

Physique

Classe: BAC Math

Devoir de contrôle 3

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

I. Chimie

Exercice 1

© 25 min

On dispose d'une solution aqueuse (S_1) d'acide propanoïque $C_2H_5CO_2H$ et d'une solution aqueuse (S_2) d'aniline $C_6H_5NH_2$. (L'aniline est une base).

- $1^{\circ}a$ Donner les formules de B_1 et A_2 et calculer Ka_1 et pKa_2 qui figurent dans le tableau ci-contre :
 - **b** Justifier que les deux acides sont faibles.
- 2° Écrire l'équation de la réaction de l'acide propanoïque $C_2H_5CO_2H$ avec l'aniline $C_6H_5NH_2$ et montrer que sa constante d'équilibre est K=0,5.

Couple : acide / base	Ka	pKa	
C ₂ H ₅ CO ₂ H / B ₁	Ka₁	pKa ₁ = 4,9	
A ₂ / C ₆ H ₅ NH ₂	Ka ₂ = 2,52.10 ⁻⁵	pKa ₂	

- 3° On prépare un mélange aqueux contenant a mol d'acide $C_2H_5CO_2H$; a mol d'aniline $C_6H_5NH_2$; $\frac{a}{10}$ mol d'ions $C_2H_5CO_2^-$ et $\frac{a}{10}$ mol d'ions $C_6H_5NH_3^+$.
 - a- Préciser le sens de l'évolution.
 - **b** Exprimer la constante d'équilibre en fonction du taux d'avancement final τ_f de la réaction.
- **b** Calculer τ_f et déduire les quantités de matière de $C_2H_5CO_2H$ et B_1 à l'équilibre si a=1
- **c** Déterminer la concentration des ions **H**₃**O**⁺ et déduire le **pH** du mélange.
- **4°** Considérons une solution (**S**) d'acide propanoïque de concentration molaire **C** = **10**⁻¹ **mol.L**⁻¹ et de **pH** = **2,95**.
- **a-** Vérifier que l'acide propanoïque est faiblement ionisé.
- **b** Exprimer sa constante d'acidité Ka en fonction de la concentration C et le taux d'avancement τ_f .
- c- Une étude expérimentale a permis de tracer la courbe traduisant la variation de $log(\tau_f)=f(-logC)$ (Figure 1).
 - c₁- Justifier l'allure de cette courbe.
 - c₂- Retrouver la valeur de la constante d'acidité Ka.

Exercice 2

On introduit dans deux béchers deux volumes égaux $V_1=V_2=10mL$ de deux solutions aqueuses (S_1) et (S_2) de deux acides: l'acide éthanoïque CH_3CO_2H (acide faible) et l'acide nitrique HNO_3 (acide fort) de concentrations molaires respectives (C_1) et (C_2).

A l'aide d'un pH-mètre préalablement étalonné, on suit la variation du **pH** de chaque solution (**S**₁) et (**S**₂) au cours de l'addition progressive d'une solution aqueuse d'hydroxyde de sodium **NaOH** de molarité C_B, contenue dans une burette. Les résultats de cette expérience ont permis de tracer les courbes (a) et (b), (voir figure 2 de la page annexe).

- 1° Associer à chaque courbe l'acide correspondant.
- 2° a- Déterminer la concentration molaire C₂ de la solution (S₂) d'acide nitrique.
 - **b** En déduire la molarité C_R de la solution d'hydroxyde de sodium NaOH
- **3°** Déterminer les coordonnées du point d'équivalence des deux dosages. Justifier que les valeurs trouvées des pH_E confirment la force de chaque acide.
 - 4° Montrer que les deux acides sont de même concentrations molaires C₂=C₁.
 - 5°a- Ecrire l'équation de la réaction du dosage l'acide éthanoïque CH₃CO₂H avec la soude.
 - b- Interpréter la nature acido-basique du mélange à l'équivalence.
 - 6° Justifier la valeur du pH des solutions à la fin du dosage (lorsque $V_B = 20mL$)

II. Physique

Exercice 1

Un vibreur est fixé à une pointe affleurant un liquide au repos en un point S. On actionne le vibreur à la date t=0, avec une fréquence **N=10Hz**. Des rides circulaires prenant naissance de la source S, se propagent sans se déformer.

On prend sur la figure 3 de la page annexe une photographie instantanée de la surface du liquide à la date $t_1 = 0.3s$.

- 1) a- Indiquer pourquoi le liquide a la même profondeur en tout point.
- **b-** Exploiter la figure3 du cliché obtenu en **vrai grandeur** (Sur laquelle les crêtes sont représentées par des cercles de centre S) pour déduire :
 - **b**₁- La longueur d'onde λ.
 - b₂-La célérité v de l'onde à la surface du liquide
 - 2) L'onde se propage sans atténuation de l'amplitude et sans réflexion.
 - Soit $y_s(t) = 5.10^{-3} sin(20\pi t + \varphi)$, l'élongation de la source S pour les dates $t \ge 0$.
 - Etablir l'expression de l'élongation $y_M(t)$ d'un point M situé à une distance d de S.
 - 3) Le point M_1 se trouve sur la crête la plus proche de S à une distance d_1 à la date t_1
 - a- Déterminer à partir du cliché la distance d₁.
 - **b** Déduire que la phase initiale φ de la source est nulle.
 - c- Représenter y_{M1}(t)
- **4) a-** Représenter, sur la figure3, une coupe de la surface du liquide par un plan vertical passant par S à la date **t**₁**=0,3s**.
- **b** En déduire l'ensemble de points de la surface du liquide qui, à la date t_1 , ont la même élongation que S et une vitesse négative.

Exercice 2

(S) 25 min

1) Un haut parleur (H) est mis en vibrations sinusoïdales à l'aide d'un générateur basse fréquence, réglé sur la fréquence N=3400Hz. Il émet un son qui se propage dans l'air, à la célérité V=340 m.s⁻¹.

Calculer la longueur d'onde λ du son émis par le haut parleur.

2) Un microphone (M), placé à la distance d = 50 cm en face du haut parleur, est relié à la voie Y_2 d'un oscilloscope ; la voie Y1 étant reliée au haut parleur (H) et a la même sensibilité verticale que la voie Y2 (figure 3).On obtient à la voie Y_1 l'oscillogramme (C_1) de la figure 3.

Dessiner en le justifiant, sur la figure 2, l'oscillogramme (C2) obtenu à la voie Y2.

3) On fait varier de 2000 Hz à 3500 Hz, la fréquence N du générateur qui alimente le haut parleur (H). Déterminer les valeurs de la fréquence **N** pour lesquelles les oscillogrammes (C₁) et (C₂), sont en phase.

Figure-2-

Figure-3-

Exercice 3

On désire déterminer le diamètre d'un cheveu. Dans un premier temps on interpose un fil de diamètre d sur le trajet d'un faisceau lumineux produit par un laser de longueur d'onde λ_0 =632,8nm

- 1° Schématiser le trajet suivi par la lumière après l'obstacle. Donner l'expression de la demi-largeur angulaire O du faisceau correspondant à la tache centrale de diffraction (la distance D qui sépare l'écran du fil est très grande devant la largeur L de la tache centrale)
- 2° Les mesures de la largeur L de la tache centrale relevées sur l'écran pour des fils de diamètres différents sont données dans le tableau suivant.

d (mm)	0,1	0,14	0,2	0,25
L (mm)	68	49	34	27
L.d(mm ²)				

Reproduire et compléter le tableau.

- **3°** Déterminer une valeur approchée de **D**
- 4° La largeur de la tache obtenue avec le cheveu est de 3,1 cm . En déduire le diamètre du cheveu

Figure 2 (Ex2-Chimie)

Figure-2-

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000