

Introduction to ML

Aprendizaje automático

Crear *modelos* capaces de diferenciar elementos de acuerdo a sus características y agruparlos en órdenes o clases

- De forma automática: sin intervención humana
- □ Por inducción: a partir de ejemplos

Problema

Sistemas de predicción eólica

- Energía eólica: más del 18% de la energía total consumida en España.
- Limpia y sostenible.
- Difícil de controlar: ¿cuánto va a soplar el viento hoy?
- Usando modelos matemáticos pueden construirse sistemas para predecir cuánta energía va a generarse en las próximas horas.

Predicciones meteorológicas

Sistema de predicción

Predicciones de energía

Detección/prevención de fraude en medios de pago

- Uso extendido de las tarjetas de crédito.
- Problema: ¿cuándo alguién hace uso de mi tarjeta soy realmente yo o me están suplantando?
- Modelos matemáticos "aprenden" el comportamiento del usuario y del defraudador.
- Sistema implantado en los principales bancos de España.

Procesamiento de imágenes

¿Podrías distinguir las dos especies?

Predicción de marca

Finanzas

- Optimización avanzada
 - · Carteras de inversión
 - Index tracking
- Aprendizaje por refuerzo
 - Gestión dinámica de carteras
- Análisis de riesgos
 - Métodos Monte Carlo
 - Métodos bootstrap
 - Teoría de valores extremo

Recolección de datos

Selección de atributos y preprocesado

Think about the elements that distinguishes between numbers

Attributes:

- Pixels
- Edges
- ...

Selección de atributos y preprocesado

Applied process:

- 1. Crop each digit.
- Binarize image to black and white and center the digit in the image
- 3. Create a grid (17x9=153 attributes)
- 4. For each grid node we average the values of the 4 adjacent cells

Selección del modelo

Atr11

Which is the best model?

- Decision tree
- Ensemble
- SVM

Entrenamiento

Atr11

Split the data into training and test

The data in training is only used to train the model!!!

Validación

atr11

Validate the model using the left out data.

Test data

Entrenamiento de otro modelo

Configure the new model and train it

We have to use the same training data to be able to make a fair comparison!!!

Validación

atr11

Validate the new model with the same test data and compare results

Tipos de aprendizaje

- Supervidado
 - Clasificación: La variable de salida es categórica
 - Regresión: La variable de salida es numérica
- No supervisado
 - Clústering
 - Reglas asociativas
- Semi-supervisado
- Aprendizaje por refuerzo

Aprendizaje supervisado - Clasificación

- El objetivo es predecir la categoría de un nuevo objecto/instancia/observación
- La salida del Sistema es la etiqueta de clase

Longitud Sepal

Ejemplo: clasificar un product "good" o "bad" in control de

Longitud Sepal

n to ML

Supervised Learning - Regression

- Generalization of the classification problem
- The system output is a number / real vector
 - Example: to predict the temperature of the next week

Unsupervised Learning – Reglas asociativas

Example: Basket analysis

P(Y|X) probability that somebody who buys X also buys Y where X and Y are products/services $\Rightarrow P(\text{chips} | \text{beer}) = 0.7$

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Unsupervised Learning - Clustering

- The problem of organizing objects into groups that make sense: similar within cluster and dissimilar between clusters
- The system can organize objects in a hierarchical way
 - Example: to arrange plants in a taxonomy of species

Semisupervised

- People want better performance for free
 - unlabeled data is cheap
 - labeled data can be hard to get
 - human annotation is boring
 - labels may require experts
 - labels may require special devices

only labeled data

Goal

 Using both labeled and unlabeled data to build better learners than using each one alone

Reinforcement Learning

- Reinforcement Learning: the model interacts with the environment seeking ways to maximize the reward. There is a feedback from the environment.
- Objective: get as much rewards as possible.
- Trade-off between exploration and exploitation:
 - The agent has to exploit what it already knows in order to obtain reward.
 - The agent also has to *explore* in order to make better action selections

Reinforcement Learning

- Agent takes actions
 - Drone making a delivery
 - Estudiante realiza un examen
 - Autonomous car driving
- Actions (A) is the set of all possible moves that an agent can make
 - Aereal drones: different velocities and accelerations in 3D space

The goal of Reinforcement Learning is to learn a good strategy for the agent from experimental trials and feedback received.

Terminología: Atributos y ejemplos

Atributo = variable = característica = valores de entrada = variables independientes: Columnas de la tabla. Varios tipos

- Nominales o categóricas: P.e. color, ciudad,
- Numéricas: Altura

Clase o variable de salida o variable dependiente o etiqueta

Ejemplo (o caso o instancia o patrón): Conjunto de atributos etiquetados o no que representan un objeto

Se supone que las instancias de objetos de una misma clase tienen valores similares

Terminología: Atributos y ejemplos

- Cada ejemplo tiene:
 - un conjunto de atributos (o vector D-dimensional) llamado vector de atributos
 - Dependiendo del problema una etiqueta continua o discreta
- El espacio D-dimensional definido por este vector es el espacio de atributos con D el número de atributos
- Los ejemplos se representan como puntos en este espacio

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_d \end{bmatrix}$$

Vector de atributos

atributos

Feature 1

Datos

$$\mathcal{D} = \{ (\overline{x}_i, y_i), i = 1, 2, \dots, N \}$$

- D: Conjunto de datos de entrenamiento
- x;: Vector D-dimensinal de atributos del ejemplo i
- y; Etiqueta de clase del ejemplo i
- N: Número de ejemplos

Atributos y ejemplos

Conceptos relacionados con los atributos

- Recolección de datos
- Selección de atributos y preprocesado
 - Limpieza de datos: valores omitidos (missing values), gestión de anomalías (outliers), corrección de ruido, etc.
 - Integración de datos: Provenientes de distintas fuentes
 - Transformación: Construcción de atributos, PCA, equilibrado de clases, normalización
 - Reducción: reducción de dimensionalidad con PCA, etc.
 - Selección de atributos: Es un elemento crítico

What is a "good" vector of attributes?

The quality of a vector of attributes is related to its ability to discriminate examples from different classes:

- •The attributes of instances of the same class should have similar values
- •The attributes of instances from different classes should have different values

"Bad" features

- Recolección de datos
- Preprocesado Relacionado con el modelo elegido
 - Missing values
 - Detección de anomalías
 - Equilibrado de clases
 - Normalización de atributos
 - Conversión de atributos categóricos a continuos: One-hot encoding
 - Conversión de atributos continuos a categóricos: discretización

- Selección del modelo
- Entrenamiento
- Evaluación

- Selección del modelo:
 - Diversos modelos
 - Naive Bayes
 - Vecinos próximos
 - Modelos lineales
 - > SVM
 - Conjuntos de clasificadores
 - Redes neuronales
 - > Etc.
 - No solo es seleccionar el modelo sino también sus hiperparámetros
 - ¿Diferencia entre parámetros e hiperparámetros de un modelo?

- Selección del modelo:
 - Diversos modelos con algunos de sus hiperparámetros
 - Naive Bayes
 - > Vecinos próximos: número de vecinos
 - Modelos lineales: contante de aprendizaje
 - SVM: tipo de kernel, C, gamma
 - Conjuntos de clasificadores: profundidad árboles, etc.
 - Redes neuronales: Número de capas y sus tipos, solver, etc.
 - > Etc.
 - No solo es seleccionar el modelo sino también sus hiperparámetros
 - ¿Diferencia entre parámetros e hiperparámetros de un modelo?
 - ¿Diferencia entre métodos paramétricos y no parámétricos?

- Selección del modelo:
 - Diversos modelos ¿Son paramétricos?
 - Naive Bayes: Sí
 - Vecinos próximos: No
 - Modelos lineales: Sí
 - > SVM: No
 - Conjuntos de clasificadores: No
 - Redes neuronales: Sí
 - > Etc.
 - No solo es seleccionar el modelo sino también sus hiperparámetros
 - ¿Diferencia entre parámetros e hiperparámetros de un modelo?
 - ¿Diferencia entre métodos paramétricos y no parámétricos?

Entrenamiento/Validación

- Se usan los datos para entrenar muchos modelos y se elige el mejor modelo+configuración de hyperparámetros.
 - > Hay que definir qué es mejor -> métrica
 - Hay que elegir el proceso de validación

Selección de modelos

Menos complejos Menos flexibles Más robustos Tendencia a sub ajustar Más complejos Más flexibles Menos robustos Tendencia a sobre ajustar

Modelos

Steps to develop a prediction model: select models

Proceso de aprendizaje automático (parte ii)

- Métrica: define qué método es mejor
 - Clasificación:
 - > Error de generalización
 - Área bajo la curva (AUC)
 - Precisión/recall/F1
 - Regresión
 - Error cuadrático medio (MSE)
 - > Error absoluto medio (MAE)
 - Clústering
 - > AIC, BIC

Proceso de aprendizaje automático (parte ii)

- Métricas: visualización
 - Clasificación:
 - Matriz de confusión
 - Curva ROC
 - Regresión
 - > Gráfico de dispersión predicción vs. real

Matriz confusión y métricas

	True condition		
Total population	Condition positive	Condition negative	$= \frac{\frac{\text{Prevalence}}{\Sigma \text{ Condition positive}}}{\frac{\Sigma \text{ Total population}}{\sum \text{ Total population}}}$
Predicted condition positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$
Predicted condition negative	False negative (Type II error)	True negative	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$
Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	True positive rate (TPR), Sensitivity, Recall $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio $(LR+) = \frac{TPR}{FPR}$
	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR), Specificity (SPC) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio $(LR-) = \frac{FNR}{TNR}$

Steps to develop a prediction model: select models

- Sensibilidad ("sensitivity"), Recall :
 - De la clase (+) ¿qué fracción reconozco como (+)?. TPR
 Sens = TP
 TP + FN
 - Un valor alto de "Recall" significa que el algoritmo recupera más casos
- (+) que (-).□ Especifidad ("specificity"):
 - □ De la clase (-) ¿qué fracción reconozco como (-)?
- Exactitud ("accuracy")
 - Del total de la muestra ¿qué fracción clasifico bien, tanto (+) como (r)?+TP
- Precisión ("precision"):
 - Sobre lo clasificado como (+), ¿qué fracción es realmente (+)? $\frac{1}{TP + FP}$

Steps to develop a prediction model: select models

Ejemplo: (+) Estar enfermo, (-) Estar sano

- La sensibilidad nos indica la capacidad de nuestro estimador para dar como casos positivos:
 TP
 - los casos realmente enfermos;

 $Sens = \frac{TP}{TP + FN}$

proporción de enfermos correctamente identificados.

Es decir, la sensibilidad caracteriza la capacidad de la prueba para detectar la enfermedad en sujetos enfermos.

- La especificidad nos indica la capacidad de nuestro estimador para dar como casos negativos los casos realmente sanos;
 - proporción de sanos correctamente identificados.

Es decir, la especificidad caracteriza la capacidad de la prueba para detectar la ausencia de la enfermedad en sujetos sanos. TN

 $Spec = \frac{TN}{TN + FP}$

Curva ROC

Dispersión (regresión)

Proceso de aprendizaje automático (parte ii)

Proceso de validación

- Partición aleatoria simple de datos en train/validación/test: Solo si hay muchos datos
- Múltiples particiones aleatorias en partición de datos train/validación/test
- Validación cruzada en K-pliegues (K-fold cross validation)
- Leave-out-out : Solo si hay muy pocos datos

Pueden ser estratificados en clasificación

TRAINING

VALIDATION

TEST

K-fold cross-validation para K=4

- ¡¡¡Un buen proceso de validación debe ser un proceso anidado con dos niveles de validación!!!
- Veamos un ejemplo: Queremos comparar:
 - SVM: con kernel RBF y C={1, 1000} y gamma={0.001, 1}
 - Árbol de decisión con profundidad máxima={5, -1} y criterio={gini, entropy}
 - 3-fold cross-validation con 3-fold crossvalidation en entrenamiento

- Dividimos datos en 3 (1)+(2)+(3)
 - Train=(1)+(2) y Test (3)
 - Train=(1)+(3) y Test (2)
 - Train=(2)+(3) y Test (1)
 - En cada test solo se va a probar la mejor combinación de SVM con sus hiperparámetros y la mejor de DT con los suyos
 - Estos mejors hiperparámetros de obtendrán en train con otra validación cruzada

- Para cada Train dividimos los datos en 3 (1')+(2')+(3')
 - Train'=(1')+(2') y Validación (3')
 - Usamos train' para entrenar todas las posibles combinaciones de parámetros de SVM y DT
 - Las validamos en Validación con la métrica elegida
 - Train'=(1')+(3') y Validación (2')
 - > Idem
 - Train'=(2')+(3') y Validación (1')
 - > Idem
 - Seleccionamos la SVM y el DT con mejor resultado medio en Val
 - Esas combinaciones se usan para generar un modelo final usando todo el train (1')+(2')+(3') y se valida en Test

- Esto se denomina búsqueda en rejilla
- Mañana vamos a implementar esto en python con sklearn. Miraos
 - Kfold y StratifiedKFold
 - GridSearchCV
 - > scoring
 - > Pipeline
 - ▶ Grid
 - > kfold

