MAJOR PROJECT

Name: NIDUMUKKALA RAVI SHANKAR

Institute: IIT Bhubaneswar

Branch: MECHANICAL ENGINEERING - 2nd Year

Major Project 1

#MAJOR PROJECT 1
#Logistic Regression model to categorize wine|| wine_fraud(from kaggle)
#1.creating dataframe

import pandas as pd
df = pd.read_csv('/content/wine_fraud.csv')

df

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	type
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	Legit	red
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	Legit	red
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	Legit	red
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	Legit	red
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	Legit	red
6492	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3.27	0.50	11.2	Legit	white
6493	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3.15	0.46	9.6	Legit	white
6494	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2.99	0.46	9.4	Legit	white
6495	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3.34	0.38	12.8	Legit	white
6496	6.0	0.21	0.38	0.8	0.020	22.0	98.0	0.98941	3.26	0.32	11.8	Legit	white

6497 rows × 13 columns

#there are no empty(null) spaces in data
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6497 entries, 0 to 6496
Data columns (total 13 columns):

	(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
#	Column	Non-Null Count	Dtype
0	fixed acidity	6497 non-null	float64
1	volatile acidity	6497 non-null	float64
2	citric acid	6497 non-null	float64
3	residual sugar	6497 non-null	float64
4	chlorides	6497 non-null	float64
5	free sulfur dioxide	6497 non-null	float64
6	total sulfur dioxide	6497 non-null	float64
7	density	6497 non-null	float64
8	рН	6497 non-null	float64
9	sulphates	6497 non-null	float64
10	alcohol	6497 non-null	float64
11	quality	6497 non-null	object
12	type	6497 non-null	object

dtypes: float64(11), object(2)

memory usage: 660.0+ KB

 $\verb|#2.Preprocessing|$ (finding no of unique for quality cloumn) df.quality.unique()

array(['Legit', 'Fraud'], dtype=object)

#selecting rows which has 'Legit' in column 'Quality' and replacing this new dataframe with original dataframe (df)
df=df.loc[(df['quality'])=='Legit']

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	type
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	Legit	red
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	Legit	red
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	Legit	red
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	Legit	red
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	Legit	red
6492	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3.27	0.50	11.2	Legit	white
6493	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3.15	0.46	9.6	Legit	white
6494	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2.99	0.46	9.4	Legit	white
6495	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3.34	0.38	12.8	Legit	white
6496	6.0	0.21	0.38	0.8	0.020	22.0	98.0	0.98941	3.26	0.32	11.8	Legit	white

6251 rows × 13 columns

#removing the column 'Quality' from dataframe
df=df.drop(['quality'],axis=1)

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH sulphate	s alcohol	type
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.99780	3.51 0.5	9.4	red
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.99680	3.20 0.6	9.8	red
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.99700	3.26 0.6	5 9.8	red
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.99800	3.16 0.5	9.8	red
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.99780	3.51 0.5	9.4	red
6492	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3.27 0.5	11.2	white
6493	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3.15 0.4	9.6	white
6494	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2.99 0.4	9.4	white
6495	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3.34 0.3	3 12.8	white
6496	6.0	0.21	0.38	0.8	0.020	22.0	98.0	0.98941	3.26 0.3	2 11.8	white

6251 rows × 12 columns

df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6251 entries, 0 to 6496
Data columns (total 12 columns):
```

	•	,	
#	Column	Non-Null Count	Dtype
0	fixed acidity	6251 non-null	float64
1	volatile acidity	6251 non-null	float64
2	citric acid	6251 non-null	float64
3	residual sugar	6251 non-null	float64
4	chlorides	6251 non-null	float64
5	free sulfur dioxide	6251 non-null	float64
6	total sulfur dioxide	6251 non-null	float64
7	density	6251 non-null	float64
8	рН	6251 non-null	float64
9	sulphates	6251 non-null	float64
10	alcohol	6251 non-null	float64
11	type	6251 non-null	object
dtvn	as: float64(11) objec	+(1)	_

dtypes: float64(11), object(1)
memory usage: 634.9+ KB

```
#3.Data Visualization on type of wines in the data
import seaborn as sns
sns.countplot(x = 'type',data = df)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f339b31a650>


```
#4. Dividing the data into input and output
#creating input by taking the columns which categorize wine(all columns except 'type')
x = df.iloc[:,0:11].values
array([[ 7.4 , 0.7 , 0. , ..., 3.51, 0.56, 9.4 ],
       [ 7.8 , 0.88, 0. , ..., 3.2 , 0.68, 9.8 ],
[ 7.8 , 0.76, 0.04, ..., 3.26, 0.65, 9.8 ],
       [ 6.5 , 0.24, 0.19, ..., 2.99, 0.46, 9.4 ],
       [5.5, 0.29, 0.3, ..., 3.34, 0.38, 12.8],
       [ 6. , 0.21, 0.38, ..., 3.26, 0.32, 11.8 ]])
                                                                                        + Code
                                                                                                     + Text
# Creating Output ('type')
y = df.iloc[:,11].values
у
array(['red', 'red', 'red', ..., 'white', 'white', 'white'], dtype=object)
#5.splitting the data (x,y) into train and test variables(train variables are used to train the model)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,random_state = 0)
#7.Applying logistic regression(creating model)
from sklearn.linear model import LogisticRegression
model = LogisticRegression()
#8.Fitting the training variables in the model and predicting the output for test variables
model.fit(x train,y train)
y_pred = model.predict(x_test)
y_pred
/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarning: lbfgs failed to converge (status=1)
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
 extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
array(['white', 'white', 'white', 'white', 'red'],
     dtype=object)
#outputs from real data
y_test
array(['white', 'white', 'white', 'white', 'red'],
     dtype=object)
#Finding accuray of the model by comparing predicted and real outputs( in % by multiplying accuracy_score with 100)
from sklearn.metrics import accuracy_score
accuracy_score(y_pred,y_test)*100
```

Major project 2

```
#MAJOR PROJECT 2
#Applying K MEANS CLUSTERING on Dataset||Indian Earthquakes Dataset(2018 onwards)||Indian_earthquake_data(from kaggle)

#Creating dataframe
import pandas as pd

df=pd.read_csv('/content/Indian_earthquake_data.csv')

df|
```

	Origin Time	Latitude	Longitude	Depth	Magnitude	Location
0	2021-07-31 09:43:23 IST	29.06	77.42	5.0	2.5	53km NNE of New Delhi, India
1	2021-07-30 23:04:57 IST	19.93	72.92	5.0	2.4	91km W of Nashik, Maharashtra, India
2	2021-07-30 21:31:10 IST	31.50	74.37	33.0	3.4	49km WSW of Amritsar, Punjab, India
3	2021-07-30 13:56:31 IST	28.34	76.23	5.0	3.1	50km SW of Jhajjar, Haryana
4	2021-07-30 07:19:38 IST	27.09	89.97	10.0	2.1	53km SE of Thimphu, Bhutan
2714	2019-08-04 06:56:19 IST	12.30	94.80	10.0	4.8	224km ESE of Diglipur, Andaman and Nicobar isl
2715	2019-08-04 05:40:33 IST	24.70	94.30	40.0	4.1	31km SW of Ukhrul, Manipur, India
2716	2019-08-03 16:29:37 IST	22.50	88.10	10.0	3.6	28km WSW of Kolkata, India
2717	2019-08-03 01:59:11 IST	24.60	94.20	54.0	3.5	35km SE of Imphal, Manipur, India
2718	2019-08-01 06:13:21 IST	14.50	92.90	10.0	4.6	137km N of Diglipur, Andaman and Nicobar islan

2719 rows × 6 columns

#there are no empty(null) spaces in data
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2719 entries, 0 to 2718
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Origin Time	2719 non-null	object
1	Latitude	2719 non-null	float64
2	Longitude	2719 non-null	float64
3	Depth	2719 non-null	float64
4	Magnitude	2719 non-null	float64
5	Location	2719 non-null	object

dtypes: float64(4), object(2)
memory usage: 127.6+ KB

```
#Data Visualization on points where earthquakes occured
import matplotlib.pyplot as plt
plt.scatter(df['Longitude'],df['Latitude'])#representing as shown in map
```

<matplotlib.collections.PathCollection at 0x7fbebd282650>


```
#Dividing data into input and output
#creating input(Longitude, Latitude)
x=df.iloc[:,[2,1]].values
x
array([[77.42, 29.06],
```

```
#2719 rows(points), 6 columns
df.shape
```

(2719, 6)

```
#finding sqaure root of 2719
import numpy as np
np.sqrt(2719)
```

52.14403129793476

```
#no of clusters should be in the range of 2 to 53

from sklearn.cluster import KMeans
k=range(2,53)
s=[]
for i in k :
   model_demo=KMeans(n_clusters=i,random_state=0)
   model_demo.fit(x)
   s.append(model_demo.inertia_)
plt.scatter(k,s)
plt.plot(k,s)
#from ELBOW METHOD we can say that prominent point can be in range (2,10)
```

[<matplotlib.lines.Line2D at 0x7fbebd211a50>]


```
#Applying SILHOUETTE SCORE METHOD to find prominent point in range (2,10)
from sklearn.metrics import silhouette_score
k = range(2,10)
for i in k:
    model_demo = KMeans(n_clusters = i,random_state = 0)
    model_demo.fit(x)
    y_pred = model_demo.predict(x)
    print(f"{i} Clusters ,Score = {silhouette_score(x,y_pred)}")
    plt.bar(i,silhouette_score(x,y_pred))
#from SILHOUETTE SCORE METHOD we conclude 2 clusters would be appropriate
```

```
2 Clusters ,Score = 0.6539436830056814
3 Clusters ,Score = 0.5909525390590425
4 Clusters ,Score = 0.6147081891189834
5 Clusters ,Score = 0.6027082160971342
6 Clusters ,Score = 0.5437930418817251
7 Clusters ,Score = 0.5509742903479136
8 Clusters ,Score = 0.56612125756764
9 Clusters ,Score = 0.5271225395705129
```



```
#Applying Clusterer
 #no of clusters=2
 from sklearn.cluster import KMeans
 model = KMeans(n_clusters = 2, random_state = 0)
 model.fit(x)
 KMeans(n_clusters=2, random_state=0)
] y = model.predict(x)
 # predicting which point is in which cluster
 array([0, 0, 0, ..., 1, 1, 1], dtype=int32)
 ##FINAL VISUALISATION of earthquake points after clustering with their respective centroids
 plt.figure(figsize = (7,5))
 for i in range(2):
   plt.scatter(x[y == i,0],x[y == i,1],label = f'Cluster {i}')
 plt.scatter(model.cluster_centers_[:,0],model.cluster_centers_[:,1],s = 100,c = 'yellow',
             label = 'Centroids')
 plt.legend()
```

<matplotlib.legend.Legend at 0x7fbebd161ed0>

Github account link-

https://github.com/ravishankar2003/RINEX