Correction

3.39 To lift a heavy crate, a man uses a block and tackle attached to the bottom of an I-beam at hook B. Knowing that the moments about the y and z axes of the force exerted at B by portion AB of the rope are, respectively, 120 N⋅m and −460 N⋅m, determine the distance a.

$$\mathbf{M}_O = \mathbf{r}_{OA} \times \mathbf{T}_{AB}$$

$$M_O = M_x \mathbf{i} + M_y \mathbf{j} + M_z \mathbf{k}$$

$$\mathbf{r}_{OA} = \mathbf{r}_A = 2.2 \mathbf{i} + 1.6 \mathbf{j}$$

$$\mathbf{r}_{BA} = \mathbf{r}_{A/B} = 2.2 \mathbf{i} - 3.2 \mathbf{j} - a \mathbf{k}$$

$$r_{BA} = \sqrt{(2.2)^2 + (-3.2)^2 + (-a)^2}$$

$$= \sqrt{15.08^2 + a^2}$$

$$\mathbf{T}_{BA} = \frac{T_{BA}}{r_{BA}} \left(2.2\mathbf{i} - 3.2\mathbf{j} - a\mathbf{k} \right)$$

Q12. Considering the following three exact numerical numbers:

$$(1)100.913$$
, $(2)73.152$, and $(3)200.12$

Which of the following satisfies the minimum accuracy requirements imposed by the textbook?

- (A) (a)100.9; (b)73.1, (c)200. (B) $(a)1.0091 \times 10^2$; $(b)7.3 \times 10^1$, $(c) 2.0 \times 10^2$
- $(a)1.0091 \times 10^2$; $(b)7.31 \times 10^1$, $(c) 2.12 \times 10^2$
- (**D**) (a)100.91; (b)73.15, (c) 200.1

(Ans): (D)

Three-force member

For three non-parallel forces acting on a rigid body,
the line of action of the three forces must
interect at on common point.

Why?

because the resultant of \mathbf{F}_1 and \mathbf{F}_2 , \mathbf{R}_{12} , will form a two-force system with the remaining force \mathbf{F}_3 .

Equilibrium of a Three-Force Body

- Consider a rigid body subjected to forces acting at only 3 points.
- Assuming that their lines of action intersect, the moment of F_1 and F_2 about the point of intersection represented by D is zero.
- Since the rigid body is in equilibrium, the sum of the moments of F_1 , F_2 , and F_3 about any axis must be zero. It follows that the moment of F_3 about D must be zero as well and that the line of action of F_3 must pass through D.
- The lines of action of the three forces must be concurrent or parallel.

Definition:

If three **non-parallel** forces act on a rigid body in equilibrium, it is known as a three-force member.

Three-force member principle

If a three-force member is in equilibrium, the line of action of all three forces must intersect at a common point; and the total resultant is zero. In other words, any single force is the equilibrant of the two other forces.

Sample Problem 4.6

A man raises a 10 kg joist, of length 4 m, by pulling on a rope.

Find the tension in the rope and the reaction at A.

SOLUTION:

• Create a free-body diagram of the joist. Note that the joist is a 3 force body.

 The three forces must be concurrent for static equilibrium. Therefore, the reaction *R* must pass through the intersection of the lines of action of the weight and rope forces.

• Utilize a force triangle to determine the magnitude of the reaction force *R*.

PROBLEM 4.13

Determine the reactions at A and B when (a) $\alpha = 0$, (b) $\alpha = 90^{\circ}$, (c) $\alpha = 30^{\circ}$.

Main Takeaways

- 1. Start solving statics problems by drawing the freebody diagram;
- 2. Identify boundary support conditions;
- 3. Inspect for two-force body or three-force body, and
- 4. Judiciously select the point for moment equations.

Equilibrium of a Rigid Body in Three Dimensions

$$\sum \vec{F} = 0 \quad \sum \vec{M}_O = \sum (\vec{r} \times \vec{F}) = 0$$

• Six scalar equations are required to express the conditions for the equilibrium of a rigid body in the general three dimensional case.

$$\sum F_x = 0 \qquad \sum F_y = 0 \qquad \sum F_z = 0$$
$$\sum M_x = 0 \qquad \sum M_y = 0 \qquad \sum M_z = 0$$

• These equations can be solved for no more than 6 unknowns which generally represent reactions at supports or connections.

Today's Lecture Attendance Password is: 3D Problem

Reactions at Supports and Connections for a 3D Structure

Reactions at Supports and Connections for a 3D Structure

Boundary Support Summary

Rocker Bearing used to Support the Roadway of a Bridge

Pin connections allow rotation.
Reactions at pins are forces and NOT MOMENTS.

Degrees of Freedom

4.53 A 4 \times 8-ft sheet of plywood weighing 40 lb has been temporarily propped against column CD. It rests at A and B on small wooden blocks and against protruding nails. Neglecting friction at all surfaces of contact, determine the reactions at A, B, and C.

Freebody-Diagram

We have five unknows and six equations.

The plywood sheet is free to move in x-direction, but $(\sum F_x = 0)$.

$$\mathbf{B}:(7,0,0)$$

$$\mathbf{C}: (6, 2\sqrt{3}, -2)$$

$$G: (4, \sqrt{3}, -1)$$

Sample Problem 4.10

Determine (a) where G should be located if the tension in the cable is to be minimum,

(b) the corresponding minimum value of the tension.