Část A (max. zisk 20 bodů) Odpovězte jen tabulkou s číslem otázky a písmenem označujícím Vaši odpověď. Každá otázka má pouze jednu správnou odpověď. Za správnou odpověď je +5 bodů, za nevyplněnou odpověď 0 bodů a za nesprávně vyplněnou odpověď -2 body. Pokud je celkový součet bodů v části A záporný, je tento součet přehodnocen na 0 bodů.

- 1. Tvrzení: $množina \operatorname{span}(M)$ je lineárně nezávislá množina
 - (a) platí pro jakoukoli množinu M vektorů v lineárním prostoru L.
 - (b) platí pro jakoukoli neprázdnou konečnou množinu M vektorů v lineárním prostoru L.
 - (c) platí pro jakoukoli nekonečnou množinu M vektorů v lineárním prostoru L.
 - (d) neplatí pro žádnou množinu M vektorů v lineárním prostoru L.
- 2. Ať je dána matice $\mathbf{A}: \mathbb{F}^n \to \mathbb{F}^n$. Potom *nutně* platí:
 - (a) pro jakýkoli vektor \mathbf{b} z \mathbb{F}^n má soustava lineárních rovnic $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ vždy alespoň jedno řešení.
 - (b) existuje vektor \mathbf{b} z \mathbb{F}^n , pro který nemá soustava lineárních rovnic $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ žádné řešení.
 - (c) maticová rovnice $\mathbf{AX} = \mathbf{E}_n$ nemá žádné řešení,
 - (d) existuje vektor \mathbf{b} z \mathbb{F}^n , který je lineární kombinací sloupců matice \mathbf{A} .
- 3. Ať W je lineární podprostor prostoru $(\mathbb{Z}_3)^6$ dimense 2. Potom počet vektorů ve W je
 - (a) 3^6 ,
 - (b) 3^2 ,
 - (c) 2^6 ,
 - (d) 2^3 .
- 4. Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení mezi konečně dimensionálními lineárními prostory L_1 a L_2 . Které z následujících tvrzení nutně platí?
 - (a) $\dim(\operatorname{im}(\mathbf{f})) < \dim(L_2)$.
 - (b) $\dim(\operatorname{im}(\mathbf{f})) \leq \dim(\ker(\mathbf{f})) \dim(L_2)$.
 - (c) $\dim(\ker(\mathbf{f})) \leq \dim(L_1)$.
 - (d) $\dim(L_2) \leq \dim(L_1)$.

Část B (max. zisk 20 bodů) V odpovědi je třeba uvést definice uvedených pojmů a dále podrobnou a smysluplnou argumentaci, která objasňuje pravdivost uvedeného tvrzení. Za správně formulované definice je 10 bodů, za správně vedený důkaz je dalších 10 bodů.

Definujte (celými větami) pojmy standardní skalární součin v prostoru \mathbb{R}^n a ortonormální báze prostoru \mathbb{R}^n se standardním skalárním součinem.

Dokažte: Matice $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n) : \mathbb{R}^n \to \mathbb{R}^n$ splňuje podmínku $\mathbf{A}^{-1} = \mathbf{A}^T$ právě tehdy, když seznam $(\mathbf{a}_1, \dots, \mathbf{a}_n)$ tvoří ortonormální bázi prostoru \mathbb{R}^n se standardním skalárním součinem.

Část C (max. zisk 20 bodů) Kromě zřetelně označeného výsledku (tj., odpovědi celou větou) je nutné odevzdat všechny mezivýpočty a stručné zdůvodnění postupu. Postup musí být zapsán přehledně a srozumitelně. Za chybný postup není možné dostat body, ačkoli nějaké výpočty jsou odevzdány. Za numerickou chybu, ale jinak správný postup, se strhává 1 nebo 2 body. Za část výpočtu je udělen odpovídající poměrný počet bodů z dvaceti.

Rozhodněte, zda reálnou matici

$$\left(\begin{array}{cccc}
0 & 1 & 0 \\
-4 & 4 & 0 \\
-2 & 1 & 2
\end{array}\right)$$

lze diagonalisovat. V kladném případě příslušnou diagonální matici napište, v záporném případě vysvětlete, proč diagonalisovat nelze.

Závěrečnou odpověď zapište celou větou.

LS 2018: ukázka písemného testu z B6B01LAG