MAT360 Notes

Arjun Vardhan

†

Created: 22nd September 2022 Last updated: 28th September 2022

1 Determinants

•

• Let $\{e_i\}$ and $\{v_i\}$ be ordered bases for V. Let $T:V\to V$, such that $T(e_i)=v_i$ for all i. Then $\{v_1,v_2,..,v_n\}$ is said to be positively oriented if det A>0 and negatively oriented if det A<0.

2 Diagonalization

- A linear operator T on vector space V is said to be diagonalizable if there exists an ordered basis β of V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is diagonalizable if the linear operator it represents is diagonalizable.
- Suppose $\beta = \{v_1, v_2, ..., v_n\}$ is an ordered basis for V such that $D = [T]_{\beta}$ is a diagonal matrix. $\begin{cases} \lambda_1 & 0 & ... & 0 \end{cases}$

Then for each
$$v_j \in \beta$$
, $T(v_j) = \sum_{i=1}^n D_{ij} v_i = D_{jj} v_j = \lambda_j v_j$, and $[T]_{\beta} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$.

- An eigenvalue is a scalar $\lambda \in \mathbb{F}$ such that for some $v \in V$, $v \neq 0$, we have $T(v) = \lambda v$. In this case v is the eigenvector corresponding to λ .
- $E_{\lambda} = \{v \in V : T(v) = \lambda v\}$ is the set of all eigenvectors of T corresponding to λ .
- Let $A \in M_n(\mathbb{F})$. Then $f_A(x) = \det(xI A)$ [or $\det(A xI)$] is an *n*th degree polynomial called the characteristic polynomial of A. It is easy to see that the roots of this polynomial are exactly the eigenvalues of A.
- Let T be a linear operator on V, and let $c \in \mathbb{F}$. Then the following are equivalent:
 - 1. c is an eigenvalue of T
 - 2. The operator T cI is singular (not invertible)
 - 3. $\det(T cI) = 0$

Proof: Suppose there exists a nonzero vector $v \in V$ such that Tv = cv. Then $Tv = cIv \implies Tv - cIv = 0 \implies (T - cI)v = 0 \implies v \in \operatorname{Ker}(T - cI)$. Thus $\operatorname{Ker}(T - cI) \neq \{0\}$, so T - cI is singular. Now if T - cI is not invertible, then $\det(T - cI) = 0$. If $\det(T - cI) = 0$, then c is a root of T's characteristic polynomial and thus an eigenvalue of T.

- Similar matrices have the same characteristic polynomial. Proof: Let $A, B \in M_n(\mathbb{F})$ be similar. Then $A = P^{-1}BP$. So $\det(xI A) = \det(xI P^{-1}BP) = \det(xP^{-1}IP P^{-1}BP) = \det(P^{-1}(xI B)P) = \det(P^{-1})\det(P)\det(P)\det(xI B) = \det(xI B)$.
- Thus different matrix representations of the same operator will have the same characteristic polynomial.
- The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial. Its geometric multiplicity is the dimension of its eigenspace, dim E_{λ} . GM \leq AM.

- $T: V \to V$ is diagonalizable if there exists a basis β of V consisting of eigenvectors of T. Suppose $\beta = \{v_1, v_2, ..., v_n\}$ and $T(v_i) = c_i v_i$ for all i. Then clearly $[T]_{\beta}$ would be a diagonal matrix whose diagonal entries would be $c_1, c_2, ..., c_n$.
- $A \in M_n(\mathbb{F})$ is diagonalizable if it is similar to a diagonal matrix.
- Let $\lambda_1, \lambda_2, ..., \lambda_r$ be r distinct eigenvalues of T, and let $v_1, v_2, ..., v_r$ be their corresponding eigenvectors. Then $v_1, v_2, ..., v_r$ are linearly independent. Proof: The case r=1 is trivial as an eigenvector is nonzero, and a single nonzero vector is of course linearly independent. Suppose that the statement is true for r-1, and suppose that there exists a nontrivial linear combination $\sum_{k=1}^r c_k v_k = 0.$ Applying $A \lambda_r I$ to both sides and since $(A \lambda_r I)v_r = 0$, we get $\sum_{k=1}^{r-1} c_k (\lambda_k \lambda_r) v_k = 0.$ As $v_1, ..., v_{r-1}$ are linearly independent, $c_k = 0$ for $1 \le k \le r-1$ as $\lambda_k \ne \lambda_r$ when $k \ne r$. It thus follows that $c_r = 0$, and so $v_1, ..., v_r$ are linearly independent. \blacksquare
- Let $A \in M_n(\mathbb{F})$. Let $c_1, c_2, ..., c_k$ be distinct eigenvalues of A in \mathbb{F} , and let E_i be the eigenspace of each c_i . Let β_i be an ordered basis for E_i . Let $P = [\beta_1, \beta_2, ..., \beta_k]$ be the matrix which has the vectors of these bases (in order) as its columns. Then, A is diagonal if and only if P is a square matrix, and in this case, P is invertible and $P^{-1}AP = D$, a diagonal matrix. Proof: If P is a square matrix, then P has n columns, which means that A has n distinct eigenvectors, so A is diagonalizable. As P's columns are linearly independent, $\det P \neq 0$ and so P is invertible.
- Let $c_1, c_2, ..., c_k$ be distinct eigenvalues of $T: V \to V$. Let $E_i = \text{Ker}(T c_i I)$. Then the following are equivalent:
 - 1. T is diagonalizable
 - 2. The characteristic polynomial for T is $(x-c_1)^{d_1}(x-c_2)^{d_2}...(x-c_k)^{d_k}$, and $\dim E_i=d_i$ for all $1 \le i \le k$
 - 3. $\dim E_1 + \dim E_2 + ... + \dim E_k = \dim V$

Proof:

- Let $T: V \to V$ over \mathbb{F} . A polynomial p(x) is said to be a minimal polynomial of T if p(x) is monic and is of least positive degree such that p(T) = 0, i.e, $p(T) = T^n + a_{n-1}T^{n-1} + ... + a_1T + a_0I = 0$.
- Let p(x) be a minimal polynomial for T. Then, for any polynomial g(x) such that g(T) = 0, $p(x) \mid g(x)$. Also, p(x) is unique. Proof: Let g(T) = 0. By the division algorithm, there exist polynomials q(x), r(x) such that g(x) = q(x)p(x) + r(x), where deg r < deg p or r = 0. Now, $g(T) = q(T)p(T) + r(T) \implies 0 = 0 + r(T) \implies r(T) = 0 \implies r(x) = 0$ as p is the polynomial of least degree that sends T to 0. Thus $g(x) = q(x)p(x) \implies p(x) \mid g(x)$. Now, suppose p_1 and p_2 are both minimal polynomials for T. Then as $p_1 \mid p_2$ and $p_2 \mid p_1$, $p_1 = cp_2$, where c is some polynomial. As deg $p_1 = \deg p_2$, c is a constant. But as p_2 is monic, we must have c = 1. So $p_1 = p_2$. ■
- The characteristic and minimal polynomials of T have the same roots (not up to multiplicity).
- Let p(x) be the minimal polynomial of T. Then p(c) = 0 if and only if c is an eigenvalue of T. Proof: Let p(c) = 0. Then p(x) = (x c)q(x), $\deg q < \deg p$. Thus 0 = (T cI)q(T), where $q(T) \neq 0$. So there exists some $\beta \in V$ such that $q(T)\beta = \alpha \neq 0$. So $(T cI)q(T)\beta = 0 \implies (T cI)\alpha = 0 \implies \alpha$ is an eigenvector and c is an eigenvalue of T.
- Let $T: V \to V$. Let W be a subspace of V. Then W is called a T-invariant subspace of V if and only if $T(W) \subseteq W$. That is, for all $w \in W$, $T(w) \in W$. Easy examples: $\{0\}$, V and Ran(T).
- Ker(T) is T-invariant. Proof: Let $x \in T(\text{Ker}(T))$. Then there exists some $y \in \text{Ker}(T)$ such that x = T(y) = 0. As $0 \in \text{Ker}(T)$, we are done.
- E_{λ} is T-invariant. Proof: Let $x \in T(E_{\lambda})$. Then there exists some $y \in E_{\lambda}$ such that $x = T(y) = \lambda y$. So $T(x) = \lambda T(y) = \lambda x$. Thus $x \in E_{\lambda}$.

- Let T, U be linear operators on V such that $T \circ U = U \circ T$. Then $\operatorname{Ran}(U)$ and $\operatorname{Ker}(U)$ are T-invariant. Proof: Let $x \in T(\operatorname{Ran}(U))$. Then there exists some $y \in \operatorname{Ran}(U)$ such that T(y) = x. There exists some $z \in V$ such that U(z) = y. So x = T(U(z)) = U(T(z)). Thus $x \in \operatorname{Ran}(U)$. Now let $x \in T(\operatorname{Ker}(U))$. There exists some $y \in \operatorname{Ker}(U)$ such that x = T(y). Then 0 = T(U(y)) = U(T(y)) = U(x). So $x \in \operatorname{Ker}(U)$. ■
- If W is a T-invariant subspace of dimension 1, then there exists some nonzero $\alpha \in W$ such that $W = \operatorname{span}(\alpha)$. As $T(W) \subseteq W$, $T(\alpha) \in W \implies T(\alpha) = c\alpha$ for some scalar c. Thus α is an eigenvector of T.