兰州大学 2023~2024 学年第 一 学期

期末考试试卷

课程名称:		洋论	任课教师:_	刘	玉孝、魏少文	
学院:	物理学院	专业:		年级:	2021	
姓名:			_ 校园卡号:			

一、基础题(第一题 20 分, 其余 10 分, 共 60 分)

- 1. (1) 简述群重排定理 (2) 写出三阶群的群乘法表 (3) 对于某李群的一维线性表示 $D(\alpha) = e^{\alpha_i B_i}$,且 B_i 为常数矩阵,求该李群的生成元 (4) 证明在 α, β 是小量时,李群的结构因子 $f(\alpha, \beta) = \alpha + \beta$ 。
- 2.给出同态的定义,并证明 D_3 群与 C_2 群同态。
- 3.给出直积群与半直积群的定义,若群H与群F可以直积,且 $K = H \otimes F$ 则 H与F是否为K的不变子群?若为半直积 $K = H \otimes_s F$,则H与F是否为K的不变子群?
- 4.写出一个 C_2 群的二维线性表示,这个表示是否是可约的?
- 5.给出SO(3)群中判断元素是否相互共轭的方法,并据此求 D_6 群的共轭类。 D_6 群的对称轴如下:

Figure 6: D₆群的c₂轴

二、应用题(第一题 20 分, 其余 10 分, 共 40 分)

1.已知 D_2 群为正 n 边形对称群,求:(1)该群的乘法表(2)所有共轭类与非平庸不变子群(3)商群与特征标表(4)以标量函数 $\psi_1 = x^2$, $\psi_2 = xy$, $\psi_3 = y^2$ 为基底写出 D_2 群的一个三维表示。

- 2.求 SO(3) 群的生成元, 无穷小算子, 李代数, 度规与 Casmir 算子。
- 3.洛伦兹群 SO(1,3) 是满足如下规律的李群

$$-c^{2}t'^{2} + x'^{2} + y'^{2} + z'^{2} = -c^{2}t^{2} + x^{2} + y^{2} + z^{2}$$

(c=1)

(1)求SO(1,3)群的生成元及其对易关系(提示: 洛伦兹变换 $t' = \frac{t - vx}{\sqrt{1 - v^2}}$,

$$x' = \frac{x - vt}{\sqrt{1 - v^2}}$$
);

- (2) 判断 SO(1,3) 群是否为两个 SO(3) 群的直和?
- (3) 判断 SO(1,3) 群是否是半单纯的?
- (4)由此题结论推广至SO(1,n)群,求SO(1,n)群的生成元及其对易关系。

参考解答

•

1. (1) 假设 $G = \{g_{\alpha}\}$ 是一群,f为G中一个确定的元素,则当 α 取遍所可能的取

值时, fg_{α} 给出且仅仅一次给出G的所有元素,即

$$G = \{g_{\alpha}\} = \{fg_{\alpha}\}$$

(2) 3 是素数,因此必为 3 阶循环群。

, ,,				
G	a	b	c	
а	а	b	с	
b	b	с	а	
С	c	а	b	

(3) 根据生成元定义

$$I_{i} = \frac{\partial D(\alpha)}{\partial \alpha_{i}} \bigg|_{\alpha=0} = \frac{\partial e^{\alpha_{j}B_{j}}}{\partial \alpha_{i}} \bigg|_{\alpha=0} = B_{i}$$

(4)将结构函数泰勒展开,因考虑 α , β 是小量,仅保留一阶项,则有

$$f(\alpha, \beta) = \alpha \frac{\partial f(\alpha, 0)}{\partial \alpha} \bigg|_{\alpha=0} + \beta \frac{\partial f(0, \beta)}{\partial \beta} \bigg|_{\beta=0}$$

因

$$\frac{\partial f(\alpha, 0)}{\partial \alpha} = \frac{\partial \alpha}{\partial \alpha} = 1 \quad \frac{\partial f(\beta, 0)}{\partial \beta} = \frac{\partial \beta}{\partial \beta} = 1$$

故

$$f(\alpha, \beta) = \alpha + \beta$$

2.

设 $G = \{g_{im}\}$ 与 $G' = \{g'_i\}$ 之间有多一对应关系,并且为满射,且群G中任意两个元素的乘积也按相同的对应关系对应于G'中相应两个元素的乘积,即:

- ① $g_{im} \rightarrow g'_i$
- ② 若 $g_{im} \rightarrow g_i'$, $g_{jm} \rightarrow g_i'$,则 $g_{im}g_{jm} \rightarrow g_i'g_i'$

则称G与G'同态,记作: $G \simeq G'$.

构造映射 $f: D_3 \rightarrow C_2$

$$f(e) = f(d) = f(f) = 1$$

$$f(a) = f(b) = f(c) = c_2$$

可证明这是个同态映射($\left\{e,d,f\right\}$ 为指数为 2 的不变子群)且为满射,故 D_3 群与 C_2 群同态。

3.

1. 直积群的定义

假设 $H = \{h_{\alpha}\}, F = \{f_{\beta}\}$ 为G的两个子群,且满足:

- 除恒元以外H和F没有公共的元素
- 两个子群的元素乘积可对易: $h_{\alpha}f_{\beta}=f_{\beta}h_{\alpha}$

则 $K = \{h_{\alpha}f_{\beta}|h_{\alpha} \in H, f_{\beta} \in F\}$ 构成一个群,称为H和F的直积

若 $K = H \otimes F$,则H = F一定为K的不变子群(由H = F的交换性易得)。

下面给出半直积群的定义. 假设 $H=\{h_{\alpha}\}$ 为群G的不变子群, $F=\{f_{\beta}\}$ 为群G的子群, 且满足:

- (1) $H \cap F = e$,
- (2) G = HF,

则 $G = \{h_{\alpha}f_{\beta}|h_{\alpha} \in H, f_{\beta} \in F\}$ 构成一个群,称为H和F的**半直积群**,记为

$$K = H \otimes_{\mathbf{S}} F$$
.

下面我们将看到, 直积群是半直积群的一种特殊情况,

若为半直积 $K = H \otimes_{S} F$,则 H = F 不一定为 K 的不变子群。(特殊到直积群则为不变子群)

4.例: 令

$$D(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad D(c_2) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

可证这是一个二维线性表示。因 $\chi^2(e)=4>2$,故一定是不可约表示。

5.

由此可见,SO(3)的有限群G中两个群元 $C_{\mathbf{k}_1}(\omega_1)$ 和 $C_{\mathbf{k}_2}(\omega_2)$ 共轭的条件是:

- (1) 转动角度相同: $\omega_1 = \omega_2$;
- (2) $\exists g \in G$,使得: $\mathbf{k}_2 = g\mathbf{k}_1$. 此时 $gC_{\mathbf{k}_1}(\omega)g^{-1} = C_{\mathbf{k}_2}(\omega)$

对于 c_6^i ,可认为沿k轴转 $\frac{2\pi}{6}i$,这与且仅与沿-k轴转 $\frac{2\pi}{6}(6-i)$ 等价,而任意的 $c_{2(i)}$ 都可以将k轴变为-k轴,故 $\left\{c_6^i,c_6^{6-i}\right\}$ 成一类。对于 $c_{2(i)}$ 的对称轴,可得按 c_6^1 重复操作依次得到 $c_{2(i+2)}$ 、 $c_{2(i+4)}$ 、… 的对称轴,而没有操作能变换到相邻对称轴,故易知 $\left\{c_{2(1)},c_{2(3)},c_{2(5)}\right\}$ 成一类, $\left\{c_{2(2)},c_{2(4)},c_{2(6)}\right\}$ 成一类。

综上: D_6 群共有 6 个共轭类, $\{e\}$ 为一类, $\{c_6^1, c_6^5\}$ 为一类, $\{c_6^2, c_6^4\}$ 为一类, $\{c_6^3\}$ 为一类, $\{c_{2(1)}, c_{2(3)}, c_{2(5)}\}$ 为一类, $\{c_{2(2)}, c_{2(4)}, c_{2(6)}\}$ 为一类。

- 1. $D_2 = \{e, \sigma_x, \sigma_y, \sigma_z\}$,除幺元外分别指沿某轴对称旋转。
- (1) 则乘法表为

D_2	e	$\sigma_{_{\scriptscriptstyle X}}$	$\sigma_{_{\mathrm{y}}}$	σ_{z}
e	e	$\sigma_{_{\scriptscriptstyle X}}$	$\sigma_{_{ ext{y}}}$	σ_{z}
$\sigma_{_{\scriptscriptstyle X}}$	$\sigma_{_{\scriptscriptstyle \chi}}$	e	σ_{z}	$\sigma_{_{\mathrm{y}}}$
$\sigma_{_{\mathrm{y}}}$	$\sigma_{_{y}}$	σ_{z}	e	$\sigma_{_{\scriptscriptstyle X}}$
σ_{z}	σ_{z}	$\sigma_{_{\mathrm{y}}}$	$\sigma_{_{\chi}}$	e

(2) 对于除幺元外的任意的群元,考虑 $\sigma_i \sigma_i \sigma_i^{-1}$,因

$$\sigma_j^{-1} = \sigma_j$$

故

$$\sigma_i \sigma_i \sigma_i^{-1} = \sigma_i \sigma_i \sigma_i = \sigma_i \sigma_k = \sigma_i$$

故每个群元均自成一类,这样每个子群都是不变子群,易知非平庸不变子群分别为

$$A = \{e, \sigma_x\}$$
 $B = \{e, \sigma_y\}$ $C = \{e, \sigma_z\}$

(3) 分别看有

$$D_2/A = \left\{A, \sigma_{y}A\right\}$$

$$D_2/B = \{B, \sigma_z B\}$$

$$D_2/C = \{A, \sigma_x A\}$$

其中 $\sigma_v A = {\sigma_v, \sigma_z}$, $\sigma_z B = {\sigma_x, \sigma_z}$, $\sigma_x C = {\sigma_x, \sigma_v}$ 。根据

$$1^2 + 1^2 + 1^2 + 1^2 = 4$$

故共有 4 个一维不等价不可约表示,恰好除了恒等表示外还有 3 个指数为 2 的不变子群,因此特征标表易得

D_2	e	$\sigma_{_{\scriptscriptstyle X}}$	$\sigma_{_{y}}$	σ_{z}
Е	1	1	1	1
A	1	1	-1	-1
В	1	-1	1	-1
С	1	-1	-1	1

(4) 根据群元定义,有

$$\sigma_{x}: y \to -y$$

$$\sigma_{y}: x \to -x$$

$$\sigma_{x}: x \to -x, y \to -y$$

而

$$\psi_1 = x^2$$
, $\psi_2 = xy$, $\psi_3 = y^2$

故

$$\sigma_x \psi_1 = \psi_1(\sigma_x^{-1}) = x^2 = \psi_1$$

$$\sigma_x \psi_2 = \psi_2(\sigma_x^{-1}) = -xy = -\psi_2$$

$$\sigma_x \psi_3 = \psi_3(\sigma_x^{-1}) = y^2 = \psi_3$$

$$(\psi_1 \quad -\psi_2 \quad \psi_3) = (\psi_1 \quad \psi_2 \quad \psi_3) D(\sigma_x)$$

$$D(\sigma_x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

同样操作

$$\sigma_{y}\psi_{1} = \psi_{1}(\sigma_{y}^{-1}) = x^{2} = \psi_{1}$$

$$\sigma_{y}\psi_{2} = \psi_{2}(\sigma_{y}^{-1}) = -xy = -\psi_{2}$$

$$\sigma_{y}\psi_{3} = \psi_{3}(\sigma_{y}^{-1}) = y^{2} = \psi_{3}$$

$$(\psi_{1} \quad -\psi_{2} \quad \psi_{3}) = (\psi_{1} \quad \psi_{2} \quad \psi_{3})D(\sigma_{y})$$

可知

$$D(\sigma_{y}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

根据同态性质

$$D(\sigma_z) = D(\sigma_x)D(\sigma_y) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

故整理得

$$D(e) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad D(\sigma_x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$D(\sigma_y) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad D(\sigma_z) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

可验证这确实为一个三维线性表示。

2.对于 SO(3) 群,有

$$D(\omega) = e^{-i\omega_i T_i}$$

其中

$$T_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad T_{2} = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \quad T_{3} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

故生成元易得

$$I_1 = -iT_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad I_2 = -iT_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \quad I_3 = -iT_3 \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

根据

$$X_i = (I_i)^{\mu}_{\nu} x_{\nu} \partial_{\mu}$$

故

$$X_1 = X_{23} = x_2 \partial_3 - x_3 \partial_2$$

 $X_2 = X_{31} = x_3 \partial_1 - x_1 \partial_3$

$$X_3 = X_{12} = x_1 \partial_2 - x_2 \partial_1$$

根据生成元对易规则

$$\left[I_{i},I_{j}\right]=\varepsilon_{ijk}I_{k}=C_{ij}^{k}I_{k}$$

可得

$$\varepsilon_{ijk} = C_{ij}^k I_k$$

此即 SO(3) 群李代数。

根据度规定义

$$g_{ij} = C_{ik}^l C_{jl}^k = \varepsilon_{ikl} \varepsilon_{jlk} = -2\delta_{ij}$$

故

$$(g_{ij}) = \begin{pmatrix} -2 & & \\ & -2 & \\ & & -2 \end{pmatrix}$$

而 Casmir 算子为

$$C = g^{\mu\nu} X_{\mu} X_{\nu} = -\frac{1}{2} \delta^{\mu\nu} X_{\mu} X_{\nu} = -\frac{1}{2} X_{\mu} X_{\mu}$$

贝

$$C = -\frac{1}{2}(X_1^2 + X_2^2 + X_3^2)$$

3. (1) 对于 *SO*(1,3) 群,分为平动与转动,故转动与 *SO*(3) 生成元一致,而对于平动有

$$t' = \frac{t - vx}{\sqrt{1 - v^2}}$$
, $x' = \frac{x - vt}{\sqrt{1 - v^2}}$

则有

$$X_{v} = \frac{\partial}{\partial v} \left(\frac{t - vx}{\sqrt{1 - v^{2}}} \right) \Big|_{v = 0} \partial_{t} + \frac{\partial}{\partial v} \left(\frac{x - vt}{\sqrt{1 - v^{2}}} \right) \Big|_{v = 0} \partial_{x}$$

由于

$$\left. \frac{\partial}{\partial v} \left(\frac{t - vx}{\sqrt{1 - v^2}} \right) \right|_{v = 0} = -x \quad \left. \frac{\partial}{\partial v} \left(\frac{x - vt}{\sqrt{1 - v^2}} \right) \right|_{v = 0} = -t$$

故可得

$$X_1 = -x\partial_t - t\partial_x$$

$$X_2 = -y\partial_t - t\partial_y$$

$$X_3 = -z\partial_t - t\partial_z$$

可得生成元为

$$N_{1} = \begin{pmatrix} 0 & -1 & & \\ -1 & 0 & & \\ & & 0 & \\ & & & 0 \end{pmatrix} \quad N_{2} = \begin{pmatrix} 0 & & -1 & \\ & 0 & & \\ -1 & & 0 & \\ & & & 0 \end{pmatrix} \quad N_{3} = \begin{pmatrix} 0 & & & -1 \\ & 0 & & \\ & & 0 & \\ -1 & & & 0 \end{pmatrix}$$

$$M_{1} = \begin{pmatrix} 0 & & & \\ & 0 & & \\ & & 0 & -1 \\ & & 1 & 0 \end{pmatrix} \quad M_{2} = \begin{pmatrix} 0 & & & \\ & 0 & & 1 \\ & & 0 & \\ & -1 & & 0 \end{pmatrix} \quad M_{3} = \begin{pmatrix} 0 & & & \\ & 0 & -1 & \\ & 1 & 0 & \\ & & & 0 \end{pmatrix}$$

可得

$$\begin{bmatrix} M_{i}, M_{j} \end{bmatrix} = \varepsilon_{ijk} M_{k} \quad \begin{bmatrix} N_{i}, N_{j} \end{bmatrix} = -\varepsilon_{ijk} N_{k} \quad \begin{bmatrix} M_{i}, N_{j} \end{bmatrix} = \varepsilon_{ijk} N_{k}$$

- (2) 是两个 SO(3) 的直和。(作变换 $P_i = \frac{1}{2}(M_i + iN_i), Q_i = \frac{1}{2}(M_i iN_i)$)
- (3) 是半单纯的。(SO(3)半单纯)
- (4) 可由 SO(n) 转动与一维平动得到,与前面的类似:

$$X_i = -x_i \partial_t - t \partial_{x_i}$$

故可得生成元为

$$(N_i)_{mn} = -(\delta_{mi}\delta_{n1} + \delta_{ni}\delta_{m1})$$

 M_i 为 SO(n) 群生成元,且

$$\left[M_{i}, M_{j} \right] = C_{ij}^{k} M_{k} \quad \left[N_{i}, N_{j} \right] = -C_{ij}^{k} N_{k} \quad \left[M_{i}, N_{j} \right] = C_{ij}^{k} N_{k}$$