2. Principle of Induction

Note that by (A1) and (A2) we get for every $m \in \mathbb{N}$ that

$$S(m) = S(m+0) = m + S(0) = m + 1.$$

Hence the Axiom of Induction can be rephrased as follows:

- (PA5) If K is a subset of \mathbb{N} such that
 - (a) $0 \in K$ and
 - (b) if $n \in K$ then $n + 1 \in K$,

then $K = \mathbb{N}$.

Theorem 2.1. (Principle of Induction)

Let $n_0 \in \mathbb{Z}$ and let P(n) be a property which can be true or false, for all $n \in \mathbb{Z}$ with $n_0 \le n$. Furthermore assume that $P(n_0)$ is true and if P(n) is true for some $n \in \mathbb{Z}$ with $n_0 \le n$, then P(n+1) is true. Then P(n) is true, for all integers n with $n_0 \le n$.

Proof. Set $K := \{n \in \mathbb{N} : P(n_0 + n) \text{ is true.}\}$. As $P(n_0)$ is true we have $0 \in K$. Furthermore if $n \in K$, then $P(n_0 + n)$ is true and so by assumption $P(n_0 + n + 1)$ is true. Consequently, by the axiom of induction, $n + 1 \in K$ and thus $K = \mathbb{N}$.

Example 2.2. (1) Show that $\sum_{i=1}^{n} i = 1+2+\ldots+n = \frac{n(n+1)}{2}$, for all integers $n \geq 1$. The statement is true for n = 1, as the sum on the left and the fraction on the right both equal one. Next suppose the statement is true for some $n \geq 1$. We need to show it holds for n + 1. We have

$$\sum_{i=1}^{n+1} i = (n+1) + \sum_{i=1}^{n} i = (n+1) + \frac{n(n+1)}{2} = (n+1) \cdot \left(1 + \frac{n}{2}\right)$$
$$= (n+1) \cdot \left(\frac{n+2}{2}\right) = \frac{(n+1)(n+2)}{2}.$$

Hence the statement is true for n + 1. In particular, the statement is true for all $n \ge 1$.

(2) For $n, k \in \mathbb{N}$ such that $0 \le k \le n$ we define the **binomial coefficient**

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

We claim that all binomial coefficient are integers. This statement is quickly verified to be true if n=0 or k=0. Henceforth we assume that neither are zero. If n=1, then k=1 and as $\binom{1}{1}=1$. Hence the statement holds for

n=1. Next assume the statement is true for some integer $n \geq 1$ and all integers k with $0 \leq k \leq n$. Then for all $1 \leq k \leq n+1$ we have

$$\binom{n+1}{k} = \frac{(n+1)!}{k!(n+1-k)!} = \frac{n! \cdot ((n+1)-k+k)}{k!(n+1-k)!}$$
$$= \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n+1-k)!} = \binom{n}{k} + \binom{n}{k-1}$$

Note that both $\binom{n}{k}$ and $\binom{n}{k-1}$ are integers and consequently so is $\binom{(n+1)}{k}$.

Corollary 2.3. (Strong Induction)

Let $n_0 \in \mathbb{Z}$ and let P(n) be a property which can be true or false, for all $n \in \mathbb{Z}$ with $n_0 \le n$. Furthermore assume that $P(n_0)$ is true and that P(n+1) is true, for some $n \in \mathbb{Z}$, whenever P(k) is true for all integers k with $n_0 \le k \le n$. Then P(n) is true, for all integers n with $n_0 \le n$.

Example 2.4. Set $T_1 = 1, T_2 = 3$ and recursively $T_n = T_{n-1} + T_{n-2}$, for $n \ge 3$ (Lucas Sequence). Prove that

$$T_n < \left(\frac{7}{4}\right)^n$$
, for all $n \ge 1$.

As

$$T_1 = 1 < \frac{7}{4} \text{ and } T_2 = 3 < \frac{49}{16} = \left(\frac{7}{4}\right)^2$$

the statement holds for 1 and 2. Next suppose it holds for all integers k where $1 \le k \le n$, for some $n \ge 2$. Then

$$T_{n+1} = T_n + T_{n-1} < \left(\frac{7}{4}\right)^n + \left(\frac{7}{4}\right)^{n-1} = \left(\frac{7}{4}\right)^{n-1} \cdot \left(\frac{7}{4} + 1\right)$$

$$= \left(\frac{7}{4}\right)^{n-1} \cdot \left(\frac{11}{4}\right) = \left(\frac{7}{4}\right)^{n-1} \cdot \left(\frac{44}{16}\right) < \left(\frac{7}{4}\right)^{n-1} \cdot \left(\frac{49}{16}\right)$$

$$= \left(\frac{7}{4}\right)^{n-1} \cdot \left(\frac{7}{4}\right)^2 = \left(\frac{7}{4}\right)^{n+1}$$

Hence the statement holds for n+1 and thus for all $n \geq 1$.

Theorem 2.5. (Well-Ordering Principle) Let S be a non-empty subset of \mathbb{N} . Then S has a least element, that is, there is some $l \in S$ so that $l \leq s$, for all $s \in S$.

Proof: Let S be a subset of $\mathbb N$ without a least element. Then surely $0 \not\in S$. Now set

$$K := \{ n \in \mathbb{N} : n \notin S \}$$

We say P(n) is true for some $n \in \mathbb{N}$, if $n \in K$. Hence P(0) is true. Next let $n \geq 0$ and assume that P(k) is true for all integers k with $0 \leq k \leq n$. If $n+1 \in S$, then n+1 will be a least element of S, as otherwise there must be an $s \in S$ with s < n+1. But then P(s) is true by assumption, that is, $s \in K$ in contradiction to $s \in S$. Therefore $n+1 \notin S$, that is, $n+1 \in K$. Now by Corollary 2.3 we get that $K = \mathbb{N}$. In particular, $S = \emptyset$.

Corollary 2.6. There is no $a \in \mathbb{Z}$ such that 0 < a < 1.

Proof: Assume there is such an $a \in \mathbb{Z}$ and let S be the set of all such a. Then S is a non-empty subset of \mathbb{N} and as such contains a least element l. Note that $l \in \mathbb{N} \setminus \{0\}$. As l < 1, there is $x \in \mathbb{N} \setminus \{0\}$ such that l + x = 1. Multiplying l onto this equation gives $l^2 + xl = l$. Clearly $xl \in \mathbb{N} \setminus \{0\}$ and so $l^2 < l$. We also have $0 < l^2 < 1$, that is $l^2 \in S$. But this contradicts the minimality of l. In particular there is no a as described.

Remark 2.7. The integers do not satisfy the Well-Ordering Principle, as there are subsets S of \mathbb{Z} that do not contain a smallest element, take for instances $S = \mathbb{Z}$ or the subset of negative integers. In particular any number system containing the integers, such as \mathbb{Q} for instance, cannot satisfy the Well-Ordering Principle either.