Grafos - Definições Iniciais Teoria dos Grafos — QXD0152

Universidade Federal do Ceará

CAMPUS QUIXADÁ

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

Tópicos desta aula

- Grafos como modelos
- Origem da Teoria dos Grafos
- Grafos Conceitos básicos
- Famílias de grafos clássicas
- Representação de grafos
- Grau dos vértices de um grafo
- Grafos regulares

Grafos como modelos

O que é um grafo?

• 1ª Tentativa de definição: "Um grafo é um conjunto finito de pontos, chamados vértices, conectados por linhas, chamadas arestas"

- Outra tentativa: abstração que permite codificar relacionamentos entre pares de objetos
 - Objetos: pessoas, cidades, empresas, países, páginas web, filmes, etc.
 - Objetos ⇐⇒ Vértices do grafo
 - o Relacionamentos: amizade, conectividade, idioma, similaridade, etc.
 - Relacionamentos
 ⇔ Arestas do grafo

Exemplo de grafo - Malha metroviária

Exemplo de grafo - Fluxo de passageiros entre os principais aeroportos do Brasil (2001)

Fluxos de passageiros

Viagem Entre cidades

- Problema 1: Como saber se duas cidades estão conectadas por estradas?
- Problema 2: Qual é o menor (melhor) caminho entre duas cidades?

Como eles fazem isso?

- Como abstrair o problema via grafos?
 - o Grafo com arestas ponderadas.

Origem da Teoria dos Grafos

Origem da Teoria dos Grafos

As sete pontes de Konigsberg (1736)

Leonhard Euler

- Na cidade de Konigsberg, Alemanha, um rio passava pela cidade e a dividia em quatro partes. Para interligar estas partes, haviam sete pontes.
- Os cidadãos de Konigsberg se perguntavam: é possível partir de um ponto da cidade, caminhar por todas as pontes sem repetí-las e voltar ao ponto de onde começamos?

As sete pontes de Konigsberg

- Para mostrar que era impossível responder que sim ao problema, Euler criou e usou um modelo do mapa, que hoje chamamos de grafo.
- Esta é a primeira aparição documentada deste conceito matemático.

 Veremos uma generalização deste problema e sua solução formal no decorrer do curso.

Grafos — Conceitos básicos

Grafos

• Um grafo G é um par ordenado (V(G), E(G)) formado por um conjunto finito e não vazio V(G), chamado conjunto de vértices, e por um conjunto finito E(G), disjunto de V(G), chamado conjunto de arestas, junto com uma função de incidência ψ_G que associa a cada elemento $e \in E(G)$ um par não ordenado de vértices de G (não necessariamente distintos).

Grafos

- Um grafo G é um par ordenado (V(G), E(G)) formado por um conjunto finito e não vazio V(G), chamado conjunto de vértices, e por um conjunto finito E(G), disjunto de V(G), chamado conjunto de arestas, junto com uma função de incidência ψ_G que associa a cada elemento $e \in E(G)$ um par não ordenado de vértices de G (não necessariamente distintos).
- Exemplo: grafo G = (V(G), E(G)) tal que:

$$\circ V(G) = \{v_1, v_2, v_3, v_4\}$$

$$\circ$$
 $E(G) = \{e_1, e_2, e_3, e_4, e_5\}$

$$\phi \ \psi_G(e_1) = \psi_G(e_2) = v_3 v_4$$

$$\circ \ \psi_G(e_3) = v_1 v_3$$

$$\circ \ \psi_G(e_4) = v_1 v_2$$

$$\circ \ \psi_G(e_5) = v_1 v_1$$

Grafos

- Um grafo G é um par ordenado (V(G), E(G)) formado por um conjunto finito e não vazio V(G), chamado conjunto de vértices, e por um conjunto finito E(G), disjunto de V(G), chamado conjunto de arestas, junto com uma função de incidência ψ_G que associa a cada elemento $e \in E(G)$ um par não ordenado de vértices de G (não necessariamente distintos).
- Exemplo: grafo G = (V(G), E(G)) tal que:

$$\circ V(G) = \{v_1, v_2, v_3, v_4\}$$

$$\circ$$
 $E(G) = \{e_1, e_2, e_3, e_4, e_5\}$

$$\phi \ \psi_G(e_1) = \psi_G(e_2) = v_3 v_4$$

$$\circ \ \psi_G(e_3) = v_1 v_3$$

$$\phi \psi_G(e_4) = v_1 v_2$$

$$\circ \ \psi_G(e_5) = v_1 v_1$$

Grafos como diagramas

• Um mesmo grafo pode ter vários desenhos no plano.

Definições

- Se e é uma aresta e u, v são vértices tais que $\psi(e) = \{u, v\}$, então dizemos que e liga u e v. Os vértices u e v são ditos extremos de e.
- Dizemos que uma aresta incide em seus extremos e vice-versa.
- Dois vértices que incidem na mesma aresta são ditos adjacentes, assim como duas arestas que incidem em um mesmo vértice.
- Dois vértices distintos e adjacentes são chamados de vizinhos.
 - O conjunto dos vizinhos de um vértice $v \in V(G)$ é denotado por $N_G(v)$.

Figura: Um grafo H com 4 vértices.

Definições

- Uma aresta que possui extremos idênticos é chamada de laço, e uma aresta com extremos distintos é chamada de link.
- Dois ou mais links que possuem o mesmo par de extremos são chamados de arestas múltiplas ou arestas paralelas.

Figura: Um grafo com arestas múltiplas e com um laço.

Grafo Simples

• Um grafo simples é um grafo que não possui laços nem arestas múltiplas.

$$V(G) = \{v_1, v_2, v_3, v_4\}$$

$$E(G) = \{e_1, e_2, e_3\}$$

$$\psi(e_1) = v_3 v_4$$

$$\psi(e_2) = v_1 v_3$$

 $\circ \ \psi(e_3) = v_1 v_2$

Grafo Simples

• O conjunto de vértices V(G) juntamente com o conjunto de arestas E(G) formado pelos subconjuntos de dois elementos de V(G), definem um grafo simples G = (V(G), E(G)).

Grafo Simples

• O conjunto de vértices V(G) juntamente com o conjunto de arestas E(G) formado pelos subconjuntos de dois elementos de V(G), definem um grafo simples G = (V(G), E(G)).

- Observação: De fato, em qualquer grafo simples, podemos dispensar a função de incidência ψ , renomeando cada aresta com os seus extremos.
 - No desenho de um grafo simples o nome das arestas podem ser omitidos.

Grafo direcionado

• **Definição:** Um grafo direcionado D é um objeto matemático que consiste em um conjunto finito e não vazio V(D) de objetos chamados vértices e um conjunto E(D) de arcos, junto com uma função de incidência ψ_D que associa a cada arco de D um par ordenado de vértices de D (não necessariamente distintos).

$$D = (V(D), E(D))$$

- $V(D) = \{1, 2, 3, 4, 5\}, E(D) = \{e_1, e_2, e_3, e_4, e_4, e_5, e_6\}$
- $\psi(e_1) = (q_1, q_1), \psi(e_2) = (q_1, q_2), \psi(e_3) = (q_3, q_2), \psi(e_4) = (q_3, q_2), \psi(e_5) = (q_2, q_4), \psi(e_6) = (q_4, q_4)$

Grafo direcionado

- Se e é um arco e $\psi(e) = (u, v)$, então dizemos que e liga u a v. Também dizemos que u domina v. O vértice u é a cauda e v é a cabeça do arco.
- Os vértices que dominam um vértice v são seus vizinhos de entrada. Esse conjunto é denotado por N_D(v).
 - Exemplo: $N_D^-(q_2) = \{q_1, q_3\}$
- Os vértices que são dominados por v são seus vizinhos de saída. Esse conjunto é denotado por N_D⁺(v).
 - Exemplo: $N_D^+(q_2) = \{q_4\}$

Famílias de grafos especiais

Grafo completo

- Um grafo completo é um grafo simples no qual quaisquer dois de seus vértices são adjacentes.
- Um grafo completo com n vértices é denotado por K_n .

Grafo vazio

• Grafo vazio é o grafo cujo conjunto de arestas é vazio, ou seja, $E(G) = \emptyset$.

Um grafo vazio G com seis vértices.

Grafo bipartido

- Um grafo é bipartido se o seu conjunto de vértices pode ser particionado em dois subconjuntos X e Y de modo que toda aresta tenha um extremo em X e o outro extremo em Y.
 - Tal partição (X, Y) é chamada uma bipartição do grafo, e X e Y são suas partes.
 - o Nós denotamos um grafo bipartido G com bipartição (X,Y) por G[X,Y].

• Um grafo bipartido completo é um grafo simples bipartido G[X, Y] tal que todo vértice em X é ligado a todo vértice em Y.

- Um grafo bipartido completo é um grafo simples bipartido G[X, Y] tal que todo vértice em X é ligado a todo vértice em Y.
- Um grafo bipartido completo G[X, Y] é geralmente denotado por $K_{p,q}$, tal que |X| = p e |Y| = q.

- Um grafo bipartido completo é um grafo simples bipartido G[X, Y] tal que todo vértice em X é ligado a todo vértice em Y.
- Um grafo bipartido completo G[X, Y] é geralmente denotado por $K_{p,q}$, tal que |X| = p e |Y| = q.

- Um grafo bipartido completo é um grafo simples bipartido G[X, Y] tal que todo vértice em X é ligado a todo vértice em Y.
- Um grafo bipartido completo G[X, Y] é geralmente denotado por $K_{p,q}$, tal que |X| = p e |Y| = q.

- Um grafo bipartido completo é um grafo simples bipartido G[X, Y] tal que todo vértice em X é ligado a todo vértice em Y.
- Um grafo bipartido completo G[X, Y] é geralmente denotado por $K_{p,q}$, tal que |X| = p e |Y| = q.

- Um grafo bipartido completo é um grafo simples bipartido G[X, Y] tal que todo vértice em X é ligado a todo vértice em Y.
- Um grafo bipartido completo G[X, Y] é geralmente denotado por $K_{p,q}$, tal que |X| = p e |Y| = q.

• Uma estrela é um grafo bipartido completo G[X, Y] com |X| = 1 ou |Y| = 1.

Caminhos

- Um caminho é um grafo simples cujos vértices podem ser dispostos em uma sequência linear de modo que dois vértices são adjacentes se e somente se eles são consecutivos na sequência.
- Um caminho com n vértices é denotado por P_n .

Ciclos

• Um ciclo com três ou mais vértices é um grafo simples cujos vértices podem ser dispostos em uma sequência cíclica de modo que dois vértices são adjacentes se e somente se eles são consecutivos na sequência.

Ciclos

- Um ciclo com três ou mais vértices é um grafo simples cujos vértices podem ser dispostos em uma sequência cíclica de modo que dois vértices são adjacentes se e somente se eles são consecutivos na sequência.
- Um ciclo com n vértices é denotado por C_n .

Ciclos

- Um ciclo com três ou mais vértices é um grafo simples cujos vértices podem ser dispostos em uma sequência cíclica de modo que dois vértices são adjacentes se e somente se eles são consecutivos na sequência.
- Um ciclo com n vértices é denotado por C_n .

Ciclos

- Um ciclo com três ou mais vértices é um grafo simples cujos vértices podem ser dispostos em uma sequência cíclica de modo que dois vértices são adjacentes se e somente se eles são consecutivos na sequência.
- Um ciclo com n vértices é denotado por C_n .

• O comprimento de um caminho ou ciclo é o seu número de arestas.

Rodas

 Uma roda com n vértices é o grafo simples obtido a partir de um ciclo com n - 1 vértices, ligando cada vértice do ciclo a um novo vértice w, e este grafo é denotado por W_n.

Figura: W_5

Figura: W₆

Grafo conexo

 Um grafo é conexo se, para toda partição do seu conjunto de vértices em dois conjuntos não vazios X e Y, existe uma aresta com um extremo em X e o outro extremo em Y. Caso contrário, o grafo é dito não conexo.

Um grafo conexo

Um grafo não conexo

Grafos com nomes especiais

Grafos platônicos

Representações de grafos

Matriz de incidência

• Seja G um grafo com n vértices e m arestas. A matriz de incidência de G é a matriz $M(G) = (m_{ve})$ de dimensão $n \times m$, tal que m_{ve} é o número de vezes (0, 1 ou 2) que o vértice v incide na aresta e.

Matriz de adjacência

• Seja G um grafo com n vértices. A matriz de adjacência de G é a matriz $A(G) = (a_{uv})$ de dimensão $n \times n$, tal que a_{uv} é o número de arestas ligando os vértices u e v, cada laço contando como duas arestas.

$$A(G) = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ v_1 & 2 & 1 & 0 & 1 & 0 \\ v_2 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ v_4 & v_5 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Listas de adjacências

• Para grafos simples ou grafos direcionados, uma representação ainda mais econômica são as listas de adjacências.

Matriz de adjacência bipartida

- Quando G é bipartido, como não há arestas ligando vértices na mesma parte da bipartição, podemos usar uma matriz de tamanho menor que a matriz de adjacência.
- Seja G[X, Y] um grafo bipartido tal que $X = \{x_1, x_2, \dots, x_r\}$ e $Y = \{y_1, y_2, \dots, y_s\}.$
- A matriz de adjacência bipartida de G é a matriz $B(G) = (b_{ij})$ de dimensão $r \times s$, tal que b_{ij} é o número de arestas ligando x_i a y_j .

$$B(G) = \begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ x_1 & 1 & 0 & 0 & 0 \\ x_2 & 1 & 1 & 0 & 0 \\ x_3 & 0 & 1 & 1 & 1 \\ x_4 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Graus dos vértices de um grafo

Parâmetros de um grafo

- Existem vários números associados a um grafo *G*, esses números são chamados parâmetros do grafo.
- Dois parâmetros já vistos são:
 - \circ a ordem n = |V(G)|.
 - \circ o tamanho m = |E(G)|.

Grau de um vértice

• O grau de um vértice v em um grafo G é o número de vezes que v é extremo de arestas.

Grau de um vértice

- O grau de um vértice v em um grafo G é o número de vezes que v é extremo de arestas.
- Esse parâmetro é denotado por $d_G(v)$, ou apenas d(v) quando G estiver subentendido pelo contexto.

Grau de um vértice

- O grau de um vértice v em um grafo G é o número de vezes que v é extremo de arestas.
- Esse parâmetro é denotado por $d_G(v)$, ou apenas d(v) quando G estiver subentendido pelo contexto.
- Qual o grau de cada vértice do grafo abaixo?

Figura: Um grafo G não conexo.

Definições

- Um vértice de grau 0 é dito vértice isolado.
- Um vértice de grau 1 é dito vértice terminal.

Definições

- Um vértice de grau 0 é dito vértice isolado.
- Um vértice de grau 1 é dito vértice terminal.
- O grau mínimo de G é o menor grau dentre todos os graus de vértices de G e é denotado por $\delta(G)$.
- O grau máximo de G é o maior grau dentre todos os graus de vértices de G e é denotado por $\Delta(G)$.

Definições

- Um vértice de grau 0 é dito vértice isolado.
- Um vértice de grau 1 é dito vértice terminal.
- O grau mínimo de G é o menor grau dentre todos os graus de vértices de G e é denotado por δ(G).
- O grau máximo de G é o maior grau dentre todos os graus de vértices de G e é denotado por $\Delta(G)$.

Se G é um grafo simples de ordem n e v é um vértice qualquer de G, então: $0 \le \delta(G) \le d_G(v) \le \Delta(G) \le n-1$.

1º Teorema da Teoria dos Grafos

(Handshaking Lemma) Euler, 1735

Teorema 1. Se G é um grafo de tamanho m, então

$$\sum_{v\in V(G)}d(v)=2m.$$

Prova do Teorema 1

Teorema 1. (Euler, 1735) Se G é um grafo de tamanho m, então

$$\sum_{v\in V(G)}d(v)=2m.$$

- Na somatória dos graus dos vértices de G, cada aresta $uv \in E(G)$ é contada duas vezes, uma vez em d(u) e outra em d(v).
- No caso de um laço uu, essa aresta contribui com 2 para o valor d(u).
- Como G tem m arestas, concluímos que $\sum_{v \in V(G)} d(v) = 2m$.

Provas alternativas do Teorema 1

Teorema 1. (Euler, 1735) Se G é um grafo de tamanho m, então

$$\sum_{v\in V(G)}d(v)=2m.$$

Exercícios:

- (1) Prove o Teorema 1 usando a matriz de incidência do grafo.
- (2) Prove o Teorema 1 usando indução matemática.
- (3) Um certo grafo G tem ordem 14 e tamanho 27. O grau de cada vértice de G é 3, 4 ou 5. Existem seis vértices de grau 4. Quantos vértices de G têm grau 3 e quantos têm grau 5?

Consequência do Teorema 1

Corolário 2. Em qualquer grafo, o número de vértices de grau ímpar é par.

Em qualquer grafo, o número de vértices de grau ímpar é par.

Em qualquer grafo, o número de vértices de grau ímpar é par.

Demonstração.

• Seja G = (V(G), E(G)) um grafo de tamanho m.

Em qualquer grafo, o número de vértices de grau ímpar é par.

- Seja G = (V(G), E(G)) um grafo de tamanho m.
- Particione V(G) em dois subconjuntos V_1 e V_2 , onde V_1 consiste nos vértices de grau ímpar e V_2 consiste nos vértices de grau par.

Em qualquer grafo, o número de vértices de grau ímpar é par.

- Seja G = (V(G), E(G)) um grafo de tamanho m.
- Particione V(G) em dois subconjuntos V_1 e V_2 , onde V_1 consiste nos vértices de grau ímpar e V_2 consiste nos vértices de grau par.
- Pelo Teorema 1, temos que

$$\sum_{v \in V(G)} d(v) = \sum_{v \in V_1} d(v) + \sum_{v \in V_2} d(v) = 2m.$$

Em qualquer grafo, o número de vértices de grau ímpar é par.

Demonstração.

- Seja G = (V(G), E(G)) um grafo de tamanho m.
- Particione V(G) em dois subconjuntos V_1 e V_2 , onde V_1 consiste nos vértices de grau ímpar e V_2 consiste nos vértices de grau par.
- Pelo Teorema 1, temos que

$$\sum_{v \in V(G)} d(v) = \sum_{v \in V_1} d(v) + \sum_{v \in V_2} d(v) = 2m.$$

• O número $\sum_{v \in V_2} d(v)$ é par dado que é uma soma de números pares.

Em qualquer grafo, o número de vértices de grau ímpar é par.

- Seja G = (V(G), E(G)) um grafo de tamanho m.
- Particione V(G) em dois subconjuntos V_1 e V_2 , onde V_1 consiste nos vértices de grau ímpar e V_2 consiste nos vértices de grau par.
- Pelo Teorema 1, temos que

$$\sum_{v \in V(G)} d(v) = \sum_{v \in V_1} d(v) + \sum_{v \in V_2} d(v) = 2m.$$

- O número $\sum_{v \in V_2} d(v)$ é par dado que é uma soma de números pares.
- Assim, $\sum_{v \in V_1} d(v) = 2m \sum_{v \in v_2} d(v)$, o que implica que $\sum_{v \in V_1} d(v)$ é par.

Em qualquer grafo, o número de vértices de grau ímpar é par.

- Seja G = (V(G), E(G)) um grafo de tamanho m.
- Particione V(G) em dois subconjuntos V_1 e V_2 , onde V_1 consiste nos vértices de grau ímpar e V_2 consiste nos vértices de grau par.
- Pelo Teorema 1, temos que

$$\sum_{v \in V(G)} d(v) = \sum_{v \in V_1} d(v) + \sum_{v \in V_2} d(v) = 2m.$$

- O número $\sum_{v \in V_2} d(v)$ é par dado que é uma soma de números pares.
- Assim, $\sum_{v \in V_1} d(v) = 2m \sum_{v \in v_2} d(v)$, o que implica que $\sum_{v \in V_1} d(v)$ é par.
- Como cada vértice em V_1 tem grau ímpar, o número de vértices de grau ímpar é par. \blacksquare

Grafos k-regulares

Grafos k-regulares

- Um grafo G é k-regular se d(v) = k para todo $v \in V(G)$.
- Um grafo regular é um grafo k-regular para algum $k \ge 0$.
- Exemplos: grafos completos, grafos bipartidos completos $K_{p,p}$ com $p \ge 1$.

 $K_{3,3}$ é um grafo 3-regular.

Grafos k-regulares

- Um grafo G é k-regular se d(v) = k para todo $v \in V(G)$.
- Um grafo regular é um grafo k-regular para algum $k \ge 0$.
- Exemplos: grafos completos, grafos bipartidos completos $K_{p,p}$ com $p \ge 1$.

 $K_{3,3}$ é um grafo 3-regular.

Exercício: Para k = 0, 1, 2, caracterize os grafos k-regulares.

 Observação: caracterizar significa achar condições necessárias e suficientes para que o grafo tenha a propriedade desejada.

Grafos cúbicos

- Um grafo 3-regular é também chamado grafo cúbico.
- Grafos 3-regulares são complexos e de difícil caracterização.

Grafo de Petersen

 O grafo de Petersen é um dos grafos mais estudados em Teoria dos Grafos. Tanto, que há um livro inteiro dedicado a ele: The Petersen Graph, dos autores D. A. Holton e J. Sheehan.

Grafo de Petersen

J. Petersen

Definição

Dado um conjunto S de 5 elementos, o grafo de Petersen é o grafo cujos vértices são os subconjuntos de S com 2 elementos, tais que dois vértices são adjacentes se e somente se os conjuntos que os definem são disjuntos.

Proposição 3. Se dois vértices são não adjacentes no grafo de Petersen, então eles têm exatamente um vizinho em comum.

Proposição 3. Se dois vértices são não adjacentes no grafo de Petersen, então eles têm exatamente um vizinho em comum.

Demonstração.

 Pela definição do grafo de Petersen, dois vértices não adjacentes u e v são conjuntos de tamanho 2 que compartilham um elemento.

Proposição 3. Se dois vértices são não adjacentes no grafo de Petersen, então eles têm exatamente um vizinho em comum.

- Pela definição do grafo de Petersen, dois vértices não adjacentes u e v são conjuntos de tamanho 2 que compartilham um elemento.
- Seja A o conjunto união dos conjuntos u e v. O conjunto A contém exatamente três elementos.

Proposição 3. Se dois vértices são não adjacentes no grafo de Petersen, então eles têm exatamente um vizinho em comum.

- Pela definição do grafo de Petersen, dois vértices não adjacentes u e v são conjuntos de tamanho 2 que compartilham um elemento.
- Seja A o conjunto união dos conjuntos u e v. O conjunto A contém exatamente três elementos.
- Um vértice adjacente a ambos *u* e *v* é um conjunto de tamanho 2. disjunto de ambos.

Proposição 3. Se dois vértices são não adjacentes no grafo de Petersen, então eles têm exatamente um vizinho em comum.

- Pela definição do grafo de Petersen, dois vértices não adjacentes u e v são conjuntos de tamanho 2 que compartilham um elemento.
- Seja A o conjunto uni\u00e3o dos conjuntos u e v. O conjunto A cont\u00e9m exatamente tr\u00e9s elementos.
- Um vértice adjacente a ambos u e v é um conjunto de tamanho 2. disjunto de ambos.
- Como os subconjuntos são escolhidos de S = {1,2,3,4,5}, existe exatamente um subconjunto de dois elementos disjuntos de A.

Exercícios

Exercício

Para qualquer inteiro positivo k, um **cubo** de dimensão k (ou **k-cubo**) é o grafo definido da seguinte maneira: os vértices do grafo são todas as sequências (b_1, b_2, \cdots, b_k) de bits; dois vértices são adjacentes se e somente se diferem em exatamente uma posição. Por exemplo, os vértices do cubo de dimensão 3 são 000, 001, 010, 011, 100, 101, 110, 111; o vértice 000 é adjacente aos vértices 001, 010, 100 e a nenhum outro; e assim por diante. O grafo 3-cubo é ilustrado abaixo.

O cubo de dimensão k será denotado por Q_k . Faça figuras dos cubos Q_1 , Q_2 e Q_4 . Escreva as matrizes de adjacência e incidência de Q_3 . Quantos vértices tem Q_k ? Quantas arestas tem Q_k ?

Exercícios

- (1) Dado um grafo G qualquer com n vértices e m arestas, prove que $\delta(G) \leq \frac{2m}{n} \leq \Delta(G)$.
- (2) **Provar:** Todo grafo regular com grau ímpar tem um número par de vértices.
- (3) **Provar:** Todo grafo k-regular com n vértices tem nk/2 arestas.
- (4) **Prove que:** se G é um grafo simples com pelo menos dois vértices, então G contém pelo menos dois vértices com o mesmo grau.
 - o Dica: Tente usar prova por contradição.
- (5) Seja G[X, Y] um grafo bipartido.
 - (a) Mostre que $\sum_{v \in X} d(v) = \sum_{v \in Y} d(v)$.
 - (b) Deduza que se G é k-regular, com $k \ge 1$, então |X| = |Y|.

Exercício

Duas arestas de um grafo G são adjacentes se têm um extremo em comum. Essa relação de adjacência define o grafo das arestas de G ou grafo linha de G. De modo mais formal, o **grafo linha** de um grafo G é o grafo G' = (E(G), A) em que G é o conjunto de todos os pares de arestas adjacentes de G. O grafo linha de G será denotado por G0.

- (a) Faça uma figura de $L(K_3)$ e uma figura de $L(K_4)$.
- (b) Escreva as matrizes de adjacência e incidência de $L(K_4)$.
- (c) Quantos vértices e quantas arestas tem $L(K_n)$?
- (d) Faça uma figura do grafo L(P), sendo P o grafo de Petersen.
- (e) Mostre que $L(K_5)$ é isomorfo ao complemento do grafo de Petersen.

Figura: Um grafo à esquerda e o seu grafo linha à direita.

FIM