Задача 1

Используя процедуру *Генерация случайных чисел* из *Пакета анализа*, сделайте три класса нормальных выборок:

	мат.ожидание	дисперсия	объём	столбец
первая выборка	a ₁ = 1	$\sigma^2 = 1$	n ₁ = 50	Α
вторая выборка	a ₂ = 2	$\sigma^2 = 1$	$n_2 = 40$	В
третья выборка	a ₃ = 1	$\sigma^{2} = 4$	$n_3 = 60$	С

Выполните задания:

для каждой пары выборок проверить гипотезу H0 : a1 = a2 при альтернативе H1 : a1 \neq a2. при уровне значимости α =0,05; Рассмотреть два случая: дисперсия известна и неизвестна.

для каждой пары выборок проверить гипотезу H0 : $\sigma^2_1 = \sigma^2_2$ при альтернативе H1: $\sigma^2_1 \neq \sigma^2_2$ при уровне значимости α =0,05;

для пары выборок A и C проверить гипотезу H0 : a1 = a3 при альтернативе H1 : a1 \neq a3 при уровне значимости α = 0,01.

Решение

Для проверки каждой из гипотез необходимо рассчитать соответствующую статистику критерия и сравнить ее с соответствующим критическим значением.

Результаты решения задачи оформить в виде таблицы со следующими заголовками:

критерий	гипотеза	альтернатива	значение	критическое	вывод о
			статистики	значение	принятии
			критерия		основной
					гипотезы

Для проверки гипотез согласия необходимо использовать указанные ниже варианты критериев, реализованные в Excel:

- 1. Используя инструмент анализа **Двухвыборочный t-mecm c одинаковыми дисперсиями** из надстройки *Пакет анализа*, проверить гипотезу H0 : a1 = a2 при альтернативе H0 : a1 \neq a2 и уровне значимости α = 0,05.
- 2. Используя инструмент анализа **Двухвыборочный t-mecm с разными дисперсиями** из надстройки Пакет анализа, проверить гипотезу H0 : a1 = a3 при альтернативе H1 : a1 \neq a3 и уровне значимости α = 0,01.
- 3. Используя инструмент анализа **Двухвыборочный f-тест** из надстройки Пакет анализа, рассмотреть гипотезу H0 : $\sigma^2_1 = \sigma^2_2$ при альтернативе H1: $\sigma^2_1 \neq \sigma^2_2$ и уровне значимости $\alpha = 0.05$.

В качестве комментария ниже представлены некоторые стандартные критерии, позволяющие проверять гипотезы о значениях математических ожиданий и дисперсий нормальных генеральных совокупностей при независимых наблюдениях в выборке:

Проверяемая гипотеза H_0 и альтернативная гипотеза H_1	Информа- ция о пара- метрах распреде- ления	Статистика g, ее обозначение для каждого критерия	Распределение статистики g при справедливой гипотезе H_0	Критическая область
$H_0: m_x = m_0$ $H_1: m_x \neq m_0$				$ g > t_{v; \gamma = \alpha/2}$ $\alpha/2$ $-t_{v; \gamma = \alpha/2}$ $t_{v; \gamma = \alpha/2}$ $\alpha/2$ $-t_{v; \gamma = \alpha/2}$
$H_0: m_x = m_0$ $H_1: m_x < m_0$	σ_x^2 неизвестно	$t = \frac{\overline{x} - m_0}{s_x / \sqrt{N}}$	t-распределение $v = N - 1$ степенями свободы	$g < -t_{v; \gamma = \alpha}$ $\alpha \qquad 1 - \alpha$ $-t_{v; \gamma = \alpha}$
$H_0: m_x = m_0$ $H_1: m_x > m_0$				$g>t_{\nu;\gamma=\alpha}$ $1-\alpha$ $t_{\nu;\gamma=\alpha}$
H_0 : $\sigma_x^2 = \sigma_0^2$ H_1 : $\sigma_x^2 \neq \sigma_0^2$			χ^2 -распре-	$g < \chi^{2}_{v; \gamma=1-\alpha/2}$ $g > \chi^{2}_{v; \gamma=\alpha/2}$ $\alpha/2$ $\chi^{2}_{v; \gamma=1-\alpha/2}$ $\chi^{2}_{v; \gamma=1-\alpha/2}$ $\chi^{2}_{v; \gamma=\alpha/2}$
$H_0: \sigma_x^2 = \sigma_0^2$ $H_1: \sigma_x^2 < \sigma_0^2$	<i>m</i> _x неиз- вестно	$t = \frac{(N-1)s_x^2}{\sigma_0^2}$	деление $c \ v = N - 1$ степенями свободы	$g < \chi^{2}_{\nu; \gamma=1-\alpha}$ $\alpha \qquad 1-\alpha$ $\chi^{2}_{\nu; \gamma=1-\alpha}$
$H_0: \sigma_x^2 = \sigma_0^2$ $H_1: \sigma_x^2 > \sigma_0^2$				$g > \chi^{2}_{v; \gamma = \alpha}$ $1 - \alpha$ $\chi^{2}_{v; \gamma = \alpha}$
$H_0: \sigma_{x_1}^2 = \sigma_{x_2}^2$ $H_1: \sigma_{x_1}^2 \neq \sigma_{x_2}^2$	<i>т</i> _{x1} , <i>т</i> _{x2} неизвест- ны	$F = \frac{s_1^2}{s_2^2},$ где $s_1^2 = \max \left\{ s_{x_1}^2, \ s_{x_2}^2 \right\}$	F -распределение с v_1, v_2 степенями свободы, где v_1 и v_2 — число степеней свободы числителя и знаменателя	$g > F_{v_1;v_2; \gamma = \alpha/2}$
$H_0: \sigma_{x_1}^2 = \sigma_{x_2}^2$ $H_1: \sigma_{x_1}^2 > \sigma_{x_2}^2$		$F = s_{x_1}^2 / s_{x_2}^2$		$F_{v_1;v_2; \gamma = \alpha/2}$ $g > F_{v_1;v_2; \gamma = \alpha}$ α
$H_0: \sigma_{x_1}^2 = \sigma_{x_2}^2$ $H_1: \sigma_{x_1}^2 < \sigma_{x_2}^2$		$F = S_{x_2}^2 / S_{x_1}^2$		$ \frac{1-\alpha}{F_{\nu_1;\nu_2;\gamma=\alpha}} $

Задача 2

Проверка гипотезы о нормальном распределении по критерию Пирсона χ^2

В типовой постановке задачи требуется, используя критерий Пирсона χ^2 , проверить гипотезу о том, что генеральная совокупность X распределена нормально (*The chi-square goodness of fit test*).

В случае проверки сложных гипотез мы задаем только форму распределения, и параметры распределения, в отличие от простой гипотезы, неизвестны, т.е. из выборки сначала нужно оценить эти неизвестные параметры, затем вычислить статистику χ^2 (как и для простых гипотез).

На новом листе в Excel смоделируйте нормально распределенную совокупность из 1000 элементов с помощью инструмента «Генерация случайных чисел» из пакета «Анализ данных», разместите эти данные в столбце А.

Генерация случайных чисе	л	? ×
Число <u>п</u> еременных:	1	OK
<u>Ч</u> исло случайных чисел:	1000	Отмена
<u>Р</u> аспределение:	Нормальное ▼	<u>С</u> правка
Параметры		
Ср <u>е</u> днее =	12	
Стандартное <u>о</u> тклонение =	0,25	
Случайное рассеивание:		
Параметры вывода		
Выходной интервал:	\$A\$1 <u>%</u>	
С Новый рабочий дист:		
С Новая рабочая книга		

Сформируйте случайную выборку из 200 элементов для этой совокупности с помощью инструмента «Выборка» из пакета «Анализ данных». Разместите эту выборку в столбце В.

Используя критерий χ^2 (хи-квадрат) проверим, действительно ли выборка сделана из нормально распределенной генеральной совокупности.

В качестве точечных оценок математического ожидания и дисперсии примите соответствующие выборочные характеристики. Найдите их, используя «Описательную статистику» из пакета «Анализ данных». Разместите результаты расчета в столбцах С и D.

С помощью инструмента «Гистограмма» найдите опытные частоты n_i . Включать саму диаграмму не нужно, достаточно оставить только расчет разбиения в столбцах F,G.

Расчётные частоты p_i вычисляются через вероятности попадания нормально распределенной величины в соответствующий интервал:

$$p_i = \Phi\left(\frac{x_{i+1} - m}{\sigma}\right) - \Phi\left(\frac{x_i - m}{\sigma}\right),\,$$

где функция стандартного нормального распределения $\Phi(\cdot)$ вычисляется с помощью встроенной статистической функции НОРМ.РАСП(х, среднее значение m, стандартное отклонение σ , интегральный/весовой).

Аргументы функции НОРМ.РАСП: x - граница интервала, вводится адрес соответствующей ячейки; m и σ - вводятся абсолютные адреса характеристик, полученных с помощью «Описательной статистики»; значение Интегральный = (Истина) для функции распределения, в противном случае (Ложь) вычисляется плотность распределения.

В нашем случае таблицу вычисленных значений функции НОРМ.РАСП рассчитаем в колонке I. Вероятности p_i вычисляются как разности между значениями НОРМ.РАСП в текущей и предыдущей строках. В колонке J подсчитаем расчётные частоты $n * p_i$ для n = 200 [например, =(I3 - I2)*200]

Для вычисления статистики χ^2 (хи-квадрат) в Excel есть функция XИ2.ТЕСТ (интервал фактических данных, интервал ожидаемых данных). В качестве фактического интервала вводятся опытные частоты, в качестве ожидаемого — расчетные. Функция XИ2.ТЕСТ возвращает **р-вероятность** того, что (при условии независимости) может быть получено такое значение статистики χ^2 , которое будет по крайней мере не ниже значения, рассчитанного по формуле

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{\left(A_{ij} - E_{ij}\right)^2}{E_{ij}}$$

Для вычисления этой вероятности, функцией XИ2.ТЕСТ используется распределение χ^2 с соответствующим числом степеней свободы (df).

Сделайте вывод для данного примера о принятии гипотезы H_0 "Выборка взята из нормально распределенного набора данных" при уровне значимости 0,05 [=ECЛИ(0,05>J17;"Отклонить";"Нет оснований для отклонения")].

На новом листе Excel, используя критерий Пирсона χ^2 при уровне значимости 0,05, проверьте, согласуется ли гипотеза о нормальном распределении совокупности X с эмпирическим распределением выборки объема N = 100, полученной в модели семинара 2 характеристики «длительность пребывания» (колонка W).

Комментарий

При использовании критерия χ^2 количество опытных значений в каждом интервале должно быть не менее 5. Если в каком-то интервале их меньше, то интервалы объединяют. Например, если в промежутке от 4 до 6 оказалось три значения, а в промежутке от 6 до 8 — четыре, то вводится новый интервал от 4 до 8 с семью значениями. С учетом этого перестройте таблицу частот вручную. Например, в колонках Карман — Частота (F:G) будут данные, полученные автоматически, то в колонках Границы — Опытные частоты (I:J) данные надо пересчитать частично вручную.

При применении критерия χ^2 необходимо следить за тем, чтобы объем выборки \mathbf{n} был достаточно большой, иначе будет неправомочна аппроксимация χ^2 -распределением распределения статистики χ^2 . Обычно считается, что для этого достаточно, чтобы наблюдаемые частоты (Observed) были больше 5. Если это не так, то малые частоты объединяются в одно или присоединяются к другим частотам, причем объединенному значению приписывается суммарная вероятность и, соответственно, уменьшается число степеней свободы χ^2 -распределения. Для того чтобы улучшить качество применения критерия χ^2 (увеличить его мощность), необходимо уменьшать интервалы разбиения (увеличивать количество степеней свободы), однако этому препятствует ограничение на количество попавших в каждый интервал наблюдений (нужно >5).

В случае сложной гипотезы, p-значение, которое мы сравниваем с уровнем значимости, рассчитывается с использованием χ^2 -распределения с L-k-1 степеней свободы, где k — количество оцениваемых параметров.

Если вероятность, того что случайная величина имеющая χ^2 -распределение с L-k-1 степенями свободы примет значение больше вычисленной статистики χ^2 , т.е. $\chi^2_{\text{L-k-1}} > \chi^2_0$ меньше уровня значимости, то нулевая гипотеза отклоняется.

Граница критической области — это квантиль распределения хи-квадрат, которая также может быть найдена с помощью встроенной функции ХИ2.ОБР.ПХ (вероятность, степени свободы). Аргумент «вероятность» — это уровень значимости (α = 0,05), а «степени свободы» df=k-l-1 определяются как количество интервалов (здесь k = 11) за вычетом количества оцениваемых параметров (здесь два — m и σ) и минус 1.