

Multi Agent Pathfinding in Asprilo

Marius Wawerek March 30,2021

University of Potsdam

Table of Contents

Problem Example

General Problem Setting

How to calculate solution?

How to solve conflicts?

Experimental Results

Conclusion

Table of Contents

Problem Example

General Problem Setting

How to calculate solution?

How to solve conflicts?

Experimental Results

Conclusion

The MAPF Problem - An Example

Figure 1: A first example of MAPF

Each square wants to go the circle with the same number.

Table of Contents

Problem Example

General Problem Setting

How to calculate solution

How to solve conflicts

Experimental Results

Conclusion

Pathfinding in general

We want to move from a starting position to a goal.

Multi Agent Pathfinding in general

We want to move from a starting position to a goal.

MAPF in particular

Given

- A graph
- Starting positions for robots
- Goal positions for robots

Find path from start to goal for each robot.

MAPF in particular

Given

- A graph
- Starting positions for robots
- Goal positions for robots

Find path from start to goal for each robot.

Graphs

A graph is determined by vertices and edges.

In Asprilo Vertices are Nodes.

MAPF in particular

Given

- A graph
- Starting positions for robots
- Goal positions for robots

Find path from start to goal for each robot.

MAPF in particular

Given

- A graph
- Starting positions for robots
- Goal positions for robots

Find path from start to goal for each robot.

Paths

Each robot has to move to a goal. It moves step by step \rightarrow we call these time steps Each time step each robot takes an action.

Visualizer 1

MAPF in particular

Given

- · A graph
- Starting positions for robots
- Goal positions for robots

Find path from start to goal for each robot.

Constraints:

- No robots may share a position
- No robots may switch position

Table of Contents

Problem Example

General Problem Setting

How to calculate solution?

How to solve conflicts

Experimental Results

Conclusion

Naive:

Try out every possible move for every robot.

Naive:

Try out every possible move for every robot.

Result:

We have a solution.

Naive:

Try out every possible move for every robot.

Result:

We have a solution.

Disadvantage:

It does not scale well.

It takes a exponential time to find it.

Instead:

k - Individual agent merger

First generate individual plan per robot Then "merge" these plans.

First generate individual plan per robot Then "merge" these plans.

How do we find a path? - individual plans

Generate individual plan per robot

Find shortest path from start to goal.

First generate individual plan per robot Then "merge" these plans.

How do we find a path? - Merging

Is 'merging' these plans difficult?

Visualizer 2

How do we find a path? - Merging

Is 'merging' these plans difficult?

YES

Conflicts may arise.

Table of Contents

Problem Example

General Problem Setting

How to calculate solution?

How to solve conflicts?

Experimental Results

Conclusion

MAPF Mergers

We need to modify the initial plans. We created various plan mergers.

Clean Plans

Here you can see the original plans

Random Moves

Here you can see the 'Random Moves' merger It throws away every original plan.

Specific conflict

Here you can see the 'Specific Conflict' merger It keeps the original plans until the first conflict

Change Time

Here you can see the 'Change Time' merger It cuts out the original plans around a conflict.

Dynamic Time

Here you can see the 'Dynnamic Time' merger It cuts the original plans before a conflict. However it keeps the moves after a conflict. It may delay these moves.

Table of Contents

Problem Example

General Problem Setting

How to calculate solution?

How to solve conflicts?

Experimental Results

Conclusion

Amount of Solvable Benchmarks

Amount of Wins per Approach grouped by the number of robots

Table of Contents

Problem Example

General Problem Setting

How to calculate solution?

How to solve conflicts?

Experimental Results

Conclusion

Conclusion

There is no perfect approach. It is a trade off between performance and solving 'power'.

Thank you for your attention

