

Network theory: 3 optimisation problems and networks Liubov Tupikina (CRI)

Lecture 3

Network models and measures (reminder from lecture 2)

Optimization problems: Konigsberg problem, Steiner problem

Applications to biology

Small network quiz

Network measures

Random network models

How to estimate properties of Erdos-Reny, Watts-Strogatz and Barabasi-Albert models?

$$P(\deg(v)=k) = inom{n-1}{k} p^k (1-p)^{n-1-k} P(k) = \sum_{n=0}^{f(k,K)} inom{K/2}{n} (1-eta)^n eta^{K/2-n} rac{(eta K/2)^{k-K/2-n}}{(k-K/2-n)!} e^{-eta K/2} P(k) \sim k^{-oldsymbol{\gamma}}$$

Probability theory to characterize random networks

Erdos-Renyi random network

Barabasi book on network science

Probability theory and statistics

BRIEF STATISTICS REVIEW

Four key quantities characterize a sample of N values x_1, \dots, x_N :

Average (mean):

$$\langle x \rangle = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

The nth moment:

$$\langle x^n \rangle = \frac{x_1^n + x_2^n + \ldots + x_N^n}{N} = \frac{1}{N} \sum_{i=1}^N x_i^n$$

Standard deviation:

$$\sigma_{x} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{i} - \langle x \rangle)^{2}}$$

Distribution of x:

$$p_{x} = \frac{1}{N} \sum_{i} \delta_{x, x_{i}}$$

where p_x follows

$$\sum_{x} p_x = 1 \left(\int p_x \, dx = 1 \right)$$

Barabasi book on network science

Compare table for random graphs and real-world networks

Network	Nodes	Links	Directed / Undirected	N	L	⟨Κ ⟩
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.34
www	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Mobile-Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorships	Undirected	23,133	93,437	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Papers	Citations	Directed	449,673	4,689,479	10.43

Barabasibook online

Example: Social Network in Les Miserables

M. E. J. Newman and M. Girvan, Finding and evaluating community structure in

Multilayer networks
Temporal networks
Networks with attributes

Multilayer networks

Layers.

Temporal networks

P.Holme et al. Temporal network Rev.

Networks with attributes

mainesciencefestival.

Can you identify network topology which is built for

- A. Optimisation for users
- B. Construction-oriented design

Can you identify network topology which is built for

- A. Optimisation for users
- B. Construction-oriented design

How to solve optimisation problems?

Can you identify network topology which is built for

- A. Optimisation for users
- B. Construction-oriented design

How to solve optimisation problems?

To identify variables of the system: x1,x2, x3... xn

To simplify the system

To minimize the cost-function for the problem: $F(x_1,x_2,x_3...x_n)$

Def. Tree network

is a graph in which any two vertices are connected by exactly one path.

Every acyclic connected graph is a tree, and vice versa. A forest is a disjoint union of trees, or equivalently an acyclic graph that is not necessarily connected.

Thank you!!!

If you have any questions, ideas how to make the course better, write to me: liubov.tupikina@cri-paris.org

Network quiz:

- 1. it is for understanding of our understanding
- 2. it is for 10 mins
- 3. we can discuss about it after (if you want)

What I am really working on...

Spreading dynamics:

$$P_{x_0x_a}(t) = \sum_{n=1}^{\infty} (Q^n)_{x_0x_{abs}} P_n(t) = \frac{e^{-t/\tau}}{\tau} \sum_{n=1}^{\infty} (Q^n)_{x_0x_a} \frac{(t/\tau)^{n-1}}{(n-1)!}$$

Modelling crowded dynamics:

$$\dot{P}_{x_0\bar{x}}(t) = \frac{d}{dt} \int_0^t \left(\frac{1}{2} \sum_{x' = \bar{x} \pm 1} M_{x'}(t - t') P_{x_0x'}(t') - M_{\bar{x}}(t - t') P_{x_0\bar{x}}(t') \right) dt'.$$

Data analysis:

D.Grenbenkov, LT. PRE (2017)

P. Holme, LT, New Jour. Physics (2018)

M.Lindner, N.Molkenthin, LT, R.Donner Springer (2019)

How would you analyze this network?

Where networks are useful? Where are not?

2nd grade

Thu, 10:20- 11:00