Druga metoda Lapunowa				
Dominik Wróbel	17 IV 2018	Wt 09:30		

Spis treści

I	Cel cwiczenia		1	
2	Przebieg ćwiczenia			1
2.1 Zadanie 4.2			ie 4.2	1
		2.1.1	Wyznaczenie punktów równowagi	2
		2.1.2	Badanie stabilności za pomocą II metody Lapunowa	2
		2.1.3	Badanie stabilności metodą linearyzacji - porównanie metod	3
		2.1.4	Wyznaczenie obszaru atrakcji przy pomocy twierdzenia LaSalle'a	3
		2.1.5	Wyznaczenie obszaru atrakcji przy pomocy eksperymentu	5
	2.2	Zadan	ie 4.1	7
		2.2.1	Wyznaczenie punktów równowagi	8
		2.2.2	Badanie stabilności za pomocą II metody Lapunowa - funkcjonał I	8
		2.2.3	Wyznaczenie obszaru atrakcji przy pomocy twierdzenia LaSalle'a - funk-	
			cjonał I	9
		2.2.4	Badanie stabilności za pomocą II metody Lapunowa - funkcjonał II	10
		2.2.5	Wyznaczenie obszaru atrakcji przy pomocy zmodyfikowanego twierdze-	
			nia LaSalle'a - funkcjonał II	12
		2.2.6	Wyznaczenie obszaru atrakcji przy pomocy eksperymentu	13
3	Wni	oski ko	ήςουνο	15

1. Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z działaniem i stosowaniem drugiej metody Lapunowa do badania nieliniowych układów dynamicznych. Rozważane przykłady pozwolą na obserwacje działania drugiej metody Lapunowa oraz wyznaczenie jej wad i zalet, a także porównanie do metody pierwszej.

2. Przebieg ćwiczenia

2.1. Zadanie 4.2

W zadaniu rozważany jest nieliniowy układ dynamiczny opisany układem równań:

$$\begin{cases} \dot{x_1}(t) = x_2(t) - x_1(t) + x_1^3(t) \\ \dot{x_2}(t) = -x_1(t) \end{cases}$$

W zadaniu zostaną wykonane następujące punkty:

- Znalezienie punktów równowagi systemu,
- Zbadanie stabilności znalezionych punktów równowagi przy pomocy II metody Lapunowa,
- Zbadanie stabilności znalezionych punktów równowagi przy pomocy metody linearyzacji i porównanie z II metodą Lapunowa,
- Wyznaczenie obszaru atrakcji punktów równowagi przy pomocy twierdzenia LaSalle'a,
- Wyznaczenie obszaru atrakcji punktów równowagi przy pomocy eksperymentów numerycznych

2.1.1. Wyznaczenie punktów równowagi

Punkty równowagi:

$$\begin{cases} -x_1 = 0 \\ x_2 - x_1 + x_1^3 = 0 \end{cases} \implies \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

Układ ma jeden, zerowy punkt równowagi.

2.1.2. Badanie stabilności za pomocą II metody Lapunowa

Zgodnie z zaleceniem w poleceniu do badania stabilności zostanie wykorzystany funkcjonał energetyczny:

$$V(x) = \frac{1}{2}(x_1^2 + x_2^2)$$

Funkcjonał ten spełnia założenia:

- $V: \mathbb{R}^2 \to \mathbb{R}$
- ullet Funkcjonał jest ciągły wraz z pierwszymi pochodnymi cząstkowymi względem x_1 oraz x_2 w pewnym otoczeniu zerowego punktu równowagi systemu,
- V(0) = 0 oraz V(0) > 0 w pewnym otoczeniu Ω_1 zera, z wyłączeniem zera

Spełnienie tych warunków jest oczywiste dla funkcjonału energetycznego. Aby móc wnioskować o tym czy funkcjonał ten jest funkcjonałem Lapunowa dla badanego systemu, a później o stabilności tego systemu, poza powyższymi warunkami potrzebne jest jeszcze zbadanie znaku wyrażenia $\dot{V}(x)$.

Funkcjonał będzie funkcjonałem Lapunowa badanego systemu jeśli spełniony będzie warunek :

• $\dot{V}(x) \leq 0$ w pewnym otoczeniu Ω_2 zera

$$\dot{V}(x) = \begin{bmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} \end{bmatrix} \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} x_2 - x_1 + x_1^3 \\ x_1 \end{bmatrix} = x_1^4 - x_1^2 = x_1^2(x_1^2 - 1) = x_1^2(x_1 - 1)(x_1 + 1)$$

Z powyższego równania od razu widać, że powyższy warunek jest spełniony dla $x \in [-1, 1]$ oraz dla dowolnego x_2 . Wiadomo więc, że funkcjonał ten jest funkcjonałem Lapunowa badanego systemu.

Korzystając z twierdzenia Lapunowa można teraz określić stabilność tego punktu równowagi. Przed przystąpieniem do wyznaczania stabilności zauważyć należy, że równanie $\dot{V}(x)=0$ jest spełnione dla wszystkich punktów postaci $(0,x_2)$. Nie można zatem na podstawie twierdzenia Lapunowa wnioskować o stabilności asymptotycznej, a jedynie o stabilności, ponieważ nie można znaleźć otoczenia punktu (0,0) dla którego spełniona byłaby nierówność ostra $\dot{V}(x)<0$.

Punkt (0,0) jest stabilnym punktem równowagi systemu, ponieważ w pewnym otoczeniu zera istnieje funkcjonał Lapunowa V(x) i zachodzi tam nierówność słaba $\dot{V}(x) \leq 0$, dla każdego x należącego do tego otoczenia i $x \neq 0$.

2.1.3. Badanie stabilności metodą linearyzacji - porównanie metod

Zastosowanie metody linearyzacji pozwoli na porównanie działania obu metod. Macierz Jacobiego:

$$J = \begin{bmatrix} -1 + 3x_1^2 & 1\\ -1 & 0 \end{bmatrix}$$

Dla x = (0,0):

$$A = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$$

Równanie charakterystyczne:

$$\det (\lambda I - A) = \lambda^2 + \lambda + 1$$

Wartości własne:

$$\lambda_1 = \frac{-1}{2} - \frac{\sqrt{3}i}{2}$$

$$\lambda_2 = \frac{-1}{2} + \frac{\sqrt{3}i}{2}$$

Części rzeczywiste wszystkich wartości własnych macierzy stanu A liniowego przybliżenia nieliniowego systemu w punkcie równowagi są ujemne więc punkt równowagi nieliniowego systemu jest asymptotycznie stabilny.

I metoda Lapunowa dała wiec w tym przypadku inny, dokładniejszy rezultat niż metoda II.

2.1.4. Wyznaczenie obszaru atrakcji przy pomocy twierdzenia LaSalle'a

Z punktu 2.1.2 wiadomo, że w przypadku rozważanego funkcjonału spełnione są założenia:

- $V: \mathbb{R}^2 \to \mathbb{R}$
- Funkcjonał jest ciągły wraz z pierwszymi pochodnymi cząstkowymi względem x_1 oraz x_2 w pewnym otoczeniu zerowego punktu równowagi systemu,
 - 2.1.4 Wyznaczenie obszaru atrakcji przy pomocy twierdzenia LaSalle'a

- V(0) = 0 oraz V(0) > 0 w pewnym otoczeniu Ω_1 zera, z wyłączeniem zera,
- $\dot{V}(x) \leq 0$ w pewnym otoczeniu Ω_2 zera

Nie można więc zastosować uproszczonej wersji twierdzenia LaSalle'a. Zgodnie z zaleceniem w poleceniu przyjęto, że stała $l=\frac{1}{2}$. Wyznaczenie zbioru Z_l będącego podzbiorem faktycznego obszaru przyciągania odbywa się przy pomocy rozwiązania nierówności V(x) < l.

$$Z_l: \quad \frac{1}{2}(x_1^2 + x_2^2) < \frac{1}{2}$$
 $Z_l: \quad x_1^2 + x_2^2 < 1$

Zbiór Z_l opisany powyższą nierównością jest kołem bez punktów brzegowych o promieniu 1. Następnie poszukiwany jest zbiór E, taki, że:

$$E = \{x \in Z_l : \dot{V}(x) = \frac{\partial V(x)}{\partial x} f(x) = 0\}$$
$$x_1^2(x_1 - 1)(x_1 + 1) = 0$$

Zauważyć należy, że choć rozwiązaniem powyższego równania są punkty dla których $x_1 = 1$ lub $x_1 = -1$, to nie należą one do zbioru Z_l . Dlatego zbiór E to zbiór

$$E = \{(0, x_2), \quad x_2 \in (-1, 1)\}$$

Zbiór ten to zbiór wszystkich punktów na osi x_2 , których wartość jest większa od -1 i mniejsza od 1. Kolejną czynnością jest poszukiwanie największego zbioru inwariantnego $M \subset E$. Jeżeli rozważymy niezerowy punkt należący do zbioru E, to na podstawie pierwszego równania systemu na $\dot{x}_1(t)$ otrzymamy, że $\dot{x}_1(t) \neq 0$, a więc $\dot{x}_1(t)$ zmienia się z upływem czasu, co oznacza, trajektoria startująca z tego punktu nie pozostaje w zbiorze E.

Jedynym punktem należącym do zbioru M jest więc punkt 0. Na podstawie twierdzenia La-Salle'a można więc stwierdzić, że każde rozwiązanie równania systemu startujące z punktu należącego do Z_l dąży do punktu 0 dla $t \to \infty$. Przy pomocy twierdzenia LaSalle'a udało się więc pokazać asymptotyczną stabilność zerowego punktu równowagi, czyli własność silniejszą niż udało uzyskać się przy pomocy II metody Lapunowa.

2.1.5. Wyznaczenie obszaru atrakcji przy pomocy eksperymentu

W celu eksperymentalnego wyznaczenia obszaru atrakcji zerowego punktu równowagi zbudowano model w programie Matlab, który przedstawia Rysunek 1.

Rysunek 1: Model rozważanego systemu

Uzyskany portret fazowy przedstawia Rysunek 2.

Rysunek 2: Portret fazowy badanego systemu, kolorem zielonym oznaczono granicę wyznaczonej analitycznie estymaty obszaru przyciągania, a kolorem brązowym wyznaczony zbiór E.

Na Rysunku 3 przedstawiono estymatę rzeczywistego obszaru przyciągania wyznaczonego na podstawie eksperymentu. Na rysunku widać, że obszar wyznaczony analitycznie jest podzbiorem rzeczywistego obszaru przyciągania.

Rysunek 3: Kolorem pomarańczowym zaznaczono estymatę rzeczywsitego obszaru przyciągania wyznaczonego na podstawie przeprowadzonego eksperymentu

2.2. Zadanie 4.1

W zadaniu rozważany jest nieliniowy układ dynamiczny opisany układem równań:

$$\begin{cases} \dot{x_1}(t) = -x_1(t) + 2x_1^2(t)x_2(t) \\ \dot{x_2}(t) = -x_2(t) \end{cases}$$

W zadaniu zostaną wykonane następujące punkty:

- Znalezienie punktów równowagi systemu,
- Zbadanie stabilności znalezionych punktów równowagi przy pomocy II metody Lapunowa dla dwóch różnych funkcjonałów podanych w zadaniu,
- Analityczne wyznaczenie obszaru atrakcji punktów równowagi przy pomocy twierdzenia LaSalle'a dla obu funkcjonałów,
- Wyznaczenie obszaru atrakcji punktu równowagi przy pomocy eksperymentów numerycznych

2.2.1. Wyznaczenie punktów równowagi

Wyznaczenie punktów równowagi:

$$\begin{cases} -x_2 = 0 \\ -x_1 + 2x_1^2 x_2 = 0 \end{cases} \implies \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

Układ ma jeden, zerowy punkt równowagi.

2.2.2. Badanie stabilności za pomocą II metody Lapunowa - funkcjonał I

Zgodnie z zaleceniem w poleceniu do badania stabilności zostanie wykorzystany funkcjonał postaci:

$$V(x) = \frac{1}{2}x_1^2 + x_2^2$$

Funkcjonał ten spełnia założenia:

- $V: \mathbb{R}^2 \to \mathbb{R}$
- Funkcjonał jest ciągły wraz z pierwszymi pochodnymi cząstkowymi względem x_1 oraz x_2 w pewnym otoczeniu zerowego punktu równowagi systemu,
- V(0) = 0 oraz V(x) > 0 w pewnym otoczeniu Ω_1 zera, z wyłączeniem zera

Spełnienie tych warunków jest oczywiste dla przyjętego funkcjonału. Aby móc wnioskować o tym czy funkcjonał ten jest funkcjonałem Lapunowa dla badanego systemu, a później o stabilności tego systemu, poza powyższymi warunkami potrzebne jest jeszcze zbadanie znaku wyrażenia $\dot{V}(x)$. Funkcjonał będzie funkcjonałem Lapunowa badanego systemu jeśli spełniony będzie warunek :

• $\dot{V}(x) \leq 0$ w pewnym otoczeniu Ω_2 zera

$$\dot{V}(x) = \begin{bmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} \end{bmatrix} \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} x_1 & 2x_2 \end{bmatrix} \begin{bmatrix} -x_1 + 2x_1^2 x_2 \\ -x_2 \end{bmatrix} = -x_1^2 + 2x_1^3 x_2 - 2x_2^2$$

Z powyższego równania widać, że dla x należących do II lub IV ćwiartki układu współrzędnych (x1,x2) oraz dla punktów leżących na osiach tego układu całe wyrażenie jest ujemne. Rozważmy teraz sytuacje w której x należy do I lub III ćwiartki. Rozwiązanie nierówności w tej sytuacji nie

jest łatwe dlatego posłużono się szacowaniem rozwiązania. W tym przypadku mamy gwarancję, że wyrażenie $\frac{1}{x_1x_2}>0$. Mnożąc przez to wyrażenie obie strony nierówności otrzymamy :

$$-x_1^2 - 2x_2^2 + 2x_1^3x_2 < 0$$
$$\frac{-x_1}{x_2} - 2\frac{x_2}{x_1} + 2x_1^2 < 0$$
$$2x_1^2 < 2\frac{x_2}{x_1} + \frac{x_1}{x_2}$$

Rozważając powyższą nierówność dla liczb $|x_1| < \frac{1}{\sqrt{2}}$ oraz $|x_2| < \frac{1}{\sqrt{2}}$ należących do I lub III ćwiartki układu współrzędnych zauważamy, że nierówność ta jest zawsze spełniona, ponieważ:

- wyrażenie po lewej stronie musi mieć wartość mniejszą od 1, gdyż $|x_1| < \frac{1}{\sqrt{2}}$,
- w wyrażeniu po prawej stronie mamy dzielenie przez siebie dwóch liczb mniejszych od 1
 w wyniku czego jedno z tych dzieleń daje liczbę większą od 1, co gwarantuje, że prawa
 strona jest większa od lewej, a ponadto wyrażenia po stronie prawej są zawsze dodatnie w
 rozważanych ćwiartkach układu współrzędnych,
- w przypadku gdy x1 = x2 otrzymuje się wartość 3 po prawej stronie, co również spełnia nierówność

Nierówność wyjściowa jest więc spełniona w I i III ćwiartce w pewnym otoczeniu 0. Ostatecznie więc nierówność $-x_1^2-2x_2^2+2x_1^3x_2<0$ jest spełnialna w każdej z ćwiartek układu w pewnym otoczeniu 0 $\left(np.\quad\Omega=\{(x_1,x_2):|x_1|<\frac{1}{\sqrt{2}},\quad|x_2|<\frac{1}{\sqrt{2}}\}\right)$, co dowodzi, że istnieje otoczenie 0 dla którego $\dot{V}(x)<0$, a tym samym badany funkcjonał jest funkcjonałem Lapunowa tego systemu.

Stosując teraz twierdzenie Lapunowa do badanego systemu otrzymamy wniosek:

Punkt (0,0) jest asymptotycznie stabilnym punktem równowagi systemu, ponieważ w pewnym otoczeniu zera istnieje funkcjonał Lapunowa V(x) i zachodzi tam nierówność silna $\dot{V}(x) < 0$, dla $x \neq 0$. Punkt (0,0) nie jest globalnie asymptotycznie stabilny.

2.2.3. Wyznaczenie obszaru atrakcji przy pomocy twierdzenia LaSalle'a - funkcjonał I

Z punktu 2.2.2 wiadomo, że w przypadku rozważanego systemu spełnione są założenia:

- $V: \mathbb{R}^2 \to \mathbb{R}$
- Funkcjonał jest ciągły wraz z pierwszymi pochodnymi cząstkowymi względem x_1 oraz x_2 w pewnym otoczeniu zerowego punktu równowagi systemu,
- V(0) = 0 oraz V(0) > 0 w pewnym otoczeniu Ω_1 zera, z wyłączeniem zera,
- $\dot{V}(x) < 0$ w pewnym otoczeniu Ω_2 zera

2.2.3 Wyznaczenie obszaru atrakcji przy pomocy twierdzenia LaSalle'a - funkcjonał I

Można więc zastosować uproszczoną wersję twierdzenia LaSalle'a. Wyznaczenie zbioru dla którego spełnione są założenia twierdzenia zostanie przeprowadzone na podstawie rozważań z punktu 2.1.2, z którego wiadomo, że:

- Dla każdego punktu znajdującego się w II lub IV ćwiartce lub na osiach układu współrzędnych (x1,x2) są spełnione założenia twierdzenia LaSalle'a.
- Założenia twierdzenia LaSalle'a są na pewno spełnione w ćwiartce I i III, o ile $|x_1| < \frac{1}{\sqrt{2}}$ oraz $|x_2| < \frac{1}{\sqrt{2}}$, gdzie (x1,x2) to punkt z I lub III ćwiartki.

Jeżeli zatem znaleziony zostanie zbiór Z_l zawierający się w zbiorze A opisanym warunkami :

$$A = \{(x_1, x_2) : |x_1| < \frac{1}{\sqrt{2}}, |x_2| < \frac{1}{\sqrt{2}}\}$$

to wówczas mamy gwarancję, że warunki twierdzenia LaSalle'a są spełnione dla zbioru Z_l , ponieważ jest on podzbiorem zbioru dla którego założenia twierdzenia są spełnione. Przyjmując $l=rac{1}{4}$ otrzymamy zbiór Z_l :

$$Z_l = \{(x_1, x_2): \frac{x_1^2}{2} + x_2^2 < \frac{1}{4}\}$$

Zbiór ten spełnia założenia ponieważ jest podzbiorem zbioru A. Nierówność opisująca zbiór to elipsa, której połowa dłuższej półosi ma długość $\frac{1}{\sqrt{2}}$. Nie jest to w tym przypadku maksymalna możliwa wartość l, ponieważ nie udało się rozwiązać w sposób dokładny nierówności $\dot{V}(x) < 0$.

Badanie stabilności za pomocą II metody Lapunowa - funkcjonał II

Zgodnie z zaleceniem w poleceniu do badania stabilności zostanie wykorzystany funkcjonał postaci:

$$V(x) = \frac{x_1^2}{1 - x_1 x_2} + x_2^2$$

Dziedzina tego funkcjonału:

$$D = \{(x_1, x_2) \in \mathbb{R}^2 : 1 - x_1 x_2 \neq 0\}$$

$$D = \{(x_1, x_2) \in R^2 : x_2 \neq \frac{1}{x_1}\}$$

 $D=\{(x_1,x_2)\in R^2: 1-x_1x_2\neq 0\}$ $D=\{(x_1,x_2)\in R^2: x_2\neq \frac{1}{x_1}\}$ Aby funkcjonał V(x) mógł być funkcjonałem Lapunowa muszą być spełnione założenia :

- $V: \mathbb{R}^n \supset \Omega \to \mathbb{R}$
- Funkcjonał jest ciągły wraz z pierwszymi pochodnymi cząstkowymi względem x_1 oraz x_2 w pewnym otoczeniu zerowego punktu równowagi systemu,
- V(0) = 0 oraz V(x) > 0 w pewnym otoczeniu Ω_1 zera, z wyłączeniem zera

Założenie V(x) > 0 można łatwo uzasadnić rozważając wartość wyrażenia $-x_1x_2$. Wyrażenie to:

- Dla x₁, x₂ należących do II lub IV ćwiartki ma wartość dodatnią więc V(x) ma wartość dodatnia,
 - 2.2.4 Badanie stabilności za pomocą II metody Lapunowa - funkcjonał II

- Dla x_1, x_2 leżących na osiach układu współrzędnych ma wartość zerową więc V(x) ma wartość dodatnia,
- dla x_1, x_2 należących do I lub III ćwiartki ma wartość ujemną, V(x) pozostanie dodatnie o ile spełnione będą warunki $x_2 < \frac{1}{x_1}$ w pierwszej ćwiartce oraz $x_2 > \frac{1}{x_1}$ w III ćwiartce. Warunki te wynikają z nierówności stanowiącej o tym, że mianownik pierwszego składnika V(x) ma być dodatni

Dla spełnienia wszystkich założeń ograniczamy zbiór dziedziny do zbioru Ω : $\Omega=\{(x_1,x_2):x_2\leq \frac{1}{x_1} \text{ dla } x\in II, III, \ x_2>\frac{1}{x_1} \text{ dla } x\in I,IV\}$ Graficznie zbiór Ω jest zaznaczony na Rysunku 4.

Rysunek 4: Zbiór Ω - bez czerwonych linii funkcji $x_2 = \frac{1}{x_1}$

Aby móc wnioskować o tym czy funkcjonał ten jest funkcjonałem Lapunowa dla badanego systemu, a później o stabilności tego systemu, poza powyższymi warunkami potrzebne jest jeszcze zbadanie znaku wyrażenia $\dot{V}(x)$.

Funkcjonał będzie funkcjonałem Lapunowa badanego systemu jeśli spełniony będzie warunek :

• $\dot{V}(x) \leq 0$ w pewnym otoczeniu Ω_2 zera

$$\dot{V}(x) = \begin{bmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} \end{bmatrix} \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} \frac{2x_1 - x_1^2 x_2}{(1 - x_1 x_2)^2} & \frac{x_1^3}{(1 - x_1 x_2)^2} + 2x_2 \end{bmatrix} \begin{bmatrix} -x_1 + 2x_1^2 x_2 \\ -x_2 \end{bmatrix} = \frac{(2x_1 - x_1^2 x_2)(-x_1 + 2x_1^2 x_2)}{(1 - x_1 x_2)^2} + \frac{-x_1^3 x_2}{(1 - x_1 x_2)^2} - 2x_2^2 = \frac{-2x_1^4 x_2^2 - 2x_2^2 x_2^4 + 4x_1 x_2^3 + 4x_1^3 x_2 - 2x_1^2 - 2x_2^2}{(1 - x_1 x_2)^2} = \frac{-2x_1^4 x_2^2 - 2x_2^2 x_2^4 + 4x_1 x_2^3 + 4x_1^3 x_2 - 2x_1^2 - 2x_2^2}{(1 - x_1 x_2)^2} = \frac{-2x_1^4 x_2^2 - 2x_2^2 x_2^4 + 4x_1 x_2^3 + 4x_1^3 x_2 - 2x_1^2 - 2x_2^2}{(1 - x_1 x_2)^2} = \frac{-2x_1^4 x_2^2 - 2x_2^2 x_2^4 + 4x_1 x_2^3 + 4x_1^3 x_2 - 2x_1^2 - 2x_2^2}{(1 - x_1 x_2)^2} = \frac{-2x_1^4 x_2^2 - 2x_2^2 x_2^4 + 4x_1 x_2^3 + 4x_1^3 x_2 - 2x_1^2 - 2x_2^2}{(1 - x_1 x_2)^2} = \frac{-2x_1^4 x_2^2 - 2x_1^2 x_2^2 + 4x_1 x_2^3 + 4x_1^3 x_2 - 2x_1^2 - 2x_2^2}{(1 - x_1 x_2)^2} = \frac{-2x_1^4 x_2^2 - 2x_1^2 x_2^2 + 4x_1 x_2^3 + 4x_1^3 x_2 - 2x_1^2 - 2x_2^2}{(1 - x_1 x_2)^2} = \frac{-2x_1^4 x_2^2 - 2x_1^2 x_2^2 + 4x_1 x_2^3 + 4x_1^2 x_2 - 2x_1^2 - 2x_2^2}{(1 - x_1 x_2)^2} = \frac{-2x_1^4 x_2^2 - 2x_1^2 x_2^2 + 4x_1 x_2^3 + 4x_1^2 x_2 - 2x_1^2 - 2x_2^2}{(1 - x_1 x_2)^2} = \frac{-2x_1^4 x_2^2 - 2x_1^2 x_2^2 + 4x_1 x_2^3 + 4x_1^2 x_2 - 2x_1^2 - 2x_2^2}{(1 - x_1 x_2)^2} = \frac{-2x_1^4 x_2^2 - 2x_1^2 - 2x_1^2 + 4x_1^2 x_2}{(1 - x_1 x_2)^2} = \frac{-2x_1^4 x_1^2 - 2x_1^2 + 4x_1^2 x_2^2 + 4x_1^2 x_2^2 - 2x_1^2 - 2x_1^2 + 4x_1^2 x_2^2 + 4x_1^2 x_1^2 + 4x_1^2 x_2^2 + 4x$$

2.2.4 Badanie stabilności za pomocą II metody Lapunowa - funkcjonał II

$$2\frac{-x_1^4x_2^2 - x_2^2x_2^4 + 2x_1x_2^3 + 2x_1^3x_2 - x_1^2 - x_2^2}{(1 - x_1x_2)^2} =$$

$$2\frac{-x_1^4x_2^2 - x_2^2x_2^4 + 2x_1x_2(x_2^2 + x_1^2) - (x_1^2 + x_2^2)}{(1 - x_1x_2)^2} =$$

$$2\frac{-x_1^2x_2^2(x_1^2 + x_2^2) + 2x_1x_2(x_2^2 + x_1^2) - (x_1^2 + x_2^2)}{(1 - x_1x_2)^2} =$$

$$2\frac{(x_1^2 + x_2^2)(-x_1^2x_2^2 + 2x_1x_2 - 1)}{(1 - x_1x_2)^2} =$$

$$-2\frac{(x_1^2 + x_2^2)(1 - x_1x_2)^2}{(1 - x_1x_2)^2} =$$

$$-2(x_1^2 + x_2^2) \le 0 \quad \forall x \in \Omega$$

Z powyższego równania widać, że dla dowolnych $x \in \Omega$ różnych od 0 wyrażenie $\dot{V}(x)$ ma wartość ujemną, a zatem badany funkcjonał jest funkcjonałem Lapunowa tego systemu. Stosując teraz twierdzenie Lapunowa do badanego systemu otrzymamy wniosek :

Punkt (0,0) jest asymptotycznie stabilnym punktem równowagi systemu, ponieważ w pewnym otoczeniu zera istnieje funkcjonał Lapunowa V(x) i zachodzi tam nierówność silna $\dot{V}(x) < 0$, dla $x \neq 0$. Punkt (0,0) nie jest globalnie asymptotycznie stabilny, ponieważ rozważania są ograniczone do podzbioru R^n

2.2.5. Wyznaczenie obszaru atrakcji przy pomocy zmodyfikowanego twierdzenia LaSalle'a - funkcjonał II

Z punktu 2.2.4 wiadomo, że w przypadku rozważanego systemu spełnione są założenia:

- $R^n \supset \Omega \to R$
- Funkcjonał jest ciągły wraz z pierwszymi pochodnymi cząstkowymi względem x_1 oraz x_2 w pewnym otoczeniu zerowego punktu równowagi systemu,
- V(0) = 0 oraz V(0) > 0 w pewnym otoczeniu Ω_1 zera, z wyłączeniem zera,
- $\dot{V}(x) < 0$ w pewnym otoczeniu Ω_2 zera

Zbiór Ω został wyznaczony w poprzednim punkcie. W tym przypadku konieczne jest zastosowanie zmodyfikowanego twierdzenia LaSalle'a, ponieważ $\Omega \neq R^n$. Poszukiwany zbiór Z_l nie może mieć punktów wspólnych z wyznaczonym zbiorem Ω .

 $\partial Z_l\cap\partial\Omega=\emptyset$. Z poprzedniego punktu wiadomo, że w zbiorze Ω dla dowolnego $x\in\Omega$ są spełnione warunki

- V(x) > 0
- $\dot{V}(x) < 0$

2.2.5 Wyznaczenie obszaru atrakcji przy pomocy zmodyfikowanego twierdzenia LaSalle'a - funkcjonał II

Wynika stąd, że ograniczając rozważania do tego zbioru można przyjąć dowolnie duże l, a rozwiązania nierówności V(x) < l należące do zbioru Ω będą spełniać powyższe warunki. Pozostaje sprawdzić czy zbiory Ω oraz Z_l mogą mieć punkty wspólne, a tym samym czy Z_l zawiera się w Ω . Zbiór Z_l dla dowolnie dużego l jest ograniczany przez poziomice opisaną równaniem :

$$\frac{x_1^2}{1 - x_1 x_2} + x_2^2 = l$$

Poszukujemy punktów wspólnych tej poziomicy oraz brzegu zbioru Ω :

$$\begin{cases} \frac{x_1^2}{1 - x_1 x_2} + x_2^2 = l \\ x_2 = \frac{1}{x_1} \end{cases}$$

Po podstawieniu drugiego z równań do pierwszego otrzymamy sprzeczność, dla dowolnego l, co dowodzi, że brzegi zbiorów nie mają punktów wspólnych. Zatem zbiór Z_l opisany warunkami :

$$Z_l = \{(x_1, x_2) \in \Omega : \frac{x_1^2}{1 - x_1 x_2} + x_2^2 < l\}$$

dla dowolnie dużego l jest estymatą obszaru atrakcji badanego systemu wyznaczoną analitycznie.

2.2.6. Wyznaczenie obszaru atrakcji przy pomocy eksperymentu

W celu eksperymentalnego wyznaczenia obszaru atrakcji zerowego punktu równowagi zbudowano model w programie Matlab, który przedstawia Rysunek 5

Rysunek 5: Model rozważanego systemu

Na Rysunku 6 przedstawiono zachowanie systemu nieliniowego w pewnym otoczeniu punktu równowagi. Czerwonym kolorem zaznaczono brzeg obszaru Ω .

2.2.6 Wyznaczenie obszaru atrakcji przy pomocy eksperymentu

Rysunek 6: Portret fazowy rozważanego systemu, kolor czerwony to brzeg zbioru Ω .

Na Rysunku 7 przedstawiono ten sam portret z zaznaczonymi wyznaczonymi analitycznie obszarami przyciągania dla obu użytych funkcjonałów. Czerwonym kolorem zaznaczono brzeg obszaru Ω . Wnętrze obszaru zielonego to zbiór Z_l wyznaczony dla funkcjonału numer I, wnętrze obszaru pomarańczowego to zbiór Z_l wyznaczony dla funkcjonału numer II.

Rysunek 7: Portret fazowy rozważanego systemu, kolor czerwony to brzeg zbioru Ω , wnętrze obszaru zielonego to zbiór Z_l wyznaczony dla funkcjonału numer I, wnętrze obszaru pomarańczowego to zbiór Z_l wyznaczony dla funkcjonały numer II).

3. Wnioski końcowe

Badanie systemów nieliniowych przy użyciu I metody Lapunowa jest łatwe, ale metodę tą można stosować tylko w określonych przypadkach. Nie można z niej korzystać gdy system liniowy nie poddaje się linearyzacji lub wśród wartości własnych macierzy stanu systemu zlinearyzowanego jest przynajmniej jedna o zerowej części rzeczywistej, a pozostałe mają części rzeczywiste

ujemne. Oprócz tego wadą tej metody jest też to, że nie daje informacji o obszarze przyciągania.

Gdy nie można stosować I metody Lapunowa, często rozwiązaniem problemu jest zastosowanie II metody Lapunowa. Zaletą tej metody jest to, że może być stosowana w większej liczbie przypadków niż metoda pierwsza. Ponadto przy jej pomocy można wyznaczyć przybliżenie obszaru przyciągania. Wadą tej metody jest konieczność poszukiwania odpowiedniego funkcjonału oraz rozwiązywanie nierówności. Stosowanie tej metody jest w związku z tym często trudniejsze niż stosowanie metody pierwszej.

Przeprowadzone eksperymenty i obliczenia pokazały, że dla różnych funkcjonałów stopień skomplikowania obliczeń może być różny, a także różne mogą być rezultaty stosowania metody LaSalle'a. Dla stosowanych funkcjonałów należy zawsze pamiętać o spełnieniu przez funkcjonały odpowiednich założeń.