

Detecting Prefix Hijackings in the Internet with Argus

Xingang Shi Yang Xiang Zhiliang Wang Xia Yin Jianping Wu

Tsinghua University

- Introduction
 - Prefix Hijacking
 - Existing Detection Methods
- Argus
 - Key Observation & Algorithm
 - System Architecture & Implementation
- Internet Monitoring Practice
 - Evaluation
 - Statistics
 - Case Studies
- · Conclusion

Inter-domain Routing

Prefix Hijacking

Black-holing Hijackings

- Packets dropped by the attacker
- Also caused by unintentional mis-configurations
 - 2010, China Tele. hijacked 15% of Internet(prefixes)
 - 2008, Pakistan Tele. hijacked Youtube for 2 hours

- Introduction
 - Prefix Hijacking
 - Existing Detection Methods
- Argus
 - Key Observation & Algorithm
 - System Architecture & Implementation
- Internet Monitoring Practice
 - Evaluation
 - Statistics
 - Case Studies
- · Conclusion

Challenges of Hijacking Detection

Our Approach

- Introduction
 - Prefix Hijacking
 - Existing Detection Methods
- Argus
 - Key Observation & Algorithm
 - System Architecture & Implementation
- Internet Monitoring Practice
 - Evaluation
 - Statistics
 - Case Studies
- · Conclusion

Key Observations: Relationship between Control and Data Plane

- · Only part of the Internet is polluted
- · Distinguishable from other route events

Status Matching

- Eyes of Argus: public route-servers, looking-glasses
 - Simple & fast commands: show ip bgp, ping
- Eye_j at time t
 - Control plane $C_{t,j}$: not affected by the anomalous route?
 - Data plane D_{tj} : live IP in the corresponding prefix can be reached?
 - correlation coefficient of D and C-Raise an alarm if $F_t > \mu$

Fingerprint of a route event:

$$F_{t} = \frac{\sum_{j=1}^{N} [(C_{t,j} - \overline{C_{t}})(D_{t,j} - \overline{D_{t}})]}{\sqrt{\sum_{j=1}^{N} (C_{t,j} - \overline{C_{t}})^{2} \times \sum_{j=1}^{N} (D_{t,j} - \overline{D_{t}})^{2}}}$$

Identification of Prefix Hijacking

• Prefix hijacking: $F_{+} \rightarrow 1.0$, $(F_{+} >= threshold \mu)$

Type of Anomalies

- AS-path $p = \langle a_n, ..., a_{i+1}, a_i, a_{i-1}, ..., a_0 \rangle$
 - OA: Origin Anomaly
 - Anomalous origin AS: $p_a = \langle a_0, f \rangle$
 - AA: Adjacency Anomaly
 - Anomalous AS pair in AS-path: $p_a = \langle a_j, a_{j-1} \rangle$
 - PA: Policy Anomaly
 - Anomalous AS triple in AS-path: $p_a = \langle a_{j+1}, a_j, a_{j-1} \rangle$

- Introduction
 - Prefix Hijacking
 - Existing Detection Methods
- Argus
 - Key Observation & Algorithm
 - System Architecture & Implementation
- Internet Monitoring Practice
 - Evaluation
 - Statistics
 - Case Studies
- · Conclusion

Architecture of Argus

System Deployment

- From May 2011, launched >1 years
- · Live BGP feed collected from ~130 peers
 - BGPmon: http://bgpmon.netsec.colostate.edu/
 - 10GB BGP UPDATE /day, 20Mbps peak
- 389 eyes, in 41 transit AS
- Online notification services
 - (AS-4847) Mailing list
 - (AS-13414, AS-35995) Twitter
 - (AS-4538) Website, web service APIs

- Introduction
 - Prefix Hijacking
 - Existing Detection Methods
- Argus
 - Key Observation & Algorithm
 - System Architecture & Implementation
- Internet Monitoring Practice
 - Evaluation
 - Statistics
 - Case Studies
- · Conclusion

Argus is Online

- 40k anomalous route events
- 220 stable hijackings
 - Duration of $F_{+} >= \mu$ in more than T seconds
 - µ: fingerprint threshold of hijacking(0.6)
 - T: duration threshold of stable hijacking(10sec)

Fingerprint (F_{t}) distribution of all stable hijackings.

False Positive

- Directly contact network operators (March-April, 2012)
 - 10/31 confirmed our hijacking alarms
 - No objection
- ROA: Route Origin Authorization
 - 266 anomalies with ROA records
 - False positive 0%
 (μ=0.6, T=10, #eyes=40)

- IRR: Internet Routing Registry
 - 3988 anomalies with IRR records
 - False positive 0.2%
 (μ=0.6, T=10, #eyes=40)

Delay-220 Stable hijackings

Detection delay

- 60% less than 10 seconds

Identification delay

First anomalous UPDATE First polluted eye

detection delay

-identification delay-

→ time
First
alarm
(Ft≥μ)

- 80% less than 10 seconds
- 50% less than 1 second

- Introduction
 - Prefix Hijacking
 - Existing Detection Methods
- Argus
 - Key Observation & Algorithm
 - System Architecture & Implementation
- Internet Monitoring Practice
 - Evaluation
 - Statistics
 - Case Studies
- · Conclusion

Statistics - Overview

Adjacency/Policy based hijacking do exists

	Total	OA (origin AS)	AA (Adjacency)	PA (Policy)
Anomalies	40k	20k	6.7k	13.3k
Hijackings	220	122	71	27

Total # of route anomalies and stable hijackings in one year.

Weekly # of stable hijackings.

Statistics - Hijacking duration

- Stable hijacking duration: live time of anomalous route
 - 20+% hijackings last <10 minutes
 - Long hijackings also exist

Statistics - Prefix length

- Stable hijackings with most specific prefix
 - 91% hijacked prefixes are most specific
 - 100% hijacked prefixes with length <= 18 are most specific

10% stable hijackings are sub-prefix hijacking

Statistics - Pollution scale

 20% stable hijackings could pollute 80+ transit ASes

Statistics - Pollution speed

20+ transit ASes are polluted in 2 minutes

- For hijackings polluted 80+ transit ASes
 - 50% Internet are polluted within 20 seconds
 - 90% Internet are polluted within 2 minutes

- Introduction
 - Prefix Hijacking
 - Existing Detection Methods
- Argus
 - Key Observation & Algorithm
 - System Architecture & Implementation
- Internet Monitoring Practice
 - Evaluation
 - Statistics
 - Case Studies
- · Conclusion

Case Studies

- OA hijackings (confirmed by email)
 - Missing route filters
 - Network maintenance misplay
 - Premature migration attempt
 - Sub-prefix hijacking
- AA hijackings (confirmed by email)
 - Mis-configuration in TE
 - AS-path poisoning experiment
- PA hijackings (verified in IRR)
 - Import policy violation
 - Export policy violation

OA Hijackings

Time	Prefix	Normal Origin	Anomalous Origin	Duration	Delay
Nov. 27, 2011	166.111.32.0/24,	AS-4538	AS-23910	10+ sec	10 sec
		CERNET, CN	CERNET-2, CN		
Mar. 20, 2012	193.105.17.0/24	AS-50407	AS-15763	12 min	5 sec
		Douglas, DE	DOKOM, DE		

Missing route filters

Network
 maintenance misplay

OA Hijackings

Time	Prefix	Normal Origin	Anomalous Origin	Duration	Delay
Apr. 04, 2012	91.217.242.0/24	AS-197279	AS-48559	17 min	9
		WizjaNet,PL	Infomex, PL		
Mar. 22, 2012	12.231.155.0/24	AS-7018	AS-13490	16 min	7
	(in 12.128.0.0/9)	AT&T,US	Buckeye, US		

 Premature migration attempt

Sub-prefix hijacking

AA Hijackings

Time	Prefix	AS-path	Delay
Apr. 12, 2012	210.1.38.0/24	<3043 174 38082 38794 2446 5 >	12
Mar. 31, 2012	184.464.255.0/24	<4739 6939 2381 47065 19782 47065>	4

- Mis-configuration in TE
 - AS-38794 (BB-Broadband, TH) is a new provider of AS-24465 (Kasikorn, TH)
- AS-path poisoning experiment [SIGCOMM '12]
 - BBN announces loop AS-paths <47065, x, 47065> for experimental purpose

PA Hijackings

Time	Prefix	AS-path	Delay
Apr. 19, 2012	77.223.240.0/22	<4739 24709 25388 21021 12741 47728>	9
Apr. 16, 2012	195.10.205.0/24	<3043 174 20764 31484 3267 3216 35813>	5

Import policy violation

IRR info. of AS-21021 (Multimedia, PL):

import: from AS12741 action pref=150; accept AS12741

export: to AS12741 announce AS21021

Export policy violation

IRR info. of AS-31484 (OOO Direct Tele., RU):

remarks: --- Uplinks ---

import: from AS3267 action pref=85; accept ANY

export: to AS3267 announce AS31484 AND AS196931

import: from AS20764 action pref=85; accept ANY

export: to AS20764 announce AS31484 AND AS196931

Non-hijacking Anomalies

- TE using BGP anycast
 - 193.0.16.0/24 (DNS root-k) suddenly originated by AS-197000 (RIPE)
 - $F_{+} \rightarrow 0$, $D_{+} = 1$
- TE with backup links
 - AS-12476 (Aster, PL)
 announced prefix to a new
 provider AS-6453 (Tata, CA)
 - $F_{t} \rightarrow 0$, $D_{t} = 1$
- Route migration
 - Prefix owmer changed from AS-12653 (KB Impuls, GR) to AS-7700 (Singapore Tele)
 - $F_{+} \rightarrow -1$

- Introduction
 - Prefix Hijacking
 - Existing Detection Methods
- Argus
 - Key Observation & Algorithm
 - System Architecture & Implementation
- Internet Monitoring Practice
 - Evaluation
 - Statistics
 - Case Studies
- Conclusion

Conclusion of Our Contributions

- 80% delay <10 seconds
- 20% stable hijackings last <10 minutes, some can pollute 90% Internet in <2 minutes
- show ip bgp, ping
- Public available external resources

Short High delay accuracy

- OA, AA, PA anomalies
- ROA, IRR, email confirmation

- Anomaly driven probing
- Monitoring the whole Internet

- Live BGP feed from BGPmon
- Victims can be noticed through several channels

Attacker's info

Sub-prefix hijacking

10% stable hijackings are sub-prefix hijacking

One year's Internet detection practice.