NAME: SOLUTION

PROBLEM 1: For each of the stress states listed below evaluate the failure of the material for the two materials listed. Determine if failure occurs and if it does not, determine the safety factor. Be sure to state the criteria you are using for failure.

 $Steel: S_v = 250MPa$

1b.

$$\Gamma = \int (-45 \text{ mpa})^2 + (30 \text{ mpa})^2 = .54.68 \text{ mpa}$$

$$T_{7} = \sqrt{\frac{1}{2}} \left[(39.1 \text{ m/c} - 0)^{2} + (0 + 69.1 \text{ m/c})^{2} + (39.1 \text{ m/c} + 69.1 \text{ m/c})^{2} \right]$$

$$= 94.90 \text{ m/c}$$

1c.

STEEL!
$$N_s = \frac{250 \text{ mPa}}{3.57}$$

PROBLEM 2: A torque of magnitude T=1000 N·m is applied at "D". The diameter of shaft "AB" is 56mm and the diameter of shaft "CD" is 42mm. Ignore the stress concentration at the gears. The shaft is made of G43400 Steel (first one in table), with a machine finish, and .9999 reliability. S_y=550MPa.

2a. If the load is applied in a fully reversible manner (i.e., 1000N·m to -1000N·m), what is the expected life of the system.

$$\mathcal{E}_{CD} = \frac{(1000N \cdot m) \cdot (\frac{0912m}{2})}{\frac{1}{2}917 \cdot (\frac{092m}{2})^{4}} = 68.7 \, mPa \longrightarrow -G2.7 \, mPa$$

$$\mathcal{E}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2})}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{27.5 \, mPa} \longrightarrow -72.5 \, mPa$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{27.5 \, mPa} \longrightarrow -72.5 \, mPa$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa} \longrightarrow -72.5 \, mPa$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}}{\frac{1}{2}917 \cdot (\frac{056m}{2}m)^{4}}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot (\frac{056m}{2}m)^{4}} = \frac{72.5 \, mPa}{21.5 \, mPa}$$

$$\mathcal{F}_{AB} = \frac{(2500N \cdot m) \cdot$$

$$S_E = 489 \, \text{MPa} \cdot 0.69 \cdot 0.75 \cdot 0.702 = 177.7 \, \text{mPa}$$
 $m = -\frac{1}{3} \cdot \log \left(\frac{0.9 \, (965 \, \text{mPa})}{177.7 \, \text{mPa}} \right) = -.2297$
 $b = \log \left[\frac{\left(0.9 \, (965 \, \text{mPa}) \right)^2}{177.7 \, \text{mPa}} \right] = 3.628 \, \log(\text{mPa})$

SINCE $S_S < S_C = \text{LIFE ES INFINITE}$

2b. If the load is cycled from 1000N·m to 0N·m, what is the factor of safety for the shaft?

POINTB

1. 1245
$$T_m^{(b)} = 178 m P_R = 7 T_m^{(b)} = 150.3 m Pa$$

$$n = \frac{AB}{AC} = \frac{212.6 mR}{88.8 mPa} = 2.39$$

Table 5-1 STANDARD DEVIATIONS OF ENDURANCE LIMBT*

Material† UNS No.	Tensile Sol		Endurance limit		Standard deviation	
	MPs	kpsi	MPa	kpsi	kpsi	5)
G43400 steel G43500 steel R50001-series titanium alloy A97076 aluminum alloy C63000 aluminum bronze C17200 beryllium copper	965 1310 1580 1790 2070 1000 524 806 1210	140 190 230 260 300 145 76 117 175	489 586 620 668 689 579 186 331	71 85 90 97 100 84 27 48	3.5 6.7 5.3 6.3 4.4 5.4 1.6 4.5	4.9 7.8 5.9 6.5 4.4 6.4 6.0 9.4

^{*} Reported by F. B. Stolen, H. N. Cummings, and W. C. Schulte, Preventing Fatigue Failures, Part 5, Machine Design, vol. 33, p. 161, June 22, 1961.

[†] Alloys are heat-treated, hot-worked, specimens smooth, subjected to long-life rotating-beam tests.

