

Spring_2018_INFO6205_Se...

Question - 1		SCORE: 5 points
What is the maximum number of edges in an acyclic undirected graph with n vertices?		
	2 * n -1	
	n * (n - 1) / 2	
•	n - 1	
	n * (n - 1)	
Questic	on - 2	SCORE: 5 points
Which of the following statements is/are TRUE for an undirected graph? A: Number of odd degree vertices is even B: Sum of degrees of all vertices is even		
	A	
	В	
•	Both A and B	
	Neither A nor B	
Questic Classroo	on - 3 m question	SCORE: 5 points
Select the numbers on the whiteboard		
•	3	
	4	
	19	
	29	
	47	
	74	
	81	

Question - 4 MST

SCORE: 10 points

30 minutes

Problem Statement

For the undirected, weighted graph given below, which of the following sequences of edges represents a correct execution of Kruskal's algorithm to construct a Minimum Spanning Tree?


```
A. (c, e), (c, f), (f, d), (d, a), (a, b), (g, h), (h, f), (g, i)
B. (d, f), (f, c), (d, a), (a, b), (c, e), (f, h), (g, h), (g, i)
C. (h, g), (g, i), (h, f), (f, c), (f, d), (d, a), (a, b), (c, e)
D. (a, b), (d, f), (f, c), (g, i), (d, a), (g, h), (c, e), (f, h)
```

Answer is: <blank 1>

Answers

<blank 1>: [D, d, (a, b), (d, f), (f, c), (g, i), (d, a), (g, h), (c, e), (f, h)]

Ouestion - 5 Kruskal MST

SCORE: 30 points

Given an Edge Weighted Undirected Graph G, Return a Queue with all edges of its MST Please finish the codes below using given method:

```
// Egde class has method:
 // public double weight()
 // public Vertice getOneVertice()
  // public Vertice getAnotherVertice()
  // EdgeWeightedGraph class has method:
  // public int getVerticeNum() (return the number of vertice of this graph)
  public Queue<Edge> KruskalMST(EdgeWeightedGraph G) {
    // mst used to store all edges of MST;
    // Queue<Edge> has method:
    // public void enqueue(Edge e)
    // public int getSize()
    Queue<Edge> mst = new Queue<Edge>();
    // PriorityQueue<Edge> has methods:
    // public Edge getMin() (return the edge with min weight)
    // public void remove(Edge e) (delete the edge within PQ)
    // public boolean isEmpty() (return true if empty, false if not)
    PriorityQueue<Edge> pq = new PriorityQueue<Edge>
(G.edges());
    // UnionFind has methods:
    // public boolean connected(Vertice a, Vertice b) (return true if
connected, false if not)
    // public void union(Vertice a, Vertice b)
    UnionFind uf = new UnionFind(G.V());
```

// TODO

return mst; }