는 뒤로 Special Applications: Face Recognition & Neural Style Transfer 반호 년호월 4월으로 11:59 KST 방문 변호 연호 설월으로 11:59 KST 방문 방문 방문 장무리는 50 min

◎ 축하합니다! 통과하셨습니다!

받은 학점 90% **최신 제출물 학점** 90% **통과 점수**: 80% 이상

다음 항목으로 이동

You train a Convivet on a dataset with cats, dogs, birds, and other types of animals. You try to find a filter that strongly responds to horizontal edges. You are more likely to find this filter in tayer 6 of the network than in layer 1 Timus Falsa?

1/1정

	at thosp most	
	False	
	○ True	
	√ □ 보기	
	⊘ 멎습니다	
	Correct. Edges are a very low-level feature, thus it is more likely to find such a feature detector in the first layers of the network.	
7.	In neural style transfer, we train the pixels of an image, and not the parameters of a network.	1/1점
	○ False	
	True	
	✓ 터보기	
	 契查니다 Correct. Neural style transfer compares the high-level features of two images and modifies the pixels of 	
	one of them in order to look artistic.	
g	In neural style transfer, we define style as:	1/1점
٥.		1/16
	The correlation between the activation of the content image C and the style image S . The correlation between the generated image G and the style image S .	
	$\left(\left\ a^{[l](S)} - a^{[l](G)} ight\ ^2$ the distance between the activation of the style image and the content	
	image. (iii) The correlation between activations across channels of an image.	
	्र वश्रम	
	· 맞습니다	
9.	· 맞습니다	1/18
9.	\bigcirc \Re û-LiQ Correct, this correlation is represented by $G_{kk'}^{[0](I)}$ for the image I .	1/12
9.	ି ଅନ୍ତଧ୍ୟ Correct, this correlation is represented by $G_{kk'}^{[li](I)}$ for the image I . In neural style transfer, we can't use gradient descent since there are no trainable parameters. True/False?	1/1정
9.	\bigcirc \Re û-LiQ Correct, this correlation is represented by $G_{kk'}^{[0](I)}$ for the image I .	1/18
9.	\bigcirc % \bigcirc 4LT Correct, this correlation is represented by $G_{kk'}^{(0)(I)}$ for the image I . \bigcirc In neural style transfer, we can't use gradient descent since there are no trainable parameters. True/False? \bigcirc True \bigcirc False	1/18
9.	\bigcirc % \bigcirc LLQ Correct, this correlation is represented by $G_{kk'}^{[ll](I)}$ for the image I . in neural style transfer, we can't use gradient descent since there are no trainable parameters. True/False? \bigcirc True \bigcirc False	1/18
9.	③ % $@$ LFQ Correct, this correlation is represented by $G_{kk'}^{[ll](I)}$ for the image I . In neural style transfer, we can't use gradient descent since there are no trainable parameters. True, False? \bigcirc True \bigcirc False \checkmark CI M27 \bigcirc % \bigcirc ALFQ Correct. We use gradient descent on the cost function $J(G)$ and we update the pixel values of the	1/18
9.	\bigcirc % \bigcirc 44 LQ Correct, this correlation is represented by $G_{bb}^{(0,I)}$ for the image I . In neural style transfer, we can't use gradient descent since there are no trainable parameters. True/False? \bigcirc True \bigcirc False \checkmark CI \bigcirc YQ	1/1後
	③ % $@$ LFQ Correct, this correlation is represented by $G_{kk'}^{[ll](I)}$ for the image I . In neural style transfer, we can't use gradient descent since there are no trainable parameters. True, False? \bigcirc True \bigcirc False \checkmark CI M27 \bigcirc % \bigcirc ALFQ Correct. We use gradient descent on the cost function $J(G)$ and we update the pixel values of the	1/18
	☑ YOUTO State Correct, this correlation is represented by $G_{kk'}^{[li](I)}$ for the image I . In neural style transfer, we can't use gradient descent since there are no trainable parameters. True/False? True ⑤ False ✓ YOUTO WOUTO Value Correct. We use gradient descent on the cost function $J(G)$ and we update the pixel values of the generated image G . Value are working with 3D data. You are building a network layer whose input volume has size 32x32x32x16 (this volume has 16 channels), and applies convolutions with 32 filters of dimension 3x3x16 (no padding, stride 1). What is the resulting output volume? ⑤ 30x30x30x12 Undefined: This convolution step is impossible and cannot be performed because the dimensions specified don't match up. 30x30x30x16	
	☑ YOUTO State Correct, this correlation is represented by $G_{kk'}^{[li](I)}$ for the image I . In neural style transfer, we can't use gradient descent since there are no trainable parameters. True/False? True ⑤ False ✓ YOUTO WOUTO Value Correct. We use gradient descent on the cost function $J(G)$ and we update the pixel values of the generated image G . Value are working with 3D data. You are building a network layer whose input volume has size 32x32x32x16 (this volume has 16 channels), and applies convolutions with 32 filters of dimension 3x3x16 (no padding, stride 1). What is the resulting output volume? ⑤ 30x30x30x12 Undefined: This convolution step is impossible and cannot be performed because the dimensions specified don't match up. 30x30x30x16	