

Homework VII due 1 April (not a joke)

- (1) Let $\Delta = \operatorname{conv}(\mathbf{u}_0, \dots, \mathbf{u}_d) \subset \mathbf{R}^d$ and $\Delta' = \operatorname{conv}(\mathbf{v}_0, \dots, \mathbf{v}_e) \subset \mathbf{R}^e$ be two simplices and let $P := \Delta \times \Delta'$ be their Cartesian product.
 - (a) We can identify the vertices of P with nodes of the square grid $\{0,\ldots,d\}\times\{0,\ldots,e\}$. A *lattice path* from (0,0) to (d,e) is a path on the grid that uses only unit steps \to and \uparrow . Show that any such path encodes a unique (d+e)-simplex contained in P.
 - (b) Show that the collection of all such simplices yields a triangulation of P.
- (2) Given a permutation $\tau \in S_d$ on d letters, let

$$\Delta_{\tau} := \left\{ \mathbf{x} \in \mathbf{R}^d : 0 \le x_{\tau(1)} \le x_{\tau(2)} \le \dots \le x_{\tau(d)} \le 1 \right\}.$$

Convince yourself that Δ_{τ} is a simplex, and prove that $\{\Delta_{\tau} : \tau \in S_d\}$ yields a triangulation of $[0,1]^d$.

- (3) Show that any subdivision of a polygon without new vertices is regular.
- (4) (The mother of all nonregular triangulations)
 - (a) Prove that the triangulation below (of a triangle, with three additional vertices) is not regular.
 - (b) Give an example of a nonregular subdivision of a polytope in every dimension ≥ 3 .

