

Travaux Dirigés Libres n°2 : Électronique 1

Exercice $n \circ 1$: Notation complexe

On considère les courants électriques sinusoïdaux suivant :

$$i_1(t) = I_1 \sqrt{2} \sin(\omega t + \varphi_1)$$
 et $i_2(t) = I_2 \sqrt{2} \sin(\omega t + \varphi_2)$.

On suppose que : I_1 \rangle I_2 et O \langle $arphi_1$ \langle $arphi_2$

Par une méthode de votre choix « Fresnel ou notation complexe », calculer :

1°) La somme
$$i(t)=i_1(t)+i_2(t)$$
 par une recherche de I_S et $arphi_S$.

$${f 2}$$
) La dérivée ${di(t)\over dt}$ par une recherche de I_d et $arphi_d$.

3°) L'intégrale
$$\int i\left(t
ight)\,dt$$
 par une recherche de I_i et $arphi_i$.

4%) Le produit
$$i_p(t)=i_1(t) imes i_2(t)$$
 par une recherche de I_p et $arphi_p$.

Exercice n^2 : Impédance complexe et admittance complexe

- **1°)** Déterminer l'impédance complexe \underline{Z} et l'admittance complexe \underline{Y} des dipôles schématisés ci-dessous.
- 2°) En déduire pour chacun :
 - **a°)** l'impédance Z et l'admittance Y
 - **b°)** le déphasage φ de l'impédance et le déphasage ψ de l'admittance.
 - c°) la résistance du dipôle R et la conductance du dipôle G.
 - d°) la réactance du dipôle X et la susceptance du dipôle B.

<u>Dipôles élémentaires :</u>

Dipôles quelconques :

Exercice n°3: Dipôles en régime alternatif sinusoïdal

Pour les six circuits proposés ci-dessous, on demande d'abord de calculer les caractéristiques du dipôle suivantes :

- L'impédance complexe <u>Z</u>, la résistance du dipôle R, la réactance du dipôle X, l'impédance réelle Z et le déphasage φ.
- L'admittance complexe \underline{Y} , la conductance du dipôle G, la susceptance du dipôle B, l'admittance réelle Y et le déphasage ψ .

Vous répondez ensuite aux questions relatives à chaque circuit.

- **1°)** Exprimer \underline{u} en fonction de C1, C2 et \underline{e} .
- **2**°) En déduire la relation entre u et e et le déphasage entre ces deux tensions.
- 3°) Calculer u.

A.N. $C_1 = 100 \text{ nF}, C_2 = 10 \text{ nF}, E = 10 \text{ V}.$

u

Circuit n°2

On donne: $R = 12 \Omega$; L = 2 mH; $U_{\text{eff}} = 1 \text{ V}$; f = 1 kHz.

- **1°)** Déterminer l'expression de l'impédance complexe du dipôle $AB: Z_{AB}$
- **2°)** En déduire l'impédance Z_{AB} (en Ω).
- **3°)** Calculer le courant efficace I_{eff} et les tensions efficaces $U_{R eff}$ et $U_{L eff}$.
- **4°)** Calculer le déphasage entre u et $i : \varphi_{u/i}$ (en °).
- **5°)** En déduire le déphasage entre u et u_L : $\varphi_{u/uL}$ (en °).

Circuit n°3

La bobine d'un électroaimant est équivalente à une bobine parfaite d'inductance L en série avec une résistance interne r.

Elle est alimentée par une tension sinusoïdale alternative de valeur efficace U_{eff} = 230 V et de fréquence f = 50 Hz.

La bobine consomme 50 watts et un courant efficace I_{eff} = 0,5 A.

- 1°) Calculer sa résistance interne r.
- 2°) Calculer son impédance Z.
- **3°)** En déduire son inductance L.
- **4°)** Calculer son facteur de puissance $\cos \varphi$ (φ désigne le déphasage entre tension u et courant i).

Circuit n°4

- **1°)** Calculer les tensions efficaces $U_{R eff}$ et $U_{C eff}$.
- **2°)** Déterminer l'expression de l'impédance complexe du dipôle $AB : \underline{Z}_{AB}$
- **3°)** Calculer l'impédance Z_{AB} (en Ω).
- **4°)** Calculer U_{eff}.
- **5°)** Calculer le déphasage entre u et $i : \varphi_{u/i}$ (en °).

On donne : $R = 4.7 \text{ k} \Omega$; C = 5.6 nF ; $I_{eff} = 400 \text{ }\mu\text{A}$; f = 10 kHz.

Circuit n°5

On donne U = 10 V, f = 50 Hz, R = 10 $k\Omega$ et C = 1 μF .

- **1**°) Calculer I_R et I_C .
- **2°)** Calculer I et $\varphi_{u/i}$ (au préalable, déterminer l'admittance complexe équivalente : \underline{Y}_{AB}).

Circuit n°6

- **1°)** Montrer que l'impédance complexe du circuit peut s'écrire : $\underline{Z} = R j \frac{L\omega}{LC\omega^2 1}$
- **2°)** Pour quelle fréquence le courant i est-il nul ?

A.N. $L = 10 \mu H$, C = 22 nF.

Exercice n°4: Théorèmes généraux

En utilisant une méthode de votre choix, calculer pour chacun des circuits linéaires proposés ci-dessous, le courant i(t) circulant dans l'élément placé entre les points A et B, ainsi que la tension u(t) lui correspondant.

On suppose, pour le calcul, que la forme des sources de tension $e_g(t)$ et de courant $i_g(t)$ est exprimée respectivement comme suit :

$$e_g(t) = E_g \sqrt{2} \sin(\omega t + \varphi_{e_g})$$
 et $i_g(t) = I_g \sqrt{2} \sin(\omega t + \varphi_{i_g})$

Le résultat de calcul de courant i(t) et celui de la tension u(t) est linéaire, il doit avoir la même forme que celle de la source :

$$i(t) = I\sqrt{2}\sin(\omega t + \varphi_i)$$
 et $u(t) = U\sqrt{2}\sin(\omega t + \varphi_u)$

Pr. A. BAGHDAD TDL n°2 «Électronique 1 » 5/6

