# 微积分 A (1)

姚家燕

第5讲

## 在听课过程中,

严禁使用任何电子产品!

#### 重要通知

9月27日周日布置的作业,同9月30日的作业一起,均为10月7日提交

## 第 4 讲回顾: 收敛数列的性质

- 唯一性: 若数列收敛, 则其极限唯一.
- 有限韧性: 改变有限项不改变敛散性.
- 均匀性: 数列收敛当且仅当它的任意子列均 收敛到同一个值 (常用于证明某数列发散).
- 有界性: 收敛的数列有界.

- 局部保序: 设  $\lim_{n\to\infty} a_n = A$ ,  $\lim_{n\to\infty} b_n = B$ .
- (1) 若 A > B, 则  $\exists N > 0$  使  $\forall n > N$ ,  $a_n > b_n$ .
- (2) 若  $\exists N > 0$  使  $\forall n > N$ ,  $a_n \geqslant b_n$ , 则  $A \geqslant B$ .
  - 局部保号: 设  $\lim_{n\to\infty} a_n = A$ .
- (1) 若 A > 0, 则  $\exists N > 0$  使  $\forall n > N$ ,  $a_n > 0$ .
- (2) 若  $\exists N > 0$  使  $\forall n > N$ ,  $a_n \ge 0$ , 则  $A \ge 0$ .
- (3) 若  $A \neq 0$ , 则  $\exists N > 0$  使  $\forall n > N$ ,  $a_n \neq 0$ .

#### 回顾: 四则运算法则

若 
$$\lim_{n\to\infty} a_n = A$$
,  $\lim_{n\to\infty} b_n = B$ , 则

(1) 
$$\forall \alpha, \beta \in \mathbb{R}$$
,  $\lim_{n \to \infty} (\alpha a_n + \beta b_n) = \alpha A + \beta B$ ;

(2) 
$$\lim_{n\to\infty} a_n b_n = (\lim_{n\to\infty} a_n)(\lim_{n\to\infty} b_n) = AB;$$

(3) 
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} = \frac{A}{B}$$
 (若  $B \neq 0$ ).



## 回顾: 典型例子

- $\bullet \lim_{n \to \infty} \sqrt[n]{n} = 1.$
- $\lim_{n \to \infty} \frac{2n^2 + n + 2}{n^2 3} = 2.$
- •数列  $\{(-1)^n\}$  发散.
- $\lim_{n \to \infty} \frac{n + e^{-n^2}}{n + \cos n} = 1.$
- $\lim_{n \to \infty} \frac{a_0 + \dots + a_k n^k}{b_0 + \dots + b_\ell n^\ell} = \begin{cases} 0, & \text{若 } k < \ell, \\ \frac{a_\ell}{b_\ell}, & \text{若 } k = \ell, \end{cases} \quad \ell \geqslant k \geqslant 0$ 为整数,  $a_i, b_j \in \mathbb{R} \ \text{且} \ b_\ell \neq 0.$

#### 回顾: 夹逼原理

假设数列  $\{a_n\},\{b_n\},\{x_n\}$  满足:

(1) 
$$\exists n_0 > 0$$
 使得  $\forall n > n_0$ , 均有  $a_n \leqslant x_n \leqslant b_n$ ;

(2) 
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = A$$
.

则数列 
$$\{x_n\}$$
 收敛且  $\lim_{n\to\infty} x_n = A$ .

#### 回顾: 夹逼原理的典型应用

• 若  $\{a_n\}$  非负且收敛于 A, 则  $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{A}$ .

• 
$$\lim_{n\to\infty} \left(\sum_{k=1}^m a_k^n\right)^{\frac{1}{n}} = \max_{1\leqslant k\leqslant m} a_k$$
,  $\sharp \vdash a_k \geqslant 0$ .

•  $\lim_{n \to \infty} \sqrt[n]{a} = 1 \ (a > 0).$ 

## 回顾: 典型的极限关系

- $\lim_{n\to\infty} \frac{1}{\log n} = 0$ . 对数函数比常数增长得更快!
- $\lim_{n\to\infty} \frac{\log n}{n^{\alpha}} = 0$  (其中  $\alpha > 0$ ). 幂函数比对数函数增长得更快!
- $\lim_{n\to\infty} \frac{n^{\alpha}}{a^n} = 0$  (其中  $\alpha \in \mathbb{R}, \ a > 1$ ). 指数函数比幂函数增长得更快!

 $\bullet \lim_{n \to \infty} \frac{a^n}{n!} = 0 \ (a \in \mathbb{R}).$ 

#### 连乘积比指数函数增长得更快!

• 
$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$
,  $\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$ .

• 平均性: 若  $\lim_{n\to\infty} a_n = A$ , 则

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = A.$$



## 第5讲

#### §4. 单调数列

#### 定义 1. 设 $\{a_n\}$ 为数列.

- 称该数列递增, 若  $\forall n \geqslant 1$ ,  $a_n \leqslant a_{n+1}$ ;
- 称该数列严格递增, 若  $\forall n \ge 1$ ,  $a_n < a_{n+1}$ ;
- 称该数列递减, 若  $\forall n \geq 1$ ,  $a_n \geq a_{n+1}$ ;
- 称该数列严格递减, 若  $\forall n \geq 1$ ,  $a_n > a_{n+1}$ .
- 递增数列与递减数列合称单调数列.

#### 定理 1. (单调有界定理)

- 单调递增有上界的数列必收敛;
- 单调递减有下界的数列必收敛.

证明: 假设数列  $\{a_n\}$  单调递增有上界. 那么由确界定理可知该数列有上确界 A, 于是  $\forall n \geq 1$ ,  $a_n \leq A$ , 并且  $\forall \varepsilon > 0$ ,  $\exists N > 0$  使得  $a_N > A - \varepsilon$ . 从而  $\forall n > N$ , 均有  $a_n \leq A < a_N + \varepsilon \leq a_n + \varepsilon$ , 也即  $|a_n - A| < \varepsilon$ , 因此我们有  $\lim a_n = A$ .

如果  $\{a_n\}$  单调递减有下界,则  $\{-a_n\}$  单调递增有上界,因此收敛,进而可知  $\{a_n\}$  收敛.

注: (1) 可能数列不是从第一项, 而是从某一项开始单调有界. 由于改变数列的有限项不改变其敛散性, 故此时单调有界定理依然成立.

(2) 单调递增有上界数列的极限就是其上确界; 单调递减有下界数列的极限就是其下确界.

## 超越数 e 的定义

#### 例 1. $\forall n \geq 1$ , 定义

$$a_n = \left(1 + \frac{1}{n}\right)^n, \ b_n = \left(1 + \frac{1}{n}\right)^{n+1}.$$

求证: 数列  $\{a_n\}$  和  $\{b_n\}$  收敛到同一极限.

注: 该极限就是著名的超越数 e. 上述这两数列 实际上给出了 e 的上、下"有理逼近".

# 证明: $\forall n \geq 1$ , 由定义立刻得 $0 \leq a_n \leq b_n$ . 另外由几何平均小干算术平均可知

$$a_n = \left(1 + \frac{1}{n}\right)^n \cdot 1$$

$$\leq \left(\frac{n\left(1 + \frac{1}{n}\right) + 1}{n+1}\right)^{n+1}$$

$$= \left(1 + \frac{1}{n+1}\right)^{n+1}$$

$$= a_{n+1}.$$

同样地, 我们也有

$$b_n = \left(1 + \frac{1}{n}\right)^{n+1} = \frac{1}{\left(1 - \frac{1}{n+1}\right)^{n+1} \cdot 1}$$

$$\geqslant \frac{1}{\left(\frac{\left(1 - \frac{1}{n+1}\right)(n+1) + 1}{n+2}\right)^{n+2}}$$

$$= \frac{1}{\left(\frac{n+1}{n+2}\right)^{n+2}} = \left(\frac{n+2}{n+1}\right)^{n+2} = b_{n+1}.$$

于是 $\forall n \geq 1$ , 我们有 $a_1 \leq a_n \leq b_n \leq b_1$ . 由单调有界定理可知 $\{a_n\}$ 和 $\{b_n\}$ 均收敛. 设其极限分别为a,b. 注意到 $\forall n \geq 1$ , 我们有

$$b_n = \left(1 + \frac{1}{n}\right)^{n+1} = \left(1 + \frac{1}{n}\right)a_n.$$

两边取极限可得 b = a, 因此所证成立.

注: 我们事实上证明了,  $\forall n \geq 1$ , 均有

$$(1+\frac{1}{n})^n < e < (1+\frac{1}{n})^{n+1}, \frac{1}{n+1} < \log(1+\frac{1}{n}) < \frac{1}{n}.$$

特别地, 我们有  $2 = a_1 < e < b_5 < 3$ .

例 2.  $\forall n \geq 1$ , 令  $a_n = \sum_{k=1}^n \frac{1}{k^2}$ . 求证:  $\{a_n\}$  收敛.

证明:  $\forall n \geq 1$ , 我们有  $a_{n+1} = a_n + \frac{1}{(n+1)^2} > a_n$ , 故数列  $\{a_n\}$  递增. 又  $\forall n \geq 1$ , 我们有

$$a_n = \sum_{k=1}^n \frac{1}{k^2} \le 1 + \sum_{k=2}^n \frac{1}{k(k-1)}$$
$$= 1 + \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k}\right) = 2 - \frac{1}{n} < 2.$$

于是由单调有界定理可知  $\{a_n\}$  收敛.

## 应用单调有界定理的基本思想

- 单调有界定理时常应用于由递归关系定义的数列. 此时先假设极限存在,由此计算极限,然后再比较该极限与数列最初的值的大小.若极限大,则该数列理应递增,否则递减.
- •利用各种手段 (通常是数学归纳法) 来证明数列的单调性和有界性.

例 3. 设 
$$c > 0$$
,  $a_1 = \sqrt{c}$ , 而  $\forall n \ge 1$ , 归纳定义  $a_{n+1} = \sqrt{c + a_n}$ .

- (1) 利用数学归纳法证明:  $\forall n \ge 1$ ,  $a_n < 1 + \sqrt{c}$ .
- (2) 证明数列  $\{a_n\}$  收敛, 并计算其极限.

证明: (1) 当 
$$n = 1$$
 时, 成立  $a_1 = \sqrt{c} < 1 + \sqrt{c}$ . 现假设所要结论对  $n \ge 1$  成立, 则我们有

$$a_{n+1} = \sqrt{c + a_n} < \sqrt{c + \sqrt{c + 1}} < \sqrt{c + 1}.$$

于是由数学归纳法可知所证结论成立.

(2) 对  $n \ge 1$  运用数学归纳法来证明  $a_n \le a_{n+1}$ .

当 n=1 时, 我们有

$$a_2 = \sqrt{c + \sqrt{c}} > \sqrt{c} = a_1.$$

现假设所要结论对  $n \ge 1$  成立, 则

$$a_{n+2} = \sqrt{c + a_{n+1}} \geqslant \sqrt{c + a_n} = a_{n+1}.$$

从而由数学归纳可知上述结论成立.

由于数列  $\{a_n\}$  单调递增有上界,则由单调有界定理可知其极限存在,设为 A. 又  $\forall n \geq 1$ ,均有

$$a_{n+1}^2 = c + a_n,$$

于是由极限的四则运算法则可得  $A^2 = c + A$ . 但  $\{a_n\}$  非负, 由极限的保号性可知  $A \ge 0$ , 故

$$A = \frac{1}{2}(1 + \sqrt{1 + 4c}).$$

例 4. 设  $b_1 \geqslant a_1 \geqslant 0$ .  $\forall n \geqslant 1$ , 归纳定义  $a_{n+1} = \sqrt{a_n b_n}, \ b_{n+1} = \frac{1}{2}(a_n + b_n)$ .

求证: 数列  $\{a_n\}$  和  $\{b_n\}$  收敛到同一个极限.

证明: 对 $n \ge 1$ 用数学归纳法证明  $0 \le a_n \le b_n$ . 当 n = 1 时, 所证结论就是题设条件.

现假设所证结论对  $n \ge 1$  成立. 由归纳定义知

$$b_{n+1} = \frac{1}{2}(a_n + b_n) \geqslant \sqrt{a_n b_n} = a_{n+1} \geqslant 0.$$

从而由数学归纳法可知所要结论成立.

进而可知,  $\forall n \geq 1$ , 我们有

$$a_{n+1} = \sqrt{a_n b_n} \geqslant \sqrt{a_n^2} = a_n,$$
  
 $b_{n+1} = \frac{1}{2}(a_n + b_n) \leqslant b_n.$ 

因此  $\{a_n\}$  单调递增且  $\{b_n\}$  单调递减, 进而

$$\forall n \geqslant 1, \ a_n \leqslant b_n \leqslant b_1, \ b_n \geqslant a_n \geqslant a_1.$$

于是  $\{a_n\}$  单调递增有上界, 而  $\{b_n\}$  单调递减有下界, 故它们均收敛. 设其极限分别为 a,b.

再注意到  $\forall n \geq 1$ , 我们均有  $b_{n+1} = \frac{1}{2}(a_n + b_n)$ , 在等号两边取极限. 由此立刻可得

$$b = \frac{1}{2}(a+b),$$

也即 a = b. 故所证结论成立.

作业题: 第 1.4 节第 18 页第 5 题第 (4) 小题, 第 19 页第 17 题. 第 24 页第 5, 11 题.

#### §5. Stolz 定理

定义 1. 设  $\{a_n\}$  为数列.

- (1) 称该数列趋向于  $+\infty$ , 记作  $\lim_{n\to\infty} a_n = +\infty$ , 若  $\forall M > 0$ ,  $\exists N > 0$  使得  $\forall n > N$ ,  $a_n > M$ .
- (2) 称该数列趋向于  $-\infty$ , 记作  $\lim_{n\to\infty} a_n = -\infty$ , 若  $\forall M > 0$ ,  $\exists N > 0$  使得  $\forall n > N$ ,  $a_n < -M$ .
- (3) 称该数列趋向于  $\infty$ , 记作  $\lim_{n\to\infty} a_n = \infty$ , 如果  $\forall M > 0$ ,  $\exists N > 0$  使得  $\forall n > N$ ,  $|a_n| > M$ .

## 例 1. 由上述定义立刻可得

$$\lim_{n \to \infty} n = +\infty, \ \lim_{n \to \infty} (-n) = -\infty, \ \lim_{n \to \infty} (-1)^n n = \infty.$$

注: (1) 正项数列  $\{a_n\}$  趋近于 0 当且仅当  $\{\frac{1}{a_n}\}$  趋于 1 3 4 5 6 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8

趋于
$$+\infty$$
. (2)  $\{a_n\}$ 趋于 $0$ 当且仅当 $\{\frac{1}{a_n}\}$ 趋于 $\infty$ .

(3) 
$$\lim_{n\to\infty} a_n = \infty$$
 当且仅当  $\lim_{n\to\infty} |a_n| = +\infty$ .

定理 1. (Stolz 定理) 假设数列  $\{b_n\}$  严格递增趋于  $+\infty$ . 如果  $\lim_{n\to\infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = A \in \mathbb{R} \cup \{\pm\infty\}$ , 则我们有  $\lim_{n\to\infty} \frac{a_n}{b_n} = A$ .

## Stolz 定理的逆命题不成立

由此立刻可知极限

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}}$$

不存在, 但与此同时, 我们却有  $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ .



## "有极限"与"收敛"的差别

假设  $\lim_{n\to\infty} x_n = A$ .

- 若  $A \in \mathbb{R} \cup \{\pm \infty, \infty\}$ , 则称  $\{x_n\}$  有极限 A, 也称数列  $\{x_n\}$  趋向于 A 或趋近于 A.
- 若  $A \in \mathbb{R}$ , 则称数列  $\{x_n\}$  收敛到 A.
- 关于数列极限的许多结论仅对收敛数列成立.比如说唯一性、四则运算等等对无穷极限不成立,但保序性、夹逼原理等依然成立.

例 2. 若 lim  $x_n = A \in \mathbb{R} \cup \{\pm \infty\}$ , 求证:

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = A.$$

证明:  $\forall n \geqslant 1$ ,  $\Leftrightarrow a_n = \sum_{k=1}^n x_k$ ,  $b_n = n$ . 由题设可知

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = \lim_{n \to \infty} x_n = A,$$

而  $\{n\}$  严格递增趋向于  $+\infty$ , 则由 Stolz 定理可知所证结论成立.

例 3. 证明:  $\lim_{n\to\infty} \frac{1+\sqrt{2}+\sqrt[3]{3}+\cdots+\sqrt[n]{n}}{n} = 1.$ 

证明: 因  $\{\sqrt[n]{n}\}$  收敛于 1, 由 Stolz 定理可得.

例 4. 设 k > 0 为整数. 证明:

$$\lim_{n \to \infty} \frac{1 + 2^k + 3^k + \dots + n^k}{n^{k+1}} = \frac{1}{k+1}.$$

证明:  $\forall n \geqslant 1$ ,  $\Leftrightarrow a_n = \sum_{k=1}^{\infty} m^k$ ,  $b_n = n^{k+1}$ . 则

$$\frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \frac{(n+1)^k}{(n+1)^{k+1} - n^{k+1}} = \frac{(n+1)^k}{\sum\limits_{j=0}^k {k+1 \choose j} n^j}$$

 $(1+\frac{1}{n})^k$  $(n+1)^{k}$  $\frac{\binom{k+1}{k}n^k + \sum_{j=0}^{k-1} \binom{k+1}{j}n^j}{\binom{k+1}{k} + \sum_{j=0}^{k-1} \binom{k+1}{j}n^{j-k}}$ 

而当  $0 \le j < k$  时, 我们有  $\lim_{n \to \infty} \frac{1}{n^{k-j}} = 0$ , 于是 由四则运算法则可知

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \frac{1}{k+1}.$$

而  $\{b_n\}$  严格递增趋向于  $+\infty$ , 则由 Stolz 定理可知所要结论成立.

作业题: 第 1.4 节第 18 页第 12 题第 (2) 小题, 第 19 页第 13 题.

例 5. 假设  $\forall n \geq 1$ , 均有  $x_n > 0$  且  $\lim_{n \to \infty} x_n = a$ .

求证:  $\lim_{n\to\infty} \sqrt[n]{x_1x_2\cdots x_n} = a$ .

证明:  $\forall n \geq 1$ , 我们均有

$$\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} \leqslant \sqrt[n]{x_1 x_2 \cdots x_n} \leqslant \frac{x_1 + x_2 + \dots + x_n}{n}.$$

如果 a=0,那么  $0 \leqslant \sqrt[n]{x_1x_2\cdots x_n} \leqslant \frac{x_1+x_2+\cdots+x_n}{n}$ ,于是由 Stolz 定理以及夹逼原理可知

$$\lim_{n\to\infty} \sqrt[n]{x_1 x_2 \cdots x_n} = 0 = a.$$

若  $a \neq 0$ , 则  $\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{a}$ , 从而由 Stolz 定理可知

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = a,$$

$$\lim_{n \to \infty} \frac{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}{n} = \frac{1}{a},$$

进而由夹逼原理可得

$$\lim_{n\to\infty} \sqrt[n]{x_1 x_2 \cdots x_n} = a.$$

例 6. 假设  $\forall n \ge 1$ , 均有  $x_n > 0$  且  $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = a$ .

求证:  $\lim_{n\to\infty} \sqrt[n]{x_n} = a$ .

证明:  $\diamondsuit y_1 = x_1$ ,  $y_n = \frac{x_n}{x_{n-1}} (n \ge 2)$ . 则  $\lim_{n \to \infty} y_n = a$ .

于是由前面的例子立刻可得

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \lim_{n \to \infty} \sqrt[n]{y_1 y_2 \cdots y_n}$$
$$= \lim_{n \to \infty} y_n = a.$$

## §6. 关于实数系的几个基本定理

定理 1. (区间套定理) 设  $\{[a_n, b_n]\}$  是一个递降 目区间长度趋于 0 的闭区间列. 也就是说

$$[a_1,b_1] \supseteq [a_2,b_2] \supseteq \cdots \supseteq [a_n,b_n] \supseteq \cdots$$

且  $\lim_{n\to\infty} (b_n - a_n) = 0$ , 则  $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = c$ , 并且 c 是上述所有闭区间的唯一公共点, 也即

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}.$$

#### 证明: 由题设可知, $\forall n \geq 1$ , 我们有

$$a_1 \leqslant a_n \leqslant a_{n+1} \leqslant b_{n+1} \leqslant b_n \leqslant b_1.$$

于是由单调有界定理可知  $\{a_n\}$  和  $\{b_n\}$  均收敛. 设其极限分别为 a,b. 那么我们有

$$0 = \lim_{n \to \infty} (b_n - a_n) = b - a.$$

故 a = b =: c. 下证:  $\forall m \ge 1$ , 均有  $c \in [a_m, b_m]$ .

事实上,  $\forall n \geq m$ ,  $a_m \leq a_n \leq b_m$ . 再让  $n \to \infty$ , 则由数列极限的保序性立刻可得  $a_m \leq c \leq b_m$ . 任取  $x \in \bigcap_{n=1}^{\infty} [a_n, b_n]$ . 则  $\forall n \geq 1$ ,  $a_n \leq x \leq b_n$ .

于是由夹逼原理可知 x = c. 故所证结论成立.

作业题: 假设数列  $\{a_n\}$  递增而数列  $\{b_n\}$  递减且  $\lim_{n\to\infty}(b_n-a_n)=0$ . 求证: 数列  $\{a_n\}$  与  $\{b_n\}$  均收敛且其极限相等. (参见第 18 页第 2 题)

## 关于区间套定理的评注

- 区间套定理实际上建立了实轴上的点与实数之间的一一对应.
- 区间套定理是单调有界定理的特殊情形. 其实我们也可证明由区间套定理可导出单调 有界定理.
- 对于开区间列, 区间套定理一般不成立. 例如 开区间  $\{(0,\frac{1}{n})\}$  的交集为空集.

#### 定理 2. (列紧性) 有界数列必有收敛子列.

证明: 假设  $\{x_n\}$  有界并且  $a_0, b_0$  为其下、上界. 将闭区间  $[a_0,b_0]$  两等分, 于是其中一个子区间 (记作  $[a_1,b_1]$ ) 必会包含该数列中的无穷多项, 再将  $[a_1,b_1]$  两等分, 那么其中也有一个子区间 (记作  $[a_2,b_2]$ ) 必包含该数列当中的无穷多项. 如此下去可得如下递降闭区间列  $\{[a_n, b_n]\}$  满足:

(1) 
$$\forall n \geqslant 1$$
,  $b_n - a_n = \frac{1}{2^n}(b_0 - a_0)$ ;

(2)  $\forall k \ge 1$ ,  $[a_k, b_k]$  包含着  $\{x_n\}$  中的无穷多项.

由区间套定理可知  $\{a_n\}$ ,  $\{b_n\}$  收敛到同一个极限, 记作 c. 而由 (2), 我们可以构造  $\{x_n\}$  的子列  $\{x_{n_k}\}$  使得  $\forall k \geq 1$ , 我们有  $a_k \leq x_{n_k} \leq b_k$ . 于是由夹逼原理可知子列  $\{x_{n_k}\}$  收敛到 c.

定义 1. 称  $\{x_n\}$  为 Cauchy (柯西、哥西) 数列, 若  $\forall \varepsilon > 0$ ,  $\exists N > 0$  使得  $\forall m, n > N$ , 均有

$$|x_m - x_n| < \varepsilon$$
.

注: 由上可知数列  $\{x_n\}$  为 Cauchy 数列当且仅当  $\forall \varepsilon > 0$ ,  $\exists N > 0$  使得  $\forall n > N$  以及  $\forall p > 0$ , 均有

$$|x_{n+p} - x_n| < \varepsilon.$$

### 命题 1. 收敛的数列为 Cauchy 数列.

证明: 设 
$$\lim_{n\to\infty} x_n = a$$
. 则  $\forall \varepsilon > 0$ ,  $\exists N > 0$  使得

$$\forall n > N$$
, 均有  $|x_n - a| < \frac{\varepsilon}{2}$ . 于是  $\forall m, n > N$ ,

$$|x_m - x_n| \le |x_m - a| + |x_n - a|$$
  
 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$ 

故  $\{x_n\}$  为 Cauchy 数列.

#### 命题 2. Cauchy 数列为有界数列.

证明: 假设  $\{x_n\}$  为 Cauchy 数列. 那么  $\exists N>0$  使得  $\forall m,n>N$ ,我们均会有  $|x_m-x_n|<1$ . 选取  $M=1+|x_{N+1}|+\max_{1\leqslant i\leqslant N}|x_i|$ . 那么  $\forall n\geqslant 1$ , 当  $n\leqslant N$  时,均有  $|x_n|\leqslant M$ ;而当 n>N 时,则

$$|x_n| \le |x_n - x_{N+1}| + |x_{N+1}|$$
  
  $< 1 + |x_{N+1}| \le M.$ 

因此数列  $\{x_n\}$  有界.

定理 3. (Cauchy 判别准则) 数列收敛当且仅当它为 Cauchy 数列.

证明: 由前面讨论可知, 我们只需证明充分性. 假设  $\{x_n\}$  为 Cauchy 数列, 则该数列有界, 从而由列紧性定理可知它拥有收敛的子列  $\{x_{k_n}\}$ . 令  $a = \lim_{n \to \infty} x_{k_n}$ .  $\forall \varepsilon > 0$ ,  $\exists N_1 > 0$  使得  $\forall n > N_1$ ,

$$|x_{k_n} - a| < \frac{1}{2}\varepsilon.$$

又由于  $\{x_n\}$  为 Cauchy 数列, 则  $\exists N_2 > 0$  使得  $\forall m, n > N_2$ , 我们均有  $|x_m - x_n| < \frac{1}{2}\varepsilon$ . 令

$$N = \max(N_1, N_2).$$

则  $\forall n > N$ , 我们有  $k_n \ge n > N$ , 于是

$$|x_n - a| \leqslant |x_n - x_{k_n}| + |x_{k_n} - a| < \varepsilon.$$

故数列  $\{x_n\}$  收敛到 a.

## Cauchy 准则的应用

例 1. 假设 a > 0, 0 < q < 1, 而数列  $\{x_n\}$  使得  $\forall n \ge 1$ ,  $|x_{n+1} - x_n| \le aq^n$ . 求证:  $\{x_n\}$  收敛.

证明:  $\forall n, p > 0$ , 我们有

$$|x_{n+p} - x_n| = \left| \sum_{j=n}^{n+p-1} (x_{j+1} - x_j) \right| \le \sum_{j=n}^{n+p-1} |x_{j+1} - x_j|$$

$$\le \sum_{j=n}^{n+p-1} aq^j = \frac{a(1-q^p)q^n}{1-q} < \frac{aq^n}{1-q}.$$

 $\forall \varepsilon > 0$ , 若我们选取

$$N = \left| \left[ \frac{\log \frac{\varepsilon(1-q)}{a}}{\log q} \right] \right| + 1.$$

则  $\forall n > N$  以及  $\forall p > 0$ , 我们有

$$|x_{n+p} - x_n| < \frac{aq^n}{1 - a} < \varepsilon.$$

故  $\{x_n\}$  为 Cauchy 数列, 从而收敛.

# 谢谢大家!