Computer Network Security, ITC502, M1L2

Classical Encryption Techniques

Introduction: Some Simple Cryptosystems

Outline

- [1] Introduction: Some Classical Simple Cryptosystems
 - <1> The Shift Cipher
 - <2> The Substitution Cipher
 - <3> The Affine Cipher
 - <4> The Vigenère Cipher
 - <5> The Hill Cipher
 - <6> The Permutation Cipher
 - <7> Stream Ciphers
- [2] Cryptanalysis
 - <1> Cryptanalysis of the Affine Cipher
 - <2> Cryptanalysis of the Substitution Cipher
 - <3> Cryptanalysis of the Vigenère Cipher
 - <4> Cryptanalysis of the Hill Cipher
 - <5> Cryptanalysis of the LFSR Stream Cipher

• [1] Introduction

- Definition 1.1: A cryptosystem is a five-tuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ satisfies
 - P is a finite set of possible plaintexts
 - C is a finite set of possible ciphertexts
 - \bullet K, the keyspace, is a finite set of possible keys
 - For each $K \in \mathcal{K}$, there is an encryption rule $e_K \in \mathcal{E}$ and a corresponding decryption rule $d_K \in \mathcal{D}$

$$e_{K}: \mathcal{P} \to C$$

$$d_{K}: C \to \mathcal{P}$$

- $d_K(e_K(x))=x$ for every plaintext $x \in \mathcal{P}$

- Definition 1.2: a and b are integers,
 m is a positive integer
 - congruence: a=b (mod m) if m divides b-a

- Z_m : the set {0,1,...,m-1}

- with 2 operations + and X
- 10+20=4 in Z_{26} (10+20 mod 26=4)
- $10 \times 20 = 18$ in Z_{26} (10 × 20 mod 26 = 18)

- · <1> Shift Cipher (Caesar Cipher)
 - Cryptosystem 1.1: Shift Cipher

- K, x, y ∈Z₂₆
- $e_{K}(x)=(x+K) \mod 26$
- $d_K(y)=(y-K) \mod 26$

Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

- eg.: Suppose K=11

Plaintext: student

· Ciphertext: DEFOPZE

Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

plaintoyt	S	t	u	d	е	n	t
plaintext	18	19	20	3	4	n 13 25 Z	19
+K	3	4	5	14	15	25	4
ciphertext	D	Е	F	0	Р	Z	Е

K=5, 17, information technology

A	В	C	D	E	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	5	Т	U	V	W	X	У	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

- <2> Substitution Cipher
 - Cryptosystem 1.2: Substitution Cipher
 - P=C=Z₂₆
 - K: all possible permutations of the 26 symbols
 - For each $\pi \in \mathcal{K}$
 - $-e_{\pi}(x)=\pi(x)$
 - $d_{\pi}(y) = \pi^{-1}(y)$

where $\pi^{\text{--}1}$ is the inverse permutation to π

- eg.:

X	a	b	С	d	е	f	g	h	i	j	k		m
$e_{\pi}(x)$	X	Ν	Y	Α	Ι	Р	0	G	Z	Q	W	В	Т
X	n	0	р	q	r	S	t	u	V	W	X	У	Z
$e_{\pi}(x)$	S	F	L	R	С	V	М	U	Ε	K	J	D	Ι

- · Plaintext: student, information, your name
- Ciphertext: VMUSHSM, ZSPFCTXMZFS,?

- <3> Affine Cipher
 - Theorem 1.1: $ax\equiv b \pmod{m}$ has a unique solution $x\in Z_m$ for every $b\in Z_m$ iff gcd(a,m)=1
 - Definition 1.3: Suppose a≥1 and m≥2 are integers
 - · a and m are relatively prime if gcd(a,m)=1
 - \Box ϕ (m): the number of integers in Z_m that are relatively prime to m \underline{n}

$$m = \prod_{i=1}^{n} p_i^{e_i}$$

- Theorem 1.2: Suppose

$$\phi(m) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1})$$

- Definition 1.4: Suppose $a \in \mathbb{Z}_m$
 - a⁻¹ mod m:

the multiplicative inverse of a modulo m

- $aa^{-1}\equiv a^{-1}a\equiv 1 \pmod{m}$
- Cryptosystem 1.3: Affine Cipher
 - P= C= Z₂₆
 - $K = \{(a,b) \in Z_{26} \times Z_{26} : gcd(a,26) = 1\}$
 - For K=(a,b) $\in \mathcal{K}$; x, y $\in \mathbb{Z}_{26}$
 - $e_{k}(x)=(ax+b) \mod 26$
 - $d_K(y)=a^{-1}(y-b) \mod 26$

- e.g.: Suppose K=(7,3)
 - $7^{-1} \mod 26 = 15$
 - · Plaintext: student, Information

Ciphertext: ZGNYFQG

$$e_{K}(x)=(7x+3) \mod 26$$

 $d_{K}(y)=15(y-3) \mod 26$

plaintoyt	S	t	u	d	е	n	t
plaintext	18	19	20	3	4	13	19
e _K (x)	25	6	13	24	5	16	6
ciphertext	Z	G	N	Υ	F	Q	G

M1L3