	Total No. of Questions : 22 Roll No. :	Total No. of Pages: 04
(E310	1E3101	
	B.Tech. I sem(Main/Back) Exam 2024	
	1FY2-01 / Engineering	Mathematics-I
Tiı	me : 3 Hours	Maximum Marks: 70
Instru	ections to Candidates :	remoder No carrown Strager
Attem	pt all ten questions from Part-A, five	questions out of seven question
from]	Part-B and three questions out of fiv	e questions from Part-C.
Schen	natic diagrams must be shown whe	erever necessary. Any data you
feel m	nissing suitably be assumed and sta	nted clearly. Units of quantitie.
used/	calculated must be stated clearly.	
Use o	f following supporting material is	permitted during examination
(Menti	ioned in Form No. 205)	

PART-A

(Answer should be given up to 25 words only)
All questions are compulsory

- Q.1. What is the value of integral $\int_{0}^{\infty} e^{-x^2} dx$?
- Q.2. Write the formula of surface area of solid of revolution when the revolution is about x-axis.

- Q.3. What do you mean by convergence of a sequence?
- Q.4. Find whether the following series is convergent or not?

$$\frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots$$

- Q.5. State Parseval's theorem.
- Q.6. Find the value of a_0 for the function f(x) = |x| in the interval $(-\pi, \pi)$.
- Q.7. State the necessary and sufficient conditions for the minimum of a function f(x,y).
- Q.8. Find the gradient of $f(x,y,z)=x^2y^2+xy^2-z^2$ at (3, 1, 1).
- Q.9. Evaluate $\int_{0}^{b} \int_{0}^{x} xy dx dy$.
- Q.10. State the Gauss Divergence theorem.

PART-B

(Analytical/Problem solving questions)

Attempt any five questions

Q.1. Use beta and gamma functions, to evaluate:

$$\int_{0}^{\infty} \frac{x^{2}(1+x^{4})}{(x+x)^{10}} dx.$$

- Q.2. Expand sin x in the powers of $(x-\pi/2)$ using Taylor's series.
- Q.3. Find Fourier series of x^2 in $(-\pi, \pi)$, and use Parseval's identity to prove:

$$\frac{\pi^4}{90} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots$$

Q.4. If $u = e^{xyz}$, then show that:

$$\frac{\partial^3 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y} \partial \mathbf{z}} = (1 + 3\mathbf{x}\mathbf{y}\mathbf{z} + \mathbf{x}^2\mathbf{y}^2\mathbf{z}^2)\mathbf{e}^{\mathbf{x}\mathbf{y}\mathbf{z}}$$

- Q.5. Whether the fluid motion given by V = (y+z)i+(z+x)j+(x+y)k is incompressible or not?
- Q.6. Change the order of integration and hence evaluate:

$$\int_{0}^{1} \int_{e^{x}}^{e} \frac{1}{\log y} dx dy.$$

Q.7. Evaluate
$$\iiint_{1}^{2} \int_{0}^{yz} (xyz) dxdydz$$
.

PART-C

(Descriptive/Analytical/Problem Solving/Design question) Attempt any three questions

Q.1. Use beta and gamma functions, to evaluate:

(a)
$$\int_{0}^{\infty} \frac{x}{1+x^{6}} dx.$$

(b)
$$\int_{0}^{1} \sqrt{\left(\frac{1-x}{x}\right)} dx.$$

Q.2. Find the Fourier series expansion of the following periodic function with period 2π .

$$f(x) = \begin{cases} -1, & -\pi < x < 0 \\ 0, & x = 0 \\ 1, & 0 < x < \pi \end{cases}$$

Hence, show that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}$.

- Q.3. Use Lagrange's method to find the maximum and minimum distance of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$.
- Q.4. If u = f(r), where $r^2 = x^2 + y^2$, then prove that:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r).$$

Q.5. Verify Green's theorem for $\int_{C} [(xy+y^2)dx + x^2dy]$, where C is the closed curve of the region bounded by y = x and $y = x^2$.