Privet Davidik!

PustjB(x,y) bilinejnaja symmetricheskaja forma na linejnom prostranstve V (razmerrnostj konechnaja).

Ej sootvetstvujet kvadratichnaja forma

$$Q_B(x) = B(x, x) \tag{1}$$

kotoraja kak legko ponjatj udovletvorjajet pravilu parallelogramma:

$$Q(x+y) + Q(x-y) = 2Q(x) + 2Q(y)$$
(2)

i odnorodna:

$$Q(kx) = k^2 Q(x) \tag{3}$$

Esli B(x,y) polozhiteljno opredelena to legko proveritj (legko?) forma Q(x) opredeljajet normu:

$$||x|| = \sqrt{Q(x)} \tag{4}$$

Eta norma kak i sledujet ozhidatj udovletvorjajet vsem uslovijam normy: $||x|| \ge 0$ i ||x|| = 0 iff x = 0 v silu polozhiteljnoj opredeljonnosti B. V silu neravenstva Cauchy-bunyakovskogo vypooljanejtsa i neravenstvo treugoljnika:

$$||x+y|| \le ||x|| + ||y|| \tag{5}$$

To estj ponjatjije rasstojanija ne protivorechit nashej intujitsiji.

A teperj vopros: Kakim uslovijam dolhzna udovletvorjajt Q(x) shtoby ej sootvetstvovala bilinejnaja forma.

Legko ponjatj shto uslovija (3) i (2) neobkhodimy: Esli B sootvetstvujushjee Q (to estj (1) imejet mesto bytj) sushestvujet to nikuda ne deneshsja, B(x,y) dolzhno opredeljajtjs po sledujushej formule:

$$B(x,y) = \frac{1}{2} (Q(x+y) - Q(x) - Q(y))$$
(6)

ili mozhno takoj formuloj:

$$B(x,y) = \frac{1}{4} (Q(x+y) - Q(x-y)) \tag{7}$$

A dostatochny li oni? Vot v chom vopross... Ili po drugomu: a pravda li shto formula (6) ili (7) vydajut na gora bilinejnuju simmetricheskuju formulu.

To shto (6) i (7) vydajut simmetricheskij objekt-ochevidno. To shto oni vydajut odin i tot zhe objekt: eto tozhe ochevidno (is pravila parallelogramma)

Nemnogo pomuchivshisj (ja vsegda zabyvaju kak, eto golovnaja bolj no mozhno) mozhno pokazatj (pomojemu ispoljzuja lishj praivlo parallelogramma bez uslovija odnorodnosti (3)) shto B(x,y) opredeljonnoje cherez udovletvojrjajet tak nazyvajemu usloviju additivnosti:

$$B(x + x', y) = B(x, y) + B(x', y)$$
(8)

Kazalosj by eto pochti uzhe vsjo: Vedj iz (8) i izhe vytekajet shto dlja ljubogo tselogo m

$$B(mx, y) = mB(x, y)$$

Zametim tut tozhe odnorodnostj ne ispoljzujetjsa.

A teperj legko ponjatj shto dljaljubogo ratsionaljnogo a

$$B(ax, y) = aB(x, y) \tag{9}$$

My prishli k vyvodu: shto ljubaja forma Q(x) udovletvorjajusja lishj pravilu paralellogramma sootvetstvujet objektu B(x,y) kotoryj linejej nad ratsionaljnymi chislami, to estj:

$$B(ax + bx', y) = aB(x, y) + bB(x', y)$$
(10)

(Kontroljnyuj vopros v storonu: Mnohestvo dejstviteljnykh chissel javljajetjsa beskonechno-mernym prostranstvom nad mnozhestvom ratsionaljnykh chissel.)

A teperj: kakoje usovije nuzhno nalozhitj na formu Q(x) shtob B(x,y) v (6,7) bylo by linejnym nad ljubymi dejstviteljnymi.

Otvet? Praivlo treugoljnika: esli funtksija Q(x) indutsirujet normu, (udovletvojrjaet praivlam odnorodnosti polozhiteljnoj opredeljonnosti i pravilu treugoljnika) i udovletvorjajet praivlu prallelogramma to B v (9) linenjno.

Dokazateljstvo: Esli Q dejstviteljno opredeljajet normu, to functsija f(x) = B(x,y) gde B (oppredeljajetjs (9)) nepreryvna po otnosheniju k etoj norme, a znachit ravenstvo (9) vypolnjajetsja dlja vsekh dejstviteljnykh chissle kolj skoro ono vypolnjajetjsa dlja ratsionaljnykh. Vsjo!!!!

Strannoje oshushenije ostajotsja posle etogo dokazateljstva?

A prichom tut nepreryvnostj. MY zhe dokazyvajem linejnostj.

Na samom dele slovo nepreryvnostj ochenj sootvetstvujet nashej intuiitsjii i zashifrovyvajet soboju kuchu ponjatij.

Mozhno formaljno ne govoritj slovo nepreryvnostj i pritvorjajsja shto ego ne znajeshj chestno i tupo otsenivatj dlja ljubogo dejstviteljnogo a rasstojanije mezhdu B(ax, y) i $B(a_n x, y)$, gde $\{a_n\}$ posledovateljnostjh ratsionaljnykh chissel kotorajaj stremitsja (opredeljajet???) dejstviteljnoje chislo a. Da eto tak..

Kazalosj by vysheprivedjonnoje rassuzhdenije velikolepnoje podtverzhdenije tezisa: ""Mavr sdelal svojo delo, mavr mozhet umeretj" My vospoljzovalisj lsovom nepreryvnostj a potom vybrossili.

No tut zhe voznikajet drugoj vopros? A naskoljko vsjotaki nuzhno uslovje normy? Mogli by my bez nego obojtisj?

Ja nikak ne mogu pridumatj kontrpirmera, to estj primera posledovateljnosti kotorjaja udovletvorjajet uslovijam parallelogramma i odnorodnosti, no ne privodit k norme potomu shto ne udovletvorjajet usloviju treugoljnika (Mozhet bytj dlaj kontrpirmera nuzhno rassmotretj objekt kotoryj udovletvojrjaet lishj pravilu parallelgoramma, ne znaju....)

I esho vopros: Nepreryvnostj kotooj my poljzovalisj vkljcuhajet v sebja kuchu trebovanij v tom chisle i trebovanije na polozhiteljnuju opredeljnoostj formy. Kazalosj by dlja svjazi (1) eto ne nuzhno.

V zakljuchenijii dva dopolnenija:

Istorija voprosa: Vopros voznik tri goda tomu nazad u mojego druga. Togda my byli pomolozhe i ponaivnejee. Ochenj bystro my dokazali svojstvo (10) i vrode by togda ja lego dokazal shto dlja konechnomernykh prostranstv vsjo prosto i vsja eta bodjaga s neraventsvom treugoljnika ne nuzhna. Problemy voznikajut v beskonechnomeriji. No ja nikak ne mogu eto vosstanovitj. Mozhet ja ne prav byl, a mozhet bytj sejchas psotarel...

No sdrugoj storony my togda zastrjali na (10) i daljehse ne poshli. Nam uslovije nepreryvnosti kazalosj vneshnim doponiteljnym trebovanije.

Potom na menja svet prolilsja (eto bylo dva goda tomu nazad) kogda ja ponjal shto nepreryvnostj opredeljajetsja v terminakh samoj formy!!!! No ja nikak ne mogu privesti kontrpirmer.

Shob ponjatj shto ne vsjo gladko v datskom korolevstve.

Predlagaju sledujushee kazalosj by bezobidnoje uprazheninie: uprazhnenije

Zadacha: Privesti primer funcktsiji F(x) gde x proizovljnoje dejstviteljnoje chislo tak shto F(x) udovletvorjajet usloviju additivnosti:

$$F(x + x') = F(x) + F(x')$$

no linejnoj ne javljajetjsa!!!!

Okazyvajejtsja eto ne ochenj legko. V kakom-to smysle reshenije nevozmozhno bez aksiomy vybora:

Reshenije: Rassmotrim R kak linejnoje porstranostvo nad Q i vvedjom v njom basis $\{e_i\}$ tak shto pervyj element $e_1 = 1$ (zametim shto indeks i probegajet neschotnoje mnozhestvo znachenij.) (Takoj bazis nazvvajetjsa bazis Gamelja????)

Teperj jasno shto ljuboje chislo odnoznachno mozheno predstavitj vvide summy ratsionaljnogo i irratsionaljnogo:

$$x = x^1 + x' \tag{11}$$

Imenno dlja etogo nuzhen bazis Gamelja!

Zametim shto bez basia Gamelja razlozhenije (11) ne poluchitsja, a dlja basisa Gamelja nuzhna transfinitnaja induktsija, to estj aksioma vybora!!!!

A teperj s uchotmo (11) stroim: $F(x) = x^1$

Jasno stho eta funtsija udovletvorjajet usloviju additivnosti Na ratsionaljnykh ona ravna x i na mnogikh irratsionaljnykh chislkah (no ne na vsekh!) ona ravna nulju.

Vidno shto eto uzhasnyj objekt....

Nu ladno...