

Crush Optimism with Pessimism: Structured Bandits Beyond Asymptotic Optimality

Kwang-Sung Jun

join work with Chicheng Zhang

Structured bandits

• Input: Arm set \mathcal{A} , hypothesis class $\mathcal{F} \subset (\mathcal{A} \to \mathbb{R})$

- "the set of possible configurations of the mean rewards"
- Initialize: The environment chooses $f^* \in \mathcal{F}$ (unknown to the learner)

For
$$t = 1, ..., n$$

- Learner: chooses an arm $a_t \in \mathcal{A}$
- Environment: generates the reward $r_t = f^*(a_t) + (zero-mean stochastic noise)$
- Learner: receives r_t
- Goal: Minimize the cumulative regret

$$\mathbb{E} \operatorname{Reg}_{n} = \mathbb{E} \left[n \cdot \left(\max_{a \in \mathcal{A}} f^{*}(a) \right) - \sum_{t=1}^{n} f^{*}(a_{t}) \right]$$

• Note: fixed arm set (=non-contextual), realizability $(f^* \in \mathcal{F})$

Structured bandits

Why relevant?

Techniques may transfer to RL (e.g., ergodic RL [Ok18])

- Naive strategy: UCB
 - $\Rightarrow \frac{K}{\Delta} \log n$ regret bound (instance-dependent)
 - Scales with the number of arms K
 - Instead, the **complexity** of the hypothesis class \mathcal{F} should appear.
- The asymptotically optimal regret is well-defined.
 - E.g., linear bandits : $c^* \cdot \log n$ for some well-defined $c^* \ll \frac{K}{\Delta}$.

The goal of this paper

Achieve the asymptotic optimality with improved finite-time regret for any \mathcal{F} .

(the worst-case regret is beyond the scope)

Asymptotic optimality (instance-dependent)

- Optimism in the face of uncertainty (e.g., UCB, Thompson sampling)
 - \Rightarrow optimal asymptotic / worst-case regret in K-armed bandits.
- Linear bandits: optimal worst-case rate = $d\sqrt{n}$
- Asymptotically optimal regret? ⇒ No!

The End of Optimism?
An Asymptotic Analysis of Finite-Armed Linear Bandits

Tor Lattimore Indiana University, Bloomington

Csaba Szepesvári University of Alberta, Edmonton

(AISTATS'17)

mean reward = 1*sweet + 0*sour

Asymptotic optimality: lower bound

•
$$\mathbb{E} \operatorname{Reg}_n \geq c(f^*) \cdot \log n$$
 (asymptotically)
$$c(f^*) = \min_{\gamma_1,\dots,\gamma_K \geq 0} \sum_{a=1}^K \gamma_a \cdot \Delta_a \qquad \Delta_a = \left(\max_{b \in \mathcal{A}} f^*(b)\right) - f^*(a)$$
 s. t.
$$\gamma_{a^*(f)} = 0$$

$$\forall g \in \mathcal{C}(f^*), \qquad \sum_{a=1}^K \gamma_a \cdot \operatorname{KL}_{\nu}(f(a),g(a)) \geq 1$$
 "competing" hypotheses
$$\operatorname{KL} \operatorname{divergence with noise distribution } \nu$$

- $\gamma^* = (\gamma_1^*, ..., \gamma_K^*) \ge 0$: the solution
- To be optimal, we must pull arm a like $\gamma_a^* \cdot \log n$ times.
- E.g., $\gamma_{lemon}^* = 8$, $\gamma_{orange}^* = 0 \implies lemon is the$ **informative arm**!
- When $c(f^*) = 0$: Bounded regret! (except for pathological ones [Lattimore14])

Existing asymptotically optimal algorithms

- Mostly uses forced exploration. [Lattimore+17,Combes+17,Hao+20]
 - \Rightarrow ensures **every arm**'s pull count is an **unbounded** function of n such as $\frac{\log n}{1 + \log \log n}$.

$$\Rightarrow \mathbb{E} \operatorname{Reg}_n \leq c(f^*) \cdot \log n + K \cdot \frac{\log n}{1 + \log \log n}$$

- Issues
 - 1. K appears in the regret* \implies what if K is exponentially large?
 - 2. **cannot** achieve **bounded** regret when $c(f^*) = 0$
- Parallel studies avoid forced exploration, but still depend on K. [Menard+20, Degenne+20]

Contribution

Research Question

Assume \mathcal{F} is finite. Can we design an algorithm that

- enjoys the asymptotic optimality
- adapts to bounded regret whenever possible
- does not necessarily depend on K?

Proposed algorithm: CRush Optimism with Pessimism (CROP)

- No forced exploration
- The regret scales not with K but with $K_{\psi} \leq K$ (defined in the paper).
- An interesting log log n term in the regret*

Preliminaries

Assumptions

- $|\mathcal{F}| < \infty$
- The noise model

$$r_t = f^*(a_t) + \xi_t$$
 where ξ_t is 1-sub-Gaussian. (generalized to σ^2 in the paper)

- Notations: $a^*(f) \coloneqq \arg \max_{a \in \mathcal{A}} f(a)$, $\mu^*(f) \coloneqq f(a^*(f))$
- f supports arm $a \iff a^*(f) = a$
- f supports reward $v \iff \mu^*(f) = v$
- [Assumption] Every $f \in \mathcal{F}$ has a unique best arm (i. e., $|a^*(f)| = 1$)

Competing hypotheses

- $\mathcal{C}(f^*)$ consists of $f \in \mathcal{F}$ such that
 - (1) assigns the same reward to the best arm $a^*(f^*)$
 - (2) but supports a different arm $a^*(f) \neq a^*(f^*)$
- Importance: it's why we get log(n) regret!

Lower bound revisited

Assume Gaussian rewards.

• $\mathbb{E} \operatorname{Reg}_n \ge c(f^*) \cdot \log n$, asymptotically.

$$c(f^*) \coloneqq \min_{\gamma_1, \dots, \gamma_K \geq 0} \sum_{a=1}^K \gamma_a \cdot \Delta_a \qquad \Delta_a = \left(\max_{b \in \mathcal{A}} f^*(b)\right) - f^*(a)$$
 s.t.
$$\gamma_{a^*(f^*)} = 0 \qquad \qquad \sum_{a=1}^K \gamma_a \cdot \frac{\left(f^*(a) - g(a)\right)^2}{2} \geq 1$$
 "competing" hypotheses

 $\gamma_a \ln(n)$ samples for each $a \in \mathcal{A}$ can **distinguish** f^* from g confidently.

Finds arm pull allocations that (1) eliminate competing hypotheses and (2) 'reward'-efficient

Example: Cheating code

- $\epsilon > 0$: very small (like 0.0001)
- $\Lambda > 0$: not too small (like 0.5)
- The lower bound: $\Theta\left(\frac{\log_2 K}{\Lambda^2} \ln n\right)$
- UCB: $\Theta\left(\frac{K}{\epsilon}\ln n\right)$
- Exponential gap in *K*!

	A1	A2	А3	A4	A5	A6
f_1	1	$1-\epsilon$	$1-\epsilon$	$1-\epsilon$	0	0
f_2	$1 - \epsilon$	1	$1-\epsilon$	$1-\epsilon$	0	Λ
f_3	$1-\epsilon$	$1-\epsilon$	1	$1-\epsilon$	Λ	0
f_4	$1 - \epsilon$	$1 - \epsilon$	$1-\epsilon$	1	Λ	Λ
f_5	$1 + \epsilon$	1	$1-\epsilon$	$1-\epsilon$	0	0
f_6	1	$1 + \epsilon$	$1-\epsilon$	$1-\epsilon$	0	Λ
f_7	$1-\epsilon$	$1-\epsilon$	$1 + \epsilon$	1	Λ	0

The function classes

regret contribution

- $\Theta(\log n)$ • $\mathcal{C}(f^*)$: Competing \Rightarrow cannot distinguishable using $a^*(f^*)$, but supports a different arm

• $\mathcal{D}(f^*)$: Docile \Longrightarrow distinguishable using $a^*(f^*)$

 $\Theta(1)$

• $\mathcal{E}(f^*)$: Equivalent \implies supports $a^*(f^*)$ and the reward $\mu^*(f^*)$

can be $\Theta(\log \log n)$

• [Proposition 2] $\mathcal{F} = \mathcal{C}(f^*) \cup \mathcal{D}(f^*) \cup \mathcal{E}(f^*)$ (disjoint union)

CRush Optimism with Pessimism (CROP)

CROP: Overview

• The confidence set

$$L_t(f) \coloneqq \sum_{s=1}^t \left(r_s - f(a_s)\right)^2$$

$$\mathcal{F}_t \coloneqq \left\{f \in \mathcal{F} \colon L_{t-1}(f) - \min_{g \in \mathcal{F}} L_{t-1}(g) \leq \beta_t \coloneqq \Theta(\ln(t|\mathcal{F}|))\right\}$$
 FRM

- Four important branches
 - Exploit, Feasible, Fallback, Conflict
- Exploit
 - Does every $f \in \mathcal{F}_t$ support the same best arm?
 - If yes, pull that arm.

CROP v1

At time *t*,

- Maintain a confidence set $\mathcal{F}_t \subseteq \mathcal{F}$
- If every $f \in \mathcal{F}_t$ agree on the best arm
 - (Exploit) pull that arm.
- Else: (Feasible)
 - Compute the pessimism: $\overline{f_t} = \arg\min_{f \in \mathcal{F}_t} \max_{a \in \mathcal{A}} f(a)$ (break ties by the cum. loss)
 - Compute $\gamma^* \coloneqq$ solution of the optimization problem $c(\overline{f_t})$
 - (Tracking) Pull $a_t = \arg\min_{a \in \mathcal{A}} \frac{\text{pull_count}(a)}{\gamma_a^*}$

Cf. optimism: $\widetilde{f}_t = \arg \max_{f \in \mathcal{F}_t} \max_{a \in \mathcal{A}} f(a)$

Why pessimism?

Arms	A1	A2	А3	A4	A5
f_1	1	.99	.98	0	0
f_2	.98	.99	.98	<u>.25</u>	0
f_3	.97	.97	.98	.25	<u>.25</u>

- Suppose $\mathcal{F}_t = \{f_1, f_2, f_3\}$
- If I knew f^* , I could track $\gamma(f^*)$ (= the solution of $c(f^*)$)
- Which *f* should I track?
- **Pessimism**: either does the right thing, or eliminates itself.
- Other choices: may get stuck (so does ERM)

Key idea: the LB constraints prescribes how to distinguish f^* from those supporting **higher** rewards.

But we may still get stuck.

Arms	A1	A2	А3	A4	A5
f_1	1	.99	.98	0	0
f_2	.98	.99	.98	.25	0

- Due to docile hypotheses.
- We must do something else.

$$\psi(f) := \arg\min_{\gamma \in [0,\infty)^K} \Delta_{\min}(f) \cdot \gamma_{a^*(f)} + \sum_{a \neq a^*(f)} \Delta_a(f) \cdot \gamma_a$$
s.t.
$$\forall g \in \mathcal{C}(f) \cup \mathcal{D}(f) : \mu^*(g) \ge \mu^*(f)$$

$$\sum_{a} \gamma_a \frac{\left(f(a) - g(a)\right)^2}{2} \ge 1$$

$$\gamma \ge \max\{\gamma(f), \phi(f)\}$$

• Includes **docile** hypotheses with best rewards higher $\mu^*(f)$

When to fallback to $\psi(f)$

- $\mathcal{B}_t \coloneqq \{(a^*(f), \mu^*(f)): f \in \mathcal{F}_t\} \implies \text{induces a partition of } \mathcal{F}_t$
- Optimistic set: $\tilde{\mathcal{F}}_t$ = the partition containing the optimism
- Pessimistic set: $\bar{\mathcal{F}}_t$ = the partition containing the pessimism
- Condition: Use $\gamma(\bar{f_t})$ if

$$\forall f \in \tilde{\mathcal{F}}_t, \qquad \sum_{a} \gamma_a (\bar{f}_t) \frac{\left(f(a) - \bar{f}_t(a)\right)^2}{2} \ge 1$$

- otherwise, fallback to $\psi(\bar{f}_t)$.
- Then, we never get stuck
 - Crush optimism with pessimism (or end up crushing pessimism itself)

CROP v2

At time *t*,

- Maintain a confidence set $\mathcal{F}_t \subseteq \mathcal{F}$
- If every $f \in \mathcal{F}_t$ agree on the best arm
 - (Exploit) pull that arm.
- Else if $\gamma(\bar{f}_t)$ is sufficient to eliminate the optimistic set $\tilde{\mathcal{F}}_t$
 - (Feasible) $\pi_t = \gamma(\bar{f}_t)$
- Else
 - (Fallback) $\pi_t = \psi(\bar{f}_t)$
- (Tracking) Pull $a_t = \arg\min_{a \in \mathcal{A}} \frac{\text{pull_count}(a)}{\pi_{t,a}}$

Still, we may not be asymptotical optimal

- Issue: Which informative arm to pull?
- If we follow f_2 ,
 - when $f^* = f_2$, it's fine.

Arms	A1	A2	А3	A4	A5
f_1	1	.99	.98	0	0
f_2	.98	.99	.98	<u>.25</u>	0
f_3	.98	.99	.98	.25	<u>.50</u>

• when $f^* = f_3$, we have (suboptimal_const) $\cdot \log(n)$ regret (and can be made arbitrarily suboptimal)

• Intuition: to guard against $\Theta(n)$ regret,

we aim to be $\left(1 - \frac{1}{n}\right)$ -confident.

to guard against $\Theta(\log n)$ regret (w/ suboptimal const), we aim to be $\left(1 - \frac{1}{\square}\right)$ -confident.

• **Solution**: construct a $\left(1 - \frac{1}{\log(n)}\right)$ -confident set.

We build a refined confidence set

- $\dot{\mathcal{F}}_t = \left\{ f \in \bar{\mathcal{F}}_t : L_{t-1}(f) L_{t-1}(\bar{f}_t) \leq \dot{\beta}_t = O(\log(|\mathcal{F}|\log t)) \right\}$ confidence level: $1 \operatorname{poly}\left(\frac{1}{\log(t)}\right)$ • We have $\dot{\mathcal{F}}_t \subseteq \bar{\mathcal{F}}_t \subset \mathcal{F}_t$
- Ask: Compute $\gamma(f)$ for every $f \in \dot{\mathcal{F}}_t$. Do they all agree, up to constant scaling?
 - YES: CROP v2
 - NO: set $\pi_t = \phi(\bar{f}_t)$

$$\phi(f) = \arg\min_{\gamma_1, \dots, \gamma_K \ge 0} \sum_{a=1}^K \gamma_a \cdot \Delta_a$$

s.t.
$$\gamma_{a^*(f)} = 0$$

$$\forall g \in \mathcal{E}(f): \gamma(g) \not\propto \gamma(f), \qquad \sum_{a=1}^K \gamma_a \cdot \frac{\left(f(a) - g(a)\right)^2}{2} \ge 1$$

distinguish those that give conflicting advice!

CROP v3 (final)

At time t,

- Maintain a confidence set $\mathcal{F}_t \subseteq \mathcal{F}$
- If every $f \in \mathcal{F}_t$ agree on the best arm
 - (Exploit) pull that arm.
- Else if $\exists f, g \in \dot{\mathcal{F}}_t : \gamma(f) \text{ and } \gamma(g) \text{ are not proportional to each other}$
 - (Conflict) $\pi_t = \phi(\bar{f}_t)$
- Else if $\gamma(\bar{f}_t)$ is sufficient to eliminate the optimistic set $\tilde{\mathcal{F}}_t$
 - (Feasible) $\pi_t = \gamma(\bar{f}_t)$
- Else
 - (Fallback) $\pi_t = \psi(\bar{f}_t)$
- (Tracking) Pull $a_t = \arg\min_{a \in \mathcal{A}} \frac{\text{pull_count}(a)}{\pi_{t,a}}$

Main results

Main result

- Effective number of arms: $K_{\psi} = \text{the number of arms with } \psi_a(f) \neq 0 \text{ for some } f \in \mathcal{F}$
- [Theorem 1] Anytime regret of CROP:

$$\mathbb{E} \operatorname{Reg}_{n} = O(P_{1} \ln n + P_{2} \ln(\ln(n)) + P_{3} \ln(|\mathcal{F}|) + K_{\psi})$$

where
$$P_1 = \sum_a \Delta_a \cdot \gamma_a(f^*) \qquad \text{(from feasible)}$$

$$P_2 = \sum_a \Delta_a \cdot \max_{f \in \mathcal{E}(f^*)} \phi_a(f) \qquad \text{(from conflict)}$$

$$P_3 = \sum_a \Delta_a \cdot \max_{f \in \mathcal{F}} \psi_a(f) \qquad \text{(from fallback, mainly)}$$

• [Corollary 1] If $P_1 = 0$, then $P_2 = 0$. Thus, bounded regret.

Example: Cheating code

- $K_{\psi} \approx \log_2 K$
- CROP: $\frac{\ln(K)}{\Lambda^2} \ln n$
- Forced exploration: $\frac{\ln(K)}{\Lambda^2} \ln n + K$
- If $\Lambda = .5$, $K = 2^d$ and n = K
 - d^2 vs 2^d
 - Exponential improvement!

	A1	A2	А3	А3	A5	A6
f_1	1	$1-\epsilon$	$1-\epsilon$	$1-\epsilon$	0	0
f_2	$1-\epsilon$	1	$1-\epsilon$	$1-\epsilon$	0	Λ
f_3	$1-\epsilon$	$1-\epsilon$	1	$1-\epsilon$	Λ	0
f_4	$1-\epsilon$	$1-\epsilon$	$1-\epsilon$	1	Λ	Λ
f_5	1	$1 + \epsilon$	$1-\epsilon$	$1-\epsilon$	0	0
f_6	1	$1-\epsilon$	$1 + \epsilon$	$1-\epsilon$	0	0
f_7	1	$1-\epsilon$	$1-\epsilon$	$1 + \epsilon$	0	0
	•••	•••			•••	•••

Lower bound

- We pull some **uninformative** arm $\log(\log(n))$ times. Is it necessary?
- Existing lower bounds say: it can be anywhere between $\Theta(1)$ and $o(\log n)$.
- Question: Say an algorithm A is asymptotically optimal. Can it pull all uninformative arms O(1) times?
- [Theorem 2]

The answer is NO. There exists \mathcal{F}' for which there exists an **uninformative** arm a with $\mathbb{E}[\text{pull_count}_n(a)] \geq c \cdot \ln \ln n$

(conditions are more relaxed in the paper; will be updated in the arxiv in a few days)

The risk of naively mimicking the oracle

- The oracle: knows f^*
- At time t,
 - If $\forall a$, pull_count_t $(a) \ge \gamma_a(f^*) \cdot \ln t$
 - (Exploit) Pull $a^*(f^*)$
 - Else
 - (Explore) Track $\gamma(f^*)$
- Most existing algorithms try to mimic the oracle!
 - E.g., replace f^* with the ERM + forced exploration.
- CROP is not an exception

The risk of naively mimicking the oracle

• Regret of UCB: $O\left(\min\left\{\frac{K}{\epsilon}\ln(n), \epsilon n\right\}\right)$

- The regret of the oracle: $O\left(\min\left\{\frac{\ln K}{\Lambda^2}\ln(n), n\right\}\right)$ \Longrightarrow Linear worst-case regret!
- Intuitively, if n is small, pulling ϵ -optimal arm is great!

It may not be the end of optimism

- Can we achieve the best of both worlds? I.e., $O\left(\min\left\{\frac{\ln K}{\Lambda^2}\ln(n), \epsilon n\right\}\right)$
 - Yes, if we know ϵ

Summary

- CROP: Asymptotically optimal, adapt to bounded regret, with improved finite-time regret.
- Provides considerations when avoiding forced exploration.
- Reveals the danger of naively mimicking the oracle
- What next?
 - the worst-case regret simultaneously
 - can we use the pessimism for linear bandits?
 - can we even avoid solving the optimization problem?
 - Lower bounds for finite-time instance-dependent regret?
 - No explicit specification of confidence set construction/width?