	Sahl Da	y ground Free	th & She	diction	Confrusion Matrix						
	1	Shower Clear Shower	Sha	ver					FN		
TAKE THE PROPERTY OF THE PROPE	3 4 5	5	S. S.	in an arms	74	(F	3 S)	C	2 TN		
	1	SCC	S. C.		Accu	roc	y =	6 10	20	.60	
	9 10	C	S		3 reci			1			
2)	Secall = 44 5 Sable 2 × 4 × 4							- = 1	1 2	2	
							+ 4 220.6667				
	-	<u>S</u>	\$ 0.95 \$ 0.85	2.03 ≥ 0.4 ≥ 0.5	_		IN	-		F3R	
		S	0.66	≥ 0.5 ≥ 0.6	1111	11 HT	lat =	1	0.8	0.4	-
	5 (C S	0.55	≥ 0.7			\ 411	111	0.4	0.2 0.2	
	8	C	10.53 10.53	≥0.q ≥0.q		2 2 2	ur ur		0.2	0	
	10	S	0.4			Flag		*	- 1 A	-	

FPR	TRF)
	1	1
	1	1
	1	0.8
	0.4	0.6
	0.2	0.4
	0.2	0.2
	0	0.2
	0	0

Diffuence of RMSe = 10.00890 - 10.01326

pood gooded_sd= \(\frac{(10-1)\times (0.1055) + (10-1)\times (0.1287)}{10210-2} \)

10410-2 A A + 9 Lawrence
(3) Residuals for RI Residuals borRZ 1 d
2 0.12 0.10 0.02
5 -0.08 1800 0.05 -0.12 0.09 0.05
7 -000 0.13 0.13 -0.23
9 -0.0 PHIC O O.11 PROCEO.19
d=0.077
Sh = 1 2 (di-d)2/2 JoK=10 beroup 2 hours
a scio oil is to peron lose of the
+ (-0.21-(-0.077))2+(-0.22-(-0.077))2+(-0.23-(-0.07))3+(0.04-(-0.077))2+(-0.19-(-0.077))2+(-0.23-60.07))3+(0(0.077))2-(-0.077))2+(-0.19-(-0.077))2+(-0.23-60.07))3+(-0.23-60.077))2+(-0.077)2+(-0.077)2+(-0.077)2
SJED 21961
9.

Tutorial 2

Worksheet 5 Question 2:

Loading and splitting the dataset:

```
from sklearn.model_selection import train_test_split

data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
X = df.drop('target', axis=1)
y = df['target']

train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=42)
```

Benchmarking:

Decision Tree:

```
Decision Tree Benchmarking:
Accuracy: 0.9473684210526315
Precision: 0.9488079172289698
Recall: 0.9473684210526315
F1: 0.9468057045386604
AUC-ROC score: 0.9348182115951523
```

Random Forrest:

```
Random Forest Benchmarking:
Accuracy: 0.9649122807017544
Precision: 0.9652053622194477
Recall: 0.9649122807017544
F1: 0.9647382344750767
AUC-ROC score: 0.9580740255486406
```

Bagging Classifier:

```
Bagging Benchmarking:
Accuracy: 0.956140350877193
Precision: 0.9560881370091896
Recall: 0.956140350877193
F1: 0.9560357083576897
AUC-ROC score: 0.9510317720275139
```

AdaBoost Classifier:

AdaBoost Benchmarking:
Accuracy: 0.9736842105263158
Precision: 0.9737190197716513
Recall: 0.9736842105263158
F1: 0.9736214250146138
AUC-ROC score: 0.969701932525385

XG Boost Classifier:

XGBoost Benchmarking:
Accuracy: 0.956140350877193
Precision: 0.9560881370091896
Recall: 0.956140350877193
F1: 0.9560357083576897
AUC-ROC score: 0.9510317720275139

On this given dataset and the training and test split, the best performing model in every category was the AdaBoost Classifier.

The code for this bench marking is hosted here