Проверка статистических гипотез. Проверка гипотезы о виде распределения

- 1. Общие сведения
- 2. Критерий Колмогорова
- 3. Критерий χ^2 (Пирсона)

Пусть X - данные, $\{x\}$ - выборочное пространство, $\mathcal{F} = \{F\}$ - совокупность априори допустимых распределений X. F_X неизвестное истинное распределение данных $X, F_X \in \{F\}$. В общем случае задача проверики гипотез ставится так: выделяется некоторое подмножество $\mathcal{F}_{
m o}\subset\mathcal{F}$ допустимых распределений и требуется по данным X проверить, справедливо ли утверждение $H_0: F_X \in \mathcal{F}_0$ или же оно ложно. В этом случае H_0 называется оносновной (нулевой) гипотезой. Распределения $F \in \mathcal{F}_1 = \mathcal{F} ackslash \mathcal{F}_0$ называеются альтернативными, а утверждение $H_1: F_X \in \mathcal{F}_1$ - альтернативной гипотезой. В этом случае речь идет о проверке гипотезы H_0 против альтернативы H_1 или о задаче (H_0,H_1) ; иногда так же говорят, что гипотеза H_0 проверяется внутри обзей гипотезы $H:F_X\in\mathcal{F}=\mathcal{F}_1\cup\mathcal{F}_0$. Если подмножество $\mathcal{F}_0(\mathcal{F}_1)$ состоит из одного элемента, то гипотеза H_0 (альтернатива H_1) называется простой, в противном случае сложной.

Правило, согласно которому мы, наблюдая X, принимаем решение принять гипотезу H_0 как истинную либо отклонить ее как ложную (т.е. принять альтернативную гипотезу H_1) называется **статистическим критерием** (или просто критерием).

 $H_1 = ar{H}_0$ никак не конкретизируется, и здесь речь идет просто о согласии данных X с нулевой гипотезой H_0 (согласуются ли данные X с гипотезой H_0 или же они ее опровергают) - соответствующие критерии называются критериями согласия. Поскольку критерий - это правило, которое для каждой реализации x выборки X должно приводить к одному из двух решений: принять гипотезу H_0 или отклонить ее (принять альтернативу H_1), то каждому критерию соответствует некоторое разбиение выборочного пространства $\mathcal{X}=\{x\}$ на два взаимно дополнительных множества $\mathcal{X}_0\cap\mathcal{X}_1=\emptyset,\mathcal{X}_0\cup\mathcal{X}_1=\mathcal{X}$. Где \mathcal{X}_0 состоит из тех точек x, для которых H_0 принимается, а $\mathcal{X}_{\scriptscriptstyle 1}$ - из тех, для которых H_0 отвергается (принимается H_1). Таким образом, $\mathcal{X}_{\scriptscriptstyle 0}$ это область принятия гипотезы H_0 , а $\mathcal{X}_{\scriptscriptstyle 1}$ - область ее отклонения, которую принято называть **критической областью**. Тем самым, любой критерий проверки гипотезы H_0 однозначно задается соответствующей критической областью $\mathcal{X}_{\scriptscriptstyle 1}$ и о таком критерии часто говорят как о "критерии \mathcal{X}_1 ".

Если в эксперименте наблюдается маловероятное при справедливости гипотезы
$$H_0$$
 событие, то считается, что гипотеза H_0 не согласуется с данными (или противоречит им), и в данном случае она отвергается (отлоняется); в противном случае считается,

 H_0 отвергается $\Leftrightarrow X \in \mathcal{X}_{\scriptscriptstyle 1}$

что данные не противоречат H_0 (или согласуется с ней), и H_0 принимается. В соответсвии с этим приницпом критическая область \mathcal{X}_1 должна быть выбрана так, чтобы была мала вероятность $P\{X\in\mathcal{X}_1|H_0\}$, т.е. условная (при условии, что H_0 спрведлива) вероятность попадания значения выборки X в область $\mathcal{X}_{\scriptscriptstyle 1}$. Поэтому при построении критерия задаются заранее некоторым малым числов lpha (например: lpha=0.001;0.01;0.05 и т. д.) и налагают условие: (1) $P\{X \in \mathcal{X}_1 | H_0\} \leq \alpha$

ввести дополнительное понятие ошибок критерия. **Ошибка 1-го рода** - отвергуть H_0 при условии, что она верна. Например, в биомтерических технологиях она называется FRR (false rejection rate) и означает, что человек не распознан системой.

Ошибка 2-го рода - принять H_0 при условии, что она неверна. Например, в биометрических технологиях она называется FAR (false acceptance rate) и означает, что один человек принят

Введем теперь фундаментальное понятие теории проверки статистических гипотез - понятие фукнции мощности критерия. По определению, функцией мощности критерия $\mathcal{X}_{\scriptscriptstyle 1}{}_{\scriptscriptstyle lpha}$ называется следующий функционал на множестве всех допустимых

распределний $\mathcal{F} = \{F\}$ выборки X: $W(F) = W(F; \mathcal{X}_{1\alpha}) = P\{X \in \mathcal{X}_{1\alpha} | F\}, F \in \mathcal{F}$

истинное распределение. Через функцию мощности легко выразить вероятности обоих типов ошибок, свойственных критерию
$$\mathcal{X}_{1\alpha}$$
. Именно, вероятность ошибки 1-го рода есть $W(F)$ при $F\in\mathcal{F}_0$, а второго рода $1-W(F)$ при $F\in\mathcal{F}_1$.

 $P\{H_1|H_0\}$ — вероятность ошибки 1 — го рода $P\{H_0|H_1\}$ — вероятность ошибки 2 — го рода

Несмещенность критерия - одновременное выполнение условий:
$$W(F;\mathcal{X}_{\text{1}\alpha}) \leq \alpha, \forall F \in \mathcal{F}_{\text{o}}, W(F;\mathcal{X}_{\text{1}\alpha}) > \alpha, \forall F \in \mathcal{F}_{\text{1}}$$

 $W_n(F;\mathcal{X}_{1\alpha}) \to 1, \forall F \in \mathcal{F}_1$

Этот критерий примеяют в тех случаях, когда функция F(x) непрерывна. Статистика критерия определяется формулой:

Критерий Колмогорова

 $D_n = D_n(X) = \sup_{-\infty < x < +\infty} |\hat{F}_n(x) - F(x)|$

 $orall t>0: \lim_{n o\infty}\ P(\sqrt{n}D_n\leq t)=K(t)=\sum_{j=-\infty}^{+\infty}(-1)^je^{-2j^2t^2}$

Где $\hat{F}(x)$ - эмпирическая функция распределения

 $\mathcal{T}_{1\alpha} = \{t \geq t_{\alpha}, t_{\alpha} = \lambda_{\alpha}/\sqrt{n}\}$ $P\{D_n \in \mathcal{T}_{1\alpha}|H_0\} = P\sqrt{n}D_n \ge \lambda_\alpha|H_0 \approx 1 - K(\lambda_\alpha) = \alpha$

Тем самым критерий согласия Колмогорова формулируется следюущим образом: если
$$n$$
 довольно большое и при выбранном уровне значимости α число λ_{α} определено соотношением $K(\lambda_{\alpha})=1-\alpha$, то: (3)
$$H_0 \text{ отвергается} \Leftrightarrow \sqrt{n}D_n \geq \lambda_{\alpha}$$

Наконец, отметим, что для практических вычислений статистики D_n полезна эквивалентная (1) формула $D_n=max(D_n^+,D_n^-)$ $D_n^+ = \max_{1 \le k \le n} (rac{k}{n} - F(X_{(k)})), \,\, D_n^- = \max_{1 \le k \le n} (F(X_{(k)}) - rac{k-1}{n})$

и
$$X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$$
 - вариационный ряд выборки X

 (ξ_1,\ldots,ξ_n) , то пусть:

 $u_j = \sum_{i=1}^n I(\xi_i = j), j = 1, \ldots, N$ -соответствующие частоты исходов $(\nu_1 + \ldots + \nu_N = n)$. Тогда вектор $\nu = (\nu_1, \ldots, \nu_N)$ имеет полиномиальное распределение

 $H_0: p=p^0,$ где $p^0=(p_1^0,\dots,p_N^0))$ - заданный вероятностный вектор $(0< p_j^0<1, j=1,\dots,N, p_1^0+\dots+p_N^0=1).$ К.Пирсон в 1900г. предложил использовать в качестве меры отклонения эмпирических данных (относительных частот u/n) от гипотетических значений p^0 меру хи-квадрат. Мера χ^2 :

 $\hat{X_n^2} = \mathring{X_n^2}(
u) = \sum_{i=1}^N rac{(
u_j - np_j^0)^2}{np_i^0} = \sum_{i=1}^N rac{
u_j^2}{np_i^0} - n^2$ На этой тестовой статитстике и основывается знаменитый критерий χ^2 К.Пирсона. В основе этого критерия лежат следующие очевидные соображения. Если гипотеза H_0 справедлива, то, поскольку относительная частота u_i/n события $\{\xi=j\}$ является

Теорема 1. Если $0 < p_j^0 < 1, j = 1, \ldots, N$, то при $n o \infty$: $\mathcal{L}(\mathring{X_n^2}|H_0)
ightarrow \chi^2(N-1)$ H_0 отвергается $\Leftrightarrow \{\overset{\circ}{X_n^2}>\chi^2_{1-lpha,N-1}\}$

 $P\{\mathring{X_n^2} > t_{lpha}|H_0\} = lpha$

Для данных задачи 1.13 проверить, согласуются ли они с гипотезой H_0 о том, что монета была симметричной. Уровень значимости положите равным $\alpha_1 = 0.05, \alpha_2 = 0.1.$

n = 4040nu = np.array([h, (n-h)])p = np.array([0.5, 0.5])

import numpy as np

for alpha_2 = $0.1 chi^2$ is 0.0158 $print(f'X is \{X\} and chi2 for alpha1 = 0.05 is \{3.841\} \rightarrow H0 is true')$

 $print(f'X is \{X\} and chi2 for alpha2 = 0.1 is \{2.706\} \rightarrow H0 is true')$

№ 3.3 При n=4000 независимых испытаний события A_1 , A_2 , A_3 , составляющие полную группу, осуществились соответственно

Эксперимент : n = 4040, h = 2048, h — выпадение герба

f_obs - Observed frequencies in each category. # f_exp - Expected frequencies in each category.

X = np.sum(nu**2 / (n*p)) - n# degree of freedom is 1 (N = 2)# for $alpha_1 = 0.05 chi^2 is 3.841$

1905, 1015, 1080 раз. Проверьте, согласуются ли эти данные при уровне значимости lpha=0.05 с гипотезой $H_0 = (0.5, 0.25, 0.25)$ In [51]: n = 4000nu = np.array([1905, 1015, 1080])p = np.array([0.5, 0.25, 0.25])X = np.sum(nu**2 / (n*p)) - n# degree of freedom is 2 (N = 3)# for alpha = 0.05 chi^2 is 6.0

Проводились опыты с бросанием одновременно 12 игральных костей. Наблюдаемую случайную величину ξ считали равной числу костей, на которых выпало 4,5 или 6 очков. Пусть h_i - число опытов, в которых наблюдалось значение

 $\xi=i, i=0,1,\ldots,12$. Данные для n=4096 опытов приведены в следующей таблице:

 $\begin{pmatrix} i: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ h_i: & 0 & 7 & 60 & 198 & 430 & 731 & 948 & 847 & 536 \\ \end{pmatrix}$ Если верна H_0 - кости симметричны, то вероятность того, что выпало 4, 5 или 6 очков равна вероятности что выпало 1, 2 или 3

10 11 12

p = (0.0002, 0.0029, 0.0161, 0.0537, 0.1208, 0.1934, 0.2256, 0.1934, 0.1208, 0.0537, 0.0161, 0.0029, 0.0002)

```
В некоторых случаях класс {\mathcal F} - это все распределения на выборочном пространстве \{x\}, тогда альтернативная гипотеза
```

Итак, критерий $\mathcal{X}_{\scriptscriptstyle 1}$ имеет вид:

в даллем олу нас спа ства
в с ней), и
$$H_0$$
 принимаетс

Если выполнено (1), то говорят, что критерий \mathcal{X}_1 имеет уровень значимости α и подчеркивают это обозначением $\mathcal{X}_1 = \mathcal{X}_{1\alpha}$. Ясно, что условием (1) критическая область \mathcal{X}_{1lpha} определяется неоднозначно, и чтобы утсранить эту неопределенность, надо

системой за другого.

(2)

ДРугими словами, $W(F; \mathcal{X}_{1\alpha})$ - это вероятность попадания значения выборки X в критическую область $\mathcal{X}_{1\alpha}$, когда F - ее

Состоятельность критерия -

(1)

И по теореме Колмогорова:

(3)

, где:

Критерий χ^2 (Пирсона) Итак, пусть в эксперименте наблюдается дискретная случайная величина ξ , принимающая значения $1,2,\dots N$ с некоторыми вероятностями p_1,\ldots,p_N , $(p_1+\ldots+p_N)=1$. Если произведено n независимых испытаний над ξ , т.е. имеется выборка

 $M(n; p_1, \ldots, p_N)$. Итак, пусть по наблюдению вектора частот $u = (\nu_1, \dots, \nu_N)$ требуется проверить простую гипотезу

состоятельной оценкой его вероятности $p_j^0 (j=1,\dots,n)$, при больших п разности $|
u_j/n-p_j^0|$ должны быть малы, следовательно, и значение статистики $\overset{\circ}{X_n^2}$ не должно быть слишком большим. Поэтому естественно задать критическую облать для гипотезы H_0 в виде $\mathcal{T}_{1lpha}=\{\mathring{X_n^2}>t_lpha\}.$ Где критическая граница t_lpha при заданном уровне значимости lpha должна быть выбрана из условия:

(5)

(4)

Решение задач 3.1, 3.3, 3.5

№ 3.1

h = 2048

In [50]:

X is 0.7762376237624267 and chi2 for alpha1 = 0.05 is 3.841 -> H0 is true X is 0.7762376237624267 and chi2 for alpha2 = 0.1 is 2.706 -> H0 is true

 $print(f'X is \{X\} and chi2 for alpha = 0.05 is \{6.0\} -> H0 is false')$ X is 11.1375000000000273 and chi2 for alpha = 0.05 is 6.0 -> H0 is false №3.5 Согласуются ли данные, приведенные в задачах 1.16 и 1.17, с гипотезой о симметричности костей?

очка и равна 0.5. Тогда распределение $\xi \sim Bi(12,0.5)$. Тогда:

In [49]:

n = 4096

0.1934, 0.1208, 0.0537, 0.0161, 0.0029, 0.0002]) X = np.sum(nu**2 / (n*p)) - n# degree of freedom is 12 (N = 13) # for alpha = 0.01 is 26.2

p = np.array([0.0002, 0.0029, 0.0161, 0.0537, 0.1208, 0.1934, 0.2258, $print(f'X is \{X\} and chi2 for alpha = 0.01 is \{26.2\} -> H0 is false')$

nu = np.array([0, 7, 60, 198, 430, 731, 948, 847, 536, 257, 71, 11, 0])