

Malware Resistant PCs: A Thing Of The Future?

Name:

Ellie Lew Yi Ting Wong Xiaoqing Aloysius Ong Wei Han Wang Guanlan Clenlin D'cruz Tan Yi Heng

Matriculation Number:

U1810880J U1822123C U1810928A U1820588E U1810393F U1821247A A New Level Of Terror

Problem breakdown & analysis of cybersecurity issues

01

04

Malware-resistant PCs

Key Influencing factors and predictive models

The Battle Between Giants

Apple vs Microsoft and the key business question

02

) Com

Comparing the models

A comparison of 9-variable vs 32-variable models

Under the magnifier

Data exploration and cleaning of the dataset

03

06

Conclusion & Summary

How Microsoft can use the insights developed

Speaker: Ellie

01 A New Level

Problem breakdown & Analysis of cybersecurity issues

Of Terror

What is malware and why is it bad?

Definition: malicious software that is designed to impair and demolish computers & computer systems

Operation 'Red October'

Victims of a cyber-espionage attack

Examples include:

- 1. Trojan horse
- 2. Spyware
- 3. Adware
- 4. Ransomware

The 4 challenges of malware to businesses

Loss of trade secrets

In a knowledge-driven
marketplace, the company's IP is
especially pivotal to the value of
its business & the loss could
threaten its existence

Loss of productivity

An infection may cause productive processes to stop, & such productivity losses can amount to US\$112 billion globally

Loss of reputation

On average, companies lose \$4.13m from turnover of customers, reputation losses and diminished goodwill Changing workplaces

'Anytime, anywhere' endpoint devices results in a no longer a secure perimeter within which business devices, applications and data can be protected

Attacks are increasingly frightening given the high intensity of damage and the high frequency

02

The Battle Between Giants

Apple vs Microsoft and the key business question

The Battle Between Giants

The gap between PC & Mac Sales are narrowing, with one of the reasons being Microsoft is less safe than Mac

Why is Windows PC not as safe?

- Outsource hardware manufacturing whereas Apple builds its own hardwares
- Proprietary software bugs can only be fixed by Microsoft team instead of the open source community
- 3. **Less authorisation** of applications

Speaker: Ellie

How to accurately predict malware attacks using features of a Windows machine?

Speaker: Ellie

2 - pronged approach is being used

Key Influencing Factors

Analysing the variables within a dataset to sieve out potential factors that are influential in affecting malware prediction - one-step closer to malware resistant PCs

Prediction Models

To determine the probability of malware attacks with the identified hardware features - identify existing computers with high likelihood of attacks, and develop early interventions to minimise impact

03 Under The Magnifier

Data cleaning and exploration

Data Cleaning

Dataset obtained from Microsoft Malware Prediction Competition from Kaggle.com had 83 columns.

Used domain knowledge and information regarding the variables to remove unnecessary columns, leaving 33 variables:

Binary dependent variable, HasDetections, and 32 independent variables.

9 out of 32 Independent Variables

Census_ProcessorCoreCount Census_InternalPrimaryDiagonal **DisplaySizeInInches**

Census IsTouchEnabled

Census_SystemVolumeTotalCapacity | Census_HasOpticalDiskDrive

Census PrimaryDiskTypeName

Census TotalPhysicalRAM

Firewall

Processor

Process architecture of the installed operating system.

3 types of processors in the dataset: arm64, x84 and x64.

Suggests that x64 processors are the most susceptible to malware attacks while arm64 are **safe**.

Processor vs HasDetections

Difficult to use processor to predict malware due to limited number of different types and most Windows machine uses x86.

Census_ProcessorCoreCount

Number of logical cores in processor.

Logical cores determine the processing capabilities of a Windows machine.

Most machines have 4.

1 core machines are safest with 30% having malware, whereas 45% of 2 cores machines have malware and 51% of 4 cores machines have malware.

Number of cores in a Windows machine is **significant** in predicting malware attacks.

Census_InternalPrimaryDiagonalDisplaySizeInInches

The physical diagonal length of the machine's primary display in inches.

Both seem to have almost the same distribution with the exception of a few outliers.

Primary Diagonal Display Size alone may not be significant in predicting malware attacks.

Speaker: Xiaoqing

Census_IsTouchEnabled

Whether or not the machine has touch capability.

Enables the user to interact with the machine using their fingers or a stylus, instead of using a mouse or a touchpad.

A larger proportion of Windows Machines with no Touch enabled feature have been detected to have malware

Touch capability **may be a significant factor** for a computer to be less prone to being attacked by malware.

Census_SystemVolumeTotalCapacity

System Volume Total Capacity alone **may not be significant** in predicting malware attacks.

O4
Malware-resistant
PCs
Association Rule

Association Rules $(X \rightarrow Y)$

Support

Measures how frequently an item occurs and how often a rule is applicable

Confidence

Measures the probability of Y occurring, considering X has occurred

Lift

Measures how useful the rule is based on the context of the dataset and circumstances

Thresholds

To ensure that when the antecedent is present, the consequent is also likely to be present

Minimum to be 1.5%

Confidence

Minimum to be 15%

Lift

Minimum to be 1

Association Rules (HasDetections = Yes)

Antecedent		C	onsequent	
	Census_InternalPrimaryDiago nalDisplaySizeInInches = 21.5		HasDetections = Yes	
Confidence	Support		Lift	
0.5400	0.0169		1.08	

Association Rules (HasDetections = Yes)

Antecedent		Consequent		
_	Census_Processor CoreCount = 8		HasDetections = Yes	
Confidence	Support		Lift	
O.552	0.0	542	1.11	

Association Rules (HasDetections = No)

Antecedent		C	onsequent
Census_InternalPrimaryDiago nalDisplaySizeInInches = 11.6 HasDetections = No		Detections = No	
Confidence	Support		Lift
0.5487	0.0199		1.10

Association Rules (HasDetections = No)

Anteceden	ntecedent		onsequent	
Processor = x8	6	Has	HasDetections = No	
Confidence	Support		Lift	
0.620	0.0	557	1.24	

What can the x86 Processor do

- Allows for the assembly of Shellcode and the breaking down of malware
- Malware is often hidden within Shellcode, which could directly alter the programme and cause bugs

Speaker: Guanlan

O4
Malware-resistant
PCs:
Predictive Models

Predictive Models

Logistic Regression (9 Variables)

Logistic Regression Variable	Coefficient
Census_TotalPhysicalRAM:4095.0	-1.00632
Census_InternalPrimaryDiagonalDisplaySizeInInches:8.8	-0.99003
Census_TotalPhysicalRAM:2047.0	-0.96696
Census_InternalPrimaryDiagonalDisplaySizeInInches:20.2	-0.88575
Census_InternalPrimaryDiagonalDisplaySizeInInches:8.0	-0.84325
Census_InternalPrimaryDiagonalDisplaySizeInInches:9.8	-0.84302
Census_InternalPrimaryDiagonalDisplaySizeInInches:27.9	0.939313
Census_InternalPrimaryDiagonalDisplaySizeInInches:32.0	0.807833
Census_InternalPrimaryDiagonalDisplaySizeInInches:19.7	0.803696

- Trainset Accuracy: **55.34%**
- Testset Accuracy: **55.08%**

Logistic Regression (32 Variables)

Logistic Regression Variables	Coefficient
AvSigVersion:1.273.1328.0	-1.2622
AvSigVersion:1.275.1718.0	-1.23009
AvSigVersion:1.273.1253.0	-1.22525
AvSigVersion:1.275.461.0	-1.20176
Cesus_PrimaryDiskTotalCapacity:61440.0	-1.19824
AvSigVersion:1.273.1393.0	-1.1628
AvSigVersion:1.275.884.0	-1.15523
AvSigVersion:1.273.761.0	-1.11052
AvSigVersion:1.273.1739.0	-1.05574
Census_InternalPrimaryDiagonalDisplaySizeInInches: 10.6	-1.05344

Logistic Regression (32 Variables)

Logistic Regression Variables	Coefficient
AvSigVersion:1.275.132.0	1.362692
EngineVersion:1.1.15300.5	1.321501
SmartScreen:ExistsNotSet	1.264652
AvSigVersion:1.275.845.0	1.198322
AvSigVersion:1.275.164.0	1.152892
AvSigVersion:1.275.617.0	1.11545
AppVersion:4.10.14393.953	1.108201
AvSigVersion:1.275.380.0	1.106163
AvSigVersion:1.275.378.0	1.097013
AvSigVersion:1.275.675.0	1.082119

- Trainset Accuracy: **67.41%**
- Testset Accuracy: 65.02%

Models

Logistic Regression

- Binary dependent variable
- Feature selection

Random Forest

- Fit classifying decision trees to improve prediction accuracy
- Feature selection

Random Forest (9 Variables)

Random Forest Variable	Importance
Census_SystemVolumeTotalCapacity	0.590201
Census_InternalPrimaryDiagonalDisplaySizeInInches:15.5	0.023095
Census_InternalPrimaryDiagonalDisplaySizeInInches:13.9	0.014776
Census_InternalPrimaryDiagonalDisplaySizeInInches:14.0	0.014442
Census_ProcessorCoreCount:4.0	0.011251
Census_PrimaryDiskTypeName:HDD	0.01106
Census_HasOpticalDiskDrive:1	0.010951
Census_HasOpticalDiskDrive:0	0.010937
Census_TotalPhysicalRAM:8192.0	0.010552
Census_InternalPrimaryDiagonalDisplaySizeInInches:21.5	0.010132

- Trainset Accuracy: **55.64%**
- Testset Accuracy: **55.06%**

Random Forest (32 Variables)

Random Forest Variable	Importance
Census_SystemVolumeTotalCapacity	0.103173
SmartScreen:ExistsNotSet	0.076835
AVProductsInstalled:1.0	0.017754
AppVersion:4.18.1807.18075	0.009518
EngineVersion:1.1.15100.1	0.008101
Census_InternalPrimaryDiagonalDisplaySizeInInches:15.5	0.007995
Census_TotalPhysicalRAM:4096.0	0.00741
Census_OSInstallTypeName:Update	0.006999
Census_OSInstallTypeName:UUPUpgrade	0.00691
Census_OSWUAutoUpdateOptionsName:Notify	0.00691

- Trainset Accuracy: 67.99%
- Testset Accuracy: **65.22%**

Models

Logistic Regression

- Binary dependent variable
- Feature selection

Random Forest

- Fit classifying decision trees to improve prediction accuracy
- Feature selection

Neural Network

- Recognise hidden patterns and correlations in raw data
- Ability to continuously learn and improve

MLP (9 Variables)

MLP	False Positive Error Rate	False Negative Error Rate	Overall Accuracy
Train Set	37.44%	8.12%	54.44%
Test Set	37.79%	8.12%	54.09%

LSTM (9 Variables)

LSTM	False Positive Error Rate	False Negative Error Rate	Overall Accuracy
Train Set	3.02%	3.43%	93.55%
Test Set	24.53%	23.06%	52.42%

Speaker: Clenlin

05

Comparing the Models

A comparison of 9-variable vs 32-variable models

Comparing Models

Logistic Regression

- Binary dependent variable
- Feature selection

Random Forest

- Fit classifying decision trees to improve prediction accuracy
- Feature selection

Neural Network

- Recognise hidden patterns and correlations in raw data
- Ability to continuously learn and improve

Comparing Models (9 Variable)

Model	False Negative Error Rate	Overall Accuracy
Logistic	18.81%	55.08%
Random Forest	17.74%	55.06%
MLP	8.12%	54.09%
LSTM	23.06%	52.42%

Comparing Models (32 Variable)

Model	False Negative Error Rate	Overall Accuracy
Logistic	18.72%	65.02%
Random Forest	15.21%	65.22%
MLP	13.04%	64.07%
LSTM	18.84%	64.23%

06 Recommended Solutions

Key Influencing Factors

Prediction Models

Focus on Important Features

Improve Existing Devices

Testing New Devices

1. Focus on important features to enhance cybersecurity

Important Features			
Processor			
Census_SystemVolumeTotalCapacity			
Census_PrimaryDiskTotalCapacity			
EngineVersion			
AvSigVersion			
SmartScreen			
AVProductsInstalled			

Collaboration with manufacturers to research and investigate the relationship between these features with malware attacks

Produce devices with the necessary hardware features to become more secure

1. Focus on important features to enhance cybersecurity

Microsoft will be able to change the current impression that their devices are less safe than Apple products.

2. Improving Existing Devices

- Test existing Windows machines in the market
- Sieve out devices with high vulnerability to malware.

2. Improving Existing Devices

Recall Unsecured Devices

Introduce Software Updates

Limit production and marketing for unsecured devices. Reduce number of unsecured devices in the market

Improve the Windows Defenders application and it's Antivirus Signature Version in these devices.

3. Testing New Devices

- Test new windows machines
- Prevent insecure devices from entering the market
- Introduce specifications for secured devices to important industries

Limitations of Our analysis

Key influencing factors are derived from only a part of the dataset.

Lack of a powerful enough GPU, we are unable to run the analysis on all 82 variables

Lack of expertise in terms of computer hardware

Unable to discern the reason why such hardware and software features affects the probability of malware infection

Conclusion

Key Influencing

Consider the key influencing factors during their product development process

Use prediction model to better gauge whether a change in a particular hardware feature is able to reduce the probability of malware infection

THANK YOU

Appendix

Dashboard of most important findings: Dashboard.jpeg

