# Forecasting Crude Price

**Capstone Project** 

## INTRODUCTION

- There are different types of crude oil in the market– the thick, unprocessed liquid that drillers extract below the earth – and others are more desirable than others.
- There are two kinds of Brent, WTI and Dubai/Oman.
- we need benchmarks to value the commodity based on its quality and location, In our case WTI (West Texas Intermediate) would be used.
- "Brent" actually refers to oil from four different fields in the North Sea: Brent, Forties, Oseberg and Ekofisk. Crude from this region is light and sweet, making them ideal for the refining of diesel fuel, gasoline.
- ★ My Goal is to build a **Time Series model** to predict bunker price using Brent Crude. With the aid of **Brent Crude** Datasets. I would explore the commodities prices and determine the best model.

### **TABLE OF CONTENTS**

01

**Data Exploration** 

Data Cleaning and EDA

03

Modeling

Training Arima and LSTM

02

Data preprocessing

Moving average & Time Series Observation

04

Conclusion

Pros and cons of Price Prediction



# **Data Exploration**

#### Datasets:

Brent Crude Price

Source: Energy Information Administration

### **Data Cleaning**

### **Overview**

#### **Missing Values**

#### Describe Data

dataframe shape (8815, 2)

dataframe types
Date object
Price float64
dtype: object

missing values
Date 0
Price 0
dtype: int64

duplicate values 0

As shown Data has no Missing values and Duplicates, but note there is no data on weekends.

dataframe describe

Price

count 8815.000000

mean 47.157345

std 32.052617

min 9.100000 25% 18.950000

50% 35.720000

**75**% 68.415000

max 143.950000

Max value being priced at 144

### **Data Transformation**



### EDA Exploratory Data analysis

- Pie Chart
- Pairplots

### **Visualize Data**

### **Plotting Data**



Crude Price over 20 years. As you can see the data have some fluctuation



#### Pie chart

- 53.51% 8.9 to 43
- 5.54% 110 to 144

# **Pairplots of Prices**

### **Degree of Granularity**









| Daily a |
|---------|
|---------|

1987-05-25 18.60

1987-05-26 18.63

Date

Price 1987-05-20 18.63 1987-05-21 18.45 1987-05-22 18.55

Weekly avg

Date Price 1987-05-24 18.543333 1987-05-31 18.602000 1987-06-07 18.702000 1987-06-14 18.754000 1987-06-21 19.007500

Monthly avg

Price Date 1987-05-31 18.580000 1987-06-30 18.860476 1987-07-31 19.856522 1987-08-31 18.979524

1987-09-30 18.313182

Yearly avg

Price Date 1987-12-31 18.525813 1988-12-31 14.905412 1989-12-31 18.228228

1990-12-31 23.761445 1991-12-31 20.041128



# **Moving Average**





**Daily** 

**Monthly** 

# Seasonal Decompose



Data increasing Trend

Data pattern

Residuals is the Noise which will affect our model

#### **Partial AutoCorrelation function**



- PACF is apply to determine what order of model
- We know our model is strongly correlated between 0 and 1 lags as diagram shows a 1.0

# Augmented Dickey–Fuller test

ADF: -1.8997715641726658

P-value: 0.33216858177501096

Number of lags: 35

Number of Observation used for ADF Regression & Critical value

Calculation: 8779

Critical value:

1%: -3.43109509774388 5%: -2.8618692838372026 10%: -2.566945272806482

P-value = 0.3 > 0.05, means dataset is not stationary

# **Differencing Data**



### **Train -Test Split**

#### **Train test sets**

y\_train: 2000 to 2007

y\_test : 2008

```
(8815, 1)
(2046, 1) (253, 1)
```

Why 2000 to 2007?

### **Auto ARIMA**

```
Performing stepwise search to minimize aic
ARIMA(0,1,0)(0,0,0)[12] intercept : AIC=5546.136, Time=0.30 sec
ARIMA(1,1,0)(1,0,0)[12] intercept : AIC=5548.524, Time=0.30 sec
ARIMA(0,1,1)(0,0,1)[12] intercept : AIC=5548.614, Time=0.35 sec
ARIMA(0,1,0)(0,0,0)[12]
                              : AIC=5546.836, Time=0.04 sec
ARIMA(0,1,0)(1,0,0)[12] intercept : AIC=5546.554, Time=0.25 sec
ARIMA(0,1,0)(0,0,1)[12] intercept : AIC=5546.644, Time=0.26 sec
ARIMA(0,1,0)(1,0,1)[12] intercept : AIC=5548.051, Time=0.87 sec
ARIMA(1,1,0)(0,0,0)[12] intercept
                                    : AIC=5548.096, Time=0.19 sec
ARIMA(0,1,1)(0,0,0)[12] intercept : AIC=5548.098, Time=0.24 sec
ARIMA(1,1,1)(0,0,0)[12] intercept
                                   : AIC=5542.902, Time=0.86 sec
ARIMA(1,1,1)(1,0,0)[12] intercept
                                    : AIC=5549.737, Time=1.07 sec
ARIMA(1,1,1)(0,0,1)[12] intercept
                                   : AIC=5549.818, Time=1.04 sec
ARIMA(1,1,1)(1,0,1)[12] intercept : AIC=5551.305, Time=1.62 sec
ARIMA(2,1,1)(0,0,0)[12] intercept
                                    : AIC=5550.518, Time=0.58 sec
ARIMA(1,1,2)(0,0,0)[12] intercept
                                    : AIC=5550.523, Time=0.28 sec
ARIMA(0,1,2)(0,0,0)[12] intercept
                                   : AIC=5548.832, Time=0.22 sec
ARIMA(2,1,0)(0,0,0)[12] intercept
                                    : AIC=5548.795, Time=0.20 sec
ARIMA(2,1,2)(0,0,0)[12] intercept
                                    : AIC=5552.509, Time=0.68 sec
ARIMA(1,1,1)(0,0,0)[12]
                                    : AIC=5543.626, Time=0.42 sec
```

Best model: ARIMA(1,1,1)(0,0,0)[12] intercept

### **Auto ARIMA Plot**



Making prediction on Test set

# **LSTM** (Long short-term memory)

|      | Target Date | Target-3 | Target-2 | Target-1 | Target |
|------|-------------|----------|----------|----------|--------|
| 0    | 1987-05-25  | 18.63    | 18.45    | 18.55    | 18.60  |
| 1    | 1987-05-26  | 18.45    | 18.55    | 18.60    | 18.63  |
| 2    | 1987-05-27  | 18.55    | 18.60    | 18.63    | 18.60  |
| 3    | 1987-05-28  | 18.60    | 18.63    | 18.60    | 18.60  |
| 4    | 1987-05-29  | 18.63    | 18.60    | 18.60    | 18.58  |
|      | 1444        |          |          | ***      |        |
| 8807 | 2022-02-01  | 90.70    | 91.47    | 92.35    | 90.24  |
| 8808 | 2022-02-02  | 91.47    | 92.35    | 90.24    | 91.43  |
| 8809 | 2022-02-03  | 92.35    | 90.24    | 91.43    | 92.99  |
| 8810 | 2022-02-04  | 90.24    | 91.43    | 92.99    | 96.86  |
| 8811 | 2022-02-07  | 91.43    | 92.99    | 96.86    | 97.28  |

Years includes: 1987-05-25 to

2022-02-07

Converting to shifting 3 days back for the price label as Target-3,2,1

# **Converting to array**

```
def win_df_date_X_y(win_dataframe):
    df as np = win dataframe.to numpy()
    dates= df_as_np[:,0]
    middle matrix=df as np[:,1:-1]
    X=middle_matrix.reshape((len(dates),middle_matrix.shape[1],1))
    Y=df as np[:,-1]
    return dates, X.astype(np.float32),Y.astype(np.float32)
                     ((8812,), (8812, 3, 1), (8812,))
```

### **Train-Test sets**



```
q_80 = int(len(dates) *.8)
q_90 =int(len(dates) *.9)
```

dates\_train, X\_train, y\_train = dates[:q\_80],X[:q\_80],y[:q\_80] dates\_val, X\_val, y\_val = dates[q\_80:q\_90],X[q\_80:q\_90],y[q\_80:q\_90] dates\_test, X\_test, y\_test = dates[q\_90:],X[q\_90:]

## **Modeling LSTM**

from keras.models import Sequential from tensorflow.keras.optimizers import Adam from tensorflow.keras import layers

```
Epoch 69/100
221/221 [========= ] -
absolute error: 0.8969
Epoch 70/100
221/221 [========= ] -
absolute error: 0.8785
Epoch 71/100
221/221 [========= ] -
absolute error: 0.8848
Epoch 72/100
221/221 [======== ] -
absolute error: 0.8849
Epoch 73/100
221/221 [======== ] -
```

```
model.fit(X_train, y_train, validation_data=(X_val,y_val), epochs=100, )
```







### **Recursive Prediction**

```
recursive predictions = []
recursive dates =
np.concatenate([dates val, dates test])
for target_date in recursive_dates:
 last window = deepcopy(X train[-1])
 next prediction =
model.predict(np.array([last_window])).flatte
n()
recursive predictions.append(next predictio
n)
 last_window[-1] = next_prediction
```



### Conclusion

- Explore Model used with Generative adversarial network
   GAN
- Explore Project in a Classification point of view
- Include other variables like stock of Oil and Gas companies to do multivariate analysis

# THANKS!