Conservation of cortical crowding distance in human V4: A replication and extension

Jan W. Kurzawski¹, Brenda S. Qiu², Najib J. Majaj¹, Noah Benson², Denis Pelli¹, Jonathan Winawer¹

1. Center for Neural Science and Psychology Dept, NYU. 2. eScience Institute, University of Washington, Seattle, WA, USA

Method: Crowding distance and uncrowded array

- 4 meridians
- 5° and 10° of eccentricity
 2 sessions (test-retest)
- 50 observers

50 observers

We calculate λ , the number of letters that fit into the visual field without crowding

Method: Cortical map size (fMRI retinotopy)

Hypothesis: Conservation implies that individual variation in λ is entirely due to variation in surface area A of one or more maps, such that observers with larger maps can recognize more letters in their visual field

Two example observers

		A (mm²)			
	X	V1	V2	V3	V4
Observer 1	748	3052	2767	2053	1483
Observer 2	302	2580	2815	1907	618
Ratio	2.5	1.2	1.0	1.1	2.4

