Proseminar Künstliche Intelligenz

Teil 1: Allgemeine und heuristische Suchverfahren

Vorgetragen von:

- Henning Eberhardt:
 - Allgemeine Suchverfahren
 - Constraint Satisfaction Problems

- Clemens Lode:
 - Heuristische Suchverfahren

1. Teil: Uninformiertes Suchen

- Allgemeine Suchalgorithmen
 - Breitensuche
 - > Tiefensuche
 - > Probleme

- CSP Constraint Satisfaction Problems
 - Backtracking
 - Forward tracking

Bewertungskriterien

- •Vollständigkeit
- •Optimalität
- Zeitkomplexität
- Speicherbedarf

Komplexität

- Verzweigungsfaktor(**b**ranchingfactor): **b**
- Suchtiefe(depth): d
- Maximale Knotenzahl:

$$1+b+b^2+b^3+...+b^d=\sum_{i=0}^{a}b^i$$

Breitensuche (Breadth-first search)

Breitensuche (Breadth-first search)

- •Vollständig: Ja
- •Optimal: Ja
- •Zeitaufwand: O(b^{d+1})
- •Speicheraufwand: O(b^{d+1})

Breitensuche (Breadth-first search)

Tiefe	Knoten	Dauer	Speicherverbrauch
2	1100	0.11s	1Mb
4	111100	11s	106Mb
6	10^7	19m	10Gb
8	10^9	31h	1Tb
10	10^11	129d	101Tb
12	10^13	35y	10P(eta)b
14	10^15	3523y	1E(xa)b

Uniform-Cost Search

- Vollständig: Ja, sofern Pfadkosten > 0
- Optimal: Ja, sofern Pfadkosten > 0
- Zeitaufwand: O(b^{top(C*/e)})
- Speicheraufwand: O(b^{top(C*/e)})

C* = Knotenzahl auf dem Lösungspfad

Tiefensuche (Depth-first search)

Tiefensuche (Depth-first search)

- Vollständig: Nur bei endlichem Suchbaum
- Optimal: Nein
- •Zeitaufwand: O(b^{d+1})
- •Speicheraufwand: O(b*m)

m sei maximale Suchtiefe

Begrenzte Tiefensuche (Depth-limited search)

- Vollständig: Nur bei endlichem Suchbaum
- Optimal: Nein
- •Zeitaufwand: O(b^{d+1})
- •Speicheraufwand: O(b*m)

Iterative deepening depth-first search

Iterative deepening depth-first search

- IDS ist billiger als Breitensuche
- IDS ist der bevorzugte Suchalgorithmus

Iterative deepening depth-first search

- •Vollständig: Ja
- •Optimal: Ja
- •Speicheraufwand: O(b*d)
- •Zeitaufwand: O(b^d)

Bidirektionale Suche (Bidirectional search)

- Vollständig: Ja
- Optimal: Ja
- Zeitaufwand: O(b^{d/2})
- Speicheraufwand: O(b^{d/2})

Nicht immer anwendbar

Schleifen unterbinden

• Schleifen können Probleme unlösbar machen

 Vergleiche aktuellen Knoten mit Abgearbeiteten z.B. durch Hashtabelle

• Linearer Speicheraufwand bei der Tiefensuche geht verloren

Constraint Satisfaction Problems (CSP)

- CSP besteht aus:
 - Menge von Variablen
 - Menge von Anforderungen/Abhängigkeiten
- Suchbaumtiefe ist bekannt
- Formen der Tiefensuche sind zur Lösung beliebt

Backtracking search

Abb. b						
a	_b_	C	\mathbf{d}			
1	1	1	1			
2	2	2	2			
3	3	3	3			
4	4	4	4			

Abb. c						
a	_b_	C	d			
1	1	1	1			
2	2	2	2			
3	3	3	3			
4	4	4	4			

Backtracking search

Abb. d						
a	b	С	\mathbf{d}			
1	1	1	1			
2	2	2	2			
3	3	3	3			
4	4	4	4			

Forward checking

Forward checking

Forward checking

