Laboratório 03

Caracterizando a Atividade de Code Review no GitHub

Pedro Franco e Gabriel Pongelupe Engenharia de Software - 6° Período

Laboratório de Experimentação de Software

Outubro de 2025

Professor: Danilo

Sumário

1	Intr	rodução			3	
	1.1 Hipóteses Informais					
		1.1.1 Dimensão A: Feedback Final das Revisões (Status do PR) $$.			3	
		1.1.2 Dimensão B: Número de Revisões			4	
2	Met	Metodologia				
	2.1	Coleta de Dados			4	
		2.1.1 Critérios de Seleção de Repositórios			5	
		2.1.2 Critérios de Seleção de Pull Requests			5	
	2.2	Definição de Métricas			5	
	2.3	Ferramentas e Tecnologias			6	
	2.4	Análise Estatística			6	
3	Que	Questões de Pesquisa				
	3.1	Dimensão A: Feedback Final das Revisões (Status do PR)			6	
	3.2	Dimensão B: Número de Revisões			7	
4	Pro	Processo de Coleta e Análise				
	4.1	Script de Coleta (Lab03S01)			7	
	4.2	Estrutura do Dataset			7	
5	Resultados Preliminares					
	5.1	Estatísticas Descritivas do Dataset			8	
	5.2	Respostas às Questões de Pesquisa			8	
6	Disc	scussão			8	
7	Conclusões					

1 Introdução

A prática de *code review* é fundamental no desenvolvimento de software moderno, especialmente em projetos *open source* hospedados no GitHub. Por meio de *Pull Requests* (PRs), desenvolvedores submetem contribuições que são avaliadas por revisores antes de serem integradas à base principal do código. Este processo garante a qualidade do código e reduz a inclusão de defeitos no projeto.

Este trabalho tem como objetivo analisar a atividade de *code review* em repositórios populares do GitHub, identificando variáveis que influenciam no *merge* de um PR sob a perspectiva dos desenvolvedores que submetem código.

1.1 Hipóteses Informais

Com base na literatura e na experiência prática com desenvolvimento de software, formulamos as seguintes hipóteses para guiar nossa análise:

1.1.1 Dimensão A: Feedback Final das Revisões (Status do PR)

H1 - Tamanho dos PRs:

- **Hipótese:** PRs menores (com menos arquivos e menos linhas modificadas) têm maior probabilidade de serem aceitos (MERGED).
- Justificativa: PRs menores são mais fáceis de revisar, compreender e validar, reduzindo a carga cognitiva do revisor e facilitando a identificação de problemas.

H2 - Tempo de Análise:

- **Hipótese:** PRs que são mergeados tendem a ter tempo de análise menor do que PRs rejeitados (CLOSED).
- Justificativa: PRs bem estruturados e alinhados com os objetivos do projeto são revisados e aprovados mais rapidamente, enquanto PRs problemáticos geram mais discussões e acabam sendo rejeitados após longos períodos.

H3 - Descrição dos PRs:

- **Hipótese:** PRs com descrições mais detalhadas (maior número de caracteres) têm maior taxa de aceitação.
- Justificativa: Descrições completas facilitam o entendimento do revisor sobre o contexto, motivação e implementação das mudanças, agilizando o processo de revisão.

H4 - Interações nos PRs:

- **Hipótese:** PRs com mais interações (participantes e comentários) têm menor taxa de aceitação.
- Justificativa: Mais interações podem indicar controvérsias, problemas no código ou necessidade de ajustes significativos, o que pode levar à rejeição.

1.1.2 Dimensão B: Número de Revisões

H5 - Tamanho dos PRs:

- Hipótese: PRs maiores exigem mais revisões antes da decisão final.
- Justificativa: Alterações extensas requerem múltiplas rodadas de revisão para garantir a qualidade e identificar todos os problemas potenciais.

H6 - Tempo de Análise:

- **Hipótese:** Existe correlação positiva entre o número de revisões e o tempo de análise.
- Justificativa: Mais revisões naturalmente estendem o tempo total necessário para finalizar o processo de *code review*.

H7 - Descrição dos PRs:

- Hipótese: PRs com descrições mais detalhadas requerem menos revisões.
- Justificativa: Descrições claras reduzem dúvidas e a necessidade de esclarecimentos adicionais durante o processo de revisão.

H8 - Interações nos PRs:

- Hipótese: Existe correlação positiva forte entre o número de interações e o número de revisões.
- Justificativa: Cada revisão tende a gerar discussões e comentários, aumentando o número total de interações.

2 Metodologia

2.1 Coleta de Dados

O dataset foi construído a partir de *Pull Requests* de repositórios populares do GitHub, seguindo os critérios estabelecidos:

2.1.1 Critérios de Seleção de Repositórios

- Repositórios entre os 200 mais populares do GitHub
- Repositórios com pelo menos 100 PRs (MERGED + CLOSED)

2.1.2 Critérios de Seleção de Pull Requests

- Status: MERGED ou CLOSED
- Pelo menos uma revisão registrada (total count > 0)
- Tempo de revisão superior a 1 hora (para filtrar revisões automáticas por bots/CI-CD)

2.2 Definição de Métricas

Para responder às questões de pesquisa, coletamos as seguintes métricas para cada PR:

Métricas de Tamanho:

- Número de arquivos modificados
- Total de linhas adicionadas
- Total de linhas removidas

Métricas de Tempo:

- Data/hora de criação do PR
- Data/hora de fechamento ou merge
- Tempo de análise (diferença entre criação e fechamento/merge)

Métricas de Descrição:

• Número de caracteres no corpo da descrição do PR (formato markdown)

Métricas de Interação:

- Número de participantes únicos
- Número total de comentários

Métricas de Revisão:

- Número total de revisões realizadas
- Status final (MERGED ou CLOSED)

2.3 Ferramentas e Tecnologias

- Linguagem de Programação: Python 3.x
- Biblioteca para API do GitHub: PyGithub
- Análise de Dados: pandas, numpy
- Análise Estatística: scipy.stats
- Visualização: matplotlib, seaborn

2.4 Análise Estatística

Para avaliar as correlações entre as variáveis, utilizaremos o **Teste de Correlação** de **Spearman**:

- Escolhido por ser não-paramétrico, adequado para dados que podem não seguir distribuição normal
- Avalia correlações monotônicas (não apenas lineares)
- Robusto a outliers, comuns em dados de repositórios de software
- Nível de significância: $\alpha = 0.05$

Justificativa: Dados de repositórios de software frequentemente apresentam distribuições assimétricas e *outliers* (por exemplo, PRs excepcionalmente grandes ou com tempo de revisão muito longo). O teste de Spearman é mais apropriado para este cenário do que o teste de Pearson, que assume normalidade dos dados.

3 Questões de Pesquisa

3.1 Dimensão A: Feedback Final das Revisões (Status do PR)

- RQ 01. Qual a relação entre o tamanho dos PRs e o feedback final das revisões?
- RQ 02. Qual a relação entre o tempo de análise dos PRs e o feedback final das revisões?
- RQ 03. Qual a relação entre a descrição dos PRs e o feedback final das revisões?
- RQ 04. Qual a relação entre as interações nos PRs e o feedback final das revisões?

3.2 Dimensão B: Número de Revisões

- RQ 05. Qual a relação entre o tamanho dos PRs e o número de revisões realizadas?
- RQ 06. Qual a relação entre o tempo de análise dos PRs e o número de revisões realizadas?
- RQ 07. Qual a relação entre a descrição dos PRs e o número de revisões realizadas?
- RQ 08. Qual a relação entre as interações nos PRs e o número de revisões realizadas?

4 Processo de Coleta e Análise

4.1 Script de Coleta (Lab03S01)

O script de coleta foi desenvolvido em Python utilizando a biblioteca PyGithub para acessar a API do GitHub. O processo de coleta segue os seguintes passos:

- 1. Identificação dos 200 repositórios mais populares (por número de stars)
- 2. Filtragem de repositórios com pelo menos 100 PRs (MERGED + CLOSED)
- 3. Para cada repositório selecionado:
 - Coleta de todos os PRs com status MERGED ou CLOSED
 - Filtragem de PRs com pelo menos uma revisão
 - Cálculo do tempo de revisão e filtragem (> 1 hora)
 - Extração de todas as métricas definidas
- 4. Consolidação dos dados em um dataset único

4.2 Estrutura do Dataset

O dataset final contém as seguintes colunas apresentadas na Tabela??.

Tabela 1: Descrição das colunas do arquivo prs_clean.csv

Coluna	Descrição	Tipo
id	Identificador único do PR	Integer
number	Número do Pull Request	Integer
title	Título do Pull Request	String
user	Autor do Pull Request	String
created_at	Data e hora de criação do PR	Datetime
closed_at	Data e hora de fechamento do PR	Datetime
merged_at	Data e hora de merge (se aplicável)	Datetime
comments	Número de comentários gerais	Integer
review_comments	Número de comentários de revisão	Integer
changed_files	Quantidade de arquivos modificados	Integer
additions	Linhas adicionadas	Integer
deletions	Linhas removidas	Integer
state	Estado final do PR (ex: closed)	String
merged	Indica se foi mergeado (True/False)	Boolean
body_length	Número de caracteres na descrição	Integer
end_date	Data final (merge ou fechamento)	Datetime
review_time_h	Tempo total de revisão (horas)	Float

5 Resultados Preliminares

Esta seção será preenchida após a coleta completa dos dados e análise estatística.

5.1 Estatísticas Descritivas do Dataset

Aguardando coleta de dados.

5.2 Respostas às Questões de Pesquisa

Aguardando análise estatística.

6 Discussão

Esta seção será preenchida após a análise dos resultados, comparando as hipóteses formuladas com os dados obtidos.

7 Conclusões

 $Esta\ seç\~ao\ ser\'a\ preenchida\ na\ vers\~ao\ final\ do\ relat\'orio.$