Margin Based Methods

Tuesday, April 25, 2017

4.22 PM

Predict for logistic regression and LDA: $\hat{y} = 2\{x^T \hat{\beta} + \hat{\beta}_0 \ge 0\}$

Empirical Risk Minimization

min I T Rly., xi, s) - y:xi & + log(1+e x i)

Lecture 8 Page 1

Recall 0-1 loss
$$L(y_i,x_i,\beta) = 2\{y_i = \hat{y}_i\}$$
 and re-encode $y_i \leftarrow 2y_i - 1$ so that $y_i \in [-1,1]$, and $\hat{y}_i = sign(x_i,\beta)$
Error if $y_i \cdot \hat{y}_i = 1 \iff y_i \cdot x_i, \beta > 0$ so

$$l_{o/1}(y_i,x_i,\beta) = 1\{y_i,x_i,\beta \leq 0\}$$
and
$$l_{logit}(y_i,x_i,\beta) = \{log(1+e^{x_i}\beta), y_i = -1\}$$

$$\{log_i(1+e^{x_i}\beta), y_i = 1\}$$

You can also use square error loss, $l_2(y; x; \beta) = (y; -x; \beta)^2 = (1 - y; x; \beta)^2$

Support Vector Machines

Wednesday, April 26, 2017 12:04 P

Max-margin separating hyperplane

max
$$M = s.t. y:(x^T_{\beta}+\beta_{\delta}) \geq M \forall i$$

$$\equiv \max_{\beta,\beta_{\bullet}} M_{s,l}, \frac{1}{||\beta||} Y_{i}(x_{i}^{\dagger}\beta+\beta_{\bullet}) \geq M_{s,l}$$

Li can scale
$$\beta$$
 arbitrarily so set $\|\beta\| = \frac{1}{m}$

La Solution only dependent on "support vectors"

clf not linearly se parable then add "slack variable" 3:

min
$$|\beta| < 1$$
, $\forall i (x_i^T \beta + \beta_0) \ge 1 - 3$; $\forall i$
 $\exists i \ge 0 \quad \forall j \le C$

Lagrangian

where
$$a_{+} = \begin{cases} a, & a \ge 0 \\ 0, & a < 0 \end{cases}$$

Multiclass Classification

Wednesday, April 26, 2017

Encode K classes:
$$y_i \in \{0, 13^K \}$$

 $l_{0,1}(y_i, \hat{y}_i) = 1 - y_i^T \hat{y}_i$

Multiple linear separators: {Bk}.

$$\hat{y}_j = \begin{cases} 1, j = argmax \beta_k^T \times 0, & \text{otherwise} \end{cases}$$

Soft-angmax) ZERK is vector of scores

$$S(Z) = \left(\frac{e^{Z_1}}{Le^{Z_k}}, \frac{e^{Z_2}}{Le^{Z_k}}, \dots, \frac{e^{Z_k}}{Le^{Z_k}}\right)$$

Replace
$$\hat{g}_i = S(x_i^T \hat{\beta}_i, ..., x_i^T \hat{\beta}_K)$$
 then
$$y_i^T \hat{y}_i = e^{x_i^T \hat{\beta}_i} \quad \text{for } y_i = 1$$

$$y_{i}^{T}\hat{y}_{i} = \frac{e^{X_{i}^{T}\hat{\beta}_{i}}}{\sum_{k} e^{X_{i}^{T}\hat{\beta}_{k}}} \quad \text{for } y_{ij} = 1.$$

$$= \frac{e^{X_{i}^{T}\hat{\beta}_{i}} - \hat{\beta}_{k}}{1 + \sum_{k=1}^{K_{i}} e^{X_{i}^{T}\hat{\beta}_{k}} - \hat{\beta}_{k}} = P\{Class = j \mid X\}$$
for Legislic model

- b multiclass SVM predicts class with max margin/ smallest slack var.
- P Confusion matrix is KxK.