Subspaces, independence, dimension and rank

4433LALG3: Linear Algebra

Week 1, Lecture 4, Valente Ramírez

Mathematical & Statistical Methods group — Biometris, Wageningen University & Research

Overview

- Recap: Linear combinations and span
- Subspaces, linear independence and dimension
- Rank and nullity
- Supplementary material

References:

- Nicholson §5.1–5.2 & §5.4 (read also §1.3)
- 3Blue1Brown Ch.2 & Ch.7

Section 1

Recap: Linear combinations and span

Recap: Linear combinations and span

In this section we will quickly review some concepts that you should already know from **3Blue1Brown Ch.2**.

Definition

Given vectors $\mathbf{v_1},\dots,\mathbf{v_n}$, a linear combination of them is any expression of the form

$$a_1\mathbf{v}_1 + \ldots + a_n\mathbf{v}_n$$

where a_1, \ldots, a_n are scalars (i.e. real numbers).

Definition

Given vectors v_1, \dots, v_n , the span of them is the set of all linear combinations of them:

$$\operatorname{span} \{ \mathbf{v}_1, \dots, \mathbf{v}_n \} = \{ a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n \mid a_i \text{ in } \mathbb{R} \}.$$

Section 2

Subspaces, linear independence and dimension

Subspaces of \mathbb{R}^n

Motivation:

- If $x \neq 0$, then $\underline{\operatorname{span}(x)}$ is a line through the origin: we call it a *linear* subspace of dimension one.
- If x, y are not a multiple of each other, then $span\{x, y\}$ is a plane through the origin: we call it a *linear subspace of dimension two*.

Definition

A set U of vectors in \mathbb{R}^n is called a (linear) subspace of \mathbb{R}^n if :

- The zero vector $\mathbf{0}^{\mathbf{0}}$ is in U,
- If $\mathbf{x} \in U$ and $\mathbf{y} \in U$, then $\mathbf{x} + \mathbf{y} \in U$,
- If $x \in U$, then $ax \in U$ for any real number a.

Subspaces of \mathbb{R}^n

The most general example of a subspace is:

■ If S is any (non-empty) collection of vectors in \mathbb{R}^n , then $\operatorname{span} S$ is a subspace of \mathbb{R}^n .

Subspaces associated to a linear transformation

Suppose $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation.

Definition

The **kernel** of T is the linear subspace of \mathbb{R}^n :

$$\ker T = \{ \mathbf{x} \in \mathbb{R}^n \mid T(\mathbf{x}) = \mathbf{0} \}.$$

The **image** of T is the linear subspace of \mathbb{R}^m :

im
$$T = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = T(\mathbf{x}) \text{ for some } \mathbf{x} \}.$$

Subspaces associated to a matrix

Suppose
$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$$
 is a $m \times n$ matrix.

Definition

The **null space** of A is the linear subspace of \mathbb{R}^n :

$$\operatorname{null} A = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}.$$

The **column space** of A is the linear subspace of \mathbb{R}^m :

$$\operatorname{col} A = \operatorname{span}\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}.$$

$$T(\overrightarrow{x}) = A \overrightarrow{x} = \overrightarrow{\alpha}_1 x_1 + \overrightarrow{\alpha}_2 x_2 + \dots + \overrightarrow{\alpha}_n x_n$$

im $T = \text{col } A$

The standard basis

We usually work with the **standard basis** of \mathbb{R}^n :

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots \quad \mathbf{e}_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

Two obvious, but important, facts:

- 1. span $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\} = \mathbb{R}^n$
- 2. You actually need *all* these vectors to span \mathbb{R}^n :

 Any strictly smaller subset, $S \subset \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$, will not span \mathbb{R}^n

Redundancy

Consider two vectors \mathbf{x} , \mathbf{y} that are not one the multiple of the other.

Notice how $span\{x, y, x + y\} = span\{x, y\}.$

Adding x + y to the set $S = \{x, y\}$ does **not** increase its <u>span</u>, because x + y was already in span S.

Adding x + y to the spanning set is *redundant*.

The technical concept for redundancy is **linear dependence**:

The set $\{x, y, x + y\}$ is *linearly dependent* because at least one of its elements is redundant.

Independence

线性服务

Definition

A set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ is called <u>linearly independent</u> when the following condition holds:

If
$$a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \ldots + a_k \mathbf{x}_k = \mathbf{0}$$
, then $a_1 = a_2 = \ldots = a_k = 0$.

Linear independence means:

- The **only** way to combine the x_i and get 0 is by making all coefficients $a_i = 0$.
- It is **impossible** to express a vector \mathbf{x}_j as a linear combination of the other vectors.

Bases and dimension

Definition

Let U be a linear subspace of \mathbb{R}^n .

A set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ is called a **basis** for U if:

- $\blacksquare \operatorname{span}\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\} = U,$
- The set $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ is linearly independent.

In that case, we say that the **dimension** of U is equal to k.

Section 3

Rank and nullity

Rank of a linear transformation or a matrix

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

The rank of T is the dimension of $\operatorname{im} T$.

Definition

Let A be a $m \times n$ matrix.

The **rank** of A is the *dimension* of col A.

Recall:

- $\blacksquare \text{ im } T = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = T(\mathbf{x}) \text{ for some } \mathbf{x} \}$

Nullity of a linear transformation or a matrix

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The **nullity** of T is the *dimension* of $\ker T$.

Definition

Let A be a $m \times n$ matrix.

The **nullity** of A is the dimension of null A.

Some comments about the rank

Remark $\bigwedge_{X} X = I(X)$

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

- \blacksquare rank $T \leq m$, because im $T \subseteq \mathbb{R}^m$,
- $\operatorname{rank} T \leq n$, because a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ cannot increase the dimension

If rank T < n, it means that T has squished the dimension of \mathbb{R}^n .

But that means that some vectors $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n are mapped to $\mathbf{0} \in \mathbb{R}^m$.

In fact: The larger $\ker T$ the smaller $\operatorname{im} T$

The larger the nullity the smaller the rank

The rank-nullity theorem

秋-零度化定理

The following theorem is fundamental.

Theorem

Let $T: \mathbb{R}^m \to \mathbb{R}^m$ be a linear transformation. Then:

Rank (mill) Rank (A)
$$\dim(\ker T) + \dim(\operatorname{im} T) = n.$$

Some equivalent formulations (A is the matrix associated to T):

- \blacksquare nullity $T + \operatorname{rank} T = n$
- \blacksquare nullity $A + \operatorname{rank} A = n$

Rank and invertibility

The rank-nullity theorem has an immediate important consequence:

Suppose A is an $n \times n$ matrix whose rank equals n.

The rank-nullity theorem says:

$$\begin{aligned} \text{nullity}\, A \,+\, \text{rank}\, A &= n \\ \text{nullity}\, A \,+\, n &= n \\ \dim\left(\text{null}\, A\right) &= 0 \end{aligned}$$

That means $\operatorname{null} A = \{0\}.$

Corollary (1)

If an $n \times n$ matrix has rank n, then it is invertible.

Section 4

Supplementary material

Independence test

Independence test: version 1

To test whether a set $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ of vectors in \mathbb{R}^n is independent we proceed as follows:

- Set an equation: $t_1\mathbf{x}_1 + t_2\mathbf{x}_2 + \ldots + t_k\mathbf{x}_k = \mathbf{0}$, for t_1, \ldots, t_k unknown.
- Solve the equation and analyze the set of solutions:
 - If $t_1 = t_2 = \ldots = t_k = 0$ is the **only** solution, then the set is independent.
 - Else the set is not independent.

Independence test: example

Example 1:

Determine whether $S = \{(1, 0, -2, 5), (2, 1, 0, -1), (1, 1, 2, 1)\}$ is independent.

Solution:

Set $t_1(1,0,-2,5) + t_2(2,1,0,-1) + t_3(1,1,2,1) = (0,0,0,0)$. This can be rewritten as:

$$t_1 + 2t_2 + t_3 = 0,$$

$$t_2 + t_3 = 0,$$

$$-2t_1 + 2t_3 = 0,$$

$$5t_1 - t_2 + t_3 = 0.$$

A short computation shows $t_1 = t_2 = t_3 = t_4 = 0$ is the only possible solution.

We conclude that the set is indeed independent.

Independence test: matrix version

Notice that we can write the system of equations on the previous slide in matrix form:

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -2 & 0 & 2 \\ 5 & -1 & 1 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Notice how the columns of these matrix are the vectors in the set S (duh!)

Independence test

Independence test: version 2

To test whether a set $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ of vectors in \mathbb{R}^n is independent we proceed as follows:

- Form the $n \times k$ matrix $X = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_k \end{bmatrix}$
- Find the solutions to $X\mathbf{t} = \mathbf{0}$ (e.g. compute the null space of X).
 - If $\operatorname{null} X = \{0\}$, the set is independent.
 - Else the set is not independent.

Independence test: example

Example 1:

Determine whether $S = \{(1, 0, -2, 5), (2, 1, 0, -1), (1, 1, 2, 1)\}$ is independent.

Solution:

We conclude that the set is indeed independent.

Column space and row space

We have defined the *column space* of a matrix $m \times n$ matrix A: it is the subspace of \mathbb{R}^m spanned by its columns.

Similarly, we have:

Definition

The row space of A, row A, is the linear subspace of \mathbb{R}^n spanned by the rows of A.

Sometimes, we talk about **row rank** and **column rank**. These are the dimensions of $\operatorname{row} A$ and of $\operatorname{col} A$, respectively. However, as the next theorem claims, they are numerically the same.

Theorem

Let A denote any $m \times n$ matrix. Then, $\dim(\operatorname{col} A) = \dim(\operatorname{row} A)$.

Therefore, we usually just talk about the rank of A.

Computation of rank

The general algorithm for computing rank uses Gaussian elimination.

Theorem

Let A denote any $m \times n$ matrix.

Suppose R is the reduced row-echelon form of A. Then $\operatorname{rank} A$ equals to the number of leading 1s in R.

Computation of the column space

Computation of col A uses Gaussian elimination (yet again).

By "computation of $\operatorname{col} A$ " we mean: finding a basis for the subspace $\operatorname{col} A$.

$\mathsf{Theorem}$

Let A denote any $m \times n$ matrix.

Suppose R is the reduced row-echelon form of A.

If the leading 1s lie in columns j_1, j_2, \ldots, j_r of R, then the columns j_1, j_2, \ldots, j_r of A form a basis for $\operatorname{col} A$.

Rank example

Example 2:

```
Compute the rank of A=\begin{bmatrix}1&2&2&-1\\3&6&5&0\\1&2&1&2\end{bmatrix} , and find a basis for \operatorname{col} A.
```

Solution:

```
> library(matlib)
> A <- matrix(c(1,3,1, 2,6,2, 2,5,1, -1,0,2), ncol=4)
> gaussianElimination(A)
    [,1] [,2] [,3] [,4]
[1,] 1 2 0 5
[2,] 0 0 1 -3
[3,] 0 0 0 0
```

There are two leading 1s: in column one and column three.

We conclude that $\operatorname{rank} A = 2$, and that $\operatorname{col} A$ is spanned by the first and third columns of A.

Rank example

Notice that we can get extra information from the row-echelon form.

The solutions to $A\mathbf{x} = \mathbf{0}$ are the solutions to the system: $\begin{cases} x_1 + 2x_2 + 5x_4 = 0 \\ x_3 - 3x_4 = 0 \end{cases}$

The free variables are x_2, x_4 . We set parameters $x_2 = s$, $x_4 = t$.

All solutions are of the form: $\begin{vmatrix} -2s - 5t \\ s \\ 3t \\ t \end{vmatrix} = s \begin{vmatrix} -2 \\ 1 \\ 0 \\ 0 \end{vmatrix} + t \begin{vmatrix} -5 \\ 0 \\ 3 \\ 1 \end{vmatrix}, \text{ for arbitrary } s, t.$

We use the *basic solutions* to understand the redundancy between the columns:

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} = \mathbf{0} \quad \Rightarrow \quad -2\mathbf{a}_1 + \mathbf{a}_2 = \mathbf{0} \quad \Rightarrow \quad \mathbf{a}_2 = 2\mathbf{a}_1$$

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} \begin{bmatrix} -5 \\ 0 \\ 3 \\ 1 \end{bmatrix} = \mathbf{0} \quad \Rightarrow \quad -5\mathbf{a}_1 + 3\mathbf{a}_3 + \mathbf{a}_4 = \mathbf{0} \quad \Rightarrow \quad \mathbf{a}_4 = 5\mathbf{a}_1 - 3\mathbf{a}_3$$

Rank example

Thus, the final conclusion is:

- lacksquare Columns a_2 and a_4 are not in the basis because they are redundant:
 - $\mathbf{a}_2 = 2\mathbf{a}_1$
 - $\mathbf{a}_4 = 5\mathbf{a}_1 3\mathbf{a}_3$

Rank example and the null space

Incidentally, we have also computed a basis for the null space:

$$\operatorname{null} A = \operatorname{span} \left\{ \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -5\\0\\3\\1 \end{bmatrix} \right\}.$$

If A has rank r, then when we consider the system $A\mathbf{x}=\mathbf{0}$ and apply Gaussian elimination we get:

- \blacksquare r basic variables (one for each leading 1),
- \blacksquare n-r free variables, which give n-r basic solutions.

Theorem

Let A denote an $m \times n$ matrix of rank r. A basis for $\operatorname{null} A$ can be formed by the n-r basic solutions created by the Gaussian elimination algorithm.

You can read more on Nicholson $\S 5.4$ (see Theorem 5.4.2).

The concept of a basic solution is discussed in Nicholson §1.3.