Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification

Han Bao^{1,2}, Masashi Sugiyama^{2,1}

- 1 The University of Tokyo
- 2 RIKEN AIP

Aug. 26th - 28th @ AISTATS 2020

Is accuracy appropriate?

Our focus: binary classification

accuracy: **0.8** accuracy: **0.8**

Accuracy can't detect unreasonable classifiers under **class imbalance**!

Is accuracy appropriate?

F-measure is more appropriate under class imbalance

positive negative

accuracy: 0.8

F-measure: 0.75

accuracy: 0.8

F-measure: 0

F-measure
$$F_1 = \frac{2TP}{2TP + FP + FN}$$

$$\mathsf{TP} = \mathbb{E}_{X,Y=+1}[1_{\{f(X)>0\}}]$$

$$\mathsf{FP} = \mathbb{E}_{X,Y = -1}[1_{\{f(X) > 0\}}]$$

$$\mathsf{TN} = \mathbb{E}_{X,Y=-1}[1_{\{f(X)<0\}}]$$

$$FN = \mathbb{E}_{X,Y=+1}[1_{\{f(X)<0\}}]$$

Training and Evaluation

Usual empirical risk minimization (ERM)

training

minimizing 0/1-error

evaluation

$$Acc = TP + TN$$
$$= 1 - (0/1-risk)$$

Training with accuracy but evaluating with F₁

training

minimizing 0/1-error

evaluation

$$F_1 = \frac{2 \text{ IP}}{2 \text{TP} + \text{FP} + \text{FN}}$$

Direct Optimization Why not?

training

???

evaluation

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

Not only F₁, but many others

Q. Can we handle in the same way?

Accuracy
$$Acc = TP + TN$$

Weighted Accuracy
$$w_1 TP + w_2 TN$$

$$WAcc = \frac{w_1TP + w_2TN}{w_1TP + w_2TN + w_3FP + w_4FN}$$

F-measure
$$F_1 = \frac{2TP}{2TP + FP + FN}$$

Balanced Error Rate

$$BER = \frac{1}{\pi}FN + \frac{1}{1-\pi}FP$$

$$GLI = \frac{TP + TN}{TP + \alpha(FP + FN) + TN}$$

Jaccard index

$$Jac = \frac{IP}{TP + FP + FN}$$

Unification of Metrics

Actual Metrics

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

$$Jac = \frac{TP}{TP + FP + FN}$$

 a_k, b_k, c_k : constants

Unification of Metrics

linear-fraction

$$U(f) = \frac{a_0 \text{TP} + b_0 \text{FP} + c_0}{a_1 \text{TP} + b_1 \text{FP} + c_1}$$

expectation divided by expecation

$$= \frac{a_0 \mathbb{E}_{\mathbf{P}} + b_0 \mathbb{E}_{\mathbf{N}} + c_0}{a_1 \mathbb{E}_{\mathbf{P}} + b_1 \mathbb{E}_{\mathbf{N}} + c_1} := \frac{\mathbb{E}_X [W_0(f(X))]}{\mathbb{E}_X [W_1(f(X))]}$$

- \blacksquare TP, FP = expectation of 0/1-loss
 - e.g. $TP = \mathbb{P}(Y = +1, f(X) > 0) = \mathbb{E}_{X,Y=+1}[\mathbf{1}_{\{f(X)>0\}}]$

Goal of This Talk

Given a metric (utility)
$$U(f) = \frac{a_0 \mathrm{TP} + b_0 \mathrm{FP} + c_0}{a_1 \mathrm{TP} + b_1 \mathrm{FP} + c_1}$$

Q. How to optimize U(f) directly?

without estimating class-posterior probability

labeled sample
$$\{(x_i, y_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}$$
 metric U

classifier
$$f: \mathcal{X} \to \mathbb{R}$$

s.t. $U(f) = \sup_{f'} U(f')$

Related: Plug-in Classifier

[Koyejo+ NIPS2014; Yan+ ICML2018]

Estimating class-posterior probability is costly!

Bayes-optimal classifier (general case): $\mathbb{P}(Y = +1 \mid x) - \delta^*$

O. O. Koyejo, N. Natarajan, P. K. Ravikumar, & I. S. Dhillon. Consistent binary classification with generalized performance metrics. In *NIPS*, 2014.

B. Yan, O. Koyejo, K. Zhong, & P. Ravikumar. Binary classification with Karmic, threshold-quasi-concave metrics. In *ICML*, 2018.

Formulation of Classification

- Goal of classification: maximize accuracy
 - = minimize mis-classification rate

$$\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}[y_i \neq \text{sign}(f(x_i))]$$
$$= \frac{1}{n} \sum_{i=1}^{n} \ell(y_i f(x_i))$$

convexify 0/1 loss

(Empirical) Surrogate Risk

$$\hat{R}_{\phi}(f) = \frac{1}{n} \sum_{i=1}^{n} \phi(y_i f(x_i))$$

Example of ϕ

- ▶ logistic loss
- ▶ hinge loss ⇒ SVM
- ▶ exponential loss ⇒ AdaBoost

Target Loss and Surrogate Loss

0/1 loss (target loss)

- Final learning criteria $R(f) = \mathbb{E}[\ell_{01}(Yf(X))]$
- (Usually) hard to optimize

surrogate loss

- Easily-optimizable criteria $R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$
 - usually convex, smooth

Convexity & Statistical Property

tractable (convex)

$$R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$$

intractable

$$R(f) = \mathbb{E}[\ell(Yf(X))]$$

Q. argmin R_{ϕ} = argmin R ?

A. Yes, w/ calibrated surrogate

Theorem.

[Bartlett+ 2006]

Assume ϕ : convex.

Then, $\operatorname{argmin}_f R_{\phi}(f) = \operatorname{argmin}_f R(f)$ iff $\phi'(0) < 0$.

(informal)

Convexity & Statistical Property

Q. How to make tractable surrogate?

Accuracy

tractable (convex)

$$R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$$

calibrated

intractable

$$R(f) = \mathbb{E}[\ell(Yf(X))]$$

Linear-fractional Metrics

1 tractable?

???

2 calibrated?

intractable

$$U(f) = \frac{\mathbb{E}_X[W_0(f(X))]}{\mathbb{E}_X[W_1(f(X))]}$$

Non-concave, but quasi-concave

$$\frac{f(x)}{g(x)}$$
 is quasi-concave if f : concave, g : convex,

 $f(x) \ge 0$ and g(x) > 0 for $\forall x$

(proof) Show $\{x | f/g \ge \alpha\}$ is convex.

$$\frac{f(x)}{g(x)} \ge \alpha \iff f(x) - \alpha g(x) \ge 0$$

NB: super-level set of concave func. is convex

 $\therefore \{x | f/g \ge \alpha\}$ is convex for $\forall \alpha \ge 0$

non-concave, but unimodal ⇒ efficiently optimized

- quasi-concave ⊇ concave
- super-levels are convex

Surrogate Utility

Idea: bound true utility from below

non-negative sum of concave

⇒ concave

numerator from below

non-negative sum of convex

⇒ convex

denominator from above

Surrogate Utility

Idea: bound true utility from below

$$U_{\phi}(f) = \frac{a_0 \mathbb{E}_{P} [1 - \phi(f(X))] + b_0 \mathbb{E}_{N} [-\phi(-f(X))] + c_0}{a_1 \mathbb{E}_{P} [1 + \phi(f(X))] + b_1 \mathbb{E}_{N} [\phi(-f(X))] + c_1}$$

$$:= \frac{\mathbb{E}[W_{0,\phi}]}{\mathbb{E}[W_{1,\phi}]} : Surrogate Utility$$

Hybrid Optimization Strategy

- Note: numerator can be negative
 - $ightharpoonup U_{\phi}$ isn't quasi-concave only if numerator < 0
 - make numerator positive first (concave), then maximize fractional form (quasi-concave)

Hybrid Optimization Strategy

Strategy

- 1) update gradient-ascent direction while $\mathbb{E}[W_0] < 0$
- 2 maximize fraction by normalized-gradient ascent [Hazan+ NeurlPS2015]

numerator is always concave

Hazan, E., Levy, K., & Shalev-Shwartz, S. (2015). Beyond convexity: Stochastic quasi-convex optimization. In Advances in Neural Information Processing Systems (pp. 1594-1602).

Convexity & Statistical Property

Q. How to make surrogate calibrated?

Accuracy

tractable (convex)

$$R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$$

calibrated

intractable

$$R(f) = \mathbb{E}[\ell(Yf(X))]$$

Linear-fractional Metrics

1) tractable?

???

2 calibrated?

intractable

$$U(f) = \frac{\mathbb{E}_X[W_0(f(X))]}{\mathbb{E}_X[W_1(f(X))]}$$

Justify Surrogate Optimization

For classification risk

surrogate risk

$$R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$$

classification risk

$$R(f) = \mathbb{E}[\ell(Yf(X))]$$

If ϕ is **classification-calibrated** loss,

[Bartlett+ 2006]

$$R_{\phi}(f_n) \stackrel{n \to \infty}{\to} 0 \Longrightarrow R(f_n) \stackrel{n \to \infty}{\to} 0 \quad \forall \{f_n\}$$

Note: informal

For fractional utility

surrogate utility

$$U_{\phi}(f) = \frac{\mathbb{E}_{X}[W_{0,\phi}(f(X))]}{\mathbb{E}_{X}[W_{1,\phi}(f(X))]}$$

true utility

$$U(f) = \frac{\mathbb{E}_X[W_0(f(X))]}{\mathbb{E}_X[W_1(f(X))]}$$

Q. What kind of conditions are needed for ϕ to satisfy

$$U_{\phi}(f_n) \stackrel{n \to \infty}{\to} 1 \Longrightarrow U(f_n) \stackrel{n \to \infty}{\to} 1 \quad \forall \{f_n\} ?$$

Special Case: F1-measure

Theorem

merely sufficient!

$$U_{\phi}(f_n) \stackrel{n \to \infty}{\to} 1 \Longrightarrow U(f_n) \stackrel{n \to \infty}{\to} 1 \quad \forall \{f_n\}$$

if ϕ satisfies

- ▶ $\exists c \in (0,1)$ s.t. $\sup_{f} U_{\phi}(f) \ge \frac{2c}{1-c}$, $\lim_{m\to +0} \phi'(m) \ge c \lim_{m\to -0} \phi'(m)$
- $\blacktriangleright \phi$ is non-increasing
- $\blacktriangleright \phi$ is convex

Note: informal

Example

non-differentiable at m=0

Intuition:

trade off TP and FP by gradient steepness

Experiment: F₁-measure

$(F_1$ -measure)	Proposed		Baselines		
Dataset	U-GD	U-BFGS	ERM	W-ERM	Plug-in
adult	0.617 (101)	0.660 (11)	0.639 (51)	0.676 (18)	0.681 (9)
australian	0.843(41)	0.844(45)	0.820(123)	0.814(116)	0.827(51)
breast-cancer	0.963(31)	0.960(32)	0.950(37)	0.948(44)	0.953(40)
cod-rna	0.802 (231)	0.594(4)	0.927(7)	0.927(6)	0.930(2)
diabetes	0.834(32)	0.828(31)	0.817(50)	0.821(40)	0.820(42)
fourclass	0.638(70)	0.638(64)	0.601(124)	0.591(212)	0.618(64)
german.numer	0.561 (102)	0.580(74)	0.492(188)	0.560(107)	0.589(73)
heart	0.796(101)	0.802(99)	0.792(80)	0.764(151)	0.764(137)
ionosphere	0.908(49)	0.901(43)	0.883 (104)	0.842(217)	0.897(54)
madelon	0.666(19)	0.632(67)	0.491(293)	0.639(110)	0.663(24)
mushrooms	1.000(1)	0.997(7)	1.000(1)	1.000(2)	0.999(4)
phishing	0.937(29)	0.943(7)	0.944(8)	0.940(12)	0.944(8)
phoneme	0.648(27)	0.559(22)	0.530(201)	0.616(135)	0.633(35)
skin_nonskin	0.870(3)	0.856(4)	0.854(7)	0.877(8)	0.838(5)
sonar	0.735(95)	0.740(91)	0.706(121)	0.655(189)	0.721 (113)
spambase	0.876(27)	0.756(61)	0.887(42)	0.881(58)	0.903(18)
splice	0.785(49)	0.799(46)	0.785(55)	0.771(67)	0.801 (45)
w8a	0.297 (80)	0.284 (96)	0.735(35)	0.742(29)	0.745(26)

(F₁-measure is shown)

model: $f_{\theta}(x) = \theta^{\mathsf{T}} x$

surrogate loss: $\phi(m) = \max\{\log(1 + e^{-m}), \log(1 + e^{-\frac{m}{3}})\}$

Summary: Calibrated and Tractable Surrogate for Class-imbalance

Goal

maximize linear-fractional utility

$$U(f) = \frac{a_0 \text{TP} + b_0 \text{FP} + c_0}{a_1 \text{TP} + b_1 \text{FP} + c_1}$$

In usual binary classification...

Tractable Optimization

quasi-concave optimization

Calibrated Surrogate

$$\operatorname{argmax}_f U_{\phi}(f) = \operatorname{argmax}_f U(f)$$