

Impact Assessment of Missing Data in Model Predictions for Earth Observation Applications

1 University of Kaiserslautern-Landau (RPTU) 2 German Research Center for Artificial Intelligence (DFKI)

Motivation

Multi-view Data

Motivation

Research question

 What is the impact of missing views in MVL models with time series and static EO sources?

- Models are trained on full-view scenario.
- Prediction impact on testing samples.

Multi-view Data

Basis of MVL

Fusion strategies

Mena, Francisco, et al. "Common practices and taxonomy in deep multi-view fusion for remote sensing applications." *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* (2024).

5

MVL with missing views

Techniques

- 1. **Impute**: replace the input features that are missing with a numerical value [1].
 - a. Imputation value: average of the features of each view in the training data.

- 2. **Exemplar**: replace the features of the missing view with a similar sample in the training set, based on available views and a shared space [2].
 - a. Shared space: multi-view linear projection based on CCA [2].

3. **Ignore**: omit the features of the missing views by using a dynamic merge function.

^[2] Srivastava, Shivangi, et al. "Understanding urban landuse from the above and ground perspectives: A deep learning, multimodal solution." *Remote Sensing of Environment* (2019) [3] Mena, Francisco, et al. "Adaptive Fusion of Multi-view Remote Sensing data for Optimal Sub-field Crop Yield Prediction." *arXiv preprint arXiv:2401.11844* (2024)

MVL with missing views

Techniques

- 1. **Impute**: replace the input features that are missing with a numerical value [1].
 - a. Imputation value: average of the features of each view in the training data.
 - b. in combination with *Input-concat* and *Feature-concat*.
- 2. **Exemplar**: replace the features of the missing view with a similar sample in the training set, based on available views and a shared space [2].
 - a. Shared space: multi-view linear projection based on CCA [2].
 - b. in combination with *Feature-concat*.
- 3. **Ignore**: omit the features of the missing views by using a dynamic merge function.
 - a. in combination with *Feature-avg*, *Feature-gated* [3], and *Ensemble-avg*.

Pixel-wise datasets

Classification datasets:

Predictive Task	Samples	Where	Pixel resolution	Temporal length	Temporal views	Static views
Cropland classification [1]	69,000	Global	10 m	12 months	optical, radar, weather	topographic
Crop-type classification [1]	29,642	Global	10 m	12 months	optical, radar, weather	topographic

Regression datasets:

Live fuel moisture content [2]	2,578	USA	250 m	4 months	optical, radar	topographic, soil, land cover, canopy height
Crop yield prediction [3]	54,098	Swiss	10 m	seeding - harvesting	optical, weather	-

^[1] Tseng, Gabriel, et al. "Cropharvest: A global dataset for crop-type classification." *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track* (2021) [2] Rao, Krishna, et al. "SAR-enhanced mapping of live fuel moisture content." *Remote Sensing of Environment* (2020)

^[3] Perich, Gregor, et al. "Pixel-based yield mapping and prediction from Sentinel-2 using spectral indices and neural networks." Field Crops Research (2023)

Robustness (Cropland classification)

• PRS [1]: Performance Robustness Score.

$$PRS(y, \hat{y}_{miss}, \hat{y}_{full}) = \min \left(1, \exp \left(1 - \frac{RMSE(y, \hat{y}_{miss})}{RMSE(y, \hat{y}_{full})} \right) \right)$$

Predictive performance

• Average Accuracy in **Cropland classification**:

Method	Technique	No Miss	Radar	Optical	Weather+Static	Radar+Weather+Static	Optical+Weather+Static
Input-concat	Impute	0.847	0.831	0.717	0.674	0.642	0.554
Feature-concat	Impute	0.849	0.829	0.730	0.712	0.691	0.594
Feature-cca	Exemplar	0.829	0.491	0.724	0.608	0.543	0.570
Feature-avg	Ignore	0.848	0.836	0.797	0.768	0.729	0.668
Feature-gated	Ignore	0.849	0.836	0.797	0.773	0.748	0.700
Ensemble-avg	Ignore	0.828	0.822	0.792	0.822	0.824	0.740

Predictive performance

• Average Accuracy in **Cropland classification**:

Method	Technique	No Miss	Radar	Optical	Weather+Static	Radar+Weather+Static	Optical+Weather+Static
Input-concat	Impute	0.847	0.831	0.717	0.674	0.642	0.554
Feature-concat	Impute	0.849	0.829	0.730	0.712	0.691	0.594
Feature-cca	Exemplar	0.829	0.491	0.724	0.608	0.543	0.570
Feature-avg	Ignore	0.848	0.836	0.797	0.768	0.729	0.668
Feature-gated	Ignore	0.849	0.836	0.797	0.773	0.748	0.700
Ensemble-avg	Ignore	0.828	0.822	0.792	0.822	0.824	0.740

Predictive performance

Average Accuracy in Cropland classification:

Method	Technique	No Miss	Radar	Optical	Weather+Static	Radar+Weather+Static	Optical+Weather+Static
Input-concat	Impute	0.847	0.831	0.717	0.674	0.642	0.554
Feature-concat	Impute	0.849	0.829	0.730	0.712	0.691	0.594
Feature-cca	Exemplar	0.829	0.491	0.724	0.608	0.543	0.570
Feature-avg	Ignore	0.848	0.836	0.797	0.768	0.729	0.668
Feature-gated	Ignore	0.849	0.836	0.797	0.773	0.748	0.700
Ensemble-avg	Ignore	0.828	0.822	0.792	0.822	0.824	0.740

Same behavior observed in Crop-type classification:

Method	Technique	No Miss	Radar	Optical	Weather+Static	Radar+Weather+Static	Optical+Weather+Static
Input-concat	Impute	0.738	0.641	0.296	0.534	0.534	0.142
Feature-concat	Impute	0.727	0.624	0.290	0.558	0.390	0.159
Feature-cca	Exemplar	0.727	0.285	0.384	0.094	0.107	0.100
Feature-avg	Ignore	0.726	0.674	0.542	0.582	0.529	0.306
Feature-gated	Ignore	0.734	0.652	0.561	0.511	0.440	0.306
Ensemble-avg	Ignore	0.715	0.708	0.613	0.711	0.715	0.523

Regression Results

Robustness (Live fuel moisture content)

PRS: Performance Robustness Score.

$$PRS(y, \hat{y}_{miss}, \hat{y}_{full}) = \min \left(1, \exp \left(1 - \frac{RMSE(y, \hat{y}_{miss})}{RMSE(y, \hat{y}_{full})} \right) \right)$$

Regression Results

Predictive performance

• Coefficient of Determination (R2) in Live fuel moisture content:

Method	Technique	No Miss	Radar	Optical	Statics	Radar+Statics	Optical+Statics
Input-concat	Impute	0.717	0.650	0.060	0.185	0.165	-0.047
Feature-concat	Impute	0.667	0.599	0.274	0.352	0.290	0.081
Feature-cca	Exemplar	0.667	†	-0.260	†	†	1 +
Feature-avg	Ignore	0.683	0.618	0.142	†	†	†
Feature-gated	Ignore	0.737	0.651	0.138	-0.422	-5.326	-1.693
Ensemble-avg	Ignore	0.312	0.292	0.243	0.407	0.392	0.239

Regression Results

Predictive performance

• Coefficient of Determination (R2) in Live fuel moisture content:

Method	Technique	No Miss	Radar	Optical	Statics	Radar+Statics	Optical+Statics
Input-concat	Impute	0.717	0.650	0.060	0.185	0.165	-0.047
Feature-concat	Impute	0.667	0.599	0.274	0.352	0.290	0.081
Feature-cca	Exemplar	0.667	†	-0.260	†	†	†
Feature-avg	Ignore	0.683	0.618	0.142	†	†	†
Feature-gated	Ignore	0.737	0.651	0.138	-0.422	-5.326	-1.693
Ensemble-avg	Ignore	0.312	0.292	0.243	0.407	0.392	0.239

Coefficient of Determination (R2) in Crop yield prediction:

Method	Technique	No Miss	Optical	Weather
Input-concat	Impute	0.823	-1.435	0.710
Feature-concat	Impute	0.827	-1.058	0.760
Feature-cca	Exemplar	0.827	-0.343	†
Feature-avg	Ignore	0.828	-0.993	-8.664
Feature-gated	Ignore	0.823	0.193	-7.534
Ensemble-avg	Ignore	0.768	0.593	0.823

Conclusion

- Missing views have a negative impact on model predictions.
 - Is more critical when more views are missing.
 - Is more severe in regression than in classification task.
- The method design can mitigate the negative effect.
 - 1. Fusion strategy
 - 2. Technique

Conclusion

- Missing views have a negative impact on model predictions.
 - Is more critical when more views are missing.
 - Is more severe in regression than in classification task.
- The method design can mitigate the negative effect.
 - 1. Fusion strategy
 - 2. Technique
- Recommendation:
 - If views are sufficiently discriminative to allow individual predictions: Ensemble with Ignore.
 - Otherwise: Feature with Ignore in classification, or with Impute in regression.

https://github.com/fmenat/missingviews-study-EO

Impact Assessment of Missing Data in Model Predictions for Earth Observation Applications

1 University of Kaiserslautern-Landau (RPTU) 2 German Research Center for Artificial Intelligence (DFKI)

Dataset Views Description

Predictive Task	Optical (Sentinel-2)	Radar (Sentinel-1)	Weather (ERA5)	Topographic (NASA's SRTM)
Cropland & Crop-type classification	B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11, B12, NDVI	VV, VH	temperature, precipitation	elevation, slope

Predictive Task	Optical (Landsat 8)	Radar (Sentinel-1)	Topographic (National Elevation Database)	Soil (Unified North American Soil Map)	LIDAR (GLAS)	Land-cover (GLOBCOV ER)
Live fuel moisture content	red, green, blue, NIR, SWIR, NDVI, NDWI, NIRV	VV, VH, VH/VV	elevation, slope	silt, sand, clay	canopy height	12 categories

Predictive Task	Optical (Sentinel-2)	Weather (ERA5)
Crop yield prediction	B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12, SCL	precipitation, temperature

Model implementation

- Encoders: Two layers with 128 units
 - Static views: MLP
 - Temporal views: 1D CNN
- Prediction Head: a MLP with one layer of 128 units.
- Optimization:
 - ADAM
 - 128 batch size
 - early stopping
- Loss function
 - Cross entropy in classification
 - Mean squared error in regression