数字向客安全

曹刚 gangcao@cuc.edu.cn

课程内容

第1章 概述

第2章 消息认证与数字签名

第3章 感知哈希

第4章 信息隐藏

第5章 数字取证

第3章 感知哈希

- 3.0 传统哈希的局限
- 3.1 感知哈希概念
- 3.2 感知哈希技术
- 3.3 典型应用

传统哈希

➤ RSA数字签名算法

♦ H: Hash函数,输出定长的Hash码

传统哈希的局限

▶定义

№ 哈希函数(Hash Functions)不可逆的提取原始数据的数字摘要 (Digest), 具有单向性、脆弱性等特点, 可保证原始数据的唯一性与不可篡改性

▶局限

- 已无法满足多媒体信息管理和保护的需求
- ◈ 多媒体的感知冗余需要有针对性的摘要技术. 传统哈希函数 仅具有数据压缩性, 不能消除多媒体感知内容上的冗余
- 参 多媒体数字化表示(Digital Presentation)与该媒体内容 (Multimedia Content)之间的多对一映射特性,要求内容摘要 具有感知鲁棒性.而传统哈希函数对任何数字表示改变都是 脆弱的

RBA: an example 多媒体数字化表示 vs 媒体内容

Stirmark 1

Stirmark 2

Example 1

Example 2

多媒体数字化表示 vs 媒体内容

Example: robustness

多媒体数字化表示 vs 媒体内容

Example: robustness

Print, copying and scanning

第3章 感知哈希

- 3.0 传统哈希的局限
- 3.1 感知哈希概念
- 3.2 感知哈希技术
- 3.3 典型应用

感知哈希

- 起始: Ton Kalker 2001 首次提出
- > 感知哈希应该是这样一个函数: "它能
 - ◈ 将大数据量的多媒体对象映射为长度较小的比特序列;
 - ◈ 将感知相近的媒体对象映射成数学相近的哈希值。"
- ▶ 应用场景之一:基于内容的媒体访问 (识别-检索-认证)
 - ▼ Ton Kalker 给出了感知哈希的一个令人振奋的应用场景
 - 你坐在车里收听着电台的音乐。忽然,一首好听的歌深深的吸引了你。它是如此的动听以至于你马上就想知道它的歌名,演唱者,专辑,以及你能够在哪儿能够买到它。然而,你错过了之前关于这首歌的介绍。怎么办?你可以给电台打电话,但是你可能觉得这样太麻烦了。通过感知哈希的支持,你或许只需要在你的手机上简单的按几个钮,等一小会儿,手机就会告诉你这一切,甚或一份详尽的说明已经送到了你的电子信箱里。

感知哈希

■提出与发展

- ▶ 必须根据多媒体区别于一般计算机数据的特性,研究满足多媒体内容压缩性、感知鲁棒性的多媒体单向摘要算法与技术.
- ➤ 感知哈希(Perceptual Hashing)已成为多媒体信号处理与 多媒体安全及其相关领域的研究热点.
- ■理论基础
- > 认知心理学:人认知多媒体的心理过程

感知哈希

- ■理论基础
- >认知心理学:人认知多媒体的心理过程

表 1 多媒体认知阶段

感	感觉	感知	感觉内容	视听特征	人类视觉系统 心理声学模型		
知	知觉	内容	知觉内容	模式特征	模式识别		
认知		语义内容		语义特征	主观分析		

- ▲ 计算机中存储的多媒体信息的数字表示
- 感觉处理阶段所获得的多媒体信息的视听特征
- 知觉处理阶段所获得的多媒体信息的模式特征
- ◆认知处理阶段所获得的多媒体信息的语义特征图 1 认知各集合及其映射关系

感知哈希函数

■定义

- ▶ 感知哈希函数是基于认知心理学的信息加工理论,由多媒体数据集到多媒体感知摘要集的一类单向映射,将具有相同感知内容的多媒体数字表示唯一的映射为一段数字摘要,并满足感知安全性要求.
- ▶感知哈希函数

 $PH: M \longrightarrow H_P$

其中, H_P 为感知数字摘要的集合。

传统哈希 vs 感知哈希

感知哈希函数的性质

- ➤ 抗碰撞性(Collision Resistance)/区分性(Discrimination)
 - ◈内容敏感性
- > 感知鲁棒性(Robustness)
- ➤ 单向性(One-wayness)
- ➤ 随机性(Randomicity)
- ➤ 摘要性(Compactness)
- > 易于实现,计算效率高

第3章 感知哈希

- 3.0 传统哈希的局限
- 3.1 感知哈希概念
- 3.2 感知哈希技术
- 3.3 典型应用

- ▶ 预处理: 分帧、滤波等预处理,可提高特征选择的准确性.
- ▶ 感知特征提取: 以人类感知模型为基础,得到多媒体 对内容保持操作的感知不变量.
- ▶特征选择: 而通过与人类感知模型一致的各种信号处理方法,可去除感知冗余,选择最具有感知意义的特征参数.
- ► **后处理**: 为了方便硬件实现,降低存储要求,对所选择的特征参数还需进行量化以及编码等后处理.

▶哈希构造:对感知特征进一步降维,并输出最终结果——感知哈希值.在哈希构造的设计中,必须确保其满足抗碰撞性、单向性、随机性等安全性要求.

➤ 密钥相依性: 针对应用的不同安全需求, 感知哈希可 选择不使用密钥以及在不同阶段实现密钥相依性.

图 4 哈希的密钥相依性构造

感知哈希算法

▶ 生成算法:

▶ 匹配算法: 对比两个感知摘要。

感知哈希算法

> 典型方法的分类

- ◈ 基于空域特征: 如亮度、图像分块
- 基于变换域特征: 如DFT、DCT、DWT、Fourier-Mellin
- ◈ 矩阵分解:如SVD,NMF
- ◈ 细节特征: 如特征点,包括角点、SIFT等

参考文献:

- [1]牛夏牧, 焦玉华。感知哈希综述, 电子学报, 2008
- [2]张慧。图像感知哈希测评基准及算法研究,哈工大博士学位论文,2009
- [3]胡媛媛。基于视觉模型的图像感知哈希算法研究,哈工大博士学位论文,2011
- [4] 刘兆庆。图像感知哈希若干关键技术研究,哈工大博士学位论文,2013

感知哈希算法

- > 典型方法的另一种分类
 - ◈基于图像统计特性的特征
 - 利用了图像块直方图的均值、方差和高次惯量等统计不变性属性
 - ◈ 基于关系的特征
 - 基于DCT、DWT等变换系数之间的相对大小关系
 - ◈ 原始图像粗略特征
 - 利用图像粗略特征对感知的显著性。提取的粗略特征包括:低频 DCT系数、低分辨率的小波系数、SVD的最强奇异矢量、 Fourier-Mellin变换的旋转不变性
 - ◈ 基于边缘或特征点的低层图像特征

感知哈希技术

- > 与鲁棒哈希技术的异同
 - ◈ 二者最为接近
 - ◈ 鲁棒哈希是以任意不变量的选择为建立映射的基础
 - ◈ 感知哈希技术以多媒体感知特征为不变量
- > 与数字指纹技术的异同
 - ◈ 数字指纹的定义和使用较为混乱
 - ◈ 数字指纹主要分为两类:
 - 应用于版权保护的数字水印技术;
 - 应用于媒体内容识别的媒体摘要技术. (感知哈希与此类似)

第3章 感知哈希

- 3.0 传统哈希的局限
- 3.1 感知哈希概念
- 3.2 感知哈希技术
- 3.3 典型应用

1. 识别

1. 识别

2. 检索

(Fig.

3. 认证

针对认证的多媒体通信系统模型

认证 3.

3. 认证

感知哈希的认证应用模式——无数据库

认证

3. 认证

基于感知哈希的图像认证

第3章 感知哈希

An Example on Image Authentication

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 12, DECEMBER 2008

2413

Region-Level Image Authentication Using Bayesian Structural Content Abstraction

Wei Feng and Zhi-Qiang Liu

Fig. 1. General diagram of image content authentication.

Original	JEPG 10%	JEPG 80%	SPIHT 10%	Media Filtering	Gaussian Noise 10%	Scaling 25%	CO#1	CO #2
SDS						1	-/	
JIS		· .					1	
IMAC								•
IH							ja ellerini ja ellerini	5
BaSCA					2		*	•

Fig. 10. Verification for unlisted NCOs and composite attacks. The first row is suspect images manipulated by: (a) 20% JPEG + 8% Gaussian noise; (b) 30% random line removal + 7% Gaussian noise; (c) object replacement + 20% SPIHT compression; (d) object replacement + 20% JPEG compression; (e) object deletion + 30% random line removal + 15% JPEG compression; (f) median blurring with 7×7 template. The next two rows are corresponding BaSCA signatures and verification results, respectively.

第3章 感知哈希

- 3.0 传统哈希的局限
- 3.1 感知哈希概念
- 3.2 感知哈希技术
- 3.3 典型应用