AMPLIFICADOR OPERACIONAL - ANALISE DE FILTROS ATIVOS Relatório 06 de ELT 311

Wérikson F. O. Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

Resumo

Este relatório abordará dois tipos de filtro, passa-baixa e passa-alta, com o intuito de entender o seu funcionamento, determinar os ganhos e as frequências de cortes, em cada circuito. Em seguida, serão realizadas algumas simulações acerca dos filtros citados com uma comparação ao final entre os resultados teóricos e práticos obtidos.

Introdução

Como vistos anteriormente, o amplificador operacional (Amp-op) a depender da sua configuração, permite obter sinais de saída específicos. Além disto, pode-se utilizar o Amp-op como filtro, ao aplicar, neste caso, capacitores na entrada alimentada. Com isto, obtém-se uma região ativa, na qual está operando com mais de 70,7% do ganho. Logo, para este relatório, foi simulado dois circuitos nos quais um atua em baixas frequências e o outro em altas frequências.

Objetivos

Os objetivos principais deste relatório são entender como funcionam os filtros ativos que se utilizam amplificadores operacionais determinando experimentalmente as frequências de corte (a partir dos gráficos) para filtros ativos e comparando com os valores teóricos. Além disto, também será verificado o funcionamento de um reforçador de corrente push-pull.

Materiais e Métodos

- 1 Resistor de 4.7 k Ω ; 1 Resistor de 330 Ω ;
- 1 Resistor de 10 k Ω ; 1 Capacitor de 33 μ F;

- 1 Resistor de 100 k Ω ; 1 Resistor de 3 k Ω ;
- 1 Resistor de 10 k Ω ; 1 Capacitor de 0,1 μ F;
- 1 Amplificador Operacional 741.

Parte teórica

1. Ganho global do FPB

Figura 1: Filtro Passa-baixa

Dado o circuito da Figura 1, considerando R_1 = 10 $k\Omega$, R_2 = 4,7 $k\Omega$, R_3 = 330 Ω e C_1 = 33 nF, ao aplicar-se técnicas de analises nodais, para este circuito, foi obtido o ganho global dado Equação 1:

$$A_v = 1 + \frac{R_1}{R_2} = \frac{147}{100} = 1,47$$
 (1)

2. Frequência de corte do FPB

Para estes mesmo parâmetros a frequência de corte obtida é dada pela Equação 2:

$$f = \frac{1}{2\pi C_1 R_3} = 14,61 \, kHz \tag{2}$$

3. Ganho global do FPA

Figura 2: Filtro Passa-alta

Dado o circuito da Figura 1, considerando $R_1 = 100$ $k\Omega$, $R_2 = 10$ $k\Omega$, $R_3 = 3$ $k\Omega$ e $C_1 = 100$ nF, ao aplicar-se técnicas de analises nodais, para este circuito, foi obtido o ganho global dado Equação 3:

$$A_v = 1 + \frac{R_1}{R_2} = \frac{110}{10} = 11 \tag{3}$$

4. Frequência de corte do FPA

Para estes mesmo parâmetros a frequência de corte obtida é dada pela Equação 4:

$$f = \frac{1}{2\pi C_1 R_2} = 0,53 \, kHz \tag{4}$$

Parte prática

Passa-Baixa

Inicialmente foi montado o circuito da Figura 3 utilizando o Amp-op 741. Em seguida, foi ajustado o gerador de sinais para uma forma de onda senoidal de 200 Hz com amplitude de 2 V_{PP} . Para essa simulação foram adotados os seguintes parâmetros: R_1 = 10 $k\Omega$, R_2 = 4,7 $k\Omega$, R_3 = 330 Ω , C_1 = 33 nF e V_cc = ± 15 V. Após a simulação, foi preenchida a Tabela 1 que se encontra no anexo.

Em seguida, analisando a gráfico do ganho é possível descobrir o ganho experimentalmente. Logo, pela Figura 4, encontra-se um ganho de $A_v=1,47$. A frequência de corte ocorre quando o ganho atinge 70,7% do valor máximo, sendo este valor de 1,04, desta forma a frequência corresponde a este ponto é 14,5 kHz. Pela Figura 5, podese obter o ganho em dB, sendo este de $A_{v_{dB}}=3,35$.

Figura 3: Simulação: Filtro Passa-baixa

Figura 4: Ganho do Filtro Passa-baixa

Figura 5: Ganho em dB do Filtro Passa-baixa

Portanto podemos concluir que o circuito simulado e o circuito teórico acerca deste modelo estão ambos corretos e possuem valores próximos, revelando que os procedimentos adotados foram corretos.

Passa-alta

Depois foi simulado o circuito da Figura 6 utilizando, novamente, o Amp-op 741. Em seguida, foi ajustado o gerador de sinais para uma forma de onda senoidal de 10 kHz com uma amplitude de 2 V_{PP} . Para essa simulação foram adotados os seguintes parâmetros: R_1 = 100 $k\Omega$, R_2 = 10 $k\Omega$, R_3 = 3 $k\Omega$, C_1 = 100 nF e V_{cc} = ±15 V. Após isto, foi preenchido a Tabela 2 que se encontra no anexo.

Analisando o gráfico da Figura 7, encontra-se um ganho de $A_v=10,9$. A frequência de corte ocorre quando o ganho atinge 70,7% do valor máximo, sendo este valor de 7,79, desta forma a frequência corresponde a este ponto é 532 kHz. Através da Figura 8, pode-se obter um ganho em dB de $A_{v_{dB}}=20,8$.

Figura 6: Simulação: Filtro Passa-alta

Figura 7: Ganho do Filtro Passa-alta

Figura 8: Ganho em dB do Filtro Passa-alta

Por meio destes resultados, pode ser visto que para baixas frequências o ganho é muito baixo. Ao passar da frequência de 530 Hz o ganho ultrapassa 70,7% do ganho máximo, logo entrando na banda de passagem para altas frequências.

Contudo, é interessante ressaltar que durante um projeto devemos sempre nos atentar as capacidades físicas do componente. Neste aspecto, mesmo na simulação, pôdese observar as limitações do Amp-op escolhido o qual possui restrições para altas frequências fazendo com que o ganho diminua depois de certa frequência ser atingida.

Passa faixa

Dado o circuito da Figura 9, será projetado os componentes de forma a atender este circuito, no qual os parâmetros serão $f_{HI}=1kHz$ e $f_{HO}=10kHz$. A frequência de corte inferior é definida pelo filtro passa-alta, e a frequência de corte superior é dada em função do filtro passa-baixas.

Figura 9: Circuito para projeto

A frequência de corte inferior é dada por:

$$f_{HI} = \frac{1}{2\pi R_3 C_1}$$

Assumindo $C_1 = 10 \text{ nF e isolando } R_3 \text{ temos};$

$$R_3 = \frac{1}{2\pi f_{HI}C_1} = 15,92 \, k\Omega \tag{5}$$

E como a frequência de corte superior é definida pelo filtro passa-baixas, novamente adotando C_1 = 10 nF e isolando o R_5 :

$$R_5 = \frac{1}{2\pi f_{HO}C_1} = 1,59 \, k\Omega \tag{6}$$

Agora, definidos R_3 e R_5 , e por questões físicas foram considerados os seguintes parâmetros:

- $R_1 = R_2 = R_4 = R_6 = 10 \ k\Omega;$
- $R_3 = 16 \ k\Omega \ e \ R_5 = 1,6 \ k\Omega$;
- $V_{CC} = \pm 15 \text{ V};$
- $C_1 = C_2 = 10 \text{ nF};$
- $V_{in}=2V_{pp}$.

REFERÊNCIAS REFERÊNCIAS

Em seguida foi realizada a simulação da Figura 10 e ao final obtido o sinal de saída para este circuito, Figura 11. Nele, pode-se perceber que a combinação realmente opera como um passa faixa.

Figura 10: Simulação: Filtro passa-faixa.

Figura 11: Saída para passa-faixa.

Logo, conclui-se que ao combinar dois filtros ativos em cascata, pode-se preservar algumas características de cada um e aplica-la em um novo circuito, gerando um novo tipo de sinal, passa-faixa.

Conclusão

Portanto, durante o relatório podemos perceber o funcionamento dos dois circuitos separados, nos quais um só permite a passagem do sinal, em um nível considerável, para baixas frequências e o outro apenas para frequências mais altas. Ao realizar a combinação cascata de um filtro passa baixa e um filtro passa alta permite gerar um filtro passa-faixa. Isto revela o quão importante é o uso dos Amp-ops em projetos de filtros ativos.

Referências

[1] R. L. Boylestad and L. Nashelsky, *Dispositivos ele-trônicos e teoria de circuitos*, vol. 6. Prentice-Hall do Brasil, 1984.

REFERÊNCIAS REFERÊNCIAS

Anexo

Tabela	1: Parâmetros n	o Circuito Pa	assa-Baixas.
F (Hz)	$V_{in}(V)(V_p)$	$V_{out}(V_p)$	Ganho dB
50	1	1,47	3,35
100	1	1,47	3,35
200	1	1,47	3,35
300	1	1,47	3,34
400	1	1,47	3,34
500	1	1,47	3,34
600	1	1,47	3,34
700	1	1,47	3,34
800	1	1,47	3,33
900	1	1,47	3,33
1000	1	1,47	3,33
1250	1	1,46	3,31
1500	1	1,46	3,30
1750	1	1,46	3,29
2000	1	1,46	3,27
2250	1	1,45	3,25
2500	1	1,45	3,22
2750	1	1,44	3,20
3000	1	1,44	3,17
3500	1	1,43	3,11
4000	1	1,42	3,03
4500	1	1,41	2,96
5000	1	1,39	2,86
5500	1	1,38	2,77
6000	1	1,36	2,67
7000	1	1,32	2,45
8000	1	1,29	2,20
9000	1	1,25	1,95
10 k	1	1,21	1,68
12 k	1	1,14	1,10
14 k	1	1,06	0,481
16 k	1	0,986	-0,130
18 k	1	0,921	-0,721
20 k	1	0,869	-1,220
30 k	1	0,642	-3,850
50 k	1	0,411	-7,720
100k	1	0,212	-13,500

REFERÊNCIAS REFERÊNCIAS

Tabela 2:	Parâmetro	s no Circuito	Passa-Altas.
F (Hz)	$V_{in}(V_p)$	$V_{out}(V_p)$	Ganho dB
50	1	1,03	0,295
100	1	2,04	6,18
200	1	3,87	11,8
300	1	5,44	14,7
500	1	7,55	17,6
700	1	8,75	18,9
900	1	9,47	19,6
1000	1	9,72	19,8
1500	1	10,4	20,3
2000	1	10,6	20,5
2500	1	10,8	20,6
3000	1	10,8	20,7
3500	1	10,9	20,7
4000	1	10,9	20,7
4500	1	10,9	20,8
5000	1	10,9	20,8
5500	1	10,9	20,8
6000	1	10,9	20,8
6500	1	10,9	20,8
7000	1	10,9	20,8
7500	1	10,9	20,8
8000	1	10,9	20,8
8500	1	10,9	20,8
9000	1	10,9	20,8
9500	1	10,9	20,8
10 k	1	10,9	20,8
12 k	1	10,9	20,7
15 k	1	10,9	20,7
18 k	1	10,8	20,7
20 k	1	10,8	20,6
25 k	1	10,6	20,5
50 k	1	9,72	19,8
100 k	1	7,56	17,6
200 k	1	4,71	13,5
500 k	1	2,01	6,05
1 M	1	0,968	-0,285