Today's lecture

- 1. K-representatives clustering
 - Recap *K*-means (video)
 - other members of the family
- 2. Hierachical clustering
 - introduction (video)
 - more on linkage metrics, connections to graph theory, dendrograms

Book 6.3, 6.4

Main groups of clustering methods (Aggarwal)

- Representative-based
- Hierarchical
- Probabilistic model-based
- Density-based (including grid-based)
- Graph-based
- Matrix factorization based

Representative-based: K-means

Watch video "K-means clustering: how it works" (7.5 min) by Victor Lavrenko

https://www.youtube.com/watch?v=_aWzGGNrcic

Questions

- Why K-means is only for numerical data?
- Could we apply something similar to categorical data?
 or other data types?

K-means

Notations: Data points $\mathbf{x}_i \in \mathcal{D}$, clusters C_1, \dots, C_K , centroids $\mathbf{c}_1, \dots, \mathbf{c}_k$, \mathbf{m} mean of data.

- objective: minimize $SSE = \sum_{j=1}^{K} \sum_{\mathbf{x} \in C_j} L_2^2(\mathbf{x}, \mathbf{c}_j)$
 - minimizes wc, maximizes bc, since $\sum_{\mathbf{x} \in \mathcal{D}} L_2^2(\mathbf{x}, \mathbf{m}) = \sum_{j=1}^K \sum_{\mathbf{x} \in C_j} L_2^2(\mathbf{x}, \mathbf{c}_j) + \sum_{j=1}^K |C_j| L_2^2(\mathbf{c}_j, \mathbf{m})$
- tends to find compact, hyperspherical clusters
- designed only for L_2 , but many K-representative variants for other distance measures
 - warning: if you use another distance in *K*-means, may not find even local optimum or converge. Why?
- very sensitive to the initialization of centroids!
 - \rightarrow run multiple times

K-means

- + can produce good results if clusters compact, well-separated, hyperspherical
- + easy to implement
- + quite efficient O(nKq), q=number of iterations
- basic form requires L_2 measure
- sensitive to outliers
- sensitive to initialization (some improved strategies)
- converges to local optimum (not necessarily global)
- sometimes convergation can be slow
- needs parameter K

Choosing number of clusters: SSE elbow

- SSE decreases with K
- is there an elbow of the curve, where speed slows down?
- not always clear

source https://www.datanovia.com/en/lessons/determining-theoptimal-number-of-clusters-3-must-know-methods/

Choosing number of clusters: silhouette peak

Optimal number of clusters Silhouette method

- Silhouette tells how well an individual data point is clustered
- Average silhouette evaluates the entire clustering

source https://www.datanovia.com/en/lessons/determining-theoptimal-number-of-clusters-3-must-know-methods/

Silhouette coefficient

Silhouette of a point x is

$$S(\mathbf{x}) = \begin{cases} 0 & \text{if singleton} \\ \frac{b-a}{\max\{a,b\}} & \text{otherwise} \end{cases}$$

a=mean distance of x to points in the same cluster b=mean distance of x to points in the closest neighbouring cluster

- \Rightarrow average Silhouette $S_{avg} = \frac{1}{n} \sum_{\mathbf{x} \in \mathcal{D}} S(\mathbf{x})$
- → More on lecture 5

Choosing number of clusters: Calinski-Harabasz

based on inter-cluster and intra-cluster variances

SOURCE https://www.mathworks.com/help/stats/clustering.evaluation.calinskiharabaszevaluation-class.html

Choosing number of clusters: Calinski-Harabasz

$$S_{CH} = \frac{(n-K)B}{(K-1)W}$$

- between-cluster variance $B = \sum_{i=1}^{K} |C_i| L_2^2(\mathbf{c}_i, \mathbf{m})$ ($\mathbf{m} =$ mean of the whole data)
- within-cluster variance $W = \sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} L_2^2(\mathbf{x}, \mathbf{c}_i)$
- well suitable to K-means!

→ More on lecture 5

Choosing number of clusters: Gap statistic

- Cluster data and evaluate $W_K = \sum_{r=1}^{K} \frac{1}{2|C_r|} \sum_{\mathbf{x},\mathbf{y} \in C_r} d(\mathbf{x},\mathbf{y})$
- Evaluate W_K in B random data sets \rightarrow W_{K1}, \ldots, W_{KB}
- Gap(K) = $\frac{1}{B} \sum_{b=1}^{B} \log(W_{Kb}) \log(W_K)$
- Choose min K: $Gap(K) \ge Gap(K+1) \sigma_{K+1}$

SOURCE https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/

Gap statistic

- σ_K = standard deviation of W_{K1}, \ldots, W_{KB}
- if $d = L_2^2$, W_K estimates SSE
- + suits to any clustering method and distance d
- computationally heavy (B random simulations for all tested K)

Further reading: Tibshirani et al.: Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society, 2001.

K-means extensions

• K-medians

- uses L_1 measure and medians
- determine median values along each dimension separately
- + more robust to outliers
- computationally more costly

K-medoids

- medoid = the center-most data point in a cluster
- + more efficient (but slower than k-means)
- + allows any distance function
- + suits to any data type! (given distance function)

K-means vs. K-medoids

Figure 3.3: Outliers effect: k-means clustering (left) vs. k-medoids clustering (right)

image source: Soheily-Khah (2016): Generalized k-means based clustering for temporal data under time warp

K-modes

- for categorical data
- minimize $\sum_{\mathbf{x} \in C} \sum_{i=1}^k d_s(x_i, c_i)$, where

$$d_s(x_i, y_i) = \begin{cases} 1 & \text{if } x_i \neq y_i \\ 0 & \text{otherwise} \end{cases}$$

- "simple matching distance" = overlap distance without weights
- cluster centers c are "modes" (choose most frequent values of each feature)

K-modes: example

K=3. Original centers ("modes") individuals 1, 5, 10

Individua l	Q1	Q2	Q3	Q4	Q5	C1	C2	C3
1	Α	В	Α	В	С	0	4	2
2	A	Α	A	В	В	2	4	4
3	С	Α	В	В	Α	4	2	4
4	Α	В	В	Α	С	2	5	0
5	С	С	С	В	A	4	0	5
6	A	Α	A	Α	В	3	5	4
7	Α	С	Α	С	С	2	4	3 4
8	С	Α	В	В	С	3	3	3
9	Α	Α	В	С	Α	4	4	3
10	Α	В	В	Α	С	2	5	0

Note: Many ways to choose initial "modes".

K-modes: example

Calculate new modes:

Cluster	Q1	Q2	Q3	Q4	Q5
1 (1), (2), (6), (7), (8)	Α	Α	Α	В	С
2 (3), (5)	С	Α	В	В	Α
3 (4), (9), (10)	Α	В	B +	Α	c 🗈

Example from "K-Modes intuition and example" by Aysan Fernandes

https://www.youtube.com/watch?v=b39_vipRkUo

K-prototypes

- for mixed data
- minimize

$$\sum_{\mathbf{x} \in C} \left(\sum_{i=1}^{q} (x_i - c_i)^2 + \gamma \sum_{i=q+1}^{k} d_s(x_i, c_i) \right)$$
, where x_1, \dots, x_q numerical values x_{q+1}, \dots, x_k categorical values γ =balancing weight

cluster centroids c are "prototypes"

K-means extensions: Kernel-*K*-means

Idea: map data implicitely to a higher dimensional space and perform K-means there

The kernel trick - complex in low dimension (left), simple in higher dimension (right)

- + robust
- + can detect arbitrary shapes
- expensive

image source Soheily-Khah (2016): Generalized k-means based clustering for temporal data under time warp

Summary

- Basic idea of K-representatives method
 - K-means, K-medians, K-medoids, K-modes, K-prototypes
- Techniques to choose K
 - SSE elbow, Silhouette peak, Calinski-Harabasz, Gap statistic

Further reading:

- Gan, Ma, Wu: Data clustering theory, algorithms, and applications. SIAM 2007.
- Jain and Dubes: Algorithms for clustering data.
 Prentice-Hall 1988.