A RELIABILITY-AWARE DISTRIBUTED FRAMEWORK TO SCHEDULE RESIDENTIAL CHARGING OF ELECTRIC VEHICLES

Rounak Meyur, Swapna Thorve, Madhav Marathe, Anil Vullikanti, Samarth Swarup and Henning Mortveit

Motivation

- Residential charging of electric vehicles (EVs) alters the average residential demand profile to a significant extent.
- Distribution system reliability requirements
 - node voltages within limits (0.95p.u. 1.05p.u.)
 - line power flows less than line capacities.
- Challenge for the distribution system operator (DSO): Find the best schedule for residential EV charging, which
 - accommodates consumer personal preferences,
 - maintains network reliability, and
 - respects consumer privacy.

Figure 1. Altered load profile with EV charging

Figure 2. Under-voltage when EVs are charged simultaneously

Residential EV Charge Scheduling (REVS) Problem

Approaches

Figure 3. Individual approach

Individual approach

- o No information exchange.
- Each consumer solves own problem.
- Suboptimal or infeasible solution for DSO.

Figure 4. Centralized approach

Centralized approach

- Consumers share information with DSO.
- Optimal solution guaranteed for consumers and DSO.

Proposed Distributed Approach

Figure 6. Proposed distributed framework to schedule residential EV charging

Figure 5. Distributed approach

Distributed approach

- Consumers and DSO solve own problem.
- Optimal solutions are exchanged to reach consensus.
- Sub-optimal solution for consumers and DSO.

Experiment Setup

Time Interval (HH:MM)	Tariff (\$/kWh)
00:00 - 05:00	0.07866
05:00 – 15:00	0.09511
15:00 – 18:00	0.21436
18:00 – 00:00	0.09511

Table 1. Electricity tariff

Figure 7. Synthetic distribution network

Results

Figure 8. Line loading levels and node voltages for residential EV charging with 90% adoption

Figure 9. Comparison of distributed and individual approaches of EV charging for different EV adoption in the distribution network

Concluding Remarks

- Distributed approach
 can accommodate high
 levels of residential EV
 charging without
 compromising on
 network reliability and
 consumer privacy.
- Upgrade in coordinating approaches is more beneficial than upgrading infrastructure

References

- 1.S. Boyd et al., Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn.,3(1):1–122, Jan 2011.
- 2.R. Meyur et al., "A Reliability-aware Distributed Framework to Schedule Residential Charging of Electric Vehicles," International Joint Conference on Artificial Intelligence (IJCAI): Special Track on Al for Good, Vienna, Austria, July 2022.
- 3.R. Meyur et al., "Ensembles of Realistic Power Distribution Networks," Proceedings of National Academy of Sciences (PNAS), Vol. 119, No. 42, 2022.