Analysing Duration Data

Professor Vernon Gayle

AQMEN

University of Edinburgh

March 2019

© Vernon Gayle

Alternative terminology

- Duration models
- Survival models
- Cox regression
- Cox models
- Failure time analysis
- Hazard models
- Event history analysis

Models for duration data allow the data analyst to assess the relative influence of a number of explanatory factors upon how long it takes for an event to occur

Original paper Cox (1972)

Applications

- Study the lifetimes of machine components in engineering
- Duration of unemployment in economics
- Time taken to complete cognitive tasks in psychology
- Lengths of tracks on a photographic plate in particle physics
- Survival times of patients in clinical trials

Research Examples

Heckman and Borjas (1980) used duration modelling approaches to study unemployment

Blossfeld and Hakim (1997) studied female part-time employment

Mulder and Smits (1999) investigated first time home ownership

Lillard et al. (1995) studied premarital cohabitation and subsequent marital dissolution

Research Examples

Kiernan and Mueller (1998) undertook an analysis of divorce using the BHPS and the NCDS

Boyle et al. (2008) examined union dissolution using the Austrian Family and Fertility Survey (FFS)

Chan and Halpin (2002) used BHPS to examine gender role attitudes and the domestic division of labour on divorce

Pevalin and Ermisch (2004) investigated mental health, union dissolution and re-partnering

Measuring a Duration

Three requirements for correctly determining a duration

- 1. A starting time must be unambiguously defined
- 2. Time must have a defined unit of measurement
- 3. The event must be clearly defined

Figure 4 A diagram of a hypothetical study of unemployment

The Accelerated Life Model

Regression models can be estimated with duration data

Historically the log of the duration has been modelled

Censored Observations

- Censored observations affect regression model results
- The impact on the results may sometimes be negligible
- Plewis (1997) states that when there is a very small proportion of censored cases they will have little effect, and an accelerated life model might still be suitable
- Supervisors, examiners and referees may not be convinced

Duration Modelling

No longer directly modelling the duration

 The focus is on modelling the probability that an event occurs at time t, conditional on it not having occurred before t

Codebook for the College Skills Program Dataset

Variable	Obs Un	ique	Mean	Min	Max	Label
id	628	628	314.5	1	628	student id
time	628	338	234.7038	2	1172	number of days until test passed
test	628	2	.8089172	0	1	test passed (or censored)
age	623	31	32.36918	20	56	age at enrolment
no_jobs	611	28	4.574468	0	40	number of previous jobs
mooc	628	2	.4904459	0	1	taught by massive open online course
campus	628	2	.2929936	0	1	college campus
quals1	628	2	.4601911	0	1	no qualifications
quals2	628	2	.1815287	0	1	lower qualifications (below A'level)
quals3	628	2	.3582803	0	1	higher qualifications (above A'level)

Output: Kaplan-Meier Plot of Time to Passing the Test (College Skills Program Data)

Output: Kaplan-Meier Plot of Time to Passing the Test (College Skills Program Data)

Output: Log-Rank Test for Equality of Survivor Functions

failure _d: test

analysis time _t: time

Log-rank test for equality of survivor functions

		Events	Events
mooc		observed	expected
	-+-		
0		265	235.80
1		243	272.20
	-+-		
Total		508	508.00

chi2(1) = 6.80

Pr>chi2 = 0.0091

failure _d: test

analysis time _t: time

		ood = -2868 ood = -2851.					
Iteration 2:	log likelih	ood = -2851.	0884				Outr
Iteration 3:		ood = -2851.					Outp
Refining estima	ates:						Passi
Iteration 0:	log likelih	ood = -2851.	0863				
							Data
Cox regression	Breslow	method for t	ies				
No. of subject	s =	610		Number	of obs	=	610
No. of failure	s =	495					
Time at risk	= 14	2994					
				LR chi2	(6)	=	34.94
Log likelihood	= -2851.	0863		Prob >	chi2	=	0.0000
_t		Std. Err.					Interval]
·		.0075611					0089349
no_jobs	.034745	.0077538	4.48	0.000	.019	5478	.0499422
mooc	2540169	.091005	-2.79	0.005	432	3834	0756504
campus	1723881	.1020981	-1.69	0.091	372	4966	.0277205
quals2	.2467753	.1227597	2.01	0.044	.006	1706	. 4873799
quals3	.125668	.1030729	1.22	0.223	076	3513	. 3276873

Output: Cox Regression Model Time to Passing the Test (College Skills Program Data)

Output: Test of the Effects of Previous Education in Cox Regression Model of Time to Passing the Test (College Skills Program Data)

```
(1) quals2 = 0
```

(2) quals3 = 0

$$chi2(2) = 4.36$$

 $Prob > chi2 = 0.1130$

Output: Hazard Ratios Cox Regression Model Time to Passing the Test (College Skills Program Data)

Cox regression	Breslow n	method for t	ies			
No. of subject	s =	610		Number of	obs =	610
No. of failure	s =	495				
Time at risk	= 142	2994				
				LR chi2(3	=	27.76
Log likelihood	= -2854.6	5735		Prob > ch	= =	0.0000
_t	Haz. Ratio	Std. Err.	Z	P> z	[95% Conf	. Interval]
+						
age	.9794475	.0072674	-2.80	0.005	.9653067	.9937955
no_jobs	1.036128	.0078949	4.66	0.000	1.020769	1.051718
mooc	.7940896	.0716076	-2.56	0.011	.6654445	.9476047

Output: Time to Passing the Test - Survival Functions Comparing Women Aged 30 with 5 Previous Jobs by Teaching Methods (College Skills Program Data)

