Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems

MLSys 2020 article

Content

- Background
- Hierarchical parameter server
- HBM-PS
- MEM-PS
- SSD-PS
- Experimental evaluation

Background

- Training ultra-large scale deep neural network to predict Click Through Rate (CTR)
- Model contains around 10TB parameters
- 2010~2013: distributed logistic regression model
- 2013~2020: MPI based distributed parameter server and OP+OSRP reduced DNN model

Background

- MPI solution drawbacks
 - Pricey hardware maintenance and energy cost of large scale cluster
 - Communication and synchronization cost restrict scaling up training speed
- GPU parameter server for CTR prediction
 - Highly sparse inputs: only a subset of parameters is used and updated
 - Few millions dense parameters: can be stored in GPU memory

Background

- Targets
 - Efficient distributed GPU hash table
 - Efficient data transferring and caching mechanism
 - Effective materialized parameter organization

Hierarchical parameter server

- HBM-PS: High-Bandwidth Memory across multiple GPUs
- MEM-PS: pulls parameters from remote and materializes updated parameters in SSDs
- SSD-PS: stores and organizes parameters in files to achieve better bandwidth

Hierarchical parameter server architecture

Workflow

- Fetch training data to memory from network file system (HDFS)
- Identify referenced parameter, load from MEM-PS, SSD-PS and remote, partition and transfer to HBM-PS
- Performs forwards and backwards propagation
- Collect and dumps updated parameter to SSD-PS

Algorithm 1 Distributed Hierarchical Parameter Server Training Workflow.

```
1. while not converged do
       batch \leftarrow get\_batch\_from\_HDFS()
       working \( -pull_local_MEM-PS_and_SSD- \)
       PS(batch)
       working \leftarrow working \cup pull\_remote\_MEM-PS(batch)
       minibatches \leftarrow shard\_batch(batch, \#GPU, \#minibatch)
      partitions \leftarrow map\_parameters\_to\_GPUs(working, \#GP)
       for i \leftarrow 1 to #GPU do
         transfer\_to\_GPU(i,minibatches_i)
         insert\_into\_hashtable(i,partitions_i)
       end for
      for j \leftarrow 1 to #minibatch do
         pull\_HBM-PS\_kernel(minibatch_j)
          \Delta_j \leftarrow train\_mini-batch\_kernel(j)
13.
         push\_parameters\_updates\_back\_kernel(\Delta_i)
       end for
       \Delta \leftarrow pull\_updates\_HBM-PS()
       parameters\_to\_dump \leftarrow update\_local\_cache()
      push_local_SSD-PS(parameters_to_dump)
19. end while
```

Distributed hierarchical parameter server training workflow

Workflow example

- Working parameters: 4, 5, 11, 50, 53, 56, 61, 87, 98
- Pull from node1 (local MEM-PS/SSD-PS) and node2 (remote MEM-PS)
- Use hashing function to map parameter to GPU
- Pull parameter from remote HBM-PS through NVLink

Hierarchical parameter server workflow example

Training workflow

 4-stage pipeline: data transferring, parameter partitioning, materialized data loading/dumping and neural network training

HBM-PS

- Local GPU hash table: cuDF library
- Accumulate operation: input multiple key-value pairs
- Switch to GPU that owns the memory of inputs
- Performs partitioning
- Send key-value pairs to its corresponding GPUs and apply accumulation

Algorithm 2 Distributed GPU hash table accumulate.

Input: A collections of key-value pairs: (keys, vals).

- 1. $switch_to_GPU(get_resource_owner(keys, vals))$
- 2. $partitioned \leftarrow parallel_partition(keys, vals)$
- 3. for $i \leftarrow 1$ to #GPU do
- 4. **if** $partitioned_i \neq \emptyset$ **then**
- 5. $async_send(i, partitioned_i)$
- 6. **end if**
- 7. end for
- 8. wait_send_destination()
- 9. for $i \leftarrow 1$ to #GPU do
- 10. $switch_to_GPU(i)$
- 11. $hash_tables_i.async_accum(partitioned_i)$
- 12. end for

Distributed GPU hash table accumulate

HBM-PS

- Multi-GPU distributed hash table: parameter partitioning
- Maps a parameter key to a GPU id
- Simple modulo hash function
- Group parameters with high co-ocurrence together
 - Pre-train a learned hash function
 - Axis-vertical partitioning

HBM-PS

• GPU RDMA communication: Remote Direct Memory Access

Inter-node RDMA communication

MEM-PS

- Use modulo hashing as partition scheme
- For local parameters, reads from SSDs
- For remote parameters, pulls from other MEM-PS through network
- Maintains an in-memory cache to store recently/frequently used parameters (using LRU and LFU cache) and avoid excessive SSD I/Os
- Pulls updated parameter from local GPUs

SSD-PS

- Considers a parameter file an SSD I/O unit
- Writes updated parameter to new file sequentially
- Updates parameter to file mapping of updated parameters
- Performs file compaction to reduce SSD usage

SSD-PS examples: (a) parameter-to-file mapping and parameter files; (b) 1, 2, 4, 8, 9 are updated; (c) a compaction operation.

Experimental evaluation

- Set up: 4 GPU nodes, each nodes has 8 32GB GPUs, 48 core CPUs, 1TB memory, 20 TB RAID-0 NVMe SSDs and 100 Gb RDMA net-work adaptor
- 5 CTR prediction models

	#Non-zeros	#Sparse	#Dense	Size (GB)	MPI
A	100	8×10^{9}	7×10^{5}	300	100
В	100	2×10^{10}	2×10^4	600	80
C	500	6×10^{10}	2×10^{6}	2,000	75
D	500	1×10^{11}	4×10^6	6,000	150
E	500	2×10^{11}	7×10^{6}	10,000	128

Model specifications

Experimental evaluation

Performance of 4-node hierarchical parameter server

	A	В	С	D	E			
Speedup over MPI-cluster			4.8		2.6			
Cost-normalized speedup	4.4	5.4	9.0	8.4	8.3			

(a) Total execution time

(b) AUC accuracy

Performance of HPS-4

(c) Execution time distribution

Experimental evaluation

Time distribution in HBM-PS/MEM-PS and the cache hit rate on Model E.

SSD-PS I/O time and speedup on Model E