Lec11 Note of Abstract Algebra

Xuxuayame

日期: 2023年4月19日

我们回忆 $G \circ X$ 指的是存在映射:

$$G \times X \to X$$
,
 $(q, x) \mapsto q \cdot x$.

满足

- (1) $g(hx) = (gh)x, \forall g, h \in G$;
- (2) $1_G \cdot x = x, \ \forall \ x \in X$.

同时这也等价于存在 G 的表示 $\rho: G \to S(X)$ 。

特别地我们考虑一种特殊的作用。

定义 2.3. 考虑

$$G \times G \to G$$
,
$$g \cdot x \mapsto {}^g x = gxg^{-1}.$$

称为 G 在 G 上的共轭作用。

与之对应的表示满足 $\rho: G \to \operatorname{Inn} G \leq \operatorname{Aut} G \leq S(G)$ 。

注意到此时 $|G|=|\mathfrak{O}_x||G_x|$,因为 $G/G_x \overset{1-1}{\longleftrightarrow} \mathfrak{O}_x$ 。以及对 $G \circlearrowleft X$,Ø $\neq Y \subset X$,若 $g \cdot Y \subset Y$, $\forall \ g \in G$,则诱导了 G 在子集 Y 上的作用。

对 $x \in G$,

$$c_x = \mathfrak{O}_x = \{gxg^{-1} \mid g \in G\},\$$

称为 x 所在的共轭类。而

$$Z_G(x) = G_x = \{ g \in G \mid gxg^{-1} = x \}$$

称为 x 的中心化子。而对于 $T \subset G$,T 的中心化子定义为:

$$Z_G(T) = \bigcap_{t \in T} Z_G(t)$$
$$= \{ g \in G \mid gt = tg, \ \forall \ t \in T \}.$$

命题 2.4. 设 $|G| < \infty$,则

(1)
$$|G| = |c_x| \cdot |Z_G(x)|$$
;

(2)
$$|G| = \sum_{x \in I} |c_x| = |Z(G)| + \sum_{x \in I, |c_x| > 2} |c_x|$$
. I 为共轭类的完全代表元系。

命题 2.5. 设 G 为 p 群 $(p \, \, \, \, \, \, \, \, \, \, \, \, |G| = p^r, \, \, r \geq 1)$, X 为集合, $|X| = n, \, (n,p) = 1, \, G \circlearrowleft X$,则 X 有不动点,即 $\exists \, x \in X$,使得 $g \cdot x = x, \, \forall \, x \in G$ 。特别地,G 有非平凡中心。

证明. 设I为轨道完全代表元系,则

$$|X| = \sum_{x \in I} |\mathcal{O}_x| = \sum_{x \in I} \frac{|G|}{|G_x|}.$$

而 $|\mathcal{O}_x|=p^i,\ 0\leq i\leq r$,那么 $(|X|,p)=1\Rightarrow\exists\ x,\ (|\mathcal{O}_x|,p)=1\Rightarrow|\mathcal{O}_x|=1$ 。 从而 x 为不 动点。

现在考虑 $G \circlearrowleft G$ 为共轭作用,则 $G \circlearrowleft G \setminus \{1_G\} =: X$ 为诱导的共轭作用。 $|X| = p^r - 1, \ (|X|, p) = 1 \Rightarrow \exists x \in X$ 为不动点 $\Rightarrow 1_G \neq x \in Z(G)$ 。

评论. 对 $n \geq 3$, $Z(S_n) = \{1_G\}$ 。

设 $H \le G$,记 $c_H = \{gHg^{-1} \mid g \in G\}$ 为 H 的共轭子群,这里 $gHg^{-1} \le G$ 。则有可迁作用:

$$G \times c_H \to c_H,$$

 $(g, H_1) \mapsto g \cdot H_1 := gH_1g^{-1}.$

定义 2.4. H 在 G 的共轭作用下的稳定子群

$$N_G(H) = G_H = \{ g \in G \mid gHg^{-1} = H \}$$

称为 H 在 G 中的正规化子 (Normalizer)。

显然
$$H \leq N_G(H), |c_H| = |G|/|N_G(H)|$$
。

于是 $G \circlearrowleft c_H$ 诱导了 $\rho: G \to S(c_H)$, 进而

$$\operatorname{Ker} \rho = \bigcap_{g \in G} N_G(gHg^{-1}) = \bigcap_{g \in G} gN_G(H)g^{-1}$$

称为共轭作用的核。

例 2.7. 设 |G| = n, p 为 n 的最小的素因子, 那么 $[G:H] = p \Rightarrow H \triangleleft G$ 。

特别地,若 [G:H]=2,则 $H \triangleleft G$ 。

值得一提的是 $H \triangleleft N_G(H)$ 是 G 中包含 H,且 H 在其中正规的最大子群。

证明. 我们考虑群作用:

$$G \times G/H \to G/H$$
,
 $(q, xH) \mapsto qxH$.

其对应的表示为 $\rho: G \to S(G/H) = S_p$ 。那么 $\operatorname{Ker} \rho = \bigcap_g G_{gH} = \bigcap_{g \in G} gHg^{-1} \leq H$,我们熟知 $\operatorname{Ker} \rho \triangleleft G$,那么我们试图证明 $\operatorname{Ker} \rho = H$ 。

注意到 $|\mathrm{Im}\rho| = \frac{|G|}{|\mathrm{Ker}\rho|}, \frac{|G|}{|\mathrm{Ker}\rho|} = \frac{|G|}{|H|} \frac{|H|}{|\mathrm{Ker}\rho|} = p \frac{|H|}{|\mathrm{Ker}\rho|} \Rightarrow p \mid |\mathrm{Im}\rho|$ 。而另一方面 $\mathrm{Im}\rho \leq S_p \Rightarrow |\mathrm{Im}\rho| \leq p!$ 。由于 p 为 n 的最小素因子,故 $|\mathrm{Im}\rho|$ 的最小素因子亦为 p,从而不可能有比 p 小的因子,故 $|\mathrm{Im}\rho| \mid p! \Rightarrow |\mathrm{Im}\rho| = p$ 。从而 $|\mathrm{Ker}\rho| = |H| \Rightarrow \mathrm{Ker}\rho = H$ 。

3 Sylow 定理

我们熟知 $H \leq G \Rightarrow |H| \mid |G|$,那么我们自然要问,对于 $d \mid |G|$,是否存在子群 H 使得 |H| = d?

我们不妨考虑简单一些的情况,例如p素, $p \mid |G|$,此时有下面的结果:

定理 3.1. Cauchy: $p \to |G|$ 素因子,则 G 中存在 p 阶元。

证明. 我们考虑集合

$$S = \{(x_1, x_2, \dots, x_n) \mid x_1 x_2 \dots x_n = 1\} \subset G^p.$$

由于 |G|=n, $x_p=x_{p-1}^{-1}\cdots x_1^{-1}$ 完全由前 p-1 个分量决定,故 $|S|=n^{p-1}$ 。显然 $p\mid |S|=n^{p-1}$ 。

于是我们考虑 $\mathbb{Z}/p\mathbb{Z}$ 在 S 上的作用,这里设 g 是 $\mathbb{Z}/p\mathbb{Z}$ 的生成元,令 $g\cdot(x_1,x_2,\cdots,x_p)=(x_2,\cdots,x_p,x_1)$ 。 那么 X 中的轨道的轨道长度为 1 或 p。 若轨道长度为 1,则该元素必然为 (x,x,\cdots,x) ,从而 $x^p=1$ 。注意到 x=e 为一个不满足要求的解。那么我们将 X 分解为轨道的不交并,由于 $p\mid |X|$,那么 $|X|\equiv 0 \mod p$,这其中自动略去轨道长度为 p 的轨道,于是得到若干轨道长度 1 的轨道,而 x=e 为其中一个轨道,故至少有 p-1 个其它非平凡的 x 使得 $x^p=1$ 。

定义 3.1. $n = |G| = p^r \cdot m$, (p, m) = 1, $H \le G$, 若 $|H| = p^k$, $1 \le k \le r$ 。则称 H 为一个 p- 子群。

若 $|H| = p^r$,则称 H 为一个 **Sylow** p- **子群**。

我们的目标在于证明 Sylow p— 子群存在,从而任一 p^k 阶子群存在。

- (1) G 存在 Sylow p- 子群。
- (2) 任一 Sylow p— 子群 P,以及任一个子群 Q,则存在 $g \in G$,使得 $Q \leq gPg^{-1}$ 。
- (3) 记 Sylow p— 子群的个数为 N(p), 则 $N(p) \equiv 1 \mod p$, $N(p) \mid |G|$ 。

证明. (1) 设对阶 < n 的群, Sylow p- 子群存在。

$$|G| = |Z(G)| + \sum_{i=1}^{\alpha} [G : Z_G(g_i)],$$

其中 g_1, \dots, g_α 为长度 ≥ 2 的共轭类代表元系。

- (a) 若 $p \mid |Z(G)|$,则存在 p 阶元 g,从而 $\langle g \rangle \leq Z(G)$, $|\langle g \rangle| = p$ 。且 $\langle g \rangle \triangleleft G \Rightarrow$ $|G/N| = p^{r-1}m$,那么存在其 Sylow p— 子群为 $|H/N| = p^{r-1}$,于是 $|H| = p^r$,H 为 G 的 Sylow p— 子群。
- (b) 若 (p, |Z(G)|) = 1,则 $\exists i$,($[G: Z_G(g_i)], p$) $= 1 \Rightarrow |Z_G(g_i)| = p^r m'$,那么 $Z_G(g_i)$ 由 Sylow p- 子群 P,进而也为 G 的 Sylow p- 子群。