UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i: MEK 1100 — Feltteori og vektoranalyse.

Eksamensdag: Tirsdag 21 mars 2017.

Tid for eksamen: 14:30-16:30.

Oppgavesettet er på 2 sider.

Vedlegg: Formeltillegg på 2 sider.

Tillatte hjelpemidler: K. Rottmann: Matematische Formelsamlung,

godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Det er 10 delspørsmål. Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for fullstendig svar, 0 for blank). Maksimal oppnåelig poengsum er 100. Kontroller at du ikke overser noen av spørsmålene.

Oppgave 1

En skiløper som beveger seg med fart v blir utsatt for motstandskraft F på grunn av luftmotstand og dårlig gli. Dersom farten er liten skal vi anta at F er omtrent proporsjonal med v med koeffisient μ . Dersom farten er stor skal vi anta at F er omtrent proporsjonal med v^2 med koeffisient ν . For en vilkårlig fart skal vi anta følgende modell

$$F = \mu v + \nu v^2. \tag{1}$$

Koeffisientene μ og ν er to frie parametere som må måles i nøye kontrollerte eksperimenter. Vi måler kraft i Newton (N) og fart i meter per sekund (m/s).

1a

Finn de fysiske enhetene til μ og ν .

1b

Skaler likning (1) slik at den kommer på dimensjonsløs form. Vis hvordan dette kan gjøres ved å innføre dimensjonsløs kraft F^* og dimensjonsløs fart v^* på en slik måte at det ikke er noen frie parametere i den skalerte og dimensjonsløse likninga.

Oppgave 2

Et vektorfelt er gitt på dimensjonsløs form ved $\boldsymbol{v} = x\boldsymbol{i} - x\boldsymbol{j}$.

2a

Regn ut divergensen til \boldsymbol{v} .

2b

Regn ut virvlinga til \boldsymbol{v} .

2c

Undersøk om vektorfeltet v har et potensial ϕ , og finn i så fall ϕ .

2d

Undersøk om vektorfeltet \boldsymbol{v} har en strømfunksjon ψ , og finn i så fall ψ .

2e

Tegn et vektor pil-plott (som quiver på datamaskin) for v i et område rundt origo. La styrken til feltet være proporsjonal med lengden til pilene. Finn alle stagnasjonspunktene (der hvor v = 0) og indiker de i figuren.

2f

Regn ut strømlinjene til \boldsymbol{v} og skisser dem i et plott.

2g

Finn sirkulasjonen til \boldsymbol{v} rundt randa γ av firkanten Γ : $\{0 \leq x \leq 1, 0 \leq y \leq 1, z = 0\}$. La den lukkede kurven γ være orientert slik at vi vandrer fra origo langs x-aksen til x = 1, deretter til x = y = 1, deretter til y-aksen for y = 1 og så tilbake til origo. Regn dette ut som et kurveintegral.

Kontroller svaret ved å regne ut sirkulasjonen som et flateintegral ved å anvende en passende integralsats. Hva heter den integralsatsen du bruker?

2h

Regn ut den integrerte fluksen av \boldsymbol{v} ut gjennom kuleskallet $S:\{x^2+y^2+z^2=1\}$, altså orientert vekk fra origo.