AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

In the Claims:

1. (Currently Amended) A compound of the formula

$$R_6$$
 R_5
 R_7
 R_8
 R_8

wherein the bond of atoms C22 and C23 is a single or double bond;

n is 0, 1 or 2;

p is 0 or 1;

R₁ is C₁-C₁₂-alkyl, C₃-C₈-cycloalkyl or C₂-C₁₂-alkenyl;

$$\label{eq:R2} \begin{split} &\mathrm{R3} \quad \mathrm{is} \; H_1, \, C_1 - C_{12} \text{-alkyl}, \, C_1 - C_{12} \text{-haloalkyl}, \, C_1 - C_{12} \text{-hydroxyalkyl}, \, OH, \, \mathrm{halogen}, \, -N_3, \, \mathrm{SCN}, \, \mathrm{NO}_2, \, \\ &\mathrm{CN}, \, C_3 - C_8 \mathrm{cycloalkyl} \; \mathrm{unsubstituted} \; \mathrm{or} \; \mathrm{substituted} \; \mathrm{by} \; \mathrm{from} \; \mathrm{one} \; \mathrm{to} \; \mathrm{three} \; \mathrm{methyl} \; \mathrm{groups}, \, C_3 - C_8 \mathrm{halocycloalkyl}, \, C_1 - C_{12} \mathrm{alkoxy}, \, C_1 - C_6 \mathrm{alkoxy} - C_1 - C_6 \mathrm{alkoxy}, \, C_2 - C_{12} \mathrm{alkonyl}, \, C_2 - C_{12} \mathrm{haloalkenyl}, \, C_2 - C_{12} \mathrm{haloalkynyl}, \, C_3 - C_{12} \mathrm{alkynyloxy}, \, C_3 - C_{12} \mathrm{haloalkynyloxy}, \, -P(=0)(\mathrm{OC}_1 C_6 \mathrm{alkyl})_3, \, -\mathrm{Si}(C_1 - C_6 \mathrm{alkyl})_3, \, -\mathrm{Si}(C_1$$

NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -(CH₂)-NR₉-OR₁₀, -SR₉, -S(-O) R₁₊, -S(-O) R₁₊, aryl, heterocyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, SCN, -N₃, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkenyl, C₂-C₈alkenyl, C₂-C₈alkenyl, C₂-C₈alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyloxy, C₃-C₁₂haloalkynyloxy and phenoxy;

or, when p is 1, R2 together with R3 is a bond;

or R2 together with R4 is =O or =S;

or R₂ together with R₄ form with the carbon to which they are bound a three- to sevenmembered ring, which may be monocyclic or bicyclic, and may be saturated or unsaturated, and
that may contain one or two hetero atoms selected from the group consisting of N, O and S, and
which is either unsubstituted or independently of one another mono- to pentasubstituted with
substituents selected from OH, =O, SH, =S, halogen, CN, -N₃, SCN, NO₂, aryl, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂alkynyloxy, C₃-C₁₂haloalkynyloxy, phenoxy,
phenyl-C₁-C₆alkyl, -N(R₉)₂ wherein the two R₉ are independent of each other, C₁-C₆alkylsulfinyl,
C₃-C₈cycloalkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₃-C₈halocycloalkylsulfinyl, C₁C₆alkylsulfonyl, C₃-C₈cycloalkylsulfonyl, C₁-C₆haloalkylsulfonyl and C₃C₈halocycloalkylsulfonyl; or

 R_2 together with R_4 is =NN(R_{12})2, wherein the two substituents R_9 are independent of each other;

or, when p is 0, R_2 together with R_4 and R_6 is $\equiv N$;

or when p is 0, R_2 together with R_6 is =NOR₁₂ or =NN(R_{12})₂, wherein the two substituents R_9 are independent of each other;

 $R_3 \qquad is \ H, C_1-C_{12}-alkyl, \ halogen, \ halo-C_1-C_2alkyl, \ CN, -N_3, \ SCN, \ NO_2, \ C_3-C_3 \\ C_6 cycloalkyl \ unsubstituted \ or \ substituted \ by \ from \ one to three methyl \ groups, \ C_3-C_6 halocycloalkyl, \ C_1-C_{12} \\ C_6 halocycloalkyl, \ C_1-C_{12} \\ alkoxy, \ C_1-C_6 -alkoxy-C_1-C_6 \\ alkoxy-C_1-C_6 \\ a$

 $C_6alkyl,\ C_3-C_8cycloalkoxy,\ C_1-C_{12}haloalkoxy,\ C_1-C_{12}alkylthio,\ C_3-C_8cycloalkylthio,\ C_1-C_{12}haloalkylsulfinyl,\ C_3-C_8cycloalkylsulfinyl,\ C_1-C_{12}haloalkylsulfinyl,\ C_3-C_8cycloalkylsulfinyl,\ C_1-C_{12}haloalkylsulfinyl,\ C_1-C_{12}haloalkylsulfinyl,\ C_1-C_{12}haloalkylsulfinyl,\ C_1-C_{12}haloalkylsulfinyl,\ C_2-C_8alkenyl,\ C_2-C_8alkenyl,\ C_2-C_8alkenyl,\ C_2-C_8alkenyl,\ C_2-C_8alkenyl,\ C_2-C_8alkenyl,\ C_2-C_12haloalkynyl,\ C_2-C_12haloalkynyl,\ C_3-C_12haloalkynyloxy,\ -N(R_9)_2,\ wherein the two substituents\ R_9$ are independent of each other, aryl, heterocyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to pentasubstituted by substituents selected from the group consisting of halogen, CN, NO2, C_1-C_12alkyl,\ C_3-C_8cycloalkyl,\ C_1-C_12haloalkyl,\ C_1-C_12haloalkoxy,\ C_1-C_12alkoyl,\ C_2-C_8alkenyl,\ C_2-C_8alkynyl,\ C_2-C_12haloalkenyl,\ C_2-C_12haloalkynyloxy;

or when p is 1, R₃ together with R₂ is a bond;

 R_4

C12haloalkynyloxy and phenoxy;

cycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkyl), C_2 - C_1 2alaoalkynyloxy, $P(=O)(OC_1$ - C_6 alkyl)2, $-Si(C_1$ - C_6 alkyl)3, $-(CH_2)$ - $Si(C_1$ - C_6 alkyl)3, $-Si(OC_1$ - C_6 alkyl)3, $-N(R_9)$ 2, $-(CH_2)$ - $N(R_9)$ 2, wherein the two substituent R_9 are independent of each other, -C(=X)- R_7 , $-(CH_2)$ -C(=X)- R_7 , $-NR_9$ -C(=X)

CN, C3-C8cycloalkyl unsubstituted or substituted by from one to three methyl groups, C3-C8halo-

is H, C1-C12-alkyl, C1-C12-haloalkyl, C1-C12-hydroxyalkyl, OH, halogen, NO12,

or R4 together with R2 forms =O or =S;

or when p is 1, R4 together with R5 is a bond;

or, when p is 0, together with R_2 and R_6 is $\equiv N$;

R5 and R6 independently of each other are H, C1-C12-alkyl, -N3, CN, NO2, OH, SH, halogen, halo-C1-C2alkyl, hydroxy-C1-C2alkyl, C3-C2cycloalkyl that is unsubstituted or substituted by from one to two methyl groups, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₆alkoxy-C1-C6alkyl, C1-C6alkoxy-C1-C6alkoxy, C1-C6alkoxy-C1-C6alkoxy-C1-C6alkyl, C3-C8cycloalkoxy, C1-C12haloalkoxy, C1-C12haloalkylthio, C2-C8alkenyl, C2-C8alkynyl, C2-C12haloalkenyl, C2-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, -P(=O)(OC₁-C₆alkyl)₂, -CH₂-P(=O)(OC₁-C₆alkyl)₂, -Si(OC₁-C₆alkyl)₃, -N(R₉)₂, -O-N(R₉)₂, wherein the two substituents R₉ are independent of each other, -C(=X)-R₇, -CH=NOH, -CH=NOC₁-C₆alkyl, -O-C(=X)-R₇, -S-C(=X)-R7, -NR9C(=X)R7, -NR9NHC(=X)-R7, -NR9-OR10, -SR9, -S(=O)R11, -S (=O)2R11, -CH2-S(=O)2R11, aryl, aryloxy, benzyloxy, -NR9-aryl, heterocyclyl, heterocyclyloxy, -NR9-heterocvclyl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, -CH₂-NR₉-C₁-C₂alkyl, -CH₂-heterocyclyl, -CH₂-O-heterocyclyl and -CH2-NR9-heterocyclyl; wherein the aryl, aryloxy, benzyloxy, -NR9-aryl, heterocyclyl, heterocyclyloxy and -NRo-heterocyclyl radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, =O, SH, =S, halogen, CN, NO2, C1-C12alkyl, C3-Cecycloalkyl, C1-C12haloalkyl, C1-C12alkoxy, C1-C12haloalkoxy, C1-C12alkylthio, C1-C12haloalkylthio, C1-C6alkoxy-C1-C6alkyl, C2-C8alkenyl, C2-C8alkynyl, C2-C12haloalkenyl, C2-C8alkynyl, C2-C8alkyny C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, phenoxy, methylenedioxy, NH₂, NH(C1-C12alkyl), N(C1-C12alkyl)2 and C1-C6alkylsulfinyl; or

R₅ and R₆ are, together with the carbon atom to which they are bound, a five- to sevenmembered ring, which may be saturated or unsaturated, and which may contain one or two members selected from the group consisting of O, NR₈ and S; and which is optionally substituted with one to three substituents selected from C₁-C₁₂-alky₁, CN, NO₂, OH, halogen, halo-C₁-

$$\begin{split} &C_2\text{alkyl}, \ C_3\text{-}C_8\text{cycloalkyl} \ C_3\text{-}C_8\text{halocycloalkyl}, \ C_1\text{-}C_{12}\text{alkoxy}, \ C_1\text{-}C_6\text{alkoxy-}C_1\text{-}C_6\text{alkyl}, \ C_3\text{-}C_8\text{cycloalkoxy}, \ C_1\text{-}C_{12}\text{haloalkyl}, \ C_3\text{-}C_8\text{cycloalkoxy}, \ C_1\text{-}C_{12}\text{haloalkyl}, \ C_3\text{-}C_8\text{cycloalkyl}, \ C_2\text{-}C_{12}\text{haloalkenyl}, \ C_2\text{-}C_{12}\text{haloalkenyl}, \ C_2\text{-}C_{12}\text{haloalkenyl}, \ C_2\text{-}C_{12}\text{haloalkenyl}, \ C_2\text{-}C_{12}\text{haloalkynyl}, \ C_2\text{-}C_{12}\text{$$

or when p is 1, R5 together with R4 is a bond;

or, when p is 0, R_6 together with R_2 and R_4 is $\equiv N$;

 $R_7 \ is \ H, OH, C_1-C_{.12} alkyl, C_1-C_{12} haloalkyl, C_2-C_{12} alkenyl, C_2-C_{12} alkynyl, C_2-C_{12} haloalkynyl, C_3-C_{12} haloalkynyl, C_3-C_{12} haloalkynyl, C_3-C_{12} haloalkynyl, C_3-C_{12} haloalkynyl, C_3-C_{12} haloalkynyl, C_3-C_{12} haloalkynyl, C_3-C_8 alkenyloxy, C_1-C_{12} haloalkyny, C_1-C_8 haloxy, C_1-C_8 haloxy, C_1-C_8 haloxy, C_2-C_8 haloxy, C_3-C_8 haloxy, C_3-C_8 haloxy, C_3-C_8 haloxy, C_3-C_8 haloxy, C_1-C_12 haloalkyl, C_3-C_8 haloalkyl, C_1-C_12 haloalkyl, C_2-C_8 haloxy, C_2-C_8 haloxy, C_3-C_8 haloalkynyl, C_2-C_8 haloalkynyl, C_3-C_8 haloalkynyl, C_3-C_8 haloalkynyl, haloxy, C_3-C_8 haloalkynyl, haloxy, C_3-C_8 haloalkynyloxy, C_3-C_8 haloalkynyloxy, haloxy, C_3-C_8 haloalkynyl, C_3-C_12 haloalkynyloxy, haloxy, C_3-C_8 haloalkynyloxy, haloxy, C_3-C_8 haloalkynyloxy, C_3-C_8 haloalkynyloxy, haloxy, C_3-C_8 haloalkynyloxy, haloxy, C_3-C_8 haloalkynyloxy, C_3-C_8 haloalkynyloxy, haloxy, C_3-C_8 haloalkynyloxy, haloxy, C_3-C_8 haloalkynyloxy, haloxy, C_3-C_8 haloalkynyloxy, haloxy, C_3-C_8 halo$

 $R_{\$}$ is H, C_1 - C_6 alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_2 - C_{12} alkenyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyloxy, C_2 - C_{12} haloalkynyl, C_2 - C_{12} haloalkynyl, C_3 - C_{12} haloalkynyloxy, hydroxy and cyano, C_3 - C_8 -cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, C_1 , C_1 ,

7

00599412.DOC

R₉ is H, C₁-C₆alkyl, C₁-C₆cycloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₂-C₆alkyl, C₂-C₁₂alkenyl, C₂-C₁₂alkynyl, benzyl, aryl or heteroaryl;

 $R_{10}\,H,\,C_1\text{-}C_6\text{alkyl} \text{ that is optionally substituted with one to five substituents selected from the group consisting of halogen, <math>C_1\text{-}C_6\text{alkoxy},\,NO_2,\,hydroxy$ and cyano, $C_1\text{-}C_{12}\text{haloalkyl},\,C_2\text{-}C_{12}\text{alkenyl},\,C_2\text{-}C_{12}\text{haloalkynyl},\,C_2\text{-}C_{12}\text{haloalkynyl},\,C_2\text{-}C_{12}\text{haloalkynyl},\,C_2\text{-}C_{12}\text{haloalkyl},\,c_1\text{-}C_1\text{-}c_$

R₁₁ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, hydroxy and cyano, -N(R₉)₂ wherein the two substituents R₉ are independent of each other, C₃-C₈cycloalkyl, C₃-C₈halocycloalkyl, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkynyl, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkynyloxy;

 $R_{12} \ is \ H, \ C_1-C_6 alkyl, \ C_1-C_6 eycloalkyl, \ C_1-C_6 alkvy-C_1-C_6 alkyl, \ C_1-C_6 alkvy-C_1-C_6 alkyl, \ C_2-C_{12} alkynyl, \ -C(=O)C_1-C_6 alkyl, \ -C(=O)OC_1-C_6 alkyl, \ -SO_2C_1-alkyl, \ benzyl, \ aryl, \ heteroaryl;$

X is O or S;

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form.

- (Previously Presented): A pesticide composition which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
- (Previously Presented): A method for controlling pests comprising applying a composition as described in claim 2 to the pests or their habitat.
- 4. (Previously Presented): A process for preparing a composition as described in claim 2 comprising intimately mixing and/or grinding the active compound with at least one auxiliary.
- 5. (Canceled)
- 6. (Canceled)
- 7. (Previously Presented): A method for protecting plant propagation material, wherein the propagation material or the location where the propagation material is planted is treated, comprising applying a composition as described in claim 2.
- (Previously Presented): Plant propagation material treated in accordance with the method described in claim 7.
- 9. (Currently Amended): The compound of claim 1, wherein
- $R_1 \qquad \text{is C_1-C_6-alkyl, C_5-C_6-cycloalkyl or C_2-C_6-alkenyl;} \\$

9

00599412.DOC

$$\begin{split} &(CH_2) - O - C(=X) - R_7, -S - C(=X) - R_7, -(CH_2) - S - C(=X) - R_7, -NR_9 C(=X)R_7, -(CH_2) - NR_9 C(=X)R_7, -NR_9 - C(H_2) - NR_9 -$$

or, when p is 1, R2 together with R3 is a bond;

or R2 together with R4 is =O or =S; or

 R_2 together with R_4 is =NN(R_{12})2, wherein the two substituents R_9 are independent of each other:

or, when p is 0, R_2 together with R_4 and R_6 is $\equiv N$:

or when p is 0, R_2 together with R_6 is $=NOR_{12}$ or $=NN(R_{12})_2$, wherein the two substituents R_9 are independent of each other;

 R_3 is H, C_1 - C_6 -alkyl, halogen, halo- C_1 - C_2 alkyl, or when p is 1, R_3 together with R_2 is a bond;

or R4 together with R2 forms =O or =S;

or when p is 1, R4 together with R5 is a bond;

or, when p is 0, together with R_2 and R_6 is $\equiv N$;

 R_5 and R_6 independently of each other are H, C_1 - C_6 -alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo- C_1 - C_2 alkyl, hydroxy- C_1 - C_2 alkyl, C_3 - C_8 cycloalkyl that is unsubstituted or substituted by from one to two methyl groups, C_3 - C_8 halocycloalkyl, C_1 - C_1 2alkoxy, C_1 - C_6 alkoxy-

 $C_1-C_6 \\ alkyl, C_1-C_6 \\ alkoxy-C_1-C_6 \\ alkoxy-C_1-C_6 \\ alkoxy-C_1-C_6 \\ alkoxy-C_1-C_6 \\ alkyl, C_3-C_8 \\ cycloalkoxy-C_1-C_6 \\ alkyl, C_3-C_8 \\ cycloalkoxy-C_1-C_8 \\ cy$ C1-C12haloalkoxy, C1-C6haloalkylthio, C2-C8alkenyl, C2-C8alkynyl, C2-C6haloalkenyl, C2-C6haloalkenyloxy, C2-C6haloalkynyl, C3-C6haloalkynyloxy, -P(=O)(OC1-C6alkyl)2, -CH2-P(=O)(OC1-C6alkyl)2, -Si(OC1-C6alkyl)3, -N(R9)2, -O-N(R9)2, wherein the two substituents R9 are independent of each other, -C(=X)-R7, -CH=NOH, -CH=NOC1-C6alkyl, -O-C(=X)-R7, -S- $C(=X)-R_7, -NR_9C(=X)R_7, -NR_9NHC(=X)-R_7, -NR_9-OR_{10}, -\frac{SR_9, -S(=O)R_{11}, -S(=O)_2R_{11}, -CH_{2-1}, -CH_{2-1},$ S(=O)₂R₁₁, aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy, -NR₉-heterocyclyl, -CH2-aryl, -CH2-O-aryl, -CH2-NR9-aryl, -CH2-NR9-C1-C2alkyl, -CH2-heterocyclyl, -CH2-O-heterocyclyl and -CH2-NR9-heterocyclyl; wherein the aryl, aryloxy, benzyloxy, -NR9-aryl, heterocyclyl, heterocyclyloxy and -NRo-heterocyclyl radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, =O, SH, =S, halogen, CN, NO2, C1-C6alkyl, C3-Cscycloalkyl, C1-C6haloalkyl, C1-C6alkoxy, C1-C6haloalkoxy, C1-C6alkylthio, C1-C6haloalkylthio, C1-C6alkoxy-C1-C6alkyl, C2-C8alkenyl, C2-C8alkynyl, C2-C6haloalkenyl, C2-C9alkynyl, C C6haloalkenyloxy, C2-C6haloalkynyl, C3-C6haloalkynyloxy, phenoxy, methylenedioxy, NH2, NH(C1-C6alkyl), N(C1-C6alkyl)2 and C1-C6alkylsulfinyl; or

when p is 0, R_6 together with R_2 and R_4 is $\equiv N$;

 $R_7 \ is \ H, OH, C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, C_2-C_6 haloalkynyl, C_3-C_6 haloalkynyl, C_3-C_8 alkinyloxy, --N(R_8)_2 wherein the two R_8 are independent of each other, aryl, aryloxy, benzyloxy, heterocyclyl, heterocyclyloxy or heterocyclylmethoxy; and wherein the aryl, aryloxy, benzyloxy, heterocyclyl and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen, CN, NO2, C_1-C_6 alkyl, C_3-C_8 cycloalkyl, C_1-C_6 haloalkyl, C_1-C_6 alkoxy, C_1-C_6 haloalkyl, C_1-C_6 haloalkyl, C_2-C_8 haloalkenyl, C_2-C_8 haloalkenyl, C_2-C_8 haloalkenyloxy, C_2-C_8 haloalkenyloxy, C_2-C_8 haloalkenyloxy, C_2-C_8 haloalkynyloxy;$

 $R_8 \qquad \text{is H, C_1-C_6alkyl$ that is optionally substituted with one to five substituents} \\ \text{selected from the group consisting of halogen, C_1-C_6alkoxy, C_1-C_6alkoxy, C_2-C_6alkoxy, C_2-C_6alkoxy, C_2-C_6alkoxy, C_2-C_6alkoxy, C_2-C_6alkoxy, C_2-C_6alkoxy, C_2-C_6alkoxy, C_3-C_6alkoxy, C_3-C_6alkoxy, C_3-C_6alkynyl, C_3-C_6alkynyl, C_3-C_6alkynyl, C_3-C_6alkynyl, C_3-C_6alkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, $C_3, C_3-C_6alkyl, C_1-C_6alkyl, C_1-C_6alkoxy, C_1-C_6alkoxy, C_1-C_6alkylthio, C_2-C_6alkoxyl, C_2-C_6aloalkenyl, C_2-C_6aloalkenyl, C_2-C_6aloalkynyl, C_3-C_6aloalkynyl, C_3-C_6aloalkynyl, C_3-C_6aloalkynyl, C_3-C_6aloalkynyl, C_3-C_6aloalkynyl, C_3-C_6aloalkynyl, C_3-C_6aloalkynyl, C_3-C_6aloalkylthio; C_3-C_6aloalkylthio$

R₉ is H, C₁-C₆alkyl, C₁-C₆cycloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₂-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, benzyl, aryl or heteroaryl;

 R_{10} H, C_1 - C_6 alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, NO_2 , hydroxy and cyano, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkynyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkenyl, C_3 - C_8 -cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1 - C_6 alkyl, C_1 - C_6 alloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, C_1 - C_6 alkoxyl, C_1 - C_6 alkoxyl, C_2 - C_6 alkoxyl, C_2 - C_6 alkoxyl, C_3 - C_6 haloalkynyl, C_3 - C_6 haloalkynyl, C_3 - C_6 haloalkynyl, C_3 - C_6 haloalkynyl, and C_3 - C_6 haloalkynyloxy;

 R_{11} is H, C_1 - C_6 alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, hydroxy and cyano, -N(R_9)₂ wherein the two substituents R_9 are independent of each other, C_3 - C_6 ecycloalkyl, C_3 - C_6 haloalkyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkenyl, C_3 - C_6 haloalkynyl, C_3 - C_6 haloalkynyl, C_3 - C_6 haloalkynyl, C_3 - C_6 haloalkynyloxy, aryl, benzyl on heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6

C6alkenyl, C2-C6haloalkenyl, C2-C6haloalkenyloxy, C2-C6alkynyl, C2-C6haloalkynyl and C3-C6haloalkynyloxy;

 $R_{12} \text{ is H, C}_1-C_6\text{alkyl, C}_1-C_6\text{cycloalkyl, C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkyl, C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkyl, C}_2-C_{12}\text{alkenyl, -C(=O)C}_1-C_6\text{alkyl, -C(=O)OC}_1-C_6\text{alkyl, --C(=O)OC}_1-C_6\text{alkyl, --$

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form:

10. (Currently Amended) The compound of claim 9, wherein

n = 1;

p=1;

R₂ is H or OH;

R₃ is H, C₁-C₆-alkyl, or halo-C₁-C₂alkyl;

R₄ is H:

R₅ is H or C₁-C₆-alkyl; and

 R_6 is H, C_1 - C_6 -alkyl, - N_3 , OH, halogen, halo- C_1 - C_2 alkyl, $N(R_9)_2$, -O- $N(R_9)_2$, wherein the two substituents R_9 are independent of each other, -C(=X)- R_7 , -O-C(=X)- R_7 , -S-C(=X)- R_7 , -NR₀- $N(R_9)$ - $N(R_9)$ -

- 11. (Canceled)
- 12. (Canceled)
- 13. (Currently Amended) The compound of claim 9, wherein

n=1:

p = 0;

and

R2 is H, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-hydroxyalkyl, or -C(=X)-R7,

R₄ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

R₇ is H, OH, or C₁-C₆alkoxy;

X is O; and

 $R_6 \qquad \text{is H, C}_1-C_6-\text{alkyl, -N}_3, \text{CN, NO}_2, \text{OH, SH, halogen, halo-C}_1-C_2\text{alkyl, hydroxy-C}_1-C_2\text{alkyl, C}_1-C_6-\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkyl, -O-C}_1-C_6\text{alkyl, -O-C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkyl, -O-C}_1-C_6\text{alkyl, -O-C}_1-C_6\text{alkoxy-C}_1-C_6$

14. (Canceled)

15. (Currently Amended) The compound of claim 9, wherein

n=0;

p = 0;

R2 is H, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-hydroxyalkyl, or -C(=X)-R7,

R₄ is H, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-hydroxyalkyl, or -C(=X)-R₇,

R₇ is H, OH, or C₁-C₆alkoxy;

X is O; and

R₆ is H, C₁-C₆-alkyl, -N₃, CN, NO₂, OH, SH, halogen, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₁-C₁2_alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy-C₁-C₆alkyl, -O-C(=X)-R₇, -S-C(=X)-R₇, -NR₉-C(=X)-R₇, -NR₉-NHC(=X)-R₇, -NR₉-OR₁₀, -SR₉-S(=O)R₄₄, -S(=O)₂R₄₄, -S(=O)₂R₄₄, aryl, aryloxy, benzyloxy, -NR₉-aryl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, or -CH₂-NR₉-C₁-C₂alkyl.

14

16. (Previously Presented) The compound of claim 9, wherein

00599412.DOC

p = 0;

R2 together with R4 is =O;

R₆ is H, C₁-C₆-alkyl, CN, OH, F, Cl, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkylthio, C₂-C₈alkenyl, C₂-C₁₂haloalkenyl, -N(R₉)₂ wherein the two substituents R₉ are independent of each other, pyrrolidinyl, morpholinyl, aryl, aryloxy, or benzyloxy; and

R₉ is H or C₁-C₆alkyl.

17. (Currently Amended) The compound of claim 9, wherein

n – 1;

p = 1;

R2 together with R3 is a bond;

R₄ is H or C₁-C₆ alkyl;

R₅ is H, F, Cl, Br or C₁-C₆ alkyl;

R₆ is H, C₁-C₆-alkyl, CN, OH, F, Cl, Br, halo-C₁-C₂alkyl, hydroxy-C₁-C₂alkyl, C₃C₈halocycloalkyl, C₁-C₁calkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, C₁C₆alkoxy-C₁-C₆alkyl, C₃-C₈cycloalkoxy, C₁-C₆alkoxy, C₁C₆haloalkylthio, -P(=O)(OC₁-C₆alkyl)₂, -CH₂-P(=O)(OC₁-C₆alkyl)₂, -Si(OC₁-C₆alkyl)₃, C(=X)-R₇, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, -CH₂-S(=O)₂R₁₁, aryl, aryloxy, benzyloxy,
thiopheneyl, pyridyl, or -CH₂-NR₉-C₁-C₂alkyl; and

R₇ is H, OH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₁alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkoxy, aryl, furanylmethoxy, or 1,3,2-dioxaborolyl; and wherein the aryl, furanylmethoxy, 1,3,2-dioxaborolyl are unsubstituted or depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen and C₁-C₆alkyl.

18. (Currently Amended) The compound of claim 9, wherein

n=1;

p = 1;

R2 together with R3 is a bond;

R₄ is H or C₁-C₆ alkyl;

- R₅ is H, F, Cl, Br or C₁-C₆ alkyl;
- $$\begin{split} R_6 & \text{ is H, C}_1-C_6-\text{alkyl, CN, OH, F, Cl, Br,, halo-C}_1-C_2\text{alkyl, hydroxy-C}_1-C_2\text{alkyl, C}_3-\\ & C_8\text{halocycloalkyl, C}_1-C_{12}\text{alkoxy, C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkoxy, C}_1-C_6\text{alkoxy, C}_1-C_6\text{alkoxy, C}_1-C_6\text{alkoxy, C}_1-C_6\text{alkoxy, C}_1-C_6\text{alkoxy, C}_1-C_6\text{alkoxy, C}_1-C_6\text{alkoxy, C}_1-C_6\text{alkyl}_2, -\text{CH}_2-P(=0)(OC}_1-C_6\text{alkyl}_2, -\text{Si}(OC}_1-C_6\text{alkyl}_3, -\text{C}(=X)-R_{7_1}-S(=0)R_{1+7_1}-S(=0)_2R_{1+7_1}-CH_2-S(=0)_2R_{1+1}, \text{aryl, aryloxy, benzyloxy,}\\ & \text{thiopheneyl, pyridyl, or -CH}_2-NR_9-C}_1-C_2\text{alkyl}_3 \text{ and} \end{split}$$
- R₇ is H, OH, C₁-C₋₆alkyl, C₁-C₆haloalkyl, C₁-C₁alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁
- 19. (Currently Amended) The compound of claim 9, wherein

n is 0 or 1;

p is 0;

R₁ is sec-butyl or isopropyl;

R2 and R4 is H;

R₆ is hydroxy; and

the bond between atoms 22 and 23 is a double bond.

20. (Currently Amended) The compound of claim 9, wherein

n is 1:

p is 1 and R₂ together with R₃ is a bond;

R₁ is sec-butyl or isopropyl;

R4, R5 and R6 are H;

the bond between atoms 22 and 23 is a double bond.