Chapitre 5 Satisfaisabilité de formes conjonctives normales

Table de Matières

Vers un algorithme efficace

Une stratégie d'énumération, et une optimisation

Variables qui apparaissent avec une seule polarité

L'algorithme DPLL complet

Un exemple complet

Conclusion

22/03

► Satisfaisabilité d'une formule DNF: très facile

- ► Satisfaisabilité d'une formule DNF: très facile
- ► Validité d'une formule CNF: très facile

- Satisfaisabilité d'une formule DNF: très facile
- Validité d'une formule CNF: très facile
- Beaucoup de problèmes concernent la satisfaisabilité d'une formule en CNF (ou facilement transformée en CNF):

- Satisfaisabilité d'une formule DNF: très facile
- Validité d'une formule CNF: très facile
- Beaucoup de problèmes concernent la satisfaisabilité d'une formule en CNF (ou facilement transformée en CNF):
- Problème de planification :

- Satisfaisabilité d'une formule DNF: très facile
- Validité d'une formule CNF: très facile
- Beaucoup de problèmes concernent la satisfaisabilité d'une formule en CNF (ou facilement transformée en CNF):
- Problème de planification :
 - ▶ beaucoup de contraintes à résoudre (qui doivent toutes être satisfaites ⇒ Conjonction)

- Satisfaisabilité d'une formule DNF: très facile
- Validité d'une formule CNF: très facile
- Beaucoup de problèmes concernent la satisfaisabilité d'une formule en CNF (ou facilement transformée en CNF):
- Problème de planification :
 - ▶ beaucoup de contraintes à résoudre (qui doivent toutes être satisfaites ⇒ Conjonction)
 - ► chaque contrainte consiste en plusieurs alternatives (⇒ Disjonction)

La table d'une vérité pour une formule avec *n* variable a 2ⁿ lignes.

- La table d'une vérité pour une formule avec *n* variable a 2ⁿ lignes.
- Avec n = 300:

 2^{300}

- La table d'une vérité pour une formule avec *n* variable a 2ⁿ lignes.
- Avec n = 300:

$$2^{300} = 2^{10^{30}}$$

- La table d'une vérité pour une formule avec *n* variable a 2ⁿ lignes.
- Avec n = 300:

$$2^{300} = 2^{10^{30}} \approx 10^{3^{30}}$$

- La table d'une vérité pour une formule avec *n* variable a 2ⁿ lignes.
- Avec n = 300:

$$2^{300} = 2^{10^{30}} \approx 10^{3^{30}} = 10^{90}$$

- La table d'une vérité pour une formule avec *n* variable a 2ⁿ lignes.
- Avec n = 300:

$$2^{300} = 2^{10^{30}} \approx 10^{3^{30}} = 10^{90}$$

Nombre estimé de particules élémentaires dans l'univers connu : $10^{79} - 10^{81}$

- La table d'une vérité pour une formule avec *n* variable a 2ⁿ lignes.
- Avec n = 300:

$$2^{300} = 2^{10^{30}} \approx 10^{3^{30}} = 10^{90}$$

- Nombre estimé de particules élémentaires dans l'univers connu : $10^{79} 10^{81}$
- Des problèmes réalistes peuvent avoir facilement des milliers de variables.

L'algorithme DPLL

Dû à Martin Davis, Hilary Putnam, George Logemann, Donald Loveland, 1962

L'algorithme DPLL

- Dû à Martin Davis, Hilary Putnam, George Logemann, Donald Loveland, 1962
- Parfois aussi (incorrectement) appelé algorithme de Davis-Putnam (DP)

L'algorithme DPLL

- Dû à Martin Davis, Hilary Putnam, George Logemann, Donald Loveland, 1962
- Parfois aussi (incorrectement) appelé algorithme de Davis-Putnam (DP)
- C'est la base des SAT-solveurs actuels.

Polarité d'une occurrence d'une variable

► Variable x apparaît avec polarité positive dans une clause

$$\dots \lor x \lor \dots$$

Polarité d'une occurrence d'une variable

► Variable x apparaît avec polarité positive dans une clause

$$\dots \lor x \lor \dots$$

► Variable x apparaît avec polarité négative dans une clause

$$\dots \lor \neg x \lor \dots$$

Polarité d'une occurrence d'une variable

Variable x apparaît avec polarité positive dans une clause

$$\dots \lor x \lor \dots$$

► Variable x apparaît avec polarité négative dans une clause

$$\dots \lor \neg x \lor \dots$$

▶ A priori, une variable peut apparaître à la fois avec polarité positive et avec polarité négative dans une clause :

$$y_1 \lor \mathbf{x} \lor y_2 \lor \neg \mathbf{x} \lor y_3$$

Hypothèse sur la forme des clauses

Hypothèse : aucune variable n'apparaît deux fois dans la même clause. Justification :

Hypothèse sur la forme des clauses

- Hypothèse : aucune variable n'apparaît deux fois dans la même clause. Justification :
- Si deux occurrences de la même polarité :

$$\ldots \lor x \lor \ldots \lor x \lor \ldots$$

on peut simplifier la clause (ne laisser qu'une)

Hypothèse sur la forme des clauses

- Hypothèse : aucune variable n'apparaît deux fois dans la même clause. Justification :
- Si deux occurrences de la même polarité :

$$\ldots \lor x \lor \ldots \lor x \lor \ldots$$

on peut simplifier la clause (ne laisser qu'une)

Si deux occurrences de polarité opposée :

$$\ldots \lor x \lor \ldots \lor \neg x \lor \ldots$$

Tautologie, on peut supprimer la clause.

Mieux que Générer et tester ?

► Table de vérité : algorithme « générer et tester »

Mieux que Générer et tester ?

- ► Table de vérité : algorithme « générer et tester »
- Avantage de ce paradigme : séparation de l'algorithme en deux parties clairement distinguées.

Mieux que Générer et tester ?

- ► Table de vérité : algorithme « générer et tester »
- Avantage de ce paradigme : séparation de l'algorithme en deux parties clairement distinguées.
- Inconvénient : parfois, on peut détecter qu'une formule n'est pas satisfaisable en essayant des valeurs pour quelques unes de ses variables seulement :

$$\times \wedge (\neg x \vee y_1 \vee \neg y_2 \vee y_3) \wedge \neg \times \wedge (y_2 \vee \neg y_4 \vee y_5)$$

(essayer les valeurs possibles pour x!)

Évaluation partielle d'une clause disjonctive

d : clause disjonctive

Évaluation partielle d'une clause disjonctive

d : clause disjonctive

$$d[x/b] = \begin{cases} \top \\ \end{bmatrix}$$

si b=1 et x apparait avec polarité positive en d

Évaluation partielle d'une clause disjonctive

d : clause disjonctive

$$d[x/b] = \begin{cases} \top \\ \top \end{cases}$$

si b=1 et x apparait avec polarité positive en d si b=0 et x apparait avec polarité négative en d

Évaluation partielle d'une clause disjonctive

d : clause disjonctive

lci : $d \setminus I$ est la clause d sans le littéral I

Évaluation partielle d'une clause disjonctive

d : clause disjonctive

lci : $d \setminus I$ est la clause d sans le littéral I

Évaluation partielle d'une clause disjonctive

d : clause disjonctive

$$d[x/b] = \begin{cases} \top & \text{si } b = 1 \text{ et x apparait avec polarité positive en } d \\ \top & \text{si } b = 0 \text{ et x apparait avec polarité négative en } d \\ d \setminus \{\neg x\} & \text{si } b = 1 \text{ et x apparait avec polarité négative en } d \\ d \setminus \{x\} & \text{si } b = 0 \text{ et x apparait avec polarité positive en } d \\ d & \text{si } x \text{ n'apparait pas en } d. \end{cases}$$

lci : $d \setminus I$ est la clause d sans le littéral I

Chapitre 5 Satisfaisabilité de formes conjonctives normales

Uers un algorithme efficace

Rappel important

▶ ⊥ est une abréviation pour la clause disjonctive vide

Rappel important

- ► ⊥ est une abréviation pour la clause disjonctive vide
- Si on supprime de la clause x le littéral x on obtient la clause vide notée \bot .

Exemples d'évaluation partielle d'une clause

$$(x \vee \neg y \vee z)[x/1] = \top$$

$$(x \lor \neg y \lor z)[x/1] = \top$$

 $(\neg x \lor \neg y \lor z)[x/0] = \top$

$$(x \vee \neg y \vee z)[x/1] = \top$$
$$(\neg x \vee \neg y \vee z)[x/0] = \top$$
$$(\neg x \vee \neg y \vee z)[x/1] = (\neg y \vee z)$$

$$(x \vee \neg y \vee z)[x/1] = \top$$

$$(\neg x \vee \neg y \vee z)[x/0] = \top$$

$$(\neg x \vee \neg y \vee z)[x/1] = (\neg y \vee z)$$

$$(x \vee \neg y \vee z)[x/0] = (\neg y \vee z)$$

$$(x \vee \neg y \vee z)[x/1] = \top$$

$$(\neg x \vee \neg y \vee z)[x/0] = \top$$

$$(\neg x \vee \neg y \vee z)[x/1] = (\neg y \vee z)$$

$$(x \vee \neg y \vee z)[x/0] = (\neg y \vee z)$$

$$(y_1 \vee \neg y_2 \vee z)[x/1] = (y_1 \vee \neg y_2 \vee z)$$

$$(x \vee \neg y \vee z)[x/1] = \top$$

$$(\neg x \vee \neg y \vee z)[x/0] = \top$$

$$(\neg x \vee \neg y \vee z)[x/1] = (\neg y \vee z)$$

$$(x \vee \neg y \vee z)[x/0] = (\neg y \vee z)$$

$$(y_1 \vee \neg y_2 \vee z)[x/1] = (y_1 \vee \neg y_2 \vee z)$$

$$x[x/0] = \bot$$

Évaluation partielle d'une formule en CNF

c: formule en forme CNF de la forme $d_1 \wedge \ldots \wedge d_n$

$$c[x/b] = \bigwedge_{\substack{1 \le i \le n \\ d_i[x/b] \neq \top}} d_i[x/b]$$

C'est-à-dire:

- Évaluation partielle de toutes les clauses
- ▶ Supprimer les clauses évaluées comme ⊤

$$c = x \wedge (\neg x \vee y_1 \vee \neg y_2 \vee y_3) \wedge \neg x \wedge (y_2 \vee \neg y_4 \vee y_5)$$

$$c = x \wedge (\neg x \vee y_1 \vee \neg y_2 \vee y_3) \wedge \neg x \wedge (y_2 \vee \neg y_4 \vee y_5)$$

$$c[x/0] = \bot \wedge \top \wedge (y_2 \vee \neg y_4 \vee y_5)$$

$$A \wedge (y_2 \vee \neg y_4 \vee y_5)$$

$$A \wedge (y_2 \vee \neg y_4 \vee y_5)$$

$$A \wedge (y_2 \vee \neg y_4 \vee y_5)$$

$$c = x \wedge (\neg x \vee y_1 \vee \neg y_2 \vee y_3) \wedge \neg x \wedge (y_2 \vee \neg y_4 \vee y_5)$$

$$c[x/0] = \bot \wedge \top \wedge \top \wedge (y_2 \vee \neg y_4 \vee y_5)$$

$$= \bot -7 \quad \text{car Fairy } \wedge \text{True } \wedge \text{True } \wedge \text{True } \wedge$$

$$= \bot -7 \quad \text{satisfairable}$$

$$c = x \wedge (\neg x \vee y_1 \vee \neg y_2 \vee y_3) \wedge \neg x \wedge (y_2 \vee \neg y_4 \vee y_5)$$

$$c[x/0] = \bot \wedge \top \wedge \top \wedge (y_2 \vee \neg y_4 \vee y_5)$$

$$= \bot$$

$$c[x/1] = \top \wedge (y_1 \vee \neg y_2 \vee y_3) \wedge \bot \wedge (y_2 \vee \neg y_4 \vee y_5)$$

$$c = x \land (\neg x \lor y_1 \lor \neg y_2 \lor y_3) \land \neg x \land (y_2 \lor \neg y_4 \lor y_5)$$

$$c[x/0] = \bot \land \top \land (y_2 \lor \neg y_4 \lor y_5)$$

$$= \bot$$

$$c[x/1] = \top \land (y_1 \lor \neg y_2 \lor y_3) \land \bot \land (y_2 \lor \neg y_4 \lor y_5)$$

$$= \bot$$

Propriétés de l'évaluation partielle

Donné c, une formule en forme CNF. La propriété qu'on va utiliser est la suivante :

c satisfaisable $\Leftrightarrow c[x/0]$ satisfaisable ou c[x/1] satisfaisable Rappel: Pour toute affectation v et valeur booléenne b,

$$[c[x/b]]v = [c](v[x/b])$$

Preuve.

Propriétés de l'évaluation partielle

Donné c, une formule en forme CNF. La propriété qu'on va utiliser est la suivante :

c satisfaisable $\Leftrightarrow c[x/0]$ satisfaisable ou c[x/1] satisfaisable Rappel : Pour toute affectation v et valeur booléenne b,

$$[\![c]\!]v = 1 \Rightarrow [\![c]\!](v[x/0]) = 1 \text{ ou } [\![c]\!](v[x/1]) = 1 \Rightarrow$$
$$[\![c[x/0]\!]v = 1 \text{ ou } [\![c[x/1]\!]v = 1 \Rightarrow [\![c[x/0]\!] \lor c[x/1]\!]v = 1$$

└Vers un algorithme efficace

Propriétés de l'évaluation partielle

Donné c, une formule en forme CNF. La propriété qu'on va utiliser est la suivante :

c satisfaisable $\Leftrightarrow c[x/0]$ satisfaisable ou c[x/1] satisfaisable Rappel: Pour toute affectation v et valeur booléenne b,

$$[c[x/b]]v = [c](v[x/b])$$

Preuve.

 \Leftarrow) À prouver : c contradiction $\Rightarrow c[x/0] \land c[x/1]$ contradiction.

$$\forall v, \llbracket c \rrbracket v = 0 \Rightarrow \forall v, \llbracket c \rrbracket (v[x/0]) = 0 \text{ et } \llbracket c \rrbracket (v[x/1]) = 0 \Rightarrow$$

$$\forall v, [\![c[x/0]]\!]v = 0 \text{ et } [\![c[x/1]]\!]v = 0 \Rightarrow \forall v, [\![c[x/0] \land [x/1]]\!]v = 0$$

Propriétés de l'évaluation partielle

Remarque: L'évaluation partielle conserve la satisfaisabilité, mais ne produit pas nécessairement une formule équivalente! En effet, en géneral $c[x/0] \lor c[x/1] \not\models c$

- Par exemple, la formule $x \land (\neg x \lor y)$ est transformée en y. Or l'affectation $[x \mapsto 0, y \mapsto 1]$ satisfait y mais pas $x \land (\neg x \lor y)$.
- Intuition : la formule produite a une variable de moins.
- ► Voir le td.

Chapitre 5 Satisfaisabilité de formes conjonctives normales

Vers un algorithme efficace

Un arbre de recherche

ightharpoonup c satisfaisable $\Leftrightarrow c[x/0]$ satisfaisable ou c[x/1] satisfaisable.

Un arbre de recherche

- ightharpoonup c satisfaisable $\Leftrightarrow c[x/0]$ satisfaisable ou c[x/1] satisfaisable.
- Cela donne lieu à un arbre de recherche car il faut a priori exploiter les deux possibilités :

Un arbre de recherche

- ightharpoonup c satisfaisable $\Leftrightarrow c[x/0]$ satisfaisable ou c[x/1] satisfaisable.
- Cela donne lieu à un arbre de recherche car il faut a priori exploiter les deux possibilités :

L'arbre de recherche décrit le déroulement du programme, il n'est pas entièrement représenté en mémoire.

Un premier algorithme

1. Si c est la conjonction vide, notée \top , alors c est même une tautologie, et donc en particulier satisfaisable.

Un premier algorithme

- 1. Si c est la conjonction vide, notée \top , alors c est même une tautologie, et donc en particulier satisfaisable.
- 2. Si c contient une clause qui est la disjonction vide, notée \bot , alors c n'est pas satisfaisable.

Un premier algorithme

- 1. Si c est la conjonction vide, notée \top , alors c est même une tautologie, et donc en particulier satisfaisable.
- 2. Si c contient une clause qui est la disjonction vide, notée \bot , alors c n'est pas satisfaisable.
- 3. Sinon, choisir une variable pivot x, et continuer sur c[x/0] et c[x/1] (branchement dans l'arbre de recherche).

Exemple pour le premier algorithme

La construction de l'arbre s'arrête quand on peut conclure par l'évaluation partielle.

Comment choisir les variables de pivot ?

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land x_3$$

$$\land (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land \neg x_3$$

$$\land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$\land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$$

Comment choisir les variables de pivot ?

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land x_3$$

$$\land (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land \neg x_3$$

$$\land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$\land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$$

Mauvais choix : $x_1 - x_2$

Comment choisir les variables de pivot ?

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land x_3$$

$$\land (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land \neg x_3$$

$$\land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$\land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$$

- Mauvais choix : $x_1 x_2$
- Bon choix : x₃

Un bon choix de la variable pivot

S'il y a une clause qui consiste en un seul littéral x ou $\neg x$ alors on choisit la variable x.

Un bon choix de la variable pivot

S'il y a une clause qui consiste en un seul littéral x ou $\neg x$ alors on choisit la variable x.

Definition

Une clause (conjonctive ou disjonctive) qui consiste en un seul littéral est appelée unitaire.

Si c contient la clause unitaire x :

Le choix x = 0 donne forcement une formule c qui contient la clause \bot .

Si c contient la clause unitaire x :

- Le choix x = 0 donne forcement une formule c qui contient la clause \perp .
- ightharpoonup c est satisfaisable si et seulement si c[x/1] est satisfaisable.

Si c contient la clause unitaire x :

- Le choix x = 0 donne forcement une formule c qui contient la clause \perp .
- ightharpoonup c est satisfaisable si et seulement si c[x/1] est satisfaisable.
- On peut donc passer de la formule c directement à la formule c[x/1] qui est une formule plus petite, et cela sans d'avoir fait un choix.

Si c contient la clause unitaire x :

- Le choix x = 0 donne forcement une formule c qui contient la clause \perp .
- ightharpoonup c est satisfaisable si et seulement si c[x/1] est satisfaisable.
- On peut donc passer de la formule c directement à la formule c[x/1] qui est une formule plus petite, et cela sans d'avoir fait un choix.
- ightharpoonup Analogue dans le cas d'une clause unaire $\neg x$

Résolution unitaire

- ▶ Passer de $C_1 \land x \land C_2$ à $C_1[x/1] \land C_2[x/1]$
- ▶ Passer de $C_1 \land \neg x \land C_2$ à $C_1[x/0] \land C_2[x/0]$

$$(x \lor y) \land \neg y \land (\neg x \lor y \lor \neg z)$$
 est satisfaisable

$$(x \lor y) \land \neg y \land (\neg x \lor y \lor \neg z)$$
 est satisfaisable ssi $x \land (\neg x \lor \neg z)$ est satisfaisable

$$(x \lor y) \land \neg y \land (\neg x \lor y \lor \neg z)$$
 est satisfaisable
ssi $x \land (\neg x \lor \neg z)$ est satisfaisable
ssi $\neg z$ est satisfaisable

$$(x \lor y) \land \neg y \land (\neg x \lor y \lor \neg z)$$
 est satisfaisable
ssi $x \land (\neg x \lor \neg z)$ est satisfaisable
ssi $\neg z$ est satisfaisable
ssi \top est satisfaisable

Chapitre 5 Satisfaisabilité de formes conjonctives normales

Une stratégie d'énumération, et une optimisation

Qu'est-ce qu'on a gagné ?

La résolution unitaire peut faire apparaître de nouvelles clauses unitaires.

Qu'est-ce qu'on a gagné ?

- La résolution unitaire peut faire apparaître de nouvelles clauses unitaires.
- ► Si on a la chance de cela, ça fait des simplifications en cascade.

Qu'est-ce qu'on a gagné ?

- La résolution unitaire peut faire apparaître de nouvelles clauses unitaires.
- ► Si on a la chance de cela, ça fait des simplifications en cascade.
- Quoi faire quand toutes les clauses contiennent au moins deux littéraux ?

Une optimisation

Proposition

Soit c en forme conjonctive normale.

- Si la variable x apparaît seulement avec polarité positive en c alors c est satisfaisable si et seulement si c[x/1] est satisfaisable.
- Si la variable x apparaît seulement avec polarité négative en c alors c est satisfaisable si et seulement si c[x/0] est satisfaisable.

Idée derrière cette optimisation

Si une variable n'apparraît qu'avec polarité positive, alors ça ne peut pas faire du mal de la mettre à la valeur 1

Idée derrière cette optimisation

- Si une variable n'apparraît qu'avec polarité positive, alors ça ne peut pas faire du mal de la mettre à la valeur 1
- Si une variable n'apparraît qu'avec polarité négative, alors ça ne peut pas faire du mal de la mettre à la valeur 0

Démonstration du premier énoncé

▶ Si c[x/1] est satisfaisable, disons $v \models c[x/1]$, alors on a que

$$1 = [c[x/1]]v = [c](v[x/1])$$

et c est alors également satisfaisable.

Démonstration du premier énoncé

▶ Si c[x/1] est satisfaisable, disons $v \models c[x/1]$, alors on a que

$$1 = [c[x/1]]v = [c](v[x/1])$$

et c est alors également satisfaisable.

Soit c satisfaisable, disons $v \models c$. On peut montrer facilement que pour toute clause d en c on a que $[\![d]\!](v[x/1]) \geq [\![d]\!]v$ car x ne peut apparaître que positivement en d, et par conséquent que

$$[\![c[x/1]]\!]v = [\![c]\!](v[x/1]) \ge 1$$

Donc, c[x/1] est satisfaisable.

Chapitre 5 Satisfaisabilité de formes conjonctives normales

Variables qui apparaissent avec une seule polarité

Propriétés de cette règle

► Elle conserve la satisfaisabilité.

Chapitre 5 Satisfaisabilité de formes conjonctives normales

Variables qui apparaissent avec une seule polarité

Propriétés de cette règle

- Elle conserve la satisfaisabilité.
- ► Elle n'est pas une équivalence.

Propriétés de cette règle

- Elle conserve la satisfaisabilité.
- Elle n'est pas une équivalence.
- ► Exemple $(x \lor y) \land (x \lor z)$ donne \top . Affectation $[x \mapsto 0, y \mapsto 0, z \mapsto 0]$

Propriétés de cette règle

- ► Elle conserve la satisfaisabilité.
- Elle n'est pas une équivalence.
- ► Exemple $(x \lor y) \land (x \lor z)$ donne \top . Affectation $[x \mapsto 0, y \mapsto 0, z \mapsto 0]$
- Cette règle peut déclencher une reduction en cascade (voir l'exemple suivant).

$$(x \vee \neg y) \wedge (y \vee z_1) \wedge (\neg z_1 \vee \neg z_2)$$
 est satisfaisable

$$(x \lor \neg y) \land (y \lor z_1) \land (\neg z_1 \lor \neg z_2)$$
 est satisfaisable ssi $(y \lor z_1) \land (\neg z_1 \lor \neg z_2)$ est satisfaisable

$$(x \lor \neg y) \land (y \lor z_1) \land (\neg z_1 \lor \neg z_2)$$
 est satisfaisable ssi $(y \lor z_1) \land (\neg z_1 \lor \neg z_2)$ est satisfaisable ssi $(\neg z_1 \lor \neg z_2)$ est satisfaisable est satisfaisable

$$(x \lor \neg y) \land (y \lor z_1) \land (\neg z_1 \lor \neg z_2)$$
 est satisfaisable ssi $(y \lor z_1) \land (\neg z_1 \lor \neg z_2)$ est satisfaisable ssi $(\neg z_1 \lor \neg z_2)$ est satisfaisable est satisfaisable ssi \top

La formule de départ est donc satisfaisable.

function dp(c) = case

- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
- (7)

function
$$dp(c) = case$$

(1) if
$$c = \top$$

(2)

(3)

(4)

(5)

(6)

(7)

then true

```
function dp(c) = case
```

- (1) if $c = \top$
- (2) if c contient une clause \perp
- (3)
- (4)
- (5)
- (6)
- (7)

then true then false

```
function dp(c) = case
```

- (1) if $c = \top$
- (2) *if* c contient une clause \bot
- (3) if c contient une clause unitaire x
- (4)
- (5)
- (6)
- (7)

then true then false then dp(c[x/1])

```
function dp(c) = case
```

- (1) if $c = \top$
- (2) *if* c contient une clause \perp
- (3) if c contient une clause unitaire x
- (4) if c contient une clause unitaire $\neg x$
- (5)
- (6)
- (7)

```
then true
then false
then dp(c[x/1])
then dp(c[x/0])
```

(5)

(6)

(7)

```
function dp(c) = case

(1) if c = T then true

(2) if c contient une clause \bot then false

(3) if c contient une clause unitaire x then dp(c[x/1])

(4) if c contient une clause unitaire \neg x then dp(c[x/0])
```

if x n'apparaît qu'avec polarité positive en c

then dp(c[x/1])

function dp(c) = case

(7)

```
(1) if c = \top then true

(2) if c contient une clause \bot then false

(3) if c contient une clause unitaire x then dp(c[x/1])

(4) if c contient une clause unitaire \neg x then dp(c[x/0])

(5) if x n'apparaît qu'avec polarité positive en c then dp(c[x/1])
```

if x n'apparaît qu'avec polarité négative en c

then dp(c[x/0])

```
function dp(c) = case
```

(1)	if $c = \top$	then true
(2)	$if\ c$ contient une clause ot	then false
(3)	<i>if c</i> contient une clause unitaire <i>x</i>	then $dp(c[x/1])$
(4)	<i>if</i> c contient une clause unitaire $\neg x$	then $dp(c[x/0])$
(5)	if x n'apparaît qu'avec polarité positive en c	then $dp(c[x/1])$
(6)	if x n'apparaît qu'avec polarité négative en c	then $dp(c[x/0])$
(7)	else choisir $x \in \mathcal{V}(c)$; $dp(c[x/0])$ or $dp(c[x/1])$	

Remarques sur l'algorithme

Les tests différents dans l'instruction *case* peuvent être faits dans un ordre quelconque.

Remarques sur l'algorithme

- Les tests différents dans l'instruction *case* peuvent être faits dans un ordre quelconque.
- On a donc la liberté de choisir sa stratégie dans l'implémentation de cet algorithme. Intéressant pour la priorité entre les cas (3) à (6).

Remarques sur l'algorithme

- Les tests différents dans l'instruction *case* peuvent être faits dans un ordre quelconque.
- On a donc la liberté de choisir sa stratégie dans l'implémentation de cet algorithme. Intéressant pour la priorité entre les cas (3) à (6).
- Les deux cas (5) et (6) sont parfois omis dans des implémentations car trop chers.

Terminaison de l'algorithme

Dans chaque appel récursif de l'algorithme, le nombre de variables dans la formule est décrémenté.

Terminaison de l'algorithme

- Dans chaque appel récursif de l'algorithme, le nombre de variables dans la formule est décrémenté.
- Le temps d'exécution peut quand même, dans le pire des cas, être exponentiel dans le nombre de variables (à cause du branchement).

24=1

Formule de départ

$$(x_{1} \lor \neg x_{2} \lor y_{1} \lor \neg y_{2} \lor \neg z_{2} \lor \neg z_{4})$$

$$\land (x_{2} \lor y_{1}) \land (x_{2} \lor y_{1} \lor y_{2} \lor z_{1} \lor z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{1} \lor \neg z_{2})$$

$$\land (x_{2} \lor \neg y_{1} \lor z_{3} \lor \neg z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{2} \lor \neg z_{3})$$

$$\land (\neg x_{2} \lor \neg y_{1}) \land (\neg x_{2} \lor \neg y_{1} \lor \neg y_{2}) \land (\neg x_{2} \lor y_{1} \lor y_{2}) \land (\neg x_{2} \lor \neg y_{2} \lor z_{1})$$

$$\land (\neg x_{2} \lor \neg z_{1} \lor z_{2})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

Formule de départ

$$(x_{1} \lor \neg x_{2} \lor y_{1} \lor \neg y_{2} \lor \neg z_{2} \lor \neg z_{4})$$

$$\land (x_{2} \lor y_{1}) \land (x_{2} \lor y_{1} \lor y_{2} \lor z_{1} \lor z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{1} \lor \neg z_{2})$$

$$\land (x_{2} \lor \neg y_{1} \lor z_{3} \lor \neg z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{2} \lor \neg z_{3})$$

$$\land (\neg x_{2} \lor \neg y_{1}) \land (\neg x_{2} \lor \neg y_{1} \lor \neg y_{2}) \land (\neg x_{2} \lor y_{1} \lor y_{2}) \land (\neg x_{2} \lor \neg y_{2} \lor z_{1})$$

$$\land (\neg x_{2} \lor \neg z_{1} \lor z_{2})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

 x_1 apparaît seulement avec polarité positive \Rightarrow supprimer la première clause

Formule de départ

$$(x_{1} \vee \neg x_{2} \vee y_{1} \vee \neg y_{2} \vee \neg z_{2} \vee \neg z_{4})$$

$$\wedge(x_{2} \vee y_{1}) \wedge (x_{2} \vee y_{1} \vee y_{2} \vee z_{1} \vee z_{4}) \wedge (x_{2} \vee \neg y_{2} \vee z_{1} \vee \neg z_{2})$$

$$\wedge(x_{2} \vee \neg y_{1} \vee z_{3} \vee \neg z_{4}) \wedge (x_{2} \vee \neg y_{2} \vee z_{2} \vee \neg z_{3})$$

$$\wedge(\neg x_{2} \vee \neg y_{1}) \wedge (\neg x_{2} \vee \neg y_{1} \vee \neg y_{2}) \wedge (\neg x_{2} \vee y_{1} \vee y_{2}) \wedge (\neg x_{2} \vee \neg y_{2} \vee z_{1})$$

$$\wedge(\neg x_{2} \vee \neg z_{1} \vee z_{2})$$

$$\wedge(\neg z_{3} \vee \neg z_{4}) \wedge (z_{3} \vee z_{4}) \wedge (\neg z_{3} \vee z_{4})$$

 x_1 apparaît seulement avec polarité positive \Rightarrow supprimer la première clause

Après suppression de la première clause

$$(x_{2} \lor y_{1}) \land (x_{2} \lor y_{1} \lor y_{2} \lor z_{1} \lor z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{1} \lor \neg z_{2})$$

$$\land (x_{2} \lor \neg y_{1} \lor z_{3} \lor \neg z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{2} \lor \neg z_{3})$$

$$\land (\neg x_{2} \lor \neg y_{1}) \land (\neg x_{2} \lor \neg y_{1} \lor \neg y_{2}) \land (\neg x_{2} \lor y_{1} \lor y_{2}) \land (\neg x_{2} \lor \neg y_{2} \lor z_{1})$$

$$\land (\neg x_{2} \lor \neg z_{1} \lor z_{2})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

Après suppression de la première clause

$$(x_{2} \lor y_{1}) \land (x_{2} \lor y_{1} \lor y_{2} \lor z_{1} \lor z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{1} \lor \neg z_{2})$$

$$\land (x_{2} \lor \neg y_{1} \lor z_{3} \lor \neg z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{2} \lor \neg z_{3})$$

$$\land (\neg x_{2} \lor \neg y_{1}) \land (\neg x_{2} \lor \neg y_{1} \lor \neg y_{2}) \land (\neg x_{2} \lor y_{1} \lor y_{2}) \land (\neg x_{2} \lor \neg y_{2} \lor z_{1})$$

$$\land (\neg x_{2} \lor \neg z_{1} \lor z_{2})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

Seulement (7) s'applique \Rightarrow choisir comme variable de pivot x_2

- Cas 1 : $x_2 = 0$
- Cas 2 : $x_2 = 1$

Cas 1 :
$$x_2 = 0$$

$$(x_{2} \lor y_{1}) \land (x_{2} \lor y_{1} \lor y_{2} \lor z_{1} \lor z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{1} \lor \neg z_{2})$$

$$\land (x_{2} \lor \neg y_{1} \lor z_{3} \lor \neg z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{2} \lor \neg z_{3})$$

$$\land (\neg x_{2} \lor \neg y_{1}) \land (\neg x_{2} \lor \neg y_{1} \lor \neg y_{2}) \land (\neg x_{2} \lor y_{1} \lor y_{2}) \land (\neg x_{2} \lor \neg y_{2} \lor z_{1})$$

$$\land (\neg x_{2} \lor \neg z_{1} \lor z_{2})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

Cas 1 :
$$x_2 = 0$$

$$(x_{2} \lor y_{1}) \land (x_{2} \lor y_{1} \lor y_{2} \lor z_{1} \lor z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{1} \lor \neg z_{2})$$

$$\land (x_{2} \lor \neg y_{1} \lor z_{3} \lor \neg z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{2} \lor \neg z_{3})$$

$$\land (\neg x_{2} \lor \neg y_{1}) \land (\neg x_{2} \lor \neg y_{1} \lor \neg y_{2}) \land (\neg x_{2} \lor y_{1} \lor y_{2}) \land (\neg x_{2} \lor \neg y_{2} \lor z_{1})$$

$$\land (\neg x_{2} \lor \neg z_{1} \lor z_{2})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

- ightharpoonup Supprimer x_2 dans toutes les clauses
- ▶ Supprimer toutes les clauses qui contiennent $\neg x_2$

Cas 1 :
$$x_2 = 0$$

$$(x_{2} \lor y_{1}) \land (x_{2} \lor y_{1} \lor y_{2} \lor z_{1} \lor z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{1} \lor \neg z_{2})$$

$$\land (x_{2} \lor \neg y_{1} \lor z_{3} \lor \neg z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{2} \lor \neg z_{3})$$

$$\land (\neg x_{2} \lor \neg y_{1}) \land (\neg x_{2} \lor \neg y_{1} \lor \neg y_{2}) \land (\neg x_{2} \lor y_{1} \lor y_{2}) \land (\neg x_{2} \lor \neg y_{2} \lor z_{1})$$

$$\land (\neg x_{2} \lor \neg z_{1} \lor z_{2}) \lor (\neg x_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

- ightharpoonup Supprimer x_2 dans toutes les clauses
- ▶ Supprimer toutes les clauses qui contiennent $\neg x_2$

Cas 1 : Après avoir mis $x_2 = 0$

$$y_{1} \wedge (y_{1} \vee y_{2} \vee z_{1} \vee z_{4}) \wedge (\neg y_{2} \vee z_{1} \vee \neg z_{2})$$

$$\wedge (\neg y_{1} \vee z_{3} \vee \neg z_{4}) \wedge (\neg y_{2} \vee z_{2} \vee \neg z_{3})$$

$$\wedge (\neg z_{3} \vee \neg z_{4}) \wedge (z_{3} \vee z_{4}) \wedge (\neg z_{3} \vee z_{4})$$

Cas 1 : Après avoir mis $x_2 = 0$

$$y_{1} \wedge (y_{1} \vee y_{2} \vee z_{1} \vee z_{4}) \wedge (\neg y_{2} \vee z_{1} \vee \neg z_{2})$$

$$\wedge (\neg y_{1} \vee z_{3} \vee \neg z_{4}) \wedge (\neg y_{2} \vee z_{2} \vee \neg z_{3})$$

$$\wedge (\neg z_{3} \vee \neg z_{4}) \wedge (z_{3} \vee z_{4}) \wedge (\neg z_{3} \vee z_{4})$$

Clause unitaire: $y_1 \Rightarrow$ résolution unitaire

Cas 1 : Après avoir mis $x_2 = 0$

$$y_{1} \wedge (y_{1} \vee y_{2} \vee z_{1} \vee z_{4}) \wedge (\neg y_{2} \vee z_{1} \vee \neg z_{2})$$

$$\wedge (\neg y_{1} \vee z_{3} \vee \neg z_{4}) \wedge (\neg y_{2} \vee z_{2} \vee \neg z_{3})$$

$$\wedge (\neg z_{3} \vee \neg z_{4}) \wedge (z_{3} \vee z_{4}) \wedge (\neg z_{3} \vee z_{4})$$

Cas 1 : $x_2 = 0$, après résolution unitaire avec y_1

$$(\neg y_2 \lor z_1 \lor \neg z_2)$$

$$\land (z_3 \lor \neg z_4) \land (\neg y_2 \lor z_2 \lor \neg z_3)$$

$$\land (\neg z_3 \lor \neg z_4) \land (z_3 \lor z_4) \land (\neg z_3 \lor z_4)$$

Cas 1 : $x_2 = 0$, après résolution unitaire avec y_1

$$(\neg y_2 \lor z_1 \lor \neg z_2)$$

$$\land (z_3 \lor \neg z_4) \land (\neg y_2 \lor z_2 \lor \neg z_3)$$

$$\land (\neg z_3 \lor \neg z_4) \land (z_3 \lor z_4) \land (\neg z_3 \lor z_4)$$

 y_2 n'apparait qu'avec polarité négative \Rightarrow supprimer les deux clauses qui contiennent le littéral $\neg y_2$

Cas 1 : $x_2 = 0$, après résolution unitaire avec y_1

$$(\neg y_2 \lor z_1 \lor \neg z_2)$$

$$\land (z_3 \lor \neg z_4) \land (\neg y_2 \lor z_2 \lor \neg z_3)$$

$$\land (\neg z_3 \lor \neg z_4) \land (z_3 \lor z_4) \land (\neg z_3 \lor z_4)$$

 y_2 n'apparait qu'avec polarité négative \Rightarrow supprimer les deux clauses qui contiennent le littéral $\neg y_2$

Cas 1 : après avoir mis $y_2 = 0$

$$(z_3 \vee \neg z_4) \\ \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Cas 1 : après avoir mis $y_2 = 0$

$$(z_3 \vee \neg z_4) \\ \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Cas (7), variable de pivot: z_3

- ► Sous-cas 1 : $z_3 = 0$
- ► Sous-cas 2 : $z_3 = 1$

Cas 1, sous-cas 1:
$$z_3 = 0$$

$$(z_3 \vee \neg z_4) \\ \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Cas 1, sous-cas 1:
$$z_3 = 0$$

- \triangleright Supprimer z_3 dans toutes les clause
- ▶ Supprimer toutes les clauses qui contiennet $\neg z_3$

Cas 1, sous-cas 1:
$$z_3 = 0$$

$$(z_3 \vee \neg z_4) \\ \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

- \triangleright Supprimer z_3 dans toutes les clause
- ▶ Supprimer toutes les clauses qui contiennet $\neg z_3$

Cas 1, sous-cas 1 :
$$z_3 = 0$$

$$\neg z_4 \wedge z_4$$

Cas 1, sous-cas 1 :
$$z_3 = 0$$

$$\neg z_4 \wedge z_4$$

Donne false par application de (3) (ou de (4))

Cas 1, sous-cas 2:
$$z_3 = 1$$

$$(z_3 \vee \neg z_4) \\ \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Cas 1, sous-cas 2:
$$z_3 = 1$$

- ightharpoonup Supprimer $\neg z_3$ dans toutes les clause
- Supprimer toutes les clauses qui contiennet z₃

Cas 1, sous-cas 2:
$$z_3 = 1$$

$$(z_3 \vee \neg z_4) \\ \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

- ightharpoonup Supprimer $\neg z_3$ dans toutes les clause
- Supprimer toutes les clauses qui contiennet z₃

Cas 1, sous-cas 2 :
$$z_3 = 1$$

$$\neg z_4 \wedge z_4$$

Cas 1, sous-cas 2 :
$$z_3 = 1$$

$$\neg z_4 \wedge z_4$$

Donne false par application de (3) (ou de (4))

Cas 2 :
$$x_2 = 1$$

$$(x_{2} \lor y_{1}) \land (x_{2} \lor y_{1} \lor y_{2} \lor z_{1} \lor z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{1} \lor \neg z_{2})$$

$$\land (x_{2} \lor \neg y_{1} \lor z_{3} \lor \neg z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{2} \lor \neg z_{3})$$

$$\land (\neg x_{2} \lor \neg y_{1}) \land (\neg x_{2} \lor \neg y_{1} \lor \neg y_{2}) \land (\neg x_{2} \lor y_{1} \lor y_{2}) \land (\neg x_{2} \lor \neg y_{2} \lor z_{1})$$

$$\land (\neg x_{2} \lor \neg z_{1} \lor z_{2})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

Cas 2 :
$$x_2 = 1$$

$$(x_{2} \lor y_{1}) \land (x_{2} \lor y_{1} \lor y_{2} \lor z_{1} \lor z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{1} \lor \neg z_{2})$$

$$\land (x_{2} \lor \neg y_{1} \lor z_{3} \lor \neg z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{2} \lor \neg z_{3})$$

$$\land (\neg x_{2} \lor \neg y_{1}) \land (\neg x_{2} \lor \neg y_{1} \lor \neg y_{2}) \land (\neg x_{2} \lor y_{1} \lor y_{2}) \land (\neg x_{2} \lor \neg y_{2} \lor z_{1})$$

$$\land (\neg x_{2} \lor \neg z_{1} \lor z_{2})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

- Supprimer $\neg x_2$ dans toutes les clauses
- \triangleright Supprimer toutes les clauses qui contiennent x_2

Cas 2 :
$$x_2 = 1$$

$$(x_{2} \lor y_{1}) \land (x_{2} \lor y_{1} \lor y_{2} \lor z_{1} \lor z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{1} \lor \neg z_{2})$$

$$\land (x_{2} \lor \neg y_{1} \lor z_{3} \lor \neg z_{4}) \land (x_{2} \lor \neg y_{2} \lor z_{2} \lor \neg z_{3})$$

$$\land (\neg x_{2} \lor \neg y_{1}) \land (\neg x_{2} \lor \neg y_{1} \lor \neg y_{2}) \land (\neg x_{2} \lor y_{1} \lor y_{2}) \land (\neg x_{2} \lor \neg y_{2} \lor z_{1})$$

$$\land (\neg x_{2} \lor \neg z_{1} \lor z_{2})$$

$$\land (\neg z_{3} \lor \neg z_{4}) \land (z_{3} \lor z_{4}) \land (\neg z_{3} \lor z_{4})$$

- Supprimer $\neg x_2$ dans toutes les clauses
- ightharpoonup Supprimer toutes les clauses qui contiennent x_2

Cas 2 : Après avoir choisi $x_2 = 1$

$$\neg y_1 \wedge (\neg y_1 \vee \neg y_2) \wedge (y_1 \vee y_2) \wedge (\neg y_2 \vee z_1) \wedge (\neg z_1 \vee z_2) \\ \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Cas 2 : Après avoir choisi $x_2 = 1$

$$\neg y_1 \wedge (\neg y_1 \vee \neg y_2) \wedge (y_1 \vee y_2) \wedge (\neg y_2 \vee z_1) \wedge (\neg z_1 \vee z_2) \\ \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Clause unitaire $\neg y_1$

Cas 2 : Après avoir choisi $x_2 = 1$

$$\neg y_1 \wedge (\neg y_1 \vee \neg y_2) \wedge (y_1 \vee y_2) \wedge (\neg y_2 \vee z_1) \wedge (\neg z_1 \vee z_2) \\ \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Cas 2, après résolution unitaire

$$y_2 \wedge (\neg y_2 \vee z_1) \wedge (\neg z_1 \vee z_2) \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Cas 2, après résolution unitaire

$$y_2 \wedge (\neg y_2 \vee z_1) \wedge (\neg z_1 \vee z_2) \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Clause unitaire y_2

Cas 2, après résolution unitaire

$$y_2 \wedge (\neg y_2 \vee z_1) \wedge (\neg z_1 \vee z_2) \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Cas 2, après nouvelle résolution unitaire

$$z_1 \wedge (\neg z_1 \vee z_2) \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Cas 2, après nouvelle résolution unitaire

$$z_1 \wedge (\neg z_1 \vee z_2) \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Clause unitaire z_1

Cas 2, après nouvelle résolution unitaire

$$z_1 \wedge (\neg z_1 \vee z_2) \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

$$z_2 \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

$$z_2 \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Clause unitaire z_2

$$z_2 \wedge (\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

$$(\neg z_3 \lor \neg z_4) \land (z_3 \lor z_4) \land (\neg z_3 \lor z_4)$$

$$(\neg z_3 \vee \neg z_4) \wedge (z_3 \vee z_4) \wedge (\neg z_3 \vee z_4)$$

Appliquer (7), variable de pivot : z_3

- ► Sous-cas 1 : $z_3 = 0$
- ► Sous-cas 2 : $z_3 = 1$

Cas 2, sous-cas 1 : choisir
$$z_3 = 0$$

$$(\neg z_3 \lor \neg z_4) \land (z_3 \lor z_4) \land (\neg z_3 \lor z_4)$$

Cas 2, sous-cas 1 : choisir
$$z_3 = 0$$

$$(\neg z_3 \lor \neg z_4) \land (z_3 \lor z_4) \land (\neg z_3 \lor z_4)$$

Cas 2, sous-cas 1 : choisir
$$z_3 = 0$$

$$(\neg z_3 \lor \neg z_4) \land (z_3 \lor z_4) \land (\neg z_3 \lor z_4)$$

Chapitre 5 Satisfaisabilité de formes conjonctives normales

Un exemple complet

Cas 2, sous-cas 1 : Après avoir choisi $z_3 = 0$

Cas 2, sous-cas 1 : Après avoir choisi $z_3 = 0$

*Z*₄

Application de (3) (ou alternativement (5)) donne true

Cas 2, sous-cas 1 : Après avoir choisi $z_3 = 0$

*Z*4

Application de (3) (ou alternativement (5)) donne *true* Résultat : **satisfaisable**

DPLL et DPLL dual

► DPLL : satisfaisabilité de formules en CNF

DPLL et DPLL dual

- ► DPLL : satisfaisabilité de formules en CNF
- ► DPLL dual : validité de formules en DNF

DPLL et DPLL dual

- ► DPLL : satisfaisabilité de formules en CNF
- ► DPLL dual : validité de formules en DNF

	Formule en	DNF	CNF
>	Satisfaisabilité :	trivial	DPLL
	Validité :	DPLL dual	trivial

L'état de l'art aujourd'hui

▶ DPLL n'est pas suffisamment efficace pour des très grandes formules.

L'état de l'art aujourd'hui

- ► DPLL n'est pas suffisamment efficace pour des très grandes formules.
- À la fin des années 80 : SAT-solveurs basés sur la notion d'apprentissage : analyse des raison d'échec quand une branche mène vers une formule non-satisfaisable.

L'état de l'art aujourd'hui

- ► DPLL n'est pas suffisamment efficace pour des très grandes formules.
- À la fin des années 80 : SAT-solveurs basés sur la notion d'apprentissage : analyse des raison d'échec quand une branche mène vers une formule non-satisfaisable.
- Quelques outils : Chaff, GRASP, MiniSat.