TEORIA KATEGORII

SERIA 1

Problem 1. Pokazać, że kategoria Set nie jest izomorficzna z kategorią Set op . Pokazać, że Rel op .

Problem 2. Niech A będzie zbiorem. Pokazać, że przyporządkowania $\mathsf{Set} \to \mathsf{Set}$ zdefiniowane na obiektach i morfizmach jak poniżej są funktorami:

- $X \mapsto A \times X$ oraz $(f: X \to Y) \mapsto ((id \times f): A \times X \to A \times Y; (a, x) \mapsto (a, f(x))),$
- $X \mapsto A + X$ oraz

$$(f:X\to Y)\mapsto (id+f):A+X\to A+Y; x\mapsto \left\{\begin{array}{cc} f(x) & \text{ jeśli } x\in X,\\ x & \text{ jeśli } x\in A.\end{array}\right.$$

• $X \mapsto X^A$ oraz

$$f: X \to Y \quad \mapsto \quad f^A: X^A \to Y^A; \phi \mapsto f \circ \phi.$$

• $X \mapsto \mathcal{P}X \stackrel{def}{=} \{A \subseteq X\}$ oraz $(f: X \to Y) \quad \mapsto \quad \mathcal{P}(f): \mathcal{P}(X) \to \mathcal{P}(Y); A \mapsto f(A).$

$$(f: X \to Y) \mapsto \mathcal{P}(f): \mathcal{P}(X) \to \mathcal{P}(Y); A \mapsto f(A).$$

Problem 3. Pokazać, że każdy izomorfizm jest mono i epi.

Problem 4. Pokazać, że w Set przekształcenie $f: X \to Y$ jest "na" wtedy i tylko wtedy, gdy jest epimorfizmem.

Problem 5. Niech $f: X \to Y$, $g: Y \to Z$ oraz $h: X \to Z$ spełniają $h = g \circ f$. Pokazać, że

- jeśli f, g są izo to h też jest izo,
- jeśli h jest mono, to f jest mono,
- \bullet jeśli h jest mono to g nie musi być mono.

Problem 6. Pokazać, że każde dwa obiekty początkowe w danej kategorii są izomorficzne.

Problem 7. Znaleźć obiekty początkowe i końcowe (jeśli istnieją) w następujących kategoriach: Rel, Mon, CoAlg($\Sigma \times \mathcal{I}d$), Alg($\Sigma \times \mathcal{I}d + 1$).

Problem 8. Zdefiniować korekurencyjnie funkcje merge: $\Sigma^{\omega} \times \Sigma^{\omega} \to \Sigma^{\omega}$, która każdej parze (σ, τ) $(\sigma_0\sigma_1\ldots,\tau_0\tau_1\ldots)$ nieskończonych ciągów nad alfabetem Σ przyporządkowuje ciąg

$$merge(\sigma, \tau) = \sigma_0 \tau_0 \sigma_1 \tau_1 \dots$$

 $Podpowied\acute{z}$: Jaki jest obiekt końcowy w $CoAlg(\Sigma \times \mathcal{I}d)$?

Problem 9. Niech $F: \mathsf{C} \to \mathsf{C}$ będzie funktorem. Udowodnić, że jeśli $(A, a: FA \to A)$ jest obiektem początkowym w Alg(F) to morfizm $a: FA \to A$ jest izomorfizmem w C. Czy istnieje obiekt początkowy $\mathrm{w} \; \mathsf{Alg}(\mathcal{P})$?

Problem 10. Pokazać, że w każdej kategorii w której mamy skończone produkty zachodzi:

$$A \times (B \times C) \cong (A \times B) \times C$$

Problem 11. Podać definicję uogólnionego produktu dla dowolnej rodziny $\{X_i\}_{i\in I}$ obiektów z kategorii C.

¹Niech $F: C \to C$ będzie funktorem. F-algebrą nazywamy parę $(A, a: FA \to A)$ dla obiektu $A \in C$. Dla dwóch Falgebr $(A, a: FA \rightarrow A), (B, b: FB \rightarrow B)$ morfizm $h: A \rightarrow B$ nazywamy homomorfizmem o dziedzinie $(A, a: FA \rightarrow A)$ i przeciwdziedzinie $(B,b:FB\to B)$ jeśli $h\circ a=b\circ F(h)$. Kategorię wszystkich F-algebr i homomorfizmów miedzy nimi oznaczamy przez $\mathsf{Alg}(F)$. Kategorię F-koalgebr $\mathsf{CoAlg}(F)$ definiujemy dualnie.