Heterogenous-Agent Life-Cycle Models: Transitions

Dean Corbae (with thanks to Pavel Brendler and Kuan Liu) (Do not distribute without consent)

November 9, 2020

Introduction

- We have so far learned how to compute stationary equilibria of life cycle models.
- However, comparing only outcomes of stationary equilibria would not provide us the full picture of the effects of a policy change (e.g. elimination of pay-as-you-go social security)
- Another important aspect of policy analysis is how the economy transits to a new stationary equilibrium consistent with the policy change, i.e. the transition path
- Here we learn how to compute the transition path from an equilibrium with social security to one without.

The Concept of Transition

- Imagine that we are in the initial steady state at t=0 with social security tax rate $\theta_0 > 0$.
- The government makes an unexpected and credible announcement to eliminate the social security system from t=1 onward. This is what is sometimes called an "MIT shock".
- This means that from t=1 onward, workers do not need to pay social security taxes (i.e. $\theta_t=0$ for $t\geq 1$) and retirees lose their social security benefits (i.e. $b_t=0$ for $t\geq 1$).
- Unlike the stationary equilibrium, the decision rules, the value functions, the cross-sectional distribution, and prices become calendar time t dependent until reaching the new steady state.
- This means in solving for the transition path, we need to add one more discrete finite state variable t.

Preliminaries

- For illustration, assume an inelastic labor supply so L=1 (while Conesa/Krueger (1999) correctly parameterize a leisure choice with distortionary taxes, this simple example generates an upper bound welfare calculation when substitution effects outweigh income effects).
- Let the initial t=0 cross sectional distribution of agents and the initial value function be denoted by $\Gamma_0(z,a,n;K_0^{ss})$ and $V_0(z,a,n;K_0^{ss})$ which comes from the steady state with $\theta_0 > 0$.
- Assuming the economy reaches the new steady state at time T, denote the steady state cross sectional distn and value function by $\Gamma_T(z, a, n; K_T^{ss})$ and $V_T(z, a, n; K_T^{ss})$ with $\theta_T = 0$.
- Our job here is to find the equilibrium path of aggregate variables (e.g. $K_t \to (r(K_t), w(K_t))$) when endogenous variables transition between t = 0 and t = T with $\theta_t = \theta_T = 0$ for t > 1.
- Note that we don't know how long it takes to get to T (in principle, it takes an infinite amount of time).

Basic Steps to Solve for the Transition Path

- Taking T as given, we need a path of aggregate capital $\{K_t^i\}_{t=0}^T$ where i denotes iteration number and $K_0^i = K_0^{ss}$ and $K_T^i = K_T^{ss}$
- With L=1 for example, this induces a path for prices: $\{r_t^i, w_t^i\}_{t=0}^T$
- Since we know $V_T(z,a,n;K_T^{ss})$, we solve the household problem backwards from t=T-1 to t=0. This induces a set of savings decision rules $g_t^i(z,a,n;K_t^i)$ for t=0,...,T-1 based on prices induced by $\{K_t^i\}_{t=0}^T$.
- Using $g_t^i(z,a,n;K_t^i)$ and $\Gamma_t^i(z,a,n;K_t^i)$, calculate forward a new path for capital $\{\hat{K}_t^{i+1}\}_{t=1}^T$ starting from t=0 (noting that since $K_1^i \neq K_0^{ss} \to g_0^i(z,a,n;K_0^{ss}) \neq g_0^{ss}(z,a,n;K_0^{ss})$). Iterate on $\{\hat{K}_t^{i+1}\}_{t=1}^T$ until convergence.
- Shooting forward, there is nothing that ensures \hat{K}_T^{i+1} is arbitrarily close to K_T^{ss} . Increase T until convergence.

HH Problem at t=T-1 at iteration i

$$V_{T-1}^{i}(z, a, n; K_{T-1}^{i}) = \max_{\{c \geq 0, a' \geq \underline{a}\}} u(c) + \beta s_{n+1} \mathbb{E}_{T-1} \left[V_{T}(z', a', n+1; K_{T}^{ss}) \right]$$

s.t.

$$c + a' = a(1 + r(K_{T-1}^{i})) + (1 - \theta_{T-1})e(z, n)w(K_{T-1}^{i}) + T + b_{n, T-1}(K_{T-1}^{i})$$

$$a = 0 \text{ if } n = 1$$

$$a' > 0 \text{ if } n = N.$$

- Assuming a steady state at time T, $K_T^i = K_T^{ss}$ with $\theta_T = 0$ and no matter what iteration i we are on, $V_T(z', a', n+1; K_T^{ss})$ is the same.
- However, if $K_{T-1}^i \neq K_T^{ss}$ (i.e. we are not already at the steady state), the solution to this problem induces

$$k_T^i = g_{T-1}^i(z, a, n; K_{T-1}^i) \neq g_T(z, a, n; K_T^{ss}).$$
 (1)

HH Problem between t=T-2 and t=1 at iteration i

$$V_t^i(z, a, n; K_t^i) = \max_{\{c \geq 0, a' \geq \underline{a}\}} u(c) + \beta s_{n+1} \mathbb{E}_t \left[V_{t+1}^i(z', a', n+1; K_{t+1}^i) \right]$$

s.t.

$$c + a' = a(1 + r(K_t^i)) + (1 - \theta_t)e(z, n)w(K_t^i) + T + b_{n,t}(K_t^i)$$

 $a = 0 \text{ if } n = 1$
 $a' \ge 0 \text{ if } n = N.$

• The solution to this problem induces $\{g_t^i(z, a, n; K_t^i)\}_{t=1}^{t=T-2}$.

HH Problem at t=0 at iteration i

$$V_0^i(z, a, n; K_0^{ss}, K_T^{ss}) = \max_{\{c \geq 0, a' \geq \underline{a}\}} u(c) + \beta s_{n+1} \mathbb{E}_0 \left[V_1^i(z', a', n+1; K_1^i) \right]$$

s.t.

$$c + a' = a(1 + r(K_0^{ss})) + (1 - \theta_0)e(z, n)w(K_0^{ss}) + T + b_{n,t}(K_0^{ss})$$
$$a = 0 \text{ if } n = 1$$
$$a' \ge 0 \text{ if } n = N.$$

• Note that even though $\theta_0 > 0$ and K_0^{ss} at t = 0, since $\theta_1 = 0$ and $K_1^i \neq K^{ss}$, $V_0^i(z, a, j; K_0^{ss}, K_T^{ss})$ can be different from the steady state $V_0(z, a, j; K_0^{ss})$ inducing $g_0^i(z, a, n; K_0^{ss}) \neq g_0(z, a, n; K_0^{ss})$.

Algorithm

- 1 Choose the number of periods to reach the final steady state, T. For example, start with T=20
- ② Given T, make an initial guess for the sequence $\{K_t^{i=1}\}_{t=0}^T$ with $K_0^1 = K_0^{SS}$ and $K_T^1 = K_T^{SS}$.
 - A good guess could simply be a linear function from K_0^{SS} to K_T^{SS} given by $K_t^1 = K_0^{SS} + \triangle$, where $\triangle = [K_T^{SS} K_0^{SS}]/T$
- 3 Given $\{K_t^i\}_{t=0}^T$, solve HH's dynamic programming problem backwards starting with t=T-1 obtaining decision rules $g_t^i(z,a,n;K_t^i)$ for t=0,...T-1.

Algorithm - cont'd

4 Update the path of capital as follows: start with $\Gamma_0(z, a, n; K_0^{ss})$ and use the decision rules $g_t^i(z, a, n; K_t^i)$ to obtain Γ_t^{i+1} and \hat{K}_t^{i+1} for t = 0...T. That is:

$$\Gamma_{t+1}^{i+1}(z', a', n; K_{t+1}^i) = H(\Gamma_t^{i+1}(z, a, n; K_t^i))$$

and

$$\hat{K}_{t+1}^{i+1} = \sum_{n=1}^{N} \sum_{z} \int_{a} g_{t}^{i}(z, a, n; K_{t}^{i}) \Gamma_{t}^{i}(z, a, n; K_{t}^{i}) da.$$
 (2)

5 If $\left\|\hat{K}_t^{i+1} - K_t^i\right\|_{\infty} < \epsilon_K$ for t = 0, ..., T where ϵ_K is your tolerance level, go to step 6. If not, update K_t^{i+1} as follows:

$$K_t^{i+1} = \rho K_t^i + (1-\rho) \hat{K}_t^{i+1} \ \forall t$$
 with some $\rho \in (0,1)$

and go to step 3 using the updated $\{K_t^{i+1}\}_{t=0}^{T-1}$.

Algorithm Cont'd

6 By (1) and (2), there is nothing to ensure that after step 5, $\hat{K}_T^{i+1} = K_T^{SS}$. If there is a $t^* \leq T$ in the sequence such that:

$$\left\|\hat{\mathcal{K}}_t^{i+1} - \mathcal{K}_T^{SS}\right\| < \epsilon_T \ \forall t \ge t^*$$

where ϵ_T is your tolerance level, you have approximated the equilibrium path. If not, increase T and go back to step 2.

A Wrong Transition Path of Capital

- Suppose we set T = 20
- The resulting transition path shown below satisfies the criterion of step 5 in the algorithm; however it fails the criterion of step 6.

The Equilibrium Transition Path of Capital

• If you get rid of social security, people need to save privately for retirement (i.e. *K* rises).

Computing Welfare Gains/Losses with Transitions

We quantify the welfare change of the policy reform for an agent in state (z, a, n) relative to the initial steady state by asking:

- What fraction of per-period consumption would an agent in the steady state (with b > 0) be willing to pay (if positive) or have to be paid (if negative) in all future periods to achieve the utility level associated with a transition to the final steady state (with b = 0)?
- Conesa/Krueger use the following utility function (we set $\gamma=1$ instead of $\gamma=0.42$ and $\sigma=2$):

$$u(c, l) = \frac{(c^{\gamma}(1-l)^{1-\gamma})^{1-\sigma}}{1-\sigma}$$

• We compute for each (z, a, n) the consumption equivalent $\lambda(z, a, n)$ such that:

$$\begin{split} V_0(z,a,n;K_0^{SS},K_T^{SS}) &= \\ \mathbb{E}\Big[\sum_{t=0}^{N} \beta^t \frac{\left[\left((1+\lambda(z,a,n))c_t(z,a,n)\right)\right]^{1-\sigma}}{1-\sigma} | (z,a,n) \Big] \end{split}$$

where the lhs is the b = 0 value and the rhs is the b > 0 ss value.

Computing CE with Transitions - cont.

• We can re-arrange the previous equation defining $\lambda(z,a,n)$ as

$$V_{0}(z, a, n; K_{0}^{SS}, K_{T}^{SS}) =$$

$$(1 + \lambda(z, a, n))^{(1-\sigma)} \mathbb{E} \Big[\sum_{t=n}^{N} \beta^{t} \frac{c_{t}(z, a, n)^{1-\sigma}}{1-\sigma} | (z, a, n) \Big]$$

$$= (1 + \lambda(z, a, n))^{(1-\sigma)} V_{0}(z, a, n; K_{0}^{SS})$$

Hence we have

$$(1 + \lambda(z, a, n))^{(1-\sigma)} = \frac{V_0(z, a, n; K_0^{SS}, K_T^{SS})}{V_0(z, a, n; K_0^{SS})} \Rightarrow \lambda_{tran}(z, a, n) = \left[\frac{V_0(z, a, n; K_0^{SS}, K_T^{SS})}{V_0(z, a, n; K_0^{SS})}\right]^{\frac{1}{(1-\sigma)}} - 1$$

Interpreting CE

- For example, $\lambda_{tran}(z,a,n)=0.1$ implies that eliminating social security increases the welfare of an individual in state (z,a,n) by an amount equivalent to receiving 10% higher consumption per period in the initial steady state for all future periods.
- Therefore $\lambda_{tran}(z, a, n) \geq 0$ means that the agent is made better off by the reform and will thus vote for it; otherwise, the agent is made worse off by the reform and will vote against it.
- The total mass of population in the initial steady state who vote for the reform is given by

$$\sum_{n=1}^{N} \sum_{z} \int_{a} \Gamma_0^{SS}(z, a, n; K_0^{SS}) \times 1_{(\lambda_{tran}(z, a, n) \geq 0)} da$$

CE across Steady States

- We can also compute CE simply across the initial and the new steady states (i.e. without accounting for the transition path).
- This can be thought of CE in the counter-factual case where the economy jumps to the new steady state immediately after social security is abolished, unrealistically skipping the transition.
- Using the results for the initial and the new steady states and following the definition of CE given above, it is computed by:

$$\lambda_{SS}(z, a, n) = \left[\frac{V_T(z, a, n; K_T^{SS})}{V_0(z, a, n; K_0^{SS})}\right]^{\frac{1}{(1-\sigma)}} - 1$$

The Welfare Effect of the Transition Path I

- Let's first compare the average welfare gain/loss within each age cohorts with and without transition path.
- We use CE_{type} for $type \in \{tran, SS\}$ as our measure of welfare gain/loss and its age cohort average given by

$$CE_{type}(n) = \sum_{z} \int_{a} \lambda_{type}(z, a, n) \frac{\Gamma_0^{SS}(z, a, n; K_0^{SS})}{\mu_n} da, \forall n$$

What accounts for the welfare differences across age and SS versus Transition?

- The above figure establishes that there is:
 - Across age: the reform only makes agents under 25 years old better off $(CE_{type}(n) > 0)$.
 - Across type:
 - less (more) of a welfare gain (loss) accounting for the transition for younger agents.
 - less of a welfare loss accounting for the transition for the old.
- Why?
 - There are higher wages in the final steady state than in the transition boosting new steady state income for the young.
 - There are lower interest rates in final new steady state than in the transition boosting transition interest income for the old
 Interest Rate Path
 Decision Rules

Aggregate Voting Differences

 Now we compare the total mass of population who vote for the reform with and without considering the transition path as given by:

$$\sum_{n=1}^{N} \sum_{z} \int_{a} \Gamma_{0}^{SS}(z, a, n; K_{0}^{SS}) \times 1_{(\lambda_{type}(z, a, n) \geq 0)} da$$

Results:

Fraction of Population that Vote for the Reform

With Transition	10.56%	
Without Transition	16.29%	

• This implies that we will *over-estimate* the welfare gain of the reform if we do not consider transition path.

Voting by Age Differences

• Finally, we compare the fraction of people in each age cohort that would vote for the reform with and without considering the transition path given by: $\sum_{z} \int_{a} \frac{\Gamma_{0}^{SS}(z,a,n;K_{0}^{SS})}{\mu_{n}} \times 1_{(\lambda_{type}(z,a,n) \geq 0)} da, \forall n$

 As implied by the above figure, this measure suggests that by not considering the transition path, we (weakly) over-estimate welfare gains of the reform for every age group.

The Equilibrium Transition Path of Wages

• Since $w = (1 - \alpha)(\frac{K}{L})^{\alpha}$ and $K \uparrow$, wages rise.

The Equilibrium Transition Path of Interest Rates

• Since $r = \alpha (\frac{L}{K})^{1-\alpha}$ and $K \uparrow$, interest rates fall.

Decision Rules Consumption for Young and Old

• 21 year olds consume less (save more) at start of transition than in steady state, the opposite of retirees.

