MATHEMATICS METHODS

(4 bns Semester 2 (Units 3 and 4) 8 AWAM Semester 2 AWAM

Calculator-Assumed

Marking Key

0 MAWA, 2016

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

The items that are contained in this examination are to be used solely in the school for which they are

- purchased.

 They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially, and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the

The release date for this exam and marking scheme is

the end of week 1 of term 4, 2016

agreed release date stipulated in the purchasing agreement/licence.

Page 1

Section Two: Calculator-assumed

(104 Marks)

Question 11

Page **2** © MAWA 2016

CALCULATOR-ASSUMED MARKING KEY

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-ASSUMED MARKING KEY

METHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

Acknowledgements

Question 12(a)(i)

l	 states correct probability
l	 states correct total
Marks	Marking key/mathematical behaviours
	Solution Total number of coins is 11 + k Seven 10 c coins, therefore P(10 c) = $\frac{7}{11+k}$ as required

Question 12(a)(ii)

l	ullet calculates the value of k	
l 'l	 states correct equation and equates equal to 10 	
Marks	key/mathematical behaviours	Marl
	$0I = \frac{4\lambda}{\lambda} + \frac{4\lambda}{1}I + $	_

Question 12(b)(i)

•	correctly states minimum trials is 10	l
•	correctly uses complementary events and solves for n	l
•	states first inequality	l
Marking	key/mathematical behaviours	Marks
Therefo	re, minimum number of trials is 10	
6.0 .ə.i	$10.9 \le n \in 10.0 \ge n$	
on)9 ::	r0.0 ≥ (noitingi on)9	
P(ignite	99.0 ≤ (eanst once) ≥ 0.99	
Solution		

Question 12(b)(ii)

	(u\a\z. u	0110011
	u	Solutio
	190.0 = $1.0 \times 10^{-6} \mathrm{GeV}^{-1}$ (0.0) $^8 \mathrm{GeV}^{-1} = 0.004$	P(lighte
Marks	g key/mathematical behaviours	Markin
l	correctly calculates probability of igniting 8 times in 10 trials	•
l	ultiplies by 0.4 (ignition on this trial)	•
l	calculates correct probability	•

Page 3

posequand	
 The items that are contained in this 	s examination are to be used solely in the school for which they are
examination is Copyright but may be fre	eely used within the school that purchases this licence.
31US, AW	

The realist indicates Contained in this examination are to be used solely in the school for which has not purchased their own licence.

They are not to be shared in any manner with a school which has not purchased their own licence.

They are not to be shared in any manner with a school which has not purchased their own licence.

The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or the marking guide until the agreed release date stipulated in the purchasing agreement/licence.

Published by The Mathematical Association of WA 12 Cobbler Place, MIRRABOOKA 6061

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-ASSUMED MARKING KEY

Question 13(a)

Solution	
$\frac{dI}{dt} = rI$	
$\frac{d}{dt} - H$	
$I = I_0 e^{rt}$ $2 = e^{12r}$	
$2 = e^{12r}$	
$r = \frac{\ln 2}{12} or \frac{100 \ln 2}{12} \%$	
Marking key/mathematical behaviours	Marks
writes correct exponential equation for anti-derivative	1

Marking key/mathematical behaviours	Marks
writes correct exponential equation for anti-derivative	1
• states $I = 2I_0$ or establishes this relationship in terms of money	1
gives exact value of r	1

Question 13(b)

Solution
$\frac{dS}{dx} = \frac{b}{5x+2} = \frac{b}{5} \times \frac{5}{5x+2}$
dx 5x+2 5 5x+2
$S = \frac{b}{5}\ln(5x+2) + c$
$x = 0, S = 65 \Rightarrow 65 = \frac{b}{5} \ln(2) + c \Rightarrow c = 65 - \frac{b}{5} \ln(2)$
$S = \frac{b}{5}\ln(5x+2) + 65 - \frac{b}{5}\ln(2)$
$= \frac{b}{5} \Big[\ln \left(5x + 2 \right) - \ln \left(2 \right) \Big] + 65$
$= \frac{b}{5} \left[\ln \left(\frac{5x+2}{2} \right) \right] + 65$

Marking key/mathematical behaviours	
ullet determines correct anti-derivative of function plus c	1
calculates value of constant term	1
writes expression for <i>S</i>	1
factorises correctly	1
ullet correctly uses log law and deduces correct expression for S	1

© MAWA 2016 Page 4

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-ASSUMED MARKING KEY

Solution		
$\frac{d^2y}{dx^2} = -e^{-y} < 0 \; \forall \; y : \text{all stationary points are maxima}$		
Marking key/mathematical behaviours Marks		
states second derivative is negative	1	
concludes stationary points are maxima	1	

© MAWA 2016 Page 17

Marks

910S AWAM @

Marks

Question 23(a)

Marks	arking key/mathematical behaviours	
<i>b</i> =	Solution (x) by and $f(x) = \frac{d}{dx} \int_{-\infty}^{\infty} \frac{dy}{dx} \int_{-\infty}^{\infty} $	

simplifies correctly

gives reasons for simplification

correctly differentiates numerator and denominator

Question 23(b)

$\mathfrak{D} = \frac{{}_{\mathfrak{D}} x \gamma}{x} ({}_{1-\mathfrak{D}} x \gamma \mathfrak{D}) = \left(\frac{b}{x}\right) \left(\frac{xp}{bp}\right)$	gnis∪
	Solution

l	 simplifies correctly
ı	$\bullet \qquad \text{correctly differentiates using } \left(\frac{pb}{xb}\right)$
Marks	Marking key/mathematical behaviours

Question 23(c)

Page 16

 couclndes proof $\mathfrak{I} = x \operatorname{riis} + 1$ sətutitədus \bullet simplifies correctly

$(x^2 \cos + x^2 \sin) - x \sin -$
$(x \stackrel{\text{2}}{=} sos + x \stackrel{\text{1}}{=} is) - x \text{ mis} -$
$\frac{x^{2} \cos - (x \sin -)(x \sin + 1)}{x^{2} \cos - (x \sin -)(x \sin + 1)}$
x uis $+$ 1
$\frac{1}{x \cos x} = 1$
$(x \operatorname{mis} + 1) \operatorname{nl} = \emptyset$
Solution

$$\frac{x^{2} \cos - (x \sin - 1)(x \sin + 1)}{x \sin x + 1} = \sqrt{x^{2} \cos - (x \sin - 1)(x \sin + 1)} = \sqrt{x^{2} \cos + x \sin - 1} = \sqrt{x^{2} \cos + x \cos - 1} = \sqrt{x^{2} \cos - x \cos - x \cos - 1} = \sqrt{x^{2} \cos - x \cos - 1} = \sqrt{x^{2} \cos - x \cos - 1} = \sqrt{x^$$

 $\frac{z(x \operatorname{mis} + 1)}{\left(\frac{z(x \operatorname{mis} + 1)}{z(x \operatorname{mis} + 1)}\right) - =$

Marking key/mathematical behaviours

determines first and second derivative

 $0 = \sqrt{\frac{1}{3}} + \frac{\sqrt{2}b}{xb} \iff \sqrt{\frac{1}{9}} = \frac{1}{x \text{ mis } + 1} = 0$

 writes equation • substitutes value a = 1.5 or determines gradient

Marks

Marking key/mathematical behaviours

 $x \varepsilon . I = (x) g$

 $x \varepsilon \cdot I = (x) g$ $x((\xi, 1)\xi)\cos \theta = (x)g$

 $\mathcal{E}.\mathbf{I} = \frac{29.1}{2.1} = m \qquad \text{AO}$

Solution Question 14(c)

Solution Question 14(b)

a bine a for a and b.

(S) noitsupe setate •

• states equation (1)

determines equation for g(x) involving a.

Marking key/mathematical behaviours

 $3 + x(n\xi)\cos 3 - = (x)g$.

Let point P have coords: (a,b)

 $\partial + xu = (x)8$

Solution Question 14(a)

 $x(b\varepsilon)\cos \theta - = (x)g$: $\theta = 0$

0 = (0)8 explicitly 0 = (0)9 explicitly

 $0 \gtrsim 1 \approx 879 \text{ f. } 1 \approx n$ Solving eqn (1) and (2) gives

29.1 ≈ 2.22 €.1 ≈ d

(S)....($n\varepsilon$) nis $\Delta - = d$ d = (n) f expressions only

(1)....(n)(n\xi)soo \(\operatorname{1} \)

d = (b)8 əpnis

aros awam @

Marks

Marking key/mathematical behaviours

≈ 2.27 square units

 $xb\{((x\xi)\operatorname{nis} \Sigma -) - x\xi.I\} \int_{0}^{\xi.I} =$

 $xb\{(x)t-(x)g\} \int_{0}^{c.t} = n \vartheta t A$

d. f bns 0 fo seinsbnuod sesu

writes an appropriate integral representing the required area

calculates area

bage **5**

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-ASSUMED MARKING KEY

Question 15(a)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Solution	
$f(x) = x \ln x - x + 3$	
$f'(x) = 1 \times \ln x + x \times \frac{1}{x} - 1$	
$= \ln x + 1 - 1$	
$= \ln x$	
Marking key/mathematical behaviours	Marks
shows process to determine correct expression	1

### Question 15(h)

Question 13(b)	
Solution	
$\int \ln x dx = x \ln x - x + c$	
Marking key/mathematical behaviours	Marks
ullet recognises the integral is $f(x)$ from part (i) but with an unknown constant	1

#### Question 15(c)

Solution	
$g(x) = \int \ln(x^2) dx = \int 2\ln x dx = 2\int \ln x dx = 2(x\ln x - x + c) = 2x\ln x - 2x + k$	
Marking key/mathematical behaviours	Marks
• uses relationship $\ln(x^n) = n \ln x$	1
substitutes correct expression for the integral and simplifies correctly	1

#### © MAWA 2016 Page 6

#### **MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION**

#### **CALCULATOR-ASSUMED** MARKING KEY

#### Question 22 (a)

Solution	
$P(X > 6.54) = \frac{1}{15} = 0.0667$	
$P\left(Z > \frac{6.54 - 6.50}{\sigma}\right) = 0.0667 \implies \frac{0.04}{\sigma} = 1.501 : \sigma = 0.266 \text{ using } CAS$	
Marking key/mathematical behaviours	Marks
uses correct probability	1
<ul> <li>correctly converts to z score</li> </ul>	1
<ul> <li>correctly solves for σ</li> </ul>	1

#### Question 22(b)

olution		
D/77	 1	

$$P(X > 6.54) = \frac{1}{20} = 0.05$$

$$P\left(Z > \frac{6.54 - 6.50}{\sigma_1}\right) = 0.05 \implies \frac{0.04}{\sigma_1} = 1.645 : \sigma_1 = 0.0243 \text{ using } CAS \ (\sigma_1 \text{ is the original standard deviation})$$

Let the new mean be 
$$\mu$$
  $P\left(Z > \frac{6.54 - \mu}{0.0243}\right) = 0.0667 \implies \frac{6.54 - \mu}{0.0243} = 1.501 \implies \mu = 6.504 \text{ cm}$ 

(	
Marking key/mathematical behaviours	Marks
<ul> <li>uses correct probability to calculate original std deviation</li> </ul>	1
<ul> <li>determines standard deviation using CAS</li> </ul>	1
<ul> <li>uses correct probability to calculate new mean</li> </ul>	1
<ul> <li>determines new mean using CAS</li> </ul>	1

#### Question 22(c)

#### Solution

$$P(6.48 < X < 6.53) = 0.6442 \text{ (where } X \sim N(6.50, 0.0266^2))$$

Therefore, would expect 0.6442(1000) = 644 to have lengths in the required range

mercials, media expect ele i =(1000)	ugo
Marking key/mathematical behaviours	Marks
calculates probability and correct number of components	1

l	identifies correct sample with reason	•
Marks	g key/mathematical behaviours	Markin
	3. The largest sample size is likely to give the best estimate.	Sample
	u	Solutio

## Question 21 (b)

Question 21 (a)

£14120.0 ≈ q Solution

reliable estimates.

No allowance is made for the sample size. The larger sample sizes are likely to give more

 states the approximation of p Marking key/mathematical behaviours Marks

# discusses sample size as a factor in reliability

Solution Question 21 (c)

very large sample size and hence gives the best estimate. sum of all the sample sizes to determine the proportion estimate. This effectively makes a Best method would be to calculate the total defective items from all the samples and use the

									$\xi 220.0 = \frac{6\xi}{7kT} \approx 6$
39	L	9	2	L	7	10	ı	3	Number of Defective components
7471	310	205	120	280	128	420	75	122	Number in sample
total	8	L	9	9	Þ	3	7	l	Sample

ng key/mathematical behaviours	Markir
$\mathcal{E}220.0 = \frac{62}{747}$	

L	calculates mean to estimate the population proportion	•
i	calculates total sample size and total defective components	•
i	determines number of defective components in each sample	•
l	states reason for better estimate	•

# Question 16

Solution

0	$3 + i\xi + {}_{z}i\xi - \frac{9}{{}_{\xi}i\eta} = (i)x$
$19 = tb \mathcal{E} + t\partial - {}^2 t \mathcal{E} \int_0^2 = bellevent t sib$	$Ip\left(\xi + i9 - \frac{7}{z^{1/4}}\right) \int = (i)x$
$v(t) = 3t^2 - 6t + 3$	· · · ·
71 = 5 bar $8 = 3$	Since $v(0) = 3$ , $k = 0 \Rightarrow v(t) = \frac{kt^2}{2} - 6t + 3$
Solving (1) and (2) gives:	
$(5) = 26 = 26 = \frac{36}{5} = 18 + c(2)$	$3 + 19 - \frac{c}{z^{1/4}} =$
(1) $5 + 6 - \frac{38}{6} = 61 \Leftarrow 61 = (2)x$	$ib(\partial - i\lambda) = (i)v$
••	Polution

**3**PE+**3**9−_Z**3**E

 $me = ib \xi + ib - ^2 i \xi$  = bellevert train

<ul> <li>calculates distance travelled.</li> </ul>	
<ul> <li>writes integral to calculate distance travelled</li> </ul>	L
<ul> <li>solves for c and k</li> </ul>	i
S bns f anoitsupe setim •	i
<ul> <li>integrates to determine x(t) with constant</li> </ul>	l
<ul> <li>integrates to determine v(t)</li> </ul>	l
Marking key/mathematical behaviours	Marks

## Question 17(a)

$27.0 = \frac{024}{220} = \hat{q}$	
HOUNIOS	

l	Calculates proportion	•
Marks	ng key/mathematical behaviours	Markin

Marks



Hence  $0.674 \le p \le 0.766$ 

We can be 99% confident that that between 67.4% and 76.6% of ABC customers used online banking to pay their bills.

Marking key/mathematical behaviours	
correctly calculates lower value of confidence interval	1
<ul> <li>correctly calculates upper value of confidence interval</li> </ul>	1
interprets answer correctly	1

Question 17(c)





n = 836.108 $n \approx 837$ 

Marking key/mathematical behaviours

· states standard error writes an equation to evaluate n

• solves correctly for n

• rounds n up to the nearest integer.

**MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION** 

Question 19(d)

Solution 
$$\int_{1}^{m} \frac{3x^{2}}{7} dx = 0.5 \implies m = \sqrt[3]{\frac{9}{2}} = 1.65$$
 Marking key/mathematical behaviours Marks

1 states correct integral calculates the value of m 1

Question 20(a)

Solution  $Yr7 = \frac{305}{1032} \times 75 \approx 22$  $Yr8 = \frac{381}{1032} \times 75 \approx 28$  $Yr7 = \frac{346}{1032} \times 75 \approx 25$ Marking key/mathematical behaviours Marks 1 · determines proportions

1 dives integer values for each year group

Question 20(b)(i)(ii)

Solution				
(i)	Uniform Distribution	n (ii)	$mean = E(X)$ $= \frac{6+1}{2}$ $= 3.5$	
Marking	key/mathematical behaviours			Marks
•	states distribution			1
•	states mean			1

Question 20(b)(iii)

Solution		
The bars would be higher but have much less variation in height		
Marking key/mathematical behaviours Marks		
states reasons	1	

Marks

1 1

1 1

Marks

### Question 17(d)

Solution

 $\Delta 7.0 \approx q = \text{mesM}$ We would expect the sample proportions to be approximately normally distributed.





 calculates the Standard deviation calculates the mean states distribution

### Question 17(e)

Solution

Binomial Distribution

 $\mathcal{E} \Gamma 99.0 = (\Gamma \le x) q \rightleftharpoons (99.0, 8) \text{nid} \sim X$ 

Upper 8 Lower 7



 calculates probability Marking key/mathematical behaviours

l	ullet determines the value of $k$	
l	equates integral equal to one	
Marks	Narking key/mathematical behaviours	Λ
	$\frac{\varepsilon}{T} = \lambda : I = \frac{\lambda T}{\varepsilon} \iff I = xb^2 x + \frac{\varepsilon}{1} = xb^2 x + \frac{\varepsilon}{1$	1
	iolution	S
	(a) (a) (a)	סו

## Question 19(b)

ı	correctly calculates $\operatorname{Var}(X)$ , hence standard deviation	•
l	correctly calculates $E(X^2)$	•
l	correctly calculates $E(X)$	•
Marks	ng key/mathematical behaviours	Marki
	$272.0 = \delta  \Leftarrow  \frac{192}{162} = \frac{2}{82} - \frac{25}{82} - \frac{25}{85} = (X)\eta dV$	
	$\frac{SE}{E6} = xp \frac{L}{z^{x}E} z^{x} \int_{z}^{1} \left( \int_{z}^{1} (x^{2} + y^{2}) dy \right) dy$	
	$\mathcal{E}(X) = \int_{0}^{2\pi} x^{2} \int_{0}^{2\pi} $	
	uo	Soluti
	/a\aa	

### Question 19(c)

Z < x [
$\zeta \ge x \ge 1  \frac{1}{\tau} - \frac{\varepsilon}{\tau} $ $= (x)^{\tau}$
I > x 0
$\frac{L}{1} - \frac{L}{\varepsilon^{\mathcal{H}}} = \sqrt[4]{\frac{L}{\varepsilon^{\mathcal{X}}}} = xp \frac{L}{x\varepsilon_{\mathcal{H}}} \int_{1}^{1} = (x)H$
Solution

Marks	g key/mathematical behaviours	Markin
l	correctly sets up integral for $F(x)$	•
l	correctly writes $F(x)$ as a piecewise function	•
l	uses correct boundaries	•

#### **MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION**

#### **CALCULATOR-ASSUMED** MARKING KEY

#### **CALCULATOR-ASSUMED** MARKING KEY

Question 18(a)(i)

Solution

Intensity of the sound of a vacuum cleaner,  $I_{\nu}$ 

$$70 = 10\log\left(\frac{I_v}{I_0}\right) \Rightarrow 7 = \log\left(\frac{I_v}{I_0}\right) \Rightarrow 10^7 = \frac{I_v}{I_0} \Rightarrow 10^7 \times I_0 = I_v$$

Marking key/mathematical behaviours	Marks
$ullet$ arrives at correct expression for $I_{\scriptscriptstyle V}$	1

Question 18(a)(ii)

Solution

Intensity of the sound of an electric drill,  $I_D = 10^{9.8} \times I_0$ 

$$\frac{I_D}{I_V} = \frac{10^{9.8} \times I_0}{10^7 \times I_0} = 10^{2.8} = 631$$

So the intensity of the sound of an electric drill is 631 times greater than the intensity for the sound of a vacuum cleaner.

Marking key/mathematical behaviours	
compares intensities of the 2 sounds	1
states correct relationship	1

Question 18(a)(iii)

Solution 
$$L = 10 \log \left( \frac{10^{9.8} \times I_0}{I_0} \right) = 10 \log 10^{9.8} = 10 \times 9.8 \log 10 = 98 \text{ decibels}$$

20 )	
Marking key/mathematical behaviours	
calculates correct value	1

Question 18(b)(i)

**MATHEMATICS METHODS** 

**SEMESTER 1 (UNITS 3 AND 4) EXAMINATION** 

Solution	
acceleration = $\frac{dv}{dt} = -2\sin 2t$	
Marking key/mathematical behaviours	Marks
differentiates correctly	1

Question 18(b)(ii)

Solution

When  $t = \pi$ ,  $v = \cos 2\pi = 1$ 

and 
$$\frac{dv}{dt} = -2\sin 2\pi = 0$$

Marking key/mathematical behaviours	Marks
• determines correct value for $v$ and for $\frac{dv}{dt}$	1, 1

Question 18(b)(iii)

Solution

 $\frac{dv}{dt} = 0 \;$  indicates that  $t = \pi \;$  gives a local maximum or minimum value for v .The maximum

value of function v = cos2t is 1, so the particle is travelling at its maximum velocity at  $t = \pi$ .

Marking key/mathematical behaviours	Marks
identifies significance of rate of change = 0	1

Question 18(b)(iv)

Solution

The graph shows  $v = \cos 2t$ . It can be seen that the gradient (which is acceleration) is negative before the minimum and positive after the minimum. This can also be seen from the table.

During this particular second, the velocity is decreasing until it reaches its minimum value and then the velocity increases.



Marking key	mathematical	behaviours
-------------	--------------	------------

•	gives a corre	ct interpretation	of the	given facts
---	---------------	-------------------	--------	-------------



© MAWA 2016 © MAWA 2016 Page 10 Page **11**