

Ecosystème Microbien

Homme/Animaux et système digestif

Protections mécaniques Cils de la trachée Larmes, mucus nasal, salive Sueur (pH = 3,5) Suc gastrique (pH = 1) pH > 7 pH > 7 Spermines chez l'homme, sécrétions vaginales chez la femme. (pH acide)

Eau

Sol

Introduction

Concept d'écosystème

- Un écosystème comprend un milieu (biotope), les êtres vivants (biocénose) qui le composent et toutes les relations qui peuvent exister et se développer à l'intérieur de ce système.
- Macro-écosystème et Micro-écosystème
- Ecosystème microbien : eaux, sol, humain, animaux...

Introduction

Ecosystème microbien

- 1. Quels sont des différents types de microbes dans l'environnement ?
- 2. Combien sont-ils?
- 3. Que font-ils et quelles sont leurs fonctions?
- 4. Comment survivent-ils?
- 5. Qu'est ce qui contrôle leur activité et leur abondance?

Constitution des cours

Micro-organismes de l'homme et des animaux, focalisé sur l'écosystème du tube digestif

(Mm CHATAIN - 3 h)

- Micro-organismes des eaux (Mm CHATAIN – 3 h)
- Micro-organismes du sol

(M. VIAN - 3 h)

TP : Analyse microbiologique des eaux (2 séances de 2 h) (50% de la note finale)

Examen (1 h 30): tous les cours et TP (50% de la note finale)

Diversité des micro-organismes

Procaryotes

Eucaryotes

Virus

Rappel: Procaryotes

Structure d'une cellule procaryotes (bactéries)

Rappel: Bactéries

Morphologie variable selon les espèces:

- Sphérique (cocci)
- Allongée (bacille)
- Incurvée (vibrion)
- Spiralée (spirelle)
- Irrégulière (corynébactérie)
- Ramifiée (actinomycète)

Rappel : Bactéries

Bactérie -> Coloration de Gram

Bacille ou cocci (Gram positif ou Gram négatif)

Rappel: Bactéries Gram négatif

LipoPolySaccharides (LPS)

Rappel: Eucaryotes

virus

- = diamètre de 20nm
- = ce ne sont que des gènes enfermés dans une coque protéique

Métabolisme bactérien : Quelques rappels

Fermentation et Respiration

Facteurs influençant la croissance des micro-organismes

□ Paramètres de l'environnement

```
    T°
    pH
    O<sub>2</sub>
    Aw
```

□ Composés antimicrobiens

Relations des micro-organismes

Quelles sont les relations des microorganismes

Il existe trois types principaux de relations :

- **■** Le commensalisme
- **Le mutualisme**
- Le parasitisme

Micro-organismes de l'homme

Flores commensales

- √ Flore normale du corps humain
- Flores pathogènes
 - ✓ Pourquoi un micro-organisme est pathogène
 - ✓ Comment les micro-organismes entrent dans notre corps : infection
 - √ Comment empêcher l'infection
 - ✓ Notion : asepsie, antisepsie, antibiotique
 - ✓ Défense immunitaire

Corps Humain: Réservoirs

□ 10¹⁴ bactéries / être humain

100 000 000 000 000

■ 10 x plus que de cellules eucaryotes

rhinopharynx : 108/ml

colon : 10¹¹/ml

□ FLORES DE L'ENVIRONNEMENT

Eau potable : <100 bactéries/ml</p>

Air: 10² à 10⁵ bactéries/cm³

■ Sol: 10⁶ à 10⁷ bactéries/g

Pourquoi?

Flores normales du corps humain

Homme comporte des niches écologiques

Peau

- □ Densité: 10² bactéries/cm² 106 bactéries/cm²
 - Staphylocoques epidermidis (SCN)
 - Staphylococcus aureus (S. dorée)
 - Propionibacterium acnes
 - Corynébacteries aérobies
 - Escherichia coli et entérobactéries
 - Candida albicans
- □ Provenance: Autres mains, tube digestif, rhinopharynx, milieu extérieur / surfaces

Micro-organismes résidants de la peau

Oreilles

Staphylocoques et les corynebactéries.

Genres *Bacillus*, *Micrococcus* et *Neisseria* ainsi que des bacilles des genres *Escherichia* et *Pseudomonas*.

Des moisissures telles *Aspergillus*, *Penicillium*, *Candida* et *Saccharomyces*.

Yeux

Microflore normale de la conjonctive

- Staphylocoques coagulasse négatifs
- Staphylocoques aureus
- Streptocoques
- Haemophilus sp

Peu de bactéries anaérobies

Appareil respiratoire

- Staphylocoques épidermidis
- Staphylocoques aureus
- Neisseria sicca
- * Streptococcus (S. salivarius,
- S. mitis, S.sanguis, S. milleri...)

Donc surtout des

Pas de micro-organismes dans l'appareil respiratoire inférieur

Fosses nasales

Appareil digestif

- Bouche
- Estomac
- Intestin
 - Intestin grêle
 - Gros intestin (colon)

Répartition des flores microbiennes de l'appareil digestif

Bouche

Staphylocoques à coagulase négative (dont S. epidermidis) Streptocoques du groupe viridans Streptococcus sanguis Streptococcus salivarius Streptococcus mitis Streptococcus mutans Moraxella catarrhalis Lactobacillus casei Bacteroides du groupe fragilis (dont B. caccae, B. merdae et B. ovatus) Prevotella (dont P.melaninogenica et P. denticola) Porphyromonas Fusobacterium nucleatum Treponema denticola Treponema vincentii Peptostreptococcus Clostridium Veillonella Neisseria Actynomyces Candida albicans

Intestin grêle

Lactobacillus Bacteroides Clostridium Entérocoques Entérobactéries

Estomac

Streptococcus Staphylococcus Lactobacillus Peptostreptococcus

Escherichia coli Enterococcus fæcalis Staphylocoques à coagulase négative Peptostreptococcus Bacteroides du groupe fragilis Prevotella (dont P. oralis et P. melaninogenica) Bacteroides melaninogenicus Eubacterium Fusobacterium nucleatum Fusobacterium necrophorum Bifidobacterium bifidus Lactobacillus

Clostridium perfringens

Klebsiella pneumoniæ

Proteus mirabilis

Enterobacter aerogenes

Candida albicans

Actynomyces

Enterocoques

Acinetobacter

Bouche et oropharynx

- Streptocoques
- Neisseria sp
- Lactobacillus
- Veillonella sp
- Haemophilus sp
- Fusobacterirum sp
- Treponema sp
- Porphyromonas et Prevotella sp
- Candida sp
- Corynébactéries
- Actinomyces sp
- Staphylocoques coagulasse négatifs
- Staphylocoques aureus

Pourquoi ils sont nombreux dans la bouche?

Estomac

- □ 10³ bactéries/ g
- □ pH acide
 - Lactobacilles
 - Streptocoques
 - Staphylocoques
 - Peptostreptocoques
 - Levures

pH neutre, transit très lent

Colon: exclusivement anaérobie

flore dominante

(N>109 UFC/g)

- Bifidobacterium,
- Eubacterium,
- Peptostreptococcus,
- Ruminococcus,
- Clostridium,
- Propionibacterium,

□ flore sous dominante

 $(N:10^6 - 10^8 UFC/g)$:

- Lactobacillus,
- Enterobacteriaceae (surtout E.coli)
- Streptococcus ,
- Enterococcus,
- Fusobacterium,
- Methanobrevibacter
- □ flore résiduelle (N<10⁶ UFC/g)
- □ flore fécale

Rôles de la flore intestinale humaine

- ✓ Effets digestifs
- ✓ Effets nutritionnels
- ✓ Effets protecteur

La flore microbienne intestinale joue un rôle fondamental dans la santé humaine et pourtant cet écosystème extraordinairement dense reste peu connu.

Appareil génital

- **□** Flore externe:
 - Flore cutanée et intestinale
- **□** Flore vaginale:
 - Variable selon l'âge
 - 109 / ml
 - Lactobacillus (bacilles Döderlein), Bacteroïdes,
 - Candida
- □ Effet barrière:
 - Muqueuse -> glycogène -> acide lactique

Résumé: microbiologie de l'homme

- □ Flore cutanée:
 - 10² bactéries/cm² 10⁶ bactéries/cm²
 - Bactéries gram positif et négatif
 - Levures
- Oreil et Yeux : les mêmes flores que la peau
- **□** Respiratoire:
 - Partie supérieure seulement

Résumé (suite)

- Appareil digestif:
 - Bouche (Steptocoques, anaérobies, corynébactéries...)
 - Estomac (Lactobacilles, Streptocoques, Staphylocoques et levures)
 - Colon : Flore dense
 - □ Bactéries anaérobies (95 %) et 5 % aéro-anaérobie
 - Effet barrière
 - Effet métabolique
- □ Génitaux externes (homme et femme):
 - 90 % bacilles (Lactobacillus) et 10 % flore intestinale

Flores les plus rencontrées ???

Micro-organismes de l'homme

- Flores commensales
 - √ Flores normale du corps humaine
- Flores pathogènes
 - ✓ Pourquoi un micro-organisme est pathogène
 - ✓ Comment les micro-organismes entrent dans notre corps : Infection
 - ✓ Comment empêcher l'infection
 - √ Notion : aseptise, antiseptise, antibiotique
 - ✓ Défense immunitaire

Micro-organismes pathogènes

Voie respiratoire

- virus de la grippe
- virus de la rubéole
- bacille de la tuberculose

Voie digestive

- salmonelles
- virus de la "grippe intestinale"
- bacille du choléra

Voie cutanée

- bacille du tétanos
- parasite du paludisme

Voie génitale

- bactérie de la syphilis
- · virus du S.I.D.A.
- virus de l'hépatite B

Micro-organismes infectant l'Homme

Micro-organismes isolés dans des infections du site opératoire Enquête nationale de prévalence, France 2001, n = 2392

Staphylocoques

(bactéries)

L'espèce la plus pathogène de la famille des staphylocoques est staphylococcus aureus. En effet, il peut être responsable de plusieurs infections.

Staphylococcus aureus (ou staphylocoque doré) est retrouvé chez 15 à 30 (50) % des individus sains au niveau des fosses nasales et de la gorge, il est également présent (en plus faibles quantité) dans le tube digestif et au niveau du périnée. À partir du rhinopharynx, la bactérie est disséminée sur la peau (mains et visage) par aérosols et est souvent présente sur les vêtements et dans les squames (qui font partie de la poussière de tout local habité). Comme les staphylocoques résistent bien à la dessication, la transmission peut être non seulement directe (surtout mains du personnel soignant dans les hôpitaux), mais aussi indirecte par les objets et poussières.

Micro-organismes pathogènes

■ Micro-organisme pathogène:

Micro-organisme (virus, bactérie, champignon, protozoaire, ver, etc.) capable de provoquer une maladie chez l'homme ou les animaux <u>au-delà</u> d'une dose donnée.

(définition selon dictionnaire environnement)

- □ Flores opportunistes: deviennent pathogènes chez certains hôtes fragilisés
 - Exemple : Staphylococcus et Pseudomonas aeruginosa

Micro-organismes pathogènes

Pouvoir pathogène ou pathogénicité d'une bactéries : sa capacité à provoquer des troubles chez un hôte

Virulence désigne le caractère *pathogène*, nocif et violent d'un micro-organisme.

Déterminée par 3 caractéristiques :

- Pouvoir invasif
- Pouvoir infectieux
- Pouvoir toxinogène (exotoxine et endotoxine)

Comment les agents pathogènes produisent une maladie infectieuse :

- 1. Transmission
- 2. Colonisation
- 3. Multiplication
- 4. Production de toxine
- 5. Echapper aux mécanismes de défense de l'hôte

Mécanisme de transmission

L'environnement:

- mobilier, surfaces, sols
- circuits : linge, déchets,

Réservoir & Source

Transmission

a.fr

Comment les agents pathogènes produisent une maladie infectieuse :

- 1. Transmission (Réservoirs et Sources)
- 2. Colonisation
- 3. Multiplication
- 4. Production de toxine
- 5. Renforcer les mécanismes de défense de l'hôte

Antimicrobien

Protection contre les microorganismes pathogènes par l'utilisation des antimicrobiens

Antimicrobien est une famille de substances qui tuent (bactéricide) ou ralentissent (bactériostatique) la croissance des micro-organismes :

Pour chaque substance :

- Spectre d'activité
- Mode d'action
- Mode d'emploi

Spectre d'activité des antimicrobiens

- les bactéries (activité antibactérienne)
 - Action bactéricide/bactériostatique
- □ les mycètes (activité antimycosique)
 - Mycocide/Mycostatique
- les virus (activité antivirale)
 - Viricide/Viriostatique
- les parasites (activité antiparasitaire)
 - Paracide/parasitostatique

Mode d'action des antimicrobiens

Mode d'emploi des antimicrobiens DEFINITIONS

Les antiseptiques

Famille d'antiseptiques		Spectre d'activité des principales familles d'antiseptiques								
		Gram +	Gram -	Myco- bactéries	Levures	Moisissures	Virus nus	Virus enveloppés	Spores	
HALOGÉNÉS	CHLORÉS (Dakin)	+	+	+	+	+	+	+	+	
	IODÉS (PVPI, alcool iodé)	+	+	+	+	+	+	+	+	
BIGUANIDES Chlorhexidine		+	+	+/-	+	+/-	+/-	+	-	
ALCOOLS (éthanol à 70°, alcool isopropylique 60°)		+	+	+	+/ -	+/-	+/-	+	-	
TENSIO-ACTIFS AMMONIUMS QUATERNAIRES (chlorure de benzalkonium)		+	+/-	-	+	+	+/-	+	•	
DIAMIDINE (hexamidine)		+/-	-	-	-	-	-	-	-	
OXYDANTS (eau oxygénée 3%)		+	+	-	+	+	+/-	+	-	
COLORANTS		-	-	-	-	-	-	-	-	
CARBANILIDES		-	-		-	-	-	-	-	

Les désinfectants											
Familla	Spectre d'activité des principales familles des désinfectants										
Famille d'antiseptiques	Gram +	Gram -	Myco- bactéries	Levures	Moissures	Virus nus	Virus enveloppés	Spores			
HALOGÉNÉS CHLORÉS (eau de Javel)	+	+	+	+	+	+	+	+			
ALDÉHYDES (glutaraldéhyde)	+	+	+	+	+	+	+	+			
OXYDANTS (acide peracétique)	+	+	+	+	+	+	+	+			
BIGUANIDES	+	+	+/-	+	+/-	+/-	+	-			

ALCOOLS

PHÉNOLS

TENSIO-ACTIFS

QUATERNAIRES

AMMONIUMS

(hexamidine)

+

AV

+

+

AV

+/-

+

AV

+/-

AV

+

+/-

AV

+

+/-

AV

+/-

+

AV

+

Facteurs influençant l'efficacité des antimicrobiens

- 1. Temps de contact
- 2. Concentration
- 3. T°
- 4. pH
- 5. Présence d'autres composés

Résistance des micro-organismes aux antimicrobiens

VHB, VHC, VIH

Bactéries végétatives

(Pseudomonas sp., salmonelles, ..)

Champignons

Virus nus

Mycobactéries

Spores

DEFINITIONS

Antibiotiques

Antibiotiques: sont une classe d'antimicrobiens

Antibiotiques :substance élaborée par un microorganisme ou synthétisée

Antibiotiques peuvent potentiellement être utilisés comme médicaments afin de diminuer la <u>quantité de bactéries</u> présentes sur le site infectieux..

Antiseptiques ne sont pas des antibiotiques.

ANTIBIOTIQUES

- ☐ Plus de 10 000 molécules d'antibiotique
- Un quart sont des pénicillines
- Un antibiotique est caractérisé par 3 paramètres spécifiques :
 - Le mode d'action
 - Le mode d'emploi
 - Le spectre d'activité

Activité antimicrobienne

- La concentration minimale inhibitrice ou CMI: c'est la plus faible quantité d'antibiotique nécessaire et suffisante (in vitro) pour inhiber le développement d'une population bactérienne donnée.
- La concentration minimale bactéricide ou CMB : c'est la plus faible concentration d'antibiotique qui tue 99,9% de la population bactérienne après une incubation de 24 heures à 37℃.

Un antibiotique est dit « bactéricide », lorsque les CMI sont proches du CMB

Activité antibactérienne

méthode des disques ou diffusion (pratique)

Antibiorésistance

- Antibiorésistance : souches bactériennes insensibles à un ou plusieurs antibiotiques
- □ Elle est de 2 types :
 - Résistance naturelle : existe d'emblée (le germe n'appartient pas au spectre de l'antibiotique)
 - Résistance acquise :
 - Brouillage
 - Esquive
 - Blindage

Utilisation des antibiotiques

Moins souvent

Mieux

Défenses de l'hôte contre les micro-organismes

Mécanisme de la défense immunitaire

■ Défenses non spécifiques :

- Barrière physique
- Barrière chimique
- Barrière biologique

■ Défenses spécifiques :

Lymphocytes éliminent des agents étrangers (antigène) par voie directe ou par une synthèse protéines (anticorps)

Résumé

