

MATEMÁTICA BÁSICA – CE82 SEMANA 5 – SP1

Temario: Función cuadrática y aplicaciones, definición, elementos y aplicaciones a situaciones reales.

Logro de la sesión: Al término de la sesión el estudiante reconoce una función cuadrática determina correctamente el dominio, rango, vértice, gráfica y aplica el modelo a situaciones de la vida cotidiana.

FUNCIÓN CUADRÁTICA

Se llama así a la función cuya regla de correspondencia es: $f(x) = ax^2 + bx + c$, siendo $a \ne 0$ (forma estándar) La gráfica es una curva llamada parábola con eje vertical paralelo al eje y, con vértice V(h; k), donde:

Si $f(x) = ax^2 + bx + c$ y a > 0 la gráfica de la función f es cóncava hacia ______, además tiene mínimo valor en ____ y el valor mínimo es _____.

 $\operatorname{Si} f(x) = \operatorname{ax}^2 + \operatorname{b} x + \operatorname{c} y$ a < 0 la gráfica de la función f es cóncava hacia ______, además tiene máximo valor en_____ y el valor máximo es _____.

Ejemplo:

Dada la función g, cuya regla de correspondencia está dada por $g(x) = -2x^2 + 4x + 2,5$ determine las coordenadas del vértice, las coordenadas de los puntos de intersección con los ejes coordenados, determine el máximo o mínimo valor y represente gráficamente la función.

Coordenadas del vértice:

Puntos de intersección con los ejes coordenados:

La función g tiene ______ y es ______

Ejercicio 1:

Dada la función f, cuya regla de correspondencia está dada por $f(x) = 2x^2 + 6x + 4$ determine las coordenadas del vértice, las coordenadas de los puntos de intersección con los ejes coordenados, determine el máximo o mínimo valor, represente gráficamente la función y determine su dominio y rango.

Función: $f(x) = 2x^2 + 6x + 4$

Coordenadas del vértice:

Puntos de intersección con los ejes coordenados:

La función f tiene ______ y es ______

Dominio:

Rango:

Otra forma de representar una función cuadrática es: $f(x) = a(x-h)^2 + k$ (forma normal)

Donde: (h; k) son las coordenadas del _____

Ejemplo:

En la figura adjunta se muestra la gráfica de una función cuadrática, halle su regla de correspondencia, en su forma normal y estándar.

Forma normal: $f(x) = a(x-h)^2 + k$

De la figura se observa que $\mathbf{h} = \underline{\hspace{1cm}}; \mathbf{k} = \underline{\hspace{1cm}}$

Para determinar el valor de **a** se reemplaza un punto de la parábola, en este caso el punto adecuado es: _____

La ecuación es: _____

Forma estándar: $f(x) = ax^2 + bx + c$

Ejercicio 2:

Dada la función $f(x) = -2x^2 - 4x + 2$, escriba su regla en la forma normal, determine su vértice y los puntos de intersección con los ejes coordenados. Esboce la gráfica, determine su dominio y rango.

- A. ¿Cuál es el máximo valor de la función $f(x) = 3x + 40 x^2$?
- B. ¿Cuál es el vértice de la función $y = 4 (x+1)^2$?

3

APLICACIONES

Ejemplo:

Un agricultor tiene 1200 metros de material para construir una cerca en un terreno rectangular que ha de cercarse en tres porciones iguales, como se muestra en la figura adjunta.

- **a.** Determine una función que permita expresar el área del terreno rectangular en función de *x*. *Nota defina sus variables y encuentre su dominio*.
- **b.** Calcule las dimensiones del terreno para que su área sea máxima.
- c. Calcule el área máxima del terreno.

Ejercicio 3

La función $f(t) = 80 + 64t - 16t^2$ nos da la altura (en metros) a la que está una pelota lanzada hacia arriba en el instante t (en segundos) hasta que vuelve al suelo.

- a. ¿Desde qué altura se lanzó la pelota?
- **b.** Esboce la gráfica de la función, defina variables y coloque restricciones.
- c. ¿Halle la altura máxima que alcanzó la pelota y en qué tiempo?
- **d.** ¿Después de cuánto tiempo desde su lanzamiento, la altura a la que está la pelota es menor que la altura inicial?

Problema (Competencia Razonamiento Cuantitativo)

Un agricultor dispone de $3000 \in$ para cercar un terreno rectangular que se encuentra al lado de un río. Una condición es que el área del terreno a cercar debe ser lo mayor posible, otra condición es que debe usar el río adyacente como lado con el fin de que el recinto sólo necesite tres cercas y además debe utilizar todo el dinero disponible. Los encargados de hacer el trabajo le informan que el costo de la cerca paralela al río es de $5 \in$ por metro instalado, y el de la cerca para cada uno de los lados restantes es de $3 \in$ por metro instalado.

- A) Según el enunciado del problema ¿qué es lo que se desea hallar?
- **B**) Con los datos del problema esboce un gráfico, coloque y defina las variables. Escriba una fórmula que permita calcular el área del terreno en términos de una sola variable, coloque sus restricciones.
- C) Halle las dimensiones del terreno de área máxima.
- **D**) Justifique gráfica o analíticamente ¿por qué el área es máxima para las dimensiones halladas?

CIERRE DE CLASE

- A. ¿Cómo se determina el máximo o mínimo valor de una función cuadrática?
- B. ¿La función $y = x^2 + 4x + 2$ tiene mínimo o máximo valor?
- C. ¿La función $y = -x^2 + 7$, tiene un valor máximo igual a 7 en x = 0? ¿Por qué?

3/3 EPE INGENIERÍA