

4.1 Part of Speech Tagging

Edwin Simpson

Department of Computer Science,
University of Bristol, UK.

Previously...

- Bag-of-words: ignores structure and treats words as independent features.
- Vector representations of documents.
- What we're missing?
 - Disambiguation of words
 - Features for individual words
 - Syntactic structure of a sentence: how words relate to each other

Parts of Speech (POS)

- Nouns, verbs, adjectives, pronouns, prepositions, ...
- Important information for downstream tasks:
 - POS help identify which words relate to each other, e.g., the subject of a verb
 - Information extraction labelling entities and events, identifying their relations from verb phrases.
 - Sentiment analysis -- roles of adjectives in expressing sentiment are very different to verbs.
- Syntactic rather than semantic: they concern how words can be used in a sentence.

Open Classes

Chapter 8, Speech and Language Processing, 3rd edition draft, Jurafsky & Martin (2019).

Nouns	People, places, things, ideas	Obama, cat, room, London, consideration
Verbs	Actions, processes	Do, wait, seem, walk
Adjectives	Descriptors	Red, happy, unobtainable
Adverbs	Modifiers	Quickly, always, here,

Closed Classes

Chapter 8, Speech and Language Processing, 3rd edition draft, Jurafsky & Martin (2019).

Highly language-specific. Most important closed classes in English:

Prepositions	on, under, over, near, by, at, from, to, with	
Particles	up, down, on, off, in, out, at, by	
Determiners	a, an, the	
Conjunctions	and, but, or, as, if, when	
Pronouns	she, who, I, others	
Auxiliary verbs	can, may, should, are	
Numerals	one, two, three, first, second, third	

POS Tagsets

- Classes can be defined in various ways, so use standard tagsets.
- Penn Treebank [1] for English with 45 tags:
 - Brown, WSJ and Switchboard corpora;
 - Hand-corrected tags to use for training POS taggers.
- Universal dependencies [2] provides 16 tags for any language:
 - Mappings for standard tagsets in at least <u>23 languages</u>.
- Extra tags needed for social media [3].
- [1] Marcus, M. P., et al.(1993). Building a large annotated corpus of English: The Penn treebank. Computational Linguistics.
- [2] Nivre, J., et al. (2016). Universal Dependencies v1: A multilingual treebank collection. LREC.
- [3] Gimpel, K., et al. (2011). Part-of-speech tagging for Twitter: anno- tation, features, and experiments. ACL

POS Tagging in English

Section 8.3, Speech and Language Processing, 3rd edition draft, Jurafsky & Martin (2019).

- Task: assign a POS tag to each word in a sentence.
- Requires disambiguation:
 - 14-15% of English vocab. is word types with multiple possible POS tags;
 - These words make up 55-67% tokens in a document!
- Most frequent class baseline: 92% accuracy on WSJ.

Morphologically Rich Languages

- E.g., Czech, Hungarian, Turkish
- Much more information than English in the morphology of the word
- Information like case, gender, person is important for downstream tasks like resolving references to an entity.
- Use a sequence of tags for each word

Yerdeki izin temizlenmesi gerek. → The trace on the floor should be cleaned.

POS tag of izin = iz+Noun+A3sg+Pnon+Gen [1]

Section 8.7, Speech and Language Processing, 3rd edition draft, Jurafsky & Martin (2019). [1] Hakkani-Tür, D., et al. (2002). Statistical morphological disambiguation for agglutinative languages. Journal of Computers and Humanities

POS Tagging in Chinese

- Very short words compared to English;
- Tokenisation is difficult (see video 1.3) so POS tagging and tokenisation may be done at the same time;
- Compounding produces many unknown common nouns and verbs.
- To perform POS tagging, we use various features:
 - Prefixes and suffixes
 - Elements of the characters such as radicals.

POS Tagging as Sequence Labelling

- Task: assign class labels to tokens in a sequence.
- When tagging a word, consider its neighbours in the sequence to disambiguate the tag.
- Sequence labelling methods achieve ~97% accuracy on WSJ.
 - Hidden Markov models (HMMs)
 - Conditional random fields (CRFs)
 - Recurrent neural networks (RNNs)
- Sequence labellers have broad applications in text analytics, e.g.:
 - Information extraction: identifying words that refer to people or events;
 - Question answering: find a spans of text that answer a user's question.

Summary

- Syntactic features are useful for many text analytics tasks, such as sentiment analysis and information extraction.
- Part-of-speech tags are a very useful type of syntatic feature that indicate a word's usage in a sentence.
- POS tags vary greatly between languages but most include nouns, verbs and adjectives, while some languages may require a complex sequence of tags to label a single word.
- POS tagging is itself a sequence labelling task, as the tag of an individual word depends on the previous and next words.