CAPSTONE PROJECT4

By S.Vinodha

Microsoft Classifying Cybersecurity Incidents

Machine Learning

Objective

to create a classification model that categorizes incidents based on historical evidence and customer responses as

true positive (TP),

benign positive (BP),

or false positive (FP)

Data Processing

Data Cleaning:

- Removed rows with NaN values.
- Removed duplicate rows.
- Synchronized columns between training and testing datasets.
- Replaced uncommon values with "Others" to standardize categorical features.

Balancing Classes:

• Under sampled majority classes in the dataset to ensure class balance using the minority class size.

Feature Transformation

 Ensured feature alignment between training and test datasets.

Model Training

Feature Selection:

Selected top features based on importance derived from a Random Forest model.

Models Trained:

Logistic Regression
Random Forest
Support Vector Classifier (SVM)

Encoding:

For categorical columns, (e.g., One-Hot Encoding) before training models.

Top Features:

Focused on a preselected list of top 10+ features for final model training.

Model	Accuracy	Precision Class 0	Recall Class 0	F1-Score Class 0	Precision Class 1	Recall Class 1	F1-Score Class 1	Precision Class 2	Recall Class 2	F1-Score Class 2
Logistic Regression	0.746184	0.667739	0.823413	0.737450	0.800459	0.707552	0.751143	0.802002	0.707209	0.751629
Random Forest	0.749171	0.664286	0.830357	0.738095	0.868455	0.672580	0.758069	0.765152	0.743011	0.753919
SVM	0.749171	0.664286	0.830357	0.738095	0.868455	0.672580	0.758069	0.765152	0.743011	0.753919

Evaluation

Model	Mean Accuracy (CV)	Standard Deviation (CV)		
Logistic Regression	0.737640	0.002005		
Random Forest	0.742252	0.002881		
SVM	0.742153	0.002563		

Cross Validation

Hyperparameter tuning

Model	Best Parameters
Logistic Regression	$C=10$, Solver: ${ m lbfgs}$
Random Forest	No max depth, Min samples per leaf = 4, Min samples per split = 2
SVM	$C=10$, Kernel: ${ m rbf}$, Gamma: ${ m scale}$

Model	Accuracy			
Logistic Regression	0.746184			
Random Forest	0.749171			
SVM	0.749161			
XGBoost	0.749101			
LightGBM	0.749071			
Neural Network	0.749036			

Random Forest – best model

Feature Engineering

MitreTechniques - T1027;T1027.002;T1027.005;T1105;T1204.002

MitreTechniques _T1027 MitreTechniques_T1027.002 MitreTechniques T1027.005 MitreTechniques T1105 MitreTechniques T1204.002 The results suggest that Random Forest are more robust after SMOTE

Smote — for unbalanced data

Visualizing selected features

Journey of model

	Known data				Unknown data			
model	Accuracy	F1 Score	Recall	Precision	Accuracy	F1 Score	Recall	Precision
At first	74.91%	75	74	76	74.3%	74	73	75
After Tuning	74.92%	74	74	76	74.28%	74	73	75
After Feature Engineering	75.38%	75	74	75	74.5%	74	73	73
After SMOTE	75.34%	75	74	75	74.5%	74	74	74

Known and Unknown Data Comparison

Classification Report:

class	f1-score
0	0.742348
1	0.755465
2	0.738612

Accuracy on unknown data: 0.745073

Thank You