

Übung 13: Parallelisierung

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

26. Januar 2024

Durchzählen!

Keine Garantie für die Richtigkeit der Tutorfolien: Bei Unklarheiten/Unstimmigkeiten haben VL/ZÜ-Folien Recht!

Parallelisierungstechniken

- Single-Threaded Rechenleistung immer weiter durch physikalische Limits eingeschränkt
- Optimierungen: Pipelining,
 Out-of-Order-Processing, Ausnutzen von Parallelität
- SIMD: Eine Instruktion, die gleichzeitig auf mehrere Daten ausgeführt wird (mehr dazu in GRA)
- Multithreading/Mehrkernsysteme → mögliche Cache-Inkonsistenzen

		Instruction stream Single Multiple	
		0111810	
Data stream	Single	SISD	MISD
	Multiple	SIMD	MIMD

Quelle: A Taxonomy of Reconfigurable Single-/Multiprocessor Systems-on-Chip

MSI/MESI

- Einführung von Zuständen für Cachezeilen
- Modified, (Exclusive), Shared, Invalid
- Erklärung siehe ZÜ

Quelle: Jugones55, CC BY-SA 4.0 via Wikimedia Commons

Speedup durch Parallelisierung

- Mit t_s sequentieller Programmteil, t_p paralleler Programmteil, n Anzahl CPU-Kerne Amdahl's Law: $s_{\mathrm{Amdahl}}(n) = \frac{T}{t_* + \frac{t_p}{2}}$ Gleiche Problemgröße, aufgeteilt auf mehrere Kerne → begrenzt durch sequentiellen Anteil
 - Gustafson's Law: $s_{\text{Gustavson}}(n) = \frac{t_s + n \cdot t_p}{T}$ Größeres Problem→ paralleler Anteil wächst mit Problemgröße, t_e proportional kleiner
- Zwei verschiedene Perspektiven, abhängig von Problemszengrio verschieden geeignet

Amdahl's Law: graphische Darstellung

Quelle: Vorlesungsmaterial ERA

Fragen?

Artemis-Hausaufgaben

- H13 MESI bis 04.02.2024 23:59 Uhr
- MESI-Tabelle zu verschiedenen Aktionen ausfüllen
- Letzte reguläre Hausaufgabe
- Um den Notenbonus zu erhalten, braucht man also $\geq 0.8 \cdot 130 = 104$ Punkte!
- Der Notenbonus wird nur angewandt, wenn die Ausgangsnote besser als 5.0 und nicht
 1.0 ist

Links

- Zulip: "ERA Tutorium Mi-1600-MI4" bzw. "ERA Tutorium Fr-1100-MW2"
- Wikipedia zu MESI
- Amdahlsches und Gustafsons Gesetz

Übung 13: Parallelisierung

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

26. Januar 2024

