

Univerzitet u Novom Sadu

Fakultet tehničkih nauka

REGULACIJA PARAMETARA JEDNE ZONE

Automatika u pametnim stambeno-poslovnim objektima

Velimir Čongradac

Sadržaj

- Kontrola temperature i vlage u zoni
- Zoniranje
- VAV kutije
- Statički pritisak
- Svež vazduh u zoni
- Hlađenje sa direktnom ekspanzijom
- Električni grejač
- Split sistem
- Toplotne pumpe

Kontrola temperature

- Termostat: Konstanstno merenje temperature sa delovanjem na izvršne elemente u zavisnosti od potrebe za grejanjem-hlađenjem u zoni.
- Postoje tri načina prenosa toplote:
 - provodljivošću,
 - konvekcijom i
 - radijacijom.

Prenos toplote - Kondukcijom

 Kondukcija: energija se prenosi sa jednog atoma na drugi direktnim kontaktom.

Kašika u tanjiru supe

Električno grejanje

Prenos toplote - Konvekcija

 Konvekcija: kada se energija prenosi kretanjem fluida koji prenosi energiju sa jednog mesta na drugo.

Steam Rising from Coffee

Prenos toplote - Radijacija

 Radijacija: elektromagnetni talasi koji direktno prenose energiju kroz prostor.

Kontrola vlage

 Relativna vlažnost: je količina vodene pare u vazduhu (apsolutna vlažnost) u odnosu na maksimalnu količinu vodene pare pri određenoj temperaturi.

Željeni parametri temperature i vlage

<u>Temperatura</u>

- Ne manje od 21° C
- Ne više od 23,5° C
- Najčešća postavljena vrednost 22 ° C

Relativna vlažnost (RH)

- Ne manje od 40% (RH)
- Ne više od 60% (RH)
- Tipično 50%

Kontrola jedne zone/Zoniranje

- zona = prostorija
 - Temperatura u zoni,
 - Vlaga u zoni,
 - Koncentracija CO2 u zoni,
 - Senzor prisustva,
 - Magnetni senzor,
 - Osvetljenje u zoni,itd.

Centralna priprema toplog-hladnog vazduha

- Sistem priprema topao i hladan vazduh.
- Najčešće je smeštem izvan objekta.
- Za pripremu vazduha koriste električnu energiju, gas, toplana, toplotna pumpa, itd.

Centralna priprema toplog-hladnog vazduha

Žaluzine svežeg i povratnog vazduha su međusobno spregnute.

VAV sistemi

- VAV sistem obezbeđuje distribuciju vazduha u objekat promenljivog kapaciteta ali konstantne temperature.
- Regulacija količine ubačenog vazduha se reguliše raznim tipovima žaluzina.
- Osnovni benefit upotrebe VAV sistema je ušteda energije.
- VAV sistemi takođe pružaju mogućnost povećanja komfora u zonama.

Tipovi VAV sistema

- Jednokanalni
- Dvokanalni bez mešanja vazduha
- Dvokanalni sa mešanjem vazduha
- Paralelni tip sa ventilatorom
- Serijski tip sa ventilatorom

Jednokanalni VAV sistem

- Promenljiva količina vazduha,
- Najjednostavniji tip,
- Kućište, klapna, pokretač klapne i kontroler.
- Klapna reguliše količinu vazduha neophodnog kako bi se dostigla željena temperatura.
- Štedi energiju.

Elevation - Single Duct

Dvokanalni bez mešanja vazduha

- Promenljiva količina vazduha
- Jednostavan sistem
- 2 kanala postavljena jedan do drugog.
- Jedan kanal obezbeđuje grejanje.
- Drugi kanal obezbeđuje hlađenje.
- Potencijalna pojava temperaturnih slojeva.

Plan View - Dual Duct, Non-Mixing

Temperaturno uslojavanje

Bez mešanja vazduha dolazi do stvaranja temperaturnih slojeva vazduha.

Dvokanalni sa mešanjem vazduha

- Promenljiva količina vazduha.
- Jedan kanal obezbeđuje grejanje.
- Drugi kanal obezbeđuje hlađenje.
- Vrši se mešanje toplog i hladnog vazduha.
- Moguće je istovremen grejanje i hlađenje zone.
- Potencijalni sistem neracionalne potrošnje energije.

Plan View - Duct Duct, Mixing

Serijski tip sa ventilatorom

- Konstantna količina ubačenog vazduha.
- Primarni i recilkulisani vazduh.
- Ventilator postavljen na izlazu iz VAV kutije.
- Upravljanje žaluzinom zavisi od sezone grejanja-hlađenja.
- Grejanje=Minimalna količina primarnog vazduha + recirk. vazduh.
- Hlađenje=Maksimalna količina primarnog vazduha
- Štedi energiju.

Plan View - Fan Powered, Series Type (Constant Volume)

Paralelni tip sa ventilatorom

- Konstantna količina ubačenog vazduha.
- Primarni i recilkulisani vazduh.
- Ventilator postavljen na ulazu recirkulacionog vazduha VAV kutije.
- Upravljanje žaluzinom zavisi od sezone grejanja-hlađenja.
- Grejanje=Minimalna količina primarnog vazduha + Recirk. vazduh, ventilator je uključen.
- Hlađenje=Maksimalna količina primarnog vazduha, ventilator isključen.
- Štedi energiju.

Plan View - Fan Powered, Parallel Type (Variable Volume)

Primarni vazduh

- Minimalna količina primarnog vazduha je diktirana:
 - 1. ASHRAE 90.1, količina svežeg vazduha definisana brojem korisnika jednog prostora.
 - Minimalnim protokom koji obezbeđuje nesmetan rad VAV kutija.
- Ispunjavanje navedenih uslova diktira minimalnu količinu primarnog vazduha.
- Maksimalna količina primarnog vazduha diktirana je samim kapacitetom sistema hlađenja.

Ostali pojmovi kod VAV sistema

- Nivo buke,
- Statički pritisak,
- Proračun statičkog pritiska,
- Raspored količine vazduha u objektu,

Primer: jednokanalni VAV sistem

Primer: paralelni VAV sa ventilatorom

Hlađenje sa direktnom ekspanzijom

 Hlađenje vazduha vrši se prolaskom vazduha preko razmenjivača kroz koji prolazi rashladni fluid. Tokom prolaska toplog vazduha dolazi do stvaranja kondenzata.

Topao vazduh na ulazu

Šematski prikaz Fan-Coil jedinice

Fan-Coil kontroler za dvo i četvoro cevni sistem

Fan-Coil jedinice

FanCoil jedinice:

- Parapetne,
- Plafonske,
- Podne, itd.

Proizvodnja rashladnog fluida

Električni grejač

- Veći deo električne energije se proizvodi iz nafte gasa iil uglja.
 Svega oko 30% njihove energije se prilikom proizvodnje konvertuje u električnu energiju.
- Sa obzirom na gubitke u samim generatorima i gubicima prilikom prenosa grejanje elektro grejačima je najskuplje.
- Grejanje prostora se vrši najčešće u kombinaciji sa ventilatorom.

Split sistem

- Predstavlja toplotnu pumpu sa izdvojenim unutrašnjim i spoljašnjim delom.
- Funkcionalnost je moguća jedino u slučaju tesne sprege oba dela sistema.

Toplotna pumpa

- Jedinica koja može da greje i hladi objekat.
- Koristi se u zimskom periodu u kombinaciji sa električnim ili gasnim kotlom.
- Poseduje 4 way ventil kako bi se obezbedila izmena funkcionalnosti isparivača i kondenzatora.

Toplotna pumpa pri ciklusu hlađenja

Fig. 1 - Heat Pump in Cooling Mode

Toplotna pumpa pri ciklusu grejanja

Fig. 2 - Heat Pump in Heating Mode

Kvalitet vazduha u objektu

- Bezbednost (nivo zagađenosti vazduha)
- Komfor (temperatura, vlažnost, neprijatni mirisi)
- Ventilacija (toaleti, kuhinje, itd.)
- Statički pritisak u objektu
- Standardi, zakoni
 - ASHRAE Standard 62.1
 - IMC.

Kvalitet vazduha u objektu

- Kontrola svežeg vazduha:
 - Zagrevanjem
 - Hlađenjem
 - Vlaženjem
 - Odvlaživanjem
 - Rekuperatori, itd.

Kvalitet vazduha u objektu

- Kontrola kvaliteta vazduha u objektu:
 - Merenje koncentracije CO2 sa dopremanjem svežeg vazduha.
 - Praćenje temperature-vlage u vazduhu

Osvežavanje vazduha (svežim vazduhom, hemijskim sredstvima)

- Filtriranje vazduha
- Redovno održavanje