Repaso de Geometría Diferencial

Asier López Gordón asier.lopez@icmat.es www.alopezgordon.xyz

Instituto de Ciencias Matemáticas (ICMAT-CSIC), Madrid

Joint work with Jesús Aguado

May 25, 2022

Hoja 1. Ejercicio 9

Sean M una variedad y $f,g:M\to\mathbb{R}$ dos funciones suaves tales que $f^6+g^{10}\equiv 1$. Explica por qué es $(f^3,g^5):M\to\mathbb{S}^1$ una aplicación suave entre variedades.

Recordemos que una aplicación entre variedades $F: M \to N$ se dice **diferenciable** si para cada $x \in M$ existe una carta (U, φ) alrededor de x y una carta (V, ψ) alrededor de F(x) tales que $F(U) \subseteq V$ y $\psi \circ F \circ \varphi^{-1}$ es diferenciable (en el sentido de cálculo en \mathbb{R}^n).

- Recordemos que $\mathbb{S}^1 := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$
- Sean $F, G: M \to \mathbb{R}$ las funciones dadas por $F(p) = (f(p))^3$ y $G(p) = (g(p))^5$ para cada $p \in M$.

Sea

$$H: M \to \mathbb{R}^2$$

$$p \mapsto (F(p), G(p)).$$

Claramente, $Im H \subseteq \mathbb{S}^1$.

• Por lo tanto, $\tilde{H}: M \to \mathbb{S}^1$, con $H = i \circ \tilde{H}$ es la aplicación que estamos considerando. Nos basta entonces probar que \tilde{H} es suave.

• Consideremos la carta $(\mathbb{R}^2 \setminus \{(0,0)\}, \varphi_{\mathbb{R}^2})$ de \mathbb{R}^2 con $\varphi_{\mathbb{R}^2}(x,y) = (\rho,\theta)$ las coordenadas polares usuales.

• Consideremos la carta adaptada $(\mathbb{S}^1 \backslash \left\{ (1,0) \right\}, arphi_N)$ de \mathbb{S}^1 dada por

$$\varphi_N^{-1}: (0, 2\pi) \to \mathbb{S}^1 \setminus \{(1, 0)\}$$
$$\theta \mapsto (\cos \theta, \sin \theta),$$

de modo que

$$T:=arphi_{\mathbb{R}^2}\circ i\circ arphi_{\mathcal{N}}^{-1}: (0,2\pi) o \{1\} imes (0,2\pi) \ heta\mapsto (1, heta).$$

- Claramente T es biyectiva. Además, T y T^{-1} son diferenciables, luego T es un difeomorfismo.
- Consideremos una carta cualquiera (U, ψ) de M.
- Queremos probar que \tilde{H} es diferenciable, i.e., que $\varphi_N \circ \tilde{H} \circ \psi^{-1}$ lo es.
- Sabemos que H es diferenciable, esto es, $\varphi_{\mathbb{R}^2} \circ H \circ \psi^{-1}$ es diferenciable.

Ahora,

$$\varphi_{\mathbb{R}^{2}} \circ H \circ \psi^{-1} = \varphi_{\mathbb{R}^{2}} \circ i \circ \tilde{H} \circ \psi^{-1}$$

$$= (\varphi_{\mathbb{R}^{2}} \circ i \circ \varphi_{N}^{-1}) \circ (\varphi_{N} \circ \tilde{H} \circ \psi^{-1})$$

$$= T \circ (\varphi_{N} \circ \tilde{H} \circ \psi^{-1}),$$

así que, al ser T difeo.,

$$T^{-1} \circ (\varphi_{\mathbb{R}^2} \circ H \circ \psi^{-1}) = (\varphi_{N} \circ \tilde{H} \circ \psi^{-1})$$

es diferenciable.

- Con esto probamos que \tilde{H} es diferenciable en $\mathbb{S}^1 \setminus \{(1,0)\}$.
- Análogamente, si tomamos la carta $(\mathbb{S}^1 \setminus \{(-1,0)\}, \varphi_S)$ podemos probar que \tilde{H} es diferenciable en $\mathbb{S}^1 \setminus \{(-1,0)\}$.
- Como estas cartas suaves cubren \mathbb{S}^1 , \tilde{H} es diferenciable.

Sea
$$M = \{(x, y, z) \in \mathbb{R}^3 \colon x^2 + y^2 = z^2, z \ge 0\}.$$

1 (2 pts.)

Demostrar que la aplicación $\varphi: M \to \mathbb{R}^2$ definida por $\varphi(x,y,z) = (x,y)$ dota a M de una estructura de variedad diferenciable. ¿Es variedad orientable? ¿Y compacta?

Como vimos cuando os di la brasa con el fibrado tangente, para dotar a un conjunto M de estructura de n-variedad diferenciable podemos considerar una colección de subconjuntos $U_{\alpha} \subseteq M$ y de aplicaciones $\varphi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$ que verifiquen una serie de condiciones (para garantizar que M sea Hausdorff y segundo numerable y dotarlo de una estructura diferenciable).

• En este caso, nuestra colección de subconjuntos y aplicaciones estará formada únicamente por el M y φ , de modo que únicamente hay que comprobar que φ sea una biyección entre M y un abierto $\varphi(M) \subseteq \mathbb{R}^2$.

- En efecto, $\varphi(M) = \mathbb{R}^2$ y podemos escribir la inversa explícitamente como $\varphi^{-1}(x,y) = (x,y,\sqrt{x^2+y^2})$, de modo que φ es un homeomorfismo de M a \mathbb{R}^2 .
- Al haber una única carta, no hay que comprobar que las funciones de transición sean suaves, basta declarar que (M, φ) es suave, dotando así a M de estructura diferenciable.
- Por este mismo motivo, *M* es orientable.

M es **orientable** si \exists atlas $\{(U_i, \varphi_i)\}$ en el que $|D(\varphi_j \circ \varphi_i^{-1}(x))| > 0 \ \forall x \in \varphi_i(U_i \cap U_j) \ \forall i, j.$

• La compacidad es invariante bajo homeomorfismos, de modo que M no es compacta (al ser homeomorfa a \mathbb{R}^2).

2 (2pts.)

Consideremos el abierto de M definido por $M^* = M \setminus \{(0,0,0)\}$ con su estructura de variedad inducida y \mathbb{R}^3 con la estructura usual de variedad. Decidir si las aplicaciones inclusión $j: M^* \hookrightarrow \mathbb{R}^3$ e $i: M \hookrightarrow \mathbb{R}^3$ son inclusiones.

Una **inmersión** es una aplicación diferenciable $F: M \to N$ cuya diferencial es inyectiva en cada punto, i.e., rank $\mathrm{d}F_p = \dim M \ \forall p \in M$.

- La inclusión i no es ni siquiera diferenciable, pues $i \circ \varphi^{-1}(x,y) = (x,y,\sqrt{x^2+y^2})$ no es diferenciable en p = (0,0,0) (con $\varphi(p) = (0,0)$).
- Sin embargo, si quitamos ese punto sí obtenemos una inclusión diferenciable: $j \circ \varphi^{-1}(x, y) = (x, y, \sqrt{x^2 + y^2})$, con $(x, y) \neq (0, 0)$.

• El rango de la diferencial no es más que el rango de la jacobiana. En este caso,

$$D(j \circ \varphi^{-1}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \end{pmatrix},$$

que es de rango 2 en todo punto. Como $\operatorname{rank} \, \mathrm{d}F_p = \dim M^*$, es una inmersión.

• Más aun, j es una inmersión inyectiva, por lo que (por definición) M^* es una **subvariedad** de \mathbb{R}^3 .

3 (3pts.)

Denotemos por (x, y) las coordenadas de la carta φ y por (x, y, z) las coordenadas usuales en \mathbb{R}^3 .

- a) Encontrar la curva integral del campo $X = \frac{\partial}{\partial x}$ en M^* con origen en un punto $(x_0, y_0, z_0) \in M^*$.
- b) Sea $(x_0, y_0, z_0) \in M^*$. Encontrar las curvas integrales con origen en (x_0, y_0, z_0) de los campos $Y = \frac{\partial}{\partial x}$ en \mathbb{R}^3 y $Z = \frac{\partial}{\partial x} + \frac{x}{z} \frac{\partial}{\partial z}$ en $\mathbb{R}^3 \setminus \{(0, 0, 0)\}$. Decir si tales curvas están contenidas en M.
- a) Sea $\gamma: \mathbb{R} \to M^*$ la curva integral buscada, dada por $\gamma = \varphi^{-1} \circ \alpha$, con $\alpha(t) = (x(t), y(t))$.

• Las curvas integrales satisfacen $\gamma'(t) = X(\gamma(t))$, i.e.,

$$x'(t) = 1,$$

$$y'(t) = 0,$$

con la condición inicial $\gamma(0) = (x_0, y_0, z_0)$ o, en coordenadas, $\alpha(0) = (x_0, y_0)$.

• La solución del sistema de arriba es $\alpha(t) = (t + x_0, y_0)$, luego

$$\gamma(t) = (t + x_0, y_0, \sqrt{(t + x_0)^2 + y_0^2}).$$

• Equivalentemente, podemos decir que el flujo $\psi: \mathbb{R} \times M^* \to M^*$ de X viene dado por

$$\psi_t: \left(x, y, \sqrt{x^2 + y^2}\right) \mapsto \left(t + x, y, \sqrt{(t + x)^2 + y^2}\right)$$

- b) Sea $\beta_{(Y)}: \mathbb{R} \to \mathbb{R}^3$ la curva integral de Y, con $\beta_{(Y)}(t) = (x(t), y(t), z(t)).^1$
 - Ahora tenemos que resolver

$$x'(t) = 1,$$

 $y'(t) = 0,$
 $z'(t) = 0,$

con la condición inicial $\beta_{(Y)}(0) = (x_0, y_0, z_0)$.

La solución es

$$\beta_{(Y)}(t) = (x_0 + t, y_0, z_0) = \left(x_0 + t, y_0, \sqrt{x_0^2 + y_0^2}\right),$$

que no está contenida en M^* (pues $z(t)^2 \neq x(t)^2 + y(t)^2$).

• Sea $\beta_{(Z)}: \mathbb{R} \to \mathbb{R}^3 \setminus \{(0,0,0)\}$ la curva integral de Z, con $\beta_{(Z)}(t) = (x(t),y(t),z(t))$.

Ahora tenemos que resolver

$$x'(t) = 1,$$

$$y'(t) = 0,$$

$$z'(t) = \frac{x(t)}{z(t)},$$

con la condición inicial $\beta_{(Z)}(0) = (x_0, y_0, z_0)$.

La solución es

$$\beta_{(Z)}(t) = \left(x_0 + t, y_0, \sqrt{(x_0 + t)^2 + y_0^2}\right),$$

que sí está contenida en M^* (pues $z(t)^2 = x(t)^2 + y(t)^2$).

• De hecho, $\beta_{(Z)} = \gamma$ del apartado a).

 $^{^1}$ Como ahora estamos en \mathbb{R}^3 la carta es la identidad y no hay que hacer distinción entre la curva y su expresión en coordenadas.

4 (2 pts.)

Encontrar –si existen– campos X_1 y X_2 en M^* tales que $j_*(X_1) = Y$ y $j_*(X_2) = Z$, donde $j_* = \mathrm{d}j$ representa la aplicación diferencial de la aplicación inclusión.

- Probemos que no existe X_1 por reducción al absurdo.
- Supongamos que existe $X_1 \in \mathfrak{X}(M^*)$ tal que $j_*(X_1) = Y$. Sea β la curva integral de X_1 en M^* con $\beta(0) = (x_0, y_0, z_0) \in M^*$. Entonces,

$$\beta'(t) = X_{1|\beta(t)}.$$

Luego

$$Y_{|j\circ\beta(t)}=j_*X_{1|j\circ\beta(t)}=j_*(\beta'(t))=(j\circ\beta)'(t),$$

de modo que $j \circ \beta$ es la curva integral de Y con origen en $(x_0, y_0, z_0) \in \mathbb{R}^3$.

- Pero, como vimos ${\rm Im}\beta_{(Y)}\not\subset M^*$ para cualquier punto inicial, luego $\not\equiv X_1$.
- Por otra parte, hemos visto que una curva integral $\beta_{(Z)}$ de Z, con origen en $(x_0, y_0, z_0) \in M^*$, sí está contenida en M^* ; y coinciden con las del campo X: $\beta_{(Z)} = \gamma$.
- Como coinciden las curvas integrales, han de coincidir los campos en $\mathbb{R}^3 \setminus \{(0,0,0)\}$, es decir, $i_*(X) = Z$.
- En efecto, la jacobiana de i en un punto de coordenadas (x, y) es

$$Di_{(x,y)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \end{pmatrix},$$

luego

$$\mathrm{d}i(X) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \frac{x}{\sqrt{x^2 + y^2}} \end{pmatrix} = \frac{\partial}{\partial x} + \frac{x}{z} \frac{\partial}{\partial z}.$$

• Si no supiésemos de antemano que $i_*(X) = Z$, con X el del apartado a), bastaría coger un campo arbitrario $X = a(x,y)\frac{\partial}{\partial x} + b(x,y)\frac{\partial}{\partial y} \in \mathfrak{X}(M^*)$ y resolver

$$Di(X) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \frac{x}{\sqrt{x^2 + y^2}} \end{pmatrix} = Z.$$

5 (1pto.)

Decidir si los flujos de los campos Y y Z en $\mathbb{R}^3 \setminus \{(0,0,0)\}$ conmutan.

- Los flujos de los campos conmutan (i.e., el flujo de X ∘ Y y el de Y ∘ X coinciden) si y sólo si los campos conmutan.
- Basta entonces estudiar el conmutador de los campos, el corchete de Lie: [Y, Z] := Y ∘ Z − Z ∘ Y.
- Le damos de merendar a nuestros campos una función $f \circ C^{\infty}(\mathbb{R}^3 \setminus \{(0,0,0)\})$ arbitraria. Tenemos:

$$Y \circ Z(f) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} + \frac{x}{z} \frac{\partial f}{\partial z} \right) = \frac{\partial^2 f}{\partial x^2} + \frac{1}{z} \frac{\partial f}{\partial z} + \frac{x}{z} \frac{\partial^2 f}{\partial x \partial z},$$
$$Z \circ Y(f) = \left(\frac{\partial}{\partial x} + \frac{x}{z} \frac{\partial}{\partial z} \right) \frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial x^2} + \frac{x}{z} \frac{\partial^2 f}{\partial z \partial x},$$

luego
$$[Y, Z] = \frac{1}{7} \frac{\partial}{\partial z} \neq 0$$
.