Project Planning Phase Technology Stack

Date	27 th October 2023	
Team Id	Team-592390	
Project Name	Time Series Analysis For Bitcoin	
	Price Prediction Using Prophet	
Maximum Marks	4	
Team Members	Lohith Bheemisetty	
	Bulle Likhith Raj Anvesh	
	J Surya Sathvik	
	C Rohan Siddarth	

Technical Architecture

The Deliverable shall include the architectural diagram as below and the information as per the table1 & table.

Basic Phases of Technical Architecture:

These sub-phases provide a detailed breakdown of the main phases, ensuring a systematic and organized approach to the development, deployment, and maintenance of the Time Series Analysis application.

Table 1: Components & Technologies

Component	Description	Technologies
User Interaction	Interface for user interaction with the application along with creating an user friendly interface	Web-based UI (HTML, CSS, JavaScript) or mobile app (React Native, Swift/Android)
Application Logic-1	Core logic responsible for handling user requests	Python, Flask, FlaskAPI, Node.js(Express).
Data Collection	Data collection encompasses sourcing historical Bitcoin price data from exchanges via APIs, crucial for Time Series Analysis using Prophet	Integrate Python, Prophet, and cloud infrastructure for accurate predictions.
Data Input	Handling and processing user- provided input data	Forms, file uploads, APIs, or command-line input.
External API	Integration with external data sources or services.	RESTFUL APIs(Bitcoin API, Binance API)
Cloud Database	Storage and management of structured da	Amazon RDS, Google Cloud SQL, or Azure SQL.
Model Integration	Interface for integrating with FbProphet Model	RESTful API endpoints (Flask, FastAPI,JSON,XML
API Model Deployment	Responsible for deploying machine learning models as APIs, enabling real-time predictions and external interaction. It ensures model accessibility and scalability	Docker, Kubernetes, or serverless (AWS Lambda).
Machine Learning Model	The predictive model using Fb Prophet for bitcoin forecasting	Scikit-Learn, TensorFlow, PyTorch, XGBoost, fb Prophet

Data Preprocessing	Data preparation and feature engineering.	Pandas, NumPy, scikit- learn, or custom scripts.
Model Deployment	Hosting and serving the machine learning model.	Flask, FastAPI, TensorFlow Serving, or AWS Sagemaker.
Infrastructure (Server/Cloud)	Underlying cloud infrastructure and	AWS, Google Cloud, Azure, or on-premises
	resources	servers like Local, Cloud Foundry, Kubernetes etc.

Table 2: Application Characteristics:

Component	Description	Technologies
Open-Source	Leveraging open-source	- Scikit-Learn,
Frameworks	frameworks for model	TensorFlow, PyTorch
	development and	for model development.
	deployment guarantees	- Flask or FastAPI for
	cost-efficiency and	API deployment
	flexibility, streamlining	Kubernetes for container
	user access to Bitcoin	orchestration Jupyter
	price predictions,	Notebook for model
	especially during market	prototyping and
	fluctuations and high	development
	volatility periods,	
	enhancing accuracy and	
	reliability in the Time	
	Series Analysis project	
	for Bitcoin Price	
	Prediction using	
	Prophet.	
Security	Implementations include	- OAuth 2.0 or JWT for
Implementations	robust encryption,	user authentication
	authentication, and	Encryption
	access controls to	(HTTPS/SSL) for data
	safeguard sensitive data	in transit Role-based
	in the Time Series	access control Regular
	Analysis project for	security audits and
	Bitcoin Price Prediction	updates Compliance
	using Prophet,	with industry standards
	leveraging Python,	(e.g., GDPR)
	Prophet, and cloud-	

	based security protocols for advanced protection.	
Scalable Architecture	Designing a scalable architecture that can handle growing data volumes and user demands which can manage the huge inflow of user demands assuming as a big data	- Microservices architecture for modularity and scalability Containerization with Docker and orchestration with Kubernetes Load balancers for distributing traffic Auto-scaling based on resource usage.
Availability	Ensuring high availability and minimal downtime for the Time Series Analysis application is vital, enabling continuous data processing and accurate Bitcoin price predictions using Prophet for optimal financial insights.	Redundancy in database and API deployment Geographically distributed data centers or cloud regions Monitoring and alerting systems (e.g., Prometheus, Grafana) Failover mechanisms for fault tolerance.
Performance	Optimizing application performance to provide quick insights and predictions	Caching mechanisms for frequently accessed data Model optimization (e.g., quantization) for faster inference Load testing and performance tuning
User-Friendly Interface	Creating an intuitive and user friendly interface for data input, visualization, and interact	HTML, CSS, JavaScript for web-based UI React or similar frameworks for responsive design Data visualization libraries (e.g., D3.js) User experience (UX) testing and design principles.

Interoperability and	Ensuring seamless	- RESTful API design
Accuracy	integration with external	for interoperability
	systems and maintaining	Integration with external
	high prediction accuracy	data sources (e.g.,
		weather data)
		Continuous model
		monitoring and
		retraining for accuracy
		improvement Data
		preprocessing
		techniques to enhance
		model accuracy
Data Transparency	Increasing transparency	Data documentation
	in Bitcoin price analysis	tools Metadata
	by providing accessible	management systems
	and accountable data	Data catalog solutions
	sources, processing	Access control
	methods, and insights,	mechanisms Data
	fostering informed	lineage and provenance
	decision-making and	tracking Data
	trust in the Time Series	visualization tools
	Analysis project for	Data governance
	Bitcoin Price Prediction	frameworks
	using Prophet.	Compliance and
		auditing tools.

THANK YOU