Inclusion-exclusion principle

MOPSS

16 February 2025

Suggested readings

- Evan Chen's
 - advice On reading solutions, available at https://blog.evanchen. cc/2017/03/06/on-reading-solutions/.
 - Advice for writing proofs/Remarks on English, available at https://web.evanchen.cc/handouts/english/english.pdf.
- Evan Chen discusses why math olympiads are a valuable experience for high schoolers in the post on Lessons from math olympiads, available at https://blog.evanchen.cc/2018/01/05/lessons-from-math-olympiads/.

List of problems and examples

1.1	Example	2
1.2	Example (India RMO 2015f P6)	2
1.3	Example (India RMO 2019b P5)	3

§1 Inclusion-exclusion principle

Example 1.1. How many positive integers not exceeding 1000 are divisible by 7 or 11?

Solution 1. Let A (resp. B) denote the set of integers not exceeding 1000 that are divisible by 7 (resp. 11). Then the size of $A \cup B$ is equal to

$$\#A + \#B - \#A \cap B = \left\lfloor \frac{1000}{7} \right\rfloor + \left\lfloor \frac{1000}{11} \right\rfloor - \left\lfloor \frac{1000}{77} \right\rfloor = 142 + 90 - 12 = 220.$$

Example 1.2 (India RMO 2015f P6). From the list of natural numbers 1, 2, 3, ..., suppose we remove all multiples of 7, 11 and 13.

- At which position in the resulting list does the number 1002 appear?
- What number occurs in the position 3600?

Solution 2. Let S denote the set of all positive integers none of which is divisible by 7, 11 or 13. Note that the sum of $\#\{x \in S \mid x \leq 1002\}$ and the number of positive integers ≤ 1002 divisible by 7, 11 or 13 is equal to 1002. Moreover, by the inclusion-exclusion principle, the number of positive integers ≤ 1002 divisible by 7, 11 or 13 is equal to

$$\left\lfloor \frac{1002}{7} \right\rfloor + \left\lfloor \frac{1002}{11} \right\rfloor + \left\lfloor \frac{1002}{13} \right\rfloor - \left\lfloor \frac{1002}{7 \cdot 11} \right\rfloor - \left\lfloor \frac{1002}{11 \cdot 13} \right\rfloor - \left\lfloor \frac{1002}{13 \cdot 7} \right\rfloor + \left\lfloor \frac{1002}{7 \cdot 11 \cdot 13} \right\rfloor$$

$$= 143 + 91 + 77 - 13 - 7 - 11 + 1 = 281.$$

Note that 1002 belongs to S and hence it appears at the 1002-281=721st position.

Suppose n occurs at the 3600th position. So the number of positive integers $\leq n$ divisible by 7, 11 or 13 is equal to n-3600. Using the inclusion-exclusion principle, we obtain

$$n - 3600 = \left\lfloor \frac{n}{7} \right\rfloor + \left\lfloor \frac{n}{11} \right\rfloor + \left\lfloor \frac{n}{13} \right\rfloor - \left\lfloor \frac{n}{7 \cdot 11} \right\rfloor - \left\lfloor \frac{n}{11 \cdot 13} \right\rfloor - \left\lfloor \frac{n}{13 \cdot 7} \right\rfloor + \left\lfloor \frac{n}{7 \cdot 11 \cdot 13} \right\rfloor. \tag{1}$$

This gives

$$\begin{split} &\frac{n}{7}-1+\frac{n}{11}-1+\frac{n}{13}-1-\frac{n}{7\cdot 11}-\frac{n}{11\cdot 13}-\frac{n}{13\cdot 7}+\frac{n}{7\cdot 11\cdot 13}-1\\ &\leq n-3600\\ &\leq \frac{n}{7}+\frac{n}{11}+\frac{n}{13}-\frac{n}{7\cdot 11}+1-\frac{n}{11\cdot 13}+1-\frac{n}{13\cdot 7}+1+\frac{n}{7\cdot 11\cdot 13}, \end{split}$$

which is equivalent to

$$-4 \le n\left(1 - \frac{1}{7} - \frac{1}{11} - \frac{1}{13} + \frac{1}{7 \cdot 11} + \frac{1}{11 \cdot 13} + \frac{1}{13 \cdot 7} - \frac{1}{7 \cdot 11 \cdot 13}\right) - 3600 \le 3.$$

Noting that

$$\left(1 - \frac{1}{7} - \frac{1}{11} - \frac{1}{13} + \frac{1}{7 \cdot 11} + \frac{1}{11 \cdot 13} + \frac{1}{13 \cdot 7} - \frac{1}{7 \cdot 11 \cdot 13}\right) = \frac{6 \cdot 10 \cdot 12}{7 \cdot 11 \cdot 13},$$

we obtain

$$-4 \times \frac{7 \cdot 11 \cdot 13}{6 \cdot 10 \cdot 12} \le n - 5 \cdot 7 \cdot 11 \cdot 13 \le 3 \times \frac{7 \cdot 11 \cdot 13}{6 \cdot 10 \cdot 12},$$

which yields

$$-\frac{7 \cdot 11 \cdot 13}{180} \leq n - 5 \cdot 7 \cdot 11 \cdot 13 \leq \frac{7 \cdot 11 \cdot 13}{240},$$

and consequently, any solution of the Eq. (1) satisfies

$$-5 \le n - 5 \cdot 7 \cdot 11 \cdot 13 \le 4$$
.

Note that $n = 5 \cdot 7 \cdot 11 \cdot 13$ is the unique solution to

$$n\left(1 - \frac{1}{7} - \frac{1}{11} - \frac{1}{13} + \frac{1}{7 \cdot 11} + \frac{1}{11 \cdot 13} + \frac{1}{13 \cdot 7} - \frac{1}{7 \cdot 11 \cdot 13}\right) - 3600 = 0,$$

and it is a multiple of the pairwise coprime integers 7, 11, 13. Hence, it is a solution to Eq. (1). Also note that $5 \cdot 7 \cdot 11 \cdot 13 - 1$ is also a solution to Eq. (1). Moreover, no integer lying in $[-6+5\cdot7\cdot11\cdot13, 4+5\cdot7\cdot11\cdot13]$, other than $5\cdot7\cdot11\cdot13-1$ and $5\cdot7\cdot11\cdot13$ is a solution to Eq. (1). Observe that $5\cdot7\cdot11\cdot13-1$ lies in S.

We conclude that the number that occurs in the 3600th position is $5 \cdot 7 \cdot 11 \cdot 13 - 1 = 5004$.

Example 1.3 (India RMO 2019b P5). There is a pack of 27 distinct cards, and each card has three values on it. The first value is a shape from $\{\Delta, \Box, \odot\}$; the second value is a letter from $\{A, B, C\}$; and the third value is a number from $\{1, 2, 3\}$. In how many ways can we choose an unordered set of 3 cards from the pack, so that no two of the chosen cards have two matching values. For example we can chose $\{\Delta A1, \Delta B2, \odot C3\}$. But we cannot choose $\{\Delta A1, \Box B2, \Delta C1\}$.

Solution 3. Let \mathcal{A} denote the set of ordered tuples (u, v, w) with $u, v, w \in (\mathbb{Z}/3\mathbb{Z})^3$ such that no two among u, v, w have two equal coordinates. For $u \in (\mathbb{Z}/3\mathbb{Z})^3$, let \mathcal{A}_u denote the set of ordered tuples lying in \mathcal{A} with the first coordinate equal to u. Note that $(u, v, w) \mapsto (u, v, w) - (u, u, u)$ defines a bijection between \mathcal{A}_u and \mathcal{A}_0 . Hence, the number of ways of choosing an unordered set of 3 cards satisfying the given conditions is $\frac{1}{3!} \cdot 27 \cdot |\mathcal{A}_0|$. Note that

$$\mathcal{A}_0 = \{ (0, v, w) \mid v \notin \langle e_1 \rangle \cup \langle e_2 \rangle \cup \langle e_3 \rangle, w \notin \langle e_1 \rangle \cup \langle e_2 \rangle \cup \langle e_3 \rangle, \\ w \notin (v + \langle e_1 \rangle) \cup (v + \langle e_2 \rangle) \cup (v + \langle e_3 \rangle) \},$$

and hence

$$|\mathcal{A}_{0}| = \sum_{v \notin \langle e_{1} \rangle \cup \langle e_{2} \rangle \cup \langle e_{3} \rangle} \left| (\langle e_{1} \rangle \cup \langle e_{2} \rangle \cup \langle e_{3} \rangle)^{c} \bigcap ((v + \langle e_{1} \rangle) \cup (v + \langle e_{2} \rangle) \cup (v + \langle e_{3} \rangle))^{c} \right|.$$

For any subset S of $(\mathbb{Z}/3\mathbb{Z})^3$ and an element $v \in (\mathbb{Z}/3\mathbb{Z})^3$, we have

$$\begin{split} |S^c \cap (v+S)^c| &= 27 - |(S^c \cap (v+S)^c)^c| \\ &= 27 - |S \cup (v+S)| \\ &= 27 - |S| - |v+S| + |S \cap (v+S)| \\ &= 27 - 7 - 7 + |S \cap (v+S)| \\ &= 13 + |S \cap (v+S)|. \end{split}$$

Henceforth, S denotes the subset $\langle e_1 \rangle \cup \langle e_2 \rangle \cup \langle e_3 \rangle$ of $(\mathbb{Z}/3\mathbb{Z})^3$, and v denotes an element of $(\mathbb{Z}/3\mathbb{Z})^3$ lying outside S.

First, let us consider the case when v has exactly two nonzero coordinates. It follows that v lies in exactly one of $\langle e_1 \rangle - \langle e_2 \rangle$, $\langle e_2 \rangle - \langle e_3 \rangle$, $\langle e_3 \rangle - \langle e_1 \rangle$. Observe that the set $S \cap (v+S)$ is equal to the union of $\langle e_i \rangle \cap (v+\langle e_j \rangle)$ for $1 \leq i, j \leq n$. It follows that $S \cap (v+S)$ has size two.

Now, let us consider the case when all coordinates of v are nonzero. Note that $\langle e_i \rangle \cap (v + \langle e_i \rangle)$ is empty for any $1 \leq i, j \leq n$. Hence, so is the set $S \cap (v + S)$.

Note that the number of elements of $(\mathbb{Z}/3\mathbb{Z})^3$ having exactly two nonzero coordinates is $3 \cdot 2 \cdot 2 = 12$, and the number of elements of $(\mathbb{Z}/3\mathbb{Z})^3$ having all coordinates nonzero is $2^3 = 8$. It follows that

$$|\mathcal{A}_0| = 12 \cdot (13+2) + 8 \cdot (13+0) = 284.$$

Hence, the number of ways of choosing an unordered set of 3 cards satisfying the given conditions is $\frac{1}{3!} \cdot 27 \cdot 284 = 1278$.