A routine pivot on the indicated number leads to Tableau 3 (after entering X1. exiting x3):

About the f-ratio test, given Tableau P

$$\begin{array}{c|c} xi & \\ \hline a, & b, \ge 0 \\ \vdots & \vdots \\ \hline a_i & b_i \ge 0 \\ \vdots & \vdots \\ \hline a_m & b_m \ge 0 \end{array}$$

Here, x_i will enter, and $\hat{\alpha}_i$ is the pivot $(a_i \neq 0)$. If $a_i < 0$ next tableau will be feasible if and only if $b_i = 0$. (For x_i will enter with value $\frac{b_i}{a_i} < 0$ (if $b_i > 0$)

If ai >0, the next tableau will be Tableau (+1)

	Nj	1
	0	b, -a, (a; bi)
	0	ài di ←ai b
i th row	1	:
→ %j	<u>,</u>	Ь _т -ама; ТЬ)
	3	

Given k in 1.2.3..., m with $k \neq i$, b_k has been replaced with $b_k - a_k(\underbrace{a_i^*b_i}) \geq b_k \geq 0$ if $a_k = 0$ if $a_k > a_k (a_i^{-1}b) = a_k (a_k^{-1}b_k - a_i^{-1}b_i)$ a difference between f - ratios

and will be positive for all R provided at bi is < any f-ratio having a positiver denominator.

Eg Tableau 3 represents:

(cartined)

() A system of equations

@A basic feasible solution

3 The problem

Maximize
$$Z = \frac{-13}{7} \chi_3 + \frac{3}{7} \chi_5 + 33$$
 (from the objective row)
S.t. $\frac{2}{7} \chi_3 - \frac{5}{7} \chi_5 \leq 4$
 $-\frac{1}{7} \chi_3 + \frac{4}{7} \chi_5 \leq 6$
 $\frac{1}{7} \chi_3 + \frac{1}{7} \chi_5 \leq 3$
 $\chi_3 \geq 0$, $\chi_5 \geq 0$