Uniform Distribution

The most basic of all the continuous random variables is the uniform random variable, which is equally likely to take on any value in its range (α, β) . X is a uniform random variable $(X \sim \text{Uni}(\alpha, \beta))$ if it has PDF:

$$f(x) = egin{cases} rac{1}{eta - lpha} & ext{when } lpha \leq x \leq eta \ 0 & ext{otherwise} \end{cases}$$

Notice how the density $1/(\beta - \alpha)$ is exactly the same regardless of the value for x. That makes the density uniform. So why is the PDF $1/(\beta - \alpha)$ and not 1? That is the constant that makes it such that the integral over all possible inputs evaluates to 1.

Notation: $X \sim \mathrm{Uni}(lpha,eta)$

Description: A continuous random variable that takes on values, with equal likelihood, between

 α and β

 $\alpha \in \mathbb{R}$, the minimum value of the variable. **Parameters:**

 $\beta \in \mathbb{R}$, $\beta > \alpha$, the maximum value of the variable.

 $x \in [\alpha, \beta]$ **Support:**

PDF equation:

CDF equation:

 $f(x) = egin{cases} rac{1}{eta-lpha} & ext{ for } x \in [lpha,eta] \ 0 & ext{ else} \ F(x) = egin{cases} rac{x-lpha}{eta-lpha} & ext{ for } x \in [lpha,eta] \ 0 & ext{ for } x < lpha \ 1 & ext{ for } x > eta \end{cases}$

 $\mathrm{E}[X] = \frac{1}{2}(\alpha + \beta)$ **Expectation:**

 $\operatorname{Var}(X) = \frac{1}{12}(\beta - \alpha)^2$ Variance:

PDF graph:

Parameter β : 1 Parameter α :

Example: You are running to the bus stop. You don't know exactly when the bus arrives. You believe all times between 2 and 2:30 are equally likely. You show up at 2:15pm. What is P(wait < 5 minutes)?

Let T be the time, in minutes after 2pm that the bus arrives. Because we think that all times are equally likely in this range, $T \sim \text{Uni}(\alpha = 0, \beta = 30)$. The probability that you wait 5 minutes is equal to the probability that the bus shows up between 2:15 and 2:20. In other words P(15 < T < 20):

$$\begin{aligned} \text{P(Wait under 5 mins)} &= \text{P}(15 < T < 20) \\ &= \int_{15}^{20} f_T(x) \partial x \\ &= \int_{15}^{20} \frac{1}{\beta - \alpha} \partial x \\ &= \frac{1}{30} \partial x \\ &= \frac{x}{30} \Big|_{15}^{20} \\ &= \frac{20}{30} - \frac{15}{30} = \frac{5}{30} \end{aligned}$$

We can come up with a closed form for the probability that a uniform random variable X is in the range a to b, assuming that $\alpha \leq a \leq b \leq \beta$:

$$P(a \le X \le b) = \int_a^b f(x) dx$$
$$= \int_a^b \frac{1}{\beta - \alpha} dx$$
$$= \frac{b - a}{\beta - \alpha}$$