Feuille d'exercices n°4 Algèbre linéaire III et IV

(du lundi 16 novembre 2009 au vendredi 27 novembre 2009)

Exercice 1

Pour tout couple $(i, j) \in \{1, ..., n\}^2$, on note e_{ij} la matrice carrée d'ordre n dont tous les coefficients sont nuls sauf celui situé à la $i^{\text{ième}}$ ligne et à la $j^{\text{ième}}$ colonne, qui vaut 1.

- 1. Calculer pour une matrice $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$: $Ae_{ij}, e_{ij}A, e_{ij}Ae_{ij}$ et $(e_{ij}A)^2$.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que : $\forall X \in \mathcal{M}_n(\mathbb{R}) \ (XA)^2 = 0$. Montrer que A = 0.
- 3. Soient $A \in \mathcal{M}_{n,p}(\mathbb{R})$ et $B \in \mathcal{M}_{q,n}(\mathbb{R})$. Montrer que

$$(\forall X \in \mathscr{M}_{p,q}(\mathbb{R}), tr(AXB) = 0) \iff (BA = 0)$$

Exercice 2

Soit
$$(x, y, z) \in \mathbb{R}^3$$
 tel que $x^2 + y^2 + z^2 = 1$. Posons $U = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $M = \begin{pmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{pmatrix}$ et $P = U^t U$.

- 1. Calculer tUU et en déduire que $P^2 = P$.
- 2. Montrer que MP = 0 et PM = 0.

Exercice 3

Soient $(A, B, X) \in \mathcal{M}_n^3(\mathbb{R})$ telle que $tr(A) \neq -1$. Résoudre dans $\mathcal{M}_n(\mathbb{R})$ l'équation (en X) suivante

$$X + tr(X)A = B$$

Exercice 4

Dans cet exercice, on identifie $\mathcal{M}_1(\mathbb{R})$ avec \mathbb{R} . Soient $U \in \mathcal{M}_{n,1}(\mathbb{R})$ non nulle et

$$S = I_n - \frac{2}{{}^t UU}(U {}^t U) \in \mathscr{M}_n(\mathbb{R})$$

Montrer que S est symétrique (c'est-à-dire ${}^tS = S$) et que $S^2 = I_n$.

Exercice 5

Notons $\mathscr{S}_n(\mathbb{R})$ (resp. $\mathscr{A}_n(\mathbb{R})$) l'ensemble des matrices symétriques (resp. antisymétriques) d'ordre n à coefficients réels.

- 1. Montrer que $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$ sont des \mathbb{R} -ev.
- 2. Montrer que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$

Exercice 6

Soit
$$A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -1 & 1 \\ -2 & 1 & -1 \end{pmatrix}$$
. Déterminer la matrice A^{-1} .

Exercice 7

Soient
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Déterminer (sous forme factorisée) pour tout $\lambda \in \mathbb{R}$, $det(A - \lambda I)$ et $det(B - \lambda I)$

Exercice 8

Soient $(a_1, ..., a_n) \in \mathbb{R}^n$ et $(a, b) \in \mathbb{R}^2$. Déterminer le déterminant (sous forme factorisée) des matrices A et B suivantes :

$$A = \begin{pmatrix} a_1 & a_1 & a_1 & \dots & \dots & a_1 \\ a_1 & a_2 & a_2 & \dots & \dots & a_2 \\ a_1 & a_2 & a_3 & \dots & \dots & a_3 \\ \vdots & \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \dots & \dots & a_n \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} a & b & \dots & \dots & b \\ b & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & b \\ b & \dots & \dots & b & a \end{pmatrix}$$

Exercice 9

Soit
$$(x_1, x_2, ..., x_n) \in \mathbb{R}^n$$
. Déterminer sous forme factorisée $V(x_1, x_2, ..., x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & ... & x_1^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & ... & x_n^{n-1} \end{vmatrix}$

Exercice 10

Soit $f \in \mathcal{L}(\mathbb{R}_n[X])$ définie par f(P) = P'.

En ayant vérifié que f est linéaire, écrire la matrice de f relativement à la base canonique de $\mathbb{R}_n[X]$.

Exercice 11

Soient
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \text{ et } f : \begin{cases} \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}) \\ X \mapsto AX - XA \end{cases}$$

- 1. Montrer que $f \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$.
- 2. f est-elle bijective?
- 3. Déterminer la matrice de f dans la base canonique $\mathscr{B} = (e_{11}, e_{12}, e_{21}, e_{22})$ de $\mathscr{M}_2(\mathbb{R})$.