Challenging Problem 6

Saransh Bali

Abstract—This a simple document that explains Orthogonal vectors are Linearly independent.

Download latex-tikz codes from

https://github.com/saranshbali/EE5609/blob/master/ChallengeProblem6

1 Problem

Show that the set of Orthogonal vectors $v_1, v_2, ..., v_n$ is Linear independent.

2 Solution

Consider, the expression

$$a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_k \mathbf{v_n} = 0$$
 (2.0.1)

Take the dot product of 2.0.1 with v_1 , we get

$$a_1 \|\mathbf{v_1}^2\| + a_2 \mathbf{v_2}^T \mathbf{v_1} + \dots + a_n \mathbf{v_n}^T \mathbf{v_1} = 0$$
(2.0.2)

Hence,
$$a_1 = 0$$
 (2.0.3)

Similarly, taking the dot product of 2.0.1 with $\mathbf{v_2}$, ..., $\mathbf{v_n}$, we find out $a_2 = 0, ..., a_n = 0$.

Thus, the set of Orthogonal vectors $v_1, v_2, ..., v_n$ is Linear independent.