Topology Exam: September 2015.

Answer exactly **seven** of the following questions.

- 1. For each of the following either provide a counter-example or give a proof, quoting standard results as needed.
- (i) If X and Y are nonempty spaces and $X \times Y$ is compact under the product topology then X is compact.
- (ii) If X and Y are compact and $Y \subseteq X$ then $X \setminus \text{int}(Y)$ is compact.
- (iii) If $f: X \to Y$ is a continuous bijection and X is Hausdorff and Y is compact, then f is a homeomorphism.
- (iv) $f: X \to Y$ is a continuous if and only if $f^{-1}(K)$ is compact for every compact subset $K \subset Y$.
- 2. (i) Prove that every compact metric space complete.
- (ii) Give an example of a complete metric space that is not compact.
- **3.** A Hausdorff space X is called normal if for every pair A, B of disjoint closed subsets of X there exist disjoint open sets containing A and B respectively. Prove that every compact Hausdorff space is normal.
- **4.** Let $f: X \to Y$ be a continuous onto function of compact Hausdorff spaces.
- (i) Define an equivalence relation \sim on X and a bijection g such that $f = g \circ p$, where p is the quotient map $p: X \to X/\sim$.
- (ii) Prove that if X and Y are compact Hausdorff and X/\sim has the quotient topology then g is a homeomorphism.
- (iii) Define an equivalence relation on $I \times I$ and a homeomorphism from $(I \times I)/\sim$ to T^2 where $I \times I$ is the 2-dimensional square and T^2 is the 2-dimensional torus $S^1 \times S^1$.
- **5.** (i) Give a careful definition of connected.
- (ii) Prove that the closed interval [0, 1] (with the usual topology) is connected.
- (iii) Show that if $H \subseteq K \subseteq \overline{H}$ and H is connected then K is connected.
- **6.** You may assume standard results provided you clearly state them. Let S denote the set of all closed, bounded, non-empty subsets of \mathbb{R} . If $A, B \in S$ then the Hausdorff distance between them, d(A, B) is defined to be the infimum of all $\epsilon > 0$ such that $A \subseteq N_{\epsilon}(B)$ and $B \subseteq N_{\epsilon}(A)$. Here $N_{\epsilon}(C) = \{x \in \mathbb{R} \mid \exists c \in C \mid x c \mid < \epsilon \}$. You may assume that this is a metric.
- (a) Show that this metric is complete.
- **(b)** Define $f: S \to S$ by $f(A) = \{\frac{x}{3} \mid x \in A\} \cup \{\frac{x+2}{3} \mid x \in A\}$. Show that if $A, B \in S$ then $d(f(A), f(B)) \leq (1/3)d(A, B)$.
- (c) Deduce that there is a unique closed, bounded, non-empty subset of \mathbb{R} that is mapped to itself.

Problems 7 and 8 use the topological space X, the closed subset of the plane shown below.

Thus, X is the union of three sets: $\{(x, \sin \frac{\pi}{x}) \mid 0 < x \le 1\}$, $\{(0, y) \mid -1 \le y \le 1\}$, and a curved arc from (0, 0) to (1, 0).

- 7. Prove or disprove the following.
- (i) X is path connected.
- (ii) X is locally connected.
- (iii) X is compact.
- **8.** (i) Determine the fundamental group $\pi_1(X,(0,0))$.
- (ii) Sketch a connected double covering of X.
- (iii) State the covering space classification theorem, and explain why parts (i) and (ii) of this question are consistent with the theorem.