EDA_data_process_Candice

Candice Yu

2024-03-23

Contents

ad Data	2
\mathbf{A}	2
Overview of the Data	2
EDA for Continuous Variables	3
EDA for Discrete Variables	5
eprocess of the Data	9
Split data & Define the control method	9
Export the training/test set & control method	9
Load the training/test set & control method	9

```
library(caret)
library(tidyverse)
library(gridExtra)
```

Load Data

EDA

Overview of the Data

```
# brief summary of the data
skimr::skim(dat)
```

Table 1: Data summary

Name	dat
Number of rows	3000
Number of columns	15
Column type frequency:	
character	1
factor	7
numeric	7
Group variables	None

Variable type: character

skim_variable n_missing		$complete_rate$	min	max	empty	n_unique	whitespace
study	0	1	1	1	0	2	0

Variable type: factor

skim_variable	n_missing	$complete_rate$	ordered	n_unique	top_counts
gender	0	1	FALSE	2	0: 1544, 1: 1456
race	0	1	FALSE	4	1: 1967, 3: 604, 4: 271, 2: 158
$\operatorname{smoking}$	0	1	FALSE	3	0: 1822, 1: 859, 2: 319
hypertension	0	1	FALSE	2	0: 1508, 1: 1492
diabetes	0	1	FALSE	2	0: 2537, 1: 463

skim_variable	n_missing	$complete_rate$	ordered	n _unique	top_counts
vaccine	0	1	FALSE	2	1: 1788, 0: 1212
severity	0	1	FALSE	2	0: 2679, 1: 321

Variable type: numeric

skim_variable	n_missing	complete_	rate	mean	sd	p0	p25	p50	p75	p100	hist
age	0		1	60.20	4.48	42.0	57.0	60.00	63.0	79.0	
height	0		1	169.90	5.97	147.8	166.0	169.90	173.9	188.6	
weight	0		1	79.96	7.14	55.9	75.2	79.80	84.8	103.7	
bmi	0		1	27.76	2.79	18.8	25.8	27.65	29.5	38.9	
SBP	0		1	130.47	7.97	105.0	125.0	130.00	136.0	156.0	
LDL	0		1	110.45	19.76	28.0	97.0	110.00	124.0	178.0	
${\tt recovery_time}$	0		1	42.17	23.15	2.0	31.0	39.00	49.0	365.0	

EDA for Continuous Variables

Correlation plot for continuous variables

```
# correlation plot for continuous variables
continuous_vars <- dat %>%
   select(height, weight, bmi, SBP, LDL, recovery_time)
correlations <- cor(continuous_vars)
corrplot::corrplot(correlations, method = "circle")</pre>
```


Scatter plots to explore potential relationships

Time to Recovery vs. BMI

Time to Recovery vs. Height

The correlation plot and scatter plots show some relationships between continuous variables, but none of them appear to be strongly correlated with recovery_time. This may suggest that linear relationships are not strong, and hence a non-linear model could be more appropriate.

EDA for Discrete Variables

Heatmap for severity and vaccination status

The heatmap helps in understanding the bivariate relationship between severity, vaccination status, and recovery time.

Observations from the Heatmap:

- Individuals with severe COVID-19 infection (1 on the x-axis) have longer average recovery times than those with non-severe infections, regardless of vaccination status.
- Vaccination status seems to have an influence on the recovery time. Those who are vaccinated (1 on the y-axis) tend to have shorter recovery times even when the infection is severe.

Implications for Modeling:

- The heatmap suggests there might be an interaction effect between severity and vaccination status on the recovery time. Therefore, when modeling, consider including an interaction term between these two variables.
- Given the apparent differences in recovery time across the groups, both severity and vaccination status should be included as important predictors in the model.
- If developing separate models for different subgroups is a consideration, you might want to stratify the analysis by severity or vaccination status.

Faceted grid plot for categorical variables

```
# faceted grid plot for categorical variables
categorical_vars <- c("smoking", "diabetes", "hypertension", "vaccine", "severity")
faceted_plots <- lapply(categorical_vars, function(var) {
    ggplot(dat, aes_string(x = var, y = "recovery_time")) +
        geom_boxplot(aes(fill = factor(..x..))) +
        facet_wrap(~study) +
        labs(title = paste("Recovery time by", var), y = "Time to recovery") +</pre>
```

```
theme_minimal()
})

# combine the plots into one grid
grid.arrange(scatter_bmi, scatter_sbp, scatter_ldl, grobs = faceted_plots, ncol = 2)
```


The boxplots indicate a significant difference in recovery times between study groups A and B across several categorical factors, which suggests that study is an important variable to include in the model.

Preprocess of the Data

```
data <- dat %>%
    select(-weight, -height)

# normalize/standardize numerical variables
#num_vars <- names(data)[sapply(data, is.numeric)][-7]
#preprocess_params <- preProcess(data[, num_vars], method = c("center", "scale"))
#data[num_vars] <- predict(preprocess_params, data[, num_vars])

# log transform 'recovery_time' since it's highly skewed
#data$recovery_time <- log(data$recovery_time)</pre>
```

Split data & Define the control method

```
# split data into training and test sets
set.seed(2716)
indexes <- createDataPartition(data$recovery_time, p = 0.8, list = FALSE)
train_data <- data[indexes, ]
test_data <- data[-indexes, ]

# matrix of predictors
x <- train_data %>% select(-recovery_time)
y <- train_data$recovery_time

# define the control method for training
ctrl1 <- trainControl(method = "cv", number = 10) # 10-fold cross-validation</pre>
```

Model Training Procedure and Final Model:

- 1. Data Splitting: The dataset was split into training (80%) and test (20%) sets using a stratified random sampling approach based on recovery_time.
- 2. The train function from the caret package was used to train the MARS model using 10-fold cross-validation. This approach helps to prevent overfitting and gives an estimate of the model performance on new data.
- 3. The model with the lowest cross-validated Root Mean Squared Error (RMSE) was selected as the final model.

Export the training/test set & control method

```
# save the training and test sets to CSV files
write.csv(train_data, "./Data/train_data.csv", row.names = FALSE)
write.csv(test_data, "./Data/test_data.csv", row.names = FALSE)

# save the control method using saveRDS
saveRDS(ctrl1, "./Data/train_control.rds")
```

Load the training/test set & control method

```
# Load the training and test sets
train_data <- read.csv("./Data/train_data.csv")
test_data <- read.csv("./Data/test_data.csv")</pre>
```

```
# Load the control method
ctrl1 <- readRDS("./Data/train_control.rds")</pre>
# change variables to be factors again
train_data <- train_data %>%
  mutate(gender = as_factor(gender),
         diabetes = as_factor(diabetes),
         hypertension = as_factor(hypertension),
         vaccine = as_factor(vaccine),
         race = as_factor(race),
         smoking = as_factor(smoking),
         severity = as_factor(severity))
test_data <- test_data %>%
  mutate(gender = as_factor(gender),
         diabetes = as_factor(diabetes),
         hypertension = as_factor(hypertension),
         race = as_factor(race),
         smoking = as_factor(smoking),
         vaccine = as_factor(vaccine),
         severity = as_factor(severity))
```