SISTEMA DE ANÁLISIS Y PREDICCIÓN DE CONTAMINACIÓN LUMÍNICA

Trabajo Fin de Grado – 4º Grado de Ingeniería Informática Universidad de Córdoba, EPSC 2021/2022

Trabajo realizado por:

-Antonio Gómez Giménez (i72gogia@uco.es)

Directores:

- -Ezequiel Herruzo Gómez
- -Fco. Ramón Lara Raya

ESCUELA POLITÉCNICA SUPERIOR DE CÓRDOBA Universidad de Córdoba

Agradecimientos

- A **Ezequiel Herruzo**, profesor del Departamento de Ingeniería Electrónica y de Computadores.
- A Fco. Ramón Lara, profesor del Departamento de Ingeniería Eléctrica.
- A Eduardo Ruiz, profesor Asociado del Departamento de Ingeniería Eléctrica.
- A Álvaro David Domínguez, personal de administración y servicios del Departamento de Ingeniería Eléctrica.
- A Rafael Hormigo, compañero de clase.

SISTEMA DE ANÁLISIS Y PREDICCIÓN DE CONTAMINACIÓN LUMÍNICA

<u>Índice:</u>

- ¿Por qué se escoge este proyecto?.
- Objetivos a cumplir.
- Metodología.
 - Elección de características.
 - Adquisición de los datos.
 - Preprocesamiento de los datos y conclusiones sobre la elección de características.
 - Creación del sistema de análisis y predicción de contaminación lumínica
- Conclusión.

SISTEMA DE ANÁLISIS Y PREDICCIÓN DE CONTAMINACIÓN LUMÍNICA

<u>Índice:</u>

- ¿Por qué se escoge este proyecto?.
- Objetivos a cumplir.
- Metodología.
 - Elección de características.
 - Adquisición de los datos.
 - Preprocesamiento de los datos y conclusiones sobre la elección de características.
 - Creación del sistema de análisis y predicción de contaminación lumínica
- Conclusión.

¿Por qué se escoge este proyecto?

- Proteger el medio ambiente.
 - Fauna y flora.
 - Preservar cielo nocturno
- Facilidad para comprobar contaminación lumínica de luminaria instalada.
- Obtención de contaminación lumínica de luminaria sin instalar.
- ¿Problema de la luz intrusiva?

SISTEMA DE ANÁLISIS Y PREDICCIÓN DE CONTAMINACIÓN LUMÍNICA

<u>Índice:</u>

- ¿Por qué se escoge este proyecto?.
- Objetivos a cumplir.
- Metodología.
 - Elección de características.
 - Adquisición de los datos.
 - Preprocesamiento de los datos y conclusiones sobre la elección de características.
 - Creación del sistema de análisis y predicción de contaminación lumínica
- Conclusión.

Objetivos a cumplir.

- OB-01-> Comprensión y establecimiento de parámetros para el análisis de la contaminación lumínica.
- OB-02-> Capacidad de obtención de datos y de desarrollo de una metodología clara para adquisición de los mismos, datos relacionados con la contaminación lumínica (distancias, estructura, luminarias, ...)
- OB-03-> Adecuación de parámetros de contaminación lumínica para el laboratorio, adaptación al trabajo de campo.
- OB-04-> Diseño y adaptación de sistema de adquisición, almacenamiento y formato de los datos captados.
- OB-05-> Análisis de los datos obtenidos y establecimiento de parámetros determinantes para los indicadores de contaminación lumínica.
- OB-06-> Desarrollo de un modelo predictivo de contaminación lumínica basado en tecnologías de aprendizaje automático (siendo este el objetivo más importante). Para este objetivo se pueden encontrar algunos sub-objetivos como:
 - Modularidad.
 - Comparativa de diferentes modelos.
 - Velocidad del sistema
- OB-07-> Validación del modelo de contaminación lumínica.

SISTEMA DE ANÁLISIS Y PREDICCIÓN DE CONTAMINACIÓN LUMÍNICA

<u>Índice:</u>

- ¿Por qué se escoge este proyecto?.
- Objetivos a cumplir.
- Metodología.
 - Elección de características.
 - Adquisición de los datos.
 - Preprocesamiento de los datos y conclusiones sobre la elección de características.
 - Creación del sistema de análisis y predicción de contaminación lumínica
- Conclusión.

Elección de características

Mediciones de la luz:

- Flujo luminoso(lm) -> "esfera de Ulbricht"
- Intensidad luminosa(cl) -> "Goniofotómetro"
- o **Iluminancia**(lm/m²) -> "luxómetro"
- **Luminancia**(cd/m²) -> "luminancímetro"

Elección de características

Parámetros escogidos:

- Tipo de Luminaria
- Altura de la Luminaria (cm)
- Flujo Lumínico de la Luminaria (lm)
- Temperatura Correlada con el Color (K)
- o Iluminancia en el Suelo (lux)
- Espectro de la luz (valor máximo nm)
- o Color del Suelo
- Reflectancia del Suelo
- o Iluminancia encima de la Luminaria (Lux)
- Flujo Lumínico Superior a Luminaria (lm)
- FHSI (%)
- Existencia de otros parámetros no escogidos: IRC, índice espectral G, desgaste del suelo y orientación

Elección de características

• Tipos de E (Respecto al artículo 63 de la ley 7/2007, del 9 de julio, se establecen los siguientes tipo de áreas lumínicas):

CLASIFICACIÓN DE ZONAS	DESCRIPCIÓN
E1	ÁREAS CON ENTORNOS O PAISAJES OSCUROS: Observatorios astronómicos de categoría internacional, parques nacionales, espacios de interés natural, áreas de protección especial (red natura, zonas de protección de aves, etc.), donde las carreteras están sin iluminar.
E2	ÁREAS DE BRILLO O LUMINOSIDAD BAJA: Zonas periurbanas o extrarradios de las ciudades, suelos no urbanizables, áreas rurales y sectores generalmente situados fuera de las áreas residenciales urbanas o industriales, donde las carreteras están iluminadas.
E3	ÁREAS DE BRILLO O LUMINOSIDAD MEDIA: Zonas urbanas residenciales, donde las calzadas (vías de tráfico rodado y aceras) están iluminadas.
E4	ÁREAS DE BRILLO O LUMINOSIDAD ALTA: Centros urbanos, zonas residenciales, sectores comerciales y de ocio, con elevada actividad durante la franja horaria nocturna.

- **E1** <= 1%
- **E2** <= 5%
- **E3** <= 15%
- **E4** <= 25%
- Para alumbrado viario general <= 5%

SISTEMA DE ANÁLISIS Y PREDICCIÓN DE CONTAMINACIÓN LUMÍNICA

<u>Índice:</u>

- ¿Por qué se escoge este proyecto?.
- Objetivos a cumplir.
- Metodología.
 - Elección de características.
 - Adquisición de los datos.
 - Preprocesamiento de los datos y conclusiones sobre la elección de características.
 - Creación del sistema de análisis y predicción de contaminación lumínica
- Conclusión.

 Creación de estructura para adquisición de los datos.

- Tipo de Luminaria
- Altura de la Luminaria (cm)
- Flujo Lumínico de la Luminaria (lm)
- Temperatura Correlada con el Color (K)
- Iluminancia en el Suelo (lux)
- Espectro de la luz (valor máximo nm)
- Color del Suelo
- Reflectancia del Suelo
- Iluminancia encima de la Luminaria (Lux)

- Tipo de Luminaria
- Altura de la Luminaria (cm)
- Flujo Lumínico de la Luminaria (lm)
- Temperatura Correlada con el Color (K)
- Iluminancia en el Suelo (lux)
- Espectro de la luz (valor máximo nm)
- Color del Suelo
- Reflectancia del Suelo
- Iluminancia encima de la Luminaria (Lux)

• Tipo de Luminaria.

- Philips Quijote BRP400 LED54-4s/740dm50
- o Philips ClearWay BGP303 LED35-4S/740
- Philips CoreLine tempo medium BVP125 LED 67-4S/830
- Philips Iridium Gen3 Mini BGP381 GRN45/740
- Hispaled Vera Series VRS60W R4S PF 3000K
- Philips EW BLAST POWERCORE CK Intelligent series
- Philips RetroFit BGS981(Experimental)
- Philips Coreline Malaga LED BRP102 LED55/740 II DM

Ejemplo con Philips Quijote BRP400 LED54-4s/740dm50

"ServiceTag"

- Tipo de Luminaria
- Altura de la Luminaria (cm)
- Flujo Lumínico de la Luminaria (lm)
- Temperatura Correlada con el Color (K)
- Iluminancia en el Suelo (lux)
- Espectro de la luz (valor máximo nm)
- Color del Suelo
- Reflectancia del Suelo
- Iluminancia encima de la Luminaria (Lux)

- Tipo de Luminaria
- Altura de la Luminaria (cm)
- Flujo Lumínico de la Luminaria (lm)
- Temperatura Correlada con el Color (K)
- Iluminancia en el Suelo (lux)
- Espectro de la luz (valor máximo nm)
- Color del Suelo
- Reflectancia del Suelo
- Iluminancia encima de la Luminaria (Lux)

- Tipo de Luminaria
- Altura de la Luminaria (cm)
- Flujo Lumínico de la Luminaria (lm)
- Temperatura Correlada con el Color (K)
- Iluminancia en el Suelo (lux)
- Espectro de la luz (valor máximo nm)
- Color del Suelo
- Reflectancia del Suelo
- Iluminancia encima de la Luminaria (Lux)

- Temperatura correlada del color. Se mide en K. Se obtiene con espectrógrafo uprtek premium.
 - Puede medir el espectro y ciertos parámetros básicos. TCC, lluminancia, etc.

- Tipo de Luminaria
- Altura de la Luminaria (cm)
- Flujo Lumínico de la Luminaria (lm)
- Temperatura Correlada con el Color (K)
- Iluminancia en el Suelo (lux)
- Espectro de la luz (valor máximo nm)
- Color del Suelo
- Reflectancia del Suelo
- Iluminancia encima de la Luminaria (Lux)

- Tipo de Luminaria
- Altura de la Luminaria (cm)
- Flujo Lumínico de la Luminaria (lm)
- Temperatura Correlada con el Color (K)
- Iluminancia en el Suelo (lux)
- Espectro de la luz (valor máximo nm)
- Color del Suelo
- Reflectancia del Suelo
- Iluminancia encima de la Luminaria (Lux)

- Tipo de Luminaria
- Altura de la Luminaria (cm)
- Flujo Lumínico de la Luminaria (lm)
- Temperatura Correlada con el Color (K)
- Iluminancia en el Suelo (lux)
- Espectro de la luz (valor máximo nm)
- Color del Suelo
- Reflectancia del Suelo
- Iluminancia encima de la Luminaria (Lux)

Color del suelo.

- Negro
- o Gris Oscuro
- o Gris Claro
- o Blanco
- Morado
- o Rojo
- Verde Claro
- Verde
- Verde Oscuro
- Marrón Claro
- Marrón Oscuro

- Tipo de Luminaria
- Altura de la Luminaria (cm)
- Flujo Lumínico de la Luminaria (lm)
- Temperatura Correlada con el Color (K)
- Iluminancia en el Suelo (lux)
- Espectro de la luz (valor máximo nm)
- Color del Suelo
- Reflectancia del Suelo
- Iluminancia encima de la Luminaria (Lux)

 Reflectancia del Suelo. Tabla proporcionada por Ramón Lara para adquirir este dato a partir de temperatura correlada del color (TCC) y el color.

- Tipo de Luminaria
- Altura de la Luminaria (cm)
- Flujo Lumínico de la Luminaria (lm)
- Temperatura Correlada con el Color (K)
- Iluminancia en el Suelo (lux)
- Espectro de la luz (valor máximo nm)
- Color del Suelo
- Reflectancia del Suelo
- Iluminancia encima de la Luminaria (Lux)

También se obtuvieron **Flujo Lumínico Superior a Luminaria y FHSi**, siguiendo las siguientes ecuaciones dadas por Eduardo Ruiz Vela, especialista en el campo:

Iluminancia = Flujo Luminoso / Área

Iluminancia Suelo = Flujo Total / Punto Iluminancia Superior = Flujo Superior / Punto

Iluminancia Suelo = Flujo Total / Punto
Iluminancia Superior = Flujo Superior / Punto

Suponiendo que nos basamos en un punto:

Flujo Total / Iluminancia Suelo = Flujo Superior / Iluminancia Superior

Despejando el Flujo superior entonces:

Flujo Superior = Flujo Total * (Iluminancia Superior / Iluminancia Suelo)

Sacando el porcentaje de contaminación lumínica:

X = (Flujo Superior / Flujo Total) * 100

SISTEMA DE ANÁLISIS Y PREDICCIÓN DE CONTAMINACIÓN LUMÍNICA

<u>Índice:</u>

- ¿Por qué se escoge este proyecto?.
- Objetivos a cumplir.
- Metodología.
 - Elección de características.
 - Adquisición de los datos.
 - Preprocesamiento de los datos y conclusiones sobre la elección de características.
 - o Creación del sistema de análisis y predicción de contaminación lumínica
- Conclusión.

Preprocesamiento de los datos y conclusiones sobre la elección de características.

- Se almacenaron 330 patrones, 11 por cada luminaria, en un calc.
- Procesamiento del fichero a csv (para subida a bd y posterior utilización).
- Realizar preprocesamiento (onehotenconder, normalización y estandarización).
- Resultados obtenidos:

Preprocesamiento de los datos y conclusiones sobre la elección de características.

Histograma sin procesado

Preprocesamiento de los datos y conclusiones sobre la elección de características.

Histograma con normalización

Preprocesamiento de los datos y conclusiones sobre la elección de características.

Histograma con estandarización

Preprocesamiento de los datos y conclusiones sobre la elección de características.

SISTEMA DE ANÁLISIS Y PREDICCIÓN DE CONTAMINACIÓN LUMÍNICA

<u>Índice:</u>

- ¿Por qué se escoge este proyecto?.
- Objetivos a cumplir.
- Metodología.
 - Elección de características.
 - Adquisición de los datos.
 - Preprocesamiento de los datos y conclusiones sobre la elección de características.
 - Creación del sistema de análisis y predicción de contaminación lumínica.
- Conclusión.

- Tipos de aprendizaje automático:
 - Aprendizaje no supervisado -> agrupamiento o clustering.
 - Aprendizaje supervisado -> Problemas de clasificación y regresión.

- Modelos elegidos:
 - SVR.
 - Árbol de decisión.
 - RandomForest.
 - Regresión Lineal y SDGRegressor.

- Tipos de errores escogidos:
 - MSE (error cuadrático medio) -> error acumulado.
 - MAE (error absoluto medio) -> error medio individual.

- Simulación de uso y resultados obtenidos:
 - docker-compose up
 - Insertar Patrones:
 - http://localhost:8000/insertarPatrones/ ?base_de_datos=db&archivo_datos= DatosLuminaria.csv
 - Entrenamiento:
 - http://localhost:8000/entrenar/?base_d e_datos=db&crear_nuevo_fichero_ent renamiento=True
 - Predicción:
 - http://localhost:8000/predecir/?ColorSuelo=roj o&AlturaLuminaria=160&FlujoLuminicoTotal= 3000&TCC=4000&IluminanciaAbajo=1600&E spectro=432&ReflectanciaSuelo=46&Iluminan ciaSuperior=0

```
docker-
   datos
                        prediccion
                                     miento
                                                naria.ods
                                                            compose.
                        contamin...
                                                             vaml
      antoniogg@antoniogg-SATELLITE-L50D-C: ~/Escritorio/cosas TFG/P...
                                              2022-08-10T09:09:04.585402Z 1 [System]
[MY-013576] [InnoDB] InnoDB initialization has started.
                                              2022-08-10T09:09:06.576572Z 1 [System]
[MY-013577] [InnoDB] InnoDB initialization has ended.
                                              2022-08-10T09:09:09.451859Z 0 [Warning]
 [MY-010068] [Server] CA certificate ca.pem is self signed.
                                              2022-08-10T09:09:09.451980Z 0 [System]
[MY-013602] [Server] Channel mysql_main configured to support TLS. Encrypted connecti
ons are now supported for this channel.
                                             2022-08-10T09:09:09.582191Z 0 [Warning]
[MY-011810] [Server] Insecure configuration for --pid-file: Location '/var/run/mysql
d' in the path is accessible to all OS users. Consider choosing a different directory
                                             2022-08-10T09:09:09.642737Z 0 [System]
[MY-011323] [Server] X Plugin ready for connections. Bind-address: '::' port: 33060,
socket: /var/run/mysgld/mysglx.sock
                                              2022-08-10T09:09:09.642883Z 0 [System]
[MY-010931] [Server] /usr/sbin/mysqld: ready for connections. Version: '8.0.29' sock
et: '/var/run/mysqld/mysqld.sock' port: 3306 MySQL Community Server - GPL.
                                                         Started server process [9]
                                                        Waiting for application start
                                                        Application startup complete.
```

Ejemplo de uso en el navegador

Archivos generados tras el entrenamiento.

Resultados del modelo SVR

```
26 MSE & MAE Final con C=100.000000 y G=0.100000:
                                                         0.002618 0.042008
27 MSE & MAE Final con C=100.000000 v G=1.000000:
                                                         0.007757 0.080983
28 MSE & MAE Final con C=100.000000 y G=10.000000:
                                                         0.011394 0.097489
29 MSE & MAE Final con C=100.000000 y G=100.000000:
                                                         0.012363 0.100461
30 MSE & MAE Final con C=100.000000 v G=1000.000000:
                                                         0.012411 0.100855
31 MSE & MAE Final con C=1000.000000 y G=0.010000:
                                                         0.002769 0.042618
32 MSE & MAE Final con C=1000.000000 y G=0.100000:
                                                         0.002618 0.042008
33 MSE & MAE Final con C=1000.000000 v G=1.000000:
                                                         0.007757 0.080983
34 MSE & MAE Final con C=1000.000000 v G=10.000000:
                                                         0.011394 0.097489
35 MSE & MAE Final con C=1000.000000 y G=100.000000:
                                                         0.012363 0.100461
36 MSE & MAE Final con C=1000.000000 y G=1000.000000:
                                                         0.012411 0.100855
37 Los mejores parametros son C:10.0 y Gamma:0.1 con un MSE de 0.0025800255120222394 y un MAE de 0.041812274462622275
```

Resultados generales obtenidos en una prueba.

SVR	Árbol de decisión	Random Forest	Regresión Lineal	SDGRegresor
0.0025	0.0075	0.0091	0.007	0.0053

Mejor modelo **SVR** y pero **RandomForest**.

Ejemplo cliente:

Color del suelo->negro
Altura de la luminaria->80.0
Flujo luminoso total->3500
Temperatura correlada del color->4144
Iluminancia abajo->1473
Espectro->442
Reflectancia->4

El patrón original con esta combinación de parámetros es 35.56

Resultado del programa ejemploCliente:

```
La IluminanciaSuperior es : 37.008

La FlujoSuperior es: 87.935

La contaminación Lumincia es: 2.512 %

Como la contaminacion lumincia es superior al 1%, dicha luminaria solo podria us arse en el tipo de areas luminicas E4, E3 y E2

antoniogg@antoniogg-SATELLITE-L50D-C:~/Escritorio/cosas TFG/ProyectoTFG/SISTEMA_

DE_ANALISIS_Y_PREDICCION_DE_CONTAMINACION_LUMÍNICA/cliente$
```

- Validación del modelo:
 - Creación de programa que genera gráficas.
 - Se extraen datos de csv.
 - Se entrena sin esos datos
 - Se comparan resultados con datos reales.
 - Se generan gráficas para apreciar los resultados.

Gráfica comparativa entre la iluminancia superior predicha y la real

Gráfica comparativa entre la contaminación lumínica superior predicha y la real

SISTEMA DE ANÁLISIS Y PREDICCIÓN DE CONTAMINACIÓN LUMÍNICA

<u>Índice:</u>

- ¿Por qué se escoge este proyecto?.
- Objetivos a cumplir.
- Metodología.
 - Elección de características.
 - Adquisición de los datos.
 - Preprocesamiento de los datos y conclusiones sobre la elección de características.
 - Creación del sistema de análisis y predicción de contaminación lumínica.
- Conclusión.

Conclusión

- ¿Se han conseguido los objetivos?
- Conclusión general y futuras mejoras.
- Objetivos personales.

Conclusión

- ¿Se han conseguido los objetivos?
- Conclusión general y futuras mejoras.
- Objetivos personales.

Objetivos a cumplir.

- OB-01-> Comprensión y establecimiento de parámetros para el análisis de la contaminación lumínica.
- OB-02-> Capacidad de obtención de datos y de desarrollo de una metodología clara para adquisición de los mismos, datos relacionados con la contaminación lumínica (distancias, estructura, luminarias, ...)
- OB-03-> Adecuación de parámetros de contaminación lumínica para el laboratorio, adaptación al trabajo de campo.
- OB-04-> Diseño y adaptación de sistema de adquisición, almacenamiento y formato de los datos captados.
- OB-05-> Análisis de los datos obtenidos y establecimiento de parámetros determinantes para los indicadores de contaminación lumínica.
- OB-06-> Desarrollo de un modelo predictivo de contaminación lumínica basado en tecnologías de aprendizaje automático (siendo este el objetivo más importante). Para este objetivo se pueden encontrar algunos sub-objetivos como:
 - Modularidad.
 - Comparativa de diferentes modelos.
 - Velocidad del sistema
- OB-07-> Validación del modelo de contaminación lumínica.

Conclusión

- ¿Se han conseguido los objetivos?
- Conclusión general y futuras mejoras.
- Objetivos personales.

Conclusión

- ¿Se han conseguido los objetivos?
- Conclusión general y futuras mejoras.
- Objetivos personales.

Bibliografía:

- **1.**ASPECTOS VIGENTES EN MATERIA DE PRESERVACIÓN DEL CIELO NOCTURNO EN ANDALUCÍA, TRAS LA ANULACIÓN DEL DECRETO. (n.d.). Junta de Andalucia. Retrieved July 23, 2022, from <a href="https://www.juntadeandalucia.es/medioambiente/portal/documents/20151/812350/Normativa_cl_aspectos_vigentes.pdf/b3fcab3d-aa70-26da-5ed0-f3f143d14304?t=1516885052000
- **2.**BOE-A-2008-18634 Real Decreto 1890/2008, de 14 de noviembre, por el que se aprueba el Reglamento de eficiencia energética en instalaciones de alumbrado exterior y sus Instrucciones técnicas complementarias EA-01 a EA-07. (2021, November 14). BOE.es. Retrieved July 2, 2022, from https://www.boe.es/diario boe/txt.php?id=BOE-A-2008-18634
- **3.**Bishop, C. M., & Bishop, P. o. N. C. C. M. (2007). Pattern Recognition and Machine Learning (Springer Science+Business Media, Ed.). Springer.
- **4.**Contaminación lumínica Stars4All. (2015). Stars4All. Retrieved July 2, 2022, from https://stars4all.eu/light-pollution-2/?lang=es
- 5.Docker. (n.d.). Docker: Home. Retrieved July 9, 2022, from https://www.docker.com/
- **6.**Guía técnica de adaptación de las instalaciones de alumbrado exterior al decreto 375/2010 de 3 de agosto. (2013, November 15). YouTube. Retrieved July 9, 2022, from https://www.famp.es/export/sites/famp/.galleries/documentos-lab-eficiencia-energetica-guias/GUIA-11.pdf
- **7.**scikit. (n.d.). scikit-learn: machine learning in Python scikit-learn 1.1.1 documentation. Retrieved July 9, 2022, from https://scikit-learn.org/stable/

¡Muchas gracias por su atención!