

Assignment 1

The documentation used as a reference in the one published in <u>R Documentation Org</u> site. Same displayed in the console after running the command for it.

1. Use rstudio to write an R script in which you generate a sample of size 1000 from the standard normal distribution (rnorm) with mean 50 standard deviation 4, plot a histogram of that sample, and store the graph as pdf in your working directory.

```
## ifgi
## Spatial Data Science with R ##
## Violeta Sosa
                                ##
## Script No. 1
                               ##
library(ggplot2)
setwd("C:\\Users\\Public")
#### Point 1 ####
#Useful to know args from the function rnorm
#?rnorm
#Now we know better how to use it
#Directly
sample<-rnorm(1000, mean=50, sd=4)
#Using variables in case we want to change it later
#size<-1000
#xmean<-50
#xsd<-4
#rnorm(size, mean=xmean, sd=xsd)
# #Ploting Basic Histogram for Sample
sample
#?hist
hist(sample)
plot1<-hist(sample,
    main="Histogram for Sample with Mean 50 and SD 4",
    xlab="Sample generated rnorm function",
    border="darkgreen",
    col="chartreuse4")
#Ploting Histogram for Sample using ggplot
sampledf<-data.frame(sampleplot=sample)</pre>
sampledf
#Define arguments for the plotting function
#?geom histogram
#?labs
ggplot(sampledf, aes(x=sampleplot)) +
qeom histogram(bins=60,col="chartreuse4",fill="darkgreen",alpha=.2)+labs(title="Histo
gram Plot for Sample with mean=40 std=4",x="Sample generated", y = "Count")
#name for the document
#?ggsave
ggsave("samplePDF2.pdf")
#Changes in the bin size for printing
#?stat bin
```


Figure 1. Histogram Plot generated by ggplot2

Figure 2. PDF in the working directory

- **2.** Try to execute that script with R (i.e., without Rstudio)
 - (i) using source() and

```
> getwd()
[1] "C:/Users/Violet/Documents"
> source("C:\\Users\\Violet\\Documents\\Master\\Europa\\Clases
Alemania\\R\\Scripts\\programmingds\\ass1_script1.R")
Saving 6.6 x 6.59 in image
```


(ii) in batch mode (R CMD BATCH file.R)

For this particular case, using the Windows cmd shell:

```
C:\>cd \
C:\>"C:\Program Files\R\R-3.5.1\bin\R.exe" CMD BATCH
"C:\Users\Violet\Documents\Master\Europa\Clases
Alemania\R\Scripts\programmingds\ass1 script1.R"
C:\>cd \Users\Public
C:\Users\Public>DIR
El volumen de la unidad C es Windows
El número de serie del volumen es: 0867-CECC
 Directorio de C:\Users\Public
10/04/2019 22:51 <DIR>
10/04/2019 22:51 <DIR> 10/04/2019 22:51
                            ..
10,628 .RData
10/04/2019 15:37 <DIR>
                            Documents
16/07/2016 13:47 <DIR>
                                  Downloads
                   16/07/2016 13:47
18/09/2017 02:28
18/09/2017 02:28
                           8,192 NTUSER.DAT.LOG1
18/09/2017 02:28
                                 0 NTUSER.DAT.LOG2
16/07/2016 13:47 <DIR>
10/05/2017 02:20 <DIR>
                                   Pictures
                                  Roaming
10/04/2019 22:51
                            7,038 Rplots.pdf
10/04/2019 22:51
                            5,266 samplePDF2.pdf
              :47 <DIR> 6 archivos
16/07/2016 13:47
                                   Videos
                                 39,316 bytes
              8 dirs 53,850,599,424 bytes libres
```

3. Explain the difference between a character array

```
> x = c("first", "second", "third")
> x
[1] "first" "second" "third"
```

and a factor

```
> y = factor(x)
> y
[1] first second third Levels: first second third
```

The difference between a character array and a factor is that character arrays are nominal and may contain repetitive values. On the other hand, factors are categorical values that identify unique and predefined values.

and explain why

```
> x == y
[1] TRUE TRUE TRUE
```

but

```
> identical(x, y)
[1] FALSE
```

For $\mathbf{x}==\mathbf{y}$ the code will compare element by element for each position per vector.

Following the documentation "(...) a factor can only be compared to another factor with an identical set of levels (not necessarily in the same ordering) or a character vector (....) the general dispatch mechanism precludes comparing ordered and unordered factors". 1

For the identical function identical(x,y) the script will check strictly for the data class and type of object.

```
#By using the functions class and type of we can check the
#objects are different

> typeof(x)
[1] "character"

> typeof(y)
[1] "integer"

> class(x)
[1] "character"

> class(y)
[1] "factor"
```

A factor is considered an integer type of object by definition "factor returns an object of class "factor" which has a set of integer codes the length of x with a "levels" attribute of mode character and unique" according to R documentation.

¹ R Documentation. Factor function. From base v3.5.3 by R-core R-core@R-project.org

² R Documentation. Factor function. From base v3.5.3 by R-core R-core@R-project.org

4. Explain the difference between NA and NaN

NA stands for Not Available/Missing Values. It is a reserved position in a vector indicating that the value is not yet available, assigned or calculated.

NaN stands for Not a Number. It is a derived/calculated value from a computational procedure indicating the impossibility of the result. In this scope, complex numbers are an example.

To get detailed information from R documentation, run:

- > ?NA > ?NaN
- **5.** Give two ways to create the sequence 1, 4, 7, 10, ... with 555 elements,

Complete script without output:

```
> 1+3*0:554
> length (1+3*0:554)
> ?seq
> ?seq.int
> seq(by=3,length.out=555)
> length(1+3*0:554)
> ?seq
> ?seq.int
> seq(by=3,length.out=555)
> #Verify the length
> length(seq(by=3,length.out=555))
> #Documentation points out this is faster. Not to much
differences, our sequence is not that long
> seq.int(by=3,length.out = 555)
> #Verify the length
> length(seq.int(by=3,length.out = 555))
```


Complete script with output:

one using:

> 1+3*0:554													
[1] 1 4 7	10	13	16	19	22	25	28	31	34	37	40	43	
46 49 52 55 [20] 58 61 64 103 106 109 112	67	70	73	76	79	82	85	88	91	94	97	100	
[39] 115 118 121 160 163 166 169	124	127	130	133	136	139	142	145	148	151	154	157	
[58] 172 175 178 217 220 223 226	181	184	187	190	193	196	199	202	205	208	211	214	
[77] 229 232 235 274 277 280 283	238	241	244	247	250	253	256	259	262	265	268	271	
[96] 286 289 292 331 334 337 340	295	298	301	304	307	310	313	316	319	322	325	328	
[115] 343 346 349 388 391 394 397	352	355	358	361	364	367	370	373	376	379	382	385	
[134] 400 403 406 445 448 451 454	409	412	415	418	421	424	427	430	433	436	439	442	
[153] 457 460 463 502 505 508 511 [172] 514 517 520	466 523	469 526	472 529	475 532	478 535	481 538	484 541	487 544	490 547	493 550	496 553	499 556	
559 562 565 568 [191] 571 574 577	580	583	586	589	592	595	598	601	604	607	610	613	
616 619 622 625 [210] 628 631 634	637	640	643	646	649	652	655	658	661	664	667	670	
673 676 679 682 [229] 685 688 691	694	697	700	703	706	709	712	715	718	721	724	727	
730 733 736 739 [248] 742 745 748 787 790 793 796	751	754	757	760	763	766	769	772	775	778	781	784	
[267] 799 802 805 844 847 850 853	808	811	814	817	820	823	826	829	832	835	838	841	
[286] 856 859 862 901 904 907 910	865	868	871	874	877	880	883	886	889	892	895	898	
[305] 913 916 919 958 961 964 967	922	925	928	931	934	937	940	943	946	949	952	955	
[324] 970 973 976 1015 1018 1021 1024			985	988	991	994				1006			
[343] 1027 1030 1033 1072 1075 1078 1081													
[362] 1084 1087 1090 1129 1132 1135 1138 [381] 1141 1144 1147													
1186 1189 1192 1195 [400] 1198 1201 1204													
1243 1246 1249 1252 [419] 1255 1258 1261													
1300 1303 1306 1309 [438] 1312 1315 1318	1321	1324	1327	1330	1333	1336	1339	1342	1345	1348	1351	1354	
1357 1360 1363 1366 [457] 1369 1372 1375	1378	1381	1384	1387	1390	1393	1396	1399	1402	1405	1408	1411	
1414 1417 1420 1423 [476] 1426 1429 1432 1471 1474 1477 1480	1435	1438	1441	1444	1447	1450	1453	1456	1459	1462	1465	1468	
[495] 1483 1486 1489 1528 1531 1534 1537	1492	1495	1498	1501	1504	1507	1510	1513	1516	1519	1522	1525	
[514] 1540 1543 1546 1585 1588 1591 1594	1549	1552	1555	1558	1561	1564	1567	1570	1573	1576	1579	1582	
[533] 1597 1600 1603 1642 1645 1648 1651		1609	1612	1615	1618	1621	1624	1627	1630	1633	1636	1639	
[552] 1654 1657 1660 > length(1+3*0:													
/ Tengun(1+5*0::	JJ4)												

[1] 555

and the other using \mathtt{seq}

> ?seq												
> ?seq.int												
> seq(by=3,leng	th.o	ut=5	555)									
[1] 1 4 7	10	13	16	19	22	25	28	31	34	37	40	43
46 49 52 55												
[20] 58 61 64	67	70	73	76	79	82	85	88	91	94	97	100
103 106 109 112 [39] 115 118 121	124	127	130	133	136	139	142	145	148	151	154	157
160 163 166 169			100	100	100	100		_ 10	110	101	101	10,
[58] 172 175 178	181	184	187	190	193	196	199	202	205	208	211	214
217 220 223 226	000	0.41	0.4.4	0.45	0.50	0.5.0	0.5.6	0.50	0.60	0.65	0.00	071
[77] 229 232 235 274 277 280 283	238	241	244	247	250	253	256	259	262	265	268	271
[96] 286 289 292	295	298	301	304	307	310	313	316	319	322	325	328
331 334 337 340												
[115] 343 346 349	352	355	358	361	364	367	370	373	376	379	382	385
388 391 394 397 [134] 400 403 406	409	412	415	418	421	424	427	430	433	436	439	442
145 448 451 454	400	712	413	410	721	727	72/	430	433	430	433	112
[153] 457 460 463	466	469	472	475	478	481	484	487	490	493	496	499
502 505 508 511												
[172] 514 517 520 559 562 565 568	523	526	529	532	535	538	541	544	547	550	553	556
[191] 571 574 577	580	583	586	589	592	595	598	601	604	607	610	613
616 619 622 625												
[210] 628 631 634	637	640	643	646	649	652	655	658	661	664	667	670
73 676 679 682 2291 685 688 691	694	697	700	703	706	709	712	715	718	721	724	727
30 733 736 739	094	091	700	703	700	709	/12	113	/10	/21	124	121
248] 742 745 748	751	754	757	760	763	766	769	772	775	778	781	784
87 790 793 796												
[267] 799 802 805	808	811	814	817	820	823	826	829	832	835	838	841
344 847 850 853 [286] 856 859 862	865	868	871	874	877	880	883	886	889	892	895	898
901 904 907 910	000	000	0,1	0,1	0 , ,	000	000	000	003	0,72	030	030
[305] 913 916 919	922	925	928	931	934	937	940	943	946	949	952	955
958 961 964 967	070	000	005	000	0.01	004	007	1000	1000	1000	1000	1010
[324] 970 973 976 .015 1018 1021 1024	979	982	985	988	991	994	997	1000	1003	1006	1009	1012
[343] 1027 1030 1033	1036	1039	1042	1045	1048	1051	1054	1057	1060	1063	1066	1069
.072 1075 1078 1081												
[362] 1084 1087 1090	1093	1096	1099	1102	1105	1108	1111	1114	1117	1120	1123	1126
1129 1132 1135 1138 [381] 1141 1144 1147	1150	1153	1156	1159	1162	1165	1168	1171	1174	1177	1180	1183
.186 1189 1192 1195	1100	1100	1100	1100	1102	1100	1100	/-	11/1	11//	1100	1100
400] 1198 1201 1204	1207	1210	1213	1216	1219	1222	1225	1228	1231	1234	1237	1240
243 1246 1249 1252	1064	1000	1070	1070	1076	1070	1000	1005	1000	1001	1004	1007
[419] 1255 1258 1261 [300 1303 1306 1309	1264	1267	1270	12/3	1276	12/9	1282	1285	1288	1291	1294	1297
4381 1312 1315 1318	1321	1324	1327	1330	1333	1336	1339	1342	1345	1348	1351	1354
357 1360 1363 1366												
457] 1369 1372 1375	1378	1381	1384	1387	1390	1393	1396	1399	1402	1405	1408	1411
414 1417 1420 1423 476] 1426 1429 1432	1/35	1/30	1 // / 1	1///	1/1/7	1/50	1/152	1156	1/50	1/62	1/65	1/60
470 1420 1429 1432	1422	1470	T44T	1444	T#4/	T#70	1473	エゴンの	1473	T407	1400	T400
[495] 1483 1486 1489	1492	1495	1498	1501	1504	1507	1510	1513	1516	1519	1522	1525
1528 1531 1534 1537												
[514] 1540 1543 1546	1549	1552	1555	1558	1561	1564	1567	1570	1573	1576	1579	1582
L585 1588 1591 1594 [533] 1597 1600 1603	1606	1609	1612	1615	1618	1621	1624	1627	1630	1633	1636	1639
[000] 1007, 1000 1005	1000	1007	T V T Z	1010	T 0 T 0	1021	1024	1021	1000	1000	1000	1000

> 1642 1645 1648 1651 [552] 1654 1657 1660 1663

- > #Verify the length
- > length(seq(by=3,length.out=555))

[1] 555

> #Documentation points out this is faster. Not to much

> #Documentation	poi	nts	out	th.	is i	s fa	stei	c. No	ot t	o mu	ch	
differences, our	seq	uen	ce i	is no	ot t	hat	long	Ţ				
> seq.int(by=3,length.out = 555)												
[1] 1 4 7	10	13	16	19	22	25	28	31	34	37	40	43
46 49 52 55	67	7.0	7.0	7.0	7.0	0.0	٥٦	0.0	0.1	0.4	0.7	100
[20] 58 61 64 103 106 109 112	67	70	73	76	79	82	85	88	91	94	97	100
[39] 115 118 121	124	127	130	133	136	139	142	145	148	151	154	157
160 163 166 169												
[58] 172 175 178	181	184	187	190	193	196	199	202	205	208	211	214
217 220 223 226 [77] 229 232 235	238	241	244	247	250	253	256	259	262	265	268	271
274 277 280 283	200	211	211	211	200	200	200	200	202	200	200	271
[96] 286 289 292	295	298	301	304	307	310	313	316	319	322	325	328
331 334 337 340	252	255	250	2.61	264	267	270	272	276	270	200	205
[115] 343 346 349 388 391 394 397	352	355	358	361	364	367	370	373	376	379	382	385
[134] 400 403 406	409	412	415	418	421	424	427	430	433	436	439	442
445 448 451 454												
[153] 457 460 463 502 505 508 511	466	469	472	475	478	481	484	487	490	493	496	499
502 505 508 511 [172] 514 517 520	523	526	529	532	535	538	541	544	547	550	553	556
559 562 565 568												
[191] 571 574 577	580	583	586	589	592	595	598	601	604	607	610	613
616 619 622 625 [210] 628 631 634	637	640	643	646	649	652	655	658	661	664	667	670
673 676 679 682	037	040	043	040	043	032	033	030	001	004	007	070
[229] 685 688 691	694	697	700	703	706	709	712	715	718	721	724	727
730 733 736 739												
[248] 742 745 748 787 790 793 796	751	754	757	760	763	766	769	772	775	778	781	784
[267] 799 802 805	808	811	814	817	820	823	826	829	832	835	838	841
844 847 850 853												
[286] 856 859 862	865	868	871	874	877	880	883	886	889	892	895	898
901 904 907 910 [305] 913 916 919	922	925	928	931	934	937	940	943	946	949	952	955
958 961 964 967	,,,,	320	320	301	,,,,	30,	310	3 10	310	, , ,	302	300
[324] 970 973 976	979	982	985	988	991	994	997	1000	1003	1006	1009	1012
1015 1018 1021 1024 [343] 1027 1030 1033 1	1036 1	1030	1042	1045	1 0 4 0	1051	1054	1057	1060	1063	1066	1060
1072 1075 1078 1081	1020 1	1039	1042	1043	1040	1001	1004	1037	1000	1003	1000	1009
[362] 1084 1087 1090	1093 1	L096	1099	1102	1105	1108	1111	1114	1117	1120	1123	1126
1129 1132 1135 1138			4456	4450		4465			4454	4455		4400
[381] 1141 1144 1147 : 1186 1189 1192 1195	1150 1	1153	1156	1159	1162	1165	1168	1171	1174	11777	1180	1183
[400] 1198 1201 1204	1207 1	L210	1213	1216	1219	1222	1225	1228	1231	1234	1237	1240
1243 1246 1249 1252												
[419] 1255 1258 1261 1	1264 1	L267	1270	1273	1276	1279	1282	1285	1288	1291	1294	1297
1300 1303 1306 1309 [438] 1312 1315 1318 3	1321 1	1324	1327	1330	1333	1336	1339	1342	1345	1348	1351	1354
1357 1360 1363 1366												
[457] 1369 1372 1375	1378 1	L381	1384	1387	1390	1393	1396	1399	1402	1405	1408	1411
1414 1417 1420 1423 [476] 1426 1429 1432 1	1 4 3 5 1	1438	1 4 1 1	1 4 1 1	1417	1450	1452	1456	1450	1462	1465	1469
1471 1474 1477 1480	JJ 1	0	T-1-1T	T 111	± 1 1 /	1700	1177	T 470	1700	1704	T 400	T-100
[495] 1483 1486 1489 1	1492 1	L495	1498	1501	1504	1507	1510	1513	1516	1519	1522	1525
1528 1531 1534 1537	1 - 4 ^ -		1	1	1 - 61	1564	1 5 6 5	1	1	1576	1	1 5 0 0
[514] 1540 1543 1546 1 1585 1588 1591 1594	1549 l	1552	1555	1558	1201	1564	1567	T 5 7 0	1573	15/6	1579	1582
[533] 1597 1600 1603 3	1606 1	L609	1612	1615	1618	1621	1624	1627	1630	1633	1636	1639
1642 1645 1648 1651												

[552] 1654 1657 1660 1663
> #Verify the length
> length(seq.int(by=3,length.out = 555))
[1] 555

6. Explain what a data.frame is

A data frame is a two-dimensional object (columns and rows), a collection of "values of type numeric, character or logical." One of many uses of data frames is to storage observations as rows and particular characteristics of those observations as columns. For this, it is necessary for each column vector to have the same length. The data inside each column usually have the same data type but, different columns can have different data types.

7. Explain the correspondences and differences between list and data.frame objects

Correspondences

- Both can store different data types objects such as lists, sequences, strings, booleans.
- Both can be handled by the \$ operator to get data from the selected vector.

Differences

• In data.frames the length of each column must be the same but Lists' objects can have different lengths

- Data.frames cannot store other data.frames, but List can store data.frames and other lists
- List are considered recursive vectors, one vector can contain other vectors and be independent each from another. On the other side, each one of the vectors in data.frame is related to another value in other columns/vectors. As an illustrative example:

³ Introduction to R. Chapter 6. List. Datacamp Course


```
> lists<-list(4, "string", c(4.5,77,88.99,66),c(FALSE,
TRUE),1:10)
> lists
[[1]]
[1] 4
[[2]]
[1] "string"
[[3]]
[1] 4.50 77.00 88.99 66.00
[[4]]
[1] FALSE TRUE
[[5]]
[1] 1 2 3 4 5 6 7 8 9 10
> datafe <- data.frame(a=4:23, b="string",</pre>
c=c(4.5,77,88.99,66),d=c(FALSE, TRUE,TRUE,TRUE))
> datafe
    а
          b
                С
   4 string 4.50 FALSE
   5 string 77.00 TRUE
   6 string 88.99 TRUE
3
4
   7 string 66.00 TRUE
5
   8 string 4.50 FALSE
   9 string 77.00 TRUE
6
7 10 string 88.99 TRUE
8 11 string 66.00 TRUE
9 12 string 4.50 FALSE
10 13 string 77.00 TRUE
11 14 string 88.99 TRUE
12 15 string 66.00 TRUE
13 16 string 4.50 FALSE
14 17 string 77.00 TRUE
15 18 string 88.99 TRUE
16 19 string 66.00 TRUE
17 20 string 4.50 FALSE
18 21 string 77.00 TRUE
19 22 string 88.99 TRUE
20 23 string 66.00 TRUE
```

We can identify an independent definition between the Lists' objects whereas in the data.frame there is a corresponding value defined by the maximum length value from the vector collection.

References

- H. Wickham. Chapter 2: Plot Geoms. ggplot2: Elegant Graphics for Data Analysis. April 17, 2017, pp.24 [Link]
- H. Wickham. Chapter 8: Themes. ggplot2: Elegant Graphics for Data Analysis. April 17, 2017,pp.191,192 [Link]
- K. Willems. Introduction to R: How to Make a Histogram with ggplot2. Datacamp Community Tutorials. March 11th, 2019. [Link]
- R Core Team and contributors worldwide. The R Base Package. Version R $3.7.0.\ 2019\ [\underline{Link}]$
- Robert I. Kabacoff, Ph.D. Batch Processing. *Quick R by Data Camp*. 2017 [Link]
- W. N. Venables, D. M. Smith, and the R Core Team. *Appendix B Invoking R*. An Introduction to R Notes on R: A Programming Environment for Data Analysis and Graphics Version 3.5.3 (2019-03-11), pp. 90 [Link]

Appendix: R Script

```
## ifgi
## Spatial Data Science with R ##
## Violeta Sosa
## Script No. 1
library(ggplot2)
setwd("C:\\Users\\Public")
#### Exercise 1 ####
#Useful to know args from the function rnorm
#Now we know better how to use it
#Directly
sample<-rnorm(1000, mean=50, sd=4)</pre>
#Using variables in case we want to change it later
#size<-1000
\#xmean < -50
#xsd<-4
#rnorm(size, mean=xmean, sd=xsd)
# #Ploting Basic Histogram for Sample
sample
#?hist
hist(sample)
plot1<-hist(sample,
    main="Histogram for Sample with Mean 50 and SD 4",
    xlab="Sample generated rnorm function",
    border="darkgreen",
    col="chartreuse4")
#Ploting Histogram for Sample using ggplot
sampledf<-data.frame(sampleplot=sample)</pre>
sampledf
#Define arguments for the plotting function
#?geom histogram
#?labs
ggplot(sampledf, aes(x=sampleplot)) +
geom histogram(bins=60,col="chartreuse4",fill="darkgreen",alpha=.2)+labs(title="Hist
ogram Plot for Sample with mean=40 std=4",x="Sample generated", y = "Count")
#name for the document
#?ggsave
ggsave("samplePDF2.pdf")
#Changes in the bin size for printing
#?stat bin
##### Exercise 3 #####
x = c("first", "second", "third")
z = c("second", "first", "third")
Х
```



```
#Using different functions
typeof(x)
y=factor(x)
k=factor(z)
typeof(y)
?class
?type
mode(x)
mode(y)
?factor
z==k
##### Exercise 5 #####
#the sequence increments by multiples of 3: 3,6,9,12,15...
1+3*0:554
length (1+3*0:554)
?seq
?seq.int
seq(by=3,length.out=555)
#Verify the length
length(seq(by=3,length.out=555))
#Documentation points out this is faster. Not to much differences 'cause our
sequence is not that long
seq.int(by=3, length.out = 555)
#Verify the length
length(seq.int(by=3,length.out = 555))
##### Exercise 7 #####
lists<-list(4, "string", c(4.5,77,88.99,66),c(FALSE, TRUE),1:10)
lists
# Why here sometimes is ok to have a seq and create the list but others the error
# Error in data.frame(4, "string", c(4.5, 77, 88.99, 66), c(FALSE, TRUE), :
         arguments imply differing number of rows: 1, 4, 2, 10
# cannot be handled? Because of the list length? Should not it fill out the next
values from the start?
datafe <- data.frame(a=4:23, b="string", c=c(4.5,77,88.99,66),d=c(FALSE,
TRUE, TRUE, TRUE))
datafe
```


Appendix: Histogram Plots

ggplot2 library

Native histogram plot

