3. Mesterséges neuronhálók

Számjegy felismerés egy mesterséges neuronhálózata

Bemeneti értékek száma: 42

Minden pixel generál egy bemeneti értéket.

Kimenetek száma: 10

Minden számjegyhez tartozik egy neuron a kimeneti rétegben, amely akkor tüzel, ha az adott számjegyet véli felismerni a rendszer.

Mesterséges neuronhálók alkotóelemei

- Mesterséges neuron
 - bemenő értékekből kimenő értéket <u>számoló egység</u>, amelynek számítási képlete változtatható, tanítható
- □ Hálózati topológia
 - sok mesterséges neuron egymáshoz kapcsolva, ahol <u>egyik</u> neuron kimenete egy másik neuron bemenete lesz
 - bizonyos neuronok a bemenetüket a hálózaton kívülről kapják, mások kimeneteit pedig hálózat kimenetének tekintjük
- Tanulási szabály
 - egy neuron <u>számítási képletét meghatározó eljárás</u>, amely lehet egy tanító példák alapján működő algoritmus is.

Általánosított perceptron

Kimeneti függvények

Hálózati topológia

Irányított gráf, amelynek csúcsai mesterséges neuronok, amelyek rétegekbe csoportosíthatók. Az irányított élek az adatáramlás irányát jelölik: $a \rightarrow b$: az a neuron kimeneti értékét kapja meg a b neuron

Többrétegű előrecsatolt hálózat (feed forward MLP)

Konvolúciós neuron hálózat

Teljesen összekötött (sűrű) fully connected neural net

Pl.: 1000×1000-es első réteg esetén a második réteg egy neuronjában 10⁶ darab súlyt kell tárolni.

Lokálisan összekötött convolutional neural net

Pl.: 1000×1000-es első réteg esetén egy 2×2-es szűrőt használva a második réteg egy neuronjában csak 4 súlyt kell tárolni.

Rekurrens neurális hálózat

- □ Az input és/vagy az output változó hosszúságú sorozat.
- □ A számítási képlet azt utánozza, mintha a neuron emlékezne a megelőző inputokra, mivel egy új inputra a megelőző inputokra kiszámolt outputot is felhasználva fog reagálni. |*V*

Általánosított perceptron tanulása

- □ Egy neuron számítási képletét a neuron w súlyai határozzák meg.
- A súlyok implicit módon a hálózat topológiáját is kijelölik, hiszen neuronhoz vezető nulla értékű súllyal ellátott él lényegében az él figyelmen kívül hagyását (törlését) jelenti.
- □ Tanulás során a súlyokat fokozatosan módosítjuk ($w:=w+\Delta w$).
- □ A ∠w a neuron bemeneti értékeitől és a neuron által kiszámított kimeneti értéktől függ.
 - Felügyelt tanulás esetén felhasználjuk az elvárt kimenetet.
 - Felügyelet nélküli tanulás esetén az elvárt kimenetre nincs szükség.

Példa felügyelt tanulásra

Tanítsuk meg egy egyszerű számoló egységnek (egyetlen mesterséges neuronnak) a logikai AND művelet működését!

 x_i a neuron *i*-dik bemenete $(x_i \in \{0,1\}, x_0 = 1)$ w_i a neuron *i*-dik bemenetének súlya $(w_0, w_1, w_2 \in \mathbb{R})$ I a neuron összegzett bemenete o a neuron számított kimenete $(o \in \{0,1\})$

Mit tanultunk meg?

- A neuron működése azonos az $AND(x_1, x_2)$ működésével, mert az összegzett bemenet előjele csak az (1,1) bementre pozitív:
 - ha $I(x_1, x_2) \le 0$ akkor $step(I(x_1, x_2)) = 0$
 - ha $I(x_1, x_2) > 0$ akkor $step(I(x_1, x_2)) = 1$
- A w együtthatók megtanulásával azt az $I(x_1,x_2)=w_0+w_1\cdot x_1+w_2\cdot x_2$ egyenest kaptuk meg a lehetséges bemenet-párok síkján, amely elszeparálja (osztályozza) a bemenet-párokat: egy oldalra (félsíkra) kerülnek az azonos eredményű bemenetek.

Lineáris szeparálhatóság

- Egyetlen perceptronnal olyan bonyolultságú feladatot vagyunk képesek megoldani, ahol az eredményük alapján a bemeneteket egy hipersík választja szét, azaz lineárisan szeparálhatók.
- De nem lehet például a XOR műveletet egyetlen perceptronnal megvalósítani, mert ez a feladat lineárisan nem szeparálható.

Rétegek "tudása"

- □ Több réteggel összetettebb problémák is megoldhatók, de mivel a *step* függvény (nem deriválható) egyszerű perceptronokkal eddig nem sikerült megfelelő tanuló algoritmust találni ehhez.
- □ De ha lecseréljük a kimeneti függvény (pl. szigmoidra), akkor már létrehozható olyan algoritmus, amellyel a háló tanítható (pl. error backpropagation).

Homogén MLP háló számítási modellje

□ A teljes háló számítási modellje:

deriválható aktivizációs függvény

$$f(\Theta, \underline{x}) = g(\underline{w}^{[r]} \cdot \dots \cdot g(\underline{w}^{[s]} \cdot \dots \cdot g(\underline{w}^{[2]} \cdot g(\underline{w}^{[1]} \cdot \underline{x})) \dots) \dots)$$

$$a \Theta \text{ paraméter a } (w_{ij}^{[s]}) \text{ súlyok összessége}$$

□ Egy réteg számítási modellje

$$\underline{o}^{[s]} = g(\underline{w}_{j}^{[s]} \cdot \underline{o}^{[s-1]}) = g(\sum_{i=0}^{n} w_{ij}^{[s]} \cdot o_{i}^{[s-1]})$$

Hiba visszaterjesztés módszere (error backpropagation)

A modell hibafüggvénye:
$$L(\Theta) = \frac{1}{2} \sum_{j=1}^{n} (y_j - o_j^{[r]})^2$$

Az $L(\Theta)$ egy olyan több változós függvény, amely a $(w_{ii}^{[s]})$ súlyoktól függ. A tanulás során ennek a függvénynek keressük a minimum helyét gradiens módszerrel, azaz lépésről lépésre módosítjuk a súlyokat megfelelő irányban kis mértékben.

$$w_{ij}^{[s]} := w_{ij}^{[s]} - \Delta w_{ij}^{[s]}$$
 $I_j^{[s]} = \sum_{i=0}^{n} w_{ij}^{[s]} \cdot o_i^{[s-1]}$

$$\Delta w_{ij}^{[s]} = \eta \cdot \frac{\partial L}{\partial w_{ij}^{[s]}} = \eta \cdot \frac{\partial L}{\partial I_j^{[s]}} \cdot \frac{\partial I_j^{[s]}}{\partial w_{ij}^{[s]}} = \eta \cdot \frac{\partial L}{\partial I_j^{[s]}} \cdot o_i^{[s-I]}$$
a számítási hibának az s-edik réteg

a számítási hibának az s-edik réteg j-edik neuronjára jutó hányada

Egy neuronra visszavetített számítási hiba

Ha
$$s=r$$
 akkor
$$e_{j}^{[r]} = o_{j}^{[r]} (1-o_{j}^{[r]})(t_{j}-o_{j}^{[r]})$$

$$\Delta w_{ij}^{[r]} = \eta e_{j}^{[r]} o_{i}^{[r-1]}$$
 ha g a szigmoid függvény

Ha *s*<*r* akkor

$$e_{j}^{[s]} = o_{j}^{[s]}(1 - o_{j}^{[s]}) \sum_{k=1}^{n} e_{k}^{[s+1]} w_{ik}^{[s+1]}$$

$$\Delta w_{ij}^{[s]} = \eta e_{j}^{[s]} o_{i}^{[s-1]}$$

ha g a szigmoid függvény

rekurzív szabályt kapjuk a súlyok módosítására.

Backpropagation tanuló algoritmus

- 1. Az <u>x</u> bemeneti vektorból indulva rétegenként számoljuk a neuronok kimenetét: $o_i^{[s]}$, a kimeneti réteg kimeneteit $o_i^{[r]}$ is.
- 2. A kimeneti réteg minden neuronjára kiszámoljuk a lokális hibát:

$$e_j^{[r]} := o_j^{[r]} \cdot (1 - o_j^{[r]}) \cdot (t_j - o_j^{[r]})$$
ha g a szigmoid függvény

3. Rétegenként hátulról előre haladva számoljuk a belső neuronok hibáit: $s^{[s+1]}$

$$e_{j}^{[s]} := o_{j}^{[s]} \cdot (1 - o_{j}^{[s]}) \cdot (\sum_{k=1}^{n} e_{k}^{[s+1]} \cdot w_{jk}^{[s+1]})$$

ha g a szigmoid függvény

4. Végül módosítjuk a hálózat súlyait: $w_{ij}^{[s]} := w_{ij}^{[s]} + \Delta w_{ij}^{[s]}$ ahol a súlytényező-változás: $\Delta w_{ii}^{[s]} := \eta \cdot e_i^{[s]} \cdot o_i^{[s-I]}$

XOR művelet példája

Rétegenként eltérő aktivizációs függvény

 \square Egy inhomogén MLP háló számítási modellje: $f:P\times X\to Y$

$$f(\Theta, \underline{x}) = g_r(\underline{\underline{w}}^{[r]}, g_{r-1}(\dots g_2(\underline{\underline{w}}^{[2]}, g_1(\underline{\underline{w}}^{[1]}, \underline{x}))\dots))$$

- $\Theta = \{w^{[I]}, \dots, w^{[r]}\}$ azaz a paraméterek a súlyok
- $g_s: P \times X^{s-1} \to X^s$ s-edik réteg kimeneti függvénye $(X = X^0, Y = X^r)$
- □ A gradiens elméleti kiszámítása nehéz, ezért erre numerikus módszereket használnak. (Keras, TensorFlow)
- □ További problémák:
 - A tanító minták kiválasztása nehéz (homogén minták, overfitting).
 - A hiper-paraméterek (N, η) megtanulásának kérdése.
 - A lokális minimum-, illetve a nyeregpontok problémája.

Hopfield modell

□ Aszinkron működésű Hopfield topológia: egyrétegű, teljes összekötöttségű hálózat *n* darab +1 v. −1 állapotú neuronnal.

Hopfield modell működése

■ Kezdetben a neuronok kívülről kapják értékül az állapotaikat. A neuronok által felvett állapot-együttest hívjuk a háló egy konfigurációjának.

(Az összes konfiguráció alkotja a konfigurációs teret.)

■ Ezután elkezdik újra számolni az állapotukat, aszinkron módon többször is, folyamatosan változtatva a hálózat konfigurációját:

$$a_j^{ij} = sgn(\sum_{i=1}^n w_{ij}a_i - \theta_j)$$

 $(a_i \text{ az } i\text{-dik neuron állapota}, w_{ij} i\text{-dik neuronból a } j\text{-dik neuronba vezető kapcsolat súlya, a } \theta_i \text{ a } j\text{-dik neuron küszöbértéke})$

■ Végül, amikor a hálózat egy stabil konfigurációba jut (azaz az állapotok újraszámolásuk ellenére sem változnak tovább), akkor a neuronok állapotait a háló kimeneteinek tekintjük.

Hopfield hálózat felhasználása

- □ A modell eredetileg asszociatív memória megvalósítására készült. Ilyenkor a hálózat egy-egy stabil konfigurációja ad meg egy eltárolt mintát (pl. egy kép pixelpontjait).
- Amikor a minta zajos, torzított vagy hiányos változatát adjuk meg bemenetként a háló neuronjainak (kibillentve őket egy stabil konfigurációból), akkor a hálózat addig változtatgatja az állapotát a neuronjainak, amíg újra stabil konfigurációba nem kerül, azaz fel nem idézi az eredeti mintát (több minta esetén a leghasonlóbbat).
- ☐ A működéssel kapcsolatban megvizsgálandó kérdések:
 - Hogyan lehet (felügyelet nélkül) betanítani arra a hálózatot, hogy a tárolt minták a hálózat stabil konfigurációi legyenek?
 - Konvergál-e a hálózat a stabil konfigurációk valamelyikéhez?

Hopfield hálózat egyetlen minta tárolására

- □ Kell, hogy a tárolandó $\underline{p} \in \{+1, -1\}^n$ minta egy <u>stabil állapot-konfigurációja</u> legyen a hálónak, azaz $p_j = sgn(\Sigma_i w_{ij} \cdot p_i)$ feltéve, hogy $\theta_j = 0$. Ez akkor teljesül, ha $w_{ij} \cong p_i \cdot p_j$.
- Az ilyen minta jelentős vonzáskörzettel bír: ekkor ugyanis minden olyan \underline{a} konfigurációból, amely komponenseinek több, mint a fele azonos a mintáéval (tehát $\Sigma_i p_i \cdot a_i > 0$), a háló véges lépésben a mintához konvergál.
 - Ez abból következik, hogy amikor egy neuron újra számolja az állapotát, akkor az azonnal a minta megfelelő komponensével válik azonossá:

$$a_j^{iij} = sgn(\Sigma_i w_{ij} \cdot a_i) = sgn(\Sigma_i p_i \cdot p_j \cdot a_i) = sgn(p_j \cdot \Sigma_i p_i \cdot a_i) = p_j.$$

Hopfield hálózat több minta tárolására

- □ Legyen *d* darab tárolandó mintánk: $\underline{p}^k \in \{+1, -1\}^n (k=1 ... d)$.
- □ Válasszuk a súlyoknak a $w_{ij} = 1/n \cdot \sum_k p^k_{\ i} \cdot p^k_{\ j}$ szuperpozíciókat. Ugyanez inkrementális tanulási szabályként is felírható: $\Delta w_{ii} = 1/n \cdot p^k_{\ i} \cdot p^k_{\ i}$. Hebb szabály
- □ Véletlenszerűen választott (ortogonális) minták esetén annak, hogy a minták stabil konfigurációk legyenek, akkor a legnagyobb a valószínűsége, ha $d \le n/\log n$.
- □ Konvergencia: Vegyük a $-\frac{1}{2} \sum_{i,j} w_{ij} \cdot a_i \cdot a_j \sum_i \theta_i \cdot a_i$ hibafüggvényt. Belátható, hogy ha a súlymátrix szimmetrikus, és a diagonális elemei nem-negatívak, akkor egy konfiguráció-váltás során a függvény értékének csökkennie kell. Mivel a konfigurációk száma véges, így a hálózat véges lépésben stabil konfigurációba fog jutni.