

Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός:

- 1. Markov Decision Processes
- 2. Bellman's Optimality Criterion
 - 3. Αλγόριθμος Policy Iteration
 - 4. Αλγόριθμος Value Iteration

καθ. Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr www.netmode.ntua.gr

Πέμπτη 9/5/2019

Reinforcement Learning - Markov Decision Processes

Reinforcement Learning

- Αποφάσεις (*actions*) από εξωτερικό *agent* σε ορίζοντα *N* βημάτων που επηρεάζουν την εξέλιξη καταστάσεων (*states*) στοχαστικού περιβάλλοντος και το συνεπαγόμενο κόστος
- Έμφαση σε σχεδιασμό πολιτικής (policy) σαν ζεύγη καταστάσεων αποφάσεων (states actions) από τον agent για μέσο μακροπρόθεσμο στόχο κόστους/οφέλους
- Κύρια εργαλεία βελτιστοποίησης: Δυναμικός προγραμματισμός (Dynamic Programming) και στοχαστικές διαδικασίες αποφάσεων Markov Decision Processes

Reinforcement Learning - Markov Decision Processes (1/2)

Ορισμοί Markov Decision Processes

• Πεπερασμένος Δειγματικός Χώρος $\mathcal X$ διακριτών καταστάσεων ($\it states$) περιβάλλοντος σε διακριτές χρονικές στιγμές (βήματα) n=0,1 ... , $\it N$:

Τυχαία μεταβλητή $X_n \in \mathcal{X}$ που λαμβάνει τιμές $X_n = i$

• Πεπερασμένος Δειγματικός Χώρος \mathcal{A}_i διακριτών αποφάσεων (*actions*) που ορίζει ο *agent* όταν το περιβάλλον βρίσκεται στη κατάσταση $X_n = i$:

Τυχαία μεταβλητή $A_n \in \mathcal{A}_i$ απόφασης στο n, με τιμές a_{ik} όταν $X_n = i$

- Μεταβάσεις *Markov* $p_{ij}(a)$ από κατάσταση περιβάλλοντος i σε κατάσταση j υπό την επήρεια της απόφασης του *agent* a στα διακριτά βήματα n=0,1...,N $p_{ij}(a)=P(X_{n+1}=j|X_n=i,A_n=a),\;p_{ij}(a)\geq 0,\;\sum_i p_{ij}(a)=1$
- Άμεσο κόστος (observed cost) του agent στο βήμα n όταν παίρνει απόφαση a_{ik} που οδηγεί σε μετάβαση $(X_n=i) \to (X_{n+1}=j)$:

 $g(i, a_{ik}, j)$ και με απόσβεση $\gamma^n g(i, a_{ik}, j)$ με συντελεστή $0 \le \gamma < 1$ (discount factor)

- \checkmark Αν $\gamma = 0$ ο **agent** δεν ενδιαφέρεται για μελλοντικές επιπτώσεις αποφάσεών του (**myopic**)
- \checkmark Όσο $\gamma \to 1$ οι αποφάσεις του agent καθορίζονται σημαντικά από μελλοντικές επιπτώσεις
- Πολιτική (policy): $\pi=\{\mu_0,\mu_1,\dots,\mu_n,\dots\}$ όπου μ_n συνάρτηση που στο βήμα n απεικονίζει την κατάσταση του περιβάλλοντος $X_n=i$ στις αποφάσεις $A_n=a$ του agent $\mu_n(i)\in\mathcal{A}_i$ για όλες τις καταστάσεις $i\in\mathcal{X}$ (π admissible policies)

Αν $\mu_n(i) = \mu(i) = a$ ανεξάρτητα από το βήμα n η πολιτική π είναι χρονοσταθερή (stationary) και οι μεταβάσεις $p_{ij}(a)$ ορίζουν αλυσίδα Markov $(X_n = i) \to (X_{n+1} = j)$

Reinforcement Learning - Markov Decision Processes (2/2)

Ορισμοί Βελτιστοποίησης Δυναμικού Προγραμματισμού

Το συνολικό κόστος αθροίζεται σε πεπερασμένα βήματα (Finite-Horizon) ή απεριόριστα (Infinite-Horizon) από τα άμεσα κόστη των μεταβάσεων Markov $X_n \to X_{n+1}$ λόγω $\mu_n(X_n)$: $g(X_n, \mu_n(X_n), X_{n+1})$

Το συνολικό αναμενόμενο κόστος σε απεριόριστο ορίζοντα λόγω πολιτικής $\pi = \{\mu_0, \mu_1, ..., \mu_n, ...\}$ με αρχική κατάσταση $X_0 = i$ και απόσβεση γ (**Total Discounted Expected Cost-to-Go over Infinite Horizon**) είναι:

$$J^{\pi}(i) = E\left[\sum_{n=0}^{\infty} \gamma^{n} g(X_{n}, \mu_{n}(X_{n}), X_{n+1}) | X_{0} = i\right]$$

Ζητείται πολιτική π ελαχιστοποίησης του $J^{\pi}(i)$: $J^{*}(i) = \min_{\pi} J^{\pi}(i)$

Η ανωτέρω πολιτική π είναι άπληστη (greedy) με την έννοια του ότι ο agent επιλέγει αποφάσεις που ελαχιστοποιούν το Expected Cost-to-Go $J^{\pi}(i)$ από την αρχική κατάσταση $X_0=i$ αδιαφορώντας για πιθανές αρνητικές συνέπειες που μπορεί να έχουν μελλοντικά

Αν η πολιτική περιορίζεται σε χρονοσταθερές αποφάσεις $\pi=\{\mu,\mu,...\}$ τότε $J^\pi(i)\triangleq J^\mu(i)$ και το τελικό ζητούμενο είναι η βέλτιστη συνάρτηση $\mu(X_n)$ που ελαχιστοποιεί τα $J^\mu(i)=J^*(i)$ για όλες τις αρχικές καταστάσεις $X_0=i$

Σημείωση: Εναλλακτικά με το κριτήριο **Total Discounted Expected Cost-to-Go** μπορεί να οριστεί κριτήριο χωρίς απόσβεση π.χ. **Expected Average Cost** ανά βήμα σε **Infinite Horizon** (Sheldon Ross, "**Applied Probability Models with Optimization**", Dover, 1992)

Principle of Optimality (*Bellman 1957*) – Finite Horizon Problem

Έστω διαδικασία αποφάσεων Markov σε ορίζοντα πεπερασμένων βημάτων $n \leq K$ με κόστη $g_n(X_n, \mu_n(X_n), X_{n+1}) \triangleq \gamma^n g(X_n, \mu_n(X_n), X_{n+1}), n < K$ και κόστος τερματικής κατάστασης $g_K(X_K) \triangleq \gamma^K g(X_K)$. Μια βέλτιστη πολιτική $\pi^* = \{\mu_0^*, \mu_1^*, \mu_2^*, \dots, \mu_{K-1}^*\}$ οδηγεί το περιβάλλον στη κατάσταση X_n μετά από n βήματα. Τότε η περικομμένη (truncated) πολιτική $\{\mu_n^*, \mu_{n+1}^*, \dots, \mu_{K-1}^*\}$ είναι βέλτιστη για την υπολειπόμενη διαδικασία $\{X_{n+1}, X_{n+2}, \dots, X_K\}$ με κατάσταση εκκίνησης X_n . Το υπολειπόμενο αναμενόμενο κόστος ($Expected\ Cost-to-Go$) είναι:

$$J_n(X_n) = \mathbb{E}\left[\left\{g_K(X_K) + \sum_{k=n}^{K-1} g_k(X_k, \mu_k(X_k), X_{k+1})\right\} \mid X_n\right]$$

Προσδιορισμός Βέλτιστης Πολιτικής $\pi^* = \{\mu_0^*, \mu_1^*, \mu_2^*, ..., \mu_{K-1}^*\}$

- 1. Εύρεση βέλτιστης πολιτικής μ_{K-1}^* για το τελικό βήμα $X_{K-1} \to X_K$
- 2. Για τα δύο τελικά βήματα $X_{K-2} o X_{K-1} o X_K$ εύρεση της μ_{K-2}^* με αναλλοίωτη την μ_{K-1}^*
- 3. Επανάληψη μέχρι το βήμα n=0 και προσδιορισμός της μ_0^* που συμπληρώνει την π^*

Αλγόριθμος Δυναμικού Προγραμματισμού

- 1. Εκκίνηση με $J_K(X_K)=g_K(X_K)$ για όλες τις τελικές καταστάσεις X_K
- 2. Υπολογισμός των $J_n(X_n)$ για όλες τις καταστάσεις X_n με τον **Αναδρομικό Τύπο** άπληστων (greedy) αποφάσεων:

$$J_n(X_n) = \min_{X_n} \mathbb{E}[g_n(X_n, \mu_n(X_n), X_{n+1}) | X_n] \quad \text{via } n = (K-1), (K-2), \dots, 1, 0$$

3. Τελικός προσδιορισμός των $J_0(X_0)$ για όλες τις αρχικές καταστάσεις X_0 και της βέλτιστης $\pi^*=\{\mu_0^*,\mu_1^*,\dots,\mu_{K-1}^*\}$ των αποφάσεων μ_n^* που ελαχιστοποιούν τον αναδρομικό τύπο

Optimality Equation – Infinite Horizon Problem

Έστω διαδικασία αποφάσεων *Markov* με άπειρο ορίζοντα εξέλιξης, πεπερασμένες καταστάσεις $X_n \in \{1,2,\ldots,N\}$, κόστη $g_n(X_n,\mu_n(X_n),X_{n+1}) \triangleq \gamma^n g(X_n,\mu_n(X_n),X_{n+1})$ με απόσβεση $0<\gamma<1$ και αρχική κατάσταση X_0 . Ζητείται η βέλτιστη πολιτική ανάμεσα σε χρονοσταθερές πολιτικές $\pi=\{\mu,\mu,\ldots\}$ ελάχιστο *Expected Cost over Infinite Horizon*.

Με επαναδιατύπωση του Αναδρομικού Τύπου Δυναμικού Προγραμματισμού και αναστροφή της χρονικής εξέλιξης σε n=0,1,2,... έχουμε για πεπερασμένο ορίζοντα K:

$$J_{n+1}(X_0) = \min_{n} \mathbb{E}[(g(X_0, \mu(X_0), X_1) + \gamma J_n(X_1))|X_0]$$
 και αρχική συνθήκη $J_0(X)$, $\forall X$

Για άπειρο ορίζοντας η βέλτιστη πολιτική δίνει κόστη
$$J^*(i) = \lim_{K \to \infty} J_K(i)$$
 , $\forall i = X_0 \Rightarrow$
$$J^*(i) = \min_{K \to \infty} \mathbb{E}[(g(i, \mu(i), X_1) + \gamma J^*(X_1)) | X_0 = i]$$

Ορίζουμε το άμεσο αναμενόμενο κόστος κατάστασης $X_0=i$ με πολιτική $\mu(X_0)\to X_1=j$:

$$c(i, \mu(i)) \triangleq \mathbb{E}[g(i, \mu(i), X_1 = j) | X_0 = i] = \sum_{i=1}^{n} p_{ij}g(i, \mu(i), j)$$

Η βέλτιστη πολιτική δίνει αναμενόμενο κόστος στο 1ο βήμα $\mathrm{E}[J^*(X_1)|X_0=i]=\sum_{j=1}^N p_{ij}J^*(j)$

Τελικά προκύπτουν
$$N$$
 εξισώσεις βελτιστοποίησης (**Bellman's Optimality Equations**):

$$J^{*}(i) = \min_{\mu} \left(c(i, \mu(i)) + \gamma \sum_{i=1}^{N} p_{ij} J^{*}(j) \right), i = 1, 2, ..., N$$

Από την επίλυση των N εξισώσεων προκύπτουν τα βέλτιστα αναμενόμενα κόστη από την $X_0=i$ με απόσβεση σε άπειρο ορίζοντα και η βέλτιστη πολιτική $j=\mu(i)$. Αλγοριθμικά, η βέλτιστη πολιτική ανιχνεύεται με τους βασικούς αλγορίθμους *Policy* & *Value Iteration*

Αλγόριθμος Policy Iteration (1/2)

Ορισμός Q-factor

Έστω χρονοσταθερή πολιτική $\pi = \{\mu, \mu, ...\}$ που οδηγεί σε γνωστά **costs-to-go** $J^{\mu}(i)$, $\forall i \in \mathcal{X}$ (καταστάσεις του **περιβάλλοντος**) με αποφάσεις του **agent** $a = \mu(i) \in \mathcal{A}_i$

Για κάθε ζεύγος (i,a) στο υπό εξέταση βήμα και πολιτική για τα υπολειπόμενα βήματα $\pi = \{\mu, \mu, ...\}$ ορίζω τους **Q-factors** σαν μέτρο κατάταξης εναλλακτικών άμεσων αποφάσεων $a \in \mathcal{A}_i$ του **agent**

$$Q^{\mu}(i,a) \triangleq c(i,a) + \gamma \sum_{j=1}^{N} p_{ij}(a) J^{\mu}(j)$$

Μια πολιτική $\pi = \{\mu, \mu, ...\}$ ικανοποιεί τις συνθήκες απληστίας (greedy conditions) σε σχέση με τα costs-to-go $I^{\mu}(i)$ όταν

$$Q^{\mu}(i,\mu(i)) = \min_{a \in \mathcal{A}_i} Q^{\mu}(i,a)$$

Μια πολιτική $\pi^* = \{\mu^*, \mu^*, ...\}$ είναι βέλτιστη αν ικανοποιεί τις συνθήκες απληστίας (*greedy conditions*) του δυναμικού προγραμματισμού:

$$Q^{\mu^*}(i, \mu^*(i)) = \min_{a \in \mathcal{A}_i} Q^{\mu^*}(i, a)$$

Σημείωση: Όταν τα άμεσα αναμενόμενα κόστη c(i,a) αντικαθίστανται από **rewards** r(i,a), τα **costs-to-go** $J^{\mu}(i)$ αποκαλούνται **Value Functions** $V^{\mu}(i)$ και έχουμε κατ' αντιστοιχία:

$$Q^{\mu}(i,a) \triangleq r(i,a) + \gamma \sum_{j=1}^{N} p_{ij}(a) V^{\mu}(j) \text{ kal } Q^{\mu^*}(i,\mu^*(i)) = \max_{a \in \mathcal{A}_i} Q^{\mu^*}(i,a)$$

Αλγόριθμος Policy Iteration (2/2)

Αλγόριθμος Reinforcement Learning

(Αρχιτεκτονική *Actor – Critic*)

Επαναλήψεις n=1,2, ... από δύο βήματα μέχρι σύγκλισης πολιτικής $\pi_n=\pi_{n+1}$

Βήμα 1. **Policy Evaluation** (ο *critic* αναλύει τις αποφάσεις του *agent*):

Με βάση την παρούσα πολιτική $\pi_n = \{\mu_n, \mu_n, ...\}$ υπολογίζονται τα *costs-to-go*

$$J^{\mu_n}(i) = c(i, a) + \gamma \sum_{j=1}^N p_{ij}(a) J^{\mu_n}(j) \gamma \alpha i = 1, 2, ..., N$$

και οι **Q-factors** $Q^{\mu_n}(i,a) = c(i,a) + \gamma \sum_{j=1}^N p_{ij}(a) J^{\mu_n}(j)$ για i=1,2,...,N και $a \in \mathcal{A}_i$

Βήμα 2. **Policy Improvement** (ο *actor* καθοδηγεί τις αποφάσεις του *agent*):

Η πολιτική π_n βελτιώνεται σε π_{n+1} μέσω της $\mu_{n+1}(i) = \arg\min_{a \in \mathcal{A}_i} Q^{\mu_n}(i,a)$ για $i=1,2,\ldots,N$

 $\arg\min_x f(x)$: Η τιμή της x που οδηγεί την f(x) σε ελάχιστο

TABLE 12.1 Summary of the Policy Iteration Algorithm

- 1. Start with an arbitrary initial policy μ₀.
- 2. For n = 0, 1, 2, ..., compute $J^{\mu_n}(i)$ and $Q^{\mu_n}(i, a)$ for all states $i \in \mathcal{X}$ and actions $a \in \mathcal{A}_i$.
- 3. For each state i, compute

$$\mu_{n+1}(i) = \arg\min_{a \in \mathcal{A}_i} Q^{\mu_n}(i, a)$$

4. Repeat steps 2 and 3 until μ_{n+1} is not an improvement on μ_n , at which point the algorithm terminates with μ_n as the desired policy.

Ο αλγόριθμος συγκλίνει σε βέλτιστη πολιτική σε πεπερασμένα βήματα n λόγω πεπερασμένου πλήθους καταστάσεων N και επιλογών αποφάσεων

Value Iteration Algorithm

Εκτίμηση των Συναρτήσεων Cost-to-Go μέσω Διαδοχικών Προσεγγίσεων $J_n(i) o J_{n+1}(i)$

- Εκκίνηση με αυθαίρετες τιμές $J_0(i) \, \forall i$
- Επαναλήψεις $n \to n+1$ μέχρι ανεκτή σύγκλιση (θεωρητικά $n \to \infty$) μέσω σχέσεων backup: $J_{n+1}(i) = \min_{a \in \mathcal{A}_i} \{c(i,a) + \gamma \sum_{j=1}^N p_{ij}(a) J_n(j)\}$ για i=1,2,...,N (από εξισώσεις Bellman)
- Τελικός υπολογισμός των βέλτιστων Costs-to-Go

$$J^*(i) = \lim_{n \to \infty} J_n(i), \ Q^*(i, a) = c(i, a) + \gamma \sum_{j=1}^N p_{ij}(a) J^*(j)$$

και προσδιορισμός της βέλτιστης πολιτικής $\mu^*(i) = \arg\min_{a \in \mathcal{A}_i} Q^*(i,a)$ για i=1,2,...,N

TABLE 12.2 Summary of the Value Iteration Algorithm

- 1. Start with arbitrary initial value $J_0(i)$ for state i = 1, 2, ..., N.
- 2. For n = 0, 1, 2, ..., compute

$$J_{n+1}(i) = \min_{a \in \mathcal{A}_i} \left\{ c(i, a) + \gamma \sum_{i=1}^{N} p_{ij}(a) J_n(j), \right\}, \qquad a \in \mathcal{A}_i \\ i = 1, 2, ..., N$$

Continue this computation until

$$|J_{n+1}(i) - J_n(i)| < \epsilon$$
 for each state i

where ϵ is a prescribed tolerance parameter. It is presumed that ϵ is sufficiently small for $J_n(i)$ to be close enough to the optimal cost-to-go function $J^*(i)$. We may then set

$$J_n(i) = J^*(i)$$
 for all states i

3. Compute the *Q*-factor

$$Q^*(i, a) = c(i, a) + \gamma \sum_{i=1}^{N} p_{ij}(a) J^*(j)$$
 for $a \in A_i$ and $i = 1, 2, ..., N$

Hence, determine the optimal policy as a greedy policy for $J^*(i)$:

$$\mu^*(i) = \arg\min_{a \in \mathcal{A}} Q^*(i, a)$$

Ο αλγόριθμος Value Iteration συνήθως συγκλίνει ικανοποιητικά και θεωρείται αποτελεσματικότερος του Policy Iteration καθώς αποφεύγει υπολογισμούς όλων των Costs-to-Go $J^{\mu_n}(i)$ σε κάθε βήμα

Παράδειγμα Δυναμικού Προγραμματισμού: Βελτιστοποίηση Δρομολόγησης

Εύρεση Δρόμων Ελάχιστου Κόστους από Κόμβο Α σε Κόμβο Ι μέσω του μονοκατευθυντικού γράφου όπως στο σχήμα με κατεύθυνση γραμμών $\Delta \rightarrow A$

Ενδεικτικό κόστος γραμμών: A → B: 2, B → A: ∞

 $B \to F: 4, F \to B: \infty$

Ενδεικτικό κόστος δρόμου: Δρόμος $\{A, B, F, I, J, Q\}$: 2 + 4 + 3 + 4 = 13

Κατάσταση Περιβάλλοντος: Κόμβος σε παρούσα διερεύνηση $\{A, B, ..., J\}$

Αποφάσεις Agent: Επόμενος κόμβος για διερεύνηση $\{up, down, staight\}$ Αναδρομικός Υπολογισμός *Q-Factors*:

$$Q(H, down) = 3 \quad Q(I, up) = 4$$

$$Q(E, staight) = 1 + 3 = 4$$
 $Q(E, down) = 4 + 4 = 8$

Q(F, up) = 6 + 3 = 9 Q(F, down) = 3 + 4 = 7

Βέλτιστοι Δρόμοι Κόστους 11: ${A, C, E, H, J}, {A, D, E, H, J}, {A, D, F, I, J}$ Αλγόριθμοι Δυναμικού Προγραμματισμού *Bellman-Ford* στηρίζουν την δρομολόγηση *Border Gateway Protocols* (*BGP*)

ανάμεσα στα \sim 62,000 Αυτόνομα Συστήματα (*Autonomous Systems, AS*) στο *Internet* (\sim 750,000 γνωστά δίκτυα)