Лабораторная работа №1 Простейшие алгоритмы шифрования

Цель работы: изучить простейшие алгоритмы шифрования.

Выполнение работы.

1 ШИФРОВАНИЕ ПЕРЕСТАНОВОЧНЫМИ ШИФРАМИ

Исходный текст: Тупальский Марк Евгеньевич.

1.1 Шифрование простейшими перестановочными шифрами

Шифрования текста простейшими перестановочными шифрами:

1) Удаление пробелов и запись слова только большими буквами. Результат шифрования:

ТУПАЛЬСКИЙМАРКЕВГЕНЬЕВИЧ.

2) Разбиение текста на блоки по 2 буквы.

Результат шифрования:

ТУ ПА ЛЬ СК ИЙ МА РК ЕВ ГЕ НЬ ЕВ ИЧ.

3) Запись слов в обратном порядке.

Результат шифрования:

ЧИВЕЬНЕГВЕКРАМЙИКСЬЛАПУТ.

4) Перестановка в виде матрицы 2 строки, 12 столбцов (см. таблицу 1): запись построчная, чтение по столбцам сверху вниз 1,3,5,7, 9,11,2,4, 6,8,10,12.

Таблица 1 – Матрица метода перестановки

Столбцы	1	2	3	4	5	6	7	8	9	10	11	12
Строки	T	У	П	Α	Л	Ь	С	К	И	Й	M	A
Строки	P	К	Е	В	Γ	Е	Н	Ь	Е	В	И	Ч

Результат шифрования:

ТРПЕЛГСНИЕМИУКАВЬЕКЬЙВАЧ.

1.2Шифрование шифром «железнодорожная изгородь»

Правила записи текста представлено на рисунке 1.

Рисунок 1 – Правили записи текста по методу «железнодорожная изгородь»

Запись исходного текста представлена на рисунке 2.

Рисунок 2 – Запись исходного текста по методу «железнодорожная изгородь»

Правило чтения – по строкам слева направо начиная с первой строки. Результат шифрования:

ТЛИРГЕУАЬКЙАКВЕЬВЧПСМЕНИ.

1.3 Шифрование с использованием ключевого слова

Метод использования ключевого слова или фразы в качестве правила перестановки столбцов.

Буквам ключевого слова назначаются номера, начиная с первого в соответствии с русским алфавитом. Если буква встречается несколько раз, то нумерация определяется порядком следования повторяющейся буквы в ключевом слове.

Ключевое слово ЭЛЕКТРОЛИЗ определяет количество столбцов — 10 столбцов для записи исходных текстов, а буквы этого слова определяют порядок чтения столбцов текста — запись построчно, чтение по столбцам, начиная с первого столбца, см. таблицу 2.

Таблица 2 – Метод использование ключевого слова

Э	Л	E	К	T	P	О	Л	И	3
10	5	1	4	9	8	7	6	3	2
T	У	П	A	Л	Ь	С	К	И	Й
M	A	P	К	Е	В	Γ	Е	Н	Ь
Е	В	И	Ч						

Результат шифрования:

ПРИ ЙЬ ИН АКЧ УАВ КЕ СГ ЬВ ЛЕ ТМЕ.

1.4 Шифрование методом поворачивающейся решетки

По заданию размер решетки 6x6, а вырезаемые отверстия в количестве 9 выбираются на основе алгоритма: исходный текст записывается через отверстия в решетке, которая по мере заполнения поворачивается на 90°.

Предварительно текст разбивается на блоки 6x6 = 36 символов. Решетка — матрица (4x4), для которой ячейки, которые при повороте матрицы на 90° занимают одинаковое положение, нумеруются одинаково, см. рисунок 3. При использовании вырезается один из квадратов с одинаковым номером.

Рисунок 3 – Решетки 6х6 и количеством отверстий 9

Исходный текст:

ТУПАЛЬСКИЙ МАРК ЕВГЕНЬЕВИЧ ОБЖ ТРУД ХИМИЯ Шифрование методом поворачивающейся решетки показано на рисунке 4.

Рисунок 4 – Шифрование методом поворачивающейся решетки

Результат шифрования представлен на рисунке 5.

Н	Т	Т	Ь	Й	Р
У	Е	М		У	Α
Р	Б	В	Х	И	Α
ч	Л	К	Ь	Е	И
М	В	0	И	С	Б
Γ	Я	К	Е	ж	И

Рисунок 5 – Результат шифрования методом поворачивающейся решетки

2 ШИФРОВАНИЕ ПОДСТАНОВОЧНЫМ МЕТОДОМ

Подстановочный метод – аффинное преобразование определяется функцией шифрования

$$c_i = (k_1 \cdot a_i + k_2) \bmod n,$$

где c_i – символ текста шифра;

 a_{i} – число соответствующее букве исходного текста;

 k_1, k_2 – первый и второй ключ;

n – мощность алфавита.

В русском алфавите 33 буквы, т.е. n = 33 (3.11 = 33), см. таблицу 3.

Таблица 3 – Соответствие букв русского алфавита

Буква	A	Б	В	Γ	Д	Е	Ë	Ж	3	И	Й
Цифра	0	1	2	3	4	5	6	7	8	9	10

Продолжение таблицы 3

Буква	К	Л	M	Н	О	П	P	С	T	У	Ф
Цифра	11	12	13	14	15	16	17	18	19	20	21

Окончание таблицы 3

_		·		***	***	_		_	_		_
Буква	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	К
Цифра	22	23	24	25	26	27	28	29	30	31	32

Ключ k_1 должен быть взаимно простым с 33. Возможные значения: 1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32.

По условию $k_1 = 20$ — номер в журнале. Ключ $k_1 = 20$ удовлетворяет условию взаимной простоты, принимаем $k_1 = 20$. Значение k_2 может быть любым, если k_1 не равно единице. Таким образом, принимаем: $k_2 = 17$.

Алгоритм шифрования следующий (см. таблицу 4):

- 1) Первый шаг шифрования запись чисел $a_{\rm i}$, соответствующих каждой букве текста шифрования.
 - 2) Для каждого значения находим $(k_1 \cdot a_i + k_2) = (20 \cdot a_i + 17)$.
 - 3) Для каждого символа возьмем остаток от деления $(20 \cdot a_i + 17)$ на 33.
- 4) Подстановка вместо каждого числа соответствующей ему буквы из таблицы 3.

Таблица 4 – Метод аффинного преобразования

Текст	T	У	П	A	Л	Ь	С	К	И	Й	M	A
a_{i}	19	20	16	0	12	29	18	11	9	10	13	0
$k_1 \cdot a_i + k_2$	397	417	337	17	257	597	377	237	197	217	277	17
(k ₁ a _i +k ₂)mod n	1	21	7	17	26	3	14	6	32	19	13	17
Шифр	Б	Φ	Ж	P	Щ	Γ	Н	Ë	R	T	M	P

Продолжение таблицы 4

Текст	P	К	Е	В	Γ	Е	Н	Ь	Е	В	И	Ч
a_{i}	17	11	5	2	3	5	14	29	5	2	9	24
$k_1 \cdot a_i + k_2$	357	237	117	57	77	117	297	597	117	57	197	497
(k ₁ a _i +k ₂)mod n	27	6	18	24	11	18	0	3	18	24	32	2
Шифр	Ъ	Ë	C	Ч	К	С	A	Γ	C	Ч	Я	В

Результат шифрования:

БФЖРЩГНЁЯТМРЪЁСЧКСАГСЧЯВ.

Выводы.

В результате выполнения работы изучены методы шифрования простейшими перестановочными шифрами, такими как разбиение текста на блоки по 2, запись слов в обратном порядке, перестановка в виде матрицы 2 строки и 12 столбцов, а так же шифрование шифром «железнодорожная изгородь» и шифрование с использованием ключевого слова ЭЛЕКТРОЛИЗ.

Выполнено шифрование методом поворачивающейся решетки размером 6x6 (9 отверстий) и применено шифрование подстановочным методом (аффинное преобразование) с функцией шифрования

$$c_i = (k_1 \cdot a_i + k_2) \mod n = (20 \cdot a_i + 17) \mod 33.$$