

Soal

- 1 Misalkan \mathbf{u} adalah kombinasi linear dari $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n, \mathbf{w}\}$ tetapi bukan kombinasi linier dari $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$. Buktikan bahwa \mathbf{w} adalah kombinasi linier dari $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n, \mathbf{u}\}$.
- Transformasi linear $T: U \to V$ dinamakan monomorfisma jika T adalah pemetaan injektif, yakni $\forall x_1, x_2 \in U$ sehingga $T(x_1) = T(x_2)$ mengakibatkan $x_1 = x_2$. Buktikan bahwa T monomorfisma jika dan hanya jika $\ker(T) = \{0_U\}$.
- 3 Misalkan A adalah matriks berukuran $m \times n$ atas bilangan riil, $x \in \mathbb{R}^n$, dan $b \in \mathbb{R}^m$. Periksa apakah ruang kolom dari matriks A merupakan himpunan solusi dari sistem persamaan linear Ax = b?
- $\boxed{4}$ Jika W adalah subruang dari ruang hasil kali dalam V,
 - (a). Buktikan bahwa $W^{\perp} = \{a \in V \mid \langle a, u \rangle = 0, \forall u \in W\}$ merupakan subruang dari V.
 - (b). Buktikan bahwa $W \cap W^{\perp} = \{0\}.$

Misalkan \mathbf{u} adalah kombinasi linear dari $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n, \mathbf{w}\}$ tetapi bukan kombinasi linier dari $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$. Buktikan bahwa \mathbf{w} adalah kombinasi linier dari $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n, \mathbf{u}\}$.

Solusi:

Karena u kombinari linier dari $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n, \mathbf{w}\}$, maka terdapat $a_1, a_2, \cdots, a_{n+1} \in \mathbb{F}$ sedemikian sehingga

$$\mathbf{u} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n + a_{n+1} \mathbf{w}.$$

Karena w bukan kombinasi linier dari $\{\mathbf v_1,\mathbf v_2,\cdots,\mathbf v_n\}$, hal ini mengharuskan $a_{n+1}\neq 0_{\mathbf F}$. Perhatikan bahwa

$$a_{n+1}\mathbf{w} = \mathbf{u} - a_1\mathbf{v}_1 - a_2\mathbf{v}_2 - \dots - a_n\mathbf{v}_n \iff \mathbf{w} = \frac{1}{a_{n+1}}\mathbf{u} + \left(-\frac{a_1}{a_{n+1}}\mathbf{v}_1\right) + \left(-\frac{a_2}{a_{n+1}}\right)\mathbf{v}_2 + \dots + \left(-\frac{a_n}{a_{n+1}}\right)\mathbf{v}_n$$

yang menunjukkan bahwa \mathbf{w} kombinasi linier dari $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n, \mathbf{w}\}.$

Transformasi linear $T: U \to V$ dinamakan monomorfisma jika T adalah pemetaan injektif, yakni $\forall x_1, x_2 \in U$ sehingga $T(x_1) = T(x_2)$ mengakibatkan $x_1 = x_2$. Buktikan bahwa T monomorfisma jika dan hanya jika $\ker(T) = \{0_U\}$.

Solusi:

Pertama, akan diperlihatkan bahwa $0_{\mathbb{F}}u = 0_U$ untuk $u \in U$. Tinjau

$$0_U = (-0_{\mathbb{F}}u) + 0_{\mathbb{F}}v = (-0_{\mathbb{F}}u) + (0_{\mathbb{F}} + 0_{\mathbb{F}})u = (-0_{\mathbb{F}}u) + (0_{\mathbb{F}}u + 0_{\mathbb{F}}u) = (-0_{\mathbb{F}} + 0_{\mathbb{F}}u) + 0_{\mathbb{F}}u = 0_U + 0_{\mathbb{F}}u$$

dan diperoleh $0_U = 0_{\mathbb{F}}u$. Selanjutnya, akan diperlihatkan bahwa $T(0_U) = 0_V$. Tinjau

$$T(0_U) = T(0_{\mathbb{F}}u) = 0_{\mathbb{F}}T(v) = 0_V \implies T(0_U) = 0_V \implies 0_U \in \ker(T).$$

Terakhir, akan dibuktikan bahwa (-1)u = -u di mana $u \in U$. Perhatikan bahwa

$$(-1)u = 0_V + (-1)u = (-u+u) + (-1)u = -u + (u+(-1)u) = -u + (1u+(-1)u) = -u + (1+(-1)u) = -u + (1+(-1)u)$$

dan diperoleh $(-1)u = -u + 0_{\mathbb{F}}u = -u \implies (-1)u = -u$.

 (\Rightarrow) Jika Tmonomorfisma. Ambil sebarang $a \in \ker(T)$. Maka

$$T(a) = 0_V = T(0_U) \implies T(a) = T(0_U) \implies a = 0_U$$

yang menyimpulkan $\ker(T) = \{0_U\}.$

 (\Leftarrow) Jika $\ker(T) = \{0_U\}$. Ambil sebarang $a, b \in U$ sedemikian sehingga T(a) = T(b). Maka

$$0_U = T(a) - T(b) = T(a) + (-1)T(b) = T(a) + T((-1)b) = T(a) + T(-b) = T(a + (-b)) = T(a - b)$$

yang artinya $a-b \in \ker(T)$. Hal ini menunjukkan a-b=0 $\iff a=b$ sehingga T monomorfisma.

Jadi, terbukti bahwa T monomorfisma jika dan hanya jika $\ker(T) = \{0_U\}.$

Misalkan A adalah matriks berukuran $m \times n$ atas bilangan riil, $x \in \mathbb{R}^n$, dan $b \in \mathbb{R}^m$. Periksa apakah ruang kolom dari matriks A merupakan himpunan solusi dari sistem persamaan linear Ax = b?

Solusi:

Tidak. Ambil
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$$
 dan $b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. Diperoleh

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

sehingga ruang kolom dibangun oleh $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\}$. Perhatikan bahwa

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

memberikan solusi $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -r-s \\ r \\ s \end{pmatrix}$. Ambil r=s=1 diperoleh $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$, namun tidak ada nilai k sehingga

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = k \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \iff (-2, 1, 1) = (k, 2k, 3k).$$

Jadi, kebenaran pernyataan soal adalah tidak.

Jika W adalah subruang dari ruang hasil kali dalam V,

(a). Buktikan bahwa $W^{\perp} = \{a \in V \mid \langle a, u \rangle = 0, \ \forall u \in W\}$ merupakan subruang dari V.

(b). Buktikan bahwa $W \cap W^{\perp} = \{0\}.$

Solusi:

Pada nomor 2 telah dibuktikan bahwa $0_{\mathbb{F}}w=0_V$ di mana $w\in W$ mengingat W subruang dari V. Tinjau

$$\langle 0_V, u \rangle = \langle 0_{\mathbb{F}} v, u \rangle = 0_{\mathbb{F}} \langle v, u \rangle = 0_{\mathbb{F}} \, \forall \, u \in W$$

sehingga $0_V \in W^{\perp}$. Akan dibuktikan W^{\perp} subruang dari V. Ambil sebarang $a, b \in W$ dan $k \in \mathbb{F}$, maka

$$\langle a+b,u\rangle = \langle a,u\rangle + \langle b,u\rangle = 0_{\mathbb{F}} + 0_{\mathbb{F}} = 0_{\mathbb{F}}$$

sehingga $a + b \in W^{\perp}$. Selain itu,

$$\langle ka, u \rangle = k \langle a, u \rangle = k0_{\mathbb{F}} = 0_{\mathbb{F}}$$

sehingga $ka \in W^{\perp}$. Jadi, W^{\perp} subruang dari V. Selanjutnya, akan dibuktikan $W \cap W^{\perp} = \{0_V\}$. Ambil sebarang $a \in W \cap W^{\perp}$, maka $a \in W$ dan $a \in W^{\perp}$. Karena $a \in W^{\perp}$, maka $\langle a, w \rangle = 0_{\mathbb{F}}$ untuk setiap $w \in W$. Padahal $a \in W$ sehingga haruslah $\langle a, a \rangle = 0_{\mathbb{F}} \iff a = 0_V$ menurut sifat hasil kali ruang dalam. Jadi, terbukti $W \cap W^{\perp} = \{0_V\}$.