

TRANSMITTAL LETTER TO THE UNITED STATES

ATTORNEY'S DOCKET NUMBER 0093/000003

DESIGNATED/ELECTED OFFICE (DOLEGO, S.,)
CONCERNING A FILING UNDER 35 U.S.C. 371

U.S. APPLICATION NO. (If known, see 37 CFR 1.5)

INTERNATIONAL APPLICATION NO. PEP 00/02701

ATENT & TRA

,, 29

INTERNATIONAL FILING DATE 12 OCT 2000

PRIORITY DATE CLAIMED

March 28, 2000

LE OF INVENTION: A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

APPLICANT(S) FOR DO/EO/US Anders DAHLQUIST; Ulf STAHL; Marit LENMAN; Antoni BANAS Hans RONNE; Sten STYMNE

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

- 1. /X/ This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
- 2. / / This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
- 3. /X/ This express request to begin national examination procedures (35 U.S.C.371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
- A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
- 5. /X/ A copy of the International Application as filed (35 U.S.C. 371(c)(2)).
 - is transmitted herewith (required only if not transmitted by the International Bureau). has been transmitted by the International Bureau.

 - b.// is not required, as the application was filed in the United States Receiving Office (RO/USO).
- 6. /X/ A translation of the International Application into English (35 U.S.C. 371(c)(2)).
- 7. / / Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)).

 - are transmitted herewith (required only if not transmitted by the International Bureau). have been transmitted by the International Bureau. have not been made; however, the time limit for making such amendments has NOT expired. b.//
 - have not been made and will not be made.
- 8: / / A translation of the amendments to the claims under PCT Article 19(35 U.S.C. 371(c)(3)).
- 9. /X/ An oath or declaration of the inventor(s)(35 U.S.C. 171(c)(4)).
- 10./ / A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).
- Items 11. to 16. below concern other document(s) or information included:
- 11./X/ An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
- An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 12.// is included.
- 13./X/ A FIRST preliminary amendment.
 // A SECOND or SUBSEQUENT preliminary amendment.
- 14./ / A substitute specification.
- 15./ / A change of power of attorney and/or address letter.
- 16./X/ Other items or information.
 - International Search Report
 International Preliminary Examination Report

JC05 Rec'd PCT/PTO

2 8 SEP 2001

0.9. 19. 3.7. 7. 7. 7 (known)

INTERNATIONAL APPLN. NO. PCT/EP 00/02701

ATTORNEY'S DOCKET NO. 0093/000003

17. /X/ The following fees are submitted	<u>chin</u>	CULATIONS	<u>FIO</u>	USE ONLY
BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5)):				
Search Report has been prepared by the				
EPO or JPO	\$860.00	860.00	1	
			•	
International preliminary examination fee paid to	USPTO			
(37 CFR 1.482)	\$690.00		l	
			•	
No international preliminary examination fee paid	l to			
USPTO (37 CFR 1.482) but international search fee				
to USPTO (37 CFR 1.445(a)(2))			ı	
00 00110 (0) 01R 11415(d)(1))	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		¥ .	
Neither international preliminary examination fee				
(37 CFR 1.482) nor international search fee	•			
(37 CFR 1.445(a)(2)) paid to USPTO	\$1000 00		1	
(3) GIN 11445(U)(Z)) Palu to Obrio			ı	
International preliminary examination fee paid to				
USPTO (37 CFR 1.482) and all claims satisfied pro				
			1	
-visions of PCT Article 33(2)-(4)			l l	
PHOTO ADDOCADIANT PACIS FOR AMOU	NM - Č	060 00		
ENTER APPROPRIATE BASIC FEE AMOU		860.00		
Surcharge of \$130.00 for furnishing the oath or o				
later than // 20 //30 months from the ear	llest			
claimed priority date (37 CFR 1.492(e)).				
<u>Claims</u> <u>Number Filed</u> <u>Number Extra</u>	Rate			
Total Claims 22 -20 2	X\$18.	36.00	ļ	
Indep.Claims 4 -3 1	х\$80.	80.00	i	
Multiple dependent claim(s)(if applicable)	+270.			
TOTAL OF ABOVE CALCULATION	=	116.00		
Reduction of & for filing by small entity, if app	licable.			
Verified Small Entity statement must also be file				
(Note 37 CFR 1.9, 1.27, 1.28).				
(NOCC 37 CIR 1.3) 1.27, 1.20).				
	L =	976.00		
SUBTOTA		976.00		
SUBTOTA Processing fee of \$130. for furnishing the Englis	h	976.00		
SUBTOTA Processing fee of \$130. for furnishing the Englis translation later than / /20 / /30 months from t	h he	976.00	1	
Processing fee of \$130. for furnishing the Englis translation later than / /20 / /30 months from tearliest claimed priority date (37 CFR 1.492(f)).	h he +			
Processing fee of \$130. for furnishing the Englist translation later than //20 //30 months from tearliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE	h he +	976.00		
Processing fee of \$130. for furnishing the Englistranslation later than / /20 / /30 months from tearliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR	th the + = 1.21(h)).		1	
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropri	th the + = 1.21(h)).			
Processing fee of \$130. for furnishing the English translation later than //20 //30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropria sheet (37 CFR 3.28, 3.31) \$40.00 per property	hhehe + = : 1.21(h)). ate cover =	976.00		
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropri	th the + = 1.21(h)).			
Processing fee of \$130. for furnishing the English translation later than //20 //30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropria sheet (37 CFR 3.28, 3.31) \$40.00 per property	th the + = = 1.21(h)). ate cover = = \$	976.00		
Processing fee of \$130. for furnishing the English translation later than //20 //30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropria sheet (37 CFR 3.28, 3.31) \$40.00 per property	h.he + = 1.21(h)). ate cover = \$ Amount to be	976.00		
Processing fee of \$130. for furnishing the English translation later than //20 //30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropria sheet (37 CFR 3.28, 3.31) \$40.00 per property	the + = 1.21(h)). ate cover = \$ Amount to be refunded:	976.00 976.00 \$		
Processing fee of \$130. for furnishing the English translation later than //20 //30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropria sheet (37 CFR 3.28, 3.31) \$40.00 per property	h.he + = 1.21(h)). ate cover = \$ Amount to be	976.00		
Processing fee of \$130. for furnishing the English translation later than //20 //30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropria sheet (37 CFR 3.28, 3.31) \$40.00 per property	the	976.00 976.00 \$ \$		
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropriate (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED	the	976.00 976.00 \$ \$ is enclosed.	to co	ver the above
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the arliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an approprisheet (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./x/ A check in the amount of \$976.00 to cover the coverage of the	the	976.00 976.00 \$ \$ is enclosed.	to co	ver the above
Processing fee of \$130. for furnishing the Englis translation later than //20 //30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropria sheet (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./x/ A check in the amount of \$976.00 to cover the cover	the	976.00 \$ \$ is enclosed. amount of \$ cional fees whi	ich may be requir	ed, or credit
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the arliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an approprisheet (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./X/ A check in the amount of \$976.00 to cover the second property of this sheet is c./X/ The Commissioner is hereby authorized to any overpayment to Deposit Account No. 1.	the	976.00 \$ \$ \$ is enclosed. amount of \$	ich may be requir	ed, or credit
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropriate (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./X/ A check in the amount of \$976.00 to cover the cover of the cover	the he h	976.00 \$ \$ is enclosed. amount of \$ cional fees which the copy of th	ich may be requir	ed, or credit
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the arliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an approprisheet (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./X/ A check in the amount of \$976.00 to cover the second property of this sheet is c./X/ The Commissioner is hereby authorized to any overpayment to Deposit Account No. 1.	the he h	976.00 \$ \$ \$ is enclosed. amount of \$ cional fees which the copy of	ich may be requirnis sheet is enclosed in the sheet is enclosed in the sheet is enclosed in the sheet in the sheet is a sheet in the sheet in the sheet in the sheet in the sheet is a sheet in the shee	ed, or credit
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropriate (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./X/ A check in the amount of \$976.00 to cover the cover of the cover	the he h	976.00 \$ \$ \$ is enclosed. amount of \$ cional fees which the copy of	ich may be requirnis sheet is enclosed in the sheet is enclosed in the sheet is enclosed in the sheet in the sheet is a sheet in the sheet in the sheet in the sheet in the sheet is a sheet in the shee	ed, or credit
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the arliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an approprisheet (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./x/ A check in the amount of \$976.00 to cover the second sec	the he h	976.00 \$ \$ \$ is enclosed. amount of \$ cional fees which the copy of	ich may be requir	ed, or credit osed. to revive (37
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the earliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an appropriate (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./X/ A check in the amount of \$976.00 to cover to the cover of the co	the he h	976.00 \$ \$ \$ is enclosed. amount of \$ cional fees which the copy of	ich may be requirnis sheet is enclosed in the sheet is enclosed in the sheet is enclosed in the sheet in the sheet is a sheet in the sheet in the sheet in the sheet in the sheet is a sheet in the shee	ed, or credit
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the arliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an approprisheet (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./X/ A check in the amount of \$976.00 to cover the cover	the	976.00 \$ \$ is enclosed. amount of \$ cional fees whicate copy of the	ich may be requirnis sheet is enclosed in the sheet is enclosed in the sheet is enclosed in the sheet in the sheet is a sheet in the sheet in the sheet in the sheet in the sheet is a sheet in the shee	ed, or credit osed. to revive (37
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the arliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an approprisheet (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./X/ A check in the amount of \$976.00 to cover the coverage of the coverag	the	976.00 \$ \$ \$ is enclosed. amount of \$ cional fees which the copy of	ich may be requirnis sheet is enclosed in the sheet is enclosed in the sheet is enclosed in the sheet in the sheet is a sheet in the sheet in the sheet in the sheet in the sheet is a sheet in the shee	ed, or credit osed. to revive (37
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the arliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an approprisheet (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./X/ A check in the amount of \$976.00 to cover the cover	the	976.00 \$ \$ is enclosed. amount of \$ cional fees whicate copy of the	ich may be requirnis sheet is enclosed in the sheet is enclosed in the sheet is enclosed in the sheet in the sheet is a sheet in the sheet in the sheet in the sheet in the sheet is a sheet in the shee	ed, or credit osed. to revive (37
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the arliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an approprisheet (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./X/ A check in the amount of \$976.00 to cover the coverage of the coverag	the	976.00 \$ \$ \$ is enclosed. amount of \$ cional fees which the copy of	ich may be requirnis sheet is enclosed in the sheet is enclosed in the sheet is enclosed in the sheet in the sheet is a sheet in the sheet in the sheet in the sheet in the sheet is a sheet in the shee	ed, or credit osed. to revive (37
Processing fee of \$130. for furnishing the English translation later than / /20 / /30 months from the arliest claimed priority date (37 CFR 1.492(f)). TOTAL NATIONAL FEE Fee for recording the enclosed assignment (37 CFR The assignment must be accompanied by an approprisheet (37 CFR 3.28, 3.31) \$40.00 per property TOTAL FEES ENCLOSED a./X/ A check in the amount of \$976.00 to cover the coverage of the coverag	the	976.00 \$ \$ is enclosed. amount of \$ cional fees whicate copy of the	ich may be requirnis sheet is enclosed in the sheet is enclosed in the sheet is enclosed in the sheet in the sheet is a sheet in the sheet in the sheet in the sheet in the sheet is a sheet in the shee	ed, or credit osed. to revive (37

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of)	
DAHLQUIST et al.)	BOX PCT
PCT/EP 00/02701 Intl. Filing Date: March 28, 2000)	,	
US Serial No.: TO BE ASSIGNED)	

For: A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

PRELIMINARY AMENDMENT

Sir:

Prior to examination of the above-identified U.S. National Stage application, kindly amend the application as follows.

CLEAN VERSION OF ALL CLAIMS

Cancel claims 1-27, all the claims in this case, and substitute new claims 28-49 as follows:

- 28. An enzyme, designated as phospholipid:diacylglycerol acyltransferase (PDAT), catalyzing in an acyl-CoA-independent reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol and comprising an amino acid sequence as set forth in SEQ ID NO:2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
- 29. An enzyme according to claim 28, comprising an amino acid sequence encoded through a nucleotide sequence as set forth in SEQ ID NO:1 or a homologous nucleotide sequence which is at least about 40% identical to a nucleotide sequence of SEQ ID NO. 1.
- 30. An enzyme according to claim 28, comprising an amino acid sequence as set forth in SEQ ID NO. 16, 20 or 22, or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
- 31. An enzyme according to claim 28, comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 6, 8, 13, 14, 15, 17, 18, 25 and 27, a functional fragment, derivate, allele, homolog or isoenzyme thereof.
- 32. An enzyme according to claim 28, comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31, or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence.
 - 33. A nucleotide sequence according to claim 32, selected

from the group consisting of sequences as set forth in SEQ ID NO. 1, 3, 4, 10, 11, 19, 21, 23, 24, 29 and 30, or a portion, derivate, allele or homolog thereof.

- 34. A partial nucleotide sequence corresponding to a full length nucleotide sequence according to claim 32, selected from the group consisting of sequences as set forth in SEQ ID NO. 5, 7, 9, 12, 25, 26, 28 and 31, or a portion, derivate, allele or homolog thereof.
- 35. A nucleotide sequence according to claim 32, comprising a nucleotide sequence which is at least 40% identical to a nucleotide sequence selected from the group consisting of those sequences set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31.
- 36. A gene construct comprising a nucleotide sequence as set forth in SEQ ID No. 1, or a homologous nucleotide sequence which is at least about 40% identical to the nucleotide sequence of SEQ ID No. 1, which is operably linked to a heterologous nucleic.
- 37. A vector comprising a gene construct according to claim 36, or the nucleotide sequence as set forth in SEQ ID No. 1, or a homologous nucleotide sequence which is at least about 40% identical to the nucleotide sequence of SEQ ID No. 1.
- 38. A vector according to claim 37, which is an expression vector.
- 39. A vector according to claim 37, further comprising a selectable marker gene and/or nucleotide sequences for the replication in a host cell or the integration into the genome of the host cell.
- 40. A transgenic cell or organism comprising one or more of the following:
- a) a nucleotide sequence a_1) to a_4),

- b) a gene construct b_1 , and
- c) a vector c_1),

wherein

- a_1) is a nucleotide sequence as set forth in SEQ ID NO. 1 or a homologous nucleotide sequence which is at least about 40% identical to a nucleotide sequence of SEQ ID NO. 1,
- a₂) is a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31, or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence,
- a₃) is a partial nucleotide sequence which corresponds to a full length nucleotide sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 5, 7, 9, 12, 25, 26, 28 or 31, or a portion, derivate, allele or homolog thereof;
- a_4) is a nucleotide sequence which is at least 40% identical to a nucleotide sequence selected from the group consisting of those sequences set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31,
- b₁) is a gene construct comprising a nucleotide sequence a), operably linked to a heterologous nucleic acid, and
- c_1) is a vector comprising a gene construct b_1), or a nucleotide sequence a_1).
- 41. A transgenic cell or organism according to claim 40, which is an eucaryotic cell or organism.
- 42. A transgenic cell or organism according to claim 40, which is a yeast cell or a plant cell or a plant.
- 43. A transgenic cell or organism according to claim 40 having an altered biosynthetic pathway for the production of

triacylglycerol, characterized by the prevention of accumulation of undesirable fatty acids, which are harmful if present in high amounts in membrane lipids.

- 44. A transgenic cell or organism according to claim 40 having an altered, increased oil content.
- 45. A transgenic cell or organism according to claim 40, wherein the activity of PDAT is altered, characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme.
- 46. A process for the production of triacylglycerol, comprising growing a transgenic cell or organism according to claim 40 under conditions whereby the said nucleotide sequence
- a₁) is a nucleotide sequence as set forth in SEQ ID NO. 1 or a homologous nucleotide sequence which is at least about 40% identical to a nucleotide sequence of SEQ ID NO. 1,
- a₂) is a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31, or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence,
- a₃) is a partial nucleotide sequence which corresponds to a full length nucleotide sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 5, 7, 9, 12, 25, 26, 28 or 31, or a portion, derivate, allele or homolog thereof;
- a₄) is a nucleotide sequence which is at least 40% identical to a nucleotide sequence selected from the group consisting of those sequences set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31,

is expressed.

- 47. Triacylglycerols produced by a process according to claim 46.
 - 48. Use of a nucleotide sequence selected from the group of
- a_1) is a nucleotide sequence as set forth in SEQ ID NO. 1 or a homologous nucleotide sequence which is at least about 40% identical to a nucleotide sequence of SEQ ID NO. 1,
- a₂) is a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31, or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence,
- a₃) is a partial nucleotide sequence which corresponds to a full length nucleotide sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 5, 7, 9, 12, 25, 26, 28 or 31, or a portion, derivate, allele or homolog thereof;
- a₄) is a nucleotide sequence which is at least 40% identical to a nucleotide sequence selected from the group consisting of those sequences set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31,
- or an enzyme selected from the group of
- d₁) is an enzyme, designated as phospholipid:diacylglycerol acyltransferase (PDAT), catalyzing in an acyl-CoA-independent reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol and comprising an amino acid sequence as set forth in SEQ ID NO. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof,
- $d_2)$ is an enzyme d), comprising an amino acid sequence as set forth in SEQ ID NO. 16, 20 or 22, or a functional fragment,

derivate, allele, homolog or isoenzyme thereof,

- d₃) is an enzyme d₁), comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 6, 8, 13, 14, 15, 17, 18, 25 and 27, or a functional fragment, derivate, allele, homolog or isoenzyme thereof, for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids, comprising medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.
- 49. Use of a nucleotide sequence selected from the group of a₁) is a nucleotide sequence as set forth in SEQ ID NO. 1 or a homologous nucleotide sequence which is at least about 40% identical to a nucleotide sequence of SEQ ID NO. 1,
- a₂) is a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31, or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence,
- a₃) is a partial nucleotide sequence which corresponds to a full length nucleotide sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 5, 7, 9, 12, 25, 26, 28 or 31, or a portion, derivate, allele or homolog thereof;
- a₄) is a nucleotide sequence which is at least 40% identical to a nucleotide sequence selected from the group consisting of those sequences set forth in SEQ ID NO. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 and 31,
- or an enzyme selected from the group of
- d_1) is an enzyme, designated as phospholipid:diacylglycerol acyltransferase (PDAT), catalyzing in an acyl-CoA-independent

reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol and comprising an amino acid sequence as set forth in SEQ ID NO. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof,

- d_2) is an enzyme d_1), comprising an amino acid sequence as set forth in SEQ ID NO. 16, 20 or 22, or a functional fragment, derivate, allele, homolog or isoenzyme thereof,
- d_3) is an enzyme d_1), comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID NO. 6, 8, 13, 14, 15, 17, 18, 25 and 27, or a functional fragment, derivate, allele, homolog or isoenzyme thereof, for the transformation of any cell or organism in order to be expressed in this cell or organism and result in an altered, preferably increased oil content of this cell or organism.

REMARKS

The claims have been amended to eliminate multiple dependency and to place them in better form for U.S. practice. Further, amendments made in the international stage, albeit not under Article 19, are also incorporated. The changes made in the claims were as follows:

- i. the subject-matter of claim 2 and 3 was included in claim 1
 (now claim 28);
- ii. claim 29 was introduced according to the disclosed homologous nucleotide sequence on page 6 of the specification;
- iii. claims 7, 8 and 25 were deleted;
- iv. claims 30-42 essentially correspond to claims 4-6 and 9-18 of the international application;
- v. claim 23 was incorporated into claim 19, which is now claim 43;
- vi claim 20, now 44, was amended by defining the altered oil content according to page 9, line 9;
- vii. claim 22 was incorporated into claim 21, which is now claim 45;
- viii. claim 46 essentially corresponds to claim 24 of the international application.
- ix. in claim 26, now 47, triacylglycerols with uncommon fatty acids were defined according to page 10, line 29;

- x. claim 48 essentially corresponds to claim 27 of the international application;
- xi. in the other claims, editorial amendments were made.
 Favorable action on the application is solicited.

Respectfully submitted,

KEIL & WEINKAUF

Herbert B. Keil Reg. No. 18,967

1101 Connecticut Avenue, N.W.

Washington, D.C. 20036

(202) 659-0100

HBK/kas

.

O 7 JUN 2002

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

的 re Application of

DAHLQUIST et al.

BOX PCT

Serial No. 09/937,779

Filed: September 28, 2001

NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE

PRODUCTION OF TRIACYCLOGLYCEROL AND RECOMBINANT DNA

MOLECULES ENCODING THESE ENZYMES

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to Commissioner of Patents and Trademarks, Washington, D.C. 20231, on:

June 5,

Karen Stamper

Signature

Date of Signature

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

PRELIMINARY AMENDMENT

and

RESPONSE TO NOTIFICATION OF MISSING REQUIREMENTS UNDER 35 USC 371

Sir:

In response to the Notification of Missing Requirements under 35 USC 371, a copy of the Sequence Listing in computer readable form is attached hereto. The content of the paper copy of the Sequence Listing and the copy of the Sequence Listing in computer readable form is the same, and includes no new matter.

IN THE SPECIFICATION

Delete the sequence listing in the specification on pages 1/58 to 58/58 and substitute with the attached replacement sequence listing on separate pages 1-52.

REMARKS

It is believed that by submitting the present amendment and sequence listing diskette, the application now fully complies with the requirements of 37 CFR 1.821-1.825. Favorable action by the examiner is solicited.

Please charge any shortage in fees due in connection with the filing of this paper, including Extension of Time fees to Deposit Account No. 11-0345. Please credit any excess fees to such account.

Respectfully submitted,

KEIL & WEINKAUF

06/13/2002 HKAYPAGH 00000090 110345 09937779

01 FC:154

130.00 CH

Herbert B. Keil Reg. No. 18,967

1350 Connecticut Ave., N.W. Washington, D.C. 20036 (202)659-0100

HBK/DSK/kas

06/13/2002 HKAYPAGH 00000090 110345 09937779

02 FC:965

84.00 CH

JC05 Rec'd PCT/PT0 2 8 SEP 2000

12.09.2000

BASF-NAE 3377/99 PCT

25

30

A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

The present invention relates to the isolation, identification and characterization of recombinant DNA molecules encoding enzymes catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.

Triacylglycerol (TAG) is the most common lipid-based energy reserve in nature. The main pathway for synthesis of TAG is believed to involve three sequential acyl-transfers from acyl-CoA to a glycerol backbone (1, 2). For many years, acyl-CoA: diacylglycerol acyltransferase (DAGAT), which catalyzes the third acyl transfer reaction, was thought to be the only unique enzyme involved in TAG synthesis. It acts by diverting diacylglycerol (DAG) from membrane lipid synthesis into TAG (2). Genes encoding this enzyme were recently identified both in the mouse (3) and in plants (4, 5), and the encoded proteins were shown to be homologous to acyl-CoA: cholesterol acyltransferase (ACAT). It was also recently reported that another DAGAT exists in the oleaginous fungus *Mortierella ramanniana*, which is unrelated to the mouse DAGAT, the ACAT gene family or to any other known gene (6).

The instant invention relates to novel type of enzymes and their encoding genes for transformation. More specifically, the invention relates to use of a type of genes encoding a not previously described type of enzymes hereinafter designated phospholipid:diacylglycerol acyltransferases (PDAT), whereby this enzyme catalyses an acyl-CoA-independent reaction. The said type of genes expressed alone in transgenic organisms will enhance the total amount of oil (triacylglycerols) produced in the cells. The PDAT genes, in combination with a gene for the synthesis of an uncommon fatty acid will, when expressed in transgenic organisms, enhance the levels of the uncommon fatty acids in the triacylglycerols.

BASF-NAE 3377/99 PCT

2

5 Oz

12.09.2000

There is considerable interest world-wide in producing chemical feedstock, such as fatty acids, for industrial use from renewable plant resources rather than non-renewable petrochemicals. This concept has broad appeal to manufacturers and consumers on the basis of resource conservation and provides significant opportunity to develop new industrial crops for agriculture.

There is a diverse array of unusual fatty acids in oils from wild plant species and these have been well characterised. Many of these acids have industrial potential and this has led to interest in domesticating relevant plant species to enable agricultural production of particular fatty acids.

Development in genetic engineering technologies combined with greater understanding of the biosynthesis of unusual fatty acids now makes it possible to transfer genes coding for key enzymes involved in the synthesis of a particular fatty acid from a wild species into domesticated oilseed crops. In this way individual fatty acids can be produced in high purity and quantities at moderate costs.

In all crops like rape, sunflower, oilpalm etc., the oil (i.e. triacylglycerols) is the most valuable product of the seeds or fruits and other compounds like starch, protein, and fibre is regarded as by-products with less value. Enhancing the quantity of oil per weight basis at the expense of other compounds in oil crops would therefore increase the value of crop. If genes, regulating the allocation of reduced carbon into the production of oil can be up-regulated, the cells will accumulate more oil on the expense of other products. Such genes might not only be used in already high oil producing cells, such as oil crops, but could also induce significant oil production in moderate or low oil containing crops such as e.g. soy, oat, maize, potato, sugarbeats, and turnips as well as in micro-organisms.

10

15

20

25

15

20

25

30

Many of the unusual fatty acids of interest, e.g. medium chain fatty acids, hydroxy fatty acids, epoxy fatty acids and acetylenic fatty acids, have physical properties that are distinctly different from the common plant fatty acids. The present inventors have found that, in plant species naturally accumulating these uncommon fatty acids in their seed oil (i.e. triacylglycerol), these acids are absent, or present in very low amounts in the membrane (phospho)lipids of the seed. The low concentration of these acids in the membrane lipids is most likely a prerequisite for proper membrane function and thereby for proper cell functions. One aspect of the invention is that seeds of transgenic crops can be made to accumulate high amounts of uncommon fatty acids if these fatty acids are efficiently removed from the membrane lipids and channelled into seed triacylglycerols.

The inventors have identified a novel class of enzymes in plants catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the production of triacylglycerol through an acyl-CoA-independent reaction and that these enzymes (phospholipid:diacylglycerol acyltransferases, abbreviated as PDAT) are involved in the removal of hydroxylated, epoxygenated fatty acids, and probably also other uncommon fatty acids such as medium chain fatty acids, from phospholipids in plants.

This enzyme reaction was shown to be present in microsomal preparations from baker's yeast (*Saccharomyces cerevisiae*). The instant invention further pertains to an enzyme comprising an amino acid sequence as set forth in SEQ ID No. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof. A so called ,knock out' yeast mutant, disrupted in the respective gene was obtained and microsomal membranes from the mutant was shown to totally lack PDAT activity. Thus, it was proved that the disrupted gene encodes a PDAT enzyme (SEQ ID NO. 1 and 2). Furtherm, this PDAT enzyme is characterized through the amino acid sequence as set forth in SEQ ID NO 2 containing a lipase motif of the conserved sequence string FXKWVEA.

15

20

25

The instant invention pertains further to an enzyme comprising an amino acid sequence as set forth in SEQ ID NO. 16, 20 or 22 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.

Further genes and/or proteins of so far unknown function were identified and are contemplated within the scope of the instant invention. A gene from Schizosaccharomyces pombe, SPBC776.14 (SEQ ID. NO. 3), a putative open reading frame CAA22887 of the SPBC776.14 (SEQ ID NO. 13) were identified. Further Arabidopsis thaliana genomic sequences (SEQ ID NO. 4, 10 and 11) coding for putative proteins were identified, as well as a putative open reading frame AAC80628 from the A. thaliana locus AC 004557 (SEQ ID NO. 14) and a putative open reading frame AAD10668 from the A. thaliana locus AC 003027 (SEQ ID NO. 15) were identified.

Also, a partially sequenced cDNA clone from Neurospora crassa (SEQ ID NO. 9) and a Zea mays EST (Extended Sequence Tac) clone (SEQ ID NO. 7) and corresponding putative amino acid sequence (SEQ ID NO. 8) were identified. Finally, two cDNA clones were identified, one Arabidopsis thaliana EST (SEQ ID NO. 5 and corresponding predicted amino acid sequence SEQ ID NO. 6) and a Lycopersicon esculentum EST clone (SEQ ID NO. 12) were identified. Further, enzymes designated as PDAT comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID NO 6, 17, 18, 25 or 27 containing a lipase motif FXKWVEA are contemplated within the scope of the invention. Moreover, an enzyme comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID No. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 or 31 or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence are included within the scope of the invention.

A functional fragment of the instant enzyme is understood to be any polypeptide sequence which shows specific enzyme activity of a phospholipid:diacylglycerol acyltransferase (PDAT). The length of the functional fragment can for example vary in a range from about 660 ± 10 amino acids to

15

20

25

12.09.2000

 660 ± 250 amino acids, preferably from about 660 ± 50 to 660 ± 100 amino acids, whereby the "basic number" of 660 amino acids corresponds in this case to the polypeptide chain of the PDAT enzyme of SEQ ID NO. 2 encoded by a nucleotide sequence according to SEQ ID NO. 1. Consequently, the "basic number" of functional fullength enzyme can vary in correspondance to the encoding nucleotide sequence.

A portion of the instant nucleotide sequence is meant to be any nucleotide sequence encoding a polypeptid which shows specific activity of a phospholipid:diacylglycerol acyltransferase (PDAT). The length of the nucleotide portion can vary in a wide range of about several hundreds of nucleotides based upon the coding region of the gene or a highly conserved sequence. For example the length varies in a range form about 1900 ± 10 to 1900 ± 1000 nucleotides, preferably form about 1900 ± 50 to 1900 ± 700 and more preferably form about 1900 ± 100 to 1900 ± 500 nucleotides, whereby the "basic number" of 1900 nucleotides corresponds in this case to the encoding nucleotide sequence of the PDAT enzyme of SEQ ID NO. 1. Consequently, the "basic number" of functional fullength gene can vary.

An allelic variant of the instant nucleotide sequence is understood to be any different nucleotide sequence which encodes a polypeptide with a functionally equivalent function. The alleles pertain naturally occurring variants of the instant nucleotide sequences as well as synthetic nucleotide sequences produced by methods known in the art. Contemplated are even altered nucleotide sequences which result in an enzyme with altered activity and/or regulation or which is resistant against specific inhibitors. The instant invention further includes natural or synthetic mutations of the originally isolated nucleotide sequences. These mutations can be substitution, addition, deletion, inversion or insertion of one or more nucleotides.

A homologous nucleotide sequence is understood to be a complementary sequence and/or a sequence which specifically hybridizes with the instant nucleotide sequence. Hybridizing sequences include similar sequences selected from the group of DNA or RNA which specifically interact to the instant

15

12.09.2000

nucleotide sequences under at least moderate stringency conditions which are known in the art. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. This further includes short nucleotide sequences of e.g. 10 to 30 nucleotides, preferably 12 to 15 nucleotides. Included are also primer or hybridization probes.

A homologous nucleotide sequence included within the scope of the instant invention is a sequence which is at least about 40%, preferably at least about 50 % or 60%, and more preferably at least about 70%, 80% or 90% and most preferably at least about 95%, 96%, 97%, 98% or 99% or more homologous to a nucleotide sequence of SEQ ID NO. 1.

All of the aforementioned definitions are true for amino acid sequences and functional enzymes and can easily transferred by a person skilled in the art.

Isoenzymes are understood to be enzymes which have the same or a similar substrate specifity and/or catalytic activity but a different primary structure.

In a first embodiment, this invention is directed to nucleic acid sequences that encode a PDAT. This includes sequences that encode biologically active PDATs as well as sequences that are to be used as probes, vectors for transformation or cloning intermediates. The PDAT encoding sequence may encode a complete or partial sequence depending upon the intended use. All or a portion of the genomic sequence, cDNA sequence, precursor PDAT or mature PDAT is intended.

Further included is a nucleotide sequence selected from the group consisting of sequences set forth in SEQ ID No. 1, 3, 4, 10, 11, 19, 21, 23, 24, 29 or 30 or a portion, derivate, allele or homolog thereof. The invention pertains a partial nucleotide sequence corresponding to a fullength nucleotide sequence selected from the group consisting of sequences set forth in SEQ ID No. 5, 7, 9, 12, 25, 26, 28 or 31 or a portion, derivate, allele or homolog thereof. Moreover, a

BASF-NAE 3377/99 PCT

7

12.09.2000

nucleotide sequence comprising a nucleotide sequence which is at least 40% homologous to a nucleotide sequence selected form the group consisting of those sequences set forth in SEQ ID No. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 or 31 is contemplated within the scope of the invention.

5

10

15

The instant invention pertains to a gene construct comprising a said nucleotide sequences of the instant invention which is operably linked to a heterologous nucleic acid.

The term operably linked means a serial organisation e.g. of a promotor, coding sequence, terminator and/or further regulatory elements whereby each element can fulfill its original function during expression of the nucleotide sequence.

Further, a vector comprising of a said nucleotide sequence of the instant invention is contemplated in the instant invention. This includes also an expression vector as well as a vector further comprising a selectable marker gene and/or nucleotide sequences for the replication in a host cell and/or the integration into the genome of the host cell.

20

In a different aspect, this invention relates to a method for producing a PDAT in a host cell or progeny thereof, including genetically engineered oil seeds, yeast and moulds or any other oil accumulating organism, via the expression of a construct in the cell. Cells containing a PDAT as a result of the production of the PDAT encoding sequence are also contemplated within the scope of the invention.

25

30

Further, the invention pertains a transgenic cell or organism containing a said nucleotide sequence and/or a said gene construct and/or a said vector. The object of the instant invention is further a transgenic cell or organism which is an eucaryotic cell or organism. Preferably, the transgenic cell or organism is a yeast cell or a plant cell or a plant. The instant invention further pertains said transgenic cell or organism having an altered biosynthetic pathway for the production of triacylglycerol. A transgenic cell or organism having an altered oil content is also contemplated within the scope of this invention.

12.09.2000

Further, the invention pertains a transgenic cell or organism wherein the activity of PDAT is altered in said cell or organism. This altered activity of PDAT is characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme. Moreover, a transgenic cell or organism is included in the instant invention, wherein the altered biosynthetic pathway for the production of triacylglycerol is characterized by the prevention of accumulation of undesirable fatty acids in the membrane lipids.

In a different embodiment, this invention also relates to methods of using a DNA sequence encoding a PDAT for increasing the oil-content within a cell.

Another aspect of the invention relates to the accommodation of high amounts of uncomman fatty acids in the triacylglycerol produced within a cell, by introducing a DNA sequence producing a PDAT that specifically removes these fatty acids from the membrane lipids of the cell and channel them into triacylglycerol. Plant cells having such a modification are also contemplated herein.

Further, the invention pertains a process for the production of triacylglycerol, comprising growing a said transgenic cell or organism under conditions whereby the said nucleotide sequence is expressed and whereby the said transgenic cells comprising a said enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol forming triacylglycerol.

Moreover, triacylglycerols produced by the aforementioned process are included in scope of the instant invention.

Object of the instant invention is further the use of an instant nucleotide sequence and/or a said enzyme for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids. The use of a said instant nucleotide sequence and/or a said enzyme of the instant invention for the transformation of any cell or organism in order to be expressed in this cell or organism and

25

30

15

20

25

30

12.09.2000

result in an altered, preferably increased oil content of this cell or organism is also contemplated within the scope of the instant invention.

A PDAT of this invention includes any sequence of amino acids, such as a protein, polypeptide or peptide fragment obtainable from a microorganism, animal or plant source that demonstrates the ability to catalyse the production of triacylglycerol from a phospholipid and diacylglycerol under enzyme reactive conditions. By "enzyme reactive conditions" is meant that any necessary conditions are available in an environment (e.g., such factors as temperature, pH, lack of inhibiting substances) which will permit the enzyme to function.

Other PDATs are obtainable from the specific sequences provided herein. Furthermore, it will be apparent that one can obtain natural and synthetic PDATs, including modified amino acid sequences and starting materials for synthetic-protein modelling from the examplified PDATs and from PDATs which are obtained through the use of such examplified sequences. Modified amino acid sequences include sequences that have been mutated, truncated, increased and the like, whether such sequences were partially or wholly synthesised. Sequences that are actually purified from plant preparations or are identical or encode identical proteins thereto, regardless of the method used to obtain the protein or sequence, are equally considered naturally derived.

Further, the nucleic acid probes (DNA and RNA) of the present invention can be used to screen and recover "homologous" or "related" PDATs from a variety of plant and microbial sources.

Further, it is also apparent that a person skilled in the art can, with the information provided in this application, in any organism identify a PDAT activity, purify an enzyme with this activity and thereby identify a "non-homologous" nucleic acid sequence encoding such an enzyme.

15

20

12.09.2000

The present invention can be essentially characterized by the following aspects:

- 1. Use of a PDAT gene (genomic clone or cDNA) for transformation.
- Use of a DNA molecule according to item 1 wherein said DNA is used for transformation of any organism in order to be expressed in this organism and result in an active recombinant PDAT enzyme in order to increase oil content of the organism.
 - Use of a DNA molecule of item 1 wherein said DNA is used for transformation of any organism in order to prevent the accumulation of undesirable fatty acids in the membrane lipids.
 - 4. Use according to item 1, wherein said PDAT gene is used for transforming transgenic oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, such as medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.
 - 5. Use according to item 1, wherein said PDAT gene is used for transforming organisms, and wherein said organisms are crossed with other oil accummulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, comprising medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.
 - 6. Use according to item 1, wherein the enzyme encoded by said PDAT gene or cDNA is coding for a PDAT with distinct acyl specificity.
- 7. Use according to item 1 wherein said PDAT encoding gene or cDNA, is derived from Saccharornyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 30% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 8. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from *Saccharornyces cereviseae*, or contain nucleotide sequences coding for an amino acid sequence 40% or more *identical* to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.

20

30

- 12.09.2000
- 9. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from *Saccharornyces cereviseae*, or contain nucleotide sequences coding for an amino acid sequence 60% or more *identical* to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 10. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from *Saccharornyces cereviseae*, or contain nucleotide sequences coding for an amino acid sequence 80% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
 - 11. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from plants or contain nucleotide sequences coding for an amino acid sequence 40% or more identical to the amino acid sequence of PDAT from *Arabidopsis thaliana* or to the protein encoded by the fullength counterpart of the partial Zea mays, Lycopericon esculentum, or Neurospora crassa cDNA clones.
- 12. Transgenic oil accumulating organisms comprising, in their genome, a PDAT gene transferred by recombinant DNA technology or somatic hybridization.
 - 13. Transgenic oil accumulating organisms according to item 12 comprising, in their genome, a PDAT gene having specificity for substrates with a particular uncommon fatty acid and the gene for said uncommon fatty acid.
 - 14. Transgenic organisms according to item 12 or 13 which are selected from the group consisting of fungi, plants and animals.
 - 15. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants.
- 16. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a storage organ specific promotor.
 - 17. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a seed promotor.
 - 18. Oils from organisms according to item 12 17.
 - 19. A method for altering acyl specificity of a PDAT by alteration of the nucleotide sequence of a naturally occurring encoding gene and as a

BASF-NAE 3377/99 PCT

12

12.09.2000

consequence of this alternation creating a gene encoding for an enzyme with novel acyl specifity.

- 20. A protein encoded by a DNA molecule according to item 1 or a functional fragment thereof.
- 21. A protein of item 20 designated phospholipid:diacylglycerol acyltransferase.
 - 22. A protein of item 21 which has a distinct acyl specificity.
 - 23. A protein of item 13 having the amino acid sequence as set forth in SEQ, ID NO. 2, 13, 14 or 15 (and the proteins encoded by the fullength or partial genes set forth in SEQ. ID. NO. 1, 3, 4, 5, 7, 9, 10, 11 or 12) or an amino acid sequence with at least 30 % homology to said amino acid sequence.
 - 24. A protein of item 23 isolated from Saccharomyces cereviseae.

15

30

10

20 General methods:

Yeast strains and plasmids. The wild type yeast strains used were either FY1679 (MATα his3-Δ200 leu2-Δ1 trp1-Δ6 ura3-52) or W303-1A (MATa ADE2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1) (7). The YNR008w::KanMX2 disruption strain FVKT004-04C(AL), which is congenic to FY1679, was obtained from the Euroscarf collection (8). A 2751 bp fragment containing the YNR008w gene with 583 bp of 5' and 183 bp of 3' flanking DNA was amplified W303-1A genomic DNA using Tag polymerase from with TCTCCATCTTCTGCAAAACCT-3' and 5'-CCTGTCAAAAACCTTCTCCTC-3' as primers. The resulting PCR product was purified by agarose gel electrophoresis and cloned into the EcoRV site of pBluescript (pbluescript-pdat). For complementation experiments, the cloned fragment was released from pBluescript by HindIII-Sacl digestion and then cloned between the HindIII and SacI sites of pFL39 (9), thus generating pUS1. For overexpression of the PDAT

10

15

30

12.09.2000

gene, a 2202 bp *Eco*RI fragment from the pBluscript plasmid which contains only 24 bp of 5' flanking DNA was cloned into the BamHI site of the *GAL1-TPK2* expression vector pJN92 (12), thus generating pUS4.

Microsomal preparations. Microsomes from developing seeds of sunflower (Helianthus annuus), Ricinus communis and Crepis palaestina were prepared using the procedure of Stobart and Stymne (11). To obtain yeast microsomes, 1g of yeast cells (fresh weight) was re-suspended in 8 ml of ice-cold buffer (20 mM Tris-Cl, pH 7.9, 10 mM MgCl₂, 1 mM EDTA. 5 % (v/v) glycerol, 1 mM DTT, 0.3 M ammonium sulfate) in a 12 ml glass tube. To this tube, 4 ml of glass beads (diameter 0.45-0.5 mm) were added, and the tube was then heavily shaken (3 x 60 s) in an MSK cell homogenizer (B. Braun Melsungen AG, Germany). The homogenized suspension was centrifuged at 20,000 x g for 15 min at 6°C and the resulting supernatant was again centrifuged at 100,000 x g for 2 h at 6°C. The 100,000 x g pellet was resuspended in 0.1 M potassium phosphate (pH 7.2), and stored at -80°C. It is subsequently referred to as the crude yeast microsomal fraction.

Lipid substrates. Radio-labeled ricinoleic (12-hydroxy-9-octadecenoic) and vernolic (12,13-epoxy-9-octadecenoic) acids were synthesized enzymatically from [1-¹⁴C]oleic acid and [1-¹⁴C]linoleic acid, respectively, by incubation with microsomal preparations from seeds of *Ricinus communis* and *Crepis palaestina*, respectively (12). The synthesis of phosphatidylcholines (PC) or phosphatidylethanolamines (PE) with ¹⁴C-labeled acyl groups in the *sn-*2 position was performed using either enzymatic (13), or synthetic (14) acylation of [¹⁴C]oleic, [¹⁴C]ricinoleic, or [¹⁴C]vernolic acid. Dioleoyl-PC that was labeled in the *sn-*1 position was synthesized from *sn-*1-[¹⁴C]oleoyl-lyso-PC and unlabeled oleic acid as described in (14). *Sn-*1-oleoyl-*sn-*2-[¹⁴C]ricinoleoyl-DAG was synthesized from PC by the action of phospholipase C type XI from *B. Cereus* (Sigma Chemical Co.) as described in (15). Monovernoloyl- and divernoleoyl-DAG were synthesized from TAG extracted from seeds of *Euphorbia lagascae*, using the TAG-lipase (Rizhopus arrhizus, Sigma Chemical

20

25

12.09.2000

Co.) as previously described (16). Monoricinoleoyl-TAG was synthesized according to the same method using TAG extracted from Castor bean.

Lipid analysis. Total lipid composition of yeast were determined from cells harvested from a 40 ml liquid culture, broken in a glass-bead shaker and extracted into chloroform as described by Bligh and Dyer (17), and then separated by thin layer chromatography in hexane/diethylether/acetic acid (80:20:1) using pre-coated silica gel 60 plates (Merck). The lipid areas were located by brief exposure to I2 vapors and identified by means of appropriate standards. Polar lipids, sterol-esters and triacylglycerols, as well as the remaining minor lipid classes, referred to as other lipids, were excised from the plates. Fatty acid methylesters were prepared by heating the dry excised material at 85 °C for 60 min in 2% (v/v) sulfuric acid in dry methanol. The methyl esters were extracted with hexane and analyzed by GLC through a 50 m mm CP-Wax58-CB fused-silica column (Chrompack), with methylheptadecanoic acid as an internal standard. The fatty acid content of each fraction was quantified and used to calculate the relative amount of each lipid class. In order to determine the total lipid content, 3 ml aliquots from yeast cultures were harvested by centrifugation and the resulting pellets were washed with distilled water and lyophilized. The weight of the dried cells was determined and the fatty acid content was quantified by GLC-analyses after conversion to methylesters as described above. The lipid content was then calculated as nmol fatty acid (FA) per mg dry weight yeast.

Enzyme assays. Aliquots of crude microsomal fractions (corresponding to 10 nmol of microsomal PC) from developing plant seeds or yeast cells were lyophilized over night. ¹⁴C-Labeled substrate lipids dissolved in benzene were then added to the dried microsomes. The benzene was evaporated under a stream of N₂, leaving the lipids in direct contact with the membranes, and 0.1 ml of 50 mM potassium phosphate (pH 7.2) was added. The suspension was thoroughly mixed and incubated at 30°C for the time period indicated, up to 90 min. Lipids were extracted from the reaction mixture using chloroform and separated by thin layer chromatography in hexane/diethylether/acetic acid

BASF-NAE 3377/99 PCT

5

10

15

20

15

12.09.2000

(35:70:1.5) using silica gel 60 plates (Merck). The radioactive lipids were visualized and quantified on the plates by electronic autoradiography (Instant Imager, Packard, US).

<u>Yeast cultivation.</u> Yeast cells were grown at 28°C on a rotatory shaker in liquid YPD medium (1% yeast extract, 2% peptone, 2% glucose), synthetic medium (18) containing 2% (v/v) glycerol and 2% (v/v) ethanol, or minimal medium (19) containing 16 g/l of glycerol.

The instant invention is further characterized by the following examples which are not limiting:

Acyl-CoA-independent synthesis of TAG by oil seed microsomes. A large number of unusual fatty acids can be found in oil seeds (20). Many of these fatty acids, such as ricinoleic (21) and vernolic acids (22), are synthesized using phosphatidylcholin (PC) with oleoyl or linoleoyl groups esterified to the sn-2 position, respectively, as the immediate precursor. However, even though PC can be a substrate for unusual fatty acid synthesis and is the major membrane lipids in seeds, unusual fatty acids are rarely found in the membranes. Instead, they are mainly incorporated into the TAG. A mechanism for efficient and selective transfer of these unusual acyl groups from PC into TAG must therefore exist in oil seeds that accumulate such unusual fatty acids. This transfer reaction was biochemically characterized in seeds from castor bean (Ricinus communis) and Crepis palaestina, plants which accumulate high levels of ricinoleic and vernolic acid, respectively, and sunflower (Helianthus annuus), a plant which has only common fatty acids in its seed oil. Crude microsomal fractions from developing seeds were incubated with PC having ¹⁴C-labeled oleoyl, ricinoleoyl or vernoloyl groups at the *sn-2* position. After the incubation, lipids were extracted and analyzed by thin layer chromatography. We found that the amount of radioactivity that was incorporated into the neutral lipid fraction increased linearly over a period of 4 hours (data not shown). The distribution of [14C]acyl groups within the neutral lipid fraction was analyzed after 80 min (Fig. 1). Interestingly the amount and distribution of radioactivity

12.09.2000

between diffferent neutral lipids were strongly dependent both on the plant species and on the type of [14C]acyl chain. Thus, sunflower microsomes incorporated most of the label into DAG, regardless of the type of [14C]acyl group. In contrast, *R. communis* microsomes preferentially incorporated [14C]ricinoleoyl and [14C]vernoloyl groups into TAG, while [14C]oleyl groups mostly were found in DAG. *C. palaestina* microsomes, finally, incorporated only [14C]vernolyol groups into TAG, with [14C]ricinoleyl groups being found mostly as free fatty acids, and [14C]oleyl groups in DAG. This shows that the high *in vivo* levels of ricinoleic acid and vernolic acid in the TAG pool of *R. communis* and *C. palaestina*, respectively, can be explained by an efficient and selective transfer of the corresponding acyl groups from PC to TAG in these organisms.

The in-vitro synthesis of triacylglycerols in microsomal preparations of developing castor bean is summarized in table 1.

15

20

25

30

PDAT: a novel enzyme that catalyzes acyl-CoA independent synthesis of TAG. It was investigated if DAG could serve both as an acyl donor as well as an acyl acceptor in the reactions catalyzed by the oil seed microsomes. Therefore, unlabeled divernoloyl-DAG was incubated with either sn-1-oleoyl-sn-2-[14C]ricinoleoyl-DAG or sn-1-oleoyl-sn-2-[14C]ricinoleoyl-PC in the presence of R. communis microsomes. The synthesis of TAG molecules containing both [14C]ricinoleoyl and vernoloyl groups was 5 fold higher when [14C]ricinoleoyl-PC served as acyl donor as compared to [14C]ricinoleoyl-DAG (fig.1B). These data strongly suggests that PC is the immediate acyl donor and DAG the acyl acceptor in the acyl-CoA-independent formation of TAG by oil seed microsomes. Therefore, this reaction is catalyzed by a new enzyme which we call phospholipid: diacylglycerol acyltransferase (PDAT).

<u>PDAT activity in yeast microsomes.</u> Wild type yeast cells were cultivated under conditions where TAG synthesis is induced. Microsomal membranes were prepared from these cells and incubated with *sn*-2-[¹⁴C]-ricinoleoyl-PC and DAG and the ¹⁴C-labeled products formed were analyzed. The PC-derived [¹⁴Clricinoleoyl groups within the neutral lipid fraction mainly were found in free

12.09.2000

fatty acids or TAG, and also that the amount of TAG synthesized was dependent on the amount of DAG that was added to the reaction (Fig.2). The *in vitro* synthesis of TAG containing both ricinoleoyl and vernoloyl groups, a TAG species not present *in vivo*, from exogenous added *sn*-2-[¹⁴C]ricinoleoyl-PC and unlabelled vernoloyl-DAG (Fig. 2, lane 3) clearly demonstrates the existence of an acyl-CoA-independent synthesis of TAG involving PC and DAG as substrates in yeast microsomal membranes. Consequently, TAG synthesis in yeast can be catalyzed by an enzyme similar to the PDAT found in plants.

The PDAT encoding gene in yeast.

A gene in the yeast genome (YNR008w) is known, but nothing is known about the function of YNR008w, except that the gene is not essential for growth under normal circumstances. Microsomal membranes were prepared from the yeast strain FVKT004-04C(AL) (8) in which this gene with unknown function had been disrupted. PDAT activity in the microsomes were assayed using PC with radiolabelled fatty acids at the sn-2 position. The activity was found to be completely absent in the disruption strain (Fig. 2 lane 4). Significantly, the activity could be partially restored by the presence of YNR008w on the single 2 lane 5). Moreover, acyl groups of copy plasmid pUS1 (Fig. phosphatidylethanolamine (PE) were efficiently incorporated into TAG by microsomes from the wild type strain whereas no incorporation occured from this substrate in the mutant strain (data not shown). This shows that YNR008w encodes a yeast PDAT which catalyzes the transfer of an acyl group from the sn-2 position of phospholipids to DAG, thus forming TAG. It should be noted that no cholesterol esters were formed from radioactive PC even in incubations with added ergosterols, nor were the amount of radioactive free fatty acids formed from PC affected by disruption of the YNR008w gene (data not shown). This demonstrates that yeast PDAT do not have cholesterol ester synthesising or phospholipase activities.

30

10

15

20

25

Increased TAG content in yeast cells that overexpress PDAT. The effect of overexpressing the PDAT-encoding gene was studied by transforming a wild type yeast strain with the pUS4 plasmid in which the gene is expressed from

15

20

30

the galactose-induced GAL1:TPK2 promoter. Cells containing the empty expression vector were used as a control. The cells were grown in synthetic glycerol-ethanol medium, and expression of the gene was induced after either 2 hours (early log phase) or 25 hours (stationary phase) by the addition of galactose. The cells were then incubated for another 21 hours, after which they were harvested and assays were performed. We found that overexpression of PDAT had no significant effect on the growth rate as determined by the optical density. However, the total lipid content, measured as µmol fatty acids per mg yeast dry weight, was 47% (log phase) or 29% (stationary phase) higher in the PDAT overexpressing strain than in the control. Furthermore, the polar lipid and sterolester content was unaffected by overexpression of PDAT. Instead, the elevated lipid content in these cells is entirely due to an increased TAG content (Fig. 3A,B). Thus, the amount of TAG was increased by 2-fold in PDAT overexpressing early log phase cells and by 40% in stationary phase cells. It is interesting to note that a significant increase in the TAG content was achieved by overexpressing PDAT even under conditions (i.e. in stationary phase) where DAGAT is induced and thus contributes significantly to TAG synthesis. In vitro PDAT activity assayed in microsomes from the PDAT overexpressing strain was 7-fold higher than in the control strain, a finding which is consistent with the increased levels of TAG that we observed in vivo (Fig. 3C). These results clearly demonstrate the potential use of the PDAT gene in increasing the oil content in transgenic organisms.

Substrate specificity of yeast PDAT. The substrate specificity of yeast PDAT was analyzed using microsomes prepared from the PDAT overexpressing strain (see Fig. 4). The rate of TAG synthesis, under conditions given in figure 4 with di-oleoyl-PC as the acyl-donor, was 0.15 nmol per min and mg protein. With both oleoyl groups of PC labeled it was possible, under the given assay conditions, to detect the transfer of 11 pmol/min of [14C]oleoyl chain into TAG and the formation of 15 pmol/min of lyso-PC. In microsomes from the PDAT-deficient strain, no TAG at all and only trace amounts of lyso-PC was detected, strongly suggesting that yeast PDAT catalyses the formation of equimolar amounts of TAG and lyso-PC when supplied with PC and DAG as

10

15

20

25

30

substrates. The fact that somewhat more lyso-PC than TAG is formed can be explained by the presence of a phospholipase in yeast microsomes, which produces lyso-PC and unesterified fatty acids from PC.

The specificity of yeast PDAT for different acyl group positions was investigated by incubating the microsomes with di-oleoyl-PC carrying a [14Clacyl group either at the sn-1 position (Fig. 4A bar 2) or the sn-2 position (Fig. 4A bar 3). We found that the major ¹⁴C-labeled product formed in the former case was lyso-PC, and in the latter case TAG. We conclude that yeast PDAT has a specificity for the transfer of acyl groups from the sn-2 position of the phospholipid to DAG, thus forming sn-1-lyso-PC and TAG. Under the given assay conditions, trace amounts of 14C-labelled DAG is formed from the sn-1 labeled PC by the reversible action of a CDP-choline : choline phosphotransferase. This labeled DAG can then be further converted into TAG by the PDAT activity. It is therefore not possible to distinguish whether the minor amounts of labeled TAG that is formed in the presence of di-oleoyl-PC carrying a [14C]acyl group in the sn-1 position, is synthesized directly from the sn-1-labeled PC by a PDAT that also can act on the sn-1 postion, or if it is first converted to sn-1-labeled DAG and then acylated by a PDAT with strict selectivity for the transfer of acyl groups at the sn-2 position of PC. Taken together, this shows that the PDAT encoded by YNR008w catalyses an acyl transfer from the sn-2 position of PC to DAG, thus causing the formation of TAG and lyso-PC.

The substrate specificity of yeast PDAT was further analyzed with respect to the headgroup of the acyl donor, the acyl group transferred and the acyl chains of the acceptor DAG molecule. The two major membrane lipids of *S. cerevisiae* are PC and PE, and as shown in Fig. 4B (bars 1 and 2). dioleoyl-PE is nearly 4-fold more efficient than dioleoyl-PC as acyl donor in the PDAT-catalyzed reaction. Moreover, the rate of acyl transfer is strongly dependent on the type of acyl group that is transferred. Thus, a ricinoleoyl group at the *sn*-2 position of PC is 2.5 times more efficiently transferred into TAG than an oleoyl group in the same position (Fig. 4B bars 1 and 3). In contrast, yeast PDAT has

15

20

25

12.09.2000

no preference for the transfer of vernoloyl groups over oleoyl groups (Fig. 4B bars 1 and 4). The acyl chain of the acceptor DAG molecule also affects the efficiency of the reaction. Thus, DAG with a ricinoleoyl or a vernoloyl group is a more efficient acyl acceptor than dioleoyl-DAG (Fig. 4B bars 1, 5 and 6). Taken together, these results clearly show that the efficiency of the PDAT-catalyzed acyl transfer is strongly dependent on the properties of the substrate lipids.

PDAT genes. Nucleotide and amino acid sequences of several PDAT genes are given as SEQ ID No. 1 through 15. Futher provisional and/or partial sequences are given as SEQ ID NO 16 through 20 and 21 through 31, respectively. One of the Arabidopsis genomic sequences (SEQ ID NO. 4) identified an Arabidopsis EST cDNA clone; T04806. This cDNA clone was fully characterised and the nucleotide sequence is given as SEQ ID NO. 5. Based on the sequence homology of the T04806 cDNA and the Arabidopsis thaliana genomic DNA sequence (SEQ ID NO 4) it is apparent that an additional A is present at position 417 in the cDNA clone (data not shown). Excluding this nucleotide would give the amino acid sequence depicted in SEQ ID NO. 12.

Increased TAG content in seeds of Arabidopsis thaliana that express the yeast PDAT. For the expression of the yeast PDAT gene in Arabidopsis thaliana an EcoRI fragment from the pBluescript-PDAT was cloned together with napin promotor (25) into the vector pGPTV-KAN (26). A plasmid (pGNapPDAT) having the yeast PDAT gene in the correct orientation was identified and transformed into Agrobacterium tumefaciens. These bacteria were used to transform Arabidopsis thaliana columbia (C-24) plants using the root transformation method (27). Plants transformed with an empty vector were used as controls.

First generation seeds (T1) were harvested and germinated on kanamycin containing medium. Second generation seeds (T2) were pooled from individual plants and their fatty acid contents analysed by quantification of their methyl esthers by gas liquid chromatography after methylation of the seeds with 2% sulphuric acid in methanol at 85 °C for 1,5 hours. Quaritification was done with heptadecanoic acid methyl esters as internal standard.

BASF-NAE 3377/99 PCT

12.09.2000

From the transformation with pGNapPDAT one T1 plant (26-14) gave raise to seven T2 plants of which 3 plants yielded seeds with statistically (in a mean difference two-sided test) higher oil content than seeds from T2 plants generated from T1 plant 32-4 transformed with an empty vector (table 2).

10

20

30

12.09.2000

References cited in the description:

- 1. Bell, R. M. & Coleman, R. A. (1980) Annu. Rev. Biochem. 49, 459-487.
- 2. Stymne, S. & Stobart, K. (1987) in *The biochemistry of plants: a comprehensive treatsie, Vol. 9*, ed. Stumpf, P. K. (Academic Press, New York), pp. 175-214.
 - 3. Cases, S. et al. (1998) Proc. Natl. Acad. Sci. U S A 95, 13018-13023.
 - 4. Hobbs, D. H., Lu, C. & Hills, M. J. (1999) FEBS Lett. 452, 145-9
- 5. Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G. & Taylor, D. C. (1999) Plant J. 19, 645-653.
 - Lardizabal, K., Hawkins, D., Mai, J., & Wagner, N. (1999) Abstract presented at the Biochem. Mol. Plant Fatty Acids Glycerolipids Symposium, South Lake Tahoe, USA.
 - 7. Thomas, B. J. & Rothstein, R. (1989) Cell 56, 619-630.
- 8. Entian, K.-D. & Kötter, P. (1998) Meth. Microbiol. 26, 431-449.
 - 9. Kern, L., de Montígny, J., Jund, R. & Lacroute, F. (1990) Gene 88, 149-157.
 - 10. Ronne, H., Carlberg, M., Hu, G.-Z. & Nehlin, J. O. (1991) *Mol. Cell. Biol.* 11, 4876-4884.
 - 11. Stobart, K. & Stymne, S. (1990) in *Method in Plant Biochemistry, vol 4,* eds. Harwood, J. L. & Bowyer, J. R. (Academic press, London), pp. 19-46.
 - 12. Bafor, M., Smith, M. A., Jonsson, L., Stobrt, A. K. & Stymne, S. (1991) *Biochem. J.* **280**, 507-514.
 - 13. Banas, A., Johansson, I. & Stymne, S. (1992) Plant Science 84, 137-144.
 - 14. Kanda, P. & Wells, M. A. (1981) J. Lipid. Res. 22, 877-879.
- 25 15. Ståhl, U., Ek, B. & Stymne, S. (1998) Plant Physiol. 117, 197-205.
 - 16. Stobart, K., Mancha, M. & Lenman M, Dahlqvist, A. & Stymne, S. (1997) *Planta* **203**, 58-66.
 - 17. Bligh, E. G. & Dyer, W. J. (1959) Can. J. Biochem. Physiol. 37, 911-917.
 - 18. Sherman, F., Fink, G. R. & Hicks, J. B. (1986) in *Laboratory Course Manual for Methods in Yeast Genentics* (Cold Spring Harbor Laboratory)
 - 19. Meesters, P. A. E. P., Huijberts, G. N. M. and Eggink, G. (1996) Appl. Microbiol. Biotechnol. 45, 575-579.
 - 20. van de Loo, F. J., Fox, B. G. & Sommerville, C. (1993), in *Lipid metabolism in plants*, ed. Moore, T. S. (CRC Press, Inc.), pp. 91-126.
- 21. van de Loo, F. J., Broun, P., Turner, S. & Sommerville, S. (1995) *Proc. Natl. Acad. Sci. U S A* 95, 6743-6747.
 - 22. Lee, M., Lenman, M., Banas, A., Bafor, M., Singh, S., Schweizer, M., Nilsson, R., Liljenberg, C., Dahlqvist, A., Gummeson, P-O., Sjödahl, S.,

12.09 2000

- Green, A., and Stymne, S. (1998) Science 280, 915-918.
- 23. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997) *Nucl. Acids Res.* **24**, 4876-4882.
- 24. Saitou, N. & Nei, M. (1987) Mol. Biol. Evol. 4, 406-425.
- 25. Stålberg, K., Ellerström, M., Josefsson, L., & Rask, L. (1993) *Plant Mol. Biol.* 23, 671
 - 26. Becker, D., Kemper, E., Schell, J., Masterson, R. (1992) Plant Mol. Biol. 20, 1195
- 27.D. Valvekens, M. Van Montagu, and Van Lusbettens (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5536

BASF-NAE 3377/99 PCT

24

12.09.2000

Description of Figures

FIG. 1.

Metabolism of 14C-labeled PC into the neutral lipid fraction by plant microsomes. (A) Microsomes from developing seeds of sunflower, R. communis and C. palaestina were incubated for 80 min at 30°C with PC (8 nmol) having oleic acid in its sn-1 position, and either ¹⁴C-labeled oleic. ricinoleic or vernolic acid in its sn-2 position. Radioactivity incorporated in TAG (open bars), DAG (solid bars), and unsterified fatty acids (hatched bars) was quantified using thin layer chromatography followed by autoradiography, and is shown as percentage of added labeled substrate. (B) Synthesis in vitro of TAG carrying two vernoloyl and one [14C]ricinoleoyl group by microsomes from R. communis. The substrates added were unlabeled divernoloyl-DAG (5 nmol), together with either sn-1-oleoyl-sn-2-[14C]ricinoleoyl-DAG (0.4 nmol, 7700 dpm/nmol) or sn-1-oleoyl-sn-2-[14C]ricinoleoyl-PC (0.4 nmol, 7700 dpm/nmol). The microsomes were incubated with the substrates for 30 min at 30°C, after which samples were removed for lipid analysis as described in the section "general methods". The data shown are the average of two experiments.

20

25

10

15

FIG. 2.

PDAT activity in yeast microsomes, as visualized by autoradiogram of neutral lipid products separated on TLC. Microsomal membranes (10 nmol of PC) from the wild type yeast strain FY1679 (lanes 1-3), a congenic yeast strain (FVKT004-04C(AL)) that is disrupted for YNR008w (lane 4) or the same disruption strain transformed with the plasmid pUS1, containing the YNR008w gene behind its native promotor (lane 5), were assayed for PDAT activity. As substrates, we used 2 nmol *sn*-1-oleoyl-*sn*-2-[¹⁴C]ricinoleoyl-PC together with either 5 nmol of dioleoyl-DAG (lanes 2, 4 and 5) or *rac*-oleoyl-vernoleoyl-DAG (lane 3). The enzymatic assay and lipid analysis was performed as described in Materials and Methods. The cells were precultured for 20 h in liquid YPD medium, harvested and re-suspended in an equal volume of minimal medium (19) containing 16 g/l glycerol. The cells were then grown for an additional 24 h

prior to being harvested. Selection for the plasmid was maintained by growing the transformed cells in synthetic medium lacking uracil (18). Abbreviations: 1-OH-TAG, monoricinoleoyl-TAG; 1-OH-1-ep-TAG, monoricinoleoyl-monovernoloyl-TAG; OH-FA, unesterified ricinoleic acid.

Fig. 3.

5

10

20

Lipid content (A,B) and PDAT activity (C) in PDAT overexpressing yeast cells. The PDAT gene in the plasmid pUS4 was overexpressed from the galactoseinduced GAL1-TPK2 promotor in the wild type strain W303-1A (7). Its expression was induced after (A) 2 hours or (B) 25 hours of growth by the addition of 2% final concentration (w/v) of galactose. The cells were then incubated for another 22 hours before being harvested. The amount of lipids of the harvested cells was determined by GLC-analysis of its fatty acid contents and is presented as µmol fatty acids per mg dry weight in either TAG (open bar), polar lipids (hatched bar), sterol esters (solid bar) and other lipids (striped bar). The data shown are the mean values of results with three independent yeast cultures. (C) In vitro synthesis of TAG by microsomes prepared from yeast cells containing either the empty vector (vector) or the PDAT plasmid (+ PDAT). The cells were grown as in Fig. 3A. The substrate lipids dioleoyl-DAG (2.5 nmol) and sn-1-oleoyl-sn-2-[14C]-oleoyl-PC (2 nmol) were added to aliquots of microsomes (10 nmol PC), which were then incubated for 10 min at 28 °C. The amount of label incorporated into TAG was quantified by electronic autoradiography. The results shown are the mean values of two experiments.

25 FIG. 4.

Substrate specificity of yeast PDAT. The PDAT activity was assayed by incubating aliquots of lyophilized microsomes (10 nmol PC) with substrate lipids at 30°C for 10 min (panel A) or 90 min (panel B). Unlabeled DAG (2.5 nmol) was used as substrates together with different labeled phospholipids, as shown in the figure. (A) *Sn*-position specificity of yeast PDAT regarding the acyl donor substrate. Dioleoyl-DAG together with either *sn*-1-[¹⁴C]oleoyl-*sn*-2-[¹⁴C]oleoyl-PC (*sn*1-[¹⁴C]-PC) or *sn*-1-oleoyl-sn-2-[¹⁴C]oleoyl-PC (*sn*2-[¹⁴C]-PC). (B) Specificity of yeast PDAT regarding

phospholipid headgroup and of the acyl composition of the phospholipid as well as of the diacylglycerol. Dioleoyl-DAG together with either sn-1-oleoyl-sn-2-[14C]oleoyl-PC (oleoyl-PC), sn-1-oleoyl-sn-2-[14C]oleoyl-PE (oleoyl-PE), sn-1oleoyl-sn-2-[14C]ricinoleoyl-PC (ricinoleoyl-PC) or sn-1-oleoyl-sn-2-[14C]vernoloyl-PC (vernoloyl-PC). In the experiments presented in the 2 bars to the far right, monoricinoleoyl-DAG (ricinoleoyl-DAG or mono-vernoloyl-DAG (vernoloyl-DAG) were used together with sn-1-oleoyl-sn-2-114Cl-oleoyl-PC. The label that was incorporated into TAG (solid bars) and lyso-PC (LPC, open bars) was quantified by electronic autoradiography. The results shown are the mean values of two experiments. The microsomes used were from W303-1A cells overexpressing the PDAT gene from the GAL1-TPK2 promotor, as described in Fig. 3. The expression was induced at early stationary phase and the cells were harvested after an additional 24 h.

15

20

10

TAB.1:

In vitro synthesis of triacylglycerols in microsomal preparations of developing castor bean. Aliquots of microsomes (20 nmol PC) were lyophilised and substrate lipids were added in benzene solution: (A) 0.4 nmol [14C]-DAG (7760 dpm/nmol) and where indicated 1.6 nmol unlabelled DAG; (B) 0.4 nmol [14C]-DAG (7760 dpm/nmol) and 5 nmol unlabelled di-ricinoleoyl-PC and (C) 0.25 nmol [14C]-PC (4000 dpm/nmol) and 5 nmol unlabelled DAG. The benzene was evaporated by N2 and 0.1 ml of 50 mM potassium phosphate was added, thoroughly mixed and incubated at 30 °C for (A) 20 min.; (B) and (C) 30 min.. Assays were terminated by extraction of the lipids in chloroform. The lipids were then separated by thin layer chromatography on silica gel 60 plates (Merck; Darmstadt, Germany) in hexan/diethylether/acetic 35:70:1.5. The radioactive lipids were visualised and the radioactivity quantified on the plate by electronic autoradiography (Instant Imager. Packard, US). Results are presented as mean values of two experiments.

Radioactivity in different triacylglycerols (TAG) species formed. Abbreviations used: 1-OH-, mono-ricinoleoyl-; 2-OH, di-ricinoleoyl-; 3-OH-, triricinoleoyl; 1-

OH-1-ver-, mono-ricinoleoly-monovernoleoyl-; 1-OH-2-ver-, mono-ricinoleoyl-divernoleoyl-. Radiolabelled DAG and PC were prepared enzymatically. The radiolabelled ricinoleoyl group is attached at the sn-2-position of the lipid and unlabelled oleoyl group at the sn-1-position. Unlabelled DAG with vernoleoyl- or ricinoleoyl chains were prepared by the action of TAG lipase (6) on oil of Euphorbia lagascae or Castor bean, respectively. Synthetic di-ricinoleoyl-PC was kindly provided from Metapontum Agribios (Italy).

10 <u>TAB.2:</u>

Total fatty acids per mg of T2 seeds pooled from individual *Arabidopsis thaliana* plants transformed with yeast PDAT gene under the control of napin promotor (26-14) or transformed with empty vector (32-4).

 * = stastistical difference between control plants and PDAT transformed plants in a mean difference two-sided test at $\alpha = 5$.

12.09.2000

Description of the SEQ ID:

- SEQ ID NO. 1: Genomic DNA sequence and suggested amino acid sequence of the Saccharomyces cerevisiae PDAT gene, YNR008w, with GenBank accession number Z71623 and Y13139, and with nucleotide ID number 1302481.
 - SEQ ID NO. 2: The amino acid sequence of the suggested open reading frame YNR008w from Saccharomyces cerevisiae.
- SEQ ID NO. 3: Genomic DNA sequence of the Schizosaccharomyces pombe gene SPBC776.14.
 - SEQ ID NO. 4: Genomic DNA sequence of part of the Arabidopsis thaliana locus with GenBank accession number AB006704.
 - SEQ ID NO. 5: Nucleotide sequence of the Arabidopsis thaliana cDNA clone with GenBank accession number T04806, and nucleotide ID number 315966.
- SEQ ID NO. 6: Predicted amino acid sequence of the Arabidopsis thaliana cDNA clone with GenBank accession number T04806.
 - SEQ ID NO. 7: Nucleotide and amino acid sequence of the Zea mays EST clone with GenBank accession number Al491339, and nucleotide ID number 4388167.
- 25 SEQ ID NO. 8: Predicted amino acid sequence of the Zea mays EST clone with GenBank accession number AI491339, and nucleotide ID number 4388167.
- SEQ ID NO. 9: DNA sequence of part of the Neurospora crassa EST clone W07G1, with GenBank accession number Al398644, and nucleotide ID number 4241729.
 - SEQ ID NO. 10: Genomic DNA sequence of part of the Arabidopsis thaliana locus

15

20

25

12.09.2000

with GenBank accession number AC004557.

SEQ ID NO. 11: Genomic DNA sequence of part of the Arabidopsis thaliana locus with GenBank accession number AC003027.

SEQ ID NO. 12: DNA sequence of part of the Lycopersicon esculentum cDNA clone with GenBank accession number Al486635.

SEQ ID NO. 13: Amino acid sequence of the Schizosaccharomyces pombe putative open reading frame CAA22887 of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 14: Amino acid sequence of the Arabidopsis thaliana putative open reading frame AAC80628 derived from the Arabidopsis thaliana locus with GenBank accession number AC004557.

SEQ ID NO 15: Amino acid sequence of the Arabidopsis thaliana putative open reading frame AAD10668 derived from the Arabidopsis thaliana locus with GenBank accession number AC003027.

Further provisional and/or partial sequences are defined through the following SEQ IDs:

SEQ ID NO. 16: The amino acid sequence of the yeast ORF YNR008w from Saccharomyces cerevisiae.

SEQ ID NO. 17: Amino acid sequence of the region of the Arabidopsis thaliana genomic sequence (AC004557).

SEQ ID NO. 18: Amino acid sequence of the region of the *Arabidopsis thaliana* genomic sequence (AB006704).

25

12.09.2000

SEQ ID NO. 19: The corresponding genomic DNA sequence and amino acid sequence of the yeast ORF YNROO8w from Saccharomyces cerevisiae.

SEQ ID NO. 20: The amino acid sequence of the yeast ORF YNROO8w from Saccharomyces cerevisiae derived form the corresponding genomic DNA sequence.

SEQ ID NO. 21: Genomic DNA sequence of the Saccharomyces cerevisiae
10 PDAT gene, YNR008w, genebank nucleotide ID number 1302481, and the suggested YNR008w amino acid sequence.

SEQ ID NO. 22: The suggested amino acid sequence of the yeast gene YNR008w from Saccharomyces cerevisiae.

SEQ ID NO. 23: Genomic DNA sequence of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 24: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AB006704.

SEQ ID NO. 25: Nucleotide sequence and the corresponding amino acid sequence of the *Arabidopsis thaliana* EST-clone with genebank accession number T04806, and ID number 315966.

SEQ ID NO. 26: Nucleotide and amino acid sequence of the Zea mays cDNA clone with genebank ID number 4388167.

SEQ ID NO. 27: Amino acid sequence of the Zea mays cDNA clone with genebank ID number 4388167.

SEQ ID NO. 28: DNA sequence of part of the Neurospora crassa cDNA clone WO7G1, ID number 4241729.

BASF-NAE 3377/99 PCT

31

12.09.2000

SEQ ID NO. 29: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AC004557.

5 SEQ ID NO. 30: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AC003027.

SEQ ID NO. 31: DNA sequence of part of the Lycopersicon esculentum cDNA clone with genebank accession number Al486635.

<u>Claims</u>

- 1. An enzyme catalysing in an acyl-CoA-independent reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.
- 2. An enzyme according to claim 1, comprising an amino acid sequence as set forth in SEQ ID No. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.

10

15

20

25

5

- 3. An enzyme according to claims 1 or 2 designated as phospholipid:diacylglycerol acyltransferase (PDAT).
- 4. An enzyme according to claims 1 to 3, comprising an amino acid sequence as set forth in SEQ ID No. 16, 20 or 22 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
- 5. An enzyme according to claims 1 to 4, comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID No. 6, 8, 13, 14, 15, 17, 18, 25 or 27 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
- 6. An enzyme according to claims 1 to 5, comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID No. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 or 31 or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence.
- 7. A nucleotide sequence encoding an enzyme catalysing in an acyl-CoAindependent reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.

30

12.09.2000

- 8. A nucleotide sequence according to claim 7 encoding an enzyme designated as phospholipid:diacylglycerol acyltransferase (PDAT).
- 9. A nucleotide sequence according to claims 7 or 8, selected from the group consisting of sequences as set forth in SEQ ID No. 1, 3, 4, 10, 11, 19, 21, 23, 24, 29 or 30 or a portion, derivate, allele or homolog thereof.
- 10. A partial nucleotide sequence corresponding to a fullength nucleotide sequence according to claims 7 to 9, selected from the group consisting of sequences as set forth in SEQ ID No. 5, 7, 9, 12, 25, 26, 28 or 31 or a portion, derivate, allele or homolog thereof.
 - 11. A nucleotide sequence according to claims 7 to 10, comprising a nucleotide sequence which is at least 40% homologous to a nucleotide sequence selected form the group consisting of those sequences set forth in SEQ ID No. 1, 3, 4, 5, 7, 9, 10, 11, 12, 19, 21, 23, 24, 25, 26, 28, 29, 30 or 31.
- 12. A gene construct comprising a nucleotide sequence according to claims 7 to 11 operably linked to a heterologous nucleic acid.
 - 13. A vector comprising a nucleotide sequence according to claims 7 to 11 or a gene construct according to claim 12.
- 25 14. A vector according to claim 13, which is an expression vector.
 - 15. A vector according to claims 13 or 14, further comprising a selectable marker gene and/or nucleotide sequences for the replication in a host cell or the integration into the genome of the host cell.

16. A transgenic cell or organism containing a nucleotide sequence according to claims 7 to 11 and/or a gene construct according to claim 12 and/or a vector according to claims 13 to 15.

20

25

30

- 17. A transgenic cell or organism according to claim 16 which is an eucaryotic cell or organism.
- 18. A transgenic cell or organism according to claims 16 or 17 which is a yeast cell or a plant cell or a plant.
 - 19. A transgenic cell or organism according to claims 16 to 18 having an altered biosynthetic pathway for the production of triacylglycerol.
 - 20. A transgenic cell or organism according to claims 16 to 19 having an altered oil content.
- 21. A transgenic cell or organism according to claims 16 to 20 wherein the activity of PDAT is altered.
 - 22. A transgenic cell or organism according to claims 16 to 21 wherein the altered activity of PDAT is characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme.
 - 23. A transgenic cell or organism according to claims 16 to 22 wherein the altered biosynthetic pathway for the production of triacylglycerol is characterized by the prevention of accumulation of undesirable fatty acids in the membrane lipids.
 - 24. A process for the production of triacylglycerol, comprising growing a transgenic cell or organism according to claims 16 to 23 under conditions whereby the said nucleotide sequence according to claims 7 to 11 is expressed.
 - 25. Triacylglycerols produced by a process according to claim 24.

- 26. Use of a nucleotide sequence according to claims 7 to 11 and/or an enzyme according to claims 1 to 6 for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids.
- 27. Use of a nucleotide sequence according to claims 7 to 11 and/or an enzyme according to claims 1 to 6 for the transformation of any cell or organism in order to be expressed in this cell or organism and result in an altered, preferably increased oil content of this cell or organism.

BASF-NAE 3377/99 PCT

36

12.09.2000

Abstract of the Disclosure

The present invention relates to the isolation, identification and characterization of nucleotide sequences encoding an enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol, to the said enzymes and a process for the production of triacylglycerols.

09/937779

Figures

Fig. 1:

12.09.2000 **09/937779**

BASF-NAE 3377 / 99 PCT Fig 3:

3/6

Fig.4:

09/937779

BASF-NAE 3377 / 99 PCT

Tables Tab. 1:

			mol % of adde	mol % of added [14C] -acyl group in TAG(1)	o in TAG		w
Substrate added [14C]-lipid ⁽²⁾ unlabelled lipid ⁽²⁾	unlabelled lipid ⁽²⁾	1-OH-TAG	2-OH-TAG	1-OH-1-ver-TAG 1-OH-2-ver-TAG	1-OH-2-ver-TAG	3-OH-TAG	
A mono-l' ¹⁴ C]-ricinoleoyl-DAG mono-ricinoleoyl-DAG	mono-ricinoleoyl-DAG	2,8	12,4				
A mono-[14C]-ricinoleoyl-DAG mono-vernoleoyl-DAG	mono-vernoleoyl-DAG	3,2	12,1	1,3	-	1	
A mono-[14C]-ricinoleoyl-DAG di-vernoleoyl-DAG	di-vernoleoyl-DAG	4	10	0,5	1,2		
A mono-[14C]-ricinoleoyl-DAG di-ricinoleoyl-PC	di-ricinoleoyl-PC	· c'0	24,8				
B mono-[¹⁴ C]-ricinoleoyl-PC	none	6,8	0,8		; ;	4,7	
C mono-[¹⁴ C]-ricinoleoyl-PC	di-oleoyl-DAG	8,6	8°, 0°			5,0	
C mono-[¹⁴ C]-ricinoleoyl-PC	mono-ricinoleoyl-DAG	5,7	16,7	t	1		
C mono-[14C]-ricinoleoyl-PC	di-ricinoleoyi-DAG	4,5	9,4	i i	ı	9,5	
C mcno-[¹⁴ C]-ricinoleoyl-PC	mono-vernoleoyl-DAG	0'9	11,5	10,9	0,5	7,4	
G mono-[14G]-ricinoleoyl-PC	di-vernoleoyl-DAG	2,9	10,8		8,4	6,8	
	-						

Tab. 2:

T1 plant	T2 plant number	nmol fatty acids per mg see	ed standard deviation
32-4	1	1277	±11 (n=2)
	4	1261	±63 (n=3)
	5	1369	+17 (n=3)
	6	1312	±53 (n=4)
	7	1197	±54 (n=5)
	8	1240	+78 (n=4)
	9	1283	$\pm 54 \text{ (n= 5)}$
	10	1381	$\pm 35 \text{ (n=5)}$
26-14	1	1444	±110 (n=4)
	2	1617*	+109 (n=4)
	3	1374	±37 (n=2)
	5	1562*	\pm 70 (n=4)
	6	1393	\pm 77 (n=4)
	7	1433	±98 (n=4)
	8	1581*	±82 (n=4)

Declaration, Power of Attorney and Petition

00474

204/4

JUL 0 2 2002

Page 1 of 4 0093/000003

We (I), the undersigned inventor(s), hereby declare(s) that

My residence, post office address and citizenship are as stated below next to my name,

We (I) believe that we are (I am) the original, first, and joint (sole) inventor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled

NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYCLOGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

the specification of which

[]	is attached hereto.	
[x]	was filed onSeptember 28, 2001	as
	Application Serial No. <u>09/937,779</u>	
	and amended on	•
[x]	was filed as PCT international application	
	Number <u>PCT/EP/00/02701</u>	_
	on <u>March 28, 2000</u>	_
	and was amended under PCT Article 19	
	on (if applicable	le)

We (I) hereby state that we (I) have reviewed and understand the contents of the above—identified specification, including the claims, as amended by any amendment referred to above.

We (I) acknowledge the duty to disclose information known to be material to the patentability of this application as defined in Section 1.56 of Title 37 Code of Federal Regulations.

We (I) hereby claim foreign priority benefits under 35 U.S.C. § 119(a)—(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed. Prior Foreign Application(s)

Application No.	Country	Day/Month/Year	Priority Claimed
99106656.4	Europe	01 April 1999	[x] Yes [] No
99111321.8	Europe	10 June 1999	[x] Yes [] No
60/180687	United States of America	07 February 2000	[x] Yes [] No

Page 3 of 4 Declaration

0093/000003

Anders Dahlqvist_

NAME OF SOLE OR FIRST INVENTOR

Signature of Inventor

Date 29.08.2001

Residence:

Hemmansvägen 2

24466 Furulund

Sweden

Citizen of: Sweden

Post Office Address: same as residence

NUlf Stahl

NAME OF SECOND JOINT INVENTOR

Signature of Inventor

Date 29.08.2001

Residence:

Liljegatan 7b

75324 Uppsala

Sweden

Citizen of: Sweden

Post Office Address: same as residence

Marit Lenman

NAME OF THIRD JOINT INVENTOR

Signature of Inventor

Date 29.08.2001

Residence:

Revingegatan 13a

22359 Lund

Sweden

Citizen of: Sweden

Post Office Address: same as residence

Antoni Banas

NAME OF FOURTH JOINT INVENTOR

Signature of Inventor

Date 29.08.2001

Residence:

Wiolinowa 14

08110 Siedlce

Poland

Citizen of: Sweden Poland

Post Office Address: same as residence

),

Hans Ronne

NAME OF FIFTH JOINT INVENTOR

Signature of Inventor

Date 29.08.2001

Residence:

Dirigentvägen 169

75654 Uppsala

Sweden

Citizen of: Sweden

Post Office Address: same as residence

Page 2 of 4 Declaration

0093/000003

(Application	Number)	(Filing Date)
(Application	Number)	(Filing Date)
nternational application designat of this application is not disclosed irst paragraph of 35 U.S.C. § 112,	ing the United States, listed below a in the prior United States or PCT In I acknowledge the duty to disclose in	United States application(s), or § 365(c) of any PC and, insofar as the subject matter of each of the claim atternational application in the manner provided by the formation which is material to patentability as defined prior application and the national or PCT Internation
Application Serial No.	Filing Date	Status (pending, patented, abandoned)
		on Number 18,967; and RUSSEL E. WEINKAU

false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing

We (I) hereby claim the benefit under Title 35, United States Codes, § 119(e) of any United States provisional

thereon.

Page 4 of 4 Declaration

0093/000003

Sten Stymne
NAME OF SIXTH JOINT INVENTOR

Signature of Inventor

Date 29.08.2001

Residence:

Torrlösa 1380 26990 Svalöv Sweden Citizen of: Sweden

Post Office Address: same as residence

.

SEQUENCE LISTING

<110> Dahlquist, Anders, Stahl, Ulf Lenman, Marit Banas, Antoni Ronne, Hans Stymne, Sten

<120> A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF
TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

<130> BASF-NAE-3377-99-Sept-2000

<140> US 09/937,779

<150> PCT/EP 00/02701

<151> 2000-03-23

<160> 31

<170> PatentIn Ver. 2.1

<210> 1

<211> 1986

<212> DNA

<213> Saccharomyces cerevisiae

<220>

<221> CDS

<222> (1)..(1983)

<400> 1

atg ggc aca ctg ttt. cga aga aat gtc cag aac caa aag agt gat tct 48 Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser 1 5 10 15

gat gaa aac aat aaa ggg ggt tct gtt cat aac aag cga gag agc aga 96 Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 20 25 30

aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt 144 Asn His Ile His Gln Gln Gly Leu Gly His Lys Arg Arg Gly

att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat ttc gac agg 192 Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg

aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg 240 Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 65 70 75 80

att ttc att ctt ggt gca ttc tta ggt gta ctt ttg ccg ttt agc ttt 288

Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe

85 90 95

ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt 336

Gly	Ala	Tyr	His 100	Val	His	Asn	Ser	Asp 105	Ser	Asp	Leu	Phe	Asp 110	Asn	Phe	
gta Val	aat Asn	ttt Phe 115	gat Asp	tca Ser	ctt Leu	aaa Lys	gtg Val 120	tat Tyr	ttg Leu	gat Asp	gat Asp	tgg Trp 125	aaa Lys	gat Asp	gtt Val	384
ctc Leu	cca Pro 130	caa Gln	ggt Gly	ata Ile	agt Ser	tcg Ser 135	ttt Phe	att Ile	gat Asp	gat Asp	att Ile 140	cag Gln	gct Ala	ggt Gly	aac Asn	432
tac Tyr 145	tcc Ser	aca Thr	tct Ser	tct Ser	tta Leu 150	gat Asp	gat Asp	ctc Leu	agt Ser	gaa Glu 155	aat Asn	ttt Phe	gcc Ala	gtt Val	ggt Gly 160	480
					gat Asp											528
atg Met	gtt Val	cct Pro	ggt Gly 180	gtc Val	att Ile	tct Ser	acg Thr	gga Gly 185	att Ile	gaa Glu	agc Ser	tgg Trp	gga Gly 190	gtt Val	att Ile	576
gga Gly	gac Asp	gat Asp 195	gag Glu	tgc Cys	gat Asp	agt Ser	tct Ser 200	gcg Ala	cat His	ttt Phe	cgt Arg	aaa Lys 205	cgg Arg	ctg Leu	tgg Trp	624
					ctg Leu											672
ttg Leu 225	aaa Lys	cat His	gta Val	atg Met	tta Leu 230	gat Asp	cct Pro	gaa Glu	aca Thr	ggt Gly 235	ctg Leu	gac Asp	cca Pro	ccg Pro	aac Asn 240	720
ttt Phe	acg Thr	cta Leu	cgt Arg	gca Ala 245	gca Ala	cag Gln	ggc Gly	ttc Phe	gaa Glu 250	tca Ser	act Thr	gat Asp	tat Tyr	ttc Phe 255	atc Ile	768
gca Ala	Gly aaa	tat Tyr	tgg Trp 260	att Ile	tgg Trp	aac Asn	aaa Lys	gtt Val 265	ttc Phe	caa Gln	aat Asn	ctg Leu	gga Gly 270	gta Val	att Ile	816
ggc Gly	tat Tyr	gaa Glu 275	Pro	aat Asn	aaa Lys	Met	acg Thr 280	agt Ser	gct Ala	gcg Ala	tat Tyr	gat Asp 285	tgg Trp	agg Arg	ctt Leu	864
					gaa Glu											912
gaa Glu 305	caa Gln	atc Ile	gaa Glu	ctg Leu	ttt Phe 310	cat His	caa Gln	ttg Leu	agt Ser	ggt Gly 315	gaa Glu	aaa Lys	gtt Val	tgt Cys	tta Leu 320	960
att Ile	gga Gly	cat His	tct Ser	atg Met 325	ggt Gly	tct Ser	cag Gln	att Ile	atc Ile 330	ttt Phe	tac Tyr	ttt Phe	atg Met	aaa Lys 335	tgg Trp	1008

gtc Val	gag Glu	gct Ala	gaa Glu 340	ggc Gly	cct Pro	ctt Leu	tac Tyr	ggt Gly 345	aat Asn	ggt Gly	ggt Gly	cgt Arg	ggc Gly 350	tgg Trp	gtt Val	1056
aac Asn	gaa Glu	cac His 355	ata Ile	gat Asp	tca Ser	ttc Phe	att Ile 360	aat Asn	gca Ala	gca Ala	gly aaa	acg Thr 365	ctt Leu	ctg Leu	ggc Gly	1104
gct Ala	cca Pro 370	aag Lys	gca Ala	gtt Val	cca Pro	gct Ala 375	cta Leu	att Ile	agt Ser	ggt Gly	gaa Glu 380	atg Met	aaa Lys	gat Asp	acc Thr	1152
					tta Leu 390											1200
					aaa Lys											1248
					gaa Glu											1296
					aat Asn											1344
					acg Thr											1392
					atg Met 470											1440
aga Arg	aga Arg	gta Val	cat His	gag Glu 485	cag Gln	tac Tyr	tcg Ser	ttc Phe	ggc Gly 490	tat Tyr	tcc Ser	aag Lys	aat Asn	gaa Glu 495	gaa Glu	1488
					gag Glu											1536
gaa Glu	gta Val	cca Pro 515	ctt Leu	cca Pro	gaa Glu	gct Ala	ccc Pro 520	cac His	atg Met	aaa Lys	atc Ile	tat Tyr 525	tgt Cys	ata Ile	tac Tyr	1584
ggg Gly	gtg Val 530	aac Asn	aac Asn	cca Pro	act Thr	gaa Glu 535	agg Arg	gca Ala	tat Tyr	gta Val	tat Tyr 540	aag Lys	gaa Glu	gag Glu	gat Asp	1632
gac Asp 545	tcc Ser	tct Ser	gct Ala	ctg Leu	aat Asn 550	ttg Leu	acc Thr	atc Ile	gac Asp	tac Tyr 555	gaa Glu	agc Ser	aag Lys	caa Gln	cct Pro 560	1680
gta Val	ttc Phe	ctc Leu	acc Thr	gag Glu 565	999 Gly	gac Asp	gga Gly	acc Thr	gtt Val 570	ccg Pro	ctc Leu	gtg Val	gcg Ala	cat His 575	tca Ser	1728

atg	tgt	cac	aaa	tgg	gcc	cag	ggt	gct	tca	ccg	tac	aac	cct	gcc	gga	1776	
Met	Cys	His	Lys 580	Trp	Ala	Gln	Gly	Ala 585	Ser	Pro	Tyr	Asn	Pro 590	Āla	Gly		
att Ile	aac Asn	gtt Val 595	act Thr	att Ile	gtg Val	gaa Glu	atg Met 600	aaa Lys	cac His	cag Gln	cca Pro	gat Asp 605	cga Arg	ttt Phe	gat Asp	1824	
ata Ile	cgt Arg 610	ggt Gly	gga Gly	gca Ala	aaa Lys	agc Ser 615	gcc Ala	gaa Glu	cac His	gta Val	gac Asp 620	atc Ile	ctc Leu	ggc Gly	agc Ser	1872	
gcg Ala 625	gag Glu	ttg Leu	aac Asn	gat Asp	tac Tyr 630	atc Ile	ttg Leu	aaa Lys	att Ile	gca Ala 635	agc Ser	ggt Gly	aat Asn	ggc Gly	gat Asp 640	1920	
ctc Leu	gtc Val	gag Glu	cca Pro	cgc Arg 645	caa Gln	ttg Leu	tct Ser	aat Asn	ttg Leu 650	agc Ser	cag Gln	tgg Trp	gtt Val	tct Ser 655	cag Gln	1968	
_		ttc Phe		_	taa											1986	
<213	0> 2 L> 66 2> PF 3> Sa	RT	roms	raoa	2004												
122		acciic	ar Omy	ces	cere	evisi	Lae										
)> 2	rccire	ar Omy	/Ces	cere	evisi	ıae										
<400)> 2					Arg		Val	Gln 10	Asn	Gln	Lys	Ser	Asp 15	Ser		
<400 Met 1	0> 2 Gly	Thr	Leu	Phe 5	Arg		Asn		10			_		15			
<400 Met 1 Asp	O> 2 Gly Glu	Thr Asn	Leu Asn 20	Phe 5 Lys	Arg Gly	Arg	Asn Ser	Val 25	10 His	Asn	Lys	Arg	Glu 30	15 Ser	Arg		
<400 Met 1 Asp	O> 2 Gly Glu His	Thr Asn Ile 35	Leu Asn 20 His	Phe 5 Lys His	Arg Gly Gln	Arg Gly	Asn Ser Gly 40	Val 25 Leu	10 His Gly	Asn His	Lys Lys	Arg Arg 45	Glu 30 Arg	15 Ser Arg	Arg Gly		
<400 Met 1 Asp Asn	Gly Glu His Ser 50	Thr Asn Ile 35	Leu Asn 20 His	Phe 5 Lys His	Arg Gly Gln Lys	Arg Gly Gln Arg	Asn Ser Gly 40 Asn	Val 25 Leu Glu	10 His Gly Arg	Asn His Gly	Lys Lys Lys 60	Arg Arg 45 Asp	Glu 30 Arg Phe	15 Ser Arg Asp	Arg Gly Arg		
<400 Met 1 Asp Asn Ile Lys 65	Glu His Ser 50 Arg	Thr Asn Ile 35 Gly Asp	Leu Asn 20 His Ser	Phe 5 Lys His Ala Asn	Arg Gly Gln Lys Gly 70	Arg Gly Gln Arg 55	Asn Ser Gly 40 Asn Lys	Val 25 Leu Glu Arg	10 His Gly Arg	Asn His Gly Arg 75	Lys Lys 60 Asp	Arg Arg 45 Asp Ser	Glu 30 Arg Phe Arg	15 Ser Arg Asp	Arg Gly Arg Leu 80		
<400 Met 1 Asp Asn Ile Lys 65 Ile	Gly Glu His Ser 50 Arg	Thr Asn Ile 35 Gly Asp Ile	Leu Asn 20 His Ser Gly Leu	Phe 5 Lys His Ala Asn Gly 85	Arg Gly Gln Lys Gly 70 Ala	Arg Gly Gln Arg 55	Asn Ser Gly 40 Asn Lys	Val 25 Leu Glu Arg	His Gly Arg Trp Val 90	Asn His Gly Arg 75 Leu	Lys Lys 60 Asp	Arg Arg 45 Asp Ser	Glu 30 Arg Phe Arg	15 Ser Arg Asp Arg	Arg Gly Arg Leu 80 Phe		
<400 Met 1 Asp Asn Ile Lys 65 Ile	Gly Glu His Ser 50 Arg Phe Ala	Thr Asn Ile 35 Gly Asp Ile Tyr	Leu Asn 20 His Ser Gly Leu His 100	Phe 5 Lys His Ala Asn Gly 85 Val	Arg Gly Gln Lys Gly 70 Ala	Arg Gly Gln Arg 55 Arg Phe Asn	Asn Ser Gly 40 Asn Lys Leu Ser	Val 25 Leu Glu Arg Gly Asp 105	His Gly Arg Trp Val 90 Ser	Asn His Gly Arg 75 Leu Asp	Lys Lys 60 Asp Leu Leu	Arg Arg 45 Asp Ser Pro	Glu 30 Arg Phe Arg Phe Asp	15 Ser Arg Asp Arg Ser 95 Asn	Arg Gly Arg Leu 80 Phe		

Tyr '145	Ser	Thr	Ser	Ser	Leu 150	Asp	Asp	Leu	Ser	Glu 155	Asn	Phe	Ala	Val	Gly 160
Lys	Gln	Leu	Leu	Arg 165	Asp	Tyr	Asn	Ile	Glu 170	Ala	Lys	His	Pro	Val 175	Val
Met	Val	Pro	Gly 180	Val	Ile	Ser	Thr	Gly 185	Ile	Glu	Ser	Trp	Gly 190	Val	Ile
Gly	Asp	Asp 195	Glu	Cys	Asp	Ser	Ser 200	Ala	His	Phe	Arg	Lys 205	Arg	Leu	Tr
Gly	Ser 210	Phe	Tyr	Met	Leu	Arg 215	Thr	Met	Val	Met	Asp 220	Lys	Val	Cys	Trp
Leu 225	Lys	His	Val	Met	Leu 230	Asp	Pro	Glu	Thr	Gly 235	Leu	Asp	Pro	Pro	Asr 240
Phe	Thr	Leu	Arg	Ala 245	Ala	Gln	Gly	Phe	Glu 250	Ser	Thr	Asp	Tyr	Phe 255	Ile
Ala	Gly	Tyr	Trp 260	Ile	Trp	Asn	Lys	Val 265	Phe	Gln	Asn	Leu	Gly 270	Val	Il€
Gly	Tyr	Glu 275	Pro	Asn	Lys	Met	Thr 280	Ser	Ala	Ala	Tyr	Asp 285	Trp	Arg	Let
Ala	Tyr 290	Leu	Asp	Leu	Glu	Arg 295	Arg	Asp	Arg	Tyr	Phe 300	Thr	Lys	Leu	Lys
Glu 305	Gln	Ile	Glu	Leu	Phe 310	His	Gln	Leu	Ser	Gly 315	Glu	Lys	Val	Cys	Leu 320
Ile	Gly	His	Ser	Met 325	Gly	Ser	Gln	Ile	Ile 330	Phe	Tyr	Phe	Met	Lys 335	Trp
Val	Glu	Ala	Glu 340	Gly	Pro	Leu	Tyr	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Val
Asn	Glu	His 355	Ile	Asp	Ser	Phe	Ile 360	Asn	Ala	Ala	Gly	Thr 365	Leu	Leu	Gly
Ala	Pro 370	Lys	Ala	Val	Pro	Ala 375	Leu	Ile	Ser	Gly	Glu 380	Met	Lys	Asp	Thr
Ile 385	Gln	Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	Gly	Leu 395	Glu	Lys	Phe	Phe	Ser 400
Arg	Ile	Glu	Arg	Val 405	Lys	Met	Leu	Gln	Thr 410	Trp	Gly	Gly	Ile	Pro 415	Ser
Met	Leu	Pro	Lys 420	Gly	Glu	Glu	Val	Ile 425	Trp	Gly	Asp	Met	Lys 430	Ser	Ser
Ser	Glu	Asp 435	Ala	Leu	Asn	Asn	Asn 440	Thr	Asp	Thr	Tyr	Gly 445	Asn	Phe	Ile
Arg	Phe 450	Glu	Arg	Asn	Thr	Ser 455	Asp	Ala	Phe	Asn	Lys 460	Asn	Leu	Thr	Met

Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 465 470 475 480

Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu
485 490 495

Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 500 505 510

Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 515 520 525

Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp 530 540

Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro 545 550 560

Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser
565 570 575

Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly 580 585 590

Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 595 600 605

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 610 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln 645 650 655

Met Pro Phe Pro Met 660

<210> 3

<211> 2312

<212> DNA

<213> Schizosaccharomyces pombe

<400> 3

atggcgtctt ccaagaagag caaaactcat aagaaaaaga aagaagtcaa atctcctatc 60 gacttaccaa attcaaagaa accaactcgc gctttgagtg agcaaccttc agcgtccgaa 120 acacaatctg tttcaaataa atcaagaaaa tctaaatttg gaaaaagatt gaattttata 180 ttgggcgcta ttttgggaat atgcggtgct tttttttcg ctgttggaga cgacaatgct 240 gtttcgacc ctgctacgtt agataaattt gggaatatgc taggctcttc agacttgttt 300 gatgacatta aaggatattt atcttataat gtgtttaagg atgcaccttt tactacggac 360

aageettege agteteetag eggaaatgaa gtteaagttg gtettgatat gtacaatgag 420 ggatatcgaa gtgaccatcc tgttattatg gttcctggtg ttatcagctc aggattagaa 480 agttggtcgt ttaataattg ctcgattcct tactttagga aacgtctttg gggtagctgg 540 tetatgetga aggeaatgtt eettgacaag eaatgetgge ttgaacattt aatgettgat 600 aaaaaaaccg gcttggatcc gaagggaatt aagctgcgag cagctcaggg gtttgaagca 660 gctgattttt ttatcacggg ctattggatt tggagtaaag taattgaaaa ccttgctgca 720 attggttatg agcctaataa catgttaagt gcttcttacg attggcggtt atcatatgca 780 aatttagagg aacgtgataa atatttttca aagttaaaaa tgttcattga gtacagcaac 840 attgtacata agaaaaaggt agtgttgatt teteaeteea tgggtteaea ggttaegtae 900 tattttttta agtgggttga agctgagggc tacggaaatg gtggaccgac ttgggttaat 960 gatcatattg aagcatttat aaatgtgagt ctcgatggtt gtttgactac gtttctaact 1020 tttgaataga tatcgggatc tttgattgga gcacccaaaa cagtggcagc gcttttatcg 1080 ggtgaaatga aagatacagg tattgtaatt acattaaaca tgttaatatt taatttttgc 1140 taaccgtttt aagctcaatt gaatcagttt teggtctatg ggtaagcaat aaattgttga 1200 gatttgttac taatttactg tttagtttgg aaaaattttt ttcccgttct gaggtatatt 1260 caaaaataca aatgtgctct actttttcta acttttaata gagagccatg atggttcgca 1320 ctatgggagg agttagttct atgcttccta aaggaggcga tgttgtatgg ggaaatgcca 1380 gttgggtaag aaatatgtgc tgttaatttt ttattaatat ttaggctcca gatgatctta 1440 atcaaacaaa tttttccaat ggtgcaatta ttcgatatag agaagacatt gataaggacc 1500 acgatgaatt tgacatagat gatgcattac aatttttaaa aaatgttaca gatgacgatt 1560 ttaaagtcat getagegaaa aattatteee aeggtettge ttggaetgaa aaagaagtgt 1620 taaaaaaataa cgaaatgccg tctaaatgga taaatccgct agaagtaaga acattaaagt 1680 tactaaatta tactaaccca aatagactag tetteettat geteetgata tgaaaattta 1740 ttgcgttcac ggggtcggaa aaccaactga gagaggttat tattatacta ataatcctga 1800 ggggcaacct gtcattgatt cctcggttaa tgatggaaca aaagttgaaa atgtgagaga 1860 atttatgttt caaacattct attaactgtt ttattagggt attgttatgg atgatggtga 1920 tggaacttta ccaatattag cccttggttt ggtgtgcaat aaagtttggc aaacaaaaag 1980 gtttaatcct gctaatacaa gtatcacaaa ttatgaaatc aagcatgaac ctgctgcgtt 2040 tgatctgaga ggaggacctc gctcggcaga acacgtcgat atacttggac attcagagct 2100 aaatgtatgt tcattttacc ttacaaattt ctattactaa ctcttgaaat aaggaaatta 2160

ttttaaaagt ttcatcaggc catggtgact cggtaccaaa ccgttatata tcagatatcc 2220 agtacggaca taagttttgt agattgcaat taactaacta accgaacagg gaaataataa 2280 atgagataaa tctcgataaa cctagaaatt aa 2312

<210> 4

<211> 3685

<212> DNA

<213> Arabidopsis thaliana

<400> 4

atgeceetta tteateggaa aaageegaeg gagaaaceat egaegeegee atetgaagag 60 gtggtgcacg atgaggattc gcaaaagaaa ccacacgaat cttccaaatc ccaccataag 120 aaatcgaacg gaggagggaa gtggtcgtgc atcgattctt gttgttggtt cattgggtgt 180 gtgtgtgtaa cetggtggtt tettetette etttacaaeg caatgeetge gagetteeet 240 cagtatgtaa cggagcgaat cacgggtcet ttgcctgacc cgcccggtgt taagctcaaa 300 aaagaaggte ttaaggegaa acateetgtt gtetteatte etgggattgt caeeggtggg 360 ctcgagcttt gggaaggcaa acaatgcgct gatggtttat ttagaaaacg tttgtggggt 420 ggaacttttg gtgaagtcta caaaaggtga gctcaacaat tctcactctt cctttatatt 480 gggatttgga ttggatctga tgagatcacg cacttgttgc ttcttcaaca tcactcaaac 540 tttaattoca tgtttgtctg tottactott tacttttttt tttttttgat gtgaaacgot 600 attttcttaa gagactattt ctgtatgtgt aaggtaagcg ttccaaggac gtaattggct 660 tggactattt ctgtttgatt gttaacttta ggatataaaa tagctgcctt ggaatttcaa 720 gtcatcttat tgccaaatct gttgctagac atgccctaga gtccgttcat aacaagttac 780 ttcctttact gtcgttgcgt gtagatttag ctttgtgtag cgtataatga agtagtgttt 840 tatgttttgt tgggaataga gaagttctaa ctacatctgt ggaaagtgtg ttcaggctgt 900 gatagaggac tgttgcttta ttattcaact atgtatatgt gtaattaaag ctagttcctt 960 tttgatcttt cagctcaatg tgcttttctc aatttttttc tcaatttcaa agtttcacat 1020 cgagtttatt cacatgtctt gaatttcgtc catcctcgtt ctgttatcca gctttgaact 1080 cctcccgacc ctgctatgga tatattaaaa aaaaagtgtt ttgtgggttg catctttgtt 1140 acgatctgca tettettett teggeteagt gtteatgttt ttgetatggt agagatggge 1200 aatgttattg ttgatggtaa cagtggtata gttgatagta tcttaactaa tcaattatct 1260 ctttgattca ggcctctatg ttgggtggaa cacatgtcac ttgacaatga aactgggttg 1320 gatecagetg gtattagagt tegagetgta teaggaeteg tggetgetga etaetttget 1380

cctggctact ttgtctgggc agtgctgatt gctaaccttg cacatattgg atatgaagag 1440 aaaaatatgt acatggctgc atatgactgg cggctttcgt ttcagaacac agaggttctt 1500 tteteategt tetttetatt attetgttee atgttaegtt tetttettea ttaettaagg 1560 cttaaatatg tttcatgttg aattaatagg tacgtgatca gactcttagc cgtatgaaaa 1620 gtaatataga gttgatggtt tctaccaacg gtggaaaaaa agcagttata gttccgcatt 1680 ccatgggggt cttgtatttt ctacatttta tgaagtgggt tgaggcacca gctcctctgg 1740 gtggcggggg tgggccagat tggtgtgcaa agtatattaa ggcggtgatg aacattggtg 1800 gaccatttct tggtgttcca aaagctgttg cagggctttt ctctgctgaa gcaaaggatg 1860 ttgcagttgc caggtattga atatctgctt atacttttga tgatcagaac cttggctctg 1920 gaactcaaag ttattctact aaatatcaat tctaataaca ttgctatatt atcgctgcaa 1980 ctgacattgg ttgattattt ttgctgctta tgtaactgaa actctcttga gattagacaa 2040 atgatgaatt gataattett aegeattget etgtgatgae eagtttetta gettegaega 2100 taacatttgt catactgtct tttggagggc attgaatttt gctatggaaa gcgctggagc 2160 ttccatgctt gcattcttta ccaattagcg ttattctgct tctttcaatt ttcttgtata 2220 tgcatctatg gtcttttatt tcttcttaat taaagactcg ttggattagt tgctctatta 2280 gtcacttggt tccttaatat agaactttac tttcttcgaa aattgcagag cgattgcccc 2340 aggattetta gacacegata tatttagaet teagacettg eageatgtaa tgagaatgae 2400 acgcacatgg gactcaacaa tgtctatgtt accgaaggga ggtgacacga tatggggcgg 2460 gcttgattgg tcaccggaga aaggccacac ctgttgtggg aaaaagcaaa agaacaacga 2520 aacttgtggt gaagcaggtg aaaacggagt ttccaagaaa agtcctgtta actatggaag 2580 gatgatatet titgggaaag aagtageaga ggetgegeea tetgagatta ataatattga 2640 ttttcgagta aggacatata aatcataata aaccttgtac attttgtgat tgtatgatga 2700 atatetgtae attttatetg gtgaagggtg etgteaaagg teagagtate eeaaateaea 2760 cctgtcgtga cgtgtggaca gagtaccatg acatgggaat tgctgggatc aaagctatcg 2820 ctgagtataa ggtctacact gctggtgaag ctatagatct actacattat gttgctccta 2880 agatgatggc gcgtggtgcc gctcatttct cttatggaat tgctgatgat ttggatgaca 2940 ccaagtatca agatcccaaa tactggtcaa atccgttaga gacaaagtaa gtgatttctt 3000 gattccaact gtatccttcg tcctgatgca ttatcagtct ttttgttttc ggtcttgttg 3060 gatatggttt tcagctcaaa gcttacaaag ctgtttctga gcctttctca aaaaggcttg 3120 ctcagtaata ttgaggtgct aaagttgata catgtgactc ttgcttataa atcctccgtt 3180

tggtttgttc tgctttttca gattaccgaa tgctcctgag atggaaatct actcattata 3240 cggagtgggg ataccaacgg aacgagcata cgtatacaag cttaaccagt ctcccgacaq 3300 ttgcatcccc tttcagatat tcacttctgc tcacgaggag gacgaagata gctgtctgaa 3360 agcaggagtt tacaatgtgg atggggatga aacagtaccc gtcctaagtg ccgggtacat 3420 gtgtgcaaaa gcgtggcgtg gcaagacaag attcaaccct tccggaatca agacttatat 3480 aagagaatac aatcactete egeeggetaa eetgttggaa gggegeggga egeagagtgg 3540 tgcccatgtt gatatcatgg gaaactttgc tttgatcgaa gatatcatga gggttgccgc 3600 cggaggtaac gggtctgata taggacatga ccaggtccac tctggcatat ttgaatggtc 3660 ggagcgtatt gacctgaagc tgtga 3685 <210> 5 <211> 2427 <212> DNA <213> Arabidopsis thaliana <220> <221> unsure <222> 1..2427 <223> n = a or g or c or t/u <400> 5 agaaacagct ctttgtctct ctcgactgat ctaacaatcc ctaatctgtg ttctaaattc 60 ctggacgaga tttgacaaag tccgtatagc ttaacctggt ttaatttcaa gtgacagata 120 tgccccttat tcatcggaaa aagccgacgg agaaaccatc gacgccgcca tctgaagagg 180 tggtgcacga tgaggattcg caaaagaaac cacacgaatc ttccaaatcc caccataaga 240 aatcgaacgg aggagggaag tggtcgtgca tcgattcttg ttgttggttc attgggtgtg 300 tgtgtgtaac ctggtggttt cttctcttcc tttacaacgc aatgcctgcg agcttccctc 360 agtatgtaac ggagcgaatc acgggteett tgeetgacec geeeggtgtt aageteaaaa 420 aaagaaggte ttaaggegaa acateetgtt gtetteatte etgggattgt eaceggtggg 480 ctcgagcttt gggaaggcaa acaatgcgct gatggtttat ttagaaaacg tttgtggggt 540 ggaacttttg gtgaagtcta caaaaggcct ctatgttggg tggaacacat gtcacttgac 600 aatgaaactg ggttggatcc agctggtatt agagttcgag ctgtatcagg actcgtggct 660 gctgactact ttgctcctgg ctactttgtc tgggcagtgc tgattgctaa ccttgcacat 720 attggatatg aagagaaaaa tatgtacatg getgcatatg actggegget ttegttteag 780 aacacagagg tacgtgatca gactcttagc cgtatgaaaa gtaatataga gttgatggtt 840

tctaccaacg gtggaaaaaa agcagttata gttccgcatt ccatgggggt cttgtatttt 900

ctacatttta tgaagtgggt tgaggcacca geteetetgg gtggeggggg tgggecagat 960 tggtgtgcaa agtatattaa ggcggtgatg aacattggtg gaccatttct tqqtqttcca 1020 aaagetgttg cagggetttt etetgetgaa geaaaggatg ttgeagttge cagagegatt 1080 gccccaggat tcttagacac cgatatattt agacttcaga ccttgcagca tgtaatqaqa 1140 atgacacgca catgggactc aacaatgtct atgttaccga agggaggtga cacgatatgg 1200 ggcgggcttg attggtcacc ggagaaaggc cacacctgtt gtgggaaaaa gcaaaagaac 1260 aacgaaactt gtggtgaagc aggtgaaaac ggagtttcca agaaaagtcc tgttaactat 1320 ggaaggatga tatcttttgg gaaagaagta gcagaggctg cgccatctga gattaataat 1380 attgattttc gaggtgctgt caaaggtcag agtatcccaa atcacacctg tcgtgacgtg 1440 tggacagagt accatgacat gggaattgct gggatcaaag ctatcgctga gtataaqqtc 1500 tacactgctg gtgaagctat agatctacta cattatgttg ctcctaagat gatggcgcgt 1560 ggtgccgctc atttctctta tggaattgct gatgatttgg atgacaccaa gtatcaagat 1620 cccaaatact ggtcaaatcc gttagagaca aaattaccga atgctcctga gatggaaatc 1680 tactcattat acggagtggg gataccaacg gaacgagcat acgtatacaa gcttaaccag 1740 tetecegaea gttgeatece ettteagata tteaettetg eteaegagga ggaegaagat 1800 agctgtctga aagcaggagt ttacaatgtg gatggggatg aaacagtacc cgtcctaagt 1860 gccgggtaca tgtgtgcaaa agcgtggcgt ggcaagacaa gattcaaccc ttccggaatc 1920 aagacttata taagagaata caatcactct ccgccggcta acctgttgga agggcgcggg 1980 acgcagagtg gtgcccatgt tgatatcatg ggaaactttg ctttgatcga agatatcatg 2040 agggttgccg ccggaggtaa cgggtctgat ataggacatg accaggtcca ctctggcata 2100 tttgaatggt cggagcgtat tgacctgaag ctgtgaatat catqatctct ttaaqctqtc 2160 ctgtcagctt atgtgaatcc aatactttga aagagagatc atcatcaatt catcatcatc 2220 gtcatcatca tgatgctcaa ctcacaaaga agcctgagaa tgatactttg gtgcgaaatt 2280 ctcaatacct ctttaatatt cttattgaat gtaaattata caatcctatc taatgtttga 2340 acgataacac aaaacttgct gcngccatgt ttgtttgtct tgtcaaaagc atcaatttgt 2400 gggttaaaaa aaaaaaaa aaaaaaa 2427

<210> 6

<211> 671

<212> PRT

<213> Arabidopsis thaliana

<400> 6

Met 1	Pro	Leu	Ile	His 5	Arg	Lys	Lys	Pro	Thr 10	Glu	Lys	Pro	Ser	Thr 15	Pro
Pro	Ser	Glu	Glu 20	Val	Val	His	Asp	Glu 25	Asp	Ser	Gln	Lys	Lys 30	Pro	His
Glu	Ser	Ser 35	Lys	Ser	His	His	Lys 40	Lys	Ser	Asn	Gly	Gly 45	Gly	Lys	Trp
Ser	Сув 50	Ile	Asp	Ser	Cys	Cys 55	Trp	Phe	Ile	Gly	Суs 60	Val	Cys	Val	Thr
Trp 65	Trp	Phe	Leu	Leu	Phe 70	Leu	Tyr	Asn	Ala	Met 75	Pro	Ala	Ser	Phe	Pro 80
Gln	Tyr	Val	Thr	Glu 85	Arg	Ile	Thr	Gly	Pro 90	Leu	Pro	Asp	Pro	Pro 95	Gly
Val	Lys	Leu	Lys 100	Lys	Glu	Gly	Leu	Lys 105	Ala	Lys	His	Pro	Val 110	Val	Phe
Ile	Pro	Gly 115	Ile	Val	Thr	Gly	Gly 120	Leu	Glu	Leu	Trp	Glu 125	Gly	Lys	Gln
Cys	Ala 130	Asp	Gly	Leu	Phe	Arg 135	Lys	Arg	Leu	Trp	Gly 140	Gly	Thr	Phe	Gly
Glu 145	Val	Tyr	Lys	Arg	Pro 150	Leu	Cys	Trp	Val	Glu 155	His	Met	Ser	Leu	Asp 160
Asn	Glu	Thr	Gly	Leu 165	Asp	Pro	Ala	Gly	Ile 170	Arg	Val	Arg	Ala	Val 175	Ser
Gly	Leu	Val	Ala 180	Ala	Asp	Tyr	Phe	Ala 185	Pro	Gly	Tyr	Phe	Val 190	Trp	Ala
Val	Leu	Ile 195	Ala	Asn	Leu	Ala	His 200	Ile	Gly	Tyr	Glu	Glu 205	Lys	Asn	Met
Tyr	Met 210	Ala	Ala	Tyr	Asp	Trp 215	Arg	Leu	Ser	Phe	Gln 220	Asn	Thr	Glu	Val
Arg 225	Asp	Gln	Thr	Leu	Ser 230	Arg	Met	Lys	Ser	Asn 235	Ile	Glu	Leu	Met	Val 240
Ser	Thr	Asn	Gly	Gly 245	Lys	Lys	Ala	Val	Ile 250	Val	Pro	His	Ser	Met 255	Gly
Val	Leu	Tyr	Phe 260	Leu	His	Phe	Met	Lys 265	Trp	Val	Glu	Ala	Pro 270	Ala	Pro
Leu	Gly	Gly	Gly	Gly	Gly	Pro	Asp 280	Trp	Cys	Ala	Lys	Tyr 285	Ile	Lys	Ala
	_	275					200					203			
Val			Ile	Gly	Gly	Pro 295		Leu	Gly	Val	Pro 300		Ala	Val	Ala

Ala Pro Gly Phe Leu Asp Thr Asp Ile Phe Arg Leu Gln Thr Leu Gln His Val Met Arg Met Thr Arg Thr Trp Asp Ser Thr Met Ser Met Leu 345 Pro Lys Gly Gly Asp Thr Ile Trp Gly Gly Leu Asp Trp Ser Pro Glu Lys Gly His Thr Cys Cys Gly Lys Lys Gln Lys Asn Asn Glu Thr Cys 375 Gly Glu Ala Gly Glu Asn Gly Val Ser Lys Lys Ser Pro Val Asn Tyr Gly Arg Met Ile Ser Phe Gly Lys Glu Val Ala Glu Ala Ala Pro Ser 410 Glu Ile Asn Asn Ile Asp Phe Arg Gly Ala Val Lys Gly Gln Ser Ile Pro Asn His Thr Cys Arg Asp Val Trp Thr Glu Tyr His Asp Met Gly Ile Ala Gly Ile Lys Ala Ile Ala Glu Tyr Lys Val Tyr Thr Ala Gly Glu Ala Ile Asp Leu Leu His Tyr Val Ala Pro Lys Met Met Ala Arg 470 475 Gly Ala Ala His Phe Ser Tyr Gly Ile Ala Asp Asp Leu Asp Asp Thr Lys Tyr Gln Asp Pro Lys Tyr Trp Ser Asn Pro Leu Glu Thr Lys Leu 505 Pro Asn Ala Pro Glu Met Glu Ile Tyr Ser Leu Tyr Gly Val Gly Ile 520 Pro Thr Glu Arg Ala Tyr Val Tyr Lys Leu Asn Gln Ser Pro Asp Ser 535 Cys Ile Pro Phe Gln Ile Phe Thr Ser Ala His Glu Glu Asp Glu Asp Ser Cys Leu Lys Ala Gly Val Tyr Asn Val Asp Gly Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Ala Trp Arg Gly Lys 585 Thr Arg Phe Asn Pro Ser Gly Ile Lys Thr Tyr Ile Arg Glu Tyr Asn 600 His Ser Pro Pro Ala Asn Leu Leu Glu Gly Arg Gly Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile Glu Asp Ile Met

625 630 635 640 Arg Val Ala Ala Gly Gly Asn Gly Ser Asp Ile Gly His Asp Gln Val His Ser Gly Ile Phe Glu Trp Ser Glu Arg Ile Asp Leu Lys Leu 665 <210> 7 <211> 643 <212> DNA <213> Zea mays <220> <221> CDS <222> (1)..(402) <221> unsure <222> 1..643 <223> n= a or g or c or t/u <400> 7 egg gag aaa ata get get ttg aag ggg ggt gtt tae tta gee qat qqt Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly gat gaa act gtt cca gtt ctt agt gcg ggc tac atg tgt gcg aaa gga 96 Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly 20 25 tgg cgt ggc aaa act cgt ttc agc cct gcc ggc agc aag act tac gtg 144 Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val 40 aga gaa tac agc cat teg eea eee tet aet ete etg gaa gge agg gge 192 Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly acc cag agc ggt gca cat gtt gat ata atg ggg aac ttt gct cta att 240 Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile 70 gag gac gtc atc aga ata gct gct ggg gca acc ggt gag gaa att ggt 288 Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85 ggc gat cag gtt tat tca gat ata ttc aag tgg tca gag aaa atc aaa 336 Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys 110 ttg aaa ttg taa cct atg gga agt taa aga agt gcc gac ccg ttt att Leu Lys Leu 115 gcg ttc caa agt gtc ctg cctgagtgca actctggatt ttqcttaaat 432 attgtaattt ttcacgcttc attcgtccct ttgtcaaatt tacatttgac aggacgccaa 492

tgcgatacga tgttgtaccg ctattttcag cattgtatat taaactgtac aggtgtaagt 552 tgcatttgcc agctgaaatt gtgtagtcgt tttctttacg atttaatanc aagtggcgga 612 gcagtgcccc aagcnaaaaa aaaaaaaaa a 643

<210> 8 <211> 115 <212> PRT <213> Zea mays

<400> 8

Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly 1 5 10 15

Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly
20 25 30

Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val 35 40 45

Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly 50 55 60

Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile 65 70 75 80

Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly
85 90 95

Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys
100 105 110

Leu Lys Leu 115

<210> 9 <211> 616

<212> DNA

<213> Neurospora crassa

<220>

<221> unsure

<222> 1..616

<223> n= a or g or c or t/u

<400> 9

ggtggcgaag acganggcgg aagttggagg ctaacgagaa tgacnetegg agatggatet 60 accetetaga gacacgacta centtgeace cageeteaag gtntacngtt tntatgggta 120 ggaagcegac ggaggggc tacatetate tggegceega tecegggaeg acaacgeate 180 tttagatgae gategataeg acetttgaetn aggggcacat tgaccaeggt gtgattttgg 240 gegaaggega tggcacagtg aacettatga gtttgggta cetgtgcaat aaggggtgga 300

aaatgaagag atacaatcct gcgggctcaa aaataaccgt ggtcgagatg ccgcatgaac 360 cagaacggtt caatccgaga ggagggccga atacggcgga tcacgtggat attctaggaa 420 ggcagaatct aaacgagtac attcttaaag tggcggcagg tcgaggcgat acaattgagg 480 attttattac tagtaatatt cttaaatatg tagaaaaggt tgaaatttat gaagagtaat 540 taaatacggc acataggtta ctcaatagta tgactaatta aaaaaaaatt tttttctaa 600 aaaaaaaaaa aaaaaa

<210> 10

<211> 1562

<212> DNA

<213> Arabidopsis thaliana

<400> 10

atgaaaaaaa tatcttcaca ttattcggta gtcatagcga tactcgttgt ggtgacgatg 60 acctegatgt gtcaagetgt gggtagcaac gtgtaccett tgattetggt tecaggaaac 120 ggaggtaacc agctagaggt acggctggac agagaataca agccaagtag tgtctggtgt 180 agcagctggt tatatccgat tcataagaag agtggtggat ggtttaggct atggttcgat 240 gcagcagtgt tattgtctcc cttcaccagg tgcttcagcg atcgaatgat gttgtactat 300 gaccctgatt tggatgatta ccaaaatgct cctggtgtcc aaacccgggt tcctcatttc 360 ggttcgacca aatcacttct atacctcgac cctcgtctcc ggttagtact ttccaagata 420 tatcattttg ggacatttgc ataatgaaca aaatagacat aaatttgggg gattattgtt 480 atatcaatat ccatttatat gctagtcggt aatgtgagtg ttatgttagt atagttaatg 540 tgagtgttat gtgattttcc attttaaatg aagctagaaa gttgtcgttt aataatgttg 600 ctatgtcatg agaattataa ggacactatg taaatgtagc ttaataataa ggtttgattt 660 gcagagatgc cacatcttac atggaacatt tggtgaaagc tctagagaaa aaatgcgggt 720 atgttaacga ccaaaccatc ctaggagctc catatgattt caggtacggc ctggctgctt 780 egggecacce gtecegtgta geeteacagt teetacaaga eeteaaacaa ttggtggaaa 840 aaactagcag cgagaacgaa ggaaagccag tgatactcct ctcccatagc ctaggaggac 900 ttttcgtcct ccatttcctc aaccgtacca ccccttcatg gcgccgcaag tacatcaaac 960 actttgttgc actcgctgcg ccatggggtg ggacgatctc tcagatgaag acatttgctt 1020 ctggcaacac acteggtgte cetttagtta accetttget ggtcagaegg cateagagga 1080 cctccgagag taaccaatgg ctacttccat ctaccaaagt gtttcacgac agaactaaac 1140 cgcttgtcgt aactccccag gttaactaca cagcttacga gatggatcgg ttttttgcag 1200

<210> 11

<211> 3896

<212> DNA

<213> Arabidopsis thaliana

<400> 11

atgggagcga attcgaaatc agtaacggct teetteaccg teategecgt ttttttettg 60 atttgeggtg geegaactge ggtggaggat gagacegagt tteaeggega etaetegaag 120 ctatcgggta taatcattcc gggatttgcg tcgacgcagc tacgagcgtg gtcgatcctt 180 gactgtccat acactccgtt ggacttcaat ccgctcgacc tcgtatggct agacaccact 240 aaggteegtg atetteattt eettegetee ttattetgte ggtegagtea ettgttgatg 300 gtcaacagtg acgcttctga atctgagttt agagtcatat aaaacagctg actcggcgag 420 tgtttcccat cgcttttggt tcgctaaatg tagcgcaatg aatgtgtaat tagtctgcgc 480 tttttattca actagatctg caagtttttc agagtgctca atagtagtta gaaaatgtta 540 ggtcatttta cttgtgcatt gtgattcttt tggttgttgc ttactgatcg acgtgatgga 600 tggtttacag ettetttetg etgteaaetg etggtttaag tgtatggtge tagateetta 660 taatcaaaca gaccatcccg agtgtaagtc acggcctgac agtggtcttt cagccatcac 720 agaattggat ccaggttaca taacaggtag tttcggattt ttctttcttt tgagttttct 780 tcaatttgat atcatcttgt tgtgatataa tatggctaag ttcattaatt tggtcaattt 840 tcaggtcctc tttctactgt ctggaaagag tggcttaagt ggtgtgttga gtttggtata 900 gaagcaaatg caattgtcgc tgttccatac gattggagat tgtcaccaac caaattggaa 960 gagegtgace tttaetttea caageteaag ttagteetta teaggetaat gtettttate 1020 ttctcttttt atgtaagata agctaagagc tctggtcgtc ttcctttttg caggttgacc 1080 tttgaaactg ctttaaaact ccgtggcggc ccttctatag tatttgccca ttcaatgggt 1140

aataatgtet teagataett tetggaatgg etgaggetag aaattgeace aaaacattat 1200 ttgaagtggc ttgatcagca tatccatgct tatttcgctg ttggtaccgg cctactatcc 1260 ttaagttacc attitatitt tictctaatt gggggagtta tgttgtgact tactggattg 1320 agetegatae etgatttgtt gttgatttag gageteetet tettggttet gttgaggeaa 1380 tcaaatctac tctctctggt gtaacgtttg gccttcctgt ttctgaggtg acctctgact 1440 tctctttagt tttaagtagt tgatatcaac caggtcttat aactcactgg attttccttt 1500 tgaaagtatt acttttgtta attgaactgc tgtacgcgat atggtatctg tagatcttga 1560 agtgctagtt atcaaagaac atattgtggg tagtatacct gtcagcggcc ttagctaata 1620 caaccaaacc acatgtacac tgatttagtt ttcagattat tatggtagac tttaagttga 1680 gaagaaactt tgactgaaat ctttttattt taataggcta tgatttgttt attgaaatca 1740 tgtgacatat tgacatgcgc ttctcatgtt ttttgttggc aaggcttcag ggaactgctc 1800 ggttgttgtc caattetttt gegtegteat tgtggettat gecattttca aagaattgca 1860 agggtgataa cacattetgg acgcattttt etgggggtge tgcaaagaaa gataagegeg 1920 tataccactg tgatgaagag gaatatcaat caaaatattc tggctggccg acaaatatta 1980 ttaacattga aatteettee aetageggtt agaetetgta tatgeaactg taacactaae 2040 aaaagtttca ccaagaatgt tcactctcat atttcgttcc tttgatgtgt atccatcagt 2100 tacagaaaca getetagtea acatgaeeag eatggaatgt ggeetteeea eeettttgte 2160 tttcacagcc cgtgaactag cagatgggac tcttttcaaa gcaatagaag actatgaccc 2220 agatagcaag aggatgttac accagttaaa gaagtacgta cctttctttg tgataagaaa 2280 tattgctcat cgatcatcac ttgctggctt cttgtacgtc aaattgtttt gtttaaatct 2340 ctatatcaat tgttcatatg ctttgtcttt cttactataa gaaacaagta taatcagaaa 2400 cettattatt gattateagt teteteetta tattatggaa tgtettttte gtttacagtt 2460 atgaatgcaa aagggggtat tttagttgat tgattctctc attctctagt ttgttttgac 2520 taatagegte aattitgitt tietageaaa teittigigaa tiatatataa eatgetaaet 2580 atacttttca ggttgtatca tgatgaccct gtttttaatc ctctgactcc ttgggagaga 2640 ccacctataa aaaatgtatt ttgcatatat ggtgctcatc taaagacaga ggtatgatgc 2700 atteteaata teacattatg egttgaettt gttattatat teeceatttg gtttgeaata 2760 totttttgaa ttatgattta tottotooot tgoatottat gotattaago gttaaaggta 2820 ctaaatgtat gaagetgtet gteataggtt ggttattaet ttgeeccaag tggeaaacet 2880 tatcctgata attggatcat cacggatatc atttatgaaa ctgaaggttc cctcgtgtca 2940

aggtaatttt ccgcaatggc agaagtaaaa caggaaggca aagtcttctg tatcaqtcta 3000 gtggcatgtt atctcagttg cataagcaaa ttattaaaca actaaaattt aagtactttt 3060 ttatcattcc ttttgagctt agtggatgat cagtggctta aagtgggaag aggtgttgca 3120 tgaaacatga cacttgtatc aaagataact agcaaaacaa aactaaccca tttctqaatt 3180 tcatattatt aggagtagtc gtgcttttaa aaaatttgtt ttaagaaacc gaaaaactag 3240 ttcatatctt gattgtgcaa tatctgcagg tctggaactg tggttgatgg gaacgctgga 3300 cctataactg gggatgagac ggtaagctca gaagttggtt ttgaaattat cttcttgcaa 3360 actactgaag actaagataa tacttgcttc tggaacactg cttgctatgt tctctagtac 3420 actgcaatat tgactctccg ctacttttat tgattatgaa attgatctct tataggtacc 3480 ctatcattca ctctcttggt gcaagaattg gctcggacct aaagttaaca taacaatqqc 3540 tccccaggta ctcttttta gttcctcacc ttatatagat caaactttaa gtgtactttt 3600 ctggttatgt gttgatttac ctccaatttg ttctttctaa aaatcatata tctctgtact 3660 cctcaagaac ttgtattaat ctaaacgaga ttctcattgg gaaaataaaa caacagccag 3720 aacacgatgg aagcgacgta catgtggaac taaatgttga tcatgagcat gggtcagaca 3780 tcatagctaa catgacaaaa gcaccaaggg ttaagtacat aaccttttat gaagactctg 3840 agagcattcc ggggaagaga accgcagtct gggagcttga taaaagtggq tattaa 3896

ctggggccaa aagtgaacat aacaaggaca ccacagtcag agcatgatgt tcagatgtac 60 aagtgcatct aaatatagag catcaacatg gtgaagatat cattcccaat atgacaaagt 120 tacctacaat gaagtacata acctattatg aggattctga aagttttcca gggacaagaa 180 cagcagtttg ggagcttgat aaagcaaatc acaggaacat tgtcagatct ccagctttga 240 tgcgggagct gtggcttgag atgtggcatg atattcatcc tgataaaaag tccaagtttg 300 ttacaaaaagg tggtgtctga tcctcactat tttcttctat aaatgtttga gtttgtattg 360 acattgtaag tattgcaaca aaaagcaaag cgtgggcctc tgagggatga ggactgctat 420 tgggattacg ggaaagctcg atgtgcatgg gctgaacatt gtgaatacag gttagaatat 480 tcaaattata ttttgcaaaa tattctcttt ttgtgtattt aggccacctt tccccggtca 540

<210> 12

<211> 709

<212> DNA

<213> Lycopersicon esculentum

<400> 12

caacgatgca	gatatgtatt	cggggatgtt	cacctgggac	agagttgcag	attgaagagt	600
tctacatctc	acatcctgtc	acactatgtg	tgatatttaa	gaaactttgt	ttggcggaac	660
aacaagtttg	cacaaacatt	tgaagaagaa	agcgaaatga	ttcagagag		709

- <210> 13
- <211> 623
- <212> PRT
- <213> Schizosaccharomyces pombe
- <400> 13
- Met Ala Ser Ser Lys Lys Ser Lys Thr His Lys Lys Lys Lys Glu Val 1 5 10 15
- Lys Ser Pro Ile Asp Leu Pro Asn Ser Lys Lys Pro Thr Arg Ala Leu 20 25 30
- Ser Glu Gln Pro Ser Ala Ser Glu Thr Gln Ser Val Ser Asn Lys Ser
 35 40 45
- Arg Lys Ser Lys Phe Gly Lys Arg Leu Asn Phe Ile Leu Gly Ala Ile 50 55 60
- Leu Gly Ile Cys Gly Ala Phe Phe Phe Ala Val Gly Asp Asp Asn Ala 65 70 75 80
- Val Phe Asp Pro Ala Thr Leu Asp Lys Phe Gly Asn Met Leu Gly Ser 85 90 95
- Ser Asp Leu Phe Asp Asp Ile Lys Gly Tyr Leu Ser Tyr Asn Val Phe 100 105 110
- Lys Asp Ala Pro Phe Thr Thr Asp Lys Pro Ser Gln Ser Pro Ser Gly 115 120
- Asn Glu Val Gln Val Gly Leu Asp Met Tyr Asn Glu Gly Tyr Arg Ser 130 135 140
- Ser Trp Ser Phe Asn Asn Cys Ser Ile Pro Tyr Phe Arg Lys Arg Leu 165 170 175
- Trp Gly Ser Trp Ser Met Leu Lys Ala Met Phe Leu Asp Lys Gln Cys 180 185 190
- Trp Leu Glu His Leu Met Leu Asp Lys Lys Thr Gly Leu Asp Pro Lys 195 200 205
- Gly Ile Lys Leu Arg Ala Ala Gln Gly Phe Glu Ala Ala Asp Phe Phe 210 215 220
- Ile Thr Gly Tyr Trp Ile Trp Ser Lys Val Ile Glu Asn Leu Ala Ala225230235240
- Ile Gly Tyr Glu Pro Asn Asn Met Leu Ser Ala Ser Tyr Asp Trp Arg 245 250 255
- Leu Ser Tyr Ala Asn Leu Glu Glu Arg Asp Lys Tyr Phe Ser Lys Leu 260 265 270
- Lys Met Phe Ile Glu Tyr Ser Asn Ile Val His Lys Lys Lys Val Val

			275					280					285			
Le		Ile 290	Ser	His	Ser	Met	Gly 295	Ser	Gln	Val	Thr	Tyr 300	Tyr	Phe	Phe	Lys
T1		Val	Glu	Ala	Glu	Gly 310	Tyr	Gly	Asn	Gly	Gly 315	Pro	Thr	Trp	Val	Asr 320
As	sp	His	Ile	Glu	Ala 325	Phe	Ile	Asn	Ile	Ser 330	Gly	Ser	Leu	Ile	Gly 335	Alá
Pı	0	Lys	Thr	Val 340	Ala	Ala	Leu	Leu	Ser 345	Gly	Glu	Met	Lys	Asp 350	Thr	Gly
1]	Le	Val	Ile 355	Thr	Leu	Asn	Ile	Leu 360	Glu	Lys	Phe	Phe	Ser 365	Arg	Ser	Glu
Ar		Ala 370	Met	Met	Val	Arg	Thr 375	Met	Gly	Gly	Val	Ser 380	Ser	Met	Leu	Pro
Ъу 38		Gly	Gly	Asp	Val	Ala 390	Pro	Asp	Asp	Leu	Asn 395	Gln	Thr	Asn	Phe	Ser 400
As	sn (Gly	Ala	Ile	Ile 405	Arg	Tyr	Arg	Glu	Asp 410	Ile	Asp	Lys	Asp	His 415	Asp
G1	u	Phe	Asp	Ile 420	Asp	Asp	Ala	Leu	Gln 425	Phe	Leu	Lys	Asn	Val 430	Thr	Asp
As	p.	Asp	Phe 435	Lys	Val	Met	Leu	Ala 440	Lys	Asn	Tyr	Ser	His 445	Gly	Leu	Ala
Tr		Thr 450	Glu	Lys	Glu	Val	Leu 455	Lys	Asn	Asn	Glu	Met 460	Pro	Ser	Lys	Trp
Il 46		Asn	Pro	Leu		Thr 470	Ser	Leu	Pro	Tyr	Ala 475	Pro	Asp	Met	Lys	Ile 480
Ту	r	Cys	Val	His	Gly 485	Val	Gly	Lys	Pro	Thr 490	Glu	Arg	Gly	Tyr	Tyr 495	Tyr
Th	ır I	Asn	Asn	Pro 500	Glu	Gly	Gln	Pro	Val 505	Ile	Asp	Ser	Ser	Val 510	Asn	Asp
Gl	-у '	Thr	Lys 515	Val	Glu	Asn	Gly	Ile 520	Val	Met	Asp	Asp	Gly 525	Asp	Gly	Thr
Le		Pro 530	Ile	Leu	Ala	Leu	Gly 535	Leu	Val	Cys	Asn	Lys 540	Val	Trp	Gln	Thr
Lу 54		Arg	Phe	Asn	Pro	Ala 550	Asn	Thr	Ser	Ile	Thr 555	Asn	Tyr	Glu	Ile	Lys 560
Hi	.s (Glu	Pro	Ala	Ala 565	Phe	Asp	Leu	Arg	Gly 570	Gly	Pro	Arg	Ser	Ala 575	Glu
Hi	s '	Val	Asp	Ile 580	Leu	Gly	His	Ser	Glu 585	Leu	Asn	Glu	Ile	Ile 590	Leu	Lys

Val Ser Ser Gly His Gly Asp Ser Val Pro Asn Arg Tyr Ile Ser Asp 595 600 605

Ile Gl
n Glu Ile Asn Glu Ile Asn Leu Asp Lys Pro Arg Asn 610 615 620

<210> 14

<211> 432

<212> PRT

<213> Arabidopsis thaliana

<400> 14

Met Lys Lys Ile Ser Ser His Tyr Ser Val Val Ile Ala Ile Leu Val 1 5 10 15

Val Val Thr Met Thr Ser Met Cys Gln Ala Val Gly Ser Asn Val Tyr
20 25 30

Pro Leu Ile Leu Val Pro Gly Asn Gly Gly Asn Gln Leu Glu Val Arg 35 40 45

Leu Asp Arg Glu Tyr Lys Pro Ser Ser Val Trp Cys Ser Ser Trp Leu 50 55 60

Tyr Pro Ile His Lys Lys Ser Gly Gly Trp Phe Arg Leu Trp Phe Asp 65 70 75 80

Ala Ala Val Leu Leu Ser Pro Phe Thr Arg Cys Phe Ser Asp Arg Met
85 90 95

Met Leu Tyr Tyr Asp Pro Asp Leu Asp Asp Tyr Gln Asn Ala Pro Gly
100 105

Val Gln Thr Arg Val Pro His Phe Gly Ser Thr Lys Ser Leu Leu Tyr
115 120 125

Leu Asp Pro Arg Leu Arg Asp Ala Thr Ser Tyr Met Glu His Leu Val 130 135 140

Lys Ala Leu Glu Lys Lys Cys Gly Tyr Val Asn Asp Gln Thr Ile Leu 145 150 155 160

Gly Ala Pro Tyr Asp Phe Arg Tyr Gly Leu Ala Ala Ser Gly His Pro 165 170 175

Ser Arg Val Ala Ser Gln Phe Leu Gln Asp Leu Lys Gln Leu Val Glu 180 185 190

Lys Thr Ser Ser Glu Asn Glu Gly Lys Pro Val Ile Leu Leu Ser His
195 200 205

Ser Leu Gly Gly Leu Phe Val Leu His Phe Leu Asn Arg Thr Thr Pro 210 215 220

Ser Trp Arg Arg Lys Tyr Ile Lys His Phe Val Ala Leu Ala Ala Pro 225 230 235 240

- Trp Gly Gly Thr Ile Ser Gln Met Lys Thr Phe Ala Ser Gly Asn Thr 245 250 255
- Leu Gly Val Pro Leu Val Asn Pro Leu Leu Val Arg Arg His Gln Arg 260 265 270
- Thr Ser Glu Ser Asn Gln Trp Leu Leu Pro Ser Thr Lys Val Phe His 275 280 285
- Asp Arg Thr Lys Pro Leu Val Val Thr Pro Gln Val Asn Tyr Thr Ala 290 295 300
- Tyr Glu Met Asp Arg Phe Phe Ala Asp Ile Gly Phe Ser Gln Gly Val 305 310 315 320
- Val Pro Tyr Lys Thr Arg Val Leu Pro Leu Thr Glu Glu Leu Met Thr 325 330 335
- Pro Gly Val Pro Val Thr Cys Ile Tyr Gly Arg Gly Val Asp Thr Pro 340 345 350
- Glu Val Leu Met Tyr Gly Lys Gly Gly Phe Asp Lys Gln Pro Glu Ile 355 360 365
- Leu Lys Val Asp Ser Leu Asn Thr Val Glu Ile Asp Gly Val Ser His 385 390 395 400
- Thr Ser Ile Leu Lys Asp Glu Ile Ala Leu Lys Glu Ile Met Lys Glu 405 410 415
- Ile Ser Ile Ile Asn Tyr Glu Leu Ala Asn Val Asn Ala Val Asn Glu $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$
- <210> 15
- <211> 552
- <212> PRT
- <213> Arabidopsis thaliana
- <400> 15
- Met Gly Ala Asn Ser Lys Ser Val Thr Ala Ser Phe Thr Val Ile Ala 1 5 10 15
- Val Phe Phe Leu Ile Cys Gly Gly Arg Thr Ala Val Glu Asp Glu Thr 20 25 30
- Glu Phe His Gly Asp Tyr Ser Lys Leu Ser Gly Ile Ile Pro Gly
 35 40 45
- Phe Ala Ser Thr Gln Leu Arg Ala Trp Ser Ile Leu Asp Cys Pro Tyr 50 55 60
- Thr Pro Leu Asp Phe Asn Pro Leu Asp Leu Val Trp Leu Asp Thr Thr 65 70 75 80

Lys	Leu	Leu	Ser	Ala 85	Val	Asn	Cys	Trp	Phe 90	Lys	Cys	Met	Val	Leu 95	Ası
Pro	Tyr	Asn	Gln 100	Thr	Asp	His	Pro	Glu 105	Cys	Lys	Ser	Arg	Pro 110	Asp	Ser
Gly	Leu	Ser 115	Ala	Ile	Thr	Glu	Leu 120	Asp	Pro	Gly	Tyr	Ile 125	Thr	Gly	Pro
Leu	Ser 130	Thr	Val	Trp	Lys	Glu 135	Trp	Leu	Lys	Trp	Cys 140	Val	Glu	Phe	Gly
Ile 145	Glu	Ala	Asn	Ala	Ile 150	Val	Ala	Val	Pro	Tyr 155	Asp	Trp	Arg	Leu	Se:
Pro	Thr	Lys	Leu	Glu 165	Glu	Arg	Asp	Leu	Tyr 170	Phe	His	Lys	Leu	Lys 175	Let
Thr	Phe	Glu	Thr 180	Ala	Leu	Lys	Leu	Arg 185	Gly	Gly	Pro	Ser	Ile 190	Val	Phe
Ala	His	Ser 195	Met	Gly	Asn	Asn	Val 200	Phe	Arg	Tyr	Phe	Leu 205	Glu	Trp	Leu
Arg	Leu 210	Glu	Ile	Ala	Pro	Lys 215	His	Tyr	Leu	Lys	Trp 220	Leu	Asp	Gln	His
Ile 225	His	Ala	Tyr	Phe	Ala 230	Val	Gly	Ala	Pro	Leu 235	Leu	Gly	Ser	Val	Glu 240
Ala	Ile	Lys	Ser	Thr 245	Leu	Ser	Gly	Val	Thr 250	Phe	Gly	Leu	Pro	Val 255	Sei
Glu	Gly	Thr	Ala 260	Arg	Leu	Leu	Ser	Asn 265	Ser	Phe	Ala	Ser	Ser 270	Leu	Tr
Leu	Met	Pro 275	Phe	Ser	Lys	Asn	Cys 280	Lys	Gly	Asp	Asn	Thr 285	Phe	Trp	Thi
His	Phe 290	Ser	Gly	Gly	Ala	Ala 295	Lys	Lys	Asp	Lys	Arg 300	Val	Tyr	His	Суя
Asp 305	Glu	Glu	Glu	Tyr	Gln 310	Ser	Lys	Tyr	Ser	Gly 315	Trp	Pro	Thr	Asn	11e 320
Ile	Asn	Ile	Glu	Ile 325	Pro	Ser	Thr	Ser	Ala 330	Arg	Glu	Leu	Ala	Asp 335	Glγ
Thr	Leu	Phe	Lys 340	Ala	Ile	Glu	Asp	Tyr 345	Asp	Pro	Asp	Ser	Lys 350	Arg	Met
Leu	His	Gln 355	Leu	Lys	Lys	Tyr	Val 360	Pro	Phe	Phe	Val	Ile 365	Arg	Asn	Ile
Ala	His 370	Arg	Ser	Ser	Leu	Ala 375	Gly	Phe	Leu	Leu	Tyr 380	His	Asp	Asp	Pro
Val	Phe	Asn	Pro	Leu	Thr	Pro	Trp	Glu	Arg	Pro	Pro	Ile	Lys	Asn	Val

Phe Cys Ile Tyr Gly Ala His Leu Lys Thr Glu Val Gly Tyr Tyr Phe 405 410 415

Ala Pro Ser Gly Lys Pro Tyr Pro Asp Asn Trp Ile Ile Thr Asp Ile
420 425 430

Ile Tyr Glu Thr Glu Gly Ser Leu Val Ser Arg Ser Gly Thr Val Val 435 440 445

Asp Gly Asn Ala Gly Pro Ile Thr Gly Asp Glu Thr Val Pro Tyr His 450 455 460

Ser Leu Ser Trp Cys Lys Asn Trp Leu Gly Pro Lys Val Asn Ile Thr 465 470 475 480

Met Ala Pro Gln Ile Leu Ile Gly Lys Ile Lys Gln Gln Pro Glu His 485 490 495

Asp Gly Ser Asp Val His Val Glu Leu Asn Val Asp His Glu His Gly
500 505 510

Ser Asp Ile Ile Ala Asn Met Thr Lys Ala Pro Arg Val Lys Tyr Ile 515 520 525

Thr Phe Tyr Glu Asp Ser Glu Ser Ile Pro Gly Lys Arg Thr Ala Val 530 535 540

Trp Glu Leu Asp Lys Ser Gly Tyr 545 550

<210> 16

<211> 661

<212> PRT

<213> Saccharomyces cerevisiae

<400> 16

Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser 1 5 10 15

Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 20 25 30

Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Gly

Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg 50 55 60

Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 65 70 75 80

Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe 85 90 95

Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 100 105 110

Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn 135 Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val 170 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 200 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 235 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 310 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp 330 Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val Asn Glu His Ile Asp Ser Phe Ile Asn Ala Gly Thr Leu Leu Gly 360 Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr 375 Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser 390 Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 410 Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser

Ser	Glu	Asp 435	Ala	Leu	Asn	Asn	Asn 440	Thr	Asp	Thr	Tyr	Gly 445	Asn	Phe	Ile
Arg	Phe 450	Glu	Arg	Asn	Thr	Ser 455	Asp	Ala	Phe	Asn	Lys 460	Asn	Leu	Thr	Met
Lys 465	Asp	Ala	Ile	Asn	Met 470	Thr	Leu	Ser	Ile	Ser 475	Pro	Glu	Trp	Leu	Gln 480
Arg	Arg	Val	His	Glu 485	Gln	Tyr	Ser	Phe	Gly 490	Tyr	Ser	Lys	Asn	Glu 495	Glu
Glu	Leu	Arg	Lys 500	Asn	Glu	Leu	His	His 505	Lys	His	Trp	Ser	Asn 510	Pro	Met
Glu	Val	Pro 515	Leu	Pro	Glu	Ala	Pro 520	His	Met	Lys	Ile	Tyr 525	Cys	Ile	Tyr
Gly	Val 530	Asn	Asn	Pro	Thr	Glu 535	Arg	Ala	Tyr	Val	Tyr 540	Lys	Glu	Glu	Asp
Asp 545	Ser	Ser	Ala	Leu	Asn 550	Leu	Thr	Ile	Asp	Tyr 555	Glu	Ser	Lys	Gln	Pro 560
Val	Phe	Leu	Thr	Glu 565	Gly	Asp	Gly	Thr	Val 570	Pro	Leu	Val	Ala	His 575	Ser
Met	Cys	His	Lys 580	Trp	Ala	Gln	Gly	Ala 585	Ser	Pro	Tyr	Asn	Pro 590	Ala	Gly
Ile	Asn	Val 595	Thr	Ile	Val	Glu	Met 600	Lys	His	Gln	Pro	Asp 605	Arg	Phe	Asp
Ile	Arg 610	Gly	Gly	Ala	Lys	Ser 615	Ala	Glu	His	Val	Asp 620	Ile	Leu	Gly	Ser
Ala 625	Glu	Leu	Asn	Asp	Tyr 630	Ile	Leu	Lys	Ile	Ala 635	Ser	Gly	Asn	Gly	Asp 640
Leu	Val	Glu	Pro	Arg 645	Gln	Leu	Ser	Asn	Leu 650	Ser	Gln	Trp	Val	Ser 655	Gln
Met	Pro	Phe	Pro 660	Met											
<211 <212)> 17 -> 38 !> PF !> Ar	37 RT	lopsi	is th	nalia	ına									
<400)> 17	7													
Val 1	Gly	Ser	Asn	Val 5	Tyr	Pro	Leu	Ile	Leu 10	Val	Pro	Gly	Asn	Gly 15	Gly

Asn Gln Leu Glu Val Arg Leu Asp Arg Glu Tyr Lys Pro Ser Ser Val

			20					25					30		
Trp	Cys	Ser 35	Ser	Trp	Leu	Tyr	Pro 40	Ile	His	Lys	Lys	Ser 45	Gly	Gly	Trp
Phe	Arg 50	Leu	Trp	Phe	Asp	Ala 55	Ala	Val	Leu	Leu	Ser 60	Pro	Phe	Thr	Arç
Cys 65	Phe	Ser	Asp	Arg	Met 70	Met	Leu	Tyr	Tyr	Asp 75	Pro	Asp	Leu	Asp	Asp 80
Tyr	Gln	Asn	Ala	Pro 85	Gly	Val	Gln	Thr	Arg 90	Val	Pro	His	Phe	Gly 95	Ser
Thr	Lys	Ser	Leu 100	Leu	Tyr	Leu	Asp	Pro 105	Arg	Leu	Arg	Asp	Ala 110	Thr	Ser
Tyr	Met	Glu 115	His	Leu	Val	Lys	Ala 120	Leu	Glu	Lys	Lys	Cys 125	Gly	Tyr	Va]
Asn	Asp 130	Gln	Thr	Ile	Leu	Gly 135	Ala	Pro	Tyr	Asp	Phe 140	Arg	Tyr	Gly	Let
Ala 145	Ala	Ser	Gly	His	Pro 150	Ser	Arg	Val	Ala	Ser 155	Gln	Phe	Leu	Gln	Asp 160
Leu	Lys	Gln	Leu	Val 165	Glu	Lys	Thr	Ser	Ser 170	Glu	Asn	Glu	Gly	Lys 175	Pro
Val	Ile	Leu	Leu 180	Ser	His	Ser	Leu	Gly 185	Gly	Leu	Phe	Val	Leu 190	His	Ph∈
Leu	Asn	Arg 195	Thr	Thr	Pro	Ser	Trp 200	Arg	Arg	Lys	Tyr	Ile 205	Lys	His	Ph∈
Val	Ala 210	Leu	Ala	Ala	Pro	Trp 215	Gly	Gly	Thr	Ile	Ser 220	Gln	Met	Lys	Thr
Phe 225	Ala	Ser	Gly	Asn	Thr 230	Leu	Gly	Val	Pro	Leu 235	Val	Asn	Pro	Leu	Let 240
Val	Arg	Arg	His	Gln 245	Arg	Thr	Ser	Glu	Ser 250	Asn	Gln	Trp	Leu	Leu 255	Pro
Ser	Thr	Lys	Val 260	Phe	His	Asp	Arg	Thr 265	Lys	Pro	Leu	Val	Val 270	Thr	Pro
Gln	Val	Asn 275	Tyr	Thr	Ala	Tyr	Glu 280	Met	Asp	Arg	Phe	Phe 285	Ala	Asp	Ile
Gly	Phe 290	Ser	Gln	Gly	Val	Val 295	Pro	Tyr	Lys	Thr	Arg 300	Val	Leu	Pro	Leu
Thr 305	Glu	Glu	Leu	Met	Thr 310	Pro	Gly	Val	Pro	Val 315	Thr	Cys	Ile	Tyr	Gly 320
Arg	Gly	Val	Asp	Thr 325	Pro	Glu	Val	Leu	Met 330	Tyr	Gly	Lys	Gly	Gly 335	Phe

Asp Lys Gln Pro Glu Ile Lys Tyr Gly Asp Gly Asp Gly Thr Val Asn 340 345 350

Leu Ala Ser Leu Ala Ala Leu Lys Val Asp Ser Leu Asn Thr Val Glu 355 360 365

Ile Asp Gly Val Ser His Thr Ser Ile Leu Lys Asp Glu Ile Ala Leù 370 380

Lys Glu Ile 385

<210> 18

<211> 389

<212> PRT

<213> Arabidopsis thaliana

<400> 18

Leu Lys Lys Glu Gly Leu Lys Ala Lys His Pro Val Val Phe Ile Pro 1 5 10 15

Gly Ile Val Thr Gly Gly Leu Glu Leu Trp Glu Gly Lys Gln Cys Ala $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Asp Gly Leu Phe Arg Lys Arg Leu Trp Gly Gly Thr Phe Leu Cys Trp 35 40 45

Val Glu His Met Ser Leu Asp Asn Glu Thr Gly Leu Asp Pro Ala Gly 50 55 60

Ile Arg Val Arg Ala Val Ser Gly Leu Val Ala Ala Asp Tyr Phe Ala 65 70 75 80

Pro Gly Tyr Phe Val Trp Ala Val Leu Ile Ala Asn Leu Ala His Ile 85 90 95

Gly Tyr Glu Glu Lys Asn Met Tyr Met Ala Ala Tyr Asp Trp Arg Leu 100 105 110

Ser Phe Gln Asn Thr Glu Arg Asp Gln Thr Leu Ser Arg Met Lys Ser 115 120 125

Asn Ile Glu Leu Met Val Ser Thr Asn Gly Gly Lys Lys Ala Val Ile 130 135 140

Val Pro His Ser Met Gly Val Leu Tyr Phe Leu His Phe Met Lys Trp 145 150 155 160

Val Glu Ala Pro Ala Pro Leu Gly Gly Gly Gly Pro Asp Trp Cys 165 170 175

Ala Lys Tyr Ile Lys Ala Val Met Asn Ile Gly Gly Pro Phe Leu Gly 180 185 190

Val Pro Lys Ala Val Ala Gly Leu Phe Ser Ala Glu Ala Lys Asp Met 195 200 205

	20	25		30	
			ggc cat aag Gly His Lys		
			cgt ggc aaa Arg Gly Lys 60		
			tgg aga gat Trp Arg Asp 75		
			gta ctt ttg Val Leu Leu 90		
	_	~ ~	agc gac ttg Ser Asp Leu	_	
			ttg gat gat Leu Asp Asp		
		-	gat gat att Asp Asp Ile 140		
			agt gaa aat Ser Glu Asn 155		
			gag gcc aaa Glu Ala Lys 170		
Met Val Pro			att gaa agc Ile Glu Ser		
		Ser Ser Ala	cat ttt cgt His Phe Arg		
		_	gtt atg gat Val Met Asp 220		
			aca ggt ctg Thr Gly Leu 235		
			gaa tca act Glu Ser Thr 250		_

gca Ala	gjà aaa	tat Tyr	tgg Trp 260	att Ile	tgg Trp	aac Asn	aaa Lys	gtt Val 265	ttc Phe	caa Gln	aat Asn	ctg Leu	gga Gly 270	gta Val	att Ile	816
		gaa Glu 275														864
gca Ala	tat Tyr 290	tta Leu	gat Asp	cta Leu	gaa Glu	aga Arg 295	cgc Arg	gat Asp	agg Arg	tac Tyr	ttt Phe 300	acg Thr	aag Lys	cta Leu	aag Lys	912
		atc Ile														960
att Ile	gga Gly	cat His	tct Ser	atg Met 325	ggt Gly	tct Ser	cag Gln	att Ile	atc Ile 330	ttt Phe	tac Tyr	ttt Phe	atg Met	aaa Lys 335	tgg Trp	1008
		gct Ala														1056
		cac His 355														1104
gct Ala	cca Pro 370	aag Lys	gca Ala	gtt Val	cca Pro	gct Ala 375	cta Leu	att Ile	agt Ser	ggt Gly	gaa Glu 380	atg Met	aaa Lys	gat Asp	acc Thr	1152
att Ile 385	caa Gln	tta Leu	aat Asn	acg Thr	tta Leu 390	gcc Ala	atg Met	tat Tyr	ggt Gly	ttg Leu 395	gaa Glu	aag Lys	ttc Phe	ttc Phe	tca Ser 400	1200
		gag Glu														1248
		cca Pro														1296
tca Ser	gag Glu	gat Asp 435	gca Ala	ttg Leu	aat Asn	aac Asn	aac Asn 440	act Thr	gac Asp	aca Thr	tac Tyr	ggc Gly 445	aat Asn	ttc Phe	att Ile	1344
cga Arg	ttt Phe 450	gaa Glu	agg Arg	aat Asn	acg Thr	agc Ser 455	gat Asp	gct Ala	ttc Phe	aac Asn	aaa Lys 460	aat Asn	ttg Leu	aca Thr	atg Met	1392
aaa Lys 465	gac Asp	gcc Ala	att Ile	aac Asn	atg Met 470	aca Thr	tta Leu	tcg Ser	ata Ile	tca Ser 475	cct Pro	gaa Glu	tgg Trp	ctc Leu	caa Gln 480	1440
		gta Val														1488

275	280	:	285	
gca tat tta gat c Ala Tyr Leu Asp L 290				912
gaa caa atc gaa c Glu Gln Ile Glu L 305				960
att gga cat tct a Ile Gly His Ser M 3				1008
gtc gag gct gaa g Val Glu Ala Glu G 340	Sly Pro Leu Tyr G			1056
aac gaa cac ata g Asn Glu His Ile A 355		sn Ala Ala Gly		1104
gct cca aag gca g Ala Pro Lys Ala V 370				1152
att caa tta aat a Ile Gln Leu Asn T 385				1200
aga att gag aga g Arg Ile Glu Arg V 4			J J	1248
atg cta cca aag g Met Leu Pro Lys G 420	ly Glu Glu Val I			1296
tca gag gat gca t Ser Glu Asp Ala L 435		hr Asp Thr Tyr		1344
cga ttt gaa agg a Arg Phe Glu Arg A 450				1392
aaa gac gcc att a Lys Asp Ala Ile A 465				1440
aga aga gta cat g Arg Arg Val His G 4				1488
gag tta aga aaa a Glu Leu Arg Lys A 500	sn Glu Leu His H			1536
gaa gta cca ctt c	ca gaa gct ccc c	ac atg aaa atc 1	tat tgt ata tac	1584

Glu	Val	Pro 515	Leu	Pro	Glu	Ala	Pro 520	His	Met	Lys	Ile	Tyr 525	Cys	Ile	Tyr	
	gtg Val 530															1632
	tcc Ser															1680
gta Val	ttc Phe	ctc Leu	acc Thr	gag Glu 565	G1 999	gac Asp	gga Gly	acc Thr	gtt Val 570	ccg Pro	ctc Leu	gtg Val	gcg Ala	cat His 575	tca Ser	1728
	tgt Cys															1776
	aac Asn															1824
	cgt Arg 610															1872
	gag Glu															1920
	gtc Val															1968
_	ccc Pro			_	taa											1986
<21 <21	0> 20 1> 60 2> PI 3> Sa	51 RT	aromy	yces	cere	evis	iae									
< 40	0> 20)														
Met 1	Gly	Thr	Leu	Phe 5	Arg	Arg	Asn	Val	Gln 10	Asn	Gln	Lys	Ser	Asp 15	Ser	
Asp	Glu	Asn	Asn 20	Lys	Gly	Gly	Ser	Val 25	His	Asn	Lys	Arg	Glu 30	Ser	Arg	
Asn	His	Ile 35	His	His	Gln	Gln	Gly 40	Leu	Gly	His	Lys	Arg 45	Arg	Arg	Gly	
Ile	Ser 50	Gly	Ser	Ala	Lys	Arg 55	Asn	Glu	Arg	Gly	Lys 60	Asp	Phe	Asp	Arg	

Lys 65	Arg	Asp	Gly	Asn	Gly 70	Arg	Lys	Arg	Trp	Arg 75	Asp	Ser	Arg	Arg	Let 80
Ile	Phe	Ile	Leu	Gly 85	Ala	Phe	Leu	Gly	Val 90	Leu	Leu	Pro	Phe	Ser 95	Phe
Gly	Ala	Tyr	His 100	Val	His	Asn	Ser	Asp 105	Ser	Asp	Leu	Phe	Asp 110	Asn	Phe
Val	Asn	Phe 115	Asp	Ser	Leu	Lys	Val 120	Tyr	Leu	Asp	Asp	Trp 125	Lys	Asp	Va]
Leu	Pro 130	Gln	Gly	Ile	Ser	Ser 135	Phe	Ile	Asp	Asp	Ile 140	Gln	Ala	Gly	Asr
Tyr 145	Ser	Thr	Ser	Ser	Leu 150	Asp	Asp	Leu	Ser	Glu 155	Asn	Phe	Ala	Val	Gl _y 160
Lys	Gln	Leu	Leu	Arg 165	Asp	Tyr	Asn	Ile	Glu 170	Ala	Lys	His	Pro	Val 175	Va]
Met	Val	Pro	Gly 180	Val	Ile	Ser	Thr	Gly 185	Ile	Glu	Ser	Trp	Gly 190	Val	Ile
Gly	Asp	Asp 195	Glu	Cys	Asp	Ser	Ser 200	Ala	His	Phe	Arg	Lys 205	Arg	Leu	Trp
Gly	Ser 210	Phe	Tyr	Met	Leu	Arg 215	Thr	Met	Val	Met	Asp 220	Lys	Val	Cys	Trp
Leu 225	Lys	His	Val	Met	Leu 230	Asp	Pro	Glu	Thr	Gly 235	Leu	Asp	Pro	Pro	Asr 240
Phe	Thr	Leu	Arg	Ala 245	Ala	Gln	Gly	Phe	Glu 250	Ser	Thr	Asp	Tyr	Phe 255	Ιlε
Ala	Gly	Tyr	Trp 260	Ile	Trp	Asn	Lys	Val 265	Phe	Gln	Asn	Leu	Gly 270	Val	Ile
Gly	Tyr	Glu 275	Pro	Asn	Lys	Met	Thr 280	Ser	Ala	Ala	Tyr	Asp 285	Trp	Arg	Leu
Ala	Tyr 290	Leu	Asp	Leu	Glu	Arg 295	Arg	Asp	Arg	Tyr	Phe 300	Thr	Lys	Leu	Lys
Glu 305	Gln	Ile	Glu	Leu	Phe 310		Gln	Leu		Gly 315		Lys	Val	Cys	Leu 320
Ile	Gly	His	Ser	Met 325	Gly	Ser	Gln	Ile	Ile 330	Phe	Tyr	Phe	Met	Lys 335	Trp
Val	Glu	Ala	Glu 340	Gly	Pro	Leu	Tyr	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Val
Asn	Glu	His 355	Ile	Asp	Ser	Phe	Ile 360	Asn	Ala	Ala	Gly	Thr 365	Leu	Leu	Gly
Ala	Pro	Lys	Ala	Val	Pro	Ala	Leu	Ile	Ser	Gly	Glu	Met	Lys	Asp	Thr

Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 405 410 Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 440 Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 455 Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 470 475 Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 500 Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 520 Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp 535 Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser 570 Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 600 Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 630 Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln 650 Met Pro Phe Pro Met 660

<210> 21 <211> 1986

						tct Ser										576
						agt Ser										624
						aga Arg 215										672
						gat Asp										720
						cag Gln										768
						aac Asn										816
						atg Met										864
_			_		_	aga Arg 295	_	_				_	_		_	912
						cat His										960
						tct Ser										1008
gtc Val	gag Glu	gct Ala	gaa Glu 340	ggc Gly	cct Pro	ctt Leu	tac Tyr	ggt Gly 345	aat Asn	ggt Gly	ggt Gly	cgt Arg	ggc Gly 350	tgg Trp	gtt Val	1056
						ttc Phe										1104
						gct Ala 375										1152
						gcc Ala										1200
						atg Met										1248

Gly	Asp	Asp	Glu 195	Cys	Asp	Ser	Ser	Ala 200	His	Phe	Arg	Lys	Arg 205	Leu	Trp	
					ctg Leu											672
					tta Leu											720 240
ttt Phe	acg Thr	cta Leu	cgt Arg	gca Ala	gca Ala 245	cag Gln	ggc Gly	ttc Phe	gaa Glu	tca Ser 250	act Thr	gat Asp	tat Tyr	ttc Phe	atc Ile 255	768
gca Ala	Gly 333	tat Tyr	tgg Trp	att Ile 260	tgg Trp	aac Asn	aaa Lys	gtt Val	ttc Phe 265	caa Gln	aat Asn	ctg Leu	gga Gly	gta Val 270	att Ile	816
					aaa Lys											864
					gaa Glu											912
					ttt Phe 310											960
att Ile	gga Gly	cat His	tct Ser	atg Met 325	ggt Gly	tct Ser	cag Gln	att Ile	atc Ile 330	ttt Phe	tac Tyr	ttt Phe	atg Met	aaa Lys 335	tgg Trp	1008
					cct Pro											1056
	_			_	tca Ser				_	_		_		_		1104
		Lys	Āla	Val	cca Pro	Āla	Leu	Ile	Ser	Gly	Glu	Met				1152
					tta Leu 390											1200
					aaa Lys											1248
atg Met	cta Leu	cca Pro	aag Lys 420	gga Gly	gaa Glu	gag Glu	gtc Val	att Ile 425	tgg Trp	Gly aaa	gat Asp	atg Met	aag Lys 430	tca Ser	tct Ser	1296

tca Ser	gag Glu	gat Asp 435	gca Ala	ttg Leu	aat Asn	aac Asn	aac Asn 440	act Thr	gac Asp	aca Thr	tac Tyr	ggc Gly 445	aat Asn	ttc Phe	att Ile	1344
cga Arg	ttt Phe 450	gaa Glu	agg Arg	aat Asn	acg Thr	agc Ser 455	gat Asp	gct Ala	ttc Phe	aac Asn	aaa Lys 460	aat Asn	ttg Leu	aca Thr	atg Met	1392
aaa Lys 465	gac Asp	gcc Ala	att Ile	aac Asn	atg Met 470	aca Thr	tta Leu	tcg Ser	ata Ile	tca Ser 475	cct Pro	gaa Glu	tgg Trp	ctc Leu	caa Gln 480	1440
					cag Gln											1488
gag Glu	tta Leu	aga Arg	aaa Lys 500	aat Asn	gag Glu	cta Leu	cac His	cac His 505	aag Lys	cac His	tgg Trp	tcg Ser	aat Asn 510	cca Pro	atg Met	1536
gaa Glu	gta Val	cca Pro 515	ctt Leu	cca Pro	gaa Glu	gct Ala	ccc Pro 520	cac His	atg Met	aaa Lys	atc Ile	tat Tyr 525	tgt Cys	ata Ile	tac Tyr	1584
Gly 999	gtg Val 530	aac Asn	aac Asn	cca Pro	act Thr	gaa Glu 535	agg Arg	gca Ala	tat Tyr	gta Val	tat Tyr 540	aag Lys	gaa Glu	gag Glu	gat Asp	1632
					aat Asn 550											1680
					Gly 999											1728
					gcc Ala											1776
					gtg Val											1824
ata Ile	cgt Arg 610	ggt Gly	gga Gly	gca Ala	aaa Lys	agc Ser 615	gcc Ala	gaa Glu	cac His	gta Val	gac Asp 620	atc Ile	ctc Leu	ggc Gly	agc Ser	1872
gcg Ala 625	gag Glu	ttg Leu	aac Asn	gat Asp	tac Tyr 630	atc Ile	ttg Leu	aaa Lys	att Ile	gca Ala 635	agc Ser	ggt Gly	aat Asn	ggc Gly	gat Asp 640	1920
ctc Leu	gtc Val	gag Glu	cca Pro	cgc Arg 645	caa Gln	ttg Leu	tct Ser	aat Asn	ttg Leu 650	agc Ser	cag Gln	tgg Trp	gtt Val	tct Ser 655	cag Gln	1968
_		ttc Phe		_	taa											1986

- <210> 22
- <211> 661
- <212> PRT
- <213> Saccharomyces cerevisiae
- <400> 22
- Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser 1 5 10 15
- Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 20 25 30
- Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly 35 40 45
- Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg 50 55 60
- Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 65 70 75 80
- Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe 85 90 95
- Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 100 105 110
- Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 115 120 125
- Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn 130 135 140
- Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 145 150 155 160
- Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
 165 170 175
- Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180 185 190
- Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205
- Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215 220
- Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 225 230 235 240
- Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255
- Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270

Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 280 Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 295 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp 330 Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val Asn Glu His Ile Asp Ser Phe Ile Asn Ala Gly Thr Leu Leu Gly 360 Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser 390 Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 410 Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser 425 Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 455 Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 485 490 Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 505 Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 515 520 Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp 535 Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro 550 Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser 570 Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly

580 585 590

Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 595 600 605

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln 645 650 655

Met Pro Phe Pro Met 660

<210> 23

<211> 2312

<212> DNA

<213> Schizosaccharomyces pombe

<400> 23

atggcgtctt ccaagaagag caaaactcat aagaaaaaga aagaagtcaa atctcctatc 60 gacttaccaa attcaaagaa accaactcgc gctttgagtg agcaaccttc agcgtccgaa 120 acacaatctg tttcaaataa atcaagaaaa tctaaatttg gaaaaagatt gaattttata 180 ttgggcgcta ttttgggaat atgcggtgct ttttttttcg ctgttggaga cgacaatgct 240 gttttcgacc ctgctacgtt agataaattt gggaatatgc taggctcttc agacttgttt 300 gatgacatta aaggatattt atcttataat gtgtttaagg atgcaccttt tactacggac 360 aagcettege agteteetag eggaaatgaa gtteaagttg gtettgatat gtacaatgag 420 ggatatcgaa gtgaccatcc tgttattatg gttcctggtg ttatcagctc aggattagaa 480 agttggtcgt ttaataattg ctcgattcct tactttagga aacgtctttg gggtagctgg 540 tctatgctga aggcaatgtt ccttgacaag caatgctggc ttgaacattt aatgcttgat 600 aaaaaaaccg gcttggatcc gaagggaatt aagctgcgag cagctcaggg gtttgaagca 660 gctgattttt ttatcacggg ctattggatt tggagtaaag taattgaaaa ccttgctgca 720 attggttatg agcctaataa catgttaagt gcttcttacg attggcggtt atcatatgca 780 aatttagagg aacgtgataa atatttttca aagttaaaaa tgttcattga gtacagcaac 840 attgtacata agaaaaaggt agtgttgatt tctcactcca tgggttcaca ggttacgtac 900 tattttttta agtgggttga agctgagggc tacggaaatg gtggaccgac ttgggttaat 960 gatcatattg aagcatttat aaatgtgagt ctcgatggtt gtttgactac gtttctaact 1020 tttgaataga tatcgggatc tttgattgga gcacccaaaa cagtggcagc gcttttatcg 1080 qqtqaaatqa aagatacagg tattgtaatt acattaaaca tgttaatatt taatttttgc 1140 taaccgtttt aagctcaatt gaatcagttt tcggtctatg ggtaagcaat aaattgttga 1200 gatttgttac taatttactg tttagtttgg aaaaattttt ttcccgttct gaggtatatt 1260 caaaaataca aatgtgctct actttttcta acttttaata gagagccatg atggttcgca 1320 ctatgggagg agttagttct atgcttccta aaggaggcga tgttgtatgg ggaaatgcca 1380 gttgggtaag aaatatgtgc tgttaatttt ttattaatat ttaggctcca gatgatctta 1440 atcaaacaaa tttttccaat ggtgcaatta ttcgatatag agaagacatt gataaggacc 1500 acgatgaatt tgacatagat gatgcattac aatttttaaa aaatgttaca gatgacgatt 1560 ttaaagtcat gctagcgaaa aattattccc acggtcttgc ttggactgaa aaagaagtgt 1620 taaaaaataa cgaaatgccg tctaaatgga taaatccgct agaagtaaga acattaaagt 1680 tactaaatta tactaaccca aatagactag tetteettat geteetgata tgaaaattta 1740 ttgcgttcac ggggtcggaa aaccaactga gagaggttat tattatacta ataatcctga 1800 ggggcaacct gtcattgatt cctcggttaa tgatggaaca aaagttgaaa atgtgagaga 1860 atttatgttt caaacattct attaactgtt ttattagggt attgttatgg atgatggtga 1920 tggaacttta ccaatattag cccttggttt ggtgtgcaat aaagtttggc aaacaaaaag 1980 gtttaatcct gctaatacaa gtatcacaaa ttatgaaatc aagcatgaac ctgctgcgtt 2040 tgatctgaga ggaggacctc gctcggcaga acacgtcgat atacttggac attcagagct 2100 aaatgtatgt tcattttacc ttacaaattt ctattactaa ctcttgaaat aaggaaatta 2160 ttttaaaagt ttcatcaggc catggtgact cggtaccaaa ccgttatata tcagatatcc 2220 agtacggaca taagttttgt agattgcaat taactaacta accgaacagg gaaataataa 2280 2312 atgagataaa tctcgataaa cctagaaatt aa

atgcccctta ttcatcggaa aaagccgacg gagaaaccat cgacgccgcc atctgaagag 60 gtggtgcacg atgaggattc gcaaaagaaa ccacacgaat cttccaaatc ccaccataag 120 aaatcgaacg gaggagggaa gtggtcgtgc atcgattctt gttgttggtt cattgggtgt 180 gtgtgtgtaa cctggtggtt tcttctcttc ctttacaacg caatgcctgc gagcttccct 240

<210> 24

<211> 3685

<212> DNA

<213> Arabidopsis thaliana

<400> 24

cagtatgtaa cggagcgaat cacgggtcct ttgcctgacc cgcccggtgt taagctcaaa 300 aaagaaggte ttaaggegaa acateetgtt gtetteatte etgggattgt caeeggtggg 360 ctcgagcttt gggaaggcaa acaatgcgct gatggtttat ttagaaaacg tttgtggggt 420 ggaacttttg gtgaagtcta caaaaggtga gctcaacaat tctcactctt cctttatatt 480 gggatttgga ttggatctga tgagatcacg cacttgttgc ttcttcaaca tcactcaaac 540 tttaatteca tgtttgtetg tettaetett taettttttt tttttttgat gtgaaaeget 600 attttcttaa gagactattt ctgtatgtgt aaggtaagcg ttccaaggac gtaattggct 660 tggactattt ctgtttgatt gttaacttta ggatataaaa tagctgcctt ggaatttcaa 720 gtcatcttat tgccaaatct gttgctagac atgccctaga gtccgttcat aacaagttac 780 ttcctttact gtcgttgcgt gtagatttag ctttgtgtag cgtataatga agtagtgttt 840 tatgttttgt tgggaataga gaagttetaa etacatetgt ggaaagtgtg tteaggetgt 900 gatagaggac tgttgcttta ttattcaact atgtatatgt gtaattaaag ctagttcctt 960 tttgatettt cageteaatg tgettttete aatttttte teaattteaa agttteacat 1020 cgagtttatt cacatgtett gaatttegte cateetegtt etgttateea getttgaact 1080 cctcccgacc ctgctatgga tatattaaaa aaaaagtgtt ttgtgggttg catctttgtt 1140 acgatetgea tettettett teggeteagt gtteatgttt ttgetatggt agagatggge 1200 aatgttattg ttgatggtaa cagtggtata gttgatagta tcttaactaa tcaattatct 1260 ctttgattca ggcctctatg ttgggtggaa cacatgtcac ttgacaatga aactgggttg 1320 gatccagctg gtattagagt tcgagctgta tcaggactcg tggctgctga ctactttgct 1380 cetggetact ttgtetggge agtgetgatt getaacettg cacatattgg atatgaagag 1440 aaaaatatgt acatggctgc atatgactgg cggctttcgt ttcagaacac agaggttctt 1500 ttctcatcgt tctttctatt attctgttcc atgttacgtt tctttcttca ttacttaagg 1560 cttaaatatg tttcatgttg aattaatagg tacgtgatca gactcttagc cgtatgaaaa 1620 gtaatataga gttgatggtt tctaccaacg gtggaaaaaa agcagttata gttccgcatt 1680 ccatgggggt cttgtatttt ctacatttta tgaagtgggt tgaggcacca gctcctctgg 1740 gtggcggggg tgggccagat tggtgtgcaa agtatattaa ggcggtgatg aacattggtg 1800 gaccatttct tggtgttcca aaagctgttg cagggctttt ctctgctgaa gcaaaggatg 1860 ttgcagttgc caggtattga atatctgctt atacttttga tgatcagaac cttggctctg 1920 gaactcaaag ttattctact aaatatcaat tctaataaca ttgctatatt atcgctgcaa 1980 ctgacattgg ttgattattt ttgctgctta tgtaactgaa actctcttga gattagacaa 2040 atgatgaatt gataattett aegeattget etgtgatgae eagtttetta gettegaega 2100 taacatttgt catactgtct tttggagggc attgaatttt gctatggaaa gcgctggagc 2160 ttccatgett geattettta ceaattageg ttattetget tettteaatt ttettgtata 2220 tgcatctatg gtcttttatt tcttcttaat taaagactcg ttggattagt tgctctatta 2280 gtcacttggt tccttaatat agaactttac tttcttcgaa aattgcagag cgattgcccc 2340 aggattetta gacacegata tatttagaet teagaeettg cageatgtaa tgagaatgae 2400 acgcacatgg gactcaacaa tgtctatgtt accgaaggga ggtgacacga tatggggcgg 2460 gettgattgg teaceggaga aaggeeacae etgttgtggg aaaaageaaa agaacaaega 2520 aacttgtggt gaagcaggtg aaaacggagt ttccaagaaa agtcctgtta actatggaag 2580 gatgatatet titigggaaag aagtageaga ggetgegeea tetgagatta ataatatiga 2640 ttttcgagta aggacatata aatcataata aaccttgtac attttgtgat tgtatgatga 2700 atatetgtae attttatetg gtgaagggtg etgteaaagg teagagtate eeaaateaea 2760 cctgtcgtga cgtgtggaca gagtaccatg acatgggaat tgctgggatc aaagctatcg 2820 ctgagtataa ggtctacact gctggtgaag ctatagatct actacattat gttgctccta 2880 agatgatggc gegtggtgcc getcatttct cttatggaat tgctgatgat ttggatgaca 2940 ccaagtatca agatcccaaa tactggtcaa atccgttaga gacaaagtaa gtgatttctt 3000 gattccaact gtatccttcg tcctgatgca ttatcagtct ttttgttttc ggtcttgttg 3060 gatatggttt tcagctcaaa gcttacaaag ctgtttctga gcctttctca aaaaggcttg 3120 ctcagtaata ttgaggtgct aaagttgata catgtgactc ttgcttataa atcctccgtt 3180 tggtttgttc tgctttttca gattaccgaa tgctcctgag atggaaatct actcattata 3240 cggagtgggg ataccaacgg aacgagcata cgtatacaag cttaaccagt ctcccgacag 3300 ttgcatcccc tttcagatat tcacttctgc tcacgaggag gacgaagata gctgtctgaa 3360 agcaggagtt tacaatgtgg atggggatga aacagtaccc gtcctaagtg ccgggtacat 3420 gtgtgcaaaa gegtggegtg geaagaeaag atteaaceet teeggaatea agaettatat 3480 aagagaatac aatcactctc cgccggctaa cctgttggaa gggcgcggga cgcagagtgg 3540 tgcccatgtt gatatcatgg gaaactttgc tttgatcgaa gatatcatga gggttgccgc 3600 cggaggtaac gggtctgata taggacatga ccaggtccac tctggcatat ttgaatggtc 3660 3685 ggagcgtatt gacctgaagc tgtga

<210> 25 <211> 402

```
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (120)..(401)
<220>
<221> unsure
<222> 1..402
<223> n= a or g or c or t/u
<223> Xaa=unknown
<400> 25
agaaacaget ctttgtctct ctcgactgat ctaacaatcc ctaatctgtg ttctaaattc 60
ctggacgaga tttgacaaag tccgtatagc ttaacctggt ttaatttcaa gtgacagat
atg ccc ctt att cat cgg aaa aag ccg acg gag aaa cca tcg acg ccg
                                                                        167
Met Pro Leu Ile His Arg Lys Lys Pro Thr Glu Lys Pro Ser Thr Pro
cca tct gaa gag gtg gtg cac gat gag gat tcg caa aag aaa cca cac
Pro Ser Glu Glu Val Val His Asp Glu Asp Ser Gln Lys Lys Pro His
                                                                        215
              20
gaa tet tee aaa tee cae cat aag naa teg aac gga gga ggg aag tgg
                                                                        263
Glu Ser Ser Lys Ser His His Lys Xaa Ser Asn Gly Gly Lys Trp
         35
teg tge ate gat tet tgt tgt tgg tte att ggg tgt gtg tgt gta ace
                                                                        311
Ser Cys Ile Asp Ser Cys Cys Trp Phe Ile Gly Cys Val Cys Val Thr
tgg tgg ttt ctt ctc ttc ctt tac aac gca atg cct gcg agc ttc cct
                                                                        359
Trp Trp Phe Leu Leu Phe Leu Tyr Asn Ala Met Pro Ala Ser Phe Pro
                                                                        402
cag tat gta acg gag ccg aat cac gng tcc ttt gcc tta ccc g
Gln Tyr Val Thr Glu Pro Asn His Xaa Ser Phe Ala Leu Pro
                  85
                                        90
<210> 26
<211> 643
<212> DNA
<213> Zea mays
<220>
<221> CDS
<222> (1)..(402)
<220>
<221> unsure
<222> 1..643
\langle 223 \rangle n= a or g or c or t/u
<400> 26
```

	gag Glu															48
	gaa Glu															96
	cgt Arg				_		-		_		_	_				144
_	gaa Glu 50		_		_						_	_				192
	cag Gln															240
	gac Asp															288
	gat Asp															336
_	aaa Lys	_	taa	cct	atg	gga	agt	taa	aga	agt	gcc	gac	ccg	ttt	att	384
gcg	eg tte caa agt gte etg eetgagtgea aetetggatt ttgettaaat															432
attgtaattt ttcacgette attegteeet ttgtcaaatt tacatttgae aggaegeeaa															492	
tgcgatacga tgttgtaccg ctattttcag cattgtatat taaactgtac aggtgtaagt															552	
tgcatttgcc agctgaaatt gtgtagtcgt tttctttacg atttaatanc aagtggcgga															612	
gcagtgcccc aagcnaaaaa aaaaaaaaa a														643		
<211 <212 <213)> 27 L> 13 2> PI 3> Ze	L5 RT ea ma	ays													
)> 27 Glu		т1.	7.1.0	ת ל ת	Lev	Laze	G137	Glar	Va 1	ጥኒ፣ኍ	Lev	αlα	λαν	Glv	
Arg	GIU	пλя	тте	A1a 5	мта	ъси	пув	GTĀ	10	vaı	тут	пеп	viq	15	дту	

Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly $20 \\ \hspace{1.5cm} 25 \\ \hspace{1.5cm} 30$

Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val 35 40 45

Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
50 55 60

Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile 65 70 75 80

Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85 90 95

Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys
100 105 110

Leu Lys Leu 115

<210> 28

<211> 516

<212> DNA

<213> Neurospora crassa

<220>

<221> unsure

<222> 1..516

<223> n= a or g or c or t/u

<400> 28

ggtggcgaag acganggcgg aagttggagg ctaacgagaa tgacnetegg agatggatet 60 accetetaga gacacgacta centtgcace cagceteaag gtntaengtt tntatgggta 120 ggaageegac ggagegagee tacatetate tggegeeega teeegggaeeg acaacgeate 180 tttagatgae gategataeg acettgaetn aggggeaeat tgaceaeggt gtgattttgg 240 gegaaggega tggeaeagtg aacettatga gtttggggta eetgtgeaat aaggggtgga 300 aaatgaagag atacaateet gegggeteaa aaataaeegt ggtegagatg eegcatgaae 360 eagaaeggtt caateegaga ggagggeega atacggegga ettaaatatg tagaaaaggt 420 tgaaatttat gaagagtaat taaataegge acataggtta etcaatagta tgactaatta 480 aaaaaaaaatt ttttttetaa aaaaaaaaa aaaaaaa

<210> 29

<211> 1562

<212> DNA

<213> Arabidopsis thaliana

<400> 29

atgaaaaaa tatetteaca ttatteggta gteatagega taetegttgt ggtgaegatg 60 acetegatgt gteaagetgt gggtageaac gtgtaecett tgattetggt teeaggaaac 120 ggaggtaace agetagaggt aeggetggae agagaataca ageeaagtag tgtetggtgt 180

agcagctggt tatatccgat tcataagaag agtggtggat ggtttaggct atggttcgat 240 gcagcagtgt tattgtctcc cttcaccagg tgcttcagcg atcgaatgat gttgtactat 300 gaccctgatt tggatgatta ccaaaatgct cctggtgtcc aaacccgggt tcctcatttc 360 ggttcgacca aatcacttet atacetegae cetegtetee ggttagtaet ttecaagata 420 tatcattttg ggacatttgc ataatgaaca aaatagacat aaatttgggg gattattgtt 480 atatcaatat ccatttatat gctagtcggt aatgtgagtg ttatgttagt atagttaatg 540 tgagtgttat gtgattttcc attttaaatg aagctagaaa gttgtcgttt aataatgttg 600 ctatgtcatg agaattataa ggacactatg taaatgtagc ttaataataa ggtttgattt 660 gcagagatgc cacatcttac atggaacatt tggtgaaagc tctagagaaa aaatgcgggt 720 atgttaacga ccaaaccatc ctaggagctc catatgattt caggtacggc ctggctgctt 780 cgggccaccc gtcccgtgta gcctcacagt tcctacaaga cctcaaacaa ttggtggaaa 840 aaactagcag cgagaacgaa ggaaagccag tgatactcct ctcccatagc ctaggaggac 900 ttttcgtcct ccatttcctc aaccgtacca ccccttcatg gcgccgcaag tacatcaaac 960 actttgttgc actcgctgcg ccatggggtg ggacgatctc tcagatgaag acatttgctt 1020 ctggcaacac actcggtgtc cctttagtta accctttgct ggtcagacgg catcagagga 1080 cctccgagag taaccaatgg ctacttccat ctaccaaagt gtttcacgac agaactaaac 1140 cgcttgtcgt aactccccag gttaactaca cagcttacga gatggatcgg ttttttgcag 1200 agetgatgae teegggagtg ceagteaett geatatatgg gagaggagtt gatacaeegg 1320 aggttttgat gtatggaaaa ggaggattcg ataagcaacc agagattaag tatggagatg 1380 gagatgggac ggttaatttg gcgagcttag cagctttgaa agtcgatagc ttgaacaccg 1440 tagagattga tggagtttcg catacatcta tacttaaaga cgagatcgca cttaaagaga 1500 ttatgaagca gatttcaatt attaattatg aattagccaa tgttaatgcc gtcaatgaat 1560 1562 ga

atgggagcga attcgaaatc agtaacggct teetteaceg teategeegt tittitetig 60 atttgeggtg geegaactge ggtggaggat gagacegagt titeacggega ciactegaag 120

<210> 30

<211> 3896

<212> DNA

<213> Arabidopsis thaliana

<400> 30

ctategggta taateattee gggatttgeg tegaegeage taegagegtg gtegateett 180 gactgtccat acactccgtt ggacttcaat ccgctcgacc tcgtatggct agacaccact 240 aaggtccgtg atcttcattt ccttcgctcc ttattctgtc ggtcgagtca cttgttgatg 300 gtcaacagtg acgcttctga atctgagttt agagtcatat aaaacagctg actcggcgag 420 tgtttcccat cgcttttggt tcgctaaatg tagcgcaatg aatgtgtaat tagtctgcgc 480 tttttattca actagatctg caagtttttc agagtgctca atagtagtta gaaaatgtta 540 ggtcatttta cttgtgcatt gtgattettt tggttgttge ttactgateg acgtgatgga 600 tggtttacag cttctttctg ctgtcaactg ctggtttaag tgtatggtgc tagatcctta 660 taatcaaaca gaccatcccg agtgtaagtc acggcctgac agtggtcttt cagccatcac 720 agaattggat ccaggttaca taacaggtag tttcggattt ttctttcttt tgagttttct 780 tcaatttgat atcatcttgt tgtgatataa tatggctaag ttcattaatt tggtcaattt 840 teaggteete titetaetgi etggaaagag iggettaagi ggigigitga giitiggiata 900 gaagcaaatg caattgtege tgtteeatae gattggagat tgteaccaae caaattggaa 960 gagegtgace tttaetttea caageteaag ttagteetta teaggetaat gtettttate 1020 ttetettttt atgtaagata agetaagage tetggtegte tteetttttg caggttgace 1080 tttgaaactg ctttaaaact ccgtggcggc ccttctatag tatttgccca ttcaatgggt 1140 aataatgtet teagataett tetggaatgg etgaggetag aaattgeace aaaacattat 1200 ttgaagtggc ttgatcagca tatccatgct tatttcgctg ttggtaccgg cctactatcc 1260 ttaagttacc attttatttt ttctctaatt gggggagtta tgttgtgact tactggattg 1320 agetegatae etgatttgtt gttgatttag gageteetet tettggttet gttgaggeaa 1380 tcaaatctac tetetetggt gtaaegtttg geetteetgt ttetgaggtg acctetgaet 1440 tototttagt tttaagtagt tgatatcaac caggtottat aactcactgg attttoottt 1500 tgaaagtatt acttttgtta attgaactgc tgtacgcgat atggtatctg tagatcttga 1560 agtgctagtt atcaaagaac atattgtggg tagtatacct gtcagcggcc ttagctaata 1620 caaccaaacc acatgtacac tgatttagtt ttcagattat tatggtagac tttaagttga 1680 gaagaaactt tgactgaaat ctttttattt taataggcta tgatttgttt attgaaatca 1740 tgtgacatat tgacatgege tteteatgtt ttttgttgge aaggetteag ggaactgete 1800 ggttgttgtc caattetttt gegtegteat tgtggettat gecattttea aagaattgea 1860 agggtgataa cacattetgg aegeattttt etgggggtge tgeaaagaaa gataagegeg 1920

tataccactg tgatgaagag gaatatcaat caaaatattc tggctggccg acaaatatta 1980 ttaacattga aatteettee actageggtt agactetgta tatgeaactg taacactaac 2040 aaaagtttca ccaagaatgt tcactctcat atttcgttcc tttgatgtgt atccatcagt 2100 tacagaaaca getetagtea acatgaecag catggaatgt ggeetteeca ecettttgte 2160 tttcacagec egtgaactag cagatgggac tettttcaaa geaatagaag actatgacec 2220 agatagcaag aggatgttac accagttaaa gaagtacgta cctttctttg tgataagaaa 2280 tattgctcat cgatcatcac ttgctggctt cttgtacgtc aaattgtttt gtttaaatct 2340 ctatatcaat tgttcatatg ctttgtcttt cttactataa gaaacaagta taatcagaaa 2400 cettattatt gattateagt teteteetta tattatggaa tgtettttte gtttacagtt 2460 atgaatgcaa aagggggtat tttagttgat tgattctctc attctctagt ttgttttgac 2520 taatagcgtc aattttgttt ttctagcaaa tctttgtgaa ttatatataa catgctaact 2580 atacttttca ggttgtatca tgatgaccct gtttttaatc ctctgactcc ttgggagaga 2640 ccacctataa aaaatgtatt ttgcatatat ggtgctcatc taaagacaga ggtatgatgc 2700 atteteaata teacattatg egitgaetti gitattatat teeceattig gittgeaata 2760 tetttttgaa ttatgattta tetteteeet tgeatettat getattaage gttaaaggta 2820 ctaaatgtat gaagetgtet gteataggtt ggttattaet ttgeeceaag tggeaaacet 2880 tatectgata attggateat caeggatate atttatgaaa etgaaggtte eetegtgtea 2940 aggtaatttt ccgcaatggc agaagtaaaa caggaaggca aagtcttctg tatcagtcta 3000 gtggcatgtt atctcagttg cataagcaaa ttattaaaca actaaaattt aagtactttt 3060 ttatcattcc ttttgagctt agtggatgat cagtggctta aagtgggaag aggtgttgca 3120 tgaaacatga cacttgtatc aaagataact agcaaaacaa aactaaccca tttctgaatt 3180 tcatattatt aggagtagtc gtgcttttaa aaaatttgtt ttaagaaacc gaaaaactag 3240 ttcatatett gattgtgeaa tatetgeagg tetggaaetg tggttgatgg gaaegetgga 3300 cctataactg gggatgagac ggtaagctca gaagttggtt ttgaaattat cttcttgcaa 3360 actactgaag actaagataa tacttgcttc tggaacactg cttgctatgt tctctagtac 3420 actgcaatat tgactctccg ctacttttat tgattatgaa attgatctct tataggtacc 3480 ctatcattca ctctcttggt gcaagaattg gctcggacct aaagttaaca taacaatggc 3540 tccccaggta ctcttttta gttcctcacc ttatatagat caaactttaa gtgtactttt 3600 ctggttatgt gttgatttac ctccaatttg ttctttctaa aaatcatata tctctgtact 3660 cctcaagaac ttgtattaat ctaaacgaga ttctcattgg gaaaataaaa caacagccag 3720

aacacgatgg aagcgacgta catgtggaac taaatgttga tcatgagcat gggtcagaca 3780 tcatagctaa catgacaaaa gcaccaaggg ttaagtacat aaccttttat gaagactctg 3840 agagcattcc ggggaagaga accgcagtct gggagcttga taaaagtggg tattaa 3896

<210> 31 <211> 709 <212> DNA <213> tomato

<400> 31

ctggggccaa aagtgaacat aacaaggaca ccacagtcag agcatgatgt tcagatgtac 60
aagtgcatct aaatatagag catcaacatg gtgaagatat cattcccaat atgacaaagt 120
tacctacaat gaagtacata acctattatg aggattctga aagttttcca gggacaagaa 180
cagcagtttg ggagcttgat aaagcaaatc acaggaacat tgtcagatct ccagctttga 240
tgcgggagct gtggcttgag atgtggcatg atattcatcc tgataaaaag tccaagtttg 300
ttacaaaaagg tggtgtctga tcctcactat tttcttctat aaatgtttga gtttgtattg 360
acattgtaag tattgcaaca aaaagcaaag cgtgggcctc tgagggatga ggactgctat 420
tgggattacg ggaaagctcg atgtgcatgg gctgaacatt gtgaatacag gttagaatat 480
tcaaattata ttttgcaaaa tattctcttt ttgtgtattt aggccacctt tccccggtca 540
caacgatgca gatatgtatt cggggatgtt cacctgggac agagttgcag attgaagagt 600
tctacatctc acatcctgtc acactatgtg tgatatttaa gaaactttgt ttggcggaac 660
aacaagtttg cacaaacatt tgaagaagaa agcgaaatga ttcagagag 709

09/937779 JC05 Rec'd PCT/PTO 2 8 SEP 2007

SEQUENCE LISTENING

<110> BASF AG

<120> A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MCLECULES ENCODING THESE ENZYMES

<130> EASF-NAE-3377-99-Sept-2000

<140> PCT/EP 00/02701

<141> 2000-03-23

<160> 31

<170> PatentIn Ver. 2.1

<210> 1

<211> 1986

<212> genomic DNA

<213> Saccharomyces cerevisiae

<220>

<221> CDS

<222> (1)..(1983)

<400>1

atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct 48 Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser 1 5 10

gat gaa aac aat aaa ggg ggt tot gtt oat aac aag oga gag ago aga 96 Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 20 25 30

aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt $$ 144 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Gly $$ 45

att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat ttc gac agg 192 Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg

aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
70 75 80

att ttc att ctt ggt gca ttc tta ggt gta ctt ttg ccg ttt agc ttt 288
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe

ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt 336 Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Fhe 100 10

gta aat tit gat ica cit aaa gig tat tig gat gat igg aaa gat git 384 Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 115 120 125

	cca Pro 130														432
	tcc Ser						_		_	_					480
	caa G1n			_	-					-				_	528
_	gtt Val						_			_	-		 		576
	gac Asp	-	_	_							_		 _		624
-	agt Ser 210			_											672
_	aaa Lys			-		-		_				_	_		720
	acg Thr														768
-	Gly ggg							-				_	 _		816
	tat Tyr														864
	tat Tyr 290		_											_	912
	caa Gln		_	-							_		-		960
	gga Gly														1008
	gag Glu									-				_	1056

				_	tca Ser				_	_		_		_		1104
					cca Pro											1152
					tta Leu 390											1200
					aaa Lys											1248
					gaa Glu											1296
					aat Asn											1344
					acg Thr											1392
	-	_			atg Met 470											1440
					cag Gln											1488
					gag Glu											1536
	-				gaa Glu											1584
		Asn			act Thr		Arg									1632
					aat Asn 550											1680
gta Val	ttc Phe	ctc Leu	acc Thr	gag Glu 565	GJÀ aaa	gac Asp	gga Gly	acc Thr	get Val 570	ccg ?ro	ctc Leu	gtg Val	gCy Ala	cat His 575	tca Ser	1728
					gcc Ala											1775

		~		gtg Val	 _		_	-	_		1824
				aaa Lys							1872
				tac Tyr 630							1920
	_		_	caa Gln		-		 	_		1968
_		ttc Phe	_	taa							1986

<210> 2 <211> 661 <212> PRT <213> Sacchard	myces cer	evisiae				
<400> 2 Met Gly Thr Le	u Phe Arg 5	Arg Asn	Val Gln 10		Lys Ser	Asp Ser 15
Asp Glu Asn As	n Lys Gly O	Gly Ser	Val His 25	Asn Lys	Arg Glu 30	
Asn His Ile Hi	s His Gln	Gln Gly 40	Leu Gly	His Lys	Arg Arg 45	Arg Gly
Ile Ser Gly Se 50	r Ala Lys	Arg Asn 55	Glu Arg	Gly Lys 60	Asp Phe	Asp Arg
Lys Arg Asp Gl 65	y Asn Gly 70		Arg Trp	Arg Asp 75	Ser Arg	Arg Leu 80
Ile Phe Ile Le	u Gly Ala 85	Phe Leu	Gly Val 90		Pro Phe	Ser Phe 95
Gly Ala Tyr Hi		Asn Ser	Asp Ser 105	Asp Leu	Phe Asp 110	
Val Asn Phe As 115	p Ser Leu	Lys Val 120		Asp Asp	Trp Lys 125	Asp Val
Leu Pro Gln Gl 130	y Ile Ser	Ser Phe 135	Ile Asp	Asp Ile 140	Gln Ala	Gly Asn
Tyr Ser Thr Se 145	r Ser Leu 150		Leu Ser	Glu Asn 155	Phe Ala	Val Gly 160
Lys Gln Leu Le	u Arg Asp 165	Tyr Asn	Ile Glu 170		His Pro	Val Val 175
Met Val Pro Gl		Ser Thr	Gly Ile 185	Glu Ser	Trp Gly 190	
Gly Asp Asp Gl 195	u Cys Asp	Ser Ser 200	Ala His	Phe Arg	Lys Arg 205	Leu Trp
Gly Ser Phe Ty 210	r Met Leu	Arg Thr 215	Met Val	Met Asp 220	Lys Val	Cys Trp
Leu Lys His Va 225	l Met Leu 230		Glu Thr	Gly Leu 235	Asp Pro	Pro Asn 240
Phe Thr Leu Ar	g Ala Ala 245	Gln Gly	Phe Glu 250		Asp Tyr	Phe Ile 255
Ala Gly Tyr Tr 26		Asn Lys	Val Phe 265	Gln Asn	Leu Gly 270	Val Ile
Gly Tyr Glu Pr 275	o Asn Lys	Met Thr 280	Ser Ala	Ala Tyr	Asp Trp 285	Arg Leu

4

Ala	Tyr 290	Leu	Asp	Leu	Glu	Arg 295	Arg	Asp	Arg	Туг	Phe 300	Thr	Lys	Leu	Lys
Glu 305	Gln	Ile	Glu	Leu	Phe 310	His	Gln	Leu	Ser	Gly 315	Glu	Lys	Val	Cys	Leu 320
Ile	Gly	His	Ser	Met 325	Gly	Ser	Gln	Ile	11e 330	Phe	Tyr	Phe	Met	Lys 335	Trp
Val	Glu	Ala	Glu 340	Gly	Pro	Leu	Tyr	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Val
Asn	Glu	His 355	I1e	Asp	Ser	Phe	Ile 360	Asn	Ala	Ala	Gly	Thr 365	Leu	Leu	Gly
Ala	Pro 370	Ĺys	Ala	Val	Pro	Ala 375	Leu	Ile	Ser	Gly	Glu 380	Met	Lys	Asp	Thr
Ile 385	G1n	Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	Gly	Leu 395	Glu	Lys	Phe	Phe	Ser 400
Arg	Ile	Glu	Arg	Val 405	Lys	Met	Leu	Gln	Thr 410	Trp	Gly	Gly	Ile	Pro 415	Ser
Met	Leu	Pro	Lys 420	Gly	Glu	Glu	Val	Ile 425	Trp	Gly	qaA	Met	Lys 430	Ser	Ser
Ser	Glu	Asp 435	Ala	Leu	Asn	Asn	Asn 440	Thr	Asp	Thr	Tyr	Gly 445	Asn	Phe	Ile
Arg	Phe 450	Glu	Arg	Asn	Thr	Ser 455	qaA	Ala	Phe	Asn	Lys 460	Asn	Leu	Thr	Met
Lys 465	Asp	Ala	Ile	Asn	Met 470	Thr	Leu	Ser	Ile	Ser 475	Pro	Glu	Trp	Leu	Gln 480
Arg	Arg	Val	His	Glu 485	Gln	ŢŸΞ	Ser	Phe	Gly 490	Tyr	Ser	Lys	Asn	Glu 495	Glu
Glu	Leu	Arg	Lуs 500	Asn	Glu	Leu	His	Hıs 505	Lys	Hís	Trp	Ser	Asn 510	Pro	Met
Glu	Va1	Pro 515	Leu	Pro	Glu	Ala	Pro 520	His	Met	Lys	Ile	Туг 525	Cys	Ile	Tyr
Gly	Val 530	Asn	Asn	Pro	Thr	Glu 535	Arg	Ala	Tyr	Val	Tyr 540	Lys	Glu	Glu	Asp
Asp 545	Ser	Ser	Ala	Leu	Asn 550	Leu	Thr	Ile	Asp	Ту: 555	Glu	Ser	Lys	Gln	Pro 560
Val	Phe	Leu	Thr	Glu 565	Gly	Asp	Gly	Thr	Val 570	Pro	Leu	Val	Ala	His 575	Ser
Мет	Cys	His	Lys 580	Trp	Ala	Gln	Gly	Ala 585	Ser	Pro	Tyr	Asn	Pro 590	Ala	Gly
Ile	Asn	Va1 595	Thr	īle	Val	Glu	Met 600	Lys	Hıs	Gln	Pro	Asp 605	Arg	Fh∈	qsA

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln 655

Met Pro Phe Pro Met 660

```
<210> 3
<211> 2312
<212> genomic DNA
<213> Schizosaccharomyces pombe
atggcgtctt ccaagaagag caaaactcat aagaaaaaaga aagaagtcaa atctcctatc 60
gacttaccaa attcaaaqaa accaactcgc gctttgagtg agcaaccttc agcgtccgaa 120
acacaatctg tttcaaataa atcaagaaaa tctaaatttg gaaaaagatt gaattttata 180
ttgggcgcta tttttgggaat atgcggtgct ttttttttcg ctgttggaga cgacaatgct 240
gtttttcgacc ctgctacgtt agataaattt gggaatatgc taggctcttc agacttgttt 300
gatgacatta aaggatattt accttataat gtgtttaagg atgcaccttt tactacggac 360
aagoottogo aqtotootag oggaaatgaa gttoaagttg gtottgatat gtacaatgag 420
ggatatcgaa gtgaccatcc tgttattatg gttcctggtg ttatcagctc aggattagaa 480
agttqqtcqt ttaataattg ctcgattcct tactttagga aacgtctttg gggtagctgg 540
totatgotga aggoaatgtt cottgacaag caatgotggo ttgaacattt aatgottgat 600
aaaaaaaaccg gcttggatcc gaagggaatt aagctgcgag cagctcaggg gtttgaagca 660
gctgattttt ttatcacqqq ctattggatt tggagtaaag taattgaaaa ccttgctgca 720
attggttatg agcctaataa catgttaagt gcttcttacg attggcggtt atcatatgca 780
aatttagagg aacgtgataa atatttttca aagttaaaaa tgttcattga gtacagcaac 840
attgtacata agaaaaaggt agtgttgatt teteaeteea tgggtteaca ggrtaegtae 900
tattttttta agtgggttga agetgaggge taeggaaatg gtggaeegae tegggttaat 960
gateatattq aaqeatttat aaatgtgagt etegatggtt gtttgactae gtttetaact 1020
titigaataga tatogggato titigattgga goacceaaaa cagiggcago goittitatog 1080
ggtgaaatga aagatacagg tattgtaatt acattaaaca tgttaatatt taattttttgc 1140
taaccgittt aagotcaatt gaatcagitt toggittatg ggtaagcaat aaattgitga 1200
gatttgttac taatttactg titagtttgg aaaaattttt ticccgtict gaggtatatt 1260
caaaaataca aatgtgctct actttttcta acttttaata gagagccatg atggttcgca 1320
ctargggagg agttagttct atgcttccta aaggaggcga tgttgtatgg ggaaatgcca 1380
gitgggtaag aaalatgtge tgttaatttt ttattaatat ttaggeteea gatgatetta 1440
atcaaacaaa tttttccaat ggtgcaatta ttcgatatag agaagacatt gataaggacc 1500
acgatgaatt tgacatagat gatgcattac aatttttaaa aaatgttaca gatgacgatt 1560
ttaaagtcat gctagcgaaa aattattccc acggtcttgc ttggactgaa aaagaagtgt 1620
taaaaaaataa cgaaatgccg tctaaatgga taaatccgct agaagtaaga acattaaaqt 1680
tactaaatta tactaaccca aatagactag totteettat geteetgata tgaaaattta 1740
ttgcgttcac ggggtcggaa aaccaactga gagaggttat tattatasta ataatcctga 1800
ggggcaacet gteattgatt ceteggttaa tgatggaaca aaagttgaaa atgtgagaga 1860
atttatoitt caaacatict aitaacigit tialtagggt aligitalgg algalggiga 1920
tggaacttta ccaatattag cocttggttt ggtgtgcaat aaagttiggc aaacaaaaag 1980
gtttaatoot gotaatacaa gtatoacaaa ttatgaaate aagcatgaac otgotgogtt 2040
tgatctgaga ggaggacete geteggeaga acaegtegat ataettggae atteagaget 2100
aaatgtatgt toattttaco ttacaaattt otattactaa otottgaaat aaggaaatta 2160
ttttaaaagt ttcatcagge catggtgact eggtaceaaa eegttatata teagatatee 2220
agracggaca taagttittgt agattgcaat taactaacta accgaacagg gaaataaraa 2280
atgagataaa totogataaa ootagaaatt aa
                                                                  2312
```

<210> 4

```
<211> 3685
<212> genomic DNA
<213> Arabidopsis thaliana
<400> 4
atgeceetta tteateggáa aaageegaeg gagaaaceat egaegeegee atetgaagag 60
gtggtgcacg atgaggattc gcaaaagaaa ccacacgaat cttccaaatc ccaccataag 120
aaategaaeg gaggagggaa gtggtegtge ategattett gttgttggtt cattgggtgt 180
gtgtgtgtaa cetggtggtt tettetette etttacaaeg caatgeetge gagetteeet 240
cagtatgtaa eggagegaat eaegggteet tigeetgace egeeeggtgt taageteaaa 300
aaagaaggtc ttaaggcgaa acatectgtt gtetteatte etgggattgt caeeggtggg 360
ctcgagettt gggaaggeaa acaatgeget gatggtttat ttagaaaaeg Ettgtggggt 420
ggaacttttg grgaagteta caaaaggtga geteaacaat teteaetett eetttatatt 480
gggatttgga ttggatctga tgagatcacg cacttgttgc ttcttcaaca tcactcaaac 540
titiaattooa tgittgiotig tottaotott taotiittiit tittittigat gigaaaogot 600
attiticttaa gagactatti cigtaigtgi aagglaagcg ticcaaggac giaatiggci 660
tggactattt ctgtttgatt gttaacttta ggatataaaa tagctgcctt ggaatttcaa 720
gtcatctrar tgccaaatct gttgctagac atgccctaga gtccgttcat aacaagttac 780
tloctttact gregttgegt gtagattrag etttgtgtag egtataatga agtagtgttt 840
tatgttttgt tgggaataga gaagttctaa ctacatctgt ggaaagtgtg ttcaggctgt 900
gatagaggac tgttgettta ttattcaact atgtatatgt gtaattaaag ctagtteett 960
titigatetti eageteaaty tgettitete aattititte teaattieaa agetteaeat 1020
rgagtttatt cacatgtett gaatttegte catectegtt etgitateea gettigaaet 1080
cotocogaco otgotatgga tatattaaaa aaaaagtgtt tigtgggiig catolitigti 1140
acgainings totrottori toggotoagi gitcatgiit tigoraiggi agagatgigo 1200
aatgitatty tigatgytaa cagigytata gitgatagia tottaactaa toaattatoi 1260
ctttgattca ggcctctatg ttgggtggaa cacatgtcac ttgacaatga aactgggttg 1320
gatocagotq grattagagt togagotgta toaggaotog tggotgctga otactttgot 1380
cotggotact tigtotggge agtgotgait gotaaccttg cacatatigg atatgaagag 1440
aaaaatatgt acatggctgc atatgactgg cggctttcgt ttcagaacac agaggttctt 1500
ttereategt tettectatt attetgttee atgttacgtt tetetettea tiacitaagg 1560
cttaaatarq tttcarqttq aattaatagg tacqtqatca gactcttagc cgtatgaaaa 1620
gtaatataga gttgatggtt ictaccaacg gtggaaaaaa agcagttata gttccgcait 1680
ccatgggggt cttgtattit ctacattita tgaagtgggt tgaggcacca gctcctctgg 1740
gtqqqqqqq tqqqccagat tggtqtqcaa aqtatattaa gqcggtgatg aacattggtg 1800
gaccattict tggtgttcca aaagctgttg cagggettit etetgetgaa geaaaggatg 1860
ttgcagttgc caggtattga atatotgott atacttttga tgatcagaac ctfggctctg 1920
gaacicaaag ttattotact aaatatoaat totaataaca tigotatatt alogotgoaa 1990
ctgacattgg tigattattt ttgctgctta tgtaactgaa actctcttga gattagacaa 2040
atgatgaatt gataattott acgcattgct etgtgatgac cagttictta gcetegacga 2100
taacastigt catactgict titiggagggc attgaattit gctatggaaa gcgciggagc 2160
ticcatgott goattottta coaattagog trattotgot totttoaart trottgrata 2220
tgcatctatg gcottttatt tottottaat taaagactog tiggattagt tgctctatta 2280
{
m greacttggr} teettaatat agaaetttae titettegaa aattgeagag egattgeeee 2340
aggatictta gacaccgata tatttagact tcagacctig cagcatgiaa tgagaatgac 2400
acgcacatgg gactcaacaa tgtctatgtt accgaaggga ggtgacacga tatggggcgg 2460
gottgattgg tcaccogaqa aaggccacac ctgttgtggg aaaaagcaaa agaacaacga 2520
aacttgtggt gaagcaggtg aaaacggagt ttccaagaaa agtcctgtta actatggaag 2580
gatgatatot titgggaaag aagtagcaga ggotgogoda totgagatta ataatatiga 2640
tettogadea agdacatata aatoataata aacoetgtad attetgtgat tgtatgatda 2700
atacetgrae attituceg grgaagggtg etgleaaagg teagagtate eeaaateaca 2760
octgeogtga ogegeggada gagtaddatg adatgggaat tgotgggatd aaagdtalog 2820
cigagiataa ggiotacact gotggigaag ciatagaict actacattai gtigciocta 2880
agatgatggc gcgtggtgcc gctcattttt cttatggaat tgctgatgat ttggatgaca 2940
ccaagtatea agateesaaa taetggteaa ateegttaga gacaaagtaa gtgatttett 3000
gattecaact gratecting tectgatges trateagret titingtine ggtentging 3060
gatatgottt toagotoaaa gottadaaag otgittotga gootticida aaaaggottg 3120
cteagraata tigaggiget aaagitgata caigtgacte tigettataa aiceceegii 3180
```

10/58

tggtttgttc	tgctttttca	gattaccgaa	tgctcctgag	atggaaatct	actcattata	3240
cggagtgggg	ataccaacgg	aacgagcata	cgtatacaag	cttaaccagt	ctcccgacag	3300
ttgcatcccc	tttcagatat	tcacttctgc	tcacgaggag	gacgaagata	gctgtctgaa	3360
agcaggagtt	cacaatgtgg	atggggatga	aacagtaccc	gtcctaagtg	ccgggtacat	3420
gtgtgcaaaa	gegtggegtg	gcaagacaag	attcaaccct	tccggaatca	agacttatat	3480
aagagaatac	aatcactctc	cgccggctaa	cctgttggaa	gggcgcggga	cgcagagtgg	3540
tgcccatgtt	gatatcatgg	gaaactttgc	tttgatcgaa	gatatcatga	gggttgccgc	3600
cggaggtaac	gggtctgata	taggacatga	ccaggtccac	tctggcatat	ttgaatggtc	3660
ggagcgtatt	gacctgaagc	tgtga				3685

```
<210> 5
<211> 2427
<212> cDNA
<213> Arabidopsis thaliana
<400> 5
agaaacaget ettiqtetet etegaetgat etaacaatee etaatetgtg tietaaatte 60
ctggacgaga tttgacaaag tccgtatagc ttaacctggt ttaatttcaa gtgacagata 120
tgccccttat tcatcggaaa aagccgacgg agaaaccatc gacgccgcca tctgaagagg 180
tggtgcacga tgaggattcg caaaagaaac cacacgaatc ttccaaatcc caccataaga 240
aategaacgg aggagggaag tggtegtgea tegattettg ttgttggtte attgggtgtg 300
tgtgtgtaac ctqqtqqttt cttctcttcc tttacaacgc aatgcctgcg agcttccctc 360
agtatgtaac ggagcgaatc acgggtcctt tgcctgaccc gcccggtgtt aagctcaaaa 420
aaagaaggte ttaaggegaa acateetgtt gtetteatte etgggattgt caeeggtggg 480
cteqagettt qqqaaqqcaa acaatqcgct qatggtttat ttagaaaacg tttgtgqqqt 540
ggaacttttg gtgaagtcta caaaaggcct ctatgttggg tggaacacat gtcacttgac 600
aatgaaactg ggttggatcc agctggtatt agagttcgag ctgtatcagg actcgtggct 660
getgaetaet tigeteetgg etaetitgte igggeagtge igalitgetaa eetigeaeat 720
attggatatg aagagaaaaa tatgtacatg gctgcatatg actggcggct ttcgtrtcag 780
aacacagagg tacgtgatca gactcttagc cgtatgaaaa gtaatataga gttgatggtt 840
totaccaacg gtggaaaaaa agcagttata gttccgcatt ccatgggggt cttgtatttt 900
ctacattita tgaagtgggt tgaggcacca gctcctctgg gtggcggggg tgggccagat 960
tggtgtgcaa agtatattaa ggcggtgatg aacattggtg gaccatttct tggtgttcca 1020
aaagctgttg cagggetttt etetgetgaa geaaaggatg ttgeagttge cagagegatt 1080
geoccaggat tettagacae egatatatti agaetteaga eettgeagea tgtaatgaga 1140
atgacacgca catgggactc aacaatgtct atgttaccga agggaggtga cacgatatgg 1200
ggcgggcttg attggtcacc ggagaaaggc cacacctgtt gtgggaaaaa gcaaaagaac 1260
aacgaaactt gtggtgaagc aggtgaaaac ggagtttcca agaaaagtcc tgttaactat 1320
ggaaggatga tatettitgg gaaagaagta geagaggetg egecatetga gattaataat 1380
attgattttc gaggtgctgt caaaggtcag agtatcccaa atcacacctg tcgtgacgtg 1440
tggacagagt accatgacat gggaattgct gggatcaaag ctatcgctga gtataaggtc 1500
tacactgctg gtgaagctat agatctacta cattatgttg ctcctaagat gatggcgcgt 1560
ggtgccgctc atttctctta tggaattgct gatgatttgg atgacaccaa gtatcaagat 1620
cccaaatact ggtcaaatcc gttagagaca aaattaccga atgctcctga gatggaaatc 1680
tactcattat acggagtggg gataccaacg gaacgagcat acgtatacaa gottaaccag 1740
totocogaca gttgcatoco otttoagata ttcacttotg otcacgagga ggacgaagat 1900
agotgtotga aagoaggagt ttacaatgtg gatggggatg aaacagtaco ogtootaagt 1860
geogggtaca tgtgtgcaaa agegtggegt ggcaagacaa gattcaacce ttc:ggaate 1920
aagacttata taagagaata caatcactct ccgccggcta acctgttgga agggcgcggg 1980
acgcagagtg gtgcccatgt tgatatcatg ggaaactttg ctttgatcga agatatcatg 2040
agggttgccg ccggaggtaa cgggtctgat ataggacatg accaggtcca ctctggcata 2100
tttgaatggt eggagegtat tgaeetgaag etgtgaatat eatgatetet ttaagetgte 2160
ctgtcagctt atgtgaatcc aatactttga aagagagatc atcatcaatt catcatcatc 2220
gtcatcatca tgatgeteaa eteacaaaga ageetgagaa tgataetttg gtgegaaatt 2280
cteaatacct ctttaatatt cttattgaat gtaaattata caatcctatc taatgttiga 2340
acquitaacac agaacttqct qenqccatqt ttgtttgtct tgtcaaaagc atcaattgt 2400
gggttaaaaa aaaaaaaaaa aaaaaaa
```

<21 <21	0 > 6 1 > 6 2 > P 3 > A	RT	:aqob	is t'	halia	ana									
	0> 6 Pro	Leu	Ile	His 5	Arg	Lys	Lys	Pro	Thr 10	Glu	Lys	Pro	Ser	Thr 15	Pro
Pro	Ser	Glu	Glu 20	Val	Val	His	Asp	Glu 25	Asp	Ser	Gln	Lys	Lys 30	Pro	His
Glu	Ser	Ser 35	Lys	Ser	His	Hıs	Lys 40	Lys	Ser	Asn	Gly	Gly 45	G1y	Lys	Trp
Ser	Cys 50	Ile	Asp	Ser	Cys	Cys 55	Trp	Phe	Ile	G1y	Cys 60	Val	Cys	Val	Thr
Trp 65	Trp	Phe	Leu	Leu	Phe 70	Leu	Tyr	Asn	Ala	Met 75	Pro	Ala	Ser	Phe	Pro 80
Gln	Tyr	Val	Thr	Glu 85	Arg	Ile	Thr	Gly	Pro 90	Leu	Pro	Asp	Pro	Pro 95	Gly
Val	Lys	Leu	Lys 100	Lys	Glu	Gly	L€u	Lys 105	Ala	Lys	His	Pro	Val 110	Val	Phe
Ile	Pro	Gly 115	Ile	Val	Thr	Gly	Cly 120	Leu	Glu	Leu	Trp	Glu 125	Gly	Lys	Gln
Cys	Ala 130	Asp	Gly	Leu	₽he	Arg 135	Lys	Arg	Leu	Trp	Gly 140	Gly	Thr	Phe	Gly
Glu 145	Val	Tyr	Lys	Arg	Pro 150	Leu	Cys	Trp	Val	Glu 155	Hıs	Met	Ser	Leu	Asp 160
Asn	Glu	Thr	Gly	Leu 165	Asp	Pro	Ala	Gly	Ile 170	Arg	Val	Arg	Aīa	Val 175	Ser
Gly	Leu	Val	Ala 180	Ala	Asp	Tyr	Phe	Ala 185	Pro	Gly	Tyr	Phe	Val 190	Trp	Ala
Val	Leu	Ile 195	Ala	Asn	Leu	Ala	H1s 200	Ile	Gly	Тут	Glu	Glu 205	Lys	Asn	Met
Tyr	Met 210	Ala	Ala	Tyr	Asp	Trp 215	Arg	Leu	Ser	Phe	Gln 220	Asn	Thr	Glu	Val
Arg 225	Asp	Gln	Thr	Leu	Ser 230	Arg	Met	Lys	Ser	Asn 235	Ile	Glu	Leu	Met	Val 240
Ser	Thr	Asn	Gly	Gly 245	Lys	Lys	Ala	Val	īle 250	Val	Pro	Eis	Ser	Met 255	G1y
Val	Leu	Tyr	Phe 260	Leu	His	Fhe	Met	Lys 265	qrT	Val	Glu	Ala	Pro 270	Ala	Pro
Leu	Gly	Gly 275	Gly	Gly	Gly	Pro	Asp 280	Trp	Cys	Ala	Lys	Tyr 285	Ile	Lys	Ala

Val	Met 290	Asn	Ile	Gly	Gly	Pro 295	Phe	Leu	Gly	Val	Pro 300	Lys	Ala	Val	Ala
G1y 305	Leu	Phe	Ser	Ala	Glu 310	Ala	Lys	Asp	Val	Ala 315	Val	Ala	Arg	Ala	Ile 320
Ala	Pro	Gly	Phe	Leu 325	Asp	Thr	Asp	Ile	Phe 330	Arg	Leu	G1n	Thr	Leu 335	Gln
Hıs	Val	Met	Arg 340	Met	Thr	Arg	Thr	Trp 345	_	Ser	Thr	Met	Ser 350	Met	Leu
Pro	Lys	Gly 355	Gly	Asp	Thr	Ile	Trp 360	Gly	Gly	Leu	Asp	Trp 365	Ser	Pro	Glu
Lys	Gly 370	His	Thr	Cys	Cys	Gly 375	Lys	Lys	G1n	Lys	Asn 380	Asn	Glu	Thr	Cys
Gly 385	Glu	Ala	G1y	Glu	Asn 390	Gly	Va1	Ser	Lys	Lys 395	Ser	Pro	Val	Asn	Tyr 400
Gly	Arg	Met	Ile	Ser 405	Phe	Gly	Lys	Glu	Val 410	Ala	Glu	Ala	Ala	Pro 415	Ser
Glu	Ile	Asn	Asn 420	Ile	çaA	Phe	Arg	Gly 425		Val	Lys	Gly	Gln 430	Ser	Ile
Pro	Asn	Hıs 435	Thr	Сув	Arg	Asp	Val 440	Trp	Thr	Glu	Ţyr	H1S 445	Asp	Met	Gly
Ile	Ala 450	Gly	Ile	Lys	Ala	Ile 455	Ala	Glu	Tyr	Lys	Val 460	Tyr	Thr	Ala	Gly
Glu 465	Ala	Ile	qaA	Leu	Leu 470	His	Tyr	Val	Ala	Pro 475	Ьуs	Met	Met	Ala	Arg 480
Gly	Ala	Ala	His	Phe 485	Ser	Tyr	Gly	Ile	Ala 490	Asp	Asp	Leu	Asp	Asp 495	Thr
Lys	Tyr	Gln	Asp 500	Pro	Lys	Tyr	Trp	Ser 505	Asn	Pro	Ĺeu	Glu	Thr 510	Lys	Leu
Pro	Asn	Ala 515	₽ro	Glu	Met	Glu	Ile 520	Tyr	Ser	Leu	Tyr	Gly 525	Val	Gly	Tle
pro	Thr 530	Glu			Tyr		Tyr			Asn	Gln 540		Pro	Asp	Ser
Cys 545	Ile	Pro	Phe	Gln	Ile 550	Phe	Thr	Ser	Ala	His 555	Glu	Glu	Asp	Glu	Asp 560
Ser	Cys	Leu	Lys	Ala 565	Gly	Va1	Tyr	Asn	Val 570	Asp	Gly	Asp	Glu	Thr 575	Val
Pro	Val	Leu	Ser 580	Ala	Gly	Tyr	Met	Cys 585	Ala	Lys	Ala	qrT	Arg 590	Gly	ĽУъ
Thr	Arg	Phe 595	Asn	Pro	Ser	СĵĀ	Ile 600	Lys	Thr	ŢŸŢ	Ile	Arg 605	Glu	"Àĩ.	Asn

His	Ser 610	Pro	Pro	Ala	Asn	Leu 615		Glu	Gly	Arg	Gly 620	Thr	Gln	Ser	Gly
Ala 625	Hıs	Val	Asp	Ile	Met 630	Gly	Asn	Phe		Leu 635		Glu	Asp	Ile	Met 640
Аrg	Val	Ala	Ala	Gly 645	Gly	Asn	Gly	Ser	Asp 650	Ile	Gly	His	Asp	Gln 655	Val
His	Ser	Gly	Ile 660	Phe	Glu	Trp	Ser	Glu 665	Arg	Ile	Asp	Leu	Lys 670	Leu	

<212	> 7 > 64 > cD > Ze	NA	ys													
	> CD		402)													
<400 cgg Arg 1	a a a	aaa Lys	ata Ile	gct Ala 5	gct Ala	ttg Leu	aag Lys	GJA āāā	ggt Gly 10	gtt Val	tac Tyr	tta Leu	gcc Ala	gat Asp 15	ggt Gly	48
gat Asp	gaa Glu	act Thr	gtt Val 20	cca Pro	gtt Val	ctt Leu	agt Ser	gcg Ala 25	ggc Gly	tac Tyr	atg Met	tgt Cys	gcg Ala 30	aaa Lys	gga Gly	96
tgg Trp	cgt Arg	ggc Gly 35	aaa Lys	act Thr	cgt Arg	ttc Phe	agc Ser 40	cct Pro	gcc Ala	ggc Gly	agc Ser	aag Lys 45	act Thr	tac Tyr	gtg Val	144
aga Arg	gaa Glu 50	tac Tyr	agc Ser	cat His	tcg Ser	cca Pro 55	ccc Pro	tct Ser	act Thr	ctc Leu	ctg Leu 60	gaa Glu	ggc Gly	agg Arg	ggc Gly	192
acc Thr 65	Gln	agc Ser	ggt Gly	gca Ala	cat His 70	gtt Val	gat Asp	ata Ile	atg Met	ggg Gly 75	aac Asn	ttt Phe	gct Ala	cta Leu	att Ile 80	240
gag Glu	gac Asp	gtc Val	atc Ile	aga Arg 85	Ile	gct Ala	gct Ala	Glà aaa	gca Ala 90	Thr	ggt Gly	gag Glu	gaa Glu	att Ile 95	ggt Gly	288
ggc Gly	gat Asp	cag Gln	gtt Val 100	Tyr	tca Ser	gat Asp	ata Ile	ttc Phe 105	Lys	tgg Trp	tca Ser	gag Glu	aaa Lys 110	LIE	aaa Lys	336
	aaa Lys			cct	atg	gga	. agt	. taa	. aga	agt	gcc	gac	ccg	ttt	att	384
gcç	ttc	: caa	. agt	gtc	ctg	CCE	gagt	gca	acto	rgga	tt t	tgct	taaa	t		432
att	gtaa	ttt	ttca	cgct	tc a	ttcg	rtece	t to	gtca	aatt	tac	attt	gac	agga	.cgccaa	492
tgo	gata	ıcgā	tgtt	gtac	cg c	tatt	ttca	ıg ca	ttgt	atat	. taa	actg.	tac	aggt	gtaagt	552
tgo	atto	ácc	agct	gaaa	itt s	ıtgta	gtcç	jt tt	tott	tacg	ratt	taat	anc	aagt	ggcgga	612
ācs	igtgo	ccc	aago	maaa	aa a	aaaa	laaaa	a a								643

<210> 8 <211> 115 <212> PRT <213> Zea mays <400> 8 Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly 1 5 10 Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly 20 25 30 Trp Arg Gly Lys Thr Arg Phe Ser Fro Ala Gly Ser Lys Thr Tyr Val 45 40 35 Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly 50 55 60 Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile 65 70 75 Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85 90 95 Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys 105 100 110 Leu Lys Leu 115

aasaaaaaa aaaaaa

12.09.2000

616

```
<210> 9
<211> 616
<212> cDNA
<215> Neurospora crassa

<490> 9
ggtggcgaag acganggcgg aagttggagg ctaacgagaa tgacnctcgg agatggatct 60
accctctaga gacacgacta ccnttgcacc cagcctcaag gtntacngtt tntatgggta 120
ggaagccgac ggagcgagcc tacatctatc tggcgccga tcccgggacg acaacgcatc 180
tttagatgac gatcgatacg actttagacn aggggcacat tgaccacggt gtgattttgg
gcgaaggcga tggcacagtg aaccttatga gtttggggta cctgtgcaat aaaggggtgga 300
acatgaagag atacaatcct gcgggctcaa acataaccgt ggtcgaagatg ccgcatgaac 360
cagaacggtt caatccgaga ggagggccga atacggcgat tcacgtggat acaattgagg 480
atttattac tagtaatatt cttaaatatg tagaaaaggt tgaaatttat gaagagtaat 540
taaatacggc acataggtta ctcaatagta tgactaatta aaaaaaatt ttttttctaa 600
```

```
<210> 10
<211> 1562
<212> genomic DNA
<213> Arabidopsis thaliana
<400> 10
atgaaaaaaa tatcttcaca ttattcggta gtcatagcga tactcgttgt ggtgacgatg 60
acctegatgt gteaagetgt gggtageaac gtgtaeeett tgattetggt teeaggaaac 120
ggaggtaacc agctagaggt acggctggac agagaataca agccaagtag tgtctggtgt 180
agcagctgqt tatatecgat teataagaag agtggtggat ggtttagget atggttegat 240
geageagtgt tattgtetee etteaceagg tgetteageg ategaatgat gttgtactat 300
gaccotgatt tggatgatta ccaaaatgot cotggtgtoc aaaccogggt tootcattto 360
ggttcgacca aatcacttct atacctcgac cetegtetee ggttagtact ttecaagata 420
tatcattttg ggacatttgc ataatgaaca aaatagacat aaatttgggg gattattgtt 480
atatoaatat coatttatat gotagtoggt aatgtqaqtg ttatgttagt atagttaatg 540
tgagtgttat gtgattttcc attttaaatg aagctagaaa gttgtcgttt aataatgttg 600
ctatgtcatg agaattataa ggacactatg taaatgtagc ttaataataa ggtttgattt 660
gcagagatgc cacatettac atggaacatt tggtgaaagc tetagagaaa aaatgcgggt 720
atgitaacqa ccaaaccate ctaggagete catatgatit caggiacgge ctggetgett 780
egggecacee greeegtgta geeteacagt teetacaaga eeteaaacaa tiggriggaaa 840
aaactagcag cgagaacgaa ggaaagccag tgatactcct ctcccatagc ctaggaggac 900
ttttogteet coattteste aacegtacea eccetteatg gegeegeaag tacateaaac 960
actitigation actogotion coating gracing actitic to again acatting to 1020
ctggcaacac actoggtgto cottlagtta accottrgct ggtcagacgg catcagagga 1080
cotocgagag taaccaatgg ctacttocat ctaccaaagt gtttcacgac agaactaaac 1140
egettigtegt aacteeceag gitaactaca cagettaega galggalegg tittitgeag 1200
agotgatgac tocqggagtg coagtoactt goatatatgg gayaggagtt gatacaccgg 1320
aggtittgat gtatggaaaa ggaggattcg ataagcaacc ayagattaag tatggagatg 1380
gagatgggac ggttaatttg gcgagottag cagotttgaa agtcgatago ttgaacaccg 1440
tagagattga tggagtttcg catacatcta tacttaaaga cgagatcgca cttaaagaga 1500
ttatgaagca gatttcaatt attaattatg aattagccaa tgttaatgcc gtcaatgaat 1560
                                                                1562
```

<210> 11 <211> 3896

```
<212> grenomic DNA
<213> Arabidopsis thaliana
atgggagega attegaaate agtaaegget teetteaeeg teategeegt tittitetig 60
atttgeggtg geegaactge ggtggaggat gagaeegagt tteaeggega etaetegaag 120
ctarcgggta taatcattcc gggatttgcg tcgacgcagc tacgagcgtg gtcgatcctt 180
gactgtecat acactecgtt ggactteaat eegetegaee tegtatgget agacaecaet 240
aaggteegrg aterteattt cettegetee trattetgte ggregagtea ettgttgatg 300
aattecaage gaaatatage aatgaageat gtetegtete tettattgat tegtteatta 360
gtcaacagtg acgettetga atetgagttt agagteatat aaaacagetg acteggegag 420
tgtttcccat cgcttttggt tcgctaaatg tagcgcaatg aatgtgtaat tagtctgcgc 480
tttttattca actagatctg caagtttttc agagtgctca atagtagtta gaaaatgtta 540
ggtcatttta cttgtgcatt gtgattcttt tggttgttgc ttactgatcg acgtgatgga 600
tggtttacag cttctttctg ctgtcaactg ctggtttaag tgtatggtgc tágatcctta 660
taatcaaaca gaccateceg agtgtaagte aeggeetgae agtggtettt cagecateae 720
agaatiggat ccaggttaca taacaggtag titcggatii ticitictii tgagiittici 780
tcaatttgat atcatcttgt tgtgatataa tatggctaag ttcattaatt tggtcaattt 840
tcaggtcctc tttctactgt ctggaaagag tggcttaagt ggtgtgttga gtttggtata 900
gaagcaaatg caattgtege tgtteeatae gattggagat tgteaccaae caaattggaa 960
gagogtgaco ettacittoa caagotoaag etagtootta toaggotaat geottetato 1020
trocetter atgraagata ageraagage rerggregte treetterig caggregace 1080
titgaaactg cittaaaact eegiggegge eeitetatag talligeeea ticaatgggt 1140
aataatgtot toagataott totggaatgg otgaggotag aaattgcaco aaaacattat 1200
ttgaagtgge ttgatcagca tatccatgct tatttcgctg ttggtaccgg cctactatcc 1260
traagttace attitatitt tietetaatt gggggagtta tgitgtgaet taetggartg 1320
ageregatae ergattigtt gregaterag gagereetet retrggitet gitgaggeaa 1380
tcaaatetae tetetetggt graaegtttg geetteetgt ttetgaggtg acetetgaet 1440
tetetttagt tttaagtagt tgatateaac caggtettat aacteactgg atttteettt 1500
tgaaagtatt actitigtta attgaactgo tgtacgogat atggtatotg tagatottga 1560
agtgctagtt atcaaagaac atattgtggg tagtatacct gccagcggcc ttagctaata 1620
caaccaaacc acatgtacac tgatttagtt ttcagattat tatggtagac tttaagttga 1680
gaagaaactt tgactgaaat ctitttattt taataggcta tgattigttt attgaaatca 1740
tgtgacatat tgacatgcgc ttdtcatgtt ttttgttggc aaggetteag ggaactgete 1900
ggttgttgto caattotttt gogtogtoat tgtggottat gocattttca aagaattgca 1860
agggtgataa cacattotgg acgcattttt otgggggtgo tycahagaaa gataagogog 1920
tataccactg tgatgaagag gaatatcaat caaaatattc tggctggccg acaaatatta 1980
traacattga aattoottoo actagoggtt agactotgta tatgoaactg taacactaac 2040
aaaagtitca ccaagaatgt tcactotcat atttcgttcc tttgatgtgt atccatcagt 2100
tacagaaaca getetagtea acatgaceag catggaatgt ggeetteeca ecetttegte 2160
tttcacagee egtgaactag cagatgggae tettttcaaa geaatagaag aetatgaeee 2220
agatagcaag aggatgttac accagttaaa gaagtacgta cetttettig tgataagaaa 2290
tattgeteat egateateae tegetggett ettgtaegte aaattgettt gtttaaatet 2340
ctatatoaat tgttcatatg cittgtcttt cttactataa gaaacaagta taatcagaaa 2400
octtattatt gattatoagt tototootta tattatggaa tgtottitto gittacagut 2460
atgaatgcaa aagggggtat tttagttgat tgattetete attetetagt ttgttttgae 2520
taatagogto aatttigtii tiotagoaaa toitigigaa ttatatataa caigotaaci 2580
atacttttca ggttgtatca tgatgaccct gtttttaatt ctctgactcc ttgggagaga 2640
ccacctataa aaaatgtatt ttgcatatat ggtgctcato taaagacaga ggtatgatgc 2700
attotoaata toacattatg ogttgacttt gitattatat tocccatitg gittgoaata 2760
contintigua thatgattea contocoot tgoatottat gotattaago getaaaaggta 2820
ctaaatgtat gaagotgtot gtoataggtt ggttattact ttgccccaag tggcaaacct 2880
tateetgata attggateat caeggatate attratgasa etgaaggite cetegigies 2940
aggtaattit cogcaatggo agaagtaaaa caggaaggoa aagtottotg tatcagtota 3000
gtggcatgtt atctcagttg cataagcaaa ttattaaaca actaaaattt aagtactttt 3060
ttatcattoc tittgagott agtggatgat cagtggotta aagtgggaag aggtgttgca 3120
tgaaacatga cacttgtatc aaagataact agcaaaacaa sactaaccca titotgaatt 3130
```

tcatattatt	aggagtagtc	gtgcttttaa	aaaatttgtt	ttaagaaacc	gaaaaactag	3240
ttcatatctt	gattgtgcaa	tatctgcagg	tctggaactg	tggttgatgg	gaacgctgga	3300
cctataactg	gggatgagac	ggtaagctca	gaagttggtt	ttgaaattat	cttcttgcaa	3360
actactgaag	actaagataa	tacttgcttc	tggaacactg	ctigctatgt	tctctagtac	3420
actgcaatat	tgactctccg	ctacttttat	tgattatgaa	attgatctct	tataggtacc	3480
ctatcattca	ctctcttggt	gcaagaattg	gctcggacct	aaagttaaca	taacaatggc	3540
tccccaggta	ctctttttta	gttcctcacc	ttatatagat	caaactttaa	gtgtactttt	3600
ctggttatgt	gttgatttac	ctccaatttg	ttctttctaa	aaatcatata	tctctgtact	3660
cctcaagaac	ttgtattaat	ctaaacgaga	ttctcattgg	gaaaataaaa	caacagccag	3720
aacacgatgg	aagcgacgta	catgtggaac	taaatgttga	tcatgagcat	gggtcagaca	3780
tcatagctaa	catgacaaaa	gcaccaaggg	ttaagtacat	aaccttttat	gaagactctg	3840
agagcattcc	anagaagaga	accocaotet	gagaacttaa	taaaagtggg	tattaa	3896

```
<210> 12
<211> 709
<212> cDNA
<213> Lycopersicon esculentum
<400> 12
ctggggccaa aagtgaacat aacaaggaca ccacagtcag agcatgatgt tcagatgtac 60
aagtgcatct aaatatagag catcaacatg gtgaagatat cattcccaat atgacaaagt 120\,
tacctacaat gaagtacata acctattatg aggattetga aagtttteca gggacaagaa 180
cagcagtttg ggagcttgat aaagcaaatc acaggaacat tgtcagatct ccagctttga 240
tgcgggagct gtggcttgag atgtggcatg atattcatcc tgataaaaaag tccaagtttg 300
ttacaaaagg tggtgtctga tcctcactat tttcttctat aaatgtttga gtttgtattg 360
acattgtaag tattgcaaca aaaagcaaag cgtgggcctc tgagggatga ggactgctat 420
tgggattacg ggaaagctcg atgtgcatgg gctgaacatt gtgaatacag gttagaatat 480
teaaattata tittgeaaaa tattetetti tigigtatti aggeeaeett teeeeggiea 540
caacgatgca gatatgtatt cggggatgtt cacctgggac agagttgcag attgaagagt 600
totacatote acatoetyte acactatyty tyatatttaa gaaactttyt trygogyaac 660
aacaagtttg cacaaacatt tgaagaagaa agcgaaatga ttcagagag
```

<211 <212	0> .13 L> 62 B> PF B> Sc	23	osaco	chard	omy⊂∈	es po	ombe								
	0> 13 Ala		Ser	Lys 5	Lys	Ser	ГЛЗ	Thr	His 10	Lys	Lys	Lys	Lys	Glu 15	Va1
Lys	Ser	Pro	I1e 20	Asp	Leu	Pro	Asn	Ser 25	Lys	Lys	Pro	Thr	Arg 30	Ala	Leu
Ser	Glu	Gln 35	Pro	Ser	Ala	Ser	Glu 40	Thr	Gln	Ser	Val	Ser 45	Asn	Lys	Ser
Arg	Lys 50	Ser	Lys	Phe	Gly	Lys 55	Arg	Leu	Asn	Phe	Ile 60	Leu	Gly	Ala	Ile
Leu 65	Gly	Ile	Cys	Gly	Ala 70	₽he	Phe	Phe	Ala	Val 75	Gly	Asp	qzA	Asn	Ala 80
Val	Phe	Asp	Pro	Ala 85	Thr	Leu	Asp	Lys	Phe 90	Gly	Asn	Met	Leu	Gly 95	Ser
Ser	Asp	Leu	Phe 100	Asp	az.	īle	Lys	Gly 105	Tyr	Leu	Ser	ūλī	Asn 110	Val	Ph∈
Lys	Asp	Ala 115	Pro	Phe	Thr	Thr	Asp 120	Lys	Pro	Ser	Gln	Ser 125	Pro	Ser	Gly
Asn	Glu 130	Val	Gln	Val	Gly	Leu 135	Asp	Met	Tyr	Asn	Glu 140	Gly	Tyr	Arg	Ser
Asp 145	His	Pro	Val	Ile	Met 150	Val	Pro	Gly	Val	Ile 155	Ser	Ser	Gly	Leu	Glu 160
Ser	Trp	Ser	Phe	Asn 165	Asn	Cys	Ser	Ile	Pro 170	Tyr	Phe	Arg	Lys	Arg 175	Leu
Trp	Gly	Ser	Trp 081	Ser	Met	Leu	Lys	Ala 185	Met	Phe	Leu	Asp	Lys 190	Gln	Суз
Trp	Leu	Glu 195	Hıs	Leu	Met	Leu	Asp 200	Lys	Lys	Thr	Gly	Leu 205	Asp	Pro	Lys
Gly		_		_			Gln					Ala	ąεk	Phe	Phe
Tle 225	Thr	Gly	Tyr	Trp	Ile 230	Trp	Ser	Lys	Val	Ile 235	Glu	Asn	Leu	Ala	Ala 240
Ile	Gly	Tyr	Glu	Pro 245	Asn	Asn	Met	Leu	Ser 250	Ala	Ser	Tyr	Asp	Trp 255	Arg
Leu	Ser	Tyr	A1a 260	Asn	Leu	Glu	Glu	Arg 265	Asp	Lys	Tyr	Phe	Ser 270	Lys	Leu

Lys	Met	Phe 275	Ile	Glu	Tyr	Ser	Asn 280	Ile	Val	His	Lys	Lys 285	Lys	Val	Val
Leu	11e 290	Ser	His	Ser	Met	Gly 295	Ser	Gln	Val	Thr	Tyr 300	Tyr	Phe	Fhe	Lys
Trp 305	Val	Glu	Ala	Glu	Gly 310	Tyr	Gly	Asn	Gly	Gly 315	Pro	Thr	Trp	Val	Asn 320
Asp	His	Ile	Glu	Ala 325	Phe	Ile	Asn	Ile	Ser 330	Gly	Ser	Leu	Ile	Gly 335	Ala
Pro	Lys	Thr	Val 340	Ala	Ala	Leu	Leu	Ser 345	Gly	Glu	Met	Lys	Asp 350	Thr	Gly
Ile	Val	Ile 355	Thr	Leu	Asn	Ile	Leu 360	Glu	Lys	Phe	Phe	Ser 365	Arg	Ser	Glu
Arg	Ala 370		Met	Val	Arg	Thr 375	Met	Gly	Gly	Val	Ser 380	Ser	Met	Leu	Pro
Lys 385		Gly	Asp	Val	Ala 390	Pro	Asp	Asp	Leu	Asn 395	Gln	Thr	Asn	Phe	Ser 400
Asn	Gly	Ala	Ile	Ile 405		ТУΞ	Arq	Glu	Asp 410	ile	Asp	Lys	Asp	His 415	Asp
Glu	Phe	Asp	1le 420		Asp	Ala	Leu	Gln 425		Leu	Lys	Asn	Val 430	Thr	Asp
Asr	Asp	Phe 435		val	Met	Leu	Ala 440		Asn	Tyr	Ser	H1S	G <u>1</u> y	Leu	Ala
Trp	T'hr 450		Lys	Glu	. Val	ьеи 455		Asn	Asn	. Glu	Met 460	Pro	Ser	Ĺys	Trp
Ile 465		n Pro	Leu	. Glu	Thr 470		Leu	Pro	Tyr	Ala 475	. Pro	Asp	Met	Lys	11e 480
Туг	Cys	val	. Hıs	Gly 485		Gly	. ľys	Pro	Thr 490	Glu	Arg	Gly	ТУг	Tyr 495	Tyr
Thr	. Asr	n Asn	9rc 500		Gly	Gln	Prc	Val 505	Il∈	asp	Ser	Ser	Val 510	. Asn	qsA ı
GΞλ	Thr	Lys 515		. Glu	Asn	Gly	7 11∈ 520		Met	. Asp	Asp	Gly 525	Asp	Gly	Thr
Leu	1 Pro 530		e Lev	ı Ala	. Leu	Gly 535		. Val	Cys	a Asn	Lys 540	Val	Trç	Glm	Thr
Lys 545		y Ph∈	e Asr	n Pro	Ala 550		ı Thr	Ser	īle	Th: 555	Asn	туг	Glu	ı īle	1 Lys 560
His	s Glu	ı Pro	Ala	. Ala 565		e Asg	. Leu	Arg	Gly 570	Gly	Pro	Arç	; Ser	Ala 575	Glu

BASF-NAE 33 77 / 99 PCT

24/58

12.09.2000

His Val Asp Ile Leu Gly His Ser Glu Leu Asn Glu Ile Ile Leu Lys 580 585

Val Ser Ser Gly His Gly Asp Ser Val Pro Asn Arg Tyr Ile Ser Asp 600 605

Ile Gln Glu Ile Ile Asn Glu Ile Asn Leu Asp Lys Pro Arg Asn 610 615 620

<210> 14 <211> 432 <212> PRT <213> Arabidopsis thaliana															
<400 Met 1	l> 14 Lys	Lys	Ile	Ser 5	Ser	His	Tyr	Ser	Val 10	Val	Ile	Ala	Ile	Leu 15	Val
Val	Val	Thr	Met 20	Thr	Ser	Met	Cys	Gln 25	Ala	Val	Gly	Ser	Asn 30	Val	Tyr
Pro	Leu	Ile 35	Leu	Val	Pro	Gly	Asn 40	Gly	Gly	Asn	Gln	Leu 45	Glu	Val	Arg
Leu	Asp 50	Arg	Glu	Tyr	Lys	Pro 55	Ser	Ser	Va1	Trp	Cys 60	Ser	Ser	Trp	Leu
Tyr 65	Pro	Ile	His	Lys	Lys 70	Ser	Gly	Gly	Trp	Phe 75	Arg	Leu	Trp	Phe	Asp 80
Ala	Ala	Val	Leu	Leu 85	Ser	Pro	Phe	Thr	Arg 90	Cys	Phe	Ser	Asp	Arg 95	Met
Met	Leu	Tyr	Tyr 100	Asp	Pro	Asp	Leu	Asp 105	Asp	ūλΞ	Gln	Asn	Ala 110	Pro	Gly
Val	Gln	Thr 115	Arg	Val	Pro	His	Phe 120	Gly	Ser	Thr	Lys	Ser 125	Leu	Leu	Tyr
Leu	Asp 130	Pro	Arg	Leu	Arg	Asp 135	Ala	Thr	Ser	Tyr	Met 140	Glu	Hıs	Leu	Val
Lys 145		Leu	Glu	Lys	Lys 150		Gly	Tyr	Val	Asn 155	Asp	Gln	Thr	Ile	Leu 160
Gly	Ala	Pro	Туг	Asp 165	₽he	Arg	Tyr	Gly	Leu 170	Ala	Ala	Ser	Gly	His 175	Pro
Ser	Arg	Val	Ala 180		Gln	7h.e	Leu	Gln 185	Asp	Leu	Lys	Gln	Leu 190	Val	Glu
Lys	Thr	Ser 195		Glu	Asn	Glu	Gly 200	Lys	Pro	Val	Ile	Ъeu 205	Leu	Ser	His
Ser	Leu 210		Gly	Leu	Phe	7al 215	Leu	His	Phe	Leu	Asn 220	Arg	Thr	Thr	Pro
Ser 225		Arq	Arg	Lys	Tyr 230		Ъуs	His	Phe	Val 235	Ala	Leu	Ala	Aìa	Pro 240
Trp	Gly	Gly	Thr	Ile 245		Gln	Met	Lys	Thr 250	Phe	Ala	Ser	Gly	Asn 255	Thr
Leu	Gly	Val	Pro 260		Val	Asn	Pro	Leu 265	Leu	Val	Arg	Arg	His 270	Gln	Arg
Thr	Ser	Glu 275		Asn	Gln	Trp	Leu 280		Pro	Ser	Thr	Lys 285	Val	Phe	His

Asp	Arg 290	Thr	Ĺys	Pro	Leu	Val 295	Va1	Thr	Pro	Gln	Val 300	Asn	Tyr	Thr	Ala
Tyr 305	Glu	Met	Asp	Arg	Phe 310	Phe	Ala	qzA	Ile	Gly 315	Phe	Ser	Gln	Gly	Val 320
Val	Pro	Tyr	Lys	Thr 325	Arg	Val	Leu	Pro	Leu 330	Thr	Glu	Glu	Leu	Met 335	Thr
Pro	Gly	Val	Pro 340	Val	Thr	Cys	Ile	Tyr 345	Gly	Arg	Gly	Val	Asp 350	Thr	Pro
Glu	Val	Leu 355	Met	Tyr	Gly	Lys	Gly 360	Gly	Phe	Asp	Lys	Gln 365	Pro	Glu	Ile
Lys	Tyr 370	Gly	Asp	Gly	Asp	Gly 375	Thr	Val	Asn	Leu	Ala 380	Ser	Leu	Ala	Ala
Leu 385	Lys	Val	Asp	Ser	Leu 390	Asn	Thr	Val	Glu	Ile 395	Asp	Gìy	Val	Ser	H1S 400
Thr	Ser	Ile	Leu	Lys 405	Asp	Glu	Ile	Ala	Leu 410	Lys	Glu	Ile	Met	Lys 415	Gln
īle	Ser	I1e	Ile 420		-	Glu	Leu	Ala 425			Asn		Val 430	Asn	G1u

<210> 15 <211> 552 <212> PRT <213> Arabidopsis thaliana <400> 15 Met Gly Ala Asn Ser Lys Ser Val Thr Ala Ser Phe Thr Val Ile Ala 1.0 Val Phe Phe Leu Ile Cys Gly Gly Arg Thr Ala Val Glu Asp Glu Thr Glu Phe His Gly Asp Tyr Ser Lys Leu Ser Gly Ile Ile Ile Pro Gly Phe Ala Ser Thr Gln Leu Arg Ala Trp Ser Ile Leu Asp Cys Pro Tyr Thr Pro Leu Asp Phe Asn Pro Leu Asp Leu Val Trp Leu Asp Thr Thr 70 Lys Leu Leu Ser Ala Val Asn Cys Trp Phe Lys Cys Met Val Leu Asp Pro Tyr Asn Gln Thr Asp His Pro Glu Cys Lys Ser Arg Pro Asp Ser 105 Gly Leu Ser Ala Ile Thr Glu Leu Asp Pro Gly Tyr Ile Thr Gly Pro 120 Leu Ser Thr Val Trp Lys Glu Trp Leu Lys Trp Cys Val Glu Phe Gly 135 Ile Glu Ala Asn Ala Ile Val Ala Val Pro Tyr Asp Trp Arg Leu Ser 150 Pro Thr Lys Leu Glu Glu Arg Asp Leu Tyr Phe His Lys Leu Lys Leu 165 Thr Phe Glu Thr Ala Leu Lys Leu Arg Gly Gly Pro Ser Ile Val Phe Ala His Ser Met Gly Asn Asn Val Phe Arg Tyr Phe Leu Glu Trp Leu 195 Arg Leu Glu Ile Ala Pro Lys His Tyr Leu Lys Trp Leu Asp Gln His 215 Ile His Ala Tyr Phe Ala Val Gly Ala Pro Leu Leu Gly Ser Val Glu Ala Ile Lys Ser Thr Leu Ser Gly Val Thr Phe Gly Leu Pro Val Ser 250 Glu Gly Thr Ala Arg Leu Leu Ser Asn Ser Phe Ala Ser Ser Leu Trp 265 Leu Met Pro Phe Ser Lys Asn Cys Lys Gly Asp Asn Thr Phe Trp Thr

His	Phe 290	Ser	Gly	Gly	Ala	Ala 295	Lys	Lys	ązA	Lys	Arg 300	Va1	Tyr	His	Cys
Asp 305	Glu	Glu	Glu	Tyr	Gln 310	Ser	Lys	Tyr	Ser	Gly 315	Trp	Pro	Thr	Asn	īle 320
Ile	Asn	Ile	Glu	Ile 325	Pro	Ser	Thr	Ser	Ala 330	Arg	Glu	Leu	Ala	Asp 335	Gly
Thr	Leu	Phe	Lys 340	Ala	Ile	Glu	Asp	Tyr 345	Asp	Pro	Asp	Ser	Lys 350	Arg	Met
Leu	His	Gln 355	Leu	Lys	Lys	Tyr	Val 360	Pro	Phe	Phe	Va1	Ile 365	Arg	Asn	Ile
Ala	His 370	Arg	Ser	Ser	Leu	Ala 375	Gly	Phe	Leu	Leu	Tyr 380	Hıs	Asp	Asp	Pro
Val 385		Asn	Pro	Leu	Thr 390	Pro	Trp	Glu	Arg	Pro 395	Pro	Ile	Lys	Asn	Val 400
Phe	Cys	Ile	Tyr	Gly 405	Ala	His	Leu	Lys	Thr 410	Glu	Val	Gly	ŢŊï	Tyr 415	Phe
Ala	Pro	Ser	Gly 420	Lys	Fro	Tyr	Pro	Asp 425	Asn	Trp	Ile	Ile	Thr 430	qaA	Ile
Ile	Tyr	Glu 435	Thr	Clu	GīA	Ser	Leu 440	Val	Ser	Яrg	Ser	Gly 445	Thr	Vai	Val
Asp	Gly 450	Asn	Ala	Gly	Pro	Ile 455	Thr	Gly	qaA	Glu	Thr 460	Val	Pro	Tyr	His
Ser 465		Ser	Trp	Cys	Lys 470	Asn	Trp	Leu	Gly	Pro 475	Lys	Val	Asn	Ile	Thr 480
Met	Ala	Pro	Gln	Ile 485	Leu	Ile	Gly	Lys	Ile 490	Lys	Gln	Gln	Pro	Glu 495	His
Asp	Gly	Ser	Asp 500	Val	His	Va1	Glu	Leu 505	Asn	Val	Asp	His	Glu 510	His	Gly
Ser	Asp	Ile 515	Ile	Ala	Asn	Мег	Thr 520	Lys	Ala	Pro	Arg	Val 525	Lys	Tyr	Ile
Thr	Phe 530	Tyr	Glu	Asp	Ser	Glu 535	Ser	Ile	Pro	Gly	Lys 540	Arg	Thr	Ala	Val
Trp 545	Glu	Leu	qsA	Lys	Ser 550	Gly	Týr								

<210> 16

<211> 661 <212> PRT <213> Saccharomyces cerevisiae <400> 16 Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser 10 Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 105 Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 120 Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn 135 Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 185 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 220 215 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 230 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 250 Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 290

Ala	Tyr 290	Leu	Asp	Leu	Glu	Arg 295	Arg	Asp	Arg	Туг	Phe 300	Thr	Lys	Leu	Lys
Glu 305	Gln	Ile	Glu	Leu	Phe 310	His	Gln	Leu	Ser	Gly 315	Glu	Ĺys	Val	Cys	Leu 320
Ile	Gly	Hıs	Ser	Met 325	Gly	Ser	Gln	Ile	330 Ile	Phe	Tyr	Phe	Met	Lys 335	Trp
Val	Glu	Ala	Glu 340	G1y	Pro	Leu	Tyr	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Va1
Asn	Glu	His 355	Ile	Asp	Ser	Phe	11e 360	Asn	Ala	Ala	Gly	Thr 365	Leu	Leu	Gly
Ala	Pro 370	Lys	Ala	Val	Pro	Ala 375	Leu	Ile	Ser	Gly	Glu 380	Met	Lys	Asp	Thr
Ile 385	Gln	Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	G1y	Leu 395	Glu	Lys	Phe	Phe	Ser 400
Yrā	Ile	Glu	Arg	Val 405	Lys	Met	Leu	G1n	Thr 410	Trp	G1y	Gly	Ile	Pro 415	Ser
Мес	Leu	Pro	Lys 420	Gly	Glu	Glu	Val	Ile 425	Trp	Gly	Asp	Met	Lys 430	Ser	Ser
Ser	Glu	Asp 435	Ala	Leu	Asn	Asn	Asn 440	Thr	Asp	Thr	Tyr	Gly 445	Asn	Phe	Ile
Arg	Phe 450	Glu	Arg	Asn	Thr	Ser 455	Asp	Ala	Phe	Asn	Lys 460	Asn	Leu	Thr	Met
Lys 465	Asp	Ala	Ile	Asn	Мес 470	Thr	Leu	Ser	Ile	Ser 475	Pro	Glu	Trp	Leu	Gln 480
Ъrg	Arg	Val	Hıs	Glu 485	Gln	Tyr	Ser	Phe	G1y 490	ĵλι	Ser	Lys	Asn	Glu 495	Glu
Glu	Leu	Arg	Lys 500	Asn	Glu	Leu	His	His 505	rys	Hıs	Trp	Ser	Asn 510	Pro	Mec
Glu	Val	Pro 515	Leu	Pro	Glu	Ala	Pro 520	Hıs	Met	Ĺys	Ile	Туг 525	Cys	Ile	Tyr
Gly	Val 530	Asn	Asn	Pro	Thr	Glu 535	Arg	Ala	Tyr	Va1	Tyr 540	Lys	Glu	Glu	Asp
Asp 545	Ser	Ser	Ala	Leu	Asn 550	Leu	Thr	Ile	Asp	Tyr 555	Glu	Ser	Lys	Gln	Pro 560
Val	Phe	Leu	Thr	Glu 565	Gly	Asp	Gly	Thr	Val 570	Pro	Leu	Val	Ala	His 575	Ser
Met	Cys	Hıs	Lys 580	Trp	Ala	Gln	Gly	Ala 585	Ser	Pro	Tyr	Asn	Pro 590	Ala	Gly
Ile	Asn	Val 595	Thr	Ile	Val	Glu	Met 600	Lys	Hıs	Gln	Pro	Asp 605	Arg	Phe	qzA

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln 655

Met Pro Phe Pro Met 660

<210> 17 <211> 387 <212> PRT <213> Arabidopsis thaliana														
<400> 17 Val Gly Ser 1	Asn Val	Tyr Pro	Leu I	le Leu 10	Val Pro	Gly	Asn	Gly 15	Gly					
Asn Gln Leu	Glu Val 20	Arg Leu		rg Glu 25	Tyr Lys	Pro	Ser 30	Ser	Va1					
Trp Cys Ser 35	Ser Trp	Leu Tyr	Pro I 40	ie His	Lys Lys	Ser 45	Gly	Gly	Trp					
Phe Arg Leu 50	Trp Phe	Asp Ala 55		al Leu	Leu Ser 60		Phe	Thr	Arg					
Cys Phe Ser 65	Asp Arg	Met Met 70	Leu T	Yr Tyr	Asp Pro	Asp	Leu	qzA	Asp 80					
Tyr Gln Asn	Ala Pro 85	Gly Val	Gln T	Thr Arg 90	Val Pro	His	Phe	Gly 95	Ser					
Thr Lys Ser	Leu Leu 100	Tyr Leu		ro Arg .05	Leu Arg	Asp	Ala 110	Thr	Ser					
Tyr Met Glu 115	Eis Leu	Val Lys	Ala L 120	eu Glu	Lys Lys	Cys 125	Gly	Tyr	Val					
Asn Asp Gln 130	Thr Ile	Leu Gly 135		Pro Tyr	Asp Phe	Arg	Tyr	Gly	Leu					
Ala Ala Ser 145	Gly His	Pro Ser 150	Arg V	al Ala	Ser Gln 155	Phe	Leu	Gln	Asp 160					
Leu Lys Gln	Leu Val 165	Glu Lys	Thr S	Ser Ser 170	Glu Asn	Glu	Gly	Lys 175	Pro					
Val Ile Leu	Leu Ser 180	His Ser		Gly Gly .85	Leu Phe	Val	Leu 190		Phe					
Leu Asn Arg 195	Thr Thr	Pro Ser	Trp A 200	rg Arg	Lys Tyr	Ile 205	Lys	His	Phe					
Val Ala Leu 210	Ala Ala	Pro Trp 215		ly Thr	Ile Ser 220		Met	Lys	Thr					
Phe Ala Ser 225	Gly Asn	Thr Leu 23J	Gly V	al Pro	Leu Val 235	Asn	Pro	Leu	Leu 240					
Val Arg Arg	His Gln 245	Arg Thr	Ser G	lu Ser 250	Asn Gln	Trp		Leu 255	Pro					
Ser Thr Lys	Val Phe 260	His Asp		hr Lys 65	Pro Leu		Val 270	Thr	Pro					
Gln Val Asn 275	Tyr Thr	Ala Tyr	Glu M 280	et Asp	Arg Phe	Phe 285	Ala	qaƙ	Ile					

Gly	Phe 290	Ser	Gln	Gly	Val	Val 295	Pro	Tyr	Lys	Thr	Arg 300	Val	Leu	Pro	Leu
Thr 305	Glu	Glu	Leu	Met	Thr 310	Pro	Gly	Val	Pro	Val 315	Thr	Cys	Ile	Tyr	Gly 320
Arg	Gly	Val	Asp	Thr 325	Pro	Glu	Val	Leu	Met 330	Tyr	Gly	Lys	Gly	Gly 335	Phe
Asp	Lys	Gln	Pro 340	Glu	Ile	Lys	Tyr	Gly 345	qsA	Gly	Asp	Gly	Thr 350	Val	Asn
Leu	Ala	Ser 355		Ala	Ala	Leu	Lys 360	Val	Asp	Ser	Leu	Asn 365	Thr	Va1	Glu
Ile	Asp 370	-	Val	Ser	His	Thr 375	Ser	Ile	Leu	Ьуs	4sp 380	Glu	Ile	Ala	Leu
Lys 385		Ile													

<210 > 1 <211 > 3 <212 > P <213 > A	89 RT	oido	psis	s tha	alian	ıa									
<400> 1 Leu Lys 1	.8 5 L <u>y</u>	ys (Glu (Gly i	Leu l	Lys	Ala	Lys	His 10	Pro	Val '	Val	Phe	Ile 15	Pro
Gly Ile	e V	al'	Thr	Gly	Gly :	Leu	Glu	Leu 25	Trp	Glu	Gly	Lys	Gln 30	Cys	Ala
Asp Gly		eu 35	Phe	Arg	Lys	Arg	Leu 40	Trp	Gly	Gly	Thr	Phe 45	Leu	Cys	Trp
Val Gl ⁻ 5		lis	Met	Ser	Leu	Asp 55	Asn	Glu	Thr	Gly	Leu 60	Asp	Pro	Ala	Gly
Ile Ar 65	ā ∧	/al	Arg	Ala	Val 70	Ser	Gly	Leu	Val	Ala 75	Ala	Asp	Ţγr	Phe	Ala 80
Pro Gl	y T	ľýľ	Phe	Val 85	Trp	Ala	Val	Leu	Ile 90	Ala	Asn	Leu	Ala	His 95	Ile
Gly Ty	r (Glu	Glu 100	Lys	Asn	Met	Tyr	Met 105	Ala	Ala	Tyr	Asp	Trp 110	Arg	Leu
Ser Pr		Gln 115	Asn	Thr	Glu	Arg	Asp 120	Gln	Thr	Leu	Ser	Arg 125	Met	Lys	Ser
Asn II	le 30	Glu	Lеч	Met	Val	Ser 135	Thr	Asr	ı Gly	Gly	- Lys 140	Lys	Ala	. Val	Ile
Val P: 145	ro	His	Ser	Met	Gly 150	Val	. Leu	ŢŢI	r Ph€	e Leu 155	His	. Phe	Met	Lys	Trp 160
Val G	lu	Ala	. Pro	Ala 165		Let	: Gly	Gly	7 Gly	y Gly	7 Gly	Pro	Asī	7rg	Cys
Ala L	УS	ŢŸŢ	11e	e Lys	ala	. Val	l Met	As:	n Ilo	e Gly	y Gly	Pro	Phe 190	e Lev	ı Gly
Val P	ro	Lys 195		a Val	Ala	Gly	/ Let 200	ı Ph	e Se	r Ala	a Glu	1 Ala 205	a Ly: 5	s As)	o Met
Arg M	let 10	The	r Arg	ולד ק	r Trr	21	p Sei 5	r Th	r M∈	t Se:	r Met 22(Lev	ı Pro	o Ly	s Gly
Gly A 225	qz	Thi	s Ile	e Tr	o G1 <u>y</u> 230	/ G1;	y Le:	ı As	p Tr	p Se 23	r Pro 5	o Gl	u Le	u Pr	o Asn 240
Ala E	Pro	Gl	ı Me	c Gli 24	u Ile 5	e Ty	r Se	r Le	u Ty 25	r Gl	y Val	l Gl	y Il	e Pr 25	o Thr 5
Glu A	\rg	Ala	a Ty: 26	r Va O	1 Ty:	r Ly	s Le	u As 26	n Gl 5	n Se	r Pr	o As	p S∈ 27	r Cy O	s Ile
Pro !	?he	G1:		e Ph	e Thi	r Se	r Al 28	a Hi O	s Gl	u Gl	u As	p Gl 28	u As 5	p Se	r Cys

Leu	Lvs	Ala	Gly	Val	Tyr	Asn	Val	Asp	Gly	qaA	Glu	Thr	Va1	Pro	Val
	290		-			295					300				

Leu Ser Ala Gly Tyr Met Cys Ala Lys Ala Trp Arg Gly Lys Thr Arg

Phe Asn Pro Ser Gly Tie Lys Thr Tyr Ile Arg Glu Tyr Asn His Ser 325 330 335

Pro Pro Ala Asn Leu Leu Glu Gly Arg Gly Thr Gln Ser Gly Ala His 340 345

Val Asp Ile Met Gly Asn Phe Ala Leu Ile Glu Asp Ile Met Arg Val 355 360 365

Ala Ala Gly Gly Asn Gly Ser Asp Ile Gly His Asp Gln Val His Ser 370 375 380

Gly Ile Phe Glu Trp 385

<213 <213	0> 19 1> 19 2> DI 3> Sa	986 NA	arom	yces	cer	evis	iae									
	1> C	-	(198	3)												
atg		aca	_		_	-		gtc Val	_			_	_			यें 8
								gtt Val 25								96
			Hıs					tta Leu						_		144
	-	-	_	-		_		gag Glu	_			_		-	-	192
		-			-			cgt Arg		_	_		_	_	_	240
					_			ggt Gly	_		-	_		_		288
								gat Asp 105								336
								tat Tyr								384
								att Ile								432
								ctc Leu								480
								atc Ile	_	-					-	528
								gga Gly 185								576

gga Gly	gac Asp	gat Asp 195	gag Glu	tgc Cys	gat Asp	agt Ser	tct Ser 200	gcg Ala	cat His	ttt Phe	cgt Arg	aaa Lys 205	cgg Arg	ctg Leu	tgg Trp	624
gga Gly	agt Ser 210	ttt ?he	tac Tyr	atg Met	ctg Leu	aga Arg 215	aca Thr	atg Met	gtt Val	atg Met	gat Asp 220	aaa Lys	gtt Val	tgt Cys	tgg Trp	672
ttg Leu 225	aaa Lys	cat Hıs	gta Val	atg Met	tta Leu 230	gat Asp	cct Pro	gaa Glu	aca Thr	ggt Gly 235	ctg Leu	gac Asp	cca Pro	ccg Pro	aac Asn 240	720
ttt Phe	acg Thr	cta Leu	cgt Arg	gca Ala 245	gca Ala	cag Gln	ggc Gly	ttc Phe	gaa Glu 250	tca Ser	act Thr	gat Asp	tat Tyr	ttc Phe 255	atc Ile	768
gca Ala	G1y ggg	tat Tyr	tgg Trp 260	att Ile	tgg Trp	aac Asn	aaa Lys	gtt Val 265	ttc Phe	caa Gln	aat Asn	ctg Leu	gga Gly 270	gta Val	att Ile	815
ggc Gly	tat Tyr	gaa Glu 275	Pro	aat Asn	aaa Lys	atg Met	acg Thr 280	agt Ser	gct Ala	gcg Ala	tat Tyr	gat Asp 285	tgg Trp	agg Arg	ctt Leu	864
gca Ala	tat Tyr 290	Leu	gat Asp	cta Leu	gaa Glu	aga Arg 295	cgc Arg	gat Asp	agg Arg	tac Tyr	Ett Phe 300	Thr	aag Lys	cta Leu	aag Lys	912
gaa Glu 305	Gln	ato Ile	gaa Glu	. ctg Leu	ttt Phe 310	His	caa Gln	ttg Leu	agt Ser	ggt Gly 315	Giu	aaa Lys	gtt Val	tgt Cys	tta Leu 320	960
att Ile	gga Gly	cat His	tct Ser	atg Met 325	Gly	tct Ser	cag Gln	att Ile	ato le Ile	Ph∈	tac Tyr	ttt Phe	atg Met	aaa Lys 335	tgg Trp	1008
gto Val	gag I Glu	get LAla	gaa a Glu 340	ı Gly	cct Pro	ctt Leu	tac Tyr	ggt Gly 345	/ Asn	ggt Gly	ggt Gly	: cgt / Arg	350 350	Tr	gtt Val	1056
aac Asr	gaa n Glo	cac His	5 I16	e gat e Asp	t tca Ser	ttc Phe	att : Ile : 360	Asr	gca n Ala	gca Ala	: GJ7	g acg 7 Thr 365	Let	ctg Leu	ggc Gly	1104
gct Ala	cca Pro 370	Ly:	g gca s Ala	a gtt a Val	cca L Pro	gct Ala 375	. Leu	att i Ile	agt e Ser	ggt Gly	gaa Glu 380	ı Met	g aaa Lys	gat Asp	acc Thr	1152
att [16	e Glr	a tta n Lev	a aat ı Asr	acg n Thi	g tta Lev 390	ı Ala	ato Met	g tat Tyl	ggt Gly	: ttg / Let 395	ı GD	a aag 1 Lys	j tto s Phe	ttc Phe	tca Ser 400	1200
aga Arq	a att g īle	gaq e Gli	g aga u Arg	a gta Val 409	L Lys	atç Met	rtta Lei	e caa i Gl:	a acc n Thr 410	rr	o Gl;	t ggt / Gly	ata 7 Ile	e cca Pro 413	tca Ser	1248
aty Me	g cta t Lei	a cca ı Pro	aag o Lys 420	s Gly	a gaa / Glu	ı gaç ı Glu	g gto 1 Val	act 1 Tle 425	∋ Tr <u>:</u>	o Glž ā āāč	j ja: . Asi	acg Met	aag Lys 430	Ser	tct Ser	1296

		-	-						_					ttc Phe		1344
_					_			-					_	aca Thr	-	1392
	-							_				_		ctc Leu		1440
-		_												gaa Glu 495	_	1488
														cca Pro		1536
	_				-									ata Ile		1584
						-				-				gag Glu	_	1632
-			~	-		_			_		_	-	_	caa Gln		1680
_						_			-	_				cat His 575		1728
-														gcc Ala		1776
		_				_	_			_		-		ttc Phe		1824
														ggc Gly		1872
														ggc Gly		1920
														tot Ser 655	-	1968
			cca Pro 660	atg Met	taa											1986

<210: <211: <212: <213	> 66 > PR	Т	romy	ces	cere	visı	ae								
<400 Met 1	> 20 Gly	Thr	Leu	Phe 5	Arg	Arg	Asn	Va1	Gln 10	Asn	Gln	Lys	Ser	Asp 15	Ser
Asp	Glu	Asn	Asn 20	Lys	Gly	Gly	Ser	Val 25	His	Asn	Lys	Arg	Glu 30	Ser	Arg
Asn	His	Tle 35	His	His	Gln	Gln	Gly 40	Leu	Gly	Hıs	Lys	Arg 45	Arg	Arg	Gly
īle	Ser 50	Gly	Ser	Ala	Lys	Arg 55	Asn	Glu	Arg	Gly	Lys 60	Asp	Phe	Asp	Arg
Lys 65	Arg	Asp	Gly	Asn	Gly 70	Arg	īуs	Arg	Trp	Arg 75	Asp	Ser	Arg	Arg	Leu 80
Ile	Phe	īle	Leu	Gly 85	Ala	Phe	Leu	Gly	Val 90	Leu	Leu	Pro	Phe	Ser 95	₽he
Gly	Ala	Туг	Hıs 100	Val	His	Asn	Ser	Asp 105	Ser	qaA	Leu	Phe	Asp 110	Asn	Phe
Val	Asn	Phe 115		Ser	Leu	Lys	Val 120	Ţyr	Leu	Asp	qsA	Trp 125	Lys	Asp	Va1
Leu	Pro 130		Gly	Ile	Ser	Ser 135	Phe	Ile	Asp	Asp	Ile 140	Gln	Ala	Gly	Asn
Ту <u>г</u> 145		Thr	Ser	Ser	Leu 150	asa	gaA o	Leu	Ser	Glu 155	Asn	Phe	Ala	Val	Gly 160
Lys	Gln	. Leu	Leu	Arg 165		Tyr	Asn	ı Ile	e Glu 170	Ala	Lys	Hıs	Pro	Val 175	Val
Met	Va1	. Prc	Gly 180		īle	Ser	Thr	Gly 185	r Ile	e Glu	Ser	Trp	Gly 190	Val	Ile
Gly	Asp	Asp 195		Cys	. Asp	Ser	Ser 200	Ala	a His	: Ph∈	e Arg	Lys 205	Arg	Leu	Trp
Gly	Ser 210		yr Tyr	. Met	Leu	Arc 215	Thr	Met	: Val	Met	220	Lys	val	Суя	Trp
Leu 225		s His	s Val	. Mes	Leu 230	Asp	Pro	Glu	ı Thr	Gly 235	r Leu	Asp	Prc) Pro	240
Phe	e The	. Lev	ı Arç	Ala 245		Glr	ı Gly	/ Phe	e Glu 250	ı Ser	Thr	Asp	Tyr	Phe 259	e Ile
Ala	a Gly	/ Ty:	Tr; 260		e Trp	Asr	ı Lys	3 Val 265	i Phe	e Glr	n Asn	Leu	: Gly 270	v Val	Ile
Gly	/ Ty:	Glu 275) Asr	ı Lys	Мет	Th: 280	Sei	: Ala	i Alá	ı Tyr	Asp 285	Trp	Arg	j Leu

Ala	Tyr 290	Leu	Asp	Leu	Glu	Arg 295	Arg	Asp	Arg	Tyr	Phe 300	Thr	Lys	Leu	Lys
Glu 305	Gln	Ile	Glu	Leu	Phe 310	His	Gln	Leu	Ser	Gly 315	Glu	Lys	Val	Суѕ	Leu 320
Ile	Gly	His	Ser	Met 325	Gly	Ser	Gln	Ile	Ile 330	Phe	Tyr	Phe	Met	Lуs 335	Trp
Val	Glu	Ala	Glu 340	Gly	Pro	Leu	Tyr	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Val
Asn	Glu	His 355	īle	Asp	Ser	Phe	Ile 360	Asn	Ala	Ala	Gly	Thr 365	Leu	Leu	Gly
Ala	Pro 370	Lys	Ala	Val	Pro	Ala 375	Leu	Ile	Ser	Gly	Glu 380	Мес	Lys	Asp	Thr
Ile 385	Gln	Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	Gly	Leu 395	Glu	Lys	Phe	Phe	Ser 400
Arg	Ile	Glu	Arg	Val 405	Lys	Met	Leu	Gln	Thr 410	Trp	Gly	Gly	Ile	Pro 415	Ser
Met	Leu	Pro	Lys 420	Gly	Glu	Glu	Va l	Ile 425	Trp	Gly	Asp	Mec	Lys 430	Ser	Ser
Ser	Glu	Asp 435	Ala	Leu	Asn	Asn	Asn 440	Thr	Asp	Thr	Tyr	Gly 445	Asn	Phe	Ile
Arg	Phe 450	Glu	Arg	Asn	Thr	Ser 455	Asp	Ala	Phe	Asn	Lys 460	Asn	Leu	Thr	Met
Lys 465	σεA	Ala	Ile	Asn	Met 470	Thr	Leu	Ser	Ile	Ser 475	Pro	Glu	Trp	Leu	Gln 480
Arg	Arg	Val	His	Glu 485	Gln	Tyr	Ser	Phe	Gly 490	Туг	Se≆	Lys	Asn	Glu 495	Glu
Glu	Leu	Arg	Lys 500	Asn	Glu	Leu	His	His 505	Lys	His	Trp	Ser	Asn 510	Pro	Met
Glu	Val	Pro 515	Leu	Pro	Glu	Ala	Prc 520	Hıs	Met	Lys	Ile	Tyr 525	Cys	īle	Tyr
Gly	Val 530	Asn	Asn	Pro	Thr	Glu 535	Arg	Ala	Tyr	Va1	Tyr 540	Lys	Glu	G1u	Asp
Азр 545	Ser	Ser	Ala	Leu	Asn 550	Leu	Thr	Ile	Asp	Tyr 555	Gļu	Ser	Lys	Gln	Pro 560
Val	Fhe	Leu	Thr	Glu 565	Gly	Asp	Gly	Thr	Val 570	Pro	Leu	Val	Ala	Hıs 575	Ser
Met	Cys	Hıs	Lys 580	Trp	Ala	Gin	Gly	Ala 585	Ser	Pro	Tyr	Asn	Pro 590	Ala	Gly
Ile	Asn	Val 595	Thr	Ile	Val	Glu	Мет 600	Lys	His	Gln	Pro	qaA 306	Arg	Phe	qsA.

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 610 $\,$ 620 $\,$

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 625 630 630 635

Leu Val Glu Pro Arg Gln Leu Ser As
n Leu Ser Gln Trp Val Ser Gln 655 $\,$

Met Pro Phe Pro Met 660

<21 <21	0 > 21 1 > 19 2 > Di 3 > Sa	986 VA	arom	yces	cer	evis	iae									
	0> 1> C! 2> (:		(198	3)												•
atg	0> 2: ggc Gly	aca	_		_	-							_			48
	gaa Glu										_	-	-	-	_	96
	cac Hıs												Arg			144
	agt Ser 50		_	_					_			-		_		192
	aga Arg							_		_			_	-		240
	ttc Phe								-		_					288
	gct Ala								_	-	_		_			336
	aat Asn													_		384
	cca Pro 130												_			432
	tcc Ser															480
aaa Lys	caa Gln	ctc Leu	tta Leu	cgt Arg 165	gat Asp	tat Tyr	aat Asn	atc Ile	gag Glu 170	gcc Ala	aaa Lys	cat His	cct Pro	gtt Val 175	gca Val	528
	gt: Val															576

_	-			_	agt Ser					_				0.0	624
					aga Arg 215										672
		_			gat Asp				_		_				720
***		_	_	-	cag Gln						_				768
					aac Asn		_				_		~		816
	_				atg Met	_	-	_	-		_		~ ~		864
		-		-	aga Arg 295			-			-	-			912
		-	-		cat His			_		-		-	_		960
					tct Ser										1008
					ctt Leu										1056
_			-		ttc Phe			~							1104
					gct Ala 375									acc Thr	1152
					gcc Ala										1200
					atg Met										1248
					gag Glu										1296

		-	_				aac Asn 440					1344
							gat Asp					1392
	-	_					tta Leu-					1440
							tcg Ser					1488
							cac Hıs					1536
	_						ccc Pro 520					1584
						_	agg Arg					1632
_			_	_			acc Thr					1680
							gga Gly					1729
							ggt Gly					1776
							atg Met 500					1824
	-	Gly	-	Ala	Lys		gcc Ala		Val	Ile		1872
							ttg Leu					1920
							tct Ser					1968
_		ttc Phe		atg Met	taa							1986

<211 <212)> 22 -> 66 !> PF !> Sa	51	iromy	ces.	cere	evis	iae								
)> 22 Gly		Leu	Phe 5	Arg	Arg	Asn	Val	Gln 10	Asn	Gln	Lys	Ser	Asp 15	Ser
Asp	G1u	Asn	Asn 20	Lys	G1y	Gly	Ser	Val 25	His	Asn	Lys	Arg	Glu 30	Ser	Arg
Asn	His	Ile 35	Hıs	His	Gln	Gln	Gly 40	Leu	Gly	Hıs	Lys	Arg 45	Arg	Arg	Gly
Ile	Ser 50	G1y	Ser	Ala	Lys	Arg 55	Asn	G1u	Arg	Gl_Y	Lys 60	ązA	Phe	Asp	Arg
Lys 65	Arg	Asp	Gly	Asn	Gly 70	Arg	Lys	Arg	Trp	Arg 75	Asp	Ser	Arg	Arg	Leu 80
Ile	Phe	Ile	Leu	Gly 85	Ala	Phe	Leu	Gly	Val 90	Leu	Leu	Pro	Phe	Ser 95	Phe
Cly	Ala	Tyr	His 100	Val	Hıs	Asn	Ser	дзқ 201	Ser	qzA	Leu	Phe	Asp 110	Asn	рре
Val	Asn	Phe 115	Asp	Ser	Leu	Lys	Val 120	Tyr	Leu	Asp	qeA	Trp 125	Lys	Asp	Val
Leu	Pro 130	Gln	Gly	Ile	Ser	Ser 135	Phe	Ile	qsA	qzA	11e 140	Gln	Ala	Gly	Asn
Tyr 145	Ser	Thr	Ser	Ser	Leu 150	Asp	Asp	Leu	Ser	Glu 155	Asn	Phe	Ala	Val	Gly 160
Lys	Gln	Leu	Leu	Arg 165	Asp	Tyr	Asn	Ile	Glu 170	Ala	Lys	His	Pro	Val 175	Val
Met	Vai	Pro	Gly 180	Val	Ile	Ser	Thr	Gly 185	Ile	Glu	Ser	Trp	Gly 190	Val	Ile
Gly	Asp	Asp 195	Glu	Cys	Asp	Ser	Ser 200	Ala	His	Phe	Arg	Lys 205	Arg	Leu	Trp
Gly	Ser 210	Phe	Tyr	Met		Arg 215	Thr	Met	Val	Met	Asp 220		Val	Cys	Trp
Leu 225	ržs	His	Val	Met	Leu 230	Asp	Pro	Glu	Thr	Gly 235	Leu	Asp	Pro	Pro	Asn 240
Phe	Thr	Leu	Arg	Ala 245	Ala	Gln	Gly	Fhe	Glu 250	Ser	Thr	Asp	Tyr	Phe 255	Ile
Ala	Gly	Tyr	Trp 260	īle	Trp	Asn	Lys	Val 265	Phe	Gln	Asn	Leu	Gly 270	Val	Ile
Gly	Tyr	Glu 275	Pro	Asn	Lys	Met	Thr 280	Ser	Ala	Ala	Tyr	Asp 285	Trp	Arg	Leu

Ala	Tyr 290	Leu	qзА	Leu	Glu	Arg 295	Arg	Asp	Arg	Tyr	Phe 300	Thr	Lys	Leu	Lys
Glu 305	Gln	Ile	Glu	Leu	Phe 310	Hıs	Gln	Leu	Ser	Gly 315	Glu	Lys	Val	Cys	Leu 320
Ile	Gly	His	Ser	Met 325	Gly	Ser	Gln	Ile	Ile 330	Phe	Tyr	Phe	Met	Lys 335	Trp
Val	Glu	Ala	Glu 340	Gly	Pro	Leu	Tyr	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Va1
Asn	Glu	His 355	Ile	qzA	Ser	Phe	Ile 360	Asn	Ala	Ala	Gly	Thr 365	Leu	Leu	Gly
Ala	Pro 370	Ъуs	Ala	Val	Pro	Ala 375	Leu	Ile	Ser	Gly	Glu 380	Met	Lys	Asp	Thr
Ile 385	Gln	Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	Gly	Leu 395	Glu	Lys	Phe	Phe	Ser 400
Arg	Ile	Glu	Arg	Val 405	īуs	Met	Leu	Gln	Thr 410	Trp	Gly	Gly	Ile	Pro 415	Ser
Met	L∈u	Pro	Lys 420	Gly	Glu	Glu	Val	Ile 425	Trp	Gly	Asp	Met	Lys 430	Ser	Ser
Ser	Glu	Asp 435	Ala	Leu	Asn	Asn	Asn 440	Thr	Asp	Thr	Тут	Gly 445	Asn	Phe	Ile
Arg	Phe 450	Glu	Arg	Asn	Thr	Ser 455	Asp	Ala	Phe	Asn	Lys 460	Asn	Leu	Thr	Met
Lys 465	qzA	Ala	īle	Asn	Met 470	Thr	Leu	Ser	Ile	Ser 475	Pro	Glu	Trp	Leu	Gln 480
Arg	Arg	Va1	His	Glu 485	Gln	Tyr	Ser	Phe	Gly 490	Tyr	Ser	Lys	Asn	Glu 495	Glu
Glu	Leu	Arg	Lys 500	Asn	Glu	Leu	His	His 505	Lys	Hıs	Trp	Ser	Asn 510	Pro	Met
Glu	Val	Pro 515	Leu	Pro	Glu	Ala	Pro 520	His	Met	ŗžs	Ile	Tyr 525	Cys	Ile	Tyr
Gly	Va1 530	Asn	Asn	Prc	Thr	Glu 535	Arg	Ala	Туг	Va!	Tyr 540	Lys	Glu	Glu	Asp
Asp 545	Ser	Ser	Ala	Leu	Asn 550	Leu	Thr	Ile	Asp	Tyr 535	Glu	Ser	Lys	G1n	Pro 560
Val	Phe	Leu	Thr	Glu 565	Gly	qsA	Gly	Thr	Vа1 570	Fro	Leu	Val	Ala	His 575	Ser
Met	Суѕ	Hıs	Lys 580	Trp	Ala	Gln	Gly	Ala 585	Ser	Prc	Tyr	Asn	Pro 590	Ala	Gly
Ile	Asn	Val 595	Thr	Ile	Val	Glu	Met 630	Lys	His	Gln	Pro	Asp 605	Arg	Phe	Asp

Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 610 615 620

Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 625 630 635 640

Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln 655

Met Pro Phe Pro Met 660

```
<210> 23
<211> 2312
<212> genomic DNA
<213> Schizcsaccharomyces pombe
<400>23
atggcgtctt ccaaqaagag caaaactcat aagaaaaaga aagaagtcaa atctcctatc 60
gactiaccaa attcaaagaa accaactcgc gctttgagtg agcaaccttc agegtccgaa 120
acacaatorg tttcaaataa atcaagaaaa tctaaatttg gaaaaagatt gaattttata 180
ttgggcgcta tttttgggaat atgcggtgct tttttttcg ctgttggaga cgacaatgct 240
gttttcgacc ctgctacgtt agataaattt gggaatatgc taggctcttc agacttgttt 300
gatgacatta aaggatatti accttataat gigtttaagg algcacctti tactacqgac 360
aagoottogo agtotootag oggaaatgaa gitoaagtig giotigatat giacaatgag 420
ggatategaa gtgaecatee tgttattatg gtteetggtg ttateagete aggattagaa 480
agttggtcgt ttaataattg ctcgattcct tactttagga aacgtctttg gggtagctgg 540
totatgotga aggoaatgtt cottgacaag caatgotggo ttgaacattt aatgottgat 600
aaaaaaaaccg gcttggatcc gaagggaatt aagctgcgag cagctcaggg gtttgaagca 660
gctgattttt ttatcacggg ctattggatt tggagtaaag taattgaaaa ccttgctgca 720
attggttatg agcctaataa catgttaagt gcttcttacg attggcggtt atcatatgca 780
aatttagagg aacgtgataa atatttttca aagttaaaaa tgttcattga gtacagcaac 840
attgtacata agaaaaaggt agtgttgatt teteaeteea tgggtteaca ggttaegtae 900
tattttttta aqtqqqttqa agctqagggc tacggaaatg gtggaccgac ttgggttaat 960
gatcatattg aagcatttat aaatgtgagt ctcgatggtt gtttgactac gtttctaact 1020
titigaataga tatogggato titigatigga goacceaaaa cagtiggoago gottitatog 1080
ggtgaaatga aagatacagg tattgtaatt acattaaaca tgttaatatt taattttttgc 1140
taaccettit aageteaait gaateagiit teggietaig getaageaat aaattetiga 1200
gatttgttac taatttactg tttagtttgg aaaaattttt tlcccgttct gaggtatatt 1260
caaaaataca aatgtgctct actttttcta acttttaata gagagccatg atggttcgca 1320
ctargggagg agttagttct atgcttccta aaggagggga tgttgtatgg ggaaatgcca 1380
gttgggtaag aaatatgtgc tgttaatttt ttattaatat ttaggctcca gatgatctta 1440
atcaaacaaa tttttccaat ggtgcaatta ttcgatatag agaagacatt gataaggacc 1500
acgatgaatt tgacatagat gatgcattac aatttttaaa aaatgttaca gatgacgatt 1560
ttaaagtcat getagegaaa aattalteee aeggtettge ttggaetgaa aaagaagtgt 1620
taaaaaataa cgaaatgeeg tetaaatgga taaateeget agaagtaaga acattaaagt 1680
tactaaatta tactaaccca aatagactag tetteettat geteetgata tgaaaattta 1740
ttgcgttcac ggggtcggaa aaccaactga gagaggttat tattatacta ataatcctga 1800
ggggcaacct qtcattqatt cctcggttaa tgatggaaca aaagttgaaa atgtgaqaga 1860
atttatgttt caaacattet attaactgtt ttattagggt attgttatgg atgatggtga 1920
tggaacttta ccaatattag cccttggttt ggtgtgcaat aaagtttggc aaacaaaaag 1980
gtttaatcct gctaatacaa gtatcacaaa ttatgaaatc aagcatgaac ctgctgcgtt 2040
tgatctgaga ggaggacete geteggeaga acaegtegat ataettggae atteagaget 2100
aaatgtatgt teattttace ttacaaattt etattactaa etettgaaat aaggaaatta 2160
tttttaaaagt ttcatcagge catggtgact cggtaccaaa ccgttatata tcagatatcc 2220
agtacggaca taagttttgt agattgcaat taactaacta accgaacagg gaaataataa 2280
atgagataaa totogataaa ootagaaact aa
                                                                  2312
```

<210> 24 <211> 3685

```
<212> genomicDNA
<213> Arabidopsis thaliana
<400> 24
atgoccetta tteateggaa aaageegaeg gagaaaceat egaegeegee atetgaagag 60
gtggtgeacg atgaggattc gcaaaagaaa ccacacgaat cttccaaatc ccaccataag 120
aaatcgaacg gaggaggaa gtggtcgtgc atcgattctt gttgttggtt cattgggtgt 180
gtgtgtgtaa eetggtggtt tettetette etttacaaeg eaatgeetge gagetteeet 240
cagtatgtaa eggagegaat caegggteet tigeetgace egeceggigt taageteaaa 300
aaagaaggte ttaaggegaa acateetgtt gtetteatte etgggattgt eaceggtggg 360
ctegagettt gggaaggeaa acaatgeget gatggtttat ttagaaaacg tttgtggggt 420
ggaactittg gtgaagtcta caaaaggtga gctcaacaat tctcactctt cctttatatt 480
gggatttgga ttggatctga tgagatcacg cacttgttgc ttcttcaaca tcactcaaac 540
tttaatteea tgtttgtetg tettaetett taettettt tttttttgat gtgaaaeget 600
attitottaa gagactatti otgiaigigi aaggiaagog tiocaaggac giaattggot 660
tggactattt etgtttgatt gttaacttta ggatataaaa tagetgeett ggaattteaa 720
gicalcitat igccaaatci gitgctagac algoectaga giccgtical aacaagitac 780
ttcctttact gtcgttgcgt gtagatttag ctttgtgtag cgtataatga agtagtgttt 840
tatytittyt tyggaataga gaagiiictaa ctacatotyt ygaaagiyty ticagyotyt 900
gatagaggae tgttgettta ttatteaact atgtatatgt gtaattaaag etagtteett 960
titigatetti cageteaatg tgetttiete aasttitte teaassicaa agtticaeat 1020
egagtitati cacatgicti gaattiegie eatectegii etgitateea gettiyaact 1080
colocogaco etgetatgga tatattaaaa aaaaagtgtt ttgtgggttg catetttgtt 1140
acquitctgca tettettett teggeteagt giteatgitt tigetatggt agagatggge 1200
aatgitattg tigaiggiaa cagigdiata gitgatagta tottaactaa toaattatoi 1260
ctttgattca ggcctctatg ttgggtggaa cacatgtcac ttgacaatga aactgggttg 1320
gatecagetg grattagagt regagetgta teaggaeteg tggetgetga etaetttget 1380
octggctact tigtotgggc agigcigali gctaacctig cacatalitgg alatgaagag 1440
aaaaatatgt acatggctgc atatgactgg cggctttcgt ttcagaacac agaggttctt 1500
ficteategt tetitetait attetgited atgitaegtt tetiteitea tracttaagg 1560
cttaaatatq tetcatqttq aattaataqq tacqtgatca gactettaqe eqtatqaaaa 1620
gtaatataga gttgatggtt tctaccaacg gtggaaaaaa agcagttata gttccgcatt 1680
coatggggt offgtaffff ctacafffta fgaagtgggt tgaggcacca gctcctctgg 1740
gtggcggggg tgggccagat tggtgtgcaa agtatattaa ggcggtgatg aacattggtg 1800
gaccatttct tggtgttcca aaagctgttg cagggctttt ctctgctgaa gcaaaggatg 1860
tiggagetige daggitatiga atatotigoti atacittiga tigatoagaac ottiggototig 1920
gaactcaaag ttattctact aaatatcaat totaataaca tigotatatt atogotgoaa 1980
ctgacattgg ttgattattt ttgctgctta tgtaactgaa actctcttga gattagacaa 2040
atgatgaatt gataattett aegeattget etgtgatgae eagtttetta gettegaega 2100
taacattigt catactgict titiggaggge attgaattit getatggaaa gegetggage 2160
ttocatgott goattottta coaattagog ttattotgot totttoaatt ttottgtata 2220
tgcatctatg gtcttttatt tcttcttaat taaagactcg ttggattagt tgctctatta 2280
gtcacttggt tecttaatat agaactttac titettegaa aattgeagag egattgeece 2340
aggatteetta gacaeegata tatitagaet teagaeettg eageatgtaa tgagaatgae 2400
acgcacatgg gactcaacaa tgtctatgtt accgaaggga ggtgacacga tatggggcgg 2460
gettgattgg teaceggaga aaggeeacae etgitgiggg aaaaagcaaa agaacaaega 2520
aacttgtggt gaagcaggtg aaaacggagt ttccaagaaa agtcctgtta actatggaag 2580
gatgatatot titigggaaag aagtagoaga ggotgogooa totgagatta ataatatiga 2640
ctitegagta aggacatata aatcataata aaccitytac attitgigat tytatyatga 2700
acatotycae attitatoty ytyaayyyty etyteaaayy teagaytato eeaaateaea 2760
CCtgtcgtga cgtgtggaca gagtaccatg acatgggaat tgctgggatc aaagctatcg 2920
cigagrataa ggiotacaci goiggigaag ciatagatoi actacattai grigotocia 2880
agatgatggc gcgtggtgcc gctcatttct cttatggaat tgctgatgat ttggatgaca 2940
ccaagtatca agatoocaaa taotigitoaa atoogttaga gacaaagtaa gigattiott 3000
gaticoaact gratocttog tootgation tiatoagict tittighties ggiotigetig 3060
gatatggttt teageteaaa gettaeaaag etgtttetga geettteta aaaaggettg 3120
cicagiaata tigaggigot aaagtigata catgigacio tigottataa atootoogit 3180
```

50/58

-							
	tggtttgttc	tgctttttca	gattaccgaa	tgctcctgag	atggaaatct	actcattata	3240
	cggagtgggg	ataccaacgg	aacgagcata	cgtatacaag	cttaaccagt	ctcccgacag	3300
	ttgcatcccc	tttcagatat	tcacttctgc	tcacgaggag	gacgaagata	gctgtctgaa	3360
	agcaggagtt	tacaatgtgg	atggggatga	aacagtaccc	gtcctaagtg	ccgggtacat	3420
	gtgtgcaaaa	gcgtggcgtg	gcaagacaag	attcaaccct	tccggaatca	agacttatat	3480
	aagagaatac	aatcactctc	cgccggctaa	cctgttggaa	gggcgcggga	cgcagagtgg	3540
	tgcccatgtt	gatatcatgg	gaaactttgc	tttgatcgaa	gatatcatga	gggttgccgc	3600
	cggaggtaac	gggtctgata	taggacatga	ccaggtccac	tctggcatat	ttgaatggtc	3660
	ggagcgtatt	gacctgaagc	tgtga				3685

<211 <212)> 25 > 40 > cI }> Ar)2 DNA	dopsi	is th	nalia	ana										
	l> CI		(40)1)												
<400> 25 agaaacagct ctttgtctct ctcgactgat ctaacaatcc ctaatctgtg ttctaaattc 60											60					
ctgg	gacga	aga t	ttga	acaaa	ag to	ccgta	atago	e tta	aacct	ggt	ttaa	attt	caa (gtgad	cagat	119
_							-	-	-					acg Thr 15	_	167
		_					-		-			_		cca Pro		215
_							-		-					aag Lys		263
														gta Val		311
										-				ttc Phe		359
			-		_		cac His				-			g		402

<210> 26 <211> 643 <212> cDNA <213> Zea mays											
<220> <221> CDS <222> (1)(402)											
<pre><400> 26 cgg gag aaa ata gct gct ttg aag ggg ggt gtt tac tta gcc gat ggt 4 Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly 1 5 10 15</pre>	48										
gat gaa act gtt cca gtt ctt agt gcg ggc tac atg tgt gcg aaa gga S Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly 20 25, 30	96										
tgg cgt ggc aaa act cgt ttc agc cct gcc ggc agc aag act tac gtg Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val 35 40 45	144										
aga gaa tac agc cat tcg cca ccc tct act ctc ctg gaa ggc agg ggc Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly 50 60	192										
acc cag agc ggt gca cat gtt gat ata atg ggg aac ttt gct cta att 2 Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile 65 70 75 80	240										
gag gac gtc atc aga ata gct gct ggg gca acc ggt gag gaa att ggt 2 Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85 90 95	288										
ggc gat cag gtt tat tca gat ata ttc aag tgg tca gag aaa atc aaa Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys 100 105 110	336										
ttg aaa ttg taa oot atg gga agt taa aga agt goo gao oog ttt att . Leu Lys Leu 115	384										
geg tte caa agt gte etg eetgagtgea actetggatt ttgettaaat	432										
attgtaatit ticaegetie attegteest tigteaaatt tacattigae aggaegesaa (492										
tgcgatacga tgttgtaccg ctattttcag cattgtatat taaactgtac aggtgtaagt (552										
tgcatttgcc agctgaaatt gtgtagtcgt tttctttacg atttaatanc aagtggcgga (612										
gcagtgcccc aagcnaaaaa aaaaaaaaaa a											

115

<210> 27 <211> 115 <212> PRT <213> Zea mays <400> 30 Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly 1 5 10 Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly 20 25 3.0 Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val 40 Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly 50 55 60 Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile 70 75 80 65 Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 90 85 95 Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys Leu Lys Leu

<210> 28
<211> 516
<212> cDNA
<213> Neurospora crassa

<400> 28
ggtggcgaag acganggcgg aagttggaag ctaacgagaa tgacnctcgg agatggatct 60
accetctaag gacacgacta centtgcace cagecteaag gintacngit initiatgggta 120
ggaagccgac ggagcgagce tacatetate tggegecega tecegggacg accaeageate 180
tttagatgac gatcgatacg actitagactn aggggeacat tgacacaggi gtgatitigg 240
gegaaggega tggcacagtg aacettatga gittggggta cetgtgcaat aaggggtgga 300
aaatgaagag atacaateet gegggeteaa aaataacegt ggtegagatig cegcatgaac 360
cagaacggit caatcegaga ggagggeega atacggegga citaaatat tagaaaaggt 420
tgaaatttat gaagagtaat taaatacgge acataggta ctcaatagta tgacaatag 480
aaaaaaaaatt tittitetaa aaaaaaaaaa aaaaaaa

<210> 29

```
<211> 1562
<212> genomic DNA
<213> Arabidopsis thaliana
<400> 29
atgaaaaaaa tatcttcaca ttattcggta gtcatagcga tactcgttgt ggtgacgatg 60
acctegatgt gteaagetgt gggtageaac gtgtaceett tgattetggt tecaggaaac 120
ggaggtaacc agctagaggt acggctggac agagaataca agccaagtag tgtctggtgt 180
agcagetggt tatateegat teataagaag agtggtggat ggtttagget atggttegat 240
gcagcagtgt tattgtctcc cttcaccagg tgcttcagcg atcgaatgat gttgtactat 300
gaccetgatt tggatgatta ccaaaatget eetggtgtee aaaceegggt teeteattte 360
ggttcgacca aatcacttct atacctcgac cctcgtctcc ggttagtact ttccaagata 420
tatcatttig ggacattige ataatgaaca aaatagacat aaattigggg gattatigit 480
atatcaatat ccatttatat gctagtcggt aatgtgagtg ttatgttagt atagttaatg 540
tgagtgttat gtgattttcc attttaaatg aagctagaaa gttgtcgttt aataatgttg 600
ctatgtcatg agaattataa ggacactatg taaatgtagc ttaataataa ggtttgattt 660
gcagagatgc cacatettac atggaacatt tggtgaaagc tetagagaaa aaatgegggt 720
atgttaacga ccaaaccatc ctaggagctc catatgattt caggtacggc ctggctgctt 780
cgggccaccc gtcccgtgta gcctcacagt tcctacaaga cctcaaacaa ttggtggaaa 840
aaactagcag cgagaacgaa ggaaagccag tgatactcct ctcccatagc ctaggaggac 900
ttttcgtcct ccatttcctc aaccgtacca ccccttcatg gcgccgcaag tacatcaaac 960
acttrgttgc actcgctgcg ccatggggtg ggacgatcrc tcagatgaag acatttgctr 1020
ctggcaacac actcggtgtc cctttagtta accctttgct ggtcagacgg catcagagga 1080
cotocgagag taaccaatgy ctacttocat ctaccaaagt gtttcacgae agaactaaac 1140
cgettgtegt aacteeceag gitaactaca eagettaega gatggategg tiittigeag 1200
acartggatt cicacaagga gitgigccit acaagacaag agigitgeet itaacagagg 1260
agctgatgac teegggagtg eeagteactt geatatatgg gagaggagtt gatacaeegg 1320
aggttttgat gtatggaaaa ggaggattcg ataagcaacc agagattaag tatggagatg 1380
gagatgggac ggttaatttg gcgagettag eagetttgaa agtegatage ttgaacaeeg 1449
tagagattga tggagtttcg catacatcta tacttaaaga cgagatcgca cttaaagaga 1500
trargaagca garttcaatr atraarratg aattagccaa tgttaatgcc gtcaargaat 1560
                                                                   1562
ga
```

<210> 30 <211> 3896

```
<212> genemic DNA
<213> Arabidopsis thaliana
<400> 30
atgggagega attegaaate agtaaegget teetteaeeg teategeegt tittitetig 60
atttgeggtg geegaactge ggtggaggat gagacegagt tteaeggega etaetegaag 120
ctatogggta taatoattoo gggatttgcg togacgcago tacgagogtg gtcgatoott 180
gaetgtecat acacteegtt ggaetteaat eegetegaee tegtatgget agaeaceaet 240
aaggtoogtg atottoattt oottogotoo ttattotgto ggtogagtoa ottgttgatg 300
aattecaage gaaatatage aatgaageat gtotegtote tottattgat tegtteatta 360
gtcaacagtg acgettetga atetgagttt agagtcatat aaaacagetg acteggegag 420\,
tgtttcccat cgcttttggt tcgctaaatg tagcgcaatg aatgtgtaat tagtctgcgc 480
tttttattca actagatctg caagtttttc agagtgctca atagtagtta gaaaatgtta 540
ggtcatttta cttgtgcatt gtgattcttt tggttgttgc ttactgatcg acgtgatgga 600
tggtttacag cttctttctg ctgtcaactg ctggtttaag tgtatggtgc tagatcctta 660
taatcaaaca gaccatcccg agtgtaagtc acggcctgac agtggtcttt cagccatcac 720
agaattggat ccaggttaca taacaggtag tttcggattt ttctttcttt tgagttttct 780
teaatttgat ateatettgt tgtgatataa tatggetaag tteattaatt tggteaattt 840
traggteste ttretactgr ctggaaagag tggettaagr ggtgrgttga grttggtata 900
gaageaaatg caattgtege tgtteeatae gattggagat tgteaceaac caaattggaa 960
gagogigaco titacittoa caagotoaag tiagtootta toaggotaat giottitato 1020
tictetitti atgtaagata agetaagage tetggtegte tteetttttg caggttgace 1080
tttgaaactg otttaaaact oogtggoggo oottotatag tatttgooca ttoaatgggt 1140
aataatytet teagataett teiggaatgg eigaggetag aaattgeace aaaacaitat 1200
ttgaagtggc ttgatcagca tatccatgct tatttcgctg ttggtaccgg cctactatcc 1260
ttaagttacc attitatitt ttctctaatt gygggagtta tgttgtgact tactggattg 1320
agotegatac stgatttgtt gttgatttag gageteetet tettggttet gttgaggeaa 1380
teaaatetae tetetetggt gtaaegttig geetteetgt tietgaggig acctetgaet 1440
tototttagt titaagtagt tgatatoaac caggiottat aactoactgg attitootti 1500
tgaaagtatt acttttgtta attgaactgc tgtacgcgat atggtatctg tagatcttga 1560
agtgctagtt atcaaagaac atattgtggg tagtatacct gtcagcggcc ttagctaata 1620
caaccaaacc acatgtacac tgatttagtt ttcagattat tatggtagac tttaagttga 1680
gaagaaactt tgactgaaat ceeettatet taataggeta tgatttgett attgaaatca 1740
tgtgacatat tgacatgege tteteatgtt ttttgttgge aaggetteag ggaactgete 1800
ggttgttgtc caattetttt gegtegteat tgtggettat gecattetea aagaattgea 1860
agggtgataa cacattotgg acgcattott otggyggtgo tgcaaagaaa gataayogog 1920
tataccacty tgatgaagag gaatatcaat caaaatatto tggctggccg acasatatta 1980
ttaacattga aattoottoo actagoggtt agactotgta tatgoaactg taacactaac 2040
aaaagtttca ccaagaatgt tcactctcat atttcgttcc tttgatgtgt atccatcagt 2100
tacagaaaca getetagtea acatgaccag catggaatgt ggcettecca cectititgte 2160
tttcacagee egtgaactag cagatgggae tettttcaaa geaatagaag aetatgaeee 2220
agatagcaag aggatgttac accagttaaa gaagtacgta cotttotttg tgataagaaa 2280
tatigeteat egateateae itgetggett ettgtaegte aaattgitti gittaaatei 2340
ctatatoaat igitoatatg cittgicitt citactataa gaaacaagta taatcagaaa 2400
contattatt gastatoagt tototootta sastatggaa tgtottttto gtttacagtt 2460
atgaatgcaa aagggggtat titagttgat toattototo attototagt tigitttoac 2520
taatagogic aattitgiit tictagoaaa toittigigaa tiatatataa catgotaact 2580
atactitica ggitgiatea igatgaeeet giittiaate etetgaetee iigggagaga 2640
ccaectataa aaaatgtati itgeatatai gqtgeteate taaagacaga ggtatqatge 2700
attoticate toacattate ogitgactit gotattatat soccassing entigicata 2760
tottuutgaa uuatgatuta tottoeeeet tgeatettat getattaage gitaaaggta 2820
staaaegtat gaagstgtot gtsataggti ggttattast tigssssaag tggsaaacst 2880
taloctyala artggatcar cacggatato attratgasa crysaggito cotogtyrca 2940
aggtaattit cogcaatgge agaagtaaaa caggaaggca aagtottoig tatcagtota 3000
gtggcatgtt asctcagttg cataagcaaa stattaaaca actaaaattt aagtactsts 3060
ttatcattcc ttttgagctt agtggatgat cagtggctta aagtgggaag aggtgttgca 3120
tgaaacatga cactigtato aaagataact agcaaaacaa aactaaccca tiicigaatt 3180
```

57/58

aggagtagtc	gtgcttttaa	aaaatttgtt	ttaagaaacc	gaaaaactag	3240
gattgtgcaa	tatctgcagg	tctggaactg	tggttgatgg	gaacgctgga	3300
gggatgagac	ggtaagctca	gaagttggtt	ttgaaattat	cttcttgcaa	3360
actaagataa	tacttgcttc	tggaacactg	cttgctatgt	tctctagtac	3420
tractictica	ctacttttat	tgattatgaa	attgatctct	tataggtacc	3480
chetettaat	gcaagaattg	acteggaeet	aaagttaaca	taacaatggc	3540
ctctttttta	gttcctcacc	ttatatagat	caaactttaa	gtgtactttt	3600
grigatitac	ctccaatttq	ttctttctaa	aaatcatata	tctctgtact	3660
ttotattaat	ctaaacgaga	ttctcattgg	gaaaataaaa	caacagccag	3720
aagcgacgta	catgtggaac	taaatgttga	tcargagcat	gggtcagaca	3780
catgacaaaa	acaccaaaaa	ttaagtacat	aaccttttat	gaagactctg	3840
					3896
	gattgtgcaa gggatgagac actaagataa tgactctccg ctctctttgt ctctttttta gttgatttac ttgtattaat aagcgacgta catgacaaaa	gattgtgcaa tatctgcagg gggatgagac ggtaagctca actaagataa tacttgcttc tgactctctgg gcaagaattg ctcttttta gttcctcacc gttgatttac ctcaacttgttgtattaat ctaaacgaga aagcgacgta catgtggaac catgacaaaa gcaccaaggg	gattgtgcaa tatctgcagg tctggaactg gggatgagac ggtaagctca gaagttggtt actaagataa tacttgcttc tggaacactg tgactctccg ctacttttat tgattatgaa ctcttttat gtactcacc ttatatagat gttgatttac ctccaacttg ttcttttta gttcctcacc ttatatagat ttgtattaat ctaaacgaga ttcctcattgg aagcgacgta catgtggaac taaatgttga catgacaaaa gcaccaaggg ttaagtacat	gattgtgcaa tatctgcagg tctggaactg tggttgatgg gggatgagac ggtaagctca gaagttggtt ttgaaattat actaagataa tacttgcttc tggaacactg cttgctatgt tgactctccg ctacttttat tgattatgaa attgatctct ctctctttgt gcaagaattg gctcggacct aaagttaaca ctctttttta gttcctcacc ttatatagat caaactttaa gttgatttac ctccaacttg ttctttctaa aaatcatata ttgtattaat ctaaacgaga ttcctcattgg gaaaataaaa aagcgacgta catgtggaac taaatgttga tcatgagcat catgacaaaa gcaccaaggg ttaagtacat aaccttttat	aggagtagtc gtgcttttaa aaaatttgtt ttaagaaacc gaaaaactag gattgtgcaa tatctgcagg tctggaactg tggttgatgg gaacgctgga gggatgagac ggtaagctca gaagttggtt ttgaaattat cttcttgcaa actaagataa tacttgcttc tggaacactg cttgctatgt tctctagtac tgactctccg ctacttttat tgattatgaa attgatetct tataggtacc ctctttgt gcaagaattg gctcggacct aaagttaaca taacaatggc ctcttttta gttcctcacc ttatatagat caaactttaa gtgtacttt gttgatttac ctccaacttg ttcttctaa aaatcatata tctctgtact ttgtattaat ctaaacgaga ttctcattgg gaaaataaaa caacagccag aagcgacgta catgtggaac taaatgttga tcatgagcat gggtcagaca catgacaaaa gcaccaaggg ttaagtaca taaaagttgg tattaa

```
<210> 31
<211> 709
<212> cDNA
<213> tomato
<400> 31
ctggggccaa aagtgaacat aacaaggaca ccacagtcag agcatgatgt tcagatgtac 60
aagtgcatct aaatatagag catcaacatg gtgaagatat cattcccaat atgacaaagt 120
tacctacaat gaagtacata acctattatg aggattetga aagtttteca gggacaagaa 180
cagcagtttg ggagcttgat aaagcaaatc acaggaacat tgtcagatct ccagctttga 240
tgcgggagct gtggcttgag atgtggcatg atattcatcc tgataaaaag tccaagtttg 300
ttacaaaagg tggtgtctga tcctcactat tttcttctat aaatgtttga gtttgtattg 360
acattgtaag tattgcaaca aaaagcaaag cgtgggcctc tgagggatga ggactgctat 420
tgggattacg ggaaageteg atgtgeatgg getgaacatt gtgaatacag gttagaatat 480
tcaaattata ttttgcaaaa tattctcttt ttgtgtattt aggccacctt tccccggtca 540
caacgatgca gatatgtatt cggggatgtt cacctgggac agagttgcag attgaagagt 600
totacatotic acatocigic acactatgig tgatatitaa gaaactitgi tiggoggaac 660
aacaagtttg cacaaacatt tgaagaagaa agcgaaatga ttcagagag
```