P1 de Álgebra Linear I – 2001.2 Data: Sábado, 15 de setembro de 2001.

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revis.	Questão	Valor	Nota	Revis.
1a	0.5			3a	0.5		
1b	0.5			3b	0.5		
1c	0.5			3c	0.5		
1d	0.5			3d	0.5		
1e	0.5			3e	0.5		
2a	0.5			4a	0.5		
2b	0.5			4b	0.5		
2c	0.5			4c	0.5		
2d	0.5			4d	1.0		
2e	0.5						
Total	10.0						

Instruções:

- Não é permitido usar calculadora. Mantenha o celular desligado.
- Justifique todas as respostas. Escreva de forma clara, legível e organizada.
- Em cada uma das questões da prova não haverá pontuação parcial Verifique cuidadosamente suas respostas.
- Faça a prova na sua turma.

- 1) Sejam $u \in v$ vetores unitários de \mathbb{R}^3 .
- a) Suponha que $(u+v)\cdot(u+v)=(u-v)\cdot(u-v)$. Calcule o ângulo formado pelos vetores $u\in v$.
- **b)** Suponha que $(u+v)\cdot(u+v)=(u-v)\cdot(u-v)+2\sqrt{2}$. Calcule o ângulo formado pelos vetores $u\in v$.
- c) Suponha que $u \times v = \overline{0} = (0, 0, 0)$. Calcule $|u \cdot v|$.
- d) Considere um vetor n. Sabendo que $n \cdot (u \times v) = 5$, calcule $v \cdot (n \times u)$
- e) Considere um vetor não nulo n. Calcule $u \cdot (n \times n)$.
 - 2) Considere o plano π : x y + z = 2.
- a) Determine a equação cartesiana do plano ρ paralelo a π que contém a origem.
- b) Determine as equações paramétricas de π .
- c) Calcule a distância entre os planos π e ρ (onde ρ é o plano obtido em (a)).
- d) Calcule o ponto de ρ mais próximo do ponto (1,0,1) de π .
- e) Determine um triângulo retângulo com dois vértices em π e um vértice em ρ .
- 3) Considere a reta r_1 dada como intersecção dos planos x-z=1 e x-y=1. Seja a reta $r_2\colon (t,-t,t),\,t\in\mathbb{R}$.
 - a) Determine um vetor diretor de r_1 .
 - b) Determine uma equação paramétrica de r_1 .
- c) Escreva a reta r_2 como intersecção de dois planos π e ρ dados em equações paramétricas.
- d) Calcule a distância entre as retas r_1 e r_2 .
- e) Determine a posição relativa das retas r_1 e r_2 .

4) Considere os planos

 π_1 : x+y-z=1, π_2 : 2x+y+z=2, π_3 : 2x+2y-2z=2, π_4 : x+2z=3, e a reta

$$r:(t,2t,3t), t \in \mathbb{R}$$
.

- a) Determine a posição relativa de π_1 e π_2 .
- b) Determine a posição relativa de π_1 e π_3 .
- c) Determine a posição relativa de π_1 , π_2 e π_4 .
- d) Determine a posição relativa de π_1 e r.