Sparsity in Dependency Grammar Induction

Jennifer Gillenwater¹, Kuzman Ganchev¹, João Graça², Fernando Pereira³, Ben Taskar¹

¹University of Pennsylvania ²L²F INESC-ID ³Google

Motivation

Dependency Model with Valence (Klein and Manning, ACL 2004)

 $\begin{aligned} \mathbf{p}_{\theta}(\mathbf{x}, \mathbf{y}) &= \theta_{\text{root}(\mathbf{V})} \\ \cdot \theta_{\text{stop}(\text{nostop}|\mathbf{V}, \text{right}, \text{false})} \\ \cdot \theta_{\text{child}(\mathbf{N}|\mathbf{V}, \text{right})} \\ \cdot \theta_{\text{stop}(\text{stop}|\mathbf{V}, \text{right}, \text{true})} \\ \cdot \theta_{\text{stop}(\text{nostop}|\mathbf{V}, \text{left}, \text{false})} \cdot \cdot \cdot \end{aligned}$

- ► **Task**: Unsupervised dependency grammar induction
- ▶ **Problem**: Model is simple, but still too permissive;
- most relations (e.g. DET \rightarrow V, N, JJ, etc.) should not occur
- ► **Solution**: Posterior constraints to limit grammar ambiguity during learning

Traditional Objective Optimization

- ▶ Traditional objective: marginal log likelihood $\max_{\theta} \mathcal{L}(\theta) = \hat{\mathsf{E}}_{\mathsf{X}}[\log \sum_{\mathsf{v}} \mathsf{p}_{\theta}(\mathsf{x},\mathsf{y})]$
- ► Optimization method: Expectation maximization (EM)
- ► Figures: Parent tags across, child tags down
- ▶ Left: Blank squares have max posterior 0; many parent-child relations don't occur
- ▶ **Right**: Red have max < supervised, black have max > supervised; many dark squares implies model assigns non-zero probability to too many pairs

Parameter Regularization: $\mathcal{L}(\theta) + \log p(\theta)$

- ► Hierarchical Dirichlet processes (Liang et al., EMNLP 2007; Johnson et al., NIPS 2007)
- ▶ Discounting Dirichlet prior (Headden et al., ACL 2009)
- ► Logistic normal prior (Cohen et al., NIPS 2008; Cohen and Smith, NAACL 2009)
- ► All of these tend to reduce unique # of children per parent, rather than directly reducing # of unique parent-child pairs: $\theta_{\text{child}(Y|X)} \neq \text{posterior}(X \rightarrow Y)$

Ambiguity Measure Using Posteriors: $L_{1/\infty}$

Posterior Regularization

Minimize # of unique pairs through E-step penalty, $L_{1/\infty}$ on the posteriors $q(y \mid x)$ (Graca et al., NIPS 2007 & 2009)

M-Step
$$\theta^{t+1} = \arg\max_{\theta} \hat{E}_{X} \left[\sum_{y} q^{t}(y \mid x) \log p_{\theta}(x, y) \right]$$

E-Step
$$q^t(y \mid x) = \underset{q(y \mid x)}{arg min} KL(q(y \mid x) \parallel p_{\theta^t}(y \mid x)) + \sigma L_{1/\infty}(q(y \mid x))$$

Experiments on English

- ▶ Penn Treebank data, strip punctuation, consider separately sentences of length ≤ 10 and 20, initialize model "harmonically", try $\sigma \in \{80,100,120,140,160,180\}$
- **Table**: top experiments on the basic dependency model with valence: our method and two parameter priors (Cohen et al., NIPS 2008; Cohen and Smith, NAACL 2009); bottom extended version of the model with parameters that use more valence information: our method, and a non-sparsifying ($\alpha=1$) discounting Dirichlet prior (DD) with random pools initialization and learned backoff weight λ (Headden et al., NAACL 2009).
- ▶ PR with random pools would likely produce best result of all

Learning Method	Accuracy		
	≤ 10	≤ 20	all
$PR\ (\sigma=140)$	62.1	53.8	49.1
LN families	59.3	45.1	39.0
SLN TieV & N	61.3	47.4	41.4
PR $(\sigma=140,\lambda=1/3)$	64.4	55.2	50.5
DD ($\alpha = 1$, λ learned)	65.0 (±5.7)		

Experiments on 11 Other Languages

Figure: Relative error with respect to EM on the extended model; DD = discounting Dirichlet prior, PR = posterior regularization ($\sigma = 160$ chosen on English), PR-S = symmetric version of constraints, PR-AS = asymmetric version; Avg = average improvement over EM, W = # of languages better than EM

DD 0.25 (Avg. 1.4 W 6)
PR-S 140 Avg. (6.5 W 9)
PR-AS 140 Avg. (6.0 W 9)
PR-S s140 Avg. (6.0 W 9)
PR-AS s140 Avg. (6.5 W 10)

Parse Analysis

Parse			Unique parent-child pairs	
d	nc	v	(v, nc); (nc, d)	
Una	papelera	es		
d	nc	v	(v, d); (d, nc)	
Una	papelera	es		
v Lleva	nc v tiempo entend	derlos	(v, nc); (v, v)	

- ► Parses 1 and 3: 3 unique pairs total
- Parses 2 and 3:4 unique pairs total

Conclusion

- ▶ For the basic model, average improvements over EM are 1.6% for DD, 6.7% for PR
- ► For the extended model, average improvements over EM are 1.4% for DD, 6.4% for PR
- Using posterior regularization significantly improves parsing accuracy