# Valószínűségszámítás jegyzet

Vághy Mihály

# Tartalomjegyzék

| 1. | Ala        | ofogalmak                                                           |
|----|------------|---------------------------------------------------------------------|
|    | 1.1.       | Eseménytér                                                          |
|    |            | 1.1.1. Elemi esemény                                                |
|    |            | 1.1.2. Teljes eseményrendszer                                       |
|    | 1.2.       | $\sigma$ -algebra                                                   |
|    |            | 1.2.1. Következmény                                                 |
|    | 1.3        | Mérhető tér                                                         |
|    |            | Tétel                                                               |
|    | 1.4.       | 1.4.1. Generált $\sigma$ -algebra                                   |
|    | 1.5        | Borel-halmaz                                                        |
|    |            | Mérhető függvény                                                    |
|    | 1.0.       |                                                                     |
|    | 1 7        | 1.6.1. Tétel                                                        |
|    | 1.7.       | Mérték                                                              |
|    |            | 1.7.1. Speciális mértékek                                           |
|    | 1.8.       | Valószínűségi mérték                                                |
|    |            | 1.8.1. Tulajdonságok                                                |
|    |            | Valószínűségi mező                                                  |
|    | 1.10.      | Valószínűségi változó                                               |
|    |            | 1.10.1. Képtér                                                      |
|    |            | 1.10.2. Eloszlás                                                    |
|    |            | 1.10.3. Eloszlásfüggvény                                            |
|    |            | 1.10.3.1. Tulajdonságok                                             |
|    |            | 1.10.3.2. Tétel                                                     |
|    |            | 1.10.3.3. Tétel                                                     |
|    |            | 1.10.4. Valószínűségi változó által generált $\sigma$ -algebra      |
|    | 1 11       | Független események                                                 |
|    |            | Független eseményrendszer                                           |
|    |            |                                                                     |
|    |            | Független valószínűségi változók                                    |
|    |            | Feltételes valószínűség                                             |
|    |            | Teljes valószínűség tétel                                           |
|    | 1.16.      | Bayes tétel                                                         |
|    | <b>T</b> . | 41                                                                  |
| 2. | Inte       |                                                                     |
|    |            | Indikátorfüggvény                                                   |
|    |            | Lépcsős függvény                                                    |
|    |            | Lépcsős függvény adott halmaz feletti és mérték szerinti integrálja |
|    |            | Tétel                                                               |
|    | 2.5.       | Korlátos, pozitív, mérhető függvény integrálja                      |
|    | 2.6.       | Tétel                                                               |
|    | 2.7.       | Pozitív, mérhető függvény integrálja                                |
|    | 2.8.       | Függvény pozitív és negatív része                                   |
|    |            | 2.8.1. Tétel                                                        |
|    | 2.9.       | Mérhető függvény integrálja                                         |
|    |            | 2.9.1. Tulajdonságok                                                |
|    |            |                                                                     |
| 3. | Mér        | tékek 1                                                             |
|    |            | Külső Lebesgue-mérték                                               |
|    |            | 3.1.1. Tétel                                                        |
|    | 3.2.       | Tétel                                                               |
|    | -          | Lebesgue-mérték                                                     |
|    | J.J.       | 3.3.1. Lebesgue 0 mértékű halmaz                                    |
|    |            |                                                                     |
|    |            | 3.3.2. Lebesge-integrál                                             |
|    |            | 3.3.2.1. Tétel                                                      |
|    |            | 3.3.2.2. Tétel                                                      |

|            | 3.4.                                                                                    | Mértékek abszolút folytonossága                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                         |
|------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|            | 3.5.                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|            |                                                                                         | Lebesgue-felbontás                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
|            |                                                                                         | Radon-Nikodym tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
|            | 0.0.                                                                                    | Tutton (vikoty) in total and a second | 10                         |
| 4.         | Vald                                                                                    | lószínűségi változók jellemzői                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                         |
|            |                                                                                         | Várható érték                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
|            | т.т.                                                                                    | 4.1.1. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
|            | 4.2.                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|            | 4.2.                                                                                    | 4.2.1. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
|            |                                                                                         | 4.2.2. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
|            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|            |                                                                                         | 4.2.3. Tulajdonságok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
|            | 4.0                                                                                     | 4.2.4. Momentum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|            | 4.3.                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|            |                                                                                         | 4.3.1. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
|            |                                                                                         | 4.3.2. Tulajdonságok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
|            |                                                                                         | 4.3.3. Kovariancia mátrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
|            | 4.4.                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|            |                                                                                         | 4.4.1. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
|            |                                                                                         | 4.4.2. Tulajdonságok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                         |
|            | 4.5.                                                                                    | Markov egyenlőtlenség                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                         |
|            | 4.6.                                                                                    | Csebisev egyenlőtlenség                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                         |
|            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| <b>5</b> . | Disz                                                                                    | zkrét eloszlások                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                         |
|            | 5.1.                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|            | 5.2.                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|            | 5.3.                                                                                    | Szórásnégyzet kiszámítása                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17                         |
|            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|            | 5.4.                                                                                    | Kovariancia kiszámítása                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
|            | 5.4.<br>5.5.                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                         |
|            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                         |
|            |                                                                                         | Binomiális eloszlás                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17<br>17<br>17             |
|            |                                                                                         | Binomiális eloszlás                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17<br>17<br>17<br>18       |
|            |                                                                                         | Binomiális eloszlás          5.5.1. Tétel          5.5.2. Várható érték          5.5.3. Szórásnégyzet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 17 17 18 18             |
|            | 5.5.                                                                                    | Binomiális eloszlás  5.5.1. Tétel  5.5.2. Várható érték  5.5.3. Szórásnégyzet  Geometrikus eloszlás                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17<br>17<br>18<br>18       |
|            | 5.5.                                                                                    | Binomiális eloszlás       5.5.1. Tétel         5.5.2. Várható érték       5.5.3. Szórásnégyzet         Geometrikus eloszlás       5.6.1. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17<br>17<br>18<br>18<br>18 |
|            | 5.5.                                                                                    | Binomiális eloszlás         5.5.1. Tétel         5.5.2. Várható érték         5.5.3. Szórásnégyzet         Geometrikus eloszlás         5.6.1. Tétel         5.6.2. Várható érték                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 17 18 18 18 18 18       |
|            | <ul><li>5.5.</li><li>5.6.</li></ul>                                                     | Binomiális eloszlás         5.5.1. Tétel         5.5.2. Várható érték         5.5.3. Szórásnégyzet         Geometrikus eloszlás         5.6.1. Tétel         5.6.2. Várható érték         5.6.3. Szórásnégyzet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 17 18 18 18 18 18 18    |
|            | 5.5.                                                                                    | Binomiális eloszlás  5.5.1. Tétel  5.5.2. Várható érték  5.5.3. Szórásnégyzet  Geometrikus eloszlás  5.6.1. Tétel  5.6.2. Várható érték  5.6.3. Szórásnégyzet  Hipergeometrikus eloszlás                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
|            | <ul><li>5.5.</li><li>5.6.</li></ul>                                                     | Binomiális eloszlás         5.5.1. Tétel         5.5.2. Várható érték         5.5.3. Szórásnégyzet         Geometrikus eloszlás         5.6.1. Tétel         5.6.2. Várható érték         5.6.3. Szórásnégyzet         Hipergeometrikus eloszlás         5.7.1. Várható érték                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
|            | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li></ul>                                        | Binomiális eloszlás         5.5.1. Tétel         5.5.2. Várható érték         5.5.3. Szórásnégyzet         Geometrikus eloszlás         5.6.1. Tétel         5.6.2. Várható érték         5.6.3. Szórásnégyzet         Hipergeometrikus eloszlás         5.7.1. Várható érték         5.7.2. Szórásnégyzet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
|            | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li></ul>                                        | Binomiális eloszlás         5.5.1. Tétel         5.5.2. Várható érték         5.5.3. Szórásnégyzet         Geometrikus eloszlás         5.6.1. Tétel         5.6.2. Várható érték         5.6.3. Szórásnégyzet         Hipergeometrikus eloszlás         5.7.1. Várható érték         5.7.2. Szórásnégyzet         Poisson eloszlás                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
|            | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li></ul>                                        | Binomiális eloszlás  5.5.1. Tétel  5.5.2. Várható érték  5.5.3. Szórásnégyzet  Geometrikus eloszlás  5.6.1. Tétel  5.6.2. Várható érték  5.6.3. Szórásnégyzet  Hipergeometrikus eloszlás  5.7.1. Várható érték  5.7.2. Szórásnégyzet  Poisson eloszlás  5.8.1. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
|            | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li></ul>                                        | Binomiális eloszlás  5.5.1. Tétel  5.5.2. Várható érték  5.5.3. Szórásnégyzet  Geometrikus eloszlás  5.6.1. Tétel  5.6.2. Várható érték  5.6.3. Szórásnégyzet  Hipergeometrikus eloszlás  5.7.1. Várható érték  5.7.2. Szórásnégyzet  Poisson eloszlás  5.8.1. Tétel  5.8.2. Várható érték                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
|            | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li><li>5.8.</li></ul>                           | Binomiális eloszlás 5.5.1. Tétel 5.5.2. Várható érték 5.5.3. Szórásnégyzet Geometrikus eloszlás 5.6.1. Tétel 5.6.2. Várható érték 5.6.3. Szórásnégyzet Hipergeometrikus eloszlás 5.7.1. Várható érték 5.7.2. Szórásnégyzet Poisson eloszlás 5.8.1. Tétel 5.8.2. Várható érték 5.8.3. Szórásnégyzet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
|            | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li></ul>                                        | Binomiális eloszlás  5.5.1. Tétel  5.5.2. Várható érték  5.5.3. Szórásnégyzet  Geometrikus eloszlás  5.6.1. Tétel  5.6.2. Várható érték  5.6.3. Szórásnégyzet  Hipergeometrikus eloszlás  5.7.1. Várható érték  5.7.2. Szórásnégyzet  Poisson eloszlás  5.8.1. Tétel  5.8.2. Várható érték  5.8.3. Szórásnégyzet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |
| 6          | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li><li>5.8.</li><li>5.9.</li></ul>              | Binomiális eloszlás 5.5.1. Tétel 5.5.2. Várható érték 5.5.3. Szórásnégyzet Geometrikus eloszlás 5.6.1. Tétel 5.6.2. Várható érték 5.6.3. Szórásnégyzet Hipergeometrikus eloszlás 5.7.1. Várható érték 5.7.2. Szórásnégyzet Poisson eloszlás 5.8.1. Tétel 5.8.2. Várható érték 5.8.3. Szórásnégyzet Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| 6.         | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li><li>5.8.</li><li><b>Foly</b></li></ul>       | Binomiális eloszlás  5.5.1. Tétel  5.5.2. Várható érték  5.5.3. Szórásnégyzet  Geometrikus eloszlás  5.6.1. Tétel  5.6.2. Várható érték  5.6.3. Szórásnégyzet  Hipergeometrikus eloszlás  5.7.1. Várható érték  5.7.2. Szórásnégyzet  Poisson eloszlás  5.8.1. Tétel  5.8.2. Várható érték  5.8.3. Szórásnégyzet  Tétel  ytonos eloszlások                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| 6.         | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li><li>5.8.</li><li>Foly</li><li>6.1.</li></ul> | Binomiális eloszlás 5.5.1. Tétel 5.5.2. Várható érték 5.5.3. Szórásnégyzet Geometrikus eloszlás 5.6.1. Tétel 5.6.2. Várható érték 5.6.3. Szórásnégyzet Hipergeometrikus eloszlás 5.7.1. Várható érték 5.7.2. Szórásnégyzet Poisson eloszlás 5.8.1. Tétel 5.8.2. Várható érték 5.8.3. Szórásnégyzet Tétel  ytonos eloszlások Folytonos eloszlású valószínűségi változó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| 6.         | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li><li>5.8.</li><li><b>Foly</b></li></ul>       | Binomiális eloszlás 5.5.1. Tétel 5.5.2. Várható érték 5.5.3. Szórásnégyzet Geometrikus eloszlás 5.6.1. Tétel 5.6.2. Várható érték 5.6.3. Szórásnégyzet Hipergeometrikus eloszlás 5.7.1. Várható érték 5.7.2. Szórásnégyzet Poisson eloszlás 5.8.1. Tétel 5.8.2. Várható érték 5.8.3. Szórásnégyzet Tétel  ytonos eloszlások Folytonos eloszlású valószínűségi változó Sűrűségfüggvény                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| 6.         | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li><li>5.8.</li><li>Foly</li><li>6.1.</li></ul> | Binomiális eloszlás 5.5.1. Tétel 5.5.2. Várható érték 5.5.3. Szórásnégyzet Geometrikus eloszlás 5.6.1. Tétel 5.6.2. Várható érték 5.6.3. Szórásnégyzet Hipergeometrikus eloszlás 5.7.1. Várható érték 5.7.2. Szórásnégyzet Poisson eloszlás 5.8.1. Tétel 5.8.2. Várható érték 5.8.3. Szórásnégyzet Tétel  ytonos eloszlások Folytonos eloszlású valószínűségi változó Sűrűségfüggvény 6.2.1. Tulajdonságok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| 6.         | 5.5. 5.6. 5.7. 5.8. 5.9. Foly 6.1. 6.2.                                                 | Binomiális eloszlás 5.5.1. Tétel 5.5.2. Várható érték 5.5.3. Szórásnégyzet Geometrikus eloszlás 5.6.1. Tétel 5.6.2. Várható érték 5.6.3. Szórásnégyzet Hipergeometrikus eloszlás 5.7.1. Várható érték 5.7.2. Szórásnégyzet Poisson eloszlás 5.8.1. Tétel 5.8.2. Várható érték 5.8.3. Szórásnégyzet Tétel  ytonos eloszlások Folytonos eloszlású valószínűségi változó Sűrűségfüggvény 6.2.1. Tulajdonságok 6.2.2. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| 6.         | <ul><li>5.5.</li><li>5.6.</li><li>5.7.</li><li>5.8.</li><li>Foly</li><li>6.1.</li></ul> | Binomiális eloszlás  5.5.1. Tétel  5.5.2. Várható érték  5.5.3. Szórásnégyzet  Geometrikus eloszlás  5.6.1. Tétel  5.6.2. Várható érték  5.6.3. Szórásnégyzet  Hipergeometrikus eloszlás  5.7.1. Várható érték  5.7.2. Szórásnégyzet  Poisson eloszlás  5.8.1. Tétel  5.8.2. Várható érték  5.8.3. Szórásnégyzet  Tétel  ytonos eloszlások  Folytonos eloszlású valószínűségi változó  Sűrűségfüggvény  6.2.1. Tulajdonságok  6.2.2. Tétel  Várható érték kiszámítása                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| 6.         | 5.5. 5.6. 5.7. 5.8. 5.9. Foly 6.1. 6.2.                                                 | Binomiális eloszlás  5.5.1. Tétel  5.5.2. Várható érték  5.5.3. Szórásnégyzet  Geometrikus eloszlás  5.6.1. Tétel  5.6.2. Várható érték  5.6.3. Szórásnégyzet  Hipergeometrikus eloszlás  5.7.1. Várható érték  5.7.2. Szórásnégyzet  Poisson eloszlás  5.8.1. Tétel  5.8.2. Várható érték  5.8.3. Szórásnégyzet  Tétel  ytonos eloszlások  Folytonos eloszlású valószínűségi változó  Sűrűségfüggvény  6.2.1. Tulajdonságok  6.2.2. Tétel  Várható érték kiszámítása  6.3.1. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
| 6.         | 5.5. 5.6. 5.7. 5.8. 5.9. Foly 6.1. 6.2.                                                 | Binomiális eloszlás  5.5.1. Tétel  5.5.2. Várható érték  5.5.3. Szórásnégyzet  Geometrikus eloszlás  5.6.1. Tétel  5.6.2. Várható érték  5.6.3. Szórásnégyzet  Hipergeometrikus eloszlás  5.7.1. Várható érték  5.7.2. Szórásnégyzet  Poisson eloszlás  5.8.1. Tétel  5.8.2. Várható érték  5.8.3. Szórásnégyzet  Tétel  ytonos eloszlások  Folytonos eloszlású valószínűségi változó  Sűrűségfüggvény  6.2.1. Tulajdonságok  6.2.2. Tétel  Várható érték kiszámítása  6.3.1. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
| 6.         | 5.5. 5.6. 5.7. 5.8. 5.9. Foly 6.1. 6.2.                                                 | Binomiális eloszlás  5.5.1. Tétel  5.5.2. Várható érték  5.5.3. Szórásnégyzet Geometrikus eloszlás  5.6.1. Tétel  5.6.2. Várható érték  5.6.3. Szórásnégyzet Hipergeometrikus eloszlás  5.7.1. Várható érték  5.7.2. Szórásnégyzet Poisson eloszlás  5.8.1. Tétel  5.8.2. Várható érték  5.8.3. Szórásnégyzet  Yórható érték  5.8.3. Szórásnégyzet  Tétel  ytonos eloszlások Folytonos eloszlású valószínűségi változó  Sűrűségfüggvény  6.2.1. Tulajdonságok  6.2.2. Tétel  Várható érték kiszámítása  6.3.1. Tétel  Szórásnégyzet kiszámítása                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |

|    |       | 6.6.1. Várható érték                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22             |
|----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|    |       | 6.6.2. Szórásnégyzet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22             |
|    | 6.7.  | Exponenciális eloszlás                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22             |
|    |       | 00 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22             |
|    | 6.8.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23             |
|    |       | 6.8.1.1. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23             |
| 7. | Vek   | tor értékű valószínűségi változók                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24             |
| •  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{1}{24}$ |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24             |
|    |       | 7.2.2.2. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24             |
|    |       | 7.2.2.3. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25             |
|    |       | 7.2.2.4. Peremeloszlás-függvények                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25             |
|    |       | 7.2.3. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25             |
|    | 7.3.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26             |
|    |       | 7.3.6. Függvényre vonatkoztatott vvárható érték                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|    |       | 7.3.6.1. Tétel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26             |
| 8. | Vald  | oszínűségi változók transzformációja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>27</b>      |
|    |       | Diszkrét eset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
|    | 8.2.  | Folytonos eset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27             |
|    | 8.3.  | Vektor eset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27             |
|    |       | 8.3.1. Valószínűségi változó standardizáltja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27             |
|    | 37.14 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06             |
| 9. |       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28<br>28       |
|    | 9.1.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28             |
|    | 9.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28             |
|    | 5.2.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28             |
|    |       | 0 00 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29             |
|    | 9.3.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 10 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30             |
|    |       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30             |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30             |
|    | 10.5. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30             |
|    |       | 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30<br>30       |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30             |
|    |       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31             |
|    |       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31             |
|    |       | TO O O TO DO DE TO DE TO LE TO LE TO LE TO LE TO LE TO DE LA COLO | 01             |

| 10.5.6. Konvergencia-fajták közti összefüggés  |
|------------------------------------------------|
| 11.Határértéktételek 33                        |
| 11.1. Centrális határeloszlás tétel            |
| 11.2. DeMoivre-Laplace tétel                   |
| 11.3. Nagy számok gyenge törvénye              |
| 12.Statisztika 34                              |
| 12.1. Minta                                    |
| 12.1.1. Középérték                             |
| 12.1.2. Empirikus szórás                       |
| 12.1.3. Középpont                              |
| 12.1.4. Medián                                 |
| 12.1.5. Terjedelem                             |
| 12.1.6. Empirikus eloszlásfüggvény             |
| 12.1.6.1. Gilvenkó tétel                       |
| 12.1.7. Empirikus sűrűségfüggvény              |
| 12.2. Becslés                                  |
| 12.2.1. Tulajdonságok                          |
| 12.2.2. Tétel                                  |
| 12.2.3. Tétel                                  |
| 12.2.4. Tétel                                  |
| 12.2.5. Tétel                                  |
| 12.2.5.1. Korrigált empirikus szórásnégyzet    |
| 12.3. Maximum likelihood estimation            |
| 12.4. Konfidenciaintervallum                   |
| 12.4.1. Normális eloszlás ismert szórással     |
| 12.4.2. Nem normális eloszlás ismert szórással |

# 1. Alapfogalmak

### 1.1. Eseménytér

Eseménytérnek nevezünk egy  $\Omega$  nemüres halmazt.

### 1.1.1. Elemi esemény

Véges  $\Omega$  esetén az egyelemű részhalmazait elemi eseményeknek nevezzük.

### 1.1.2. Teljes eseményrendszer

 $\big(A_n\big)_{n\in\mathbb{N}}$ teljes eseményrendszer, ha az  $A_n$ halmazok páronként diszjunktak és

$$\bigcup_{k=1}^{n} A_k = \Omega.$$

### 1.2. $\sigma$ -algebra

 ${\mathcal F}$ legyen  $\Omega$ részhalmazainak olyan rendszere, hogy

- 1.  $\mathcal F$  zárt a véges és a megszámlálhatóan végtelen unióra
- 2.  $\mathcal{F}$  zárt a különbségképzésre
- 3.  $\Omega \in \mathcal{F}$ .

Ekkor  $\mathcal{F}$  egy  $\sigma$ -algebra, az elemeit pedig eseménynek nevezzük.

### 1.2.1. Következmény

Ha  $\mathcal{F}$  egy  $\sigma$ -algebra, akkor zárt a komplementerképzésre és a metszetre is, hiszen

$$A^{C} = \Omega \backslash A$$

$$A \cap B = (A^{C} \cup B^{C})^{C} = \Omega \backslash ((\Omega \backslash A) \cup (\Omega \backslash B)).$$

### 1.3. Mérhető tér

Adott  $\Omega$  eseménytér és  $\mathcal{F} \subset 2^{\Omega}$   $\sigma$ -algebra. Ekkor az  $(\Omega, \mathcal{F})$  rendezett párt mérhető térnek nevezzük.

#### 1.4. Tétel

Adott  $\Omega$  mellett  $\forall H \subset 2^{\Omega}$  esetén  $\exists \mathcal{F}_H$  legszűkebb olyan  $\sigma$ -algebra, melyre  $H \subset \mathcal{F}$ .

#### 1.4.1. Generált $\sigma$ -algebra

Az így kapott  $\mathcal{F}_H$ -t a H által generált  $\sigma$ -algebrának nevezzük.

### 1.5. Borel-halmaz

Legyen  $\mathcal{I} = \{I | I \subset \mathbb{R}\}$ . Ekkor  $\mathcal{F}_{\mathcal{I}}$  elemei az  $\mathbb{R}$ -beli Borel-halmazok, azaz  $\mathcal{B}_{\mathbb{R}} := \mathcal{F}_{\mathcal{I}}$ .

### 1.6. Mérhető függvény

Adott  $(\Omega, \mathcal{F})$  mérhető tér.  $f: (\Omega, \mathcal{F}) \mapsto \mathbb{R}$  függvény mérhető, ha  $\forall B \in \mathcal{B}_{\mathbb{R}}$  esetén

$$f^{-1}(B) := \{ \omega \in \Omega | f(\omega) \in B \} \in \mathcal{F}$$

teljesül.

#### 1.6.1. Tétel

Ha  $f,g:(\Omega,\mathcal{F})\mapsto\mathbb{R}$  mérhető függvények és  $\lambda\in\mathbb{R}$  konstans, akkor  $f+g,fg,\lambda f:(\Omega,\mathcal{F})\mapsto\mathbb{R}$  is mérhető függvények.

### 1.7. Mérték

Adott  $(\Omega, \mathcal{F})$  mérthető tér.  $\mu : \mathcal{F} \mapsto \mathbb{R}$  függvény mérték, ha

- 1.  $\forall A \in \mathcal{F}$  esetén  $\mu(A) \geq 0$  teljesül
- 2.  $\mu(\emptyset) = 0$
- 3.  $\forall (A_n)_{n\in\mathbb{N}}\subset\mathcal{F}$  páronként diszjunkt halmazrendszerre teljesül a  $\sigma$ -additivitás, azaz

$$\mu\bigg(\bigcup_{n=0}^{\infty} A_n\bigg) = \sum_{n=0}^{\infty} \mu(A_n).$$

#### 1.7.1. Speciális mértékek

- 1. Nullmérték mindenhez 0-t rendel.
- 2. Számláló mérték elemszámot rendel.
- 3. x-re koncentrált Dirac-mérték

$$\mu(A) = \begin{cases} 1, & \text{ha } x \in A \\ 0, & \text{ha } x \notin A. \end{cases}$$

### 1.8. Valószínűségi mérték

Adott  $(\Omega, \mathcal{F})$  mérhető tér és  $\mu : \mathcal{F} \mapsto \mathbb{R}$  mérték. Ha  $\mu(\Omega) = 1$ , akkor valószínűségi mértéknek nevezzük, jele P.

### 1.8.1. Tulajdonságok

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező. Ekkor  $\forall A, B \in \mathcal{F}$  esetén

- 1.  $0 \le P(A) \le 1$
- 2.  $A \subset B \implies P(A) \leq P(B)$  és  $P(B \setminus A) = P(B) P(A)$
- 3.  $P(A^C) = 1 P(A)$
- 4.  $P(A \cup B) = P(A) + P(B) P(A \cap B)$ .

### 1.9. Valószínűségi mező

Adott  $(\Omega, \mathcal{F})$  mérhető tér és P valószínűségi mérték. Ekkor az  $(\Omega, \mathcal{F}, P)$  rendezett hármast valószínűségi mezőnek nevezzük.

#### 1.10. Valószínűségi változó

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező. Ekkor a  $\xi: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  mérhető függvényt valószínűségi változónak nevezzük.

### 1.10.1. Képtér

Adott  $(\Omega, \mathcal{F}, P)$  valószínűség mező és  $\xi : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  valószínűségi változó. Ekkor  $\xi$  képtere

$$\operatorname{Im} \xi = \{\xi_n | n \in \mathbb{N}\} = \{\xi(\omega) | \omega \in \Omega\}.$$

#### 1.10.2. Eloszlás

Adott  $(\Omega, \mathcal{F}, P)$  valószínűség mező és  $\xi : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  valószínűségi változó. Ekkor  $A \in \mathcal{B}_{\mathbb{R}}$   $\xi$  eloszlása

$$Q_{\xi}(A) = P(\xi^{-1}(A)).$$

#### 1.10.3. Eloszlásfüggvény

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező és  $\xi: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  valószínűségi változó. Ekkor  $\xi$  eloszlásfüggvénye  $F_{\xi}: \mathbb{R} \mapsto \mathbb{R}$ 

$$F_{\xi}(x) = P(\xi < x) = P(\omega \in \Omega | \xi(\omega) < x) = P(\xi^{-1}(-\infty, x)) = Q_{\xi}((-\infty, x)).$$

#### 1.10.3.1. Tulajdonságok

Adott  $(\Omega, \mathcal{F}, P)$  valószínűség mező és  $\xi: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  valószínűségi változó, melynek eloszlásfüggvénye  $F_{\xi}$ . Ekkor

- 1.  $F_{\xi}$  monoton nő
- 2.  $F_{\xi}$  balról folytonos

3

$$\lim_{x \to -\infty} F_{\xi}(x) = 0$$

4.

$$\lim_{x \to \infty} F_{\xi}(x) = 1.$$

#### 1.10.3.2. Tétel

Legyen  $F: \mathbb{R} \to \mathbb{R}$  olyan monoton növő balról folytonos függvény, hogy  $\lim_{x \to -\infty} F(x) = 0$  és  $\lim_{x \to \infty} F(x) = 1$ . Ekkor  $\exists (\Omega, \mathcal{F}, P)$  valószínűségi mező és  $\xi: (\Omega, \mathcal{F}, P) \to \mathbb{R}$  valószínűségi változó, hogy  $F = F_{\xi}$ .

#### 1.10.3.3. Tétel

Adott  $\xi$ valószínűségi változó $F_\xi$ eloszlásfüggvénnyel. Ekkor

$$P(x < \xi < y) = F_{\varepsilon}(y) - F_{\varepsilon}(x).$$

### 1.10.4. Valószínűségi változó által generált $\sigma$ -algebra

Adott  $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$  valószínűségi változó által generált  $\sigma$ -algebra  $\mathcal{F}_{\xi}=\mathcal{F}_{\xi^{-1}(\mathcal{B}_{\mathbb{R}})}$ .

### 1.11. Független események

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező.  $A, B \in \mathcal{F}$  függetlenek pontosan akkor, ha  $P(A \cap B) = P(A)P(B)$ .

### 1.12. Független eseményrendszer

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező. Ekkor az  $(A_k)_{k \leq n \in \mathbb{N}}$  eseményrendszer független, ha az  $A_k$  események páronként függetlenek. Ekkor

$$P\left(\bigcap_{k=1}^{n} A_k\right) = \prod_{k=1}^{n} P(A_k).$$

### 1.13. Független valószínűségi változók

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező és  $\xi, \mu : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  valószínűségi változók. Ekkor  $\xi, \mu$  függetlenek, ha  $\forall (A_k)_{k < n \in \mathbb{N}} \subset \mathcal{F}_{\xi}$  és  $\forall (B_j)_{j < m \in \mathbb{N}} \subset \mathcal{F}_{\mu}$  rendszerek függetlenek, azaz  $\forall (A_k, B_j) \in (A_k) \times (B_j)$  független.

### 1.14. Feltételes valószínűség

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező. Ekkor  $A \in \mathcal{F}$  feltételes valószínűsége  $B \in \mathcal{F}$  szerint

$$P_B(A) = P(A|B) := \frac{P(A \cap B)}{P(B)}.$$

### 1.15. Teljes valószínűség tétel

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező és  $(B_k)_{k \leq n \in \mathbb{N}}$  teljes eseményrendszer, melyre  $\forall P(B_k) > 0$ . Ekkor  $\forall A \in \mathcal{F}$  esetén

$$P(A) = \sum_{k=1}^{n} P(A|B_k)P(B_k).$$

#### Bizonyítás

Tudjuk, hogy

$$A = A \cap \Omega = A \cap \left(\bigcup_{k=1}^{n} B_k\right) = \bigcup_{k=1}^{n} (A \cap B_k) \implies P(A) = \sum_{k=1}^{n} P(A \cap B_k)$$

és  $P(A|B) = \frac{P(A \cap B)}{P(B)} \implies P(A \cap B) = P(A|B)P(B).$  Ekkor

$$P(A) = \sum_{k=1}^{n} P(A \cap B_k) = \sum_{k=1}^{n} P(A|B_k)P(B_k).$$

### 1.16. Bayes tétel

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező és  $(B_k)_{k \leq n \in \mathbb{N}}$  teljes eseményrendszer, melyre  $\forall P(B_k) > 0$ . Ekkor  $\forall A \in \mathcal{F}$  esetén

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{P(A)} = \frac{P(A|B_k)P(B_k)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}.$$

#### Bizonyítás

Tudjuk, hogy  $P(B_k|A)P(A) = P(B_k \cap A) = P(A \cap B_k) = P(A|B_k)P(B_k)$ . Ebből

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{P(A)}.$$

Valószínűségszámítás 2. INTEGRÁL

# 2. Integrál

### 2.1. Indikátorfüggvény

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező. Ekkor  $A \in \mathcal{F}$  indikátorfüggvénye

$$\chi_A(\omega) = \begin{cases} 0, & \text{ha } \omega \notin A \\ 1, & \text{ha } \omega \in A. \end{cases}$$

### 2.2. Lépcsős függvény

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező,  $(A_k)_{k \leq n \in \mathbb{N}} \subset \mathcal{F}$  rendszer és  $(\lambda_k)_{k \leq n \in \mathbb{N}}$  rendszer. Ekkor  $f: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  lépcsős függvény

$$f(\omega) := \sum_{k=1}^{n} \lambda_k \chi_{A_k}(\omega).$$

### 2.3. Lépcsős függvény adott halmaz feletti és mérték szerinti integrálja

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező és  $f: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  olyan lépcsős függvény, hogy

$$f(\omega) := \sum_{k=1}^{n} \lambda_k \chi_{A_k}(\omega)$$

és az  $A_k$  halmazok páronként diszjunktak. Ekkor

$$\int_{\Omega} f \, \mathrm{d}P := \sum_{k=1}^{n} \lambda_k P(A_k).$$

### 2.4. Tétel

Legyen  $f: \Omega \mapsto \mathbb{R}_+$  mérhető és korlátos. Ekkor  $\exists (f_n)_{n \in \mathbb{N}}$  függvénysorozat, melyre

- 1.  $\forall f_n : \Omega \mapsto \mathbb{R}_+$  lépcsős
- 2.  $\forall \omega \in \Omega$  esetén  $f_n(\omega) \leq f_{n+1}(\omega)$
- 3.  $\forall \omega \in \Omega \text{ esetén } \lim_{n \to \infty} f_n(\omega) = f(\omega).$

### 2.5. Korlátos, pozitív, mérhető függvény integrálja

Legyen  $f: \Omega \mapsto \mathbb{R}_+$  mérhető és korlátos és legyen  $(f_n)_{n \in \mathbb{N}} \geq 0$  olyan lépcsős függvénysorozat, hogy  $f_n \nearrow f$  (monoton növekedve tart). Ekkor

$$\int_{\Omega} f \, \mathrm{d}P := \lim_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}P.$$

#### 2.6. Tétel

Legyen  $f: \Omega \mapsto \mathbb{R}_+$  mérhető. Ekkor  $\exists (f_n)_{n \in \mathbb{N}}$  függvénysorozat, melyre

- 1.  $\forall f_n : \Omega \mapsto \mathbb{R}_+$  mérhető és korlátos
- 2.  $\forall \omega \in \Omega$  esetén  $f_n(\omega) \leq f_{n+1}(\omega)$
- 3.  $\forall \omega \in \Omega \text{ esetén } \lim_{n \to \infty} f_n(\omega) = f(\omega).$

Valószínűségszámítás 2. INTEGRÁL

# 2.7. Pozitív, mérhető függvény integrálja

Legyen  $f: \Omega \mapsto \mathbb{R}_+$  mérhető és legyen  $(f_n)_{n \in \mathbb{N}} \geq 0$  olyan mérhető és korlátos függvénysorozat, hogy  $f_n \nearrow f$ . Ekkor

$$\int_{\Omega} f \, \mathrm{d}P := \lim_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}P.$$

### 2.8. Függvény pozitív és negatív része

Legyen  $f:\Omega\mapsto\mathbb{R}$  mérhető. Ekkor a függvény pozitív része

$$f^+ := \max(f, 0)$$

a negatív része

$$f^- := \max(-f, 0).$$

Ekkor 
$$f = f^+ - f^-$$
 és  $|f| = f^+ + f^-$ .

### 2.8.1. Tétel

 $f:\Omega\mapsto\mathbb{R}$ mérhető akkor és csak akkor, ha $f^+,f^-$ mérhetők.

### 2.9. Mérhető függvény integrálja

Legyen  $f:\Omega\mapsto\mathbb{R}$  mérhető. Ekkor

$$\int_{\Omega} f \, \mathrm{d}P = \int_{\Omega} f^+ \, \mathrm{d}P - \int_{\Omega} f^- \, \mathrm{d}P.$$

### 2.9.1. Tulajdonságok

Legyen  $f, g: \Omega \mapsto \mathbb{R}$  mérhető függvények és  $\lambda \in \mathbb{R}$  skalár.

1.

$$\int_{\Omega} (f+g) \, \mathrm{d}P = \int_{\Omega} f \, \mathrm{d}P + \int_{\Omega} g \, \mathrm{d}P$$

2.

$$\int_{\Omega} \lambda f \, \mathrm{d}P = \lambda \int_{\Omega} f \, \mathrm{d}P$$

3.

$$\left| \int_{\Omega} f \, \mathrm{d}P \right| \leq \int_{\Omega} |f| \, \mathrm{d}P$$

4.

$$f \leq g \implies \int_{\Omega} f \, \mathrm{d}P \leq \int_{\Omega} g \, \mathrm{d}P$$

Valószínűségszámítás 3. MÉRTÉKEK

### 3. Mértékek

### 3.1. Külső Lebesgue-mérték

Tetszőleges  $A\subset\mathbb{R}$  külső Lebesgue-mértéke

$$\overline{\lambda}(A) := \inf \left\{ \sum_{n=0}^{\infty} \lambda(I_n) \middle| A \subset \bigcup_{n=0}^{\infty} I_n \right\}$$

ahol  $(I_n)_{n\in\mathbb{N}}$  halmazrendszer,  $\lambda(I_n)$  pedig az intervallum hossza.

#### 3.1.1. Tétel

Ha  $A \subset \mathbb{R}$  legfeljebb megszámlálhatóan végtelen sok elemet tartalmaz, akkor  $\overline{\lambda}(A) = 0$ .

### 3.2. Tétel

 $\exists \mathcal{M}_{\lambda} \subset 2^{\mathbb{R}}$  halmazrendszer, hogy

- 1.  $\mathcal{M}_{\lambda} \sigma$ -algebra
- 2.  $\mathcal{M}_{\lambda} \neq 2^{\mathbb{R}}$
- 3.  $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}_{\lambda}$
- 4.  $\overline{\lambda}|_{\mathcal{M}_{\lambda}}: \mathcal{M}_{\lambda} \mapsto \overline{\mathbb{R}}_{+}$  mérték.

### 3.3. Lebesgue-mérték

A  $\lambda := \overline{\lambda}\big|_{\mathcal{M}_{\lambda}}$ mértéket Lebesgue-mértéknek nevezzük.

### 3.3.1. Lebesgue 0 mértékű halmaz

Azt mondjuk, hogy  $A \in \mathcal{M}_{\lambda}$  Lebesgue 0 mértékű, ha  $\lambda(A) = 0$ .

### 3.3.2. Lebesge-integrál

A Lebesgue-mérték szerinti integrált Lebesgue-integrálnak nevezzük.

#### 3.3.2.1. Tétel

Adott  $f:[a,b]\mapsto \mathbb{R}$  Riemann-integrálható akkor és csak akkor, ha f folytonos egy Lebesgue 0 mértékű halmazon kívül.

#### 3.3.2.2. Tétel

Adott  $f:[a,b]\mapsto\mathbb{R}$  Riemann-integrálható függvény esetén

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{[a,b]} f \, \mathrm{d}\lambda.$$

### 3.4. Mértékek abszolút folytonossága

Adott  $(\Omega, \mathcal{F})$  mérhető tér és  $\mu_1, \mu_2 : \mathcal{F} \mapsto \mathbb{R}$  mértékek. Azt mondjuk, hogy  $\mu_1$  abszolút folytonos  $\mu_2$ -re nézve, azaz  $\mu_1 \ll \mu_2$ , ha  $\forall A \in \mathcal{F}$  esetén  $\mu_2(A) = 0 \implies \mu_1(A) = 0$ .

### 3.5. Mértékek szingularitása

Adott  $(\Omega, \mathcal{F})$  mérhető tér és  $\mu_1, \mu_2 : \mathcal{F} \mapsto \mathbb{R}$  mértékek. Azt mondjuk, hogy  $\mu_1$  szinguláris  $\mu_2$ -re nézve, azaz  $\mu_1 \perp \mu_2$ , ha  $\exists \Omega_1, \Omega_2 \in \mathcal{F}$  olyan halmazok, hogy  $\Omega_1 \cup \Omega_2 = \Omega$  és  $\Omega_1 \cap \Omega_2 = \emptyset$  és  $\mu_1(\Omega_1) = 0$  és  $\mu_2(\Omega_2) = 0$ .

Valószínűségszámítás 3. MÉRTÉKEK

### 3.6. Véges mérték

Adott  $(\Omega, \mathcal{F})$  mérhető tér és  $\mu : \mathcal{F} \mapsto \mathbb{R}$  mérték. Azt mondjuk, hogy  $\mu$   $\sigma$ -véges, ha  $\exists (A_n)_{n \in \mathbb{N}} \subset \mathcal{F}$  olyan halmazrendszer, hogy  $\forall \mu(A_n) < \infty$  és

$$\bigcup_{n=0}^{\infty} A_n = \Omega.$$

### 3.7. Lebesgue-felbontás

Adott  $(\Omega, \mathcal{F})$  mérhető tér és  $\mu, \nu : \mathcal{F} \mapsto \mathbb{R}$   $\sigma$ -véges mértékek. Ekkor  $\exists ! \mu_1, \mu_2 : \mathcal{F} \mapsto \mathbb{R}$  olyan mértékek, hogy  $\mu = \mu_1 + \mu_2, \, \mu_1 \ll \nu, \, \mu_2 \perp \nu.$ 

## 3.8. Radon-Nikodym tétel

Adott  $(\Omega, \mathcal{F})$  mérhető tér és  $\mu, \nu : \mathcal{F} \mapsto \mathbb{R}$  olyan mértékek, hogy  $\mu \ll \nu$ . Ekkor  $\exists ! f : \Omega \mapsto \mathbb{R}_+$  olyan mérhető függvény, hogy  $\forall A \in \mathcal{F}$  esetén

$$\mu(A) = \int_A f \, \mathrm{d}\nu = \int_\Omega \chi_A f \, \mathrm{d}\nu.$$

Ekkor $f=\frac{\mathrm{d}\mu}{\mathrm{d}\nu}$  a  $\mu$ mérték $\nu$ szerinti Radon-Nikodym deriváltja.

2018. január 3. 19:36 Vághy Mihály

# 4. Valószínűségi változók jellemzői

### 4.1. Várható érték

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező és  $\xi : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  valószínűségi változó. Ekkor  $\xi$  várható értéke

$$E(\xi) = \int_{\Omega} \xi \, \mathrm{d}P.$$

#### 4.1.1. Tétel

Ha  $\xi, \eta$  független valószínűségi változók, akkor

$$E(\xi \eta) = E(\xi)E(\eta).$$

### 4.2. Szórás, szórásnégyzet

Adott  $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$  valószínűségi változó véges várható értékkel. Ekkor  $\xi$  szórása

$$\sigma(\xi) = \sqrt{E((\xi - E(\xi))^2)}.$$

 $\xi$  szórásnégyzete vagy varianciája

$$\sigma^{2}(\xi) = E((\xi - E(\xi))^{2}).$$

#### 4.2.1. Tétel

Ha  $\xi, \eta$  független valószínűségi változók, akkor

$$\sigma^2(\xi + \eta) = \sigma^2(\xi) + \sigma^2(\eta).$$

#### Bizonyítás

$$\sigma^{2}(\xi + \eta) = E((\xi + \eta)^{2}) - E^{2}(\xi + \eta) = E(\xi^{2} + 2\xi\eta + \eta^{2}) - E^{2}(\xi) - 2E(\xi)E(\eta) - E^{2}(\eta) = E(\xi^{2}) - E^{2}(\xi) + E(\eta^{2}) - E^{2}(\eta) = \sigma^{2}(\xi) + \sigma^{2}(\eta)$$

#### 4.2.2. Tétel

Adott  $\xi$  valószínűségi változó. Ekkor

$$\sigma^2(\xi) = E(\xi^2) - E^2(\xi).$$

### Bizonyítás

$$\sigma^{2}(\xi) = E((\xi - E(\xi))^{2}) = E(\xi^{2} - 2E(\xi)\xi + E^{2}(\xi)) = E(\xi^{2}) - 2E(E(\xi)\xi) + E(E^{2}(\xi)) = E(\xi^{2}) - 2E(\xi)E(\xi) + E^{2}(\xi) = E(\xi^{2}) - E^{2}(\xi)$$

### 4.2.3. Tulajdonságok

Adott  $\xi, \eta$  valószínűségi változó és  $a, b \in \mathbb{R}$  skalárok.

1.

$$\sigma^2(\xi) > 0$$

2.

$$\sigma^2(a\xi + b) = a^2\sigma^2(\xi)$$

3.

$$\sigma^2(\xi \pm \eta) = \sigma^2(\xi) + \sigma^2(\eta) \pm 2\operatorname{cov}(\xi, \eta)$$

### Bizonyítás

1. Triviális.

2.

$$\sigma^{2}(a\xi + b) = E((a\xi + b - E(a\xi + b))^{2}) = E((a\xi + b - aE(\xi) - b)^{2}) = E((a\xi - aE(\xi))^{2}) = a^{2}E((\xi - E(\xi))^{2}) = a^{2}\sigma^{2}(\xi)$$

3.

$$\sigma^{2}(\xi \pm \eta) = E((\xi \pm \eta)^{2}) - E^{2}(\xi \pm \eta) = E(\xi^{2} \pm 2\xi\eta + \eta^{2}) - E^{2}(\xi) \mp 2E(\xi)E(\eta) - E^{2}(\eta) = E(\xi^{2}) - E^{2}(\xi) + E(\eta^{2}) - E^{2}(\eta) \pm 2E(\xi\eta) \mp 2E(\xi)E(\eta) = \sigma^{2}(\xi) + \sigma^{2}(\eta) \pm 2\cos(\xi, \eta)$$

### 4.2.4. Momentum

Adott  $\xi$  valószínűségi változó a középpontú k-adik momentuma  $E((\xi - a)^k)$ .

### 4.3. Kovariancia

Adottak  $\xi,\eta$ valószínűségi változók. Ekkor  $\xi$  és  $\eta$ kovarianciája

$$cov(\xi, \eta) = E((\xi - E(\xi))(\eta - E(\eta))).$$

#### 4.3.1. Tétel

Adottak  $\xi, \eta$  valószínűségi változók. Ekkor

$$cov(\xi, \eta) = E(\xi \eta) - E(\xi)E(\eta).$$

Bizonyítás

$$cov(\xi,\eta) = E\Big(\big(\xi - E(\xi)\big)\big(\eta - E(\eta)\big)\Big) = E\big(\xi\eta - \xi E(\eta) - \eta E(\xi) + E(\xi)E(\eta)\big) =$$
$$= E(\xi\eta) - 2E(\xi)E(\eta) + E(\xi)E(\eta) = E(\xi\eta) - E(\xi)E(\eta)$$

#### 4.3.2. Tulajdonságok

Adottak  $\xi, \eta, \gamma$  valószínűségi változók és  $a \in \mathbb{R}$  skalár.

1.

$$cov(\xi, \xi) = \sigma^2(\xi)$$

2.

$$cov(\xi, \eta) = cov(\eta, \xi)$$

3.

$$cov(a\xi, \eta) = a cov(\eta, \xi)$$

4.

$$cov(\xi + \eta, \gamma) = cov(\xi, \gamma) + cov(\eta, \gamma)$$

#### 4.3.3. Kovariancia mátrix

Adott  $\xi, \eta$  valószínűségi változók kovariancia mátrixa $\Sigma \in \mathbb{R}^{2 \times 2}$ 

$$\Sigma = \begin{pmatrix} \sigma^2(\xi) & \cos(\xi, \eta) \\ \cos(\eta, \xi) & \sigma^2(\eta) \end{pmatrix}.$$

#### 4.4. Korreláció

Adott  $\xi, \eta$  valószínűségi változók korrelációja

$$\operatorname{corr}(\xi, \eta) = \frac{\operatorname{cov}(\xi, \eta)}{\sigma(\xi)\sigma(\eta)}.$$

#### 4.4.1. Tétel

Ha  $\xi, \eta$  független valószínűségi változók, akkor

$$corr(\xi, \eta) = 0.$$

### 4.4.2. Tulajdonságok

Adottak  $\xi, \eta$  valószínűségi változók.

1.

$$\left|\operatorname{corr}(\xi,\eta)\right| \leq 1$$

### 4.5. Markov egyenlőtlenség

Adott  $\xi$ valószínűségi változó és  $\varepsilon>0\in\mathbb{R}$ skalár. Ekkor

$$P(\xi \ge \varepsilon) \le \frac{E(\xi)}{\varepsilon}.$$

### Bizonyítás

$$E(\xi) = \int_{\Omega} \xi \, \mathrm{d}P \geq \int_{\{\xi \geq \varepsilon\}} \xi \, \mathrm{d}P \geq \int_{\{\xi \geq \varepsilon\}} \varepsilon \, \mathrm{d}P = \varepsilon \int_{\{\xi \geq \varepsilon\}} \mathrm{d}P = \varepsilon P(\xi \geq \varepsilon) \implies P(\xi \geq \varepsilon) \leq \frac{E(\xi)}{\varepsilon}$$

### 4.6. Csebisev egyenlőtlenség

Legyen  $\xi$ valószínűségi változó és  $\varepsilon>0\in\mathbb{R}$ skalár. Ekkor

$$P(|\xi - E(\xi)| \ge \varepsilon) \le \frac{\sigma^2(\xi)}{\varepsilon^2}.$$

### Bizonyítás

Tudjuk, hogy

$$\{|\xi - E(\xi)| \ge \varepsilon\} = \{|\xi - E(\xi)|^2 \ge \varepsilon^2\}.$$

Ekkor a Markov egyenlőtlenségből

$$P\big(|\xi - E(\xi)| \ge \varepsilon\big) \le \frac{E\big(|\xi - E(\xi)|^2\big)}{\varepsilon^2} = \frac{\sigma^2(\xi)}{\varepsilon^2}.$$

### 5. Diszkrét eloszlások

### 5.1. Diszkrét eloszlású valószínűségi változó

Egy valószínűségi változót diszkrétnek nevezünk, ha legfeljebb megszámlálhatóan végtelen sok értéket vesz fel.

#### 5.2. Várható érték kiszámítása

Adott  $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$  valószínűségi változó és képtere

$$\operatorname{Im} \xi = \{ \xi_n | n \in \mathbb{N} \} = \{ \xi(\omega) | \omega \in \Omega \}.$$

Ekkor

$$E(\xi) = \sum_{n=1}^{\infty} \xi_n P(\xi = \xi_n).$$

### 5.3. Szórásnégyzet kiszámítása

Adott  $\xi: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  valószínűségi változó és képtere

$$\operatorname{Im} \xi = \{\xi_n | n \in \mathbb{N}\} = \{\xi(\omega) | \omega \in \Omega\}.$$

Ekkor

$$\sigma^{2}(\xi) = E(\xi^{2}) - E^{2}(\xi) = \sum_{n=1}^{\infty} \xi_{n}^{2} P(\xi = \xi_{n}) - \left(\sum_{n=1}^{\infty} \xi_{n} P(\xi = \xi_{n})\right)^{2}.$$

### 5.4. Kovariancia kiszámítása

Adottak  $\xi, \eta: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  diszkrét eloszlású valószínűségi változók kovarianciája

$$cov(\xi, \eta) = \sum_{i} \sum_{j} \xi_i \eta_j P(\xi = \xi_i, \eta = \eta_j) - \left(\sum_{i} \xi_i P(\xi = \xi_i)\right) \left(\sum_{j} \eta_j P(\eta = \eta_j)\right).$$

#### 5.5. Binomiális eloszlás

Azt mondjuk, hogy  $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$  valószínűségi változó (n,p) paraméterű binomiális eloszlású, ha

$$P(\xi = k)_{k \le n} = \binom{n}{k} p^k (1 - p)^{n - k}.$$

Ekkor

$$F_{\xi}(x) = \begin{cases} 0, & \text{ha } x \le 0\\ \sum_{m=0}^{k} {n \choose m} p^m (1-p)^{n-m}, & \text{ha } k < x \le k+1.\\ 1, & \text{ha } x > n. \end{cases}$$

### 5.5.1. Tétel

Pvalószínűségi mérték, tehát  $P(\Omega)=1.$ 

### Bizonyítás

$$P(\Omega) = \sum_{k=0}^{n} P(\{k\}) = \sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k} = 1$$

#### 5.5.2. Várható érték

 $\xi$  (n,p) paraméterű binomiális eloszlású valószínűségi változó várható értéke np.

#### Bizonyítás

Tudjuk, hogy  $P(\xi = k) = \binom{n}{k} p^k (1-p)^{n-k}$ . Ekkor

$$E(\xi) = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k} = np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{n-1-(k-1)}$$

hiszen  $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$  (elnyelési tulajdonság).

$$E(\xi) = np \sum_{k=1}^{n} {n-1 \choose k-1} p^{k-1} (1-p)^{n-1-(k-1)} = np \sum_{k=0}^{n-1} {n-1 \choose k} p^k (1-p)^{n-1-k} = np$$

#### 5.5.3. Szórásnégyzet

 $\xi$  (n,p) paraméterű binomiális eloszlású valószínűségi változó szórásnégyzete np(1-p).

#### 5.6. Geometrikus eloszlás

Azt mondjuk, hogy  $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$  valószínűségi változó p paraméterű geometrikus eloszlású, ha

$$P(\xi = k) = p(1-p)^{k-1}$$
.

#### 5.6.1. Tétel

P valószínűségi mérték, tehát  $P(\Omega) = 1$ .

### Bizonyítás

$$P(\Omega) = \sum_{k=1}^{\infty} P(\{k\}) = \sum_{k=1}^{\infty} p(1-p)^{k-1} = p \sum_{k=0}^{\infty} (1-p)^k = \frac{p}{1-(1-p)} = 1$$

#### 5.6.2. Várható érték

 $\xi~p$  paraméterű geometrikus eloszlású valószínűség változó várható értéke  $\frac{1}{p}.$ 

#### Bizonyítás

Tudjuk, hogy  $P(\xi = k) = p(1-p)^{k-1}$ . Ekkor

$$E(\xi) = \sum_{k=0}^{n} kp(1-p)^{k-1} = p\sum_{k=1}^{n} k(1-p)^{k-1}.$$

Tudjuk, hogy  $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$  ha  $x \in (-1,1)$ . Ezen felül tudjuk, hogy egy hatványsor a konvergenciahalmaz belső pontjaiban tagonként differenciálható, tehát

$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{1-x} = \frac{1}{(1-x)^2} = \sum_{k=1}^{\infty} kx^{k-1} = \sum_{k=1}^{\infty} kx^{k-1}.$$

Mivel  $1 - p \in (-1, 1)$ , így azonnal kapjuk, hogy  $E(\xi) = \frac{1}{p}$ .

### 5.6.3. Szórásnégyzet

 $\xi~p$  paraméterű geometrikus eloszlású valószínűség változó szórásnégyzete  $\frac{1-p}{p^2}.$ 

### 5.7. Hipergeometrikus eloszlás

Azt mondjuk, hogy  $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$  valószínűségi változó (N,K,n) paraméterű hipergeometrikus eloszlású, ha

$$P(\xi = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}.$$

#### 5.7.1. Várható érték

 $\xi \ (N,K,n)$  paraméterű hipergeometrikus eloszlású valószínűségi változó várható értéke  $\frac{nK}{N}$ .

#### Bizonyítás

Tudjuk, hogy  $P(\xi = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$ . Ekkor

$$\begin{split} E(\xi) &= \sum_{k=0}^n k \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}} = \frac{1}{\binom{N}{n}} \sum_{k=1}^n k \binom{K}{k} \binom{N-K}{n-k} = \\ &= \frac{K}{\binom{N}{n}} \sum_{k=1}^n \binom{K-1}{k-1} \binom{N-1-(K-1)}{n-1-(k-1)} = \frac{K}{\binom{N}{n}} \sum_{k=0}^{n-1} \binom{K-1}{k} \binom{N-1-(K-1)}{n-1-k} = \\ &= \frac{K}{\binom{N}{n}} \binom{N-1}{n-1} = \frac{nK}{N}. \end{split}$$

#### 5.7.2. Szórásnégyzet

 $\xi \ (N,K,n)$  paraméterű hipergeometrikus eloszlású valószínűségi változó szórásnégyzete  $n \frac{K}{N} \frac{N-K}{N} \frac{N-n}{N-1}$ .

### 5.8. Poisson eloszlás

Azt mondjuk, hogy  $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$  valószínűségi változó  $\lambda$  paraméterű Poisson eloszlású, ha

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

#### 5.8.1. Tétel

P valószínűségi mérték, tehát  $P(\Omega) = 1$ .

#### Bizonyítás

$$P(\Omega) = \sum_{k=0}^{\infty} P(\{k\}) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = 1$$

#### 5.8.2. Várható érték

 $\xi~\lambda$  paraméterű Poisson eloszlású valószínűségi változó várható értéke  $\lambda.$ 

#### Bizonyítás

Tudjuk, hogy  $P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$ . Ekkor

$$E(\xi) = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} = \lambda \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = \lambda.$$

### 5.8.3. Szórásnégyzet

 $\xi~\lambda$  paraméterű Poisson eloszlású valószínűségi változó szórásnégyzete  $\lambda.$ 

### 5.9. Tétel

A Poisson eloszlás közelíti, illetve határértékben felveszi a binomiális eloszlást ha  $np = \lambda$  állandó.

### Bizonyítás

$$\begin{split} \lim_{n \to \infty} P(\xi = k) &= \lim_{n \to \infty} \binom{n}{k} p^k (1 - p)^{n - k} = \lim_{n \to \infty} \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n - k} = \\ &= \lim_{n \to \infty} \frac{\frac{n!}{(n - k)!}}{n^k} \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^{n - k} = \frac{\lambda^k}{k!} e^{-\lambda} \end{split}$$

# 6. Folytonos eloszlások

### 6.1. Folytonos eloszlású valószínűségi változó

Adott  $(\Omega, \mathcal{F}, P)$  valószínűségi mező és  $\xi : \Omega \mapsto \mathbb{R}$  valószínűségi változó. Azt mondjuk, hogy  $\xi$  folytonos eloszlású, ha  $Q_{\xi} \ll \lambda_{\mathbb{R}}$ .

### 6.2. Sűrűségfüggvény

Adott  $\xi$  folytonos eloszlású valószínűségi változó. Ekkor  $\exists! f : \mathbb{R} \mapsto \mathbb{R}$  olyan mérhető függvény, hogy  $\forall A \in \mathcal{B}_{\mathbb{R}}$  esetén

$$Q_{\xi}(A) = \int_{A} f \, \mathrm{d}\lambda_{\mathbb{R}} \,.$$

Ekkor fa  $\xi$ valószínűségi változó sűrűségfüggvénye, illetve a  $Q_\xi$ eloszlás sűrűségfüggvénye.

### 6.2.1. Tulajdonságok

Adott  $\xi$  folytonos eloszlású valószínűség változó  $f_\xi$ sűrűségfüggvénnyel.

1.  $f_{\xi} \geq 0$ 

2.

$$\int_{-\infty}^{\infty} f_{\xi} dt = \int_{\mathbb{R}} f_{\xi} d\lambda_{\mathbb{R}} = Q_{\xi}(\mathbb{R}) = P(\xi^{-1}(\mathbb{R})) = 1$$

#### 6.2.2. Tétel

Legyen  $f: \mathbb{R} \mapsto \mathbb{R}_+$  olyan függvény, hogy  $\int_{\mathbb{R}} f \, d\lambda_{\mathbb{R}} = 1$ . Ekkor  $\exists (\Omega, \mathcal{F}, P)$  valószínűségi mező és  $\xi: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  valószínűségi változó, hogy  $Q_{\xi} \ll \lambda_{\mathbb{R}}$  és  $f = f_{\xi}$ .

### 6.3. Várható érték kiszámítása

Adott  $\xi$  folytonos eloszlású valószínűségi változó várható értéke

$$E(\xi) = \int_{\Omega} \xi \, dP = \int_{\mathbb{R}} i d_{\mathbb{R}} \, dQ_{\xi} = \int_{\mathbb{R}} i d_{\mathbb{R}} \, \frac{dQ_{\xi}}{d\lambda_{\mathbb{R}}} \, d\lambda_{\mathbb{R}} = \int_{-\infty}^{\infty} x f_{\xi}(x) \, dx.$$

#### 6.3.1. Tétel

Adott  $\xi$  folytonos eloszlású valószínűségi változó. Ha

$$\int_{-\infty}^{\infty} |x| f_{\xi}(x) \, \mathrm{d}x < \infty$$

akkor  $E(\xi)$  véges.

### 6.4. Szórásnégyzet kiszámítása

Adott  $\xi$  folytonos eloszlású valószínűségi változó szórásnégyzete

$$\sigma^{2}(\xi) = E(\xi^{2}) - E^{2}(\xi) = \int_{-\infty}^{\infty} x^{2} f_{\xi}(x) dx - \left(\int_{-\infty}^{\infty} x f_{\xi}(x) dx\right)^{2}.$$

### 6.5. Kovariancia kiszámítása

Adottak  $\xi, \eta$  folytonos eloszlású valószínűségi változók kovarianciája

$$\operatorname{cov}(\xi, \eta) = \iint_{\mathbb{R}^2} xy f_{(\xi, \eta)}(x, y) \, \mathrm{d}(x, y) - \left( \int_{\mathbb{R}} x f_{\xi}(x) \, \mathrm{d}x \right) \left( \int_{\mathbb{R}} y f_{\eta}(y) \, \mathrm{d}y \right).$$

### 6.6. Cauchy-eloszlás

Azt mondjuk, hogy a  $\xi$  folytonos eloszlású valószínűségi változó Cauchy-eloszlású, ha

$$f_{\xi}(x) = \frac{1}{\pi} \frac{1}{1+x^2}.$$

#### 6.6.1. Várható érték

A Cauchy-eloszlásnak nem létezik várható értéke.

#### 6.6.2. Szórásnégyzet

A Cauchy-eloszlásnak nem létezik szórásnégyzete.

### 6.7. Exponenciális eloszlás

Azt mondjuk, hogy a  $\xi$  folytonos eloszlású valószínűségi változó  $\alpha$  paraméterű exponenciális eloszlású, ha

$$f_{\xi}(x) = \begin{cases} \alpha e^{-\alpha x}, & \text{ha } x > 0\\ 0, & \text{ha } x \le 0. \end{cases}$$

#### 6.7.1. Eloszlásfüggvény

 $\xi \alpha$  paraméterű exponenciális eloszlású valószínűségi változó eloszlásfüggvénye

$$F_{\xi}(x) = \begin{cases} 1 - e^{-\alpha x}, & \text{ha } x > 0\\ 0, & \text{ha } x \le 0. \end{cases}$$

Bizonyítás

$$F_\xi(x) = \int_{-\infty}^x f(t) \, \mathrm{d}t = \begin{cases} \int_{-\infty}^x \alpha e^{-\alpha t} \, \mathrm{d}t = 1 - e^{-\alpha x}, & \text{ha } x > 0 \\ 0, & \text{ha } x \leq 0 \end{cases}$$

### 6.7.2. Várható érték

 $\xi~\alpha$  paraméterű exponenciális eloszlású valószínűségi változó várható értéke  $\frac{1}{\alpha}.$ 

### Bizonyítás

$$E(\xi) = \int_{-\infty}^{\infty} x f_{\xi}(x) dx = \int_{0}^{\infty} x \alpha e^{-\alpha x} dx = -xe^{-\alpha x} \bigg|_{0}^{\infty} + \int_{0}^{\infty} e^{-\alpha x} dx = -\frac{1}{\alpha} e^{-\alpha x} \bigg|_{0}^{\infty} = \frac{1}{\alpha}$$

#### 6.7.3. Szórásnégyzet

 $\xi~\alpha$ paraméterű exponenciális eloszlású valószínűségi változó szórásnégyzete  $\frac{1}{\alpha^2}.$ 

### 6.8. Normális eloszlás

Azt mondjuk, hogy a  $\xi$  folytonos eloszlású valószínűségi változó  $(m, \sigma)$  paraméterű normális eloszlású, ha

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-m)^2}{2\sigma^2}}.$$

#### 6.8.1. Standard normális eloszlás

Azt mondjuk, hogy a  $\xi$  folytonos eloszlású valószínűségi változó standard normális eloszlású, ha  $(m=0,\sigma=1)$  paraméterű normális eloszlású. Ekkor

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$$

és

$$\Phi(x) = F_{\xi}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\frac{-t^2}{2}} dt.$$

### 6.8.1.1. Tétel

Adott  $\xi$   $(m,\sigma)$  normális eloszlású valószínűségi változó eloszlásfüggvénye visszavezethető standard normális eloszlásúra.

### Bizonyítás

$$F_{\xi}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(t-m)^2}{2\sigma^2}} dt \underset{\text{dt}=-\sigma dz}{=} \int_{-\infty}^{\frac{x-m}{\sigma}} \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-z^2}{2}} \sigma dz = \int_{-\infty}^{\frac{x-m}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}} dz = \Phi\left(\frac{x-m}{\sigma}\right)$$

2018. január 3. 19:36 Vághy Mihály

# 7. Vektor értékű valószínűségi változók

### 7.1. Mérhető vektor értékű függvény

Adott  $f:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}^n$  függvény mérhető, ha  $\forall B\in\mathcal{B}_{\mathbb{R}^n}$  esetén

$$f^{-1}(B) \in \mathcal{F}$$
.

### 7.2. Vektor értékű valószínűségi változó

Adott  $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}^n$  valószínűségi változó

$$\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}$$

ahol  $\forall \xi_i : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$ .

### 7.2.1. Eloszlás

 $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}^n$  vektor értékű valószínűségi változó eloszlása

$$Q_{\xi}(A) = P(\xi^{-1}(A)).$$

#### 7.2.2. Eloszlásfüggvény

 $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}^n$  vektor értékű valószínűségi változó eloszlásfüggvénye  $F_\xi:\mathbb{R}^n\mapsto\mathbb{R}$ 

$$F_{\xi}(x) = P\left(\omega \in \Omega \middle| \forall \xi_i(\omega) < x_i\right) = P\left(\xi^{-1}\left(\prod_{i=1}^n(-\infty, x_i)\right)\right) = Q_{\xi}\left(\prod_{i=1}^n(-\infty, x_i)\right).$$

#### 7.2.2.1. Tulajdonságok

Adott  $\xi:(\Omega,\mathcal{F},P)\mapsto \mathbb{R}^n$ vektor értékű valószínűségi változó és  $a< b\in \mathbb{R}^n.$ 

- 1.  $F_{\xi}$  minden változójában monoton nő
- 2.  $F_{\xi}$  minden változójában balról folytonos

3.

$$\forall \lim_{x_i \to -\infty} F_{\xi}(x) = 0$$

4.

$$\lim_{\forall x_i \to \infty} F_{\xi}(x) = 1$$

5.

$$\sum_{\varepsilon \in \{0,1\}^n} (-1)^{|\varepsilon|} F_{\xi} (a\varepsilon + b(1-\varepsilon)) \ge 0$$

ahol  $|\varepsilon|$  az  $\varepsilon$  1-es koordinátáinak száma.

#### 7.2.2.2. Tétel

Legyen  $F: \mathbb{R}^n \to \mathbb{R}$  olyan függvény, amely teljesíti a fenti feltételeket. Ekkor  $\exists \xi : (\Omega, \mathcal{F}, P) \to \mathbb{R}^n$  vektor értékű valószínűségi változó, hogy  $F = F_{\xi}$ .

#### 7.2.2.3. Tétel

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix} : (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}^2$  vektor értékű valószínűségi változó  $F_\xi$  eloszlásfüggvénnyel. Ekkor

$$P(x_1 \le \eta < y_1, x_2 \le \gamma < y_2) = F(x_1, x_2) + F(y_1, y_2) - F(x_1, y_2) - F(y_1, x_2).$$

### 7.2.2.4. Peremeloszlás-függvények

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  vektor értékű valószínűségi változó peremeloszlás-függvényei

$$F_{\eta}(x) = \lim_{y \to \infty} F_{\xi}(x, y)$$
  $F_{\gamma}(y) = \lim_{x \to \infty} F_{\xi}(x, y).$ 

#### 7.2.3. Tétel

Adott  $\xi$  vektor értékű valószínűségi változó. Ekkor ekvivalensek

1.  $\forall \xi_i$  függetlenek

2.

$$Q_{\xi} = \prod_{i=1}^{n} Q_{\xi_i}$$

3.

$$F_{\xi}(x) = \prod_{i=1}^{n} F_{\xi_i}(x_i).$$

#### 7.2.4. Várható érték

Adott  $\xi$  vektor értékű valószínűségi változó várható értéke

$$E(\xi) = \begin{pmatrix} E(\xi_1) \\ E(\xi_2) \\ \vdots \\ E(\xi_n) \end{pmatrix}.$$

### 7.3. Folytonos vektor értékű valószínűségi változók

Azt mondjuk, hogy  $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}^n$  vektor értékű valószínűségi változó folytonos eloszlású, ha  $Q_\xi\ll\lambda_{\mathbb{R}^n}$ .

### 7.3.1. Tétel

Adott  $\xi$  vektor értékű valószínűségi változó. Ha  $\forall \xi_i$  folytonos eloszlású független valószínűségi változók, akkor  $\xi$  is folytonos eloszlású.

### 7.3.2. Tétel

Adott  $\xi$  folytonos eloszlású vektor értékű valószínűségi változó. Ha  $\forall \xi_i$  függetlenek, akkor

$$f_{\xi}(x) = \prod_{i=1}^{n} f_{\xi_i}(x_i).$$

### 7.3.3. Tétel

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  folytonos eloszlású vektor értékű valószínűségi változó  $F_{\xi}$  eloszlásfüggvénnyel, melynek léteznek a folytonos vegyes másodrendű parciális deriváltjai. Ekkor

$$f_{\xi}(x,y) = \frac{\partial^2 F_{\xi}(x,y)}{\partial x \partial y}.$$

### 7.3.4. Peremsűrűség-függvények

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  folytonos eloszlású vektor értékű valószínűségi változó  $f_{\xi}$  sűrűségfüggvénnyel. Ekkor

$$f_{\eta}(x) = \int_{-\infty}^{\infty} f_{\xi}(x, y) dy$$
  $f_{\gamma}(y) = \int_{-\infty}^{\infty} f_{\xi}(x, y) dx$ .

### 7.3.5. Intervallumba esés valószínűsége

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  folytonos eloszlású vektor értékű valószínűségi változó  $f_{\xi}$  sűrűségfüggvénnyel. Ekkor

$$P(\eta \in I, \gamma \in J) = \iint_{I \times I} f_{\xi}(x, y) d(x, y).$$

### 7.3.6. Függvényre vonatkoztatott vvárható érték

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  folytonos eloszlású vektor értékű valószínűségi változó  $f_{\xi}$  sűrűségfüggvénnyel, illetve  $h : \mathbb{R}^2 \mapsto \mathbb{R}$  mérhető függvény. Ekkor

$$E(h(\eta,\gamma)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f_{\xi}(x,y) dx dy.$$

### 7.3.6.1. Tétel

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  folytonos eloszlású vektor értékű valószínűségi változó  $f_{\xi}$  sűrűségfüggvénnyel, illetve  $h : \mathbb{R}^2 \mapsto \mathbb{R}$  mérhető függvény. Ekkor  $E(h(\eta, \gamma))$  véges, ha

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |h(x,y)| f_{\xi}(x,y) \, \mathrm{d}x \, \mathrm{d}y < \infty.$$

# 8. Valószínűségi változók transzformációja

#### 8.1. Diszkrét eset

Adott  $\xi$  diszkrét eloszlású valószínűségi változó és  $h: \mathbb{R} \to \mathbb{R}$ . Ekkor az  $\eta = h(\xi)$  valószínűségi változóra

$$P(\eta = \eta_i) = \sum_{h(\xi_j) = \eta_i} P(\xi = \xi_j).$$

### 8.2. Folytonos eset

Adott  $\xi$  folytonos eloszlású valószínűségi változó és  $h: \mathbb{R} \mapsto \mathbb{R}$  szigorúan monoton, differenciálható függvény. Ekkor az  $\eta = h(\xi)$  valószínűségi változó sűrűségfüggvénye

$$f_{\eta}(x) = f_{\xi}(h^{-1}(x)) \left| \frac{\mathrm{d}h^{-1}(x)}{\mathrm{d}x} \right|.$$

### Bizonyítás

Tegyük fel először, hogy h szigorúan monoton nő. Ekkor

$$\{\eta < x\} = \{h(\xi) < x\} = \{\xi < h^{-1}(x)\}\$$

így

$$F_{\eta}(x) = P(\eta < x) = P(\xi < h^{-1}(x)) = F_{\xi}(h^{-1}(x))$$

amiből

$$f_{\eta}(x) = F'_{\eta}(x) = F'_{\xi}(h^{-1}(x)) = f(h^{-1}(x)) \frac{\mathrm{d}h^{-1}(x)}{\mathrm{d}x} = f_{\xi}(h^{-1}(x)) \left| \frac{\mathrm{d}h^{-1}(x)}{\mathrm{d}x} \right|$$

hiszen h szigorúan monoton nő, így a derivált pozitív.

Most tegyük fel, hogy h szigorúan monton csökken. Ekkor

$$\{\eta < x\} = \{h(\xi) < x\} = \{\xi > h^{-1}(x)\}$$

így

$$F_{\eta}(x) = P(\eta < x) = P(\xi > h^{-1}(x)) = 1 - F_{\xi}(h^{-1}(x))$$

amiből

$$f_{\eta}(x) = F'_{\eta}(x) = -F'_{\xi}(h^{-1}(x)) = -f(h^{-1}(x)) \frac{\mathrm{d}h^{-1}(x)}{\mathrm{d}x} = f_{\xi}(h^{-1}(x)) \left| \frac{\mathrm{d}h^{-1}(x)}{\mathrm{d}x} \right|$$

hiszen h szigorúan monoton csökken, így a derivált negatív.

### 8.3. Vektor eset

Vektor esetben a derivált helyett Jacobi determinánst alkalmazunk.

#### 8.3.1. Valószínűségi változó standardizáltja

Adott  $\xi:(\Omega,\mathcal{F},P)\mapsto\mathbb{R}$  valószínűségi változó standardizáltja  $\hat{\xi}=\frac{\xi-E(\xi)}{\sigma(\xi)}$ .

# 9. Valószínűségi változók feltételes jellemzői

### 9.1. Diszkrét eset

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  diszkrét eloszlású vektor értékű valószínűségi változó. Ekkor

$$P(\eta = \eta_i | \gamma = \gamma_j) = \frac{P(\eta = \eta_i, \gamma = \gamma_j)}{P(\gamma = \gamma_j)}$$

#### 9.1.1. Eloszlásfüggvény

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  diszkrét eloszlású vektor értékű valószínűségi változó. Ekkor

$$F^*(x|\gamma_i < \gamma < \gamma_j) = P(\xi < x|\gamma_i < \gamma < \gamma_j) = \frac{F_{\xi}(x,\gamma_j) - F_{\xi}(x,\gamma_i)}{F_{\gamma}(\gamma_j) - F_{\gamma}(\gamma_i)}.$$

#### Bizonyítás

Tudjuk, hogy  $P(\xi < x, \gamma_i < \gamma < \gamma_i) = F_{\xi}(x, \gamma_i) - F_{\xi}(x, \gamma_i)$ , így

$$F^*(x|\gamma_i < \gamma < \gamma_j) = P(\xi < x|\gamma_i < \gamma < \gamma_j) = \frac{P(\xi < x, \gamma_i < \gamma < \gamma_j)}{P(\gamma_i < \gamma < \gamma_j)} = \frac{F_\xi(x, \gamma_j) - F_\xi(x, \gamma_i)}{F_\gamma(\gamma_j) - F_\gamma(\gamma_i)}.$$

### 9.2. Folytonos eset

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  folytonos eloszlású vektor értékű valószínűségi változó. Ekkor

$$F^*(x|z) = P(\eta \in I|\gamma = z)) = \begin{cases} \int_I \frac{f_{\xi}(x,z)}{f_{\gamma}(z)} dx & f_{\gamma}(z) \neq 0\\ 0 & f_{\gamma}(z) = 0. \end{cases}$$

### Bizonyítás

Tegyük fel, hogy  $f_{\gamma}(z) \neq 0$ .

$$\begin{split} F^*(x|z) &= \lim_{h \to 0} P \left( \eta \in I | \gamma \in [z,z+h] \right) = \frac{P \left( \eta \in I, \gamma \in [z,z+h] \right)}{P \left( \gamma \in [z,z+h] \right)} = \\ &= \frac{\int_I \int_z^{z+h} f_\xi(x,y) \, \mathrm{d}y \, \mathrm{d}x}{\int_z^{z+h} f_\gamma(y) \, \mathrm{d}y} = \frac{\int_I \int_z^{z+h} f_\xi(x,y) \, \mathrm{d}y \, \mathrm{d}x}{\frac{\int_z^{z+h} f_\gamma(y) \, \mathrm{d}y}{h}} = \lim_{h \to 0} \frac{\int_I \int_z^{z+h} f_\xi(x,y) \, \mathrm{d}y \, \mathrm{d}x}{\frac{F_\gamma(z+h) - F_\gamma(z)}{h}} = \\ &= \int_I \frac{\int_{-\infty}^{z+h} f_\xi(x,y) \, \mathrm{d}y - \int_{-\infty}^z f_\xi(x,y) \, \mathrm{d}y}{h f_\gamma(z)} \, \mathrm{d}x = \int_I \frac{f_\xi(x,z)}{f_\gamma(z)} \, \mathrm{d}x \end{split}$$

#### 9.2.1. Sűrűségfüggvény

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  folytonos eloszlású vektor értékű valószínűségi változó. Ekkor

$$f_{(\eta|\gamma=z)}(x) = \frac{f_{\xi}(x,z)}{f_{\gamma}(z)}.$$

2018. január 3. 19:36 Vághy Mihály

### 9.2.2. Várható érték

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  folytonos eloszlású vektor értékű valószínűségi változó. Ekkor

$$E(\eta|\gamma=z) = \int_{-\infty}^{\infty} x f_{(\eta|\gamma=z)}(x) dx.$$

### 9.2.2.1. Tétel

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  folytonos eloszlású vektor értékű valószínűségi változó. Ekkor  $E(\eta|\gamma=z)$  véges, ha

$$\int_{-\infty}^{\infty} |x| f_{(\eta|\gamma=z)}(x) \, \mathrm{d}x < \infty.$$

### 9.3. Regressziós függvény

Adott  $\xi = \begin{pmatrix} \eta \\ \gamma \end{pmatrix}$  vektor értékű valószínűségi változó. Az  $\eta$   $\gamma$ -ra vonatkoztatott regressziós függvény

$$r(z) = E(\eta | \gamma = z).$$

# 10. $\mathcal{L}^p$ terek és konvergencia

### 10.1. 1-valószínűségel megegyező valószínűségi változók

Adot  $\xi, \eta: (\Omega, \mathcal{F}, P) \mapsto \mathbb{R}$  valószínűségi változók 1-valószínűséggel megegyeznek, ha

$$P(\omega \in \Omega | \xi(\omega) = \eta(\omega)) = 1.$$

Ekkor azt mondjuk, hogy  $\xi = \eta$  P-majdnem mindenütt.

### 10.2. $\mathcal{L}^p$ tér

Adott  $p \in [1, \infty)$ 

$$\mathcal{L}^p_{\mathbb{R}}(\Omega,\mathcal{F},P) = \bigg\{ f: (\Omega,\mathcal{F},P) \mapsto \mathbb{R} \bigg| f \text{ m\'erhet\'o}, \int_{\Omega} \left| f \right|^p \mathrm{d}P < \infty \bigg\}.$$

### **10.3.** *p*-norma

Adott  $f \in \mathcal{L}^p_{\mathbb{R}}(\Omega, \mathcal{F}, P)$ 

$$||f||_p = \begin{cases} \left( \int_{\Omega} |f|^p dP \right)^{\frac{1}{p}} & p \in [0, \infty) \\ \sup_{\omega \in \Omega \backslash A} |f(\omega)| & p = \infty \end{cases}$$

### 10.4. Riesz-Fischer tétel

 $\mathcal{L}^p_{\mathbb{R}}(\Omega, \mathcal{F}, P)$  Banach-tér, tehát  $\forall (f_n)_{n \in \mathbb{N}}$  Cauchy-sorozat konvergens.

### 10.5. Konvergencia-fajták $\mathcal{L}^p$ terekben

Adott  $(f_n)_{n\in\mathbb{N}}\subset\mathcal{L}^p$  függvénysorozat és  $f\in\mathcal{L}^p$ , illetve  $(\Omega,\mathcal{F},P)$  valószínűségi mező,  $(\xi_n)_{n\in\mathbb{N}}$  valószínűségi változósorozat és  $\xi$  valószínűségi változó.

### 10.5.1. 1-valószínűséggel egyenletes konvergencia

Azt mondjuk, hogy  $f_n \to f$ 1-valószínűséggel egyenletesen, ha

$$\lim_{n \to \infty} ||f_n - f||_{\infty} = 0.$$

Ekkor  $f_n \stackrel{m.m.e.}{\longrightarrow} f$ .

### 10.5.2. 1-valószínűséggel konvergencia

Azt mondjuk, hogy  $f_n \to f$  1-valószínűséggel, ha

$$P(\omega \in \Omega | f_n(\omega) \to f(\omega)) = 1.$$

Ekkor  $f_n \stackrel{m.m.}{\longrightarrow} f$ .

#### 10.5.3. $\mathcal{L}^p$ -ben való konvergencia

Azt mondjuk, hogy  $f_n \to f \mathcal{L}^p$ -ben, ha

$$\lim_{n \to \infty} \left\| f_n - f \right\|_p = 0.$$

Ekkor  $f_n \xrightarrow{\mathcal{L}^p} f$ .

### 10.5.4. Sztochasztikus konvergencia

Azt mondjuk, hogy  $\xi_n \to \xi$ sztochasztikusan, ha $\forall \varepsilon > 0$ esetén

$$\lim_{n \to \infty} P\left(\omega \in \Omega \Big| \big| \xi_n(\omega) - \xi(\omega) \big| > \varepsilon\right) = 0.$$

### 10.5.5. Eloszlásban való konvergencia

Azt mondjuk, hogy  $\xi_n \to \xi$  eloszlásban, ha

$$\lim_{n \to \infty} F_{\xi_n}(x) = F_{\xi}(x).$$

#### 10.5.6. Konvergencia-fajták közti összefüggés



### Bizonyítás

1.

$$\xi_n \stackrel{m.m.e.}{\longrightarrow} \xi \implies \xi_n \stackrel{m.m.}{\longrightarrow} \xi$$

Triviális.

2.

$$\xi_n \stackrel{m.m.e.}{\longrightarrow} \xi \implies \xi_n \stackrel{\mathcal{L}^p}{\longrightarrow} \xi$$

Tudjuk, hogy  $\lim_{n\to\infty} \left\|\xi_n - \xi\right\|_{\infty} = 0$ , kell, hogy  $\lim_{n\to\infty} \left\|\xi_n - \xi\right\|_p = 0$ .

$$\lim_{n \to \infty} \|\xi_n - \xi\|_p = \lim_{n \to \infty} \left( \int_{\Omega} |\xi_n - \xi|^p dP \right)^{\frac{1}{p}} = 0$$

ekvivalens azzal, hogy

$$\lim_{n \to \infty} \int_{\Omega} |\xi_n - \xi|^p dP = \lim_{n \to \infty} ||\xi_n - \xi||_p^p = 0.$$

Tudjuk, hogy

$$\left|\xi_n - \xi\right|^p \le \left(\sup_{\omega \in \Omega} \left|\xi_n(\omega) - \xi(\omega)\right|\right)^p = \left\|\xi_n(\omega) - \xi(\omega)\right\|_{\infty}^p$$

amiből

$$\lim_{n \to \infty} \left\| \xi_n - \xi \right\|_p^p \le \lim_{n \to \infty} \int_{\Omega} \left\| \xi_n - \xi \right\|_{\infty}^p dP = \lim_{n \to \infty} \left\| \xi_n - \xi \right\|_{\infty}^p \int_{\Omega} dP = 0.$$

3.

$$\xi_n \stackrel{m.m.}{\longrightarrow} \xi \implies \xi_n \to \xi$$
 sztochasztikusan

Tudjuk, hogy

$$P(\omega \in \Omega | \xi_n(\omega) \to \xi(\omega)) = 1$$

amiből $\forall \varepsilon>0$ esetén

$$\lim_{n \to \infty} P\left(\omega \in \Omega \middle| \big| \xi_n(\omega) - \xi(\omega) \big| < \varepsilon\right) = 1.$$

Ebből

$$\lim_{n \to \infty} P\left(\omega \in \Omega \Big| \big| \xi_n(\omega) - \xi(\omega) \big| > \varepsilon\right) \le \lim_{n \to \infty} P\left(\omega \in \Omega \Big| \big| \xi_n(\omega) - \xi(\omega) \big| \ge \varepsilon\right) = 0.$$

4.

$$\xi_n \xrightarrow{\mathcal{L}^p} \xi \implies \xi_n \to \xi$$
sztochasztikusan

Az  $\mathcal{L}^p$ -ben való konvergencia miatt tudjuk, hogy  $\lim_{n\to\infty} E(|\xi_n-\xi|^p)=0$ . Ekkor a Markov egyenlőtlenséget felhasználva

$$\lim_{n \to \infty} P\Big(\omega \in \Omega \Big| \big| \xi_n(\omega) - \xi(\omega) \big| > \varepsilon\Big) = \lim_{n \to \infty} P\Big(\omega \in \Omega \Big| \big| \xi_n(\omega) - \xi(\omega) \big|^p > \varepsilon^p\Big) \le \lim_{n \to \infty} \frac{E\Big( |\xi_n - \xi|^p \Big)}{\varepsilon^p} = 0.$$

### 11. Határértéktételek

### 11.1. Centrális határeloszlás tétel

Adottak  $(\xi_n)_{n\in\mathbb{N}}$  független, azonos eloszlású valószínűségi változók. Ekkor

$$P\left(\frac{\sum_{i=1}^{n} \xi_i - nE(\xi_1)}{\sqrt{n}\sigma(\xi_1)} < x\right) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

### 11.2. DeMoivre-Laplace tétel

A (n,p) paraméterű binomiális eloszlás sztochasztikusan konvergál a  $\left(np,\sqrt{np(1-p)}\right)$  paraméterű normális eloszláshoz.

#### Bizonvítás

Jelöljenek  $(\xi_i)_{i\leq n\in\mathbb{R}}$  független változók egy olyan eseményt, melyre  $\forall P(\xi_i=1)=p, P(\xi_i=0)=1-p.$  Ekkor

$$P\left(\sum_{i=1}^{n} \xi_i = m\right) = \binom{n}{m} p^m (1-p)^{n-m}$$

tehát az összeg binomiális eloszlású. Ezen felül  $\forall E(\xi_i) = p, \sigma(\xi_i) = \sqrt{p(1-p)}$ . Ekkor a centrális határeloszlás tételből

$$P\left(\frac{\sum_{i=1}^{n} \xi_i - np}{\sqrt{np(1-p)}} < x\right) \to \Phi(x)$$

amiből

$$P\left(\sum_{i=1}^{n} \xi_i < \sqrt{np(1-p)}x + np\right) \to \Phi(x).$$

Legyen  $z = \sqrt{np(1-p)}x + np$ , így

$$P\left(\sum_{i=1}^{n} \xi_i < z\right) \to \Phi\left(\frac{z - np}{\sqrt{np(1-p)}}\right).$$

Ezzel beláttuk az állítást.

### 11.3. Nagy számok gyenge törvénye

Adottak  $(\xi_n)_{n\in\mathbb{N}}$  független, azonos eloszlású valószínűségi változók. Ekkor

$$\lim_{n \to \infty} P\left( \left| \frac{\sum_{i=1}^{n} \xi_i}{n} - E(\xi_1) \right| > \varepsilon \right) = 0$$

tehát a valószínűségi változók számtani közepe sztochasztikusan konvergál a várható értékhez.

#### Bizonvítás

A Csebisev egyenlőséget felírva

$$\lim_{n \to \infty} P\left(\left|\frac{\sum_{i=1}^n \xi_i}{n} - E(\xi_1)\right| \ge \varepsilon\right) \le \lim_{n \to \infty} \frac{\sigma^2\left(\frac{\sum_{i=1}^n \xi_i}{n}\right)}{\varepsilon^2} = \lim_{n \to \infty} \frac{1}{\varepsilon^2 n} \sigma^2(\xi_1) = 0.$$

Tehát valóban teljesül a sztochasztikus konvergencia feltétele.

Valószínűségszámítás 12. STATISZTIKA

### 12. Statisztika

### 12.1. Minta

Mintának nevezzük a  $(\xi_i)$  mintavételi változók összességét. A nagyság szerint növekvő sorrendbe rendezett elemeket  $(\xi_i^*)$ -al jelöljük.

### 12.1.1. Középérték

A minta középértéke

$$\overline{\xi} = \frac{\sum_{i=1}^{n} \xi_i}{n}.$$

### 12.1.2. Empirikus szórás

A minta empirikus szórása

$$\sigma_n = \sqrt{\frac{\sum_{i=1}^n \left(\xi_i - \overline{\xi}\right)^2}{n}}.$$

#### 12.1.3. Középpont

A minta középpontja

$$\frac{\xi_1^* + \xi_n^*}{2}.$$

#### 12.1.4. Medián

A minta mediánja

$$\begin{cases} \xi_k^* & n = 2k - 1 \\ \frac{\xi_k^* + \xi_{k+1}^*}{2} & n = 2k \end{cases}.$$

### 12.1.5. Terjedelem

A minta terjedelme

$$\xi_n^* - \xi_1^*$$
.

#### 12.1.6. Empirikus eloszlásfüggvény

A minta empirikus eloszlásfüggvénye

$$F_n(x) = \begin{cases} 0 & x \le \xi_1^* \\ \frac{k}{n} & \xi_k^* < x \le \xi_{k+1}^* \\ 1 & \xi_n^* < x \end{cases}.$$

#### 12.1.6.1. Gilvenkó tétel

$$P\left(\lim_{n \to \infty} \left( \sup_{-\infty < x < \infty} |F_n(x) - F(x)| \right) = 0 \right) = 1$$

tehát az empirikus eloszlásfüggvény 1-valószínűséggel konvergál F(x)-hez.

### 12.1.7. Empirikus sűrűségfüggvény

A minta empirikus sűrűségfüggvénye

$$f(x) = \frac{k(x+h) - k(x)}{nh}$$

ahol k(x) azon mintaelemek száma, melyek értéke kisebb, mint x.

Valószínűségszámítás 12. STATISZTIKA

### 12.2. Becslés

Adott

- 1.  $\xi$  megfigyelt valószínűségi változó
- 2.  $\theta \xi$  eloszlása
- 3.  $(\xi_i)$   $\xi$ -ből vett *n*-elemű minta.

A becslés célja, hogy készítsünk egy

$$\hat{\theta} = f(\xi_1, \xi_2, \dots, \xi_n)$$

függvényt, mellyel becsüljük  $\theta$ -t.

#### 12.2.1. Tulajdonságok

- 1. A becslés torzítatlan, ha  $E(\hat{\theta}) = \theta$ .
- 2.  $\hat{\theta}_1$  hatásosabb, mint  $\hat{\theta}_2$ , ha  $\sigma(\hat{\theta}_1) < \sigma(\hat{\theta}_2)$ .
- 3. A  $(\hat{\theta}_n)$  sorozat aszimptotikusan torzítatlan, ha  $\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$ .
- 4. A becslés elégséges, ha a változók együttes feltételes eloszlása bármilyen  $\hat{\theta} = y$  feltétel esetén nem tartalmazza a becsült  $\theta$  paramétert.
- 5. A becslés konzisztens, ha torzzítatlan és  $\hat{\theta} \overset{m.m.}{\longrightarrow} \theta.$

#### 12.2.2. Tétel

A minta középértéke torzítatlan becslése a várható értéknek.

### 12.2.3. Tétel

A minta középértékének szórása 0-ba konvergál.

#### 12.2.4. Tétel

A minta középértéke a várható érték leghatásosabb lineáris becslése.

### 12.2.5. Tétel

A minta empirikus szórásnégyzete nem torzítatlan becslése a szórásnégyzetnek.

#### 12.2.5.1. Korrigált empirikus szórásnégyzet

A minta korrigált empirikus szórásnégyzete

$$s_n^2 = \frac{n}{n-1}\sigma_n^2.$$

A korrigált empirikus szórásnégyzet torzítatlan becslése a szórásnégyzetnek.

### 12.3. Maximum likelihood estimation

Az MLE során az  $L(\theta)$  likelihood függvényt kell maximalizálnunk, ahol n független minta esetén

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta).$$

Hasonló elv alapján az  $l(\theta)$  log likelihood függvény is elég maximalizálnunk, ahol

$$l(\theta) = \ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i|\theta).$$

Valószínűségszámítás 12. STATISZTIKA

### 12.4. Konfidenciaintervallum

A  $\hat{\theta}$  becsléshez tartozó  $(\hat{\theta} - z, \hat{\theta} + z)$  konfidenciaintervallumról azt mondjuk, hogy  $100(1-\alpha)\%$ -os megbízhatósági szinthez tartozik, ha  $1-\alpha$  valószínűséggel a ténylegesen meghatározott intervallum lefedi a becsült paraméter valódi értékét.

### 12.4.1. Normális eloszlás ismert szórással

Becsüljük  $E(\xi) = m$ -t a középértékkel! Definiáljunk egy új változót

$$\eta = \frac{\overline{\xi} - m}{\frac{\sigma}{\sqrt{n}}}$$

így  $\eta$ standard normális eloszlású. Ekkor kell

$$P(-z < \eta < z) = \Phi(z) - \Phi(-z) = 2\Phi(z) - 1 = 1 - \alpha$$

amiből $\Phi(z)=1-\frac{\alpha}{2},$ amibőlzmeghatározható. Ekkor

$$-z < \frac{\overline{\xi} - m}{\frac{\sigma}{\sqrt{n}}} < z$$

$$\overline{\xi} - z \frac{\sigma}{\sqrt{n}} < m < \overline{\xi} + z \frac{\sigma}{\sqrt{n}}$$

tehát a konfidenciaintervallum

$$\left(\overline{\xi} - z \frac{\sigma}{\sqrt{n}}, \overline{\xi} + z \frac{\sigma}{\sqrt{n}}\right).$$

#### 12.4.2. Nem normális eloszlás ismert szórással

Becsüljük  $E(\xi) = m$ -t a középértékkel! A centrális határeloszlás tételből

$$P\left(\frac{\sum_{i=1}^{n} \xi_i - nE(\xi_1)}{\sqrt{n}\sigma(\xi_1)} < z\right) \approx \Phi(z).$$

Tehát

$$P\left(\frac{\left|\overline{\xi} - m\right|}{\frac{\sigma}{\sqrt{n}}}\right) < z \approx 2\Phi(z) - 1 = 1 - \alpha$$

amiből a konfidenciaintervallum

$$\left(\overline{\xi}-z\frac{\sigma}{\sqrt{n}},\overline{\xi}+z\frac{\sigma}{\sqrt{n}}\right).$$