Lecture 22: Gaussian process regression

Professor Ilias Bilionis

Gaussian process regression without measurement noise

How does Gaussian process regression work?

Posterior GP

The joint probability density of observations

$$\chi_{1:n} = (\chi_{1}, ..., \chi_{n}) ; f_{1:n} = (f(\chi_{1}), ..., f(\chi_{n}))$$

$$f(\cdot) \sim GP (m(\cdot), c(\cdot, \cdot))$$

$$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

$$\rho(f_{1:n} | \chi_{1:n}) = \mathcal{N} \left(f_{1:n} | m_{1:n} | m_{1:$$

The joint probability density over observations and test points

Observed:
$$x_{1:n} = (x_1, ..., x_n)$$
; $f_{1:n} = (f(x_1), ..., f(x_n))$

$$f(\cdot) \sim GP(m(\cdot), c(\cdot), \cdot)$$

Test inputs: $x_{1:n}^* = (x_1^*, ..., x_n^*)$

$$f_{1:n}^* = (f(x_1^*), ..., f(x_n^*)) (c(x_1^*)_{i=1}^{n} x_i^*)_{i=1}^{n} x_i^* x_i^*$$

$$f(\cdot) \sim GP(m(\cdot), c(\cdot), \cdot)$$

$$f(\cdot) \sim GP(m(\cdot), \cdot)$$

$$f(\cdot) \sim$$

Conditioning on observations

$$\rho(f_{1:n}, f_{1:n}^{*} | \chi_{1:n}, \chi_{1:n}^{*}) = N\left(\begin{pmatrix} f_{1:n} \\ f_{1:n}^{*} \end{pmatrix} | \begin{pmatrix} M_{1:n} \\ M_{1:n}^{*} \end{pmatrix}, \begin{pmatrix} G_{n} \\ G_{n}^{*} \end{pmatrix}\right)$$

$$\rho(f_{1:n}^{*} | \chi_{1:n}, f_{1:n}, \chi_{1:n}^{*}) = N\left(f_{1:n}^{*} | M_{1:n}^{*}, \chi_{1:n}^{*} \end{pmatrix}, \begin{pmatrix} G_{n} \\ G_{n}^{*} \end{pmatrix}, \begin{pmatrix} G_{n} \\ G_{n}^{*} \end{pmatrix}\right)$$

$$\rho(f_{1:n}^{*} | \chi_{1:n}, f_{1:n}, \chi_{1:n}^{*}) = N\left(f_{1:n}^{*} | M_{1:n}^{*}, \chi_{1:n}^{*} \end{pmatrix}, \begin{pmatrix} G_{n} \\ G_{n}^{*} \end{pmatrix}, \begin{pmatrix} G_{n} \\ G_{$$

The posterior Gaussian process

$$P(f_{i:\eta}^{*} \mid x_{i:\eta}, f_{i:\eta}, x_{i:\eta}^{*}) = \mathcal{N}(f_{i:\eta}^{*} \mid M_{i:\eta}^{*}, C_{\eta}^{*})$$

$$\downarrow \{c_{i} \mid mpts \text{ are arbitrary}\}$$

$$f(\cdot) \mid x_{i:\eta}, f_{i:\eta}, \sigma(\cdot) P(M_{\eta}^{*}(\cdot), C_{\eta}^{*}(\cdot))$$

$$p_{soletima} \text{ are further constraints}$$

$$m_{\eta}^{*}(x) = M(x) - C(x, x_{i:\eta}) C_{\eta} (f_{i:\eta} - M_{i:\eta})$$

$$C_{\eta}^{*}(x, x_{i}) = C(x, x_{i}) - C(x, x_{i:\eta}) C_{\eta} (C(x_{i}, x_{i}))$$

$$C_{\eta}^{*}(x, x_{i}) = C(x, x_{i}) - C(x, x_{i:\eta}) C_{\eta} (C(x_{i}, x_{i}))$$

$$C_{\eta}^{*}(x, x_{i}) = C(x, x_{i}) - C(x, x_{i:\eta}) C_{\eta} (C(x_{i}, x_{i}))$$

$$C_{\eta}^{*}(x, x_{i}) = C(x, x_{i}) - C(x, x_{i:\eta}) C_{\eta} (C(x_{i}, x_{i}))$$

$$C_{\eta}^{*}(x, x_{i}) = C(x, x_{i}) - C(x, x_{i:\eta}) C_{\eta} (C(x_{i}, x_{i}))$$

$$C_{\eta}^{*}(x, x_{i}) = C(x, x_{i}) - C(x, x_{i})$$

The point predictive distribution

$$f(\cdot) \mid x_{1:n}, f_{1:n} \sim \zeta_{i} P\left(M_{n}^{*}(\cdot), C_{n}^{*}(\cdot, \cdot)\right)$$

$$\downarrow \mid \qquad \qquad \downarrow \downarrow \qquad \downarrow \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad$$

Example

