

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по курсу "Анализ алгоритмов"

Тема Расстояния Левенштейна и Дамерау-Левенштейна
Студент _ Лемешев А. П.
Группа ИУ7-52Б
Преподаватели Волкова Л.Л., Строганов Ю.В.

Оглавление

1	Аналитическая часть						
	1.1	Расстояние Левенштейна					
	1.2	Расстояние Дамерау-Левенштейна					
	1.3	Рекурсивная формула					
	1.4	Матрица расстояний					
	1.5	Рекурсивный алгоритм расстояния Дамерау-Левенштейна с					
		мемоизацией					
2	Конструкторская часть						
	2.1	Алгоритм Левенштейна					
	2.2	Алгоритмы Дамерау-Левентштейна					
3	Tex	Технологическая часть					
	3.1	Требования к ПО					
	3.2	Средства реализации					
	3.3	В Листинг кода					
	3.4	Тестирование функций					
4	Исследовательская часть						
	4.1	Технические характеристики					
	4.2	Пример работы программы					
	4.3	Время выполнения алгоритмов					
	4.4	Использование памяти					
		4.4.1 Нерекурсивные алгоритмы					
		4.4.2 Рекурсивные алгоритмы					
Зғ	клю	ечение					
C:	тисо	к использованных источников					
-1	TATOO	K MOHOTIDODAHIHDIA MOTO IHMINOD					

Введение

Нахождение редакционного расстояния – одна из задач компьютерной лингвистики, которая находит применение в огромном количестве областей, например:

- исправление ошибок в тексте в поисковых запросах;
- сравнение текстовых файлов утилитой diff [1];
- сравнение генов, хромосом и белков в биоинформатике.

Впервые задачу поставил советский ученый В. И. Левенштейн при изучении последовательностей 0-1 [2]. Впоследствии более общую задачу для произвольного алфавита связали с его именем. Позже Фредерик Дамерау заявил, что при исследовании орфографических ошибок в информационно-поисковых системах более 80% человеческих ошибок при наборе текстов составляют перестановки соседних символов, пропуск символа, добавление нового символа и ошибка в символе [3].

Расстояние Левенштейна – метрика, измеряющая разность двух строк символов, определяемая в количестве редакторских операций (а именно удаления, вставки и замены), требуемых для преобразования одной последовательности в другую.

Расстояние Дамерау-Левенштейна – модификация, добавляющая к редакторским операциям транспозицию (обмен двух соседних символов местами).

Алгоритмы имеют некоторое количество модификаций, позволяющих эффективнее решать поставленную задачу. В данной работе будут предложены реализации следующих алгоритмов:

- нерекурсивный метод поиска расстояния Левентштейна;
- нерекурсивный метод поиска Дамерау-Левентштейна;
- рекурсивный метод поиска Дамерау-Левентштейна;
- рекурсивный с кешированием метод поиска Дамерау-Левентштейна.

Задачи лабораторной работы:

- изучение алгоритмов редакционных расстояний Левенштейна и Дамерау-Левенштейна;
- получение практических навыков реализаций алгоритмов редакционных расстояний Левенштейна и Дамерау-Левенштейна;
- проведение сравнительного анализа алгоритмов определения расстояния между строками по затратам времени и памяти;
- применение метода динамического программирования для реализации алгоритмов;
- описание и обоснование полученных результатов в отчете о выполненной лабораторной работе.

1 Аналитическая часть

В этом разделе будут представлены описания алгоритмов нахождения редакторских расстояний Левенштейна и Дамерау-Левенштейна.

1.1 Расстояние Левенштейна

Редакторское расстояние (расстояние Левенштейна) – это минимальное количество операций вставки, удаления и замены, необходимых для превращения одной строки в другую. Каждая редакторская операция имеет цену (штраф). В общем случае, имея на входе строку, $X = x_1x_2 \dots x_n$, и, $Y = y_1y_2 \dots y_n$, расстояние между ними можно вычислить с помощью операций:

- delete $(u, \varepsilon) = \delta$;
- $\operatorname{insert}(\varepsilon, v) = \delta;$
- replace $(u, v) = \alpha(u, v) \le 0$ (здесь, $\alpha(u, u) = 0 \ \forall \ u$).

Необходимо найти последовательность замен с минимальным суммарным штрафом. Далее, цена вставки и удаления будет считаться равной 1. Пусть даны строки: s1 = s1[1..L1], s2 = s2[1..L2], s1[1..i] – подстрока s1 длинной i, начиная с 1-го символа, s2[1..j] - подстрока s2 длинной j, начиная с 1-го символа. Расстояние Левентштейна посчитывается формулой s2[1..j]

$$D(s1[1..i], s2[1..j]) = \begin{cases} 0, i = 0, \\ i, i > 0, j = 0, \\ j, j > 0, i = 0, \\ \min(D(s1[1..i], s2[1..j - 1]) + 1, \\ \min(D(s1[1..i - 1], s2[1..j]) + 1, \\ \min(D(s1[1..i - 1], s2[1..j]) + 1 \\ +0, & s1[i] = s2[j] \end{cases}$$

(1.1)

1.2 Расстояние Дамерау-Левенштейна

Расстояние Дамерау-Левенштейна — модификация расстояния Левенштейна, добавляющая транспозицию к редакторским операциям, предложенными Левенштейном (см. ??). Изначально алгоритм разрабатывался для сравнения текстов, набранных человеком. Дамерау показал, что 80% человеческих ошибок при наборе текстов составляют перестановки соседних символов, пропуск символа, добавление нового символа, и ошибка в символе. Поэтому метрика Дамерау-Левенштейна часто используется в редакторских программах для проверки правописания.

Используя условные обозначения, описанные в разделе ??, рекурсивная формула для нахождения расстояния Дамерау-Левенштейна, f(i,j), между подстроками, $x_1 \dots x_i$ и, $y_1 \dots y_j$, имеет следующий вид 1.2:

$$f_{X,Y}(i,j) = \begin{cases} \delta_i, \ j=0, \\ \delta_j, \ i=0, \\ \alpha(x_i,y_i) + f_{X,Y}(i-1,j-1) \\ \delta + f_{X,Y}(i-1,j) \\ \delta + f_{X,Y}(i,j-1) \\ \delta + f_{X,Y}(i-2,j-2), \end{cases} \quad \text{если } i,j>1; \\ x_i = y_{j-1}; \\ x_{i-1} = y_j \\ \infty, \quad \text{иначе} \end{cases}$$

(1.2)

1.3 Рекурсивная формула

Используя условные обозначения, описанные в разделе 1.2, рекурсивная формула для нахождения расстояния Дамерау-Левенштейна f(i,j) между подстроками, $x_1 \dots x_i$, и, $y_1 \dots y_j$, имеет вид 1.3:

$$f_{X,Y}(i,j) = \begin{cases} \delta_i, \ j=0, \\ \delta_j, \ i=0, \\ \\ \left\{ \begin{array}{l} \alpha(x_i,y_i) + f_{X,Y}(i-1,j-1) \\ \delta + f_{X,Y}(i-1,j) \\ \delta + f_{X,Y}(i,j-1) \\ \\ \delta + f_{X,Y}(i-2,j-2), \end{array} \right. & \text{если } i,j>1; \\ x_i = y_{j-1}; \\ x_{i-1} = y_j \\ \\ \infty, & \text{иначе} \end{cases}$$

(1.3)

 $f_{X,Y}$ – редакционное расстояние между двумя подстроками – первыми i символами строки X и первыми j символами строки Y. Можно вывести следующие утверждения:

- если редакционное расстояние нулевое, то строки равны: $f_{X,Y} = 0 \Rightarrow X = Y;$
- редакционное расстояние симметрично: $f_{X,Y} = f_{Y,X};$
- максимальное значение $f_{X,Y}$ размерность более длинной строки: $f_{X,Y} \leq max(|X|,|Y|);$
- минимальное значение $f_{X,Y}$ разность длин обрабатываемых строк: $f_{X,Y} \geq abs(|X|-|Y|);$

• аналогично свойству треугольника, редакционное расстояние между двумя строками не может быть больше чем редакционные расстояния каждой из этих строк с третьей:

$$f_{X,Y} \le f_{X,Z} + f_{Z,Y}.$$

1.4 Матрица расстояний

В алгоритме нахождения редакторского расстояния Дамерау-Левенштейна возможно использование матрицы расстояний.

Пусть, $C_{0...|X|,0...|Y|}$, — матрица расстояний, где, $C_{i,j}$ — минимальное количество редакторских операций, необходимое для преобразования подстроки, $x_1 \dots x_i$, в подстроку, $y_1 \dots y_j$. Матрица заполняется следующим образом 1.4:

$$Ci, j = \begin{cases} i & j = 0, \\ j & i = 0, \\ \min \begin{cases} C_{i-1,j-1} + \alpha(x_i, y_i), \\ C_{i-1,j} + 1, \\ C_{i,j-1} + 1 \end{cases}$$
 (1.4)

При решении данной задачи используется ключевая идея динамического программирования – чтобы решить поставленную задачу, требуется разбить на отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Здесь небольшие подзадачи – это заполнение ячеек таблицы с индексами, i < |X|, j < |Y|. После заполнения всех ячеек матрицы в ячейке, $C_{|X|,|Y|}$, будет записано искомое расстояние.

1.5 Рекурсивный алгоритм расстояния Дамерау-Левенштейна с мемоизацией

При реализации рекурсивного алгоритма используется мемоизация – сохранение результатов выполнения функций для предотвращения повтор-

ных вычислений. Отличие от формулы 1.4 состоит лишь в начальной инициализации матрицы флагом ∞ , который сигнализирует о том, была ли обработана ячейка. В случае если ячейка была обработана, алгоритм переходит к следующему шагу.

Вывод

Были рассмотрены обе вариации алгоритма редакторского расстояния (Левенштейна и Дамерау-Левенштейна). Также были приведены разные способы реализации этих алгоритмов такие как: рекурсивный, итеративный и рекурсивный с мемоизацией. Итеративный может быть реализован с помощью парадигм динамического программирования или матрицей расстояния. Рекурсивный алгоритм с мемоизацией позволяет ускорить обычный рекурсивный алгоритм за счет матрицы, в которой промежуточные подсчеты.

2 Конструкторская часть

В данном разделе представлены схемы реализуемых алгоритмов.

2.1 Алгоритм Левенштейна

На рисунке 2.1 представлена схема алгоритма нерекурсивного метода поиска расстояния Левентштейна.

Рис. 2.1: Схема нерекурсивного алгоритма Левентштейна

2.2 Алгоритмы Дамерау-Левентштейна

На рисунках 2.2, 2.3 и 2.4 представлены схемы алгоритмов нерекурсивного, рекурсивного и рекурсивного с кешированием методов поиска расстояния Дамерау-Левентштейна.

Рис. 2.2: Схема нерекурсивного алгоритма Дамерау-Левентштейна

Рис. 2.3: Схема рекурсивного алгоритма Дамерау-Левентштейна

Рис. 2.4: Схема рекурсивного алгоритма с кешированием Дамерау-Левентштейна

Вывод

На основе формул и теоретических данных, полученных в аналитическом разделе, были спроектированы схемы алгоритмов.

3 Технологическая часть

В данном разделе будут приведены требования к программному обеспечению, средства реализации и листинга кода.

3.1 Требования к ПО

Программа должна отвечать следующим требованиям:

- программа на вход принимает две строки;
- программа выдает редакционное расстояние для всех четырех методов.

3.2 Средства реализации

В качестве языка программирования для реализации данной лабораторной работы был выбран современный компилируемый ЯП Golang [4]. Данный выбор обусловлен моим желанием расширить свои знания в области применения данного языка, а также тем, что данный язык предоставляет широкие возможности для написания тестов [5].

3.3 Листинг кода

В листингах 3.1 – 3.4 приведены листинги описанных алгоритмов Левентштейна и Дамерау-Левентштейна. В листинге 3.5 приведены вспомогательные функции. В листингах 3.6 и 3.8 приведены примеры реализации тестов и бенчмарков.

Листинг 3.1: Итеративный алгоритм Левентштейна

```
package levenshtein
3 import "lab_01/utils"
  func (l Levenshtein) LIterative() int {
          11, 12 := 1.lens()
          if 1.isEmpty() {
                  return utils.MaxFromSome(11, 12)
          }
          cbuf := make([]int, 11+1) // cur buffer
          pbuf := make([]int, l1+1) // prev buffer
11
          for i := range pbuf {
12
                  pbuf[i] = i
13
14
          for i := 1; i < 12+1; i++ {</pre>
15
                  cbuf[0] = i
                  for j := 1; j < 11+1; j++ {</pre>
17
                         eq := l.isEqualRunes(j-1, i-1)
18
                         res := utils.MinFromSome(
                                 cbuf[j-1]+1,
20
                                 pbuf[j]+1,
21
                                 pbuf[j-1]+eq,
22
                          )
23
                          cbuf[j] = res
24
25
                  copy(pbuf, cbuf)
26
27
          return cbuf[11]
28
29 }
```

Листинг 3.2: Итеративный алгоритм Дамерау-Левентштейна

```
package levenshtein
3 import "lab_01/utils"
  func (1 Levenshtein) DLIterative() int {
          11, 12 := 1.lens()
          if 1.isEmpty() {
                  return utils.MaxFromSome(11, 12)
          }
          cbuf := make([]int, 11+1) // cur buffer
          p1buf := make([]int, l1+1) // prev1 buffer
11
          p2buf := make([]int, l1+1) // prev2 buffer
12
          for i := range p1buf {
                  p1buf[i] = i
14
          }
15
          for i := 1; i < 12+1; i++ {</pre>
16
                  cbuf[0] = i
17
                  for j := 1; j < 11+1; j++ {</pre>
18
                          eq := l.isEqualRunes(j-1, i-1)
                          res := utils.MinFromSome(
20
                                 cbuf[j-1]+1,
21
                                 p1buf[j]+1,
22
                                 p1buf[j-1]+eq,
23
                          )
24
                          if 1.dlFlag(j, i) {
25
                                 res = utils.MinFromSome(
26
                                         res,
27
                                         p2buf[j-2]+1,
28
29
                          }
30
                          cbuf[j] = res
31
                  }
32
                  copy(p2buf, p1buf)
33
                  copy(p1buf, cbuf)
34
35
          return cbuf[11]
36
37 }
```

Листинг 3.3: Рекурсивный алгоритм Дамерау-Левентштейна

```
package levenshtein
3 import "lab_01/utils"
  func (1 Levenshtein) DLRecursive() int {
         11, 12 := 1.lens()
         if 1.isEmpty() {
                 return utils.MaxFromSome(11, 12)
         }
         eq := 1.isEqualRunes(11-1, 12-1)
          res := utils.MinFromSome(
11
                 1.cutRune(1, 0).DLRecursive()+1,
12
                 1.cutRune(0, 1).DLRecursive()+1,
13
                 1.cutRune(1, 1).DLRecursive()+eq,
14
          )
15
         if 1.dlFlag(11, 12) {
                 res = utils.MinFromSome(
17
                         res,
18
                         1.cutRune(2, 2).DLRecursive()+1,
                 )
20
         }
21
         return res
22
23 }
```

Листинг 3.4: Рекурсивный алгоритм с кэшем Дамерау-Левентштейна

```
package levenshtein
3 import "lab_01/utils"
  func (1 Levenshtein) DLRecursiveCash() int {
          11, 12 := 1.lens()
          if 1.isEmpty() {
                  return utils.MaxFromSome(11, 12)
          }
          c := make([][]int, 11) // cache
          for i := range c {
11
                  c[i] = make([]int, 12)
12
                  for j := range c[i] {
13
                         c[i][j] = -1
14
15
          }
          return 1.dlRecursiveCash(c)
17
18 }
  func (1 Levenshtein) dlRecursiveCash(c [][]int) int {
20
          11, 12 := 1.lens()
21
          if 1.isEmpty() {
22
                  return utils.MaxFromSome(11, 12)
23
          }
24
          if c[11-1][12-1] != -1 {
25
                  return c[11-1][12-1]
26
          }
27
          eq := 1.isEqualRunes(11-1, 12-1)
          res := utils.MinFromSome(
29
                  1.cutRune(1, 0).dlRecursiveCash(c)+1,
30
                  1.cutRune(0, 1).dlRecursiveCash(c)+1,
31
                  1.cutRune(1, 1).dlRecursiveCash(c)+eq,
32
33
          if 1.dlFlag(11, 12) {
34
                  res = utils.MinFromSome(
35
                         res.
36
                         1.cutRune(2, 2).DLRecursive()+1,
37
                  )
38
39
          c[11-1][12-1] = res
40
          return res
41
42 }
```

Листинг 3.5: Вспомогательные функции для расчёта расстояний

```
package levenshtein
  type Levenshtein struct {
          runes1 []rune
          runes2 []rune
  }
6
  func Make(str1, str2 string) Levenshtein {
          return Levenshtein{[]rune(str1), []rune(str2)}
10 }
11
  func (1 Levenshtein) cutRune(c1, c2 int) Levenshtein {
12
          11, 12 := 1.lens()
          return Levenshtein{1.runes1[:11-c1], 1.runes2[:12-c2]}
14
  }
15
  func (1 Levenshtein) lens() (int, int) {
         return len(1.runes1), len(1.runes2)
18
19 }
20
21 func (1 Levenshtein) isEmpty() bool {
          return len(1.runes1) == 0 || len(1.runes2) == 0
22
23
24
  func (1 Levenshtein) isEqualRunes(i, j int) int {
          if 1.runes1[i] == 1.runes2[j] {
26
                 return 0
27
          }
          return 1
29
30 }
31
  func (l Levenshtein) dlFlag(i, j int) bool {
32
          if i <= 1 {</pre>
33
                 return false
34
          } else if j <= 1 {</pre>
35
                 return false
36
          } else if 1.runes1[i-1] != 1.runes2[j-2] {
37
                 return false
38
          } else if l.runes1[i-2] != l.runes2[j-1] {
39
                 return false
40
          }
41
          return true
42
43 }
```

Листинг 3.6: Пример реализации тестов

```
package levenshtein
3 import "testing"
   var testLevenshteinTable = []struct {
           title string
           in []string
           10ut int
           dlOut int
10 }{
11
           {
                   title: "equal_strings",
12
                   in: []string{"aaasssddd", "aaasssddd"},
13
                   10ut: 0,
14
                   dlOut: 0,
15
16
           },
           {
17
                   title: "str1⊔smaller",
18
                   in: []string{"aaasssdd", "aaasssddd"},
                   10ut: 1,
20
                   dlOut: 1,
21
           },
22
           // ...
23
24 }
25
  func TestLIterative(t *testing.T) {
26
           for _, test := range testLevenshteinTable {
27
                   1 := Make(test.in[0], test.in[1])
28
                   res := 1.LIterative()
29
                   if test.1Out != res {
30
                           t. Errorf("Incorrect_{\sqcup} result. \ntitle:_{\sqcup} \% v \nin:_{\sqcup} \% v \nout:_{\sqcup} \% v \nres:_{\sqcup}
31
                                    test.title, test.in, test.10ut, res)
32
                   } else {
33
                           t.Logf("Test⊔pass⊔'%v'.\n", test.title)
34
                   }
35
           }
36
37 }
```

Листинг 3.7: Листинг 3.6: Пример реализации тестов

```
func TestDLIterative(t *testing.T) {
          for _, test := range testLevenshteinTable {
                  1 := Make(test.in[0], test.in[1])
                  res := 1.DLIterative()
                  if test.dlOut != res {
                         t.Errorf("Incorrect_result.\ntitle:_\%v\nin:_\%v\nout:_\%v\nres:_
                                 test.title, test.in, test.dlOut, res)
                  } else {
                         t.Logf("Test_pass_', v'.\n", test.title)
                  }
10
          }
11
12
  }
13
  func TestDLRecursive(t *testing.T) {
14
          for _, test := range testLevenshteinTable {
                  1 := Make(test.in[0], test.in[1])
16
                  res := 1.DLRecursive()
17
                  if test.dlOut != res {
                         t.Errorf("Incorrect_result.\ntitle:_\%v\nin:_\%v\nout:_\%v\nres:_
19
                             v\n",
20
                                 test.title, test.in, test.dlOut, res)
                  } else {
21
                         t.Logf("Test_pass_', "v'.\n", test.title)
22
23
                  }
          }
24
  }
25
26
  func TestDLRecursiveCash(t *testing.T) {
27
          for _, test := range testLevenshteinTable {
28
                  1 := Make(test.in[0], test.in[1])
29
                  res := 1.DLRecursiveCash()
30
                  if test.dlOut != res {
31
                         t.Errorf("Incorrect_result.\ntitle:_\%v\nin:_\%v\nout:_\%v\nres:_
32
                                 test.title, test.in, test.dlOut, res)
33
                  } else {
34
                         t.Logf("Test_pass_', "v'.\n", test.title)
35
                  }
36
          }
37
38 }
```

Листинг 3.8: Пример реализации бенчмарка

```
package levenshtein
3 import "testing"
  var data = [3][2]string{
          {
                   "dog",
                   "god",
          },
9
10 }
11
  func BenchmarkLIterativeLen3(b *testing.B) {
12
          1 := Make(data[0][0], data[0][1])
          for i := 0; i < b.N; i++ {</pre>
14
                  1.LIterative()
15
          }
16
17
  }
18
  func BenchmarkDLIterativeLen3(b *testing.B) {
          1 := Make(data[0][0], data[0][1])
20
          for i := 0; i < b.N; i++ {</pre>
21
                  1.DLIterative()
22
          }
23
  }
24
25
  func BenchmarkDLRecursiveLen3(b *testing.B) {
26
          1 := Make(data[0][0], data[0][1])
27
          for i := 0; i < b.N; i++ {</pre>
28
                  1.DLRecursive()
29
          }
30
31 }
33 func BenchmarkDLRecursiveCashLen3(b *testing.B) {
          1 := Make(data[0][0], data[0][1])
34
          for i := 0; i < b.N; i++ {</pre>
35
                  1.DLRecursiveCash()
36
          }
37
38 }
```

3.4 Тестирование функций

В таблице 3.1 приведены тесты для функций, реализующих алгоритмы вычисления расстояний Левентштейна и Дамерау-Левентштейна. Все тесты пройдены успешно.

Таблица 3.1: Тестовые данные

Строка 1	Строка 2	Левентштейн	Дамерау-Левентштейн
cook	cooker	2	2
aboba	aboba	0	0
абвгдеё	абвг	3	3
	qwer	4	4
qwerty	ytrewq	6	5
qwerty	wqreyt	4	3

Вывод

На основе схем из конструкторского раздела были разработаны и протестированы спроектированные алгоритмы.

4 Исследовательская часть

В данном разделе будут приведены примеры работы программы, постановка эксперимента и сравнительный анализ алгоритмов на основе полученных данных.

4.1 Технические характеристики

Тестирование выполнялось на устройстве со следующими техническими характеристиками:

- Операционная система: Windows 11 x64 [6].
- Память: 8 GiB.
- Процессор: AMD Ryzen 5 3550H [7].

Замеры проводились на ноутбуке, включенном в сеть электропитания. Во время тестирования ноутбук был нагружен только встроенными приложениями окружения, окружением, а также непосредственно системой тестирования.

4.2 Пример работы программы

На рисунке 4.1 представлен результат работы программы.

```
tivzr@thrello MINGW64 /d/works/study/bmstu-aa/lab_01/src (lab_01)
$ make run
go run main.go
String 1: head
String 2: ehda
Левенштейн нерекурсивно: 3
Дамерау-Левенштейн нерекурсивно: 2
Дамерау-Левенштейн рекурсивно: 2
Дамерау-Левенштейн рекурсивно: 2
```

Рис. 4.1: Пример работы программы

4.3 Время выполнения алгоритмов

Результаты тестирования приведены в таблице 4.1. Прочерк в таблице означает, что тестирование для этого набора данных не выполнялось. На рисунках 4.2 и 4.3 приведены зависимости времени работы алгоритма от длины строк.

Таблица 4.1: Время работы алгоритмов

	Время работы, нс				
Размер	Л.Итер.	Д.Л.Итер.	Д.Л.Рек.	Д.Л.Рек.кэш	
5	409	584	66583	2821	
10	1159	1746	359403375	12963	
20	4058	6272	-	43204	
50	26833	41885	-	250425	
100	100431	153553	-	1051785	
200	412655	657659	-	4343872	

Рис. 4.2: Зависимость времени работы алгоритма вычисления расстояния Дамерау-Левентштейна от длины строк (итеративный и рекурсивный с кэшем)

Рис. 4.3: Зависимость времени работы алгоритма вычисления расстояния Левентштейна и Дамерау-Левентштейна от длины строк (оба итеративные)

4.4 Использование памяти

Далее будем считать, что C() – оператор вычисления размера. А n и m – длины строк S_1 и S_2 соответственно.

4.4.1 Нерекурсивные алгоритмы

Размер выделяемой памяти:

- n+m входные строки;
- $2 \cdot C(int)$ длины строк;
- $2 \cdot C(slice)$ буферы значений;
- $2 \cdot C(int)$ вспомогательные переменные в циклах.

Общая затраченная память равняется: $n+m+4\cdot C(int)+2\cdot C(slice)$.

В алгоритме Дамерау-Левентштейна добавляется еще один буфер, для проверки перестановки. Поэтому размер выделяемой памяти, относительно простого алгоритма Левентштейна, изменится только в вычисляемой памяти для буферов: $3 \cdot C(slice)$.

Итоговое количество затраченной памяти равняется: $n+m+4\cdot C(int)+3\cdot C(slice)$.

4.4.2 Рекурсивные алгоритмы

Максимальная глубина стека вызовов при рекурсивной реализации равна сумме длин входящий строк n+m.

Для каждого вызова функции выделяемая память:

- n+m входные строки;
- $4 \cdot C(int)$ вспомогательные переменные.

Общая затраченная память равняется: $(n+m) \cdot (n+m+4 \cdot C(int))$.

В рекурсивном алгоритме с кэшем дополнительно выделяется память под матрицу значений: $n \cdot m \cdot C(int)$, а так же в каждую функцию передается кэш – ([[[]int).

Итоговое количество затраченной памяти равняется: $(n+m) \cdot (n+m+4 \cdot C(int) + C([][[int)) + n \cdot m \cdot C(int).$

Вывод

В данном разделе были сравнены реализованные алгоритмы по памяти и по времени. Рекурсивный алгоритм Дамерау-Левентштейна работает на порядор дольше, чем итеративная реализация этого же алгоритма. Время работы рекурсивного алгоритма увеличивается в геометрической прогресии с ростом размера строк. Алгоритм Левентштейна работает быстрее и затрачивает меньше памяти, чем модификация Дамерау. По расходу памяти лучше всего показал себя рекурсивный алгоритм, так как для итеративных алгоритмов выделяется память под буферы.

Заключение

В рамках лабораторной работы были:

- рассмотрены три алгоритма нахождения редакторского расстояния Дамерау-Левенштейна и одно Левенштейна;
- в аналитическом разделе были изучены смысловые различия между алгоритмами и их формульное представление;
- в рамках конструкторского раздела были получены схемы алгоритмов;
- в технологическом разделе был выбран язык программирования и представлена реализация на нем, также были приведены тестовые данные;
- в исследовательской части были сравнены алгоритмы по скорости и по памяти.

В ходе лабораторной работы получены навыки динамического программирования, реализованы и изученные алгоритмы нахождения редакторского расстояния. Цель работы достигнута.

Список использованных источников

- [1] Comparing and Merging Files. Режим доступа: https://www.gnu.org/software/diffutils/manual/diffutils.html (дата обращения: 21.09.2022).
- [2] И. Левенштейн В. Двоичные коды с исправлением выпадений, вставок и замещений символов. М.: «Наука», Доклады АН СССР, 1965. Т. 163. с. 845.
- [3] Черненький В. М. Гапанюк Ю. Е. Методика идентификации пассажира по установочным данным. М.: Вестник МГТУ им. Н.Э. Баумана. Сер. "Приборостроение", 2012. Т. 163. с. 34.
- [4] Язык программирования Go [Электронный ресурс]. Режим доступа: https://go.dev (дата обращения: 21.09.2022).
- [5] Документация по ЯП Go: бенчмарки [Электронный ресурс]. Режим доступа: https://go.dev/doc/tutorial/add-a-test (дата обращения: 21.09.2022).
- [6] Windows 11 [Электронный ресурс]. Режим доступа: https://www.microsoft.com/en-us/windows?wa=wsignin1.0 (дата обращения: 21.09.2022).
- [7] Процессор AMD Ryzen[™] 5 3550H [Электронный ресурс]. Режим доступа: https://www.amd.com/ru/products/apu/amd-ryzen-5-3550h (дата обращения: 21.09.2022).