Generalized Linear Models

STAT 526 Professor Olga Vitek

April 20, 2011

Specifying a Generalized Linear Model

Exponential Family of Distributions (EFD)

 A exponential family distribution has the probability mass/distribution function in the form of

$$f(y; \theta, \phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right\}$$

- θ canonical parameter representing location (also called *natural parameter*)
- $-\phi$ dispersion parameter representing the scale
- $-a(\cdot),b(\cdot),c(\cdot)$ known functions
- Usually, $a(\phi) = \phi/w$
 - -w a known weight, varies between observations
 - $-\phi$ can be known (one-parameter distribution) or unknown (two-parameter distribution)

Examples

Example: $y_i \sim N(\mu_i, \sigma^2)$

•
$$f(y_i) = \exp\left\{\frac{y_i \mu_i - \mu_i^2/2}{\sigma^2} - \frac{y_i^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2)\right\}$$

- $\theta_i = \mu_i$, $\phi = \sigma^2$, $w_i = 1$.
- $a(\phi) = \phi$, $b(\theta_i) = \theta_i^2/2$, and $c(y_i, \phi) = -\frac{y_i^2}{2\phi} \frac{1}{2}\log(2\pi\phi)$.

Example: $y_i \sim Poisson(\lambda_i)$

- $f(y_i) = \exp\{y_i \log(\lambda_i) \lambda_i \log(y_i!)\}$
- $\theta_i = \log(\lambda_i)$, $\phi = 1$, $w_i = 1$.
- $a(\phi) = 1$, $b(\theta_i) = \exp{\{\theta_i\}}$, and $c(y_i, \phi) = -\log(y_i!)$.

Example: $y_i \sim Binomial(n_i, \pi_i)$

•
$$f_i(\bar{y}) = \exp\left\{\frac{\bar{y}\log\frac{\pi_i}{1-\pi_i} + \log(1-\pi_i)}{1/n_i} + \log\left(\frac{n_i}{n_i\bar{y}}\right)\right\}$$

•
$$\theta_i = \log \frac{\pi_i}{1-\pi_i}$$
, $\phi = 1$, $w_i = n_i$.

•
$$a(\phi) = 1/n_i$$
, $b(\theta) = log[1 + exp(\theta)]$, $c(y,\phi) = log\left(\frac{n_i}{n_i \overline{y}}\right)$

Expected Value of EFD

- Assume $Y \sim EFD(\theta, \phi)$
 - Distribution $f(y; \theta, \phi) = \exp\left\{\frac{y\theta b(\theta)}{a(\phi)} + c(y, \phi)\right\}$
 - Log-likelihood $l(\theta, \phi; y) = log f(y; \theta, \phi)$
- $\bullet \ E\{Y\} = b'(\theta):$
 - Since $\int f \partial y = 1$, under regularity conditions:

$$0 = \frac{\partial}{\partial \theta} \int f \, \partial y = \int \frac{\partial}{\partial \theta} f \, \partial y$$
$$= \int \frac{y - b'(\theta)}{a(\phi)} f \, \partial y = \frac{1}{a(\phi)} \left[\int y f \, dy - \int b'(\theta) f \, dy \right]$$
$$= \frac{1}{a(\phi)} \left[E\{y\} - b'(\theta) \right]$$

Variance of EFD

- Assume $Y \sim EFD(\theta, \phi)$
 - Distribution $f(y; \theta, \phi) = \exp\left\{\frac{y\theta b(\theta)}{a(\phi)} + c(y, \phi)\right\}$
 - Log-likelihood $l(\theta, \phi; y) = log f(y; \theta, \phi)$
- $Var\{Y\} = b''(\theta)a(\phi)$:
 - Since $\int f \partial y = 1$, under regularity conditions:

$$0 = \frac{\partial^2}{\partial \theta^2} \int f \, \partial y = \int \frac{\partial^2}{\partial \theta^2} f \, \partial y$$

$$= \int \frac{-b''(\theta)}{a(\phi)} f \, \partial y + \int \frac{[y - b'(\theta)]^2}{a(\phi)^2} f \, \partial y$$

$$= \frac{-b''(\theta)}{a(\theta)} + \frac{Var\{y\}}{a(\phi)^2}$$

$$= \frac{-b''(\theta)a(\phi) + Var\{y\}}{a(\phi)^2}$$

Generalized Linear Models

- Data: $(y_i, \mathbf{x}_i) = (y_i, x_{i1}, x_{i2}, \cdots, x_{i,p-1}),$ $i = 1, 2, \cdots, n$
- Random component: $y_i \mid \mathbf{x}_i \stackrel{ind}{\sim} EFD(\theta_i, \phi)$
 - Counts (Poisson, Bernouilli, Binomial) or continuous (Gamma, Inverse Gaussian)
 - Assumptions: independent observations (exclude time series and spacial models)
- Goal: Model $\mu_i = E\{y_i | \mathbf{x}_i\}$
- Systematic component: Joint effects of \mathbf{x}_i through their linear combination $\eta_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_{p-1} x_{i,p-1} = \mathbf{x}_i' \beta$
- Link function: Function $g(\mu_i)$ that links $\mu_i = E\{y_i\}$ and $\eta_i = \mathbf{x}_i'\beta$

$$-g(\mu_i)=\eta_i$$

Link Functions

- The link function $g(\mu_i)$ defines a specific probability model.
 - Logistic regression: $g(\mu_i) = logit(\mu_i) = log(\frac{\mu_i}{1-u_i}) \stackrel{model}{=} \mathbf{x}_i'\beta$
 - Probit regression: $g(\mu_i) = \Phi^{-1}(\mu_i) \stackrel{model}{=} \mathbf{x}_i' \beta$
- The link function also defines the mean function $g^{-1}(\mathbf{x}_i'\beta)$.
 - Logistic regression: $\mu \stackrel{model}{=} \frac{1}{1 + exp(-\mathbf{x}_i'\beta)}$
 - Probit regression: $\mu \stackrel{model}{=} \Phi(\mathbf{x}_i'\beta)$
- If specify $\theta \stackrel{model}{=} \mathbf{x}_i'\beta$, i.e. $g(\mu_i) = \theta_i = \eta_i$, $g(\mu_i)$ is the canonical link.
 - Remember that in EFD $\mu_i = b'(\theta_i)$
 - With the canonical link, $g(\mu_i) = g(b'(\theta_i)) = \theta_i$
 - Therefore $g(\cdot)$ is the inverse function of $b'(\cdot)$

GLMs with Canonical Links

	Normal	Poisson	Binomial
Notation	$N(\mu, \sigma^2)$	$P(\lambda)$	$B(n,\pi)$
Range of y	$(-\infty,\infty)$	0 : ∞	0 : <i>n</i>
ϕ	σ^2	1	1
$b(\theta)$	$\theta^2/2$	$e^{ heta}$	$\log(1+e^{\theta})$
Expected value $\mu(\theta)$	θ	$e^{ heta}$	$rac{e^{ heta}}{1+e^{ heta}}$
Canonical link $\theta = g(\mu)$	identity	log	logit
Variance function $V(\mu)$	1	μ	$\mu(1-\mu)$

Specifying distribution in R

```
glm(formula, family = gaussian, data,...)
family = binomial(link = "logit")
family = gaussian(link = "identity")
family = Gamma(link = "inverse")
family = inverse.gaussian(link = "1/mu^2")
family = poisson(link = "log")
```

Fitting a GLM and Assessing the Quality of Fit

Likelihood Equations

• Log-likelihood:

$$L(\beta) = \sum_{i=1}^{n} \frac{y_i \theta_i - b(\theta_i)}{a(\phi)} + \sum_{i=1}^{n} c(y_i, \phi)$$

- $-\theta$ depends on model parameters β
- Likelihood equations (Agresti Sec. 4.4.4)

$$\frac{\partial L(\beta)}{\partial \beta_j} = \sum_{i=1}^n \frac{(y_i - \mu_i)x_{ij}}{var(y_i)} \frac{\partial \mu_i}{\partial \eta_i} = 0, \ j = 1, \dots, p$$

- depends on β through $\mu_i = g^{-1}(\mathbf{x}_i'\beta)$
- depends on distr. of y_i through μ_i and $var(y_i)$
- Using the canonical link $\theta = g(\mu) \stackrel{model}{=} \mathbf{x}_i' \beta$:

$$\frac{\partial L(\beta)}{\partial \beta_j} = \sum_{i=1}^n \frac{y_i - \mu_i}{var(y_i)} b'' x_{ij} = \sum_{i=1}^n \frac{(y_i - \mu_i)x_{ij}}{a(\phi)} = 0$$

If
$$a(\phi)$$
 same for all $i: \sum_{i=1}^n x_{ij}y_i - \sum_{i=1}^n x_{ij}\mu_i = 0$

- unifies several model fitting algorithms
- Normal equations for Normal distribution

Iterative Weighted Least Squares: The Algorithm

- Transform nonlinear optimization problem into a series of (weighted) least squares fits
- Step 1: Given a working value $\hat{\beta}^{(k)}$
 - Calculate $\widehat{\mu}_i^{(k)} = g^{-1}(\mathbf{x}_i'\widehat{\beta}^{(k)})$
- Step 2: Approximate $g(y_i)$ by its linearization in the neighborhood around $\hat{\mu}_i^{(k)}$

$$-g(y_i) \approx z_i^{(k)} = g(\hat{\mu}_i^{(k)}) + (y_i - \hat{\mu}_i^{(k)})g'(\hat{\mu}_i^{(k)})$$

— Note that
$$Var\{z_i^{(k)}\}=[g'(\hat{\mu}_i^{(k)})]^2~Var\{y_i\}_{\hat{\mu}_i^{(k)}}$$
 — subscript $\hat{\mu}_i^{(k)}$ means "variance evaluated at" $\hat{\mu}_i^{(k)}$

Iterative Weighted Least Squares: The Algorithm

- Step 3: Estimate $\hat{\beta}^{k+1}$
 - Use linear regression model $z_i = \mathbf{x}_i' \boldsymbol{\beta} + \epsilon_i$

$$-E\{\epsilon_i\}=0$$

$$- Var\{\epsilon_i\} = \phi \ Var\{z_i^{(k)}\}\$$

$$-\hat{\beta}^{(k+1)} = (X'WX)^{-1}X'WZ$$

where

$$Z = (z_1, \dots, z_n)',$$

$$X = (\mathbf{x}'_1, \dots, \mathbf{x}'_n),$$

$$W = \operatorname{diag} \left\{ Var\{\epsilon_1\}^{-1}, \dots, Var\{\epsilon_n\}^{-1} \right\}.$$

• Calculate $\hat{\beta}^{(k+1)}$ iteratively until it converges to $\hat{\beta}$.

Measure of Goodness of Fit: Deviance

Current GLM, exponential family:

$$\theta = \theta(\mu); \ \widehat{\mu} = g^{-1}(\mathbf{x}_i'\widehat{\beta}); \ \to \ \widehat{\theta} = \theta(\widehat{\mu})$$

- log-likelihood
$$l(\hat{\beta}; y, \phi) = \sum_{i=1}^{n} w_i \frac{y_i \hat{\theta}_i - b(\hat{\theta}_i)}{\phi}$$

• Saturated model, n parameters:

$$\theta = \theta(\mu); \ \tilde{\mu} = y_i; \rightarrow \ \tilde{\theta} = \theta(\tilde{\mu})$$

- log-likelihood
$$l(y; y, \phi) = \sum_{i=1}^{n} w_i \frac{y_i \hat{\theta}_i - b(\hat{\theta}_i)}{\phi}$$

 The deviance of the current GLM (called residual deviance in R):

$$D(\widehat{\beta}) = 2\phi \{l(y; y, \phi) - l(\widehat{\beta}; y, \phi)\}$$

=
$$\sum_{i=1}^{n} 2w_i \{ y_i(\widetilde{\theta}_i - \widehat{\theta}_i) - b(\widetilde{\theta}_i) + b(\widehat{\theta}_i) \}$$

$$y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$
, $ightarrow$ residual SS

Measure of Goodness of Fit: Generalized Pearson X^2

• Generalized Pearson X^2 :

$$X^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\mu}_{i})^{2} / V(\hat{\mu}_{i})$$

- $-V(\widehat{\mu}_i)=b''(\widehat{\theta})$ is the variance function
- $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, ightarrow residual SS
- $-y_i \sim Binomial(\mu_i, n_i), \rightarrow \text{original Pearson } X^2$
- Testing the quality of fit, known ϕ :

Scaled deviance
$$D/\phi \overset{assympt.}{\sim} \chi^2_{n-p}$$
 Scaled $X^2/\phi \overset{assympt.}{\sim} \chi^2_{n-p}$

- Deviance is additive for nested sets of models, when using $\widehat{\beta}_{ML}$,
 - but poor approximation of χ^2 , approximation does not improve as $n \to \infty$
- $-X^2$ has a more direct interpretation,
 - better approximation of χ^2

Diagnostics: Residuals

- Inspired from weighted linear regression
- Use last iteration of the IWLS algorithm

$$-Z = X\beta + \epsilon$$
, $E[\epsilon] = 0$, $var(\epsilon) = \phi \ Var\{z_i^{(k)}\}$

$$-\hat{\beta} = (X'WX)^{-1}X'WZ$$

$$-H = W^{1/2}X(X^TWX)^{-1}X^TW^{1/2}$$

- Response residuals: $e_{i,R} = y_i \hat{\mu}_i$
 - do not have constant variance
 - Analogue to simple residuals in regression
 - In R: residuals(glmfit, type="response")
- Pearson residuals: $e_{i,P} = \frac{y_i \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$.
 - The denominator \neq the variance of the residual
 - Analogue to standardize residuals in regression
 - In R: residuals(glmfit, type="pearson")

Diagnostics: Standardized Pearson Residuals

Standardized Pearson residuals:

$$e_{i,SP} = \frac{y_i - \hat{\mu}_i}{\sqrt{\hat{\phi} \ V(\hat{\mu}_i) \ (1 - h_{ii})}}$$

- h_{ii} is the *i*-th diagonal element of H
- The denominator = the variance of the residual
- Have constant variance and mean zero if $V(\mu)$ is correctly specified
- Analogue to studentized residuals in regression
- Useful for detecting variance misspecification or outlier detection
- In R: Original: residuals(glmfit, type="pearson")
 Standardized: library(boot); glm.diag(glmfit)\$rp
 also see
 glm.diag.plots(glmfit)

Diagnostics: Deviance Residuals

Deviance residuals:

$$e_{i,D} = sign(y_i - \hat{\mu}_i)\sqrt{d_i}$$

- $-\ d_i$ is the contribution to the model deviance from the i-th observation
- Standardized deviance residuals:

$$e_{i,SD} = \frac{sign(y_i - \hat{\mu}_i) \sqrt{d_i}}{\sqrt{\hat{\phi}(1 - h_{ii})}}$$

- Deviance residuals may be closer to Normal distribution (or at least less skewed) than the Pearson residuals
 - * Not when y is binary!
- When less skewed, may be better than Pearson residuals for outlier detection
- In R:

Original: residuals(glmfit, type="deviance")
Standardized: library(boot); glm.diag(glmfit)\$rd

Diagnostics: Jacknife Residuals

Jacknife residuals: approximated by

$$e_{i,J} = sign(y_i - \hat{\mu}_i)\sqrt{(1 - h_{ii})e_{i,SD}^2 + h_{ii}e_{i,SP}^2}$$

- the difference between the observed ith response, and predicted from the data without ith case
- has an intermediate value between $e_{i,SD}$ and $e_{i,SP}$
- usually closer to $e_{i,SD}$ than to $e_{i,SP}$, since the average value of h_{ii} is small
- a good choice for diagnostics
- In R:

```
library(boot); glm.diag(glmfit)$res
or
rstudent(glmfit)
```

Diagnostics: Influential Points with Cook's Distance

The Cook's distance statistics:

$$C_i = \frac{(\hat{\beta}_{(i)} - \hat{\beta})^T X^T W X (\hat{\beta}_{(i)} - \hat{\beta})}{p \ \hat{\phi}}$$

- $\hat{\beta}_{(i)}$ is an estimate of β when excluding case i
- -p is the number of parameters
- Measures the standardized change in linear predictor when the ith case is deleted
 - * a standardized sum of squared Δeta
- Requires n maximizations
- Can be approximated by a one-step procedure
- In R:

```
library(boot); glm.diag(glmfit)$cook
Or
cooks.distance(glmfit)
```

Inference: Testing and Prediction

Inference: Wald Test for β_j

•
$$g(\mu_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{p-1} x_{i,p-1}$$

•
$$H_0$$
: $\beta_j = \beta_j^{H_0}$ versus H_a : $\beta_j \neq \beta_j^{H_0}$

- $\beta \widehat{\beta} \stackrel{asympt.}{\sim} \mathcal{N}\left(0, I(\widehat{\beta})^{-1}\right)$
 - $-I(\beta)$ is the Fisher Information matrix $\left[-\frac{\partial^2 l(\beta,\phi;\mathbf{y})}{\partial \beta_i \partial \beta_j}\right]_{ij}$
 - $-I(\hat{\beta})$ denoted the matrix evaluated at $\beta = \hat{\beta}$
- Test statistic $z=rac{\widehat{eta}_j-eta_j^{H_0}}{se(\widehat{eta}_j)}\stackrel{asympt.}{\sim} N(0,1)$
 - Based on asymptotic normality of the MLE
- Confidence interval for β_j : $\hat{\beta}_j \pm z^{1-\alpha/2} SE\{\hat{\beta}_j\}$
- Multivariate extension

$$W = (\widehat{\beta} - \beta_0)' \left[Cov(\widehat{\beta}) \right]^{-1} (\widehat{\beta} - \beta_0) \stackrel{asympt}{\sim} \chi_{df}^2$$

- df is the rank of $Cov(\widehat{\beta})$ (i.e. # of nonredundant parameters in β)

Inference: Score Test

•
$$g(\mu_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{p-1} x_{i,p-1}$$

- H_0 : $\beta_j = \beta_j^{H_0}$ versus H_a : $\beta_j \neq \beta_j^{H_0}$
- Utilizes the score function $u(\beta) = \partial L(\beta)/\partial(\beta)$ evaluated at β_0
 - $|u(\beta)|$ is larger when β is further from β_0
- Test statistic: ratio of $u(\beta)$ to its SE evaluated under H_0 :

$$z = \sqrt{\frac{\left[\partial L(\beta)/\partial \beta_0\right]^2}{-E\left[\partial^2 L(\beta)/\partial \beta_0^2\right]}} \stackrel{H_0, asympt.}{\sim} N(0, 1)$$

- Multivariate extension
 - z^2 is a quadratic form based on $\partial^2 L(\beta)/\partial \beta_j \partial \beta_{j'}$ and the inverse of the Information matrix evaluated at β_0 , compared to χ^2

Inference: Likelihood Ratio Test for Nested Models

•
$$g(\mu_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_{p-1} x_{i,p-1}$$

- H_0 : $\beta_1 = \beta_2 = \cdots = \beta_q = 0$ versus H_a : not all $\beta_1, \ \beta_2, \ \cdots, \ \beta_q = 0$
- LR test comparing scaled log-likelihoods
 - Reduced model: log-likelihood $l(\beta; \phi y, H_0)$
 - Full model: log-likelihood $l(\beta; \phi, y, H_a)$

$$-~G^2=-2rac{\log_e l({
m reduced})-\log_e l({
m full})}{\phi}\stackrel{assympt.}{\sim}\chi_q^2$$

- LR test comparing scaled deviances
 - Reduced: $D(reduced) = -2[l(\beta; \phi, y, H_0) l(y; y)]$
 - Full model: $D(full) = -2[l(\beta; \phi, y, H_a) l(y; y)]$
 - $-G^2 = \frac{D(reduced) D(full)}{\phi} \stackrel{assympt.}{\sim} \chi_q^2$
 - Better approximation of χ^2 than model-specific deviances

Prediction at New Data x

• On the link scale: easy (CI for a linear comb. of $\hat{\beta}$)

$$- \widehat{\beta} \stackrel{asympt.}{\sim} \mathcal{N}(\beta, V(\widehat{\beta})) \to \mathbf{x}' \widehat{\beta} \stackrel{asympt.}{\sim} \mathcal{N}(\mathbf{x}' \beta, \mathbf{x}' V(\widehat{\beta}) x)$$

- CI for
$$\widehat{\eta}(x) = \mathbf{x}'\widehat{\beta}$$
: $\mathbf{x}'\widehat{\beta} \pm z_{1-\alpha/2}\sqrt{\mathbf{x}'V(\widehat{\beta})\mathbf{x}}$

• On the mean scale: approximate

- CI for
$$\widehat{\mu}(\mathbf{x}) = g^{-1}(\widehat{\eta}(\mathbf{x}))$$
: $g^{-1}\left(\mathbf{x}'\widehat{\beta} \pm z_{1-\alpha/2}\sqrt{\mathbf{x}'V(\widehat{\beta})\mathbf{x}}\right)$

- approximate CI since applying a non-linear transformation
- If $g(\cdot)$ is a decreasing function, the upper and lower bounds for the CI of $\widehat{\mu}(x)$ are switched.

Overdispersion

- Assume GLM $y \stackrel{ind}{\sim} EFD(\theta, \phi)$
 - Implies $Var\{y\} = b''(\theta) \ a(\phi) = V(\mu) \ \phi/w$
- Overdispersion:

 $Var\{y\} \neq variance in the model$

- Do not include the right predictors
- Response variables are positively correlated or clustered (overdispersion)
- Response variables are negatively correlated (underdispersion)
- ullet Solution: view ϕ as an unknown dispersion parameter
 - Estimate ϕ from the data: $\hat{\phi} = X^2/(n-p)$, where p is the number of parameters in the model.

Inference in Presence of Overdispersion

 \bullet Solutions of the likelihood equations do not depend on ϕ

$$\frac{\partial L(\beta)}{\partial \beta_j} = \sum_{i=1}^n \frac{(y_i - \mu_i)x_{ij}}{Var(y_i)} \frac{\partial \mu_i}{\partial \eta_i} = \sum_{i=1}^n \frac{(y_i - \mu_i)x_{ij}}{V(\mu_i)} \frac{\partial \mu_i}{\partial \eta_i} = 0$$

- $E\{y_i\}$ and $\widehat{\beta}$ are not affected by $\widehat{\phi}$
- Can fit the model without overdispersion, and adjust afterwards
- ullet The standard error of \widehat{eta} scales by $\sqrt{\widehat{\phi}}$
- When testing $H_0: \beta_1 = \cdots = \beta_q = 0$:
 - Likelihood-based approaches are not valid

- Use F test:
$$\frac{D_0 - D_1}{q \ \widehat{\phi}} \stackrel{asympt.}{\sim} F_{q,n-p}$$

- Caution: D_0 and D_1 are deviances but not scaled deviances