

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

Material original de Jordán Pascual Espada

v 1.3.3 Noviembre 2022

Robots móviles

Robots móviles

Arduino Compatible

• Arduino – Compatible (Chasis, motores, etc.).

Thingiverse

• Modelos para Arduino en Thingiverse

Usos comunes

Usos comunes I – Limpieza

- Limpieza
 - Hogar (LG LrV5900)
 - https://youtu.be/SvHQAMY5ws4
- Inspección y mantenimiento
 - Tuberías (Clean Bot)
 - https://youtu.be/2qrOUYe3vel
 - Piscinas (Verro iRobot)
 - https://youtu.be/1dHDOOYbTT8

Usos comunes II

- Exploración espacial
 - Mars Rover
 - https://youtu.be/p83pSCm5ZMU
- Logística
 - o Montacargas guiados para gestión de almacén (Amazon, HUCA, etc.)
 - Amazon: https://youtu.be/16WH-0 xCUs

Usos comunes III – Agricultura

- Plataforma robótica autónoma para realizar tareas
 - Prototipo: https://youtu.be/qR34 vWCtc
 - Robot SITIA: https://youtu.be/dmWz6mvF6Ck
 - http://www.sitia.fr/en/solution-innovation-en/systems-innovative/platform-pumagri/
 - Universidad de Sídney: https://youtu.be/NO8PmqEl0cc
- Tractor autónomo
 - https://youtu.be/nXO6b1ypZMc
- Varios
 - https://youtu.be/bpa1iiJmR3Q

Usos comunes IV

- Hospitales
 - Matsushita (transportador autónomo no controlado)
 - https://youtu.be/-LHvnkOXN88
- o Militar, vigilancia, ataque y defensa
 - https://youtu.be/hR2Sy29k7U0

Usos comunes V

• Transporte autónomo

https://youtu.be/trNhTNRatk8

https://youtu.be/trNhTNRatk8
Robotnik: https://youtu.be/X9qRK

Introducción

Introducción I

- La mayor parte se mueven en ambientes no estructurados
- o No está «totalmente claro» como moverse de un punto a otro
 - Desconocimiento del mapa
 - Posibles obstáculos
 - Falta de precisión
 - Otros...
- o Importancia de la información sensorial
 - Hardware
 - Laser, ultrasonidos, infrarrojos, cámaras, etc.
 - Software
 - o Visión por computador, detección de obstáculos y objetos, creación del mapa, ...
 - https://youtu.be/pQuUW3Jp8ic
- Sistemas de localización
 - o GPS, triangulación, etc.

Introducción II

- o Importancia del control de la trayectorias
 - o En que posición se encuentra usando su dirección y velocidad
 - o Giroscopio, inclinómetro, brújula, etc.

- Seguir objetivos/reglas
 - Ej.: seguir la línea o la luz, detectar obstáculos, hacer X trayectoria, ...
- Elaboración de mapas
 - o Información sensorial, odometría (estudio de posición según su navegación), visión por computador, etc.
 - Odometría visual: https://youtu.be/xe k6zRe65Y
- Generación de trayectorias globales (GGT)
 - Desde la base hasta el objetivo
- Generación de trayectorias locales (GLT)
 - Adaptación dinámica entorno
 - Ej.: esquivar obstáculos
- Otros
 - o Camino más corto o menos transitado, etc.

https://es.wikipedia.org/wiki/Inclin%C3%B3retro#/media/Archivo:Artificial_horizon.svg

Morfología

- Clasificación (muchas posibles)
 - Área de trabajo: interior y exterior
 - Agarre del suelo, pavimento irregular, viento/brisas, ...
 - Locomoción
 - Ruedas
 - Cadenas
 - Patas/Piernas
 - Aéreos
 - Acuáticos

Robots con ruedas

Robots con ruedas I

- o Algunas características son importantes y depende de la tarea
 - Capacidad de maniobrabilidad
 - Tracción
 - Capacidad de subir pendientes
 - Estabilidad
 - Otras...

o Tipos de ruedas

- o Motriz: proporciona la tracción, es la que da potencia
- o Directriz: proporciona orientación controlable, permite girar
- o Fija: gira en su eje, pero no tiene tracción propia
- Locas: tiene un eje orientable no controlado

o Tipos

• Uniciclo, triciclo, cuatriciclo y omnidireccionales

Robots con ruedas II – Uniciclo

- o Dos ruedas motoras sobre el mismo eje
- Una rueda loca
 - En ocasiones no tienen rueda loca, o tienen varias
- o Cinemática sencilla
 - Elegido por investigadores
- o Estructura mecánica y de control sencillas

Robots con ruedas III – Triciclo

- o Normalmente, la rueda central hace de tracción y dirección
- Dos ruedas fijas
- o El centro de gravedad está al límite de la superficie de equilibrio
 - o Pérdida de tracción y errores de posicionamiento del robot
- o Estructura mecánica y de control sencillas
- o Apto para el transporte de cargas pesadas a baja velocidad

Robots con ruedas IV – Cuatriciclo (Ackerman)

- Dos ruedas directrices delanteras
- Dos ruedas motoras traseras
- Mayor estabilidad, evita el deslizamiento en la ruedas y por lo tanto reduce los errores de odometría
- o Cinemática, estructura mecánica y electrónica de control no tan sencillas
- Son robots todoterreno que sirven para recolectar datos y reconstruir el entorno por el que andan

Robots con ruedas V – Omnidireccionales (Omniwheels)

- o Se pueden mover en cualquier dirección sin reorientarse
- Las ((omniwheels)) son unas ruedas especiales
 - https://youtu.be/b9ZpRqaRR6k y https://youtu.be/8T1zuztp5IQ
- Suelen utilizar modelos complejos de ruedas
 - https://youtu.be/5vJCucpVdX0

- Tienen una movilidad menos restringida
- o En algunos casos el movimiento en línea recta no es posible
- Las ventajas se ven disminuidas por la **complejidad mecánica y electrónica** necesarias para conservar una buena coordinación entre las ruedas
- Robocup: https://youtu.be/uEW1PX8BmRl
- Arduino e impresión 3D: https://blog.arduino.cc/2022/03/16/can-a-triangle-of-tank-tracks-outperform-omni-wheels/ y https://youtu.be/LqetZP7QTN8?t=660
- Casos reales
 - Aparcamiento de coches «similar»: https://youtu.be/yqXyvDe1wvA
 - KUKA: https://youtu.be/2O8Cj0XiRIM
 - Carretilla elevadora (https://ieeexplore.ieee.org/document/4694434)
 - Espacios reducidos (https://www.mdpi.com/1424-8220/17/9/2073)

Robots con ruedas – Tracción y dirección

Tracción y dirección en ejes independientes

- o Opción 1: TT
 - o Tracción en las ruedas traseras
 - o Dirección en ruedas delanteras
- o Opción 2: TD
 - o Dirección en las ruedas traseras
 - o Tracción en ruedas delanteras
- Características
- ✓ Control de dirección más sencillo
- **X** Precisión depende de la adherencia de las ruedas
- Xo Radio de giro muy elevado (TD > TT)
 - Uniciclo y Omniwheels sobre sí mismos

Tracción y dirección en el mismo eje

- o Conocida como tracción diferencial o locomoción diferencial
- o La dirección y la tracción están en el mismo eje (mismas ruedas)
 - La dirección se cambia usando la potencia de las ruedas motrices
- Usa
 - o Motores independientes en cada rueda motora en el mismo eje
 - [0 | 1 | 2] ruedas locas en los otros ejes

Características

- ✓o Construcción sencilla y barato
- ✓ o Giros de radio en base al tamaño del vehículo
- Xo Necesita motores idénticos para simplificar el control

Tracción y dirección sobre todos los ejes

- Destinado a terrenos hostiles
 - La velocidad es menos importante
 - La adherencia es muy importante
- o Sistema odométrico (hardware) muy complejo debido a la incertidumbre
- Características
- ✓ o Todoterreno
- Xo Incertidumbre en radios de giro
- Xo Odometría compleja
- Ejemplo real
 - Merceder AVTR
 - https://youtu.be/ChqM3zqTREQ
 - https://youtu.be/ekgUjyWe1Yc

Preguntas tema 5

ohttps://forms.office.com/r/MTnykzbmQy

Ejemplo básico

Componentes

- 2 sensores sigue líneas
- 2 servomotores para las Ruedas
- 1 sensor de ultrasonidos
- Batería
- Placa ZUM BT-328
 - o Basada en Arduino BT
- Descripción
 - https://youtu.be/qjHe129UpXk

Fotos del robot

Control de ruedas

- o Control de las ruedas (tracción y control en el mismo eje)
 - Girar sobre una rueda (Avanza una rueda)
 - Rueda 1: bloqueada
 - Rueda 2: girar (horario / anti horario)
 - Girar **sobre su propio eje** (No avanza)
 - Rueda 1: girar (horario / anti horario)
 - Rueda 2: girar en sentido contrario
 - Girar levemente (Avanza)
 - Rueda 1: girar lento (horario / anti horario)
 - o Rueda 2: girar en el mismo sentido, pero más rápido

Avanzar / Retroceder

- o Girar rueda 1 y rueda 2 en el mismo sentido
- o Para que avance en línea recta, los servomotores deben estar bien calibrados

Controlador reactivo simple I – Caminar sin pisar las líneas I

Controlador reactivo simple I – Caminar sin pisar las líneas II

- Algoritmo reactivo simple: caminar sin pisar las líneas
 - o Detecta: línea nada
 - o Girar ligeramente a la derecha, girando el motor de la izquierda más
 - o Detecta: nada línea
 - o Girar ligeramente a la izquierda, girando el motor de la derecha más
 - o Detecta: nada nada
 - Avanzar, girando ambos motores a la misma velocidad

Controlador reactivo simple II – Seguir la luz I

- Algoritmo reactivo simple: seguir la luz
 - o Detecta: luz más potente a la derecha
 - o Girar ligeramente a la derecha, girando el motor de la izquierda más
 - o Detecta: luz más potente a la izquierda
 - o Girar ligeramente a la izquierda, girando el motor de la derecha más
 - o Detecta: nada de luz
 - Movimiento aleatorio
 - o Movimiento predefinido: de frente hasta encontrar algo, etc.
 - o Memoria: ir al último punto donde se encontró luz
 - Movimiento espiral
 - o Ir moviéndose en espiral circular hacia el exterior hasta encontrar luz
 - o Ir moviéndose en espiral cuadrada hacia el exterior hasta encontrar luz
 - o Etc.

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

Material original de Jordán Pascual Espada

v 1.3.3 Noviembre 2022

Robots móviles