CS3102 Theory of Computation

Closure Properties of Regular Languages

- Complement
- Intersection
- Union
- Difference
- Reversal
- Concatenation

Closed Under reversal

- Show that the regular languages are closed under reversal
- L^R is the language of all strings from L backwards
 - $-L = \{s \in \{a, b\}^* \mid \text{all a's come before all b's} \}$
 - $-L^R = \{s \in \{a, b\}^* \mid \text{all b's come before all a's}\}$

Let's Draw it!

 ${s \in {a,b}^* \mid \text{all a's come before all b's}}$

How to do reversal

Problem(s)?

- "reverse" the automaton
- Final states become start states
- Start state becomes final
- Reverse direction of all arrows

Nondeterminism

Driving to a friend's house Friend forgets to mention a fork in the directions Which way do you go?

Nondeterminism in computation

- Your computer/machine/algorithm can "be in two places at once"
- Public static boolean isComposite(int n){
 for(int i = 2; i < n; i++){
 if(n % i == 0){
 return true;
 }
 }
 return false;</pre>
- We don't know which value might divide n, so we try each possibility one at a time
- Nondeterministic approach: let i take all values at once, return true if any divide n

Nondeterminism in Automata

- Your machine can be in multiple states at once
- Accepts if any if the states it ends in are accepting states
- Relax restrictions:
 - Exactly one transition per symbol (can make multiple without consuming a symbol)
 - There must be exactly one outgoing transition for each symbol for every state (will allow 0 to many of them)
- Keep restriction:
 - One start state

Back to Reversal bb Reversed \boldsymbol{a} trash trash a, b*a*, *b* ba's ${\cal E}$ ${\cal E}$ a, btrash start 9

a is Third From Last

• Draw a nondeterministic finite state automaton (NFA) for the language of all strings where their third from last character is an a.

Nondeterministic Finite State Automata

- Basic idea: a NFA is a "machine" that changes states while processing symbols, one at a time.
- Finite set of states:

$$Q = \{q_0, q_1, \dots q_7\} \ (q_1)$$

• Transition function:

 $\delta: 2^{\mathbb{Q}} \times (\Sigma \cup \{\varepsilon\}) \to 2^{\mathbb{Q}}$

• Initial state:

 $q_0 \in Q$

• Final states:

- $F \subseteq Q$
- Finite state automaton is $M = (Q, \Sigma, \delta, q_0, F)$
- Accept if any states we end in are Final, otherwise Reject only when none of the states are final
- If no transition defined, that "branch" rejects

 q_4

 q_1

Union using Non-Determinism

Introduce a new start state, arepsilon transition to original start states.

Union using Non-Determinism Introduce a new start state, ε transition to original start states.

Closed Under Concatenation

- Show that the regular languages are closed under Concatenation
- Given we have FSAs for L_1 and L_2 , find one for $L_1 \cdot L_2$
- Idea: when processing a string, any time we see the current prefix is from L_1 , check if suffix is from L_2 .
- The prefix is from L_1 whenever M_1 is in a final state
- Add ε -transitions from each final state of M_1 to start state of M_2
- Make all final states from M_1 non-final

Example: EvenA·OddB

Closed under Kleene Star

- Once you have a prefix in the language, you may or may not start another one.
- Always contains the empty string
- Given a FSA for L_1 , give one for L_1^st
- Draw ε -transitions from every final state to the start state.
- Add new final state for ε , with an ε -transition from the start state

EvenAOddB*

NFAs = DFAs

- We can convert any NFA into a DFA
- Powerset Construction
 - Idea: Make a new DFA whose states each represent a subset of states from the original machine.

Nondeterministic Finite State Automata

- Basic idea: a NFA is a "machine" that changes states while processing symbols, one at a time.
- Finite set of states:
- $Q = \{q_0, q_1, \dots q_7\}$ $\delta: 2^Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow$ Transition function:
- Initial state:
- Final states:

- $q_0 \in Q$
- $F \subseteq Q$
- Finite state automaton is $M = (Q, \Sigma, \delta, q_0, F)$
- Accept if any states we end in are Final, otherwise Reject only when none of the states are final
- If no transition defined, that "branch" rejects

 q_4

 q_1

Powerset Construction

 $Q_{power} = 2^Q$ $\delta_{power}(q_1, \sigma) = \bigcup_{q \in q_1} \delta(q, \sigma)$ (all states that any active state transitions to) $q_{o,power}$ = everything reachable from q_0 $F_{power} = \{\text{any state containing something from } F\}$ These states are unreachable. b a, b2,3 b1,2,3 a, b20

Regular Expressions

- A way to describe strings using operations on characters
- Pieces:
 - Literals: Characters from Σ , ε All finite languages are regular!
 - Concatenation (R_1R_2) Preserves Regularity!
 - Union $(R_1 + R_2)$ Preserves Regularity!
 - Kleene Star (R^*) Preserves Regularity!
 - One or more (R^+) , same as RR^* Preserves Regularity!
- Example: $aa(a + b)^*bb$
 - Any string that starts with 2 a's and ends with 2 b's
- Why can we only get regular languages?

Regex to NFA

All literal regular expressions have an FSA:

If regular expressions R and S have FSAs, then so do:

Kleene closure

Regex to NFA

Ex: all strings over $\{a, b\}$ where there is a "b" preceding an "a"

NFA to Regex