

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS)

Licenciatura en Ciencia de Datos

Sistema escolarizado (Modalidad presencial)

Programa

Probabilidad Aplicada y Simulación Estocástica

Clave	Semestre 5°		Créditos						
			5° 8 Área general de conocimiento		Matemáticas				
				Etapa	Intermedia				
Modalidad			so-Taller (X) er () Lab () Sem ()		Тіро	T() P() T/P(X)			
			atorio (X)	Optativo ()					
Carácter				Horas					
		Obligatorio E () Optativo E ()							
Duración (número de semanas)		16			Semana Semestre		estre		
					Teóric	as	2	Teóricas	32
					Práction	cas	4	Prácticas	64
					Total		6	Total	96

Seriación				
	Ninguna ()			
Obligatoria (X)				
Asignatura antecedente	Ninguna			
Asignatura subsecuente	Métodos Estadísticos			
Indicativa ()				
Asignatura antecedente				
Asignatura subsecuente				

Objetivo general. Al finalizar el curso el alumno será capaz de:

Desarrollar modelos computarizados de un sistema utilizando distintas técnicas de simulación y probabilidad para entender el comportamiento del sistema.

Objetivos específicos: Al finalizar el curso el alumno será capaz de:

Utilizar el lenguaje y entorno de programación estadística para recopilar, organizar y analizar adecuadamente la información.

Interpretar si un suceso es más probable que otro mediante el uso de los procesos de la teoría de la probabilidad para inferir posibles comportamientos del sistema.

Aplicar cadenas de Markov para analizar el comportamiento de procesos estocásticos.

Modelar procesos para contrastar la capacidad de trabajo de un sistema sin que llegue a colapsar.

Índice temático				
	Tema	Horas Semestre		

		Teóricas	Prácticas
1	Introducción y motivación	2	5
2	Elementos de la teoría de la probabilidad	10	15
3	Simulación estocástica	6	16
4	Cadenas de Markov	10	16
5	Elementos de la teoría de colas	4	12
	Total	32	64
Suma total de horas		g	96

Contenido Temático					
Tema	Subtemas				
1. Introducción y motivación					
1.1	Fenómenos aleatorios e incertidumbre				
1.2	Números pseudoaleatorios y simulación				
1.3	Presentación de lenguaje y entorno de programación para análisis estadístico y gráfico (por ejemplo: R)				
2. Elementos de	e la teoría de la probabilidad				
2.1	Preliminares				
2.1.1	Espacios muestrales y eventos				
2.1.2	Axiomas de la probabilidad				
2.1.3	Probabilidad condicional e independencia				
2.1.4	Teorema de Bayes				
2.2	Variables aleatorias				
2.2.1	Definición				
2.2.2	Función de distribución y función de densidad (Fn. de cuantiles y fns. generadoras)				
2.2.3	Variables aleatorias discretas: Distribuciones Uniforme, Bernoulli, Geométrica y Binomial				
2.2.4	Variables aleatorias continuas: Distribuciones Uniforme, Exponencial y Normal				
2.2.5	Valor esperado y varianza				
2.2.6	Transformaciones de variables aleatorias (regla de cambio de variable, f. generadoras)				
2.2.7	Convergencia en distribución, en probabilidad y casi segura				
2.2.8	Ley de los Grandes Números y Teorema Central del Límite				
2.2.9	,				
2.3	Vectores aleatorios				
2.3.1	Distribuciones y densidades conjuntas, marginales y condicionales				
2.3.2	Independencia de variables aleatorias				
2.3.3	Valor esperado, varianza, covarianza y correlación (incluyendo marginal y condicional)				
2.3.4	Distribución Multinomial				
2.3.5	Distribución Normal Multivariada				
2.3.6	Transformaciones de vectores aleatorios (lineales, estadísticas de orden)				
2.3.7	Otras distribuciones: Poisson, Binomial Negativa, Hipergeométrica, Gamma,				

	Chi-cuadrada, <i>t</i> de Student, F, Beta, Dirichlet, Wishart			
2.3.8	Prácticas en algún lenguaje de programación para análisis estadístico (por ejemplo, R)			
2.4	Gráficas aleatorias			
3. Simulación e	stocástica			
3.1	Motivación: Método de Monte Carlo			
3.2	Generación de números pseudoale	eatorios		
3.3	Técnicas generales para simular va	ariables aleatorias continuas		
	Método de la transformación inv	ersa		
	Métodos de aceptación-rechazo			
3.4	Simulación de distribuciones discre	etas		
3.5	Métodos de reducción de varianza			
3.6	Aplicación a problemas de probabi transformaciones, distribuciones m			
3.7	(por ejemplo R)	gramación para análisis estadístico		
4. Cadenas de I	Markov			
4.1	Introducción			
4.2	Probabilidades de transición y ecua	aciones de Chapman-Kolmogorov		
4.3	Clasificación de los estados			
4.4	Probabilidades límite			
4.5	Algunos ejemplos (caminatas aleatorias, procesos de ramificación, etc.)			
4.6	Aplicación a simulación estocástica: Monte Carlo con cadenas de Markov			
4.6.1	Algoritmo de Metropolis-Hastings			
4.6.2	Algoritmo de Gibbs			
4.6.3	Recocido simulado			
4.7	(por ejemplo R)	gramación para análisis estadístico		
5. Elementos de	e la teoría de colas			
5.1	Introducción			
5.2	Modelos exponenciales (M/M/1)			
5.3	Sistemas M/G/1			
5.4	Sistemas multi-servidor			
5.5	Prácticas en algún lenguaje de pro (por ejemplo R)	gramación para análisis estadístico		
	strategias didácticas	Evaluación del aprendizaje		
Exposición	(X)	Exámenes parciales (X)		
Trabajo en equip	00 (X)	Examen final ()		
Lecturas Trabajo de inves	()	Trabajos y tareas (X)		
Trabajo de inves Prácticas (taller		Presentación de tema () Participación en clase (X)		
Prácticas (tailer		Participación en clase (X) Asistencia (X)		
Aprendizaje por		Rúbricas de autoevaluación y		
		coevaluación (X)		
	ado en problemas (X)	Portafolios de evidencias (X)		
Casos de enseñ Otras (especifica	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Listas de cotejo (X) Otras (especificar): Resolución de		
Olias (especifica	AI ,	casos, presentación de resultados y		
12350, proseniación de resultados y				

	bitácoras			
Perfil profesiográfico				
Título o grado	Licenciatura o Ingeniería en Computación, Actuaría o Matemáticas preferentemente con estudios de posgrado.			
Experiencia docente Es deseable experiencia docente en probabilidad y estadística.				
Otras características	Es deseable experiencia en proyectos donde se aplique Probabilidad y Estadística o en Ciencia de Datos.			

Bibliografía básica:

- 1. Fishman, G.S. (2006). A First Course on Monte Carlo. Duxbury Press.
- 2. Ripley, B.D. (2009). Stochastic Simulation. Wiley.
- 3. Robert, C.P. and Casella, G. (2010). *Introducing Monte Carlo Methods with R.* Springer-Verlag.
- 4. Ross, S.M. (2007). *Introduction to Probability Models* (9th ed.). Academic Press: Amsterdam.
- 5. S. Ross, S.M. (2010). A First Course in Probability (8th ed.). Prentice-Hall: New Jersey.

Bibliografía complementaria:

- 1. Çınlar, E., & Sollenberger, N. (2013). Introduction to stochastic processes. Dover Publications: New York
- 2. Robert, C.P. and Casella, G. (2010). *Monte Carlo Statistical Methods*. Springer-Verlag.
- 3. Ross, S.M. (2013). Simulation. (5th ed.). Academic Press: Amsterdam.

Recursos electrónicos

- 1. Grinstead, C.M. and Snell, J.L. (2011). *Introduction to Probability*. American Mathematical Society. URL: https://bookstore.ams.org/iprob/.
- 2. Kerns, G.J. (2013). IPSUR: Introduction to Probability and Statistics Using R. URL: http://ipsur.org/