Un cuerpo conmutativo K es un esp. vectorial

Siendo V un esp. vectorial sobre K:

f: V -> K = forma eineal

Al conjunto \(f: V -> K / f eineal \(f = V \) espacio

vectorial dual de V

V*-Homk (CV, K) dimk(CV) = n => dimk(CV) = n

 V^* -Hom_k CU, K) $dim_k CU$ = n \Longrightarrow $dim_k CU^*$) = nPodemos suponer que $B_k = h \perp h$. Si B es base de V $M(f; h \mid h = B) := M(f; B)$

Bases duales

 $B = \{v_1, v_2, \dots v_n\}$ de V $B^* = \{e_1, e_2, \dots e_n\}$ de V^* B^* base dual de B si $\forall c \in \{1, 2, \dots n\}$ se verifica que $\{i(v_i) = 0\}$ $\forall j \in \{1, 2, \dots n\}$ $j \neq i$

1º propiedad de las bases duales

B* base dual de B.

Ve e V* los elem de su matriz asociada

en la base B coinciden con sus coordenadas

en la base B*

Reoposición: ∀B de V ∃B* de U* +q B* dual de B Exemplo: En 1R³ B + ((1,-1,1),(1,2,-1),(-1,1,0)}

Ejemplo 2: 4, 4, 4, 43 formas eineales sobre 123 dadas por.

Como son
$$J. \mathcal{L} = \frac{1}{2} \frac$$

2ª propiedad de las bases duales

$$B^* = \{e_1, e_2 \dots e_n\}$$
 base dual de B
 $\times \in V \times = C \times_1, \times_2, \times_3 \dots \times_n\}_{B} \times_{i=1}^{i=1} e_i(x) \forall i \in \{1, 2 \dots n\}$

Teorema de Reflexividad

Ves un e.v. sobre K dim $_K(V) = n \Longrightarrow \dim_K(V^*) = n$ Espacio bidual de $V((V^*)^*)$ tendra dim $_K = n$ isomorfos $\Phi: V \longrightarrow (V^*)^*$ to $\Phi(V) = \Phi(V) = \Phi(V) = \Phi(V)$ $\Phi(V) = \Phi(V) = \Phi(V)$

Esto sermite considerar V=(V*) mismo esp. vectorial

Esto permite considerar $V = (V^*)^*$ mismo esp. vectorial $V = \overline{\Psi}_V$

Anuladore de un subespecció

Def. U(K) es e.v y SEV. Anveadore de S: an (S) = {eeV*/ecu) = 0 \forall ves}

Propiedades

-an (5) subespació vectorial de U*

Nos permite calculer el anveador de todo un e.v. solo calculando el de su base

Ejemplo:

En IR4: U= \(Cx,, x2, x3, x4) \(\epsilon / R4/x, + x3 = 0, x2 + 2x4 = 0\)

d an (U)?

$$\begin{cases} x_1 + x_3 = 0 \implies x_1 = \lambda \implies x_3 = -\lambda \\ x_1 + 2x_4 = 0 \implies x_4 = \mu \implies x_2 = -2\mu \end{cases} \xrightarrow{} Cx_1, x_2, x_3, x_4) = \lambda(1, 0, -1, 0) + \mu(0, -2, 0, 1)$$

W=2(((1,0,-1,0),(0,-2,0,1)))

Y: a, e, + a, e, + a, e, + a, e,

Yrean(s) Y= \(\C1,0,1,0) Bin + \(\mu(0,1,0,2) Bin

Apeicación lineal traspuesta V y V' e.v. f. V -> V'