Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №4.1.

по курсу общей физики на тему: «Определение энергии α-частиц по величине их пробега в вздухе»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1. Цель работы

Измерить пробег α -частиц в воздухе с помощью сцинтилляционного счетчика и ионизационной камеры. По полученным величинам определить энергию частиц.

2. Суть исследуемого явления

 α -распад — процесс испускания ядра гелия (α -частицы) родительским ядром, при котором в дочернем ядре число протонов и число нейтронов уменьшается на две единицы.

3. Теория явления

Рассмотрим взаимодействие заряженных частиц с веществом. Тяжелые заряженные частица с малым зарядом (Z=1,2, т.е. протоны и α -частицы) при прохождении в веществе свою энергию, главным образом, в результате неупругих столкновений с атомами вещества. Эти неупругие столкновения вызывают ионизацию и возбуждение атомов. Такие потери называют ионизационными. Процесс столкновений можно рассматривать как непрерывное замедление заряженных частиц, поскольку на каждом соударении теряется малая энергия и частица отклоняется на угол, максимальное значение которого m/M ($m \ll M$) крайне мало. Исходя из этого траекторию в веществе можно считать прямолинейной.

Получить хорошее количественное согласие с экспериментальными данными при учете взаимодействия проходящей частицы только с электроном не удается. Для связи между энергией α-частицы и ее пробегом пользуются эмпирическими соотношениями. В диапазоне энергий α-частиц от 4 до 9 МэВ эта связь хорошо описывается выражением

$$R = 0.32E^{3/2} \tag{1}$$

В формуле (1) R — пробег α -частица в воздухе (при $15^{\circ}C$ и нормальном атмосферном давлении), выраженный в сантиметрах, а энергия E — в мегаэлектрон-вольтах. Кроме величины R, можно ввести величину $R' = \rho R$, где ρ — плотность среды. R' будем также называть пробегом.

Рассеяние α -частиц в веществе и статистический характер потерь энергии приводят к тому, что даже при одинаковой начальной энергии пробеги разных α -частиц несколько отличаются друг от друга. Это различия проявляются в форме кривой, выражающей зависимость числа частиц от расстояния, пройденного ими в поглотителе (рис. 1).

Рис. 1. Зависимость числа α-частиц от глубины их проникновения в вещество

Как видно из кривой dN/dx, большая часть α -частиц останавливается в узкой области, расположенной около некоторого значения x, которое называется средним пробегом $R_{\rm cp}$. В формулу (1) входит $R_{\rm cp}$. Также используют экстраполированный пробег $R_{\rm s}$. Из-за того, что мы имеем дело не с узкими параллельными пучками частиц, а с пучками конечных размеров, обладающими заметной угловой расходимостью более точное значение будет давать не $R_{\rm cp}$, а $R_{\rm s}$.

4. Эксперимент

Рис. 2. Установка для измерения пробега α-частиц с помощью сцинтилляционного счетчика

В качестве источника α -чатиц в работе используется 239 Pu. Альфа-частица, испускаемые 239 Pu, состоят из трех моноэнергетических групп, различие между которыми лежит в пределах 50 кэВ. При той точности, которая достигается в опыте, можно считать эти энергии совпадающими и равными $5.15~{\rm M}$ эВ.

4.1. Экспериментальная установка

Определение пробега α -частиц с помощью сцинтилляционного счетчика

Установка состоит из цилиндрической камеры, на дне которой находится исследуемый препарат. Камера герметично закрыта стеклянной пластинкой, на которую с внутренней стороны нанесен слой люминофора. С наружной стороны к стеклу прижат фотокатод фотоумножителя $(puc.\ 1)$. Оптический контакт ФЭУ-стекло обеспечивается тонким слоем вазелинового масла.

Сигналы с фотоумножителя через усилитель поступают на переучетную установку. Расстояние между препаратом и люминофором составляет 9 см, так что α -частицы не могут достигнуть люминофора при обычном давлении. Определение пробега сводится к измерению зависимости интенсивности счета от давления в камере.

Определение пробега α -частиц с помощью ионизационной камеры

Ионизационная камера — прибор для количественного измерения ионизации, произведенной заряженными частицами при прохождении через

Рис. 3. Схема устройства ионизационной камеры

газ. Камера представляет собой наполненный газом сосуд двумя электродами (схема камеры приведена на *puc. 3*). Сферическая стенка прибора служит одним из электродов, второй электрод вводится в газ через изолирующую пробку. К электродам подводится постоянное напряжение от источника ЭДС.

Ток возникает только при прохождении быстрой заряженной частицы, которая рождает в газе на своем пути ионы. Ток, протекающий через камеру, вначале будет резко возрастать, а затем, начиная с некоторого напряжения V_0 станет постоянным, как показано на $puc.\ 4$.

При небольшом напряжении сила тока оказывается заметно меньше I_0 . Это происходит в основном потому, что часть ионов успевает рекомбинировать и не доходит до электродов камеры. При достаточно больших напряжениях (порядка сотен вольт) ионы движутся достаточно быстро, и рекомбинация не играет существенной роли. При использовании камеры для регистрации ионизирующего излучения будет стремиться работать в области плато, так как при этом сила тока не зависит от небольших изменений напряжения на электродах камеры.

Рис. 4. Вольт-амперная характеристика ионизационной камеры

Рис. 5. Характерная кривая зависимости тока ионизационной камеры от давления. Ионизация создается α -частицами

При изменении давления в камере ионизационный ток меняется так, как это показано на puc. 5. При небольших давлений газа α -частицы передают часть энергии стенками камеры. По достижении давления P_0 все они заканчивают свой пробег внутри газа, и дальнейшее возрастание тока прекращается.

В данной работе измерение пробега α -частица проводится по величине тока ионизации с сферической камере. Внутренним электродом камеры служит диска диаметром 5 мм, на который нанесен тонкий слой $^{239}_{94}$ Pu, покрытый сверху тонкой защитной пленкой. Вторым электродом служит внешняя оболочка камеры — полый шар с внутренним диаметром 100 мм. Оба электрода тщательно изолированы друг от друга и от земли.

5. Результаты эксперимента

Определение пробега α -частиц с помощью сцинтилляционного счетчика

Проведем измерение зависимости счета частиц N в секунду от давления P в камере. Построим график N=N(P) (puc. 6), по которому определяется средний и экстраполированный пробег α -частиц при условиях опыта — $P_0=98,6$ кПа, $t=23^{\circ}C$.

Рис. 6. Зависимость количества сигналов с фотоумножителя в секунду N от давления P

Определение пробега α -частиц с помощью ионизационной камеры

Снимем зависимость тока через камеру I от давления P:

Рис. 7. Зависимость тока через камеру I от давления P

6. Анализ результатов

Определение пробега α -частиц с помощью сцинтилляционного счетчика

Для вычисления длины свободного пробега будем использовать формулу

$$R = \frac{k_B T}{\sqrt{2\pi} d^2 P} \tag{2}$$

где πd^2 — эффективная площадь поперечного сечения частиц. Получим формулу для пересчета длины свободного пробега к другой температуре и давлению:

$$R_2 = \frac{T_1}{T_2} \frac{P_2}{P_1} R_1 \tag{3}$$

Выполним пересчет пробега к давлению P=760 Тор и $T=15^{\circ}C$, ответ выразим в см и в г/см². Плотность воздуха при $T=15^{\circ}C$ равна 1,2250 кг/м³.

$$R_{\rm 9} = (3.08 \pm 0.14)~{\rm cm} = (3.8 \pm 0.2)~{\rm mr/cm^2}$$
 $R_{\rm cp} = (1.94 \pm 0.10)~{\rm cm} = (2.38 \pm 0.12)~{\rm mr/cm^2}$

По значениям $R_{\rm s}$ и $R_{\rm cp}$ определим толщину слюды Δh , закрывающей окно торцевого счетчика, при этом учтем, что пробег α -частицы в слюде, выраженный в г/см³, в 1,2 раза больше, чем пробег в воздухе, выраженный в тех же единицах.

$$\Delta h = (1.7 \pm 0.4) \, \text{г/cm}^2$$

Определим энергию α -частиц по формуле (1), в формуле будем использовать $R_{\scriptscriptstyle 9}.$

$$E = (4.5 + 0.2) \text{ M} \cdot \text{B}$$

Зная период полураспада 239 Ри $T_{1/2}=2.44\cdot 10^4$ лет, считая, что эффективность счета α -частиц равна 100% оценим количество вещества в препарате. Телесный угол, под которым виден источник, равен 0.04 ср.

Посчитаем начальное число атомов плутония N_0 . Для вычисления числа радиоактивных атомов в момент времени $T_{1/2}$ воспользуемся числом N при P=0 на puc. 6. Это число возьмем приближенно равным $350 \, {\rm c}^{-1}$.

$$N_0 = 2N(T_{1/2})$$

$$N(T_{1/2}) = 350 \cdot \frac{2\pi}{0.04} \cdot T_{1/2}.$$

Итого получим формулу для количества вещества в препарате ν и вычислим значение:

$$\nu = \frac{N_0}{N_A} = \frac{2 \cdot 350 \cdot 2\pi \cdot T_{1/2}}{0.04 N_A}$$

$$\nu \approx 1.4 \cdot 10^{-7} \text{ моль}$$

Определение пробега α -частиц с помощью ионизационной камеры

Определим экстраполированный пробег α -частиц в воздухе при условиях опыта и выполним перерасчет к P=760 Top, $T=15^{\circ}C$ по формуле (3).

$$R_{\rm s}^* = (3.17 \pm 0.09)~{\rm cm} = (3.88 \pm 0.11)~{\rm mg/cm}^2$$

Определим энергию α -частиц по формуле (1):

$$E = (4.61 \pm 0.09) \text{ M} \cdot \text{B}$$

7. Выводы

С помощью сцинтилляционного счетчика и ионизационной камеры в работе был измерен пробег α -частиц в воздухе:

$$R_{\scriptscriptstyle 9} = (3.08 \pm 0.14) \; {\rm cm} = (3.8 \pm 0.2) \; {\rm mf/cm^2}$$
 $R_{\scriptscriptstyle 9}^* = (3.17 \pm 0.09) \; {\rm cm} = (3.88 \pm 0.11) \; {\rm mf/cm^2}$