BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

100 38 441.2

Anmeldetag:

07. August 2000

Anmelder/Inhaber:

Siemens Aktiengesellschaft, München/DE

Bezeichnung:

Flow Chart Programmierung für industrielle

Steuerungen, insbesondere Bewegungs-

steuerungen

IPC:

G 05 B, G 06 F

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 09. Januar 2001 Deutsches Patent- und Markenamt Der Präsident Im Auftrag

Faust

Beschreibung

Flow Chart Programmierung für industrielle Steuerungen, insbesondere Bewegungssteuerungen

5

10

Die Erfindung bezieht sich zum einen auf ein Verfahren für die Programmierung von industriellen Steuerungen, insbesondere Bewegungssteuerungen, wobei der Anwender mit einem graphischen Editor Kontrollstrukturen und Funktionsblöcke zu einem auf einer Anzeigeeinrichtung visualisierbaren Flow Chart verknüpft.

Ferner bezieht sich die Erfindung auf eine Einrichtung für die Programmierung von industriellen Steuerungen, insbesondere Bewegungssteuerungen, wobei vom Anwender mit einem graphi-15 schen Editor Kontrollstrukturen und Funktionsblöcke zu einem auf einer Anzeigeeinrichtung visualisierbaren Flow Chart verknüpfbar sind.

20

Im industriellen Umfeld ist es bekannt, sowohl für die Steuerung eines technischen Prozesses als auch für die Steuerung der Bewegung einer Verarbeitungs- bzw. Produktionsmaschine graphische Eingabehilfsmittel sowie einen Bildschirm zur Visualisierung zu verwenden (Hans D. Kief: "NC/CNC Handbuch",

25 2000, Hansa Verlag, Seite 254, Bild 7 bzw. Seite 327, Bild 6). Grundelemente grafischer Struktur-, Fluss- und Ablaufpläne sind in der Norm DIN 66 001 aufgeführt.

30

In "Visuelle Sprachen - ein unaufhaltsamer Trend in der Industrie" (Josef Hübl, SPS/IPC/Drives - Tagungsband, Seite 88 - 95, 23. - 25. November 1999, Nürnberg, Verlag Hüthig GmbH, Heidelberg) ist außerdem angegeben, dass Kontrollfluss- bzw. Datenflussdiagramme für die Steuerung von Automatisierungsaufgaben mit Hilfe graphischer Editoren erstellt werden.

35

Die heutzutage existierenden graphischen Eingabehilfsmittel und graphischen Editoren für die Programmierung von industriellen Steuerungen unterstützen aber dediziert die Programmierung der Steuerung eines technischen Prozesses (SPS-Funktionalität) oder die Programmierung der Steuerung der Bewegung einer Verarbeitungs- bzw. Produktionsmaschine. Die Programmerstellung für beide Anwendungsgebiete wird von existierenden Flow Chart-Editoren jeweils nicht adäquat unterstützt.

Ein weiterer Nachteil der heutzutage bei der Programmierung industrieller Automatisierungsaufgaben eingesetzten Flow Chart-Editoren ist, dass die mit ihnen erzeugten Diagramme direkt in ablauffähigen Prozessorcode umgesetzt werden oder dass aus den Diagrammen ASCII-Code erzeugt wird, der dann im jeweiligen Zielsystem laufzeitintensiv interpretiert werden muss. Neben der dadurch resultierenden Unflexibilität bezüglich der Portierung und Übertragung der Programme auf anderen Anlagen oder Maschinen bedeutet dieser Mechanismus als weiteren Nachteil für den Anwender nur eingeschränkte Debugging-Möglichkeiten.

Außerdem liegen zusätzliche Nachteile existierender Flow Chart-Editoren im meist starren und unflexiblen Sprachvorrat an für den Anwender verwendbaren Icons und in der fest vorgegebenen sequentiellen Abarbeitungsreihenfolge der Icons bzw. der entsprechenden Funktionsblöcke. Auch bieten existierende Flow Chart-Editoren häufig nur wenig Möglichkeiten zur Formulierung von Synchronisationsmechanismen, die aber insbesondere für die Programmierung von Applikationen in der industriellen Automatisierung sehr oft benötigt werden.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren gemäß Oberbegriff von Anspruch 1 und/oder eine Einrichtung gemäß Oberbegriff von Anspruch 17 zu schaffen, wobei einem Anwender sowohl für die Programmierung der Steuerung von technischen Prozessen (SPS-Funktionalität) als auch für die Programmierung von Bewegungssteuerungen (Motion-Funktionalität) Unterstützung gegeben wird. Dem Anwender soll dabei

größtmöglichste Flexibilität bei der Programmierung angeboten werden, insbesondere soll er dabei durch adaptive Mechanismen unterstützt werden.

- 5 Gemäß der Erfindung wird diese Aufgabe für ein Verfahren der eingangs genannten Art dadurch gelöst, dass folgende Schritte aufeinander folgend durchgeführt werden:
 - a) aus dem Flow Chart wird eine textuelle Sprache erzeugt,
 - b) die textuelle Sprache wird in einen prozessorunabhängigen Zwischencode kompiliert,
- c) der prozessorunabhängige Zwischencode wird auf die Steue-rung geladen,
 - d) der prozessorunabhängige Zwischencode wird in ablauffähigen Prozessorcode umgesetzt,
- 20 wobei dem Anwender im Flow Chart-Editor, in Abhängigkeit von der zugrundeliegenden Maschinen- bzw. Hardwarekonfiguration adäquate Sprachmechanismen zur Verfügung gestellt werden.
- Dadurch, dass aus den Flow Chart-Diagrammen in einem Zwi-25 schenschritt eine textuelle Sprache erzeugt wird, hat der Anwender die Möglichkeit, bereits auf dieser Ebene der textuellen Sprache Plausibilitätsüberprüfungen durchzuführen. Er kann aber auch weitere Sprachelemente, die in der textuellen Sprache vorliegen, zu seiner Anwendung hinzubinden. Dadurch, 30 dass die textuelle Sprache in einem weiteren Zwischenschritt in einen prozessorunabhängigen Zwischencode kompiliert wird, bleibt die angesprochene Flexibilität für den Anwender weiterhin erhalten. Auch auf dieser Zwischencodeebene kann der Anwender Plausibilitätschecks bzw. ein Debugging durchführen. 35 Der letztendlich in der Steuerung ablaufende Prozessorcode wird aus dem prozessorunabhängigen Zwischencode generiert,

dadurch wird das Target der Anwendung erst zu einem sehr spä-

25

30

ten Zeitpunkt festgelegt. Durch die Zwischenschritte bei der Codegenerierung können außerdem sehr leicht unterschiedliche Ziel-Hartwaren bedient werden.

5 Ein weiterer Vorteil der vorliegenden Erfindung liegt darin, dass aus der zugrunde liegenden Maschinenkonfigurierung bzw. Maschinenprojektierung aktuelle und adäquate Sprachmechanismen abgeleitet werden, die im Flow Chart-Editor, in Form von Icons, dem Anwender zur Verfügung gestellt werden. Dadurch vird einem Anwender eine Programmierumgebung zur Verfügung gestellt, die auf die zugrunde liegende Hardware abgestimmt ist und somit optimal den vorliegenden Anforderungen und Randbedingungen genügt. Der Sprachvorrat des Flow Chart-Editors adaptiert sich somit selbständig an die vorhandenen HW-Gegebenheiten (z.B. die zugrunde liegende Maschinenkonfiguration).

Eine erste vorteilhafte Ausgestaltung der Erfindung liegt darin, dass aus anwenderdefinierten Unterprogrammen der textuellen Sprache automatisch entsprechende graphische Elemente in der Flow Chart-Notation generiert werden, welche die Funktionsschnittstelle der entsprechenden Unterprogramme enthalten. Dadurch ist es möglich, dass aus schon vorhandenen Unterprogrammen der textuellen Sprache oder aus zusätzlichen Unterprogrammen, die in die textuelle Sprache eventuell vom Maschinenbauer eingebracht wurden, automatisch Icons und die dazugehörigen Masken vom System generiert werden und dem Anwender im Flow Chart-Editor zur Verfügung gestellt werden. Die Funktionsschnittstelle und die Übergabeparameter der Unterprogramme der textuellen Sprache werden dabei automatisch für die Flow Chart Icons generiert. Durch diesen Mechanismus lassen sich leicht von OEM-Kunden (Original Equipment Manufacturer) schon in textueller Sprache vorliegende Unterprogramme in den Flow Chart-Editor übernehmen. Damit wird dem .Endanwender für seine Flow Chart-Programmierung ein angepasster und erweiterter Sprachvorrat an Icons zur Verfügung gestellt.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass die automatisch generierten grafischen Elemente vom Anwender als Sprachelemente des Flow Charts verwendet werden. Dadurch, dass der Anwender die automatisch generierten Icons als normale Sprachelemente des Flow Chart-Editors verwenden kann, wird der ihm zur Verfügung stehende Sprachvorrat an Flow Chart-Elementen, d.h. an Icons, erweitert. Somit wird die Flexibilität und Ausdrucksmöglichkeit bezüglich der Programmierung von Applikationen für den Anwender erhöht.

10

15

5

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass als textuelle Sprache Structured Text nach IEC 6-1131 verwendet wird. Dadurch, dass mit IEC 6-1131 eine genormte Sprache auf der Ebene der textuellen Sprache verwendet wird, ist der Austausch bzw. die Kopplung mit anderen Programmiersystemen sehr leicht möglich. Außerdem wird durch die Verwendung von IEC 6-1131 als Zwischensprache die Portierung auf unterschiedliche Zielsysteme sehr erleichtert.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt

20

25

30

darin, dass ein Anwender zum Formulieren von Bedingungen beliebig zwischen den Darstellungsformen textuelle Sprache, Kontaktplan (KOP) und/oder Funktionsplan (FUP) wechseln kann. Dadurch, dass auf der Structured Text-Ebene IEC 6-1131 als textuelle Sprache verwendet wird, können auch andere Darstellungsformen von IEC 6-1131 neben der textuellen Sprache, nämlich Kontaktpläne und/oder Funktionspläne, verwendet werden. Ein Anwender hat somit die Flexibilität, innerhalb dieser Sprachen der SPS-Welt, nämlich Structured Text, Kontaktplan (KOP) oder Funktionsplan (FUP), beliebig zu wechseln. Diese Flexibilität ist insbesondere für die Formulierung von Bedingungen ein großer Vorteil für den Anwender, denn er kann sich die Darstellungs- bzw. Beschreibungsform wählen, in der er

Problem angemessen ist. Üblicherweise verwendet ein Anwender für die Darstellung von binären Verknüpfungen Kontaktpläne

die meiste Erfahrung hat, oder die dem zugrunde liegenden

(KOP) und/oder Funktionspläne (FUP) und für die Formulierung von arithmetischen Berechnungen Structured Text.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation als Sprachelemente mindestens eine Schleife und/oder mindestens eine Parallel-verzweigung vorhanden sind. In den heutzutage gängigen Flow Chart-Editoren werden Schleifen und oft auch Verzweigungen mit Hilfe von Sprungmarken dargestellt. Durch die Verwendung von Sprüngen (Goto-Problematik!) und die dazugehörigen Zielmarken wird die Programmgestaltung aber sehr unübersichtlich und schwer nachvollziehbar. Dadurch, dass dem Anwender als eigene Sprachelemente Schleifen und Parallelverzweigung zur Verfügung stehen, wird die Programmerstellung und auch die Lesbarkeit der Programme erheblich vereinfacht.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass innerhalb der jeweiligen Parallelverzweigung die einzelnen Befehle im selben Interpolatortakt gestartet werden. Dadurch, dass alle Zweige des Sprachkonstrukts Parallelverzweigung im selben Interpolatortakt bedient werden, ist eine quasi parallele Abarbeitung der in den einzelnen Zweigen des Parallelverzweigungs-Konstrukts enthaltenen Befehle möglich. Neben der sequentiellen wird somit auch die parallele Abarbeitung von Befehlen ermöglicht und durch adäquate Sprachmechanismen in der Programmierumgebung für den Anwender unterstützt.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation die Funktionsblöcke durch Maskeneingabe parametriert werden. Dadurch wird für den Anwender die Eingabe von Parametern in einer übersichtlichen und leicht verständlichen Form ermöglicht. Für jeden Typ von Funktionsblock existieren Standardmasken, die einem Anwender nur die für den aktuellen Typ möglichen Parametereingaben erlauben. Die Gefahr von fehlerhaften Eingaben wird durch diese Kontextsensitivität reduziert.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation Funktionsblöcke zu Modulen zusammengefasst werden, die wiederum als Funktionsblöcke erscheinen. Dadurch wird die Übersichtlichkeit des Programmablaufs im Flow Chart für den Anwender erhöht. Ein Anwender kann nämlich logisch zusammengehörende Funktionsblöcke zu einem Modul zusammenfassen und kapseln, wobei dieses Modul wiederum als Funktionsblock im Flow Chart-Editor, d.h. als Icon, erscheint. Durch diesen Mechanismus der Zusammenfassung und Kapselung wird aber nicht nur die Übersichtlichkeit im Ablauf erhöht, auch der Programmablauf lässt sich dadurch strukturieren.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation ineinander geschachtelte Module möglich sind. Das heißt, ein Modul kann wiederum als Element ein oder mehrere Module enthalten. Module können sozusagen wiederum als Unterprogramme in anderen Modulen verwendet werden, dadurch wird die Übersichtlichkeit und die Struktur des Programmablaufs im Flow Chart erhöht.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation dem Anwender in den Funktionsblöcken für die Variablenzuweisung jeweils mehrere Zuweisungen möglich sind. Dadurch, dass der Anwender in einem Funktionsblock, d.h. in einem Icon, mehrere Variablenzuweisungen nacheinander eingeben kann und nicht für jede Variablenzuweisung einen neuen Funktionsblock benötigt, wird zum einen die Übersichtlichkeit erhöht, zum anderen wird aber auch das Programmierprinzip der hohen Kohäsion unterstützt, da der Anwender seine Variablenzuweisungen, die sinnvollerweise zu diesem Funktionsblock gehören, auch in diesem einen Funktionsblock gebündelt vornehmen kann.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation die Funktionsblöcke, die Funktionen repräsentieren, die eine Zeitdauer beanspru-

20

35

chen, Weiterschaltbedingungen enthalten. Funktionen, die eine Zeitdauer beanspruchen, sind z.B. Referenzpunktfahren, Beschleunigen oder Achspositionieren. Solche Funktionen bzw. ihr Zusammenwirken können Anwender mit Hilfe der Weiterschaltbedingungen synchronisieren. Einem Anwender steht somit mit Hilfe der Weiterschaltbedingungen ein Synchronisationsmechanismus zur Verfügung, der es ihm erlaubt, komplexe Bewegungen und Zusammenhänge mehrerer Achsen zu synchronisieren.

Define weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass die grafischen Elemente des Flow Charts automatisch positioniert werden. Wenn ein Anwender ein neues Icon im Flow Chart-Editor darstellen will, wird es automatisch an der Stelle positioniert, die als nächstes dem logischen Programmablauf entspricht. Dadurch, dass ein Anwender die generierten Icons nicht selbst positionieren muss, wird seine Arbeitseffizienz gesteigert.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass die Icons des Flow Charts automatisch miteinander verbunden werden. Auch hierin liegt eine Steigerung der Arbeitseffizienz des Anwenders, da er die Icons nicht nachträglich per Hand miteinander verbinden muss.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass das Flow Chart in der Anzeige verkleinert oder vergrößert dargestellt werden kann. Durch diese Zoom-Funktionalität wird für den Anwender die Übersichtlichkeit der Diagramme erhöht und außerdem kann er bestimmte Programmabläufe, die ihn momentan interessieren, durch Vergrößerung graphisch hervorheben.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass durch Markierungen in der textuellen Sprache eine Rückübersetzung in Flow Chart-Notation möglich ist. Durch die Verwendung von syntaktischen und geometrischen Informationen, die in Form von Markierungen erfolgen, ist es möglich, aus der textuellen Sprache in die Flow Chart-Notation eine Rückübersetzung vorzunehmen. Diese Rückübersetzungsmöglichkeit hat für den Anwender den Vorteil, dass Änderungen, die auf der Ebene der textuellen Sprache eingegeben werden, unmittelbar im Flow Chart-Editor in der Flow Chart-Notation nachgezogen werden können und somit für den Anwender in den Flow Chart-Diagrammen sichtbar sind. Solche rückübersetzten Programme kann der Anwender dann auf der Graphikebene mit Hilfe des Flow Chart-Editors weiterbearbeiten und daraus im weiteren Vorgehen Steuerungscode erzeugen.

Gemäß der Erfindung wird die oben genannte Aufgabe für eine Einrichtung der eingangs genannten Art durch die folgenden aufeinander folgenden Elemente gelöst:

15

10

- a) aus dem Flow Chart ist eine textuelle Sprache erzeugbar,
- b) die textuelle Sprache ist in einen prozessorunabhängigen Zwischencode kompilierbar,

20

c) der prozessorunabhängige Zwischencode ist in einen Speicherbereich der Steuerung ladbar,

25

30

35

d) der geladene prozessorunabhängige Zwischencode ist durch den Prozessor in einen ablauffähigen Prozessorcode umsetzbar,

wobei, dem Anwender auf einem zugehörigen Display im Flow Chart-Editor, in Abhängigkeit von der zugrundeliegenden Maschinen- bzw. Hardwarekonfiguration adäquate Sprachmechanismen zur Verfügung gestellt sind.

Dadurch, dass aus den Flow Chart-Diagrammen in einem Zwischenschritt eine textuelle Sprache erzeugbar ist, hat der Anwender die Möglichkeit, bereits auf dieser Ebene der textuellen Sprache Plausibilitätsüberprüfungen durchzuführen. Er kann aber auch weitere Sprachelemente, die in der textuellen

Sprache vorliegen, zu seiner Anwendung hinzubinden. Dadurch, dass die textuelle Sprache in einem weiteren Zwischenschritt in einen prozessorunabhängigen Zwischencode kompilierbar ist, bleibt die angesprochene Flexibilität für den Anwender weiterhin erhalten. Auch auf dieser Zwischencodeebene kann der Anwender Plausibilitätschecks bzw. ein Debugging durchführen. Der letztendlich in der Steuerung ablaufende Prozessorcode ist aus dem prozessorunabhängigen Zwischencode generierbar, dadurch kann das Target der Anwendung erst zu einem sehr späten Zeitpunkt festgelegt werden. Durch die Zwischenschritte bei der Codegenerierung können außerdem sehr leicht unterschiedliche Ziel-Hardwaren bedient werden.

Ein weiterer Vorteil der vorliegenden Erfindung liegt darin, dass aus der zugrunde liegenden Maschinenkonfigurierung bzw. Maschinenprojektierung aktuelle und adäquate Sprachmechanismen abgeleitet werden, die im Flow Chart-Editor, in Form von Icons, dem Anwender zur Verfügung gestellt werden. Dadurch wird einem Anwender eine Programmierumgebung zur Verfügung gestellt, die auf die zugrunde liegende Hardware abgestimmt ist und somit optimal den vorliegenden Anforderungen und Randbedingungen genügt. Der Sprachvorrat des Flow Chart-Editors adaptiert sich somit selbständig an die vorhandenen HW-Gegebenheiten (z.B. die zugrunde liegende Maschinenkonfiguration).

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass aus anwenderdefinierten Unterprogrammen der textuellen Sprache automatisch entsprechende grafische Elemente in der Flow Chart-Notation generierbar sind, welche die Funktionsschnittstelle der entsprechenden Unterprogramme enthalten. Dadurch ist es möglich, dass aus schon vorhandenen Unterprogrammen der textuellen Sprache oder aus zusätzlichen Unterprogrammen, die in die textuelle Sprache eventuell vom Maschinenbauer eingebracht wurden, automatisch grafische Elemente (Icons) und die dazugehörigen Masken vom System generiert werden und dem Anwender im Flow Chart-Editor zur Verfür

gung gestellt werden. Die Funktionsschnittstelle und die Übergabeparameter der Unterprogramme der textuellen Sprache werden dabei automatisch für die Flow Chart Icons generiert. Durch diesen Mechanismus lassen sich leicht von OEM-Kunden (Original Equipment Manufacturer) schon in textueller Sprache vorliegende Unterprogramme in den Flow Chart-Editor übernehmen. Damit wird dem Endanwender für seine Flow Chart-Programmierung ein angepasster und erweiterter Sprachvorrat an Icons zur Verfügung gestellt.

10

15

5

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass die automatisch generierten grafischen Elemente vom Anwender als Sprachelemente des Flow Charts verwendbar sind. Dadurch, dass der Anwender die automatisch generierten Icons als normale Sprachelemente des Flow Chart-Editors verwenden kann, wird der ihm zur Verfügung stehende Sprachvorrat an Flow Chart-Elementen, d.h. an Icons, erweitert. Somit wird die Flexibilität und Ausdrucksmöglichkeit bezüglich der Pro-

grammierung von Applikationen für den Anwender erhöht.

20

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass als textuelle Sprache IEC 6-1131 verwendbar ist. Dadurch, dass mit IEC 6-1131 eine genormte Sprache auf der Ebene der textuellen Sprache verwendbar ist, ist der Austausch bzw. die Kopplung mit anderen Programmiersystemen sehr leicht möglich. Außerdem wird durch die Verwendung von IEC 6-1131 als Zwischensprache die Portierung auf unterschiedliche Zielsysteme sehr erleichtert.

- 30 Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass für einen Anwender zum Formulieren von Bedingungen ein beliebiger Wechsel zwischen den Darstellungsformen textuelle Sprache, Kontaktplan und/oder Funktionsplan vorgesehen ist. Dadurch, dass auf der Structured Text-Ebene
- 35 IEC 6-1131 als textuelle Sprache verwendbar ist, können auch andere Darstellungsformen von IEC 6-1131 neben der textuellen Sprache, nämlich Kontaktpläne und/oder Funktionspläne, ver-

wendet werden. Ein Anwender hat somit die Flexibilität, innerhalb dieser Sprachen der SPS-Welt, nämlich Structured Text, Kontaktplan (KOP) oder Funktionsplan (FUP), beliebig zu wechseln. Diese Flexibilität ist insbesondere für die Formulierung von Bedingungen ein großer Vorteil für den Anwender, denn er kann sich die Darstellungs- bzw. Beschreibungsform wählen, in der er die meiste Erfahrung hat, oder die dem zugrunde liegenden Problem angemessen ist. Üblicherweise verwendet ein Anwender für die Darstellung von binären Verknüpfungen Kontaktpläne (KOP) und/oder Funktionspläne (FUP) und für die Formulierung von arithmetischen Berechnungen Structured Text.

*

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation als Sprachelemente mindestens eine Schleife und/oder mindestens eine Parallel-verzweigung vorhanden sind. In den heutzutage gängigen Flow Chart-Editoren werden auf den Displays Schleifen und oft auch Verzweigungen mit Hilfe von Sprungmarken dargestellt. Durch die Verwendung von Sprüngen (Goto-Problematik!) und die dazugehörigen Zielmarken wird die Programmgestaltung aber sehr unübersichtlich und schwer nachvollziehbar. Dadurch, dass dem Anwender als eigene Sprachelemente Schleifen und Parallelverzweigung zur Verfügung stehen, wird die Programmerstellung und auch die Lesbarkeit der Programme erheblich vereinfacht.

()

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass innerhalb der jeweiligen Parallelverzweigung die einzelnen Befehle im selben Interpolatortakt startbar sind. Dadurch, dass alle Zweige des Sprachkonstrukts Parallelverzweigung im selben Interpolatortakt bedient werden, ist eine quasi parallele Abarbeitung der in den einzelnen Zweigen des Parallelverzweigungs-Konstrukts enthaltenen Befehle möglich. Neben der sequentiellen wird somit auch die parallele Abarbeitung von Befehlen ermöglicht und durch adäquate Sprachmechanismen in der Programmierumgebung für den Anwender unterstützt.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation die Funktionsblöcke durch Maskeneingabe parametriert sind. Dadurch wird für den Anwender die Eingabe (durch Eingabehilfsmittel wie Maus, Tastatur) und die Darstellung (am Display) von Parametern in einer übersichtlichen und leicht verständlichen Form ermöglicht. Für jeden Typ von Funktionsblock existieren Standardmasken, die einem Anwender nur die für den aktuellen Typ möglichen Parametereingaben erlauben. Die Gefahr von fehlerhaften Eingaben wird durch diese Kontextsensitivität reduziert.

10

15

20

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation Funktionsblöcke zu Modulen zusammengefasst sind, die wiederum einen Funktionsblock bilden. Dadurch wird die Übersichtlichkeit des Programmablaufs im Flow Chart für den Anwender erhöht. Ein Anwender kann nämlich logisch zusammengehörende Funktionsblöcke zu einem Modul zusammenfassen und kapseln, wobei dieses Modul wiederum als Funktionsblock im Flow Chart-Editor, d.h. als Icon, erscheint. Durch diesen Mechanismus der Zusammenfassung und Kapselung wird aber nicht nur die Übersichtlichkeit (am Display) im Ablauf erhöht, auch der Programmablauf lässt sich dadurch strukturieren.

30

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation ineinander geschachtelte Module vorgesehen sind. Das heißt, ein Modul kann wiederum als Element ein oder mehrere Module enthalten. Module können sozusagen wiederum als Unterprogramme in anderen Modulen verwendet werden, dadurch wird die Übersichtlichkeit (am Display) und die Struktur des Programmablaufs im Flow Chart erhöht.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation für den Anwender in den Funktionsblöcken für die Variablenzuweisung jeweils mehrere Zuweisungen vorgesehen sind. Dadurch, dass der Anwender

in einem Funktionsblock, d.h. in einem Icon, mehrere Variablenzuweisungen nacheinander eingeben kann und nicht für jede Variablenzuweisung einen neuen Funktionsblock benötigt,
wird zum einen die Übersichtlichkeit erhöht, zum anderen wird
aber auch das Programmierprinzip der hohen Kohäsion unterstützt, da der Anwender seine Variablenzuweisungen, die sinnvollerweise zu diesem Funktionsblock gehören, auch in diesem
einen Funktionsblock gebündelt vornehmen kann.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass in der Flow Chart-Notation für diejenigen Funktionsblöcke, die Funktionen repräsentieren, die eine Zeitdauer beanspruchen, Weiterschaltbedingungen vorgesehen sind. Funktionen, die eine Zeitdauer beanspruchen, sind z.B. Referenzpunktfahren, Beschleunigen oder Achspositionieren. Solche Funktionen bzw. ihr Zusammenwirken können Anwender mit Hilfe der Weiterschaltbedingungen synchronisieren. Einem Anwender steht somit mit Hilfe der Weiterschaltbedingungen ein Synchronisationsmechanismus zur Verfügung, der es ihm erlaubt, komplexe Bewegungen und Zusammenhänge mehrerer Achsen zu synchronisieren.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass die grafischen Elemente des Flow Charts automatisch positionierbar sind. Wenn ein Anwender ein neues Icon im Flow Chart-Editor auf dem Display darstellen will, wird es automatisch an der Stelle positioniert, die als nächstes dem logischen Programmablauf entspricht. Dadurch, dass ein Anwender die generierten Icons nicht selbst positionieren muss, wird seine Arbeitseffizienz gesteigert.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass die grafischen Elemente des Flow Charts automatisch miteinander verbindbar sind. Auch hierin liegt eine Steigerung der Arbeitseffizienz des Anwenders, da er die Icons nicht nachträglich per Hand (d.h. mit Tastatur, Maus oder anderen Eingabehilfsmitteln) miteinander verbinden muss.

25

30

35

Verfügung gestellt werden.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt darin, dass das Flow Chart (MCC) in der Anzeige verkleinert oder vergrößert darstellbar ist. Durch diese Zoom-Funktionalität wird für den Anwender die Übersichtlichkeit der Diagramme am Display erhöht und außerdem kann er bestimmte Programmabläufe, die ihn momentan interessieren, durch Vergrößerung graphisch hervorheben.

Eine weitere vorteilhafte Ausgestaltung der Erfindung liegt

10 darin, dass durch Markierungen in der textuellen Sprache eine Rückübersetzung in Flow Chart-Notation (MCC) vorgesehen ist. Durch die Verwendung von syntaktischen und geometrischen Informationen, die in Form von Markierungen erfolgen, ist es möglich, aus der textuellen Sprache in die Flow Chart-15 Notation eine Rückübersetzung vorzunehmen. Diese Rückübersetzungsmöglichkeit hat für den Anwender den Vorteil, dass Änderungen, die auf der Ebene der textuellen Sprache eingegeben werden, unmittelbar im Flow Chart-Editor in der Flow Chart-Notation nachgezogen werden können und somit für den Anwender 20 in den Flow Chart-Diagrammen auf dem Display sichtbar sind. Solche rückübersetzten Programme kann der Anwender dann auf der Graphikebene mit Hilfe des Flow Chart-Editors weiterbearbeiten und daraus im weiteren Vorgehen Steuerungscode für die Steuerung erzeugen.

Die wesentlichen mit der Erfindung erzielten Vorteile bestehen also insbesondere darin, dass ein Anwender in einer einheitlichen Programmierumgebung sowohl Bewegungssteuerungsaufgaben (Motion Control) und Prozesssteuerungsaufgaben (SPS-Aufgaben) in einer jeweils angemessenen Form programmieren kann. Weiterhin ist von Vorteil, dass die Programmierumgebung sich projektsensitiv verhält, d.h. dass dem Anwender in Abhängigkeit von der zugrunde liegenden Hardware bzw. Maschinenprojektierung zusätzliche dedizierte Sprachelemente zur

Ein weiterer Vorteil liegt darin, dass der Anwender sowohl für die sequentielle als auch für die zyklische Programmierung der Steuerungsabläufe unterstützt wird. Dadurch, dass eine geschachtelte Modulbildung von Funktionsblöcken zur Verfügung steht, hat der Anwender den Vorteil, die Übersichtlichkeit und die Struktur seiner Programme zu erhöhen, da er die Designkriterien, Lokalität und hohe Kohäsion sehr leicht umsetzen kann.

10 Ein weiterer sehr großer Vorteil liegt darin, dass aus Unterprogrammen, die in der textuellen Sprache vorliegen, für den Flow Chart-Editor Icons generiert werden, die die Funktionsschnittstelle der entsprechenden Unterprogramme automatisch enthalten. Wenn ein OEM-Kunde bereits Unterprogramme in der textuellen Sprache erstellt hat, so können diese Unterprogramme automatisch durch entsprechende Icons den Sprachvorrat des Flow Chart-Editors erweitern.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung 20 dargestellt und wird im folgenden erläutert.

Dabei zeigen:

35

- FIG 1 in einer Schemadarstellung ein Engineering-System,

 das zugehörige Run-Time-System und den zu steuernden technischen Prozess,
- FIG 2 zeigt in einem Übersichtsbild Elemente des Engineering-Systems und der Steuerung sowie ihre Beziehungen untereinander,
 - FIG 3 zeigt ebenfalls in Form eines Übersichtsbildes den programmtechnischen Zusammenhang zwischen Elementen des Engineering-Systems und des Run-Time-Systems,
 - FIG 4 zeigt ein einfaches Diagramm in Flow Chart-Notation,

20

25

30

35

- FIG 5 zeigt ein komplexes Diagramm in Flow Chart-Notation mit den Kontrollstrukturen while und if,
- FIG 6 zeigt ebenfalls ein komplexes Diagramm in Flow

 Chart-Notation mit dem Sprachkonstrukt Parallelverzweigung (sync),
 - FIG 7 zeigt eine Parametriermaske für den Befehl "positioniere Achse",
- FIG 8 zeigt eine Auswahl von Sprachelementen (so genannten Icons) des Flow Chart-Editors.

In der Darstellung gemäß FIG 1 wird in Form eines Strukturbildes gezeigt, dass die Steuerung eines technischen Prozesses TP über das Run-Time-System RTS einer industriellen Steuerung erfolgt. Die Verbindung zwischen dem Run-Time-System RTS der Steuerung und dem technischen Prozess TP geschieht bidirektional über den Ein-/Ausgang EA. Die Programmierung der Steuerung und damit das Festlegen des Verhaltens des Run-Time-Systems RTS geschieht im Engineering-System ES. Das Engineering-System ES enthält Werkzeuge für die Konfigurierung, Projektierung und Programmierung für Maschinen bzw. für die Steuerung technischer Prozesse. Die im Engineering-System erstellten Programme werden über den Informationspfad I1 in das Run-Time-System RTS der Steuerung übertragen. Bezüglich seiner Hardware-Ausstattung besteht ein Engineeringsystem ES üblicherweise aus einem Computersystem mit Grafikbildschirm (z.B. Display), Eingabehilfsmitteln (z.B. Tastatur und Maus), Prozessor, Arbeits- und Sekundärspeicher, einer Einrichtung für die Aufnahme computerlesbarer Medien (z.B. Disketten, CDs) sowie Anschlusseinheiten für einen Datenaustausch mit anderen Systemen (z.B. weiteren Computersystemen, Steuerungen für technische Prozesse) oder Medien (z.B. Internet). Eine Steuerung besteht üblicherweise aus Eingabe- und Ausgebeeinheiten, sowie aus Prozessor und Programmspeicher.

10

15

20

25

30

35

In der Darstellung gemäß FIG 2 werden in Form eines Übersichtsbildes Elemente des Engineering-Systems und der Steuerung sowie ihr Zusammenspiel dargestellt. Dabei werden die einzelnen Elemente in Form von Rechtecken dargestellt, die im Engineering-System enthaltene Datenablage wird in Form des üblicherweise verwendeten Datenspeichersymbols dargestellt. Durch Pfeile (unidirektional oder bidirektional) wird der datenlogische bzw. der ablauflogische Zusammenhang zwischen den Elementen dargestellt. Die obere Hälfte von FIG 2 zeigt die Elemente des Engineering-Systems, nämlich den MCC-Editor, den ST-Compiler mit Programmiergebung, den Konfigurations-Server KS und die Maschinenprojektierung sowie eine Datenablage. Die Zugehörigkeit dieser Elemente zum Engineering-System wird durch Umrandung dargestellt. Die Steuerung beinhaltet den Codeumsetzer und die Programmverarbeitung. Auch die Elemente der Steuerung, die sich im unteren Abschnitt von FIG 2 befinden, sind umrandet. Sowohl das Engineering-System als auch die Steuerung können noch weitere Elemente beinhalten, sie sind aber aus Gründen der Übersichtlichkeit nicht dargestellt.

Im MCC-Editor (MCC steht für Motion Control Chart) werden die graphischen Programmabläufe erzeugt. Die Sprachelemente des Editors, d.h. die Icons, können z.B. über eine Befehlsleiste im Bildschirm, die mit Hilfe einer Maus bedient wird oder denkbare andere Eingabehilfsmittel mit dem Editor erzeugt und dargestellt werden. Ein Anwender kann mit Hilfe des MCC-Editors Funktionsblöcke (Icons) und Kontrollstrukturen zu einem Flow Chart verknüpfen, d.h. er kann den MCC-Editor als graphisches Programmier-Tool für die Erstellung von Programmen für Bewegungssteuerungen und/oder Prozesssteuerungen verwenden. Aus dem Flow Chart wird ein textuelles Programm bzw. eine textuelle Sprache (üblicherweise Structured Text nach IEC 6-1131) erzeugt. Dieser Structure Text-Code (ST-Code) wird vom Structured Text-Compiler (ST-Compiler, der Teil der Programmierumgebung ist) in einen prozessorunabhängigen Zwischencode kompiliert. Dieser Zwischencode wird auf die Steue-

10

15

20

25

30

rung geladen und dort vom Codeumsetzer in ablauffähigen Prozessorcode umgesetzt. Dieser wird von der Programmverarbeitung innerhalb der Steuerung zum Ablauf gebracht. Durch die unidirektionalen Pfeile im linken Abschnitt von FIG 2 werden die Schritte der Code- bzw. Programmumsetzung dargestellt. Parallel zu den drei von oben nach unten verlaufenden unidirektionalen Pfeilen, die diese Umsetzung darstellen, verlaufen jeweils zwischen den Elementen MCC-Editor, ST-Compiler, Codeumsetzer und Programmverarbeitung drei bidirektionale Pfeile, die Debug-Schnittstellen bzw. die Möglichkeit einer Programmbeobachtung darstellen. Zwischen Programmverarbeitung und Codeumsetzer existiert eine Debug-Schnittstelle auf Prozessorcode-, d.h. auf Objektcodeebene, eine weitere Debug-Schnittstelle existiert zwischen dem Codeumsetzer und dem ST-Compiler, diese Debug-Schnittstelle befindet sich auf Zwischencodeebene. Zwischen dem ST-Compiler und dem MCC-Editor befindet sich eine weitere Debug- bzw. Programmbeobachtungsschnittstelle auf Ebene von Structured Text (ST-Code).

In FIG 2 sind als weitere Elemente des Engineering-Systems die Maschinenprojektierung und ein Konfigurations-Server KS dargestellt. In der Maschinenprojektierung wird mit Hilfe geeigneter Werkzeuge die Auslegung der Hardware bzw. der zugrunde gelegten Maschine vollzogen. Das heißt, in der Maschinenprojektierung wird z.B. festgelegt, welche Achstypen in welcher Anzahl physikalisch vorhanden sind. Diese Maschineninformationen werden über den Konfigurations-Server KS in den MCC-Editor eingespeist. Die Übertragung dieser Informationen wird durch die unidirektionalen Pfeile I2 und I3 dargestellt. Weiterhin beinhaltet der Konfigurations-Server KS weitere relevante Konfigurationsinformationen für das System, die z.B. auch für die Lizenzierung von zugehörigen Softwarekomponenten verwendet werden können.

35 Eine Datenablage DA, dargestellt durch das gängige Datenspeichersymbol, beinhaltet drei Aspekte: Zum einen das vom MCC-Editor für ein Flow Chart erzeugtes Objektmodell, als zweites

10

15

20

25

30

35

den dazugehörigen Structured Text und der dritte Inhalt der Datenablage DA ist der aus dem Structured Text generierte Zwischencode. Die Datenablage DA steht in bidirektionaler Verbindung zum MCC-Editor und ST-Compiler, dargestellt durch die bidirektionalen Informationspfeile I4 und I5.

Die Darstellung gemäß FIG 3 zeigt als Übersichtsbild die vorhandenen Abstraktionsebenen aus Sicht des Programmcodes. Die unterschiedlichen Programmcode-Ebenen sind als Rechtecke dargestellt. Die oberste Ebene ist die MCC-Ebene, in der die Flow Chart-Programme erzeugt werden. Die nächstuntergeordnete Codeebene ist die Structured Text-Ebene ST. In die ST-Ebene gelangt man aus der MCC-Ebene durch eine entsprechende Codegenerierung, dargestellt durch einen Pfeil vom MCC-Block zum ST-Block. Unterhalb der Structured Text-Ebene ST liegt die Zwischencode-Ebene. Durch einen Compiler wird aus dem Structured Text-Programm ein prozessorunabhängiger Zwischencode kompiliert, dargestellt durch den Pfeil vom ST-Block zum Block mit dem Namen Zwischencode. Unterhalb der Zwischencode-Ebene liegt die unterste Codeebene, nämlich die Objektcode-Ebene, die den ablauffähigen Prozessorcode beinhaltet. Aus dem Zwischencode wird über einen Umsetzer der Objektcode erzeugt, ebenfalls dargestellt durch einen Pfeil vom Zwischencodeblock zum Objektcodeblock. Von der Objektcode-Ebene gehen rechtwinklig abgewinkelte Pfeile zurück zur Structured Text-Codeebene ST und zur Flow Chart-Ebene MCC. Dadurch ist angedeutet, dass auf diesen Ebenen Test- und Programmverfolgungsaktivitäten stattfinden können, auf der Basis des Objektcodes. Durch den fetten Doppelpfeil zwischen der MCC- und der ST-Ebene wird angedeutet, dass zwischen diesen beiden Ebenen Aufrufe, Task-Steuerbefehle und Variablenaustauschfunktionen möglich sind. Die gestrichelte Linie in FIG 3 zeigt die Grenze zwischen dem Engineering System ES und dem Run-Time-System RTS der Steuerung (S; FIG 2) an. Die Grenze verläuft durch die Zwischencode-Ebene, alles, was oberhalb der gestrichelten Linie ist, gehört zum Engineering System ES, alles, was un-

10

30

terhalb der gestrichelten Linie stattfindet, gehört zum Run-Time-System RTS.

Weiterhin wird in FIG 3 gezeigt, wie ein Programmierer oder Anwender (am linken Bildrand dargestellt durch ein stilisiertes Strichmännchen) im Engineering System ES Eingaben einbringen kann. Er kann zum einen auf der MCC-Ebene mit Hilfe der graphischen Programmierung Flow Charts erzeugen, zum anderen kann er auf der Structured Text-Ebene ST durch eine textuelle Programmierung Programme erstellen. Beide Eingabemöglichkeiten sind durch Pfeile vom Strichmännchen zum MCC-Block bzw. zum ST-Block dargestellt.

Darstellung gemäß FIG 4 zeigt einen einfachen Programmablauf
für die Programmierung von Achsbewegungen. Jedes Flow Chart
beginnt mit einem Startknoten und endet mit einem Endeknoten.
Diese Programmbegrenzungssymbole tragen die Bezeichnung
"Start" bzw. "Ende". Start- und Endesymbole werden jeweils
durch ein Rechteck dargestellt, dessen Stirnseiten durch zwei
Halbkreise ausgebildet sind. Die Programmbefehle werden durch
Rechtecke dargestellt, die einen Bezeichner und ein graphisches Symbol beinhalten, welches den hinterlagerten Befehl
repräsentiert.

Die Flow Chart-Symbole werden üblicherweise über eine Eingabeleiste mit Hilfe einer Maus im Flow Chart-Editor erzeugt, wobei auch andere Eingabehilfsmittel wie z.B. ein Touch Pad denkbar sind. Alternativ wäre auch eine Bedienung über Tastatur mit oder ohne Maus möglich.

Die Flow Chart-Symbole werden vom Flow Chart-Editor defaultmäßig untereinander ausgerichtet und durch eine Linie miteinander verbunden.

35 Im Flow Chart nach FIG 4 wird nach dem Start eine Gleichlaufachse freigeschaltet, danach wird auf ein Synchronisierungssignal gewartet und als nächster und letzter Befehl des Flow Charts wird für eine Gleichlaufachse eine Kurvenscheibe eingeschaltet. Die Befehlsequenz von FIG 4 wird beendet durch das Endesymbol.

Die Darstellung gemäß FIG 5 zeigt ein komplexes Flow Chart 5 mit Kontrollstrukturen für eine While-Schleife und für das If-Konstrukt. Das While- und das If-Konstrukt werden jeweils durch sechseckige, wabenförmige Symbole dargestellt. Ansonsten werden im Programmablauf, wie er in FIG 5 dargestellt ist, die gleichen Typen von Symbolen verwendet, wie sie schon 10 aus FIG 4 bekannt sind. Auch das Flow Chart nach FIG 5 beginnt mit dem Start- und endet mit dem Endesymbol. Unmittelbar nach dem Startknoten folgt ein Befehl, der die Task "motion 3" startet. Dieser Befehl ist vom Typ "Starte Task". Das 15 Rechteck für diesen Befehl enthält deshalb auch das zugehörige entsprechende Symbol, welches das Starten einer Task darstellt. Als nächstes im Programmablauf, wie er in FIG 5 dargestellt ist, folgt das sechseckige wabenförmige While-Konstrukt. Solange die im While-Konstrukt angegebene Bedinqung true ist, werden die auf das While-Konstrukt folgenden 20 Befehle zyklisch nacheinander ausgeführt. Das Ende der Befehlsfolge einer While-Schleife wird dargestellt durch einen abgewinkelten Pfeil, der vom letzten Symbol des while-Konstrukts (in FIG 5 ist dies der Befehl vom Typ "Getriebe-25 gleichlauf aus", bezogen auf eine Gleichlaufachse) von unten abgeht und auf der linken Seite von FIG 5 zurück in das While-Konstrukt mündet. Ist die Bedingung im While-Konstrukt nicht mehr erfüllt, dann wird die Befehlsfolge, die zum While-Konstrukt gehört, nicht mehr ausgeführt. In FIG 5 wird 30 dies dargestellt durch eine rechtwinklige Verbindungslinie, die das While-Symbol auf der rechten Seite verlässt und rechter Hand die zum While-Symbol gehörende Symbolbefehlsfolge umgeht und in auf das dieser Befehlsfolge unmittelbar folgen-

35

Wenn aber die While-Bedingung erfüllt ist, wird folgende Befehlsfolge abgearbeitet: Unmittelbar nach dem While-Konstrukt

de Symbol einmündet, in FIG 5 ist dies das Ende-Symbol.

10

15

20

, 25

30

35

folgt ein Befehl, der das Warten auf eine Bedingung repräsentiert. Auch dieser Befehl enthält ein entsprechendes mnemotechnisches grafisches Symbol, das den Wartevorgang graphisch darstellt. Als nächstes folgt ein Befehl, der die Task "motion 2" startet. Auch dieser Befehl ist vom Typ "Starte Task" und enthält das entsprechende graphische Symbol. Nach diesem Befehl folgt das If-Konstrukt, das genauso wie das While-Konstrukt durch ein sechseckiges, wabenförmiges Symbol dargestellt wird. Ist die If-Bedingung (in FIG 5 dargestellt durch "error <> 0"), erfüllt dann wird im True-Zweig die Befehlsfolge weiter abgearbeitet, ansonsten, wenn die Bedingung nicht erfüllt ist, wird die Befehlsfolge im False-Zweig weiter abgearbeitet. Im True-Zweig der If-Bedingung folgt als nächster Befehl ein Befehl, der die Task "motion 2" stoppt. Dieser Befehl ist vom Typ "Stoppe Task" Darauf folgt ein Befehl, der die Task "motion 3" stoppt. Auch dieser Befehl ist vom Typ "Stoppe Task". Diese Befehle werden außerdem durch dazugehörende entsprechende Symbole repräsentiert. Als nächstes in der Befehlsfolge kommen zwei "Stoppe Achs"-Befehle. Im ersten solchen Befehl wird eine Drehzahlachse gestoppt, im darauffolgenden eine Positionierachse, auch diese "stoppe Achs"-Befehle werden durch dazugehörende entsprechende graphische Symbole repräsentiert. Der nächste und zugleich der letzte Befehl in FIG 5 bezieht sich auf eine Achse mit dem Namen "Gleichlaufachse", nämlich auf das Ausschalten des Getriebegleichlaufes ("Getriebegleichlauf aus"), auch dieser Befehl wird durch ein entsprechendes graphisches Symbol repräsentiert. Die Symbole des Flow Charts sind durch Linien miteinander verbunden, womit der Programmablauf dargestellt wird. Von diesem Befehl, der den letzten Befehl im While-Konstrukt darstellt, geht ein rechtwinklig abgewinkelter Pfeil zurück zu diesem While-Konstrukt. Dadurch wird das zyklische Abarbeiten der Befehlsfolge dargestellt. Im While-Konstrukt wird geprüft, ob die Bedingung erfüllt ist. Ist sie erfüllt oder weiterhin erfüllt, wird die Befehlsfolge noch einmal durchlaufen. Ist sie nicht erfüllt, wird das While-Konstrukt verlassen und, wie beispielhaft in FIG 5 darge-

10

15

20

/ 25

30

35

stellt, mit dem Ende-Symbolfortgefahren, d.h. der durch das Flow Chart dargestellte Programmablauf wird beendet.

Die Darstellung gemäß FIG 6 zeigt ebenfalls ein komplexes Diagramm in Flow Chart-Notation mit dem Sprachkonstrukt Parallelverzweigung (sync). In FIG 6 folgt auf das Start-Symbol ein Befehl, der sich auf eine Drehzahlachse bezieht, nämlich "Achsfreigabe schalten". Auch für diesen Befehl wird im Befehlsrechteck ein graphisches Symbol angegeben, das diesen Befehl repräsentiert. Danach folgt wiederum ein Befehl vom Typ "Achsfreigabe schalten", diesmal aber bezogen auf eine Positionierachse, auch hier ist das dazugehörige entsprechende Symbol angegeben. Der nächstfolgende Befehl ist ein Synchronisationsbefehl "warte auf Signal", in FIG 6 mit "Auto" bezeichnet und mit dem entsprechenden Symbol versehen.

Als nächstes Symbol in FIG 6 folgt das Symbol für die Parallelverzweigung (sync). Dieses Symbol wird ebenfalls wie das While- oder das If-Konstrukt durch ein sechseckiges, wabenförmiges graphisches Element dargestellt. Alle Befehle, die in dem Sektor unmittelbar unter dem Symbol für die Parallelverzweigung angeordnet sind, werden im selben Interpolatortakt gestartet. In FIG 6 sind dies die Befehle "Positioniere Achse", bezogen auf eine Positionierachse (dieser Befehlstyp beinhaltet auch das zugehörige entsprechende graphische Symbol) und ein Befehl vom Typ "Setze Ausgang". Der Befehlstyp "Setze Ausgang" ist ebenfalls durch ein Rechteck dargestellt, dieses Rechteck enthält die Adresse des Ausgangs (%QB40) und das entsprechende Symbol für diesen Setz-Befehl (S steht für Set). Die Befehle, die zu einem Parallelverzweigungssymbol gehören, d.h. die innerhalb desselben Interpolatortakts gestartet werden, sind mit dem Parallelverzweigungssymbol nach oben mit einer Linie verbunden und nach unten sind sie mit einer Doppellinie verbunden. Diese waagrechte Doppellinie zeigt an, dass die parallele Abarbeitung wieder aufgehoben ist und dass mit der Bearbeitung des nachfolgenden Befehls so lange gewartet wird, bis alle Aktionen in der Parallelver-

15

20

25

30

35

zweigung beendet sind. Sie ist somit auch das Ende-Symbol des Parallelverzweigungskonstrukts. Als nächstes folgt ein Befehl vom Typ "Drehzahlvorgabe", der sich auf eine Drehzahlachse bezieht. Darauf folgen zwei Befehle vom Typ "Positioniere Achse", die sich jeweils auf Positionierachsen beziehen. Darauf folgt wieder ein Befehl vom Typ "Stoppe Achse", der sich auf eine Drehzahlachse bezieht. Die Rechtecke, die diese genannten Befehle darstellen, beinhalten natürlich auch wieder entsprechende dazugehörige graphische Symbole. Nach dem Befehl vom Typ "Stoppe Achse", der sich auf die schon genannte Drehzahlachse bezieht, folgt das Ende-Symbol.

Die hier dargestellte Art der Flow Chart-Programmierung unterstützt unterschiedliche Arten der Programmierung. Zum einen wird durch das Parallelverzweigungssymbol mit dem Starten der dazugehörigen Befehle in einem Interpolatortakt eine mehr oder weniger echte Parallelität erreicht, d.h. die Programmierung paralleler Threads wird unterstützt, und ihre dazugehörige Abarbeitung wird ermöglicht. Zum anderen wird die zyklische Programmierung, d.h. auch die zyklische Programmabarbeitung, unterstützt, es kann nämlich dargestellt werden, dass aufeinander folgende Befehle nur angestoßen werden, wobei aber jeweils nicht auf die Abarbeitung des vorhergehenden Befehls gewartet werden muss. Aber auch die Programmierung und die Darstellung solcher sequentiellen Abläufe wäre möglich, dass nämlich bei Anstoß eines Befehls auf die Abarbeitung dieses Befehls gewartet wird, bis der nächste Befehl angestoßen und abgearbeitet wird. Die hier vorgestellte Flow Chart-Programmierung ist somit für einen Anwender sehr flexibel anwendbar und für unterschiedliche Applikationen einsetzbar.

Die Darstellung gemäß FIG 7 zeigt eine Parametriermaske für den Flow Chart-Befehl "Positioniere Achse". Oben links im oberen Balken der Parametriermaske steht die Bezeichnung des entsprechenden Befehls, in diesem Fall "Positioniere Achse". Der obere Balken beinhaltet auf seiner rechten Seite zwei

10

15

20

Schalter, ein Schalter mit einem Fragezeichen versehen beinhaltet eine Online-Hilfe, der zweite Schalter, mit x versehen, wird für das Schließen der Maske verwendet. Die Parametriermaske beinhaltet unterschiedliche Eingabesektoren. Im obersten Eingabesektor kann die entsprechende Achse ausgewählt werden mit Hilfe eines Eingabemenüs (dargestellt durch einen Eingabeknopf mit einem kleinen auf dem Kopf stehenden Dreieck) können im Eingabefenster die entsprechenden Achsen ausgewählt werden. In diesem obersten Sektor ist links oben auch das zu diesem Befehl dazugehörige graphische Symbol angegeben, nämlich ein auf dem Kopf stehendes Dreieck mit der Spitze nach unten, das waagrecht mittig mit einer dunklen Linie versehen ist, wobei an den Enden dieser Linie jeweils nach unten abgeschrägte weitere kleine Linien angebracht sind. Der nächste und größte Sektor der Parametriermaske stellt die Möglichkeiten dar, Parameter einzugeben. Die Parameter sind, je nach Befehl, unterschiedlich. Sie werden über benamte Reiter, die auf einer Reiterleiste angeordnet sind, wie in gängigen Programmoberflächen üblich, logisch sortiert. Die erste Seite (in FIG 7 ist diese Seite durch den Reiter "Parameter" aufblendbar) trägt üblicherweise die Parameter, die unbedingt zur Parametrierung des Befehls angegeben werden müssen. Für den Befehl "Positioniere Achse" ist ein unbedingter Parameter z.B. die Zielposition einer Achsbewegung.

25

30

35

Die Anzahl und Bedeutung der Reiter ist befehlsabhängig unterschiedlich. In FIG 7 ist dargestellt, dass für den Befehl "Positioniere Achse" neben dem Reiter "Parameter" noch ein Reiter "Dynamic" vorhanden ist. Mit diesem Reiter können für die Beschreibung des dynamischen Verhaltens Eingaben zu Ruck und Beschleunigung sowie zum Geschwindigkeitsprofil gemacht werden. Diese Eingaben können über Eingabefelder und dazugehörigen Menüs gemacht werden. In Abbildung von FIG 7 wurde als Geschwindigkeitsprofil die Trapezform gewählt. Diese Form wurde auch graphisch in der Mitte dieses Eingabesektors stilisiert dargestellt. Im unten darauffolgenden Eingabesektor der Parametriermaske können weitere Eingaben, z.B. für das

Übergangsverhalten, gemacht werden. Im Beispiel von FIG 7 wurde für das Übergangsverhalten "Ablösen" eingegeben. Zusätzlich können Wartebedingungen eingegeben werden, indem das Kästchen "Warten" mit einem Häkchen versehen wird. Zu diesem Synchronisieren können in einem dazugehörenden Eingabefenster weitere Eingaben gemacht werden. Im Beispiel nach FIG 7 wurde "Positionsfenster erreicht" dafür eingegeben. Auch diese Eingaben werden durch stilisiert dargestellte Achsprofile unterstützt. Das untere Ende einer Parametrierachse besteht aus vier Eingabeknöpfen, nämlich einem "OK"-Knopf, einem "Abbrechen"-Knopf, einem "Übernehmen"-Knopf und einem "Hilfe"-Knopf. Mit Hilfe dieser Eingabeknöpfe können Anwender entweder die Eingaben übernehmen, bestätigen, verwerfen oder die Eingabehilfe aufrufen. Mit Hilfe der Wartebedingungen können durch einen Anwender sogenannte Weiterschaltbedingungen spezifiziert werden, die Funktionen (z.B. Referenzpunktfahren oder Achspositionieren) bzw. ihr Zusammenspiel synchronisieren.

20 Solche Parametriermasken existieren dediziert für alle Befehle, die mit Hilfe des Flow Chart-Editors eingegeben und bearbeitet werden können. Der Anwender wird also kontextsensitiv mit Hilfe dieser Parametriermasken bei der Programmierung seiner Bewegungs- und Steuerungsabläufe unterstützt.

25

30

35

5

10

15

Die Darstellung gemäß FIG 8 zeigt eine Auswahl von Sprachelementen (so genannten Icons) des Flow Chart-Editors. Diese Sprachelemente repräsentieren Befehle, die der Anwender bei der graphischen Programmierung im Flow Chart-Editor benutzen kann. Der MCC-Flow Chart-Editor unterstützt folgende Klassen von Befehlen und stellt für die einzelnen Befehle dieser Klassen jeweils entsprechende Symbole zur Verfügung: Start-Befehle, Stop-Befehle, Positionierbefehle, Gleichlaufund Kurvenscheiben-Befehle, Messtaster und SW-Nocken-Befehle, Warte-Befehle, Tasksteuer-Befehle, Befehle für die Manipulierung von Variablen sowie weitere allgemeine Befehle. Außerdem

stellt der MCC-Flow Chart-Editor weitere grafischen Kontrollstrukturen für den grafischen Programmablauf zur Verfügung.

Patentansprüche

1. Verfahren für die Programmierung von industriellen Steuerungen, insbesondere Bewegungssteuerungen, wobei der Anwender mit einem grafischen Editor Kontrollstrukturen und Funktionsblöcke zu einem auf einer Anzeigeeinrichtung visualisierbaren Flow Chart (MCC) verknüpft,

gekennzeichnet durch die aufeinander folgenden Schritte:

10

25

30

5

- e) aus dem Flow Chart wird eine textuelle Sprache (ST) erzeugt,
- f) die textuelle Sprache (ST) wird in einen prozessorunabhängigen Zwischencode kompiliert,
 - g) der prozessorunabhängige Zwischencode wird auf die Steuerung geladen,
- 20 h) der prozessorunabhängige Zwischencode wird in ablauffähigen Prozessorcode umgesetzt,

wobei dem Anwender im Flow Chart-Editor, in Abhängigkeit von der zugrundeliegenden Maschinen- bzw. Hardwarekonfiguration adäquate Sprachmechanismen zur Verfügung gestellt werden.

- 2. Verfahren nach Anspruch 1,
 d a d u r c h g e k e n n z e i c h n e t,
 dass aus anwenderdefinierten Unterprogrammen der textuellen
 Sprache (ST) automatisch entsprechende grafische Elemente in
 der Flow Chart-Notation (MCC) generiert werden, welche die
 Funktionsschnittstelle der entsprechenden Unterprogramme enthalten.
- 35 3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet,

20

25

dass die automatisch generierten grafischen Elemente vom Anwender als Sprachelemente des Flow Charts (MCC) verwendet werden.

- 5 4. Verfahren nach einem der vorstehenden Ansprüche, dad urch gekennzeichnet, dass als textuelle Sprache Structured Text nach IEC 6-1131 verwendet wird.
- 10 5. Verfahren nach Anspruch 4,
 d a d u r c h g e k e n n z e i c h n e t,
 dass ein Anwender zum Formulieren von Bedingungen beliebig
 zwischen den Darstellungsformen textuelle Sprache (ST), Kontaktplan (KOP) und/oder Funktionsplan (FUP) wechseln kann.
 - 6. Verfahren nach einem der vorstehenden Ansprüche, dad urch gekennzeichnet, dass in der Flow Chart-Notation (MCC) als Sprachelemente mindestens eine Schleife und/oder mindestens eine Parallelverzweigung vorhanden sind.
 - 7. Verfahren nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, dass innerhalb der jeweiligen Parallelverzweigung die einzelnen Befehle im selben Interpolatortakt gestartet werden.
- 8. Verfahren nach einem der vorstehenden Ansprüche,
 d a d u r c h g e k e n n z e i c h n e t,
 dass in der Flow Chart-Notation (MCC) die Funktionsblöcke
 30 durch Maskeneingabe parametriert werden.
- Verfahren nach einem der vorstehenden Ansprüche,
 d a d u r c h g e k e n n z e i c h n e t,
 dass in der Flow Chart-Notation (MCC) Funktionsblöcke zu Modulen zusammengefasst werden, die wiederum als Funktionsblöcke erscheinen.

- 10. Verfahren nach Anspruch 9, dad urch gekennzeichnet, dass in der Flow Chart-Notation (MCC) ineinander geschachtelte Module möglich sind.
- 11. Verfahren nach einem der vorstehenden Ansprüche, dad urch gekennzeich net, dass in der Flow Chart-Notation (MCC) dem Anwender in den Funktionsblöcken für die Variablenzuweisung jeweils mehrere 20 Zuweisungen möglich sind.
- 12. Verfahren nach einem der vorstehenden Ansprüche,
 d a d u r c h g e k e n n z e i c h n e t,
 dass in der Flow Chart-Notation (MCC) die Funktionsblöcke,
 die Funktionen repräsentieren, die eine Zeitdauer beanspruchen, Weiterschaltbedingungen enthalten.
- 13. Verfahren nach einem der vorstehenden Ansprüche, dad urch gekennzeichnet,20 dass die grafischen Elemente des Flow Charts automatisch positioniert werden.
- 14. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet,
 25 dass die grafischen Elemente des Flow Charts automatisch miteinander verbunden werden.
- 15. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet,30 dass das Flow Chart in der Anzeige verkleinert oder vergrößert dargestellt werden kann.
- 16. Verfahren nach einem der vorstehenden Ansprüche,
 d a d u r c h g e k e n n z e i c h n e t,
 35 dass durch Markierungen in der textuellen Sprache eine Rückübersetzung in Flow Chart-Notation möglich ist.

20

25

- 17. Einrichtung für die Programmierung von industriellen Steuerungen, insbesondere Bewegungssteuerungen, wobei vom Anwender mit einem grafischen Editor Kontrollstrukturen und Funktionsblöcke zu einem auf einer Anzeigeeinrichtung visualisierbaren Flow Chart (MCC) verknüpfbar sind, gekennzeich durch die aufeinander folgenden Elemente:
- i) aus dem Flow Chart ist eine textuelle Sprache (ST) er-zeugbar,
 - j) die textuelle Sprache (ST) ist in einen prozessorunabhängigen Zwischencode kompilierbar,
- 15 k) der prozessorunabhängige Zwischencode ist in einen Speicherbereich der Steuerung ladbar,
 - der geladene prozessorunabhängige Zwischencode ist durch den Prozessor in einen ablauffähigen Prozessorcode umsetzbar,

wobei, dem Anwender auf einem zugehörigen Display im Flow Chart-Editor, in Abhängigkeit von der zugrundeliegenden Maschinen- bzw. Hardwarekonfiguration adäquate Sprachmechanismen zur Verfügung gestellt sind.

- 18. Einrichtung für die Programmierung nach Anspruch 17, dad urch gekennzeichnet, dass aus anwenderdefinierten Unterprogrammen der textuellen Sprache (ST) automatisch entsprechende grafische Elemente in der Flow Chart-Notation (MCC) generierbar sind, welche die Funktionsschnittstelle der entsprechenden Unterprogramme enthalten.
- 35 19. Einrichtung für die Programmierung nach Anspruch 17 oder Anspruch 18, dadurch gekennzeichnet,

dass die automatisch generierten grafischen Elemente vom Anwender als Sprachelemente des Flow Charts (MCC) verwendbar sind.

- 5 20. Einrichtung für die Programmierung nach Anspruch 17, 18 oder 19, dad urch gekennzeichnet, dass als textuelle Sprache IEC 6-1131 verwendbar ist.
- 21. Einrichtung für die Programmierung nach Anspruch 20, dad urch gekennzeichnet, dass für einen Anwender zum Formulieren von Bedingungen ein beliebiger Wechsel zwischen den Darstellungsformen textuelle Sprache (ST), Kontaktplan (KOP) und/oder Funktionsplan (FUP) vorgesehen ist.
 - 22. Einrichtung für die Programmierung nach einem der Ansprüche 18 bis 21,

dadurch gekennzeichnet,

- 20 dass in der Flow Chart-Notation (MCC) als Sprachelemente mindestens eine Schleife und/oder mindestens eine Parallelverzweigung vorhanden sind.
- 23. Einrichtung für die Programmierung nach Anspruch 22,
 25 dadurch gekennzeich nen et,
 dass innerhalb der jeweiligen Parallelverzweigung die einzelnen Befehle im selben Interpolatortakt startbar sind.
- 24. Einrichtung für die Programmierung nach einem der Ansprü30 che 18 bis 23,
 d a d u r c h g e k e n n z e i c h n e t,
 dass in der Flow Chart-Notation (MCC) die Funktionsblöcke
 durch Maskeneingabe parametriert sind.
- 25. Einrichtung für die Programmierung nach einem der Ansprüche 18 bis 24, dadurch gekennzeichnet,

dass in der Flow Chart-Notation (MCC) Funktionsblöcke zu Modulen zusammengefasst sind, die wiederum einen Funktionsblock bilden.

- 5 26. Einrichtung für die Programmierung nach Anspruch 25, dadurch gekennzeichnet, dass in der Flow Chart-Notation (MCC) ineinander geschachtelte Module vorgesehen sind.
- 27. Einrichtung für die Programmierung nach einem der Ansprüche 18 bis 26, dadurch gekennzeichnet, dass in der Flow Chart-Notation (MCC) für den Anwender in den

Funktionsblöcken für die Variablenzuweisung jeweils mehrere

15 Zuweisungen vorgesehen sind.

35

- 28. Einrichtung für die Programmierung nach einem der Ansprüche 18 bis 27,
- dadurch gekennzeichnet,
- 20 dass in der Flow Chart-Notation (MCC) für diejenigen Funktionsblöcke, die Funktionen repräsentieren, die eine Zeitdauer beanspruchen, Weiterschaltbedingungen vorgesehen sind.
- 29. Einrichtung für die Programmierung nach einem der Ansprü25 che 18 bis 28,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die grafischen Elemente des Flow Charts (MCC) automatisch positionierbar sind.
- 30. Einrichtung für die Programmierung nach einem der Ansprüche 18 bis 29,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die grafischen Elemente des Flow Charts (MCC) automatisch miteinander verbindbar sind.
 - 31. Einrichtung für die Programmierung nach einem der Ansprüche 18 bis 30,

dadurch gekennzeichnet, dass das Flow Chart (MCC) in der Anzeige verkleinert oder vergrößert darstellbar ist.

5 32. Einrichtung für die Programmierung nach einem der Ansprüche 18 bis 31, dad urch gekennzeichnet, dass durch Markierungen in der textuellen Sprache eine Rückübersetzung in Flow Chart-Notation (MCC) vorgesehen ist.

Zusammenfassung

Flow Chart Programmierung für industrielle Steuerungen, insbesondere Bewegungssteuerungen

5

Durch die Erfindung wird ein Verfahren und eine Einrichtung für die grafische Programmierung von industriellen Steuerungen, insbesondere Bewegungssteuerungen, aufgezeigt. Ein Anwender wird dabei sowohl hinsichtlich SPS-Funktionalität als auch bezüglich Motion-Funktionalität unterstützt. Aus grafischen Flow Charts (MCC) wird dabei eine textuelle Sprache (ST) erzeugt, die in einen prozessorunabhängigen Zwischencode kompiliert wird. Erst dieser wird auf die Steuerung geladen und in ablauffähigen Code umgesetzt.

15

10

FIG 6

FIG 1

FIG 2

Makro

Unterprogramm-aufruf

Stoppe Achse / Stop. Bewegung ist ein Befehl

Stoppe Befehl

ans

Parametriere Kurvenscheibe

Aktiv. Getriebe-Gleichlauf / Gearing On

Drehzahl vorgabe

Schalte Gleichlauf

vorgabe Drehmoment

Starte Achse lagegeregelt

positioniere Achse