

ECON8040: APPLIED ECONOMETRICS ASSIGNMENT

Name: Mai Vy (Vivian) Nguyen

Student ID: 47554029

TABLE OF CONTENTS

QUESTION 1:	2
QUESTION 2:	
QUESTION 3:	
QUESTION 4:	
QUESTION 5:	
QUESTION 6:	
QUESTION 7:	
7.1. Question 2:	
7.2. Question 3:	23
7.3. Question 4 :	
7.4. Question 5:	
7.5. Question 6:	28
QUESTION 8:	

QUESTION 1:

Plot the CPI inflation rate and comment on its time series behaviour. Does it look stationary? Would you expect it to be stationary?

This is output for the times series of CPI by using View Times Series Plot function on Gretl

Figure 1: Time series plot of CPI inflation rate

The CPI inflation rate time series plot demonstrates significant fluctuations from the first quarter of 1978 to the first quarter of 2024. High volatility is most noticeable before 1985, throughout the early 2000s, and in 2020. From 1978 to 1985, the rate witnessed significant declines, reaching a low of less than 0% in 1984, and reaching its maximum point of 4% in 1981, reflecting the economic instability of that time. Before 2000, the rate steadied in a range of 0 and 2%. However, the early 2000s experienced another

spike, to hit the highest point of nearly 4%. Recently, the CPI inflation rate witnessed a lower rate compared to the previous years in the time series. And the inflation rate hit the bottom of nearly -2% in the earlier period of the COVID-19 pandemic in 2020.

Based on Figure 1, the data clearly shows inflation trends over time. On average, the inflation rate from 1978 to 1990 is higher than in the period following 1990. It also showed higher inflation rates in the earlier years and more stability in the mid-period. Throughout the whole period, there are no obvious long-term trends whether upward or downward. Therefore, the variability indicates that the time series plot for the CPI inflation rate is not stationary

According to the macroeconomic theory, I expect the inflation rate to be stationary. That also is the aim of central banks to stabilise inflation around the target rate. A stable inflation rate is crucial for economic stability and growth. However, the stationary inflation rate has not remained because of the policy and economic changes.

Note: From question 2, I use a common significance level of 5% to test the null hypothesis if the question does not mention any specific significance level.

QUESTION 2:

Estimate an autoregression for the level of the CPI inflation rate. You should estimate the order of the autoregression using the AIC and a maximum possible lag of 6 quarters. In your answer, you should provide a table that contains each order considered and the corresponding value of the AIC. You should place an asterisk next to the smallest value of the AIC.

To estimate an autoregression for the level of CPI inflation rate, I use the Gretl script to create models with lag orders ranging from 1 to 6 quarters.

In this case, I use AIC to select the optimal lag length.

The Gretl Script is below:

```
pmax = 6

besttp =0

bestic = 9999999999999

smpl +(pmax+1) #Ensure the same observation value in any model

loop p = 1..pmax

    ols CPI const CPI(-1 to -p)
    ic = $aic
    if ic < bestic
        besttp = p
        bestic = ic
    endif
endloop</pre>
```

The Gretl output below shows 6 models with AIC that are compatible with using each lag order from 1 to 6:

Model 1: AIC model for CPI lag order from 1 to 1

OLS, using observations 1979:4-2024:1 (T = 178) Dependent variable: CPI

	coeffi	cient	std.	erro	r t-ratio p	-value	
const	0.417	 294	0.08	10541	5.148 6	5.98e-07	***
CPI_1	0.570	905	0.06	11203	9.341 4	1.23e-17	***
Mean depende	nt var	0.983	708	S.D.	dependent var	0.8750	88(
Sum squared	resid	90.61	988	S.E.	of regression	0.7175	555
R-squared		0.331	430	Adju	sted R-squared	0.3276	531
F(1, 176)		87.24	824	P-va	lue(F)	4.23e-	-17
Log-likeliho	od	-192.4	863	Akai	ke criterion	388.97	726
Schwarz crit	erion	395.3	361	Hanna	an-Quinn	391.55	531
rho		-0.200	261	Durb	in's h	-4.6158	353

Model 2: AIC model for CPI lag order from 1 to 2

OLS, using observations 1979:4-2024:1 (T = 178)

	coefficient		std. error		r t-ratio	p-value	
const	0.278	248	0 08	 21029	3.389	0.0009	***
CPI 1	0.375			11136	5.285	3.71e-07	***
CPI 2	0.331			05001	4.702	5.21e-06	* * *
_							
Mean depende	nt var	0.983	708	S.D.	dependent var	0.875	388
Sum squared	resid	80.45	672	S.E.	of regression	o.678	051
R-squared		0.406	411	Adjus	sted R-squared	d 0.399	627
F(2, 175)		59.90	833	P-val	Lue(F)	1.51e	-20
Log-likeliho	od	-181.8	994	Akail	ke criterion	369.7	987
Schwarz crit	erion	379.3	441	Hanna	an-Quinn	373.6	696
rho		-0.078	080	Durbi	in's h	-3.297	015

Model 3: AIC model for CPI lag order from 1 to 3

OLS, using observations 1979:4-2024:1 (T = 178)

Dependent variable: CPI

	coeffi	cient	std.	erro	r i	t-ratio	p-	value	
const	0.219	382	0.08	 29959		2.643	0.	0090	***
CPI_1	0.305	037	0.07	38802		4.129	5.	65e-05	***
CPI_2	0.248	211	0.07	48745		3.315	0.	0011	***
CPI_3	0.211	216	0.07	33072		2.881	0.	0045	***
Mean depende	nt var	0.983	708	S.D.	depe	endent va	ar	0.8750	88
Sum squared	resid	76.79	290	S.E.	of :	regressio	on	0.6643	333
R-squared		0.433	441	Adju	sted	R-square	ed	0.4236	573
F(3, 174)		44.37	248	P-va	lue(달)		2.39e-	-21
Log-likeliho	od	-177.7	513	Akail	ke c	riterion		363.50	26
Schwarz crit	erion	376.2	297	Hanna	an-Qı	uinn		368.66	538
rho		-0.045	902	Durb	in's	h		-3.6322	265

Model 4: AIC model for CPI lag order from 1 to 4

OLS, using observations 1979:4-2024:1 (T = 178)

	coeffi	cient	std.	error	t-ratio	p-valu	е
const	0.179	602	0.08	 33692	2.154	0.0326	- **
CPI_1	0.265	155		45825	3.555	0.0005	***
CPI_2	0.201	434	0.07	61837	2.644	0.0089	***
CPI_3	0.152	314	0.07	60783	2.002	0.0468	**
CPI_4	0.182	809	0.07	39296	2.473	0.0144	**
Mean depende	nt var	0.983	708	S.D.	dependent	var 0.8	75088
Sum squared	resid	74.17	139	S.E.	of regress	ion 0.6	54780
R-squared		0.452	782	Adjust	ted R-squa	red 0.4	40130
F(4, 173)		35.78	619	P-val	ue(F)	9.0	1e-22
Log-likeliho	od	-174.6	600	Akaik	e criterio	on 359	.3200
Schwarz crit	erion	375.2	289	Hannaı	n-Quinn	365	.7715
rho		-0.006	190	Durbi	n's h	-0.8	31446

Model 5: AIC model for CPI lag order from 1 to 5

OLS, using observations 1979:4-2024:1 (T = 178)

Dependent variable: CPI

	coeffi	cient	std.	erro	r t-ratio	p-value	
const	0.180	050	0.08	46592	2.127	0.0349	**
CPI_1	0.265	623	0.07	60770	3.492	0.0006	***
CPI_2	0.201	845	0.07	73696	2.609	0.0099	***
CPI_3	0.152	845	0.07	79105	1.962	0.0514	*
CPI_4	0.183	529	0.07	71562	2.379	0.0185	**
CPI_5	-0.002	54530	0.07	55097	-0.03371	0.9731	
Mean depende	nt var	0.983	708	S.D.	dependent var	0.8750	880
Sum squared	resid	74.17	090	S.E.	of regression	0.656	678
R-squared		0.452	786	Adju	sted R-squared	0.4368	879
F(5, 172)		28.46	388	P-va.	lue(F)	5.78e	-21
Log-likeliho	od	-174.6	594	Akail	ke criterion	361.33	188
Schwarz crit	erion	380.4	095	Hanna	an-Quinn	369.0	606
rho		-0.006	669	Durb	in's h		NA

Excluding the constant, p-value was highest for variable 6 (CPI_5)

Model 6: AIC model for CPI lag order from 1 to 6

OLS, using observations 1979:4-2024:1 (T = 178)

	coeffic	ient	std.	erro	r	t-ratio	p-	value	
const	0.1807 0.2656			 59059 62988		2.105 3.481		0368	**
CPI_2	0.2026	66	0.078	39291		2.568	0.	0111	**
CPI_3 CPI_4	0.1535	-		90667		1.942 2.333		0538 0208	*
CPI_5 CPI_6	-0.0013 -0.0043			36298 61045		-0.01708 -0.05681		9864 9548	
Mean depende	ent var	0.983	708	S.D.	dep	endent var		0.8750	88
Sum squared		74.16			-	regression		0.6585	

R-squared	0.452796	Adjusted R-squared	0.433596
F(6, 171)	23.58298	P-value(F)	3.26e-20
Log-likelihood	-174.6577	Akaike criterion	363.3155
Schwarz criterion	385.5880	Hannan-Quinn	372.3476
rho	-0.006921	Durbin's h	NA

Excluding the constant, p-value was highest for variable 6 (CPI 5)

Based on 6 models above, I have the table to summarise the value of AIC for each model with each lag order.

Model	Lag Order	AIC
1	1	388.9726
2	2	369.7987
3	3	363.5026
4	4	359.3200*
5	5	361.3188
6	6	363.3155

Model 4 with a lag of 4 quarters has the smallest AIC value of 359.3200 that provides the best fit for the data.

QUESTION 3:

Does your autoregression have a heteroscedasticity problem? How do you know? If it does, propose and implement a remedy.

Based on question 2, I found the best autoregressive model with a lag order is 4. Because I updated the data to make sure the same observation sample for all models with lag orders from 1 to 6 for question 2. Before doing the model for question 3, I restored full range of the data.

I use the Breusch-Pagan-Koenker to check for heteroscedasticity by examining whether the variance of the residuals is constant or not. In this case, using a 5% significance level, conduct a Breusch-Pagan-Koenker test for heteroscedasticity.

There are hypotheses:

 H_0 : The residual is homoscedastic

H₁: The residual is heteroscedasticity

First, I estimated the linear regression model for CPI with the lag order from 1 to 4.

Model 1: OLS AR(4) model of CPI

OLS, using observations 1979:1-2024:1 (T = 181) Dependent variable: CPI

	Coeffi	cient	Std. E	rror	t-ratio	p-valu	ıe e	
const	0.1722	252	0.0830	741	2.073	0.039	6	**
CPI_1	0.2724	187	0.0738	3478	3.690	0.0003	3	***
CPI_2	0.2067	789	0.0758	397	2.727	0.0070)	***
CPI_3	0.1557	708	0.0758	3299	2.053	0.041	5	**
CPI_4	0.1823	379	0.0737	230	2.474	0.0143	3	**
Mean dependent v	<i>r</i> ar	1.005	525	S.D	. dependent	var	0.885	169
Sum squared resi	ld	75.22	618	S.E	. of regress	ion	0.653	775
R-squared		0.466	611	Adj	usted R-squa	red	0.454	489
F(4, 176)		38.49	145	P-va	alue(F)		4.02e	-23
Log-likelihood	-	-177.3	691	Aka	ike criterio	n	364.7	382
Schwarz criterio	on	380.7	306	Hanı	nan-Quinn		371.2	219

rho 0.000561 Durbin's h 0.066396

Then I choose the Koenker test on Gretl for testing heteroscedasticity. The Gretl output for Breusch-Pagan-Koenker model is:

```
Breusch-Pagan test for heteroskedasticity OLS, using observations 1979:1-2024:1 (T = 181) Dependent variable: scaled uhat^2 (Koenker robust variant)
```

	coefficient	std. error	t-ratio	p-value
const	-0.165415	0.132921	-1.244	0.2150
CPI_1	-0.00252058	0.118159	-0.02133	0.9830
CPI_2	-0.00970944	0.121346	-0.08001	0.9363
CPI_3	0.0743033	0.121330	0.6124	0.5411
CPI_4	0.0992066	0.117959	0.8410	0.4015

Explained sum of squares = 3.14003

```
Test statistic: LM = 2.903772, with p-value = P(Chi-square(4) > 2.903772) = 0.574056
```

The null hypothesis for the Breusch-Pagan-Koenker test is that the residual is homoscedastic. It can be seen that the p_value is 0.574056 which is higher than 0.05. The null hypothesis is not rejected at the 5% significance level and it is concluded that there is no evidence of heteroscedasticity in the residual of the AR(4) model.

The Breusch-Pagan-Koenker test results demonstrate that there is no heteroscedasticity problem in the AR(4) model for the CPI inflation rate. That means the variance of residual is constant, which contributes to have the reliable time series modelling and forecasting.

QUESTION 4:

Test the null hypothesis that your autoregression does not have autocorrelation against the alternative hypothesis that it has sixth-order autocorrelation. What do you conclude? If you find evidence of autocorrelation, propose and implement a remedy.

Based on the previous questions, I choose to estimate the model with the best lag = 4. In order to test for autocorrelation, I use the Breusch-Godfrey test with a significance level of 5% to test the null hypothesis that autoregression does not have autocorrelation against the alternative hypothesis that it has sixth-order autocorrelation.

There are hypotheses:

 H_0 : The autoregression does not have autocorrelation

 H_1 : The autoregression has sixth-order autocorrelation

I estimate the OLS model for CPI with lag order =4

Model 1: OLS AR (4) model of CPI

OLS, using observations 1979:1-2024:1 (T = 181) Dependent variable: CPI

	Coeffici	ent Std.	Error	t-ratio	p-val	ue	
const	0.172252	0.08	30741	2.073	0.039	6	**
CPI_1	0.272487	0.07	38478	3.690	0.000	3	***
CPI_2	0.206789	0.07	58397	2.727	0.007	0	***
CPI_3	0.155708	0.07	58299	2.053	0.041	5	**
CPI_4	0.182379	0.07	37230	2.474	0.014	3	**
Mean dependent v	<i>y</i> ar 1.	005525	S.D.	. dependent	var	0.885	169
Sum squared resi	id 75	.22618	S.E.	. of regres	ssion	0.653	775
R-squared	0.	466611	Adjı	ısted R-sqı	ared	0.454	489
F(4, 176)	38	.49145	P-va	alue(F)		4.02e	-23
Log-likelihood	-17	7.3691	Akai	ike criteri	on	364.7	382
Schwarz criterio	on 38	0.7306	Hanr	nan-Quinn		371.2	219
rho	0.	000561	Durk	oin's h		0.066	396

Then I test the autocorrelation of the AR(4) model with lag order test = 6

```
Breusch-Godfrey test for autocorrelation up to order 6 OLS, using observations 1979:1-2024:1 (T = 181) Dependent variable: uhat
```

	coefficient	std. error	t-ratio	p-value
const	-0.117108	0.185435	-0.6315	0.5285
CPI_1	-0.0850480	0.987247	-0.08615	0.9315
CPI_2	1.01594	1.04625	0.9710	0.3329
CPI_3	-0.993600	0.684680	-1.451	0.1486
CPI_4	0.183109	0.563982	0.3247	0.7458
uhat_1	0.0888493	0.989839	0.08976	0.9286
uhat_2	-1.00217	0.922934	-1.086	0.2791
uhat_3	0.747674	0.536166	1.394	0.1650
uhat_4	-0.191965	0.396273	-0.4844	0.6287
uhat_5	-0.0469890	0.138881	-0.3383	0.7355
uhat_6	-0.150851	0.138359	-1.090	0.2771

Unadjusted R-squared = 0.020013

```
Test statistic: LMF = 0.578623, with p-value = P(F(6,170) > 0.578623) = 0.747 Alternative statistic: TR^2 = 3.622404, with p-value = P(Chi\text{-square}(6) > 3.6224) = 0.728 Ljung-Box Q' = 0.377251, with p-value = P(Chi\text{-square}(6) > 0.377251) = 0.999
```

It can be seen that p_value is 0.728 which is higher than 0.05. **The null hypothesis is not rejected at the 5% significance level** and it is concluded that there is no evidence of sixth-order autocorrelation in the AR(4) model of the CPI inflation rate.

QUESTION 5:

Use your estimated autoregression to forecast the June Quarter 2024 CPI inflation rate. Also, compute an 80% forecast interval for the June Quarter CPI Inflation rate.

I estimate the OLS model for CPI with lag order =4.

Model 1: OLS AR (4) model of CPI

OLS, using observations 1979:1-2024:1 (T = 181)

Dependent variable: CPI

	Coeffi	cient	Std.	Error	t-ratio	p-valu	ıe	
const	0.1722	52	0.066	4795	2.591	0.0104	1	**
CPI_1	0.2724	87	0.081	5448	3.342	0.0010)	***
CPI_2	0.2067	89	0.057	6057	3.590	0.0004	1	***
CPI_3	0.1557	08	0.054	5624	2.854	0.0048	3	***
CPI_4	0.1823	79	0.061	0160	2.989	0.0032	2	***
Mean dependent	var	1.005	525	S.D.	. dependent	var	0.885	169
Sum squared res	id	75.22	618	S.E.	. of regress	ion	0.653	775
R-squared		0.466	611	Adju	ısted R-squa	red	0.454	489
F(4, 176)		35.41	599	P-va	alue(F)		1.09e	-21
Log-likelihood	_	177.3	691	Akai	ike criterio	n	364.7	382
Schwarz criterio	on	380.7	306	Hanr	nan-Quinn		371.2	219
rho		0.000	561	Durk	oin's h			NA

Then I compute an 80% forecast interval for the June Quarter CPI Inflation rate The Gretl output for the forecast:

```
For 80% confidence intervals, t(176, 0.1) = 1.286

Obs CPI prediction std. error 80% interval

2024:2 undefined 0.901564 0.653775 (0.0605613, 1.74257)
```

The AR(4) model predicts a CPI inflation rate of 0.901564 for the June Quarter 2024. The 80% confidence interval for this forecast ranges from 0.0605613 to 1.74257.

QUESTION 6:

Test the null hypothesis that the autoregression does not have any structural breaks over the time span covered by the sample. Use the critical value method with a 5% significance level. If you find evidence of a structural break, when do you estimate that it occurs?

I use Quandt Likelihood Ratio (QLR) test with the significance level of 5% and 15% trimming to test whether a structural break exists for the AR(4) model Hypothesis:

 $\mathbf{H_0}$: The autoregression does not have any structural breaks over the time span covered by the sample

 $\mathbf{H_1}$: The autoregression has a structural break over the time span covered by the sample

First, I estimate the OLS AR(4) model for CPI inflation rate

Model 1: OLS AR (4) model of CPI

OLS, using observations 1979:1-2024:1 (T = 181) Dependent variable: CPI

Coefficient Std. Error t-ratio p-value const 0.172252 0.0830741 2.073 0.0396 CPI 1 0.272487 0.0738478 3.690 0.0003	**

CPI 1 0.272487 0.0738478 3.690 0.0003	
-	
CPI_2 0.206789 0.0758397 2.727 0.0070	* * *
CPI_3 0.155708 0.0758299 2.053 0.0415	**
CPI_4 0.182379 0.0737230 2.474 0.0143	**
Mean dependent var 1.005525 S.D. dependent var 0.88	5169
Sum squared resid 75.22618 S.E. of regression 0.65	3775
R-squared 0.466611 Adjusted R-squared 0.45	4489
F(4, 176) 38.49145 P-value(F) 4.02	e-23
Log-likelihood -177.3691 Akaike criterion 364.	7382
Schwarz criterion 380.7306 Hannan-Quinn 371.	2219
rho 0.000561 Durbin's h 0.06	6396

Quandt likelihood ratio test for structural break at an unknown point, with 15 percent trimming:

The maximum F(5, 171) = 3.85592 occurs at observation 1991:1 Asymptotic p-value = 0.0329128 for chi-square(5) = 19.2796

Based on the QLR test results, I find evidence of a structural break at quarter one 1991 (1991:1) in the AR(4) model for the CPI inflation rate. The test results show that the p_value of 0.0329128 which is lower than 0.05. Besides, the critical value of QLR test for 5 restrictions with 15% trimming and 5% significance level is 3.66 is smaller than F-statistic (3.85592). **Therefore, the null hypothesis of no structural breaks over the time span covered by the sample is rejected.**

To confirm the period that the autoregression has a structural break, I use Chow test to check whether a structural break occurs in the first quarter of 1991 (1991:1)

There are hypotheses for the Chow test:

 H_0 : The autoregression does not have a structural break in the first quarter of 1991

 $\mathbf{H_1}$: The autoregression has a structural break in the first quarter of 1991

This is the Gretl output after testing Chow test for AR(4) model

Augmented regression for Chow test OLS, using observations 1979:1-2024:1 (T = 181) Dependent variable: CPI

		coeffici	lent s	std.	error	r t-ratio	p-value	-
	const	1.01283	3	0.39	0754	2.592	0.0104	**
	CPI_1	0.18250	00	0.12	29116	1.413	0.1593	
	CPI_2	0.10888	38	0.13	35175	0.8055	0.4216	
	CPI_3	0.14377	7.4	0.13	35187	1.064	0.2890	
	CPI_4	0.06123	379	0.13	32445	0.4624	0.6444	
	splitdum	-0.61640)4	0.40)5257	-1.521	0.1301	
	sd_CPI_1	-0.01783	375	0.15	8557	-0.1125	0.9106	
	sd_CPI_2	-0.00613	3653	0.16	34051	-0.03741	0.9702	
	sd_CPI_3	-0.12762	26	0.16	3932	-0.7785	0.4373	
	sd_CPI_4	0.02616	594	0.16	50477	0.1631	0.8707	
М	ean depender	nt var	1.00552	25	S.D.	dependent var	0.885	5169
Sı	um squared i	resid	67.6040	7	S.E.	of regression	0.628	3765
R·	-squared		0.52065	56	Adjus	sted R-squared	0.495	5427
F	(9, 171)		20.6374	18	P-val	Lue(F)	2.85	e-23
L	og-likelihoo	od -	-167.700	9	Akaik	ke criterion	355.4	1017
S	chwarz crite	erion	387.386	57	Hanna	an-Quinn	368.3	3691
rl	no		0.02281	.3	Durbi	in-Watson	1.952	2999

Chow test for structural break at observation 1991:1 F(5, 171) = 3.85592 with p-value 0.0025

Based on the Chow test, the p_value is 0.0025 is significantly lower than the 5% significant level. Besides, the F-statistic is 3.85592 is higher than the critical value F(5, 171, 0.05) is 2.26698. Therefore, the null hypothesis is rejected that means AR(4) model for CPI inflation rate has a structural break at the first of 1991(1991:1).

QUESTION 7:

Adjust the sample so that it includes data only from the first quarter of 1992 to the first quarter of 2024. Repeat your analysis from questions 2 to 6 with this smaller data set.

For question 7, I use the range of value for the data CPI from 1992:1 to 2024:1

Repeating the analysis from questions 2 to 6:

7.1. Question 2:

To estimate an autoregression for the level of CPI inflation rate, I use the Gretl script to create models with lag orders ranging from 1 to 6 quarters.

In this case, I use AIC to select the optimal lag length.

The Gretl Script is below:

```
smpl 1992:1 2024:1

pmax = 6

bestp = 0

bestic = 999999999999

loop p =1..pmax
    ols CPI const CPI(-1 to -p)
    ic = $aic
    if ic < bestic
        bestp = p
        bestic = ic
    endif
endloop</pre>
```

The Gretl output below shows 6 models with AIC that are compatible with using each lag order from 1 to 6:

Model 1: AIC model for CPI lag order from 1 to 1

OLS, using observations 1992:1-2024:1 (T = 129) Dependent variable: CPI

	coeffic	cient	std.	erro	r t-ratio p	-value	
const	0.4863	305	0.07	 54339	6.447 2	.17e-09	***
CPI_1	0.248	702	0.08	59476	2.894 0	.0045	***
Mean depender	nt var	0.647	287	S.D.	dependent var	0.5950	042
Sum squared r	resid	42.51	830	S.E.	of regression	0.5786	610
R-squared		0.061	853	Adjus	sted R-squared	0.0544	466
F(1, 127)		8.373	180	P-val	lue(F)	0.0044	483
Log-likelihoo	od	-111.4	559	Akail	ke criterion	226.91	119
Schwarz crite	erion	232.6	315	Hanna	an-Quinn	229.23	359
rho		-0.028	230	Durb	in's h	-1.4777	723

Model 2: AIC model for CPI lag order from 1 to 2 $\,$

OLS, using observations 1992:1-2024:1 (T = 129)

	coeffic:	ient	std.	error	c t	-ratio) 	p-v	alue	
const	0.41821	L 4	0.086	3665		4.842		3.6	9e-06	***
CPI_1	0.21396	59	0.088	31883		2.426		0.0	167	**
CPI_2	0.14009	96	0.088	31695		1.589		0.1	146	
Mean dependen	t var	0.6472	287	S.D.	depe	endent	var		0.5950	142
Sum squared r	esid	41.683	307	S.E.	of r	regress	sion		0.5751	.68
R-squared		0.0802	281	Adjus	sted	R-squa	ared		0.0656	83
F(2, 126)		5.4992	211	P-val	Lue(E	· ()			0.0051	.32
Log-likelihoo	d -	-110.17	763	Akaik	ke ci	riterio	on		226.35	26
Schwarz crite	rion	234.93	321	Hanna	an-Qı	uinn			229.83	886
rho	-	-0.0006	537	Durbi	in's	h			NA	A

Model 3: AIC model for CPI lag order from 1 to 3

OLS, using observations 1992:1-2024:1 (T = 129)

Dependent variable: CPI

	coeffi	cient	std.	error	t-ra	tio	p-value	
const	0.394	 129	0.09	 41013	4.18	 8	5.26e-05	***
CPI_1	0.206	299	0.08	91676	2.31	4	0.0223	**
CPI_2	0.127	433	0.09	04757	1.40	8	0.1615	
CPI_3	0.058	2943	0.08	93154	0.65	27	0.5152	
Mean depender	nt var	0.647	287	S.D.	depende	nt var	0.595	042
Sum squared	resid	41.54	150	S.E.	of regr	ession	0.576	482
R-squared		0.083	405	Adjus	sted R-s	quared	0.061	407
F(3, 125)		3.791	435	P-val	ue(F)		0.012	114
Log-likelihoo	od	-109.9	569	Akaik	ce crite	rion	227.9	137
Schwarz crite	erion	239.3	530	Hanna	n-Quinn		232.5	617
rho		0.001	501	Durbi	n's h			NA

Excluding the constant, p-value was highest for variable 4 (CPI_3)

Model 4: AIC model for CPI lag order from 1 to 4

OLS, using observations 1992:1-2024:1 (T = 129)

	coefficient	std.	error	t-ratio	p-value	
const	0.352419	0 000	 8145	3.531	0.0006	***
CONST			0143	3.331	0.0006	
CPI_1	0.200817	0.089	0937	2.254	0.0260	* *
CPI_2	0.114133	0.090	9303	1.255	0.2118	
CPI_3	0.0345843	0.091	1814	0.3793	0.7051	
CPI_4	0.109353	0.088	6969	1.233	0.2200	
Mean depender	nt var 0.64	7287	S.D. de	pendent va	r 0.59	5042
Sum squared r	resid 41.0	3845	S.E. of	regressio	n 0.57	5287
R-squared	0.09	4505	Adjuste	d R-square	d 0.06	5295
F(4, 124)	3.23	5408	P-value	(F)	0.01	4562
Log-likelihoo	od -109.	1710	Akaike	criterion	228.	3421
Schwarz crite	erion 242.	6411	Hannan-	Quinn	234.	1521
rho	-0.00	1466	Durbin'	s h		NA
Excluding the	e constant, p	-value	was hig	hest for v	ariable	4 (CPI_3)

Model 5: AIC model for CPI lag order from 1 to 5

OLS, using observations 1992:1-2024:1 (T = 129)

Dependent variable: CPI

	coeffic	cient	std.	erro	r t-ratio	p-	value	
const	0.3368	397	0.10	5101	3.205	0.	0017	***
CPI_1	0.195	381	0.09	00676	2.169	0.	0320	**
CPI_2	0.112	933	0.09	12452	1.238	0.	2182	
CPI_3	0.031	0891	0.09	17463	0.3389	0.	7353	
CPI_4	0.1022	218	0.09	01765	1.134	0.	2592	
CPI_5	0.041	4668	0.08	53824	0.4857	0.	6281	
Mean depender	nt var	0.647	287	S.D.	dependent	var	0.59	5042
Sum squared	resid	40.95	990	S.E.	of regress	sion	0.57	7068
R-squared		0.096	238	Adjus	sted R-squ	ared	0.05	9499
F(5, 123)		2.619	549	P-val	lue(F)		0.02	7473
Log-likelihoo	od	-109.0	475	Akail	ke criteri	on	230.	0949
Schwarz crite	erion	247.2	538	Hanna	an-Quinn		237.	0669
rho		0.008	885	Durb	in's h			NA

Excluding the constant, p-value was highest for variable 4 (CPI 3)

Model 6: AIC model for CPI lag order from 1 to 6 $\,$

OLS, using observations 1992:1-2024:1 (T = 129)

	coeffic	ient	std.	error	t-ra	tio	p-value	
const	0.3746	55	0.10	9571	3.4	19	0.0009	***
CPI_1	0.1994	77	0.08	99764	2.2	17	0.0285	**
CPI_2	0.1262	92	0.09	17697	1.3	76	0.1713	
CPI_3	0.0324	764	0.09	15942	0.3	546	0.7235	
CPI_4	0.1114	34	0.09	03494	1.2	33	0.2198	
CPI_5	0.0562	602	0.08	61278	0.6	532	0.5148	
CPI_6	-0.1033	60	0.08	64732	-1.1	95	0.2343	
Mean depende	ent var	0.647	287	S.D.	depende	nt vai	r 0.59	5042
Sum squared	resid	40.48	579	S.E.	of regre	ession	n 0.57	6065
R-squared		0.106	699	Adjus	sted R-s	quared	d 0.06	2766

F(6, 122)	2.428684	P-value(F)	0.029773
Log-likelihood	-108.2965	Akaike criterion	230.5930
Schwarz criterion	250.6117	Hannan-Quinn	238.7270
rho	-0.003616	Durbin's h	NA

Excluding the constant, p-value was highest for variable 4 (CPI_3)

Based on 6 models above, I have the table to summarise value of AIC for each model with each lag orders

Model	Lag Order	AIC
1	1	226.9119
2	2	226.3526*
3	3	227.9137
4	4	228.3421
5	5	230.0949
6	6	230.5930

Model 2 with a lag of 2 quarters has the smallest AIC value of 226.3526 that provides the best fit for the data.

7.2. Question 3:

Based on the question 2, I found the best autoregressive model with lag order is 2. After that, the Breusch-Pagan-Koenker is the test the AR(2) model I chose to check for heteroscedasticity by examining whether the variance of the residuals is constant or not. In this case, using a 5% significance level, conduct a Breusch-Pagan-Koenker test for heteroscedasticity.

There are hypotheses:

 H_0 : the residual is homoscedastic

H₁: the residual is heteroscedasticity

First, I estimated the linear regression model for CPI with the lag order from 1 to 2.

Model 1: AIC model for CPI lag order from 1 to 2

OLS, using observations 1992:1-2024:1 (T = 129)

	Coeff	icient	Std.	Error	t-rat	io	p-val	ue	
const	0.4182	214	0.086	63665	4.842		<0.00	01	***
CPI_1	0.213	969	0.088	31883	2.426		0.016	7	**
CPI_2	0.1400	96	0.088	31695	1.589		0.114	5	
Mean dependent	var	0.647	287	S.D.	. deper	ndent	var	0.595	042
Sum squared res	id	41.68	307	S.E.	. of re	egress	ion	0.575	168
R-squared		0.080	281	Adjı	ısted I	R-squa	red	0.065	683
F(2, 126)		5.499	211	P-va	alue(F))		0.005	132
Log-likelihood	-	-110.1	763	Akai	ike cr	iterio	n	226.3	526
Schwarz criterio	on	234.9	321	Hanr	nan-Qui	inn		229.8	386
rho	-	-0.000	637	Durk	oin's h	า			NA

Then I choose Koenker test for testing heteroscedasticity. The Gretl ouput for Breusch-Pagan-Koenker model is:

```
Breusch-Pagan test for heteroskedasticity
OLS, using observations 1992:1-2024:1 (T = 129)
Dependent variable: scaled uhat^2 (Koenker robust variant)
```

	coefficient	std. error	t-ratio	p-value
const	-0.0344840	0.157153	-0.2194	0.8267
CPI_1	-0.0565765	0.160468	-0.3526	0.7250
CPI_2	0.109983	0.160434	0.6855	0.4943

Explained sum of squares = 0.55369

```
Test statistic: LM = 0.515471,
with p-value = P(Chi-square(2) > 0.515471) = 0.772800
```

The null hypothesis for the Breusch-Pagan-Koenker test is that the residual is homoscedastic. The p-value is 0.772800 is higher than the 5% significance level. Therefore, **the null hypothesis is not rejected at the 5% significance level** and it is concluded that there is no evidence of heteroscedasticity in the residual of the AR(2) model.

The Breusch-Pagan-Koenker test results demonstrate that there is no heteroscedasticity problem in the AR(2) model for the CPI inflation rate. That means the variance of residual is constant, which contributes to have the reliable time series modelling and forecasting.

7.3. Question 4:

Based on the previous questions, I choose to estimate the model with the best lag = 2. To test for autocorrelation, I used the Breusch-Godfrey test with a significance level of 5% to test the null hypothesis that autoregression does not have autocorrelation against the alternative hypothesis that it has sixth-order autocorrelation

There are hypotheses:

 $\mathbf{H_0}$: The autoregression does not have autocorrelation

 H_1 : The autoregression has sixth-order autocorrelation

I estimate the OLS model for CPI with lag order = 2

Model 1: AIC model for CPI lag order from 1 to 2

OLS, using observations 1992:1-2024:1 (T = 129) Dependent variable: CPI

	Coeff	icient	Std.	Error	t-1	ratio	p-valu	ıe	
const	0.4182	214	0.086	63665	4.8	342	<0.000)1	***
CPI_1	0.2139	969	0.088	31883	2.4	126	0.0167	7	**
CPI_2	0.1400	96	0.088	31695	1.5	589	0.1146	ō	
Mean dependent	var	0.647	287	S.D.	. de	ependent '	var	0.595	042
Sum squared res	id	41.68	307	S.E.	. of	regress	ion	0.575	168
R-squared		0.080	281	Adju	ıste	ed R-squa	red	0.065	683
F(2, 126)		5.499	211	P-va	alue	e(F)		0.005	132
Log-likelihood	-	-110.1	763	Akai	ike	criterio	n	226.3	526
Schwarz criterio	on	234.9	321	Hanr	nan-	-Quinn		229.8	386
rho	_	-0.000	637	Durh	oin'	s h			NA

Then I test the autocorrelation of the AR(2) model with lag order test = 6

Breusch-Godfrey test for autocorrelation up to order 6 OLS, using observations 1992:1-2024:1 (T = 129) Dependent variable: uhat

	coefficient	std. error	t-ratio	p-value	
const	3.03993	1.47436	2.062	0.0414	**
CPI_1	-2.76402	1.58091	-1.748	0.0830	*
CPI_2	-1.90950	1.41773	-1.347	0.1806	
uhat_1	2.73131	1.57720	1.732	0.0859	*

```
uhat_2     2.47945     1.50351     1.649     0.1017
uhat_3     0.942575     0.460400     2.047     0.0428  **
uhat_4     0.636461     0.313898     2.028     0.0448  **
uhat_5     0.351411     0.154874     2.269     0.0251  **
uhat_6     0.105896     0.114166     0.9276     0.3555

Unadjusted R-squared = 0.053219

Test statistic: LMF = 1.124201,
with p-value = P(F(6,120) > 1.1242) = 0.352

Alternative statistic: TR^2 = 6.865201,
with p-value = P(Chi-square(6) > 6.8652) = 0.333

Ljung-Box Q' = 2.6166,
with p-value = P(Chi-square(6) > 2.6166) = 0.855
```

It can be seen that p_value is 0.333 which is higher than 0.05. **The null hypothesis is not rejected at the 5% significance level** and it is concluded that there is no evidence of sixth-order autocorrelation in AR(2) model for the CPI inflation rate.

7.4. Question 5:

I estimate the OLS model for CPI with lag order =2.

Model 1: AIC model for CPI lag order from 1 to 2

OLS, using observations 1992:1-2024:1 (T = 129) Dependent variable: CPI

	Coeff.	icient	Std. E	rror	t-ratio	p-val	ue	
const	0.418214		0.0863665		4.842	<0.00	01	***
CPI_1	0.213	969	0.0881	883	2.426	0.016	7	**
CPI_2	0.140	096	0.0881	695	1.589	0.114	6	
Mean dependent v	var	0.647	287	S.D	. dependent	var	0.595	042
Sum squared res	id	41.68	307	S.E	. of regress	ion	0.575	168
R-squared		0.080	281	Adj	usted R-squa	red	0.065	683
F(2, 126)		5.499	211	P-va	alue(F)		0.005	132
Log-likelihood	-	-110.1	763	Aka	ike criterio	n	226.3	526
Schwarz criterio	on	234.9	321	Hanı	nan-Quinn		229.8	386
rho	-	-0.000	637	Durl	oin's h			NA

Then I compute an 80% forecast interval for the June Quarter CPI Inflation rate The Gretl output for forecast:

```
For 80% confidence intervals, t(126, 0.1) = 1.288

Obs CPI prediction std. error 80% interval

2024:2 undefined 0.716240 0.575168 (-0.0247522, 1.45723)
```

The AR(2) model predicts a CPI inflation rate of 0.716240 for the June Quarter 2024. The 80% confidence interval for this forecast ranges from -0.0247522 to 1.45723.

7.5. Question 6:

I use Quandt Likelihood Ratio (QLR) test with the significant level 5% and 15% trimming to test whether a structural break exists for AR(2) model.

There are hypothesises:

 $\mathbf{H_0}$: The autoregression does not have any structural breaks over the time span covered by the sample

 H_1 : The autoregression has a structural break over the time span covered by the sample

First, I estimate the OLS AR(2) model for CPI

Model 1: AIC model for CPI lag order from 1 to 2

OLS, using observations 1992:1-2024:1 (T = 129) Dependent variable: CPI

	Coeffi	cient	Std.	Error	t-ratio	p-val	ue	
const	0.4182	214	0.086	3665	4.842	<0.00	01	***
CPI_1	0.2139	69	0.088	31883	2.426	0.016	7	**
CPI_2	0.1400	96	0.088	31695	1.589	0.114	6	
Mean dependent v	ar	0.647	287	S.D.	dependent	var	0.595	042
Sum squared resi	.d	41.68	307	S.E.	of regres	sion	0.575	168
R-squared		0.080	281	Adju	ısted R-squ	ared	0.065	683
F(2, 126)		5.499	211	P-va	alue(F)		0.005	132
Log-likelihood	-	-110.1	763	Akai	ke criteri	.on	226.3	526
Schwarz criterio	n	234.9	321	Hanr	nan-Quinn		229.8	386
rho	-	-0.000	637	Durk	oin's h			NA

Quandt likelihood ratio test for structural break at an unknown point, with 15 percent trimming:

The maximum F(3, 123) = 1.87941 occurs at observation 1999:2

Asymptotic p-value = 0.712295 for chi-square(3) = 5.63824

Based on the QLR test results, I find evidence of a structural break in second quarter 1999 (1999:2) in the AR(2) model for the CPI inflation rate. The test results show that the p_value of 0.712295 is higher than the 5% significance level. Furthermore, the critical value of QLR test for 3 restrictions with 15% trimming and a 5% significance level is 4.71, which is higher than F-statistic (1.87941). Therefore, **the null hypothesis of no structural breaks over the time span covered by the sample is not rejected**. That means there is no structural breaks over the time span covered by the sample for AR(2) model for CPI inflation rate.

QUESTION 8:

Is your forecast interval computed in Question 7 narrower or wider than the forecast interval that you computed in Question 5? Why do you think that this is the case?

Forecast in Question 5 (Data from 1978:1 to 2024:1 using AR(4) model):

- Forecasted CPI Inflation Rate in the second quarter of 2024: 0.901564
- 80% Confidence Interval: [0.0605613, 1.74257]
- Width of Interval = 1.74257 0.0605613 = 1.6820087

Forecast in Question 7 (Data from 1992:1 to 2024:1 using AR(2) model):

- Forecasted CPI Inflation Rate in the second quarter of 2024: 0.716240
- 80% Confidence Interval: [- 0.0247522, 1.45723]
- Width of Interval = 1.45723 (-0.0247522) = 1.4819822
- ⇒ The forecast interval computed in Question 7 is narrower than the forecast interval computed in Question 5

There are several key reasons:

- The sample period for Question 7 (1992:1 to 2024:1) is shorter than the sample used in Question 5 (1978:1 to 2024:1). In Question 7, the shorter period can reduce standard errors that lead to have resulted in a narrower interval.
- The AR(2) model used in Question 7 fits the recent data better, leading to more accurate predictions with lower forecast uncertainty.