

Model Development Phase Template

Date	15 July 2024		
Team ID	740072		
Project Title			
	Number Oracle: Big Mart Sales Predictive Analysis		
Maximum Marks	6 Marks		

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model Selection Report:

Model	Description	Hyperparameters	Performance Metric (e.g., Accuracy, F1 Score)
Random Forest Regressor	The RandomForestRegressor is an ensemble learning method that builds multiple decision trees and merges them together to get a more accurate and stable prediction.	n_estimators=100, max_depth=None, random_state=42	60.4
XGBoostRegressor	The XGBoostRegressor is a powerful and efficient implementation of gradient boosting for supervised learning tasks.	learning_rate=0.1, n_estimators=100, max_depth=3	61.1