LAB 4

Name: SANYYAM KHANDELWAL

Batch: Monday

Exp Date:28/8/2017 Name of TA/RA :Jerin Roll No:16D070038 Table No:17

Part-1

1.Plot the I-V characteristic of the solar cell that you measured from Part 1 for dark, intensity I1 and Intensity I2. ANS.

 $I_{Led} = 59 \text{ mA}$

 I_{Led} =44.1mA

PART-2

2.From the data from Part 2, Plot I as a function of V. From this graph find Isc and Voc for two intensities I1 and I2.Also plot Power P as a function of V on the same plot.Find the current IMP at the maximum power point. Using IMP and VMP, calculate the fill factor ANS.

 $I_{Led} = 44.1 \text{ mA}$

 $I_{Led} = 59 \text{ mA}$

$$FF = I_{MP} * V_{MP} / (I_{sc} * V_{oc}).$$

Intensity	V _{oc}	$I_{sc}(mA)$	\mathbf{V}_{mp}	$I_{mp}(mA)$	FF
I1	0.429V	9.83	0.311V	6.41	0.472
I2	0.444V	13.01	0.273V	9.69	0.457

4. Superimpose the readings of Part 1 obtained in the fourth quadrant and readings obtained in Part 2. Do they match?
ANS.

5.Plot Isc v/s light intensity (LED current) and Voc v/s log intensity (LED current)

We notice I_{SC} increases linearly with I_{LED} . Increasing I_{LED} increases the intensity of incident light which proportionately increases the light generated current in the Solar Cell.As a result, I_L increases linearly.

Since current I_D varies exponentially with V_D and since I_D and I_{LED} have been observed To be linear,the logarithmic variation is justified.