Experimento com N = 128.000.000.000 : 1 a 24 *threads*.

• RESULTADOS DO ESTUDO

Tabela: Métricas do método de trapézio - Amdahl

Número de threads	Tempo de execução	Speedup	Eficiência
1	2324 s	1,0	1,00
2	1206 s	1,9	0,96
4	670 s	3,5	0,87
8	339 s	6,9	0,86
12	227 s	10, 2	0,85
16	171 s	13,6	0,85
20	137 s	16, 9	0,85
24	115 s	20, 3	0,84

Número de threads	Tempo de execução	SpeedUp	Eficiência
1	2732 s	1,0	1,00
2	1354 s	2,0	1,01
4	689 s	4,0	0,99
8	469 s	5,8	0,73
12	474 s	5,7	0,48
16	472 s	5,8	0,36
20	469 s	5,8	0,29
24	466 s	5,8	0,24

Figura 1: Execução pessoal do código do estudo (OpenMP).

Número de threads	Tempo de execução	SpeedUp	Eficiência
1	2859 s	1,0	1,00
2	1435 s	2,0	0,99
4	729 s	3,8	0,98
8	489 s	5,8	0,72
12	493 s	5,7	0,48
16	488 s	5,8	0,36
20	488 s	5,8	0,29
24	488 s	5,8	0,24

Figura 2: Execução pessoal (OpenMP versão 1).

Número de threads	Tempo de execução	SpeedUp	Eficiência
1	2736 s	1,0	1,00
2	1374 s	2,1	1,00
4	700 s	3,9	0,97
8	485 s	5,6	0,70
12	489 s	5,6	0,46
16	482 s	5,6	0,35
20	482 s	5,6	0,28
24	482 s	5,6	0,23

Figura 3: Execução pessoal (OpenMP versão 2).

Número de threads	Tempo de execução	SpeedUp	Eficiência
1	2578 s	1,0	1,00
2	1284 s	2,0	1,00
4	653 s	3,9	0,98
8	479 s	5,3	0,67
12	442 s	5,8	0,48
16	447 s	5,7	0,36
20	443 s	5,8	0,29
24	446 s	5,8	0,24

Figura 4: Execução pessoal (MPI).

Com N variando na mesma proporção do aumento de processadores.

• RESULTADOS DO ESTUDO

Tabela: Métricas método do trapézio - Gustafson

Tamanho N	Tempo Seq.	Threads (p)	Tempo Paralelo	Speedup	Efici- ência
$2,6 \times 10^{9}$	49 s	1	49 s	1,0	1,00
$5,3 \times 10^{9}$	97 s	2	50 s	1,9	0,97
$1,0 \times 10^{10}$	194 s	4	56 s	3, 5	0,87
$2,1 \times 10^{10}$	387 s	8	56 s	6, 9	0,86
$3,1 \times 10^{10}$	581 s	12	57 s	10, 2	0,85
$4,2 imes10^{10}$	775 s	16	57 s	13, 5	0,84
$5,3 imes10^{10}$	971 s	20	57 s	17, 0	0,85
$6,3 imes 10^{10}$	1162 s	24	57 s	20, 2	0,84

Tamanho N	Tempo Seq.	Número de threads	Tempo paralelo	SpeedUp	Eficiência
2,6 x 10^9	54 s	1	54 s	1,0	1,00
5,3 x 10^9	110 s	2	56 s	1,9	0,98
1,0 x 10^10	209 s	4	53 s	3,9	0,98
2,1 x 10^10	441 s	8	81 s	5,4	0,68
3,1 x 10^10	661 s	12	115 s	5,7	0,47
4,2 x 10^10	880 s	16	155 s	5,6	0,35
5,3 x 10^10	1113 s	20	197 s	5,6	0,28
6,3 x 10^10	1314 s	24	233 s	5,6	0,23

Figura 5: Execução pessoal do código do estudo (OpenMP).

Tamanho N	Tempo Seq.	Número de threads	Tempo paralelo	SpeedUp	Eficiência
2,6 x 10^9	54 s	1	57 s	1,0	1,00
5,3 x 10^9	110 s	2	59 s	1,8	0,93
1,0 x 10^10	209 s	4	56 s	3,7	0,93
2,1 x 10^10	441 s	8	80 s	5,5	0,69
3,1 x 10^10	661 s	12	119 s	5,5	0,46
4,2 x 10^10	880 s	16	160 s	5,5	0,34
5,3 x 10^10	1113 s	20	201 s	5,5	0,27
6,3 x 10^10	1314 s	24	240 s	5,4	0,22

Figura 6: Execução pessoal (OpenMP versão 1).

Tamanho N	Tempo Seq.	Número de threads	Tempo paralelo	SpeedUp	Eficiência
2,6 x 10^9	55 s	1	55 s	1,0	1,00
5,3 x 10^9	110 s	2	56 s	1,9	0,98
1,0 x 10^10	209 s	4	54 s	3,8	0,96
2,1 x 10^10	441 s	8	82 s	5,3	0,67
3,1 x 10^10	661 s	12	118 s	5,6	0,46
4,2 x 10^10	880 s	16	158 s	5,6	0,34
5,3 x 10^10	1113 s	20	199 s	5,9	0,27
6,3 x 10^10	1314 s	24	237 s	5,4	0,23

Figura 7: Execução pessoal (OpenMP versão 2).

Tamanho N	Tempo Seq.	Número de threads	Tempo paralelo	SpeedUp	Eficiência
2,6 x 10^9	52 s	1	52 s	1,0	1,00
5,3 x 10^9	110 s	2	53 s	2,0	1,00
1,0 x 10^10	209 s	4	51 s	4,0	1,00
2,1 x 10^10	441 s	8	79 s	7,5	0,93
3,1 x 10^10	661 s	12	112 s	5,9	0,49
4,2 x 10^10	880 s	16	151 s	5,8	0,36
5,3 x 10^10	1113 s	20	191 s	5,8	0,29
6,3 x 10^10	1314 s	24	219 s	6,0	0,25

Figura 8: Execução pessoal (MPI).

Gráfico de speedup - Amdahl

Figura 9: Gráfico de speedup – Amdahl (Execução pessoal do código do estudo).

Figura 10: Gráfico de speedup – Amdahl (Execução pessoal OpenMP versão 1).

Figura 11: Gráfico de speedup – Amdahl (Execução pessoal OpenMP versão 1).

Figura 12: Gráfico de speedup – Amdahl (Execução pessoal MPI).

Gráfico de speedup - Gustafson

Figura 13: Gráfico de speedup – Gustafson (Execução pessoal do código do estudo).

Figura 14: Gráfico de speedup – Gustafson (Execução pessoal OpenMP versão 1).

Figura 15: Gráfico de speedup – Gustafson (Execução pessoal OpenMP versão 2).

Figura 16: Gráfico de speedup – Gustafson (Execução pessoal MPI).

Gráfico e eficiência – Amdahl

Figura 17: Gráfico de eficiência– Amdahl (Execução pessoal do código do estudo).

Figura 18: Gráfico de eficiência- Amdahl (Execução pessoal OpenMP versão 1).

Figura 19: Gráfico de eficiência- Amdahl (Execução pessoal OpenMP versão 2).

Figura 20: Gráfico de eficiência- Amdahl (Execução pessoal MPI).

Gráfico da eficiência - Gustafson

Figura 21: Gráfico de eficiência– Gustafson (Execução pessoal do código do estudo).

Figura 22: Gráfico de eficiência- Gustafson (Execução pessoal OpenMP versão 1).

Figura 23: Gráfico de eficiência– Gustafson (Execução pessoal OpenMP versão 2).

Figura 24: Gráfico de eficiência- Gustafson (Execução pessoal MPI).