Today's objectives

- Hidden markov models overview
- Markov review (CpG sites)
- Hidden markov models
- Viterbi algorithm

Hidden Markov Models

- Hidden Markov Model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (i.e. hidden) states.
- Hidden Markov models (HMMs) are a formal foundation for making probabilistic models of linear sequence 'labeling' problems
- HMMs are the Legos of computational sequence analysis.

Example: intron/exon labels

Applications What are the labels?

- 1) Gene finding
- 2) Finding conserved sequences
- 3) Annotation of regulatory sequences
- 4) Annotation of chromatin states
- 5) Copy number variation
- 6) Search for weak similarity (profile alignment HMMs)

Coin toss models

Fair		Н	Т
	Н	0.5	0.5
	Т	0.5	0.5

A zeroth-order Markov chain $P(X_n \mid X_{n-1}) = P(X_n)$ Essentially a Binomial Random Variable

THTHHHTHTHTHTHTHTHTHTHTHTHTHT

Loaded		Н	Т
	Н	0.9	0.1
	Т	0.9	0.1

ТННННННННННННННННННННН

Coin toss models

	Н	Т
Н	0.9	0.1
Т	0.1	0.9

A weird coin: 1st order Markov chain

ТТТТТТТТНЫНЫНЫНЫНЫНТТТТТТТТ

A 1st order Markov chain

$$P(X_n \mid X_{n-1}) := P(X_n)$$

An mth order Markov chain

$$P(X_n | X_{n-1} ... X_{n-m}) != P(X_n)$$

The n state depends on the past m states.

Hidden Coin toss models

Fair		Н	Т
	Н	0.5	0.5
	Т	0.5	0.5

What if there are two coins (fair and loaded), but you don't know which one is used and they switch?

Loaded		Н	Т
	Н	0.9	0.1
	Т	0.9	0.1

A first order Markov chain would only model the average $P(X_n|X_{n-1})$

A Hidden Markov Model can account for fair/loaded coin this is not observed

A Markov Chain for genomic sequences

CpG island = 200 bp with GC content of >50%

Simulations, probabilities & building a Markov Model

	Α	G	С	Т
Α	0.19	0.27	0.40	0.14
G	0.17	0.33	0.36	0.14
С	0.19	0.36	0.25	0.20
Т	0.10	0.34	0.38	0.19

Probabilities

```
x = ATCG

P(x) = P(x_4|x_3)P(x_3|x_2)P(x_2|x_1)P(x_1)

P(x) = P(G|C)P(C|T)P(T|A)P(A)

P(x) = 0.36 * 0.38 * 0.14 * 0.16

P(A) = 0.36 * 0.38 * 0.14 * 0.16
```

```
Simulating P(C | A) = 0.40
```

Building

P(C|A) = # times AC occurs / # times AX occurs

```
a = random(1)
if a < 0.19
    pick A
elseif a < 0.46
    pick G
elseif a < 0.86
    pick C
else
    pick T</pre>
```

Which model is more likely?

CpG island

	Α	G	С	Т
Α	0.19	0.27	0.40	0.14
G	0.17	0.33	0.36	0.14
С	0.19	0.36	0.25	0.20
Т	0.10	0.34	0.38	0.19

$$x = ATCG$$

$$P(x) = 0.36*0.38*0.14*0.16$$

$$P(x) = 0.00306$$
 4.7 times more likely

Non-CpG island

	Α	G	С	Τ
Α	0.34	0.23	0.18	0.25
G	0.30	0.25	0.20	0.25
С	0.38	0.04	0.26	0.33
Т	0.22	0.26	0.21	0.31

$$x = ATCG$$

$$P(x) = 0.04*0.21*0.25*0.31$$

$$P(x) = 0.000651$$

Log10(CpG/non-CpG) = Log10(CpG) – Log10(non-CpG)

= 0.673 (log10 likelihood ratio)

 $P(Cpg/non-Cpg) = 10^0.673 = 4.7$ (likelihood ratio)

 $P(\text{non-Cpg/Cpg}) = 10^{-0.673} = 0.21 \text{ (likelihood ratio)}$

Overflow

Overflow occurs when an arithmetic operation attempts to create a numeric value that is outside of the range that can be represented with a given number of bits – either larger than the maximum or lower than the minimum representable value.

```
Solution is to work in log space (e.g. ln, log10, log2)

Log(P(x)) = log(P(G|C)) + log(P(G|C)) ... + log(P(A))

= -31.192812731927
```

Finding CpG islands

What is the right window size?

- Too small, we break real islands up
- Too large, we miss islands
 What is the right cutoff?
- Changing the cutoff changes the results

o unmethylated CpG

Markov Model

CpG island				
	Α	G	С	Т
Α	0.19	0.27	0.40	0.14
G	0.17	0.33	0.36	0.14
С	0.19	0.36	0.25	0.20
Т	0.10	0.34	0.38	0.19

Non-CpG island				
	Α	G	С	Т
Α	0.34	0.23	0.18	0.25
G	0.30	0.25	0.20	0.25
С	0.38	0.04	0.26	0.33
Т	0.22	0.26	0.21	0.31

Cutoff problem is solved: calculate which model is more likely But.. Still have the window size/boundary problem

A MM with two states: inside a CpG island or outside a CpG island Fixed window size = 3 bp (or 200 bp), slide the window and evaluate

```
ATACGATCAGTACTGTACGATATCGCGTACTCGGCGCTAGCGCTAG
P(ATA|CpG) vs P(ATA|non-CpG)
P(TAC|CpG) vs P(TAC|non-CpG)
etc
```

Hidden Markov Model

HMM solution: all possible boundaries and are considered, so a CpG island can be any size, there is no 'window'. Size of island depends on Transition probabilities

Trellis diagram

 $p = \{ p_1, p_2, ..., p_n \}$ is a sequence of states (AKA a path). Each p_i takes a value from set Q. We do not observe p.

 $x = \{x_1, x_2, ..., x_n\}$ is a sequence of emissions. Each x_i takes a value from set Σ . We do observe x.

Conditional independence

**What about likelihood of p

Like Markov chains, edges capture conditional independence:

- x₂ is conditionally independent of everything else given p₂
- p₄ is conditionally independent of everything else given p₃

Probability of being in a particular state at step i is known once we know what state we were in at step i-1. Probability of seeing a particular emission at step i is known once we know what state we were in at step i.

** However, the likelihood of a state (p_4) depends on data (x_{1-n})

HMMs have two matrices: transition and emission

Occasionally dishonest casino

Dealer repeatedly flips a coin.

Sometimes the coin is fair, with

P(heads) = 0.5,

Sometimes it's loaded, with

P(heads) = 0.8.

Dealer occasionally switches coins, invisibly to you.

Casino Trellis

States encode which coin is used

 $\mathbf{F} = \text{fair}$

L = loaded

Emissions encode flip outcomes

 $\mathbf{H} = \text{heads}$

T = tails

Casino example with 6 flips

Forward and Backward Algorithm

What is the joint probability of p and x? $P(p_1,..., p_n, x_1,..., x_n)$

What is the most likely path? (decoding = viterbi algorithm) $p^* = \operatorname{argmax} P(p_1, ..., p_n \mid x_1, ..., x_n)$

What is the probability p is in state t and emitting $x_1 ... x_i$ P(p_i = t, x₁,...., x_i) – forward algorithm

What is the probability of emitting $x_{i+1} ... x_n$ given $p_i = t$? $P(x_{i+1}...x_n | p_i = t) - backward algorithm$

What is the conditional probability of hidden state p at site i $P(p_i | x_1,...x_n)$ -- forward and backward algorithm

Likelihood under an HMM

$$P(p_1, p_2, ..., p_n, x_1, x_2, ..., x_n) = \prod_{k=1}^n P(x_k | p_k) \prod_{k=2}^n P(p_k | p_{k-1}) P(p_1)$$

 $|Q| \times |\Sigma|$ emission matrix *E* encodes P($x_i | p_i$)s

 $E[p_i, x_i] = P(x_i \mid p_i)$

 $|Q| \times |Q|$ transition matrix A encodes P($p_i | p_{i-1}$)s

 $A[p_{i-1}, p_i] = P(p_i | p_{i-1})$

|Q| array I encodes initial probabilities of each state $I[p_i] = P(p_1)$

What is the joint probability of p and x? If P($p_1 = F$) = 0.5, P(p,x) = 0.5 9 x 0.8 3 x 0.6 8 x 0.4 2 = 0.0000026874

A	F	L
F	0.6	0.4
L	0.4	0.6

E	Η	Т
F	0.5	0.5
L	0.8	0.2

p	F	F	F	L	L	L	F	F	F	F	F
X	T	Н	Т	H	Н	Н	T	Н	T	T	Н
P(x _i p _i)	0.5	0.5	0.5	0.8	0.8	0.8	0.5	0.5	0.5	0.5	0.5
P(p _i p _{i-1})	-	0.6	0.6	0.4	0.6	0.6	0.4	0.6	0.6	0.6	0.6

Viterbi Algorithm

What is the most likely path (p*) given the emissions? $p^* = \operatorname{argmax} P(p \mid x)$ p

Bottom-up dynamic programming

S_k, i = score of the most likely path up to step i with $p_i =$ k

Start at step 1, calculate successively longer **S**k, i 's

Keep track of $S_{k,i}$ for backtrace to find the most likely path

	ven transition matrix A and emission				A	F	L	E	Н	T	
	matrix E (right), what is the most probable path p for the following x ?				F	0.6	0.4	F	0.5	0.5	
Initial probabilities of F/L are 0.5				L	0.4	0.6	L	0.8	0.2		
p	?	?	? ? ?				?	?	?	?	?
X	Т	Н	Т	Н	Н	Н	Т	Н	Т	Т	Н
S Fair, i	0.25	?	?	?	?	?	?	?	?	?	?
S Loaded, i	0.1	?	?	?	?	?	?	?	?	?	?

Viterbi fills in all the question marks

$$S_{F,i} = E \times \max\{S_{k,i-1} \times A\}$$

$$S_{L,i} = E \times \max\{S_{k,i-1} \times A\}$$
assume $p_1(F) = 0.5$

Ε	Н	Т
F	0.5	0.5
L	8.0	0.2

X	Т	Н	Т	Н
C	E(T F) = .5 A(F) = .5	$E(H F) = C$ $S_{F,1} \times A(F $	max{S _{k,1} x A}).5 F) = .25 x .6 = .15 L) = .1 x .4 = .04	5 (max)
S _{F,i}	S _{F,1} =.25	$S_{L,1} \times 7 \times 17$ $S_{E,2} = 0.07$		
	E(T L) = .2 A(L) = .5	E(H L) = C S _{F,1} x A(L	$F) = .25 \times .4 = .1$	(max)
S _{L,i}	S _{L,1} =.1	$S_{L,1} \times A(L)$ $S_{L,2} = 0.08$	L) = .1 x .6 = .06	

$$\begin{split} \mathbf{S}_{\mathsf{F},\mathsf{i}} &= \mathbf{E} \; \mathsf{x} \; \mathsf{max} \{ \mathbf{S}_{\mathsf{k},\mathsf{i-1}} \; \mathsf{x} \; \mathsf{A} \} \\ \mathbf{S}_{\mathsf{L},\mathsf{i}} &= \mathbf{E} \; \mathsf{x} \; \mathsf{max} \{ \mathbf{S}_{\mathsf{k},\mathsf{i-1}} \; \mathsf{x} \; \mathsf{A} \} \\ \mathsf{assume} \; \mathsf{p}_{\mathsf{1}}(\mathsf{F}) &= 0.5 \end{split}$$

A	F	L
F	0.6	0.4
L	0.4	0.6

Е	Н	Т
F	0.5	0.5
L	0.8	0.2

X	Т	Н	Т	Н
S _{F,i}	E(T F) = .5 A(F) = .5 $S_{F,1} = .25$	E(H F)=.5 $S_{F,1}$ $A(F F)$ $S_{L,1}$ $A(F L)$ $S_{F,2}$ $= .075$	$S_{F,3} = E \times max\{S_{F,3} = E \times max\{S_{F,3} = 0.5 \}$ $S_{F,2} \times A(F F) = S_{F,2} \times A(F L) = S_{F,3} = 0.0225$.075 x .6 =.045 (max)
	E(T L) = .2 A(L) = .5	$E(H L) = .8$ $\underline{S}_{E,1} \underline{A(L F)}$ $S_{L,1} \underline{A(L L)}$	$S_{L,3} = E \times max\{S_{L,3} = E \times max\{S_{L,3} = 0.2 \}$ $S_{F,2} \times A(L F) = S_{L,2} \times A(L L) = 1$.,_
S _{L,i}	S _{L,1} =.1	S _{L,2} =.08	$S_{L,3}^{2} = 0.0096$	

$$S_{F,i} = E \times max{S_{k,i-1} \times A}$$

 $S_{L,i} = E \times max{S_{k,i-1} \times A}$
assume $p_1(F) = 0.5$

A	F	L
F	0.6	0.4
L	0.4	0.6

Е	Н	Т
F	0.5	0.5
L	0.8	0.2

X	Т	Η	Т	Η
	E(T F) = .5 A(F) = .5	E(H F)=.5 <u>S_{E,1} A(F F)</u> S _{L,1} A(F L)	E(T F)=.5 <u>S_{E,2} A(F F)</u> S _{L,2} A(F L)	
S _{F,i}	S _{F,1} =.25	S _{F,2} =.075	S _{F,3} =.0225	
	E(T L) = .2 A(L) = .5	$E(H L) = .8$ $\underline{S}_{F,1} \underline{A(L F)}$ $S_{L,1} \underline{A(L L)}$	$E(T L) = .2$ $S_{F,2} A(L F)$ $\underline{S}_{L,2} \underline{A}(L L)$	
S _{L,i}	S _{L,1} =.1	S _{L,2} =.08	S _{L,3} = .0096	

Backtrace

- 1. Pick state in last step with highest score
- 2.Backtrace for most likely path according to which state k "won" the max

X	Т	Н	Т	Н
	E(T F) = .5 A(F) = .5	E(H F)=.5 <u>S_{E,1} A(F F)</u> S _{L,1} A(F L)	E(T F)=.5 <u>S_{E.2} A(F F)</u> S _{L,2} A(F L)	
S _{F,i}	S _{F,1} =.25	S _{F,2} =.075	S _{F,3} =.0225	
	E(T L) = .2 A(L) = .5	$E(H L) = .8$ $\underline{S}_{E,1} \underline{A(L F)}$ $S_{L,1} \underline{A(L L)}$	$E(T L) = .2$ $S_{F,2} A(L F)$ $\underline{S}_{L,2} \underline{A}(L L)$	
S _{L,i}	S _{L,1} =.1	S _{L,2} =.08	S _{L,3} = .0096	

Complexity

How much work did we do, given Q is the set of states and n is the length of the sequence?

$S_{k,i}$ values to calculate = $n \cdot |Q|$, each involves max over |Q| products $O(n \cdot |Q|^2)$

Matrix A has $|Q|^2$ elements, E has $|Q||\Sigma|$ elements, I has |Q| elements

Exercises

- 1) Give four examples of application (uses) of HMMs in computational biology.
- 2) What is the probability of x = AATTCG under the CpG island Markov chain and under the non-CpG island Markov chain (described in the slides)?

- 3) How do you avoid overflow errors caused by operations on really small numbers?
- 4) What are two disadvantages of using a sliding window with a cutoff to identify CpG islands?
- 5) In HMMs, the labels (states) are hidden/observed, and the emissions are hidden/observed?

6) What is the probability of AACG with hidden states OOII under the following HMM:

Α	I	0
I	8.0	0.2
0	0.2	8.0

E	Α	G	С	Т
ı	0.1	0.4	0.4	0.1
0	0.25	0.25	0.25	0.25

AACG 00II

- 7) In the diagram below, we observed x1-x4 but not p1-p4:
- a) does P(p3) depend on p2?
- b) does P(p3) depend on x3?
- c) does P(p3) depend on x2?
- d) does P(p3) depend on x4?
- e) does P(p3|p2) depend on x2?

- 8) Fill in the last column using viterbi and A and E from prior slides.
- 9) Whats the most likely path?

A	F	L
F	0.6	0.4
L	0.4	0.6

Е	Н	Т	
F	0.5	0.5	
L	8.0	0.2	

X	Т	Н	Т	Н
	E(T F) A(F)	E(H F)=.5 <u>S_{E,1} A(F F)</u> S _{L,1} A(F L)	$E(T F)=.5$ $S_{E,2} A(F F)$ $S_{L,2} A(F L)$	S _{F,4} =
S _{F,i}	S _{F,1} =.25	S _{F,2} =.075	S _{F,3} =.0225	
	E(T L) A(L)	$E(H L) = .8$ $\underline{S}_{E,1} A(L F)$ $S_{L,1} A(L L)$	$E(T L) = .2$ $S_{F,2} A(L F)$ $\underline{S}_{L,2} A(L L)$	S _{L,4} =
S _{L,i}	S _{L,1} =.1	S _{L,2} =.08	S _{L,3} = .0096	