Deep Residual Learning for Image Recognition

Wiktor Jeziorski

Głębokie Sieci

- uczą się cech hierarchicznych

- liczb "poziomów" cech jest tym większa im więcej warstw

- głębokość sieci jest kluczowa dla osiągnięcia najlepszych wyników (np. ImageNet sieci mające od 16 do 30 warstw)

hipoteza

więcej warstw = lepszy model?

Problem degradacji

- zwiększamy liczbę warstw
- "wysycenie" accuracy
- szybka degradacja
- nie jest to overfitting
- większy błąd TRENINGOWY
- głębsze sieci są trudniejsze do optymalizowania

Problem degradacji

Figure 1. Training error (left) and test error (right) on CIFAR-10

"Konstrukcja" głębszego modelu

G and M act as Identity Functions. Both the Networks Give same output

Propagowanie identyczności jest trudne!

Residual Learning

- rozważamy kilka kolejnych warstw sieci
- x wejście dla pierwszej z warstw
- **H(x)** funkcja, którą mają realizować te warstwy przeformułowanie problemu jako funkcja residualna:
- F(x) = H(x) x
- wtedy: H(x) = F(x) + x

Residual Learning

Figure 2. Residual learning: a building block.

Residual Learning/Skip Connections - zalety

- dużo łatwiejsza nauka identyczności i odwzorowań bliskich identyczności
- brak dodatkowych parametrów

- dużo łatwiejsza optymalizacja bardzo głębokich sieci
- zwiększanie ilości warstw zwiększa accuracy

Residual Learning

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

$$\mathcal{F} = W_2 \sigma(W_1 \mathbf{x})$$

$$\sigma(\mathbf{y})$$

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$

Figure 2. Residual learning: a building block.

Residual Learning

- postać funkcji residualnej F jest płynna
- w eksperymentach w pracy F ma postać 2-3 warstw
- można próbować więcej
- F składające się z 1 warstwy jest niezalecane

$$\mathbf{y} = W_1 \mathbf{x} + \mathbf{x}$$

postać równania podobna do warstwy liniowej, autorzy nie zauważyli żadnych korzyści z tej postaci

Architektura

na obrazku:

- VGG-19
- 34-warstwowa "zwykła" sieć
- 34-warstwowa sieć residualna

Architektura Sieci "zwykłej"

inspirowana przez VGG

- warstwy z tymi samymi wymiarami mają taką samą liczbę filtrów
- gdy wymiary są zmniejszane o połowę podwajamy liczbę filtrów
- downsampling realizowany poprzez konwolucje ze stridem 2

Architektura Sieci Residualnej

- oparta na sieci "zwykłej"
- dodano skip-connections
- padding zerami dla skip-connections zwiększających wymiar

Implementacja

Zastosowano standardowy preprocessing obrazków jak dla VGG i AlexNet

- Batch normalization
- learning rate 0.1
- 60e4 iteracji
- Weight decay 0.0001
- Momentum 0.9

ImageNet - sieć "zwykła"

34-warstwowa sieć ma większy błąd poprzez cały trening

ImageNet - sieć residualna

34-warstwowa sieć po dodaniu skip-connections ma mniejszy błąd

ImageNet - porównanie

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

dla 18-warstwowej podobne wyniki, ale ResNet-18 zbiega szybciej

Identity vs Projection Shortcuts

A - padding zerami, gdzie potrzeba

B - projekcje, gdzie potrzeba

C - projekcje wszędzie

plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40

opcja C daje nieznaczną różnicę

Bottleneck Architecture

- konwolucje 1x1 używane dla zredukowania, a potem zwiększenia liczby kanałów

Bottleneck Architecture

layer name	output size	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2		-
		3×3 max pool, stride 2		
conv2_x	56×56	[1×1, 64]	[1×1, 64]	[1×1, 64]
COHVZ_X	30×30	$3\times3,64\times3$	$3\times3,64\times3$	$3\times3,64\times3$
		[1×1, 256]	[1×1, 256]	[1×1, 256]
		[1×1, 128]	[1×1, 128]	[1×1, 128]
conv3_x	28×28	3×3, 128 ×4	$3\times3,128$ $\times4$	$3\times3,128\times8$
		[1×1, 512]	[1×1, 512]	[1×1,512]
		[1×1, 256]	$\begin{bmatrix} 1 \times 1, 256 \end{bmatrix}$	[1×1, 256]
conv4_x	14×14	$3\times3,256$ $\times6$	$3\times3,256$ $\times23$	$3\times3,256\times36$
		[1×1, 1024]	[1×1, 1024]	[1×1, 1024]
		[1×1, 512]	$\begin{bmatrix} 1 \times 1,512 \end{bmatrix}$	[1×1,512]
conv5_x	7×7	$3\times3,512\times3$	$3\times3,512$ $\times3$	$3\times3,512\times3$
		[1×1, 2048]	[1×1, 2048]	[1×1, 2048]
	1×1	average pool, 1000-d fc,	softmax	
FLO	OPs	3.8×10^9	7.6×10^9	11.3×10^9

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	_	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

ResNet-152 nadal mniej skomplikowany niż VGG

CIFAR-10

CIFAR-10

CIFAR-10 - 1202 warstwy

Nie ma problemów z optymalizacją, ale overfituje

	# layers	# params	
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

Dziękuję za uwagę