#### THỐNG KÊ MÁY TÍNH

(Computational Statistics)

Trường Đại học Nha Trang Khoa Công nghệ thông tin Bộ môn Hệ thống thông tin Giảng viên: TS.Nguyễn Khắc Cường

#### CHUONG 5

# BIÉN NGÃU NHIÊN VÀ PHÂN PHỐI XÁC SUẤT

### 5.1.Biến ngẫu nhiên (Random Variable)

- 5.1.1.Giới thiệu
  - Là qui tắc/cách biểu diễn các kết quả của phép thử ngẫu nhiên nào đó dưới dạng số
- 5.1.2.Định nghĩa toán:
  - Biến ngẫu nhiên X là một ánh xạ từ không gian các biến cố sơ cấp Ω vào tập số thực R

$$X: \Omega \to \Re$$
  $\omega \mapsto X(\omega)$ 

- 5.1.3.VD:

| $\varpi_1$ =(HHH)  | $\varpi_2$ =(HHT)  | $\varpi_3$ =(HTT)  | $\varpi_4$ =(HTH) |
|--------------------|--------------------|--------------------|-------------------|
| $\varpi_5 = (TTT)$ | $\varpi_6 = (TTH)$ | $\varpi_7 = (THH)$ | $\varpi_8$ =(THT) |

### 5.1.Biến ngẫu nhiên (Random Variable)

| $\varpi_1$ =(HHH)  | $\varpi_2$ =(HHT)  | $\varpi_3 = (HTT)$ | $\varpi_4$ =(HTH) |
|--------------------|--------------------|--------------------|-------------------|
| $\varpi_5 = (TTT)$ | $\varpi_6 = (TTH)$ | <b>∞</b> 7=(THH)   | $\varpi_8$ =(THT) |

- 5.1.3.VD:
  - Gọi X là biến cố: "cho biết số mặt T xảy ra khi thực hiện phép thử giao 3 đồng xu" → các giá trị của các phần tử của biến ngẫu nhiên X là:

| $X(\boldsymbol{\varpi}_1)=0$ | $X(\varpi_2)=1$ | $X(\boldsymbol{\omega}_3)=2$ | $X(\varpi_4)=1$              |
|------------------------------|-----------------|------------------------------|------------------------------|
| $X(\varpi_5)=3$              | $X(\varpi_6)=2$ | $X(\varpi_7)=1$              | $X(\boldsymbol{\varpi}_8)=2$ |

### 5.2.Phân loại biến ngẫu nhiên

- 5.2.1.Cơ sở để phân loại
  - Giá trị mà biến ngẫu nhiên nhận được
- 5.2.2.Phân loại:
  - biến ngẫu nhiên rời rạc (discrete random variable)
    - Tập giá trị nhận được là hữu hạn / vô hạn đếm được
    - VD: số sản phẩm lỗi, số bit
  - biến ngẫu nhiên liên tục (continuous random variable)
    - Tập giá trị nhận được là một khoảng (a, b), (a, b], [a, b), [a, b], hoặc toàn bộ R
    - VD: nhiệt độ, thời gian, độ dài, ...

#### 5.3. Phân phối xác suất

- 5.3.1.Qui luật phân phối xác suất
  - biểu thức biểu diễn mối quan hệ
    - giữa các giá trị có thể có của biến ngẫu nhiên
    - với xác suất tương ứng của các giá trị đó
- 5.3.2.Hàm phân phối xác suất (CDF Cumulative distribution function) của biến ngẫu nhiên X
  - xác định trên không gian các biến cố sơ cấp
  - là hàm F(x) được định nghĩa:

$$F(x) = P(X \le x), \forall x \in (-\infty, +\infty)$$

#### 5.3. Phân phối xác suất

- 5.3.3.Phân phối xác suất của biến ngẫu nhiên rời rạc
  - Hàm giá trị xác suất (PMF Probability Mass Function)
    - gọi tắt là hàm xác suất PMF
    - PMF của một biến ngẫu nhiên rời rạc X có thể nhận các giá trị x₁, x₂,
       ..., x<sub>n</sub> là hàm thỏa:
       f(xᵢ)≥0,∀ᵢ=1,n

$$\sum_{i=1}^{n} f(x_i) = 1$$

$$f(x_i) = P(X = x_i), \forall i = 1, n$$

Bảng phân phối xác suất (của biến ngẫu nhiên X)

#### 5.3.Phân phối xác suất

- 5.3.3.Phân phối xác suất của biến ngẫu nhiên rời rạc
  - Hàm phân phối xác suất CDF (của biến ngẫu nhiên rời rạc)
    - Là hàm được định nghĩa:

$$F(x) = P(X \le x) = \sum_{x \le x} f(x_i)$$

Cụ thể:

$$F(x) = P(X \le x) = \begin{cases} 0, x < x_1 \\ f(x_1), x_1 \le x < x_2 \\ f(x_1) + f(x_2), x_2 \le x < x_3 \\ f(x_1) + f(x_2) + f(x_3), x_3 \le x < x_4 \\ \vdots \\ f(x_1) + \dots + f(x_{n-1}), x_{n-1} \le x < x_n \\ 1, x \ge x_n \end{cases}$$





#### 5.3.Phân phối xác suất

- 5.3.4.Phân phối xác suất của biến ngẫu nhiên liên tục
  - Hàm mật độ xác suất (PDF Probability Density Function)
    - PDF của biến ngẫu nhiên liên tục X được định nghĩa là hàm f(x) thỏa

$$P(X \in I) = \int_{I} f(x)d(x), \forall I \subset \Re$$

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

- 5.4.1.Kỳ vọng (Expectation) của biến ngẫu nhiên
  - Kỳ vọng của biến ngẫu nhiên rời rạc

$$E(X) = \sum_{i=1}^{+\infty} x_i P(X = x_i) = \sum_{i=1}^{+\infty} x_i f(x_i)$$
$$E(X) = \sum_{x \in S} x f(x)$$

Trong đó:

S: không gian mẫu

- 5.4.1.Kỳ vọng (Expectation) của biến ngẫu nhiên
  - Kỳ vọng của biến ngẫu nhiên liên tục

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

trong đó:

f(x) là hàm mật độ xác suất (PDF) của biến ngẫu nhiên liên tục X

- Ý nghĩa của E(X)
  - Là giá trị trung bình theo xác suất của tất cả giá trị có thể có của biến ngẫu nhiên
  - Là giá trung bình của phân phối xác suất.

5.4.2.Phương sai (Variance) của biến ngẫu nhiên

$$Var(X) = E(X - E(X))^{2}$$

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

5.4.3.Độ lệch chuẩn (Standard deviation)

$$\sigma(X) = \sqrt{Var(X)}$$

- Ý nghĩa của phương sai:
  - là trung bình bình phương sai lệch
  - phản ánh mức độ phân tán của các giá trị của biến ngẫu nhiên xung quanh giá trị trung bình
  - Ứng dụng:
    - Trong công nghiệp: phương sai biểu thị độ chính xác trong sản xuất
    - Trong canh tác: phương sai biểu thị mức độ ổn định của năng suất
    - Trong đo lường: phương sai thể hiện độ "ổn định" của phép đo

. . .

- Tính các đặc trưng trong R (tính thủ công)
  - Bảng phân phối xác suất của biến ngẫu nhiên rời rạc X

```
> X<-c(0,1,2,3)
> f_X<-c(1/8,3/8,3/8,1/8)

• Kỳ vọng
> E_X<-sum(X*f_X)
> E_X
[1] 1.5
```

Phương sai

```
> Var_X<-sum((X-E_X)^2*f_X)
> Var_X
[1] 0.75
```

Độ lệch chuẩn

```
> std_X<-sqrt(Var_X)
```

Phân phối xác suất CDF

```
> CDF_X<-cumsum(f_X)
> CDF_X
[1] 0.125 0.500 0.875 1.000
```

- Tính các đặc trưng trong R (dùng gói distrEx)
  - Cài đặt gói distrEx

```
> install.packages("distrEx")
> library(distrEx)
```

• Tính các đặc trưng của biến ngẫu nhiên rời rạc X

```
> X<-DiscreteDistribution(supp=0:3,prob=c(1,3,3,1)/8)
> E(X)
[1] 1.5
> E(X)
[1] 1.5
> var(X)
[1] 0.75
> sd(X)
[1] 0.8660254
```

- Bài toán
  - Một cửa hàng thống kê số lượng xe bán trong 500 ngày:
    - a. Gọi X là biến ngẫu nhiên chỉ số xe bán trong một ngày. Hãy lập bảng phân phối xác suất cho biến ngẫu nhiên X
    - b. Tính kỳ vọng của X (số xe hy vọng bán được trong một ngày)
    - c. Tính độ lệch chuẩn
    - d. Tính xác suất để trong 1 ngày:
      - 1) Có ít hơn 4 xe được bán
      - 2) Ít nhất 4 xe được bán
      - 3) Nhiều hơn 4 xe được bán
      - 4) Tối đa 4 xe được bán
      - 5) Đúng 4 xe được bán

• . . .

| Số xe máy bán trong 1 ngày | Tần số |
|----------------------------|--------|
| 0                          | 40     |
| 1                          | 100    |
| 2                          | 142    |
| 3                          | 66     |
| 4                          | 36     |
| 5                          | 30     |
| 6                          | 26     |
| 7                          | 20     |
| 8                          | 16     |
| 9                          | 14     |
| 10                         | 8      |
| 11                         | 2      |
|                            |        |

- Bài toán
  - a. Bảng phân phối xác suất của X

|         | T      | TT. 6    |
|---------|--------|----------|
| $X=x_i$ | Tần số | Xác suât |
| 0       | 40     | 0.080    |
| 1       | 100    | 0.200    |
| 2       | 142    | 0.284    |
| 3       | 66     | 0.132    |
| 4       | 36     | 0.072    |
| 5       | 30     | 0.060    |
| 6       | 26     | 0.052    |
| 7       | 20     | 0.040    |
| 8       | 16     | 0.032    |
| 9       | 14     | 0.028    |
| 10      | 8      | 0.016    |
| 11      | 2      | 0.004    |
| 500     |        | 1.000    |

| Số xe máy bán trong 1 ngày | Tần số |
|----------------------------|--------|
| 0                          | 40     |
| 1                          | 100    |
| 2                          | 142    |
| 3                          | 66     |
| 4                          | 36     |
| 5                          | 30     |
| 6                          | 26     |
| 7                          | 20     |
| 8                          | 16     |
| 9                          | 14     |
| 10                         | 8      |
| 11                         | 2      |

= 40/500

- Bài toán
  - b. Kỳ vọng của X
    - E(X) = số xe hy vọng bán được trong 1 ngày

$$E(X) = \sum_{i=0}^{11} x_i p_i = 3.056$$

• c. Độ lệch chuẩn

$$\sigma^{2} = E((X - E(X))^{2}) = \sum_{i=0}^{11} (x_{i} - E(X))^{2} p_{i} = 6.0689$$

$$\sigma = \sqrt{\sigma^{2}} = 3.056$$

| Số xe máy bán trong 1 ngày | Tần số |
|----------------------------|--------|
| 0                          | 40     |
| 1                          | 100    |
| 2                          | 142    |
| 3                          | 66     |
| 4                          | 36     |
| 5                          | 30     |
| 6                          | 26     |
| 7                          | 20     |
| 8                          | 16     |
| 9                          | 14     |
| 10                         | 8      |
| 11                         | 2      |

- Bài toán
  - d. Tính xác suất để trong 1 ngày
    - có ít hơn 4 xe được bán

$$P[X < 4] = P[X = 0] + P[X = 1] + P[X = 2] + P[X = 3] = 0.696$$

tối đa 4 xe được bán

$$P[X \le 4] = P[X = 0] + P[X = 1] + P[X = 2] + P[X = 3] + P[X = 4] = 0.768$$

Số xe máy bán trong 1 ngày

10

11

Tần số 40 100 142

16 14

8

Ít nhất 4 xe được bán

$$P[X \ge 4] = 1 - P[X < 4] = 1 - 0.696 = 0.304$$

Đúng 4 xe được bán

$$P[X = 4] = 0.072$$

Nhiều hơn 4 xe được bán

$$P[X > 4] = 1 - P[\le 4] = 1 - 0.768 = 0.232$$

Q/A