Math Review: Topology of \mathbb{R}^N

Jianan Yang

Peking University

February 27, 2025

Overview

- 1. Metric Spaces
- 2. Convergence of sequences
- 3. Topological properties
- 4. Continuous functions

Definition of a Metric

Definition

Let X be a set. A function $d: X \times X \to \mathbb{R}$ is called a **metric** (or **distance**) if:

- 1. (positivity) $d(x, y) \ge 0$ for all $x, y \in X$, and d(x, y) = 0 if and only if x = y
- 2. (symmetry) d(x, y) = d(y, x) for all $x, y \in X$
- 3. (triangle inequality) $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$

A set X together with a metric d is called a **metric space**, denoted by (X, d).

Common Metrics in \mathbb{R}^N

Examples of metrics in \mathbb{R}^N :

• Euclidean distance:

$$d(x,y) = ||x-y|| = \sqrt{\sum_{n=1}^{N} (x_n - y_n)^2}$$

• L^p distance (for $p \ge 1$):

$$d(x,y) = \left(\sum_{n=1}^{N} |x_n - y_n|^p\right)^{\frac{1}{p}}$$

• **Sup norm** (when $p = \infty$):

$$d(x,y) = \max_{n} |x_n - y_n|$$

Definition of Convergent Sequences

Definition

Let (X, d) be a metric space and $\{x_k\}_{k=1}^{\infty} \subset X$ be a sequence. We say that $\{x_k\}_{k=1}^{\infty}$ converges to $x \in X$, denoted by $x_k \to x$ or $\lim_{k \to \infty} x_k = x$, if:

A sequence that converges to some point is called a **convergent sequence**; otherwise, it is a **divergent sequence**.

Definition of Bounded Sequences

Definition

A sequence $\{x_k\}_{k=1}^{\infty}$ is **bounded** if:

When metric is defined by Euclidean distance in \mathbb{R}^N :

Cauchy Sequences and Complete Metric Spaces

Cauchy Sequence:

Let (X, d) be a metric space and $\{x_k\}_{k=1}^{\infty} \subset X$. The sequence $\{x_k\}_{k=1}^{\infty}$ is called a **Cauchy sequence** if:

Complete Metric Space:

A metric space (X, d) is complete if every Cauchy sequence in X converges to a point in X.

Theorem

Any convergent sequence in a metric space (X, d) is necessarily a Cauchy sequence.

Example: Cauchy Sequence Not Convergent in Q

Consider the metric space (Q, α) of rational numbers with the metric $\alpha(x, y) = |x - y|$. **Fibonacci Sequence:**

Let $\{F_k\}$ be the Fibonacci sequence defined by:

$$F_0 = 0, F_1 = 1, F_{k+1} = F_k + F_{k-1}$$
 for $k \ge 1$

A Special Sequence:

Define $a_k = \frac{F_{k+1}}{F_k}$ for $k \ge 1$.

Key Properties:

- $\{a_k\}$ is a Cauchy sequence in (Q, α)
- However, $\{a_k\}$ does not converge in (Q, α)

Properties of Convergent Sequences in $\mathbb R$

Consider \mathbb{R} with the Euclidean metric. Let $\{x_k\}$ and $\{y_k\}$ be two sequences:

- 1. Preservation of Addition/Subtraction:
- 2. Preservation of Multiplication:
- 3. Preservation of Division:
- 4. Preservation of Inequality:

Properties of Sequences in \mathbb{R}^N

Proposition A convergent sequence is bounded.

Proof.

Properties of Sequences in \mathbb{R}^N

Subsequences:

• The sequence $\{x_{k_l}\}_{l=1}^{\infty}$ is a subsequence of $\{x_k\}_{k=1}^{\infty}$ if:

$$k_1 < k_2 < \cdots < k_l < \cdots$$

Proposition: If $x_k \to x$ and $\{x_{k_l}\}_{l=1}^{\infty}$ is a subsequence of $\{x_k\}_{k=1}^{\infty}$, then $x_{k_l} \to x$.

• In other words: subsequences of a convergent sequence converge to the same limit

Limit Superior and Limit Inferior

For a real sequence $\{x_k\} \subset \mathbb{R}$, define:

- $\alpha_I = \sup_{k>I} x_k$ (decreasing sequence)
- $\beta_I = \inf_{k \ge I} x_k$ (increasing sequence)

These sequences have limits $\alpha, \beta \in [-\infty, \infty]$:

$$\limsup_{k \to \infty} x_k := \alpha = \lim_{k \to \infty} x_k := \beta = 0$$

These are called the *limit superior* and *limit inferior* of $\{x_k\}$.

Open and Closed Balls in Metric Spaces

Definition

In a metric space (X, d), we denote by $B_r(x)$ the **open ball** with center $x \in X$ and radius r > 0, i.e.,

We denote by $C_r(x)$ the **closed ball** with center $x \in X$ and radius r > 0, i.e.,

Open and Closed Sets in Metric Spaces

Definition

Let (X, d) be a metric space.

• A set $A \subseteq X$ is **open** if

• A set $A \subseteq X$ is **closed** if its complement A^c is open, i.e.,

Properties of Open and Closed Sets

Let (X, d) be a metric space, and A be a collection of subsets of X.

- 1. For open sets:
 - Arbitrary union: If $A_{\alpha} \in \mathcal{A}$ is open $\forall \alpha \in I$, then $\bigcup_{\alpha \in I} A_{\alpha}$ is open.
 - Finite intersection: If $A_1, A_2, \ldots, A_n \in \mathcal{A}$ are open, then $\bigcap_{i=1}^n A_i$ is open.
- 2. For closed sets:
 - Arbitrary intersection: If $A_{\alpha} \in \mathcal{A}$ is closed $\forall \alpha \in I$, then $\bigcap_{\alpha \in I} A_{\alpha}$ is closed.
 - Finite union: If $A_1, A_2, \dots, A_n \in \mathcal{A}$ are closed, then $\bigcup_{i=1}^m A_i$ is closed.

Interior, Closure, and Boundary of Sets

For any set A in a metric space, there exists a smallest closed set containing A and a largest open set contained in A.

Definitions:

• The **interior** of set A is defined as:

$$int(A) =$$

• The **closure** of set *A* is defined as:

$$\overline{A} =$$

• The **boundary** of set *A* is defined as:

$$\partial A =$$

Characterization of Open and Closed Sets

Theorem

- A set is closed if and only if $A = \overline{A}$
- A set is open if and only if A = int(A)

Bounded Sets and Compact Sets in \mathbb{R}^N

Bounded Sets:

• $A \subset \mathbb{R}^N$ is bounded if

Compact Sets:

• $K \subset \mathbb{R}^N$ is compact if:

Heine-Borel Theorem

Theorem (Heine-Borel)

A set $K \subset \mathbb{R}^N$ is compact if and only if it is closed and bounded.

This provides a simple characterization of compact sets in \mathbb{R}^N

Cluster Points in Metric Spaces

Definition

Let (X, d) be a metric space, $E \subset X$, and $\bar{x} \in X$. \bar{x} is called a **cluster point** of E if:

Equivalently:

Example

- If $X = \mathbb{R}^n$ and E is an open subset of \mathbb{R}^n , then every point in E is a cluster point of E.
- If $X = \mathbb{R}$ and E = (0,1), then every point in [0,1] is a cluster point of E.

Limits of Functions at Cluster Points

Definition

Let (X, d) and (Y, ρ) be metric spaces, $E \subseteq X$, $f: E \to Y$, and \bar{x} be a cluster point of E. We say $\lim_{x \to \bar{x}} f(x) = y$ for some $y \in Y$ if:

Equivalently, using neighborhoods:

Then y is called the **limit** of function f at \bar{x}

Properties of Limits in Metric Spaces

Let (X, d) and (Y, ρ) be metric spaces, $f: X \to Y$, and \bar{x} be a cluster point of X. Then:

- 1. $\lim_{x\to \bar{x}} f(x) = y$ if and only if for every sequence $\{x_k\}$ such that $x_k \to \bar{x}$ and $x_k \neq \bar{x}$ for all k, we have $f(x_k) \to y$
- 2. If the limit of f at \bar{x} exists, then it is unique

Algebraic Properties of Limits

Let (X, d) be a metric space, $f: X \to \mathbb{R}$, $g: X \to \mathbb{R}$, and \bar{x} be a cluster point of X. If $\lim_{x \to \bar{x}} f(x) = \alpha$ and $\lim_{x \to \bar{x}} g(x) = \beta$, then:

- 1.
- 2
- 3.

Continuity in Metric Spaces

Definition

Let (X, d) and (Y, ρ) be metric spaces, and $f: X \to Y$.

• f is continuous at $\bar{x} \in X$ if:

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall x \in X, d(x, \bar{x}) < \delta \Rightarrow \rho(f(x), f(\bar{x})) < \varepsilon$$

Equivalently:

$$\forall \varepsilon > 0, \exists \delta > 0 : \mathit{f}(B_{\delta}(\bar{x})) \subseteq B_{\varepsilon}(\mathit{f}(\bar{x}))$$

• *f* is **continuous on** *X* (or simply **continuous**) if:

$$\forall \bar{x} \in X, f \text{ is continuous at } \bar{x}$$

Continuity of Vector-Valued Functions

Consider a function $f: E \subseteq \mathbb{R}^n \to \mathbb{R}^l$, composed of l component functions: $f = (f^1, f^2, \dots, f^l)$, where each component function $f: E \to \mathbb{R}$.

Then the function f is continuous at $x \in E$ if and only if each component function f is continuous at x.

Equivalent Characterizations of Continuity

Theorem

Let (X, d) and (Y, ρ) be metric spaces, $f: X \to Y$, and $\bar{x} \in X$. The following statements are equivalent:

- 1. f is continuous at \bar{x} ;
- 2. For every open set $B \subseteq Y$ containing $f(\bar{x})$, there exists an open set $A \subseteq X$ containing \bar{x} such that $A \subseteq f^{-1}(B)$;
- 3. For every sequence $\{x_k\}$ satisfying $x_k \to \bar{x}$, we have $f(x_k) \to f(\bar{x})$.

Bolzano-Weierstrass Theorem

Theorem (Bolzano-Weierstrass)

If $K \subset \mathbb{R}^N$ is nonempty and compact and $f \colon K \to \mathbb{R}$ is continuous, then:

- f(K) is compact
- f attains its maximum and minimum over K

Important for optimization: ensures existence of solutions on compact domains.

Semi-Continuous Functions

Definition: For $f: \mathbb{R}^N \to [-\infty, \infty]$:

• f is lower semi-continuous at x if:

$$f(x) \leq \liminf_{k \to \infty} f(x_k)$$
 for any $x_k \to x$

• f is upper semi-continuous at x if:

$$f(x) \ge \limsup_{k \to \infty} f(x_k)$$
 for any $x_k \to x$

Properties:

• f is upper semi-continuous $\iff -f$ is lower semi-continuous

Semi-Continuous Functions

Theorem (Extrema of Semi-Continuous Functions)

Let K be compact. Then:

- Lower semi-continuous $f: K \to [-\infty, \infty]$ attains its minimum
- Upper semi-continuous $f: K \to [-\infty, \infty]$ attains its maximum

Lipschitz Continuity

Definition

Let (X, d) and (Y, ρ) be metric spaces, and $f: X \to Y$. f is **Lipschitz continuous** if:

the constant K is called the **Lipschitz constant** of the function f.

• When a function is Lipschitz continuous with Lipschitz constant K < 1, it is called a **contraction mapping**.

Contraction Mapping Theorem

Theorem

Let (X, d) be a complete metric space and $f: X \to X$.

Hypothesis: *f* is a contraction mapping, i.e.,

Conclusion: *f* has a unique fixed point, i.e.,

Intermediate Value Theorem

Theorem (Intermediate Value Theorem)

Let $f: D \to \mathbb{R}$ be continuous and $D \subset \mathbb{R}$. If:

- $[a, b] \subset D$ (closed interval)
- y is between f(a) and f(b)

Then $\exists c \in [a, b]$ such that f(c) = y.

Interpretation:

- If f is continuous on [a, b]
- Then f takes all intermediate values between f(a) and f(b)
- That is, $y \in [\min\{f(a), f(b)\}, \max\{f(a), f(b)\}]$ implies y = f(c) for some $c \in [a, b]$

The End