19950328 186

Center for Seismic Studies 1300 N. 17th Street, Suite 1450 Arlington, Virginia 22209-3871 Telephone: (703) 276-7900

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

CSS Ground-Truth Database: Version 1 Handbook

F29601-92-C-0005

5. FUNDING NUMBERS

6. AUTHOR(S)

Grant, L.

Coyne, J.

Rvall, F.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Science Applications International Corporation Center for Seismic Studies 1300 N. 17th Street, Suite 1450 Arlington, VA 22209

8. PERFORMING ORGANIZATION REPORT NUMBER

C93-05

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Advanced Research Projects Agency 3701 N. Fairfax Drive Arlington, VA 22203

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

DSRS-U-35390

11. SUPPLEMENTARY NOTES

Report #C93-05 Contract No. F29601-92-C-0005

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution Unlimited

Approved for Public Release plates: 411 DEIC reproductsome will be to block and 的智慧这种^是。1" Part Buch son

13. ABSTRACT (Maximum 200 words)

The Ground-Truth Database (GTDB) is a collection of regional waveforms and phase parameters generated by seismic events of known type, (i.e. earthquake, quarry blast, etc.) where the event type is confirmed by some means in addition to seismic observations. The ground-truth data, in order of importance are: event type, location, depth and origin time. References to the source of the ground-truth (usually a document or a person) are readily available in the GTDB. The most significant modification to CSS 3.0 tables is that the origin table is used to store event information collected from experts in the local areas. This has resulted in a "hybrid" origin table that contains, in each field, the best information available at the time of this writing. Version 1 of the GTDB includes 82 events in three distinct regions. Dataset #1 consists of 11 earthquakes and 15 quarry blasts in the Vogtland region of northwest Bohemia, Czech Republic; Dataset #2 consists of 25 events from an earthquake swarm just off the west coast of northern Norway in the Steigen area; Dataset #3 consists of 31 induced mine tremors in a major mining district known as the Lubin Copper Basin in western Poland. The GTDB is part of the Center's Central Database Repository (CDR), available on-line under the account "DISCRIM1".

14. SUBJECT TERMS

Ground-Truth Database Seismic Events

Bohemia Czech Rep. Poland

15. NUMBER OF PAGES

240 16. PRICE CODE

Origin Table

17. SECURITY CLASSIFICATION

Norway

SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT

OF REPORT UNCLASSIFIED

OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED

NONE

Technical Report C93-05 August 1993

CSS Ground-Truth Database: Version 1 Handbook

L. Grant, J. Coyne, F. Ryall

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.

Sponsered By:
ADVANCED RESEARCH PROJECTS AGENCY
Nuclear Monitoring Research Office
ARPA Order Number 6731
Issued by:
Phillips Laboratory
Under Contract No. F29601-92-C-0005

Science Applications International Inc. Center for Seismic Studies 1300 N. 17th Street, Suite 1450 Arlington, VA 22209

DISCLAIMER NOTICE

THIS REPORT IS INCOMPLETE BUT IS
THE BEST AVAILABLE COPY
FURNISHED TO THE CENTER. THERE
ARE MULTIPLE MISSING PAGES. ALL
ATTEMPTS TO DATE TO OBTAIN THE
MISSING PAGES HAVE BEEN
UNSUCCESSFUL.

CSS Ground-Truth Database: Version 1 Handbook

TABLE of CONTENTS

PART 1: DATABASE DESCRIPTION

Chapter 1:	Introduction	1
•	Objective and Motivation	. 1
	Explanation Of The Term "Ground-Truth"	. 1
	Handbook Overview	
	Building the GTDB	.2
	·	
Chapter 2:	Description Of Version 1	.5
•	Sources of Seismic Waveform Data	
	Recording Stations	
	Distance Range	
	Magnitude Range	
Chapter 3:	Contributors	3
•		
Chapter 4:	Waveform Analysis	.5
•	Purpose of Analysis	
	Method of Analysis	
	Rules and Assumptions	
	•	
Chapter 5:	Quality Of Waveform Data	9
Chapter 6:	GTDB Schema2	23
	PART 2: DATASETS	
Chapter 1:	Dataset #1: Vogtland	3
Chapter 2:	Dataset #2: Steigen	8
Chapter 3:	Dataset #3: Lubin4	.2
	PART 3: EVENT PLOTS	
Acknowled	gements5	2
	_ist5	
	Mail Distribution List	
COLITI IOI SU	bmitting new datasets/comments5	Ō

Preface

This database was made possible by enthusiastic support from many local experts who contributed information early and often. Especially helpful where Jan Wüster, Germany; Petr Firbas, Czech Republic; Pawel Wiejacz, Poland; and Atakan Kuvvet, Norway. Support from the international community is essential and greatly appreciated. A complete list of persons making direct and indirect contributions of information contained in this database is included in Part 1, Chapter 3 of this handbook.

Acces	sion Fo	r
MTIS	GRA&I	3
DIIC	TAB	
Unann	ounced	
Just 1	fication	
	tet til se det som mensenskelsensenskelsensenskelskelstense	
By		
Distr	ibution	1.
Avai	labilit	y Codes
	Avail a	nd/ar
Dist.	Speci	82
W		
1		
		The second secon

PART 1: DATABASE DESCRIPTION Chapter 1: Introduction

1.1 Objective and Motivation

The objective of the Ground-Truth Database (GTDB) is simple. It is to be a collection of regional waveforms and carefully-reviewed phase parameters generated by seismic events of known type, (i.e. earthquake, quarry blast, etc.) where the event type is confirmed by some means in addition to seismic observations.

The motivation for building the GTDB is to bridge the gap between seismic data and factual information about the events generating it. Researchers will have access to an encapsulated data product so the information-gathering procedure that starts off many studies is simplified and the research emphasized. The intention of this approach is to provide a database that researchers will have confidence in and use repeatedly.

The GTDB is an on-going project and is intended to become a repository for data from known events. It will be used in a variety of applications, with the primary purpose being seismic event discrimination research. Without knowing true location and source type of seismic events detected and located by automatic systems such as IMS (Bache et al., 1990, Bratt et al., 1990), it is difficult to evaluate the importance of event parameters leading to identification of event type. This is especially true in calibration of new areas where industrial blasts, mining-induced tremors and natural earthquakes are all possibilities. Because regional discriminants vary in their effectiveness with magnitude, source region, and depth, the database should be large enough to sample each of these well. Suggestions for the ideal research database are found in the Panel Report from the DARPA Event ID Workshop (DARPA, 1992).

1.2 Explanation Of The Term "Ground-truth"

The term "ground-truth", in reference to this database, means that at least some facts are known about each seismic event with a high level of confidence. The ground-truth data, in order of importance are: event type, location, depth and origin time. Other information such as charge size, for industrial blasts, or macroseismic information, for earthquakes, is also of importance. The more that is known about an event, the more confidence can be placed on the information associated with the event. References to the source of the ground-truth (usually a document or a person) are readily available in the GTDB.

Different methods of gathering ground-truth information result in different kinds of information and levels of confidence in the information. One approach is to start with unknown events of interest and gather associated ground-truth by contacting local experts. Another approach is to start with a list of known events, e. g. a list of felt earthquakes, and gather the waveforms. A third approach results in the highest level of confidence: when information is gathered by direct observation, as in an experiment.

1.3 Handbook Overview

This document is entitled "handbook" because its main purpose is to be a reference for users of the GTDB, describing what is known and what is unknown about the events, and how the information is organized in the database structure. Part 1 includes this brief introduction with the main emphasis on the framework of the GTDB. Part 2 explains the details of each dataset. Part 3 shows samples of data for each event.

1.4 Building the GTDB

This section describes the steps in building the GTDB. The remaining chapters in Part 1 provide more details for each step.

Initial Event Lists

In building the GTDB, events were processed in groups, referred to as datasets, within a common geographical area. One of the first steps in adding a dataset to the GTDB was to isolate a list of events where there is a possibility of (a) satisfying some size and distance criteria (ml > 2.0 with recordings at two degrees or more), (b) obtaining waveforms, and (c) obtaining ground-truth.

•Waveform Data Sources

Once the initial list of events was identified, pertinent waveform data was collected for events in the list. At this stage in database development, waveform data that was most readily available was obtained. Thus Version 1 is limited to data from the Central Database Repository (CDR) at the Center for Seismic Studies (Center). Specifically, data collected by IMS and GSETT-2 operations are utilized. Future additions to the GTDB will not be limited to the Center's CDR, but rather will become a part of it.

The first two steps are closely related. In each case, we either start with a list of events recorded by a system and try to verify the circumstances generating them or, we start with a list of events of known type and try to collect waveform data for them. In either case, only events that have both ground-truth information and regional waveforms are valid in the GTDB.

Verification of Ground-Truth

The process of verification of ground-truth involves communication with individuals who have some knowledge of the seismicity in the areas where the events occurred or where they were recorded. After such information is received, it is verified and additional requests are sent back to the local experts, if necessary to resolve conflicting information or to answer specific questions. Chapter 3.0 lists each person who contributed ground-truth information to the GTDB.

•Review, Revision of Parameter Data

Seismic waveform analysis was performed on each event in the GTDB for the purposes of verifying the arrival time picks and phase identification. The analysis was carried out in a consistent manner: with one analyst; analyzing groups of events by geographic area; and following a standard set of rules. Chapter 4.0 describes rules used in analysis.

Quality Control- Selection of Waveform Data

After waveform analysis was complete, the waveform data quality was reviewed. In general, only waveforms with arrivals associated to one of the GTDB events were included in the GTDB. Waveforms with constant data value were excluded, as well as some waveforms with serious data problems. Chapter 5.0 addresses waveform data quality.

Database Relations

While developing the discrimination database, extensions were added to the CSS Version 3.0 Database Schema (Anderson et al., 1990) for handling detailed source information, and for storing and quickly retrieving bibliographic references, general comments, and ground-truth information. An attempt was made to draw from the experience of others in designing new schema, relying on standard CSS Version 3.0 schema where possible. The most significant modification to CSS 3.0 tables is that the origin table is used to store event information collected from experts in the local areas. This has resulted in a "hybrid" origin table that contains, in each field, the best information available at the time of this writing. GTDB Schema are described in detail in Chapter 6.0.

· Results

Version 1 of the GTDB includes 82 events in three distinct regions shown in Figure 1. Dataset #1 consists of 11 earthquakes and 15 quarry blasts in the Vogtland region of northwest Bohemia, Czech Republic; Dataset #2 consists of 25 events from an earthquake swarm just off the west coast of northern Norway in the Steigen area; Dataset #3 consists of 31 induced mine tremors in a major mining district known as the Lubin Copper Basin in western Poland.

The GTDB is part of the Center's Central Database Repository (CDR), available on-line under the account "DISCRIM1". Waveforms belonging to the GTDB are stored on the Center's mass storage device (Epoch). CenterView, an X-windows program designed specifically for viewing and retrieving seismic parametric and waveform data, accesses the DISCRIM1 account. Availability of these datasets are announced in the newsgroup seismic.general and are also e-mailed to the GTDB electronic-mailing list. Updates to tables in the current version of the GTDB are documented in the disk file discrim1.log, available in the directory ~grant/discrim1_updates on the machine, named sol, at the Center.

Figure 1: Three datasets comprising Version 1 of the Ground-Truth Database. Dataset #1: Vogtland is 11 earthquakes and 15 quarry blasts. Dataset #2: Steigen is 25 earthquakes and Dataset #3: Lubin is 31 induced mine tremors.

Chapter 2: Description Of Version 1

2.1 Sources of Seismic Waveform Data

2.1.1 Regional Seismicity as Recorded by IMS

The IMS detects and locates up to 10,000 events per year. Waveform and parameter data are stored in the Center's CDR. The large majority of these are events within regional distances of the ARCESS, FINESA, NORESS, and GERESS arrays and are spatially clustered in small areas representing mining-related activity. During the initial testing of the IMS (1 October through 25 November, 1989), 63% of the events were located within 50 km of known mines (Bratt, et al., 1990). Figure 2 plots all events located by the IMS between January 1991 and January 1992 with IMS local magnitude > 2.0. The following sections summarize the dominant clusters and their relation to the datasets in the GTDB.

Events within 500 km of GERESS are shown in Figure 3. Six dominant clusters are identified by letters a-f, and are described below:

- (a) Open-pit stone quarries and open-pit coal mines in NW Bohemia (two open-pit mines and one quarry are represented in Dataset #1) (Firbas, pers. comm.) The western edge of this cluster includes some natural earthquakes, also represented in Dataset #1;
- (b) Ppen-pit brown coal mines in North Bohemia. (Firbas, pers. comm);
- (c) Open-pit coal mine in Germany. (Harjes et al., 1992);
- (d) Underground copper mines in the Lubin Copper Basin of Poland (represented in Dataset #3). There are an estimated 120 mine-induced tremors > ml 2.0 in first six months of 1991 (Gibowicz, pers. comm.). Four underground mines are located within an area approximately 15 km by 4 km;
- (e) Underground coal mines in the Upper Silesia Coal Basin of Poland. Hundreds of mining-induced tremors with local magnitude > 2.0 occur in this area each year. 63 underground mines are operational along a 40 km length of a fault This coal-producing area extends into Northern Moravia, Czech Republic;
- (f) The "Iron Mountain" surface iron-ore mine near the town of Eisenerz, Austria has been operating since the 12th century and reliably shoots once per day. (Harjes et al., 1992).

Events within 500 km of ARCESS are shown in Figure 3. Three major mining areas dominate the seismicity:

- (g) Kirunavarra and Malmberget mines in northern Sweden;
- (h) Apatity on the Kola Peninsula, Russia;
- (i) the northwestern Kola Peninsula, Russia.

The events in Dataset #2 are located just off the coast of northern Norway in the Steigen area shown as location j in Figure 3. The nearest of the large mining-related clusters to the Steigen earthquakes is the Kirunavaara mine, approximately two degrees (~230 km) east of the Steigen events.

Figure 2: Seismicity near the four IMS2 regional arrays, ARCESS, FINESA, NOR-ESS and GERESS. The map shows all events (2889) located by IMS2 between 30 January 1991 and 30 January 1992 with ml > 2.0. Rings centered on the arrays are 500 km radius. Figure 3 shows a close-up of the seismicity around GERESS and ARCESS.

Figure 3: Seismicity near IMS2 regional arrays, ARCESS and GERESS. Six major clusters dominate near GERESS: (a) stone quarries, open-pit coal mines and earthquake swarms (b) open-pit coal mines (c) limestone quarry (d) Lubin Copper Basin underground ore mines (e) Upper Silesia underground coal mines (f) open-pit ore mines. Three major clusters dominate near ARCESS: (g) Kirunavaara and Malmberget mines (h) N Kola Peninsula, Russia (i) Apatity mining district, Russia. Cluster (a) corresponds to Dataset #1. Cluster (d) corresponds to Dataset #3. Location (j) corresponds to Dataset #2.

2.1.2 Regional Seismicity as Recorded by GSETT-2

The Group of Scientific Experts Second Technical Test (GSETT-2) conducted between 22 April 1991 and 2 June 1991, was an experiment in world-wide seismological data exchange from 57 globally distributed stations. During the 42 day-experiment, waveform and parametric data were continuously received and archived at the Center, where it was used to compute seismic event bulletins. Some events in Datasets #1 Vogtland and #3 Lubin occurred during the GSETT-2 experiment making other waveforms available in addition to those recorded by the IMS stations.

2.2 Recording Stations

Each of the 82 events in the GTDB were recorded by at least one of the IMS high-frequency arrays and 13 events were also recorded during GSETT-2. Figure 4 shows the recording stations for which at least one phase was associated with at least one event in the GTDB. All of the recording stations in GTDB are part of the IMS Network and/or part of the GSETT-2 Network. Table 1 lists the station code, latitude, longitude, elevation, name and geographical region of each station.

2.3 Distance Range

Figure 4 shows the path coverage of events in the GTDB. Figure 5 shows a histogram of the distance ranges. Most of the Vogtland paths are to GERESS at distances between 1.5 to 1.7 degrees. Most of the Steigen paths are to ARCESS at 4.3 degrees. Most of the Lubin paths are to GERESS at 3.1 degrees.

2.4 Magnitude Range

Local magnitudes (M_L) are stored in the GTDB for 74 of the events. The magnitude estimates come from the local experts, where available. Magnitude estimates cannot be compared between datasets because they were computed by different organizations using different systems. However, within each dataset they give an estimate of the relative sizes of the events. Figure 6 shows a histogram of the magnitude ranges for each dataset.

Figure 4: Stations with at least one phase associated with at least one event in the GTDB. Station YKA in Canada is not shown.

Figure 5: The majority of the Vogtland recordings are at GERESS at distances of 1.5 to 1.7 degrees. Most of the Steigen recordings are at ARCESS at 4.3 degrees. Most of the Lubin paths are at GERESS at 3.1 degrees. Lubin events are also recorded at YKA at 60 degrees (not shown).

Figure 6: Histograms of local magnitudes for each dataset.

Table 1: IMS2 and GSETT-2 Stations with at least one arrival in the GTDB

Site Code	lat	lon	elevat ion (m)	station name	region name
ARA0	69.53	25.51	403	ARCESS ARRAY A0	NORTHERN NORWAY
FIA0	61.44	26.08	155	FINESA ARRAY A0	FINLAND
GEC2	48.84	13.70	1132	GERESS ARRAY C2	GERMANY
GRA1	49.69	11.22	500	GRAFENBERG ARRAY	GERMANY
HFS	60.13	13.70	265	HAGFORS	SWEDEN
KSP	50.84	16.29	380	KSIAZ	POLAND
LOR	47.27	3.85	520	LORMES	FRANCE
NRA0	60.74	11.54	302	NORESS ARRAY SITE A0	SOUTHERN NORWAY
OSS	46.69	10.14	1700	OVA SPIN	NORTHERN ITALY
SQTA	47.22	11.21	1307	SAINT QUIRIN	AUSTRIA
VRAC	49.31	16.60	480	VRANOV	CZECH REPUBLIC
YKA	62.49	-114.60	200	YELLOWKNIFE ARRAY	NORTHWEST TERRITORIES CANADA

Table 2: Magnitude ranges in the GTDB

Dataset	min (ml)	max (ml)	Author
#1 Vogtland (eq)	1.4	2.4	Neunhöfer
#1 Vogtland (qb)	1.8	2.2	Wüster
#2 Steigen	0.5	5.5	BERGEN
#3 Lubin	1.8	3.3	IMS2

Chapter 3: Contributors

Mr. Jan Wüster, Ruhr-University, Bochum, Germany e-mail: jan.wuester@geophysik.ruhr-uni-bochum.dbp.de

Mr. Wüster's discrimination paper (Wüster, 1992) focuses on events in Vogtland region because of the proximity of the natural earthquakes to the quarry blasts. He obtained earthquake information from Dr. H. Neunhöfer and blast information from Dr. K.-D. Klinge. Dataset #1 is a subset of the events used in this study.

Dr. Horst Neunhöfer Friedrich-Schiller-Universität Jena Institut für Geowissenschaften Burgweg 11 Postfach 106 o-6900 Jena FRG

Dr. Neunhöfer is the local expert for ground-truth information on earthquakes in Dataset #1 Vogtland. His group publishes the Vogtland Regional Microearthquake Bulletin which is a compilation of results from several German and Czech institutions in the area. The earthquakes in Dataset #1 occurred within this network.

Dr. Klaus-D. Klinge Seismologisches Observatorium Moxa o-6841 Moxa FRG

Dr. Klinge runs some of the stations near the Vogtland area. Dr. Klinge at Moxa also keeps lists of quarry blasts, which are identified by seismic observations.

Dr. Petr Firbas
Institute of Physics of the Earth at Faculty of Sciences
Masaryk University Brno
Jecna 29a
612 46 Brno
Czech Republic

e-mail: firbas@arwen.ics.muni.cs

Dr. Firbas provided the information on quarry blasts in the Vogtland region through contacts with quarry operators. Dr. Firbas' institute recently installed a network well-sited for monitoring natural seismic events in the Vogtland area in the future.

Dr. S. J. Gibowicz Institute of Geophysics, Polish Academy of Sciences Department of Earth Interior

Dr. Gibowicz is one of the leading experts on mine-induced tremors and acts as a consultant for mining companies on the prediction and prevention of such tremors.

Dr. Pawel J. Wiejacz Institute of Geophysics, Polish Academy of Sciences Department of Earth Interior

Through contacts with Polish mines, Dr. Wiejacz has provided most of the information for Dataset #3, the Lubin events.

Kuveet Atakan Institute of Solid Earth Physics University of Bergen Allegatan 41 N-5007 Bergen NORWAY

Mr. Atakan is currently investigating the correlation of the Dataset #2 Steigen events with local faults. This work utilizes data collected by the network of temporary stations, installed by the University of Bergen to monitor the Steigen earthquake swarm.

Dr. Anders Dahle NTNF/NORSAR P.O. Box 51 N-2007 Kjeller Norway

Dr. Dahle approached the mining problem in Scandinavia by sending questionnaires to local mines. The resulting mine information was organized into the two tables, minfo and minex, which he has provided to the Center (Dahle et al., 1989). Dr. Dahle also confirmed for us that there is currently no active mining in the immediate vicinity of the Steigen area.

Chapter 4: Waveform Analysis

4.1 Purpose of Analysis

Waveform analysis was performed for the purpose of obtaining accurate and consistent arrival-times and phase identifications. The epicentral locations obtained as a byproduct of the analysis depend on the quality of the travel-time curves and the azimuth estimates stored as parametric data during automatic processing of IMS data and were, in general, not saved. Instead, locations resulting from waveform analysis were replaced with more accurate locations (i.e. local bulletins, known mine locations) obtained from local experts where possible. However, this location information is often incomplete especially in the case of mining events where the times are of less importance to mining operations than event locations. To accommodate for this short-coming, the "hybrid" origin table is used, where the best information is put in each field. For example, Dataset #3 Lubin, lat, lon and depth in the origin table are from the local experts but the origin time is from the seismic waveform analysis and is subject to the assumptions described in this section. A complete explanation of what is in the origin table for each dataset is included in Part 2.

4.2 Method of Analysis

Because each of the 82 events in the GTDB were detected and located by the IMS, the waveform and parametric data were readily available. When a phase is detected by the IMS, azimuth, slowness, frequency, amplitude and other parameters are estimated and saved in database tables which are used by an expert system to identify phases and calculate initial location solutions. Coherent, incoherent and horizontal beams are computed for each initial location solution. These initial solutions are written to the account "IMS2EXP". After analyst review, the corrected events are written to the account "IMS2".

The starting point for the analysis was the initial phase identifications and location solutions from the expert system account, "IMS2EXP". For 13 events, additional waveform and parametric data was available as a result of the GSETT-2 experiment.

The Analyst Review Station (ARS, 1993) was used to interactively analyze events. All events were analyzed by one analyst, in groups by area rather than by chronological order. The advantage of analyzing a group of events with similar characteristics is that the larger events, where the phases are easier to interpret, can be used as a references when analyzing smaller events from the same area. This was especially useful in Dataset #2 (Steigen), which includes a large range of magnitudes.

The most common procedures used for adjusting the expert system event hypotheses during analysis were, in order of frequency: renaming a phase, re-timing a phase, adding a phase, and associating or disassociating a phase with an event. These actions included separating double events that were assumed to be one event by the expert system and combining phases into one event, assumed by the expert system to be two or more events.

4.3 Rules and Assumptions

4.3.1 Travel-time curves

The IMS travel-time curves used in analysis of the GTDB are based on the planelayered velocity model described in Table 3 (Bratt et al., 1990). This model may not be

Table 3: IMS Velocity Structure for Northwestern Europe (Bratt, et al. 1990)

layer	layer thickness		S velocity (km/sec)	
1	16.0	6.2	3.58	
2	24.0	6.7	3.87	
3	15.0	8.10	4.60	
4		8.23	4.68	

group velocities

Pg (6.2 km/sec); Lg (3.55 km/sec); and Rg (3.00 km/sec).

appropriate for events in Central Europe where the Jeffreys-Bullen travel-time curves are often used (e.g. Schweitzer et al., 1992), but the purpose of the analysis was to measure arrival times and assign phase identification, rather than to calculate origin times and locations.

4.3.2 Cross-over distance

A Pg-Pn cross-over distance of 2.0 degrees is predicted by the velocity model in Table 3 and assumed in IMS analysis. In analyzing the events in the GTDB, this simple phase interpretation for first arrivals is employed. In reality, the identification of regional phases is more complex and may vary with azimuth, especially in Central Europe where major structural boundaries occur within short distances. Interpretation of the first arrivals from events in Dataset #1 Vogtland observed at GERESS, at a distance of 1.5 degrees, may be affected by this assumption.

4.3.3 Phase Identification

Phases were renamed to correct errors made by the automatic system. The following regional phases are defined in the IMS tables and used in analysis:

Regional phases: Pn, Pg, Sn, Lg, Rg Generic regional phases: Px, Sx

Generic phases, Px and Sx, are detections associated with the event but not identifiable as a specific regional phase. All renamed phases are updated in the assoc table. Phases that could not be reliably timed were not renamed. An example of this is Event 41, where the first arrival was named Px by the expert system but not renamed Pn because it could not be re-timed reliably.

4.3.4 Arrival-time picks (re-timing)

Beams were used, when available, to time arrivals on the IMS high-frequency arrays. P-type phases were timed on the coherent beam (cb), Lg phases were timed on the incoherent beam (ib), and Sn phases were timed on the horizontal beam (hb). Whenever beams were not available, vertical single channels (sz) were used to time all phases except Sn which was timed on the sn and se channels.

Phases were re-timed up to a maximum of four seconds (in either direction). Beyond the four-second maximum, the signal was assumed to be a new phase, which was added at the observed time (these new phases do not have velocity and azimuth information). When a phase is re-timed, the new time is updated in the **arrival** table. Events 6, 7, 8, 12 and 13 of Dataset #1 Vogtland are examples where the correct first arrival is more than four seconds earlier than the first arrival picked by the detector, and where the analyst added a new arrival rather than re-timing.

Waveforms from a particular station were generally not stored in the GTDB data-base unless an associated arrival was picked on the waveform from that station. In the current version, you may not see all the CSS waveforms for IMS2 and GSETT-2 for a particular event. However, you will see all of the CSS data for a particular event if a phase was picked. For example, in Dataset #3 Steigen, none of the GERESS data were included after it was determined that no phases from the four largest events were visible at GERESS. This policy will be changed in future ground-truth datasets to include all data that falls in the correct time window regardless of whether a phase is visible.

4.3.5 Adding phases

Phases were added either when the detector missed a phase or when the phase closest to the true time was more than four seconds from the true time. At distance ranges where two P-type phases are recorded and the first-arriving phase has a very small amplitude, it is sometimes hidden in the noise and missed by the detector. In these cases, the first P-phase is added if it can be accurately timed. Otherwise, it is not added and the (correctly identified) second-arriving P-phase is, by default, the first arrival. Examples of this are Steigen event 29, 32 and 34 (see "PART 3: Event Plots" on page 48). Phases that

could not be reliably timed to within two seconds were not added. So for each associated phase, the time is believed to accurate to within two seconds.

Chapter 5: Quality Of Waveform Data

Several categories of faulty waveform data were encountered while reviewing the data in the GTDB. Data problems included glitches, data gaps, missing channels, constant data value traces (dead traces), and channels dominated by quantization noise. In Version 1 of the GTDB, elimination of faulty waveforms channels was addressed but was not carried out in a uniform way. The decision on whether or not a faulty channel should be eliminated was made on an individual and somewhat subjective basis. Basically, all data was kept in the GTDB unless it was deemed too bad to be useful after processing.

On the one hand, it is efficient to delete bad waveforms so that future users of the data will not have to repeat the process; on the other hand, the data is representative of data quality from the Center's CDR and any systems which process data should be able to handle data with these problems. One solution might be to summarize the faulty channels in a database relation for optional use by other programs. Although the IMS processing software, excludes faulty channel data before creating beams used in parameter extraction, a table of bad channels is not saved after processing.

Figure 7 is an example of data that was not included in the GTDB because of poor quality. The figure shows all channels of the ARCESS array data for Event 36. The top three traces, from site ARC4, were not included in the wfdisc table of the GTDB (this data still exists as part of the IMS2 database). ARC4 experienced many problems in early 1992 and was excluded from ten of the Steigen events. The traces plotted in Figure 8 are examples of data included in the GTDB despite poor quality. This is the FINESA data for Event 75.

During the time period covered by events in Datasets #1 (Vogtland) and #3 (Lubin), GERESS data is subject to glitches and data gaps that have been documented by Golden et al., 1991 and Teledyne Geotech, 1991. Examples of these types of data problems are obvious in the Event Plots in Part 3. Figure 9 is an example of another type of problem with GERESS data. The trace labeled GED4/sz is not seismic data but rather "artificial data", purely electronic in origin. It affects GED4/sz and GEA2/sn intermittently and is corrected by manual resetting at the station GERESS (Jost, 1993).

Beams resulting from IMS processing were included in the GTDB for display purposes. These beams, which are based on the initial (expert system) location, are simply an artifact of processing. There is no way to easily and readily reproduce these beams, and they were only intended to be kept for display purposes in the final IMS databases. In some cases, a detection is only visible on the beam.

Future policy regarding faulty waveform data will be to retain all data, regardless of its condition. This will save time in reviewing and processing future versions of the GTDB. It is expected that any processing system using waveform data should be able to handle problems with bad data.

Event 36

Figure 7: Example of faulty waveform data excluded from GTDB. The plot shows samples of ARCESS data for Event 36. ARC4 was excluded from the GTDB because of glitches.

Event 75

Figure 8: Example of faulty waveform data included in the GTDB. Plot shows samples of FINESA data from Event 75.

Event 79

Figure 9: Example of faulty waveform data included in the GTDB. Channel sz of Station GED4 is bad.

Chapter 6: GTDB Schema

Primary components of the GTDB schema are shown in Figure 10: all waveforms are stored on optical disc as part of the Center's Central Database Repository (CDR); relations (tables) are represented by boxes; primary keys (identification numbers) are shown in italics in the shaded areas.

An attempt was made to draw from the experience of others in designing new schema, relying on standard CSS Version 3.0 schema (Anderson et al., 1990) where possible. Tables outlined in bold in Figure 10 are "core" tables described the in CSS 3.0 Schema for storing location solutions (origin), phase parameters (arrival), waveform headers (wfdisc), links between event solutions and waveforms (wftag), and links between event solutions and phases (assoc). These tables are used as specified by the CSS 3.0 schema with the exception of the origin table which was modified to store location information from different sources of ground truth, as described below.

The minfo and minex tables were originally proposed by Dahle, et al. (1989) and have been incorporated into the GTDB schema for storing mine information, and blast information respectively. All other tables in the figure were developed specifically for the GTDB for storing notes about events (notebook and notelink), bibliographic information for sources of ground-truth (reference), and mapping to identification numbers in other CSS database accounts (xtag).

• origin table - modified CSS 3.0

Modified usage of the CSS 3.0 origin table allows for information in the fields to come from different data sources (i.e. seismic bulletins, personal communication, etc.) so that the table contains the best information available in each field. For example, this "hybrid" origin table may contain latitude and longitude information from a mining seismic network and local magnitude estimates from the IMS2 account at the Center.

The most important piece of information in the GTDB is the event type, stored in the *etype* attribute (field) of the **origin** table. The CSS 3.0 schema defines the range of *etype* attributes as in Table 4. To accommodate varying levels of information and confidence, the scope of the *etype* attribute has been expanded for the GTDB as shown in Table 5. Expansion of the *etype* attribute gives the user a qualitative summary of confidence to place on the event type and an indication of whether additional information is available.

The designation **qb** indicates that the mine or quarry has confirmed the shot and there is no other ground-truth information available. The **qb+** designation means the quarry has confirmed the shot and has given at least some specifics of the blast design, usually from the blaster's logs (e.g., Chapman *et al.*, 1991). The **qb++** designation is reserved for the few experimental quarry or mine shots that have been observed and fully documented by seismologists or mining engineers for research purposes (e.g., Reamer and Stump, 1992).

Figure 10: Primary components of the GTDB. Boxes represent relations (tables). Shaded areas represent links between relations made by identification numbers (wfid, evid, orid, arid, minid, commid, noteid and refid). The xtag table maps id's between the GTDB and other database accounts. All waveforms are stored on optical disc and are pointed to by the wfdisc table.

Table 4: Range of etype in CSS 3.0 Schema

etype	description
qb	Quarry blast or mining explosion
eq	Earthquake
me	Marine explosion
ex	Other explosion
0	Other source of known origin
1	Local event of unknown origin
r	Regional event of unknown origin
t	Teleseismic event of unknown origin

Table 5: Range of etype in GTDB Schema

etype	description
qb	Quarry or mine blast confirmed by quarry
qb+	Quarry or mine blast with designed shot information-ripple fired
qb++	Quarry or mine blast with observed shot information-ripple fired
qbx	Quarry or mine blast - single shot
qmt	Quarry or mining-induced events: tremors and rockbursts
ex	Explosion of known origin; i.e. exploration, construction, calibration
nu	Nuclear explosion
nc	Nuclear cavity collapse
eq	Earthquake
eq+	Earthquakes in a swarm or aftershock sequence
eq++	Felt earthquake
О	Other source of known origin
u	Undetermined or conflicting information

Similarly for earthquakes, there are different designations for different levels of ground-truth. Examples of the lowest level of confidence for earthquakes, eq, are single events denoted "Earthquake" in regional seismic bulletins. Earthquake identifications based on their temporal and spatial relationships to a known earthquake, such as swarms and aftershock series are denoted eq+. The highest level of confidence, eq++, refers to earthquakes that are very well documented as felt earthquakes where the possibility of cultural sources has been ruled out by macroseismic information.

All mining induced seismic events are denoted by the etype qmt (quarry or mine tremor). This classification includes both rockbursts and mine tremors. The occurrence of two types of mining-induced seismicity is well documented by several authors. Gibowicz (1984) attributes the distinction between types of mining-induced events to work by Hurtig et al. (1979): "mining-induced shocks caused directly by sudden failure of brittle rocks in a stope [excavation] area, resulting from stress concentration around the excavations. and seismic events in mining districts where a tectonic stress field and additional mininginduced stresses are the main factors generating mining tremors." Events of the first type are rockbursts, i. e., they actually have some effect on the tunnel such as the collapse of a cavity or thrusting of coal seams into a tunnel. Because these events are the source of much of the danger and destruction in underground mining operations, they are very closely monitored by the mine operators, often by seismic instrumentation at depth in the mines. Events in the second group involve tectonic stress release, are generally larger, infrequent, and deeper than the working level of the mine. Several large mining tremors (ml > 4.0) in Poland are documented by Gibowicz (1984). As currently defined in the GTDB, the etype field distinguishes between blasts (qb) and any other type of mining induced seismicity (qmt), where the latter is defined broadly as an event which would not have occurred without the presence of mining in the area.

arrival table - standard CSS 3.0

The arrival table contains summary information on seismic arrivals. The input arrivals originally came from the IMS2 expert system account (IMS2EXP) or the GSETT-2 initial event list account (WASIEL) and have been renumbered with the original identification numbers and account names saved in the xtag table. CSS 3.0 Schema calls for the *iphase* in arrival to be the initial phase id rather than the analyst's phase id. The analyst's phase id is in the *phase* attribute of the assoc table.

· assoc table - standard CSS 3.0

The assoc table associates arrivals with location solutions in the origin table. The final analyst's phase identification is in the *phase* attribute. Regional phases are Pg, Pn, Sn, Lg, Rg, unidentified P-type, Px, and unidentified S-type, Sx. Teleseismic phases, P, PP, PcP, S, and unidentified teleseismic phase, Tx are also contained in the GTDB assoc table.

· notebook table - new

The notebook table is a list of notes, linked to tuples in other tables by the *commid* attribute. The design is intended to make the notes standardized by assigning an identification number, *noteid*, to each note. This makes queries easier because they are done on numbers rather than characters. It is keyed to the origin table by *commid*. The reference identification number, *refid*, points to a tuple in the **reference** table, indicating the source of the note. Table 6 specifies the new relation.

Table 6: notebook table

Relation: notebook Description: notes and comments								
attribute name	field no.	storage type	external format	character position	attribute description			
noteid	1	i4	i8	1-8	note id			
note	2	c80	a80	10-89	free format note			
refid	3	i4	i8	91-98	reference id			

· notelink table - new

The **notelink** table links notes from the **notebook** table to tuples in other relations. It is keyed on *commid*, which is part of the **arrival**, **assoc**, **origin**, **wfdisc** and **wftag** tables. The new relation is shown in table 7.

Table 7: notelink relation

Relation: notelink Description: links notes from notebook table to tuples in other tables									
attribute field storage external character name no. storage type format position attribute description									
commid	1	i4	i8	1-8	comment id				
noteid	2	i4	i8	10-17	note id				

• minfo table - A. Dahle et al., 1989

The **minfo** relation stores summary information about each mine. The attributes are shown in Table 8.

Table 8: minfo relation

Relation: minfo Description: information about mines							
attribute name	field no.	storage type	external format	character position	attribute description		
minid	1	i4	i8	1-8	mine id		
minam	2	c15	a15	10-24	name of mine		
lat	3	f4	f10.5	26-35	latitude (geodetic)		
lon	4	f4	f10.5	37-46	longitude(geodetic)		
elev	5	f4	f9.5	48-56	surface elev. (km)		
prodpt	6	f4	f9.5	58-66	production depth (km)		
mintyp	7	c15	a15	68-82	mine type		
prodct	8	c20	a20	84-103	product		
geolog	9	c30	a30	105-134	bedrock geology		
firprc	10	c40	a40	136-175	firing practice		
auth	11	c15	a15	177-191	author		

• minex table - A. Dahle et al., 1989

The minex relation stores information about individual mine or quarry blasts. Although its design provides for specifying one tuple for each charge in a ripple-fired shot, very little information of this detail is currently available in the GTDB. It is anticipated that these tables will be very useful in building future datasets.

Table 9: minex relation

Relation: minex

Description: links shot information to waveforms (evid as tagid in wftag) or to origins (evid in origin table), also to mines (minid in minfo table).

attribute name	field no.	storage type	external format	character position	attribute description			
evid	1	i4	i8	1-8	event id			
time	2	f8	f15.3	10-24	epoch time of explosion			
jdate*	3	i4	i8	26-33	shot date (julian)			
minid	4	i4	i8	35-42	mine id			
depth	5	f4	f9.4	44-52	shot depth (km)			
elev	6	f4	f9.4	54-62	surface elevation (km)			
lat	7	f4	f10.5	64-73	latitude (geodetic)			
lon	8	f4	f10.5	75-84	longitude (geodetic)			
extyp	9	c15	a15	86-100	type of explosive			
grade	10	f4	f9.4	102-110	strength relative tnt			
nex	11	i4	i8	112-119	tot no. charges in ripple			
subnex	12	i4	i8	121-128	actual charge number			
delt	13	f4	f9.3	130-138	delay rel. first charge (ms)			

^{*} slight change from the proposed attribute, dat

• reference table - new

The **reference** table stores bibliographic information for scientific articles, books, seismic bulletins, technical reports and personal communication. It is keyed on *refid* where the *refid* is listed in the **notebook** table.

Table 10: reference relation

	Relation: reference Description: bibliographic information						
attribute name	field no.	storage type	external format	character position	attribute description		
refid	1	i4	i8	1-8	reference id		
author	2	c100	a100	10-109	author		
year	3	i4	i8	111-118	year of publication		
month	4	c9	a9	120-128	month of publication		
title	5	c160	a160	130-289	title		
journal	6	c40	a40	291-331	journal name		
pub	7	c25	a25	333-357	publisher		
ed	8	c25	a25	359-383	editor		
place	9	c25	a25	385-409	location of publication		
volume	10	i4	i8	411-418	volume number		
num	11	c25	a25	420-444	report number		
fstpg	12	i4	i8	446-453	first page		
lstpg	13	i4	i8	455-463	last page		
totpg	14	i4	i8	465-473	total pages		
note	15	c60	a60	475-535	additional comment, free form text		

• xtag table - new

The xtag table was developed for the purpose of mapping tuples copied from other database accounts after they have been renumbered in the GTDB. For example, parts of the IMS2 arrival table were copied into the GTDB account and renumbered with new arids. With the xtag table, it is possible to go back to the original IMS2 arrival table and compare arrivals in that account and the GTDB. In the example in Table 12, arid 4 (thisid) is the same as arid 702181 (thatid) in the IMS2EXP account:

Table 11: xtag relation

Relation: notelink Description: links notes from notebook table to objects in other tables									
attribute name	field no.	storage type	external format	character position	attribute description				
thisid	1	i4	i8	1-8	identification number in GTDB				
thatid	2	i4	i8	10-17	identification number in other database account				
thisname	3	c8	a8	19-26	attribute name in GTDB				
thatname	4	c8	a8	28-35	attribute name in other database account				
dbname	5	c20	a20	37-54	name of other database account				
lddate	6	date	a17	56-72	load date				

Table 12: Example of xtag relation

	thisid	thatid	thisname	thatname	dbname	lddate
f	4	702181	arid	arid	ims2exp	22-OCT-92

wfdisc table - standard CSS 3.0

The wfdisc table is the waveform header file for waveforms stored on optical disc. Wfdisc tuples were originally copied from the IMS2 and WASCEL (GSETT-2) accounts and have been renumbered. A new table, named xtag, contains the mapping of new wfids to old wfids and their respective database names.

• wftag table - standard CSS 3.0

The wftag table maps waveforms to location solutions in the **origin** table. Events in the GTDB are tagged to *both evid* and *orid* so there are two entries for each *wfid*, as shown in Table 13.

Table 13: Example of wftag relation

TAGNAME	TAGID	WFID	LDDATE
evid	1	22	21-OCT-92
orid	100	22	21-OCT-92

PART 2: DATASETS Chapter 1: Dataset #1: Vogtland

Event type

- 9 natural earthquakes in a swarm (etype = eq+)
- 2 natural earthquakes (etype = eq)
- 15 confirmed quarry blasts (etype = qb)

Significance of this dataset

This dataset is unique because quarry blasts and natural earthquakes occur close together in this region. The distance between the average epicenter of the quarry blasts and the average epicenter of the earthquakes is 34 km. These events are the subject of a discrimination study by Wüster (1992).

Location

Events in Dataset #1 straddle Germany and the Czech Republic in a region of western Bohemia known as Vogtland, about 180 km northwest of the GERESS array as shown in Figure 11. The earthquakes occur within a dense network of stations operated by several German and Czech institutes. Earthquake locations are from the compilation of these local bulletins into the Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes (PB) (Neunhöfer, 1992). Some of the stations are shown by triangles in Figure 11. The quarry blasts are associated with three Czech mines near the town of Karlovy Vary, shown by squares in the figure.

Depth

All blasts are at the surface, either in open-pit coal mines or stone quarries. Earth-quake depths are between 9 and 13.9 km (Neunhöfer, 1992). Although the nearest station contributing to the earthquake locations was at a distance of about six km, there is some uncertainty about earthquake depths as they are presented in the Preliminary Bulletin. Initial results from a new local array in the area suggest the typical depth is closer to 6-8 km (Firbas, personal communication).

Historical seismicity

The Vogtland area was the site of a large shock (4.5 ml) and about 10,000 after-shocks in 1985 and 1986 (Bormann, 1989).

Figure 11: Dataset #1 Vogtland includes nine events from an earthquake swarm plus two single earthquakes, events 18 and 19. Blasts are recorded at the Depoltovice stone quarry (1066) and two open pit coal mines: Nove Sedlo (1228) and Vintirov (1363). Some of the stations contributing to the Preliminary Bulletin of the Vogtland /West Bohemia Microearthquakes for 1991 (Neunhöfer et al., 1992) are shown by triangles.

Observing stations

The earthquakes occurred within a dense network of German and Czech stations with the nearest station, WRG, located about six km from the earthquakes. Waveform data from this network is not part of the GTDB.

All events in Dataset #1 are recorded at GERESS; six at KSP; two at VRAC and one (earthquake) is recorded at NORESS.

Outstanding problems

Depth uncertainty of earthquakes has not been quantified.

Contributors:

The following local experts are listed in Chapter 3.0: P. Firbas, K.-D. Klinge, H. Neunhöfer, J. Wüster. P. Firbas provided the information on quarry blasts from examination of the mining records. H. Neunhöfer provided the Preliminary Bulletin of Earthquakes in the Vogtland region.

Pending additional information:

The final Bulletin of Microearthquakes from the Vogtland Region, to be published by Neunhöfer *et al.* will include locations, times and magnitude estimates.

Ground-Truth Information for Dataset #1

Information about the events is summarized in Tables 14 and 15, listed by attribute and relation (database table). Earthquake and quarry blast information is presented separately because the ground-truth information is from different contributors.

Bonus Events

Orids 210, 126 and 229 are not part of the ground-truth database and are included only because they are regional events which appear in the waveforms of this database. Orid 210 is a regional event occurring 26 seconds before Event 1. Orid 126 is a teleseismic event located in Fiji Islands and reported as a felt earthquake by the NEIC. Orid 229 is a regional event occurring 89 seconds after Event 20. The location solutions for these three events are shown in Table 16.

Table 14: Ground-Truth Information for Dataset #1: Vogtland earthquakes, Events 5-13; 18, 19

attribute	relation	ground-truth	contributor		
etype	origin	eq+, eq	Neunhöfer		
lat, lon	origin	from the Preliminary Bulletin (PB) of Vogtland/West Bohemia Microearthquakes for 1991	Neunhöfer		
depth	origin	9 - 13.9 km; from PB; large error, stored in ORIGERR	Neunhöfer		
ml	origin	1.40 - 2.37; from PB	Neunhöfer		
origin origin time		derived from GEC2 first arrival times after analysis (at CSS) and locations in PB, assuming J-B travel-time curves.	Grant		
exception		Event 18 was listed but not located in PB, location is from Wüster, 1992.	Wüster		

Table 15: Ground-Truth Information for Dataset #1: Vogtland quarry blasts, Events 1-4;15-17;20-27

attribute	relation	ground-truth	contributor
etype	origin	qb	Firbas
lat, lon	origin	based on center of quarry location, Petr Firbas	Firbas
depth	origin	0 km	Firbas
ml	origin	range 1.93 - 2.15.	Wüster
origin time	origin	derived from GEC2 first arrival times after analysis, locations as above, and assuming J-B travel-time curves.	Grant
minam	minfo	mine name is known for the quarry blasts: 8 from Vintirov brown coal open pit mine (minid 1363); 5 events from the Nove Sedlo open pit coal mine (minid 1228); and one event from the Depoltovice stone quarry (minid 1066).	Firbas
totcha	minex	total charge is listed for most of the blasts	Firbas
exceptions		Event 16 was identified on basis of seismic observations (by KD. Klinge) and not confirmed by P. Firbas. Location is that of nearby seismic station, SGB.	Klinge

Table 16: Bonus Events, Dataset #1

orid	date	origin time	lat	lon	depth	mb	auth
210	03/11/91	12:02:29	50.29	12.69	0	-999	ARS:flori
126	03/24/91	06:39:22	-16.83	177.30	12.0	5.2	USGS/ MON
229	05/23/91	11:02:07	49.67	12.24	0	-999	ARS:flori

Chapter 2: Dataset #2: Steigen

Event Type

- 18 earthquakes in a swarm (etype = eq+)
- 7 felt earthquakes (etype = eq++)

Significance of this dataset

Most of the events larger than magnitude 3.0 (coda-wave magnitude) were felt by local residents in the within a 20-km radius of the epicenters (Atakan *et al.*, 1993). Unlike many of the earthquakes in northern Norway, these earthquakes are nearly on land, making the path to the IMS regional arrays more comparable to that of blasts in the area.

Location

Events in Dataset #2 are located in northern Norway in the Steigen area within a 10-km area centered in Brennvika Bay (Atakan et al., 1993). Figure 12 shows the locations.

Depth

Bergen bulletin solutions for the majority of these events are at a fixed depth of 12 km. NEIS solutions are at fixed depths of 10 for the events listed.

Observing stations

The location solutions reported in the Bergen bulletin are based on the northern Norway seismic network, SEISNOR, consisting of six stations operational since 1987: KTK, TRO, LOF, MOR, NSS, MOL. The network is operated by the university of Bergen and funded by a consortium of oil companies interested in assessing earthquake hazards for off-shore oil production. For more information on the SEISNOR network see J. Havskov *et al.*, 1992. The closest SEISNOR station to the Steigen area is LOF, Lofoton Islands, at a distance of 72 km from the average of the epicenters (shown in Figure 12). Waveforms from the SEISNOR network are not part of the GTDB.

All Steigen events are recorded at the IMS regional array, ARCESS and many were also recorded at NORESS and FINESA. No detections for these events were observed at GERESS, so the waveforms were excluded in the GTDB. (GERESS waveforms in the appropriate time window may exist at CSS).

Geologic/Tectonic Setting

Events in Dataset #2 and all observing stations in GTDB are on the Baltic shield. For a detailed summary of the geologic setting of the Steigen area see Atakan et al., 1993.

Figure 12: Dataset #2: Steigen. The nearest station contributing to the Bergen bulletin solutions is LOF. Events occur within a 10 km area centered on Brennvika Bay (Atakan et al., 1993), smaller circle. The large circle, 20 km, radius, shows the area where most of the larger earthquakes were felt. Events located outside the circles are smaller events, not listed in the Bergen bulletin but still associated with the swarm.

The Steigen earthquake swarm is on the Norwegian Continental Shelf in a coastal zone between 65 and 67 latitude that is particularly notable for intra-plate earthquake activity (Bungum *et al.*, 1991).

Historical seismicity

Meløy, about 110 km down the coast from the Steigen events, was the site of an earthquake swarm which began in November of 1978. This swarm produced 10,000 events in the first ten weeks, the largest event with magnitude (ml) 3.2. Bungum et al., 1979 report the results of analysis based on data from seven temporary stations set up in the area soon after the beginning of the sequence: epicenters are confined to a small area roughly ten km by eight km, centered on 66.81 N and 16.63 E; computed depths are between three and nine km; the composite focal mechanism indicates normal faulting on a plane striking N25E and dipping 63 E; most events with ml > 2.0 were felt within a 50 km radius based on questionnaires distributed in local newspapers.

The largest historical earthquake in the area occurred in 1819 at the town of Lurøy, about 150 km down the coast from the Steigen events (66.4 N, 14.4 E) with an estimated Ms magnitude of 5.8.

Pending additional information

A temporary network of portable seismic instruments was installed through a cooperative effort between the University of Bergen, Institute of Solid Earth Physics, and the Norwegian Seismic Array (NORSAR) to monitor the Steigen swarm. The four temporary stations where operating between 9 January 1992 and 16 January 1992. One of these temporary stations continues to operate from its current location in the basement of the municipality building in Leinesfjord within five km of the epicenters. The final manuscript (Atakan et. al, 1993) summarizes the results of analysis of the temporary network and includes focal plane solutions for some of the earthquakes. As of 31 December 1992 the swarm had generated at least 207 earthquakes. The report lists 13 events in 1992 with coda magnitudes of 3.0 or larger, six of which are included in the GTDB. In a separate communication, Mr. Atakan has provided a list of 87 events with revised locations which will be used to update locations listed in the GTDB.

The largest two events were detected by YKA array in Canada (Events 28 and 38). The Canadian data will be included in the GTDB when it becomes available.

Ground-Truth Information for Dataset #2: Steigen

The majority of the information for Dataset #2 is from the Bergen bulletin, as summarized in Table 18.

Table 17: Ground-Truth Information for Dataset #2: Steigen, Events 28-63

attribute	relation	ground-truth	contributor
etype	origin	Seven events were reported as felt earth- quakes by the Helsinki bulletin (etype = eq++). All other events have etype = eq+, indicating they are a part of a swarm (Kværna, Hokland, pers. comm.)	(Kværna, Hokland, pers. comm.)
lat, lon	origin		Bergen bulletin
depth	origin	range 0-15.5 km (11 fixed at 12.1, 1 fixed at 1.5, others at 0)	Bergen bulletin
ml	origin	range 0.5 - 5.5	Bergen bulletin
origin time	origin		Bergen bulletin
exceptions		Events 29, 32, 34, 44, 62, 63 were not in the Bergen bulletin but were detected and located by the IMS as single-station solutions from ARCESS: For these 6 events, location solutions result from analysis at CSS.	

Bonus Events

Orids 315 and 271 are not part of the ground-truth database and are included only because their signals are recorded near signals from events 35 and 59 respectively. Orid 315 is located in Pakistan. The P arrival is approximately 73 seconds before the Pn arrival of Steigen Event 35 at ARCESS. Orid 271 is located in the Ionian Sea.

Table 18: Bonus Events, Dataset #2

orid	date	origin time	lat	lon	depth	mb	auth
315	01/04/92	03:35:22	31.954	69.991	29.00	5.0	USGS/ MON
271	01/25/92	12:23:18	38.277	20.266	10.00	4.2	USGS/ MON

Chapter 3: Dataset #3: Lubin

Event Type

31 induced mine tremors (etype = qmt)

Significance of this area

In the Lubin area, between 1980 and 1982, 232 tremors occurred with magnitudes above 1.5 (Gibowicz, 1985); between January of 1985 and March of 1986, 318 tremors occurred at Lubin with local magnitudes between 2 and 3.4 (Gibowicz, 1987). In addition to these frequent, small tremors, an occasional larger tremor occurs, such as the magnitude 4.5 tremor of March of 1977 (Gibowicz, 1984). See "GTDB Schema" on page 22 for discussion of the two types of mine tremors.

In addition to these events being significant because of their large frequency and size, they also provide an interesting source type: non-explosive source near the surface (depth less than one km). It is also noteworthy that many of these events with local magnitudes between 2.0 and 3.0 are registered by stations north of the Tornquist-Teisseyre tectonic zone (Gibowicz, 1987).

Because mine tremors and rockbursts are a great nuisance to underground mining operations and danger to miners, they are often monitored very closely by the mining companies with underground seismic networks located at the working level of the mine. Polish mining companies are legally responsible for keeping records of all events occurring in their area with energy level over 10⁵ joules for two years.(10⁵ joules is approximately equal to a local magnitude of 2.0, Gibowicz, 1985). However, the mining companies do not calculate precise origin times as they are mostly interested in size and location. Dr. Wiejacz, obtained the "ground-truth" for these events directly from the mining authorities.

Location

Events in Dataset #3 are in the Lubin Copper Basin in Poland, a very active mining region between the cities of Legnica and Glogow. In Poland, this district is called LGOM, an abbreviation of Legnicko-Glogowski Okreg Miedziowy. There are four active mines: Lubin, Polkowice, Rudna, and Sieroszowice occupying an area approximating an ellipse with the long axis running NW-SE, about 15 km long. The 31 events in Dataset #3 are plotted in Figure 13.

Figure 13: Dataset #3:Lubin. Circle is 20 km radius. Four different mines are represented by the symbols. The mining area about 15 km long, trending in the NW direction.

Depth

Mining is carried out at a single level between 600 and 1000 meters below the surface, depending on the mine. Surface elevation is between 200 and 250 meters in the area. Event depths provided by P. Wiejacz are either assumed or calculated. Calculated depths are based on recordings from seismic networks operated by the mine. Since all instruments for a particular mine are at a single level, the location estimates are poorer in the vertical direction than in the horizontal direction. In the absence of a calculated depth, the event is assumed to occur at the working level of the mine, which is known.

Observing stations

These events are well recorded at KSP, GERESS, NORESS, and sometimes FINESA and ARCESS. GSETT-2 stations include VRAC, GRA1, SOTA, and YKA.

YKA data collected during GSETT-2 for five of the Lubin events are shown in Figure 14. There is some evidence from the largest event that the initial P may be earlier than the time-arrival picks shown in this figure.

Historical seismicity

Seismic activity near the mines in Poland is well-documented as being directly linked to mining activity (Gibowicz, 1984). Tectonic stresses are altered by the extraction of tens of millions of tons of coal and iron ore per year.

Contributors

P. Wiejacz, H.-P. Harjes, S. J. Gibowicz

Outstanding problems

Mine tremors in the Lubin mines are sometimes triggered by intentional blasts set off for the purpose of releasing stress, thereby preventing the larger events. It is not clear whether these blasts should be detected at GERESS and even if they are, Gibowicz states "...these are not really "pure" blasts since they often provoke, under high stress concentration conditions, seismic events which are not necessarily proportional to blast charges" (Gibowicz, personal communication). These intentional blasts are usually set off between 0300 and 0400 hours (Schweitzer et al., 1992), explaining the peak in the plot of hourly event rate shown in Figure 15.

Ground-Truth Information for Dataset #3

Information about the events in Dataset #3 results from seismic networks operated by the mines (Wiejacz) and seismic analysis at CSS, as shown in Table 19.

Figure 14: Five events from Dataset #3 Lubin, recorded at the Canadian array YKA (60 degrees). Traces are the coherent beam contributed by YKA during GSETT-2 and have been bandpass filtered 1 to 4 Hz. One minute of data is shown.

Figure 15: Time of day histogram for Dataset #3: Lubin events. The peak at 0300 hours is the time small blasts are set off to trigger the mine tremors. These blasts are also set off during shift changes so peaks could be expected at 0600, 1400, and 2200 hours local time.

Table 19: Ground-Truth Information for Dataset #3: Lubin, Events 65-95

attribute	relation	ground-truth	contributor
etype	origin	qmt	Wiejacz
lat, lon	origin	15 of the event locations are based on solutions from mining seismic networkerror 20 meters. 16 of the event locations are determined by associating events with a known exploitation field and assigning the location based on the geographical center of the field-error 500 meters. The notebook table distinguishes between location type.	Wiejacz
depth	origin	Event depths are usually assumed to be at the working level of the mine, between 700 and 1150 meters below the surface, depending on the mine.	Wiejacz
ml	origin		from seismic analysis at CSS
time	origin		from seismic analysis at CSS
minam	minfo	Sieroszowice (6 events from 1 drift), Rudna (10 events from 6 drifts), Polkow- ice (13 events from 8 drifts), Lubin (2 events from 1 drifts)	Wiejacz
note	notebook	In addition to the mine name, the area within the mine (west, center, east), field number, and longwall number are known for each event. However, maps from the mine to interpret the field and longwall numbers are not available.	Wiejacz
note	notebook	distinguishes between horizontal location type: either assumed or calculated by mining seismic networks.	Wiejacz
note	notebook	Event 76 was triggered by an intentional blast. This is noted in the notebook Table.	Wiejacz

PART 3: EVENT PLOTS

Event Plots have four main components: Location and Phase information, Map, Datamatrix and Sample waveform data. As an illustration of the components of the event plots, Event 72 of Dataset #3 is shown in Figure 16.

A: Title, location and phase information

- 1. Dataset number, event number (evid)
- 2. Location information. All attributes are from the "hybrid" origin table unless otherwise noted. Columns are:

Idate Julian day

Date Month, day, year

Time Origin time. hour:minute:second.decimal seconds

Lat geographical coordinates Lon geographical coordinates

Depth kilometers

Smajor length major axis of error ellipse, km (ORIGERR Table) **Sminor** length major axis of error ellipse, km (ORIGERR Table)

Strike strike of error ellipse, degrees (ORIGERR Table)

Mb body wave magnitude MI local magnitude Event type Etype

Orid Origin identification number (id).

Auth Author

3. Recording station information. One line is shown for each recording station. Information is from the assoc table.

> Delta station to event distance, degrees Azimuth station to event azimuth, degrees

Backazimuth event to station azimuth

4. Phase information. One line is displayed for each associated arrival. Information from the arrival table unless otherwise noted.

> Phase final analyst phase id (assoc Table)

Iphase Initial Phase id Time final analyst time

Azimuth azimuth estimate, degrees (from FK analysis for IMS) Slowness

slowness estimate, sec/degree (from FK analysis

for IMS)

Figure 16: Example event plot for Dataset #3, Event 72 showing the four main components. A) Title, location and phase information. B) Map showing event location (plus) and recording stations (triangles) C) Datamatrices- giving a qualitative summary of available waveform data D) Waveform plot showing representative waveforms. See text for additional details.

Snr	Signal to noise ration
Amp	amplitude
Freq	frequency
Arid	arrival id

B. Event Map

Crosses show event location. Triangles show the stations with at least one associated phase.

C. Datamatrix

The datamatrix "quick-look" visualization tool allows comparison of the relative number of data channels available for each event. The datamatrices look like a wagon wheel with each spoke representing a channel of waveform data. If all possible channels are available for a given event, then each spoke is present and the wheel is round. If a data channel is missing, then the spoke is not displayed and the gaps in the wheel create a pattern that is easy to compare from event to event.

The data matrices have been divided into IMS2 data (132 channels of IMS2) and GSETT-2 data (35 channels of GSETT-2 data). There is some overlap between the two datamatrices. For example, KSP data exists for some events because it was part of GSETT-2 and it exists for some events because it was temporarily part of IMS2. The reference datamatrix for array data is shown in Figure 17. The full complement of array data from the IMS2 database, not including any long-period or intermediate-period channels is 132 channels, as summarized in Table 20. The reference data matrix for GSETT-2 data is

Table 20: Array Channels

		number of channels								
array	SZ	sn	se	bz	bn	be	cb	ib	hb	total
ARCESS	25	4	4	0	0	0	1	1	1	36
NORESS	25	4	4	0	0	0	1	1	1	36
FINESA	16	1	1	0	0	0	1	1	1	21
GERESS	25	4	4	1	1	1	1	1	1	39

shown in Figure 18. It includes 35 channels from GSETT-2. Only Dataset #1:(Vogtland) and Dataset #3: (Lubin) have GSETT-2 data. Stations GAR, TLY, OBN, KIV and MAT have available data from only one or two events each and have no associated arrivals.

Figure 17: Reference data matrix for the four regional IMS2 arrays. The full set of array data is 132 channels including display beams.

Figure 18: Reference data matrix for the GSETT-2 stations.

For the example shown in Figure 16, the gap in the datamatrix for the array data indicates that the FINESA data is not available for this event and several channels of GERESS data are also missing. The datamatrix on the right indicates the availability of 10 channels of GSETT-2 data.

D. Sample of waveform data

The waveform plots do not necessarily show all the available data for each event. These are shown only to give a qualitative indication of the signal to noise ratio, and length of the data segments. Within each dataset there is a maximum number of traces to show, which are filled by priority.

The waveform plots where made with the *geotool* program (Henson and Coyne, 1993). The traces are aligned on Pn (at 0 time), sorted by distance, uniformly scaled to the peak of each trace; 150 seconds shown. Although the preference was for showing all data unfiltered, some traces were bandpass filtered, as noted at the bottom of the plot. The filter corners are given on the trace labels. The phase labels are from the **assoc** table and are the final analyst phase identifications. The phase times are from the **arrival** table and are the final analyst phase time picks. In the example shown in Figure 16, the waveform segment for station OSS starts after the first arrival and the waveform segment for HFS terminates before the Lg arrival.

Acknowledgments

As mentioned in the preface of this document, this database would not have been possible without the contributions of the local experts listed in Part 1, Chapter 3.0. Many other researchers contributed indirectly to the acquisition of ground-truth by helping us establish contacts with the local experts. These include Tom Sereno, Tormod Kvaerna, Svein Mykkeltveit, Bernt Hokland, Hans-Peter Harjes and Alan Ryall. We also acknowledge helpful discussions with the Center's Research Staff in planning and developing this database. This document was improved by editorial contributions of Carl Romney.

Reference List

- Analyst Review Station Documentation Set Rev.1., SAIC Tech. Rep. 93/1034, San Diego, California.
- Anderson, J., W. E. Farrell, K. Garcia, J. Given, and H. Swanger (1990). Center for Seismic Studies Version 3.0 Database: Schema Reference Manual, SAIC Tech. Rep. C90-01, Arlington, Virginia, 61 pp.
- Atakan, K., C. D. Lindholm and J. Havskov (1993). Earthquake swarm in Steigen, northern Norway: an unusual example of intraplate seismicity, *Terra Nova*, submitted for publication.
- Bache, T. C., S. R. Bratt, J. Wang, R. M. Fung, C. Kobryn, and J. M. Given (1990). The Intelligent Monitoring System, *Bull. Seism. Soc. Am.* 80, 1833-1851.
- Bormann, P., Ed., (1989). Monitoring and analysis of the earthquake swarm 1985/86 in the region Vogtland/Western Bohemia, Zentralinstitut für Physik der Erde Potsdam, Veröffentlichung Nr. 110, ISSN 0514-8790, Potsdam.
- Bratt, S. R., H. J. Swanger, R. J. Stead, F. Ryall, and T. C. Bache (1992). Initial results from the Intelligent Monitoring System, *Bull. Seism. Soc. Am.* 80, 1852-1873.
- Bungum, H. S., B. K. Hokland, E. S. Husebye, and F. Ringdal (1979). An exceptional intraplate earthquake sequence in Meløy, northern Norway, *Nature* 280, 32-39.
- Bungum, H., A. Alsaker, L. B. Kvamme, and R. A. Hansen (1991). Seismicity and seismotectonics of Norway and surrounding continental shelf areas, *J. Geophys. Res.* 96, 2249-2265.
- CenterView (1993). Version 2 Tutorial, SAIC Tech. Rep., in progess.
- Chapman, M. C., G. A. Bollinger, and M. S. Sibol (1991). Spectral studies of the elastic wave radiation from Appalachian earthquakes and explosions explosion source spectra modeling using blaster's logs, in *Proceedings of the 13th Annual PL/DARPA Seismic Research Symposium*. Eds. J. Lewkowicz and J. McPhetres, Phillips Laboratory, Hanscom AFB, Massachusetts, 138-144.
- Dahle, A., A. Alsker, S. Mykkeltveit (1989). Establishment of a mining explosion data base, in NORSAR Sci. Rep. 1-89/90, Kjeller, Norway, 83-102.
- Gibowicz, S. J. (1987). NORESS capability for detection and location of mining tremors in the Lubin area in Poland, in NORSAR Sci. Rep. 2-86/87, Kjeller, Norway.
- Gibowicz, S. J. (1984). The mechanism of large mining tremors in Poland, in *Proceedings* of the 1st International Congress on Rockbursts and Seismicity in Mines. Eds. N. C. Gay and E. H. Wainwright, South African Institute of Mining and Metallurgy, Johannesburg, South Africa, 363 pp.
- Gibowicz, S. J. (1985). Seismic moment and seismic energy of mining tremors in the Lubin Copper Basin in Poland, *Acta Geophysica Polonica*, Vol. XXXIII, No. 3, 243-257.

- Gibowicz, S. J., H.-P. Harjes, and M. Schafer (1990). Source parameters of seismic events at Heinrich Robert Mine, Ruhr Basin, Federal Republic of Germany: evidence for non double-couple events. *Bull. Seism. Soc. Am.* 80, 88-109.
- Golden, P., E. T. Herrin, and C. Hayward (1991). Results of the GERESS verification test, development of an intelligent seismic facility and preparation for participation in the Conference on Disarmament Group of Scientific Experts Technical Test, Quarterly Tech. Rep. SMU-R-91-152, Southern Methodist University, Dallas, Texas.
- Harjes, H.-P. (1990). Design and siting of a new regional array in Central Europe. Bull. Seism. Soc. Am. 80, 1801-1817.
- Harjes, H.-P., N. Gestermann, M. Jost, J. Schweitzer, and J. Wüster (1992). Site effects, regional wave path and source characteristics at GERESS, in *Proceedings of the 14th Annual DARPA/PL Seismic Research Symposium*. Eds. J. Lewkowicz and J. McPhetres, Phillips Laboratory, Hanscom AFB, Massachusetts, 160-166.
- Havskov, J., L. B. Kvamme, R. A. Hansen, H. Bungum, and C. D. Lindholm (1992). The northern Norway seismic network: design, operation, and results. *Bull. Seism. Soc. Am.* 82, 481-496.
- Henson, I. and J. Coyne (1993). The geotool seismic analysis system, *Proceedings of the* 15th Annual ARPA/PL Seismic Research Symposium, submitted for publication.
- Hurtig, E., P. Bormann, P. Knoll, and F. Tauber (1979). Seismological and geomechanical studies of a strong seismic event in the potash mines of the GDR: implications for predicting mining tremors, *Proc. Int. Symposium on Earthquake Prediction*, UNESCO, Paris, 2-6 April, 1979.
- "Importance of Ground-Truth" (1992). in Panel Report on the DARPA Seismic Identification Workshop, 18-19 May, 1992, by the Defense Advanced Research Projects Agency Nuclear Monitoring Research Advisory Panel, T. Wallace, Chairman.
- Jost, M. L. (1993). Monthly GERESS status report January 1993, Institute of Geophysics, Ruhr University, Bochum, Germany.
- Jost, M. L. (1992). Current status and results of the GERESS Data Center in Bochum, in *Proceedings of the GERESS Symposium*, 22-24 June, 1992, Waldkirchen, Germany.
- Kværna, T. and S. Mykkeltveit (1986). Propagation characteristics of regional phases recorded at NORSAR, NORSAR Sci. Rep. No 1-85/86, 21-29.
- Neunhöfer, H., E. Schmedes, B. Tittel, H.-A. Dahlheim, and D. Güth (1991). Bulletin of Microearthquakes from the Vogtland Region; Period 1987-1990, Jena, 14 pp.
- Neunhöfer, H. (1992). Preliminary Bulletin of Vogtland/West Bohemia Micorearthquakes for 1991, Jena, 13 pp.
- Reamer, S. K. and B. W. Stump (1992). Source Parameter estimation for large, bermed, surface chemical explosions, *Bull. Seism. Soc. Am.* 82, 406-421.

- W. C. Tapley and J. Yio (1991). SAC- Seismic Analysis Code Command Reference Manual Version 10.6d, Lawrence Livermore National Labs, Livermore, California.
- Schweitzer, J., M. L. Jost, N. Gestermann (1992). GERESS- A new array for on-line monitoring the regional seismicity in Central Europe, Institute of Geophysics, Ruhr University, Bochum, Germany.
- Teledyne Geotech (1991). System Verification Tests German Experimental Regional Seismic System, No. 990-58500-6101, Revision D, 22 August 1991, 49 pp.
- Wüster, J. (1992). Discrimination of chemical explosions and earthquakes in Central Europe a case study, *Bull. Seism. Soc. Am.*, submitted for publication.
- United States Delegation (1991). Preliminary Results of U. S. Participation in the Full-Scale Phase-3 Technical Test, April 22-June 9, 1991, GSE/US/68, United Nations Conference on Disarmament, Geneva, Switzerland.

Electronic Mail Distribution List

Announcements of new datasets are made in the newsgroup seismic.general. When the announcements are made, they are also sent via e-mail to the following. If you would like to be added to or subtracted from the e-mailing list please notify Lori Grant or John Coyne (grant@seismo.css.gov or coyne@seismo.css.gov).

bennett@beno.css.gov cercone@sol.CSS.GOV bernt@elg.norsar.no clifft@ geology.wisc.edu dainty@doc.plh.af.mil doug@beno.css.gov firbas@arwen.ics.muni.cs fisk@sol.css.gov gupta@beno.css.gov lacoss@xn.ll.mit.edu marshall@beno.css.gov maxion@k.gp.cs.cmu.edu pulli@beno.CSS.GOV rrb@beno.CSS.GOV ryall@darpa.mil stump@lust.isem.smu.edu sue@xn.ll.mit.edu tjs@esosun.CSS.GOV tormod@elg.norsar.no wahl@esosun.CSS.GOV wallace@coda.geo.arizona.edu derza@beno

Form for submitting new datasets/comments CSS Ground-Truth Database

TO: Lori Grant or John Coyne Center For Seismic Studies 1300 North 17th Street, Suite 1450 Arlington, VA 22209 703-276-7900 grant@seismo.css.gov, coyne@seismo.css.gov FROM: The following ground-truth data should be included in the GTDB! Years: Event types: Source and type of ground-truth information: Recording network: Contact person for this data: Name: Address: Phone:

Other suggestions for the ground-truth database

e-mail:

Data Set #1 VOGTLAND: Array Data

rent_1 Event_2

Event_4

Event_5

Event_9 Event_10

Event_6

Event_12

Event_7

Event_13

Event_15

Event_16

Event_17

Event_18

Event_19

Event_20

Event_21

Event_22

Event_23

Event_24

Event_25

Event_26

Event_27

Data Set #1 VOGTLAND: GSETT-2 Data

Event 5 Event_1 Event_3 Event 4 Event 2 Event 8 Event_9 Event_10 Event 6 Event_7 Event_15 Event_16 Event_11 Event_12 Event_13 Event 21 Event_20 Event 17 Event_18 Event 19

Event_24

Event_25

Event_26

Event_22

Event_23

Event Number	Dataset Name	Event Type
1	#1: VOGTLAND	qb

attribute	Ground Truth	refid
etype	Probable blast, Vintirov open pit coal mine	501
lat,lon	Vintirov, minid=1363	501
depth	0	501
totcha	3256 kg	501

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999
9	Quarry blast identified by Petr Firbas	501
	Double event, not mixed. Bonus event, orid 210 in origin table. Event 1 is the second event. The first arrival of the bonus event starts approximately one minute before event 1.	-999

Jdate 1991070	Date Mar 1	rime 1,1991 12:03:2		Lat 50		Lon 12.68	Depth 50 0.		Sminor Strike Mb M1 Etype Orid Auth 1.98 qb 100 FIRBAS
GEC2 Phase Pg Lg Sx		Time 12:03:52.461 12:04:14.604 12:04:22.175	153. Az 336 324		Snr 10.8 8.5 4.2	Amp 7 22 24	Freq 0.3 0.5 0.7	Arid 5 6 7	50-
									Array Data GSETT-2 Data

Event Number	Dataset Name	Event Type
2	#1: VOGTLAND	qb

attribute	Ground Truth	refid
etype	Probable blast	501
lat,lon	Vintirov, minid=1363	501
depth	0	501
totacha	3982 kg	501

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999
	Event preceeding this one by about 3 minutes not saved in <i>origin</i> table	-999
	also referenced by Gestermann et al. 1992	231

Jdate 199108	Date Mar 21,	Time 1991 12:04:1	4.701	Lat 50.2	Lon 1070 1	1 2.6850	Depth	Smajor 000 -	Sminor -	Strike -	Mb -	M1 2.05	Etype qb	Orid 101	Auth FIRBAS
GEC2 Phase Pg Lg Sx	1.5 IPhase Pg Rg	Time 12:04:43.175 12:05:6.045 12:05:13.075	153.70 Az 335 329) Slow		Amp 8 25	Freq 0.3 0.8 0.5	Arid 26 27 28	50			75	10 To	20	30

Array Data

GSETT-2 Data

Event Number	Dataset Name	Event Type
3	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Blast in Vintirov open pit coal mine	501
lat,lon	Vintirov, minid=1363	501
depth	0	501
totcha	2835 kg	501

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999
9	Quarry blast identified by Petr Firbas	501

Jdate 199108		te 22,1991	Time 12:33:25		Lat 50	.2070	on 12.68	Depth		Smajor -	Sminor	Strike	Mb -	Ml 2.03	Etype qb	Orid 102	Auth FIRBAS
GEC2 Phase Pg Px Lg Sx	IPhase Pg Px Lg Sx	12:33 12:34 12:34		337 336	70 Slow 15.1 16.1 26.9 35.9	Snr 22.6 5.6 11.2 5.7	Amp 4 1 6 20	Freq 0.3 0.4 0.5 0.5	Arid 39 40 41 38		50 -			75	100 mm		30
												Array	Data		GSET	T-2 Dat	a

Event Number	Dataset Name	Event Type
4	#1: VOGTLAND	qb

attribute	Ground Truth	refid
etype	Blast in Vintirov open pit coal mine	501
lat,lon	Vintirov, minid=1363	501
depth	0	501
totcha	2025 kg	501

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999
9	Quarry blast identified by Petr Firbas	501
	Double event, not mixed. Event 4 is the first of the two. Other event not saved in <i>origin</i> table.	-999
	GEC2/sz has data droput at first arrival; picking difficult to do with consistency	-999

Jdate 1991082	Dat 2 Mar 2		Time 1 12:00:55	. 800	Lat 50	.2070	on 12.68	Depth	Sma:	jor -	Sminor -	Strike -	Mb -	Ml 1.99	Etype qb
GEC2	1	.516	334.47	153.	70										. ا
Phase	IPhase	Tim	1e	λz	Slow	Snr	Amp	Freq	Arid						_
Pg	Pq	12:0	1:24.275	336	13.9	43.3	В	0.3	62		-1	~			
Lg	Lq	12:0	1:46.484	328	30.6	7.0	11	0.3	63					1	
Rg	Sx		1:53.600		26.8	3.9	14	0.5	57		60 -	252	. ¹ 7	کو	$\sqrt{}$

Orid 103 Auth FIRBAS

Event Number	Dataset Name	Event Type
5	#1: VOGTLAND	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	211
lat,lon	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211
depth	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211

noteid	Notes	refid
1	origin times derived from GEC2 first arrival times	-999
3	vogtland earthquake series March 24,25,26 1991	209
7	locations good to + - 1 km due to dense network,- Schmedes, pers.comm.	209

Jdate 199108	Da 3 Mar		Time 5:05:4.		Lat 50.2		Lon 12.2250	Depth 12.90	Smajor 00 -	Sminor -	Strike -	Mb -	Ml 2.18	Etype eq+	Orid 104	Auth NEUNHOFER
GEC2 Phase Pg Px Lg	IPhase Pg Px Lg	Tim 5:05 5:05	327.06 (se :336.153 :42.075 :11.497	145. Az 323 326 325	510w 12.0 14.4 27.7	Snr 56.6 11.1 28.1	. 1	Freq 0.3 0.3 0.3	Arid 85 86 87	50 - 1			75	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		20 30
											Array	Data		GSET	T-2 Da	ata

Event Number	Dataset Name	Event Type
6	#1: VOGTLAND	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	211
lat,lon	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211
depth	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211

noteid	Notes	refid
1	origin times derived from GEC2 first arrival times	-999
3	vogtland earthquake series March 24,25,26 1991	209
7	locations good to + - 1 km due to dense network,- Schmedes, pers.comm.a	209
	small event, difficult to time arrivals	-999

.

Jdate 199108	Dat 3 Mar 2	e Time 4,1991 5:35:21		Lat 50.279	Lon 00 12.22	Depth 80 12.9		Sminor -	Strike -	Ml 1.50	Etype eq+	Orid 105	Auth NEUNHOFER
GEC2 Phase Pg Px Lg	1 IPhase Pg Pg Lg	.727 326.79 Time 5:35:52.536 5:35:57.586 5:36:16.749	-1 325	Slow S -1.0 -	Enr Amp 1.0 -1 8.0 0 13.2 3	-1.0 0.3	Arid 1463 82 83	60 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -			120 to 100 to 10		

Array Data

GSETT-2 Data

Event Number	Dataset Name	Event Type
7	#1: VOGTLAND	eq+

attribute	Ground Truth	refid
etype	Earthquake in swarm	211
lat,lon	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211
depth	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211

noteid	Notes	refid
1	origin times derived from GEC2 first arrival times	-999
3	vogtland earthquake series March 24,25,26 1991	209
7	locations good to + - 1 km due to dense network,- Schmedes, pers.comm.a	209
10	Teleseismic P arrival in Lg coda corresponds to bonus event, orid 126 in <i>origin</i> table	-999

Data Set 1, Event 7 Date

Jdate

199108	3 Mar 2	4,1991 6:57:59	.309	50.	2770	12.240	0 13.9	000
GEC2	1	.721 326.97	145.	86				
Phase	IPhase	Time	λz	Slow	Snr	Amp	Freq	Arid
Pg	Pg	6:58:30.712	-1	-1.0	-1.0	-1	-1.0	1464
Px	Pq	6:58:34.650	325	14.7	5.4	0	0.3	8.9
Lg	Lg	6:58:53.053	319	28.4	11.2	2	0.2	90

Auth

Event Number	Dataset Name	Event Type
8	#1: VOGTLAND	eq+

attribute	Ground Truth	refid
etype	Earthquake in swarm	211
lat,lon	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211
depth	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211

noteid	Notes	refid
1	origin times derived from GEC2 first arrival times	-999
3	vogtland earthquake series March 24,25,26 1991	209
7	locations good to + - 1 km due to dense network,- Schmedes, pers.comm.a	209

unfiltered

Event Number	Dataset Name	Event Type
9	#1: VOGTLAND	eq+

attribute	Ground Truth	refid
etype	Earthquake in swarm	211
lat,lon	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211
depth	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211

noteid	Notes	refid
1	origin times derived from GEC2 first arrival times	-999
3	vogtland earthquake series March 24,25,26 1991	209
9	main shock of vogtland earthquake series March 24,25,26 1991	209

Event Number	Dataset Name	Event Type
10	#1: VOGTLAND	eq+

attribute	Ground Truth	refid
etype	Earthquake in swarm	211
lat,lon	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211
depth	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211

noteid	Notes	refid
1	origin times derived from GEC2 first arrival times	-999
3	vogtland earthquake series March 24,25,26 1991	209

Event Number	Dataset Name	Event Type
11	#1: VOGTLAND	eq+

attribute	Ground Truth	refid
etype	Earthquake in swarm	211
lat,lon	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211
depth	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211

noteid	Notes	refid
1	origin times derived from GEC2 first arrival times	-999
3	vogtland earthquake series March 24,25,26 1991	209

Jdat 1991		Date r 24,1	991 :	Time 15:41:3	. 515	Lat 50.2	2930	Lon 12.2240	Depth 9.00		ajor -	Sminor	Strike -	Mb 	Ml 1.73	Etype eq+	Orid 110	Auth NEUNHOFER
GEC2 Phas Pg Lg Sx	Pg Lg Sx	se 1 1	Time 5:41 5:42	326.99 :35.190 :0.570 :5.300	145.4 Az 320 324 315	86 Slow 15.3 28.2 26.1	Snr 9.9 15.3 7.7	6	Freq 0.3 0.2 0.3	Arid 115 118 119		50 - 10						
													Array	Data		GSETT	-2 Dat	a

Event Number	Dataset Name	Event Type
12	#1: VOGTLAND	eq+

attribute	Ground Truth	refid
etype	Earthquake in swarm	211
lat,lon	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211
depth	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211

noteid	Notes	refid
1	origin times derived from GEC2 first arrival times	-999
3	vogtland earthquake series March 24,25,26 1991	209

unfiltered

Event Number	Dataset Name	Event Type
13	#1: VOGTLAND	eq+

attribute	Ground Truth	refid
etype	Earthquake in swarm	211
lat,lon	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211
depth	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991	211

noteid	Notes	refid
1	origin times derived from GEC2 first arrival times	-999
3	vogtland earthquake series March 24,25,26 1991	209

199108	4 Mar	25,1991	22:31:45	. /61	50	. 2920	12.21	30 12.	A000	-
GEC2	:	1.743	326.77	145.	64					
Phase	IPhase	Tim	te	λz	Slow	Snr	Amp	Freq	Arid	
Pg	Pg	22:3	2:17.481	-1	-1.0	-1.0	-1	-1.0	1467	
Px	Pg	22:3	2:25.237	330	15.8	8.1	1	0.1	127	
Lg	Lg	22:3	2:43.480	318	28.2	10.4	4	0.2	129	
Sx	Lq	22:3	2:48.800	340	29.4	4.7	1	0.3	130	

Auth NEUNHOFER

Orid 112

Event Number	Dataset Name	Event Type
15	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Blast in Nove Seldo open pit coal mine	501
lat,lon	Nove Sedlo, minid=1228	501
depth	0	510
totcha	3575 kg	501

	Notes	
1	origin times derived from GEC2 first arrival times	-999
9	quarry blast identified by Petr Firbas	501

Jdate	Da	te	Time		Lat		Lon	Depth	_
1991122	May	2,1991	11:06:10.	221	50.:	2070	12.7130	0.0	000 -
GEC2		1.508	335.08	154.	33				
Phase	IPhase	Ti	пe	Az	Slow	Snr	Amp	Freq	Arid
Pg	Pn	11:	06:38.583	338	16.1	10.2	10	0.7	140
Lg	Sx	11:1	07:1.210	334	26.9	10.4	14	0.3	141
Sx	Lq	11:0	07:7.050	324	32.7	4.7	20	0.6	142
Rq	Rq	11:	07:12.000	328	35.0	3.7	25	0.9	143

Event Number	Dataset Name	Event Type
16	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Blast confirmed by Klinge in Wüster, 1992	501
lat,lon	not known, location of stations SGB used location	-999

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999
4	Quarry blast identified by Klinge for Wüster	209
8	location uncertainty large, put at sta SGB for lack of better location	501

Data S	Set 1	, Event 1	16												
Jdate 199112	Dat 2 May 2	e Time 2,1991 12:47:33		Lat 50.1	Lo .840]	on 12.1860	Depth 0.00	Smajo	r Smind	or Strike	Mb -	M1 2.03	Etype qb	Orid 114	Auth WUSTER
GEC2 Phase Pg Lg Rg	IPhase Pg Lg Rg	1.665 324.18 Time 12:48:3.675 12:48:23.475 12:48:33.575	314	3 Slow 18.1 30.4 34.0	Snr 4.5 13.0 4.7	Amp 1 20 26	Freq 0.5 0.8 1.0	Arid 144 145 146	60 - 50 - 40 -	Array	Data		GSET	T-2 Data	

Event Number	Dataset Name	Event Type
17	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Blast in Nove Sedlo open pit coal mine	501
lat,lon	Nove Sedlo (minid=1228)	501
depth	0	501
totcha	3330 kg	501

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999
9	Quarry blast identified by Petr Firbas	501
	GEC2/sz dead	-999

Event Number	Dataset Name	Event Type
18	#1: VOGTLAND	eq

attribute	Ground Truth	
etype	single earthquake, listed in PB	211
lat,lon	not located in Preliminary Bulletin of Vogtland/ West Bohemia Microearthquakes for 1991, used Wüster's location	209

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999

Jdate	Da	te	Time		Lat		Lon	Depth	s
1991130	May	10,1991	20:02:51	.112	50.	7900	12.07	00 -999	.0000
GEC 2		2.215	332.12	150.	88				
Phase	IPhase	: Time	2	Αz	Slow	Snr	Amp	Freq	Arid
Pn	Pn	20:03	3:29.575	336	16.9	4.6	. 0	0.3	162
Lg	Lg	20:04	:2.133	316	25.8	4.5	1	0.4	164

Event Number	Dataset Name	Event Type
19	#1: VOGTLAND	eq

attribute	Ground Truth	
etype	single earthquake, listed in PB,	211
lat,lon	from Preliminary Bulletin of Vogtland/West Bohemia Microearthquakes for 1991. (located by 17 stations in the Vogtland network. The nearest, KLI, is 7.3 km from the published location. The farthest, MOX, is 66 km from the published location.)	211
depth	depth estimated by above 17 stations is 0.0 (4.9) km.	211

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999

Event Number	Dataset Name	Event Type
20	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Blast in Nove Sedlo open pit coal mine	501
lat,lon	Nove Sedlo (minid=1228)	501
depth	0	501
totcha	3135 kg	501

noteid	Notes	refid
9	Quarry blast identified by Petr Firbas	-999
1	Origin time derived from GEC2 arrival times	-999
	Double event, not mixed. Event 20 is the first of the two; bonus event is orid 229 in <i>origin</i> table.	-999

Juace	Dati	C .	1 11116		204		2011	p	
199114	3 May 2	3,1991 1	1:01:5.	259	50.2	2070	12.7130	0.0	000
GEC2	1	.508 3	35.08	154.3	33				
Phase	IPhase	Time		λz	Slow	Snr	Amp	Freq	Arid
Pq	Pq	11:01:	33.621	338	16.1	37.4	6	0.3	174
Px	Px	11:01:	40.574	335	16.8	6.1	4	0.6	175
Lg	Lg	11:01:	55.602	335	26.1	15.4	25	0.5	176
Sx	Sx	11:02:	0.749	333	24.6	15.5	31	0.7	177
Rg	Rg	11:02:	7.171	-1	-1.0	-1.0	-1	-1.0	1468

Sminor

Event Number	Dataset Name	Event Type
21	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Blast in Nove Sedlo open pit coal mine	501
lat,lon	Nove Sedlo, minid=1228	501
depth	0	501
size	3135 kg	501

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999
9	Quarry blast identified by Petr Firbas	501

Jdate	D:	ate	Time		Lat	I	on	Depth	Smajor
199114	5 May	25,1991	11:01:28	. 688	50	.2070	12.71	30 0.	0000 -
GRA1		1.093	61.27	242.	41				
Phase	IPhase	e Time	e	Az	Slow	Snr	Amp	Freq	Arid
Pg	P	11:0	1:50.900	-1	-1.0	-1.0	43	0.6	326
Lg	s	11:0	2:8.000	-1	-1.0	-1.0	202	0.7	327
GEC2		1.508	335.08	154.	33				
Phase	IPhase	e Time	e	λz	Slow	Snr	Amp	Freq	Arid
Pg	Pg	11:0	1:57.050	339	15.2	39.9	7	0.5	197
Px	Px	11:02	2:4.799	337	16.9	7.2	4	0.5	198
Lg	Lg	11:0	2:18.924	332	26.4	14.0	24	0.6	201
Sx	Sx	11:0	2:25.049	329	30.1	10.5	24	0.7	202
Rg	Sx	11:0	2:31.500	329	38.1	4.8	18	0.9	205
KSP		2.372	255.80	73.	05				
Phase	IPhase	2 Time	e	λz	Slow	Snr	Amp	Freq	Arid
Pg	P	11:02	2:13.898	343	20.2	-1.0	4	0.6	324
Lg	S	11:0	2:46.075	-1	-1.0	-1.0	3	0.3	325

Sminor

Event Number	Dataset Name	Event Type
22	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Blast in Nove Sedlo open pit coal mine	501
lat,lon	Nove Sedlo, minid=1228	501
depth	0	501
totcha	2907 kg	501

	-	
noteid	Note	refid
1	Origin time derived from GEC2 arrival times	-999
9	Quarry blast identified by Petr Firbas	501

Data Set 1, Event 22	
Jdate Date Time Lat Lon Depth : 1991146 May 26,1991 11:00:32.367 50.2070 12.7130 0.0000	Smajor Sminor Strike Mb Ml Etype Orid Auth 2.14 qb 120 FIRBAS
GRA1 1.093 61.27 242.41 Phase IPhase Time Az Slow Snr Amp Freq Arid Pg P 11:00:54.450 -1 -1.0 -1.0 39 0.5 342 Lg - 11:01:11.700 -1 -1.0 -1.0 95 0.7 343	
GEC2 1.508 335.08 154.33 Phase Time Az Slow Snr Amp Freq Arid Pg Pn 11:01:0.729 339 14.1 74.1 3 0.3 216 Px Px 11:01:8.150 339 16.3 11.3 4 0.6 217 Lg Lg 11:01:23.206 -1 -1.0 -1.0 -1 -1.0 1477 Sx Lg 11:01:28.624 326 33.7 15.5 32 0.7 218 Sx Sx 11:01:31.774 318 31.4 14.7 13 0.6 219 Rq Rg 11:01:35.3534 297 30.0 9.1 14 1.1 220	50 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -
KSP 2.372 255.80 73.05 Phase IPhase Time Az Slow Snr Amp Freq Arid Pg # 11:01:16.775 105 7.2 -1.0 % 0.6 328 Lg S 11:01:49.898 -1 -1.0 -1.0 % 0.6 329	
	40-10 0 10 20 30
	Array Data GSETT-2 Data
GRA1/02	MMmmmm
GEB5/sz	- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
SxSx Bo	
GEC2/sz	ph
GED5/sz	
Po	الله المنطقة الانتخاص والمناس ووريد المناس ووريد المناس ووريد المناس ووريد المناس والمناس والم
KSP/sz	1. 中央小小村本地市人上大学人士企业集员电影大学人类的企业发展的
0	100

Event Number	Dataset Name	Event Type
23	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Blast in Vintirov open pit coal mine	501
lat,lon	Vintirov: (minid=1363) 50.207n 12.685e	501
depth	0	501
totcha	3575 kg	501

noteid	noteid Notes	
1	Origin time derived from GEC2 arrival times	-999
9	Quarry blast identified by Petr Firbas	501

Data Se	t 1, Event 2	23		
Jdate 1991148	Date Time May 28,1991 11:03:5	Lat 51.425 50.2070	Lon Depth Smajor 12.6850 0.0000 -	Sminor Strike Mb Ml Etype Orid Auth 2.01 qb 121 FIRBAS
Lg I GEC2 Phase IP Pg P Px P Lg I Sx S	1.077 60.83 Phase Time Pg 11:04:13.550 1.516 334.47 Phase Time Pg 11:04:19.900 Phase 11:04:28.000 Phase 11:04:28.000 Phase 11:04:48.024 Phase 11:04:51.924	153.70 Az Slow Snr 340 14.2 26.8 336 14.0 8.2 9 326 31.5 10.9 1 333 25.2 9.8	Amp Freq Arid 0.4 225 6 0.5 226 17 0.6 227 15 0.4 228	50
				Array Data GSETT-2 Data

Event Number	Dataset Name	Event Type
24	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Blast in Vintirov open pit coal mine	501
lat,lon	Vintirov, minid=1363	501
depth	0	501
totcha	1998 kg	501

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999
9	Quarry blast identified by Petr Firbas	501

Jdate Date Time 1991171 Jun 20,1991 11:01:16.808	Lat Lon Depth Smajor 50.2070 12.6850 0.0000 -	Sminor Strike Mb Ml Etype Orid Auth 1.98 qb 122 FIRBAS
GEC2 1.516 334.47 153. Phase IPhase Time Az Pg Pg 11:01:45.282 340 Px Px 11:01:52.750 340 Lg Lg 11:02:7.846 335 Sx Lg 11:02:12.624 332	Slow Snr Amp Freq Arid 15.6 17.7 4 0.4 237 14.6 5.5 4 0.5 240 30.9 17.4 24 0.6 242 27.9 11.9 9 0.5 243	50-
		Array Data GSETT-2 Data

Event Number	Dataset Name	Event Type
25	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Probable blast in Depoltivice stone quarry	501
lat,lon	Depoltivice, minid=1066	501
depth	0	501

noteid	Notes	refid	
1	Origin time derived from GEC2 arrival times	-999	
9	Quarry blast identified by Petr Firbas	501	

Jdate Date 1991171 Jun 20,	Time 1991 11:45:35.486	Lat Lon D 50.2930 12.8030	epth Smajor 0.0000 ~	Sminor Strike Mb M1 Etype Orid Auth 1.80 qb 123 FIRBAS
Phase IPhase Pg Pg Lg Lg	338.36 157. Time Az 11:46:4.637 337 11:46:27.123 343 11:46:39.362 -1	Slow Snr Amp F 16.8 27.7 1 0 25.5 14.6 4 0	req Arid .1 255 .3 258 .0 1469	50
				Array Data GSETT-2 Data

Event Number	Dataset Name	Event Type
26	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Blast in Vintirov open pit coal mine	501
lat,lon	Vintirov: (minid=1363)	501
depth	0	501
totcha	2886 kg	501

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999
9	Quarry blast identified by Petr Firbas	501

Jdate 199117:	Date Jun 2	Time 2,1991 10:58:3		Lat 50	on 12.68	Depth	Smajor -	Sminor -	Strike -	Mb -	M1 2.15	Etype qb	124	FIRBAS
	Jun 2		4.818 153.7 Az 340 341 340 341 337	50.	Amp 8 4 5 20		-	50 -			2.15		124	FIRBAS
								1	ζ	>	•	~ ~	-D' `	الله المحلا

Array Data GSETT-2 Data

Event Number	Dataset Name	Event Type
27	#1: VOGTLAND	qb

attribute	Ground Truth	
etype	Blast in Vintirov open pit coal mine	501
lat,lon	Vintirov, minid=1363	501
depth	0	501
totcha	3515 kg	501

noteid	Notes	refid
1	Origin time derived from GEC2 arrival times	-999
9	Quarry blast identified by Petr Firbas	501

Jdate	Date	Event 2		Lat 50	.2070	on 12.68	Depth	Smajor 0000 -	Sminor Strike Mb Ml Etype Orid Auth 1.93 qb 125 FIRBAS
GEC2 Phase Pg Px Lg Sx Rg		516 334.47 Time 11:05:8.103 11:05:15.774 11:05:32.277 11:05:35.724 11:05:42.949	336 338	70 Slow 14.6 18.0 26.0 28.7 33.5	Snr 20.1 7.1 9.3 5.8 4.6	Amp 5 5 20 4 8	Freq 0.5 0.6 0.7 0.5 0.7	Arid 287 288 290 291 292	50
									Array Data GSETT-2 Data

Data Set #1 VOGTLAND: Array Data

Event_24

Event_26

Event_25

Event_22

Event_23

Data Set #2 STEIGEN: Array Data

Event_28

Event_29

Event_31

Event_32

Event_33

Event_34

Event_35

Event_36

Event_37

Event_38

Event_39

Event_40

Event_41

Event_42

Event_44

Event_46

Event_49

Event_50

Event_51

Event_58

Event_59

Event_60

Event_61

Event_62

Event_63

Event Number	Dataset Name	Event Type
28	#2: STEIGEN	eq++

attribute	Ground Truth	refid
etype	Felt Earthquake	-999

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
22	Helsinki Bulletin, reported as "EARTHQUAKE, FELT"	212
23	Bergen Bulletin, reported as "STEIGEN/NORTH- ERN NORWAY F"	228
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228
29	Felt earthquake	503

Event Number	Dataset Name	Event Type
29	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
28	Location (lat,lon,depth) and origin time (time) computed with ARS by Flori Ryall	-999

iate Dat 992001 Jan 1	e Time		Lat I 67.1334 1	on Dept 5.8556 0.0	th Smajor	Sminor -	Strike -	Mb M1 999.00	Etype Orid eq+ 249	Auth ARS:flori
RAO Anase IPhase	.313 240.59 Time 8:19:15.178 8:19:53.128 8:20:12.528	240 1 -1 -	low Snr 5.3 5.1 1.0 -1.0 0.8 4.2	Amp Fred 0 0.2 -1 -1.0 0 0.2	Arid 467 1478 468	70 - 60 - 50 - 50 - 50 - 50 - 50 - 50 - 5			20	202
							Array E	Data	20	•

Event Number	Dataset Name	Event Type
31	#2: STEIGEN	eq++

attribute	Ground Truth	refid
etype	Felt Earthquake	-999

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
22	Helsinki Bulletin, reported as "EARTHQUAKE, FELT"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	228
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228
29	Felt earthquake	503

Jdate 199200	Dat 1 Jan 1	e Time ,1992 8:39:1.8		Lat 67.72		on 1.8470	Depth 12.100		Sminor -	Strike -	Mb -	M1 1.60	Etype eq++	Orid 250	Auth BERGEN
ARA0	4	.304 250.01	60.	09											
Phase	IPhase	Time	Az	Slow	Snr	Amp	Freq	Arid	علم ا		1			<u> </u>	
Pn	Pn	8:40:4.223	240	12.3	43.4	1	0.1	362							
Px	Px	8:40:14.809	239	15.8	16.1	2	0.2	363							
Pg	Pg	8:40:15.648	242	15.3	8.5	1	0.3	475		_				~~	
Px	Px	8:40:23.034	242	14.4	2.4	1	0.2	476	70 -					_A	~~
Sn	Sx	8:40:54.673	239	20.1	6.6	1	0.1	365	- 1				<u>Sub</u>		
Sx	Sx	8:41:0.340	239	23.2	2.9	2	0.1	366	- 1				\mathcal{X}		
Lg	Sx	8:41:13.373	240	24.4	10.7	20	0.4	367	- 1						
Sx	Lg	8:41:17.660	230	27.0	4.2	2	0.2	368	1			,	// \	$\langle \gamma \rangle$] {
NRA0	7	.160 10.16	193.	14								~/	/ /	\sim	
Phase	IPhase	Time	Az	Slow	Snr	Amp	Freq	Arid		67			1 ((\.	77
Pn	Pn	8:40:44.361	7	12.2	4.9	Ō	0.2	364	7		- 1	,	d l	> X	\sim \circ
Sn	Sn	8:42:3.861	-1	-1.0	-1.0	-1	-1.0	1479	60 -	1	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) (\searrow
Lg	Lg	8:42:44.486	-1	-1.0	-1.0	-1	-1.0	1480	00 7	`		٧ ح	. /	2	
FIAO	7	.927 327.42	137.	27					1	25		7	10	$\tilde{\sim}$	
Phase	IPhase	Time	λz	Slow	Snr	Amp	Freq	Arid	1	9 4		(5	~ ~	(
Pn	P	8:40:53.993	307	2.4	5.4	ō	0.2	477	- 1	~~ 1		165	30	/	
Sn	Sn	8:42:19.087	-1	-1.0	-1.0	-1	-1.0	1461		s $j \sim \zeta <$	1	3 5	12/10	'	
Lg	Sx	8:43:3.368	325	25.8	4.0	1	0.3	369]5) 5	ا ر	5~			
									50 T	Z	5/			,	
									50 −Ļ		<u> </u>				- 1
											ក់		2	o	

Event Number	Dataset Name	Event Type			
32	#2: STEIGEN	eq+			

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
28	Location (lat,lon,depth) and origin time (time) computed with ARS by Flori Ryall	-999

Phase IPhase Time Az Slow Snr Amp Freq Arid Pg Pn 8:58:19.524 241 15.1 5.0 0 0.2 478 Sn Sn 8:58:57.445 -1 -1.0 -1.0 -1 -1.0 1482	Jdate 199200	Date 1 Jan 1	e Time ,1992 8:57:3.7		Lat 67.2118	Lon 15.9492	Depth 0.0000	Smajor -	Sminor -	Strike -	Mb M 999	l Etype .00 eq+	Orid 251	Auth ARS:flori
	ARAO Phase Pg Sn Lg	IPhase Pn Sn	Time 8:58:19.524 8:58:57.445	Az 241 -1	Slow 15.1 -1.0	5.0 0 -1.0 -1	0.2	178 182	60 -	Server Se	3,00	200	A STATE OF THE STA	
									50 –Ļ	~	5	2	20	40

Event Number	Dataset Name	Event Type
33	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228
24	Helsinki Bulletin, reported as "PROBABLY EARTHQUAKE"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	212

Jdate 199200		te Time 1,1992 10:15:11		Lat 67.	7230	on 14.8820	Depth		Sminor Strike Mb	Ml Etype 2.00 eq+	Orid Auth 252 BERGEN
ARAO Phase Pn Pg Sn Lg Sx	IPhase Pn Px Sx Sx Lg	4.291 249.95 Time 10:16:13.934 10:17:3.934 10:17:22.859 10:17:27.909	238 244 241	06 Slow 11.1 15.7 21.4 23.5 27.1	Snr 8.8 18.9 3.6 12.6 4.5	Amp 0 2 2 5 1	Freq 0.1 0.2 0.2 0.4 0.3	Arid 484 485 486 487 488	70 - 60 - 50 -		
									Array Data		

Event Number	Dataset Name	Event Type
34	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
28	Location (lat,lon,depth) and origin time (time) computed with ARS by Flori Ryall	-999

ouace	Da	i ce	TIME		Late	L	OII	Depcii	31
1992001	Jan	1,1992	14:46:6.8	65	67.03	368 1	6.0349	0.00	00
ARA0		4.320	239.00	50.3	21				
Phase	IPhase	rir e	ze.	λz	Slow	Snr	Amp	Freq	Arid
Pg	Pn	14:4	7:24.212	239	15.4	6.9	0	0.2	489
Sn	Sx	14:4	18:2.208	230	23.4	3.6	0	0.1	490
Lg	Lq	14:4	48:21.689	250	23.6	5.4	1	0.3	491

Ml -999.00 Auth

Event Number	Dataset Name	Event Type
35	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228

Jdate	Da	te	Time		Lat		Lon	Depth	St
199200	4 Jan	4,1992	3:43:43.	400	67.7	070	14.9330	0.00	00
ARA0		4.283	249.63	59.	79				
Phase	IPhase	Tir	ze.	Az	Slow	Snr	Amp	Freq	Arid
Pn	Pn	3:44	4:46.392	234	11.2	25.6	1	0.1	381
Pq	Р×	3:44	4:57.874	237	15.4	7.6	2	0.2	382
Px	Px	3:45	5:4.850	227	14.8	2.5	1	0.2	383
Sn	Sx	3:45	5:35.903	247	21.6	4.0	4	0.1	385
Lg	Sx	3:45	5:55.198	243	24.2	5.9	20	0.4	386
NRA0		7.153	10.44	193.	50				
Phase	IPhase	Tir	ne	Az	Slow	Snr	Amp	Freq	Arid
Pn	Pn	3:45	5:26.766	354	8.8	5.9	0	0.1	384
Lg	Lq	3:47	7:26.772	-1	-1.0	~1.0	-1	-1.0	1483
FIAO		7.894	327.53	137.	45				
Phase	IPhase	Tin	ae	λz	Slow	Snr	Amp	Freq	Arid
Pn	P	3:45	:36.204	71	1.1	6.3	Ō	0.1	495
Lq	Lg	3:47	7:48.821	39	1.2	7.4	2	0.4	592
Sx	P	3:47	7:54.725	87	6.6	4.2	2	0.4	498

Event Number	Dataset Name	Event Type
36	#2: STEIGEN	eq++

attribute	Ground Truth	refid	
etype	Felt Earthquake	-999	

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
22	Helsinki Bulletin, reported as "EARTHQUAKE, FELT"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	212
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228
29	Felt earthquake	503

Jdate		te	Time		Lat		Lon	Depth		Sminor	Strike	Mb	M1 3.60	Etype eq++	Orid 256	Auth BERGEN
199200	4 Jan	4,1992	2 4:15:4.0	00	67.70	180 1	4.8980	12.100	o –	-	-	_	3.00	eqii	250	Denomi
ARA0		4.294	249.73	59.	86										1	
hase	IPhase		ime	Αz	Slow	Snr	Amp	Freq	Arid						1	
מי	Ρn	4:1	16:6.471	244	13.3		8	0.2	387							
'g	Pκ	4:1	6:18.271	239	15.5	41.7	4	0.2	500	1.					_	_
'x	₽g	4:1	6:19.041	238	15.1	14.4	2	0.3	388	-n -				_	~~~	
x	Px	4:1	6:26.691	235	13.8	3.0	6	0.4	501	70 -				15	$-\Lambda$	
x	Sx	4:1	6:46.716	241	21.3	2.6	9	0.5	502					Sign	_	
n	Sx	4:1	6:55.362	235	23.2	3.4	5	0.1	392	7				*		
x	Sx	4:1	17:3.741	239	20.2	2.7	14	0.2	393							
g	Sx	4:1	17:15.571	246	27.8	14.8	101	0.5	395	7				// `		1~
Sx.	Lg	4:1	17:19.966	234	30.4	5.6	14	0.4	503	1			/		\mathcal{N}	
										1			~~	1 /	\sim	•
RAO		7.151	10.34	193.				F	Arid	4	Ø	5		/ f	1 1/2	~ </td
hase	IPhase		ime	Αz	Slow 13.4	Snr 22.3	Amp	Freq 0.2	389			- 1	/	1	(4	~.\) b
n	Pn		6:46.571	8		4.4	2	0.2	390	60 —	1	7		~)		
x	Px		16:53.333	17	13.8		1	0.2	396		4 ~~		$\langle \ / \ \rangle$)ي	
n	Sn		8:5.796	25		4.5	6			1	216		~	10	Ă١	
×	Sx		8:13.008	29	24.8	2.5	3	0.4	504 398		7 /		64) / "	(
X	Sx		18:23.658	16	23.3	2.7	6	0.4		1 .	_ 3 2		161	36)	
×	Sx		8:40.283	7	28.1	3.2	11	0.5	399	- 1.5	746		150	3/	<i>r</i>	
g	Lg		8:45.521	359	30.3	4.5	3	0.4	400	15	1.7	١ .	۰ ہہ	, _		
x	5x	4:1	8:54.433	51	25.4	2.4	4	0.2	505]/	، دل	つ 14	5			
IAO		7.904	327.46	137.	35						~ ~	5/				
hase	IPhase		lme	Az	Slow	Snr	Amp	Freq	Arid	50	4	1				
n	Pn		6:56.627	339	13.9	27.0	2	0.2	391	. 4.				_	<u>l</u>	•
×	Px		7:8.500	331	11.6	3.2	2	0.3	394		C)		2	ė ė	
n	Lg		8:21.242	335	22.8	3.0	2	0.2	397							
x	Sx		9:2.350	334	23.7	3.6	10	0.5	401							
Lg .	Lq		9:7.002	336	31.0	4.6		0.5	402		Array	Data	1			
- 3	-,										Allay	Dalo				
											Millian					
											ans.					
												/				
													Sec. 1			

Event Number	Dataset Name	Event Type
37	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228

Data Set 2, Event 37

Juace	Da	ce.	TTine		Late		OII	Depcii	عادد
1992004	1 Jan	4,1992	5:33:26.	500	67.6	310 1	4.8650	12.10	00 -
ARA0		4.318	249.51	59.	60				
Phase	IPhase	Ti	πe	Az	Slow	Snr	Amp	Freq	Arid
Px	Pn	5:3	4:31.844	236	10.8	7.1	0	0.1	403
Pg	Рx	5:3	4:40.944	240	15.5	5.5	0	0.2	404
Sn	Sx	5:3	5:19.110	238	20.0	2.9	0	0.1	405
Lg	Sx	5:3	5:38.394	233	31.9	3.8	1	0.2	406

Orid 257

Etype eq+ Auth BERGEN

Strike

Sminor

Event Number	Dataset Name	Event Type
38	#2: STEIGEN	eq++

attribute	Ground Truth	refid
etype	Felt Earthquake	-999

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
22	Helsinki Bulletin, reported as "EARTHQUAKE, FELT"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	212
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228
29	Felt earthquake	503

Event Number	Dataset Name	Event Type
39	#2: STEIGEN	eq++

attribute	Ground Truth	refid
etype	Felt Earthquake	-999

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
22	Helsinki Bulletin, reported as "EARTHQUAKE, FELT"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	212
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228
29	Felt earthquake	503

date 992004	Dat 4 Jan 4		Time 9:06:31.		Lat 67.7		Lon 14.9180	Depth 12.10		Sminor -	Strike -	Mb -	Ml 2.50	Etype eq++	Orid 259	Auth BERGEN
RAO	4	.263	250.23	60.3	37										1	
nase	IPhase	Tir	ne .	Az	Slow	Snr	Amp	Freq	Arid	4						
n	Pn	9:07	:33.131	240	12.1	41.6	14	0.1	422	- 1						
ĸ	Px	9:01	:44.365	237	15.9	29.6	2	0.2	513	- 1						
3	Px	9:07	1:44.796	241	14.8	13.2	2	0.3	423						~~~	$\overline{}$
n.	Sx	9:08	3:23.242	255	25.2	3.6	3	0.1	427	70 -					_A	
ĸ	Sx	9:08	:31.022	225	21.3	2.6	3	0.1	610					Shis		
3	Sx	9:08	:42.049	248	27.4	16.7	54	0.5	428	1				*		
ĸ	Sn	9:08	:47.566	238	24.5	5.2	7	0.4	514							
										1				// \	\sim	ا ر
RAO		.199	10.31	193.3										/	λ	
nase	IPhase	Tin		λz	Slow	Snr	Amp	Freq	Arid				~	/ /		_
n	Pn		:13.053	7	13.2	15.8		0.2	424	- 4	0	_	/ /	′ ′		75
K	Px		:19.928	13	13.2	4.3		0.2	425			~ }	Α.	(\ \triangle	\sim \sim
n.	S n		:34.880	14	21.2	3.0		0.2	429	60 -	4	5		'		$>$ \sim
ī	Lg		:12.178	-1	-1.0	-1.0		-1.0	1484			•	7 ~	,5	0	,
K	Sx	9:10	:21.503	9	25.9	2.5	4	0.3	431	- 4	012		\bigcirc	5	24	
										- 1	9		\sim	10		
0A1	7		327.73	137.6	54					- 4	2, く		12/	3 ~	1	
nase	IPhase	Tin	ve .	Az	Slow	Snr	Aπp	Freq	Arid	- 1	061		<u></u> ነውያ		/	
1	Pn	9:08	:23.092	327	11.1	16.7	1	0.2	426	45	ያ ያገን ጊ		32			
n	Sn	9:09	:47.283	340	24.0	3.3	2	0.3	430	- 15	, אבי ז	J 41	-			
4	Sx	9:10	:28.950	333	21.9	3.3	6	0.5	611	44	<i>γ</i> 2.	ノバ	,			
•	Sx	9:10	:31.675	334	29.5	3.6	6	0.5	612	1	7	5/				
ī	Sx	9:10	:35.717	326	25.9	3.4	. 7	0.5	432	50 -↓_	4					
											1		•	_	<u>l</u>	•
											C)		2	20	

Event Number	Dataset Name	Event Type
40	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
24	Helsinki Bulletin, reported as "PROBABLY EARTHQUAKE"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	212
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228

Jdate Date		e	Time	Lat		Lon	Depth	Smaj	or	
199200	5 Jan 5	,1992	1:20:49.	900	67.7	290	14.7750	15.50	00 -	
ARA0	4	.324	250.29	60.	30					
Phase	IPhase	Tim	e	Az	Slow	Snr	Amp	Freq	Arid	
Pn	Pn	1:21	:51.425	233	11.0	20.9	0	0.1	433	
Pg	Px	1:22	:3.076	240	15.7	13.9	0	0.2	434	
Px	Px	1:22	:6.390	237	15.4	6.2	Ω	0.3	435	
Sn	Sx	1:22	:40.875	242	21.9	3.5	2	0.2	438	
Lq	Lq	1:23	:0.350	248	26.3	12.1	14	0.4	439	
Sx	Sx	1:23	:4.890	231	26.6	4.8	2	0.3	515	
NRA0	7	.161	9.93	192.	85					
Phase	IPhase	Tin	ıe	Αz	Slow	Snr	Amp	Freq	Arid	
Pn	P	1:22	:31.415	310	3,6	5.6	0	0.3	436	
Px	Pn	1:22	:35.184	10	13.7	3.6	. 0	0.2	437	
S n	Sn	1:23	:51.228	-1	-1.0	-1.0	-1	-1.0	1487	
Lq	Lq	1:24	:30.190	-1	-1.0	-1.0	-1	-1.0	1486	

Auth BERGEN

Orid 261

Etype eq+

Strike

Event Number	Dataset Name	Event Type
41	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228

date 99200	Dat 5 Jan 5		Time 2:31:3.9		Lat 67.72		on . 7940	Depth 12.100		Sminor -	Strike -	Mb 9	M1 999.00	Etype eq+	Orid 260	Auth BERGEN
RA0	4		250.14	60.											ı	
hase	IPhase	Tim		Az	Slow	Snr	Amp	Freq	Arid						<u> </u>	
'x	P		:8.349	265	0.2	8.5	0	0.1	517	- 1						
g'	Pn		:17.388	239	15.3	9.7	0	0.2	440	- 1	_					
n	Sn		:55.113	-1	-1.0	-1.0	-1	-1.0	1485	70					~~~	>
x	Lg		:2.276	235	20.2	2.4	0	0.1	518	70 -				25	$-\Lambda$	~~~
g	Sx	2:33	:14.549	245	25.7	5.0	3	0.4	441					Silv		_
										7				*		
														/		
										7			/	,		1~
										J					7/	~~`
										- 1			_^			_
											ø			((73
										1		- }		{	>	C D
										60 –	4	,				م/ ۵
										00		7	~^	- 5	0	
										4	017		ノヽ	(-	چر	
										- 1	37		1	10	\sim	
										4	5. 4		12	/ /	}	
										- 1	150		JOY		/	
										45	3 7 6 J		_3 \v			
										- 17	٠) کی	کہ ہج	•			
										- +₹	٠, ١	7 /~				
										[]	/~~	5/				
										50 - Ļ	~					
										•	,	Ĭ	•	0	o	. 4
											,	J			U	4
												_				
											Array	Data				

Event Number	Dataset Name	Event Type
42	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
24	Helsinki Bulletin, reported as "PROBABLY EARTHQUAKE"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	212
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228

Jdate	Dat€	•	Time		Lat	1	Lon	Depth	Smajor
199200	5 Jan 5,	1992	5:11:56.3	300	67.70	060	14.9900	0.00	00 -
ARA0	4.	264	249.47	59.	68				
Phase	IPhase	Tim	e	Az	Slow	Snr	Amp	Freq	Arid
Pn	₽n	5:12	:59.451	234	10.7	26.8	0	0.1	442
Pg	Pn	5:13	:11.276	237	16.0	12.1	2	0.2	519
Px	Px	5:13	:15.034	227	14.7	7.3	0	0.2	520
Sn	Sx	5:13	:48.301	248	22.3	4.5	2	0.1	444
Lq	Lq	5:14	:8.851	243	23.0	11.8	3	0.4	445
Sx	Sx	5:14	:12.135	228	29.5	2.9	3	0.2	521
NRA0	7.	158	10.61	193.	72				
Phase	IPhase	Tim	e	Αz	Slow	Snr	Amp	Freq	Arid
Pn	Pn	5:13	:39.311	7	13.9	5.0	0	0.2	443
Lg	Lq	5:15	:43.111	-1	-1.0	-1.0	-1	-1.0	1488

Auth BERGEN

Sminor

Event Number	Dataset Name	Event Type
44	#2: STEIGEN	eq+

attribute	Ground Truth	refid	
etype	Earthquake in a swarm	500	

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
28	Location (lat,lon,depth) and origin time (time) computed with ARS by Flori Ryall	-999

Data Set 2, Event 44

Jdate 199200	Date 5 Jan 5		Time 7:56:51.	629	Lat 66.9		on 6.2216	Depth 0.00	
ARA0	4	.327	237.39	48.	77				
Phase	IPhase	Tim	ıe.	Az	Slow	Snr	Amp	Freq	Arid
Pg	Pn	7:58	3:9.190	237	15.9	4.2	0	0.2	446
Sn	Sn	7:58	:47.295	15	5.8	4.8	1	0.4	622
Lg	Sx	7:59	:6.640	237	24.2	3.4	2	0.4	447

M1 -999.00 Orid 263

Auth

ARS:flori

Event Number	Dataset Name	Event Type
46	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228

Jdate	Dat		Time		Lat		Lon	Depth		Sminor	Strike	Mb	M1	Etype	Orid	Auth
199200	6 Jan 6	,1992	8:26:21.	800	67.7	010	14.9650	0.000	00 -	_	-	-	1.30	eq+	264	BERGEN
ARA0	4	.275	249.48	59.	67							1				
Phase	IPhase	Tir	ie	Αz	Slow	Snr	Amp	Freq	Arid	4					1	
Pn	Pn		:25.183	234	11.1	15.9		0.1	448	1						I
Px	P	8:27	:34.230	237	5.1	4.€		0.2	449	- 1						ì
₽g	Px	8:27	:36.599	240	15.5	10.€	. 0	0.2	450	I ·					~~~	> 1
Sn	Lg	8:28	:14.449	238	24.3	4.1	. 1	0.1	451	70 -					-A	
Sx	Sx	8:28	:21.556	238	21.3	2.6		0.2	452	1				245		
Lg	Sx	8:28	:34.358	243	25.5	6.3	5	0.4	453	1				*		. 1
										1						
										7				/	\sim	1~1
															7/	
										- 1			~			. 1
										4	Ø		/	((77
										i		~		(ι	$\nabla \mathcal{A}$
										60 -	1	- 5))		マン ト
												,	7 ~	- 1	2	
											212		\smile_{-1}	10	2)	-
											9		α	10		
											2, 4		120	م کار	}	-
											514		ાહ્યુટ	1	/	
										45	′		~~~~			ŀ
										17	15	א ל	5			1
										45	/ 4	25	-			1
										50	L-~~	7				

Event Number	Dataset Name	Event Type
49	#2: STEIGEN	eq++

attribute	Ground Truth	refid
etype	Felt Earthquake	-999

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
22	Helsinki Bulletin, reported as "EARTHQUAKE, FELT"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	212
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228
29	Felt earthquake	503

Event Number	Dataset Name	Event Type
50	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228

Data	Set	2,	Event	50												
Jdate 19920		ate 11,1	Tin 992 1:17:2		Lat 67.	Lc 6990 1	on 14.9130	Depth 0.00	Smajor 000 ~	Sminor -	Strike -	Mb 	Ml 1.50	Etype eq+	Orid 266	Auth Bergen
ARAO Phase Pn Pg Sn Lg Sx	IPhas Pn Pg Sn Lg Sx	e 1 1 1 1	3 249.55 rime :18:33.835 :18:45.766 :19:21.642 :19:41.863 :19:47.093	Az 230 242 240 241	73 Slow 10.6 15.0 20.4 20.4 27.4	Snr 14.2 8.1 3.0 6.6 2.5	Amp 0 1 1 5 2	Freq 0.1 0.3 0.2 0.4 0.3	Arid 632 633 634 635 636	70 -	Sold Sold Sold Sold Sold Sold Sold Sold	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
										50 -↓_	(5		20	0	40
											Array	Data				

Event Number	Dataset Name	Event Type
51	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228

Jdate 199201	Dat 1 Jan 1	te Time		Lat 67.	7380	Lon 14.8790	Depth 12.10	Smajor 000 -	Sminor -	Strike -	Mb -	Ml 1.20	Etype eq+	Orid 267	Auth BERGEN
ARA0		1.285 250.13	60.: Az 233 242 240 240 231		Snr 11.2 11.0 3.4 5.9 2.7	Amp 0 1 0	Freq 0.1 0.2 0.1 0.4 0.2	Arid 550 551 552 553 642	70 -	a song	- - - - -	1.20	ed.		Server S
									50	15	3/1°	-	2	0	40
										Array	Data				

Event Number	Dataset Name	Event Type
58	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
24	Helsinki Bulletin, reported as "PROBABLY EARTHQUAKE"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	212
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228

Jdate	Dat	e	Time		Lat	L	on	Depth	ı	Smajor
1992025	Jan 2	5,1992	11:57:34	.500	67	.6880	14.93	10 0.	0000	-
ARA0	4	.293	249.42	59.	57					
Phase	IPhase	Tim	e	λz	Slow	Snr	Amp	Freq	Ario	l
Pn	Pn	11:5	8:37.095	236	10.8	35.5	1	0.1	653	
Pg	Pn	11:5	8:48.270	236	15.8	11.5	4	0.2	654	
Px	Px	11:5	8:50.367	236	15.1	11.6	2	0.2	655	
Sn	Lq	11:5	9:26.818	248	21.9	4.1	4	0.1	657	
			9:32.568		22.4	2.5	3	0.1	659	
Lg	Sx		9:46.095		25.2	8.7	17	0.4	560	
NRA0	7	.135	10.47	193.	53					
Phase	IPhase	Time	e	Az	Slow	Snr	Amp	Freq	Ario	l
Pn	Pn	11:5	9:18.133	9	13.7	7.0	0	0.2	656	
Sn	Sn	12:0	0:38.406	-1	-1.0	-1.0	-1	-1.0	1491	
Lg	Lg	12:0	1:18.358	-1	-1.0	-1.0	-1	-1.0	1492	
FIA1	7	.881	327.42	137.	34					
Phase			e			Snr	Amp	Freq	Arid	l
Sn			0:53.181					-1.0		
FIA0	7	.881	327.43	137.	35					
Phase	IPhase	Tim	e	Az	Slow	Snr	Amp	Freq	Arid	l
Pn	Pn	11:5	9:27.485						658	
	Lg		1:37.135					-1.0	1493	

Sminor

Event Number	Dataset Name	Event Type
59	#2: STEIGEN	eq++

attribute	Ground Truth	refid
etype	Felt Earthquake	-999

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
22	Helsinki Bulletin, reported as "EARTHQUAKE, FELT"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	212
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228
29	Felt earthquake	503

date	Date		Time		Lat		on	Depth		Sminor Strike Mb Ml Etype Orid Auth
992025	Jan 2	5,1992	12:16:48	.300	67	.7140	14.87	0 12.	1000 -	3.80 eq++ 274 BERGE
RA0	4	.298	249.86	59.	97					
hase	IPhase	Time		Az	Slow	Snr	Атр	Freq	Arid	<u> </u>
n	Pn	12:17	:49.808	243	12.9	230.7	10	0.2	664	
g	Pg	12:18	:1.258	238	15.8	37.9	- 4	0.2	665	1
x	Pn	12:18	:3.153	234	16.1	13.9	2	0.3	704	- / ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
х	Px	12:18	:9.203	232	13.9	3.6	7	0.4	705	70-
x	Pn	12:18	:33.278	252	13.5	2.7	12	0.4	723	
n	5×	12:18	:39.527	237	24.0	5.0	7	0.1	667	1
g	Sx	12:18	:59.033	246	26.6	12.7	105	0.5	670	
x	Lg	12:19	:3.504	233	26.7	5.5	14	0.3	707	
RA0		.155	10.26	193.2						
	IPhase	Time		Αz	Slow	Snr	Amp	Freq	Arid	
n	Pn		:31.185	8	13.6	54.3	2	0.2	666	
x	Pn		:38.307	16	14.2	6.7	0	0.2	706	60-1
n	Sn		:50.835	25	23.9	5.4	8	0.4	671	7 ~ 3
x	Sx		:57.895	29	24.5	2.6	4	0.4	708	10172
×	Sx		:8.370	19	24.6	2.9	7	0.4	673	1 45 1100
×	Sx		:24.895	11	29.5	3.3	13	0.5	674	1 2 4 (23)
g	Lg	12:20	:31.675	3	28.9	3.5	14	0.5	725	56 Sen
IA0	-	.914	327.44	137.3	22					18 (3) \ ~ 300
	IPhase	Time	327.44	Az	Slow	Snr	Amp	Freq	Arid	17 13 9 10
nase	Pn		:39.899	336	13.7	29.7	A up 2	0.2	668 XIII	1 ~ ~ </td
			:49.275	332	12.0	3.2				50-
x n	Px Sn		:4.800	334	23.2	3.8	1 6	0.1	669 672	
	Sx			333	23.2		-			o 20
×			:46.225			3.1	11	0.5	675	•
g	Lg	12:20	:50.575	335	31.2	4.8	19	0.6	726	
										Array Data
										Array Data

Event Number	Dataset Name	Event Type
60	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
24	Helsinki Bulletin, reported as "PROBABLY EARTHQUAKE"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	212
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228

Event Number	Dataset Name	Event Type
61	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
24	Helsinki Bulletin, reported as "PROBABLY EARTHQUAKE"	212
25	Reported in Helsinki Bulletin, depth restricted to 15.0 km	212
27	Location (lat,lon,depth) and origin time (time) from Bergen Bulletin	228

Jdate	Dat	e	Time		Lat	L	on	Depth		majo
1992025	Jan 2	5,1992	19:12:52	.100	67	.7380	14.60	90 12.	1000	-
ARA0	4	.374	250.80	60.	66					
Phase	IPhase	Tim	е	Az	Slow	Snr	Апр	Freq	Arid	
Pn	Pn	19:1	3:54.244	232	11.0	18.6	0	0.1	695	
Pg	Px	19:1	4:5.769	238	15.6	17.3	1	0.2	696	
Px	Px	19:1	4:6.229	246	15.0	9.4	1	0.3	697	
Sn	Lg	19:1	4:44.344	238	23.8	3.6	1	0.1	700	
Lg	Lg	19:1	5:3.219	249	25.9	11.8	17	0.4	701	
Sx	Sx	19:1	5:0.005	241	22.9	4.2	2	0.3	702	
NRA0	7	.156	9.42	192.	18					
Phase	IPhase	Time	9	Αz	Slow	Snr	Атр	Freq	Arid	
Pn	Pn	19:1	4:35.445	5	13.5	10.2	Ď	0.2	598	
Sn	Sn	19:1	5:55.320	31	24.9	3.4	1	0.2	703	
Lg	Lg	19:1	6:34.520	-1	-1.0	-1.0	-1	-1.0	1497	
FIA0	8	.001	327.03	136.6	56					
Phase	IPhase	Time		Az	Slow	Snr	Amp	Freq	Arid	
Pn	Pn	19:14	1:44.606	322	10.7	8.5	ō	0.2		
Sn	Sn	19:1	6:9.006	-1		-1.0	-1			
Lg	Lg		5:57.206		-1.0	-1.0			1495	

Orid

Auth

Sminor

Strike

Event Number	Dataset Name	Event Type
62	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
28	Location (lat,lon,depth) and origin time (time) computed with ARS by Flori Ryall	-999

ARAO 4.254 243.77 54.57 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 4:16:44.343 229 11.4 5.0 0 0.1 731 Pg Pg 4:16:55.943 245 14.1 6.6 0 0.2 732 Sn Lg 4:17:31.776 244 21.4 3.1 0 0.1 734 Lg Sx 4:17:52.318 242 22.6 3.3 3 0.4 734 Array Data			Etype eq+	Ml -999.00	Mb -	Strike -	Sminor	Smajor -	Depth 0.0000	on 5.6116		Lat 67.3		Time 4:15:39.	ate 3,1992	Da 4 Feb	Jdate 199203
Pn Pn 4:16:44.343 229 11.4 5.0 0 0.1 731 Pg Pg Pg 4:16:55.943 245 14.1 6.6 0 0.2 732 Sn Lg 4:17:31.776 244 21.4 3.1 0.0 0.1 733 Lg Sx 4:17:52.318 242 22.6 3.3 3 0.4 734	. 1	1			1								54.				ARA0
Pg Pg 4:16:55.943 245 14.1 6.6 0 0.2 732 Sn Lg 4:17:31.776 244 21.4 3.1 0 0.1 733 Lg Sx 4:17:52.318 242 22.6 3.3 3 0.4 734 70	<u>_</u>																
Sn Lg 4:17:31.776 244 21.4 3.1 0 0.1 733 Lg Sx 4:17:52.318 242 22.6 3.3 3 0.4 734 70-																	
Lg sx 4:17:52.318 242 22.6 3.3 3 0.4 734	100	-0-0				,	7										
50	~ ~ \	~~~~·					70 -										
50	7		45_				,,	34	0.4	3	3.3	22.6	242	7:52.318	4:17	Sx	Lq
50	4		P	-			4										
50																	
50	1 ~ 4	\sim	,	/			1										
50	57	5/															
50	_	//		\mathcal{N}			7										
50	6	(1		/	47	4										
50	$-\Omega^{\nu}$				₹		ŀ										
50					>	1	60 ⊢										
50 20		' ይ(_	$\langle \wedge \rangle$	7	4	1										
50 20		$\sigma \sim$	10	~\		25	- 1										
o zo		(المرا	(5)		5 2	J										
o zo		. /	- ~ /	160		J. J.	1										
o zo	}		200	35	1	, 5 ₋₆ ,	-15										
o zo				,	7 15	۱۲	- 15										
o zo	The state of the s				25	12	44										
o zo	L				7	~~~											
							ᅍᆛ										
	40	20	20		ò												
Array Data					-												
Array Data																	
Allay Dala					Data	Array											
					Dala	Allay											
						1											
				A													

Event Number	Dataset Name	Event Type
63	#2: STEIGEN	eq+

attribute	Ground Truth	refid
etype	Earthquake in a swarm	500

noteid	Notes	refid
21	Related to 1992 Steigen earthquake swarm	500
28	Location (lat,lon,depth) and origin time (time) computed with ARS by Flori Ryall	-999

Jdate 199203	Dat	e Time		Lat 67.6		Lon 15.3838	Depth 0.00		Smajor -	Sminor	Strike	Mb	M1 -999.00	Etype eq+	Orid 277
199203	4 reb 3	,1332 23:33:3.	033	07.0	200	13.3030	0.00	,,,,	_				,,,,,,	eq.	2
ARA0	4	.180 247.41	57.	99								1			
Phase	IPhase	Time	λz	Slow	Snr	Amp	Freq	Arid		سلم					
Pn	Pn	23:40:8.788	234	10.9	12.9	0	0.1	735		- 1					
Pg	Pg	23:40:20.105	236	15.8	14.7	1	0.2	743		- 1					
Sn	Sn	23:40:58.104	228	18.4	6.5	1	0.2	744		^					~~
Lg	Sx	23:41:17.705	242	24.6	6.8	7	0.4	737		70 –				15	\triangle
NRA0	7	.112 11.96	195.	42										7	
Phase	IPhase	Time	Az	Slow	Snr	Amp	Freq	Arid						//	
Pn	Pn	23:40:50.105	5	12.1	4.4	0	0.2	736		7				/	
Lg	Lq	23:42:48.855	-1	~1.0	-1.0	-1	-1.0	1498						/	>/
										1			~ 1		
										4	Ø		/ 1	1	(
												- }	· 1	(7
										60	1	,	, 🛆		
											× .	,	7 ~	/	2
											212		$\bigcup_{a} \setminus$	10	<i>ይ</i> ነ
											9 7		α	10	/ 🗸

Auth ARS:flori

Data Set #3 LUBIN: Array Data

Event_65

Event_66

Event_67

Event_68

Event_69

Event_70

Event_71

Event_72

Event_73

Event_74

Event_75

Event_76

Event_77

Event_78

Event_79

Event_80

Event_81

Event_82

Event_83

Event_84

Event_85

Event_86

Event_87

Event_88

Event_89

Event_90

Event_91

Event_92

Event_93

Event_94

Event_95

Data Set #3 LUBIN: GSETT-2 Data

Event_65	Event_66	Event_67	Event_68	Event_69
			<	-
Event_70	Event_71	Event_72	Event_73	Event_74
Event_75	Event_76	Event_77	Event_78	Event_79
Event_80	Event_81	Event_82	Event_83	Event_84
Event_85	Event_86	Event_87	Event_88	Event_89
Event_90	Event_91	Event_92	Event_93	Event_94

Event_95

Event Number	Dataset Name	Event Type
65	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

noteid	Notes	refid
47	Polkowice (East); Field Descriptor G-23FILAR	505
58	horizontal location from mining seismic network - error 20 meters	505

Event Number	Dataset Name	Event Type
66	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Sieroszowice	505

noteid	Notes	refid
55	Sieroszowice (East); Field Descriptor G-21S	505
58	horizontal location from mining seismic network- error 20 meters	505

Event Number	Dataset Name	Event Type
67	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Lubin	505

noteid	Notes	refid
40	Lubin (West); Field Descriptor G4-7/10	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

Data Set 3, Event 67		
Jdate Date Time Lat 1991088 Mar 29,1991 13:04:52.977 51.4372	Lon Depth Smajor Sminor 16.1256 0.7300	Strike Mb Ml Etype Orid Auth 2.53 qmt 284 WIEJACZ
GEC2 3.027 30.08 211.94 Phase IPhase Time Az Slow Snr Pn Pn 13:05:43.593 -1 -1.0 -1. -1.0 -1. -1.0 -1. -1.0 -1. -1.0 -1. -1.0	0 -1 -1.0 1511 70 - 2 3 0.3 792 6 1 0.3 793	
NRAO 9.663 162.66 346.47 Phase IPhase Time Az Slow Snr Pn Pn 13:07:11.408 150 12.1 10. Sn Sn 13:08:55.933 -1 -1.0 -1. FIAO 11.425 213.10 24.78	1 0 0.2 797	The state of the s
Phase IPhase Time Az Slow Snr Pn P 13:07:34.224 206 6.9 5.		
	1	-10 10 20 30
		Array Data GSETT-2 Data
	-	
GEA2/sz 0.00 0.00	are annually supply of the state of the stat	Hilashii pericustrasi masa masa masa masa masa masa barang masa masa masa masa masa masa masa mas
GEA2/sn 0.00 0.00		
GEA2/se 0.00 0.00 Pg Px	L ₂ l ₁ l ₂ l ₃	
GEC2/sz 0.00 0.00	en brindlingerbildig og byld fill beheledsen pers	Apalinguistage Magila parapasitaja majantaja parapaga masa masa masa masa masa masa masa m
GED5/sz 0.00 0.00	ڝ؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞؞	
GED7/sz 0.00 0.00	on around an early all the first of a few private priv	from the system of the state of
the least	pulkaring analytic grand to the spanish of	SO S
Pn FIAO/sz 2.0 5.0		
1 1 1 1 1		· • • • • • • • • • • • • • • • • • • •

Event Number	Dataset Name	Event Type
68	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Sieroszowice	505

noteid	Notes	refid
55	Sieroszowice (East); Field Descriptor G-21S	505
58	horizontal location from mining seismic network - error 20 meters	505

Jdate 199109	Dat 7 A pr 7	e : ,1991 8:35	ime 13.082	Lat 51.5		Lon 16.0754	Depth 0.97		Sminor :	Strike -	Mb -	M1 2.27	Etype qmt	Orid 285	Auth WIEJACZ
GEC2		.115 28	A1 210	.23											
Phase	IPhase	Time	Az	Slow	Snr	Amp	Freq	Arid	لللبلم	سبل				11111	~
Pn	Pn	8:36:3.3			20.0		0.3	805	70 -						' - 2
Pg	Pq	8:36:9.6			15.9	3	0.2	806					51	5 1	
P.X	Px	8:36:15.			11.3		0.2	807					7	/	
2×	Px	8:36:21.		17.2	3.0	4	0.4	801	L					/	
Ŀg	Sx	8:36:50.		25.8	5.3	16	0.5	802	1)					10
ŠX	Lq	8:36:57.2		27.0	3.6	21	0.5	803	1				~/	$\mathcal{A}/$	~
									۲	ď			<i>)</i> -	/10	27
NRA0	9	.538 162		5.44					1	9		{	٨	1/1	100
Phase	IPhase	Time	Az		Snr	Amp	Freq	Arid	60 -		4	Ι,	4		
?n	Pn	8:37:28.			9.9		0.2	810	w 7			ን	\sim 1	1 2	
Px	Px	8:37:34.			4.4		0.2	811	-1	0	12		~\\ .	1 / 27	
Sn	Sx	8:39:11.	82 169	24.9	2.5	1	0.2	809		3	2 4		(5)	1/1	
FIA0		.328 213		1.14						2	12,		1657	14	
Phase	IPhase	Time	Az	Slow	Snr	Amp	Freq	Arid	1	۶ ۱	٦ /	ے م	-	1/	
Pn	Pn	8:37:53.			11.6		0.2	808	-1		2.) / '	<u>.¥</u>	_	
Sn	Sn	8:39:55.	96 -1	-1.0	-1.0	-1	-1.0	1512	50 -	_	Low	5/			
ARA0	18	.579 198	73 10	.42					١ 🕶		\sim r		Λ		
Phase	IPhase	Time	Az		Snr	Amp	Freq	Arid	-1		C.		_		
Þ	Pn	8:39:27.2	74 191	12.1	6.7	0	0.2	812			1				\sim
									7		- 1		52		5 S>=
									4				~ 11		
									-4-4-1		لمنا	111	17		30
										-10	0		10	20	30
										Array	Data		GSET	T-2 Dat	a
										Mill hard					
											100				
											1000			•	

Event Number	Dataset Name	Event Type
69	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Rudna	505

noteid	Notes	refid
52	Rudna (Center); Field Descriptor G-7/2	505
58	horizontal location from mining seismic network - error20meters	505

Jdate	Dat	.e	Time		Lat	I	on	Depth	Smajor
1991108	Apr 1	8,1991	4:37:39	. 946	51.4	1877	16.1148	1.0	500 -
GEC2	3	.067	29.48	211.	33				
Phase	IPhase	Time	2	Az	Slow	Snr	Amp	Freq	Arid
Pn	Pn	4:38:	29.630	30	12.0	40.8	5	0.4	821
Pg	Pg	4:38:	36.155	28	17.5	15.1		0.4	822
Px	Px	4:38:	42.075	16	17.2	8.6	2	0.4	823
Lg	Sx	4:39:	17.855	21	26.9	7.0	8	0.2	824
Sx	Lg	4:39	20.800	31	25.9	4.4	18	0.6	825
NRA0	9	.613	162.63	346.	43				
Phase	IPhase	Time	2	λz	Slow	Snr	Amp	Freq	Arid
Pn	Pn	4:39:	58.207	166	13.2	9.5	1	0.3	826
Sn	Sn	4:41:	41.002	168	24.2	2.6	2	0.4	827
ARAO	18	. 644	198.61	10.	34				
Phase	IPhase	Time	•	Az	Slow	Snr	Amp	Freq	Arid
P	Pn	4:41:	56.732	196	10.7	9.8	ï	0.4	828

Etype qmt Orid 286

M1 2.81

Mb

Sminor

Strike

Auth WIEJACZ

Event Number	Dataset Name	Event Type
70	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Rudna	505

noteid	Notes	refid
54	Rudna (West); Field Descriptor G12/3	505
58	horizontal location from mining seismic network- error20meters	505

Event Number	Dataset Name	Event Type
71	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

noteid	Notes	refid
46	Polkowice (East); Field Descriptor G-22	505
58	horizontal location from mining seismic network- error 20 meters	505

Event Number	Dataset Name	Event Type
72	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

noteid	Notes	refid
47	Polkowice (East); Field Descriptor G-23FILAR	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

Event Number	Dataset Name	Event Type
73	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Sieroszowice	505

noteid	Notes	refid
55	Sieroszowice (East); Field Descriptor G-21S	505
58	horizontal location from mining seismic network- error 20 meters	505

Event Number	Dataset Name	Event Type
74	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Rudna	505

noteid	Notes	refid
53	Rudna (West); Field Descriptor G-11/6	505
58	horizontal location from mining seismic network- error 20 meters	505

Jdate 199114		Date Time y 23,1991 19:42:53	Lat 3.283 !	t I 51.5587	on 16.11	Depth 55 1.		Sminor Strike Mb Ml Etype Orid Auth 2.79 qmt 303 WIEJAC2
KSP		0.725 351.19	171.05					
Phase	IPha	se Time	Az Slo	s Snr	Amp	Freq	Arid	
Pg	Pg	19:43:6.950	326 9.	1 -1.0	62	0.3	1537	70-1
Lq	Lq	19:43:16.797	-1 -1.0	-1.0	164	0.7	1538	Chi A
Rg	Rg	19:43:24.406	-1 -1.	-1.02	399550	1.7	1539	1 7 /
VRAC		2.274 352.43	172.06					
Pn	Pn	19:43:31.746	311 -1.0	-1.0	-1	-1.0	1418	
Px	Px	19:43:35.297	-1 -1.6	-1.0	49779	0.6	1419	
Px	Px	19:43:39.797	-1 -1.6	0 -1.0	30798	1.4	1420	+ " X . (/) A ~ 3
Sx	Sx	19:44:3.406	-1 -1.0	-1.0	-1	-1.0	1421	
Lg	Lg	19:44:7.026	-1 -1.6	-1.01	59546	0.7	1422	60-
GEC2		3.128 28.81	210.66					1 23 011/16/20
Pn	Pn	19:43:43.093		7 212.7	23	0.4	914] 62 (5)\//(
Pq	Px	19:43:50.098	34 17.		38	0.7	915	1 02 1 160H []
Px	Px	19:43:56.650	22 16.		5	0.7	916	- 2757 35470
Lg	Rg	19:44:33.098	30 27.5		148	0.8	917	1 7 15 5 No
-								1 52.3/
GRA1	_	3.633 57.18	240.95				1561	50 -
Pn	Pn	19:43:50.700	-1 -1.0			-1.0	1560	
Lg	Lg	19:44:50.300	-1 -1.0	-1.0	-1	-1.0	1360	A 73.6
SQTA		5.395 34.60	218.32					1) 735
Pn	Pn	19:44:16.530	-1 -1.6		2	0.2	1424	
Lg	Lg	19:45:48.970	-1 -1.6	-1.0	21	0.5	1425	-10 0 10 20 30
OSS		6.254 36.60	221.11					
Sx	Sx	19:45:53.703	-1 -1.0	-1.0	12	0.9	1416	
24	24	19.43.33.703		, -1.0		0.5		Array Data GSETT-2 Data
NRAO		9.544 162.53	346.33					Andy Data Goli L Data
₽n	Pn	19:45:9.996	170 12.4		2	0.4	920	
Px	Px	19:45:16.922			0	0.2	921	
Sn	Sn	19:46:52.771	-1 -1.0	-1.0	-1	-1.0	1562	
FIAO		11.318 213.39	25.06					
Pn	Pn	19:45:34.473		9.1	1	0.3	922	
Sn.	Sn	19:47:36.773			1	0.2	926	
311	211	13.41.30.113	-12 -21.		-	V.2		Control of the Contro
ARA0		18.574 198.65	10.38					
r	Pn	19:47:8.062	195 11.	7 12.5	2	0.4	924	
Px	Px	19:47:15.788	188 12.	4.2	0	0.3	925	
YKA		59.815 33.19	335.98					
4444		19:53:0.203						

Event Number	Dataset Name	Event Type
75	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Rudna	505

noteid	Notes	refid
51	Rudna (Center); Field Descriptor G-6/4	505
58	horizontal location from mining seismic network- error 20 meters	505

Event Number	Dataset Name	Event Type
76	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

noteid	Notes	refid
42	Polkowice (Center); Field Descriptor G-12	505
58	horizontal location from mining seismic network- error 20 meters	505
56	mine tremor triggered by intentional blast	506

Event Number	Dataset Name	Event Type
77	#3: LUBIN	qmt

.

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Rudna	505

noteid	Notes	refid
50	Rudna (Center); Field Descriptor G-4/3	505
58	horizontal location from mining seismic network- error 20 meters	505

2 GEA2/sn 0.00 0.00

3 GEA2/se 0.00 0.00

4 GEC2/sz 0.00 0.00

5 GED7/sz 0.00 0.00

7 NRA0/sz 2 0.00 0.00

O filtered as noted

Event Number	Dataset Name	Event Type	
78	#3: LUBIN	qmt	

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Lubin	505

noteid	Notes	refid
40	Lubin (West); Field Descriptor G4-7/10	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

Jate Date Time 10 (10 (10 (10 (10 (10 (10 (10 (10 (10	Data	Set 3,	Event	78												
Phase Thase Time Ar Slow Snr Amp Freq Arid Pr Pr Pr 2:33:52.925 35 13.7 2 9.1 -1.0 -1.0 -1.0 1581 1581 70 -1 -1.0 1581 15.2 71.4 0.5 1009 8x xx 2:33:22.475 228 19.7 3.6 488 0.4 1010 Rg Rg Rg 2:33:24.175 18 7.6 5.5 1648 1.3 1011 Rg Rg Rg 2:33:25.2925 35 13.7 2.99 2 0.3 1012 Pr Pr Pr 2:33:52.925 35 13.7 2.99 2 0.3 1012 Pr Pr Pr 2:33:52.925 35 13.7 2.99 2 0.3 1012 Pr Pr Pr 2:33:52.925 35 13.7 2.99 2 0.3 1012 Pr Pr Pr 2:33:52.925 35 13.7 2.99 2 0.3 1012 Pr Pr Pr 2:33:52.925 35 13.7 2.99 2 0.3 1012 Pr Pr Pr 2:33:52.925 35 13.7 2.99 12.0 1013 10.2 1013 10.2 1013 10.2 1013 10.2 1013 10.2 1013 10.2 1013 10.2 1013 10.2 1013 10.2 1013 10.2 1013 10.2 1013 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	Jdate 199117		e Tir 8,1991 2:32:	me 56.723						Sminor	Strike -	Mb -				
Pg Pg 2:33:7.759 -1 -1.0 -1.0 -1 -1.0 1581 Lg Lg 2:33:7.16 259 19.0 15.2 714 0.5 1009 Sx Sx 2:33:22.475 18 7.6 5.5 1648 1.3 1011 GEC2 3.028 30.06 211.92 Phase IPhase Time Az Slow Snr Amp Freq Arid Pp Pn Pn 2:35:15.00 150 11.9 7.8 0 0.2 1015 PT Pn Pn 2:35:15.00 150 11.9 7.8 0 0.2 1015 FIAO 11.424 213.10 24.79 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:15.70 11.9 1.0 -1.0 -1.0 1579 Az Slow Snr Amp Freq Arid Pn Pn 2:35:15.70 150 11.9 7.8 0 0.2 1015 FIAO 11.424 213.10 24.79 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:15.70 150 11.9 7.8 0 0.2 1015 FIAO 11.424 213.10 24.79 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:17.911 -1 -1.0 -1.0 -1.0 1579 Az Slow Snr Amp Freq Arid Pn Pn 2:35:17.911 -1 -1.0 -1.0 -1.0 1579 Az Slow Snr Amp Freq Arid Pn Pn Pn 2:35:17.911 -1 -1.0 -1.0 -1.0 1579 Az Slow Snr Amp Freq Arid Pn Pn Pn 2:35:17.911 -1 -1.0 -1.0 -1.0 1579	KSP	0.	.605 349.9	6 169.	83							1 .		1	_ بال	
Lg Lg 2;33:17,116 259 19.0 15.2 714 0.5 1009 SX SX 2:33:22.475 228 19.7 3.6 488 0.4 1010 Rg Rg Rg 2:33:24.175 18 7.6 5.5 1648 1.3 1011 GEC2 3.028 30.06 211.92 Phase IPhase Time Az Slow Snr Amp Freq Arid PP Pn Pn 2:33:55.800 31 15.7 11.5 1 0.2 1013 Lg Lg 2:34:36.470 27 26.4 3.1 3 0.6 1014 PPn Pn 2:35:11.000 150 11.9 7.8 00 0.2 1015 FINO 11.424 213.10 24.79 Phase IPhase Time Az Slow Snr Amp Freq Arid PPn Pn 2:35:13.7.911 -1 -1.0 -1.0 -1.0 1579 Ar Slow Snr Amp Freq Arid Pn Pn 2:35:37.911 -1 -1.0 -1.0 1579 Array Data GSETT-2 Data	Phase														m	\sim
SX SX 2:33:22.475 228 19.7 3.6 488 0.4 1010 Rg Rg Rg 2:33:22.475 18 7.6 5.5 1648 1.3 1011 GEC2 3.028 30.06 211.92 Phase IPhase Time At Slow Snr Amp Freq Arid Pg Pn 2:33:52.925 35 15.7 29.9 2 0.3 1012 PX Pg 2:33:55.800 31 15.7 11.5 1 0.2 1013 Lg Lg 2:34:36.470 27 26.4 3.1 3 0.6 1014 Pn Pn 2:33:47.085 -1 -1.0 -1.0 -1.0 -1.0 1580 NRAO 9.662 162.66 346.47 Phase IPhase Time At Slow Snr Amp Freq Arid Pn Pn 2:35:15.000 150 11.9 7.8 0 0.2 1015 FTAO 11.424 213.10 24.79 Phase IPhase Time At Slow Snr Amp Freq Arid Pn Pn 2:35:37.911 -1 -1.0 -1.0 -1.0 1579 Array Data GSETT-2 Data										70 -				A. C	سر	
Rg Rg 2:33:24.175 18 7.6 5.5 1648 1.3 1011 GEC2 3.028 30.06 211.92 Phase IPhase Time Az Slow Snr Amp Freq Arid Pr Pg Pn 2:33:52.925 35 15.7 29.9 2 0.3 1012 Px Pg Pn 2:33:55.600 31 15.7 11.5 1 0.2 1013 Lg Lg 2:34:36.470 27 26.4 3.1 3 0.6 1014 Pn Pn 2:33:15.00 150 11.9 7.8 0 0.2 1015 NRAO 9.662 162.66 346.47 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:15.00 150 11.9 7.8 0 0.2 1015 FIAO 11.424 213.10 24.79 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:17.911 -1 -1.0 -1.0 1579 Array Data GSETT-2 Data										1				المريكم		7
GEC2										ŀ				/		
Phase Thase Time Az Slow Snr Amp Freq Arid Pr 2:33:52.925 35 15.7 2.9 2 0.3 1012 Px Pg 2:33:55.800 31 15.7 11.5 1 0.2 1013 Lg Lg 2:34:56.470 27 26.4 3.1 3 0.6 1014 Lg Lg 2:34:36.470 27 26.4 3.1 3 0.6 1014 Pn Pn 2:33:47.085 -1 -1.0 -1.0 -1 -1.0 1580 MRAD 9.662 162.66 346.47 Phase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:15.000 150 11.9 7.8 0 0.2 1015 FIAO 11.424 213.10 24.79 Phase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:37.911 -1 -1.0 -1.0 -1.0 1579 Array Data GSETT-2 Data	Rg	Rg	2:33:24.17	2 18	7.6	3.3	1648	1.3	1011	t~	ጌ				\sim	17
PR PX 2:33:52.925 35 15.7 29.9 2 0.3 1012 PX PS 2:33:55.800 31 15.7 11.5 1 0.2 1013 LG LG 2:34:36.470 27 26.4 3.1 3 0.6 1014 PR PR P1 2:33:47.085 -1 -1.0 -1.0 -1.0 -1 -1.0 1580 MRAO 9.662 162.66 346.47 Phase Thase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:15.000 150 11.9 7.8 0 0.2 1015 FIAO 11.424 213.10 24.79 Phase Thase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:37.911 -1 -1.0 -1.0 -1.0 1579 Array Data GSETT-2 Data	GEC2	3.	.028 30.00	6 211.	92					ー オン				_/	7/	~>}
Pg Pn 2:331:52.925 35 15.7 29.9 2 0.3 1012 Px Pg 2:331:52.905 31 15.7 11.5 1 0.2 1013 Lg Lg 2:34:36.470 27 26.4 3.1 3 0.6 1014 Pn Pn 2:334:70.085 -1 -1.0 -1.0 -1.0 150 NRAO 9.662 162.66 346.47 Phase Thase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:15.000 150 11.9 7.8 0 0.2 1015 FIAO 11.424 213.10 24.79 Phase These Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:35:37.911 -1 -1.0 -1.0 -1.0 1379 Array Data GSETT-2 Data	Phase	IPhase	Time	λz	Slow	Snr	Amp							/-	/ (5
Px Pg 2:33:55:800 31 15.7 11.5 1 0.2 1013 Lg Lg 2:34:36.470 27 26.4 3.1 3 0.6 1014 Pn Pn 2:33:47.085 -1 -1.0 -1.0 -1 -1.0 1580 NRA0 9.662 162.66 346.47 Phase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:15.000 150 11.9 7.8 0 0.2 1015 FIA0 11.424 213.10 24.79 Phase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:37.911 -1 -1.0 -1.0 -1.0 1579 Array Data GSETT-2 Data	Pg	Pn	2:33:52.92	5 35			2			1	•		5) A	\sim S Γ
Pn Pn 2:33:47.085 -1 -1.0 -1.0 -1.0 1580 NRA0 9.662 162.66 346.47 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:15.000 150 11.9 7.8 0 0.2 1015 FIA0 11.424 213.10 24.79 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:37.911 -1 -1.0 -1.0 -1.0 1579 Array Data GSETT-2 Data		Pg								ا م		1	- /	Δ <u>)</u>		プレー ト
MRAO 9.662 162.66 346.47 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:15.000 150 11.9 7.8 0 0.2 1015 FIAO 11.424 213.10 24.79 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:37.911 -1 -1.0 -1.0 1579 Array Data GSETT-2 Data	Lg	Lg								ᅃᄀ			7	\sim	3	-
Pn Pn 2:35:15.000 150 11.9 7.8 0 0.2 1015 FIAO 11.424 213.10 24.79 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:37.911 -1 -1.0 -1.0 -1.0 1579 Array Data GSETT-2 Data	Pn	Pn	2:33:47.08			-1.0	-1	~1.0	1580	1	25	3		21/	0 X	ļ-
Pn Pn 2:35:15.000 150 11.9 7.8 0 0.2 1015 FIAO 11.424 213.10 24.79 Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:37.911 -1 -1.0 -1.0 -1.0 1579 Array Data GSETT-2 Data	NRA0	9	.662 162.60	6 346.	47					- 1	な	5	1	1800	/)	ļ*
FIA0 11.424 213.10 24.79 Phase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:37.911 -1 -1.0 -1.0 1579 Array Data GSETT-2 Data	Phase	IPhase									ر کے	47		1500	45	L
Phase IPhase Time Az Slow Snr Amp Freq Arid Pn Pn 2:35:37.911 -1 -1.0 -1.0 1579 Array Data GSETT-2 Data	Pn	Pn	2:35:15.00			7.8	0	0.2	1015]	, S	5 Y	سکار			
Pn Pn 2:35:37.911 -1 -1.0 -1.0 1579 Array Data GSETT-2 Data	FIA0	11	.424 213.10	0 24.	79					1		72.25	/	木		
Array Data GSETT-2 Data	Phase	IPhase								50 —	4	ر ہے۔۔		~/~	•	
Array Data GSETT-2 Data	Pn	Pn	2:35:37.91	1 -1	-1.0	-1.0	-1	-1.0	1579					Δ		L
Array Data GSETT-2 Data										1		7				
Array Data GSETT-2 Data										4				درا م		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Array Data GSETT-2 Data														$\sim \sqrt{\chi}$		
										7.	-10	0		10	20	30
														COET	T 0 D-4-	
											Array	Data		GSEI	1-2 Data	l
														\wedge		
													7			
											1 11111	illus de la constitución de la c				
		1	Pg				•					1				
KSP/sz	H		L, Lg	ska												1
	KSD/s	7	La Junta	و الديدال	Laute res											1

Event Number	Dataset Name	Event Type
79	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

noteid	Notes	refid
45	Polkowice (East); Field Descriptor G-21	505
59	horizontal location based on geographic center of mining field- error 500 meters	505
61	large amplitude variation accross array- possible error on GEB3/sz and GEA0/sz	504

Jdate	Date			Lat		Lon	Depth		Sminor Strike Mb Ml Etype Orid Auth
199119	1 Jul 10	0,1991 11:33:2	2.028	51	.4400	16.12	20 0.	8500 -	3.03 qmt 291 WIEJACZ
KSP	0	.607 349.83	169.	69					1
Phase	IPhase	Time	Αz	Slow	Snr	Amp	Freq	Arid	~w>
Pg	Pg	11:33:34.550		15.2		8456	0.4	1021	70-
Lg	Lg	11:33:43.750		18.2		6026	0.6	1022	
Rg	Rg	11:33:49.575	3	9.5	17.8	37164	1.2	1023	
GEC2	3	.029 30.02	211.	87					
Phase	IPhase	Time	Az	Slow	Snr	Amp	Freq	Arid	
Pn	Pn	11:34:12.758	23	17.3	92.1	22	0.3	1024	
Pg	Pg	11:34:19.283	32	16.6	70.4	26	0.4	1025	$\frac{1}{2}$
PΧ	Px	11:34:27.100	35	13.6	6.4	7	0.3	1026	
Sn	Sn	11:34:52.110	-1	-1.0	-1.0			1517	60-
Lg	Lg	11:35:2.085	35	30.2	4.0	49	0.6	1027	43 (1)
NRA0	9	.660 162.67	346.						1 2 ()
Phase		Time	λz	Slow		Amp	Freq	Arid	254 Best
Pn	Pn	11:35:40.261					0.2	1028	1 } } _ [[]
Sn	Sn	11:37:24.411	-1	-1.0	-1.0	-1	-1.0	1518	
ARA0	18	.691 198.57	10.						50 -
Phase	IPhase	Time	λz	Slow		Amp	Freq	Arid	
P	Pn	11:37:37.925	191	12.7	26.1	2	0.3	1030	1
									1) [[] []
									
									-10 ò 10 20 30
									00FTT 0 Date
									Array Data GSETT-2 Data

Event Number	Dataset Name	Event Type
80	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Rudna	505

noteid	Notes	refid
49	Rudna (Center); Field Descriptor G-1/5	505
58	horizontal location from mining seismic network- error 20 meters	505

ARA0/sz

Event Number	Dataset Name	Event Type
81	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

noteid	Notes	refid
42	Polkowice (Center); Field Descriptor G-12	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

0.00 0.00

2.0 5.0

8

NRA0/sz 2.0 5.0

Event Number	Dataset Name	
82	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

noteid	Notes	refid
42	Polkowice (Center); Field Descriptor G-12	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

Event Number	Dataset Name	Event Type
83	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

noteid	Notes	refid
42	Polkowice (Center); Field Descriptor G-12	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

ARA0/sz 2.0 5.0

0

2.0 5.0

Event Number	Dataset Name	Event Type
84	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

noteid	Notes	refid
48	Polkowice (West); Field Descriptor G-31	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

Event Number	Dataset Name	Event Type
85	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

noteid	Notes	refid
43	Polkowice (Center); Field Descriptor G-14	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

NRA0/sz 2.0 5.0

FIA0/sz 2.0 5.0

ARA0/sz

filtered as noted

Event Number	Dataset Name	Event Type
86	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Rudna	505

noteid	Notes	refid
53	Rudna (West); Field Descriptor G-11/6	505
58	horizontal location from mining seismic network- error 20 meters	505

Event Number	Dataset Name	Event Type
87	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

noteid	Notes	refid
43	Polkowice (Center); Field Descriptor G-14	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

•

Jdate 199130	Dat 5 Nov 1	e Time ,1991 5:49:1.3		Lat 51.47		on . 0924	Depth 0.790		Sminor Strike Mb Ml Etype Orid Auth 2.48 qmt 299 WIEJACZ
KSP	0	.648 348.81	168.	65					
Phase	IPhase	Time	λz	Slow	Snr	Amp	Freq	Arid	~~~
Pg	Pg	5:49:13.258	350	12.0	234.7		0.2	1219	70-
Lg	Lg	5:49:23.358	-1	-1.0	16.9	3493	0.6	1220	
Rg	Rg	5:49:30.258	89	16.8	5.8	2313	0.7	1322	
GEC2	3	.051 29.35	211.	18					$\frac{1}{2}$
Phase	IPhase	Time	Az	Slow	Snr	Amp	Freq	Arid	
₽n	Pn	5:49:51.983	24	12.2	39.0	2	0.3	1221	
Pg	Px	5:49:58.133	25	12.6	23.4	4	0.5	1222	
Px	Px	5:50:7.800	35	16.6	6.4	1	0.3	1223	60-
Sn	Sn	5:50:28.708	-1	-1.0	-1.0	-1	-1.0	1555	
Lg	Sx	5:50:40.114	23	26.3	8.4	10	0.4	1224	1 2/2
Sx	Sx	5:50:46.824	35	25.1	4.9	8	0.5	1225	1 3 4 (5) 2 (
NRAO	9	.619 162.72	346.						572 \ } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Phase	IPhase	Time	λz	Slow	Snr	Amp	Freq	Arid	1 } [
Pn	Pn	5:51:18.064	153	12.1	9.3	1	0.2	1226	1 (/2) / + +
Sn	Sn	5:53:1.714	162	23.1	2.5	1	0.2	1228	50-
FIAC	11	.397 213.28	24.	94					307 × 1
Phase	IPhase	Time	λz	Slow	Snr	Amp	Freq	Arid	
Pn	Pn	5:51:43.263	206	12.1	7.4	1	0.2	1227	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Sn	Sn	5:53:44.313	212	20.1	6.9	1	0.3	1229	1 1 1 1 5
									4 , , , , , , , , , , , , , , , , , , ,
									-io ò 1ò 2ò 3ò
									Array Data GSETT-2 Data

Event Number	Dataset Name	Event Type
88	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Rudna	505

noteid	Notes	refid
49	Rudna (Center); Field Descriptor G-1/5	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

Jdate 199131		ate 12,19	Time 91 20:57:8		Lat 51.		Lon 16.107	Depth		Sminor Strike Mb M1 Etype Orid Auth 2.56 qmt 306 WIEJACZ
KSP		0.703	350.50	170.	36					
Phase	IPhas	e T	ime	Αz	Slow	Snr	Amp	Freq	Arid	
Pg	Pg	20	:57:21.707	323	10.9	99.0	2800	0.3	1230	70-
Sx	Rg	20	:57:28.075	-1	-1.0	17.6	1705	0.7	1231	
Lg	Sx	20	:57:31.487	-1	-1.0	6.8	1849	0.5	1232	
Rg	Rg	20	:57:40.082	10	13.7	5.0	4805	1.4	1233	to 1
GEC2		3.105	28.95	210.	79					
Phase	IPhas		1me	Az	Slow	Snr	Amp	Freq	Arid	
Pn	Pn		:57:59.318		12.6	26.4	4	0.4	1234	5 ~ // ~ ~ +
₽g	Pq		:58:5.967	32	15.9	17.9		0.3	1235	
Px	Px		:58:13.600		15.1	7.6		0.3	1236	60-
Px	Px		:58:17.300		14.8	4.2		0.3	1237	
Sn	Sn		:58:37.718		-1.0	-1.0	-1	-1.0	1569	7 37 21/1/20
Lg	Lg		:58:47.493		26.1	5.6	10	0.5	1238	1 35 (804//)
IRAO		9.565	162.59	346.	38					1 2 13 \ 23 5247
Phase	IPhas		ime	Az	Slow	Snr	Amp	Freq	Arid	1 1/13 5 N V
Pn	Pn	20	:59:24.511	157	12.1	8.0	0	0.3	1239	50
FIA0		11.341	213.36	25.	03					~J~ ~ /
Phase	IPhas		ime	Az	Slow	Snr	Amp	Freq	Arid	1 5
Pn .	Pn	20	:59:50.450	218	10.2	8.8	1	0.3	1240	1 776
ARAO		18.598	198.65	10.	37					
Phase	IPhas		ime	Az	Slow	Snr	Апр	Freq	Arid	
P	Pn		:01:22.701		13.4	9.0		0.3	1241	-i0 ò 10 20 30
										Array Data GSETT-2 Data

Event Number	Dataset Name	Event Type
89	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Rudna	505

noteid	Notes	refid
50	Rudna (Center); Field Descriptor G-4/3	505
58	horizontal location from mining seismic network- error 20 meters	505

Event Number	Dataset Name	Event Type
90	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Sieroszowice	505

noteid	Notes	refid
55	Sieroszowice (East); Field Descriptor G-21S	505
59	horizontal location based on geographic center of mining field- error 500 meters	-505

0

100

Event Number	Dataset Name	Event Type
91	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Sieroszowice	505

noteid	Notes	refid	
55	Sieroszowice (East); Field Descriptor G-21S	505	
59	horizontal location based on geographic center of mining field- error 500 meters	505	

Event Number	Dataset Name	Event Type
92	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	5
lat,lon	from mining seismic network	50
depth	assumed at working level of mine	50
minam	Polkowice	50

noteid	d Notes	
42	Polkowice (Center); Field Descriptor G-12	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

Jdate 199133	Dat 35 Dec 1	e Time ,1991 3:32:35.		Lat 51.4		Lon 16.0762	Depth 0.85		Sminor Strike Mb M1 Etype Orid Auth	
KSP	0	.666 348.25	168.							
Phase	IPhase	Time	λz	Slow	Snr	Amp	Freq	Arid	· · · · · · · · · · · · · · · · · · ·	
Pg	₽g	3:32:48.748	348	12.8		1238	0.2	1278	70-	_
Lg	Lq	3:32:57.748	-1	-1.0	16.9		0.5	1279		\sim
\$x	Sx	3:33:2.463	57	17.7	5.6		0.2	1348	1 // \	Γ
Rg	Rg	3:33:5.848	2	13.9	5.9	1975	1.1	1280		
GEC2	3	.060 29.02	210.	84						~ ↓
Phase	IPhase	Time	Az	Slow	Snr	Amp	Freq	Arid		•
Pn	Pn	3:33:25.904	-1	-1.0	-1.0	-1	-1.0	1576		$\langle \langle \rangle$
Pg	Pn	3:33:32.279	25	14.9	34.6	3	0.3	1281		Ľ
Px	Pg	3:33:34.375	27	15.6	19.6	2	0.3	1282	60-	
Lg	Lg	3:34:15.679	33	28.9	6.2	4	0.4	1283	1 017 (4 2)	-
Sx	Sx	3:34:21.098	24	23.7	3.3	6	0.7	1284	37 (2)//	-
NRAO	9	.600 162.76	346.	53						
Phase	IPhase	Time	Az	Slow	Snr	Amp	Freq	Arid	1 [1] \ ~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ſ
Pn	Pn	3:34:51.564	153	12.2	11.4	0	0.2	1285	J 123 9 10 V	-
Sn	Sn	3:36:35.684	-1	-1.0	-1.0	-1	-1.0	1575	1 2 3/ *	- 1
									50-	⊢
FIA0		.386 213.36	25.							L
Phase	IPhase	Time	Az	Slow	Snr	Amp	Freq	Arid	1	
Pn	Pn	3:35:17.400	218	9.0	7.1	0	0.2	1286	1 / 1/2	\mathcal{A}
ARA0	18	.642 198.69	10.	39						
Phase	IPhase	Time	λz	Slow	Snr	Amp	Freq	Arid	وعثاره ومواني والمستوان والمستوان والمستور	
P	Pn	3:36:50.384	189	12.5	4.7	0	0.3	1287	-io ò io 20 30	
									Array Data GSETT-2 Data	
									Company of the Compan	

Event Number	Dataset Name	Event Type
93	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Polkowice	505

	-	
noteid	Notes	refid
48	Polkowice (West); Field Descriptor G-31	505
59	horizontal location based on geographic center of mining field- error 500 meters	505

filtered as noted

100

0

Event Number	Dataset Name	Event Type
94	#3: LUBIN	qmt

attribute	Ground Truth	refid
etype	mining-induced tremor	505
lat,lon	from mining seismic network	505
depth	assumed at working level of mine	505
minam	Rudna	505

noteid	Notes	refid		
53	Rudna (West); Field Descriptor G-11/6	505	en e	
58	horizontal location from mining seismic network- error 20 meters	505		

Event Number	Dataset Name	Event Type
95	#3: LUBIN	qmt

attribute	Ground Truth	refid	
etype	mining-induced tremor	505	
lat,lon	from mining seismic network	505	
depth	assumed at working level of mine	505	
minam	Polkowice	505	

noteid	Notes	refid	
42	Polkowice (Center); Field Descriptor G-12	505	
59	horizontal location based on geographic center of mining field- error 500 meters	505	

0

ata S	et 3,	, Event 9	95					
Jdate 1991354	Date Dec 2	Time 0,1991 6:32:56			on :	Depth 0.8		major Sminor Strike Mb Ml Etype Orid Auth 2.84 qmt 313 WIEJAC2
GEC2 Phase Pn Px Pg Lg Sx		.075 29.47 Time 6:33:46.799 6:33:53.125 6:33:53.574 6:34:35.924 6:34:43.599	-1 - 27 1 18 1 31 2	Slow Snr -1.0 -1.0 15.8 27.5 19.1 8.4 27.7 6.2 24.9 4.8	-1 - 13 6 9	Freq 1.0 0.4 0.5 0.4	Arid 1578 1304 1305 1306 1319	70-
NRAO Phase Pn FIAO	IPhase Pn 11	.607 162.60 Time 6:35:12.840	152 1 24.91	Slow Snr 11.9 8.1	ì	Freq 0.2	Arid	60-
Phase Pn ARAO Phase P		Time 6:35:38.725 .637 198.60 Time 6:37:11.973	222 1 10.34 Az S	Slow Snr 10.8 10.8 Slow Snr 14.0 10.3	1 Amp	Freq 0.2 Freq 0.4	Arid 1308 Arid 1309	50-
								10 10 20 30
								Array Data GSETT-2 Data
GEA2/ 0.00 0.	.00			A Grand Alle				in the first of the state of th
0.00 0.	.00 se							A HILL HOLL BY THE CONTRACTOR OF THE PROPERTY
	GEC2/sz 0.00 0.00							
0.00 0.	GED7/sz 0.00 0.00							
1		PI	1					
ARA0/ 2.0 5.0	sz							

100