

University of Stuttgart

Institute of Parallel and Distributed Systems (IPVS)

Universitätsstraße 38 D-70569 Stuttgart

Understanding Vulnerabilities of Location Privacy Mechanisms against Mobility Prediction Attacks

Zohaib Riaz, Frank Dürr, Kurt Rothermel

International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services (MobiQuitous 2017)

9th Nov 2017

Background and Motivation

- Mobile apps promote location information sharing
 - Let your friends know where your are!
 - Tag tweets/photos with your location!
 - Get location-based services, e.g., nearby POIs

- A single location update may convey:
 - Geo-location
 - Location semantics, e.g., restaurants, shops etc.
- Sensitive semantics (e.g., hospitals)
 - → User privacy concerns!

Location Privacy mechanisms: State-of-the-art

- Suppression: avoids release of sensitive semantic info (Götz et al. 2012)
 - ✓ Leaks no context
 - ✓ Secure against location-history based attacks
 - cuts utility harshly: no data -> no service/sharing
- Obfuscation: "cloaks" semantic info
 (Yigitoglu et al. 2012)
 - ✓ allows approximate POI-searches/location-sharing
 - leaks contextual information

Are existing obfuscation algorithms secure?

Threat Model:

- Attackers can aggregate location history information
 - At least in the obfuscated form
 - May possess accurate historic data

Hypothesis: User privacy is at risk!

Contributions

- Design of a semantic mobility model to represent attacker knowledge
 - Both accurate and obfuscated historic location information

- Demonstration of its effectiveness as an attack against state-of-the-art semantic obfuscation mechanisms
 - Dataset: year-long location check-in histories of 278 Foursquare users
- Identification of *fundamental design improvements* for future semantic obfuscation mechanisms.

State-of-the-art Semantic Obfuscation Mechanisms

(Damiani et al. 2010, Yigitoglu et al. 2012)

- Each user can specify his sensitive semantic locations
 - Hospitals, bars, churches etc.
- Can also specify the degree of protection (see paper for details)
 - I-diversity: Number of distinct locations inside a cloaking region

Step 1: Preprocessing

Generate CRs for City Map (independent of user mobility)

Step 2: Real-time location updates

Attack overview

The semantic mobility modeling problem (1)

- Goal: Learn Ω_{Att} from location history
- A popular fundamental assumption:
 - → Human Mobility can be modelled as a Discrete-time Markov chain
 - Semantic locations modeled as states (x_t)
 - $x_i \in S = \{s_1, \dots, s_M\}$, e.g., home, work, shopping
 - Inter-state transitions governed by probabilities:
 - $a_{ij} = P(x_t = shopping | x_{t-1} = home)$

Markov chain over a day of user's movement

The semantic mobility modeling problem (2)

- State information:
 - not always clear
 - is additionally accompanied by other observations
- How to model this information??

observed features → {geo-location, hour-of-day, weekday, ...}

Hidden Markov Models (HMMs)

- Can accommodate:
 - Cloaking Regions and missing state information **Hidden States** $\rightarrow a_{ij} = P(x_t = j | x_{t-1} = i)$
 - Observed features as state-dependent emissions

$$\rightarrow b_j(o_k) = P(o_t = o_k | x_t = j)$$

- Given $\Omega = \{A, B\}$ and $O = \{o_1, ..., o_T\}$
 - Can efficiently compute $P(x_t = j)$

Observation sequence

• Option 1: if dataset is fully labeled → Maximum-likelihood

Transition probabilities

$$P(x_t = Office \mid x_{t-1} = Home)$$

Emission probabilities

Option 1: if dataset is fully labeled → Maximum-likelihood

• Option 2: If labels are not present → Baum-Welch algorithm

- Begin with a prior model, e.g., $\Omega = \Omega_{init}$
 - $^{\circ}~$ Step 1: generate probabilistic state-sequences using a model Ω
 - Step 2: Estimate Ω_{new} using Maximum-likelihood estimation
 - Set $\Omega = \Omega_{new}$ and repeat steps 1&2 \rightarrow until convergence

Example

Experimental Workflow

Dataset:

- Crawled check-ins from Twitter's public feed from Nov 2015- Nov 2016
- Got venue information (including surrounding venues) from Foursquare
- Necessary filtering leaves 278 users with 284,472 check-ins
- Mean length of check-in history: 246 days

Evaluation Metrics

Results

Sensitive location selected s.t. it is visited at a certain frequency

Results

Sensitive location selected s.t. it is visited at a certain frequency

Results

Sensitive location selected s.t. it is visited at a certain frequency

Conclusion

- We show that the privacy guarantees offered by state-of-the-art location obfuscation mechanisms are weak!
- Obfuscated location-history
 - can be exploited for mobility modeling
 - can be used to de-obfuscate user trips
- State-of-the-art location obfuscation mechanisms are more vulnerable to de-obfuscation when used frequently
- The need of mobility-aware obfuscation algorithms is evident!

Research Group

Contact and Discussion

Zohaib Riaz

Institute for Parallel and Distributed Systems, University of Stuttgart, Germany zohaib.riaz@ipvs.uni-stuttgart.de

