Homework 3 1a) Let a, b, c be integers such that alc, blc and gcd(a,b)=1, Show that ab C. B) Show that acd carb) = 1 is necessary

Find a, b, c such that a/c and b/c but abxc.

b)
$$a = 6$$
 $b = 8$
 $c = a + 1$
 $a + 2 + 3 + 4 = C$

a)

Let $a = 77$ pai
 $b = 77$ pai
 $b = 77$ pai
 $a = 6$

Since $a + 2 + 3 + 4 = C$

Chick gradiants = $a + 4 + 3 + 4 = C$

Since $a + 4 + 3 + 4 = C$

Since $a + 4 + 3 + 4 = C$

Chick gradiants = $a + 4 + 4 + 4 = C$

There and $a + 4 + 4 + 4 = C$

Hence $a + 4 + 4 + 4 = C$

Hence $a + 4 + 4 + 4 = C$

Hence $a + 4 + 4 + 4 = C$

Hence $a + 4 + 4 + 4 = C$

Hence $a + 4 + 4 + 4 = C$

Hence $a + 4 + 4 + 4 = C$

No. Courter example.

$$0 = 3$$

Let 0-0(9)	lenote the order of	st 9 10 a gove.
Complete the	tables:	
In (Z121+)	1 (7/3, t) b (0/4, cb)	$ \begin{array}{c c} \hline & (Z_2 \times Z_{3,1} +) \\ \hline & (a,b) & (a,b) \\ \hline & (0,8) & (0,1) & (0,1) \end{array} $
		(1,0) (1,1) (1,2)
	001((9/6)) = 00	
Prove that the	is is the for	$\chi \parallel Q \in \mathbb{Z}_m$ and $b \in \mathbb{Z}_n$
where m an	d n are coprime	

Let d = od (4 b). d. (a16) = (0,0) d.a= 0 and d.b= 0 Here, ord (a) I d 0×(6))d I gal (oda), od(b)) = 1 this oda, od(b) d Let e = od(d) od(b) e.(0,0) = (eq.eb) = (0,0)Heru, de Since eld and dle, d=e | qcd(ord(a), od(b)) = 1because gd(mn) = 1 and ooka)/m and ord(b)/n 2. prove the Extended Euclidean abouthon: For all integers a, b, there exists integers un such that au + bv = gcd(a, b)

3. a) Given integers 0, b. Show that if there exists integers u, v such that QU + PA = 7then acd carb) = 1 b) If there exists integers 44 such that author= e is it always tone that gcd (9,6) = 6 ? If no, provide a counterexample.

 H. Find a value x that simultaneously solves the congruences or show that no such value x can exist.

a) x = 3 mod 7

a) $X \equiv 3 \mod 7$ $X \equiv 4 \mod 9$ b) $X \equiv 13 \mod 7$

X = 41 mod 97

c) $x = 7 \mod 9$ $x = 3 \mod 6$

a) x = 3 mod = 7 x= 31 x = 4 mod 9 x = 13 mod = 17 x= 5764 x = 41 mod 9 = 1 c) x = 7 mod 9 x = 3 mod 6 We Exteded Euclidean Algorian to for 0,02

We Exteded Euclidean Algoritm to find Ω_1,Ω_2 $M_1 \Omega_1 + \Omega_2 \Omega_2 = 1$

106) X= X1 W = V3 + X5 W 1

 $X = \frac{1}{2} \text{ mod } 0$ $X = \frac{1}{2} \text{ mod } 0$ Proof. If x exists, then I q, q' EZ x = 9 0 + 7 x = 60 + 3 0 = 3(3q-2q')+44 = (2a' - 3a) 33/ (29-39)3 but 3/4 SO, there can't be son ton