Arduino <--> Node Server

Adam Driggers 2025–26 Resident NYU IMA Low Res

Check-In

Which cat are you vibing with?

Goal

Use an Arduino to send and receive data to a Node web Server.

Agenda

- Background 20 min
- Setup 10 min
- Getting Data 10 min
- Pushing Data 10 min
- Q/A 10+ min

What are Arduinos good for?

What are Web servers good for?

What can we do when we combine the two?

Applications

- Collect Sensor Data
- Remote control of Lights/motors
- Communication between multiple Arduinos
- Much more...

Today

Two simple examples!

- 1. Turn an LED on/off based on a boolean value in a database.
- 2. Send a light sensor reading to a web server.

Prediction

NO Googling or LLMing

Make a prediction of what we need to do to make the Arduino communicate with a webserver.

Create a diagram, flow chart, list, or pseudo code.

Break the problem down into smaller and smaller steps.

Share Out

Client

Server

Client <--> Server

Types of Requests ("HTTP Verbs")

- GET ask for some data
- POST send some data
- PUT replace some existing data
- DELETE delete some data
- Some others...

So we need...

- Server with routes
- Arduino connected to the internet
- A way for the Arduino to make requests of the server
- Server processes these requests
- Server responds to the Arduino
- Arduino does something with the response.

So we need...

- Server with routes
- Arduino connected to the internet
- Server processes these requests
- Server responds to the Arduino
- Arduino does something with the response.

Server

Read through server.js file. What do you see?

So we need...

- Server with routes
- Arduino connected to the internet
- A way for the Arduino to make requests of the server
- Server processes these requests
- Server responds to the Arduino
- Arduino does something with the response.

Arduino Nano IOT

WifiNINA Library

Utility for connecting to wifi

Connect to Wifi

Run code in wifi-tester

So we need...

- Server with routes
- Arduino connected to the internet
- A way for the Arduino to make requests of the server
- Server processes these requests
- Server responds to the Arduino
- Arduino does something with the response.

WifiNINA Library

Also includes a client library for making HTTP requests

Sidequest

Before we continue, let's make sure our circuit is working

fritzing

Upload and Test

Upload the code to the Arduino and open the serial monitor

Press the button

- Led turns on
- Light level is printed to the monitor

Cover up the transistor or shine a bright light on it and press the button

Light level reading should change. Expect numbers from 0 to 4000.
0 is absolutely no light, 4000 super intense light. If you are getting values in a different range (i.e. between 0 - 300) try flipping the phototransistor.

WifiNINA Library

Also includes a client library for making HTTP requests

So we need...

- Server with routes
- Arduino connected to the internet
- A way for the Arduino to make requests of the server
- Server processes these requests
- Server responds to the Arduino
- Arduino does something with the response.

GET Request

Arduino gets data from the server Turn on a light!

POST Request

Arduino posts data to the server Send light sensor data

Note:

Both these examples use "polling," every once in a while the client is asking the server "any updates for me?"

This is inefficient but really simple and great for low-traffic scenarios

A better solution would be to use websockets, which is a little more difficult to set up since Arduino can't use Sockets.io

Questions?