MASTER EN FINANZAS Y DIRECCIÓN FINANCIERA

Actividad evaluativa
OPTIMIZACIÓN DE
CARTERAS (PYTHON)

METODOLOGIA DE TRABAJO

1 ESTABLECER OBJETIVO

> IBEX 35 SP500

PRIMERA
SELECCIÓN DE
ACTIVOS
DIVERSIFICACIÓN

3 10 MEJORES ACTIVOS Rendimiento VS Riesgo

PESOS OPTIMOS
Optimización
cuadrática del
ratio de Sharpe
(media-varianza
con tasa libre de

riesgo)

OBJETIVO

UNA CARTERA QUE MEJORE LOS RENDIMIENTOS DE:

S&P 500

R = 18.81%

 $\sigma = 18.37$

Indice Sharpe: 0.905

R = 15.42%

 $\sigma = 18.56$

Indice Sharpe: 0.714

PRIMERA SELECCIÓN DE ACTIVOS (60)

MERCADOS DIVERSIFICADOS

EE UU

AAPL Apple
MSFT Microsoft

GOOGL Alphabet (Google)

AMZN Amazon NVDA NVIDIA COST Costco TSLA Tesla

NEE NextEra Energy

PG Procter & Gamble

KO Coca-Cola
MCD McDonald's
VRTX Vertex Pharma
MA Mastercard
WMT Walmart
MSCI MSCI Inc.

PFE Pfizer

UNH UnitedHealth BTC-USD Bitcoin (USD)

INTC Intel
NFLX Netflix

EUROPA

SIE.DE Siemens MC.PA LVMH

ASML.AS ASML Holdings

NOVN.SW Novartis

SAP.DE SAP SE

TTE.PA TotalEnergies

ULVR.L Unilever

SAN.MC Banco Santander

BBVA.MCBBVA
IBE.MC Iberdrola
NESN.SW Nestlé

VOW3.DE Volkswagen

CS.PA AXA

SU.PA Schneider Electric

ROG.SW Roche

AD.AS Koninklijke Ahold

KER.PA Kering
HEIA.AS Heineken
LULU Lululemon
OR.PA L'Oréal
REP.MC Repsol

CHINA

BABA Alibaba
JD JD.com
BIDU Baidu
NIO NIO Inc.
PDD Pinduoduo
0700.HK Tencent
3690.HK Meituan
0175.HK Geely Auto
1211.HK BYD Company

NTES NetEase

SOSTENIBLES

NEE NextEra Energy

FSLR First Solar

ENPH Enphase Energy PLUG Plug Power

SEDG SolarEdge

ORSTED.CO Ørsted

BEP Brookfield Renewable

VWS.CO Vestas Wind

RUN Sunrun

ORA Ormat Tech

PRIMERA SELECCIÓN DE ACTIVOS

Altura de la barra azul (retorno): Cuanto más alta, mayor fue la rentabilidad media anual

Tamaño de la barra de error (volatilidad): Cuanto más larga, más variable fue su rendimiento → más riesgo.

Activos con buena relación riesgo-retorno: Tienen una barra azul alta y una barra de error corta (alta rentabilidad, bajo riesgo).

Activos negativos: Barras que bajan del eje horizontal: retorno promedio negativo

PRIMERA SELECCIÓN DE ACTIVOS

MERCADOS DIVERSIFICADOS


```
# Filtrar activos que cumplen con
los criterios
candidatos = media[(media > 0.12) &
  (desviacion < 0.4)]</pre>
```

Resultado= 29 activos

10 mejores Activos

Rentabilidad- Riesgo

Correlación promedio entre activos: 0.27

PESOS OPTIMOS

$$ext{Sharpe} = rac{R_p - R_f}{\sigma_p}$$

Deriva directamente de Harry Markowitz y su modelo de media-varianza, usando el ratio Sharpe.

Es el rendimiento extra que obtienes por cada unidad de riesgo asumido.

- •Más alto → Mejor relación entre rentabilidad y riesgo.
- •Más bajo o negativo → La rentabilidad no compensa suficientemente el riesgo.

Restricciones realistas:

Pesos entre 0 y 1: no permites ventas en corto Suma de pesos = 1

Scipy.optimize.minimize con 'SLSQP'

Método de optimización cuadrática secuencial

Se ha definido como objetivo la maximización del ratio de Sharpe

```
# Función objetivo: minimizar la Sharpe ratio negativa
def sharpe negativa(pesos, media, cov, rf=rf ):
    ret = np.dot(pesos, media) # Rentabilidad esperada de la cartera (media ponderada)
    vol = np.sqrt(np.dot(pesos.T, np.dot(cov, pesos)))#Volatilidad total de cartera
    sharpe = (ret - rf) / vol # Cálculo del ratio de Sharpe
    return -sharpe # Se devuelve el negativo porque se desea maximizar el Sharpe (y
minimize solo minimiza)
# Restricción: los pesos deben sumar 1 (100% del capital invertido)
restricciones = {'type': 'eq', 'fun': lambda x: np.sum(x) - 1}
# Límites de los pesos: cada peso entre 0 y 1 (sin ventas en corto)
limites = tuple((0, 1) for _ in range(num_activos))
# Pesos iniciales: todos los activos con el mismo peso al inicio (1/N)
pesos iniciales = np.array([1/num activos] * num activos)
# Optimización para encontrar los pesos óptimos que maximizan el ratio de Sharpe
resultado = minimize(
                                 # Función objetivo
    sharpe negativa,
                                 # Punto de partida
    pesos iniciales,
    args=(media anual, cov anual),# Parámetros de la función
    method='SLSOP',
                                 # Método de optimización cuadrática secuencial
    bounds=limites,
                                 # Límites permitidos para cada peso
    constraints=restricciones
                                 # Restricción de suma de pesos = 1
```

PESOS OPTIMOS

Distribución de pesos en la cartera óptima

CARTERA 007

Activo	Peso óptimo (%)	País	Sector
COST	27.29	USA	Retail / Mayoristas (Costco)
CS.PA	19.53	Francia	Seguros (AXA)
WMT	12.53	USA	Retail (Walmart)
BBVA.MC	12.26	España	Banca (BBVA)
AAPL	10.47	USA	Tecnología (Apple)
NOVN.SW	8.48	Suiza	Farmacéutica (Novartis)
SIE.DE	5.24	Alemania	Industria / Tecnología (Siemens)
MCD	2.5	USA	Restauración rápida (McDonald's)
PG	1.71	USA	Bienes de consumo (Procter & Gamble)
КО	0	USA	Bebidas / Consumo (Coca-Cola)

Rentabilidad esperada anual: 27.01% Volatilidad esperada anual: 15.64% Sharpe ratio de la cartera: 1.59

PESOS OPTIMOS

Riesgo vs Rentabilidad - Comparación cartera e índices

	Rentabilidad anual (%)	Volatilidad anual (%)	Sharpe Ratio
^GSPC	18.81	18.37	0.91
^IBEX	15.43	18.56	0.71
SPY	21.15	17.97	1.06
IQQ0.DE	12.12	11.46	0.87
Cartera 007	27.01	15.64	1.59

CONCLUSIONES Y OPORTUNIDAD DE MEJORA

- Los resultados de la diversificación han sido efectivos.
- Mucha escalabilidad al trabajar en un entorno Python.
- Para intentar mejorar el resultado, se podría utiliza un Clustering de activos para seleccionar subconjuntos menos correlacionados.
- Se podrían incorporar ratios fundamentales para la selección de activos con mejor salud financiera, para no basarnos solo en rentabilidades pasadas que pueden caer en el corto/mediano plazo.