

Method 1 - 50 = Ht naive approach

Method $2 \rightarrow S_t^a = (P(S_t^e = S'), \dots, P(S_t^e = S^n))$ baysian probabilistic approach (selief) Method $3 \rightarrow S_t^a = 6(S_{t-1}^a W_S + Q_t W_0)$ recurrent noural networks

-> Value function map from state to action Ly deterministic a= 71 (S) 6. probabilistic 7 (als) = P[A=a | S=s] Value Function Prediction of expected future reword $\sqrt{S} = E_{\pi} \left[R_{t} + Y R_{t+1} + Y^{2} R_{t+2} + \cdots \right] S_{t} = S$ Model predicts what enrisonment will do next La transition Model Pss = P[s'=s' | S=s, A=a] Lo Rewards Model Ra = E[RIS=s, A=a]

Categorization of RL agents
Dyalne-boased (policy X Value V)
Opolicy-based (policy / value X)
3) Actor Critic (Policy / Value /)
@ Model-free (policy/Value / model X)
2) Model- based (policy/value / model /)
Sequential Decision Making
O reinforcement (earning (through interaction)
L) exploration vs expoilation
by prediction (sinen a policy) VS CONTROL (optimizing a policy)
@ planning (no interaction needed)

Markor Pecision Processes (MPP)
& the environment, is fully observable partially observable can be converted into MBP
Important Property of MDP: future is independent of the post,
State transitions:
$P_{ss'} = P[S_{t+1} = s' \mid S_t = s]$
P = Pin State Transition Matrix P Pin State Transition Matrix P Pin (each row sums to 1)
a Markov Process; a memoryless random Process (a sequence of random states with the markov property)
(\$, P) Ly State transition propability matrix (finite) State space
Episode: a sample of the Markov Chain

Calculate Share value from action values by averaging over actions

average over dymmics of env

