Bactéries anaérobies

Introduction:

Une bactérie anaérobie stricte est une bactérie incapable de se multiplier en présence de l'air atmosphérique car l'oxygène lui est nocif.

Origine:

- **Flore exogène :** c'est-à-dire dans l'environnement par exemple les bactéries sporulées du genre Clostridium.
- Flore endogène : les bactéries anaérobies sont prédominantes au niveau de la flore intestinale, de la flore bucco-dentaire, de la flore vaginale. Elles forment ce que l'on appelle la flore de Veillon.

Statut : Commensales, mais peuvent devenir pathogènes en cas de :

- Multiplication excessive (dysmicrobisme).
- Envahissement de cavités ou tissus normalement stériles.

II. CLASSIFICATION:

Classification des bactéries anaérobies en fonction de la morphologie et du Gram

- Cocci à Gram positif: Peptostreptococcus
- Cocci à Gram negatif: Veillonella
- Bacilles à Gram positif non sporulés: Actinomyces, Bifidobacterium, Eubacterium, Lactobacilluse et Propionibacterium.
- Bacilles à Gram positif sporulés: Clostridium perfringens, Clostridium (autres), Clostridium difficile, Clostridium tetani et Clostridium botulinum.
- Bacilles à Gram negatif: Bacteroides (groupe fragilis), Prevotella, Porphyromonas et Fusobacterium.

III. Habitat:

• Selon leur habitat naturel l'on distingue les bactéries anaérobies strictes de l'environnement (*Clostridium sporulé*), et les anaérobies strictes de la flore endogène de Veillon.

IV. POUVOIR PATHOGENE:

Les bactéries anaérobies strictes entretiennent leur pouvoir pathogène de plusieurs manières :

- Multiplication excessive : au sein de la flore endogène ou en envahissant un tissu normalement stérile.
- **Production de toxines :** comme l'exotoxine de Clostridium tetani. Libération d'enzymes : facilitant leur diffusion au sein des tissus.
- Libération de LPS: endotoxine de la paroi des anaérobies à Gram négatif.
- Association bactérienne : les infections à anaérobies sont le plus souvent polymicrobiennes, associant notamment des aéro-anaérobies facultatives qui permettent d'entretenir une faible pression d'oxygène dans le foyer infectieux (l'oxygène sera consommé par les aérobies).

A. LES COCCI:

1. Peptostreptococcus:

Structure: Cocci à Gram positif.

Habitat: Flore endogène (bouche, nasopharynx, intestin, vagin).

Mécanisme: Infections souvent en association avec d'autres

bactéries.

Tableau clinique:

- Infections cutanées
- Infections buccodentaires
- Infections pleuropulmonaires
- Infections péritonéales
- Infections pelviennes

Remarque : « Streptocoque des anaérobies »

2. Veillonella:

Structure : Cocci à Gram négatif. **Habitat :** Flore endogène (bouche).

Mécanisme : Classique. **Tableau clinique :**

• Infections purulentes

o Infections génitales

Remarque: « Neisseria des anaérobies » Sensible à tous les antibiotiques actifs sur les anaérobies.

B. LES BACILLES A GRAM POSITIF SPORULES: CLOSTRIDIUM:

1- Clostridium perfringens:

Structure: Bacille à Gram positif sporulé.

Habitat: Flore endogène (intestin).

Mécanisme: Toxine hémolysante nécrosante (lécithinase).

Tableau clinique:

Gangrène gazeuse

Sepsis post-avortement

Toxi-infection alimentaire.

Remarque : la bactérie fabrique une enzyme, la lécithinase, qui est capable d'induire la dégradation des

leucocytes, l'aidant à échapper au système immunitaire.

2. Clostridium difficile:

Structure: Bacille à Gram positif sporulé.

Habitat: Flore intestinale.

Mécanisme: Deux entérotoxines.

Tableau clinique:

• Diarrhée post-antibiothérapie (colite pseudomembraneuse)

Remarque:

Très résistante

• Sensible uniquement au métronidazole et à l'imipenème

Certaines souches produisent des carbapénèmases

3. Clostridium botulinum:

Structure: Bacille à Gram positif sporulé.

Habitat : Flore tellurique (sol). **Mécanisme :** Toxine neurotrope.

Tableau clinique:

• Paralysie → botulisme

Remarque: Transmis par spores.

4. Clostridium tetani

Structure: Bacille à Gram positif sporulé.

Habitat : Flore tellurique (sol).Mécanisme : Toxine neurotrope.

Tableau clinique:

o Paralysie → tétanos

Remarque: Transmis par spores.

C. BACILLES À GRAM POSITIF NON-SPORULÉS:

1. Actinomyces israelii:

Structure: Bacille à Gram positif.

Habitat: Tube digestif.

Mécanisme: Post-traumatique.

Tableau clinique:

Abcès cervico-facial (pus avec grains jaunâtres, odeur fétide)

Remarque : en microscopie, il donne de petits filaments qui offrent un aspect proche de celui des champignons d'où son appellation actino (filaments) et myces (champignon). Il est sensible à tous les 6 antibiotiques actifs sur les anaérobies, dont la pénicilline A.

2. Bifidobacterium:

Structure : Bacille à Gram positif. **Habitat :** Intestin du nourrisson allaité.

Mécanisme : Classique. **Tableau clinique :**

Sepsis

Remarque: Présent dans les yaourts enrichis (Bifidus actif).

3. Eubacterium:

Structure : Bacille à Gram positif. **Habitat :** flore endogène (intestin).

Mécanisme : terrain immunodéprimé (opportuniste).

Tableau clinique:

Infections respiratoires

Nb/Remarque : c'est une bactérie à moindre importance clinique très peu distinguable de Propionibacterium.

4. Propionibacterium acnes

Structure : Bacille à Gram positif. **Habitat :** flore endogène (peau).

Mécanisme: association à d'autres bactéries.

Tableau clinique:

- Surinfection d'acné.
- Méningite.
- Endocardite.
- Ostéomyélite.

Nb/Remarque : ce n'est pas en soi la cause de l'acné, mais plutôt une cause de surinfection des lésions d'acné. Son antibiogramme se limite à quatre antibiotiques. Elle est résistante au métronidazole.

D. BACILLES À GRAM NÉGATIF ANAÉROBIES :

1. Bacteroides fragilis:

Structure : Bacille à Gram négatif. **Habitat :** flore endogène (côlon).

Mécanisme : association à d'autres bactéries.

Tableau clinique:

- Péritonites.
- Infections gynécologiques.
- Infections pleuropulmonaires.
- Infections cutanées.

Sepsis

Nb/Remarque : c'est « l'Escherichia coli des anaérobies ». Il s'agit de l'espèce qui tolère le mieux l'oxygène et qui cultive le plus rapidement.

2. Prevotella

Structure : Bacille à Gram négatif. **Habitat :** flore endogène (bouche).

Mécanisme: association à d'autres bactéries.

Tableau clinique:

- Infections pleuropulmonaires.
- Infections de la sphère ORL.
- Gingivites.
- Pelvi-péritonites.

Nb/Remarque : elle fait partie (avec Porphyromonas) des anaérobies pigmentées. Elle produit un pigment qui lui confère une coloration grenas très foncé en culture. Elle cultive en 5 jours.

3. Porphyromonas:

Structure : Bacille à Gram négatif. **Habitat :** flore endogène (bouche).

Mécanisme : association à d'autres bactéries.

Tableau clinique:

• Infections buccodentaires.

Nb/Remarque : elle fait partie (avec Prevotella) des anaérobies pigmentées. Elle produit un pigment qui lui confère une coloration grenas très foncé en culture. Elle cultive en 5 jours.

4. Fusobacterium

Structure : Bacille à Gram négatif.Habitat : flore endogène (Tube digestif).Mécanisme : association à d'autres bactéries.

Tableau clinique:

- Infections buccales.
- Infections pulmonaires.
- Sepsis.
- Angine de Vincent.

Nb/Remarque: en microscopie, les Fusobacterium ont un aspect fusiforme en « lâcher d'aiguilles ».

V. DIAGNOSTIC BACTERIOLOGIQUE :

Le diagnostic se fait en quatre étapes : la fiche de renseignements, le prélèvement, les techniques de laboratoire, et les tests de sensibilité aux antibiotiques.

A. FICHE DE RENSEIGNEMENTS:

Elle renseigne sur les circonstances cliniques :

- Notion de foyer infectieux d'odeur fétide (due aux gaz dégagés par la fermentation) avec ou sans grains jaunes dans le pus.
- Ischémie ou nécrose tissulaire, parfois gangrène.
- Notion de chirurgie, de piqûre, de morsure...
- Notion de suppuration profonde, ou plutôt en rapport des orifices naturels (cavité buccale, anus, appareil génital...).
- Notion d'immunodépression.

B. PRÉLÈVEMENT POUR BACTÉRIES ANAÉROBIES:

Types de prélèvements possibles :

- Pus : provenant d'un abcès ou d'une fistule.
- Hémocultures : en cas d'infection systémique (septicémie).

Conditions de prélèvement et de transport :

- Le transport au laboratoire doit être rapide.
- Le laboratoire doit être prévenu à l'avance pour préparer les milieux anaérobies adaptés.

En cas d'abcès fermé :

- Respecter strictement les règles d'asepsie.
- Ponction à la seringue, puis :
 - Chasser l'air de la seringue immédiatement après ponction.
 - Recapuchonner rapidement pour éviter l'exposition à l'oxygène.
- Acheminer le plus rapidement possible au laboratoire.

En cas d'abcès fistulisé ou d'otite :

- Prélever au laboratoire de microbiologie directement, car la culture doit être immédiate.
- Si l'écoulement est abondant :
 - Utiliser une poire.
 - Mettre le prélèvement dans un tube stérile.
 - L'envoyer rapidement au laboratoire.

Matériel spécifique à utiliser :

- Utiliser un écouvillon spécial anaérobies :
 - Appelé Culturette Anaérobie.
 - Il maintient un environnement sans oxygène.

C. TECHNIQUES DE LABORATOIRE POUR LES ANAÉROBIES

Trois techniques principales sont utilisées pour identifier les bactéries anaérobies :

1- Coloration de Gram

- **But**: Observer directement les bactéries dans le prélèvement.
- Permet une orientation rapide du diagnostic :
 - Cocci ou bacilles ?
 - À Gram positif ou négatif?
- Simple, rapide et utile en présence de pus.

Trois techniques principales sont utilisées pour identifier les bactéries anaérobies :

2- Culture anaérobie

Conditions et milieux spécifiques :

- Utilisation de milieux désoxygénés par ébullition avant ensemencement.
- Mise en culture rapide indispensable.
- Incubation en atmosphère dépourvue d'oxygène
- Durée d'incubation :

Minimum 48h, souvent jusqu'à 5 jours.

Les bactéries anaérobies sont lentes à croître.

Exception : Bacteroides → croissance plus rapide (~2h de génération).

Problème en cas de flore polymicrobienne :

- Les aéro-anaérobies facultatives (comme *E. coli*) peuvent gêner la croissance des anaérobies strictes.
- Solution : Isolement sur milieux sélectifs :
 - Exemple : Columbia au sang frais + Kanamycine (antibiotique qui inhibe les aérobies et épargne les anaérobies).

3- Tests rapides (4 types principaux):

Test	Cible	Application
Latex sensibilisé	Antigènes	Détection de Clostridium difficile dans les selles
PCR	ADN bactérien	Détection directe d'espèces pathogènes dans le prélèvement
Inoculation animale	Toxines	Diagnostic de C. tetani ou C. botulinum
ELISA	Toxines	Détection de toxines de C. difficile

D. SENSIBILITE AUX ANTIBIOTIQUES

La sensibilité aux antibiotiques doit être systématiquement testée pour adapter le traitement.

Bêta-lactamines:

- La pénicilline est active sur les bactéries anaérobies à Gram positif (sauf Clostridium difficile). Elle est inefficace sur les bactéries à Gram négatif.
- Les céphalosporines ont une activité inconstante.
- L'imipénème possède une très bonne activité sur les anaérobies.

Remarque: Certaines souches du genre Bacteroides produisent des bêta-lactamases qui inactivent toutes les bêta-lactamines sauf les céphamycines (ex. céfoxitine).

Aminosides:

- Aucun effet sur les bactéries anaérobies.
- Ces antibiotiques nécessitent la présence d'oxygène pour pénétrer dans la bactérie.

Fluoroquinolones:

- Mauvaise activité sur les bactéries anaérobies.
- Peu utilisées en pratique contre ce type d'infections.

Imidazolés (ex. Métronidazole):

- Très bonne activité contre les bacilles anaérobies à Gram négatif.
- Particulièrement efficace sur les Bacteroides.

Clindamycine:

- Bonne activité sur de nombreux anaérobies.
- Inactive sur les Clostridium, qui y sont souvent résistants.

