		-			
	Concentrate of the polym-	Time of Flow	Relative viscosity	Specific Viscosity	Reduced viscosity
	er solution	(average)	$\frac{\eta}{\eta_o} = \frac{t}{t_o}$	Msp = n n - 1	nred = nsp x 100
	%	000	The somey	En rud Taroid	UICH SIT
	76	sec	NON DE NOR	DIDE SOM	Tamograp
- 1	Data to lines	100 015		rando soa	yaris.
17	Pure solvent	to = 55		insk is 's	t looksood
27	0.1% 0.1	to = 58	1.055	0.055	55
3>	0.2	to = 62	1.127	0.127	64
4>	0.3	to = 67	1 · 218	0 · 218	73
5}	0.4	to = 72	1.309	0 · 309	77
6>	0.5	to = 79	1.440	0.440	88

$$n_i = K(M)^{\alpha}$$

i.e.
$$M = antilog \left[\frac{(\log n_i - \log \kappa)}{\alpha} \right]$$

as;
$$h_i = 51$$
, $K = 45.3 \times 10^{-3}$ and $\alpha = 0.64$
... $M = antilog \left[\frac{(log 51 - log 0.0453)}{0.64} \right]$

graduated pipette, suction bulb, etc.

Teacher's Signature __

Exp	. No Page No	
	PERGENTS	
	Measurement of solution viscosity offers a simple and convenient method for molecular weight determination if polymer is soluble in a solvent. In capillary viscometer (Ostwald Lubbelhode), the viscosity of a liquid is proportional to the time taken by a known volume of liquid to flow through a capillary under a specified hydrostatic pressure	
	at a fixed temperature. The Staudinger - Mark - Houwink equation which relates ni with molecular weight: ni = K(M)* where, 'M' is molecular weight of the polymer, 'ni' is intrinsic viscosity, 'K' is an empirical parameter characteristic of a particular solute - solvent pair and 'x' is a shape parameter, which can vary from 0.5 for well coiled polymers in poor solvents to about 2 rigidly exetended rod like polymers. For known values of 'K' and 'x', molecular weight can be determined. For polyvinyl alcohol solution, K = 45.3 × 10 ⁻³ and x = 0.64	
	· Using Poiseuille's equation it is possible to show that if 't', 'n' and '9' are flow-time, viscosity and density of a solution respectively and 'to', 'no' and '3o' are those of pure solvent then: Teacher's Signature	

$$\frac{\eta}{\eta_o} = \frac{q}{s_o} \times t$$

The values of n/n. is known as the relative viscosity 'nrei'. In dilute solutions, which are often employed for molecular weight determination 's' is not much different from 's.' and hence:

- Reduced viscosity η_{red} is equal to the ratio of the relative viscosity to concentration of the sample. $\eta_{red} = \eta_{sp}$

- 1) Preparation of various concentrations of polymer in water (solvent). % of polymer solution in water will be supplied.
- 2) We need to prepare atleast 5 dilutions, (i.e. 0.1, 0.2, 0.3, 0.4 and 0.5%) polymer in water before carrying out the experiment.
- 3) Dilutions can be done by using volumetric expression: $V_1N_1 = V_2N_2$.

Exp	Page No
	RESULT -
1>	Volume of polymer solution used for each measurement = 12.5 ml.
21	The everyone inclosular incidet of the civer columns -
-/	The average molecular weight of the given polymer = 58,603 g/mol.
	<u> </u>
	Touchar's Size at the
	Teacher's Signature

