IIC-2133 — Estructuras de Datos y Algoritmos Algoritmos de Ordenación (y Heaps)

Jorge A. Baier

Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile Santiago, Chile

Insertion Sort

Tarea: Ordenar un arreglo A[0..n-1] **Idea Principal**: A la izquierda del índice j, todo está ordenado. j. En cada iteración, "movemos" el valor en A[j] hasta una posición tal que A[0..j] quede ordenado.

Insertion Sort

Tarea: Ordenar un arreglo A[0..n-1] **Idea Principal**: A la izquierda del índice j, todo está ordenado. j. En cada iteración, "movemos" el valor en A[j] hasta una posición tal que A[0..j] quede ordenado.

Tiempo en el peor caso:

Insertion Sort

Tarea: Ordenar un arreglo A[0..n-1] **Idea Principal**: A la izquierda del índice j, todo está ordenado. j. En cada iteración, "movemos" el valor en A[j] hasta una posición tal que A[0..j] quede ordenado.

Tiempo en el peor caso: $O(n^2)$

Tarea: Ordenar un arreglo A[0..n-1]

Idea Principal: Ordenamos A[1..m-1] y luego A[m..n-1], donde $m=\lfloor n/2 \rfloor$, y luego hacemos la "mezcla ordenada" de los subarreglos.

Tarea: Ordenar un arreglo A[0..n-1]

Idea Principal: Ordenamos A[1..m-1] y luego A[m..n-1], donde $m=\lfloor n/2 \rfloor$, y luego hacemos la "mezcla ordenada" de los subarreglos.

Tiempo en el peor caso:

Tarea: Ordenar un arreglo A[0..n-1]

Idea Principal: Ordenamos A[1..m-1] y luego A[m..n-1], donde $m=\lfloor n/2 \rfloor$, y luego hacemos la "mezcla ordenada" de los subarreglos.

Tiempo en el peor caso: $O(n \log n)$ Memoria:

Tarea: Ordenar un arreglo A[0..n-1]

Idea Principal: Ordenamos A[1..m-1] y luego A[m..n-1], donde $m=\lfloor n/2 \rfloor$, y luego hacemos la "mezcla ordenada" de los subarreglos.

Tiempo en el peor caso: $O(n \log n)$

Memoria: Necesitamos un arreglo adicional del tamaño de A.

Merge de MergeSort

```
1 procedure Merge(A, p, q, r)
        L \leftarrow nuevo arreglo de tamaño q - p + 2
        R \leftarrow nuevo arreglo de tamaño r - q + 1
 3
        L[0..q-p] \leftarrow A[p..q]
 4
        R[0..r-q-1] \leftarrow A[q+1..r]
 5
        L[q-p+1] \leftarrow R[r-q] \leftarrow \infty
 6
        i \leftarrow i \leftarrow 0
        for k \leftarrow p to r do
 8
             if L[i] < R[j] then
 9
              A[k] \leftarrow L[i]
10
              i \leftarrow i+1
11
             else
12
                 A[k] \leftarrow R[j]
13
              j \leftarrow j + 1
14
```


Heap Sort

Nuestro primer algoritmo O(n) in-place.

Usa una cola de prioridades (*Heap*) como estructura de datos principal.

Heaps Binarios

 Un min/max heap binario es un árbol binario que cumple la siguiente propiedad

Propiedad de Min-Heap: La clave del elemento almacenado en un nodo es *mayor o igual* a la clave de sus hijos.

Propiedad de Max-Heap: La clave del elemento almacenado en un nodo es *menor o igual* o igual a la clave de sus hijos.

- El heap es también un árbol balanceado:
 - f 1 si en un nivel un nodo n no tiene hijos, todos los nodos que están a la derecha de n en el mismo nivel tampoco los tienen
 - 2 un nodo no puede tener un hijo derecho si no tiene un hijo izquierdo

Implementación de Min Heaps

- Los elementos de un heap de n elementos se ubican en las posiciones A[1..n] del arreglo (A[0] no se usa).
- Dado un nodo *i* definimos:

Implementación de Min Heaps

- Los elementos de un heap de n elementos se ubican en las posiciones A[1..n] del arreglo (A[0] no se usa).
- Dado un nodo *i* definimos:

$$Parent(i) = \lfloor i/2 \rfloor$$

 $Left(i) = 2i$
 $Right(i) = 2i + 1$

- Además si el arreglo A implementa a un heap, heap-size[A] es el número de elementos en el heap.
- Observación: todo arreglo ordenado ascendentemente es un min-heap.

Subrutina *Decrease-Key*

Objetivo: Disminuir la prioridad a un elemento en el heap en A **Supuesto:** A era un heap antes de cambiar la prioridad **Idea:** Percolamos el elemento hacia arriba

Propiedad: *Decrease-Key* mantiene la propiedad de Heap **Tiempo peor caso:**

Subrutina Decrease-Key

Objetivo: Disminuir la prioridad a un elemento en el heap en A **Supuesto:** A era un heap antes de cambiar la prioridad **Idea:** Percolamos el elemento hacia arriba

Propiedad: Decrease-Key mantiene la propiedad de Heap **Tiempo peor caso:** $O(\log n)$ (donde n es el tamaño del heap)

Inserción de un elemento

Idea: Ubicamos el elemento al final del arreglo y luego lo "percolamos" hacia arriba mientras sea necesario.

```
\begin{array}{c|c} \textbf{1} & \textbf{procedure} & \textit{Min-Heap-Insert}(A, key) \\ \textbf{2} & & \textit{heap-size}[A] \leftarrow \textit{heap-size}[A] + 1 \\ \textbf{3} & & A[\textit{heap-size}[A]] = \infty \\ \textbf{4} & & \textit{Decrease-Key}(A, \textit{heap-size}[A], key) \\ \end{array}
```

Propiedad: *Min-Heap-Insert* mantiene la propiedad de Heap **Tiempo peor caso:**

Inserción de un elemento

Idea: Ubicamos el elemento al final del arreglo y luego lo "percolamos" hacia arriba mientras sea necesario.

```
1 procedure Min-Heap-Insert(A, key)

2 heap-size[A] \leftarrow heap-size[A] + 1

3 A[heap-size[A]] = \infty

4 Decrease-Key(A, heap-size[A], key)
```

Propiedad: *Min-Heap-Insert* mantiene la propiedad de Heap **Tiempo peor caso:** $O(\log n)$ (donde n es el tamaño del heap)

Subrutina Min-Heapify

Objetivo: Reestablecer propiedad de Heap con raíz en el índice i **Supuesto:** Subárboles con raíz en Left(i) y Right(i) son Heaps

Propiedad: Al terminar el árbol con raíz en i es un heap **Tiempo peor caso:**

Subrutina Min-Heapify

Objetivo: Reestablecer propiedad de Heap con raíz en el índice i **Supuesto:** Subárboles con raíz en Left(i) y Right(i) son Heaps

Propiedad: Al terminar el árbol con raíz en i es un heap **Tiempo peor caso:** $O(\log(n/i))$

Extracción del elemento de mejor (menor) prioridad

Idea: Ubicamos el último elemento (A[heap-size[A]]) en la raíz y luego reparamos la propiedad de heap hacia abajo.

```
1 function Extract-Min(A)

2 | if heap-size[A] < 1 then error "heap vacío"

3 | minkey \leftarrow A[1]

4 | A[1] \leftarrow A[heap-size[A]]

5 | heap-size[A] \leftarrow heap-size[A] - 1

6 | Min-Heapify(A, 1)

7 | return minkey
```


Heap-Min

Objetivo: Obtener la prioridad del elemento de mejor prioridad

1 function Heap-Minimum(A)

2 return A[0]

Tiempo: O(1)

Build Heap

Objetivo: Dado un arreglo de números, A de n elementos, convertirlo en un heap

Propiedad: A contendrá un heap al terminar la ejecución **Tiempo:**

Build Heap

Objetivo: Dado un arreglo de números, A de n elementos, convertirlo en un heap

Propiedad: A contendrá un heap al terminar la ejecución **Tiempo:** O(n) en el peor caso [demostración: pizarra]

Heap Sort

Objetivo: Dado un arreglo de números, A, de n elementos ordenar ascendetemente los elementos de A **Observación:** Usamos un MAX-Heap

Tiempo peor caso: $O(n \log n)$

Quick Sort

Objetivo: Ordenar A[p...r] in-place

- **1** Si $p \ge r$, retornamos (el arreglo está ordenado)
- 2 Reordenar elementos en $A[p \dots r]$ tales que, para algún q

$$\begin{split} A[i] &\leq A[q] \quad \text{si } i \in \{p, \dots, q-1\} \\ A[q] &\leq A[j] \quad \text{si } j \in \{q+1, \dots, r\} \end{split}$$

- **3** Ordenar $A[p \dots q-1]$ (usando QuickSort)
- 4 Ordenar $A[q+1 \dots r]$ (usando QuickSort)

Observación: paso 2 debe ser O(n)

Pseudocódigo para Quick Sort

```
\begin{array}{c|c} \textbf{1} \  \, \textbf{procedure} \  \, \textit{Quick-Sort}(A,p,r) \\ \textbf{2} & | \  \, \textbf{if} \  \, p < r \  \, \textbf{then} \\ \textbf{3} & | \  \, q \leftarrow \textit{Partition}(A,p,r) \\ \textbf{4} & | \  \, \textit{Quick-Sort}(A,p,q-1) \\ \textbf{5} & | \  \, \textit{Quick-Sort}(A,q+1,r) \\ \end{array}
```


Partition

- Usamos las variables i, j
- lacksquare A[r] será el pivote (es decir, el último elemento)
- Perseguimos construir un loop que satisfaga la siguiente invariante:
 - **1** $A[k] \leq A[r]$ para todo $k \in \{p, \ldots, i\}$
 - $2 \quad A[r] < A[k] \text{ para todo } k \in \{i+1, \ldots j-1\}$

Pseudo-Código para Partition

Tiempo en el Peor Caso

Teorema: Tiempo de ejecución de Quick Sort es $\Theta(n^2)$ en el peor caso.

Si, en vez de Partition, usamos:

```
 \begin{array}{c|c} \textbf{1} & \textbf{function} \ Random-Partition}(A,p,r) \\ \textbf{2} & | i \leftarrow \texttt{n\'umero} \ \texttt{aleatorio} \ \texttt{en} \ \{p,\dots,r\} \\ \textbf{3} & | A[r] \leftrightarrow A[i] \\ \textbf{4} & | \textbf{return} \ Partition}(A,p,r) \\ \end{array}
```

Teorema: El tiempo de ejecución de Quick Sort, usando Random-Partition, es $O(n \log n)$ en el caso promedio.

Demostración: se justifica y resuelve $\frac{T(n)}{n+1} = \frac{O(1)}{n+1} + \frac{T(n-1)}{n}$.

"Optimalidad" de Quick Sort, Merge Sort y Heap Sort

Teorema: Sea **Sort** un algoritmo de ordenación que sólo puede comparar e intercambiar elementos de un arreglo. Entonces, el tiempo de ejecución de **Sort** es $\Omega(n \log n)$.

Demostración: pizarra.

Este se conoce como un resultado de optimalidad asintótica.

Algoritmos mejores que **Sort**—que "leen" claves—existen!

Counting Sort

- Nuestro primer algoritmo de ordenación O(n)
- Input: Arreglo A
- **Supuesto:** Las claves a ordenar están en $\{0,\ldots,k\}$
- Pregunta que inspira al algoritmo:

i Podemos determinar la posición de cada elemento de A en el arreglo ordenado?

Counting Sort

- Nuestro primer algoritmo de ordenación O(n)
- Input: Arreglo A
- **Supuesto:** Las claves a ordenar están en $\{0,\ldots,k\}$
- Pregunta que inspira al algoritmo:

i Podemos determinar la posición de cada elemento de A en el arreglo ordenado?

- **Objetivo:** construir arreglo C[0...k] tal que C[k] contiene el número de elementos en A que son *menores o iguales* a k.
- Usando C, podemos construir el arreglo ordenado recorriendo A una vez.

Pseudo código para Counting Sort

(suponemos que las claves están en $\{0,\ldots,k\}$)

Pseudo código para Counting Sort

(suponemos que las claves están en $\{0,\ldots,k\}$)

```
 \begin{array}{c|c} \textbf{1 procedure } \textit{Counting-Sort}(A,k) \\ \textbf{2} & B \leftarrow \text{copia del arreglo } A \\ \textbf{3} & C \leftarrow \text{arreglo de tamaño } k+1 \text{ lleno de ceros} \\ \textbf{4} & \textbf{for } j \leftarrow 0 \textbf{ to } len[A]-1 \textbf{ do} \\ & C[A[j]] \leftarrow C[A[j]]+1 \\ \textbf{5} & \textbf{for } i \leftarrow 1 \textbf{ to } k \textbf{ do } C[i] \leftarrow C[i]+C[i-1] \\ \textbf{6} & \textbf{for } j \leftarrow len[B]-1 \textbf{ downto } 0 \textbf{ do} \\ \textbf{7} & A[C[j]-1] \leftarrow B[j] \\ \textbf{8} & C[j] \leftarrow C[j]-1 \\ \end{array}
```

Propiedad: Counting sort es correcto y estable.

Tiempo: Es $\Theta(k+n)$. En la práctica lo usamos si k es O(n).

■ Idea: Ordenar, sucesiva y establemente, desde el dígito menos significativo, hasta el más significativo.

■ Un ejemplo de ejecución:

- Idea: Ordenar, sucesiva y establemente, desde el dígito menos significativo, hasta el más significativo.
- Un ejemplo de ejecución:

```
329 720
457 355
839 457
436 657
720 329
355 839
```


- Idea: Ordenar, sucesiva y establemente, desde el dígito menos significativo, hasta el más significativo.
- Un ejemplo de ejecución:

329	720	7 20
457	355	3 29
839	457	<mark>8</mark> 39
436	657	3 55
720	329	4 57
355	839	<mark>6</mark> 57

- Idea: Ordenar, sucesiva y establemente, desde el dígito menos significativo, hasta el más significativo.
- Un ejemplo de ejecución:

329	720	720	329
457	355	329	355
839	457	839	457
436	657	355	657
720	329	457	720
355	839	657	839

Pseudo Código de Radix Sort

Suponiendo que cada elemento en el arreglo A tiene a lo más d dígitos, donde el dígito 1 es el menos significativo, obtenemos:

Propiedad:

- \blacksquare Si cada dígito puede tomar hasta k valores, y
- 2 el algoritmo usado en la línea 3 es $\Theta(n+k)$

entonces Radix-Sort ejecuta en $\Theta(d(n+k))$.

Otra Propiedad de Radix Sort

Teorema: Dado n números de b bits y cualquier entero positivo $r \le b$, Radix-Sort ejecuta en tiempo $\Theta(\frac{b}{r}(n+2^r))$.

Otra Propiedad de Radix Sort

Teorema: Dado n números de b bits y cualquier entero positivo $r \leq b$, Radix-Sort ejecuta en tiempo $\Theta(\frac{b}{r}(n+2^r))$.

Corolario: Radix-Sort es $\Theta(n)$ si $b \leq C \log_2 n$, donde C es una constante.

Demostración: Si $b<\lfloor\log_2 n\rfloor$, elegimos r=b. Si $b>\lfloor\log_2 n\rfloor$, hacemos $r=\lfloor\log_2 n\rfloor$

Otra Propiedad de Radix Sort

Teorema: Dado n números de b bits y cualquier entero positivo $r \leq b$, Radix-Sort ejecuta en tiempo $\Theta(\frac{b}{r}(n+2^r))$.

Corolario: Radix-Sort es $\Theta(n)$ si $b \leq C \log_2 n$, donde C es una constante.

Demostración: Si $b<\lfloor\log_2 n\rfloor$, elegimos r=b. Si $b>\lfloor\log_2 n\rfloor$, hacemos $r=\lfloor\log_2 n\rfloor$

Precaución! el corolario anterior:

- no dice nada de la memoria adicional requerida
- lacksquare no dice cuál es el valor óptimo de r

