Class notes on gross substitutes

Alfred Galichon

math+econ+code masterclass on equilibrium transport and matching models in economics Special lecture 4, November 12, 2021

1 Agenda

The following topics will be (briefly) touched upon: **polymatroids** and **exchangeability**, Lovasz extensions, **discrete convex analysis**, L / L# / M / M# convexity as well as unified gross substitutes. This class is only meant to provide an bird's-eye view of topic.

2 Some references

- Murota's overview https://www.comp.tmu.ac.jp/kzmurota/paper/HIMSummerSchool15Murota.pdf
- Gul and Stacchetti papers: https://www.sciencedirect.com/science/article/abs/pii/S0022053199925310 https://www.sciencedirect.com/science/article/abs/pii/S0022053199925802
- 2 working papers of mine (available upon request):
 Galichon, Hsieh and Sylvestre. "Monotone comparative statics for submodular functions, with an application to aggregated deferred acceptance."
 Galichon, Samuelson and Vernet. "Unified Gross Substitutes".

3 Reminders on gross substitutes

Recall the example from last time, which was the supplier's problem

$$Q\left(p\right) = \arg\max_{q} \left\{ p^{\top}q - C\left(q\right) \right\}$$

where C(q) is the cost of producing q, which is assumed convex. Consider the indirect utility

$$C^{*}\left(p\right) = \max_{q} \left\{p^{\top}q - C\left(q\right)\right\}$$

and by duality

$$C\left(q\right) = \max_{p} \left\{ p^{\top} q - C^{*}\left(p\right) \right\}$$

we have $Q\left(p\right)=\partial C^{*}\left(p\right)$. Recall that gross substitutes is equivalent with submodularity of C^* . Indeed, assuming differentiability, $Q_z(p) = \partial C^*(p)/\partial p_z$,

$$\frac{\partial Q_{z}\left(p\right)}{\partial p_{z'}}=\frac{\partial^{2}C^{*}\left(p\right)}{\partial p_{z}\partial p_{z'}}$$

thus gross substitutes mean that $\frac{\partial^2 C^*(p)}{\partial p_z \partial p_{z'}} \leq 0$ for $z \neq z'$. This lecture is all about gross substitutes, which here means $C^*(p)$ submodular [and convex].

Assume f(p) is submodular and convex. Define $f^*(q) = \max_p \{p^\top q - f(p)\}.$ Denote

$$Q\left(p\right) \quad = \quad \arg\max_{q} \left\{ p^{\top}q - f^{*}\left(q\right) \right\} = \partial f\left(p\right)$$

$$Q^{-1}\left(q\right) \quad = \quad \arg\max_{p} \left\{ p^{\top}q - f\left(p\right) \right\} = \partial f^{*}\left(q\right)$$

What can I say about f^* ?

- * it's convex
- * it's supermodular. Heuristically. Show that

$$\frac{\partial^2 f^*(q)}{\partial q_z \partial q_{z'}} \ge 0 \text{ for } z \ne z'$$

well,

$$\frac{\partial^{2}f^{*}\left(q\right)}{\partial q_{z}\partial q_{z'}}=\frac{\partial}{\partial q_{z}}\frac{\partial f^{*}\left(q\right)}{\partial q_{z'}}$$

and $\frac{\partial f^{*}(q)}{\partial q_{z'}} = Q^{-1}\left(q\right) = \arg\max_{p}\left\{p^{\top}q - f\left(p\right)\right\}$. Now we can apply Topkis to $(p,q) \to p^{\top}q - f(p).$

This function satisfies increasing differences; and it is supermodular in p. Hence $\arg\max_{p} \left\{ p^{\top}q - f\left(p\right) \right\}$ is nondecreasing in q. Hence $\frac{\partial f^{*}(q)}{\partial q_{z'}}$ is a nondecreasing function of q. Hence its derivative wrt any q_{z} is ≥ 0 . Thus

$$\frac{\partial^{2} f^{*}\left(q\right)}{\partial q_{z} \partial q_{z'}} = \frac{\partial}{\partial q_{z}} \frac{\partial f^{*}\left(q\right)}{\partial q_{z'}} \ge 0.$$

* Proof that if f is submodular and convex, then f^* is supermodular and

$$\begin{split} f^*\left(q\vee q'\right) + f^*\left(q\wedge q'\right) &\geq f^*\left(q\right) + f^*\left(q'\right) \\ f^*\left(q\right) &= \max\left\{pq - f\left(p\right)\right\} = pq - f\left(p\right) \text{ for some } p \end{split}$$

$$\begin{split} f^*\left(q'\right) &= \max \left\{ pq' - f\left(p\right) \right\} = p'q' - f\left(p'\right) \text{ for some } p' \\ pq - f\left(p\right) + p'q' - f\left(p'\right) &\leq pq + p'q' - (f\left(p\right) + f\left(p'\right)) \leq pq + p'q' - (f\left(p \vee p'\right) + f\left(p \wedge p'\right)) \\ \text{But} \\ pq + p'q' &\leq (p \wedge p') \left(q \wedge p'\right) + \left(p' \vee p'\right) \left(q' \vee q'\right) \\ \text{hence} \\ pq - f\left(p\right) + p'q' - f\left(p'\right) &\leq (p \wedge p') \left(q \wedge p'\right) + \left(p' \vee p'\right) \left(q' \vee q'\right) - \left(f\left(p \wedge p'\right) + f\left(p \vee p'\right)\right) \\ &\leq f^*\left(q \vee q'\right) + f^*\left(q \wedge q'\right) \end{split}$$

Question: does the converse hold. Ie does $g\left(q\right)$ convex and supermodular imply that $g^{*}\left(p\right)=\max_{q}\left\{ pq-g\left(q\right)\right\}$ is submodular.

Yes when the dimension of p and q is 2.

In fact, no as soon as dimension ≥ 3 .

Submodularity of f(p) means that $D^{2}f(p)$ is a Z-matrix. Assuming f is strictly convex, $D^{2}f(p)$ is strictly nonreversing, thus $D^{2}f(p)$ is an M-matrix. We have that it follows that

$$\left(D^2 f\left(p\right)\right)^{-1}$$

has nonnegative entries. But

$$(D^2 f(p))^{-1} = D^2 f^*(q)$$

where $q = \nabla f(p)$.

We can do this by blocks. We could have

$$D^2g\left(q\right) = \begin{pmatrix} D_1 & P^\top \\ P & D_2 \end{pmatrix}$$

where P has nonnegative entries and D_1 and D_2 are diagonal matrices with positive diagonal terms.

Because of the particular structure., I can change the signs of q and write $\tilde{q} = (q_X, -q_Y)$

Define $\tilde{g}(\tilde{q}) = g(\tilde{q}_X, -\tilde{q}_Y)$. Compute the Hessian

$$D^{2}\tilde{g}\left(\tilde{q}\right) = \begin{pmatrix} D_{1} & -P^{\top} \\ -P & D_{2} \end{pmatrix}$$

thus now $D^{2}\tilde{g}\left(\tilde{q}\right)$ is a Z-matrix, and $\tilde{g}\left(\tilde{q}\right)$ is submodular.

$$\mu_{xy} = \exp(\Phi_{xy} - u_x - v_y)$$
$$\sum_{y} \exp(\Phi_{xy} - u_x - v_y) = n_x$$

4 Discrete convexity, exchangeability and polymatroids

1. L-Convexity

We shall assume that the domain of C is contained in $\Delta_a = \{q: \sum_{z \in Z} q_z = a\}$, eg a = 1. That is

$$C(q) = +\infty \text{ if } q \notin \Delta_a$$

and therefore

$$C^* (p) = \max \{ pq - C(q) \}$$

we have

$$C^*(p + t1_Z) = C^*(p) + ta.$$

indeed

$$C^*(p+t1_Z) = \max_{q} \{(p+t1)^\top q - C(q)\} = \max_{q} \{ta + p^\top q - C(q)\}$$

= $C^*(p) + ta$.

A f(p) function is L-convex iff

f is convex

f(p+t) = f(p) + ta for some a.

f is submodular

2. M-convexity

A function g(q) is M-convex iff g is convex and g^* is L-convex.

In particular,

- * the domain of g is Δ_a
- * g supermodular.

But this is not sufficient!

Theorem (Murota). A function g(q) is M-convex iff

a is convex

The domain of g is contained in $\Delta_a = \{q : \sum_{z \in Z} q_z = a\}$

Exchageability is satisfied:

given $q, q' \in \Delta_a$, for any $\delta_1 : 0 \le \delta^1 \le (q'-q)^+$, $\exists \delta^2 : 0 \le \delta^2 \le (q-q')^+$ with $\sum_z \delta_z^1 = \sum_z \delta_z^2$ s.t. $g(q+\delta^1-\delta^2) + g(q'+\delta^2-\delta^1) \le g(q) + g(q')$.

3. M#- and L#- convexity

g is M#-convex iff $\tilde{g}\left(q_0,q_1,...,q_z\right)=g\left(q_1,...,q_z\right)$ if $q_0+\sum_z q_z=0$ is M-convex.

Thus
$$f(\pi, p_1, ..., p_n) = \max_q \left\{ (p - \pi 1)^\top q - g(q_1, ..., q_z) \right\} = g^*(p_1 - \pi, ..., p_Z - \pi)$$

Thus f is L#-convex iff $(\pi, p_1, ..., p_Z) \to f(p_1 - \pi, ..., p_Z - \pi)$ is L-convex.

4. Base polymatroid /base polyhedron

Given a closed convex set Q, Q is a base polymatroid when it support function

$$\iota_{Q}^{*}\left(b\right) = \sup_{q \in Q} q^{\top}b$$

is a L-function.

Equivalently, when its indicator function ι_Q is a M-function, where the indicator function is defined by $\iota_Q\left(q\right)=0$ if $q\in Q$, $+\infty$ if $q\notin Q$

As a result, a base polymatroid can be expressed as $Q = \{q : \sum_{z \in B} q_z \le h(B), \forall B \subseteq Z, \sum_{z \in Z} q_z = a\}$ where h is a submodular function.

Equivalently, when Q is contained in $\Delta_a = \{q : \sum_{z \in Z} q_z = a\}$ and when Q satisfies an exchangeability axiom:

given
$$q, q' \in Q$$
, for $\delta_1 : 0 \le \delta^1 \le (q' - q)^+$, $\exists \delta^2 : 0 \le \delta^2 \le (q - q')^+$ s.t. $q + \delta^1 - \delta^2 \in Q$ and $q' + \delta^2 - \delta^1 \in Q$.

One of our leading questions is how does this translate on the properties ${\cal C}.$ When

$$Q\left(p\right) = \arg\max_{q} \left\{ p^{\top}q - C\left(q\right) \right\}$$

Here, we are going to assume that the domain of C is Δ_1 . We want to show that Q(p) is a base polymatroid, hence that there is a submodular function h(B) such that

$$Q(p) = \left\{ q \in \Delta_1 : \sum_{z \in B} q_z \le h(B) \right\}$$

We have

$$Q(p) = \arg \max_{q} \left\{ p^{\top} q - C(q) \right\} = \left\{ q \in \Delta_{1} : p \in \arg \max_{p} \left\{ pq - C^{*}(p) \right\} \right\}$$

$$= \left\{ q \in \Delta_{1} : \frac{d}{dt} \left\{ C^{*}(p+tb) - (p+tb)^{\top} q \right\} |_{0^{+}} \ge 0 \forall b \right\}$$

$$= \left\{ q \in \Delta_{1} : q^{\top} b \le \frac{d}{dt} \left\{ C^{*}(p+tb) \right\} |_{0^{+}} \forall b \right\}$$

define $\tilde{h}\left(b\right)=\frac{d}{dt}\left\{ C^{\ast}\left(p+tb\right)\right\} |_{0^{+}}.$ We have

$$Q(p) = \left\{ q \in \Delta_1 : \sum_{z} q_z b_z \le \tilde{h}(b) \right\}$$

Take $b_z = 1\{z \in B\}$ that is $b = 1_B$, and let's define $h(B) = \tilde{h}(1_B)$. Then we see that

$$Q(p) \subseteq \left\{ q \in \Delta_1 : \sum_{z \in B} q_z \le h(B) \right\}$$

But we would like to show that the converse holds

```
\begin{array}{l} h \text{ submodular means } h\left(B\cap B'\right) + h\left(B\cup B'\right) \leq h\left(B\right) + h\left(B'\right) \\ \text{this is equivalent with } \tilde{h}\left(1_{B}\wedge 1_{B'}\right) + \tilde{h}\left(1_{B}\vee 1_{B'}\right) \leq \tilde{h}\left(1_{B}\right) + \tilde{h}\left(1_{B'}\right). \\ 1_{B}\wedge 1_{B'} = 1_{B\cap B'} \text{ and } 1_{B}\vee 1_{B'} = 1_{B\cup B'} \end{array}
```

A remark Typically we consider problems of the sort

$$Q(p) = q$$

with gross substitutes. We expect $Q\left(p\right)$ to be a base polymatroid, and $Q^{-1}\left(q\right)$ to be a lattice. Hence base polymatroids is somehow the "dual structure" to lattice structure. Prices live in lattices, quantities live in (base) polymatroids.