В каких точках сферы нормальная производная функции и имеет: а) наибольшее значение, б) наименьшее вначение, в) равна нулю?

3564. Найти производную функции $u = x^2 + y^2 + z^2$ в направлении внешней нормали эллипсоида $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{y^2}{a^2}$ $+\frac{z^2}{c^2}=1$ в точке его M_0 (x_0, y_0, z_0) .

3565. Пусть $\frac{\partial u}{\partial n}$ и $\frac{\partial v}{\partial n}$ — нормальные производные функций u и v в точке поверхности F(x, y, z) = 0. До-Kasath, 4to $\frac{\partial}{\partial n}(uv) = u \frac{\partial v}{\partial n} + v \frac{\partial u}{\partial n}$.

Найти огибающие однопараметрических семейств плоских кривых.

3566.
$$x \cos \alpha + y \sin \alpha = p \ (p = \text{const})$$

3566.
$$x \cos \alpha + y \sin \alpha = p \ (p = \text{const}).$$

3567. $(x-a)^2 + y^2 = \frac{a^3}{2}.$

3568.
$$y = kx + \frac{a}{k}$$
 (a = const).

3569.
$$y^2 = 2px + p^2$$
.

3570. Найти кривую, огибаемую отрезком длины 1, концы которого скользят по осям координат.

Найти огибающую эллипсов $\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$, 3571. имеющих постоянную площадь S.

3572. Найти огибающую траекторий снаряда, выпущенного в безвоздушном пространстве с начальной скоростью v_0 , при варьировании в вертикальной плоскости vгла бросания α .

3573. Доказать, что огибающая нормалей плоской кривой есть эволюта этой кривой.

3574. Исследовать характер дискриминантных кривых семейств следующих линий (с - переменный параметр):

а) кубических парабол $y = (x-c)^3$;

б) полукубических парабол $y^2 = (x-c)^3$; в) парабол Нейля $y^3 = (x-c)^2$;

r) строфоид
$$(y-c)^2 = x^2 \frac{a-x}{a+x}$$
.

3575. Определить огибающую семейства шаров радиуса г, центры которых расположены на окружности $x = R \cos t$, $y = R \sin t$, z = 0 (t - параметр, R > r).