

A Voice User Interface for football event tagging applications

Sivio Barra¹, Alessandro Carcangiu², Salvatore Carta³, **Alessandro Sebastian Podda**³ and Daniele Riboni³

¹DIETI, University of Naples 'Federico II', 80138 Naples, Italy
²FootureLab, 07100 Sassari, Italy
³Department of Mathematics and Computer Science, University of Cagliari, 09124 Cagliari, Italy

Abstract

- Manual event tagging may be a very long and stressful activity, due the monotonous operations involved;
- For online video tagging, as for football matches, events to tag often consist of many thousands of actions;
- To overcome these issues, we enhanced the GUI of a football match tagging application, and **integrated it with a VUI**;
- Empirical tests revealed the efficiency and the benefits brought by our solution, with reduced tagging time and error rate.

Introduction

Graphic User Interfaces (GUI) have drastically improved the interactions between users and machines, so becoming a *must* for almost the totality of the developed software applications. Albeit some of them are extremely customised on the typology of the interacting users [1], they still present some drawbacks:

- individuals with physical disabilities may find it difficult to access a classic GUI application designed (as in the specific case) for a standard usage with mouse and keyboard [2];
- protracted and repetitive actions may be demotivating and stressful for the users, causing them to make mistakes [3];

In this poster, we describe a voice user interface integrated into a GUI, specifically enhanced to handle specific interaction patterns which can be harder to address, aiming at fastening and improving usability in tagging events in football matches: the application has been called **FooTAPP** (Football event Tagging Applications).

Football Match Event Tagging

Football event tagging aims at labelling all the events happening in a football match and involves:

- production of a **detailed report** about the movements of each player (acting in its own role as defender, midfielder, etc.) during the match;
- collection of **team dynamics**, to analyze forwarding and defending tactic movements;
- labelling a single action under two different points of view: (i) single player actions, expressed as tag combinations (e.g., MIDFIELDER > KILLER PASS > POSITIVE), and (ii) team actions (actions which involve more players, e.g. COUNTERATTACK);
- in addition to active plays (i.e., those whose object is the ball), there are a plenty of **passive plays** which need to be labelled, to properly track the team dynamics (eg., man-to-man/zone marking).

The FooTApp enhanced GUI

Since a football match lasts ninety minutes (excluding extra times), the entire tagging activities can take up to ~ 8 hours for, on average, **about 2,000 events**. The aim of the integrated VUI interface is then that of reducing the time needed for event tagging, reached by applying a **voice interface**, so to fasten up the tagging process, and by adapting the original GUI with **combined mode** (voice plus touch). The FooTAPP GUI is organized as shown in the figure above:

- the TOP LEFT BLOCK (in red), that features a video player, to reproduce the march; directional arrows ease the forward and backward skips of the video;
- the BOTTOM LEFT BLOCK (in cyan), which shows a virtual field in which the team lineups and shape are shown, with clickable player buttons;
- the TOP RIGHT BLOCK (in orange), which contains a summary of the tag combination records;
- the FIRST MIDDLE RIGHT BLOCK (in pink), with the voice interface that automatically activates when the user casts a command;
- the SECOND MIDDLE RIGHT BLOCK (in green), that shows the keyboard which activates as the user selects a player from the virtual field or spells his number (first level tags);
- the POPUP BLOCK (in yellow), that appears when a main event is activated, and provides second/third level options.

VUI Integration

The voice user interface has been developed by using the **Web Speech API** [4], which defines a complex interface (*SpeechRecognition*), providing a set of methods for transforming speech into text. A high-level overview of the implemented VUI structure is shown in the above figure.

Empirical Tests

From preliminary empirical tests, we noticed that total migration to a VUI would have partially obtained the expected benefits (actually, an average reduction of the 13% of the tagging time).

We adapted the original interface to optimize the use of a combined tagging mode (voice and touch), resulting in an average reduction of the 28% of the time (~ 2 hours for each full tagged match). This happens since both:

- 1. the processing time of too long voice commands (which, despite the robustness of the exploited API, can last two or more seconds), could negatively impact on the global time saving;
- 2. some tagging patterns still result quicker in the manual mode, whereas other tagging practices can obtain real benefits from the voice interface.

References

[1] Kurtenbach G. P. Graphical user interface for defining and invoking user-customized tool shelf execution sequence. U.S. Patent No. 5,867,163. 2 Feb. 1999.

[2] Wagner A., and Gray J. An empirical evaluation of a vocal user interface for programming by voice.
International Journal of Information Technologies and Systems Approach (IJITSA) 8.2 (2015): 47-63.
[3] Bouguettaya A., Yu Q., Liu X., Zhou X., Song,

[3] Bouguettaya A., Yu Q., Liu X., Zhou X., Song, A. Efficient agglomerative hierarchical clustering. Expert Systems with Applications, 42(5), 2785-2797.

[4] Adorf J. Web speech API. KTH Royal Institute of Technol.