Lagrange Multipliers

Lagrange Multipliers

Equality Constraint Inequality Constraint

Lagrange multipliers, a.k.a. undetermined multipliers, are used to find **the stationary points** of a function of several variables subject to one or more constraints.

Equality Constraint

Sometime it may be difficult to find a analytic solution of the constraint between variables x_i . We can introduce a parameter λ called Lagrange multiplier. From a geometrical perspective, consider a D-dimensional variable $\mathbf{x}=(x_1,\ldots,x_D)^T$. The constraint equation $g(\mathbf{x})=0$ is a (D-1)-dimensional surface in \mathbf{x} -space.

Lemma-1. At any point on the surface $g(\mathbf{x})=0$ the gradient ∇g will be orthogonal to the surface.

Proof. Consider a point x on the surface, and consider a nearby point $x + \epsilon$ that also on the surface. If we make a Taylor expansion around this point, we have:

$$g(\mathbf{x} + \epsilon) \approx g(\mathbf{x}) + \epsilon^T \nabla g(\mathbf{x})$$
 (1)

because $g(\mathbf{x} + \epsilon) = g(\mathbf{x})$, we have $\epsilon^T \nabla g(\mathbf{x}) \approx 0$. And if $\|\epsilon\| \to 0$, we have $\epsilon^T \nabla g(\mathbf{x}) = 0$. And because at this time ϵ is parallel to the surface $g(\mathbf{x}) = 0$, so ∇g is normal to the surface.

A geometrical picture of the technique of Lagrange multipliers in which we seek to maximize a function $f(\mathbf{x})$, subject to the constraint $g(\mathbf{x}) = 0$. If \mathbf{x} is D dimensional, the constraint $g(\mathbf{x}) = 0$ corresponds to a subspace of dimensionality D-1, indicated by the red curve. The problem can be solved by optimizing the Lagrangian function $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$.

Lemma-2. If \mathbf{x}^* on $g(\mathbf{x})=0$ and $\forall \mathbf{x}$ on $g(\mathbf{x})=0$, we have $f(\mathbf{x}^*)\geq f(\mathbf{x})$, then $\nabla f(\mathbf{x}^*)$ is orthogonal to the surface $g(\mathbf{x})=0$.

Proof. Otherwise we could increase the value of f(x) by moving a short distance along the surface.

From Lemma-1 and Lemma-2 we have:

$$\nabla f + \lambda \nabla g = 0 \tag{2}$$

where $\lambda \neq 0$ is the Lagrange multiplier.

Then we can define the Lagrangian function

$$L(\mathbf{x}, \lambda) := f(\mathbf{x}) + \lambda g(\mathbf{x}) \tag{3}$$

And

$$egin{aligned}
abla_{\mathbf{x}} L &= 0 \Rightarrow &
abla f + \lambda \nabla g = 0 \\ rac{\partial L}{\partial \lambda} &= 0 \Rightarrow & g(\mathbf{x}) = 0 \end{aligned}$$

Thus to find the maximum of f s.t. g(x) = 0, we solve the equation

$$\begin{cases} \nabla_{\mathbf{x}} L = 0 & \Rightarrow & \nabla f + \lambda \nabla g = 0 \\ \frac{\partial L}{\partial \lambda} = 0 & \Rightarrow & g(\mathbf{x}) = 0 \end{cases}$$
(4)

and get a (D+1)-dimension equations to get stationary points.

Inequality Constraint

The problem of maximizing f with inequality constraint of the form $g(\mathbf{x}) \geq 0$.

Illustration of the problem of maximizing $f(\mathbf{x})$ subject to the inequality constraint $g(\mathbf{x})\geqslant 0$.

There are two kinds of solution possible.

- *inactive* constraint: The stationary point lies in the region $g(\mathbf{x}) > 0$. The function $g(\mathbf{x})$ is useless, $\lambda = 0$.
- *active* constraint: The stationary point lies in the surface $g(\mathbf{x}) = 0$. This is analogous to the equality constraint case, $\lambda \neq 0$.

Note that now the sign of λ is crucial, because f only be at a maximum if its gradient is oriented away from the region $g(\mathbf{x})>0$. Therefore $\lambda>0$ (if we want a minimum, we set $\lambda<0$).

For either cases, we have $\lambda g(\mathbf{x}) = 0$. Then we can define:

KKT(Karush-Kuhn-Tucker) conditions

$$g(\mathbf{x}) \ge 0$$
$$\lambda \ge 0$$
$$\lambda g(\mathbf{x}) = 0$$

And the solution is also straightforward.