

STATISTICS FOR DATA SCIENCE Power Test & Simple Linear Regression

Dr. KarthiyayiniDepartment of Science and Humanities

Unit 5: Power Test & Simple Linear Regression

Session: 6

Sub Topic: Least Squares Line

Dr. Karthiyayini

Department of Science & Humanities

- How to compute the Least Squares Line
- Residuals and Errors
- Measuring Goodness of fit

How to compute the Least – Squares Line ???


```
Weights = x;
Corresponding length = l;
i. li = actual length + stretched length of the spring
      = Bo+ stretched length
 Hooker Law:
 strain (déformation of & stress applied
⇒ stietched length & weight applied
                        Ly proportionality constant.
                     = B, x;
                        → spring constant.
```

Source : Internet

How to compute the Least – Squares Line ???

Therfore, when weight x; is applied, the corresponding length,

Observed/measured length = true length due to errors

Let y; = observed length corresponding to the weight x;

= true length + some error

= l; + E;

i.
$$y_i = \beta_0 + \beta_1 z_i + \epsilon_i$$

dependent

variable

in dependent variable

β₀ &β₁ → regression co-efficients.

Source: Internet

Scenario # 1 : No Errors!!

Weight (lb)	Length (in.)		
(x)	(y)		
0.0	5.02		
0.2	5.04		
0.4	5.06		
0.6	5.08		
0.8	5.10		
1.0	5.12		
1.2	5.14		
1.4	5.16		
1.6	5.18		
1.8	5.20		
2.0	5.22		

Observed / Measured length = true length

Scenario #2: Measurement has Errors!!

Weight (lb)	Length (in.)	Weight (lb)	Length (in.)	WEight (lb) (x)/Length (in.) (y)
(x)	(y)	(x)	(y)	5.9
0.0	5.06	2.0	5.40	
0.2	5.01	2.2	5.57	5.7
0.4	5.12	2.4	5.47	5.6
0.6	5.13	2.6	5.53	5.5
0.8	5.14	2.8	5.61	5.4
1.0	5.16	3.0	5.59	5.3
1.2	5.25	3.2	5.61	5.2
1.4	5.19	3.4	5.75	5.1
1.6	5.24	3.6	5.68	5
1.8	5.46	3.8	5.80	4.9 0 0.5 1 1.5 2 2.5 3 3.5

Scenario #2: Measurement has Errors!!

Residual:

with point (zi, yi).

Observed values of y

y values given in data

Predicted values of y

y values on the least

equate line

2) For
$$x = 3.8$$
, $y = 5.80$
and $\hat{y} = 5.78$
... Recidual = $y - \hat{y}$
= $5.80 - 5.78$
= 0.02 .

Least Square Line:

NOTE: The least square line is defined to be the line for which the sum of squared residuals is minimum.

That is, it is the line for which $\sum_{i=1}^{n} e_i^2$ is minimum.

$$\therefore \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{o} - \hat{\beta}_{i} x_{i})^{2}$$

❖ Using some Mathematical computations it can be shown that,

$$\hat{\beta}_{i} = \frac{\sum_{i=1}^{n} (z_{i} - \overline{z})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (z_{i} - \overline{z})^{2}}$$

$$\hat{\beta}_{o} = \overline{y} - \hat{\beta}_{i} \overline{z}$$

Least Squares Line: Summary

Scenario #1 : If there is no measurement error then the data points lie on the straight line $y = \beta_0 + \beta_1 x$ and values of β_0 and β_1 can be obtained easily by calculating the slope and the intercept.

Scenario #2 : If there is a measurement error ε_i , then

- \clubsuit the exact value of β_0 and β_1 cannot be determined
- \clubsuit the values of β_0 and β_1 are computed by calculating the least square line.
- ***** The least square line is given by $\widehat{y_i} = \widehat{\beta_0} + \widehat{\beta_1} x_i$ where
- $\widehat{\beta_0}$ \rightarrow the y intercept of the least square line \rightarrow gives an estimate of β_0 , the initial length of the spring.
- $\widehat{\beta_1}$ \rightarrow the slope of the least square line
 - \rightarrow gives an estimate of the actual value of the spring constant β_1 .

Computing formulas

Remark:

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}$$

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - n\bar{y}^2$$

For computational purposes we use the equivalent formula that is specified in the RHS.

Try This !!!

Using the Hooke's law data given in the table

- i. Compute the least squares estimates of the spring constant and the unloaded length of the spring.
- ii. Write the equation of the least squares line.
- iii. Estimate the length of the spring under a load of 1.3 lb.
- iv. Estimate the length of the spring under a load of 1.4 lb.
- v. Obtain the Residuals corresponding to all the points (x_i, y_i) .

Weight (lb) (x)	Length (in.)	Weight (lb) (x)	Length (in.)
0.0	5.06	2.0	5.40
0.2	5.01	2.2	5.57
0.4	5.12	2.4	5.47
0.6	5.13	2.6	5.53
0.8	5.14	2.8	5.61
1.0	5.16	3.0	5.59
1.2	5.25	3.2	5.61
1.4	5.19	3.4	5.75
1.6	5.24	3.6	5.68
1.8	5.46	3.8	5.80

Some Observations:

PES UNIVERSITY ONLINE

- The Estimates are not the same as true values
- The Residuals are not the same as the Errors.
- Don't extrapolate outside the range of the data.
- Don't use the Least Squares line when the data aren't linear.

THANK YOU

Dr. Karthiyayini

Department of Science & Humanities

Karthiyayini.roy@pes.edu

+91 80 6618 6651