#### Prediksjon av skattekortet



Trygve Bertelsen Wiig



William Peer Berg

3EKK

#### Hvor mange kjenner til denne?



Logg inn for å endre skattekort for 2017

Endre skattekort/forskuddsskatt (RF-1102)





# Restskatt?



#### Logg inn for å endre skattekort for 2017

Endre skattekort/forskuddsskatt (RF-1102)



Kan problemet reduseres ved å bruke maskinlæring?



#### Dagens løsning

```
if person.inntekt_forrige_år > 0:
    inntekt = person.inntekt_forrige_år*LONNSOKNING_SATS
    if person.nav.arbeidsgiver == None:
        inntekt = 0
(...)
    20 år senere...
```



# Mål:

2 år gammel skattedata

Maskinlæring



= Skattekort for alle nordmenn

# Hva er en PoC?

- Grovt, men fungerende produkt
- Vill og målløs eksperimentering

# Hva er en PoC?

- Grovt, men fungerende produkt
- Vill og målløs eksperimentering
- Kontrollert eksperimentering for å finne ut om en idé har livets rett

Parprogrammering (Svært) smidig VDI

> Kanban-board Daglige standups Individuelle initiativ

VDI\$ ./tren\_modell.py
Trener modell...

Status etter 0 timer og 52 minutter:

Status etter 2 timer og 18 minutter: Status etter 4 timer og 11 minutter:

Status etter 6 timer og 56 minutter:

Status etter 8 timer og 0 minutter: Status etter 10 timer og 55 minutter:

Status etter 12 timer og 23 minutter:

minutter: modell 13% ferdig trent
minutter: modell 22% ferdig trent
minutter: modell 30% ferdig trent
minutter: modell 36% ferdig trent
minutter: modell 41% ferdig trent
minutter: modell 49% ferdig trent
minutter: modell 49% ferdig trent

modell 4% ferdig trent





# I virkeligheten....



...men det funker... stort sett!

#### Problemet...

Dyrt...

Til gode 5 006 Beløpet blir overført til konto

Dyrere...

Å betale 1 346

Veldig dyrt!

Å betale 5 006 346

# Ting folk gjør med maskinlæring:

#### Generere forstyrrende bilder...



# PayPal detekterer svindel basert på transaksjonsdata



#### Elkjøp oppsummerer kundefeedback ved bruk av sentimentanalyse



Maskinlæring ser sammenhenger mennesker ikke ser...

...eller som vi bruker årevis på å finne.



#### Kan man også forutsi skattekortet?



#### Skattetrekksmelding:

#### Informasjon om skattekortet 2017

Dette brevet er kun til din informasjon. Det skal ikke leveres videre til arbeidsgiver/pensjonsutbetaler.

Dine arbeidsgivere/pensjonsutbetalere henter skattekortet elektronisk, uten at du må foreta deg noe.

#### Ditt skattetrekk for 2017

31 % skattetrekk av dine inntekter

#### Kan man også forutsi skattekortet?





Skattetrekksmelding:

#### Informasjon om skattekortet 2017

Dette brevet er kun til din informasjon. Det skal ikke leveres videre til arbeidsgiver/pensjonsutbetaler.

Dine arbeidsgivere/pensjonsutbetalere henter skattekortet elektronisk, uten at du må foreta deg noe.

#### Ditt skattetrekk for 2017

31 % skattetrekk av dine inntekter

# Hypotese:

Maskinlæring kan gi en bedre prognose av skattekortet – slik at vi sparer Skatteetaten for ressurser.

# Gjennomføring

#### Prosessen

- 1. Få tak i data
- 2. Kverne data
- 3. Skape resultater

# Prosessen – et litt riktigere bilde





# Få tak i data (for oss)



#### **Kverne data**

| Fødselsnr.  | Fødselsår | Inntekt | Fradrag<br>reinsdyr | Sivilstand |
|-------------|-----------|---------|---------------------|------------|
| 01019112345 | 1991      | 500 000 | 0                   | 0          |
| 31121998765 | 1919      | 2000    | О                   | 4          |
| 01010114689 | 2001      | 300     | О                   | 0          |
| 04110492843 | 2004      | 0       | 0                   | 0          |

#### Gjøre attributter mer tolkbare

| Fødselsnr.  | Alder | Inntekt | Fradrag<br>reinsdyr | Sivilstand |
|-------------|-------|---------|---------------------|------------|
| 01019112345 | 26    | 500 000 | 0                   | 0          |
| 31121998765 | 98    | 2000    | 0                   | 4          |
| 01010114689 | 16    | 300     | 0                   | 0          |
| 04110492843 | 13    | 0       | 0                   | 0          |

# Normalisere flyttall

| Fødselsnr.  | Alder | Inntekt | Fradrag<br>reinsdyr | Sivilstand |
|-------------|-------|---------|---------------------|------------|
| 01019112345 | 26    | 1.5     | О                   | 0          |
| 31121998765 | 98    | -1.7    | О                   | 4          |
| 01010114689 | 16    | -0.5    | О                   | 0          |
| 04110492843 | 13    | -3      | О                   | 0          |

### Fjerne informasjonsløs data

| Fødselsnr.  | Alder | Inntekt | Sivilstand |
|-------------|-------|---------|------------|
| 01019112345 | 26    | 1.5     | 0          |
| 31121998765 | 98    | -1.7    | 4          |
| 01010114689 | 16    | -0.5    | 0          |
| 04110492843 | 13    | -3      | 0          |

### Binærkod kategoriske variabler

| Fødselsnr.  | Alder | Inntekt | Sivilstand=0 | Sivilstand=4 |
|-------------|-------|---------|--------------|--------------|
| 01019112345 | 26    | 1.5     | 1            | 0            |
| 31121998765 | 98    | -1.7    | О            | 1            |
| 01010114689 | 16    | -0.5    | 1            | 0            |
| 04110492843 | 13    | -3      | 1            | 0            |

#### Anonymisere fødselsnummer

| Fødselsnr.   | Alder | Inntekt | Sivilstand=0 | Sivilstand=4 |
|--------------|-------|---------|--------------|--------------|
| k9ej3289f4   | 26    | 1.5     | 1            | 0            |
| kf83idjmsc   | 98    | -1.7    | 0            | 1            |
| 8274hngkd    | 16    | -0.5    | 1            | 0            |
| 92infnkisdsj | 13    | -3      | 1            | 0            |

#### Modellen trenes på en viss andel av befolkningen...

| Fødselsnr.      | Inntekt 2013 | Inntekt 2015 | ••• |
|-----------------|--------------|--------------|-----|
| 01019112345     | 500 000      | 600 000      |     |
| 31121998765     | 2000         | 120 000      |     |
| 01010114689     | 300          | 600          |     |
| 0411049284<br>3 | 0            | 0            |     |



#### ...og evalueres på en usett del av befolkningen

| Inntekt<br>2013 | Gjeld 2013 | ••• |          | Inntekt<br>2015 | Gjeld 2015 | ••• |
|-----------------|------------|-----|----------|-----------------|------------|-----|
| 535 000         | 400 000    |     | <b>→</b> | 600 000         | 3 500 000  |     |
| 379 000         | 14 000 000 |     |          | ???             | ???        |     |
| 800 000         | 5          |     |          | ???             | ???        |     |





# Modeller

## Lineær regresjon



#### Fordeler:

- Selve definisjonen på god tolkbarhet
- Rask og enkel å bruke

#### Ulemper:

• Gav resultater som var lite tilfredsstillende

### **Random forest**



#### Fordeler:

- Større muligheter for å finne komplekse, ulineære sammenhenger
- Rask og få parametre å skru på
- Relativt tolkbar

#### Ulemper:

 Gav ikke optimale resultater, særlig på felt med mange 0-verdier

## Gaussiske prosesser



#### Fordeler:

- Stort matematisk rammeverk for å analysere oppførsel
- Gav mindre avvik på fradragsfelt med mange 0-verdier

#### Ulemper:

 Tung både teoretisk og i ytelse - mindre "plug and play" enn Random Forest

### To-stegs-modeller



Gav mindre avvik for fradragsfelt som ofte er 0

### Nevrale nettverk



#### Fordeler:

- Raskt å komme i gang med
- Mest lovende teknikken i fagfeltet

#### Ulemper:

- Prediksjoner begrunnes ikke ("black box")
- Krever noe erfaring for enkelte datasett

## Modellvelgemodellen



Nevralt nettverk

Random forest

Gaussiske prosesser

Tostegs random forest

Sofus

# Resultater

## Fokuserte på et utvalg felter



1. Inntekt



2. Gjeld



3. Rentefradrag



4. Inntektsfradrag pensjonsinnskudd og fagforeningskontigent

### Sammenlignet med SOFUS

- Hvor stor del av befolkningen lager maskinlæringsmodellen en mer nøyaktig prognose enn Sofus?
- Hva er den relative reduseringen/økningen i avvik mellom faktisk skattegrunnlag og prognose?

### Mål: gjette inntekt



## Resultater per variabel

| Variabel      | Metode  | % bedre enn Sofus | % likt |
|---------------|---------|-------------------|--------|
| Inntekt       | NN, 2RF | 86%               | 0%     |
| Rentefradrag  | MVM     | 76%               | 0%     |
| Fagfor. kont. | GP      | 33%               | 30%    |
| Gjeld         | GP      | 30%               | 20%    |

### Prosessen, re-visited

- 1. Få tak i data (kaste terning)
- 2. Kverne data (bygge modeller)
- 3. Skape resultater (evaluere modellene)

# Erfaringer

### Ønsket tidsplan...



Forberede data



Kverne data



Skape resultater



### ...faktisk tidsbruk



Forberede data Kverne data

Skape resultater

tilpasset utviklingsprosess

Maskinlæring fordrer en

# Veien videre



# Spørsmål?