Übungsblatt 5

Aufgabe 1 (Transportprotokolle)

- 1. Erklären Sie die Unterschiede zwischen TCP und UDP.
- 2. Beschreiben Sie **zwei Beispiele**, wo es sinnvoll ist, das Transportprotokoll TCP zu verwenden.
- 3. Beschreiben Sie **zwei Beispiele**, wo es sinnvoll ist, das Transportprotokoll UDP zu verwenden.
- 4. Was ist ein **Socket**?
- 5. Was gibt die **Seq-Nummer** in einem TCP-Segment an?
- 6. Was gibt die **Ack-Nummer** in einem TCP-Segment an?
- 7. Beschreiben Sie das Silly Window Syndrom und seine Auswirkungen.
- 8. Wie funktioniert Silly Window Syndrom Avoidance?
- 9. Welche zwei mögliche **Ursachen** für das Entstehen von Überlastung gibt es?
- 10. Warum verwaltet der Sender bei TCP **zwei Fenster** und nicht nur ein einziges?
- 11. Was ist die Phase **Slow Start**?
- 12. Was ist die Phase Congestion Avoidance?
- 13. Markieren Sie in der Abbildung die beiden Phasen Slow Start und Congestion Avoidance.

Inhalt: Themen aus Foliensatz 9 + 10

- 14. Was ist **Fast Retransmit**?
- 15. Was ist **Fast Recovery**?
- 16. Das Konzept der Überlastkontrolle bei TCP heißt **AIMD** (= Additive Increase / Multiplicative Decrease). **Beschreiben Sie den Grund** für die aggressive Senkung und konservative Erhöhung des Überlastungsfensters.
- 17. Beschreiben Sie die Funktionsweise einer Denial of Service-Attacke via **SYN-Flood**.

Aufgabe 2 (Header und Nutzdaten)

Eine Anwendung erzeugt 40 Bytes Nutzdaten, die zuerst in einem einzigen TCP-Segment verpackt werden und danach in einem einzigen IP-Paket verpackt werden. Bestimmen Sie den Prozentsatz der Header-Daten im IP-Paket und den Prozentsatz der von der Anwendung erzeugten Nutzdaten.

IP-Paket aus der Vermittlungsschicht

IP-Header	TCP-Header	Daten der Anwendungsschicht (Nachricht)

TCP-Segment aus der Transportschicht

Aufgabe 3 (Transmission Control Protocol)

1. Die Abbildung zeigt den Aufbau einer TCP-Verbindung. Ergänzen Sie in der Tabelle die Angaben zu den TCP-Nachrichten 2 und 3 entsprechend der TCP-Nachricht 1.

Nachricht	ACK	SYN	FIN	Länge Nutzdaten	Seq-Nummer	Ack-Nummer
1	0	1	0	0	500	
2					1000	
3						

2. Die Abbildung zeigt einen Ausschnitt der Übermittlungsphase einer TCP-Verbindung. Ergänzen Sie in der Tabelle die fehlenden Angaben

Nachricht	ACK	SYN	FIN	Länge Nutzdaten	Seq-Nummer	Ack-Nummer
4	0			50	501	1001
5	1			0		
6	0			100		
7	1			0		

3. Die Abbildung zeigt den Abbau einer TCP-Verbindung. Ergänzen Sie in der Tabelle die fehlenden Angaben.

Nachricht	ACK	SYN	FIN	Länge Nutzdaten	Seq-Nummer	Ack-Nummer
8	0	0	1	0	2000	3000
9				0		
10				0		
11				0		

Aufgabe 4 (Geräte in Computernetzen)

- 1. Welche Netzwerkgeräte werden in Computernetzen verwendet?
- 2. Weisen Sie die Geräte den Schichten des Hybrid-Referenzmodells zu.

Aufgabe 5 (Geräte in Computernetzen)

Welches Netzwerkgerät bzw. welche Netzwerkgeräte in Computernetzen...

- 1. verbinden Netzwerke mit unterschiedlichen logischen Adressbereichen?
- 2. übertragen Signale über weite Strecken, indem sie diese auf eine Trägerfrequenz im Hochfrequenzbereich aufmodulieren?
- 3. verbinden physische Netzwerke?
- 4. erweitern die Reichweite von LANs?
- 5. verbinden drahtlose Netzwerkgeräte im Infrastruktur-Modus?
- 6. ermöglichen Kommunikation zwischen Netzen, die auf unterschiedlichen Protokollen basieren?

Aufgabe 6 (Referenzmodelle)

Markieren Sie für jede Zeile der Tabelle die zugehörige Schicht im **hybriden Referenzmodell**.

Die 1 ist stellvertretend für die unterste Schicht und die 5 ist stellvertretend für die oberste Schicht des hybriden Referenzmodells. Wenn mehr als eine Schicht als Antwort korrekt sind, genügt es, wenn Sie eine korrekte Schicht angeben.

	Schicht im hybriden Referenzmodell				
	nybriden Reierenzmoden 1 2 3 4 5				
4B5B	1		3	4	3
Address Resolution Protocol (ARP)					
Alternate Mark Inversion (AMI)					
Autonome Systeme					
Border Gateway Protocol (BGP)					
Bridge					
Überlastkontrolle					
CSMA/CA					
CSMA/CD					
Zyklische Redundanzprüfung – Cyclic Redundan-					
cy Check (CRC)					
Distanzvektor-Routing-Protokolle					
Dynamic Host Configuration Protocol (DHCP)					
Ethernet					
File Transfer Protocol (FTP)					
Flusskontrolle					
Gateway					
Hub					
Hypertext Transfer Protocol (HTTP)					
ICMP					
Internet Protocol (IP)					
Link-State-Routing-Protokolle					
Logische Adressen					
Manchester-Code					
Medienzugriffsverfahren					
Modem					
Multilevel Transmission Encoding - 3 Levels					
Multiport Bridge					
Non-Return to Zero					
Open Shortest Path First (OSPF)					

Inhalt: Themen aus Foliensatz 9 + 10

	Hybrid reference model lay				layer
	1	2	3	4	5
Physische Adressen					
Port-Nummern					
Zuverlässige Ende-to-Ende-Datenverbindungen					
Repeater					
Router					
Routing Information Protocol (RIP)					
Sicherheit					
Spanning Tree Protocol (STP)					
Switch					
Telnet					
Transmission Control Protocol (TCP)					
User Datagram Protocol (UDP)					
Wireless LAN					

Aufgabe 7 (Protokolle in Computernetzen)

Welches Protokoll...

- 1. bietet Überlastkontrolle (Congestion Control) und Flusskontrolle (Flow Control)?
- 2. löst logische Adressen in physische Adressen auf?
- 3. vermeidet (avoids) Kollisionen in physischen Netzen?
- 4. ermöglicht Routing innerhalb autonomer Systeme via Bellman-Ford-Algorithmus?
- 5. ermöglicht die <u>verschlüsselte</u> Fernsteuerung von Computern?
- 6. ermöglicht Routing innerhalb autonomer Systeme via Dijkstra-Algorithmus?
- 7. ermöglicht die Zuweisung der Netzwerkkonfiguration an Netzwerkgeräte?
- 8. ermöglicht die <u>unverschlüsselte</u> Fernsteuerung von Computern?
- 9. realisiert verbindungslose Interprozesskommunikation?
- 10. löst Domainnamen in logische Adressen auf?
- 11. erkennt (detects) Kollisionen in physischen Netzen?
- 12. ermöglicht den unverschlüsselten Download und Upload von Dateien?

Seite 6 von 7

13. ermöglicht das Austauschen (Ausliefern) von Emails?

- 14. tauscht Diagnose- und Fehlermeldungen aus?
- 15. reduziert ein Computernetz zu einem kreisfreien Baum?

Inhalt: Themen aus Foliensatz 9 + 10 Seite 7 von 7