An Introduction to Finite&Classical Model Theory Exercise List (Last updated 26th February 2023)

by Bartosz Bednarczyk ⊠ 😭 🗓

Week 2 (06.03.2023)

2.1 Warm-Up

Call a formula *finitely satisfiable* if it has a *finite* model.

- ▶ Exercise 2.1. Is it true that every finitely satisfiable formula is also satisfiable? Is it true that every satisfiable formula is also finitely satisfiable?
- ▶ Exercise 2.2. For a finite signature τ show that elementary equivalence of finite structures collapses to isomorphism. More precisely, show that if two finite τ -structures $\mathfrak{A}, \mathfrak{B}$ satisfy precisely the same $\mathsf{FO}[\tau]$ -formulae then \mathfrak{A} and \mathfrak{B} are isomorphic.

Hint: Prove first that one can completely describe a finite structure in FO.

2.2 Around Compactness Theorem

▶ Exercise 2.3. During the lecture we proved that "even" is not definable in $FO[\emptyset]$, i.e. that even is not definable over sets. Explain why such a proof cannot be adapted to the case of finite graphs or finite linear orders.

The monadic fragment MFO of FO is composed of all first-order sentences that employ only unary predicates (and no constant symbols).

- ▶ Exercise 2.4. Show that the is no MFO formula φ employing a unary predicate P for which for all finite \mathfrak{A} we have $\mathfrak{A} \models \varphi$ if and only if $|P^{\mathfrak{A}}| = |A \setminus P^{\mathfrak{A}}|$, i.e. the interpretation of P and its complement are of equal sizes.
- Hint: Adapt the proof of inexpressivity of "even" in FO given during the lecture.
- ▶ Exercise 2.5. Let \mathcal{T} having models of arbitrary large finite sizes (e.g. for each $n \in \mathbb{N}$ there is a model $\mathfrak{A} \models \mathcal{T}$ with $|A| \geq n$). Show that \mathcal{T} has an infinite model.
- ▶ Exercise 2.6. Disprove the following finitary version of Compactness Theorem.
 - "Let \mathcal{T} be an FO theory. If every subset $\mathcal{T}_0 \subseteq \mathcal{T}$ is finitely satisfiable, then \mathcal{T} also is."
- ▶ **Exercise 2.7.** Employ Compactness of FO to show that there is a countable structure that is elementarily equivalent to (\mathbb{Z}, \leq) but non-isomorphic with it.
- Hint: extend the signature with two constant symbols c,d, and consider the theory T of (\mathbb{Z},\leq) together with sentences ϕ_n for $n\in\mathbb{N}$ saying $\phi_n:=\exists x_1\ldots\exists x_n\ c< x_1< x_2<\ldots< x_n< d$.
- ▶ Exercise 2.8. Show that "even" is not definable in finite linear orders, i.e. there is no $FO[\leq]$ formula φ , such that for all finite structures $\mathfrak A$ that interpret \leq as a linear order we have that $\mathfrak A \models \varphi$ if and only if A has even number of elements.

Hint: IMO quite tricky. See Example 0.4.4 in Otto's notes for a sketch of the solution.

2.3 Around the Finite Model Property

We say that L has the Finite Model Property (FMP) if every satisfiable L-formula is also finitely satisfiable. We will give an example of logic with FMP and two logics without it. To do so, let FO^k denote the class of all first-order formulae that employ at most k variables (we stress that re-quantification of variables is possible)! Now show that:

Exercise 2.9. Consider a satisfiable FO^1 formula φ of the following form

$$\bigwedge_{i=1}^{n} \forall x \ \theta_i(x) \wedge \bigwedge_{j=1}^{m} \exists x \ \chi_j(x),$$

where the formulae θ_i, χ_j are quantifier-free. Show that φ has a model of size linear in φ . Remark: The following lemma can be shown: given $\varphi \in \mathsf{FO}^1[\tau]$ one can compute an equisatisfiable formula $\varphi' \in \mathsf{FO}^1[\tau']$ with $\tau \subseteq \tau'$ with a property that any model of φ' is model of φ and any model of φ can be extended (by interpreting predicates from $\tau' \setminus \tau$) to a model of φ' . Hence, we actually proved that FO^1 has FMP.

▶ Exercise 2.10. Show that FO^k for any k > 2 as well as C^2 do not have the Finite Model Property. Here C^2 stands for an extension of FO^2 where in addition to standard quantifiers, we allow for using counting quantifiers $\exists^{\leq k}$ "at most k", $\exists^{\geq k}$ "at least k", and $\exists^{=k}$ "precisely k", for any $k \in \mathbb{N}$ (with their naïve semantics).

Hint: Define infinite words.

Remark: FO² has FMP, which we can it prove later if we have time. The proof isn't obvious.

Recall that a decision problem is *decidable* if there is a computer program that solves it in finite time. Note that there is no restriction on the running time and the memory consumption.

- ▶ Exercise 2.11. In the model checking problem for FO, we ask if an input formula φ is satisfied in an input finite structure \mathfrak{A} . Show that this problem is decidable. Remark: You may assume w.l.o.g. that φ is in prenex normal form.
- ▶ Exercise 2.12. Let L be a syntactic fragment of FO and assume that L enjoys FMP. Prove that the satisfiability problem for L ("given $\varphi \in L$, does it have a model?") is decidable.

Hint: Do not care about the running time of your program. If you struggle too much with a solution, ask Gödel for help.