TRAITEMENT DE L'INFORMATION

BINAIRE NATUREL

Situation dans le système automatisé

Les informations issues de la fonction « acquérir » doivent être TRAITEES puis communiquées à l'environnement (préactionneurs ou HMI)

Code BINAIRE NATUREL

1 Caractéristiques

Base	2
2 symboles	0,1

Chaque chiffre ou digit d'un nombre binaire est appelé **BIT** (Binary Digit). Le nombre 10010 est un nombre composé de 5 BITS

Chaque BIT d'un nombre à un poids qui est une puissance de 2.

Rang	n-1	 5	4	3	2	1	0
Poids	2^{n-1}	 2^5	2^4	2^3	2^2	2^1	2^{0}
Ex:		1	1	0	0	1	0

Exemple : Le nombre binaire 110010 se décompose ainsi :

$$110010_{(2)} = (1 \times 2^{5}) + (1 \times 2^{4}) + (0 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0})$$

$$110010_{(2)} = (1 \times 32) + (1 \times 16) + (1 \times 2)$$

$$110010_{(2)} = 50_{(10)}$$

(2) et (10) sont ici utilisés pour préciser la base dans laquelle le nombre doit être lu.

2 Vocabulaire

Un groupe de 4 bits (Ex:1011) est appelé un **QUARTET**Un groupe de 8 bits (Ex:11010010) est appelé un **OCTET** (*Byte* en anglais).

Le BIT de poids le plus faible (le plus à droite) s'appelle le **LSB** (Least Significant Bit) Le BIT de poids le plus fort (le plus à gauche) s'appelle le **MSB** (Most Significant Bit)

Remarque: Le LSB ayant pour poids **1** (2⁰) alors que tous les autres bits on un poids pair (2,4,8,16,...),

un nombre binaire se terminant par 1 est donc un nombre IMPAIR alors qu'un nombre binaire se terminant par 0 est PAIR.

6_1BINAIRE.doc P.HOARAU 1/4

3 Comptage

n bits permettent de représenter **2**ⁿ valeurs différentes :

Exemples:

$$3 \text{ BITS} \Rightarrow 2^3 = 8 \text{ Valeurs}$$
 $4 \text{ BITS} \Rightarrow 2^4 = 16 \text{ Valeurs}$

Bi	nai	re	Valeurs
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Binaire				Valeurs
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2 3
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6 7
0	1	1	1	
1 1 1 1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

4 Conversion BINAIRE / DECIMAL

Il suffit de faire la somme des produits de chaque bits à 1 par son poids.

Exemple:

Binaire	1	0	1	0	0	1	0	1
	(1×2^7)	(0×2^6)	(1×2^5)	(0×2^4)	(0×2^3)	(1×2^2)	(0×2^1)	(1×2^{0})
	128		32			4		1
Dácimal	165							

5 Conversion DECIMAL / BINAIRE

5.1 Utilisation de la pondération

La méthode précédente peut être appliquée en inverse. Il suffit alors de placer les 1 de façon à ce que la somme des produits des bits par leurs poids respectifs soit égale au nombre décimal.

Exemple: soit à convertir 179 en binaire

$$179 = 128 + 32 + 16 + 2 + 1$$

$$179_{(10)} = 10110011_{(2)}$$

5.2 Division entière par 2

Il suffit de diviser le nombre décimal par 2 ainsi que tous les différents quotients obtenus jusqu'à obtenir un quotient nul. Les restes de chaque division constituent le résultat.

6 Cas des bases multiples de 2

C'est le cas notamment de la base 8 ou de la base 16 vis à vis de la base 2 (8=2³ et 16=2⁴). Cette propriété permet de passer simplement de l'une des bases à l'autre par regroupement de k bits (ou décomposition d'un élément en k bits).

6.1 Conversion BINAIRE / HEXADECIMAL

Il suffit de regrouper les bits par paquets de 4 en partant du bit de poids le plus faible et de convertir chaque quartet obtenu directement en hexadécimal.

Rappel: Un QUARTET permet de représenter les 2⁴=16 valeurs de 0 à 15 (de 0 à F).

Exemple: Soit à convertir le nombre binaire 10011011110111 en hexadécimal.

$$10011011110111 = \underbrace{0 \ 0 \ 1 \ 0}_{=} \underbrace{0 \ 1 \ 1 \ 0}_{0} \underbrace{0 \ 1 \ 1 \ 0}_{=} \underbrace{1 \ 1 \ 1 \ 1}_{=} \underbrace{0 \ 1 \ 1 \ 1}_{=} \underbrace{0 \ 1 \ 1 \ 1}_{=}$$

$$10011011110111_{(2)} = 26F7_{(16)}$$

6.2 Conversion HEXADECIMAL / BINAIRE

Il suffit de convertir chaque digit hexadécimal en un QUARTET.

Exemple: Soit à convertir le nombre Hexadécimal CAFE en binaire.

CAFE =
$$\frac{C}{= 1 \ 1 \ 0 \ 0} = \frac{A}{1 \ 0 \ 1 \ 0} = \frac{F}{1 \ 1 \ 1 \ 1} = \frac{E}{1 \ 1 \ 1 \ 0}$$

$$CAFE_{(16)} = 11001010111111110_{(2)}$$

6.3 Conversion BINAIRE / OCTAL

Il suffit de regrouper les bits par paquets de 3 en partant du bit de poids le plus faible et de convertir chaque paquet obtenu directement en octal.

Rappel: Un groupe de 3 bits permet de représenter les 2³=8 valeurs de 0 à 7.

Exemple: Soit à convertir le nombre binaire 10011011110111 en OCTAL.

$$10011011110111 = \frac{0 \ 1 \ 0}{2} \quad \frac{0 \ 1 \ 1}{3} \quad \frac{0 \ 1 \ 1}{3} \quad \frac{1 \ 1 \ 0}{6} \quad \frac{1 \ 1 \ 1}{7}$$

10011011110111₍₂₎=23367₍₈₎

6_1BINAIRE.doc P.HOARAU 3/4

6.4 Conversion OCTAL / BINAIRE

Il suffit de convertir chaque digit octal en un groupe de 3 bits.

Exemple: Soit à convertir le nombre octal **3705** en binaire.

7 Multiples normalisés

La normalisation des préfixes binaires de 1998 par la Commission électrotechnique internationale spécifie les préfixes suivants pour représenter les puissances de 2 :

kibi	kilo binaire
mébi	méga binaire
gibi	giga binaire
tébi	téra binaire

Concernant les multiples de l'octet, cela donne :

1 kibioctet		2 ¹⁰ octets		1 024 octets
1 mébioctet				1 048 576 octets
1 gibioctet	(Gio)	2 ³⁰ octets	1 024 Mio	1 073 741 824 octets
1 tébioctet	(Tio)	2 ⁴⁰ octets	1 024 Gio	1 099 511 627 776 octets

De manière erronée selon le SI, avant la normalisation de 1998, et encore de nos jours dans l'usage courant, on utilise les unités dérivées que sont le kilo-octet, le méga-octet, le giga-octet, etc. pour représenter les valeurs suivantes en puissance de 2 :

1 kilo-octet		2 ¹⁰ octets		
1 méga-octet				1 048 576 octets
1 giga-octet	(Go)	2 ³⁰ octets	1 024 Mo	1 073 741 824 octets
1 téra-octet	(To)	2 ⁴⁰ octets	1 024 Go	1 099 511 627 776 octets

Exemples:

6_1BINAIRE.doc P.HOARAU 4/4