```
In [1]: #PREDICTING SURVIVAL ON THE TITANIC
    import pandas as pd
    import numpy as np

In [2]: import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline

In [8]: titanic_train=pd.read_csv('titanic_train.csv')
In [9]: titanic_train.head()
```

Out[9]:

Passengerld Survived Pclass Sex Age SibSp Parch Name **Ticket** Fare Cabin Embarked S 0 1 0 3 Braund, Mr. Owen Harris male 22.0 0 A/5 21171 7.2500 NaN Cumings, Mrs. John Bradley (Florence 2 female 38.0 PC 17599 71.2833 C85 С Briggs Th... STON/O2. 3 1 3 Heikkinen, Miss. Laina female 26.0 7.9250 NaN S 3101282 Futrelle, Mrs. Jacques Heath (Lily May female 35.0 113803 53.1000 C123 S 3 Allen, Mr. William Henry 373450 8.0500 NaN S male 35.0

In [12]: titanic_train.describe() #Sissp: sibling & spouses , Parch=parents And children

Out[12]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [13]: titanic_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

Data	COTUMNS (LOC	ar iz corumns):	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [15]: #Let's start with some exploratory data analysis
 #Now we check for some missing data
 titanic_train.isnull()

Out[15]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	False	False	False	False	False	False	False	False	False	False	True	False
1	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	True	False
3	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	True	False
886	False	False	False	False	False	False	False	False	False	False	True	False
887	False	False	False	False	False	False	False	False	False	False	False	False
888	False	False	False	False	False	True	False	False	False	False	True	False
889	False	False	False	False	False	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False	False	False	False	True	False

891 rows × 12 columns

In [19]: sns.heatmap(data=titanic_train.isnull(),yticklabels=False,cbar=False,cmap='magma') #cbar=False, because we are not doing an actual colorbar #Now this gives us an idea of what's missing, we can see that roughly 30% of age data is missing #whereas

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x17611f76f88>

In [20]: sns.set_style('whitegrid')

In [22]: #Lets just visualize a count plot of who survived who did not, for classification problems it is a good idea to see the eratio of actual target labels.

sns.countplot(x='Survived',data=titanic_train)

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x17612603ec8>

In [23]: sns.countplot(x='Survived',hue='Sex',data=titanic_train) #survival based on gender

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x17611525ac8>

In [24]: | sns.countplot(x='Survived',hue='Pclass',data=titanic_train) #survival based on passenger class

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x176126bb788>


```
In [41]: #Lets see what age group was predominantly travelling that day
sns.distplot(titanic_train['Age'].dropna(),kde=False,bins=50)
#HMMM seems like a bimodal plot, with more of the people in the 20-35 age bracket
```

TypeError: distplot() got an unexpected keyword argument 'hue'

```
In [40]: #Well i can use pandas directly for the above thing
    titanic_train['Age'].plot.hist(bins=50)
```

Out[40]: <matplotlib.axes._subplots.AxesSubplot at 0x176167823c8>

In [30]: #Now let's get some info about siblings and spouses
sns.countplot(x='SibSp',data=titanic_train)
#Now this shows that most of the people are single on the Ship, no spouse or children.Whereas the rise of y on 1 proba
bly refers to a spouse rather than a a pair of siblings

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x1761398a608>

In [33]: sns.distplot(titanic_train['Fare'],bins=50,kde=False)
#Makes sense that things are distributed towards cheaper fare tickets

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x17614430c08>


```
In [34]: #Lets say we want a more informative plot
import cufflinks as cf
```

In [35]: cf.go_offline()

In [37]: | titanic_train['Fare'].iplot(kind='hist',bins=40)

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x17616618888>

In [42]: #Now we just went ahead and did some exploratory data analysis for some contextual inf0, #Lets move on to some ML(Logistic Regression)

#Now we saw that some data was missing, basically we need to clean our data to convert it into an acceptable form for our machine learning algorithm.

#say instead of dropping all age rows with null values we can replace them with the mean age, this is called imputatio

n #WE can do one better by classifying gae by passenger class first and taking mean

#WE can do one better by classifying age by passenger class first and taking mean #Lets see what i am taling about

```
In [46]: plt.figure(figsize=(11,7))
sns.boxplot(x='Pclass',y='Age',data=titanic_train)
```

Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x17616f0cf48>


```
In [51]: def impute(cols):
    Age=cols[0]
    Pclass=cols[1]
    if(pd.isnull(Age)):
        if(Pclass==1):
            return 36
        elif(Pclass==2):
            return 29
        else:
            return 25
        else:
            return Age
```

In [54]: #NOw lets check the heatmap again
sns.heatmap(data=titanic_train.isnull(),cbar=False,yticklabels=False,cmap='viridis')

Out[54]: <matplotlib.axes._subplots.AxesSubplot at 0x17616f6e788>

In [55]: #Now we see that the age column has no more missing values

In [56]: #Now about the cabin column , we hve just too many missing values so we'd better drop this
 titanic_train.drop(columns='Cabin',inplace=True,axis=1)

In [57]: titanic_train.head()

Out[57]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	S

In [58]: sns.heatmap(data=titanic_train.isnull(),cbar=False,yticklabels=False,cmap='viridis')

Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x17616c48108>

In [60]: titanic_train.dropna(inplace=True)

In [62]: #Now we just got done with the first step that is dealing with missing data.

#Now we need to deal with the categorical values, by converting them into dummy variable
#i.e in a form understandable by ML algorithm

#Let's see how we can do that with help of pandas

	temale	male
0	0	1
1	1	0
2	1	0
3	1	0
4	0	1
886	0	1
887	1	0
888	1	0
889	0	1
890	0	1

889 rows × 2 columns

In [64]: #Now there is a slight problem here, one coloumn(say male) is a perfect predictor
#of the other coloumn, so we feed our algorithm both columns we'll have something called
#Multi-Co-linearity, which will mess up the algorithm because a bunch of columns will be perfect predictors of another
column

In [67]: #Therefore to tackle the previous problem of multicolinearity
sex=pd.get_dummies(titanic_train['Sex'],drop_first=True)
#Similarly for embarked column
embarked=pd.get_dummies(titanic_train['Embarked'],drop_first=True)

In [68]: sex.head()

Out[68]:

	maie
0	1
1	0
2	0
3	0
4	1

In [69]: embarked.head()

Out[69]:

In [70]: | titanic_train=pd.concat([titanic_train,sex,embarked],axis=1)

In [71]: | titanic_train.head()

Out[71]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked	male	Q	s
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S	1	0	1
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С	0	0	0
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	S	0	0	1
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	S	0	0	1
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	S	1	0	1

In [72]: #We have the replacement coulumns, so we don't need the sex and embarked columns anymore

In [73]: titanic_train.drop(['Sex','Embarked','Name','Ticket'],axis=1,inplace=True)

```
In [74]: | titanic_train.head()
Out[74]:
             Passengerld Survived Pclass Age SibSp Parch
                                                           Fare male Q S
          0
                                                          7.2500
                      1
                              0
                                     3 22.0
                                                      0
                                                                   1
                                                                      0 1
                                                1
                                                         71.2833
                      2
                              1
                                     1 38.0
                                                1
                                                      0
                                                                   0
                                                                      0 0
                      3
                              1
                                     3 26.0
                                                0
                                                          7.9250
                                                                   0 0 1
          3
                              1
                                     1 35.0
                                                1
                                                      0
                                                         53.1000
                                                                   0 0 1
                      5
                              0
                                                          8.0500
                                     3 35.0
                                                0
                                                                   1 0 1
In [77]: #Loooks absolutely perfect for our ML algorithm , all data is numerical, evrything concatenated
          #one more thing, PassengerId seems a bit redundant doesn't it?? Its basically just index+1??
          #and obviously not of much use, as we cannot get some info on survial based on passanegerid.
         titanic_train.drop('PassengerId',axis=1,inplace=True)
In [78]: | #Let's look at our cleaned Data
         titanic_train.head()
Out[78]:
             Survived Pclass Age SibSp Parch
                                                Fare male Q S
          0
                   0
                          3 22.0
                                           0
                                              7.2500
                                                           0 1
                                     1
                                                        1
          1
                   1
                          1 38.0
                                           0 71.2833
                                                           0 0
          2
                   1
                          3 26.0
                                     0
                                           0
                                              7.9250
                                                        0
                                                           0 1
                   1
          3
                          1 35.0
                                     1
                                           0
                                             53.1000
                                                           0 1
                   0
                          3 35.0
                                     0
                                           0
                                              8.0500
                                                        1 0 1
In [79]: | #Another thing to note, if we look carefully, Pclass cloumn seems categorical doesn't it??
          #We could have done getdummies on that too
         pd.get_dummies(titanic_train['Pclass'])
Out[79]:
               1 2 3
               0
                  0 1
            1 1 0 0
```

In [81]: | #Now we are going to train and use a model and predict the classes of whether or not a passenger survived on the titan

2 0 0 1 **3** 1 0 0

4 0 0 1

1 0

1 0 0

1 0 0

889 rows × 3 columns

In [80]: | #We'll check it out later once we are done with running the model once , so we

In [85]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101)

#get to know the difference of what would happen diffrently

In [82]: | #Lets consider our titanic_train dataset as all our data

In [84]: | from sklearn.model_selection import train_test_split

In [86]: from sklearn.linear model import LogisticRegression

In [83]: X=titanic_train.drop('Survived',axis=1)
y=titanic train['Survived']

In [92]: | lrmodel=LogisticRegression()

888 0 0 1

890 0 0 1

886 0

887

889

```
In [94]: | lrmodel.fit(X_train,y_train)
          C:\Users\anike\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:940: ConvergenceWarning:
          lbfgs failed to converge (status=1):
          STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
          Increase the number of iterations (max_iter) or scale the data as shown in:
              https://scikit-learn.org/stable/modules/preprocessing.html
          Please also refer to the documentation for alternative solver options:
              https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
Out[94]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                             intercept_scaling=1, l1_ratio=None, max_iter=100,
                              multi_class='auto', n_jobs=None, penalty='12',
                              random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                             warm_start=False)
In [95]: | predictions=lrmodel.predict(X_test)
In [96]: | from sklearn.metrics import classification_report
In [99]: print(classification_report(y_test,predictions))
                         precision
                                     recall f1-score
                                                         support
                     0
                                        0.91
                                                  0.87
                             0.83
                                                             163
                     1
                             0.84
                                        0.70
                                                  0.76
                                                             104
              accuracy
                                                  0.83
                                                             267
                                                  0.82
             macro avg
                             0.83
                                        0.81
                                                             267
                                        0.83
          weighted avg
                             0.83
                                                  0.83
                                                             267
In [100]: | from sklearn.metrics import confusion_matrix
In [101]: | confusion_matrix(y_test,predictions) #TP TN ,FP, FN
Out[101]: array([[149, 14],
                 [ 31, 73]], dtype=int64)
In [102]: | #We can imporve the model through more feature Engineering, or using the complte test.csv file after cleaning and much
          #That's all for now
```

In []: