Quantamental Trading

In this notebook, we have developed a trading Strategy by using the Fundamental data and some Quant Techniques. Notebook is divided in two parts, Strategy Formulation the Backtesting.

Import the relevant Libraries

```
In [1]:
         import pandas as pd
         import numpy as np
         from scipy.stats import norm
         import scipy.stats
         import matplotlib.pyplot as plt
         %reload_ext autoreload
         %autoreload 2
         %matplotlib inline
         import yfinance as yf
         from datetime import date
         import seaborn as sb
         import monthly_returns_heatmap as mrh
         import fundamentalanalysis as fa
         import seaborn as sb
         sb.set_style('darkgrid')
         import warnings
         warnings.filterwarnings('ignore')
```

Strategy Formulation

Analysis on Group of Companies taking latest Ratios

We will do the inter-company analysis to find the relatively undervalued companies among its peers. We will be using the Z-score method to calculate the scores of the companies and rank them accordingly.

```
In [2]:
         key = '15d3a78098390cc68b5bf8132b213ae7'
In [3]:
         "Reference from S&P Value bse Factor indices"
         # Z-score testing to compare the company with its peer
         def zscore2(data_frame, headline='Z-Score'):
             index = data_frame.index
             z = scipy.stats.zscore(data_frame.astype(float))
             table = pd.DataFrame(z, index=index)
             mean = table.mean(axis=1)
             table2 = pd.DataFrame(mean, index=index)
             condition1 = np.where(table2 == 0, 1, table2)
             condition2 = np.where(condition1 > 0, 1+condition1, 1/(1-condition1))
             final = pd.DataFrame(condition2, index=index)
             final.columns = [headline]
             return final
```

Testes

```
In [4]: # Using top Nasdaq stocks
tickers = ["GILD", 'MU', 'AMAT', 'MSFT', 'AMD', 'CSCO', 'QCOM',
```

```
'GOOG', 'TSLA', 'TXN', 'INTC', 'ATVI', 'PEP', 'PCAR']
# Ratios where the denominator must be high, to derive the value
ratio = ['peRatio', 'pbRatio', 'evToSales',
         'debtToEquity', 'debtToAssets', 'netDebtToEBITDA']
f = pd.DataFrame()
for steps in range(len(tickers)):
    p = str(tickers[steps])
    data = fa.key_metrics(
        ticker=p, api_key=key, period='quarter')
    table = data.T[ratio]
    f_1 = table.head(1)
    f = f.append(f_1)
f.index = tickers
# Derive the value metrics out of the algorithm "Inter Company Analysis"
inverse = 1/f
# Inverse matrix consist of the ratios that must be maximised as we have already taken the
inverse
```

	peRatio	pbRatio	evToSales	debtToEquity	debtToAssets	netDebtToEBITDA
GILD	0.039016	0.202218	0.050765	0.789674	2.333534	0.093188
MU	-0.100126	0.600719	0.046821	3.278813	4.742923	0.085714
AMAT	0.066165	0.148388	0.068857	2.497172	5.141746	1.906542
MSFT	0.03412	0.090751	0.024255	3.216731	6.280163	0.762691
AMD	-0.003547	0.346397	0.034114	19.204354	23.747893	-0.425793
csco	0.066499	0.218912	0.075281	5.038718	11.618894	13.154286
QCOM	0.049414	0.142804	0.061655	1.23228	3.025461	0.204849
GOOG	0.045293	0.196275	0.052479	8.958964	12.688129	37.756993
TSLA	0.015304	0.073162	0.036618	17.957399	32.448804	-0.196441
TXN	0.040495	0.09035	0.025115	1.505333	2.885641	0.406267
INTC	-0.083085	0.735842	0.066828	1.95053	3.685935	0.020385
ATVI	0.044055	0.299383	0.038708	5.570479	7.585987	-0.147022
PEP	0.031315	0.069056	0.062886	0.408025	2.227644	0.091791
PCAR	0.076607	0.362263	0.129997	0.802938	2.014368	0.060345

Function to calculate the Z-score of the above Dataframe. So, that we can have normalized data and can compare the ratios and do the ranking.

```
In [5]: # Calling the function and calculating the relative score of each company
z = zscore2(inverse)
z
```

```
Out[5]: Z-Score

GILD 0.753015

MU 0.740383

AMAT 0.964086

MSFT 0.687200
```

Out[4]:

```
      Z-Score

      AMD
      1.468417

      CSCO
      1.448593

      QCOM
      0.801546

      GOOG
      1.754668

      TSLA
      1.445974

      TXN
      0.645975

      INTC
      0.901813

      ATVI
      0.930774

      PEP
      0.712877

      PCAR
      1.435084
```

Comparing the past year performance of each company. We will be using some critical ratios and then will be quantifying so as to convert them into a score.

```
In [6]:
         f_score_ratio_max = ['roe', 'returnOnTangibleAssets',
                              'researchAndDdevelopementToRevenue', 'currentRatio']
         # WRT to assets and liability
         f_score_ratio_min = ['averagePayables',
                               'daysOfInventoryOnHand', 'interestDebtPerShare']
         # Ratios where change must reduce Q/Q
         g_score_ratio_max = ['netIncomePerShare', 'freeCashFlowPerShare',
                              "shareholdersEquityPerShare", 'cashPerShare', 'bookValuePerShare']
         # WRT to cash, income and book value
         columns = ['F-Score-Max', 'F-Score-Min', 'G-Score']
         tickers = ["GILD", 'MU', 'AMAT', 'MSFT', 'AMD', 'CSCO', 'QCOM',
                    'GOOG', 'TSLA', 'TXN', 'INTC', 'ATVI', 'PEP', 'PCAR']
         # F-Score and G-Score analysis to compare the companies with its Past Quarter Performances
         M = pd.DataFrame()
         for steps in range(len(tickers)):
             p = str(tickers[steps])
             data = fa.key_metrics(
                 ticker=p, api_key=key, period="quarter")
             gh = data.T
             gh = gh.iloc[:, 1:]
             gh = gh.loc[::-1]
             gh = gh.loc['2019-12':]
             change = gh.pct_change()
             test = change[f_score_ratio_max].dropna()
             test1 = change[f_score_ratio_min].dropna()
             test2 = change[g_score_ratio_max].dropna()
             g = np.where(test > 0, 1, -1)
             # Conditions to Score the past performance and create a ranking table for every set
             g1 = np.where(test < 0, 1, -1)
             g2 = np.where(test2 > 0, 1, -1)
             array = np.array([g.sum(), g1.sum(), g2.sum()])
             df = pd.DataFrame(array)
             df = df.T
             M = M.append(df)
```

```
M.index = tickers
M.columns = columns

# Now, as we already have the scores, we take the z-score of the final DataFrame,
# in order to compare the scores with each other

# Comparing the Score table along with its peers
ZS = scipy.stats.zscore(M)
ZS = pd.DataFrame(ZS)
ZS.index = M.index
ZS.columns = M.columns
v = pd.concat([ZS, z], axis=1)
Score_table = pd.DataFrame({"Score": v.sum(axis=1)})
y = Score_table.sort_values(by='Score', ascending=False)

# Final DataFrame having the Score of each company
y
```

```
Out[6]:
                   Score
         GOOG 2.566864
          TSLA 2.407785
         CSCO 1.961559
           ATVI 1.892584
           TXN 1.757400
          MSFT
                1.649011
         AMAT
                1.477052
         PCAR
                1.199975
          AMD
                1.083693
                0.865666
         QCOM
            MU 0.505274
          INTC -0.679831
           PEP -0.868768
          GILD -1.127860
```

Above Dataframe has final score and it represents the relatively undervalued companies, which are also fundamentally strong.

Backtesting the strategy

Selecting the companies at start of the year and then taking the positions in them for the year long and rebalancing the companies at start of next year.

'debtToEquity', 'evToFreeCashFlow', 'debtToAssets', 'netDebtToEBITDA']

Out[8]:		peRatio	priceToSalesRatio	pbRatio	evToSales	debtToEquity	evToFreeCashFlow	debtToAssets	net
	2017	20.231953	3.586528	4.580446	4.580667	1.640837	10.575476	0.477242	
	2017	6.841291	1.713184	1.869681	2.010694	0.599055	11.951252	0.315684	
	2017	17.466715	4.126071	6.415734	4.146296	0.567333	18.466513	0.273135	
	2017	25.180710	5.935873	7.375360	6.808925	1.190624	19.518860	0.357524	
	2017	227.594419	1.836472	16.017283	1.875879	2.283142	-222.145778	0.394068	
	2017	16.434093	3.289557	2.387698	3.748030	0.509805	13.934650	0.259725	
	2017	30.917575	3.420337	2.479761	2.831041	0.712060	15.764861	0.334316	
	2017	57.274197	6.541932	4.755386	6.481078	0.026026	30.052281	0.020117	
	2017	-26.312244	4.388973	12.179818	5.132932	2.859395	-14.571886	0.422816	
	2017	28.109734	6.917989	10.012580	7.079810	0.394408	22.690883	0.231096	
	2017	22.601621	3.457532	3.144035	3.830056	0.388487	23.265405	0.217551	
	2017	174.883810	6.803945	5.045792	6.757914	0.463961	23.041924	0.235162	
	2017	35.059996	2.680620	15.638387	3.131954	3.607402	28.321338	0.492218	
	2017	14.931393	1.285596	3.107021	1.689252	1.269288	37.812666	0.435935	
	2018	14.883575	3.669268	3.796227	4.093275	1.277505	12.115021	0.429085	
	2018	4.299931	1.999918	1.882068	1.938486	0.143649	6.913804	0.106949	
	2018	9.515412	1.827193	4.609528	1.935522	0.776283	10.550888	0.298712	
	2018	45.820832	6.880183	9.179344	7.513220	0.988999	25.708762	0.316046	
	2018	51.926528	2.702585	13.822464	2.729149	0.987362	-136.986357	0.274363	
	2018	1871.919000	4.174155	4.766019	4.511374	0.591820	17.343056	0.235044	
	2018	-21.836719	4.672435	114.454526	4.874485	17.640086	35.617743	0.500826	
	2018	23.419484	5.261121	4.052409	5.168378	0.022587	30.971105	0.017234	
	2018	-58.140896	2.644336	11.527118	3.116892	2.808570	-301.706064	0.464945	
	2018	16.427419	5.807463	10.191795	5.974088	0.563487	15.565368	0.295734	
	2018	10.239123	3.042630	2.891035	3.372068	0.353513	16.764034	0.205989	
	2018	19.573271	4.731512	3.124623	4.524312	0.235185	20.453490	0.149762	
	2018	12.477779	2.415048	10.756261	2.780028	2.226271	29.310191	0.416250	
	2018	9.136769	0.853608	2.334034	1.166729	1.256025	26.358772	0.423543	
	2019	15.322057	3.676092	3.643470	4.253490	1.085784	11.478134	0.399062	

	peRatio	priceToSalesRatio	pbRatio	evToSales	debtToEquity	evToFreeCashFlow	debtToAssets	net		
2019	7.882525	2.126052	1.386873	2.070468	0.163067	14.535507	0.119684			
2019	19.719937	3.652940	6.496488	3.802447	0.646822	19.795492	0.279279			
2019	26.530903	8.272789	10.173680	8.805278	0.765816	28.961909	0.273475			
2019	147.748915	7.485126	17.821854	7.369095	0.257517	179.715145	0.120770			
2019	21.496091	4.812848	7.441127	5.061692	0.734741	17.606358	0.252227			
2019	21.043958	3.802530	18.801956	3.971194	3.245671	15.063729	0.483448			
2019	26.963700	5.721188	4.596928	5.698143	0.079264	29.778004	0.057871			
2019	-95.757201	3.019441	11.213634	3.310393	2.027652	84.052511	0.391122			
2019	23.934511	8.348706	13.481469	8.582732	0.651510	21.276360	0.322067			
2019	12.608008	3.687534	3.423996	4.032243	0.374187	17.137985	0.212424			
2019	30.322781	7.023446	3.559168	6.542786	0.208903	24.755767	0.134795			
2019	26.157799	2.848649	12.939141	3.244102	2.168808	40.220997	0.408265			
2019	11.491173	1.071879	2.827065	1.370120	1.216761	39.431897	0.416415			
2020	822.840674	2.966212	4.019144	3.995213	1.723396	13.120221	0.459047			
2020	19.138928	2.399174	1.318758	2.378274	0.184019	614.196386	0.133686			
2020	15.062492	3.168885	5.153258	3.174524	0.521081	16.146706	0.246589			
2020	34.974619	10.829012	13.090945	11.230522	0.600132	35.507209	0.235630			
2020	43.655839	11.134184	18.623101	11.025201	0.098338	138.531583	0.064048			
2020	17.527234	3.986743	5.183291	4.043009	0.384573	13.600191	0.153743			
2020	25.868305	5.714311	22.126617	6.097593	2.587790	32.557851	0.441816			
2020	29.618501	6.534416	5.359423	6.526817	0.120300	27.806652	0.083763			
2020	954.188430	20.877410	29.623848	20.634989	0.528189	240.927440	0.225109			
2020	27.017646	10.453200	16.454091	10.708439	0.739959	28.206690	0.351300			
2020	9.457243	2.538263	2.438941	2.930419	0.449184	10.901674	0.237774			
2020	32.584137	8.853246	4.760747	8.229699	0.239742	30.609637	0.156000			
2020	28.115562	2.844637	14.879055	3.355707	3.281552	37.054417	0.475150			
2020	23.045213	1.597667	2.872935	2.012601	1.085991	27.945584	0.399882			
pd	_version									
'1.3.	'1.3.5'									

```
Out[9]: '1.3.5'
In [10]: #!pip uninstall pandas --yes
#!pip install pandas==1.3.5

In [11]: rank = pd.DataFrame()
    for steps in range(len(year)):
        y = Full_table.loc[year[steps]]
```

In [9]:

 $t_{inv} = 1/y$

bv = bv.T

bv = zscore2(t_inv)

bv.index = [year[steps]]

```
bv.columns = tickers
rank = rank.append(bv)
```

```
In [12]:
    name = pd.DataFrame(tickers)
    concated = pd.concat([name]*len(year), axis=0)
    concated.index = Full_table.index
    concated.columns = ['Company']

lista_z_score = []
    for i in year:
        lista_z_score += list(rank.loc[i])

lista_z_score = pd.DataFrame(lista_z_score,index=Full_table.index,columns=['Z-Score'])
    rank = pd.concat([concated, lista_z_score], axis=1)

rank.head()
```

```
        Out[12]:
        Company
        Z-Score

        2017
        GILD
        1.009932

        2017
        MU
        2.056281

        2017
        AMAT
        1.244755

        2017
        MSFT
        0.732541

        2017
        AMD
        0.903451
```

Now doing the Intra-Company analysis, comparing the past performances of the companies to derive out fundamentally strong companies.

```
In [13]:
          f_score_ratio_max = ['roe', 'returnOnTangibleAssets',
                               'researchAndDdevelopementToRevenue', 'currentRatio']
          # WRT to assets and liability
          f_score_ratio_min = ['averagePayables',
                                'daysOfInventoryOnHand', 'interestDebtPerShare']
          # Ratios where change must reduce Q/Q
          g_score_ratio_max = ['netIncomePerShare', 'freeCashFlowPerShare',
                               "shareholdersEquityPerShare", 'cashPerShare', 'bookValuePerShare', 'i
          percent_fscore_max = pd.DataFrame()
          percent_fscore_min = pd.DataFrame()
          percent_gscore_max = pd.DataFrame()
          for steps in range(len(tickers)):
              # Fscore-Max analysis
              p = str(tickers[steps])
              data3 = fa.key_metrics(
                  ticker=p, api_key=key, period='annual')
              tranpose = data3.T[f_score_ratio_max].fillna(0)
              reverse = tranpose.loc[::-1]
              change = reverse.pct_change()
              change = change.assign(Company=p)
              percent_fscore_max = percent_fscore_max.append(change)
              # Fscore-Min analysis
              data4 = fa.key_metrics(
                  ticker=p, api_key=key, period='annual')
              tranpose1 = data4.T[f_score_ratio_min].fillna(0)
```

```
reverse1 = tranpose1.loc[::-1]
    change1 = reverse1.pct_change()
    change1 = change1.assign(Company=p)
    percent_fscore_min = percent_fscore_min.append(change1)
    # Gscore-Max analysis
    data5 = fa.key_metrics(
        ticker=p, api_key=key, period='annual')
    tranpose2 = data5.T[g_score_ratio_max].fillna(0)
    reverse2 = tranpose2.loc[::-1]
    change2 = reverse2.pct_change()
    change2 = change2.assign(Company=p)
    percent_gscore_max = percent_gscore_max.append(change2)
# Condition to quantify the performance
condition = np.where(percent_fscore_max.iloc[:, :-1] > 0, 1, -1)
condition = pd.DataFrame(condition)
condition.index = percent_fscore_max.index
condition.columns = percent_fscore_max.columns[:-1]
condition
sum_score = condition.sum(axis=1)
sum_score = pd.DataFrame(sum_score)
sum_score = pd.concat([sum_score, percent_fscore_max['Company']], axis=1)
sum_score.columns = ['F-Score-Max', 'Company']
sum_score
# Condition to quantify the performance
condition2 = np.where(percent_fscore_min.iloc[:, :-1] < 0, 1, -1)
condition2 = pd.DataFrame(condition2)
condition2.index = percent_fscore_min.index
condition2.columns = percent_fscore_min.columns[:-1]
condition2
sum_score2 = condition2.sum(axis=1)
sum_score2 = pd.DataFrame(sum_score2)
sum_score2 = pd.concat([sum_score2, percent_fscore_min['Company']], axis=1)
sum_score2.columns = ['F-Score-Min', 'Company']
sum_score2
# Condition to quantify the performance
condition3 = np.where(percent\_gscore\_max.iloc[:, :-1] > 0, 1, -1)
condition3 = pd.DataFrame(condition3)
condition3.index = percent_gscore_max.index
condition3.columns = percent_gscore_max.columns[:-1]
sum_score3 = condition3.sum(axis=1)
sum_score3 = pd.DataFrame(sum_score3)
sum_score3 = pd.concat([sum_score3, percent_gscore_max['Company']], axis=1)
sum_score3.columns = ['G-Score-Max', 'Company']
Final_yr_wise = pd.concat([sum_score['F-Score-Max'], sum_score2['F-Score-Min'], sum_score3
Final_yr_wise.head(4)
```

```
In [14]:
```

]:		F-Score-Max	F-Score-Min	G-Score-Max	Company
	1991	-4	-3	-6	GILD
	1992	-2	-1	4	GILD
	1993	0	-3	-2	GILD
	1994	2	-1	2	GILD

Out[14]

```
In [15]:
          rank.loc[year[0:]].head()
          Final_yr_wise.loc[year[0:]].head()
```

```
2017
                      -2
                                                   GILD
                      -2
         2017
                                 -1
                                            0
                                                    MU
                                 -3
         2017
                                            4
                                                  AMAT
                                                  MSFT
         2017
                       4
                                 -1
                                             4
         2017
                      -4
                                 1
                                            -2
                                                   AMD
In [16]:
          company = pd.DataFrame(Final_yr_wise['Company'])
          vc = zscore2(Final_yr_wise[Final_yr_wise.columns[:-1]], headline='Cumulative-F&G-Score')
          vc['Company'] = company
          rank = rank.loc[year[0]:]
          # Now Joing the two Dataframes and getting a cumulative score of each company for each yea
          vc_new = vc.reset_index()
          vc_new['key'] = vc_new['index']+str('_')+vc_new['Company']
          vc_new.head(3)
          rank_new = rank.reset_index()
          rank_new['key'] = rank_new['index']+str('_')+rank_new['Company']
          df = vc_new.merge(rank_new, on='key')
          df = df.drop(labels=['Company_x', 'key', 'index_y'], axis=1)
          df.index = df['index_x']
          dataframe = df.drop(labels='index_x', axis=1)
          dataframe['Cumulative-Score'] = dataframe['Cumulative-F&G-Score'] + \
              dataframe['Z-Score'].values
          dataframe_final = dataframe.drop(
              labels=['Cumulative-F&G-Score', 'Z-Score'], axis=1)
          dataframe_final.head(4)
                 Company_y Cumulative-Score
Out[16]:
         index x
           2017
                      GILD
                                  2.266047
           2018
                      GILD
                                  3.538244
           2019
                      GILD
                                  2.655932
           2020
                      GILD
                                  1.327655
In [17]:
          stock = yf.download(tickers=tickers, start='2017-01-01',
                              end='2020-12-31', interval='1mo')[['Close']]
         [******** 14 of 14 completed
In [18]:
          stock.index = pd.to_datetime(stock.index)
In [19]:
          stock = (stock.T.drop_duplicates().T).dropna()
          stock.columns = tickers
```

F-Score-Max F-Score-Min G-Score-Max Company

Out[15]:

Taking the positions in the top 6 Companies, with equally weighted rule.

returns = stock.pct_change().dropna()

```
In [20]: df = pd.DataFrame()
df2 = pd.DataFrame()
```

```
for steps in range(len(year)):
              sorted_table = (dataframe_final.loc[year[steps]]).sort_values(
                  by='Cumulative-Score', ascending=False)
              selection = sorted_table[['Company_y']].head(6)
              array = np.array(selection['Company_y'])
              frame1 = pd.DataFrame(array)
              returns_selection = returns.loc[year[steps]]
              selected_returns = returns_selection[array]
              # Making the portfolio with equal weights among its components
              weight = np.repeat(1/6, 6)
              series = (selected_returns*weight).sum(axis=1)
              frame = pd.DataFrame(series)
              df = df.append(frame)
              df2 = df2.append(frame1)
In [21]:
          comp_index = np.repeat(year, 6)
          df2.index = comp_index
          df2.columns = ['Companies-Invested']
In [22]:
          list_comp = pd.DataFrame()
          for steps in range(len(year)):
              f = df2.loc[year[steps]]['Companies-Invested'].T
              mk = np.array(f)
              l = pd.DataFrame(mk).T
              list_comp = list_comp.append(l)
          list_comp.index = year
          list_comp
                                         4
Out[22]:
         2017 PCAR
                     MU MSFT AMAT
                                      GILD GOOG
         2018 GILD
                     MU
                         INTC
                               AMD PCAR GOOG
         2019 ATVI
                     MU MSFT PCAR
                                      GILD GOOG
         2020 AMAT INTC
                          AMD CSCO
                                       MU PCAR
        Following DataFrame shows the list of the companies in which we Invested Year-Wise.
        Weights- Equally Weighted.
In [23]:
          df.columns = ['Returns']
          df.index = pd.to_datetime(df.index).to_period('M')
         Downloading the Benchmark 'NASDAQ' and Comparing the performance with it.
In [24]:
          benchmark = yf.download(tickers='NDAQ', start='2017-01-01',
                                  end='2020-12-31', interval='1mo')[['Close']]
                   ******** 100%************ 1 of 1 completed
In [25]:
          benchmark = (benchmark.T.drop_duplicates().T).dropna()
In [26]:
          benchmark.index = pd.to_datetime(benchmark.index).to_period('M')
```

```
In [27]:
            benchmark_returns = benchmark.pct_change().dropna()
In [28]:
            frame_final = pd.concat([df, benchmark_returns], axis=1)
            frame_final.columns = ['strategy', 'nasdaq']
            frame_final
Out[28]:
                     strategy
                                nasdaq
              Date
           2017-02
                     0.115141
                               0.008081
           2017-03
                    0.042452 -0.023344
           2017-04
                    0.006053
                              -0.008351
           2017-05
                    0.013280 -0.017715
           2017-06
                    -0.014882
                               0.056763
           2017-07
                     0.058938
                               0.040285
           2017-08
                    0.017496
                               0.013581
           2017-09
                    0.040320
                               0.029053
           2017-10
                    0.028540
                              -0.063427
           2017-11 -0.001799
                               0.089608
           2017-12
                    0.007340
                              -0.029434
           2018-01
                     0.119895
                               0.053104
           2018-02 -0.036374
                              -0.001977
           2018-03 -0.053337
                               0.067740
           2018-04 -0.023398
                               0.024356
           2018-05
                    0.061800
                               0.040082
           2018-06
                    0.020207
                              -0.006423
           2018-07
                    0.086013
                               0.001424
           2018-08
                    0.045573
                               0.044201
           2018-09
                    0.019340 -0.101006
           2018-10
                    -0.145403
                               0.010606
           2018-11
                    0.092924
                               0.053166
           2018-12 -0.102875 -0.106767
           2019-01
                    0.095176
                               0.079318
```

2019-02

2019-03

2019-04

2019-05

2019-06

2019-07

2019-08

2019-09

2019-10

0.040222

0.047593

0.159775

0.107063

0.030415

-0.014159

0.008361

0.036338

-0.098671 -0.016920

0.040095

-0.044556

0.053835

0.061011

0.002080

0.036007

-0.004908

0.004227

	strategy	nasdaq
Date		
2019-11	0.047995	0.050416
2019-12	0.074848	0.021947
2020-01	0.005658	0.087395
2020-02	-0.021887	-0.119440
2020-03	-0.040929	-0.074110
2020-04	0.128304	0.155029
2020-05	0.026639	0.080150
2020-06	0.014150	0.008526
2020-07	0.093098	0.099104
2020-08	0.062932	0.023684
2020-09	-0.047994	-0.087115
2020-10	-0.024773	-0.014017
2020-11	0.101177	0.057856
2020-12	0.026548	0.037112

Comparing the Returns of the Strategy with the NASDAQ

Import teersheet module to get full performance metric.

```
import tearsheet as ts

In [30]: tear = ts.tear_sheet(frame_final, headline='Quantemantal Strategy')
```

Performance Metrics: Quantemantal Strategy

	strategy	nasdaq
Start-Date	2017-02	2017-02
End-Date	2020-12	2020-12
Total-Months-Tested	47	47
Monthly-Returns	2.48	1.35
CAGR	34.21	17.52
Absolute-Return	183.91	86.67
 Monthly-Volatility	6.22	5.66
Annual-Volatility	21.54	19.59
Sharpe-Ratio	1.53	0.83
Sortino-Ratio	2.25	1.15
Calmar-Ratio	2.11	0.95
	I	I

Skewness	-0.39	-0.4
Excess of Kurtosis	0.53	0.47
Cornish-Fischer-Var	8.41	8.6

	strategy Yearly Returns	nasdaq Yearly Returns
2017	35.3349	8.91693
2018	4.81956	6.16946
2019	65.1486	31.2983
2020	35.1394	23.9402

	strategy Quarterly Returns	nasdaq Quarterly Returns
2017Q1	16.2481	-1.54522
2017Q2	0.42424	2.93737
2017Q3	12.0908	8.50469
2017Q4	3.42254	-0.953974
2018Q1	2.16004	12.2218
2018Q2	5.79099	5.85711
2018Q3	15.7466	-5.9932
2018Q4	-16.2077	-4.93007
2019Q1	19.3445	7.25757
2019Q2	15.7256	9.92113
2019Q3	2.43186	3.30665
2019Q4	16.7368	7.8007
2020Q1	-5.66133	-11.3445
2020Q2	17.4751	25.8241
2020Q3	10.6125	2.71197
2020Q4	10.2407	8.17375

Monthly Returns (%)

Replicando estudo sem nenhuma alteração para as 20 principais ações do Ibovespa

In [32]: # WRT to cash, income and book value
columns = ['F-Score-Max', 'F-Score-Min', 'G-Score']

Out[32]:		peRatio	priceToSalesRatio	pbRatio	evToSales	debtToEquity	evToFreeCashFlow	debtToAssets	netDel
	2011	4.849135	1.881208	1.427941	2.236777	0.315332	15.668858	0.190370	
	2011	7.480568	1.031536	0.855995	1.469256	0.471610	-64.457760	0.259626	
	2011	11.126058	2.072692	2.082083	2.190671	1.965148	-14.380404	0.177605	
	2011	5.349839	1.129452	0.991288	0.643243	1.158981	-0.795088	0.094953	
	2011	18.232143	10.036799	0.993552	10.036799	0.000000	13.007715	0.000000	
	2020	-7.371343	2.592999	10.921654	4.932327	10.798336	18.262323	0.767103	
	2020	20.979705	4.988432	3.015127	5.895143	0.804916	14.771019	0.373308	
	2020	17.417276	0.949303	1.347797	1.263752	0.596063	12.029619	0.291410	
	2020	13.661434	0.232489	1.565817	0.426163	1.794925	6.488485	0.439624	
	2020	13.502600	2.596121	1.468469	3.710879	1.496448	2.212232	0.135801	

200 rows × 8 columns

```
In [33]: rank = pd.DataFrame()

for steps in range(len(year)):
    y = Full_table.loc[year[steps]]
    t_inv = 1/y
    bv = zscore2(t_inv)
    bv = bv.T
    bv.index = [year[steps]]
    bv.columns = tickers

    rank = rank.append(bv)
```

```
In [34]:
    name = pd.DataFrame(tickers)
    concated = pd.concat([name]*len(year), axis=0)
    concated.index = Full_table.index
    concated.columns = ['Company']

    lista_z_score = []
    for i in year:
        lista_z_score += list(rank.loc[i])
```

```
lista_z_score = pd.DataFrame(lista_z_score,index=Full_table.index,columns=['Z-Score'])
rank = pd.concat([concated, lista_z_score], axis=1)
rank
```

```
        Out[34]:
        Company
        Z-Score

        2011
        VALE3.SA
        1.198905

        2011
        PETR4.SA
        1.282752

        2011
        ITUB4.SA
        0.797955

        2011
        BBDC4.SA
        1.099543

        2011
        B3SA3.SA
        0.751432

        ...
        ...
        ...

        2020
        SUZB3.SA
        0.525550

        2020
        PRIO3.SA
        0.767735

        2020
        GGBR4.SA
        1.164545

        2020
        JBSS3.SA
        1.979066

        2020
        BBDC3.SA
        1.181850
```

Now doing the Intra-Company analysis, comparing the past performances of the companies to derive out fundamentally strong companies.

```
In [35]:
         f_score_ratio_max = ['roe', 'returnOnTangibleAssets',
                              'researchAndDdevelopementToRevenue', 'currentRatio']
         # WRT to assets and liability
         f_score_ratio_min = ['averagePayables',
                              'daysOfInventoryOnHand', 'interestDebtPerShare']
         # Ratios where change must reduce Q/Q
         g_score_ratio_max = ['netIncomePerShare', 'freeCashFlowPerShare',
                             percent_fscore_max = pd.DataFrame()
         percent_fscore_min = pd.DataFrame()
         percent_gscore_max = pd.DataFrame()
         for steps in range(len(tickers)):
             # Fscore-Max analysis
             p = str(tickers[steps])
             data3 = fa.key_metrics(
                 ticker=p, api_key=key, period='annual')
             tranpose = data3.T[f_score_ratio_max].fillna(0)
             reverse = tranpose.loc[::-1]
             change = reverse.pct_change()
             change = change.assign(Company=p)
             percent_fscore_max = percent_fscore_max.append(change)
             # Fscore-Min analysis
             data4 = fa.key_metrics(
                 ticker=p, api_key=key, period='annual')
             tranpose1 = data4.T[f_score_ratio_min].fillna(0)
             reverse1 = tranpose1.loc[::-1]
             change1 = reverse1.pct_change()
```

```
change1 = change1.assign(Company=p)
              percent_fscore_min = percent_fscore_min.append(change1)
              # Gscore-Max analysis
              data5 = fa.key_metrics(
                  ticker=p, api_key=key, period='annual')
              tranpose2 = data5.T[g_score_ratio_max].fillna(0)
              reverse2 = tranpose2.loc[::-1]
              change2 = reverse2.pct_change()
              change2 = change2.assign(Company=p)
              percent_gscore_max = percent_gscore_max.append(change2)
          # Condition to quantify the performance
          condition = np.where(percent_fscore_max.iloc[:, :-1] > 0, 1, -1)
          condition = pd.DataFrame(condition)
          condition.index = percent_fscore_max.index
          condition.columns = percent_fscore_max.columns[:-1]
          condition
          sum_score = condition.sum(axis=1)
          sum_score = pd.DataFrame(sum_score)
          sum_score = pd.concat([sum_score, percent_fscore_max['Company']], axis=1)
          sum_score.columns = ['F-Score-Max', 'Company']
          sum_score
          # Condition to quantify the performance
          condition2 = np.where(percent_fscore_min.iloc[:, :-1] < 0, 1, -1)</pre>
          condition2 = pd.DataFrame(condition2)
          condition2.index = percent_fscore_min.index
          condition2.columns = percent_fscore_min.columns[:-1]
          condition2
          sum_score2 = condition2.sum(axis=1)
          sum_score2 = pd.DataFrame(sum_score2)
          sum_score2 = pd.concat([sum_score2, percent_fscore_min['Company']], axis=1)
          sum_score2.columns = ['F-Score-Min', 'Company']
          sum_score2
          # Condition to quantify the performance
          condition3 = np.where(percent_gscore_max.iloc[:, :-1] > 0, 1, -1)
          condition3 = pd.DataFrame(condition3)
          condition3.index = percent_gscore_max.index
          condition3.columns = percent_qscore_max.columns[:-1]
          sum_score3 = condition3.sum(axis=1)
          sum_score3 = pd.DataFrame(sum_score3)
          sum_score3 = pd.concat([sum_score3, percent_gscore_max['Company']], axis=1)
          sum_score3.columns = ['G-Score-Max', 'Company']
In [36]:
          Final_yr_wise = pd.concat([sum_score['F-Score-Max'], sum_score2['F-Score-Min'], sum_score3
          print(rank.loc[year[0:]].head())
          Final_yr_wise.loc[year[0:]].head()
                Company Z-Score
         2011 VALE3.SA 1.198905
         2011 PETR4.SA 1.282752
         2011 ITUB4.SA 0.797955
         2011 BBDC4.SA 1.099543
         2011 B3SA3.SA 0.751432
              F-Score-Max F-Score-Min G-Score-Max Company
Out[36]:
         2011
                                 1
                                             2 VALE3.SA
                       4
         2011
                       2
                                            -4 PETR4.SA
         2011
                       2
                                  1
                                            -4 ITUB4.SA
```

```
        F-Score-Max
        F-Score-Min
        G-Score-Max
        Company

        2011
        -2
        -1
        2
        BBDC4.SA

        2011
        -4
        -3
        2
        B3SA3.SA
```

```
In [37]:
          company = pd.DataFrame(Final_yr_wise['Company'])
          vc = zscore2(Final_yr_wise[Final_yr_wise.columns[:-1]], headline='Cumulative-F&G-Score')
          vc['Company'] = company
          rank = rank.loc[year[0]:]
          # Now Joing the two Dataframes and getting a cumulative score of each company for each yea
          vc_new = vc.reset_index()
          vc_new['key'] = vc_new['index']+str('_')+vc_new['Company']
          vc_new.head(3)
          rank_new = rank.reset_index()
          rank_new['key'] = rank_new['index']+str('_')+rank_new['Company']
          df = vc_new.merge(rank_new, on='key')
          df = df.drop(labels=['Company_x', 'key', 'index_y'], axis=1)
          df.index = df['index_x']
          dataframe = df.drop(labels='index_x', axis=1)
          dataframe['Cumulative-Score'] = dataframe['Cumulative-F&G-Score'] + \
              dataframe['Z-Score'].values
          dataframe_final = dataframe.drop(
              labels=['Cumulative-F&G-Score', 'Z-Score'], axis=1)
          dataframe_final.head(4)
```

Out[37]: Company_y Cumulative-Score

2014

```
      index_x

      2011
      VALE3.SA
      3.627003

      2012
      VALE3.SA
      1.590086

      2013
      VALE3.SA
      2.420884
```

VALE3.SA

Assumindo as posições das 6 maiores Empresas, com peso igual

2.408017

```
# Making the portfolio with equal weights among its components
             weight = np.repeat(1/6, 6)
              series = (selected_returns*weight).sum(axis=1)
             frame = pd.DataFrame(series)
              df = df.append(frame)
              df2 = df2.append(frame1)
In [40]:
          comp_index = np.repeat(year, 6)
          df2.index = comp_index
          df2.columns = ['Companies-Invested']
          list_comp = pd.DataFrame()
          for steps in range(len(year)):
             f = df2.loc[year[steps]]['Companies-Invested'].T
             mk = np.array(f)
             l = pd.DataFrame(mk).T
              list_comp = list_comp.append(l)
          list_comp.index = year
          list_comp
                     0
                              1
                                       2
                                                 3
                                                          4
                                                                   5
Out[40]:
         2011 VALE3.SA
                      ELET3.SA
                                 JBSS3.SA EQTL3.SA
                                                   PETR4.SA BBAS3.SA
         2012 CSAN3.SA PRIO3.SA
                                ABEV3.SA RENT3.SA WEGE3.SA ITSA4.SA
         2013 ABEV3.SA ELET3.SA GGBR4.SA LREN3.SA JBSS3.SA RENT3.SA
         2014 JBSS3.SA ITSA4.SA RADL3.SA ELET3.SA ITUB4.SA EQTL3.SA
         2015 EQTL3.SA PRIO3.SA LREN3.SA RADL3.SA CSAN3.SA JBSS3.SA
         2016 PRIO3.SA CSAN3.SA SUZB3.SA PETR4.SA WEGE3.SA JBSS3.SA
         2017 JBSS3.SA PETR4.SA
                                VALE3.SA ABEV3.SA SUZB3.SA EQTL3.SA
         2018 VALE3.SA ABEV3.SA CSAN3.SA
                                         ITSA4.SA
                                                    PRIO3.SA ELET3.SA
         2019 BBAS3.SA JBSS3.SA WEGE3.SA ELET3.SA EQTL3.SA B3SA3.SA
              JBSS3.SA BBAS3.SA WEGE3.SA GGBR4.SA
         2020
                                                   RENT3.SA VALE3.SA
        Following DataFrame shows the list of the companies in which we Invested Year-Wise.
        Weights- Equally Weighted.
In [41]:
          df.columns = ['Returns']
          df.index = pd.to_datetime(df.index).to_period('M')
        Downloading the Benchmark 'IBOVESPA' and Comparing the performance with it.
In [42]:
          benchmark = yf.download(tickers='^BVSP', start='2011-01-01',
                                 end='2020-12-31', interval='1mo')[['Close']]
         In [43]:
          benchmark = (benchmark.T.drop_duplicates().T).dropna()
          benchmark.index = pd.to_datetime(benchmark.index).to_period('M')
          benchmark_returns = benchmark.pct_change().dropna()
```

frame_final = pd.concat([df, benchmark_returns], axis=1)

```
frame_final.columns = ['strategy', 'ibovespa']
frame_final
       strategy ibovespa
```

Out[43]:

Date		
2011-02	0.007671	0.012137
2011-03	0.008670	0.017868
2011-04	-0.026741	-0.035779
2011-05	-0.136440	-0.022878
2011-06	-0.020166	-0.034293
2020-08	-0.000842	-0.034427
2020-09	-0.030777	-0.047963
2020-10	0.035161	-0.006881
2020-11	0.136237	0.158975
2020-12	0.107781	0.095676

119 rows × 2 columns

Comparing the Returns of the Strategy with the IBOVESPA

Import teersheet module to get full performance metric.

```
In [44]:
```

```
import tearsheet as ts
tear = ts.tear_sheet(frame_final, headline='Quantemantal Strategy para ações brasileiras')
```

Performance Metrics: Quantemantal Strategy para ações brasileiras

	strategy	ibovespa
Start-Date	2011-02	2011-02
End-Date	2020-12	2020-12
Total-Months-Tested	119	119
Monthly-Returns	0.65	0.49
CAGR	8.13	6.06
Absolute-Return	115.44	77.06
Monthly-Volatility	7.01	6.6
Annual-Volatility	24.27	22.86
Sharpe-Ratio	0.28	0.21
Sortino-Ratio	0.41	0.29
Calmar-Ratio	0.15	0.15
Skewness	-0.14	-0.6

Excess of Kurtosis	1.11	3.03
Cornish-Fischer-Var	11.12	11.17

	strategy Yearly Returns	ibovespa Yearly Returns				
2011	-18.026	-14.7518				
2012	18.5922	7.39684				
2013	-2.68781	-15.4958				
2014	-19.8532	-2.91223				
2015	-19.6756	-13.3121				
2016	54.3439	38.9319				
2017	35.1062	26.8567				
2018	6.76237	15.0323				
2019	36.2133	31.5837				
2020	17.5455	3.16572				

	strategy Quarterly Returns	ibovespa Quarterly Returns
2011Q1	1.64075	3.02216
2011Q2	-17.6481	-9.01483
2011Q3	-10.7998	-16.1528
2011Q4	9.79153	8.46648
2012Q1	14.1738	13.6678
2012Q2	-8.63957	-15.7431
2012Q3	12.6095	8.86947
2012Q4	0.961671	3.00122
2013Q1	-3.32052	-7.54692
2013Q2	-10.7836	-15.7847
2013Q3	10.4778	10.2851
2013Q4	2.12054	-1.58776
2014Q1	-3.84944	-2.1201
2014Q2	11.7031	5.46068
2014Q3	0.253136	1.78303
2014Q4	-25.566	-7.59295
2015Q1	4.4771	2.28568
2015Q2	7.62486	3.77517

2015Q3	-25.4315	-15.1128
2015Q4	-4.20162	-3.7928
2016Q1	22.2219	15.4671
2016Q2	9.98742	2.94077
2016Q3	10.0306	13.2746
2016Q4	4.34789	3.18673
2017Q1	7.71347	7.89845
2017Q2	-0.54804	-3.20694
2017Q3	15.211	18.1145
2017Q4	9.47077	2.83738
2018Q1	12.2406	11.7327
2018Q2	-17.6883	-14.7635
2018Q3	0.532919	9.04168
2018Q4	14.9472	10.7698
2019Q1	18.9523	8.56554
2019Q2	2.63394	5.81879
2019Q3	1.76268	3.74182
2019Q4	9.63953	10.4062
2020Q1	-31.5389	-36.8585
2020Q2	24.6773	30.178
2020Q3	5.69248	-0.476561
2020Q4	30.2959	26.1123

Monthly Returns (%)

20

- 0

2011	0.00	0.77	0.87	-2.67	-13.64	-2.02	-6.30	-1.86	-3.00	8.88	-0.74	1.58
2012	5.64	7.25	0.77	-3.86	-6.86	2.03	5.41	1.79	4.95	-2.29	-0.99	4.36
2013	0.96	-1.92	-2.36	1.67	-5.43	-7.21	2.82	4.78	2.55	5.48	-1.14	-2.08
2014	-3.81	-3.14	3.21	-2.66	2.82	11.61	7.83	14.10	-18.52	-3.10	-6.54	-17.81
Year 6 2015	-9.40	15.96	-0.56	14.20	-4.17	-1.65	-9.07	-11.41	-7.43	3.62	-7.35	-0.21
ж 2016	-7.29	9.65	20.23	7.80	-5.08	7.48	10.34	-0.63	0.35	7.29	-2.22	-0.53
2017	9.52	0.41	-2.05	0.01	-1.55	1.02	4.46	5.79	4.25	2.22	2.36	4.63
2018	9.45	0.02	2.53	-3.06	-9.90	-5.77	5.20	-4.76	0.33	8.98	5.91	-0.41
2019	19.23	-1.15	0.93	-1.38	0.88	3.16	0.12	-0.48	2.13	3.90	-1.95	7.62
2020	-2.94	-10.71	-21.00	4.35	9.20	9.41	9.14	-0.08	-3.08	3.52	13.62	10.78
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

