## **Minimization of DFA**

- Minimization of DFA is required to obtain the minimal version of any DFA which consists of the minimum number of states possible.
- A DFA designed with 5 states and another DFA designed with 4 states, both doing the same task. Here both are correct but the DFA with 4 states is more efficient.
- Sometimes it might be difficult to design a DFA directly with the minimum number of states.
- To minimize a DFA, we need to combine two states into one but it is possible when those two states are equivalent.

Two states are said to be equivalent if –

$$\delta(A, X) \rightarrow F$$
 and  $\delta(B, X) \rightarrow F$ 

OR

where X is any input string.

$$\delta(A, X) \not\rightarrow F$$
 and  $\delta(B, X) \not\rightarrow F$ 

Different types of equivalences:

If |X| = 0, then A and B are said to be 0 equivalent.

If |X| = 1, then A and B are said to be 1 equivalent.

If |X| = 2, then A and B are said to be 2 equivalent.

•

If |X| = n, then A and B are said to be **n** equivalent.

## **Example:**



Transition Table:

|    | 0 | 1 |
|----|---|---|
| →A | В | С |
| В  | В | D |
| С  | В | С |
| D  | В | E |
| *E | В | С |

0 Equivalence: {A, B, C, D} {E}

1 Equivalence: {A, B, C} {D} {E}

2 Equivalence: {A, C} {B} {D} {E}

3 Equivalence: {A, C} {B} {D} {E}

## Minimal DFA:

