Algoritmusok és adatszerkezetek II. Bináris keresőfák és műveleteik

Szegedi Tudományegyetem

Gyakorlati követelmények

- 2 db ZH (márc. 9. és ápr. 27.): 30-30 pont (min. 10 pont/ZH)
- Kvízek: 4 darab 5-5 pontos Coospace kvíz (min. 2 pont/kvíz)
- Pluszpontok: ha a gyakorlati jegy legalább elégséges, akkor pluszpontottal max. 1 jegyet lehet javítani
- Javítás: a két ZH-ból az egyik (alapértelmezés szerint a rosszabbik) javítható

Gyakorlati követelmények

- 2 db ZH (márc. 9. és ápr. 27.): 30-30 pont (min. 10 pont/ZH)
- Kvízek: 4 darab 5-5 pontos Coospace kvíz (min. 2 pont/kvíz)
- Pluszpontok: ha a gyakorlati jegy legalább elégséges, akkor pluszpontottal max. 1 jegyet lehet javítani
- Javítás: a két ZH-ból az egyik (alapértelmezés szerint a rosszabbik) javítható

Amennyiben a részteljesítésenkénti minimumok megvannak, úgy a gyakorlati jegyek a következők szerint alakulnak

Gyakorlati jegy	
[0-40) pont	elégtelen (1)
[40-50) pont	elégséges (2)
[50-60) pont	közepes (3)
[60-70) pont	jó (4)
[71– ∞) pont	jeles (5)

Gyakorlati követelmények – Coospace kvízek

- Coospace-en az előadás színterében lesznek közzétéve (de a gyakorlati teljesítés részét képezik)
- Az első két kvíz 2 kvíz márc. 8. 23:55-ig, a 3. és 4. kvízek ápr. 26. 23:55-ig tölthetők ki
- 3 kitöltés/kvíz, amelyek közül a legjobbat vesszük figyelembe

Gyakorlati követelmények – Coospace kvízek

- Coospace-en az előadás színterében lesznek közzétéve (de a gyakorlati teljesítés részét képezik)
- Az első két kvíz 2 kvíz márc. 8. 23:55-ig, a 3. és 4. kvízek ápr. 26. 23:55-ig tölthetők ki
- 3 kitöltés/kvíz, amelyek közül a legjobbat vesszük figyelembe
- A teszteket a kiélesedésüket követő nap végéig hibátlatul kitöltők pluszpontot kapnak

Követelmények – kollokvium

- A gyakorlat sikeres teljesítése esetén kollokvium tehető
- 8 db 5 pontos elméleti és gyakorlati kiskérdéssel
- Pluszpontok (minimumba nem számítanak bele)
- Amennyiben a gyakorlati jegy >=4, elővizsga tehető az utolsó előadáson (vizsgaalkalomnak számít)

Követelmények – kollokvium

- A gyakorlat sikeres teljesítése esetén kollokvium tehető
- 8 db 5 pontos elméleti és gyakorlati kiskérdéssel
- Pluszpontok (minimumba nem számítanak bele)
- Amennyiben a gyakorlati jegy >=4, elővizsga tehető az utolsó előadáson (vizsgaalkalomnak számít)

Kollokviumi jegy	
[0-20) pont	elégtelen (1)
[20-25) pont	elégséges (2)
[25-30) pont	közepes (3)
[30-35) pont	jó (4)
[35– ∞) pont	jeles (5)

A vizsga értékelése (Forrás: London András honlapja)

Negatívumok

- Nyelvileg értelmetlen mondatok.
- Bőbeszédűség: Ha egy oldal átbogarászása után egy sornyi (vagy esetleg 0 bitnyi) információt találok annak nem fogok örülni.
- Kritikus helyen olvashatatlanná váló leírás, kritikus helyen zavarossá váló leírás: Az írásos vizsga jegye a leírtakért jár; elhiszem, hogy "a hallgató jól tudja, de akkor úgy is kell leírni".

A vizsga értékelése (Forrás: London András honlapja)

Negatívumok

- Nyelvileg értelmetlen mondatok.
- Bőbeszédűség: Ha egy oldal átbogarászása után egy sornyi (vagy esetleg 0 bitnyi) információt találok annak nem fogok örülni.
- Kritikus helyen olvashatatlanná váló leírás, kritikus helyen zavarossá váló leírás: Az írásos vizsga jegye a leírtakért jár; elhiszem, hogy "a hallgató jól tudja, de akkor úgy is kell leírni".

A félév során érintett főbb témakörök

- Kiegyensúlyozott és augmentált keresőfák
- Binomiális és Fibonacci kupacok
- Geometriai algoritmusok
- Számelméleti algoritmusok
- Mintaillesztő algoritmusok

Hasznos források

- Ajánlott irodalom
 - Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest
 Clifford Stein: Új algoritmusok. Kiadó: SCOLAR

- Hackerrank versenyek
- Algoritmusok vizualizációja

Ismétlés — Aszimptotikus jelölések: Ω

Létezik egy olyan küszöbérték n_0 , amihez meg tudunk adni egy k>0 konstanst, hogy a futási idő minden $n>n_0$ esetén legalább $k\cdot f(n)$

Jelölés: $T(n) = \Omega(f(n))$ vagy másképp $T(n) \in \Omega(f(n))$

Ismétlés — Aszimptotikus jelölések: Ω

Létezik egy olyan küszöbérték n_0 , amihez meg tudunk adni egy k>0 konstanst, hogy a futási idő minden $n>n_0$ esetén legalább $k\cdot f(n)$

Jelölés: $T(n) = \Omega(f(n))$ vagy másképp $T(n) \in \Omega(f(n))$ Értelmezés: T(n) "kellően nagy" inputra "érdemben" meghaladja f(n)-t

Ismétlés — Aszimptotikus jelölések: Θ

Ismétlés — Aszimptotikus jelölések: O

Ismétlés – Aszimptotikus jelölések

Kérdés

Hatékony-e az az algoritmus, amelyik futási ideje n méretű inputra $legal abb \ O(n \log n)$?

Ismétlés – Aszimptotikus jelölések

(beugratós) Kérdés

Hatékony-e az az algoritmus, amelyik futási ideje n méretű inputra $legalább\ O(n\log n)$?

Másképp szólva, mit tudunk arról az algoritmusról, amelynek futási ideje $\Omega(1)$?

Ismétlés – Függvények növekedési üteme

3 algoritmusunk van, amelyek az n méretű inputjuk függvényében $O(log(n^2))$, $O(log(n)^2)$ és O(log(n)) futási idővel rendelkeznek. Mi mondható el az algoritmusok hatékonyságáról?

Ismétlés – Függvények növekedési üteme

3 algoritmusunk van, amelyek az n méretű inputjuk függvényében $O(log(n^2))$, $O(log(n)^2)$ és O(log(n)) futási idővel rendelkeznek. Mi mondható el az algoritmusok hatékonyságáról? (Hint: log(a*b) = log(a) + log(b))

Ismétlés – Függvények növekedési üteme

3 algoritmusunk van, amelyek az n méretű inputjuk függvényében $O(log(n^2))$, $O(log(n)^2)$ és O(log(n)) futási idővel rendelkeznek. Mi mondható el az algoritmusok hatékonyságáról? (Hint: log(a*b) = log(a) + log(b))

Bináris fa implementációja

 Egy olyan "megengedő" kétszeresen láncolt lista, ahol az elemek (egy helyett) két elemhez is kapcsolódhatnak

Bináris fa implementációja

```
class Node {
    Object kulcs;
    Node* apa;
    Node* bal;
    Node* jobb;
}
```


Bináris fa implementációja

```
class Node {
    Object kulcs;
    Node* apa;
    Node* bal;
    Node* jobb;
}
```

Megjegyzés

2 mutatóval és egy segédbittel (bal fiú-e az adott csúcs) is megvalósítható lenne

Fabejárások

- Inorder/preorder/posztorder bejárások
- Legegyszerűbb megvalósításuk rekurzióval történik
 - Jó azonban tudni, hogy rekurzió nélkül is megtehető mindez

```
void inorder(x){
  if(x==nil){return}
  inorder(x.bal)
  print(x.kulcs)
  inorder(x.jobb)
}
```


Fabejárások

- Inorder/preorder/posztorder bejárások
- Legegyszerűbb megvalósításuk rekurzióval történik
 - Jó azonban tudni, hogy rekurzió nélkül is megtehető mindez

```
void inorder(x){
  if(x==nil){return}
  inorder(x.bal)
  print(x.kulcs)
  inorder(x.jobb)
}
void preorder(x){
  if(x==nil){return}
  print(x.kulcs)
  preorder(x.bal)
  preorder(x.jobb)
}
```


Fabejárások

- Inorder/preorder/posztorder bejárások
- Legegyszerűbb megvalósításuk rekurzióval történik
 - Jó azonban tudni, hogy rekurzió nélkül is megtehető mindez

```
void inorder(x){
                       void preorder(x){
                                              void postorder(x){
  if(x==nil){return}
                         if(x==nil){return}
                                                if(x==nil){return}
  inorder(x.bal)
                         print(x.kulcs)
                                                postorder(x.bal)
  print(x.kulcs)
                         preorder(x.bal)
                                                postorder(x.jobb)
  inorder(x.jobb)
                         preorder(x.jobb)
                                                print(x.kulcs)
}
                       }
```


Teljes bináris fa

• Olyan bináris fa, amelynek minden belső csúcsának 2 fia van

Fában lévő kulcsok száma

A fa *i*-edik szintjén 2^{*i*} csúcs található

Teljes bináris fa

• Olyan bináris fa, amelynek minden belső csúcsának 2 fia van

Fában lévő kulcsok száma

A fa i-edik szintjén 2i csúcs található

$$\Rightarrow$$
 a fában $n=\sum\limits_{i=0}^{h}2^{i}=2^{h+1}-1$ csúcs van a

Állítás: h magas fában $O(2^h)$ csúcs található

Teljes bináris fa

• Olyan bináris fa, amelynek minden belső csúcsának 2 fia van

Fában lévő kulcsok száma

A fa i-edik szintjén 2i csúcs található

$$\Rightarrow$$
 a fában $n=\sum\limits_{i=0}^{h}2^{i}=2^{h+1}-1$ csúcs van a

Állítás: h magas fában $O(2^h)$ csúcs található

Megfordítva: n csúcsból álló fa magassága $\Omega(\log n)$

^abizonyítás teljes indukcióval

Bináris keresőfa

Keresőfa tulajdonság

A fa minden x csúcsára teljesül, hogy

- x.bal.kulcs < x.kulcs (amennyiben x.bal! = nil)
- x.kulcs < x.jobb.kulcs (amennyiben x.jobb! = nil)

Bináris keresőfa

Keresőfa tulajdonság

A fa minden x csúcsára teljesül, hogy

- x.bal.kulcs < x.kulcs (amennyiben x.bal! = nil)
- x.kulcs < x.jobb.kulcs (amennyiben x.jobb! = nil)
- < rendezés tranzitivitásából adódóan

Kulcs keresése fában

```
FÁBANKERES(x, k) {
  if x == nil or k == x.kulcs
    return x

  if k < x.kulcs
    FÁBANKERES(x.bal, k)
  else
    FÁBANKERES(x.jobb, k)
}</pre>
```


Kulcs keresése fában

Elem beszúrása bináris keresőfába

- Keresőfa tulajdonság fenntartása mellett levélként szúrunk be
- h magas fa esetén O(h) idejű

Beszúrás – példa

Milyen fát eredményez az 5,6,7,9,16 kulcsok beszúrása?

Beszúrás – példa

Tegyük föl, hogy > szerint 7>9>6>5>16. Most hogy néz ki a fa?

Beszúrás – példa

Tegyük föl, hogy > szerint 7>9>6>5>16. Most hogy néz ki a fa?

Elem törlése bináris keresőfából

Elem törlése bináris keresőfából

- 3 esetet különböztetünk meg x csúcs törlése kapcsán
 - ① x-nek nincs gyereke
 - x apjának az x-re vonatkozó mutatóját nil-re állítjuk
 - 2 x-nek pontosan egy gyereke van
 - x apját "átkötjük" x egyedüli fiához
 - 3 x-nek 2 gyereke van
 - x-et megelőzőjével (bal oldali részfájának maximális elemével) helyettesítjük
- h magas fa esetén O(h) idejű

