$12n_{0184} \ (K12n_{0184})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -4.91771 \times 10^{36} u^{41} - 1.79820 \times 10^{38} u^{40} + \dots + 2.88772 \times 10^{39} b + 4.22720 \times 10^{39}, \\ &9.16076 \times 10^{39} u^{41} - 6.73128 \times 10^{39} u^{40} + \dots + 4.90913 \times 10^{40} a + 8.21058 \times 10^{40}, \ u^{42} - 2u^{41} + \dots + 16u - 12u^2 \\ &= \langle b + 1, \ -2u^8 + u^7 + 5u^6 - 3u^5 - 4u^4 + 3u^3 - 2u^2 + a + 2, \ u^9 - u^8 - 2u^7 + 3u^6 + u^5 - 3u^4 + 2u^3 - u + 1 \rangle \\ &I_3^u &= \langle 33u^3a^2 - 5a^2u^2 - 4u^3a - 30a^2u + 106u^2a + 89u^3 - 19a^2 + 7au + 28u^2 + 185b - 19a - 54u - 160, \\ &- a^2u^2 - 5u^3a + a^3 + 3a^2u + 4u^2a - a^2 + 4au + 6u^2 - a - u + 1, \ u^4 - u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 63 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4.92 \times 10^{36} u^{41} - 1.80 \times 10^{38} u^{40} + \cdots + 2.89 \times 10^{39} b + 4.23 \times 10^{39}, \ 9.16 \times 10^{39} u^{41} - 6.73 \times 10^{39} u^{40} + \cdots + 4.91 \times 10^{40} a + 8.21 \times 10^{40}, \ u^{42} - 2u^{41} + \cdots + 16u - 17 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.186607u^{41} + 0.137118u^{40} + \dots + 5.29366u - 1.67251 \\ 0.00170297u^{41} + 0.0622705u^{40} + \dots - 0.201147u - 1.46385 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.184904u^{41} + 0.199388u^{40} + \dots + 5.09252u - 3.13636 \\ 0.00170297u^{41} + 0.0622705u^{40} + \dots - 0.201147u - 1.46385 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0588482u^{41} - 0.261568u^{40} + \dots + 3.71273u + 4.22681 \\ 0.266107u^{41} - 0.115441u^{40} + \dots - 1.21463u + 2.00517 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0875371u^{41} - 0.115951u^{40} + \dots + 5.83351u + 3.00873 \\ 0.0353514u^{41} - 0.0574630u^{40} + \dots - 0.374380u - 0.0632026 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} \\ 0.687055u^{41} - 0.666732u^{40} + \dots + 2.54867u - 8.20884 \\ 0.687055u^{41} - 0.666732u^{40} + \dots - 0.496210u + 10.8635 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.589024u^{41} - 0.658891u^{40} + \dots + 2.42549u + 11.2674 \\ 0.0500035u^{41} + 0.0678910u^{40} + \dots + 1.20598u - 1.53919 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $1.57605u^{41} 2.80061u^{40} + \cdots + 23.4107u + 46.2988$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{42} + 2u^{41} + \dots + 24u + 1$
c_2, c_4	$u^{42} - 14u^{41} + \dots + 12u - 1$
c_3, c_7	$u^{42} - u^{41} + \dots + 5632u + 512$
c_5,c_9	$u^{42} - 2u^{41} + \dots + 16u - 17$
c_6, c_{11}	$u^{42} - 2u^{41} + \dots - 70u - 49$
c ₈	$u^{42} - 6u^{41} + \dots - 2688u + 2567$
c_{10}	$u^{42} - 28u^{41} + \dots + 1206u + 289$
c_{12}	$u^{42} + 6u^{41} + \dots + 26460u + 2401$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{42} + 90y^{41} + \dots + 1420y + 1$
c_2, c_4	$y^{42} - 2y^{41} + \dots - 24y + 1$
c_3, c_7	$y^{42} - 69y^{41} + \dots - 17301504y + 262144$
c_5,c_9	$y^{42} - 28y^{41} + \dots + 1206y + 289$
c_6, c_{11}	$y^{42} + 6y^{41} + \dots + 26460y + 2401$
<i>c</i> ₈	$y^{42} + 68y^{41} + \dots + 1240622y + 6589489$
c_{10}	$y^{42} - 20y^{41} + \dots - 5069826y + 83521$
c_{12}	$y^{42} + 74y^{41} + \dots - 29647548y + 5764801$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.961799 + 0.311389I		
a = 2.02690 - 2.18124I	-1.72797 - 1.37637I	4.55612 - 0.38965I
b = -0.464784 + 0.408421I		
u = -0.961799 - 0.311389I		
a = 2.02690 + 2.18124I	-1.72797 + 1.37637I	4.55612 + 0.38965I
b = -0.464784 - 0.408421I		
u = -0.829534 + 0.589200I		
a = 0.947623 + 0.399065I	-1.74074 - 2.33828I	4.84594 + 5.31700I
b = -0.343165 - 0.102736I		
u = -0.829534 - 0.589200I		
a = 0.947623 - 0.399065I	-1.74074 + 2.33828I	4.84594 - 5.31700I
b = -0.343165 + 0.102736I		
u = 0.944203 + 0.228207I		
a = -0.16949 + 2.29855I	2.48881 + 3.70265I	6.29949 - 2.05838I
b = 0.993256 - 0.666835I		
u = 0.944203 - 0.228207I		
a = -0.16949 - 2.29855I	2.48881 - 3.70265I	6.29949 + 2.05838I
b = 0.993256 + 0.666835I		
u = 0.835994 + 0.489683I		
a = -3.35442 + 8.86991I	-3.34089 + 2.03680I	95.8127 + 26.5459I
b = -1.016890 + 0.004699I		
u = 0.835994 - 0.489683I		
a = -3.35442 - 8.86991I	-3.34089 - 2.03680I	95.8127 - 26.5459I
b = -1.016890 - 0.004699I		
u = 0.965269 + 0.439008I		
a = -0.983823 - 0.359781I	2.81421 - 1.00795I	8.57321 + 1.27913I
b = 0.899894 + 0.651256I		
u = 0.965269 - 0.439008I		
a = -0.983823 + 0.359781I	2.81421 + 1.00795I	8.57321 - 1.27913I
b = 0.899894 - 0.651256I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.726987 + 0.560951I	,	
a = 0.802280 + 0.067898I	-1.85016 - 2.19168I	2.73443 + 3.94919I
b = 0.101623 + 0.134205I		
u = -0.726987 - 0.560951I		
a = 0.802280 - 0.067898I	-1.85016 + 2.19168I	2.73443 - 3.94919I
b = 0.101623 - 0.134205I		
u = 0.205294 + 1.093670I		
a = -0.50667 - 1.38304I	11.4259 - 8.4418I	2.24860 + 3.75985I
b = 1.23869 + 1.08212I		
u = 0.205294 - 1.093670I		
a = -0.50667 + 1.38304I	11.4259 + 8.4418I	2.24860 - 3.75985I
b = 1.23869 - 1.08212I		
u = 0.053594 + 1.137510I		
a = -0.59511 + 1.46169I	12.15940 + 0.20639I	3.10494 - 0.07106I
b = 1.05760 - 1.28040I		
u = 0.053594 - 1.137510I		
a = -0.59511 - 1.46169I	12.15940 - 0.20639I	3.10494 + 0.07106I
b = 1.05760 + 1.28040I		
u = 0.232942 + 0.816588I		
a = 0.184697 - 0.861641I	1.95152 + 0.96411I	4.49813 - 1.84965I
b = 0.151638 + 0.884654I		
u = 0.232942 - 0.816588I		
a = 0.184697 + 0.861641I	1.95152 - 0.96411I	4.49813 + 1.84965I
b = 0.151638 - 0.884654I		
u = -1.18461		
a = 1.51253	0.934538	7.24150
b = -1.40973		
u = -1.126130 + 0.490429I		
a = -0.039913 - 1.285050I	2.33209 - 7.91667I	6.88839 + 11.06602I
b = 0.828323 + 0.354167I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.126130 - 0.490429I		
a = -0.039913 + 1.285050I	2.33209 + 7.91667I	6.88839 - 11.06602I
b = 0.828323 - 0.354167I		
u = 1.259460 + 0.006196I		
a = -0.97423 - 2.37844I	4.47907 - 1.92884I	6.47929 + 1.71581I
b = 0.506833 + 1.138780I		
u = 1.259460 - 0.006196I		
a = -0.97423 + 2.37844I	4.47907 + 1.92884I	6.47929 - 1.71581I
b = 0.506833 - 1.138780I		
u = 1.072950 + 0.670917I		
a = 0.45051 + 1.91983I	4.15910 + 4.29767I	6.40450 - 3.97494I
b = 0.590513 - 1.035150I		
u = 1.072950 - 0.670917I		
a = 0.45051 - 1.91983I	4.15910 - 4.29767I	6.40450 + 3.97494I
b = 0.590513 + 1.035150I		
u = 1.254550 + 0.204489I		
a = 1.39168 - 2.27514I	2.23820 + 2.99548I	5.68648 - 2.96480I
b = -1.145780 + 0.655072I		
u = 1.254550 - 0.204489I		
a = 1.39168 + 2.27514I	2.23820 - 2.99548I	5.68648 + 2.96480I
b = -1.145780 - 0.655072I		
u = -0.274846 + 0.651125I		
a = 0.435590 + 0.051488I	-0.15519 + 3.49196I	2.75035 - 5.76254I
b = 0.661252 - 0.443712I		_
u = -0.274846 - 0.651125I		
a = 0.435590 - 0.051488I	-0.15519 - 3.49196I	2.75035 + 5.76254I
b = 0.661252 + 0.443712I		
u = 0.698771		
a = 0.544644	0.929263	11.4390
b = 0.196513		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.360000 + 0.378690I		
a = -0.10332 + 2.56500I	6.81382 - 5.26231I	0
b = -0.202310 - 1.252300I		
u = -1.360000 - 0.378690I		
a = -0.10332 - 2.56500I	6.81382 + 5.26231I	0
b = -0.202310 + 1.252300I		
u = 1.29496 + 0.63382I		
a = -0.59935 + 2.83045I	14.7912 + 14.5915I	0
b = 1.31294 - 0.99932I		
u = 1.29496 - 0.63382I		
a = -0.59935 - 2.83045I	14.7912 - 14.5915I	0
b = 1.31294 + 0.99932I		
u = 1.38494 + 0.58465I		
a = -1.93831 - 1.93197I	16.3124 + 5.9260I	0
b = 0.92670 + 1.41166I		
u = 1.38494 - 0.58465I		
a = -1.93831 + 1.93197I	16.3124 - 5.9260I	0
b = 0.92670 - 1.41166I		
u = -1.42037 + 0.52003I		
a = -0.95320 - 2.91761I	16.8335 - 6.1018I	0
b = 1.24919 + 1.24050I		
u = -1.42037 - 0.52003I		
a = -0.95320 + 2.91761I	16.8335 + 6.1018I	0
b = 1.24919 - 1.24050I		
u = -1.46489 + 0.38079I		
a = -2.05057 + 2.08335I	16.9282 + 3.1689I	0
b = 1.22965 - 1.27108I		
u = -1.46489 - 0.38079I		
a = -2.05057 - 2.08335I	16.9282 - 3.1689I	0
b = 1.22965 + 1.27108I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.096688 + 0.349533I		
a = -0.82299 + 1.83040I	-1.74611 - 0.73385I	-3.54446 + 0.56735I
b = -0.968549 - 0.219170I		
u = -0.096688 - 0.349533I		
a = -0.82299 - 1.83040I	-1.74611 + 0.73385I	-3.54446 - 0.56735I
b = -0.968549 + 0.219170I		

$$I_2^u = \langle b+1, \ -2u^8+u^7+\dots+a+2, \ u^9-u^8-2u^7+3u^6+u^5-3u^4+2u^3-u+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{8} - u^{7} - 5u^{6} + 3u^{5} + 4u^{4} - 3u^{3} + 2u^{2} - 2 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{8} - u^{7} - 5u^{6} + 3u^{5} + 4u^{4} - 3u^{3} + 2u^{2} - 3 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{8} - u^{7} - 5u^{6} + 3u^{5} + 4u^{4} - 3u^{3} + 2u^{2} - 2 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{6} + u^{4} - 1 \\ u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-6u^8 5u^7 + 10u^6 + 8u^5 10u^4 8u^3 4u^2 8u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^9$
c_{3}, c_{7}	u^9
<i>C</i> ₄	$(u+1)^9$
<i>C</i> ₅	$u^9 - u^8 - 2u^7 + 3u^6 + u^5 - 3u^4 + 2u^3 - u + 1$
c_6	$u^9 - u^8 + 2u^7 - u^6 + 3u^5 - u^4 + 2u^3 + u + 1$
c_8, c_{12}	$u^{9} + 3u^{8} + 8u^{7} + 13u^{6} + 17u^{5} + 17u^{4} + 12u^{3} + 6u^{2} + u - 1$
<i>c</i> ₉	$u^9 + u^8 - 2u^7 - 3u^6 + u^5 + 3u^4 + 2u^3 - u - 1$
c_{10}	$u^9 - 5u^8 + 12u^7 - 15u^6 + 9u^5 + u^4 - 4u^3 + 2u^2 + u - 1$
c_{11}	$u^9 + u^8 + 2u^7 + u^6 + 3u^5 + u^4 + 2u^3 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^9$
c_3, c_7	y^9
c_5, c_9	$y^9 - 5y^8 + 12y^7 - 15y^6 + 9y^5 + y^4 - 4y^3 + 2y^2 + y - 1$
c_6, c_{11}	$y^9 + 3y^8 + 8y^7 + 13y^6 + 17y^5 + 17y^4 + 12y^3 + 6y^2 + y - 1$
c_8, c_{12}	$y^9 + 7y^8 + 20y^7 + 25y^6 + 5y^5 - 15y^4 + 22y^2 + 13y - 1$
c_{10}	$y^9 - y^8 + 12y^7 - 7y^6 + 37y^5 + y^4 - 10y^2 + 5y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.772920 + 0.510351I		
a = -1.67861 + 2.31573I	-3.42837 + 2.09337I	-12.6725 - 14.2088I
b = -1.00000		
u = 0.772920 - 0.510351I		
a = -1.67861 - 2.31573I	-3.42837 - 2.09337I	-12.6725 + 14.2088I
b = -1.00000		
u = -0.825933		
a = 0.871015	-0.446489	1.84400
b = -1.00000		
u = -1.173910 + 0.391555I		
a = 0.893484 + 0.630694I	2.72642 - 1.33617I	6.61905 + 0.64999I
b = -1.00000		
u = -1.173910 - 0.391555I		
a = 0.893484 - 0.630694I	2.72642 + 1.33617I	6.61905 - 0.64999I
b = -1.00000		
u = 0.141484 + 0.739668I		
a = -0.309843 + 0.043204I	-1.02799 - 2.45442I	-0.10038 + 1.90984I
b = -1.00000		
u = 0.141484 - 0.739668I		
a = -0.309843 - 0.043204I	-1.02799 + 2.45442I	-0.10038 - 1.90984I
b = -1.00000		
u = 1.172470 + 0.500383I		
a = 0.659464 - 0.874093I	1.95319 + 7.08493I	3.23178 - 2.93209I
b = -1.00000		
u = 1.172470 - 0.500383I		
a = 0.659464 + 0.874093I	1.95319 - 7.08493I	3.23178 + 2.93209I
b = -1.00000		

$$III. \\ I_3^u = \langle 33u^3a^2 - 4u^3a + \dots - 19a - 160, \ -a^2u^2 - 5u^3a + \dots - a + 1, \ u^4 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.178378a^{2}u^{3} + 0.0216216au^{3} + \dots + 0.102703a + 0.864865 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.178378a^{2}u^{3} + 0.0216216au^{3} + \dots + 1.10270a + 0.864865 \\ -0.178378a^{2}u^{3} + 0.0216216au^{3} + \dots + 0.102703a + 0.864865 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.156757a^{2}u^{3} - 0.0432432au^{3} + \dots - 0.00540541a - 1.32973 \\ -0.232432a^{2}u^{3} - 0.632432au^{3} + \dots - 0.0540541a + 2.10270 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{5}u^{3}a^{2} - \frac{3}{5}u^{3}a + \dots - \frac{3}{5}a + 1 \\ -0.0540541a^{2}u^{3} - 0.654054au^{3} + \dots - 0.156757a + 0.237838 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.340541a^{2}u^{3} - 0.0594595au^{3} + \dots - 0.632432a + 0.421622 \\ -0.194595a^{2}u^{3} + 0.00540541au^{3} + \dots + 0.675676a + 1.01622 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.156757a^{2}u^{3} - 0.0432432au^{3} + \dots - 0.00540541a - 1.32973 \\ -0.232432a^{2}u^{3} - 0.632432au^{3} + \dots - 0.00540541a + 2.10270 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{132}{185}u^3a^2 + \frac{4}{37}a^2u^2 + \frac{16}{185}u^3a + \frac{24}{37}a^2u - \frac{424}{185}u^2a - \frac{356}{185}u^3 + \frac{76}{185}a^2 - \frac{28}{185}au - \frac{852}{185}u^2 + \frac{76}{185}a + \frac{216}{185}u + \frac{128}{37}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^3 - u^2 + 2u - 1)^4$
c_2	$(u^3 + u^2 - 1)^4$
c_3, c_7	$(u^6 - 3u^4 + 2u^2 + 1)^2$
c_4	$(u^3 - u^2 + 1)^4$
c_5, c_8, c_9	$(u^4 - u^2 + 1)^3$
c_6, c_{11}	$(u^2+1)^6$
c_{10}	$(u^2 - u + 1)^6$
c_{12}	$(u+1)^{12}$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^3 + 3y^2 + 2y - 1)^4$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^4$
c_3, c_7	$(y^3 - 3y^2 + 2y + 1)^4$
c_5, c_8, c_9	$(y^2 - y + 1)^6$
c_6, c_{11}	$(y+1)^{12}$
c_{10}	$(y^2 + y + 1)^6$
c_{12}	$(y-1)^{12}$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.866025 + 0.500000I		
a = -0.972493 - 1.013180I	1.37919 - 0.79824I	1.50976 - 0.48465I
b = 0.877439 + 0.744862I		
u = 0.866025 + 0.500000I		
a = 0.11905 - 1.81610I	-2.75839 + 2.02988I	-5.01951 - 3.46410I
b = -0.754878		
u = 0.866025 + 0.500000I		
a = -0.24463 + 2.19530I	1.37919 + 4.85801I	1.50976 - 6.44355I
b = 0.877439 - 0.744862I		
u = 0.866025 - 0.500000I		
a = -0.972493 + 1.013180I	1.37919 + 0.79824I	1.50976 + 0.48465I
b = 0.877439 - 0.744862I		
u = 0.866025 - 0.500000I		
a = 0.11905 + 1.81610I	-2.75839 - 2.02988I	-5.01951 + 3.46410I
b = -0.754878		
u = 0.866025 - 0.500000I		
a = -0.24463 - 2.19530I	1.37919 - 4.85801I	1.50976 + 6.44355I
b = 0.877439 + 0.744862I		
u = -0.866025 + 0.500000I		
a = -0.949962 - 0.298361I	1.37919 + 0.79824I	1.50976 + 0.48465I
b = 0.877439 - 0.744862I		
u = -0.866025 + 0.500000I		
a = 0.90246 - 1.55905I	1.37919 - 4.85801I	1.50976 + 6.44355I
b = 0.877439 + 0.744862I		
u = -0.866025 + 0.500000I		
a = 4.14558 - 0.50862I	-2.75839 - 2.02988I	-5.01951 + 3.46410I
b = -0.754878		
u = -0.866025 - 0.500000I		
a = -0.949962 + 0.298361I	1.37919 - 0.79824I	1.50976 - 0.48465I
b = 0.877439 + 0.744862I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.866025 - 0.500000I		
a = 0.90246 + 1.55905I	1.37919 + 4.85801I	1.50976 - 6.44355I
b = 0.877439 - 0.744862I		
u = -0.866025 - 0.500000I		
a = 4.14558 + 0.50862I	-2.75839 + 2.02988I	-5.01951 - 3.46410I
b = -0.754878		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^9)(u^3-u^2+2u-1)^4(u^{42}+2u^{41}+\cdots+24u+1)$
c_2	$((u-1)^9)(u^3+u^2-1)^4(u^{42}-14u^{41}+\cdots+12u-1)$
c_3, c_7	$u^{9}(u^{6} - 3u^{4} + 2u^{2} + 1)^{2}(u^{42} - u^{41} + \dots + 5632u + 512)$
C4	$((u+1)^9)(u^3-u^2+1)^4(u^{42}-14u^{41}+\cdots+12u-1)$
<i>C</i> 5	$(u^4 - u^2 + 1)^3(u^9 - u^8 - 2u^7 + 3u^6 + u^5 - 3u^4 + 2u^3 - u + 1)$ $\cdot (u^{42} - 2u^{41} + \dots + 16u - 17)$
c_6	$(u^{2}+1)^{6}(u^{9}-u^{8}+2u^{7}-u^{6}+3u^{5}-u^{4}+2u^{3}+u+1)$ $\cdot (u^{42}-2u^{41}+\cdots-70u-49)$
c ₈	$(u^4 - u^2 + 1)^3$ $\cdot (u^9 + 3u^8 + 8u^7 + 13u^6 + 17u^5 + 17u^4 + 12u^3 + 6u^2 + u - 1)$ $\cdot (u^{42} - 6u^{41} + \dots - 2688u + 2567)$
<i>c</i> ₉	$(u^{4} - u^{2} + 1)^{3}(u^{9} + u^{8} - 2u^{7} - 3u^{6} + u^{5} + 3u^{4} + 2u^{3} - u - 1)$ $\cdot (u^{42} - 2u^{41} + \dots + 16u - 17)$
c_{10}	$((u^{2} - u + 1)^{6})(u^{9} - 5u^{8} + \dots + u - 1)$ $\cdot (u^{42} - 28u^{41} + \dots + 1206u + 289)$
c_{11}	$(u^{2}+1)^{6}(u^{9}+u^{8}+2u^{7}+u^{6}+3u^{5}+u^{4}+2u^{3}+u-1)$ $\cdot (u^{42}-2u^{41}+\cdots-70u-49)$
c_{12}	$((u+1)^{12})(u^9 + 3u^8 + \dots + u - 1)$ $\cdot (u^{42} + 6u^{41} + \dots + 26460u + 2401)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^9)(y^3+3y^2+2y-1)^4(y^{42}+90y^{41}+\cdots+1420y+1)$
c_2, c_4	$((y-1)^9)(y^3-y^2+2y-1)^4(y^{42}-2y^{41}+\cdots-24y+1)$
c_3, c_7	$y^{9}(y^{3} - 3y^{2} + 2y + 1)^{4}(y^{42} - 69y^{41} + \dots - 1.73015 \times 10^{7}y + 262144)$
c_5,c_9	$((y^{2} - y + 1)^{6})(y^{9} - 5y^{8} + \dots + y - 1)$ $\cdot (y^{42} - 28y^{41} + \dots + 1206y + 289)$
c_6, c_{11}	$((y+1)^{12})(y^9 + 3y^8 + \dots + y - 1)$ $\cdot (y^{42} + 6y^{41} + \dots + 26460y + 2401)$
c ₈	$((y^{2} - y + 1)^{6})(y^{9} + 7y^{8} + \dots + 13y - 1)$ $\cdot (y^{42} + 68y^{41} + \dots + 1240622y + 6589489)$
c_{10}	$(y^{2} + y + 1)^{6}(y^{9} - y^{8} + 12y^{7} - 7y^{6} + 37y^{5} + y^{4} - 10y^{2} + 5y - 1)$ $\cdot (y^{42} - 20y^{41} + \dots - 5069826y + 83521)$
c_{12}	$(y-1)^{12}(y^9 + 7y^8 + 20y^7 + 25y^6 + 5y^5 - 15y^4 + 22y^2 + 13y - 1)$ $\cdot (y^{42} + 74y^{41} + \dots - 29647548y + 5764801)$