Lista 8 - Álgebra Linear

Autovalores, autovetores e diagonalização

3° quadrimestre de 2014 - Professores Maurício Richartz e Vladislav Kupriyanov

obs: a letra grega α denota a base canônica do espaço em questão e β denota uma base de autovetores.

- 1. (a) $\lambda_1 = 1 + \sqrt{2}$, $\lambda_2 = 1 \sqrt{2}$. $\mathbf{v_1} = (1, \sqrt{2})$, $\mathbf{v_2} = (1, -\sqrt{2})$. (b) $\lambda_1 = -3$, $\lambda_2 = 1$. $\mathbf{v_1} = (0, 1, -1)$, $\mathbf{v_2} = (-4, -1, 1)$. (c) $\lambda_1 = 1$, $\lambda_2 = -1$. $\mathbf{v_1} = 1 + x$, $\mathbf{v_1'} = x^2$, $\mathbf{v_2} = 1 x$. (d) $\lambda = 0$. $\mathbf{v} = 1$. (e) $\lambda_1 = 1$, $\lambda_2 = -1$. $\mathbf{v_1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\mathbf{v_1''} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- 2. (a) $\lambda_1 = 1$, $\lambda_2 = -1$. $\mathbf{v_1} = (1,0)$, $\mathbf{v_2} = (1,-1)$. (b) $\lambda_1 = 2$, $\lambda_2 = 0$. $\mathbf{v_1} = (1,1)$, $\mathbf{v_2} = (1,-1)$. (c) $\lambda_1 = 6$, $\lambda_2 = -4$. $\mathbf{v_1} = (3,1)$, $\mathbf{v_2} = (1,-3)$. (d) $\lambda = 1$. $\mathbf{v} = (1,0,0)$. (e) $\lambda_1 = 4$, $\lambda_2 = -2$. $\mathbf{v_1} = (1,1,0)$, $\mathbf{v_1'} = (-1,0,1)$, $\mathbf{v_2} = (1,0,1)$. (f) $\lambda_1 = -3$, $\lambda_2 = 9$. $\mathbf{v_1} = (2,1,0)$, $\mathbf{v_1'} = (-7,0,1)$, $\mathbf{v_2} = (1,1,1)$.
- 3. 1a,1c,1e, 2a, 2b, 2c, 2e, 2f são diagonalizáveis pois possuem uma base de autovetores. A matriz M, em cada caso, é a matriz mudança de base da base de autovetores para a base canônica (as colunas da matriz M são os autovetores). A matriz diagonal M⁻¹AM é a matriz que tem na diagonal principal os autovalores da transformação.
- 4. (a) $[I]_{\alpha}^{\beta} = \begin{bmatrix} 1+\sqrt{2} & 1 \\ 1 & -1-\sqrt{2} \end{bmatrix}$, $[T]_{\beta}^{\beta} = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & -\sqrt{2} \end{bmatrix}$. (b) $[I]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 & 5 \\ 0 & 3 & 1 \end{bmatrix}$, $[T]_{\beta}^{\beta} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. (c) Não é diagonalizável: $\lambda_1 = 3$, $\lambda_2 = 4$; $\mathbf{v_1} = (1,0,0,0)$, $\mathbf{v_1'} = (0,0,0,1)$, $\mathbf{v_2} = (0,0,1,0)$. (d) $[I]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 2 \end{bmatrix}$, $[T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 3 \end{bmatrix}$. (e) Não é diagonalizável: $\lambda_1 = 1$, $\lambda_2 = 0$, $\lambda_3 = 3$; $\mathbf{v_1} = (1,0,0,0)$, $\mathbf{v_2} = (0,0,1,-2)$, $\mathbf{v_3} = (0,0,1,1)$. (f) Não é diagonalizável: $\lambda = 1$, $\mathbf{v} = 1$. (g) Não é diagonalizável: $\lambda = 0$, $\mathbf{v} = 1$.
- 5. (a) $\lambda_1 = 14$, $\lambda_2 = 1$. Autovalores distintos \Rightarrow é diagonalizável em \mathbb{C} . (b) $\lambda_1 = 2 + i\sqrt{3}$, $\lambda_2 = 2 + i\sqrt{3}$. Autovalores distintos \Rightarrow é diagonalizável em \mathbb{C} . (c) $\lambda_1 = 3$, $\lambda_2 = 2$ (mult. algébrica = 2). Apenas um autovetor LI (1,0,0) associado a $\lambda_2 = 2 \Rightarrow$ não é diagonalizável em \mathbb{C} . (d) matriz triangular superior \Rightarrow autovalores são $0, -2, \pi, \sqrt{3}, -1, 7 \Rightarrow$ todos distintos \Rightarrow é diagonalizável em \mathbb{C} .
- 6. (a) $\lambda_1=1,\ \lambda_2=-1$ (mult. algébrica = 2). Dois autovetores LI ((1,0,1) e (0,1,1)) associado a $\lambda_2=2\Rightarrow$ é diagonalizável em \mathbb{R} . (b) $\lambda_1=1,\ \lambda_2=2$ (mult. algébrica = 2). Dois autovetores LI ((0,1,0) e (0,0,1)) associado a $\lambda_2=2\Rightarrow$ é diagonalizável em \mathbb{R} . (c) $\lambda_1=3,\ \lambda_2=i,\ \lambda_3=-i.$ Autovalores complexos \Rightarrow não é diagonalizável em \mathbb{R} . (d) Matriz simétrica \Rightarrow é diagonalizável em \mathbb{R} .
- 7. (a) $A^{-1} = \begin{bmatrix} -1/2 & 1 \\ 1/2 & 0 \end{bmatrix}$. (b) Autovalores de A: -1 e 2. Autovalores de A^{-1} : -1 e 1/2 (são os inversos dos autovalores de A). (c) Use a definição de autovalor/autovetor para fazer a demonstração.

8. (a)
$$M = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \end{bmatrix}$$
, com $M^t A M = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -9 \end{bmatrix}$.

(b) [obs: bastante conta]
$$M = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{2} + \frac{1}{2\sqrt{3}} & \frac{1}{2} - \frac{1}{2\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{2} - \frac{1}{2\sqrt{3}} & \frac{1}{2} - \frac{1}{2\sqrt{3}} \end{bmatrix}$$
, $com M^t A M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 + \sqrt{3} & 0 \\ 0 & 0 & 1 - \sqrt{3} \end{bmatrix}$.

9. (a)
$$A^{n} = \begin{bmatrix} 9.6^{n} + (-4)^{n} & 3.6^{n} - 3.(-4)^{n} \\ 3.6^{n} - 3.(-4)^{n} & 6^{n} + 9.(-4)^{n} \end{bmatrix}$$
. (b) $A^{n} = \begin{bmatrix} 10^{n-1} & 3.10^{n-1} \\ 3.10^{n-1} & 9.10^{n-1} \end{bmatrix}$. (c) $A^{n} = \frac{1}{2} \begin{bmatrix} 1 + 3^{-n} & 1 - 3^{-n} \\ 1 - 3^{-n} & 1 + 3^{-n} \end{bmatrix}$. (d) $A^{n} = \begin{bmatrix} 3^{n} & 0 & 0 \\ 0 & (-1)^{\frac{n}{2}} & 0 \\ 0 & 0 & (-1)^{\frac{n}{2}} \end{bmatrix}$

- 10. (a) polinômio: $\lambda^2 (a+d)\lambda + (ad-bc)$. (b) se $(a-d)^2 + 4bc > 0$, os autovalores são reais e distintos e, portanto, a transformação é diagonalizável em \mathbb{R} . Se a=d, b=c=0, os autovalores são iguais mas existe uma base de autovetores e, portanto, a transformação é diagonalizável. Para todos os outros casos não é diagonalizável em \mathbb{R} . (c) Nesse caso, autovalores complexos são possíveis e, portanto, a transformação só não é diagonalizável se $(a-d)^2 + 4bc = 0$, com $a \neq d$.
- 11. (a) Comece com a definição de autovalor/autovetor $[T(\mathbf{v}) = \lambda \mathbf{v}]$ e aplique a transformação sucessivas vezes para mostrar que $T^n(\mathbf{v}) = \lambda^n \mathbf{v} = \mathbf{0}$ e concluir que $\lambda = 0$. (b) qualquer matriz da forma $\begin{bmatrix} \pm \sqrt{bc} & b \\ c & \mp \sqrt{bc} \end{bmatrix}$, por exemplo $\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}$. (c) Suponha, por absurdo, que existe uma base $\{\mathbf{v}_1, ... \mathbf{v}_n\}$ de autovetores. Como os autovalores são todos nulos, então $T(\mathbf{v}_1) = ... = T(\mathbf{v}_n) = 0$. Use isso para concluir que $T(\mathbf{v}) = \mathbf{0}$ para qualquer \mathbf{v} .
- 12. (a) Comece com a definição de autovalor/autovetor $[T(\mathbf{v}) = \lambda \mathbf{v}]$ e, portanto, $T^2(\mathbf{v}) = T(\mathbf{v}) \Rightarrow \lambda^2 \mathbf{v} = \lambda \mathbf{v}$. Conclua que $\lambda = 0$ ou $\lambda = 1$. (b) qualquer matriz da forma $\begin{bmatrix} a & b \\ a(1-a)/b & 1-a \end{bmatrix}$ ou $\begin{bmatrix} 0 & 0 \\ c & 1 \end{bmatrix}$ (existem outras possibilidades). Por exemplo, $\begin{bmatrix} 5 & 10 \\ -2 & -4 \end{bmatrix}$ (c) (Difícil) Seja T um operador idempotente. Junte uma base da imagem de T com uma base do núcleo de T e, através do teorema do núcleo-imagem, mostre que esse conjunto de vetores é uma base de autovetores do espaço. (dica: qualquer vetor \mathbf{v} pode ser escrito como $\mathbf{v} = \mathsf{T}(\mathbf{v}) + (\mathbf{v} \mathsf{T}(\mathbf{v}))$).
- 13. (a) $x(t) = 3C_1e^{6t} + C_2e^{-4t}$, $y(t) = C_1e^{6t} 3C_2e^{-4t}$. (b) $x(t) = C_1e^t + 3C_2e^{-t}$, $y(t) = C_1e^t + 5C_2e^{-t}$.
- 14. (a) obs: a matriz que aparece é a mesma do exercício 8a: $\left(\frac{x'}{3}\right)^2 + \left(\frac{y'}{9}\right)^2 \left(\frac{z'}{\sqrt{3}}\right) = 1$; hiperbolóide circular de uma folha. (b) obs: a matriz que aparece é a mesma do exercício 8b: $\frac{x'^2}{4} + \frac{1+\sqrt{3}}{4}y'^2 + \frac{1-\sqrt{3}}{4}z'^2 = 1$; hiperbolóide elíptico de uma folha. (c) $\frac{3}{4}x'^2 + \frac{y'^2}{4} = 1$ (elipse), base do novo sistema de coordenadas é $\{\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1)\}$. (d) $\frac{9}{28}\left(x' \frac{4}{3}\right)^2 + \frac{3}{28}y'^2 = 1$ (elipse), base do novo sistema de coordenadas é $\{\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1)\}$.