Работа 4.2.3 Интерферометер Релея

Работу выполнил Матренин Василий Б01-006

Цель работы: ознакомление с устройством и принципом действия интерферометра Релея и с его применением для измерения показателей преломления газов.

В работе используются: технический интерферометр ИТР-16 светофильтр, баллон с углекислым газом, сильфон, манометр, краны.

Работа 4.2.3

1 Схема установки

Интерферометер Релея — прибор для измерения разности показателей преломления — основан на явлении дифракции света на двух параллельных щелях. Схема установки представлена на рисунке 1 в вертикальной и горизонтальных проекциях.

Рис 1. Схема установки: а) вид сверху; б) вид сбоку

2 Теория

Формула для рассчета изменения n:

$$\Delta n = \frac{\Delta}{I} = m\frac{\lambda}{I} \tag{1}$$

Показатель преломления исследуемого газа определяется путем сравнения с воздухом:

$$n = n_{\text{возд}} + \frac{\Delta}{l} \tag{2}$$

Зависимость показателя преломления газа от давления и температуры:

$$n = \sqrt{\epsilon} = \sqrt{1 + 4\pi N\alpha} \approx 1 + 2\pi N\alpha \tag{3}$$

С учетом соотношения P = NkT, получим:

$$n - 1 = \frac{2\pi\alpha}{kT}P\tag{4}$$

Тогда при постоянной температуре:

$$\Delta n = \frac{2\pi\alpha}{kT}\Delta P\tag{5}$$

Тогда связь для n и n_0 :

$$\frac{n_0 - 1}{n - 1} = \frac{TP_0}{T_0 P} \tag{6}$$

2 Работа 4.2.3

3 Ход работы

Средняя длинна волны пропускания компенсатора: $\lambda=670$ нм; Длинна кюветы: L=25 см.

3.1 Калибровка компенсатора

Откалибровал компенсатор с использованием светофильтра 6200-7200. Данные представлены в Таблице 1.

Таблица 1.							
m	z, m	m	z, mm				
-10	-0,97	1	2,81				
-9	-0,66	2	3,19				
-8	-0,35	3	3,53				
-7	0,02	4	3,85				
-6	0,36	5	4,22				
-5	0,67	6	4,58				
-4	1,07	7	4,91				
-3	1,4	8	5,30				
-2	1,75	9	5,66				
-1	2,1	10	6,04				

По МНК посчитал коэф-т пропорциональности из соотношения: $m=\tau z+b$. График зависимости представлен на Рисунке 2.

Получил: $\tau = 2,87 \pm 0,02$ мм⁻¹

3.2 Зависимость показателя преломления от давления

Изменяя давление с помощью сильфона и совмещая нулевые полосы получил зависимость n(P). При этом: $\Delta n = \tau \left(z-z(0)\right) \frac{\lambda}{L}$. Данные представлены в Таблице 2.

Работа 4.2.3

Таблица 2.

ΔP , mm pt. c.	ΔP , Πa	z, mm	$\Delta n, 10^{-6}$
-1000	-10000	6,21	27,00
-600	-6000	4,77	17,09
-200	-2000	3,22	5,64
0	0	2,46	0,00
300	3000	1,65	-6,18
600	6000	0,81	-12,59
800	8000	0,23	-17,24

Зависимость представлена на Рисунке 3.

Puc 3. $\Delta n(z)$

Рассчитал коэф-т пропорциональности $\alpha = \frac{kT}{2\pi} \cdot k_{\text{граф}} = 1,59 \pm 0,03 \cdot 10^{-30} \text{м}^{-3};$

Тогда: $n = 1 + \frac{2\pi\alpha}{kT}P = 1,00025 \pm 0,00001$.

Что совпадает с таблицным значением в 1,00027.

3.3 Зависимость показателя преломления С02 от времени

Снял зависимость равновестного положения от времени, поминутно совмещая нулевые полосы. Оценил время установления равновесия. Данные представлены в Таблице 3.

Таблина 3.

таолица э.							
Δ , мин	z, mm	n_{rasa}	Δ , мин	z, mm	$n_{\rm rasa}$		
1	28,42	1,000467	10	13,32	1,000352		
2	24,57	1,000438	11	12,89	1,000349		
3	22,14	1,000419	12	12,12	1,000344		
4	19,49	1,000399	13	11,86	1,000341		
5	17,18	1,000381	14	11,35	1,000337		
6	15,95	1,000372	15	11,17	1,000336		
7	15,25	1,000367	16	10,94	1,000335		
8	14,63	1,000362	17	10,85	1,000334		
9	13,64	1,000355	18	10,76	1,000333		

Зависимость представлена на Рисунке 4.

Время установления: $\Delta T = 18$ мин;

$$n_{CO_2} = 1,00046 \pm 0,00001.$$

Что совпадает с табличным значением в 1,00045.

3.4 Интервал Δn , доступный для измерения

Оценю интервал Δn , доступный для измерения:

$$\Delta n_{min} = m_{min} \frac{\lambda}{L} = 1 \cdot 10^{-6}$$

$$\Delta n_{max} = m_{max} \frac{\lambda}{L} = 25 \cdot 10^{-6}$$

4 Вывод

В ходе данной работы интерферометр Релея был применен для вычисления показателей преломеления воздуха и С02. Полученные значения совпали с табличными с хорошей точностью.