Data Science

Association Rules

Themis Palpanas University of Paris

Data Science

1

Thanks for slides to:

- Jiawei Han
- Jeff Ullman

Data Science 2

Roadmap

- Frequent Patterns
 - Frequent Pattern Analysis
 - Applications
 - Market-Basket Model
 - Association Rules
- A-Priori Algorithm
- Improvements to A-Priori

Data Science

3

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis,
 Web log (click stream) analysis, and DNA sequence analysis.

Data Science 4

Why Is Freq. Pattern Mining Important?

- Discloses an intrinsic and important property of data sets
- Forms the foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: associative classification
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Data Science

5

Basic Concepts: Frequent Patterns and Association Rules

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

- Itemset $X = \{x_1, ..., x_k\}$
- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, s, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let $\sup_{min} = 50\%$, $\operatorname{conf}_{min} = 50\%$ Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3} Association rules: $A \to D$ (60%, 100%)

6

 $D \to A (60\%, 75\%)$

Data Science

The Market-Basket Model

- A large set of *items*, e.g., things sold in a supermarket.
- A large set of baskets, each of which is a small set of the items, e.g., the things one customer buys on one day.

Data Science

7

Support

- Simplest question: find sets of items that appear "frequently" in the baskets.
- Support for itemset I = the number of baskets containing all items in I.
- Given a support threshold s, sets of items that appear in > s baskets are called frequent itemsets.

Data Science 8

Example

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$\begin{array}{lll} B_1 = \{m,\,c,\,b\} & B_2 = \{m,\,p,\,j\} \\ B_3 = \{m,\,b\} & B_4 = \{c,\,j\} \\ B_5 = \{m,\,p,\,b\} & B_6 = \{m,\,c,\,b,\,j\} \\ B_7 = \{c,\,b,\,j\} & B_8 = \{b,\,c\} \end{array}$$

Frequent itemsets?

Data Science

9

Example

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- Frequent itemsets:
 - {m}, {c}, {b}, {j}, {m, b}, {c, b}, {j, c}.

Data Science 10

Applications --- (1)

- Real market baskets: chain stores keep terabytes of information about what customers buy together.
 - Tells how typical customers navigate stores, lets them position tempting items.
 - Suggests tie-in "tricks," e.g., run sale on diapers and raise the price of beer.
- High support needed, or no \$\$'s.

Data Science 11

11

Applications --- (2)

- "Baskets" = documents; "items" = words in those documents.
 - Lets us find words that appear together unusually frequently, i.e., linked concepts.
- "Baskets" = sentences, "items" = documents containing those sentences.
 - Items that appear together too often could represent plagiarism.

Data Science 12

Applications --- (3)

- "Baskets" = Web pages; "items" = linked pages.
 - Pairs of pages with many common references may be about the same topic.
- "Baskets" = Web pages p; "items" = pages that link to p.
 - Pages with many of the same links may be mirrors or about the same topic.

Data Science 13

13

Important Point

- "Market Baskets" is an abstraction that models any many-many relationship between two concepts: "items" and "baskets."
 - Items need not be "contained" in baskets.
- The only difference is that we count cooccurrences of items related to a basket, not viceversa.

Data Science 14

Scale of Problem

- WalMart sells 100,000 items and can store billions of baskets.
- The Web has over 100,000,000 words and billions of pages.

Data Science 15

15

A simple algorithm for finding all frequent itemsets ??

16

Association Rules

- If-then rules about the contents of baskets.
- $\{i_1, i_2,...,i_k\} \rightarrow j$ means: "if a basket contains all of $i_1,...,i_k$ then it is *likely* to contain j."
- *Confidence* of this association rule is the probability of j given $i_1,...,i_k$.

Data Science 17

17

Example

$$\begin{array}{lll} B_1 = \{m,\,c,\,b\} & B_2 = \{m,\,p,\,j\} \\ B_3 = \{m,\,b\} & B_4 = \{c,\,j\} \\ B_5 = \{m,\,p,\,b\} & B_6 = \{m,\,c,\,b,\,j\} \\ B_7 = \{c,\,b,\,j\} & B_8 = \{b,\,c\} \end{array}$$

- An association rule: {m, b} → c.
 - Confidence = ?

Data Science 18

Example

$$\begin{array}{lll} B_1 = \{m,\,c,\,b\} & B_2 = \{m,\,p,\,j\} \\ B_3 = \{m,\,b\} & B_4 = \{c,\,j\} \\ B_5 = \{m,\,p,\,b\} & B_6 = \{m,\,c,\,b,\,j\} \\ B_7 = \{c,\,b,\,j\} & B_8 = \{b,\,c\} \end{array}$$

- An association rule: {m, b} → c.
 - Confidence = 2/4 = 50%.

Data Science 19

19

Interest

The interest of an association rule X → Y is the absolute value of the amount by which the confidence differs from the probability of Y.

Data Science 20

Example

$$B_1 = \{m, c, b\} B_2 = \{m, p, j\} B_3 = \{m, b\} B_5 = \{m, p, b\} B_6 = \{m, c, b, j\} B_7 = \{c, b, j\} B_8 = \{b, c\}$$

- For association rule {m, b} → c, item c appears in 5/8 of the baskets.
- Interest = | 2/4 5/8 | = 1/8 --- not very interesting.

Data Science 21

21

Relationships Among Measures

- Rules with high support and confidence may be useful even if they are not "interesting."
 - We don't care if buying bread causes people to buy milk, or whether simply a lot of people buy both bread and milk.
- But high interest suggests a cause that might be worth investigating.

Data Science 22

Finding Association Rules

- A typical question: "find all association rules with support ≥ s and confidence ≥ c."
 - Note: "support" of an association rule is the support of the set of items it mentions.
- Hard part: finding the high-support (frequent) itemsets.
 - Checking the confidence of association rules involving those sets is relatively easy.

Data Science 23

23

Computation Model

- Typically, data is kept in a "flat file" rather than a database system.
 - Stored on disk.
 - Stored basket-by-basket.
 - Expand baskets into pairs, triples, etc. as you read baskets.

Data Science 24

File Organization

Data Science

25

25

Computation Model --- (2)

- The true cost of mining disk-resident data is usually the number of disk I/O's.
- In practice, association-rule algorithms read the data in passes --- all baskets read in turn.
- Thus, we measure the cost by the number of passes an algorithm takes.

Data Science 26

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main memory is the critical resource.
 - As we read baskets, we need to count something, e.g., occurrences of pairs.
 - The number of different things we can count is limited by main memory.
 - Swapping counts in/out is a disaster.

Data Science 27

27

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs.
- We'll concentrate on how to do that, then discuss extensions to finding frequent triples, etc.

Data Science 28

Naïve Algorithm

- Read file once, counting in main memory the occurrences of each pair.
 - Expand each basket of *n* items into its n(n-1)/2 pairs.
- Fails if (#items)² exceeds main memory.
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages).

Data Science 29

29

Details of Main-Memory Counting

- Two approaches:
 - 1. Count all item pairs, using a triangular matrix.
 - Keep a table of triples [i, j, c] = the count of the pair of items $\{i, j\}$ is c.
- (1) requires only (say) 4 bytes/pair.
- (2) requires 12 bytes, but only for those pairs with count > 0.

Data Science 30

Details of Main-Memory Counting

Data Science 31

31

Details of Approach #1

- Number items 1, 2,...
- Keep pairs in the order {1,2}, {1,3},..., {1,n}, {2,3}, {2,4},...,{2,n}, {3,4},..., {3,n},...{n-1,n}.
- Find pair {*i*, *j*} at the position:
 - (i-1)(n-i/2) + j-i
- Total number of pairs n(n-1)/2; total bytes about $2n^2$.

Data Science 32

Details of Approach #2

- You need a hash table, with i and j as the key, to locate (i, j, c) triples efficiently.
 - Typically, the cost of the hash structure can be neglected.
- Total bytes used is about 12p, where p is the number of pairs that actually occur.
 - Beats triangular matrix if at most 1/3 of possible pairs actually occur.

Data Science 33

33

Roadmap

- Frequent Patterns
- A-Priori Algorithm
 - Monotonicity Property
 - Algorithm Description
- Improvements to A-Priori

Data Science 34

A-Priori Algorithm --- (1)

- A two-pass approach called a-priori limits the need for main memory.
- Key idea: monotonicity: if a set of items appears at least s times, so does every subset.
 - Contrapositive for pairs: if item i does not appear in s baskets, then no pair including i can appear in s baskets.

(Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)

Data Science 35

35

Illustrating the Apriori principle

A-Priori Algorithm --- (1)

Data Science 37

37

A-Priori Algorithm --- (1)

Data Science 38

A-Priori Algorithm --- (1)

Data Science

39

A-Priori Algorithm --- (1)

Data Science

40

39

A-Priori Algorithm --- (2)

- Pass 1: Read baskets and count in main memory the occurrences of each item.
 - memory requirements?

Data Science 41

41

A-Priori Algorithm --- (2)

- Pass 1: Read baskets and count in main memory the occurrences of each item.
 - Requires only memory proportional to #items.

Data Science 42

A-Priori Algorithm --- (2)

- Pass 1: Read baskets and count in main memory the occurrences of each item.
 - Requires only memory proportional to #items.
- Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.
 - memory requirements?

Data Science 43

43

A-Priori Algorithm --- (2)

- Pass 1: Read baskets and count in main memory the occurrences of each item.
 - Requires only memory proportional to #items.
- Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.
 - Requires memory proportional to square of frequent items only.

Data Science 44

Picture of A-Priori

Data Science

45

45

Frequent Triples, Etc.

Data Science 46

A-Priori for All Frequent Itemsets

- One pass for each *k*.
- Needs room in main memory to count each candidate k-tuple.
- For typical market-basket data and reasonable support (e.g., 1%), k=2 requires the most memory.

Data Science 47

47

The Apriori Algorithm—An Example

Sup_{min} = 2

Tid	Items		
10	A, C, D		
20	В, С, Е		
30	A, B, C, E		
40	B, E		

Data Science 48

		S	$Sup_{min} = 2$	Itemset	sup
]	Datab	ase TDB	{A}	2	
	Tid	Items	C_{I}	{B}	3
	10	A, C, D	1 at	{C}	3
	20	B, C, E	1st scan	{D}	1
	30	A, B, C, E		{E}	3
	40	B, E			

Data Science 49

49

The Apriori Algorithm—An Example

Data Science 50

Data Science 51

51

The Apriori Algorithm—An Example

Data Science 52

Data Science 53

53

The Apriori Algorithm—An Example

Data Science 54

55

The Apriori Algorithm

```
Pseudo-code:

C_k: Candidate itemset of size k

L_k: frequent itemset of size k

L_1 = \{ \text{frequent items} \}; 

for (k = 1; L_k! = \emptyset; k++) do begin

C_{k+1} = \text{candidates generated from } L_k; 

for each transaction t in database do

increment the count of all candidates in C_{k+1}

that are contained in t

L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support end}

return \cup_k L_k;
```

Data Science 56

Important Details of Apriori

- How to generate candidates?
 - Step 1: self-joining *L*_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - *L*₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - C₄={abcd}

Data Science 5:

57

How to Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1} insert into C_k select p.item₁, p.item₂, ..., p.item_{k-1}, q.item_{k-1} from L_{k-1} p, L_{k-1} q where p.item₁=q.item₁, ..., p.item_{k-2}=q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
- Step 2: pruning forall itemsets c in C_k do forall (k-1)-subsets s of c do if (s is not in L_{k-I}) then delete c from C_k

Data Science 58

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Data Science 59

59

Exploiting the Apriori principle

- Find frequent 1-items and put them to L_k (k=1)
- Use L_k to generate a collection of *candidate* itemsets C_{k+1} with size (k+1)
- Scan the database to find which itemsets in C_{k+1} are frequent and put them into L_{k+1}
- 4. If L_{k+1} is not empty
 - > k=k+1
 - Goto step 2

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules", Proc. of the 20th Int'l Conference on Very Large Databases, 1994.

50

The Apriori algorithm

```
C_k: Candidate itemsets of size k

L_k: frequent itemsets of size k

L_1 = {frequent 1-itemsets};

for (k = 2; L_k ! = \emptyset; k++)

C_{k+1} = GenerateCandidates(L_k)

for each transaction t in database do

increment count of candidates in C_{k+1} that are contained in t

endfor

L_{k+1} = candidates in C_{k+1} with support ≥min_sup

endfor

return \bigcup_k L_k;
```

61

GenerateCandidates

- Assume the items in L_k are listed in an order (e.g., alphabetical)
- Step 1: self-joining L_k (IN SQL)
 insert into C_{k+1}
 select p.item₁, p.item₂, ..., p.item_k, q.item_k
 from L_k p, L_k q
 where p.item₁=q.item₁, ..., p.item_{k-1}=q.item_{k-1}, p.item_k < q.item_k

Example of Candidates Generation

- L₃={abc, abd, acd, ace, bcd}
- Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace

63

63

GenerateCandidates

- Assume the items in L_k are listed in an order (e.g., alphabetical)
- Step 1: self-joining L_k (IN SQL)
 insert into C_{k+1}
 select p.item₁, p.item₂, ..., p.item_k, q.item_k
 from L_k p, L_k q
 where p.item₁=q.item₁, ..., p.item_{k-1}=q.item_{k-1}, p.item_k < q.item_k
- Step 2: pruning

```
forall itemsets c in C_{k+1} do
forall k-subsets s of c do
if (s is not in L_k) then delete c from C_{k+1}
```

Example of Candidates Generation

- L₃={abc, abd, acd, ace, bcd}
- Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
- Pruning:
 - acde is removed because ade is not in L₃
- *C*₄={*abcd*}

{aX,d,e}
acd ace ade cde

{a,c,e}

{a,c,d}

65

65

The Apriori algorithm

```
C_k: Candidate itemsets of size k

L_k: frequent itemsets of size k

L_1 = \{ \text{frequent items} \}; 

for (k = 1; L_k \mid = \emptyset; k + +)

C_{k+1} = \text{GenerateCandidates}(L_k)

for each transaction t in database do

increment count of candidates in C_{k+1} that are contained in t

endfor

L_{k+1} = \text{candidates in } C_{k+1} with support \geq \min_{sup} C_{k+1}

endfor

return C_k C_k:
```

How to Count Supports of Candidates?

Naive algorithm?

- Method:

- Candidate itemsets are stored in a hash-tree
- Leaf node of hash-tree contains a list of itemsets and counts
- Interior node contains a hash table
- Subset function: finds all the candidates contained in a transaction

67

67

Example of the hash-tree for C₃

Example of the hash-tree for C₃

69

69

Example of the hash-tree for C₃

The subset function finds all the candidates contained in a transaction:

- At the root level it hashes on all items in the transaction
- At level i it hashes on all items in the transaction that come after item the i-th itemo

Where are the Association Rules?

- so far we have seen how A-priori efficiently computes all the frequent itemsets
- but how are the association rules generated from the frequent itemsets?

Data Science 71

71

Association Rule Generation

- given the frequent itemsets, generate association rules as follows
 - for each frequent itemset *I*
 - generate all non-empty subsets of I
 - for each non-empty subset s of I
 - output association rule: s -> (I-s)

Data Science 72

Association Rule Generation

- given the frequent itemsets, generate association rules as follows
 - for each frequent itemset I
 - generate all non-empty subsets of I
 - ullet for each non-empty subset s of I
 - output association rule: $s \rightarrow (I-s)$, if supp(I)/supp(s)>=c

Data Science 73

73

Association Rule Generation

- given the frequent itemsets, generate association rules as follows
 - for each frequent itemset *I*
 - generate all non-empty subsets of I
 - for each non-empty subset s of I
 - output association rule: $s \rightarrow (I-s)$, if supp(I)/supp(s)>=c
- we know supp(rule)>=s
 - generated from frequent itemsets

Data Science 74

Roadmap

- Frequent Patterns
- A-Priori Algorithm
- Improvements to A-Priori
 - Park-Chen-Yu Algorithm
 - Multistage Algorithm
 - Approximate Algorithms
 - Compacting Results

Data Science 75

75

PCY Algorithm

- Hash-based improvement to A-Priori.
- During Pass 1 of A-priori, most memory is idle.
- Use that memory to keep counts of buckets into which pairs of items are hashed.
 - Just the count, not the pairs themselves.
- Gives extra condition that candidate pairs must satisfy on Pass 2.
- J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. In SIGMOD'95

Data Science 76

PCY Algorithm --Before Pass 1 Organize Main Memory

- Space to count each item.
 - One (typically) 4-byte integer per item.
- Use the rest of the space for as many integers, representing buckets, as we can.

Data Science 77

77

PCY Algorithm --- Pass 1

```
FOR (each basket) {
   FOR (each item)
   add 1 to item's count;
   FOR (each pair of items) {
     hash the pair to a bucket;
   add 1 to the count for that bucket
   }
}
```

Data Science 78

Observations About Buckets

- If a bucket contains a frequent pair, then the bucket is surely frequent.
 - We cannot use the hash table to eliminate any member of this bucket.
- Even without any frequent pair, a bucket can be frequent.
 - Again, nothing in the bucket can be eliminated.
- But in the best case, the count for a bucket is less than the support s.
 - Now, all pairs that hash to this bucket can be eliminated as candidates, even if the pair consists of two frequent items.

Data Science 79

79

PCY Algorithm ---Between Passes

- Replace the buckets by a bit-vector:
 - 1 means the bucket count exceeds the support s (frequent bucket); 0 means it did not.
- Integers are replaced by bits, so the bit-vector requires little second-pass space.
- Also, decide which items are frequent and list them for the second pass.

Data Science 80

Picture of PCY

Data Science

81

81

PCY Algorithm --- Pass 2

- Count all pairs $\{i,j\}$ that meet the conditions:
 - Both i and j are frequent items.
 - The pair $\{i,j\}$, hashes to a bucket number whose bit in the bit vector is 1.
- Notice all these conditions are necessary for the pair to have a chance of being frequent.

82 Data Science

Memory Details

- Hash table requires buckets of 2-4 bytes.
 - Number of buckets thus almost 1/4-1/2 of the number of bytes of main memory.
- On second pass, a table of (item, item, count) triples is essential.
 - Thus, hash table must eliminate 2/3 of the candidate pairs to beat a-priori.

Data Science 83

83

Multistage Algorithm

- Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY.
- On middle pass, fewer pairs contribute to buckets, so fewer false positives --- frequent buckets with no frequent pair.

Data Science 84

Multistage Picture

Data Science 85

85

Multistage --- Pass 3

- Count only those pairs {i,j} that satisfy:
 - Both i and j are frequent items.
 - 2. Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1.
 - Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1.

Data Science 86

Important Points

- 1. The two hash functions have to be independent.
- We need to check both hashes on the third pass.
 - If not, we would wind up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket.

Data Science 87

87

Multihash

- Key idea: use several independent hash tables on the first pass.
- Risk: halving the number of buckets doubles the average count. We have to be sure most buckets will still not reach count s.
- If so, we can get a benefit like multistage, but in only 2 passes.

Data Science 88

Multihash Picture

Data Science

89

89

Extensions

- Either multistage or multihash can use more than two hash functions.
- In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory.
- For multihash, the bit-vectors total exactly what one PCY bitmap does, but too many hash functions makes all counts ≥ s.

Data Science 90

All (Or Most) Frequent Itemsets In ≤ 2 Passes

- Simple algorithm.
- SON (Savasere, Omiecinski, and Navathe).
- Toivonen.

Data Science 91

91

Simple Algorithm --- (1)

- Take a main-memory-sized random sample of the market baskets.
- Run a-priori or one of its improvements (for sets of all sizes, not just pairs) in main memory, so you don't pay for disk I/O each time you increase the size of itemsets.
 - Be sure you leave enough space for counts.

Data Science 92

The Picture

Copy of sample baskets

Space for counts

Data Science 93

93

Simple Algorithm --- (2)

- Use as your support threshold a suitable, scaled-back number.
 - E.g., if your sample is 1/100 of the baskets, use s /100 as your support threshold instead of s.

Data Science 94

Simple Algorithm --- Option

- Optionally, verify that your guesses are truly frequent in the entire data set by a second pass.
- But you don't catch sets frequent in the whole but not in the sample.
 - Smaller threshold, e.g., s/125, helps.

Data Science 95

95

Toivonen's Algorithm --- (1)

- Start as in the simple algorithm, but lower the threshold slightly for the sample.
 - Example: if the sample is 1% of the baskets, use s /125 as the support threshold rather than s/100.
 - Goal is to avoid missing any itemset that is frequent in the full set of baskets.
- H. Toivonen. Sampling large databases for association rules. In VLDB'96

Data Science 96

Toivonen's Algorithm --- (2)

- Add to the itemsets that are frequent in the sample the negative border of these itemsets.
- An itemset is in the negative border if it is not deemed frequent in the sample, but all its immediate subsets are.

Data Science 97

97

Example: Negative Border

 ABCD is in the negative border if and only if it is not frequent, but all of ABC, BCD, ACD, and ABD are.

Data Science 98

Toivonen's Algorithm --- (3)

- In a second pass, count all candidate frequent itemsets from the first pass, and also count the negative border.
- If no itemset from the negative border turns out to be frequent, then the candidates found to be frequent in the whole data are exactly the frequent itemsets.

Data Science 99

99

Toivonen's Algorithm --- (4)

- What if we find something in the negative border is actually frequent?
- We must start over again!
- Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in mainmemory.

Data Science 100

Theorem:

 If there is an itemset frequent in the whole, but not frequent in the sample, then there is a member of the negative border frequent in the whole.

Data Science 101

101

Proof:

- Suppose not; i.e., there is an itemset S frequent in the whole, but not frequent or in the negative border in the sample.
- Let T be a smallest subset of S that is not frequent in the sample.
- T is frequent in the whole (monotonicity).
- T is in the negative border (else not "smallest").

Data Science 102

SON Algorithm --- (1)

- Repeatedly read small subsets of the baskets into main memory and perform the first pass of the simple algorithm on each subset.
- An itemset becomes a candidate if it is found to be frequent in any one or more subsets of the baskets.
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association in large databases. In VLDB'95

Data Science 103

103

SON Algorithm --- (2)

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set.
- Key "monotonicity" idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.

Data Science 104

Compacting the Output

A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains ? sub-patterns

Data Science 105

105

Compacting the Output

A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{100}{1} + \binom{100}{2} + ... + \binom{1}{1} \binom{0}{0} = 2^{100} - 1 = 1.27*10^{30}$ sub-patterns!

Data Science 106

Compacting the Output

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{100}{1} + \binom{100}{2} + ...$ $+ \binom{1}{1}\binom{0}{0}\binom{0}{0} = 2^{100} - 1 = 1.27*10^{30}$ sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- Maximal Frequent itemsets: no immediate superset is frequent.
- Closed itemsets: no immediate superset has the same count.
 - Stores not only frequent information, but exact counts.

Data Science 107

107

Closed Patterns and Max-Patterns

- An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Data Science 108

Example: Maximal/Closed

Count		Maximal s=3	Closed
Α	4	No	No
В	5	No	Yes
C	3	No	No
AB	4	Yes	Yes
AC	2	No	No
BC	3	Yes	Yes
ABC	2	No	Yes

Data Science 109

109

Closed Patterns and Max-Patterns

- Exercise. DB = {<a₁, ..., a₁₀₀>, < a₁, ..., a₅₀>}
 Min_sup = 1.
- What is the set of closed itemsets?

Data Science 110

Closed Patterns and Max-Patterns

- Exercise. DB = $\{\langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle\}$
 - Min_sup = 1.
- What is the set of closed itemsets?
 - <a₁, ..., a₁₀₀>: 1
 - < a₁, ..., a₅₀>: 2

Data Science 111

111

Closed Patterns and Max-Patterns

- Exercise. DB = $\{\langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle\}$
 - Min_sup = 1.
- What is the set of closed itemsets?
 - <a₁, ..., a₁₀₀>: 1
 - < a₁, ..., a₅₀>: 2
- What is the set of max-patterns?

Data Science 112

Closed Patterns and Max-Patterns

- Exercise. DB = $\{\langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle\}$
 - Min_sup = 1.
- What is the set of closed itemsets?
 - <a₁, ..., a₁₀₀>: 1
 - \bullet < a_1 , ..., a_{50} >: 2
- What is the set of max-patterns?
 - <a₁, ..., a₁₀₀>: 1

Data Science 113

113

Closed Patterns and Max-Patterns

- Exercise. DB = $\{\langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle\}$
 - Min_sup = 1.
- What is the set of closed itemsets?
 - <a₁, ..., a₁₀₀>: 1
 - < a₁, ..., a₅₀>: 2
- What is the set of max-patterns?
 - <a₁, ..., a₁₀₀>: 1
- What is the set of all patterns?

Data Science 114

Ref: Basic Concepts of Frequent Pattern Mining

- (Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93.
- (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98.
- (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
 Discovering frequent closed itemsets for association rules. ICDT'99.
- (Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95

Data Science 115

115

Ref: Apriori and Its Improvements

- R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94.
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94.
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95.
- J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95.
- H. Toivonen. Sampling large databases for association rules. VLDB'96.
- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97.
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98.

Data Science 116