Интеллектуальные информационные технологии и системы

Практическое занятие 3

Разработка нечёткой системы регулирования уровня жидкости в резервуаре

Цель: Ознакомление с особенностями разработки нечётких регуляторов динамических систем. Изучение основных принципов использования систем нечёткого вывода в simulink-моделях.

Исходные данные:

Объект управления — резервуар с жидкостью — представлен идеальным интегрирующим звеном, которое охвачено нелинейной отрицательной обратной связью, соответствующей закону истечения жидкости из резервуара (см. рис. 1). Резервуар характеризуется коэффициентом $1/S_b$, где S_b — площадь поверхности жидкости, \mathbf{M}^2 . Коэффициент K_i характеризует скорость истечения жидкости. При помощи блока **Saturation** обеспечивается ограничение допустимого уровня жидкости в резервуаре: $h = (0...100)\,\mathbf{M}$.

Рис. 1 – Система регулирования уровня жидкости в резервуаре

Подача жидкости в резервуар q регулируется с помощью задвижки, степень открытия которой φ пропорциональна q с коэффициентом пропорциональности K_Z . В качестве управляющего воздействия v рассматривается скорость перемещения задвижки, т.е. $v(t) = d\varphi/dt$.

Если имеется возможность измерения уровня жидкости в резервуаре и скорости его изменения, то один из простейших алгоритмов управления может быть представлен в виде следующих пяти нечётких правил:

- 1. ЕСЛИ уровень нормальный (OtkUr = ZE),
 - **TO** положение задвижки не изменять (SkorZdv = ZE) ИЛИ
- 2. **ЕСЛИ** уровень низкий (OtkUr = PB),
 - TO задвижку открывать быстро (SkorZdv = PB) ИЛИ
- 3. ЕСЛИ уровень высокий (OtkUr = NB),
 - TO задвижку закрывать быстро (SkorZdv = NB) ИЛИ
- 4. ЕСЛИ уровень нормальный (OtkUr = ZE), И он увеличивается (IzmUr = PB), ТО задвижку закрывать медленно (SkorZdv = NM) ИЛИ
- 5. **ЕСЛИ** уровень нормальный (OtkUr = ZE), **И** он уменьшается (IzmUr = NB), **ТО** задвижку открывать медленно (SkorZdv = PM).

На рис. 2 приведены функции принадлежности термов входных и выходной лингвистических переменных нечёткого регулятора, а также поверхность «входы-выход» синтезированной системы.

Рис. 2 — Функции принадлежности термов лингвистических переменных и поверхность «входы-выход» нечёткого регулятора

Рис. 3 иллюстрирует работу нечёткого регулятора при ступенчатом задающем воздействии и принятых по умолчанию параметрах модели. Время моделирования $-100 \ c$.

Рис. 3 – Задающее воздействие и уровень жидкости в резервуаре

Задание:

1. Создать simulink-модель нечёткой системы регулирования уровня жидкости в резервуаре с параметрами, согласно варианту задания (см. табл.1., рис.1) и сохранить её на жёстком диске компьютера.

	Таблица 1	t. Bap	оианты заданий
Donyyoym		TTC	

Вариант	Параметры модели			
1	Sb = 10.0;	Kz = 1.0;	Ki = 0.1;	
2	Sb = 8.0;	Kz = 1.2;	Ki = 0.1;	
3	Sb = 8.0;	Kz = 0.8;	Ki = 0.2;	
4	Sb = 5.0;	Kz = 1.2;	Ki = 0.1;	
5	Sb = 5.0;	Kz = 1.2;	Ki = 1.1;	
6	Sb = 10.0;	Kz = 2.2;	Ki = 1.1;	
7	Sb = 7.0;	Kz = 2.2;	Ki = 2.1;	
8	Sb = 20.0;	Kz = 5.2;	Ki = 0.7;	
9	Sb = 16.0;	Kz = 5.2;	Ki = 0.7;	
10	Sb = 12.0;	Kz = 3.2;	Ki = 1.7;	

Hacтроить блок Signal Builder для выдачи требуемого задающего воздействия:

$$h.zd = \begin{cases} 0 \text{ M}, & npu & 0 \le t < 1 \text{ c} \\ 1 \text{ M}, & npu & 1 \text{ c} \le t < 60 \text{ c} \\ 0,4 \text{ M}, & npu & 1 \text{ c} \le t < 60 \text{ c} \end{cases}$$

Hactpoutь блок Saturation для ограничения допустимого уровня жидкости в резервуаре: h = (0...100) м.

В качестве параметра блока Fuzzy LogicController установить имя нечёткого регулятора в рабочей области MatLab (см. рис.4).

Рис. 4 – Задание параметров блока Fuzzy LogicController

2. Разработать систему нечёткого вывода, реализующую требуемый закон регулирования и сохранить её на диске компьютера, например под именем RgUrVd.fis. (Вызов FISредактора осуществляется при помощи функции fuzzy).

Перед началом моделирования система нечёткого вывода должна быть загружена в рабочую область MatLab при помощи функции fisREG = readfis('RgUrVd').

Примечание. После каждой коррекции параметров нечёткого регулятора и модели системы управления необходимо обновлять соответствующие значения переменных в рабочей области MatLab. Для этой цели удобно данную процедуру оформить в виде m-файла, который запускать всякий раз перед запуском simulink-модели. Данный m-файл может выглядеть следующим образом.

- **3.** Оценить адекватность функционирования полученной системы нечёткого вывода при помощи просмотрщиков правил системы нечёткого вывода (Rule Viewer) и поверхности «входы-выход» (Surface Viewer).
- **4.** Запустить simulink-модель и оценить качество переходного процесса при ступенчатом задающем воздействии.
- **5.** Оценить работу нечёткого регулятора при изменении параметров объекта управления в пределах $\pm 20\%$, $\pm 60\%$.
- **6.** Исследовать влияние типа и параметров функций принадлежности термов входных и выходных переменных на характер поверхности «входы-выход» нечёткого регулятора и качество переходного процесса системы управления.
- 7. Исследовать влияние весовых коэффициентов правил нечётких продукций на характер поверхности «входы-выход» нечёткого регулятора и качество переходного процесса системы управления.
 - 8. Запустить демонстрационный пример MatLab при помощи функции

```
open_system('sltankrule');
```

или

```
sim('sltankrule',100);.
```

Сравнить находящуюся в нём схему с той, которая исследовалась в данной работе. Выяснить назначение элементов схемы демонстрационного примера пользуясь справочной системой MatLab.

- 9. Сделать выводы по проделанной работе.
- 10. Подготовить отчёт по лабораторной работе в виде pdf-файла с именем:

```
LR3 КалендарныйГод ФамилияИсполнителя.pdf
```

(Фамилия исполнителя в имени файла отчёта приводится в латинской транскрипции).

Содержание отчёта:

- 1. Фамилия, имя и отчество студента, выполнившего работу;
- 2. Номер учебной группы;
- 3. Дата выполнения работы;
- 4. Название работы;
- 5. Цель работы;
- 6. Структурная схема исследуемой системы управления;
- **7.** Графики функций принадлежности термов входных и выходных переменных нечёткого регулятора;
 - 8. База правил нечётких продукций, реализующая исследуемый алгоритм управления;
- **9.** Поверхности «входы-выходы» регулятора при различных функциях принадлежности термов входных и выходных переменных и весовых коэффициентах правил нечётких продукций;
- 10. Графики переходного процесса при различных функциях принадлежности термов входных и выходных переменных и весовых коэффициентах правил нечётких продукций;
- **11.** Численные значения показателей качества переходного процесса при различных функциях принадлежности термов входных и выходных переменных и весовых коэффициентах правил нечётких продукций;
 - 12. Выводы по работе.