Proteomics data analysis in cancer biology with Matlab

Table of Contents

Author Information	1
Summary	1
Loading pre-processed dataset	
Initializing variables	
Visualizing a set of the samples	
Ranking features	
Other possible approaches	

Author Information

- Felix E. Rivera-Mariani, PhD
- Date: 08/14/2017
- Github repository: https://github.com/friveramariani/Proteomic-Examples

Summary

This report represents an example Matlab proteomic data analysis. The dataset analyzed in this report can be found here, which is the FDA-NCI Clinical Proteomics Program Databank. The samples downloaded from the FDA-NIC Proteomics Programa Databank correspond to SELDI Mass-Spec profiles of ovarian cancer samples: Cancer Group vs Normal Group. The study related to this dataset was published, in 2004, in the Endocrine Related Cancer journal. Briefly, after transforming the Mass-Spec data, some variables were initialized to facilitate the downstream workflow, visualization of Mass-Spec profiles performed, and lastly the features ranked with t-test statistic.

Loading pre-processed dataset

After preprocessing the dataset into .mat format (find the code here, the dataset was loaded.

load OvarianCancerQAQCdataset
whos

Name	Size Attributes	Bytes	Class
Cidx	216x1	216	logical
Cvec	121x1	968	double
MZ	15000x1	120000	double
N	1x1	8	double

Nidx	216x1	216	logical
Nvec	95x1	760	double
Y	15000x216	25920000	double
ans	1x10	80	double
feat	100x1	800	double
grp	216x1	26784	cell
hC matlab.graphi	10x1 cs.chart.primitive.Line	0	
hN	10x1	0	
	cs.chart.primitive.Line		
max_C	15000x1	120000	double
max_N	15000x1	120000	double
mean_C	15000x1	120000	double
mean_N	15000x1	120000	double
min_C	15000x1	120000	double
min_N	15000x1	120000	double
sig_Masses	100x1	800	double
stat	15000x1	120000	double
xAxisLabel	1x17	34	char
yAxisLabel	1x13	26	char

Initializing variables

A set of vector variables, which will be used in the downstream workflow, are initialized.

```
% vector of number of samples
N = numel(grp);
Cidx = strcmp('Cancer',grp);
                                        % logical index vector for
 Cancer samples' group
Nidx = strcmp('Normal',grp);
                                        % logical index vector for
Normal samples' group
                                        % index vector for Cancer
Cvec = find(Cidx);
 samples
Nvec = find(Nidx);
                                        % index vector for Normal
 samples
xAxisLabel = 'Mass/Charge (M/Z)';
                                        % x-axis label for plots
yAxisLabel = 'Ion Intensity';
                                        % y-axis label for plots
```

Visualizing a set of the samples

Fine below the spectogram of 10 samples. Figure 1 corresponds to original spectogram, while figure 2 to a zoomed spectrogram.

```
figure; hold on;
hC = plot(MZ,Y(:,Cvec(1:10)),'b');
hN = plot(MZ,Y(:,Nvec(1:10)),'g');
xlabel(xAxisLabel); ylabel(yAxisLabel);
axis([2000 12000 -5 60])
legend([hN(1),hC(1)],{'Control Group','Ovarian Cancer'})
title('Figure 1: Spectrograms of 10 Samples')

figure; hold on;
hC = plot(MZ,Y(:,Cvec(1:10)),'b');
hN = plot(MZ,Y(:,Nvec(1:10)),'g');
xlabel(xAxisLabel); ylabel(yAxisLabel);
axis([8000 9000 -1 7])
legend([hN(1),hC(1)],{'Control Group','Ovarian Cancer'})
title('Figure 2: Zoomed Spectrograms of 10 Samples')
```


Ranking features

Significant masses were identified using a two-way t-statistic. After ranking the features, a set of variables were initialized to generate the plot (figure 3) for the spectogram with two-way t-statistic.

```
[feat,stat] = rankfeatures(Y,grp,'CRITERION','ttest','NUMBER',100);
sig Masses = MZ(feat);
sig_Masses(1:10)' %display the first 10 significant masses
mean_N = mean(Y(:,Nidx),2); % group average for control samples
\max_{N} = \max(Y(:,Nidx),[],2); % top envelopes of the control samples
\min_{N} = \min(Y(:,Nidx),[],2); % bottom envelopes of the control samples
mean_C = mean(Y(:,Cidx),2); % group average for cancer samples
\max_{C} = \max(Y(:,Cidx),[],2); % top envelopes of the control samples
\min_{C} = \min(Y(:,Cidx),[],2); % bottom envelopes of the control samples
figure;
yyaxis left
plot(MZ, [mean_N mean_C]);
ylim([-1,20])
xlim([8000,9000])
title('Figure 3: Significant M/Z Values')
xlabel(xAxisLabel);
ylabel(yAxisLabel);
```

```
yyaxis right
plot(MZ,stat);
ylim([-1,22])
ylabel('Test Statistic');
legend({'Control Group Avg.', 'Cancer Group Avg.', 'Test Statistics'})
ans =
   1.0e+03 *
  Columns 1 through 7
    8.1009
              8.1016
                         8.1024
                                    8.1001
                                              8.1032
                                                        7.7366
                                                                   7.7359
  Columns 8 through 10
    7.7374
              7.7253
                         7.7245
```


Other possible approaches

Although not performed in this example proteomic data analysis, other approaches that could have been added include:

Proteomics data analysis in cancer biology with Matlab

- 1. identify the amino acid sequences of the statistically significant features
- 2. and identify the proteins by matching amino acid sequences to databases.

In future *"omics" data analysis in Matlab, as well as in R and Python more thorough and detailed workflow will be shared.

Published with MATLAB® R2017a