Steps for MOLLER Magnetic Field Study February 2024

	Genera	ate root files - see table below. [1-3 days]				
	a.	Symmetric: ideal field with perfect symmetry				
■ /volatile/halla/moller12gev/ktevans1/rootfiles2024/MagFieldStud						
		etric/				
		■ V2U.1a.50cm.parallel.txt				
		■ subcoil_2_3_3mm_full.txt				
	b.	<u>DipolePoint5Same</u> : asymmetric field with coils offset by 0.5mm in the same				
		direction - missing				
	c.	DipolePoint5Rand: asymmetric field with coils offset by 0.5mm in random				
		directions				
		V2U.1a.50cm.parallel.real_asymmetric.txt				
		subcoil_2_3_3mm_real_asymmetric.txt				
	d.	<u>Dipole3SameSC23</u> : asymmetric field with coils offset by +/- 1 or 3 mm in same				
		direction with subcoil 2 and 3 are 3mm lower than nominal positions				
		■ US_Asym_CP2B_pm_1_3.txt				
		■ DS_Asym_CP2B_pm_1_3.txt				
	e.	<u>DipolePoint5SameSC23</u> : asymmetric field with coils offset by 0.5mm in the same				
		direction with subcoil 2 and 3 are 3mm lower than nominal positions				
		US_CoilA-G_Asy_0dot5mm_case-II.txt				
		■ DS_CoilA-G_Asy_0dot5mm_case-II.txt				
	f.	<u>DipolePoint5RandSC23</u> : asymmetric field with coils offset by 0.5mm in random				
		directions with subcoil 2 and 3 are 3mm lower than nominal positions				
		■ US_CoilA-G_Asy_0dot5mm_case-I.txt				
_		■ DS_CoilA-G_Asy_0dot5mm_case-I.txt				
Ш	_	a separate repository for scripts. Make sure that this can be used on a local				
	_	ter, not on the JLab computing farm. [2-3 days]				
	Redo s	tudy from last year with updated sieve geometry. [1-2 days]				
	Use el	lipses on 2D plots instead of analyzing 1D plots. [2-3 days]				
	What v	variables are most affected by asymmetries in the magnetic field? [2-3 days]				
	a.	r vs. phi				
		r vs. r'				
	c.	phi vs. phi'				
	Vassu	has a method of excluding radiative effects. How do the magnetic field study				
	results	look if we use this method? [2-3 days]				
	Is there	e a specific beam energy in which we are able to see the best results?				
		Pass-2 C12				
	b	Pass-3 C12				

- c. Pass-5 LH2
- \square Is there a specific target location/type for which we are able to see the best results?
 - a. Upstream C12 foil Optics2
 - b. Middle C12 foil Optics3
 - c. Downstream C12 foil Optics1
 - d. LH2

Field Map	Beam Energy [GeV]	Target	Generator	Beam Current [uA]	Sieve Rotation [deg]	Number of Events	Root File Name
Symmetric	4.4	DS C12	eC12	1	0	1M	02132024_Pass2_Optics1_sieveIN_el asticC12_1M.root
Symmetric	4.4	US C12	eC12	1	0	1M	02132024_Pass2_Optics2_sieveIN_el asticC12_1M.root
Symmetric	4.4	Mid C12	eC12	1	0	1M	02132024_Pass2_Optics3_sieveIN_el asticC12_1M.root
Symmetric	6.6	DS C12	eC12	1	0	1M	02132024_Pass3_Optics1_sieveIN_el asticC12_1M.root
Symmetric	11	LH2	Moller	1	0	1M	02132024_Pass5_LH2_sieveIN_molle r_1M.root
DipolePoin t5Same	4.4	DS C12	eC12	1	0	1M	
DipolePoin t5Same	4.4	DS C12	eC12	1	+(360/7)	1M	
DipolePoin t5Same	4.4	DS C12	eC12	1	+2(360/7)	1M	
DipolePoin t5Same	4.4	DS C12	eC12	1	+3(360/7)	1M	
DipolePoin t5Same	4.4	DS C12	eC12	1	+4(360/7)	1M	
DipolePoin t5Same	4.4	DS C12	eC12	1	+5(360/7)	1M	
DipolePoin t5Same	4.4	DS C12	eC12	1	+6(360/7)	1M	
DipolePoin t5Same	4.4	US C12	eC12	1	0	1M	
DipolePoin t5Same	4.4	Mid C12	eC12	1	0	1M	
DipolePoin t5Same	6.6	DS C12	eC12	1	0	1M	
DipolePoin t5Same	11	LH2	Moller	1	0	1M	
DipolePoin	4.4	DS C12	eC12	1	0	1M	

t5Rand							
DipolePoin t5Rand	4.4	DS C12	eC12	1	+(360/7)	1M	
DipolePoin t5Rand	4.4	DS C12	eC12	1	+2(360/7)	1M	
DipolePoin t5Rand	4.4	DS C12	eC12	1	+3(360/7)	1M	
DipolePoin t5Rand	4.4	DS C12	eC12	1	+4(360/7)	1M	
DipolePoin t5Rand	4.4	DS C12	eC12	1	+5(360/7)	1M	
DipolePoin t5Rand	4.4	DS C12	eC12	1	+6(360/7)	1M	
DipolePoin t5Rand	4.4	US C12	eC12	1	0	1M	
DipolePoin t5Rand	4.4	Mid C12	eC12	1	0	1M	
DipolePoin t5Rand	6.6	DS C12	eC12	1	0	1M	
DipolePoin t5Rand	11	LH2	Moller	1	0	1M	
Dipole3Sa meSC23	4.4	DS C12	eC12	1	0	1M	
Dipole3Sa meSC23	4.4	DS C12	eC12	1	+(360/7)	1M	
Dipole3Sa meSC23	4.4	DS C12	eC12	1	+2(360/7)	1M	
Dipole3Sa meSC23	4.4	DS C12	eC12	1	+3(360/7)	1M	
Dipole3Sa meSC23	4.4	DS C12	eC12	1	+4(360/7)	1M	
Dipole3Sa	4.4	DS C12	eC12	1	+5(360/7)	1M	

meSC23							
Dipole3Sa meSC23	4.4	DS C12	eC12	1	+6(360/7)	1M	
Dipole3Sa meSC23	4.4	US C12	eC12	1	0	1M	
Dipole3Sa meSC23	4.4	Mid C12	eC12	1	0	1M	
Dipole3Sa meSC23	6.6	DS C12	eC12	1	0	1M	
Dipole3Sa meSC23	11	LH2	Moller	1	0	1M	