

Theory of Computation CSC 339 – Spring 2021

Chapter-1: part1Regular Languages

King Saud University

Department of Computer Science

Dr. Azzam Alsudais

Outline

- Midterm exam
- **Recap**
- **Introduction**
- Finite Automata (section 1.1 in the textbook)

Midterm Exam

Date: Thursday 25/2/2021 (13/07/1442)

>Time: 5:00-6:30pm

Midterm exam will make up 25% of the grade

>Topics included in the exam will be decided later.

Recap

- >Set: a group of (unordered) objects represented as a unit
- Sequence: a list of objects in some order
- Function: an object to set up input-output relationship
- Graph: a set of nodes with lines connecting some of the nodes
- Alphabet: a non-empty finite set
- >String: finite sequence of symbols from an alphabet

What is a computer?

What is a computer?

>Real computers are complicated.. Hard to set up a manageable mathematical theory of them directly.

- >What is a computer?
 - >Real computers are complicated.. Hard to set up a manageable mathematical theory of them directly.
 - So, we use an idealized (abstract) computer → computational model

- What is a computer?
 - >Real computers are complicated.. Hard to set up a manageable mathematical theory of them directly.
 - >So, we use an idealized (abstract) computer → computational model
- >We will start with the simplest model
 - >Finite state machine (FSM) or Finite Automaton

>What are Finite automata?

What are Finite automata?

>Good computational models for computers with extremely limited amount of memory.

- >What are Finite automata?
 - Good computational models for computers with extremely limited amount of memory.
 - >What can we do with such a small memory?

- >What are Finite automata?
 - Good computational models for computers with extremely limited amount of memory.
 - >What can we do with such a small memory?
 - Computers with limited memory are everywhere
 - >Embedded controllers...
 - >IoT..

Automatic door

- **Automatic door**
- >Two states:
 - **>OPEN**
 - **>CLOSED**

- **Automatic door**
- Two states:
 - **>OPEN**
 - **>CLOSED**
- >Input:
 - **≻Front**
 - **≻Rear**
 - **Both**
 - **≻Neither**

- **Automatic door**
- >Two states:
 - **POPEN**
 - **>CLOSED**
- >Input:
 - >Front
 - **≻Rear**
 - **≻Both**
 - **≻Neither**

Example..

→State transition table

Input signal

State

	Neither	Front	Rear	Both
Closed				
Open				

- >Types of finite automata
 - Deterministic finite automata (DFA)
 - Figure Given a word \underline{w} , the automaton will always end up in state \underline{q}

>Types of finite automata

- Deterministic finite automata (DFA)
 - For Figure 2. F
- Non-deterministic finite automata (NFA)
 - We cannot predict from \underline{w} alone which state the automaton will end up in.
 - >i.e., being in multiple states at once
 - >We will look at ways to convert NFA to DFA

- One of the goals of designing finite automata is to recognize languages.
 - >An alphabet specifies the symbols that a language may use.
 - >A language provides the specifications and requirements for strings that should be considered as instances of this language.
 - >A string is an instance representation of a given language such that it follows the rule of that language.

What makes a finite automaton?

>What makes a finite automaton?

```
>5-tuple (M)
>Finite set of states (Q)
>Alphabet (Σ)
>Transition function (δ: Q x Σ → Q)
>Start state (q₀ ∈ Q)
>Accept states (F ⊆ Q)
```

What makes a finite automaton?

>5-tuple (M)
>Finite set of states (Q)
>Alphabet (Σ)
>Transition function (δ: Q x Σ → Q)
>Start state (q₀ ∈ Q)
>Accept states (F ⊆ Q)

$$M = (Q, \Sigma, \delta, q_0, F)$$

- What makes a finite automaton?
 - >5-tuple (M)
 - >Finite set of states (Q)
 - \rightarrow Alphabet (Σ)
 - Transition function ($\delta: \mathbf{Q} \times \Sigma \to \mathbf{Q}$)
 - >Start state (q₀ ∈ Q)
 - →Accept states (F ⊆ Q)

$$M = (Q, \Sigma, \delta, q_0, F)$$

- What makes a finite automaton?
 - >5-tuple (M)
 - >Finite set of states (Q)
 - →Alphabet (∑)
 - Fransition function (δ: $\mathbf{Q} \times Σ → \mathbf{Q}$)
 - >Start state (q₀ ∈ Q)
 - Accept states (F ⊆ Q)

$$\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, q_0, F)$$

What makes a finite automaton?

- >5-tuple (M)
 - >Finite set of states (Q)
 - \rightarrow Alphabet (Σ)
 - → Transition function (δ : $\mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$)
 - >Start state (q₀ ∈ Q)
 - Accept states (F ⊆ Q)

Can we always describe an automaton using state diagrams?

$$M = (Q, \Sigma, \delta, q_0, F)$$

- >What makes a finite automaton?
 - >5-tuple (M)
 - >Finite set of states (Q)
 - \rightarrow Alphabet (Σ)
 - ightharpoonup Transition function (δ : $\mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$)
 - >Start state (q₀ ∈ Q)
 - →Accept states (F ⊆ Q)

Can we always describe an automaton using state diagrams?

If number of states is too large, we resort to formal description

$$M = (Q, \Sigma, \delta, q_0, F)$$

Finite Automata - Example

What strings does this automaton accept?

$$\Sigma =$$

$$pq_0 =$$

How can we tell if a language is recognized by an automaton?

Or how can we tell if a string would be accepted by a certain automaton?

 $w = a_1 a_2 a_3 ... a_n$ is a string over the alphabet Σ . Automaton *M* accepts wif a sequence of states $r_0, r_1 ..., r_n$ exists in *Q* such that:

>Three main conditions

$$\mathbf{1})\mathbf{r}_0=\mathbf{q}_0$$

 $w = a_1 a_2 a_3 ... a_n$ is a string over the alphabet Σ . Automaton *M* accepts wif a sequence of states $r_0, r_1 ..., r_n$ exists in *Q* such that:

>Three main conditions

$$\mathbf{1})\mathbf{r}_0=\mathbf{q}_0$$

The machine (automaton) starts in the start state

 $w = a_1 a_2 a_3 ... a_n$ is a string over the alphabet Σ . Automaton *M* accepts wif a sequence of states $r_0, r_1 ..., r_n$ exists in *Q* such that:

>Three main conditions

$$\mathbf{1})\mathbf{r}_0=\mathbf{q}_0$$

2)
$$r_{i+1} = \delta(r_i, a_{i+1}), \text{ for } i = 0, ..., n-1$$

 $^{>}$ w = a₁a₂a₃...a_n is a string over the alphabet Σ . Automaton *M* accepts wif a sequence of states r₀,r₁...,r_n exists in *Q* such that:

>Three main conditions

$$1)r_0 = q_0$$

2)
$$r_{i+1} = \delta(r_i, a_{i+1}), \text{ for } i = 0, ..., n-1$$

The machine goes from state to state according to the transition function

 $^{>}$ w = a₁a₂a₃...a_n is a string over the alphabet Σ . Automaton *M* accepts wif a sequence of states r₀,r₁...,r_n exists in *Q* such that:

>Three main conditions

$$\mathbf{1})\mathbf{r}_0=\mathbf{q}_0$$

2)
$$r_{i+1} = \delta(r_i, a_{i+1}), \text{ for } i = 0, ..., n-1$$

$$3)r_n \in F$$

 $w = a_1 a_2 a_3 ... a_n$ is a string over the alphabet Σ . Automaton *M* accepts wif a sequence of states $r_0, r_1 ..., r_n$ exists in *Q* such that:

>Three main conditions

1)
$$r_0 = q_0$$

2) $r_{i+1} = \delta (r_i, a_{i+1}), \text{ for } i = 0, ..., n-1$
3) $r_n \in F$

The machine accepts its input if it ends up in an accept state

 $w = a_1 a_2 a_3 ... a_n$ is a string over the alphabet Σ . Automaton *M* accepts wif a sequence of states $r_0, r_1 ..., r_n$ exists in *Q* such that:

>Three main conditions

$$\mathbf{1})\mathbf{r}_0=\mathbf{q}_0$$

2)
$$r_{i+1} = \delta(r_i, a_{i+1}), \text{ for } i = 0, ..., n-1$$

3)
$$r_n \in F$$

M recognizes language **A** if $A = \{w | M \text{ accepts } w\}$

Finite Automata - Regular Languages

A language is called a **regular language** if some finite automaton **recognizes** it.

Finite Automata - Example

What is the language recognized by this automaton?

 $>L(M) = \{w | w \text{ is } \epsilon \text{ or ends in a 0}\}$

>What tools can we use to manipulate finite automata?

- What tools can we use to manipulate finite automata?
- We will look at tools and techniques to help us recognize regular languages.

- What tools can we use to manipulate finite automata?
- We will look at tools and techniques to help us recognize regular languages.
- Regular operations
 - >Union
 - Concatenation
 - **≻Star**

- **Union**
- Concatenation
- **Star**

Finite Automata: Union Operation

```
A \cup B = \{x \mid x \in A \text{ or } x \in B\}
```

Binary operation (involving two sets)

Finite Automata: Concatenation Operation

```
A \circ B = \{xy \mid x \in A \text{ and } y \in B\}
Binary operation
Example:
   A = \{0,1,2,3,4,5,6,7,8,9\}
    B = \{A,B,C,D,E,...,Z\}
   x = CSC
    y = 339
   xy = CSC339
```

Finite Automata: Star Operation

- $A^* = \{x_1x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$
- >Unary operation
- Attach any number of strings in A together to get a string in the new language.
- The empty string (ϵ) is always a member of A*
- >Also called kleene star

Finite Automata: Operations - Example

```
    A = {fast, slow}
    B = {car, truck}
    A U B = {fast, slow, car, truck}
    A O B = {fastcar, fasttruck, slowcar, slowtruck}
    A* = {ε, fast, slow, fastfast, fastslow, slowslow, fastfastslow, fastfastfast, slowfastslow, ...}
```

A collection of objects is considered "*closed* under some operation" if applying that operation to members of the collection also returns an object still in the collection

A finite automaton (M₁) recognizes A₁, M₂ recognizes A₂.

Theorem 1.25

The class of regular languages is closed under the union operation

Proof by construction

Let M_1 recognize A_1 , where $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, and M_2 recognize A_2 , where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$

Proof by construction

Construct M to recognize A1 \cup A2, where M = (Q, Σ , δ , q₀, F)

- 1. $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$
 - this is equivalent to $Q_1 \times Q_2$ (Cartesian product)
- 2. Σ , the alphabet, is the same as in M₁ and M₂
- 3. $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ for each $(r_1, r_2) \in Q$ and each $a \in \Sigma$
- 4. q_0 is the pair (q_1, q_2)
- 5. $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Proof by construction

Construct M to recognize A1 \cup A2, where M = (Q, Σ , δ , q₀, F)

1.
$$Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$$

We can observe that every element of an ordered pair gives us a sequence of states from either machine M_1 or M_2

- 4. q_0 is the pair (q_1, q_2)
- 5. $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

3. $\delta((r_1)$

Homework

Exercise:

1.1, 1.2, and 1.6 (a-f)

Reading:

1.2