Hoje: Oscilação Laser no modo continuou

- 5.2 Uniform-Field Approximation, 175
- 5.3 Optimal Output Coupling, 178
- 5.4 Effect of Spatial Hole Burning, 180
- 5.6 Measuring Gain and Optimal Output Coupling, 187
- 5.7 Inhomogeneously Broadened Media, 191
- 5.8 Spectral Hole Burning and the Lamb Dip, 192
- 5.9 Frequency Pulling, 194
- 5.10 Obtaining Single-Mode Oscillation, 198

Meio ativo com alargamento homogéneo Modo longitudinal único Refletividades altas

Revisão

Se a excitação for através da absorção de radiação da banda larga

$$P = \sigma_{13} \left(v_{31} \right) \frac{I_P}{h v_{31}} \quad P = \frac{I_P \left(h v_{31} \right)}{h v_{31}} \int_0^\infty A_{31} \frac{\lambda_{31}^2}{8\pi n^2} S_{13} \left(v \right) dv \approx \frac{I_P \left(h v_P \right)}{h v_P} A_{31} \frac{\lambda_{31}^2}{8\pi n^2}$$

Em principio poderá haver ambos os processos de absorção e emissão estimulada

3 níveis

Eliminação adiabática de N₃

$$\frac{dN_1}{dt} = -PN_1 + \Gamma_{21}N_2 + \sigma\Phi_{\nu}(N_2 - N_1),$$

$$\frac{dN_2}{dt} = PN_1 - \Gamma_{21}N_2 - \sigma\Phi_{\nu}(N_2 - N_1).$$

No estado estacionário com $\sigma\Phi$ desprezável

$$\overline{N}_2 - \overline{N}_1 = \frac{P - \Gamma_{21}}{P + \Gamma_{21}} N_T$$

Podemos incluir os efeitos de absorção e emissão estimulada fazenda as substituições

$$\begin{array}{ccc}
P \longrightarrow P + \sigma \Phi_{\nu}, & \overline{N}_{2} - \overline{N}_{1} = \frac{(P - \Gamma_{21})N_{T}}{P + \Gamma_{21} + 2\sigma \Phi_{\nu}} & (4.12.2)
\end{array}$$

Saturação de ganho sistema de 3 níveis

$$\overline{N}_2 - \overline{N}_1 = \frac{(P - \Gamma_{21})N_T}{P + \Gamma_{21} + 2\sigma\Phi_{\nu}}$$

Assumindo degenerescências iguais no estado superior e inferior da transição laser

$$g(\nu) = \frac{\sigma(\nu)(P - \Gamma_{21})N_T}{P + \Gamma_{21} + 2\sigma(\nu)\Phi_{\nu}} = \frac{\sigma(\nu)(P - \Gamma_{21})N_T}{P + \Gamma_{21}} \frac{1}{1 + [2\sigma(\nu)\Phi_{\nu}/(P + \Gamma_{21})]}$$
$$= \frac{g_0(\nu)}{1 + \Phi_{\nu}/\Phi_{\nu}^{\text{sat}}} = \frac{g_0(\nu)}{1 + I_{\nu}/I_{\nu}^{\text{sat}}},$$

Ganho dos sinais pequenos

$$g_0(\nu) = \frac{\sigma(\nu)(P - \Gamma_{21})N_T}{P + \Gamma_{21}}$$

Fluxo da saturação

$$\Phi_{\nu}^{\text{sat}} = \frac{P + \Gamma_{21}}{2\sigma(\nu)}$$

quando
$$\Phi = \Phi^{\text{sat}} g = g_0/2$$

$$I_{\nu}^{\text{sat}} = h\nu\Phi_{\nu}^{\text{sat}} = \frac{h\nu(P + \Gamma_{21})}{2\sigma(\nu)}$$

$$q_{\nu}^{\text{sat}} = \frac{V}{c} \Phi_{\nu}^{\text{sat}} = \frac{P + \Gamma_{21}}{2c\sigma(\nu)} V$$

Processo de atingir o estado estacionário

Excitação (P) cria uma inversão da população acima do valor limiar

- Um fotão emitido (aleatoriamente) ao longo do eixo laser vai encontrar um ganho líquido. A intensidade da radiação na cavidade aumente exponencialmente.
- Quando $I_{\nu} \approx I_{\nu}^{sat}$ o ganho começa a saturar e a ampliação diminua.

• Quando
$$g(v_L) = \frac{g_0(v_L)}{1 + \frac{I_v}{I_v^{sat}}} g_{\text{limiar}}$$
 o ganho = as perdas
$$g(v) = \frac{g_0(v)}{1 + I_v/I_v^{sat}},$$

um estado de equilíbrio é atingido e I, fica estável

Com ganho

$$\frac{g_0(v_L)}{1 + \frac{I_v}{I_v^{sat}}} = g_{\text{limiar}}$$

No estado estacionário a intensidade na cavidade é

$$I_{v} = I_{v}^{sat} \left[\frac{g_{0}(v_{L})}{g_{\text{limiar}}} - 1 \right]$$

5.2: Aproximação da intensidade uniforme

A intensidade na cavidade é $I_{\nu} = I_{\nu}^{+} + I_{\nu}^{-}$

Na aproximação que a refletividades dos espelhos são elevadas $s_1 \approx s_2 \approx 0$; $(t_1, t_2) \ll 1$

A intensidade do feixe ao propagar na cavidade é quase constante

Aproximação da intensidade uniforme $I_{\nu}^{+} \approx I_{\nu}^{-}$ $I_{\nu} \approx 2I_{\nu}^{+}$

Simulação

Quando r₁ e r₂ são elevadas a diferença entre I⁺ e I⁻ nos espelhos é pequena

$$r_1 = 0.99$$
 $r_2 = 0.95$

 $I^{sat} = 10 \text{mW/cm}^2$

$$g_0 = 6 g_{limiar}$$

$$<|++|-> = 5|$$
 | sat = 50 mW/cm²

Nota: Os efeitos de interferência especial são desprezados aqui

5.3 Intensidade da saída

$$g_{\text{limiar}} = -\frac{1}{2\ell} \ln(r_1 r_2) \approx -\frac{1}{2\ell} \ln(1 - t_2 - s) \approx \frac{t_2 + s}{2\ell}$$
 s = t₁ + quaisquer perdas internas (absorção residual, imperfeições, sujidade...)

5.2. Show that the output coupling that maximizes the output intensity (5.2.11) is given by (5.3.1), and determine the output maximum.

$$I_{\nu}^{\text{out}} = \frac{1}{2} t I_{\nu}^{\text{sat}} \left(\frac{2g_0(\nu)l}{t+s} - 1 \right)$$

$$t_{\text{opt}} = \sqrt{2g_0(\nu)ls} - s,$$

$$[I_{\nu}^{\text{out}}]_{\text{max}} = I_{\nu}^{\text{sat}} \left[\sqrt{g_0(\nu)l} - \sqrt{s/2} \right]^2.$$
(5.2.11)

Problema 5.3

- **5.3.** A high-power CO₂ laser has a small-signal gain $g_0(v_0) \approx 0.005 \, \mathrm{cm}^{-1}$ at line center. The laser transition is homogeneously broadened with a Lorentzian linewidth (HWHM) $\delta v_0 \approx 1 \, \mathrm{GHz}$. The gain medium fills nearly the entire 50 cm between the cavity mirrors. One of the mirrors is nominally perfectly reflecting, while the output mirror is characterized by a scattering-absorption coefficient s = 2%.
 - (a) Determine the output mirror transmission coefficient t that will produce the greatest amount of output power from this laser.
 - (b) The saturation intensity I^{sat} for this laser is estimated to be about 100 kW/cm². What is the output intensity if the cavity is designed to have the maximal output power?
 - (c) Estimate the intracavity intensity. Why might such a laser be designed to have water-cooled mirrors?

Figure 5.4 Experimental data on the output power of a 632.8-nm He–Ne laser. The solid curves are based on Eq. (5.2.11) for output intensity vs. output coupling. The three curves correspond to s = 0.06, 0.035, and 0.017. [After P. Laures, *Physics Letters* **10**, 61 (1964).]

Experiência determinar os parâmetros...

Figure 5.6 Experimental setup for determining the small-signal gain, the optimal output coupling and the maximum possible output power. [After T. F. Johnston, *IEEE Journal of Quantum Electronics* **12**, 310 (1976).]

$$s = \frac{(Pwr)_{out}/Pwr^{(+)}}{Pwr^{(+)}}$$

$$t = (Pwr)_{out}/Pwr^{(+)}$$

$$s = \frac{(Pwr)_{in}}{(Pwr)_{out}}t$$

$$(Pwr)_{total} = (Pwr)_{in} + (Pwr)_{out}$$

Variar s até atingir um máximo no Pwr_T $t_{opt} = s_{opt} + t_{opt}$

Quando
$$I^{\text{out}}=0$$
 $s=g_0(\nu_L)2\ell$

$$[I_{\nu}^{\text{out}}]_{\text{max}} = I_{\nu}^{\text{sat}} \left[\sqrt{g_0(\nu)l} - \sqrt{s/2} \right]^2$$

Eficiência de extração

No caso ideal
$$s \ll g_0(\nu_L) 2\ell$$
 $I_{saida}^{opt} \approx \frac{1}{2} I_{\nu}^{sat} \left[g_0(\nu_L) 2\ell - s \right] \rightarrow \frac{1}{2} I_{\nu}^{sat} g_0(\nu_L) 2\ell$

Sistema de 4 níveis

$$g(v) = \sigma(v) \left[\overline{N}_{2} - \overline{N}_{1} \right] = g_{0}(v) \frac{1}{1 + \frac{I_{v}}{I_{v}^{sat}}}$$

$$g_{0}(v) = \sigma(v) \left[\frac{P}{P + \Gamma_{21}} \right] N_{T} \quad I_{v}^{sat} = hv \frac{P + \Gamma_{21}}{\sigma(v)}$$

$$I_{saida}^{opt} \rightarrow I_{v}^{sat} g_{0}(v_{L}) \ell = hv_{L} P N_{T} \ell$$

$$Pot_{saida}^{opt} \rightarrow hv_{I}PN_{T}(\ell Area)$$

Nº átomos colocados no estado superior/seg

Situação ideal cada fotão absorvida da fonte resulta numa emissão dum fotão laser

Mas a transição 0 ->3 é mais energética

eficiência quântica

Problema 5.4

5.4. Using numerical values given in Section 4.10, estimate the quantum efficiencies of the ruby and Nd: YAG lasers.

Rubi:

the 694.3-nm laser transition

The excitation energy required from the pump, the energy difference between the ground level and the lower pump band, is about 2.25 eV, corresponding to a wavelength of about 550 nm (green). From (4.9.9), therefore, the minimum pumping power density necess-

Nd:YAG

In the 1.06-μm (1064-nm) Nd: YAG laser,

The pump "level 3" for the Nd: YAG laser is actually a series of energy bands located between about 1.63 and 3.13 eV above the ground level. If we take the energy difference $E_3 - E_0$ in our four-level model (Fig. 4.7) to be the average value, 2.38 eV, we obtain

5.4 Pormenor: Ondas estacionárias (spatial hole burning)

Effect of spatial hole burning on output intensity, assuming $g_0l = 0.10$ and s = 0.034.

Num gás (por exemplo um laser HeNe) com um tempo da vida no estado superior da transição laser longo os átomos podem deslocar e avaliar o efeito de "spatial hole burning".

Um outra possibilidade é usar uma cavidade na forma dum anel com um díodo ótico:

Frequências que possam ter "oscilar"

Condição liminar
$$r_1 r_2 \exp \left[g_{\text{limiar}} \left(v_L \right) 2 \ell \right] = 1$$
 $g_{\text{limiar}} \left(v_L \right) = \frac{1}{2\ell} \ln \left(\frac{1}{r_1 r_2} \right)$

a representa as perdas efetivas / distância

Transição homogénea

O ganho satura até seja igual das perdas (ganho limiar) para o modo com ganho maior

O mais forte sobrevive

Pormenor: "spatial hole burning" pode deixar ganho suficiente por um outro modo oscilar

Transição não homogénea

Saturação apenas nas classes dos átomos com uma frequência da transição próximas dos modos da cavidade.

Vários modos podem oscilar simultaneamente.

Pormenor: Saturação na curva Doppler

No limite de velocidade atómicas << c

$$v_m = v_0 \left(1 \pm v_z / c \right) \implies v_z = \pm c \left(\frac{v_m - v_0}{v_0} \right)$$

A depressão de Lamb (Lamb Dip)

Willis Lamb (1913-2008) Nobel 1955 Supervisor do Ted Maiman

Quando o modo da cavidade é ressonante com a transição os dois buracos se sobrepõem (interagem com os mesmos átomos).

O resultado é uma depressão na potência do laser.

Figure 5.10 Early observation of the Lamb dip in the output power of a 1.15-nm He–Ne laser. [From A. Szöke and A. Javan, *Physical Review Letters* **10**, 521 (1963).]

Problemas 5.6, 5.7

- **5.6.** Should the Lamb dip occur with any inhomogeneously broadened gain medium, or only the specific case of Doppler broadening?
- **5.7.** Do you think that most lasers have a cavity bandwidth much larger or smaller than the linewidth of the gain profile? Is any implicit assumption about this made in our discussion related to Fig. 5.12?

Figure 5.12 (a) A case in which five cavity modes have a small-signal gain g_0 larger than the threshold g_t for laser oscillation. (b) If the gain saturates homogeneously, only the mode with the largest small-signal gain is expected to lase. The others are saturated below the gain g_t necessary for laser oscillation.

Complicação: Saturação com Alargamento não Homogéneo

In the case of inhomogeneous broadening, the theory of laser oscillation can become enormously complex.

Os átomos com uma frequência central v_0 têm um ganho que se satura de acordo com a expressão (Lorentziano com o efeito de saturação)

$$g^{H}(v) = g_{0}^{H}(v_{0}) \frac{\delta v_{0}^{2}}{(v_{0} - v)^{2} + \delta v_{0}^{2} \left[1 + \frac{I_{v}}{I_{v}^{sat}}\right]}$$
(4.12.8)

mas agora existe uma distribuição de frequências centrais devido o efeito Doppler.

$$v_0'(v_z) = v_0 \left(1 \pm v_z / c\right)$$

Assim o ganho na frequência v para átomos com uma velocidade v, é

$$g(v, \mathbf{v}_z) = g_0^H(v_0) \frac{\delta v_0^2}{\left(v_0 - v \pm \frac{v_0 \mathbf{v}_z}{c}\right)^2 + \delta v_0^2 \left[1 + \frac{I_v}{I_v^{sat}}\right]}$$

Saturação duma transição não homogénea

$$g(v, \mathbf{v}_z) = g_0^H(v_0) \frac{\delta v_0^2}{\left(v_0 - v \pm \frac{v_0 \mathbf{v}_z}{c}\right)^2 + \delta v_0^2 \left[1 + \frac{I_v}{I_v^{sat}}\right]}$$

Para determinar na frequência v temos integrar esta expressão sobre a distribuição Maxwell Boltzmann das velocidades:

$$g(v) = g_0^H(v_0) \int_{-\infty}^{\infty} dv_z \left(\frac{M}{\pi 2RT}\right)^{1/2} \exp\left[\frac{-Mv_z^2}{2RT}\right] \frac{\delta v_0^2}{\left(v_0 - v \pm \frac{v_0 v_z}{c}\right)^2 + \delta v_0^2 \left[1 + \frac{I_v}{I_v^{sat}}\right]}$$

Simplificação: assumir que a largura Lorentziana é muito menor do que a largura Doppler

$$\delta v_0 \sqrt{1 + I_v / I_v^{sat}} \ll \delta v_D = \frac{v_0}{c} \sqrt{\frac{4 \ln 2(2RT)}{M}}$$

Como a função Lorentziana é estreita aproximar a distribuição MB com seu valor no pico da curva Lorentziana

$$v_z^* = \pm c \left(\frac{v - v_0}{v_0} \right)$$

$$g(v) = g_0^H(v_0) \int_{-\infty}^{\infty} dv_z \left(\frac{M}{\pi 2RT}\right)^{1/2} \exp\left[\frac{-Mv_z^2}{2RT}\right] \left(\frac{\delta v_0^2}{v_0 - v \pm \frac{v_0 V_z}{c}}\right)^2 + \delta v_0^2 \left[1 + \frac{I_v}{I_v^{sat}}\right]$$

$$g(v) \approx g_0^H(v_0) P(v_z^*) \int_{-\infty}^{\infty} dv_z \frac{\delta v_0^2}{\left(v_0 - v \pm \frac{v_0 v_z}{c}\right)^2 + \delta v_0^2 \left[1 + \frac{I_v}{I_v^{sat}}\right]}$$

$$g(v) \approx g_0^H(v_0) P(v_z^*) \int_{-\infty}^{\infty} dv_z \frac{\delta v_0^2}{\left(v_0 - v \pm \frac{v_0 v_z}{c}\right)^2 + \delta v_0^2 \left[1 + \frac{I_v}{I_v^{sat}}\right]}$$

No integral faz as substituições

$$x = \left(v_0 - v \pm \frac{v_0 V_z}{c}\right) \qquad a^2 = \delta v_0^2 \left[1 + \frac{I_v}{I_v^{sat}}\right]$$

$$\int_{-\infty}^{\infty} dv_z \frac{\delta v_0^2}{\left(v_0 - v \pm \frac{v_0 v_z}{c}\right)^2 + \delta v_0^2 \left[1 + \frac{I_v}{I_v^{sat}}\right]} = c \frac{\delta v_0^2}{v_0} \int_{-\infty}^{\infty} \frac{dx}{x^2 + a^2} = c \frac{\delta v_0^2}{v_0} \frac{\pi}{a}$$

$$g(v) \approx g_0^H(v_0) P(v_z^*) \pi \frac{c}{v_0} \frac{\delta v_0}{\sqrt{1 + I_v / I_v^{sat}}} = \frac{g_0(v)}{\sqrt{1 + I_v / I_v^{sat}}}$$

É mais difícil saturar uma transição não homogénea

Alargamento Não Homogéneo: Icav no estado estacionário

No estado estacionário
$$\frac{g_0(v)}{\sqrt{1+I_v^{cav}/I_v^{sat}}}=g_{\text{limiar}}$$

$$I_{\nu}^{out} = \frac{1}{2}tI_{\nu}^{cav} = \frac{1}{2}tI_{\nu}^{sat} \left[\left(\frac{g_0(\nu)}{g_{\text{limiar}}} \right)^2 - 1 \right]$$
 (5.7.3)

no limite em que
$$\delta v_{Dop} \gg \delta v_0 \sqrt{1 + I_v^{cav} / I_v^{sat}}$$

"Frequency Pulling"

A variação do índice de refração com comprimento de onda faça que os modos da cavidade vazia são deslocados em direção do centro da transição