机器学习导论 (2020 春季学期)

主讲教师: 周志华

决策树模型

决策树基于"树"结构进行决策

- □ 每个"内部结点"对应于某个属性上的"测试"(test)
- □ 每个分支对应于该测试的一种可能结果(即该属性的某个取值)
- □ 每个"叶结点"对应于一个"预测结果"

学习过程:通过对训练样本的分析来确定"划分属性"(即内部结点所对应的属性)

预测过程:将测试示例从根结点开始,沿着划分属性所构成的"判定测试序列"下行,直到叶结点

图 4.1 西瓜问题的一棵决策树

基本流程

策略: "分而治之" (divide-and-conquer)

自根至叶的递归过程

在每个中间结点寻找一个"划分" (split or test)属性

三种停止条件:

- (1) 当前结点包含的样本全属于同一类别, 无需划分;
- (2) 当前属性集为空,或是所有样本在所有属性上取值相同,无法划分;
- (3) 当前结点包含的样本集合为空,不能划分.

基本算法

```
输入: 训练集 D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}
      属性集 A = \{a_1, a_2, \dots, a_d\}.
过程: 函数 TreeGenerate(D, A)
 1: 生成结点 node;
                                    递归返回,
 2: if D 中样本全属于同一类别 C then
                                    情形(1)
     将 node 标记为 C 类叶结点; return
 4: end if
                                                             递归返回,
 5: if A = \emptyset OR D 中样本在 A 上取值相同 then
                                                             情形(2)
     将 node 标记为叶结点, 其类别标记为 D 中样本数最多的类; return
 7: end if
                                利用当前结点的后验分布
8: 从 A 中选择最优划分属性 a_*;
9: for a<sub>*</sub> 的每一个值 a<sub>*</sub><sup>v</sup> do
    为 node 生成一个分支; \Diamond D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
10:
                                                                递归返回.
11:
     if D_v 为空 then
                                                               情形(3)
       将分支结点标记为叶结点, 其类别标记为 D 炉样本最多的类; return
12:
13:
     else
                                              将父结点的样本分布作为
       以 TreeGenerate(D_v, A \setminus \{a_k\})为分支碧点
14:
                                              当前结点的先验分布
     end if
15:
16: end for
                                A策树算法的
输出:以 node 为根结点的一棵决策树
                                   核心
```

信息增益 (information gain)

信息熵 (entropy) 是度量样本集合"纯度"最常用的一种指标假定当前样本集合 D 中第 k 类样本所占的比例为 p_k ,则 D 的信息熵定义为

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k$$

计算信息熵时约定: 若 p = 0, 则 $p \log_2 p = 0$.

Ent(D) 的最小值为 0, 最大值为 $\log_2 |\mathcal{Y}|$.

 $\operatorname{Ent}(D)$ 的值越小,则D 的纯度越高

信息增益直接以信息熵为基础,计算当前划分对信息熵所造成的变化

信息增益

离散属性 a 的取值: $\{a^1, a^2, \dots, a^V\}$

 D^v : D 中在 a 上取值 = a^v 的样本集合

以属性 a 对 数据集 D 进行划分所获得的信息增益为:

ID3算法中使用

一个例子

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
	2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
	5	浅白。	蜷缩	浊响	清晰	凹陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
	7	乌黑	稍蜷	浊响	稍糊	稍凹《	软粘	是
	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
	90,77	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
	10	青绿	硬挺	清脆	清晰	泙坦	软粘	否
	11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
3	12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	13	青绿	稍蜷	浊响。	稍糊	凹陷	硬滑	否
	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16	浅白	蜷缩。	浊响	模糊	平坦	硬滑	否
	17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否
			11 11					

该数据集包含17个 训练样例, $|\mathcal{Y}| = 2$, 其中正例占 $p_1 = \frac{8}{17}$ 反例占 $p_2 = \frac{9}{17}$

根结点的信息熵为

信息熵为
$$\frac{1}{\text{Ent}(D)} = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

一个例子(续)

- □ 以属性 "色泽" 为例,其对应的3个数据子集分别为 D^1 (色泽=青绿), D^2 (色泽=乌黑), D^3 (色泽=浅白)
- 子集 D^1 包含编号为 $\{1,4,6,10,13,17\}$ 的6个样例,其中正例占 $p_1=\frac{3}{6}$,反例占 $p_2=\frac{3}{6}$, D^2 、 D^3 同理,3个结点的信息熵为:

$$\operatorname{Ent}(D^{1}) = -\left(\frac{3}{6}\log_{2}\frac{3}{6} + \frac{3}{6}\log_{2}\frac{3}{6}\right) = 1.000$$

$$\operatorname{Ent}(D^{2}) = -\left(\frac{4}{6}\log_{2}\frac{4}{6} + \frac{2}{6}\log_{2}\frac{2}{6}\right) = 0.918$$

$$\operatorname{Ent}(D^{3}) = -\left(\frac{1}{5}\log_{2}\frac{1}{5} + \frac{4}{5}\log_{2}\frac{4}{5}\right) = 0.722$$

□属性"色泽"的信息增益为

Gain(D, 色泽) = Ent(D) -
$$\sum_{v=1}^{3} \frac{|D^v|}{|D|}$$
Ent(D^v)
$$= 0.998 - (\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722)$$

$$= 0.109$$

一个例子(续)

■ 类似的, 其他属性的信息增益为

$$Gain(D, 根蒂) = 0.143$$
 $Gain(D, 敲声) = 0.141$ $Gain(D, 纹理) = 0.381$ $Gain(D, 脐部) = 0.289$ $Gain(D, 触感) = 0.006$

□ 显然, 属性"纹理"的信息增益最大, 被选为划分属性

一个例子(续)

对每个分支结点做进一步划分, 最终得到决策树

决策树简史

● 第一个决策树算法:CLS (Concept Learning System)

[E. B. Hunt, J. Marin, and P. T. Stone's book "Experiments in Induction" published by Academic Press in 1966]

• 使决策树受到关注、成为机器学习主流技术的算法: ID3

[J. R. Quinlan's paper in a book "Expert Systems in the Micro Electronic Age" edited by D. Michie, published by Edinburgh

University Press in 1979]

• 最常用的决策树算法: C4.5

[J. R. Quinlan's book "C4.5: Programs for Machine Learning" published by Morgan Kaufmann in 1993]

J. Ross Quinlan (1943 -)

决策树简史(con't)

• 可以用于回归任务的决策树算法: CART (Classification and Regression Tree)

[L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone's book "Classification and Regression Trees" published by Wadsworth in 1984]

● 基于决策树的最强大算法之一: RF (Random Forest)

[L. Breiman's MLJ'01 paper "Random Forest"]

这是一种"集成学习"方法→第8章

Leo Breiman (1928-2005)

增益率 (gain ratio)

信息增益: 对可取值数目较多的属性有所偏好

有明显弱点,例如:考虑将"编号"作为一个属性

增益率:
$$Gain_ratio(D, a) = \frac{Gain(D, a)}{IV(a)}$$

$$\exists \nabla (a) = -\sum_{v=1}^{V} \frac{|D^v|}{|D|} \log_2 \frac{|D^v|}{|D|}$$

属性 a 的可能取值数目越多 (即 V 越大),则 IV(a) 的值通常就越大

基尼指数 (gini index)

$$Gini(D) = \sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_k p_{k'}$$

反映了从 D 中随机抽取两个样例, 其类别标记不一致的概率

$$=1-\sum_{k=1}^{|\mathcal{Y}|}p_k^2$$

Gini(D) 越小,数据集 D 的纯度越高

属性 a 的基尼指数: $\operatorname{Gini_index}(D,a) = \sum_{v=1}^{V} \frac{|D^v|}{|D|} \operatorname{Gini}(D^v)$

在候选属性集合中, 选取那个使划分后基尼指数最小的属性

划分选择 vs. 剪枝

研究表明: 划分选择的各种准则虽然对决策树的尺寸有较大影响, 但对泛化性能的影响很有限

例如信息增益与基尼指数产生的结果, 仅在约 2% 的情况下不同

剪枝方法和程度对决策树泛化性能的影响更为显著

在数据带噪时甚至可能将泛化性能提升 25%

Why?

剪枝 (pruning) 是决策树对付"过拟合"的主要手段!

剪枝

为了尽可能正确分类训练样本,有可能造成分支过多 > 过拟合可通过主动去掉一些分支来降低过拟合的风险

基本策略:

- 预剪枝 (pre-pruning): 提前终止某些分支的生长
- 后剪枝 (post-pruning): 生成一棵完全树, 再"回头"剪枝

剪枝过程中需评估剪枝前后决策树的优劣 → 第2章

现在我们假定使用"留出法"

数据集

表 4.2 西瓜数据集 2.0 划分出的训练集(双线上部)与验证集(双线下部)

-,					<u> </u>			
	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
	2	乌黑	蜷缩	统问	清晰	凹陷	硬滑	是
	3	乌黑	蜷缩。	浊响	清晰	凹陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
训练集 ┪	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
加纳未	10	青绿人	硬挺	清脆	清晰	平坦。	软粘	否
	14	浅色	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	多黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
	17	青绿	蜷缩	沉闷	稍糊《	稍凹	硬滑	否
	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	4	青绿	蜷缩	沉闷 🛆	清晰	凹陷	硬滑	是
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
验证集	9	乌黑	稍蜷	元闷	稍糊	稍凹	硬滑	否
	11	浅白	硬挺火	清脆	模糊	平坦	硬滑	否
	12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

未剪枝决策树

预剪枝

验
证
集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
9 11 12 13	乌黑 浅白 浅白 青绿	稍蜷 硬矩 蜷缩	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点1: 若不划分,则将其标记为叶结点,类别标记为训练样例中最多的类别,若选"好瓜"。验证集中, $\{4,5,8\}$ 被分类正确,得到验证集精度为 $\frac{3}{7} \times 100\% = 42.9\%$

验证集精度

"脐部=?" 划分前: 42.9%

预剪枝(续)

		编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
验		4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
证集	1	9 11 12 13	乌黑 浅白 浅白 青绿	稍蜷 硬缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点1: 若划分,根据结点②,③,④ 的训练样例,将这3个结点分别标记为"好瓜"、"好瓜"、"好瓜"、"坏瓜"。此时,验证集中编号为 $\{4,5,8,11,12\}$ 的样例被划分正确,验证集精度为 $\frac{5}{7} \times 100\% = 71.4\%$

验证集精度

"脐部=?" 划分前: 42.9%

划分后: 71.4%

平坦 预剪枝决策:划分

脐部=?

凹陷

好瓜

3 好瓜

预剪枝(续)

		编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
验		4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
证 集	1	9 11 12 13	乌黑 浅白 浅白 青绿	稍蜷 硬蜷缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

对结点②,③,④分别进行剪枝判断,结点②,③都禁止划分,结点②,⑤都禁止划分,结点④本身为叶子结点。最终得到仅有一层划分的决策树,称为"决策树桩"(decision stump)

验证集精度 验证集精度 验证集精度 验证集精度 2 好瓜 3 好瓜 4 坏瓜 验证集精度 验证集精度

"色泽=?" 划分前: 71.4%

划分后: 57.1%

预剪枝决策:禁止划分

'根蒂=?" 划分前: 71.4%

划分后: 71.4%

预剪枝决策:禁止划分

后剪枝

先生成一棵完整的决策树, 其验证集精度测得为 42.9%

首先考虑结点⑥,若将其替换为叶结点,根据落在其上的训练样例 {7,15} 将其标记为"好瓜",测得验证集精度提高至 **57.1%**,于是决定剪枝

首先考虑结点⑥,若将其替换为叶结点,根据落在其上的训练样例 {7,15} 将其标记为"好瓜",测得验证集精度提高至 **57.1%**,于是决定剪枝

然后考虑结点⑤,若将其替换为叶结点,根据落在其上的训练样例 $\{6,7,15\}$ 将其标记为"好瓜",测得验证集精度仍为 $\mathbf{57.1\%}$,可以

然后考虑结点⑤,若将其替换为叶结点,根据落在其上的训练样例 $\{6,7,15\}$ 将其标记为"好瓜",测得验证集精度仍为 $\mathbf{57.1\%}$,可以

对结点②,若将其替换为叶结点,根据落在其上的训练样例 $\{1,2,3,14\}$,将其标记为"好瓜",测得验证集精度提升至 71.4%,

后剪枝决策:剪枝

对结点③和①, 先后替换为叶结点, 均未测得验证集精度提升, 于是不剪枝

最终,后剪枝得到的决策树;

预剪枝 vs. 后剪枝

- □ 时间开销:
- 预剪枝:测试时间开销降低,训练时间开销降低
- 后剪枝:测试时间开销降低,训练时间开销增加
- □ 过/欠拟合风险:
- 预剪枝: 过拟合风险降低, 欠拟合风险增加
- 后剪枝: 过拟合风险降低, 欠拟合风险基本不变
- □ 泛化性能: 后剪枝 通常优于 预剪枝

连续值

基本思路:连续属性离散化

常见做法:二分法 (bi-partition)

- n 个属性值可形成 n-1 个候选划分
- 然后即可将它们当做 n-1 个离散属性值处理

缺失值

现实应用中,经常会遇到属性值"缺失"(missing)现象

仅使用无缺失的样例? → 对数据的极大浪费

使用带缺失值的样例, 需解决:

Q1: 如何进行划分属性选择?

Q2: 给定划分属性, 若样本在该属性上的值缺失, 如何进行划分?

基本思路: 样本赋权, 权重划分

根蒂

蜷缩

蜷缩

蜷缩

蜷缩

稍蜷

稍蜷

稍蜷

表	4.4	西瓜数据集 2.0α
---	-----	-------------------

纹理

清晰

清晰

清晰

清晰

清晰

清晰

稍糊

脐部

凹陷

凹陷

凹陷

凹陷

凹陷

稍凹

稍凹。

触感

硬滑

硬滑

硬滑

硬滑

软粘

软粘

硬滑

好瓜

是

是

是

是

是

是

是

敲声

独响

沉闷

沉闷

浊响

浊响

浊响

浊响

仅通过无缺失值
的样例来判断划
分属性的优劣

	- 9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
	10	青绿	硬挺	清脆	_	沙沙坦	软粘	否
		浅白	硬挺	清脆	模糊	※ 平坦	_	否
(A)	12	浅白	蜷缩	_	模糊	平坦	软粘	否
**************************************	13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
学习开始时,根结点包	14	浅白	稍蜷	沉闷 🦠	稍糊	凹陷	硬滑	否
含样例集 D 中全部17个	15	乌黑	稍蜷	浊响	清晰	_	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
样例,权重均为 1	17	青绿	-	- 沅闷	稍糊	稍凹	硬滑	否
•			-//	1/		·		

编号

 2

3

4

5

6

7

8

色泽

乌黑

乌黑

青绿

以属性 "色泽"为例,该属性上无缺失值的样例子集 \tilde{D} 包含 14 个样例, 信息熵为

Ent
$$(\tilde{D}) = -\sum_{k=1}^{2} \tilde{p}_k \log_2 \tilde{p}_k = -(\frac{6}{14} \log_2 \frac{6}{14} + \frac{8}{14} \log_2 \frac{8}{14}) = 0.985$$

一个例子

令 \tilde{D}^1 , \tilde{D}^2 , \tilde{D}^3 分别表示在属性 "色泽" 上取值为 "青绿" "乌黑" 以及 "浅白"的样本子集,有

$$\operatorname{Ent}(\tilde{D}^{1}) = -\left(\frac{2}{4}\log_{2}\frac{2}{4} + \frac{2}{4}\log_{2}\frac{2}{4}\right) = 1.000 \quad \operatorname{Ent}(\tilde{D}^{2}) = -\left(\frac{4}{6}\log_{2}\frac{4}{6} + \frac{2}{6}\log_{2}\frac{2}{6}\right) = 0.918$$

$$\operatorname{Ent}(\tilde{D}^{3}) = -\left(\frac{0}{4}\log_{2}\frac{0}{4} + \frac{4}{4}\log_{2}\frac{4}{4}\right) = 0.000$$

因此,样本子集 \tilde{D} 上属性"色泽"的信息增益为

$$Gain(\tilde{D}, 色泽) = Ent(\tilde{D}) - \sum_{v=1}^{3} \tilde{r}_{v} Int(\tilde{D}^{v})$$
 无缺失值样例中属性 a 取值为 v 的占比
$$= 0.985 - \left(\frac{4}{14} \times 1.000 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.000\right)$$

$$= 0.306$$

于是, 样本集 D 上属性 "色泽"的信息增益为

$$Gain(D, 色泽) = \rho \times Gain(\tilde{D}, 色泽) = \frac{14}{17} \times 0.306 = 0.252$$
 无缺失值样例占比

类似地可计算出所有属性在数据集上的信息增益

Gain(D, 色泽) = 0.252

Gain(D, 根蒂) = 0.171

Gain(D, 敲声) = 0.145 Gain(D, 纹理) = 0.424

Gain(D, 脐部) = 0.289

 $Gain(D, \underline{\mathbb{M}}, \underline{\mathbb{M}}) = 0.006$

	进入	"纹理=清晰"	分支
--	----	---------	----

进入"纹理=模糊"分支

样本权重在各子结点仍为1

在"纹理"上出现缺失值, 样本 8,10 同时进入三个 分支, 三分支上的权重分 别为 7/15, 5/15, 3/15

					112		
编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷		是
3	乌黑	蜷缩		清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5		蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	一独响	清晰	_	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
9	乌黑	-1/2/-	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	_	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	-	否
12	浅白	蜷缩		模糊	平坦	软粘	否
13	1/1/1-	稍蜷	浊响	稍糊	凹陷	硬滑	否
_14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	-	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿		沉闷	稍糊	稍凹	硬滑	否
				_	•		

从"树"到"规则"

- 一棵决策树对应于一个"规则集"
- 每个从根结点到叶结点的分支路径对应于一条规则

好处:

- □改善可理解性
- □进一步提升泛化能力

- IF (纹理=清晰) ^ (密度≤0.381) THEN 坏瓜
- IF (纹理=清晰) ^ (密度>0.381) THEN 好瓜
- IF (纹理=稍糊) ^ (触感=硬滑) THEN 坏瓜
- **IF** (纹理=稍糊) ^ (触感=软粘) THEN 好瓜
- IF (纹理=模糊) THEN 坏瓜

由于转化过程中通常会进行前件合并、泛化等操作例如 C4.5Rule 的泛化能力通常优于 C4.5决策树

轴平行划分

单变量决策树: 在每个非叶结点仅考虑一个划分属性

产生"轴平行"分类面

轴平行 VS. 倾斜

当学习任务所对应的分类边界很复杂时,需要非常多段划分才能获得较好的近似

多变量(multivariate)决策树

多变量决策树:每个非叶结点不仅考虑一个属性

例如"斜决策树" (oblique decision tree) 不是为每个非叶结点寻找最优划分属性,而是建立一个线性分类器

更复杂的"混合决策树"甚至可以在结点嵌入神经网络或其他非线性模型

决策树常用软件/工具包

□ID3, C4.5, C5.0

http://www.rulequest.com/Personal/

□J4.8

http://www.cs.waikato.ac.nz/ml/weka/

CART

https://www.salford-systems.com/products/cart

... ...

前往第五站……

