TP 2

Trabajo especial Elementos de investigación operativa: Fábrica de juguetes

Integrantes: Manuel Grassi, Franco Peralta, Geronimo Orofino, Agustin Quagliarella.

Enlace al video: https://www.youtube.com/watch?v=OsMcXsd6jWg

Introducción

En este proyecto analizaremos el caso de una empresa que se dedica a la producción y venta de juguetes de madera. La empresa pretende crear vehículos de madera, con la materia prima disponible, el objetivo del trabajo es analizar qué juguete le proporcionará más ganancia a la empresa teniendo en cuenta los materiales disponibles y sus costos de materiales y de fabricación.

A continuación procedemos a determinar la cantidad de elementos a utilizar (bloques de madera, ruedas de madera, pintura, amarilla, azul, rojo y varilla de metal y pegamento) teniendo en cuenta el óptimo beneficio de ganancias en la fabricación de vehículos de juguete.

Determinar las variables de decisión

Las variables de decisión

Similar a la relación que existe entre objetivos específicos y objetivo general, se comportan las variables de decisión respecto a la función objetivo, puesto que estas se identifican partiendo de una serie de preguntas derivadas de la pregunta fundamental. Las variables de decisión, son en teoría, factores controlables del sistema que se está modelando, y como tal, estas pueden tomar diversos valores posibles, de los cuales se precisa conocer su valor óptimo, que contribuya con la consecución del objetivo de la función general del problema.

Variables de Decisión:

- AUTO
- TREN
- MOTO
- AVIÓN
- TRICICLO
- CAMION

Costos de materiales:

X1 = Ruedas de madera \$20 c/u X2 = Bloque de madera \$100 c/u X3 = Pintura azul \$10 c/u X4 = Pintura amarillo \$10 c/u X5 = Pintura rojo \$10 c/u X6 = Varilla de metal \$40 c/u X7 = Pegamento \$5 c/u

Disponibilidad de materiales:

Ruedas de madera =400 u.
Bloques de madera =250 u.
Pintura azul =200 u.
Pintura amarilla =200 u.
Pintura roja =200 u.
Varilla de metal =300 u.
Pegamento =150 u.

Tiempo =8500 minutos

	ruedas de madera	bloque de madera	pintura azul	pintura amarilla	pintura roja	varilla de metal	pega mento	tiempo (minutos)	costo de materiales	precio de venta
X auto	4	1	1	1	2	2	1	180	305	620
Y tren	14	3	2	2	3	7	3	360	945	1840
C moto	2	1	1	1	1	2	1	120	255	420
D avión	3	1	2	1	1	2	2	180	290	580
E triciclo	3	1	1	2	1	2	2	180	290	520
F camión	4	1	3	1	1	2	2	240	320	640
disponibilidad	400	250	200	200	200	300	150	8500		
Costo	20	100	10	10	10	40	5			

Determinar la Función Objetivo

Función objetivo de maximización: La obtenemos con la suma de las ganancias, las cuales se obtienen de la venta de los productos(auto,tren,moto,avión,triciclo,camión).

ZMAX = 315 X +895Y +165 C +290 D +230 E +320 F

Determinar las restricciones del problema

Las restricciones

Cuando hablamos de las restricciones en un problema de programación lineal, nos referimos a todo aquello que limita la libertad de los valores que pueden tomar las variables de decisión.

Nuestro sistema presenta una serie de limitaciones, tanto físicas, como de contexto, de tal manera que los valores que en un momento dado podrían tomar nuestras variables de decisión se encuentran condicionados por una serie de restricciones.

4X+14Y+2C+3D+3E+4F<=400

1X+3Y+1C+1D+1E+1F<=250

1X+2Y+1C+2D+1E+3F<=200

1X+2Y+1C+1D+2E+1F<=200

2X+3Y+1C+1D+1E+1F<=200

2X+7Y+2C+2D+2E+2F<=300

1X+3Y+1C+2D+2E+2F<=150

180X+360Y+120C+180D+180E+240F<=8000

X>=0, Y>=0, C>=0, D>=0, E>=0, F>=0

Resolver el modelo utilizando software(Resultado)

Utilizando el software QW for windows dentro de las funciones del programa para analizar la función lineal obtenemos resultados de manera automática para los procesos matemáticos necesarios para las diferentes problemáticas planteadas.

	auto	tren	moto	avion	triciclo	camion		RHS	Equation form
Maximize	315	895	165	290	230	320			Max 315auto + 895tren + 165moto + 290avion + 230triciclo +
ruedas	4	14	2	3	3	4	<=	400	4auto + 14tren + 2moto + 3avion + 3triciclo + 4camion <= 400
bloque	1	3	1	1	1	1	<=	250	auto + 3tren + moto + avion + triciclo + camion <= 250
azul	1	2	1	2	1	3	<=	200	auto + 2tren + moto + 2avion + triciclo + 3camion <= 200
amarilla	1	2	1	1	2	1	<=	200	auto + 2tren + moto + avion + 2triciclo + camion <= 200
roja	2	3	1	1	1	1	<=	200	2auto + 3tren + moto + avion + triciclo + camion <= 200
metal	2	7	2	2	2	2	<=	300	2auto + 7tren + 2moto + 2avion + 2triciclo + 2camion <= 300
pegamento	1	3	1	2	2	2	<=	150	auto + 3tren + moto + 2avion + 2triciclo + 2camion <= 150
minutos	180	500	120	180	180	240	<=	8500	180auto + 500tren + 120moto + 180avion + 180triciclo +

Variable	Status	Value
auto	NONBasic	0
tren	Basic	17
moto	NONBasic	0
avion	NONBasic	0
triciclo	NONBasic	0
camion	NONBasic	0
slack 1	Basic	162
slack 2	Basic	199
slack 3	Basic	166
slack 4	Basic	166
slack 5	Basic	149
slack 6	Basic	181
slack 7	Basic	99
slack 8	NONBasic	0
Optimal Value (Z)		15215

Análisis de sensibilidad

El análisis de sensibilidad determina el margen de error que tenemos para que el resultado de la ganancia máxima se mantenga igual.

ruedas $\infty <= \Delta >= 238$ bloque $\infty <= \Delta >= 51$ azul $\infty <= \Delta >= 34$ amarillo $\infty <= \Delta >= 34$ rojo $\infty <= \Delta >= 51$ varillas $\infty <= \Delta >= 119$ pegamento $\infty <= \Delta >= 51$ tiempo $499 <= \Delta >= 0$

(Interpretación del análisis de sensibilidad en resultados en Conclusión(pág 8)

Resultados Incisos 1-4:

1.

	auto	tren	moto	avion	triciclo	camion		RHS	Equation form
Maximize	315	895	165	400	230	320			Max 315auto + 895tren + 165moto + 290avion + 230triciclo +
ruedas	4	14	2	3	3	4	<=	400	4auto + 14tren + 2moto + 3avion + 3triciclo + 4camion <= 400
bloque	1	3	1	1	1	1	<=	250	auto + 3tren + moto + avion + triciclo + camion <= 250
azul	1	2	1	2	1	3	<=	200	auto + 2tren + moto + 2avion + triciclo + 3camion <= 200
amarilla	1	2	1	1	2	1	<=	200	auto + 2tren + moto + avion + 2triciclo + camion <= 200
roja	2	3	1	1	1	1	<=	200	2auto + 3tren + moto + avion + triciclo + camion <= 200
metal	2	7	2	2	2	2	<=	300	2auto + 7tren + 2moto + 2avion + 2triciclo + 2camion <= 300
pegamento	1	3	1	2	2	2	<=	150	auto + 3tren + moto + 2avion + 2triciclo + 2camion <= 150
minutos	180	500	120	180	180	240	<=	8500	180auto + 500tren + 120moto + 180avion + 180triciclo +

Si aumentamos, por ejemplo, el coeficiente para el avión.

Variable	Status	Value
auto	NONBasic	^
tren	NONBasic	0
moto	NONBasic	0
avion	Basic	47,2222
triciclo	NONBasic	0
camion	NONBasic	0
slack 1	Basic	258,3333
slack 2	Basic	202,7778
slack 3	Basic	105,5556
slack 4	Basic	152,7778
slack 5	Basic	152,7778
slack 6	Basic	205,5556
slack 7	Basic	55,5556
slack 8	NONBasic	0
Optimal Value (Z)		18888,89

El resultado cambiará notablemente ya que ahora es más beneficioso fabricar aviones que trenes por la relación precio costo cambio haciendo más valiosos a los aviones.

2.

	auto	tren	moto	avion	triciclo	camion		RHS	Equation form
Maximize	315	895	165	400	230	320			Max 315auto + 895tren + 165moto + 400avion + 230triciclo +
ruedas	4	14	2	3	3	4	<=	400	4auto + 14tren + 2moto + 3avion + 3triciclo + 4camion <= 400
bloque	1	3	1	1	1	1	<=	250	auto + 3tren + moto + avion + triciclo + camion <= 250
azul	1	2	1	2	1	3	<=	200	auto + 2tren + moto + 2avion + triciclo + 3camion <= 200
amarilla	1	2	1	1	2	1	<=	200	auto + 2tren + moto + avion + 2triciclo + camion <= 200
roja	2	3	1	1	1	1	<=	200	2auto + 3tren + moto + avion + triciclo + camion <= 200
metal	2	7	2	2	2	2	<=	300	2auto + 7tren + 2moto + 2avion + 2triciclo + 2camion <= 300
pegamento	1	3	1	2	2	2	<=	150	auto + 3tren + moto + 2avion + 2triciclo + 2camion <= 150
minutos	180	500	120	180	180	240	<=	85000	180auto + 500tren + 120moto + 180avion + 180triciclo +

Si le agregamos a la restricción tiempo otro "0" (1416 días en total)

Variable	Status	Value
auto	Basic	70
tren	NONBasic	0
moto	NONBasic	0
avion	Basic	40
triciclo	NONBasic	0
camion	NONBasic	0
slack 1	NONBasic	0
slack 2	Basic	140
slack 3	Basic	50
slack 4	Basic	90
slack 5	Basic	20
slack 6	Basic	80
slack 7	NONBasic	0
slack 8	Basic	65200
Optimal Value (Z)		38050

El resultado cambia ya que la restricción de tiempo era la que le ponía un tope a la fabricación y ahora el tope pasa a ser el pegamento y se vuelve más beneficioso fabricar autos y aviones.

3.

Si queremos que nuestros otros productos entren el plan de producción deberíamos ajustar los precios finales a el siguiente mínimo para cada producto:

Auto:\$628

Moto:\$215

Avión:\$613

Triciclo:\$613

Camión:\$750

4.

Si por ejemplo tenemos que cumplir con una orden de compra y queremos agregar un piso para la producción de autos, simplemente modificamos las restricciones para que lo tenga en cuenta.

	auto	tren	moto	avion	triciclo	camion		RHS	Equation form
Maximize	315	895	165	290	230	320			Max 315auto + 895tren +
ruedas	4	14	2	3	3	4	<=	400	4auto + 14tren + 2moto +
Autos Minimos(piso)	4	0	0	0	0	0	>=	28	4auto >= 28
bloque	1	3	1	1	1	1	<=	250	auto + 3tren + moto + avion +
azul	1	2	1	2	1	3	<=	200	auto + 2tren + moto + 2avion
amarilla	1	2	1	1	2	1	<=	200	auto + 2tren + moto + avion +
roja	2	3	1	1	1	1	<=	200	2auto + 3tren + moto + avion
metal	2	7	2	2	2	2	<=	300	2auto + 7tren + 2moto +
pegamento	1	3	1	2	2	2	<=	150	auto + 3tren + moto + 2avion
minutos	180	500	120	180	180	240	<=	8500	180auto + 500tren +

Por ejemplo aquí obligamos al programa a tener en cuenta un mínimo de 7 autos a fabricar.

Variable	Status	Value
auto	Basic	7
tren	Basic	14,48
moto	NONBasic	0
avion	NONBasic	0
triciclo	NONBasic	0
camion	NONBasic	0
slack 1	Basic	169,28
surplus 2	NONBasic	0
slack 3	Basic	199,56
slack 4	Basic	164,04
slack 5	Basic	164,04
slack 6	Basic	142,56
slack 7	Basic	184,64
slack 8	Basic	99,56
slack 9	NONBasic	0
Optimal Value (Z)		15164,6

Conclusión:

En conclusión la producción óptima sin cambios y con las restricciones originales sería de 17 trenes y ninguno de los otros productos. En el análisis de sensibilidad determinamos que para que en nuestro plan de producción se vea afectado el resultado tenemos que llegar a un mínimo de materias primas, estas son: 238 ruedas, 51 bloques de madera, 34 de pintura azul, 34 de pintura amarilla, 51 de pintura roja, 119 varillas y 51 de pegamento. Por otro lado no podemos perder nada de tiempo para estar al día con el plan pero si nos puede sobrar 499 minutos(8hs 32m) sin que afecte al resultado.

Bibliografía:

Material en el campus de la UTN http://campus.mdp.utn.edu.ar/course/view.php?id=515 .

https://www.youtube.com/watch?v=N0qMMb_JLYo&t=442s recuperado el 26/05/2021
https://www.youtube.com/watch?v=3uBLtzjb4a8 recuperado el 26/05/2021
https://www.youtube.com/watch?v=U6wd_8hElzg recuperado el 26/05/2021
https://www.youtube.com/watch?v=mce5ll_J3ql&t=318s recuperado el 26/05/2021
https://www.youtube.com/watch?v=kWuSFeTpfjw&t=1s recuperado el 26/05/2021