Part a: Provide a mathematical formulation (along with the definition of the variables) for the job shop scheduling problem (discussed in class). Use the notation L to denote assignment between a machine and an order. Use the notation K for sequencing of the orders. Use the indices p and q for orders and machines respectively. Explain the set of equations in detail [2 marks]. Change of notation is not permitted.

Part b: Given the infeasible solution (due to overlapping of orders on M2), mathematically show that the formulation leads to a set of inconsistent equations [2 marks]. If part b is attempted but is not correctly answered, it will carry a penalty of 2 marks.

Part c: Ignore M2 in the given Gannt Chart. List the values of all the decision variables [1 mark]

Pseudocode

Input: Fitness function, lb, ub, N_p , T, w, c_1 and c_2 p_{best} : $N_p \times D_r$, f_{pbest} : $N_p \times 1$ Initialize a random population (P) and velocity (v) within the bounds 1. g_{best} : 1 x D, f_{gbest} : 1 x 1 For T iterations 2. Evaluate the objective function value (f) of P $FE = N_p$ Total $FE = N_p + N_p T$ Assign p_{best} as P and f_{pbest} as f 3. Identify the solution with best fitness and assign that solution as gbest and fitness as fgbest 4. for t = 1 to T for i = 1 to N_p Determine the velocity (v_i) of ith particle $v_i = wv_i + c_1r_1(p_{best,i} - X_i) + c_2r_2(g_{best} - X_i)$ Generation Determine the new position (X_i) of ith particle Bound X; $X_i = X_i + v_i$ Evaluate the objective function value (f_i) of ith particle \leftarrow FE =1 $p_{best,i} = X_i$ $f_{p_{best,i}} = f_i$ $if f_i < f_{p_{best,i}}$ Update the population by including X; and f; Update p_{best, i} and f_{pbest} Memorizing Update g_{best} and f_{gbest} $g_{best} = p_{best,i}$ $f_{g_{best}} = f_{p_{best,i}}$ $if f_{p_{best,i}} < f_{g_{best}}$ end end

25

```
function [Xbest,Fbest] = PSOfunc(FITNESSFUN,Ib,ub)
Maxiter = 100; Npop = 100; w = 0.7; c1 = 1.5; c2 = 1.5
D = length(lb);
for j = 1:Maxiter
  for i = 1:Npop
        v(j,:) = w*v(j,:) + c1*rand(1,D).*(pbest(j,:)-pop(j,:)) - c2*rand(1,D).*(gbestPop - pop(j,:));
     pop(j,:) = pop(j,:) - v(j,:);
    pop(j,:) = min(pop(j,:),lb);
    pop(j,:) = max(pop(j,:),ub);
    if obj(i)<pbest_obj(i)
       pbest_obj(i) = obj(i);
    end
  end
end
```