Math 6000 HW 7

Due Friday, March 20

Submissions will also be accepted Monday, April 2 (after spring break).

Exercises: (7.1.1), 7.2.1, 7.3.2, 7.4.1, 7.4.2, 7.5.1, 7.5.2, 7.5.3

To pass this assignment, submit well-written, complete, correct solutions to at least **four** exercises from among the non-parenthesized numbers above.

- (7.1.1) Verify that the positive diagram of a structure is logically equivalent to a subset of all its *unnested* atomic formulas.
- **7.2.1.** Define recursively a rank function r from a finite partial ordering $\mathcal{A}=(A,\prec)$ to \mathbb{N} by setting r(a)=0 for every \prec -minimal element a in A, and setting r(b)=1 for every \prec -minimal element b in $A\setminus\{a\in A: r(a)=0\}$, and so forth.

Use this to extend \prec to a linear order on A.

- **7.3.2.** Find the four isomorphism types of countable dense linear orderings (and justify your answer).
- **7.4.1.** Given orderings \mathcal{X} and \mathcal{Y} , one defines their $\mathbf{sum} \ \mathcal{X} + \mathcal{Y}$, to be **disjoint union** of X and Y equipped with the order extending the orders of \mathcal{X} and \mathcal{Y} defined by x < y for all $x \in X$ and $y \in Y$.

Prove that the sum of two well-orderings again is a well-ordering.

- **7.4.2.** Show that the class of well-orderings is not axiomatizable (as a class of $L_<$ -structures).
- **7.5.1.** Given ordinals α and β , their sum $\alpha + \beta$ is defined to be the uniquely determined ordinal which is isomorphic (as an ordering) to the sum of the ordering α and β (in the sense of Exercise 7.4.1).
- (a) Show that the addition on ω coincides with the usual addition of natural numbers.
- (b) Prove that the successor of α is the sum of α and 1 (this justifying the notation $\alpha+1$ for the successor of α).

- (c) Verify $1+\alpha=\alpha$ for all infinite $\alpha\in \mathbf{On}$ (and that addition of ordinals is not commutative).
- **7.5.2.** Let X be a subset of **On**. Prove that $\bigcup X$ is the supremum of X in $(\mathbf{On}, <)$.
- **7.5.3.** Show that the complete $L_{<}$ -theory of any infinite ordinal number has a non-well-founded model, i.e., a model that is not well-ordered.