27. Теорема на Лайбниц-Нютон. Правило за пресмятане на определен интеграл

Галина Люцканова

20 септември 2013 г.

Теорема 27.1 (на Лайбниц-Нютон) : Нека f(t) е непрекъсната в интервала [a,b] и $x\in [a,b]$ и $F(x)=\int\limits_a^x f(t)dt$, то F(x) е диференцируема и F'(x)=f(x).

Доказателство:

Тъй като f(t) е непрекъсната в интервала [a,b], то f(t) е непрекъсната в интервала $[a,x]\subseteq [a,b]$, то f(t) е интегруема в интервала [a,x]. Тогава можем да разгледаме $\int\limits_a^x f(t)dt$. Тя е функция само на х (виж предната тема), нека да означим $F(x)=\int\limits_a^x f(t)dt$. Нека да разгледаме диференчното частно:

$$\frac{F(x+h) - F(x)}{h} = \frac{\int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt}{h} = \frac{\int_{a}^{x+h} f(t)dt + \int_{x}^{a} f(t)dt}{h} = \frac{\int_{x}^{x+h} f(t)dt}{h} = \frac{\int_{x}^{x+h} f(t)dt}{h}$$
(1)

Но по теоремата за средните стойности:

$$\int_{x}^{x+h} f(t)dt = f(\xi)(x - (x+h)) = f(\xi)h$$

като $\xi \in [x, x + h]$ и след като заместим в (1):

$$\frac{F(x+h) - F(x)}{h} = \frac{f(\xi)h}{h} = f(\xi),$$

Да пуснем $h \to 0$. Тъй като $x \le \xi \le x + h$, то $\xi \to x$ и тогава:

$$F'(x) = \lim_{x \to F(x+h) - F(x)} h = \lim_{x \to x_0} f(\xi) = f(x) \blacksquare$$

Формула на Лайбниц-Нютон Нека f(t) е непрекъсната в интервала [a,b] и $x \in [a,b]$ и Φ е примитивна за f(x), то тогава:

$$\int_{a}^{b} f(t)dt = \Phi(b) - \Phi(a) = |\Phi(x)|_{a}^{b}$$

Доказателство:

Понеже Φ е примитивна на f(x) т.е. $\Phi'(x) = f(x)$. Нека $F(x) = \int_a^x f(t)dt$. От теоремата на Лайбниц-Нютон следва, че F(x) също е примитивна на f(x) т.е. F'(x) = f(x). Така получаваме $\Phi'(x) = f(x) = F'(x)$, т.е. $F(x) = \Phi(x) + C$. Тогава $F(a) = \Phi(a) + C$. Но от дефиницията на F(x) имаме, че:

$$F(a) = \int_{a}^{a} f(x) = f(\xi)(a - a) = 0$$

Така изкарахме, че:

$$0 = \Phi(x) + C \Rightarrow C = -\Phi(a)$$

т.е. $F(x) = \Phi(x) - \Phi(a)$. Понеже искаме да сметнем $F(b) = \int_a^b f(x) dx$, то нека да го заместим в $F(x) = \Phi(x) - \Phi(a)$:

$$F(b) = \Phi(b) - \Phi(a)$$

И така получихме, каквото искахме:

$$F(b) = \int_{a}^{b} f(x)dx = \Phi(b) - \Phi(a). \blacksquare$$