Reading Quiz #11

① This is a preview of the published version of the quiz

Started: Nov 18 at 8:11p.m.

Quiz Instructions

To prepare for this quiz, please read the following sections of the Kleinberg + Tardos textbook:

- Section 8.10
- One of sections 8.7, 8.8

The goal of this quiz is to lightly assess a first quick reading of these resources to prepare for class. You should definitely return to this material for a more thorough read to solidify your learning and prepare for assignments and exams.

Answer question 1, and either questions 2 and 3, or questions 4 and 5. The quiz will be graded out of 3 (although canvas does not know about this and will claim it is out of 5).

Question 1	1 pts
Which of the following problems are known to be NP-complete? Choos that apply.	e all
☐ Independent Set	
☐ Set Packing	
☐ Vertex Cover	
☐ Weighted Interval Scheduling Problem	
☐ Traveling Salesman	
☐ Longest Common Subsequence	
☐ Stable Marriage Problem	

Question 2	1 pts
Select every true statement about graph k-coloring.	
☐ The problem can be solved in polynomial time for some values of k	
☐ There is a relatively straightforward proof that every map is 4-colorable	
☐ Graph coloring has applications in compiler design.	
We can prove that the Graph 17-Coloring problem is NP-complete using reduction from Graph 3-Coloring problem.	a

Question 3	1 pts
Select every true statement about the reduction to prove the graph k-coloring is NP-complete described in the textbook.	
☐ The purpose of the vertex labeled B is to ensure that only two colors are for the vertices labeled with variable names.	e used
■ Every variable in the 3SAT instance is represented by two vertices in th constructed by the reduction.	e graph
Every clause in the 3SAT instance is represented by 5 vertices in the ground constructed by the reduction.	raph
☐ In order to obtain a valid reduction, we must use the subgraph shown in 8.12 to represent the clause v_1 v $\overline{v_2}$ v v_3 (no other subgraph will yield reduction).	_

Question 4 1 pts

Select every **true** statement about the Subset Sum problem. We will use *3DM* to refer to the 3-dimensional matching problem.

There are scheduling problems that can be proved N reduction from Subset Sum.	P-complete using a
■ The Subset Sum problem is NP-complete, independent the value of W.	ntly of any restrictions of
$lue{}$ Adding two integer values w_1 and w_2 takes time in ϵ	θ(w ₁ + w ₂).
Question 5	1 pts
•	prove the Subset Sum
Select every true statement about the reduction to problem is NP-complete. Numbers in the instance of Subset Sum generated by in base m+1, where m is the number of triplets in the	y the reduction are written
oroblem is NP-complete. Numbers in the instance of Subset Sum generated by	y the reduction are written e instance of 3DM. a 3n digits integer in the
oroblem is NP-complete. ☐ Numbers in the instance of Subset Sum generated by in base m+1, where m is the number of triplets in the ☐ Each triplet in the instance of 3DM is represented by instance of Subset Sum generated by the reduction,	y the reduction are written e instance of 3DM. a 3n digits integer in the where n is the size of the