

IRFTS8342PbF

HEXFET® Power MOSFET

V _{DS}	30	V
V _{GS}	±20	٧
$R_{DS(on) max}$ (@V _{GS} = 10V)	19	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = 4.5V)	29	$\mathbf{m}\Omega$
Q _{g (typical)}	4.8	nC
I_{D} (@T _A = 25°C)	8.2	Α

Applications

System/Load Switch

Features and Benefits

Features

Industry-Standard TSOP-6 Package
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Consumer Qualification

Resulting Benefits	
Multi-Vendor Compatibility	
Environmentally Friendlier	
Increased Reliability	

Orderable part number	Package Type	Standard Pack		Note
		Form	Quantity	
IRFTS8342TRPBF	TSOP-6	Tape and Reel	3000	

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{DS}	Drain-to-Source Voltage	30	V	
V _{GS}	Gate-to-Source Voltage	±20	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	8.2		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	6.6	A	
I _{DM}	Pulsed Drain Current ①	80		
P _D @T _A = 25°C	Power Dissipation ③	2.0	w	
P _D @T _A = 70°C Power Dissipation ③		1.3	VV	
	Linear Derating Factor	0.02	W/°C	
T _J	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range			

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}\!/\!\Delta T_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		18		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		15	19	m 0	V _{GS} = 10V, I _D = 8.2A ②
	Static Drain-to-Source On-Resistance		22	29	mΩ	V _{GS} = 4.5V, I _D = 6.6A ②
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.80	2.35	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-5.7		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0		$V_{DS} = 24V$, $V_{GS} = 0V$
				150	μΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	T IIA	$V_{GS} = -20V$
gfs	Forward Transconductance	12			S	$V_{DS} = 10V, I_D = 6.6A$
Q_g	Total Gate Charge		4.8			$V_{GS} = 4.5V$
Q_{gs}	Gate-to-Source Charge		2.1		nC	$V_{DS} = 15V$
Q_{gd}	Gate-to-Drain Charge		1.6			$I_D = 6.6A$
R_G	Gate Resistance		2.6		Ω	
t _{d(on)}	Turn-On Delay Time		7.3			V _{DD} = 15V, V _{GS} = 4.5V ③
t _r	Rise Time		15]	$I_D = 6.6.A$
t _{d(off)}	Turn-Off Delay Time		9.1		ns	$R_G = 6.8\Omega$
t _f	Fall Time		8.2			
C _{iss}	Input Capacitance		560			$V_{GS} = 0V$
Coss	Output Capacitance		102		рF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		48			f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
	Farameter	IVIIII.	ιyp.	IVIAX.	Ullits	Conditions
Is	Continuous Source Current			2.5		MOSFET symbol
	(Body Diode)				_	showing the
I _{SM}	Pulsed Source Current			80	Α	integral reverse
	(Body Diode) ①			80		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 6.6A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		8.2	12	ns	$T_J = 25^{\circ}C$, $I_F = 6.6A$, $V_{DD} = 24V$
Q_{rr}	Reverse Recovery Charge		4.5	5.4	nC	di/dt = 100/μs ②

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		62.5	°C/W

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- $\ensuremath{\ensuremath}\amb}\amb}\amb}}}}}}}}}}}}}}$

2 www.irf.com

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance vs. Gate Voltage

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 13. Typical On-Resistance vs. Drain Current

Fig 15. Typical Power vs. Time

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 17a. Gate Charge Test Circuit

Fig 18a. Unclamped Inductive Test Circuit

Fig 19a. Switching Time Test Circuit

Fig 17b. Gate Charge Waveform

Fig 18b. Unclamped Inductive Waveforms

Fig 19b. Switching Time Waveforms

TSOP-6 Package Outline

- NOTES:
- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

TSOP-6 Part Marking Information

PART NUMBER CODE REFERENCE:

A = SI3443DV	O = IRLTS6342TRPBF
B = IRF5800	P = IRFTS8342TRPBF
C = IRF5850	R = IRFTS9342TRPBF
D = IRF5851	S = Not applicable
E = IRF5852	T = IRLTS2242TRPBF
F = IRF5801	

H = IRF5804 I = IRF5805 J = IRF5806 K = IRF5810 N = IRF5802

G = IRF5803

Note: A line above the work week (as shown here) indicates Lead-Free.

DATE CODE MARKING INSTRUCTIONS

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YE	٩R	Υ	WORK WEEK	W	
2011	2001	1	01	Α	
2012	2002	2	02	В	
2013	2003	3	03	С	
2014	2004	4	04	D	
2015	2005	5			
2016	2006	6			
2017	2007	7			
2018	2008	8	1	1	
2019	2009	9	7	7	
2020	2010	0	24	X	
			25	Υ	
			26	Z	

WW = (27-52) IF PRECEDED BY A LETTER

YE	AR	Υ	WORK WEEK	W
2011	2001	Α	27	Α
2012	2002	В	28	В
2013	2003	С	29	С
2014	2004	D	30	D
2015	2005	Ε		
2016	2006	F		
2017	2007	G		
2018	2008	Н	1	1
2019	2009	J	7	7
2020	2010	K	50	Χ
			51	Υ
			52	Z

TSOP-6 Tape & Reel Information

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Qualification information[†]

Qualification lovel	Co	ns umer ^{††}	
Qualification level	(per JEDEC JESD47F ^{†††} guidelines)		
Moisture Sensitivity Level	TSOP-6	MSL1	
	1301-0	(per JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes		

[†] Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability

††† Applicable version of JEDEC standard at the time of product release.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

^{††} Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/