Ví dụ.

1. $A = \{1, 2, 3, 4\}, B = \{4, 5\}, \Re = \{(1,4),(1,5),(3,5)(4,4)\}$ là một quan hệ giữa A và B. Quan hệ \Re có thể được biểu diễn bởi sơ đồ sau:

- 2. Quan hệ "=" trên một tập hợp A bất kỳ: $a\Re b \Leftrightarrow a = b$
- 3. Quan hệ " \leq " trên N, Z hay R: $a\Re b \Leftrightarrow a \leq b$
- 4. Quan hệ đồng dư trên **Z**: $a\Re b \Leftrightarrow a \equiv b \pmod{7}$

Ví dụ. Xét quan hệ hai ngôi R trên tập Z được định nghĩa như sau:

$$\forall a, b \in \mathbb{Z}, a\Re b \Leftrightarrow a^2 = b^2$$

Chứng minh rằng \Re có các tính chất phản xạ, đối xứng và bắc cầu.

Giải.

- \Re *phản xạ*. $\forall a \in Z$, ta có $a^2 = a^2$, do đó, theo định nghĩa, ta có $a\Re a$ hay \Re có tính phản xạ
- \Re **đối xứng**. Xét a, b bất kỳ thuộc **Z**, giả sử $a\Re b$, ta sẽ chứng minh $b\Re a$. Thật vậy: $a\Re b \Leftrightarrow a^2 = b^2 \Leftrightarrow b^2 = a^2 \Leftrightarrow b\Re a$, suy ra \Re có tính đối xứng.
- \Re **bắc cầu**. Xét a, b, c bất kỳ thuộc **Z**, giả sử $a\Re b$ và $b\Re c$ ta sẽ chứng minh $a\Re c$. Thật vậy: $a\Re b \wedge b\Re c \Leftrightarrow a^2 = b^2 \wedge b^2 = c^2 \Rightarrow a^2 = c^2 \Leftrightarrow a\Re c$, suy ra \Re có tính bắc cầu.