Manifolds

Ashan Jayamal & Nalamudu Samarasinghe

2024 - 03 - 12

Contents

1	Basic Theroms and Definitions	5
2	Manifolds	7
	2.1 Topological Manifolds	7
\mathbf{A}	Stereographic Projection	19
В	Examples of Affine maps	23

4 CONTENTS

Chapter 1

Basic Theroms and Definitions

Definition 1.1 (Topology). A topology on a set X is a collection $\mathcal T$ of subsets of X such that

- **(T1)** ϕ and X are in \mathcal{T} ;
- (T2) Any union of subsets in \mathcal{T} is in \mathcal{T} ;
- **(T3)** The finite intersection of subsets in \mathcal{T} is in \mathcal{T} .

A set X with a topology \mathcal{T} is called a topological space. Denoted by (X, \mathcal{T}) . An element of \mathcal{T} is called an open set.

Definition 1.2. A subset $U \subset M$ is referred to as open in M if $U \in \mathcal{T}$. A subset $A \subset M$ is termed closed if $M \setminus A \in \mathcal{T}$.

Definition 1.3 (Continuity). If both (M, \mathcal{T}_M) and (N, \mathcal{T}_N) are topological spaces, a map $f: M \to N$ is termed continuous if

$$f^{-1}(V) \in \mathcal{T}_M$$
 for all $V \in \mathcal{T}_N$

. In other words, the preimages of open sets must be open.

Definition 1.4 (Homemorphism). A map $f: M \to N$ between two topological spaces is called homemorphism if it has following proporties. - f is a bijection, - f is continuous, - the inverse function f^{-1} is continuous.

Two topological spaces M and N are called homeomorphic if there exists a homeomorphism between them.

Definition 1.5 (Hausdorff Space). A topological space (X,\mathcal{T}) is called a Hausdorff space if

(H1) $\forall x,y \in X$ such that $x \neq y, \exists U_x, U_y \in \mathcal{T}$ such that $x \in U_x, y \in U_y$, and $U_x \cap U_y = \emptyset$.

i.e., for every pair of distinct points x,y in X, there are disjoint neighborhoods U_x and U_y of x and y respectively.

::: {.definition #unnamed-chunk-5 name="Countability"} A space X is said to have a **countable basis at the point** x if there is a countable collection $\{U_n\}_{n\in\mathbb{Z}^+}$ of neighborhoods of x such that any neighborhood U of x contains at least one of the sets U_n . A space X that has a countable basis at each of its points is said to satisfy the first countability axiom. :::

Definition 1.6. If X is a space, a point x of X is said to be an **isolated point** of X if the one-point set $\{x\}$ is open in X.

Chapter 2

Manifolds

2.1 Topological Manifolds

Definition 2.1. Let (M, \mathcal{T}) be a topological space with topology \mathcal{T} . Then M is called an n-dimensional topological manifold, if the following holds:

- (TM1): M is Hausdorff.
- (TM2): The topology of M has a countable basis.
- (TM3): M is locally homeomorphic to \mathbb{R}^n , that is, for all $p \in M$ exists an open subset $U \subset M$ with $p \in U$, an open subset $V \subset \mathbb{R}^n$ and a homeomorphism $\varphi: U \to V$.

Figure 2.1:

Remark. The first two conditions in the definition 2.1 are more of a technical nature and are sometimes neglected. The important fact is that a topological manifold is locally homeomorphic to \mathbb{R}^n . Loosely speaking, manifolds look locally like Euclidean space. If the topology on M is induced by a metric, then the first condition is satisfied automatically. If M is given as a subset of \mathbb{R}^N with the subset topology, then both conditions M1 and M2 are satisfied automatically.

Let's see some examples.

Example 2.1. Euclidean space $M = \mathbb{R}^n$ itself is an n-dimensional topological manifold:

• (TM1): We know that \mathbb{R}^n is metrc space. Let's say the metric as d. Let $x,y\in\mathbb{R}^n$ with $x\neq y$. Let r=d(x,y). Since $x\neq y,r>0$. Let $U_x=B(x,r/2)$ and $U_y=B(y,r/2)$. So, $x\in U_x$ and $y\in U_y$ We need to show that $U_x\cap U_y\neq\emptyset$. We are going to proof by contrdiction. So, assume the contray, there exist $z\in U_x\cap U_y$. Thus, d(x,z)< r/2 and d(y,z)< r/2. Then,

$$r = d(x,y) \leq d(x,z) + d(z,y) = d(x,z) + d(y,z) < \frac{r}{2} + \frac{r}{2} = r$$

This is contradiction. Hence $U_x \cap U_y \neq \emptyset$. Therefore $M = \mathbb{R}^n$ is Hausdorff.

• (TM2): Later I will update this part

Problem:(.

• (TM3): Let $U = \mathbb{R}^n = M$ and $V = \mathbb{R}^n$ and $\varphi = id$. We can easily tell that identity map is bijective. Furthur, we can observe that inverse of identity map is itself and it is well defined. So, Let $U' \subset U = \mathbb{R}^n$ be an open set

$$\forall x \in U' \quad id^{-1}(x) = id(x) = x$$

. Thus,

$$id(U') = id^{-1}(U') = U'.$$

Hence, by definition of continuous mapping, id and id^- are continuous.

Example 2.2. Let $M \subset \mathbb{R}^n$ be an open subset. Then M is an n-dimensional topological manifold.

(TM1), (TM2) Obvious.

(TM3) Holds true with U = M, V = M and x = id.

Here Ia m not going to proove this. It is very similar to first example.

Example 2.3. The standard sphere $M = S^n = \{\underline{y} = (y^0, ..., y^n) \in \mathbb{R}^{n+1} : ||y|| = 1\}$ is an *n*-dimensional topological manifold.

• (TM1) and (TM2), since S^n is a subset of \mathbb{R}^{n+1} .

• (TM3) We construct two homeomorphisms with the help of the stereographic projection. Let N be north pole of the n-sphere, that is $(0, ..., 0, 1) \in \mathbb{R}^{n+1}$. Let $U_1 := S^n \setminus \{N\}$ and $v_1 = \mathbb{R}^{n+1}$. We define n \widetilde{times}

$$\varphi: U_1 \to V_1 \tag{2.1}$$

$$\varphi: U_1 \to V_1$$
 (2.1)

$$\underline{y} = (y^0, y^1, ..., y^n) \mapsto \frac{(y^0, y^1, ..., y^n)}{1 - y^{n+1}}$$
 (2.2)

- Cliam 1: varphi is injective.

Let $(x^0,...,x^n)$, $(y^0,y^1,...,y^n) \in \mathbb{R}^n$. Suppose that $\varphi(x^0,...,x^n) = \varphi(y^0,y^1,...,y^n)$.

$$\varphi(x^0, ..., x^n) = \varphi(y^0, y^1, ..., y^n)$$
(2.3)

$$\frac{(x^0, x^1, \dots, x^n)}{1 - x^{n+1}} = \frac{(y^0, y^1, \dots, y^n)}{1 - y^{n+1}}$$
 (2.4)

$$(y^0, y^1, ..., y^n)(1 - x^{n+1}) = (x^0, x^1, ..., x^n)(1 - y^{n+1})$$
(2.5)

$$(y^0-y^0x^{n+1},y^1-y^1x^{n+1},..,y^n-y^nx^{n+1}) = (x^0-x^0y^{n+1},x^1-x^1y^{n+1},..,x^n-x^ny^{n+1})$$

$$y^0(1-x^{n+1}), y^1(1-x^{n+1}), ., ., y^n(1-y^nx^{n+1}) \quad = \quad x^0(1-y^{n+1}), x^1(1-y^{n+1}), ., ., x^n(1-y(2.7)) = x^1(1-y^{n+1}), x^1(1-y^{n+1}), .., x^n(1-y(2.7)) = x^1(1-y^{n+1}), x^1(1-y^{n+1}), ... = x^1(1-y^{n+1}), x^1(1-y^{n+1}), ... = x^1(1-y^{n+1}), x^1(1-y^{n+1}), x^1(1-y^{n+1}), ... = x^1(1-y^{n+1}), x^1(1-y^{n+1})$$

(2.8)

Thus, $y^i(1-x^{n+1})=x^i(1-y^{n+1})$ for all i=0,1,..,n. Since $1-y^{n+1},1-x^{n+1}>1$ 0, ?

?

?

?

Problem HOW INJECTIVITY COMES: (.

CHECK:(.

- Claim 2: φ is surejctive. Surjectivity means that for every $\underline{v} \in V_1 = \mathbb{R}^n$, there exists some $y \in U_1$ such that $\varphi(y) = \underline{v}$.

So, let $\underline{v}=(v^0,v^1,..,v^n)\in V_1.$ We need to find $\underline{y}=(y^0,y^1,..,y^n)\in U_1$ such that

$$\frac{(y^0, y^1, ..., y^n)}{1 - y^{n+1}} = \underline{v}.$$

We can solve this equation for y as follows:

$$\underline{y} = (1 - y^{n+1})\underline{v} = \underline{v} - y^{n+1}\underline{v}.$$

We know that $\underline{y} \in U_1 = S^n \setminus \{N\}$, so $y^{n+1} = 1 - \|\underline{y}\|^2$. Substituting this into the equation gives us

$$\underline{y} = \underline{v} - (1 - \|\underline{y}\|^2)\underline{v} = \|\underline{y}\|^2\underline{v}.$$

Solving this equation for $||y||^2$ gives us

$$\|\underline{y}\|^2 = \frac{\|\underline{v}\|^2}{1 + \|v\|^2}.$$

Substituting this back into the equation for y gives us

$$\underline{y} = \frac{\underline{v}}{1 + \|\underline{v}\|^2}.$$

This is a well-defined point in U_1 for every $\underline{v} \in V_1$, so φ is surjective.

• Claim: φ is continuous. Note that the inverse map ϕ is given by,

$$\phi: V_1 \to U_1 \tag{2.9}$$

$$\underline{x} = (x^0, x^1, ..., x^n) \quad \mapsto \quad \frac{(x^0, x^1, ..., x^{n-1})}{1 + x^n}$$
 (2.10)

I will update this proof. I want some to to write rigirs proof:

Analogously, we define the homeomorphism, which omits the south pole: Let now $U_2:=S^n\setminus\{S\}$ with $S:=(0,,.,0,-1)\in\mathbb{R}^{n+1}$ and $V_2:=\mathbb{R}^n$. Then

$$\varphi: U_2 \quad \rightarrow \quad V_2, \tag{2.11}$$

$$\underline{y} = (y^0, y^1, ..., y^n) \mapsto \frac{(y^0, y^1, ..., y^n)}{1 + y^n}$$
 (2.12)

Therefore, n-sphere S^n is an n-dimensional topological manifold.

Example 2.4 (Non-Example). We consider $M := \{(y^1, y^2, y^3) \in \mathbb{R}^3 | (y^1)^2 = (y^2)^2 + (y^3)^2 \}$, the double cone.

Since $M \subset \mathbb{R}^3$, both (i) and (ii) are satisfied.

But M is **not** a 2-dimensional manifold. Assume it were, then there would exist an open subset $U \subset M$ with $0 \in U$, an open subset $V \subset \mathbb{R}^2$ and a homeomorphism $\varphi: U \to V$ with $\varphi(0) = 0$. How do we Gruntee that such hormouphsim exsist that maps 0 to 0:(Without losss of generality assume $V = B_r(x(0))$ with r > 0. Choose $(p^1, p^2, p^3), (q^1, q^2, q^3) \in U$ with $p^1 > 0$ and $q^1 < 0$. Furthermore, choose a continuous path $c:[0,1] \to V$ with $c(0) = x(q_1), c(1) = x(q_2)$ and $c(t) \neq x(0)$ for all $t \in [0,1]$.

Define the continuous path $\tilde{c}:=x^{-1}\circ c:[0,1]\to U.$ Then $\tilde{c}(0)=q_1,\,\tilde{c}(1)=q_2,$ that is, we have $\tilde{c}_1(0)>0$ while $\tilde{c}_1(1)<0.$ Applying the mean value theorem we find, that there exists a $t\in(0,1)$ with $\tilde{c}_1(t)=0.$ Then $\tilde{c}(t)=(0,0,0)$ and consequently $c(t)=x(\tilde{c}(t))=x(0),$ which contradicts the choice of c. Hence, M is not a 2-dimensional topological manifold.

Definition 2.2 (charts). If M is an n-dimensional topological manifold, the homeomorphisms $\varphi: U \to V$ are called charts (or local coordinate systems) of M.

After choosing a local coordinate system $\varphi:U\to V$ every point $p\in U$ is uniquely characterized by its coordinates $(\varphi^1(p),\ldots,\varphi^n(p))$.

Example 2.5 (0-dimesional manifold). In a 0-dimensional manifold M every point $p \in M$ has an open neighborhood U, which is homeomorphic to $R^0 = \{0\}$. Consequently $\{p\} = U$ is an open subset of M for all $p \in M$, that is, M carries the discrete topology. Since there exists a countable basis for the topology on M and the topology is discrete in addition, M has to be countable itself.

Proposition 2.1. A topological space M is a 0-dimensional topological manifold, if and only if M is countable and carries the discrete topology.

Proof.

• (\Longrightarrow) By definition, a 0-dimensional topological manifold is a topological space where every point has a neighborhood homeomorphic to the 0-dimensional Euclidean space, which is a single point $\{0\}$. This implies that for every point $p \in M$, there exists an open neighborhood U such that $\{p\} = U$. This is exactly the definition of a discrete topology.

Since, there exists a countable basis for the topology on M, and every point in M is an open set (i.e., the topology is discrete), then M must be countable. This is because every point in M corresponds to an open set in the basis, and since the basis is countable, M must also be countable.

Figure 2.2:

• (\Leftarrow) If M carries the discrete topology, then every subset of M is open. In particular, for every point $p \in M$, the set $\{p\}$ is an open set. This means that every point in M has a neighborhood homeomorphic to the 0-dimensional Euclidean space, which is a single point $\{0\}$. This is exactly the definition of a 0-dimensional topological manifold.

If M is countable, then there exists a countable basis for the topology on M. Since every point in M is an open set (i.e., the topology is discrete), this basis can be taken to be the set of all singletons $\{p\}$, where $p \in M$.

Therefore, a topological space M is a 0-dimensional topological manifold if and only if M is countable and carries the discrete topology.

Definition 2.3. A topological manifold M is said to be **connected**, if for every two points $p, q \in M$ there exists a continuous map $c : [0, 1] \to M$ with c(0) = p and c(1) = q.

Figure 2.3:

Given two points, there has to be a continuous curve in M which connects both. Usually, in Topology one calls this path-connected, which is in the case of manifolds equivalent to being connected. We do not want to go deeper into this subject at this point.

Remark. Following Proposition every connected 0-dimensional manifold M is given by a single point: $M = \{point\}$

Proof. Let M be 0-dimesional connected manifold. Then by proposition 2.1 M carries the discreate topology. Let p,q be distinct points. (i.e. $p \neq q$). Since M is connected that there exist continuous map $c:[0,1] \to M$ such that c(0)=p and c(1)=q.

Let $U = c^{-1}(\{p\})$. Since $\{p\}$ is open in M under discreate topology and c is continuous, U is open in [0,1] under subspace topology.

Note that $M \setminus \{p\}$ is sub set of M. So, that is open under discreate topology. Since, c is continuous, $V = c^{-1}(M \setminus \{p\})$ is open in [0,1] under subspace topology.

• Claim 1: $V \cap U = \emptyset$

$$V \cap U = c^{-1}(M \setminus \{p\}) \cap c^{-1}(\{p\})$$
 (2.13)

$$= c^{-1}(M \smallsetminus \{p\} \cap \{p\} \text{ (by Claim 3)}$$
 (2.14)

$$= c^{-1}(\emptyset) \text{ (by Claim 4)} \tag{2.15}$$

$$= \emptyset \tag{2.16}$$

• Claim 2: $V \cup U = [0,1]$

$$= c^{-1}(M \setminus \{p\} \cup \{p\} \text{ (by Claim 5)}$$
 (2.18)

$$= c^{-1}(M) (2.19)$$

$$= [0,1] \text{ (by Claim 6)}$$
 (2.20)

- Claim 3: $c^{-1}(U_1\cap U_2)=c^{-1}(U_1)\cap c^{-1}(U_2)$
 - $\begin{array}{l} \ subclaim \ 3.1: \ c^{-1}(U_1 \cap U_2) \subseteq c^{-1}(U_1) \cap c^{-1}(U_2) \\ \text{Let} \ y \in c^{-1}(U_1 \cap U_2). \ \text{Then,} \ c(y) \in U_1 \cap U_2. \ \text{Thus,} \ c(y) \in U_1 \ \text{and} \\ c(y) \in U_2. \ \text{So,} \in c^{-1}(U_1) \ \text{and} \ y \in c^{-1}(U_2). \ \text{Thus,} \ y \in c^{-1}(U_1) \cap c^{-1}(U_2). \end{array}$
 - $\begin{array}{l} \ subclaim \ 3.2: \ c^{-1}(U_1 \cap U_2) \supseteq c^{-1}(U_1) \cap c^{-1}(U_2) \\ \text{Let} \ x \in c^{-1}(U_1) \cap c^{-1}(U_2). \ \ \text{Then,} \ x \in c^{-1}(U_1) \ \text{and} \ x \in c^{-1}(U_2). \\ \text{Thus,} \ c(x) \in U_1 \ \text{and} \ c(x) \in U_2. \ \ \text{So,} \ x \in c^{-1}(U_1) \ \text{and} \ x \in c^{-1}(U_2). \\ c(x) \in U_1 \cap U_2. \ \ \text{Therefore,} \ c^{-1}(U_1 \cap U_2) \supseteq c^{-1}(U_1) \cap c^{-1}(U_2). \ \ \text{Therfore} \\ c^{-1}(U_1 \cap U_2) = c^{-1}(U_1) \cap c^{-1}(U_2). \end{array}$
- Claim 4: $c^{-1}(\emptyset) = \emptyset$. Assume the contray, $c^{-1}(\emptyset) \neq \emptyset$. Then we can choose that $x \in c^{-1}(\emptyset)$. Thus, $c(x) \in \emptyset$. This is a contardiction. Therefore, $c^{-1}(\emptyset)$
- Claim 5: $c^{-1}(U_1 \cup U_2) = c^{-1}(U_1) \cup c^{-1}(U_2)$.
 - $\begin{array}{l} \ subclaim \ 5.1: \ c^{-1}(U_1 \cup U_2) \subseteq c^{-1}(U_1) \cup c^{-1}(U_2) \\ \text{Let} \ y \in c^{-1}(U_1 \cup U_2). \ \text{Then,} \ c(y) \in U_1 \cup U_2. \ \text{Thus,} \ c(y) \in U_1 \ \text{or} \ c(y) \in U_2. \ \text{So,} \in c^{-1}(U_1) \ \text{or} \ y \in c^{-1}(U_2). \ \text{Thus,} \ y \in c^{-1}(U_1) \cup c^{-1}(U_2). \\ \text{Therefore,} \ c^{-1}(U_1 \cup U_2) \subseteq c^{-1}(U_1) \cup c^{-1}(U_2). \end{array}$

- $\begin{array}{l} \ \, subclaim \,\, 5.2: \, c^{-1}(U_1 \cup U_2) \supseteq c^{-1}(U_1) \cup c^{-1}(U_2) \\ \text{Let} \,\, x \, \in \, c^{-1}(U_1) \cup c^{-1}(U_2). \quad \text{Then,} \,\, x \, \in \, c^{-1}(U_1) \,\, \text{or} \,\, x \, \in \, c^{-1}(U_2). \\ \text{Thus,} \,\, c(x) \, \in \, U_1 \,\, \text{or} \,\, c(x) \, \in \, U_2. \,\, \text{So,} \,\, x \, \in \, c^{-1}(U_1) \,\, \text{or} \,\, x \, \in \, c^{-1}(U_2). \\ c(x) \, \in \, U_1 \cup U_2. \,\, \text{Therefore,} \,\, c^{-1}(U_1 \cup U_2) \supseteq c^{-1}(U_1) \cup c^{-1}(U_2). \,\, \text{Therfore} \\ c^{-1}(U_1 \cup U_2) = c^{-1}(U_1) \cup c^{-1}(U_2). \end{array}$
- Claim 6: If $c:[0,1] \to M$ be continuous map such that c(0) = p, c(1) = q, then $[0,1] = c^{-1}(M) \setminus \text{Recall}$ the definition of pre image of M.

$$c^{-1}(M):=\{x\in M|c(x)\in M\}$$

- Subclaim 6.1: $[0,1] \subseteq c^{-1}(M)$. Let $a \in [0,1]$. Then $c(a) \in M$. Thus, $a \in c^{-1}(M)$. Hence, $[0,1] \subseteq c^{-1}(M)$. Thus, $a \in c^{-1}(M)$.
- Subcliam 6.2: $[0,1] \supseteq c^{-1}(M)$. Let $b \in c^{-1}(M)$. So, $[0,1] \subseteq c^{-1}(M)$. Thus, $b \in c^{-1}(M)$. Hence $c(b) \in M$. Thus, $b \in [0,1]$.
- Claim 7: $V \neq \emptyset$. Since $p \neq q$ and q = c(1), then $1 \notin c^{-1}(\{p\}) = U$. Thus, $1 \in V = [0, 1] \setminus U$. Therefore, $V \neq \emptyset$.
- **Claim 8**: [0,1] is connected.

We are going to use proof by contradiction. Suppose that A, B is a separation of [0,1]. Let $a \in A$, $b \in B$. Without loss of generality, suppose that a < b. Since $a, b \in [0,1]$, and [0,1] is an interval, $[a,b] \subseteq [0,1]$. Let $A' = A \cap [a,b]$ and $B' = B \cap [a,b]$. Then,

$$\begin{aligned} A' \cup B' &= (A \cap [a,b]) \cup (B \cap [a,b]) \\ &= (A \cup B) \cap [a,b] \quad \text{(Intersection Distributes over Union)} \\ &= [a,b] \quad \text{(Intersection with Subset is Subset)} \end{aligned}$$

By the definition of a separation, both A and B are closed in [0,1]. Hence by Closed Set in Topological Subspace, A' and B' are also closed in [a,b]. From Closed Set in Topological Subspace: Corollary, A' and B' are closed in \mathbb{R} . Now, since $B' \neq \emptyset$, and B is bounded below (by, for example, a), by the Continuum Property $b' := \inf(B')$ exists, and $b' \geq a$. We have that B' is closed in \mathbb{R} . Hence from Closure of Real Interval is Closed Real Interval, $b' \in B'$. Since $a \in A'$ and $A \cap B = \emptyset$, it follows that b' > a. Now let $A'' = A' \cap [a,b']$. Using the same argument as for B', we have that $a'' = \sup(A'')$ exists, that $a'' \in A''$ and also a'' < b'. Now $(a'',b') \cap A' = \emptyset$ or a'' would not be an upper bound for A''. Similarly, $(a'',b') \cap (A' \cup B') = \emptyset$. But since a < a'' < b' < b, we also have $(a'',b') \subseteq [a,b]$, and (a'',b') is non-empty. So, there is an element $z \in (a'',b')$, and hence in [a,b], which is not in $A' \cup B'$. This contradicts (1) above, which says that we have $A' \cup B' = [a,b]$. From this contradiction it follows that there can be no

such separation $A \mid B$ on the interval [0,1]. Therefore, by definition, [0,1] is connected.

By claim 1,2 and 7, U, V are separation of [0,1]. This is contartract the the connectedness of [0,1] interval.

Proposition 2.2. Every connected 1-dimensional topological manifold is homeomorphic to \mathbb{R} or to S^1 .

The only compact, connected topological manifold of dimension 1 is \mathbb{S}^1

Theorem 2.1. Let M and A be sets. (Here A is the index set.) For all $\alpha \in A$ assume that $U_{\alpha} \subset M$ and $V_{\alpha} \subset \mathbb{R}^n$ are subsets and that $\varphi_{\alpha} : U_{\alpha} \to V_{\alpha}$ are bijective maps. Suppose the following holds:

- (i) $\bigcup_{\alpha \in A} U_{\alpha} = M$,
- (ii) $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^n$ is open for all $\alpha, \beta \in A$ and
- (iii) $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ is continuous for all $\alpha, \beta \in A$.

Then M carries a unique topology for which all U_{α} are open sets and all φ_{α} are homeomorphisms.

Figure 2.4:

Proof. We first show uniqueness:

Let $\mathcal T$ be a topology on M containing the U_α and such that the φ_α are homeomorphisms. If $W \in \mathcal T$, then also $W \cap U_\alpha \in \mathcal T$ and $\varphi_\alpha(W \cap U_\alpha)$ is open for all $\alpha \in A$. Conversely, if $W \subset M$ is a subset such that $\varphi_\alpha(W \cap U_\alpha) \subset \mathbb R^n$ is open for all $\alpha \in A$, then $W \cap U_\alpha$ is also open in U_α for all α . Since U_α is open in M, the set $W \cap U_\alpha$ is open in M. By (i), $W = \bigcup_{\alpha \in A} (W \cap U_\alpha)$ is also open in M. We have shown that $W \in \mathcal T$ if and only if $\varphi_\alpha(W \cap U_\alpha)$ is open in $\mathbb R^n$ for all α ,

$$\mathcal{T} = \{W \subset M: \ \varphi_\alpha(W \cap U_\alpha) \subset \mathbb{R}^n \text{ is open for all } \alpha \in A\}$$

.

Example 2.6 (Real-projective space.). We define the real-projective space by

 $M = \mathbb{RP}^n := \mathbb{P}(\mathbb{R}^{n+1}) := \{L \subset \mathbb{R}^{n+1} \mid L \text{ is a one-dimensional vector subspace}\}.$

We will use Theorem 2.1 to equip \mathbb{RP}^n with the structure of an *n*-dimensional topological manifold. Let's set

 $A := \{ \text{affine-linear embeddings } \alpha : \mathbb{R}^n \to \mathbb{R}^{n+1} \text{ with } 0 \notin \alpha(\mathbb{R}^n) \}.$

Since α is affine-linear, there exist a matrix $B\in \mathrm{M}_{(n+1)\times n}(\mathbb{R})$ and a vector $c\in\mathbb{R}^{n+1}$ such that

$$\alpha(x) = Bx + c$$
 for all $x \in \mathbb{R}^n$.

As α is an embedding, B has maximal rank, i.e., rank(B) = n.

Consequently, $\alpha(\mathbb{R}^n)$ is an affine-linear hyperplane. Let's set

$$U_\alpha:=\{L\in\mathbb{RP}^n\mid L\cap\alpha(\mathbb{R}^n)\neq\emptyset\}.$$

For $L \in U_{\alpha}$, the space $L \cap \alpha(\mathbb{R}^n)$ consists of exactly one point, because otherwise we would have $L \subset \alpha(\mathbb{R}^n)$ and hence $0 \in \alpha(\mathbb{R}^n)$, which is a contradiction. Moreover, we have

$$\mathbb{RP}^n \setminus U_\alpha = \{L \mid L \subset B(\mathbb{R}^n) \text{ is a one-dimensional subspace}\}\$$

where $\alpha(x) = Bx + c$. For $\alpha \in A$, let's set $V_{\alpha} := \mathbb{R}^n$ and define

$$\varphi_\alpha: U_\alpha \to V_\alpha, \quad \varphi_\alpha(L) := \alpha^{-1}(L \cap \alpha(\mathbb{R}^n)).$$

Then x_{α} is a bijective map, and we have

$$\varphi_{\alpha}^{-1}(v) = R \cdot \alpha(v).$$

Appendix A

Stereographic Projection

• Stereographic Projection plane $\mathbb R$ and the 1-sphere minus a point The 1-sphere S^1 is the set of points $(x,y,z)\in\mathbb R^3$ such that $x^2+y^2+z^2=1$.

$$S^1 := \{(x, y) : ||(x, y)|| = 1\}$$

Let $S^1 \setminus \{N\}$ denote the 1-sphere minus (circle) its north pole, i.e., the point (0,1).

There exists a homeomorphism $\varphi: S^1 \setminus \{N\} \to \mathbb{R}$, which can be described as follows. In coordinates, this map is precisely

$$\varphi(x,y) = \frac{x}{1-y}$$

- Stereographic Projection plane \mathbb{R}^2 and the 2-sphere minus a point

Stereographic projection is an important homeomorphism between the plane \mathbb{R}^2 and the 2-sphere minus a point. The 2-sphere S^2 is the set of points $(x,y,z)\in\mathbb{R}^3$ such that $x^2+y^2+z^2=1$. Let $S^2\setminus\{N\}$ denote the 2-sphere minus its north pole, i.e., the point (0,0,1).

There exists a homeomorphism $\varphi:S^2\setminus\{N\}\to\mathbb{R}^2,$ which can be described as follows.

For a point $p \in S^2 \setminus \{N\}$, let $\underline{\varphi(p)}$ denote the unique point in P such that the intersection of the segment $\overline{Nf(p)}$ and S^2 is p. In coordinates, this map is precisely

$$\varphi(x,y,z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right).$$

Figure A.1:

Figure A.2:

Appendix B

Examples of Affine maps

Figure B.1:

Figure B.2:

Figure B.3:

Figure B.4: