Олимпиада школьников «Надежда энергетики». Отборочный этап. Очная форма.

ЗАДАНИЕ ПО КОМПЛЕКСУ ПРЕДМЕТОВ ФИЗИКА, ИНФОРМАТИКА, МАТЕМАТИКА ВАРИАНТ 42111 для 11 класса

Рабочий день Харона Эребовича, перевозчика, начинается, когда солнце склоняется к западу. В это время он забирает в лодку всех собравшихся на берегу, садится на весла и перевозит на противоположный берег реки.

Рассмотрим этот процесс более подробно.

Для простоты будем считать русло прямолинейным с постоянной шириной $H=200\,$ м. Пусть скорость течения u изменяется по мере приближения к середине реки и составляет $u(d)=0,02\cdot d\cdot (H-d)\,$ м/мин на расстоянии d м от берега. Предположим также, что пункт назначения B расположен ровно напротив пункта отправления A. Пусть частота гребли составляет $10\,$ взмахов в минуту, а в стоячей воде лодка развивала бы скорость $w=120\,$ м/мин.

Во время переправы лодку сносит течением. Чтобы попасть в нужное место, гребец, каждый раз опуская весла в воду, поворачивает лодку носом к пункту назначения. Размерами лодки пренебрежем. Движение лодки между гребками будем считать равномерным. Изменением скорости течения на расстоянии, проходимом лодкой между гребками, пренебрежем.

- 1. Определите положение лодки (по отношению к пункту A) через одну минуту после отчаливания.
- 2. Определите время, которое будет затрачено на достижение противоположного берега.
 - 3. Определите, сможет ли лодка причалить в указанной точке B. Если нет, то определите, на каком расстоянии от т. B она достигнет берега.
- 4. Определите максимальный снос лодки (относительно пункта отправления A) во время переправы.

УКАЗАНИЕ. Считайте любое «пересечение» линии противоположного берега причаливанием. Если после причаливания расстояние от лодки до пункта B составляет менее 5 м, считайте такую ситуацию попаданием в точку B (в 3 вопросе).

Решение. 11 класс

1. Введем систему координат, связанную с берегами реки. Пусть ось OX направлена по течению (прямолинейной) реки, ось OY – перпендикулярно берегу. Начало координат совместим с пунктом отправления A. Тогда пункт назначения B будет иметь координаты (0, H).

Обозначим скорость реки через u, скорость лодки (относительно берегов) v(t). Согласно условию, $u=u(y)=0.02\cdot y\cdot (H-y)$. Обозначим угол между направлением на пункт назначения и линией берега через α (см. рис).

Ясно, что все изменения в процессе движения лодки происходят в момент гребков, которые происходят с интервалом $\Delta t = 60/10 = 6$ секунд, поэтому достаточно рассматривать только моменты времени $t_k = k \cdot \Delta t$. Индексом k будем помечать величины, относящиеся к моменту времени t_k .

2. Рассмотрим сначала движение лодки между двумя гребками. Пусть в момент времени t_k лодка находилась в точке K с координатами (x_k, y_k) .

Составляющая вектора перемещения, связанная только со сносом течением, равна $L_u = (u_k \Delta t, 0)$.

Составляющая вектора перемещения, связанная только с действиями гребца, равна $L_w = (-w\cos\alpha\Delta t, w\sin\alpha\Delta t)$.

Таким образом, координаты точки, в которой лодка окажется в момент следующего гребка, будут равны $K+L_u+L_w$:

$$x_{k+1} = x_k + u_k \Delta t - w \cos \alpha \Delta t,$$

$$y_{k+1} = y_k + w \sin \alpha \Delta t.$$

Остается найти угол α . Это несложно сделать, рассматривая прямоугольный $\triangle BKM$. Катет MK равен координате x_k , катет MB равен $H-y_k$, откуда $\operatorname{tg} \alpha = \frac{H-y_k}{x_k}$. Для уменьшения количества расчетных формул можно выразить синус и косинус угла α и подставить их в формулы.

$$\sin \alpha = \frac{H - y_k}{\sqrt{(H - y_k)^2 + x_k^2}}, \qquad \cos \alpha = \frac{x_k}{\sqrt{(H - y_k)^2 + x_k^2}}$$

1

Поэтому

$$x_{k+1} = x_k + u_k \Delta t - \frac{x_k w \Delta t}{\sqrt{(H - y_k)^2 + x_k^2}},$$

$$y_{k+1} = y_k + \frac{(H - y_k) w \Delta t}{\sqrt{(H - y_k)^2 + x_k^2}}.$$
(*)

3. Теперь можно сформулировать базовый алгоритм расчета.

Алгоритм "Базовый"

Задать H, Δt ; положить $x_0 := 0$, $y_0 := 0$; ДЛЯ $k = 0, 1, 2, \dots$

Вычислить x_{k+1} , y_{k+1} по формулам (*);

конец алгоритма

Этот основной алгоритм мы будем дополнять действиями, необходимыми для поиска ответов на вопросы задачи.

- 4. Для ответа на 1-й вопрос нужно найти x_{10} , y_{10} , поскольку за одну минуту происходит 10 взмахов веслами. Для этого достаточно выполнить 10 повторений цикла алгоритма (k от 0 до 9).
- 5. Для ответа на 2-й вопрос задачи нужно производить расчет до тех пор, пока y_{k+1} не окажется больше H. Это означает, что нужно использовать цикл ПОКА с условием продолжения $y_k < H$. Номер последнего шага k_H будет совпадать с количеством проделанных шагов. Тогда общее время переправы $T = k_H \cdot \Delta t$.

Соответствующий алгоритм примет вид

Алгоритм "Время переправы"

Задать H, Δt ; положить $x_0 := 0$, $y_0 := 0$, k := 0;

 $\Pi \text{OKA } y_k < H$

Вычислить скорость течения $u_k := y_k \cdot (H - y_k)$;

Вычислить x_{k+1} , y_{k+1} по формулам (*);

Увеличить счетчик k := k + 1;

КОНЕЦ ПОКА

Вычислить общее время $T := k \cdot \Delta t$;

Вывести T;

конец алгоритма

6. Теперь, когда мы умеем определять номер шага, на котором лодка достигает берега, мы можем определить координату x_H точки причаливания. Сравнивая ее с координатой т. B (т.е. с нулем), получаем ответ на 3-й вопрос.

Расстояние от точки причаливания до нужной точки B равно $D=x_{k_H}$. Если $D \le \varepsilon$ (см. указания), то можно считать, что лодка причалила напротив места старта. Если же $D>\varepsilon$, то сама величина D будет ответом на дополнительный вопрос о расстоянии.

7. Наконец, для ответа на 4-й вопрос придется искать максимум. Положительное направление оси OX совпадает с направлением сноса. Ясно, что величина сноса (вдоль реки) в любой момент времени t_k равна координате x_k . Поэтому в основной цикл алгоритма нужно добавить поиск максимального значения среди величин x_k . Будем использовать для этого вспомогательную переменную MaxX, в ней же будет сохранено искомое максимальное значение.

Алгоритм теперь примет вид (значок % означает комментарий)

```
Алгоритм "Время переправы и снос"
```

Задать H, Δt ; положить $x_0 := 0$, $y_0 := 0$, k := 0, MaxX := 0; ПОКА $y_k < H$

Вычислить скорость течения $u_k := y_k \cdot (H - y_k);$

Вычислить x_{k+1} , y_{k+1} по формулам (*);

Увеличить счетчик k := k + 1;

ЕСЛИ $(x_k > MaxX)$ ТО $MaxX := x_k$;

КОНЕЦ ПОКА

% теперь переменная k содержит количество повторний цикла

Вычислить общее время $T := k \cdot \Delta t$;

Вывести T;

ЕСЛИ $(|x_k| \le \varepsilon)$ ТО Вывести 'Попали'

ИНАЧЕ Вывести 'Промахнулись на ' $+x_k$

КОНЕЦ ЕСЛИ

Вывести 'Максимальный снос = ' + MaxX;

конец алгоритма

8. Числовые данные, которые должны были бы быть получены в результате выполнения описанных алгоритмов не приводятся. Их отсутствие следует рассматривать как стимул для повторной самостоятельной проработки задачи.