MEE5114 Advanced Control for Robotics Tutorial Lecture

Brief Introduction to Drake

Luyao Zhang and Wei Zhang

SUSTech Insitute of Robotics
Department of Mechanical and Energy Engineering
Southern University of Science and Technology, Shenzhen, China

Outline

- Overview
- Drake Concept
- Drake Simulation
- Common Utilities
- Optimization in Drake

Overview

- Drake is a powerful C++/Python toolbox for robotics started by the Robot Locomotion Group at the MIT and maintained by Toyota Research Institute.
- Include modeling of dynamic systems and simulation
- Provide abundant tools for solving optimization problems, controller design, sensor modeling etc.

System

- Matlab Simulink-like style
- Have input/output ports that could be connected with other systems
- You can derive your system from pydrake.systems.framework.LeafSystem
 Consider the system

$$\dot{x} = -x + x^3,$$

$$y = x.$$

The system has zero inputs, one continuous state variable and one output. It can be implemented in Drake using the following code:

5

6

8

Q

```
from pydrake.systems.framework import BasicVector, LeafSystem
# Define the system.
class SimpleContinuousTimeSystem(LeafSystem):
    def __init__(self):
        LeafSystem.__init__(self)
        self.DeclareContinuousState(1) # One state variable.
        self.DeclareVectorOutputPort("y", BasicVector(1),
                                      self.CopyStateOut)
                                      # One output.
   # xdot(t) = -x(t) + x^3(t)
    def DoCalcTimeDerivatives(self, context, derivatives):
        x = context.get_continuous_state_vector().GetAtIndex(0)
        xdot = -x + x**3
        derivatives.get_mutable_vector().SetAtIndex(0, xdot)
    \# v = x
    def CopyStateOut(self, context, output):
        x = context.get_continuous_state_vector().CopyToVector
()
        output.SetFromVector(x)
```

System

- You can also load the dynamic system from a URDF file.

```
plant = MultibodyPlant(time_step=1e-4)
Parser(plant).AddModelFromFile( FindResourceOrThrow(
   "drake/manipulation/models/iiwa_description/sdf/
   iiwa14_no_collision.sdf"))
plant.WeldFrames(plant.world_frame(), plant.
   GetFrameByName("iiwa_link_0"))
plant.Finalize()
```

Diagram

- A **Diagram** consists of several smaller **Systems**
- Use the **DiagramBuilder** class to **AddSystem()s** and to **Connect()** input ports to output ports or to expose them as inputs/output of the diagram
- Call Build() to generate the new Diagram instance

```
builder = DiagramBuilder()
# First add the pendulum.
pendulum = builder.AddSystem(PendulumPlant())
pendulum.set_name("pendulum")
controller = builder.AddSystem(PidController(kp=[10.], ki
=[1.], kd=[1.])
controller.set_name("controller")
# Now "wire up" the controller to the plant.
builder.Connect(pendulum.get_state_output_port(),
controller.get_input_port_estimated_state())
builder.Connect(controller.get_output_port_control(),
pendulum.get_input_port())
```

5

6

8

```
# Make the desired_state input of the controller an input to
the diagram.
builder.ExportInput(controller.get_input_port_desired_state())

# Log the state of the pendulum.
logger = LogOutput(pendulum.get_state_outpu t_port(), builder)
logger.set_name("logger")

diagram = builder.Build()
diagram.set_name("diagram")
```

Context

- Store data of the time, states, inputs and system parameters, such kinematic model, mass, inertia, CoM position, etc.
- A System or Diagram know how to create an instance of a Context

```
context = diagram.CreateDefaultContext()
```


Drake Simulation

SceneGraph

- Serves as the nexus for all geometry (and geometry-based operations) in a Diagram, such as collision checking and visualization
- The simplest way to add and wire up a MultibodyPlant with a SceneGraph in your Diagram is using AddMultibodyPlantSceneGraph().

Simulator

- Run numerical integration for continuous system or state update for discrete system based on the equation of motion and environment forces
- Write the states back to the Diagram's corresponding Context

- Rigid-Body Motions
 - Drake provides the RotationMatrix class and the RigidTransform class to describe rigid-body motions.

```
# demonstrate the way to multiply two rotation matrices
      R_Ggrasp0 =
      RotationMatrix.MakeXRotation(np.pi/2.0).multiply(
      RotationMatrix.MakeZRotation(np.pi/2.0))
4
      # construct a RigidTransform from
      # a rotation matrix and a position vector
      X_Ggrasp0 = RigidTransform(R_Ggrasp0, p_Ggrasp0)
      # Take the inverse RigidTransform
8
      X_OGgrasp = X_GgraspO.inverse()
      X_WGgrasp = X_WO.multiply(X_OGgrasp)
      # convert the rotation matrix to the angle axis
      X_GgraspGpregrasp = RigidTransform([0, -0.08, 0])
      angle_axis = X_GprepickGpreplace.rotation().ToAngleAxis()
15
```

Forward Kinematics

```
# First, get the link by name,
# and then evaluate the link pose in the world frame
B_O = plant.GetBodyByName(link_name, model_instance)
X_WO = plant.EvalBodyPoseInWorld(plant_context, B_O)
```

Jacobian

$$a = J\dot{v} + \dot{J}v$$

- The method CalcBiasSpatialAcceleration() computes $\dot{J}v$.

Dynamics

$$\mathbf{M}(\mathbf{q})\dot{\mathbf{v}} + \mathbf{C}(\mathbf{q}, \mathbf{v})\mathbf{v} = \boldsymbol{ au}_{\mathbf{g}} + \mathbf{B}\boldsymbol{ au} + \mathbf{J}_{\mathbf{c}}^{\mathbf{T}}\mathbf{F}_{\mathbf{ext}}$$

```
context = plant.CreateDefaultContext()

# update the plant according to

# the current generalized position and velocity

plant.SetPositions(context,q)

plant.SetVelocities(context,v)

# calculate the mass matrix

M = plant.CalcMassMatrixViaInverseDynamics(context)

# compute the bias term C(q, v)v containing Coriolis,

centripetal, and gyroscopic effects

Cv = plant.CalcBiasTerm(context)

# compute the generalized forces due to the gravity field

tauG = plant.CalcGravityGeneralizedForces(context)

B = plant.MakeActuationMatrix()
```

- Trajectory Generation
 - The PiecewisePolynomial class is used to handle polynomials.
 - You need to specify the break points and the values at the break points.

- Provide an user-friendly interface to formulate and solve optimization problems
- Support the symbolic form for constraints and cost functions
- Categories of optimization problems that Drake can solve
 - Linear programming
 - Quadratic programming
 - Second-order cone programming
 - Nonlinear nonconvex programming
 - Semidefinite programming
 - Sum-of-squares programming
 - Mixed-integer programming (mixed-integer linear programming, mixed-integer quadratic programming, mixed-integer second-order cone programming)
 - Linear complementarity problem

 Code snippet to show the way to formulate and solve the optimization problem

```
0.00
      Solves a simple optimization problem
             \min x(0)^2 + x(1)^2
      subject to x(0) + x(1) = 1
                 x(0) \le x(1)
      from pydrake.solvers.mathematicalprogram import Solve
      # Set up the optimization problem.
8
      prog = MathematicalProgram()
Q
      x = prog.NewContinuousVariables(2)
      prog.AddConstraint(x[0] + x[1] == 1)
      prog.AddConstraint(x[0] <= x[1])</pre>
      prog.AddCost(x[0] **2 + x[1] ** 2)
14
```

```
# Now solve the optimization problem.
result = Solve(prog)

# print out the result.
print("Success? ", result.is_success())
# Print the solution to the decision variables.
print('x* = ', result.GetSolution(x))
# Print the optimal cost.
print('optimal cost = ', result.get_optimal_cost())
# Print the name of the solver that was called.
print('solver is: ', result.get_solver_id().name())
```

The TRI team has provided well-written notebooks, and you can refer to them via the following link.

https://mybinder.org/v2/gh/RobotLocomotion/drake/ nightly-release?filepath=tutorials/mathematical_program.ipynb

- Linear Programming
 - The mathematical formulation of a general LP is

$$\min_{x} \ c^{T}x + d$$
 subject to $Ax \leq b$

- Add linear cost

```
prog = MathematicalProgram()
# Add two decision variables x[0], x[1].
x = prog.NewContinuousVariables(2, "x")
# Add a symbolic linear expression as the cost.
cost1 = prog.AddLinearCost(x[0] + 3 * x[1] + 2)
# c^T x + d
# We add a linear cost 3 * x[0] + 4 * x[1] + 5 to prog by specifying the coefficients
# [3., 4] and the constant 5 in AddLinearCost
cost3 = prog.AddLinearCost([3., 4.], 5., x)
```

- Linear Programming
 - Add linear constraint
 - Bounding box constraint. A lower/upper bound on the decision variable: $lower \leq x \leq upper$.
 - Linear equality constraint: Ax = b.
 - Linear inequality constraint: lower <= Ax <= upper

```
prog = MathematicalProgram()
x = prog. NewContinuousVariables(2, "x")
y = prog.NewContinuousVariables(3, "y")
4 # Add a linear inequality constraint
5 linear_constraint = prog.AddLinearConstraint(
      A = [[2., 3., 0], [0., 4., 5.]],
      lb=[-np.inf, 1],
     ub=[2., 3.],
   vars=np.hstack((x, y[2]))
# Add a bounding box constraint -1 \le x[0] \le 2, 3 \le x[1] \le
       5
bounding_box3 = prog.AddBoundingBoxConstraint([-1, 3], [2,
      51. x)
12 # Add a linear equality constraint 4 * x[0] + 5 * x[1] == 1
13 linear_eq3 = prog.AddLinearEqualityConstraint(np.array([[4,
      5]]), np.array([1]), x)
```

- Quadratic Programming
 - A (convex) quadratic program has the following form

$$\min_{x} 0.5 x^T Q x + b^T x + c \label{eq:started_equation}$$
 s.t $Ex \leq f,$

where 'Q' is a positive semidefinite matrix.

- Support different kinds of quadratic cost

- Quadratic Programming
 - A (convex) quadratic program has the following form

$$\min_{x} 0.5x^{T}Qx + b^{T}x + c$$
 s.t $Ex \leq f$,

where 'Q' is a positive semidefinite matrix.

- Drake supports different kinds of quadratic cost.

 To add linear constraints into quadratic program, please refer to the previous slide.