ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

«Εκτίμηση αιολικού δυναμικού και επιλογή της κατάλληλης ανεμογεννήτριας»

ΠΑΥΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 2018030139

Χανιά, Ιανουάριος 2023

Σε αυτή την εργασία ζητήθηκε η εκτίμηση του αιολικού δυναμικού μίας περιοχής του Νομού Χανίων και η επιλογή της κατάλληλης ανεμογεννήτριας μέσα από μία σειρά δοσμένων ανεμολογικών στοιχείων και καμπυλών ισχύος για τις ανεμογεννήτριες.

Παραδοχές: Ύψος τοποθέτησης των ανεμομέτρων => $2*A\Gamma O = 2*7 = 14m$ Ύψος τοποθέτησης των $A/\Gamma => 40+4*A\Gamma E = 40+4*11 = 84m$ Τραχύτητα του εδάφους => 0,1+0,1*AM = 0,1+0,1*9 = 1mΠαράμετρος $CODE = MOD(\frac{29A\Gamma O + 32A\Gamma E - 9AM}{16}) = 10$, άρα $Various_1000kW$

1)Εκτίμηση μέσης τιμής και τυπικής απόκλισης του δείγματος ταχύτητας ανέμου στο ύψος τοποθέτησης της Α/Γ.

ΔV(m/s)	f(%)	
0-1	13,71%	
1-2	5,73%	
2-3	6,94%	
3-4	9,10%	
4-5	9,67%	
5-6	9,11%	
6-7	8,58%	
7-8	7,09%	
8-9	6,31%	
9-10	5,83%	
10-11	4,57%	
11-12	3,48%	
12-13	2,74%	
13-14	1,78%	
14-15	1,28%	
15-16	0,99%	
16-17	0,75%	
17-18	0,59%	
18-19	0,53%	
19-20	0,33%	
20-21	0,32%	
21-22	0,24%	
22-23	0,11%	
23-24	0,06%	
24-25	0,07%	
25-26	0,08%	

Ο υπολογισμός της μέσης ταχύτητας έγινε παίρνοντας την τιμή της συχνότητας και πολλαπλασιάζοντάς την με την μέση τιμή κάθε διαστήματος.

Αθροίζοντας όλες αυτές τις τιμές έχουμε V_{avg} = 6,12 m/s

Ύστερα, από τους παρακάτω τύπους και θεωρώντας πως η θεωρητική τιμή της έντασης ανατάραξης ισούται με την πειραματική τιμή έχουμε:

Ένταση ανατάραξης (Θεωρητική τιμή)

$$I = \begin{cases} \frac{1}{\ln\left(\frac{z}{z_0}\right)} & z_0 \leq 0.20 \mathrm{m} \\ \frac{0.78 - 0.14 \cdot \ln z_0}{\ln\left(\frac{z}{z_0}\right)} & z_0 > 0.20 \mathrm{m} \\ \text{όπου } z_0 \text{ είναι η τοπική τραχύτητα} \end{cases}$$

Ένταση ανατάραξης (Πειραματική τιμή)

$$I = \frac{\sigma_V}{\overline{V}}$$

Προκύπτει για $z_0 = 1$ m , z = 84m

$$\begin{split} I &= 0.176 \\ \text{Ara, } \sigma_v &= I * V_{avg} = 1.077 \text{ m/s} \end{split}$$

2)Προσαρμογή της καμπόλης Weibull στο ίδιο δείγμα.

Για την δημιουργία της καμπύλης Weibull έπρεπε να βρεθούν οι τιμές P(V) για κάθε τιμή ταχύτητας του ανέμου. Αρχικά υπολογίστηκαν οι μεταβλητές x και y. Με την μέθοδο των ελαχίστων τετραγώνων βρέθηκαν τα A,B ούτως ώστε να χρησιμοποιηθούν στον υπολογισμό των k,c στοιχείων απαραίτητων για την συνάρτηση Weibull.

X (In(Vx))	Y(ln(-ln(1- P(V<=Vx)))	WEIBULL
	(111	0%
0	-1,914222269	9,60%
0,693147181	-1,531699685	10,21%
1,098612289	-1,183342226	9,50%
1,386294361	-0,825091416	8,48%
1,609437912	-0,509879406	7,43%
1,791759469	-0,245648655	6,44%
1,945910149	-0,010113699	5,53%
2,079441542	0,183689112	4,73%
2,197224577	0,3626736	4,02%
2,302585093	0,541565223	3,41%
2,397895273	0,699578961	2,89%
2,48490665	0,839261804	2,44%
2,564949357	0,970573369	2,05%
2,63905733	1,073706775	1,73%
2,708050201	1,162861142	1,45%
2,772588722	1,246169593	1,22%
2,833213344	1,323093413	1,02%
2,890371758	1,397618599	0,86%
2,944438979	1,483039721	0,72%
2,995732274	1,552169752	0,60%
3,044522438	1,6423482	0,50%
3,091042453	1,742890044	0,42%
3,135494216	1,811447371	0,35%
3,17805383	1,862179356	0,29%
3,218875825	1,947782081	0,25%
3,258096538	#NUM!	0,20%

Βρέθηκαν, έτσι, A = -2.2963, B = 1.2296, k = 1.2296, c = 6.47

$$\left. \begin{array}{l} y = \ln \left[-\ln \left(1 - P(V \leq V_x) \right) \right] \\ x = \ln V_x \end{array} \right\} \Rightarrow y = -k \cdot \ln c + k \cdot x \quad \text{ pou eíval this morphis} \quad Y = A + B \cdot X \\ c = \exp \left(-\frac{A}{B} \right) \qquad \qquad \text{kal} \qquad \qquad k = B \end{array}$$

Η ταχύτητα του ανέμου ακολουθεί την κατανομή Weibull:

$$P(V) = \frac{k}{c} \cdot \left(\frac{V}{c}\right)^{k-1} \cdot e^{-\left(\frac{V}{c}\right)^k}$$
 όπου \mathbf{k} : παράμετρος σχήματος (1< \mathbf{k} <3) \mathbf{c} : παράμετρος κλίμακας

Προκύπτει λοιπόν η παρακάτω καμπύλη Weibull

3,4)Η καμπύλη αθροιστικής πιθανότητας της ετήσιας έντασης του ανέμου και η ετήσια καμπύλη διάρκειας του ανέμου.

V0(m/s)	f(%)	F(V <v0)< th=""><th>G(V>=V0)</th></v0)<>	G(V>=V0)
0		0%	100%
0,5	13,71%	13,71%	86,29%
1,5	5,73%	19,44%	80,56%
2,5	6,94%	26,38%	73,62%
3,5	9,10%	35,48%	64,52%
4,5	9,67%	45,15%	54,85%
5,5	9,11%	54,26%	45,74%
6,5	8,58%	62,84%	37,16%
7,5	7,09%	69,93%	30,07%
8,5	6,31%	76,24%	23,76%

9,5	5,83%	82,07%	17,93%
10,5	4,57%	86,64%	13,36%
11,5	3,48%	90,12%	9,88%
12,5	2,74%	92,86%	7,14%
13,5	1,78%	94,64%	5,36%
14,5	1,28%	95,92%	4,08%
15,5	0,99%	96,91%	3,09%
16,5	0,75%	97,66%	2,34%
17,5	0,59%	98,25%	1,75%
18,5	0,53%	98,78%	1,22%
19,5	0,33%	99,11%	0,89%
20,5	0,32%	99,43%	0,57%
21,5	0,24%	99,67%	0,33%
22,5	0,11%	99,78%	0,22%
23,5	0,06%	99,84%	0,16%
24,5	0,07%	99,91%	0,09%
25,5	0,08%	99,99%	0,01%

5)Εκτίμηση της ετήσιας θεωρητικής αιολικής ισχύος στην περιοχή του σταθμού

Η ροή ενέργειας Eair' μιας αέριας δέσμης η οποία έχει ταχύτητα V, πυκνότητα ρ και πνέει για χρονικό διάστημα Δt , θα είναι ίση με:

$$Eair' = 1/2 \cdot \rho \cdot V^3 \Delta t$$

Εάν ληφθεί υπόψη και η πυκνότητα πιθανότητας fi, τότε η ροή ενέργειας μιας αέριας δέσμης σε μια περιοχή ταχυτήτων μεταξύ a και b δίνεται σαν:

$$Eair, a-b = 1/2 \cdot \rho \cdot \Delta t \cdot \int V^3 \cdot f(V) \cdot dV$$

οπότε έχουμε:

V	f(V)	f*V^3	Ολοκλήρωμα
0	6,86%	0	
1	9,72%	0,0972	
2	6,34%	0,5068	0,597
3	8,02%	2,1654	
4	9,39%	6,0064	10,117
5	9,39%	11,7375	
6	8,85%	19,1052	48,041
7	7,84%	26,87405	
8	6,70%	34,304	107,270
9	6,07%	44,2503	
10	5,20%	52	175,537
11	4,03%	53,57275	
12	3,11%	53,7408	213,355
13	2,26%	49,6522	
14	1,53%	41,9832	196,222
15	1,14%	38,30625	
16	0,87%	35,6352	153,896
17	0,67%	32,9171	
18	0,56%	32,6592	133,309
19	0,43%	29,4937	
20	0,33%	26	117,756
21	0,28%	25,9308	
22	0,18%	18,634	98,905
23	0,09%	10,34195	
24	0,07%	8,9856	45,992
25	0,08%	11,71875	
26	0,04%	7,0304	41,927

Η ετήσια ροή ενέργειας είναι

 $\begin{aligned} & \text{Eair} = \frac{1}{2}*1.2*8760*(0.597+10.117+48.041+107.27+175.537+213.355+196.222+153.896+133.309+117.756+98.905+45.992+41.927)} = 7058.2 \, \text{kWh/m}^2 \end{aligned}$

Μέση ετήσια ροή ισχύος Pair = Eair / 8760 = 0.8057kW/m^2

6)Μέγιστη παραγωγή ισχύος και επιλογή της κατάλληλης ανεμογεννήτριας

Υπολογίστηκαν οι ώρες έτους ανά διάστημα ταχύτητας ανέμου και πολλαπλασιάζοντας με την ισχύ κάθε Α/Γ πήρα την μέση ισχύ καθώς και την ενέργεια σε kWh κάθε ανεμογεννήτριας.

Για την SIEMENS Β1000:

V(m/s)	P SIEMENS(kW)	Ώρες έτους = f * 8760	Μέση ισχύς διαστήματος (kW) Siemens	Ενέργεια (kWh) Siemens
0	0	1201	0	0,0
1	0	502	0	0,0
2	0	608	0	0,0
3	0	797	12,05	9605,8
4	24,1	847	46,7	39559,2
5	69,3	798	99,65	79524,3
6	130	752	174,55	131193,2
7	219,1	621	276,3	171605,5
8	333,5	553	398,3	220162,7
9	463,1	511	530,6	270981,7
10	598,1	400	664,05	265840,5
11	730	305	788,25	240296,4
12	846,5	240	887,65	213057,3
13	928,8	156	950,7	148240,7
14	972,6	112	981,7	110076,1
15	990,8	87	994	86203,7
16	997,2	66	998,2	65581,7
17	999,2	52	999,5	51658,2
18	999,8	46	999,85	46421,0
19	999,9	29	999,95	28906,6
20	1000	28	1000	28032,0
21	1000	21	1000	21024,0
22	1000	10	1000	9636,0
23	1000	5	1000	5256,0
24	1000	6	1000	6132,0
25	1000	7	0	0,0
>26	0			

Για την ΜΙΟΟΝ ΝΜ60-1000:

V(m/s)	P MICON (kW)	Ώρες έτους = f * 8760	Μέση ισχύς διαστήματος (kW) Micon	Ενέργεια (kWh) Micon
0	0	1201	0	0,0
1	0	502	0	0,0
2	0	608	0	0,0
3	0	797	0	0,0
4	0	847	43,3	36679,1
5	86,6	798	123,235	98346,0
6	159,87	752	199,735	150122,4
7	239,6	621	304,175	188918,2
8	368,75	553	442,45	244566,9
9	516,15	511	582,71	297594,7
10	649,27	400	694	277830,4
11	738,73	305	782,865	238654,8
12	827	240	879,875	211191,1
13	932,75	156	959,625	149632,4
14	986,5	112	992,25	111259,0
15	998	87	1003,5	87027,5
16	1009	66	1004,5	65995,7
17	1000	52	990,75	51205,9
18	981,5	46	968,665	44973,2
19	955,83	29	948,665	27424,0
20	941,5	28	927,25	25992,7
21	913	21	894,6	18808,1
22	876,2	10	857,265	8260,6
23	838,33	5	830,265	4363,9
24	822,2	6	809,225	4962,2
25	796,25	7	0	0,0
>26	0			

Συνολική ενέργεια Micon NM60-1000= <u>2343808.7 kWh</u>

Για την SUZLON S.62/1000:

V(m/s)	P SUZLON	Ώρες έτους = f * 8760	Μέση ισχύς διαστήματος (kW) Suzlon	Ενέργεια (kWh) Suzlon
0	0	1201	0	0,0
1	0	502	0	0,0
2	0	608	5,5	3343,7
3	11	797	18,5	14747,5
4	26	847	54,5	46166,5
5	83	798	118,5	94567,3
6	154	752	199,5	149945,8
7	245	621	308,5	191604,4
8	372	553	468,5	258966,2
9	565	511	661,5	337833,3
10	758	400	825,5	330474,1
11	893	305	946,5	288538,6
12	1000	240	1000	240024,0
13	1000	156	1000	155928,0
14	1000	112	1000	112128,0
15	1000	87	1000	86724,0
16	1000	66	1000	65700,0
17	1000	52	1000	51684,0
18	1000	46	1000	46428,0
19	1000	29	1000	28908,0
20	1000	28	1000	28032,0
21	1000	21	1000	21024,0
22	1000	10	1000	9636,0
23	1000	5	1000	5256,0
24	1000	6	1000	6132,0
25	1000	7	0	0,0
>26	0			

Συνολική ενέργεια Suzlon S.62/1000= $\underline{2573791.4~kWh}$

Ανεμογεννήτρια με την μεγαλύτερη παραγωγή συνολικής ενέργειας είναι η Suzlon S.62/1000. Αναμενόμενο καθώς μπορεί να παράγει μεγαλύτερη ισχύ από τις άλλες δυο, ειδικά στις μέσες και χαμηλές ταχύτητες ανέμου.