Отчет по ходу лабораторной работы №6

Модель эпидемии - вариант 19

Дмитревская Софья Алексеевна

Содержание

1		ь работы	4		
	1.1	Цель лабораторной работы:	4		
2	Зада	ач и	5		
	2.1	Задачи лабораторной работы:	5		
3	Ход выполнения лабораторной работы:				
	3.1	Теоретические сведения	6		
	3.2	Теоретические сведения	7		
	3.3	Теоретические сведения	7		
4	Задача				
	4.1	Условие задачи:	8		
5	Код программы				
	5.1	Код программы	9		
		Код программы	10		
6	Результаты работы				
	6.1	Результаты работы	11		
7	Выв	оды	13		
Сп	Список литературы				

List of Figures

6.1	Графики численности в случае $I(0) \leq I^*$	11
6.2	Графики численности в случае $I(0) > I^*$	12

1 Цель работы

1.1 Цель лабораторной работы:

Изучить простейшую модель эпидемии SIR. Используя условия из варианты, задать в уравнение начальные условия и коэффициенты. После построить графики изменения численностей трех групп в двух случаях.

2 Задачи

2.1 Задачи лабораторной работы:

- 1. Изучить модель эпидемии
- 2. Построить графики изменения числа особей в каждой из трех групп.
- 3. Рассмотреть, как будет протекать эпидемия в случае: $I(0) \leq I^*$, $I(0) > I^*$

3 Ход выполнения лабораторной работы:

3.1 Теоретические сведения

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа – это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt} = egin{cases} -lpha S & ext{,ecли } I(t) > I^* \ 0 & ext{,ecли } I(t) \leq I^* \end{cases}$$

3.2 Теоретические сведения

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится. Т.е.:

$$rac{dI}{dt} = egin{cases} lpha S - eta I & ext{,если } I(t) > I^* \ -eta I & ext{,если } I(t) \leq I^* \end{cases}$$

3.3 Теоретические сведения

Рассмотрим скорость изменения выздоравливающих особей, которые при этом приобретают иммунитет к болезни:

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности α,β - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$

4 Задача

4.1 Условие задачи:

На одном небольшом острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=10600) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=133. Число здоровых людей с иммунитетом к болезни R(0)=33. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае: 1. $I(0) \leq I^*$ 2. $I(0) > I^*$

5 Код программы

5.1 Код программы

end lab6;

```
model lab6
parameter Real a = 0.01;// коэффициент заболеваемости
parameter Real b = 0.02;//коэффициент выздоровления
parameter Real N = 10600;// общая численность популяции
parameter Real I0 = 133; // количество инфицированных особей в начальный момирагаметеr Real R0 = 33; // количество здоровых особей с иммунитетом в начальнате рагаметеr Real S0 = N - I0 - R0; // количество восприимчивых к болезни особей Real S(start=S0);
Real I(start=I0);
Real R(start=R0);

equation
// случай, когда I(0)<=I*
der(S) = 0;
der(I) = -b*I;
der(R) = b*I;
```

5.2 Код программы

```
model lab62
 parameter Real a = 0.01;// коэффициент заболеваемости
 parameter Real b = 0.02;//коэффициент выздоровления
 parameter Real N = 10600;// общая численность популяции
 parameter Real I0 = 133; // количество инфицированных особей в начальный мо
 parameter Real R0 = 33; // количество здоровых особей с иммунитетом в начал
 parameter Real S0 = N - I0 - R0; // количество восприимчивых к болезни особе
  Real S(start=S0);
  Real I(start=I0);
  Real R(start=R0);
  equation
  // случай, когда I(0)> I*
  der(S) = a*S;
  der(I) = a*S - b*I;
  der(R) = b*I;
end lab62;
```

6 Результаты работы

6.1 Результаты работы

Figure 6.1: Графики численности в случае $I(0) \leq I^*$

Figure 6.2: Графики численности в случае $I(0)>I^{st}$

7 Выводы

В ходе выполнения лабораторной работы была изучена простейшая модель эпидемии и построены графики на основе условий задачи и начальных данных, которые были описаны в варианте лабораторной работы.

Список литературы

- 1. Моделирование эпидемии простым языком, SIR модель
- 2. SIR models of epidemics
- 3. Конструирование эпидемиологических моделей