# Intersección de subespacios afines

## Proposición

Si  $\mathcal{A}_i=(A_i,F_i)$  es un subespacio afín de  $\mathcal{A}=(A,V)$  para todo  $i\in I$  y  $\underset{i\in I}{\cap}A_i\neq\varnothing$ , entonces  $(A',F)=(\underset{i\in I}{\cap}A_i,\underset{i\in I}{\cap}F_i)$  es un subespacio afín de  $\mathcal{A}.$ 

#### Demostración

Como  $F_i$  es un s.e.v. de V para todo  $i\in I$ , tenemos que  $F=\bigcap_{i\in I}F_i$  es un s.e.v. de V. Así, para todo  $a,b\in A'$  tenemos

#### Demostración

Como  $F_i$  es un s.e.v. de V para todo  $i\in I$ , tenemos que  $F=\bigcap_{i\in I}F_i$  es un s.e.v. de V. Así, para todo  $a,b\in A'$  tenemos

$$\varphi_{a}(F) = \varphi_{a} \left( \bigcap_{i \in I} F_{i} \right) \\
= \left\{ a + \overrightarrow{v} : \overrightarrow{v} \in \bigcap_{i \in I} F_{i} \right\} \\
= \bigcap_{i \in I} \left\{ a + \overrightarrow{v} : \overrightarrow{v} \in F_{i} \right\} \\
= \bigcap_{i \in I} \varphi_{a}(F_{i}) \\
= \bigcap_{i \in I} A_{i} \\
= A'$$

Por lo tanto,  $\varphi_a(F)=A'$ , y eso implica que  $\mathcal{A}'=(A',F)$  es un subespacio afín de  $\mathcal{A}$ .

Considera  $\mathbb{R}^3$  como espacio afín. Sea  $\mathcal{A}_1$  el subespacio afín dado por  $\{(x,y,z)\in\mathbb{R}^3: x+y=3\}$  y  $\mathcal{A}_2$  el subespacio afín determinado por  $\{(x,y,z)\in\mathbb{R}^3: z=3\}$ .

- (a) Determina referencias afines de  $\mathcal{A}_1$ ,  $\mathcal{A}_2$  y  $\mathcal{A}_1 \cap \mathcal{A}_2$ .
- (b) Muestra que  $\mathcal{A}_1 \cap \mathcal{A}_2$  es el subespacio afín que contiene el punto (3,0,3) y está dirigido por  $\langle (-1,1,0) \rangle$ .
- (c) Determina  $\dim(\mathcal{A}_1)$ ,  $\dim(\mathcal{A}_2)$  y  $\dim(\mathcal{A}_1 \cap \mathcal{A}_2)$ . Clasifica estos subespacios de acuerdo a su dimensión.

Sean  $\mathcal{A}_1=(A_1,F_1)$  y  $\mathcal{A}_2=(A_2,F_2)$ . Los puntos a=(0,3,0),b=(3,0,0),c=(0,3,3) pertenecen a  $A_1$  y  $F_1=\langle \overrightarrow{ab},\overrightarrow{ac}\rangle$ . Por lo tanto, (a,b,c) es una referencia afín de  $\mathcal{A}_1$  y  $\dim(\mathcal{A}_1)=2$ .

Sean  $\mathcal{A}_1=(A_1,F_1)$  y  $\mathcal{A}_2=(A_2,F_2)$ . Los puntos a=(0,3,0),b=(3,0,0),c=(0,3,3) pertenecen a  $A_1$  y  $F_1=\langle \overrightarrow{ab},\overrightarrow{ac}\rangle$ . Por lo tanto, (a,b,c) es una referencia afín de  $\mathcal{A}_1$  y  $\dim(\mathcal{A}_1)=2$ . Análogamente, p=(0,0,3),q=(3,0,3),r=(0,3,3) están en  $A_2$  y  $F_2=\langle \overrightarrow{pq},\overrightarrow{pr}\rangle$ . Así, (p,q,r) es una referencia afín de  $\mathcal{A}_2$  y  $\dim(\mathcal{A}_2)=2$ .

Sean  $\mathcal{A}_1=(A_1,F_1)$  y  $\mathcal{A}_2=(A_2,F_2)$ . Los puntos a=(0,3,0),b=(3,0,0),c=(0,3,3) pertenecen a  $A_1$  y  $F_1=\langle\overrightarrow{ab},\overrightarrow{ac}\rangle$ . Por lo tanto, (a,b,c) es una referencia afín de  $\mathcal{A}_1$  y  $\dim(\mathcal{A}_1)=2$ . Análogamente, p=(0,0,3),q=(3,0,3),r=(0,3,3) están en  $A_2$  y  $F_2=\langle\overrightarrow{pq},\overrightarrow{pr}\rangle$ . Así, (p,q,r) es una referencia afín de  $\mathcal{A}_2$  y  $\dim(\mathcal{A}_2)=2$ . Por otro lado,  $\mathcal{A}_1\cap\mathcal{A}_2=(A_1\cap A_2,F_1\cap F_2)$ , y por eso

$$A_1 \cap A_2 = \{(x, y, 3) \in \mathbb{R}^3 : x + y = 3\}$$

$$= \{(x, 3 - x, 3) : x \in \mathbb{R}\}$$

$$= \{(0, 3, 3) + x(1, -1, 0) : x \in \mathbb{R}\}$$

$$= \{(3, 0, 3) + x(-1, 1, 0) : x \in \mathbb{R}\}.$$

Sean  $\mathcal{A}_1=(A_1,F_1)$  y  $\mathcal{A}_2=(A_2,F_2)$ . Los puntos a=(0,3,0),b=(3,0,0),c=(0,3,3) pertenecen a  $A_1$  y  $F_1=\langle \overrightarrow{ab},\overrightarrow{ac}\rangle$ . Por lo tanto, (a,b,c) es una referencia afín de  $\mathcal{A}_1$  y  $\dim(\mathcal{A}_1)=2$ . Análogamente, p=(0,0,3),q=(3,0,3),r=(0,3,3) están en  $A_2$  y  $F_2=\langle \overrightarrow{pq},\overrightarrow{pr}\rangle$ . Así, (p,q,r) es una referencia afín de  $\mathcal{A}_2$  y  $\dim(\mathcal{A}_2)=2$ . Por otro lado,  $\mathcal{A}_1\cap\mathcal{A}_2=(A_1\cap A_2,F_1\cap F_2)$ , y por eso

$$A_1 \cap A_2 = \{(x, y, 3) \in \mathbb{R}^3 : x + y = 3\}$$

$$= \{(x, 3 - x, 3) : x \in \mathbb{R}\}$$

$$= \{(0, 3, 3) + x(1, -1, 0) : x \in \mathbb{R}\}$$

$$= \{(3, 0, 3) + x(-1, 1, 0) : x \in \mathbb{R}\}.$$

Así,  $\mathcal{A}_1 \cap \mathcal{A}_2$  es la recta que contiene el punto (3,0,3) y está generada por  $\langle (-1,1,0) \rangle$ . Una referencia afín es ((0,3,3),(3,0,3)) y dim $(\mathcal{A}_1 \cap \mathcal{A}_2) = 1$ .

Sean  $\mathcal{A}_1=(A_1,F_1)$  y  $\mathcal{A}_2=(A_2,F_2)$ . Los puntos a=(0,3,0),b=(3,0,0),c=(0,3,3) pertenecen a  $A_1$  y  $F_1=\langle \overrightarrow{ab},\overrightarrow{ac}\rangle$ . Por lo tanto, (a,b,c) es una referencia afín de  $\mathcal{A}_1$  y  $\dim(\mathcal{A}_1)=2$ . Análogamente, p=(0,0,3),q=(3,0,3),r=(0,3,3) están en  $A_2$  y  $F_2=\langle \overrightarrow{pq},\overrightarrow{pr}\rangle$ . Así, (p,q,r) es una referencia afín de  $\mathcal{A}_2$  y  $\dim(\mathcal{A}_2)=2$ . Por otro lado,  $\mathcal{A}_1\cap\mathcal{A}_2=(A_1\cap A_2,F_1\cap F_2)$ , y por eso

$$A_1 \cap A_2 = \{(x, y, 3) \in \mathbb{R}^3 : x + y = 3\}$$

$$= \{(x, 3 - x, 3) : x \in \mathbb{R}\}$$

$$= \{(0, 3, 3) + x(1, -1, 0) : x \in \mathbb{R}\}$$

$$= \{(3, 0, 3) + x(-1, 1, 0) : x \in \mathbb{R}\}.$$

Así,  $\mathcal{A}_1 \cap \mathcal{A}_2$  es la recta que contiene el punto (3,0,3) y está generada por  $\langle (-1,1,0) \rangle$ . Una referencia afín es ((0,3,3),(3,0,3)) y  $\dim(\mathcal{A}_1 \cap \mathcal{A}_2) = 1$ . Por lo tanto,  $\mathcal{A}_1$  y  $\mathcal{A}_2$  son planos, mientras  $\mathcal{A}_1 \cap \mathcal{A}_2$  es una recta.



Prueba que por dos puntos diferentes pasa una única recta.

Prueba que por dos puntos diferentes pasa una única recta.

## Solución

• Sea  $a,b \in A$  dos puntos diferentes de un espacio afín  $\mathcal{A} = (A,V)$ .

Prueba que por dos puntos diferentes pasa una única recta.

- Sea  $a,b \in A$  dos puntos diferentes de un espacio afín  $\mathcal{A} = (A,V)$ .
- Asumimos que el espacio vectorial V está definido sobre un cuerpo denotado por  $\mathbb{K}$ .

Prueba que por dos puntos diferentes pasa una única recta.

- Sea  $a,b \in A$  dos puntos diferentes de un espacio afín  $\mathcal{A} = (A,V)$ .
- Asumimos que el espacio vectorial V está definido sobre un cuerpo denotado por  $\mathbb{K}$ .
- Para toda recta  $\mathcal{A}' = (A', F)$  de  $\mathcal{A}$  tal que  $a, b \in A'$ , existe un vector  $\overrightarrow{u} \in V \setminus \{\overrightarrow{0}\}$  tal que  $F = \langle \overrightarrow{u} \rangle$ .

Prueba que por dos puntos diferentes pasa una única recta.

- Sea  $a,b \in A$  dos puntos diferentes de un espacio afín  $\mathcal{A} = (A,V)$ .
- Asumimos que el espacio vectorial V está definido sobre un cuerpo denotado por  $\mathbb{K}$ .
- Para toda recta  $\mathcal{A}'=(A',F)$  de  $\mathcal{A}$  tal que  $a,b\in A'$ , existe un vector  $\overrightarrow{u}\in V\setminus\{\overrightarrow{0}\}$  tal que  $F=\langle\overrightarrow{u}\rangle$ .
- Así,  $\overrightarrow{ab} = \lambda \overrightarrow{u}$  para algún  $\lambda \in \mathbb{K}$ , lo que implica que  $F = \langle \overrightarrow{ab} \rangle$ .

Prueba que por dos puntos diferentes pasa una única recta.

- Sea  $a,b \in A$  dos puntos diferentes de un espacio afín  $\mathcal{A} = (A,V)$ .
- Asumimos que el espacio vectorial V está definido sobre un cuerpo denotado por  $\mathbb{K}$ .
- Para toda recta  $\mathcal{A}'=(A',F)$  de  $\mathcal{A}$  tal que  $a,b\in A'$ , existe un vector  $\overrightarrow{u}\in V\setminus\{\overrightarrow{0}\}$  tal que  $F=\langle\overrightarrow{u}\rangle$ .
- Así,  $\overrightarrow{ab} = \lambda \overrightarrow{u}$  para algún  $\lambda \in \mathbb{K}$ , lo que implica que  $F = \langle \overrightarrow{ab} \rangle$ .
- Sabemos que existe un único subespacio afín que pasa por a y tiene la dirección del subespacio  $F = \langle \overrightarrow{ab} \rangle$ . Por lo tanto, por a y b pasa una única recta.

Sean  $\mathbb{L}_1$  y  $\mathbb{L}_2$  dos rectas de un espacio afín. Demuestra que si  $\mathbb{L}_1 \cap \mathbb{L}_2 \neq \emptyset$  y  $\mathbb{L}_1 \neq \mathbb{L}_2$ , entonces existe un punto x tal que  $\mathbb{L}_1 \cap \mathbb{L}_2 = \{x\}$ .

Sean  $\mathbb{L}_1$  y  $\mathbb{L}_2$  dos rectas de un espacio afín. Demuestra que si  $\mathbb{L}_1 \cap \mathbb{L}_2 \neq \emptyset$  y  $\mathbb{L}_1 \neq \mathbb{L}_2$ , entonces existe un punto x tal que  $\mathbb{L}_1 \cap \mathbb{L}_2 = \{x\}$ .

#### Solución

Supongamos que existen dos puntos diferentes  $a,b\in\mathbb{L}_1\cap\mathbb{L}_2$ . Como a través a y b pasa una única recta (ejercicio anterior), tenemos que  $\mathbb{L}_1=\mathbb{L}_2$ . Por lo tanto, si  $\mathbb{L}_1\neq\mathbb{L}_2$  y  $\mathbb{L}_1\cap\mathbb{L}_2\neq\varnothing$ , entonces existe un único punto  $x\in\mathbb{L}_1\cap\mathbb{L}_2$ .