

planetmath.org

Math for the people, by the people.

basic properties of a limit along a filter

 ${\bf Canonical\ name} \quad {\bf Basic Properties Of A Limit A long A Filter}$

Date of creation 2013-03-22 15:32:23 Last modified on 2013-03-22 15:32:23 Owner kompik (10588) Last modified by kompik (10588)

Numerical id 9

Author kompik (10588)

Entry type Theorem Classification msc 03E99 Classification msc 40A05 **Theorem 1.** Let \mathcal{F} be a free filter (non-principal filter) and (x_n) be a real sequence.

- (i) If $\lim_{n\to\infty} x_n = L$ then \mathcal{F} - $\lim x_n = L$.
- (ii) If \mathcal{F} $\lim x_n$ exists, then $\lim \inf x_n \leq \mathcal{F}$ $\lim x_n \leq \lim \sup x_n$.
- (iii) The \mathcal{F} -limits are unique.
- (iv) \mathcal{F} -lim $(a.x_n + b.y_n) = a.\mathcal{F}$ -lim $x_n + b.\mathcal{F}$ -lim y_n (provided the \mathcal{F} -limits of (x_n) and (y_n) exist).
- (v) \mathcal{F} -lim $(x_n.y_n) = \mathcal{F}$ -lim x_n . \mathcal{F} -lim y_n (provided the \mathcal{F} -limits of (x_n) and (y_n) exist).
- (vi) For every cluster point c of the sequence x_n there exists a free filter \mathcal{F} such that \mathcal{F} - $\lim x_n = c$. On the other hand, if \mathcal{F} - $\lim x_n$ exists, it is a cluster point of the sequence (x_n) .