Chapter 49 Fonctions vectorielles d'une variable réelle

49.1 Généralités sur les fonctions vectorielles

49.2 Limite et continuité d'une fonction vectorielle

49.3 Dérivabilité d'une fonction vectorielle

Exercice 49.1

Soit $F = \mathbb{R}^p$. Déterminer les fonctions $f \in \mathcal{C}^1(I, F)$, ne s'annulant pas sur I, vérifient

$$\forall t \in I, f'(t) \in \text{Vect} \{ f(t) \}.$$

Exercice 49.2 Mouvement à accélération centrale

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}^3$ une fonction de classe \mathscr{C}^2 telle que pour tout $t \in I$, f''(t) est colinéaire à f(t). Pour $t \in I$, on note $\sigma(t) = f(t) \wedge f'(t)$.

- 1. Montrer que la fonction vectorielle σ est constante.
- 2. Montrer que s'il existe $t_0 \in I$ tel que la famille $(f(t_0), f'(t_0))$ soit libre, alors f(I) est inclus dans un plan.

Exercice 49.3

- **1.** Soit $f \in \mathcal{C}^1(I, \mathbb{R}^3)$ et $a, b \in I$. On suppose que f(a) et f(b) sont non colinéaires. Montrer qu'il existe $c \in I$ tel que $f'(c) \in \text{Vect} \{ f(a), f(b) \}$.
- 2. Soit $f \in \mathcal{C}^2(I, \mathbb{R}^3)$ et $a, b \in I$. On suppose que f(a) et f'(a) sont non colinéaires et que $f(b) \in \text{Vect} \{ f(a), f'(a) \}$. Montrer qu'il existe $c \in I$ tel que $f''(c) \in \text{Vect} \{ f(a), f'(a) \}$.

Exercice 49.4 Wronskien

Soient $f: I \to \mathbb{R}^2$ et $g: I \to \mathbb{R}^2$ deux fonctions vectorielles de classe \mathscr{C}^1 .

1. On note C la base canonique de \mathbb{R}^2 . Montrer que l'application

$$\begin{array}{cccc} \varphi : & I & \to & \mathbb{R} \\ & t & \mapsto & \det_{\mathcal{C}}(f(t),g(t)) \end{array}$$

est de classe \mathscr{C}^1 et que

$$\forall t \in I, \varphi'(t) = \det_{\mathcal{B}} \left(f'(t), g(t) \right) + \det_{\mathcal{B}} \left(f(t), g'(t) \right).$$

2. Soient $a: I \to \mathbb{R}$ et $b: I \to \mathbb{R}$ deux fonction continues. On considère deux solutions $y_1: I \to \mathbb{R}$ et $y_2: I \to \mathbb{R}$ de l'équation différentielle

$$y''(t) = a(t)y'(t) + b(t)y(t).$$

Montrer que la fonction $w: I \to \mathbb{R}$ définie par

$$\forall t \in I, w(t) = \begin{vmatrix} f(t) & g(t) \\ f'(t) & g'(t) \end{vmatrix}$$

est solutions d'une équation différentielle linéaire d'ordre 1.

Exercice 49.5

Soit $f: I \to \mathbb{R}^3$ une fonction de classe \mathscr{C}^1 . On suppose qu'il existe un vecteur $v \in \mathbb{R}^3$ tel que

$$\forall t \in I, f'(t) = f(t) \wedge v.$$

- 1. Montrer que l'ensemble f(I) est inclus dans un plan de \mathbb{R}^3 .
- **2.** Montrer que l'ensemble f(I) est inclus dans un cercle.
- **3.** Montrer que l'application $t \mapsto ||f'(t)||$ est constante.