Optimal Control

DEPARTMENT OF COMPUTER, CONTROL, AND MANAGEMENT ENGINEERING ANTONIO RUBERTI

Lecture 3

Prof. Daniela lacoviello

THESE SLIDES ARE NOT SUFFICIENT FOR THE EXAM: YOU MUST STUDY ON THE BOOKS

Part of the slides has been taken from the References indicated below

Course outline

- Introduction to optimal control
- Nonlinear optimization
- Dynamic programming
- Calculus of variations
- Calculus of variations and optimal control
- LQ problem
- Minimum time problem

Calculus of variation and optimal control

Problem 1

Let us consider the **dynamical system** described by:

$$\chi(x(t_f), t_f) = 0$$

 $q(x,u,t) \leq 0$

Vectorial function of C^2 class of dimension β

Assume the norm:

$$\|(x, u, t_f)\| = \sup_{t} \|x(t)\| + \sup_{t} \|\dot{x}(t)\| + \sup_{t} \|\int_{t_i}^{t} u(\tau) d\tau\| + \sup_{t} \|u(t)\| + |t_f|$$

Define the cost index $J(x,u,t_f) = \int_{t_i}^{t} L(x,u,t)dt$

with L function of C² class

AIM: Find (if it exists)

- \Box the instant t_f^o
- \Box the control $u^o \in \overline{C}^0(R)$
- \Box the state $x^o \in \overline{C}^1(R)$

that satisfy the previous equations and minimize the cost index

DEFINE the <u>scalar</u> function

$$H(x, u, \lambda_0, \lambda, t) = \lambda_0 L(x, u, t) + \lambda^T(t) f(x, u, t)$$

the Hamiltonian function

Theorem 1

Let (x^*, u^*, t_f^*) be an admissible solution such that dimension of

IF (x^*, u^*, t_f^*) is a local minimum

there exist
$$\lambda_0^* \ge 0$$
, $\lambda^* \in \overline{C}^1[t_i, t_f^*]$, $\eta^* \in \overline{C}^0[t_i, t_f^*]$

not simultaneously null in $[t_i, t_f^*]$ such that:

$$\eta_j^*(t)q_j(x^*,u^*,t) = 0, \quad \eta_j^*(t) \ge 0, \quad j = 1,2,...,\beta$$

$$\mathbf{H}\Big|_{t_f^*}^* = \frac{\partial \chi}{\partial t_f}\Big|_{t_f^*}^{*T} \varsigma$$

The discontinuity of $\dot{\lambda}^*$ and η^* may occurr only in the points \bar{t}

where u^* has a discontinuity and $H\Big|_{\bar{t}^-}^* = H\Big|_{\bar{t}^+}^*$

Problem 2

Consider Problem 1 assuming L, f, q not depending on t

Theorem 2

Let (x^*, u^*, t_f^*) be an admissible solution

for any continuity point of u^*

$$\left. \frac{dH}{dt} \right|^* = \frac{\partial H}{\partial t} \right|^* + \eta^{*T} \frac{\partial q}{\partial t} \right|^*$$

Moreover for stationary problems:

$$H|^* = c, \quad \forall t \in [t_i, t_f^*]$$

Calculus of variation and optimal control

Problem 3

Let us consider the **dynamical system** described by:

$$\chi\!\!\left(x(t_f),t_f\right)=0$$

Vectorial function of C¹ class of dimension $\sigma_f \le n+1$

Vectorial function of C^2 class of dimension σ

Assume the norm:

$$\|(x, u, t_f)\| = \sup_{t} \|x(t)\| + \sup_{t} |\dot{x}(t)| + \sup_{t} |\int_{t_i}^{t} u(\tau) d\tau| + \sup_{t} |u(t)| + |t_f|$$

Define the cost index

$$J(x,u,t_f) = \int_{t_i}^{t_f} L(x,u,t)dt$$

with L function of C² class

AIM: Find

- \Box the instant t_f^o
- \Box the control $u^o \in \overline{C}^0(R)$
- □ the state $x^o \in \overline{C}^1(R)$

that satisfy the previous equations and minimize the cost index

DEFINE the <u>scalar</u> function

$$H(x, u, \lambda_0, \lambda, t) = \lambda_0 L(x, u, t) + \lambda^T(t) f(x, u, t) + \rho^T h(x(t), u(t), t)$$

the Hamiltonian function

Theorem 3

Theorem 3
Let (x^*, u^*, t_f^*) be an admissible solution such that $rk \left| \frac{\partial \chi}{\partial (x(t_f), t_f)} \right|^{-1} = \sigma_f$

$$rk \left\{ \frac{\partial \chi}{\partial (x(t_f), t_f)} \right|^* \right\} = \sigma_f$$

 $\mathsf{IF}(x^*, u^*, t_f^*)$ is a local minimum

there exist $\lambda_0^* \in R$, $\lambda^* \in \overline{C}^1[t_i, t_f^*], \rho^* \in R$ simultaneously null in $[t_i, t_f^*]$ such that:

$$\Box \qquad 0 = \frac{\partial H}{\partial u} \bigg|^{*T}$$

$$\begin{array}{ccc}
\Box & 0 = \frac{\partial H}{\partial u} \Big|^{*T} \\
\Box & \lambda^*(t_f^*) = -\frac{\partial \chi}{\partial (x(t_f))} \Big|_{t_f^*}^{*T} \varsigma, \ \varsigma \in R^{\sigma_f} \\
\Box & H \Big|_{t_f^*}^{*} = \frac{\partial \chi}{\partial t_f} \Big|_{t_f^*}^{*T} \varsigma
\end{array}$$

The discontinuity of $\dot{\lambda}^*$ may occurr only in the points \bar{t}_k where u^* has a discontinuity

and

$$H\Big|_{ar{t}_k^{-}}^* = H\Big|_{ar{t}_k^{+}}^*$$

Problem 4:

Consider the linear system $\dot{x} = A(t)x + B(t)u$

$$\dot{x} = A(t)x + B(t)u$$

Assume:

- t_i t_f $x(t_i) = x^i$ fixed
- $x(t_f) \in D_f$ being D_f a fixed point or \mathbb{R}^n
- $q(x,u,t) \le 0$ Vectorial function of C² class of dimension β **CONVEX**

Define the cost index

Functions of C³ class- **CONVEX**

Functions of C² class

$$J(x,u) = \int_{t_i}^{t_f} L(x,u,t)dt + G(x(t_f))$$

Functions of C² class **CONVEX**

23/10/2018

Theorem 4

Let (x^o, u^o) be an admissible solution such that

$$rk\left\{\frac{\partial q_{active}}{\partial u}\Big|^o\right\} = \beta_a(t), \ \forall t \in [t_i, t_f]$$

$$(x^o, u^o)$$

is a **normal** optimal solution

AND IF
$$D_f = R^n$$
 $\lambda^o(t_f) = \frac{dG}{dx(t_f)} \bigg|^{\partial T}$

$$\begin{aligned} &(x^o, u^o) \text{ be an admissible solution such that} \\ &\frac{\partial q_{active}}{\partial u} \bigg|^o \bigg\} = \beta_a(t), \ \forall t \in \left[t_i, t_f\right] \\ &x^o, u^o) \\ &\text{normal mal solution} \end{aligned} \qquad \begin{aligned} &\lambda^o = -\frac{\partial H}{\partial u} \bigg|^o T - \frac{\partial q}{\partial u} \bigg|^o T \\ &0 = \frac{\partial H}{\partial u} \bigg|^o T + \frac{\partial q}{\partial u} \bigg|^o T \\ &\eta^o(t) q_j(x^o, u^o, t) = 0, \\ &j = 1, 2, \dots, \beta \\ &\eta^o(t) \geq 0 \end{aligned}$$