Particle Filter

- Recall: Discrete filter
 - Discretize the continuous state space
 - High memory complexity
 - Fixed resolution (does not adapt to the belief)
- Particle filters are a way to efficiently represent non-Gaussian distributions
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Mathematical Description

Set (actually a multi-set) of weighted samples

$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$
 state hypothesis importance weight

The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[i]}(x)$$

 $\begin{cases} 1 & \text{if } x = s^{[i]} \\ 0 & \text{otherwise} \end{cases}$

Function Approximation

Particle sets can be used to approximate functions

 The more particles fall into an interval, the higher the probability of that interval

Bayes Filter with Particle Sets

Measurement update

$$Bel(x) \leftarrow p(z|x)\overline{Bel}(x)$$

$$= p(z|x) \sum_{i} w_{i} \, \delta_{s[i]}(x) = \sum_{i} p(z|s^{[i]}) \, w_{i} \, \delta_{s[i]}(x)$$

Motion update

$$\overline{Bel}(x) \leftarrow \int p(x \mid u, x') Bel(x') dx'$$

$$= \int p(x \mid u, x') \sum_{i} w_{i} \, \delta_{s[i]}(x') dx' = \sum_{i} p(x \mid u, s^{[i]}) \, w_{i}$$

Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- w = f/g
- f is called target
- g is called proposal
- Pre-condition:

$$f(x) > 0 \rightarrow g(x) > 0$$

Particle Filter Algorithm

Sample the next generation of particles using the proposal distribution

Compute the importance weights:

weight = target distribution / proposal distribution

Resampling: "Replace unlikely samples by more likely ones"

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , u_t , z_t) returns S_t :
- 2. $S_t = \emptyset$, $\eta = 0$ 3. **For** i = 1, ..., n

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_t)$ using $x_{t-1}^{j(i)}$ and u_t
- $6. w_t^i = p(z_t \mid x_t^i)$
- 7. $h = h + w_t^i$ Update normalization for $S_t = S_t \stackrel{.}{\to} \{ \langle x_t^i, w_t^i \rangle \}$ Add to new particle set

Compute importance weight

Update normalization factor

Normalize weights

Particle Filter Algorithm

Resampling

• Given: Set S of weighted samples.

• Wanted: Random sample, where the probability of drawing x_i is given by w_i .

 Typically done n times with replacement to generate new sample set S'.

Resampling

- Roulette wheel
- Binary search, O(n log(n))

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity O(n)
- Easy to implement, low variance

Resampling Algorithm

1. Algorithm **systematic_resampling**(*S*,*n*):

2.
$$S' = \emptyset, c_1 = w^1$$

3. **For** $i = 2...n$

Generate cdf

4.
$$c_i = c_{i-1} + w^i$$

5. $u_1 \sim U[0, n^{-1}], i = 1$ Initialize threshold

6. For
$$j = 1...n$$

sample from the uniform distribution in '

 $(0, n^{-1}]$

Draw samples ...

7. While
$$(u_i > c_i)$$

While $(u_i > c_i)$ Skip until next threshold reached

8.
$$i = i + 1$$

8.
$$i = i + 1$$
9. $S' = S' \cup \{ < x^i, n^{-1} > \}$ Insert
10. $u_{j+1} = u_j + n^{-1}$ Increment threshold

$$10. u_{j+1} = u_j + n^{-1}$$

11. Return S'

Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model arbitrary and thus also non-Gaussian distributions
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter