Operations Research – Grundlagen

Tutorium Operations Research – Grundlagen

Technische Universität Berlin Fachgebiet Wirtschafts- und Infrastruktur Politik

Operations Research – Grundlagen

Tutorium Operations Research – Grundlagen

Technische Universität Berlin Fachgebiet Wirtschafts- und Infrastruktur Politik

Sonderfälle und Sensitivitätsanalyse

Tutoriumsaufgaben:

2.29 Sonderfälle I2.30 a Sonderfälle II

2.26 Die Hamburger Wollfabrik

Freiwillige Hausaufgabe:

2.25 Sensitivitätsanalyse

2.31 Sonderfall: Redundanz

+ Alle 2. Aufgaben bis 2.31 Simplex-Algorithmus in Gleichungsschreibweise ist <u>nicht klausurrelveant</u>)

LP-Sonderfälle – Unbeschränktheit

	X ₁	X ₂	X ₃	X ₄	b _i
X ₁	1	0	0	2	1
X ₂	0	1	-1	1	2
Z	0	0	-4	3	2
-			$\neg \neg$	•	•

Anmerkungen

- Zulässige Basislösung
- Keine optimale Basislösung

- ▶ Pivotspalte des primalen Simplex enthält nur nicht positive Einträge (null und negative Werte)
- Es existieren mehrere zulässige Basislösungen
- Es lässt sich keine optimale Lösung angeben

LP-Sonderfälle – Unzulässigkeit

	X ₁	X ₂	X ₃	X ₄	b _i
x ₁	1	0	0	2	-1
X ₂	0	1	-1	1	2
Z	0	0	4	3	2

Anmerkungen

- Keine zulässige Basislösung
- Keine optimale Basislösung
- Pivotzeile des dualen Simplex enthält nur positive Einträge (null und positive Werte)
- ▶ Es existiert keine zulässige Basislösung

LP-Sonderfälle – Redundanz

如果在可行的Simplex表中的一行中,除了单位向量之外的所有系数aij都≤0,则该行描述了一个多余的约束条件。 多余约束条件的滑差变量在应用原始 Simplex时始终保持在基础中,并且无法消除,否则基础将变为不可行状态。

	X ₁	X ₂	X ₃	X ₄	b _i
x ₁		0	0	-2	1
X ₂	0	1	-1	1	2
Z	0	0	4	3	2

LP-Sonderfälle – Redundanz

Wann erkennbar?/Anmerkungen

- Zulässiges Tableau
 - Alle Werte einer Zeile ≤ 0 (außer Einheitsvektoren und b_i-Spalte)
 - Nicht erkennbar im Tableau
 - Linearkombinationen
 - Graphische Lösung
- Unzulässiges Tableau
 - Linearkombinationen

LP特例 - 冗余

何时可识别? /备注

- ・可行表
- 一行中的所有值≤0(除了单位向量和双列)
- 在表中不可识别
- 线性组合
- 图形解法
- 不可行的表
- 线性组合

线性组合

- ・如果其他 ≤ 或 (≥) 约束的线性组合具有相同的左侧并且较小(较大)的右侧,则 ≤ 或 (≥) 约束是冗余的
- 参见示例表格。

Linearkombinationen

- Eine ≤ bzw. (≥) Nebenbedingung ist redundant, wenn eine Linearkombination anderer ≤ bzw. (≥) - Nebenbedingungen die selbe linke Seite und eine kleinere (größere) rechte Seite besitzt
 - Siehe Tafelbsp.

LP-Sonderfälle – Primale Degeneration

	X ₁	X ₂	X ₃	X ₄	b _i
X ₁	1	0	0	2	1
X ₂	0	1	-1	1 (0
Z	0	0	4	3	2

Anmerkungen

- Im Optimum schneiden sich n+1 Nebenbedingungen (\mathbb{R}^n)
- Sonderfall der Redundanz

LP-Sonderfälle – Duale Degeneration

	X ₁	X ₂	x ₃ (X ₄	b _i
X ₁	1	0	0	2	1
X ₂	0	1	-1	1	0
Z	0	0	4 (0	2

Anmerkungen

- Kein Sonderfall der Redundanz
- Primale & duale Degeneration sind gleichzeitig möglich → Tafelbeispiel

Entscheiden Sie auf Grund der Datenkonstellation für jedes Tableau, welche Lösungszustände vorliegen (zulässige/unzulässige Basislösung, optimale/nicht optimale Lösung, primale/duale Degeneration, Unbeschränktheit).

A	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	b_i
x_3	1	1	1	-1	0	0	4
x_5	0	0	0	1	1	0	4 6 -2
x_6	-1	0	0	1	0	1	-2
z_j	2	1	0	-3	0	0	12

- Keine zulässige Basislösung
- Keine optimale Basislösung

Entscheiden Sie auf Grund der Datenkonstellation für jedes Tableau, welche Lösungszustände vorliegen (zulässige/unzulässige Basislösung, optimale/nicht optimale Lösung, primale/duale Degeneration, Unbeschränktheit).

В	x_1	x_2	x_3	x_4	x_5	x_6	b_i
x_2	0	1	1	-1	0		1
x_5	0	0	1	-0,5	1	-0,25	7,5
x_1	1	0	0	0,5	0		2,5
z_j	0	0	0	0	0	0,5	6

- Zulässige Basislösung
- Optimale Basislösung
- Duale Degeneration

Entscheiden Sie auf Grund der Datenkonstellation für jedes Tableau, welche Lösungszustände vorliegen (zulässige/unzulässige Basislösung, optimale/nicht optimale Lösung, primale/duale Degeneration, Unbeschränktheit).

С	x_1	x_2	x_3	x_4	x_5	x_6	b_i
x_1	1	2	2.5	-0.05	0	0	5
x_5	0	10	20	0	1	0	500
x_6	0	0	-50	1	0	1	0
z_j	0	80	85	-2.5	0	0	250

- Zulässige Basislösung
- Keine optimale Basislösung

Entscheiden Sie auf Grund der Datenkonstellation für jedes Tableau, welche Lösungszustände vorliegen (zulässige/unzulässige Basislösung, optimale/nicht optimale Lösung, primale/duale Degeneration, Unbeschränktheit).

D	x_1	x_2	<i>x</i> ₃	x_4	x_5	b_i
x_1	1	0	1	-3	0	20
x_2	0	1	0	1	0	20 10
x_5	0	0	-2	7	1	0
z_j	0	0	1	1	0	60

- Zulässige Basislösung
- Optimale Basislösung
- Primale Degeneration

Entscheiden Sie auf Grund der Datenkonstellation für jedes Tableau, welche Lösungszustände vorliegen (zulässige/unzulässige Basislösung, optimale/nicht optimale Lösung, primale/duale Degeneration, Unbeschränktheit).

Е	x_1	x_2	x_3	x_4	x_5	x_6	b_i
x_4	0	125	0	1	-5	-10	650
x_1	1	5	0	0	-1	0	650 60 40
x_3	0	10	1	0	0	-1	40
z_j	0	44	0	0	- 5	-2	380

- Zulässige Basislösung
- Keine optimale Basislösung
- Unbeschränktheit

Entscheiden Sie auf Grund der Datenkonstellation für jedes Tableau, welche Lösungszustände vorliegen (zulässige/unzulässige Basislösung, optimale/nicht optimale Lösung, primale/duale Degeneration, Unbeschränktheit).

F	x_1	x_2	<i>x</i> ₃	x_4		x_6	b_i
x_1	1	1	0	-1	0	0	2
x_5	0	0	1	1	1	0	-1
x_6	0	3	2	0	0	1	5
z_j	0	2	9	-5	0	0	10

- Keine zulässige Basislösung
- Keine optimale Basislösung
- Unzulässigkeit

Entscheiden Sie auf Grund der Datenkonstellation für jedes Tableau, welche Lösungszustände vorliegen (zulässige/unzulässige Basislösung, optimale/nicht optimale Lösung, primale/duale Degeneration, Unbeschränktheit).

G	x_1	x_2	x_3	x_4	x_5	x_6	b_i
					1,6		
x_1	1	0	0,2	0	-0,4	0,2	3,6
x_2	0	1	1,4	0	0,2	0,4	3,2
z_j	0	0	3	0	1	1	6

- Zulässige Basislösung
- Optimale Basislösung

2.30 Sonderfälle II

a) Geben Sie Besonderheiten an, die Ihnen am gegebenen finalen Tableau auffallen.

	x_1	x_2	x_3	x_4	x_5	b_i
x_2	0	1	0.2	-1	0	2
x_1	1	0	0	1	0	4
x_5	0	0	-1	-5	1	0
z_j	0	0	0.6	0	0	18

Lösung:

- Zulässige Basislösung
- Optimale Basislösung
- Primale Degeneration
- Duale Degeneration

Anmerkung:

Primale Degeneration und duale Degeneration k\u00f6nnen gleichzeitig auftreten

Sensitivitätsanalyse - Definitionen

Sensitivitätsanalyse

Das Testen einer optimalen Lösung eines linearen Programms bzgl. Einer Veränderung der Eingabedaten bezeichnet man als Sensitivitäts- oder Sensibilitätsanalyse.

Überprüft also, inwieweit sich Parameter (OR-GDL: Zielfunktionskoeffizienten c_j und Ressourcenbeschränkung b_i) ändern dürfen, ohne dass sich an der Lösung qualitativ etwas ändert.

Voraussetzung

LP ist nicht degeneriert.

如果一个问题被称为"非退化的"(non-degenerate),这意味着每个基本可行解(basic feasible solution)在所有的约束下都是唯一确定的,也就是说,对于一个基本可行解,每个基变量都有一个正值,没有一个是零。这与"退化"的情况相对,退化指的是至少一个基变量的值为零。

Sensitivitätsanalyse - Definitionen

Qualitative Änderung

Mindestens eine Nicht-Basis-Variable (NBV) wird zu einer Basis-Variable (BV) oder umgekehrt.

Quantitative Änderung

Alle NBV bleiben NBV und alle BV bleiben BV.

Wichtig: Die numerische Lösung (ugs. Zahlenwerte der Lösung) kann sich trotzdem ändern!

	X ₁	X ₂	X ₃	X ₄	b _i
X ₁	a ₁₁	a ₁₂	a ₁₃	a ₁₄	b ₁
X ₂	a ₂₁	a ₂₂	a ₂₃	a ₂₄	b_2
Z	C ₁	C_2	C ₃	C ₄	ZF

Sensitivitätsintervall

Bei Werten außerhalb des Sensitivitätsintervalls liegt eine qualitative Änderung vor.

Bsp. Qualitative Änderung

	BV	NBV
Altes Optimum (Pkt. 4)	$x_1, x_2,$ SchlupfvNB3	SchlupfvNB1, SchlupfvNB2

ZF:
$$\max z = c_1 x_1 + c_2 x_2$$

$$z = c_1 x_1 + c_2 x_2$$

$$\Leftrightarrow x_2 = -\frac{c_1}{c_2} x_1 + \frac{z}{c_2}$$

Steigung: $-\frac{c_1}{c_2}$

y-Achsenabschnitt: $\frac{z}{c_2}$

(ignorieren!)

Änderung der ZF-Koeffizienten → Änderung der Steigung der ZF

Änderung der ZF-Koeffizienten → Änderung der Steigung der ZF

Änderung der Ressourcenbeschränkung → Parallelverschiebung der NB

Änderung der Ressourcenbeschränkung

→ Basiswechsel → Qualitative Änderung

Änderung der Ressourcenbeschränkung → Parallelverschiebung der NB

Änderung der Ressourcenbeschränkung → Parallelverschiebung der NB

Änderung der Ressourcenbeschränkung

Änderung der Ressourcenbeschränkung

→ Kein Basiswechsel → Quantitative Änderung

2.26 Die Hamburger Wollfabrik

Oriana möchte, motiviert von ihrer Leidenschaft für das Stricken von bunten Mützen, eine Wollfabrik in Hamburg eröffnen. Sie beschließt, sich auf drei verschiedene Sorten zu spezialisieren: Baum-, Angora- und Kaschmirwolle. Aufgrund intensiver Internetrecherche weiß sie, dass sie beim Verkauf der Wollsorten mit folgenden Deckungsbeiträgen rechnen kann:

Baumwolle: 5 EUR/kg, Angorawolle: 20 EUR/kg, Kaschmirwolle: 40 EUR/kg.

Für die Produktion kauft Oriana eine Maschine, die alle Wollsorten produzieren kann und eine Produktionszeit von 7 Stunden täglich ermöglicht. Die Produktionszeit für Baumwolle beträgt 6 min/kg, die von Angorawolle 10 min/kg und die von Kaschmirwolle 16 min/kg. Die Umrüstzeit der Maschine ist zu vernachlässigen.

Außerdem kann Oriana 8000 Milliliter pro Tag von einer Spezialmixtur zur Wollveredelung beziehen, von der für Baumwolle 100 ml/kg, für Angorawolle 200 ml/kg und für Kaschmirwolle 400 ml/kg benötigt wird.

Aufgrund von Lieferengpässen kann Oriana maximal 12 kg Angora-Textilfaser und 18 kg Kaschmir-Textilfaser pro Tag beziehen. Während bei Angora die gesamte Menge an Textilfaser zu Wolle verarbeitet kann, ist es bei Kaschmir nur die Hälfte.

a) Stellen Sie das zugehörige lineare Programm auf, mit dem Oriana ihren täglichen Gesamtgewinn maximieren kann.

 x_1 : Baumwolle in kg; x_2 = Angorawolle in kg; x_3 = Kaschmirwolle in kg

x_1 : Baumwolle in kg; x_2 = Angorawolle in kg; x_3 = Kaschmirwolle in kg

 a) Stellen Sie das zugehörige lineare Programm auf, mit dem Oriana ihren täglichen Gesamtgewinn maximieren kann.

$$\max z = 5 \cdot x_1 + 20 \cdot x_2 + 40 \cdot x_3$$

 x_1 : Baumwolle in kg; x_2 = Angorawolle in kg; x_3 = Kaschmirwolle in kg

b) Berechnen Sie die optimale Lösung mithilfe des Simplex-Verfahrens.

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i
x_4	0	0	0	1	-60	2	4	36
x_1	1	0	0	0	10	-2	-2	20
x_2	0	1	0	0	0	1	0	12
x_3	0	0	1	0	0	0	0,5	9
z_j	0	0	0	0	50	10	10	700

x_1 : Baumwolle in kg; x_2 = Angorawolle in kg; x_3 = Kaschmirwolle in kg

c) Führen Sie die Sensitivitätsanalyse für die Zielfunktionskoeffizienten aller Variablen durch. Interpretieren Sie Ihre Ergebnisse inhaltlich bezogen auf das Wollfabrikproblem.

$$\max z = 5 \cdot x_1 + 20 \cdot x_2 + 40 \cdot x_3$$
s.t. $6 \cdot x_1 + 10 \cdot x_2 + 16 \cdot x_3 \le 420$

$$0, 1 \cdot x_1 + 0, 2 \cdot x_2 + 0, 4 \cdot x_3 \le 8$$

$$x_2 \le 12$$

$$2 \cdot x_3 \le 18$$

$$x_{1,2,3} \ge 0$$

	x_1	x_2	<i>x</i> ₃	x_4	x_5	<i>x</i> ₆	<i>x</i> ₇	b_i
x_4	0	0	0	1	-60	2	4	36
	I	0	0	0	10	-2	-2	20
x_2	0	1	0	0	0	1	0	12
x_3	0	0		0			0,5	9
z_j	0	0	0	0	50	10	10	700

Änderung von Zielfunktionskoeffizienten

In welchem Bereich $[c_k-c_k^-$; $c_k+c_k^+$] kann der Zielfunktionskoeffizient c_k der Variable x_k geändert werden, ohne dass die optimale Basislösung ihre Optimalität verliert?

Unterscheidung, ob x_k Basis- oder Nichtbasisvariable der Optimallösung ist:

Nichtbasisvariable

$$-c_k^- = \infty$$

$$-c_k^+ = c_k^*$$

Basisvariable

$$-c_k^-=\infty$$
, falls alle $a_{kj}^*\leq 0$ mit j \neq k, sonst

$$c_k^- = \min \frac{c_j^*}{a_{kj}^*}$$
 mit j \neq k für positive a_{kj}^*

$$-\ c_k^+ = \infty$$
, falls alle $a_{kj}^* \geq 0$ mit j \neq k, sonst

$$-\ c_k^+ = \min\ rac{-c_j^*}{a_{kj}^*}\ \mathrm{mit}\ \mathrm{j}
eq \mathrm{k}\ \mathrm{f\"{u}r}\ \mathrm{negative}\ a_{kj}^*$$

	X ₁	X ₂	X ₃	X ₄	b _i
X ₁	a ₁₁	a ₁₂	a ₁₃	a ₁₄	b ₁
X ₂	a ₂₁	a ₂₂	a ₂₃	a ₂₄	b_2
Z	C ₁	C ₂	C ₃	C ₄	ZF

→ Siehe Handout Sensitivitätsanalyse auf ISIS!

c) Führen Sie die Sensitivitätsanalyse für die **Zielfunktionskoeffizienten** aller Variablen durch. Interpretieren Sie Ihre Ergebnisse inhaltlich bezogen auf das Wollfabrikproblem.

max
$$z = (5)x_1 +20 \cdot x_2 +40 \cdot x_3$$

s.t. $6 \cdot x_1 +10 \cdot x_2 +16 \cdot x_3 \le 420$
 $0,1 \cdot x_1 +0,2 \cdot x_2 +0,4 \cdot x_3 \le 8$
 $x_2 \le 12$
 $2 \cdot x_3 \le 18$
 $x_{1,2,3} \ge 0$

	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	<i>x</i> ₇	b_i
x_4	0	0	0	1	-60	2	4	36
x_1	×	0	0	0	10	-2	-2	20
x_2	0	1	0	0	0	1	0	12
x_3	0	0	1	0	0	0	0,5	9
z_j	0	0	0	0	50	10	10	700

$c_{1} \in \{c_{1} - c_{\bar{1}}, c_{1} + c_{1}^{+}\}$

$$c_1 = 5$$
 $(x_1: BV)$ $c_{\overline{1}} = min\left\{\frac{50}{10}\right\} = 5$ $c_1^+ = min\left\{\frac{-10}{-2}, \frac{-10}{-2}\right\} = 5$ $c_1 \in \{5 - 5, 5 + 5\} = [0, 10]$

· Basisvariable

$$\begin{array}{l} -\ c_k^- = \infty \text{, falls alle } a_{kj}^* \leq 0 \text{ mit } \mathbf{j} \neq \mathbf{k} \text{, sonst} \\ -\ c_k^- = \min \frac{c_j^*}{a_{kj}^*} \text{ mit } \mathbf{j} \neq \mathbf{k} \text{ für positive } a_{kj}^* \\ -\ c_k^+ = \infty \text{, falls alle } a_{kj}^* \geq 0 \text{ mit } \mathbf{j} \neq \mathbf{k} \text{, sonst} \\ -\ c_k^+ = \min \frac{-c_j^*}{a_{kj}^*} \text{ mit } \mathbf{j} \neq \mathbf{k} \text{ für negative } a_{kj}^* \end{array}$$

c) Führen Sie die Sensitivitätsanalyse für die **Zielfunktionskoeffizienten** aller Variablen durch. Interpretieren Sie Ihre Ergebnisse inhaltlich bezogen auf das Wollfabrikproblem.

max
$$z = 5 \cdot x_1 + 20 \cdot x_2 + 40 \cdot x_3$$

s.t. $6 \cdot x_1 + 10 \cdot x_2 + 16 \cdot x_3 \le 420$
 $0, 1 \cdot x_1 + 0, 2 \cdot x_2 + 0, 4 \cdot x_3 \le 8$
 $x_2 \le 12$
 $2 \cdot x_3 \le 18$

 $x_{1,2,3} \geq 0$

	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	<i>x</i> ₇	b_i
x_4	0	0	0	1	-60	2	4	36
x_1	1	0	0	0	10	-2	-2	20
$ x_2 $	0	_1_	0	0	0	_1_	0	12
x_3	0	0	×	0	0	0	0,5	9
z_j	0	0	0	0	50	10	10	700

$c_3 \in \left\{c_3 - c_3, c_3 + c_3^+\right\}$

$$c_3 = 40 \quad (x_3: BV)$$

$$c_{\bar{3}} = min\left\{\frac{10}{0.5}\right\} = 20$$

$$c_3^+ = \infty$$

$$c_3^- \{40 - 20, 40 + \infty\} = [20, \infty)$$

· Basisvariable

$$\begin{array}{l} -\ c_k^- = \infty \text{, falls alle } a_{kj}^* \leq 0 \text{ mit } \mathbf{j} \neq \mathbf{k} \text{, sonst} \\ -\ c_k^- = \min \frac{c_j^*}{a_{kj}^*} \text{ mit } \mathbf{j} \neq \mathbf{k} \text{ für positive } a_{kj}^* \\ -\ c_k^+ = \infty \text{, falls alle } a_{kj}^* \geq 0 \text{ mit } \mathbf{j} \neq \mathbf{k} \text{, sonst} \\ -\ c_k^+ = \min \frac{-c_j^*}{a_{kj}^*} \text{ mit } \mathbf{j} \neq \mathbf{k} \text{ für negative } a_{kj}^* \end{array}$$

c) Führen Sie die Sensitivitätsanalyse für die Zielfunktionskoeffizienten aller Variablen durch. Interpretieren Sie Ihre Ergebnisse inhaltlich bezogen auf das Wollfabrikproblem.

$$\max z = 5 \cdot x_1 + 20 \cdot x_2 + 40 \cdot x_3 + 0 \cdot x_6$$
s.t.
$$6 \cdot x_1 + 10 \cdot x_2 + 16 \cdot x_3 \le 420$$

$$0, 1 \cdot x_1 + 0, 2 \cdot x_2 + 0, 4 \cdot x_3 \le 8$$

$$x_2 \le 12$$

$$2 \cdot x_3 \le 18$$

 $x_{1,2,3} \geq 0$

	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	x_7	b_i
x_4	0	0	0	1	-60	2	4	36
x_1	1	0	0	0	10	-2	-2	20
$ x_2 $	0	1	0	0	0	1	0	12
x_3	0	0	1	0	0	0	0,5	9
z_j	0	0	0	0	50	10	10	700

$$c_6 \in \left\{c_5 - c_6^-, c_6 + c_6^+\right\}$$

$$c_6 = 0$$
 (x₆: NBV)
 $c_6^- = \infty$
 $c_6^+ = c_6^* = 10$
 $c_{6}^- \in \{0 - \infty, 0 + 10\} = (-\infty, 10]$

Nichtbasisvariable

$$- c_k^- = \infty$$
$$- c_k^+ = c_k^*$$

x_1 : Baumwolle in kg; x_2 = Angorawolle in kg; x_3 = Kaschmirwolle in kg

c) Interpretieren Sie Ihre Ergebnisse (inhaltlich bezogen auf das Wollfabrikproblem).

$$c_1 \in [0; 10]$$

 Das bedeutet inhaltlich, dass sich die Optimallösung für einen Deckungsbeitrag von Baumwolle zwischen 0 und 10 EUR/kg nicht <u>qualitativ</u> ändert.

$$c_3 \in [20; \infty)$$

 Das bedeutet inhaltlich, dass sich die Optimallösung für einen Deckungsbeitrag von Kaschmirwolle ab 20 EUR/kg nicht <u>qualitativ</u> ändert.

$$c_6 \in (-\infty; 10]$$

 Das bedeutet inhaltlich, dass sich die Optimallösung nicht <u>qualitativ</u> ändert, würde x₆ mit einem Wert von bis zu 10 EUR/kg in die Zielfunktion eingehen (unrealistisch).

x_1 : Baumwolle in kg; x_2 = Angorawolle in kg; x_3 = Kaschmirwolle in kg

 d) Führen Sie anschließend die Sensitivitätsanalyse für die Ressourcenbeschränkung aller Nebenbedingungen durch. Interpretieren Sie Ihre Ergebnisse inhaltlich.

$$\max z = 5 \cdot x_1 + 20 \cdot x_2 + 40 \cdot x_3$$
s.t. $6 \cdot x_1 + 10 \cdot x_2 + 16 \cdot x_3 \le 420$

$$0, 1 \cdot x_1 + 0, 2 \cdot x_2 + 0, 4 \cdot x_3 \le 8$$

$$x_2 \le 12$$

$$2 \cdot x_3 \le 18$$

$$x_{1,2,3} \ge 0$$

	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	b_i
x_4	0	0	0	1	-60	2		36
x_1	1	0	0	0	10	-2	-2	20
x_2	0	1	0	0	0	1	0	12
x_3	0	0	1	0	0	0	0,5	9
z_j	0	0	0	0	50	10	10	700

Änderung von Ressourcenbeschränkungen

In welchem Bereich $[b_k - b_k^- ; b_k + b_k^+]$ kann die rechte Seite b_k der k-ten Nebenbedingung variieren, ohne dass die optimale Basislösung ihre Optimalität verliert?

Eine Änderung von b_k beeinflusst die Schlupfvariable der k-ten Nebenbedingung, also x_q mit q=p+k (p: Anzahl Strukturvariablen).

Unterscheidung, ob x_q Basis- oder Nichtbasisvariable der Optimallösung ist:

· Basisvariable

$$-b_{k}^{-}=x_{q}$$

$$-b_k^+ = \infty$$

· Nichtbasisvariable

$$-\ b_k^-=\infty$$
, falls alle $a_{iq}^*\leq 0$, sonst

$$-b_k^- = \min \frac{b_i^*}{a_{iq}^*}$$
 für positive a_{iq}^*

-
$$b_k^+=\infty$$
, falls alle $a_{iq}^*\geq 0$, sonst

$$b_k^+=\min rac{-b_i^*}{a_{iq}^*}$$
 für negative a_{iq}^*

	X ₁	X ₂	X ₃	X ₄	b _i
X ₁	a ₁₁	a ₁₂	a ₁₃	a ₁₄	b_1
X ₂	a ₂₁	a ₂₂	a ₂₃	a ₂₄	b_2
Z	C ₁	C_2	C ₃	C ₄	ZF

→ Siehe Handout Sensitivitätsanalyse auf ISIS!

d) Führen Sie anschließend die Sensitivitätsanalyse für die **Ressourcenbeschränkung** aller Nebenbedingungen durch. Interpretieren Sie Ihre Ergebnisse inhaltlich.

$$\max z = 5 \cdot x_1 + 20 \cdot x_2 + 40 \cdot x_3$$
s.t. $6 \cdot x_1 + 10 \cdot x_2 + 16 \cdot x_3 \le 420$

$$0, 1 \cdot x_1 + 0, 2 \cdot x_2 + 0, 4 \cdot x_3 \le 8$$

$$x_2 \le 12$$

$$2 \cdot x_3 \le 18$$

$$x_{1,2,3} \ge 0$$

	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	x_7	b_i
x_4	0	0	0	1	-60	2	4	36
x_1	1	0	0	0 0	10	-2	-2	20
x_2	0	1	0		0	1	0	12
x_3	0	0	1	0	0	0	0,5	9
z_j	0	0	0	0	50	10	10	700

$$b_1 \in \{b_1 - b_{\bar{1}}, b_1 + b_1^+\}$$

$$b_1 = 420$$
 (x₄: BV)
 $b_{\bar{1}} = x_4^* = 36$
 $b_1^+ = \infty$
 $b_1 \in \{420 - 36, 420 + \infty\} = [384, \infty)$

· Basisvariable

$$-b_k^- = x_q^*$$
$$-b_k^+ = \infty$$

Führen Sie anschließend die Sensitivitätsanalyse für die Ressourcenbeschränkung aller Nebenbedingungen durch. Interpretieren Sie Ihre Ergebnisse inhaltlich.

 $x_{1,2,3} \geq 0$

max
$$z = 5 \cdot x_1 + 20 \cdot x_2 + 40 \cdot x_3$$

s.t. $6 \cdot x_1 + 10 \cdot x_2 + 16 \cdot x_3 \le 420$
 $0, 1 \cdot x_1 + 0, 2 \cdot x_2 + 0, 4 \cdot x_3 \le 8$
 $x_2 \le 12$
 $2 \cdot x_3 < 18$

	x_1	x_2	<i>x</i> ₃	x_4	x_5	<i>x</i> ₆	<i>x</i> ₇	b_i
x_4	0	0	0	1	-60	2	4	36
x_1	1	0	0	0	10	-2	-2	20
x_2	0	1	0	0	0	1	0	12
x_3	0	0	1	0	0	0	0,5	9
z_j	0	0	0	0	50	10	10	700

$$b_3 \in \{b_3 - b_{\bar{3}}, b_3 + b_3^+\}$$

$$b_3 = 12 \quad (x_6: NBV)$$

$$b_3^- = min\left\{\frac{36}{2}, \frac{12}{1}\right\} = 12$$

$$b_3^+ = min\left\{\frac{-20}{-2}\right\} = 10$$

$$b_3 \in \{12 - 12, 12 + 10\} = [0, 22]$$

Nichtbasisvariable

$$\begin{array}{l} -\ b_k^- = \infty \text{, falls alle } a_{iq}^* \leq 0 \text{, sonst} \\ -\ b_k^- = \min \ \frac{b_i^*}{a_{iq}^*} \text{ für positive } a_{iq}^* \\ -\ b_k^+ = \infty \text{, falls alle } a_{iq}^* \geq 0 \text{, sonst} \\ -\ b_k^+ = \min \ \frac{-b_i^*}{a_{iq}^*} \text{ für negative } a_{iq}^* \end{array}$$

x_1 : Baumwolle in kg; x_2 = Angorawolle in kg; x_3 = Kaschmirwolle in kg

d) Interpretieren Sie Ihre Ergebnisse (inhaltlich bezogen auf das Wollfabrikproblem).

 b_1 ∈ [384; ∞)

- Das bedeutet inhaltlich, dass kein Basiswechsel und somit eine andere Optimallösung eintritt, solange die Beschränkung b₁ der ersten Nebenbedingung größer gleich 384 ist.
- Solang min. 384 min Produktionszeit auf der Maschine zur Verfügung stehen, findet kein Basiswechsel statt.

 $b_3 \in [0; 22]$

- Das bedeutet inhaltlich, dass kein Basiswechsel und somit eine andere Optimallösung eintritt, solange der Wert b₃ größer gleich 0 und kleiner gleich 22 ist.
- Solange nicht mehr als 22 kg Angorawolle pro Tag geliefert werden können, findet kein Basiswechsel statt.

Altklausuraufgabe – SS19 – 1.Termin

$$max z = 1x_1 + 4x_2 + 5$$

$$s.t. \quad 1x_1 + 2x_2 \le 5$$

$$1x_1 + 1x_2 \le 4$$

$$-\frac{7}{2}x_1 + 3x_2 \le \frac{5}{2}$$

$$x_{1,2} \ge 0$$

	x_1	x_2	<i>x</i> ₃	x_4	x_5	b_i
x_1	1	0	3 10	0	$-\frac{1}{5}$	1
x_4	0	0	$-\frac{13}{20}$	1	$\frac{1}{10}$	1
x_2	0	1	$\frac{17}{20}$	0	$\frac{1}{10}$	2
z_j	0	0	17 10	0	<u>1</u> 5	14

In Aufgabe b) bereits bestimmt: Sensitivitätsintervall $b_3 \in [-7, 5; 7, 5]$

d) Die Ressourcenbeschränkung b₃ wird um 5 verringert. Bestimmen Sie ohne großen Rechenaufwand die neuen Optimalwerte der Strukturvariablen und sowie den neuen Zielfunktionswert. Geben Sie zusätzlich an, ob die Nebenbedingungen nach der Veränderung der Ressourcenbeschränkung aktiv oder passiv sind. (4 Punkte)

Lösung:
$$x_1^* = 2$$
; $x_2^* = \frac{3}{2}$; $z^* = 13$

Aktive NB: NB1, NB3

Passive NB: NB2

Fragen zum Tutorium?

