ъ	with the	the data set predict the following II, Smelly=N	attribute lo}	s X	" for a tes Color=Gree	naive Bayes st sample X en, Legs=2,			
				ole 7b	Smelly	Species			
	Sl. No	Color	Legs	Height	Yes	M			
	1	White	3	Short	No	M			
	2	Green	2	Tall	Yes	M			
	3	Green	3	Short	Yes	M			
	4	White	3	Short	No	H			
	5	Green	2	Short	No	Н			
	6	White	2	Tall		Н			
	7	White	2	Tall	No	Н	8	3	3
	8	White	2	Short	Yes	11			
8 a b	Distinguis i) Hier ii) Exc	the characters the characters the characters the follow rarchical versions were characters were the characters which is the charac	wing types ersus Part	logistic regress of clustering titional apping versu	ng: us Fuzzy	bagging and	9 7	2	2
b c	Describe handled in	how empt	ty cluster clustering	rs, outliers, g algorithm.	centroid	updates are	6 4	1 3	5 3
				OR					
0 a b	dataset? E Explain of validity.	Explain. different c	classificati	ion-oriented	d measures of k-mea	clusters in the	r 5		1 2

4	a	Apply cost-	A* alg effective	orithm to the path to reach 10.1	h from	m the	show e start C	n in Fig 4a to state S to goal	state G.			
				(D)2	E	4	(F)					
				9.2	7.1	TT: - A	3.3			6	3	2
			C	ollowing loca		Fig 4		hms:				
	b	Expla	Simula	ated annealir	ng	u cir .				10	2	5
		ii)	Hill Cli	imbing Searc	ch_							
						nina	attrib	oute test condi	itions with			
5	a	Disc	uss met	hods for ex	pres	Sing	attiri			6	2	1
	b	Eval	iples.	four charact	eristi	ics of	decis	sion tree classif	iers.	4	2	3
	C	Write	e a note	on cross-val	idati	on m	odel e	evaluation tech	nique.	1		
						OF					1	1
											1	1
	а	Expl	ain the	classificatio	n m	odel	select	ion approach	to estimate	8	2	1
		the generalization performance of a model. Consider the training examples shown in Table 6b for a binary										1
	b	Cons	ider the	problem.	amp	лез	3110 111				1	1
		i)	What	is the entrol	py of	this	s colle	ection of training	ng example	5		
		-/-	4 4		- P1 P1 F							
		ii)	What	are the info	orma	tion	gains	of al and a	2 1010111			
		****	these	training exa	mpic	cont	inuou	s attribute, o	compute th	ie		
		iii)		- time gain f	OF OT	PATUI	nossii	ne spiit.				- 1
		iv)	What	is the best	split	(amo	ong a	1, a2, and a3)	according	to		
		2.7	Alam ins	formation as	Strie							
		V)	What	is the best s	split	(bety	veen a	al and a2) acc	ording to ti			
			Gini ir	ndex?		Tabl	e 6b					
				Instance	a1	a2	a3	Target Class				
				listance	T	Т	1.0	+				
				2	T	T	6.0	+				
				3	T	F	5.0					
				4	F	F	4.0	+				
				5	F	T	7.0	-				
				6	F	T	3.0	-	-			
				7	F	F	8.0		1			
				8	T	F	7.0	+	-		8	3
				9	F	T	5.0	-			0	0
100					1.1.1		-1	ifier algorithm	Describ	e ite		+

	Apply BFS method for the following graph shown in fig 1.14 a write order in which vertices are visited.	ınd		1
	A			
	0			
	0 0			
	PART-B		2	3 2
-a	Explain the following agent			
		T	-	-
ъ	Apply the following			
	Apply the following uninformed search strategies for the state in which nodes will be visited. i) Depth-limited.	5	2	2
	TOUCS WIII he most at			
	ii) Iterative deepen with depth limit 3			
	ii) Iterative deepening depth-first search Assume: Root is at depth 0			
	0,		1	
	65 0 0			
c D				
D	Fig 2b riscuss any three properties of task environments.	5	3	1
a E	Cplain alpha-beta - :	6	4	3
to	prune the game tree shown in Fig 3a. Assuming child nodes		-	
COI	nputed at root each int. Show all final alpha and beta value			
pru	ined branches. Also show the pruned branches.			
	aranches.			
	Max			
	W			
	Min - Q			
-	Hax- of			
	7 7 7 9 6			
	MG 0 6 6 6 1			
	鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼鱼			
	国自由自由自由自由自由自由自由自由自由自由自由自由自由自由自由自由自由自由自由			186
Expla	in the theory of an in Fig 3a			120
	Fig 3a in the theory of genetic algorithm with an example.	10	3	3
	OR	6	2	1
		383	136	1
			16	
			100	

USN			0	5	2
			Aug .	- 1	1

RV COLLEGE OF ENGINEERING**

(An Autonomous Institution affiliated to VTU) V Semester B. E. Examinations April/May -2024 Common to CS/IS/AIML

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

 Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

 Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

PART-A

		M	BT	CO	
1.1	agent programs select actions on the basis of the	141	131		1
1.1	current percept, ignoring the rest of the percept history.	1	2	2	1
1.2	Differentiate between episodic agent environment and sequential			464	1
1,2	agent environment.	2	1	1	1
1.3	List the different ways to evaluate the performance of a search	-			
1.0	algorithm.	1	1	2	1
1.4	Iterative deepening algorithm is a combination of and				
1.1	algorithms.	1	2	5	
1.5	algorithm is a local search algorithm that moves				
1.0	continuously upward (increasing) until the best solution is				
	attained.	1	1	1	
1.6	Differentiate between informed search and uninformed search				
	algorithms.	2	2	3	
1.7	How classification model can be used as predictive and				
	descriptive model?	2	2	5	
1.8	Entropy value of represents that the data sample is				
	pure and entropy value of represents that the data				
	sample has a 50 - 50 split belonging to two categories.	1	1	2	
1.9	What is the time complexity of the K-means clustering algorithm?	1	1	3	
1.10	The value of the silhouette coefficient can vary between				
	and	1	3	1	
1.11	algorithm combines the predictions made by multiple				
4.44	decision trees, where each tree is generated based on the values				
	of an independent set of random vectors.	1	2	5	
1.12	Differentiate between the pre-pruning and post-pruning				
1.12	strategies for decision tree induction.	2	1	2	
1 12	Mention two reasons for model over fitting.	2	2	1	