Лабораторная работа № 3.07: Изучение свойств ферромагнетиков

Исхаков Камиль Фархатович

12 декабря 2024 г.

1 Основные формулы

Магнитная проницаемость материала:

$$\mu = \frac{B}{\mu_0 H}$$

где B - индукция магнитного поля в материале, $\mu_0 = 4\pi \cdot 10^{-7}~\Gamma \text{H/M}$ - магнитная постоянная, H - напряженность магнитного поля.

Средняя мощность, расходуемая внешним источником тока при циклическом перемагничивании ферромагнитного образца:

$$P = \chi \cdot S_{\Pi\Gamma}$$

где $S_{\Pi\Gamma}$ - площадь петли гистерезиса, измеренная в делениях шкалы осциллографа, а коэффициент χ равен:

$$\chi = K_x K_y \frac{N_1 R_2 C_1}{N_2 R_1} f$$

где f — частота сигнала, подаваемого на первичную обмотку трансформатора, K_x, K_y цена горизонтального и вертикального деления соответственно, N_1, N_2 — число витков первичной и вторичной обмотки соответственно, C_1 — емкость конденсатора, R_1, R_2 — сопротивления первого и второго резистора соответственно.

Рис. 1: Принципиальная электрическая схема установки

2 Результаты эксперимента

U_x , мВ U_y , мВ		H_c , A/M	B_r , Тл	
108.00	78.20	33.90	0.28	

Таблица 1: Измерения 1

U	\mathcal{I}_x , м \mathbf{B}	U_y , мВ	H_c , А/м	B_r , Тл	μ_m
	317.00	129.00	99.51	0.46	3670.47

Таблица 2: Измерения 2

Масштаб по оси X: справа внизу указано, что 1 деление по горизонтали соответствует 50 мс. Масштаб по оси Y: в нижней части экрана видно, что 1 деление по вертикали равно 50 мВ.

Рис. 2: Петля гистерезиса

$$S_{\Pi\Gamma}=5.5$$
дел 2

$$\chi = 0.112 \cdot 10^{-2} \; \text{Дж/c}$$
 $P = 0.767 \cdot 10^{-4} \; \text{Вт}$

U, B	U_x , мВ	H, A/M	U_y , мВ	B, Тл	μ
19	295.00	92.60	126.00	0.45	3852.47
17	247.00	77.54	109.00	0.39	3980.34
15	205.00	64.35	97.20	0.35	4276.65
13	175.00	54.93	84.70	0.30	4365.52
11	142.00	44.58	71.40	0.25	4535.25
9	123.00	38.61	57.90	0.21	4245.85
7	106.00	33.27	42.90	0.15	3650.42
5	93.70	29.41	31.90	0.11	3070.73

Таблица 3: Результаты прямых измерений и расчетов

Максимальное значение магнитной проницаемости: 4535.25

Напряженность: 44.58 A/M

Относительная погрешность мощности: 8.3% Вт

Рис. 3: График зависимости B от H

Рис. 4: График зависимости μ от H

3 Выводы

В ходе выполнения данной лабораторной работы были рассчитаны коэрцитивная сила, остаточная индукция, магнитная проницаемость вещества, а также были построены соответсвующие графики зависимости от напряженности.