	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\textbf{JJ}}{MP:\lambda x.(x_{\circ 65.0})} \frac{\frac{\textbf{JJ}}{((S_{adj}\backslash NP)\backslash (S_{adj}\backslash NP):\lambda x.\lambda y.\lambda z.(x\;z,y\;z)} \frac{\textbf{JJ}}{S_{adj}\backslash NP:\lambda x.(x_{\circ 15.0})}}{\frac{(S_{adj}\backslash NP)\backslash (S_{adj}\backslash NP):\lambda y.\lambda z.(z_{\circ 15.0},y\;z)}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}} < \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 65.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 15.0},z_{\circ 65.0})}{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 15.0},z_{\circ 15.0})} > \\ \frac{S_{adj}\backslash NP:\lambda z.(z_{\circ 15.0},z_{\circ 1$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\frac{NP_{nb}: \text{property}_{0.0}}{NP_{nb}: \text{property}_{0.0}} \stackrel{>}{\sim} \frac{NP_{nb} \backslash NP_{nb}: \lambda x.x}{NP_{nb}: \text{property}_{0.0}} < \frac{(NP \backslash NP)/(S_{dcl} \backslash NP): \lambda y. \lambda z. \text{which}_{0.0}^{0}(\text{all}_{0.0} (\lambda x. \lambda y. \text{of}_{0.0}^{2}(x, y) z), y z)}{NP \backslash NP: \lambda z. \text{which}_{0.0}^{0}(\text{all}_{0.0} (\lambda x. \lambda y. \text{of}_{0.0}^{2}(x, y) z), z_{\circ 15.0}, z_{\circ 65.0})}$	$S_{dcl} ackslash NP: \lambda z.(z_{\circ 15.0}, z_{\circ 65.0})$ and	$\frac{N : \text{function}_{0.0}}{NP : \text{function}_{0.0}} = \frac{(NP \setminus NP)/(NP \setminus NP) : \lambda x.(x_{\bullet 1.0})}{NP : \text{function}_{0.0}} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, y_{\bullet 1.0})} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, y)} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, y)} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, y)} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, y)} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{traveller}_{0.0}, \text{traveller}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{traveller}_{0.0}, y)} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{traveller}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, y)} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, y)} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, y)} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, y)} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, y)} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, y)}{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, y)} > \frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, y)$
'standard' rooms	$NP : \text{which}_{0.0}^{0}(\text{all}_{0.0} (\lambda x.\lambda y.\text{of}_{0.0}^{2}(x,y) \text{ property}_{0.0}), \text{property}_{15.0}, \text{property}_{15.0}, \text{property}_{15.0})$	$<{NP \backslash NP: \lambda x.x} - \frac{CC}{(NP \backslash NP)/NP: \lambda x. \lambda y. (x,y)}$	$\frac{NP \setminus NP : \lambda y. \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, y_{\bullet 1.0})}{NP : \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, \text{function}_{1.0})} < \sum_{i=1}^{NP} \frac{1}{i} \sum_{i=1}^{NP} \frac{1}$
the $\frac{NN}{N/N: \lambda x. (\text{'standard'}_{0,0}, x)} \frac{NNS}{N: \text{room}_{0,0}}$	$\frac{\text{IN}}{NP: \text{which}_{0.0}^0(\text{all}_{0.0} \ (\lambda x.\lambda y.\text{of}_{0.0}^2(x,y) \ \text{property}_{0.0}), \text{property}_{15.0}, \text{property}_{65.0})}$	< (-12 (7.12)/ 1.12) / ming((w,y))	$NP \setminus NP: \lambda y.(\text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, \text{function}_{1.0}), y)$
	$P:\lambda x.\lambda y. ext{in}_{0.0}^2(x,y)$	$NP: \text{for}_{0.0}^2(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, \text{function}_{1.0}), \\ \text{which}_{0.0}^0(\text{all}_{0.0} \ (\lambda x. \lambda y. \text{of}_{0.0}^2(x,y) \ \text{property}_{0.0}), \\ \text{property}_{15.0}, \text{property}_{65.0})$	<
$\frac{\text{stayed}}{\text{NP}_{nb}: \text{'standard'}_{0.0}, \text{room}_{0.0}} > \frac{\text{NP}_{nb}}{\text{Stayed}}$	$NP \setminus NP: \lambda y. ext{in}_{0.0}^2(ext{for}_{0.0}^2(ext{leisure}_{0.0}, ext{tunction}_{1.0}), ext{which}_{0.0}^0(ext{all}_{0.0}(\lambda x. \lambda y. ext{of}_{0.0}^2(x,y) ext{ property}_{0.0}), ext{property}_{0.0}, ext{property}_{0.0}, y)$		
VBD $ \frac{((S_X \backslash NP) \backslash (S_X \backslash NP))/NP : \lambda x. \lambda y. \lambda z. \text{in}_{0.0}^0(y \ x, z)}{((S_X \backslash NP) \backslash (S_X \backslash NP))/NP : \lambda x. \lambda y. \lambda z. \text{in}_{0.0}^0(y \ x, z)} $	$NP: \mathrm{in}_{0.0}^2(\mathrm{for}_{0.0}^2(\mathrm{leisure}_{0.0},\mathrm{traveller}_{0.0},\mathrm{busines})$	$\text{function}_{1.0}, \text{function}_{1.0}), \text{which}_{0.0}^{0}(\text{all}_{0.0} \ (\lambda x.\lambda y.\text{of}_{0.0}^{2}(x,y) \ \text{property}_{0.0}), \text{property}_{15.0}, \text{property}_{65.0}), \text{'standard'}_{0.0}, \text{room}_{0.0})$	
$S_{dcl} \backslash NP : \lambda x. \operatorname{stay}_{0.0}^{0}(x)$	$(S_X \setminus NP) \setminus (S_X \setminus NP) : \lambda y. \lambda z. \operatorname{in}_{0.0}^0(y \operatorname{in}_{0.0}^2(\operatorname{for}_{0.0}^2(\operatorname{leisure}_{0.0}, \operatorname{traveller}_{0.0}, \operatorname{business}_{0.0}, \operatorname{function}_{0.0})$	$(0,0)$, which $(0,0)$ (all $(0,0)$ ($(\lambda x.\lambda y.of_{0.0}^2(x,y)$) property $(0,0)$, property $(0,0)$, property $(0,0)$, room $(0,0)$, room $(0,0)$, $(0,0)$	
$\overline{\Lambda x.(x_{ullet 1.0})}$	$S_{dcl} \backslash NP: \lambda z. ext{in}_{0.0}^{0} (ext{stay}_{0.0}^{0} (ext{in}_{0.0}^{2} (ext{for}_{0.0}^{2} (ext{leisure}_{0.0}, ext{traveller}_{0.0}, ext{business}_{0.0}, ext{function}_{1.0}), ext{which}_{0.0}^{0} (ext{all}_{0.0} (ext{leisure}_{0.0}, ext{traveller}_{0.0}, ext{traveller}_{0.0}, ext{function}_{1.0}), ext{which}_{0.0}^{0} (ext{all}_{0.0} (ext{leisure}_{0.0}, ext{traveller}_{0.0}, ext{traveller}_{0.0}, ext{traveller}_{0.0}))$	$(\lambda x. \lambda y. \text{of}_{0.0}^2(x, y) \text{ property}_{0.0}), \text{property}_{15.0}, \text{property}_{65.0}), \text{'standard'}_{0.0}, \text{room}_{0.0})), z)$	
	$S_{dcl} \backslash NP : \lambda z.in_{1.0}^{0} (\mathrm{stay}_{0.0}^{0} (\mathrm{in}_{0.0}^{2} (\mathrm{for}_{0.0}^{2} (\mathrm{leisure}_{0.0}, \mathrm{traveller}_{0.0}, \mathrm{business}_{0.0}, \mathrm{function}_{1.0}), \mathrm{which}_{0.0}^{0} (\mathrm{all}_{0.0} (\lambda x.\lambda y.\mathrm{of}_{0.0}^{2} (\mathrm{leisure}_{0.0}, \mathrm{traveller}_{0.0}, \mathrm{business}_{0.0}, \mathrm{function}_{1.0}))$	y) property _{0.0}), property _{15.0} , property _{65.0}), 'standard' _{0.0} , room _{0.0})), z)	
	$S_{dcl}: \text{in}_{1.0}^{0}(\text{stay}_{0.0}^{0}(\text{in}_{0.0}^{2}(\text{for}_{0.0}^{2}(\text{leisure}_{0.0}, \text{traveller}_{0.0}, \text{business}_{0.0}, \text{function}_{1.0}), \\ \text{which}_{0.0}^{0}(\text{all}_{0.0} \ (\lambda x.\lambda y.\text{of}_{0.0}^{2}(x,y) \ \text{property}_{0.0}), \\ \text{property}_{15.0}, \text{property}_{15.0}, \text{property}_{15.0}, \text{property}_{15.0}, \\ \text{property}_{0.0}(\text{property}_{0.0}, \text{property}_{0.0}), \\ proper$	$(perty_{65.0}), (standard'_{0.0}, room_{0.0})), I've_{0.0}, olny_{0.0})$	$< \overline{S_{dcl} ackslash S_{\epsilon}}$
	$S_{dcl}: ext{in}_{1.0}^0(ext{stay}_{0.0}^0(ext{in}_{0.0}^2(ext{for}_{0.0}^2(ext{leisure}_{0.0}, ext{traveller}_{0.0}, ext{business}_{0.0}, ext{function}_{1.0}), ext{which}_{0.0}^0(ext{all}_{0.0}(\lambda x.\lambda y. ext{of}_{0.0}^2(x,y) ext{ property}_{0.0}), ext{property}_{0.0}), ext{property}_{0.0}(x,y) ext{property}_{0.0$	$\text{erty}_{15.0}, \text{property}_{65.0}), '\text{standard}'_{0.0}, \text{room}_{0.0})), \text{I've}_{0.0}, \text{olny}_{0.0})$	