

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu

Nazwa kwalifikacji: Montaż i obsługa układów automatyki przemysłowej i urządzeń precyzyjnych

Oznaczenie kwalifikacji: MG.16

Wersja arkusza: SG

Czas trwania egzaminu: 60 minut

MG.16-SG-22.06

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE

Rok 2022 CZĘŚĆ PISEMNA

PODSTAWA PROGRAMOWA 2017

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron. Ewentualny brak stron lub inne usterki zgłoś przewodniczącemu zespołu nadzorującego.
- 2. Do arkusza dołączona jest KARTA ODPOWIEDZI, na której w oznaczonych miejscach:
 - wpisz oznaczenie kwalifikacji,
 - zamaluj kratkę z oznaczeniem wersji arkusza,
 - wpisz swój numer PESEL*,
 - wpisz swoją datę urodzenia,
 - przyklej naklejkę ze swoim numerem PESEL.
- 3. Arkusz egzaminacyjny zawiera test składający się z 40 zadań.
- 4. Za każde poprawnie rozwiązane zadanie możesz uzyskać 1 punkt.
- 5. Aby zdać część pisemną egzaminu musisz uzyskać co najmniej 20 punktów.
- 6. Czytaj uważnie wszystkie zadania.
- 7. Rozwiązania zaznaczaj na KARCIE ODPOWIEDZI długopisem lub piórem z czarnym tuszem/ atramentem.
- 8. Do każdego zadania podane są cztery możliwe odpowiedzi: A, B, C, D. Odpowiada im następujący układ kratek w KARCIE ODPOWIEDZI:

- 9. Tylko jedna odpowiedź jest poprawna.
- 10. Wybierz właściwą odpowiedź i zamaluj kratkę z odpowiadającą jej literą np., gdy wybrałeś odpowiedź "A":

11. Staraj się wyraźnie zaznaczać odpowiedzi. Jeżeli się pomylisz i błędnie zaznaczysz odpowiedź, otocz ją kółkiem i zaznacz odpowiedź, którą uważasz za poprawną, np.

12. Po rozwiązaniu testu sprawdź, czy zaznaczyłeś wszystkie odpowiedzi na KARCIE ODPOWIEDZI i wprowadziłeś wszystkie dane, o których mowa w punkcie 2 tej instrukcji.

Pamiętaj, że oddajesz przewodniczącemu zespołu nadzorującego tylko KARTĘ ODPOWIEDZI.

Powodzenia!

* w przypadku braku numeru PESEL – seria i numer paszportu lub innego dokumentu potwierdzającego tożsamość

Układ graficzny © CKE 2020

Zadanie 1.

Na rysunku przedstawiono symbol graficzny transformatora

- A. regulowanego.
- B. z ekranem.
- C. bez rdzenia.
- D. z odczepem.

Zadanie 2.

Na schemacie zespołu przygotowania powietrza symbol graficzny manometru oznaczono cyfrą

- A. 1
- B. 2
- C. 3
- D. 4

Zadanie 3.

Na rysunku przedstawiono symbol graficzny

- A. separatora.
- B. przepływomierza.
- C. przetwornika pomiarowego.
- D. wzmacniacza operacyjnego.

Zadanie 4.

Który rysunek przedstawia symbol graficzny zestyku przekaźnika czasowego o opóźnionym włączeniu?

- A. Rysunek 1.
- B. Rysunek 2.
- C. Rysunek 3.
- D. Rysunek 4.

Zadanie 5

Na której ilustracji przedstawiono zawór odcinający z pokrętłem?

- A. Na ilustracji 1.
- B. Na ilustracji 2.
- C. Na ilustracji 3.
- D. Na ilustracji 4.

Zadanie 6.

Na podstawie fragmentu instrukcji przekaźnika czasowego wskaż, które położenie przełączników realizuje funkcję załączenia z opóźnieniem.

- A. Położenie I.
- B. Położenie II.
- C. Położenie III.
- D. Położenie IV.

Zadanie 7.

Na której ilustracji nie przedstawiono elementu indukcyjnego?

- A. Na ilustracji 1.
- B. Na ilustracji 2.
- C. Na ilustracji 3.
- D. Na ilustracji 4.

Zadanie 8.

Który termometr należy zastosować do bezkontaktowego pomiaru temperatury?

- A. Termoelektryczny.
- B. Rezystancyjny.
- C. Pirometryczny.
- D. Dylatacyjny.

Zadanie 9.

Który zawór rozdzielający należy zamontować w układzie elektropneumatycznym przedstawionym na rysunku?

- A. 1.
- B. 2.
- C. 3.
- D. 4.

Liczba cewek	1	2	1	2
Typ zaworu	4/2	4/3	5/2	5/2
Biegunowość zasilania	dowolna	dowolna	dowolna	dowolna
Zawór	1.	2.	3.	4.

Zadanie 10.

Których diod należy użyć do montażu układu przedstawionego na schemacie?

- A. Zenera.
- B. Schotky'ego.
- C. Prostowniczych.
- D. Pojemnościowych.

Zadanie 11.

Zgodnie z zamieszczonym schematem lampka sygnalizacyjna H1 będzie świecić, gdy

- A. będą naciśnięte tylko przyciski S1 i S3
- B. będą naciśnięte tylko przyciski S1 i S2
- C. będzie naciśnięty tylko przycisk S3
- D. będzie naciśnięty tylko przycisk S1

Zadanie 12.

Napięcie wyjściowe przetwornika ciśnienia, przy liniowej charakterystyce przetwarzania, przyjmuje wartość z przedziału 0 ÷ 10 V dla ciśnienia z przedziału 0 ÷ 600 kPa. Jaka będzie wartość napięcia wyjściowego dla wartości ciśnienia 450 kPa?

- A. 3,0 V
- B. 4,5 V
- C. 7,5 V
- D. 10,0 V

Zadanie 13.

Na podstawie fragmentu instrukcji montażu przycisku sterującego dobierz narzędzie do jego demontażu.

- A. Wkrętak płaski.
- B. Klucz oczkowy.
- C. Klucz nasadkowy.
- D. Wkrętak krzyżakowy.

Zadanie 14.

Do bezpośredniego pomiaru wartości napięcia zasilającego cewkę elektrozaworu należy użyć

- A. amperomierza.
- B. woltomierza.
- C. watomierza.
- D. omomierza.

Zadanie 15.

Który przyrząd pomiarowy należy wykorzystać do przygotowania korytek montażowych o wskazanej długości?

- A. Przymiar kreskowy.
- B. Czujnik zegarowy.
- C. Średnicówkę.
- D. Mikrometr.

Zadanie 16.

Na podstawie zamieszczonych w tabeli parametrów technicznych enkodera wskaż wartość napięcia zasilania, pozwalającą na jego prawidłową pracę.

Wybrane parametry techniczne enkodera

- A. 4,4 V DC
- B. 5,4 V DC
- C. 10,0 V DC
- D. 15,0 V DC

rry or arrogation y too mine in the arrow			
Zasilanie	5 V DC ±10 %		
Pobór prądu	≤ 60 mA		
Prędkość obrotowa	10 000 rpm		
Rozdzielczość	5 ÷ 6000 imp./obr.		
Temperatura pracy	-25 ÷ +100°C		
Średnica osi	Ø10 mm		
Średnica obudowy	Ø58 mm		

Zadanie 17.

Na podstawie zamieszczonych w tabeli danych katalogowych przetwornika różnicy ciśnień dobierz zakres napięcia zasilania dla prądowego sygnału wyjściowego.

- A. 5 ÷ 12 V DC
- B. 10 ÷ 30 V DC
- C. 15 ÷ 30 V DC
- D. 10 ÷ 36 V DC

Wybrane dane katalogowe przetwornika różnic	y ciśnień:
---	------------

• 15 ÷ 30 (sygn. wyj. 0 ÷ 10 V)	
 10 ÷ 30 (sygn. wyj. 0 ÷ 5 V) 	
• 5 ÷ 12 (sygn. wyj. 0 ÷ 3 V)	
• 10 ÷ 36 (sygn. wyj. 4 ÷ 20 mA)	
• 4 ÷ 20 mA	
• 0 ÷ 10 V, 0 ÷ 5 V, 1 ÷ 5 V	
• 0 ÷ 3 V (low-power)	
 Możliwe jest również wykonanie przetworników 	
z dowolnym napięciowym sygnałem wyjściowym,	
mniejszym od 0 ÷ 10 V (np. 0 ÷ 4 V, 2 ÷ 8 V itp.)	

Zadanie 18.

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

- A. 220 ÷ 240 V
- B. 254 ÷ 277 V
- C. 380 ÷ 420 V
- D. 440 ÷ 480 V

Zadanie 19.

Sekcja przełącznika

		1	2	3	4
Sygnał	0 ÷ 5 V	OFF	ON	OFF	OFF
sterujący	0 ÷ 10 V	OFF	OFF	OFF	OFF
	0 ÷ 20 mA	ON	OFF	OFF	OFF
	4 ÷ 20 mA	ON	ON	ON	ON
Rodzaj	rezystancyjny	-	1	ı	-
odbiornika	rezystancyjno-indukcyjny	-	-	-	-
	$(0,7 \le \cos \phi \le 0,9$				

Na podstawie tabeli wskaż jakie powinno być ustawienie sekcji przełącznika, by było możliwe sterowanie za pomocą sygnału prądowego o wartości z przedziału 0 ÷ 20 mA.

Zadanie 20.

Który symbol graficzny oznacza przekładnię zębatą?

Symbol 3.

Symbol 4.

- A. Symbol 1.
- B. Symbol 2.
- C. Symbol 3.
- D. Symbol 4.

Zadanie 21.

Którego przyrządu należy użyć do sprawdzenia równoległości dwóch powierzchni?

- A. Mikrometru.
- B. Transametru.
- C. Czujnika zegarowego.
- D. Suwmiarki uniwersalnej.

Zadanie 22.

Wskaż oznaczenie literowe gwintu metrycznego.

- A. M
- B. S
- C. Tr
- D. W

Zadanie 23.

Który element silnika tłokowego wskazuje strzałka?

- A. Wodzik.
- B. Dźwignię.
- C. Korbowód.
- D. Wał korbowy.

Na przedstawionym rysunku z dokumentacji technicznej zapisano tolerancję

- A. współosiowości dwóch osi.
- B. przecinania się dwóch osi.
- C. prostopadłości dwóch osi.
- D. równoległości dwóch osi.

Zadanie 25.

Do przykręcania lub odkręcania nakrętki przedstawionej na rysunku przeznaczony jest klucz

- A. hakowy.
- B. czołowy.
- C. nasadowy.
- D. imbusowy.

Zadanie 26.

Na rysunku przedstawiono

- A. ramię robota.
- B. przegub robota.
- C. chwytak robota.
- D. podstawę robota.

Zadanie 27.

Aby zapewnić bezpieczeństwo pracy pracownika na stanowisku przedstawionym na rysunku, zastosowano

układ bariery zawierający czujnik

- A. pojemnościowy.
- B. magnetyczny.
- C. indukcyjny.
- D. optyczny.

Zadanie 28.

Typ pompy	llość oleju w silniku [1]	llość oleju w komorze olejowej [l]	Całkowita ilość oleju w pompie [I]
		olojowej [ij	· · · · · · · · · · · · · · · · · · ·
IF1 100; 150; 200	0,40	-	0,40
IF1 50; 75; 100; 150; 200	0,40	-	0,40
IF2 300	0,90	0,12	1,02
IF1 300; 400	1,70	0,12	1,82
IF2 400	1,70	0,12	1,82
IF1 550	1,70	0,12	1,82
IF2 550	1,70	0,12	1,82
IF1 750	2,00	0,12	2,12
IF1 1000	2,00	0,12	2,12
IF1 1500; 2000	5,00	0,18	5,18

Na podstawie tabeli, określ ile oleju należy przygotować do całkowitej wymiany zużytego oleju w pompie IF1 400.

- A. 0,40 I
- B. 0,90 I
- C. 1,70 I
- D. 1,82 I

Zadanie 29.

Który przyrząd kontrolno-pomiarowy służy do wypoziomowania skrzynki nakładanej jako osłona na zamontowany elektrozawór?

- A. Poziomnica.
- B. Suwmiarka.
- C. Kątomierz.
- D. Liniał.

Zadanie 30.

Do pomiaru średnicy otworu ϕ 50 z dokładnością do 0,01 mm należy użyć

- A. głębokościomierza.
- B. czujnika zegarowego.
- C. przymiaru kreskowego.
- D. średnicówki mikrometrycznej.

Zadanie 31.

Do pomiaru luzów pomiędzy współpracującymi powierzchniami służy

- A. przymiar kreskowy.
- B. liniał sinusowy.
- C. szczelinomierz.
- D. mikrometr.

Zadanie 32.

Dane katalogowe napędu bram garażowych

Napięcie zasilania (V ~/Hz)	230/50
Napięcie zasilania akcesoriów (V DC)	24
Maks. obciążenie akcesoriów [mA]	200
Układ logiczny	Automatyczny/półautomatyczny
Wyprowadzenie płyty	Otwieranie/stop/zabezpieczenia/układ kontrolny/ lampka błyskowa 24 V DC
Czas świecenia lampy oświetleniowej	2 min

Na podstawie przedstawionych w tabeli danych katalogowych wskaż zasilacz, którego należy użyć do zasilania akcesoriów napędu bram garażowych.

A. 1	Zasilacz	1	2	3	4
_	Nania sia waiá siawa	110 ÷ 230 V AC,	110 ÷ 230 V AC,	230 V AC,	230 V AC,
B. 2	Napięcie wejściowe	50 ÷ 60 Hz	50 ÷ 60 Hz	50 Hz	50 Hz
C. 3	Napięcie wyjściowe	13,8 V DC	12 V DC	24 V AC	24 V DC
D. 4	Maksymalny prąd wyjściowy	0,25 A	2 A	0,5 A	0,3 A

Zadanie 33.

Do pomiaru lepkości oleju hydraulicznego jest stosowany

- A. tlenomierz.
- B. wiskozymetr.
- C. higrometr.
- D. pH-metr.

Zadanie 34.

Na podstawie przedstawionego schematu wskaż stany przycisków, przy których lampka sygnalizacyjna świeci.

- A. S1 przyciśnięty, S2 przyciśnięty.
- B. S1 przyciśnięty, S2 nieprzyciśnięty.
- C. S1 nieprzyciśnięty, S2 przyciśnięty.
- D. S1 nieprzyciśnięty, S2 nieprzyciśnięty.

Zadanie 35.

Do demontażu przyłącza przedstawionego na rysunku należy użyć

- A. klucza płaskiego.
- B. wkrętaka płaskiego.
- C. klucza imbusowego.
- D. wkrętaka krzyżowego.

Zadanie 36.

Wskaż element, którym można zastąpić uszkodzony element S1 w układzie, którego schemat przedstawiono na rysunku.

Element 1.

Element 2.

Element 3.

Element 4.

- A. Element 1.
- B. Element 2.
- C. Element 3.
- D. Element 4.

Zadanie 37.

Dokładna obróbka elementów współpracujących ze sobą polegająca na usuwaniu drobnych cząstek materiału w obecności pasty ściernej to

- A. struganie.
- B. docieranie.
- C. honowanie.
- D. szlifowanie.

Zadanie 38.

Wartość temperatury wskazana przez termometr przedstawiony na rysunku wynosi

- A. 8°C
- B. 9°C
- C. 18°C
- D. 19°C

Zadanie 39.

	J.		
Lp.		Zakres prac	Termin wykonania
1	Śruby mocujące	Sprawdzenie momentu dokręcenia	Po pierwszej godzinie pracy
2	Zbiornik	Opróżnianie zbiornika	Po każdej pracy dłuższej niż 1 h
3	2 Filtracouras	Czyszczenie	Co 100 h
3 Filtr ssawny	Wymiana	W razie konieczności	
		Mymiono	Po pierwszych 100 h
4 Olej	Olej Wymiana	Co 300 h	
		Sprawdzanie stanu	Raz w tygodniu

Na podstawie tabeli określ, jak często należy czyścić filtr ssawny.

- A. Raz w tygodniu.
- B. Co 100 godzin.
- C. Co 300 godzin.
- D. Co godzinę.

Zadanie 40.

Wskaż właściwą kolejność czynności przy wymianie elektropneumatycznego zaworu kulowego?

- 1. Wyłączyć media zasilające.
- 2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
- 3. Zainstalować nowy zawór.
- Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
- Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
- 6. Włączyć media zasilające.

Kolejność 1.

- 1. Wyłączyć media zasilające.
- Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu.
- 3. Podłączyć przewody elektryczne i pneumatyczne do montowanego zaworu.
- 4. Za pomocą klucza maszynowego odkręcić zawór kulowy.
- 5. Zainstalować nowy zawór.
- 6. Włączyć media zasilające.

Kolejność 3.

- A. Kolejność 1.
- B. Kolejność 2.
- C. Kolejność 3.
- D. Kolejność 4.

- 1. Wyłączyć media zasilające.
- 2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
- Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
- 4. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
- 5. Zainstalować nowy zawór.
- 6. Włączyć media zasilające.

Kolejność 2.

- 1. Wyłączyć media zasilające.
- Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
- 3. Za pomocą klucza maszynowego odkręcić zawór kulowy.
- 4. Zainstalować nowy zawór.
- Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
- 6. Włączyć media zasilające.

Kolejność 4.