ЮГАЙ Александр Германович

Выпускная квалификационная работа Эргодические свойства процессов кристаллизации

Уровень образования: бакалавриат Направление: 01.03.01 «Математика» Основная образовательная программа: CB.5000.2021 «Математика»

> Научный руководитель: Профессор Факультета Математики и компьютерных наук, доктор физико-математических наук, Давыдов Юрий Александрович

Рецензент: Ведущий научный сотрудник, Санкт-Петербургское отделение Математического института имени В. А. Стеклова РАН, доктор физико-математических наук, Бородин Андрей Николаевич

 ${
m Caнкт-}\Pi{
m erepfypr}$ 2025

Содержание

Краткий обзор	3
1. Введение	3
2. Предположения о процессах рождения и роста	3
2.1. Процесс рождения	3
2.2. Процесс роста	4
3. Абсолютная регулярность	4
4. Нижняя оценка для одномерного случая	5
5. Верхние оценки для плоского случая	6
6. Доказательство теоремы 2	9
7. Доказательство теоремы 3	15
Список литературы	18

Краткий обзор

В работе исследуются оценки коэффициента абсолютной регулярности для процессов кристаллизации, введённых Колмогоровым [2]. Улучшена нижняя оценка [1], а также обобщены верхние оценки для плоского случая.

1. Введение

Процесс кристаллизации, который мы рассматриваем здесь, имеет дело с центрами кристаллизации $g=(x_g,t_g)$, которые появляются в случайные моменты времени t_g в случайном месте x_g . Процесс рождения \mathcal{N} - это точечный процесс Пуассона на $\mathbb{R}^d \times \mathbb{R}^+$ с мерой интенсивности, обозначаемой Λ . Как только появляются центры кристаллизации, кристаллы начинают расти, если их местоположение еще не занято другим кристаллом, и когда два кристалла встречаются, рост прекращается в точках соприкосновения. Существует множество способов описать процесс роста кристаллов. Первый подход заключается в рассмотрении случайных множеств (называемых состояниями кристаллизации), которые соответствуют доле пространства, занимаемого кристаллами в данный момент времени. В этом случае кристаллизация изучается с помощью теории точечных процессов. Другой способ описать рост кристалла - вывести выражение для скорости роста из характерных свойств локальной среды в пространстве состояний. Можно рассмотреть для зародыша $g \in \mathbb{R}^d \times \mathbb{R}^+$ и точки $x \in \mathbb{R}^d$ время $A_g(x)$, при котором x достигается свободным кристаллом, связанным с зародышем g. Затем процесс кристаллизации характеризуется случайным полем ξ , задающим для местоположения $x \in \mathbb{R}^d$ время кристаллизации

$$\xi(x) = \inf_{g \in \mathcal{N}} A_g(x).$$

Далее мы будем изучать процессы кристализации через поле ξ . Будем также предполагать, что процесс рождения однороден по координате. Это условие выражается в равенстве для меры интенсивности пуассоновского процесса

$$\Lambda = \lambda^d \times m,$$

где λ^d — мера Лебега на \mathbb{R}^d , а m - мера на \mathbb{R}^+ конечная на ограниченных борелевских множествах. Этот процесс стационарен, и далее мы будем оценивать коэффицент равномерной регулярности этого процесса.

2. Предположения о процессах рождения и роста

2.1. Процесс рождения. Центры кристаллизации рождаются в соответствии с пуассоновским точечным процессом на $E=\mathbb{R}^d\times\mathbb{R}^+$, обозначаемом \mathcal{N} . То есть центры кристаллизации – это случайные точки $g=(x_g,t_g)$ в $\mathbb{R}^d\times\mathbb{R}^+$, где x_g — местоположение в пространстве \mathbb{R}^d , и t_g это время рождения на временных осях \mathbb{R}^+ . Поскольку мера Лебега инвариантна относительно трансляции \mathbb{R}^d , то \mathcal{N} однороден в пространстве, и достаточно рассмотреть множества вокруг начала координат. Таким образом, для любого времени t мы вводим так называемый причинный конус:

$$K_t = \{ g \in E \mid A_g(0) \le t \},$$

который состоит из всех возможных центров кристаллизации, которые могут захватить источник до истечения времени t. Мера $\Lambda(K_t)$ причинного конуса K_t обозначается за F(t).

2.2. **Процесс роста.** Мы говорим, что кристалл является свободным кристаллом, если он происходит из центра кристаллизации, родившегося в месте, которое на момент его рождения еще не было занято другими кристаллами. Мы связываем с каждым центром кристаллизации g в E функцию A_g :

$$A_g: \mathbb{R}^d \to \mathbb{R}^+,$$

 $x \mapsto A_g(x),$

где $A_g(x)$ это время, когда кристалл, относящийся к центру кристаллизации g и считающийся свободным, достигает точки x. Как следствие, свободный кристалл в момент времени t определяется набором:

$$C_q(t) = \{x \mid A_q(x) \le t\}.$$

Далее мы сделаем несколько предположений относительно семейства свободных кристаллов $\{C_g, g \in \mathcal{N}\}$ и семейства функций $\{A_g, g \in \mathcal{N}\}$. При необходимости мы также уточним связь между допущениями и ростом кристаллов.

Мы предполагаем, что для любого центра кристаллизации $g=(x_g,t_g)$ и $t>t_g$ выполнено:

$$(2) C_g(t) = x_g \oplus (t - t_g)B,$$

где B это единичный шар в \mathbb{R}^d , и \oplus обозначает суммирование по Минковскому множеств A и B:

$$A \oplus B = \{x + y \mid x \in A, \ y \in B\}.$$

Легко видеть, что, причинный конус K_t имеет следующую структуру: его горизонтальный участок $K_t(s)$ на уровне $s,\ 0 \le s \le t$, представляет собой множество C(0,ts), симметричное множеству C(0,ts). Следовательно

$$F(t) = \Lambda(K_t) = \lambda^d(K) \int_0^t (t - s)^d m(ds).$$

3. АБСОЛЮТНАЯ РЕГУЛЯРНОСТЬ

Для подмножества T из \mathbb{R}^d , мы обозначаем через \mathcal{F}_T σ -алгебру порожденную случайными величинами $\xi(x)$ для всех x в T. Теперь рассмотрим два непересекающихся множества T_1 и T_2 в \mathbb{R}^d и определим коэффициент абсолютной регулярности для σ -алгебр \mathcal{F}_{T_1} и \mathcal{F}_{T_2} как

(3)
$$\beta(T_1, T_2) = \|\mathcal{P}_{T_1 \cup T_2} - \mathcal{P}_{T_1} \times \mathcal{P}_{T_2}\|_{var},$$

где $\|\mu\|_{var}$ норма полной вариации знакопеременной меры μ и \mathcal{P}_T – распределение $\xi_{|T}$ как элемента $\mathcal{C}(T)$ непрерывных вещественно-значных функций на Т. Отметим, что из $T_1 \cap T_2 = \emptyset$, следует $\mathcal{C}(T_1 \cup T_2) = \mathcal{C}(T_1) \times \mathcal{C}(T_2)$.

Коэффициент сильного перемешивания определяется следующим образом

(4)
$$\alpha(T_1, T_2) = \sup_{\substack{A \in \mathcal{F}_{T_1} \\ B \in \mathcal{F}_{T_2}}} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)|.$$

Рис. 1. Область для траекторий $\xi(x)$, при событии из $A \cap B$

Процесс ξ называется абсолютно регулярным (соответственно α -перемешиванием), если коэффициент абсолютной регулярности (соответственно коэффициент сильного перемешивания) стремится к нулю, когда расстояние между T_1 и T_2 стремится к бесконечности, причем T_1 и T_2 принадлежат определенному классу множеств.

Хорошо известно, что

(5)
$$\alpha(T_1, T_2) \le \frac{1}{2}\beta(T_1, T_2).$$

Как следстьвие, абсолютная регулярность процесса ξ влечет α -перемешивание. В случае d=1, обычно выбирают $T_1=(-\infty,0]$ и $T_2=[r,+\infty)$. При $d\geq 2$ выбор более произволен, и возможные варианты рассматриваются далее и в [1].

4. Нижняя оценка для одномерного случая

В статье [1] для процесса кристализации ξ приводится оценка коэффициента сильной регулярности: $\forall \rho \in \mathbb{R}$

$$\left| e^{-2F\left(\frac{r}{\rho}\right)} - e^{-F\left(\frac{(1+\rho)}{\rho}r\right)} \right| \le \beta(r) \le 8e^{-F\left(\frac{r}{2}\right)}.$$

Оказывается, верен следующий результат

Теорема 1. Если $T_1 = (-\infty, 0]$ и $T_2 = [r, +\infty)$ и выполнены условия (1), (2), то (6) $\beta(r) \ge 2e^{-F(\frac{r}{2})}.$

Доказательство. Рассмотрим $A = \{\xi(0) \notin (a,b)\}; B = \{\xi(r) \notin (a,b)\}$. Из (4) и (5) верно, что

$$\beta(r) \ge 2\alpha(T_1, T_2) \ge 2|\mathbf{P}(A \cap B) - \mathbf{P}(A)\mathbf{P}(B)|.$$

Так как ξ стационарный мы получаем, что

$$\begin{split} \mathbf{P}(A) &= \mathbf{P}(B) = \mathbf{P}\{\xi(0) < a\} + \mathbf{P}\{\xi(r) > b\} = \mathbf{P}\{\xi(0) < a\} + \mathbf{P}\{\xi(0) > b\} = e^{-F(b)} + 1 - e^{-F(a)}, \\ \mathbf{P}(A)\mathbf{P}(B) &= \left(1 - \left(e^{-F(a)} - e^{-F(b)}\right)\right)^2 = 1 - 2\left(e^{-F(a)} - e^{-F(b)}\right) + \left(e^{-F(a)} - e^{-F(b)}\right)^2. \\ \text{Зафиксируем } \rho &< \alpha < 2. \ \text{Положим } a = \frac{r}{\alpha}, \ b = \frac{r}{\rho}. \end{split}$$

Для вычисления $\mathbf{P}(A \cap B)$, заметим, что искомая вероятность на рис.1, это вероятность

того, что центры кристализации не попали в темно-серую область, которую обозначим как Z_1 . Также за Z_2 для удобства обозначим светло-серую область. Тогда по формуле включений исключений:

$$\mathbf{P}(\mathcal{N}\cap Z_1 \neq \emptyset) = \mathbf{P}\left(\xi(0) < \frac{(1+\rho)}{\rho}r\right) - \mathbf{P}(\mathcal{N}\cap Z_2 \neq \emptyset) - 2\mathbf{P}\left(\xi(0) < \frac{r}{\alpha}\right) + \mathbf{P}\left(\xi(0) < \frac{r}{\alpha} - \frac{r}{2}\right) = 1 - e^{-F(\frac{(1+\rho)}{\rho}r)} - 2(1 - e^{-F(\frac{r}{\alpha})}) + 1 - e^{-F(\frac{r}{\alpha} - \frac{r}{2})} - \mathbf{P}(\mathcal{N}\cap Z_2 \neq \emptyset).$$

Вероятность $\mathbf{P}(\mathcal{N} \cap Z_2 \neq \emptyset)$ посчитаем аналогично по формуле включений-исключений:

$$\mathbf{P}(\mathcal{N} \cap Z_2 \neq \emptyset) = \mathbf{P}\left(\xi(0) < \frac{(1+\rho)}{\rho}r\right) - 2\mathbf{P}\left(\xi(0) < \frac{r}{\rho}\right) + \mathbf{P}\left(\xi(0) < \frac{r}{2}\right) = 1 - e^{-F(\frac{(1+\rho)}{\rho}r)} - 2(1 - e^{-F(\frac{r}{\rho})}) + 1 - e^{-F(\frac{r}{2})}.$$

Суммируя, получаем:

$$\mathbf{P}(\mathcal{N} \cap Z_1 \neq \emptyset) = 2e^{-F(\frac{r}{\alpha})} - e^{-F(\frac{r}{\alpha} - \frac{r}{2})} - 2e^{F(\frac{r}{\rho})} + e^{-F(\frac{r}{2})},$$

 $\mathbf{P}(A \cap B)) = \mathbf{P}(\mathcal{N} \cap Z_1 = \emptyset) = 1 - \mathbf{P}(\mathcal{N} \cap Z_1 \neq \emptyset) = 1 - 2e^{-F(\frac{r}{\alpha})} + e^{-F(\frac{r}{\alpha} - \frac{r}{2})} + 2e^{F(\frac{r}{\rho})} - e^{-F(\frac{r}{2})}.$ Теперь соберем все и оценим $\beta(r)$:

$$\beta(r) \ge 2|\mathbf{P}(A \cap B) - \mathbf{P}(A)\mathbf{P}(B)| =$$

$$= 2|2e^{-F(\frac{r}{\alpha})} - e^{-F(\frac{r}{\alpha} - \frac{r}{2})} - 2e^{F(\frac{r}{\rho})} + e^{-F(\frac{r}{2})} - 2\left(e^{-F(\frac{r}{\alpha})} - e^{-F(\frac{r}{\rho})}\right) + \left(e^{-F(\frac{r}{\alpha})} - e^{-F(\frac{r}{\rho})}\right)^{2}|.$$

Так как мы выбрали α и ρ произвольно, то устремим α к ρ и получим:

$$\beta(r) \ge 2|e^{-F(\frac{r}{2})} - e^{-F(\frac{r}{\rho} - \frac{r}{2})}|.$$

Теперь устремим ρ к 0. Тогда $F(\frac{r}{\rho}-\frac{r}{2})\longrightarrow\infty$ и $e^{-F(\frac{r}{\rho}-\frac{r}{2})}\longrightarrow0$, и мы получим оценку (6) из условия теоремы.

5. Верхние оценки для плоского случая

Рассмотрим многомерный случай с d=2. Введем обозначения $e_1=(0,1), e_2=(1,0)$. Возьмём $T_1=\{e\in\mathbf{R}^2|\measuredangle(e,-e_2)<\alpha+\frac{\pi}{2}\}$. Обозначим, за l прямую, задаваемую направлением вектора e_1 и за m луч, который образует граница T_1 в положительной полуплоскости. Определим разделяющую гиперповерхность L_1 , как прямую, проходящую через 0 и пересекающую l под углом $\beta>\alpha$. Симметрично введем L_2 . Тогда расстояние $dist(L_1,L_2)=2r$. L_0 выберем, как прямую, параллельную L_1 и $dist(L_1,L_0)=r$.

Возьмём T_2 — симметрично T_1 , относительно L_0 . Также, за E_1 и E_2 обозначим полупространства определяемые L_0 и содержащие T_1 и T_2 соответственно. Все обозначения иллюстрированы на рис.2.

Отметим, что для случая $\alpha = 0, \beta = \frac{\pi}{4}$ в работе [1] получена следующая верхняя оценка на коэффициент абсолютной регулярности для произвольной размерности $d \ge 2$:

(7)
$$\beta(T_1, T_2) \le 8 \sum_{k=1}^{\infty} k^{d-1} e^{-F(\frac{2rk}{9d})}.$$

Оказывается, верен более общий результат:

Рис. 2. Области T_1 и T_2

Теорема 2. Пусть $T_1 = \{e \in \mathbf{R}^2 | \measuredangle(e, -e_2) < \alpha + \frac{\pi}{2}\}$ и T_2 – симметрично отраженная T_1 , относительно L_0 , область. Если $\alpha < \frac{\pi}{4} \le \beta$ и $tg\beta = \frac{a}{b} > 1$, где $a, b \in \mathbb{N}$ и $\frac{a}{b} > tg\alpha$ то, верна оценка:

(8)
$$\beta(T_1, T_2) \le 8 \sum_{k=0}^{\infty} \left(3 + \frac{k}{2a} + \frac{\left(1 + tg\alpha - \frac{k}{b}\right)^+}{2\left(\frac{a}{b} - tg\alpha\right)} + \frac{1 + tg\alpha + \frac{k}{b}}{2\left(\frac{a}{b} - tg\alpha\right)} \right) e^{-F(C(k+1))},$$

$$r\partial e \ C = \frac{r}{9\sqrt{2(a^2+b^2)}}$$

Также, нам удалось рассмотреть случай $\alpha > \frac{\pi}{4}$, если дополнительно предположить $tg\alpha \in \mathbb{Q}$.

Теорема 3. Пусть $T_1 = \{e \in \mathbf{R}^2 | \measuredangle(e, -e_2) < \alpha + \frac{\pi}{2}\}$ и T_2 – симметрично отраженная T_1 , относительно L_0 , область. Если $\alpha < \beta$ и $tg\beta = \frac{a}{b}$, $tg\alpha = \frac{c}{d}$, где $a, b, c, d \in \mathbb{N}$ и $\frac{a}{b} > \frac{c}{d}$ то, верна оценка:

(9)
$$\beta(T_1, T_2) \le 8 \sum_{k=1}^{\infty} k e^{-F(Ck)},$$

$$\operatorname{ede} C = \frac{r}{9\sqrt{(2+2\sin\alpha)(a^2+b^2)(c^2+d^2)}}$$

Применим теоремы 2 и 3 к случаю $\alpha = 0, \beta = \frac{\pi}{4}$. Мы ожидаем получить, что-то похожее на оценку (7).

Во первых $tg\beta = \frac{1}{1}$, следовательно a = b = 1. Тогда применив теорему 2 и 3 получим

$$\beta(T_1, T_2) \le 8 \sum_{k=0}^{\infty} \left(3 + \frac{k}{2} + \frac{(1-k)^+}{2} + \frac{1+k}{2} \right) e^{-F(\frac{r(k+1)}{18})} \le 8 \sum_{k=0}^{\infty} (k+4) e^{-F(\frac{r(k+1)}{18})},$$
$$\beta(T_1, T_2) \le 8 \sum_{k=0}^{\infty} (k+1) e^{-F(\frac{r(k+1)}{18\sqrt{2}})},$$

Прежде чем доказывать теорему, мы приведём оценку, для двух типичных случаев, которые представляют практический интерес [1].

 Π ример 1: Если $F(t) \geq (d+\delta)lnt - ln\gamma$, где $\delta,\gamma>0$, мы получаем $e^{F(t)} \leq \gamma t^{-(2+\delta)}$ и сумма (8) оценится как

$$\sum_{k=0}^{\infty} \left(3 + \frac{k}{2a} + \frac{\left(1 + tg\alpha - \frac{k}{b} \right)^+}{2\left(\frac{a}{b} - tg\alpha \right)} + \frac{1 + tg\alpha + \frac{k}{b}}{2\left(\frac{a}{b} - tg\alpha \right)} \right) e^{-F(C(k+1))} \le$$

$$\le \sum_{k=0}^{\infty} 3(k+1) e^{-F(C(k+1))} \le \sum_{k=0}^{\infty} 3\gamma C^{(2+\delta)} (k+1)^{-(1+\delta)} = \gamma' C^{-(2+\delta)},$$

где

$$\gamma' = 3\gamma \sum_{m=1}^{\infty} m^{-(1+\delta)}.$$

Сумма (9) оценится, как

$$\sum_{k=1}^{\infty} k e^{-F(Ck)} \le \gamma' C^{-(2+\delta)},$$

где

$$\gamma' = \gamma \sum_{m=1}^{\infty} m^{-(1+\delta)}.$$

Пример 2: Если $F(t) \ge \gamma t^{\delta} - c$, где $\delta, \gamma, c > 0$, то $e^{F(t)} \le c_1 e^{-\gamma t^{\delta}}$, где $c_1 = e^c$. Сумма (8) оценится, как

$$\sum_{k=0}^{\infty} \left(3 + \frac{k}{2a} + \frac{\left(1 + tg\alpha - \frac{k}{b}\right)^+}{2\left(\frac{a}{b} - tg\alpha\right)} + \frac{1 + tg\alpha + \frac{k}{b}}{2\left(\frac{a}{b} - tg\alpha\right)} \right) e^{-F(C(k+1))} \le c_2 e^{-\gamma C^{\delta}}$$

где

$$c_2 = \sum_{k=0}^{\infty} 3(k+1) c_1 e^{-\gamma C^{\delta}((k+1)^{\delta}-1)}.$$

Для (9) имеем

$$\sum_{k=1}^{\infty} k e^{-F(Ck)} \le c_2 e^{\gamma C^{\delta}},$$

где

$$c_2 = c_1 \sum_{k=1}^{\infty} k e^{\gamma C^{\delta}(k^{\delta} - 1)}.$$

Для доказательства теорем нам понадобятся леммы, доказанные в [1]. Введем обозначения:

(10)
$$\eta_r^1(x) = \inf_{\substack{g \in \mathcal{N} \\ x_g \in E_1}} A_g(x),$$

(11)
$$\eta_r^2(x) = \inf_{\substack{g \in \mathcal{N} \\ x_g \in E_2}} A_g(x),$$

(12)
$$\xi_R(x) = \inf_{\substack{g \in \mathcal{N} \\ |x_g| \le R}} A_g(x).$$

Лемма 1. При d = 2, для всех r > 0 выполнено,

$$\mathbb{P}(\xi(x) = \xi_{3r}(x), |x| \le r) \ge 1 - e^{-F(r)},$$

где ξ_{3R} определено в (12).

Лемма 2. Пусть $(\eta(x))_{x \in \mathbb{R}^d}$ – случайное поле и T_1 , T_2 два дизъюнктных подмножества \mathbb{R}^d . Если существуют случайные поля $(\eta_1(x))_{x \in \mathbb{R}^d}$ и $(\eta_2(x))_{x \in \mathbb{R}^d}$ и $\delta_1, \delta_2 \in \mathbb{R}$ такие что:

- η_1 и η_2 независимы
- $\mathbb{P}\left\{\xi(x) = \eta_i(x), \forall x \in T_i\right\} \geq 1 \delta_i \text{ dis } i = 1, 2.$

Тогда

$$\beta(T_1, T_2) \le 8 (\delta_1 + \delta_2).$$

6. Доказательство теоремы 2

Чтобы получить верхнюю оценку для коэффициента абсолютной регулярности $\beta(T_1, T_2)$, мы аппроксимируем ограничения ξ на T_1 и T_2 двумя независимыми случайными полями и применяем лемму 2.

Лемма 3. В предположениях Теоремы 2, для всех r > 0,

$$\mathbb{P}\{\xi(x) = \eta_r^1(x), \ x \in T_1\} \ge 1 - \sum_{m=0}^{\infty} \left(3 + \frac{m}{2a} + \frac{\left(1 + tg\alpha - \frac{m}{b}\right)^+}{2\left(\frac{a}{b} - tg\alpha\right)} + \frac{1 + tg\alpha + \frac{m}{b}}{2\left(\frac{a}{b} - tg\alpha\right)} \right) e^{-F(C(m+1))},$$

 $c \eta_r^1$ определенным в (10), $C = \frac{r}{9\sqrt{2(a^2+b^2)}}$.

Доказательство. Введем обозначение $G=\frac{r}{3}$. Покроем T_1 квадратами

$$A_{\overline{k}} = \left[\sqrt{2}G\left(k_1 - 1\right)_i \sqrt{2}Gk_1\right] \times \left[\sqrt{2}G\left(k_2 - 1\right); \sqrt{2}Gk_2\right],$$

где $\overline{k}=(k_1,k_2)\in \mathbb{M}=(-\mathbb{N})^2\cup\{(-\mathbb{N})\times\mathbb{N}\,|\,\frac{|k_2-1|}{|k_1-1|}< tg\alpha\}$. В покрытие мы берем такие квадраты, что их левый нижний угол лежит в $T_1(\text{рис.3})$. Теперь преобразуем покрытие $A_{\overline{k}}$ в покрытие $C_{\overline{k}}$:

$$C_{\overline{k}} = \left\{ egin{array}{l} A_{\overline{k}}; A_{\overline{k}} \subset T_1 \ A_{\overline{k}} \cap T_1; \ \mathrm{иначe} \end{array}
ight.$$

Рис. 3. Покрытие T_1 квадратами

Рис. 4. Центры $A_{\overline{k}}$

Из построения следует, что $T_1=\bigcup_{\overline{k}}C_{\overline{k}}$ и $C_{\overline{k}}\subset A_{\overline{k}}$. Центр каждого квадрата $A_{\overline{k}}$ находится в точке $x_{\overline{k}}=(\frac{G}{\sqrt{2}}\,(2k_i-1))_{i=1,2},$ а диаметр равен 2G. Из условия $\alpha<\frac{\pi}{4}\leq\beta$ следует, что все $x_{\overline{k}}$ лежат под прямой $L_1(\text{рис.4}).$

Обозначим за p вероятность $\mathbb{P}(\xi(x) = \eta_r(x), x \in T_1)$ и заметим, что

$$(13) p = \mathbb{P}(\bigcap_{\overline{k} \in (\mathbb{M})} B_{\overline{k}}),$$

где

$$B_{\overline{k}} = \{ (\xi(x) = \eta_r(x), \ x \in C_{\overline{k}} \}.$$

Обозначим за B(x,t) шар в \mathbb{R}^2 с центром в $x\in\mathbb{R}^2$ и радиусом t>0. Из леммы 1, мы получаем, что для t>0 что

$$\mathbb{P}(\xi(x) = \xi_{B(x_{\overline{k}},3t)}(x), |x - x_{\overline{k}}| \le t) \ge 1 - e^{-F(t)},$$

где

$$\xi_{B(x_{\overline{k}},3a)}(x) = \inf_{\substack{g \in \mathcal{N} \\ |x_g - x_{\overline{k}}| \leq 3a}} A_g(x).$$

Положим $\rho = G + \frac{s_{\overline{k}}}{3}$, где $s_{\overline{k}}$ расстояние между $x_{\overline{k}}$ и прямой L_1 равное

$$s_{\overline{k}} = |\langle x_{\overline{k}}, e \rangle| = \frac{G}{\sqrt{2}} |\langle (2k_1 - 1, 2k_2 - 1), (\frac{a}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}}) \rangle| = \frac{G}{\sqrt{2a^2 + 2b^2}} |a(2k_1 - 1) + b(2k_2 - 1)|,$$

где $e=(rac{a}{\sqrt{a^2+b^2}},rac{b}{\sqrt{a^2+b^2}})$ — единичная нормаль к $L_1.$

Рассмотрим включения, $C_{\overline{k}}\subset A_{\overline{k}}\subset B(x_{\overline{k}},\rho).$ Отсюда следует, что

$$\{\xi(x) = \xi_{B(x_{\overline{k}},3\rho)}(x), |x - x_{\overline{k}}| \le \rho\} \subset \{\xi(x) = \xi_{B(x_{\overline{k}},3\rho)}(x), x \in A_{\overline{k}}\} \subset \{\xi(x) = \xi_{B(x_{\overline{k}},3\rho)}(x), x \in C_{\overline{k}}\}.$$

Более того, $B(x_{\overline{k}}, 3\rho)$ содержится в полупространстве E_1 . Следовательно,

$$\{\xi(x) = \xi_{B(x_{\overline{k}}, 3\rho)}(x), \ x \in C_{\overline{k}}\} \subset \{\xi(x) = \eta_r^1(x), \ x \in C_{\overline{k}}\}.$$

Обозначив за $p_{\overline{k}}$ вероятность $\mathbb{P}(B_{\overline{k}})$, мы в итоге получаем

$$(14) p_k \ge 1 - e^{-F\left(G + \frac{s_{\overline{k}}}{3}\right)}.$$

С другой стороны, из (13) следует что

$$p = 1 - \mathbb{P}(\bigcup_{\overline{k} \in \mathbb{M}} B_{\overline{k}}^c).$$

Из (14), мы заключаем

(15)
$$p \ge 1 - \sum_{\overline{k} \in \mathbb{M}} e^{-F\left(G + \frac{s_{\overline{k}}}{3}\right)}.$$

Теперь мы будем оценивать сумму из (13) сверху:

$$\sum_{\overline{k} \in \mathbb{M}} e^{-F\left(G + \frac{s_{\overline{k}}}{3}\right)} =$$

$$= \sum_{m=0}^{\infty} \#\{\overline{k} \in \mathbb{M}, |a(2k_1 - 1) + b(2k_2 - 1)| = m\} e^{-F\left(G\left(1 + \frac{1}{3\sqrt{2a^2 + 2b^2}}m\right)\right)}.$$

Рис. 5. Прямая aX + bY = m

Отдельно оценим коэффициент при экспоненте:

$$\#\{\overline{k} \in \mathbb{M}, |a(2k_1-1)+b(2k_2-1)| = m\} = \#\{\overline{k} \in \mathbb{M}, k_1 \leq 0, k_2 \leq 0, |a(2k_1-1)+b(2k_2-1)| = m\} + \#\{\overline{k} \in \mathbb{M}, k_1 \leq 0, k_2 > 0, |a(2k_1-1)+b(2k_2-1)| = m\} = \#\{\overline{k} \in \mathbb{M}, k_1 \leq 0, k_2 \leq 0, |a(2k_1-1)+b(2k_2-1)| = m\} + \#\{\overline{k} \in \mathbb{M}, k_1 \leq 0, k_2 > 0, a(2k_1-1)+b(2k_2-1) = m\} + \#\{\overline{k} \in \mathbb{M}, k_1 \leq 0, k_2 > 0, a(2k_1-1)+b(2k_2-1) = m\} + \#\{\overline{k} \in \mathbb{M}, k_1 \leq 0, k_2 > 0, a(2k_1-1)+b(2k_2-1) = -m\},$$

Оценим первое слагаемое:

$$\#\{\overline{k} \in \mathbb{M}, \ k_1 \le 0, k_2 \le 0, |a(2k_1 - 1) + b(2k_2 - 1)| = m\}.$$

Введем обозначения $X=1-2k_1, Y=1-2k_2$. Тогда из условия $k_1\leq 0, k_2\leq 0$ следует $X\geq 0, Y\geq 0$, и уравнение переписывается в виде aX+bY=m. Это уравнение и ограничения $a,b,m\geq 0$ задает прямую с отрицательным коэффицентом наклона (рис.5). Заметим, что $a,b,X,Y\in\mathbb{Z}$ и решения исходной системы $a(2k_1-1)+b(2k_2-1)=m,\ k_1\leq 0, k_2\leq 0,$ это целые точки на этой прямой, лежащие в первой четверти, соответствующей $X,Y\geq 0$. Оценим их число:

$$Y = -\frac{a}{b}X + \frac{m}{b} \ge 0,$$

$$X \le \frac{m}{a},$$

$$1 - 2k_1 \le \frac{m}{a},$$

$$-k_1 \le \frac{m}{2a} - \frac{1}{2} \le \frac{m}{2a}.$$

Тогда

(16)
$$\#\{\overline{k} \in \mathbb{M}, \ k_1 \le 0, k_2 \le 0, |a(2k_1 - 1) + b(2k_2 - 1)| = m\} \le \frac{m}{2a} + 1.$$

Рис. 6.
$$bY - aX = m$$
 и $Y = tg\alpha X + (tg\alpha + 1)$

Оценим второе слагаемое:

$$\#\{\overline{k} \in \mathbb{M}, \ k_1 \le 0, k_2 > 0, a(2k_1 - 1) + b(2k_2 - 1) = m\}.$$

Снова определим $X=1-2k_1, Y=2k_2-1$. Из ограничений опять следует, что $X,Y\geq 0$, и уравнение переписывается, как bY-aX=m. В отличие от прошлого случая, эта прямая имеет положительный коэффициент наклона. Однако, у нас есть условие $\frac{|k_2-1|}{|k_1-1|} < tg\alpha$, которое накладывает линейные условия на X и Y:

$$|k_2 - 1| < tg\alpha |k_1 - 1|,$$

$$|2k_2 - 2| < tg\alpha |2k_1 - 2|,$$

$$|2k_2 - 1| - 1 < tg\alpha |2k_1 - 1| + tg\alpha,$$

$$Y < tg\alpha X + (tg\alpha + 1).$$

Эти условия задают полуплоскость с границей $Y=tg\alpha X+(tg\alpha+1)$. Так как $tg\alpha<\frac{a}{b}$, то эта прямая пересечет bY-aX=m, и решения системы задаются отрезком, лежащим ниже прямой с углом наклона α и осью абсцисс(рис.6). Тогда с одной стороны,

$$0 \le Y < tg\alpha X + (tg\alpha + 1).$$

С другой

$$Y = \frac{a}{b}X + \frac{m}{b}.$$

И значит, имеем

$$0 \le \frac{a}{b}X + \frac{m}{b} < tg\alpha X + (tg\alpha + 1),$$
$$\left(\frac{a}{b} - tg\alpha\right)X < \left(1 + tg\alpha - \frac{m}{b}\right)^+,$$
$$X < \frac{\left(1 + tg\alpha - \frac{m}{b}\right)^+}{\left(\frac{a}{b} - tg\alpha\right)},$$

РИС. 7.
$$aX - bY = m$$
 и $Y = tg\alpha X + (tg\alpha + 1)$

$$1 - 2k_1 < \frac{\left(1 + tg\alpha - \frac{m}{b}\right)^+}{\left(\frac{a}{b} - tg\alpha\right)},$$
$$-k_1 < \frac{\left(1 + tg\alpha - \frac{m}{b}\right)^+}{2\left(\frac{a}{b} - tg\alpha\right)}.$$

Заключаем

(17)
$$\#\{\overline{k} \in \mathbb{M}, \ k_1 \le 0, k_2 > 0, a(2k_1 - 1) + b(2k_2 - 1) = m\} \le \frac{\left(1 + tg\alpha - \frac{m}{b}\right)^+}{2\left(\frac{a}{b} - tg\alpha\right)} + 1.$$

Осталось оценить последнее слагаемое:

$$\#\{\overline{k} \in \mathbb{M}, \ k_1 \le 0, k_2 > 0, a(2k_1 - 1) + b(2k_2 - 1) = -m\}.$$

Опять $X=1-2k_1\geq 0, Y=2k_2-1\geq 0.$ Уравнение прямой принимает вид aX-bY=m. Проведем аналогичное прошлому случаю вычисление:

$$0 \le Y = \frac{a}{b}X - \frac{m}{b} < tg\alpha X + (tg\alpha + 1),$$

$$\left(\frac{a}{b} - tg\alpha\right)X < 1 + tg\alpha + \frac{m}{b},$$

$$X < \frac{1 + tg\alpha + \frac{m}{b}}{\left(\frac{a}{b} - tg\alpha\right)},$$

$$1 - 2k_1 < \frac{1 + tg\alpha + \frac{m}{b}}{\left(\frac{a}{b} - tg\alpha\right)},$$

$$-k_1 < \frac{1 + tg\alpha + \frac{m}{b}}{2\left(\frac{a}{b} - tg\alpha\right)}.$$

Значит,

(18)
$$\#\{\overline{k} \in \mathbb{M}, \ k_1 \le 0, k_2 > 0, a(2k_1 - 1) + b(2k_2 - 1) = -m\} \le \frac{1 + tg\alpha + \frac{m}{b}}{2(\frac{a}{b} - tg\alpha)} + 1.$$

Итого, из (16), (17), (18) заключаем

$$\#\{\overline{k} \in \mathbb{M}, |a(2k_1-1)+b(2k_2-1)|=m\} \le 3 + \frac{m}{2a} + \frac{\left(1 + tg\alpha - \frac{m}{b}\right)^+}{2\left(\frac{a}{b} - tg\alpha\right)} + \frac{1 + tg\alpha + \frac{m}{b}}{2\left(\frac{a}{b} - tg\alpha\right)}.$$

Теперь оценим $e^{-F\left(G\left(1+\frac{1}{3\sqrt{2a^2+2b^2}}m\right)\right)}$. Положим $C=\frac{G}{3\sqrt{a^2+b^2}}$. Тогда $G\left(1+\frac{1}{3\sqrt{2a^2+2b^2}}m\right)\geq C(m+1)$, и в силу того, что F(t) – возрастающая функция, получаем оценку

$$e^{-F\left(G\left(1+\frac{1}{3\sqrt{2a^2+2b^2}}m\right)\right)} < e^{-F(C(m+1))}.$$

Отсюда следует оценка из леммы.

Из однородности процесса кристаллизации и из Леммы 3 следует утверждение

Лемма 4. В предположениях теоремы 2, для всех r > 0,

$$\mathbb{P}\{\xi(x) = \eta_r^2(x), \ x \in T_2\} \ge 1 - \sum_{m=0}^{\infty} \left(\frac{m}{2a} + \frac{\left(1 + tg\alpha - \frac{m}{b}\right)^+}{2\left(\frac{a}{b} - tg\alpha\right)} + \frac{1 + tg\alpha + \frac{m}{b}}{2\left(\frac{a}{b} - tg\alpha\right)} \right) e^{-F(C(m+1))}.$$

 $c \eta_r^2$ определенным в (11), $C = \frac{r}{9\sqrt{2(a^2+b^2)}}$.

Теперь мы готовы доказать теорему 2.

Доказательство. (Теоремы 2) С помощью Леммы 3 и Леммы 4 мы можем воспользоваться леммой 2. Положим $\eta_1=\eta_1^r, \eta_2=\eta_2^r,$

$$\delta_1 = \delta_2 = 1 - \sum_{m=0}^{\infty} \left(\frac{m}{2a} + \frac{\left(1 + tg\alpha - \frac{m}{b}\right)^+}{2\left(\frac{a}{b} - tg\alpha\right)} + \frac{1 + tg\alpha + \frac{m}{b}}{2\left(\frac{a}{b} - tg\alpha\right)} \right) e^{-F(C(m+1))},$$

и T_1, T_2 как в утверждении теоремы. Тогда мы получаем, что

$$\beta(T_1, T_2) \le 4(\delta_1 + \delta_2) \le 8 \sum_{k=0}^{\infty} \left(\frac{k}{2a} + \frac{\left(1 + tg\alpha - \frac{k}{b}\right)^+}{2\left(\frac{a}{b} - tg\alpha\right)} + \frac{1 + tg\alpha + \frac{k}{b}}{2\left(\frac{a}{b} - tg\alpha\right)} \right) e^{-F(C(k+1))}.$$

7. Доказательство теоремы 3

Как и в доказательстве теоремы 2 докажем следующую лемму

Пемма 5. В предположениях Теоремы 3, для всех r > 0,

$$\mathbb{P}\{\xi(x) = \eta_r^1(x), \ x \in T_1\} \ge 1 - \sum_{k=1}^{\infty} k e^{-F(Ck)},$$

 $c \eta_r^1$ определенным в (10), $C = \frac{r}{9\sqrt{(2+2sin\alpha)(a^2+b^2)(c^2+d^2)}}$.

Рис. 8. Покрытие T_1 параллелепипедами

Доказательство. Вновь обозначим $G = \frac{r}{3}$. Теперь покроем T_1 параллелепипедами. Обозначим за $P(x,y,\gamma)$ – параллелепипед с левой верхней вершиной в точке x,с левой нижней вершиной в точке y и углом γ между сторонами. Теперь возьмем следующее покрытие

$$A_{\overline{k}} = \frac{2G}{\sqrt{2 + 2sin\alpha}} P((-\frac{dk_1}{\sqrt{d^2 + c^2}}, \frac{ck_1 - k_2}{\sqrt{d^2 + c^2}}), (\frac{-d(k_1 - 1)}{\sqrt{d^2 + c^2}}, \frac{c(k_1 - 1) - k_2 + 1}{\sqrt{d^2 + c^2}}), \alpha + \frac{\pi}{2}),$$

где $\overline{k} = (k_1, k_2) \in (\mathbb{N} \setminus \{0\}) \times \mathbb{N}.($ рис.8).

Центр каждого параллелепипеда $A_{\overline{k}}$ находится в точке

$$x_{\overline{k}} = \frac{2G}{\sqrt{2 + 2sin\alpha}} \left(\frac{-d}{2\sqrt{c^2 + d^2}} (2k_1 - 1), \frac{c}{2\sqrt{c^2 + d^2}} (2k_1 - 1) - \left(\frac{2k_2 - 1}{2\sqrt{c^2 + d^2}} \right), \right)$$

а диаметр равен 2G. Как в доказательстве теоремы 2 обозначим за p вероятность $\mathbb{P}(\xi(x) = \eta_r(x), x \in T_1)$ и заметим, что

(19)
$$p = \mathbb{P}(\bigcap_{\overline{k} \in (\mathbb{N} \setminus \{0\}) \times \mathbb{N}} B_{\overline{k}}),$$

где

$$B_{\overline{k}} = \{ (\xi(x) = \eta_r(x), \ x \in C_{\overline{k}} \}.$$

Обозначим за B(x,t) шар в \mathbb{R}^2 с центром в $x\in\mathbb{R}^2$ и радиусом t>0. Из леммы 1, мы получаем, что для t>0 что

$$\mathbb{P}(\xi(x) = \xi_{B(x_{\overline{k}},3t)}(x), |x - x_{\overline{k}}| \le t) \ge 1 - e^{-F(t)},$$

где

$$\xi_{B(x_{\overline{k}},3a)}(x) = \inf_{\substack{g \in \mathcal{N} \\ |x_g - x_{\overline{k}}| \leq 3a}} A_g(x).$$

Положим $\rho = G + \frac{s_{\overline{k}}}{3}$, где $s_{\overline{k}}$ расстояние между $x_{\overline{k}}$ и прямой L_1 равное

$$s_{\overline{k}} = |\langle x_{\overline{k}}, e \rangle| =$$

$$= \frac{G}{\sqrt{(2+2sin\alpha)(a^2+b^2)(c^2+d^2)}} |\langle (-d(2k_1-1), c(2k_1-1) - (2k_2-1)), (a,b) \rangle| =$$

$$= \frac{G}{\sqrt{(2+2sin\alpha)(a^2+b^2)(c^2+d^2)}} |-ad(2k_1-1) + bc(2k_1-1) - b(2k_2-1)| =$$

$$= \frac{G}{\sqrt{(2+2sin\alpha)(a^2+b^2)(c^2+d^2)}} |(bc - ad)(2k_1-1) - b(2k_2-1)| =$$

$$= \frac{G}{\sqrt{(2+2sin\alpha)(a^2+b^2)(c^2+d^2)}} ((ad - bc)(2k_1-1) + b(2k_2-1)),$$

где $e=(\frac{a}{\sqrt{a^2+b^2}},\frac{b}{\sqrt{a^2+b^2}})$ – единичная нормаль к L_1 и ad-bc>0 из условия теоремы 3. Рассмотрим включения, $A_{\overline{k}}\subset B(x_{\overline{k}},\rho)$. Отсюда следует, что

$$\{\xi(x) = \xi_{B(x_{\overline{k}}, 3\rho)}(x), |x - x_{\overline{k}}| \le \rho\} \subset \{\xi(x) = \xi_{B(x_{\overline{k}}, 3\rho)}(x), x \in A_{\overline{k}}\}.$$

Более того, $B(x_{\overline{k}}, 3\rho)$ содержится в полупространстве E_1 следовательно,

$$\{\xi(x) = \xi_{B(x_{\overline{k}}, 3\rho)}(x), \ x \in C_{\overline{k}}\} \subset \{\xi(x) = \eta_r^1(x), \ x \in C_{\overline{k}}\}.$$

Обозначив за $p_{\overline{k}}$ вероятность $\mathbb{P}(B_{\overline{k}})$, мы в итоге получаем

$$(20) p_k \ge 1 - e^{-F\left(G + \frac{s_{\overline{k}}}{3}\right)}.$$

С другой стороны, из (19) следует, что

$$p = 1 - \mathbb{P}(\bigcup_{\overline{k} \in \mathbb{N} \setminus \{0\}) \times \mathbb{N}} B_{\overline{k}}^{c}).$$

Из (20), мы заключаем

(21)
$$p \ge 1 - \sum_{\overline{k} \in \mathbb{N} \setminus \{0\} \times \mathbb{N}} e^{-F\left(G + \frac{s_{\overline{k}}}{3}\right)}.$$

Теперь мы будем оценивать сумму из (21) сверху:

$$\sum_{\overline{k} \in \mathbb{N} \setminus \{0\}) \times \mathbb{N}} e^{-F\left(G + \frac{s_{\overline{k}}}{3}\right)}$$

$$= \sum_{m=0}^{\infty} \#\{\overline{k} \in \mathbb{N} \setminus \{0\}) \times \mathbb{N}, \ (ad - bc)(2k_1 - 1) + b(2k_2 - 1) = m\} e^{-F(G + Cm)} \le \sum_{k=0}^{\infty} (m+1)e^{-F(G + Cm)} \le \sum_{k=0}^{\infty} (m+1)e^{-F(C(m+1))},$$

где
$$C = \frac{G}{3\sqrt{(2+2sin\alpha)(a^2+b^2)(c^2+d^2)}}$$
. Отсюда следует утверждение леммы.

Так же как и в Теореме 2 из однородности процесса кристаллизации и из предыдущей леммы следует утверждение

Лемма 6. В предположениях теоремы 2, для всех r > 0,

$$\mathbb{P}\{\xi(x) = \eta_r^2(x), \ x \in T_2\} \ge 1 - \sum_{k=0}^{\infty} (m+1)e^{-F(C(m+1))}$$

 $c \eta_r^2$ определенным в (11), $C = \frac{r}{9\sqrt{(2+2sin\alpha)(a^2+b^2)(c^2+d^2)}}.$

Теперь мы готовы доказать теорему 3.

Доказательство. (Теоремы 3) Снова положим $\eta_1 = \eta_1^r, \eta_2 = \eta_2^r,$

$$\delta_1 = \delta_2 = 1 - \sum_{k=0}^{\infty} (m+1) e^{-F(C(m+1))}$$

и T_1, T_2 как в утверждении теоремы. Тогда из лем
м 1, 5, 6 получаем что

$$\beta(T_1, T_2) \le 4(\delta_1 + \delta_2) \le 8 \sum_{k=0}^{\infty} (m+1) e^{-F(C(m+1))}.$$

Список литературы

- [1] Yu. Davydov, A. Illig, Ergodic properties of crystallization processes, Journal of Mathematical Sciences (2009), 163(4):375-381.
- [2] A. N. Kolmogorov, Statistical theory of crystallization of metals, Bull. Acad. Sci. USSR Mat. Ser. 1 (1937) pp. 355-359.