

Jurnal Informatika Ekonomi Bisnis

http://www.infeb.org

No. 2 2021 Vol. 3 Hal: 66-71 ISSN: 2714-8491 (electronic)

Sistem Pakar dengan Metode Backward Chaining untuk Optimalisasi Layanan Helpdesk E-Government

Popi Hariona^{1⊠}

¹Universitas Putra Indonesia YPTK Padang

phariona@gmail.com

Abstract

The e-Government helpdesk service is an assistance service to deal with user needs related to disturbances and problems that occur both infrastructure and networks, applications and information systems as well as information security that occur in the Payakumbuh City Government. At this time most of the complaints that come to the front office helpdesk always need technicians to handle them, despite the limited number of technicians for handling e-Government problems in Payakumbuh City. This study aims to optimize e-Government Helpdesk services so that services can be carried out without direct technician intervention. The data used in this research is the disturbance report data that goes to the e-Government helpdesk service of Payakumbuh City during the last 11 months from 33 Regional Devices in Payakumbuh City and the stages of problem solving by technicians. This study uses the backward chaining method to identify the causes of disruption to e-Government services. The results achieved in this study are as many as 21 rules that can be applied directly to helpdesk services, with an accuracy rate of 92%. The rules generated by the backward chaining method can be used to optimize the resolution of disturbances that enter the helpdesk by the front office without waiting for the technician.

Keywords: Expert System, Helpdesk, Backward Chaining, E-Government, Payakumbuh City.

Abstrak

Layanan helpdesk e-Government merupakan layanan bantuan untuk menangani kebutuhan user terkait dengan gangguan dan permasalahan yang terjadi baik itu infrastruktur dan jaringan, aplikasi dan sistem informasi serta keamanan informasi yang terjadi di Pemerintah Kota Payakumbuh. Pada saat ini sebagian besar pengaduan yang masuk pada front office helpdesk selalu membutuhkan teknisi dalam penanganannya, meskipun adanya keterbatasan jumlah teknisi untuk penanganan permasalahan e-Government di Kota Payakumbuh. Penelitian ini bertujuan untuk optimalisasi Layanan Helpdesk e-Government sehingga dapat dilakukan pelayanan tanpa campur tangan teknisi secara langsung. Data yang digunakan pada penelitian ini adalah data laporan gangguan yang masuk ke layanan helpdesk e-Government Kota Payakumbuh selama 11 bulan terakhir dari 33 Perangkat Daerah yang ada di Kota Payakumbuh dan tahapan-tahapan penyelesaian permasalah oleh teknisi. Penelitian ini menggunakan metode backward chaining untuk mengidentifikasi penyebab terjadinya gangguan layanan e-Government. Hasil yang dicapai penelitian ini adalah sebanyak 21 Rule yang dapat diaplikasikan secara langsung pada layanan helpdesk, dengan tingkat akurasi sebesar 92%. Rule yang dihasilkan dengan metode backward chaining dapat digunakan untuk optimalisasi penyelesaian gangguan yang masuk ke helpdesk oleh front office tanpa menunggu teknisi.

Kata kunci: Sistem Pakar, Helpdesk, Backward Chaining, E-Government, Kota Payakumbuh.

© 2021 INFEB

1. Pendahuluan

Dinas Komunikasi dan Informatika Kota Payakumbuh merupakan ujung tombak kesuksesan penyelenggaraan e-government di Kota Payakumbuh yang berperan Salah satu upaya yang dilakukan oleh Dinas

penyelenggaraan e-government dari berbagai perangkat daerah dan ASN yang ada di lingkungan pemerintahan Kota Payakumbuh.

sebagai penyedia dan pengelola infrastruktur e- Komunikasi dan Informatika untuk peningkatan government. Peningkatkan kualitas layanan publik pelaksanaan e-government adalah dengan menyediakan dengan efektif dan efisien merupakan tujuan layanan helpdesk. Helpdesk adalah bagian organisasi pelaksanaan e-government [1]. Penyelenggaraan e- yang memberikan solusi atau menyelesaikan sebuah government tidak terlepas dari berbagai kendala dan masalah yang dialami pelanggan atau pengguna baik itu permasalahan baik dari segi sarana prasarana, dari pihak internal maupun eksternal. Helpdesk sumberdaya manusia dan terbatasnya tenaga ahli dalam merupakan layanan satu titik kontak yang dipusatkan pelaksanaannya. Hal tersebut menyebabkan munculnya untuk masalah layanan pelanggan [2]. Seiring banyak keluhan dan permintaan bantuan terhadap perkembangannya helpdesk tidak terpisahkan dari

Diterima: 15-09-2020 | Revisi: 14-01-2021 | Diterbitkan: 30-06-2021 | DOI: 10.37034/infeb.v3i2.68

layanan dan bertanggungjawab fungsi penyelesaian permasalahan dan pemenuhan kepuasan user [3].

Saat ini sebagian besar pengaduan yang masuk pada front-office helpdesk selalu membutuhkan teknisi dalam penanganannya. Jumlah teknisi yang ada sangat terbatas sedangkan permintaan layanan helpdesk cukup banyak dan harus ditangani sesegera mungkin agar tidak mengganggu penyelenggaran pemerintahan. Oleh sebab itu dibutuhkan suatu Sistem Pakar layanan helpdesk e-government. Sistem Pakar merupakan sistem yang mengandung pengetahuan dan pengalaman oleh satu atau banyak pakar yang dimasukkan ke dalam suatu area pengetahuan tertentu agar setiap orang dapat menggunakannya dalam memecahkan masalah yang spesifik [4].

Untuk penyelesaian permasalahan dengan sistem pakar ini digunakan metode backward chaining. Pada backward chaining yang merupakan goal driven, sistem akan memulai proses pencarian dari tujuan atau solusi permasalahan yang dihadapi, kemudian dari kaidahkaidah yang diperoleh, masing-masing kesimpulan di runut balik jalur yang mengarah pada kesimpulan tersebut [5]. Backward-chaining menggunakan algoritma pencarian depth-first yang akan bekerja mundur dari query-nya [6].

Metode backward chainning dipilih karena sebelumnya telah menunjukan hasil yang cukup baik. Sistem Pakar dengan metode backward chaining dapat digunakan untuk mendiagnosa dan menyelesaikan permasalahan kerusakan hardware komputer [7]. Selain itu Sistem Pakar dengan metode backward chaining juga dapat mempermudah pendiagnosaan gejala-gejala kerusakan pada jaringan LAN, WiFi, dan sharing yang mengalami Langkah awal dan penting dalam penelitian adalah gangguan [8]. Backward chaining juga dapat menyelesaikan kasus penyelesaian permasalahan sengketa tanah dengan pendekatan penyebab sengketa tanah [9]. Serta dapat digunakan dalam pendiagnosaan penyakit menular seksual pada manusia.

Untuk itu dibangunlah Sistem Pakar Helpdesk E-Government untuk mengoptimalisasikan layanan egovernment yang ada di Kota Payakumbuh. Penggunaan metode backward chaining digunakan karena memiliki efektifitas lebih baik pada jenis permasalahan yang terjadi di helpdesk e-government.

2. Metodologi Penelitian

Peneliti menggunakan kerangka kerja penelitian untuk menguraikan metodologi penelitian yang digunakan dalam menyelesaikan masalah penelitian. Tahapan yang digunakan dalam penelitian ini dapat dilihat pada sumber seperti buku, jurnal, paper dan situs-situs dari Gambar 1.

Gambar 1. Kerangka Kerja Penelitian

2.1. Mengidentifikasi Masalah

dengan melakukan perumusan masalah dari masalah yang ditemukan pada objek penelitian dan memberi batasan dari permasalahan yang akan diteliti supaya lebih terarah.

2.2. Menentukan Tujuan

Tujuan penelitian diperlukan supaya penelitian tidak menyimpang dari tujuan yang ingin dicapai dan memperjelas ruang lingkup serta batasan masalah sehingga didapatkan hasil yang optimal.

2.3. Mempelajari Literatur

Untuk dapat mencapai tujuan penelitian perlu dipelajari literatur-literatur yang nantinya digunakan dalam penyelesaian permasalahan. Teori-teori vang berhubungan dengan sistem pakar dengan metode backward Chaining yang diperoleh dari berbagai internet.

2.4. Mengumpulkan Data

Pengumpulan data pada penelitian ini dilakukan dengan

a. Observasi langsung di tempat penelitian;

b. Wawancara dengan pakar;	Tabel 1. Jenis Permasalahan		
c. Identifikasi permasalahan;	No	Kode	Nama Permasalahan
d. Pemahaman dan analisa;		Permasalahan	
e. Studi kepustakaan.	1	M01	Presensi tidak terbaca
2.5. Menganalisa Data dengan Metode Backward		M02	Pindah lokasi absen
Chaining	3	M03	Tidak bisa absen
Chaming		M04	Absen non OPD
Metode yang digunakan didalam perancangan masalah	5	M05	Tidak bisa login aplikasi e-
adalah metode backward chaining yang memiliki			Kinerja
aturan berbentuk IF-THEN dan proses pencarian	6	M06	Tidak bisa input aktifitas
dimulai dari tujuan yang menjadi solusi masalah yang			aplikasi e-Kinerja
dihadapi. Langkah-langkah yang dilakukan didalam	7	M07	Tambahan Penghasilan
penyelesaian masalah dengan metode backward			Pegawai (TPP) kurang di
chaining, yaitu:			aplikasi e-Kinerja
1. Membuat basis pengetahuan;	8	M08	Tidak bisa login aplikasi e-
2. Menentukan tabel keputusan pakar;			SPPD
3. Menentukan rule/aturan;	9	M09	Data salah di aplikasi e-SPPD
4. Menentukan goal/solusi;	10	M10	Pembatalan Telahanan Staf
5. Membuat pohon pelacakan.			(TS)
2.6. Merancang Sistem		M11	Mesin Finger tidak terhubung
		M12	Jaringan Internet terputus

Proses perancangan sistem terdiri dari: perancangan struktur data, program, format masukkan (input), dan Didapatkan 12 jenis permasalahan yang masuk ke format keluaran (output).

2.7. Implementasi Hasil

yang sudah disusun menjadi sistem yang dapat gejala yang diberi kode S01 sampai dengan S34 seperti dioperasikan.

2.8. Pengujian Hasil

Tahapan yang membandingkan hasil ouput dari Sistem Pakar dengan hasil perhitungan manual dengan menggunakan metode backward chaining.

3. Hasil dan Pembahasan

3.1. Analisa Data

Data yang digunakan pada penelitian ini adalah data laporan gangguan dan permasalahan yang masuk ke Helpdesk E-Government Dinas Komunikasi dan Informatika Kota Payakumbuh dari Juli tahun 2019 sampai dengan Juni 2020 yang terdiri dari jenis permasalahan, gejala yang terjadi dan solusi terhadap permasalahan yang terjadi. Selain itu data didapat dari hasil wawancara dengan teknisi infrastruktur dan programer aplikasi.

helpdesk e-government, setiap jenis permasalahan diberi kode M01 sampai dengan M12 seperti dapat dilihat di Tabel 1. Sedangkan untuk gejala-gejala Merupakan tahap mengimplementasikan rancangan penyebab terjadinya permasalahan didapatkan 34 jenis pada Tabel 2.

		Tabel 2. Data Jenis Gejala
No	Kode	Nama Gejala
	Gejala	·
1	S01	Absen tidak masuk ke aplikasi
		Presensi
2	S02	Absen diluar jadwal, Absen pagi
		diluar jam 06.30 s.d 08.00 atau absen
		sore diluar jam 15.00 s.d 20.00
3	S03	Mesin tidak terhubung internet atau
		mesin mati saat penarikan data
4	S04	Daftar kerja shif belum di entri
5	S05	Yang bersangkutan tidak absen
6	S06	Absen di tempat lama masih terbaca
7	S07	Ada surat tugas pindah tugas ke
		tempat lain
8	S08	Ada mesin finger di tempat baru
9	S09	Belum rekam finger
10	S10	Tidak absen di tempat seharusnya
11	S11	Data absen belum dipindahkan
12	S12	Data belum di update
13	S13	Salah input username dan password
14	S14	Sudah pernah login di perangkat
		tertentu
15	S15	Ganti perangkat handphone
16	S16	Belum Update aplikasi
17	S17	Belum entri SKP
18	S18	SKP belum disetujui atasan
19	S19	Absen presensi belum masuk
20	S20	Anjab yang dipilih belum ada
		aktifitas
21	S21	Aktifitas belum penuh
22	S22	Nilai dari atasan kurang
23	S23	Salah username dan password lebih
		dari 3 kali
24	S24	Data user belum ada
25	S25	Baru mutasi jabatan
26	S26	Ada kesalahan data di database
27	S27	Parent_id salah
28	S28	TS Sudah disetujui sampai Walikota
29	S29	Ada pemberitahuan dilarang
		melakukan perjalanan Dinas
30	S30	Mesin finger mati
31	S31	Koneksi internet mesin finger
		terputus
32	S32	Terdapat icon LAN Silang atau seru
33	S33	Perangkat disambar petir
24	S34	Data Finger tidak connect dengan
		Database atau tidak bisa membuka
		SIPKD

Dari Jenis permasalahan yang didapatkan dan gejalagejala pendukungnya disusunlah aturan/rule yangmenghubungkannya. Dari data diatas didapatkan 21 rule yang menggunakan metode backward chaining. Rule yang dihasilkan dapat dilihat pada Tabel 3.

Tabel 3. Rule				
No	Rule			
1	IF S01 is true AND S02 is true THEN M01			
2	IF S01 is true AND S03 is true THEN M01			
3	IF S01 is true AND S04 is true THEN M01			
4	IF S01 is true AND S05 is true THEN M01			
5	IF S06 is true AND S07 is true AND S08 is			
	true THEN M02			
6	IF S09 is true THEN M03			
7	IF S10 is true AND S11 is true THEN M03			
8	IF S11 is true AND S12 is true THEN M04			
9	IF S13 is true THEN M05			
10	IF S14 is true AND S15 is true THEN M05			
11	IF S16 is true THEN M05			
12	IF S05 is true AND S19 is true THEN M06			
13	IF S17 is true AND S18 is true AND S20 is			
	true THEN M06			
14	IF S21 is true AND S22 is true THEN M07			
15	IF S13 is true AND G23 is true THEN M08			
16	IF S24 is true THEN M08			
17	IF S25 is true AND S26 is true AND S27 is			
	true THEN M09			
18	IF S28 is true AND S29 is true THEN M10			
19	IF S30 is true AND S31 is true THEN M11			
20	IF S32 is true AND S34 is true THEN M12			

Contoh perhitungan backward chaining dengan kasus yang masuk ke helpdesk:

IF S32 is true AND S33 is true THEN M12

Tabel 4. Pengujian Data Pelapor 1

No	Permasalahan	Gejala	Rule	Terbukti
1	M01	S01, S02	IF	P01
			S01	
			AND	
			S02	

Pada Tabel 4 berdasarkan laporan permasalahan yang masuk didapatkan goal bahwa Absen tidak terbaca fakta, dan didapatkan gejala Absen tidak masuk ke aplikasi presensi (S01) dan absen di luar jadwal (S02), rule yang memiliki kondisi terpenuhi adalah rule ke-1 yaitu "IF S01 is true AND S02 is true THEN M01. Maka dapat disimpulkan hasil laporan dari pelapor 1 adalah benar mengalami absen tidak terbaca (M01).

Tabel 5. Pengujian Data Pelapor 2

No	Permasalahan	Gejala	Rule	Terbukti
1	M07	S21,	IF	M07
		S22	S21	
			AND	
			S22	

Pada Tabel 5 Berdasarkan laporan permasalahan yang masuk didapatkan goal bahwa Besaran TPP kurang di aplikasi e-Kinerja, dan didapatkan gejala Aktifitas belum penuh (S21) dan nilai dari atasan kurang (S22), rule yang memiliki kondisi terpenuhi adalah rule ke-14 yaitu "IF S21 is true AND S22 is true THEN M07. Maka dapat disimpulkan hasil laporan dari pelapor 2 adalah benar Besaran TPP Kurang (M07).

21

Tabel 6. Pengujian Data Pelapor 3

No	Permasalahan	Gejala	Rule	Terbukti
1	M10	S28, S29	IF	M10
			S28	
			AND	
			S29	

Berdasarkan laporan permasalahan yang masuk didapatkan goal bahwa ada permintaan Pembatalan Telaahan Staf (TS), dan didapatkan gejala TS Sudah disetujui sampai Walikota (S28) dan ada pemberitahuan dilarang melakukan perjalanan Dinas (S29), rule yang memiliki kondisi terpenuhi adalah rule ke-18 yaitu "IF S28 is true AND S29 is true THEN M10. Maka dapat disimpulkan hasil laporan dari pelapor 3 adalah benar Pembatalan TS (M10).

3.2. Pengujian Hasil

Penelitian ini digunakan untuk optimalisasi layanan helpdesk dengan meningkatkan keakuratan diagnosa laporan permasalahan yang masuk ke helpdesk. Pengujian dilakukan terhadap 25 sample data laporan permasalahan yang masuk ke helpdesk. Nilai presentase akurasi dapat dihitung menggunakan persamaan:

$$Akurasi = \frac{\textit{Jumlah Akurat}}{\textit{Jumlah Data}} x \ 100\%$$

Tabel 7. Hasil Validasi Sample Data

No	Data Pelapor	Permasalahan	Hasil
1	Pelapor 1	M01	Valid
2	Pelapor 2	M01	Valid
3	Pelapor 3	M01	Valid
4	Pelapor 4	M01	Valid
5	Pelapor 5	M02	Valid
6	Pelapor 6	M02	Valid
7	Pelapor 7	M02	Valid
8	Pelapor 8	M03	Valid
9	Pelapor 9	M03	Valid
10	Pelapor 10	M04	Valid
11	Pelapor 11	M04	Valid
12	Pelapor 12	M05	Valid
13	Pelapor 13	M05	Tidak Valid
14	Pelapor 14	M05	Valid
15	Pelapor 15	M05	Valid
16	Pelapor 16	M06	Valid
17	Pelapor 17	M06	Tidak Valid
18	Pelapor 18	M07	Valid
19	Pelapor 19	M07	Valid
20	Pelapor 20	M08	Valid
21	Pelapor 21	M08	Valid
22	Pelapor 22	M09	Valid
23	Pelapor 23	M09	Valid
24	Pelapor 24	M10	Valid
25	Pelapor 25	M10	Valid

Berdasarkan Tabel 7 maka didapatlah 23 hasil yang akurat antara hasil perhitungan manual dengan pengujian sistem dan 2 hasil perhitungan yang tidak akurat, senhingga didapatkan tingkat akurasi:

$$Akurasi = \frac{\textit{Jumlah Akurat}}{\textit{Jumlah Data}} \times 100\% = \frac{23}{25} \times 100\% = 92\%$$

Dari perhitungan diatas disapatkan bahwa hasil pengujian sistem pakar ini menghasilkan tingkat akurasi sebesar 92%.

3.3. Implementasi Sistem

Sistem Pakar Helpdesk E-Government dibuat berbasis web dan penggunanya merupakan front office helpdesk yang menerima laporan gangguan dan permasalahan dari pengguna dan pemakai sistem e-government. Tampilan awal Sistem Pakar Helpdesk E-Government dapat dilihat pada Gambar 2.

Gambar 2. Halaman Utama Sistem Pakar

-Pada halaman awal ini user melakukan login ke -aplikasi dan dapat melakukan pelaporan permasalahan -dan pencocokan dengan gejala yang terjadi.

Gambar 3. Pelaporan Permasalahan dan Verifikasi Gejala

_Untuk proses tambah pelapor tahapan awal yang harus _dilakukan adalah dengan memilih data pelapor dari data _PNS yang sudah ada di database, setelah dipilih akan tampil Nama PNS, Jabatan PNS dan Pangkat PNS yang melakukan pelaporan. Setelah itu dipilih permasalahan yang diberitahukan oleh pelapor dari daftar permasalahan yang ada. Pada saat permasalahan dipilih maka akan keluar pertanyaan gejala-gejala pendukung yang berkaitan dengan permasalahan yang dipilih. Langkah selanjutnya adalah memilih gejala yang terjadi _dengan pertanyaan yang diajukan terhadap pelapor, kemudian data pelapor dapat disimpan.

Gambar 4. Tampilan Laporan Permasalahan yang Terbukti Beserta Solusi

Apabila permasalahan yang dilaporkan cocok dengan gejala yang terjadi maka permasalahan yang dilaporkan terbukti kebenarannya dan akan ditampilkan solusi terhadap permasalahan yang terjadi.

4. Kesimpulan

Sistem Pakar Helpdesk E-Government dengan metode [6] Akil, I. (2017). Analisis Efektifitas Metode Forward Chaining backward chaining dapat diterapkan untuk memberikan dan mengoptimalisasi layanan helpdesk e-government. Dengan Sistem Pakar Helpdesk E-Government dapat [7] membantu petugas front office dalam penyelesaian laporan permasalahan yang masuk ke helpdesk egovernment tanpa harus menunggu teknisi terkait.

Daftar Rujukan

[1] Hawa, P., & Salomo, R. V. (2020). Kesiapan Digitalisasi Layanan Sistem Pemerintahan Berbasis Elektronik Pada Badan Pengkajian dan Penerapan Teknologi (BPPT). Restorica: Jurnal

- Ilmiah Ilmu Administrasi Negara dan Ilmu Komunikasi, 6(1), 8 -19. DOI: https://doi.org/10.33084/restorica.v6i1.1251 .
- [2] Pamnungkas, R. W. P., Alexander, A. D., & Reza, A. (2019). Perancangan Sistem Informasi Helpdesk Menggunakan Website Design Methode dalam Mendukung Tata Kelola Teknologi Informasi. J-SAKTI (Jurnal Sains Komputer dan Informatika), 3(2), 201-211. DOI: http://dx.doi.org/10.30645/j-sakti.v3i2.141.
- [3] Alfian, A., Dewi, Y. N., Fibriany, F. W., Rianto, H., & Sari, A. M. (2020). Rancang Bangun Sistem Informasi Ticketing Helpdesk pada DPMPTS Pemprov DKI Jakarta. JURIKOM Komputer), 7(2), (Jurnal Riset 334-340 DOI: http://dx.doi.org/10.30865/jurikom.v7i2.2114
- Darmayunata, Yuvi. (2018). Sistem Pakar Berbasis Web Menggunakan Metode Backward Chaining untuk Menentukan Nutrisi yang Tepat bagi Ibu Hamil. Journal of Information Technology andComputer Science, *1*(2). https://doi.org/10.31539/intecoms.v1i2.302
- [5] Herliana, A., Setiawan, V. A., & Prasetio, R. T. (2018). Penerapan Inferensi Backward Chaining Pada Sistem Pakar Diagnosa Awal Penyakit Tulang. Jurnal Informatika, 5(1), 50-60. DOI: https://doi.org/10.31311/ji.v5i1.2818
- dan Backward Chaining pada Sistem Pakar. Jurnal Pilar Nusa Mandiri, 13(1), 35-42.
- Wijayana, Y. (2019). Sistem Pakar Kerusakan Hardware Komputer dengan Metode Backward Chaining Berbasis Web. Medika Elektrika, 12(2).
- Widianto, F. (2019). Sistem Pakar Troubleshooting Jaringan Komputer Menggunakan Algoritma Backward Chaining. Journal 6(2). Information and Technology, https://doi.org/10.32664/j-intech.v6i02.254
- Sapri, S., & Khairil. (2019). Sistem Pakar Penanganan Kasus Sengketa Tanah Menggunakan Metode Backward Chaining. Jurnal Teknik, 17(2). DOI: https://doi.org/10.37031/jt.v17i2.28