Strengthening the Murty-Simon Conjecture on diameter-2-critical graphs

Antoine Dailly¹, Florent Foucaud², Adriana Hansberg³

G-SCOP, Grenoble, France
 LIMOS, Clermont-Ferrand, France
 Instituto de Matemáticas, UNAM Juriquilla, Mexico

Distance

The distance between two vertices is the number of edges in a shortest path between them.

Diameter

The diameter of a graph is the highest distance between two of its vertices.

Theorem (Moon, Moser, 1966)

Almost all random graphs have diameter 2.

Theorem (Moon, Moser, 1966)

Almost all random graphs have diameter 2.

Proof idea

We use the model where two vertices have probability $\frac{1}{2}$ to be neighbours.

For any two vertices u, v, for every w, $P(w \notin N(u) \cap N(v)) = \frac{3}{4}$

Theorem (Moon, Moser, 1966)

Almost all random graphs have diameter 2.

Proof idea

We use the model where two vertices have probability $\frac{1}{2}$ to be neighbours.

For any two vertices u, v, for every w, $P(w \notin N(u) \cap N(v)) = \frac{3}{4}$ $\Rightarrow P(dist(u, v) > 2) = \frac{1}{2} \left(\frac{3}{4}\right)^{n-2}$

Theorem (Moon, Moser, 1966)

Almost all random graphs have diameter 2.

Proof idea

We use the model where two vertices have probability $\frac{1}{2}$ to be neighbours.

For any two vertices u, v, for every w, $P(w \notin N(u) \cap N(v)) = \frac{3}{4}$

$$\Rightarrow P(dist(u,v) > 2) = \frac{1}{2} \left(\frac{3}{4}\right)^{n-2}$$

$$\Rightarrow \mathbb{E}(diam(G) > 2) = \binom{n}{2} \frac{1}{2} \left(\frac{3}{4}\right)^{n-2} \xrightarrow[n \to +\infty]{} 0$$

Diameter-2-critical (D2C) graphs

Definition

A graph is D2C if it has diameter 2

Diameter-2-critical (D2C) graphs

Definition

A graph is D2C if it has diameter 2 and if any edge deletion increases its diameter.

Diameter-2-critical (D2C) graphs

Definition

A graph is D2C if it has diameter 2 and if any edge deletion increases its diameter.

Clebsch Graph

Chvàtal Graph

Broader context: DdC graphs

Definition

A graph is DdC if it has diameter d and if any edge deletion increases its diameter.

Broader context: DdC graphs

Definition

A graph is DdC if it has diameter d and if any edge deletion increases its diameter.

Theorem (Gliviak, 1975)

For $d \ge 2$, DdC graphs can neither be constructed by finite extension nor be characterized by forbidden induced subgraph.

Broader context: DdC graphs

Definition

A graph is DdC if it has diameter d and if any edge deletion increases its diameter.

Theorem (Gliviak, 1975)

For $d \ge 2$, DdC graphs can neither be constructed by finite extension nor be characterized by forbidden induced subgraph.

 \Rightarrow The main focus is on D2C graphs

How many edges are there in a D2C graph?

- ▶ Diameter $2 \Rightarrow$ Dense
- ► No edge is superfluous ⇒ Not too dense

How many edges are there in a D2C graph?

- ▶ Diameter $2 \Rightarrow$ Dense
- ► No edge is superfluous ⇒ Not too dense

Example: $K_{k,\ell}$

How many edges are there in a D2C graph?

- ▶ Diameter $2 \Rightarrow$ Dense
- ► No edge is superfluous ⇒ Not too dense

Example: $K_{k,\ell}$

Example: D2C graphs with no triangle

At most $\left\lfloor \frac{n^2}{4} \right\rfloor$ edges; equality $\Leftrightarrow G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$ (Mantel, 1907).

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

If G is a D2C graph of order n, then, it has at most $\left\lfloor \frac{n^2}{4} \right\rfloor$ edges, with equality iff $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

If G is a D2C graph of order n, then, it has at most $\left\lfloor \frac{n^2}{4} \right\rfloor$ edges, with equality iff $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- ► True for D2C graphs with no triangle (Mantel, 1907)
- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

If G is a D2C graph of order n, then, it has at most $\left\lfloor \frac{n^2}{4} \right\rfloor$ edges, with equality iff $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- ► True for D2C graphs with no triangle (Mantel, 1907)
- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- $ightharpoonup m < rac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta and Häggkvist, 1979)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

If G is a D2C graph of order n, then, it has at most $\left\lfloor \frac{n^2}{4} \right\rfloor$ edges, with equality iff $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- ► True for D2C graphs with no triangle (Mantel, 1907)
- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- ▶ $m < \frac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta and Häggkvist, 1979) → They also had a similar conjecture for DdC graphs, disproved by Krishnamoorthy and Nandakumar (1981)

Conjecture (Murty, Simon, Ore, Plesník, 1970s)

If G is a D2C graph of order n, then, it has at most $\left\lfloor \frac{n^2}{4} \right\rfloor$ edges, with equality iff $G = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$.

- ► True for D2C graphs with no triangle (Mantel, 1907)
- $m < \frac{3n(n-1)}{8} = 0.375(n^2 n)$ (Plesník, 1975)
- ► $m < \frac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta and Häggkvist, 1979) → They also had a similar conjecture for DdC graphs, disproved by Krishnamoorthy and Nandakumar (1981)
- ► $m < 0.2532n^2$; true for $n \le 24$, n = 26 (Fan, 1987)

Maximal triangle-free (MTF) graphs

- A graph is MTF if it is triangle-free and adding an edge creates a triangle.
- ► A triangle-free graph is D2C iff it is MTF. (Barefoot *et al.*, 1995)

Maximal triangle-free (MTF) graphs

- A graph is MTF if it is triangle-free and adding an edge creates a triangle.
- ► A triangle-free graph is D2C iff it is MTF. (Barefoot *et al.*, 1995)

3-total-domination-critical (3TC) graphs

- ► A graph is 3TC if it has total domination number 3 and adding an edge reduces it.
- ► A graph is D2C iff its complement is 3TC (or 4-supercritical) (Hanson and Wang, 2003)

Maximal triangle-free (MTF) graphs

- ► A graph is MTF if it is triangle-free and adding an edge creates a triangle.
- ► A triangle-free graph is D2C iff it is MTF. (Barefoot *et al.*, 1995)

3-total-domination-critical (3TC) graphs

- ► A graph is 3TC if it has total domination number 3 and adding an edge reduces it.
- ► A graph is D2C iff its complement is 3TC (or 4-supercritical) (Hanson and Wang, 2003)
- ► Several graph classes for which the Conjecture holds, among which:
 - ► *G* has a dominating edge (Hanson and Wang, 2003; Haynes *et al.*, 2011; Wang, 2012)
 - $ightharpoonup \Delta \geq 0.6756n$ (Jabalameli *et al.*, 2016+)
 - ▶ $\Delta < 0.6756n$ and less than $(\frac{5}{14} + o(1))n$ edges in a triangle (D. and Hansberg, 2018)

Some related results

- ► Plesník, 1986:
 - There exist infinitely many D2C graphs with every edge in a triangle and minimum degree d (for $d \ge 2$)
 - ► There exist infinitely many planar D2C graphs with every edge in a triangle and minimum degree 2
 - ► There exists no outerplanar D2C graphs with every edge in a triangle

Some related results

- ► Plesník, 1986:
 - There exist infinitely many D2C graphs with every edge in a triangle and minimum degree d (for $d \ge 2$)
 - ► There exist infinitely many planar D2C graphs with every edge in a triangle and minimum degree 2
 - There exists no outerplanar D2C graphs with every edge in a triangle
- ▶ If G is D2C and triangle-free, then either it is bipartite or it has at least 2n 5 edges (Barefoot *et al.*, 1995)

Some related results

- ► Plesník, 1986:
 - There exist infinitely many D2C graphs with every edge in a triangle and minimum degree d (for $d \ge 2$)
 - ► There exist infinitely many planar D2C graphs with every edge in a triangle and minimum degree 2
 - There exists no outerplanar D2C graphs with every edge in a triangle
- ▶ If G is D2C and triangle-free, then either it is bipartite or it has at least 2n 5 edges (Barefoot *et al.*, 1995)
- ► Loh and Ma, 2016:
 - There is an infinite family of D2C graphs with average edge-degree at least $(\frac{10}{9} o(1))n$
 - There are c, N such that every D2C graph of order at least N has average edge-degree at most $(\frac{6}{5} c)n$
 - If $d \ge 3$, then the average edge-degree of a DdC graph is at most n, and the bound is tight
 - ► Every DdC graph has at most $\frac{3n^2}{d}$ edges; every DdC $(d \ge 3)$ graph has at most $\frac{n^2}{6} + o(n^2)$ edges

A breakthrough

Theorem (Füredi, 1992)

There exists an n_0 such that, for every $n > n_0$, the Murty-Simon Conjecture holds for D2C graphs of order n.

A breakthrough

Theorem (Füredi, 1992)

There exists an n_0 such that, for every $n > n_0$, the Murty-Simon Conjecture holds for D2C graphs of order n.

- First use of the Regularity Lemma to get an exact, non-asymptotic value
- ▶ Proof idea: a D2C graph with more than $(\frac{1}{4} o(1))n^2$ is almost complete bipartite

Claim (Füredi, 1992)

If G is D2C and non-bipartite, then, it has at most $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 \approx \left\lfloor \frac{n^2}{4} - \frac{n}{2} \right\rfloor$ edges, with equality iff G is obtained by subdividing and edge of $K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lceil \frac{n-1}{2} \right\rceil}$.

Claim (Füredi, 1992)

If G is D2C and non-bipartite, then, it has at most $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 \approx \left\lfloor \frac{n^2}{4} - \frac{n}{2} \right\rfloor$ edges, with equality iff G is obtained by subdividing and edge of $K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lceil \frac{n-1}{2} \right\rceil}$.

Theorem (Balbuena et al., 2015)

If G is D2C, non-bipartite and triangle-free, then, it has at most $\left| \frac{(n-1)^2}{4} \right| + 1$ edges, with equality iff G is an inflation of C_5 .

Claim (Füredi, 1992)

If G is D2C and non-bipartite, then, it has at most $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 \approx \left\lfloor \frac{n^2}{4} - \frac{n}{2} \right\rfloor$ edges, with equality iff G is obtained by subdividing and edge of $K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lceil \frac{n-1}{2} \right\rceil}$.

Theorem (Balbuena et al., 2015)

If G is D2C, non-bipartite and triangle-free, then, it has at most $\left| \frac{(n-1)^2}{4} \right| + 1$ edges, with equality iff G is an inflation of C_5 .

Conjecture: linear strengthening (Balbuena et al., 2015)

If G is D2C and non-bipartite, and $G \neq H_5$, then, it has at most $\left| \frac{(n-1)^2}{4} \right| + 1$ edges.

$$H_5 =$$

Conjecture: linear strengthening (Balbuena et al., 2015)

If G is D2C and non-bipartite, and $G \neq H_5$, then, it has at most $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1$ edges. If $n \geq 10$, then, there is equality iff G is an inflation of C_5 .

$$H_5 =$$

Our main result

Theorem (D., Foucaud, Hansberg, 2019)

If G is D2C non-bipartite with a dominating edge and $G \neq H_5$, then it has at most $\left|\frac{n^2}{4}\right| - 2$ edges.

Theorem (D., Foucaud, Hansberg, 2019)

If G is D2C non-bipartite with a dominating edge and $G \neq H_5$, then it has at most $\left| \frac{n^2}{4} \right| - 2$ edges.

Theorem (D., Foucaud, Hansberg, 2019)

If G is D2C non-bipartite with a dominating edge and $G \neq H_5$, then it has at most $\left|\frac{n^2}{4}\right| - 2$ edges.

Sketch of the proof

1. Partition the vertices in two sets A and B.

Theorem (D., Foucaud, Hansberg, 2019)

If G is D2C non-bipartite with a dominating edge and $G \neq H_5$, then it has at most $\left| \frac{n^2}{4} \right| - 2$ edges.

Sketch of the proof

- 1. Partition the vertices in two sets A and B.
- 2. Assign every edge in A and B to a non-edge between them.

Theorem (D., Foucaud, Hansberg, 2019)

If G is D2C non-bipartite with a dominating edge and $G \neq H_5$, then it has at most $\left\lfloor \frac{n^2}{4} \right\rfloor - 2$ edges.

Sketch of the proof

- 1. Partition the vertices in two sets A and B.
- 2. Assign every edge in A and B to a non-edge between them.
- 3. Find two non-assigned non-edges between A and B.

Definition

An edge e is critical for vertices x and y if

Definition

An edge e is critical for vertices x and y if e is part of the only path of length 1 or 2 between x and y.

Definition

An edge e is critical for vertices x and y if e is part of the only path of length 1 or 2 between x and y.

 \rightarrow Either e = xy and $N(x) \cap N(y) = \emptyset$;

Definition

An edge e is critical for vertices x and y if e is part of the only path of length 1 or 2 between x and y.

 \rightarrow Either e = xy and $N(x) \cap N(y) = \emptyset$;

 \rightarrow Or $xy \notin E$, $N(x) \cap N(y) = \{z\}$ and $e \in \{xz, yz\}$.

Definition

An edge e is critical for vertices x and y if e is part of the only path of length 1 or 2 between x and y.

 \rightarrow Either e = xy and $N(x) \cap N(y) = \emptyset$;

 \rightarrow Or $xy \notin E$, $N(x) \cap N(y) = \{z\}$ and $e \in \{xz, yz\}$.

⇒ Every edge is critical for a pair of vertices

The function fLet xy be an edge in A.

The function f

Let xy be an edge in A.

▶ Not critical for *x* and *y* or any vertex in *A* since *v* is a common neighbour.

The function f

Let xy be an edge in A.

- ▶ Not critical for *x* and *y* or any vertex in *A* since *v* is a common neighbour.
- ▶ Critical for y and z with $z \in B \cap N(x)$

The function f

Let xy be an edge in A.

- ▶ Not critical for *x* and *y* or any vertex in *A* since *v* is a common neighbour.
- ▶ Critical for y and z with $z \in B \cap N(x)$: let $f(xy) = \overline{yz}$.

The function *f*

Let xy be an edge in A.

- ► Not critical for x and y or any vertex in A since v is a common neighbour.
- ightharpoonup Critical for y and z with $z \in B \cap N(x)$: let $f(xy) = \overline{yz}$.

Lemma

f is injective.

Definition

A non-edge between A and B with no preimage by f is called f-free.

Definition

A non-edge between A and B with no preimage by f is called f-free.

Definition

A non-edge between A and B with no preimage by f is called f-free.

Definition

A non-edge between A and B with no preimage by f is called f-free. The number of f-free non-edges is denoted by free(f).

Definition

A non-edge between A and B with no preimage by f is called f-free. The number of f-free non-edges is denoted by free(f).

Lemma

$$G$$
 has $\left| \frac{n^2 - ||A| - |B||^2}{4} \right| - \mathsf{free}(f) \le \left| \frac{n^2}{4} \right| - \mathsf{free}(f)$ edges.

Definition

A non-edge between A and B with no preimage by f is called f-free. The number of f-free non-edges is denoted by free(f).

Lemma

G has
$$\left\lfloor \frac{n^2 - ||A| - |B||^2}{4} \right\rfloor - \mathsf{free}(f) \leq \left\lfloor \frac{n^2}{4} \right\rfloor - \mathsf{free}(f)$$
 edges.

⇒ This proves the bound of Murty-Simon

Sketch of the proof

- 1. Partition the vertices in two sets A and B.
- 2. Assign every edge in A and B to a non-edge between them.
- 3. Find two non-assigned non-edges between A and B.

Sketch of the proof

- 1. Partition the vertices in two sets A and B.
- 2. Assign every edge in A and B to a non-edge between them.
- 3. Find two non-assigned non-edges between A and B.

Let $P_{uv} = \{x \mid uv \text{ is critical for the pair } \{u, x\} \text{ or } \{v, x\}\}.$

Sketch of the proof

- 1. Partition the vertices in two sets A and B.
- 2. Assign every edge in A and B to a non-edge between them.
- 3. Find two non-assigned non-edges between A and B.

```
Let P_{uv} = \{x \mid uv \text{ is critical for the pair } \{u, x\} \text{ or } \{v, x\}\}.

\Rightarrow \text{If } P_{uv} = \emptyset, \text{ then } N(u) \cap N(v) = \emptyset.
```

Sketch of the proof

- 1. Partition the vertices in two sets A and B.
- 2. Assign every edge in A and B to a non-edge between them.
- 3. Find two non-assigned non-edges between A and B.

Let
$$P_{uv} = \{x \mid uv \text{ is critical for the pair } \{u, x\} \text{ or } \{v, x\}\}.$$

 $\Rightarrow \text{ If } P_{uv} = \emptyset, \text{ then } N(u) \cap N(v) = \emptyset.$

Lemma

If $P_{uv} \neq \emptyset$, then, free $(f) \geq 2$.

The proof is a case-by-case analysis.

Sketch of the proof

- 1. Partition the vertices in two sets A and B.
- 2. Assign every edge in A and B to a non-edge between them.
- 3. Find two non-assigned non-edges between A and B.

Let
$$P_{uv} = \{x \mid uv \text{ is critical for the pair } \{u, x\} \text{ or } \{v, x\}\}.$$

 $\Rightarrow \text{ If } P_{uv} = \emptyset, \text{ then } N(u) \cap N(v) = \emptyset.$

Lemma

If $P_{uv} \neq \emptyset$, then, free $(f) \geq 2$.

The proof is a case-by-case analysis.

 \rightarrow For the remainder of the proof, we may assume that $P_{uv} = N(u) \cap N(v) = \emptyset$.

We denote $S_u = N(u) \setminus \{v\}$ and $S_v = N(v) \setminus \{u\}$.

We denote $S_u = N(u) \setminus \{v\}$ and $S_v = N(v) \setminus \{u\}$.

The f-orientation If $f(xy) = \overline{yz}$,

We denote $S_u = N(u) \setminus \{v\}$ and $S_v = N(v) \setminus \{u\}$.

The f-orientation

If $f(xy) = \overline{yz}$, we orient xy from x to y.

We denote $S_u = N(u) \setminus \{v\}$ and $S_v = N(v) \setminus \{u\}$.

The f-orientation

If $f(xy) = \overline{yz}$, we orient xy from x to y.

The next (and final!) step

Find properties of the f-orientation and prove that there are 2 f-free non-edges.

A useful property

Lemma

Let \overrightarrow{xy} be an arc of the f-orientation in (wlog) S_u such that neither x nor y is incident to an f-free non-edge.

A useful property

Lemma

Let \overrightarrow{xy} be an arc of the f-orientation in (wlog) S_u such that neither x nor y is incident to an f-free non-edge. Then, there is $t \in S_v$ such that $N(x) \cap S_v = (N(y) \cap S_v) \cup \{t\}$.

A useful property

Lemma

Let \overrightarrow{xy} be an arc of the f-orientation in (wlog) S_u such that neither x nor y is incident to an f-free non-edge. Then, there is $t \in S_v$ such that $N(x) \cap S_v = (N(y) \cap S_v) \cup \{t\}$.

Corollary

[Lemma]

[Lemma]

Lemma

Lemma

Lemma

No directed cycle

⇒ At least one
source and one sink

No directed cycle ⇒ At least one source and one sink

Lemma

Every source and every sink has at least one f-free non-edge in its closed neighbourhood.

No directed cycle ⇒ At least one source and one sink

Lemma

Every source and every sink has at least one f-free non-edge in its closed neighbourhood.

Remark

 \Rightarrow Proves Murty-Simon for this family!

No directed cycle ⇒ At least one source and one sink

Lemma

Every source and every sink has at least one f-free non-edge in its closed neighbourhood.

Remark

⇒ Proves Murty-Simon for this family!

Final steps

▶ At least one source and one sink at distance ≥ 3 in a component \Rightarrow We are done

No directed cycle ⇒ At least one source and one sink

Lemma

Every source and every sink has at least one f-free non-edge in its closed neighbourhood.

Remark

⇒ Proves Murty-Simon for this family!

Final steps

- At least one source and one sink at distance ≥ 3 in a component \Rightarrow We are done
- Otherwise ⇒ Refining even more the properties of the f-orientation to conclude

Stronger results (under conditions)

Theorem (D., Foucaud, Hansberg, 2019)

If uv is only critical for the pair $\{u,v\}$, then G has at most $\left\lfloor \frac{n^2}{4} \right\rfloor - c_1 - 2c_2$ edges $(c_1 \text{ (resp. } c_2) = \text{ number of components of diameter 2 (resp. <math>\geq 3)$ in the graph induced by S_x $(x \in \{u,v\})$ oriented by the f-orientation).

Theorem (D., Foucaud, Hansberg, 2019)

If uv is only critical for the pair $\{u,v\}$, then G has at most $\left\lfloor \frac{n^2}{4} \right\rfloor - \sum_{C \in \mathcal{C}} |C| - |\mathcal{S}|$ edges $(\mathcal{C} \text{ (resp. } \mathcal{S}) = \text{ directed cycles (resp. transitive triangles and disjoint neighbourhoods of a source or a sink) in the graph induced by <math>S_x$ $(x \in \{u,v\})$ oriented by the f-orientation).

Au final

Conclusion

- ► Improving on the bound of Murty-Simon
- ► Better proof for this family
- ► The *f*-orientation, which might be useful

Au final

Conclusion

- ► Improving on the bound of Murty-Simon
- ► Better proof for this family
- ► The *f*-orientation, which might be useful

Future work

- ► Improving the bound (for the linear strengthening)
- ► See if the method can be adapted to other families of D2C graphs

Au final

Conclusion

- ► Improving on the bound of Murty-Simon
- ► Better proof for this family
- ► The *f*-orientation, which might be useful

Future work

- ► Improving the bound (for the linear strengthening)
- ► See if the method can be adapted to other families of D2C graphs

