B.Tech. (CSBC) I Semester Discrete Mathematics: Unit III Tutorial Problems (Function, Group, Ring and Field)

Function

1. If
$$(x) = 6x^3 + 4x - 5$$
, find $f(1)$, $f(-2)$

Ans.:
$$f(1) = 5$$
, $f(-2) = -61$

2. Check if the following functions are odd/ev even: x^2+1 , $x\sin x$, $x^2\cos x$, x^3

Ans.: even, even ,even & odd

3. If
$$f(x)=3x^4-5x^2+7$$
 then find $f(x-1)$.

Ans.:
$$3x^4-12x^3+13x^2-2x+5$$

4. If
$$f(x)=f(3x-1)$$
 such that $f(x)=x^2-4x+11$ then find x.

5. If f (x) =
$$\sqrt{X+1}$$
 And g (x) = $x^2 + 2$, calculate fog and gof.

Ans.:
$$\sqrt{x^2+3}$$
 & x+3

6. Is the following function even, odd, or neither?
$$F(x) = 12x^{11} - 6x^7 - 5x^3$$

7. If
$$f(x)=3x+a$$
 such that $f(1)=7$ then find a & $f(4)$.

8. If
$$f(x)=f(2x+1)$$
 such that $f(x)=x^2-3x+4$ then find x.

9. Evaluate
$$f(3)$$
 given that $f(x) = |x - 6| + x^2 - 1$

10. Find
$$f(x + h) - f(x)$$
 given that $f(x) = a x + b$

Group

- 1. Let $G = \{1, 2, 3, 4, 5, 6\}$ prove that (G, \times_{τ}) is a finite abelian group with respect to multiplication modulo 7
- 2. Let $G = \{0, 1, 2, 3, 4, 5\}$ prove that $(G, +_6)$ is a finite abelian group with respect to addition modulo 6.
- **3.** For $7 \{0\}$
- (i) Prepare composition table with respect to 'x7'
- (ii) Prove that it is an abelian group with respect to 'x7'
- (iii) Is it cyclic?
- (iv) Find the order of 2 & 4 and subgroups generated by these elements

B.Tech. (CSBC) I Semester Discrete Mathematics: Unit III Tutorial Problems (Function, Group, Ring and Field)

- **4.** Let G be a set of all rational numbers other than 1. Let '*' be the binary operation on G defined by $a*b = a+b-ab \ \forall a,b \in G$. Prove that (G,*) is a group.
- **5.** Let be a set of all positive rational numbers. Let '*' be the binary operation on defined by $a*b = \left(\frac{ab}{3}\right) \forall a, b \in Q$. Prove that (Q, *) is an abelian group.
- **6.** Let $R' = R \{1\}$. Let '*' be the binary operation on R' defined by $a*b = a+b+ab \quad \forall a,b \in R'$. Then prove that (R',*) is an abelian group.
- 7. Let G be a set of all square matrices of type $\begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$, where $m \in \mathbb{Z}$, prove that G is a group under the operation of multiplication. Is it an abelian group?
- **8.** Consider the group $G = \{1, 2, 3, 4, 5, 6\}$ under multiplication modulo 7.
 - (i) Find multiplication table of G.
 - (ii) Find 2^{-1} , 3^{-1} , 6^{-1} , 1^{-1} , 4^{-1} , 5^{-1}
- **9.** Let $G = \{0, 1, 2, 3, 4, 5\}$
 - (i) Prepare composition table with respect to '+6'
 - (ii) Prove that G is an abelian group with respect to '+6'
 - (iii) Find the inverse of 2, 3 and 5.
 - (iv) Is it cyclic?
 - (v) Find the order of 2, 3 and sub groups generated by these elements.
- **10.** Let $G = \{1, 2, 3, 4, 5\} = {}_{6} \{0\}.$
 - (i) Prepare the table for multiplication mod 6.
 - (ii) Is G is a group under multiplication mod 6?
- 11. Define a group and cyclic group. Let $A = \{0, 3, 6, 9, 12\}$. Find out the table for addition modulo 15 and multiplication modulo 15. Determine whether $(A, +_{15})$ and (A, \times_{15}) are groups? Are they cyclic groups?
- **12.** Let (G, *) be a group and $a \in G$. Let $f : G \to G$ defined as $f(x) = a * x * a^{-1}$, $x \in G$. Show that f is isomorphism.
- 13. Show that the additive group of Z_{ϵ} is isomorphic to the multiplicative group of Z_{ϵ}
- **14.** Let G be the group of integers under operation of addition, and let G' be the group of all even integers under the operation of addition. Show that the function $f: G \rightarrow G'$ defined by f(a) = 2a is an isomorphism
- **15.** Show that the group G = (, +) is isomorphic to $G' = (, \times)$, where $^+$ is a set of positive real numbers
- **16.** If G is a group of all real numbers under addition and G' is the group of +ve real numbers under multiplication and mapping $f: G \to G'$ is defined by $f(x) = 2^x$, $x \in G$ then show that f is

B.Tech. (CSBC) I Semester Discrete Mathematics: Unit III Tutorial Problems (Function, Group, Ring and Field)

homomorphism

17. Let G = 8, for each of the following subgroups H of G, determine all the left cosets of H in G. H = $\{0, 2, 4, 6\}$

Ring and Field

- 1. If the addition and multiplication modulo 10 is defined on the set of congruence classes R = {0,2,4,6,8} then show that algebraic structure is a ring with unity. Is it an integral domain or field or both?
- 2. Prove that the set of complex numbers is a commutative ring with unity the addition and multiplication of complex numbers being two ring compositions
- 3. Show that the set of 2×2 matrices with entries in a ring R is a non-commutative ring. [Hint: since matrix multiplication is known not to be commutative.]
- **4.** Show that ring of real numbers $(\mathbb{R}, +\times)$ and ring of complex numbers $(\mathbb{C}, +\times)$ are fields.
- 5. Is $(Z_5, +_5, \times_5)$ a field? [Hint: Z_5 is a commutative ring with unity and each nonzero element has inverse w.r.t. \times_5 .]
- 6. Is $(\mathbb{Z}_6, +_6 \times_6)$ a field? [Hint: \mathbb{Z}_6 is a commutative ring with unity but each non-zero element does not have inverse w.r.t. \times_4 .]
- 7. Do the following sets form integral domain with respect to ordinary addition and multiplication? If so state if they are fields.
 - i. The set of numbers of the form $b\sqrt{2}$ with b is rational number.
 - ii. The set of even integers.
 - iii. The set of positive integers.
- 8. Determine if the set $M_2(R)$ of invertible 2×2 matrices with real entries under usual addition and multiplication is a field
- 9. Determine if the z + under usual subtraction and multiplication is a field