Х

reviewer4@nptel.iitm.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Data Science for Engineers (course)

Announcements (announcements) About the Course (https://swayam.gov.in/nd1_noc20_cs28/preview)

Ask a Question (forum) Progress (student/home) Mentor (student/mentor)

Unit 4 - Week 2

Course Linear algebra - Assignment 2 outline Part 2 How does an **NPTEL** online The due date for submitting this assignment has passed. Due on 2020-02-12, 23:59 IST. course work? As per our records you have not submitted this assignment. Week 0 1) The distance between two vectors say $V_1 = \begin{bmatrix} 15 & 16 & 2 \end{bmatrix}^T$ and $V_2 = \begin{bmatrix} 18 & 16 & 1 \end{bmatrix}^T$ is 1 point Week 1 √3 units √10 units Week 2 2√3 units Linear Algebra √21 units for Data science (unit? No, the answer is incorrect. unit=14&lesson=15) Score: 0 Accepted Answers: Solving Linear √10 units Equations (unit? unit=14&lesson=16) 2) The unit vector of a vector $\begin{bmatrix} 5 & 8 \end{bmatrix}^T$ is 1 point Solving Linear Equations ($5/\sqrt{89}$ Continued) (unit? unit=14&lesson=17) Linear Algebra - $5/\sqrt{13}$ Distance, Hyperplanes and Halfspaces, Eigenvalues, Eigenvectors (unit? $29/\sqrt{5}$ unit=14&lesson=18) Linear Algebra -Distance, Hyperplanes

and Halfspaces,Eigenvalue (Continued 1) (unit? unit=14&lesson=19) Linear Algebra - Distance,Hyperplanes and Halfspaces,Eigenvalue (Continued 2)	s, Eigenvectors $8/\sqrt{89}$ No, the answer is incorrect. Score: 0 Accepted Answers: $\begin{bmatrix} 5/\sqrt{89} \\ 8/\sqrt{89} \end{bmatrix}$ s, Eigenvectors 3) Two vectors are said to be orthogonal when their dot product is	1 point
(unit? unit=14&lesson=20)	○ 0○ 1	
Linear Algebra - Distance,Hyperplanes and Halfspaces,Eigenvalue (Continued 3) (unit? unit=14&lesson=21)	Not defined s,Eigenvectors No, the answer is incorrect. Score: 0 Accepted Answers:	
FAQ (unit? unit=14&lesson=22)	4) Which of the following sets of vector is/are orthogonal	1 point
Quiz: Assignment 2 - Part 1 (assessment? name=106)	I. $v_1 = (5 - 2 \ 3)^T \ v_2 = (-2 \ 4 \ 6)$ II. $v_1 = (1 - 2 \ 4), v_2 = (2 \ 5 \ 2)^T$ III. $v_1 = (1 - 2 \ 4)^T, v_2 = (-1 \ 4)^T$ IV. $v_1 = (14 \ 5), v_2 = (10 \ -2)^T$	
Quiz : Linear algebra - Assignment 2 - Part 2 (assessment? name=109)	I, II I, II, III III, IV No, the answer is incorrect. Score: 0	
Feedback (unit? unit=14&lesson=110)	Accepted Answers: I, II	
Solution - Assignment 2 - Part 1 (unit? unit=14&lesson=115)	 5) State whether the following statements are True / False i) All orthonormal vectors are orthogonal ii) Basis vectors are set of vectors that are dependent and span the space 	1 point
 Solution - Linear algebra - Assignment 2 - Part 2 (unit? unit=14&lesson=116) 	i)- False ii) – True i) - True ii) – True i) – True ii) – False i) - False ii) – False	
Week 3	No, the answer is incorrect. Score: 0	
Week 4	Accepted Answers: i) – True ii) – False	
Week 5	$\begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	1 point
Week 6	The point $\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}$ is in half space of the hyper plane	
Week 7	3x + 2y - 6z + 8q = 24	
Week 8	Positive	

Text Transcripts	Negative	
	On the hyperplane	
Download Videos	Cannot be decided	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	Negative	
	7) P is an $m \times n$ matrix whose columns are linearly independent. The nullity of A is	1 poin
	Zero	
	O 1	
	O Not defined	
	○ R	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	Zero	
	8) A set of linear equations is represented by the matrix equation $Ax=b$. The necessary cond	ition <i>1 poin</i>
	for the existence of a	
	solution for the system is	
	b must be linearly independent of the columns A	
	A must be non invertible	
	A must be invertible	
	None of the above	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	A must be invertible	
	9) State whether the following statements are True / False	1 poin
	i) If the eigen values becomes complex, eigen vectors become real	
	ii) Symmetric matrix will have real eigen values	
	i) - True ii) – True	
	i) – True ii) – False	
	i) - False ii) – False	
	i)- False ii) – True	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers: i)- False ii) – True	
		T 4 noin
	10) If the projection of \vec{a} on \vec{b} and projection of \vec{b} on \vec{a} are equal then the angle between \vec{a} + and $\vec{a} - \vec{b}$ is	$ec{b}$ 1 poin
	and $u = v$ is	
	$\frac{\pi}{2}$ $\frac{\pi}{3}$	
	2	
	$\frac{\pi}{2}$	
	3	

π		
$\overline{4}$		
2π		
3		
No, the answer is incorrect. Score: 0		
Accepted Answers: π		
$\frac{\pi}{2}$		
2		