NEW REGULARIZATION TECHNIQUE FOR MRI SENSE RECONSTRUCTION IN STUDIES OF CORONARY ANGIOGRAPHY

Author:

uc3m Universidad
Carlos III
de Madrid

ANDRÉS MARTÍNEZ MORA

Director:

BORJA IBÁÑEZ CABEZA (CNIC)

Tutor:

MÓNICA ABELLA GARCÍA (UC3M)

INTRODUCTION MOTIVATION & OBJECTIVES

MAGNETIC RESONANCE IMAGING (MRI)

MR CORONARY ANGIOGRAPHY (CORONARY MRA)

- Bright and intense blood ("bright blood") → high signal
- Dark and weak myocardium and skeletal muscle → low signal

High contrast

Standard set by Computer Tomography Angiography (CTA). However:

- No ionizing radiation
- No contrast media
- Non-invasive
- BUT... Too much time (About 3 min in MRA vs few seconds in CTA)

Acquisition time has to be reduced

Coronary CTA

Conventional chest MRI

Coronary MRA

SENSITIVITY ENCODING (SENSE) RECONSTRUCTION

Reduce samples to acquire: $SENSE\ factor = \frac{Total\ samples}{Acquired\ samples}$ Reduce time BUT aliasing (folding)

Several receiver coils at the same time \rightarrow Parallel imaging \rightarrow Sensitivity maps (Normalization with the Q-body coil) \rightarrow Sensitivity matrices: S

a: unfolded voxels

z: folded voxels

UNFOLDING PROCESS

 $z=S\cdot a \rightarrow Compute the pseudoinverse with the conjugate transpose$

 $a = U \cdot z$ (Unfolding equation) Where $U = (S^H \cdot S)^{-1} \cdot S^H$ (Unfolding matrix)

Noise amplification

As SENSE factor increases Receiver coils' geometry may be defective

REGULARIZATION

REGULARIZATION

- 1) Tikhonov regularization: $U = (S^H \cdot S + \lambda I)^{-1} \cdot S^H$
 - Too low $\lambda \rightarrow$ INEFFECTIVE
 - Too high $\lambda \rightarrow$ too far from SENSE \rightarrow folding artifacts
- 2) Singular Value Decomposition (SVD): $S = X \cdot diag(Singular \ values) \cdot Y^H$
 - High Singular Values → high contribution of voxels to unfold
 - Low Singular Values \rightarrow Noise \rightarrow TRUNCATION by a certain factor (normally 10^{-5}) \rightarrow Remove noise

Combined with Tikhonov, the final expression is: $U = Y \cdot diag \left(\frac{Singular \, values}{Singular \, values^2 + \lambda \cdot Largest \, singular \, value^2} \right) \cdot X^H$

- 3) Introduction of prior information from the Q-body coil.
 - → Multiplication to sensitivity maps and SENSE-reconstructed volume

OBJECTIVE: STUDY ALTERNATIVE PRIOR INFORMATION TO FURTHER INCREASE SNR IN SENSE-RECONSTRUCTED IMAGES

OBJECTIVE ACHIEVEMENT

- → Implementation of a new regularization technique that takes as alternative prior an initial low-pass (LP) filtered SENSE reconstruction for a second and definitive SENSE reconstruction \rightarrow try to enhance image quality.
 - Initial reconstruction \rightarrow use a combination of Tikhonov + SVD (λ_1) together with prior information from the Q-body coil.
 - Second and definitive reconstruction \rightarrow use a combination of Tikhonov + SVD (λ_2) together with the LP filtered initial reconstruction as prior.
- → Results comparison with state of-the-art methods in terms of SNR and CNR.

Q-body coil image → Prior for current methods. All tissues bright

Pre-reconstructed low-pass filtered image → Alternative prior. All tissues attenuated except for blood.

MATERIALS & METHODS

PROPOSED ALGORITHM

DATA ACQUISITION

- Coronary MRA \rightarrow performed in a healthy volunteer in a 3T MR Philips scan at CNIC.
- The "bright-blood" MR sequence was acquired in 3D and isotropically $\rightarrow 1.5 \times 1.5 \times$ Field of View (FOV) of 350x500x300 mm³ in the thorax.
- Fat was suppressed → further increase contrast.
- Movement compensation \rightarrow minimize the impact of movement artifacts.
- Header and data files were produced → imported and read in IDL

K-space data Surface coil data Surface coils' sensitivity maps

ALGORITHM EVALUATION

Carried out for the following regularization methods:

- State-of-the-art method without prior information.
- State-of-the-art method with prior information from the Q-body coil.
- Proposed method with prior information from a median filtered pre-reconstructed image.
- Proposed method with prior information from a mean filtered pre-reconstructed image.
- <u>Visual comparison</u>: regularized images with the four methods for Tikhonov factors $\lambda_1 = 10^{-1}$ and $\lambda_2 = 10^{-2}$, the limiting ones without folding artifacts.
- Quantitative comparison: SNR and CNR measurements for Tikhonov factors $\lambda_1 = 10^{-1}$ and λ_2 between 10^{-3} and 1, the limiting ones denoising the most but without introducing folding artifacts. Taken in different tissues:

Blood

Myocardial muscle

Skeletal muscle (*pectoralis*)

$$SNR = \frac{\mu (any tissue)}{\sigma (any tissue)}$$

$$CNR(tissue - blood) = \frac{\mu(blood) - \mu(myocardial \ or \ skeletal \ muscle)}{\sigma(blood)}$$
11

RESULTS

VISUAL EVALUATION

State-of-the-art with Q-body coil

Proposed method with median filter

Proposed method with mean filter

PRIORS USED:

State-of-the-art without prior ---State-of-the-art with Q-body coil --- Proposed method with median filter --- Proposed method with mean filter

PRIORS USED:

State-of-the-art with Q-body coil

Proposed method with median filter

Proposed method with mean filter

QUANTITATIVE EVALUATION (CNR)

State-of-the-art without prior State-of-the-art with Q-body coil --- Proposed method with median filter --- Proposed method with mean filter

PRIORS USED:

State-of-the-art with Q-body coil

Proposed method with median filter

Proposed method with mean filter

DISCUSSION & CONCLUSIONS

COMPARISON BETWEEN METHODS

State-of-the-art with Q-body coil prior information

Proposed algorithm

- 1) The background noise removal of the Q-body coil regularization avoids noise propagation to the inner tissues \rightarrow SNR and CNR enhancement in comparison with no using any prior
- Values similar to the state-of-the-art methods → Background noise removal with the new prior allowed for SNR and CNR enhancement, while attenuated tissues hardly contributed to SNR and CNR enhancement. However, some folding artifacts have been removed.
- 2) The algorithm is not able to totally unfold aliased voxels for λ_1 , $\lambda_2 > 10^{-1} \rightarrow$ folding artifacts \rightarrow worse SNR and CNR than state-of-the-art methods for those λ values.
- 3) Results almost identical with a mean filtered prior or with a median filtered prior of the pre-reconstruction → Independent from the Low Pass (LP) filter used.

THE ALGORITHM PROVIDES SIMILAR RESULTS TO THE STATE-OF-THE-ART METHODS THAT WORK JUST WITH PRIOR INFORMATION FROM THE Q-BODY COIL → THEY DO NOT FURTHER ENHANCE SNR AND CNR.

FUTURE WORK

Short term future

Look for:

- 1) Applying the algorithm under higher levels of noise induced by higher SENSE factors.
- 2) Applying the algorithm in contrast-enhanced coronary MRA.

Long term future

- If what is tested in the short-term future is better than state-of-the-art → test the algorithm in more cases and evaluate it in an MR workstation in real time.
- If what is tested in the short-term future keeps being similar to the state-of-the-art → look for alternative regularization methods as Total Variation (TV) or Bregman regularization as substitute for Tikhonov regularization in the algorithm.

THANK YOU FOR YOUR ATTENTION!