Forward Euler Simulation of the 1D Heat Equation

Bradley Cage cage.bradley@berkeley.edu

Lin Yang yang_lin@berkeley.edu

October 5, 2017

1 System Description

Figure 1: The heated rod system, with the temperature at any point given by u(x,t)

Our system is comprised of a rod fixed to a heated wall kept at constant temperature. The length of the rod is arbitrarily taken as 1m. The initial temperature of the rod is in equilibrium with the ambient temperature at 25° C and the temperature of the wall is 200° C. We represent temperature at a point on the rod at some time with the function u(x,t). Note that the rod is thin with respect to its length, thus is modeled as a 1D system, that is, temperature is solely a function of rod position and time. The goal of this simulation is to show the variations in temperature of various points on the rod over time.

2 Initial State and Dynamics with time/space steps

We take our initial state as:

- $T(0,t) = 200^{\circ} \text{C}$
- $T(x,t) = 25^{\circ}C, x \neq 0$

The partial differential equation of the 1D heat propagation:

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} \tag{1}$$

We explicitly state that $u(\dot{})$ is a function of x and t

$$\frac{\partial}{\partial t}u(x,t) = \alpha \frac{\partial^2}{\partial x^2}u(x,t) \tag{2}$$

We use a finite difference approximation to get compute the derivatives in space and time

$$\frac{u_i^{N+1} - u_i^N}{\Delta t} = \alpha \frac{u_{i+1}^N - 2u_i^N + u_{i-1}^N}{\Delta x^2}$$
 (3)

Rearranging we reach the final form we need for our Forward Euler approximation. Note that the quantity $\alpha \frac{\Delta t}{\Delta x^2}$ is Fourier's number, with α being the thermal diffusivity of a material. In the following simulations, we arbitrarily choose Aluminium with $\alpha = 9.7e - 5$.

$$u_i^{N+1} = u_i^N + \alpha \frac{\Delta t}{\Delta x^2} \left[u_{i+1}^N - 2u_i^N + u_{i-1}^N \right]$$
(4)

3 Matlab Code

```
% Values arbitrarily chosen. It's a useful exercise to vary these and look at the results
    T_final = 300;
    N_{-t} = 2000;
    X_{\text{-}}final = 1;
    N_x = 100;
    % Calculate time and x steps based on sampling size and # of samples
    T = linspace(0, T_final, N_t+1);
    X = linspace(0, X_final, N_x+1);
    dt = T(2) - T(1); % Calculate delta t
    dx = X(2) - X(1); % Calculate delta x
11
    alpha = 9.7e-5; % Thermal diffusivity of Aluminium in m^2/s
13
    Fo = (alpha*dt)/(dx^2); % Fouriers number = diffusive transport rate/storage rate
14
    % Define your initial condition here. This could be some function IC(x),
16
    % however for simplicity's sake we take a rod with a uniform temperature
    % and in contact with a hot plate at one end
18
    wall_temp = 200;
19
    init_temp = 25;
20
    \% Initialize the N state and the N-1 state
23
    u_{old} = zeros(1, N_x+1);
    u_{-}old(:) = init_{-}temp;
24
    u_old(1) = wall_temp;
    u_cur = u_old;
26
    u_plot = u_old;
    30
         % Forward Euler solution to heat equation
31
            u_{cur}(i) = Fo*(u_{old}(i+1) - 2*u_{old}(i) + u_{old}(i-1)) + u_{old}(i);
       u_cur(1) = wall_temp; % Set the left boundary to be our high of 200
34
       u_old(:) = u_cur; % We move to the next time step, reset N-1 state
35
        u_plot = [u_plot; u_cur];
36
38
    [X_{plot}, T_{plot}] = meshgrid(X,T); % Create 2D meshgrid to create surface plot
39
40
    surf(X_plot, T_plot, u_plot, 'EdgeColor', 'none') % Create surface plot
41
    c = colorbar; % Attach colour bar and create scale
42
43
    c. Label. String = 'Temperature [C]';
44
    xlim ([0 1]) % Add axis limits
45
    xlabel('Distance along rod [m]'); % Add descriptive axis labels
    ylabel ('Time [s]');
47
    zlabel ('Temperature [C]')
```

Listing 1: Forward Euler and Plotting in MATLAB

4 Simulation Figures

We can create plots of the rods temperature as a function of time and position.

Figure 2: Temperature variation for the whole rod over 300 seconds

Figure 3: Temperature variation for the rod segment with x varies from 0 to 0.3m over 300 seconds

Figure 4: Top view of the temperature variation for the whole rod over 300 seconds

5 Python Code

```
import numpy as np
    # Values arbitrarily chosen. It's a useful exercise to vary these and look at the results
     T_final = 300
     N_{-}t = 1000
     X_{\text{-}}final = 1
     N_x = 100
    # Calculate time and x steps based on sampling size and # of samples
     -, dt = np. linspace(0, T_final, N_t+1, 0, 1)
10
     -, dx = np. linspace(0, X_final, N_x+1, 0, 1)
12
                              # Thermal diffusivity of Aluminium in m^2/s
     \mathrm{alpha} \,=\, 9.7\,\mathrm{e}{-5}
13
    Fo = (alpha*dt)/(dx*dx) # Fourier number = diffusive transport rate/storage rate
14
15
     u\_cur = u\_old = np.zeros(N\_x+1) \# Initialize the N state and the N-1 state
16
17
    # Define your initial condition here. This could be some function IC(x),
18
    # however for simplicity's sake we take a rod with a uniform temperature
19
    # and in contact with a hot plate at one end
20
21
     u_{-}old[:] = 25 # Set the whole rod to be a constant temperature
     u_{-}old[0] = 200 \# Set a high temperature at the boundary wall
23
24
     for t in range (0, N<sub>t</sub>):
25
         for i in range(1, N_x):
26
             # Forward Euler solution to 1D Heat Eq. PDE
27
28
             u_cur[i] = Fo*(u_old[i+1] - 2*u_old[i] + u_old[i-1]) + u_old[i]
29
         u_cur[0] = 200 # Set the left boundary to be our high of 200
30
         u_{-}old[:] = u_{-}cur # We move to the next time step, reset N-1 state
```

Listing 2: Forward Euler in Python