ucr.base.tab and its latex method

Lars Lindhagen modified/knitrified by Henrik Renlund

August 27, 2014

Contents

L	Generation of a dataset	1
2	An example of ucr.base.tab	2
3	To do	3

1 Generation of a dataset

```
n <- 972 # Data set size.
r <- runif(n)
group <- ifelse(r < 0.15, "Small",</pre>
          ifelse(r < 0.65, "Medium", "Large"))</pre>
age <- round(runif(n, 20, 80))
hgt <- ifelse(group == "Small", rnorm(n, 160, 5),</pre>
        ifelse(group == "Medium", rnorm(n, 170, 5),
       rnorm(n, 180, 5)))
bmi <- round(rnorm(n, 25, 3), digits=2)</pre>
# 1 missing in Small group.
ix <- which(group == "Small")</pre>
ix.na <- sample(ix, size = min(length(ix), 1), replace=F)</pre>
bmi[ix.na] <- NA</pre>
# 2 missing in Medium group.
ix <- which(group == "Medium")</pre>
ix.na <- sample(ix, size = min(length(ix), 2), replace=F)</pre>
bmi[ix.na] <- NA</pre>
# 3 missing in Large group.
ix <- which(group == "Large")</pre>
ix.na <- sample(ix, size = min(length(ix), 3), replace=F)</pre>
bmi[ix.na] <- NA</pre>
r <- runif(n)
gender <- ifelse(group == "Small", ifelse(r < 0.8, "Woman", "Man"),</pre>
           ifelse(group == "Medium", ifelse(r < 0.5, "Woman", "Man"),</pre>
                                        ifelse(r < 0.2, "Woman", "Man")))</pre>
r <- runif(n)
country <- ifelse(group == "Small",</pre>
                    ifelse(r < 0.10, "Sweden",</pre>
```

```
ifelse(r < 0.25, "Germany",</pre>
                     ifelse(r < 0.75, "Spain",</pre>
                    ifelse(r < 0.80, "Australia",</pre>
                    "Japan")))),
             ifelse(group == "Medium",
                    ifelse(r < 0.20, "Sweden",</pre>
                    ifelse(r < 0.40, "Germany",</pre>
                    ifelse(r < 0.60, "Spain",</pre>
                     ifelse(r < 0.80, "Australia",</pre>
                     "Japan")))),
            # Large:
                    ifelse(r < 0.30, "Sweden",</pre>
                    ifelse(r < 0.50, "Germany",</pre>
                    ifelse(r < 0.65, "Spain",</pre>
                    ifelse(r < 0.80, "Australia",</pre>
                     "Japan"))))))
# 5 missing in Small group.
ix <- which(group == "Small")</pre>
ix.na <- sample(ix, size = min(length(ix), 5), replace=F)</pre>
country[ix.na] <- NA</pre>
# 2 missing in Medium group.
ix <- which(group == "Medium")</pre>
ix.na <- sample(ix, size = min(length(ix), 2), replace=F)</pre>
country[ix.na] <- NA</pre>
## Add unused level 'Brazil'
# country <- reFactor(factor(country), list(Australia=NULL, Brazil=NULL))
country <- factor(country)</pre>
# Correct group order.
group <- reFactor(group, list(Small=NULL, Medium=NULL))</pre>
data.set <- data.frame(group, age, hgt, bmi, gender, country)</pre>
label(data.set$gender) <- "Gender"</pre>
label(data.set$age) <- "Age (years)"</pre>
label(data.set$hgt) <- "Height (cm)"</pre>
label(data.set$bmi) <- "BMI"</pre>
label(data.set$country) <- "Country"</pre>
# Use only two groups.
use.2.groups <- TRUE
if (use.2.groups) {
  data.set$group[data.set$group == "Medium"] <- "Large"</pre>
  data.set$group <- factor(data.set$group)</pre>
```

2 An example of ucr.base.tab

The following code

```
# Default table.
res <- ucr.base.tab(data=data.set, group.name="group")
## Warning: Error in test for variable country, skips test.
dummy <- latex(res, file="", where="!h", caption="A table 1", label="tab:1")</pre>
```

Table 1: A table 1

		~ 11	_	~ 1. 1	
Variable	N	Small	Large	Combined	P-value
		N = 156	N = 816	N = 972	
Age (years)	972	49.0 (37.8 - 64.0)	49.5 (34.0 - 64.0)	$49.0 \ (35.0 - 64.0)$	0.71^{1}
Height (cm)	972	$159.1 \ (155.9 - 162.3)$	$174.1 \ (169.4 - 179.6)$	$172.4 \ (166.0 - 178.5)$	$< 0.001^1$
BMI	966	25.0 (22.9 - 27.0)	24.9 (23.1 - 27.3)	24.9 (23.1 - 27.3)	0.95^{1}
Gender: Man	972	37 (23.7%)	524 (64.2%)	561 (57.7%)	$< 0.001^2$
Woman		119 (76.3%)	292 (35.8%)	411 (42.3%)	
Country: Australia	965	10 (6.6%)	$142\ (17.4\%)$	152 (15.8%)	
Germany		27 (17.9%)	178 (21.9%)	205 (21.2%)	
Japan		$31\ (20.5\%)$	149 (18.3%)	180 (18.7%)	
Spain		68 (45.0%)	152 (18.7%)	220 (22.8%)	
Sweden		15 (9.9%)	193 (23.7%)	208 (21.6%)	

generates Table 1.

3 To do

- Show some variations of the function arguments
- Why does the warning message appear (in Sec. 2)?
- Why is it impossible to have caption.loc="bottom"?

m~(a-b) represents median (Q1 - Q3). n~(p%) represent frequency (percentage). Percentages computed by group.

Tests used: ¹Wilcoxon test; ²Fisher's exact test.