Kvantemekanik, afl. 2

Gorm Balle Feldstedt

Betragt det uendelige brøndpotential $V(x) = \begin{cases} 0, & 0 \le x \le a \\ \infty, & \text{ellers} \end{cases}$ indeholdende en partikel med massen m. Til tiden t=0 er partiklen beskrevet ved bølgefunktionen $\Psi(x,0) = \begin{cases} A & 0 \le x \le a \\ 0 & \text{ellers} \end{cases}$.

1) Bestem normeringskonstanten A.

$$1 = \int_0^a |\Psi|^2 dx = A^2 a$$
$$A = 1/\sqrt{a}$$

2) Bestem sandsynligheden for energien E_1 Først bestemmes c_n ved ligning [2.40].

$$c_n = \sqrt{\frac{2}{a}} \int_0^a \sin \frac{n\pi x}{a} \frac{1}{\sqrt{a}} dx$$
$$= \frac{\sqrt{2}}{a} \int_0^a \sin \frac{n\pi x}{a} dx$$
$$= \frac{\sqrt{2}}{a} \left[-\frac{a}{n\pi} \cos \frac{n\pi x}{a} \right]_0^a$$
$$= -\frac{\sqrt{2}}{n\pi} \left[\cos \frac{n\pi x}{a} \right]_0^a$$

 $\mathrm{Med}\ n=1$ får vi

$$p(E_1) = c_1^2 = \left(-\frac{\sqrt{2}}{\pi}(-2)\right)^2$$

= $\frac{8}{\pi^2}$

3) Bestem sandsynligheden for energien E_2

$$p(E_2) = c_2^2 = \left(-\frac{\sqrt{2}}{2\pi} \left[\cos\frac{2\pi x}{a}\right]_0^a\right)^2 = 0$$