Susceptibilidad a inundaciones pluviales en la zona urbana de Medellín

Análisis Geoespacial

Daniel David Zambrano González

Pregunta

¿Qué lugares presentan susceptibilidad a inundación por lluvias en la zona urbana de Medellín?

Fuentes de información

- DEM 2 m Medellín IGAC
- Red hídrica Alcaldía de Medellín
- Inventario de eventos Desinventar

- Cobertura terrestre 2019 Alcaldía de Medellín
- Mapa de amenaza por inundaciones POT Medellín 2014

Puntos de Inundación

- 430 eventos georreferenciados
- Cobertura espacial
 - Latitud mínima ≈ 6.24°, latitud máxima ≈ 6.31°
 - Longitud mínima ≈ –75.57°, longitud máxima ≈ –75.40°
- Área urbana analizada: ~ 100.57 km²

Análisis de Densidad de Kernel

Densidad KDE de Inundaciones (contornos)

- Bandwith = 800 m
- Pico máximo de 0.48 eventos/10 km²
- Un anillo de densidades intermedias (0.10 0.30)
- El borde exterior (< 0.05) identifica zonas con menos recurrencia histórica.

Análisis de Densidad de Kernel

- Mediana ≈ 0.13: la mitad de los puntos tienen densidad ≤ 0.13.
- Q1 \approx 0.08 (línea discontinua izquierda) y Q3 \approx 0.19 (línea discontinua derecha) marcan los cuartiles.

Análisis de Vecino Más Cercano (NND)

- La media comienza en ~600 m para k=1 y sube de forma casi lineal hasta ≈2 400 m en k=20
- La media indica el valor central, libre de outliers extremos, a partir de k=5 se sitúa muy próximo a la media
- Cuantifiqué la distancia típica que separa cada inundación de sus cinco vecinos históricos más cercanos.

Análisis de Vecino Más Cercano (NND)

- Distancia mínima ≈ 538 m
- Primer cuartil (Q1) ≈ 766 m
- Mediana ≈ 935 m
- Tercer cuartil (Q3) ≈ 1 179 m
- Distancia máxima ≈ 2 417 m

Análisis de Cuadrantes

- Grilla 10x10 que cubre todos los puntos.
- Valores desde 0 (ningún evento) hasta 77 (el cuadrante más denso)
- Media ≈ 4.4 eventos/cuadrante
- Mediana ≈ 2 eventos/cuadrante

Análisis DBSCAN

- ε = 800 m
- min_samples = 5
- −1 para los 38 puntos de ruido que no cumplieron el umbral de densidad
- Tamaños de cluster: Cluster $0 \rightarrow 191$ puntos

Cluster $1 \rightarrow 116$ puntos

Cluster $6 \rightarrow 32$ puntos

• Clusters pequeños (5-10 puntos) señalan micro-focos en subcuencas menos críticas.

- Rango de distancias de 0 a 2 000 m, dividido en 20 pasos iguales.
- 99 simulaciones CSR (puntos aleatorios dentro del polígono) para construir la envolvente 95 % (percentiles 2.5 y 97.5) y comparé con la curva observada.
- Curva teórica KCSR(d)=πd²

Elevación

Pendiente

Aspecto

Curvatura

Features

Índice de Rugosidad del Terreno

Índice de Posición Topográfica

Coberturas de la tierra

Label

Susceptibilidad a inundación

Dicotómica : SI(1) - NO(0)

Configuración del modelo y resultados

- Ratio 1:5 (presencias:ausencias)
- Filtrado: descartamos puntos dentro de 50 m de cualquier presencia, para evitar "falsos negativos".
- Resultado final: 301 presencias y 301 ausencias
- Variables predictoras:
 - Continuas: elevación, pendiente (slope), aspecto (convertido a sin y cos), curvatura, TPI, TRI.
- Categóricas: cobertura de suelo en dummies ("bosques", "agua", "agrícolas", "artificializados").
- Split entrenamiento/test 70/30%, estratificado por flood.

Configuración del modelo y resultados

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
const	-0.4375	0.1914	-2.2860	0.0223	-0.8126	-0.0624
elevation	-0.2421	0.1042	-2.3242	0.0201	-0.4463	-0.0379
slope	0.6824	0.6635	1.0284	0.3038	-0.6182	1.9829
curvature	0.0337	0.0941	0.3577	0.7206	-0.1507	0.2181
TPI	-0.1417	0.0914	-1.5500	0.1211	-0.3208	0.0375
TRI	-0.7994	0.6576	-1.2155	0.2242	-2.0883	0.4896
aspect_sin	-0.0916	0.0869	-1.0544	0.2917	-0.2619	0.0787
aspect_cos	0.2347	0.0890	2.6373	0.0084	0.0603	0.4090
cover_Territorios Agrícolas	-0.0501	0.4847	-0.1034	0.9177	-1.0001	0.8999
cover_Territorios Artificializados	0.5825	0.2197	2.6514	0.0080	0.1519	1.0130

- Accuracy ≈ 0.53
- ROC AUC ≈ 0.64
- Resultado final: 301 presencias y 301 ausencias
- Recall flood=1 ≈ 0.70 (capta la mayoría de eventos)
- Precision flood=1 ≈ 0.22
- Variables significativas (p<0.05):
 - aspect_cos (OR \approx 1.26)
 - cover_Territorios Artificializados (OR ≈ 1.79)
 - elevation (OR \approx 0.78)
- No significativas (p>0.05): pendiente, curvatura, TPI, TRI, aspect_sin y territorios agrícolas.

Modelo simplificado

- ROC AUC ≈ 0.65
- Mantiene recall ≈ 0.71 para flood=1.

Referencias

- 1. https://www.medellin.gov.co/mapgis9/mapa.jsp?aplicacion=1&css=css/app_mapas_medellin.css
- 2. https://www.desinventar.net/DesInventar/profiletab.jsp?countrycode=col&continue=y
- 3. http://dhime.ideam.gov.co/atencionciudadano/
- 4. https://siata.gov.co/siata_nuevo/
- 5. https://www.colombiaenmapas.gov.co/

Gracias

Universidad Nacional de Colombia