1 Definiční obory

Úloha 1. Co nejefektivněji určete, která z čísel -3, 0, 1, 4 patří do definičního oboru výrazu $\frac{1}{\sqrt{x^2+x-6}}$.

Úloha 2. Určete definiční obory výrazů:

(a)
$$\frac{x^2 - 3x + 2}{x^2 - 5x + 6}$$
 (b) $\frac{1}{\sqrt{x}} + \sqrt{2 - x}$ (c) $|x| \cdot \sqrt{3 - |x + 1|}$

(d)
$$|\sqrt{x} + 1|$$
 (e) $\frac{1}{\sqrt{x^2}}$

Úloha 3. Vymyslete výraz, jehož definiční obor bude

- (a) $\mathbb{R} \setminus \{1; 2; 3\},$
- (b) (-2; 2),
- (c) $\langle -1; \infty \rangle \setminus \{2\}$.

2 Vyjadřování neznámých

Úloha 4. Vyjádřete

- (a) ze vzorce pro velikost magnetické indukce $B = \mu \frac{NI}{l}$ počet závitů N,
- (b) ze stavové rovnice plynu $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$ teplotu T_2 ,
- (c) ze vzorce pro zvětšení mikroskopu $\frac{\tau'}{\tau} = \frac{\Delta}{f_1} \cdot \frac{d}{f_2}$ ohniskovou vzdálenost f_1 ,
- (d) ze vzorce zrychlení rovnoměrně zrychleného pohybu $a = \frac{v v_0}{t}$ poč. rychlost v_0 ,
- (e) ze vzorce pro objemovou roztažnost kapalin $V = V_0(1 + \beta \cdot \Delta t)$ poč. objem V_0 ,
- (f) z předchozího vzorce změnu teploty Δt ,
- (g) ze vzorce pro výšku svislého vrhu $h = v_0 t \frac{1}{2} g t^2$ poč. rychlost v_0 ,
- (h) z předchozího vzorce gravitační zrychlení g,
- (i) ze vzorce pro povrch kvádru S = 2ab + 2bc + 2ac délku strany b.

1. jenom 4

2.

- (a) $\mathbb{R} \setminus \{2; 3\}$
- (b) (0; 2)
- (c) $\langle -4; 2 \rangle$
- (d) $\langle 0; \infty \rangle$ (e) $\mathbb{R} \setminus \{0\}$

3.

- (a) např. $\frac{1}{(x-1)(x-2)(x-3)}$
- (b) např. $\frac{1}{\sqrt{2-|x|}}$ nebo třeba $\frac{1}{\sqrt{x+2}} \sqrt{\frac{1}{2-x}}$ apod.
- (c) např. $\frac{\sqrt{x+1}}{x-2}$

4.

- (a) $N = \frac{Bl}{\mu I}$
- (b) $T_2 = \frac{p_2 V_2 T_1}{p_1 T_1}$
- (c) $f_1 = \frac{\Delta d\tau}{f_2\tau'}$
- (d) $v_0 = v at$
- (e) $V_0 = \frac{V}{1+\beta \cdot \Delta t}$
- (f) $\Delta t = \frac{V V_0}{V_0 \beta}$
- (g) $v_0 = \frac{2h + gt^2}{2t}$
 - (h) $g = \frac{2v_0t 2h}{t^2}$ $(i) b = \frac{S - 2ac}{2a + 2c}$