

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Subsidiary Level In Physics (WPH13) Paper 01: Practical Skills in Physics I

Question Number	Answer		Mark
1(a)(i)	• 0.001 kg (accept 1 g)	(1)	1
1(a)(ii)	 Use of percentage uncertainty = (half) resolution / measurement × 100% Percentage uncertainty = 0.024% (e.c.f. from 1(a)(i)) 		2
	Use of full resolution scores 1 mark only, if percentage uncertainty is correct.		
	Example of calculation Percentage uncertainty = $0.0005 \text{ kg} / 2.070 \text{ kg} \times 100\% = 0.024\%$		
1(b)	EITHER • Check for zero error • (Correct the value) to eliminate systematic error MP2 dependent on MP1	(1) (1)	
	OR		
	 Repeat measurement in different places and calculate a mean To reduce the effects of <u>random error</u> MP2 dependent on MP1 	(1) (1)	
	OR		
	 Do not use excessive force when tightening the jaws As this could introduce a <u>random error</u> MP2 dependent on MP1 		
		(1) (1)	2
1(c)(i)	• Use of $\rho = \frac{m}{V}$ • Density = 0.777 (g cm ⁻³) rounded to 3 s.f.	(1)	2
	Example of calculation Density = $\frac{2070 \text{ g}}{21 \text{ cm} \times 4.27 \text{ cm} \times 29.7 \text{ cm}} = 0.777 \text{ (g cm}^{-3})$		
1(c)(ii)	 EITHER The measurements (of thickness and mass) are larger So, the <u>percentage</u> uncertainty is smaller (for the same uncertainty) MP2 dependent on MP1 	(1) (1)	
	OR		
	 For a single sheet, the measurements (of thickness and mass) are smaller Or for a single sheet, the measurement (of thickness and mass) is too small So, the <u>percentage</u> uncertainty is larger (for the same uncertainty) MP2 dependent on MP1 	(1) (1)	2
	Total for question 1		9

Question Number	Answer		Mark	
2(a)	 Diagram includes battery (accept cell), switch, ammeter and voltmeter Ammeter in series and voltmeter in parallel with motor (Accept voltmeter in parallel with the battery if no other resistance components are added) 			
	Examples of suitable diagrams Switch Moltreter Asseter Montor Montor			
2(b)(i)	 Clamp/fix the metre rule in position Ensure the metre rule is vertical using a set square Place the metre rule close to the mass Or read the height from bottom of the mass Or attach a marker to the mass 	(1) (1)		
	 Take measurements perpendicular to the scale, e.g. using set square 	(1)	4	
2(b)(ii)	 Random error will cause variation/anomalies in the values (accept suitable examples of random error e.g. reaction time, parallax error when measuring height) (Repeat readings) allow a mean to be calculated to give a (more) accurate value 	(1) (1)	2	
2(c)	 EITHER power input = VI Or power of motor = VI useful power output = mgh / t 	(1)		
	 Or power of lifting mass = mgh / t (accept power of lifting mass = Fv and F = mg and v = h/t) efficiency = power of lifting mass / power of motor 	(1)		
	Or efficiency = $(mgh / t) / (VI)$ (accept efficiency = useful power output / power input, if quantities defined) MP3 dependent on MP1 and MP2	(1)		
	OR			
	 energy input = VIt Or energy transferred to motor = VIt useful energy output = mgh 	(1)		
	Or energy transferred to lifting mass = mgh (accept energy transferred to lifting mass = Fh and $F = mg$)	(1)		
	 efficiency = energy transferred to lifting mass / energy transferred to motor Or efficiency = (mgh) / (VIt) (accept efficiency = useful energy output / energy input, if quantities defined) MP3 dependent on MP1 and MP2 	(1)	3	
	Total for question 2		11	

Question Number	Answer		Mark
3(a)	 Laser light may cause damage/irritation to the eye Or laser light may temporarily dazzle the student Do not look (directly) into the laser beam Or stand behind the laser 	(1)	
	Or wear dark lens safety glasses (accept light absorbing glasses) Or avoid reflective surfaces	(1)	2
3(b)(i)	 EITHER Measure the distance between the centres of (adjacent) minima Repeat for different pairs (of adjacent minima) and calculate a mean value 	(1) (1)	
	 Measure the distance between the centres of multiple minima Divide the distance by the number of gaps between minima 	(1) (1)	2
3(b)(ii)	 EITHER Increase the distance between the hair and the screen Or use a laser with a longer wavelength As this will increase the separation between minima MP2 dependent on MP1 	(1) (1)	
	 • Use a measuring device with a higher resolution (accept named device e.g., vernier caliper) • As this will reduce the uncertainty in the measurement MP2 dependent on MP1 	(1) (1)	2
3(c)(i)	• Calculation of mean • Mean value of $d = 79.2$ (µm) rounded to 3 s.f. Example of calculation Mean value of $d = \frac{76 + 84.4 + 77.1}{3} = 79.2$ µm	(1) (1)	2
3(c)(ii)	 Use of half range for uncertainty (accept difference to furthest from the mean) Percentage uncertainty = 5.3% (furthest from the mean gives 6.5%) (e.c.f. from 3(c)(i) for both value and range) Example of calculation Uncertainty = half range = ^{84.4 - 76}/₂ = 4.2 μm Percentage uncertainty = ^{4.2}/_{79.2} × 100 = 5.3% 	(1) (1)	2
3(d)	 EITHER Upper limit = 192 MPa The upper limit is below 210 MPa so the suggestion is not correct MP2 dependent on MP1 	(1) (1)	
	 • Percentage difference = 14% • As the percentage difference is greater than 6%, the suggestion is not correct MP2 dependent on MP1 Example of calculation Upper limit = 181 × 1.06 = 192 MPa 	(1) (1)	2
	Total for question 3		12

Question Number	Answer		Mark		
4(a)	MAX 4 (FROM ONLY 2 PAIRS)				
	• Cannot measure to the centre of the filament bulb	(1)			
	• So, measure the diameter of bulb separately and add the radius to the measurement of <i>d</i>	(1)			
	Parallax error when measuring d (using the metre rule) However the result of the	(1)			
	• Use a set square between the ruler and the sensor/bulb Or ensure eyes are perpendicular to the metre rule when taking measurements	(1)			
	Background light will affect the readings on the light meter	(1)			
	 So, conduct the investigation in a dark room Or cover the apparatus to block background light Or measure and subtract the intensity of the background light 	(1)	4		
4(b)(i)	EITHER				
	• $I = k \frac{1}{d^2}$ is in the form $y = mx$	(1)			
	• So, the gradient is k which is a constant	(1)			
	OR				
	. 1	(1)			
	 I = k 1/d2 is in the form y = mx + c So, the gradient is k which is a constant and there is no value for c 	(1)	2		

4(b)(ii)	• Correct values of $\frac{1}{d^2}$ • rounded to 3 s.f.					2
		<i>d</i> / m	I / W m ⁻²	$\frac{1}{d^2} / m^{-2}$		
		0.125	996	64.0		
		0.175	510	32.7		
		0.250	276	16.0		
		0.375	109	7.11		
		0.500	48	4.00		
		0.750	18	1.78		
4(b)(iii)	Labels axesSensible sca	with quantities			(1)	
	PlottingLine of best	fit	900		(2)	5
			800			
			600			
		/ W m ²	500			
			300 ×			
			200			
			0 0.0 10.0 20		60.0 70.0	
				1/ <i>d</i> ² / m ⁻²		
4(b)(iv)	• <i>k</i> between 1	gradient using l 5.4 and 16.1 or 3 s.f. and c	arge triangle orrect unit (W)		(1) (1) (1)	3
	Example of calc $k = \text{gradient} = \frac{94}{6}$	$\frac{\text{ulation}}{60 - 200} = 15.7$	W			
4(b)(v)	Use of Id between (allow e		2.01 m given to 2 (iv))	2 or 3 s.f.	(1) (1)	2
	Example of calc $d^{2} = \frac{15.7}{(8-4)} = 3.9$ $d = \sqrt{3.93} = 1.99$	93				
	Total for questi					18