Introduction to Soft Robotics

Autumn 2022

Instructors: Ahmad Rafsanjani, Jonas Jørgensen

Part 1: Arduino 101

Arduino Uno and Serial communication

SDU Biorobotics

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. This software can be used with any Arduino board.

Refer to the **Getting Started** page for Installation instructions.

SOURCE CODE

Active development of the Arduino software is **hosted by GitHub**. See the instructions for **building the code**. Latest release source code archives are available **here**. The archives are PGP-signed so they can be verified using **this** gpg key.

SoRo_101 QR code

Part 2: MPX5100 Integrated Silicon Pressure Sensor

MPX5100, 0 to 100 kPa, Differential, Gauge, and Absolute, Integrated, Pressure Sensor

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure range ⁽¹⁾	P _{OP}				kPa
Gauge, differential: MPX5100G/MPXV5100G		0	_	100	
Absolute: MPX5100AP		15	_	115	
Supply voltage ⁽²⁾	V _S	4.75	5.0	5.25	V _{DC}
Supply current	lo	_	7.0	10	mAdc

Figure 1. MPX5100DP Pinout (top view), Pin functions, and mechanical and electrical specifications

Nominal Transfer Value:

 $V_{OUT} = V_S (P \times 0.009 + 0.04)$ ± (Pressure Error x Temp. Mult. x 0.009 x V_S) $V_S = 5.0 V \pm 0.25 V$

Figure 8. Transfer function (MPX5100D, MPX5100G, MPXV5100G)

Figure 2. MPX5100DP - Arduino connection diagram

Arduino libraries

- → Download ads Arduino driver at GitHub Link
- → Copy folder ads_driver into Arduino/Libraries folder
- → Open the *ads.h* file located at *ads_driver* folder
- → Change the command ADS_DFU_CHECK(1) to ADS_DFU_CHECK(0)
- → Save the changes
- → Download SoRo_Tutorial_1 sketch at GitHub Link

Arduino Calibration

- → Compile and Upload SoRo_Tutorial_1 sketch at Arduino Uno Device
- → Open the serial monitor
- → Put the Bendlabs sensor in the 0° position
- → Type 0 and press Enter
- → Put the Bendlabs sensor in the 90° position
- → Type 9 and press Enter

Ads_driver QR code

SoRo_Tutorial_1 QR code

Arduino Calibration and plotting

```
//Pressure sensor calibration factors MPX5100 Series Integrated Silicon Pressure Sensor analog input (0 to 100 kPa) Vout=Vs(P * 0.009 + 0.04), Vs=5V = 1024, P = const float SensorOffset = 4.44; //pressure sensor offset const float SensorGain = 0.109; // pressure sensor proportional relation
```

```
// read the input on analog pin 1:
float pressure_sensorValue = (analogRead(PRESSURE_SENSOR)*SensorGain-SensorOffset); //Do maths for calibration
```

```
Serial.print(sample[0]);  // Angle data
Serial.print(",");
Serial.print(pressure_sensorValue);  // pressure data in kpa
Serial.print(",");
Serial.println(resistance_sensorValue);  // Stretch data
```


Part 3: Conductive Rubber Cord Sensor

TECHNICAL DETAILS

Length: approximately 1 meter = 39 inches

Diameter: 2mm

Resistance: 350-400 ohms per inch / 140 - 160 ohms per centimeter

Figure 1. Conductive Rubber Cord Sensor – Arduino connection diagram

Arduino Calibration and plotting

```
//Pressure sensor calibration factors

const float SensorOffset2 = 330; //pressure sensor offset
const float SensorGain2 = 337590; // pressure sensor proportional relation

// read the input on analog pin 0:
float resistance_sensorValue = (SensorGain2/analogRead(RUBBER_SENSOR)-SensorOffset2); //Do maths for calibration
```

```
Serial.print(sample[0]);  // Angle data
Serial.print(",");
Serial.print(pressure_sensorValue);  // pressure data in kpa
Serial.print(",");
Serial.println(resistance_sensorValue);  // Stretch data
```


Part 4: Bendlabs sensor

SDU Biorobotics

bendlabs

One Axis

Sensor Specifications

- Dimensions: 100mm x 7.62mm x 1.27mm (3.94in x 0.30in x 0.05in)
- Average Sensitivity: 0.274 pF/°
- Repeatability: 0.18°
- Life Cycle: >1M cycles

Electrical Specifications

- Sensitivity: 0.016° LSB Voltage: 1.62 3.63V
- Output: I2C

Arduino Calibration and plotting

```
//Defining varialbes for bendlabs sensor data processing
static float sample[2];
uint8_t data_type;

// Read data from the one axis ads sensor
int ret_val = ads_read_polled(sample, &data_type);

// Check if read was successfull

if(data_type == ADS_SAMPLE)
{
    // Low pass IIR filter
    signal_filter(sample);

    // Deadzone filter
    deadzone_filter(sample);
}
```

```
case '0':
    // Take first calibration point at zero degrees
    ads_calibrate(ADS_CALIBRATE_FIRST, 0);
    break;
case '9':
    // Take second calibration point at ninety degrees
    ads_calibrate(ADS_CALIBRATE_SECOND, 90);
    break;
```


Part 5: System integration

Figure 1. Connection Scheme for a Bendlabs and MPX5100 pressure sensor for Arduino Uno

