VECTOR CALCULUS NOTES NICHOLAS HAYEK

Lectures by Prof. Jean Pierre Mutanguha

CONTENTS

I Curves and Surfaces	1
Products on Vector Spaces	1
Lines	1
Planes	2
Transformations and Parameterizations	2
Differentiation and Continuity	4
Surfaces	5
Midterm Review	12
II Integration	14
Riemann Integration	14
On Hypercubes	14
Point-Set Topology	14
On Arbitrary \mathbb{R}^n Subsets	1.5

I Curves and Surfaces

PRODUCTS ON VECTOR SPACES

Recall the definition of the *inner product* over a vector space *V*:

DEF 1.1

- 1. $\langle u, v \rangle = \overline{\langle v, u \rangle} = \langle v, u \rangle$ in \mathbb{R} (where we'll be in this class)
- 2. $\langle au + bw, v \rangle = a \langle u, v \rangle + v \langle w, v \rangle$
- 3. $\langle u, u \rangle \ge 0$, and $= 0 \iff u = 0$

From this, we define the *norm* of $u \in V$ to be $||u|| := \sqrt{\langle u, u \rangle}$. This is well-defined, since $\langle u, u \rangle \ge 0$.

DEF 1.2

$$\forall u,v \in V, |\langle u,v \rangle| \leq ||u|| ||v||$$

PROP 1.1

Cauchy-Schwartz Inequality PROP 1.2

$$\forall u, v \in V, ||u + v|| \le ||u|| + ||v||$$

Triangle Inequality

The *cross product* of $u, v \in \mathbb{R}$, with respect to \mathbb{R}^3 , is the determinate of the following DEF 1.3 "matrix":

$$u \times v := \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

where $u = \langle u_1, u_2, u_3 \rangle$ and $v = \langle v_1, v_2, v_3 \rangle$. We observe the following two properties of the cross product in \mathbb{R}^3 :

PROP 1.3

- 1. $(u \times v) \cdot u = 0$
- 2. $||u \times v|| = ||u|| ||v|| \sin(\theta)$, where θ is the angle found between u and v. A conceptualization of this property is that "u-cross-v is equal to the area created by the parallelogram bounded by u and v."

LINES

Define a *line* $l(t) \in \mathbb{R}^n$ to be a function from $\mathbb{R} \to \mathbb{R}^n$, with the primary form l(t) = P + td, with $P, d \in \mathbb{R}^n$, $t \in \mathbb{R}$. We call P the "point vector" and d the "direction vector" An alternate form, with two points $P, Q \in \mathbb{R}^n$, would be l(t) = (1-t)P + tQ, where l(t) lies along the path between P and Q for $t \in [0, 1]$.

DEF 1.4

Distance between a point and line Using this definition, how an we find the shortest path between a point R and a line l(t), which lies between P and Q?

- *Idea 1* We know the desired vector $w = PR\sin(\theta)$, the angle between PR and PQ. To find this value, note that $||PR \times PQ|| = ||PR||||PQ||\sin(\theta)$.
- *Idea 2* We can project R onto PQ, and then subtract this projection from PR.

Idea 3 We can minimize a distance function between R and a point on l, i.e. l(t). Thus, we take $\min_{t \in \mathbb{R}} \|R - l(t)\| = \alpha$, and then take $Rl(\alpha)$ to be the shortest path.

Idea 4 We can find when $(R - l(t)) \cdot d = 0$.

VECTOR CALCULUS NOTES

Sometimes called "skew lines"

Distance between 2 lines Consider two lines, l_1 and l_2 , which do not intersect but are not necessarily parallel. What is the minimal distance between l_1 and l_2 ?

- *Idea 0* Conceptualize this problem as finding the distance between the parallel planes defined by $\{l_1, l_2\}$.
- *Idea 1* We can minimize $||l_1(t) l_2(s)||$ (really, one should minimize the square to make one's life easier).
- *Idea* 2 Pick any two points, say $l_1(T)$ and $l_2(S)$, and project $l_1(T)l_2(S)$ onto $l_1 \times l_2$.
- *Idea* 3 Minimize dist($l_1(t)$, l_2) for fixed t.

Idea 4 Find t and s such that $[l_1(t) - l_2(s)] \cdot \overrightarrow{d_1} = 0$ and $[l_1(t) - l_2(s)] \cdot \overrightarrow{d_2} = 0$

 $||u \times v|| = ||u|| ||v|| \sin(\theta) = \text{Area of parallelogram defined by } u \text{ and } v.$

PLANES

A plane r(s,t) is a function $[0,1]^2 \to \mathbb{R}^3$ defined by $d_1, d_2 \in \mathbb{R}^3$, two vectors, and $P \in \mathbb{R}^3$, a point. In particular, $r(s,t) = P + s\vec{d_1} + t\vec{d_2}$. This is called the *parametric form*.

The *point-normal* form is a function $\mathbb{R}^2 \to \mathbb{R}^3$ is given by $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$, where $\vec{n}=\langle a,b,c\rangle$ is a vector normal to the plane, and $P=\langle x_0,y_0,z_0\rangle$ is a point lying on the plane.

Distance between a point R and a plane r

Idea 1 Minimize ||R - r(s, t)|| (or the square)

Idea 2 $\|\operatorname{proj}_{\vec{n}}(P-R)\|$, where \vec{n} and P are as given in the point-normal form.

TRANSFORMATIONS AND PARAMETERIZATIONS

The following table give general examples of linear transformations $\lambda : \mathbb{R}^n \to \mathbb{R}^m$.

Dimension	Linear	Affine	
n = 0	$\lambda(0) = 0$	$\lambda(0) = P$	
n = 1	$\lambda(t) = t\vec{d}$	$\lambda(t) = P + t\vec{d}$	
n = 2	$\lambda(t,s) = t\vec{d_1} + s\vec{d_2}$	$\lambda(t,s) = P + t\vec{d_1} + s\vec{d_2}$	
n = 3	$\lambda(t, s, r) = t\vec{d_1} + s\vec{d_2} + r\vec{d_3}$	$\lambda(t,s) = P + t\vec{d_1} + s\vec{d_2}$ $\lambda(t,s,r) = P + t\vec{d_1} + s\vec{d_2} + r\vec{d_3}$	

PROP 1.4

DEF 1.5

DEF 1.6

We also define the following	important curves in \mathbb{R}^2 :
------------------------------	--------------------------------------

Type	Explicit Form	Parametric Form
Ellipse	$x^2 + y^2 = 1$	$r(t) = \left\langle t, \sqrt{1 - t^2} \right\rangle_{t \in [-1, 1]} = \left\langle \cos(t), \sin(t) \right\rangle_{t \in [-\pi, \pi]}$
Hyperbola	$x^2 - y^2 = 1$	$r(t) = \langle \sqrt{1 + t^2}, t \rangle_{t \in \mathbb{R}} = \langle \cosh(t), \sinh(t) \rangle_{t \in \mathbb{R}}$
Parabola	$x = y^2$	
Double Cone	$x^2 = y^2$	
Any Function	y = F(x)	$r(t) = \langle t, F(t) \rangle$

Define a *path* in \mathbb{R}^m to be a continuous function $r : \mathbb{R} \to \mathbb{R}^m$, e.g. $[a, b] \to \mathbb{R}^m$.

Define a *curve* in \mathbb{R}^m to be the image of a path (i.e. a set of points in \mathbb{R}^m). Recall DEF 1.8 the statement "paths parameterize curves."

For example, the unit circle $x^2 + y^2 = 1$ is parameterized by the path $r : \mathbb{R} \to \mathbb{R}^2$ given by $r(t) = \langle \cos(t), \sin(t) \rangle$.

Define the *tangent* line of \vec{r} at $a \in \mathbb{R}$ to be an affine transformation $l : \mathbb{R} \to \mathbb{R}^m$ satisfying the following:

1.
$$l(t) = r(a) + (t - a)\vec{d} : \vec{d} \neq 0$$

2.
$$\lim_{t\to a} \frac{\|r(t)-l(t)\|}{|t-a|} = 0$$

- **A** Examples **A** ------

E.G. 1.1

We'll now find the derivative of the unit circle at a point $a \in \mathbb{R}$: we have $r(a) = \langle \cos(a), \sin(a) \rangle$. Thus:

$$l(t) = \langle \cos(t), \sin(t) \rangle + (t - a) \langle d_1, d_2 \rangle$$

Where $\langle d_1, d_2 \rangle \neq 0$. Consider now the limit in question 2:

$$\lim_{t \to a} \frac{\|r(t) - l(t)\|}{|t - a|} = \lim_{t \to a} \frac{1}{|t - a|} \sqrt{(\cos(t) - \cos(a) - (t - a)d_1)^2 + (\sin(t) - \sin(a) - (t - a)d_2)^2}$$

$$= \lim_{t \to a} \sqrt{\left(\frac{\cos(t) - \cos(a)}{t - a} - d_1\right)^2 + \left(\frac{\sin(t) - \sin(a)}{t - a} - d_2\right)^2}$$

$$= \int_{t \to a} \sqrt{(-\sin(a) - d_1)^2 + (\cos(a) - d_2)^2} = 0$$

$$\iff d_1 = -\sin(a) \land d_2 = \cos(a)$$

$$\implies l(t) = \langle -\sin(a), \cos(a) \rangle \quad \Box$$

DIFFERENTIATION AND CONTINUITY

Frequently, l(t) is referred to as the "velocity vector" of r(t), and is notated as r'(t). Notice that r'(t) is equivalent to the component-wise derivative of the coordinates of r(t) w.r.t. t. Formally:

Given $\vec{r}: \mathbb{R} \to \mathbb{R}^n$, the *derivative* of \vec{r} at $a \in \mathbb{R}$ is a linear transformation $\vec{\lambda}: \mathbb{R} \to \mathbb{R}^n$ satisfying

$$\lim_{t\to a}\frac{\|r(t)-r(a)-\lambda(t-a)\|}{|t-a|}=0\quad\text{or equivalently}\quad \lim_{h\to 0}\frac{\|r(a+h)-r(a)-\lambda(h)\|}{|h|}=0$$

It is denoted $D\vec{r}_a$, and represented by the $n \times 1$ matrix r'(a). One may now rewrite the tangent line in the form $l(t) = r(a) + \lambda(t - a)$.

The arc length of a curve r(t) is given by

$$s = \int_{a}^{b} ||r'(t)|| dt$$

An arc length parameterization of r(t) is some $t = \alpha(s)$ such that $r(\alpha(s))$ has a unit velocity vector, i.e. $||r'(\alpha(s))|| = 1$. Alternatively, one could find an expression for arc length, and then parameterize r(t) in terms of its arc length. The resultant will be equivalent.

 $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ is *continuous* at \vec{a} if, for any $\varepsilon > 0$, we can find $\delta > 0$ such that

$$\|\vec{x} - \vec{a}\| < \delta \implies \|\lambda(\vec{x}) - \lambda(\vec{a})\| < \varepsilon \ \forall \vec{x} \in \mathbb{R}^n$$

———— ♦ Examples ♣ —————

We'll do an arc length parameterization of a semicircle of radius 1 with its center at the origin, i.e. $y = \sqrt{1 - x^2}$. We get the natural parameterization $r(t) = \langle t, \sqrt{1 - t^2} \rangle$, where $t \in [-1, 1]$. We'd like to find a change of parameters $t = \alpha(s)$ such that $||r(\alpha(s))|| = 1$ and $\alpha' \ge 0$.

$$r(\alpha(s)) = \left\langle \alpha(s), \sqrt{1 - \alpha(s)^2} \right\rangle$$

$$r'(\alpha(s)) = \left\langle \alpha'(s), \frac{1}{2} (1 - \alpha(s)^2)^{-\frac{1}{2}} \cdot (-2\alpha(s)\alpha'(s)) \right\rangle$$

$$= \alpha'(s) \left\langle 1, \frac{-\alpha(s)}{\sqrt{1 - \alpha(s)^2}} \right\rangle$$
Then $1 = \|r'(\alpha(s))\| = \alpha'(s) \sqrt{1 + \frac{\alpha(s)^2}{1 - \alpha(s)^2}}$

$$= \frac{\alpha'(s)}{\sqrt{1 - \alpha(s)^2}}$$

DEF 1.9

DEF 1.10

DEF 1.11

DEF 1.12

E.G. 1.2

Integrating with respect to s, we get $s = \arcsin(\alpha(s)) = \arcsin(t)$. Thus, $t = \sin(s)$, and $s \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$, and we yield the parameterization $\langle \sin(s), \cos(s) \rangle : s \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

SURFACES

We note the following quadric surfaces:

Type	Explicit Form
Ellipsoid	$x^2 + y^2 + z^2 = 1$
Elliptic Hyperboloid	$x^2 + y^2 - z^2 = 1$
Elliptic Paraboloids	$x^2 + y^2 - z^2 = -1$
Hyperbolic Paraboloids	$x = y^2 - z^2$
Double Cones	$x^2 = y^2 + z^2$

A surface F(x, y) is called *differentiable* at (a, b) if there exists some linear transformation $\lambda : \mathbb{R}^2 \to \mathbb{R}$ such that

$$\lim_{(h,k)\to(0,0)} \frac{|F(a+h,b+k)-F(a,b)-\lambda(h,k)|}{\|\langle h,k\rangle\|}$$

One may represent $\lambda(h, k) = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix} = uh + vk$

E.G. 1.3 € Examples ♣

Let F(x, y) = xy. We consider F at (a, b). Then

$$0 \leq \frac{|F(a+h,b+k) - F(a,b) - \lambda(h,k)|}{\|\langle h,k \rangle\|} = \frac{|(a+h)(b+k) - ab - (uk+vk)|}{\|\langle h,k \rangle\|}$$

$$= \frac{|bh + ak + hk - uh - vk|}{\|\langle h,k \rangle\|} = \frac{|(b-u)h + (a-v)k + hk|}{\|\langle h,k \rangle\|}$$

$$\leq \frac{|b-u||h|}{|h|} + \frac{|a-v||k|}{|k|} + \frac{|h||k|}{|h|} \quad \text{since } |h|, |k| \leq \|\langle h,k \rangle\|$$

$$= |b-u| + |a-v| + |k| \to |b-u| + |a-v|$$

$$= 0 \quad \text{when } b = u, a = v$$

Thus, the desired limit is always \geq and \leq 0, so especially it is 0. Our derivative at (a, b) is then $\lambda(x, y) = bx + ay$.

One may also find these coefficients as the partial derivative of *F*, i.e.

$$\nabla F(a,b) = \left\langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle \Big|_{(a,b)}$$

DEF 1.14

This is called the *gradient*. Similarly, $\alpha(x, y) = F(a, b) + \lambda(x - a, y - b)$ is called the *affine approximation* at (a, b).

PROP 1.5

Note that the converse is *false* (as a counterexample, see $F = \sqrt{|xy|}$)

If $F: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \vec{a} , then all partial derivatives of F at \vec{a} exist. Furthermore, $\lambda(\vec{a}) = F'(\vec{a}) = \left[\partial_1 F \cdots \partial_n F\right]_{\vec{a}}$.

1.1 Partial Converse

If all partial derivatives of $F : \mathbb{R}^n \to \mathbb{R}$ exist near \vec{a} and are continuous at \vec{a} , then F is differentiable at \vec{a} .

PROOF FOR n = 2.

Let $\lambda: \mathbb{R}^n \to \mathbb{R}$ be a linear transformation defined by $\left[\partial_1 F \cdots \partial_n F\right]_{\vec{\sigma}}$. Then

$$\lambda(\vec{h}) = \sum_{i=1}^{n} \partial_i F(\vec{a}) h_i$$

Let n = 2. Then

$$|F(\vec{a} + \vec{h}) - F(\vec{a}) - \lambda(\vec{h})| = |F(a_1 + h_1, a_2 + h_2) - F(a_1 + h_1, a_2) + F(a_1 + h_1, a_2) - F(a_1, a_2) - \partial_1 F(\vec{a}) h_1 - \partial_2 F(\vec{a}) h_2|$$

$$\leq |F(a_1 + h_1, a_2 + h_2) - F(a_1 + h_1, a_2) - \partial_2 F(\vec{a}) h_2|$$

$$+ |F(a_1 + h_1, a_2) - F(a_1, a_2) - \partial_1 F(\vec{a}) h_1|$$

$$= |\partial_2 F(\vec{c}) h_2 - \partial_2 F(\vec{a}) h_2| + |\partial_1 F(\vec{d}) h_1 - \partial_1 F(\vec{a}) h_1|$$
by mean value thm.
$$= |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| |h_2| + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| |h_1|$$

$$\frac{|F(\vec{a} + \vec{h}) - F(\vec{a}) - \lambda(\vec{h})|}{||\vec{h}||} = |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| \frac{|h_2|}{||\vec{h}||} + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| \frac{|h_1|}{||\vec{h}||}$$

$$\leq |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| \frac{|h_2|}{|h_2|} + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| \frac{|h_1|}{|h_1|}$$

$$\sin |h_i| < ||\vec{h}||$$

$$= |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})|$$

Then, as $\vec{h} \to 0$, \vec{c} , $\vec{d} \to \vec{a}$. Since F, is continuous, we know $F(\vec{c}) \to F(\vec{a})$ and similarly for $F(\vec{d})$. Thus,

$$|\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| \rightarrow |\partial_2 F(\vec{a}) - \partial_2 F(\vec{a})| + |\partial_1 F(\vec{a}) - \partial_1 F(\vec{a})| = 0$$

And we conclude that the limit, as \leq and \geq 0, is 0.

 $F: \mathbb{R}^n \to \mathbb{R}$ is called C^1 continuous (or *continuously differentiable*) at \vec{a} if all partial

exists near \vec{a} and are continuous at \vec{a} .

Note that the converse to our partial converse is *not* true: i.e. if F is differentiable at \vec{a} , it is not necessarily continuously differentiable at \vec{a} . Some counter examples include F(x, y) = |y| and $F(x) = x^2 \sin(\frac{1}{x})$ s.t. $x \ne 0$ and 0 otherwise.

We have an alternative and equivalent definition of differentiability. Let E be PROP 1.6 continuous and = 0 at 0. Let $\lambda : \mathbb{R}^n \to \mathbb{R}$ be a linear transformation. Then

$$F(\vec{a} + \vec{h}) - F(\vec{a}) = \lambda(\vec{h}) + ||\vec{h}||E(\vec{h})$$
 $\forall h$

implies differentiability.

E.G. 1.4 E.G. 1.4

In our previous example, we prove (laboriously) that F(x, y) = xy is differentiable for all (a, b). We can now use Thm 1.1 to show this result: the partial derivatives $F_x = y$ and $F_y = x$ exist and are continuous $\forall x, y \in \mathbb{R}$, so F is differentiable $\forall x, y \in \mathbb{R}$.

1.2 Characterization of the Derivative

Let $\vec{F} : \mathbb{R}^n \to \mathbb{R}^m$. The derivative at \vec{a} exists if:

1. \exists a linear transformation $\vec{\lambda}: \mathbb{R}^n \to \mathbb{R}^m$ satisfying

$$\lim_{\vec{h}\to\vec{0}}\frac{||F(\vec{a}+\vec{h})-F(\vec{a})-\lambda(\vec{h})||}{||\vec{h}||}=0$$

2. \exists a linear transformation $\vec{\lambda}: \mathbb{R}^n \to \mathbb{R}^m$ and a function E such that

$$F(\vec{a} + \vec{h}) - F(\vec{a}) = \lambda(\vec{h}) + ||\vec{h}||E(\vec{h})$$

and E(0) = 0 is continuous at 0.

Such a λ is unique when found, and is called the derivative. We denote it by $D\vec{F}_{\vec{a}}$.

This follows from Def 1.12 and Thm 1.1.

PROOF.

We may represent the partial derivatives of $\vec{F}: \mathbb{R}^n \to \mathbb{R}^m = \langle F_1, ..., F_m \rangle$ using a DEF 1.16 *Jacobian* matrix, denoted $F'(\vec{a})$, and defined as follows:

PROP 1.7 Chain Rule Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $\vec{a} \in \mathbb{R}^n$. Let $g: \mathbb{R}^m \to \mathbb{R}^l$ be differentiable at $\vec{b} = f(\vec{a}) \in \mathbb{R}^m$. Then

$$h = g \circ f : \mathbb{R}^n \to \mathbb{R}^l$$
 is differentiable at \vec{a}

and $D\vec{h}_{\vec{a}} = D\vec{g}_{\vec{b}} \circ D\vec{f}_{\vec{a}}$. Furthermore, their Jacobians obey

$$h'(a) = g'(b)f'(a)$$

(matrix multiplication) E.G. 1.5

– ♦ Examples ♣ ———

1. Consider $f(x, y) = \langle x + y, x - y \rangle$ and $g(x, y) = \frac{1}{4}x^2 - \frac{1}{4}y^2$. Then $h = g \circ f$: $\mathbb{R}^2 \to \mathbb{R}$ is given by

$$\frac{1}{4}(x+y)^2 - \frac{1}{4}(x-y)^2$$

Let $\vec{a} = \langle a_1, a_2 \rangle$. Then $f(a) = b = \langle a_1 + a_2, a_1 - a_2 \rangle$. What about the Jacobian of f?

$$f'(a) = \begin{bmatrix} \partial_1 f_1 & \partial_2 f_1 \\ \partial_1 f_2 & \partial_2 f_2 \end{bmatrix} \Big|_{(a_1, a_2)} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Similarly, for *g* we have

$$g'(b) = \begin{bmatrix} \partial_1 g & \partial_2 g \end{bmatrix}_{(a_1 + a_2, a_1 - a_2)} = \begin{bmatrix} \frac{1}{2}(a_1 + a_2) - \frac{1}{2}(a_1 - a_2) \end{bmatrix}$$

Then, by the chain rule, we multiple these two matrices to yield

$$\left[\frac{1}{2}(a_1 + a_2) - \frac{1}{2}(a_1 - a_2) \right] \cdot \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} a_2 & a_1 \end{bmatrix}$$

One can (less) manually find that $h = g \circ f$ is xy, and conclude the same.

2. Let *S* be a surface in R^3 given by F(x, y, z) = 0 (this is called a "level surface," e.g. xy - z = 0). Let P = (a, b, c) be a point on *F*, and let *C* be a curve in *S* containing *P*, parameterized by r(t).

Denote $r(t) = \langle x(t), y(t), z(t) \rangle$. Then $g = F \circ r = F(x(t), y(t), z(t)) = 0$. By chain rule, we have $0 = g'(t_0) = F'(P) \cdot r'(t_0)$, where we choose t_0 such that $r(t_0) = \langle a, b, c \rangle$. Then, we observe that

$$0 = \nabla F(P) \cdot \vec{v}(t_0) \implies \nabla F(P) \perp \vec{v}(t_0)$$

Where $\vec{v} = r'$ is the velocity vector of r. By considering all curves that satisfy our construction $C \subset S$, we yield the tangent plane of S at P with normal vector $\vec{n} = \nabla F(P)$. In particular, the point-normal form of the tangent plane of a surface F at P = (a, b, c) is given by

$$\partial_x F(P)(x-a) + \partial_y F(P)(y-b) + \partial_z F(P)(z-c) = 0$$

3. Generally, we can consider $S^{n-1} \subset \mathbb{R}^n$ of $F : \mathbb{R}^n \to \mathbb{R}$. (This is called a *hypersurface*). Suppose this is differentiable at $P \in S$. Let $C \subset S$ be a curve in S through P, parameterized by $r : \mathbb{R} \to \mathbb{R}^n$ and differentiable at t_0 with $r(t_0) = P$.

Then, by the chain rule, $v(t_0) \perp \nabla F(P)$. If $v(t_0) \neq 0$, then the tangent line to C at P has derivative $r(t_0)$. If $\nabla F(P) \neq 0$, then the tangent hyperplane to S at P has a normal vector $n = \nabla F(P)$.

Let $\mathbb{R}^n \to \mathbb{R}$, \vec{a} , $\vec{h} \in \mathbb{R}^n$. Let l(t) = a + th. Then the *directional derivative* of F along h at a, denoted $\partial_{\vec{h}} F(\vec{a})$, is given by

$$\lim_{t \to 0} \frac{F(a+th) - F(a)}{t}$$

Then, if *F* is differentiable at *a*, we have the more useful form

$$\partial_{\vec{h}}F(\vec{a}) = \vec{h} \cdot \nabla F(\vec{a}) = \sum_{i=1}^{n} h_i \partial_i F(\vec{a})$$

Let $F: \mathbb{R}^n \to R$ be differentiable, and let $a, h \in \mathbb{R}^n$, with $h \neq 0$. Then

$$F(a+h) - F(a) = \partial_{\overrightarrow{h}} F(c_h) = h \nabla F(c_h) \quad c_h \in [a, a+h]$$

Note that, since a, h are vectors, by $c_h \in [a, a + h]$ we mean that c_h lies along the line segment connecting a and a + h.

We now restate the chain rule:

1.3 Chain Rule

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at \vec{a} . Let $g: \mathbb{R}^m \to \mathbb{R}^l$ be differentiable at $\vec{b} = F(\vec{a})$. Then

$$h = g \circ f : \mathbb{R}^n \to \mathbb{R}^l$$

is differentiable at \vec{a} and $h'(\vec{a}) = g'(\vec{b}) \circ f'(\vec{a})$.

Let λ be the derivative of f. Let \vec{t} , \vec{s} be arbitrary. Then we have

$$f(\vec{a} + \vec{t}) - f(\vec{a}) = \lambda(\vec{t}) + ||\vec{t}|| \varepsilon_1(\vec{t})$$

where $\varepsilon_1 : \mathbb{R}^n \to \mathbb{R}^m$ is continuous and $\vec{0}@\vec{0}$. Similarly, for g:

$$g(\vec{b} + \vec{s}) - g(\vec{b}) = \mu(\vec{s}) + ||\vec{s}|| \varepsilon_2(\vec{s})$$

where μ is the derivative of g, and ε_2 is as above. Our goal is to write $h = g \circ f$

DEF 1.17

Thus, if $h = e_1$, then $\partial_{e_1} F(\vec{a}) = \partial_1 F(\vec{a})$.

PROP 1.8 Mean Value Thm.

PROOF.

in the same manner. Let $\nu = \mu \circ \lambda$. Then

$$h(\vec{a} + \vec{t}) - h(\vec{a}) = g(f(\vec{a} + \vec{t})) - g(f(\vec{a}))$$

$$= g(f(\vec{a}) + \lambda(\vec{t}) + ||\vec{t}|| \epsilon_1(\vec{t})) - g(f(\vec{a}))$$

$$= \mu(\vec{s}) + ||\vec{s}|| \epsilon_2(\vec{s})$$

$$= \mu(\lambda(\vec{t}) + ||\vec{t}|| \epsilon_1(\vec{t})) + ||\vec{s}|| \epsilon_2(\vec{s})$$

$$= \mu(\lambda(\vec{t})) + ||\vec{t}|| \mu(\epsilon_1(\vec{t})) + ||\vec{s}|| \epsilon_2(\vec{s})$$

$$= \nu(\vec{t}) + ||\vec{t}|| \left(\mu(\epsilon_1(\vec{t})) + \frac{||\vec{s}||}{||\vec{t}||} \epsilon_2(\vec{s}) \right) \quad \text{if } \vec{t} \neq 0$$

$$= \epsilon_3(\vec{t})$$

$$\vec{t} \neq 0 \implies 0 \leq ||\epsilon_3(\vec{t})|| \leq ||\mu(\epsilon_1(\vec{t}))|| + \frac{||\lambda(\vec{t})|| + ||\vec{t}|| ||\epsilon_1(\vec{t})||}{||\vec{t}||} ||\epsilon_2(\vec{s})||$$

$$\leq M||\epsilon_1(\vec{t})|| + (L + ||\epsilon_1(\vec{t})||) ||\epsilon_2(\vec{s})||$$

$$(\text{where } \lambda(\vec{t}) \leq L||\vec{x}|| \text{ and } \mu(\vec{x})) \leq M||\vec{x}||)$$

$$\implies \lim_{\vec{t} \to 0} \epsilon_3(\vec{t}) = 0 \quad \square$$

DEF 1.18 Iterated Partial Derivatives Suppose $g = \partial_i f$ is defined near $\vec{a} \in \mathbb{R}^n$, where $F : \mathbb{R}^n \to \mathbb{R}$. Then if $\partial_j g$ exists at \vec{a} , we call it a 2^{nd} order partial derivative of f at \vec{a} . We denote this $\partial_j \partial_i f(\vec{a})$, where $i, j \in [1, n]$.

1.4 Mixed Partials are Equal

Let $f: \mathbb{R}^2 \to \mathbb{R}$, $\vec{a} = \langle a_1, a_2 \rangle$. Let $\partial_1 f, \partial_2 \partial_1 f$ exist near \vec{a} , with $\partial_2 \partial_1 f$ continuous at \vec{a} . Suppose further that $\partial_1 f(x, a_2)$ is defined near $x = a_1$.

 $\implies \partial_1 \partial_2 f$ is defined at \vec{a} and $\partial_1 \partial_2 f(\vec{a}) = \partial_2 \partial_1 f(\vec{a})$.

PROOF.

$$\partial_{1}\partial_{2}f(\vec{a}) = \lim_{h_{1}\to 0} \underbrace{\frac{\partial_{2}f(a_{1}+h_{2}) - \partial_{2}f(a_{1},a_{2})}{h_{1}}}_{\beta(h_{1}):\mathbb{R}_{\neq 0}\to\mathbb{R}}$$

$$\Rightarrow \beta(h_{1}) = \frac{\lim_{h_{2}\to 0} \frac{f(a_{1}+h_{1},a_{2}+h_{2}) - f(a_{1}+h_{1},a_{2})}{h_{2}} - \lim_{h_{2}\to 0} \frac{f(a_{1},a_{2}+h_{2}) - f(a_{1},a_{2})}{h_{2}}}{h_{1}}$$

$$= \lim_{h_{2}\to 0} \underbrace{\frac{1}{h_{2}} \frac{(f(a_{1}+h_{1},a_{2}+h_{2}) - f(a_{1}+h_{1},a_{2})) - (f(a_{1},a_{2}+h_{2}) - f(a_{1},a_{2}))}_{\alpha(h_{1},h_{2}):\mathbb{R}^{2}_{\neq 0}\to\mathbb{R}}}$$

Now, for a break...

If $\lim_{\vec{h}\to\vec{0}} \alpha(\vec{h})$ exists, then $\lim_{h_1\to 0} \beta(h_1)$ exists, where $\beta(h_1) = \lim_{\vec{h}\setminus h_1\to 0} \alpha(h_1, (\vec{h}\setminus prop 1.9 h_1))$. Furthermore, we conclude

$$\lim_{h_1 \to 0} \beta(h_1) = \lim_{\vec{h} \to \vec{0}} \alpha(\vec{h})$$

Now, it's enough to show that $\lim_{\vec{h}\to\vec{0}}\alpha(\vec{h})=\partial_2\partial_1 f(\vec{a})$. By the Mean Value Thm, we have

PROOF (CONTINUED).

$$\alpha(\vec{h}) = \frac{1}{h_2} (\partial_1 f(c_1, a_2 + h_2) - \partial_1 f(c_1, a_2))$$
$$= \partial_2 \partial_1 f(c_1, c_2) : c_2 \in [a_2, a_2 + h]$$

Let $\vec{c} = \langle c_1, c_2 \rangle$. Then as $\vec{h} \to \vec{0}$, we have $\vec{c} \to \vec{a}$. Thus

$$\lim_{\vec{h} \to \vec{0}} = \lim_{\vec{c} \to \vec{a}} \partial_2 \partial_1 f(\vec{c}) = \partial_2 \partial_1 \vec{a} \qquad \Box$$

 $f: \mathbb{R}^n \to \mathbb{R}$ is k-times continuously differentiable at \vec{a} if all k^{th} -order partial derivatives exist near \vec{a} and are continuous at \vec{a} .

We say that f is k-times continuously differentiable near \vec{a} if it is continuously differentiable at \vec{a} and all k-th order partial derivatives are continuous near \vec{a} .

If $f: \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable at \vec{a} , then all mixed partial PROP 1.10 derivatives are equal at \vec{a} .

If f is k-time continuously differentiable at \vec{a} , then the (k-1)-order partial derivatives are continuously differentiable (hence differentiable and continuous) at \vec{a}

is the following a proof? proposition?

Let $\vec{h} \in \mathbb{R}^n, \vec{l} : \mathbb{R} \to \mathbb{R}^n$ given by $\vec{l}(t) = \vec{a} + t\vec{h}$. Set $g := f \circ \vec{l} : \mathbb{R} \to \mathbb{R}$, i.e. $g(t) = f(\vec{a} + t\vec{h})$.

PROOF.

Then let f be k-times continuously differentiable at \vec{a} . Then g is k-times differentiable at 0, and we have

$$\partial_{\vec{h}}^{i} f(\vec{a}) = g^{(i)}(0) \underset{CR}{=} (\vec{h} \cdot \nabla)^{i} f \Big|_{\vec{a}}$$

For example, with n = 2, we have

$$\partial_{\vec{h}}^2 = (\vec{h} \boldsymbol{\cdot} \nabla)(\vec{h} \boldsymbol{\cdot} \nabla) = (h_1 \partial_1 + h_2 \partial_2)(h_1 \partial_1 + h_2 \partial_2)$$

VECTOR CALCULUS NOTES 12

1.5 Multivariable Taylor's Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be k-times continuously differentiable near \vec{a} with $\vec{a} \in \mathbb{R}^n$. Let $\alpha_j: \mathbb{R}^n \to \mathbb{R}$ be a degree j homogeneous polynomial, i.e. all non-zero terms have the same degree.

Let $E: \mathbb{R}^n \to \mathbb{R}$ be such that

$$\begin{cases} \bullet \ f(\vec{a} + \vec{h}) - f(\vec{a}) = \alpha_1(\vec{h}) + \dots + \overbrace{\alpha_k(\vec{h}) + \underbrace{||h||^k E(\vec{h})}_{R_k(\vec{h})}}^{R_{k-1}(\vec{h})} \ \forall \vec{h} \\ \bullet \ E(\vec{0}) = 0 \end{cases}$$

To find such an *E*, we can take

$$E(\vec{h}) = \begin{cases} \frac{1}{||h||^k} (f(\vec{a} + \vec{h}) - f(\vec{a}) - \alpha_1(\vec{h}) - \dots - \alpha_k(\vec{h})) & \vec{h} \neq 0 \\ \vec{0} & \vec{h} = 0 \end{cases}$$

Then Taylor's Theorem states:

E continuous at
$$\vec{0} \iff \alpha_j(\vec{h}) = \frac{1}{j!} \partial_{\vec{h}}^j f(\vec{a}) = \frac{1}{j!} (\vec{h} \cdot \nabla)^j f(\vec{a}) \quad \forall j \in [1, k]$$

If *E* is continuous at \vec{a} and $\vec{h} \neq \vec{0}$ is near $\vec{0}$, then:

$$R_{k-1}(\vec{h}) = \frac{1}{k!} \partial_{\vec{h}}^k f(\vec{c}_h)$$

where $\vec{c} \in [\vec{a}, \vec{a} + \vec{h}]$.

MIDTERM REVIEW

Recall that the directional derivative is defined as follows

$$\partial_{\vec{h}} f(\vec{a}) := \lim_{t \to 0} \frac{f(\vec{a} + t\vec{h}) - f(\vec{a})}{t} = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = g'(0) \qquad g(t) := f(\vec{a} + t\vec{h})$$

An *iterated directional derivative*, denoted $\partial_{\vec{h}}^{i} f(\vec{a})$, is then

$$g^{(i)}(0)$$

If f is i-times continuously differentiable at \vec{a} , then we can write

$$\partial_{\vec{h}}^{i}(\vec{a}) = (\vec{h} \cdot \nabla)^{i} f(\vec{a})$$

II Integration

RIEMANN INTEGRATION

On Hypercubes

Let \mathcal{B} be a box in \mathbb{R}^n . Choose $F: \mathbb{R}^n \to \mathbb{R}$ which is bounded on the box. Then, informally, F is *integrable* if the limit of its Riemann summation is equivalent across all orderings of tagged partitions.

By the extreme value theorem, if F is continuous on \mathcal{B} , then F is bounded on \mathcal{B} .

2.1 Integrability Criterion

If F is continuous on \mathcal{B} , then F is integrable over \mathcal{B} .

2.2 Fubini

Let $\mathcal{B} = [a_1, b_1] \times \cdots \times [a_n, b_n]$. Let $F : \mathbb{R}^n \to \mathbb{R}$ be continuous on \mathcal{B} . Then

$$\int_{\mathcal{B}} F dV^n = \int_{x_n=a_n}^{x_n=b_n} \cdots \left(\int_{x_1=a_1}^{x_1=b_1} F(x_1, ..., x_n) dx_1 \right) \cdots dx_n$$

Furthermore, the order of integration doesn't matter.

$$\int_{a}^{b} g(x)dx = g(c)(b-a) \text{ where } a < c < b.$$

 $\frac{G(b)-G(a)}{b-a}=G'(c)=g(c)$ by the mean value theorem and the FTC.

2.3

The set of discontinuities of F in \mathcal{B} has zero measure $\iff F$ is integrable over \mathcal{B} .

Note that this theorem is not useful in MATH 248, and its proof is out of the scope of this course.

Point-Set Topology

A set $S \subseteq \mathbb{R}^n$ has zero measure if $\forall \varepsilon > 0$ we can choose a set of open balls such that

PROP 2.1

PROP 2.2

PROOF.

DEF 2.2

15 Integration

 $S \subseteq \bigcup B(x_i, \varepsilon_i)$ where $\sum \operatorname{vol}(B(x_i, \varepsilon_i)) < \varepsilon$.

In general, hypersurfaces in \mathbb{R}^n have zero measure. Thus, if $F: \mathbb{R}^n \to \mathbb{R}$ is continuous except on a hypersurface, F is still integrable.

 $\vec{p} \in \text{Int}(S)$ is called an *interior point* of S if $\exists \varepsilon > 0$ such that $B(\vec{p}, \varepsilon) \subseteq S$.

DEF 2.3

1. If $S \subseteq \mathbb{R}^n$ has zero measure and $S' \subseteq S$, then S' has zero measure.

PROP 2.3

2. If $S \subseteq \mathbb{R}^n$ has zero measure, then S has no interior points.

Let $S \subseteq \mathbb{R}^n$. Then

DEF 2.4

- 1. Int(S), the *interior of S*, is the set of all interior points of S
- 2. S is called *open* if S = Int(S).
- 3. S^c , the compliment of S, is $\mathbb{R}^n \setminus S$.
- 4. $p \in S^c$ is called an *exterior point* of S if $\exists \varepsilon > 0$ with $B(p, \varepsilon) \subseteq S^c$.
- 5. Ext(S), the *exterior* of S, is the set of all exterior points of S.
- 6. *S* is *closed* if $S^c = \text{Ext}(S)$.
- 7. $p \in \mathbb{R}^n$ is called a boundary point of S if $p \notin \text{Int}(S) \land p \notin \text{Ext}(S)$.
- 8. The boundary of S, denoted ∂S , is the set of all boundary points of S.
- 9. *S* is bounded if $\exists \mathcal{B}$ with $S \subseteq \mathcal{B} \subseteq \mathbb{R}^n$.

S is closed \iff S^c is open \iff S contains its boundary.

PROP 2.4

On Arbitrary \mathbb{R}^n Subsets

Let $\mathscr{D} \subseteq \mathbb{R}^n$ be closed and bounded. Let $f: \mathscr{D} \to \mathbb{R}^n$ be some function. $\hat{f}: \mathbb{R}^n \to \mathbb{R}$ defined by

$$\hat{f}(x) = \begin{cases} f(x) & x \in \mathcal{D} \\ 0 & \text{o.w.} \end{cases}$$

is called the *trivial extension of* f.

f is integrable over \mathcal{D} if its trivial extension is integrable over a box $\mathcal{B} \supseteq \mathcal{D}$.

PROP 2.5

2.4

Let $\mathscr{D} \subseteq \mathbb{R}^n$ be closed and bounded, with a boundary that has zero measure. Then, if $f: \mathscr{D} \to \mathbb{R}$ is continuous on \mathscr{D} , then f is integrable.

PROOF.

If f is continuous on \mathcal{D} , then \hat{f} is continuous on both $\operatorname{Int}(\mathcal{D})$ and $\operatorname{Ext}(\mathcal{D})$ (for any point in either of these sets, we can find epsilon balls centered at the point and contained in the set—within these intervals $\hat{f} = f$). Thus, since $\mathcal{D} = \operatorname{Int}(\mathcal{D}) \cup \operatorname{Ext}(\mathcal{D}) \cup \partial D$, the set of discontinuities of \hat{f} has at most measure 0. Hence, \hat{f} is integrable over any box containing \mathcal{D} , and hence f is integrable over \mathcal{D} by Prop 2.5.

DEF 2.5

 $\mathcal{D} \subseteq \mathbb{R}^2$ is called *y-simple* if, for $a, b \in \mathbb{R}$ and $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ continuous, we may write

$$\mathcal{D} = \begin{cases} a \le x \le b \\ g_1(x) \le y \le g_2(x) \end{cases}$$

Similarly, \mathcal{D} is *x-simple* if

$$\mathcal{D} = \begin{cases} a \le y \le b \\ g_1(y) \le x \le g_2(y) \end{cases}$$

Note that, since $x \in [a, b]$ is closed (hence compact), $g_1(x)$ and $g_2(x)$ are bounded. We reason similarly for x-simple domains.

 $\mathscr{D} \subseteq \mathbb{R}^2$ is *elementary* if it is *y*- or *x*-simple. It is *simple* if it is both.

DEF 2.6

2.5 Fubini

If $\mathscr{D} \subseteq \mathbb{R}^n$ is elementary and $f : \mathscr{D} \to \mathbb{R}$ is continuous, then

•
$$\mathscr{D}$$
 is y-simple $\implies \iint_{\mathscr{D}} f dA = \int_{x=a}^{x=b} \int_{y=g_1(x)}^{y=g_2(x)} f(x,y) dy dx$

•
$$\mathscr{D}$$
 is x-simple $\implies \iint_{\mathscr{D}} f dA = \int_{y=a}^{y=b} \int_{x=g_1(y)}^{x=g_2(y)} f(x,y) dx dy$

E.G. 2.1

1. Consider $\iint_{\mathscr{D}} (1+2y)dA$, where \mathscr{D} is bounded by $y=2x^2$ and $y=1+x^2$. We first find the intersection between these two curves: $2x^2=1+x^2 \implies x=\pm 1$.

17 Integration

Then, by Thm 2.5 (\mathcal{D} is *y*-simple), we write

$$\iint_{\mathscr{D}} (1+2y)dA = \int_{x=-1}^{x=1} \int_{2x^2}^{1+x^2} (1+2y)dy dx = \int_{-1}^{1} y + y^2 \Big|_{2x^2}^{1+x^2}$$

$$= \int_{-1}^{1} (1+x^2) + (1+x^2)^2 - 2x^2 - 4x^4$$

$$= \int_{-1}^{1} 1 + x^2 + 1 + x^4 + 2x^2 - 2x^2 - 4x^4$$

$$= \int_{-1}^{1} -3x^4 + x^2 + 2 = \frac{-3}{5}x^5 + \frac{1}{3}x^3 + 2x \Big|_{-1}^{1} = 2\frac{-3}{5} + 2\frac{1}{3} + 4$$

$$= 2\left(\frac{-9}{15} + \frac{5}{15} + \frac{30}{15}\right) = \frac{52}{15}$$

2. Consider $\iint \mathcal{D} y dA$, where \mathcal{D} is bounded by $x = y - y^3$, $x = \sqrt{y} - 1$, x = -1, and y = -1 (OOF). By Thm 2.5 (*y*-simple):

We split this up into two *x*-simple graphs, one in $y \in [-1, 0]$, and one in $y \in [0, 1]$. Then we have $\iint_{\mathcal{D}} = I_1 + I_2$, with

$$I_{1} = \int_{0}^{1} \int_{\sqrt{y}-1}^{y-y^{3}} y dx dy \qquad I_{2} = \int_{-1}^{1} \int_{-1}^{y-y^{3}} y dx dy$$

Computing this integral a hassle. Try it yourself.

3. We may also flip the bounds of integration using Thm 2.5. For example, consider $\int_0^3 \int_y^3 \sin(x^2) dx dy$. This is a non-elementary integral to evaluate in x. But observe that our bounds are equivalent to $y \in [0, x]$ and $x \in [0, 3]$, so we may re-write this as $\int_0^3 \int_0^x \sin(x^2) dy dx$.

We pick up an x, not, after integrating WRT y, so this is easy to evaluate!

DEF 2.7

DEF 2.8

This is distinct from elementary-ness of $\mathcal{D} \subseteq \mathbb{R}^2$, which we characterized by y and x simple-ness.

A set $S \subseteq \mathbb{R}^n$ is called *path-connected* if, for every $a, b \in S$, there exists a continuous mapping containing a and b (i.e., there exists a path between them).

In $\mathcal{D} \subseteq \mathbb{R}^n$, we call \mathcal{D} elementary if it is closed, bounded, and both its interior and boundary are path-connected.