

Rota(A, z) définie si - A mon vide - SAG(A, z) mon vide

Roto (A, 18) definis si - A non vide - SAD(A, y) non vide

A) - B = SAG (A, y) done de [2] (de [m] \forall g \in B \over a \in B) \in m \in E \in AG (A, \times) done de [m] \in de [\times] \times \tin

NF18-ABR, Rotations - Exercise 1-3

A(B) =- 1 ni Sanbre Bestvile

Montrons que D=-1 (=) &(B)>max (&(D), &(C))

$$k = 1 + (k(B) + 1) = -1 OK$$

$$y = S + \max (y(B)) + (C)$$

$$\frac{15i \, \lambda(C) \geqslant \lambda(D)}{O_{\lambda} \, \lambda(B) \leq max \, (\lambda(B), \lambda(C))}$$

NF16-ABR, Rotations-Exercise 1-4
D) On note i le sous-arbre modifie et j'le sous-arbre non modifie
Si & (x) > & (8):
500071, 2M177 50007, 2M177
Si & (x) < & (x)
Silv) indange
Silli)=l(j)
5. h(1) 21, h(v) onchange
Em notant Dla variation: (h'(v)=h(v)+D in h(i)>h(v)
En notant Dla variation: (h'(v)=h(v)+D m; h(v)>h(v) (h'(v)=h(v)+(v)+D m; h(v)>h(v) (h'(v)=h(v)+D m; h(v)+D m; h(v)>h(v) (h'(v)=h(v)+D m; h(v)+D m; h(v)>h(v) (h'(v)=h(v)+D m; h(v)+D m; h(v)+D m; h(v)>h(v) (h'(v)=h(v)+D m; h(v)+D
E) D'aprèr C): La variation de houteur du sous-orbre modifié est
D'aprèr D); an sait dans qu'alculer la hauteur du perè en fonction de la bauteur de perè en fonction.

1F16-ABR, Rotations-Exercise 1-5
Algorithme Rota (A, x) (Suite)
$\lambda := \lambda [x]$
Si gande [13] * NUIC] Init: Recupera les houteurs
Suran DE: - loquelle [18] de B, C et D
I DB: z-1
Si'C & NOLL
Suran
12c:=-4
Si drate (>) & NOII
1 MD = X Diale (20)
Sonon I Diz-1
A
L[x]:=1+ max (hc, hD) Taj h(x) et h(y) h[x]: 51 + max (h[x], hB)
D:= R[18] - R & Calcul D
P:= Pere [18]
Tantque (D \$0 et p \$ NUZZ) Conection du chemin entre y et la racine de
Si ganche [P] Eli l'arbre l'arbre [P]
Sonon Redonde O(D)
Sonon Sonon Sig × NULL Sig × NULL Pils nign
1 Mr WI A Manadulle
Sonar 1 Aj: z-1 Sill [17] Dr.
(VET) MIS ON (VET) - WI BL DES 10 LOCATION D
JCPJ:= JCPJ+D > May & dv peré
A:=P P:= pane [P]
Sunan Bretzer & Condition d'airet
A

NF16-ABR, Rotations-Exercice 2-7

A)

RHAI(A,A)

RHO

RHO

RHO

RHO

RHO

RHAI

RH

B) erraciner (A:ABR; e:entier)
Si(Se [TA]=e)
retourner TA

Siple [M] Je)

emacria (gaerge[rA], e) 1/ Remonte e jurge au l'its goude net auna nata (A, NA) NRotal pour emocine le l'its goude de MA Si (le [NA] ?e) Co e

retourna rotg (A, MA) NRotg pour enroumin le fils droit de MA

VF16 - ABR, Rotations - Exercice 2-2

Montrons que envaciner (A,e) termine en au plus le appels récursiles et renvoie un ABR de racine e pour tout or bre A de Souteur le contenant e

Initialisation : Pour un antre A de Dauteur O contenant e

enaaner (A, e) termine diectement sans modifier l'arbre qui contrent

Pérèdite: Soit A un arbre de hauteur let contenant e.

Si de[[7] = e: L'algorithme se termine et est valide

Si de [PA] Se: L'arbre A contient e donc SAG(A, MA) contient e.

SAG(A, nA) est un artre de hauteur le contenante, Par hypothère de recumena, l'oppel à enracina (gauche [rA], e) se terriro en le appels

au plus et renvois un ABR de racino e.

Et let appels ou plus à envainer sont realisées drate [MA] a pour de e.

La notation gaude
La notation droite est on O(4) et permet d'envacine gauche[NA], c'est a due e,

Condavior: L'algarithmo de termine et varvoire un ABI de vario e -> validité Dappels à erracirer samplers sont realisés pour un arter de douteur de. Les autres operations (dont la rotation) sont en O(4)

-> Complexité O(A)