Statistical Methods in AI (CS7.403)

Lecture-18: Decision Tree Learning-2

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

Decision Tree nutinos humidity windy play. Sunny het Ngt. Number 1 3164 Nigh - Downstall # DAY 1000 nomali Attribute A overcar 580 Nigh v_3 v_2 coot normal Tolse yes. 1982 yes LT DATES milita normal true yes mas: Ngh: this ++++ in overcast yet + + + +high. mét: true 00 THE THIRD Attribute B u_2 + + + +++ + + ++ + +Ideal attribute aka pure node

How much 'impurity' does this attribute decrease?

Step-1: Compute impurity score of training label distribution

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
07-14	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	по
07-30	mild	rain	high	false	yes

Entropy:
$$i(V) = -(q \log q + (1-q) \log(1-q))$$

$$E(S) = -\left(\frac{9}{14}log(\frac{9}{14}) + \frac{5}{14}log(\frac{5}{14})\right) = 0.94$$

Step-2: Compute impurity score for each unique value of candidate attributes

Example: Attribute Outlook

Entropy:
$$i(V) = -(q \log q + (1-q) \log(1-q))$$

Outlook = rainy 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5}\log\left|\frac{2}{5}\right| - \frac{3}{5}\log\left|\frac{3}{5}\right| = 0.971$$

Step-2: Compute impurity score for each unique value of candidate attributes

Example: Attribute Outlook

Entropy:
$$i(V) = -(q \log q + (1-q) \log(1-q))$$

Outlook = rainy 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5} \log \left| \frac{2}{5} \right| - \frac{3}{5} \log \left| \frac{3}{5} \right| = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Note: this is normally undefined. Here: = 0

Step-2: Compute impurity score for each unique value of candidate attributes

Example: Attribute Outlook

Entropy:
$$i(V) = -(q \log q + (1-q) \log(1-q))$$

Outlook = rainy
 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5} \log \left| \frac{2}{5} \right| - \frac{3}{5} \log \left| \frac{3}{5} \right| = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Outlook = sunny 2 examples yes, 3 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5} \log \left(\frac{3}{5} \right) - \frac{2}{5} \log \left(\frac{2}{5} \right) = 0.971$$

Step-3: Compute impurity score for candidate attribute

Note: this

is normally

undefined

Here: = 0

Outlook = rainy 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5} \log \left(\frac{2}{5} \right) - \frac{3}{5} \log \left(\frac{3}{5} \right) = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Outlook = sunny 2 examples yes, 3 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5} \log \left(\frac{3}{5} \right) - \frac{2}{5} \log \left(\frac{2}{5} \right) = 0.971$$

- Entropy only computes the quality of a single (sub-)set of examples
 - corresponds to a single value
- How can we compute the quality of the entire split?
 - corresponds to an entire attribute

Step-3: Compute impurity score for candidate attribute

Note: this

is normally

undefined

Here: = 0

Outlook = rainy 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5} \log \left(\frac{2}{5} \right) - \frac{3}{5} \log \left(\frac{3}{5} \right) = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Outlook = sunny 2 examples yes, 3 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5} \log \left(\frac{3}{5} \right) - \frac{2}{5} \log \left(\frac{2}{5} \right) = 0.971$$

- Entropy only computes the quality of a single (sub-)set of examples
 - corresponds to a single value
- How can we compute the quality of the entire split?
 - · corresponds to an entire attribute

Solution:

- Compute the weighted average over all sets resulting from the split
 - weighted by their size

$$I(S, A) = \sum_{i} \frac{|S_i|}{|S|} \cdot E(S_i)$$

Step-3: Compute impurity score for candidate attribute

Note: this

is normally

undefined

Here: = 0

3 examples ves, 2 examples no Outlook = rainv

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5} \log \left(\frac{2}{5} \right) - \frac{3}{5} \log \left(\frac{3}{5} \right) = 0.971$$

Outlook = overcast: 4 examples ves, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Outlook = sunny 2 examples ves. 3 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5}\log\left(\frac{3}{5}\right) - \frac{2}{5}\log\left(\frac{2}{5}\right) = 0.971$$

$$I(S, A) = \sum_{i} \frac{|S_i|}{|S|} \cdot E(S_i)$$

Average entropy for attribute *Outlook*:

Step-4: Compute Information Gain (reduction in impurity score) provided by candidate attribute

$$I(S, A) = \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

Average entropy for attribute Outlook:

$$I(\text{Outlook}) = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.693$$

Entropy of root

$$E(S) = -(\frac{9}{14}log(\frac{9}{14}) + \frac{5}{14}log(\frac{5}{14})) = 0.94$$

$$Gain(S, A) = E(S) - I(S, A) = E(S) - \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

Gain(S, Outlook) = 0.246

Step-5: Compare Information Gain provided by all candidates

Select the attribute which provides largest 'impurity reduction'/Information Gain

Step-6: Assign root node

Recurse and repeat Steps 1-6

$$Gain(Temperature) = 0.571 \text{ bits}$$

 $Gain(Humidity) = 0.971 \text{ bits}$
 $Gain(Windy) = 0.020 \text{ bits}$

Humidity is selected

Final Decision Tree

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
07-14	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	no
07-30	mild	rain	high	false	yes

- Problematic: attributes with a large number of values
 - extreme case: each example has its own value
 - e.g. example ID; Day attribute in weather data

- Problematic: attributes with a large number of values
 - extreme case: each example has its own value
 - e.g. example ID; Day attribute in weather data
- Subsets are more likely to be pure if there is a large number of different attribute values
 - Information gain is biased towards choosing attributes with a large number of values

Entropy of split:

$$I(\text{Day}) = \frac{1}{14} (E([0,1]) + E([0,1]) + ... + E([0,1])) = 0$$

Information gain is maximal for Day (0.940 bits)

Gain(S, Temperature) = 0.029

Gain(S, Outlook) = 0.246

Attributes with large # of values

- This may cause several problems:
 - Overfitting
 - selection of an attribute that is non-optimal for prediction
 - Fragmentation
 - data are fragmented into (too) many small sets

Impurity function: candidates

Entropy:
$$i(V) = -(q \log q + (1 - q) \log(1 - q))$$

Gini index: i(V) = 2q(1 - q)

Misclassification rate: $i(V) = \min(q, 1-q)$

Attributes with large # of values – measure

- Intrinsic information of a split
 - entropy of distribution of instances into branches
 - i.e. how much information do we need to tell which branch an instance belongs to

$$IntI(S, A) = -\sum_{i} \frac{|S_{i}|}{|S|} \log \left| \frac{|S_{i}|}{|S|} \right|$$

- Example:
 - Intrinsic information of Day attribute:

$$IntI(Day) = 14 \times \left(-\frac{1}{14} \cdot \log\left(\frac{1}{14}\right)\right) = 3.807$$

- Observation:
 - Attributes with higher intrinsic information are less useful

Handling numerical attributes – some optimizations

- Assume a numerical attribute for Temperature
- First step:
 - Sort all examples according to the value of this attribute
 - Could look like this:

Handling numerical attributes – some optimizations

- Assume a numerical attribute for Temperature
- · First step:
 - Sort all examples according to the value of this attribute
 - Could look like this:

- One split between each pair of values
 - E.g. Temperature < 71.5: yes/4, no/2 Temperature ≥ 71.5 : yes/5, no/3

$$I(\text{Temperature} @ 71.5) = \frac{6}{14} \cdot E(\text{Temperature} < 71.5) + \frac{8}{14} E(\text{Temperature} \ge 71.5) = 0.939$$

Split points can be placed between values or directly at values

Decision Tree with numerical attribute

Handling numerical attributes

- Splitting (multi-way) on a nominal attribute exhausts all information in that attribute
 - Nominal attribute is tested (at most) once on any path in the tree
- Not so for binary splits on numerical attributes (why?)
- Attribute may be tested multiple times in the tree
- Tree may become hard to read

Handling numerical attributes

Discretization / Clustering

Deployment

Other issues to address

- Missing attributes
- Attribute values not seen during tree induction (construction)
- Attribute missing in 'test phase'
 - Divide into pieces etc.

Small is often better

The Smallest Decision Tree

- Learning the smallest DT is NP-hard (Hyafil & Rivest '76)
- Greedy Heuristic
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Overfitting in Decision Trees

 Overfitting can occur with noisy training examples, and also when small numbers of examples are associated with leaf nodes (→ coincidental or accidental regularities)

Avoiding overfitting

- Pre-pruning: stop growing tree based on statistical tests of significance
- Post-pruning: Grow full tree, then prune

Reduced-Error Pruning

Split training data further into training and validation sets

Grow tree based on training set

Do until further pruning is harmful:

- Evaluate impact on validation set of pruning each possible node (plus those below it)
- Greedily remove the node that most improves validation set accuracy

Decision Trees -> Code

rec	Age	Income	Student	Credit_rating	Buys_computer(CLASS)
rî	c=30	High	No	Fair	No
12	<=38	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
14	>40	Medium	No	Fair	Yes
r\$	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
17	3140	Low	Yes	Excellent	Yes
18	<=30	Medium	No	Fair	No
19	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
rtt	<=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yea
r13	3140	High	Yes	Fair	Yes
r14	>40	Modium	No	Excellent	No

```
IF age = "<=30" AND student = "no" THEN
 buys computer = "no"
IF age = "<=30" AND student = "yes" THEN
  buys computer = "yes"
IF age = "31...40"
                                    THEN
 buys computer = "yes"
IF age = ">40" AND credit rating = "excellent"
 buys computer = "no"
IF age = ">40" AND credit_rating = "fair" THEN
 buys computer = "yes"
```

Decision Boundaries

Decision trees for classification

Some real examples (from Russell & Norvig, Mitchell)

- BP's GasOIL system for separating gas and oil on offshore platforms - decision trees replaced a hand-designed rules system with 2500 rules. C4.5-based system outperformed human experts and saved BP millions. (1986)
- learning to fly a Cessna on a flight simulator by watching human experts fly the simulator (1992)
- can also learn to play tennis, analyze C-section risk, etc.

Advantages of DT

- Easy to use, understand
- Produce rules that are easy to interpret & implement
- Variable selection & reduction is automatic
- Do not require the assumptions of statistical models
- Can work without extensive handling of missing data

Disadvantages

 May not perform well where there is structure in the data that is not well captured by horizontal or vertical splits

 Since the process deals with one variable at a time, no way to capture interactions between variables

Decision Trees are not stable

Moving just one example slightly may lead to quite different trees and space partition!

Lack of stability against small perturbation of data.

Figure from Duda, Hart & Stork, Chap. 8

References and Reading

- https://en.wikipedia.org/wiki/Decision tree learning
- Cool demo: http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
- Entropy
 - https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8
 - https://plus.maths.org/content/information-surprise
 - In decision trees: https://bricaud.github.io/personal-blog/entropy-in-decision-trees/

Textbook References

- [TM] Machine Learning by Tom Mitchell (3.1-3.5, 3.7-3.8)
- [PRML] Pattern Recognition and Machine Learning by Chris Bishop (1.2 (intro), 1.6)
- [DHS] Duda and Hart (8.1 8.4)

Code

- https://scikit-learn.org/stable/modules/tree.html
- https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html