

Fotos: Alexandre Pinho de Moura

Documentos ISSN 1415-2312 Outubro, 2015 148

Guia Prático para o Reconhecimento e Monitoramento das Principais Pragas na Produção Integrada de Pimentão

Empresa Brasileira de Pesquisa Agropecuária Embrapa Hortaliças Ministério da Agricultura, Pecuária e Abastecimento

Guia Prático para o Reconhecimento e Monitoramento das Principais Pragas na Produção Integrada de Pimentão

Alexandre Pinho de Moura Jorge Anderson Guimarães Mirtes Freitas Lima

> Embrapa Hortaliças Brasília, DF 2015

Exemplares desta publicação podem ser adquiridos na

Embrapa Hortaliças

Rodovia BR-060, trecho Brasília-Anápolis, km 9

Caixa Postal 218

Brasília-DF

CEP 70.351-970

Fone: (61) 3385.9000 Fax: (61) 3556.5744

www.embrapa.br/fale-conosco/sac

www.embrapa.br

Comitê Local de Publicações da Embrapa Hortaliças

Presidente: Warley Marcos Nascimento Editor Técnico: Ricardo Borges Pereira Supervisor Editorial: Caroline Pinheiro Reyes

Secretária: Gislaine Costa Neves

Membros: Miguel Michereff Filho, Milza Moreira Lana, Marcos Brandão Braga,

Valdir Lourenço Júnior, Daniel Basílio Zandonadi, Caroline Pinheiro

Reyes, Carlos Eduardo Pacheco Lima, Mirtes Freitas Lima

Normalização bibliográfica: Antonia Veras de Souza

Editoração eletrônica: André L. Garcia

1ª edição

1ª impressão (2015): 1.000 exemplares

Todos os direitos reservados

A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação

dos direitos autorais (Lei nº 9.610)

Dados internacionais de Catalogação na Publicação (CIP) Embrapa Hortaliças

Moura, Alexandre Pinho de.

Guia prático para o reconhecimento e monitoramento das principais pragas na produção integrada de pimentão / Alexandre Pinho de Moura, Jorge Anderson Guimarães, Mirtes Freitas Lima. – Brasília. DF: Embrapa Hortalicas, 2015.

28 p.; 21 cm x 10 cm. - (Documentos / Embrapa Hortaliças, ISSN 1415-2312: 148).

1. Pimentão. 2. Capsicum annunn. 3. Praga de planta. 4. Inseto. I. Título. II. Guimarães, Jorge Anderson. III. Lima, Mirtes Freitas. IV. Série.

CDD 632.643 (21. ed.)

© Embrapa, 2015

Autores

Alexandre Pinho de Moura

Eng. Agrônomo, D.Sc. em Entomologia, pesquisador da Embrapa Hortaliças, Brasília, DF

Jorge Anderson Guimarães

Biólogo, D.Sc. em Entomologia, pesquisador da Embrapa Hortalicas, Brasília, DF

Mirtes Freitas Lima

Eng. Agrônoma, Ph.D. em Fitopatologia, pesquisadora da Embrapa Hortaliças, Brasília, DF

Colaboradores

Fabiano Ibraim Regis Carvalho

Eng. Agrônomo, gerente de Assistência Técnica e Extensão Rural da Emater-DF, Planaltina – Núcleo Rural Taquara, DF

Antônio Dantas Costa Júnior

Eng. Agrônomo, Especialista em Engenharia de Irrigação, gerente de Assistência Técnica e Extensão Rural da Emater-DF, Gerência Regional da Emater Oeste, Gama, DF

Cláudia Silva da Costa Ribeiro

Eng. Agrônoma, Ph.D. em Genética e Melhoramento de Plantas, pesquisadora da Embrapa Hortaliças, Brasília, DF

Apresentação

A Produção Integrada de Pimentão visa produzir frutos de alta qualidade, minimizando a utilização de insumos e contaminantes, por meio da integração de diferentes práticas de manejo, de forma a garantir uma produção livre de resíduos de agrotóxicos, viável economicamente, socialmente justa e ambientalmente correta.

Nesse sentido, esta publicação tem por objetivo auxiliar os produtores de pimentão no reconhecimento e no monitoramento das principais pragas da cultura, bem como na implementação de um programa de manejo integrado dessas pragas, assegurando reduções nas perdas de produção ocasionadas por esses organismos e a utilização correta do método químico de controle.

Jairo Vidal Vieira

Chefe Geral da Embrapa Hortaliças

Sumário

Introdução	9
Técnicas de amostragem e monitoramento de pragas do pimentão	10
Planilha para amostragem das principais pragas da cultura do pimentão	12
Ácaro-rajado (Tetranychus urticae) (Acari: Tetranychidae)	14
Ácaro-branco (Polyphagotarsonemus latus) (Acari: Tarsonemidae)	16
Mosca-branca (Bemisia tabaci) (Hemiptera: Aleyrodidae)	18
Pulgão (Myzus persicae) (Hemiptera: Aphididae)	20
Tripes (Frankliniella schultzei e Thrips palmi) (Thysanoptera: Thripidae)	22
Pragas secundárias	25
Referências	29
Literatura consultada	29

Introdução

A cultura do pimentão apresenta grande importância econômica e social para diversas localidades do Brasil, sendo explorada em todas as regiões do país e ao longo de todo o ano.

O pimentão é cultivado de forma intensiva em estufas ou em campo aberto, o que o torna passível de problemas de ordem fitossanitária. A ocorrência de pragas e doenças representa um dos principais problemas enfrentados por produtores no país, causando perdas significativas na produção e grandes prejuízos aos produtores. Como consequência, o uso de agrotóxicos é intenso a fim de controlar as infestações de pragas. Com isso, ocorre o aumento dos custos de produção e de problemas de resíduos de agrotóxicos nos frutos e o aumento dos riscos de intoxicação de trabalhadores rurais e de consumidores, além da contaminação ambiental.

Sendo assim, é de grande importância efetivar o manejo integrado de pragas (MIP) para auxiliar na regulação das populações de pragas e alcançar o equilíbrio do agroecossistema.

Este material tem por finalidade apresentar informações práticas para o reconhecimento das principais pragas que atacam a cultura do pimentão, bem como recomendar os procedimentos de monitoramento para cada uma dessas pragas, de modo a auxiliar os produtores na implementação de um programa eficiente de MIP, contribuindo para a redução do uso de agrotóxicos.

Técnicas de amostragem e monitoramento de pragas do pimentão

Na implementação de um programa de MIP, o monitoramento sistemático da lavoura é considerado um fator de grande importância, pois permitirá detectar o início da infestação, determinar o local de entrada das pragas no cultivo, identificar como estão distribuídos os focos de infestação e estimar a densidade populacional das pragas. Estas informações servirão de base para a tomada de decisão sobre a necessidade do uso de métodos de controle. Quando da necessidade da utilização do controle químico, devem-se utilizar apenas agrotóxicos registrados para a cultura do pimentão no Ministério da Agricultura, Pecuária e Abastecimento (Mapa) (Tabela 1).

No monitoramento de pragas recomenda-se realizar a amostragem ou inspeção dos cultivos, duas vezes por semana, desde a semeadura ou transplantio até o final da estação de cultivo, de modo a identificar possíveis alterações nas populações das pragas.

Deve-se percorrer a área de cultivo (campo aberto ou cultivo protegido) em zigue-zague, avaliando-se, aleatoriamente, 20 plantas por parcela*1, conforme demonstrado na Figura 1.

Em cada ponto de amostragem, avaliar duas folhas do ápice, duas da parte mediana, duas da parte inferior e duas flores em cada planta. Deve-se usar uma lupa de bolso (20x) para contagem de ácaros e de pequenos insetos.

¹ Parcela – área contendo plantas de mesma idade, mesmo espaçamento, mesmo sistema de condução das plantas, cultivada com a mesma variedade e que apresente topografia e condições de clima e solo semelhantes.

Figura 1. Caminhamento para amostragem de pragas na cultura do pimentão.

Planilha para amostragem das principais pragas do pimentão

Durante a inspeção, utiliza-se a planilha de amostragem (Figura 2), onde todos os dados obtidos na avaliação das plantas devem ser anotados.

A planilha deve conter informações tais como: a identificação do produtor ou da empresa agrícola, a parcela de cultivo avaliada, a área da parcela, a cultivar plantada e o porta-enxerto utilizado (se for o caso), a idade da cultura e a data de realização da amostragem.

Na primeira coluna da planilha constam os nomes comuns das principais pragas que atacam a cultura do pimentão e as fases de desenvolvimento que devem ser observadas na planta. As colunas de 1 a 20 correspondem ao número de plantas que devem ser avaliadas em cada parcela, por meio da inspeção de folhas ou flores.

Na coluna "Média de indivíduos / % de folhas infestadas" devem ser anotados, respectivamente, os valores correspondentes às médias aritméticas obtidas para cada praga ou a percentagem de folhas infestadas, nas 20 plantas avaliadas por parcela. A última coluna contém os níveis de controle recomendados para cada praga, os quais deverão ser comparados aos valores obtidos na coluna "Média de indivíduos / % de folhas infestadas", de modo a auxiliar na tomada de decisão sobre a necessidade ou não de realizar o controle das pragas.

Essa planilha faz parte do caderno de campo e deverá ser arquivada por dois anos, para fins de fiscalização pelas auditorias.

Nome do Produtor/Empresa:						Propriedade:										. Parcela/Sub-parcela:								
Área (ha):	C	Cult	ivar	Έ.											ldad	de d	da (Cult	ura	a: .			Data:	
		Pontos de amostragem														Média de insetos								
Pragas-chave	Fases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	5 1	6 1	7	18	19	20	ou % de folhas atacadas	Nível de ação ou de controle
Ácaro rajado Tetranychus urticae	Adultos																							A partir de 10% de folhas infestadas
Ácaro branco Polyphagotarsonemus latus	Adultos																							A partir de 10% de folhas infestadas
Mosca branca Bemisia tabaci	Adultos																							1 ou mais adultos por folha, em média.
Pulgão Myzus persicae	Adultos																							1 ou mais adultos por folha, em média.
Tripes	Adultos																							1 ou mais adultos por

Figura 2. Planilha de amostragem das principais pragas da cultura do pimentão.

folha ou flor, em média

Ácaro-rajado (Tetranychus urticae) (Acari: Tetranychidae)

Descrição da praga e sintomas de ataque – o ácaro-rajado (Figura 3A) possui 1 mm de comprimento e corpo com coloração amarelada, esverdeada ou avermelhada com duas manchas escuras no dorso, sendo uma de cada lado.

Estes ácaros apresentam a característica de tecer teias parecidas com as das aranhas, que podem cobrir as folhas, os ramos das plantas e os botões florais e flores (Figura 3B).

Ataca a face inferior das folhas, que devido sua alimentação apresentam manchas inicialmente de coloração amarelada, progredindo para necrose. Em ataques severos pode causar a morte de plantas jovens.

Amostragem – avaliar seis folhas por planta, sendo duas da parte superior, duas da parte mediana e duas da parte inferior, num total de 20 plantas por parcela, identificando-se a presença de adultos da praga na face inferior de cada folha, com auxílio de uma lupa de aumento de 20x.

Nível de controle – o controle do ácaro-rajado, por meio da aplicação de agrotóxicos (Tabela 1), deve ser realizado quando forem observadas a partir de 10% de folhas infestadas.

Figura 3. Ácaro-rajado (*Tetranychus urticae*). A – adulto; B – folhas e botão floral recobertos por teias.

Ácaro-branco (Polyphagotarsonemus latus) (Acari: Tarsonemidae)

Descrição da praga e sintomas de ataque – mede aproximadamente 0,17 mm de comprimento, sendo dificilmente visualizado a olho nu. As colônias do ácaro-branco desenvolvem-se, preferencialmente, na face inferior das folhas, mas também podem ser vistas em ambas as faces das folhas, principalmente quando da ocorrência de grandes populações de adultos (Figura 4A), ninfas e ovos (Figura 4B).

Devido ao seu tamanho diminuto, a presença do ácaro-branco nos cultivos de pimentão muitas vezes passa despercebida, sendo detectado somente quando sua população já é bastante elevada, causando injúrias severas às plantas e prejuízos aos produtores.

Amostragem – avaliar duas folhas da parte superior de cada planta, num total de 20 plantas por parcela, identificando-se a presença de adultos dessa espécie na face inferior da folha, com auxílio de uma lupa de aumento de 20x.

Nível de controle – a partir de 10% de folhas infestadas (Tabela 1).

Figura 4. Ácaro-branco (*Polyphagotarsonemus latus*). A – adultos; B - ovos.

Mosca-branca (Bemisia tabaci) (Hemiptera: Aleyrodidae)

Descrição da praga e sintomas de ataque – os adultos da mosca-branca são de coloração amarelo-pálida e apresentam de 1 a 2 mm de comprimento, sendo a fêmea maior que o macho. Formam colônias numerosas, compostas por adultos (Figura 5A) e ninfas (Figura 5B).

São responsáveis por causarem danos diretos (sucção de seiva) e indiretos [injeção de toxinas, desenvolvimento de fumagina (Figura 5C) e transmissão de fitoviroses] às plantas. Transmitem o *Tomato chlorosis virus* (ToCV; gênero *Crinivirus*; família *Closteroviridae*) e diversas espécies de vírus do gênero *Begomovirus*, da família *Geminiviridae*. Em altas densidades populacionais pode ocasionar a morte de mudas e de plantas jovens, sendo também responsável por provocar alterações no desenvolvimento vegetativo (nanismo) e reprodutivo (redução da floração) dessas plantas.

Amostragem – avaliar seis folhas por planta, sendo duas da parte superior, duas da parte mediana e duas da parte inferior, num total de 20 plantas por parcela, contando-se o número de adultos presentes na face inferior de cada folha avaliada. Alternativamente, pode-se fazer uso de armadilhas adesivas de coloração amarela.

Nível de controle – por se tratar de um inseto vetor de fitoviroses, o nível de controle adotado para a moscabranca é de um ou mais adultos por planta, em média (Tabela 1). Quando do uso de armadilhas, o nível de controle é de um inseto adulto capturado por armadilha.

Figura 5. Mosca-branca (*Bemisia tabaci*). A – adultos; B – ninfa madura de 4º ínstar (olhos vermelhos); C – folhas e fruto recobertos por fumagina.

Pulgão (Myzus persicae) (Hemiptera: Aphididae)

Descrição da praga e sintomas de ataque – apresenta cerca de 2 mm de comprimento; a forma áptera (sem asas) tem coloração verde-clara, enquanto a forma alada (com asas) apresenta coloração verde-escura, com cabeça, antenas e tórax pretos. As folhas atacadas tornam-se enroladas, encarquilhadas e os brotos ficam curvos e achatados. Os pulgões alimentam-se continuamente, principalmente em tecidos jovens e tenros das plantas, por meio da sucção de seiva, sendo responsáveis pela injeção de toxinas nas plantas atacadas, provocando definhamento de mudas e de plantas jovens e promovendo o aparecimento de fumagina. Em altas infestações podem afetar a produção e causar a morte das plantas. No entanto, a maior importância dos pulgões se deve à sua capacidade de atuar como vetor de fitoviroses. As espécies *Potato virus Y* (PVY) (Figura 6A) e *Pepper yellow mosaic virus* (PepYMV) (Figura 6B), do gênero *Potyvirus*, família *Potyviridae* e *Cucumber mosaic virus* (CMV), família *Bromoviridae* (Figura 6C) são os vírus mais importantes, causando sintomas de mosaico nas plantas infectadas.

Amostragem – avaliar seis folhas por planta, sendo duas da parte superior, duas da parte mediana e duas da parte inferior, em 20 plantas por parcela, contando o número de adultos em cada folha avaliada. Também pode-se fazer uso de armadilhas adesivas de coloração amarela.

Nível de controle – por se tratar de um inseto vetor de fitoviroses, o nível de controle adotado para o pulgão é de um ou mais adultos por planta, em média (Tabela 1). No caso de armadilhas, o nível de controle é de um inseto adulto por armadilha.

Figura 6. Sintomas de fitoviroses em *Capsicum* spp. A – *Potato virus Y* (PVY); B – *Pepper yellow mosaic virus* (PepYMV). C – *Cucumber mosaic virus* (CMV).

Tripes (Frankliniella schultzei e Thrips palmi) (Thysanoptera: Thripidae)

Descrição da praga e sintomas de ataque – são insetos pequenos e apresentam de 1 mm a 3 mm de comprimento, podendo apresentar formas aladas (com asas) e ápteras (sem asas). Os adultos de *F. schultzei* apresentam coloração variável, enquanto as ninfas (formas jovens) possuem coloração mais clara e são ápteras. Adultos de *T. palmi* apresentam coloração amarelo-clara; as ninfas são, inicialmente, de cor branca e, posteriormente, amareladas. Alimentam-se da seiva das plantas, atacando, preferencialmente, as flores (Figuras 7A e 7B), podendo causar esterilidade e/ou prejudicar o desenvolvimento de frutos novos. Sua maior importância como praga do pimentão se deve ao fato de atuarem como vetores de viroses. Os vírus mais importantes transmitidos por tripes são *Tomato spotted wilt virus* (TSWV), *Groundnut ringspot virus* (GRSV) e *Tomato chlorotic spot virus* (TCSV), do gênero *Tospovirus*, família *Bunyaviridae*, causando a doença vira-cabeça (Figuras 8A e 8B).

Amostragem – avaliar seis folhas por planta, sendo duas da parte superior, duas da mediana e duas da inferior, em 20 plantas por parcela, contando o número de adultos presentes na face inferior de cada folha avaliada, com auxílio de uma lupa de aumento (20x). Examinar, também, duas flores do ponteiro de cada planta, contando o número de adultos. As amostragens devem ser intensificadas em períodos quentes e secos ou quando da ocorrência de veranicos durante a estação chuvosa. Alternativamente, pode-se fazer uso de armadilhas adesivas de coloração azul.

Nível de controle – por se tratar de um inseto vetor de fitoviroses, o nível de controle adotado para os tripes é de um ou mais adultos por planta, em média (Tabela 1). No caso de armadilhas, o nível de controle é de um inseto adulto por armadilha.

Figura 7. Tripes. A – adulto em flor; B – sintomas de ataque em pétala.

Figura 8. Sintomas da doença vira-cabeça em *Capsicum* spp. A – folhas encarquilhadas; B – anéis cloróticos concêntricos.

Pragas secundárias

Além das pragas-chave descritas anteriormente, outras espécies também podem atacar a cultura do pimentão, mas são consideradas de menor importância, pois causam poucas injúrias à cultura e raramente provocam prejuízos significativos. Essas pragas ocorrem esporadicamente em determinados períodos do ano e em áreas isoladas de cultivo. Muitas vezes, explosões populacionais dessas pragas somente ocorrem quando o cultivo sofre um grande distúrbio, principalmente devido ao uso excessivo e indiscriminado de agrotóxicos.

São consideradas pragas secundárias do pimentão, os ácaros *Aculops Iycopersici* (Acari: Eriophyidae); *Tetranychus evansi* e *Tetranychus ludeni* (Acari: Tetranychidae), as lagartas *Agrotis ipsilon* e *Spodoptera frugiperda* (Lepidoptera: Noctuidae); *Mechanitis Iysimnia* (Lepidoptera: Nymphalidae); as brocas *Neoleucinodes elegantalis* (Lepidoptera: Pyralidae); *Helicoverpa zea* e *Helicoverpa armigera* (Lepidoptera: Noctuidae); a traça *Phthorimaea operculella* (Lepidoptera: Gelechiidae); os besouros *Epicauta atomaria* (Coleoptera: Meloidae); *Diabrotica speciosa* e *Systena tenuis* (Coleoptera: Chrysomelidae); *Phyrdemus divergens* (Coleoptera: Curculionidae); as moscas-minadoras *Liriomyza sativae* e *Liriomyza trifolii* (Diptera: Agromyzidae); o pulgão *Macrosiphum euphorbiae* (Hemiptera: Aphididae); a broca-do-ponteiro *Gnorimoschema barsaniella* (Lepidoptera: Gelechiidae) e os percevejos *Corythaica cyathicollis* (Hemiptera: Tingidae) e *Phthia picta* (Hemiptera: Coreidae). Por ocorrerem ocasionalmente, estas espécies não necessitam medidas especiais de controle.

Tabela 1. Agrotóxicos registrados no Mapa para o controle de pragas do pimentão.

Grupo químico	Ingrediente ativo	Pragas controladas	Carência (dias)	LMR (mg/kg) ¹
Acetato insaturado	acetato de (E,Z)-4,7-tridecadienila	Phthorimaea operculella	Não determinado	Não determinado
Acetato insaturado	acetato de (E4,Z7)-4,7-tridecadienila	Phthorimaea operculella	Não determinado	Não determinado
Álcool alifático	E-11-hexadecenol	Neoleucinodes elegantalis	Não determinado	Não determinado
Análogo de pirazol	clorfenapir	Diabrotica speciosa	14	0,3
Avermectina	abamectina	Polyphagotarsonemus latus Tetranychus urticae	3	0,01
Biológico	Bacillus thurigiensis	Spodoptera frugiperda	Não determinado	Não determinado
Éter aromático	1,4-dimetoxibenzeno	Diabrotica speciosa	Não determinado	Não determinado
Éter piridiloxipropílico	piriproxifem	Bemisia tabaci	3	0,5

(continua)

Tabela 1. Continuação.

Grupo químico	Ingrediente ativo	Pragas controladas	Carência (dias)	LMR (mg/kg) ¹
Hidrocarboneto insaturado	(Z,Z,Z)-3,6,9-tricosatrieno	Neoleucinodes elegantalis	Não determinado	Não determinado
Inorgânico	enxofre	Aculops lycopercisi, Polyphagotarsonemus latus Tetranychus evansi	Sem restrições	Sem restrições
Metilcarbamato de fenila	cloridrato de formetanato	Thrips palmi	3	2,0
Metilcarbamato de fenila	metiocarbe	Thrips palmi	5	0,05
	imidacloprido	Bemisia tabaci Myzus persicae, Thrips palmi	7	0,5
Neonicotinóide	tiacloprido	Bemisia tabaci Thrips palmi	7	0,2
	tiametoxam	Bemisia tabaci Myzus persicae, Diabrotica speciose	46	0,02
Organofosforado	acefato	Myzus persicae, Spodoptera frugiperda	14	1,0

Tabela 1. Continuação.

Grupo químico	Ingrediente ativo	Pragas controladas	Carência (dias)	LMR (mg/kg) ¹
Oxadiazina	indoxicarbe	Helicoverpa zea	1	0,1
Piretróide	deltametrina	Agrotis ipsilon, Corythaica cyathicollis, Diabrotica speciosa, Epicauta atomaria, Liriomyza sativae, Neoleucinodes elegantalis, Phthorimaea operculella, Systena tenuis	2	0,01
Tetranotriterpenóide	azadiractina	Bemisia tabaci	Não determinado	Não determinado
Tiadiazinona	buprofezina	Bemisia tabaci	10	0,5

¹LMR – Limite Máximo de Resíduo: corresponde à quantidade máxima de resíduo de agrotóxico ou afim oficialmente aceita no alimento, em decorrência da aplicação adequada em uma fase específica, desde sua produção até o consumo, expressa em miligrama de resíduo por quilograma de alimento (mg/Kg).

Fonte: AGROFIT (2015). Acesso em 17/11/2015.

Referência

AGROFIT: sistema de agrotóxicos fitossanitários. Brasília, DF: MAPA, 2003. Disponível em: http://extranet.agricultura.gov.br/agrofit cons/principal agrofit cons>. Acesso em: 24 abr. 2015.

Literatura consultada

BACCI, L.; PICANÇO, M. C.; QUEIROZ, R. B.; SILVA, E. M. Sistemas de tomada de decisão de controle dos principais grupos de ácaros e insetos-praga em hortaliças no Brasil. In: ZAMBOLIM, L.; LOPES, C. A.; PICANÇO, M. C.; COSTA, H. (Ed.). Manejo integrado de doenças e pragas: hortaliças. Viçosa, MG: UFV, 2007. Cap. 12, p. 423-62.

MORAIS, E. G. F.; PICANÇO, M. C.; SENA, M. E.; BACCI, L.; SILVA, G. A.; CAMPOS, M. R. Identificação das principais pragas de hortaliças no Brasil. In: ZAMBOLIM, L.; LOPES, C. A.; PICANÇO, M. C.; COSTA, H. (Ed.). **Manejo integrado de doenças e pragas**: hortaliças. Viçosa, MG: UFV, 2007. Cap. 11, p. 381-422.

MOURA, A. P.; MICHEREFF FILHO, M.; GUIMARÃES, J. A.; AMARO, G. B.; LIZ, R. S. Manejo integrado de pragas de pimentas do gênero *Capsicum*. Brasília, DF: Embrapa Hortaliças, 2013. 14 p. (Embrapa Hortaliças. Circular Técnica, 115).

Ministério da Agricultura, Pecuária e Abastecimento

