# Математический анализ

# Харитонцев-Беглов Сергей

# 21 декабря 2021 г.

# Содержание

| 1. MH  | ожества, отношения                    | 1  |
|--------|---------------------------------------|----|
| 1.1    | Орг. моменты                          | 1  |
| 1.2    | Что такое множество                   | 1  |
| 1.3    | Операции с множествами.               | 2  |
| 1.4    | Вещественные числа                    | 4  |
| 1.5    | Мат. индукции                         | 5  |
| 1.6    | Наибольшие/наименьшие элементы        | 5  |
| 1.7    | Инфинум/Супремум                      | 6  |
| 2. Пос | следовательности                      | 8  |
| 2.1    | Предел последовательности             | 8  |
| 2.2    | Бесконечно большие и бесконечно малые | 11 |
| 2.3    | Экспонента                            | 14 |
| 2.4    | Подпоследовательность                 | 17 |
| 2.5    | Ряды                                  | 20 |
| 3. Пре | едел и непрерывность                  | 22 |
| 3.1    | Предел функции                        | 22 |
| 3.2    | Непрерывные функции                   | 25 |
| 3.3    | Элементарные функции                  | 30 |
| 3.4    | Сравнение функций                     | 32 |
| 4. Дис | фференциальное исчисление             | 35 |
| 4.1    | Дифференцируемость и производная      | 35 |
| 4.2    | Таблица производных                   | 37 |
| 4.3    | Теоремы о среднем                     | 38 |
| 4.4    | Производные высших порядков           | 40 |
| 4.5    | Экстремумы функций                    | 44 |
| 4.6    | Выпуклые функции                      | 45 |

| СОДЕРЖАНИЕ | СОДЕРЖАНИЕ |
|------------|------------|
|            |            |

| 5. Инт | егральное исчисление функции одной переменной | <b>50</b> |
|--------|-----------------------------------------------|-----------|
| 5.1    | Первообразная и неопределенный интеграл       | 50        |

# 1. Множества, отношения

# 1.1. Орг. моменты

- За основу начала была взята книжка "Виноградов, Громов «Курс по математическому анализу». Том 1". Но это было давно, как база, но смотреть туда можно.
- Зорич «Математический анализ».
- Фихтенгольц. Книжка устарела, написана старым языком, но там разобрано много примеров, поэтому можно смотреть просто темы.
- Курс на степике. (Часть вторая).

Для связи можно использовать почту aikhrabrov@mail.ru.

Система состоит из нескольких кусочков: 0.3-оценка за практику(A3, кр...)+0.35-Коллоквиум в неч-Экзамен в четном модуле. Хвост образуется только в конце семестра.

Первый модуль — общие слова, последовательности, пределы последовательности, функции, непрерывность. Второй модуль — конец непрерывности, производная, начало интегралов.

#### 1.2. Что такое множество

Обойдемся без формалистики — мы тут занимаемся прикладной математикой. Поэтому

Onpedenetue 1.1. Множество — какой-то набор элементов. Для любого элемента можно сказать принадлежит множеству или нет.

| Операция         | определение                                | название                        |
|------------------|--------------------------------------------|---------------------------------|
| $A \subset B$    | $\forall x: \ x \in A \Rightarrow x \in B$ | A- подмножество $B$             |
| A = B            | $A \subset B \land B \subset A$            | A равно $B$                     |
| $A \subsetneq B$ | $A \subset B \land A \neq b$               | A- собственное подмножество $B$ |

#### Способы задания множеств:

- Полное задание:  $\{a, b, c\}$ .
- Неполное:  $a_1, a_2, \ldots, a_k$ . Но должно быть понятно как образована последовательно. Например  $\{1, 5, \ldots, 22\}$  непонятно
- Можно так же и бесконечные:  $\{a_1, a_2, \ldots\}$
- Словесным описанием. Например, множество простых чисел.
- Формулой. Например, пусть задана функция  $\Phi(x)$  функция для всех чисел, которая возращает истину или ложь. Тогда можно взять множество  $\{x:\Phi(x)=\text{истина}\}$ . Но не всякая функция подходит, особенно если функция из реального мира. Например: «натуральное число может быть описано не более чем 20 словами русского языка». Не подходит оно по следующей причине: пусть наша функция подходит, то образуется множество  $A=\{x_1,x_2,x_3,\ldots\}$ . У каждого множества есть минимальный элемент, тогда минимальное невходящее число может быть описано как «первое число, которое нельзя описать не более чем 20 словами русского язык», что меньше 20 слов. Противоречие.

# 1.3. Операции с множествами.

| Символ                  | Определение                                              | Описание                       |
|-------------------------|----------------------------------------------------------|--------------------------------|
| $\cap$                  | $A \cap B = \{x \mid x \in A \land x \in B\}$            | Пересечение множеств           |
| $\bigcap_{k=1}^{n} A_k$ | $A = A_1 \cap A_2 \cap \ldots \cap A_n$                  | Пересечение множества множеств |
| U                       | $A \cup B = \{x \mid x \in A \lor x \in B\}$             | Объединение множеств           |
| $\bigcup_{k=1}^{n} A_k$ | $A = A_1 \cup A_2 \cup \ldots \cup A_n$                  | Объединение множества множеств |
| \                       | $A \setminus B = \{x \mid x \in A \land x \notin B\}$    | Разность множеств              |
| ×                       | $A \times B = \{(x, y) \mid x \in A, y \in B\}$          | Произведение множеств          |
| $\triangle$             | $A \triangle B = (A \setminus B) \cup (B \setminus A)$   | Симметрическая разность        |
| Ø                       | $\forall x: x \notin \varnothing$                        | пустое множество               |
| N                       |                                                          | Натуральные числа              |
| $\mathbb{Z}$            |                                                          | целые числа                    |
| Q                       | $\frac{a}{b}$ , где $a \in \mathbb{Z}, b \in \mathbb{N}$ | рациональные числа             |
| $\mathbb{R}$            |                                                          | действительные числа           |
| $2^X$                   |                                                          | множество всех подмножеств $X$ |

Важный момент:  $1 \in \{1\}$ , но  $1 \notin \{\{1\}\}$  Правила де Моргана. Пусть есть  $A_{\alpha} \subset X$ 

1. 
$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}$$
.

2. 
$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} X \setminus A_{\alpha}$$
.

Доказательство:  $X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \{x : x \in X \land x \notin A_{\alpha} \ \forall \alpha \in I\} = \{x : \forall \alpha \in IX \setminus A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}.$ 

**Теорема 1.1.** 
$$A \cap \bigcup_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} A \cap B_{\alpha}$$
  $A \cup \bigcap_{\alpha \in I} B_{\alpha} = \bigcap_{\alpha \in I} A \cup B_{\alpha}$ 

Доказательство. TODO.

**Определение 1.2.** Упорядоченная пара  $\langle x,y\rangle$ . Важное свойство  $\langle x,y\rangle = \langle x',y'\rangle \iff x = x' \wedge y = y'$ 

**Определение 1.3.** Пусть даны множества  $X_1,\ldots,X_n$ , то упорядоченной n- (кортеж)  $-\langle x_1,\ldots,x_n\rangle$ , обладающее условием  $\langle x_1,\ldots,x_n\rangle=\langle y_1,\ldots,y_n\rangle\iff x_1=y_1\wedge\ldots\wedge x_n=y_n$ 

**Определение 1.4.** Отношение  $R \subset X \times Y$ . x и y находятся в отношении R, если их  $\langle x, y \rangle \in R$ .

**Определение 1.5.** Область отношения  $\delta_R = \text{dom}_R = \{x \in X : \exists y \in Y : \langle x, y \rangle \in R.$ 

**Определение 1.6.** Область значений  $\rho_R = \operatorname{ran}_R = \{y \in Y : \exists x \in X : \langle x, y \rangle \in R$ 

**Определение 1.7.** Обратное отношение  $R^{-1} \subset Y \times X$   $R^{-1} = \{\langle y, x \rangle\} \in R$ .

**Определение 1.8.** Композиция отношения.  $R_1 \subset X \times Y, R_2 \subset Y \times Z$ :  $R_1 \circ R_2 \subset X \times Z$ .  $R_1 \circ R_2 = \{\langle x, z \rangle \in X \times Z \mid \exists y \in Y : \langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2\}$ 

Примеры отношений.

- Отношение равенства.  $R = \{ \langle x, x \rangle : x \in X \}$ . Но это просто равенство.
- " $\geqslant$ "  $(X = \mathbb{R})$ .  $R = \{\langle x, y \rangle : x \geqslant y\}$
- ">"  $(X = \mathbb{R})$ .  $R = \{\langle x, y \rangle : x > y\}$   $\delta_{>} = 2, 3, 4 \dots$   $\rho_{>} = \mathbb{N}$   $>^{-1} = \langle = \{\langle x, y \rangle : x < t\}$  $> \circ \rangle = \{\langle x, z \rangle | x - z \geqslant 2\}$
- X прямые на плоскости. " $\bot$ ":  $R=\{\langle x,y\rangle:\ x\perp y\}.$   $\delta_\bot=\rho_\bot=X$   $\bot^{-1}=\bot$   $\bot$   $\circ$   $\bot=\parallel$
- $\langle x,y \rangle \subset R$ , когда x отец y.  $\delta_R = \{\text{Все, y кого есть сыновья}\}.$   $\rho_R$  — религиозный вопрос. См. Библию  $R^{-1} = \text{сын}$  $R \circ R = \{\text{дед по отцовской линии}\}$

**Определение 1.9.** Функция из X в Y — отношение ( $\delta_f = X$ ), для которого верно:

$$\langle x, y \rangle \in f$$
  
 $\langle x, z \rangle \in f$   $\Rightarrow y = z.$ 

Используется запись y = f(y).

 $Onpedenenue \ 1.10.$  Последовательность — функция у которой  $\delta_f = \mathbb{N}$ 

**Определение 1.11.** Отношение R называется рефлективным, если  $\forall x : \langle x, x \rangle \in R$ .

**Определение 1.12.** Отношение R называется симметричным, если  $\forall x,y\in X: \langle x,y\rangle\in R\Rightarrow \langle y,x\rangle\in R$ 

**Определение 1.13.** Отношение R называется иррефлективным, если  $\forall x \langle x, x \rangle \notin R$ 

**Определение 1.14.** Отношение R называется антисимметричным, если  $\begin{cases} \langle x,y \rangle \in R \\ \langle y,x \rangle \in R \end{cases} \Rightarrow x=y$ 

**Определение 1.15.** Отношение R называется транзитивным, если  $\begin{cases} \langle x,y\rangle \in R \\ \langle x,z\rangle \in R \end{cases} \Rightarrow \langle x,z\rangle \in R$ 

*Определение* **1.16.** Отношение называется отношением эквивалентности, если отношение рефлективно, симметрично, транзитивно.

**Пример.** Равенство, сравнение по модулю  $\mathbb{Z}$ ,  $\|$ , отношение подобия треугольников.

*Определение* **1.17.** Если выполняется рефлективность, антисимметричность и транзитивность, от данное отношение — отношение нестрогого частичного порядка.

**Пример.**  $\geqslant$ ;  $A \subset B$  на  $2^X$ .

*Определение* **1.18.** Если выполняется иррефлективность и транзитивность, то данное отношение — отношение строгого частичного порядка.

**Пример.** >; A собственное подмножество B на  $2^X$ .

**Упражнение.** Иррефлексивность + транзитивность  $\Rightarrow$  антисимметрично.

**Упражнение.** R — нестрогий ч.п.  $\Rightarrow R = \{\langle x, y \rangle \in R : x \neq y\}$  — строгий ч.п.

# 1.4. Вещественные числа

Есть две операции.

- $\bullet$  +:  $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ .
  - Коммутативность. x + y = y + x.
  - Ассоциативность. (x + y) + z = x + (y + z)
  - Существует ноль.  $\exists 0 \in \mathbb{R} \ x + 0 = x$
  - Существует противоположный элемент.  $\exists (-x) \in \mathbb{R} \ x + (-x) = 0$
- $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ .
  - Коммутативность.  $x \cdot y = y \cdot x$ .
  - Ассоциативность.  $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
  - Существует единица.  $\exists 1 \in \mathbb{R} \ x \cdot 1 = x$
  - Существует обратный элемент.  $\exists x^{-1} \in \mathbb{R} \ x \cdot x^{-1} = 1$

Свойство дистрибутивности:  $(x+y) \cdot z = x \cdot z + y \cdot z$ . Структура с данными операциями называется полем

Введем отношение  $\leq$ . Оно рефлексивно, антисимметрично и транизитивно, то есть нестрогий частичного порядка. Причем:

- $x < y \Rightarrow x + z < y + z$
- $0 \le x \land 0 \le y \Rightarrow 0 \le x \cdot y$

**Аксиома полноты.** Если A и  $B \subset \mathbb{R}$  и  $\forall a \in A, b \in B$  :  $a \leqslant b$  и  $A \neq \emptyset \land B \neq \emptyset$ , тогда  $\exists c \in \mathbb{R} \ a \leqslant c \leqslant b$ .

Замечание. Множество рациональных не удовлетворяет аксиоме полноты. Например:  $A=\{x\in\mathbb{Q}\mid x^2<2\},\ B=\{x\in Q\mid x>0\land x^2>2\}.$  Единственная точка, между этими множествами —  $\sqrt{2}$ 

**Теорема 1.2** (Принцип Архимеда). Пусть  $x \in \mathbb{R} \land y > 0$ . Тогда  $\exists n \in \mathbb{N} : x < ny$ 

Доказательство.  $A = \{u \in \mathbb{R} : \exists n \in \mathbb{N} : u < ny\}$ . Пусть  $A \neq !\mathbb{R}, B = \mathbb{R} \setminus A \neq \emptyset, A \neq \emptyset,$ т.к.  $0 \in A$ .

Возьмем  $a \in A, b \in B.$   $b < a \Rightarrow \exists n : a < ny \Rightarrow b < ny \Rightarrow$  противоречие.

По аксиоме полноты  $\exists c \in \mathbb{R} : a \leqslant c \leqslant b \ \forall a \in A, \forall b \in B.$ 

Пусть  $c \in A$ . Тогда  $c < ny \Rightarrow c < c + y < ny + y = (n+1)y \Rightarrow c < c + y \Rightarrow c + y \in A$ . Противоречие.

Пусть  $c \in B$ . Рассмотрим  $c - y < c \Rightarrow c - y \in A \Rightarrow \exists n : c - y < ny \Rightarrow c < ny + y = (n+1)y \Rightarrow c \in A$ . Противоречие.

*Следствие.* Если  $\epsilon > 0$ , то  $\exists n \in \mathbb{N} \ \frac{1}{n} < \epsilon$ 

Доказательство.  $x=1, y=\epsilon \Rightarrow ny=n\epsilon > x=1 \iff \epsilon > \frac{1}{n}$ 

# 1.5. Мат. индукции

Пусть  $P_n$  - последовательность утверждений. Тогда, если  $P_1$  — верное и из того, что  $P_n$  — верно следует, что  $P_{n+1}$  — верно. Тогда все  $P_n$  верны  $\forall n \in \mathbb{N}$ 

**Определение 1.19.** Пусть  $A \subset \mathbb{R}$ . Тогда A — ограничено сверху, если  $\exists c \in \mathbb{R} : \forall a \in A \ a \leqslant c$ . Такое c называется верхней границей.

**Определение 1.20.** Пусть  $A \subset \mathbb{R}$ . Тогда A — ограничено снизу, если  $\exists b \in \mathbb{R} : \forall a \in A \ a \geqslant b$ . Такое b называется нижней границей.

*Определение* 1.21. Пусть  $A \subset \mathbb{R}$ . Тогда A — ограничено, если оно ограничено сверху и снизу.

**Пример.**  $\mathbb{N}$  не ограничено сверху, но ограничено снизу.

**Доказательство**. Пусть  $\exists c \in \mathbb{R}: c \geqslant n \ \forall n \in \mathbb{N}$ . Тогда это противоречит принципу Архимеда при x = c, y = 1.

Для ограниченности снизу достаточно взять c = -1.

# 1.6. Наибольшие/наименьшие элементы

**Теорема 1.3.** В непустом конечном множестве A есть наибольший и наименьший элементы.

Доказательство. Докажем по индукции:

- База. |A| = 1. Очевидно.
- Переход.  $n \to n+1$ .
- Доказательство. Рассмотрим множество из n+1 элемента  $\{x_1 \dots x_n, x_{n+1}\}$ . Выкинем из него последний элемент. Тогда по индукционному предположению у нас есть максимальный элемент  $x_k$ . Тогда рассмотрим два случая:
  - 1.  $x_k \geqslant x_{n+1}$ . Тогда  $x_k$  наибольший элемент множества  $\{x_1 \dots x_n, x_{n+1}\}$ .
  - 2.  $x_k < x_{n+1}$ . Тогда по транзитивности  $x_{n+1}$  больше всех других элементов множества. Значит,  $x_{n+1}$  наибольший элемент множества  $\{x_1 \dots x_n, x_{n+1}\}$ .

**Теорема 1.4.** В непустом ограниченном сверху (снизу) множестве целых чисел есть наибольший (наименьший) элемент.

Автор: Харитонцев-Беглов Сергей

Доказательство. Пусть  $A \subset \mathbb{Z}$ . c — его верхняя граница.

Возьмем  $b \in A$  и рассмотрим  $B := x \in A \mid x \geqslant b$ . Заметим, что B содержит конечное число элементов, значит в нем есть наибольший элемент. Пусть это  $m \in B$ :  $\forall x \in B : x \leqslant m$ . Докажем, что m — наибольший элемент и в A.

Для этого заметим, что любой  $x \in A$  либо лежит в B, либо x < b, а по транзитивности  $x < b \leqslant m$ .

**Определение 1.22.** Пусть  $x \in \mathbb{R}$ , тогда  $[x] = \lfloor x \rfloor$  — наименьшее целое число, не превосходящее x.

1. 
$$[x] \le x < [x] + 1$$

Левое неравенство очевидно. Правое неравенство можно доказать от противного: пусть  $x \ge [x] + 1$ , тогда справа целое число большое [x], но меньшее x. Противоречие.

2. 
$$x - 1 < [x] \le x$$

**Теорема 1.5.** Если  $x < y \ (x, y \in \mathbb{R})$ , то

- 1.  $\exists r \in \mathbb{Q} : x < r < y$ .
- $2. \exists r \notin \mathbb{O} : x < r < y$

Пункт 1.  $\epsilon := y - x > 0$ .

Найдется  $n \in \mathbb{N}$  :  $\frac{1}{n} < \varepsilon = y - x$ . Тогда  $m \coloneqq [xn] + 1$ :  $r = \frac{m}{n}$  подходит.

$$\frac{m}{n}>x\iff [xn]+1=m>xn-$$
 свойство целой части.  $\frac{m}{n}< y.$   $\frac{m-1}{n}=\frac{[nx]}{n}\leqslant \frac{nx}{n}=x\Rightarrow \frac{m}{n}\leqslant x+\frac{1}{n}< x+\epsilon=x+y-x=y$ 

Почему r' иррационально? Иначе  $\sqrt{2} = r' - r \in \mathbb{Q}$ .

# 1.7. Инфинум/Супремум

**Определение 1.23.**  $A \subset \mathbb{R}$  — непустое и ограниченное сверху. Тогда супремум — наименьшая из всех верхних границ A. Обозначается  $\sup A$ .

**Определение 1.24.**  $A \subset \mathbb{R}$  — непустое и ограниченное снизу. Тогда инфинум — наибольшая из всех нижних границ A. Обозначается inf A.

**Пример.**  $A = \{\frac{1}{n} \mid n \in \mathbb{N}\}. \sup A = 1. \inf A = 0.$ 

**Теорема 1.6.** Пусть  $A \subset \mathbb{R}$  — непустое и ограниченное сверху. Тогда  $\sup A$  существует и единственен.

**Доказательство**. Существование: Пусть B — все верхние границы A. Во-первых B — не пусто, так как A ограничено сверху.

Тогда возьмем  $b \in B$ . b — верхняя граница для A, то есть  $\forall a \in A : a \leqslant b$ . Тогда по аксиоме полноты  $\exists C \in \mathbb{R} \ \forall a \in A, b \in B : a \leqslant c \leqslant b$ . Из левого неравенства получаем, что c — верхняя граница, то есть  $c \in B$ . Из второго неравенства получаем, что c — наименьший элемент B. Так и получается, что  $c = \sup A$ .

Единственность. Если  $c = \sup A$  и  $c' = \sup A$ , то  $c \leqslant c'$ , так как c — наименьший элемент B, но и  $c' \leqslant c$ , так как c' — наименьший элемент B. Значит c = c'. Противоречие.

*Следствие.*  $A \subset B \subset \mathbb{R}$ , B ограничено сверху, A — не пустое. Тогда  $\sup A \leqslant \sup B$ .

**Доказательство**. Если c — верхняя граница B, то c — верхняя граница для A. Заметим, что все верхние границы  $A \supset B$ . Тогда все понятно.

**Теорема 1.7.** Пусть  $A \subset \mathbb{R}$  — непустое и ограниченное снизу. Тогда  $\inf A$  существует и единственен.

Упражнение. Доказательство.

*Следствие.*  $A \subset B \subset \mathbb{R}$ , B ограничено снизу, A — не пустое. Тогда  $\inf A \geqslant \inf B$ .

Замечание. Без аксиомы полноты теоремы существования не верны.  $A = \{x \in \mathbb{Q} \mid x^2 < 2\}$ . Любое рациональное число  $> \sqrt{2}$  — верхние границы. А вот  $\sup A$  нет.

**Теорема 1.8.** Пусть непустое  $A \in \mathbb{R}$ . Тогда

• 
$$a = \inf A \iff \begin{cases} a \leqslant x \ \forall x \in A \\ \forall \epsilon > 0 \ \exists x \in A : \ x < a + \epsilon \end{cases}$$

• 
$$b = \sup A \iff \begin{cases} a \geqslant x \ \forall x \in A \\ \forall \epsilon > 0 \ \exists x \in A : \ x > a - \epsilon \end{cases}$$

Доказательство. Рассмотрим два неравенства по отдельности:

- 1. b верхняя граница.
- 2.  $b \epsilon$  не является верхней границей множества A. То есть  $\forall b' < b : b'$  не является верхней границей.

Все это в точности значит, что  $b = \sup A$ .

**Теорема 1.9** (Теорема о вложенных отрезках). Пусть  $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \dots$  Тогда  $\exists c \in \mathbb{R} : \forall n : c \in [a_n, b_n].$ 

**Доказательство**. Пусть  $A = \{a_1, a_2, \ldots\}, B = \{b_1, b_2, \ldots\}$ . Заметим, что так как отрезки вложены, то  $a_1 \leqslant a_2 \leqslant \ldots$ , а  $b_1 \geqslant b_2 \geqslant \ldots$  Проверим, что  $a_i \leqslant b_j \forall i, j \in \mathbb{N}$ . Пусть  $i \leqslant j$ , тогда  $a_1 \leqslant a_2 \leqslant \ldots \leqslant a_i \leqslant \ldots \leqslant a_j \leqslant b_j$ . Пусть i > j, тогда  $b_1 \geqslant b_2 \geqslant \ldots b_j \geqslant \ldots b_i \geqslant a_i$ . Тогда по аксиоме полноты  $\exists c \in \mathbb{R} : a_i \leqslant c \leqslant b_j \ \forall i, j \in \mathbb{N} \Rightarrow \forall n \forall a_n \leqslant c \leqslant b_n \Rightarrow c \in [a_n, b_n]$ 

Замечание.  $\sqrt{2}=1.41\dots$  Тогда отрезке:  $[1,2],[1.4,1.5],[1.41,1.42],\dots$  Тогда единственная точка, лежащая во всех отрезках:  $\sqrt{2}$ .

Замечание. Для полуинтервалов, (интервалов) неверно:

$$\bigcap_{n=1}^{\infty} (0, \frac{1}{n}) = \varnothing.$$

Замечание. Для лучей неверно.

$$\bigcap_{n=1}^{\infty} [n, +\infty) = \varnothing.$$

# 2. Последовательности

# 2.1. Предел последовательности

*Определение* 2.1.  $f: \mathbb{N} \to \mathbb{R}$ 

Способы задания последовательностей

- 1. Формулой.  $f_n := \frac{\sin n}{n^n}$
- 2. Рекуррентой:  $f_1 = 1, f_2 = 2, f_{n+2} = f_n + f_{n+1}$ .

Способы визуализации:

- 1. Можно ставить точки на прямой. Но если последовательность, например,  $a_n := \sin(\frac{n\pi}{2})$ , то получится кукож.
- 2. График. Считаем значения в натуральных точках.

**Определение 2.2.** Последовательность  $a_n$  ограничена сверху, если  $\exists C : \forall n \in \mathbb{N} : a_n \leqslant c$ .

**Определение 2.3.** Последовательность  $a_n$  ограничена снизу, если  $\exists C : \forall n \in \mathbb{N} : a_n \geqslant c$ .

Onpedenehue 2.4. Последовательность  $a_n$  ограничена, если она ограничена и сверху, и снизу.

**Определение 2.5.** Последовательность  $a_n$  монотонно возрастает, если  $a_1 \leqslant a_2 \leqslant a_3 \leqslant \dots$ 

**Определение 2.6.** Последовательность  $a_n$  строго монотонно возрастает, если  $a_1 < a_2 < \dots$ 

**Определение 2.7.** Последовательность  $a_n$  монотонно убывает, если  $a_1 \geqslant a_2 \geqslant a_3 \geqslant \dots$ 

**Определение 2.8.** Последовательность  $a_n$  строго монотонно убывает, если  $a_1 > a_2 > a_3 > \dots$ 

Onpedenehue 2.9 (Нетрадиционное определение предела).  $l = \lim a_n \iff$  вне любого интервала, содержащего l находится конечное число членов последовательности.

Замечание. Мы можем смотреть только на симметричные относительно точки l интервалы. Если он не симметричен, то можно большую границу уменьшить. Так можно сделать, так как мы знаем, что вне меньшего конечное число точек, то и снаружи большего точно конечное число точек. Тогда наш интервал выглядит как  $(l - \varepsilon; l + \varepsilon)$ 

Замечание. Конечное число точек снаружи интервала 👄 начиная с некоторого номера все попали в интервал, так как возьмем последнюю точку вне интервалов, и взяли её номер +1.

*Определение* 2.10 (Традиционное определение предела).  $l = \lim a_n \iff \forall \varepsilon > 0 : \exists N : \forall n \geqslant 0$  $N: |a_n - l| < \varepsilon$ 

- 1. Предел единственный. Пусть l и l' единственный. (Картинка). Рассмотрим интервал содержащий l, но не l'. Снаружи конечное число точек, теперь наоборот, там тоже конечное число точек. Тогда последовательность конечна.
- 2. Если из последовательности выкинуть какое-то число членов, то предел не изменится. Доказательство через картинку.

- 3. Если как-то переставить члены последовательности, то предел не изменится. Ну очевидно, что количество членов не изменилось, точки не поменяли своё местоположение.
- 4. Если члены последовательности записать с какой-то кратностью (конечной), то предел не изменится.
- 5. Если добавить к последовательности конечное число членов, то наличие/отсутствие предела и значение предела, если он существует, не поменяется. Доказательство по картинке.
- 6. Изменение конечного числа членов в последовательности не меняет предел.

**Пример.**  $\lim \frac{1}{n}=0$ . Мы знаем, что найдется такой номер, что  $\frac{1}{n}<\beta$ , тогда при  $n\geqslant N$   $0<\frac{1}{n}\leqslant \frac{1}{N}<\beta$ 

**Пример.**  $a_n = (-1)^n$  не имеет предела.

**Доказательство**. Посмотрим на картинку. Возьмем сначала точку не равную  $\pm 1$ . Тогда можно выбрать интервал, которые не содержит  $\pm 1$ . То есть интервал не содержит бесконечное число точек.

Для 
$$x=1$$
 можно взять  $(0;2)$ , для  $x=-1$  можно взять  $(-2;0)$ .

Лемма.  $\forall a,b,x_n,y_n,\varepsilon>0: a=\lim x_n\wedge b=\lim y_n\Rightarrow \exists N: \forall n\geqslant N: |x_n-a|<\varepsilon\wedge |y_n-b|<\varepsilon$ 

**Доказательство.** Запишем определения пределов:  $\forall \varepsilon > 0 \exists N_1 \forall n \geqslant N_1 |x_n - a| < \varepsilon$  и  $\forall \varepsilon > 0 \exists N_2 \forall n \geqslant N_2 |y_n - b| < \varepsilon$ . Тогда просто возьмем  $N = \max(N_1, N_2)$ .

**Теорема 2.1** (Предельный переход в неравенствах).  $\forall x_n, y_n(x_i < y_i \ \forall i) \ a = \lim x_n \land b = \lim y_n \Rightarrow a \leqslant b$ 

Доказательство. Докажем от противного. Пусть a > b. Посмотрим картиночку. Пусть  $\varepsilon \coloneqq \frac{a-b}{2}$ . По лемме  $\exists N : \forall n \geqslant N : |x_n - a| < \varepsilon \wedge |y_n - b| < \varepsilon$ . Заметим, что  $x_n - a| < \varepsilon \Rightarrow x_n > a - \varepsilon$ , а  $|y_n - b| < \varepsilon \Rightarrow y_n < b + \varepsilon \Rightarrow x_n > a - \varepsilon = b + \varepsilon > y_n$ . Противоречие.

Замечание. Строгий знак может не сохраняться. Пример:  $x_n = -\frac{1}{n} < y_n = \frac{1}{n}$ , но предел и там, и там 0. Т.к.  $\forall \varepsilon > 0 \exists N : \forall n \geqslant N : \frac{1}{n} = |y_n| = |x_n| < \varepsilon$ 

*Следствие.* Три пункта:

- 1.  $\forall n x_n \leq b \land \lim x_n = a \Rightarrow a \leq b$ .
- 2.  $\forall na \leqslant y_n \wedge \lim y_n = b \Rightarrow a \leqslant b$ .
- 3.  $\forall n x_n \in [a; b] \land \lim x_n = l \Rightarrow l \in [a, b]$ .

**Доказательство**. Константу можно заменить на последовательность  $z_n = \mathrm{const}$ 

**Теорема 2.2** (Теорема о двух милиционерах(теорема о сжатой последовательности)). Пусть  $\forall n: x_n \leq y_n \leq z_n \wedge \lim x_n = \lim z_n =: l$ , тогда  $\lim y_n = l$ .

Доказательство. Возьмем  $\varepsilon > 0$ . По лемме:  $\exists N : \forall n \geqslant N : |x_n - l| < \varepsilon \land |z_n - l| < \varepsilon$ , откуда  $x_n > l - \varepsilon$  и  $z_n < l + \varepsilon$ . Тогда  $l - \varepsilon < x_n \leqslant y_n \leqslant z_n < l + \varepsilon \Rightarrow l - \varepsilon < y_n < l + \varepsilon$ , то есть  $|y_n - l| < \varepsilon$ .  $\square$ 

*Следствие.* Если  $\forall n|y_n|\leqslant z_n\wedge\lim z_n=0\Rightarrow\lim y_n=0$ 

Доказательство.  $x_n \coloneqq -z_n$ . Тогда  $|y_n| \leqslant z_n \iff -z_n \leqslant y_n \leqslant z_n$ . Ну тогда и  $\lim y_n = 0$ 

## Теорема 2.3 (Теорема Вейерштрасса для монотонной последовательности). Три пункта:

- 1.  $\forall x_n x_n \uparrow \land x_n$  ограничена сверху  $\Rightarrow \exists a = \lim x_n$ .
- 2.  $\forall x_n x_n \downarrow \land x_n$  ограничена снизу  $\Rightarrow \exists a = \lim x_n$ .
- 3. Монотонная последовательность имеет предел 👄 она ограничена.

 $\Pi$ ункт 1.  $b := \sup\{x_1, x_2, \ldots\}$  — существует, т.к.  $x_n$  — ограничено сверху. Теперь докажем, что  $\lim x_n = b$ , возьмем  $\varepsilon > 0$ . b — наименьшая верхняя граница  $\Rightarrow \forall \varepsilon > 0b - \varepsilon$  — не верхняя граница. То есть  $\exists N : x_N > b - \varepsilon$ . Проверим, что такое N подходит: при  $n \geqslant N$   $b - \varepsilon < x_N < x_{N+1} < \ldots x_n \leqslant b \leqslant b + \varepsilon \Rightarrow b - \varepsilon < x_n < b + \varepsilon$ .

## Пункт 3. Докажем отдельно в каждую сторону:

- $\leftarrow$  Если  $\uparrow$ , то пункт 1, иначе пункт 2.
- $\Rightarrow$  Докажем это утверждение для любой последовательности. Пусть  $\lim x_n = a$ . Возьмем  $\varepsilon = 1$ , тогда  $\exists N : \forall n > N : |x_n - a| < 1 \Rightarrow a - 1 < x_n < a + 1$ . Hy

Пусть  $\lim x_n = a$ . Возьмем  $\varepsilon = 1$ , тогда  $\exists N : \forall n > N : |x_n - a| < 1 \Rightarrow a - 1 < x_n < a + 1$ . Ну тогда верхняя граница  $\max\{a + 1, x_1, x_2, \dots, x_{N+1}\}$ , а нижняя  $\min\{a - 1, \dots\}$ .

Замечание. В 1:  $\lim x_n = \sup\{x_1, x_2, \ldots\}$ , во 2:  $\lim x_n = \inf\{x_1, x_2, \ldots\}$ .

**Теорема 2.4** (О арифметичеких операциях с пределами).  $\forall x_n, y_n a = \lim x_n \wedge \lim y_n = b$ . Тогда:

- 1.  $x_n + y_n$  имеет предел и он равен a + b
- 2.  $x_n y_n$  имеет предел и он равен a b
- 3.  $x_n \cdot y_n$  имеет предел и он равен  $a \cdot b$
- 4.  $|x_n|$  имеет предел и он равен |a|
- 5.  $\frac{x_n}{y_n}$  имеет предел, если  $b \neq 0 \land \forall n y_n \neq 0$  и он равен  $\frac{a}{b}$

#### Доказательство.

- 1. Возьмем  $\varepsilon>0$  и найдем N из леммы для  $\frac{\varepsilon}{2}$ . Тогда  $\forall n\geqslant N: |x_n-a|<\frac{\varepsilon}{2}\wedge |y_n-a|<\frac{\varepsilon}{2}\Rightarrow |(x_n+y_n)-(a+b)|\leqslant |x_n-a|+|y_n-b|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$
- 2. Так же.
- 3. Поскольку  $\lim y_n = b$ , то  $y_n$  ограничена, а значит  $\exists M: |y_n| \leqslant M$ . Рассмотрим  $|x_n y_n ab| = |x_n y_n ay_n + ay_n ab| \leqslant |x_n y_n ay_n| + |ay_n ab| = |y_n| |x_n a| + |a| |y_n b| \leqslant M |x_n a| + |a| |y_n| b$ .  $M|x_n a| < \frac{\varepsilon}{2} \iff |x_n a| < \frac{\varepsilon}{2M}$ . Значит  $\exists N_1$  при котором  $\forall n > N_1$  выполнено.  $|a| |y_n b| < \frac{\varepsilon}{2} \iff |y_n b| < \frac{\varepsilon}{2|a| + 1}$ . Тогда найдется  $N_2$ , такой что  $\forall n \geqslant N_2$  это выполнено. Такой что  $N = \max N_1, N_2$ .
- 4.  $||x| |a|| \le |x_n a| \iff -|x_n a| \le |x_n| |a| \le |x_n a|$ , а в правой части написано, что  $|x_n| = |(x_n a) + a| \le |x_n a| + |a|$ . Понятно, что это выполняется при любых  $x_n, a$ .

Возьмем N, для которого  $\forall n > N : |x_n - a| < \varepsilon$ . Тогда  $\forall n \geqslant N : ||x_n| - |a|| \leqslant |x_n - a| < \varepsilon$ 

5. Докажем, что  $\lim \frac{1}{y_n} = \frac{1}{b}$ . Возьмем  $|\frac{1}{y_n} - \frac{1}{b}| = \frac{|y_n - b|}{|y_n||b|} \iff (1)$ . Посмотрим на картинку: возьмем  $\varepsilon = \frac{b}{2}$ . Получим интервал  $(\frac{b}{2}; \frac{3b}{2})$ . Тогда берем  $N_1 : \forall n \geqslant N |y_n - b| < |b|/2 \Rightarrow |y_n| > \frac{|b|}{2}$ . Тогда  $(1) \iff \frac{|y_n - b|}{|b|} = \frac{2}{|b|^2} |y_n - b| < \varepsilon \iff |y_n - b| < \varepsilon \cdot \frac{|b|}{2}$ . Поэтому  $\exists N_2 : \forall n \geqslant N_2$  такой, что это выполняется. Ну тогда  $N = \max N_1, N_2$ .

*Следствие.* Если  $\lim x_n = a$ , то  $\lim cx_n = ca$ .

**Следствие.** Если  $\lim x_n = a \wedge \lim y_n = b$ , то  $\lim (cx_n + dy_n) = ca + db$ 

Замечание. Если  $\lim y_n = b \neq 0$ , то начиная с некоторого  $N, y_n \neq 0$ 

Пример.  $\lim \frac{n^2+2n-3}{4n^2-5n+6} = \frac{1+\frac{2}{n}-\frac{3}{n^2}}{4-\frac{5}{n}+\frac{6}{n^2}} = \frac{\lim(1+\frac{2}{n}-\frac{3}{n^2})}{4-\frac{5}{n}+\frac{6}{n^2}} = \frac{1}{4}$ 

# 2.2. Бесконечно большие и бесконечно малые

**Определение 2.11.** Последовательность  $x_n$  называется бесконечной малой, если  $\lim x_n = 0$ .

**Утверждение 2.5.**  $\forall x_n, y_n : x_n$  — бесконечно мала последовательность  $\land y_n$  ограничена,  $x_n y_n$  — бесконечно малая последовательность.

**Доказательство**.  $y_n$  — ограничена  $\Rightarrow \exists M: \forall n: |y_n| \leqslant M$ . Возьмем  $\varepsilon > 0$  и подставим в определение  $\lim x_n = 0$ . Тогда найдется  $N: \forall n \geqslant N: |x_n| < \frac{\varepsilon}{M}$ . Следовательно  $x_n y_n \leqslant M |x_n| < M \frac{\varepsilon}{M} = \varepsilon \Rightarrow \lim x_n y_n = 0$ .

**Определение 2.12.**  $\lim x_n = +\infty$  означает то, что вне любого луча вида  $(E; +\infty)$  лежит лишь конечное число членов последовательности. Или:  $\forall E \exists N : \forall n \geqslant Nx_n > E$ .

**Определение 2.13.**  $\lim x_n = -\infty$  означает то, что вне любого луча вида  $(-\infty, E)$  лежит лишь конечное число членов последовательности. Или:  $\forall E \exists N : \forall n \geqslant Nx_n < E$ .

**Определение 2.14.**  $\lim x_n = \infty$  означает то, что в любом промежутке содержится конечное число членов последовательности. Или:  $\forall E \exists N \forall n \geqslant N |x_n| > E$ .

Замечание.  $\lim x_n = \infty \iff \lim |x_n| = +\infty$ 

Замечание.  $\lim x_n = +\infty$  (или  $-\infty$ ) $\Rightarrow \lim x_n = \infty$ . Но  $\neq$ ! Пример  $x_n = (-1)^n \cdot n$ .

Замечание.  $\lim x_n = \infty \Rightarrow x_n$  — неограниченная последовательность. Но наоборот неверно. Пример:  $x_n = \begin{cases} n & n - \text{четно} \\ 0 & n - \text{нечетно} \end{cases}$ .

*Определение* 2.15.  $x_n$  называется бесконечно большой, если  $\lim x_n = \infty$ .

**Теорема 2.6.**  $\forall x_n : \forall n x_n \neq 0 \Rightarrow x_n$  — бесконечно малая  $\iff \frac{1}{x_n}$  — бесконечно большая.

Доказательство. Докажем в каждую сторону отдельно:

- $\Rightarrow x_n$  бесконечно малая  $\iff \lim x_n = 0$ . Возьмем E из определения бесконечно большой и  $\varepsilon = \frac{1}{E}$ , подставим в предел. Тогда  $\exists N : \forall n \geqslant N |x_n| < \varepsilon = \frac{1}{E} \Rightarrow |\frac{1}{x_n}| > E$ .
- $\Leftarrow \frac{1}{x_n}$  бесконечно большая  $\Rightarrow \lim \frac{1}{x_n} = \infty$ . Возьмем  $\varepsilon > 0$  из определения бесконечно малой и  $E = \frac{1}{\varepsilon}$  и подставим в lim. Тогда  $\exists N, \forall n \geqslant N: |\frac{1}{x_n}| > E = \frac{1}{\varepsilon} \Rightarrow |x_n| < \varepsilon$

Определение 2.16.  $\overline{\mathbb{R}} = \mathbb{R} \cup \pm \infty$ 

**Теорема 2.7.** В  $\overline{\mathbb{R}}$  предел единственен.

**Доказательство**. Пусть  $\lim x_n = a \in \overline{\mathbb{R}}$  и  $\lim x_n = b \in \overline{\mathbb{R}}$ . Если  $a,b \in \mathbb{R}$ , то знаем. Иначе рассмотрим случаи:

- $a = \pm \infty, b \in \mathbb{R}$ . Картинка.
- $a = +\infty, b = -\infty$ . Ну такого быть не может, смотри картинку.

**Теорема 2.8** (о стабилизации знака). Если  $\lim x_n = a \in \overline{\mathbb{R}} \land a \neq 0 \Rightarrow \exists N : \forall n \geqslant N$  все члены последовательности имеют тот же знак, что и a.

Доказательство. Несколько случаев:

- $a \in \mathbb{R}$ . Картинка. Начиная с некоторого номер все  $x_n \in (0; 2a)$  или  $x_n \in (2a; 0)$ .
- $a = +\infty$ . Картинка. Возьмем E = 0, начина с некоторого номера все члены попали в этот луч.
- $a = -\infty$ . Аналогично.

**Теорема 2.9** (предельный переход в неравентсве  $\overline{\mathbb{R}}$ ).  $\forall n: x_n \leqslant y_n \wedge \lim x_n = a \in \overline{\mathbb{R}} \wedge \lim y_n = b \in \overline{\mathbb{R}} \Rightarrow a \leqslant b$ .

**Доказательство**. Если  $a, b \in \mathbb{R}$ , то уже есть. Иначе предположим противное:

•  $a = +\infty$  и  $b \in \mathbb{R}$ . Картинка...

Теорема 2.10 (Теорема о двух миллиционерах).

- 1.  $\forall x_n, y_n : x_n \leq y_n \wedge \lim x_n = +\infty \Rightarrow \lim y_n = +\infty$
- 2.  $\forall x_n, y_n : x_n \leq y_n \wedge \lim y_n = -\infty \Rightarrow \lim x_n = -\infty$

Доказательство.

- 1.  $\lim x_n = +\infty \Rightarrow \forall E : \exists N : \forall n \geqslant Nx_n > E$ , Ho  $y_n \geqslant x_n > E$ .
- 2. Упражнение для читателя.

Теорема 2.11 (О арифметических действиях с бесконечно большими).

- 1.  $\forall x_n, y_n \lim x_n = +\infty, y_n$  ограничена снизу  $\Rightarrow \lim(x_n + y_n) = +\infty$
- 2.  $\forall x_n, y_n \lim x_n = -\infty, y_n$  ограничена сверху  $\Rightarrow \lim(x_n + y_n) = -\infty$

Глава #2

- 3.  $\forall x_n, y_n \lim x_n = \infty, y_n$  ограничена  $\Rightarrow \lim (x_n + y_n) = \infty$
- 4.  $\forall x_n, y_n \lim x_n = \pm \infty \land \exists C : \forall n : y_n \geqslant C > 0 \Rightarrow \lim(x_n y_n) = \pm \infty$
- 5.  $\forall x_n, y_n \lim x_n = \pm \infty \land \exists C : \forall n : y_n \leqslant C < 0 \Rightarrow \lim(x_n y_n) = \mp \infty$
- 6.  $\forall x_n, y_n \lim x_n = \infty \land \exists C : \forall n : |y_n| \geqslant C > 0 \Rightarrow \lim(x_n y_n) = \infty$
- 7.  $\forall x_n, y_n \lim x_n = a \neq 0 \land \lim y_n = 0 \Rightarrow \lim \frac{x_n}{y_n} = \infty$
- 8.  $\forall x_n$  ограничена,  $y_n : \lim y_n = \infty \Rightarrow \lim \frac{x_n}{y_n} = 0$
- 9.  $\forall x_n, y_n$  ограничена :  $\lim x_n = \infty \land y_n \neq 0 \Rightarrow \lim \frac{x_n}{y_n} = \infty$

# Доказательство.

- 1.  $y_n$  ограничена снизу  $\Rightarrow y_n \geqslant c$ . А так как  $\lim x_n = +\infty \Rightarrow \forall E \exists N : \forall n \geqslant N : x_n > E$ . Подставим E-c вместо E.  $\exists N \forall n \geqslant N x_n > E-C \Rightarrow x_n+y_n \geqslant E-c+y_n \geqslant E-c+c=E$ .
- 2. Упражнение.
- 3. Упражнение.
- 4.  $\lim x_n = +\infty \Rightarrow \forall E \exists N \forall n \geqslant N: x_n > E$ . Подставим  $\frac{E}{c}$  вместо  $E: x_n > \frac{E}{c} \Rightarrow x_n y_n \geqslant xnC > \frac{E}{c} \cdot c = E$ .
- 5. Упражнение.
- 6. Упражнение.
- 7.  $\lim y_n = 0 \Rightarrow y_n$  бесконечно малое  $\Rightarrow \frac{1}{y_n}$  бесконечно большая. Поймем, что  $|x_n| \geqslant C > 0$  при больших n. Возьмем картинку и окрестность  $\frac{a}{2}$ . Заметим, что начиная с некоторого номер  $|x_n| \geqslant \frac{a}{2} > 0$ .
- 8.  $y_n$  бесконечно большая  $\Rightarrow \frac{1}{y_n}$  бесконечно малая  $\Rightarrow x_n \cdot \frac{1}{y_n}$  произведение ограниченное и бесконечно малой.
- 9.  $x_n$  бесконечно большая  $\frac{1}{x_n}$  бесконечно малая  $\Rightarrow y_n \cdot \frac{1}{x_n}$  бесконечно малая.

Арифметика с бесконечностями:

1. 
$$\pm \infty + c = \pm \infty$$

$$2. +\infty +\infty = +\infty$$

3. 
$$-\infty + -\infty = -\infty$$

4. 
$$\pm \infty \cdot c = \pm \infty$$
, если  $c > 0$ 

5. 
$$\pm \infty \cdot c = \mp \infty$$
, если  $c < 0$ 

6. 
$$+\infty \cdot +\infty = +\infty$$
  
 $-\infty - \infty = +\infty$   
 $+\infty - \infty = -\infty$ 

Запрещенные операции:

- 1.  $+\infty +\infty$  или  $+\infty + -\infty$ . Может получиться беспредел, любое число, любая бесконечность.
- $2. +\infty \cdot 0$
- 3.  $\frac{\pm \infty}{+\infty}$ . Может получиться беспредел, любое число, бесконечность правильного знака.
- 4.  $\frac{0}{0}$  любое число, любая бесконечность, отсутствие предела.

Пример.

- $x_n = n + a, y_n = n, x_n y_n = a : \lim x_n = +\infty, \lim y_n = +\infty, \lim x_n y_n = a$
- $x_n = 2n \to +\infty, y_n = n\infty + \infty, x_n y_n = n \to +\infty$
- ясно.
- $x_n = n + (-1)^n \to +\infty, y_n = n \to +\infty, x_n y_n = (-1)^n$  нет предела.

Упражнение. Примеры к остальному.

### 2.3. Экспонента

**Теорема 2.12** (Неравенство Бернулли).  $\forall x \ge -1, n \in \mathbb{N}(1+x)^n \ge 1+nx$ . Равенство при  $x = 0 \lor n = 1$ .

Доказательство. Индукция:

- Basa n = 1:  $1 + x \ge 1 + x$ .
- Переход  $n \to n+1$ .
- Предположение:  $(1+x)^n \ge 1 + nx$ .
- Заметим, что  $(1+x)^{n+1}=(1+x)\cdot(1+x)^n\geqslant (1+x)(1+nx)=1+x+nx+nx^2=1+(n+1)x+nx^2\geqslant 1+(n+1)x$ . Строгий знак при  $x\neq 0$ .

**Замечание.** На самом деле  $(1+x)^P \geqslant 1 + Px$ , если x > -1 и  $P \geqslant -1$  или  $P \leqslant 0$ . Иначе верно  $(1+x)^P \leqslant 1 + Px$ .

**Теорема 2.13.** Пусть  $a \in \mathbb{R}$  и  $x_n := (1 + \frac{a}{n})^n$ . Тогда при n > -a монотонно возрастает и ограничена сверху.

Доказательство. 
$$\frac{x_n}{x_{n+1}} = \frac{(1+\frac{a}{n})^n}{(1+\frac{a}{n-1})^{n-1}} = \frac{(n+a)^n}{n^n} \cdot \frac{(n-1)^{n-1}}{(n-1+a)^{n-1}} = \frac{n-1+a}{n-1} \left(\frac{(n+a)(n-1)}{n\cdot(n-1+a)}\right)^n = \frac{n-1+a}{n-1} \left(\frac{n^2+an-n-a}{n^2+an-n}\right)^n = \frac{n-1+a}{n-1} \left(1 - \frac{a}{n(n-1+a)}\right)^n \geqslant \frac{n-1+a}{n-1} \left(1 + n \cdot \frac{-a}{n(n-1+a)}\right) = \frac{n-1+a}{n-1} \cdot \frac{n-1+a-a}{n-1+a} = 1$$

Убедимся в выполнении условий для неравенства Бернулли. Посмотрим на  $\frac{a}{n-1+a}$ . Если a>0, то очевидно. Если a<0, то  $n_1>a$ , а значит дробь меньше нуля.

Ограниченность:  $y_n \coloneqq (1 - \frac{a}{n})^n$  возрастает при n > a.  $x_n y_n = \left(\left(1 + \frac{a}{n}\right)\left(1 - \frac{a}{n}\right)\right)^n = \left(1 - \frac{a^2}{n^2}\right)^n$ , что не больше 1. Тогда  $x_n \leqslant \frac{1}{y_n} \leqslant \frac{1}{y_{n-1}} \leqslant \ldots \leqslant \frac{1}{y_{[a]+1}}$ 

*Следствие.*  $x_n := \left(1 + \frac{a}{n}\right)^n$  имеет предел.

*Определение* 2.17.  $\exp a := \lim_{n \to \infty} \left(1 + \frac{a}{n}\right)^n$   $e := \exp 1 = \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2.7182818284590$ 

**Следствие.** Последовательность  $z_n := (1 + \frac{1}{n})^{n+1}$  монотонно убывает и стремится к e.

Доказательство. 
$$\lim z_n = \lim \left(1 + \frac{1}{n}\right)^n \lim \left(1 + \frac{1}{n}\right) = e \cdot 1 = e$$
.  $\frac{1}{z_n} = \frac{1}{\left(\frac{n+1}{n}\right)^{n+1}} = \left(\frac{n}{n+1}\right)^{n+1} = \left(1 - \frac{1}{n+1}\right)^{n+1}$  — строго монотонно возрастает.

Свойства экспоненты:

- 1.  $\exp 0 = 1, \exp 1 = e$ .
- 2.  $\exp a > 0$
- 3.  $\exp a \geqslant 1 + a$ .  $\left(1 + \frac{a}{n}\right)^n \geqslant 1 + n\frac{a}{n} = 1 + a$ , при n > -a. Далее совершим предельный переход.
- 4.  $\exp a \exp(-a) \leqslant 1$ .  $\left(1 + \frac{a}{n}\right)^n \cdot \left(1 \frac{a}{n}\right)^n = \left(1 \frac{a^2}{n^2}\right)^n \leqslant 1$ . Далее предельный переход.
- 5.  $\forall a,b:a\leqslant b\Rightarrow \exp a\leqslant \exp b.$  Знаем, что  $1+\frac{a}{n}\leqslant 1+\frac{b}{n}$  и при больших n они положительны, тогда можно возвести в n-ую степень и совершить предельный переход.
- 6.  $\exp a < \frac{1}{1-a}$  при  $a \le 1$ .  $\exp a \cdot \exp(-a) \le 1 \Rightarrow \exp a \le \frac{1}{\exp(-a)}$ . А  $\exp(-a) \ge 1 + (-a) = 1 a$  (применили Бернулли). Тогда можно уменьшить знаменатель, тем самым увеличить дробь.
- 7.  $\forall n \in \mathbb{N} x_n < e < z_n$ . Знаем, что  $x_n \uparrow$ . Тогда возьмем  $k \geqslant n+1 : x_n < x_{n+1} < x_k$ . Устремляем  $k \to \infty : x_n < x_{n+1} \leqslant e \iff x_n < e$ .

С другой стороны  $z_n \downarrow$ . Тогда по той же технике  $z_n > z_{n+1} \geqslant e \iff z_n \geqslant e$ .

8. 2 < e < 3.  $2 = x_1$ ,  $3 = z_5$  или  $z_6$ .

Замечание.  $z_n - x_n = \frac{x_n}{n} \approx \frac{e}{n}$ .

**Лемма.**  $\forall a_n \lim a_n = a \Rightarrow y_n := (1 + \frac{a_n}{n})^n \to \exp a.$ 

Доказательство. Пусть  $x_n = (1 + \frac{a}{n})^n$ ,  $A = 1 + \frac{a}{n}$ ,  $B = 1 + \frac{a_n}{n}$ . Тогда  $|x_n - y_n| = |A^n - B^n| = \underbrace{|A - B|}_{= \lfloor a - a_n \rfloor} \cdot |A^{n-1} + A^{n-2}B + \ldots + B^{n-1}|$ .

Тогда  $\lim a_n = a \Rightarrow a_n$  — ограниченная последовательность  $(|a_n| \leqslant M)$ . Тогда  $|a_n| \leqslant M \Rightarrow A = 1 + \frac{a}{n} \leqslant 1 + \frac{M}{n}$ ,  $B = 1 + \frac{a}{n} \leqslant 1 + \frac{M}{n}$ . Тогда исходное:  $\frac{|a-a_n|}{n} n \left(1 + \frac{M}{n}\right)^{n-1} \leqslant |a-a_n| (1 + \frac{M}{n})^n \leqslant |a-a_n| \exp M \to 0$ . Что произошло:  $(1 + \frac{M}{n})^n < \exp M$  при любом n, а  $|a-a_n| \to 0$ , получили в пределе  $0 \cdot \text{const} = 0$ .

To есть  $\lim x_n - y_n = 0 \Rightarrow \lim y_n = \lim x_n - \lim(x_n - y_n) = \exp a - 0 = \exp a$ .

**Теорема 2.14.**  $\exp(a+b) = \exp a \cdot \exp b$ .

Доказательство. 
$$x_n \coloneqq \left(1 + \frac{a}{n}\right)^n \to \exp a.$$
  $y_n \coloneqq \left(1 + \frac{b}{n}\right)^n \to \exp b.$  Тогда  $x_n y_n = \left((1 + \frac{a}{n})(1 + \frac{b}{n})\right)^n = \left(1 + \frac{a + b + \frac{ab}{n}}{n}\right)^n \xrightarrow[a + b + \frac{ab}{n} \to a + b]{\operatorname{Homma}} \exp(a + b)$ 

Следствие.

- 1.  $\forall t : |t| < 1 \Rightarrow \lim_{n \to \infty} t^n = 0$
- 2.  $\forall t: |t| > 1 \Rightarrow \lim_{n \to \infty} t^n = \infty$

#### Доказательство.

- 2. Пусть x = |t| 1 > 0. Тогда  $|t^n| = |t|^n = (1+x)^n > 1 + nx \to +\infty$
- 1. Если 0 < |t| < 1, то  $\left| \frac{1}{t} \right| > 1$  и  $\left( \frac{1}{t} \right)^n$  бесконечно большая  $\Rightarrow t^n$  бесконечно малая.

**Теорема 2.15.**  $\forall x_n > 0 \lim \frac{x_{n+1}}{x_n} = a < 1 \Rightarrow \lim x_n = 0.$ 

**Доказательство**. Картинка. Возьмем окрестность с правой границей  $b=\frac{a+1}{2}$ . Тогда начиная с некоторого номера m члены последовательности  $\frac{x_{n+1}}{x_n}$  попали в этот интервал. То есть  $\frac{x_{n+1}}{x_n} \leqslant b < 1$  при  $n \geqslant m$ .

Пусть 
$$n < m$$
.  $x_n = x_m \cdot \frac{x_{m+1}}{x_m} \cdot \frac{x_{m+2}}{x_{m+1}} \cdot \dots \cdot \frac{x_n}{x_{n-1}} \leqslant x_m b^{n-m} \cdot x_m = \frac{x_m}{b^m} \cdot b^n \to \frac{x_m}{b^m} \lim b^n = 0.$ 

#### Следствие.

- 1.  $\lim \frac{n^k}{a^n} = 0$  при a > 1 и  $k \in \mathbb{N}$ .
- 2.  $\lim \frac{a^n}{n!} = 0$ , при  $a \in \mathbb{R}$ .
- 3.  $\lim \frac{n!}{n^n} = 0$ .

## Доказательство.

1. 
$$x_n = \frac{n^k}{a^n} \cdot \frac{x_{n+1}}{x_n} = \frac{(n+1)^k}{a^{n+1}} \cdot \frac{a^n}{n^k} = \left(\frac{n+1}{n}\right)^k \cdot \frac{1}{a} \to \frac{1}{a} < 1.$$

2. 
$$x_n = \frac{a^n}{n!} \cdot \frac{x_{n+1}}{x_n} = \frac{a^{n+1}}{(n+1)!} \cdot \frac{n!}{a^n} = \frac{a}{n+1} \to 0.$$

3. 
$$x_n = \frac{n!}{n^n}$$
.  $\frac{x_{n+1}}{x_n} = \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \frac{n+1}{(n+1)^{n+1}} n^n = \left(\frac{n}{n+1}\right)^n = \frac{1}{\left(1+\frac{1}{n}\right)^n} \to \frac{1}{e} < 1$ .

**Теорема 2.16** (Теорема Штольца). Пусть  $y_1 < y_2 < y_3 < \dots$  и  $\lim y_n = +\infty$ . Если  $\lim \frac{x_{n+1} - x_n}{y_{n+1} - y_n} = l \in \mathbb{R}$ , то  $\lim \frac{x_n}{y_n} = l$ .

Доказательство. Ключевой случай: l=0. Пусть  $a_n:=\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$ . По условию  $\lim a_n=0$ . Зафиксируем  $\varepsilon>0$ . Тогда найдется номер m, такой, что при  $n\geqslant m\Rightarrow |a_n|<\varepsilon$ . Тогда  $|x_{n+1}-x_n|=|a_n|(y_{n+1}-y_n)<\varepsilon(y_{n+1}-y_n).\ |x_n-x_m|\leqslant |x_n-x_{n-1}|+|x_{n-1}+x_{n-2}|+\ldots+|x_{m+1}-x_m|<\varepsilon(y_n-y_{n-1})+\varepsilon(y_{n-1}+y_{n-2})+\ldots+\varepsilon(y_{m+1}-y_m)=\varepsilon(y_n-y_m).$ 

Теперь посмотрим на  $\left|\frac{x_n}{y_n}\right| \leqslant \frac{|x_n - x_m| + |x_m|}{|y_n|} < \frac{\varepsilon(y_n - y_m)}{y_n} + \frac{|x_m|}{y_n} < \varepsilon \frac{1y_n}{y_n} + \frac{|x_m|}{y_n} = \varepsilon + \frac{|x_m|}{y_n} < 2\varepsilon$ . Берем такой  $N: \forall n \geqslant Ny_n \geqslant \frac{1}{\varepsilon}|x_m|$ . Если  $n > \max\{m, N\}$ , то  $\left|\frac{x_n}{y_n}\right| < 2\varepsilon$ . Тогда  $\lim \frac{x_n}{y_n} = 0$ 

Рассмотрим случай  $l \in \mathbb{R}$ . Рассмотрим  $\widetilde{x_n} \coloneqq x_n - ly_n$ . Тогда  $\frac{(\widetilde{x_{n+1}} - \widetilde{x_n}) - (x_n - ly_n)}{y_{n+1} - y_n} = \frac{x_{n+1} - x_n}{y_{n+1} - y_n} - l \to 0$ , т.к.  $\frac{x_{n+1} - x_n}{y_{n+1} - y_n} \to l$ . Тогда, по случаю выше получаем что  $\frac{\widetilde{x_n}}{y_n} \to 0 \iff \frac{x_n}{y_n} - l \to 0 \Rightarrow \frac{x_n}{y_n} \to l$ 

Рассмотрим случай  $l=+\infty.$   $\frac{x_{n+1}-x_n}{y_{n+1}-y_n}\to +\infty \Rightarrow \frac{x_{n+1}-x_n}{y_{n+1}-y_n}>1$  при  $n\geqslant N\Rightarrow x_{n+1}-x_n>y_{n+1}-y_n>0\Rightarrow x_n\uparrow.$ 

Из того, что для  $x_n - x_{n-1} > y_n - y_{n-1} \wedge \ldots \wedge x_{N+1} - x_N > y_{N+1} - y_N \Rightarrow x_n - x_N > y_n - y_N \Rightarrow x_n > \underbrace{y_n}_{\rightarrow +\infty} + \underbrace{(x_N - y_N)}_{=const} \Rightarrow x_n \to +\infty.$  Тогда  $\frac{y_{n+1} - y_n}{x_{n+1} - x_n} \to 0 \xrightarrow{\text{Случай 0}} \frac{y_n}{x_n} \to 0 \Rightarrow \frac{x_n}{y_n} \to \infty \xrightarrow{x_n} \to +\infty.$ 

Случай 
$$l=-\infty$$
.  $\widetilde{x_n}=-x_n$ .

16 из 52

Глава #2

**Пример.**  $S_n = 1^k + 2^k + \ldots + n^k < n^n k = n^{k+1}$ . Можно еще взять половину: получим  $\leqslant \frac{n^{k+1}}{2^{k+1}}$ Тогда  $\lim \frac{S_n}{n^{k+1}} = \lim \frac{S_n - S_{n-1}}{n^{k+1} - (n-1)^{k+1}} = \lim \frac{n^k}{n^{k+1} - (n^{k+1} - k \cdot n^k + \frac{k(k-1)}{2} n^{k-1} - \ldots)} = \lim \frac{1}{k - \ldots n^{-1} + \ldots n^{-2} + \ldots} = \frac{1}{k}$ 

Замечание. Тоже самое можно сказать, если  $y_n \downarrow -\infty$ 

**Теорема 2.17** (Теорема Штольца 2).  $\lim x_n = \lim y_n = 0 \land y_n > y_{n+1} > 0$ . Тогда  $\lim \frac{x_{n+1} - x_n}{y_{n+1} - y_n} = l \in$  $\overline{\mathbb{R}} \Rightarrow \lim \frac{x_n}{y_n} = l.$ 

**Доказательство**. Случай l=0.  $a_k:=\frac{x_{k+1}-x_k}{y_{k+1}-y_k}$ .  $\lim a_n=0$ . Возьмем  $\varepsilon>0$  и найдем  $m\geqslant N$ :  $|a_n|<\varepsilon$  при  $n\geqslant N$ . Тогда  $x_n-x_m=(x_n-x_{n-1})+(x_{n-1}+x_{n-2})+\ldots+(x_{m+1}-x_m)=a_{n-1}(y_n-x_m)$  $(y_{n-1}) + a_{n-2}(y_{n-1} - y_{n-2}) + \ldots + a_m(y_{n+1} - y_n).$ 

Тогда  $|x_n - x_m| \le |a_{n-1}|(y_{n-1} - y_n) + \ldots + |a_m|(y_m - y_{m-1}) < \varepsilon((y_{n-1} - y_n) + (y_{n-2} - y_{n-1}) + \ldots + |a_m|(y_m - y_m) + |a_m$  $(y_m - y_{m+1})) = \varepsilon(y_m - y_n)$ 

 $|x_n-x_m|<arepsilon(y_m-y_n) oarepsilon y_m\Rightarrow |x_m|\leqslant arepsilon y_m\Rightarrow |rac{x_m}{y_m}\leqslant arepsilon.$  Получили определение предела!!!

Случай  $l \in \mathbb{R}$ . См. выше.

Случай  $l=+\infty$  нужна лишь монотонность.

Случай  $l=-\infty$ .

# 2.4. Подпоследовательность

 $Onpedenenue\ 2.18.\$ Последовательность: последовательность  $x_{n_i}$ , заданная как набор индексов  $n_i : 1 \leq n_1 < n_2 < n_3 < \dots$ 

Свойства.

- 1.  $n_k \geqslant k$ . Индукция.  $n_{k+1} > n_k \geqslant k$ .
- 2. Если последовательность предел в  $\overline{\mathbb{R}}$ , то подпоследовательность имеет тот же предел.
- 3. Две две подпоследовательности  $x_{n_1}, x_{n_2}, \dots$  и  $x_{m_1}, x_{m_2}, \dots$  в объединение дают всю последовательность и они имеют один и тот же предел  $l \in R$ , то  $\lim x_n = l$ . Доказательство по картинке.

**Теорема 2.18** (О стягивающихся отрезках). Пусть  $[a_1;b_1]\supset [a_2;b_2]\supset [a_3,b_3]\supset\dots$  и  $\lim(b_n-a_n)=$ 0. Тогда  $\exists ! c \in \mathbb{R}$  принадлежащая всем отрезкам и  $\lim a_n = \lim b_n = c$ .

Доказательство. Существование следует из теоремы о вложенных отрезка. Докажем единственность. Пусть  $c, d \in [a_n; b_n]$ . Тогда  $c - d \leqslant b_n - a_n \to 0 \Rightarrow c = d$ .

Проверим, что  $\lim a_n=c.\ |a_n-c|$  — длина подотрезка  $[a_n;b_n]$ , тогда  $|a_n-c|\leqslant b_n-a_n\to 0\Rightarrow$  $a_n - c \to 0 \Rightarrow \lim a_n = c.$ 

Теорема 2.19 (Больцано-Вейерштрасса). Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность. То есть, если  $x_n$  — ограниченная последовательность, то существует  $x_{n_k}$  имеющая конечный предел.

**Доказательство**. a — нижняя граница, b — верхняя для  $x_n$ . То есть  $\forall n: x_n \in [a;b]$ . В какой-то половине отрезка бесконечное число членов (иначе в сумме конечное число членов). Назовем подходящую  $[a_1;b_1]$ . Теперь делю эту половинку пополам. В одной из половинок половинки бесконечное число членов. Получили процесс деления отрезков на кусочки.

Заметим, что  $[a;b]\supset [a_1;b_1]\supset\dots b_n-a_n=\frac{b-a}{2^n}\to 0$ . Тогда  $\exists c\in R:\lim a_n=\lim b_n=c$ . Берем  $[a_1;b_1]$ , там бесконечное число членов. Берем какой-то  $x_{n_1}$ . Берем  $[a_2;b_2]$ , там есть  $n_2>n_1$ . Тогда получили возрастание индексов и  $x_{n_k}\in [a_k;b_k]$ .  $a_k\leqslant x_{n_k}\leqslant b_k$ , то тогда по двум милиционерам  $\lim x_{n_k}=c$ .

### Теорема 2.20. Несколько пунктов:

- 1. Монотонная неограниченная последовательность стремится к  $\pm \infty$ .
- 2. Из неограниченной сверху последовательности можно выбрать подпоследовательность, стремящуюся к  $+\infty$ .
- 3. Из неограниченной снизу последовательности можно выбрать подпоследовательность, стремящуюся к  $-\infty$ .

#### Доказательство.

- 1. Пусть  $x_n$  монотонно возрастает. Докажем, что  $\lim x_n = +\infty$ .  $\forall E$ . Это не верхняя граница, значит найдется  $x_N > E \Rightarrow \exists n \geqslant N \Rightarrow E < x_N \leqslant X_{N+1} \leqslant \ldots \leqslant x_n$ .
- 2. 1— не верхняя граница  $\Rightarrow$  есть  $x_{n_1} > 1$ .  $2 + x_{n_1}$  не верхняя граница  $\Rightarrow$  есть  $x_{n_k} > 2 + x_{n_k} + 2$ . И так далее ...Получилось, что  $x_{n_k} > k \to \infty \Rightarrow x_{n_k} \to +\infty$ . Дальше переставим члены в порядке возрастания индексов.

**Определение 2.19.** l — Частичный предел предел последовательности, если существует подпоследовательность, стремящаяся к l.

3амечание. Больцано-Виерштрасса +2/3 пункт предыдущей теоремы говорят о том, что частичный предел точно существует.

**Определение 2.20.** Пусть  $l \in \mathbb{R}$ . Тогда окрестность l — произвольный интервал  $(l - \varepsilon; l + \varepsilon)$ .

**Определение 2.21.** Окрестность  $+\infty - \text{луч } (E; +\infty), -\infty - \text{луч } (-\infty; E)$ 

**Теорема 2.21.**  $l \in \overline{R}$  — частичный предел последовательности  $\iff$  в любой окрестности l содержится бесконечно много членов.

#### Доказательство.

- $\Rightarrow l$  частичный предел  $\Rightarrow$  найдется подпоследовательность  $x_{n_k} \to l \Rightarrow$  вне любой окрестности l конечное число членов последовательности  $x_{n_k} \Rightarrow$  внутри бесконечное.
- $\Leftarrow$  Возьмем (l-1;l+1). В ней бесконечное число членов. Возьмем любой  $x_{n_1}$ . Далее из  $(a-\frac{1}{2};a+\frac{1}{2})$  возьмем  $x_{n_2},n_2>n_1$ . Повторим процесс:  $x_{n_k}\in(a-\frac{1}{k};a+\frac{1}{k}),n_k>n_{k-1}$ . Тогда получили подпоследовательность, для которой верно:  $a-\frac{1}{k}< x_{n_k}< a+\frac{1}{k}\xrightarrow{\text{Тh.}} x_{n_k}\to a\Rightarrow l$  частичный предел.

**Определение 2.22.**  $x_n$  — фундаментальная (сходящаяся в себе, последовательность Коши), если  $\forall \varepsilon > 0 \exists N \forall m, n \geqslant N : |x_n - x_m| < \varepsilon$ .

Свойство. Сходящаяся последовательность фундаментальна.

Автор: Харитонцев-Беглов Сергей

Доказательство. Пусть предел 
$$l=\lim x_n$$
. Берем  $\varepsilon>0$ .  $\exists N \forall n\geqslant N|x_n-l|<\frac{\varepsilon}{2} \wedge |x_m-l|<\frac{\varepsilon}{2}\Rightarrow |x_n-x_m|\leqslant |x_n-l|+|l-x_m|<\varepsilon$ 

Свойство. Фундаментальная последовательность ограничена.

Доказательство. Берем 
$$\varepsilon = 1$$
. Тогда  $\exists N \forall m, n \geqslant N : |x_n - x_m| < 1 \Rightarrow |x_n - x_N| < 1 \Rightarrow |x_n| < 1 + |x_N| \Rightarrow |x_n| \leqslant \max\{|x_1|, \dots, |x_{N-1}|, 1 + |x_N|\}.$ 

*Свойство.* Если фундаментальная последовательность содержит сходящуюся последовательность, то она сама сходящаяся.

Доказательство. Берем 
$$\varepsilon > 0$$
.  $\exists N : \forall n, m \geqslant N | x_n - x_m | < \varepsilon$ .  $\exists K : \forall k \geqslant K | x_{n_k} - l | < \varepsilon$ . Возьмем  $n \geqslant N$  и рассмотрим  $x_n - l \leqslant |x_n - x_{n_k}| + |x_{n_k} - l| < 2\varepsilon$ , если  $k = \max\{N, K\}$ .

**Теорема 2.22** (Критерий Коши). Последовательности фундаментальна  $\iff$  последовательность сходящаяся.

#### Доказательство.

- ⇐. C<sub>B</sub>-B<sub>0</sub> 1.
- ullet  $\Rightarrow$  Фундаментальна  $\Rightarrow$  ограничена  $\Rightarrow$  существует сходящаяся подпоследовательность.

Пример.  $x_n := \sum_{k=1}^n \frac{\sin k}{2^k}$ . Проверим фундаментальность. Пусть n > m.  $|x_n - x_m| = |\sum_{k=m+1}^n \frac{\sin k}{2^k}| \le \sum_{k=m+1}^n \frac{|\sin k|}{2^k} \le \sum_{m+1}^n \frac{1}{2^k} = \frac{1}{2^m} - \frac{1}{2^m} < \varepsilon$ .

Onpedenehue 2.23.  $x_n$  — последовательность.  $y_n \coloneqq \inf_{k\geqslant n} x_k, z_n \coloneqq \sup_{k\geqslant n} x_k$ . Тогда верхний предел  $x_i \overline{\lim} x_n = \lim z_n$ , а нижний предел  $\underline{\lim} x_n = \lim y_n$ 

**Теорема 2.23.**  $\exists \lim \ \overline{\lim}. \ \overline{\lim} \geqslant \lim.$ 

Доказательство.  $y_n \leqslant z_n \Rightarrow \underline{\lim} \leqslant \overline{\lim}$ .

Существование.  $y_n$  монотонно убывает.  $y_{n+1} = \inf\{x_{n+1}, \ldots\} \geqslant \inf\{x_n, \ldots\} = y_n$ . Тогда у нее есть предел. Аналогично  $z_n$  монотонно убывает.

Замечание.  $\overline{\lim} = \inf z_n = \inf \sup_{k \geqslant n} x_n$ .

$$\underline{\lim} = \sup y_n = \sup \inf_{k \geqslant n} x_n.$$

#### **Теорема 2.24.**

- 1. Верхний предел наибольший из всех частичных пределов.
- 2. Нижний предел наименьший из всех частичных пределов.
- 3. Если  $\underline{\lim} = \overline{\lim}$ , то последовательность имеет предел и он равен  $\underline{\lim}$ .

#### Доказательство.

1. Пусть  $a = \overline{\lim} \in \mathbb{R}$ . Тогда  $a = \lim z_n$ , где  $z_n = \sup_{k \geqslant n} x_k$ . Мы знаем, что  $z_n \downarrow a$ . Значем, что  $z_1 \geqslant a = \sup x_n \Rightarrow n_1 : x_{n_1} > a - 1$ . Тогда знаем, что  $z_{n_1+1} = \sup_{k \geqslant n+1} \geqslant a \Rightarrow \exists n_2 > n_1 : x_{n_2} > a - \frac{1}{3}$ . И так далее.

Тогда получили  $n_1 < n_2 < \dots$  и  $z_{n_k} > x_{n_k} > a - \frac{1}{k} \Rightarrow x_{n_k} \to a$ . Так как  $z_{n_k} \to a$ .

Пусть  $a=-\infty$ , значит  $z_n\downarrow -\infty$ , тогда  $x_n\leqslant z_n\to -\infty\Rightarrow x_n\to -\infty$ .

Пусть  $a = +\infty$ , значит  $\forall n : z_n = +\infty \Rightarrow$  последовательность  $x_n$  не ограничена сверху. Тогда выберем подпоследовательность, стремящаяся к  $+\infty$ .

Поняли, что a — частичный предел. Докажем, что он максимальный. Возьмем  $x_{n_k} \to b$ . Тогда  $x_{n_k} \leqslant z_{n_k} \wedge x_{n_k} \to b \wedge z_{n_k} \to a \Rightarrow b \leqslant a$ .

- 2. Упражнение.
- 3.  $y_n = \inf\{x_n, x_{n+1}, \ldots\} \leqslant x_n \leqslant \sup\{x_n, x_n + 1, \ldots\} = x_n$ . Тогда два милиционера.

Теорема 2.25.

1. 
$$a = \underline{\lim x_n} \iff \begin{cases} \forall \varepsilon > 0 \ \exists N \ \forall n \geqslant N : x_n > a - \varepsilon \\ \forall \varepsilon > 0 \ \forall N \ \exists n \geqslant N : x_n < a + \varepsilon \end{cases}$$

2. 
$$b = \overline{\lim x_n} \iff \begin{cases} \forall \varepsilon > 0 \ \exists N \ \forall n \geqslant N : x_n < b + \varepsilon \\ \forall \varepsilon > 0 \ \forall N \ \exists n \geqslant N : x_n > b - \varepsilon \end{cases}$$

**Доказательство**. Будем доказывать второй пункт. $z_n = \sup\{x_n, x_{n+1}, \ldots\}$ 

- 1.  $\forall \varepsilon > 0 \exists N \forall n \geqslant N x_n < b + \varepsilon \xleftarrow{\text{def sup}}{\text{def } z_n} \forall \varepsilon > 0 \exists N: z_N < b + \varepsilon.$  Там достаточно этого по определению  $z_n$  и sup.
- $2. \ \forall \varepsilon > 0 \forall N \exists n \geqslant N x_n > b \varepsilon \iff \varepsilon > 0 \forall N z_N > b \varepsilon.$
- 3. Так как  $z_n \downarrow \Rightarrow \forall \varepsilon > 0 \exists N: \forall n \geqslant N: z_n \leqslant b + \varepsilon$ . Поэтому  $\forall N \in N: z_N \geqslant b \varepsilon \land z_N \leqslant b + \varepsilon$ , то  $z_n \to b$ .

**Теорема 2.26.**  $\forall x_n, y_n : x_n \leqslant y_n \Rightarrow \underline{\lim} x_n \leqslant \underline{\lim} y_n \wedge \overline{\lim} x_n \leqslant \overline{\lim} y_n$ .

**Доказательство**. Раскрываем определения, получаем  $\inf\{\ldots\} \leqslant \inf\{\ldots\}$ .

Замечание. Арифметики нет. Пример:  $x_n = (-1)^n, y_n = (-1)^{n+1}$ .

# 2.5. Ряды

*Определение* 2.24.  $\sum_{n=1}^{\infty} a_n \coloneqq \lim \sum_{k=1}^n a_k$ , если  $\lim$  существует,  $\mathbf{u} \in \overline{\mathbb{R}}$ .

**Определение 2.25.** Ряд  $\sum_{n=1}^{\infty} a_n$  — сходится, если его сумма конечна, иначе ряд расходится.

Пример.  $\sum_{n=0}^{\infty} q^n = \lim_{n \to \infty} \sum_{k=0}^n q^k = \lim \frac{q^{n+1}-1}{q-1} = \frac{1}{1-q} + \frac{\lim q^n}{q-1}$ .

Если |q|<1, то  $\lim q^n=0$  и  $\sum_{n=0}^{\infty}q^n=rac{1}{1-q}$  ряд сходится.

Если q>1, то  $\lim q^n=+\infty$  и  $\sum_{n=0}^{\infty}q^n=+\infty$  ряд расходится.

Если  $q\leqslant -1$ , то  $\lim q^n$  не существует и  $\sum_{n=0}^\infty q^n$  расходится.

Пример.  $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ .  $S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{n \cdot (n+1)} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \ldots + \left(\frac{1}{n} - \frac{1}{n-1}\right) = 1 - \frac{1}{n+1} \to 1$ .

Пример. Гармонический ряд  $\sum_{k=1}^{\infty} \frac{1}{k}$ .  $H_n \coloneqq 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$ . Поймем, что  $\lim H_n = +\infty$ . Разобьем на блоки:  $1 + \frac{1}{2} + \underbrace{\left(\frac{1}{3} + \frac{1}{4}\right)}_{>2 \cdot \frac{1}{4}} + \underbrace{\left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)}_{4 \cdot \frac{1}{9} = \frac{1}{2}} + \ldots > 1 + \frac{n}{2} \to +\infty$ 

Свойства:

- 1. Если ряд сходился, то сумма определена однозначно.
- 2. Добавление/выкидывание из ряда конечного числа членов не влияет на сходимость (но может влиять на сумму).
- 3. Расстановка скобок:  $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10} + \ldots \rightarrow (a_1 + a_2) + a_3 + (a_4 + a_5 + a_6) + (a_7 + a_8) + a_9 + a_{10} + \ldots$  Взятие в скобки означает, что мы заменяем скобки на посчитанную сумму. Но это не меняет его сумму.

Замечание. Ряд  $1-1+1-1+\dots$  можно сгруппировать двумя способами:  $(1-1)+(1-1)+\dots=0$  и  $1+(-1+1)+(-1+1)+\dots=1$ , так что надо сначала проверить сходимость.

- 4.  $\forall a_n, b_n \sum_{n=1}^{\infty} a_n \text{сходится } \text{и} \sum_{n=1}^{\infty} b_n \text{сходится } \Rightarrow \sum_{n=1}^{\infty} (a_n \pm b_n) \text{сходится, причем} \sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n.$
- 5.  $\forall a_n \sum_{n=1}^{\infty} a_n \text{сходится} \Rightarrow \sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$

Доказательство.  $A_n \coloneqq \sum_{k=1}^n a_k \wedge B_n \coloneqq \sum_{k=1}^n B_k \Rightarrow S_n \coloneqq \sum_{k=1}^n (a_k + b_k) = \sum_{k=1}^n a_k + \sum_{k=1}^n b_k = A_n + B_n$ 

# 3. Предел и непрерывность

# 3.1. Предел функции

**Определение 3.1.**  $a \in \mathbb{R}$ , тогда  $U_a$  — окрестность точки  $a \Leftarrow U_a = (a - \varepsilon, a + \varepsilon)$ .

**Определение 3.2.**  $U_{+\infty}$  — луч  $(E, +\infty)$ 

**Определение 3.3.**  $U_{-\infty} - \text{луч} (-\infty, E)$ 

 ${\it Onpedenehue}$  3.4.  $\dot{U}_a = U_a \setminus \{a\}$  — выколотая окрестность.

**Определение 3.5.**  $E \subset \mathbb{R}$  a — предельная точка E, если любая  $U_a$  пересекается с E.

Теорема 3.1. Следующие условия равносильны:

- 1. a предельная точка E.
- 2. В любой  $U_a$  содержится бесконечное кол-во точек из E.
- 3.  $\exists \{x_n\} : \forall n : x_n \in (E \{a\}) \land x_n \to a$ . Более того, можно выбрать последовательность  $x_n$  так, что  $|x_n a| \downarrow 0$ .

#### Доказательство.

- $2 \Rightarrow 1$ . Любая  $U_a \cap E$  содержит бесконечное число точек  $\Rightarrow$  хотя бы одна из них не a и тогда  $\dot{U}_a \cap E \neq \varnothing$ .
- 3  $\Rightarrow$  2. Берем  $x_n \neq a \in E$  :  $\lim x_n = a$ . Возьмем  $U_a = (a \varepsilon, a + \varepsilon)$ .  $\exists N : \forall n \geqslant N \ x_n \in (a \varepsilon, a + \varepsilon) \in U_a$ .
- 1  $\Rightarrow$  3. Возьмем  $\varepsilon_1 = 1$ : (a-1;a+1) содержит точку из  $E \setminus \{a\}$ . Назовем такую точку  $x_1$ . Возьмем  $\varepsilon_2 = \min\{\frac{1}{2}, |x_1-a|\} > 0$ :  $(a-\varepsilon_2;a+\varepsilon_2)$  содержит точку из  $E \setminus \{a\}$ . Назовем её  $x_2$ . Возьмем  $\varepsilon_3 = \min\{\frac{1}{3}, |x_2-a|\} > 0$  (заметим, что  $|x_2-a| < \varepsilon_2 < |x_1-a|$ ). Тогда  $(a-\varepsilon_3,a+\varepsilon_3)$  содержит точку из  $E \setminus \{a\}$ .

Получили  $|x_1-a|>|x_2-a|>\dots$  причем  $|x_k-a|<\varepsilon_k=\min\{\frac{1}{k},|x_{k-1}-a|\}\leqslant\frac{1}{k}\to 0\Rightarrow |x_k-a|\to 0\Rightarrow x_k\to a.$ 

**Определение 3.6.** Пусть a — предельная точка  $E.\ f: E \to \mathbb{R}.$  Тогда  $A = \lim_{x \to a} f(x),$  если

- 1. По Коши.  $\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in E : |x a| < \delta \Rightarrow |f(x) A| < \varepsilon$ .
- 2. Окрестности.  $\forall U_A \exists U_a : f(\dot{U}_a \cap E) \subset U_A$ .
- 3. По Гейне. Для любой последовательности  $x_n \neq a \in E : \lim x_n = a \Rightarrow \lim f(x_n) = A$ .

Равносильность 1. и 2.  $\forall U_A \exists U_a : f(\dot{U}_a \cap E) \subset U_A$ .

$$\forall U_A \iff \forall \varepsilon > 0 : U_A = (A - \varepsilon, A + \varepsilon).$$

$$\exists U_a \iff \exists \delta > 0 : U_a = (a - \delta, a + \delta).$$

$$x \in (\dot{U}_a \cap E) \iff x \in E \land 0 < |x - a| < \delta.$$

Глава #3

$$f(x \in (\dot{U}_a \cap E) \subset U_A \iff \forall x \in E : 0 < |x - a| < \delta |f(x) - A| < \varepsilon.$$

По сути, просто расписали, что значат окрестности, и получили просто определение по Коши.

**Свойство.** Определение предела — локальное свойство. То есть, если f и g совпадают в  $\dot{V}_a$ , то либо оба предела не существуют, либо существуют и равны.

**Доказательство**.  $\lim_{x\to a} f(x) = A \to \forall U_A \exists U_a : f(\dot{U}_a \cap E) \subset U_A$ . Тогда можем взять  $\dot{W}_a = \dot{V}_a \cap \dot{U}_a$  и в этой окрестности всё будет выполняться требование  $f(\dot{W}_a \cap E) \subset U_A$  но при этом там ещё и функции будут равны в каждой точке, а значит  $W_a$  попадёт и под определение предела для g. Т.е. у f в a есть предел A, то и у g в a есть предел, равный A, аналогично из g следует для f.

 ${\it Ceo\'{u}cmeo}$ . Значение f в точке a не участвует в определении.

**Свойство.** В определении по Гейне, если для любой последовательности  $x_n \neq a \in E : x_n \to a$   $\exists \lim f(x_n)$ , то все эти пределы равны.

Доказательство. Пусть  $x_n \neq a \in E : x_n \to a$ ,  $\lim f(x_n) = A$  и  $y_n \neq a \in E : y_n \to a$ ,  $\lim f(y_n) = B$ . Рассмотрим  $z_n \coloneqq x_1, y_1, x_2, y_2, \dots$  Знаем, что  $z_n \to a \Rightarrow \lim f(z_n) \eqqcolon C$ . Но  $\{f(x_n)\} \to \lim f(x_n) = \lim f(z_n) = C$ . Тоже самое для  $y_n$ . Так получили, что A = C и B = C.

Теорема 3.2. Определение по Коши и по Гейне равносильны.

# Доказательство.

- Коши  $\Rightarrow$  Гейне.  $\forall \varepsilon > 0 \,\exists \delta > 0 : \, \forall x \in E : 0 < |x a| < \delta \Rightarrow |f(x) A| < \varepsilon$ . Пусть  $x_n \in E : \lim x_n = a$ . Проверим, что  $\lim(x_n) = A$ . Возьмем  $\varepsilon > 0$ , берем соответствующий  $\delta$  из определения. Найдется  $N : \forall n \geqslant N : 0 < \underbrace{|x_n a| < \delta}_{\text{предел последовательности}} \Rightarrow |f(x_n) A| < \varepsilon$ .
- Гейне  $\Rightarrow$  Коши. От противного: пусть нашелся  $\varepsilon > 0$  для которого ни одна  $\delta > 0$  не подходит. Возьмем  $\delta = \frac{1}{n}$ . Она не подходит, то есть  $\exists x \in E : 0 < |x a| < \delta$ , но  $|f(x) A| \geqslant \varepsilon$ . Из таких x, последовательно меняя  $\delta$ , получили  $x_n$ .

Посмотрим на последовательность:  $x_n \neq a \in E |x_n - a| < \frac{1}{n} \Rightarrow \lim x_n = a \Rightarrow \lim f(x_n) = A \Rightarrow \exists N \in \mathbb{N} : \forall n \geqslant N : |f(x_n) - A| < \varepsilon$ . Противоречие.

## Свойства пределов:

- 1. Предел единственный.
- 2. Если существует  $\lim_{x\to a} f(x) = A$ , то f локально ограничена, то есть  $\exists U_a: f$  в  $U_a$  ограничена.
- 3. (Стабилизация знака). Если  $\lim_{x\to a} f(x) = A \neq 0$ , то существует такая окрестность  $U_a$ , что f(x) при  $x \in \dot{U}_a$  имеет тот же знак, что и A.

### Доказательство.

1. Пусть  $\lim_{x\to a} f(x) = A$  и  $\lim_{x\to a} f(x) = B$ . Возьмем  $x_n \in E$ , такой, что  $x_n \to a$  (рассматриваем только предельные точки E). Тогда  $\lim f(x_n) = A$  и  $\lim f(x_n) = B$ , но предел последовательности единственен  $\Rightarrow A = B$ .

- 2. Возьмем  $\varepsilon = 1$  в определении по Коши.  $\exists \delta > 0 \, \forall x \in E : 0 < |x-a| < \delta \Rightarrow |f(x)-A| < \varepsilon = 1$ .  $U_a = (a-\delta, a+\delta)$ , тогда f ограничена на  $U_a \cap E$ .  $|f(x)| \leqslant |A| + |f(x)-A| < A+1$ . Аккуратно рассмотрим еще про x = a, это одна конкретная точка, если она больше A+1, то f локально ограничена f(a).
- 3. Пусть A>0. Возьмем  $\varepsilon=A$ .  $\exists \delta>0: 0<|x-a|<\delta \land x\in E\Rightarrow |f(x)-A|< A\iff 0< f(x)<2A$ . Берем  $\dot{U_a}=(a-\delta,a+\delta)$  для нее значения >0.

**Теорема 3.3** (Теорема о арифметических действиях с пределами). Пусть a — предельная точка  $E, f, g: E \to \mathbb{R}$  и  $\lim_{x\to a} f(x) = A$ ,  $\lim_{x\to a} g(x) = B$ . Тогда

- 1.  $\lim_{x\to a} (f(x) \pm g(x)) = A \pm B$
- 2.  $\lim_{x\to a} f(x) \cdot g(x) = A \cdot B$
- 3.  $\lim_{x\to a} |f(x)| = |A|$
- 4.  $B \neq 0 \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$

**Доказательство**. Проверим определение по Гейне. Берем последовательность  $x_n \neq a \in E$ :  $\lim x_n = a$ . Тогда  $\lim f(x_n) = A$  и  $\lim g(x_n) = B$ . Следовательно  $\lim (f(x_n) \pm g(x_n)) = A \pm B \Rightarrow \lim (f(x) \pm g(x)) = A \pm B$ . По сути, просто перетаскиваем аналогичные теоремы с пределов последовательности.

Второй и третий пункты доказываются ровно так же.

Но вот в четвертом пункте надо что-то сказать про g(x). Если  $\lim_{x\to a} g(x) = B \neq 0$ , то по теореме о стабилизации знака  $\exists \delta > 0 : x_n \neq a \in E \land |x-a| < \delta \Rightarrow g(x) \neq 0$ . Тогда для  $x \in (a-\delta;a+\delta) \cap E/\{a\}$  можно писать  $\frac{f(x)}{g(x)}$ .

**Теорема 3.4** (О предельном переходе в неравенствах). Пусть a — предельная точка  $E, f, g: E \to \mathbb{R}$  и  $f(x) \leqslant g(x)$ . Если  $\lim_{x\to a} f(x) = A$  и  $\lim_{x\to a} g(x) = B$ , то  $A \leqslant B$ .

**Доказательство**. Возьмем какую-то последовательность  $x_n \neq a \in E : \lim x_n = a$  (найдется, так как a — предельная точка E). Тогда  $A = \lim f(x_n)$  и  $B = \lim g(x_n)$ .

Тогда знаем, что 
$$\forall n: f(x_n) \leqslant g(x_n) \xrightarrow{\text{пред. переход}} A \leqslant B$$

**Теорема 3.5** (О двух милиционерах). Пусть a — предельная точка  $E, f, g, h : E \to \mathbb{R}$  и  $f(x) \leqslant g(x) \leqslant h(x)$  при всех  $x \in E$ . Тогда,  $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) =: A \Rightarrow \lim_{x \to a} g(x) = A$ .

Доказательство. Проверим определение по Гейне для  $\lim_{x\to a}g(x)=A$ . Берем любую последовательность  $x_n\neq a\in E: \lim x_n=a$ . Тогда  $\lim f(x_n)=A\wedge \lim h(x_n)=A\wedge f(x_n)\leqslant g(x_n)\leqslant h(x_n)\xrightarrow{\frac{\text{Th. o 2 мил.}}{\text{для послед.}}}\lim g(x_n)=A$ .

**Теорема 3.6** (Критерий Коши для предела функции). a — предельная точка  $E, f: E \to \mathbb{R}$ . Тогда существует конечный  $\lim_{x\to a} f(x) \iff \forall \varepsilon > 0 \exists \delta > 0 \forall x,y \in E: \begin{cases} 0 < |x-a| < \delta \\ 0 < |y-a| < \delta \end{cases} \Rightarrow |f(x) - f(y)| < \varepsilon$ 

Доказательство.

- $\Rightarrow$ . Пусть  $\lim_{x\to a} f(x) = A$ . Тогда  $\forall \varepsilon > 0 \exists \delta > 0 \ \ \, \forall x \neq a \in E : |x-a| < \delta \Rightarrow |f(x)-A| < \frac{\varepsilon}{2}$ Тогда, если сложить получим  $|f(x)-f(y)| \leqslant |f(x)-A| + |A-f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
- $\Leftarrow$ . Докажем, что существует конечный  $\lim_{x\to a} f(x)$  по Гейне. Берем последовательность  $x_n \neq a \in E$ :  $\lim x_n = a$ . Надо доказать, что  $\lim f(x_n)$  существует и конечен. Для этого проверим, что  $f(x_n)$  фундаментальная последовательность.

Возьмем  $\varepsilon > 0$  и соответствующую ему  $\delta > 0$ .  $\exists N: \forall n \geqslant N \, |x_n - a| < \delta$ . Берем  $m, n \geqslant N \, |x_n - a| < \delta$   $\delta = N \, |x_n - a| < \delta = N \, |x_$ 

**Определение 3.7.**  $f: E \to \mathbb{R}, E_1 = (-\infty, a) \cap E$ . Пусть a - предельная точка  $E_1, g \coloneqq$  сужение f на  $E_1$ . Тогда  $\lim_{x\to a} g(x) = A \iff \lim_{x\to a^-} f(x) = A$  — предел слева в точке A.

**Определение 3.8.**  $f: E \to \mathbb{R}, E_2 = (a, +\infty) \cap E$ . Пусть a - предельная точка  $E_2, g \coloneqq$  сужение f на  $E_2$ . Тогда  $\lim_{x\to a} g(x) = A \iff \lim_{x\to a+} f(x) = A$  — предел справа в точке A.

Замечание.  $A = \lim_{x \to a-} f(x) \iff \forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in E : a - \delta < x < a \Rightarrow |f(x) - A| < \varepsilon$ 

Замечание.  $B = \lim_{x \to a+} f(x) \iff \forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in E : a < x < a + \delta \Rightarrow |f(x) - B| < \varepsilon$ 

Замечание.  $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) =: A \iff \lim_{x\to a} f(x) = A$ 

**Определение 3.9.**  $f: E \to \mathbb{R}$ . Тогда f — монотонно возрастает  $\iff \forall x,y \in E: x < y \Rightarrow f(x) \leqslant f(y)$ . Аналогично вводится строгое монотонное возрастание, монотонное убывание, строгое монотонное убывание.

**Теорема 3.7** (Вейерштрасса, о пределе монотонной функции).  $f: E \to \mathbb{R}, E_1 := (-\infty, a) \cap E, a$  — предельная точка  $E_1$ . Тогда

- 1. Если f монотонно возрастает и ограничена сверху, то существует конечный предел  $\lim_{x\to a-} f(x)$ .
- 2. Если f монотонно убывает и ограничена снизу, то существует конечный предел  $\lim_{x\to a-f(x)}$ .

Замечание. На самом деле в  $1 \lim_{x \to a-} f(x) = \sup_{x \in E_1} f(x)$ , в  $2 \lim_{x \to a-} f(x) = \inf_{x \in E_1} f(x)$ .

#### Доказательство.

1.  $A \coloneqq \sup_{x \in E_1} f(x)$ . Проверим, что  $\lim_{x \to a^-} f(x) = A$ . Возьмем  $\varepsilon > 0$ . Тогда  $A - \varepsilon$  не верхняя граница множества  $\{f(x) : x \in E_1\} \Rightarrow$  найдется  $x_0 \in E_1 : f(x_0) > A - \varepsilon$ .  $\delta \coloneqq a - x_0 > 0$ . Проверим, что он подходит. Возьмем  $x \in E : a - \delta = x_0 < x < a \Rightarrow f(x_0) \leqslant A - \varepsilon < f(x) \leqslant A < A + \varepsilon \Rightarrow |f(x) - A| < \varepsilon$ .

# 3.2. Непрерывные функции

**Определение 3.10.**  $f: E \to \mathbb{R}$  и  $a \in E$ . f непрерывна в точке a, если a — не предельная точка или a — предельная точка и  $\lim_{x\to a} f(x) = f(a)$ .

**Определение 3.11.** Расписывая через Коши:  $\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in E : |x-a| < \delta \Rightarrow |f(x) = f(a)| < \varepsilon$ 

П

**Определение 3.12.** Расписывая через окрестности:  $\forall U_{f(a)} \exists U_a f(U_a \cap E) \subset U_{f(a)}$ 

**Определение 3.13.** Расписывая через Гейне:  $\forall x_n \in E : \lim x_n = a \Rightarrow \lim f(x_n) = f(a)$ .

**Пример.** f(x) = c — непрерывна всегда.

**Пример.** f(x) = x — непрерывна всегда.

**Пример.** f(x) = [x]. Если  $a \notin \mathbb{Z}$   $\lim_{x\to a} [x] = [a]$ . Иначе предела нет, значит f не непрерывна (да и вообще получили разрыв первого рода)

**Пример.**  $f(x) = |\{x\} - \frac{1}{2}|$ .

Если  $a \notin \mathbb{Z}$ , то очевидно непрерывная.

Если 
$$a=n\in\mathbb{Z}$$
, то  $\lim_{x\to n+}|\{x\}-\frac{1}{2}|=\lim_{x\to n+}|x-n-\frac{1}{2}|=\frac{1}{2}=f(n)$ .  $\lim_{x\to n-}|\{x\}-\frac{1}{2}|=\lim_{x\to n-}|x-n-\frac{1}{2}|=\frac{1}{2}=f(n)$ .

Функция непрерывна!

**Теорема 3.8.**  $\exp x$  непрерывна во всех точках.

**Доказательство**. Хотим  $\lim_{x\to a} \exp x = \exp a$ . Пусть  $h := x-a \to 0$ . Теперь хотим  $\lim_{h\to 0} \exp(a+h) = \exp a$ . Тогда надо доказать, что  $\lim_{h\to 0} \exp h = 1$ . Заметим, что  $1+h\leqslant \exp h\leqslant \frac{1}{1-h}$ , при  $|h|\leqslant 1$ . Значит, по 2 милиционерам  $\exp h\to 1$ .

**Теорема 3.9** (Теорема об арифметических действиях с непрерывными функциями).  $f, g : E \to \mathbb{R}, a \in E, f, g$  непрерывны в a. Тогда:

- 1.  $f \pm g$  непрерывна a.
- 2.  $f \cdot g$  непрерывна в a.
- 3. |f| непрерывна в a
- 4. если  $g(a) \neq 0$ , то  $\frac{f}{g}$  непрерывна.

**Доказательство**. Если a не предельная, то очев. Иначе ссылаемся на арифм. действия с пределами.

#### Следствие.

- 1. Многочлены непрерывны во всех точках.
- 2. Рациональные функции функции (т.е. отношение двух многочленов) непрерывны на всех области определения.

#### Доказательство.

- 1.  $f(x) = c, g(x) = x \Rightarrow cx^k$  непрерывна  $\Rightarrow$  многочлены непрерывны.
- 2.  $\frac{P(x)}{Q(x)}$  непрерывна в точке a, если  $Q(a) \neq 0.$

**Теорема 3.10** (О стабилизации знака).  $f: E \to \mathbb{R}, a \in E, f$  — непрерывна в a и  $f(a) \neq 0$ . Тогда  $\exists U_a: \forall x \in U_a \cap E$  знак f(x) совпадает с f(a).

Доказательство.

- $\bullet$  Точка не предельная. Берем окрестность из одной точки a.
- Иначе ссылаемся на теорему о стабилизации знака для предела

**Теорема 3.11.** Пусть  $f: E \to \mathbb{R}, \ a \in E, \ f$  — непрерывна в  $a, \ g: D \to \mathbb{R}, \lim_{x \to a} f(x) = A, \ g$  — непрерывна в  $A, \ D \supset f(E), \$ тогда  $\lim_{x \to a} g(f(x)) = g(A).$ 

**Доказательство**. g непрерывна в точке  $A\Rightarrow \forall \varepsilon>0 \;\exists \delta>0 \;\forall y\in D \;|y-A|<\delta\Rightarrow |g(y)-g(A)|<\varepsilon$ . Зафиксируем  $\varepsilon>0$  и по нему возьмем  $\delta>0$  и подставим его вместо  $\varepsilon$  в определение  $\lim_{x\to a}f(x)=A$ .

$$\forall \delta>0 \; \exists \gamma>0 \; \forall x\in E|x-a|<\gamma \Rightarrow |f(x)-A|<\delta. \; \text{Подставим} \; y=f(x) \colon |g(f(x))-g(A)|<\varepsilon. \quad \Box$$

*Следствие Непрерывность композиции.* Пусть  $f: E \to \mathbb{R}, \ a \in E, \ f$  — непрерывна в  $a, \ g: D \to \mathbb{R}, \lim_{x \to a} f(x) = A, \ g$  — непрерывна в  $A, \ D \supset f(E), \$ тогда  $g \circ f$  непрерывна в a.

**Доказательство**. Если a не предельная, то всё просто и круто.

Если предельная, то предыдущая теорема.

Замечание. Без непрерывности g неверно.  $f(x) = x \sin \frac{1}{x}$ .  $\lim_{x\to 0} f(x) = 0$   $g(y) = \begin{cases} 0 & y=0 \\ 1 & y\neq 0 \end{cases}$ .  $\lim_{y\to 0} g(y) = 1$ . Ho  $\lim g(f(x))$  не существует, поскольку для  $x_n = \frac{1}{\pi n}$ ,  $f(x_n) = 0$ .  $g(f(x_n)) = 0$ , а для  $y_n = \frac{1}{2\pi n + \frac{\pi}{2}} f(y_n) \neq 0$ ,  $g(f(y_n)) = 1 \neq 0$ .

**Теорема 3.12.**  $0 < x < \frac{\pi}{2} \Rightarrow \sin x < x < \operatorname{tg} x$ .

 $Cnedcmeue. \ \forall x : |\sin x| \leq |x|$ 

### Доказательство.

- $0 < x < \frac{\pi}{2}$  уже было, доказывается картинкой: для синуса: дуга больше высоты из этой точки, а для тангенса: площадь сектора  $(\frac{x}{2})$  меньше площади треугольника  $(\frac{\lg x}{2})$
- $x > \frac{\pi}{2} \Rightarrow |\sin x| \leqslant 1 < \frac{\pi}{2} \leqslant |x|$ .
- При  $x < 0 \Rightarrow |x| = |-x|$  и  $|\sin x| = |\sin(-x)|$ .

Следствие.

- $1. |\sin x \sin y| \leqslant |x y|$
- $2. |\cos x \cos y| \leqslant |x y|$

Доказательство.  $|\sin x - \sin y| = 2|\sin \frac{x-y}{2}||\cos \frac{x+y}{2}| \leqslant 2|\sin \frac{x-y}{2}| \leqslant 2|\frac{x-y}{2}| \leqslant |x-y|$  Второй так же.

**Теорема 3.13.** sin, cos, tg, ctg — непрерывны.

**Доказательство**. Хотим доказать, что  $\lim_{x\to a}\sin(x)=\sin(a)$ , для этого нужно  $\lim_{x\to a}\sin(x)-\sin(a)=0$ , а, по предыдущим записям,  $|\sin(x)-\sin(a)|\leqslant |x-a|$ , и тогда по двум милиционерам получаем, что тут предел равен 0, а значит  $\sin x$  непрерывен.

Для косинуса аналогично:  $\lim_{x\to a}\cos(x)=\cos(a)\iff \lim_{x\to a}\cos(x)-\cos(a)=0, |\cos(x)-\cos(a)|$   $\leq |x-a|\Rightarrow \lim_{x\to a}\cos(x)-\cos(a)=0$ , т.е. косинус непрерывный.

Непрерывность tg и ctg следует из непрерывности частного двух непрерывных. □

Теорема 3.14 (Первый замечательный предел).

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Доказательство. Нам известно неравенство  $\sin x \leqslant x \leqslant \operatorname{tg} x = \frac{\sin x}{\cos x}$ , при  $0 < x < \frac{\pi}{2}$ .

Тогда  $\sin x \leqslant x \leqslant \operatorname{tg} x \iff \frac{1}{\operatorname{tg} x} \leqslant \frac{1}{x} \leqslant \frac{1}{\sin x}$ 

Тогда  $\cos x \leqslant \frac{\sin x}{x} \leqslant 1$  при  $x \in \left(\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus \{0\}.$ 

Тогда применим двух милиционеров:  $\cos x \to 1, 1 \to 1$  при  $x \to 0,$  а значит  $\frac{\sin x}{x} \to 1.$ 

Теорема 3.15 (Теорема Вейерштрасса).

- 1. Непрерывная на отрезке функция ограничена.
- 2. Непрерывная на отрезке функция принимает наибольшее и наименьшее значение.

**Доказательство**. Введем обозначения:  $f:[a,b] \to \mathbb{R}$  непрерывна во всех точках.

1. От противного. Пусть число n не является верхней границей для |f|. Значит  $\exists x_n \in [a,b]$ :  $|f(x_n)| > n$ , построим последовательность таких  $x_n$ .

Применим к ней теорему Больцано-Вейерштрасса. Выберем  $x_{n_k}$  имеющий предел  $c \in \mathbb{R}$ . Причем, так как  $a \leqslant x_{n_k} \leqslant b \Rightarrow a \leqslant c \leqslant b$ . А значит, поскольку f непрерывна в точке c,  $\lim_{x \to c} |f(x)| = |f(c)| \Rightarrow \lim_{k \to \infty} |f(x_{n_k})| = |f(c)|$ , но  $|f(x_{n_k})| > n_k \to +\infty$ . Получили противоречие.  $+\infty \neq c \in \mathbb{R}$ .

2. Будем доказывать максимум.  $M\coloneqq\sup_{x\in[a,b]}f(x)\in\mathbb{R}.$  Пусть он не достигается, то есть  $f(x)< M\ \forall x\in[a,b].$ 

Тогда рассмотрим вспомогательную функцию  $g(x) := \frac{1}{M-f(x)}$  — непрерывна на  $[a,b] \Rightarrow g$  ограничена  $\Rightarrow g(x) \leqslant \widehat{M} \ \forall x \in [a,b].$ 

Тогда  $M-f(x)\geqslant \frac{1}{\widehat{M}}\Rightarrow f(x)\leqslant M-\frac{1}{\widehat{M}}< M.$  Получили противоречие, так как M- супремум, т.е. наименьшая верхняя граница, а тут столкнулись с границей ещё меньше.

Замечание. Отрезок нельзя менять на интервал или полуинтервал.  $f(x) = \frac{1}{x}$  на (0,1] — непрерывность есть, ограниченности нет.

Замечание. Непрерывность должна быть на всех точках.  $f(x) = \begin{cases} \frac{1}{x} & x \in (0,1] \\ 0 & x = 0 \end{cases}$  на [0,1]. Ограниченности нет, непрерывность во всех точках, кроме одной.

Теорема 3.16 (Теорема Больцано-Коши, теорема о промежуточных значениях).

1. f непрерывна на [a,b] и значение f(a) и f(b) разных знаков. Тогда  $\exists c \in (a,b) \colon f(c) = 0$ .

2. f непрерывна на [a,b] и y лежит между f(a) и f(b). Тогда  $\exists c \in (a,b) \colon f(c) = y$ 

### Доказательство.

1. Считаем, что  $f(a) < 0 \land f(b) > 0$ . Будем делить отрезок на части.  $a_0 \coloneqq a, b_0 \coloneqq b$ . Тогда:

$$[a_{n+1},b_{n+1}] = \begin{cases} \left[\frac{a_n + b_n}{2}, b_n\right] & \text{если } f\left(\frac{a_n + b_n}{2}\right) < 0\\ \left[a_n, \frac{a_n + b_n}{2}\right] & \text{если } f\left(\frac{a_n + b_n}{2}\right) > 0 \end{cases}.$$

Тогда, если процесс не оборвался, получили  $[a,b]=[a_0,b_0]\supset [a_1,b_1]\supset [a_2,b_2]\supset\dots$  Стягивающиеся отрезки  $b_n-a_n=\frac{b-a}{2^n}\to 0$ . Тогда найдется c, лежащая во всех отрезках,

причем  $\lim a_n = \lim b_n = c$ . Функция непрерывна в  $c \Rightarrow \lim f(a_n) = f(c) = \lim f(b_n) \Rightarrow 0 \geqslant \lim f(a_n) = f(c) \wedge \lim f(b_n) \geqslant 0 \Rightarrow f(c) = 0$ .

2.  $g(x) \coloneqq f(x) - y$ . Тогда g(a) и g(b) разных знаков  $\Rightarrow \exists c \in [a,b] \colon f(c) - y = g(c) = 0$ 

Замечание. Нужна непрерывность во всех точках.  $f(x) = \begin{cases} 1 & \text{при } x \in [0,1] \\ -1 & \text{при } x \in [-1;0) \end{cases}$  непрерывна на [-1,1], за исключением 0.

Замечание. Бывают разрывные функции, удовлетворяющие теореме о промежуточных значениях.  $f(x) = \begin{cases} \sin\frac{1}{x} & \text{при } x \in (0;1] \\ 0 & \text{при } x = 0 \end{cases}$ . Если  $a,b \in [0,1]$ , то на [a,b] f принимает все значения между f(a) и f(b). Случай 0 < a < b — теорема Больцано-Коши. Случай a = 0 < b на (0,b) принимает все значения. Так как на  $[\frac{1}{2\pi(n+1)};\frac{1}{2\pi n}]\sin\frac{1}{x}$  принимает все значения от -1 до 1.

**Теорема 3.17.** Непрерывный образ отрезка — отрезок. То есть  $f:[a,b] \to \mathbb{R}$  непрерывная  $\Rightarrow f([a,b])$  — отрезок.

**Доказательство**.  $m \coloneqq \min_{x \in [a,b]} f(x)$   $M \coloneqq \max_{x \in [a,b]} f(x)$ . По теореме Вейерштрасса  $\exists p,q \in [a,b]: m = f(p), M = f(q)$ . Рассмотрим отрезок с концами в p и q. По теореме Больцано-Коши, на (p,q) функция принимает все значения между f(p) и f(q), то есть все значения из [m,M] достигаются  $\Rightarrow f([a,b]) = [m,M]$ .

**Определение 3.14.**  $\langle a,b \rangle$  означает один из промежутков [a,b]; (a,b); (a,b).

**Теорема 3.18.** Непрерывный образ промежутка — промежуток (но, возможно, промежуток другого типа.)

**Доказательство**.  $\langle a,b \rangle$  — промежуток.  $m \coloneqq \inf_{x \in \langle a,b \rangle} f(x)$  (возможно  $-\infty$ ).  $M \coloneqq \sup_{x \in \langle a,b \rangle} f(x)$ . Тогда  $m \leqslant f(x) \leqslant M \ \forall x \in \langle a,b \rangle$ , а значит  $f(\langle a,b \rangle) \subset [m,M]$ . Докажем, что  $f(\langle a,b \rangle) \supset (m;M)$ : Возьмем  $y \in (m,M)$ , такой что m < y < M.

 $m = \inf \Rightarrow y$  — не нижняя граница  $\Rightarrow \exists p \in \langle a, b \rangle \colon f(p) < y$ .

 $M=\sup\Rightarrow y$  — не верхняя граница  $\Rightarrow\exists p\in\langle a,b\rangle\colon f(q)>y.$ 

Применим теорему Больцано-Коши для отрезка с концами p и  $q\Rightarrow \exists c\in (p,q)\subset \langle a,b\rangle\colon f(c)=y.$ 

Тогда  $(m,M)\subset f(\langle a,b\rangle)\subset [m,M]\Rightarrow f(\langle a,b\rangle)$  — промежуток.

Замечание.  $f(x) = x^2$  на (-1,1), образ [0,1).

$$f(x) = \sin x$$
 на  $(0, 2\pi)$ , образ  $[-1, 1]$ .

$$f(x) = \frac{\sin \frac{1}{x}}{x}$$
 на  $(0,1]$ , образ  $\mathbb{R}$ .

**Определение 3.15.** Пусть  $f:\langle a,b\rangle\to\mathbb{R}$  и инъективна. Тогда g — обратная к  $f\iff g$  : переводит из множества значений  $f-f(\langle a,b\rangle)$  в  $\langle a,b\rangle$  и  $f(g(y))=y\wedge g(f(x))=x$ .

g обозначатся как  $f^{-1}$ .

Замечание. Обратная функция существует, так как f — биекция между  $\langle a,b \rangle$  и  $f(\langle a,b \rangle)$ .

Замечание. График непрерывной функции симметричен относительно прямой y=x.

**Теорема 3.19.**  $f:\langle a,b\rangle\to\mathbb{R}$  непрерывна и строго монотонна.  $m\coloneqq\inf_{x\in\langle a,b\rangle}f(x)$  (возможно  $-\infty$ ).  $M\coloneqq\sup_{x\in\langle a,b\rangle}f(x)$ . Тогда:

- 1. f обратима и  $f^{-1}$ :  $\langle m, M \rangle \rightarrow \langle a, b \rangle$
- 2.  $f^{-1}$  строго монотонна.
- 3.  $f^{-1}$  непрерывна на  $\langle m, M \rangle$ .

## Доказательство.

- 1. Строгая монотонность  $\Rightarrow f$  инъекция  $\Rightarrow f$  обратима.
- 2. Пусть f строго возрастает  $\Rightarrow f(x) < f(y) \iff x < y$ . Тогда  $x < y \Rightarrow f^{-1}(x) < f^{-1}(y)$ .
- 3. Непрерывность. Возьмем  $y_0 \in \langle m, M \rangle$ . Докажем непрерывность в точке  $y_0$ .  $A := \sup_{y < y_0} f^{-1}(y) = \lim_{y \to y_0 -} f^{-1}(y)$  (функция строго монотонная)  $\leq f^{-1}(y_0) \leq \lim_{y \to y_0 +} f^{-1}(y) = \inf_{y > y_0} f^{-1}(y) = : B$ . Докажем, что A = B.

Пусть A < B. Рассмотрим множество значений  $f^{-1}: (-\infty; A] \cup \{f^{-1}(y_0)\} \cup [B; +\infty) \supset f^{-1}(\langle m, M \rangle) = \langle a, b \rangle$ . Противоречие (не сможем покрыть  $\langle a, b \rangle$ , если множество значений не будет единым промежутком, а с разрывами)

# 3.3. Элементарные функции

Обратные тригонометрические функции.

- $\sin: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \to [-1, 1]$  непрерывна и строго возрастает. По теории у него есть обратная функция.
- $\arcsin: [-1,1] \to [-\frac{\pi}{2}; \frac{\pi}{2}]$  непрерывна и строго возрастает.
- $\cos: [0; \pi] \to [-1, 1]$  непрерывна и строго убывает.
- $\operatorname{arccos}: [-1,1] \to [0,\pi]$  непрерывна и строго убывает.
- $tg: \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}$  непрерывна и строго возрастает. По теории у него есть обратная функция.
- arctg:  $\mathbb{R} \to \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$  непрерывна и строго возрастает.
- ctg:  $(0;\pi) \to \mathbb{R}$  непрерывна и строго убывает.

• arcctg:  $\mathbb{R} \to (0,\pi)$  непрерывна и строго убывает.

## Логарифм.

 $\exp: \mathbb{R} \to (0; +\infty)$  непрерывна и строго возрастает. Обратная функция  $\ln: (0, +\infty) \to \mathbb{R}$  непрерывна и строго возрастает.

**Coourmea.** •  $\lim_{x\to 0+} \ln x = -\infty$ ,  $\lim_{x\to +\infty} \ln x = +\infty$ 

- $\ln(ab) = \ln a + \ln b$
- $\ln(1+x) \leqslant x$ , при x > -1.
- $\ln(1+x) \geqslant 1 \frac{1}{1+x}$ , при x > -1.

**Доказательство.** • Предел существует из монотонности, они такие, т.к. множество значений у  $\ln - \mathbb{R}$ .

- $\exp(u+v)=\exp u\cdot\exp v$ . Если  $\exp u=a, \exp v=b,$  то  $u=\ln a, v=\ln b,$  тогда  $\exp(u+v)=a\cdot b\Rightarrow \ln(ab)=u+v=\ln a+\ln b$
- $\exp u \geqslant 1 + u \Rightarrow u = \ln(\exp u) \geqslant \ln(1 + u)$
- $y := \ln(1+x)$ .  $\exp y = 1 + x \Rightarrow 1 + x = \exp y \leqslant \frac{1}{1-y} \Rightarrow 1 y \leqslant \frac{1}{1+x}$ .

Теорема 3.20.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

Доказательство.  $\frac{x}{1+x} = 1 - \frac{1}{1+x} \leqslant \ln(1+x) \leqslant x$ , при -1 < x < 1.

При 
$$x > 0$$
:  $\underbrace{\frac{1}{1+x}}_{1} \leqslant \frac{\ln(1+x)}{x} \leqslant 1$ .

При 
$$x<0$$
:  $1\leqslant \frac{\ln(1+x)}{x}\leqslant \frac{1}{1+x}\to 1$ 

**Определение 3.16.**  $a^b \coloneqq \exp(b \ln a)$ , при  $a > 0, b \in \mathbb{R}$ 

Если  $b \in \mathbb{N}$ :  $a^n = \exp(\underbrace{\ln a + \ln a + \ldots + \ln a}_{n, \text{ here}}) = \exp(\ln a) \cdot \ldots \exp(\ln a) - \text{ штук}.$ 

$$a^{-n} = \exp(-n \ln a) = \frac{1}{\exp(n \ln a)} = \frac{1}{a^n}.$$

$$a^{\frac{m}{n}} = (\sqrt[n]{a})^m \cdot \exp(\frac{m}{n} \ln a) = \exp(m \frac{\ln a}{n}) = (\exp(\frac{\ln a}{n}))^m.$$

**Упражнение.** Доказать, что  $a^b = \lim a^b$ , где  $b_n \in \mathbb{Q}$  и  $b_n \to b$ .

Следствие.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \tag{1}$$

$$\lim_{x \to +\infty} (1 + \frac{1}{x})^x = \lim_{x \to -\infty} (1 + \frac{1}{x})^x = e$$
 (2)

Доказательство. 1.  $(1+x)^{\frac{1}{x}} = \exp(\frac{1}{x}\ln(1+x))$ 

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = \lim_{x\to 0} \exp(\frac{\ln(1+x)}{x}) = \exp(\lim ...) = \exp 1 = e$$

2. 
$$y = \frac{1}{x}$$
.  $(1+x)^{\frac{1}{x}} = (1+\frac{1}{y})^y$ . При  $x \to 0+$   $y \to +\infty$ . При  $x \to 0 y \to -\infty$ 

### Показательная функция

**Определение 3.17.** Показательная функция  $a^x := \exp(x \ln a) : \mathbb{R} \to (0, +\infty)$ , при a > 0.

**Свойства.** 1. При a > 1 строго возрастает. Так как  $\ln a > 0$ .

- 2. При a < 1 строго убывает.
- 3.  $a^x \ge 1 + x \ln a$  по свойству экспоненты.

## Теорема 3.21.

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a.$$

Доказательство.

$$a^x\geqslant 1+x\ln a\Rightarrow a^x-1\geqslant x\ln a$$
 
$$a^{-x}\geqslant 1-x\ln a\Rightarrow a^x=\frac{1}{a^{-x}}\leqslant \frac{1}{1-x\ln a} \text{ при малых } x$$
 
$$a^x-1\leqslant -1+\frac{1}{1-x\ln a}=\frac{x\ln a}{1-x\ln a}.$$

Тогда  $\frac{a^x-1}{x}$  зажато между  $\ln a$  и  $\frac{\ln a}{1-x\ln a} \xrightarrow[x \to 0]{} \ln a$ .

# Степенная функция

**Определение 3.18.** Степенная функция:  $x^p := \exp(p \ln x) : (0, +\infty) \to \mathbb{R}$ , когда  $p \in \mathbb{R}$ . Функция непрерывна и, если  $p \neq 0$ , то строго монотонная.

Теорема 3.22.

$$\lim_{x \to 0} \frac{(1+x)^p - 1}{x} = p.$$

Доказательство.

$$(1+x)^p=\exp(p\ln(1+x))\geqslant 1+p\ln(1+x)$$
 
$$(1+x)^p=\frac{1}{(1+x)^{-p}}\leqslant \frac{1}{1-p\ln(1+x)}, \text{при }x\text{ близких к нулю}$$
 
$$p\ln(1+x)=(1+x)^p-1\leqslant \frac{1}{1-p\ln(1+x)}-1=\frac{p\ln(1+x)}{1-p\ln(1+x)}$$

Тогда  $\frac{(1+x)^p-1}{x}$  зажато между  $p\cdot\frac{\ln(1+x)}{x}\xrightarrow{\text{зам. предел}} p$  и  $p\cdot\frac{\ln(1+x)}{x}\cdot\frac{1}{1-p\ln(1+x)}\xrightarrow{\text{непрерывность}} p$ . Дальше два милиционера.

# 3.4. Сравнение функций

**Определение 3.19.**  $f,g: E \to \mathbb{R}.$   $x_0$  — предельная точка E. Если  $\exists \varphi: E \to \mathbb{R}: f = \varphi g$ , при  $x \in \dot{U}_{x_0} \cap E$  и (тут три разных случая):

1. Если  $\varphi$  — ограниченная:  $f = \mathcal{O}(g)$ .  $|f(x)| \leq C|g(x)|$  в окрестности  $x_0$ .

- 2. Если  $\varphi(x) \xrightarrow{x \to x_0} 0$ : f = o(g).  $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$
- 3. Если  $\varphi(x) \xrightarrow{x \to x_0} 1$ :  $f \sim g$ .  $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

**Определение 3.20.**  $f = \mathcal{O}(g)$  на множестве  $E \stackrel{\text{def}}{\Longleftrightarrow} \exists C > 0 \colon |f(x)| \leqslant C|g(x)| \ \forall x \in E.$ 

**Определение 3.21.**  $f = \mathcal{O}(g)$   $f \prec g$   $g \succ f$ . Если  $f = \mathcal{O}(g)$  и  $g = \mathcal{O}(f)$ , то  $f \asymp g \iff \exists C_1, C_2 > 0 \colon C_1 |g(x)| \leqslant |f(x)| \leqslant C_2 |g(x)|$ .

Замечание.  $g(x) \neq 0 \Rightarrow \varphi(x) = \frac{f(x)}{g(x)}$  и  $g(x) = 0 \Rightarrow f(x) = 0$  (иначе  $\varphi(x)$  не существует.)

**Свойства.** 1.  $\sim$  — отношение эквивалентности.

- 2.  $f_1 \sim g_1 \wedge f_2 \sim g_2 \Rightarrow f_1 f_2 \sim g_1 g_2$ .
- 3.  $f_2$  и  $g_2$  не обращаются в ноль в  $\dot{U}_{x_0} \Rightarrow f_1 \sim g_1 \wedge f_2 \sim g_2 \Rightarrow \frac{f_1}{f_2} \sim \frac{g_1}{g_2}$
- 4.  $f \sim g \iff f = g + o(g) \iff f = g + o(f)$ .

**Доказательство**. 1. Рефлективность  $f \sim f$ :  $\varphi = 1$ .

Симметричность  $f \sim g \Rightarrow g \sim f$   $f \sim g \Rightarrow f = \varphi g \Rightarrow g = \frac{1}{\varphi} f$ , где  $\lim_{x \to x_0} \varphi(x) = 1 \Rightarrow \lim_{x \to x_0} \frac{1}{\varphi(x)} = 1$ .

Транзитивность:  $f \sim g \wedge g \sim h \Rightarrow f \sim h$ .  $f = \varphi_1 g \wedge g = \varphi_2 h \Rightarrow f = \varphi_1 \varphi_2 h$ . И еще пределы (очевидно).

- 2.  $f_i \sim g_i \Rightarrow f_i = \varphi_i g_i$ , и  $\lim_{x \to x_0} \varphi_i = 1$ . Можно перемножить  $\varphi_i$ , все будет ок.
- 3.  $\frac{f_1}{f_2} = \frac{\varphi_1}{\varphi_2} \frac{g_1}{g_2}$ .
- 4.  $f \sim g \iff f = \varphi g \iff f = g + (\varphi 1)g$ . Так как  $\varphi \to 1 \Rightarrow \varphi 1 \to 0$ .

**Свойства.** 6.  $f = o(g) \Rightarrow f = \mathcal{O}(g)$  в точке  $x_0$ .  $f \sim g \Rightarrow f = \mathcal{O}(g)$  в точке  $x_0$ . Что тут произошло — непонятно.

- 7.  $f \cdot o(g) = o(fg)$
- 8. o(f) + o(f) = o(f) и O(f) + O(f) = O(f).
- 9.  $\lim_{x \to x_0} f(x) = a \iff f(x) = a + o(1)$

**Доказательство**. 6.  $f=o(g)\Rightarrow f=\varphi g$ , где  $\lim_{x\to x_0}\varphi=0$ . Для  $\sim\lim_{x\to x_0}\varphi=1\Rightarrow \varphi$  ограничена в окрестности.

- 7.  $h = f \cdot o(g) \iff h = f \varphi g$ , где  $\lim_{x \to x_0} \varphi = 0 \iff h = \varphi f g \iff h = o(fg)$ .
- 8.  $g=o(f), h=o(f)\Rightarrow g+h=o(f).$   $g=\varphi f, h=\psi f,$  Где  $\lim_{x\to x_0}\varphi=\lim_{x\to x_0}\psi=0\Rightarrow g+h=(\varphi+\psi)f$  и предел =0.

$$g = \mathcal{O}(f) \Rightarrow |g| \leqslant C|f| \land h = \mathcal{O}(f) \Rightarrow |h| \leqslant C'|f| \Rightarrow |g+h| \leqslant |g| + |h| \leqslant (C+C')|F|.$$

9. f(x) = a + o(1), где o(1) — что-то, стремящееся к 0.  $\lim_{x \to x_0} (f(x) - a) = 0 \iff \lim_{x \to x_0} f(x) = a$ 

**Пример.**  $\sin x \sim x, \ln(1+x) \sim x, \operatorname{tg} x \sim x$  при  $x \to 0$ .

**Пример.**  $\sin x = x + o(1)$ .

$$\ln(1+x) = x + o(1)$$

$$tg x = x + o(x)$$

$$\frac{(1+x)^p-1}{x} \to p \iff \frac{(1+x)^p-1}{x} = p + o(1) = (1+x)^p = 1 + px + o(1)$$

$$\frac{(1+x)^p - 1}{x} \to p \iff \frac{(1+x)^p - 1}{x} = p + o(1) = (1+x)^p = 1 + px + o(1)$$
$$\frac{a^x - 1}{x} \to \ln a \iff \frac{a^x - 1}{x} = \ln a + o(1) \iff a^x = 1 + x \ln a + o(x).$$

$$\frac{1-\cos x}{x^2} = \frac{2\sin^2\frac{x}{2}}{x^2} \sim \frac{2\left(\frac{x}{2}\right)^2}{x^2} = \frac{1}{2}.$$
 Получается, что  $\frac{1-\cos x}{x^2} = \frac{1}{2} + o(1).$  А значит  $1-\cos x = \frac{x^2}{2} + o(x^2) \iff \cos x = 1 - \frac{x^2}{2} + o(x^2).$ 

# 4. Дифференциальное исчисление

# 4.1. Дифференцируемость и производная

**Определение 4.1.**  $f: \langle a, b \rangle \to \mathbb{R} \land x_0 \in \langle a, b \rangle$ .

f — дифференцируема в точке  $x_0$ , если существует такое  $k \in \mathbb{R}$ :  $f(x) = f(x_0) + k(x - x_0) + o(x - x_0)$  при  $x \to x_0$ . Можно думать, что  $\alpha(x) = o(x - x_0)$ , где  $\alpha \xrightarrow[x \to x_0]{x} 0$ .

**Определение 4.2.** Производная функции f в точке  $x_0 - \lim_{x \to x_0} = \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x)$ .

**Теорема 4.1** (Критерий дифференцируемости).  $f:\langle a,b\rangle\to\mathbb{R}, x_0\in\langle a,b\rangle$ . Следующие условия равносильны:

- 1. f дифференцируема в точке  $x_0$ .
- 2. f имеет в точке  $x_0$  конечную производную.
- 3.  $\exists \varphi \colon \langle a,b \rangle \to \mathbb{R} \colon f(x) f(x_0) = \varphi(x)(x-x_0)$  и  $\varphi$  непрерывна в точке  $x_0$ .

Причем, если выполнены эти условия, то  $k = f'(x_0) = \varphi(x_0)$ 

Доказательство. •  $1. \Rightarrow 2.f(x) = f(x_0) + k(x - x_0) + o(x - x_0) \Rightarrow \frac{f(x) - f(x_0)}{x - x_0} = \frac{k(x - x_0) + o(x - x_0)}{x - x_0} = k + o(1) \Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \Rightarrow f'(x_0) = k$ 

- 2.  $\Rightarrow$  3.  $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = f'(x_0) \in \mathbb{R}$ .  $\varphi(x) = \begin{cases} \frac{f(x) f(x_0)}{x x_0} & x \neq x_0 \\ f'(x_0) & x = x_0 \end{cases} \Rightarrow \varphi$  непрерывна в  $x_0$ .
- 3.  $\Rightarrow$  1.  $f(x) f(x_0) = \varphi(x)(x x_0)$ , причем  $\lim_{x \to x_0} \varphi(x) = \varphi(x_0) \Rightarrow f(x) = f(x_0) + \varphi(x_0)(x x_0) + (\varphi(x) \varphi(x_0))$ ??

 ${\it Onpedenehue}$  4.3. Бесконечная производная  $\lim_{x o x_0} rac{f(x) - f(x_0)}{x - x_0} = \pm \infty$ 

Пример.  $f(x) = \sqrt[3]{x}$ .  $f'(0) = \lim_{h\to 0} \frac{f(h)-f(0)}{h-0} = \lim_{h\to 0} \frac{\sqrt[3]{h}}{h} = \lim_{h\to 0} \frac{1}{\sqrt[3]{h^2}} = +\infty$ 

Определение 4.4.  $f'_+ := \lim_{x \to x_0+} \frac{f(x) - f(x_0)}{x - x_0} \ f'_- := \lim_{x \to x_0-} \frac{f(x) - f(x_0)}{x - x_0}$ 

Замечание. Существование  $f'(x_0) \iff$  существование  $f'_{\pm}(x_0)$  и их равенство.

Пример. f(x) = |x|.  $f'_{+}(x) = 1$ ,  $f'_{-}(x) = -1$ 

Определение 4.5. Касательная — предельное положение секущей.

**Пример.** Уравнение касательной. Пусть f дифференцируема в точке  $u \in \langle a, b \rangle$ .

$$y = f(u) + \frac{f(v) - f(u)}{v - u}(x - u)$$
.  $f'(u) = \lim_{v \to u} \frac{f(v) - f(u)}{v - u}$ . To есть  $y = f(u) + f'(u)(x - u)$ .

**Определение 4.6.** Дифференциал функции  $f(x_0 + h) = f(x_0) + k \cdot h + o(h)$  при  $h \to 0$ .  $f(x_0)$  — константа,  $k \cdot h$  — что-то линейное.

Дифференциал функции — линейное отображение k.

**Утверждение 4.2.** Если f дифференцируема в  $x_0$ , то f непрерывна в  $x_0$ .

Доказательство. 
$$f(x) = f(x_0) + \underbrace{k(x - x_0)}_{\to 0} + \underbrace{o(x - x_0)}_{\to 0} \xrightarrow{x \to x_0} f(x_0)$$

**Теорема 4.3** (Арифметические действия с дифференцируемыми функциями).  $f, gg: \langle a, b \rangle \to \mathbb{R}, x_0 \in \langle a, b \rangle, f, g$  — дифференцируемые в  $x_0$ . Тогда:

- 1.  $f \pm g$  дифференцируема в  $x_0$  и  $(f \pm g)' = f' \pm g'$
- 2.  $f \cdot g$  дифференцируема в  $x_0$  и  $(f \cdot g)' = f'g + fg'$
- 3. cf дифференцируема в  $x_0$  и (cf)' = cf'
- 4.  $\alpha f + \beta g$  дифференцируема в  $x_0$  и  $(\alpha f + \beta g)' = \alpha f' + \beta g'$
- 5. если  $g(x_0) \neq 0$ , то  $\frac{f}{g}$  дифференцируема в  $x_0$  и  $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$

#### Доказательство.

1. 
$$(f+g)'(x_0) = \lim_{x\to x_0} \frac{(f(x)+g(x))-(f(x_0)+g(x_0))}{x-x_0} = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} + \lim_{x\to x_0} \frac{g(x)-g(x_0)}{x-x_0} = f'(x_0) + g'(x_0)$$

2. 
$$(fg)'(x_0) = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0} \lim_{x \to x_0} f(x) \frac{g(x) - g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x)g(x)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x)g(x)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x)g(x)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x)g(x)}{$$

3. 
$$(cf)' = cf' + c'f = cf'$$

4. 
$$(\alpha f + \beta g)' = (\alpha f)' + (\beta g)' = \alpha f' + \beta g'$$

5. 
$$\left(\frac{f}{g}\right)' = (f' \cdot \frac{1}{g}) + f \cdot (\frac{1}{g})'.$$
  
 $\left(\frac{1}{g}\right)'(x_0) = \lim_{x \to x_0} \frac{\frac{1}{g(x)} - \frac{1}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{1}{g(x_0)g(x_0)} \frac{g(x_0) - g(x)}{x - x_0} = -\frac{g'(x_0)}{g(x_0)^2}.$ 

**Теорема 4.4** (Дифференцируемость композиции). Пусть  $f: \langle a, b \rangle \to \mathbb{R}, g: \langle c, d \rangle \to \langle a, g \rangle, x_0 \in \langle c, d \rangle, g$  дифференцируема в точке  $x_0, f$  дифференцируема в точке  $g(x_0)$ .

Тогда  $f \circ g$  дифференцируема в точке  $x_0$ , и  $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$ .

**Доказательство**. g дифференцируема в точке  $x_0 \Rightarrow g(x) - g(x_0) = \psi(x)(x - x_0)$ , где  $\psi$  — непрерывна в точке  $x_0$ . f дифференцируема в точке  $y_0 = g(x_0) \Rightarrow f(y) - f(y_0) = \varphi(y)(y - y_0)$ , где  $\varphi$  непрерывна в точке  $y_0$ .

Поставим 
$$y=g(x)$$
, получим  $f(g(x))-f(g(x_0))=\varphi(g(x))(g(x)-g(x_0))=\underbrace{\varphi(g(x))}\psi(x)(x-x_0)\Rightarrow$ 

$$f \circ g$$
 дифференцируема в точке  $x_0$  и  $(f \circ g)'(x_0) = \varphi(g(x_0))\psi(x_0) = f'(g(x_0))g'(x_0)$ 

**Теорема 4.5** (дифференцируемость обратной функции). Пусть  $f: \langle a, b \rangle \to \mathbb{R}$ , строго монотонная, непрерывна,  $x_0 \in \langle a, b \rangle$ , f дифференцируема в точке  $x_0$  и  $f'(x_0) \neq 0$ .

Тогда  $f^{-1}$  дифференцируема в точке  $y_0 = f(x_0)$  и  $(f^{-1})' = \frac{1}{f'(x_0)}$ .

Автор: Харитонцев-Беглов Сергей

**Доказательство**. f дифференцируема в  $x_0 \Rightarrow f(x) - f(x_0) = \varphi(x)(x - x_0)$ , где  $\varphi$  — непрерывна в точке  $x_0$ . Пусть y = f(x). Тогда предыдущее равенство можно написать как  $y - y_0 = \varphi(f^{-1}(y))(f^{-1}(y) - f^{-1}(y_0))$ .

 $\varphi(f^{-1}(y))$  непрерывна в точке  $y_0$  как композиция непрерывных и  $\varphi(f^{-1}(y_0)) = \varphi(x_0) = f'(x_0) \neq 0$ . Тогда  $\varphi(x) \neq 0$  в окрестности  $x_0$  и  $f^{-1}(y) - f^{-1}(y_0) = \frac{1}{\varphi(f^{-1}(y))}(y - y_0)$ 

$$f^{-1}(y_0) = \frac{1}{\varphi(f^{-1}(y_0))} = \frac{1}{\varphi(x_0)} = \frac{1}{f'(x_0)}$$

**C**nedcmeue.  $f^{-1}(y) = \frac{1}{f'(f^{-1}(u))}$ 

# 4.2. Таблица производных

1. 
$$c' = 0$$

2. 
$$(x^p)' = px^{p-1}, p \in \mathbb{R}, x > 0$$

3. 
$$(a^x)' = a^x \ln a, a > 0$$
  
 $(e^x)' = e^x$ 

4. 
$$(\log_a x)' = \frac{1}{x \ln a}, a > 0, a \neq 1$$
  
 $(\ln x)' = \frac{1}{x}$ 

5. 
$$(\sin x)' = \cos x$$

6. 
$$(\cos x)' = -\sin x$$

7. 
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$

8. 
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

9. 
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

10. 
$$(\arcsin x)' = -\frac{1}{\sqrt{1-x^2}}$$

11. 
$$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$$

12. 
$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$$

#### Доказательство. • Очевидно.

• 
$$(x^p)' = \lim_{h \to 0} \frac{(x+h)^p - x^p}{h} = x^p \lim_{h \to 0} \frac{(1+\frac{h}{x})^p - 1}{\frac{h}{x}} \frac{1}{x} = x^p \frac{p}{x} = px^{p-1}.$$

• 
$$(a^x)' = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = a^x \lim_{h \to 0} \frac{a^h - 1}{h} = a^x \ln a$$

• 
$$\log_a x$$
 — обратная к  $a^x$  функция  $f(x)=a^x$ , тогда  $(\log_a y)'=\frac{1}{f'(f^{-1}(y))}=\frac{1}{a^{f^{-1}(y)}\ln a}=\frac{1}{y\ln a}$ 

• 
$$(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cos h + \sin h \cos x - \sin x}{h} = \sin x \lim_{h \to 0} + \cos x \lim_{h \to 0} \frac{\sin h}{h} = \cos x \cdot 1 + \sin x \cdot 0$$

• Тоже самое.

• 
$$(\operatorname{tg} x)' = (\frac{\sin x}{\cos x})' = \frac{(\sin x)' \cos x - (\cos x)' \sin x}{\cos^2 x} = \frac{\cos x \cos x - (-\sin x) \sin x}{\cos^x} = \frac{1}{\cos^2 x}$$

- Тоже самое.
- $f(x) = \sin x$ .  $\arcsin'(y) = (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{f'(\arcsin y)} = \frac{1}{\cos(\arcsin y)} = \frac{1}{\sqrt{1-\sin^2(\arcsin y)}} = \frac{1}{\sqrt{1-\cos^2(\arcsin y$
- $\arccos x = \frac{\pi}{2} \arcsin x$ .
- $f(x) = \operatorname{tg} x$ ,  $\operatorname{arctg} : \mathbb{R} \to \left(-\frac{\pi}{2}; \frac{pi}{2}\right)$ .  $(\operatorname{arctg})'(y) = (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{f'(\operatorname{arctg} y)} = \frac{1}{\frac{1}{\cos^2(\operatorname{arctg} y)}} = \cos^2(\operatorname{arctg} y) = \frac{1}{1 + \operatorname{tg}^2(\operatorname{arctg} y)} = \frac{1}{1 + \operatorname{tg}^2}$ ,  $\operatorname{tak} \operatorname{kak} \frac{1}{\cos^2 x} = 1 + \operatorname{tg}^2 \Rightarrow \cos^2 x = \frac{1}{1 + \operatorname{tg}^2 x}$

### 4.3. Теоремы о среднем

**Теорема 4.6** (Теорема Ферма).  $f: \langle a, b \rangle \to \mathbb{R}, x_0 \in (a, b), f$  — дифференцируема в точке  $x_0$ .  $f(x_0) = \max_{x \in \langle a, b \rangle} f(x) \vee f(x_0) = \min_{x \in \langle a, b \rangle} f(x) \Rightarrow f'(x_0) = 0$ 

Доказательство. Пусть  $f(x_0) = \max_{x \in \langle a, b \rangle} f(x)$ . Тогда  $f'(x_0) = f'_+(x_0) = \lim_{x \to x_0 +} \underbrace{\frac{\int_{0}^{\infty} f(x) - f(x_0)}{\int_{0}^{\infty} f(x) - f(x_0)}}_{>0} \le 0$ .

Посмотрим на 
$$f'(x_0) = f'_-(x_0) = \lim_{x \to x_0 -} \underbrace{\frac{f(x) - f(x_0)}{\underbrace{x - x_0}}}_{\leq 0} \geqslant 0.$$

Значит, что 
$$f'(x_0) \le 0$$
 и  $f'(x_0) \ge 0 \Rightarrow f'(x_0) = 0$ .

**Пример.** У f(x) = x на отрезке [0, 1] максимум в 1, минимум в 0, но производная на концах 1.

**Теорема 4.7** (Теорема Ролля).  $f:[a,b]\to\mathbb{R}$  непрерывна во всех точках и дифференцируема на (a,b). Если f(a)=f(b), то  $\exists\colon c\in(a,bf'(c)=0$ 

**Доказательство**. f непрерывна на  $[a,b] \xrightarrow{\text{теорема}} f$  достигает наибольшего и наименьшего значения.

Пусть  $f(p)=\min, f(q)=\max$ . Если p и q — концы отрезка, то  $\max=\min\Rightarrow f=\mathrm{const}\Rightarrow f'=0$  во всех точках.

А если же одна из этих точек не является концом отрезка, то по теорема  $\Phi$ ерма f' в этой точке равна 0.

Замечание. Геометрический смысл теоремы Ферма: в точках min, max касательная горизонтальна.

Геометрический смысл теоремы Ролля: если значения на концах равны, то можно провести горизонтальную касательную

**Теорема 4.8** (Лагранжа, Формула конечных приращений).  $f:[a,b] \to \mathbb{R}$  непрерывна на [a,b], дифференцируема на (a,b). Тогда  $\exists c \in (a,b) : f(b) - f(a) = f'(c)(b-a)$ 

**Доказательство**. g(x) = f(x) - kx. Подберем k так, что g(a) = g(b).  $f(a) - ka = g(a) = g(b) = f(b) - kb \Rightarrow k = \frac{f(b) - f(a)}{b - a}$ .

Применим теорему Ролля к функции g(x).  $\exists c \in (a,b): g'(c) = 0 \iff 0 = g'(c) = f'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$  и умножим на b - a.

Замечание.  $\frac{f(b)-f(a)}{b-a}$  — угловой коэффициент секущей, f'(c) — угловой коэффициент касательной в точке c. В некоторой точке касательная параллельная секущей.

**Теорема 4.9** (Теорема Коши).  $f, g: [a, b] \to \mathbb{R}$  непрерывны на [a, b], дифференцируемы на (a, b),  $g'(x) \neq 0 \ \forall x \in (a, b)$ . Тогда  $\exists c \in (a, b) \colon \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$ 

**Доказательство**. h(x) := f(x) - kg(x). Подберем k так, что h(a) = h(b).

 $f(a) - kg(a) = h(a) = h(b) = f(b) - kg(b) \Rightarrow k = \frac{f(b) - f(a)}{g(b) - g(a)}$  (по Роллю у нас  $g'(x) \neq 0$ , а значит в концах значения точно не равны).

по т. Ролля для 
$$h$$
 найдем  $c \in (a,b)$ :  $h'(c) = 0$ . Тогда  $h'(c) = f'(c) - kg'(c) \Rightarrow k = \frac{f'(c)}{g'(c)}$ .

Замечание. Геометрический смысл. g(t), f(t)) координаты точки в момент времени t. Тогда k — угловой коэффициент секущей. (f'(t), g'(t)) — вектор скорости в момент времени t. Тогда  $\frac{f'(t)}{g'(t)}$  — угловой коэффициент касательной.

**Определение 4.7.**  $f: E \to \mathbb{R}$  — липшивеца функция с константной M, если  $\forall x, y \in E: |f(x) - f(y)| \leq M|x-y|$ .

#### Следствие Следствия теоремы Лагранжа.

- 1.  $f:\langle a,b\rangle\to\mathbb{R}$  непрерывна на  $\langle a,b\rangle$ , дифференцируема на (a,b) и  $|f'(x)|\leqslant M\ \forall x\in(a,b)$ . Тогда  $|f(x)-f(y)|\leqslant M|x-y|\ \forall x,y\in\langle a,b\rangle$
- 2.  $f: \langle a, b \rangle \to \mathbb{R}$  непрерывна на  $\langle a, b \rangle$ , дифференцируема на (a, b). Если  $f'(x) = 0 \ \forall x \in (a, b) \Rightarrow f = \text{const.}$
- 3.  $f:\langle a,b\rangle\to\mathbb{R}$  непрерывна на  $\langle a,b\rangle$ , дифференцируема на  $(a,b),\ f'(x)>0\ \forall x\in(a,b)\Rightarrow f$  строго возрастает.
- 4.  $f: \langle a, b \rangle \to \mathbb{R}$  непрерывна на  $\langle a, b \rangle$ , дифференцируема на  $(a, b), f'(x) \geqslant 0 \ \forall x \in (a, b) \Rightarrow f$  нестрого возрастает.
- 5.  $f:\langle a,b\rangle\to\mathbb{R}$  непрерывна на  $\langle a,b\rangle$ , дифференцируема на  $(a,b),\ f'(x)<0\ \forall x\in(a,b)\Rightarrow f$  строго убывает.
- 6.  $f:\langle a,b\rangle\to\mathbb{R}$  непрерывна на  $\langle a,b\rangle$ , дифференцируема на  $(a,b),\ f'(x)\leqslant 0\ \forall x\in(a,b)\Rightarrow f$  нестрого убывает.

#### Доказательство.

- 1.  $[x,y] \subset \langle a,b \rangle$ . Применим теорему Лагранжа к [x,y]. Тогда  $\exists c \in (x,y) \subset (a,b) \colon f(y) f(x) = f'(c)(y-x) \Rightarrow |f(y)-f(x)| = |f'(c)| \cdot |y-x| \leqslant M|y-x|$
- 2. Аналогично:  $f(y) f(x) = f'(c)(y x) = 0, y x \neq 0.$
- 3. Напишем Лагранжа для  $[x,y] \subset \langle a,b \rangle, (x,y) \subset (a,b).$  Тогда  $\exists c \in (a,b): f(y)-f(x)=f'(c)(y-c),$  что  $>0 \iff f(y)>f(x).$
- 4. Аналогично.
- 5. Аналогично.
- 6. Аналогично.

**Теорема 4.10** (Теорема Дарбу).  $f:[a,b] \to \mathbb{R}$  дифференцируема во всех точках. Пусть C лежит между f'(a) и f'(b). Тогда найдется  $c \in (a,b)$ , такая что f'(c) = C.

Доказательство. Пусть f'(a) < 0 < f'(b). Покажем, что  $\exists c \in (a,b) : f'(c) = 0$ , f непрерывна на [a,b]. По теореме Вейерштрасса f достигает min пусть это в точке c. Покажем, что  $c \neq a$  и  $c \neq b$ .

От противного: пусть  $f(a) = \min$ . Тогда  $f'(a) = f'_+(a) = \lim_{\substack{x = a \ x-a}} \frac{f(x) - f(a)}{x-a}$ . Заметим, что числитель  $\geq 0$  и знаменатель > 0, тогда по предельному переходу предел  $\geq 0$ . Противоречие.

Пусть  $f(b) = \min$ . Тогда  $f'(b) = f'_{-}(b) = \lim_{x \to b^{-}} \frac{f(x) - f(b)}{x - b}$ . Заметим, что числитель  $\geqslant 0$ , а знаменатель < 0. Противоречие.

Следовательно,  $c \in (a, b)$ . Тогда по теореме Ферма f'(c) = 0. Общий случай g(x) := f(x) - C(x).  $g'(x)=f'(x)-C\Rightarrow g'(a)$  и g'(b) разных знаков, следовательно  $\exists c\in(a,b)\colon g'(c)f'(c)-C=0\Rightarrow$ 

*Следствие.*  $f:\langle a,b\rangle\to\mathbb{R}$ , дифференцируема на  $\langle a,b\rangle,f'(x)\neq 0\ \forall x\in\langle a,b\rangle$ . Тогда f строго монотонна.

Доказательство. Очев.

**Теорема 4.11** (Правило Лопиталя).  $-\infty \leqslant a < b \leqslant +\infty$ , f, g дифференцируемы на (a, b).  $g'(x) \neq 0 \ \forall x \in (a,b)$  и  $\lim_{x \to a+} f(x) = \lim_{x \to a+} = 0.$  $\lim_{x \to a+} \frac{f'(x)}{g'(x)} = l \in \overline{R} \Rightarrow \lim_{x \to a+} \frac{f(x)}{g(x)} = l.$ 

**Доказательство**. Проверяем по Гейне. Возьмем  $x_n \to a$ , причем убывающую.  $\frac{f(x_n)}{g(x_n)} \stackrel{?}{\to} l$ . Посчитаем  $\lim_{n\to\infty}\frac{f(x_{n+1})-f(x_n)}{g(x_{n+1})-g(x_n)}=\lim_{n\to+\infty}\frac{f'(c_n)}{g'(c_n)}$ , так как  $\frac{f'(c_n)}{g'(c_n)}$ , где  $c_n\to(x_{n+1},x_n)$ . Последовательность  $c_n$  стремится к a справа. Тогда по Штольцу  $\lim\frac{f(x_n)}{g(x_n)}=l$ . Надо было проверить, что  $g(x_n)$  строго монотонна. Это из последнего следствия и монотонности  $x_n$ .

**Теорема 4.12** (Второе правило Лопиталя).  $-\infty \leqslant a < b \leqslant +\infty$ . f,g дифференцируемы на (a,b).  $\forall x \in (a,b) : g'(x) \neq 0, \lim_{x \to a+} g(x) = +\infty. \lim_{x \to a+} \frac{f'(x)}{g'(x)} = l \to \overline{R} \Rightarrow \lim_{x \to a+} \frac{f(x)}{g(x)} = l$ 

Пример.  $\lim_{x\to+\infty}\frac{\ln x}{x^p}=0$  при p>0.

Подставляем в Лопиталя  $f(x) = \ln x, g(x) = x^p, f'(x) = \frac{1}{x}, g'(x) = px^{p-1}.$   $\lim_{x \to +infty} \frac{f'(x)}{g'(x)} = \frac{1}{x^p}$  $\lim_{x \to +\infty} \frac{\frac{1}{x}}{nx^{p-1}} = \lim_{x \to +\infty} \frac{1}{n} \frac{1}{x^p} = 0$ 

Пример.  $\lim_{x\to +infty} \frac{x^p}{a^x} = a^x$ .  $f'(x) = px^{-1}, g'(x) = a^x \ln a$ .

 $\lim_{x\to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x\to +\infty} \frac{px^{p-1}}{a^x \ln a} = \frac{p}{\ln a} \lim_{x\to +infty} \frac{x^{p-1}}{a^x} = 0$ , при  $p\leqslant 1$ .

Пример.  $\lim_{x\to 0+} x^x = \lim_{x\to 0+} e^{x\ln x} = e^{\lim_{x\to 0+} x\ln x} = e^0 = 1.$ 

 $\ln x^x = x \ln x, \lim_{x \to 0+} x \ln x = \lim_{x \to +} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0+} \frac{(\ln x)'}{(\frac{1}{x})'} = \lim_{x \to 0+} \frac{\frac{1}{x}}{-\frac{1}{x}} = \lim_{x \to 0+} (-x) = 0$ 

# 4.4. Производные высших порядков

**Определение 4.8.**  $f:\langle a,b\rangle\to\mathbb{R},\,x_0\in\langle a,b\rangle,\,f$  – дифференцируема в окрестности  $x_0$ . И если f'дифференцируема в  $x_0$ , то f дважды дифференцируема в  $x_0$ .

То есть 
$$f''(x_0) := (f'(x))'|_{x=x_0}$$

**Определение 4.9.** f дважды дифференцируема в окрестности  $x_0$ . Если f'' дифференцируема в точке  $x_0$ , то f трижды дифференцируема в точке  $x_0$ .

**Определение 4.10.**  $f \in C(E) \iff f : E \to \mathbb{R} \land$  непрерывна во всех точках.

**Определение 4.11.**  $f \in C^1(\langle a, b \rangle)$   $f : \langle a, b \rangle \to \mathbb{R}$ , дифференцируема во всех точках и f' непрерывна.

Будем называть такое свойство «непрерывной дифференцируемостью».

**Определение 4.12.**  $f \in C^n(\langle a,b \rangle)$ .  $f \colon \langle a,b \rangle \to \mathbb{R}$  n раз дифференцируема и  $f^{(n)}$  непрерывна.

**Определение 4.13.**  $f \in C^{\infty}(\langle a, b \rangle)$  означает, что  $f \in C^n(\langle a, b \rangle) \ \forall n \in \mathbb{N}$ .

Замечание.  $C^n(\langle a,b\rangle) \supseteq C^{n+1}(\langle a,b\rangle) \supset C^{\infty}(\langle a,b\rangle)$ 

**Пример.**  $f_n(x) := x^{n+\frac{1}{3}}$ . Покажем, что  $f_n \in C^n(\mathbb{R}), f_n \notin C^{n+1}(\mathbb{R})$ .

Тогда  $f^{(n)}(x) = (n + \frac{1}{3}(n - \frac{2}{3}) \dots \frac{4}{3}) =: cx^{\frac{1}{3}}$ . Заметим, что  $f^{(n+1)}$  в пределе равна  $\frac{1}{\sqrt[3]{x}}$ , что в предел бесконечность.

**Теорема 4.13** (Арифметические действия с n-ми производными).  $f, g : \langle a, b \rangle \to \mathbb{R}, x_0 \in \langle a, b \rangle, f, g$  n раз дифференцируема в  $x_0$ . Тогда:

- 1.  $\alpha f + \beta g$  n раз дифференцируема в точке  $x_0$  и  $(\alpha f + \beta g)^{(n)} = \alpha f^{(n)} + \beta g^{(n)}$
- 2.  $fg\ n$  раз дифференцируема в точке раз и  $(fg)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(n)} g^{(n-k)}$ .
- 3.  $f(\alpha x + \beta)^{(n)} = \alpha^n f^{(n)}(\alpha x + \beta)$
- 4. (Композиция: формула Фаа-Ди Бруно)

#### Доказательство.

- 1. Индукция по n.
- 2. Индукция по n. База n = 1. (fg)' = f'g + fg'.

Переход 
$$n \to n+1$$
.  $(fg)^{(n+1)} = ((fg)^{(n)})' = (\sum_{k=0}^n \binom{n}{k} (f^{(k)}g^{(n-k)})' = \sum_{k=0}^n \binom{n}{k} (f^{(k+1)}g^{(n-k)} + f^{(k)}g^{(n-k+1)}) = \sum_{k=0}^n \binom{n}{k} f^{(k+1)}g^{(n-k)} + \sum_{k=0}^n \binom{n}{k} f^{(k)}g^{(n-k+1)} = \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)}g^{(n-k+1)}.$ 

Последний переход обусловлен заменой j=k+1 в левой скобке, после чего получается  $\sum_{k=0}^{n+1} \binom{n}{k} + \binom{n}{k-1} f^{(k)} g^{(n-k+1)}$ 

3. Индукция по n. Очев.

**Пример.** 1.  $(x^p)^{(n)} = p(p-1)(p-2)\dots(p-n+1)x^{p-n}$ 

2. 
$$\left(\frac{1}{x}\right)^{(n)} = (-1)(-2)\dots(-n)x^{-1-n} = \frac{(-1)^n n!}{x^{n+1}}$$

3. 
$$(\ln x)^{(n)} = ((\ln x)')^{(n-1)} = (\frac{1}{x})^{(n-1)} = \frac{(-1)^{n-1}(n-1)!}{x^n}$$

4. 
$$a^x = ((a^x)')^{(n-1)} = (\ln a a^x)^{(n-1)} = \dots = (\ln a)^n a^x$$
  
 $(e^x)^{(n)} = e^x$ 

5. 
$$(\sin x)^{(n)} = \sin(x + \frac{\pi n}{2})$$
  
 $(\sin x)^{(n)} = ((\sin x)^{(n-1)})' = (\sin(x + \frac{\pi n}{2}))' = \sin(x + \frac{\pi (n-1)}{2} + \frac{\pi}{2}) = \sin(x + \frac{\pi n}{2})$ 

6. 
$$(\cos x)^{(n)} = \cos(x + \frac{\pi n}{2})$$

**Теорема 4.14** (формула Тейлора для многочленов). T — многочлен степени n. Тогда  $T(x) = \sum_{k=0}^n \frac{T^{(n)}(x_0)}{k!} (x-x)^k$ 

**Лемма.** 
$$f(x) = (x - x_0)^k \Rightarrow f^m(x_0) = \begin{cases} k! = m! & \text{если, } k = m \\ 0 & \text{иначе} \end{cases}$$

Доказательство леммы.  $f^{(m)}(x) = k(k-1)\dots(k-m+1)(x-x_0)^{k-m}$ .

Если k > m, то  $f^{(m)}(x_0) = 0$ 

Если k = m, то  $f^{(m)}(x_0) = k(k-1) \dots 1 = k!$ 

Если 
$$k < m$$
, то  $f^{(k)}(x) \equiv k!$  и  $f^{(k+1)}(x) \equiv 0$ 

Доказательство теоремы. Напишем разложение  $T(x) = \sum_{k=0}^{n} c_k (x - x_0)^k$ . (Пояснение:  $T(x) = \sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{n} a_k (x_0 + (x - x_0))^k$  и раскроем скобки).

Поймем, что  $c_k = \frac{T^{(k)}(x_0)}{k!}$ . Заметим, что  $T^{(n)}(x_0) = \sum_{k=0}^n (c_k(x-x_0)^k)^{(m)}|_{x=x_0} = m!$ .

То есть, у нас в i-ой производной остается только i-ый коэффициент, домноженный на i!  $\square$ 

**Определение 4.14.** Пусть f n раз дифференцируема в точке  $x_0$ . Многочлен Тейлора степени n  $T_{n,x_0}f(x) \coloneqq \sum_{k=0}^n \frac{f^{(k)}(x_0)}{K!}(x-x_0)^k$ .

$$R_{n,x_0}f(x) := f(x) - T_{n,x_0}f(x)$$

**Лемма.** g n раз дифференцируема в  $x_0$  и  $g(x_0) = g'(x_0) = \ldots = g^{(n)}(x_0) = 0$ .

Тогда  $g(x) = o((x - x_0)^n)$  при  $x \to x_0$ .

Доказательство.  $\lim_{x\to x_0} \frac{g(x)}{(x-x_0)^n} \stackrel{\text{Лопиталь}}{=} \lim_{x\to x_0} \frac{g'(x)}{n(x-x_0)^{n-1}} = \frac{g''(x)}{n(n-1)(x-x_0)^{n-2}} = \dots = \lim_{x\to x_0} \frac{g^{(n-1)}(x)}{n!(x-x_0)} = 0$ 

$$g^{(n-1)}$$
 — дифференцируема в  $x_0 \Rightarrow g^{(n-1)}(x) = g^{(n-1)}(x_0) + g^{(n)}(x_0)(x-x_0) + o(x-x_0) = o(x-x_0)$ 

**Теорема 4.15** (Формула Тейлора с остатком в форме Пеано). Пусть f n раз дифференцируема в точке  $x_0$ . Тогда  $f(x) = T_{n,x_0} f(x) + o((x-x_0)^n) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + o((x-x_0)^n)$ .

**Доказательство**.  $g(x) \coloneqq f(x) - T_{n,x_0} f(x)$ .  $g^{(m)}(x_0) = f^{(m)}(x_0) - (T_{n,x_0} f)^{(m)}(x_0) = f^{(m)} - f^{(m)}(x_0)$ , смотри теорему выше про Тейлора для многочлена.

Таким образом,  $g(x_0) = g'(x_0) = \ldots = g^n(x_0) = 0.$ 

По лемме 
$$g(x) = o((x - x_0)^n) \Rightarrow f(x) - T_{n,x_0} f(x) = o((x - x_0)^n).$$

**Следствие.** f n раз дифференцируема в точке  $x_0$   $f(x) = P(x) + o((x-x_0)^n)$  при  $x \to x_0$ , где P — многочлен степени  $\leq n$ . Тогда  $P(x) = T_{n,x_0}f(x)$ 

Доказательство.  $Q(x) := P(x) - T_{n,x_0} f(x) = o((x-x_0)^n)$  при  $x \to x_0$ .

 $Q(x) = \sum_{k=0}^n a_k (x-x_0)^k$  пусть  $a_m \neq 0$  — ненулевой коэффициент с наименьшим индексом  $\Rightarrow \frac{Q(x)}{(x-x_0)^m} = a_m + \sum_{k=m+1}^n a_k (x-x_0)^{k-m}$ . Левая часть стремится к нулю, справа второе слагаемое стремится к 0. Но значит и  $a_m$  должно быть нулю.

**Теорема 4.16** (Формула Тейлора с остатком в форме Лагранжа).  $f:\langle a,b\rangle\to\mathbb{R},\ x_0\in\langle a,b\rangle,$  f(n+1) раз дифференцируема на  $\langle a,b\rangle.$  Тогда  $\exists c$  между x и  $x_0$ , такой что  $f(x)=T_{n,x_0}f(x)+\frac{f^{n+1}(c)}{(n+1)!}(x-x_0)^{n+1}=\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k+\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$ 

**Доказательство**. Зафиксируем x и возьмем  $M \in \mathbb{R}$ , такой что  $f(x) = T_{n,x_0} f(x) + M(x - x_0)^{n-1}$ . Рассмотрим  $g(t) := f(t) - T_{n,x_0} f(t) - M(t - x_0)^{n+1}$ 

 $g^{(n+1)}(t)=f^{(n+1)}(t)-M(n+1)!$ , то есть надо доказать, что  $g^{(n+1)}(c)=0$ , в некоторой точке между x и  $x_0$ . Знаем, что g(x)=0,  $g(x_0)=g'(x_0)=\ldots=g^{(n)}(x_0)=0$ .  $g(x)=g(x_0)=0$   $\xrightarrow{\text{Ролль}}\exists x_1$  между x и  $x_0$ , такая что  $g'(x_1)=0$ .

$$g'(x_1)=g'(x_0)=0 \xrightarrow{\mathrm{Ролль}} \exists x_2$$
 между  $x_0$  и  $x_1$ , такая что  $g''(x_2)=0.$ 

И так далее до 
$$g^{(n)}(x_n)=g^{(n)}(x_0)=0 \xrightarrow{\text{Ролль}} \exists c \text{ между } x$$
 и  $x_0$ , такая что  $g^{(n+1)}(c)=0$ 

*Следствие.* Если  $|f^{(n+1)}(t)| \geqslant M \ \forall t \in (x_0, x), \text{ то } |R_{n, x_0} f(x)| \leqslant \frac{M(x - x_0)^{n+1}}{(n+1)!} = \mathcal{O}((x - x_0)^{n+1}).$ 

**Следствие.** Если  $|f^{(n)}(t)|\leqslant M\ \forall n\ \forall t\in(a,b),\ {
m To}\ T_{n,x_0}f(x)\xrightarrow{n\to\infty}f(x)$ 

Доказательство. 
$$|f(x) - T_{n,x_0}f(x)| = \left|\frac{f^{n+1}(c)}{(n+1)!}(x-x_0)^{n+1}\right| \leqslant M \frac{(x-x_0)^{n+1}}{(n+1)!} \to 0$$
. Так как  $x-x_0 = h, M \cdot \frac{h^{n+1}}{(n+1)!} \to 0$ .

Формулы Тейлора для элементарных функций. Везде  $x_0 = 0$ .

- $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$
- $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}).$
- $\cos x = 1 \frac{x^2}{2!} + \frac{x^5}{4!} \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}).$
- $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \dots + (-1)^{n-1} x^{\frac{n}{n}} + o(x^n)$
- $(1+x)^P = 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \dots + \frac{p(p-1)\dots(p-n+1)}{n!}x^n + o(x^n).$

Доказательство. • Для  $f(x) = \ln(1+x)$ .  $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k}$   $f^{(k)}(0) = ()-1)^{k-1}(k-1)!$  Тогда  $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} = \dots =$ .

• ???

Ряды Тейлора для  $e^x$ ,  $\sin x$ ,  $\cos x$ 

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \tag{3}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \tag{4}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \tag{5}$$

Доказательство.  $\sin x, \cos x$  удовлетворяют следствию 2.  $(\sin x)^{(n)} = \sin(x + \frac{\pi n}{2}) \Rightarrow |\sin^{(n)}(x)| \leqslant 1$ .  $|\cos^{(n)}(x)| \leqslant 1$ 

Следовательно,  $T_{n,0}f(x) \xrightarrow{n \to \infty} f(x)$ . А значит по определению ряда  $\sum_{k=0}^{\infty} \ldots = \sin x$ 

Рассмотрим  $f(x) = e^x$  на  $[a,b] \Rightarrow f^{(n)}(x) = e^x \leqslant e^b$ , тогда  $|f^{(n)}(x)| \leqslant e^b$ . Тогда по свойству ряда и соображениям выше, получаем, что сумма данного ряда равна  $e^x$ .

**Теорема 4.17.** e — иррационально.

Доказательство. Пусть  $e = \frac{m}{n}, \, n \geqslant 2$  (так как 2 < e < 3).

Напишем формулу Тейлора с остатком в форме Лагранжа для функции  $e^x$ , точки  $x_0=0$  и x=1:

$$e = e^1 = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{e^c}{(n+1)!}, \ 0 < c < 1$$

$$\underbrace{m(n-1)!}_{\text{целое число}} = \underbrace{n! + n! + \frac{n!}{2!} + \dots + \frac{n!}{n-1!} + \frac{n!}{n!}}_{\text{пелое число}} + \underbrace{\frac{e^c}{n+1}}_{\text{пелое число}}$$

Тогда получаем, что  $\frac{e^c}{n+1}$  — целое число. Но  $\frac{e^c}{n+1} > 0 \implies \frac{e^c}{n+1} \geqslant 1$ . А значит  $\frac{e^c}{n+1} \leqslant \frac{e}{2+1} = \frac{e}{3} < 1$ .

# 4.5. Экстремумы функций

**Определение 4.15.**  $f: E \to \mathbb{R}$  и  $a \in E$ . a — точка локального минимума  $\iff \exists U(a): \forall x \in E \cap U \ f(a) \leqslant f(x)$ 

**Определение 4.16.** a — точка строгого локального минимума  $\iff \exists U(a): \forall x \in E \cap U \ x \neq a \implies f(a) < f(x).$ 

**Определение 4.17.**  $f: E \to \mathbb{R}$  и  $a \in E$ . a — точка локального максимума  $\iff \exists U(a): \forall x \in E \cap U \ f(a) \geqslant f(x)$ 

**Определение 4.18.** a — точка строгого локального максимума  $\iff \exists U(a): \forall x \in E \cap U \ x \neq a \implies f(a) > f(x).$ 

**Определение 4.19.** a — точка экстремума, если a — точка локального минимума/максимума.

**Определение 4.20.** a — точка строго экстремума, если a — точка локального  $\max/\min$ .

**Теорема 4.18** (необходимые условия экстремума).  $f:\langle a,b\rangle\to\mathbb{R}$  дифференцируема в  $x_0\in(a,b)$ . Тогда  $x_0$  — точка экстремума  $\implies f'(x_0)=0$ .

**Доказательство**. Возьмем какую-то окрестность  $x_0, x_0$  — точка локального минимума. Причем окрестность такая, что  $f(x_0) \leq f(x) \ \forall x \in U$ .

Тогда, рассмотрим f на U.  $x_0$  — точка минимума этой функции, по теореме Ферма  $f'(x_0) = 0$ .

Замечание. Обратное неверно:  $f(x) = x^3$ ,  $f'(x) = 3x^2$ , f'(0) = 0, но 0 — не точка экстремума.

Замечание. Экстремум может быть в точке, где нет дифференцируемости. Пример: f(x) = |x|.

Замечание. Экстремум может быть в концах отрезка.

**Теорема 4.19** (Достаточное условия экстремума в терминах первой производной).  $x_0 \in (a, b)$ ,  $f: \langle a, b \rangle \to \mathbb{R}$ , f непрерывна в  $x_0$ , дифференцируема на  $(x_0 - \delta, x_0) \cap (x_0, x_0 + \delta)$ . Тогда:

- 1. f'(x) < 0 на  $(x_0 \delta, x_0)$  и f'(x) > 0 на  $(x_0, x_0 + \delta)$ , то  $x_0$  строгий минимум.
- 2. f'(x) > 0 на  $(x_0 \delta, x_0)$  и f'(x) < 0 на  $(x_0, x_0 + \delta)$ , то  $x_0$  строгий максимум.

**Доказательство.** На  $[x_0 - \frac{\delta}{2}, x_0]$  f непрерывна, дифференцируема внутри и  $f' < 0 \xrightarrow{\text{сл. т. Лагранжа}} f$  строго убывает на  $[x_0 - \frac{\delta}{2}, x_0] \implies f(x_0) < f(x) \ \forall [x_0 - \frac{\delta}{2}, x_0).$ 

На 
$$[x_0, x_0 + \frac{\delta}{2}]$$
  $f$  непрерывна, дифференцируема внутри и  $f'>0 \implies f$  строго возрастает на  $[x_0, x_0 + \frac{\delta}{2}] \implies f(x_0) < f(x) \ \forall x \in (x_0, x_0 + \frac{\delta}{2}]$ 

**Теорема 4.20** (достаточные условия экстремума в терминах второй производной).  $f: \langle a, b \rangle \to \mathbb{R}$ .  $x_0 \in (a, b), f$  дважды дифференцируема в  $x_0$  и  $f'(x_0) = 0$ . Тогда:

- 1.  $f''(x_0) > 0$ , то  $x_0$  строгий минимум.
- 2.  $f''(x_0) < 0$ , то  $x_0$  строгий максимум.

**Теорема 4.21** (Достаточные условия экстремума в терминах n-ой производной).  $f:\langle a,b\rangle\to\mathbb{R}.$   $x_0\in(a,b), f$  n раз дифференцируема в  $x_0$  и  $f'(x_0)=f''(x_0)=\ldots=f^{(n-1)}(x_0)=0.$  Тогда:

- 1. n четно и  $f^{(n)}(x_0) > 0 \Rightarrow x_0$  строгий минимум.
- 2. n четно и  $f^{(n)}(x_0) < 0 \Rightarrow x_0$  строгий максимум.
- 3. n нечетно и  $f^{n}(x_{0}) \neq 0 \Rightarrow x_{0}$  не точка экстремума.

Доказательство. 
$$f(x) = f(x_0) + \underbrace{\sum_{k=1}^{n-1} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k}_{=0} + \underbrace{\frac{f^{(n)}(x_0)}{n!}}_{n!} + o((x - x_0)^n)$$

Тогда 
$$f(x) - f(x_0) = (x - x_0)^n \left(\frac{f^{(n)}(x_0)}{n!} + o(1)\right).$$

Тогда в 1:  $(x-x_0)^n > 0$  при  $x \neq x_0$ .  $\frac{f^{(n)}(x_0)}{n!} > 0 \implies$  по теореме о стабилизации знака скобка  $(\ldots) > 0$  при x близких к  $x_0 \Rightarrow x_0$  — строгий минимум (разность  $f(x) - f(x_0) > 0$ ).

В 3: наоборот стабилизация знака.

# 4.6. Выпуклые функции

**Определение 4.21.**  $f:\langle a,b\rangle\to\mathbb{R}.$  f — выпуклая, если  $\forall x,y\in\langle a,\rangle\forall\lambda\in(0,1)\colon f(\lambda x+(1-\lambda)y)\leqslant\lambda f(x)+(1-\lambda)f(y).$ 

Понятно, что такое строго выпуклая, вогнутая (выпуклая вниз), строго вогнутая.

**Пример.**  $x^2$  — выпуклая функция.  $f(\lambda x + (1 - \lambda)y) \leqslant \lambda f(x) + (1 - \lambda)f(y) = \lambda x^2 + (1 - \lambda)y^2$ .  $(\lambda x + (1 - \lambda)y)^2 = \lambda^2 x^2 + 2\lambda(1 - \lambda)xy + (1 - \lambda)^2 y^2$ .

Откуда получаем  $2xy \leqslant x^2 + y^2$ .

#### Геометрический смысл определения

Возьмем  $z=\lambda x+(1-\lambda)y<\lambda y+(1-\lambda)y=y$  и  $z>\lambda x+(1-\lambda)x=x$ . Тогда получаем, что  $\lambda(x-y)=z-y\Rightarrow \frac{y-z}{y-x}>0$ . Теперь посмотрим на прямую через точки x,y. Тогда получаем, что точка (s,t) на прямой удовлетворяет уравнению  $\frac{f(y)-f(x)}{y-x}(s-x)+f(x)=t$ . Тогда подставим s=z и получим значение функции из определения.

А значит геом. смысл — любая хорда выше, чем точка.

**Определение 4.22.** Пусть  $u < v < w; u, v, w \in \langle a, b \rangle$   $\lambda = \frac{y-z}{y-x} = \frac{w-v}{w-u},$  тогда  $1 - \lambda = \frac{v-u}{w-u}.$ 

$$f(v) \leqslant \frac{w-v}{w-u}f(u) + \frac{v-u}{w-u}f(w).$$

Тогда 
$$(w-u)f(v) \leq (w-v)f(u) + (v-u)f(w)$$

**Свойства.** 1. f, g — выпуклые, то f + g — выпуклые.

- 2. f выпуклая,  $\alpha > 0$ , то  $\alpha f$  выпуклая.
- 3. f выпуклая, -f вогнутая.

**Лемма** (О трех хордах).  $f: \langle a, b \rangle \to \mathbb{R}$  выпуклая,  $u < v < w, u, v, w \in \langle a, b \rangle$ .

Тогда 
$$\frac{f(v)-f(u)}{v-u}\leqslant \frac{f(w)-f(u)}{w-u}\leqslant \frac{f(w)-f(u)}{w-v}.$$

**Доказательство**. Докажем первое неравенство:  $\frac{f(v)-f(u)}{v-u} \leqslant \frac{f(w)-f(u)}{w-u} \iff (w-u)(f(v)-f(u)) \leqslant (v-u)(f(w)-f(u)) \leqslant \underbrace{((w-u)-(v-u))}_{=w-v} f(u) + (v-u)f(w).$ 

Второе/третье аналогично.

**Теорема 4.22.**  $f:\langle a,b\rangle\to\mathbb{R}$  выпуклая. Тогда  $\forall x\in(a,b)$  существуют конченые  $f'_\pm(x)$  и  $f'_-(x)\leqslant f'_+(x)$ 

**Доказательство**. Возьмем три точки x < v < w.  $\frac{f(v) - f(x)}{v - x}$  возрастает по v.  $\frac{f(w) - f(x)}{w - x} \geqslant \frac{f(v) - f(x)}{v - x}$  из леммы о трех хордах. Значит дробь  $\frac{f(v) - f(x)}{v - x}$  возрастает по v и ограничена снизу  $\implies$  существует конечный  $\lim_{v \to x+} \frac{f(v) - f(x)}{v - x} \geqslant \frac{f(u) - f(x)}{u - x}$ .

$$\frac{f(u)-f(x)}{u-x}$$
 возрастает по  $u$  и ограничена сверху  $f'_+(x) \implies f'_-(x) \lim_{u \to x-} \frac{f(u)-f(x)}{u-x} \leqslant f'_+(x)$ 

**Следствие.**  $f: \langle a, b \rangle \to \mathbb{R}$  выпуклая  $\implies f$  непрерывна (a, b)

**Доказательство**. существует конечная  $f'_{+}(x) \Rightarrow f$  непрерывна в точке x справа  $+ \exists f'_{-}(x) \implies f$  непрерывна в x слева  $\implies f$  непрерывна в  $x \in (a,b)$ .

Замечание. Про концы ничего неизвестно.

**Теорема 4.23.**  $f: \langle a, b \rangle \to \mathbb{R}$  дифференцируемая. Тогда f — выпуклая  $\iff f(x) \geqslant f(x_0) + f'(x_0)(x - x_0) \ \forall x, x_0 \in \langle a, b \rangle$ 

**Доказательство.** В сторону  $\Leftarrow$ :  $u < v < w, x_0 = v$ . Тогда  $f(u) \ge f(v) + f'(u)(v - u), f(w) \ge f(u) + f'(u)(v - w)$ . Первое домножаем на (w - v), второе на (v - u)

В сторону  $\Rightarrow$ . Пусть  $x>x_0$ . Надо доказать, что  $\frac{f(x)-f(x_0)}{x-x_0}\geqslant f'(x_0)=\lim_{y\to x_0}\frac{f(y)-f(x_0)}{y-x_0}$ 

Можно считать, что  $x_0 < y < x$ . Тогда  $\frac{f(x) - f(x_0)}{x - x_0} \geqslant \frac{f(y) - f(x_0)}{y - x_0} \rightarrow f'(x_0)$ .

**Теорема 4.24** (Критерий выпуклости). 1.  $f: \langle a, b \rangle \to \mathbb{R}$  непрерывна на  $\langle a, b \rangle$  и дифференцируема на (a, b). f (строго) выпукла  $\iff f'$  строго монотонно возрастает на (a, b).

- 2.  $f:\langle a,b\rangle\to\mathbb{R}$  непрерывна на  $\langle a,b\rangle$  и дважды дифференцируема на (a,b). f выпукла  $\Longleftrightarrow$   $f''\geqslant 0$  на (a,b).
- **Доказательство**. 1.  $\Rightarrow$ . u < v:  $f'(u) \leqslant \frac{f(v) f(u)}{v u} \leqslant f'(v)$  по предыдущей теореме f'(x) возрастает.

 $\Leftarrow u < v < w \ \frac{f(v) - f(u)}{v - u} \leqslant \frac{f(w) - f(v)}{w - v}$  по теореме Лагранжа левое равно  $f'(\xi)$ , правое —  $f'(\eta)$ . Поскольку f' возрастает, то все верно.

2. f — выпуклая  $\iff f'$  возрастает  $(f')' \geqslant 0$ .

**Пример.** 1.  $a^x$  выпуклая,  $a \neq 1$ .  $f(x) = a^x \implies f'(x) = a^x \ln a \implies f''(x) = a^x (\ln a)^2 \implies$  строго выпукла.

 $2. \ln x$  строго вогнута.

$$f(x) \ln x \implies f'(x) = \frac{1}{x} \implies f''(x) = -\frac{1}{x^2} < 0 \implies$$
 строго вогнутая.

3.  $x^p$ , при x>0. p>1 — строгая выпуклость, p<0 строгая выпуклость, если 0< p<1 строгая вогнутость.

**Теорема 4.25** (Неравенство Йенсена). Пусть  $f:\langle a,b\rangle\to\mathbb{R}$  выпуклая функция,  $x_1,x_2,\ldots,x_n\in\langle a,b\rangle$  и  $\lambda_1,\lambda_2,\ldots,\lambda_n\geqslant 0$ , причем их сумма равна 1. Тогда:

$$f(\sum_{k=1}^{n} \lambda_k x_k) \leqslant \sum_{k=1}^{n} f(x_k).$$

**Замечание**. Если  $\lambda_k > 0$ ,  $x_k$  различны и f строго выпуклая, то знак строгий.

**Доказательство**. Индукция по n. База n=2:  $f(\lambda_1 x_1 + \underbrace{\lambda_2}_{1-\lambda_1} x_2) \leqslant \lambda_1 f(x_1) + \underbrace{\lambda_2}_{1-\lambda_1} f(x_2)$ . Это определение индукции.

Переход от  $n \times n + 1$ :

$$\lambda_1 + \lambda_2 + \ldots + \lambda_n = 1 - \lambda_{n+1} \Rightarrow \frac{\lambda_1}{1 - \lambda_{n+1}} + \ldots + \frac{\lambda_n}{1 - \lambda_{n+1}} = 1.$$

Тогда по предположению:

$$\sum_{k=1}^{n} \frac{\lambda_k}{1 - \lambda_{n+1}} \geqslant f(\sum_{k=1}^{n} \frac{\lambda_k x_k}{1 - \lambda_{n+1}}) = f(y).$$

$$\sum_{k=1}^{n} \lambda_{k} f(x_{k}) \geqslant (1 - \lambda_{n+1}) f(y) \implies \sum_{k=1}^{n+1} \lambda_{k} f(x_{k}) \geqslant (1 - \lambda_{n+1}) f(y) + \lambda_{n+1} f(x_{n+1}) \geqslant$$

$$\geqslant f(\lambda_{n+1} x_{n+1} + (1 - \lambda_{n+1}) y) =$$

$$= f(\sum_{k=1}^{n+1} \lambda_{k} x_{k}).$$

Второе ≥ после ⇒ следует из определения выпуклости.

*Следствие.* У вогнутой функции все знаки в другую сторону.

**Теорема 4.26** (Неравенство о средних).  $x_1, x_2, \dots, x_n \geqslant 0$ . Тогда  $\sqrt[n]{x_1 x_2 \dots x_n} \leqslant \frac{x_1 + x_2 + \dots + x_n}{n}$ . Причем из равенства следует равенство чисел.

**Доказательство**.  $f(x) = \ln x$  и  $\lambda_1 = \lambda_2 = \ldots = \lambda_n = \frac{1}{n}$ . Если  $x_k = 0$ , то неравенство очевидно.

Надо доказать, что  $\frac{1}{n}(\ln x_1 + \ln x_2 + \ldots + \ln x_n) \leqslant \ln(x_1 + x_2 + \ldots + x_n)$ . А это неравенство Йенсена:

$$\ln(\frac{1}{n}x_1 + \frac{1}{n} + x_2 + \dots + \frac{1}{n}x_n) \geqslant \frac{1}{n}\ln x_1 + \frac{1}{n} + \ln x_2 + \dots + \frac{1}{n}\ln x_n.$$

**Определение 4.23.** Среднее степенное порядка  $p \ M_p \coloneqq \left(\frac{x_1^p + x_2^p + ... x_n^p}{n}\right)^{\frac{1}{p}}$ .

 Глава #4
 47 из 52
 Автор: Харитонцев-Беглов Сергей

**Определение 4.24.** Среднее арифметическое  $M_1 := \frac{x_1 + x_2 + \ldots + x_n}{n}$ .

**Определение 4.25.** Среднее квадратическое  $M_2 \coloneqq \sqrt{\frac{x_1^2 + x_2^2 + \ldots + x_n^2}{n}}$ 

**Определение 4.26.** Среднее гармоническое —  $M_{-1}$ 

**Определение 4.27** (Доопределение).  $M_0$  — среднее геометрическое,  $M_{+\infty}$  — максимальное из чисел,  $M_{-\infty}$  — минимальное из чисел.

**Упражнение.** Пусть  $x_1, x_2, \dots, x_n > 0$ . Доказать, что  $\lim_{p\to 0} M_p = M_0$ ,  $\lim_{p\to +\infty} M_p = M_{+\infty}$ ,  $\lim_{p\to -\infty} M_p = M_{-\infty}$ .

**Теорема 4.27** (Неравенство между средними степенными). Пусть  $x_1, x_2, \ldots, x_n > 0$  и p < q. Тогда:

$$\left(\frac{x_1^p + x_2^p + \ldots + x_n^p}{n}\right)^p \leqslant \left(\frac{x_1^q + x_2^q + \ldots + x_n^q}{n}\right)^q.$$

#### Доказательство.

1. Случай 1. p=1.  $f(x)=x^q$  — выпуклая функция,  $\lambda_1=\lambda_2=\ldots=\lambda_n=\frac{1}{n}$ . Тогда просто подставляем в неравенство Йенсена:

$$\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)^q = f\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) \leqslant \frac{x_1^q + x_2^q + \dots + x_n^q}{n}$$

А дальше просто извлечь корень степени q.

2. Случай 2.  $0 . Возьмем <math>r = \frac{q}{p} > 1$  и подставим  $x_k^p$  в случай 1 (p = 1, q = r):

$$\frac{x_1^p + x_2^p + \ldots + x_n^p}{n} \leqslant \left(\frac{(x_1^p)^r + (x_2^p)^r + \ldots + (x_n^p)^r}{n}\right)^{\frac{1}{r}} = \left(\frac{x_1^q + x_2^q + \ldots + x_n^q}{n}\right)^{\frac{p}{q}}.$$

- 3. Случай 3. p < q < 0. Возьмем  $\frac{p}{q} > 1$  и подставим  $x_k^q$  в случай 1.
- 4. Случай 4. p < 0 < q.  $\left(\frac{x_1^p + x_2^p + \dots + x_n^p}{n}\right)^{\frac{1}{p}} \leqslant \sqrt[n]{x_1 x_2 \dots x_n} \leqslant \left(\frac{x_1^q + x_2^q + \dots + x_n^q}{n}\right)^{\frac{1}{q}}$ .

Подставим  $x_1^q, x_2^q, \dots x_n^q$  в неравенство о средних

$$\frac{x_1^q + x_2^q + \ldots + x_n^q}{n} \geqslant \sqrt[n]{x_1^q x_2^q \ldots x_n^q} = (\sqrt[n]{x_1 x_2 \ldots x_n})^q.$$

и корень степени q > 0.

$$\frac{x_1^p + x_2^p + \ldots + x_n^p}{n} \geqslant \sqrt[n]{x_1^p x_2^p \ldots x_n^p} = (\sqrt[n]{x_1 x_2 \ldots x_n})^p.$$

и корень степени p < 0, знак поменяется.

Замечание.  $M_p \leqslant M_q$ , если  $p \leqslant q$ .

**Теорема 4.28** (Неравенство Гёлдера).  $a_k, b_k \geqslant 0, p, q > 1$  и  $\frac{1}{p} + \frac{1}{q} = 1$ . Тогда:

$$\sum_{k=1}^{n} a_k b_k \leqslant \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} b_k^q\right)^{\frac{1}{q}} \dots$$

**Доказательство**. Берем  $f(x) = x^p$ . Пусть  $B := \sum_{k=1}^n b_k^q$ . Тогда возведем неравенство в степень  $p: \left(\sum_{k=1}^n a_k \frac{b_k}{B_k^{\frac{1}{q}}}\right)^p \leqslant \sum_{k=1}^n a_k^p$ .

Пытаемся подогнать под вид Йенсена, получаем систему  $\lambda_k x_k^p = a_k^p$  и  $\lambda_k x^k = \frac{a_k b_k}{p \frac{1}{a}}$ .

Получаем, что  $x_k^{p-1} = \frac{a_k^{p-1} B^{\frac{1}{q}}}{b_k}$ .

Тогда  $x_k = \frac{a_k}{b_k^{\frac{1}{p-1}}} \cdot B^{\frac{1}{q(p-1)}} = \frac{a_k}{b_k^{\frac{q}{p}}} \cdot B^{\frac{1}{p}}$ . Откуда можно выразить  $\lambda$ .

#### Следствие Неравенство Коши-Буняковского.

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 \leqslant \left(\sum_{k=1}^{n} a_k^2\right) \cdot \left(\sum_{k=1}^{n} b_k^2\right)$$

**Доказательство**. Давайте применим неравенство Гёлдера для чисел  $|a_k|$  и  $|b_k|$ , а p=q=2.

Тогда 
$$(\sum_{k=1}^{n} |a_k|^2) \cdot (\sum_{k=1}^{n} |b_k|^2) \geqslant (\sum_{k=1}^{n} |a_k| \cdot |b_k|)^2$$
.

Это почти то, что нужно с точностью до модулей.

Заметим, что в левой части модули можно отбросить, так как возводится в квадрат.

В правой же части можно заметить, что  $(\sum_{k=1}^{n} |a_k| \cdot |b_k|)^2 \geqslant (\sum_{k=1}^{n} a_k b_k)^2$ .

Значит по транзитивности получим то, что нужно.

# *Следствие Неравенство Минковского.* $p\geqslant 1, a_k, b_k\geqslant 0.$ Тогда

$$\left(\sum_{k=1}^{n} a_{k}^{p}\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} b_{k}^{p}\right)^{\frac{1}{p}} \geqslant \left(\sum_{k=1}^{n} (a_{k} + b_{k})^{p}\right)^{\frac{1}{p}}.$$

**Доказательство**. p = 1 очевидно.

$$C := \sum_{k=1}^{n} (a_k + b_k)^p = \sum_{k=1}^{n} (a_k + b_k)(a_k + b_k)^{p-1} = \sum_{k=1}^{n} a_k(a_k + b_k)^{p-1} + \sum_{k=1}^{n} b_k(a_k + b_k)^{p-1}$$

$$\sum_{k=1}^{n} a_k(a_k + b_k)^{p-1} \leqslant (\sum_{k=1}^{n} a_k^p)^{\frac{1}{p}} (\sum_{k=1}^{n} ((a_k + b_k)^{p-1})^q)^{\frac{1}{q}} = (\sum_{k=1}^{n} a_k^p)^{\frac{1}{p}} (\sum_{k=1}^{n} (a_k + b_k)^p)^{\frac{p-1}{n}}$$

$$C \leqslant (\sum_{k=1}^{n} a_k^p)^{\frac{1}{p}} \cdot c^{\frac{p-1}{p}} + (\sum_{k=1}^{n} b_k^p)^{\frac{1}{p}} \cdot C^{\frac{p-1}{p}} \Rightarrow C^{\frac{1}{p}} \leqslant (\sum_{k=1}^{n} a_k^p)^{\frac{1}{p}} + (\sum_{k=1}^{n} b_k^p)^{\frac{1}{p}}$$

# 5. Интегральное исчисление функции одной переменной

# 5.1. Первообразная и неопределенный интеграл

**Определение 5.1.**  $f:\langle a,b\rangle\to\mathbb{R}$ . Функция  $F:\langle a,b\rangle\to\mathbb{R}$  — первообразная функции f, если  $F'(x)=f(x)\forall x\in\langle a,b\rangle$ 

Теорема 5.1. Непрерывная на промежутке функция имеет первообразную.

Доказательство. Позже.

Замечание.  $\mathrm{sign} x = egin{cases} 1 & \mathrm{если} \ x > 0 \\ 0 & \mathrm{если} \ x = 0 \,. \ \mathrm{He} \ \mathrm{имеет} \ \mathrm{первообразной}. \\ -1 & \mathrm{если} \ x < 0 \end{cases}$ 

**Доказательство**. От противного: пусть нашлась  $F:\langle a,b\rangle\to\mathbb{R}$  и F'(x)=sign(x).

Тогда воспользуемся теоремой Дарбу для F на отрезке [0;1].

Пусть 
$$k = \frac{1}{2} \in (sign(0), sign(1))$$
. Значит  $\exists c \in (0,1) \colon F'(c) = k = \frac{1}{2}$ . Противоречие.

**Теорема 5.2.**  $f, F: \langle a, b \rangle \to \mathbb{R}$  и F — первообразная для f. Тогда:

- 1. F + C первообразная для f.
- 2. Если  $\Phi: \langle a, b \rangle \to \mathbb{R}$  первообразная для f, то  $\Phi = F + C$ .

Доказательство. /

- 1. (F(x) + C)' = F'(x) + C' = f(x)
- 2.  $(\Phi(x) F(x))' = \Phi'(x) F'(x) = f(x) f(x) = 0 \Rightarrow (\Phi F)' \equiv 0 \implies \Phi F$  константа.

*Определение* **5.2.** Неопределённый интеграл — множество всех первообразных.

$$\int f(x) dx = \{F: F$$
 — первообразная  $f\}$ . Но мы будем записывать  $\int f(x) dx = F(x) + C$ 

Табличка интегралов.

- 1.  $\int 0 \, dx = C$ .
- 2.  $\int x^p dx = \frac{x^{p+1}}{p+1} + C$ , при  $p \neq -1$ .
- 3.  $\int \frac{dx}{x} = \ln|x| + C.$
- 4.  $\int a^x dx = \frac{a^x}{\ln a} + c$ , при  $a > 0, a \neq 1$ .
- $5. \int \sin x \, dx = -\cos x + C.$
- $6. \int \cos x \, dx = \sin x + C.$

7. 
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C.$$

8. 
$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$$

9. 
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C.$$

10. 
$$\int \frac{dx}{1+x^2} = \arctan x + C$$
.

11. 
$$\int \frac{dx}{\sqrt{x^2+1}} = \ln|x + \sqrt{x^2 \pm 1}| + C$$
.

12. 
$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C$$
.

Доказательство. Для 3. Если x>0  $\int \frac{dx}{x}=\ln x+C$  . Если x<0  $\int \frac{dx}{x}=\ln(-x)+C$ , то есть  $(\ln(-x))'=(\frac{1}{-x})(-x)'=\frac{-1}{x}$ .

Для 11. 
$$(\ln|x+\sqrt{x^2\pm 1}|)'=\frac{1}{x+\sqrt{x^2\pm 1}}(x+\sqrt{x^2\pm 1})'=\frac{1+\frac{x}{\sqrt{x^2\pm 1}}}{x+\sqrt{x^2}}=\frac{\frac{\sqrt{x^2pm^1}+x}{\sqrt{x^2\pm 1}}}{\sqrt{x^2\pm 1}+x}=\frac{1}{\sqrt{x^2\pm 1}}$$
 Для 13.  $(\frac{1}{2}(\ln|1+x|-\ln|1-x|))'=\frac{1}{2}(\frac{1}{1+x}+\frac{1}{1-x})=\frac{1}{1-x^2}$ 

Замечание.  $A+B := \{a+b: a \in A, b \in B\}, cA := \{ca: a \in A\}.$ 

$$\int f(x) \, dx + \int g(x) \, dx = \{F + C\} + \{G + \widetilde{C}\} = \{F + G + C\}.$$

**Теорема 5.3** (Арифметические действия с неопределенными интегралами). Пусть  $f, g: \langle a, b \rangle \to \mathbb{R}$  имеют первообразные. Тогда:

- 1. f+g имеет первообразную и  $\int (f+g) dx = \int f dx + \int g dx$
- 2.  $\alpha f$  имеет первообразную и  $\int \alpha f \, dx = \alpha \int f \, dx$

**Доказательство**. Пусть F и G первообразные для f и g.

- 1. Тогда F + G первообразная для f + g. Тогда  $\int (f + g) = F + G + C = \int f + \int g$ .
- 2. Тогда  $\alpha F$  первообразная для  $\alpha f \implies \int \alpha F = \alpha F + C = \alpha (F + \frac{C}{\alpha}) = \alpha \int f$ .

*Следствие Линейность неопрделенного интеграла.*  $f,g:\langle a,b\rangle\to\mathbb{R}$  имеют первообразную  $\alpha,\beta\in\mathbb{R},\ |\alpha|+|\beta|\neq 0.$  Тогда  $\int (\alpha f+\beta g)=\alpha\int f+\beta\int g.$ 

Доказательство. Прямое следствие из теоремы выше.

**Теорема 5.4** (Теорема о замене переменной в непопределенном интеграле).  $f:\langle a,b\rangle\to\mathbb{R},\varphi:\langle c,d\rangle\to\langle a,b\rangle, f$  имеет первообразную  $F.\varphi$  дифференцируемая. Тогда  $\int f(\varphi(t))\varphi'(t)\,dt=F(\varphi(t))+C.$ 

**Доказательство**. Надо проверить, что  $F(\varphi(t))$  — первообразная для  $f(\varphi(t))\varphi'(t)$ .

$$(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t))\varphi(t)...$$

Cnedcmeue.  $\int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + C$ 

**Доказательство**.  $\int \alpha f(\alpha x + \beta dx) = F(\alpha x + \beta) + C$ . И делим обе части на  $\alpha$ .

**Теорема 5.5** (Форумла интегрирования по частям).  $f, g: \langle a, b \rangle \to \mathbb{R}$ , дифференцируемые, f'g имеет первообразную.

Тогда fg' имеет первообразную и  $\int fg' = fg - \int f'g$ 

**Доказательство**. H — первообразная для f'g. Тогда H' = f'g.

Надо доказать, что fg-H — первообразная для fg'.

$$(fg - H)' = f'g + gh' - H' = f'g + fg' - f'g = fg'.$$