矩阵理论 作业汇总

刘彦铭 ID: 122033910081

Last Edited: 2023 年 2 月 20 日

1. Page 5 习题 1

从镜面反射变换的几何意义来看:

镜面方向上的 α 与 $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{OA} = \overrightarrow{OB} - \overrightarrow{AO} = (0, -1, -1, \sqrt{3} - 1)^{\top}$ 同方向 故单位向量 $\alpha = \frac{\overrightarrow{OC}}{|\overrightarrow{OC}|} = \frac{1}{\sqrt{6 - 2\sqrt{3}}} (0, -1, -1, \sqrt{3} - 1)^{\top}$

所以

$$B = E - 2\alpha\alpha^{T} = \frac{1}{3 - \sqrt{3}} \begin{bmatrix} 3 - \sqrt{3} & 0 & 0 & 0 \\ 0 & 2 - \sqrt{3} & -1 & \sqrt{3} - 1 \\ 0 & -1 & 2 - \sqrt{3} & \sqrt{3} - 1 \\ 0 & \sqrt{3} - 1 & \sqrt{3} - 1 & \sqrt{3} - 1 \end{bmatrix}$$

2. Page 11 习题 1

可将该矩阵分解为行变换矩阵和分块对角阵的乘积:

$$\begin{bmatrix} 0 & B & 0 \\ E & 0 & 0 \\ 0 & 0 & A \end{bmatrix} = \begin{bmatrix} 0 & E & 0 \\ E & 0 & 0 \\ 0 & 0 & E \end{bmatrix} \times \begin{bmatrix} E & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & A \end{bmatrix}$$

故其逆矩阵为

$$\begin{bmatrix} 0 & B & 0 \\ E & 0 & 0 \\ 0 & 0 & A \end{bmatrix}^{-1} = \begin{bmatrix} E & 0 & 0 \\ 0 & B^{-1} & 0 \\ 0 & 0 & A^{-1} \end{bmatrix} \times \begin{bmatrix} 0 & E & 0 \\ E & 0 & 0 \\ 0 & 0 & E \end{bmatrix} = \begin{bmatrix} 0 & E & 0 \\ B^{-1} & 0 & 0 \\ 0 & 0 & A^{-1} \end{bmatrix}$$

行列式:

$$\begin{vmatrix} 0 & B & 0 \\ E & 0 & 0 \\ 0 & 0 & A \end{vmatrix} = \begin{vmatrix} 0 & E & 0 \\ E & 0 & 0 \\ 0 & 0 & E \end{vmatrix} \times \begin{vmatrix} E & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & A \end{vmatrix} = (-1)^n \cdot \det(A) \cdot \det(B)$$

3. Page 11 习题 3

注意到对该方阵进行行变换可以得到

$$\begin{bmatrix} E & 0 \\ -C & E \end{bmatrix} \times \begin{bmatrix} A^{-1} & 0 \\ 0 & E_m \end{bmatrix} \times \begin{bmatrix} A & B \\ C & D_m \end{bmatrix} = \begin{bmatrix} E & A^{-1}B \\ 0 & D_m - CA^{-1}B \end{bmatrix}$$

上式中左边两个行变换矩阵均满秩,故 $H=\left[egin{array}{cc} A & B \\ C & D_m \end{array} \right]$ 可逆的充要条件为

$$\begin{vmatrix} E & A^{-1}B \\ 0 & D_m - CA^{-1}B \end{vmatrix} = \det(D_m - CA^{-1}B) \neq 0$$

- (1) 由上述讨论知,充要条件是m阶方阵 $D_m CA^{-1}B$ 可逆;
- (2) 简单起见, 令 $D' = D_m CA^{-1}B$, H 可逆时, D'^{-1} 唯一存在。注意到, 运用行变换有:

$$\left[\begin{array}{cc} E & -A^{-1}B \\ 0 & E \end{array}\right] \times \left[\begin{array}{cc} E & 0 \\ 0 & D'^{-1} \end{array}\right] \times \left[\begin{array}{cc} E & A^{-1}B \\ 0 & D' \end{array}\right] = E_{n+m}$$

所以

$$H^{-1} = \begin{bmatrix} E & -A^{-1}B \\ 0 & E \end{bmatrix} \times \begin{bmatrix} E & 0 \\ 0 & D'^{-1} \end{bmatrix} \times \begin{bmatrix} E & 0 \\ -C & E \end{bmatrix} \times \begin{bmatrix} A^{-1} & 0 \\ 0 & E_m \end{bmatrix}$$
$$= \begin{bmatrix} A^{-1} + A^{-1}B(D_m - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D_m - CA^{-1}B)^{-1} \\ -(D_m - CA^{-1}B)^{-1}CA^{-1} & (D_m - CA^{-1}B)^{-1} \end{bmatrix}$$

非常丑,但验证了一下应该是对的。左上角似乎和 Woodbury 公式的形式是一致的。

4. Page 12 习题 6

考虑当 $A\in\mathbb{R}^{n\times n}$ 时,对任意列向量 $x'=\left[x^\top;y\right]^\top\in\mathbb{R}^{(n+1)\times 1}$,其中 $x\in\mathbb{R}^{n\times 1},y\in\mathbb{R}$: 计算得到

$$\begin{split} f(x') &= x'^\top \left[\begin{array}{cc} A & k\alpha \\ k\alpha^\top & 1 \end{array} \right] x' &= \left[x^\top; y \right] \left[\begin{array}{cc} A & k\alpha \\ k\alpha^\top & 1 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] \\ &= x^\top Ax + 2ky(x^\top\alpha) + y^2 \\ &= \left(y + k(x^\top\alpha) \right)^2 + x^\top Ax - k^2(x^\top\alpha x^\top\alpha) \\ &= \left(y + k(x^\top\alpha) \right)^2 + x^\top (A - k^2\alpha\alpha^\top) x \end{split}$$

- 若
$$A - k^2 \alpha \alpha^{\top}$$
 是正定矩阵,那么 $\begin{bmatrix} A & k\alpha \\ k\alpha^{\top} & 1 \end{bmatrix}$ 正定。因为:

- 一方面 $f(x') \ge 0$ 恒成立;
- 另一方面, f(x') = 0 可以推出 x = 0, y = 0, x' = 0.

- 若
$$A - k^2 \alpha \alpha^{\top}$$
 是半正定矩阵,那么 $\begin{bmatrix} A & k\alpha \\ k\alpha^{\top} & 1 \end{bmatrix}$ 半正定。因为:

- 一方面 $f(x') \ge 0$ 恒成立;
- 另一方面, 由于存在 $x \neq 0$ 使得 $x^{\top}(A k^2 \alpha \alpha^{\top})x = 0$, 取 $y = -k(x^{\top} \alpha)$ 即得到非零的 x' 使得 f(x') = 0.
- 若 $A-k^2\alpha\alpha^{\top}$ 是不定矩阵,那么 $\begin{bmatrix} A & k\alpha \\ k\alpha^{\top} & 1 \end{bmatrix}$ 也是不定的。因为:此时 $A-k^2\alpha\alpha^{\top}$ 存在小于 0 的特征值,取 x 为其对应的特征向量,取 $y=-k(x^{\top}\alpha)$ 即构造得到 x', f(x')<0.

5. Page 13 习题 7

方便起见,令 $C = AB \in \mathbb{F}^{m \times r}$,直接计算验证:对于任一 $1 \le k \le r$,

$$\sum_{1 \le i \le m} C_{ik} = \sum_{1 \le i \le m} \sum_{1 \le j \le n} A_{ij} \times B_{jk}$$

$$= \sum_{1 \le j \le n} \sum_{1 \le i \le m} A_{ij} \times B_{jk}$$

$$= \sum_{1 \le j \le n} B_{jk} \times \left(\sum_{1 \le i \le m} A_{ij} \right)$$

$$= \sum_{1 \le j \le n} B_{jk} \times a$$

$$= ab$$

6. Page 16 习题 1

课上已经讲过解法:

设 $f(x), g(x) \in \mathbb{F}[x], (f(x), g(x)) = 1 \Rightarrow \exists u(x), v(x) \in \mathbb{F}[x]$ 使得 $f(x) \cdot u(x) + g(x) \cdot v(x) = 1$. 将上述多项式的 x 代换为 x^n 即得: $f(x^n) \cdot u(x^n) + g(x^n) \cdot v(x^n) = 1$. 容易验证 $u(x^n), v(x^n) \in \mathbb{F}[x]$, 这就证明了 $(f(x^n), g(x^n)) = 1$.

7. Page 16 习题 4

(1) 假设 $p(x) \in \mathbb{Q}[x]$ 也是满足 $p(\alpha) = 0$ 的最低次的首一多项式.

由于都是最低次的,所以有 $\deg m_{\alpha} = \deg p$.

作带余除法: 存在多项式 $u, v \in \mathbb{Q}[x]$ 使得 $m_{\alpha} = u \cdot p + v$, 其中 v = 0 或者 $\deg v < \deg p$.

注意到 $v(\alpha) = m_{\alpha}(\alpha) - u(\alpha) \cdot p(\alpha) = 0$, 所以有 v = 0; 否则存在非零的多项式 $v \in \mathbb{Q}[x]$ 使得 $v(\alpha) = 0$ 且 $\deg v < \deg p$,这与 p 最低次的假设矛盾。

所以 $m_{\alpha}=u\cdot p$. 因为 $\deg u=\deg m_{\alpha}-\deg p=0$ 且 m_{α},p 均首一, 所以 u=1 因此 $m_{\alpha}=p$, 这就说明了 m_{α} 的唯一性

(2) 只需说明 $\{1, \alpha, \alpha^2, \cdots, \alpha^{m-1}\}$ 是 $\mathbb{Q}[\alpha]$ 的一组基:

- 线性无关:

对任意的 $c_0, c_1, c_2, \dots, c_{m-1} \in \mathbb{Q}$, 若 $f(\alpha) = \sum_{0 \le i < m} c_i \alpha^i = 0$, 由于 $\deg f = m - 1 < \deg m_\alpha$, 所以由 m_α 的定义知 f = 0, 即 $c_i = 0$, $\forall 0 \le i < m$. 这就证明了 $\{\alpha^i\}, 0 \le i < m$ 的线性无关性。

- 可表示性:

对 $\mathbb{Q}[\alpha]$ 上的任意一个元素 β , 由 $\mathbb{Q}[\alpha]$ 的生成方式可以知道, 存在多项式 $f \in \mathbb{Q}[x]$, 使得 $\beta = f(\alpha)$ 考虑带余除法 $f = q \cdot m_{\alpha} + r$ 其中 $q, r \in \mathbb{Q}[x]$, r = 0 或 $\deg r < \deg m_{\alpha} = m$.

于是 $\beta = f(\alpha) = q(\alpha) \cdot m_{\alpha}(\alpha) + r(\alpha) = r(\alpha) = \sum_{0 \le i < m} c_i \alpha^i$. 这就说明了 $\mathbb{Q}[\alpha]$ 上的任一元素都能由 $\{\alpha^i\}, 0 \le i < m$ 线性表示

8. Page 16-17 习题 5 (尝试做一下)

- (1) 设 p 是 R 上的任意一个素元。对于任意的非零的 $p_1, p_2 \in R$,如果 $p = p_1 p_2$,那么有 $p \mid p_1 p_2$. 由于 p 是素元,所以 $p \mid p_1$ 或者 $p \mid p_2$ 。不失一般性,假设 $p \mid p_1$,于是存在 $k \in R$,使得 $p_1 = kp = kp_1 p_2 = (kp_2)p_1$ (运用 R 上的乘法交换律和结合律)。由于 R 是一个整环(这里略去证明)没有零因子,所以 $p_1 = (kp_2)p_1 \Rightarrow (kp_2 - 1)p_1 = 0 \Rightarrow kp_2 = 1$,这就证明了 p_2 是可逆元。
- (2) **命题** 1 主理想整环 R 上的不可分解元都是素元。

证明. 假设 $c \in R$ 是一个不可分解元。对于主理想整环 R 上的任意理想 (a), 如果 $(c) \subset (a) \subset R$, 那么存在 $k \in R$, c = ka . 由于 c 是不可分解的,所以 k 是可逆元即 (c) = (a) 或者 a 是可逆元即 (a) = R 。这就验证了 (c) 是一个极大理想。

假设不可分解元 c 不是素元,那么存在非零的 $a,b \in R$ 使得 $c \mid ab$ 但 $c \nmid a$, $c \nmid b$.

 $c \nmid a \Rightarrow a \notin (c) \Rightarrow (c) \subset (a,c) \subset R$ 且 $(c) \neq (a,c)$. 其中 (a,c) 表示由 a,c 生成的理想。由于 (c) 是极大的,所以 (a,c) = R. 所以存在 $x,y \in R$ 使得 ax + cy = 1; 同理,存在 $n,m \in R$ 使得 bm + cm = 1. 稍做变换可以得到 $ab \cdot xn + c \cdot (y + m - ymc) = 1$. 说明 $ab \vdash c$ 生成的理想 (ab,c) = (1) = R. 但由于 $c \mid ab$ 所以 (ab,c) = (c). 这就导出了 c 是单位元的平凡情形。所以 c 不是素元的假设不成立。

命题 2 欧几里得整环都是主理想整环。

证明. 设 I 是一欧几里得整环 R 上的理想,设 $\phi:R\to\mathbb{N}$ 是定义在这一欧几里得环上的度量。可以从 I 中选取出度量最小的元素 $a\in I$. 对于任意的 $b\in I$, 由于在欧几里得环上存在 $q,r\in R$ 使得 $b=q\cdot a+r$, 其中 r=0 或者 $\phi(r)<\phi(a)$. 显然 $r=b-q\cdot a\in I$, 所以 $\phi(r)<\phi(a)$ 不能成立,因此 r=0。这就说明了 $I\subset (a)\subset I$,即 I=(a) 是可由 a 生成的主理想。

由命题 1、2 知,只需要验证 $R \in \{\mathbb{Z}, \mathbb{F}[x], \mathbb{Z}[i]\}$ 是欧几里得环。其中 $\mathbb{Z}, \mathbb{F}[x]$ 是十分常见的欧几里得环,这里略去验证,只验证 $\mathbb{Z}[i]$ 是欧几里得环:

证明. 定义度量 $\phi: \mathbb{Z}[i] \to \mathbb{N}$, $\phi(a) = |a|^2 = a \cdot \bar{a}$. 对于任意非零的 $a, b \in \mathbb{Z}[i] \subset \mathbb{Q}[i]$, $\frac{a}{b} = \frac{a\bar{b}}{b\bar{b}} = x + yi$, 其中 $x, y \in \mathbb{Q}$. 取距离 x, y 最近的整数 m, n, 有 $|m-x| \leq 0.5, |n-y| \leq 0.5$. 构造 $q = m + ni \in \mathbb{Z}[i]$, $r = a - qb \in \mathbb{Z}[i]$, 使得 a = qb + r, 且其中 r = 0 或者 $\phi(r) = \phi(((x - m) + (y - n)i) \cdot b) = \phi((x - m) + (y - n)i) \cdot \phi(b) \leq 0.5 \cdot \phi(b) < \phi(b)$.

(3) $(2+\sqrt{-5})$ \nmid 3 但 $(2+\sqrt{-5})$ \mid 3 × 3. 所以 $2+\sqrt{-5}$ 不是素元。同理 $2-\sqrt{-5}$, 3 都不是素元。考虑 到在 $\mathbb{Z}[\sqrt{-5}]$ 上复数的模长的相关定义和性质仍然成立,故枚举 $3,2+\sqrt{-5},2-\sqrt{-5}$ 可能的因子时,

只需要考虑模长平方小于等于 9 的,即只考虑 $a+b\sqrt{-5}\in\mathbb{Z}[\sqrt{-5}]$ 其中 $a,b\in\mathbb{Z},a^2+5b^2\leq 9$. 简单的穷举即可验证他们都是不可分解元。

9. 2.1 - 习题 3

对矩阵 A 模拟高斯消元过程可以知道,需要将原第 2 行置于第 1 行,将原第 1 行置于第 2 行,于是可以

得到可行的置换矩阵
$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

对 PA 模拟高斯消元过程可得:

$$PA = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

于是
$$L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, U = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

10. 2.2 - 习题 1

交换
$$1,3$$
 两列,并选取前两列作为列向量的极大无关组。有: $P=\begin{pmatrix}0&0&1&0\\0&1&0&0\\1&0&0&0\\0&0&0&1\end{pmatrix}$ $AP=\begin{pmatrix}1&0&2&1\\-1&-1&-1&-1\\0&-1&1&0\\-1&-2&0&-1\end{pmatrix}$

对前两列做 Schmidt 正交化, 再单位化, 得到:

$$AP = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \times \begin{pmatrix} \sqrt{3} & \sqrt{3} & \sqrt{3} & \sqrt{3} \\ 0 & -\sqrt{3} & \sqrt{3} & 0 \end{pmatrix} = QR$$

11. 2.2 - 习题 2

 $U_1A_{:,1} = (||A_{:,1}||, 0, 0, 0)^{\mathsf{T}}$. 根据镜面反射矩阵的相关性质,设单位向量 $\beta = \frac{A_{:,1}}{||A_{:,1}||}$, $\epsilon = (1, 0, 0, 0)^{\mathsf{T}}$,则

可构造 $U_1 = E - \frac{2}{||\beta - \epsilon||^2} (\beta \beta^\top - \epsilon \beta^\top - \beta \epsilon^\top + \epsilon \epsilon^\top)$. 计算过程较繁,这里给出化简结果:

$$U_1 = \frac{1}{6 - 2\sqrt{6}} \times \begin{pmatrix} -4 + 2\sqrt{6} & 2 - \sqrt{6} & -2 + \sqrt{6} & 0\\ 2 - \sqrt{6} & 5 - 2\sqrt{6} & 1 & 0\\ -2 + \sqrt{6} & 1 & 5 - 2\sqrt{6} & 0\\ 0 & 0 & 0 & 6 - 2\sqrt{6} \end{pmatrix}$$

计算得到

$$U_1 A = \begin{pmatrix} \sqrt{6} & 0 & \sqrt{6}/2 & \sqrt{6}/2 \\ 0 & -1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & -1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & -2 & -1 & -1 \end{pmatrix}$$

完全类似地,取 $\beta = \frac{1}{\sqrt{6}}(-1, -1, -2)^{\top}, \epsilon = (1, 0, 0)^{\top},$ 计算得到 3 阶的 U_2 ,

$$U_2 = \frac{1}{6 + \sqrt{6}} \times \begin{pmatrix} -1 - \sqrt{6} & -1 - \sqrt{6} & -2 - 2\sqrt{6} \\ -1 - \sqrt{6} & 5 + \sqrt{6} & -2 \\ -2 - 2\sqrt{6} & -2 & 2 + \sqrt{6} \end{pmatrix}$$

那么
$$U_2A_{1:3,1:3} = \begin{pmatrix} \sqrt{6} & \frac{\sqrt{6}}{2} & \frac{\sqrt{6}}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
,已经是上三角矩阵。这就找到了 A 的第二广义 QR 分解, $A = QR$, 其中 $R = \begin{pmatrix} \sqrt{6} & 0 & \sqrt{6}/2 & \sqrt{6}/2 \\ 0 & \sqrt{6} & \sqrt{6}/2 & \sqrt{6}/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, $Q = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & U_2 \end{pmatrix} U_1 \end{pmatrix}^{-1} = U_1^{-1} \begin{pmatrix} 1 & 0 \\ 0 & U_2^{-1} \end{pmatrix}$.

12. 2.2 - 习题 3

定理 2.2.3 可推广至非方阵的情形:

任一矩阵 $A_{n\times m}$ 具有 QR-分解,其中 Q 是 n 阶酉矩阵,而 R 是 $n\times m$ 的上三角矩阵,且主对角线元素 是非负实数。

证明过程,可以完全仿照定理 2.2.3,即不断运用引理 2.2.2 逐一消去矩阵 $A_{n\times m}$ 的列。矩阵是否是方阵,完全不影响引理 2.2.2 的使用。

唯一的区别在于,当矩阵 $A_{n\times m}$ 消去 $\min\{n,m\}$ 列后,不能再继续像定理 2.2.3 证明中那样对剩余的子矩阵分块,所以至多只能消掉前 $\min\{n,m\}$ 列中对角线以下的部分,但这不影响 Q 是酉矩阵以及 R 是非方形的上三角矩阵且对角线元素是非负实数。

13. 2.3 - 习题 2

$$\Leftarrow$$
 存在实正交矩阵 $P \in \mathbb{R}^{n \times n}$ 使得 $P^{\top}BP = \begin{bmatrix} -1 & 0 \\ 0 & E_{n-1} \end{bmatrix}$, 所以 $B = P \left(E_n - 2 \cdot \begin{bmatrix} 1 & 0 \\ 0 & O_{n-1} \end{bmatrix} \right) P^{\top}$

展开即可得到: $B = E - 2p_1p_1^{\mathsf{T}}$, 其中 p_1 是实正交矩阵的第 1 列,是单位向量,这就验证了 B 是镜面反射矩阵。

⇒ 由于 B 是镜面反射矩阵,所以存在某个单位长度的 $\delta \in \mathbb{C}^{n \times 1}$ 使得 $B = E - 2\delta\delta^*$ 。 由于 B 是实方阵,所以 $\delta\delta^*$ 也必须是实矩阵,即 $\delta_i\delta_j \in \mathbb{R}, \forall 1 \leq i,j \leq n$,这要求 δ 中的各分量的辐角彼此相差 π 的整数倍,所以 δ 可以拆分作 $\delta = \mathbf{e}^{i\theta} \cdot \delta'$,其中 δ' 是实单位向量。 仿照引理 2.2.2 的推导可知,存在实正交矩阵 P 使得 $P^\top\delta' = [1,0,0,\cdots,0]^\top$. (注:引理 2.2.2 是针对复数域的,但由于这里的 δ' 是实向量,故可以按照完全相同的方法构造出实的镜面反射矩阵 P) 故 $P^\top BP = P^\top (E - 2\delta\delta^*)P = P^\top \left(E - 2(\mathbf{e}^{i\theta}\delta')(\mathbf{e}^{-i\theta}\delta'^\top)\right)P = E - 2(P^\top\delta')(P^\top\delta')^\top = \operatorname{diag}\{-1,E\}$

14. 2.4 - 习题 5

- (1) 由于 A 是正规矩阵,根据正规矩阵基本定理,A 酉相似于对角阵,即存在酉矩阵 $U, U^*AU = \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$,且根据 Schur 引理的推导过程知,对角线上元素 λ_i 为 A 的特征值,在本题中他们两两互异。 所以 $A = U\Lambda U^*$,其中 $\Lambda = \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$. $AB = BA \Rightarrow U\Lambda U^*B = BU\Lambda U^* \Rightarrow$ $\Lambda U^*BU = U^*BU\Lambda$. 考虑左右两边的 i,j 位置元素,可得 $\lambda_i(U^*BU)_{ij} = \lambda_j(U^*BU)_{ij}$,再由 λ_i 两两 互异可知, (U^*BU) 对角线以外的元素均为 0,即 B 酉相似于对角阵,所以 B 是正规矩阵。
- (2) 由 (1) 的推导可知, 任意 $B \in \mathbb{C}(A)$, AB = BA, 都有 $B = U\Lambda_BU^*$, 且对不同的 B, 对应的酉矩阵 U 都相同,都由 A 决定。 $U = (u_1, u_2, \cdots, u_n)$, 则 $u_1u_1^*, u_2u_2^*, \cdots, u_nu_n^*$ 构成 $\mathbb{C}(A)$ 的一组基。因为对于任意的 B, $B = \sum_i \Lambda_{B_i} u_i u_i^*$, 且 $u_i u_i^*$ 之间彼此正交, $\Lambda_{B_i} \in \mathbb{F}$ 。所以 $\mathbb{C}(A)$ 是数域 \mathbb{F} 上的 n 维线性空间。加法、数乘的封闭性显然。乘法的封闭性由 $(u_i u_i^*)(u_j u_i^*) = \delta_{ij} u_i u_i^*$ 保证。

15. 2.4 - 习题 6

先证明一个性质 tr(AB) = tr(BA). $tr(AB) = \sum_i (AB)_{ii} = \sum_i \sum_k A_{ik} B_{ki} = \sum_k \sum_i B_{ki} A_{ik} = \sum_k (BA)_{kk} = tr(BA)$.

- (1) A_n 是 Hermite 矩阵 $\Leftrightarrow tr(A^2) = tr(A^*A)$.
 - \Rightarrow : $A^* = A$, 故 $tr(AA) = tr(A^*A)$ 显然成立。
 - \Leftarrow : 据 Schur 引理,存在酉矩阵 Q 使得 $QAQ^* = U$,其中 U 是上三角矩阵, $A = Q^*UQ$. 于是有 $tr(AA) = tr(Q^*UQQ^*UQ) = tr(Q^*UUQ) = tr(UUQQ^*) = tr(UU)$. 类似地, $tr(A^*A) = tr(Q^*U^*QQ^*UQ) = tr(Q^*U^*UQ) = tr(U^*UQQ^*) = tr(U^*U)$. 注意到 U 是上三角矩阵, U^* 是下三角矩阵, $tr(UU) = \sum_k U_{kk}U_{kk}$.而 $tr(U^*U) = \sum_{i,j} \overline{U_{ij}}U_{ij}$ 由于 $tr(U^*U)$ 得到的是实数,现考虑 $tr(UU) = \sum_k U_{kk}U_{kk}$ 的实部。容易证明 $\operatorname{Re}(U_{kk}U_{kk}) = \operatorname{Re}(U_{kk})^2 \operatorname{Im}(U_{kk})^2 \leq \operatorname{Re}(U_{kk})^2 + \operatorname{Im}(U_{kk})^2 = \overline{U_{kk}}U_{kk}$. 当且仅当 U_{kk} 为实数时取等号。所以由 $tr(UU) = \sum_k U_{kk}U_{kk} = \sum_{i,j} \overline{U_{ij}}U_{ij} = tr(U^*U)$ 推出 U_{kk} 都是实数,且 $U_{ij} = 0$, $\forall i \neq j$. 所以 U 是实对角矩阵, $U^* = U$.所以 $A^* = Q^*U^*Q = Q^*UQ = A$,A 是 Hermite 矩阵。
- (2) A, B 都是 Hermite 矩阵, $AB = BA \Leftrightarrow tr((AB)^2) = tr(A^2B^2)$.
 - \Rightarrow : $AB = BA \Rightarrow (AB)^* = B^*A^* = BA = AB$, 所以 AB 是 Hermite 矩阵. 由 (1) 知, $tr((AB)^2) = tr((AB)^*AB) = tr(BAAB) = tr(AABB) = tr(A^2B^2)$.

 \Leftarrow : $tr((AB)^2) = tr(A^2B^2) \Rightarrow tr(ABAB) = tr(AABB) \Rightarrow tr(ABAB) = tr(BAAB) \Rightarrow tr(ABAB) = tr((AB)^*AB)$. 由 (1) 知 AB 是 Hermite 矩阵,所以 $BA = B^*A^* = (AB)^* = AB$.

- 2.5 习题 2 \Rightarrow : A 与 B 酉等价,故而存在酉矩阵 U_m, V_n 使得 $U_m A V_n = B$, $V_n^\star A^\star U_m^\star = B^\star$. 所以存在酉矩阵 $U_1 = \begin{pmatrix} 0 & U_m \\ V_n^\star & 0 \end{pmatrix}$, 使得 $U_1 \begin{pmatrix} 0 & A \\ A^\star & 0 \end{pmatrix} U_1^\star = \begin{pmatrix} 0 & B \\ B^\star & 0 \end{pmatrix}$. 故这两分块矩阵酉相似。
 - \Leftarrow : 考虑到 $A' := \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}$ 是 Hermite 矩阵, 故其显然也是正规矩阵, 酉相似于一对角阵, 即存在酉矩

阵 U_A , $A' = U_A \Lambda_A U_A^{\star}$. 同样地, 对于 Hermite 阵 $B' = \begin{pmatrix} 0 & B \\ B^{\star} & 0 \end{pmatrix}$, 存在酉矩阵 U_B , $B' = U_A \Lambda_B U_B^{\star}$. 注意到,有 $\det(xE - A') = \det(xE - \Lambda_A)$, $\det(xE - B') = \det(xE - \Lambda_B)$.

由于 A' 酉相似于 B', 即存在酉矩阵 U, $UA'U^* = B'$, 即 $UU_A\Lambda_AU_A^*U^* = U_B\Lambda_BU_B^*$, 存在酉矩阵 $V = (U_B^*UU_A)$ 使得 $V\Lambda_AV^* = \Lambda_B$, 于是有 $\det(xE - \Lambda_A) = \det(xE - \Lambda_B)$.

从而得到 $\det(xE-A') = \det(xE-B')$,利用行变换将 xE-A' 与 xE-B' 消为下三角分块阵得: $x^{n-m}\det(x^2E_m-A_{m\times n}A^{\star}_{n\times m})=x^{n-m}\det(x^2E_m-B_{m\times n}B^{\star}_{n\times m})$.

由此知 $\det(xE-AA^*)=\det(xE-BB^*)$,所以 A 和 B 有相同的正奇异值,即存在酉矩阵 U_m^A,V_n^A,U_m^B,V_n^B 以及一个对角阵 $S_{m\times n}$,使得 $A=U_m^AS_{m\times n}V_n^A$, $B=U_m^BS_{m\times n}V_n^B$,得到 $A=(U_m^AU_m^{B*})B(V_n^{B*}V_n^A)$,这就证明了 A 酉等价于 B.

2.5 习题 3 (1) 对于任一可逆矩阵 A_n , A_n 列满秩,列空间为 \mathbb{C}^n , A_n 亦有行满秩性质,故 A^* 列空间也为 \mathbb{C}^n . 故得可逆矩阵都是 EP-阵.

对于任一正规矩阵 A_n , 其酉相似于对角阵,即存在酉矩阵 U_n 使得 $UA = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_r, 0, \cdots, 0)U$, 其中 r 为 A 的列秩。显然地, $UA^* = \operatorname{diag}(\bar{\lambda}_1, \bar{\lambda}_2, \cdots, \bar{\lambda}_r, 0, \cdots, 0)U$,故而 A^* 的列秩也是 r.

为证明它们对应的列向量空间相同,记 $A = (\alpha_1, \dots, \alpha_n), A^* = (\beta_1, \dots, \beta_n)$ 存在可逆矩阵 U_1 和 U_2 使得 $UA = (U\alpha_1, \dots, U\alpha_n) = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} U_1, UA^* = (U\beta_1, \dots, U\beta_n) = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} U_2.$ 方便起见,记 $E_r = (\epsilon_1, \dots, \epsilon_r).$ 对 A 的列向量空间上的任一向量 v,有

$$v = (\alpha_1, \dots, \alpha_n)\gamma = U^{-1}(U\alpha_1, \dots, U\alpha_n)\gamma = U^{-1}(U\beta_1, \dots, U\beta_n)U_2^{-1}U_1\gamma = (\beta_1, \dots, \beta_n)U_2^{-1}U_1\gamma$$

,其中 $\gamma \in \mathbb{C}^n$. 所以存在 $\gamma' = U_2^{-1}U_1\gamma \in \mathbb{C}^n$, $v = (\beta_1, \cdots, \beta_n)\gamma'$, 所以 v 在 A^* 的列空间中,这就证明了 A 的列空间是 A^* 的列空间的子空间。又知二者维数都为 r, 所以两列空间相同。(或者用反之亦然说明 A^* 列空间是 A 列空间的子空间,进而说明相同)。由此证得,正规矩阵都是 EP-阵.

- (2) \Leftarrow : 因为 B 是可逆矩阵,故可构造可逆矩阵 $Q_1 = \begin{pmatrix} B & 0 \\ 0 & E \end{pmatrix} Q^*, Q_2 = \begin{pmatrix} B^* & 0 \\ 0 & E \end{pmatrix} Q^*,$ 有 $Q^*A = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} Q_1, Q^*A^* = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} Q_2$. 由此,可完全仿照 (1) 中对正规矩阵的讨论,证明方阵 A 是 EP-阵。
 - \Rightarrow : 对 r 秩方阵 A 作 QR 分解, $A = Q_{n \times r} R_{r \times n}$,其中 Q 是列酉阵,r(Q) = r(R) = r, $Q^*Q = E_r$.那 $A^* = R^*Q^*$.由 A 是 EP-阵知, A^* 的列向量可由 Q 的列向量线性组合表示,故 $A^* = QR'$.

由此得 $R^*Q^* = QR'$, 故 $R' = Q^*QR' = Q^*R^*Q^*$, $A^* = QR' = QQ^*R^*Q^*$, 于是 $A = QRQQ^*$. 关于 $x \in \mathbb{C}^n$ 的方程 $Q^*x = 0$ 其解空间是 n - r 维线性空间,从中取出一组单位正交的基,作为列向量组成矩阵 $Q' = (q_{r+1}, \dots, q_n)$. 容易验证 U = (Q; Q') 是 n 阶的酉矩阵。于是有

$$A = (QR)(QQ^{\star}) = \left((Q; Q') \times \begin{pmatrix} R \\ 0 \end{pmatrix} \right) \times \left((Q; 0) \times \begin{pmatrix} Q^{\star} \\ Q'^{\star} \end{pmatrix} \right) = U \begin{pmatrix} RQ & 0 \\ 0 & 0 \end{pmatrix} U^{\star}$$

且可以验证 r(RQ) = r(R) = r(Q) = r, RQ 是 r 阶可逆矩阵.

- 2.5 习题 5 (1) 回顾奇异值分解存在性的构造证明可知, V 的后 n-r 列是选取的 $A^*Ax=0$ 的解空间的标准正交基。由于 $Ax=0 \Rightarrow A^*Ax=0$,所以 Ax=0 的解空间是 $A^*Ax=0$ 解空间的子线性空间。又知二者均为 n-r 维,故 Ax=0 与 $A^*Ax=0$ 二者解空间相同,故而 V 的后 n-r 列也是 A 的解空间的一组标准正交基。
 - (2) $AV = U\Lambda$. 其中 $\Lambda = \begin{pmatrix} \Lambda_r & 0 \\ 0 & 0 \end{pmatrix}$. 故可知 U 的前 r 列是 AV 的列空间的一组基,且由于是奇异值分解所以它是标准正交的。又由于 V 是酉矩阵,故而 AV 和 A 的列空间相同,这就说明了 U 的前 r 列是 A 的列空间的一个标准正交基。
 - (3) 回顾奇异值分解存在性的构造证明可知,对于 $U = (\alpha_1, \dots, \alpha_n)$ 的后 n-r 列中的任意一列,比如 $\alpha_i, i > r$,有 $AA^*\alpha_i = \lambda_i\alpha_i = 0$ 因为 $\lambda_i = 0, \forall i > r$. 仿 (1) 可以得到 AA^* 和 A^* 的解空间相同,故 而 U 的后 n-r 列是 A^* 解空间的子线性空间。再由二者维数相同知,U 的后 n-r 列是该解空间的一组基,且由于 $A = U\Lambda V^*$ 是 SVD 分解,所以是标准正交的。
 - (4) $A^* = V\Lambda^*U^*$, 故 $A^*U = V\Lambda^*$, 同 (2) 可证。

$$2.6$$
 习题 1 求 $A = \begin{pmatrix} 1 & 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & 1 & 3 \\ 0 & 1 & 1 & 1 & 4 \end{pmatrix}$ 的 MP 广义逆。经计算得到:有下三角矩阵 $L = \begin{pmatrix} 1 & 8/7 & 1/7 \\ 10/7 & 9/70 & 1/10 \end{pmatrix}$

以及行正交的矩阵 $Q=\begin{pmatrix} 1&1&1&0&2\\ -1&-8&-1&7&5\\ -13&6&-3&1&5 \end{pmatrix}$,使得 A=LQ.可以验证 $QQ^*=\mathrm{diag}(7,140,240)$.

下面验证 $B = Q^*(QQ^*)^{-1}L^{-1}$ 是 A 的广义逆:

a.
$$ABA = LQQ^*(QQ^*)^{-1}L^{-1}LQ = LQ = A$$

b.
$$BAB = Q^\star(QQ^\star)^{-1}L^{-1}LQQ^\star(QQ^\star)^{-1}L^{-1} = Q^\star(QQ^\star)^{-1}L^{-1} = B$$

c.
$$AB = LQQ^*(QQ^*)^{-1}L^{-1} = E$$
 是 Hermite 矩阵

d.
$$BA = Q^*(QQ^*)^{-1}L^{-1}LQ = Q^*(QQ^*)^{-1}Q$$
 是 Hermite 矩阵,因为 QQ^* 是实对角阵

带入具体数值即可求得 A 的 MP 广义逆矩阵

$$B = Q^{\star}(QQ^{\star})^{-1}L^{-1} = \begin{pmatrix} 1 & -1 & -13 \\ 1 & -8 & 6 \\ 1 & -1 & -3 \\ 0 & 7 & 1 \\ 2 & 5 & 5 \end{pmatrix} \times \begin{pmatrix} 1/7 \\ 1/140 \\ 1/240 \end{pmatrix} \times \begin{pmatrix} 1 \\ -8 & 7 \\ -4 & -9 & 10 \end{pmatrix}$$

进一步化简得
$$B = \frac{1}{48} \times \begin{pmatrix} 20 & 21 & -26 \\ 24 & -30 & 12 \\ 12 & 3 & -6 \\ -20 & 15 & 2 \\ -4 & 3 & 10 \end{pmatrix}$$

习题 2 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 5 \end{bmatrix}$, $AA^{\mathsf{T}} = \begin{bmatrix} 2 & 1 \\ 1 & 26 \end{bmatrix}$, 容易验证这是一个正定的 Hermite 矩阵,所以它的 Cholesky 分解存在. 证明了存在性后,Cholesky 分解的具体构造较为容易,这里直接给出结果:

$$L = \left| \begin{array}{cc} \sqrt{2} & 0 \\ \sqrt{1/2} & \sqrt{51/2} \end{array} \right|, AA^{\top} = LL^{\top}.$$

习题 3 (1) 首先,容易验证 AA^* 是一个半正定的 Hermite 矩阵, 那么存在酉矩阵 $U_m \in \mathbb{C}^{n \times n}$,使得

$$AA^\star = U_m \mathrm{diag}(\lambda_1, \dots, \lambda_r, 0, \dots, 0) U_m^\star. \not \exists \pitchfork \ r = r(A) = r(A^\star) = r(AA^\star).$$

对 A 进行奇异值分解,有 $A=U_m$ $\begin{bmatrix} \Lambda_r & 0 \\ 0 & 0 \end{bmatrix}$ V_n ,其中 V_n 是另一个 n 阶酉矩阵, $\Lambda_r=\operatorname{diag}(\lambda_1^{1/2},\dots,\lambda_r^{1/2})$.

方便起见,记 $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_r, 0, \ldots 0)$. 对 SVD 分解中的 $m \times n$ 准对角矩阵进行分块可得:

其中 $P = U_m \Lambda^{1/2} U_m^{\star} = (AA^{\star})^{1/2}, U_{m \times n} = U_m[E_m; O]V_n = [V_m; O]V_n$,可以验证 $UU^{\star} = [V_m; O]V_n V_n^{\star}[V_m; O]^{\star} = V_m V_m^{\star} = E_m$.

- (2) r(A) = m 时, AA^* 是满秩方阵, $P = (AA^*)^{1/2}$ 也是满秩方阵, 故而 $U = P^{-1}A$ 唯一确定。
- 习题 12 证明关于方阵 $A \in \mathbb{M}_n$ 的下列三个命题的等价性:
 - (1) 存在正整数 k > 1, 使得 $A^k = 0$;
 - (2) 对于任意正整数 $m \ge 1$, $tr(A^m) = 0$;
 - (3) 对于任意正整数 $m, 1 < m < n, tr(A^m) = 0$.

证明. 为方便讨论矩阵的迹, 根据 Schur 引理, 对 A 做分解: 存在酉矩阵 $U \in \mathbb{M}_n$, 和上三角矩阵 $R \in \mathbb{M}_n$ 使得 $A = URU^*$. 从而有 $A^k = UR^kU^*$, $\forall k \in \mathbb{N}^*$. 通过简单的数学归纳可以证明 R^k 是上三角矩阵, 且 $(R^k)_{ii} = (R_{ii})^k$. 下面按照 $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$ 的顺序来证明等价性:

- (1) ⇒ (2) $A^k = UR^kU^* = 0$, 其中酉矩阵 U 可逆, 所以 $R^k = 0$. 于是对于任意的 $1 \le i \le n, i \in \mathbb{N}$, $(R^k)_{ii} = 0$ $(R_{ii})^k = 0$, 所以 $R_{ii} = 0$ 即 R 的对角线元素均为 0. 所以对正整数 $m \ge 1$, $tr(R^m) = \sum_i R_{ii}^m = 0$, $tr(A^m) = tr(UR^mU^*) = tr(R^mU^*U) = tr(R^m) = 0.$
- $(2) \Rightarrow (3)$ 显然
- $(3) \Rightarrow (1)$ 对于任意的 $1 \le m \le n$, $tr(A^m) = tr(R^m) = \sum_i R_{ii}^m = 0$. 假设 $R_{ii}, 1 \le i \le n$ 不全为 0, 则可取出其 中不为 0 的项,去重后得到 $r_1, r_2, \cdots, r_t, 1 \le t \le n$. 从而有方程组

$$\begin{bmatrix} r_1 & r_2 & \cdots & r_t \\ r_1^2 & r_2^2 & \cdots & r_t^2 \\ \vdots & \vdots & \ddots & \vdots \\ r_1^t & r_2^t & \cdots & r_t^t \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_t \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ r_1^1 & r_2^1 & \cdots & r_t^1 \\ \vdots & \vdots & \ddots & \vdots \\ r_1^{t-1} & r_2^{t-1} & \cdots & r_t^{t-1} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_t^{t-1} & r_t^{t-1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

其中 n_i 表示 r_i 去重前的出现次数,应有 $r_i \neq r_j, \forall i \neq j$ 以及 $n_i > 0, r_i \neq 0, \forall i$. 故而此时方程中的 Vandermonde 矩阵和对角矩阵均可逆,从而 $[n_1, n_2, \cdots, n_t]^{\mathsf{T}}$ 应为 0 向量,矛盾。所以 R_{ii} 不全为 0 的假设不成立,从而得到 R 是对角线全为 0 的上三角矩阵。即 $R_{ij} = 0, \forall i < j + 1$.

下归纳证明 $(R^k)_{ij} = 0, \forall i < j + k : (1)$ 对于 k = 1 成立; (2) $(R^k)_{ij} = 0, \forall i < j + k \Rightarrow (R^{k+1})_{ij} = 0$ $(R^k R)_{ij} = \sum_t (R^k)_{it} R_{tj}$. 当 i < j + k + 1 时, $i \ge t + k$ 与 $t \ge j + 1$ 不能同时成立, 故 $(R^k)_{it}$ 与 R_{tj} 中至少有一个为 0, 从而推出 $(R^{k+1})_{ij} = 0, \forall i < j + (k+1)$.

对于任意 $1 \le i, j \le n$, 有 i < j + n, 于是 $(R^n)_{ij} = 0$, 所以 $R^n = 0$, $A^n = UR^nU^* = 0$.

注: 这还说明了,如果存在正整数 k 使得 $A^k = 0$,那么存在 $k \le n$ 使得 $A^k = 0$.

1. 习题 1

 $\sigma: A \to AB^{\mathsf{T}} + BA$, 注意到 $BA = (A^{\mathsf{T}}B^{\mathsf{T}})^{\mathsf{T}} = (AB^{\mathsf{T}})^{\mathsf{T}}$, 所以 $AB^{\mathsf{T}} + BA$ 是 2 阶的实对称矩阵,仍在 $V + \circ$

- (1) 对任意的 $\lambda_1, \lambda_2 \in \mathbb{R}$, $A_1, A_2 \in V$, 有 $\sigma(\lambda_1 A_1 + \lambda_2 A_2) = (\lambda_1 A_1 + \lambda_2 A_2) B^{\top} + B(\lambda_1 A_1 + \lambda_2 A_2) = (\lambda_1 A_1 + \lambda_2 A_2) B^{\top}$ $\lambda_1 \cdot (A_1 B^{\top} + B A_1) + \lambda_2 \cdot (A_2 B^{\top} + B A_2) = \lambda_1 \sigma(A_1) + \lambda_2 \sigma(A_2).$
- (2) 由于 $\sigma(E_{11}) = 2E_{11}$, $\sigma(E_{12} + E_{21}) = -2E_{11} + (E_{12} + E_{21})$, $\sigma(E_{22}) = -(E_{12} + E_{21})$. 故 σ 在这组基 下,对应于矩阵 2 -2 0 0 0 1 -1 0 0 0 0
- (3) 对于任意 $A \in V$, $A = [E_{11}, E_{12} + E_{21}, E_{22}] \cdot [c_1, c_2, c_3]^\top$, $c_i \in \mathbb{R}$,

对于任意
$$A \in V$$
, $A = [E_{11}, E_{12} + E_{21}, E_{22}] \cdot [c_1, c_2, c_3]^{\top}$, $c_i \in \mathbb{R}$,
$$\sigma A = \sigma[E_{11}, E_{12} + E_{21}, E_{22}] \cdot [c_1, c_2, c_3]^{\top} = [E_{11}, E_{12} + E_{21}, E_{22}] \cdot \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \cdot [c_1, c_2, c_3]^{\top} = [E_{11}, E_{12} + E_{21}, E_{22}] \cdot [2c_1 - 2c_2, c_2 - c_3, 0]^{\top}$$
, 由此可知 $\{E_{11}, E_{12} + E_{21}\}$ 是像子空间 $\operatorname{im}(\sigma)$ 的一组基。

- (4) 延用 (3) 中的记号,由于 E_{11} , $E_{12}+E_{21}$, E_{22} 线性无关,所以 $\sigma A=0$ 当且仅当 $\begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = 0$, 解为 $[c_1, c_2, c_3]^{\top} = [c_3, c_3, c_3]^{\top}$, $c_3 \in \mathbb{R}$. 故核子空间 $\ker(\sigma)$ 的一组基是 $\{E_{11} + E_{12} + E_{21} + E_{22}\}$.
- (5) 是直和,且 $V = im(\sigma) \oplus ker(\sigma)$.因为 $im(\sigma)$ 与 $ker(\sigma)$ 的基不交,且它们基的并是 V的一组基。

2. 习题 3

设 $\{\eta_1, \eta_2, \dots, \eta_n\}$ 是 n 维空间 \mathbb{F}^n 的一组基。对于线性变换 σ , 以及任意的 $\alpha \in \mathbb{F}^n$, $\alpha = [\eta_1, \eta_2, \dots, \eta_n] \cdot c^{\mathsf{T}}$, 其中 $c = [c_1, c_2, \dots, c_n] \in \mathbb{F}^n$. $\sigma(\alpha) = \sigma[\eta_1, \eta_2, \dots, \eta_n] \cdot c^{\mathsf{T}}$. 由于 $\{\eta_i\}$ 是基,故存在矩阵 A 使得 $\sigma[\eta_1, \dots, \eta_n] = [\eta_1, \dots, \eta_n] \cdot A$. 再记 $N = [\eta_1, \eta_2, \dots, \eta_n]$, 显然 N 可逆,构造 $B = NAN^{-1} \in M_n(\mathbb{F})$, 有 $B\alpha = B(Nc^{\mathsf{T}}) = NAN^{-1}Nc^{\mathsf{T}} = NAc^{\mathsf{T}} = \sigma(\alpha)$.

3. 习题 4

(1) $V = W_1 \oplus W_2$, $\sigma : \alpha_1 + \alpha_2 \to \alpha_1$, 其中 $\alpha_i \in W_i$. 取 W_1 的一组基 $(\alpha_1, \dots, \alpha_r)$; 取 W_2 的一组基 $(\beta_1, \dots, \beta_s)$. 那么 $(\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s)$ 是 V 的一组基。对于 V 的任意基 $(\gamma, \dots, \gamma_r, \gamma_{r+1}, \dots, \gamma_{r+s})$,有 $(\gamma, \dots, \gamma_r, \gamma_{r+1}, \dots, \gamma_{r+s}) = (\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s)C$, 其中 $C \in M_{r+s}(\mathbb{F})$. 将 σ 作用于其上:

$$\sigma(\gamma, \dots, \gamma_r, \gamma_{r+1}, \dots, \gamma_{r+s}) = \sigma(\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s) \cdot C$$

$$= (\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s) \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} C$$

$$= (\gamma, \dots, \gamma_r, \gamma_{r+1}, \dots, \gamma_{r+s}) \cdot C^{-1} \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} C$$

从而得到 $A = C^{-1} \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} C$,显然有 $A^2 = A$.

(2) (a) 即 $\sigma_A: (\alpha_1, \dots, \alpha_n)\beta \to (\alpha_1, \dots, \alpha_n)(A\beta)$. 容易验证对任意 $\lambda_1, \lambda_2 \in \mathbb{F}$, 以及任意 $v_1, v_2 \in V$, 有 $\exists \beta_1, v_1 = (\alpha_1, \dots, \alpha_n)\beta_1$, $\exists \beta_2, v_2 = (\alpha_1, \dots, \alpha_n)\beta_2$, $\sigma(\lambda_1 v_1 + \lambda_2 v_2) = (\alpha_1, \dots, \alpha_n)(A\lambda_1\beta_1 + A\lambda_2\beta_2) = \lambda_1(\alpha_1, \dots, \alpha_n)(A\beta_1) + \lambda_2(\alpha_1, \dots, \alpha_n)(A\beta_2) = \lambda_1\sigma(v_1) + \lambda_2\sigma(v_2)$, 所以 σ 是线性变换

(b)
$$A^2 = A \Rightarrow A(A - E) = (A - E)A = 0$$
. 下考察 $r(A - E)$ 与 $r(A)$ 的关系. 设 $r(A) = r$, 则存在可逆矩阵 $P,Q \in M_n(\mathbb{F})$ 使得 $A = P\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}Q$, 由于 $A^2 = P\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}QP\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}Q$ = A , 所以 QP 具有 $QP = \begin{bmatrix} E_r & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$ 的形式。 $A - E = P\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}Q - PP^{-1}Q^{-1}Q = P\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} E_r & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{-1}Q$. 注意到 $A = C_{12} = C_{$

$$\begin{bmatrix} E_r & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{-1} = \begin{bmatrix} -C_{12} \\ E_{n-r} \end{bmatrix} D^{-1} [C_{21}; -E_{n-r}], \text{ Mm} \ r(A-E) = n-r.$$

下面验证 A 的列向量空间和 A-E 的解空间相同,即 $\operatorname{col}(A)=(A-E)^{\perp}$. $v\in\operatorname{col}(A)\Rightarrow \exists \gamma, v=A\gamma\Rightarrow (A-E)v=(A-E)A\gamma=0\Rightarrow v\in (A-E)^{\perp}$,故 $\operatorname{col}(A)\subset (A-E)^{\perp}$. 又 $\dim(\operatorname{col}(A))=r(A)=r=n-r(A-E)=\dim\left((A-E)^{\perp}\right)$,所以 $\operatorname{col}(A)=(A-E)^{\perp}$. 同理可得, $\operatorname{col}(A-E)=A^{\perp}$.

令 $W_1 = \{(\alpha_1, \dots, \alpha_n)\beta | \forall \beta \in A^{\perp}\}, W_2 = \{(\alpha_1, \dots, \alpha_n)\beta | \forall \beta \in (A-E)^{\perp}\}$ (或等价地, $W_1 = \{(\alpha_1, \dots, \alpha_n)\beta | \forall \beta \in \operatorname{col}(A-E)\}, W_2 = \{(\alpha_1, \dots, \alpha_n)\beta | \forall \beta \in \operatorname{col}(A)\}$),则 $V = W_1 \oplus W_2$ 是满足题意的一个直和分解,验证如下:

- (i) 设 $v=(\alpha_1,\cdots,\alpha_n)\beta\in W_1\cap W_2$ 则 $\beta\in A^\perp\cap (A-E)^\perp$,于是 $\beta=A\beta=0,\ x=0$. 所以 $W_1\cap W_2=0$.
- (ii) $\dim(W_1) + \dim(W_2) = \dim(A^{\perp}) + \dim((A E)^{\perp}) = (n r) + r = n = \dim(V)$, 结合 (i) 知, $V = W_1 \oplus W_2$.
- (iii) $\forall \alpha = (\alpha_1, \dots, \alpha_n)\beta \in W_1$,有 $\sigma \alpha = (\alpha_1, \dots, \alpha_n)(A\beta) = 0$ 因为 $\beta \in A^{\perp}, A\beta = 0$. 类似地, $\forall \alpha = (\alpha_1, \dots, \alpha_n)\beta \in W_2$,有 $\sigma \alpha = (\alpha_1, \dots, \alpha_n)(A\beta) = \alpha$ 因为 $\beta \in (A E)^{\perp}, A\beta = \beta$. (好像 W_1, W_2 和题目中的顺序反了,算了不改了)

4. 习题 5

设线性变换在基 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ 下的对应的矩阵为 A, 在基 $\{\beta_1, \beta_2, \cdots, \beta_n\}$ 下对应的矩阵为 B. 根据定义有: $\sigma(\alpha_1, \cdots, \alpha_n) = (\alpha_1, \cdots, \alpha_n)A$, $\sigma(\beta_1, \cdots, \beta_n) = (\beta_1, \cdots, \beta_n)B$. 考虑到同一线性空间的基之间能互相表示,故存在可逆矩阵 Q 使得 $(\beta_1, \cdots, \beta_n) = (\alpha_1, \cdots, \alpha_n)Q$, 从而有

$$\sigma(\beta_1, \dots, \beta_n) = (\beta_1, \dots, \beta_n)B = (\alpha_1, \dots, \alpha_n)QB$$
$$= \sigma[(\alpha_1, \dots, \alpha_n)Q] = (\sigma\alpha_1, \dots, \sigma\alpha_n)Q = (\alpha_1, \dots, \alpha_n)AQ$$

故而 $(\alpha_1, \dots, \alpha_n)(QB - AQ) = 0$, 由于基线性无关,故 $QB - AQ = 0 \Rightarrow A = QBQ^{-1}$, 即 A 与 B 相似。

1. 习题 2

⇒: 不妨设 $\sigma: V = W \oplus W^{\perp} \to W$, 其中 (w_1, \cdots, w_r) 是 W 子线性空间的一组标准正交基, (w_{r+1}, \cdots, w_n) 是 W^{\perp} 上的一组标准正交基,显然 $(w_1, \cdots, w_r, w_{r+1}, \cdots w_n)$ 构成 $V = W \oplus W^{\perp}$ 的一组标准正交基。 对于 V 上的任意一组标准正交基 $\alpha_1, \cdots, \alpha_n$,存在可逆矩阵 Q 使得 $(\alpha_1, \cdots, \alpha_n) = (w_1, \cdots, w_n)Q$,由于两组都是标准正交基,故而 Q 是酉矩阵。考虑设 σ 在标准正交基 $\{\alpha_i\}$ 下对应矩阵 A,则有

$$(\alpha_1,\cdots,\alpha_n)A=\sigma(\alpha_1,\cdots,\alpha_n)=\sigma(w_1,\cdots,w_r,w_{r+1},\cdots,w_n)Q$$

$$=(w_1,\cdots,w_r,w_{r+1},\cdots,w_n)\begin{bmatrix}E_r&0\\0&0\end{bmatrix}Q$$

$$=(\alpha_1,\cdots,\alpha_n)Q^\star\begin{bmatrix}E_r&0\\0&0\end{bmatrix}Q$$
 所以 $A=Q^\star\begin{bmatrix}E_r&0\\0&0\end{bmatrix}Q$ 是 Hermite 矩阵。又 $A^2=Q^\star\begin{bmatrix}E_r&0\\0&0\end{bmatrix}QQ^\star\begin{bmatrix}E_r&0\\0&0\end{bmatrix}Q=Q^\star\begin{bmatrix}E_r&0\\0&0\end{bmatrix}Q=Q^\star\begin{bmatrix}E_r&0\\0&0\end{bmatrix}Q$ 和, 所以 A 是幂等的。

 \leftarrow : 不妨设 σ 在某组标准正交基 $\alpha_1, \dots, \alpha_n$ 下对应矩阵 A, A 是幂等的 Hermite 矩阵。对于 Hermite 矩阵 A, 存在酉矩阵 $U = (u_1, \dots, u_n)$ 以及实对角矩阵 Λ , 使得 $A = U\Lambda U^*$. 由于是幂等的, $A^2 = U\Lambda^2 U^* = U\Lambda^2 U^*$

 $A = U\Lambda U^*$, 即 $\Lambda^2 = \Lambda$. 所以 Λ 对角线元素为 1 或 0. 不妨设 $\Lambda = \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}$, 则 $A = \sum_{i=1}^r u_i u_i^*$.

容易验证 $\forall i < r, Au_i = u_i, \forall i > r, Au_i = 0.$

构造 $W = \{(\alpha_1, \cdots, \alpha_n)x | x = \sum_{i=1}^r c_i u_i, c_i \in \mathbb{F}\}$,从而 $W^{\perp} = \{(\alpha_1, \cdots, \alpha_n)x | x = \sum_{i=r+1}^n c_i u_i, c_i \in \mathbb{F}\}$ \mathbb{F} }, 容易验证 $V = W \oplus W^{\perp}$, 且 σ 是从 V 到 W 的一个正交投影变换, 即 $\forall v \in W, \sigma v = v, \forall v \in W$ $W^{\perp}, \sigma v = 0.$

2. 习题 5

- (1) $[A,B] := tr(A^*B) = \sum_i (A^*B)_{ii} = \sum_i \sum_k (A^*)_{ik} B_{ik} = \sum_i \sum_k \overline{A_{ki}} B_{ki}$. 容易验证:
 - * 对称性: $[B,A] = \sum_{i} \sum_{k} \overline{B_{ki}} A_{ki} = \sum_{i} \sum_{k} \overline{\overline{A_{ki}}} B_{ki} = \overline{[A,B]}$.
 - * 线性性: $[A, \alpha C + \beta D] = \sum_{i} \sum_{k} \overline{A_{ki}} (\alpha C_{ki} + \beta D_{ki}) = \alpha \sum_{i} \sum_{k} \overline{A_{ki}} C_{ki} + \beta \sum_{i} \sum_{k} \overline{A_{ki}} D_{ki} =$ $\alpha[A,C] + \beta[A,D].$

该内积空间的一个标准正交基 $\{E_{ij}|i,j\in\{1,2,3,4\}\}$.

3. 习题 6

(1) 容易验证 $E_{11}, E_{12} + E_{21}, E_{22}$ 是 W 的一组基。所以 $B \in W^{\perp}$, 当且仅当 $[E_{11}, B] = 0, [E_{12} + E_{21}, B] =$

所以正交补子空间 $W^{\perp} = \{t(E_{12} - E_{21}) | t \in \mathbb{R}\}.$

所以正交补子空间
$$W^{\perp} = \{t(E_{12} - E_{21}) | t \in \mathbb{R}\}.$$
(2) 由于 $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = A + B = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0.5 \\ -0.5 & 0 \end{bmatrix}, 其中 $A \in W, B \in W^{\perp},$ 所以在 W 上的 正交投影为 A , 即 $\begin{bmatrix} 1 & 0.5 \\ 0.5 & 0 \end{bmatrix}.$$

4. 补充例 4.13

对于 $\forall \beta \in \text{im}(g)$, 存在 $\gamma \in V$, $g\gamma = v$. 所以 $f\beta = f(g\gamma) = (fg)\gamma = 0$, 即 $\beta \in \text{ker}(f)$, 故 $\text{im}(g) \subseteq \text{ker}(f)$. 根据课上讲到的结论 (或者考查 q 在某组基下对应的矩阵 A 并运用作业 7 中证明的 55 页习题 4 的结论) 有: $r(g) + r(I_V - g) = n$. 容易验证 $\operatorname{im}(I_V - g) \subseteq \ker(g)$, 因为对任意 $(I_V - g)\gamma, \gamma \in V$ 有 $g(I_V - g)\gamma = 0$. 而 $\dim \ker(g) = n - r(g) = r(I_V - g) = \dim \operatorname{im}(I_V - g)$, 所以有 $\ker(g) = \operatorname{im}(I_V - g)$.

考虑任意 $x \in \operatorname{im}(g) \cap \operatorname{im}(I_V - g) = \operatorname{im}(g) \cap \ker(g)$,有 $x = g\gamma$,且 $0 = gx = g^2\gamma = g\gamma = x$.所以 $\operatorname{im}(g) \cap \operatorname{im}(I_V - g) = \{0\}$.所以有 $V = \operatorname{im}(g) \oplus \operatorname{im}(I_V - g)$.

- (1) 对于任意 $v \in V \ker(f)$, 由于 $v \notin \ker(f)$, $\operatorname{im}(g) \subseteq \ker(f)$, 所以 $v \notin \operatorname{im}(g)$. 又 $V = \operatorname{im}(g) \oplus \operatorname{im}(I_V g)$, 所以 $v \in \operatorname{im}(I_V g) = \ker(g)$. 这就验证了 $V = \ker(f) + \ker(g)$.
- (2) ⇒: 若 $V = \ker(f) \oplus \ker(g)$, 则 $n = \dim \ker(f) + \dim \ker(g) = n r(f) + n r(g)$, 故 r(f) + r(g) = n. \Leftarrow : 若 r(f) + r(g) = n, 则 $\dim \ker(f) = n - r(f) = r(g) = \dim \operatorname{im}(g)$. 又 $\operatorname{im}(g) \subseteq \ker(f)$, 故此时 $\ker(f) = \operatorname{im}(g)$. 又因为 $\ker(g) = \operatorname{im}(I_V - g)$, 所以 $V = \operatorname{im}(g) \oplus \operatorname{im}(I_V - g) = \ker(f) \oplus \ker(g)$.

1. 59 页习题 4

Lemma 0.1. 正交矩阵可以由若干镜面反射矩阵相成得到

证明. 设 $Q \in M_n(\mathbb{R})$, $Q = (q_1, q_2, \dots, q_n)$. 由于 $(q_1, q_1) = 1$,故存在镜面反射矩阵 U_1 使得 $U_1q_1 = e_1 := (1, 0, \dots, 0)^{\mathsf{T}}$. 对于任意 $j \neq 1$, $(U_1q_j, U_1q_1) = q_j^{\mathsf{T}}U_1U_1q_1 = q_j^{\mathsf{T}}q_1 = 0$,所以 $U_1q_j = (0, *, \dots, *)^{\mathsf{T}}$,即第一个分量必然为 0. 从而有

$$U_1Q = (U_1q_1, U_1q_2, \cdots, U_1q_n) = \begin{bmatrix} 1 & 0 \\ 0 & Q' \end{bmatrix}$$

由于镜面反射变换不改变内积,即 $(U_1q_i,U_1q_j)=(q_i,q_j)$,故 Q' 是 n-1 阶的正交矩阵。归纳地进行下去即可得到 $U_{n-1}\cdots U_2U_1Q=E_n$,即 $Q=U_1U_2\cdots U_{n-1}$.

对于正交变换 σ 它在 V 的一组标准正交基 η_1, \dots, η_n 下对应于矩阵 Q, 容易验证 Q 是正交矩阵。

那么 $\sigma(\eta_1, \dots, \eta_n) = (\eta_1, \dots, \eta_n)Q = (\eta_1, \dots, \eta_n)U_1U_2 \dots U_{n-1}$, 其中 U_i 是镜面反射矩阵

在标准正交基 η_1, \dots, η_n 下,镜面反射矩阵 U_1 对应于镜面反射变换 σ_1 ,于是 $(\eta_1, \dots, \eta_n)U_1U_2 \dots U_{n-1} = \sigma_1(\eta_1, \dots, \eta_n)U_2 \dots U_{n-1}$. 由于镜面反射变换不改变内积,故而 $\sigma_1(\eta_1, \dots, \eta_n)$ 仍是一组标准正交基,不妨设 U_2 在 $\sigma_1\{\eta_i\}$ 下对应于镜面反射变换 σ_2 ,则有 $(\eta_1, \dots, \eta_n)U_1U_2 \dots U_{n-1} = (\sigma_2\sigma_1)(\eta_1, \dots, \eta_n)U_3 \dots U_{n-1}$. 归纳地进行下去,假设镜面反射矩阵 U_{i+1} 在 $(\sigma_i \dots \sigma_1)(\eta_1, \dots, \eta_n)$ 这一标准正交基下对应于镜面反射变换 σ_{i+1} ,则最终得到

$$\sigma(\eta_1, \cdots, \eta_n) = (\sigma_{n-1}\sigma_{n-2}\cdots\sigma_1)(\eta_1, \cdots, \eta_n)$$

这就构造出了 $\sigma = \sigma_{n-1}\sigma_{n-2}\cdots\sigma_1$.

似乎证复杂了,实际上只需要假设 U_i 在 (η_1, \cdots, η_n) 下对应于镜面反射变换 σ_i , 即可得到 $\sigma = \sigma_1 \sigma_2 \cdots \sigma_{n-1}$

2. 60 页习题 8

方便起见,这里先证明第 2 问的结论,以说明 τ 的存在性,再回到第 1 问,补充证明其唯一性: σ 在基 $V=(v_1,v_2,\cdots,v_n)$ 下对应于矩阵 A,取 τ 为在这组基下 A^* 对应的线性变换,任取 $v=(v_1,\cdots,v_n)\alpha$, $w=(v_1,\cdots,v_n)\beta$,则 $\sigma v=(v_1,\cdots,v_n)A\alpha$, $\tau w=(v_1,\cdots,v_n)A^*\beta$.

计算得到 $[\sigma v, w] = \alpha^* A^* V^* V \beta$, $[v, \tau w] = \alpha^* V^* V A^* \beta$.

实际上应该需要增加 (v_1, \dots, v_n) 是标准正交基的条件,以保证 $V^*V = E$,从而有 $[\sigma v, w] = [v, \tau w]$.

下面验证这样的 τ 的唯一性: 假设 τ_1, τ_2 都满足 $[\sigma v, w] = [v, \tau_i w], \forall v, w \in V, i = 1, 2.$

构造线性变换 $\tau': x \to \tau_1 x - \tau_2 x$, 则有 $\forall v, w \in V, [v, \tau'w] = 0$. 取 $v = \tau'w$ 即有对任意的 $w \in V$, $[\tau'w, \tau'w] = 0$, $\tau'w = 0$, 这就验证了 $\tau' = \tau_1 - \tau_2$ 是零线性变换, 故 $\tau_1 = \tau_2$.

若 $\sigma\sigma^* = \sigma^*\sigma$ 则称 σ 是正规线性变换,这一定义当然与正规矩阵的概念和谐。因为正规矩阵是指使得 $AA^* = A^*A$ 成立的矩阵,而在标准正交基下,线性变换与矩阵是对应的。

3. 63 页习题 3

⇒: 由教材 62 页命题 3.4.3 直接可得;

⇐:

Lemma 0.2. 如果 $V = A \oplus W_A = B \oplus W_B$, 且有 $B \subseteq W_A$, 那么 $W_A = B \oplus (W_A \cap W_B)$.

证明. 显然有 $W_A \cap W_B \subseteq W_B$ 与 B 的交集为 $\{0\}$, 所以 $B + (W_A \cap W_B) = B \oplus (W_A \cap W_B)$.

考虑到 $B \subseteq W_A$, $(W_A \cap W_B) \subseteq W_A$, 所以 $B \oplus (W_A \cap W_B) \subseteq W_A$. 下验证 $W_A \subseteq B \oplus (W_A \cap W_B)$: 对于任意 $v \in W_A \subseteq V = B \oplus W_B$, $v = b + w_b$, 其中 $b \in B$, $w_b \in W_B$. 假设 w_b 在 $V = A \oplus W_A$ 下表示为 $w_b = a + w_a$, $a \in A$, $w_a \in W_A$, 那么有 $v = b + a + w_a$. 由于 $b \in B \subseteq W_A$, $w_a \in W_A$, $w_a \in W_A$, $w_a \in W_A$, $w_a \in W_A$, 那么有 $v = b + a + w_a$. 由于 $v \in W_A$, 即 $v_b \in W_A$, $v_b \in W_A$

假设 $\lambda \in \sigma$ 在 V 下的某一个特征值,设 $A = \{v \in V | \sigma v = \lambda v\}$.

如果 $\dim A = \dim V$, 那么 σ 在某组基下对应于对角阵 λE .

如果 $0 < \dim A < \dim V$,显然 A 是一个 σ -子空间,根据题设,它存在 σ -子空间直和补 W_A , $V = A \oplus W_A$.由 Lemma 0.2 可知 W_A 也满足"每个 σ -子空间都有一个 σ -子空间直和补",因为对于 W_A 的 σ -子空间 B,在 V 上存在 σ -子空间直和补 W_B ,从而可以构造 W_A 上的 σ -子空间直和补 $W_A \cap W_B$.由于 $\dim W_A < \dim V$,归纳地进行下去,即可证得 σ 在 W_A 的某个基下对应于对角阵 $\Lambda_{\dim W_A}$,从而证得 σ 在 V 的某组基下对应于对角阵 $\Lambda_{\dim W_A}$

4. 63 页习题 4

- (1) 这里利用 Jordan 标准型的唯一性来说明:假设对于 V 的某个非平凡的 σ -子空间 W,存在 σ -子空间直和补 W',那么假设 $w_1, \cdots w_r$ 是 W 的一组基, $0 < r < n, w_{r+1}, \cdots, w_n$ 是 W' 的一组基,则有 $\sigma(w_1, \cdots, w_r, w_{r+1}, \cdots, w_n)$ $\begin{bmatrix} A \\ B \end{bmatrix}$. 其中 A 是 r 阶方阵,B 是 n-r 阶方阵。于是 $J=\lambda E_n+E_{12}+\cdots+E_{n-1,n}$ 相似于 $\begin{bmatrix} A \\ B \end{bmatrix}$ 以及相似于它的 Jordan 标准型 $\begin{bmatrix} J_A \\ J_B \end{bmatrix}$. 这与方阵的 Jordan 标准型唯一相矛盾,所以对于 V 的任意非平凡 σ -子空间不存在 σ -子空间直和补。
- (2) 不妨将这组基显式地设出来 $\{\alpha_i\}$, $\sigma(\alpha_1,\cdots,\alpha_n)=(\alpha_1,\cdots,\alpha_n)J$. 下面归纳地证明: 若 W 是 V 的一个维数不少于 k 的 σ -子空间,那么 $\alpha_i\in W, \forall i\leq k$. 证明.

- i. 对于 k=1, 由于 W 维数至少为 1, 故存在 $W\ni v=\sum_i c_i\alpha_i$, 使得至少有一个 $c_i\neq 0$. 设 j 是使 $c_j \neq 0$ 成立的最大下标。考虑到 W 也是 $\tau = \sigma - \lambda I_V$ 不变的,又有 $\tau \alpha_1 = 0, \tau \alpha_{i+1} = \alpha_i, i \geq 1$, 故 $\tau^{j-1}v = c_i\alpha_1 \in W$, 从而得到 $\alpha_1 \in W$.
- ii. 若 W 是 V 的一个维数不少于 k+1 的 σ -子空间,那么存在 $W\ni v=\sum_i c_i\alpha_i$,使得至少有 k+1个 $c_i \neq 0$ (否则 W 的维数不超过 k). 设 j 是使得 $c_i \neq 0$ 成立的最大下标, 显然有 $j \geq k+1$ 。同样 地,构造 $\tau=\sigma-\lambda I_V$,显然 W 也是 τ 不变的。由于 $\tau^{j-k-1}v=c_j\alpha_{k+1}+\sum_{i>j-k-1}c_i\alpha_{i-(j-k-1)}=$ $c_j \alpha_{k+1} + v' \in W$,其中 $v' \in \operatorname{span}\{\alpha_1, \cdots, \alpha_k\}$. 由归纳假设知, $\operatorname{span}\{\alpha_1, \cdots, \alpha_k\} \subseteq W$ (由 W 维 数不少于 k 推知), 故而 $\alpha_{k+1} \in W$.

由上述命题可知, σ -子空间有且仅有 $\{0\}$ 以及 $\mathrm{span}\{\alpha_1,\cdots,\alpha_i\}$ 其中 $1\leq i\leq n$. 事实上由这一命题也能推出本题(1)问中的结论。

5. 63 页习题 6

由本次作业第 2 题 (60 页习题 8) 可知, σ 是正规变换, 当且仅当它在某一组标准正交基 $\alpha_1, \dots, \alpha_n$ 下 对应的矩阵 A 是正规矩阵。而由正规矩阵基本定理可知,正规矩阵 A 可以酉对角化,即存在酉矩阵 U、 $UAU^* = \Lambda$. 所以这等价于 σ 在某组标准正交基, 即 $(\alpha_1, \dots, \alpha_n)U^*$ 下, 对应于对角矩阵 $\Lambda = UAU^*$.

那么由教材 61 页引理 3.4.2 可知,设 $\lambda_1, \dots, \lambda_r$ 是 σ 的互异的特征值,则 $V = \bigoplus_{i=1}^r V_i$,其中 $V_i = \{v \in V_i\}$ $V|\sigma v=\lambda_i v$ }. 再仿照教材 62 页命题 3.4.3 的方法, 可将 W 分解为 $W=\bigoplus_i (W\cap V_i)$. 考虑到对于 $W\cap V_i$, 其在 V_i 中存在正交补 $(W \cap V_i)^{\perp}$ (对 V_i 中的特征向量做正交化即可构造), 显然 $(W \cap V_i)^{\perp}$ 也是 σ 不变 的。于是可以构造 $W^{\perp} = \bigoplus_{i} (W \cap V_{i})^{\perp}$, 且它是 σ -子空间。

1. 习题 1

$$A = \begin{bmatrix} 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 0 & 5 & -3 \\ 4 & -1 & 3 & -1 \end{bmatrix}$$
 首先求其 Jordan 标准型: 容易计算 $\det(xE - A) = (x - 2)^4$. 考虑

$$A = \begin{bmatrix} 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 0 & 5 & -3 \\ 4 & -1 & 3 & -1 \end{bmatrix}$$
 首先求其 Jordan 标准型: 容易计算 $\det(xE - A) = (x - 2)^4$. 考虑
$$B = A - 2E = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 3 & 0 & 3 & -3 \\ 4 & -1 & 3 & -3 \end{bmatrix}, B^2 = O. 求得 Bx = 0 的解空间上的一组基 $\alpha_1 = [-1, -1, 0, -1]^{\mathsf{T}}, \alpha_2 = 0$$$

[0,0,3,3]^T. 容易构造 $\beta_1 = [0,1,0,0]^T$, $\beta_2 = [0,0,1,0]^T$ 使 $B\beta_1 = \alpha_1$, $B\beta_2 = \alpha_2$. 容易验证 β_1 , β_2 , α_1 , α_2 线性无关,故构造得到 $S = [\alpha_1,\beta_1,\alpha_2,\beta_2] = \begin{bmatrix} -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ -1 & 0 & 3 & 0 \end{bmatrix}$. 求得 $S^{-1} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1/3 & 0 & 0 & 1/3 \\ 1 & 0 & 1 & -1 \end{bmatrix}$. 从

而
$$S^{-1}AS = J = \begin{bmatrix} 2 & 1 & & \\ & 2 & & \\ & & 2 & 1 \\ & & & 2 & 1 \\ & & & 2 & 2 \end{bmatrix} = 2E + B_1.$$
 其中 B_1 是幂零的 Jordan 阵, $B_1^2 = O$.

(1)
$$\sin(2+x) = \sin(2) + \cos(2) \cdot x - \frac{\sin(2)}{2}x^2 + \cdots$$
, $\sin(J) = \sin(2E + B_1) = \sin(2)E + \cos(2)B_1$.

$$\sin(A) = S \cdot \sin(J) \cdot S^{-1} = S \cdot \begin{bmatrix} \sin(2) & \cos(2) & & \\ & \sin(2) & & \\ & & \sin(2) & \cos(2) \\ & & & \sin(2) \end{bmatrix} \cdot S^{-1}$$

由于 $\sin A = (\sin 2)SES^{-1} + (\cos 2)SB_1S^{-1} = (\sin 2)E + (\cos 2)(A - 2E)$,

具体计算可得
$$\sin(A) = \begin{bmatrix} \sin 2 + \cos 2 & -\cos 2 & 0 & 0 \\ \cos 2 & -\cos 2 + \sin 2 & 0 & 0 \\ 3\cos 2 & 0 & 3\cos 2 + \sin 2 & -3\cos 2 \\ 4\cos 2 & -\cos 2 & 3\cos 2 & \sin 2 - 3\cos 2 \end{bmatrix}$$

1. 94 页习题 1

为避免符号混淆,将新定义的范数记为 $||-||_m, ||\alpha||_m := ||A\alpha||, A$ 列满秩.

正定性: 由于 ||-|| 是向量范数,故而 $||\alpha||_m = ||A\alpha|| \ge 0$. A 可作分解 A = QR, 其中 $Q \in \mathbb{F}^{m \times n}$ 是列酉 阵 $Q^*Q = E_n$, R 是满秩上三角矩阵。故而 $||\alpha||_m = 0 \Rightarrow ||A\alpha|| = 0 \Rightarrow A\alpha = QR\alpha = 0 \Rightarrow \alpha =$ $R^{-1}Q^{\star}QR\alpha = 0.$

齐次性: $||k\alpha||_m = ||A(k\alpha)|| = |k| \cdot ||A\alpha|| = |k| \cdot ||\alpha||_m$.

三角不等式: $||\alpha + \beta||_m = ||A(\alpha + \beta)|| \le ||A\alpha|| + ||A\beta|| = ||\alpha||_m + ||\beta||_m$.

2. 94 页习题 2

3. 94 页习题 3

(1) 首先验证 $||\alpha||_A = \sqrt{\alpha^* A \alpha}$ 是一个向量范数,其中 A 是正定 Hermite 矩阵

正定性: 由 A 是 Hermite 矩阵可知 $||\alpha||_A \ge 0$ 且 $||\alpha||_A = 0 \rightarrow \alpha = 0$.

齐次性: $||k\alpha||_A = \sqrt{k^2\alpha^*A\alpha} = |k| \cdot \sqrt{\alpha^*A\alpha} = |k| \cdot ||\alpha||_A$.

- 三角不等式: 对正定的 Hermite 矩阵 A 作 Cholesky 分解, $A=LL^\star$. 由 Cauchy-Schwarz 不等式, $\forall x,y$, $[L^\star x,L^\star y] \leq \sqrt{[L^\star x,L^\star x]}\sqrt{[L^\star y,L^\star y]},$ 展开即得 $x^\star Ay = x^\star LL^\star y \leq \sqrt{x^\star LL^\star xy^\star LL^\star y} = \sqrt{x^\star Axy^\star Ay}.$ 所以 $(||x||_A + ||y||_A)^2 ||x+y||_A^2 = 2\left(\sqrt{x^\star Ax}\sqrt{y^\star Ay} x^\star Ay\right) \geq 0$,即 $||x||_A + ||y||_A \geq ||x+y||_A.$
 - (2) 为说明"当 A 遍历全部 n 阶 Hermite 正定矩阵时, $||-||_A$ 遍历全部由 V 上内积确定的范数",只需要说明,对于任意一个 V 上内积 [-,-],存在对应的 Hermite 正定矩阵 A 使得 $\forall \beta \in V, [\beta, \beta] = ||\beta||_A^2$. 考虑 $V = \mathbb{C}^{n \times 1}$ 的一组基 e_1, e_2, \cdots, e_n ,其中 e_i 表示第 i 个分量为 1 其余分量全为 0 的向量。对于任意的 $\beta \in V$,有 $\beta = (e_1, e_2, \cdots, e_n)\beta$. 对于内积 [-,-] 有 $[\beta, \beta] = [\sum_i \beta_i e_i, \sum_i \beta_i e_i] = \sum_i \sum_j \beta_i^* [e_i, e_j] \beta_j = \beta^* A \beta$,其中 $A = \{[e_i, e_j]\}_{ij}$,即 A 是由基 $\{e_i\}$ 之间的内积取值组成的矩阵。由内积的正定性可知 A 是正定矩阵,由内积的对称性可知 A 是 Hermite 矩阵。

4. 101 页习题 1

显然,由于 $||A||_{M_1}$ 相当于矩阵拉平后的向量的 1- 范数,所以 $||-||_{M_1}$ 满足向量范数的要求. 且有 $||AB||_{M_1} = \sum_{i,j} |(AB)_{ij}| = \sum_i \sum_j \sum_k |A_{ij}||B_{jk}| \leq \sum_i \sum_j |A_{ij}||B||_{M_1} = ||A||_{M_1}||B||_{M_1}$.

5. 101 页习题 2

 $0 \le ||A^k|| \le ||A||^k$. 又知 ||A|| < 1,所以 $\lim_{k \to \infty} ||A||^k = 0$,所以 $\lim_{k \to \infty} ||A^k|| = 0$,故 $\lim_{k \to \infty} A^k = 0$.

- 6. 101 页习题 3
 - (1) $||UA||_F = \sqrt{\text{tr}((UA)^*(UA))} = \sqrt{\text{tr}(A^*U^*UA)} = \sqrt{\text{tr}(A^*A)} = ||A||_F;$ $||AU||_F = \sqrt{\text{tr}((AU)^*(AU))} = \sqrt{\text{tr}(U^*A^*AU)} = \sqrt{\text{tr}(UU^*A^*A)} = \sqrt{\text{tr}(A^*A)} = ||A||_F.$
 - (2) 正规矩阵 N 可酉相似对角化, $N=U^*\mathrm{diag}\{\lambda_1,\cdots,\lambda_n\}U$. 从而有 $||N||_F=||U^*\mathrm{diag}\{\lambda_1,\cdots,\lambda_n\}U||_F=||\mathrm{diag}\{\lambda_1,\cdots,\lambda_n\}||_F=\sqrt{\sum_i \bar{\lambda}_i \lambda_i}=\sqrt{\sum_i |\lambda_i|^2}$.

7. 101 页习题 4

- (1) 对于任一矩阵 A, $||A||_2 = \sqrt{\rho(A^*A)}$. 其中 $\rho(-)$ 表示谱半径。所以 $||UA||_2 = \sqrt{\rho(A^*U^*UA)} = \sqrt{\rho(A^*A)} = ||A||_2$ $||AU||_2 = \sqrt{\rho(U^*A^*AU)} = \sqrt{\rho(A^*A)} = ||A||_2$, 因为 $\det(xE U^*A^*AU) = \det(xE A^*A)$. 所以 $||-||_2$ 是酉不变的。
- $(2) \ N = U^* \mathrm{diag}\{\lambda_1, \cdots, \lambda_n\}U, \ ||N||_2 = ||\mathrm{diag}\{\lambda_1, \cdots, \lambda_n\}||_2 = \sqrt{\max_i |\lambda_i|^2} = \max_i |\lambda_i|.$

1. 习题 6

- (1) $||A||_{M_1} := \sum_{1 \leq i,j \leq n} |a_{ij}|$. 由例 4.2.8(1) 可知 $||A||_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{ij}|$, 从而有 $||A||_1 \leq \sum_{1 \leq j \leq n} \sum_{1 \leq i \leq n} |a_{ij}| = ||A||_{M_1}$. 所以对于任意的 $A \in M_n(\mathbb{F}), v \in \mathbb{F}^n$, $||Av||_1 \leq ||A||_1 ||v||_1 \leq ||A||_{M_1} ||v||_1$, 即 $||-||_{M_1}$ 与 $||-||_1$ 相容。
- (2) 由例 4.2.8(2) 知, $||A||_2 = \sqrt{\rho(A^*A)} = \sqrt{\lambda_{\max}(A^*A)}$. 而对 Frobenius 范数 $||A||_F := \sqrt{\sum_{i,j} \bar{a}_{ij} a_{ij}} = \sqrt{\operatorname{tr}(A^*A)} = \sqrt{\sum_i \lambda_i(A^*A)} \ge \sqrt{\lambda_{\max}(A^*A)} = ||A||_2.$ 所以 $||Av||_2 \le ||A||_2 ||v||_2 \le ||A||_F ||v||_2$, 即 $||-||_F = ||-||_2$ 相容。
- (3) $||A||_{M_{\infty}} := n \cdot \max_{i,j} |a_{ij}|.$

- p=1: 由例 4.2.8(1) 知, $||A||_1=\max_j\sum_i|a_{ij}|=\sum_i|a_{ij'}|\leq n\cdot\max_i|a_{ij'}|\leq n\cdot\max_{i,j}|a_{ij}|=||A||_{M_\infty}$, 同 (1)(2) 的步骤可知, $||-||_{M_\infty}$ 与 $||-||_1$ 相容
- p=2: 由 (2) 知, $||A||_2 \le ||A||_F = \sqrt{\sum_{i,j} |a_{ij}|^2} \le \sqrt{n^2 \cdot (\max_{i,j} |a_{ij}|)^2} = ||A||_{M_\infty}$. 再同 (1)(2) 可得 $||-||_{M_\infty}$ 与 $||-||_2$ 相容

 $p=\infty$: 由例 4.2.8(3) 知, $||A||_{\infty}=\max_{i}\sum_{j}|a_{ij}|$, 完全仿照 p=1 的情况即得 $||-||_{M_{\infty}}$ 与 $||-||_{\infty}$ 相容

2. 习题 7

考虑对 $A \in M_n(\mathbb{C})$ 作奇异值分解,即 A = USV, 其中 U, V 是酉矩阵, $S = \text{diag}(s_A), s_A(1), \cdots, s_A(n)$ 是 A 的全体奇异值。由于 ||-|| 是酉不变的,所以 ||A|| = ||USV|| = ||S||.

按如下方式定义 \mathbb{R}^n 上的范数 $N: N(v) := ||\mathbf{diag}(v)||$. 由于矩阵范数 ||-|| 满足向量范数的各个要求,所以这样定义出来的 N 也满足向量范数的要求,且显然有 $||A|| = ||S|| = ||\mathbf{diag}(s_A)|| = N(s_A)$.

3. 习题 8

对于任意的 $x, y \in \mathbb{R}^+, \lambda \in [0, 1], N(\lambda x + (1 - \lambda)y) = ||A + (\lambda x + (1 - \lambda)y)B|| = ||\lambda A + \lambda x B + (1 - \lambda)A + (1 - \lambda)yB|| \le ||\lambda A + \lambda x B|| + ||(1 - \lambda)A + (1 - \lambda)yB|| = \lambda N(x) + (1 - \lambda)N(y),$ 这就验证了 N(x) 是凸函数