Classification de formes en 3D : VoxNet

D'après le papier de Daniel Maturana et Sebastian Scherer : VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition

L'architecture VoxNet : description du projet

- Problématique générale

Comment représenter une forme 3D?

Grilles d'occupation

Implémentation

- 3D-CNN

Implémentation

- Les différentes couches

Implémentation

Le Dataset finalement utilisé: ModelNet

Résultats

	ModelNet10	ModelNet20	ModelNet30	ModelNet40	
SGD	0.92	/	/	0.83	
Adam	0.96	0.94	0.88	0.83*	

- Effet réel du choix de l'optimiseur
- Précision cohérente à mesure que le nombre de classes augmente

Résultats

- Réelle plus value dans l'augmentation du dataset par rotation

Augmentation	Optimiseur	ModelNet10
Oui	SGD	0.83
Oui	Adam	0.83*
Non	SGD	0.69
Non	Adam	0.81

Résultats

 Evolution de la précision en fonction du temps

Résultats: Invariance par rotation approchée

L'algorithme confond cette bouteille avec un plot. Surtout sa 4ème rotation. Mais encore une fois, il est capable de faire une bonne prédiction en considérant toutes les valeurs augmentées.

Résultats : classification avec features de FC2

Conclusion

- Réel apport de l'occupancy grid et du 3D-CNN
- Nous a permis de mettre en application un certain nombre de concepts du cours
- Difficulté de la gestion de la data!

Extensions possibles

- Architecture ayant plus de 4 ans : Princeton ModelNet