On-Line Learning of Linear Dynamical Systems: Exponential Forgetting in Kalman Filters

Mark Kozdoba*, Jakub Marecek⁺, Tigran Tchrakian⁺, Shie Mannor*

The Technion (*) and IBM Research – Ireland (+)

Abstract

- We give an on-line time series prediction algorithm which considers only a few most recent observations.
- We compare, via regret bounds, the results of our algorithm to the best, in hindsight, Kalman filter for a given signal.
- Technically, we show that the dependence of a prediction of Kalman filter on the past is decaying exponentially, whenever the process noise is non-degenerate.
- Thus, Kalman filter may be approximated by regression on a few recent observations.
- Improper, off-model learning of a linear dynamical system (LDS).

Figure 1: Prediction Errors: Last Seen Value: 8.77, Kalman Slow: 8.27, Kalman True (optimal): 5.75. Known Hidden State: 4.34

A Linear Dynamical System

A linear system L = (G, F, v, W) is:

$$\phi_t = G\phi_{t-1} + \omega_t$$
$$Y_t = F'\phi_t + \nu_t,$$

where

• Y_t are scalar observations, $\phi_t \in \mathbb{R}^{n \times 1}$ is the hidden state, and ω_t, ν_t are iid noises with covariances W, v.

Kalman Filter

• An estimate of the current hidden state, given the observations for $t \geq 1$:

$$m_t = \mathbb{E}\left(\phi_t|Y_0,\ldots,Y_t\right),$$

and let C_t be the covariance matrix of ϕ_t given Y_0, \ldots, Y_t .

• Forecast of the next observation, given the current data:

$$f_{t+1} = \mathbb{E}(Y_{t+1}|Y_t,\ldots,Y_0) = F'Gm_t.$$

• m_t is usually computed recursively.

Kalman Filter Unrolled

$$f_{t+1} = F'GA_tY_t + F'\sum_{j=0}^{s-1} \left[\left(\prod_{i=0}^{j} Z_{t-i} \right) GA_{t-j-1} Y_{t-j-1} \right] + F'\left(\prod_{i=0}^{s} Z_{t-i} \right) a_{t-s}.$$

where A_t, Z_t, a_t are computed recursively using the LDS parameters (G, F, v, W) and Y_t .

$Theorem\ (LDS\ Approximation)$

Let L = L(F, G, v, W) be an observable LDS with $\mathbf{W} > \mathbf{0}$.

For any $\varepsilon > 0$, and any $B_0 > 0$, there is $T_0 > 0$, s > 0 and $\theta \in \mathbb{R}^s$, such that for every sequence Y_t with $|Y_t| \leq B_0$, and for every $t \geq T_0$,

$$\left|f_{t+1} - \sum_{i=0}^{s-1} \theta_i Y_{t-i}\right| \leq \varepsilon.$$

• Similar result holds for Lipschitz sequences, $|Y_{t+1}-Y_t| \leq B_1$.

Necessity of Noise (W > 0)

With n = 1, assume that Y_t are generated by an LDS with G = F = 1, W = 0 and some v > 0. Assume that the true process starts from a deterministic state $m_0 > 0$.

- This is equivalent to estimating the mean (m_0) of a random variable from samples.
- In this case, based on fixed number of observations we can not compete with an estimator based on all observations.
- The decay is not exponential.
- Similar considerations apply more generally.

An Algorithm

Let us consider an on-line gradient descent:

- 1: **Input:** Regression length s, domain bound D. Observations $\{Y_t\}_0^{\infty}$, given sequentially.
- 2: Set the learning rate $\eta_t = t^{-\frac{1}{2}}$.
- 3: Initialize θ_s arbitrarily in \mathcal{D} .
- 4: for t = s to ∞ do
- 5: Predict $\hat{y}_t = \sum_{i=0}^{s-1} \theta_{t,i} Y_{t-i-1}$
- 6: Observe Y_t and compute the loss $\ell_t(\theta_t)$
- 7: Update $\theta_{t+1} \leftarrow \pi_{\mathcal{D}} (\theta \eta_t \nabla \ell_t(\theta_t))$ where the gradient $\nabla_{\theta} \ell_t(\theta)$ of the cost at θ at time t is given by

$$-2\left(Y_{t}-\sum_{i=0}^{s-1}\theta_{i}Y_{t-i-1}\right)\left(Y_{t-1},Y_{t-2},\ldots,Y_{t-s}\right).$$

8: end for

Theorem (Regret Bound)

Let S be a finite family of observable LDSs with $W_S > 0$ for all S. Let B_0 be given. For any $\varepsilon > 0$, there are s,D, and C_S , such that the following holds:

For every sequence Y_t with $|Y_t| \leq B_0$, if θ_t is a sequence produced by the algorithm with parameters s and D, then for every T > 0, the regret

$$\sum_{t=0}^{T} \ell_t(\theta_t) - \min_{L \in S} \sum_{t=0}^{T} \ell(Y_t, f_t(L))$$

is bounded by

$$C_S + 2(D^2 + B_0^2)\sqrt{T} + \varepsilon T$$
.

Experiments

Figure 2: The error of AR(s + 1) as a function of s + 1, in terms of the mean and standard deviation over N = 100 runs on Example of Hazan et al, for 4 choices of W, v of process, observation noise, respectively.

Figure 3: Illustrations on stock-market data used by Liu et al $(AAAI\ 2016)$. Sample outputs and predictions with AR(2), compared against Kalman filter, last-value prediction, and spectral filtering.

References

- [1] Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. Online learning for time series prediction. COLT, 2013.
- [2] Chenghao Liu, Steven C. H. Hoi, Peilin Zhao, and Jianling Sun.
 - Online arima algorithms for time series prediction. AAAI, 2016.
- [3] Elad Hazan, Karan Singh, and Cyril Zhang. Online learning of linear dynamical systems. NIPS, 2017.

Acknowledgements

This research received funding from the European Union Horizon 2020 Programme (Horizon2020/2014-2020) under grant agreement number 688380 (project VaVeL).

Contact Information

- markk@technion.ac.il
- jakub.marecek@ie.ibm.com
- tigran@ie.ibm.com
- shie@ee.technion.ac.il

