ממן 11

יונתן אוחיון

2018 בפברואר 21

שאלת הרשות

נסמן f נוכיח כי נוכיח (f(x)=f). נוכיח כי הסדרה נסמן fמתכנסת אמ"מ $f(x) \leq 1$ לכל $a_n = \int_0^1 f^n(x) dx$

כיוון א

נניח כי $f^{n+1}(x) \leq f^n(x) \leq 1$ נראה כעת באינדוקציה כי $x \in [0,1]$ לכל לכל לכל כי מיח כי 1

f(x)נוכיח את מקרה הבסיס בו n=1. ידוע כי $f(x)\leq 1$, ולכן נוכל לכפול את אי השוויון בn=1 ולקבל ש $0\leq f^2(x)\leq 1$ כנדרש. פניח כעת כי הטענה נכונה עבור n=k+1 ונוכיח עבור n=k+1

$$0 \le f^{k+1}(x) \le f^k(x) \le 1 \underset{0 \le f(x)}{\Longrightarrow} f(x) \cdot f^{k+1}(x) \le f(x) \cdot f^k(x) \le f(x) \Longrightarrow 0 \le f^{k+2}(x) \le f^{k+1}(x) \le 1$$

. לכן לפי עקרון האינדוקציה השלמה מתקיים $f^n(x) \leq f^n(x) \leq 0$ לכל $0 \leq f^{n+1}(x) \leq 0$ לכל

כעת, ממונוטוניות האינטגרל נובע כי 1 בי כל 1 בי 1 לכל 1 לכל 1 לכל 1 טבעי, כלומר ממונוטוניות האינטגרל נובע כי 1 בי 1 לפיכך, הסדרה 1 מונוטונית יורדת וחסומה, ולכן ממשפט באינפי 1 נובע כי 1 מתכנסת כנדרש.

כיוון ב

נניח כי $\lim_{n \to \infty} a_n = L \in \mathbb{R}$ לכל f(x) > 1 וונניח בשלילה וונניח וונניח וונניח בשלילה כי נראה כי $x \in [0,1]$ לכל f(x) > 1 כי דוע כי $t_n > 0$ לכל לכל ונפול את $b_{n+1} > b_n > 1$ נראה כי $t_n > 0$ לכל ו $f^{n+1}(x)>f^n(x)>1$ לכל השוויון ב $f^n(x)>f^n(x)>f^n(x)>1$ לכל האינדוקציה נקבל כי טבעי כנדרש. ממונוטוניות האינטגרל נובע כי $a_{n+1}>a_n$ לכל האינטגרל נובע כי

$$\left| \frac{a_{n+1}}{a_n} \right| > 1 \Longrightarrow \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$

. בסתירה להנחה, וו $\lim_{n \to \infty} a_n
ot
ot \mathbb{R}$ ובפרט וו $\lim_{n \to \infty} a_n = \infty$ ולכן ממבחן המנה לגבולות נובע כי לפיכך, $1 \leq f(x) \leq 1$ לכל $f(x) \leq 1$ כנדרש.

 $a_n=\int_0^1 f^n(x)dx$ לכל שהסדרה אמ"מ $a_n=\int_0^1 f^n(x)dx$ לכן, לסיכום, הוכחנו שהסדרה