F20T3A5

Berechnen Sie für alle $a \in \mathbb{R}$ die allgemeine Lösung der Differentialgleichung $x''(t) + x(t) = \sin(at)$.

Untersuchen Sie, für welche Werte des Parameters a jede Lösung $\Phi : \mathbb{R} \to \mathbb{R}$ unbeschränkt ist.

Lösung:

Dies ist eine inhomogene lineare DGL zweiter Ordnung. Die zugehörige homogene lineare DGL x'' + x = 0 hat das charakteristische Polynom $z^2 + 1 = (z+i)(z-i)$, also die unabhängigen komplexwertigen Lösungen $v_1: \mathbb{R} \to C$; $t \to e^{it}$, $v_2: \mathbb{R} \to C$; $t \to e^{-it}$ bzw. die linear unabhängigen reellwertigen Lösungen $w_1: \mathbb{R} \to \mathbb{R}$; $t \to \sin(t)$, $w_2: \mathbb{R} \to \mathbb{R}$; $t \to \cos(t)$.

Damit ist $\mathcal{L} = \{c_1w_1 + c_2w_2 : \mathbb{R} \to \mathbb{R}; t \to c_1\sin(t) + c_2\cos(t) : c_1, c_2 \in \mathbb{R}\}$ der Lösungsraum von x'' + x = 0 und mit einer Lösung $\mu : \mathbb{R} \to \mathbb{R}$ von $x'' + x = \sin(at)$ ergibt sich der Lösungsraum $\mathcal{L}_a = \{\mu + c_1w_1 + c_2w_2 : \mathbb{R} \to \mathbb{R}; t \to \mu(t) + c_1\sin(t) + c_2\cos(t) : c_1, c_2 \in \mathbb{R}\}$ von $x'' + x = \sin(at)$.

Für $\mu_{a,b}(t) := be^{iat}$ ist $\mu'_{a,b}(t) = iabe^{iat}$ und $\mu''_{a,b}(t) = (ia)^2 be^{iat} = -a^2 be^{iat}$, also $\mu''_{a,b}(t) + \mu_{a,b}(t) = (1 - a^2)be^{iat}$.

- i) Für $a^2 \neq 1$ ist $b \coloneqq \frac{1}{1-a^2} \in \mathbb{R}$, also $\mu''_{a,\frac{1}{1-a^2}}(t) + \mu_{a,\frac{1}{1-a^2}}(t) = e^{iat}$ und durch Bilden des Imaginärteils folgt $\mu_a = IM\left(\mu_{a,\frac{1}{1-a^2}}\right) : \mathbb{R} \to \mathbb{R}; t \to \frac{1}{1-a^2}\sin\left(at\right)$ als eine Lösung von $x'' + x = \sin(at)$, d.h. der Lösungsraum ist gegeben durch $\mathcal{L}_a = \left\{\mathbb{R} \to \mathbb{R}; t \to \frac{1}{1-a^2}\sin(at) + c_1\sin(t) + c_2\cos(t) : c_1, c_2 \in \mathbb{R}\right\}$; jede dieser Lösungen ist beschränkt.
- ii) Für $a=\pm 1$ benötigen wir einen anderen Ansatz, nämlich $\lambda_b(t)\coloneqq bt\ e^{it}$. Dieser liefert $\lambda_b'(t)=be^{it}(1+it)$ und $\lambda_b''(t)=be^{it}(2i-t)$, also $\lambda_b''(t)+\lambda_b(t)=2ibe^{it}$. Somit gilt: $\lambda_{\frac{1}{2i}}$ löst $x''+x=e^{it}$, und durch Bilden des Imaginärteils bekommen wir $\lambda_1\coloneqq IM\left(\lambda_{\frac{1}{2i}}\right)\colon\mathbb{R}\to\mathbb{R}; t\to IM\left(\frac{1}{2i}te^{it}\right)=-\frac{t}{2}\cos(t)$ als Lösung von x"+x=sin(t). Der Lösungsraum ist also $\mathcal{L}_1=\left\{\mathbb{R}\to\mathbb{R}; t\to -\frac{t}{2}\cos(t)+c_1\sin(t)+c_2\cos(t):c_1,c_2\in\mathbb{R}\right\}$ und alle hier enthaltenen Lösungen sind unbeschränkt.

Analog findet man $\lambda_{-1} \coloneqq IM\left(\lambda_{\frac{1}{-2i}}\right) \colon \mathbb{R} \to \mathbb{R}; t \to IM\left(\frac{1}{-2i}te^{-it}\right) = \frac{t}{2}\cos(t)$ als Lösung von x"+x=sin(-t). Der Lösungsraum ist also $\mathcal{L}_{-1} = \left\{\mathbb{R} \to \mathbb{R}; t \to \frac{t}{2}\cos(t) + c_1\sin(t) + c_2\cos(t) : c_1, c_2 \in \mathbb{R}\right\}$ und alle hier enthaltenen Lösungen sind unbeschränkt.