Introduction to Quantum Information and Communication

Take Home Mid-Sem

Moida Praneeth Jain, 2022101093

Question 5

(a)

To Prove:

$$\sum_{z\in\left\{ 0,1\right\} ^{n}}\left(-1\right) ^{\left(x\oplus y\right) \cdot z}=2^{n}\delta(x,y)$$

Proof:

Case 1: x = y

$$\sum_{z \in \{0,1\}^n} (-1)^{(x \oplus y) \cdot z}$$

$$\sum_{z \in \{0,1\}^n} (-1)^{0 \cdot z}$$

$$\sum_{z \in \{0,1\}^n} (-1)^0$$

$$\sum_{z \in \{0,1\}^n} 1$$

$$2^n$$

$$2^n \times 1$$

$$2^n \delta(x,y)$$

Case 2: $x \neq y$

Let k be the number of digits different between x and y, and let the corresponding indices be $\alpha = \{\alpha_1, \alpha_2, \alpha_3, ..., \alpha_k\}$

$$\forall i \in \{1,2,...,k\} \ x_{\alpha_i} \neq y_{\alpha_i}$$

$$\forall i \notin \alpha \ x_i = y_i$$

.

$$\sum_{z \in \{0,1\}^n} (-1)^{(x \oplus y) \cdot z} \\ \sum_{z \in \{0,1\}^n} (-1)^{\bigoplus_{i=1}^n (x_i \oplus y_i) z_i}$$

$$\sum_{z \in \left\{0,1\right\}^n} \left(-1\right)^{\bigoplus_{i=1}^k z_{\alpha_i}}$$

$$\sum_{z \in \left\{0,1\right\}^n} \left(-1\right)^{z_{\alpha_1} \oplus z_{\alpha_2} \oplus \ldots \oplus z_{\alpha_k}}$$

Now, since z is looping through all possible bitstrings of length n, the parity of any subset of its bits will be odd half the times and even half the times.

$$-1+1-1+1...-1+1$$

$$0$$

$$2^{n}\times 0$$

$$2^{n}\delta(x,y)$$

Now, from both the cases we get

$$\sum_{z\in\left\{ 0,1\right\} ^{n}}\left(-1\right) ^{\left(x\oplus y\right) \cdot z}=2^{n}\delta(x,y)$$

Hence, proven.

(b)

Given:

$$\begin{split} f: \left\{0,1\right\}^n &\mapsto \left\{0,1\right\}^n \\ U_f\Big(\left|x\right\rangle_Q \otimes \left|y\right\rangle_R\Big) \coloneqq \left|x\right\rangle_Q \otimes \left|y \oplus f(x)\right\rangle_R \\ V_f\Big(\left|x\right\rangle_Q \otimes \left|y\right\rangle_R\Big) \coloneqq (-1)^{y \cdot f(x)} |x\right\rangle_Q \otimes \left|y\right\rangle_R \end{split}$$

To Prove:

$$V_f \Big(\left| x \right\rangle_Q \otimes \left| y \right\rangle_R \Big) = \Big(\mathbb{I}_Q \otimes H^{\otimes n} \Big) U_f \Big(\mathbb{I}_Q \otimes H^{\otimes n} \Big) \Big(\left| x \right\rangle_Q \otimes \left| y \right\rangle_R \Big)$$

Proof: We will be using the identity $H^{\otimes n}|x\rangle=\frac{1}{\sqrt{2^n}}\sum_{z\in\{0,1\}^n}{(-1)}^{x\cdot z}|z\rangle$

$$\begin{split} & \left(\mathbb{I}_{Q} \otimes H^{\otimes n}\right) U_{f} \Big(\mathbb{I}_{Q} \otimes H^{\otimes n}\Big) \Big(\left|x\right\rangle_{Q} \otimes \left|y\right\rangle_{R}\Big) \\ & \left(\mathbb{I}_{Q} \otimes H^{\otimes n}\right) U_{f} \Big(\mathbb{I}_{Q} \big|x\big\rangle_{Q} \otimes H^{\otimes n} \big|y\big\rangle_{R}\Big) \\ & \left(\mathbb{I}_{Q} \otimes H^{\otimes n}\right) U_{f} \Bigg(\left|x\right\rangle_{Q} \otimes \frac{1}{\sqrt{2^{n}}} \sum_{z \in \{0,1\}^{n}} \left(-1\right)^{y \cdot z} \big|z\big\rangle_{R}\Bigg) \\ & \frac{1}{\sqrt{2^{n}}} \sum_{z \in \{0,1\}^{n}} \left(-1\right)^{y \cdot z} \Big(\mathbb{I}_{Q} \otimes H^{\otimes n}\Big) U_{f} \Big(\big|x\big\rangle_{Q} \otimes \big|z\big\rangle_{R}\Big) \end{split}$$

$$\frac{1}{\sqrt{2^n}} \sum_{z \in \left\{0,1\right\}^n} \left(-1\right)^{y \cdot z} \! \left(\mathbb{I}_Q \otimes H^{\otimes n}\right) \! \left(\left|x\right\rangle_Q \otimes \left|z \oplus f(x)\right\rangle_R\right)$$

$$\begin{split} \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} (-1)^{y \cdot z} \Big(\mathbb{I}_Q | x \big\rangle_Q \otimes H^{\otimes n} | z \oplus f(x) \big\rangle_R \Big) \\ \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} (-1)^{y \cdot z} | x \big\rangle_Q \otimes \Bigg(\frac{1}{\sqrt{2^n}} \sum_{w \in \{0,1\}^n} (-1)^{(z \oplus f(x)) \cdot w} | w \big\rangle_R \Bigg) \\ \frac{1}{2^n} \sum_{z,w \in \{0,1\}^n} (-1)^{(y \cdot z)} (-1)^{(z \oplus f(x)) \cdot w} | x \big\rangle_Q \otimes | w \big\rangle_R \\ \frac{1}{2^n} \sum_{w \in \{0,1\}^n} (-1)^{w \cdot f(x)} | x \big\rangle_Q \otimes | w \big\rangle_R \sum_{z \in \{0,1\}^n} (-1)^{(y \oplus w) \cdot z} \\ \frac{1}{2^n} \sum_{w \in \{0,1\}^n} (-1)^{w \cdot f(x)} | x \big\rangle_Q \otimes | w \big\rangle_R 2^n \delta(w,y) \\ \sum_{w \in \{0,1\}^n} (-1)^{w \cdot f(x)} | x \big\rangle_Q \otimes | w \big\rangle_R \delta(w,y) \\ (-1)^{y \cdot f(x)} | x \big\rangle_Q \otimes | y \big\rangle_R \\ V_f \Big(| x \big\rangle_Q \otimes | y \big\rangle_R \Big) \end{split}$$

Hence, proven