AN OUTLINE OF FIRST-ORDER TRIANGULAR FINITE ELEMENTS

Energy =
$$\frac{1}{2} \int_{\Omega} \mathbf{E} \cdot \mathbf{D} \, dS = \frac{1}{2} \int_{\Omega} (-\nabla u) \cdot (-\varepsilon_0 \nabla u) \, dS$$

= $\frac{1}{2} \int_{\Omega} \varepsilon_0 |\nabla u|^2 \, dS$

where u is the electrostatic potential.

The potential minimizes the energy, i.e. minimizes

$$W(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dS$$

(Let u(x,y) = true solution Let h(x,y) = function vanishing on Dirichlet surface Let k = any scalar parameter Then it can be shown that:

$$W(u+kh) = W(u) + k^2W(h) \ge W(u)$$

- so u minimizes W.

- 1. Break the region into triangles
- 2. Approximate the potential in each triangle
- 3. Find the energy of each triangle
- 4. Add triangles to get the energy of the whole system
- 5. Minimize the energy

1. Break the region into triangles

- 1. Break the region into triangles
- 2. Approximate the potential in each triangle

Interpolate the potential, U:

$$U = a + bx + cy$$

At vertex 1, the potential is

$$U_1 = a + bx_1 + cy_1$$

$$\begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} = \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Hence, we can get a, b, c in terms of U_1 , U_2 , U_3

$$U = \sum_{i=1}^{3} U_i \alpha_i(x,y)$$

e.g.

$$\alpha_1(x,y) = \frac{1}{2A} [(x_2y_3 - x_3y_2) + (y_2 - y_3)x + (x_3 - x_2)y]$$

where A is the area of the triangle.

- 1. Break the region into triangles
- 2. Approximate the potential in each triangle
- 3. Find the energy of each triangle

The contribution to the energy from triangle e is:

$$W^{(e)} = \frac{1}{2} \int_{\Delta_{e}} |\nabla U|^{2} dS$$

$$= \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{i} U_{j} \int_{\Delta_{e}} \nabla \alpha_{i} \cdot \nabla \alpha_{j} dS$$

This can be written in matrix form:

$$W^{(e)} = \frac{1}{2} U^{\mathrm{T}} S^{(e)} U$$

$$U = \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} \quad ; \quad S^{(e)} = \begin{bmatrix} S_{11}^{(e)} & S_{12}^{(e)} & S_{13}^{(e)} \\ S_{21}^{(e)} & S_{22}^{(e)} & S_{23}^{(e)} \\ S_{31}^{(e)} & S_{32}^{(e)} & S_{33}^{(e)} \end{bmatrix}$$

where for example

$$S_{12}^{(e)} = \frac{1}{4A} [(y_2 - y_3)(y_3 - y_1) + (x_3 - x_2)(x_1 - x_3)]$$

- 1. Break the region into triangles
- 2. Approximate the potential in each triangle
- 3. Find the energy of each triangle
- 4. Add triangles to get the energy of the whole system

Disjoint (local) Numbering

Conjoint (global) Numbering

or

$$U_{\rm dis} = CU_{\rm con}$$

Total energy
$$W = W^{(1)} + W^{(2)}$$
$$= \frac{1}{2} U_{\text{dis}}^{\text{T}} S_{\text{dis}} U_{\text{dis}}$$

where S_{dis} is a 6x6 matrix:

$$S_{dis} = \begin{bmatrix} S^{(1)} \\ S^{(2)} \end{bmatrix}$$

Substituting for $U_{\rm dis}$ using

$$U_{\rm dis} = CU_{\rm con}$$

gives

$$W = \frac{1}{2} U_{\text{con}}^{\text{T}} C^{\text{T}} S_{\text{dis}} C U_{\text{con}}$$
$$= \frac{1}{2} U_{\text{con}}^{\text{T}} S U_{\text{con}}$$

where

$$S = C^{\mathrm{T}} S_{\mathrm{dis}} C$$

- 1. Break the region into triangles
- 2. Approximate the potential in each triangle
- 3. Find the energy of each triangle
- 4. Add triangles to get the energy of the whole system
- 5. Minimize the energy

To find the solution, minimize the energy, i.e.

$$\frac{\partial W}{\partial U_k} = 0 \qquad \text{for each } free \ k$$

Let

$$U_{\text{con}} = \begin{bmatrix} U_{\text{f}} \\ U_{\text{p}} \end{bmatrix}$$
 free prescribed

Then minimization with respect to $U_{\rm f}$ gives:

$$\frac{\partial}{\partial \boldsymbol{U}_{f}} \begin{bmatrix} \boldsymbol{U}_{f}^{T} & \boldsymbol{U}_{p}^{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{S}_{ff} & \boldsymbol{S}_{fp} \\ \boldsymbol{S}_{pf} & \boldsymbol{S}_{pp} \end{bmatrix} \begin{bmatrix} \boldsymbol{U}_{f} \\ \boldsymbol{U}_{p} \end{bmatrix} = 0$$

or

$$S_{\rm ff}U_{\rm f} = -S_{\rm fp}U_{\rm p}$$

This may be solved for the unknown, $U_{\rm f}$.

MAGNETICS IN 2D

Current density $J = \hat{z}J(x,y)$

Vector potential $\mathbf{A} = \hat{\mathbf{z}} A(x,y)$

Flux density
$$\mathbf{B} = \nabla \times \mathbf{A} = \hat{\mathbf{x}} \frac{\partial A}{\partial y} - \hat{\mathbf{y}} \frac{\partial A}{\partial x} = \nabla A \times \hat{\mathbf{z}}$$

For magnetostatics in free space, the differential equation is:

$$\nabla^2 A = -\mu_0 J$$

- 1. Break the region into triangles
 - as before
- 2. Approximate the potential in each triangle
 - as before (though now the potential is A)
- 3. Find the energy of each triangle
 - magnetic energy, not electric
 - different energy expression
- 4. Add triangles to get the energy of the whole system
 - as before
- 5. Minimize the energy
 - as before

Magnetic Energy =
$$\frac{1}{2} \int_{\Omega} \mathbf{B} \cdot \mathbf{H} dS = \frac{1}{2} \int_{\Omega} \mathbf{v}_0 |\nabla A|^2 dS$$

For given current J, A minimizes this functional:

$$F(A) = \frac{1}{2} \int_{\Omega} |\nabla A|^2 dS - \mu_0 \int_{\Omega} AJ dS$$

In triangle e, A and J are interpolated as follows:

$$A = \sum_{i=1}^{3} A_i \alpha_i(x,y) \quad ; \quad J = J^{(e)} \quad \text{(constant)}$$

Then:

$$F^{(e)} = \frac{1}{2} A^{T} S^{(e)} A - \mu_0 A^{T} R^{(e)}$$

where

$$R_i^{(e)} = J^{(e)} \int_{\Omega} \alpha_i dS$$

PROGRAM SIMPLE2D

MESHIN - reads and stores data

MATINIT, VECINIT - initializes global matrices

For each finite element:

ELMATR - computes local matrices $S^{(e)}$ and $R^{(e)}$

ELEMBD - embeds local matrices into global

EQSOLV - solves simultaneous equations

OUTPUT - prints the solution

INPUT FILE FORMAT

1	0.000	2.500
2	0.000	5.000
3	2.500	2.500
4	2.500	0.000
_	5 000	α

- 5 5.000 0.000 6 5.000 5.000
- 6 5.000 5.000 7 2.500 3.750
- 8 3.750 2.500

1	3	7	0.000
1	7	2	. 0.000
2	7	6	0.000
3	8	7	0.000
7	8	6	0.000
4	8	3	0.000
4	5	8	0.000
8	5	6	0.000

1 0.000 3 0.000 4 0.000 2 1.000 6 1.000 5 1.000

OUTPUT FILE FORMAT

Input Node List				
N	•	X	Y	
1	0.0	0000	2.50000	
2	0.0	0000	5.00000	
3	2.50000		2.50000	
4	2.50000		0.00000	
5	5.00000		0.00000	
6	5.00000		5.00000	
7	2.50000		3.75000	
8		5000	2.50000	
]	lnput	Eleme	ent List	
I	J	K	Source	
1	3	7	0.00000	
1	7	2	0.00000	
2	7	6	0.00000	
3	8	7	0.00000	
7	8	6	0.00000	
4	8	3	0.00000	
4	5	8	0.00000	
8	5	6	0.00000	

Input Fixed Potentials

Node	Value	
1	0.00000	
3	0.00000	
4	0.00000	
2	1.00000	
6	1.00000	
5	1.00000	

Final Solution

I	X	Y	Potential
1	0.00000	2.50000	0.00000
2	0.00000	5.00000	1.00000
3	2.50000	2.50000	0.00000
4	2.50000	0.00000	0.00000
5	5.00000	0.00000	1.00000
6	5.00000	5.00000	1.00000
7	2.50000	3.75000	0.58000
8	3.75000	2.50000	