Université de Jijel

Département de Mathématiques

Module : Mesure et Intégration

$TD\ N^{\circ}1$

Exercice 1: Soient *E*, *F* et *G* trois ensembles. Montrer que

- a) $E \cap (F \cup G) = (E \cap F) \cup (E \cap G)$.
- **b)** $E \cup (F \cap G) = (E \cup F) \cap (E \cup G)$.

Exercice 2 : Soient *E* un ensemble et *F* et *G* deux sous-ensembles de *E*. Montrer que

- 1) $(F^c)^c = F$.
- **2)** $(F \cup G)^c = F^c \cap G^c$.
- 3) $(F \cap G)^c = F^c \cup G^c$.
- **4)** $F \setminus G = (F \cup G) \setminus G$.

Exercice 3 : Soient *E*, *F* et *G* trois ensembles. Montrer que

- a) $E \setminus (F \cup G) = ((E \cup G) \setminus F) \cap ((E \cup F) \setminus G)$.
- **b)** $E \setminus (F \cup G) = (E \setminus F) \cap (E \setminus G)$.
- c) $E \setminus (F \cap G) = (E \setminus F) \cup (E \setminus G)$.
- d) $E \times (F \cup G) = E \times F \cup E \times G$.
- e) $E \times (F \cap G) = E \times F \cap E \times G$.

Exercice 4: Soient E, F deux ensembles et $f: E \to F$ une application. Montrer que si H et H' sont deux sous-ensembles de F tels que $H \subset H'$, alors $f^{-1}(H) \subset f^{-1}(H')$.

Exercice 5: On définit sur \mathbb{R} la relation binaire \mathcal{R} par $x\mathcal{R}y \Leftrightarrow x^2 = y^2$.

- 1) Montrer que \mathcal{R} est une relation d'équivalence.
- 2) Déterminer \mathbb{R}/\mathcal{R} .

Exercice 6 : Soit *E* un ensemble.

- I) Soient $\{T_i\}_{i\in I}$ une famille de tribus sur E et $T=\{A\subset E,\,A\in T_i,\,\forall i\in I\}$. Montrer que T est une tribu sur E.
- 2) Soient $A \subset \mathcal{P}(E)$ et T_A l'intersection de toutes les tribus sur E contenant A. Montrer que T_A est la plus petite des tribus contenant A.
- 3) Soient $A, B \subset \mathcal{P}(E)$ et T_A , T_B les tribus engendrées par A et B respectivement. Montrer que si $A \subset B$, alors $T_A \subset T_B$.

Exercice 7: Soient E, F deux ensembles, $f: E \to F$ une application et $A \subset \mathcal{P}(E)$, $B \subset \mathcal{P}(F)$. Soit f^{-1} l'application définie de $\mathcal{P}(F)$ dans $\mathcal{P}(E)$ par $f^{-1}(B) = \{x \in E, f(x) \in B\}$.

- 1) Soient S une tribu sur F et $T_{f,S} = \{f^{-1}(B), B \in S\}$. Montrer que $T_{f,S}$ est une tribu sur E, (c'est la tribu image réciproque).
- 2) Soient T une tribu sur E et $S_{f,T} = \{B \subset F, f^{-1}(B) \in T\}$. Montrer que $S_{f,T}$ est une tribu sur F, (c'est la tribu image directe de T par f).

Exercice 8 : Soit *E* un ensemble.

- 1) Montrer que $\mathcal{A} \subset \mathcal{P}(E)$ est une algèbre si et seulement si
- (i) $E \in \mathcal{A}$.
- (ii) $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}$.
- 2) Soit $\{\mathcal{A}_i\}_{i\in I}$ une famille d'algèbres sur E. Montrer que $\bigcap_{i\in I}\mathcal{A}_i=\{A\in\mathcal{P}(E),\ A\in\mathcal{A}_i,\ \forall i\in I\}$ est une algèbre sur E.

Exercice 9: Soit E un ensemble infini non dénombrable. On définit l'application μ : $\mathcal{P}(E) \to \overline{\mathbb{R}}_+$ par $\mu(A) = 0$ si A est au plus dénombrable et $\mu(A) = +\infty$ sinon. Montrer que μ est une mesure sur $\mathcal{P}(E)$.

Exercice 10: Soient λ la mesure de Lebesgue sur $\mathcal{B}(\mathbb{R})$ et $A \in \mathcal{B}(\mathbb{R})$ tel que $\lambda(A) = 0$. Montrer que A n'est pas nécessairement fermé.