New estimator with larger sample size

2019-08-20

Setting

Functions

Let $\rho(t) = 0.1$, the piecewise example:

 $f(t,s) = \begin{cases} exp(-t-s) & (t \le s) \\ \rho exp(-0.1t-1.9s) & (t > s) \end{cases}$

And

$$f(t) = \frac{18}{19} exp(-2t) + \frac{10}{19} exp(-10t)$$

$$S(t) = \frac{9}{19} exp(-2t) - \frac{10}{19} exp(-\rho t)$$

$$\psi(t) = exp(-2t)$$

$$S_x(t) = exp(-2t)$$

The simulation:

- Generated dataset size: 1000
- Notation

True	Slud's		S(t) integral estimated by	S(t) integral estimated by
S(t)	estimator	Corrected Slud's estimator	Riemann	expectation
S(t)	$S_{p1}(t)$	$S_{p2}(t)$	$S_r(t)$	$S_e(t)$

All the estimators except KM were using the true value of $\rho(t)$, also $S_x(t)$.

Mean absolute difference

KM estimator

[1] 0.167

Slud's estimator

[1] 0.119

Corrected Slud's estimator

[1] 0.119

Integral estimated by Riemann

[1] 0.005

Integral estimated by the expectation idea

[1] 0.016

The plot

Why biased?

For KM estimator and Slud's estimator:

When $\rho_i = 0$, which means that $f(t) = \psi(t) \to \int_0^\infty (t, s) ds = \int_t^\infty f(t, s) ds \to \int_0^t f(t, s) ds = 0$. That is, when s < t, f(t, s) = 0, there is no censoring.

$$S_{p1}(t) = \prod_{i=1}^{d(t)} \frac{n_i - 1}{n_i + \rho_i - 1} + \frac{1}{N} \sum_{k=1}^{d(t)} (\rho_k - 1) \prod_{i=k}^{d(t)} \frac{n_i - 1}{n_i + \rho_i - 1} = 1 - \frac{d(t)}{N}$$

$$S_{km}(t) = \prod_{i=1}^{d(t)} \frac{n_i - 1}{n_i}.$$

And if there is no censor, $n_i = N - i$, $\prod_{i=1}^{d(t)} \frac{n_i - 1}{n_i} = \prod_{i=1}^{d(t)} \frac{N - i - 1}{N - i} = \frac{N - 1 - d(t)}{N - 1} = 1 - \frac{d(t)}{N - 1}$.

Therefore, $S_{p1}(t) \approx S_{km}(t)$. Since $S_{km}(t)$ supposes independent, it is biased, and $S_{p1}(t)$, $S_{p2}(t)$ are also biased.

How could we proof that the integral estimation method is unbiased?

I feel a little bit confused about how to proof the unbias.

From Slud's paper, the S(t) has the unique expression:

$$S(t) = exp\left[-\int_0^t \frac{\psi(s)\rho(s)}{Sx(s)}ds\right]\left(1 + \int_0^t \psi(s)\{\rho(s) - 1\}exp\left[\int_0^s \frac{\psi(u)\rho(u)}{Sx(u)}du\right]ds\right)$$
(1)

And the intergal term can be estimated as:

$$g(t) \equiv \int_0^t \frac{\psi(s)\rho(s)}{Sx(s)} ds = \int_0^t \frac{\rho(s)}{Sx(s)} d\Psi(s)$$

$$= \int_0^t \frac{\rho(s)}{Sx(s)} P(I=1) d\frac{\Psi(s)}{P(I=1)}$$

$$= \int_0^t \frac{\rho(s)}{Sx(s)} P(I=1) d\Psi_c(s)$$

$$\approx \frac{1}{N} \sum_{0 \le s \le t} \frac{\rho(s)}{Sx(s)} P(I=1) \equiv \hat{g}(t)$$

where $\Psi(t) = P(X < t, I = 1) = P(X < t | I = 1)P(I = 1) = \Psi_c(t)P(I = 1)$

Empirically, the $\hat{g}(t)$ is the unbiased estimator of g(t), i.e. $E(\hat{g}(t)) = g(t)$

However, how could we say that $E(exp(-\hat{g}(t))) = exp(-g(t))$? Based on Jensen's inequality, f(x) = exp(-x) is a concave function. Then

$$E(exp(-\hat{g}(t))) < exp(-E(\hat{g}(t))) = exp(-g(t))$$

Then how could we show it?