CLAIMS

What is claimed is:

1	1.	A magnetoresistive (MR) read head comprising:	
2		a shield layer with a recessed portion and a protruding portion defined by the	
3	recess	ed portion;	
4		an MR sensor located in vertical alignment with the protruding portion of the	
5	shield layer;		
6		at least one gap layer situated above the MR sensor; and	
7		at least one gap layer situated below the MR sensor;	
8		wherein at least one of the gap layers is positioned in the recessed portion of the	
9	shield	layer.	
1	2.	The MR read head as recited in claim 1, wherein the gap layers include a first gap	
2		layer located on top of the recessed portion of the shield layer.	
1	3.	The MR read head as recited in claim 2, wherein the first gap layer includes an	
2	٠.	upper surface substantially level with an upper surface of the protruding portion	
3		of the shield layer.	

- 1 4. The MR read head as recited in claim 2, wherein the gap layers include a second
- 2 gap layer located on top of the first gap layer and the protruding portion of the
- 3 shield layer, the MR sensor being located on top of the second gap layer.
- 1 5. The MR read head as recited in claim 4, wherein an upper surface of the second
- 2 gap layer is planar.
- 1 6. The MR read head as recited in claim 4, wherein the gap layers include a third
- 2 gap layer located on top of the MR sensor.
- 1 7. The MR read head as recited in claim 6, wherein a combined thickness of the first
- 2 gap layer, second gap layer, and third gap layer is thinner adjacent to the MR
- 3 sensor and the protruding portion of the shield layer than the recessed portion of
- 4 the shield layer.
- 1 8. The MR read head as recited in claim 1, wherein the recessed portion of the shield
- 2 layer is formed by an etching process.
- 1 9. A method for fabricating a magnetoresistive (MR) read head comprising:
- 2 depositing a shield layer;
- 3 etching a recessed portion in an upper surface of the shield layer, the recessed
- 4 portion of the shield layer defining a protruding portion of the shield layer;
- depositing a first gap layer on top of the recessed portion of the shield layer;

- 6 depositing a second gap layer on top of the first gap layer and the protruding
- 7 portion of the shield layer;
- 8 positioning an MR sensor on top of the second gap layer in vertical alignment
- 9 with the protruding portion of the shield layer;
- positioning first and second lead layers on top of the second gap layer, the first
- and second lead layers being connected to the MR sensor; and
- depositing a third gap layer on top of the second gap layer, the MR sensor, and the
- 13 first and second lead layers.
- 1 10. The method as recited in claim 9, wherein the first gap layer includes an upper
- 2 surface substantially level with an upper surface of the protruding portion of the
- 3 shield layer.
- 1 11. The method as recited in claim 9, wherein an upper surface of the second gap
- 2 layer is planar.
- 1 12. The method as recited in claim 9, wherein a combined thickness of the first gap
- 2 layer, second gap layer, and third gap layer is thinner adjacent to the MR sensor
- and the protruding portion of the shield layer than the recessed portion of the
- 4 shield layer.
- 1 13. The method as recited in claim 9, wherein the recessed portion of the shield layer
- 2 is etched utilizing ion milling.

- 1 14. The method as recited in claim 9, wherein the recessed portion of the shield layer
- 2 is etched utilizing reactive ion etching.
- 1 15. The method as recited in claim 9, wherein the recessed portion of the shield layer
- 2 is etched utilizing wet etching.
- 1 16. A magnetoresistive (MR) read head comprising:
- 2 a shield layer;
- a bottom gap layer located on top of the shield layer, the bottom gap layer
- 4 including an upper surface that is planar;
- 5 an MR sensor located on top of the bottom gap layer; and
- a top gap layer located on top of the bottom gap layer and the MR sensor;
- wherein a combined thickness of the bottom gap layer and the top gap layer is
- 8 thinner adjacent to the MR sensor than a location distant therefrom.
- 1 17. A magnetoresistive (MR) read head comprising:
- a shield layer with a recessed portion and a protruding portion defined by the
- 3 recessed portion, the recessed portion of the shield layer being formed by an etching
- 4 process;
- a first gap layer located on top of the recessed portion of the shield layer, the first
- 6 gap layer including an upper surface substantially level with an upper surface of the
- 7 protruding portion of the shield layer;

δ	a second gap layer located on top of the first gap layer and the protrucing po	uon
9	of the shield layer, an upper surface of the second gap layer being planar;	
10	an MR sensor located on top of the second gap layer in vertical alignment wi	th
11	the protruding portion of the shield layer;	
12	first and second lead layers located on top of the second gap layer and conne	cted
13	to the MR sensor; and	
14	a third gap layer located on top of the MR sensor, the first and second lead la	yers,
15	and the second gap layer;	
16	wherein a combined thickness of the first gap layer, second gap layer, and the	rd
17	gap layer is thinner adjacent to the MR sensor and the protruding portion of the shield	
18	layer than the recessed portion of the shield layer.	
1	18. A disk drive system, comprising:	
2	a magnetic recording disk;	
3	a magnetoresistive (MR) read head including:	
4	a shield layer,	
5	a bottom gap layer located on top of the shield layer, the bottom gap l	ayer
6	including an upper surface that is planar,	
7	an MR sensor located on top of the bottom gap layer, and	
8	a top gap layer located on top of the bottom gap layer and the MR ser	ısor,
9	wherein a combined thickness of the bottom gap layer and the top gap layer in	s
0	thinner adjacent to the MR sensor than a location distant therefrom:	

H	an actuator for moving the MIR read head across the magnetic recording disk so		
12	the MR read head may access different regions of magnetically recorded data on the		
13	magnetic recording disk; and		
14	a controller electrically coupled to the MR read head for detecting changes in		
15	resistance of the MR read head.		
1	19. A disk drive system, comprising:		
2	a magnetic recording disk;		
3	a magnetoresistive (MR) read head including:		
4	a shield layer with a recessed portion and a protruding portion defined by	y	
5	the recessed portion,		
6	an MR sensor located in vertical alignment with the protruding portion of)f	
7	the shield layer, and		
8	at least one gap layer situated above and below the MR sensor, wherein	at	
9	least one of the gap layers is positioned in the recessed portion of the shield layer	r	
10	an actuator for moving the MR read head across the magnetic recording disk so		
11	the MR read head may access different regions of magnetically recorded data on the		
12	magnetic recording disk; and		
13	a controller electrically coupled to the MR read head for detecting changes in		
4	resistance of the MR read head.		