Espaces euclidiens II

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	\mathbf{Etu}	Etude de la dimension 2			
	1.1	Faits o	le base	2	
	1.2	Rotati	ons	3	
1.3		Angle orienté			
	1.4	Le pla	n euclidien $\mathbb C$	7	
		1.4.1	Propriétés et intérêt	7	
		1.4.2	Description des éléments de O (E) \SO (E)	9	
2	Étu	Étude de la dimension 3			
	2.1	Produ	it vectoriel	9	
		2.1.1	Théorème et définition		
		2.1.2	Propriétés du produit vectoriel	10	
		2.1.3	Produit scalaire dans une base orthonormée	11	
		2.1.4	Norme du produit scalaire	12	
		2.1.5	Double produit vectoriel		
2	2.2				
		2.2.1	Orientation d'un plan		
		2.2.2	Histoire		
3	Complément : identifier un endomorphisme en dimension 3				
	3.1	_,	préliminaire	15	
	3.2				
	3.3				
		=		17	

1 Étude de la dimension 2

Dans la suite, E est un plan euclidien orienté dont on note $\langle \cdot, \cdot \rangle$ le produit scalaire et $\| \cdot \|$ la norme euclidienne associée. On réutilisera très largement les notations et résultats développés dans Espace euclidiens I.

1.1 Faits de base

Complétion de base

Soit $a \in E$ unitaire, alors il existe un unique $b \in E$ tel que (a, b) est une base orthonormée directe. On note $b = \wedge a$.

En effet, on doit choisir b unitaire dans $\{a\}^{\perp}$ qui est un hyperplan de E, ici une droite vectorielle D = Vect (e) avec $e \in E \setminus \{0\}$. Pour $\alpha \in \mathbb{R}$, $\|\alpha e\| = 1 \Leftrightarrow |\alpha| = \frac{1}{\|e\|}$, ce qui laisse deux choix pour b: appelons les u et -u. Or les bases (a, u) et (a, -u) sont d'orientation opposées donc un seul choix convient.

Ensemble des vecteurs unitaires Soit (e_1, e_2) une base orthonormée directe de E. L'ensemble des vecteurs unitaires de E est alors $\{u_{\theta} | \theta \in \mathbb{R}\}$ où $u_{\theta} = \cos \theta e_1 + \sin \theta e_2$.

- En effet, il est clair que $||u_{\theta}||^2 = \cos^2 \theta + \sin^2 \theta = 1$.
- Si $a \in E$ est unitaire, a s'écrit $a = \alpha e_1 + \beta e_2$ avec $\alpha^2 + \beta^2 = 1$ donc $\exists \theta \in \mathbb{R}$ tel que $\alpha = \cos \theta$ et $\theta = \sin \theta$. De plus, $\forall \theta \in \mathbb{R}$, $v_{\theta} = \wedge u_{\theta} = -\sin \theta e_1 + \cos \theta e_2$. En effet, v_{θ} est aussi unitaire, orthogonal à u_{θ} car $\langle u_{\theta}, v_{\theta} \rangle = 0$ et

$$\mathcal{P}_{(e_1, e_2)}^{(u_\theta, v_\theta)} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

a pour déterminant 1.

Ainsi, (u_{θ}, v_{θ}) est une base orthonormée directe avec $u_{\theta} = \cos \theta e_1 + \sin \theta e_2$ et $v_{\theta} = \wedge u_{\theta} = -\sin \theta e_1 + \cos \theta e_2$

L'ensemble des bases orthonormées directes est donc $\{(u_{\theta}, v_{\theta}) | \theta \in \mathbb{R}\}.$

Remarque On a

$$\frac{\langle u_{\theta}, e_{1} \rangle}{\|u_{\theta}\| \|e_{1}\|} = \cos \theta \text{ et } [e_{1}, u_{\theta}] = \begin{vmatrix} 1 & \cos \theta \\ 0 & \sin \theta \end{vmatrix} = \sin \theta$$

Ainsi, si φ est l'angle géométrique de e_1 et u_θ , $\cos\theta = \cos\varphi$ et $\sin^2\theta = 1 - \cos^2\theta = 1 - \cos^2\varphi = \sin^2\varphi$ donc $|\sin\theta| = \sin\varphi$ car $\varphi \in [0, \pi]$.

Identité de LAGRANGE Soient $u, v \in E \setminus \{0\}$, φ l'angle géométrique de u et v, $a = \frac{u}{\|u\|}$, $a' = \wedge a$, $b = \frac{v}{\|v\|}$. On sait que b s'écrit dans la base orthonormée $(a, \wedge a) : b = \alpha a + \beta a'$ et

$$\begin{array}{rcl} \alpha & = & \langle a, b \rangle \\ & = & \left\langle \frac{u}{\|u\|}, \frac{v}{\|v\|} \right\rangle \\ & = & \frac{\langle u, v \rangle}{\|u\| \|v\|} \\ & = & \cos \varphi \end{array}$$

Or $1 = \|b\|^2 = \alpha^2 + \beta^2 = \cos^2 \varphi + \beta^2$ d'où $\sin^2 \varphi = \beta^2$. On a donc

$$\langle u, v \rangle = ||u|| ||v|| \left\langle \frac{u}{||u||}, \frac{v}{||v||} \right\rangle$$

$$= ||u|| ||v|| \cos \varphi$$

Mais aussi u = ||u|| a et v = ||v|| b d'où (par définition du produit mixte) :

$$[u, v] = \begin{vmatrix} ||u|| & ||v|| \cos \varphi \\ 0 & ||v|| \beta \end{vmatrix}$$

$$= ||u|| ||v|| \beta$$

On obtient ainsi l'inégalité de LAGRANGE :

$$\langle u, v \rangle^2 + [u, v]^2 = ||u||^2 ||v||^2 (\cos^2 \varphi + \sin^2 \varphi) = ||u||^2 ||v||^2$$

Cette égalité reste valable même si u ou v est nul.

Remarques $|[u,v]| = ||u|| ||v|| ||\beta|| = ||u|| ||v|| \sin \varphi$. On interprète le produit mixte comme l'aire du parallélogramme bâti sur les vecteurs u et v.

1.2 Rotations

On a vu que $SO_2(\mathbb{R}) = \{R_\theta | \theta \in \mathbb{R}\}$ où, pour $\theta \in \mathbb{R}$, $R_\theta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Grâce aux formules de trigonométrie, pour $\theta, \varphi \in \mathbb{R}$,

$$R_{\theta}R_{\varphi} = \begin{pmatrix} \cos(\theta + \varphi) & -\sin(\theta + \varphi) \\ \sin(\theta + \varphi) & \cos(\theta + \varphi) \end{pmatrix} = R_{\theta + \varphi}$$

Ainsi $SO_2(\mathbb{R})$ est un groupe commutatif, $\operatorname{car} \varphi + \theta = \theta + \varphi$.

Soit maintenant $f \in SO(E)$ et \mathcal{B} , \mathcal{B}' deux bases orthonormées directes de E. On sait que $\mathcal{P}_{\mathcal{B}}^{\mathcal{B}'} \in SO_2(\mathbb{R})$ et d'autre part, $\operatorname{Mat}_{\mathcal{B}}(f) \in SO_2(\mathbb{R})$ car \mathcal{B} est orthonormée. Ainsi, $\operatorname{Mat}_{\mathcal{B}'}(f) = \left(\mathcal{P}_{\mathcal{B}}^{\mathcal{B}'}\right)^{-1} \operatorname{Mat}_{\mathcal{B}}(f)\mathcal{P}_{\mathcal{B}}^{\mathcal{B}'} = \left(\mathcal{P}_{\mathcal{B}}^{\mathcal{B}'}\right)^{-1}\mathcal{P}_{\mathcal{B}}^{\mathcal{B}'}\operatorname{Mat}_{\mathcal{B}}(f) = \operatorname{Mat}_{\mathcal{B}}(f)$ car $SO_2(\mathbb{R})$ est commutatif. $\operatorname{Mat}_{\mathcal{B}}(f) = \operatorname{Mat}_{\mathcal{B}'}(f)$ donc il existe $\theta \in \mathbb{R}$ tel que pour toute base orthonormée directe \mathcal{B} , $\operatorname{Mat}_{\mathcal{B}}(f) = R_{\theta}$.

Théorème et définition

Soit $f \in SO(E)$, alors il existe un réel θ tel que pour toute basse orthonormée directe \mathcal{B} de E, $Mat_{\mathcal{B}}(f) = R_{\theta}$. On dit que f est une rotation dont l'angle est $\{\theta \in \mathbb{R} | \forall \mathcal{B} \text{ base orthonormée directe, } Mat_{\mathcal{B}}(f) = R_{\theta}\}$. Tout réel θ appartenant à cet angle est une mesure de l'angle.

Remarques

- \square Soit $f \in SO(E)$, θ une mesure de l'angle de f. Alors l'angle de f est $\theta + 2\pi \mathbb{Z}$.
- \Box On dira souvent par abus que f est la rotation d'angle θ , alors qu'il faudrait en toute rigueur dire que f est la rotation dont θ est une mesure de l'angle. On note alors $f = r_{\theta}$.

En effet, soit $\varphi \in \theta + 2\pi\mathbb{Z}$, $\cos \theta = \cos \varphi$ et $\sin \theta = \sin \varphi$ donc $R_{\theta} = R_{\varphi}$ donc φ est une mesure de l'angle de f. D'autre part, soit φ une mesure de l'angle de f, \mathcal{B} une base orthonormée, $R_{\theta} = \operatorname{Mat}_{\mathcal{B}}(f) = R_{\varphi}$ donc $\cos \theta = \cos \varphi$ et $\sin \theta = \sin \varphi$ donc $\varphi \in \theta + 2\pi\mathbb{Z}$.

Proposition Montrons que SO(E) est commutatif.

En effet, soient $f, g \in SO(E)$, \mathcal{B} une base orthonormée. On sait que $Mat_{\mathcal{B}}(f)$ et $Mat_{\mathcal{B}}(g)$ sont dans $SO_2(\mathbb{R})$ d'où, puisque $SO_2(\mathbb{R})$ est commutatif,

$$Mat_{\mathcal{B}}(g \circ f) = Mat_{\mathcal{B}}(f) Mat_{\mathcal{B}}(g)$$
$$= Mat_{\mathcal{B}}(g) Mat_{\mathcal{B}}(f)$$
$$= Mat_{\mathcal{B}}(f \circ g)$$

donc $f \circ g = g \circ f$. Si f est la rotation d'angle θ et g la rotation d'angle φ , alors $f \circ g$ est la rotation d'angle $\theta + \varphi$, c'est-à-dire $r_{\theta} \circ r_{\varphi} = r_{\theta + \varphi}$.

Remarque Soit $f \in SO(E)$, θ une mesure de l'angle de f, \mathcal{B} une base orthonormée directe et \mathcal{C} une base orthonormée indirecte. $\operatorname{Mat}_{\mathcal{B}}(f) \in \operatorname{SO}_2(\mathbb{R})$ et $\mathcal{P}_{\mathcal{B}}^{\mathcal{C}} \in \operatorname{O}_2(\mathbb{R}) \setminus \operatorname{SO}_2(\mathbb{R})$ donc $\exists \psi \in \mathbb{R}$ tel que $\mathcal{P}_{\mathcal{B}}^{\mathcal{C}} = S_{\psi}$ où

$$S_{\psi} = \begin{pmatrix} \cos \psi & \sin \psi \\ \sin \psi & -\cos \psi \end{pmatrix}$$

On a de plus, en faisant le produit matriciel, $\forall \phi \in \mathbb{R}, S_{\phi}^2 = I_2 \text{ donc } \forall M \in O_2(\mathbb{R}) \setminus SO_2(\mathbb{R}), M^2 = I_2.$

Soit maintenant $M \in \mathcal{O}_2(\mathbb{R}) \setminus \mathcal{SO}_2(\mathbb{R})$, $N \in \mathcal{O}_2(\mathbb{R})$. Alors $MN \in \mathcal{O}_2(\mathbb{R})$ et $\det MN = \det M \det N = -1$ donc $MN \in \mathcal{O}_2(\mathbb{R}) \setminus \mathcal{SO}_2(\mathbb{R})$ donc $(MN)^2 = MNMN = \mathcal{I}_2$ donc

$$N^{-1} = MNM = M^{-1}NM$$

 $\operatorname{car} M^2 = I_2 \Rightarrow M = M^{-1}.$

Ici, si on pose $P = \mathcal{P}_{\mathcal{B}}^{\mathcal{C}} \in \mathcal{O}_2(\mathbb{R}) \backslash \mathcal{SO}_2(\mathbb{R}),$

$$\operatorname{Mat}_{\mathcal{C}}(f) = P^{-1}\operatorname{Mat}_{\mathcal{B}}(f)P$$

$$= P\operatorname{Mat}_{\mathcal{B}}(f)P$$

$$= (\operatorname{Mat}_{\mathcal{B}}(f))^{-1}$$

$$= R_{\theta}^{-1}$$

Or $R_{\theta}R_{-\theta} = R_0 = I_2 \Rightarrow R_{\theta}^{-1} = R_{-\theta}$ d'où $\operatorname{Mat}_{\mathcal{C}}(f) = R_{-\theta}$. Si on change l'orientation de E, R_{θ} est transformée en $R_{-\theta}$.

Théorème

Soient $a, b \in E$ unitaires. Alors il existe une unique $f \in SO(E)$ telle que f(a) = b.

Démonstration

Unicité: supposons l'existence de f. On sait que f transforme toute base orthonormée directe en base orthonormée directe, or $(a, \wedge a)$ est une base orthonormée directe donc $(f(a), f(\wedge a))$ aussi a. Or f(a) = b donc $f(\wedge a)$ est l'unique vecteur b' de E tel que (b, b') soit une base orthonormée directe donc $f(\wedge a) = \wedge b$. Les valeurs de f sont imposées sur $(a, \wedge a)$ d'où l'unicité.

Existence : soit f l'unique application linéaire définie sur la base $(a, \land a)$ par f(a) = b et $f(\land a) = \land b$. f transforme une base orthonormée directe en base orthonormée directe, c'est donc un élément de SO (E) qui change a en b.

1.3 Angle orienté

Soient $u, v \in E \setminus \{0\}$. On appelle angle orienté de u et v et on note $\widehat{(u,v)}$ l'unique rotation qui change $\frac{u}{\|u\|}$ en $\frac{v}{\|v\|}$. Tout réel $\theta \in \widehat{(u,v)}$ est une mesure de cet angle.

On a tout de suite que si $\theta \in \widehat{(u,v)}$, alors $\widehat{(u,v)} = \theta + 2\pi\mathbb{Z}$. On dira parfois que θ est l'angle $\widehat{(u,v)}$, mais c'est un abus.

Lien entre angle géométrique et angle orienté Soient $u, v \in E \setminus \{0\}$, φ l'angle géométrique entre u et v, θ une mesure de $\widehat{(u,v)}$, $a = \frac{u}{\|u\|}$, $b = \frac{v}{\|v\|}$. On sait que $\cos \varphi = \langle a,b \rangle$ et $\varphi \in [0,\pi]$. Plaçons nous dans la base orthonormée directe $(a, \wedge a)$. Par définition de θ , $r_{\theta}(a) = b$ donc ,puisque $(a, \wedge a)$ est une base orthonormée directe,

$$\operatorname{Mat}_{(a,\wedge a)}(r_{\theta}) = R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

D'où $b = r_{\theta}(a) = \cos \theta a + \sin \theta \wedge a$. On a alors

$$\langle b, a \rangle = \langle a \cos \theta + \wedge a \sin \theta, a \rangle$$

$$= \cos \theta$$

On en déduit $\cos \theta = \cos \varphi$ et $\sin^2 \theta = \sin^2 \varphi \Leftrightarrow |\sin \theta| = \sin \varphi^b$. Or

$$[a, b] = \det_{(a, \land a)} (a, b)$$
$$= \begin{vmatrix} 1 & \cos \theta \\ 0 & \sin \theta \end{vmatrix}$$
$$= \sin \theta$$

- Si
$$[a, b] \ge 0$$
, alors $\theta \equiv \varphi$ $[2\pi]$.
- Si $[a, b] < 0$, alors $\theta \equiv -\varphi$ $[2\pi]$.

a. « $Comme\ F\'elicie\,!$ »

b. Voir le calcul déjà effectué de la page 2.

Remarques

 \square Si θ est une mesure de l'angle orienté $\widehat{(u,v)}$, alors

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|} \text{ et } \sin \theta = \frac{[u, v]}{\|u\| \|v\|}$$

Ces deux relations permettent de donner θ à 2π près.

 \square Si θ est une mesure de $\widehat{(u,v)}$ et que l'on choisit l'orientation opposée, alors $-\theta$ devient une mesure du nouvel angle $\widehat{(u,v)}$. En particulier, il est toujours possible de choisir une orientation sur E telle que l'angle orienté coïncide avec l'angle géométrique.

 \square Si \mathcal{B} est une base orthonormée directe,

$$\operatorname{Mat}_{\mathcal{B}}\left(r_{\pi/2}\right) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ et } \operatorname{Mat}_{\mathcal{B}}\left(r_{-\pi/2}\right) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

 \square Soit $a = \alpha e_1 + \beta e_2$ unitaire où $\mathcal{B} = (e_1, e_2)$ une base orthonormée, on a donc $r_{\pi/2}(a) = -\beta e_1 + \alpha e_2 = \wedge a$ et $r_{-\pi/2}(a) = \beta e_1 - \alpha e_2 = - \wedge a$.

Relations de Chasles

Soient $u, v, w \in E \setminus \{0\}$, alors on a les égalités entre ensembles suivantes :

$$\mathbf{\Box}(\widehat{u,v}) = -(\widehat{v},\widehat{u});$$

$$\widehat{\Box(u,w)} = \widehat{(u,v)} + \widehat{(v,w)}.$$

Démonstration Posons $u' = \frac{u}{\|u\|}$, $v' = \frac{v}{\|v\|}$ et $w' = \frac{w}{\|w\|}$.

Soit θ une mesure de $\widehat{(u,v)}$, alors $r_{\theta}(u') = v'$ d'où $r_{-\theta}(v') = u'$ donc $-\theta$ est une mesure de $\widehat{(v,u)}$ donc $\widehat{(v,u)} = -\theta + 2\pi\mathbb{Z} = -(\theta + 2\pi\mathbb{Z})$.

Soit φ une mesure de $\widehat{(u,w)}$, alors $w=r_{\varphi}(v)=r_{\varphi}(r_{\theta}(u))=r_{\varphi+\theta}(u)$ donc $\theta+\varphi$ est une mesure de $\widehat{(u,w)}=\theta+\varphi+2\pi\mathbb{Z}=(\theta+2\pi\mathbb{Z})+(\varphi+2\pi\mathbb{Z}).$

Conservation de l'angle orienté

Soient $u, v \in E \setminus \{0\}$:

- (1) si $f \in SO(E)$, alors $\widehat{(u,v)} = (f(\widehat{u}), \widehat{f}(v))$;
- (2) si $f \in \mathcal{O}(E) \setminus \mathcal{SO}(E)$, $\widehat{(u,v)} = -(\widehat{f(u)}, \widehat{f(v)})$.

Démonstration

(1) Si $f \in O(E)$ et $x \neq 0_E$, $f(x) \neq 0_E$ donc il est légitime de considérer (f(u), f(v)). Soit $r \in SO(E)$ telle que $r\left(\frac{u}{\|u\|}\right) = \frac{v}{\|v\|}$. Alors

$$r\left(\frac{f(u)}{\|f(u)\|}\right) = \frac{1}{\|f(u)\|}r \circ f(u)$$

$$= \frac{1}{\|u\|}r \circ f(u) \text{ car } f \text{ conserve la norme}$$

$$= \frac{1}{\|u\|}f \circ r(u) \text{ car SO } (E) \text{ est commutatif}$$

$$= f\left(r\left(\frac{u}{\|u\|}\right)\right)$$

$$= f\left(\frac{v}{\|v\|}\right)$$

$$= \frac{1}{\|v\|}f(v)$$

$$= \frac{f(v)}{\|f(v)\|}$$

d'où
$$\widehat{(u,v)} = (\widehat{f(u)}, \widehat{f(v)}).$$

(2) On a vu que $\forall M \in \mathcal{O}_2(\mathbb{R}) \setminus S\mathcal{O}_2(\mathbb{R}), \ \forall N \in S\mathcal{O}_2(\mathbb{R}), \ M^2 = \mathcal{I}_2 \Leftrightarrow M^{-1} = M \text{ et } N^{-1} = MNM \Leftrightarrow MN^{-1} = NM.$ On en déduit aussitôt que $\forall r \in S\mathcal{O}(E), \ \forall g \in \mathcal{O}(E) \setminus S\mathcal{O}(E), \ g \circ r^{-1} = r \circ g$. Ici, si $f \in \mathcal{O}(E) \setminus S\mathcal{O}(E)$,

$$r^{-1}\left(\frac{f(u)}{\|f(u)\|}\right) = \frac{1}{\|f(u)\|}r^{-1} \circ f(u)$$

$$= \frac{1}{\|u\|}f \circ r(u)$$

$$= f \circ r\left(\frac{u}{\|u\|}\right)$$

$$= f\left(\frac{v}{\|v\|}\right)$$

$$= \frac{f(v)}{\|f(v)\|}$$

d'où le résultat.

1.4 Le plan euclidien $\mathbb C$

1.4.1 Propriétés et intérêt

 \square On munit $\mathbb C$ du produit scalaire canonique $\langle z,z'\rangle=\Re (\overline zz')$, et on l'oriente par le choix de la base canonique (1,i). La norme euclidienne de $z\in\mathbb C$ est $\|z\|^2=\langle z,z'\rangle=\Re (\overline zz)=|z|^2$ donc

$$||z|| = |z|$$

 \square Soit $\theta \in \mathbb{R}$, r la rotation d'angle θ . On sait que

$$\operatorname{Mat}_{(1,i)}(r) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

d'où $r(1) = e^{i\theta}$ et $r(i) = ie^{i\theta}$. Pour $z = x + iy \in \mathbb{C}$ avec $x, y \in \mathbb{R}$, $r(z) = xr(1) + yr(i) = xe^{i\theta} + iye^{i\theta} = (x + iy)e^{i\theta}$ d'où

$$r_{\theta}\left(z\right) = z\mathrm{e}^{i\theta}$$

Soit maintenant E un plan euclidien orienté, $\mathcal{B}=(e_1,e_2)$ une base orthonormée directe, $\psi_{\mathcal{B}}$ l'unique application linéaire de E dans \mathbb{C} telle que $\psi_{\mathcal{B}}(e_1)=1$ et $\psi_{\mathcal{B}}(e_2)=i$. $\psi_{\mathcal{B}}$ transforme une base en une base donc c'est un isomorphisme. Pour $u \in E$, $z=\psi_{\mathcal{B}}(u) \in \mathbb{C}$ s'appelle l'affixe de u et pour $z \in \mathbb{C}$, $u=\psi_{\mathcal{B}}^{-1}(z)$ est l'image de z. Si $u=ae_1+be_2$, alors z=a+ib.

Soient $u, v \in E$ d'affixes z et z', alors $\langle u, v \rangle = \Re e(\overline{z}z')$ et ||u|| = |z|. Ainsi, $\psi_{\mathcal{B}}$ est une isométrie et (1, i) est une base orthonormée directe de \mathbb{C} . De plus $\widehat{(u, v)} = \widehat{(z, z')}$

N'importe quel énoncé de géométrie euclidienne dans un espace abstrait possède un équivalent dans \mathbb{C} . On peut donc utiliser \mathbb{C} pour résoudre tous les problèmes de géométrie plane.

 \square Pour $z, z' \in \mathbb{C}^*$, on écrit $z = |z| e^{i\theta}$ et $z' = |z'| e^{i\varphi}$. θ et φ sont des mesures de $\widehat{(1,z)}$ et $\widehat{(1,z')}$ donc

$$e^{i(\varphi-\theta)}\frac{z}{|z|} = e^{i\varphi} = \frac{z'}{|z'|}$$

donc $\varphi - \theta$ est une mesure de $\widehat{(z,z')}$. Ainsi,

$$\widehat{(z,z')} = \arg\left(\frac{z'}{z}\right)$$

 \square Au passage, si $u \in E$, on appelle système de coordonnées polaires de u dans \mathcal{B} tout couple (r,θ) tel que $u = r\cos\theta e_1 + r\sin\theta e_2$. Si z est l'affixe de u, (r,θ) est un système de coordonnées polaires de u dans E si et seulement si (r,θ) est un système de coordonnées polaires de z dans \mathbb{C} , c'est-à-dire si $z = re^{i\theta}$.

Su $u \neq 0$, $\exists \theta \in \mathbb{R}$ tel que $(\|u\|, \theta)$ est un système de coordonnées polaires de u. On prend en effet pour θ un argument de z. Les systèmes de coordonnées polaires de u sont alors éléments de

$$\{(\|u\|, \theta + 2k\pi) | k \in \mathbb{Z}\} \cup \{(-\|u\|, \theta + \pi + 2k\pi) | k \in \mathbb{Z}\}$$

1.4.2 Description des éléments de $O(E) \setminus SO(E)$

□ Soit $f \in O(E) \setminus SO(E)$, $\exists \varphi \in \mathbb{R}$ tel que pour toute base orthonormée \mathcal{B} de E, $\operatorname{Mat}_{\mathcal{B}}(f) = S_{\varphi} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$. $S_{\varphi}^2 = I_2$ donc f est une symétrie. Soit

$$\widetilde{f}: \mathbb{C} \longrightarrow \mathbb{C}$$

$$z = a + ib \mapsto \text{affixe de } f(ae_1 + be_2)$$

$$\widetilde{f} \in \mathcal{O}(\mathbb{C}) \setminus \mathcal{SO}(\mathbb{C})$$
 et $\mathrm{Mat}_{(1,i)}\left(\widetilde{f}\right) = S_{\varphi}$ donc, pour $z = x + iy$,

$$\widetilde{f}(z) = x\widetilde{f}(1) + y\widetilde{f}(i)$$

$$= xe^{i\varphi} - ie^{i\varphi}y$$

$$= e^{i\varphi}(x - iy)$$

$$= \overline{z}e^{i\varphi}$$

□ On remarque de plus que $\widetilde{f}\left(\mathrm{e}^{i\varphi/2}\right) = \mathrm{e}^{i\varphi/2}$ et $\widetilde{f}\left(i\mathrm{e}^{i\varphi/2}\right) = -i\mathrm{e}^{i\varphi/2}$ donc $f\left(u_{\varphi/2}\right) = u_{\varphi/2}$ et $f\left(v_{\varphi/2}\right) = -v_{\varphi/2}$. On sait que $E = \mathrm{Ker}\left(f - \mathrm{Id}_{E}\right) \oplus \mathrm{Ker}\left(f + \mathrm{Id}_{E}\right)$, or $u_{\varphi/2} \in \mathrm{Ker}\left(f - \mathrm{Id}_{E}\right) \setminus \{0\}$ donc dim $\mathrm{Ker}\left(f - \mathrm{Id}_{E}\right) \geqslant 1$ et $v_{\varphi/2} \in \mathrm{Ker}\left(f + \mathrm{Id}_{E}\right) \setminus \{0\}$ donc dim $\mathrm{Ker}\left(f + \mathrm{Id}_{E}\right) \geqslant 1$. Or dim $\mathrm{Ker}\left(f - \mathrm{Id}_{E}\right) + \dim \mathrm{Ker}\left(f + \mathrm{Id}_{E}\right) = \dim E = 2$ donc dim $\mathrm{Ker}\left(f - \mathrm{Id}_{E}\right) = 1$ et dim $\mathrm{Ker}\left(f + \mathrm{Id}_{E}\right) = 1$ d'où

$$\operatorname{Ker}(f - \operatorname{Id}_E) = \operatorname{Vect}(u_{\varphi/2})$$
 et $\operatorname{Ker}(f + \operatorname{Id}_E) = \operatorname{Vect}(v_{\varphi/2})$

f est donc la symétrie orthogonale par rapport à Vect $(u_{\varphi/2})$.

Bilan

|SO(E)| est l'ensemble des rotations, $O(E) \setminus SO(E)$ est l'ensemble des réflexions.

2 Étude de la dimension 3

Dans la suite, E est un espace euclidien orienté de dimension 3 dont on note $\langle \cdot, \cdot \rangle$ le produit scalaire et $\| \cdot \|$ la norme associée.

2.1 Produit vectoriel

2.1.1 Théorème et définition

Soient $x, y \in E$, il existe un unique $w \in E$ tel que $\forall z \in E$, $[x, y, z] = \langle w, z \rangle$. w s'appelle le produit vectoriel de x et y et se note $x \wedge y$.

En effet, $\psi: z \in E \longrightarrow [x, y, z] \in \mathbb{R}$ est linéaire d'après les propriétés du déterminant, c'est donc une forme linéaire sur \mathbb{R} . Ainsi, d'après les propriétés des formes linéaires a il existe un unique $w \in E$ tel que $\psi = \langle w, \cdot \rangle$.

Remarque Soit \mathcal{B} une base orthonormée directe, \mathcal{C} une base orthonormée indirecte.

Alors $\operatorname{Mat}_{\mathcal{B}}(x, y, z) = \mathcal{P}_{\mathcal{B}}^{\mathcal{C}} \operatorname{Mat}_{\mathcal{C}}(x, y, z)$ et $\mathcal{P}_{\mathcal{B}}^{\mathcal{C}} \in \operatorname{O}_{3}(\mathbb{R}) \setminus \operatorname{SO}_{3}(\mathbb{R})$ donc $\langle w, z \rangle = \operatorname{det}_{\mathcal{B}}(x, y, z) = -\operatorname{det}_{\mathcal{C}}(x, y, z)$ donc $\operatorname{det}_{\mathcal{C}}(x, y, z) = -\langle w, z \rangle = \langle -w, z \rangle$.

Si on change d'orientation sur E, le produit scalaire est changé.

2.1.2 Propriétés du produit vectoriel

Bilinéarité $(x,y) \in E^2 \longrightarrow x \land y \in E$ est bilinéaire.

En effet, montrons par exemple la linéarité par rapport à x. Soit $x, x', y \in E$ et $\alpha \in \mathbb{R}$, alors $\forall z \in \mathbb{R}$,

$$\begin{aligned} \left[\alpha x + x', y, z\right] &= \alpha \left[x, y, z\right] + \left[x', y, z\right] \\ &= \alpha \left\langle x \wedge y, z\right\rangle + \left\langle x' \wedge y, z\right\rangle \\ &= \left\langle \alpha x \wedge y + x' \wedge y, z\right\rangle \end{aligned}$$

Ce qui prouve que $\alpha x \wedge y + x' \wedge y = (\alpha x + x') \wedge y$. La bilinéarité entraîne de plus que x = 0 ou $y = 0 \Rightarrow x \wedge y = 0$.

Antisymétrie $(x,y) \in E^2 \longmapsto x \land y \in E$ est antisymétrique, c'est-à-dire que $\forall x,y \in E, \ x \land y = -y \land x$. En effet, $\forall z \in E$,

$$[y,x,z] = -[x,y,z]$$
 car le déterminant est antisymétrique
$$= -\langle x \wedge y,z \rangle$$
$$= \langle -x \wedge y,z \rangle$$

En particulier, $(x,y) \in E^2 \longrightarrow x \land y \in E$ est alternée, c'est-à-dire que $\forall x,y \in E, x \land x = 0$ et (x,y) liée entraı̂ne $x \land y = 0$.

Double orthogonalité $\forall x, y \in E, x \land y \in \text{Vect}(x, y)^{\perp} = \{x, y\}^{\perp}.$

En effet, puisque le déterminant est alterné, $\langle x \wedge y, x \rangle = [x, y, x] = 0$ et $\langle x \wedge y, y \rangle = [x, y, y] = 0$.

Lien avec les familles libre et les base directes

Pour $x, y \in E$:

- (1) (x,y) liée $\Leftrightarrow x \land y = 0$;
- (2) (x,y) libre $\Rightarrow (x,y,x \land y)$ est une base directe de E.

En effet, montrons (2) et pour cela supposons (x, y) libre. Soit $z \in E$ tel que (x, y, z) soit une base. Ainsi, $\langle x \wedge y, z \rangle = [x, y, z] \neq 0$ donc $x \wedge y \neq 0_E$. On a alors

$$[x, y, x \land y] = \langle x \land y, x \land y \rangle$$
$$= \|x \land y\|^2 > 0$$

d'où (2). Pour (1), on a vu (x,y) liée $\Rightarrow x \land y = 0$ et (x,y) libre $\Rightarrow x \land y \neq 0$ d'où l'équivalence demandée.

a. Voir section 25.3.3 du cours complet page 489.

2.1.3 Produit scalaire dans une base orthonormée

 \square Soit (e_1, e_2, e_3) une base orthonormée directe de E. Alors

$$e_1 \wedge e_2 = e_3 = -e_2 \wedge e_1, \quad e_2 \wedge e_3 = e_1 = -e_3 \wedge e_2 \text{ et } e_3 \wedge e_1 = e_2 = -e_1 \wedge e_3$$

En effet, soit $z \in E$, $z = \alpha e_1 + \beta e_2 + \gamma e_3$.

$$[e_1, e_2, z] = \det_{(e_1, e_2, e_3)} (e_1, e_2, z)$$

$$= \begin{vmatrix} 1 & 0 & \alpha \\ 0 & 1 & \beta \\ 0 & 0 & \gamma \end{vmatrix}$$

$$= \gamma$$

$$= \langle e_3, z \rangle \text{ car } (e_1, e_2, e_3) \text{ est orthonormée}$$

On a donc $e_3 = e_1 \wedge e_2$. Ensuite, (e_1, e_2, e_3) est une base orthonormée directe et $[e_2, e_3, e_1] = -[e_2, e_1, e_3] = +[e_1, e_2, e_3]$ donc (e_2, e_3, e_1) est aussi une base orthonormée directe donc ,d'après ce qui précède, $e_2 \wedge e_3 = e_1$. De même, (e_3, e_1, e_2) est une base orthonormée directe donc $e_3 \wedge e_1 = e_2$.

 \square Soient $a, b \in E$ unitaires et orthogonaux. Alors $a \wedge b$ est l'unique vecteur c de E tel que (a, b, c) soit une base orthonormée directe.

En effet, si $c \in E$ est tel que (a,b,c) est une base orthonormée directe, on doit avoir $c \in \text{Vect }(a,b)^{\perp}$, or dim $\text{Vect }(a,b)^{\perp} = 1$ car (a,b) est libre donc il existe $e \in E$ unitaire tel que $\text{Vect }(a,b)^{\perp} = \text{Vect }(e)$. c s'écrit donc $c = \alpha e$ avec $\alpha \in \mathbb{R}$, or $\|c\| = 1 \Leftrightarrow \|\alpha e\| = 1 \Leftrightarrow |\alpha| = 1 \Leftrightarrow \alpha \in \{\pm 1\} \Leftrightarrow c = \pm e$. Or (a,b,e) et (a,b,-e) sont deux bases orthonormées d'orientation opposées donc un seul choix convient pour obtenir une base orthonormée directe.

Soit donc $c \in E$ tel que (a, b, c) soit une base orthonormée directe. Alors on a vu que $a \land b = c$.

 \square Soit (e_1, e_2, e_3) une base orthonormée directe, $x = \alpha e_1 + \beta e_2 + \gamma e_3$, $x' = \alpha' e_1 + \beta' e_2 + \gamma' e_3$. Calculons $x \wedge x'$.

$$x \wedge x' = (\alpha e_1 + \beta e_2 + \gamma e_3) \left(\alpha' e_1 + \beta' e_2 + \gamma' e_3\right)$$

$$= \alpha \alpha' \underbrace{e_1 \wedge e_1}_{0} + \alpha \beta' \underbrace{e_1 \wedge e_2}_{e_3} + \alpha \gamma' \underbrace{e_1 \wedge e_3}_{-e_2} + \beta \alpha' \underbrace{e_2 \wedge e_1}_{-e_3} + \beta \beta' \underbrace{e_2 \wedge e_2}_{0} + \beta \gamma' \underbrace{e_2 \wedge e_3}_{e_1}$$

$$+ \gamma \alpha' \underbrace{e_3 \wedge e_1}_{e_2} + \gamma \beta' \underbrace{e_3 \wedge e_2}_{-e_1} + \gamma \gamma' \underbrace{e_3 \wedge e_3}_{0}$$

$$\Rightarrow x \wedge x' = (\beta \gamma' - \gamma \beta') e_1 - (\alpha \gamma' - \gamma \alpha') e_2 + (\alpha \beta' - \beta \alpha') e_3$$

Pour s'en rappeler, on peut développer le faux déterminant suivant par rapport à la troisième colonne :

$$\begin{vmatrix} \alpha & \alpha' & e_1 \\ \beta & \beta' & e_2 \\ \gamma & \gamma' & e_3 \end{vmatrix} = \begin{vmatrix} \beta & \beta' \\ \gamma & \gamma' \end{vmatrix} e_1 - \begin{vmatrix} \alpha & \alpha' \\ \gamma & \gamma' \end{vmatrix} e_2 + \begin{vmatrix} \alpha & \alpha' \\ \beta & \beta' \end{vmatrix} e_3$$

Illustration : recherche d'équation cartésienne Soient $u, v \in \mathbb{R}^3$ avec (u, v) libre. On cherche une équation cartésienne du plan P = Vect (u, v). Posons $w = u \wedge v$, $P^{\perp} = \text{Vect } (w)$ donc $P = \{w\}^{\perp}$. Si $w = (\alpha, \beta, \gamma)$, l'équation cartésienne de P est alors $\alpha x + \beta y + \gamma z = 0$.

D'une autre façon:

$$X = (x, y, z) \in P \quad \Leftrightarrow \quad \det(u, v, X) = 0$$

$$\Leftrightarrow \quad \begin{vmatrix} u_1 & v_1 & \alpha \\ u_2 & v_2 & \beta \\ u_3 & v_3 & \gamma \end{vmatrix}$$

2.1.4 Norme du produit scalaire

Soient $x, y \in E \setminus \{0\}$, θ l'angle géométrique de x et y. Alors

$$||x \wedge y|| = ||x|| \, ||y|| \sin \theta$$

On en déduit que $\forall x, y \in E, \langle x, y \rangle^2 + \|x \wedge y\|^2 = \|x\|^2 \|y\|^2$.

Démonstration

- Si $\theta \in \{0, \pi\}$, (x, y) est liée et $x \wedge y = 0$, on a bien 0 = ||x|| ||y|| 0.
- Si $\theta \in]0, \pi[, (x, y)$ est libre. Soit donc $e_1 = \frac{x}{\|x\|}, e_2$ tel que (e_1, e_2) soit une base orthonormée de Vect (x, y)

et
$$e_3 = e_1 \wedge e_2$$
, ainsi (e_1, e_2, e_3) est une base orthonormée directe. On a $\frac{y}{\|y\|} = \alpha e_1 + \beta e_2$ où $\alpha = \left\langle e_1, \frac{y}{\|y\|} \right\rangle$

et
$$\frac{\langle x,y\rangle}{\|x\| \|y\|} = \cos\theta$$
 donc $\alpha = \cos\theta$ et $1 = \left\|\frac{y}{\|y\|}\right\|^2 = \alpha^2 + \beta^2$ d'où $\beta^2 = \sin^2\theta \Leftrightarrow |\beta| = \sin\theta$. $x = \|x\| e_1$, $y = \|y\| \cos\theta e_1 + \|y\| \beta e_2$ d'où

$$x \wedge y = \|x\| \|y\| \cos \theta \underbrace{e_1 \wedge e_1}_{0} + \|x\| \|y\| \beta \underbrace{e_1 \wedge e_2}_{e_3}$$

$$\Rightarrow ||x \wedge y|| = ||x|| \, ||y|| \, |\beta| = ||x|| \, ||y|| \sin \theta$$

- Montrons maintenant le corollaire. Si x ou y est nul, $\langle x, y \rangle^2 = 0 = \|x \wedge y\|^2 = \|x\|^2 \|y\|^2$. Si $x, y \in E \setminus \{0\}$, en notant θ l'angle géométrique de x et y, $\langle x, y \rangle = \|x\| \|y\| \cos \theta$ et $\|x \wedge y\| = \|x\| \|y\| \sin \theta$ d'où le résultat a.

Remarques $\square \|x \wedge y\| = \|x\| \|y\| \Leftrightarrow \sin \theta = 1 \Leftrightarrow x \perp y.$

 \square Si (e_1, e_2, e_3) est une base orthonormée, $\alpha, \alpha', \beta, \beta', \gamma, \gamma' \in \mathbb{R}$, $x = \alpha e_1 + \beta e_2 + \gamma e_3$, $x' = \alpha' e_1 + \beta' e_2 + \gamma' e_3$, alors d'après l'égalité vectorielle du théorème, on a

$$(\alpha^2 + \beta^2 + \gamma^2)(\alpha'^2 + \beta'^2 + \gamma'^2) = (\alpha\alpha' + \beta\beta' + \gamma\gamma')^2 + (\beta\gamma' - \gamma\beta')^2 + (\alpha\gamma' - \gamma\alpha')^2 + (\alpha\beta' - \beta\alpha')^2$$

En arithmétique, cela démontre que tout nombre produit de sommes de trois carrés s'écrit comme la somme de quatre carrés b .

2.1.5 Double produit vectoriel

Soient $a, b, c \in E$, alors

$$a \wedge (b \wedge c) = b \langle a, c \rangle - c \langle a, b \rangle$$

On en déduit tout de suite :

$$(a \wedge b) \wedge c = -c \wedge (a \wedge b)$$
$$= -(a \langle b, c \rangle - b \langle a, c \rangle)$$
$$= b \langle a, c \rangle - a \langle b, c \rangle$$

Démonstration

- Si b ou c est nul, c'est vérifié. On supposera dans la suite b, c ∈ E\{0}.
- Si (b,c) est liée, $\exists \alpha \in \mathbb{R}$ tel que $c = \alpha b$ donc $b \wedge c = 0$ donc $a \wedge (b \wedge c) = 0$. De plus, $b\langle a,c\rangle c\langle a,b\rangle = b\langle a,\alpha b\rangle \alpha b\langle a,b\rangle = 0$.
- a. Afin d'éclairer nos chers lecteurs blonds venant d'Angers, il est à noter que $\sin^2\theta + \cos^2\theta = 1$.
- b. Pour répondre à l'éventuelle question de nos lecteurs angevins chevelus, cela ne sert effectivement pas à grand chose.

- Si (b,c) est libre, soit $e_1 = \frac{b}{\|b\|}$, e_2 tel que (e_1,e_2) est une base orthonormée de (b,c) et $e_3 = e_1 \wedge e_2$. On a alors $b = \|b\| e_1 = \alpha e_1$, $c = \beta e_1 + \gamma e_2$ et $a = \lambda e_1 + \mu e_2 + \nu e_3$, donc $\langle a,c \rangle = \lambda \beta + \mu \gamma$, $\langle a,b \rangle = \lambda \alpha$ d'où

$$b\langle a, c \rangle - c\langle a, b \rangle = \alpha e_1 (\lambda \beta + \mu \gamma) - \lambda \alpha (\beta e_1 + \gamma e_2)$$
$$= \mu \gamma \alpha e_1 - \lambda \alpha \gamma e_2$$

D'autre part, $b \wedge c = \alpha \gamma e_3$ donc

$$a \wedge (b \wedge c) = \alpha \gamma (\lambda e_1 + \mu e_2 + \nu e_3) \wedge e_3$$
$$= \alpha \gamma (-\lambda e_2 + \mu e_1)$$
$$= \alpha \gamma \mu e_1 - \lambda \alpha \gamma e_2$$

2.2 Le groupe orthogonal en dimension 3

E est toujours un espace euclidien orienté de dimension 3.

2.2.1 Orientation d'un plan

□ Soit $a \in E$ unitaire, $P = \{a\}^{\perp}$, $\mathcal{B} = (e_1, e_2)$, $\mathcal{B}' = (e'_1, e'_2)$ deux bases de P. Alors (a, e_1, e_2) et (a, e'_1, e'_2) sont deux bases de E et

$$\det \mathcal{P}_{(a,e_1,e_2)}^{(a,e_1',e_2')} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \\ 0 & \mathcal{P}_{\mathcal{B}}^{\mathcal{B}'} \end{vmatrix}$$
$$= \det \mathcal{P}_{\mathcal{B}}^{\mathcal{B}'}$$

On définit une orientation sur P en décrétant qu'une base $\mathcal{B}=(e_1,e_2)$ de \mathcal{B} est directe si et seulement si (a,e_1,e_2) est une base directe de E déjà orienté.

 \square Mais on a aussi $P = \{-a\}^{\perp}$ et, si $\mathcal{B} = (e_1, e_2)$ est une base orthonormée de P, $(-a, e_1, e_2)$ est une base orthonormée de E et

$$\det \mathcal{P}_{(a,e_1,e_2)}^{(-a,e_1,e_2)} = \begin{vmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1$$

Si on choisit -a, c'est l'orientation opposée qui est choisie pour P. Plus généralement, $\forall t > 0$, ta détermine la même orientation sur P que a et $\forall t < 0$, ta détermine sur P la même orientation que -a.

2.2.2 Histoire

Il était une fois $f \in O(E)$...

 \square Choisissons $a \in E$ unitaire tel que $f(a) = \lambda a$, soit $P = \{a\}^{\perp}$. Alors P est orienté par le choix de a et stable par f: soit $z \in P$, montrons que $f(z) \in P$.

$$\langle f(z), a \rangle = \langle f(z), \pm f(a) \rangle$$

= $\langle z, \pm a \rangle$ car f conserve le produit scalaire
= $\pm \langle z, a \rangle$
= $0 \text{ car } z \in \{a\}^{\perp}$

 \square Soit φ l'endomorphisme de P induit par f. Pour $z \in P$, $\|\varphi(z)\| = \|f(z)\| = \|z\|$ donc $\varphi \in O(P)$ et dim P = 2. φ est donc une rotation ou une réflexion, nombre de situations doublé par les deux valeurs possibles de λ .

(1) $\lambda = 1$ et φ est une réflexion. Soit $e_1 \in P$ tel que φ est la réflexion d'axe $D = \text{Vect } (e_1)$ dans P, $e_2 = a \wedge e_1$. Alors $e_2 \in P$ et (e_1, e_2) est une base orthonormée directe de P. De plus $f(e_2) = \varphi(e_2) = -e_2$ donc

$$\operatorname{Mat}_{(a,e_1,a \wedge e_1)}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

On reconnait en f la réflexion de E de plan $Vect(a, e_1)$.

(2) $\lambda = -1$ et φ est une réflexion. Soit $e_1 \in P$ tel que φ est la symétrie orthogonale par rapport à Vect (e_1) , $e_2 = a \land e_1 \in P$. (a, e_1, e_2) est alors une base orthonormée directe de E, et

$$\operatorname{Mat}_{(a,e_1,e_2)}(f) = \begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{pmatrix}$$

On reconnait là que f est la symétrie orthogonale par rapport à $Vect(e_1)$.

On appelle retournement ou demi-tour toute symétrie orthogonale par rapport à une droite vectorielle.

(3) $\lambda = 1$ et φ est une rotation de P orienté par le choix de a, on le rappelle. Ainsi $\exists \theta \in \mathbb{R}$ tel que pour toute base orthonormée directe (e_1, e_2) de P, $\operatorname{Mat}_{(e_1, e_2)}(\varphi) = R_{\theta}$. Soit maintenant (e_1, e_2) une base orthonormée directe de P, donc (a, e_1, e_2) est une base orthonormée directe de E et

$$\operatorname{Mat}_{(a,e_1,e_2)}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

- Pour $\theta \in \pi + 2\pi \mathbb{Z}$, f est le demi-tour d'axe Vect (a).
- $\operatorname{Si} \theta \in 2\pi \mathbb{Z}, f = \operatorname{Id}_{E}.$

Dans les autres cas, f s'appelle la rotation d'axe dirigé et orienté par a et d'angle θ et se note $R_{a,\theta}$.

Si $x = \alpha a + y$ avec $\alpha \in \mathbb{R}$ et $y \in P^a$, $f(x) = \alpha a + r_{\theta}(y)$ où r_{θ} est la rotation de P d'angle θ . De plus, $R_{a,\theta} = R_{-a,-\theta}$ car -a définit l'orientation opposée de P.

Réciproquement, soit $R_{a,\theta}$ la rotation d'axe dirigé et orienté par a et d'angle θ . Alors, si (e_1, e_2) est une base orthonormée de $\{a\}^{\perp}$,

$$\operatorname{Mat}_{(a,e_1,e_2)}(R_{a,\theta}) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix} = M_{\theta}$$

On a bien $M_{\theta} \in \mathcal{O}_3(\mathbb{R})$ et (a, e_1, e_2) est une base orthonormée directe. Mieux, $\det M_{\theta} = 1$ donc $M_{\theta} \in \mathcal{SO}_3(\mathbb{R})$ donc $R_{a,\theta} \in \mathcal{SO}(E)$.

(4) $\lambda = -1$ et $\varphi \in SO(P)$. $\exists \theta \in \mathbb{R}$ tel que $\varphi = r_{\theta}$, d'où pour $x = \alpha a + y$ avec $y \in P$, $\alpha \in \mathbb{R}$, $f(x) = -\alpha a + r_{\theta}(y)$. Ainsi, si (e_1, e_2) est une base orthonormée de P,

$$\operatorname{Mat}_{(a,e_1,e_2)}(f) = \begin{pmatrix} -1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

a. On rappelle que $E = \mathbb{R}\alpha \oplus P$.

Soit $R_{a,\theta}$ la rotation d'axe dirigé et orienté par a et d'angle θ , σ_P la réflexion de plan $P = \{a\}^{\perp}$. Alors

$$\sigma_{P} \circ R_{a,\theta} (\alpha a + y) = \sigma_{P} (-\alpha a + y)$$

$$= -\alpha a + r_{\theta} (y)$$

$$= f (\alpha a + y)$$

$$R_{a,\theta} \circ \sigma_{P} (\alpha a + y) = R_{a,\theta} (\alpha a + r_{\theta} (y))$$

$$= -\alpha a + r_{\theta} (y)$$

$$= f (\alpha a + y)$$

f est la composée commutative de la rotation d'axe dirigé et orienté par a et d'angle θ et de la réflexion de plan $\{a\}^{\perp}$.

Bilan

SO(E) est composé :

- $\operatorname{de} \operatorname{Id}_E;$
- des rotations axiales $R_{a,\theta}$ où $a \in E$ unitaire et $\theta \in 2\pi \mathbb{Z}^a$.
- $O(E) \setminus SO(E)$ est composé :
- des réflexions;
- des composées commutatives $R_{a,\theta} \circ \sigma_P$
 - a. Ce qui comprend les demi-tours.

3 Complément : identification de la nature d'un endomorphisme en dimension 3

On se donne $M \in \mathcal{O}_3(\mathbb{R})$, et on muni \mathbb{R}^3 orienté par le choix de la base canonique du produit scalaire canonique. Comment identifier géométriquement $f \in \mathcal{O}(\mathbb{R}^3)$ telle que $\operatorname{Mat}_{BC_3}(f) = M$?

3.1 Étude préliminaire

- \square Si on ne dit pas que M est orthogonale, penser à le prouver. Il suffit pour cela de vérifier que les vecteurs colonnes sont bien de norme 1 et deux à deux orthogonaux.
 - \square On calcule le déterminant de M, on a même besoin que de son signe :
 - si det M > 0, alors, puisque $M \in \mathcal{O}_3(\mathbb{R})$, $M \in \mathcal{SO}_3(\mathbb{R})$ donc $f \in \mathcal{SO}(\mathbb{R}^3)$;
 - $\operatorname{si} \det M < 0$, alors $M \in \mathcal{O}_3(\mathbb{R}) \setminus S\mathcal{O}_3(\mathbb{R})$ donc $f \in \mathcal{O}(\mathbb{R}^3) \setminus S\mathcal{O}(\mathbb{R}^3)$.

3.2 Si f est dans SO (\mathbb{R}^3)

 \Box f est une rotation donc $\exists a \in E$ unitaire, $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}^b$ tels que $f = R_{a,\theta}$. On a alors pour $x = \alpha a + y$ avec $\alpha \in \mathbb{R}$ et $y \in \{a\}^{\perp}$, $f(x) = \alpha a + r_{\theta}(y)$ donc

$$f(x) = x \Leftrightarrow y = r_{\theta}(y)$$

 $\Leftrightarrow \left(r_{\theta} - \operatorname{Id}_{\{a\}^{\perp}}\right)(y) = 0$

Or

$$\det \left(r_{\theta} - \operatorname{Id}_{\{a\}^{\perp}} \right) = \begin{vmatrix} \cos \theta - 1 & -\sin \theta \\ \sin \theta & \cos \theta - 1 \end{vmatrix}$$
$$= (\cos \theta - 1)^{2} + \sin^{2} \theta$$
$$= 2(1 - \cos \theta)$$

b. On suppose en effet $f \neq \mathrm{Id}_{\mathbb{R}^3}$, dans ce cas $M = \mathrm{I}_3$, ce qui est plutôt facile à identifier, sauf peut-être lorsque l'on vient d'Angers et que l'on est blond, mais là c'est une autre histoire.

Comme $\theta \notin 2\pi \mathbb{Z}$, $\det \left(r_{\theta} - \operatorname{Id}_{\{a\}^{\perp}}\right) \neq 0$ donc $\left(r_{\theta} - \operatorname{Id}_{\{a\}^{\perp}}\right)(y) = 0 \Leftrightarrow y = 0 \Leftrightarrow x \in \operatorname{Vect}(a)$. On a donc

$$R_{a,\theta}(x) = x \Leftrightarrow x \in \text{Vect}(a)$$

On obtient donc $\operatorname{Vect}(a)$ de $R_{a,\theta}$ en trouvant les $x \in E$ tels que f(x) = x, ce qui se fait en résolvant le système MX - X = 0. On doit normalement trouver une droite vectorielle Δ . Il y a deux choix possibles pour l'orientation du Δ , pour décider on choisit a unitaire sur Δ donc on a $\Delta = \operatorname{Vect}(a)$.

 \square On sait que $P = \{a\}^{\perp}$, et puisque $f = R_{a,\theta}$, si $(\varepsilon_1, \varepsilon_2)$ est une base orthonormée directe de P,

$$\operatorname{Mat}_{(a,\varepsilon_{1},\varepsilon_{2})}(f) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

D'où $\operatorname{Tr} M = \operatorname{Tr} \left(\operatorname{Mat}_{\operatorname{BC}_3} \left(f \right) \right) = \operatorname{Tr} \left(\operatorname{Mat}_{\left(a, \varepsilon_1, \varepsilon_2 \right)} \left(f \right) \right)$ donc on en déduit $\operatorname{Tr} M = 1 + 2 \cos \theta$ d'où

$$\cos \theta = \frac{\operatorname{Tr} M - 1}{2}$$

 \square Notons $BC_3 = (e_1, e_2, e_3)$, soit $x \in E$ non colinéaire à a avec $x = \alpha a + y$ avec $\alpha \in \mathbb{R}$, $y = \lambda \varepsilon_1 + \mu \varepsilon_2$ et $(\varepsilon_1, \varepsilon_2)$ une base orthonormée directe de P. Alors

$$[a, x, f(x)] = \det_{(a, \varepsilon_1, \varepsilon_2)} (a, x, f(x))$$

$$= \begin{vmatrix} 1 & \alpha & \alpha \\ 0 & \lambda & \lambda \cos \theta - \mu \sin \theta \\ 0 & \mu & \lambda \sin \theta + \mu \cos \theta \end{vmatrix}$$

$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} \lambda & \lambda \cos \theta - \mu \sin \theta \\ \mu & \lambda \sin \theta + \mu \cos \theta \end{vmatrix}$$

$$= (\lambda^2 + \mu^2) \sin \theta$$

Or $\lambda^2 + \mu^2 > 0$ car $y \neq 0$ donc $\sin \theta$ est du signe de [a, x, f(x)]. Mais on a aussi

$$\operatorname{sgn}(\sin \theta) = \operatorname{sgn}[a, x, f(x)] = \operatorname{sgn} \det_{BC_3}(a, x, f(x))$$

Pour simplifier les calculs, on choisit x parmi les vecteurs de BC₃ non colinéaires à a, f(x) est déjà exprimé dans M. Connaissant $\cos \theta$ et le signe de $\sin \theta$, on détermine θ à 2π près, et ainsi on caractérise complètement f.

3.3 Si $f \in O(\mathbb{R}^3) \setminus SO(\mathbb{R}^3)$

 \square Si M est symétrique, c'est-à-dire si $^{\mathrm{T}}M=M$, alors f est un endomorphisme symétrique de \mathbb{R}^3 , c'est-à-dire $f^2=\mathrm{Id}_{\mathbb{R}^3}$. f ne peut être une symétrie par rapport à une droite, car dans ce cas $f\in\mathrm{SO}\left(\mathbb{R}^3\right)$. C'est donc une réflexion, ou $f=-\mathrm{Id}_{\mathbb{R}^3}$. En écartant le dernier cas, il nous faut déterminer le plan P de la réflexion. Or

$$P = \operatorname{Ker}\left(f - \operatorname{Id}_{\mathbb{R}^3}\right)$$

que l'on trouve en résolvant MX - X = 0.

□ Si M n'est pas symétrique, $f = R_{a,\theta} \circ \sigma_{\{a\}^{\perp}}$ avec $a \in E$ unitaire, $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$. On trouve $\Delta = \text{Vect }(a) = \{x \in E | f(x) = -x\}$ en résolvant le système MX + X = 0. On choisit a unitaire sur cette droite, déterminant l'orientation de $\{a\}^{\perp}$. Reste à trouver θ . Or, pour toute base orthonormée directe $(\varepsilon_1, \varepsilon_2)$ de $\{a\}^{\perp}$,

$$\operatorname{Mat}_{(a,\varepsilon_1,\varepsilon_2)}(f) = \begin{pmatrix} -1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

a. Là encore, à moins de venir d'Angers et d'avoir les cheveux couleur d'or, alors on saura reconnaître dès le début M comme étant $-I_3$.

Par conservation de la trace par changement de base,

$$\cos \theta = \frac{\operatorname{Tr} M + 1}{2}$$

et $\sin \theta$ est du signe du produit mixte [a, x, f(x)] où $x \in \mathbb{R}^3 \setminus \text{Vect}(a)$, que l'on prend en pratique comme étant un vecteur de BC₃ non colinéaire à a.

3.4 Illustration

On demande d'identifier l'endomorphisme f de \mathbb{R}^3 dont la matrice relativement à la base canonique est :

$$A = \frac{1}{9} \begin{pmatrix} 8 & 1 & -4 \\ -4 & 4 & -7 \\ 1 & 8 & 4 \end{pmatrix}$$

□ Vérifions que $A \in O_3(\mathbb{R})$: 8 - 16 + 8 = 0, -4 - 28 + 32 = 0, -32 + 28 + 4 = 0, $\frac{1}{9}(8^2 + 4^2 + 1^2) = 1$ et enfin on a bien $\frac{1}{9}(4^2 + 7^2 + 4^2) = 1$. Calculons maintenant det A:

$$\frac{1}{9^{3}} \begin{vmatrix} 8 & 1 & -4 \\ -4 & 4 & -7 \\ 1 & 8 & 4 \end{vmatrix} = \frac{1}{9^{3}} \begin{vmatrix} 9 & 1 & -4 \\ 0 & 4 & -7 \\ 9 & 8 & 4 \end{vmatrix} C_{1} \leftarrow C_{1} + C_{2}$$

$$= \frac{1}{9^{2}} \begin{vmatrix} 1 & 1 & -4 \\ 0 & 4 & -7 \\ 0 & 7 & 8 \end{vmatrix} L_{3} \leftarrow L_{3} - L_{1}$$

$$= \frac{1}{9^{2}} \cdot 1 \cdot (-1)^{1+1} \begin{vmatrix} 4 & -7 \\ 7 & 8 \end{vmatrix}$$

$$= \frac{4 \times 8 + 7 \times 7}{81}$$

$$= 1$$

 $\det A = 1 \text{ donc } f \in SO(\mathbb{R}^3).$

 \square Résolvons le système AX - X = 0 d'inconnue $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$:

$$\begin{cases} 8x_1 + x_2 - 4x_3 = 9x_1 \\ -4x_1 + 4x_2 - 7x_3 = 9x_2 \\ x_1 + 8x_2 + 4x_3 = 9x_3 \end{cases} \Leftrightarrow \begin{cases} -x_1 + x_2 - 4x_3 = 0 \\ -4x_1 - 5x_2 - 7x_3 = 0 \\ x_1 + 8x_2 - 5x_3 = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} -x_1 + x_2 - 4x_3 = 0 \\ -9x_2 + 9x_3 = 0 \end{cases} \qquad L_2 \leftarrow L_2 - 4L_1$$
$$9x_2 - 9x_3 = 0 \qquad L_3 \leftarrow L_3 + L_1$$
$$\Leftrightarrow \begin{cases} x_1 = -3x_2 \\ x_2 = x_3 \end{cases}$$

Ainsi, Ker $(f - \mathrm{Id}_{\mathbb{R}^3})$ = Vect (-3, 1, 1) donc on prend $a = \frac{(-3, 1, 1)}{\|(-3, 1, 1)\|} = \frac{(-3, 1, 1)}{\sqrt{11}}$. $\square f = R_{a,\theta}$ avec

$$\cos \theta = \frac{\operatorname{Tr} M - 1}{2}$$
$$= \frac{7}{18}$$

d'où $\cos \theta \in \pm \arccos\left(\frac{7}{18}\right) + 2\pi\mathbb{Z}$. Enfin, trouvons le signe de $\sin \theta$; c'est celui de

$$\begin{vmatrix} -3 & 1 & 8 \\ 1 & 0 & -4 \\ 1 & 0 & 1 \end{vmatrix} = \frac{1 \cdot (-1)^{1+2}}{9\sqrt{11}} \begin{vmatrix} 1 & -4 \\ 1 & 1 \end{vmatrix}$$
$$= -\frac{5}{9\sqrt{11}} < 0$$

Finalement,

$$\theta \in -\arccos\left(\frac{7}{18}\right) + 2\pi\mathbb{Z}$$