TECE Module 1 : Suites et séries numériques

Problème 1

On désigne par \mathbb{R}^+ l'ensemble des nombre réels x tels que $x \geq 0$. Soit $a \in \mathbb{R}^+$ et soit (u_n) la suite de nombres réels définie par la relation de récurrence :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = a + \frac{1 - e^{-n}}{2} u_n$$

et la condition initiale $u_0 = a$.

- 1. Montrer que pour tout entier naturel $n, u_n \leq 2a$.
- 2. Montrer que pour tout $k \in \mathbb{N}$, on a

$$2^{k+1}(2a - u_{k+1}) = 2^k(2a - u_k) + \left(\frac{2}{e}\right)^k u_k$$

3. En déduire que pour tout $n \ge 1$

$$2^{n}(2a - u_n) = a + \sum_{k=0}^{n-1} \left(\frac{2}{e}\right)^k u_k$$

4. Montrer que la série de terme général $\left(\left(\frac{2}{e}\right)^ku_k\right)_k$ converge. En déduire que la suite (u_n) converge vers 2a et que

$$2a - u_n \sim \frac{K}{2^n}$$

où K est une constante réelle que l'on déterminera.

Problème 2

Partie 1

Soit n un nombre entier naturel non nul. On considère les fonction numérique f_n , g_n et h_n définies sur l'intervalle [0,n] par les relations :

$$f_n(t) = (1 - \frac{t}{n})^n$$
, $g_n(t) = e^{-t} - (1 - \frac{t}{n})^n$, $h_n(t) = e^t g'_n(t)$

- 1. Étudier les variations de h_n . En déduire les variations de g_n . Montrer qu'il existe un élément x_n de [0,n] et un seul tel que, pour tout élément t de [0,n], $g_n(t) \leq g_n(x_n)$.
- 2. Montrer que $g_n(x_n) \leq \frac{1}{ne}$.