ECUACIONES NO LINEALES

Resolver una ecuación no líneal implica encontrar la o las soluciones que la verifican (*O demostrar que no existen soluciones reales*).

Eso implica que una ecuación no líneal puede tener 0, 1, 2 Infinitas soluciones reales.

Una ecuación no líneal puede surgir de diferentes maneras:

a) Buscar los ceros o raíces de una función: f(x) = 0

ECUACIONES NO LINEALES

b) Buscar los valores de x que provocan que la función alcance cierto valor real: f(x) = a; $a \in R$ Puede verse que si f(x) = a, entonces f(x) - a = 0

Las abcisas de los tres puntos marcados en el gráfico corresponden a las soluciones de f(x) = a

ECUACIONES NO LINEALES

c) Buscar los valores de x que provoca la intersección de dos funciones: f(x) = g(x)

Puede verse que si f(x) = g(x), entonces f(x) - g(x) = 0

Las abcisas de los dos puntos marcados en el gráfico corresponden a las soluciones de f(x) = g(x)

En esos pares ordenados ambas funciones son iguales.

ECUACIONES NO LINEALES

d) Otra aplicación de las Ecuaciones No Lineales es buscar máximos o mínimos relativos o locales de una función.

Si f(x) tiene un máximo o mínimo relativo, entonces f'(x) = 0 (Ecuación)

En el punto de abcisa c, f'(x) = 0

En este caso ocurre un mínimo relativo o local.

ECUACIONES NO LINEALES

Pasos a seguir para resolver una Ecuación No Líneal por Métodos Numéricos

- 1) Desarrollar la ecuación para encontrar la expresión f(x) = 0.
- **2)** Realizar Aislamiento del Intervalo: Implica encontrar un intervalo de x = [a;b] que contenga una raíz única dentro de él y que permita encontrar el valor inicial con el que se iniciará el método. Si la ecuación no tuviera solución real, el Aislamiento del Intervalo permitiría demostrar que no existen raíces.
- 3) Seleccionar el valor inicial y verificar convergencia.
- 4) Determinar las condiciones de corte: Implica seleccionar la precisión a alcanzar. Cuanto más pequeñas sean estas condiciones, más precisa será la aproximación a la raíz.
- 5) Aproximar a la raíz a través del método numérico (Newton Raphson).

ECUACIONES NO LINEALES

PROBLEMA 1

Un objeto es lanzado desde el suelo y describe, a partir de ese momento, una trayectoria que responde a la función

$$A(t) = 3t + \ln(t+1)$$

Donde A(t) es la altura del objeto en Km y t es el tiempo en horas.

Se pide calcular cuánto tiempo deberá ocurrir para que el objeto alcance una altura de 15000m.

ECUACIONES NO LINEALES

1) Desarrollar la ecuación para encontrar la expresión f(x) = 0.

Si A(t) = 3t + ln(t + 1) y pretendemos calcular en qué tiempo la altura tendrá un valor de 15000m, podríamos decir que:

A(t) = 15 (debido a que se encuentra en Kilómetros)

Por lo tanto:

$$3t + \ln(t+1) = 15$$

Y entonces:

$$f(x) = 3x + ln(x+1) - 15 = 0$$

ECUACIÓN A RESOLVER: f(x) Función a utilizar en el método

ECUACIONES NO LINEALES

2) Realizar Aislamiento del Intervalo (Alternativa 1)

UTILIZAR UNA TABLA: Implica ir valuando la función de trabajo f(x) en diferentes puntos hasta encontrar un cambio de signo en dos valores diferentes. Esta búsqueda debe estar orientada teniendo en cuenta la o las soluciones que pretendemos encontrar.

En este caso $f(x) = 3x + \ln(x+1) - 15 = 0$ y buscamos el primer "x" positivo (ya que suponemos que el objeto parte del tiempo cero y no tendría sentido buscar tiempos "negativos").

X	f(x)		
0	-15		
1	-11,3069		
2	-7,90139		
3	-4,61371		
4	-1,39056		
5	1,791759		
6	4,94591		
7	8,079442		

Como puede verse en la tabla, ocurre un cambio de signo de f(x) en el intervalo [4;5].

Ello implica que (salvo que la función no fuera continua en ese intervalo), existe al menos una raíz en el mismo.

ECUACIONES NO LINEALES

2) Realizar Aislamiento del Intervalo (Alternativa 2)

UTILIZAR UN GRÁFICO: Implica reescribir la ecuación como una igualdad de dos funciones más simples, de modo que, al graficarlas, podamos visualizar la intersección y, con ello, la presencia de la raíz.

Si
$$f(x) = 3x + \ln(x+1) - 15 = 0$$
, podemos escribir (por ejemplo):

$$3x - 15 = -\ln(x + 1)$$
 (conservando la ecuación)

Si graficamos ambas funciones por separado en el mismo gráfico:

Se visualiza claramente que la intersección de ambas funciones ocurre en el intervalo [4;5]

Ello implica que ambas funciones son iguales en ese intervalo. En consecuencia se verifica la ecuación original.

También aseguramos que la raíz es única en ese intervalo.

ECUACIONES NO LINEALES

5 - 4 - 3 -2 -1 0 1 2 3 4 5 6 7 6

3) Seleccionar el valor inicial y verificar convergencia

Hasta ahora sabemos que:

La ecuación $f(x) = 3x + \ln(x + 1) - 15 = 0$ tiene una raíz en el intervalo [4;5].

El método requiere seleccionar un valor inicial que se considera la primera aproximación a la raíz (x_0) .

Ese valor inicial debe pertenecer al intervalo, por lo tanto: $4 \le x_0 \le 5$.

Seleccionaremos $x_0 = 4$

Verificamos Condición de Convergencia:

$$f(x) = 3x + ln(x + 1) - 15$$

$$f'(x) = 3 + 1/(x + 1)$$

$$f''(x) = -1/(x+1)^2$$

$$\left| \frac{f(x_0).f''(x_0)}{(f'(x_0))^2} \right| < 1$$

$$\left| \frac{(-1,39) \cdot (-0,04)}{(3,2)^2} \right| = \left| \frac{0,0556}{10,24} \right| = 0,005 < 1 \ CONVERGE$$

ECUACIONES NO LINEALES

4) Determinar las condiciones de corte:

Las condiciones de corte están relacionadas con la precisión de aproximación de la solución.

Por ejemplo, en este caso, la altura (y) se mide en Kilómetros y el tiempo (x) en horas. Si decidiéramos que la precisión es de metros en la altura y minutos en el tiempo, la precisión deberías ser:

10⁻³ en y (precisión de tres decimales en y)

10⁻² en x (precisión de dos decimales en x)

Por lo tanto:

$$\delta x = |x_{i+1} - x_{i}| \le 10^{-2}$$

$$\delta y = |f(xi_{+1})| \le 10^{-3}$$

ECUACIONES NO LINEALES

5) Aproximar a la raíz a través del método numérico (Newton – Raphson)

Resumamos:

$$f(x) = 3x + ln(x + 1) - 15 = 0$$
 Intervalo: [4;5]; $x_0 = 4$

$$\delta x = |x_{i+1} - x_{i}| \le 10^{-2}$$

$$\delta y = |f(x_{i+1}|)| \le 10^{-3}$$

$$xi + 1 = xi - \frac{f(xi)}{f'(xi)}$$

$$x_{i+1} = xi - \frac{f(xi)}{f'(xi)}$$

Valor				
Inicial				

xi	f(xi)	f′(xi)	xi+1	dx	dy
4	-1,39056	3,2	4,434551	0,434551	0,003571
4,434551	-0,00357	3,184008	4,435672	0,001122	2,13E-08

SOLUCIÓN: x = 4,4356 horas

$$\delta x = |x_{i+1} - x_i| \le 10^{-2}$$

$$\delta y = |f(xi_{+1})| \le 10^{-3}$$

ECUACIONES NO LINEALES

PROBLEMA 2

Calcular el valor del par ordenado que representa un máximo local de la Siguiente función:

$$f(x) = -x^4 + 3x + 2e^{-0.1x}$$

Utilizar
$$\delta x <= 10^{-2}$$

Para calcular un máximo local de la función deberemos plantear la siguiente ecuación:

$$f'(x) = 0$$

$$f'(x) = -4x^3 + 3 - 0,2e^{-0,1x} = 0$$
 (con la que deberemos realizar el mismo proceso que el Problema 1)

ECUACIONES NO LINEALES

ECUACIÓN A RESOLVER

$$-4x^3 + 3 - 0.2e^{-0.1x} = 0$$

$$\delta x <= 10^{-2}$$

AISLAMIENTO

$$-4x^3 + 3 = 0.2e^{-0.1x}$$

MÉTODO

xi	f(xi)	f′(xi)	xi+1	dx	dy
1,00000	-1,18097	-11,98190	0,90144	0,09856	0,09700
0,90144	-0,11275	-9,73280	0,88985	0,01158	0,01413
0,88985	-0,00145	-9,48375	0,88970	0,00015	0,01558

Realizando la comprobación (f''(0,88970) < 0), vemos que en x = 0,88970 existe un máximo local cuyas coordenadas son:

(0,88970;5,1254)