Multiple Linear Regression

Normality and

Homoscedasticity Assumptions

Contents

- 1. The Assumptions of Normality and Homoscedasticity
- 2. Residual v/s Predicted Plot in R
- 3. Q-Q plot of residuals
- 4. Shapiro Wilk test to assess Normality of Errors
- 5. Absence of Normality Remedial Measure
- 6. Box cox Transformation in R

Normality and Homoscedasticity

- The errors in Multiple Linear Regression are assumed to follow Normal Distribution.
- If Normality of Errors is not true then statistical tests and associated P values based on F and t distribution are not reliable.
- Homoscedasticity describes a situation in which variance of error term is same across all values of the independent variables.
- In the absence of Homoscedasticity (Or presence of Heteroscedasticity) the standard errors of parameter estimates are incorrect.

Assumption of Homoscedasticity

• Variance of error term must be constant across the independent variables (defined by X values)

$$Vig(e_i/\chi_iig) = \sigma^2$$
 indicates homoscedasticity
$$Vig(e_i/\chi_iig) = \sigma_i^2 \ \ indicates \ heteroscedasticity$$

Homoscedastic Errors

Heteroscedastic Errors

Residual Analysis

Observed Value – Predicted value = Residual

Residual Analysis for Performance Index Data

Continuing with the "Performance Index " data,

- Model job performance index (jpi) based on aptitude score (aptitude), test
 of language (tol), technical knowledge (technical) and general information
 (general)
- Get the fitted values and thus the residuals.
- Analyse the distribution of residuals

Residual v/s Predicted Plot in R

#Importing the Data, Fitting Linear Model and Calculate Fitted Values and Residuals

```
perindex<-read.csv("Performance Index.csv", header=TRUE)
jpimodel<-lm(jpi~aptitude+tol+technical+general, data=perindex)
perindex$pred<-fitted(jpimodel)
perindex$resi<-residuals(jpimodel)</pre>
```

- \square lm() fits a linear regression.
- □ fitted() and residuals() fetch fitted values and residuals respectively.

#Residuals v/s Predicted Plot

plot(perindex\$pred,perindex\$resi,col="blue")

plot() is used to plot predicted values against residuals.

Residual v/s Predicted Plot in R

Output

Interpretation:

Residuals in our model are randomly distributed which indicates presence of Homoscedasticity

Residual v/s Independent variables Plot in R

Interpretation:

Residuals in our model are randomly distributed which indicates presence of Homoscedasticity

QQ Plot in R

- The Quantile-Quantile (QQ) Plot is a powerful graphical tool for assessing normality.
- Quantiles are calculated using sample data and plotted against expected quantiles under Normal distribution.

High Correlation between Sample Quantiles and Theoretical Quantiles

Normalit
y

• If the data are truly sampled from a Gaussian (Normal) distribution, the QQ plot will be linear.

QQ Plot in R

```
#QQ Plot

qqnorm(perindex$resi,col="blue")

qqline(perindex$resi,col="blue")

^
```

- qqnorm() produces a plot with theoretical quantiles on x axis against the sample quantiles on y axis.
- Column for which normality is being tested is specified in the first argument.
- □ *qqline()* adds a line which passes through the first and third quartiles.

QQ Plot in R

Output

Interpretation:

Most of these points are close to the line except few values indicating no serious deviation from Normality.

Shapiro Wilk Test

Objective

To **correlate**, sample ordered values with expected Normal scores in order **to test normality of the sample**

Null Hypothesis (H_0): Sample is drawn from Normal Population Alternate Hypothesis (H_1): Not H_0

Test Statistic	
Decision Criteria	Reject the null hypothesis if p-value < 0.05

Shapiro Wilk Test in R

```
# Shapiro Wilk Test
```

```
shapiro.test(perindex$resi)
```

shapiro.test() from basic stats package, returns correlation coefficient w and p-value.

Output

```
Shapiro-Wilk normality test
```

```
data: perindex$resi
W = 0.94986, p-value = 0.1318
```

Interpretation:

p-value>0.05, Do not reject H_0 . Normality can be assumed.

Absence of Normality – Remedial Measure

Mathematical Transformation of the dependent variable is used as a remedial measure in case of serious departure from Normality.

Typically Log Transformation is used. However, there is general transformation called as Box Cox Transformation given as:

Box Cox transformation

$$Y^* = rac{Y^{\lambda} - 1}{\lambda}$$
 $\lambda \neq 0$
= $\log Y$ $\lambda = 0$
Where Y is the response variable

• R can automatically detect the optimum λ using **boxcox()** in package **MASS**

Quick Recap

This session explained in detail **normality of errors**. Here's a quick recap:

Normality Assumption	•Error terms should be normally distributed
Homoscedasticity	• Errors should have constant variance across X values
Residual v/s Predicted Plot	· Ideally should be randomly distributed
QQ Plot	Used to check if errors follow Normal distribution
Shapiro Wilk Test	•Test for Normality assessment of errors
Box Cox Transformation	•Transforming non normal response to normal