الجمهورية الجوائرية اللايتقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة : جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعبة : وياضيات

المدّة 04 سار 30 د

الحتبار في ماذّة : الرباضيات

على المترشح أن يختار أحد العوضوعين التاليين:

الموضوع الأؤل

التمرين الأول: (06 نقاط)

s(O(n,v)) عددان حقيقيان موجبان تماما، نعتبر في المستوي المنسوب إلى المعلم المنعامد المنجانس a(O(n,v))

النقط $z_i=be^{\frac{2\pi}{3}}$ و $z_c=z_a$ ، $z_\mu=-a\sqrt{2}$ ، $z_j=ae^{\frac{2\pi}{3}}$ على الترتيب. والنقط $z_i=be^{\frac{2\pi}{3}}$

. OAB على الشكل الأمني العدد المركب $rac{Z_2-Z_3}{Z_3}$ ، ثمّ استنج طبيعة المثلث -1

ب - حدد طبيعة الرباعي OABC ، ثمُ نستنج مساحته.

M'(z) والنسبة $\frac{h}{a}$ والزارية $\frac{3\pi}{4}$ ، يحول كل نفطة M(z) أمن المستوي إلى النفطة M'(z) النشابة المباشر M'(z) أن المباثر M'(z) والزارية M'(z) أن المباثر الم

S(A) = F أَنْ تَحْقَقُ أَنْ F لَكُتُبُ النَّشَابِهِ الْمُبَشِّرِ S ، ثَمْ تَحْقَقَ أَنْ F

 $sS(\mathcal{C})$ و $S(\mathcal{B})$ و $S(\mathcal{B})$ و يَنْ أَنْ مسلحة الرباعي $S(\mathcal{B})$ هي أَنْ مسلحة $S(\mathcal{B})$ و جين أَنْ مسلحة الرباعي المسلحة $S(\mathcal{B})$

.
$$\left| {{{x_0}}^2} + {{\left| {{x_k}} \right|}^2} + 2{\left| {{x_k} \times {x_k}} \right|\cos \left| {\arg {\left({\frac{{{x_k}}}{{{x_k}}}} \right)^2}} \right|$$
 الحسب بدلاللة b , a العبارة: a العبارة: a أ

aب- استنتج فبمة CE^2 بدلالة a وb

ين عدد طبيعي و M_n نقطة من المستوي تخشف عن O ، لاحقتها u (H

. $M_{u-1} = S\left(M_u
ight)$. n نضع $M_0 = A$ ومن أجل كل عنت طبيعي $M_0 = A$

 $v_a=rg(x_a)$ و (v_a) و المعرفتين، من أجل كل عند طبيعي $m_c=x_a^{-1}$ و (u_a) و $u_a=x_a^{-1}$

Aو و Bو الأمني بدلالة $\frac{Z_{\rm rel}}{Z_{\rm pl}}$ على الأمكل الأمني بدلالة و A

 $\operatorname{arg}\left(rac{Z_{m1}}{Z_{m}}
ight) \in \left[-\pi(\pi) \mid j \mid n < b \mid : 0$ غرض ان $\sigma < b \mid n < 2$

بيان أن المتنافية (u_a) هندسية، والمنتافية (v_a) حسابية بُطلب تعيين أساس وحساب الحد الأزل نكل منهما،

 $\lim_{n \to +\infty} T_n \neq i$ ، $T_n = a + b + \frac{b^2}{a} + \frac{b^2}{a^2} + \dots + \frac{b^n}{a^{n-1}}$: حيث ، $T_n \neq i$ ، $i \in A$ الحيث ، بالألمة الله المجموع عن ، $i \in A$ ، حيث ، $i \in A$

4. عينَ فيّم الأعداد الطبيعية $M_{_{0}}$ التي تكون من أجلها النقط $M_{_{0}}$ و $M_{_{0}}$ في استقامية.

التمرين الثاني: (03 نقاط)

eta=n+3 و $lpha=2n^6-14n+2$: حيث : $lpha=2n^6-2n^6-14n+2$ و lpha=n+3 و lpha=n+3 و $lpha=2n^6-14n+2$ (يرمز PCCD(eta;10) (الأكبر PCCD(eta;10) الأكبر PCCD(eta;10) الأكبر $PCCD(lpha,eta)=2n^6-2n^6$ الممكنة لتحدد PCCD(lpha,eta)

PGCD(lpha;eta) = 5 : يحبث بكون الطبيعي n بحبث بكون الجموعة فبر الحد الطبيعي

أ - ادرس، حسب قيّم العدد الطبيعي 11، بواقي القيمة الإقليدية لتعدد 4º على 11.

$$\frac{1}{2} \left\{ \frac{4^{5n} + 4^{n} + n = 0[11]}{n = 2[10]} \right\}$$
 وين مجموعة قيم العدد الطبيعي n الذي تحقق الجسلة التالية:

التعرين الثاثث: (05 نقاط)

الفضاء مسوب إلى المعلم المتعامة المتجانس $(O(\hat{x},\hat{f},\hat{K}))$.

$$D(-3;4,4)$$
 و $C(-2;-7;-7)$ به $B(2;2,-1)$ به $A(0;0,1)$ و تعتبر النقط

والمستوي
$$(\gamma)$$
 السعرف بالتسئيل الوسيطى: $x=1+3\alpha-\beta$ و ميطان حقيقيان، و المستوي (γ) السعرف بالتسئيل الوسيطى: $z=4-\alpha+\beta$

ا - ا-بين أنَّ النفط $A \in B$ و A تعين مستويات A

 $\hat{n}(3;-2;1)$ ، ثَمَّ الشَّعَاعَ $\hat{n}(3;-2;1)$ باظمى للمسؤوي $\hat{n}(3;-2;1)$ ، ثَمَّ اكتب معادلة بوكاريَّية له،

ABC . المستويين (ABC) و (eta) متعامدان. (eta) متعامدان.

$$egin{aligned} x=-2+t \ y=-7+4t\colon t\in\mathbb{R} :$$
 و المستقيم (Δ) في التمثيل الوسيطي: (ABC) و (ABC) هي المستقيم $z=7-5t$

- $m{ar{\varphi}}$ الحسب المعاقبة بين النقطة D والمعنوي (ABC)، والمعاقبة بين النقطة D والمعنوي $(m{g})$ ، ثغ استنتج المسافة بين النقطة D والمستقيم $(m{\Delta})$.
 - 3. (0) المستوي الذي يشمل النقطة D والعمودي على كل من المستويين (ABC) و (\mathfrak{G}) .

أ - اكتب معادلة عبكاريبة للمسلوي (@).

 (\mathfrak{S}) و (\mathfrak{S}) بين أنّ المستويات الثلاثة (ABC) و (\mathfrak{S}) و (\mathfrak{S}) بتقاطع في نقطة واحدة (\mathfrak{S}) . ثنم عين إحداثيات (\mathfrak{S})

- احسب بطريقة ثانية، التصافة بين النقطة D والتستقيم (٨).

التمرين الرابع: (06 نقاط)

- $u(x) = u^x 3x + 4 u^x$ بي $[0; +\infty[$ على المجال $u(x) = u^x 3x + 4 u^x$ بي $[0; +\infty[$
 - أ ترس اتجاه تغيّر التالة س.

 $|e^{x}-e>3x-4|$ و $|0\rangle$ امن أبك كل عدد حقيقي |x| من السجال $|0\rangle$

. $v(x) = -3x^3 + 4x^2 + 1 + \ln x$: $]0;-\infty[$ معرفة على المجال .2

ا - بين أن: $0 = (1)^{n}$. (يرمز أم إنى الدالة المشتقة تتدالة n)

 $v(x) \le 0$ ، أثبت أنّه، من أحل كل عدد حقيقي x من المجال $[0:+\infty]$ ، $v(x) \le 0$

 $\frac{-1 + \ln x}{x^2} \le 3x - 4$ ، $|0; -\infty|$ من المجال |x| = 2x + 3x + 3x + 4 ، $|0; -\infty|$

 $|e^x-e^x| + c + \frac{1-\ln x}{x^2} > 0$: [0;+ ∞] من المجال |x| من أجل كل عدد حقيقي |x| من المجال 3.3

. $f(x) = e^x - ex - \frac{\ln X}{x}$ بن أ(0 + ex) على المجال المجال معزفة على المجال ال

 $I(G,\hat{k},\hat{f})$ المنطقى الممثل للدائمة I في المستوي المنسوب إلى المعلم المتعامد المتجانس $I(G,\hat{k},\hat{f})$

. $\lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$: حسب الم

2. بينَ أَنَ الدَالَة 1/ مَتَرَادِهُ تَمَامًا عَلَى الْمَحَالَ] ﴿ ﴿ [] ، ثُوَ تُلَكُّلُ جَنُولُ تَغَيْرَاتِها،

 $10; rac{5}{2}$ على البجال f(1) على البجال 3. 3. الحديث f(1)

. $\left(I\left(\frac{5}{2}\right)\approx 5.75$ و $I\left(1.64\right)\approx 1$ ، $I\left(2\right)\approx 2.3$ (كاخلا: 1)

المحتب مساحة الحيل المستوي المحتد بالمتحتى (e_j) وحامل محول القواصل والمستقيمين اللّذين معادلة عما x=1 و $x=\frac{1}{2}$

الموضوع الثاثي

التمرين إلأول: (03 نقاط)

-2n+27=0[n+1] . أ- عين الأعداد الطبيعية n التي تحقق: [1+n]0=77+2n .

a(b-a)(a+b)=24 من الأعداد الطبيعية، حيث: (a;b)=(a+b)

 $\sqrt{24}$ - استنتج طريقة ترسم قطعة سنتقيمة طوتها

 $eta=\overline{3403}$ و eta عندان طبيعيان مكتوبان في النظام ذي الأساس خمسة على الشكل $lpha=\overline{10141}$ و lpha .2

ا - اكتب العددين lpha و eta في النظام العشري - eta

$$\int_{a}^{b^2-a^2-24} da = \int_{ab-2}^{b^2-a^2-24} da$$
ب . عين الثانية (a,b) من الأحداد الطبيعية الحيث

3. ١ - عَيْنَ القاسم المشترك الأكبر المعدمين 2013 و 1434، ثم استنتج القاسم المشترك الأكبر للحدين 671 و 478 - x = 434 و 478 و 478 من المعدلة ذات المجهول (x,y) التالية: x = 434y = 2013x.

التمرين الثاني: (05 نقاط)

ا. حَلْ فِي الْمَجْمُوعَةُ الأَعْدَادِ السَّرِكْبَةُ \mathbb{C} ؛ الصَّادِلَةُ ذات السَّجِيرِ لِ x ، التَّالِيدُ؛ 0 - 1 + x + x .

د تعثير في المستوي المنسوب إلى المعلم المتعامد المتجانس $O(\overline{u},\overline{v})$ ، النقط B ، A و M ذات اللأحفات:

$$\left(z_A$$
 و کے علی انٹرنیب، $z_A=z_A$ ، $z_A=-rac{1-i\sqrt{3}}{2}$ یہ مرافق کے انٹرنیب، $z_A=z_A=-rac{1-i\sqrt{3}}{2}$

أ - أكتب و ٪ على الشَّكَلُ الأمني .

 $\operatorname{arg}\left[\left(x-x_A
ight)^2
ight]=\operatorname{arg}\left(x_A
ight)+\operatorname{arg}\left(x_B
ight)$ عين محموعة النفط M من المستوي، حيث ا

 $(x'-x)\cdot x+x_S\sqrt{3}$ عيث: M'(x) النظام M'(x) النظام والماء النظام النظام المنطق والماء النظام والماء النظام والماء النظام والماء الماء والماء وا

- ما طبيعة التحويل ٢٦ عيّن عناصره المميزة،

x'=-2x+3i : حبث M'(x) النقطة M(x) عبث بكن نقطة بكان نقطة M(x)

عين نسبة ومركز التحاكي أ.

ج - نطبع: $S=h\circ r$ (برمز \sim إلى تركيب الشعوبلين r و h).

- عين طبيعة الشُّعويل S، مبرزاً عناصره المميزة، ثمّ تعفّق أنّ عبارته المركّبة هي: $i + (x-i)^n (x-i) = 2$.

S(D) و S(C) و S(C) و S(C) و كانتجير التقطة Ω دات اللاحقة Ω والتقطة Ω و Ω و حيث ال Ω التقطة Ω د Ω و Ω و Ω و Ω و Ω و Ω

 $eta\in\mathbb{R}$ مجموعة النقط $M\left(
ight)$ من المستوي، حيث : $e^{\int_{0}^{2}}=e^{\int_{0}^{2}}$ مع $M\left(
ight)$ مين $H\left(
ight)$ محووية $H\left(
ight)$ محووية $H\left(
ight)$ محووية $H\left(
ight)$ محووية $H\left(
ight)$

التمرين الثالث: (04 نفاط)

B(1;1;1)ى النظاء المنسوب إلى المعلم المتعامة المتجانس (O(i,j,k))؛ النظانين A(-1;0;2) النظاء المنسوب إلى المعلم المتعامة المتجانب $x=2-\alpha$

والمستقيم (Δ) المعرّف بالتمثيل الوسيطى الثانى: y=-2 > حبث $(\alpha \in \mathbb{R})$.

 $z=-1-\alpha$

أ - اكثب تمثيلاً وسيطياً للمستقيم (AB).

 $m{\psi}$ - بين أنّ المستفيمين (AB) و (A) ليمنا من نفس المستوى.

(B) . المستوي الذي يشمل (AB) ويوازي (Δ)

(- اكتب تعثيلا وسيطيا المستوي (9).

x = y + x + 1 = 0 ب معاطة ديكارتية للمستوي (\hat{x}) .

3. لتكن M تفطة من المستقيم (Λ) و M تقطة من الفطعاء إحداثياتها (H - I)(1 + I)(1 + I)(1 + I) مع (AE) . أ - بين أنّ التقطة M تتشيئ إلى المستقيم (AE).

N و N حتى المستوي (N) و N حتى تكون M المسقط العمودي للنفطة N على المستوي (N).

ABN . من المساقة بين N و $(oldsymbol{\mathscr{E}})$ ، ثمّ الحسب مساحة المثلث ABN .

التمرين الرابع: (08 نقاط)

 $+ g(x) = \mathbf{I} + (x^2 - \mathbf{I})e^{-x}$ ب : بالدلالة ج معرفة على $x = \mathbf{I}$

. $\lim_{x \to \infty} g(x)$ و $\lim_{x \to \infty} g(x)$ احسب 1.

 $\{g(1-\sqrt{2}) = 1.43\}$ و $g(1-\sqrt{2}) = -0.2a$ الروس النجاء تغيَن الدالة g ، ثمُ شكَّل جنول تغيَراتها، والخذاء $g(1-\sqrt{2}) = -1.43$

2. أ - بين أنّ المعاطة $\theta = (x)$ تقبل حلين في θ ، ثمّ تحقق أنّ أحدهما معدوم والأخر θ ، حيث:

 $-0.8 < \alpha < -0.7$

ب - استنتج إثبارة (٢/ ع) و حسب قيم العدد الحقيفي ٢٠٠٠

 $f(x)\!=\!x^{-\left(x+1
ight)^{2}}$ الدانة f معزقة على \hat{x} ب \hat{x} بادانة f

(\mathcal{E}_{r}) منحتى الدالة T في المستوي المنعوب إلى المعلم المتعادد المتحادين $(\mathcal{E}_{r},\overline{I})$. (وحدة الطول 2 cm

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} -1$

 $x + \infty$ بين أنّ المعتقيم (A) ذا المعادلة x = y ، مقارب مائل تتمنطى (e_j) عند $x + \infty$

ullet - ادرين وضعية المنحلي $ig(eta_i)$ بالنسبة إلى المستقيم Δ

2. أ - بين أنه، من أجل كل عدد حقيقي $x \to g(x) = g(x)$. (يرمز f' إلى الدالة المشتقة الدالة f) ψ - شكّل جدول تغيّرات الدالة f' على fا - (تأخذ: $f'(x) \approx 11.9$)

3. أ- بين أنّ المنحلي (e_i) يقبل مماسين، معامل توجيه كل منهما يساوي 1، يطلب تعيين معادلة لكل منهما، - - مثّ (A) والممسين والمنحني (e_i) .

 $\left(x+1
ight)^{2}-me^{x}=0$: xناقش بيانياء حسب قيم الوسيط الحقيقي mنا عند حقول المعادلة ذات المجهول والمعادلة المحاولة المح

. الدين أن H دالة أصلية الدائة: $e^{-\tau}$ (t+1) على كا.

- $m{arphi}_{n}$ لحسب بالسنتيمكر المربع ، مساحة الحيّز المستوي المحدّد بالمنحلي $\left(\mathcal{C}_{n} \right)$ والمستقيمين اللّذين معانكتاهما $\mathbf{x} = 0$ و $\mathbf{x} = 0$.
 - $u_{n^{-}}=I(u_n)$ بالمثنالية الحديث المعزفة ب $u_0=lpha$ ومن أجل كل عدد طبيعي $(u_n)=H$ المثنالية الحديث المعرفة بlpha=0 ومن أجل كل عدد طبيعي lpha يحقُق lpha=0 ومن أجل العدد المعرفة المعرفة بالمعرفة المعرفة ومن أبياً العدد المعرفة المعرفة بالمعرفة المعرفة ال
 - $x-1 \le n_{_{\! B}} \le lpha < n$, برهن بالتراجع أنَّه، من أجل كل عدد طبيعي 1
 - ين أن المقالية $\left(a_{a}
 ight)$ مقالصية. 2