

04.10.2024

Statistical Methods in AI (CS7.403)

Lecture-16: CNN/Deep Learning - 2

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

@vikataravi

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

Wouldn't it be nice if we could feed the data directly?

... and let the "learning process" figure out which features to extract?

(which filters to construct)

Convolution (in general)

output

input

Convolution Layer

Input to next layer

Convolution (in general)

Design choices: Filter size, # of filters

12	12	17
10	17	19
9	6	14

Pooling Layer

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool	with	2x2	filters
and stride	e 2		

6	8
3	4

- Motivation: We care about presence of features, not their exact location!
- Dimensionality Reduction
- Prevents overfitting

Convolution (in general)

$egin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} a_{12} & a_{13} & a_{14} & a_{15} \\ & & & & & & & & & & & & & & & & & & $
$a_{22} a_{23} a_{24} a_{25}$
a_{22} a_{23} a_{24} a_{25}

$$A * W = Z$$

$$\frac{\partial L}{\partial w_1} = \boxed{\frac{\partial z_1}{\partial w_1}} \frac{\partial L}{\partial z_1} + \boxed{\frac{\partial z_2}{\partial w_1}} \frac{\partial L}{\partial z_2} + \boxed{\frac{\partial z_3}{\partial w_1}} \frac{\partial L}{\partial z_3} + \boxed{\frac{\partial z_4}{\partial w_1}} \frac{\partial L}{\partial z_4}$$

$$z_{1} = w_{1} \times a_{1} + w_{2} \times a_{2} + w_{3} \times a_{3} + w_{4} \times a_{6} \dots w_{9} \times a_{13}$$

$$z_{2} = w_{1} \times a_{3} + w_{2} \times a_{4} + w_{3} \times a_{5} + w_{4} \times a_{8} \dots w_{9} \times a_{15}$$

$$z_{3} = w_{1} \times a_{11} + w_{2} \times a_{12} + w_{3} \times a_{13} + w_{4} \times a_{16} \dots w_{9} \times a_{23}$$

$$z_{4} = w_{1} \times a_{13} + w_{2} \times a_{14} + w_{3} \times a_{15} + w_{4} \times a_{18} \dots w_{9} \times a_{25}$$

$$\frac{\partial L}{\partial w_2} = a_2 \frac{\partial L}{\partial z_1} + a_4 \frac{\partial L}{\partial z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$$

$$\frac{\partial L}{\partial w_1} = \left[\frac{\partial z_1}{\partial w_1} \right] \frac{\partial L}{\partial z_1} + \left[\frac{\partial z_2}{\partial w_1} \right] \frac{\partial L}{\partial z_2} + \left[\frac{\partial z_3}{\partial w_1} \right] \frac{\partial L}{\partial z_3} + \left[\frac{\partial z_4}{\partial w_1} \right] \frac{\partial L}{\partial z_4}$$

$$z_{1} = w_{1} \times a_{1} + w_{2} \times a_{2} + w_{3} \times a_{3} + w_{4} \times a_{6} \dots w_{9} \times a_{13}$$

$$z_{2} = w_{1} \times a_{3} + w_{2} \times a_{4} + w_{3} \times a_{5} + w_{4} \times a_{8} \dots w_{9} \times a_{15}$$

$$z_{3} = w_{1} \times a_{11} + w_{2} \times a_{12} + w_{3} \times a_{13} + w_{4} \times a_{16} \dots w_{9} \times a_{23}$$

$$z_{4} = w_{1} \times a_{13} + w_{2} \times a_{14} + w_{3} \times a_{15} + w_{4} \times a_{18} \dots w_{9} \times a_{25}$$

$$\frac{\partial L}{\partial w_2} = a_2 \frac{\partial L}{\partial z_1} + a_4 \frac{\partial L}{\partial z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$$

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

Z_1	Z_2
Z_3	Z_4

$\frac{\partial L}{\partial w_1} = a$	$1\frac{\partial L}{\partial z_1}$	-a	$\frac{\partial L}{\partial z_2} +$	a_1	$\frac{\partial L}{\partial z_3} +$	a_1	$\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_2} = a$	$2\frac{\partial L}{\partial z_1}$	-a	$\frac{\partial L}{\partial z_2} +$	a_1	$\frac{\partial L}{\partial z_3} +$	a_1	$\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_3} = a$	$3\frac{\partial L}{\partial z_1}$	-a	$\frac{\partial L}{\partial z_2} +$	a_1	$\frac{\partial L}{\partial z_3} +$	a_1	$\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_4} = a$	$6\frac{\partial L}{\partial z_1}$	-a	$\frac{\partial L}{\partial z_2} +$	a_1	$\frac{\partial L}{\partial z_3} +$	a_1	$\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_5} = a$	$\sqrt{\frac{\partial L}{\partial z_1}}$	-a	$\frac{\partial L}{\partial z_2} +$	a_1	$+\frac{\partial L}{\partial z_3}+$	a_1	$\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_6} = a_8$	$\frac{\partial L}{\partial z_1}$	a_1	$0 \frac{\partial L}{\partial z_2}$	a_1	$8\frac{\partial L}{\partial z_3}$ -	a_2	$0 \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_7} = a_1$	$1\frac{\partial L}{\partial z_1}$	-a	$3\frac{\partial L}{\partial z_2}$	-a	$1\frac{\partial L}{\partial z_3}$	+a	$3\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_8} = a_1$	$2\frac{\partial L}{\partial z_1}$	-a	$4\frac{\partial L}{\partial z_2}$	-a	$22\frac{\partial L}{\partial z_3}$	-a	$4\frac{\partial L}{\partial z_4}$
ar.	$3\frac{\partial L}{\partial z_1}$	-a	$5\frac{\partial L}{\partial z_2}$	-a	$23 \frac{\partial L}{\partial z_3}$	-a	$5\frac{\partial L}{\partial z_4}$
	$\frac{\partial L}{\partial z_1}$		$\frac{\partial L}{\partial z_2}$		$\frac{\partial L}{\partial z_3}$		$\frac{\partial L}{\partial z_A}$

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

Z_1	Z_2
Z_3	Z_4

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

$\frac{\partial L}{\partial z_1}$	$\frac{\partial L}{\partial z_2}$
$\frac{\partial L}{\partial z_3}$	$\frac{\partial L}{\partial z_4}$

$\frac{\partial L}{\partial w_1} =$	$=a_1\frac{\partial L}{\partial z_1}$	$+a_3\frac{\partial L}{\partial z_2} + a_{11}\frac{\partial L}{\partial z_3} + a_{13}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_2}$ =	$=a_2\frac{\partial L}{\partial z_1}$	$-a_4 \frac{\partial L}{\partial z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_3} =$	$= a_3 \frac{\partial L}{\partial z_1}$	$-a_5 \frac{\partial L}{\partial z_2} + a_{13} \frac{\partial L}{\partial z_3} + a_{15} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_4}$ =	$= a_6 \frac{\partial L}{\partial z_1}$	$-a_8 \frac{\partial L}{\partial z_2} + a_{16} \frac{\partial L}{\partial z_3} + a_{18} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_5}$ =	$= a_7 \frac{\partial L}{\partial z_1}$	$+a_9 \frac{\partial L}{\partial z_2} + a_{17} \frac{\partial L}{\partial z_3} + a_{19} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_6} =$	$a_8 \frac{\partial L}{\partial z_1}$	$-a_{10}\frac{\partial L}{\partial z_2} + a_{18}\frac{\partial L}{\partial z_3} + a_{20}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_7} =$	$a_{11} \frac{\partial L}{\partial z_1}$	$-a_{13}\frac{\partial L}{\partial z_2} + a_{21}\frac{\partial L}{\partial z_3} + a_{23}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_8} =$	$a_{12} \frac{\partial L}{\partial z_1}$	$-a_{14}\frac{\partial L}{\partial z_2} + a_{22}\frac{\partial L}{\partial z_3} + a_{24}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_9} =$	$a_{13} \frac{\partial L}{\partial z_1}$	$-a_{15}\frac{\partial L}{\partial z_2} + a_{23}\frac{\partial L}{\partial z_3} + a_{25}\frac{\partial L}{\partial z_4}$

$$\times \frac{\partial L}{\partial z_1}$$

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

$rac{\partial L}{\partial z_1}$	$\frac{\partial L}{\partial z_2}$
$rac{\partial L}{\partial z_3}$	$\frac{\partial L}{\partial z_4}$

	$+a_3\frac{\partial}{\partial}$	$\frac{L}{z_2} + a_{11} \frac{\partial L}{\partial z_3} + a_{13} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_2} = a_2 \frac{\partial L}{\partial z_1}$	$+a_4\frac{\partial}{\partial}$	$\frac{L}{z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_3} = a_3 \frac{\partial L}{\partial z_1}$	$+a_5\frac{\partial}{\partial}$	$\frac{L}{z_2} + a_{13} \frac{\partial L}{\partial z_3} + a_{15} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_4} = a_6 \frac{\partial L}{\partial z_1}$	$+a_8\frac{\partial}{\partial}$	$\frac{L}{z_2} + a_{16} \frac{\partial L}{\partial z_3} + a_{18} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_5} = a_7 \frac{\partial L}{\partial z_1}$	$+a_9\frac{\partial}{\partial}$	$\frac{L}{z_2} + a_{17} \frac{\partial L}{\partial z_3} + a_{19} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_6} = a_8 \frac{\partial L}{\partial z_1} -$	$-a_{10}\frac{\dot{c}}{\dot{c}}$	
$\frac{\partial L}{\partial w_7} = a_{11} \frac{\partial L}{\partial z_1}$	$+a_{13}$	$\frac{\partial L}{\partial z_2} + a_{21} \frac{\partial L}{\partial z_3} + a_{23} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_8} = a_{12} \frac{\partial L}{\partial z_1}$	$+a_{14}$	$\frac{\partial L}{\partial z_2} + a_{22} \frac{\partial L}{\partial z_3} + a_{24} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_9} = a_{13} \frac{\partial L}{\partial z_1}$	$+a_{15}$	$\frac{\partial L}{\partial z_2} + a_{23} \frac{\partial L}{\partial z_3} + a_{25} \frac{\partial L}{\partial z_4}$

$$egin{array}{c|cccc} a_3 & a_4 & a_5 \\ \hline a_8 & a_9 & a_{10} \\ \hline a_{13} & a_{14} & a_{15} \\ \hline \end{array}$$

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

$rac{\partial L}{\partial z_1}$	$\frac{\partial L}{\partial z_2}$
$\frac{\partial L}{\partial z_3}$	$\frac{\partial L}{\partial z_4}$

$\frac{\partial L}{\partial w_1} = a_1 \frac{\partial L}{\partial z_1} + a_3 \frac{\partial L}{\partial z_2} + a_{11} \frac{\partial L}{\partial z_3} + a_{13} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_2} = a_2 \frac{\partial L}{\partial z_1} + a_4 \frac{\partial L}{\partial z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_3} = a_3 \frac{\partial L}{\partial z_1} + a_5 \frac{\partial L}{\partial z_2} + a_{13} \frac{\partial L}{\partial z_3} + a_{15} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_4} = a_6 \frac{\partial L}{\partial z_1} + a_8 \frac{\partial L}{\partial z_2} + a_{16} \frac{\partial L}{\partial z_3} + a_{18} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_5} = a_7 \frac{\partial L}{\partial z_1} + a_9 \frac{\partial L}{\partial z_2} + a_{17} \frac{\partial L}{\partial z_3} + a_{19} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_6} = a_8 \frac{\partial L}{\partial z_1} + a_{10} \frac{\partial L}{\partial z_2} + a_{18} \frac{\partial L}{\partial z_3} + a_{20} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_7} = a_{11} \frac{\partial L}{\partial z_1} + a_{13} \frac{\partial L}{\partial z_2} + a_{21} \frac{\partial L}{\partial z_3} + a_{23} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_8} = a_{12} \frac{\partial L}{\partial z_1} + a_{14} \frac{\partial L}{\partial z_2} + a_{22} \frac{\partial L}{\partial z_3} + a_{24} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_9} = a_{13} \frac{\partial L}{\partial z_1} + a_{15} \frac{\partial L}{\partial z_2} + a_{23} \frac{\partial L}{\partial z_3} + a_{25} \frac{\partial L}{\partial z_4}$

a_1	a_2	a_3	
a_6	a ₇	a_8	
a_{11}	a_{12}	a_{13}	

$$\times \frac{\partial L}{\partial z_2} + \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{16} & a_{17} & a_{18} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

a_{13}	a_{14}	a_{15}		
a_{18}	a_{19}	a_{20}	$\times \frac{\partial L}{\partial z_4}$	=
a_{23}	a_{24}	a ₂₅		
a_{23}	a_{24}	a_{25}		

$\frac{\partial L}{\partial w_1}$	$\frac{\partial L}{\partial w_2}$	$\frac{\partial L}{\partial w_3}$
$\frac{\partial L}{\partial w_4}$	$\frac{\partial L}{\partial w_5}$	$\frac{\partial L}{\partial w_6}$
$\frac{\partial L}{\partial w_7}$	$\frac{\partial L}{\partial w_8}$	$\frac{\partial L}{\partial w_9}$

$$\begin{array}{c|cccc} w_1^* & w_2^* & w_3^* \\ \hline w_4^* & w_5^* & w_6^* \\ \hline w_7^* & w_8^* & w_9^* \\ \hline \end{array}$$

$$-\alpha \times \begin{bmatrix} \frac{\partial L}{\partial w_1} & \frac{\partial L}{\partial w_2} & \frac{\partial L}{\partial w_3} \\ \frac{\partial L}{\partial w_4} & \frac{\partial L}{\partial w_5} & \frac{\partial L}{\partial w_6} \\ \frac{\partial L}{\partial w_7} & \frac{\partial L}{\partial w_8} & \frac{\partial L}{\partial w_9} \end{bmatrix}$$

CNN – forward & backpropagation

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9
		I like this

Z_1	Z_2
Z_3	Z_4

V (0.00

$$z_4 = w_1 \times a_{13} + w_2 \times a_{14} + w_3 \times a_{15} + w_4 \times a_{18} \dots w_9 \times a_{23}$$

$oxed{Z_1}$	
Z_2	\rightarrow (L)
\hat{y}	
Z_4	

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

$rac{\partial L}{\partial z_1}$	$\frac{\partial L}{\partial z_2}$
$rac{\partial L}{\partial z_3}$	$rac{\partial L}{\partial z_4}$

$\frac{\partial L}{\partial w_1} = a_1 \frac{\partial L}{\partial z_1} + a_3 \frac{\partial L}{\partial z_2} + a_{11} \frac{\partial L}{\partial z_3} + a_{13} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_2} = a_2 \frac{\partial L}{\partial z_1} + a_4 \frac{\partial L}{\partial z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_3} = a_3 \frac{\partial L}{\partial z_1} + a_5 \frac{\partial L}{\partial z_2} + a_{13} \frac{\partial L}{\partial z_3} + a_{15} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_4} = a_6 \frac{\partial L}{\partial z_1} + a_8 \frac{\partial L}{\partial z_2} + a_{16} \frac{\partial L}{\partial z_3} + a_{18} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_5} = a_7 \frac{\partial L}{\partial z_1} + a_9 \frac{\partial L}{\partial z_2} + a_{17} \frac{\partial L}{\partial z_3} + a_{19} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_6} = a_8 \frac{\partial L}{\partial z_1} + a_{10} \frac{\partial L}{\partial z_2} + a_{18} \frac{\partial L}{\partial z_3} + a_{20} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_7} = a_{11} \frac{\partial L}{\partial z_1} + a_{13} \frac{\partial L}{\partial z_2} + a_{21} \frac{\partial L}{\partial z_3} + a_{23} \frac{\partial L}{\partial z_3}$
$\frac{\partial L}{\partial w_8} = a_{12} \frac{\partial L}{\partial z_1} + a_{14} \frac{\partial L}{\partial z_2} + a_{22} \frac{\partial L}{\partial z_3} + a_{24} \frac{\partial L}{\partial z_3}$
$\frac{\partial L}{\partial w_9} = a_{13} \frac{\partial L}{\partial z_1} + a_{15} \frac{\partial L}{\partial z_2} + a_{23} \frac{\partial L}{\partial z_3} + a_{25} \frac{\partial L}{\partial z_3}$

∂L	_	∂z_1	$\partial \hat{y}$	∂L
$\overline{\partial w_1}$		$\overline{\partial w_1}$	$\overline{\partial z_1}$	$\overline{\partial \hat{y}}$

$$\begin{array}{c|ccccc} a_1 & a_2 & a_3 \\ \hline a_6 & a_7 & a_8 \\ \hline a_{11} & a_{12} & a_{13} \\ \hline \end{array}$$

$$\times \frac{\partial L}{\partial z_1} + \begin{bmatrix} a_3 & a_4 & a_5 \\ a_8 & a_9 & a_{10} \\ a_{13} & a_{14} & a_{15} \end{bmatrix}$$

$$\times \frac{\partial L}{\partial z_2} + \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{16} & a_{17} & a_{18} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

a_{17} a_{18} $\times \frac{\partial L}{\partial z_3}$ + a_{22} a_{23}	a_{12}	a_{13}			
a ₂₂ a ₂₃	a_{17}	a_{18}	$\times \frac{\partial L}{\partial z_3}$	+	
	a_{22}	a_{23}			

	a ₁₃	a_{14}	a_{15}	
+	a ₁₈	a_{19}	a_{20}	$\times \frac{\partial L}{\partial z}$
	a ₂₃	a_{24}	a_{25}	

	$\frac{\partial L}{\partial w_1}$	$\frac{\partial L}{\partial w_2}$	$\frac{\partial L}{\partial w_3}$
=	$\frac{\partial L}{\partial w_4}$	$\frac{\partial L}{\partial w_5}$	$\frac{\partial L}{\partial w_6}$
	$\frac{\partial L}{\partial w_7}$	$\frac{\partial L}{\partial w_8}$	$\frac{\partial L}{\partial w_9}$

Convolution

CNN - forward & backpropagation

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

$rac{\partial L}{\partial z_1}$	$\frac{\partial L}{\partial z_2}$
$rac{\partial L}{\partial z_3}$	$rac{\partial L}{\partial z_4}$

$\frac{\partial L}{\partial w_1} = a_1 \frac{\partial L}{\partial z_1}$	$+a_3\frac{\partial L}{\partial z_2}+a_1$	$_{1}\frac{\partial L}{\partial z_{3}}+a_{13}\frac{\partial L}{\partial z_{4}}$
$\frac{\partial L}{\partial w_2} = a_2 \frac{\partial L}{\partial z_1}$	$+a_4\frac{\partial L}{\partial z_2}+a_1$	$2\frac{\partial L}{\partial z_3} + a_{14}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_3} = a_3 \frac{\partial L}{\partial z_1}$	$+a_5 \frac{\partial L}{\partial z_2} + a_1$	$_{3}\frac{\partial L}{\partial z_{3}} + a_{15}\frac{\partial L}{\partial z_{4}}$
$\frac{\partial L}{\partial w_4} = a_6 \frac{\partial L}{\partial z_1}$	$+a_8 \frac{\partial L}{\partial z_2} + a_{10}$	$_{6}\frac{\partial L}{\partial z_{3}} + a_{18}\frac{\partial L}{\partial z_{4}}$
$\frac{\partial L}{\partial w_5} = a_7 \frac{\partial L}{\partial z_1}$	$+a_9 \frac{\partial L}{\partial z_2} + a_1$	$7\frac{\partial L}{\partial z_3} + a_{19}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_6} = a_8 \frac{\partial L}{\partial z_1}$	$+a_{10}\frac{\partial L}{\partial z_2}+a_1$	$8\frac{\partial L}{\partial z_3} + a_{20}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_7} = a_{11} \frac{\partial L}{\partial z_1}$	$+a_{13}\frac{\partial L}{\partial z_2}+a_{23}$	$a_{21} \frac{\partial L}{\partial z_3} + a_{23} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_8} = a_{12} \frac{\partial L}{\partial z_1}$	$+a_{14}\frac{\partial L}{\partial z_2}+a_{22}$	$a_{22} \frac{\partial L}{\partial z_3} + a_{24} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_9} = a_{13} \frac{\partial L}{\partial z_1}$	$+a_{15}\frac{\partial L}{\partial z_2}+a_{25}$	$a_{23} \frac{\partial L}{\partial z_3} + a_{25} \frac{\partial L}{\partial z_4}$

$$\frac{\partial L}{\partial w_1} = \begin{bmatrix} \frac{\partial z_1}{\partial w_1} \end{bmatrix} \frac{\partial L}{\partial z_1} + \begin{bmatrix} \frac{\partial z_2}{\partial w_1} \end{bmatrix} \frac{\partial L}{\partial z_2} + \begin{bmatrix} \frac{\partial z_3}{\partial w_1} \end{bmatrix} \frac{\partial L}{\partial z_3} + \begin{bmatrix} \frac{\partial z_4}{\partial w_1} \end{bmatrix} \frac{\partial L}{\partial z_4}$$

$$z_1 = w_1 \times a_1 + w_2 \times a_2 + w_3 \times a_3 + w_4 \times a_6 \dots w_9 \times a_{13}$$

$$z_2 = w_1 \times a_3 + w_2 \times a_4 + w_3 \times a_5 + w_4 \times a_8 \dots w_9 \times a_{15}$$

$$z_3 = w_1 \times a_{11} + w_2 \times a_{12} + w_3 \times a_{13} + w_4 \times a_{16} \dots w_9 \times a_{23}$$

$$z_4 = w_1 \times a_{13} + w_2 \times a_{14} + w_3 \times a_{15} + w_4 \times a_{18} \dots w_9 \times a_{25}$$

$$z^{(2)} = XW^{(1)} (1)$$

$$a^{(2)} = f(z^{(2)}) (2)$$

$$z^{(3)} = a^{(2)}W^{(2)} (3)$$

$$\hat{y} = f(z^{(3)}) (4)$$

$$\frac{\partial J}{\partial W^{(2)}} = \underbrace{\frac{\partial J}{\partial z^{(3)}}}_{\text{loss from previous layer}} \times \underbrace{\frac{\partial z^{(3)}}{\partial W^{(2)}}}_{\text{loss from local gradient}}$$

$$\frac{\partial J}{\partial W^{(1)}} = \underbrace{\frac{\partial J}{\partial z^{(2)}}}_{\text{loss from previous layer}} \times \underbrace{\frac{\partial z^{(2)}}{\partial W^{(1)}}}_{\text{loss from local gradient}}$$

$$\frac{\partial O}{\partial X}$$
 & $\frac{\partial O}{\partial F}$ are local gradients

 $\frac{\partial L}{\partial z}$ is the loss from the previous layer which has to be backpropagated to other layers

Backpropagation in a Convolutional Layer of a CNN

Finding the gradients:

$$\frac{\partial L}{\partial F}$$
 = Convolution (Input X, Loss gradient $\frac{\partial L}{\partial O}$)

$$\frac{\partial L}{\partial X} = \text{Full Convolution} \left(\begin{array}{c} 180^{\circ} \text{rotated } \\ \text{Filter F} \end{array} \right) \text{ Convolution} \left(\begin{array}{c} 180^{\circ} \text{ rotated } \\ \text{Filter F} \end{array} \right)$$

0.1	0.5	1.2	-0.7
0.8	-0.2	-0.5	0.3
0.4	0.9	-0.1	-0.2
-0.6	0.1	0.5	0.3

max-pooling	0.8	1.2
max-pooming	0.9	0.5

	ма	SK	
		х	
X			
0	х		
-		x	

_	_		_	_	
		100		-	
			171		nc
_	cti	vc		u	110

0	0	0.5	0
1.3	0	0	0
0	0.4	0	0
0	0	0.1	0

1.3	0.5
0.4	0.1

Gradients

max locations

CNN = MLP with sparse connectivity and weight sharing

CNN v/s MLP

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

Case Study: AlexNet

- Winner of ImageNet LSVRC-2010.
- Trained over 1.2M images using SGD with regularization.
- Deep architecture (60M parameters.)
- Optimized GPU implementation (cuda-convnet)

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.

AlexNet Architecture

AlexNet Architecture

- Convolutional layers cumulatively contain about 90-95% of computation, only about 5% of the parameters
- Fully-connected layers contain about 95% of parameters.

Image CNNs for non-image data

Audio Beat Detection

Sentiment Classification from Text

Unsupervised Learning: Deep Auto-encoder

Recap: PCA

Output of the hidden layer is the code

Deep Auto-encoder

Auto-encoder – Text Retrieval

The documents talking about the same thing will have close code.

Auto-encoder – Similar Image Search

Retrieved using Euclidean distance in pixel intensity space

(Images from Hinton's slides on Coursera)

Reference: Krizhevsky, Alex, and Geoffrey E. Hinton. "Using very deep autoencoders for content-based image retrieval." *ESANN*. 2011.

Auto-encoder – Similar Image Search

(crawl millions of images from the Internet)

Retrieved using Euclidean distance in pixel intensity space

retrieved using 256 codes

Auto-encoder

As close as

for CNN

possible Deconvolution Unpooling Convolution Deconvolution **Pooling** Unpooling Convolution code Deconvolution **Pooling**

CNN -Unpooling

Alternative: simply repeat the values

Source of image:

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

Deconvolution

Actually, deconvolution is convolution.

SGD visualized

Learning – Suboptimal Modes

Hard to find optimal network parameters

The value of a network parameter w

Momentum

Momentum

Still not guarantee reaching global minima, but give some hope

Momentum - visualized

We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

$$\Delta w_{ij} = (\eta * \frac{\partial E}{\partial w_{ij}})$$
 weight learning weight increment rate gradient

Summary of learning methods for neural networks

For small datasets (e.g. 10,000 cases) or bigger datasets without much redundancy, use a full-batch method.

Conjugate gradient, LBFGS ... adaptive learning rates, rprop ...

For big, redundant datasets use minibatches.

Try gradient descent with momentum.

Try rmsprop (with momentum?)

Why there is no simple recipe:

Neural nets differ a lot:

Very deep nets (especially ones with narrow bottlenecks).

Recurrent nets.

Wide shallow nets.

Tasks differ a lot:

Some require very accurate weights, some don't.

Optimization parameters

[SOURCE]

Implements stochastic gradient descent (optionally with momentum).

Nesterov momentum is based on the formula from On the importance of initialization and momentum in deep learning.

Parameters

- params (iterable) iterable of parameters to optimize or dicts defining parameter groups
- Ir (float) learning rate
- momentum (float, optional) momentum factor (default: 0)
- weight_decay (float, optional) weight decay (L2 penalty) (default: 0)
- dampening (float, optional) dampening for momentum (default: 0)
- **nesterov** (bool, optional) enables Nesterov momentum (default: False)

L2 Regularization

Modified loss function +
$$\lambda \sum_{i=1}^{n} W_i^2$$