1/5 to 1/12)

Operating Voltage Range

- Supply voltage (VDD): 1.8 to 3.3V
- Supply voltage (VDD2): 2.4 to 3.3V
- LCD driving voltage (VLCD = V0 VSS): 3.5 to 15.0 V

Package Type

Application for COG

ST7541	6800, 8080, 4-Line, 3-Line interface (without IIC interface)	ST.
--------	--	-----

Ver 1.7 1/82 2006/9/21

ST7541i

IIC interface

ST7541 Pad Arrangement (COG)

Chip Size: 12,575 um × 1,220 um

Bump Pitch:

PAD NO 1 ~ 229, 353 ~ 385: 55 um (COM/SEG), PAD NO 230 ~ 338: 75 um (I/O), PAD NO 339 ~ 352: 75 um (I/O),

PAD 338 - 339: 81um

Bump Size:

PAD NO 1 ~ 196, 218 ~ 229, 353 ~ 364 : 35(x) um ×96(y) um PAD NO 197 ~ 217, 365 ~ 385 : 96(x) um ×35(y) um

PAD NO 230 ~ 352 : 55(x)um ×60(y) um

Bump Height: 17 um (Typ) Chip Thickness: 635 um

Pad Center Coordinates

PAD No.	Pin Name	X	Υ
1	COM30	5096	556
2	COM29	5041	556
3	COM28	4986	556
4	COM27	4931	556
5	COM26	4876	556
6	COM25	4821	556
7	COM24	4766	556
8	COM23	4711	556
9	COM22	4656	556
10	COM21	4601	556
11	COM20	4546	556
12	COM19	4491	556
13	COM18	4436	556
14	COM17	4381	556
15	COM16	4326	556
16	COM15	4271	556
17	COM14	4216	556
18	COM13	4161	556
19	COM12	4106	556
20	COM11	4051	556
21	COM10	3996	556
22	СОМ9	3941	556
23	COM8	3886	556
24	COM7	3831	556
25	COM6	3776	556
26	COM5	3721	556
27	COM4	3666	556
28	COM3	3611	556
29	COM2	3556	556
30	COM1	3501	556
31	COM0	3446	556
32	COMS1	3391	556
33	SEG0	3336	556
34	SEG1	3281	556
35	SEG2	3226	556
	1	1	

PAD No.	Pin Name	X	Y
36	SEG3	3171	556
37	SEG4	3116	556
38	SEG5	3061	556
39	SEG6	3006	556
40	SEG7	2951	556
41	SEG8	2896	556
42	SEG9	2841	556
43	SEG10	2786	556
44	SEG11	2731	556
45	SEG12	2676	556
46	SEG13	2621	556
47	SEG14	2566	556
48	SEG15	2511	556
49	SEG16	2456	556
50	SEG17	2401	556
51	SEG18	2346	556
52	SEG19	2291	556
53	SEG20	2236	556
54	SEG21	2181	556
55	SEG22	2126	556
56	SEG23	2071	556
57	SEG24	2016	556
58	SEG25	1961	556
59	SEG26	1906	556
60	SEG27	1851	556
61	SEG28	1796	556
62	SEG29	1741	556
63	SEG30	1686	556
64	SEG31	1631	556
65	SEG32	1576	556
66	SEG33	1521	556
67	SEG34	1466	556
68	SEG35	1411	556
69	SEG36	1356	556
70	SEG37	1301	556

PAD No.	Pin Name	X	Υ
71	SEG38	1246	556
72	SEG39	1191	556
73	SEG40	1136	556
74	SEG41	1081	556
75	SEG42	1026	556
76	SEG43	971	556
77	SEG44	916	556
78	SEG45	861	556
79	SEG46	806	556
80	SEG47	751	556
81	SEG48	696	556
82	SEG49	641	556
83	SEG50	586	556
84	SEG51	531	556
85	SEG52	476	556
86	SEG53	421	556
87	SEG54	366	556
88	SEG55	311	556
89	SEG56	256	556
90	SEG57	201	556
91	SEG58	146	556
92	SEG59	91	556
93	SEG60	36	556
94	SEG61	-19	556
95	SEG62	-74	556
96	SEG63	-129	556
97	SEG64	-184	556
98	SEG65	-239	556
99	SEG66	-294	556
100	SEG67	-349	556
101	SEG68	-404	556
102	SEG69	-459	556
103	SEG70	-514	556
104	SEG71	-569	556
105	SEG72	-624	556

PAD No.	Pin Name	X	Υ
106	SEG73	-679	556
107	SEG74	-734	556
108	SEG75	-789	556
109	SEG76	-844	556
110	SEG77	-899	556
111	SEG78	-954	556
112	SEG79	-1009	556
113	SEG80	-1064	556
114	SEG81	-1119	556
115	SEG82	-1174	556
116	SEG83	-1229	556
117	SEG84	-1284	556
118	SEG85	-1339	556
119	SEG86	-1394	556
120	SEG87	-1449	556
121	SEG88	-1504	556
122	SEG89	-1559	556
123	SEG90	-1614	556
124	SEG91	-1669	556
125	SEG92	-1724	556
126	SEG93	-1779	556
127	SEG94	-1834	556
128	SEG95	-1889	556
129	SEG96	-1944	556
130	SEG97	-1999	556
131	SEG98	-2054	556
132	SEG99	-2109	556
133	SEG100	-2164	556
134	SEG101	-2219	556
135	SEG102	-2274	556
136	SEG103	-2329	556
137	SEG104	-2384	556
138	SEG105	-2439	556
139	SEG106	-2494	556
140	SEG107	-2549	556

PAD No.	Pin Name	х	Υ
141	SEG108	-2604	556
142	SEG109	-2659	556
143	SEG110	-2714	556
144	SEG111	-2769	556
145	SEG112	-2824	556
146	SEG113	-2879	556
147	SEG114	-2934	556
148	SEG115	-2989	556
149	SEG116	-3044	556
150	SEG117	-3099	556
151	SEG118	-3154	556
152	SEG119	-3209	556
153	SEG120	-3264	556
154	SEG121	-3319	556
155	SEG122	-3374	556
156	SEG123	-3429	556
157	SEG124	-3484	556
158	SEG125	-3539	556
159	SEG126	-3594	556
160	SEG127	-3649	556
161	Reserve	-3704	556
162	Reserve	-3759	556
163	Reserve	-3814	556
164	Reserve	-3869	556
165	COM64	-3924	556
166	COM65	-3979	556
167	COM66	-4034	556
168	COM67	-4089	556
169	COM68	-4144	556
170	COM69	-4199	556
171	COM70	-4254	556
172	COM71	-4309	556
173	COM72	-4364	556
174	COM73	-4419	556
175	COM74	-4474	556

PAD No.	Pin Name	Х	Υ
176	COM75	-4529	556
177	COM76	-4584	556
178	COM77	-4639	556
179	COM78	-4694	556
180	COM79	-4749	556
181	COM80	-4804	556
182	COM81	-4859	556
183	COM82	-4914	556
184	COM83	-4969	556
185	COM84	-5024	556
186	COM85	-5079	556
187	COM86	-5134	556
188	COM87	-5189	556
189	COM88	-5244	556
190	COM89	-5299	556
191	COM90	-5354	556
192	COM91	-5409	556
193	COM92	-5464	556
194	COM93	-5519	556
195	COM94	-5574	556
196	COM95	-5629	556
197	COM96	-6234	550
198	COM97	-6234	495
199	COM98	-6234	440
200	СОМ99	-6234	385
201	COM100	-6234	330
202	COM101	-6234	275
203	COM102	-6234	220
204	COM103	-6234	165
205	COM104	-6234	110
206	COM105	-6234	55
207	COM106	-6234	0
208	COM107	-6234	-55
209	COM108	-6234	-110
210	COM109	-6234	-165

PAD No.	Pin Name	X	Υ
211	COM110	-6234	-220
212	COM111	-6234	-275
213	COM112	-6234	-330
214	COM113	-6234	-385
215	COM114	-6234	-440
216	COM115	-6234	-495
217	COM116	-6234	-550
218	COM117	-5418	-556
219	COM118	-5363	-556
220	COM119	-5308	-556
221	COM120	-5253	-556
222	COM121	-5198	-556
223	COM122	-5143	-556
224	COM123	-5088	-556
225	COM124	-5033	-556
226	COM125	-4978	-556
227	COM126	-4923	-556
228	COM127	-4868	-556
229	COMS2	-4813	-556
230	Т9	-4729	-574
231	VDD	-4654	-574
232	PS0	-4579	-574
233	PS1	-4504	-574
234	PS2	-4429	-574
235	VSS	-4354	-574
236	CSB	-4279	-574
237	CSB	-4204	-574
238	RST	-4129	-574
239	RST	-4054	-574
240	A0	-3979	-574
241	A0	-3904	-574
242	RW_WR	-3829	-574
243	RW_WR	-3754	-574
244	E_RD	-3679	-574
245	E_RD	-3604	-574

PAD No.	Pin Name	x	Υ
246	D0	-3529	-574
247	D0	-3454	-574
248	D1	-3379	-574
249	D1	-3304	-574
250	D2	-3229	-574
251	D2	-3154	-574
252	D3	-3079	-574
253	D3	-3004	-574
254	D4	-2929	-574
255	D4	-2854	-574
256	D5	-2779	-574
257	D5	-2704	-574
258	D6	-2629	-574
259	D6	-2554	-574
260	D7	-2479	-574
261	D7	-2404	-574
262	VDD	-2329	-574
263	VDD	-2254	-574
264	VDD	-2179	-574
265	VDD	-2104	-574
266	VDD	-2029	-574
267	VDD	-1954	-574
268	VDD2	-1879	-574
269	VDD2	-1804	-574
270	VDD2	-1729	-574
271	VDD2	-1654	-574
272	VDD2	-1579	-574
273	VDD2	-1504	-574
274	VDD2	-1429	-574
275	VDD2	-1354	-574
276	VDD2	-1279	-574
277	VDD2	-1204	-574
278	VDD2	-1129	-574
279	VDD2	-1054	-574
280	VDD2	-979	-574

PAD No.	Pin Name	Х	Υ
281	VDD2	-904	-574
282	VDD2	-829	-574
283	VDD2	-754	-574
284	VSS2	-679	-574
285	VSS2	-604	-574
286	VSS2	-529	-574
287	VSS2	-454	-574
288	VSS2	-379	-574
289	VSS2	-304	-574
290	VSS2	-229	-574
291	VSS2	-154	-574
292	VSS2	-79	-574
293	VSS2	-4	-574
294	VSS2	71	-574
295	VSS2	146	-574
296	VSS2	221	-574
297	VSS2	296	-574
298	VSS2	371	-574
299	VSS2	446	-574
300	VSS	521	-574
301	VSS	596	-574
302	VSS	671	-574
303	VSS	746	-574
304	VSS	821	-574
305	VSS	896	-574
306	TA	971	-574
307	ТВ	1046	-574
308	MF2	1121	-574
309	MF1	1196	-574
310	MF0	1271	-574
311	DS0	1346	-574
312	DS1	1421	-574
313	VDD	1496	-574
314	VOUT_OUT	1571	-574
315	VOUT_OUT	1646	-574

PAD No.	Pin Name	X	Y
316	VOUT_OUT	1721	-574
317	VOUT_OUT	1796	-574
318	VOUT_OUT	1871	-574
319	VOUT_OUT	1946	-574
320	VOUT_IN	2021	-574
321	VOUT_IN	2096	-574
322	VOUT_IN	2171	-574
323	VOUT_IN	2246	-574
324	VOUT_IN	2321	-574
325	VOUT_IN	2396	-574
326	T[8]	2471	-574
327	T[7]	2546	-574
328	T[6]	2621	-574
329	T[5]	2696	-574
330	T[4]	2771	-574
331	T[3]	2846	-574
332	T[2]	2921	-574
333	T[1]	2996	-574
334	T[0]	3071	-574
335	VDD	3146	-574
336	REF	3221	-574
337	VSS	3296	-574
338	VEXT	3371	-574
339	VDD	3452	-574
340	INTRS	3527	-574
341	VSS	3602	-574
342	OSC1	3677	-574
343	OSC1	3752	-574
344	VDD	3827	-574
345	VR	3902	-574
346	VR	3977	-574
347	V4	4052	-574
348	V3	4127	-574
349	V2	4202	-574
350	V1	4277	-574

PAD No.	Pin Name	X	Υ
351	V0	4352	-574
352	V0	4427	-574
353	COM63	5340	-556
354	COM62	5395	-556
355	COM61	5450	-556
356	COM60	5505	-556
357	COM59	5560	-556
358	COM58	5615	-556
359	COM57	5670	-556
360	COM56	5725	-556
361	COM55	5780	-556
362	COM54	5835	-556
363	COM53	5890	-556
364	COM52	5945	-556
365	COM51	6234	-550
366	COM50	6234	-495
367	COM49	6234	-440
368	COM48	6234	-385

PAD No.	Pin Name	Х	Υ
369	COM47	6234	-330
370	COM46	6234	-275
371	COM45	6234	-220
372	COM44	6234	-165
373	COM43	6234	-110
374	COM42	6234	-55
375	COM41	6234	0
376	COM40	6234	55
377	COM39	6234	110
378	COM38	6234	165
379	COM37	6234	220
380	COM36	6234	275
381	COM35	6234	330
382	COM34	6234	385
383	COM33	6234	440
384	COM32	6234	495
385	COM31	6234	550

BLOCK DIAGRAM

PIN DESCRIPTION POWER SUPPLY

Power Supply Pin Description

Name	I/O	Description							
VDD	Supply		Power supply						
VSS	Supply			Ground					
VDD2	Supply			Power supply					
VSS2	Supply			Ground					
VOUT_OUT	Supply		ut voltage generator i ternal supply is used	_	_	must be connected			
VOUT_IN	Supply	VOUT_OUT has	An external Vout supply voltage can be supplied using the VOUT_IN pad. In this case, VOUT_OUT has to be left open, and the internal voltage generator has to be programmed to zero. (SET register VC=0)						
V0	I/O	LCD driver suppl	LCD driver supply voltages						
V1		The voltage dete	rmined by LCD pixel	is impedance-conv	erted by an opera	tional amplifier for			
V2		application. V1,V	2,V3,V4 need the ca	pacitor between wit	h VSS				
V3		Voltages should	have the following re	lationship;					
V4		V0 ≥ V1 ≥ V2 ≥ V	$73 \ge V4 \ge VSS$						
		When the interna	When the internal power circuit is active, these voltages are generated as following table						
		according to the	according to the state of LCD bias.						
		LCD bias	V1	V2	V3	V4			
		1/N bias	(N-1) / N x V0	(N-2) / N x V0	(2/N) x V0	(1/N) x V0			
		NOTE: N = 5 to	NOTE: N = 5 to 12						

LCD DRIVER SUPPLY

LCD Driver Supply Pin Description

Name	I/O	Description
VR	1	V0 voltage adjustment pin
		It is valid only when on-chip resistors are not used (INTRS = "L")
		When using internal resistors (INTRS = "H"), open this pin
REF	1	Selects the external VREF voltage via the VEXT pin
		REF = "H": using the internal VREF
		- REF = "L": using the external VREF
VEXT	1	Externally input reference voltage (VREF) for the internal voltage regulator
		It is valid only when REF is "L"
		When using internal voltage regulator, this pin must be open
OSC1	1	External OSC input pin, when using internal clock oscillator, connect OSC1 to VDD.

SYSTEM CONTROL

System Control Pin Description

Name	I/O	Description
INTRS	1	Internal resistor select pin
		This pin selects the resistors for adjusting V0 voltage level
		- INTRS = "H": use the internal resistors.
		- INTRS = "L": use the external resistors
		VR pin and external resistive divider control V0 voltage
T[0] ~ T[9]	0	Test pins
		Don' t use these pins.
		Please Open these pins.
Reserve	Х	This pin must be OPEN
MF[2:0]	1	Manufacturer ID code for reference, suggest set to [MF2.MF1.MF0 = 0.0.0]
DS[1:0]	1	Display size ID code for reference, suggest set to [DS1.DS0 = 1.0]
TA, TB	I	Test pins
		TA and TB must connect to Vss.

MICROPROCESSOR INTERFACE

Microprocessor Interface Pin Description

Name	I/O	Descrip		•					
RST	ı	Reset in	Reset input pin						
		When R	ESETB	is "L", in	itialization is e	xecuted.			
PS[2:0]	1	Parallel	/ Serial	data inpu	ut select input				
		PS2	PS1	PS0	Interface	Data /	Data	Read/Write	Serial clock
					mode	Command			
		L	L	Н	Parallel 80	A0	DB0 to DB7	RD / WR	-
		L	Н	Н	Parallel 68	A0	DB0 to DB7	E/RW	-
		L	L	L	3Line Serial	-	SID (DB7)	Write only	SCLK (DB6)
		L	Н	L	4Line Serial	A0	SID (DB7)	Write only	SCLK (DB6)
		Н	L	L	IIC Serial	-	SDA	Read/Write	SCL
		*NOTE:	In 4-Lir	e, 3-Line	and IIC seria	I mode, it is im	possible to read	I data from the	on-chip RAM.
		In 3-Line	or 4-L	ine interf	ace:				
		DB0 to I	DB5, E_	RD and	RW_WR must	be fixed to "H	" or "L".		
		In IIC ar	ıd 3-Lin	e interfac	ce:				
		A0 must	be fixe	d to "H" o	or "L"				
		Micropro	ocessor	interface	e select input p	oin			
		_	-		ries parallel Mi				
		_	-		eries parallel N				
		_	-		PI MPU interfa				
		_	-		PI MPU interfa	ice			
			-		MPU interface				
CSB	I		Chip select input pins						
					•	en CSB is "L".	When chip sele	ect is non-active	e, DB0 to DB7
		-		pedance.					
A0	I			input pin					
					are display da				
DIA IA/D					are control dat	<u>a</u>			
RW_WR	I				control pin				
		PS1		J type	RW_WR	-		1	
		H 6800-series RW Read / Write control input pin RW = "H" : read RW = "L" : write							
			0000) oo=i==	/A/D			nin	
			8080)-series	WR		able clock input	•	the riging adapted
								are lateried at	the rising edge of
						the /WR	signal.		

Microprocessor Interface Pin Description (Continued)

Name	I/O	Descript	ion					
E_RD	1	Read / W	Read / Write execution control pin					
		PS1	MPU Type	E_RD	Description			
		Н	6800-series	Е	Read / Write control input pin			
					- RW = "H": When E is "H", DB0 to DB7 are in an output			
					status.			
					- RW = "L": The data on DB0 to DB7 are latched at the			
					falling edge of the E signal.			
		L	8080-series	/RD	Read enable clock input pin			
					When /RD is "L", DB0 to DB7 are in an output status.			
DB0	I/O	8-bit bi-di	rectional data bus	that is conn	ected to the standard 8-bit microprocessor data bus.			
to		When chi	p select is not acti	ve (CSB=H)	, DB0 to DB7 may be high impedance.			
DB7		When the	3-Line/4-Line seri	al interface	selected (PS[2:0] = "000" or "010");			
		- DB0 to	DB5: high impeda	nce				
		– DB6: se	erial input clock (So	CLK)				
		– DB7: se	erial input data (SII	O)				
		When chi	p select is not acti	ve, D0 to D7	7 is high impedance.			
			IIC serial interface	•	PS[2:0] = "100");			
		D7: serial clock input (SCL) D6 , D5 , D4: serial input data (SDA_IN) D3, D2: (SDA_OUT) serial data acknowledge for the IIC interface. By connecting SDA_OUT to SDA_IN externally, the SDA line becomes fully IIC interface compatible. Having the acknowledge output separated from the serial data line is advantageous in chip on glass (COG) applications. In COG application where the track resistance from the SDA_OUT pad to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the ITO track resistance. I is possible during the acknowledge cycle the ST7541 will not be able to create a valid logic 0 level. By splitting the SDA_IN input from the SDA_OUT output the device could be used in a mode that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDA_OUT pad to the system SDA line to guarantee a valid low level. D6, D5,D2 must be connected together (SDA) D1, D0: Is slave address (SA) bit1, 0, must connect to Vdd or Vss. When chip select is not active, D0 to D7 is high impedance.						

LCD DRIVER OUTPUTS

LCD Driver Output Pin Description

Name	I/O	Description							
SEG0	0	LCD segment driver outp	LCD segment driver outputs						
to		The display data and the	M signal contro	I the outpu	ut voltage of segment	driver.			
SEG127					Segment drive	r output voltage			
		Display data	M (Interna	1)	Normal display	Reverse display			
		Н	Н		V0	V2			
		Н	L		VSS	V3			
		L	Н		V2	V0			
		L	L.		V3	VSS			
		Power sa	ve mode		VSS	VSS			
COM0	0	LCD common driver outp	outs	·					
to		The internal scanning da	ata and M signal	control the	e output voltage of cor	mmon driver.			
COM128		Scan data	M (In	ternal)	Common drive	er output voltage			
		Н		Н	V	/SS			
		Н		L	,	V0			
		L		Н	,	V1			
		L		L	,	V4			
		Power sa	Power save mode VSS						
COMS	0	Common output for the i	cons						
(COMS1)		The output signals of two	pins are same.	When not	t used, these pins sho	uld be left open.			

ST7541 I/O PIN ITO Resister Limitation

PIN Name	ITO Resister
PS2,PS1,PS0,REF,OCS1,INTRS, TA, TB	No Limitation
T09 , VR , VEXT	Floating
Vdd, Vdd2, Vss, Vss2 , VOUT_IN , VOUT_OUT	<100Ω
CSB , E , R/W , A0 , D0D7	<1ΚΩ
V0, V1 , V2 , V3 , V4	<500Ω
RST	<10ΚΩ

FUNCTIONAL DESCRIPTION MICROPROCESSOR INTERFACE

Chip Select Input

There is CSB pin for chip selection. The ST7541 can interface with an MPU when CSB is "L". When these pins are set to any other combination, A0, E_RD, and RW_WR inputs are disabled and DB0 to DB7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset.

Parallel / Serial Interface

ST7541 has five types of interface with an MPU, which are three serial and two parallel interfaces. This parallel or serial interface is determined by PS pin as shown in Table 1.

Table 1 Parallel / Serial Interface Mode

Туре	PS2	PS1	PS0	CSB	Interface mode
Parallel	L	Н	H CSB		6800-series MPU mode
Parallel	L	L	П	COB	8080-series MPU mode
	L	L	L	CSB	3-Line SPI mode
Serial	L	Н	L	CSB	4-Line SPI mode
	Н	L	L	CSB	IIC SPI mode

Parallel Interface (PS0 = "H")

The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS1 as shown in Table 2. The type of data transfer is determined by signals at A0, E_RD and RW_WR as shown in Table 3.

Table 2 Microprocessor Selection for Parallel Interface

PS1	CSB	A0	E_RD	RW_WR	DB0 to DB7	MPU bus
Н	CSB	A0	Е	RW	DB0 to DB7	6800-series
L	CSB	A0	/RD	/WR	DB0 to DB7	8080-series

Table 3 Parallel Data Transfer

Common	6800-series		8	080-series	Description
40	E_RD	RW_WR	RW_WR E_RD		
Α0	(E)	(RW)	(/RD)	(/WR)	
Н	Н	Н	L	Н	Display data read out
Н	Н	L	Н	L	Display data write
L	Н	Н	L	Н	Register status read
L	Н	L	Н	L	Writes to internal register (instruction)

NOTE: When E_RD pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, RW_WR as in case of 6800-series mode.

Serial Interface

3-Line / 4-Line (PS[2:0] = "000" or "010")

When the ST7541 is active (CSB="L"), serial data (DB7) and serial clock (DB6) inputs are enabled. And not active, the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication may be controlled either via software or the Register Select (A0) Pin, based on the setting of PS1. When the A0 pin is used (PS1 = "H"), data is display data when A0 is high, and command data when A0 is low. When A0 is not used (PS1 = "L"), the LCD Driver will receive command from MCU by default. If messages on the data pin are data rather than command, MCU should send Data Direction command (11101000) to control the data direction and then one more command to define the number of data bytes will be write. After these two continuous commands are sent, the following messages will be data rather than command. Serial data can be read on the rising edge of serial clock going into DB6 and processed as 8-bit parallel data on the eighth serial clock. And the DDRAM column address pointer will be increased by one automatically. The next bytes after the display data string is handled as command data.

In 3-Line mode, default message from MCU is command, the 2 bytes command of **Set Data Direction & Display Data Length** must be set before display data send from MCU, after the display data is sent over, the next message is turned to be command.

Serial mode	PS0	PS1	PS2	CSB	A0
3-Line SPI mode	L	L	L	CSB	No used
4-Line SPI mode	L	Н	L	CSB	Used
IIC SPI mode	L	L	Н	CSB	No Used

If A0 is not used it must be fixed either "H" or "L"

4-Line SPI Mode (PS0 = "L", PS1 = "H", PS2 = "L")

3-Line SPI Mode (PS0 = "L", PS1 = "L", PS2= "L")

To write data to the DDRAM, send Data Direction Command in 3-Line SPI mode. Data is latched at the rising edge of SCLK. And the DDRAM column address pointer will be increased by one automatically.

Figure 2. 3-pin SPI Timing (RS is not used)

This command is used in 3-Line SPI mode only. It will be two continuous commands, the first byte controls the data direction and informs the LCD driver the second byte will be number of data bytes will be write. After these two commands sending out, the following messages will be data. If data is stopped in transmitting, it is not valid data.

New data will be transferred serially with most significant bit first.

NOTE: In spite of transmission of data, if CSB will be disable, state terminates abnormally. Next state is initialized.

IIC Interface (PS0 = "L", PS1 = "L", PS2= "H")

The IIC interface receives and executes the commands sent via the IIC Interface. It also receives RAM data and sends it to the RAM.

The IIC Interface is for bi-directional, two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

BIT TRANSFER

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Figure 3.

START AND STOP CONDITIONS

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Figure 4.

SYSTEM CONFIGURATION

The system configuration is illustrated in Figure 5.

- · Transmitter: the device, which sends the data to the bus
- · Receiver: the device, which receives the data from the bus
- · Master: the device, which initiates a transfer, generates clock signals and terminates a transfer
- · Slave: the device addressed by a master
- · Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message
- · Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
- · Synchronization: procedure to synchronize the clock signals of two or more devices.

ACKNOWLEDGE

Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge, after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge, related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition. Acknowledgement on the IIC Interface is illustrated in Figure 6.

IIC Interface protocol

The ST7541 supports command, data write addressed slaves on the bus.

Before any data is transmitted on the IIC Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (0111100,0111101, 0111110 and 0111111) are reserved for the ST7541. The least significant bit of the slave address is set by connecting the input SA0 and SA1 to either logic 0 (Vss) or logic 1 (VDD).

The IIC Interface protocol is illustrated in Figure 7.

The sequence is initiated with a START condition (S) from the IIC Interface master, which is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, all the others will ignore the IIC Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves.

A command word consists of a control byte, which defines Co and A0, plus a data byte.

The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the A0 bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the A0 bit setting; either a series of display data bytes or command data bytes may follow. If the A0 bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST7541 device. If the A0 bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the IIC INTERFACE-bus master issues a STOP condition (P). If the R/W bit is set to logic 1 the chip will output data immediately after the slave address if the A0 bit, which was sent during the last write access, is set to logic 0. If no acknowledge is generated by the master after a byte, the driver stops transferring data to the master.

Busy Flag

The Busy Flag indicates whether the ST7541 is operating or not. When DB7 is "H" in read status operation, this device is in busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check this flag before each instruction, which improves the MPU performance.

Data Transfer

The ST7541 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in Figure 8. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in Figure 9. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data.

DISPLAY DATA RAM (DDRAM)

The Display Data RAM stores pixel data for the LCD. It is 129-row (17 pages by 8 bits) by 128-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 129 rows are divided into 16 pages of 8 lines and the 17th page with a single line (DB0 only). Data is read from or written to the 8 lines of each page directly through DB0 to DB7. The display data of DB0 to DB7 from the microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker.

Page Address Circuit

It incorporates 4-bit Page Address register changed by only the "Set Page" instruction. Page Address 16 is a special RAM area for the icons and display data DB0 is only valid. The page address is set from 0 to 15, and Page 16 is for Icon page.

Line Address Circuit

This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line Address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 128-bit RAM data to the display data latch circuit. When icon is enabled by setting icon control register, display data of icons are not scrolled because the MPU can not access Line Address of icons.

Column Address Circuit

LCD panel display

When set Column Address MSB / LSB instruction is issued, 7-bit [Y7:Y1] are set and lowest bit, Y0 is set to "0". The column address is increased by 1 after each read or write data Refer to the following Figure 10.

(Note: in mode read or write in twice, the column address will turn to next column address)

SEG **SEG SEG** SEG SEG SEG SEG **SEG** SEG output 0 1 2 3 124 125 126 127 Column 00H 02H ... address 01H 03H 7CH 7DH 7EH 7FH [Y7:Y1] Internal column ... 00 01 02 03 04 05 06 07 F8 F9 FΑ FΒ FC FD FΕ FF address [Y7:Y0] Display data 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 (MX=0)LCD panel display Display data 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 (MX=1)

Figure 10 The Relationship between the Column Address and The Segment Outputs

Segment Control Circuit

This circuit controls the display data by the display ON / OFF, reverse display ON / OFF and entire display ON / OFF instructions without changing the data in the display data RAM.

LCD DISPLAY CIRCUITS

FRC (Frame Rate Control) and PWM (Pulse Width Modulation) Function Circuit

The ST7541 incorporates an FRC function and a PWM function circuit to display a 4-level gray scale. The FRC function and PWM utilize liquid crystal characteristics whose transmittance is changed by an effective value of applied voltage. The ST7541 provides palette-registers to assign the desired gray level. These registers are set by the instructions and the RESETB.

ST7541--4FRC & 3FRC / 9PWM, 12PWM, 15PWM

- Gray Scale Table of 4 FRC (Frame Rate Control)

Gray scale level	MSB (DB7 to DB4)	LSB (DB3 to DB0)		
White	2nd FR (FR2)	1st FR (FR1)		
	4th FR (FR4)	3rd FR (FR3)		
Light gray	2nd FR (FR2)	1st FR (FR1)		
	4th FR (FR4)	3rd FR (FR3)		
Dark gray	2nd FR (FR2)	1st FR (FR1)		
	4th FR (FR4)	3rd FR (FR3)		
Dark	2nd FR (FR2)	1st FR (FR1)		
	4th FR (FR4)	3rd FR (FR3)		

- Gray Scale Table of 3 FRC (Frame Rate Control)

Gray scale level	MSB (DB7 to DB4)	LSB (DB3 to DB0)		
White	2nd FR (FR2)	1st FR (FR1)		
	XXXX	3rd FR (FR3)		
Light gray	2nd FR (FR2)	1st FR (FR1)		
	XXXX	3rd FR (FR3)		
Dark gray	2nd FR (FR2)	1st FR (FR1)		
	XXXX	3rd FR (FR3)		
Dark	2nd FR (FR2)	1st FR (FR1)		
	XXXX	3rd FR (FR3)		

-Gray Scale Table of 15 PWM (Pulse Width Modulation)

Dec	Hex	4-bits	PWM (on width)	Note
0	00	0000	0(0/15)	Brighter
1	01	0001	1/15	^
2	02	0010	2/15	
3	03	0011	3/15	
4	04	0100	4/15	
5	05	0101	5/15	
6	06	0110	6/15	
7	07	0111	7/15	
8	08	1000	8/15	
9	09	1001	9/15	
10	0A	1010	10/15	
11	0B	1011	11/15	
12	0C	1100	12/15	
13	0D	1101	13/15	
14	0E	1110	14/15	₩
15	0F	1111	1(15/15)	Darker

-Gray Scale Table of 12 PWM (Pulse Width Modulation)

Dec	Hex	4-bits	PWM (on width)	Note	
0	00	0000	0(0/12)	Brighter	
1	01	0001	1/12	A	
2	02	0010	2/12		
3	03	0011	3/12		
4	04	0100	4/12		
5	05	0101	5/12		
6	06	0110	6/12		
7	07	0111	7/12		
8	80	1000	8/12		
9	09	1001	9/12		
10	0A	1010	10/12		
11	0B	1011	11/12	▼	
12	0C	1100	1(12/12)	Darker	
13	0D	1101	0/12	This area is	
14	0E	1110	0/12	selected to OFF	
15	0F	1111	0/12	level (0/12 level)	

-Gray Scale Table of 9 PWM (Pulse Width Modulation)

Dec	Hex	4-bits	PWM (on width)	Note
0	00	0000	0(0/9)	Brighter
1	01	0001	1/9	^
2	02	0010	2/9	
3	03	0011	3/9	
4	04	0100	4/9	
5	05	0101	5/9	
6	06	0110	6/9	
7	07	0111	7/9	
8	08	1000	8/9	\
9	09	1001	1(9/9)	Darker
10	0A	1010	0/9	
11	0B	1011	0/9	This area is
12	0C	1100	0/9	This area is
13	0D	1101	0/9	selected to OFF level (0/9 level)
14	0E	1110	0/9	ievei (0/9 levei)
15	0F	1111	0/9	

Oscillator

This is on-chip Oscillator without external resistor. When the internal oscillator is used, this pin must connect to VDD; when the external oscillator is used, this pin could be input pin. This oscillator signal is used in the voltage converter and display timing generation circuit.

Display Timing Generator Circuit

This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 128-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M) which enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Figure 11.

Figure 12 N-Line Inversion Driving Waveform (N=5,Duty Ratio=1/129)

LCD DRIVER CIRCUIT

This driver circuit is configured by 129-channel common drivers and 128-channel segment drivers. This LCD panel driver voltage depends on the combination of display data and M signal.

Partial Display on LCD

The ST7541 realizes the Partial Display function on LCD with low-duty driving for saving power consumption and showing the various display duty. To show the various display duty on LCD, LCD driving duty and bias are programmable via the instruction. And, built-in power supply circuits are controlled by the instruction for adjusting the LCD driving voltages. The partial display duty ratio could be set from 16 ~ 128.

If the partial display region is out of the Max. Display range, it would be no operation.

Figure 13 Reference Example for Partial Display

Figure 14 Partial Display (Partial Display Duty=16,initial COM0=0)

-COM23

-COM0 -COM1 -COM2 -COM3

Figure 15 Moving Display (Partial Display Duty=16,Initial COM0=8)

POWER SUPPLY CIRCUITS

The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table 4 shows the referenced combinations in using Power Supply circuits.

Table 4 Recommended Power Supply Combinations

User setup	Power control (VC VR VF)	V/C circuits	V/R circuits	V/F circuits	VOUT_IN	Vo	V1 to V4
Only the internal power supply circuits are used	111	ON	ON	ON	Internal	Without capacitor	With capacitor
Only the voltage regulator circuits and voltage follower circuits are used	011	OFF	ON	ON	External input	Without capacitor	With capacitor
Only the voltage follower circuits are used	0 0 1	OFF	OFF	ON	OPEN	External input	With capacitor
Only the external power supply circuits are used	000	OFF	OFF	OFF	OPEN	External input	External input

Voltage Converter Circuits

These circuits boost up the electric potential between VDD2 and Vss to 3, 4, 5 or 6 times toward positive side and boosted voltage is outputted from VOUT pin. It is possible to select the lower boosting level in any boosting circuit by "Set DC-DC Step-up" instruction. When the higher level is selected by instruction, VOUT voltage is not valid.

Note: we would like to recommend to use the external VOUT when the panel is large than 1.8 inch

Voltage Regulator Circuits

The function of the internal Voltage Regulator circuits is to determine liquid crystal operating voltage, V0, by adjusting resistors, Ra and Rb, within the range of |V0| < |VOUT|. Because VOUT is the operating voltage of operational-amplifier circuits shown in Figure 16, it is necessary to be applied internally or externally.

For the Eq. 1, we determine V0 by Ra, Rb and VEV. The Ra and Rb are connected internally or externally by INTRS pin. And VEV called the voltage of electronic volume is determined by Eq. 2, where the parameter α is the value selected by instruction, "Set Reference Voltage Register", within the range 0 to 63. VREF voltage at Ta= 25 C is shown in Table 5.

Table 5 VREF Voltage at Ta = 25°C

REF	Temp. coefficient	VREF [V]		
1	-0.144% / °C	2.1		
0	External input	VEXT		

Figure 16 Internal Voltage Regulator Circuit

In Case of Using Internal Resistors, Ra and Rb (INTRS = "H")

When INTRS pin is "H", resistor Ra is connected internally between VR pin and VSS, and Rb is connected between V0 and VR. We determine V0 by two instructions, "Regulator Resistor Select" and "Set Reference Voltage".

Table 6 Internal Rb / Ra Ratio depending on 3-bit Data (R2 R1 R0)

	3-bit data settings (R2 R1 R0)								
	0 0 0	0 0 1	010	011	100	101	110	111	
1 + (Rb / Ra)	2.3	3.0	3.7	4.4	5.1	5.8	6.5	7.2	

Figure 17 Shows V0 voltage measured by adjusting internal regulator register ratio (Rb / Ra) and 6-bit electronic volume registers for each temperature coefficient at $Ta = 25^{\circ}C$.

Figure 17 Electronic Volume Level (Temp. Coefficient = -0.144% / $^{\circ}$ C)

In Case of Using External Resistors, Ra and Rb (INTRS = "L")

When INTRS pin is "L", it is necessary to connect external regulator resistor Ra between VR and VSS, and Rb between V0 and VR.

Example: For the following requirements

- 1. LCD driver voltage, V0 = 10V
- 2. 6-bit reference voltage register = (1, 0, 0, 0, 0, 0)
- 3. Maximum current flowing Ra, Rb = 1 uA

From Eq. 1

From Eq. 1

From requirement 3.

10

Ra + Rb

From equations Eq. 3, 4 and 5

$$Ra = 1.79 [M\Omega]$$

Rb = 8.21 [M Ω]

Table 7 Shows the Range of V0 depending on the above Requirements.

Table 7 The Range of V0

	Electronic volume level								
	0		32		63				
V0	8.21		10.00		11.73				

Voltage Follower Circuits

VLCD voltage (V0) is resistively divided into four voltage levels (V1, V2, V3 and V4), and those output impedance are converted by the Voltage Follower for increasing drive capability. Table 8 shows the relationship between V1 to V4 level and each duty ratio.

Table 8 The Relationship between V1 to V4 Level and Each Duty Ratio

LCD bias	V1	V2	V3	V4	Remarks
1/N	(N-1)/N x V0	(N-2)/N x V0	2/N x V0	1/N x V0	N = 5 to 12

Bias Power Save circuit:

When we set the Instruction of Bias Power Save, the bias also could be working, and the IC current consumption will be lower about 100uA to 200uA (according to the panel loading)

Follower voltage reference circuit (Internal Booster & Regulator)

Left is using internal Resister

Right is using External Resister

C1= $1u F \sim 4.7u F$, C2 = $0.1u F \sim 1u F$ (suggestion value: C1=1uF, C2=0.1uF)

Follower voltage reference circuit (External Vout & Internal Regulator)

Left is using internal Resister

Right is using External Resister

C1= 1u F \sim 4.7u F , C2 = 0.1u F \sim 1u F (suggestion value: C1=1uF , C2=0.1uF)

Booster Efficiency

By Booster Stages (3X, 4X, 5X, 6X) and Booster Efficiency (Level1~2) commands, we could easily set the best Booster performance with suitable current consumption. If the Booster Efficiency is set to higher level (level2 is higher than level1), The Boost Efficiency is better than lower level, and it just need few more power consumption current. It could be applied to each multiple voltage Condition.

When the LCD Panel loading is heavier, then the Performance of Booster will be not in a good working condition. We could set the BE level to be higher. We do not need to change to higher Booster Stage, and just need few more current. The Booster Efficiency Command could be used together with Booster Stage Command to choose one best Boost output condition. We could see the Boost Stage Command as a large scale operation, and see the Booster Efficiency Command as a small scale operation. These commands are very convenient for using.

RESET CIRCUIT

Setting RESETB to "L" or Reset instruction can initialize internal function.

When RESETB becomes "L", following procedure is occurred.

Page address: 0 Column address: 0 Read-modify-write: OFF Display ON / OFF: OFF Initial display line: 0 (first) Initial COM0 register: 0 (COM0) Partial display duty ratio: 1/128

Reverse display ON / OFF: OFF (normal)
N-line inversion register: 0 (disable)

Entire Display ON/OFF: OFF

ICON Control register ON/OFF: OFF (ICON disable)
Power control register (VC, VR, VF) = (0, 0, 0)

DC-DC converter circuit = (0, 0) Booster Efficiency BE = (1)

Regulator resistor select register: (R2, R1, R0) = (0, 0, 0)

Contrast Level: 32 LCD bias ratio: 1/12 COM Scan Direction: 0

ADC Select: 0 Oscillator: OFF

Power Save Mode: Release

Display Data Length register: 0 (for SPI mode)

White mode set: OFF

White palette register (WG3, WG2, WG1, WG0) = (0, 0, 0, 0)

Light gray mode set: OFF

Light gray palette register (LG3, LG2, LG1, LG0) = (0, 0, 0, 0)

Dark gray mode set: OFF

Dark gray palette register (DG3, DG2, DG1, DG0) = (0, 0, 0, 0)

Dark mode set: OFF

Dark palette register (BG3, BG2, BG1, BG0) = (0, 0, 0, 0)

FRC, PWM mode: 4FRC, 9PWM

When RESET instruction is issued, following procedure is occurred.

Page address: 0 Column address: 0 Read-modify-write: OFF Initial display line: 0 (First)

Regulator resistor select register: (R2, R1, R0) = (0, 0, 0)

Contrast Level: 32

Display Data Length register: 0 (for SPI mode)

White mode set: OFF

White palette register (WG3, WG2, WG1, WG0) = (0, 0, 0, 0)

Light gray mode set: OFF

Light gray palette register (LG3, LG2, LG1, LG0) = (0, 0, 0, 0)

Dark gray mode set: OFF

Dark gray palette register (DG3, DG2, DG1, DG0) = (0, 0, 0, 0)

Dark mode set: OFF

Dark palette register (BG3, BG2, BG1, BG0) = (0, 0, 0, 0)

FRC, PWM mode: 4FRC, 9PWM

Instruction	Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
										_	
	0	0	0	0	1	1	1	0	0	0	2-byte instruction to set
Mode Set	0	0	FR3	FR2	FR1	FR0	0	BE	x'	0	Mode and FR(Frame frequency control) BE(Booster efficiency control)
Read display data	1	1				Read	data				Read data into DDRAM
Write display data	1	0				Write	data				Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=0: ICON disable(default) ICON=1: ICON enable & set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	0	Y7	Y6	Y5	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y4	Y3	Y2	Y1	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=0: Display OFF D=1: Display ON
	0	0	0	1	0	0	0	0	x'	x'	2-byte instruction to specify
Set initial display line register	0	0	x'	S6	S5	S4	S3	S2	S1	S0	the initial display line to realize vertical scrolling
Cat initial COMO na sistan	0	0	0	1	0	0	0	1	x'	x'	2-byte instruction to specify
Set initial COM0 register	0	0	x'	C6	C5	C4	СЗ	C2	C1	C0	the initial COM0 to realize window scrolling
	0	0	0	1	0	0	1	0	x'	x'	2-byte instruction to set partial
Set partial display duty ration	0	0	D7	D6	D5	D4	D3	D2	D1	D0	display duty ratio
	0	0	0	1	0	0	1	1	x'	x'	2-byte instruction to set N-line
Set N-line inversion	0	0	x'	x'	x'	N4	N3	N2	N1	N0	inversion register
Release N-line inversion	0	0	1	1	1	0	0	1	0	0	Release N-line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	REV=0: normal display REV=1: reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON=0: normal display EON=1: entire display ON

Instruction	Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select the step-up of internal voltage converter
Select regulator register	0	0	0	0	1	0	0	R2	R1	R0	Select the internal resistance ratio of the regulator resistor
Select electronic volume	0	0	1	0	0	0	0	0	0	1	2-byte instruction to specify
register	0	0	x'	x'	EV5	EV4	EV3	EV2	EV1	EV0	the reference voltage
Select LCD bias	0	0	0	1	0	1	0	B2	B1	В0	Select LCD bias
D: D 0	0	0	1	1	1	1	0	0	1	1	Bias Power save
Bias Power Save	0	0	0	0	0	0	0	0	0	0	Save the Bias current consumption
Release Bias Power Save	0	0	1	1	1	1	0	0	1	1	Bias Power save release
Mode	0	0	0	0	0	0	0	1	0	0	set the Bias power to normal
SHL select	0	0	1	1	0	0	SHL	x'	x'	x'	COM bi-directional selection SHL=0: normal direction SHL=1: reverse direction
ADC select	0	0	1	0	1	0	0	0	0	ADC	SEG bi-direction selection ADC=0: normal direction ADC=1: reverse direction
Oscillator on start	0	0	1	0	1	0	1	0	1	1	Start the built-in oscillator
Set power save mode	0	0	1	0	1	0	1	0	0	Р	P=0: normal mode P=1: sleep mode
Release power save mode	0	0	1	1	1	0	0	0	0	1	release power save mode
Reset	0	0	1	1	1	0	0	0	1	0	initial the internal function
Set data direction &	x'	x'	1	1	1	0	1	0	0	0	2-byte instruction to specify
display data length(DDL)	x'	x'	D7	D6	D5	D4	D3	D2	D1	D0	the number of data bytes. (SPI mode)
Select FRC and PWM mode	0	0	1	0	0	1	0	FRC	PWM1	PWM0	FRC(1:3FRC, 0:4FRC) PWM1 PWM0 0 0 9PWM 0 1 9PWM 1 0 12PWM 1 1 15PWM
NOP	0	0	1	1	1	0	0	0	1	1	No operation
Test Instruction	0	0	1	1	1	1	x'	x'	x'	x'	Don't use this instruction

Instruction	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Set white mode and 1st/2nd	0	0	1	0	0	0	1	0	0	0	Set white mode and 1st/2nd
rame, set pulse width	0	0	WB3	WB2	WB1	WB0	WA3	WA2	WA1	WA0	frame
Set white mode and 3st/4nd	0	0	1	0	0	0	1	0	0	1	Set white mode and 3 rd /4 th
rame, set pulse width	0	0	WD3	WD2	WD1	WD0	WC3	WC2	WC1	WC0	frame
Set light gray mode and 1 st /2 nd	0	0	1	0	0	0	1	0	1	0	Set light gray mode and
rame, set pulse width	0	0	LB3	LB2	LB1	LB0	LA3	LA2	LA1	LA0	1 st /2 nd frame
Set light gray mode and 3 st /4 nd	0	0	1	0	0	0	1	0	1	1	Set light gray mode and
rame, set pulse width	0	0	LD3	LD2	LD1	LD0	LC3	LC2	LC1	LC0	3 rd /4 th frame
Set drak gray mode and 1 st /2 nd	0	0	1	0	0	0	1	1	0	0	Set dark gray mode and
rame, set pulse width	0	0	DB3	DB2	DB1	DB0	DA3	DA2	DA1	DA0	1 st /2 nd frame
Set dark gray mode and 3 st /4 nd	0	0	1	0	0	0	1	1	0	1	Set dark gray mode and
rame, set pulse width	0	0	DD3	DD2	DD1	DD0	DC3	DC2	DC1	DC0	3 rd /4 th frame
Set dark mode and 1 st /2 nd	0	0	1	0	0	0	1	1	1	0	Set dark mode and 1st/2nd
rame, set pulse width		0	BB3	BB2	BB1	BB0	ВА3	BA2	BA1	BA0	frame
Set dark mode and 3 st /4 nd		0	1	0	0	0	1	1	1	1	Set white mode and 3 rd /4 th
rame, set pulse width	0	0	BB3	BD2	BD1	BD0	вс3	BC2	BC1	BC0	frame

Set Mode Register

2-byte instruction to set FR (Frame frequency control) and BE (Booster efficiency control)

The 1st Instruction

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	1	1	0	0	0

The 2nd Instruction

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	FR3	FR2	FR1	FR0	0	BE	x'	0

Frame frequency

This command is used to set the frame frequency.

FR ₃	FR ₂	FR₁	FR₀	FR frequency
0	0	0	0	77 Hz ±5%
0	0	0	1	51 Hz ±20%
0	0	1	0	55 Hz ±20%
0	0	1	1	58 Hz ±20%
0	1	0	0	63 Hz ±20%
0	1	0	1	67 Hz ±20%
0	1	1	0	68 Hz ±20%
0	1	1	1	70 Hz ±20%
1	0	0	0	73 Hz ±20%
1	0	0	1	75 Hz ±20%
1	0	1	0	80 Hz ±20%
1	0	1	1	85 Hz ±20%
1	1	0	0	91 Hz ±20%
1	1	0	1	102 Hz ±20%
1	1	1	0	113 Hz ±20%
1	1	1	1	123 Hz ±20%

Booster Efficiency

The ST7541 incorporates software configurable Booster Efficiency Command. It could be used with Voltage multiplier to get the suitable Vout and Power consumption. Default setting is Level 2.

Flag	Description	
DE	0	Booster Efficiency Level 1
BE	1	Booster Efficiency Level 2

Read Display Data

8-bit data from Display Data RAM specified by the column address and page address can be read by this instruction. As the column address is increased by 1 automatically after each this instruction, the microprocessor can continuously read data from the addressed page. A dummy read is required after loading an address into the column address register. Display Data cannot be read through the serial interface.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	Read data							

Write Display Data

8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written.

Figure 18 Sequence for Writing Display Data (Left) and Sequence for Reading Display Data (Right)

Read Status

Indicates the internal status of the ST7541

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	1	BUSY	ON/OFF	RES	MF2	MF1	MF0	DS1	DS0	

Flag	Description
BUSY	The device is busy when internal operation or reset. Any instruction is rejected until BUSY goes Low.
	0: chip is active, 1: chip is being busy
ON	Indicates display ON / OFF status
	0: display OFF, 1: display ON
RESET	Indicates the initialization is in progress by RESET signal.
	0: chip is active, 1: chip is being reset
MF	Manufacturer ID; recommended value: MF2 MF1 MF0 = [0 0 0]
	The value of MF2, MF1 and MF0 will follow the hardware selection.
DS	Display size ID; recommended value: DS1 DS0 = [1 0]
	The value of DS1 and DS2 will follow the hardware selection.

ICON Control Register ON/OFF

This instruction makes ICON enable or disable. By default, ICON display is disabled (ICON= 0). When ICON control register is set to "1", ICON display is enabled and page address is set to "16". Then user can write data for icons. It is impossible to set the page address to "16" by Set Page Address instruction. Therefore, when writing data for icons, ICON control register ON instruction would be used to set the page address to "16". When ICON control register is set to "0", ICON display is disabled.

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	0	1	ICON

ICON=0: ICON disable (default)

ICON=1: ICON enable & set the page address to 16

Set Page Address

Sets the Page Address of display data RAM from the microprocessor into the page address register. Any RAM data bit can be accessed when its Page Address and column address are specified. Along with the column address, the Page Address defines the address of the display RAM to write or read display data. Changing the Page Address doesn't affect the display status. Set Page Address instruction can not be used to set the page address to "16". Use ICON control register ON/OFF instruction to set the page address to "16".

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	1	P3	P2	P1	P0

P3	P2	P1	P0	Page
0	0	0	0	0
0	0	0	1	1
:	:	:	:	:
1	1	1	0	14
1	1	1	1	15

Set Column Address

Sets the Column Address of display RAM from the microprocessor into the column address register. Along with the Column Address, the Column Address defines the address of the display RAM to write or read display data.

When the microprocessor reads or writes display data to or from display RAM, Column Addresses are automatically increased.

Set Column Address MSB

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	0	Y7	Y6	Y5

Set Column Address LSB

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	0	0	Y4	Y3	Y2	Y1	

Y8	Y7	Y6	Y5	Y4	Y3	Y2	Column address
							[Y7:Y1]
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
:	:	:	:	:	:	:	:
1	1	1	1	1	1	0	126
1	1	1	1	1	1	1	127

Set Modify-Read

This instruction stops the automatic increment of the column address by the read display data instruction, but the column address is still increased by the write display data instruction. And it reduces the load of microprocessor when the data of a specific area is repeatedly changed during cursor blinking or others. This mode is canceled by the reset Modify-Read instruction.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	0	0

Reset Modify-Read

This instruction cancels the Modify-Read mode, and makes the column address return to its initial value just before the set Modify-Read instruction is started.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	1	1	1	0

Figure 19 Sequence for Cursor Display

Display ON / OFF

Turns the display ON or OFF.

This command has priority over Entire Display On/Off and Reverse Display On/Off. Commands are accepted while the display is off, but the visual state of the display does not change.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	1	1	DON

DON = 1: display ON

DON = 0: display OFF

Set Initial Display Line Register

Sets the line address of display RAM to determine the initial display line using 2-byte instruction. The RAM display data is displayed at the top of row(COM0) of LCD panel.

The 1st Instruction

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	0	0	X	х

The 2nd Instruction

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	х	S6	S5	S4	S3	S2	S1	S0
S6	S5	S4	S 3	S2	S1	S0	L	Line address	
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	1		1	
0	0	0	0	0	1	0		2	
0	0	0	0	0	1	1		3	
:	:	:	:	:	:	:		:	
1	1	1	1	1	0	0		124	
1	1	1	1	1	0	1	125		
1	1	1	1	1	1	0		126	
1	1	1	1	1	1	1		127	

Set Initial COM0 Register

Sets the initial row (COM) of the LCD panel using the 2-byte instruction. By using this instruction, it is possible to realize the window moving without the change of display data.

The 1st Instruction

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	0	1	Х	Х

The 2nd Instruction

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	Х	C6	C5	C4	C3	C2	C1	C0

C6	C5	C4	С3	C2	C1	C0	Initial COM0
0	0	0	0	0	0	0	COM0
0	0	0	0	0	0	1	COM1
0	0	0	0	0	1	0	COM2
0	0	0	0	0	1	1	COM3
:	:	:	:	:	:	:	:
1	1	1	1	1	0	0	COM124
1	1	1	1	1	0	1	COM125
1	1	1	1	1	1	0	COM126
1	1	1	1	1	1	1	COM127

Set Partial Display Duty Ratio

Sets the duty ratio within range of 16 to 128 (ICON disabled) or 17 to 129 (ICON enabled) to realize partial display by using the 2-byte instruction.

The 1st Instruction

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	1	0	х	х

The 2nd Instruction

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	D7	D6	D5	D4	D3	D2	D1	D0

								Selected partial	Selected partial
D7	D6	D5	D4	D3	D2	D1	D0	duty ratio	duty ratio
								(ICON disabled)	(ICON enabled)
0	0	0	0	0	0	0	0		
:	:	:	:	:	:	:	:	No operation	No operation
0	0	0	0	1	1	1	1		
0	0	0	1	0	0	0	0	1/16	1/17
0	0	0	1	0	0	0	1	1/17	1/18
:	:	:	:	:	:	:	:	:	:
0	1	1	0	0	1	0	0	1/100	1/101
:	:	:	:	:	:	:	:	:	:
0	1	1	1	1	1	1	1	1/127	1/128
1	0	0	0	0	0	0	0	1/128	1/129
1	0	0	0	0	0	0	1		
:	:	:	:	:	:	:	:	No Operation No Operati	
1	1	1	1	1	1	1	1		

Set N-line Inversion Register

Sets the inverted line number within range of 3 to 33 to improve the display quality by controlling the phase of the internal LCD AC signal (M) by using the 2-byte instruction.

The DC-bias problem could be occurred if K is even number. So, we recommend customers to set K to be odd number. K:D/N

D: The number of display duty ratio (D is selectable by customers)

N: N for N-line inversion (N is selectable by customers).

The 1st Instruction

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	1	1	х	х

The 2nd Instruction

	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Ī	0	0	х	х	х	0	0	0	0	0

N4	N3	N2	N1	N0	Selected n-line inversion
0	0	0	0	0	0-line inversion (frame inversion)
0	0	0	0	1	3-line inversion
0	0	0	1	0	4-line inversion
0	0	0	1	1	5-line inversion
:	:	:	:	:	:
1	1	1	0	1	31-line inversion
1	1	1	1	0	32-line inversion
1	1	1	1	1	33-line inversion

Release N-line Inversion

Returns to the frame inversion condition from the n-line inversion condition.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	1	0	0

Reverse Display ON / OFF

Reverses the display status on LCD panel without rewriting the contents of the display data RAM.

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	1	1	REV

REV	DDRAM data = "00"	DDRAM data = "01"	DDRAM data = "10"	DDRAM data = "11"
KEV	- White	– Light gray	– Dark gray	– Dark
0 (normal)	White ("00")	Light gray ("01")	Dark gray ("10")	Dark ("11")
1 (reverse)	Dark ("11")	Dark gray ("10")	Light gray ("01")	White ("00")

Entire Display ON / OFF

Forces the whole LCD points to be turned on regardless of the contents of the display data RAM. At this time, the contents of the display data RAM are held. This instruction has priority over the Reverse Display ON / OFF instruction.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	1	0	EON

Entire	DDRAM data = "00" - White	DDRAM data = "01" - Light gray	DDRAM data = "10" – Dark gray	DDRAM data = "11" – Dark
0 (normal)	White ("00")	Light gray ("01")	Dark gray ("10")	Dark ("11")
1 (Entire)	Dark ("11")	Dark gray ("11")	Light gray ("11")	White ("11")

Power Control

Selects one of eight power circuit functions by using 3-bit register. An external power supply and part of internal power supply functions can be used simultaneously.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	0	1	VC	VR	VF

vc	VR	VF	Status of internal power supply circuits	
0			Internal voltage converter circuit is OFF	
1			Internal voltage converter circuit is ON	
	0		Internal voltage regulator circuit is OFF	
	1		Internal voltage regulator circuit is ON	
		0	Internal voltage follower circuit is OFF	
		1	Internal voltage follower circuit is ON	

Set Bias Power Save Instruction

Consist of 2-byte Instructions

The 1st Instruction

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	1	0	0	1	1

The 2nd Instruction

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0

This command is for saving the IC current consumption by Bias Power Saving

After this Instruction is set, Bias function is also working

Release Bias Power Save Mode

Consist of 2-byte Instructions

The 1st Instruction

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	1	0	0	1	1

The 2nd Instruction

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	0	0

This command is for release Bias Power Save

Select DC-DC Step-up

Selects one of 4 DC-DC step-up to reduce the power consumption by this instruction. It is very useful to realize the partial display function.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	1	0	0	1	DC1	DC0

DC1	DC0	Selected DC-DC converter circuit
0	0	3 times boosting circuit
0	1	4 times boosting circuit
1	0	5 times boosting circuit
1	1	6 times boosting circuit

Select Regulator Resistor

Selects resistance ratio of the internal resistor used in the internal voltage regulator. See voltage regulator section in power supply circuit.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	0	0	R2	R1	R0

R2	R1	R0	1+ (Rb / Ra)
0	0	0	2.3
0	0	1	3.0
0	1	0	3.7
0	1	1	4.4
1	0	0	5.1
1	0	1	5.8
1	1	0	6.5
1	1	1	7.2

Set Electronic Volume Register

Consist of 2-byte Instructions

The 1st instruction set Reference Voltage mode, the 2nd one updates the contents of reference voltage register.

After second instruction, Reference Voltage mode is released.

The 1st Instruction: Set Reference Voltage Select Mode

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	0	0	0	0	1

The 2nd Instruction: Set Reference Voltage Register

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	х	х	EV5	EV4	EV3	EV2	EV1	EV0

EV5	EV4	EV3	EV2	EV1	EV0	Reference voltage parameter (a)
0	0	0	0	0	0	0
0	0	0	0	0	1	1
:	:	:	:	:	:	·
:	:	:	:	:	:	:
1	1	1	1	1	0	62
1	1	1	1	1	1	63

Select LCD Bias

Selects LCD bias ratio of the voltage required for driving the LCD.

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	1	0	B2	B1	В0

B2	B1	В0	LCD bias
0	0	0	1/5
0	0	1	1/6
0	1	0	1/7
0	1	1	1/8
1	0	0	1/9
1	0	1	1/10
1	1	0	1/11
1	1	1	1/12

SHL Select

COM output scanning direction is selected by this instruction which determines the LCD driver output status.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	0	0	SHL	X	X	X

SHL = 0: normal direction (COM0 → COM127)

SHL = 1: reverse direction (COM127 → COM0)

ADC Select

Changes the relationship between RAM column address and segment driver. The direction of segment driver output pins could be reversed by software. This makes IC layout flexible in LCD module assembly.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	0	0	ADC

ADC = 0: normal direction (SEG0 \rightarrow SEG127)

ADC = 1: reverse direction (SEG127 → SEG0)

Oscillator ON Start

This instruction enables the built-in oscillator circuit.

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	0	1	1

Power Save

The ST7541 enters the Power Save status to reduce the power consumption to the static power consumption value and returns to the normal operation status by the following instructions.

Set Power Save Mode

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	0	0	Р

P = 0: normal mode , P = 1: sleep mode

Release Power Save Mode

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	0	1

Reset

This instruction Resets initial display line, column address, page address, and common output status select to their initial status, but dose not affect the contents of display data RAM. This instruction cannot initialize the LCD power supply, which is initialized by the RESETB pin.

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	1	0

Set Data Direction & Display Data Length (3-Line SPI Mode)

Consists of 2 bytes instruction.

This command is used in 3-Line SPI mode only(PS0 = "L" and PS1 = "L"). It will be two continuous commands, the first byte control the data direction(write mode only) and inform the LCD driver the second byte will be number of data bytes will be write. When A0 is not used, the Display Data Length instruction is used to indicate that a specified number of display data bytes are to be transmitted. The next byte after the display data string is handled as command data.

The 1st Instruction: Set Data Direction (Only Write Mode)

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
х	X	1	1	1	0	1	0	0	0

The 2nd Instruction: Set Display Data Length (DDL) Register

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
х	х	D7	D6	D5	D4	D3	D2	D1	D0	

D7	D6	D5	D4	D3	D2	D1	D0	Display Data Length
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	1	0	3
:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	0	1	254
1	1	1	1	1	1	1	0	255
1	1	1	1	1	1	1	1	256

NOP

No operation

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	1	1

Test Instruction

This instruction is for testing IC. Please do not use it.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	1	х	X	X	x

Set PWM & FRC mode

Selects 3/4 FRC and 9 / 12 / 15 PWM

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	1	0	FRC	PWM1	PWM0

FRC	PWM1	PWM0	Status of PWM & FRC
0			4FRC
1			3FRC
	0	0	9PWM
	0	1	9PWM
	1	0	12PWM
	1	1	15PWM

Set Gray Scale Mode & Register

Consists of 2 bytes instruction. The first byte sets grayscale mode and the second byte updates the contents of gray scale register without issuing any other instruction.

- Set Gray Scale Mode

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	0	1	GM2	GM1	GM0

GM ₂	GM₁	GM₀	Description
0	0	0	In case of setting whit mode and 1 st / 2 nd frame
0	0	1	In case of setting whit mode and 3 rd / 4 th frame
0	1	0	In case of setting light gray mode and 1st / 2nd frame
0	1	1	In case of setting light gray mode and 3 rd / 4 th frame
1	0	0	In case of setting dark gray mode and 1 st / 2 nd frame
1	0	1	In case of setting dark gray mode and 3 rd / 4 th frame
1	1	0	In case of setting dark mode and 1 st / 2 nd frame
1	1	1	In case of setting dark mode and 3 rd / 4 th frame

--Set Gray Scale Register

Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	GB3	GB2	GB1	GB0	GA3	GA2	GA1	GA0
0	0	GD3	GD2	GD1	GD0	GC3	GC2	GC1	GC0

GA3, GB3, GC3, GD3		GA1, GB1, GC1, GD1	GA0, GB0, GC0, GD0	Pulse width (9 PWM)	Pulse width (12 PWM)	Pulse width (15 PWM)
0	0	0	0	0/9	0/12	0/15
0	0	0	1	1/9	1/12	1/15
:			:	:	• •	:
1	0	0	1	9/9	9/12	9/15
1	0	1	0	0/9	10/12	10/15
1	0	1	0	0/9	11/12	11/15
1	1	0	0	0/9	12/12	12/15
1	1	0	1	0/9	0/12	13/15
1	1	1	0	0/9	0/12	14/15
1	1	1	1	0/9	0/12	15/15

^{*} GA3=WA3, LA3, DA3, BA3 GA2=WA2, LA2, DA2, BA2 GA1=WA1, LA1, DA1, BA1 GA0=WA0, LA0, DA0, BA0 GB3=WB3, LB3, DB3, BB3 GA2=WB2, LB2, DB2, BB2 GA1=WB1, LB1, DB1, BB1 GA0=WB0, LB0, DB0, BB0 GC3=WC3, LC3, DC3, BC3 GA2=WC2, LC2, DC2, BC2 GA1=WC1, LC1, DC1, BC1 GA0=WC0, LC0, DC0, BC0 GD3=WD3, LD3, DD3, BD3 GA2=WD2, LD2, DD2, BD2 GA1=WD1, LD1, DD1, BD1 GA0=WD0, LD0, DD0, BD0

COMMAND DESCRIPTION

Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits

Figure 25 Initializing with the Built-in Power Supply Circuits

Referential Instruction Setup Flow: Initializing without the built-in Power Supply Circuits

Figure 26 Initializing without Built-in Power Supply Circuits

Referential Instruction Setup Flow: Data Displaying

Figure 27 Data Displaying

Referential Instruction Setup Flow: Power OFF

Figure 28 Power OFF

LIMITING VALUES

In accordance with the Absolute Maximum Rating System; see notes 1 and 2.

Parameter	Symbol	Conditions	Unit
Power Supply Voltage	VDD	-0.3 ~ +3.6	V
Power supply voltage	VDD2	1.7 ~ 3.3	V
Power supply voltage	V0	3.5 ~ 15	V
Power supply voltage	VOUT_IN	− 0.5 ~ + 20	V
Power supply voltage	V1, V2, V3, V4	0.3 to VOUT_IN	V
Input voltage	VIN	–0.5 to VDD+0.5	V
Output voltage	VO	-0.5 to VDD+0.5	V
Operating temperature	TOPR	–30 to +85	°C
Storage temperature	TSTR	–65 to +150	°C

Notes

- 1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
- Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.
- 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that

$$VOUT_IN \ \ge \ V0 \ \ge \ V1 \ \ge \ V2 \ \ge \ V3 \ \ge \ V4 \ \ge \ Vss$$

DC CHARACTERISTICS

 V_{DD} = 1.8 V to 3.3V; V_{SS} = 0 V; V_{LCD} = 3.5 to 15.0V; T_{amb} = -30°C to +85°C; unless otherwise specified.

Item		Symbol	Condition		Rating			Units	Applicable
nem		Symbol	Condition		Min.	Тур.	Max.	UTIILS	Pin
Operating V	oltage (1)	VDD			1.8	_	3.3	V	VDD*1
Operating V	oltage (2)	VDD2	(Relative t	o VSS)	2.4	_	3.3	٧	VDD2
High-level Ir	High-level Input Voltage				0.7 x VDD	_	VDD	V	*2
Low-level In	Low-level Input Voltage				vss		0.3 x VDD	V	*2
High-level Output Voltage		VOHC			0.7 x VDD	_	VDD	V	*3
Low-level O	utput Voltage	VOLC			vss	_	0.3 x VDD	V	*3
Input leakag	e current	ILI	VIN = VDD or VSS		-1.0	_	1.0	μ A	*4
Output leaka	age current	ILO	VIN = VDD or VSS		-3.0	_	3.0	μ A	*5
Liquid Cryst	al Driver ON	RON		VOUT_IN = 15.0 V	_	2.0	3.5	ΚΩ	SEGn
Resistance	Resistance			VOUT_IN = 8.0 V	_	3.2	5.4	-K12	COMn *6
	Internal Oscillator	fOSC				443.5	462.5	kHz	*7
Oscillator Frequency	External Input	fCL	1/128 duty	Ta = 25°C ' 9 PWM	_	88.7	92.5	kHz	osc
	Frame frequency	fFRAME			_	77	85	Hz	

	Item	Symbol	Condition		Rating		Units	Applicable Pin	
	item	Symbol	Condition	Min.	Тур.	Max.	Ullits	Applicable Fill	
	Input voltage	VDD	(Relative To VSS)	1.8	ı	3.3	V		
ver	Supply Step-up output	VOUT OUT	(Deletive Te VCC)			15	V	VOUT OUT	
Power	voltage Circuit	VOU1_001	(Relative To VSS)		_	15		VOU1_001	
Internal	Voltage regulator								
l ti	Circuit Operating	VOUT_IN	(Relative To VSS)	_	_	15	V	VOUT_IN	
	Voltage								

Bare Dice Consumption Current: During Display, with the Internal Power Supply, Current consumed by total ICs when an external power supply(VDD,VDD2) is used.

Test pattern	Symbol	Condition		Rating		Units	Notes	
rest pattern	Syllibol	Condition	Min.	Тур.	Max.	Ullits		
		VDD = 3.3 V,						
Display Pattern	ISS	V0 – VSS = 10.7 V			650	,, A	*8	
SNOW		5X booster	_	550	030	μ A	0	
		1/11 bias						
Power Down	ISS	Ta = 25°C	_	0.01	2	μ A	*9	

Notes to the DC characteristics

- 1. The maximum possible V_{OUT} voltage that may be generated is dependent on voltage, temperature and (display) load.
- 2. Internal clock
- 3. Power-down mode. During power down all static currents are switched off.
- 4. If external V_{LCD} , the display load current is not transmitted to I_{DD} .
- 5. V_{OUT} external voltage applied to VOUT IN pin; VOUT IN disconnected from VOUT OUT

References for items market with *

- *1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed.
- *2 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals.
- *3 The D0 to D7, and OSC terminals.
- *4 The A0,/RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals.
- *5 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state.
- *6 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range.
 - RON = 0.1 V Δ I (Where Δ I is the current that flows when 0.1 V is applied while the power supply is ON.)
- *7 The relationship between the oscillator frequency and the frame rate frequency.
- *8,9 It indicates the current consumed on IC alone when the internal oscillator circuit and display are turned on.

TIMING CHARACTERISTICS

System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)

(VDD = 3.3V , Ta =-30~85°C)

140.00	Ciamal	Cumah al	Condition	Rati	ing	Units
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8		0	_	
Address setup time	A0	tAW8		0	_	
System cycle time		tCYC8		240	_	
Enable L pulse width (WRITE)	WR	tCCLW		80	_	
Enable H pulse width (WRITE)	VVR	tCCHW		80	_	
Enable L pulse width (READ)	RD	tCCLR		140	_	ns
Enable H pulse width (READ)	, KD	tCCHR		80		
WRITE Data setup time		tDS8		40	_	
WRITE Data hold time	D0 to D7	tDH8		10	_	
READ access time	DU 10 D7	tACC8	CL = 100 pF	_	70	
READ Output disable time		tOH8	CL = 100 pF	5	50	

(VDD = 2.7 V , Ta =-30~85°C)

lto m	Cianal	Cumah al	Condition	Rat	ing	Units
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8		0	_	
Address setup time	A0	tAW8		0	_	
System cycle time		tCYC8		400	_	
Enable L pulse width (WRITE)	WR	tCCLW		220		
Enable H pulse width (WRITE)	VVIC	tCCHW		180	_	
Enable L pulse width (READ)	RD	tCCLR		220		ns
Enable H pulse width (READ)	KD.	tCCHR		180		
WRITE Data setup time		tDS8		40	_	
WRITE Data hold time	D0 to D7	tDH8		15	_	
READ access time	ען טו טען	tACC8	CL = 100 pF	_	140	
READ Output disable time		tOH8	CL = 100 pF	10	100	

 $(VDD = 1.8V , Ta = -30~85^{\circ}C)$

Item	Signal	Symbol	Condition	Rati	Rating	
item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8		0	_	
Address setup time	A0	tAW8		0	_	
System cycle time		tCYC8		640	_	
Enable L pulse width (WRITE)	WR	tCCLW		360	_	
Enable H pulse width (WRITE)	VVK	tCCHW		280	_	
Enable L pulse width (READ)	RD	tCCLR		360	_	ns
Enable H pulse width (READ)	KD.	tCCHR		280		
WRITE Data setup time		tDS8		80	_	
WRITE Data hold time	D0 to D7	tDH8		30	_	
READ access time	D0 to D7	tACC8	CL = 100 pF	_	240	
READ Output disable time		tOH8	CL = 100 pF	10	200	

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≤ (tCYC8 - tCCLW - tCCHW) for (tr + tf) ≤ (tCYC8 - tCCLR - tCCHR) are specified.

^{*2} All timing is specified using 20% and 80% of VDD as the reference.

^{*3} tCCLW and tCCLR are specified as the overlap between CSB being "L" and WR and RD being at the "L" level.

System Bus Read/Write Characteristics 1 (For the 6800 Series MPU)

Figure 30

(VDD = 3.3 V , Ta =-30~85°C)

140.00	0:	0	O a statistica sa	Rat	ing	Unito
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH6		0	_	
Address setup time	A0	tAW6		0	_	
System cycle time		tCYC6		240	_	
Enable L pulse width (WRITE)	WR	tEWLW		80	_	
Enable H pulse width (WRITE)	VVK	tEWHW		80	_	
Enable L pulse width (READ)	RD	tEWLR		80	_	ns
Enable H pulse width (READ)	, KD	tEWHR		140		
WRITE Data setup time		tDS6		40	_	
WRITE Data hold time	D0 to D7	tDH6		10	_	
READ access time	ן טוויטטן	tACC6	CL = 100 pF		70	
READ Output disable time		tOH6	CL = 100 pF	5	50	

(VDD = 2.7V , Ta =-30~85°C)

Item	Cianal	Cumb al	Condition	Rati	ing	TI •4
item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH6		0	_	
Address setup time	-	tAW6		0	_	
System cycle time		tCYC6		400	_	
Enable L pulse width (WRITE)	WR	tEWLW		220	_	
Enable H pulse width (WRITE)	VVK	tEWHW		180	_	
Enable L pulse width (READ)	RD	tEWLR		220	_	ns
Enable H pulse width (READ)	KD.	tEWHR		180	_	
WRITE Data setup time		tDS6		40	_	
WRITE Data hold time	D0 to D7	tDH6		15	_	
READ access time	ום 10 וטם ן	tACC6	CL = 100 pF		140	
READ Output disable time		tOH6	CL = 100 pF	10	100	

(VDD =1.8V , Ta =-30~85°C)

Item	Signal	Symbol	Condition	Rating		-Units
	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH6		0	_	
Address setup time	A0	tAW6		0		
System cycle time		tCYC6		640	_	
Enable L pulse width (WRITE)		tEWLW		360		
Enable H pulse width (WRITE)	WR	tEWHW		280	_	
Enable L pulse width (READ)	RD	tEWLR		360	_	ns
Enable H pulse width (READ)	IKD	tEWHR		280		
WRITE Data setup time		tDS6		80	_	
WRITE Data hold time	D0 to D7	tDH6		30	_	
READ access time	D0 to D7	tACC6	CL = 100 pF	_	240	
READ Output disable time		tOH6	CL = 100 pF	10	200	

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≤ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≤ (tCYC6 – tEWLR – tEWHR) are specified.

 $^{^{\}star}2$ All timing is specified using 20% and 80% of VDD as the reference.

^{*3} tEWLW and tEWLR are specified as the overlap between CSB being "L" and E.

SERIAL INTERFACE(4-Line Interface)

Figure 31

(V_{DD}=3.3V,Ta=-30~85°€)

Item	Signal	Cump of	cymbol Condition	Rating		Units
item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC		50	_	
SCL "H" pulse width	SCL	tSHW		25	_	
SCL "L" pulse width		tSLW		25	_	
Address setup time		tSAS		20	_	
Address hold time	A0	tSAH		10	_	ns
Data setup time	CI.	tSDS		20	_	
Data hold time	SI	tSDH		10	_	
CS-SCL time	CSB	tCSS		20	_	
CS-SCL time	CSB	tCSH		40	_	

(V_{DD}=2.7V,Ta=-30~85°€)

Item	Signal	Symbol	Symbol Condition	Rating		Units
item	Signal	Syllibol	Condition	Min.	Max.	Ullits
Serial Clock Period		tSCYC		100	_	ns
SCL "H" pulse width	SCL	tSHW		50	_	
SCL "L" pulse width		tSLW		50	_	
Address setup time	A0	tSAS		30	_	
Address hold time	Au	tSAH		20	_	
Data setup time		tSDS		30	_	
Data hold time	SI	tSDH		20	_	
CS-SCL time	CSB	tCSS		30	_	

CS-SCL time tCSH 60 —

(V_{DD} =1.8V,Ta=-30~85 $^{\circ}$ C)

Item	Cianal	Cumbal	Condition	Rating		Linita
item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC		200	_	
SCL "H" pulse width	SCL	tSHW		80	_	
SCL "L" pulse width		tSLW		80	_	
Address setup time		tSAS		60	_	
Address hold time	A0	tSAH		30	_	ns
Data setup time		tSDS		60	_	
Data hold time	SI	tSDH		30	_	
CS-SCL time		tCSS		40	_	
CS-SCL time	CSB	tCSH		100	_	

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

SERIAL INTERFACE(3-Line Interface)

Figure 32

 $(V_{DD}=3.3V,Ta=-30\sim85^{\circ}C)$

ltom	Signal	Cumbal	shal Canditian	Rat	Unito	
ltem	Signal	Symbol	Condition	Min.	Max. — — — — — — —	Units
Serial Clock Period		tSCYC		50	_	ns
SCL "H" pulse width	SCL	tSHW		25	_	
SCL "L" pulse width		tSLW		25	_	
Data setup time	01	tSDS		20	_	
Data hold time	SI	tSDH		10	_	
CS-SCL time	CSB	tCSS		20	_	

^{*2} All timing is specified using 20% and 80% of VDD as the standard.

CS-SCL time tCSH 40 —

(V_{DD}=2.7V,Ta=-30~85 $^{\circ}$ C)

Item	Signal	Symbol	Symbol Condition	Rating		- Units
item	Signal	Symbol	Condition	Min.	Max.	Ullits
Serial Clock Period		tSCYC		100	_	
SCL "H" pulse width	SCL	tSHW		50	_	
SCL "L" pulse width		tSLW		50	_	
Data setup time	SI	tSDS		30	_	ns
Data hold time		tSDH		20	_	
CS-SCL time		tCSS		30	_	
CS-SCL time	CSB	tCSH		60		

(V_{DD}=1.8V,Ta=-30~85 $^{\circ}$ C)

Item	Signal	Symbol	mbol Condition	Rating		Units
item	Signal	Syllibol	Condition	Min.	Max.	Ullits
Serial Clock Period		tSCYC		200	_	
SCL "H" pulse width	SCL	tSHW		80	_	
SCL "L" pulse width		tSLW		80	_	
Data setup time	SI	tSDS		60	_	ns
Data hold time		tSDH		30	_	
CS-SCL time	000	tCSS		40	_	
CS-SCL time	CSB	tCSH		100	_	

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

^{*2} All timing is specified using 20% and 80% of VDD as the standard.

SERIAL INTERFACE(IIC Interface)

(V_{DD}=3.3V,Ta=-30~85°€)

lán-m	Ciamal	Comple of	Condition	Ra	ting	Units
Item	Signal	Symbol	Condition	Min.	Max.	
SCL clock frequency	SCL	FSCLK		-	400	kHZ
SCL clock low period	SCL	TLOW		1.3	-	us
SCL clock high period	SCL	THIGH		0.6	-	us
Data set-up time	SI	TSU;Data		100	-	ns
Data hold time	SI	THD;Data		0	0.9	us
SCL,SDA rise time	SCL	TR		20+0.1Cb	300	ns
SCL,SDA fall time	SCL	TF		20+0.1Cb	300	ns
Capacitive load represented by each bus line		Cb		-	400	pF
Setup time for a repeated START condition	SI	TSU;SUA		0.6	-	us
Start condition hold time	SI	THD;STA		0.6	-	us
Setup time for STOP ondition		TSU;STO		0.6	-	us
Tolerable spike width on bus		TSW		-	50	ns
BUS free time between a STOP and StART condition	SCL	TBUF		1.3		us

RESET TIMING

Figure 33

$$(VDD = 3.3V , Ta = -30 to 85^{\circ}C)$$

Item	Cianal	Symbol	Condition		Rating	Units	
item	Signal	Symbol	Condition	Min.		Max.	UIIIIS
Reset time		tR			_	1	us
Reset "L" pulse width	RESB	tRW		1	1	_	us

(VDD =
$$2.7V$$
 , Ta = -30 to $85^{\circ}C$)

Item	Signal	Symbol	Condition		Rating	Units	
item		Syllibol	Condition	Min.	Тур.	Max.	Units
Reset time		tR		_	_	1.5	us
Reset "L" pulse width	RESB	tRW		1.5	_	_	us

(VDD =
$$1.8V$$
, Ta = -30 to $85^{\circ}C$)

Item	Signal	Symbol	Condition		Units		
item	Signal	Symbol	Contaition	Min.	Тур.	Max.	Ullits
Reset time		tR		_	_	2.0	us
Reset "L" pulse width	RESB	tRW		2.0	1		us

POWER PAD CONNECT

The pinning of the ST7541 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: 129 X 128 pixels.

The required minimum value for the external capacitors in an application with the ST7541 are: C_{VLCD} = min. 100nF $C_{VDD,2}$ = min. 1.0 μ F

Higher capacitor values are recommended for ripple reduction.

THE MPU INTERFACE (REFERENCE EXAMPLES)

The ST7541 Series can be connected to either 60X86 Series MPUs or to 6800 Swries MPUs. Moreover, using the serial interface it is possible to operate the ST7541 series chips with fewer signal lines.

The display area can be enlarged by using multiple ST7541 Series chips. When this is done, the chip select signal can be used to select the individual lcs to access.

(1) 8080 Series MPUs

(2) 6800 Series MPUs

(3) Using the Serial Interface (4-line interface)

(4) Using the Serial Interface (3-line interface)

(5) Using the Serial Interface (IIC interface)

APPLICATION Program Example

4-Gray programming example for ST7541

SETP	SERIAL BUS BYTE	DISPLAY	OPERATION
0	Start		CSB IS going low.
1	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Mode Set.
	0 0 0 1 1 1 0 0 0		FR[3:0] = 0000
	0 0 0 0 0 0 1 x' 0		BE= 1
2	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		OSC ON
	0 1 0 1 0 1 0 1 1		
3.a	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set DC-DC Step up
	0 0 1 1 0 0 1 DC1 DC0		Set Vout
3.b	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set Ra/Rb
	0 0 0 1 0 0 R2 R1 R0		Set R[2:0]
3.c	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set EV
	0 1 0 0 0 0 0 0 1		Set Ev[5:0]
	0 x' x' Ev5 Ev4 Ev3 Ev2 Ev1 Ev0		
3.d	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set Bias
	0 0 1 0 1 0 B2 B1 B0		Set B[2:0]
4.a	SET pulse width of Gray scale		Gray-Scale Setting
4.b	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Mode Set.
	0 0 0 1 1 1 0 0 0		
	0 0 0 0 0 1 x' 0		
5.a	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		SET Power Control
	0 0 0 1 0 1 1 1 1		Booster ON
			Regulator ON
			Follower ON
5.b	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Display control.
	0 1 0 1 0 1 1 1		Display on
6	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Data Write.
	1 0 0 1 0 0 1 1 0		Y,X are initialized to 0 by
	1 0 0 1 0 0 1 1 0		default, so they aren't set
			here
7	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Data Write.
	1 0 1 0 0 1 0 0 1		
	1 0 1 0 0 1 0 0 1		

8	Αſ	DB7	DB6	DB5	5 DB4	DB3	DB	DR1	DB0	Data Write.
	1	0	1	0	0	1	0	0	1	Data Willo.
	1		1	-	0	1	-	0	1	
		O	•	O	U		U	U	'	
9	ΑC	DB7	7 DB6	DB5	5 DB4	DB3	DB2	2 DB1	DB0	Data Write.
	1	0	1	0	0	1	0	0	1	
	1	0	1	0	0	1	0	0	1	
10	ΑC	DB7	DB6	DB5	5 DB4	DB3	DB2	2 DB1	DB0	Data Write.
	1	0	0	1	1	0	0	1	0	
	1	0	0	1	1	0	0	1	0	
11	ΑC	DB7	DB6	DB5	DB4	DB3	DB2	2 DB1	DB0	Data Write.
	1	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	
12	ΑC	DB7	DB6	DB5	5 DB4	DB3	DB2	2 DB1	DB0	Data Write.
	1	0	1	0	0	0	0	0	1	
	1	0	1	0	0	0	0	0	1	
13	ΑC	DB7	DB6	DB5	5 DB4	DB3	DB2	2 DB1	DB0	Data Write.
	1	0	1	1	1	1	1	1	1	
	1	0	1	1	1	1	1	1	1	
14	ΑC		DB6	DB5	5 DB4	DB3	DB2	2 DB1	DB0	Data Write.
	1	0	1	0	0	0	0	0	1	
	1	0	1	0	0	0	0	0	1	
15	ΑC	DB7		DB5	5 DB4	DB3	DB2	2 DB1	DB0	Display Control.
	0	1	0	1	0	0	1	1	1	Set Reverse display mode
										REV=1
16	ΑC		DB6		DB4	DB3	DB2	2 DB1	DB0	Set column address of RAM.
	0	0	0	0	1	0	0	0	0	Set address to "00000000".
	0	0	0	0	0	0	0	0	0	Y[7:0]=00000000
										(Y0 default is 0)

17	ΑŒ	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Data Write.
	1	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	

programming example for ST7541(Use IIC Interface)

SETP	SERIAL BUS BYTE	DISPLAY	OPERATION
1	IIC INTERFACE Start		
2	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Slave address for write
3	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 0 0		Control byte with cleared Co bit and A0 set to logic 0
4	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 0 0 0 0 1 0 x' 0		Mode Set. FR[3:0] = 0000 BE= 1
5	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 1 0 1 1		OSC ON
6.a	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 1 0 0 1 DC1 DC0		Set DC-DC Step up Set Vout
6.b	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 0 R2 R1 R0		Set Ra/Rb Set R[2:0]
6.c	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 0 0 1 x' x' Ev5 Ev4 Ev3 Ev2 Ev1 Ev0		Set EV Set Ev[5:0]
6.d	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 1 0 B2 B1 B0		Set Bias Set B[2:0]
7.a	SET pulse width of Gray scale		Gray-Scale Setting
7.b	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 0 0 0 0 0 1 x' 0		Mode Set.
8.a	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 1 1 1		SET Power Control Booster ON Regulator ON Follower ON
8.b	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 1 1 1 1		Display control. Display on
9	IIC INTERFACE Start		restart
10	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Slave address for write

	DB7 I	DD6 F	NDE I)D4 F	ארט ר	אם ר)D4 F	200	Control byta with alast Ca bit
11			0					0	Control byte with clear Co bit
		1		0			0	-	and A0 set to logic 1
				DB4					Data Write.
12	0	0	1	0	0	1	1	0	Y,X are initialized to 0 by
	0	0	1	0	0	1	1	0	default, so they aren't set
									here
				DB4					Data Write.
13	0	1	0	0	1	0	0	1	
	0	1	0	0	1	0	0	1	
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Data Write.
14	0	1	0	0	1	0	0	1	
''	0	1	0	0	1	0	0	1	
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Data Write.
15	0	1	0	0	1	0	0	1	
	0	1	0	0	1	0	0	1	
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Data Write.
16	0	0	1	1	0	0	1	0	
10	0	0	1	1	0	0	1	0	
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Data Write.
47	0	0	0	0	0	0	0	0	
17	0	0	0	0	0	0	0	0	
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Data Write.
	0	1	0	0	0	0	0	1	
18	0	1	0	0	0	0	0	1	
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Data Write.
	0	1	1	1	1	1	1	1	
19	0	1	1	1	1	1	1	1	

	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Data Write.
20	0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1	Data Write.
21	IIC INTERFACE start	restart
22	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Slave address for write
22	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Control byte with set Co bit
23	1 0 0 0 0 0 0	and A0 set to logic 0
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Display Control.
0.4	1 0 1 0 0 1 1 1	Set Reverse display mode
24		REV=1
0.5	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Control byte with set Co bit
25	1 0 0 0 0 0 0	and A0 set to logic 0
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Set column address of RAM.
	0 0 0 1 0 0 0 0	Set address to "00000000".
26		Y[7:0]=0000000
		(Y0 default is 00)
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Control byte with set Co bit
27	1 1 0 0 0 0 0	and A0 set to logic 1
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Data Write.
	0 0 0 0 0 0 0	
28		
29	IIC INTERFACE start	restart
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Slave address for write
30		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Control byte with set Co bit
31	1 0 0 0 0 0 0	and A0 set to logic 0
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Set X address of RAM.
	1 0 0 0 0 0 0	Set address to "0000000".
32		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Control byte with cleared Co
33	1 0 0 0 0 0 0	bit and A0 set to logic 0

ST7541 APPICATION NOTE

ST7541

Internal analog circuit Resolution: 129(128COM+ICOM)*128(SEG) Interface:8080 series OSC1:External for input (the same pin shoud be connected together, for example,pin246(D0) connect to pin247(D0) exclude power pin)

PS0:VDD PS1:VSS PS2:VSS TA:VSS TB:VSS REF:VDD INTRS:VDD VR:OPEN VEXT:OPEN T0~T9:OPEN MF[2:0]:VDD OR VSS=(0,0,0) DS[1:0]:VDD OR VSS=(0,0) (MF[2:0]&DS[1:0] is ID of this

these pins cannot be left open)

VR:OPEN Internal analog circuit PS0:VSS Resolution: 129(128COM+ICOM)*128(SEG) PS1:VDD **VEXT:OPEN**

Interface: 4 SPI PS2:VSS T0~T9:OPEN OSC1:External for input TA:VSS MF[2:0]:VDD OR VSS=(0,0,0)

(if use internal oscillator, OSC1 must be fixed to VDD) DS[1:0]:VDD OR VSS=(0,0) TB:VSS (the same pin shoud be connected together, REF:VDD (MF[2:0]&DS[1:0] is ID of this IC, these pins cannot be left open)

for example,pin246(D0) connect to pin247(D0)) **INTRS:VDD**

C=1uF

Internal analog circuit Resolution: 129(128COM+ICOM)*128(SEG) Interface: I2C

OSC1:External for input

(the same pin shoud be connected together, for example,pin246(D0) connect to pin247(D0)

exclude power pin)

SA[1:0]:VDD OR VSS=(0,0)

(SA[1:0] are Slave address of I2C)

PS0:VSS PS1:VSS PS2:VDD TA:VSS TB:VSS

REF:VDD

INTRS:VDD

VR:OPEN VEXT:OPEN T0~T9:OPEN

MF[2:0]:VDD OR VSS=(0,0,0) DS[1:0]:VDD OR VSS=(0,0) (MF[2:0]&DS[1:0] is ID of this IC,

these pins cannot be left open)

C=1uF; R=10K歐姆

Internal analog circuit
Resolution: 129(128COM+ICOM)*128(SEG)
Interface: 3 SPI

OSC1:External for input

(the same pin shoud be connected together, for example,pin246(D0) connect to pin247(D0)

exclude power pin)

PS0:VSS PS1:VDD PS2:VSS TA:VSS TB:VSS REF:VDD

INTRS:VDD

VR:OPEN VEXT:OPEN T0~T9:OPEN MF[2:0]:VDD OR VSS=(0,0,0) DS[1:0]:VDD OR VSS=(0,0) (MF[2:0]&DS[1:0] is ID of this IC, these pins cannot be left open)

C=1uF

