Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	03 October 2022
Team ID	PNT2022TMID07696
Project Name	Estimate the Crop Yield Using Data Analytics
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail
FR-2	User Confirmation	You will Receive Conformation Message and Login By entering email & password.
FR-3	User Profile	User specific information, Farm details, Yield history and IGM Cognos Registration.
FR-4	Knowledge about factors that influence the yield	The four most important factors that influence crop yield are soil fertility, availability of water, climate, and diseases or pests.
FR-5	Estimation Module	Crop models are a formal way to present quantitative knowledge about how a crop grows in interaction with its environment. Using weather data and other data about the crop environment, these models can simulate crop development, growth, yield, water, and nutrient uptake.
FR-6	Analysis	With the help of data analysis for agriculture businesses, farmers can observe the impact that extreme weather conditions and other phenomena can have on their crops. But even more valuable is the ability to predict and adjust to these things.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Usability has been defined as a measurement of system effectiveness, efficiency, and satisfaction. Usability is also an assessment to measure quality level and human point of view about the systems.
NFR-2	Security	Crop production is predicted using machine learning techniques based on parameters such as rainfall, crop, and meteorological conditions.

rvised machine can do both crove time mical use, and
prove time
mical use and
ilicai asc, alla
ields—all of
and conserve
ınoff.
ns of the value
at current
nt of the whole
nodity groups
s) and
ed crops on
meagre output,
sert land, albeit
nology such as
tion.
d might be
water through
k keeping, farm
nen buying
scale to ensure
or that specific
ndard practice