Math 202 Review, Fall 2019 Topology and Analysis Marc A. Rieffel, 12:30 - 2:00 PM

Vishal Raman

Contents

1	Lecture I				
	1.1	Metrics and Norms	4		
	1.2	Convergence	4		
	1.3	Complete Metric Spaces	4		
	1.4	Completions of Metric Spaces	4		
2	Lec	ture II	5		
	2.1	General Algorithm for Completing Metric Spaces(Using Cauchy Sequences) .	5		
	2.2	General Notion of Continuity	6		
3	Lec	ture III	7		
	3.1	Topology	7		
	3.2	Basis, Sub-base	7		
	3.3	Properties of Pre-Image	8		
	3.4	Constructing New Topologies	8		
4	Lec	ture IV	9		
•	4.1	Product, Quotient, Relative Topologies	Ĝ		
	4.2	Separation Axioms	Ĉ		
	4.3	Urysohn's Lemma	Ĝ		
5	Lec	ture ${f V}$	LC		
J	5.1		10		
	5.2	•	10		
	5.3		10		
	5.4		10		
6	Lecture VI				
	6.1		11		
	6.2		11		
	6.3	•	11		
7	Lec	ture VII	2		
•	7.1		12		
	7.2		12		
	7.3	·	12		
8	Lec	ture VIII	.3		
J	8.1		13		
	8.2	1 0	13		
	8.3		13		
	8.4		13		

9	Lecture IX			
	9.1	Locally Compact Hausdorff(LCH)	14	
	9.2	Measure Theory	14	
		Rings, Sigma-Rings, Algebras, Sigma-Algebras	14	
10	Lect	ure X	15	
	10.1	Pre-rings	15	
	10.2	Half-open Measure	15	
	10.3	Premeasures	15	
11	Lect	ure XI	16	
	11.1	Completion of the Half-open Measure	16	
	11.2	Countable Subadditivity	16	
		Outer Measures	16	

1 Lecture I

1.1 Metrics and Norms

Definition 1.1. A **metric** on a set X is a function $d: X \times X \to \mathbb{R}$, such that

- 1. d(x,x) = 0,
- 2. d(x,y) = d(y,x),
- 3. $d(x,y) \le d(x,z) + d(z,y)$,
- 4. $d(x,y) = 0 \Rightarrow x = y$ (Note that dropping this condition gives a **semi-metric**).

Definition 1.2. Let V be a vector space over \mathbb{R} or \mathbb{C} . A **norm** is a function $|| \ || : V \to \mathbb{R}^+$ such that

- 1. ||v|| = 0 iff v = 0 (drop this condition for **semi-norms**),
- 2. $||\alpha v|| = |\alpha|||v||$,
- 3. $||v|| + ||w|| \ge ||v + w||$

A norm induces a metric by d(v, w) = ||v - w||.

1.2 Convergence

1.3 Complete Metric Spaces

Definition 1.3. A metric space X is **complete** if every cuachy sequences converges to some point of X.

1.4 Completions of Metric Spaces

Definition 1.4. Let (X, d) be a metric space. A **completion** of X is a complete metric space (\tilde{X}, \tilde{d}) together with a function $j: X \to \tilde{X}$ such that

- 1. j is an isometry: $\tilde{d}(j(x), j(y)) = d(x, y)$,
- 2. j(X) is dense in X.

Note that every metric space has a unique completion, up to isometry.

2 Lecture II

2.1 General Algorithm for Completing Metric Spaces (Using Cauchy Sequences)

Theorem 2.1. An algorithm for completing a metric space.

Proof. Let (X, d) be a metric space and let CS(X, d) be the set of Cauchy sequences in (X, d) (Step 1: Define \bar{d} for our completed space.) Let $\{x_n\}, \{y_n\} \in CS(X, d)$. We begin by proving a lemma:

Lemma 1. $\{d(x_n, y_n)\}$ is a Cauchy sequence.

Proof. By the triangle inequality,

$$d(x,y) \le d(x,z) + d(z,y) \Rightarrow d(x,y) - d(x,z) \le d(y,z).$$

Note that we can switch y and z without changing the inequality, which gives

$$|d(x,y) - d(x,z)| \le d(y,z).$$

Now, we have

$$|d(x_n, y_n) - d(x_m, y_m)| = |(d(x_n, y_n) - d(x_n, y_m)) + (d(x_n, y_m) - d(x_m, y_m))|$$

$$\leq |d(x_n, y_n) - d(x_n, y_m)| + |d(x_n, y_m) - d(x_m, y_m)|$$

$$\leq d(y_n, y_m) + d(x_n, x_m)$$

Since $\{x_n\}, \{y_n\}$ are Cauchy, this can be made arbitrarily small, which completes the proof.

Define $\bar{d}(\{x_n\}, \{y_n\}) = \lim_{n\to\infty} \{d(x_n, y_n)\}$. It's trivial to verify that this is a semi-metric. (Step 2: Define an equivalence relation on CS(X, d)) Define an equivalence relation on X by $x \sim y$ if d(x, y) = 0.

Define \hat{d} on X/\sim by $\hat{d}([x],[y])=d(x,y)$. Note that if $x'\in[x],y'\in[y]$, then

$$d(x', y') \le d(x', x) + d(x, y) + d(y, y') = d(x, y).$$

Taking the reverse inequality gives d(x', y') = d(x, y). Now, let d be the corresponding metric on CS(X, d). $CS(X, d) / \sim$ is the set of equivalence classes of cauchy sequences.

(Step 3: Define the isometry) Embed (X, d) in $CS(X, d) / \sim by \ x \mapsto \{x_n\}$, converging to x. Define $\varphi(x) = \{x_n = x\}$. Note that

$$\tilde{d}(\varphi(x), \varphi(y)) = \lim \{d(x_n, y_n)\} = \bar{d}(x, y).$$

(Step 4: show that $\varphi(CS(X,d)/\sim)$ is dense in $CS(X,d)/\sim$) Let $\{x_n\}$ be any cauchy sequence. Given $\epsilon > 0$, there is $N \in \mathbb{N}$ such that for $n, m \geq N$, $d(x_m, x_n) < \epsilon$.

Consider $\varphi(x_N)$. We have $\tilde{d}(\{x_n\}, \varphi(x_n)) = \lim \{d(x_n, x_N)\}.$

(Step 5: Show that $(CS(X,d)/\sim, \tilde{d})$ is complete). For each m, let $S=\{x_n^m\}_{n=0}^{\infty}\in CS(X,d)$. Assume the sequence $\{S^m\}$ is a cauchy sequence. For each k, we find $x_k\in X$ s.t. $\tilde{d}(\varphi(x_k),S_m)<\frac{1}{k}$ (since cauchy). Then $S=\{x_k\}$ is a cauchy sequence, so $\tilde{d}(S^m,S)\to 0$, as desired.

2.2 General Notion of Continuity

Definition 2.1. Let $(X, d_x), (Y, d_y)$ be metric spaces. Let $f: X \to Y, x_0 \in X$. We say f is **continuous** at x_0 if for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \epsilon$.

Theorem 2.2. A function f is continuous if and only if the preimage of an open set is open.

3 Lecture III

3.1 Topology

Definition 3.1. Let X be a set. By a **topology** for X, we mean a collection, \mathscr{T} of subsets of X, such that:

- 1. Arbitrary unions of elements in \mathcal{T} are in \mathcal{T} .
- 2. Finite intersections of elements of \mathcal{T} are in \mathcal{T} .
- 3. X and \varnothing are closed.

Definition 3.2. A closed set is the compliment of an open set.

Note 3.1. Note that:

- 1. Arbitrary intersections of closed sets are closed.
- 2. Finite unions of closed sets are closed.
- 3. X and \varnothing are closed.

Definition 3.3. Let $A \subseteq X$, the **closure** of A is the smallest closed set that contains A; that is, the intersection of all closed sets that contain A.

Definition 3.4. The **interior** of A is the biggest open set contained in A, or equivalently, the union of all open sets contained in A.

Definition 3.5. Let C be a closed set, and let $A \subseteq C$, we say that A is **dense** in C if $\overline{A} = C$.

3.2 Basis, Sub-base

Definition 3.6. Let X be a set, and let \mathcal{S} be a collection of subsets of X, the smallest topology containing the intersection of topologies that contain \mathcal{S} is said to be the topology generated by \mathcal{S} , and \mathcal{S} is said to be a **subbase** for that topology.

Note 3.2. If \mathcal{C} is a collection of topologies for X, then

$$\bigcap_{\mathscr{T}\in\mathscr{C}}\mathscr{T}$$

is a topology in X.

Definition 3.7. Let X be a set, and let D be a collection of subsets of X. D is a topology for X called the **discrete topology** for X. It is given by a metric:

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y. \end{cases}$$

D is the biggest topology in X.

Definition 3.8. The smallest topology in X is $\{\emptyset, X\}$. This topology is called the indiscrete topology.

Note 3.3. If $\mathscr{T}_1 \subseteq \mathscr{T}_2$ are topologies on X, \mathscr{T}_1 is coarser, smaller, weaker, and \mathscr{T}_2 is larger, stronger, and finer. We generally require that $\bigcup \mathscr{S} = X$.

Definition 3.9. A collection of subsets of X is a base for a topology if the set of all arbitrary unions of elements of S is a topology.

Note 3.4. For S to be a base, it must have the property that if $A, B \in S$, then $A \cap B$ is the union of elements of S.

Note 3.5. If S is any collection of subsets of X, then the collection of all finite intersections must be a topology.

3.3 Properties of Pre-Image

Definition 3.10. A function between topological spaces is said to be continuous if the inverse image of every open set is also open.

Note 3.6. Let Y be a set and $\mathscr{S} = \{A_{\alpha}\}$, let X be a set, and $f: X \to Y$ be a function. Then,

- 1. $f^{-1}(\bigcup_{\alpha} A_{\alpha}) = \bigcup_{\alpha} f^{-1}(A_{\alpha})$
- 2. $f^{-1}(\bigcap_{\alpha} A_{\alpha}) = \bigcap_{\alpha} f(A_{\alpha})$
- 3. If $A, B \subseteq Y$, then $f^{-1}(A \backslash B) = f^{-1}(A) \backslash f^{-1}(B)$.

3.4 Constructing New Topologies

Example 3.1. Let X be a set and let $(X_{\alpha}, \mathscr{T}_{\alpha})$ be a collection of topological spaces. Let there be a quasifunction $f_{\alpha}: X_{\alpha} \to X$. Let \mathscr{T} be the strongest topology such that all of the f_{α} 's are continuous. Given α_0 , f_{α} . If $A \subseteq X$, then if A is to be open, we must have that $f_{\alpha_0}(A) \in \mathscr{T}_{\alpha_0}$. Now, let $\mathscr{S}_{\alpha_0} = \{A \subseteq : f_{\alpha_0}^{-1}(A) \in \mathscr{T}_{\alpha_0}\}$ is a topology for X; in fact, it is the strongest topology making f_{α_0} continuous. The strongest topology making all of the f_{α} continuous is the intersection of the \mathscr{S}_{α} .

Example 3.2. Let (X, τ) be a topological space, let Y be a set. Then, $f: X \to Y$, $\{A \subseteq Y: f^{-1}(A) \in \tau_X\}$ is the strongest topology making f continuous. Usually, we want f to be onto Y.

4 Lecture IV

4.1 Product, Quotient, Relative Topologies

Definition 4.1. S is a base for a topology on X if the union of the sets in S is X.

Definition 4.2. Let (X, \mathcal{T}) be a topological space, Y a set, and $f: X \to Y$ surjective. The **quotient topology** on Y is the set $\mathcal{T}_y = \{A \subseteq Y : f^{-1}(A) \in \mathcal{T}\}.$

Example T. he conditional topology

Definition 4.3. The **relative topology** on a set X is the set $\{X \cap O : O \in \mathscr{T}_Y\}$ for (Y, \mathscr{T}_Y) , a topological space.

Definition 4.4. Let $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2)$ be given. The set $\mathcal{S} = \{ \mathcal{O} \times \mathcal{U} : \mathcal{O} \in \mathcal{T}_1, \mathcal{U} \in \mathcal{T}_2 \}$ form a sub-base for the **product topology**.

For infinite product topology, we let all but finitely many of the terms be the whole set.

4.2 Separation Axioms

Note T. he Separation Axioms:

- 1. $T_2(Hausdorff)$
- 2. T_1 : Given $x, y, x \neq y$, there exists \mathscr{O}_x with $x \in \mathscr{O}_x$, $y \notin \mathscr{O}_x$ and there exists a similar \mathscr{O}_y .
- 3. T_0 : Given $x, y, x \neq y$, there exists \mathscr{O} such that only one of x or y is in \mathscr{O} .

4.3 Urysohn's Lemma

- 5 Lecture V
- 5.1 Homeomorphisms
- 5.2 Properties of Normal Topological Spaces
- 5.3 Boundedness
- 5.4 Categories

6 Lecture VI

6.1 Tietze Extension Theorem

Theorem (Tietze Extension Theorem). Let (X, \mathcal{T}) be a normal topological space, and let $A \to be$ continuous. Then there is $\tilde{f}: X \to \mathbb{R}$, continuous that extends f, if $\tilde{f}|_A = f$. If $f: A \to [a, b], a, b \in \mathbb{R}$ then can arrange that $\tilde{f}: X \to [a, b]$.

6.2 Compactness

Definition L. et X be a set, \mathcal{C} a collection of subsets of X. We say that \mathcal{C} is a covering of X if

$$\bigcup \{A \in \mathcal{C}\} = X$$

. If $B \subseteq X$, \mathcal{C} is a collection of subsets of X, we say that \mathcal{C} covers \mathcal{B} if $\mathcal{B} \subseteq \bigcup \{A \in \mathcal{C}\}$. If $\mathcal{D} \subseteq \mathcal{C}$, \mathcal{D} is a subcover of \mathcal{C} if \mathcal{D} also is a c.

Let (X, \mathcal{T}) be a topological space. We say that it is compact if every open cover of X has a finite subcover.

Theorem I. f (X, \mathcal{T}) is compact and $A \subseteq X$, then the following are equivalent.

- 1. A is compact for the relative topology
- 2. If $\mathcal{C} \subseteq \mathcal{T}$ is a cover of A, then A has a finite subcover of \mathcal{O} .

Theorem I. f (X, \mathcal{F}) is compact and $A \subseteq X$ is closed then A is compact for the relative topology.

6.3 Compact + Hausdorff

Theorem L. et (X, \mathcal{T}) be Hausdorff. Let $A \subseteq X$ be compact for the relative topology, then A is closed.

Theorem L. et (X, \mathcal{T}) be compact and Hausdorff. For any closed subset A of X and any pf (?) $y \in X$, $y \notin A$, there are open sets u, v, disjoint, with $A \subseteq u$, $y \in V$.

Definition . (X, T) is regular for all A \subseteq X closed and all $y \in X, y \not\in A$.

Theorem E. very compact Hausdorff space is normal.

- 7 Lecture VII
- 7.1 Compact + Continuity
- 7.2 Axiom of Choice/Zorn's Lemma
- 7.3 Tychonoff's Theorem

8 Lecture VIII

8.1 Completing the Proof of Tychonoff's Theorem

8.2 Tychonoff's Theorem implies Axiom of Choice

8.3 Compactness for Metric Spaces

Definition A. subset A of a metric space (X, d) is said to be totally bounded if for any $\epsilon > 0$, it call be covered by a finite number of ϵ -balls.

Theorem A. ny subset of a compact subset of a metric space is totally bounded.

Theorem I. If A is totally bounded subset of a metric space, then \bar{A} is totally bounded.

Theorem A. metric that is not complete can be compact.

Theorem I. If X is complete, if $A \subset X$ is totally bounded, then \bar{A} is compact.

Theorem L. et (X, d) be a complete metric space. Then, if (X, d) is totally bounded then it is compact.

Corollary L. et (X, d) be a complete metric space, let $A \subseteq X$, with A totally bounded. Then \bar{A} is compact.

Corollary . [a,b] $\subseteq \mathbb{R}$, the first is compact. Any closed bounded subset of \mathbb{R}^n is compact.

8.4 Arzela - Ascoli

Theorem (. Core of the Arzeli-Ascoli Theorem) Let (X, \mathcal{T}) be compact. Let $F \subseteq C(X, M)$. If F is equicontinuous and pointwise totally bounded, then F is totally bounded for d_{∞} .

Theorem (. Arzela-Ascoli): Let (X, \mathcal{T}) be a complete metric space. Then, $F \subseteq C(X, M)$ is compact in d_{∞} if it is closed and equicontinuous and pointwise totally bounded.

9 Lecture IX

9.1 Locally Compact Hausdorff(LCH)

Definition L. ocally compact spaces. A topological space (X, \mathcal{T}) is locally compact if for each $x \in X$, there is a $\mathcal{O} \in \mathcal{T}, x \in \mathcal{O}, \bar{\mathcal{O}}$ is compact.

Lemma L. et $C \subseteq X$ be compact. Then there is open \mathcal{O} with $C \subseteq \mathcal{O}$, \mathcal{O} compact.

Theorem L. et (X, \mathcal{T}) be a LCH. Let C = X be compact, \mathcal{O} open, $C \subseteq \mathcal{O}$. Then there is open $\mathcal{U}, C \subseteq \mathcal{U}, \mathcal{U}$ compact, $\mathcal{U} \subseteq \mathcal{O}$.

Theorem L. et (X, \mathcal{T}) be LCH. Let $C \subseteq X$ be compact, \mathcal{O} open, $C \subseteq \mathcal{O}$. Then there is a continuous $f: X \to [0, 1]$ with f(x) = 1, for $x \in C$ and f(x) = 0 for $x \notin \mathcal{O}$.

Definition F. or (X, \mathcal{T}) LCH, let $C_c(X)$ be the set of continuous -valued functions on X "of compact support", i.e. there is a compact set outside of which $f \equiv 0$. $C_c(X)$ is an algebra for pointwise operations. $e, f, g \in C_c(X)$, then $f + g, fg, rf(r \in \mathbb{R}) \in C_c(X)$.

9.2 Measure Theory

9.3 Rings, Sigma-Rings, Algebras, Sigma-Algebras

- 10 Lecture X
- 10.1 Pre-rings
- 10.2 Half-open Measure
- 10.3 Premeasures

- 11 Lecture XI
- 11.1 Completion of the Half-open Measure
- 11.2 Countable Subadditivity
- 11.3 Outer Measures