Ayudantía MLE

Sea Y una variable aleatoria con dos posibles resultados: $\mathbb{P}(Y=1)=p$ y $\mathbb{P}(Y=0)=1-p$. Un modelo logístico expresa p en función de un vector $x\in\mathbb{R}^n$ de variables explicativas mediante:

$$p = \frac{e^{< a, x > + b}}{1 + e^{< a, x > + b}}$$

donde $a \in \mathbb{R}^n$ y $b \in \mathbb{R}$ son parámetros a calibrar a partir de una muestra independiente $(Y_i, x_i): i=1,...,m$. El método de máxima verosimilitud escoge los parámetros a,b que maximizan la probabilidad $\prod_{i \in I_1} p_i \cdot \prod_{i \in I_0} (1-p_i)$ de los resultados observados, donde I_1 , I_0 denotan las observaciones con $Y_i=1$ e $Y_i=0$ respectivamente y $p_i=\frac{e^{< a,x_i>+b}}{1+e^{< a,x_i>+b}}$.

1. Grafique el negativo de la log-verosimilitud para $a \in [-4, 4]$, y $b \in [-8, 8]$, con $a, b \in \mathbb{R}$ para los siguientes valores de x e y:

X	1.1	1.5	3.3	5.5		
y	0	0	1	1		

Cuadro 1: valores de x e y para gráfica

2. Considere la siguiente tabla de observaciones en que la primera fila representa la cantidad de radiación en un tratamiento de cancer y la segunda fila indica si el resultado del tratamiento fue exitoso o no

Radiación (x)	0.5	1.0	1.5	2.2	2.5	3.1	3.0	4.5	4.0	4.5	4.8	5.0
Resultado (y)	0	0	0	1	0	1	0	1	1	1	1	1

Utilice un método de newton-raphson o el paquete scipy.optimize para encontrar los parámetros óptimos $(a,b) \in \mathbb{R}^2$. Utilice los valores de a y b encontrados para expresar la probabilidad de éxito p del tratamiento en función de la intensidad de radiación (x). Grafique esta función.