东南大学学生会

Students' Union of Southeast University

09高A期中试卷

— .	填空题	(本题共5小题,	每小题 4分,	满分 20 分)
------------	-----	----------	---------	----------

1.	由方程 xyz + s	$\sin(\pi z) = 0 \mathfrak{A}$	定的隐函数 z:	=z(x,y)在 x	点 (1, 0, 1) 处的全微分 d	$z = \underline{};$
----	-------------	---------------------------------	----------	--------------	------------	-----------	---------------------

2. 设
$$\ln z = 1 + \frac{\pi}{3}i$$
,则 $\text{Re } z = \underline{\hspace{1cm}}$, $\text{Im } z = \underline{\hspace{1cm}}$;

4. 设曲线
$$C$$
 为球面 $x^2 + y^2 + z^2 = a^2(a > 0)$ 与平面 $y = x$ 的交线,则曲线积分

$$\iint_{\mathcal{L}} \left(\sqrt{2y^2 + z^2} + z \right) ds \text{ in diff};$$

5. 设曲面
$$S:|x|+|y|+|z|=1$$
, 则 $\iint_S (x+|y|) dS =$ ______.

单项选择题(本题共4小题,每小题4分,满分16分)

6. 已知曲面
$$z = 4 - x^2 - y^2$$
 在点 P 处的切平面平行于平面 $2x + 2y + z - 1 = 0$,则点 P

(A)
$$(1,-1,2)$$

$$(1,-1,2)$$
 (B) $(-1,1,2)$ (C) $(1,1,2)$ (D) $(-1,-1,2)$

(D)
$$(-1,-1,2)$$

7. 设函数
$$f(x,y)$$
 连续,则二次积分 $\int_{\frac{\pi}{2}}^{\pi} dx \int_{\sin x}^{1} f(x,y) dy$ 等于

(A)
$$\int_0^1 dy \int_{\pi+\arcsin y}^{\pi} f(x,y) dx$$
 (B)
$$\int_0^1 dy \int_{\pi-\arcsin y}^{\pi} f(x,y) dx$$

(B)
$$\int_0^1 dy \int_{\pi-\arcsin y}^{\pi} f(x,y) dx$$

(C)
$$\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi + \arctan y} f(x, y) dx$$

(C)
$$\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi + \arctan y} f(x, y) dx$$
 (D)
$$\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi - \arctan y} f(x, y) dx$$

8. 设
$$L$$
 是摆线 $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$ 上从 $t = 0$ 到 $t = \pi$ 的弧段,则 L 的形心的横坐标为 [

(B)
$$\frac{4}{3}$$

(B)
$$\frac{4}{3}$$
 (C) $\frac{3}{4}$ (D) $\frac{\pi}{2}$

(D)
$$\frac{\pi}{2}$$

9. 函数
$$u = x^2y - y^3z$$
 在点 (1,-1,3) 处的方向导数的最大值是

(A)
$$\sqrt{15}$$

(B)
$$\sqrt{69}$$

(C)
$$\sqrt{11}$$

$$(D)$$
 3

三. 计算下列各题(本题共5小题,每小题8分,满分40分)

10. 设
$$z = f(2x - y, xy^2)$$
,其中 f 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

东南大学学生会

Students' Union of Southeast University

11. 计算二重积分
$$\iint_D (3x-2y+1) d\sigma$$
, 其中 $D = \{(x,y) | x^2 + y^2 \le 2x + 2y - 1\}$.

- **12.** 设调和函数 $u(x, y) = e^{x-y} \cos(x+y) + y$,求 u(x, y) 的共轭调和函数 v(x, y),并求解析函数 f(z) = u(x, y) + iv(x, y) 表达式(**自变量单独用** z 表示),且满足 f(0) = 1 + i.
- **13.** 求极限 $\lim_{t\to 0^+} \frac{1}{t^5} \iiint\limits_{x^2+y^2+z^2\leq t^2} \sin(x^2+y^2+z^2) dx dy dz$.
- **14.** 计算 $\iint_S x dy \wedge dz + z^2 dx \wedge dy$,其中 S 为 $z = \sqrt{x^2 + y^2}$ 与 z = 1所围成的立体的表面,取外侧.
- 四(15)(本题满分8分) 求密度为1,半径为R的上半球面对球心处单位质量质点的引力.
- 五 (16) (本题满分 10 分) 平面 x+y+z=1 被抛物面 $z=x^2+y^2$ 截得一椭圆,
- (1) 求该椭圆到坐标原点的最长距离和最短距离; (2) 求该椭圆所围平面区域的面积.

六(17)**(本題满分 6 分)** 证明不等式:
$$\frac{\pi}{2} \le \prod_L -y \sin x^2 dx + x \cos y^2 dy \le \frac{\pi}{\sqrt{2}}$$
,

其中曲线 $L: x^2 + y^2 + x + y = 0$, 取逆时针方向.