Quiz 6, Advanced Calculus I, Yung Fu Fang

Nov. 20, 2023 Show All Work Name:

Group

1a. Consider the alternating series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} + \dots := \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$. Set $A_k = \sum_{n=1}^k a_n$. Give a direct proof that the series converges.

1b. Consider a rearrangement of the series in (1a),
$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \cdots := \sum_{n=1}^{\infty} b_n$$
.

Find a formula for b_n . Set $B_k = \sum_{n=1}^k b_n$. Hint: sort it into two groups

$$\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \frac{1}{11}, \cdots\right\} = \left\{\frac{1}{4n-3}\right\}_{n=1}^{\infty} = \left\{\frac{1}{4n-3} + \frac{1}{4n-3}\right\}_{n=1}^{\infty} \text{ and } \left\{-\frac{1}{2}, -\frac{1}{4}, -\frac{1}{6}, -\frac{1}{8}, -\frac{1}{10}, \cdots\right\} = \left\{-\frac{1}{4n-2}\right\}_{n=1}^{\infty} = \left\{-\frac{1}{4n-2} - \frac{1}{4n-2}\right\}_{n=1}^{\infty}.$$

Find a general formula for $B_{3k} = \sum_{n=1}^{3k} \left(\frac{1}{n} + \frac{1}{n} - \frac{1}{n} \right).$

1c. Prove that $B_{3k} - B_{3(k-1)}$ is positive for all $k \in \mathbb{N}$. Thus $\{B_{3k}\}_{k=1}^{\infty}$ is sequence.

1d. Show that $\limsup B_k > \frac{5}{6}$.

1e. Show that $\sum_{n=1}^{\infty} a_n < \frac{5}{6}$

1f. If $\sum_{n=1}^{\infty} b_n$ converges, then

1g. Show that the series $\sum_{n=1}^{\infty} b_n$ converges

 \iff Show the sequence $\{B_k\}_{k=1}^{\infty}$ converges

 \iff Show that sequence.

 $<\varepsilon$ for all k>j>N $<\varepsilon$ for all k>j>N \iff Given $\varepsilon > 0$, there is a large N > 0 such that

 \iff Given $\varepsilon > 0$, \exists a large N > 0 such that