Blatt 3 4. Mai 2005

Übungen zur Vorlesung

Mathematik für Biologen 2 Dr. Maria Neuss-Radu

1. Bestimmen Sie die Polardarstellung folgender komplexen Zahlen. Stellen Sie diese Zahlen in der komplexen Ebene dar:

(a)
$$z_1 = 2\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$$
, $z_2 = \sqrt{2}\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$, $z_3 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$

- (b) $z = z_1 z_2 z_3$
- 2. Lösen Sie folgendes Gleichungssystem in \mathbb{C} :

$$\frac{A_1 + A_2}{2} = 0$$

$$\frac{1 + i\sqrt{3}}{2}A_1 + \frac{1 - i\sqrt{3}}{2}A_2 = 1$$

3. Lösen Sie die Gleichung

$$z^3 = -2 + 2i$$

und stellen Sie die Lösungen in der komplexen Ebene dar.

4. Sei $\lambda \in \mathbb{C}$ die Nullstelle eines Polynoms mit reellen Koeffizienten $a_j \in \mathbb{R}, j = 0, \dots, m,$ d.h. λ erfüllt

$$\pi_m(\lambda) = a_0 + a_1 \lambda + \ldots + a_m \lambda^m = 0.$$

Zeigen Sie, dass dann auch $\bar{\lambda}$ Nullstelle ist .

Hinweis: Verwenden Sie folgende Eigenschaft der komplexen Konjugation: $\overline{z\cdot z'}=\bar{z}\cdot\bar{z'}.$

Abgabetermin: Montag, 09. 05. 2005, 16 Uhr, in den Fächern im Flur des Instituts für Angewandte Mathematik, INF 294.