§1 10-30

Theorem 1.1

A bounded sequence converges if and only if it has exactly one accumulation point.

Proof.

- (\Rightarrow) Let (x_n) be convergent. $x := \lim(x_n)$. Then every subsequence (x_{n_k}) of (x_n) converges to x. Thus x is the only accumulation point of (x_n) .
- (\Leftarrow) Let (x_n) be a bounded sequence which has only one accumulation point x. We will show that (x_n) converges to x. Assume that this is <u>not</u> the case.

Convergence: $\forall \epsilon > 0, \ \exists N \in \mathbb{N} : \forall n \geq N, \ |x_n - x| < \epsilon$ Negation: $\exists \epsilon > 0 : \forall N \in \mathbb{N}, \ \exists n \geq N : |x_n - x| \geq \epsilon$

Thus \exists infinitely many $n \in \mathbb{N}$ such that $|x_n - x| \ge \epsilon_0$. Let $n_1 < n_2 < n_3 < \dots$ such that $\forall k \in \mathbb{N} : |x_{n_k} - x| \ge \epsilon_0$.

Consider the subsequence (x_{n_k}) of $(x_n) \Rightarrow (x_{n_k})$ is bounded because (x_n) is bounded.

By Bolzano-weierstrass, (x_{n_k}) has a convergent subsequence $(x_{n_{k_j}})$. Let $\sim x := \lim(x_{n_{k_j}})$. Since it is a subsequence of (x_n) which has only one accumulation point. It follows that $\sim x = x$.

Thus $\lim(it) = x$ and $\forall j \in \mathbb{N}, |it - x| \ge \epsilon_0 CONTRADICTION$ Thus our assumption was wrong which proves that (x_n) converges to x.

Theorem 1.2

Let (x_n) be a bounded sequence and let A be the set of all accumulation points of (x_n) . Then $A \neq \emptyset$ and A is compact (i.e. A is closed and bounded).

Proof. By BOLZANO-WEIERSTRASS, (x_n) has at least one convergent subsequence. Its limit is an accumulation point of $(x_n) \Rightarrow A \neq \emptyset$.

<u>A is bounded</u>: (x_n) is bounded i.e. $\exists M > 0$ such that $\forall n \in \mathbb{N}, -M \leq x_n \leq M$.

Let $x \in A$ be arbitrary. Then \exists subsequence (x_{n_k}) of (x_n) with $x = \lim(x_{n_k})$. We have that $\forall k \in \mathbb{N} : -M \leq x_{n_k} \leq M \Rightarrow -M \leq x \leq M$. $\Rightarrow x \in [-M, M]$ for all accumulation points x of (x_n) . $\Rightarrow A \subseteq [-M, M] \Rightarrow A$ is bounded.

A is closed: Let $x \in \mathbb{R} \setminus A$ i.e. x is <u>not</u> an accumulation point. Thus $\exists \epsilon > 0 : V_{\epsilon}(x)$ contains at most finitely many terms of (x_n) .

Let $t \in V_{\epsilon}(x)$. $V_{\epsilon}(x)$ is open. Thus $\exists \tilde{\epsilon} > 0 : V_{\tilde{\epsilon}(t)} \subseteq V_{\epsilon}(x)$.

Thus $V_{\tilde{\epsilon}(t)}$ contains at most finitely many terms of (x_n) . Thus t is <u>not</u> an accumulation point \Rightarrow no point in $V_{\epsilon}(x)$ is an accumulation point of $(x_n) \Rightarrow V_{\epsilon}(x) \subseteq \mathbb{R} \setminus A$. Thus $\mathbb{R} \setminus A$ is open $\Rightarrow A$ is closed.

We've just seen that the set of all accumulation points of a bounded sequence (x_n) is $\neq 0$, closed, and bounded.

Since A is bounded, it has a supremum and an infimum. Both sup and inf are boundary points. A is closed so it contains sup and inf. Therefore $\sup(A)$ is the Maximum of A and $\inf(A)$ is the minimum of A. i.e. $\sup(A)$ is an accumulation point of (x_n) , the greatest accumulation point of (x_n) . Similarly $\inf(A)$ is the least accumulation point of (x_n) .

Definition 1.3.

- 1. Let (x_n) be a bounded sequence. Then the greatest accumulation point of (x_n) is called the <u>LIMES SUPERIOR</u> of (x_n) . In symbols: $\limsup (x_n)$.
- 2. The <u>least</u> accumulation point of (x_n) is called the <u>LIMES INFERIOR</u> of (x_n) . In symbols: $\liminf (x_n)$.

Theorem 1.4

Let (x_n) be a bounded sequence. Then (x_n) is convergent if and only if

$$\lim\inf(x_n) = \lim\sup(x_n)$$

Proof.

 (\Rightarrow) Let $x := \lim(x_n)$. Then every subsequence (x_{n_k}) of (x_n) converges to x.

$$\Rightarrow A = \{x\} \Rightarrow \liminf(A) = x = \limsup(A)$$

 (\Leftarrow) Assume that $\liminf(x_n) = \limsup(x_n) := x$.

$$A = \{x\}$$

i.e. (x_n) has only one accumulation point. By previous theorem, (x_n) converges.

3

Example 1.5

1.

$$x_n = (-1)^n$$

Accumulation points are -1 and $1 \Rightarrow \liminf(x_n) = -1$ and $\limsup = 1$. Especially, $(-1)^n$ diverges because $\liminf \neq \limsup$.

2. Let (x_n) be an enumeration of $\mathbb{Q} \cap [a, b]$ where a < b. We'll show that $\liminf = a$ and that $\limsup = b$.

Proof. Let x > b. Let $\epsilon := b - x > 0$. Then $\forall n \in \mathbb{N}, x_n \notin V_{\epsilon}(x) \Rightarrow x$ is <u>not</u> an accumulation point of (x_n) .

Let $x \in [a, b]$ and let $\epsilon > 0$; consider $V_{\epsilon}(x) =]x - \epsilon, x + \epsilon[$. By the density of \mathbb{Q} in \mathbb{R} , $V_{\epsilon}(x)$ contains infinitely many rational numbers, especially, $V_{\epsilon}(x_n)$ contains infinitely many terms of $(x_n) \Rightarrow x$ is an accumulation point of (x_n) .

 $\underline{\mathbf{x}} = \underline{\mathbf{a}}$: By density of \mathbb{Q} in \mathbb{R} , $]a, a + \epsilon[$ contains infinitely many terms of $(x_n) \Rightarrow a$ is an accumulation point of (x_n) . Similarly for x = b.

Therefore $A := [a, b] \Rightarrow \liminf(x_n) = a$ and $\limsup(x_n) = b$.

3. Find all accumulation points of the following sequence.

$$x_n: 1, 1, \frac{1}{2}, 1, \frac{1}{2}, \frac{1}{3}, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Claim: $A = \{0\} \cup \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$

Proof. For every $k \in \mathbb{N}$, the constant sequence $\frac{1}{n}, \frac{1}{n}, \frac{1}{n}$ is a subsequence of (x_n) .

$$\frac{1}{n} = \lim(\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \dots) \in A$$

and $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ is a subsequence of (x_n) . Thus

$$0 = \lim(1, \frac{1}{2}, \frac{1}{3}, \dots) \in A$$

Now let x > 1, $\epsilon := x - 1 > 0$. Then $\forall n \in \mathbb{N} : x_n \notin V_{\epsilon}(x) \Rightarrow x \notin A$.

Similarly, $x \notin A$ for all x < 0. Let 0 < x < 1; $x \notin A$. Then $\exists n \in \mathbb{N} : \frac{1}{n+1} < x < \frac{1}{n}$.

Let $\epsilon := \min\{x - \frac{1}{n+1}, \frac{1}{n} - x\} > 0$. Then $\frac{1}{n+1} \notin V_{\epsilon}(x) \vee \frac{1}{n} \notin V_{\epsilon}(x)$

$$\Rightarrow x_n \notin V_{\epsilon}(x) \ \forall n \in \mathbb{N}$$

x is not an accumulation point of (x_n)

Thus
$$A = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$$

§1.1 Properties of \limsup , \liminf

Theorem 1.6

Let (x_n) be a bounded sequence and let $\epsilon > 0$. Then $\exists N \in \mathbb{N} \ \forall n \geq N : x_n \in] \liminf(x_n), \limsup(x_n) + \epsilon[$. i.e. at most finitely many terms of (x_n) have the property that $x_n > \limsup(x_n) + \epsilon$ or $x_n < \liminf(x_n) - \epsilon$

Proof. assignment 8 \Box

Theorem 1.7

Let (x_n) be a bounded sequence. Then $\limsup (x_n) = \lim (\sup \{x_k : k \ge n\})$ and $\lim \inf (x_n) = \lim (\inf \{x_k : k \ge n\})$.

Remark 1.8. It is not clear initially whether this is well defined. We'll prove this.

Let $y_n := \sup\{x_k : k \ge n\}$. Then (y_n) is bounded because (x_n) is bounded.

Let A, B be bounded with $A \subseteq B$. Then $\sup(A) \le \sup(B)$.

Note 1.9. $\{x_k : k \ge n+1\} \subseteq \{x_k : k \ge n\}.$

Therefore $\sup\{x_k : k \ge n+1\} \le \sup\{x_k : k \ge n\}$.

Therefore (y_n) is bounded and decreasing and therefore converges.

Thus $\lim(\sup\{x_k : x \geq n\})$ exists. A similar argument applies to $\lim(\inf\{x_k : k \geq n\})$.

Proof. Examination material. This is the cutoff for the midterm exam. Next week coshy sequences. 3.4 in the textbook. Important: This doesn't mean that you don't have to remember the stuff from before. If you don't know stuff from before you will be closed. I used open and closed todayand left it to you to know what open and closed means. It did not contain interior and closure so that is midterm 2 material. And you need to know what boundary sets are in order to make sense of these things but I won't ask a separate question on these things. \Box