點膠製程改良 之實驗設計與 資料分析方法 研究計畫

計畫主持人:蘇南誠教授 學生:侯威志

指導老師:張升懋教授 林孟璇

陳秉洋教授 韓明澄

研究案流程回顧

討論與決定

- 進行實驗之製程階段
- 進行實驗之產品標的

剖析研究細項

- L 值影響參數研究 (工程面)
- L 值管制範圍研究 (數據面)
- L 值量測方法比較 (數據面)

計畫 起跑

實驗情境 ___探討

實驗項目 盤點

研究項目 定義

實驗數據 收集

數據分析 成果

討論與決定

- 影響品質之實驗因子
- 實驗因子之紀錄方式
- 品質數據之量測方式

報告

- 決策樹原理說明
- 決策樹案例分析
- 實驗數據優化製造參數流程建議
- 電感值量測方法改善分析

決策樹之分析結果視覺化呈現

ASN2010

ASN 2010 決策樹之分析結果彙整

高良率範圍

- 半成品電感值卡控門檻 (14.62 15.51 uH),預測良率 90%
- 半成品電感值超過門檻時,點膠重量 2.65 4.20 mg,預測良率接近 60%

規則 編號	半成品電感值 範圍 (uH)	膠點重量 範圍 (mg)	預測良率 (%)
1	14.62 – 15.51	1.10 – 4.20	90.00
2	15.51 – 15.70	2.65 - 4.20	57.14
3	15.51 – 15.70	1.10 – 2.65	17.65

ASN 2010 決策樹之分析結果彙整

高良率範圍

■ 低半成品電感值(14.36 – 15.51 uH)、低點膠重量(0.80 – 3.05 mg)

規則 編號	半成品電感值 範圍 (uH)	膠點重量 範圍 (mg)	預測良率 (%)
1	14.36 – 15.51	0.80 - 3.05	82.29
2	14.92 – 15.51	3.05 - 4.20	66.67
3	14.36 – 14.92	3.05 - 4.20	27.27
4	15.62 – 15.84	2.65 - 4.20	69.23
5	15.51 – 15.62	2.65 – 4.20	42.86
6	15.51 – 15.84	0.80 - 2.65	20.83

決策樹方法說明

■ The tree has two types of node: internal nodes and terminal nodes

(leaves).

At a given internal node, the label (of the form $X_j < t_k$) indicates the left-hand branch emanating from that split, and the right-hand branch corresponds to $X_j \ge t_k$.

決策樹方法說明

Splitting the predictor space into the regions $R_1 = \{X | X_j < s\}$ and $R_2 = \{X | X_j \ge s\}$ leads to the smallest possible uncertainty.

The general objective function of building a tree model is

$$\min \sum_{m=1}^{|T|} \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}) + \alpha |T|$$

where
$$\hat{p}_{mk} = \frac{1}{N_j} \sum_{i:x_i \in R_m} I(y_i = k)$$

決策樹方法說明

- Decision trees more closely
 mirror human decision making than do the other
 machine learning approaches.
- Trees can be displayed graphically, and are easily interpreted.

實驗數據優化製造參數流程

MSN4020220 實作結果

- 半成品電感值 15.78 16.66 uH
- 點膠重量 12.7 17.6 mg
- 良率 97%

電感值量測手法改善分析

手工量測 vs. 製具量測

電感值量測手法改善分析

改善前 As-is

- 電感置於測試桌
- 以手工操作測試線量測
- 操作人員熟悉程度易影響量測精準度

改善後 To-be

- 以夾製具固定電感
- 利用製具同方向、同角度進行量測
- 量測精準度不受操作人員經驗影響
- 可做為自動化檢測流程設計之參考 依據

電感值量測手法改善分析

實驗方式

- ■隨機取樣 154 顆電感
- ■同一操作員
- ■手工量測 3 次 → 計算 L 值變異數
- ■製具量測 3 次 → 計算 L 值變異數

成對樣本T檢定

 H_0 :製具量測與手工量測之數據穩定度無差別

H₁:製具量測較手工量測更能穩定量測數據

■製具測量之電感值**統計上顯著地較**手工測量之電感值**穩定**

