基础函数知识

数学是打开科学大门的钥匙。

——培根

1、一次函数y=kx+b有下列性质:

- (1) 当k>0时, y随x的增大而增大, 这时函数的图 象从左到右上升;
- (2) 当k<0时,y随x的增大而减小,这时函数的图象从左到右下降。

y=kx+b 图象		图象	性质	
			直线经过的象限	增减性
	b>0	(0, b) 0 x	第一、二、三象限	y随x增大 而增大
k>0	b=0	y x	第一、三象限	y随x增大 而增大
	b<0	(0, b) _x	第一、三、四象限	y随x增大 而增大

y=kx+b		图象	性 质直线经过的象限	增减性
	b>0	(0, b) 0 x	第一、二、四象限	y随x增大 而减小
k<0	b=0	O X	第二、四象限	y随x增大 而减小
	b<0	(o, b)	第二、三、四象限	y随x增大 而减小

观察函数的解析式及其图象,填写下表。

	解	肾析式	图象
	y=3x	相同点: _ <u>k相</u> 同	相同点: 倾斜度一样(平行)
2	y=3x+2	不同点: b 不同 ————。	不同点: 直线y=3x+2还经过第二象限
X × ▶	$y = \frac{1}{2}x$ $y = \frac{1}{2}x + 2$	相同点: — k相同 不同点: — b不同。	相同点:
	$y=3x+2$ $y = \frac{1}{2}x+2$	相同点: — b相同 不同点: _k不同。	相同点:都与y轴相交于点(0,2) 不同点: 倾斜度不一样(不平行)

2、正比例函数与反比例函数

函数	正比例函数	反比例函数
表达式	y=kx(k≠0)(特殊的一次函数)	$y = \frac{k}{x}$ 或 $y = k x^{-1}$ 或 $x y = k (k \neq 0)$
图象及象限	$ \begin{array}{c cccc} & y \\ \hline & & y \\ \hline & & & & \\ & & & & \\ & & & & \\ & & & &$	$ \begin{array}{c cccc} & y \\ \hline & 0 \\ \hline & x \\ \hline & k>0 \\ \hline & k<0 \\ \end{array} $
性质	当k>O时,y随X的增大而增大; 当k <o时,y随x的增大而减小。< th=""><th>在每一个象限内: 当k>O时,y随X的增大而 减小; 当k<o时,y随x的增大而 增大.</o时,y随x的增大而 </th></o时,y随x的增大而减小。<>	在每一个象限内: 当k>O时,y随X的增大而 减小; 当k <o时,y随x的增大而 增大.</o时,y随x的增大而

3、反比例函数解析式中k的几何意义

已知: $\triangle P$ 是双曲线 $y = \frac{k}{x}$ 上任意一点, $PA \perp OX = A$, $PB \perp OY = B$.则: 矩形 PAOB 的面积 = |k|

O D X

矩形面积为: K

三角形面积为: $s = \frac{|k|}{2}$

4.二次函数

1.二次函数表达式:

1. 一般式法: $y = ax^2 + bx + c \ (a \neq 0)$

2. 顶点法: $y=a(x-h)^2+k(a\neq 0)$

3. 交点法: $y = a(x - x_1)(x - x_2)(a \neq 0)$

2.二次函数的图象与性质:

_;	次函数	$y=a(x-h)^2+k$	$y = ax^2 + bx + c$	
开口 方向		a>0 开	口向上	
		a < 0 开口向下		
对称轴		x=h	$x = -\frac{b}{2a}$	
顶点坐标		(h, k)	$(-\frac{b}{2a}, \frac{4ac-b^2}{4a})$	
最	a>0	$y_{最小}=k$	y 最小 $=$ $\frac{4ac-b^2}{4a}$ $\frac{4ac-b^2}{ac-b^2}$	
值	a<0	$y_{\text{最}}=k$	$y_{\text{\tiny flat}} = \frac{4ac^2 - b^2}{4a}$	
增	a>0	在对称轴左边,x/y\;在对称轴右边,x/y/		
减 性 a<0		在对称轴左边,x↗ y↗;在对称轴右边,x↗ y↘		

3.二次函数图像的平移

5、三角、反三角函数

正弦函数 $y = \sin x$

余弦函数 $y = \cos x$

反三角函数

-----(5) 反三角函数 ----

反正弦 $y = \arcsin x,$ $x \in [-1,1],$ $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

反余弦 $y = \arccos x$, $x \in [-1,1]$, $y \in [0,\pi]$,

反正切 $y = \arctan x$, $x \in (-\infty, +\infty)$, $y \in (-\frac{\pi}{2}, \frac{\pi}{2})$

反余切 $y = \operatorname{arc} \cot x$, $x \in (-\infty, +\infty)$, $y \in (0, \pi)$

名称	反正弦函数	反余弦函数	反正切函数	反余切函数
定义	y= sin x 在区间 [-π,π]上的 [-π,π]上的 反函数,叫反 正弦函数.	y=cosx 在区间 [0, 17]上的反函数 叫反余弦函数	y= tgx在区间 (-7,7)上的 反函数叫做 反函数叫做	y = ctgx 在区间 (0, π)上的 反函数,叫反余 切函数
函数式	y-arcsinx	y=arccosx	y-arctgr	y-arcdge
定义城	-1 ≤ x ≤ 1	-1 < X < 1	-∞< x<+∞	-00< X <+00
值城	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$	0 ≤ y ≤ π	$-\frac{\pi}{2} < y < \frac{\pi}{2}$	0< y<π
图象	7 y y y y y y y y y y y y y y y y y y y	N A A A	3 y ·	- N Y

6、指函数的图象和性质:

指数函数图像:

指数函数 $y=a^x(a>0$ 且 $a\neq 1$),图像的高低与 a 的取值关系: a1>a2>1>a3>a4>0

7、对函数的图象和性质

对数函数① $y = \log_a x$,② $y = \log_b x$,③ $y = \log_c x$,④ $y = \log_d x$

的图像如图,则 a,b,c,d 大小顺序是 0 < c < d < 1 < a < b

练习:

- 画出下列函数的大致图像:
- 1. y = 2 x
- 2. $y = \frac{2}{x}$, y = 3x
- 3. $y = x^2 2x 1$
- 4. $y = e^{x+1}$
- 5. $y = 1 + \ln x$