Department of Electrical Engineering Indian Institute of Technology, Kanpur

EE 210 Assignment #13 Assigned: 13/4/21

- 1. Consider an NMOS common-source stage, as shown in Fig.1, with $I_D=0.5$ mA. Using the ZVTC method, estimate the upper cutoff frequency of the circuit. Data: $W=100~\mu m$, $L=2~\mu m$, $k_N'=60~\mu A/V^2$, $C_{sb}=C_{db}=20$ fF, $C_{ox}'=0.7$ fF/ μm^2 , and $C_{gd}=14$ fF. Also, calculate the rise time for pulse response. Neglect the body effect and the CLM effect.
- 2. Show that, neglecting R_S , Fig.2(a) is the 2-port representation of a CE(D) circuit, shown in Fig.2(b) with $R_\pi = r_\pi (1 + g_m R_E)$, and $G_m = g_m/(1 + g_m R_E)$. Hence, using the ZVTC technique, evaluate its upper cutoff frequency. Data: $R_S = 10~k\Omega$, $R_L = 5~k\Omega$, $R_E = 300~\Omega$, $\beta = 200$, $f_T = 600~MHz$ (at $I_C = 1~mA$), $C_\mu = 0.2~pF$, and $I_C = 1~mA$. Also, calculate the rise time for pulse response.
- 3. The ac schematics of a common-source-common gate (cascode) stage is shown in Fig.3. Using the ZVTC technique, estimate its upper cutoff frequency. Use the data given in Prob.1, and assume that $\chi_2 = 0.2$. Also, calculate the rise time for pulse response.
- 4. A wideband monolithic current amplifier is shown in Fig.4. The dc collector bias current of Q_1 is equal to 1 mA, and the emitter area of Q_2 is four times that of Q_1 . Calculate the ac small-signal midband current gain i_0/i_i , and use the ZVTC method to estimate the upper cutoff frequency. Also, calculate the rise time for pulse response. Data: for both Q_1 and Q_2 : $\beta = 200$, and $\tau_F = 0.2$ nsec; for Q_1 : $C_\mu = 0.2$ pF, and $C_{je} = 1$ pF; and for Q_2 : $C_\mu = 0.8$ pF, and $C_{je} = 4$ pF.

