

Content

问题重述

模型假设

模型建立

COMSOL仿真

结果比较

问题重述

现有一杯温度太高的热饮和一杯冰水,为尽快喝到这杯饮料,需要利用冰水使热饮冷却。

以下有两种冷却策略:

- 1. 立刻把冰水倒进热饮中;
- 2. 先等热饮冷却到一定温度,再把冰水倒进去。

通过建立热饮冷却的数学模型,比较两种冷却方式的冷却时间,求出哪一种策略能让热饮尽快冷却。

模型假设

- 假设存在的温度梯度可忽略,近似认为整杯热饮的温度均匀
- 2 假设冰水倒入瞬间完成,没有速度,停留在热饮表面
- 3 杯底与桌面接触,认为始终维持在室温
- 4 假设玻璃杯与水之间无滑移

模型建立

自然冷却模型

介质内部传热分析

自然冷却过程:

- 热传导、热辐射和热对流
- 傅里叶导热定律、牛顿冷却定律以及热对流方程

接触面传热公式

模型建立

进行计算;针对固体,我们采用固体热传导方程:

$$\rho C_p u \cdot \nabla T + \nabla \cdot q = Q + Qted$$
$$q = -k \nabla T$$

进行计算。

对于流体,还应该考虑其对流传热及重力对对流的影响,因此采用了流体对流方程

$$\rho(u\cdot\bigtriangledown)u=\bigtriangledown\cdot[-\rho I+\mu(\bigtriangledown u+(\bigtriangledown u)^T)-\frac{2}{3}\mu(\bigtriangledown\cdot u)I]+F+\rho g$$

考虑一个玻璃林,从是主要分别使的人们也是图,从此为人,流生紫色为石英玻璃,固体。对于这两部分介质,要考虑其内部的性势。并未流体、我保管主题资料,选择流体热传导方程:

热传,导力程以及

边界条件

给定这些方程后,我们规定边界条件如下:

由于杯子放置在空气中,大部分情况下海拔较低,因而假设外部压强为一个大气压。压强条件如下:

$$\begin{aligned} P_{init} &= P + P_{hydro} \\ P_{hydro} &= \rho_{ref} g \cdot (r - r_{ref}) \end{aligned}$$

由于假设液体与玻璃杯出无滑移,接触面处速度满足u=0。

$$\begin{split} u \cdot n &= 0 \\ K - (K \cdot n)n &= 0, K = [\mu(\bigtriangledown u + (\bigtriangledown u)^T) - \frac{2}{3}\mu(\bigtriangledown \cdot u)I]n \\ - n \cdot q &= q_0 \\ q_0 &= h(T_{ext} - T) \\ h &= \begin{cases} \frac{K}{L}0.45Ra_L^{\frac{1}{4}} & \text{if } T > T_{ext} \text{and } 10^4 \leq R_{aL} \leq 10^7 \\ \frac{K}{L}0.15Ra_L^{\frac{1}{3}} & \text{if } T > T_{ext} \text{and } 10^7 \leq R_{aL} \leq 10^{11} \\ \frac{K}{L}0.27Ra_L^{\frac{1}{4}} & \text{if } T > T_{ext} \text{and } 10^5 \leq R_{aL} \leq 10^{10} \end{cases} \end{split}$$

$$a - -k \nabla T$$

3. 玻璃杯的侧面与空气的接触面与接触面1类似,看作是外部空气在倾斜表面发生自然对流的过程。 经查阅资料,倾斜表面的空气热对流公式为:

$$\begin{split} -n \cdot q &= q_0 \\ q_0 &= h(T_{ext} - T) \\ h &= \begin{cases} \frac{K}{L} (0.68 + \frac{0.67((\cos\phi)R_{aL})^{1/4}}{(1 + (\frac{0.4928}{\mu C_p})^{4/16})^{4/9}}) & \text{if } R_{aL} \leq 10^9 \\ \frac{K}{L} (0.825 + \frac{0.387R_{aL}^{1/6}}{(1 + (\frac{0.4928}{L})^{4/16})^{8/27}})^2) & \text{if } R_{aL} > 10^9 \end{cases} \end{split}$$

模型建立

冰水与热饮混合模型

冰水与热饮的混合过程既有两部分液 体的热对流(液体的蒸发属于热对流) 热传导、还包括液体对外的热辐射。由于 混合过程时间较短,我们近似认为热饮向 外界辐射的热量很小, 可忽略不计。当杯 中两部分液体在热对流和热传导的作用下 达到温度均匀分布,我们认为混合结束, 进入自然冷却过程。

冰水与热饮混合仿真动态图

冰水与热饮混合仿真

热饮自然冷却仿真动态图

热饮自然冷却仿真

热饮自然冷却仿真

加冷水时的温度/K	t1/s	t2/s	t3/s	t/s	t/min
343.15	474	20	200	694	11.57
348.15	264	20	350	634	10.57
353.15	186	20	620	826	13.77
358.15	114	20	780	914	15.23
363.15	51	20	1100	1171	19.52
368.15	21	20	1310	1351	22.52
373.15	0	20	1570	1590	26.50

结论

对于策略1,在冷却一开始就立即加入冰水,热饮冷却至目标温度共耗时26.50min。

对于策略2,冷却至一定温度后再倒入冰水,从仿真结果可看出,冷却4.4min至75℃时(348.15K)再倒入冰水冷却至最终温度耗时最少,为10.57min。

比较两个结果可知,策略二——冷却至75℃后再加入冰水,可以最快喝到热饮

灵敏度分析

自然降温速度主要取决于系统与外界的热量交换,因而不同的杯子厚度,不同的环境温度也许会对降温过程产生较大影响。

冷热水混合过程主要取决于液体对流,外界影响较为有限,所以液体本身的性质,如密度、黏度等也许会产生较大影响。

灵敏度分析-热水自然冷却

加大壁厚

正常壁厚

减小壁厚

灵敏度分析-热水自然冷却

加大壁厚

正常壁厚

减小壁厚

灵敏度分析-热水自然冷却

环境温度15℃

环境温度25℃

环境温度35℃

灵敏度分析-热水自然冷却

环境温度15℃

环境温度25℃

环境温度35℃

灵敏度分析-不同液体冷热水混合

灵敏度分析-不同液体冷热水混合

水

油

灵敏度分析-不同液体冷热水混合

致谢 Thanks