

Criptografía Básica para Aplicaciones Web: Fundamentos, Algoritmos y Buenas Prácticas

Introducción

Introducción

- La criptografía es esencial para la seguridad de las aplicaciones web.
- Objetivo: Garantizar la confidencialidad, integridad, autenticidad y no repudio de la información intercambiada entre usuarios y sistemas.
- Aplicada a contraseñas, transacciones y comunicaciones seguras.

¿Qué es la Criptografía?

¿Qué es la Criptografía?

- Definición: Ciencia que emplea técnicas matemáticas para proteger la información.
- Objetivos clave:
 - Confidencialidad: Asegura que solo los usuarios autorizados accedan a los datos.
 - Integridad: Garantiza que los datos no sean alterados sin permiso.
 - Autenticidad: Verifica la identidad de los interlocutores.
 - No repudio: Impide que una parte niegue haber enviado información.

¿Cómo se Usa la Criptografía en la Web?

¿Cómo se Usa la Criptografía en la Web?

- HTTPS/TLS: Cifra la comunicación entre cliente y servidor.
- Almacenamiento de contraseñas: Utiliza técnicas de hashing como bcrypt.
- Cifrado de datos sensibles: Protege información como tarjetas de crédito o historiales médicos.

Diferencias entre Cifrado y Hashing

Diferencias entre Cifrado y Hashing

Cifrado	Hashing
Reversible	Irreversible
Protege la confidencialidad	Verifica integridad y autenticidad
Usa una clave	No necesita clave
Ejemplos: AES, RSA	Ejemplos: SHA-256, bcrypt

Buenas Prácticas de Criptografía

Buenas Prácticas de Criptografía

- Usar algoritmos confiables:
 - AES para cifrado simétrico, RSA para cifrado asimétrico.
 - SHA-256 y bcrypt para hashing de contraseñas.
- Proteger las claves: No almacenar claves en texto claro.
 Usar gestores de claves.
- Usar protocolos actualizados: TLS 1.2 o superior.
- Realizar auditorías regulares y mantener actualizados los mecanismos criptográficos.

Tipos de Cifrado

Tipos de Cifrado

Cifrado Simétrico (AES)

- Usa la misma clave para cifrar y descifrar.
- Ejemplo: AES-256 en modos CBC o CTR.
- Ventajas: Rápido y eficiente.
- Desventajas: Requiere intercambio seguro de claves.

Cifrado Asimétrico (RSA)

- Usa un par de claves: pública para cifrar, privada para descifrar.
- Ideal para la autenticación y el intercambio de claves seguras.
- Más lento que el cifrado simétrico, pero más seguro para compartir claves.

Hashing Seguro para Contraseñas

Hashing Seguro para Contraseñas

• SHA-256:

- Usado para comprobar la integridad de los datos.
- Rápido, pero vulnerable a ataques de fuerza bruta si se usa solo para contraseñas.

bcrypt:

- Recomendado para el almacenamiento de contraseñas.
- Introduce un retraso intencional para dificultar ataques de fuerza bruta.
- Soporta salting (añadir datos aleatorios a las contraseñas).

Conclusión

Conclusión

- La criptografía es esencial para la seguridad de las aplicaciones web.
- Implementar cifrado, hashing y protocolos seguros garantiza la confidencialidad, integridad, y autenticidad de los datos.
- Aplicar buenas prácticas criptográficas ayuda a proteger contra vulnerabilidades comunes y a fortalecer la seguridad web.

Energiza!