Deep Sea Surface Height Multivariate Interpolation

Théo Archambault third year Ph.D. candidate at Sorbonne Université, LIP6 and LOCEAN Pierre Garcia, Anastase Charantonis, Dominique Béréziat 24 avril 2024

Multi-Variate satellite surface observations of the ocean

Sea Surface Height

- Used to derive surface currents to geostrophic approximation
- Measurement principle : return time of a radar pulse
- Nadir-pointing altimeters : only measure data along their ground tracks ^a
- a. We use the L3 reprocessed DUACS data.

Sea Surface Temperature

- Measurement principle : Direct infra-red image with high resolution $(1/25^{\circ})$
- Clouds introduce gaps in data
- L4 SST fields ^a : obtained through linear Optimal Interpolation combining several satellites and in-situ data.
- Noise: high-frequency instrumental errors and blurring.
- Advected by the currents.
- a. We use the Multiscale Ultra-high Resolution dataset

Data

We use an OSSE : we emulate satellite observations on a simulation (GLORYS12, CMEMS). We assume that $\mathbf{Y} = \mathcal{H}(\mathbf{X}) + \varepsilon$

We use an OSSE : we emulate satellite observations on a simulation (GLORYS12, CMEMS). We assume that $\mathbf{Y} = \mathcal{H}(\mathbf{X}) + \varepsilon$

• \mathcal{H}_{ssh} : SSH along the satellite path + noise

We use an OSSE : we emulate satellite observations on a simulation (GLORYS12, CMEMS). We assume that $\mathbf{Y}=\mathcal{H}\left(\mathbf{X}\right)+\varepsilon$

- ullet \mathcal{H}_{ssh} : SSH along the satellite path + noise
- ullet $\mathcal{H}_{\mathit{sst}}$: SST blurred in cloudy area + noise

We use an OSSE : we emulate satellite observations on a simulation (GLORYS12, CMEMS). We assume that $\mathbf{Y} = \mathcal{H}(\mathbf{X}) + \varepsilon$

- ullet \mathcal{H}_{ssh} : SSH along the satellite path + noise
- \bullet \mathcal{H}_{sst} : SST blurred in cloudy area + noise
- ullet $f_{ heta}$: NN inversion \mathcal{H}_{ssh} using SSH and SST observations

Domain gap?

SSH

SST

Proposed Method : simulation pre-training and observations fine-tuning

• Subset input data \mathbf{Y}_{ssh}^i , and estimates $\hat{\mathbf{X}}_{ssh}$ from $(\mathbf{Y}_{ssh}^i, \mathbf{Y}_{sst})$.

- Subset input data \mathbf{Y}_{ssh}^{i} , and estimates $\hat{\mathbf{X}}_{ssh}$ from $(\mathbf{Y}_{ssh}^{i}, \mathbf{Y}_{sst})$.
- Apply \mathcal{H}_{ssh} to $\hat{\mathbf{X}}_{ssh}$ before computing the loss.

- Subset input data \mathbf{Y}_{ssh}^{i} , and estimates $\hat{\mathbf{X}}_{ssh}$ from $(\mathbf{Y}_{ssh}^{i}, \mathbf{Y}_{sst})$.
- Apply \mathcal{H}_{ssh} to $\hat{\mathbf{X}}_{ssh}$ before computing the loss.
- Removing some input observations helps to estimate the entire map accurately.

- Subset input data \mathbf{Y}_{ssh}^{i} , and estimates $\hat{\mathbf{X}}_{ssh}$ from $(\mathbf{Y}_{ssh}^{i}, \mathbf{Y}_{sst})$.
- Apply \mathcal{H}_{ssh} to $\hat{\mathbf{X}}_{ssh}$ before computing the loss.
- Removing some input observations helps to estimate the entire map accurately.
- f_{θ} : Attention-Based Encoder Decoder taking 21 days of observations.

Results

Ocean Data Challenge 2021

Evaluation on a real observation dataset : the Ocean Data Challenge 2021.

- 1 year of data on the Gulf Stream area
- Provides state-of-the-art reconstruction methods
- Evaluation on independent data
- Metrics : μ the RMSE score (in cm), σ_t its temporal std (in cm), λ_x the half-resolved spatial wavelength (in km)

Ocean Data Challenge 2021

Evaluation on a real observation dataset : the Ocean Data Challenge 2021.

- 1 year of data on the Gulf Stream area
- Provides state-of-the-art reconstruction methods
- Evaluation on independent data
- Metrics : μ the RMSE score (in cm), σ_t its temporal std (in cm), λ_x the half-resolved spatial wavelength (in km)

We want to test:

- ullet SST impact : training using SSH, SSH+nSST, SSH+SST
- The learning strategy

Given the supervised and the unsupervised learning, we derive 3 strategies;

Given the supervised and the unsupervised learning, we derive 3 strategies;

• Observations only: unsupervised training on real-world observations.

Input data	SSH			SSH+nSST			SSH + SST		
Learning method	μ	σ_t	$\lambda_{\scriptscriptstyle X}$	μ	σ_t	λ_{x}	μ	σ_t	λ_{x}
Observation	6.52	1.95	111	6.13	1.84	104	—	—	—

Given the supervised and the unsupervised learning, we derive 3 strategies;

- Observations only: unsupervised training on real-world observations.
- **Simulation only** : supervised training on simulation and direct inference on real-world data.

Input data	SSH			SSH + nSST			SSH+SST		
Learning method	μ	σ_t	$\lambda_{\scriptscriptstyle X}$	μ	σ_t	λ_{x}	μ	σ_t	λ_{x}
Observation	6.52	1.95	111	6.13	1.84	104	_	_	—
Simulation	6.35	1.9	112	6.2	1.87	108	6.85	2.22	111

Given the supervised and the unsupervised learning, we derive 3 strategies;

- **Observations only**: unsupervised training on real-world observations.
- **Simulation only**: supervised training on simulation and direct inference on real-world data.
- **Both**: Supervised pre-training on simulation and unsupervised fine-tuning on real-world observations.

Input data	SSH			SSH+nSST			SSH+SST		
Learning method	μ	σ_t	$\lambda_{\scriptscriptstyle X}$	μ	σ_t	λ_{x}	μ	σ_t	λ_{x}
Observation	6.52	1.95	111	6.13	1.84	104	—	_	—
Simulation	6.35	1.9	112	6.2	1.87	108	6.85	2.22	111
Both	6.27	1.85	110	5.77	1.64	102	5.77	1.6	103

Improvements brought by SST

Conclusion

- Pre-training and fine-tuning improve the reconstruction.
- Especially with SST.

Thank you for your attention

Contact: theo.archambault@lip6.fr Web:

State-of-the-art comparison

Method	SST	NN	Learning	μ (cm)	$\sigma_t(cm)$	$\lambda_{x}(km)$
DUACS	X	X	X	7.66	2.66	138
DYMOST	X	X	X	6.75	2.00	121
MIOST	X	X	X	6.75	2.00	121
BFN	X	X	X	7.46	2.59	114
$4\mathrm{DVarNet}$	X	1	simulation	6.56	1.84	104
MUSTI	1	1	observation	6.26	1.96	107
CONVLSTM	X	1	observation	6.82	1.86	108
CONVLSTM	1	1	observation	6.29	1.60	102
ABED-SSH	X	1	both	6.27	1.85	110
ABED-SSH-SST	1	1	both	5.74	1.61	102

Architecture

Attention-Based Encoder-Decoder (ABED).

- Two encoding blocks reducing spatial dimensions
- Spatio-Temporal Attention modules (inspired by CBAM)
 - Temporal attention : performs channel and temporal attention together
 - Spatial attention
- Decoding blocks to increase spatial dimensions

