import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns In [2]: df= pd.read_csv("C:/Users/doppa/Downloads/insurance.csv") df.head() Out[2]: age sex bmi children smoker region charges	
0 19 female 27.900 0 yes southwest 16884.92400 1 18 male 33.770 1 no southeast 1725.55230 2 28 male 33.000 3 no southeast 4449.46200 3 33 male 22.705 0 no northwest 21984.47061 4 32 male 28.880 0 no northwest 3866.85520 In [3]: 0ff. shape (1338, 7)	
Out[3]: (1338, 7) In [4]: df.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 1338 entries, 0 to 1337 Data columns (total 7 columns): # Column Non-Null Count Dtype</class>	
3 children 1338 non-null int64 4 smoker 1338 non-null object 5 region 1338 non-null object 6 charges 1338 non-null float64 dtypes: float64(2), int64(2), object(3) memory usage: 73.3+ KB In [5]: df.isnull() Out[5]: age sex bmi children smoker region charges O False False False False False False False False	
1FalseFalseFalseFalseFalseFalseFalse2FalseFalseFalseFalseFalseFalse3FalseFalseFalseFalseFalseFalse4FalseFalseFalseFalseFalseFalse1333FalseFalseFalseFalseFalseFalseFalse1334FalseFalseFalseFalseFalseFalseFalse	
1335 False 1336 False False False False False False False False 1337 False False False False False False False 1338 rows × 7 columns In [6]: df.duplicated()	
Out[6]: 0 False 1 False 2 False 3 False 4 False 1333 False 1334 False 1335 False 1336 False 1337 False 1337 False Length: 1338, dtype: bool	
Data Preprocessing split the data In [7]: y = df.pop("charges") x = df	
<pre>In [8]: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y,</pre>	
Separate Numerical and Categorical Features¶ In [9]: X_train_cat = X_train.select_dtypes(include=['object']) X_train_num = X_train.select_dtypes(include=['int64', 'float64']) In [10]: # Rescaling numerical features from sklearn.preprocessing import StandardScaler	
<pre>scaler = StandardScaler() # column names are (annoyingly) lost after Scaling # (i.e. the dataframe is converted to a numpy ndarray) X_train_num_transformed = pd.DataFrame(scaler.fit_transform(X_train_num),</pre>	
1075 -0.514853 -0.181331 -0.063607 131 1.548746 -1.393130 -0.892144 15 -1.439915 -0.982242 -0.063607 1223 -1.368757 -1.011133 -0.892144 1137 -0.941805 -1.362635 -0.892144	
<pre>n [11]: X_test_cat = X_test.select_dtypes(include=['object']) X_test_num = X_test.select_dtypes(include=['int64', 'float64']) n [12]: X_test_num_transformed = pd.DataFrame(scaler.transform(X_test_num),</pre>	
578 0.908319 -0.083424 -0.063607 610 0.552526 -0.216642 -0.063607 569 0.623684 1.580192 0.764931 1034 1.548746 1.229492 -0.892144 198 0.837160 -2.033538 -0.892144 Feature Engineering: Applying One-Hot Encoding on Categorical Features	
from sklearn.preprocessing import OneHotEncoder encoder_ = OneHotEncoder(sparse_output=False) X_train_cat_tansformed = pd.DataFrame(encoderfit_transform(X_train_cat),	
X_train_cat_tansformed.head() Shape of Data before Transformation: (1003, 3) Shape of Data after Transformation: (1003, 8) ut[13]:	
123	
X_test_cat_tansformed = pd.DataFrame(encodertransform(X_test_cat), columns=encoderget_feature_names_out(), index=X_test_cat.index) X_test_cat_tansformed.head()	
1034	
131 1.548746 -1.393130 -0.892144 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
The content of the	
198 0.837160 -2.033538 -0.892144 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0	
from sklearn.neighbors import KNeighborsRegressor regressor = KNeighborsRegressor() regressor.fit(X_train_transformed, y_train) v KNeighborsRegressor KNeighborsRegressor() x KNeighborsRegressor() x y_test_pred = regressor.predict(X_test_transformed)	
from sklearn import metrics metrics.r2_score(y_test, y_test_pred) 0.8067310484954536 n [21]: output_df = pd.DataFrame({'Actual': y_test.values.flatten()}, index=X_test.index) n [22]: output_df['KNN Regression Predictions'] = y_test_pred output_df	
Actual KNN Regression Predictions 578 9724.53000 8433.604400 610 8547.69130 7948.160220 569 45702.02235 40597.527604 1034 12950.07120 11324.034480 198 9644.25250 11441.757950	
574 13224.05705 16827.301782 1174 4433.91590 10148.848410 1327 9377.90470 13396.970186 817 3597.59600 5580.541200 1337 29141.36030 30285.366580 335 rows × 2 columns	
fig, ax = plt.subplots(figsize=(8,3)) sns.histplot(output_df['Actual'], color='blue', alpha=0.5, label="actual") sns.histplot(output_df['KNN Regression Predictions'], color='red', alpha=0.5, label="prediction") plt.legend() vmatplotlib.legend.Legend at 0x16877b58d00> 70 - actual prediction	
70 -	
Decision Tree [24]: from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor() regressor.fit(X_train_transformed, y_train)	
regressor.fit(X_train_transformed, y_train) ut[24]:	
The standard of the standard	
569 45702.02235 40597.527604 44202.6536 1034 12950.07120 11324.034480 13429.0354 198 9644.25250 11441.757950 9855.1314 574 13224.05705 16827.301782 13430.2650 1174 4433.91590 10148.848410 4922.9159 1327 9377.90470 13396.970186 9872.7010	
817 3597.59600 5580.541200 3443.0640 1337 29141.36030 30285.366580 29523.1656 335 rows × 3 columns fig, ax = plt.subplots(figsize=(8,3)) sns.histplot(output_df['Actual'], color='blue', alpha=0.5, label="actual") sns.histplot(output_df['DT Regression Predictions'], color='red', alpha=0.5, label="prediction")	
plt.legend() ut[28]: <matplotlib.legend.legend 0x16879cb9990="" at=""> actual prediction</matplotlib.legend.legend>	
20 40 10000 20000 30000 40000 50000 60000 Actual	
Linear Regression [29]: from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train_transformed, y_train) [29]: v LinearRegression LinearRegression()	
<pre>m [30]: y_test_pred = regressor.predict(X_test_transformed) m [31]: from sklearn import metrics metrics.r2_score(y_test, y_test_pred) ut[31]: 0.7958786376014413 m [32]: output_df['Linear Regression Predictions'] = y_test_pred</pre>	
output_df ut[32]: Actual KNN Regression Predictions DT Regression Predictions Linear Regression Predictions 578 9724.53000 8433.604400 10085.8460 11121.101409 610 8547.69130 7948.160220 8233.0975 9369.083452 569 45702.02235 40597.527604 44202.6536 38349.258807 1034 12950.07120 11324.034480 13429.0354 16331.935006	
198 9644.25250 11441.757950 9855.1314 7041.227706 574 13224.05705 16827.301782 13430.2650 15034.106647 1174 4433.91590 10148.848410 4922.9159 7121.723799 1327 9377.90470 13396.970186 9872.7010 10602.930893 817 3597.59600 5580.541200 3443.0640 7050.864796 1337 29141.36030 30285.366580 29523.1656 36872.299727	
335 rows × 4 columns fig, ax = plt.subplots(figsize=(8,3)) sns.histplot(output_df['Actual'], color='blue', alpha=0.5, label="actual") sns.histplot(output_df['Linear Regression Predictions'], color='red', alpha=0.5, label="prediction") plt.legend() watplotlib.legend.Legend at 0x16879d8f820>	
70 - 60 - 50 - 90 - 90 - 90 - 90 - 90 - 90 - 9	
Random Forest	
<pre>from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor() regressor.fit(X_train_transformed, y_train) ut[34]:</pre>	
from sklearn import metrics metrics.r2_score(y_test, y_test_pred) ut[36]: 0.8733772998555664 n [37]: output_df['RF Regression Predictions'] = y_test_pred output_df Actual KNN Regression Predictions DT Regression Predictions RF Regression Predictions	
578 9724.53000 8433.604400 10085.8460 11121.101409 10748.164891 610 8547.69130 7948.160220 8233.0975 9369.083452 9223.268982 569 45702.02235 40597.527604 44202.6536 38349.258807 45554.203310 1034 12950.07120 11324.034480 13429.0354 16331.935006 13044.096473 198 9644.25250 11441.757950 9855.1314 7041.227706 9430.215642 574 13224.05705 16827.301782 13430.2650 15034.106647 17198.019827	
1174 4433.91590 10148.848410 4922.9159 7121.723799 11746.910435 1327 9377.90470 13396.970186 9872.7010 10602.930893 10316.203067 817 3597.59600 5580.541200 3443.0640 7050.864796 4464.031106 1337 29141.36030 30285.366580 29523.1656 36872.299727 28823.706828 335 rows × 5 columns 138]: fig, ax = plt.subplots(figsize=(8,3))	
sns.histplot(output_df['Actual'], color='blue', alpha=0.5, label="actual") sns.histplot(output_df['RF Regression Predictions'], color='red', alpha=0.5, label="prediction") plt.legend() wt[38]: *matplotlib.legend.Legend at 0x1687bee6c50>	
60 - 50 - 40 - 30 - 20 - 10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	
Hyperparameter tuning from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import r2_score	
<pre>train_scores, test_scores = list(), list() values = [i for i in range(1, 21)] for i in values: model = KNeighborsRegressor(n_neighbors=i) model.fit(X_train_num_transformed, y_train) y_train_pred = model.predict(X_train_num_transformed) train_score = r2_score(y_train, y_train_pred) train_scores.append(train_score)</pre>	
<pre>y_test_pred = model.predict(X_test_num_transformed) test_score = r2_score(y_test, y_test_pred) test_scores.append(test_score) print('> %d, train: %.3f, test: %.3f' % (i, train_score, test_score)) > 1, train: 0.984, test: -0.892 > 2, train: 0.545, test: -0.399 > 3, train: 0.390, test: -0.225 > 4, train: 0.327, test: -0.079 > 5, train: 0.260, test: -0.056</pre>	
<pre>> 5, train: 0.260, test: -0.056 > 6, train: 0.224, test: 0.006 > 7, train: 0.211, test: 0.030 > 8, train: 0.207, test: 0.045 > 9, train: 0.195, test: 0.040 > 10, train: 0.187, test: 0.024 > 11, train: 0.186, test: 0.041 > 12, train: 0.181, test: 0.057 > 13, train: 0.173, test: 0.059 > 14, train: 0.169, test: 0.068 > 15, train: 0.165, test: 0.068 > 16, train: 0.162, test: 0.069 > 17, train: 0.160, test: 0.069</pre>	
> 17, train: 0.160, test: 0.069 > 18, train: 0.155, test: 0.084 > 19, train: 0.153, test: 0.093 > 20, train: 0.150, test: 0.095 # plot of train and test scores vs tree depth plt.plot(values, train_scores, '-o', label='Train') plt.plot(values, test_scores, '-o', label='Test') plt.legend() plt.show()	
1.00 Train Test 0.50 - 0.25 - 0.00 -	
0.00 - -0.25 - -0.50 - -0.75 - 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0	
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 If from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import r2_score train_scores, test_scores = list(), list() values = [i for i in range(1, 21)] for i in values: model = DecisionTreeRegressor(max_depth=i)	
<pre>model = DecisionTreeRegressor(max_depth=i) model.fit(X_train_num_transformed, y_train) y_train_pred = model.predict(X_train_num_transformed) train_score = r2_score(y_train, y_train_pred) train_scores.append(train_score) y_test_pred = model.predict(X_test_num_transformed) test_score = r2_score(y_test, y_test_pred) test_scores.append(test_score)</pre>	
<pre>print('> %d, train: %.3f, test: %.3f' % (i, train_score, test_score)) > 1, train: 0.067, test: 0.104 > 2, train: 0.103, test: 0.126 > 3, train: 0.135, test: 0.104 > 4, train: 0.159, test: 0.092 > 5, train: 0.183, test: 0.074 > 6, train: 0.231, test: 0.013 > 7, train: 0.304, test: -0.018 > 8, train: 0.377, test: -0.129 > 9, train: 0.476, test: -0.235 > 10, train: 0.585, test: -0.369 > 11, train: 0.682, test: -0.414</pre>	
<pre>> 10, train: 0.585, test: -0.369 > 11, train: 0.683, test: -0.414 > 12, train: 0.772, test: -0.614 > 13, train: 0.834, test: -0.670 > 14, train: 0.892, test: -0.756 > 15, train: 0.922, test: -0.742 > 16, train: 0.942, test: -0.788 > 17, train: 0.957, test: -0.788 > 18, train: 0.968, test: -0.758 > 19, train: 0.977, test: -0.805 > 20, train: 0.985, test: -0.802</pre>	
form	
0.50 - 0.25 - 0.000.25 -	
-0.50 - -0.75 - 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0	
Cross Validation GridSearchCV 1 [54]: from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.metrics import classification_report 1 [55]: from sklearn.neighbors import KNeighborsRegressor	
<pre>Trom sklearH.neighbors import kneighborskegressor n [60]: tuned_parameters = [{'n_neighbors':[i for i in range(1, 51)], 'p':[1, 2, 3]}] clf = GridSearchCV(estimator=KNeighborsRegressor(), param_grid=tuned_parameters, scoring='r2', cv=5, return_train_score=True, verbose=1) clf.fit(X_train_num_transformed, y_train)</pre>	
Fitting 5 folds for each of 150 candidates, totalling 750 fits GridSearchCV estimator: KNeighborsRegressor KNeighborsRegressor print("Best parameters set found on train set") print(clf.best_params_)	
<pre>print(clf.best_params_) print(clf.best_estimator_) print() print('Score on Test Data: ', clf.score(X_test_num_transformed, y_test)) Best parameters set found on train set {'n_neighbors': 50, 'p': 2} KNeighborsRegressor(n_neighbors=50) Score on Test Data: 0.14436959367079105</pre>	
Cv_results = pd.DataFrame(clf.cv_results_)	plit0_
2 0.013647 0.013596 0.015932 0.024303 1 3 {'n_neighbors': 1, 'p': 3} -0.846500 -1.030832 -0.9008230.869234 0.126456 150 3 0.008203 0.012127 0.000220 0.000441 2 1 {'n_neighbors': 2, 'p': 1} -0.400038 -0.550681 -0.5068320.454379 0.063415 147 4 0.009072 0.007429 0.009742 0.007982 2 2 {'n_neighbors': 2, 'p': 2} -0.361025 -0.508534 -0.3802750.385539 0.067276 145 5 rows × 22 columns	
plt.plot(cv_results['param_n_neighbors'], cv_results['mean_train_score']) plt.plot(cv_results['param_n_neighbors'], cv_results['mean_test_score']) plt.xlabel('n_neighbors') plt.ylabel('Accuracy') plt.legend(['train accuracy', 'test accuracy'], loc='upper right') wut[65]: 1.00	
0.75 - 0.50 - 0.25 - 0.00 -	
-0.25	
RandomizedSearchCV n [70]: tuned_parameters = [{'n_neighbors': [i for i in range(1, 51)],	
scoring='r2', cv=5, return_train_score=True, verbose=1) clf.fit(X_train_num_transformed, y_train) Fitting 5 folds for each of 10 candidates, totalling 50 fits ut[70]: RandomizedSearchCV estimator: KNeighborsRegressor	
FKNeighborsRegressor	
Best parameters set found on train set: {'p': 2, 'n_neighbors': 41} KNeighborsRegressor(n_neighbors=41) Score on Test Data: 0.13550313380793444	