Subset of population which we have data on **Descriptive Statistics**

Sample

Summary Statistics of Sample Data

Used to make Inferences

Inferential Statistics

Parameters of Population

(Unknown)

Population

Total set of subjects of interest

Nominal (Cate)

Ordinal (Cate)

Discrete (Quant)

Continuous (Quant)

Suspected Outliers [Small/Large] (z - score > 3)

1. Symmetric & Bell-Shaped: (Sensitive to Skew)

- IOR (NOTE: Ouantiles are non-unique)

2. Highly Skewed: (Robust to Outliers)

(Ordinal) Apparent Trend in Proportions

 $Var(X) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ For Y = aX + b:

2 Chapter 2: Single Variable Analyses

Meaningful Order ↓

Consistent Difference ↓↓

(Uncountably) Infinite ↓↓

Types of Variables

Describing Data

Continuous Variables:

- Mean

Median

Formulae and Results

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

 $Var(Y) = a^2 Var(X)$

0 2334444 555556677 7888899

3 Association between Variables

Categorical x Categorical

Association:

 $\overline{Y} = a\overline{X} + b$

 $s_Y = |a| s_X$

- Var & Std Dev

⇒ Continuous can be categorised!

Categorical (or Discrete) Variables:

% Proportion of Modal Category

Special High/Low Categories

Cluster/Gap Intervals

Chapter 1: Introduction

• Relative Risk $\frac{\dot{O}ccurrence~in~Exposed}{Occurrence~in~Unexposed}$ Graphical Summaries:

 Contingency Table Conditional Proportions on [Explanatory] for [Response]

Columns: Response, Rows: Explanatory \sum proportions across row = 1 $\overline{Marginal\ Proportion} = \frac{+\ Response}{Total\ Data}$ Bar Charts (Stacked/Clustered)

Categorical x Quantitative Association:

• Difference in Proportions

 Medians Skewness, Spread

 Outliers [Small/Large] Graphical Summary: Side-by-side Boxplots Quantitative x Quantitative

Association:

Presence of Association [+/-]

 Type of Association [Linear/Non-Linear] Variance of Points · Unusual Departure from Overall Trend

Non-Constant Variance, Suspected Outliers

· Correlation Coefficient (Linear only) $R = \frac{1}{n-1} \sum \left(\frac{X_i - \overline{X}}{s_X}\right) \left(\frac{Y_i - \overline{Y}}{s_Y}\right)$

$$|R|>=0.8$$
 Very Strong $0.5<|R|<0.8$ Strong $|R|<=0.5$ Not Strong

Correlation != Causation | Lurking and Confounding Variables

Lurking Variables: Unobserved variable that influences association between variables of interest. Has potential for Confounding Variables: Explanatory variables which are

associated with response, but also to each other. Condition by confounding variable 4 Study Design

Observational Studies

· Availability of Data

Case-Control Studies: Split by response ⇒ What was done differently in the PAST? (Retrospective) Sample Surveys: What does the population look like NOW?

(Cross-Sectional) Cohort Studies: Identify a group now ⇒ Observe in the future. (Prospective)

Pros: · Ethical and Easier to conduct

ABCD

fez.

· Causality is not always required information

· Not possible to establish cause and effect

· Lurking Variables can affect the results

Consistent concusion of observational studies ⇒ Probable causal relationship but never definitely!

Conducting a Sample Survey

1. Sampling Frame: List of subjects for sampling ⇒ Ideally = Population

2. Sampling Design: Method of subject selection ⇒ Ideally sampled by chance

 Simple Random Sampling Cluster Random Sampling

Use when: - Reliable frame unavailable

Cost of SRS too high

Larger sample size required

- Selecting small number of clusters might be more homogeneous than population Stratified Random Sampling

- Response differs typically across strata - To include enough subjects in each stratum

- Must know the stratum each subject belongs to Need to define multiple sampling frames ⇒ Non-Random Sampling sometimes required

 Convenience Sample - Data can be obtained relatively cheaply

- May poorly represent the population - Bias depends on the method of convenience sample Volunteer Sample

F2F Interview

More likely to

participate

High costs

Inter-

Self-Admin

Ouestionnaire

Lower partici-

pation rates

Low costs

Phone

May not answer More willing to sensitive quesanswer sensititions on opinive questions on and lifestyle Sampling Bias: Bias during sampling

Less patient, li-

kely to hang up

Low costs

 Non-Random Sampling Undercoverage: Non-representative sampling frame

eg. Survey through landlines not reaching homeless Non-Sampling Bias: Bias during data collection

Nonresponse Bias

- Sampled subjects cannot be reached/refuse to participate

 Missing data for certain questions Response Bias

 Non-honest responses - Confusing/Leading questions

- Answering wrongly **Experimental Studies**

 More sure of a causal relationship as lurking variables' impacts more easily addressed.

 Random selection of treatments ⇒ Reduced potential for lurking variables.

Conducting an Experiment 1. Obtaining experimental units

Typically have to be a convenience sample ⇒Representative? 2. Assigning to treatments

The Control Group: Placebo/Existing treatments for ethical or comparison reasons Random Assignment: · Prevent bias with systematically different non-randomly assigned groups

 Balance groups on lurking variables to prevent effects on association

of treatment 5 Probability

3. Performing Treatment

Definitions:

P(A|B)

 Probability: Proportion of an outcome in the long run (Converges due to law of large numbers) Sample Space: Set of ALL possible outcomes

= P(A)

Double-Blinding: Those in contact with units unaware

• Event: A particular outcome, OR Set of possible outcomes (event ⊂ Sample space) $P(Event) = \sum P(Outcome)$

Blinding: Units unaware of treatment

• Disjoint Events $A, B \iff A \cap B = \emptyset$ • Independent Events A, B $P(A \cap B)$ $= P(A) \times P(B)$

=P(B)P(B|A)**Probability Cheatsheet**

$$P(A \cup B) = P(A) + P(B) \\ - P(A \cap B) \\ = P(A) + P(B) \text{(Disjoint)}$$

$$P(A \cap B) = P(A) \times P(B|A) \\ = P(B) \times P(A|B) \\ = P(A) \times P(B) \text{(Independent)}$$

$$P(A \cap B \cap C) = P(A) + P(B) + P(C) \\ - P(A \cap B) - P(A \cap C) \\ - P(B \cap C) - \\ P(A \cap B \cap C)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \\ = P(A) \times \frac{P(B|A)}{P(B)}$$

For $B_i, B_2, ..., B_n$ partitioning S $P(A) = \sum_{i=1}^{n} P(A \cap B_i)$ $= \sum_{i=1}^{n} \{P(A|B_i)P(B_i)\}$

6 Distributions

Mean and Variance of Random Variable X

 $E(X) = \mu_X = \sum x P(X = x)$ $Var(X) = \sum_{x} (x - \mu)^2 P(X = x)$ Continuous:

 $E(X) = \mu_X = \int x P(X = x) dx$ $Var(X) = \int (x - \mu)^2 P(X = x) dx$

Expected Value E(X): Average in a long run of observations, NOT the expected value of a single observation!

Normal Distribution

 $Norm(\mu, \sigma^2)$ $\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$ 1. Symmetric

2. Bell-shaped $0.68 \text{ in } (\mu - \sigma, \mu + \sigma)$ Sampling Distribution:

 $\mu_{\overline{X}} = \mu$ $s_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$

Central Limit Theorem

 $n > 30 \lor pop \sim Norm(\mu, \sigma^2)$ $\Rightarrow \overline{X} \sim Norm(\mu, \frac{\sigma^2}{n})$

 $0.95 \text{ in } (\mu - 2\sigma, \mu + 2\sigma)$

 $0.997 \text{ in } (\mu - 3\sigma, \mu + 3\sigma)$

Let X = no. of successes in n trials.

If sampling without replacement.

3. P(success) = p is a constant

Approximation by Normal Distribution

 $\Rightarrow X \sim Norm(np, np(1-p))$

Data

ple

 $successes \sim Binom(n, p)$ $\hat{p} = \frac{1}{2}$

 $np(1-p) \geq 5 \Rightarrow \hat{p} \sim Norm(p, \frac{p(1-p)}{p})$

Population:

Mean μ , Standard deviation: σ

Sample ≈ Distribution of Population:

n observations with mean \overline{X} .

Standard deviation: S X

 $\therefore \mu_{\hat{p}} = p \quad s_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$

is THE sam-

7 Sampling Distribution

possible values of the statistic

 $X \sim Binom(n, p)$

n < 10% of Population

Binomial Distribution

1. Binary Outcomes

For $x \in \mathbb{N}_{\leq n}$,

Population

Where a

comes from

Sampling Distribution:

sample

Categorical

2. Independent n trials

3. Approximates many discrete distributions (with large n)

 $Z-Score=\frac{x-\mu}{\sigma}$ (No. of standard deviations a value

Binomial is perfectly symmetric $\iff p = 0.5$

 $P(X = x) = \frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x}$

E(X) = np Var(X) = np(1-p)

 $np(1-p) \ge 5 \lor (np \ge 15 \land n(1-p) \ge 15)$

Probability distribution that specifies probabilities for the

Population: proportion *p*

Sample: n observations with proportion \hat{p}

Sampling

Describes how a sample

is likely to look like

 $n \in \mathbb{N}, p \in [0,1]$

falls from the mean) Standard Normal: Norm(0, 1)

8 Confidence Intervals

Getting from Sample Dist, to Parameters: Estimations

Point Estimate Ideal Properties:

· Unbiased (Centred at parameter)

• Small Standard Deviation (. . Sample Mean over Median)

Confidence Interval

• Interval around the point estimate (Margin of Error)

• Associated with certain degree of confidence (≈ 0.95)

Indicates precision

The probability that it contains p

If we generated a $(1-\alpha)$ interval using the same method over many random samples, to estimate many population parameters, in the long run, $(1-\alpha)$ of those intervals will contain the population parameter. Confidence Interval: Proportions

Assumptions:

· Data obtained by randomisation Distribution is \sim Normal (np(1-p) > 5)

For Binomial \approx Normal, $s_{\hat{p}} \approx se$ approximation, $(1-\alpha)$ Confidence Interval:

$$\hat{p} \pm \underbrace{q_{1-\frac{\alpha}{2}}(se)}_{\text{Margin of Error}} \quad \underbrace{s_{\hat{p}} \approx se}_{} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Margin of Error
$$\leq W \iff n \geq \frac{q_{1-\frac{\alpha}{2}}^2}{W^2} \hat{p}(1-\hat{p})$$

$$n \uparrow \Rightarrow MoE \downarrow \downarrow \\ (1-\alpha) \uparrow \Rightarrow MoE \uparrow \uparrow \\ p \uparrow \Rightarrow \hat{p} \uparrow \Rightarrow MoE \uparrow \uparrow \\ n \text{ ultimately depends on costs and limitations. Rectify:}$$

If $p \approx 0 \lor p \approx 1, +2successes, +2failures$ Confidence Interval: Mean

· Data obtained by randomisation

- Robust, but not to outliers:
- Summary statistics \overline{X} and s_X sensitive to outliers.
- $\,\overline{X}$ no longer $pprox \mu_{\overline{X}} = \mu$ Robustness Confidence Interval is robust wrt. the normality

assumption ⇒ Performs adequately even when assumption is modestly violated

 $(1-\alpha)$ Confidence Interval:

$$\overline{X} \pm \underbrace{t_{df=n-1,1-\frac{\alpha}{2}}(se)}_{s_{\overline{X}}} \quad s_{\overline{X}} \approx se = \frac{s_X}{\sqrt{n}}$$

$$s_X$$
 is a point estimator of σ . For $df \geq 30~(n>30)$, and $\mu \pm 3\sigma \approx Range(X)$ Margin of Error $\leq W \iff n \geq rac{\sigma^2 q_{1-rac{\alpha}{2}^2}}{W^2}$ $n \uparrow \Rightarrow MoE \downarrow$ $(1-\alpha)\uparrow \Rightarrow MoE \uparrow$ $\sigma^2 \uparrow \Rightarrow s^2 \uparrow \Rightarrow MoE \uparrow$

t-Distribution

Distribution to allow generalisation for small sample sizes but assumes normal distribution

$$\begin{array}{cc} t_{df} & df \in \mathbb{R} \\ lim_{df \to \infty} t_{df} = Norm(0,1) \\ t_{df = 30} \approx Norm(0,1) \\ \text{Bell-shaped} \end{array}$$

Slightly thicker tails than normal

3. Shows more variability than normal

9 Significance Tests

Assumptions

Certain conditions or assumptions that the test requires, or makes ↓

Hypotheses

 H_0 : statement that the parameter takes a particular value (Usually no effect) H_a : statement that the parameter falls in some

alternative range of values. (Usually represents an effect) Assumed to be true until sufficient evidence against the hypothesis

One/two-sided test (> or < or \neq)

How far the point estimate of the parameter falls from the ${ t Test Statistic} \ T - Score_{\overline{X}} \ { t supposing} \ H_0$ H_0 value, usually in no. of seIs a random variable, each sample is an observation Distribution under H_0 is the null distribution P-Value Probability that the test statistic equals, or is more extreme,

than the observed. Calculated by assuming H_0 .

Smaller P-Value \Rightarrow Stronger evidence against H_0

Conclusion

Interpretation of the P-Value, and in context

Significance level α : the number such that we reject H_0 if

significant, if the data provides sufficient evidence to reject

Decision

Reject H_0

Type I Error

Correct Conclusion

Statistically Significant: The results are statistically

Do not reject H_0

Correct Conclusion

Type II Error

P(Type II Error): Complex, but inversely related to P(Type

• as parameter moves further into H_a , away from H_0

Small P-Value does not imply confidence interval is far

• Sample size is sufficiently large $(np(1-p) \ge 5)$

Sample size is small \Rightarrow two-sided test is robust.

 $H_0: p = p_0 \quad H_a: p \neq p_0, p > P_0, p < p_0$

 $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{1 - p_0}}}$

 $P-Value = \begin{cases} P(Z < z) & left\text{-}sided \\ P(Z > z) & right\text{-}sided \\ 2 \times P(Z > z) & two\text{-}sided \end{cases}$

Conclusion: If P-Value is $> \alpha$, strong evidence against H_0 .

Except when n is small and H_a is one-sided, sampling

 $H_0: \mu = \mu_0 \quad H_a: \mu \neq \mu_0, \mu > \mu_0, \mu < \mu_0$

Otherwise, we do not have strong evidence against H_0 .

Otherwise null-dist= $Binom(n, p_0)$

P(Type | Error): Significance level α

Error). For fixed α , prob. decreases:

Plot: Probability against p_0 for fixed α, n

Power of a test= 1 - P(Type II Error)

• "Do not reject H_0 " \neq "Accept H_0 "

· Data obtained using randomisation

as sample size increases

Misinterpretations

Significance Test for p

Categorical Variable

 $z-score_{\hat{p}}$ supposing H_0

Null Distribution: Norm(0, 1)

Significance test for \overline{X}

Ouantitative Variable

Data obtained using randomisation

Population distribution ≈ Normal

distribution is no longer t dist.

Two-sided test is robust (because CLT)

"One Sample t-Test"

Assumptions

Assumptions

Hypotheses:

Test Statistic:

P-Value:

 H_0 and support H_a

Types of Errors

Reality

 H_0

P-Value:

$$T = \frac{\frac{X}{X} - \mu_0}{\frac{s}{\sqrt{n}}}$$

Null Distribution: $t_{df=n-1}$ $P(t_{df} < T)$

$$P ext{-}Value = \begin{cases} P(t_{df} < t) \\ P(t_{df} > t) \end{cases}$$

 $P\text{-}Value = \left\{ P(t_{df} > T) \right\}$

 $2 \times P(t_{df} > T)$ two-sided

Conclusion If P-Value is $> \alpha$, strong evidence against H_0 . Otherwise, we do not have strong evidence against H_0 . Two-sided Test vs. Confidence Interval

left-sided

right-sided

Two-sided test P-Value $< \alpha \iff$

 $(1-\alpha)$ Conf-Int does not contain H_0 value 10 Bivariate Inference Methods

Sampling Distribution of $(p_1 - p_2)$ $\mu_{\hat{p_1} - \hat{p_2}} = p_1 - p_2$

$$s_{\hat{p_1}-\hat{p_2}} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$
 Confidence Interval for (p_1-p_2)

Assumptions

 Categorical Response variable observed Independent random samples for the two groups

• Large sample sizes, $np > 10 \land n(1-p) > 10$ for each group

 $(1-\alpha)$ Confidence Interval:

$$se = \sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n_1} + \frac{\hat{p_2}(1-\hat{p_2})}{n_2}}$$
 If confidence interval contains 0, it is plausible that

 $(p_1 - p_2) = 0$, and the proportions might be equal. Sign of values: $p_1 > p_2$ or $p_1 < p_2$ Magnitude of values: The size of the true difference in

Significance Test for $(p_1 - p_2)$ Same assumptions as confidence interval

Hypotheses

 $H_0: p_1 = p_2, H_a: p_1 \neq p_2, p_1 > p_2, p_1 < p_2$ Test Statistic, \hat{p} is the pooled estimate

$$z = \frac{(\hat{p_1} - \hat{p_2}) - 0}{se_0}, se_0 = \sqrt{\hat{p}(1 - \hat{p})(\frac{1}{n_1} + \frac{1}{n_2}\hat{Y} = \hat{B_0} - \hat{B_1}X}$$
 P-Value

right-sided

Null Distribution: Norm(0, 1)Conclusion Groups are (statistically) significantly different if P-Value is small

Sampling Distribution of $(\mu_1 - \mu_2)$

 $\mu_{\overline{X_1} - \overline{X_2}} = \mu_1 - \mu_2 \quad s_{\overline{X_1} - \overline{X_2}} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ Null Distribution: t_{df} . df is complex.

Confidence Interval for $(\mu_1 - \mu_2)$

Assumptions

- · Quantitative response variable observed
- Independent random samples for the two groups
- Approximately normal population dist. for each group Robust, except to outliers [Confidence Interval: Mean] $(1-\alpha)$ Confidence Interval:

$$(\overline{X_1} - \overline{X_2}) \pm t_{df, 1 - \frac{\alpha}{2}}(se), se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_1^2}{n_2}}$$

Significance Test for $(\mu_1 - \mu_2)$

Same assumptions as confidence interval

 $\hat{H_0}$: $\mu_1 = \mu_2, H_a$: $\mu_1 \neq \mu_2 \mu_1 > \mu_2 \mu_1 < \mu_2$

Test Statistic, se same as confidence interval $t = \frac{(\overline{X_1} - \overline{X_2}) - 0}{se_0}$ P-Value Null Distribution: t_{df}

Conclusion Groups are (statistically) significantly different if P-Value is small

Significance Test for $(\mu_1-\mu_2)$, $\sigma_1=\sigma_2$ F test for comparing standard deviation:

P-Value $< \alpha = 0.05$ ↑ NOT robust to population normality assumption Assumptions, Test Statistic, P-Value, Conclusion are all the

same as for non-equal std. dev, but with:
$$se=s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$$

$$s_p=\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{x_1+n_2-2}}$$

$$df=n_1+n_2-2$$

11 Linear Regression

$$Y=\overline{Y}-b(\overline{X})+R(\frac{s_Y}{s_X})X+\epsilon$$
 Y-intercept $\overline{Y}-b\overline{X}$

Predicted value of y when x = 0, Might have no interpretative value (if no observations near x=0). Slope $R(\frac{s_Y}{s_X})$ Same sign as R. Amount that \hat{y} changes with one unit

increase of x R^2 is the % of variability in the response variable that can be explained by the linear relationship with the explanatory variable. Error term ϵ

Assumptions

· Data obtained by randomisation Relationship between X and Y is linear

• Error term $\epsilon \sim Norm(0, \sigma^2)$ where σ is a constant

Implications of Assumptions $\forall X(Y \sim Norm(\beta_0 + \beta_1 X, \sigma^2))$

$$\forall X(Y \sim Norm(\beta_0 + \beta_1 X, \sigma^2))$$

Ordinary Least Squares Estimation

Best fit regression is the minimalisation of $\sum_{i=0}^{n-1} e_i^2$ Interpreting Info of Linear Regression Models

$$\hat{Y} = \hat{B_0} - \hat{B_1} X$$
Residuals

Ouartiles of the residuals of each point with the model ⇒ Point Estimates of each coefficient in the model

Std. Error Standard error of each coefficient. Can be used to obtain a

confidence interval Residual Standard Error

The standard error of $\hat{\sigma}$ For each point x_i , $e_i = y_i - \hat{y_i}$ · Could be normalised, to get standard residuals

 $SR \sim Norm(0,1)$ • σ is the measure of how far the observations can deviate from best-fit line

 σ^2 is the measure of how far the observations can deviate from the best-fit line

Coefficient of Determination of linear model Hypothesis Testing on Linear Models

Multiple R-squared

The significance of one regressor. Assumptions Same as assumptions of model

 $H_0: \beta_i = 0$ OR Regressor i is NOT significant $H_a: \beta_i \neq 0$ OR Regressor i is significant

Test Statistic

Null-Distribution: t Distribution, df = n-no. of coefficients

The coefficient is (not) significantly different from 0 at α -level F-test

Assumptions Same as assumptions of model **Hypothesis** H_0 : model is NOT significant OR all the coefficients

except β_0 are zero H_a : model is significant OR at least one of the

coefficients except β_0 are non-zero Test Statistic F-statistic from R output

 $F=t^2$ for Simple Linear Regression P-Value

Null-Distribution: F Distribution. df1 = no. of coefficients - 1df2 = n-no. of coefficients Find right-sided P-Value on F Distribution

The data provides (in)sufficient evidence that the built model is significant.

 $P-Value < \alpha \Rightarrow \mathsf{ALL}$ regressors used in the model are not significant, $Y = \beta_0$ Checking Assumptions of Linear Model

Before fitting model, scatterplot of Y against X:

 Linearity (No curved bands) 2. Constant Variance (Funnel shape)

To verify the assumption $\epsilon \sim Norm(0, \sigma^2)$

1. SR against \hat{Y}_i

2. SR against XPoints scatter randomly around 0, within (-3, 3)Funnel shaped observed ⇒ Constant variance assumption violated

3. Histogram of SR

4. 00 Plot of SR SR has a normal distribution Skewed Distribution ⇒ Normality assumption violated Possible Fixes

Add higher order terms

• Transform response into ln(Y), \sqrt{Y} , $\frac{1}{Y}$

· Add more regressors · Non-linear model required

 $|SR| > 3 \Rightarrow$ Potential outlier Cook's Distance $> 1 \Rightarrow$ Potential influential point Avoid Extrapolation (Estimation using regressors outside domain)

Coefficient of Determination

Interpretation:

The proportion of total variation of the response (of sample mean \overline{Y}) that is explained by the model. For simple model: $\sqrt{R^2} = |Cor(X, Y)|$

$$R^2=1\Rightarrow orall (\hat{Y_i}=Y_i)$$
 Adding regressors will always increase, or not change R^2 . Use adjusted R^2
$$R^2_{adj}=1-\frac{(1-R^2)(n-1)}{n-\text{no. of coefficients}}$$

Indicator Variables Each indicator splits the model into two equations, on

whether the indicator is 1 or 0

n categories require n-1 indicators Identify the reference category when every indicator is 0. Use anova P-Value for significance of categorical variables