

Algorithmen und Datenstrukturen 2

Vorlesung im Wintersemester 2024/2025 Prof. Dr. habil. Christian Heinlein

2. Übungsblatt (14. November 2024)

Aufgabe 5: Vorrangwarteschlangen

Führen Sie auf einer anfangs leeren Vorrangwarteschlange nacheinander die unten genannten Operationen aus und stellen Sie die interne Struktur der Warteschlange nach jeder Operation dar!

Die Warteschlange soll

- a) eine Maximum-Vorrangwarteschlange sein, die durch eine binäre Halde der Größe 8 implementiert ist.
- b) eine Minimum-Vorrangwarteschlange sein, die durch eine Binomial-Halde implementiert ist.

1. Einfügen eines Objekts mit Priorität 5

Einfügen eines Objekts mit Priorität 7

3. Einfügen eines Objekts mit Priorität 4

Einfügen eines Objekts mit Priorität 2

7	5	4	2		

5. Ändern der Priorität 7 auf 1

- 6. Einfügen eines Objekts mit Priorität 8

	8	5	4	1	2			
--	---	---	---	---	---	--	--	--

- 7. Entnehmen eines Objekts mit maximaler bzw. minimaler Priorität (je nach Art der Warteschlange)

8. Einfügen eines Objekts mit Priorität 3

9. Einfügen eines Objekts mit Priorität 9

9 3 5 1 2 4		9 3	9	5	1	2	4		
-------------	--	-----	---	---	---	---	---	--	--

10. Einfügen eines Objekts mit Priorität 1

11. Ändern der Priorität 4 auf 6

@

Zwischenschritt:

Endergebnis entweder:

	9	3	6	1	2	5	1	
--	---	---	---	---	---	---	---	--

Oder:

Oder:

Aufgabe 6: Binomialbäume

Beweisen Sie durch vollständige Induktion:

Für jeden Binomial-Baum mit Grad $k \in \mathbb{N}_0$ gilt:

- 1. Die Tiefe des Baums ist k.
- 2. Der Grad seines Wurzelknotens ist k.
- 3. Der Grad aller anderen Knoten ist kleiner als *k*.
- 4. Die Nachfolger des Wurzelknotens sind Binomial-Bäume mit Grad $k-1, \ldots, 0$.
- 5. Der Baum besitzt 2^k Knoten.
- 6. Auf Ebene l (l = 0, ..., k) gibt es genau $\binom{k}{l}$ Knoten.

Betrachten Sie für den Induktionsschritt $k-1 \to k$ einen Binomialbaum mit Grad k, der aus zwei Binomialbäumen mit Grad k-1 entstanden ist, die die o. g. Eigenschaften (für k-1 statt k) aufgrund der Induktionsvoraussetzung bereits erfüllen. Verwenden Sie an geeigneter Stelle die bekannte Formel $\binom{k}{l} = \binom{k-1}{l-1} + \binom{k-1}{l}$ für $k=1,2,\ldots$ und $l=1,\ldots,k-1$.

(S)

• Induktionsanfang k = 0:

Für einen Binomial-Baum mit Grad 0 sind die Aussagen offenbar korrekt.

(Beachte:
$$\binom{0}{0} = 1$$
.)

• Induktionsschritt $k-1 \rightarrow k$:

Betrachte einen Binomial-Baum B mit Grad k, der aus zwei Bäumen B_1 und B_2 mit Grad k-1 entstanden ist, indem B_1 zu einem Nachfolger von B_2 gemacht wurde.

- 1. Da B_1 und B_2 gemäß Induktionsvoraussetzung beide Tiefe k-1 besitzen und B_1 als Nachfolger in B_2 eingesetzt wird, besitzt der resultierende Baum B offenbar Tiefe k.
- 2. Da der Wurzelknoten von B_2 gemäß Induktionsvoraussetzung Grad k-1 besitzt und B_1 als weiterer Nachfolger hinzukommt, besitzt der Wurzelknoten des resultierenden Baums B offenbar Grad k.
- 3. Alle anderen Knoten von B entsprechen Knoten von B_1 oder B_2 und besitzen deshalb gemäß Induktionsvoraussetzung jeweils höchstens Grad k-1.
- 4. Ein Nachfolger von B ist gemäß Konstruktion der Baum B_1 mit Grad k-1. Die übrigen Nachfolger von B sind gemäß Konstruktion die Nachfolger von B_2 , die gemäß Induktionsvoraussetzung Binomial-Bäume mit Grad $k-2, \ldots, 0$ sind.
- 5. Da B_1 und B_2 gemäß Induktionsvoraussetzung jeweils 2^{k-1} Knoten besitzen, besitzt der resultierende Baum B gemäß Konstruktion $2^{k-1} + 2^{k-1} = 2 \cdot 2^{k-1} = 2^k$ Knoten.
- 6. Jeder Baum besitzt auf Ebene l = 0 genau $1 = \binom{k}{0} = \binom{k}{l}$ Knoten.

Auf Ebene $l=1,\ldots,k-1$ besitzt der Baum B gemäß Konstruktion und Induktionsvoraussetzung die $\binom{k-1}{l-1}$ Knoten der Ebene l-1 von B_1 sowie die $\binom{k-1}{l}$ Knoten der Ebene l von B_2 , d. h. insgesamt $\binom{k-1}{l-1}+\binom{k-1}{l}=\binom{k}{l}$ Knoten.

Auf Ebene l=k besitzt der Baum B gemäß Konstruktion und Induktionsvoraussetzung den $\binom{k-1}{l-1}=1=\binom{k}{l}$ Knoten von B_1 .