

公司简介 Company Profile

专注于声学科研和商业化

深圳市九音科技有限公司("九音科技")成立于2017年,是一家专注于声学科研和商业化的高新技术企业。公司的愿景是成为音频领域中特色技术解决方案的提供商。

公司提供集成AI算法、高性能DSP、高质量编解码器、高速USB与电源管理单元的系列音频处理器产品,支持客户深度定制开发和算法+芯片+应用设计的turn-key解决方案。

九音科技与行业顶尖的IP合作伙伴及芯片生产企业合作,打造出世界一流的音频处理器与配套元器件,为客户提供质量可靠、供应稳定与服务专业的声学解决方案。

深耕专业音频市场

九音专业音频处理员

Res) 3亿台以上

有交互和控制需求的终端都将具备音频入口,对音质和个性化感知的要求不断提升

SAMSON

九音麦克风阵列方案优势

还原高清音质

高清音质 声场识别 声场效果构建 支持声音随动

AI远场拾音

360度远程拾音 无麦克风喇叭自拾音 全球专利芯片算法

回声消除

业界高水平回声消除

语音识别智能遥控

语音识别 智能唤醒 智能远场交互

腾讯会议认证 Zoom认证 Teams认证 Skype认证

九音麦克风阵列应用方案

0

全内置麦克风阵列 (支持多达8路MIC)

独家芯片搭配麦克风阵列组合 2~8 MIC组合,达到3~8米范围内360度远程拾音回声消除,语音识别智能远场遥控,高清音频播放

02

外设配件 麦克风阵列 (搭配摄像头模组)

独家芯片搭配麦克风阵列组合 2~8MIC组合,达到3~8米范围 内360度远程拾音回声消除,语音 识别智能远场遥控,高清音频播 放,声音识别配合摄像头实现声 音随动,画面放大缩小功能

03

全内置麦克风阵列 (无需麦克风/喇叭拾音)

采用世界级专利及独家算法,可利用现有喇叭进行拾音,无需增加麦克风,即可达到麦克风阵列拾音的同等效果。无需改造原有智慧屏模具,成本低,集成便利

基于SNC8x系列 32Bit 高性能音频信号处理器

- SNC8x系列音频信号处理器,集成AI算法和高质量编解码器、高性能DSP、高速USB与电源管理单元。
- 单芯片高集成度, 大幅降低了产品的BOM成本和开发周期。
- 丰富的开发者生态

关键技术指标

- Cadence Tensilica 32位 HiFi3 DSP核心 @200MHz
- 32位浮点计算单元、AI硬件加速
- 内建AGC、DRC、混音器、风噪抑制
- 内建LDO与DC-DC电源管理单元
- 24位高精度ADC, SNR>=106dB, 采样率高达192kHz
- 24位高精度DAC, SNR>=110dB, 采样率高达192kHz
- 支持USB2.0高速控制器与PHY, 完整支持UAC 1.0/2.0
- 支持3路全双工I²S输入/输出,采样率高达192kHz
- 支持2路模拟/10路数字麦克风
- 支持1路全双工UART与JTAG
- 支持12位 SAR ADC
- 支持2路I²C

麦克风阵列应用(支持腾讯会议认证)

麦克风阵列关键性能指标

拾音距离: 1/2米/3米/5米位置拾音, 输出音量大

小一致,10米内可以清晰拾音

回声消除: 回声消除深度: -80dB(平均RMS)

降噪深度: 稳态噪声降噪深度-56dB(平均RMS)

降噪深度: 非稳态噪声降噪深度-62dB(平均RMS)

去混响: 混响抑制算法收敛时间<1秒

去混响:混响抑制深度-46dB(平均RMS)

麦克风阵列算法指标

回声消除:

单讲回声耦合损耗: 50%音量≥56db; 100%音量≥50dB

双讲场景回声泄露: 50%音量≤5%; 100%音量≤8%

双讲场景语音衰减: 50%音量≤15dB; 100%音量≤25dB

信回比提升: ≥40dB

混响抑制:

信混比提升

单讲回声耦合损耗/双讲场景回声泄露/双讲场景语音衰减

AI降噪:

稳态噪声: 信噪比提升>35db

非稳态噪声: 信噪比提升>30db

噪声收敛时间: <200ms

远场拾音:

为分别在混响值 < 0.6和混响值 > 0.8环境,1/3/5/8/10米距离下信噪比提升效果结合Mask神经网络的算法,具有更好的鲁棒性、拾音效果更远,声音更清晰

Soundec Playground™ 评估板

丰富的音频与调试接口,1小时搭建典型应用

特有声学器件和通信模块扩展板与万能板设计,积木式搭建定 制化硬件方案

配合Soundec Studio™调试工具与开发者例程,零代码验证音频性能及产品原型

自动化固件生成工具,满足固件定制及小批量试产需求

SNC8x主要资源

Resource

- ✓ 音频DSP, 可达200MHz
- ✓ 单周期MAC, 矢量FPU, SIMD
- ✓ 512 kb的RAM零等待
- ✓ 48KB零等待缓存RAM
- ✓ 片内1MB NOR闪存
- ✓ 单独的电源管理单元支持3.3V到5.5V 宽电压

DSP

接口资源

指令架构

Codec

- ✓ 用于所有片上电源电压的DC-DC稳压器和Ido
- ✓ 内置硬件BQ加速器,支持8-band 硬件EQ

Interface

- ✓ USB2.0 HS 设备, 支持UAC1.0和UAC2.0
- ✓ 3 路全双工 I2S 数字音频接口
- ✓ 2 个IIC 控制单元,支持主从模式
- ✓ 1路 Uart 单元
- ✓ 16 个GPIO, 支持和其他单元的引脚复用
- ✓ 2个 ADC单元用于其他模拟信号检测
- ✓ 一个 256 bits的eFuse单元

Architecture

- ✓ HiFi3是一种VLIW架构,支持3路操作并行执行
- ✓ 支持一个2路SIMD单精度IEEE浮点单元
- ✓ 支持两个2乘法器的乘/积单元,乘法器支持4个24位、4个32x16位或 4个16x16位乘法操作
 - ✓ 每个周期支持两次32x32-bit乘法
 - ✓ 支持单乘、双乘和四乘的运算
- ✓ 通过可选的浮点单元,HiFi 3支持每个周期两个IEEE-754浮点MAC
- ✓ 一个算术/逻辑单元,以及一个对AE DR值进行操作的移位单元

Codec

- ✓ 立体声24位ADC和DAC
 - ✓ DAC: SNR 100dB, THD+N: 89dB, DR: 106dBA
 - ✓ ADC: SNR 95dB, THD+N: 88dB, DR: 110dBA
- ✓ 采样率支持: 8k, 16k, 32k, 48k, 96k, 192k
- ✓ 多达8个DMIC输入
- ✓ 支持本地音频运算: AGC、DRC、Mixer
- ✓ 独立声道增益控制:
 - ✓ 模拟增益 (12dB~-19dB, 1dB Step)
 - ✓ 数字增益 (64dB~-64dB, 1dB Step)

company confidential

专利名称	申请国家	专利申请号	专利类型
头戴式音频装置	美国	7072476	发明
单振膜双工通话装置	美国	7881483	发明
	日本	4888852	发明
单振膜双工通话电路	美国	8315379	发明
	欧洲	9724938.7	发明
	中国	ZL200980116842.0	发明
	日本	4844593	发明
	韩国	100995139	发明
自动功能切换无线通信装置	美国	7826805	发明
单扬声器切换通话电路、扬声器及 音频传输设备	中国	201720751310.6	实用新型
备注: 另有多个发明专利在专利局审核及公示中			

company confidential

