

CLAIM AMENDMENTS

1 1. (currently amended) A method of producing converting
2 a silicon on insulator (SOI) substrate into a strained SOI layer on
3 a substrate, the method comprising the steps of:

4 providing an SOI substrate having a thin silicon layer
5 and an insulator;

6 providing at least one first epitaxial relaxing layer on
7 [[an]] the SOI-substrate,

8 producing a defect region in a layer neighboring a above
9 the silicon layer of the SOI-substrate to which strain is to be
10 transferred, and

11 relaxing at least one the layer neighboring above the
12 silicon layer by a thermal treatment to simultaneously strain the
13 silicon layer of the SOI-substrate [[and]] via dislocation mediated
14 strain transfer and to produce the strained silicon layer directly
15 on the insulator.

1 2. (previously presented) The method according to claim
2 1, further comprising the step of

3 forming defects that give rise to relaxation of at least
4 one neighboring layer of the layer which is to be strained.

1 3. (previously presented) The method according to claim
2 1, further comprising the step of
3 subjecting the layer structure for relaxation to a
4 thermal treatment and/or oxidation.

1 4. (previously presented) The method according to
2 claim 1, further comprising the step of
3 depositing the first layer upon the silicon layer to be
4 strained.

1 5. (previously presented) The method according to claim
2 4 wherein the first layer has a different degree of stress than the
3 silicon layer to be strained.

4 6. (previously presented) The method according to claim
5 4 wherein the defect region is produced in the first layer.

7 - 9. (canceled)

1 10. (previously presented) The method according to
2 claim 1 wherein two neighboring layers of the layer to be strained
3 have other degrees of stress than the layer to be strained.

1 11. (previously presented) The method according to
2 claim 1 wherein a plurality of layers are relaxed.

1 12. (currently amended) The method according to claim 1
2 wherein a plurality of layers to be strained [[,]] have strain
3 transferred to them.

1 13. (previously presented) The method according to
2 claim 1, further comprising the step of
3 depositing on the first layer epitaxially at least one
4 second layer with a different lattice structure.

1 14. (previously presented) The method according to
2 claim 13 wherein the defect region is produced in the second layer.

1 15. (previously presented) The method according to
2 claim 1 wherein on the layer to which strain is to be transferred
3 at least one graded layer is deposited as the first layer.

1 16. (previously presented) The method according to
2 claim 15 wherein at the region of the layer to be strained, the
3 graded layer has a degree of strain that is different from that of
4 the layer to be strained.

1 17. (previously presented) The method according to
2 claim 15, further comprising the step of
3 producing a defect region in the graded layer.

4 18. (previously presented) The method according to
5 claim 1, further comprising the step of
6 depositing an epitaxial layer structure comprising a
7 plurality of layers on the substrate.

1 19. (previously presented) The method according to
2 claim 1, further comprising the step of
3 relaxing the first layer by a thermal treatment.

1 20. (previously presented) The method according to
2 claim 19 wherein the thermal treatment is done at a temperature
3 between 550 degrees and 1200 degrees C.

1 21. (previously presented) The method according to
2 claim 19 wherein the thermal treatment is done at a temperature
3 between 700 degrees and 980 degrees C.

1 22. (previously presented) A method according to claim
2 19 wherein the thermal treatment is carried out in an inert
3 atmosphere.

1 23. (previously presented) The method according to
2 claim 19 wherein the thermal treatment is carried out in a reducing
3 or oxidizing or nitriding atmosphere and especially in nitrogen.

1 24. (previously presented) The method according to
2 claim 1 wherein the relaxation is carried out over a limited region
3 of a layer.

4 25. (previously presented) The method according to
5 claim 1, further comprising the step of
6 applying a mask.

1 26. (previously presented) The method according to
2 claim 1 wherein the defect region is produced by ion implantation.

1 27. (previously presented) The method according to
2 claim 26 wherein for the implantation, hydrogen ions or helium ions
3 are used.

1 28. (previously presented) The method according to
2 claim 27 wherein the hydrogen ions or helium ions are implanted
3 with a dose of 3×10^{15} to $4 \times 10^{16} \text{ cm}^{-2}$.

1 29. (previously presented) The method according to
2 claim 26 wherein the implantation is done with Si ions.

1 30. (previously presented) The method according to
2 claim 29 wherein the Si ions are implanted with a dose of about 0.5
3 $\times 10^{14}$ to $5 \times 10^{14} \text{ cm}^{-2}$.

4 31. (previously presented) The method according to
5 claim 26 wherein for the implantation, carbon ions, nitrogen ions,
6 fluorine ions, boron ions, phosphorous ions, arsenic ions,
7 germanium ions, antimony ions, sulfur ions, neon ions, argon ions,
8 krypton ions and/or xenon ions are used.

1 32. (previously presented) The method according to
2 claim 26 wherein at least two implantations are carried out.

1 33. (previously presented) The method according to
2 claim 32 wherein a hydrogen implantation is carried out in
3 combination with a helium implantation.

1 34. (previously presented) The method according to
2 claim 32 wherein a boron implantation is carried out in combination
3 with a hydrogen implantation.

1 35. (previously presented) The method according to
2 claim 13, further comprising out the step of
3 carrying out two implantations to produce two defect
4 regions in the first layer and in the second layer.

1 36. (currently amended) The method according to claim
2 26, further comprising the step of
3 tilting wherein the substrate during the ion implantation
4 is tilted at an angle greater than 7 degrees..

1 37. (previously presented) The method according to
2 claim 32 wherein between two implantations a thermal treatment is
3 carried out.

1 38. (previously presented) The method according to
2 claim 1 wherein the defect region is produced by a change in the
3 temperature during the formation of one of the layers.

1 39. (previously presented) The method according to
2 claim 1 wherein the defects are produced in a Si-C layer by thermal
3 treatment.

40 - 41. (canceled)

1 42. (previously presented) The method according to
2 claim 1 wherein a silicon surface layer of the SOI substrate is the
3 layer to be strained and the SiO₂ of the SOI substrate forms the
4 insulator of the substrate.

1 43. (previously presented) The method according to
2 claim 1 wherein an SIMOX or BESOI substrate is selected as a base
3 structure for the substrate.

1 44. (previously presented) The method according to
2 claim 1, further comprising the step of
3 selecting a silicon on sapphire as a base structure for
4 the substrate.

1 45. (previously presented) The method according to
2 claim 1 wherein the layer neighboring the silicon layer becomes
3 viscous at a temperature required for the relaxation.

46 - 47. (canceled)

1 48. (previously presented) The method according to
2 claim 1 Si-Ge or Si-Ge-C or Si-C as the material for the first
3 layer which is deposited on the layer to be strained.

49. (canceled)

1 50. (previously presented) The method according to
2 claim 13 wherein silicon as the material for the second layer which
3 is deposited upon the first layer.

1 51. (previously presented) The method according to
2 claim 15, further comprising the step of
3 selecting Si-Ge as the material for a graded layer.

1 52. (previously presented) The method according to
2 claim 51 wherein the germanium concentration in the graded layer
3 decreases from the interface with the layer to be strained to the
4 surface of the graded layer.

1 53. (previously presented) The method according to
2 claim 15 wherein the germanium concentration in a Si-Ge layer at
3 the interface with the layer to be strained is 100 percent.

1 54. (currently amended) The method according to claim 1
2 wherein the total layer thickness of the layer structure is so
3 selected that during growth of the applied epitaxial layer ~~s~~—these
4 it does not produce any noticeable relaxation.

1 55. (previously presented) The method according to
2 claim 54 wherein the dislocation density after the growth amounts
3 to less than 10^5 cm⁻².

1 56. (previously presented) The method according to
2 claim 1 wherein a layer to be strained has a thickness d_s in the
3 range of 1 to 50 nanometers.

4 57. (previously presented) The method according to
5 claim 1 wherein the silicon layer to be strained has a thickness d_3 ,
6 in the range of 5 to 30 nanometers.

7 58. (previously presented) The method according to
8 claim 57 wherein the first layer has a thickness d_4 , close to a
9 critical layer thickness for pseudomorphic growth.

1 59. (previously presented) The method according to
2 claim 58 wherein a layer thickness ratio d_4/d_3 is greater than about
3 10.

4 60. (currently amended) The method according to claim
5 13 wherein the second layer has a thickness d_5 = 50 nanometer to
6 [[-]] 1000 nanometer.

1 61. (currently amended) The method according to claim
2 13 wherein the second layer has a thickness d_5 = 300 nanometer to
3 [[-]] 500 nanometer.

1 62. (previously presented) The method according to
2 claim 1 wherein the layer to be strained is locally strained.

1 63. (previously presented) The method according to
2 claim 62 wherein the layer to be strained is locally strained in
3 regions which are vertical in a plane with the defect region.

1 64. (currently amended) The method according to claim
2 13 wherein the defect region is produced at a spacing of 50
3 nanometers to 500 nanometers from the layer to be relaxed.

1 65. (currently amended) The method according to claim 1
2 wherein the defect region is at a spacing of 50 nanometers to 100
3 nanometers above the first layer on the layer to be strained.

1 66. (previously presented) The method according to
2 claim 13, further comprising the step of
3 removing the first and second layers after producing the
4 strained layer or after producing a strained region.

1 67. (previously presented) The method according to
2 claim 1 wherein wet chemical material-selective etching is used.

3 68. (currently amended) The method according to claim
4 67, further comprising the step of
5 etching trenches in the depth of the silicon and
6 epitaxial layers.

1 69. (previously presented) The method according to
2 claim 68, further comprising the step, after producing the etched
3 trenches, of

4 relaxing the first layer or a further layer by a thermal
5 treatment.

1 70. (previously presented) The method according to
2 claim 68, further comprising the step of
3 filling the trenches with insulating material to produce
4 shallow trench insulation.

1 71. (currently amended) The method according to claim
2 1, further comprising the step of
3 carrying out at least one further thermal treatment for
4 relaxation of ~~one or more~~ at least one layer [[s]].

1 72. (previously presented) The method according to
2 claim 1 wherein a strained layer or an unstrained layer are
3 produced with a surface roughness of less than 1 nanometer.

1 73. (currently amended) The method according to claim
2 72 wherein a surface roughness of the layer [[s]] is further
3 reduced by the growth of a thermal oxide thereon.

1 74. (previously presented) The method according to
2 claim 1, further comprising the step of
3 producing on a strained region of the layer an n- and/or
4 p- MOSFET.

1 75. (previously presented) The method according to
2 claim 1, further comprising the step of
3 depositing a further epitaxial layer comprising silicon
4 or silicon/germanium or an Si-Ge-C layer or a germanium layer.

1 76. (currently amended) The method according to claim
2 1, further comprising the step of
3 producing on a strained silicon-germanium region
4 p-MOSFETs as a further epitaxial layer [[s]] or as a nonrelaxed
5 layer [[s]] structures.

1 77. (currently amended) The method according to claim
2 1, further comprising the step of
3 producing bipolar transistors on unstrained regions of
4 the layer [[3]] to be strained bipolar transistors.

1 78. (previously presented) The method according to
2 claim 77 wherein for producing a bipolar transistor, a silicon-
3 germanium layer is applied.

1 79. (previously presented) The method according to
2 claim 1, wherein the steps of claim 1 are carried out a plurality
3 of times.

80 - 89. (canceled)

1 90. (withdrawn) An electronic component comprised of a
2 layer structure according to one of the preceding claims 80 - 89.

1 91. (withdrawn; currently amended) A transistor
2 especially a modulated doped field effect transistor or a metal
3 oxide semiconductor field effect transistor forms the component
4 according to claim 90.

1 92. (withdrawn) A fully depleted MOSFET as the
2 component according to claim 90.

1 93. (withdrawn; currently amended) A tunnel diode,
2 especially a silicon germanium tunnel diode as the component
3 according to claim 90.

1 94. (withdrawn) A silicon-germanium quantum cascade
2 laser as the component according to claim 90.

1 95. (withdrawn) A photo detector as the component
2 according to claim 90.

1 96. (withdrawn) A light emitting diode as the component
2 according to claim 90.

1 97. (currently amended) A method of producing
2 converting a silicon on insulator (SOI) substrate into a strained
3 layer on a SOI substrate, the method comprising the steps of:
4 providing an SOI substrate with a thin silicon layer and
5 an insulator;
6 providing only one first relaxing layer on [[an]] the
7 SOI-substrate;
8 producing a defect region in the first layer above the
9 silicon layer; and
10 relaxing the first layer above the silicon layer [[and]]
11 to simultaneously strain ing a neighboring the thin silicon layer
12 of the SOI-substrate via dislocation mediated strain transfer to
13 produce the strained silicon layer directly on the insulator.

1 98. (currently amended) A method of producing
2 converting a silicon on insulator (SOI) substrate into a strained
3 layer on a SOI substrate, the method comprising the steps of:
4 providing an SOI substrate having a silicon layer and an
5 insulator;
6 providing a first relaxing layer on [[an]] the SOI
7 substrate;
8 epitaxially forming a second layer with a different
9 structure on the first layer;
10 producing a defect region in the second layer; and
11 relaxing the first layer [[and]] to simultaneously strain
12 [[ing a]] the adjacent silicon layer of the SOI substrate to
13 produce via dislocation mediated strain transfer and to produce the
14 strained silicon layer directly on the insulator.