INTRODUCTION TO NEURAL NETWORKS

General questions about Supervised Machine Learning: Loss function

$$\mathcal{L}(w,b) = \frac{1}{N} \sum_{i} (y_i - (w^T x_i + b))^2 = \frac{1}{N} \sum_{i} (y_i - \hat{y}_i)^2$$

Other Loss are possible

· Linear regression

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - (w^T x_i + w_0))^2$$

· Logistic regression

$$\frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i(w^T G_i + w_0)})$$

SVM

$$\frac{1}{n} \sum_{i=1}^{n} \max(0, -y_i(w^T x_i + w_0))$$

General questions about Supervised Machine Learning: Overfit

Natural vs Artificial Neurons

Outline

- Perceptron
- Natural vs Artificial Neurons
- Multilayer perceptron: Fully connected NN
- Training:
 - Backpropagation
 - Stochastic Gradient Descent
 - Overfitting

The next step: Towards non-linear separations

It can go messy really fast...

But God gave us MATRICES

But God gave us MATRICES

But God gave us MATRICES

Two important concepts:

- Activation function
- Cost function/Loss function

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Two important concepts:

- Activation function
- Cost function/Loss function

$$C = (X^L - Y)^2 = (g(X^0) - Y)^2$$
 Standard Loss for fitting

What happens with many class problems?

Softmax + Cross-Entropy

$$S_i = \frac{e^{x_i}}{\sum e^{x_i}}$$

$$H(p,q) = -\sum p_i(x) \log(q_i(x))$$

p(x) is the true label in vector form

$$y(x_1) = 3 \Rightarrow p(x_1) = [0,0,1,0]$$

$$y(x_2) = 1 \Rightarrow p(x_2) = [1,0,0,0]$$

q(x) is the estimated label (also in vector form)

4 class problem

All the other layers of the Neural **Cross Entropy** Network $S_i(x) = q_i(x)$

Softmax layer

Outline

- Perceptron
- Natural vs Artificial Neurons
- Multilayer perceptron: Fully connected NN
- Training:
 - Backpropagation
 - Stochastic Gradient Descent
 - Overfitting

Backpropagation algorithm

$$\left[w_{ij}^{L}\right]_{t+1} = \left[w_{ij}^{L} - \alpha \frac{\partial C}{\partial w_{ij}^{L}}\right]_{t}$$
 Steepest descent

 α is known as Learning Rate

How to compute
$$\frac{\partial C}{\partial w_{ij}^L}$$
? Chain rule

$$\nabla_{\mathbb{W}^{L}}C = (\mathbb{X}^{L+1})^{T} \cdot \Delta^{L+1}$$

$$\Delta^{L+1} = \nabla_{\mathbb{X}^{L+1}}C \odot f'^{L+1}(\mathbb{Z}^{L+1})$$

$$\nabla_{\mathbb{X}^{L}}C = \Delta^{L+1} \cdot (\mathbb{W}^{L+1})^{T}$$

 \mathbb{X}^0

3.-Compute $\nabla_{\mathbb{X}^{L-1}}C$

Stochastic Gradient descent

Gradient Descent

t=0

While not converged:

$$\nabla_{\mathbb{W}^L} C = 0$$

for i in N:

accumulate ∇

weight update*

Stochastic Gradient descent

t=0

While not converged:

t=t+1

shuffle data

for j in minibatches:

$$\nabla_{\mathbb{W}^L} C = 0$$

for i in N/m:

accumulate 7

weight update*

$$*[w_{ij}^{L}]_{t+1} = \left[w_{ij}^{L} - \alpha \frac{\partial C}{\partial w_{ij}^{L}}\right]_{t}$$

Overfitting

- SGD helps to avoid overfitting
- Early stopping (dividing our system).
- Data augmentation (add transformed input data points).
- We can use regularization: Add a term to the Loss function that depends on the norm of the weights in order to obtain the minimum possible number of significant parameters
- Dropout (one layer in which randomly some weights are set to 0).