

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN COMPLEMENTOS DE MATEMÁTICA II

Práctica 5: Teoría de categorías I

1. Considerar los siguientes diagramas. En ambos casos, probar que si los dos triángulos conmutan, también conmuta el cuadrado.

- 2. Probar que si $\mathscr C$ es una categoría con un único objeto, entonces $\mathscr C=\mathscr C_M$ para algún monoide (M,*).
- **3.** Sea Rel tal que ob Rel es la clase de conjuntos, mor Rel son las relaciones binarias entre conjuntos y la composición de morfismos es la composición de relaciones. Definir funciones domonio y codominio e identidades adecuadas y probar que Rel es efectivamente una categoría, denominada categoría de relaciones.
- **4.** Sea PSet tal que ob PSet son pares (X, x_0) donde X es un conjunto y $x_0 \in X$. El par (X, x_0) se denomina un conjunto punteado. Una función entre los conjuntos punteados (X, x_0) e (Y, y_0) es una función $f: X \to Y$ tal que $f(x_0) = y_0$. Probar que si mor PSet son funciones entre conjuntos punteados, con la composición usual de funciones y las identidades usuales, PSet es una categoría.
- **5.** Sean $\mathscr C$ una categoría y A un objeto de $\mathscr C$. Definimos $\mathscr C|A$ como la categoría cuyos objetos son las flechas f de $\mathscr C$ tales que $\operatorname{codom}(f)=A$. Una flecha g en $\mathscr C|A$ de $f\colon X\to A$ en $h\colon Y\to A$ es una flecha $g\colon X\to Y$ de $\mathscr C$ tal que $f=h\circ g$.
 - a) Expresar las flechas de $\mathscr{C}|A$ en términos de diagramas conmutativos.
 - b) Verificar que $\mathscr{C}|A$ es una categoría.
 - c) Si \mathscr{C}_P es la categoría definida por un conjunto ordenado P y $x \in P$, determinar $\mathscr{C}_P|x$.
- 6. Sean $\mathscr C$ una categoría y $f,\,g$ flechas de $\mathscr C.$ Probar que
 - a) Si f y g son monomorfismos, entonces $g \circ f$ también lo es.
 - b) Si $g \circ f$ es un monomorfismo, f también lo es.
 - c) Si f y g son epimorfismos, entonces $g \circ f$ también lo es.
 - d) Si $g \circ f$ es un epimorfismo, g también lo es.
 - e) Si f^{-1} es la inversa de f y g^{-1} es la inversa de g, entonces $f^{-1} \circ g^{-1}$ es la inversa de $g \circ f$.
- 7. Probar que en Grp los morfismos mónicos son monomorfismos de grupos, los morfismos épicos son epimorfismos de grupos y los isomorfismos son isomorfismos de grupos.
- 8. Exhibir un ejemplo de una categoría \mathscr{C} cuyos objetos sean conjuntos y sus morfismos sean funciones entre conjuntos tal que existen morfismos biyectivos que no son isomorfismos.
- 9. Sea $\mathscr C$ una categoría y $\mathscr C^{\mathrm{op}}$ su categoría dual.

- a) Probar que $f \in \text{Hom}_{\mathscr{C}}(A, B)$ es un monomorfismo si $f \in \text{Hom}_{\mathscr{C}^{op}}(B, A)$ es un epimorfismo.
- **b)** Probar que $f \in \text{Hom}_{\mathscr{C}}(A, B)$ es un epimorfismo si $f \in \text{Hom}_{\mathscr{C}^{op}}(B, A)$ es un monomorfismo.
- c) Probar que A es un objeto inicial (resp. terminal) en $\mathscr C$ si y sólo si A es un objeto terminal (resp. inicial) en $\mathscr C^{op}$.
- 10. Considerar que en el siguiente diagrama los 4 trapecios conmutan

Probar que

- a) Si el cuadrado interno conmuta, también lo hace el cuadrado externo.
- b) Si e es epi y m es mono, entonces si el cuadrado externo conmuta, también lo hace el cuadrado interno.
- 11. Determinar, si existen, los objetos iniciales, terminales y nulos en las siguientes categorías:
 - a) Set \times Set.
- **b**) Set $^{\rightarrow}$.
- c) PSet.
- d) Grp.
- **e**) Ab.
- f) Rel.
- 12. Dar una categoría sin objetos iniciales. Dar una sin objetos finales. Dar una donde los objetos finales e iniciales coincidan.
- **13.** Sean A y B objetos en una categoría \mathscr{C} . Un A, B-pairing se define como una terna (P, p_1, p_2) donde P es un objeto de \mathscr{C} y $p_1: P \to A$ y $p_2: P \to B$ son morfismos de \mathscr{C} . Un morfismo de A, B-pairings

$$f:(P,p_1,p_2)\to (Q,q_1,q_2)$$

es cualquier morfismo f de $\mathscr C$ tal que $q_1 \circ f = p_1$ y $q_2 \circ f = p_2$, es decir, el siguiente diagrama conmuta.

- a) Probar que los A, B-pairings y sus morfismos forman una categoría Pair(A, B).
- **b)** Siendo 0 un objeto inicial de \mathscr{C} , mostrar que

es un objeto inicial de Pair(A, B).

14. Dar una categoría donde algún par de objetos carecen de producto.

15. Mostrar las siguientes identidades:

a)
$$\langle \pi_1, \pi_2 \rangle = id$$

b)
$$\langle f \circ h, g \circ h \rangle = \langle f, g \rangle \circ h$$

c)
$$(f \times h) \circ \langle g, k \rangle = \langle f \circ g, h \circ k \rangle$$

d)
$$(f \times h) \circ (g \times k) = (f \circ g) \times (h \circ k)$$

e)
$$\langle [f,g],[h,k]\rangle = [\langle f,h\rangle,\langle g,k\rangle]$$

16. Probar los siguientes isomorfismos:

a)
$$A \times B \cong B \times A$$

b)
$$A \times 1 \cong A$$

c)
$$A \times (B \times C) \cong (A \times B) \times C$$

¿Cuáles son los enunciados duales?

17. Probar que en una categoría \mathscr{C} todo ecualizador e es monomorfismo. Mostrar que si además e es epimorfismo, entonces se tiene un isomorfismo.

3

18. Encontrar el pull-back en Set.

19. Sea \mathcal{C} una categoría con exponenciales,

a) Probar $curry(eval_{A,B}) = id_{B^A}$.

b) Dado un morfismo $f: B \to C$, construir un morfismo $B^A \to C^A$.

c) Dado un morfismo $f: A \to C^B$, construir un morfismo $uncurry(f): A \times B \to C$.

d) Probar uncurry(curry(f)) = f y curry(uncurry(f)) = f.

20. Sea \mathcal{C} una CCC y sean A, B objetos de \mathcal{C} . Probar:

a) B^A es único salvo isomorfismo.

b)
$$1^A \cong 1$$
.

c)
$$B^1 \cong B$$
.

Página 3

21. En una categoría con coproductos y objeto final, podemos definir los booleanos como el objeto Bool=1+1. En este caso, a i_1 le llamamos true y a i_2 le llamamos false. Escribir un morfismo $not:Bool\to Bool$ tal que

$$not \circ true = false$$

 $not \circ false = true$

Suponiendo que la categoría tiene exponenciales, ¿puede escribir un morfismo and : $Bool \times Bool \rightarrow Bool$ que se comporte como la conjunción?

22. Una categoría se dice distributiva si tiene productos finitos, coproductos finitos, y para todos objetos A, B, C, los morfismos

$$!`_{0\times A}: 0 \to 0 \times A$$
$$[\iota_1 \times id_C, \iota_2 \times id_C]: A \times C + B \times C \to (A+B) \times C$$

4

son isomorfismos.

Probar que toda CCC con coproductos finitos es distributiva.

Página 4