Around permanent regime

(b) QP boundaries: transient from valve breaking

Experiment: - Init. equilibrium pore-pressure profile when 3 valves are closed, but valve nb2 is open (k_b = k_bg). Observe the propagating transient

- Observation: transient progresses from one valve to the other, to redistribute total dP on background segments and barriers. dP across remaining valve and overpressure are increased (closer to failure?) The increase is transient,
 - overpressure will progressively dissipate when fluid has crossed the low permeability barriers

Around permanent regime

(b) QP boundaries: transient from valve breaking

this is a gif, click on it to play

Experiment:

- Init. equilibrium pore-pressure profile when 3 valves are closed, but valve nb2 is open (k_b = k_bg).
- Observe the propagating transient

Observation:

- transient progresses from one valve to the other, to redistribute total dP on background segments and barriers.
- dP across remaining valve and overpressure are increased (closer to failure?)
- The increase is transient,
 overpressure will progressively
 dissipate when fluid has crossed the
 low permeability barriers

Dynamics of an isolated valve

(a) Experimental setup

In our model, a valve is described by its width w_b , its permeability k_b , and finally by its opening and closing conditions, which depend on the pressure differential dP across the valve:

```
dP_open = dpdx_opening * w_b
dP_close = dpdx_closing * w_b
```

In this experimental set up, dpdx_open (dpdx_hi), dpdx_close (dpdx_lo) and w_b vary, and k_b is fixed at 1e-3 * k_bg.

The runs are conducted in both fixed pressure and fixed flux boundary conditions.

