# ศึกษาพฤติกรรม

# การใช้บริการขนส่งสินค้า





# หัวข้อเรื่อง

- การเก็บข้อมูล (Data collection)
- ค่าสัมประสิทธิ์สหสัมพันธ์ (Correlation Coefficient)
- ความน่าจะเป็นแบบมีเงื่อนไข (Conditional Probability)
- สถิติเชิงพรรณนา (Descriptive Statistics)
- การทดสอบการแจกแจงข้อมูล (Goodness of Fit test)
- การทดลองสมมติฐาน (Hypothesis Test)



3.) บริษัทขนส่งที่ใช้บริการบ่อยที่สุด 51 responses



5.) ประเภทของสินค้าที่สั่งบ่อยที่สุดคือประเภทใด 51 responses



12.) ค่าจัดส่งสินค้าที่แพงที่สุดมีราคากี่บาท (ตอบเป็นเลขจำนวนเต็ม) 51 responses



13.) จากข้อ 12.) เพราะเหตุใดค่าจัดส่งจึงมีราคาแพง (เลือกสูงสุดไม่เกิน 3 ตัวเลือก) 51 responses





#### ความสัมพันธ์ระหว่าง

#### จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอม กับ

#### จำนวนการใช้บริการขนส่งสินค้าเฉลื่ยต่อสัปดาห์ในช่วงเปิดเทอม

ให้ A = จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วง"ปิดเทอม" (ครั้ง)

ให้ B = จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วง"เปิดเทอม" (ครั้ง)

| sum[(A-A_Bar)(B-B_Bar)]                      | 19.6   |
|----------------------------------------------|--------|
| Cov^(A,B) =<br>sum[(A-A_Bar)(B-B_Bar)]/(n-1) | 0.8167 |
| s_A                                          | 1.2583 |
| s_B                                          | 1.0214 |
| rho^(A,B) =<br>Cov^(A,B)/(s_A * s_B)         | 0.6354 |

จำนวนการใช้บริการขนส่งสินค้าเฉลียต่อสัปดาห์ในช่วงเปิดเทอม



#### ความสัมพันธ์ระหว่าง

# จำนวนสินค้าที่สั่งมากที่สุดกับค่าจัดส่งสินค้าที่แพงที่สุด ในหนึ่งครั้ง

ให้ E = จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง ให้ G = ค่าจัดส่งที่แพงที่สุดในหนึ่งครั้ง

| sum[(E-E_Bar)(G-G_Bar)]       | 2109.84 |
|-------------------------------|---------|
| Cov^(E,G ) =                  |         |
| sum[(E-E_Bar)(G-G_Bar)]/(n-1) | 87.91   |
| s_E                           | 2.6508  |
| s_G                           | 98.1086 |
| rho^(E,G) =                   |         |
| Cov^(E,G)/(s_E * s_G)         | 0.3380  |

จำนวนสินค้าที่สั่งมากที่สุดในการสั่งของหนึ่งครั้ง กับ ค่าจัดส่งสินค้าที่แพงที่สุด



# ความน่าจะเป็นแบบมีเงื่อนไข (Conditional Probability)

- ความน่าจะเป็นในการสั่งของช่วงปิดเทอม เมื่อช่วงเปิดเทอมมีการสั่งของ 1 ชิ้นขึ้นไป
- ความน่าจะเป็นที่จะมีการสั่งของ 5 ชิ้นขึ้นไปในหนึ่งครั้ง เมื่อมีค่าจัดส่งมากกว่าหรือ เท่ากับ 120 บาท

# ความน่าจะเป็นในการสั่งของช่วงปิดเทอม เมื่อช่วงเปิดเทอมมีการสั่งของ 1 ชิ้นขึ้นไป



ให้ x = จำนวนการสั่งของในช่วงปิดเทอม ให้ y = จำนวนการสั่งของในช่วงเปิดเทอม

ความน่าจะเป็นในการสั่งของช่วงปิดเทอม เมื่อช่วงเปิดเทอมมีการ สั่งของ 1 ชิ้นขึ้นไป

มีความน่าจะเป็นเท่ากับ P(x|y>=1) = 0.9535 หรือ 95.35%

# ความน่าจะเป็นที่จะมีการสั่งของ 5 ชิ้นขึ้นไปในหนึ่งครั้ง เมื่อมีค่าจัดส่งมากกว่าหรือเท่ากับ 120 บาท



ให้ x = จำนวนการสั่งของในหนึ่งครั้ง ให้ y = ค่าจัดส่งสินค้า

ความน่าจะเป็นที่จะมีการสั่งของ 5 ชิ้นขึ้นไปในหนึ่ง ครั้ง เมื่อมีค่าจัดส่งมากกว่าหรือเท่ากับ 120 บาท

มีความน่าจะเป็นเท่ากับ P(x>=5|y>=120) = 0.1569/0.2157 = 0.7273 หรือ 72.73%



#### ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและช่วงเปิดเทอม

#### Histogramของ ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วง...



ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและช่วงเปิดเทอม

| Mean                                       | 1.019607843 |
|--------------------------------------------|-------------|
| Median                                     | 1           |
| Mode                                       | 0           |
| MIN                                        | 0           |
| MAX                                        | 5           |
| Range                                      | 5           |
| Variance                                   | 1.459607843 |
| SD                                         | 1.208142311 |
| CV                                         | 1.184908805 |
| Quartile 1 (Q1)                            | 0           |
| Quartile 3 (Q3)                            | 2           |
| IQR                                        | 2           |
| Q1-1.5IQR                                  | -3          |
| Q3+1.5IQR                                  | 5           |
| Outliers (based on IQR)                    | -           |
| Mean after removing outliers based on IQR. | 1.019607843 |
| SD after removing outliers based on IQR.   | 1.208142311 |
|                                            |             |

#### ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ

#### Histogramของ ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ



ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ

| 14.09803922  |
|--------------|
| 10           |
| 3            |
| 2            |
| 53           |
| 51           |
| 166.6501961  |
| 12.90930657  |
| 0.9156809944 |
| 4            |
| 20           |
| 16           |
| -20          |
| 44           |
| 50,53        |
| 11.72916667  |
| 8.929367239  |
|              |

# จำนวนสินค้าที่สั่งมากที่สุดในการสั่งของหนึ่งครั้ง

#### Histogram ของจำนวนสินค้าที่สั่งมากที่สุดในการสั่งของหนึ่งครั้ง



|  | สดในการสังขอ |  |
|--|--------------|--|
|  |              |  |
|  |              |  |
|  |              |  |
|  |              |  |

| 4.882352941  |
|--------------|
| 4            |
| 3            |
| 1            |
| 20           |
| 19           |
| 12.54588235  |
| 3.542016707  |
| 0.7254733014 |
| 3            |
| 6            |
| 3            |
| -1.5         |
| 10.5         |
| 12,13,20     |
| 4.25         |
| 2.365532642  |
|              |

# ค่าจัดส่งสินค้าที่แพงที่สุดในการสั่งสินค้า

#### Histogram ของค่าจัดส่งสินค้าที่แพงที่สุดในการสั่งสินค้า



ค่าจัดส่งสินค้าที่แพงที่สุดในการสั่งสินค้า

| 128.7058824  |
|--------------|
| 80           |
| 50           |
| 30           |
| 2000         |
| 1970         |
| 75097.85176  |
| 274.0398726  |
| 2.129194622  |
| 50           |
| 100          |
| 50           |
| -25          |
| 175          |
| 200,300,2000 |
| 74.7555556   |
| 33.11148905  |
|              |

# การทดสอบการแจกแจงข้อมูล

#### (Goodness of Fit test)

- ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ
- ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ ในช่วงปิดเทอมและช่วงเปิดเทอม
- จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง
- ค่าจัดส่งสินค้าที่แพงที่สุด



# ความต่างระยะเวลารอสินค้าจาก ในประเทศและต่างประเทศ



|               |               | #samples in |              |             |               |               | P(x1<= X < x2)<br>= P(z1<= Z < |                | ((Observed-    |
|---------------|---------------|-------------|--------------|-------------|---------------|---------------|--------------------------------|----------------|----------------|
| Left end of   | Right end of  | Interval    | z1 = (x1-    | z2 = (x2 -  | CDF(z1) = P(Z | CDF(z2) = P(Z | z2) = CDF(z2) -                | N*P(x1<= X <   | Expected)^2)/E |
| Interval (x1) | Interval (x2) | (Observed)  | mu)/sigma    | mu)/sigma   | <=z1)         | <= z2)        | CDF(z1)                        | x2) (Expected) | xpected        |
| -1.00E+99     | 10            | 22          | -7.74635E+97 | -0.3174     | 0             | 0.375452      | 0.375452                       | 19.14804       | 0.42478        |
| 10            | 20            | 16          | -0.31745     | 0.4572      | 0.375452      | 0.676232      | 0.300780                       | 15.33977       | 0.02842        |
| 20            | 30            | 7           | 0.45719      | 1.2318      | 0.676232      | 0.890992      | 0.214761                       | 10.95279       | 1.42654        |
| 30            | 1.00E+99      | 6           | 1.23182      | 7.74635E+97 | 0.890992      | 1             | 0.109008                       | 5.55940        | 0.03492        |

#### ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ



$$X_{p,k-1}^2 = X_{0.99,3}^2 = 11.345$$

$$X_{p,k-1}^2 = X_{0.99,3}^2 = 11.345$$
  
 $X_{p,k-m-1}^2 = X_{0.99,1}^2 = 6.6349$ 

ค่า  $x^2$  ของกลุ่มตัวอย่างมีค่า 1.91465

เนื่องจาก  $\boldsymbol{X}^2 \leq \boldsymbol{X}_{p,k-m-1}^2$  จึงไม่ reject null hypothesis ดังนั้นจึงสรุปได้ว่า ความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ เป็นการกระจายตัวแบบ Normal distribution ที่มีค่า mean = 14.09803922, SD = 12.90930657

# ความต่างของจำนวนการใช้บริการขนส่ง สินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอม และช่วงเปิดเทอม

#### ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิด เทอมและช่วงเปิดเทอม



|               |               |             |             |             |               |               | P(x1<= X < x2)  |                |                |
|---------------|---------------|-------------|-------------|-------------|---------------|---------------|-----------------|----------------|----------------|
|               |               | #samples in |             |             |               |               | = P(z1<= Z <    |                | ((Observed-    |
| Left end of   | Right end of  | Interval    | z1 = (x1-   | z2 = (x2 -  | CDF(z1) = P(Z | CDF(z2) = P(Z | z2) = CDF(z2) - | N*P(x1<= X <   | Expected)^2)/E |
| Interval (x1) | Interval (x2) | (Observed)  | mu)/sigma   | mu)/sigma   | <=z1)         | <= z2)        | CDF(z1)         | x2) (Expected) | xpected        |
| -1.00E+99     | 0             | 0           | -8.2772E+98 | -0.8439     | 0             | 0.199350      | 0.199350        | 10.16683       | 10.16683       |
| 0             | 1             | 22          | -8.4395E-01 | -0.0162     | 0.199350      | 0.493526      | 0.294176        | 15.00298       | 3.26324        |
| 1             | 2             | 15          | -1.6230E-02 | 0.8115      | 0.493526      | 0.791457      | 0.297932        | 15.19451       | 0.00249        |
| 2             | 1.00E+99      | 14          | 8.1149E-01  | 8.27717E+98 | 0.791457      | 1.000000      | 0.208543        | 10.63569       | 1.06421        |

# ความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอม และช่วงเปิดเทอม



M (ตัวแปรไม่ทราบค่า) = 2 
$$K \text{ (จำนวนตารางข้อมูล) = 4}$$
 
$$X_{p,k-1}^2 = X_{0.99,3}^2 = 11.345$$
 
$$X_{p,k-m-1}^2 = X_{0.99,1}^2 = 6.6349$$
 ค่า  $x^2$  ของกลุ่มตัวอย่างมีค่า 14.49677

เนื่องจาก  $X^2 \geq X_{p,k-1}^2$  จึง reject null hypothesis ดังนั้นจึงสรุปได้ว่า ความต่างของ จำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและช่วงเปิดเทอม ไม่เป็นการ กระจายตัวแบบ Normal distribution ที่มีค่า mean = 1.019607843, SD = 1.208142311

# จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง

#### จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง



|               |               |             |              |             |               |               | P(x1<= X < x2)  |                |                |
|---------------|---------------|-------------|--------------|-------------|---------------|---------------|-----------------|----------------|----------------|
|               |               | #samples in |              |             |               |               | = P(z1<= Z <    |                | ((Observed-    |
| Left end of   | Right end of  | Interval    | z1 = (x1-    | z2 = (x2 -  | CDF(z1) = P(Z | CDF(z2) = P(Z | z2) = CDF(z2) - | N*P(x1<= X <   | Expected)^2)/E |
| Interval (x1) | Interval (x2) | (Observed)  | mu)/sigma    | mu)/sigma   | <=z1)         | <= z2)        | CDF(z1)         | x2) (Expected) | xpected        |
| -1.00E+99     | 2             | 5           | -2.82325E+98 | -0.8138     | 0             | 0.207891      | 0.207891        | 10.60245       | 2.96039        |
| 2             | 4             | 17          | -8.13760E-01 | -0.2491     | 0.2078911118  | 0.401638      | 0.193747        | 9.88108        | 5.12890        |
| 4             | 6             | 16          | -2.49110E-01 | 0.3155      | 0.4016377206  | 0.623824      | 0.222186        | 11.33150       | 1.92339        |
| 6             | 8             | 6           | 3.15540E-01  | 0.8802      | 0.6238240616  | 0.810622      | 0.186798        | 9.52668        | 1.30554        |
| 8             | 1.00E+99      | 7           | 8.80190E-01  | 2.82325E+98 | 0.8106217572  | 1.000000      | 0.189378        | 9.65829        | 0.73165        |

# จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง



M (ตัวแปรไม่ทราบค่า) = 2 
$$K \text{ (จำนวนตารางข้อมูล)} = 5$$
 
$$X_{p,k-1}^2 = X_{0.99,4}^2 = 13.277$$
 
$$X_{p,k-m-1}^2 = X_{0.99,2}^2 = 9.2103$$
 ค่า  $x^2$  ของกลุ่มตัวอย่างมีค่า 12.04987

เนื่องจาก  $X_{p,k-m-1}^2 \leq X^2 \leq X_{p,k-1}^2$  จึงยังไม่สรุปว่า จำนวนสินค้าที่สั่งมากที่สุด ในหนึ่งครั้ง เป็นการกระจายตัวแบบ Normal distribution ที่มีค่า mean = 4.882352941, SD = 3.542016707 หรือไม่

# ค่าจัดส่งสินค้าที่แพงที่สุด



|             |               | #complex in             |              |            |               |               | P(x1<= X <<br>x2) = P(z1<= Z | N*P(x1<= X < | ((Observed-                  |
|-------------|---------------|-------------------------|--------------|------------|---------------|---------------|------------------------------|--------------|------------------------------|
| Left end of | Right end of  | #samples in<br>Interval | z1 = (x1-    | z2 = (x2 - | CDF(z1) = P(Z | CDF(z2) = P(Z | < z2) =<br>CDF(z2) -         | x2)          | ((Observed-<br>Expected)^2)/ |
|             | Interval (x2) | (Observed)              | ,            | mu)/sigma  | , , ,         | <= z2)        | , ,                          |              | Expected                     |
| -1.00E+99   | 100           | 29                      | -3.64910E+96 | -0.1048    | 0             | 0.458287      | 0.458287                     | 23.37263     | 1.35489                      |
| 100         | 300           | 19                      | -1.04751E-01 | 0.6251     | 0.4582867951  | 0.734037      | 0.275751                     | 14.06328     | 1.73296                      |
| 300         | 400           | 2                       | 6.25070E-01  | 0.9900     | 0.7340374591  | 0.838908      | 0.104871                     | 5.34841      | 2.09629                      |
| 400         | 1.00E+99      | 1                       | 9.89980E-01  | 3.6491E+96 | 0.8389081637  | 1.000000      | 0.161092                     | 8.21568      | 6.33740                      |

# ค่าจัดส่งสินค้าที่แพงที่สุด



M (ตัวแปรไม่ทราบค่า) = 2 
$$K \text{ (จำนวนตารางข้อมูล) = 4}$$
 
$$X_{p,k-1}^2 = X_{0.99,3}^2 = 11.345$$
 
$$X_{p,k-m-1}^2 = X_{0.99,1}^2 = 6.6349$$
 ค่า  $X$  ของกลุ่มตัวอย่างมีค่า 11.52155

เนื่องจาก  $X^2 \geq X_{p,k-1}^2$  จึง reject null hypothesis ดังนั้นจึงสรุปได้ว่า ค่าจัดส่ง สินค้าที่แพงที่สุด ไม่เป็นการกระจายตัวแบบ Normal distribution ที่มีค่า mean = 128.7058824, SD = 274.0398726



#### การทดลองสมมติฐาน (Hypothesis Test)

- การทดสอบว่าความต่างของจำนวนการใช้บริการขนส่งสินค้า
  เฉลี่ยต่อสัปดาห์ในช่วงปิดเทอมและช่วงเปิดเทอม ไม่เกิน 2 ครั้ง
- การทดสอบว่าความต่างระยะเวลารอสินค้าจากในประเทศและ ต่างประเทศเฉลี่ยมากกว่า 15 วัน
  - การทดสอบว่าจำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้งเฉลี่ย 4 ชิ้น ขึ้นไป
- การทดสอบว่าค่าจัดส่งสินค้าที่แพงที่สุดมีราคาเฉลี่ยเท่ากับ 123 บาท

## การทดสอบว่าความต่างของจำนวนการใช้บริการขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วง ปิดเทอมและช่วงเปิดเทอม ไม่เกิน 2 ครั้ง

| ข้อมูลจาก 51 คน (N)                 | 51          |  |  |  |
|-------------------------------------|-------------|--|--|--|
| มีค่าเฉลี่ยเท่ากับ (X_bar)          | 1.0196      |  |  |  |
| ส่วนเบี่ยงเบนมาตรฐาน (s)            | 1.2081      |  |  |  |
| Significant Levels (alpha)          | 0.1         |  |  |  |
| ข้อมูลเป็นแบบ Large sample size     |             |  |  |  |
| NULL hypothesis (H0) $\mu$ =        | 2           |  |  |  |
| Alternative hypothesis (Ha) $\mu$ > | 2           |  |  |  |
|                                     |             |  |  |  |
| Z (test statistic)                  | -5.7952     |  |  |  |
| Z (alpha = 0.1)                     | 1.2816      |  |  |  |
| เป็น Upper-tailed test              |             |  |  |  |
| Rejection region                    | Z >= 1.2816 |  |  |  |

- Test Statistics ไม่อยู่ใน Rejection Region
- ไม่ปฏิเสธสมมติฐานหลัก (Null Hypothesis)
- ดังนั้น ความต่างของจำนวนการใช้บริการ ขนส่งสินค้าเฉลี่ยต่อสัปดาห์ในช่วงปิดเทอม และช่วงเปิดเทอม ไม่เกิน 2 ครั้ง

#### การทดสอบว่าความต่างระยะเวลารอสินค้าจากในประเทศและต่างประเทศ เฉลี่ยมากกว่า 15 วัน

| ข้อมูลจาก 51 คน (N)                 | 51           |
|-------------------------------------|--------------|
| มีค่าเฉลี่ยเท่ากับ (X_bar)          | 14.0980      |
| ส่วนเบี่ยงเบนมาตรฐาน (s)            | 12.9093      |
| Significant Levels (alpha)          | 0.1          |
| ข้อมูลเป็นแบบ Large sample size     |              |
| NULL hypothesis (H0) $\mu$ =        | 15           |
| Alternative hypothesis (Ha) $\mu$ < | 15           |
|                                     |              |
| Z (test statistic)                  | -0.4990      |
| Z (alpha = 0.1)                     | -1.2816      |
| เป็น Lower-tailed test              |              |
| Rejection region                    | Z <= -1.2816 |

- Test Statistics ไม่อยู่ใน Rejection Region
- ไม่ปฏิเสธสมมติฐานหลัก (Null Hypothesis)
- ดังนั้น ความต่างระยะเวลารอสินค้าจากใน ประเทศและต่างประเทศเฉลี่ยมากกว่า 15 วัน

# การทดสอบว่าจำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้งเฉลี่ย 4 ชิ้นขึ้นไป

| ข้อมูลจาก 51 คห (N)                 | 51           |
|-------------------------------------|--------------|
| มีค่าเฉลี่ยเท่ากับ (X_bar)          | 4.8824       |
| ส่วนเบี่ยงเบนมาตรฐาน (s)            | 3.5420       |
| Significant Levels (alpha)          | 0.1          |
| ข้อมูลเป็นแบบ Large sample size     |              |
| NULL hypothesis (H0) $\mu$ =        | 4            |
| Alternative hypothesis (Ha) $\mu$ < | 4            |
|                                     |              |
| Z (test statistic)                  | 1.7790       |
| Z (alpha = 0.1)                     | -1.2816      |
| เป็น Lower-tailed test              |              |
| Rejection region                    | Z <= -1.2816 |

- Test Statistics ไม่อยู่ใน Rejection Region
- ไม่ปฏิเสธสมมติฐานหลัก (Null Hypothesis)
- ดังนั้น จำนวนสินค้าที่สั่งมากที่สุดในหนึ่งครั้ง เฉลี่ย 4 ชิ้นขึ้นไป

## การทดสอบว่าค่าจัดส่งสินค้าที่แพงที่สุดมีราคาเฉลี่ยเท่ากับ 123 บาท

| ข้อมูลจาก 51 คห (N)                  | 51                           |
|--------------------------------------|------------------------------|
| มีค่าเฉลี่ยเท่ากับ (X_bar)           | 128.7059                     |
| ส่วนเบี่ยงเบนมาตรฐาน (s)             | 274.0399                     |
| Significant Levels (alpha)           | 0.1                          |
| ข้อมูลเป็นแบบ Large sample size      |                              |
| NULL hypothesis (H0) $\mu$ =         | 123                          |
| Alternative hypothesis (Ha) $\mu$ != | 123                          |
|                                      |                              |
| Z (test statistic)                   | 0.1487                       |
| Z (alpha = 0.1)                      | -1.6449, 1.6449              |
| เป็น Two-tailed test                 |                              |
| Rejection region                     | Z <= -1.6449 และ Z >= 1.6449 |

- Test Statistics ไม่อยู่ใน Rejection Region
- ไม่ปฏิเสธสมมติฐานหลัก (Null Hypothesis)
- ดังนั้น ค่าจัดส่งสินค้าที่แพงที่สุดมีราคา เฉลี่ยเท่ากับ 123 บาท

# ขอบคุณที่รับชม