FONCTIONS AFFINES ET ÉQUATIONS E01C

EXERCICE N°4 Déterminer graphiquement l'expression d'une fonction affine (le corrigé)

On donne le repère orthonormé (O; I; J)

Droite	Coefficient directeur m	Ordonnée à l'origine p	Fonction associée
(d_4)	-3	2	$x \mapsto -3x+2$
(d_2)	2	-3	$x \mapsto 2x - 3$
(d_3)	<u>3</u> 4	0	$x \mapsto \frac{3}{4}x$
(d_1)	$-\frac{2}{3}$	5	$x \mapsto -\frac{2}{3}x + 5$

- Pour (d_4) : C'est la seule droite dont l'ordonnée à l'origine vaut 2.
- Pour (d_2) : On est pas sûr de la valeur de l'ordonnée à l'origine car elle n'est pas lisible sur le graphique. On vérifie donc graphiquement le coefficient directeur. Pour cela:

On cherche deux points de (d_2) dont la lecture des coordonnées est facile. Par exemple

(2; 1) et (3; 3), on sait alors que
$$m = \frac{3-1}{3-2} = \frac{2}{1}$$
 = 2

On vérifie quand même p

Le point de coordonnées (2;1) appartient à (d_2) $1=m\times 2+p$ et comme m=2 on en déduit que p=-3

- Pour (d_3) : Cette droite passe par l'origine du repère (et ce n'est pas l'axe des ordonnéees), elle représente donc une fonction linéaire. On vérifie le coefficient directeur comme pour (d_2) .
- Pour (d_1) : On détermine m et p de la même façon que pour (d_2) .