Current-Saving Match-Line Sensing Scheme for Content Addressable Memories

Igor Arsovski and Ali Sheikholeslami

Electrical and Computer Engineering Department
University of Toronto

February 12, 2003

Motivation

CAMs search entire memory contents within a single clock cycle

- Problem: CAMs parallel search causes high power dissipation.
- **Solution:** Proposed scheme reduces power by 60% without sacrificing search speed.

Basic CAM operation

- Search data is applied to Search-Lines (SL)s in parallel
- Search results develop on Match-Lines (ML)s in parallel

Conventional ML Sensing

- Reset SLs to GND
- Precharge MLs to VDD
- Apply Search Data to SLs
- Mismatched MLs discharge to GND
- Matched MLs remain at VDD

Improved ML Sensing Schemes

Conventional ML Sensing Scheme

Current-Race ML Sensing Scheme

Current-Saving ML Sensing Scheme

Current-Race ML Sensing Scheme

- Reset MLs to GND, then use equal currents to charge them up.
- Matches (ML0) ramp up faster then x-bit mismatches (MLx)
- The current-race stops when matched DML reaches Vtn.
- JSSC publication (January 2003)

Current Saving Idea

Current-Race ML Sensing Schemes

 Uniform power consumption on all MLs regardless of the number of mismatches. (i.e. same power for ML10 and ML1)

Current Saving ML Sensing Scheme

 Dynamically allocate less power to more mismatched MLs (i.e. less power for ML10 then ML1)

Dynamic Current Allocation

- Initial uniform current results in different voltages on MLs
- Voltages are then used to dynamically reduce current
- Hence, Save Power!!!

Current-Saving ML Sensing Scheme

- Allocate current based on individual ML voltage (V_{ML})
- Dynamically allocate less current to slower rising MLs
- Matched MLs ramp fastest and receive most current
- Mismatched MLs ramp slower and receive less current

Current Saving Control

- VAR node controls the ML current (I_{MI})
- VAR node is pulled up by I_{Th} or pulled down by I_{sink}
- I_{sink} is proportional to the ML voltage

Simulation Results

- VAR node precharged low to kick-start sensing.
- Initially, all MLs receive identical currents.
- The fully matched ML (ML0) rises faster and lowers VAR0
- The one-bit mismatched ML (ML1) rises slower increasing VAR1

Simulation Results: Current Saving

- Initially all MLs receive identical currents (I_{ML0},.I_{ML7})
- MLs with more mismatches receive less current
- MLs with seven or more bit mismatches receive similar reduction in current.

Simulation Results: Energy Saving

ML Sensing Schemes

Process Variation Sensitivity

Worst case process variations:

- DML is faster than other matches causing matches to look like misses
- DML is slower than other misses causing misses to look like matches

Process Variation Sensitivity

one-bit miss (fast mismatch)

Process Sensitivity Test:

- Full match (ML0) compared to fast-mismatched 1-bit miss (ML1f)
- Fast mismatch has 20% lower capacitance and 20% larger current source

Voltage Development on ML0 and ML1f

- Initially ML1f develops higher voltage
- Current sunk from ML1f slows down its ramping
- 160mV ML voltage difference at sense time

CAM Test Chip

Specifications:

- 1.2V supply
- 0.13µm CMOS process
- 1600μm x 1800μm

Current Saving Sensing:

Area Overhead < 1%

Current-Saving Scheme Summary

The proposed scheme dynamically allocates power to achieve:

- 60% power reduction
- 2 ns match-time on a 144 bit (ternary) word
- Robust implementation insensitive to process variations