Генеративные модели

Лекция 3: Модели со скрытыми переменными

Идея нормализующих потоков

Особенность потоков - наличие двух направлений:

• Нормализующее направление (для обучения) $x \to z$:

Берём реальный объект ${f x}$ и с помощью нормализующей функции ${f f}$ превращаем его в простой ${f z}$

• Генеративное направление $z \rightarrow x$:

Берём простой объект ${m z}$ и с помощью генеративной функции ${m g}={m f}^{-1}$ создаём объект ${m x}$

Теорема о замене переменных

Наша цель – найти распределение $p(\mathbf{x})$

Связать неизвестную плотность $p(\mathbf{x})$ с известной плотностью простого распределения $p(\mathbf{z})$ нам позволяет формула замены переменных:

$$p(\mathbf{x}) = p(\mathbf{z}) \left| \det \left(\mathbf{J}_f \right) \right| = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

Здесь $J_f(\mathbf{x})$ – матрица Якоби:

$$J_{f}(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{D}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{D}}{\partial x_{1}} & \cdots & \frac{\partial f_{D}}{\partial x_{D}} \end{pmatrix}$$

Композиция преобразований

- Одной функции f недостаточно, чтобы из $\mathcal{N}(0,1)$ получить сложное распределение наших данных
- Потоки используют последовательность из K простых и обратимых преобразований:

$$\mathbf{x} = \mathbf{z}_0 \stackrel{f_1}{\rightarrow} \mathbf{z}_1 \stackrel{f_2}{\rightarrow} \dots \stackrel{f_K}{\rightarrow} \mathbf{z}_K$$

• Во время обучения мы используем нормализующее направление ${f x} o {f z}$:

Композиция преобразований

• Генеративное направление $z \to x$ используется для создания новых объектов:

$$\mathbf{z}_0 \stackrel{g_1}{\rightarrow} \mathbf{z}_1 \stackrel{g_2}{\rightarrow} \dots \stackrel{g_K}{\rightarrow} \mathbf{z}_K = \mathbf{x}$$

Композиция преобразований

Нужно найти определитель якобиана всей композиции

Два математических факта:

• Матрица Якоби для композиций функций равна их произведению:

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \frac{\partial \mathbf{f}_K}{\partial \mathbf{z}_{K-1}} \cdot \frac{\partial \mathbf{f}_{K-1}}{\partial \mathbf{z}_{K-2}} \cdot \dots \cdot \frac{\partial \mathbf{f}_1}{\partial \mathbf{z}_0}$$

• Определитель произведения матриц равен произведению определителей:

$$\det(J_f) = \det(J_{f_K}) \cdot \det(J_{f_{K-1}}) \cdot \dots \cdot \det(J_{f_1})$$

Будем считать определители для каждого шага f_k и перемножать их:

$$\det\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right) = \prod_{k=1}^{K} \det\left(\frac{\partial \mathbf{f}_{k}}{\partial \mathbf{z}_{k-1}}\right)$$

Обучение нормализующих потоков

Чтобы сделать эту композицию обучаемой, представим $oldsymbol{f}_k$ как нейросеть с параметрами $oldsymbol{ heta}$

Плотность, которую моделирует наша модель:

$$p_{\theta}(\mathbf{x}) = p(f_{\theta}(\mathbf{x})) \left| \det \left(\frac{\partial f_{\theta}}{\partial \mathbf{x}} \right) \right| = p(\mathbf{z}_{K}) \left| \prod_{k=1}^{K} \det \left(\frac{\partial f_{k,\theta}}{\partial \mathbf{z}_{k-1}} \right) \right|$$

 \mathbf{z}_K — финальный вектор в латентном пространстве

Максимизируем правдоподобие:

$$\log p_{\theta}(\mathbf{x}) = \log p(\mathbf{z}_K) + \sum_{k=1}^K \log \left| \det \left(\frac{\partial f_{k,\theta}}{\partial \mathbf{z}_{k-1}} \right) \right|$$

- \circ $\log p(\mathbf{z}_K)$ отвечает за то, чтобы выход потока соответствовал базовому распределению
- \circ $\sum_{k=1}^K \log \left| \det \left(\frac{\partial f_{k,\theta}}{\partial z_{k-1}} \right) \right|$ отслеживает суммарное изменение объема после всех преобразований

План

о Модели со скрытыми переменными

о ЕМ алгоритм

о Вариационный вывод

Модели со скрытыми переменными

Проблема высокой размерности

Ищем etha, которые максимизируют правдоподобие:

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n \log p_{\theta}(\mathbf{x}_i)$$

Объекты в реальном мире - многомерные случайные величины

Прямое моделирование $p_{\boldsymbol{\theta}}(\mathbf{x}) = p_{\boldsymbol{\theta}}(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_D)$ – сложная задача из-за проклятия размерности

THE BIG SLEEP

by Raymond Chandler

It was about eleven o'clock in the morning, mid October, with the sun not shining and a look of hard wet rain in the clearness of the foothills. I was wearing my powder-blue suit, with dark blue shirt, tie and display handkerchief, black brogues, black wool socks with dark blue clocks on them. I was neat, clean, shaved and sober, and I didn't care who knew it. I was everything the well-dressed private detective ought to be. I was calling on four million dollars.

The main hallway of the Sternwood place was two stories high. Over the entrance doors, which would have let in a troop of Indian elephants, there

Модели со скрытыми переменными

Предположим, что помимо наблюдаемой переменной ${\bf x}$ в нашей задаче есть некоторая скрытая переменная ${\bf z}$, которая влияет на ${\bf x}$

Мы не можем измерить ее напрямую, но знаем, что она есть

Мы можем записать совместную плотность и разложить ее на условную и априорную:

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \cdot p(\mathbf{z}|\boldsymbol{\theta})$$

 $p(\mathbf{z}|\boldsymbol{\theta})$ — априорное распределение на скрытых переменных $p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})$ — условное распределение наблюдаемых данных

Проинтегрируем по всем **z**, чтобы найти правдоподобие:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \cdot p(\mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

Модели со скрытыми переменными

Наша цель – по-прежнему максимизация правдоподобия:

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p_{\boldsymbol{\theta}}(\mathbf{x}_i) \qquad \rightarrow \qquad \boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i | \mathbf{z}_i, \boldsymbol{\theta}) \cdot p(\mathbf{z}_i | \boldsymbol{\theta}) \, d\mathbf{z}_i$$

Мы заменили одно сложное распределение $p(\mathbf{x}|\boldsymbol{\theta})$ на интеграл от двух более простых:

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) \cdot p(\mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} \rightarrow max$$

Выбирая подходящие распределения для $p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})$ и $p(\mathbf{z}|\boldsymbol{\theta})$, мы можем либо получить аналитическое решение для $\boldsymbol{\theta}^*$, либо использовать методы оптимизации

Gaussian Mixture Models

- о Реальные данные редко описываются одним простым распределением
- о Мы можем представить сложное распределение как взвешенную сумму (смесь) более простых распределений

Самый популярный представитель – модели гауссовских смесей (Gaussian Mixture Models)

- \circ Сначала случайно берём одну из K компонент
- \circ Затем семплируем вектор \mathbf{x} из выбранного распределения $\mathcal{N}(\pmb{\mu}_k,\pmb{\Sigma}_k)$
- о Номер компоненты, из которой пришел вектор, является скрытой переменной **z** (мы её не наблюдаем)

Gaussian Mixture Models

Скрытая переменная z — это бинарный вектор $z = \{0,1\}^K$, где z_k означает принадлежность к k-ой компоненте

Априорная вероятность $p(\mathbf{z}|\boldsymbol{\theta})$ задается весами смеси π_k , при этом:

$$\sum_{k=1}^{K} \pi_k = 1$$

Если точка пришла из k-ой компоненты, то ее вероятность описывается гауссианой:

$$p(\mathbf{x}|\mathbf{z}_k = 1, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Итоговое правдоподобие:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{k=1}^{K} p(\mathbf{z}_k = 1|\boldsymbol{\theta}) \cdot p(\mathbf{x}|\mathbf{z}_k = 1, \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

MLE для моделей со скрытыми переменными

Нужно вычислить сложный интеграл:

$$\sum_{i=1}^{n} \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \sum_{i=1}^{n} \log \int p(\mathbf{x}_i|\mathbf{z}_i,\boldsymbol{\theta}) \cdot p(\mathbf{z}_i) d\mathbf{z}_i$$

Попробуем оценить этот интеграл методом Монте-Карло:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\boldsymbol{z},\boldsymbol{\theta}) \cdot p(\boldsymbol{z}) \, d\boldsymbol{z} = \mathbb{E}_{p(\boldsymbol{z})}[p(\mathbf{x}|\boldsymbol{z},\boldsymbol{\theta})] \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\boldsymbol{z}_k,\boldsymbol{\theta})$$

MLE для моделей со скрытыми переменными

 \circ Большинство сэмплов \mathbf{z}_k попадут в «бесполезные» области и декодер сгенерирует шум

Наше априорное распределение $p(\mathbf{z})$ ничего не знает об изображениях \mathbf{x}

В многомерном пространстве объем «пустого» пространства огромен по сравнению с объемом полезной области

Чтобы получить надежную оценку интеграла, нам понадобиться экспоненциально большое число сэмплов K

Модели со скрытыми переменными

В моделях со скрытыми переменными наша цель – максимизировать логарифм правдоподобия $\log p\left(\pmb{X} | \pmb{\theta} \right)$

Из-за наличия скрытых переменных правдоподобие выражается через интеграл (сумму)

$$p(\boldsymbol{X}|\boldsymbol{\theta}) = \int p(\boldsymbol{X}, \boldsymbol{Z}|\boldsymbol{\theta}) d\boldsymbol{Z}$$

Итоговая функция, которую мы максимизируем, содержит интеграл внутри логарифма:

$$\log p\left(X|\boldsymbol{\theta}\right) = \log \int p(X, \boldsymbol{Z}|\boldsymbol{\theta}) d\boldsymbol{Z} \rightarrow max$$

Наивная оценка не работает:

Попытка оценить эти интегралы методом Монте-Карло проваливается из-за проклятия размерности

Формула Байеса

Введем понятия:

X — наши реальные, неполные данные $\{X, Z\}$ — полные данные

Мы не знаем точные значения Z, но можем вычислить апостериорное распределение:

$$p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}) = \frac{p(\mathbf{X}|\mathbf{Z},\boldsymbol{\theta}) \cdot p(\mathbf{Z}|\boldsymbol{\theta})}{p(\mathbf{X}|\boldsymbol{\theta})}$$

- $p(Z|X,\theta)$ апостериорное распределение, вероятность того, что скрытые переменные приняли значение Z, после того как мы увидели данные X
- $p(X|Z,\theta)-$ **правдоподобие**, вероятность увидеть данные **X**, если скрытые переменные равны **Z**
- $p(Z|\theta)$ априорное распределение, насколько вероятны значения Z до наблюдений
- $p(X|\theta)$ обоснованность (evidence) вероятность увидеть данные X

- \circ Пусть у нас есть уже есть некоторая оценка параметров $oldsymbol{ heta}_{old}$
- о Будем итеративно выполнять 2 шага

E-war (Expectation):

Используя текущие значения $\boldsymbol{\theta}_{old}$, находим апостериорное распределение $p(\boldsymbol{Z}|\boldsymbol{X},\boldsymbol{\theta}_{old})$ и вычисляем матожидание логарифма правдоподобия для полных данных $\{\boldsymbol{X},\boldsymbol{Z}\}$:

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}_{old}) = \int p(\boldsymbol{Z}|\boldsymbol{X}, \boldsymbol{\theta}_{old}) \cdot \log p(\boldsymbol{X}, \boldsymbol{Z}|\boldsymbol{\theta}) d\boldsymbol{Z}$$

M-war (*Maximization*):

Обновляем оценку параметров θ , новые значения выбираются таким образом, чтобы максимизировать $Q(\theta, \theta_{old})$:

$$\boldsymbol{\theta}_{new} = \underset{\boldsymbol{\theta}}{\operatorname{arg}} \max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}_{old})$$

Чтобы вычислить знаменатель $p(X|\theta)$ в формуле для апостериорного распределения, нам нужно взять интеграл:

$$p(X|\boldsymbol{\theta}) = \int p(X, Z|\boldsymbol{\theta}) dZ$$

В случае *GMM* мы можем получить аналитическое решение:

$$p(X|\boldsymbol{\theta}) = \sum_{k=1}^{K} p(\boldsymbol{Z} = k|\boldsymbol{\theta}) \cdot p(X|\boldsymbol{Z} = k, \boldsymbol{\theta})$$

ЕМ алгоритм прекрасен, но для более сложных моделей вычислить истинное апостериорное распределение $p(\pmb{Z}|\pmb{X},\pmb{\theta}_{old})$ на \pmb{E} -шаге аналитически невозможно

- \circ Будем аппроксимировать распределение $p(\pmb{Z}|\pmb{X},\pmb{ heta}_{old})$
- о В этом и состоит идея вариационного вывода (Variational Inference)

Вариационный вывод

Вариационный вывод

Наша цель — оценить $\log p(\mathbf{x}|\boldsymbol{\theta})$:

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

Введем вспомогательное распределение $q(\mathbf{z})$ – произвольную плотность над скрытыми переменными \mathbf{z}

Идея:

Мы не знаем $\log p(\mathbf{x}|\boldsymbol{\theta})$, но можем попытаться построить для него некую **нижнюю границу** (*lower bound*), которую будем оптимизировать

Вывод *ELBO* (1)

Умножим и разделим выражение для $\log p(\mathbf{x}|\boldsymbol{\theta})$ на $q(\boldsymbol{z})$:

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \log \int \frac{q(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} =$$

$$\log \mathbb{E}_q \left[\frac{p(\mathbf{x}, \mathbf{z} | \boldsymbol{\theta})}{q(\mathbf{z})} \right] \ge \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z} | \boldsymbol{\theta})}{q(\mathbf{z})} = \mathcal{L}_{q, \boldsymbol{\theta}}(\mathbf{x})$$

Неравенство Йенсена:

$$\log \mathbb{E}[X] \ge \mathbb{E}[\log X]$$

Мы получили вариационную нижнюю оценку (Evidence Lower Bound, ELBO), которая утверждает, что для любого $q(\mathbf{z})$:

$$\log p\left(\mathbf{x}|\boldsymbol{\theta}\right) \geq \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x})$$

Вывод *ELBO* (1)

 $q(\mathbf{z})$ будем называть вариационным распределением

Насколько далеко наша нижняя граница $\mathcal{L}_{q,\theta}(\mathbf{x})$ находится от истинного значения $\log p(\mathbf{x}|\boldsymbol{\theta})$?

Вывод *ELBO* (2)

Перепишем выражение для *ELBO*:

$$\mathcal{L}_{q,\theta}(\mathbf{x}) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta) \cdot p(\mathbf{x}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$\int q(\mathbf{z}) \log p(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}{q(\mathbf{z})} d\mathbf{z} = \log p(\mathbf{x}|\boldsymbol{\theta}) \int q(\mathbf{z}) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}{q(\mathbf{z})} d\mathbf{z} =$$

$$\log p(\mathbf{x}|\boldsymbol{\theta}) + \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}{q(\mathbf{z})} d\mathbf{z} = \log p(\mathbf{x}|\boldsymbol{\theta}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}))$$

Вывод *ELBO* (2)

Зазор между $\log p(\mathbf{x}|\boldsymbol{\theta})$ и $\mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x})$ равен KL -дивергенции между вариационным распределением $q(\mathbf{z})$ и истинным апостериорным распределением $p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})$:

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x}) = KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}))$$

Вывод *ELBO* (2)

Получим ещё одно выражение для **ELBO**, используя разложение $p(\mathbf{x}, \mathbf{z} | \boldsymbol{\theta}) = p(\mathbf{x} | \mathbf{z}, \boldsymbol{\theta}) \cdot p(\mathbf{z})$

$$\mathcal{L}_{q,\theta}(\mathbf{x}) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}$$

$$\mathbb{E}_{q}[\log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})] - \underline{KL(q(\mathbf{z})||p(\mathbf{z}))}$$

Reconstruction loss Regularization loss

Итоговое правдоподобие:

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})) =$$

 $\mathbb{E}_{q}[\log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})] - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}))$

Выводы

Вместо прямой максимизации правдоподобия $\log p(\mathbf{x}|\boldsymbol{\theta})$ будем максимизировать его нижнюю границу $\mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x})$ по параметрам вариационного распределения q и параметрам модели $\boldsymbol{\theta}$:

$$\max_{q,\boldsymbol{\theta}} \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x})$$

Максимизируя $\mathcal{L}_{q,\theta}(\mathbf{x})$, мы одновременно стараемся сделать 2 вещи:

- 1. Увеличить правдоподобие наблюдаемых данных
- 2. Уменьшить зазор $KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}))$, аппроксимируя $p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})$ с помощью $q(\mathbf{z})$

Мы получили следующее выражение:

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}))$$

- о EM алгоритм можно интерпретировать как метод координатного подъёма (coordinate ascent) по ELBO
- \circ Он итеративно оптимизирует $\mathcal{L}_{q, m{ heta}}(\mathbf{x})$, поочерёдно фиксируя либо параметры вариационного распределения $q(\mathbf{z})$, либо параметры модели $m{ heta}$

Е — шаг

Е-шаг:

 \circ Фиксируем $m{ heta}_{old}$ и ищем оптимальное $q(m{z})$, которое максимизирует $\mathcal{L}_{q,m{ heta}_{old}}(m{x})$

- \circ $\log p\left(\mathbf{x}|m{ heta}
 ight)$ не зависит от $q(\mathbf{z})$, поэтому $\mathcal{L}_{q,m{ heta}_{old}}(\mathbf{x})$ максимальна, когда $\mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},m{ heta}))=0$
- \circ Наилучший выбор для $q(\mathbf{z})$ это апостериорное распределение $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})$

М — шаг

М-шаг:

 \circ Фиксируем найденное распределение $q(\mathbf{z})$ и пытаемся увеличить $\mathcal{L}_{q,m{ heta}_{old}}(\mathbf{x})$

- \circ Увеличение нижней границы гарантирует $\mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x})$ увеличение $\log p\left(\mathbf{x}|\boldsymbol{\theta}\right)$ (если мы не в максимуме)
- \circ Распределение $q(\mathbf{z})$ было определено на основе старых параметров $\boldsymbol{\theta}_{old}$, поэтому оно не равно апостериорному распределению $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{new})$

- о Работу ЕМ-алгоритма можно рассмотреть в пространстве параметров
- \circ На Е-шаге мы строим нижнюю границу $\mathcal{L}_{q,m{ heta}_{old}}(\mathbf{x})$, которая касается $\log p\left(\mathbf{x}|m{ heta}
 ight)$ в точке $m{ heta}_{old}$
- \circ На М-шаге ищем максимум этой нижней границы (точка $m{ heta}_{new}$), что приводит к большему значению $\log p\left(\mathbf{x}|m{ heta}_{new}\right)$

Спасибо за внимание!