CAPSTONE PROJECT

PROJECT TITLE

Presented By:-Suman Pathy College Name-Nist University Department:- Computer Science

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Create a robust network intrusion detection system (NIDS) using machine learning. The system should be capable of analyzing network traffic data to identify and classify various types of cyber-attacks (e.g., DoS, Probe, R2L, U2R) and distinguish them from normal network activity. The goal is to build a model that can effectively secure communication networks by providing an early warning of malicious activities.

PROPOSED SOLUTION

Develop a machine learning model for analysing network traffic data to identify and classify various types of cyber-attacks and distinguish them from normal network activity. The model can effectively secure communication networks by providing an early warning of malicious activities.

- Key components:
 - Data collection: Data set collection from Kaggle
 - Preprocessing: Clean and normalise the dataset
 - Model training: Train a classification model(e.g, Decision Tree, Random Forest, svm)
 - Evaluation: validate the model using accuracy, precession, recall and F-1 score

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the Network Intrusion Detection system. Here's a suggested structure for this section:

System requirements

- IBM Cloud (mandotory)
- IBM Watson studio for model development and deployment
- IBM Cloud object storage for dataset handiling

ALGORITHM & DEPLOYMENT

Algorithm Selection:

Snap Decision Tree Classifier

Data Input:

Specify the input features used by the algorithm, such as protocol_type, flag, src_bytes, dst_bytes, count, dst_host_srv_rerror_rate

Training Process:

Supervised learing using labeled fauly tpes

Prediction Process:

Model deployed on ibm watson api studio with api endpoint for real time predictions.

RESULT

RESULT

RESULT

CONCLUSION

In this project, i successfully developed a Machine Learning-based Network Intrusion Detection System (NIDS) capable of analyzing network traffic data to detect and classify malicious activities. Using a labeled dataset containing various network features and class labels (normal vs anomaly), the system learned to differentiate between legitimate traffic and potential cyber-attacks.

FUTURE SCOPE

Multi-Class Attack Classification

Upgrade the system to not only detect anomalies but also classify them into specific attack types like DoS, Probe, R2L, and U2R, improving threat identification and response.

Real-Time Intrusion Detection

Integrate with live network monitoring tools and IBM Event Streams to detect and respond to threats in real time, enhancing the system's practical applicability.

Explainable Al Integration

Use explainability tools such as SHAP or LIME to make the model's decisions transparent, enabling better trust and understanding by security analysts.

IBM CERTIFICATIONS

IBM CERTIFICATIONS

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

SUMAN PATHY

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 25 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

