

Neural Dynamic Programming for Musical Self Similarity

Christian J. Walder 1,2 and Dongwoo Kim 1,2,3

¹ Data61, CSIRO, Australia

² The Australian National University

³ Data to Decisions CRC, Kent Town, SA, Australia

★ See also our related poster ★

Self-Bounded Prediction Suffix Tree via Approximate String Matching

Hall B #112

Abstract

We present a neural sequence model designed specifically for symbolic music. The model is based on a learned edit distance mechanism which generalises a classic recursion from computer science, leading to a neural dynamic program.

Repeated motifs are detected by learning the transformations between them. We represent the arising computational dependencies using a novel data structure, the edit tree; this perspective suggests natural approximations which afford the scaling up of our otherwise cubic time algorithm.

We demonstrate our model on real and synthetic data; in all cases it outperforms a strong stacked long short-term memory benchmark.

What Real Music Looks Like

How do you expect the above sequence continue?

Answer:

by analogy with first two cycles, the last two notes may repeat immediately.

Note that in the third cycle of the motif above, we observe a non-trivial diatonic (i.e. within musical scale) shift of the upper notes

Detecting and completing the pattern may be more important than learning general short-sequence regularities, for symbolic music!

More Sequence Completion Puzzles

1, 4, 9, 16, ___

1, 64, 9, 100, 25, 16, ___

1, 7, 2, 9, 1, 7, 2, ___

1, 3, 1, 12, 17, 101, 103, 101, 112, ___

1, 3, 1, 12, 17, 101, 103, 33, 101, 112, ___

1, 3, 1, 12, 17, ..., 101, 103, 33, 101, 112, ___

Due to the chain rule of probability: $p(S) = \prod_{i=0}^{|S|-1} p(s_{i+1}|S(:i))$ we can model transformed motifs by comparing the current suffix with all previous subsequences!

Edit Distance / Self Matching

- The edit distance is the minimum total cost of edit operations (insertions, deletions, and substitutions) which transform one sequence P to another T
- It is computed by the dynamic program:

$$D(i,j) = \min \begin{cases} c(p_i \to \epsilon) + D(i-1,j) \\ c(p_i \to t_j) + D(i-1,j-1) \\ c(t_j \to \epsilon) + D(i,j-1) \end{cases}$$

		S	a	t	u	r	d	a	y
	0	1	2	3	4	5	6	7	8
S	1	0	1	2	3	4	5	6	7
u	2	1	1	2	2	3	4	5	6
n	3	2	2	2	3	3	4	5	6
d	4	3	3	3	3	4	3	4	5
a	5	4	3	4	4	4	4	3	4
y	6	5	4	4	5	5	5	4	3

• With Seller's modification, this allows searching within a longer string:

Searching for exact self matches and forecasting based on the subsequence continuation, is a natural scheme which generalises various models (context tree weighting, prediction suffix trees, variable order hidden Markov models..).

• Further slight generalisation of the dynamic program yields all self matches:

This is the key program control flow.

We generalise the entire setup by replacing the constituent operations with parameterised functions. The parameters are learned end to end via gradient based optimisation.

MotifNet Generalisation

Simplified Setup	MotifNet
categorical symbol	learned embedding vector
unit edit cost	learned edit cost function
scalar distance	generalised distance vector
distance ← distance + cost	distance ← GRU(distance, cost)
dynamic programming min	arg max w.r.t. learned scoring function
forecast by exact matching	learned weighting function averaging
identity forecast	analogy forecast

The **analogy** function is an important component. If we have seen 1, 3, 1, 12, 17, then by **analogy** after 101, 103, 101, 112 we expect to see 117.

The Basic (exact / slow) MotifNet

Notation	Interpretation of Elements
$\Sigma = \{1, 2, \dots, \Sigma \}$	Discrete symbol
$\mathcal{E} = \mathbb{R}^{N_E}$	Embedding
$\mathcal{C} = \mathbb{R}^{N_C}$	Generalised edit cost
$\mathcal{D} = \mathbb{R}^{N_D}$	Generalised distance
$\mathcal{O} = \mathbb{R}^{N_O}$	Penultimate layer

Notation	Role	Architecture	Mapping
$f_E \ f_D \ f_S \ f_A$	embedding deletion substitution addition	lookup FF FF GRU	$\begin{array}{c} \Sigma \to \mathcal{E} \\ \Sigma \to \mathcal{C} \\ \Sigma \times \Sigma \to \mathcal{C} \\ \mathcal{D} \times \mathcal{C} \to \mathcal{D} \end{array}$
$f_W otag f_G otag f_F$	scoring* analogy forecasting	FF FF FF	$egin{aligned} \mathcal{D} & ightarrow \mathbb{R} \ \mathcal{D} & ightarrow \mathcal{E} & ightarrow \mathcal{O} \ \mathcal{O} & ightarrow \mathbb{R}^{ \Sigma } \end{aligned}$

• Given the above generalised distances D(i, j, k), the penultimate layer is

$$O_i = \sum_{0 \le j < i} \sum_{0 \le k < i} w_{i,j,k} f_G(D(i,j,k), f_E(s_{j+1}))$$

where

$$w_{i,j,k} = \frac{\exp(f_W(D(i,j,k)))}{\sum_{0 \le j' < i} \sum_{0 \le k' < i} \exp(f_W(D(i,j',k')))}$$

and the forecast is given by $s_{i+1}|S(:i), \ldots \sim \mathrm{Discrete}(f_F(O_i))$.

Edit Tree

- The generalised distances D(i, j, k) are functions of an **alignment sequence**.
- This suggests the edit tree, which differs from a suffix tree as follows:

Prediction Direct Correlation (reoccurance) Analogy Generalises the Other No Yes		Suffix Tree	Edit Tree
Fan Out Candidate Matching Paths for Prediction One Many All Candidates Relevant? Prediction Direct Correlation (reoccurance) Generalises the Other Linear (in the alphabet size) One Many Yes (exact matches) No (scoring function required for the control of the cont	Edges	Symbols: Si	Matches: s _i → s _j
Candidate Matching Paths for PredictionOneManyAll Candidates Relevant?Yes (exact matches)No (scoring function requiredPredictionDirect Correlation (reoccurance)AnalogyGeneralises the OtherNoYes	Nodes	Sequences	Alignments
All Candidates Relevant? Prediction Direct Correlation (reoccurance) Mo (scoring function required Analogy No Yes	Fan Out	Linear (in the alphabet size)	Quadratic
Prediction Direct Correlation (reoccurance) Analogy Generalises the Other No Yes	Candidate Matching Paths for Prediction	One	Many
Generalises the Other No Yes	All Candidates Relevant?	Yes (exact matches)	No (scoring function required)
	Prediction	Direct Correlation (reoccurance)	Analogy
The same of the sa	Generalises the Other	No	Yes
Theoretical Guarantees? Yes Not yet	Theoretical Guarantees?	Yes	Not yet
Studied? Yes; extensively No	Studied?	Yes; extensively	No

We **prune the edit tree** using a learned heuristic function, obtaining tractability!

Experiments

Table 2. Average test set negative log likelihood for a stacked LSTM, MotifNet, and their combination (see subsection 4.3) on real symbolic music problems. See subsection 6.2 for more details.

	JBM	MUS	NOT	PMD
LSTM	1.82	2.03	1.03	2.67
MotifNet	1.77	1.88	0.81	1.90
MotifNet+LSTM	1.79	1.83	0.73	1.85

These are basic CPU-only experiments, but we already improve on the LSTM. Scaling up **MotifNet** seems promising!