

Codeforces Round #609 (Div. 2)

A. Equation

time limit per test: 3 seconds memory limit per test: 256 megabytes input: standard input output: standard output

Let's call a positive integer **composite** if it has at least one divisor other than 1 and itself. For example:

- the following numbers are composite: 1024, 4, 6, 9;
- the following numbers are not composite: 13, 1, 2, 3, 37.

You are given a positive integer n. Find two composite integers a,b such that a-b=n.

It can be proven that solution always exists.

Input

The input contains one integer n ($1 \le n \le 10^7$): the given integer.

Output

Print two composite integers a, b ($2 \le a, b \le 10^9, a - b = n$).

It can be proven, that solution always exists.

If there are several possible solutions, you can print any.

Examples

input	
1	
output	
9 8	

input			
512			
output			
4608 4096			

B. Modulo Equality

time limit per test: 3 seconds memory limit per test: 256 megabytes input: standard input output: standard output

You are given a positive integer m and two integer sequence: $a=[a_1,a_2,\ldots,a_n]$ and $b=[b_1,b_2,\ldots,b_n]$. Both of these sequence have a length n.

Permutation is a sequence of n different positive integers from 1 to n. For example, these sequences are permutations: [1], [1,2], [2,1], [6,7,3,4,1,2,5]. These are not: [0], [1,1], [2,3].

You need to find the non-negative integer x, and increase all elements of a_i by x, modulo m (i.e. you want to change a_i to $(a_i+x) \bmod m$), so it would be possible to rearrange elements of a to make it equal b, among them you need to find the smallest possible x.

In other words, you need to find the smallest non-negative integer x, for which it is possible to find some permutation $p = [p_1, p_2, \dots, p_n]$, such that for all $1 \le i \le n$, $(a_i + x) \mod m = b_{p_i}$, where $y \mod m$ — remainder of division of y by m.

For example, if m=3, a=[0,0,2,1], b=[2,0,1,1], you can choose x=1, and a will be equal to [1,1,0,2] and you can rearrange it to make it equal [2,0,1,1], which is equal to b.

Input

The first line contains two integers n, m ($1 \le n \le 2000, 1 \le m \le 10^9$): number of elemens in arrays and m.

The second line contains n integers a_1, a_2, \ldots, a_n ($0 \le a_i < m$).

The third line contains n integers b_1, b_2, \ldots, b_n ($0 \le b_i < m$).

It is guaranteed that there exists some non-negative integer x, such that it would be possible to find some permutation p_1, p_2, \ldots, p_n such that $(a_i + x) \mod m = b_{p_i}$.

Output

Print one integer, the smallest non-negative integer x, such that it would be possible to find some permutation p_1, p_2, \ldots, p_n such that $(a_i + x) \mod m = b_{p_i}$ for all $1 \le i \le n$.

Examples

input	
4 3 0 0 2 1 2 0 1 1	
output	
1	

```
input

3 2
0 0 0
1 1 1

output

1
```

input	
5 10 0 0 0 1 2 2 1 0 0 0	
output	
0	

C. Long Beautiful Integer

time limit per test: 3 seconds memory limit per test: 256 megabytes input: standard input output: standard output

You are given an integer x of n digits a_1, a_2, \ldots, a_n , which make up its decimal notation in order from left to right.

Also, you are given a positive integer k < n.

Let's call integer b_1, b_2, \dots, b_m beautiful if $b_i = b_{i+k}$ for each i, such that $1 \le i \le m-k$.

You need to find the smallest **beautiful** integer y, such that $y \ge x$.

Input

The first line of input contains two integers n, k ($2 \le n \le 200\,000, 1 \le k < n$): the number of digits in x and k.

The next line of input contains n digits a_1, a_2, \ldots, a_n ($a_1 \neq 0$, $0 \leq a_i \leq 9$): digits of x.

Output

In the first line print one integer m: the number of digits in y.

In the next line print m digits b_1, b_2, \ldots, b_m ($b_1 \neq 0$, $0 \leq b_i \leq 9$): digits of y.

Examples

input	
3 2 353	
output	
3 353	

```
input
4 2
1234

output
4
1313
```

time limit per test: 3 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

You are given a Young diagram.

Given diagram is a histogram with n columns of lengths a_1,a_2,\ldots,a_n ($a_1\geq a_2\geq \ldots \geq a_n\geq 1$).

Young diagram for a = [3, 2, 2, 2, 1].

Your goal is to find the largest number of non-overlapping dominos that you can draw inside of this histogram, a domino is a 1×2 or 2×1 rectangle.

Input

The first line of input contain one integer n ($1 \le n \le 300\,000$): the number of columns in the given histogram.

The next line of input contains n integers a_1, a_2, \ldots, a_n ($1 \le a_i \le 300\,000, a_i \ge a_{i+1}$): the lengths of columns.

Output

Output one integer: the largest number of non-overlapping dominos that you can draw inside of the given Young diagram.

Example

input	
5 3 2 2 2 1	
output	
4	

Note

Some of the possible solutions for the example:

E. K Integers

time limit per test: 3 seconds memory limit per test: 256 megabytes input: standard input output: standard output

You are given a permutation p_1, p_2, \ldots, p_n .

In one move you can swap two adjacent values.

You want to perform a minimum number of moves, such that in the end there will exist a subsegment $1,2,\ldots,k$, in other words in the end there should be an integer i, $1 \le i \le n-k+1$ such that $p_i=1,p_{i+1}=2,\ldots,p_{i+k-1}=k$.

Let f(k) be the minimum number of moves that you need to make a subsegment with values $1,2,\ldots,k$ appear in the permutation.

You need to find $f(1), f(2), \ldots, f(n)$.

Input

The first line of input contains one integer n (1 $\leq n \leq 200\,000$): the number of elements in the permutation.

The next line of input contains n integers p_1, p_2, \ldots, p_n : given permutation ($1 \le p_i \le n$).

Output

Print n integers, the minimum number of moves that you need to make a subsegment with values $1, 2, \ldots, k$ appear in the permutation, for $k = 1, 2, \ldots, n$.

Examples

input			
5 5 4 3 2 1			
output			
0 1 3 6 10			
input			
3 1 2 3			
output			
0 0 0			

<u>Codeforces</u> (c) Copyright 2010-2022 Mike Mirzayanov The only programming contests Web 2.0 platform