Package 'Rcan'

September 25, 2024

Version 1.3.91
Title Cancer Registry Data Analysis and Visualisation
Date 2024-09-17
Author Mathieu Laversanne [aut, cre], Jerome Vignat [aut], Cancer Surveillance Unit [cph]
Maintainer Mathieu Laversanne <laversannem@iarc.who.int></laversannem@iarc.who.int>
Depends R (>= 3.5)
Description Tools for basic and advance cancer statistics and graphics. Groups individual data, merges registry data and population data, calculates agespecific rate, age-standardized rate, cumulative risk, estimated annual percentage rate with standards error. Creates graphics across variable and time, such as age-specific trends, bar chart and period-cohort trends.
License GPL (>= 2)
<pre>URL https://github.com/timat35/Rcan</pre>
LazyLoad yes
Imports data.table, stats, ggplot2, grid, scales, grDevices, graphics, utils
Suggests testthat
RoxygenNote 7.3.2
NeedsCompilation no
Repository CRAN
Date/Publication 2024-09-24 23:10:02 UTC
Contents
Rcan-package csu_ageSpecific csu_ageSpecific_top csu_asr

2 Rcan-package

Index		45
	ICD_group_GLOBOCAN	43
	ICD_group_CI5	42
	data_population_file	41
	data_individual_file	
	csu_trend_legend	
	csu_trendCohortPeriod	35
	csu_time_trend	32
	csu_registry_data_2	31
	csu_registry_data_1	30
	csu_merge_cases_pop	27
	csu_group_cases	
	csu_eapc	23
	csu_cumrisk	
	csu_ci5_mean	
	csu_CI5XII_data	17
	csu_bar_top	14

Rcan-package

Cancer Registry Data Analysis and Visualisation

Description

Tools for basic and advance cancer statistics and graphics. Groups individual data, merges registry data and population data, calculates age-specific rate, age-standardized rate, cumulative risk, estimated annual percentage rate with standards error. Creates graphics across variable and time, such as age-specific trends, bar chart and period-cohort trends.

Author(s)

Mathieu Laversanne [aut, cre], Jerome Vignat [aut], Cancer Surveillance Unit [cph]

Maintainer: Mathieu Laversanne laversannem@iarc.who.int

References

https://publications.iarc.fr/_publications/media/download/3753/609d0d7711047dd76d7f3dbaa25d7f041fcdpdf

See Also

csu_group_cases csu_merge_cases_pop csu_asr csu_cumrisk csu_eapc csu_ageSpecific
csu_ageSpecific_top csu_bar_top csu_time_trend csu_trendCohortPeriod

Rcan-package 3

```
data(ICD_group_GLOBOCAN)
data(data_individual_file)
#group individual data by
# 5 year age group
# ICD grouping from dataframe ICD_group_GLOBOCAN
df_data_year <- csu_group_cases(data_individual_file,</pre>
  var_age="age",
  group_by=c("sex", "regcode", "reglabel"),
  df_ICD = ICD_group_GLOBOCAN,
  var_ICD ="site",
  var_year = "doi")
head(df_data_year)
# individual cases grouped by ICD and 5 years age group and year.
readline(prompt="Press [enter] to continue to merge cases and population)")
data(data_population_file)
df_data <- csu_merge_cases_pop(</pre>
df_data_year,
data_population_file,
var_age = "age_group",
var_cases = "cases",
var_py = "pop",
group_by = c("sex"))
head(df_data)
#Merge 5-years age grouped data with population by year (automatic) and sex
readline(prompt="Press [enter] to continue to merge cases and population)")
data(csu_registry_data_2)
# ASR with standard error with missing age.
df_asr <- csu_asr(csu_registry_data_2,</pre>
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
                  var_age_group = c("registry_label"),
                  var_st_err = "st_err")
df_asr[1:4,]
# ASR with standard error with missing age.
readline(prompt="Press [enter] to continue to EAPC")
```

4 csu_ageSpecific

```
# EAPC with standard error
df_eapc <- csu_eapc(df_asr,</pre>
"asr", "year",
group_by=c("registry", "registry_label", "sex", "ethnic" ))
df_eapc[1:4,]
# EAPC with standard error
readline(prompt="Press [enter] to continue to age specific graph")
data(csu_registry_data_1)
# plot age specific rate for 1 population.
df_colombia <- subset(csu_registry_data_1, registry_label=="Colombia, Cali")</pre>
csu_ageSpecific(df_colombia,
plot_title = "Colombia, Liver, male")
# plot age specific rate for 1 population, and comparison with CI5XII data.
csu_ageSpecific(df_colombia,
plot_title = "Colombia, Liver, male",
CI5_comparison = "Liver")
# plot age specific rate for 4 population, legend at the bottom and comparison with CI5XII data.
csu_ageSpecific(csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(position="bottom", nrow = 2),
plot_title = "Liver, male",
CI5_comparison = 16)
```

csu_ageSpecific

csu_ageSpecific

Description

csu_ageSpecific calculate and plot Age-Specific Rate.

Usage

csu_ageSpecific 5

Arguments

df_data Data (need to be R data.frame format, see example to import csv file).
var_age Age variable. Several format are accepted

1 "0-4" 0
2 "5-9" 5
3 "10-14" 10
... ...
17 "80-84" 80
18 "85+" 85

Missing age value must be precise in the option missing_age.

Last age group will always be considere without size (ie: 80+,85+, etc..).

var_cases Number of event (cases, deaths, ...) variable.

var_py Population year variable.

group_by Variable to compare different age specific rate (sex, country, cancer ...).

Only one variable can be chosen.

missing_age Age value representing the missing age cases.

db_rate The denominator population. Default is 100000.

logscale Logical value: if TRUE Y-axis use logscale.

plot_title Title of the plot.

legend Legend option: see csu_trend_legend.

Use only if group_by is not NULL.

color_trend Vector of color for the trend. The color codes are hexadecimal (e.g. "#FF0000")

or predefined R color names (e.g. "red").

CI5_comparison Add a dotted line representing the CI5XII for a specific cancer.

Value can be a cancer_label (example: "Liver"), or a cancer_code (example =

16).

See csu_ci5_mean to get the list of possible values.

var_rate Name of the age specific variable if a dataframe is return.

Details

This function calculate and plot the age specific rate. The group_by option allow to compare different population or cancer. The CI5_comparison option allow to compare with the CI5XII and therefore test the quality of the data. If the population data stops before 85+ (75+ for instance), the population data **must** be 0 when the population data is unknown so, the program can detect automatically the last age group (70+,75+,80+ or 85+) for population.

6 csu_ageSpecific

Value

Return a plot and a data. frame.

Author(s)

Mathieu Laversanne

References

https://publications.iarc.fr/_publications/media/download/3753/609d0d7711047dd76d7f3dbaa25d7f041fcdpdf

See Also

 $\verb|csu_group_cases| csu_merge_cases_pop| csu_asr| csu_cumrisk| csu_eapc| csu_ageSpecific_top| csu_bar_top| csu_time_trend| csu_trendCohortPeriod|$

```
data(csu_registry_data_1)
data(csu_registry_data_2)
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")</pre>
# to select only 1 population.
test <- subset(csu_registry_data_1 , registry_label == "Colombia, Cali")</pre>
# plot age specific rate for 1 population.
csu_ageSpecific(test,
plot_title = "Colombia, Liver, male")
# plot age specific rate for 1 population, and comparison with CI5XII data.
csu_ageSpecific(test,
plot_title = "Colombia, Liver, male",
CI5_comparison = "Liver")
# plot age specific rate for 4 population,
# legend at the bottom and comparison with CI5XII data using cancer code.
csu_ageSpecific(
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(position="bottom", nrow = 1),
plot_title = "Liver, male",
CI5\_comparison = 16
# plot age specific rate for 4 population, legend at the right.
csu_ageSpecific(
```

csu_ageSpecific_top 7

```
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(
position="right", right_space_margin = 6.5
plot_title = "Liver, male")
# Plot embedded in a graphic device
pdf(paste0(tempdir(),"/test.pdf"),width = 11.692 , height = 8.267)
csu_ageSpecific(
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(position="bottom", nrow = 2),
plot_title = "Liver, male",
CI5_comparison = 16)
plot.new()
csu_ageSpecific(
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(
position="right", right_space_margin = 6.5
plot_title = "Liver, male")
dev.off()
```

```
csu_ageSpecific_top
```

Description

 $csu_ageSpecific_top$ calculate and plot Age-Specific Rate for the top X cancer or top X population.

8 csu_ageSpecific_top

Usage

Arguments

df_data Data (need to be R data.frame format, see example to import csv file).

var_age Age variable. Several format are accepted

1 "0-4" 0 2 "5-9" 5 3 "10-14" 10 17 "80-84" 80 18 "85+" 85

Missing age value must be precise in the option missing_age.

Last age group will always be considere without size (ie: 80+,85+, etc..).

var_cases Number of event (cases, deaths, ...) variable.

var_py Population year variable.

var_top Cancer label variable or country/registry variable for example.
group_by Variable to compare different age specific rate (sex, registry ...).

Only one variable can be chosen. One graph will be produce per variable. If the variable is a factor, the labels associate to the variable will be the subtitle of the

plot. See factor.

missing_age Age value representing the missing age cases.

db_rate The denominator population. Default is 100000.
logscale Logical value: if TRUE Y-axis use logscale.

nb_top Lowest Rank include. Default is 5.

plot_title Title of the plot.

plot_subtitle Subtitle of the plot. (For example, "Top 5 cancer").

Variable with a color associate to each cancer.

The color codes are hexadecimal (e.g. "#FF0000") or predefined R color names

(e.g. "red").

This allow to keep the same color coding for each graph.

csu_ageSpecific_top 9

Details

This function keep only the top X cancer and plot their age specific rate. The group_by option allow to compare different population. If the population data stops before 85+(75+ for instance), the population data **must** be 0 when the population data is unknown so, the program can detect automatically the last age group (70+,75+,80+ or 85+) for population.

Value

Return plots and a data. frame.

Author(s)

Mathieu Laversanne

References

```
https://publications.iarc.fr/_publications/media/download/3753/609d0d7711047dd76d7f3dbaa25d7f041fcdpdf
```

See Also

```
csu_group_cases csu_merge_cases_pop csu_asr csu_cumrisk csu_eapc csu_ageSpecific
csu_bar_top csu_time_trend csu_trendCohortPeriod
```

```
library(Rcan)
data("csu_CI5XII_data")
#get the id_code asssociate to id_label
#print(unique(csu_CI5XII_data[,c("id_label", "id_code")]),nrows = 1000)
#get the cancer code asssociate to cancer_label
#print(unique(csu_CI5XII_data[,c("cancer_label", "cancer_code")]),nrows = 1000)
#remove all cancers:
df_data <- subset(csu_CI5XII_data ,cancer_code < 62)</pre>
df_data$sex <- factor(df_data$sex, levels=c(1,2), labels=c("Male", "Female"))</pre>
#select Thailand changmai
df_data_1 <- subset(df_data, id_code==476400199)</pre>
# plot for Thailand Changmai
dt_result_1 <-
csu_ageSpecific_top(df_data_1,
var_age="age",
var_cases="cases",
var_py="py",
var_top="cancer_label",
group_by="sex",
```

```
plot_title= "Thailand, Chiangmai",
plot_subtitle = "Top 5 cancer",
missing_age = 19)
#select USAm NPCR
df_data_2 <- subset(df_data,id_code== 384008099)</pre>
# plot for USA NPCR
dt_result_2 <-
csu_ageSpecific_top(
df_data_2,
var_age="age",
var_cases="cases",
var_py="py",
var_top="cancer_label",
group_by="sex",
plot_title= "USA",
plot_subtitle = "Top 5 cancer",
missing\_age = 19
```

csu_asr

csu_asr

Description

csu_asr calculate Age-Standardized Rate (ASR) and Truncated Age-Standardized Rate (TASR) across different population (Registry, year, sex...)

Usage

```
csu_asr(df_data,
var_age = "age",
var_cases = "cases",
var_py ="py",
group_by=NULL,
var_age_group=NULL,
missing_age = NULL,
db_rate = 100000,
first_age = 1,
last_age = 18,
```

```
pop_base = "SEGI",
crude_rate = FALSE,
var_st_err = NULL,
correction_info = FALSE,
var_asr = "asr",
age_dropped = FALSE)
```

Arguments

df_data Data (need to be R data.frame format, see example to import csv file).

var_age Age variable. Several format are accepted

1 "0-4" 0 2 "5-9" 5 3 "10-14" 10 17 "80-84" 80 18 "85+" 85

Missing age value must be precise in the option missing_age.

Last age group will always be considere without size (ie: 80+,85+, etc..).

var_cases Number of event (cases, deaths, ...) variable.

var_py Population year variable.

group_by A vector of variables to compare different ASR (sex, country, cancer ...).

Any variable included in the next option var_age_group must be also include

here.

var_age_group Variables over which the number of population age-group might change.

For example the last age group (70+, 75+, 80+ or 85+) can vary across registries,

or year, but not across sex.

missing_age Age value representing the missing age cases.

If not precise, missing age value will not affect the calculation.

db_rate The denominator population. Default is 100000.

first_age First age group included (for Truncated ASR), must be between 1 and 17. 1

represents 0-4, 2 represents 5-9, ... 5 represents 20-24 etc.

last_age Last age group included (for Truncated ASR), must be between 2 and 18. 2

represents 5-9, ... 5 represents 20-24, ... 18 represents 85+ etc.

To calculate ASR for 15-69 years, use: first_age(4), last_age(14).

pop_base Select the standard population:

"SEGI" SEGI world standard population (1960).

"EURO" EURO is the European standard population (1976).
"EURO2" EURO2 is the European standard population (2013).

"WHO" WHO is the WHO standard population (2001).

crude_rate Logical value. if TRUE calculate the crude rate instead of the ASR.

Variables var_age_group, missing_age, pop_base, var_st_err, correction_info

are not used.

Default name of the new variable is "crude rate".

var_st_err Calculate the Standard error and name of the new variable.

correction_info

Logical value. if TRUE compute the variable "correction": percentage of missing

age cases.

var_asr Name of the new variable for the ASR.

age_dropped Only for truncated ASR.

Logical value: if TRUE, Assume the age group not used are already dropped from

the data.

First_age and last_age option **must** still be filled.

Details

This function take automatically account the number of age group (last age group can be 70+,75+,80+,85+): If the population data stops before 85+ (75+ for instance), the population data **must** be 0 when the population data is unknown so, the program can detect automatically the last age group (70+,75+,80+ or 85+) for population.

Value

Give the list of population with less than 18 age group (last age group: 70+, 75+, 80+). Return a data.frame.

Author(s)

Mathieu Laversanne

References

https://publications.iarc.fr/_publications/media/download/3753/609d0d7711047dd76d7f3dbaa25d7f041fcdpdf

See Also

 $\verb|csu_group_cases| csu_merge_cases_pop| csu_cumrisk| csu_eapc| csu_ageSpecific| csu_ageSpecific_top| csu_bar_top| csu_time_trend| csu_trendCohortPeriod|$

Examples

```
data(csu_registry_data_1)
data(csu_registry_data_2)
```

you can import your data from csv file using read.csv:

```
# mydata <- read.csv("mydata.csv", sep=",")</pre>
# Age standardized rate (ASR) with no missing age cases.
result <- csu_asr(csu_registry_data_1,</pre>
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label" ),
                  var_age_group = c("registry_label"))
# you can export your result as csv file using write.csv:
# write.csv(result, file="result.csv")
# ASR, with the percentage of correction due to missing age cases.
result <- csu_asr(csu_registry_data_1,
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label" ),
                  var_age_group = c("registry_label"),
 missing_age = 19,
 correction_info = TRUE)
# ASR and standard error with missing age.
result <- csu_asr(csu_registry_data_2,
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
                  var_age_group = c("registry_label"),
                  var_st_err = "st_err",
 missing_age = 99)
# Truncated ASR, 25-69 years.
result <- csu_asr(csu_registry_data_2,</pre>
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
                  var_age_group = c("registry_label"),
                  var_st_err = "st_err",
 first_age = 6,
 last_age = 14,
 missing_age = 99)
# Truncated ASR, 0-15 with denominator population = 1000000.
result <- csu_asr(csu_registry_data_2,
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
                  var_age_group = c("registry_label"),
                  var_st_err = "st_err",
 first_age = 1,
 last_age = 3,
 missing_age = 99,
 db_rate = 1000000)
# ASR with EURO population as reference (instead of SEGI)
result <- csu_asr(csu_registry_data_1,</pre>
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label" ),
                  var_age_group = c("registry_label"),
```

14 csu_bar_top

```
missing_age = 19,
                pop_base = "EURO")
```

csu_bar_top

csu_bar_top

Description

csu_bar_top plots top X single-sided or double-sided bar chart.

Usage

```
csu_bar_top(df_data,
var_value,
var_bar,
group_by=NULL,
nb_top = 10,
plot_title=NULL,
plot_subtitle=NULL,
xtitle= NULL,
label_by=NULL,
color=NULL,
digits = 1)
```

Arguments

df_data Data (need to be R data. frame format, see examples to import csv file).

var_value Value variable.

There must be only 1 value for each bar.

Bar label variable. var_bar

• Single-sided bar chart. NULL (default) group_by

• Double-sided bar chart. Variable name with exactly 2 values. (For example,

Must be filled if label_by argument is defined.

nb_top Lowest Rank included. Default is 10.

Title of the plot. (For example, "Top 10 cancer sites"). plot_title

plot_subtitle Subtitle of the plot. (For example, "Males"). xtitle x-axe title. (For example, "Number of cases").

label_by 2 values vector. Will overwrite the legend label for double-sided bar chart. (See

group_by).

For example: c("Male", "Female").

The color codes are hexadecimal (e.g. "#FF0000") or predefined R color names color

(e.g. "red").

csu_bar_top 15

- Single-sided bar chart. 1 hexadecimal color code (same color for each bar) or variable name with a color associated to each bar label variable.
- Double-sided bar chart. 2 values vector. For example: c("#2c7bb6","#b62ca1").

digits

Number of decimal digits. Default: 1

Details

This function plots a top X (default is top 10) bar chart, single-sided or double sided.

Value

Return plots and a data. frame.

Author(s)

Mathieu Laversanne

See Also

csu_group_cases csu_merge_cases_pop csu_asr csu_cumrisk csu_eapc csu_ageSpecific
csu_ageSpecific_top csu_time_trend csu_trendCohortPeriod

```
data(data_individual_file)
data(data_population_file)
data(ICD_group_GLOBOCAN)
#Group individual data by:
#5 year age group
#ICD grouping from dataframe ICD_group_GLOBOCAN
#year extract from date of incidence
df_data_year <- csu_group_cases(data_individual_file,</pre>
 var_age="age",
 group_by=c("sex", "regcode", "reglabel"),
 df_ICD = ICD_group_GLOBOCAN,
 var_ICD ="site",
 var_year = "doi")
#Merge 5-years age grouped data with population by year (automatic) and sex
df_data <- csu_merge_cases_pop(</pre>
 df_data_year,
 data_population_file,
 var_age = "age_group",
 var_cases = "cases",
 var_py = "pop",
 group_by = c("sex"))
```

16 csu_bar_top

```
#prepare for calculate ASR
df_data$age_group_label <- NULL # to avoid warning</pre>
df_{data} \leftarrow subset(df_{data}, year == 2012) # to keep only 2012 data
df_data$year <- NULL # to avoid warning</pre>
# calculate asr
df_asr <- csu_asr(df_data,</pre>
  "age_group",
  "cases",
  "pop",
  group_by=c("sex", "ICD_group", "LABEL", "reglabel", "regcode"),
  missing_age =19)
#remove Other cancer
df_asr <- subset(df_asr , LABEL != "Other")</pre>
df_asr <- subset(df_asr , LABEL != "Other skin")</pre>
#keep male
df_asr_M <- subset(df_asr , sex==1)</pre>
#Single sided bar plot
data1 <- csu_bar_top(
   df_asr_M,
   var_value="cases",
   var_bar="LABEL",
   nb_top = 10,
   plot_title = "Top 10 cancer sites",
   xtitle= "Number of cases",
   color= c("#2c7bb6"),
   digits=0)
#Double sided bar plot example 1
data2 <- csu_bar_top(</pre>
   df_asr,
   var_value="cases",
   var_bar="LABEL",
   group_by="sex",
   nb_top = 15,
   plot_title = "Top 15 cancer sites",
   xtitle= "Number of cases",
   label_by=c("Male", "Female"),
   color = c("#2c7bb6", "#b62ca1"),
   digits=0)
#Double sided bar plot example 2
data3 <- csu_bar_top(</pre>
   df_asr,
   var_value="asr",
   var_bar="LABEL",
   group_by="sex",
   nb_top = 10,
   plot_title = "Top 10 cancer sites",
```

csu_CI5XII_data 17

```
xtitle= "Age-standardized rate per 100,000",
label_by=c("Male", "Female"),
color = c("#2c7bb6","#b62ca1"),
digits=1)
```

csu_CI5XII_data

Cancer in five continent volume XII.

Description

CI5 XII summary database.

Usage

```
data("csu_CI5XII_data")
```

Format

A data frame with 1113210 observations on the following 10 variables.

```
id_code population code (integer)
id_label population label (character)
country_code UN country code (integer)
ethnic_code ethnic code (integer)
cancer_code cancer code (integer)
cancer_label cancer label (character)
sex sex (integer)
age age variable from 1 to 19. 1 is 0-4 years, 2 is 5-9, etc..., 17 is 80-84, 18 is 85+, 19 represents missing age. (integer)
cases Number of cases (incidence) (integer)
py Population-year: Reference population of the registry (integer)
period Period (character)
```

Details

All information are available here: https://ci5.iarc.fr/ci5-xii/

Source

```
https://ci5.iarc.fr/ci5-xii/
```

See Also

```
csu_asr csu_cumrisk csu_eapc csu_ageSpecific
```

18 csu_CI5XII_data

```
data("csu_CI5XII_data")
#get the id code asssociate to id_label
#print(unique(csu_CI5XII_data[,c("id_code", "id_label")]),nrows = 1000)
#get the cancer code asssociate to cancer_label
#print(unique(csu_CI5XII_data[,c("cancer_label", "cancer_code")]),nrows = 1000)
#remove all cancers:
df_data <- subset(csu_CI5XII_data ,cancer_code < 62)</pre>
#change group_by option to factor
df_data$sex <- factor(df_data$sex, levels=c(1,2), labels=c("Male", "Female"))</pre>
#select Thailand changmai
df_data_1 <- subset(df_data, id_code==476400199)</pre>
dt_result_1 <- csu_ageSpecific_top(df_data_1,</pre>
                    var_age="age",
                    var_cases="cases",
                    var_py="py",
                    var_top="cancer_label",
                    group_by="sex",
                    plot_title= "Thailand, Chiangmai",
                    plot_subtitle = "Top 5 cancer",
                    missing_age = 19)
#select USA
df_data_2 <- subset(df_data,id_code== 384008099 & ethnic_code == 99)</pre>
dt_result_2 <- csu_ageSpecific_top(df_data_2,</pre>
                                    var_age="age",
                                    var_cases="cases",
                                    var_py="py",
                                    var_top="cancer_label",
                                    group_by="sex",
                                    plot_title= "USA",
                                    plot_subtitle = "Top 5 cancer",
                                    missing_age = 19)
```

csu_ci5_mean 19

csu_ci5_mean	cancer registry data		
--------------	----------------------	--	--

Description

CI5 XII data, all population grouped.

Usage

```
data("csu_ci5_mean")
```

Format

A data frame with 1026 observations on the following 5 variables.

```
ci5_cancer_code cancer code
ci5_cancer_label cancer label
CSU_age_factor age variable from 1 to 18. 1 is 0-4 years, 2 is 5-9, etc..., 17 is 80-84, 18 is 85+.
CSU_C Number of cases (incidence)
CSU_P Population-year: Reference population
```

Details

This dataset have been created in order to compare age specific rate with the CI5XII mean directly on the age specific rate graph. Here is the table of cancer_label and cancer_code available:

ci5_cancer_code	ci5_cancer_label
1	Lip
2	Tongue
3	Mouth
4	Salivary glands
5	Tonsil
6	Other oropharynx
7	Nasopharynx
8	Hypopharynx
9	Pharynx unspecified
10	Oesophagus
11	Stomach
12	Small intestine
13	Colon
14	Rectum
15	Anus
16	Liver
17	Gallbladder
18	Pancreas
19	Nose, sinuses

20 csu_ci5_mean

20	Larynx
21	Lung
23	Bone
24	Melanoma of skin
25	Other skin
26	Mesothelioma
27	Kaposi sarcoma
28	Connective and soft tissue
29	Breast
30	Vulva
31	Vagina
32	Cervix uteri
33	Corpus uteri
35	Ovary
37	Placenta
38	Penis
39	Prostate
40	Testis
42	Kidney
43	Renal pelvis
44	Ureter
45	Bladder
47	Eye
48	Brain, nervous system
49	Thyroid
50	Adrenal gland
51	Other endocrine
52	Hodgkin disease
53	Non-Hodgkin lymphoma
54	Immunoproliferative diseases
55	Multiple myeloma
56	Lymphoid leukaemia
57	Myeloid leukaemia
58	Leukaemia unspecified
59	Myeloproliferative disorders
60	Myelodysplastic syndromes
62	All sites
63	All sites but skin

See: csu_ageSpecific

Source

```
https://ci5.iarc.fr/ci5-xii/
```

See Also

csu_ageSpecific

csu_cumrisk 21

Examples

csu_cumrisk

csu_cumrisk

Description

csu_cumrisk Calculate cumulative risk across different population (Registry, year, sex...)

Usage

```
csu_cumrisk(df_data,
var_age = "age",
var_cases = "cases",
var_py ="py",
group_by=NULL,
missing_age = NULL,
last_age = 15,
var_st_err=NULL,
correction_info=FALSE,
var_cumrisk="cumrisk")
```

Arguments

df_data Data (need to be R data. frame format, see example to import csv file).

var_age Age variable. Several format are accepted

1 "0-4" 0 2 "5-9" 5 3 "10-14" 10 17 "80-84" 80 18 "85+" 85

Missing age value must be precise in the option missing_age. Last age group will always be considere without size (ie: 80+,85+, etc..).

var_cases Number of event (cases, deaths, ...) variable.

22 csu_cumrisk

var_py Population year variable. A vector of variables to compare different ASR (sex, country, cancer ...). group_by missing_age Age value representing the missing age cases. If not precise, missing age value will not affect the calculation. last_age Last age group included, must be between 2 and 17. 2 represents 5-9, ... 5 represents 20-24, ..., 17 represents 80-84, 18 represents 85+ etc. default is 15 (calculates cumulative risk 0-74) Calculate the Standard error and name of the new variable. var_st_err correction_info Logical value. if TRUE compute the variable "correction": percentage of missing age cases.

var_cumrisk Name of the new variable for the cumulative risk.

Details

Calculate cumulative risk across different population the age group include in cumulative risk will always exclude the last age group since we do not know the size of the last age group (ie: 85+, 80+ etc..)

Value

Return a data.frame.

Author(s)

Mathieu Laversanne

References

https://publications.iarc.fr/_publications/media/download/3753/609d0d7711047dd76d7f3dbaa25d7f041fcdpdf

See Also

```
csu_group_cases csu_merge_cases_pop csu_asr csu_cumrisk csu_eapc csu_ageSpecific
csu_ageSpecific_top csu_bar_top csu_time_trend csu_trendCohortPeriod
```

csu_eapc 23

```
group_by = c("registry", "registry_label" ))
# you can export your result as csv file using write.csv:
# write.csv(result, file="result.csv")
# Cumulative risk, 0-74 years, with the percentage of correction due to missing age cases.
result <- csu_cumrisk(csu_registry_data_1,</pre>
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label" ),
 missing_age = 19,
 correction_info = TRUE)
# Cumulative risk 0-74 years and standard error with missing age.
result <- csu_cumrisk(csu_registry_data_2,</pre>
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
                  var_st_err = "st_err",
 missing_age = 99)
# Cumulative risk, 0-69 years.
result <- csu_cumrisk(csu_registry_data_2,</pre>
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
                  var_st_err = "st_err",
 last_age = 14,
 missing_age = 99)
```

csu_eapc

csu_eapc

Description

csu_eapc calculate the Estimated Annual Percentage Change (EAPC) of rates during a time period with the Confidence Interval (CI) across different population (Registry, year, sex...)

Usage

```
csu_eapc(df_data,
var_rate="asr",
var_year="year",
group_by=NULL,
var_eapc = "eapc",
CI_level = 0.95)
```

Arguments

df_data Data (need to be R data.frame format, see example to import csv file).

var_rate Rate variable. (Standardized or not, incidence, mortality, etc..)

24 csu_eapc

var_year	Period variable. (Year, month, etc)
group_by	A vector of variables to compare different EAPC (sex, country, cancer).
var_eapc	Name of the new variable for the EAPC. The variable for the CI will be name based on var_eapc + "_" + up/Low.
CI_level	Confidence interval level. Default is 0.95.

Details

```
This function use Generalized Linear Model (GLM): glm(log(rate) ~ year, family=gaussian(link = "identity")). 0 value are ignored. More details in reference below.
```

Value

Return a dataframe.

Author(s)

Mathieu Laversanne

References

https://regstattools.iconcologia.net/stats/sart/eapc/eapc_method.pdf

See Also

 $\verb|csu_group_cases| csu_merge_cases_pop| csu_asr| csu_cumrisk| csu_ageSpecific| csu_ageSpecific_top| csu_bar_top| csu_time_trend| csu_trendCohortPeriod| csu_standard csu_trendCohortPeriod| csu_standard csu_trendCohortPeriod| csu_standard csu_trendCohortPeriod| csu_standard csu_trendCohortPeriod| csu_standard csu_trendCohortPeriod| csu_standard csu_stand$

```
data(csu_registry_data_2)
# you import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")
# Estimated Annual Percentage Change (EAPC) base on ASR.

df_asr <-
csu_asr(csu_registry_data_2,
    "age", "cases", "py",
    group_by = c("registry", "registry_label", "sex", "year", "ethnic"),
    var_age_group = c("registry_label"),
    missing_age = 99
    )

result <-</pre>
```

csu_group_cases 25

```
csu_eapc(df_asr,
"asr", "year",
group_by=c("registry", "registry_label", "sex", "ethnic")
)

# you can export your result as csv file using write.csv:
# write.csv(result, file="result.csv")
```

csu_group_cases

csu_group_cases

Description

csu_group_cases groups individual data into 5 years age-group data and other user defined variable (sex, registry, etc...).

 $Optionally: Group \ cancer \ based \ on \ a \ standard \ ICD10 \ coding; \ Extract \ year \ from \ custom \ year \ format.$

Usage

```
csu_group_cases(df_data,
var_age ,
group_by=NULL,
var_cases = NULL,
df_ICD = NULL,
var_ICD=NULL,
var_year = NULL,
all_cancer=FALSE)
```

Arguments

df_data	Individual data (need to be R data.frame format, see examples to import csv file).
var_age	Age variable. (Numeric). Value > 150 will be considered as missing age.
group_by	(Optional) A vector of variables to create the different population (sex, country, etc).
var_cases	(Optional) cases variable: If there is already a variable for the number of cases.
df_ICD	(Optional) ICD file for ICD grouping information. Must have 2 fields: "ICD", "LABEL" . 2 formats are possible: Each ICD code separated by ICD group

26 csu_group_cases

ICD LABEL
C82 NHL
C83 NHL
C84 NHL
C85 NHL
C96 NHL

ICD code already grouped.

ICD_group LABEL C82-85,C96 NHL

2 ICD codes separated by "-" includes all the ICD code between. 2 ICD codes separated by "," includes only these 2 ICD code. For instance, C82-85, C96 (or C82-C85, C96) includes: C82, C83, C84, C85 and C96

Must be filled if var_ICD argument is defined

example: ICD_group_GLOBOCAN

var_ICD (Optional) ICD variable: ICD variable in the individual data.

Must be filled if df_ICD argument is defined

var_year (Optional) Year variable: Extract year from custom format , as long as the year

is expressed with 4 digits (i.e. ("yyyymmdd","ddmmyyyy", "yyyy/mm","dd-

mm-yyyy", etc..) and group data by year.

all_cancer (Optional) If TRUE, will calculate the number of cases for all cancers (C00-97)

and all cancers but non-melanoma of skin (C00-97 but C44)

Need var_ICD and df_ICD arguments to be defined

Details

For most analysis, individual cases database need to be grouped by category. This function groups data by 5 years age-group and other user defined variable. Next step will be to add 5 years population data. (see csu_merge_cases_pop).

Value

Return a dataframe.

Author(s)

Mathieu Laversanne

See Also

 $csu_merge_cases_pop\ csu_asr\ csu_cumrisk\ csu_eapc\ csu_ageSpecific\ csu_ageSpecific_top\ csu_bar_top\ csu_time_trend\ csu_trendCohortPeriod$

csu_merge_cases_pop 27

```
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")</pre>
data(ICD_group_GLOBOCAN)
data(data_individual_file)
#group individual data by
# 5 year age group
df_data_age <- csu_group_cases(data_individual_file,</pre>
 var_age="age",
 group_by=c("sex", "regcode", "reglabel", "site"))
#group individual data by
# 5 year age group
# ICD grouping from dataframe ICD_group_GLOBOCAN
df_data_icd <- csu_group_cases(data_individual_file,</pre>
 var_age="age",
 group_by=c("sex", "regcode", "reglabel"),
 df_ICD = ICD_group_GLOBOCAN,
 var_ICD ="site")
#group individual data by
# 5 year age group
# ICD grouping from dataframe ICD_group_GLOBOCAN
# year (extract from date of incidence)
df_data_year <- csu_group_cases(data_individual_file,</pre>
 var_age="age",
 group_by=c("sex", "regcode", "reglabel"),
 df_ICD = ICD_group_GLOBOCAN,
 var_ICD ="site",
 var_year = "doi")
# you can export your result as csv file using write.csv:
# write.csv(result, file="result.csv")
```

Description

csu_merge_cases_pop merges registry data and population data, group by year and other user defined variable (sex, registry, etc...).

Usage

```
csu_merge_cases_pop(df_cases,
df_pop,
var_age,
var_cases="cases",
var_py=NULL,
group_by=NULL)
```

Arguments

df_cases	Registry data group by 5 years-age group (need to be R data. frame format, see examples to import csv file).
df_pop	Population data group by 5-years age group (need to be R data.frame format, see examples to import csv file).
var_age	Age variable. Several format are accepted

1 0-4 0 2 5-9 5 3 10-14 10 17 80-84 80 18 85+ 85

This variable must be a variable with the same column name in both dataset $(df_cases\ and\ df_pop)$.

Age \geq 85 in the df_pop dataset will be aggregated as 85+.

var_cases Cases variable in the df_cases dataset.

var_py (Optional) If population is "long format", name of the population variable in the

df_pop dataset.

If population data is wide format (see details), var_py must be NULL.

group_by (Optional) A vector of variables to create the different population (sex, country, etc...).

Each variable must be a variable with the same column name in both dataset (df_cases and df_pop).

Do not include the "year" variable since it is automatically detected (see details).

csu_merge_cases_pop 29

Details

This function merges registry data and population for further analysis.

Both datasets must be group by 5-years age group.

If present, the year information in format "yyyy" will be detected automatically.

2 formats are accepted for population data:.

Long format: (year and population are 2 variables)

sex	age	pop	year
1	1	116128	2005
1	2	130995	2005
1	3	137556	2005
			•••
2	16	27171	2007
2	17	13585	2007
2	18	13585	2007

Wide format: (One column per year and no population variable, "yyyy" year format must be included in columns name)

sex	age	Y2013	Y2014	Y2015
1	0-4	215607	237346	247166
1	5-9	160498	152190	152113
1	10-14	175676	171794	165406
•••	•••	•••	•••	•••
 2	 75-79	 20625	 20868	 23434
				 23434 7620

Value

Return a dataframe.

Author(s)

Mathieu Laversanne

See Also

csu_group_cases csu_asr csu_cumrisk csu_eapc csu_ageSpecific csu_ageSpecific_top
csu_bar_top csu_time_trend csu_trendCohortPeriod

30 csu_registry_data_1

Examples

```
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")</pre>
data(ICD_group_GLOBOCAN)
data(data_individual_file)
data(data_population_file)
#group individual data by
# 5 year age group
# ICD grouping from dataframe ICD_group_GLOBOCAN
# year (extract from date of incidence)
df_data_year <- csu_group_cases(data_individual_file,</pre>
  var_age="age",
  group_by=c("sex", "regcode", "reglabel"),
  df_ICD = ICD_group_GLOBOCAN,
  var_ICD ="site",
  var_year = "doi")
#Merge 5-years age grouped data with population by year (automatic) and sex
df_data <- csu_merge_cases_pop(</pre>
df_data_year,
data_population_file,
var_age = "age_group",
var_cases = "cases",
var_py = "pop",
group_by = c("sex"))
# you can export your result as csv file using write.csv:
# write.csv(result, file="result.csv")
```

 ${\tt csu_registry_data_1} \qquad {\it cancer registry data}$

Description

Cancer registry data for liver cancer, males, 2007, 4 registries.

Usage

```
data("csu_registry_data_1")
```

Format

A data frame with 76 observations on the following 5 variables.

csu_registry_data_2 31

```
age age variable from 1 to 19. 1 is 0-4 years, 2 is 5-9, etc..., 17 is 80-84, 18 is 85+, 19 represents missing age.
cases Number of cases (incidence)
py Population-year: Reference population of the registry
registry_label Name of the registry
registry Registry code
```

Details

this 4 registries have been selected for this example as they different number of age group (75+, 80+, 85+) and some have missing age cases.

Source

```
https://ci5.iarc.fr/ci5-xii/
```

See Also

```
csu_asr csu_cumrisk csu_eapc csu_ageSpecific csu_ageSpecific_top csu_bar_top
```

Examples

```
csu_registry_data_2 cancer registry data
```

Description

Cancer registry data for liver cancer

Usage

```
data("csu_registry_data_2")
```

32 csu_time_trend

Format

```
sex sex variable: 1 male, 2 female

year year variable, from 1953 to 2007

age age variable from 0 to 85 with missing age.

0 is 0-4 years, 5 is 5-9, ..., 80 is 80-84, 85 is 85+, 99 represents missing age.

cases Number of cases (incidence)

py Population-year: Reference population of the registry

registry_label Name of the registry (118 populations)

registry Registry code (102 registries)

ethnic ethnic code: white (10), black (30), ..., all(99).
```

A data frame with 125856 observations on the following 8 variables.

Source

```
https://ci5.iarc.fr/ci5-xii/
```

See Also

 $\verb|csu_asr| csu_cumrisk| csu_eapc| csu_ageSpecific| csu_ageSpecific_top| csu_bar_top| csu_time_trend| csu_trendCohortPeriod|$

Examples

csu_time_trend

csu_time_trend

Description

csu_time_trend plot stats over year.

csu_time_trend 33

Usage

```
csu_time_trend(df_data,
var_trend = "asr",
var_year = "year",
group_by = NULL,
logscale = FALSE,
smoothing = NULL,
legend = csu_trend_legend(),
color_trend = NULL,
ytitle = "Age standardized rate per 100,000",
plot_title = "csu_title")
```

Arguments

df_data	Data (need to be R data.frame format, see example to import csv file).
var_trend	Statistics variable to be plot on Y axis. Usually for the ASR, but it could be the cumulative risk, or the number of cases.
var_year	Time variable.
group_by	Variable to compare different age specific rate (sex, country, cancer). Only one variable can be chosen.
logscale	Logical value: if TRUE Y-axis use logscale.
smoothing	Apply a smoothing using the R loess function. The numerical parameter controls the degree of smoothing. See option span in loess.
legend	legend option: see csu_trend_legend. Use only if group_by is not NULL.
color_trend	Vector of color for the trend. The color codes are hexadecimal (e.g. "#FF0000") or predefined R color names (e.g. "red").
ytitle	Y-axis title. Default is "Age standardized rate per 100,000".
plot_title	Title of the plot.

Details

This function is design the plot a statistics over time. It has been design for the ASR by year, but can be used for other statistics over time period. The group_by option allow to compare different population or cancer.

Value

Return a plot.

Author(s)

Mathieu Laversanne

34 csu_time_trend

See Also

csu_group_cases csu_merge_cases_pop csu_asr csu_cumrisk csu_eapc csu_ageSpecific
csu_ageSpecific_top csu_bar_top csu_trendCohortPeriod

```
data(csu_registry_data_2)
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")</pre>
# to select only 1 population
test <- subset(csu_registry_data_2 , registry_label == "Colombia, Cali")</pre>
# to change sex variable to factor with label
test$sex <- factor(test$sex, levels=c(1,2), labels=c("Male", "Female"))</pre>
# to calculate the asr
df_asr <- csu_asr(</pre>
test, missing_age = 99,
group_by = c("registry", "registry_label", "year", "sex", "ethnic"),
var_age_group = c("registry", "registry_label")
# plot ASR ove year, by sex.
csu_time_trend(df_asr, group_by="sex",
  plot_title = "Colombia, Liver")
# plot ASR over year, by sex, with small smoothing.
csu_time_trend(df_asr, group_by="sex",
  plot_title = "Colombia, Liver",
  smoothing = 0.3)
# plot ASR over year, by sex, with high smoothing.
csu_time_trend(df_asr, group_by="sex",
  plot_title = "Colombia, Liver",
  smoothing = 0.5)
# Plot embedded in a graphic device
pdf(paste0(tempdir(),"/test.pdf"),width = 11.692 , height = 8.267)
csu_time_trend(df_asr, group_by="sex",
  plot_title = "Colombia, Liver",
  smoothing = 0.3)
csu_time_trend(df_asr, group_by="sex",
  plot_title = "Colombia, Liver",
  smoothing = 0.5)
dev.off()
```

csu_trendCohortPeriod csu_trendCohortPeriod

Description

csu_trendCohortPeriod plot cohort period age specific graph.

Usage

```
csu_trendCohortPeriod(
  df_data,
  var_age = "age",
  var_cases="cases",
  var_py="py",
  var_year = "year",
  type = "Cohort",
  missing_age = NULL,
  logscale = TRUE,
  db_rate = 100000,
  first_age = 6,
  last_age = 16,
  year\_group = 5,
  age_dropped=FALSE,
  plot_title = "csu_title",
  format_export = NULL,
  graph_dev =FALSE)
```

Arguments

df_data Data (need to be R data.frame format, see example to import csv file).

var_age Age variable. Several format are accepted

Missing age value must be precise in the option missing_age. Last age group will always be considere without size (ie: 80+,85+, etc..).

var_cases Number of event (cases, deaths, ...) variable.

var_py Population year variable.

var_year Time variable. type Type of the plot:

"Cohort" Cohort graph.
"Period" Period graph.

"Both" Cohort Period graph.

missing_age Age value representing the missing age cases.

logscale Logical value: if TRUE Y-axis use logscale.

db_rate The denominator population. Default is 100000.

first_age First age group included, **must** be between 1 and 17. 1 represents 0-4, 2 repre-

sents 5-9, ... 5 represents 20-24 etc.

Default is 6 (25-29 years).

last_age Last age group included, **must** be between 2 and 18. 2 represents 5-9, ... 5

represents 20-24, ... 18 represents 85+ etc.

Default is 16 (75-79 years).

To plot the age group from 15-19 years until 65-69 years, use: first_age(4),

last_age(14)

year_group Usually, data are regrouped in 5 years period.

. The numerical parameter controls the size of the group.

age_dropped Only if some age grouped are missing in the data. Logical value: if TRUE, assume

the age group not used are already dropped from the data.

First_age and last_age option **must** still be filled.

plot_title Title of the plot.

format_export export the graph in different format:

NULL Plot in R studio windows.

"pdf" Export in PDF format.

"tiff" Export in TIFF 300dpi format.
"png" Export in PNG 200dpi format.

"svg" Export in SVG format. Can be edit with https://inkscape.org/fr/.

The filename is the plot_title option.

graph_dev If the plot is embedded in a graphics Device function (such as pdf()), the graph_dev

option should be set to TRUE for the first graph to avoid a blank page.

Details

This function is design the plot a the age-specific cohort and period plot. The type option allow to choose between the 3 different graphics: "Cohort", "Period", or "Both". Please note than the cohort plot and the period plot can be superimposed if the first_age is too low.

csu_trendCohortPeriod

Value

Return a plot.

Author(s)

Mathieu Laversanne

See Also

```
csu_group_cases csu_merge_cases_pop csu_asr csu_cumrisk csu_eapc csu_ageSpecific
csu_ageSpecific_top csu_bar_top csu_time_trend
```

37

```
data(csu_registry_data_2)
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")</pre>
# to select only 1 population
test <- subset(csu_registry_data_2,registry == 84020 & sex == 1)</pre>
# plot cohort graph from 25-29 years until 75-79 years.
csu_trendCohortPeriod(df_data=test,
                        missing_age =99,
                        plot_title = "USA, Liver, males")
# plot Period graph from 0-5 until 85+.
csu_trendCohortPeriod(df_data=test,
                        missing_age =99,
                        plot_title = "USA, Liver, males",
type="Period",
first_age=1,
last_age=18)
# plot Cohort-Period graph from 30-34 years until 70-74 years.
csu_trendCohortPeriod(df_data=test,
                        missing_age =99,
                        plot_title = "USA, Liver, males",
type="Both",
first_age=7,
last_age=15)
# plot Cohort-Period graph from 30-34 years until 70-74 years with Y axis normal scale.
csu_trendCohortPeriod(df_data=test,
                        missing_age =99,
                        plot_title = "USA, Liver, males",
type="Both",
first_age=7,
last_age=15,
```

38 csu_trend_legend

```
logscale=FALSE)
# plot Cohort graph from 25-29 years until 75-79 years, with data grouped in 2 years period.
csu\_trendCohortPeriod(df\_data=test,
 missing_age =99,
 plot_title = "USA, Liver, males",
 type="Cohort",
 year_group = 2)
# Plot embedded in a graphic device
pdf(paste0(tempdir(),"/example_test.pdf"))
csu_trendCohortPeriod(df_data=test,
                        missing_age =99,
                        plot_title = "USA, Liver, males",
type="Both",
first_age=7,
last_age=15,
graph_dev=TRUE)
csu_trendCohortPeriod(df_data=test,
                        missing_age =99,
                        plot_title = "USA, Liver, males",
type="Both",
first_age=7,
last_age=15,
logscale=FALSE)
dev.off()
```

csu_trend_legend

csu_trend_legend

Description

csu_trend_legend legend option use in Rcan package for trends.

Usage

```
csu_trend_legend(title=NULL, position="bottom",nrow=1, right_space_margin=1)
```

Arguments

title Title of the legend. (only if position = "bottom").
position Position of the legend:

"bottom" The legend is place at the bottom of the graph. use with option nrow.

csu_trend_legend 39

"right" The legend is place at the right of each trend, use with option right_space_margin. If there is already a plot in the

```
nrow Number of row of the legend (only if position = "bottom").

right_space_margin

If the position = "right", the right margin need to be enough big, to contain the text legend. value should be between 1 and 10 depending the size of the text legend.
```

Details

This function return a list for the trend graphics of the package Rcan

Value

Return a structured list.

Author(s)

Mathieu Laversanne

See Also

```
csu_ageSpecific
```

40 data_individual_file

Description

```
Data individual example for the function csu_group_cases 1 line = 1 cases.
```

Usage

```
data("data_individual_file")
```

Format

A data frame with 19284 observations on the following 10 variables.

```
regcode registry code
reglabel registry label
sex sex
age age
doi date of birth (yyyymmdd)
site ICD10 code
histo histology
beh behavior code
grade grade
basis basis
```

Details

This dataset provide an example how to group individual cases to 5 years data, grouped by ICD code and year using the function csu_group_cases and the database ICD_group_GLOBOCAN

See Also

```
csu_group_cases ICD_group_GLOBOCAN ICD_group_CI5
```

```
data(ICD_group_GLOBOCAN)
data(data_individual_file)

#group individual data by
# 5 year age group

df_data_age <- csu_group_cases(data_individual_file,</pre>
```

data_population_file 41

```
var_age="age",
group_by=c("sex", "regcode", "reglabel", "site"))

#group individual data by
# 5 year age group
# ICD grouping from dataframe ICD_group_GLOBOCAN

df_data_icd <- csu_group_cases(data_individual_file,
var_age="age",
group_by=c("sex", "regcode", "reglabel"),
df_ICD = ICD_group_GLOBOCAN,
var_ICD = "site")</pre>
```

Description

Population data example for the function csu_merge_cases_pop.

Usage

```
data("data_population_file")
```

Format

A data frame with 160 observations on the following 4 variables.

```
year year
sex sex
age_group 5 year age group
pop Count of population year
```

Details

This dataset provide an example to merge 5 years age grouped data with population data using the function csu_merge_cases_pop

See Also

```
csu_merge_cases_pop
```

42 ICD_group_CI5

Examples

```
data(ICD_group_GLOBOCAN)
data(data_individual_file)
data(data_population_file)
#group individual data by
# 5 year age group
# ICD grouping from dataframe ICD_group_GLOBOCAN
# year (extract from date of incidence)
df_data_year <- csu_group_cases(data_individual_file,</pre>
  var_age="age",
  group_by=c("sex", "regcode", "reglabel"),
  df_ICD = ICD_group_GLOBOCAN,
  var_ICD ="site",
  var_year = "doi")
#Merge 5-years age grouped data with population by year (automatic) and sex
df_pop <- csu_merge_cases_pop(df_data_year, data_population_file, var_age = "age_group",</pre>
                           var_cases = "cases", var_py = "pop", group_by = c("sex"))
```

ICD_group_CI5

ICD10 group detailed example

Description

ICD10 group example for the function csu_group_cases based on CI5XII ICD grouping

Usage

```
data("ICD_group_CI5")
```

Format

A data frame with 97 observations on the following 2 variables.

```
ICD ICD10 code

LABEL label for cancer group
```

Details

This dataset provide an example how to regroup ICD code using the function csu_group_cases For instance this group

ICD LABEL C18 COLORECTUM C19 COLORECTUMC20 COLORECTUMC21 COLORECTUM

Will become:

ICD_group LABEL C18-C21 COLORECTUM

See: csu_group_cases

See Also

csu_group_cases ICD_group_GLOBOCAN

Examples

```
data(ICD_group_CI5)
data(data_individual_file)

#group individual data by
# 5 year age group
# ICd grouping from dataframe ICD_group_CI5

df_data_icd <- csu_group_cases(data_individual_file, var_age="age", group_by=c("sex", "regcode", "reglabel"),
df_ICD = ICD_group_CI5,
var_ICD = "site")</pre>
```

ICD_group_GLOBOCAN

ICD10 group example

Description

ICD10 group example for the function csu_group_cases based on GLOBOCAN

Usage

```
data("ICD_group_GLOBOCAN")
```

Format

A data frame with 97 observations on the following 2 variables.

ICD ICD10 code

LABEL label for cancer group

Details

This dataset provide an example how to regroup ICD code using the function csu_group_cases For instance this group

```
ICD LABEL
C18 COLORECTUM
C19 COLORECTUM
C20 COLORECTUM
C21 COLORECTUM
```

Will become:

```
ICD_group LABEL
C18-C21 COLORECTUM
```

See: csu_group_cases

See Also

```
csu_group_cases ICD_group_CI5
```

```
data(ICD_group_GLOBOCAN)
data(data_individual_file)

#group individual data by
# 5 year age group
# ICd grouping from dataframe ICD_group_GLOBOCAN

df_data_icd <- csu_group_cases(data_individual_file,
var_age="age",
group_by=c("sex", "regcode", "reglabel"),
df_ICD = ICD_group_GLOBOCAN,
var_ICD = "site")</pre>
```

Index

```
* datasets
                                                     factor, 8
    csu_ci5_mean, 19
                                                     ICD_group_CI5, 40, 42, 44
     csu_CI5XII_data, 17
                                                     ICD_group_GLOBOCAN, 26, 40, 43, 43
     csu_registry_data_1, 30
     csu_registry_data_2, 31
                                                     loess, 33
     data_individual_file, 40
     data_population_file, 41
                                                     Rcan (Rcan-package), 2
     ICD_group_CI5, 42
                                                     Rcan-package, 2
     ICD_group_GLOBOCAN, 43
* package
     Rcan-package, 2
csu_ageSpecific, 2, 4, 9, 12, 15, 17, 20, 22,
         24, 26, 29, 31, 32, 34, 37, 39
csu_ageSpecific_top, 2, 6, 7, 12, 15, 22, 24,
         26, 29, 31, 32, 34, 37
csu_asr, 2, 6, 9, 10, 15, 17, 22, 24, 26, 29, 31,
         32, 34, 37
csu_bar_top, 2, 6, 9, 12, 14, 22, 24, 26, 29,
         31, 32, 34, 37
csu_ci5_mean, 5, 19
csu_CI5XII_data, 17
csu_cumrisk, 2, 6, 9, 12, 15, 17, 21, 22, 24,
         26, 29, 31, 32, 34, 37
csu_eapc, 2, 6, 9, 12, 15, 17, 22, 23, 26, 29,
         31, 32, 34, 37
csu_group_cases, 2, 6, 9, 12, 15, 22, 24, 25,
         29, 34, 37, 40, 42-44
csu_merge_cases_pop, 2, 6, 9, 12, 15, 22, 24,
         26, 27, 34, 37, 41
csu_registry_data_1, 30
csu_registry_data_2, 31
csu_time_trend, 2, 6, 9, 12, 15, 22, 24, 26,
         29, 32, 32, 37
csu_trend_legend, 5, 33, 38
csu_trendCohortPeriod, 2, 6, 9, 12, 15, 22,
         24, 26, 29, 32, 34, 35
data_individual_file, 40
data\_population\_file, 41
```