chpt3.p8

Claudius Taylor 7/17/2019

(a) Use the lm() function to perform a simple linear regression with "mpg" as the response and "horsepower" as the predictor. Use the summary() function to print the results.

```
data(Auto)
fit <- lm(mpg ~ horsepower, data = Auto)
summary(fit)
##
## Call:
## lm(formula = mpg ~ horsepower, data = Auto)
## Residuals:
       Min
                 1Q Median
                                  3Q
                                          Max
## -13.5710 -3.2592 -0.3435 2.7630 16.9240
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.935861 0.717499
                                   55.66
                                            <2e-16 ***
## horsepower -0.157845 0.006446 -24.49
                                            <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.906 on 390 degrees of freedom
## Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
## F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16
```

How strong is the relationship between the predictor and the response?

 R^2 is equal to 0.6059, almost 61% of the variability in "mpg" can be explained using "horsepower".

Is the relationship between the predictor and the response +ve or -ve?

Since coeficient of "horsepower" is negative, the relationship is also negative.

(b) What is the predicted mpg associated with a "horsepower" of 98? What are the associated 95% confidence and prediction intervals?

```
predict(fit, data.frame(horsepower = 98), interval = "confidence")

## fit lwr upr
## 1 24.46708 23.97308 24.96108
```

(c) Plot the response and the predictor. Use the abline() function to display the least squares regression line.

Response vs. Predictor

(d) Use the plot() function to produce diagnostic plots of the least squares regression fit. Comment on any problems you see with the fit.

```
par(mfrow = c(2, 2))
plot(fit)
```


The plot of residuals versus fitted values indicates the presence of nonlinearity in the data. The plot of standardized residuals versus leverage indicates the presence of a few outliers (higher than 2 or lower than -2) and a few high leverage points.