Apellidos:	Grupo:
Nombre:	NIF:

ALEM

Grado en Ingeniería Informática

7 de noviembre 2017

- 1. Responde brevemente las siguientes cuestiones:
 - a) Sea x el número cuya representación en complemento a 2 es 110101101010. ¿Qué número es x?
 - b) ¿Cuántos divisores positivos tienen los números: 1800, $5^3 \cdot 6^2 \cdot 8^4$, 11!?
 - c) ¿Cuántas unidades hay en \mathbb{Z}_{117} ?
 - d) ¿Es cierto que $4^{36} = 1$ en \mathbb{Z}_{73} ?

Solución:

- a) Vemos en primer lugar que el número x es negativo, pues su primera cifra es 1. Tenemos entonces dos formas de calcular x:
 - Escribimos -x en complemento a 2, en cuyo caso tendremos la representación binaria de -x, y a partir de ahí obtenemos su expresión decimal:

$$110101101010 \longrightarrow 001010010101 \longrightarrow 001010010110$$

Y ahora vemos que $-x = 2^9 + 2^7 + 2^4 + 2^2 + 2 = 512 + 128 + 16 + 4 + 2 = 662$, luego x = -662.

• Pasando directamente a decimal:

$$x = -2^{11} + 2^{10} + 2^8 + 2^6 + 2^5 + 2^3 + 2 = -2048 + 1024 + 256 + 64 + 32 + 8 + 2 = -662.$$

Notemos que al tener la última cifra repetida podemos quitarla, con lo que la expresión en complemento a 2 de x podría ser también 10101101010, y al pasarla a decimal nos quedaría -1024 + 256 + 64 + 32 + 8 + 2 = -662.

- b) Factorizamos cada uno de los números como producto de primos, y a partir de ahí obtenemos el número de divisores:
 - $1800 = 2^3 \cdot 3^2 \cdot 5^2$. El número de divisores positivos es (3+1)(2+1)(2+1) = 36.
 - $5^3 \cdot 6^2 \cdot 8^4 = 5^3 \cdot (2 \cdot 3)^2 \cdot (2^3)^4 = 5^3 \cdot 2^2 \cdot 3^2 \cdot 2^{12} = 2^{14} \cdot 3^2 \cdot 5^3$, que tiene $15 \cdot 3 \cdot 4 = 180$ divisores.
 - $11! = 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11$, que tiene $9 \cdot 5 \cdot 3 \cdot 2 \cdot 2 = 540$ divisores.
- c) El número de unidades de \mathbb{Z}_{117} es $\varphi(117)$. Como $117=3^2\cdot 13$, $\varphi(117)=\varphi(3^2)\cdot \varphi(13)=(3^2-3)(13-1)=6\cdot 12=72$.
- d) Tenemos que $4^{36} = (2^2)^{36} = 2^{72}$. Al ser 73 un número primo, por el teorema de Fermat sabemos que $2^{73-1} = 2^{72} = 1$ en \mathbb{Z}_{73} . La respuesta es entonces que sí.

2. Calcula todas las soluciones positivas menores que 20000 del sistema de congruencias

$$45x \equiv 59 \mod 77$$

 $29x \equiv 43 \mod 70$
 $33x \equiv 27 \mod 78$

Solución:

En primer lugar resolvemos el sistema de congruencias:

45 — 50 4 J 77	20 42 44 70	22 274 70
$45x \equiv 59 \mod 77$	$29x \equiv 43 \mod 70$	$33x \equiv 27 \mod 78$
$45 \cdot 12x \equiv 59 \cdot 12 \mod 77$	$29(15 + 77k) \equiv 43 \mod{70}$	$33(477 + 770k') \equiv 27 \mod 78$
$x \equiv 708 \mod 77$	$435 + 2233k \equiv 43 \mod 70$	$15741 + 25410k' \equiv 27 \mod 78$
$x \equiv 15 \mod 77$	$15 + 63k \equiv 43 \mod 70$	$63 + 60k' \equiv 27 \mod 78$
x = 15 + 77k	$63k \equiv 28 \mod 70$	$60k' \equiv -36 \mod 78$
	$9k \equiv 4 \mod 10$	$60k' \equiv 42 \mod 78$
	$9 \cdot 9k \equiv 4 \cdot 9 \mod 10$	$10k' \equiv 7 \mod 13$
	$k \equiv 6 \mod 10$	$10 \cdot 4k' \equiv 7 \cdot 4 \mod 13$
	k = 6 + 10k'	$k' \equiv 2 \mod 13$
	x = 15 + 77(6 + 10k')	k' = 2 + 13k''
	x = 477 + 770k'	x = 477 + 770(2 + 13k'')
		x = 2017 + 10010k''

A continuación detallamos algunos de los cálculos realizados:

■ Puesto que mcd(45,77) = 1 la congruencia $45x \equiv 59 \mod 77$ tiene solución.

■ Necesitamos el inverso de 45 módulo 77.

77		0		77		0	
45		1		45		1	
32	1	<i>V</i> ₁	$v_1 = 0 - 1 \cdot 1 = -1$	32	1	-1	Luego $45^{-1} = 12$
13	1	<i>V</i> ₂	$v_2 = 1 - 1 \cdot (-1) = 2$	13	1	2	Luego 45 — 12
6	2	<i>V</i> 3	$v_3 = -1 - 2 \cdot 2 = -5$	6	2	-5	
1	2	<i>V</i> 4	$v_4 = 2 - 2 \cdot (-5) = 12$	1	2	12	

- mcd(63,70) = 7, y 28 es múltiplo de 7. Por tanto, la congruencia $63k \equiv 28 \mod 70$ tiene solución, y para resolverla se divide todo por 7.
- El inverso de 9 módulo 10 vale 1.
- mcd(60,78) = 6. Puesto que 42 es múltiplo de 6, la congruencia $60k' \equiv 42 \mod 78$ tiene solución.
- Calculamos 10⁻¹ módulo 13.

13		0		13		0	
10		1		10		1	Luego $10^{-1} = 4$
3	1	<i>v</i> ₁	$v_1 = 0 - 1 \cdot 1 = -1$	3	1	-1	Luego 10 = 4
1	3	<i>V</i> ₂	$v_2 = 1 - 3 \cdot (-1) = 4$	1	3	4	

La solución del sistema de congruencias es x = 2017 + 10010k'. Como buscamos soluciones entre 0 y 20000, acotamos los valores de k''.

Es decir, k'' = 0, 1, lo que nos da las soluciones x = 2017 y x = 12027.

- 3. Sea $A = \mathbb{Z}_3[x]_{x^3+2x^2+x+1}$.
 - a) ¿Cuántos elementos tiene A?
 - b) ¿Es A un cuerpo?
 - c) Encuentra, si es posible, un elemento $\alpha \in A$ tal que

$$(\alpha + x^2 + 1)(x^2 + x) = \alpha(2x^2 + 2x + 2).$$

Solución:

a) El número de elementos de A es $3^3 = 27$. Estos 27 elementos son:

0
$$x$$
 2 x x^2 $x^2 + x$ $x^2 + 2x$ 2 x^2 2 $x^2 + x$ 2 $x^2 + 2x$
1 $x + 1$ 2 $x + 1$ $x^2 + 1$ $x^2 + x + 1$ $x^2 + 2x + 1$ 2 $x^2 + x + 1$ 2 $x^2 + x + 1$ 2 $x^2 + 2x + 1$
2 $x + 2$ 2 $x + 2$ 2 $x^2 + 2$ 2 $x^2 + x + 2$ 2 $x^2 + 2x + 2$ 2 $x^2 + x + 2$ 2 $x^2 + 2x + 2$

b) Para que A sea un cuerpo, todos los elementos anteriores, salvo 0, deben tener inverso. Esto ocurre si el polinomio $m(x) = x^3 + 2x^2 + x + 1$ es irreducible.

Al ser m(x) un polinomio de grado 3, para comprobar si es o no irreducible basta comprobar si tiene o no raíces. Tenemos que m(0) = 1, m(1) = 5 = 2, m(2) = 19 = 1. Vemos entonces que m(x) no tiene raíces luego es irreducible. En tal caso, A es un cuerpo.

c) Tenemos que resolver una ecuación donde la incógnita es α . Vemos que esta ecuación es de grado 1. Despejamos entonces α .

$$(\alpha + x^{2} + 1)(x^{2} + x) = \alpha(2x^{2} + 2x + 2).$$

$$\alpha(x^{2} + x) + (x^{2} + 1)(x^{2} + x) = \alpha(2x^{2} + 2x + 2).$$

$$\alpha(x^{2} + x) - \alpha(2x^{2} + 2x + 2) = -(x^{2} + 1)(x^{2} + x).$$

$$\alpha(x^{2} + x - 2x^{2} - 2x - 2) = -(x^{4} + x^{3} + x^{2} + x).$$

$$\alpha(2x^{2} + 2x + 1) = 2x^{4} + 2x^{3} + 2x^{2} + 2x.$$

$$\alpha(2x^{2} + 2x + 1) = x^{2} + 2x + 2.$$

$$\alpha(2x^{2} + 2x + 2) \cdot (2x^{2} + 2x + 1)^{-1}.$$

En un momento de estos cálculos hemos sustituido $2x^4 + 2x^3 + 2x^2 + 2x$ por $x^2 + 2x + 2$. Esto es así, ya que en A ambos elementos son iguales, como nos lo pone de manifiesto la siguiente división:

División de $2x^2 + 2x + 1$ entre x + 2

 $r_2(x) = 2$

Calculamos ahora el inverso de $2x^2 + 2x + 1$.

División de $x^3 + 2x^2 + x + 1$ entre $2x^2 + 2x + 1$

$$\begin{array}{c|ccccc}
 & 2 & 1 & 2 & 1 & 1 \\
 & 2 & 1 & 1 & 1 \\
 & 1 & 2 & 2 & 1 \\
 & | 1 & 1 & 1 & 2 & 1 \\
 & c_1(x) = 2 \cdot (x+1) = 2x+2 & c_2(x) = 2x+1
\end{array}$$

Con estas divisiones, calculamos $(2x^2 + 2x + 1)^{-1}$.

$x^3 + 2x^2 + x + 1$		0	
$2x^2 + 2x + 1$		1	
x + 2	2x + 2	x + 1	(
2	2x + 1	x^2	
1		$2x^{2}$	

$$0 - 1 \cdot (2x + 2) = x + 1$$

1 - (2x + 1) \cdot (x + 1) = 1 - (2x^2 + 1) = x^2

Y ya tenemos que $(2x^2+2x+1)=2x^2$, luego $\alpha=(x^2+2x+2)\cdot 2x^2=2x^4+x^3+x^2=2x^2+x$. Este último resultado se obtiene de la división:

- 4. Sean $p(x) = x^5 + 2x^3 + x + 4$ y $q(x) = x^4 + 3x^2 + 2x + 2$ dos polinomios con coeficientes en \mathbb{Z}_5 .
 - a) Calcula mcd(p(x), q(x)).
 - b) Factoriza p(x) como producto de irreducibles.

Solución:

a) Para calcular el máximo común divisor de los dos polinomios nos valemos del algoritmo de Euclides. Realizamos las correspondientes divisiones:

$$p_{1}(x) = x^{5} + 2x^{3} + x + 4$$

$$q_{1}(x) = x^{4} + 3x^{2} + 2x + 2$$

$$q_{2}(x) = x^{4} + 3x^{2} + 4x + 4$$

$$p_{2}(x) = x^{2} + 3x^{2} + 4x + 4$$

$$p_{3}(x) = 4x^{3} + 3x^{2} + 4x + 4$$

$$q_{2}(x) = x^{2} + 3x + 4$$

$$q_{3}(x) = x^{2} + 3x + 4$$

Puesto que el último resto no nulo es $x^2 + 3x + 4$, y éste es un polinomio mónico tenemos que $mcd(p(x), q(x)) = x^2 + 3x + 4$.

b) Para factorizar p(x), y puesto que $x^2 + 3x + 4$ es un divisor suyo, dividimos p(x) entre $x^2 + 3x + 4$.

Y ahora factorizamos $p_1(x) = x^2 + 3x + 4$ y $p_2(x) = x^3 + 2x^2 + 2x + 1$. Puesto que son de grados 2 y 3 respectivamente, únicamente hemos ver si tienen o no raíces.

- $p_1(0) = 4$, $p_1(1) = 8 = 3$, $p_1(2) = 14 = 4$, $p_1(3) = 22 = 2$, $p_1(4) = 32 = 2$. Vemos que $p_1(x)$ no tiene raíces, luego es irreducible.
- $p_2(0) = 1$, $p_2(1) = 6 = 1$, $p_2(2) = 21 = 1$, $p_2(3) = 52 = 2$, $p_2(4) = 105 = 0$. Como 4 es raíz de $p_2(x)$, lo dividimos por x 4 = x + 1.

De donde $p_2(x) = (x+1) \cdot (x^2 + x + 1)$. Este último polinomio podemos ver fácilmente que es irreducible (pues x = 4 no es raíz).

Finalmente, tenemos la factorización de p(x):

$$p(x) = (x + 1) \cdot (x^2 + x + 1) \cdot (x^2 + 3x + 4).$$