ALGORITHMIQUE DE GRAPHES & OPTIMISATION

Chapitre 4

ENSI-II1

2020-2021

PLAN DU CHAPITRE

Flots et applications :

- □Flots dans les réseaux de transport. Définitions et propriétés.
- □Problème du flot maximal: Algorithme de Ford Fulkerson.
- □ Application : Problèmes de couplage dans un graphe biparti
- □Flot à coût minimal : Algorithme de Busacker-Gowen.

INTRODUCTION

Le problème des flots dans les **réseaux** concerne la circulation de matière sur les arcs d'un graphe.

Un arc représente:

- un tronçon de route,
- une liaison entre deux entrepôts, deux ports, deux aéroports,
- une connexion entre deux ordinateurs,
- une connexion électrique entre deux villes ...

INTRODUCTION

Parmi les nombreuses applications qui relèvent de ce problème, on trouve :

- Trafic dans un réseau routier, aérien, maritime
- Les réseaux de transport de marchandises de différents points distributeurs à différents points consommateurs
- L'écoulement de liquides à l'intérieur de tuyaux
- Le courant dans les réseaux électriques
- Transport d'informations et des données à travers les réseaux de communication
- Le coût de réalisation d'un projet en ordonnancement, etc....

1-DÉFINITIONS

DÉFINITION 1:

On appelle <u>réseau de transport</u> ou <u>réseau</u> un graphe G=(S,A,c) orienté, valué positivement, sans boucle ayant une **entrée** (**ou racine**) e (le nœud de G n'ayant pas de précédent) et une **sortie** (**ou puits**) s (le nœud de G n'ayant pas de suivant) c(u) est la <u>capacité</u> de l'arc u

Un réseau valué par ses capacités

5

DÉFINITION 2:

Un **flot compatible** (ou **réalisable**) f sur un réseau de transport G=(S, A, c) est une application $f: A \rightarrow IR$ vérifiant:

1- Les contraintes de capacité:

$$0 \le \mathbf{f}_{ij} \le \mathbf{c}_{ij} \ \forall \ (i,j) \in \mathbf{A} \ (\mathbf{f}_{ij} = f(i,j) \ \text{le flux sur l'arc (i,j)})$$

2- Les contraintes de conservations (Loi de Kirchoff):

$$\forall i \in S \setminus \left\{e, s\right\}, \quad \sum_{j \in \Gamma^{^{+}}(i)} f_{ij} = \sum_{k \in \Gamma^{^{-}}(i)} f_{ki} \quad \underbrace{\phantom{\sum_{j \in \Gamma^{^{+}}(i)}}^{2} f_{ki}}_{5} \quad \underbrace{\phantom{\sum_{j \in \Gamma^{^{+}}(i)}}^{2}$$

3- La valeur totale du flot v

$$v = v(f_{e,s}) = \sum_{j \in \Gamma^+(e)} f_{ej} = \sum_{i \in \Gamma^-(s)} f_{is}$$

la propriété de conservation du flot se généralise à un sous-ensemble de sommets.

LEMME 1:

Si f est un flot dans G(S,A), alors: pour tout sous-ensemble de sommets $X \subset S$, la somme des flux sortant de X est égale à la somme des flux entrant dans X.

$$\sum_{u \in \omega^{+}(X)} f_{u} = \sum_{u \in \omega^{-}(X)} f_{u}$$

Où:
$$\omega^+(X) = \{(i, j) \in A \mid i \in X \text{ et } j \in S \setminus X\},$$

 $\omega^-(X) = \{(j, i) \in A \mid j \in S \setminus X \text{ et } i \in X\}.$

Considérons le réseau routier entre deux villes **e** et **s** dont on connait la capacité (nbr de véhicule / heure) sur chaque tronçon,

Un premier exemple de flot (compatible) est le flot nul.

Un deuxième exemple de flot est :

2-LE PROBLÈME DU FLOT MAX

Intro : On cherche à trouver **le trafic maximal** entre deux villes **e** et **s** d'un réseau routier dont on connait la capacité (nombre de véhicules / heure) sur chaque tronçon

LE PROBLÈME DU FLOT MAX : Le problème du flot max dans un réseau de transport consiste à trouver un flot f vérifiant les propriétés 1 et 2 (de la définition 2) pour lequel $v(f_{e,s})$ soit maximale.

$$\begin{cases} \textit{max} (v = \sum_{i \in \Gamma^{-}(s)} f_{is} = \sum_{i \in \Gamma^{+}(e)} f_{ei}) \\ s / c \end{cases}$$

$$\begin{cases} \sum_{i \in \Gamma^{-}(j)} f_{ij} - \sum_{i \in \Gamma^{+}(k)} f_{ki} = 0 \quad \forall i \neq e, s \\ 0 \leq f_{ij} \leq c_{ij} \end{cases}$$

Remarque: Les inconnues sont les f_{ij} (flux sur l'arc (i,j)) et la valeur v du flot

Soit f un flot défini sur un graphe G(S,A).

DÉFINITION 3:

Un arc $u = (i, j) \in A$ est dit **saturé** si $f_{ij} = c_{ij}$

DÉFINITION 4 : Flot complet

Un **flot complet** est un flot compatible pour lequel tout chemin allant de *e* à *s* contient <u>au moins un</u> arc saturé.

Exemple: Flot complet

flots complet de valeur 50.

Une première idée pour optimiser (maximiser) le flot est de **saturer** successivement les chemins de *e* à *s*. On obtiendra alors un flot dit **complet** qui, n'est pas (en général) maximal, mais fournit une solution de départ pour appliquer l'algorithme de Ford-Fulkerson (F-F).

Etape N°1: Rendre le flot complet (recherche des chemins améliorants)

A partir d'un flot f donné sur les arcs, existe-t-il un chemin μ de e à s le long duquel aucun arc n'est saturé.

Si un tel chemin est trouvé, on augmentera le flot d'une valeur δ :

$$\delta = \min_{u \in \mu} (c(u) - f(u))$$

ALGORITHME DE RECHERCHE D'UN FLOT COMPLET:

On part d'un flot initial f (par exemple, f = 0) et on l'améliore pas à pas par une procédure de marquage :

- **1.** Marquer **e** par (+).
- 2. à partir d'un sommet **i** marqué, marquer par (+) tout successeur **j** de **i** tel que: $f_{ij} < c_{ij}$.
- 3. Si s est marqué, alors

Augmenter la valeur du flot et aller à (2) jusqu'à ce qu'on ne puisse plus atteindre **s** à partir de **e**. Déterminons un flot complet sur ce réseau:

On peut démarrer avec un flot initial nul.

Avec la procédure de marquage on a (par exemple)

D'où un chemin améliorant $\mu_1: e \to A \to D \to s$, le long duquel on peut augmenter la valeur du flot de δ_1 =min{20,15,25}=15. Puis on reprend le marquage

D'où un autre chemin améliorant $\mu_2: e \to A \to E \to s$, le long duquel on peut augmenter la valeur du flot de δ_2 =min{5,10,20}=5. Puis on reprend le marquage

D'où un autre chemin améliorant $\mu_3: e \to B \to D \to s$, le long duquel on peut augmenter la valeur du flot de δ_3 =min{35,15,10}=10. Puis on reprend le marquage

D'où un autre chemin améliorant μ_4 : $e \to B \to E \to s$, le long duquel on peut augmenter la valeur du flot de δ_4 =min{25,5,15}=5. Puis on reprend le marquage

D'où un autre chemin améliorant μ_5 : $e \to B \to F \to s$, le long duquel on peut augmenter la valeur du flot de δ_5 =min{20,5,20}=5. Puis on reprend le marquage

D'où un autre chemin améliorant μ_6 : $e \rightarrow C \rightarrow F \rightarrow s$, le long duquel on peut augmenter la valeur du flot de δ_6 =min{10,10,15}=10. Puis on reprend le marquage

EXEMPLE 3:

On veut acheminer un produit à partir de 3 entrepôts (1,2,3) vers 4 clients (a,b,c,d)

- •Quantités en stock : 45, 25, 25
- ■Demande des clients : 30,10, 20, 30
- •Limitations en matière de transport d'un entrepôt à un client:

	a	b	С	d
1	10	15	-	20
2	20	5	5	1
3	-	-	10	10

Question

- 1- Etablir le graphe de ce problème.
- 2- Donner le meilleur plan de transport.

D'où la modélisation par le réseau ci-dessous, $[f_u, c_u]$, avec un **flot initial nul**

Le flot *f* ci-dessous est-il complet ?

Sur ce réseau, on ne puisse plus marquer s à partir de e, donc ce flot est un flot complet, de valeur V(f) = 80

Question : Ce flot est-il maximal ?

Le flot complet n'est pas nécessairement optimal.

Il ne prend en compte que les chemins de e à s.

2.2- ALGORITHME DE FORD & FULKERSON:

DÉFINITION 5:

Une <u>chaîne améliorante</u> ou **augmentant le flot** est une chaîne ξ d'origine e d'extrémité s et telles que:

- •pour chaque arc avant $u \in \xi^+$ (arc emprunté dans le sens du parcours) on ait : f(u) < c(u),
- •et pour chaque arc arrière $u \in \xi^-$ (arc emprunté dans le sens inverse du parcours) on ait : f(u) > 0.

Une chaîne améliorante pour l'Exemple 3:

$$\xi: e \xrightarrow{[35,45]} 1 \xrightarrow{[5,15]} b \xrightarrow{[5,5]} 2 \xrightarrow{[15,20]} a \xrightarrow{[25,30]} s$$

On a:

$$\xi^+ = \{(e,1), (1,b), (2,a), (a,s)\}$$

et

$$\xi^{-} = \{(2,b)\}$$

Afin de déterminer les chaînes améliorantes on utilise une exploration en largeur du graphe. On commence par marquer le sommet *e* puis on propage les marques de la manière suivante:

- A partir d'un sommet i marqué, on marque les sommets j tels que:
 - l'arc (i; j) est non saturé : f(i,j) < c(i,j),
 - ou l'arc (j; i) a un flot non nul : f(j,i) > 0.
- Il existe une chaîne améliorante, si on peut marquer le sommet s (à partir de e).

CNS pour qu'un flot soit maximal:

THÉORÈME (FORD & FULKERSON):

Une CNS pour qu'un flot soit maximal est qu'il n'existe aucune chaîne améliorant le flot entre *e* et *s*.

Comment peut-on augmenter le flot via cette chaîne améliorante?

Etape N°2: Chercher une chaîne \leq oignant e et s et permettant d'augmenter le flot d'une valeur θ .

Choisir $\theta = \min(\theta_1, \theta_2)$

où
$$\theta_1 = \min_{u \in \zeta^+} (c(u) - f(u))$$
 et $\theta_2 = \min_{u \in \zeta^-} (f(u))$

$$\Rightarrow \forall u \in \zeta^+, f(u) := f(u) + \theta$$

$$\Rightarrow \forall u \in \zeta^-, f(u) := f(u) - \theta$$

et par conséquent la valeur du flot augmente de θ :

$$V(f) = V(f) + \theta$$

On a: $\theta_1 = \min\{10,10,5,5\} = 5$ et $\theta_2 = \min\{5\} = 5$ $\theta = \min\{\theta_1, \theta_2\} = 5$

On reprend le marquage:

On ne puisse plus marquer s à partir de e.

Donc ce flot est maximal, de valeur $V(f_{max}) = 85$.

ALGORITHME DE FORD & FULKERSON (1956)

- **1-** Soit *f* un **flot initial réalisable** (en général, on prend le flot nul)
- **2-Etape 1:** Rendre le **flot complet** (saturer tous les chemins possibles)
- (i) marquer le sommet *e* par (+)
- (ii) à partir d'un sommet x marqué, marquer par (+) tout sommet y tel que:

Le chemin trouvé augmentera le flot de : $\delta = \min_{(x,y)\in\mu} (c(x,y) - f(x,y))$

- (iii) recommencer (ii) jusqu'à ce qu'on ne puisse plus marquer s à partir de e.
- 3-Etape 2: Recherche des chaînes augmentant le flot
- (i) marquer le sommet *e* par (+)
- (ii) à partir d'un sommet x marqué, marquer par (+) tout sommet y tel que:

$$\begin{cases} f(x,y) < c(x,y) & \text{On pose:} \quad \theta_1 = \min_{y \in S(x)} \left(c(x,y) - f(x,y) \right) & \text{et} \quad \theta_2 = \min_{y \in P(x)} \left(f(y,x) \right) \\ \text{ou } f(y,x) > 0 \end{cases}$$

La chaîne trouvée augmentera le flot de : $\theta = \min(\theta_1, \theta_2)$

(iii) recommencer (ii) jusqu'à ce qu'on ne puisse plus marquer *s* à partir de e.

Une chaîne améliorante pour l'Exemple 2:

$$\xi: e \longrightarrow B \longrightarrow D \longleftarrow A \longrightarrow E \longrightarrow s$$
(20,35) (10,15) (15,15) (5,10) (10,20)

le long de laquelle on peut augmenter la valeur du flot de $\theta = \min\{\theta_1, \theta_2\}$ où : $\theta_1 = \min\{15,5,5,10\} = 5$ et $\theta_2 = \{15\} \implies \theta = 5$

Puis on reprend le marquage pas de chaine améliorante.

donc ce flot est maximal, de valeur $V(f_{max}) = 55$.

En trois dépôts A, B, C, on dispose respectivement de 20, 35 et 10 tonnes de marchandises. On a des demandes de 25, 20 et 20 tonnes aux destinations D, E et F. Il existe des possibilités de transport à l'aide de camions. Ces possibilités sont rapportées dans le tableau suivant :

	D	E	F
A	15	10	0
В	15	5	5
C	5	0	10

Déterminer un plan de transport permettant de transporter des origines aux destinations une quantité maximale.