TOBERT L'ABBECL

Constitutively Active Receptors

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP I					
MSHR_mouse	melanocyte-stimulating hormone MSH	ТИП	92 VSIVL <u>E</u> TTIIL K	adenylyl cyclase activity/ HEK293, stably transfected	(Robbins, Nadeau et al. 1993)
CLASS A GROUP II					
5H1B_human	5-hydroxytryptamine _{1B}	C-terminus of IC3	313 RERKA <u>T</u> KTLGI K, R, Q	binding of [35]GTP[S] / CHO-KI	(Pauwels, Gouble et al. 1999)
5H2A_human	5-hydroxytryptamine _{2A}	C-terminus of IC3	322 NEQKA <u>C</u> KVLGI K	IP production / COS-7	(Egan, Herrick-Davis et al. 1998)
2H2C_rat	5-hydroxytryptamine _{2C}	C-terminus of IC3	312 NEDDA <u>S</u> KVLGI L	PI hydrolysis / COS-7	(Herrick-Davis, Egan et al. 1997)
		and the state of t			

Figure 1 (Page 1 of 15)

GROUP II					
A1AB_human	α ₁₈ -adrenergic alpha 1B-AR	TMDI	63 FAIVG <u>N</u> ILVIL A	IP / COS-7	(Scheer, Fanelli et al. 1997)
,		junction between TMDIII and IC2	142 CAISI <u>D</u> RYIGV A		
A1AB_human o	α ₁₈ -adrenergic alpha 1B-AR	junction between TMDIII and IC2	143 CAISID <u>R</u> YIGV K	IP / COS-7	(Scheer, Costa et al. 2000)
A1AB_human	α ₁₈ -adrenergic	TMIII	128 AVDVL <u>C</u> CTASI F	IP/COS-I	(Perez, Hwa et al. 1996)
		carboxyl end of IC3	293 REKKA <u>A</u> KTLGI E	IP arachidonic acid release	
		TMV	204 EEPFYALFSSLG V	IP/COS-1	(Hwa, Gaivin et al. 1997)
A1AB_human	α ₁₈ -adrenergic	C-terminal IC3	293 SREKKA <u>A</u> KT X=19 different substitutions	PI / COS-7	(Kjelsberg, Cotecchia et al. 1992)
A1AB_human	α ₁₈ -adrenergic	C-terminus IC3	288 293 KFS <u>REK</u> KA <u>A</u> KTLGI K H L	PI hydrolysis / rat fibroblast	(Allen, Lefkowitz et a
A2AA_human	α ₂ C10-adrenergic alpha-2AAR	C-terminal IC3 loop	373 (348?) EKRF <u>T</u> FVLAV X=F, A, C, E, K	adenylyl cyclase inhibition / HEK293	(Ren, Kurose et al. 1993)
ACM1_human	muscarinic Hm1 muscarinic acetylcholine M1	C-terminal IC3 loop junction	360 SLVKEKKAARTLS A	PI / HEK(U293)	(Högger, Shockley et al. 1995)
ACM2-human	muscarinic acetylcholine M2	junction of IC3 and TMVI	390 KKVTRTIL ₁ A 1-4 A inserted	IP production, inhibition of cAMP production / COS-7	(Liu, Blin et al. 1996)

Figure 1 (Page 2 of 15)

	(Blüml, Mutschler et al. 1994)	(Burstein, Spalding et al. 1996)	(Spalding, Burstein et	(Spalding, Burstein et al. 1997)	(Mason, Moore et al. 1999)	(Samama, Cotecchia et al. 1993); (Lefkowitz, Cotecchia et al. 1993)	(Charpentier, Jarvie et al. 1996)	(Cho, Taylor et al. 1996)	(Alewijnse, Timmerman et al. 2000)	
	IP / COS-7	β-gal / NIH 3T3	β-gal, radioligand binding / NIH-3T3	β-gal; radioligand binding / NIH-3T3	adenylyl cyclase; agonist binding / CHW	adenylyl cyclase activation; agonist binding affinity / COS-7 or CHO	adenylyl cyclase; cAMP accumulation / HEK293	CAMP accumulation / COS-7	cAMP production / HEK-293	
	507 TWTPY <u>N</u> IMVLVNT S	chimera composed of m21-69 m577-445	A <u>I</u> LLA <u>E</u> IITW TPY <u>N</u> I MVLV <u>S</u> T M L H C V S F	465 YNIMVLV <u>S</u> TFCDKCV X=V,F,R,K,+more	389 RKAFQGLLCCA R	266 272 FC <u>LKEH</u> KA <u>L</u> KTLGI SR K A	264 SFKMS <u>F</u> K <u>B</u> TKVLKT I K 288 from D1B receptor APDTSIKKETKVLKT	286 FVCCW <u>L</u> PFFIL A	115 FMISL <u>D</u> RYCAV N,A	
	TMVI	N-terminus to TMII TMVI	TMVI	junction of TMVI and EC3	C-terminus	C-terminal IC3 loop	carboxyl terminal IC3	TMVI	IC2	
	m3 muscarinic (rat)	mscarinic accylcholine M5	m5 muscarinic muscarinic acetylcholine M5	m5 muscarinic muscarinic acetylcholine M5	β ₁ -adrenergic	β ₂ -adrenergic beta-2AR	dopamine D1A	dopamine D1	histamine H ₂	
CLASS A GROUP II		ACM5_human	ACM5_human	ACM5_human	B1AR_human	B2AR_human	DADR_human	DADR_human	HH2R_rat	

Figure 1 (Page 3 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP III					
OPSD_human	opsin	TMII	90 FMVLGGFTSTLY	transducin; phosphorylation by	(Rim and Oprian 1995)
	rhodopsin	TMIII	D 113 GCNL <u>E</u> GFFAT	rhodopsin kinase / COS	
		TMVII	Q 292 296 MTIPAFFAKSAAIY E G, E, M 299Ala neutral a.a converted to carboxylate and competes with ¹¹³ Glu		
OPSD_human	opsin rhodopsin	TMIII	for salt bridge with "Lys 134 VVLAIERYVVV I, Q, S	transducin; radioligand binding / COS	(Acharya and Karnik 1996)
OPSD_human	opsin rhodopsin	TM6	257 RMVIIMVIAFL Y,N	transducin, GTPyS uptake / COS	(Han, Smith et al. 1998)
OPSD_human	opsin rhodopsin	pius IM3 TMVII		transducin; radioligand binding / COS	(Govardhan and Oprian 1994); (Cohen, Yang et al. 19
		102	disrupts critical salt bridge between ²⁹⁶ Lys(TMVII) and ¹¹³ Glu(TMIII) 134 VVLA1ERYVVV		(Cohen, Yang et al. 1993).

Figure 1 (Page 4 of 15)

COOSSEL LOSESCE

_	_			\neg	_	Т	_	Т	_	٦	
(Afater I attaniable	(Maius-Leiboviich,	Nussenzveig et al. 1995)									
1 500 74 000 100 743 1	Caretilux, Carl	Xenopus oocytes;	IP formation / AtT20,	stably transfected							
	335	FRKLCNCKQK	STOP								
	carboxyl tail	•									
	thyrotronin-releasing hormone	TOTAL TOTAL									
	TDED mouse	Denout VIVI									

Figure 1 (Page 5 of 15)

•				A 22.21 / Colls	Deference	_
Till Momo		Mutation Site	Sequence	Assay / Cells	וורוכו בווכר	_
rue Name						_
CLASS A						_
GROUP IV					(Marie Koch et al 1999)	
BRB2_human bradykinin B ₂	bradykinin B ₂	TMIII	113 ATTSMNIVSSI	ir production / COS-/	(company to the company to the compa	
	B2 bradvkinin	TMVI	Ą			
	7.40		256			
	BN-2		LLFIICWLPFQI			
			Ĭ.			4
-						
						1
						_
						,

Tile Nome	Decentor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A					
AG2R_rat	AT,A Type-1A angiotensis II	TMIII	111 ASVSF <u>N</u> LYASV A disrupts ¹¹¹ ASD (TMIII) -	phospholipase C; IP production / COS-7	(Groblewski, Maigret et al. 1997)
AG2R_rat	ATıA	C-terminus of TM7	³⁹³ Tyr (TMVII) interaction 305 LFYGF <u>L</u> GKKFK	IP production / HEK- 293; intrcellular Ca2*	(Parnot, Bardin et al. 2000)
FMLR_human	Type-1A angiotensis II formylmethionylleucylphenylal anine (fMLPR)	other multiple mutations IC1	Q 51 LV <u>IWVAGFRMTHTVTTISY</u> LN <u>K</u> AVA LVVWVTAFEAKRTINAIWFLNLAVA (K above conflicts with SWISS-PROT database)	mobilization / CHO PI production; phospholipase C stimulation / COS-7	(Amatruda, Dragas- Graonic et al. 1995)
IL8B_human	interleukin-8 receptor B CXCR-2 chemokine	IC2	138 ACISV <u>D</u> RYLAIVH V	IP production; Ca ²⁺ moblization and actin polymerization / NIH 3T3	(Burger, Burger et al. 1999)
LSHR_human	luteinizing hormone (LH)	IC3	564 MATNK <u>D</u> TKIAKK G	cAMP production / HEK293	(Kudo, Osuga et al. 1996)
LSHR_human	luteinizing hormone (LH)	TMVI	578 ILIFT <u>D</u> FTCMA G	cAMP production / COS-7	(Shenker, Laue et al. 1993)
LSHR_human	luteinizing hormone (LH)	ТМ6	571 577 KIAKK <u>M</u> AILIF <u>T</u> DFTCM I I	cAMP production / COS-7	(Kosugi, Van Dop et a
LSHR_rat	luteinizing hormone / human chorionic gonadotropin (LH/hCG)	TMVI	556 ILIFT <u>D</u> FTCMA G, Y	cAMP production / HEK 293T	(Bradbury, Rawate et al. 1997; Bradbury and Menon 1999)
OPRD_mouse	delta opiod receptor	TM3	128 KVLSI <u>D</u> YYNMF A, K, H	inhibition / COS-7	1999) (Ganelli, Barhier et al.
OXYR_human	oxytocin	102	137 LMSLDRCLAIC A	Ir production ()	(1999)

Figure 1 (Page 7 of 15)

piatoiorachivating tactor (1711)	F) C-terminus of IC3	231 EVKRRA <u>L</u> WMVCTVLAV R	IP production / COS-7	(Parent, Le Gouill et al. 1996)
platelet-activating factor (PAF)	F) TMIII	100 CLFFI <u>N</u> TYCSV A	arachnidonate release, IP production, adenylyl cylcase inhibition / CHO	(Ishii, Izumi et al. 1997)
prostaglandin E ₃ , EP3III EP3IV	C-terminal tail	360 FCOEFFWGN FCOMRKRRIREOEEFWGN ftruncated	inhibition of adenylyl cyclase / CHO-K1	(Jin, Mao et al. 1997)
prostaglandin E, EP3	carboxyl-terminal tail	336 KILLRKFCQ <u>IRDHT</u> (3α) MMNHL (3β) †truncated	inhibition of adenylate cyclase / CHO, stably expressed	(Hasegawa, Negishi et 1996)
thrombin	EC2 loop	259 268 CHDVL <u>NETLLEGYYA</u> YY DLKD KOF I	45Ca 2* efflux, PI hydrolysis, reporter gene induction / COS-7	(Nanevicz, Wang et al. 1996)
thyrotropin (TSHR) thyroid stimulating hormone	EC1	486 YYNHA <u>I</u> DWQTG F,M	inositol phosphate diacylglycerol cascade / COS-7	(Parma, Van Sande et al. 1995)
	EC2	568 YAKVS <u>I</u> CLPMD T		
thyrotropin (TSHR) thyroid stimulating hormone	TMIII	509 ASELS <u>U</u> YTLTV A	adenylyl cyclase activation / COS-7	(Duprez, Parma et al. 1994)
·	TMVII	672 YPLNS <u>C</u> ANPFL Y		
thyrotropin (TSHR) thyroid stimulating hormone	TMV	597 VAFVI <u>V</u> CCHV L	cAMP formation / COS-7 cells	(Esapa, Duprez et al. 1999)
thyrotropin (TSHR)	TMVII	677 CANPF <u>L</u> YAIFT V	cAMP formation / CHO cells	(Russo, Wong et al. 1999)
thyrotropin (TSHR) thyroid stimulating hormone	103	613 621 VRNPQ <u>XNPGDKDTK</u> IAK deletion	cAMP formation / COS-7	(Wonerow, Schoneberg et al. 1998)

Figure 1 (Page 8 of 15)

OSSENTL OSESOL

COS-7 (Paschke, Tonacchera et al. 1994)	cAMP formation / (Morin, Cotte et al. 1998) COS-7	
623 632 KDTKI <u>A</u> KRMAVLIF <u>T</u> DFICM	V I 136 LAMTL <u>D</u> RHRAI	
IC3 / TMVI	IC2	
TSHR_human thyrotropin (TSHR)	thyroid stimulating hormone vasopressin V2	
TSHR_human	V2R_human	

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS B GROUP I					
CALR_human	human calcitonin hCTR-1 hCTR-2	wild type (native) protein		adenylyl cyclase cAMP production / COS-1	(Cohen, Thaw et al. 1997)
CLASS B GROUP II					
PTRR_human	parathyroid hormone. PTH / PTH-related peptide	junction of IC1 and TMII	223 TRNYI <u>H</u> MHLFL R, K	cAMP accumulation / COS-7	(Schipani, Jensen et al. 1997)
		junction of IC3 and TMVI	410 KLLKS <u>T</u> LVLMP C,others		
CLASS B GROUP III					
GIPR_human	glucose-dependent insulinotropic peptide (GIP-R)	TMVI	340 VFAPV <u>T</u> EEQAR P	cAMP production / L293	(Tseng and Lin 1997)
GLR_rat	glucagon	junction of IC loop1 and TMII	178 TRNYI <u>H</u> GNLFA R	cAMP accumulation / COS-7	(Hjorth, Orskov et al. 1998)
		IC end of TMVI	352 RLARS <u>T</u> UTLIP A		
VIPR_human	vasoactive intestinal peptide 1 (VIP)	junction of IC loop 1 and TMII	178 RNYI <u>H</u> MHLFI R requires functional integrity of the N-terminal EC domain	cAMP production / COS-7 or CHO	(Gaudin, Maoret et ai 1998) (Gaudin, Rouyer-Fessard et al. 1998)
		junction of IC loop 3 and TMVI	343 LARS <u>T</u> LLLIP X= K,P		

Figure 1 (Page 10 of 15)

File Name	Recentor	Mutation Site	Sequence	Assay / Cells	Reference
The Ivalia	Total				
CLASS C			THEOLING THE TOUR THEOLING STREET	TD / #5 A	(Tensen Snalding et al
CASR_human	calcium-sensing	N-terminal EC	TLSFVA <u>ONKIDSENNESSET</u> Various substitutions, in	IF / ISA	(2000)
			multiple combinations		

Figure 1 (Page 11 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS D					
O74283 RCB2	pheromone	TM6	229 PLSAYQIYLGT P	heterologous yeast assay	(Olesnicky, Brown et al. 1999)
STE2_yeast	pheromone α-factor	TM6	258 QSLLV <u>PS</u> IIFI 1.L	lacZ reporter gene	(Konopka, Margarit et al. 1996)
STE2_yeast	pheromone α-factor	double mutations TM5	223 MSFVL <u>V</u> VK∰ILAIR	lacZ reporter gene / yeast	(Dube, DeCostanzo et al 2000)
		and	C C 247 251		
		TM6	DSFHI <u>LLIM</u> SCOSLL CC CC		
			double mutations		
STE3_yeast	pheromone a-factor	103	194 DVRDI <u>L</u> HCTNS Q	β-galactosidase	(Boone, Davis et al. 1993)
STE2_yeast	pheromone α-factor	ТМ6	253 258 LIMSC <u>O</u> SLLV <u>PS</u> IIFI L LP	β-galactosidase	(Sommers, Martin et al. 2000)

Bibliography

Alewijnse, A. E., H. Timmerman, et al. (2000). "The Effect of Mutations in the DRY Motif on the Constitutive Activity and Structural Instability of the Histamine H(2) Receptor." Acharya, S. and S. S. Karnik (1996). "Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin." J Biol Chem 271(41): 25406-11.

Allen, L. F., R. J. Lefkowitz, et al. (1991). "G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances Mol Pharmacol 57(5): 890-898.

Amatruda, T. T., 3rd, S. Dragas-Graonic, et al. (1995). "Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a mitogenesis and tumorigenicity." Proc Natl Acad Sci U S A 88(24): 11354-8.

Blüml, K., E. Mutschler, et al. (1994). "Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all novel domain for interaction with G-proteins." J Biol Chem 270(47): 28010-3

Boone, C., N. G. Davis, et al. (1993). "Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype." Proc Natl Acad muscarinic acetylcholine receptors." J Biol Chem 269(29): 18870-6.

Bradbury, F. A., N. Kawate, et al. (1997). "Post-translational processing in the Golgi plays a critical role in the trafficking of the luteinizing hormone/human chorionic Sci U S A 90(21): 9921-5.

Bradbury, F. A. and K. M. Menon (1999). "Evidence that constitutively active luteinizing hormone/human chorionic gonadotropin receptors are rapidly internalized." gonadotropin receptor to the cell surface." J Biol Chem 272(9): 5921-6.

Burger, M., J. A. Burger, et al. (1999). "Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G protein-Biochemistry 38(27): 8703-12.

Burștein, E. S., T. A. Spalding, et al. (1996). "Constitutive activation of chimeric m2/m5 muscarinic receptors and delineation of G-protein coupling selectivity domains." coupled receptor." J Immunol 163(4): 2017-22.

Biochem Pharmacol 51(4): 539-44.

Cavalli, A., A. M. Babey, et al. (1999). "Altered adenylyl cyclase responsiveness subsequent to point mutations of Asp 128 in the third transmembrane domain of the delta-opioid receptor." Neuroscience 93(3): 1025-31.

residues underlying activation properties." I Biol Chem 271(45): 28071-6.
Cho, W., L. P. Taylor, et al. (1996). "Mutagenesis of residues adjacent to transmembrane prolines alters D1 dopamine receptor binding and signal transduction." Mol Pharmacol Charpentier, S., K. R. Jarvie, et al. (1996). "Silencing of the constitutive activity of the dopamine D1B receptor. Reciprocal mutations between D1 receptor subtypes delineate

50(5): 1338-45.

Cohen, D. P., C. N. Thaw, et al. (1997). "Human calcitonin receptors exhibit agonist-independent (constitutive) signaling activity." Endocrinology 138(4): 1400-5. Cohen, G. B., T. Yang, et al. (1993). "Constitutive activation of opsin: influence of charge at position 134 and size at position 296." Biochemistry 32(23): 6111-5.

Duprez, L., J. Parma, et al. (1994). "Germline mutations in the thyrotropin receptor gene cause non- autoimmune autosomal dominant hyperthyroidism." Nat Genet 7(3): 396-401. Dube, P., A. DeCostanzo, et al. (2000). "Interaction between transmembrane domains five and six of the alpha -factor receptor." I Biol Chem 275(34): 26492-9.

Esapa, C. T., L. Duprez, et al. (1999). "A novel thyrotropin receptor mutation in an infant with severe thyrotoxicosis." Thyroid 9(10): 1005-10.

Fanelli, F., P. Barbier, et al. (1999). "Activation mechanism of human oxytocin receptor: a combined study of experimental and computer-simulated mutagenesis." Mol Pharmacol Egan, C. T., K. Herrick-Davis, et al. (1998). "Creation of a constitutively activated state of the 5- hydroxytryptamine2A receptor by site-directed mutagenesis: inverse agonist activity of antipsychotic drugs." I Pharmacol Exp Ther 286(1): 85-90.

Gaudin, P., J. J. Maoret, et al. (1998). "Constitutive activation of the human vasoactive intestinal peptide 1 receptor, a member of the new class II family of G protein-coupled receptors." J Biol Chem 273(9): 4990-6.

Gaudin, P., C. Rouyer-Fessard, et al. (1998). "Constitutive activation of the human VIP1 receptor." Ann N Y Acad Sci 865: 382-5.

Groblewski, T., B. Maigret, et al. (1997). "Mutation of Asn111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation." I Biol Govardhan, C. P. and D. D. Oprian (1994). "Active site-directed inactivation of constitutively active mutants of rhodopsin." J Biol Chem 269(9): 6524-7. Chem 272(3): 1822-6.

Hasegawa, H., M. Negishi, et al. (1996). "Two isoforms of the prostaglandin E receptor EP3 subtype different in agonist-independent constitutive activity." I Biol Chem 271(4): Han, M., S. O. Smith, et al. (1998). "Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6." Biochemistry 37(22): 8253-61.

Herrick-Davis, K., C. Egan, et al. (1997). "Activating mutations of the serotonin 5-HT2C receptor." JNeurochem 69(3): 1138-44.

Hjorth, S. A., C. Orskov, et al. (1998). "Constitutive activity of glucagon receptor mutants." Mol Endocrinol 12(1): 78-86. Högger, P., M. S. Shockley, et al. (1995). "Activating and inactivating mutations in N- and C-terminal i3 loop junctions of muscarinic acetylcholine Hm1 receptors." J Biol Chem

Hwa, J., R. Gaivin, et al. (1997). "Synergism of constitutive activity in alpha 1-adrenergic receptor activation." <u>Biochemistry</u> 36(3): 633-9. Ishii, I., T. Izumi, et al. (1997). "Alanine exchanges of polar amino acids in the transmembrane domains of a platelet-activating factor receptor generate both constitutively activ and inactive mutants." J Biol Chem 272(12): 7846-54.

Jensen, A. A., T. A. Spalding, et al. (2000). "Functional importance of the Ala116-Pro136 region in the calcium-sensing receptor. CONSTITUTIVE ACTIVITY AND INVERSE AGONISM IN A FAMILY C G-PROTEIN-COUPLED RECEPTOR [In Process Citation]." J Biol Chem 275(38): 29547-55.

Kjelsberg, M. A., S. Cotecchia, et al. (1992). "Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region Jin, J., G. F. Mao, et al. (1997). "Constitutive activity of human prostaglandin E receptor EP3 isoforms." British J Pharmacol 121: 317-23. which constrains receptor activation." J Biol Chem 267(3): 1430-3.

Konopka, J. B., S. M. Margarit, et al. (1996). "Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled alpha-factor receptor." Proc Natl Acad Sci U S A 93(13): 6764-9.

Kosugi, S., C. Van Dop, et al. (1995). "Characterization of heterogeneous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty." Hum Mol Genet 4(2): 183-8.

Kudo, M., Y. Osuga, et al. (1996). "Transmembrane regions V and VI of the human luteinizing hormone receptor are required for constitutive activation by a mutation in the third

intracellular loop." J Biol Chem 271(37): 22470-8.

Leftowitz, R. J., S. Cotecchia, et al. (1993). "Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins." <u>Trends Pharmacol Sci</u> 14(8): 303-7. Liu, J., N. Blin, et al. (1996). "Molecular mechanisms involved in muscarinic acetylcholine receptor- mediated G protein activation studied by insertion mutagenesis." <u>J Biol</u> Chem 271(11): 6172-8.

Marie, J., C. Koch, et al. (1999). "Constitutive activation of the human bradykinin B2 receptor induced by mutations in transmembrane helices III and VI." Mol Pharmacol 55(1):

Mason, D. A., J. D. Moore, et al. (1999). "A gain-of-function polymorphism in a G-protein coupling domain of the human betal-adrenergic receptor." J Biol Chem 274(18):

Matus-Leibovitch, N., D. R. Nussenzveig, et al. (1995). "Truncation of the thyrotropin-releasing hormone receptor carboxyl tail causes constitutive activity and leads to impaired responsiveness in Xenopus oocytes and AtT20 cells." J Biol Chem 270(3): 1041-7.

Morin, D., N. Cotte, et al. (1998). "The D136A mutation of the V2 vasopressin receptor induces a constitutive activity which permits discrimination between antagonists with Nanevicz, T., L. Wang, et al. (1996). "Thrombin receptor activating mutations. Alteration of an extracellular agonist recognition domain causes constitutive signaling." I Biol partial agonist and inverse agonist activities." FEBS Lett 441(3): 470-5.

Olesnicky, N. S., A. J. Brown, et al. (1999). "A constitutively active G-protein-coupled receptor causes mating self- compatibility in the mushroom Coprinus." Embo J 18(10):

Parent, J. L., C. Le Gouill, et al. (1996). "Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor."

J Biol Chem 271(14): 7949-55.

Pamot, C., S. Bardin, et al. (2000). "Systematic identification of mutations that constitutively activate the angiotensin II type 1A receptor by screening a randomly mutated cDNA Parma, J., J. Van Sande, et al. (1995). "Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3',5'-monophosphate and inositol phosphate-Ca2+ cascades." Mol Endocrinol 9(6): 725-33.

Paschke, R., M. Tonacchera, et al. (1994). "Identification and functional characterization of two new somatic mutations causing constitutive activation of the thyrotropin receptor library with an original pharmacological bioassay." Proc Natl Acad Sci USA 97(13): 7615-20

Pauwels, P. J., A. Gouble, et al. (1999). "Activation of constitutive 5-hydroxytryptamine Breceptor by a series of mutations in the BBXXB motif: positioning of the third in hyperfunctioning autonomous adenomas of the thyroid." J Clin Endocrinol Metab 79(6): 1785-9.

Perez, D. M., J. Hwa, et al. (1996). "Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor." Mol Pharmacol intracellular loop distal junction and its goalpha protein interactions [In Process Citation]." Biochem J 343 Pt 2: 435-42.

Ren, Q., H. Kurose, et al. (1993). "Constitutively active mutants of the alpha 2-adrenergic receptor [published erratum appears in J Biol Chem 1994 Jan 14;269(2):1566]." J Biol Chem 268(22): 16483-7. 49(1): 112-22.

Robbins, L. S., J. H. Nadeau, et al. (1993). "Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function." Cell 72(6): Rim, J. and D. D. Oprian (1995). "Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin." Biochemistry 34(37): 11938-45.

Russo, D., M. G. Wong, et al. (1999). "A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis." Thyroid 9(1):

Samama, P., S. Cotecchia, et al. (1993). "A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model." Journal of Biological Chemistry 268(7): 4625-36.

Scheer, A., T. Costa, et al. (2000). "Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor isomerization and activation." Mol Pharmacol 57(2): 219-31.

Scheer, A., F. Fanelli, et al. (1997). "The activation process of the alpha1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate." Proc Natl Acad Sci U S A 94(3): 808-13.

Schipani, E., G. S. Jensen, et al. (1997). "Constitutive activation of the cyclic adenosine 3',5'-monophosphate signaling pathway by parathyroid hormone (PTH)/PTH-related peptide receptors mutated at the two loci for Jansen's metaphyseal chondrodysplasia." Mol Endocrinol 11(7): 851-8.

Shenker, A., L. Laue, et al. (1993). "A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty [see comments]." Nature 365(6447): 652-4.

Sommers, C. M., N. P. Martin, et al. (2000). "A limited spectrum of mutations causes constitutive activation of the yeast alpha-factor receptor." Biochemistry 39(23): 6898-909. Spalding, T. A., E. S. Burstein, et al. (1998). "Identification of a ligand-dependent switch within a muscarinic receptor." J Biol Chem 273(34): 21563-8. Spalding, T. A., E. S. Burstein, et al. (1997). "Constitutive activation of the m5 muscarinic receptor by a series of mutations at the extracellular end of transmembrane 6.

Tseng, C. C. and L. Lin (1997). "A point mutation in the glucose-dependent insulinotropic peptide receptor confers constitutive activity." Biochem Biophys Res Commun 232(1): Biochemistry 36(33): 10109-16.

Wonerow, P., T. Schoneberg, et al. (1998). "Deletions in the third intracellular loop of the thyrotropin receptor. A new mechanism for constitutive activation." J Biol Chem 273(14): 7900-5.

Light Emission Induced by the WT CCK-BR vs. a Constitutively Active Mutant

Figure 2

A Point Mutation Confers Constitutive Activity to the Rat µ Opiod Receptor

Figure 3

Forskolin Stimulated HEK293 Cells Transfected With pcDNA1 and a CRE-luc Construct

Figure 4

The Rat μ Opioid Receptor Signals Through $G\alpha i$

Figure 5

A Point Mutation Confers Constitutive Activity to the Rat μ Opioid Receptor

Figure 6

Target Residues Within Class I GPCRs

Figure 7

for Mutation Induced Constitutive Activity TMD III Asn (-14 from DRY) is a Target

The 'DRY' Motif is a Target for Mutation Induced Constitutive Activity cholecystokinin-A vasopressin-V2 melanocortin-4 adrenergic oxytosin

Figure 9

A Point Mutation Enhances MC-4 Receptor Constitutive Activity

The -13 Position is a Target for Mutation Induced Constitutive Activity

Figure 11

Figure 12


```
1 WDSSAGEGNISDOGDELA.FASOSDA. EGSNIMLSHWDGNOSDPOGPNRTGLOGSESLO
1 WDSSTGEGNISDOGDELA.OASOSDA. EGSNIMLSHWDGNOSDPOGENRTGLOGNDSLO
1 WDSGAVETNASNOGDEFTHES SOSDAPSESSAWNESHLOGNLSDPOGENRYBELGGSDRLO
1 WDSSAAETNASNOGDALAY.SSOSDAPSEGSWANLSHLOGNLSDPOGENRYBELGGSDSLO
1 WDSSADERNASNOGDEFSESSMOSEVESSWANFSHLOGNLSDPOLRNRYBELGGSDSLO
1 WDSSADERNASNOGDEFSESSMOSEVESSWANFSHLOGNLSDPOLRNRYBELGGSDSLO
1 WETS...GNISDFLYPIS....NEVMS....NSSVICRNFSNSTSFLNMNGSSRDSTD
mCRmouse
mORrat
mORbovin
                                 1
mORhuman
mORpig
                                      1 -----MALNSSAEDGA KRIQDD
mORws
                                       1 ------mfsewkismflevredsvpttasfsamlnvtloeftlne.tfacsk
alTA
BK-2
                               58 POTGSPSMITAITIMALYSIVCVVGLPGNPLVMYVIVRYTKMKTATNIYIFNLALADALA
58 POTGSPSMITAITIMALYSIVCVVGLPGNPLVMYVIVRYTKMKTATNIYIFNLALADALA
61 PSAGSPSMITAIIIMALYSIVCVVGLPGNPLVMYVIVRYTKMKTATNIYIFNLALADALA
mORmouse
mORrat
mORbovin
moRhuman 60 PPTGSPSWITAITIWALKSIVCVVGLFGNFLVMYVIVRYTKMKIAINIYIENLALADALA
                                 61 EPTGSPSWITAITIWALYSIVCVVGLEGNELVMYVIVRYTKMKTATNIYIENLALADALA
48 EQDKÜE, WIIAII ITTUYSIVCVVGLWGWVLWMYVIÜRYTKMKTATNIYIENLALADALA
19 EKACRHSYIEVW. IPTLYSIÜEVVGEEGMSLVÜIVIYEYMKÜKTVASWETIMLALADLCE
48 POVEWLGWÜNTÜ. OPPELWVÜEVÜÄTLENI FVÜSVECLHKSSCTVAETYIGMLADADI IL
mORpiq
mORws
ATla
BK-2
mORmouse 118 TSTLPFQSVNYLMG TWPFGNUCKIVISIDYYNWFTSIFTLCTMSVDRYIAVCHPVKAL MORDOVIN 121 TSTLPFQSVNYLMG TWPFGTILCKIVISIDYYNWFTSIFTLCTMSVDRYIAVCHPVKAL
moRhuman 120 TSTLPFQSVNYLMG.TWPFGTILCKLVISIDYYNMFTSIFTLCTMSVDRYLAVCHPVKAL
                           121 TSTLPPOSVNYLMG TWPFGTILCKIVISIDYYNWFTSIFTLCTMSVDRYIAVCHPVKAL

107 TSTLPPOSVNYLMG TWPFGDVYCKIVNSIDYYNWFTSIFTLTTMSTDRYIAVCHPVKAL

78 LLTLPLWAVYTAMEYRWPFGNHLCKIASASVTENDYASTFILTCTSTDRYIATVHPMKSR

107 ACGLPFWATISNNFDWLFGETLCRXVNAIISMNDYSSICFLMLVSTDRYHALVRTMSMG
mORpig
 mORws
 ATla
mORmouse 177 DERTPRNAKI MNVCNWILSSAIGLPVMFWATTKYRC GSIDCTLTFSHPTWYWE MORPAT 177 DERTPRNAKI MNVCNWILSSAIGLPVMFWATTKYRC GSIDCTLTFSHPTWYWE MORPAT 179 DERTPRNAKI MNVCNWILSSAIGLPVMFWATTKYRC GSIDCTLTFSHPTWYWE MORPAT 179 DERTPRNAKI MNVCNWILSSAIGLPVMFWATTKYRC GSIDCTLTFSHPTWYWE MORPAT 180 DERTPRNAKI MNVCNWILSSAIGLPVMFWATTKYRN GSIDCALTFSHPTWYWE MORWS 166 DERTPRNAKI MNVCNWILSSAIGLPVMFWATTKYRN GSIDCALTFSHPTWYWE AT1a 138 LRRIMLVAKVTCTI I WLANGLASLEAVIHRNV YFI ENTNI I TVOAFHYESRNSTLP BK-2 167 RMRGVRWAKLYSLVIWGCTLLISSPMLVFRTMK EYSDEGHNVTACVISYPS LIWE
  mORmouse 230 NLLKICVFIFAFIMPVLIITVCXGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF
  morrat 230 NLLKICVFIFAFIVEVLIIIVCYGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF
morbovin 233 NLLKICVFIFAFIWE
  moRhuman 232 NLLKICVFIFAFIMPVLIITVCYGLMILRIKSVRMLSGSKEKDRNLRRITRMVLVVVAVF
                                 233 NILKICVFIFAFIMPVLIIIVCVGLMILRLKSVRMLSGSKEKDRNLRRITRMVLVVVAVF
                                  226 TILKICYFILAFIYEVLI ITVCYGLMILRLKSVRMLSGSKEKORNLARI TRMVLVVVAVE
193 IGLGTTKNILGFILFFIL ILTSYTLIWKALKKAYEIOKNKPRNOD...IFRILIWAFVLFF
222 VFTNMLINTVGFALE. ISTITFCTMOINOVLRNNEMOKFKEIOTE. RRAIVHVLVVILLIF
  mORpig
   ATla
  mORmouse 290 IVCWTPIHIYVIIKALITI PETTFQTVSWHFCIALGYTNSCLNPVLYAFLDENF MORDOVIN 293 IVCWTPIHIYVIIKALITI PETTFQTVSWHFCIALGYTNSCLNPVLYAFLDENF PETTFQTVSWHFCIALGYTNSCLNPVLYAFLDENF
    mORhuman 292 IVCWTPIHLYVIIKALUTI....PETTFOTVSWHFCIALGYTNSCLNPVLYAFLDENF
                          293 IVCATPIHIVIIKALITI PETTFOTVSWHFCIALGYTNSCLAPVLYAFLDENF
286 IIICATPIHIRVIIKALITI PASLEOTVIWHFCIALGYTNSCLAPVLYAFLDENF
250 FFSWVEHOLETFIDVLIO GVIHDCKI SDIVDTAMPITICTEVENCLAPPLAVELIGKKF
280 IIICAL PFOISTFIDTLHRIGILSSCODERIIDVITQIASFVAYSNSCLAPLAVVIVGKRF
    mORpig
    mORws
    AT1a
    BK-2
                                                                                                                                                                                                                                                                                             SED ID HO!
   mormouse 344 GRCFREFC . IPTSSTIECONSARIRONTREHPSTANTVDRINHOLENLEAETAPLP morrat 344 GRCFREFC . IPTSSTIECONSTRUKONTREHPSTANTVDRINHOLENLEAETAPLP morbovin 347 GRCFREFC . IPTSSTIECONSTRUKONTREHPSTANTVDRINHOLENLEAETAPLP morbig 347 GRCFREFC . IPTSSTIECONSARIRONTREHPSTANTVDRINHOLENLEAETAPLP morws 340 GRCFREFC . IPTSSTIECONSARIR
                                                                                                                                                                                                                                                                      83
                                                                                                                                                                                                                                                                    79
                                                                                                                                                                                                                                                                   84
                                                                                                                                                                                                                                                                   85
                                                                                                                                                                                                                                                                  86
                                                                                                                                                                                                                                                                   87
                                                                                                                                                                                                                                                                     81
```

Figure 13