Minimalne ploskve in Björlingov problem

Lucija Fekonja Mentor: Doc. dr. Uroš Kuzman

Fakulteta za matematiko in fiziko Oddelek za matematiko

30. maj 2023

Minimalna ploskev

Definicija

Ploskev $M \subset \mathbb{R}^3$ je minimalna ploskev, če in samo če obstaja okolica vsake točke $p \in M$, omejena s sklenjeno krivuljo, ki ima najmanjšo površino med vsemi ploskvami z isto omejitvijo.

Minimalna ploskev

Definicija

Ploskev $M \subset \mathbb{R}^3$ je minimalna ploskev, če in samo če obstaja okolica vsake točke $p \in M$, omejena s sklenjeno krivuljo, ki ima najmanjšo površino med vsemi ploskvami z isto omejitvijo.

Definicija

Ploskev se imenuje minimalna ploskev, če je njena srednja ukrivljenost enaka nič.

Catalanova minimalna ploskev

$$\phi(u,v) = (1 - \cos(u)\cosh(v), 4\sin(u/2)\sinh(v/2), u - \sin(u)\cosh(v))$$

Slika: Catalanova minimalna ploskev

Björlingov problem

Naj velja:

$$lpha:I\mapsto\mathbb{R}^3$$
realno analitična krivulja
$$\eta:I\mapsto\mathbb{R}^3$$
realno analitično vektorsko polje
$$|\eta(t)|=1$$
 $\eta(t)\cdotlpha'(t)=0$

Najdi parametrizacijo minimalne ploskve $\phi(u, v)$, za katero velja:

- Ploskev naj vsebuje krivuljo α pri v = 0. To pomeni, $\forall u \in I. \alpha(u) = \phi(u, 0)$.
- ② Normale na ploskev se naj vzdolž celotne krivulje α ujemajo z vektorji vektorskega polja η : $\forall u \in I. \eta(u) = N(u, 0)$.

Rešitev Björlingovega problema

$$\phi(u,v) = Re\left(\alpha(z) - i\int_{z_0}^z \eta(w) \times \alpha'(w)dw\right)$$

Princip identičnosti

Izrek

Naj bosta f in g holomorfni funkciji na povezanem odprtem območju $D \subseteq \mathbb{C}$ (ali \mathbb{R}). Če ima $S \subseteq D$ stekališče, potem je f = g na D.

Izotermna parametrizacija

Izotermna parametrizacija

Lema

 ϕ ima izotermne koordinate natanko tedaj, ko velja $(\phi')^2 = 0$.

Izotermna parametrizacija

Lema

 ϕ ima izotermne koordinate natanko tedaj, ko velja $(\phi')^2 = 0$.

Lema

Ploskev M z izotermno parametrizacijo $\phi = (\phi^1, \phi^2, \phi^3)$ je minimalna natanko tedaj, ko so ϕ^1, ϕ^2 in ϕ^3 harmonične.

Dokaz rešitve Björlingovega problema

$$\phi(u, v) = Re\left(\alpha(z) - i \int_{z_0}^z \eta(w) \times \alpha'(w) dw\right)$$

Konstrukcija minimalne ploskve

Krivulja:
$$\alpha(u) = (\beta(u), 0, \gamma(u))$$

Normale: $N = \frac{(-\gamma', 0, \beta')}{\sqrt{(\beta')^2 + (\gamma')^2}}$

Izračunamo vektorski produkt $N \times \alpha' = \left(0, \sqrt{(\beta')^2 + (\gamma')^2}, 0\right)$ Rešitev problema je torej:

$$\operatorname{Re}\left(lpha-i\int\operatorname{N} imeslpha'
ight)=\left(\operatorname{Re}eta,\operatorname{Im}\int\sqrt{(eta')^2+(\gamma')^2},\operatorname{Re}\gamma
ight)$$

Catalanova minimalna ploskev

$$\phi(u,v) = (1 - \cos(u)\cosh(v), 4\sin(u/2)\sinh(v/2), u - \sin(u)\cosh(v))$$

Slika: Catalanova minimalna ploskev