MA 1010 - Calculus

Problem Sheet 3: Continuity of Single Variable Functions

1. Show that the following functions are continuous by using $\varepsilon - \delta$ definition.

- (ii) $\sin x$ (iii) e^{2x} (iv) $\ln x$

- (v) \sqrt{x} (vi) $\sin^{-1}(x)$ (vii) $x^2 + x$ (viii) $\frac{x+1}{x-2}, x \neq 2$

- (ix) $\sinh 4x$ (x) $\ln(\sin x)$ (xi) $\sin(2x) + x^2$ (xii) $(x+2)^3$

2. Investigate the continuity of each of the following functions at the indicated point x_0 .

(i)
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
; $x_0 = 0$

(ii)
$$f(x) = x - |x|; x_0 = 0$$

(i)
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
; $x_0 = 0$. (ii) $f(x) = x - |x|$; $x_0 = 0$. (iii) $f(x) = \begin{cases} \frac{x^3 - 8}{x^2 - 4}, & x \neq 2, \\ 3, & x = 2 \end{cases}$; $x_0 = 2$. (iv) $f(x) = \begin{cases} \sin \pi x, & 0 < x < 1 \\ \ln x, & 1 < x < 2 \end{cases}$; $x_0 = 1$.

(iv)
$$f(x) = \begin{cases} \sin \pi x, & 0 < x < 1 \\ \ln x, & 1 < x < 2 \end{cases}; x_0 = 1$$

3. Give examples of functions with the following properties:

- (a) A function f which is continuous at *only* a finite number of points.
- (b) A function f which is discontinuous at *only* a finite number of points.
- (c) An f which is nowhere continuous on the real line.
- (d) An f which is continuous at every rational number.
- (e) An f which is discontinuous at every rational and continuous at every irrational on $(0, \infty)$.
- (f) A $c \in \mathbb{R}$ and two functions f, g that are discontinuous at c but such that f + g and fg are continuous at c.

4. Prove that any polynomial of finite degree over \mathbb{R} is continuous. Hence show that rational functions are continuous over their admissible domain.

5. Let f, g be two continuous functions on (a, b) such that f(x) = g(x) for every rational $x \in (a, b)$. Prove that f(x) = g(x) for all $x \in (a, b)$.

1

6. Determine the domain of continuity of the following functions.

$$\begin{array}{ll} \text{(i) } \sqrt{1-x^2} & \text{(ii) } \sin(e^{-x^2}) & \text{(iii) } \ln(1+\sin x) \\ \text{(iv) } \frac{1+\cos x}{3+\sin x} & \text{(v) } \frac{1}{\sqrt{10+x}} & \text{(vi) } \sin\frac{1}{(x-1)^2} \\ \text{(vii) } \sin\left(\frac{1}{\cos x}\right) & \text{(viii) } \sqrt{(x-3)(6-x)} & \text{(ix) } \begin{cases} x^2\sin\left(\frac{1}{x}\right), & x\neq 0 \\ 0, & x=0 \end{cases} \\ \text{(x) } \sqrt{x+\sqrt{x}} & \text{(xi) } \cos(\sqrt{1+x^2}) & \text{(xii) } \frac{\sqrt{1+|\sin x|}}{x} \end{array}$$

7. (a) Prove that $f(x) = \begin{cases} x \sin(\frac{1}{x}), & x \neq 0 \\ 5, & x = 0 \end{cases}$, is not continuous at x = 0.

(b) Can you redefine f(0) so that f is continuous at x = 0.

- 8. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous on \mathbb{R} .
 - (a) If f(r) = 0 for every rational number r, then prove that f(x) = 0 for all $x \in \mathbb{R}$.
 - (b) If f(r) = 0 for every *irrational* number r, then is it true that f(x) = 0 on whole of \mathbb{R} ?
- 9. Show that every polynomial of odd degree with real coefficients has at least one real root.
- 10. Prove that $\lim_{x\to 0} \frac{x^2 \sin\left(\frac{1}{x}\right)}{\sin x} = 0.$
- 11. Let I = [a, b] and $f: I \to \mathbb{R}$ be a continuous function.
 - (a) If f(x) > 0 for all $x \in I$, show that there exists an $\alpha > 0$ such that $f(x) \ge \alpha$ for all $x \in I$.
 - (b) If for each $x \in I$ there exists a $y \in I$ such that $|f(y)| \leq \frac{1}{2}f(x)$, then show that there exists a $c \in I$ such that f(c) = 0.
 - (c) Show that f is bounded on I, i.e., there exists an M > 0 such that |f(x)| < M for all $x \in I$. What if the interval $I = (-\infty, b]$ or $I = [a, \infty)$, will f still be bounded?
 - (d) Show that f attains both maximum and minimum values over I, i.e., there exists $p, q \in I$ such that $f(p) \leq f(x) \leq f(q)$ for all $x \in I$. What happens if either $a = -\infty$ or $b = \infty$?
 - (e) Let I = [0,1] and f(0) = f(1). Prove that there exists a point $c \in [0,\frac{1}{2}]$ such that $f(c) = f\left(c + \frac{1}{2}\right)$.
 - (f) Let I = [0,1] and let $0 \le f(x) \le 1$ for all $x \in I$. Show that there exists a point $c \in I$ such that f(c) = c, i.e., f has a fixed point.
 - (g) Show that if $f(a) \leq a$ and $f(b) \geq b$ then f has a fixed point in I, i.e., there exists a point $c \in I$ such that f(c) = c.
- 12. Let K > 0 and let $f : \mathbb{R} \to \mathbb{R}$ satisfy the condition $|f(x) f(y)| \leq K|x y|$ for all $x, y \in \mathbb{R}$. Show that f is continuous at every point $c \in \mathbb{R}$.
- 13. Define $g: \mathbb{R} \to \mathbb{R}$ as follows: $g(x) = \begin{cases} 2x, & x \in \mathbb{Q} \\ x+3, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Find all the points at which g is continuous.
- 14. Let $A \subseteq B \subseteq \mathbb{R}$, $f: B \to \mathbb{R}$ and g be the restriction of f to A, i.e., g(x) = f(x) for $x \in A$.
 - If f is continuous at some $c \in A$, then show that g is also continuous at c.
 - Show by example that g is continuous at some $c \in A$ does not necessarily imply that f is continuous at that c.
- 15. Let $A, B \subseteq \mathbb{R}$, $f: A \to B$ and $g: B \to \mathbb{R}$. If f is continuous on A and g is continuous on B, show that $g \circ f$ is continuous on f(A).
- 16. While the intermediate value theorem assures you of a root of a continuous function which assumes both negative and positive values on a bounded interval, how do you actually find the roots? Read up on some such methods, viz., Bisection Method, Newton-Raphson method, etc. Investigate the additional requirements on f for such methods to be applicable.
- 17. Let $f:[a,b]\to\mathbb{R}$ be integrable on [a,x] for every $x\in[a,b]$ and let the indefinite integral A(x) be defined as

$$A(x) = \int_{a}^{x} f(t)dt .$$

Show that A is continuous on whole of [a, b]. (At each end point we have one-sided continuity.)

2

MA 1010 - Calculus

Problem Sheet 3: Differentiation

- 18. Find the derivatives of the following functions from the definition.

- Find the derivatives of the following function: $(i) \frac{3+x}{3-x}, x \neq 3 \qquad (ii) \sqrt{2x-1} \qquad \qquad (iii) \ln(1+\sin x)$ $(iv) \frac{1+\cos x}{3+\sin x} \qquad (v) \frac{1}{\sqrt{10+x}} \qquad (vi) \sin \frac{1}{(x-1)^2}$ $(vii) \sin \left(\frac{1}{\cos x}\right) \qquad (viii) \sqrt{(x-3)(6-x)}, 3 \leqslant x \leqslant 6 \qquad (ix) x^2 \sin(\frac{1}{x}), x \neq 0; f(0) = 0$ $(x) \sqrt{x+\sqrt{x}} \qquad (xi) \cos(\sqrt{1+x^2}) \qquad (xii) \frac{\sqrt{1+|\sin x|}}{x}$

- 19. Let $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$
 - (a). Is f differentiable at x = 0?
 - (b). Is f' is continuous at x = 0?