STAT3100 2024F Assignment 3 Solution

Due: 11:59pm, Friday, October 25, 2024

- 1. Let a random experiment be the cast of a pair of fair dice.
 - (a) Let X be the smaller of the numbers of dots between two dice if they are different and the common value if they are equal. Find the probability mass function, f(x), of X.

Solution: Suppose we have the sample space as follow:

$$S = \begin{bmatrix} (1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\ (2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\ (3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\ (4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\ (5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\ (6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6) \end{bmatrix}$$

Let w be an outcome of S. We know X=1,2,3,4,5,or,6. The pmf of X is given as:

$$f(1) = P(X = 1)$$

$$= P(w \in \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)\})$$

$$= \frac{11}{36}$$

$$f(2) = P(X = 2)$$

$$\begin{array}{lcl} f(2) & = & P(X=2) \\ & = & P(w \in \{(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(4,2),(5,2),(6,2)\}) \\ & = & \frac{9}{36} \end{array}$$

Similarly, we have $f(3) = P(X = 3) = \frac{7}{36}$, $f(4) = P(X = 4) = \frac{5}{36}$, $f(5) = P(X = 5) = \frac{3}{36}$, $f(6) = P(X = 6) = \frac{1}{36}$ and their sum equal 1 as

$$\sum_{x=1}^{6} f(x) = f(1) + f(2) + f(3) + f(4) + f(5) + f(6) = \frac{11}{36} + \frac{9}{36} + \frac{7}{36} + \frac{5}{36} + \frac{3}{36} + \frac{1}{36} = 1$$

(b) Let Y be the absolute value of the difference of the numbers of dots between two dice. Find the probability mass function, g(y), of Y.

Solution: From the sample space S, we know that the possible values for Y

is 0, 1, 2, 3, 4, 5. Let g(y) = P(Y = y) be the pmf of Y.

$$\begin{array}{lll} g(0) & = & P(Y=0) \\ & = & P(w \in \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}) \\ & = & \frac{6}{36} \\ g(1) & = & P(Y=1) \\ & = & P(w \in \{(1,2),(2,3),(3,4),(4,5),(5,6),(2,1),(3,2),(4,3),(5,4),(6,5)\}) \\ & = & \frac{10}{36} \\ g(2) & = & P(Y=2) \\ & = & P(w \in \{(1,3),(2,4),(3,5),(4,6),(3,1),(4,2),(5,3),(6,4)\}) \\ & = & \frac{8}{36} \\ g(3) & = & P(Y=3) \\ & = & P(w \in \{(1,4),(2,5),(3,6),(4,1),(5,2),(6,3)\}) \\ & = & \frac{6}{36} \end{array}$$

Similarly, $g(4) = \frac{4}{36}$, $g(5) = \frac{2}{36}$, and

$$\sum_{y=0}^{5} g(y) = g(0) + g(1) + g(2) + g(3) + g(4) + g(5) = \frac{6}{36} + \frac{10}{36} + \frac{8}{36} + \frac{6}{36} + \frac{4}{36} + \frac{2}{36} = 1.$$

2. Suppose the cumulative distribution of a discrete random variable X is given by

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{2} & 0 \le x < 1 \\ \frac{3}{5} & 1 \le x < 2 \\ \frac{4}{5} & 2 \le x < 3 \\ \frac{9}{10} & 3 \le x < 3.5 \\ 1 & x \ge 3.5 \end{cases}$$

(a) Calculate the probability mass function of X.

Solution: As we can see that X = 0, 1, 2, 3, 3.5 with the pmf f(x) = P(X = x) is given by

$$f(x) = P(X = x) = \begin{cases} \frac{1}{2}, & x = 0\\ \frac{1}{10}, & x = 1, 3, 3.5\\ \frac{1}{5}, & x = 2\\ 0, & \text{otherwise.} \end{cases}$$

2

(b) Find P(X > 1 | X < 3).

Solution: We know that the conditional probability is given by

$$P(X > 1 | X < 3) = \frac{P(X > 1, X < 3)}{P(X < 3)}$$

$$= \frac{P(1 < X < 3)}{P(X < 3)}$$

$$= \frac{P(X = 2)}{F(2)}$$

$$= \frac{1/5}{4/5}$$

$$= \frac{1}{4}$$

3. The probability density function of random variable X, the lifetime of a certain type of electronic device (measured in hours), is given by

$$f(x) = \begin{cases} cx^{-2} & x > 10\\ 0 & x \le 10 \end{cases}$$

(a) Find c.

Solution: By Theorem 3.3.5, the pdf $f(x) \ge 0$, such that $c \ge 0$. In addition

$$1 = \int_{-\infty}^{\infty} f(x)dx$$
$$= \int_{10}^{\infty} cx^{-2}dx$$
$$= -cx^{-1}|_{10}^{\infty}$$
$$= \frac{c}{10}$$
$$\Rightarrow c = 10$$

(b) Find P(X > 20).

Solution:

$$P(X > 20) = \int_{20}^{\infty} 10x^{-2} dx = -10x^{-1}|_{20}^{\infty} = 0 + 10/20 = 0.5$$

(c) Find the cumulative distribution function of X.

Solution: The cdf of X is given by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt = \int_{10}^{x} 10t^{-2}dt = -10t^{-1}|_{10}^{x} = 1 - \frac{10}{x}$$

4. If the joint probability distribution of X and Y is given by

$$f(x,y) = c(x^2 + y^2)$$
 for $x = -1, 0, 1, 3;$ $y = -1, 2, 3$

(a) Find the value of c.

Solution: First all, c must be non-negative to have $f(x, y) \ge 0$ for all possible (x, y)'s. Then

$$1 = \sum_{\text{all x}} \sum_{\text{all y}} f(x, y)$$

$$= c \sum_{\text{all x}} \sum_{\text{all y}} (x^2 + y^2)$$

$$= c [((-1)^2 + (-1)^2) + ((-1)^2 + 2^2) + ((-1)^2 + 3^2) + (0^2 + (-1)^2) + (0^2 + 2^2) + (0^2 + 3^2) + (1^2 + (-1)^2) + (1^2 + 2^2) + (1^2 + 3^2) + (3^2 + (-1)^2) + (3^2 + 2^2) + (3^2 + 3^2)]$$

$$= c(2 + 5 + 10 + 1 + 4 + 9 + 2 + 5 + 10 + 10 + 13 + 18)$$

$$= 89c$$

$$\Rightarrow c = 1/89$$

(b) Find $P(X = 0, Y \le 2)$.

Solution:

$$P(X = 0, Y \le 2) = P(X = 0, Y = -1) + P(X = 0, Y = 2)$$

$$= \frac{1}{89}(0^2 + (-1)^2) + \frac{1}{89}(0^2 + (2)^2)$$

$$= \frac{5}{89}$$

(c) Find P(X + Y > 2).

Solution:

$$P(X+Y>2) = P(X=0,Y=3) + P(X=1,Y=2) + P(X=1,Y=3) + P(X=3,Y=2) + P(X=3,Y=3)$$

$$= \frac{1}{89}[(0^2+3^2) + (1^2+2^2) + (1^2+3^2) + (3^2+2^2) + (3^2+3^2)]$$

$$= \frac{55}{89}$$

(d) Find $f_X(x)$, $f_Y(y)$ the marginal distribution of X and Y.

Solution:

$$f_X(x) = \sum_{\text{all } y} f_{X,Y}(x,y)$$

$$= f_{X,Y}(x,-1) + f_{X,Y}(x,2) + f_{X,Y}(x,3)$$

$$= \frac{x^2+1}{89} + \frac{x^2+4}{89} + \frac{x^2+9}{89}$$

$$= \frac{3x^2+14}{89}, \quad \text{for } x = -1, 0, 1, 3, \text{ or otherwise, } f_X(x) = 0.$$

$$\sum_{\text{all } x} f_X(x) = f_X(-1) + f_X(0) + f_X(1) + f_X(3) = \frac{17}{89} + \frac{14}{89} + \frac{17}{89} + \frac{41}{89} = 1.$$

$$\begin{split} f_Y(y) &= \sum_{\text{all } x} f_{X,Y}(x,y) \\ &= f_{X,Y}(-1,Y) + f_{X,Y}(0,y) + f_{X,Y}(1,y) + f_{X,Y}(3,y) \\ &= \frac{1+y^2}{89} + \frac{y^2}{89} + \frac{1+y^2}{89} + \frac{9+y^2}{89} \\ &= \frac{11+4y^2}{89}, \quad \text{for } y = -1, 2, 3, \text{or otherwise, } f_Y(y) = 0. \end{split}$$

$$\sum_{\text{all } y} f_Y(y) = f_Y(-1) + f_Y(2) + f_Y(3) = \frac{15}{89} + \frac{27}{89} + \frac{47}{89} = 1.$$

5. Let X and Y have the joint pdf

$$f_{X,Y}(x,y) = 2e^{-(x+y)}, \quad 0 < x < y, \quad 0 < y.$$

Find P(Y < 3X).

Solution: Given that 0 < x < y such that the joint pdf is positive, we are looking at the probability in the area that Y < 3X, that is $0 < \frac{Y}{3} < X < Y$. Therefor we have

$$P(Y < 3X) = \int_0^\infty \int_{\frac{y}{3}}^y 2e^{-(x+y)} dx dy$$

$$= \int_0^\infty -2e^{-(x+y)}|_{\frac{y}{3}}^y dy$$

$$= \int_0^\infty (-2e^{-2y} + 2e^{-4y/3}) dy$$

$$= [e^{-2y} - \frac{3}{2}e^{-4y/3}]_0^\infty$$

$$= \frac{1}{2}$$

6. If X and Y have joint pdf

$$f_{X,Y}(x,y) = cxy, \quad 0 \le x \le 2, \quad 0 \le y \le 2,$$

(a) find the value of c,

Solution: First of all, c > 0 and

$$1 = \int_0^2 \int_0^2 cxy dx dy$$
$$= \int_0^2 \frac{c}{2} x^2 y |_0^2 dy$$
$$= \int_0^2 2cy dy$$
$$= \frac{2cy^2}{2} |_0^2$$
$$= 4c$$
$$\Rightarrow c = \frac{1}{4}$$

(b) find $P(0 \le X \le \frac{1}{2}, 0 \le Y \le \frac{3}{2})$.

Solution:

$$P(0 \le x \le \frac{1}{2}, 0 \le y \le \frac{3}{2}) = \int_0^{\frac{3}{2}} \int_0^{\frac{1}{2}} \frac{xy}{4} dx dy$$
$$= \int_0^{\frac{3}{2}} \frac{y}{32} dy$$
$$= \frac{9}{256}$$

(c) are X and Y independent?

Solution:

$$f_X(x) = \int_0^2 \frac{xy}{4} dy$$

$$= \frac{xy^2}{8} \Big|_0^2$$

$$= \frac{x}{2}$$

$$f_Y(y) = \int_0^2 \frac{xy}{4} dx$$

$$= \frac{xy^2}{8} \Big|_0^2$$

$$= \frac{y}{2}$$

$$f_{X,Y}(x,y) = \frac{xy}{4} = f_X(x) f_Y(y)$$

for 0 < x < 2, 0 < y < 2. So, X and Y are independent.

(d) find $P(X < 1|Y = \frac{3}{2})$.

Solution: Because X and Y are independent so that,

$$f_{X|Y}(x|y) = f_X(x)$$

and therefore

$$P(X < 1|Y = \frac{3}{2}) = \int_0^1 f_{X|Y}(x|\frac{3}{2})dx$$

$$= \int_0^1 f_X(x)dx$$

$$= \int_0^1 \frac{x}{2}dx$$

$$= \frac{x^2}{4}|_0^1$$

$$= \frac{1}{4}$$