

Topics to be covered

Electrochemical Series

Rule to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- 2. Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your home work along with DPP.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

Rule to Attend Class

- Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.
- 7. Don't watch the videos in high speed if you want to understand better.

MEDICS

Mastery

Checks your grasp over NEET-level concepts

Evaluation

Judging both knowledge and test-smartness

Decision Making

Testing your speed + accuracy under pressure

Intuition

Some answers need gut + logic - can you spot the trick?

Concepts

It's all about strong basics no shortcuts here

Strategy

The MEDICS test – built for those who heal, hustle, and hope.

QUESTION

What is the hydrolysis constant of the OCl⁻ ion? The ionization constant of HOCl is 3×10^{-8} .

$$K_b = \frac{10^6}{3} = 0.33 \times 10^{-5}$$

QUESTION

What is the pH of a 0.10 M $C_6H_5O^-$ solution? The K_a of C_6H_5OH is 1×10^{-10} ?

10.51

Kt XKa=1

11.04

$$poh = -log(10^{5})^{1/2}$$

$$= \frac{5}{9}log lo$$

$$= 2.5$$

$$ph = 1u - 2.5$$

= 11.5

QUESTION

What is the hydronium ion concentration of a 0.02 M solution of Cu^{2+} solution of copper(II) perchlorate? The acidity constant of the following reaction is 5×10^{-9} .

K1=5 1109

 $Cu^{2+}(aq) + 2H_2O(1) \oplus Cu(OH)^+(aq) + H_3O^+(aq)$

(NHu) SOU

150 mL of 0.0008 M ammonium sulphate is mixed with 50 mL of 0.04 M GX10-65 24X 10-6 calcium nitrate. The ionic product of $CaSO_4$ will be: $(K_{sp} = 2.4 \times 10^{-5})$ for Cachosia CaSO₄)

None of these

QUESTION

The solubility of Ba₃(AsO₄)₂ (formula weight = 690) is 6.9×10^{-2} g/100 mL.

What is the K_{sp}?

$$K_{SP} = x \frac{3}{3} (S)^{3c+3}$$
 $= (3)^{3}(2)(5)^{3+2}$
 $= (3)^{2}(2)(5)^{3}$
 $= 108(5)^{5}$
 $= 108(10^{-3})^{5}$
 $= 108(10^{-3})^{5}$

QUESTION

Which of the following would increase the solubility of Pb(OH)₂?

Add a solution of Pb (NO₃)₂

- ru + 120 -> ct + H+
 - のガナガナンちゃ

- Add a solution of NaOH
- None of the above-the solubility of a compound is constant at constant temperature

Medics test > Lec. a, lo > Tonic eq. > Revise > Tomoronous Medics test

Electrode Potential -

tendency to doose on gain elections when placed in it's electrolyte.

$$Z_nSo_H(Q_1) \rightarrow Z_n(Q_1)$$

TO E.P -> 2 Types.

M(s) -> M+ ne O.P. = EM/M+ Mit + ne -> M(8) R.P. = Ent/M

a) S. E.P. = 2 types (E.P. std. Conditions)

S.O.P. = FMINT

S.O.P. = FMINT

S.O.P. = EM/Mn+ S.R.P. = E Mit/M

- 3) Unit is Volt = V
- (4) S.O.P. = S.R.P.
- (5) E > is intensive Brop

- (6) no add -> ext. prop. and ~ sub > ,)))) sub.
- 1 AGE-NFE° F=Formaday Corott

 7 96500 Congain

 N= no. of e Just on gain E=5.E.P.

Zn > Zn++2e Zn++2e->2n & Ag++1e->Ag.

Fe(s)
$$\rightarrow$$
 Fe³⁺ + 2e E₁=2V, AG,
Fe³⁺ + 1e E₂=3V, AG,
Pe³⁺ + 1e E₂=3V, AG,

$$\frac{E^{2}/c_{u}}{E^{2}/c_{u}} = S \cdot R \cdot P = \pm 0.34 \text{ V}$$

$$\frac{E^{2}/c_{u}}{E^{2}/c_{u}} = S \cdot 0 \cdot P = -0.34 \text{ V}$$

$$\frac{E^{2}/2n}{E^{2}/2n} = S \cdot 0 \cdot P = \pm 0.76 \text{ V}$$

$$\frac{E^{2}/2n}{E^{2}/2n} = S \cdot R \cdot P = -0.76 \text{ V}$$

add eq.
$$0 + eq. 2 = eq. 3$$

 $Fe(s) + Fef \rightarrow Fef + Fe^{3+} + 3e^{-}$

 $\frac{1}{n!} \frac{1}{s} \frac{1$

E3°

9 S.O.P. = Sublimation + Jonisation + Hydration Energy Chergy

(1) M(s) -> M(g) AH,= Sublimation energy

@ mg) -> mtg)+le Atg= I.E

(3) nt(q)+40 > M(aq) ΔH3=HydE.

M(0) + Hgo(1) -> M*(aq)+1e= Sor.

QUESTION

$$Fe \rightarrow Fe^{2+} + 2e^{-} \qquad \qquad E_1^0 = x \text{ volt}$$

$$Fe^{2+} \rightarrow Fe^{3+} + 1e^{-}$$
 $E_2^0 = y \text{ volt}$

Fe
$$\rightarrow$$
 Fe³⁺ + 3e⁻ $E_3^0 = ?$

QUESTION (AMU (Med.) 2012)

$$Fe^{3+}_{(aq)} + e \longrightarrow Fe^{2+}_{(aq)}$$
 $n_1 = 1$

$$E^{\circ} = 0.771V$$

$$Fe^{2+}_{(aq)} + 2e \longrightarrow Fe_{(s)'}$$
 $\gamma_{g} = 2$ $E^{\circ} = -0.447V$

$$E^{\circ} = -0.447V$$

= 1x0.77 +2x-6.447 = -0.12 U.

What will be the free energy change for the reaction?

$$Fe^{3+}_{(aq)} + 3e^{-} \longrightarrow Fe_{(s)} (1F = 96485C \text{ mol}^{-1})$$

96000 × 124 1000

QUESTION (AIPMT (Pre.) 2011)

The electrode potentials for $Cu^{2+}_{(aq.)} + e^- \longrightarrow Cu^+_{(aq)}$. And $Cu^+_{(aq.)} + e^- \longrightarrow Cu_{(s)}$ are + 0.15V and + 0.50 V respectively. The value of $E^o_{Cu^{2+}/Cu}$ will be :

- (A) 0.500V
- 0.325V
- 0.650V
- 0.150V

The standard electrode potential of M⁺/M in aqueous solution does not depend on

- A Sublimation of a solid metal
- B Ionisation of a gaseous metal atom
- C Hydration of a gaseous metal ion
- Ionisation of a solid metal atom

g E fan (10 + 2 = > 2 (1 1.36 V)

yind E fon (1 > \frac{1}{2} (2 + 1 = -1.36 V)

@ 1.36 V.

-1.36 V.

(C) -0.68 N.

(a) 0.681.

9 A+B = C+D

E=xV

E=yV

Keg-K,

2A+2B=2C+2D then.

Keq = Kz = (K1)

9 Fe 04
$$\frac{E_1 = 2 \times \frac{1}{3} \times \frac{1}{50.8} \times \frac{1}{3}}{1 \times \frac{1}{3} \times \frac{1}{50.8} \times \frac{1}{3}}$$

4 Fe 04 $\frac{1}{1} = \frac{1}{3} \times \frac{1}{1} \times \frac{1}{3} \times \frac{1}{$

Electrochemical Series

Particles one arranged in increasing

Order of S.R.P.

S.R.P inc.

Bottom. V > S.R.P. Max.

ELECTROCHEMICAL SERIES = METALS ka true fame ranking chart!

Mnos - Hot A C Man Main. 2 -33 Ha (Aun) > Mao 09=10 + and att (Dikkat nahin) (Kanni) AUST Sand Am (Sone jaise) (Man) (Hai tere) (Koi) looka dhoordto has Lit +1e > Li Cut +2e > Cu Cut + 1e > Cu

Pageblank.

QUESTION (Kerala (PMT) 2015)

Standard electrode potential of three metals X, Y and Z are 0.52V, - 2.87 V and -0.44 V respectively. The reducing power of these metals are:

QUESTION (AIPMT 2012)

Standard reduction potential of the half reactions are given below:

$$F_2(g) + 2e^- \longrightarrow 2F^-(aq);$$
 $E^\circ = +2.85 \text{ V}$
 $Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq);$ $E^\circ = +1.36 \text{ V}$
 $Br_2(l) + 2e^- \longrightarrow 2Br^-(aq);$ $E^\circ = +1.06 \text{ V}$
 $I_2(s) + 2e^- \longrightarrow 2I^-(aq);$ $E^\circ = +0.53 \text{ V}$

The strongest and reducing agents respectively are:

- A F₂ and I-
- Br₂ and Cl-
- Cl₂ and Br-
- Cl₂ and I₂

QUESTION

The correct order of reduction potentials of the following pairs is:

(A) Cl_2/Cl^2

- (B) I_2/I^- (C) Ag^+/Ag

(D) Na^+/Na

(E) Li⁺/Li

Choose the correct answer from the options given below:

- A > C > B > D > E
- A > B > C > D > E
- A > C > B > E > D
- A > B > C > E > D

QUESTION (Kerala (PMT) 2011)

Standard electrode potential of three metals X, Y and Z are -1.2 V, +0.5 V and -3.0 V respectively. The reducing power of these metals will be:

$$\mathbb{C}$$
 $Z > X > Y$

$$\square$$
 $X > Y > Z$

QUESTION - (AIIMS 2011)

Given that:
$$E_{K^{+}/K}^{0} = -2.93 \text{ V}$$
;

Given that:
$$E^o_{K^+/K} = -2.93 \ V;$$
 $E^o_{Fe^{2+} \ / \ Fe} = -0.44 \ V;$ $E^o_{Zn^{2+} \ / \ Zn} = -0.76 \ V;$

$$E_{Cu^{2+}/Cu}^{o} = 0.34 \text{ V}$$

Based on this data, which of the following is the strongest reducing agent?

- Fe_(s)

QUESTION - (AIIMS 2013)

The standard reduction potential at 298 K for the following half reactions are given:

 Zn^{2+} (aq) + 2e⁻ Zn(s); -0.762 V

 $Cr^{3+}(aq) + 3e^{-} Cr(s); -0.742 V$

 $2H^{+}(aq) + 2e^{-} H_{2}(g); 0.00 V$

 $Fe^{3+}(aq) + e^{-}$ $Fe^{2+}(aq); 0.770 V$

Which is the strongest reducing agent?

A Zn(s)

B Cr(s)

(C) H₂(g)

D Fe³⁺(aq)

QUESTION - (NCERT Exemplar)

Find out which of the following is the strongest Oxidising agent.

$$E_{Cr_2O_7^{2-}/Cr^{3+}}^{\Theta} = 1.33V; \quad E_{Cl_2/Cl^{-}}^{\Theta} = 1.36V$$

$$E_{MnO_4^-/Mn^{2+}}^{\Theta} = 1.51V; \quad E_{Cr^{3+}/Cr}^{\Theta} = -0.74V$$

- (A) CI
- B Mn²⁺
- C MnO₄-
- Cr³⁺

QUESTION - (NCERT Exemplar)

Find out the most stable ion in its reduced form.

$$E_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}}^{\Theta} = 1.33\text{V}; \quad E_{\text{Cl}_2/\text{Cl}^{-}}^{\Theta} = 1.36\text{V}$$
 $E_{\text{MnO}_4^{-}/\text{Mn}^{2+}}^{\Theta} = 1.51\text{V}; \quad E_{\text{Cr}^{3+}/\text{Cr}}^{\Theta} = -0.74\text{V}$

- (A) Cl
- B Cr³⁴
- C Cr
- D Mn²⁺

QUESTION - (JEE Advance 2013)

List-I		List-II	
P.	E°(Fe ³⁺ , Fe)	1.	-0.18 V
Q.	$E^{\circ}(4H_2O \longrightarrow 4H^+ + 4OH^-)$	2.	-0.4 V
R.	$E^{\circ}(Cu^{2+} + Cu \longrightarrow 2Cu^{+})$	3.	-0.04 V
S.	E°(Cr3+, Cr2+)	4.	-0.83 V

P (

R

S

A 4

В

C

D

Home work from modules

®

Concept application > 3

Brarambh > 98, 14, 18

Solution > Complete questions

Redox reaction > 1 MP9 Solution > Record Morning.

THANK MAIN