5 Operacje na macierzach

5.1 Funkcje "pomocnicze"

W tej części zadania będą definiowane podstawowe funkcje przeznaczone do wykorzystania w bardziej złożonych algorytmach przedstawionych w drugiej części tematu.

5.1.1 Permutacje wierszy tablicy

W zadaniu zastosowane są dwa sposoby implementacji tablicy łańcuchów znakowych:

- tablica wskaźników char *keywords_ptab[N],
- dwuwymiarowa tablica znakowa (dokładniej: tablica tablic znakowych) char keywords_t2D[N][STRLEN_MAX].

Zadanie polega na sortowaniu łańcuchów znakowych zapisanych w tych tablicach bez zmiany ich położenia w pamięci, tj. w czasie sortowania każdy łańcuch pozostaje w pamięci pod niezmienionym adresem. Należy uzupełnić definicje funkcji:

- 1. ptab_sort(char *ptab[], size_t n). W tablicy ptab są zapisane adresy łańcuchów znakowych. Funkcja sortuje elementy tej tablicy (adresy) w kolejności alfabetycznej łańcuchów, na które te elementy wskazują. Do sortowania należy użyć podobnie jak w zadaniu 4.1 biblioteczną funkcję qsort(...). Funkcja ta wywołuje funkcję compar(...), którą też należy zdefiniować.
- 2. t2D_sort(const char t2D[][STRLEN_MAX], size_t indices[], size_t n). W n wierszach tablicy t2D są zapisane łańcuchy znaków. Stosując algorytm sortowania bąbelkowego, funkcja ma uporządkować elementy tablicy tej w kolejności odpowiadającej odwrotnemu porządkowi alfabetycznemu wskazywanych wierszy¹. Istotnym warunkiem jest pozostawienie łańcuchów w tym samym miejscu w pamięci (w tych samych wierszach tablicy), w jakim były przed sortowaniem. Zadany porządek łańcuchów ma być zapisany w wektorze permutacji indeksów indices.

W tablicy indices mają być zapisane indeksy wierszy tablicy t2D.

- 3. n_str_copy(char t2D[][STRLEN_MAX], char *ptab[], size_t n), która kopiuje łańcuchy wskazywane przez elementy tablicy wskaźników ptab do tablicy t2D.

 Uwaga: Założenie o pozostawaniu łańcuchów w tym samym miejscu pamięci dotyczy tylko sortowania w tej funkcji kopiowanie jest dozwolone.
- 4. print_ptab(char *ptab[], size_t n), która pisze łańcuchy znakowe wskazywane przez n pierwszych elementów tablicy ptab.
- 5. print_t2D_ind(const char (*ptr)[STRLEN_MAX],const size_t *pindices,size_t n). Funkcja wyprowadza na ekran n łańcuchów znakowych zapisanych w tablicy tablic. Kolejność wypisywanych łańcuchów jest określona tablicą permutacji indeksów indices.

Pierwszy parametr (argument formalny) funkcji jest zmienną typu wskaźnikowego do tablicy o STRLEN_MAX elementach typu char. W porównaniu z definicją pierwszego parametru funkcji t2D_sort (używającą operatora [] []), taka definicja tego parametru jest bardziej "naturalna" dla języka C – jawnie pokazuje, że do funkcji jest przekazywany adres pierwszego elementu tablicy (tym elementem jest tablica STRLEN_MAX znaków).

Definicję funkcji należy zapisać wybierając jeden z 4 sposobów: z użyciem dwóch operatorów [], dwóch operatorów dereferencji *, dwóch możliwości "mieszanych" (z jednym [] i jednym *). Poprawność pozostałych 3 wariantów też należy sprawdzić.

Test 1

Łańcuchy znaków (słowa kluczowe języka C) są definiowane w momencie inicjowania elementów tablicy wskaźników keywords_ptab[]. Funkcja n_str_copy() kopiuje je do tablicy znakowej keywords_t2D[]. Test wywołuje funkcje ptab_sort() i t2D_sort(), wczytuje liczbę łańcuchów n i wypisuje w uporządkowanej kolejności n łańcuchów z tablic ptab i t2D.

• Wejście

Numer testu, liczba wypisywanych łańcuchów n

• Wyjście

- n początkowych łańcuchów uporządkowanej tablicy wskaźników
- n początkowych łańcuchów uporządkowanej tablicy tablic znaków

¹Do określania alfabetycznej kolejności łańcuchów należy korzystać z bibliotecznej funkcji strcmp(...) lub strncmp(...).

• Przykład:

Wejście:

13

Wyjście:

auto

break

case

while volatile

void

5.1.2 Mnożenie macierzy

Szablon programu należy uzupełnić o definicję funkcji mac_product(double A[] [SIZE], double B[] [SIZE], double AB[] [SIZE], size_t m, size_t p, size_t n). Macierz A o wymiarach $m \times p$ jest zapisana w tablicy A, a macierz B o wymiarach $p \times n$ jest zapisana w tablicy B (liczba kolumn SIZE $\geqslant m, p, n$). Funkcja oblicza iloczyn macierzy $A \cdot B$ i zapisuje go w tablicy AB.

Test 2

• Wejście

Numer testu, liczba wierszy i liczba kolumn macierzy A elementy macierzy A liczba wierszy i liczba kolumn macierzy B elementy macierzy B

• Wyjście

elementy macierzy AB

• Przykład:

Wejście:

2

23

 $1\ 2\ 3\ 10\ 20\ 30$

3 2

11 23 1 1.5 -2 0

Wyjście:

 $7.0000\ 26.0000$

70.0000 260.0000

5.1.3 Triangularyzacja macierzy i obliczanie wyznacznika - wersja uproszczona (bez zamiany wierszy)

Tablice tablic A[SIZE] [SIZE], B[SIZE] [SIZE], C[SIZE] [SIZE] są zdefiniowane i wypełniane wczytanymi danymi w segmencie głównym main. Rozmiarów tych tablic nie należy zmieniać.

Szablon programu należy uzupełnić o definicję funkcji gauss_simplified(double A[][SIZE], size_t n). Macierz A o wymiarach $n \times n$ jest zapisana w tablicy A (liczba kolumn SIZE $\geqslant n$). Funkcja przekształca macierz kwadratową A do postaci trójkątnej górnej metodą Gaussa, zapisuje ją w tablicy A i zwraca wartość wyznacznika. W przypadku, gdy element na przekątnej głównej jest równy zeru, to triangularyzacja nie jest kontynuowana, a wyznacznik = NAN.

Test 3

• Wejście

Numer testu, liczba wierszy (i kolumn) macierzy A elementy macierzy A

• Wyjście

wyznacznik macierzy elementy macierzy A

• Przykład 1:

Wejście:

3

3

357

1 -3 8

2 4 -2

Wyjście: 82.0000 3.0000 5.0000 7.0000 0.0000 -4.6667 5.6667 0.0000 0.0000 -5.8571

• Przykład 2:

Wejście: 3 3 1.25 0.125 -2.5 5.0 0.5 -3.2 2.5 1.8 0. Wyjście: nan 1.2500 0.1250 -2.5000 0.0000 0.0000 6.8000 0.0000 1.5500 5.0000

5.2 Rozwiązywanie układu równań liniowych, odwracanie macierzy

$5.2.1 \quad {\bf Rozwiązywanie} \ układu \ r\'owna\'n \ liniowych \ metodą \ {\bf Gaussa-wersja} \ z \ rozszerzaną \ macierzą \ współczynnik\'ow \ r\'owna\'n \ liniowych \ metodą \ {\bf Gaussa-wersja} \ z \ rozszerzaną \ macierzą \ współczynnik\'ow \ r\'owna\'n \ liniowych \ metodą \ {\bf Gaussa-wersja} \ z \ rozszerzaną \ macierzą \ współczynnik\'ow \ r\'owna\'n \ liniowych \ metodą \ {\bf Gaussa-wersja} \ z \ rozszerzaną \ macierzą \ współczynnik\'ow \ r\'owna\'n \ liniowych \ metodą \ {\bf Gaussa-wersja} \ z \ rozszerzaną \ macierzą \ współczynnik\'ow \ r\'owna\'n \ liniowych \ metodą \ {\bf Gaussa-wersja} \ z \ rozszerzaną \ macierzą \ współczynnik\'ow \ r\'owna\'n \ r\'owna\'n \ liniowych \ metodą \ {\bf Gaussa-wersja} \ rozszerzaną \ rozsze$

Szablon programu należy uzupełnić o definicję funkcji

gauss (double A[] [SIZE], const double b[], double x[], size_t n, double eps), która przekształca macierz kwadratową A zapisaną w tablicy A do postaci trójkątnej górnej metodą Gaussa i zwraca wartość wyznacznika. Wiersze macierzy są zamieniane tak, aby wartość bezwzględna elementu głównego była największa. Zamiana wierszy nie jest realizowana poprzez przepisanie wierszy w tablicy, lecz z zastosowaniem wektora permutacji indeksów wierszy. W przypadku, gdy po zamianie wierszy element na przekątnej głównej jest mniejszy od eps, to triangularyzacja nie jest dokończana, a wyznacznik przyjmuje wartość 0.

Jeżeli argumenty funkcji ${\tt b}$ i ${\tt x}$ oraz wyznacznik nie są zerowe, to funkcja rozwiązuje układ równań i rozwiązanie zapisuje w tablicy ${\tt x}$.

Funkcja może zmienić wartości elementów tablicy A.

Poprawność funkcji można sprawdzić korzystając z funkcji mac_vec_product

Test 4

• Wejście

Numer testu liczba wierszy i macierzy A elementy macierzy A elementy wektora b

• Wyjście

wyznacznik macierzy elementy wektora \mathbf{x}

• Przykład:

Wejście: 4
4
1 -1 2 -1
2 -2 3 -3
1 1 1 0
1 -1 4 3
-8 -20 -2 4
Wyjście: 4,0000

-7.0000 3.0000 2.0000 2.0000

5.2.2 Odwracanie macierzy kwadratowej metodą Gaussa - Jordana

Szablon programu należy uzupełnić o definicję funkcji

matrix_inv(double A[][SIZE], double B[][SIZE], size_t n, double eps), która wyznacza (i zapamiętuje w tablicy B) macierz odwrotną do nieosobliwej macierzy A zapisanej w tablicy A. Należy zastosować metodę Gaussa - Jordana z rozszerzaniem macierzy A o macierz jednostkową. Wiersze macierzy rozszerzonej są zamieniane analogicznie do zadania 5.2.1. Funkcja zwraca wyznacznik macierzy A. W przypadku, gdy po zamianie wierszy element na przekątnej głównej jest mniejszy od eps, to algorytm odwracania nie jest kończony, i wyprowadzany jest tylko wyznacznik = 0 (układ równań nie jest rozwiązywany).

Funkcja może zmienić wartości elementów tablicy A.

Poprawność funkcji można sprawdzić korzystając z funkcji mac_product().

Test 5

• Wejście

Numer testu liczba wierszy i macierzy \mathtt{A} elementy macierzy \mathtt{A}

• Wyjście

wyznacznik macierzy elementy macierzy odwrotnej B

• Przykład:

Wejście:

5

3

1 2 -1

Wyjście:

-9.000

-0.2222 0.5556 -0.1111

0.4444 -0.1111 0.2222

-0.3333 0.3333 0.3333