

TENTAMEN

Emnekode: Ma-017

Emnenavn: Matematikk for realfagskurset

Dato: 25. mars 2021

Varighet: 5 timer + 30 minutter til klargjøring av pdf-fil

Antall sider inkl. forside: 3

Tillatte hjelpemidler: Alle skriftlige hjelpemidler, alle kalkulatorer

Det presiseres at bruk av programvare/app som viser utregningssteg

ikke er tillatt og følgelig vil bli betraktet som plagiat.

Merknader: • Ved vurdering teller alle deloppgaver likt

 Skriv oversiktlige svar og vis alle nødvendige mellomregninger

- Det stilles ikke krav om litteraturliste.
- Oppgaven skal leveres som 1 pdf- fil.

Faglærer: Heidi M. Oftedahl tlf. 906 86 996, e-post heidi.m.oftedahl@uia.no

Dersom noe skulle være uklart, eller du har internettproblemer når du skal levere, kan du ringe 38 14 23 53 (09.00 - 15.00).

Oppgave1

I en trekant ABC er $\angle A = 30^{\circ}$, siden AC = 12 cm og arealet er lik 18 cm².

- a) Tegn en figur og regn ut lengden til de ukjente sidene.
- b) Beregn de ukjente vinklene i trekanten.

Oppgave 2

- a) Utfør polynomdivisjonen $(x^2 + x 3): (x^2 4) =$
- b) Bruk metoden med delbrøk til å løse $\int \frac{x^2 + x 3}{x^2 4} dx$.
- c) Bruk substitusjonen $u = \tan x$ til å løse integralet $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1 + \tan^2 x}{\tan x} dx$.
- d) I en formelsamling står følgende formel: $\int \frac{1}{x^2 1} dx = \frac{1}{2} \ln \left(C \frac{x 1}{x + 1} \right),$

der C er integrasjonskonstanten. Bruk derivasjon til å vise at formelen stemmer.

Oppgave 3

- a) En flate er avgrenset av $f(x) = 2x\sqrt{x}$, x aksen og linjen x = 1. Beregn volumet av rotasjonslegemet som fremkommer når flaten dreies 360° om x-aksen.
- b) Gitt differensiallikningen $y' = 6y^2x$ og at $y(1) = -\frac{1}{5}$. Bestem y(x).

Oppgave 4

En funksjon er definert ved uttrykket $f(x) = 2\cos\left(x - \frac{\pi}{3}\right)$ når $x \in \left[0, 2\pi\right)$.

- a) Tegn grafen til f(x)i det angitte definisjonsområdet. Tegn også linjen y = 1 i samme koordinatsystem.
- b) Finn ved regning, løsningen(e) på likningen $2\cos\left(x-\frac{\pi}{3}\right)=1$ når $x \in [0,2\pi)$.
- c) Vis ved regning at f(x) kan skrives om til $f(x) = \sqrt{3} \sin x + \cos x$.
- d) Skisser arealet som er avgrenset av f(x) og linjene y = 1 og $x = \frac{5\pi}{6}$. Bestem dette arealet ved regning.

Oppgave 5

Punktene A(1,1,0), B(0,3,1) og C(0,0,2) danner hjørnene i en trekant.

- a) Finn koordinatene til \overrightarrow{AB} og $3\overrightarrow{AB} \frac{1}{2}\overrightarrow{BC}$.
- b) Regn ut $\angle B$ i $\triangle ABC$.
- c) Finn en likning for planet gjennom punktene A, B og C.

Gitt et punkt D som ligger på z-aksen.

d) Finn, ved regning koordinatene til punktet D slik at \overrightarrow{AB} står vinkelrett på \overrightarrow{BD} .

Punktene A, B, C og origo danner en trekantpyramide.

e) Regn ut volumet til pyramiden.

Oppgave 6

Bestem formlene for det generelle leddet a_n og bestem summen av de 50 første leddene til hver av rekkene i a) og b)

- a) Rekke I: 2+4+6+8+10+...
- b) Rekke II: 27+9+3+1+...
- c) Vis ved regning hvilken av rekkene ovenfor som konvergerer og regn ut summen av denne rekken.

Oppgave 7

I en uendelig geometrisk rekke er første leddet lik $\frac{x}{1-x}$ og andre ledd lik $\frac{1-x}{x}$.

- a) For hvilke verdier av x er denne rekken konvergent?
- b) Bestem ett enklest mulig uttrykk for summen, S(x) i intervallet der rekken konvergerer.