1

Matrix theory - Assignment 14

Shreeprasad Bhat AI20MTECH14011

 ${\it Abstract} {\small -} \textbf{This document proves properties on double dual}$

Download latex-tikz from

https://github.com/shreeprasadbhat/matrix-theory/blob/master/assignment14/

1 Problem

Let S be a set, F a field, and V(S; F) the space of all functions from S into F:

$$(f+g)(x) = f(x) + g(x)$$
$$(cf)(x) = cf(x)$$

Let W be any n-dimensional subspace of V(S, F). Show that there exist points x_1, x_2, \ldots, x_n in S and functions f_1, \ldots, f_n in W such that $f_i(x_i) = \delta_{ij}$

2 SOLUTION

Given
$$S$$
 is a set F is a field $V(S,F)$ is a linear functional such that W be n -dim subspace of $V(S,F)$.

Also, $\delta_{ij} = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$

To prove $f_i(x_j) = \delta_{ij}$ where $x_1, x_2, \dots, x_n \in S$ and $f_1, f_2, \dots, f_n \in W$

Proof

Let
$$\phi_x : W \to F$$

Suppose $\phi_x(f) = 0 \ \forall x \in S \ \& \ f \in W$
 $\implies f(x) = 0$

If $\forall x, \ \phi_x(f) \neq 0$ for some $f \in W$

If $n > 0 \ \exists \in S$ such that

 $\phi_x(f) \neq 0$ for some $f \in W$
 $\implies f_1(x_1) \neq 0$

By scaling we can have

 $f_1(x_1) = 1$

Hence $f_i(x_j) = \delta_{ij}$

3 Figure

Consider $x_1 = 1, x_2 = 0$, where $\{x_1, x_2\} \in S$. Let $f_1(x) = x, f_2(x) = 1 - x$ where $\{f_1, f_2\} \in W$.

Fig. 0: Pictorial representation of functions and points in vector space