Circuito Combinatorio Vs Sequenziale

Combinational

Output = f(In)

Sequential

Output = f(In, Previous In)

• • Stili Di Progetto

 LOGICA STATICA: l'uscita è sempre collegata con un percorso diretto a bassa impedenza alla massa o all'alimentazione

 LOGICA DINAMICA: il nodo di uscita non è sempre connesso ad una delle alimentazioni e il dato viene temporaneamente immagazzinato in forma di carica su una capacità

• • Logica Combinatoria

- Un blocco di logica combinatoria è un blocco con N variabili di ingresso e M variabili di uscita che sono funzioni booleana degli ingressi presenti in un certo istante
- Ad ogni istante le uscite dipendono solo dagli ingressi in quell'istante e NON dalle storia passata del circuito

Porte CMOS Statiche

Una generica porta CMOS ha la struttura:

Caratteristiche Logica CMOS

- PUN (Pull-Up Network): è una rete di interruttori PMOS (*) che connettono l'uscita a V_{DD} in corrispondenza delle combinazioni di ingresso per cui la funzione è F(...)=1
- PDN (Pull-Down Network): è una rete di interruttori NMOS (*) che connettono l'uscita a 0 in corrispondenza delle combinazioni di ingresso per cui la funzione è F(...)=0
- Le due reti sono <u>complementari</u>, ossia quando è aperta una l'altra è chiusa e viceversa.
 Questo evita che ci siano percorsi diretti fra alimentazione e massa.

(*) vedi dopo

Zero 'forte'

la capacità di uscita è inizialmente carica a V_{DD} e ci sono due possibili scenari:

- → Un transitor NMOS riesci sempre a scaricare completamente il nodo di uscita a massa.
- Il dispositivo PMOS abbassa la tensione del nodo di uscita a un valore minimo pari a $|V_{Tp}|$, dopo di che il PMOS si spegne ($V_{GS} = V_{Tp}$) e arresta il processo di scarica. I dispositivi NMOS sono i migliori candidati per realizzare il PDN.

Uno 'forte'

Analogamente, i due modi alternativi per caricare un nodo assumendo che l'uscita sia inizialmente a massa.

Il <u>transitor</u> PMOS riesce sempre a caricare il nodo fino a V_{DD} , mentre il <u>transitor</u> NMOS si spegne non appena la tensione di uscita raggiunge il valore $(V_{DD} - V_{Tn})$. Ciò spiega perché sia preferibile usare i transitor PMOS nel PUN.

Transistori NMOS In connessione Serie/Parallelo

Transistori PMOS In Connessione Serie/Parallelo

Teorema Di De Morgan

$$\overline{A\cdot B}=\overline{A}+\overline{B}$$

$$\overline{A+B}=\overline{A}\cdot\overline{B}$$

- Utilizzando questi teoremi è possibile dimostrare che le reti del pull-up e del pull-down di una porta logica CMOS complementari sono reti duali.
- Ciò significa che la connessione in parallelo dei transitor nella rete di pull-up corrisponde alla connessione in serie dei dispositivi della rete di pulldown.

Esempio: Porta NAND (1)

Esempio: Porta NAND (2)

Esempio: Porta NAND (3)

Note

- Un gate CMOS permette di realizzare funzioni logiche <u>invertenti</u> (p.e. NAND NOR ecc..)
- Se si vuole implementare una funzione logica non invertente (AND, OR ecc..) occorre aggiunge un inverter in uscita
- Il numero di transistori necessari per implementare una porta a N ingressi è 2N

Proprietà CMOS

- Elevati margini di rumore
- Livelli logici non dipendenti dalle dimensioni dei dispositivi corrispondenti;
- Sempre un percorso verso lo stato stabile di V_{DD} o G_{nd}; bassa impedenza di uscita
- Resistenza di ingresso estremamente elevata; quasi zero corrente di ingresso dello stato stazionario
- Staticamente no percorso diretto fre V_{DD} e massa; nessuna dissipazione statica di potenza
- Ritardo di propagazione funzione della capacità di carico e della resistenza dei transistori

Porta NAND: VTC

La caratteristica di trasferimento (VTC) risulta dipendente dalle accensioni dei transistori ovvero dai valori logici agli ingressi.

Nel caso di transizione 1→0 dell' uscita nel caso siano entrambi gli ingressi a commutare, PUN è inizialmente molto forte essendo entrambi i PMOS inizialmente accesi.

Tempi Di Propagazione

- Il tempo di propagazione attraverso una porta CMOS a N ingressi dipende da quanti e quali ingressi commutano contemporaneamente
- I tempi di propagazione sono inoltre asimmetrici

• • Esempio : NAND a 2 ingressi

Transizione H→L

- Questa transizione avviene solo se entrambi gli ingressi sono portati a V_{DD}.
- In questo caso essendo la PDN costituita da due NMOS in <u>serie</u>, il tempo di propagazione risulta

$$t_{pHL} = ln2 \cdot 2R_N \cdot C_L$$

Esempio : NAND a 2 ingressi

Transizione L→H

- Questa transizione può avvenire se solo uno o entrambi gli ingressi vengono portati a 0V.
- Nei vari casi possiamo avere sostanzialmente 2 configurazioni di accensione della PUN:
 - a) 1 transistore PMOS acceso
 - b) 2 transistori PMOS accesi in parallelo
- Nei due casi i tempi di propagazione risultano rispettivamente

$$a) \quad t_{pLH} = ln2 \cdot R_P \cdot C_L$$

b)
$$t_{pLH} = ln2 \cdot \frac{R_P}{2} \cdot C_L$$

Dipendenza di t_P : NAND 2 ingressi

Input Data Pattern	Delay (psec)	
$A = B = 0 \rightarrow 1$	69 (*)	٦
$A = 1, B = 0 \rightarrow 1$	62	٦
$A = 0 \rightarrow 1, B = 1$	50	٦
A=B=1→0	35	٧
$A=1, B=1\to 0$	76	٦
$A = 1 \rightarrow 0, B = 1$	57	_

(*) Inizialmente C_{int} è carico a V_{DD} - V_{TN}

Dipendenza di t_P : NAND 2 ingressi

Il tempo di propagazione dipende dallo stato iniziale del 'nodo interno' cui è associata la capacita C_{INT}

Input Data Pattern	Delay (psec)
$A = B = 0 \rightarrow 1$	69
$A = 1, B = 0 \rightarrow 1$	62
$A = 0 \rightarrow 1, B = 1$	50
A=B=1→0	35
$A=1, B=1\to 0$	76
$A=1\to 0, B=1$	57

Ancora su t_P: NAND a 4 ingessi

 Consideriamo una porta NAND a quattro ingressi e il suo modello equivalente a interruttori

• • NAND a 4 ingessi

Calcolo di t_{pHL}

 Consideriamo la transizione H → L : C_L si scarica attraverso i 4 NMOS accesi. Le loro resistenze equivalenti in stato ON sono R₁..R₄

• • Calcolo di t_{pHL}

Considerando trascurabili le capacità di diffusione
 (C₁..C₃), il tempo di propagazione è

$$t_{pHL} = 0.69 \cdot (R_1 + R_2 + R_3 + R_4) \cdot C_L$$

- Diversamente occorre considerare che tutte le capacità devono scaricarsi dopo la commutazione (caso peggiore trascurando V_T).
- Si ottiene quindi :

$$t_{pHL} = 0.69(R_1 \cdot C_1 + (R_1 + R_2) \cdot C_2 + (R_1 + R_2 + R_3) \cdot C_3 + (R_1 + R_2 + R_3 + R_4) \cdot C_L)$$

• • Calcolo di t_{pHL}

• Ipotizzando che tutti i transistori NMOS abbiano uguale W/L e quindi uguale R_{eqN} , la precedente si semplifica in:

$$t_{pHL} = 0.69 \cdot R_N \cdot (C_1 + 2C_2 + 3C_3 + 4C_L)$$

dove le capacità hanno diverso valore.

Considerando solo le capacità intrinseche risulta:

Capacitor	Contributions (H→L)	Value (fF) (H→L)
C_1	$C_{d1} + C_{s2} + 2 * C_{gd1} + 2 * C_{gs2}$	(0.57 * 0.0625 * 2+ 0.61 * 0.25 * 0.28) + (0.57 * 0.0625 * 2+ 0.61 * 0.25 * 0.28) + 2 * (0.31 * 0.5) + 2 * (0.31 * 0.5) = 0.85fF
C_2	$C_{d2} + C_{s3} + 2 * C_{gd2} + 2 * C_{gs3}$	(0.57 * 0.0625 * 2+ 0.61 * 0.25 * 0.28) + (0.57 * 0.0625 * 2+ 0.61 * 0.25* 0.28) + 2 * (0.31 * 0.5) + 2 * (0.31 * 0.5) = 0.85fF
C_3	$C_{d3} + C_{s4} + 2 * C_{gd3} + 2 * C_{gs4}$	(0.57 * 0.0625 * 2+ 0.61 * 0.25 * 0.28) + (0.57 * 0.0625 * 2+ 0.61 * 0.25* 0.28) + 2 * (0.31 * 0.5) + 2 * (0.31 * 0.5) = 0.85fF
C_L	$C_{d4} + 2 * C_{gd4} + C_{d5} + C_{d6} + C_{d7} + C_{d8} + 2 * C_{gd5} + 2 * C_{gd6} + 2 * C_{gd7} + 2 * C_{gd8}$ $= C_{d4} + 4 * C_{d5} + 4 * 2 * C_{gd6}$	

• • Effetto Miller

- In un inverter o gate CMOS La C_{gd} ha peso doppio.
- Considerando il transistore NMOS, per esempio, ad una variazione $\Delta V=0 \rightarrow V_{DD}$ della tensione di gate corrisponde infatti una variazione opposta del drain.
- ullet La carica necessaria per cambiare lo stato di $C_{\rm gd}$ risulta quindi pari a

$$Q = C_{gd} \cdot 2V_{DD} = 2C_{gd} \cdot V_{DD}$$

• C_{gd} può essere sostituito per semplicità da un condensatore di valore doppio collegato fra il gate e massa

• • Calcolo approssimato di t_{pHL}

Stante le considerazioni precedenti ipotizzando R_N = 13KΩ ed un uguale fattore di forma S_N =2 per tutti i transistori NMOS del gate, allora il t_{pHL} può esser calcolato come:

$$t_{pHL} = 0.69 \cdot R_N \cdot (C_1 + 2C_2 + 3C_3 + 4C_L)$$

$$= 0.69 \cdot \frac{13K\Omega}{2} \cdot (0.85fF + 2 \cdot 0.85fF + 3 \cdot 0.85fF + 4 \cdot 3.47fF) = 85ps$$

• • Calcolo approssimato della C_{IN}

 Salvo diversamente specificato la capacità C_{IN} vista all' ingresso di un gate sarà calcolato come segue:

$$C_{IN} = \sum_{i} C_{Ni} + \sum_{j} C_{Pj}$$

Dove le capacità C_{Ni} e C_{Pi} sono calcolate come segue:

$$C_{Ni} = C_{OX} \cdot W_{Ni} \cdot L_{ni}$$
 $C_{Pj} = C_{OX} \cdot W_{Pj} \cdot L_{Pj}$

essendo W ed L le larghezze e le lunghezze di canale.

Se, come normalmente è, L coincide con L_{min} allora:

$$C_{Ni} = C_{OX} \cdot W_{Ni} \cdot L_{min} = C_{OX} \cdot L_{min}^{2} \cdot S_{N} \qquad C_{Pj} = C_{OX} \cdot W_{Pj} \cdot L_{min} = C_{OX} \cdot L_{min}^{2} \cdot S_{P}$$

Considerazioni

Il tempo di propagazione in un NAND a N ingressi aumenta

- All' aumentare del fan-in aumenta l' area (di 2N).
- Volendo meglio bilanciare il peso delle R_N, M1 dovrà essere sovradimensionato perché attraverso di esso si scaricano tutte le capacità → ulteriore aumento di area

• • Strategie

Riorganizzazione logica: usare gate a ridotto fan-in in cascata

Dimensionamento progressivo dei transistori

$$In_{N} \longrightarrow MN \longrightarrow C_{L}$$

$$In_{3} \longrightarrow M_{3} \longrightarrow C_{3} \qquad M_{1} > M_{2} > M_{3} > M_{N}$$

$$In_{2} \longrightarrow M_{2} \longrightarrow C_{2}$$

$$In_{1} \longrightarrow M_{1} \longrightarrow C_{1}$$

• • • Metodo di Elmore

- E' un metodo empirico-approssimato per stimare i ritardi di propagazione in reti EC ad albero
- Sia data una rete RC dalle seguenti caratteristiche:
 - La rete ha N nodi e un singolo nodo di ingresso s
 - Tutti i condensatori sono posti fra un nodo e la massa
 - Non esistono percorsi circolari (topologia ad albero)

allora la costante di tempo per la propagazione di un segnale dall' ingresso s al nodo i-esimo è data dall' espressione :

$$\tau_{Di} = \sum_{k=1}^{N} C_k R_{ik}$$

Dove C_K è la capacità fra il nodo k-esimo e la massa e R_{ik} è la 'resistenza di percorso condivisa' definita come

$$R_{ik} = \sum R_j \Rightarrow (R_j \in [path(s \rightarrow i) \cap path(s \rightarrow k)])$$

Esempio(*)

$$R_{i1} = R_1$$

$$R_{i2} = R_1$$

$$R_{i3} = R_1 + R_3$$

$$R_{i4} = R_1 + R_3$$

$$R_{ii} = R_1 + R_3 + R_i$$

Quindi con il metodo di Elmore stimiamo :

$$\tau_{Di} = R_1 C_1 + R_1 C_2 + (R_1 + R_3) C_3 + (R_1 + R_3) C_4 + (R_1 + R_3 + R_i) C_i$$

(*) si considerino inizialmente tutti i condensatori scarichi

Esempio (*): NAND a 4 ingressi - t_{pHL}

$$R_{01} = R_1$$

$$R_{o2} = R_1 + R_2$$

$$R_{o3} = R_1 + R_2 + R_3$$

$$R_{oo} = R_1 + R_2 + R_3 + R_4$$

Quindi con il metodo di Elmore stimiamo :

$$\tau_{Do} = R_1 C_1 + (R_1 + R_2)C_2 + (R_1 + R_2 + R_3)C_3 + (R_1 + R_2 + R_3 + R_4)C_L$$

(*) si considerino inizialmente tutti i condensatori carichi

T_p In Funzione Del Fan-In E Fan-Out

- Fan-in: dipendenza quadratica a causa dell'aumento di resistenza e capacità
- Fan-out: ciascuna porta inserita all'uscita, aggiunge due capacità di gate in C₁

$$t_p = a_1 FI + a_2 FI^2 + a_3 FO$$

Esempio: Gate CMOS Complesso

Progettare un Gate Complesso

$$OUT = D + A \cdot (B + C)$$

(a) pull-down network

(b) Deriving the pull-up network hierarchically by identifying sub-nets

Es. : Dimensionamento per t_{pHL}

Dati:

 R_N =5.39 $K\Omega/S_N$ R_P =10.78 $K\Omega/S_P$ C_L =100fF Si ignorino le capacità interne

Calcolare S_N affinchè t_{pHL}≤ 150ps

- 1) Caso peggiore ABCD = 1100 opp 1010
- 2) $t_{pHL} = 0.69 \cdot 2 \cdot R_N \cdot C_L = 0.69 \cdot 2 \cdot R_N \cdot 100 \text{ fF} \le 150 \text{ ps}$
- 3) $R_N \le 150 \text{ps/}(0.69 \cdot 2 \cdot 100 \text{fF}) = 1087 \Omega$
- 4) $S_N \ge 5.39 K\Omega / R_{Nmax} = 4.95 \rightarrow S_N = 5$
- 5) Dimensionamento ottimizzato M_D (ABCD=0001):

$$t_{pHL} = 0.69 \cdot \mathbf{1} \cdot R_{MD} \cdot C_{L} \le 150 \text{ps} \rightarrow R_{MD} \le 2174 \Omega \rightarrow S_{MD} \ge 2.48 \rightarrow S_{MD} = 3$$

Es.: Dimensionamento per tplh

Dati:

 R_N =5.39 $K\Omega/S_N$ R_P =10.78 $K\Omega/S_P$ C_L =100fF Si ignorino le capacità interne

Calcolare S_N affinchè t_{pLH}≤ 200ps

- 1) Caso peggiore ABCD = 1000
- 2) $t_{pLH} = 0.69 \cdot 3 \cdot R_P \cdot C_L = 0.69 \cdot 3 \cdot R_P \cdot 100 fF \le 200 ps$
- 3) $R_P \le 200 \text{ps/}(0.69 \cdot 3 \cdot 100 \text{fF}) = 966 \Omega$
- 4) $S_P ≥ 10.78 KΩ / R_{Pmax} = 11.16 → S_P = 12 (→ R_P = 898 Ω)$
- 5) Dimensionamento ottimizzato M_A (ABCD=0110/0100/0010)

$$t_{pHL}=0.69 \cdot (R_{P}+R_{MA}) \cdot C_{L} \rightarrow R_{P}+R_{MA}=2898 \Omega \rightarrow R_{MA}=2K\Omega \rightarrow S_{MA}=5.39 \rightarrow S_{MA}=6$$