Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 (Original). A method of treatment of bacterial infections in mammals, which method comprises the administration to a mammal in need of such treatment of an effective amount of a compound of formula (I) or a pharmaceutically acceptable derivative thereof:

A-B-(CH₂)_n
$$N - R^4$$

$$Z^{2} Z^{3} X^{2}$$

$$X = Z^{4}$$

$$Y = Z^{4}$$

$$Z^{4}$$

$$Z^{4}$$

$$Z^{4}$$

$$Z^{4}$$

$$Z^{4}$$

$$Z^{4}$$

wherein:

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N or CR^{1a} and the remainder are CH;

R¹ is selected from hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6}) alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, NH₂CO, hydroxy, thiol, (C_{1-6}) alkylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6}) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkyl; (C_{1-6}) alkylthio; trifluoromethyl; nitro; azido; acyl; acyloxy; acylthio; (C_{1-6}) alkylsulphonyl; (C_{1-6}) alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, or when one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, R¹ may instead be hydrogen;

R^{1a} is selected from hydrogen and the groups listed above for R¹;

R³ is in the 2- or 3-position and is:

carboxy; (C_{1-6}) alkoxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-6}) alkyl, aminocarbonyl; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by (C_{1-6}) alkyl, or 5-oxo-1,2,4-oxadiazol-3-yl; or

 R^3 is in the 2- or 3-position and is (C_{1-4}) alkyl or ethenyl substituted with any of the groups listed above for R^3 and 0 to 2 groups R^{12} independently selected from:

thiol; halogen; (C₁₋₆)alkylthio; trifluoromethyl; azido; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆)alkenylcarbonyl; hydroxy optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋ 6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋ 6)alkylcarbonyl or (C2-6)alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋ 6)alkenylcarbonyl, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, (C₂₋ 6)alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl(C₁₋ 6)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋ 6)alkenyloxycarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl(C₁₋₆)alkyl or (C₂₋₆)alkenyl; oxo; (C₁₋₆)alkylsulphonyl; (C₂₋₆)alkenylsulphonyl; or (C₁₋₆)aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; provided that when R³ is disubstituted with hydroxy or amino and carboxy containing substituents these may optionally together form a cyclic ester or amide linkage, respectively;

and provided that R^3 is other than (C_{1-4}) alkyl or ethenyl substituted by (C_{1-6}) alkoxycarbonyl or aminocarbonyl optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl or (C_{2-6}) alkenyl and 0 to 2 groups R^{12} ;

wherein R¹⁰ is selected from (C₁₋₄)alkyl; (C₂₋₄)alkenyl; aryl; a group R¹² as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₁₋₆)alkenylsulphonyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl or (C₂₋₆)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; cyano; or tetrazolyl;

R⁴ is a group -CH₂-R⁵ in which R⁵ is selected from:

 $(C_{3-12})alkyl;\ hydroxy(C_{3-12})alkyl;\ (C_{1-12})alkoxy(C_{3-12})alkyl;\ (C_{1-12})alkoxy(C_{3-12})alkyl;\ (C_{1-12})alkoxy-(C_{3-12})alkyl;\ (C_{3-12})alkyl;\ hydroxy-,\ (C_{1-12})alkoxy-or\ (C_{1-12})alkanoyloxy-(C_{3-6})cycloalkyl(C_{3-12})alkyl;\ cyano(C_{3-12})alkyl;\ (C_{2-12})alkyl;\ (C_{2-12})alkylyl;\ tetrahydrofuryl;\ mono-\ or\ di-(C_{1-12})alkylamino(C_{3-12})alkyl;\ (C_{1-12})alkyl-\ or\ acyl-aminocarbonyl(C_{3-12})alkyl;\ mono-\ or\ di-(C_{1-12})alkylamino(hydroxy)\ (C_{3-12})alkyl;\ optionally\ substituted\ phenyl(C_{1-2})alkyl,\ phenoxy(C_{1-2})alkyl\ or\ phenyl(hydroxy)(C_{1-2})alkyl;\ optionally\ substituted\ phenyl(C_{2-3})alkenyl;\ optionally\ substituted\ heteroaryl(C_{1-2})alkyl;and\ optionally\ substituted\ heteroaroyl\ or\ heteroaroylmethyl;$

n is 0, 1 or 2;

either A-B is NHC(O)NH or NHC(O)O, or

A is NR¹¹, O, S(O)_X or CR⁶R⁷ and B is NR¹¹, O, S(O)_X or CR⁸R⁹ where x is 0, 1 or 2 and wherein:

each of R⁶ and R⁷ R⁸ and R⁹ is independently selected from: H; thiol; (C₁₋₆)alkylthio; halo; trifluoromethyl; azido; (C₁₋₆)alkyl; (C₂₋₆)alkenyl; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆)alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁₋₆)alkylsulphonyl; (C₂₋₆)alkenylsulphonyl; or (C₁₋₆)aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₁₋₆)alkenyl;

or R^6 and R^8 together represent a bond and R^7 and R^9 are as above defined; or R^6 and R^8 together represent –O- and R^7 and R^9 are both hydrogen; or R^6 and R^7 or R^8 and R^9 together represent oxo;

and each R^{11} is independently H, trifluoromethyl, (C_{1-6}) alkyl, (C_{1-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkyl or (C_{1-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl; provided that A and B cannot both be selected from NR^{11} , O and $S(O)_X$ and when one of A and B is CO the other is not CO, O or $S(O)_X$.

Claims 2-11. (Cancelled)

12. (Original) A pharmaceutical composition for use in the treatment of bacterial infections in mammals comprising a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.

13. (Cancelled)

14 (Previously Presented). A method according to claim 1 which comprises administering a compound of formula (IA) or a pharmaceutically acceptable derivative thereof which is a compound of formula (I) as defined in claim 1 wherein R^3 is other than (C_{1-6}) alkoxycarbonyl; optionally substituted aminocarbonyl, CN or COOH.

15 (Previously Presented). A method according to claim 1 which comprises administering a compound in which Z^5 is CH or N and Z^1 - Z^4 are each CH.

16 (Previously Presented). A method according to claim 1 which comprisies administering a compound in which R^1 is methoxy, amino- or guanidino-(C_{3-5})alkyloxy, guanidino(C_{3-5})alkyloxy, piperidyl(C_{3-5})alkyloxy, nitro or fluoro, and R^{1a} is hydrogen.

17 (Previously Presented). A method according to claim 1 which comprisies administering a compound in which R^3 is in the 3-position and is CH_2CO_2H or 2-oxo-oxazolidinyl.

piperidine;

18 (Previously Presented). A method according to claim 1 which comprisies administering a compound in which AB(CH₂)_n is (CH₂)₃.

19 (Previously Presented). A method according to claim 1 which comprisies administering a compound in which R^4 is (C_{5-10}) alkyl, unsubstituted phenyl (C_{2-3}) alkyl or unsubstituted phenyl (C_{3-4}) alkenyl.

20 (Previously Presented). A method according to claim 1 which comprisies administering a compound in which Z^5 is CH or N and Z^1 - Z^4 are each CH; R^1 is methoxy, amino- or guanidino-(C_{3-5})alkyloxy, guanidino(C_{3-5})alkyloxy, piperidyl(C_{3-5})alkyloxy, nitro or fluoro, and R^{1a} is hydrogen; R^3 is in the 3-position and is CH₂CO₂H or 2-oxo-oxazolidinyl; AB(CH₂)_n is (CH₂)₃; and R^4 is (C_{5-10})alkyl, unsubstituted phenyl(C_{2-3})alkyl or unsubstituted phenyl(C_{3-4})alkenyl.

21 (Previously Presented). A method according to claim 1 which comprisies administering a compound which is:

[3R, 4R]-1-Heptyl-3-(1-(R or S)-hydroxy-2-cyanoethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R, 4R]-1-Heptyl-3-(2-(R or S)-oxo-oxazolidin-5-yl)-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine;

[3R, 4R]-1-Heptyl-3-(2-cyanoethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine; [3R, 4R]-1-Heptyl-3-(3-carboxyethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl]

[3R, 4R]-1-Heptyl-3-carboxy-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine;

[3R, 4R]-1-Heptyl-3-(carboxymethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine;

[3R, 4R]-1-Heptyl-3-(1-(R or S)-hydroxy-2-carboxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R, 4R]-1-Heptyl-3-(2-(*E*-)-carboxyethenyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

N-(cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-piperidyl)-N'-(6-methoxyquinolin-4-yl)urea;

N-(cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-piperidyl)-N'-(6-methoxy-[1,5]-naphthyridin-4-yl)urea;

N-(cis-3-(R/S)-Aminocarbonyl-1-heptyl-4-(S/R)-piperidyl)-N'-(6-methoxy-[1,5]-naphthyridin-4-yl)urea;

[3R, 4R]-1-Heptyl-4-[3-(R/S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]-3-(2-(R or S)-oxo-oxazolidin-5-yl)-piperidine;

[3R, 4R]-1-Heptyl-3-cyanomethyl-4-[3-(R/S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R, 4R]-1-Heptyl-3-cyanomethyl-4-(2-(R)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

 $N-(cis-3-(R/S)-Carboxy-1-heptyl-4-(S/R)-piperidyl)-N'-(6-methoxyquinolin-4-yl)urea; \\ cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-(6-methoxyquinolin-4-yl)urea; \\ cis-3-(R/S)-(R/S$

yl)aminocarbonyl-oxypiperidine;

cis-3-(R/S)-Carboxy-1-heptyl-4-(S/R)-(6-methoxyquinolin-4-yl)aminocarbonyloxypiperidine;

a compound 18-36 from Table 1;

or a pharmaceutically acceptable derivative of any of the foregoing compounds.

22 (Currently Amended). A process for preparing compounds of formula (IA) as defined in claim 2 or a pharmaceutically acceptable derivative thereof which is a compound of formula (I) as defined in claim 1 wherein R³ is other than (C₁₋₆)alkoxycarbonyl; optionally substituted aminocarbonyl, CN or COOH, or a pharmaceutically acceptable derivative thereof, which process comprises:

(a) reacting a compound of formula (IV) with a compound of formula (V):

$$R^{1a'}$$
 $Z^{1'}$
 $Z^{5'}$
 $Z^{3'}$
 $Z^{4'}$
 $Z^{2'}$
 $Z^{3'}$
 $Z^{4'}$
 $Z^{2'}$
 $Z^{3'}$
 $Z^{4'}$
 $Z^{2'}$
 $Z^{3'}$
 $Z^{4'}$
 $Z^{4'}$
 $Z^{2'}$
 $Z^{3'}$
 $Z^{4'}$
 $Z^{4'}$

wherein Z^1 , Z^2 , Z^3 , Z^4 and Z^5 , m, n, R^1 , R^2 , R^3 and R^4 are as defined in formula (I), and X and Y may be the following combinations:

- (i) X is M and Y is $CH_2CO_2R^X$
- (ii) X is CO₂R^y and Y is CH₂CO₂R^x
- (iii) one of X and Y is CH=SPh2 and the other is CHO
- (iv) X is CH₃ and Y is CHO
- (v) X is CH₃ and Y is CO₂RX
- (vi) X is CH₂CO₂R^y and Y is CO₂R^x

(vii) X is CH=PRZ3 and Y is CHO

(viii) X is CHO and Y is CH=PRZ3

(ix) X is halogen and Y is CH=CH₂

(x) one of X and Y is COW and the other is NHR^{11'} or NCO

(xi) one of X and Y is $(CH_2)_p$ -V and the other is $(CH_2)_qNHR^{11'}$, $(CH_2)_qOH$, $(CH_2)_qSH$ or $(CH_2)_qSCOR^x$ where p+q=1

(xii) one of X and Y is CHO and the other is NHR¹¹'

(xiii) one of X and Y is OH and the other is -CH=N $_2$ in which V and W are leaving groups, R X and R Y are (C $_{1-6}$)alkyl and R Z is aryl or (C $_{1-6}$)alkyl, or

(xiv) X is NCO, Y is OH or NH2;

(b) reacting a compound of formula (IV) with a compound of formula (Vb):

wherein Z^1 , Z^2 , Z^3 , Z^4 and Z^5 , m, n, R^1 , R^2 , R^3 and R^4 are as defined in formula (I), X is CH_2NHR^{11} and Y is CHO or COW or X is CH_2OH and Y is -CH= N_2 ;

(c) rearranging a compound of formula (II):

$$R^{1}$$
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{2}

to give a compound of formula (III) which is a compound of formula (I) where Z^1-Z^5 are CH, n is 1, A-B is COCH₂ and R² is H, or a compound of formula (VII) which is a compound of formula (I) where n is 1, A-B is CHOHCH₂ or CH₂CHOH and R² is H; or

(d) photooxygenating a compound of formula (VI):

in which $Z^{1'}$ - $Z^{5'}$ are Z^{1} - Z^{5} or groups convertible thereto, $R^{11'}$, $R^{1'}$, $R^{2'}$, $R^{3'}$ and $R^{4'}$ are R^{11} , R^{1} , R^{2} , R^{3} and R^{4} or groups convertible thereto, and thereafter optionally or as necessary converting $R^{11'}$, $R^{1'}$, $R^{2'}$, $R^{3'}$ and $R^{4'}$ to $R^{11'}$, R^{1} , R^{2} , R^{3} and R^{4} , converting $Z^{1'}$ - $Z^{5'}$ to Z^{1} - Z^{5} , converting A-B to other A-B, interconverting R^{11} , R^{1} , R^{2} , R^{3} and/or R^{4} and forming a pharmaceutically acceptable derivative thereof.

23 (Currently Amended). A pharmaceutical composition comprising a compound of formula (IA) as defined in claim 2 or a pharmaceutically acceptable derivative thereof which is a compound of formula (I) as defined in claim 1 wherein R³ is other than (C₁₋₆)alkoxycarbonyl; optionally substituted aminocarbonyl, CN or COOH, or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.

24. (Cancelled)