UFR de Mathématiques et Informatique

Entourer votre Groupe de TD: G1 Mardi 12h G2 Mardi 14h G4 mercredi G3 jeudi

EXAMEN de CONTROLE CONTINU Épreuve sans documents, ni calculatrices

CORRECTION

(Veuillez reporter vos réponses directement sur cette feuille et la remettre à la fin de l'épreuve)

Exercice 1 : Analyse d'un échange de trames HDLC (4 points)

Veuillez analyser le diagramme d'échanges de trames HDLC ci-dessous et répondre brièvement aux questions ci dessous.

- 1 A quoi servent les trames SABM et DISC ? : réponse :
- 2 Quelle trame permet de faire une <u>demande de retransmission</u> de trames I ? *réponse* = la trame de supervision REJ transmise par B
- 3 Quelle est la valeur de la <u>fenêtre d'anticipation</u> W ? réponse = 3
- Quel est le nombre de bits requis pour la <u>numérotation des trames</u> d'information ? réponse = 3 bits pour le mode SABM (1 seul octet d'en-tete de trame suffit)
- Une demande <u>d'arrêt temporaire</u> d'envoie de trames est sollicitée par un des 2 terminaux. Lequel ? le terminal B au moyen d'une trame de supervision RNR

Université Paris Descartes

UFR de Mathématiques et Informatique

- 7 Combien de trames d'information distinctes ont été transmises de A vers B ? réponse : 7 trames I
- 8 Combien de trames d'information distinctes ont été transmises de B vers A? réponse : 2 trames I
- Pourquoi faut-il utiliser ici une trame REJ ? réponse = pour indiquer a l'emetteur qu'une erreur est survenue au moyen d'un message d'acquittement négatif REJ(et)
- Veuillez préciser le ou les <u>numéros de séquence des trames</u> erronées. réponses = la trame n°5 envoyée par A

Exercice 2. Méthode d'accès à un réseau local ETHERNET (5 points)

Soit trois stations A, B et C d'un même réseau local Ethernet 10base5 désirant transmettre des trames de tailles 4 slots chacune.

- A souhaite émettre une trame à l'instant T=0 (A),
- B souhaite émettre une trame à l'instant T=0 (B1) et une seconde trame à l'instant T=10 (B2),
- C souhaite émettre une trame à l'instant T=0 (C).

Les tirages aléatoires de l'algorithme BEB (Binary Exponential Backoff) pour chaque station sont donnés dans le tableau ci-dessous (algo. BEB rappeler dans l'annexe ci-dessous).

- 1) Compléter le tableau A et le diagramme temporel ci-dessous.
- 2) Déterminer dans quel ordre sont émises les trames sur le réseau ? Compléter le tableau B.
- 3) Quel est le taux d'efficacité du réseau ? Reporter votre réponse dans le tableau C.
- 4) Quel est le temps d'accès moyen au canal pour la station B (en nombre de slots-times) ? reporter votre réponse dans le tableau D

	1 ^{er} tirage	2 nd tirage	3 ^{ème} tirage	4 ^{ème} tirage	5 ^{ème} tirage
Station A	1/2	1/2	1/4	1/16	1/8
Station B	1/2	1/2	1/8	1/8	1/8
Station C	1/4	3/4	1/2	1/4	1/2

Tableau des tirages aléatoires (random) pour chaque station

N° essai	Nom station	Tirage aléatoire	MaxBackoff	Délai d'attente (en time-slots)
<mark>1</mark>	A	<mark>½</mark>	2	1
<mark>1</mark>	B (B1)	<mark>½</mark>	2	<u>1</u>
<mark>1</mark>	C	<mark>1/4</mark>	2	0 (C peut émettre tout de suite)
2	A	<mark>1/2</mark>	4	2
2	B	<mark>1/2</mark>	<mark>4</mark>	2
<mark>3</mark>	A	<mark>1/4</mark>	8	2
<mark>3</mark>	B	1/8	8	1 (B peut emettre dans un slot)
<mark>4</mark>	A	1/16	<mark>16</mark>	<mark>1</mark>
<mark>1</mark>	B (B2)	1/8	<mark>2</mark>	O (B peut emettre tout de suite)
		_		

- Tableau A -

- Diagramme temporel -

Ordre de transmission des trames	C	<mark>B1</mark>	B2	A
	1ère	2nde	3ème	4ème

- Tableau B -

Tx d'efficacité du réseau = 16/23 = 0,69

- Tableau C -

Temps d'accès moyen de la station B B1 = 10-0 = 10 et B2 = 15-10 = 5 TAM = (10+5)/2 = 7,5 slot-times

- Tableau D -

Exercice 3. : Adressage IP (4 points)

Vous êtes administrateur du réseau de votre entreprise. L'opérateur vous communique l'adresse IP de réseau 198.100.30.128/25. Vous devez créer 3 sous-réseaux distincts pour vos 3 départements.

- 1- quel est le masque de votre réseau global en décimal ? réponse : 255.255.255.128
- 2– Quel masque de sous-réseau devez-vous utiliser pour configurer votre réseau en 3 sous-réseaux tout en optimisant votre plan d'adressage (perdre le minimum d'adresses IP) ?

réponse : 2 bits doivent etre utilisés pour configurer au moins 3 sous-reseaux. Le masque est alors de /27 soit 255.255.255.224

3- donner les adresses IP des 3 sous-réseaux ainsi que leurs adresses de diffusion dirigée.

	adresse de sous-réseau	adresse de diffusion dirigée
SR1	198.100.30.128/27	198.100.30.159
SR2	198.100.30.160/27	198.100.30.191
SR3	198.100.30.192/27	198.100.30.223

4– Combien d'adresses IP (machines hors interface du routeur) pourra recevoir chaque sous-réseau? Réponse : 2 puissance 5 moins 3 (adresse sous-reseau, adresse diffusion dirigée, adresse interface passerelle par defaut du sous-réseau) = 29 adresses IP de hosts libre par sous-réseau

5- quelle est la différence entre l'adresse IP de diffusion globale et l'adresse IP de diffusion dirigée dans un sous-réseau ? réponse : l'adresse de diffusion globale (255.255.255) ne traversent pas les routeurs.

Questions à Choix Multiples (7 points)

Veuillez entourer la ou les bonnes réponses pour chacune des questions ci-dessous :

Université Paris Descartes

UFR de Mathématiques et Informatique

- 1) Quel est le rôle du protocole MAC (Medium Access Control) :
 - a) Fournir les moyens d'ouvrir et de fermer une liaison
 - b) Calculer la route à suivre dans un réseau
 - c) Partager le canal de communication entre plusieurs stations
- 2) Le théorème de Nyquist indique que pour numériser précisément un signal analogique de fréquence maximale « F », il faut utiliser une fréquence d'échantillonnage du signal « f » tel que :
 - a) f = F
 - b) f = F/2
 - c) f = 2F
- 3) Dans la procédure HDLC, les trames de gestion non numérotées permettent:
 - a) De négocier les variables de contrôle de la liaison
 - b) De contrôler le flux de trames émises
 - c) De retransmettre des trames erronées ou perdues
- 4) Quels sont les avantages d'adopter une architecture de communication en couches ?
 - a) Simplifier son administration
 - b) Faciliter l'étude et les évolutions du réseau
 - c) Accroitre les performances du réseau
- 5) La couche réseau assure les services suivants :
 - a) Routage
 - b) Codage des signaux
 - c) Adressage
 - d) Fragmentation
- 6) Dans le cas d'un temps de propagation important, a t-on intérêt à :
 - a) Augmenter la fenêtre d'anticipation
 - b) Diminuer la fenêtre d'anticipation
 - c) Ne pas la changer
- 7) Quel est le rôle d'un Concentrateur (ou Hub) Ethernet :
 - a) Réduire les collisions sur le réseau
 - b) Filtrer les trames Ethernet en fonction de leur adresse physique de destination
 - c) Modifier la topologie physique du réseau Ethernet pour faciliter son déploiement
- 8) A quoi correspond la tranche-de-temps (ou time-slot) dans un réseau Ethernet ?
 - a) à la durée d'émission d'une trame de taille minimale
 - b) à une fenêtre de temps où une collision de trames peut survenir et être détectée par l'émetteur
 - c) au temps de propagation aller-retour du signal entre les deux stations les plus éloignées du réseau
- 9) Un réseau local Ethernet utilise :
 - a) Une technique d'accès au canal aléatoire
 - b) Une technique d'accès au canal déterministe
- 10) Le protocole ARP (Address Resolution Protocol) permet de :
 - a) Trouver l'adresse IP d'un terminal à partir de son adresse physique
 - b) Trouver l'adresse physique d'un terminal à partir de son adresse IP
- 11) Pour visualiser la table de correspondance des adresses physiques et des adresses IP des stations ayant communiquées avec une station, il faut utiliser la commande système suivante :
 - a) netstat -a
 - b) arp -a

Université Paris Descartes

UFR de Mathématiques et Informatique

- c) ifconfig -a
- 12) Par rapport à une transmission analogique, la transmission numérique dite « transmission en bande de base » est caractérisée par :
 - a) Une meilleure utilisation des capacités du canal de communication
 - b) Un délai de transmission plus court
 - c) Une distance de communication plus réduite
- 13) Une application de transmission vidéo utilise une résolution de 1000 pixels avec 64000 niveaux de couleur par pixel. Quel est le débit minimal pour transmettre 25 images par secondes :
 - a) Entre 0 et 56 kbits/s
 - b) Entre 56 kbits/ et 2 Mbits/s
 - c) Supérieur à 2 Mbits/s
- 14) La technique appelée « réseaux locaux virtuels » ou VLAN (pour Virtual Local Area Network) permet :
 - a) De segmenter un réseau local physique en plusieurs réseaux locaux logiques
 - b) De chiffrer les trames de données au sein du réseau local
 - c) D'attribuer des priorités de communication entre les stations d'un réseau local

Annexe: Ethernet

- La procédure BACKOFF utilise 3 fonctions :
 - random() : tire un nombre réel aléatoire entre 0 et 1.
 - int() : rend la partie entière d'un réel
 - délai() : calcul le délai d'attente multiple d'un slot_time (51.2 microsec)
 et est compris entre [0, 2 *[.

Avec k = min (n, 10), n = nbre de ré-émission déjà faites

```
Procedure BACKOFF (no tentative : entier, VAR maxbackoff : entier)
              slot-time=51.2 (microsecondes); limite tentative=16;
Const
Var
              delai : entier;
BEGIN
     Si (no tentative =1)
     Alors maxbackoff =2 (borne de temps d'attente maximale)
    Sinon
              Si (tentative < limite tentative)
                        maxbackoff = maxbackoff*2;
              Alors.
                        maxbackoff = 2 10 (au dela de 10 essats la bome devient constante)
              Sinon
              fsi
     délai := int(random() *maxbackoff)
     attendre (delai*slot time)
END
```