Elementi di teoria della Computazione (Prof.ssa De Felice) Anno Acc. 2018-2019

Prova scritta - 7 febbraio 2019

Nome e Cognome, email:

Matricola:

Firma:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	7	
							SI NO	

Leggere le tracce con attenzione!

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

È vietato copiare, collaborare o comunicare con altri studenti. È vietato l'utilizzo di libri, appunti o lucidi.

I risultati della prova scritta e le informazioni per la conclusione dell'esame saranno pubblicati sulla piattaforma e-learning.

1. (15 punti)

Si consideri l'automa finito non deterministico $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, dove $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{a, b\}$, $F = \{q_2\}$ e δ è definita dalla seguente tabella

	a	b	ϵ
q_0	$\{q_1\}$	$\{q_0,q_2\}$	Ø
q_1	$\{q_2\}$	$\{q_1\}$	$\{q_2\}$
q_2	$\{q_1\}$	$\{q_0,q_2\}$	$\{q_1\}$

Definire un automa finito deterministico equivalente ad \mathcal{A} utilizzando la procedura illustrata nel libro di testo. Automi non ottenuti mediante la suddetta procedura (o in cui la costruzione non sia commentata per mostrarne l'utilizzo) non saranno valutati.

- 2. (15 punti)
 - (a) (3 punti) Fornire la definizione dell'operazione di concatenazione di due linguaggi.
 - (b) (2 punti) Fornire il risultato dell'operazione di concatenazione applicata ai linguaggi $L = \{a, b\}^*$ ed $M = \emptyset$.
 - (c) (2 punti) Fornire il risultato dell'operazione di concatenazione applicata ai linguaggi $L = \{a, b\}^*$ e $X = \{\epsilon\}$.
 - (d) (8 punti) Provare che la classe dei linguaggi regolari è chiusa rispetto all'operazione di concatenazione.
- 3. (15 punti)
 - (a) (7 punti) Mostrare che la classe dei linguaggi decidibili è chiusa rispetto al complemento. Nota: la valutazione dipende dal livello di precisione, accuratezza formale e chiarezza nel giustificare i passaggi che lo studente mostra nello svolgimento.
 - (b) (4 punti) Fornire con precisione il diagramma di stato di un decider che riconosca il linguaggio $\{aw \mid w \in \{a,b\}^*, |w| = 2k, k \in \mathbb{N}, k \geq 0\}.$

Prova scritta 2

(c) (4 punti) Fornire con precisione il diagramma di stato di un decider che riconosca il complemento del linguaggio $\{aw \mid w \in \{a,b\}^*, |w| = 2k, k \in \mathbb{N}, k \geq 0\}$, utilizzando la procedura descritta nel punto (a).

4. (15 punti)

- (a) (4 punti) Fornire la definizione di riduzione mediante funzione di un linguaggio A a un linguaggio B.
- (b) (1 punto) Fornire le definizioni dei linguaggi EQ_{TM} e A_{TM} .
- (c) (10 punti) Esiste una riduzione mediante funzione da EQ_{TM} ad A_{TM} ? È necessario giustificare formalmente la risposta data. Risposte non giustificate non saranno valutate. Nella risposta occorre enunciare con precisione eventuali risultati intermedi utilizzati.

5. (15 punti)

- (a) (5 punti) Definire le classi di complessità P ed NP.
- (b) (5 punti) Fornire la definizione di riduzione di tempo polinomiale di un linguaggio A a un linguaggio B.
- (c) (5 punti) Provare che se A e B sono linguaggi tali che $B \in NP$ e $A \leq_P B$ allora $A \in NP$. È necessario giustificare formalmente la risposta data. Risposte non giustificate non saranno valutate. Nella risposta occorre enunciare con precisione eventuali risultati intermedi utilizzati.

6. (15 punti)

- (a) (7 punti) Fornire la definizione di linguaggio NP-completo.
- (b) (8 punti) Cosa si può dedurre circa la NP-completezza di X sapendo che X è un linguaggio che non è in EXPTIME? Si ricorda che $EXPTIME = \bigcup_{k\geq 1} TIME(2^{n^k})$. È necessario giustificare formalmente la risposta data. Risposte non giustificate non saranno valutate. Nella risposta occorre enunciare con precisione eventuali risultati intermedi utilizzati.

7. Poniamo

 $J = \{w \mid w = 0x \text{ per qualche } x \text{ in } A_{TM} \text{ oppure } w = 1y \text{ per qualche } x \text{ in } \overline{A_{TM}} \}.$

Provare che sia J sia \overline{J} non sono Turing-riconoscibili.