

Facial Expression Recognition with Inconsistently Annotated Datasets

Jiabei Zeng, Shiguang Shan, Xilin Chen

Problem

☐ Emotion recognition supervised by more than one mannally annotated datasets

□ Challenges

- Errors and bias of human annotations exist among different facial expression datasets.
- It is subjective to classify faces into several emotional categories.
- Human's understanding of facial expressions varies with different cultures, living environments, and their experiences.
- Annotation bias of training datasets → recognition bias of trained systems

More data by merging multiple training datasets ≠ better performance of the trained system

- ☐ How to learn from multiple datasets with annotation biases?
- Learn from noisy labels
 - They leverage a small set of clean data or assume constrains or distributions of the noise.
- Each sample has one annotation. They neglect the noise pattern from multiple annotations.
- Learn from crowd sourcing
- They estimate the true labels of the noisily labeled data by multiple annotators.
- They focus on estimating the true labels of annotated samples rather than train a model to predict unlabeled data.

Inconsistent Pseudo Annotations to Latent Truth(IPA2LT) framework

- ☐ Learn from multiple coders: human coders, trained models as machine coders
- ☐ Unlabelled data: bridge between the different datasets by sharing the same machine coders with them
- ☐ Annotation bias are modelled as the probability transitions between the latent truth and the (human or machine) coders' annotations in Latent Truth Net

Latent Truth Net (LTNet)

- ☐ Goal: Learn from samples with multiple inconsistent annotations
- Definition of inconsistent annotations
- Data: $\mathcal{X} = \{\mathbf{x}_i, \dots, \mathbf{x}_N\}$
- Each sample \mathbf{x}_n is labelled by C coders with annotations y_n^1, \dots, y_n^C
- Probability distribution of coder i labelling \mathbf{X}_n : $P(y_n^i|\mathbf{X}_n)$
- Inconsistent annotation assumes $P(y_n^i|\mathbf{x}_n) \neq P(y_n^j|\mathbf{x}_n), \forall \mathbf{x}_n \in \mathcal{X}, i \neq j$
- □ Architechture of LTNet
- A combination of neural network and Dawid&Skene's[1] truth estimation technique
- End-to-end trainable

☐ Formulation of LTNet

- LTNet learns the latent truth P
- \blacksquare The bias of coder c is represented by a probability transition matrix ${f T}^c$. Then, the predicted distribution of c's annotation is

$$\hat{\mathbf{p}}^c = \mathbf{T}^c \mathbf{p}$$

LTNet aims to find the optimal network parameters Θ and $\mathbf{T}^1, \dots, \mathbf{T}^C$

$$\min_{\Theta, \{\mathbf{T}^1, \dots, \mathbf{T}^C\}} \quad -\sum_{n=1}^{L} \sum_{c=1}^{L} \sum_{k=1}^{L} \mathbf{1}(y_n^c = k) \log(\hat{p}_n^c(k))$$

$$s.t. \quad \sum_{i=1}^{L} \tau_{ii}^c = 1, \forall i = 1, \dots, L$$

[1] Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using the em algorithm. Applied statistics pp. 20-28 (1979)

Experiments

- ☐ Synthetic data () Code is available at: https://github.com/dualplus/LTNet
- Randomly revise 20%,30%, or 40% labels in the training set of CIFAR-10.
- Evaluate the methods on the clean test set.

☐ Facial expression recognition

 Training data: AffectNet(training), RAF(training), unlabelled data(~1,200,000) Table 2: Test accurred an facial expression recognition detects (Pald: best Underline, 2nd best)

Table 2: Test accuracy on facial expression recognition datasets. (Bold : best, Underline: 2 nd best)										
Test sets	in-the-wild			Posed				average		
Methods	RAF (te.)	$egin{array}{c} ext{AffectNet} \ ext{(val.)} \end{array}$	SFEW (tr+val)	CK+	CFEE	MMI	Oulu- CASIA	wild	posed	overall
AffTr (base)	79.50	56.51	55.64	91.04	76.09	$\underline{65.32}$	$\boldsymbol{61.49}$	63.88	73.48	69.37
RAFTr (base)	85.10	44.66	51.75	79.87	64.41	58.17	52.50	60.50	63.74	62.35
AffTr+RAFTr (base)	83.28	56.57	56.58	92.45	76.09	62.90	60.50	65.48	72.99	69.77
${ m E2E ext{-}FC}$	23.99	24.00	22.33	51.73	26.52	22.25	31.28	23.44	32.95	28.87
AIR(ICLR'16)	67.37	54.23	49.88	43.87	64.47	59.64	47.03	57.16	53.75	55.21
NAL(ICLR'17)	84.22	55.97	58.13	91.20	75.84	64.71	61.00	66.11	73.19	70.15
IPA2LT(EM+CNN)	85.30	$\boldsymbol{57.31}$	54.94	86.64	72.48	63.11	59.95	65.85	70.54	68.53
IPA2LT(LTNet)	86.77	55.11	58.29	$\underline{91.67}$	76.02	$\boldsymbol{65.61}$	$\underline{61.02}$	66.72	73.58	$\boldsymbol{70.64}$

trained on AffectNet Statistics and visulization of the samples

