

Факультет программной инженерной и компьютерной техники Информатика

Лабораторная работа №2 Вариант 83

Преподаватель: Малышева Татьяна Алексеевна

Выполнил: Альхимович Арсений Дмитриевич

P3110

Санкт-Петербург, 2023

Условие	.2
Основное задание	.3
задание 1 - №10	.3
задание 2 - №39	.3
задание 3 - №67	.4
задание 4 - №79	.4
задание 5 - №82	.5
задание 6	.5
Дополнительное задание	.6
Код:	.6
Вывод программы	.6
Вывод	.7
Список литературы	.7

Условие

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основное задание

задание 1 - №10

r ₁	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄
1	0	1	0	0	0	0

 $r_1 = i_{1} \oplus i_{2} \oplus i_{4} = 1 \oplus 0 \oplus 0 = 1 - \frac{true}{true}$

 $r_2 = i_1 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 = 1 - false$

 $r_3 = i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 0 = 0 - \frac{true}{1}$

	1	2	3	4	5	6	7
2×	r ₁	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄
1	х	-	х	-	Х	-	х
2	-	Х	х	-	-	Х	х
4	1	1	1	Х	Х	Х	Х

 $^{2^{1} = 2 \}Rightarrow$ ошибка в символе r_{2} , правильное сообщение $1_{1}^{1}10000$

задание 2 - №39

r ₁	r ₂	i ₁	r ₃	i ₂	i ₃	İ4
1	1	0	0	0	1	0

 $r_1 = i_1 \oplus i_2 \oplus i_4 = 0 \oplus 0 \oplus 0 = 0 - \text{false}$

 $r_2 = i_{1} \oplus i_{3} \oplus i_{4} = 0 \oplus 1 \oplus 0 = 1 - \frac{true}{t}$

 $r_3 = i_{2} \oplus i_{3} \oplus i_{4} = 0 \oplus 1 \oplus 0 = 1 - \text{false}$

	1	2	3	4	5	6	7
2×	r ₁	r ₂	i ₁	r ₃	i ₂	i ₃	İ ₄
1	Х	-	Х	-	Х	-	Х

2	-	x x		-	-	Х	Х
4	-	-	-	Х	Х	Х	Х

 $\binom{0}{2} + 2^2 = 5 \Rightarrow$ ошибка в символе **і**2, правильное сообщение 1100**1**10.

задание 3 - №67

r ₁	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄
1	1	0	0	1	0	0

 $r_1 = i_{1} \oplus i_{2} \oplus i_{4} = 0 \oplus 1 \oplus 0 = 1 - \frac{true}{true}$

 $r_2 = i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 0 = 0 - false$

 $r_3 = i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 = 1 - false$

	1	2	3	4	5	6	7
2×	r ₁	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄
1	Х	-	Х	-	Х	-	Х
2	-	х	х	-	-	х	х
4	-	-	-	Х	Х	Х	Х

 $\frac{1}{2}^{1} + 2^{2} = 6 \Rightarrow$ ошибка в символе i3, правильное сообщение 1100110.

задание 4 - №79

r ₁	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄
1	0	0	1	1	0	1

 $r_1 = i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 1 = 0 - \text{false}$

 $r_2 = i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 = 1 - false$

 $r_3 = i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 1 = 0 - false$

	1	2	3	4	5	6	7
2×	r_1	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄
1	х	-	Х	-	Х	-	Х
2	-	Х	Х	-	-	Х	х
4	-	-	-	Х	Х	Х	Х

задание 5 - №82

r ₁	r ₂	i ₁	r ₃	i ₂	i ₃	İ4	r ₄	İ ₅	i ₆	i ₇	i ₈	i 9	i ₁₀	i ₁₁
0	0	1	0	1	0	1	0	0	1	1	0	1	0	1

 $r_1 = i_{1} \oplus i_{2} \oplus i_{4} \oplus i_{5} \oplus i_{7} \oplus i_{9} \oplus i_{11} = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 0 - true$

 $r_2 = i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 1 - false$

 $r_3 = i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 0 - true$

 $r_4 = i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 0 - true$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2×	r ₁	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄	r ₄	i ₅	i ₆	i ₇	i ₈	i 9	i ₁₀	i ₁₁
1	Х	-	Х	-	х	-	х	-	Х	-	Х	-	Х	-	Х
2	-	Х	Х	ı	•	Х	Х	•	ı	Х	Х	ı	ı	Х	Х
4	-	-	-	Х	Х	Х	Х	-	-	-	-	Х	Х	Х	Х
8	-	-	-	-	-	-	-	Х	Х	Х	Х	Х	Х	Х	Х

 $[\]frac{1}{2}$ = 2⇒ ошибка в символе $^{\circ}$ 2, правильное сообщение 011010100110101.

задание 6

Информационных разрядов в передаваемом сообщении – (67+10+39+79+82) *4 = 1108.

Пусть r — количество проверочных разрядов. Количество информационных разрядов находится по формуле $2^r - r - 1$. Найдем такое ближайшее r, что будет выполняться: $2^r - r - 1 \ge 1108$. (при r = 10, $2^r - r - 1 = 1013$)

Найдем коэффициент избыточности k = r/ (r + i) = 10/ (10 + 1108) \approx 0,00894454

Дополнительное задание

Код:

```
. . .
def main(number):
    powersCount = 1 #количество степеней двойки
    lenghtForPowers = len(number)
    twoInPowers = [1] #Единица есть всегда тк 0 степень
    falseNum = 0
    #получаем сколько степеней двойки
    while lenghtForPowers>2:
         twoInPowers.append(2**(powersCount))
         powersCount+=1
         lenghtForPowers /= 2
    for r in twoInPowers:
         summIndex = 0 #переменная для подсчета сумм по мод 2
         for step in range(r, len(number)+1, 2*r): #шаг и начало зависят от степени if step == r: #убираем саму r (- тк в след ходу она +) summIndex -= int(number[r-1])
             for i in range(r):
                 if step-1+i<=len(number): #проверка выхода за границу
                      summIndex += int(number[step-1+i])
         if summIndex%2 != int(number[r-1]): # подсчет сумм по мод 2
             falseNum += r
    if falseNum != 0: #проверка есть ли ошибка
number = number[:falseNum-1] + str(abs(int(number[falseNum-1])-1)) + number[falseNum:]
    else:
         falseNum = "ошибки нету"
    print(f"Правильное сообщение: {number}, индекс ошибки: {falseNum}")
#примеры с лабы
main("10100000")
main("1100010")
main("1100100")
main("1001101")
main("001010100110101")
#пример сообщения без ошибки
main("1110000")
```

Рисунок 1. Программа на Python (дополнительное задание)

Bывод программы: Правильное сообщение: 1110000, индекс ошибки: 2

Правильное сообщение: 1100110, индекс ошибки: 5

Правильное сообщение: 1100110, индекс ошибки: 6

Правильное сообщение: 1001100, индекс ошибки: 7

Правильное сообщение: 01101010110101, индекс ошибки: 2

Правильное сообщение: 1110000, индекс ошибки: ошибки нету.

Вывод

При выполнении данной работы научился работать с кодом Хэмминга, находить ошибки в переданных сообщениях и исправлять их. Поработал с циклами Python. Данные знания помогут мне в освоении будущей профессии и в освоении моей деятельности.

Список литературы

- Статья хабр "Код Хэмминга. Пример работы алгоритма" https://habr.com/ru/articles/140611/
- Видео-урок на ютуб: https://www.youtube.com/watch?v=ehuNcmE8S84&ab_channel=Artemy