# INT\_PROG (R) :: CHEATSHEET

#### > print(data)

|   | col1 | col2 | col3    | col4  |
|---|------|------|---------|-------|
| 1 | 1    | Α    | Manzana | TRUE  |
| 2 | 2    | В    | Banana  | FALSE |
| 3 | 3    | C    | Cereza  | TRUE  |
| 4 | 4    | Α    | Damasco | TRUE  |
| 5 | 5    | В    | Uva     | FALSE |

#### > str(data)

```
'data.frame': 5 obs. of 4 variables:
$ col1: num 12345
$ col2: Factor w/ 3 levels "A", "B", "C": 1 2 3 1 2
$ col3: chr "Manzana" "Banana" "Cereza" "Damasco'
$ col4: logi TRUE FALSE TRUE TRUE FALSE
```

#### > summarise(data, nombre = max(col1))

Summarise data into single row of values

#### > count(data, col3)

Count number of rows with each unique value of variable (with or without weights)

#### > group by(data, col2)

Group data into rows with the same value of Species

#### > ungroup(data)

Remove grouping information from data frame

#### > mutate(data, nombre = col1 \* 2)

Compute and append/replace one or more columns

#### > filter(data, col4 == FALSE)

Extract rows that meet logical criteria

#### > distinct(data)

*Remove duplicate rows* 

## > sample\_n(data, 10, replace = TRUE)

Randomly select n rows

#### > select(data, col1, col3)

Select columns by name or helper function

#### > separate(data, col3, c("coln1","coln2"), sep=...)

Separate one column into several

#### > unite(data, nombre, c(col1,col2, sep=...)

*Unite several columns into one* 

#### > arrange(data, col1)

Order rows by values of a column

#### > rename(data, wcol = col1)

Rename the columns of a data frame

#### > rename(data, wcol = col1)

Rename the columns of a data frame

#### > pivot longer(data, c(col1,col4))

"Lengthen" data by collapsing several columns into two. Column names move to a new "name" column and values to a new "value" column

#### > pivot wider(data, "name", "value")

"Widen" data by expanding two columns into several. One column provides the new column names, the other the values

#### > replace\_na(data, 0)

Specify a value to replace NA in selected columns

#### > top n(data, 2, col1)

> slice max(data, 2, n=col1)

*Select and order top n entries* 

#### > ggplot(data, aes(x = col1, y = col2), ...)

Begins a plot that you finish by adding layers to. Add one geom function per layer

Aesthetics: x, y, color, fill, shape, group, linetype, size, label, ...

#### > ... + geom\_X()





text



line





col histogram



point









boxplot bar hline tile density vline abline

### > ...+ facet\_wrap(~ col2)

> ...+ facet\_grid(~ col2)

Wrap facets into a rectangular layout

> ... + labs(x = "X", y = "Y", title ="Title", subtitle = "Subtitle", caption = "Caption", alt = "Alt", ...) *Label the elements of plot* 

#### > ... + scale X Y()

X = x, y, color, fill, linetype, shape, ... Y = discrete, continuous, manual, gradient,

Set scales of plot

#### > ... + coord flip()

Flip cartesian coordinates by switching x and y aesthetic mappings

#### > str\_detect(string, pattern)

Detect the presence of a pattern match in a string

#### > str\_which(string, pattern)

Find the indexes of strings that contain a pattern match

#### > str count(string, pattern)

Count the number of matches in a string

#### > str\_sub(string, start = 1, end = 1)

Extract substrings from a character vector

#### > str\_extract(string, pattern)

Return the first NA pattern match found in each string, as a vector

#### > str match(string, pattern)

Return the first pattern match found in each string, as a matrix with a column for each group in pattern

### > str length(string)

*The width of strings* 

#### > str\_to\_lower(string)

> str\_to\_upper(string)

Convert strings to lower/upper case

## > str c(..., sep = "", collapse = "")

Join multiple strings into a single string

#### > str split(string, pattern)

Split a vector of strings into a list of substrings