Universidade Federal do Vale do São Francisco Eletrônica Digital II – Prova 2 – 05.09.2018

1. (2,0) Considere o computador simplificado descrito no cap. 8. Na memória do computador, há um programa cujo conteúdo binário está mostrado na tabela a seguir. Sabendo que as posições de memória 111011, 111100 e 111101 guardam os números 10₁₀, 20₁₀ e 30₁₀, determine o conteúdo das posições 111110 e 111111 após a conclusão do programa. Considere que o Acumulador está inicialmente zerado. Comente o código.

Endereço	Conteúdo	Comentários
000000	01111011	
000001	10111100	
000010	01111101	
000011	11111110	
000100	00111110	
111011	10_{10}	
111100	20_{10}	
111101	30_{10}	
	•••	
111110	•••	
111111	•••	

2. (2,0) Suponha que está disponível a arquitetura apresentada na figura abaixo, em que a saída Z será Z=1 se o número armazenado no acumulador for zero. Projete um CONTROLADOR REGISTRADOR DE DESLOCAMENTOS que determina se dois números armazenados nos registradores α e β são iguais. Assuma que os conteúdos de α e β são positivos.

- 3. (3,0) Escrever um programa em assembly (do cap. 9) que verifique se um número na posição 0x30 da memória é positivo ou negativo. Caso seja positivo, o número deve ser multiplicado por 2 e o resultado da multiplicação deve ser salvo na posição 0x31. Caso seja negativo, deve-se transformá-lo em um número positivo e salvar a transformação na posição 0x32 da memória.
- 4. (3,0) Escrever um programa em assembly (do cap. 9) que substitua os bits de índice par por 0 (zero). Considerar que o número encontra-se armazenado no endereço 0x30 da memória. O resultado deve ser armazenado em outro endereço da memória. Um exemplo do resultado final é apresentado na tabela abaixo.

Número original	$X_{11}X_{10}X_9X_8X_7X_6X_5X_4X_3X_2X_1X_0$
Número modificado	$X_{11}0X_90X_70X_50X_30X_10$