Serial No.: 10/705,398

Filed: November 10, 2003

Page : 3 of 15

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1-17. (Canceled)

18. (Currently Amended) A compound of the following formula:

$$R^{10}$$
 R^{10}
 R

wherein

each of R¹, R², R³, R⁴, R⁴, R⁶, R⁷, R¹¹, R¹², R¹⁵, R¹⁶, and R¹⁷, independently, is hydrogen, hydroxy, amino, carboxyl, oxo, halo, sulfonic acid, -O-sulfonic acid, or alkyl that is optionally inserted with -NH-, -N(alkyl)-, -O-, -S-, -SO-, -SO₂-, -O-SO₂-, -SO₂-O-, -O-SO₃-, -SO₃-O-, -CO-, -CO-O-, -O-CO-, -CO-NH-, -CO-N(alkyl)-, -NH-CO-, or -

Cont.

Serial No.: 10/705,398

Filed: November 10, 2003

Page : 4 of 15

N(alkyl)-CO-, and further optionally substituted with hydroxy, halo, amino, carboxyl, sulfonic acid, or -O-sulfonic acid;

each of R⁵, R⁸, R⁹, R¹⁰, R¹³, and R¹⁴, independently, is hydrogen, alkyl, haloalkyl, hydroxyalkyl, alkoxy, hydroxy, or amino;

R¹⁷ is -X-Y-Z, in which X is a bond, or alkyl or alkenyl, optionally inserted with—NH, N(alkyl), O, or S, and further optionally forming a cyclic moiety with R¹⁶ and the 2 ring carbon atoms to which R¹⁶ and R¹⁷ are bonded; Y is CO, SO, SO₂, O SO₂, SO₂, O, SO₂, O, SO₂, O, SO₃, SO₃, O, COO, OCO, CONH, CON(alkyl), NH CO, N(alkyl) CO, or a bond; and Z is alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, aralkyl, or heteroaralkyl, and is substituted with -O-sulfonic acid, alkylsulfinyl, alkylsulfonyl, carboxyl or alkyloxycarbonyl; or Z is alkenyl and is optionally substituted with hydroxy, alkoxy, amino, halo, sulfonic acid, -O-sulfonic acid, carboxyl, oxo, alkyloxycarbonyl, alkylsulfinyl, alkylsulfonyl, or alkylthio; or is CH(A) B with A being an amino acid side chain containing an aromatic moiety, and B being hydrogen, NR^aR^b, or COOR^e wherein each of R^a, R^b, and R^e, independently, is hydrogen or alkyl; and

n is 0, 1, or 2;

provided that when Z is substituted with carboxyl or alkyloxycarbonyl, $\frac{Y}{Y}$ is a bond and either X or Z contains at least one double bond, and that when Y is a bond, either X is NH alkyl, NH alkenyl, N(alkyl) alkyl, N(alkyl) alkenyl, O alkyl, O alkenyl, or S alkenyl; or Z is substituted with halo, sulfonic acid, O sulfonic acid, alkylsulfinyl, or alkylsulfonyl, or is alkenyl; or a salt thereof.

Cont.

Serial No.: 10/705,398

Filed: November 10, 2003

Page : 5 of 15

19. (Cancelled)

- 20. (Original) The compound of claim 18, wherein each of R^3 and R^6 , independently, is hydroxy, amino, carboxyl, halo, sulfonic acid, -O-sulfonic acid, or alkyl, and is in the α -configuration.
- 21. (Original) The compound of claim 18, wherein R^5 is hydrogen and is in the β -configuration.
- 22. (Original) The compound of claim 18, wherein each of R¹, R², R³, R⁴, R⁴, R⁶, R⁷, R¹¹, R¹², R¹⁵, R¹⁶, and R¹⁷, independently, is hydrogen, hydroxy, oxo, halo, sulfonic acid, -O-sulfonic acid, or alkyl.
- 23. (Withdrawn) The compound of claim 22, wherein each of R^1 , R^2 , R^3 , R^4 , R^4 , R^6 , R^7 , R^{11} , R^{12} , R^{15} , R^{16} , and R^{17} , independently, is hydrogen, hydroxy, or oxo; and each of R^5 , R^8 , R^9 , R^{10} , R^{13} , and R^{14} , independently, is hydrogen or hydroxy.

24 – 28. (Canceled)

29. (Currently Amended) The compound of claim 28 18, wherein Z is alkyl, alkenyl, aryl, heteroaryl, aralkyl, or heteroaralkyl, and is substituted with carboxyl, -O-sulfonic acid, alkylsulfinyl, or alkylsulfonyl; or Z is alkenyl, and is optionally substituted with hydroxy, alkoxy, halo, sulfonic acid, carboxyl, -O-sulfonic acid, alkylsulfinyl, or alkylsulfonyl; or is CH(A) B.

Cont.

Serial No.: 10/705,398

Filed: November 10, 2003

Page : 6 of 15

30. (Cancelled)

31. (Original) The compound of claim 18, wherein R¹⁷ contains a straight chain having 6-20 chain atoms.

- 32. (Original) The compound of claim 31, wherein R¹⁷ contains a straight chain having 8-16 chain atoms.
- 33. (Withdrawn) The compound of claim 18, wherein X is –CH(CH₃)-CH₂-, Y is a bond, and Z is –CH₂-CH=C(R')(CH₃) with R' being hydroxy, alkoxy, amino, halo, sulfonic acid, -O-sulfonic acid, carboxyl, oxo, alkyloxycarbonyl, alkylcarbonyloxy, alkylaminocarbonyl, alkylcarbonylamino, alkylcarbonyl, alkylsulfinyl, alkylsulfonyl, or alkylthio.
- 34. (Currently Amended) The compound of claim 18, wherein said compound is:

Applicant: Shutsung Liao et al.
Serial No.: 10/705,398
Filed: November 10, 2003
Page: 7 of 15

Attorney's Docket No.: 10634-002002 / UCHI 751

Cont.

- 7 -

Cont.

Serial No.: 10/705,398

Filed: November 10, 2003

Page : 8 of 15

35-64. (Cancelled)

65. (Currently Amended) A pharmaceutical composition for treating a UR- or a LXR-mediated disorder, said composition comprising a pharmaceutically acceptable carrier and an effective amount of a compound of the following formula:

$$R^{10}$$
 R^{10}
 R

wherein

each of R¹, R², R³, R⁴, R⁴, R⁶, R⁷, R¹¹, R¹², R¹⁵, R¹⁶, and R¹⁷, independently, is hydrogen, hydroxy, amino, carboxyl, oxo, halo, sulfonic acid, -O-sulfonic acid, or alkyl that is optionally inserted with -NH-, -N(alkyl)-, -O-, -S-, -SO-, -SO₂-, -O-SO₂-, -SO₂-O-, -O-SO₃-, -SO₃-O-, -CO-, -CO-O-, -O-CO-, -CO-NH-, -CO-N(alkyl)-, -NH-CO-, or -N(alkyl)-CO-, and further optionally substituted with hydroxy, halo, amino, carboxyl, sulfonic acid, or -O-sulfonic acid;

each of R⁵, R⁸, R⁹, R¹⁰, R¹³, and R¹⁴, independently, is hydrogen, alkyl, haloalkyl, hydroxyalkyl, alkoxy, hydroxy, or amino;

Cont.

Serial No.: 10/705,398

Filed: November 10, 2003

Page : 9 of 15

R¹⁷ is -X-Y-Z, in which X is a bond, or alkyl or alkenyl, optionally inserted with—NH, N(alkyl), O, or S, and further optionally forming a cyclic moiety with R¹⁶ and the 2 ring carbon atoms to which R¹⁶ and R¹⁷ are bonded; Y is CO, SO, SO₂, OSO₂, SO₂, OSO₂, SO₂, OSO₂, SO₃, SO₃,

n is 0, 1, or 2;

provided that when Z is substituted with carboxyl or alkyloxycarbonyl, $\frac{Y - is - a}{S - a}$ bond and either X or Z contains at least one double bond, and that when Y is a bond, either X is NH alkyl, NH-alkenyl, N(alkyl) alkyl, N(alkyl) alkenyl, O alkyl, O alkenyl, S alkyl, or S alkenyl; or Z is substituted with halo, sulfonic acid, O sulfonic acid, alkylsulfinyl, or alkylsulfonyl, or is alkenyl; or a salt thereof.

66. (Currently Amended) The composition of claim 65, wherein said compound is:

Applicant: Shutsung Liao et al.

Serial No. : 10/705,398
Filed : November 10, 2003
Page : 10 of 15

Attorney's Docket No.: 10634-002002 / UCHI 751

Cont.

- 10 -

òн

HO

Applicant: Shutsung Liao et al. Serial No.: 10/705,398 Attorney's Docket No.: 10634-002002 / UCHI 751 Cont.

Filed : November 10, 2003 Page : 11 of 15

67-68. (Cancelled)

