Expenditure Data Analysis Project

Table of Contents:

- 1. Problem statements:
- 2. Data Description:
 - 2.1 Introduction
 - 2.2 Data source and data set
- 3. Load the Packages and Data
- 4. Data Profiling:
 - 4.1 Understanding the Dataset
 - 4.2 Pre Profiling
 - 4.3 Preprocessing
 - 4.4 Post Profiling
- 5. Data Visualization:
- 6. Conclusions:

1. Problem statements:

No business can survive in this competitive market without managing their cost. It does not matter if revenues are high but if cost is higher it is a red flag. So you are tasked to help management in creating and establishing new structure and models to reduce cost.

2. Data Description:

- Exp Category: Gives the description about expenditure Category.
- State: Gives the description about States and UTs of India.
- Year: Gives the description about Year.
- Value: Gives the description about expenditure spending in millions.

The dataset as listed on NITI Aayog website from 1980_81 to 2015_16. That is collected by using web scraping.

2.1. Introduction:

An Expenditure Data Analysisis the project related to Exploratory data analysis(EDA) and Data visualization of expenditure dataset from **NITI Aayog** of India I have used python libraries to get expenditure information, visualize different aspects of it, and finally I worked at a few ways of analyzing the spending of expenditure based on its previous performance history statewise in India. The **NITI Aayog**(National Institution for Transforming India) serves as the apex public policy think tank of the Government of India, and the nodal agency tasked with catalyzing economic development, and fostering cooperative federalism through the involvement of State Governments of India in the economic policy-making process using a bottom-up approach

2.2. Data source and data set:

The dataset as listed on NITI Aayog website from 1980_81 to 2015_16. That is collected by using web scraping.

You can find the dataset on the given link. https://www.niti.gov.in/ (https://www.niti.gov.in/)

Approach

The main goal of the project is to find key metrics and factors and show the meaningful relationships between attributes based on different features available in the dataset.

• Do ETL: Extract-Transform-Load the dataset and find for some information from this large data. This is form of data mining.

3. Load the Packages and Data

1. Import libraries

```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
sns.set()
```

2. Loading data

In [2]:

```
expenditure = pd.read_csv("Final_expenditure.csv")
expenditure.head()
```

Out[2]:

	Exp Category	State	Year	Value
0	Aggregate_Expenditure	Andhra Pradesh	1980-81	1610.0
1	Aggregate_Expenditure	Andhra Pradesh	1981-82	1831.0
2	Aggregate_Expenditure	Andhra Pradesh	1982-83	1933.0
3	Aggregate_Expenditure	Andhra Pradesh	1983-84	2588.0
4	Aggregate Expenditure	Andhra Pradesh	1984-85	3119.0

4. Data Profiling:

4.1. Understanding the Dataset

```
In [3]:
```

```
expenditure.shape # To know shape of dataset
```

Out[3]:

(8760, 4)

• Their are 8760 rows and 4 column in dataset after combining.

```
In [4]:
```

```
expenditure.size # to show the total no. of volume(elements)
```

Out[4]:

35040 In [5]:

```
expenditure.columns # to show eachh columns name in dataset
```

Out[5]:

Index(['Exp Category', 'State', 'Year', 'Value'], dtype='object')

In [6]

expenditure.dtypes # to shows data types of each column name

Out[6]:

Exp Category object State object Year object Value float64

dtype: object

In [7]:

expenditure.describe() # To show Statistic information of dataset

Out[7]:

	Value
count	8.529000e+03
mean	1.855860e+04
std	7.518330e+04
min	0.000000e+00
25%	2.630000e+02
50%	1.780000e+03
75%	8.884390e+03
max	1.792122e+06

In [8]:

expenditure.describe(include='all') # To show Statistic information of all dataset

Out[8]:

	Exp Category	State	Year	Value
count	8760	8760	6521	8.529000e+03
unique	8	31	36	NaN
top	Aggregate_Expenditure	Andhra Pradesh	2015-16	NaN
freq	1116	289	186	NaN
mean	NaN	NaN	NaN	1.855860e+04
std	NaN	NaN	NaN	7.518330e+04
min	NaN	NaN	NaN	0.000000e+00
25%	NaN	NaN	NaN	2.630000e+02
50%	NaN	NaN	NaN	1.780000e+03
75%	NaN	NaN	NaN	8.884390e+03
max	NaN	NaN	NaN	1.792122e+06

In [9]:

expenditure.info() # to shows indexes,data types each columns name

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8760 entries, 0 to 8759
Data columns (total 4 columns):
                 Non-Null Count Dtype
# Column
    Exp Category 8760 non-null
                                 object
                 8760 non-null
1
    State
                                 object
    Year
                  6521 non-null
                                 object
3 Value
                 8529 non-null
                                 float64
dtypes: float64(1), object(3)
memory usage: 273.9+ KB
```

In [10]:

#Finding how many unique values are in the dataset
expenditure.nunique()

Out[10]:

Exp Category 8 State 31 Year 36 Value 5695 dtype: int64

```
In [11]:
```

· These are the names of States and UTs of India.

4.2 Preprofilling:

By pandas profiling, an interactive **HTML report** gets generated which contains all the information about the columns of the dataset, like the counts and type of each column.

- 1. Detailed information about each column, coorelation between different columns and a sample of dataset
- 2. It gives us visual interpretation of each column in the data
- 3. Spread of the data can be better understood by the distribution plot
- 4. Grannular level analysis of each column.

Now performing pandas profiling to understand data better.

```
In [14]:
```

```
import pandas_profiling as prf
```

To generate the standard profiling report, merely run:

In [15]:

expenditure_profile = prf.ProfileReport(expenditure)
expenditure_profile

Summarize dataset: 100% 15/15 [00:09<00:00, 1.54it/s, Completed]

Generate report structure: 100% 1/1 [00:03<00:00, 3.76s/it]

Render HTML: 100% 1/1 [00:05<00:00, 5.96s/it]

Overview

Dataset statistics	
Number of variables	4
Number of observations	8760
Missing cells	2470
Missing cells (%)	7.0%
Duplicate rows	35
Duplicate rows (%)	0.4%
Total size in memory	273.9 KiB
Average record size in memory	32.0 B

Variable types

Categorical	3
Numeric	1

Alerts

Dataset has 35 (0.4%) duplicate rows	Duplicates
Year has 2239 (25.6%) missing values	Missing
Value has 231 (2.6%) missing values	Missing
Year is uniformly distributed	Uniform
Value has 768 (8.8%) zeros	Zeros

Reproduction

Out[15]:

In [16]:

save profile
expenditure_profile.to_file(output_file="expenditure_before_preprocessing.html")

Export report to file: 100% 1/1 [00:00<00:00, 7.14it/s]

4.3 Preprocessing

Modified the structure of data in order to make it more understandable and suitable and convenient for statistical analysis.

- 1. Checking null values
- 2. Feeling null values
- 3. Checking and removing Duplicates rows

1. Checking null values

In [17]:

```
m = expenditure.isnull().sum()
m
```

Out[17]:

Exp Category 0 State 0 Year 2239 Value 231 dtype: int64

In [18]:

```
#missing values in percentage
m1 = m/len(expenditure)*100
m1
```

Out[18]:

Exp Category 0.000000
State 0.000000
Year 25.559361
Value 2.636986
dtype: float64

In [19]:

```
#missing values with %
pd.concat([m,m1],axis=1,keys = ['Total','Missing %'])
```

Out[19]:

	iotai	Missing %
Exp Category	0	0.000000
State	0	0.000000
Year	2239	25.559361
Value	231	2.636986

- Year having 25% and Value having 2 % missing values contains in the dataset.

Null values shown by heatmap

In [20]:

```
sns.heatmap(expenditure.isnull())
```

Out[20]:

<AxesSubplot:>

2.Feeling nullI values

• feeling null values with 0 .

```
In [21]:
```

```
# make copy of dataset before changes
exp_data = expenditure.copy()
exp_data.head()
```

Out[21]:

	Exp Category	State	Year	Value
0	Aggregate_Expenditure	Andhra Pradesh	1980-81	1610.0
1	Aggregate_Expenditure	Andhra Pradesh	1981-82	1831.0
2	Aggregate_Expenditure	Andhra Pradesh	1982-83	1933.0
3	Aggregate_Expenditure	Andhra Pradesh	1983-84	2588.0
4	Aggregate_Expenditure	Andhra Pradesh	1984-85	3119.0

In [22]:

```
exp_data.fillna(0,inplace=True)
```

In [23]:

```
#checking missing values again
exp_data.isnull().sum()
```

Out[23]:

Exp Category 0 State 0 Year 0 Value 0 dtype: int64

3. Checking and removing Duplicates rows

In [24]:

exp_data[exp_data.duplicated()] #duplicates rows

Out[24]:

	Exp Category	State	Year	Value
2266	Gross_Fiscal_Deficits	Arunachal Pradesh	0	0.0
2267	Gross_Fiscal_Deficits	Arunachal Pradesh	0	0.0
2268	Gross_Fiscal_Deficits	Arunachal Pradesh	0	0.0
2269	Gross_Fiscal_Deficits	Arunachal Pradesh	0	0.0
2270	Gross_Fiscal_Deficits	Arunachal Pradesh	0	0.0
8744	Social_Sector_Expenditure	Puducherry	0	0.0
8745	Social_Sector_Expenditure	Puducherry	0	0.0
8746	Social_Sector_Expenditure	Puducherry	0	0.0
8747	Social_Sector_Expenditure	Puducherry	0	0.0
8748	Social_Sector_Expenditure	Puducherry	0	0.0

275 rows × 4 columns

In [25]:

expenditure.duplicated().sum() #number of duplicates rows

Out[25]:

273

- 273 rows are duplicates.
- so lets drop them for better analysis.

In [26]:

exp_data.drop_duplicates(inplace=True)

```
In [27]:
```

```
#again checking for duplicates
exp_data.duplicated().sum()
```

Out[27]:

0

In [28]:

#checking size after cleaning
exp_data.shape

Out[28]:

(8485, 4)

All 273 duplicated rows are removed.

4.4 Post Profiling

Post profilling after cleaning dataset.

```
In [29]:
```

exp_clean_profile = prf.ProfileReport(exp_data)
exp_clean_profile

Summarize dataset: 100% 14/14 [00:02<00:00, 3.49it/s, Completed]

Generate report structure: 100% 1/1 [00:03<00:00, 3.40s/it]

Render HTML: 100% 1/1 [00:00<00:00, 1.08it/s]

Overview

Dataset statistics		
Number of variables	4	
Number of observations	8485	
Missing cells	0	
Missing cells (%)	0.0%	
Duplicate rows	109	
Duplicate rows (%)	1.3%	
Total size in memory	589.5 KiB	
Average record size in memory	71.1 B	

Variable types

Categorical	2
Unsupported	1
Numeric	1

Alerts

Dataset has 109 (1.3%) duplicate rows

Puplicates

Year is an unsupported type, check if it needs cleaning or further analysis

Unsupported

Value has 741 (8.7%) zeros

Zeros

Reproduction

Analysis 2023-04-29 13:04:00.513773 **started**

Out[29]:

4

In [30]:

```
#save clean profile file
exp_clean_profile.to_file(output_file="expenditure_after_preprocessing.html")
```

Export report to file: 100% 1/1 [00:00<00:00, 5.29it/s]

In [31]:

#save clean dataset into csv
exp_data.to_csv('expenditure1.csv')

5. Data Visualization:

Data visualization is concerned with visually presenting sets of primarily quantitative raw data in a schematic form. The visual formats used in data visualization include tables, charts and graphs.

• In this project we use matplotlib and seaborn python libraries.

```
1. Correlation between features
In [32]:
corr = exp_data.corr()
corr
Out[32]:
        Value
 Value
  · Only one feature for correlation.
2. All unique categories of expenditure.
In [33]:
exp_data.head(2)
Out[33]:
            Exp Category
                                      State
                                                Year
                                                       Value
0 Aggregate_Expenditure Andhra Pradesh 1980-81 1610.0
1 Aggregate_Expenditure Andhra Pradesh 1981-82 1831.0
In [34]:
exp_data['Exp Category'].nunique()
Out[34]:
8
In [35]:
sns.countplot(exp_data['Exp Category'],orient='v')
#sns.set_theme(style="darkgrid")
plt.xticks(rotation=90)
Out[35]:
(array([0, 1, 2, 3, 4, 5, 6, 7]),
  [Text(0, 0, 'Aggregate_Expenditure'),
  Text(1, 0, 'Capital_Expenditure'),
  Text(2, 0, 'Gross_Fiscal_Deficits'),
  Text(3, 0, 'Nominal_GSDP_Series'),
  Text(4, 0, 'Own_Tax_Revenues'),
  Text(5, 0, 'Revenue_Deficits'),
Text(6, 0, 'Revenue_Expenditure'),
Text(7, 0, 'Social_Sector_Expenditure')])
   1000
    800
    600
    400
    200
      0
```

Insights: Its clearly shown there are 8 expenditure categories in this NITI Aayog dataset.

Revenue_Deficits

Social_Sector_Expenditure

Revenue_Expenditure

Nominal_GSDP_Series

Own Tax Revenues

Exp Category

Gross_Fiscal_Deficits

3. Names of all states in india.

```
In [36]:
exp_data['State'].nunique()
Out[36]:
31
In [37]:
#shows in countplot
sns.countplot(exp_data['State'])
sns.set_theme(style="darkgrid")
plt.xticks(rotation=90)
Out[37]:
Text(3, 0, 'Bihar'),
Text(4, 0, 'Chhattisgarh'),
       Text(5, 0, 'Goa'),
       Text(6, 0, 'Gujarat'),
Text(7, 0, 'Haryana'),
       Text(8, 0, 'Himachal Pradesh'),
Text(9, 0, 'Jammu & Kashmir'),
       Text(10, 0, 'Jharkhand'),
       Text(11, 0, 'Karnataka'),
Text(12, 0, 'Kerala'),
       Text(13, 0, 'Madhya Pradesh'),
       Text(14, 0, 'Maharashtra'),
       Text(15, 0, 'Manipur'),
       Text(16, 0, 'Meghalaya'),
       Text(17, 0, 'Mizoram'),
       Text(18, 0, 'Nagaland'),
       Text(19, 0, 'Odisha'),
       Text(20, 0, 'Punjab'),
       Text(21, 0, 'Rajasthan'),
Text(22, 0, 'Sikkim'),
       Text(23, 0, 'Tamil Nadu'),
       Text(24, 0, 'Telangana'),
Text(25, 0, 'Tripura'),
       Text(26, 0, 'Uttar Pradesh'),
       Text(27, 0,
                                                 'Uttarakhand'),
       Text(28, 0, 'West Bengal'),
       Text(29, 0, 'Delhi'),
Text(30, 0, 'Puducherry')])
          300
           250
           200
         150
           100
             50
                                     Eihar Chhattisgamh Goalarat Himachal Pradesh Jammu & Kashmi Markhand Karataka Madhya Pradesh Maharashtra Maharashtra Maharashtra Maharashtra Maharashtra Manpur Meghalaya Mizoram Nagaland Pradesh Uttar Pradesh Delhi Pradesh Delhi Pradesh Uttar Pradesh Utt
                      Andhra Pradesh
Arunachal Pradesh
                                                                                              State
```

Insights: Its clearly shown there are 31 counts of states and Union territories in India.

4. Which is the Highest invested category of expenditure on which state?

```
In [38]:
exp_data['Exp Category'].describe(include=all)
Out[38]:
count
                           8485
unique
          Aggregate_Expenditure
top
freq
                           1116
Name: Exp Category, dtype: object
In [39]:
exp_data.groupby("Exp Category")["State"].agg(pd.Series.mode)
Out[39]:
Exp Category
Aggregate_Expenditure
                             [Andhra Pradesh , Arunachal Pradesh, Assam, Bi...
Capital_Expenditure
                             [Andhra Pradesh , Arunachal Pradesh, Assam, Bi...
Gross Fiscal Deficits
                             [Andhra Pradesh , Assam, Bihar, Gujarat, Harya...
Nominal GSDP Series
                             [Andhra Pradesh , Arunachal Pradesh, Assam, Bi...
Own_Tax_Revenues
                             [Andhra Pradesh , Arunachal Pradesh, Assam, Bi...
Revenue_Deficits
                             [Andhra Pradesh , Arunachal Pradesh, Assam, Bi...
                             [Andhra Pradesh , Arunachal Pradesh, Assam, Bi...
Revenue_Expenditure
Social Sector Expenditure
```

[Andhra Pradesh , Assam, Bihar, Gujarat, Harya...

• Aggregate_Expenditure is Highest invested category of expenditure on Andhra Pradesh.

Insights: Aggregate Expenditure is Highest invested category of expenditure on Andhra Pradesh .

5. Top 5 state having aggregate expenditure spending?

```
In [40]:
```

Name: State, dtype: object

```
exp_data.groupby(['Exp Category', 'State']).count()["Value"]
Out[40]:
Exp Category
                            State
                            Andhra Pradesh
{\tt Aggregate\_Expenditure}
                                                   36
                            Arunachal Pradesh
                                                   36
                            Assam
                            Bihar
                                                   36
                            {\tt Chhattisgarh}
                                                   36
Social_Sector_Expenditure Telangana
                                                   3
                             Tripura
                                                   35
                            Uttar Pradesh
                                                   36
                            Uttarakhand
                                                   17
                            West Bengal
                                                   36
Name: Value, Length: 248, dtype: int64
```

Insights: The Aggregate expenditure spending on these top 5 states are Andhra Pradesh, Arunachal Pradesh ,Assam ,Bihar & Chhattisgarh .

6. Expenditure spending over the years

In [41]:

exp_data.Year.value_counts().to_frame('Value')

Out[41]:

	Value
0	1964
2015-16	186
2014-15	186
2013-14	186
2010-11	184
2004-05	184
2009-10	184
2008-09	184
2011-12	184
2012-13	184
2003-04	183
2002-03	183
2001-02	183
2007-08	182
2006-07	182
2005-06	182
2000-01	182
1999-00	180
1980-81	180
1981-82	180
1997-98	180
1982-83	180
1983-84	180
1984-85	180
1985-86	180
1986-87	180
1987-88	180
1988-89	180
1989-90	180
1993-94	180
1994-95	180
1995-96	180
1996-97	180
1998-99	180
1990-91	174
1991-92	174
1992-93	174

In [42]:

```
sns.countplot(x=exp_data['Year'],orient='v')
plt.xticks(rotation=90)
sns.set(rc={'figure.figsize':(30,30)})
```


· Anual progress of expenditure.

6. Conclusion:

In this way, I collect expenditure dataset fron **Niti Aayog** website.Load,clean and perform data analysis by using Exploratory data analysis in Python.I using python libraries such as pandas ,numpy,matplotlib,seaborn and pandas_profiling.For visualization using heatmap, counplot and graphs. In this EDA We extracted clean dataset as expenditure1 in csv for using for Data visualization.

In []: