Machine learning Part 2 Model selection & validation

Jérôme Dockès & Nikhil Bhagwat

MAIN tutorials course 2021-11-26

Outline

Introduction: cross-validation

Model and hyperparameter selection

Dimensionality reduction

Conclusion: summary of pitfalls

Recap of part 1

Supervised learning

- Regression: least-squares linear regression
- Classification: logistic regression

Recap of part 1

Supervised learning

- Regression: least-squares linear regression
- Classification: logistic regression

Regularization

• ℓ_2 a.k.a. ridge regularization

Recap of part 1

Supervised learning

- Regression: least-squares linear regression
- Classification: logistic regression

Regularization

• ℓ_2 a.k.a. ridge regularization

Model evaluation and selection

- Out-of-sample generalization; independent test set
- · Performance metrics:
 - · regression: mean squared error
 - · classification: accuracy, ROC curve
- Cross-validation

$$Y = f(X) + E \tag{1}$$

• $Y \in \mathbb{R}$: output (a.k.a. target, dependent variable) to predict

$$Y = f(X) + E \tag{1}$$

- $Y \in \mathbb{R}$: output (a.k.a. target, dependent variable) to predict
- $X \in \mathbb{R}^p$: features (a.k.a. inputs, regressors, descriptors, independent variables)

$$Y = f(X) + E \tag{1}$$

- $Y \in \mathbb{R}$: output (a.k.a. target, dependent variable) to predict
- X ∈ R^p: features (a.k.a. inputs, regressors, descriptors, independent variables)
- $E \in \mathbb{R}$: unmodelled noise

$$Y = f(X) + E$$
 (1

- Y ∈ ℝ: output (a.k.a. target, dependent variable) to predict • $X \in \mathbb{R}^p$: features (a.k.a. inputs, regressors, descriptors,
- independent variables) • $E \in \mathbb{R}$: unmodelled noise
- f: the function we try to approximate

Example: linear regression

$$Y = \beta_0 + \langle X, \beta \rangle + E$$

(1)

$$= \beta_0 + \sum_{j=1}^p X_j \beta_j + E$$

"learning" = choosing $\beta_0 \in \mathbb{R}$ and $\beta \in \mathbb{R}^p$

How to set parameters: Empirical Risk Minimization

- Choose a loss function L measuring how bad is our error.
- Example: squared error $L(Y, \hat{Y}) = (Y \hat{Y})^2$, where \hat{Y} is the prediction
- We want to minimize the expected error (risk): $\mathbb{E}[L(Y, \hat{Y})]$

How to set parameters: Empirical Risk Minimization

We do not know the risk: estimate it from a sample. Given $\mathfrak n$ training examples $X \in \mathbb R^{n \times p}$, $y \in \mathbb R^n$, minimize the empirical risk: $\sum_{i=1}^n L(y_i, \hat{y_i})$

For linear regression:

find $\hat{\beta}_0 \in \mathbb{R}, \hat{\beta} \in \mathbb{R}^p$ that minimize

$$\|\mathbf{y} - \hat{\mathbf{y}}\|_{2}^{2} = \|\mathbf{y} - \hat{\boldsymbol{\beta}}_{0} - \mathbf{X}\,\hat{\boldsymbol{\beta}}\|_{2}^{2}$$
 (4)

$$= \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \sum_{j=1}^{p} X_{ij} \, \hat{\beta}_j)^2$$
 (5)

"Fitting" the parameters to X, y.

Need for fresh test data

When you hear "best", "maximum", "select", ... think "bias"

- I have 4 dice and want to find one that rolls high numbers
- I roll them all once and select the die that gives the highest number
- The selected die rolled a 5. Is 5 a good estimate of that die's average result? What if I had 1,000 dice?
- I need to roll it again to get an unbiased estimate

Estimating prediction performance

When you hear "best", "maximum", "select", ... think "bias" Setting the parameters

- **Select** β that gives the **best** prediction on training data
- The prediction score for $\hat{\beta}$ is biased: compute a new score on unseen test data.

scikit-learn "estimator API": fit; predict

```
estimator = Ridge()
estimator.fit(X_train, y_train)
predictions = estimator.predict(X test)
```

```
https://scikit-learn.org/stable/getting_started.html
sklearn.linear model.Ridge
```

Evaluating performance with sklearn.metrics

estimator = Ridge()

estimator.fit(X train, y train)

ex 01 fit predict questions.py

```
predictions = estimator.predict(X_test)

mse = metrics.mean_squared_error(y_test, predictions)

https://scikit-learn.org/stable/getting_started.html
sklearn.linear_model.Ridge
sklearn.metrics
more info on model evaluation
```

Cross-validation

scikitlearn.org/stable/modules/cross_validation.html
sklearn.model_selection.cross_validate
ex 02 cross validate questions.py

Outline

Introduction: cross-validation

Model and hyperparameter selection

Dimensionality reduction

Conclusion: summary of pitfalls

Regularization

Example: ridge regression

$$\underset{\beta,\beta_0}{\operatorname{argmin}} \|\mathbf{y} - \beta_0 - \mathbf{X} \, \boldsymbol{\beta}\|_2^2 + \alpha \, \|\boldsymbol{\beta}\|_2^2 \tag{6}$$

 $\mathsf{Bias}(\hat{\beta}_{i}) = \mathbb{E}(\hat{\beta}_{i}) - \beta_{i}$

Setting hyperparameters

How can we choose the ridge hyperparameter α ?

Try a few and pick the best one... But measure its performance on separate data!

When you hear "best", "maximum", "select", ... think "bias"

When you hear "best", "maximum", "select", ... think "bias" Setting the parameters

- **Select** β that gives the **best** prediction on training data
- The prediction score for $\hat{\beta}$ is biased: compute a new score on unseen test data.

When you hear "best", "maximum", "select", ... think "bias" Setting the parameters

- Select β that gives the **best** prediction on training data
- The prediction score for $\hat{\beta}$ is biased: compute a new score on unseen test data.

Setting the hyperparameters

- Repeat step 1 for a few values of α , fitting and testing several models
- Select the hyperparameter that obtains the best prediction on test data
- The prediction score of that model on *test* data is biased: evaluate it again on unseen data

One split

Train

FALL 2

Medeliand hyperparameter selection

19 / 48

Nested cross-validation with scikit-learn

In general: GridSearchCV (User Guide)

```
model = GridSearchCV(
     Ridge(), {"alpha": [.1, 1., 10.]})
model.fit(X, y)
```

Use CV estimators when possible: RidgeCV, LassoCV

```
ex_03_grid_search_regression_questions.py
```

Implementing nested CV

ex_04_nested_cross_validation_questions.py

Outline

Introduction: cross-validation

Model and hyperparameter selection

Dimensionality reduction

Conclusion: summary of pitfalls

Dimensionality reduction

Until now

Add a step in the pipeline: simplifying the inputs

Dimensionality reduction

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 X_{:,1} + \hat{\beta}_2 X_{:,1} + \dots + \hat{\beta}_p X_{:,p}$$
 (7)

Problems when the number of features p becomes large

- Bigger errors on test data (larger variance of predictions)
- Numerical stability issues
- · Computational cost and memory usage

Simulated data for linear regression

- Generate $X \in \mathbb{R}^{n \times 3}$, $\beta \in \mathbb{R}^3$, $e \in \mathbb{R}^n$ and $y = X\beta + e \in \mathbb{R}^n$
- Append columns containing random noise to X
- Now $X \in \mathbb{R}^{n \times p}$, with $p \geqslant 3$, but only the first 3 columns are linked with y
- Split into training and testing tests and evaluate a linear regression model: what happens when p becomes large?

See sklearn.datasets.make_regression for generating data

Model complexity: overfitting

- · Model complexity increases with dimension.
- Example: a linear model in dimension p can fit exactly (0 training error) any set of p+1 points.
- Risk of overfitting: fitting exactly training data but failing on test data

Univariate feature selection

- a.k.a. feature screening, filtering . . .
- Check features (columns of X) one by one for association with the output $\mathfrak y$
- Keep only a fixed number or percentage of the features

Simple (linear) association criteria

- · for regression: correlation
- for classification: ANalysis Of VAriance

Read more in the scikit-learn user guide scikit-learn feature selection

Univariate feature selection

Keeping only the 10 best features (most correlated with y)

Dataset transformations

Typical pipeline

Example

scikit-learn "transformer API": fit; transform

```
transformer = SelectKBest()
transformer.fit(X)
transformed_X = transformer.transform(X)
```

can also be written:

```
transformer = SelectKBest()
transformed_X = transformer.fit_transform(X)
```

scikit-learn feature selection scikit-learn Transformer API

feature_selection.SelectKBest

fit:

- compute ANOVA or correlation for each column of X
- Remember the indices of the k columns with highest scores

transform:

Index input to keep only the k selected columns

```
sklearn.feature selection.SelectKBest
```

Fit the transformer only on train data!

```
transformer = SelectKBest()
transformed_train = transformer.fit_transform(X_train)
transformed test = transformer.transform(X test)
```

Pipelines

To chain transformations and an estimator, use sklearn.pipeline.Pipeline

- can be used to properly cross-validate whole pipeline
- can be combined with cross_validate, GridSearchCV, ...
- easily created with sklearn.pipeline.make pipeline

```
model = make_pipeline(
     SelectKBest(), LogisticRegression())
```

```
ex 04 feature selection questions.py
```

Linear decomposition methods Another approach to dimensionality reduction Maybe OK to drop X_2 :

Data low-dimensional but no feature can be dropped:

Find a better referential in which to represent the data

Linear regression: projection on the column

space of X

$$\hat{\mathbf{y}} = \mathbf{X}\,\hat{\mathbf{\beta}}$$
 (8)

- Too many features: high variance & unstable solution
- Feature selection: drop some columns of X
- Other ways to build a family of k vectors on which to regress y?

Linear decomposition: low-rank approximation of \mathbf{X}

Minimize

$$\|X - WH\|_{F}^{2} = \sum_{i,j} (X_{i,j} - (WH)_{i,j})^{2}$$
 (9)

Linear regression after dimensionality reduction

(10)

Prediction for a new data point $x \in \mathbb{R}^p$

- Find the combination of rows of H that is closest to x: regress x on H^T
- Multiply by $\hat{\beta}$

$$x \in \mathbb{R}^p o \mathsf{projection} o w \in \mathbb{R}^k o \langle \cdot \,, \, \hat{eta}
angle o \hat{y} \in \mathbb{R}$$
 (11)

Principal Component Analysis

Singular Value Decomposition of X:

$$X = \mathbf{U} \, \mathbf{S} \, \mathbf{V}^{\mathsf{T}} \tag{12}$$

with $X \in \mathbb{R}^{n \times p}$, $U \in \mathbb{R}^{n \times r}$, $S \in \mathbb{R}^{r \times r}$, $V \in \mathbb{R}^{r \times p}$

- r = min(n, p)
- $S \succeq 0$ diagonal with decreasing values s_j along the diagonal
- $\mathbf{u}^\mathsf{T} \mathbf{u} = \mathbf{I}_r$
- $\mathbf{V}^\mathsf{T} \mathbf{V} = \mathbf{I}_r$

Truncating the SVD to keep only the first k components gives the best rank-k approximation of \boldsymbol{X}

Singular Value Decomposition

$$X = \mathbf{U} \, \mathbf{S} \, \mathbf{V}^{\mathsf{T}}$$

$$\mathbf{v}_{1}$$

$$\mathbf{u}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{8}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{8}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{8}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{8}$$

$$\mathbf{v}_{8}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{8}$$

$$\mathbf{v}_{8}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{8}$$

$$\mathbf{v}_{8}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{8}$$

$$\mathbf{v}_{8}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{1}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{5}$$

$$\mathbf{v}_{7}$$

$$\mathbf{v}_{8}$$

Explained variance: 0.53

$$\mathbf{U}^\mathsf{T} \, \mathbf{U} = \mathrm{I}_{\mathrm{p}}$$

 $\mathbf{V}^\mathsf{T} \, \mathbf{V} = \mathrm{I}_{\mathrm{p}}$

$$\mathbf{V}^\mathsf{T} \mathbf{V} = \mathbf{I}_n$$

(14)

(15)

Singular Value Decomposition

Explained variance: 0.84

$$\mathbf{U}^{\mathsf{T}} \, \mathbf{U} = \mathrm{I}_{\mathrm{p}} \tag{17}$$

$$\mathbf{V}^{\mathsf{T}} \, \mathbf{V} = \mathrm{I}_{\mathrm{p}} \tag{18}$$

$$\mathbf{V}^\mathsf{T} \mathbf{V} = \mathbf{I}_{\mathfrak{p}}$$

(18)

(16)

Dimensionality reduction

Singular Value Decomposition

Explained variance: 0.97

$$\mathbf{U}^{\mathsf{T}} \, \mathbf{U} = \mathrm{I}_{\mathrm{p}} \tag{20}$$

$$\mathbf{V}^{\mathsf{T}} \, \mathbf{V} = \mathrm{I}_{\mathrm{p}} \tag{21}$$

$$\mathbf{V}^{\mathsf{T}}\,\mathbf{V} = \mathbf{I}_{\mathfrak{p}} \tag{21}$$

Other decomposition methods

Many other methods use the same objective (sum of squared reconstruction errors), but add penalties or constraints on the factors

- · Dictionary Learning
- Non-negative Matrix Factorization
- · K-means clustering
- ..

What about u?

- PCA is an example of unsupervised learning: it does not use y
- Some other methods take it into account: e.g. Partial Least Squares

Ridge regression and PCA

- Both ridge regression and PC regression compute the coordinates of y in the basis given by the SVD of X
- Ridge shrinks the coordinate along U_j by a factor $s_j^2/(s_j^2+\alpha)$
- PC regression sets the coordinates to 0 except for those corresponding to the k largest s_j: shrinks by a factor 1_{j≤k}

Outline

Introduction: cross-validation

Model and hyperparameter selection

Dimensionality reduction

Conclusion: summary of pitfalls

Some pitfalls with cross-validation

- Overfitting the hyperparameters
 - select hyperparameters with nested CV sklearn.model selection.GridSearchCV
- Fitting part of the pipeline on the whole dataset
 - use sklearn.pipeline.Pipeline
- Ignoring dependencies between samples
- e.g. time series: use appropriate cross-validation iterator
- Ignoring dependencies between CV scores
 - Training sets overlap: cross-validation scores of different splits are not independent
- Over-interpreting good CV scores
 - Good CV scores do not mean the model will always perform well on a new dataset Conclusion: summary of pitfalls

46 / 48

Split choice example: time series Which is easier?

Remember that CV training sets overlap

So the scores are not independent! Their variance can be underestimated.