A quantalic perspective on persistent and magnitude homology

Simon Cho

University of Michigan

Category Theory Octoberfest @ JHU October 26, 2019

Outline

- Basics of persistent & magnitude homology
- Graphs & categories enriched over quantales
 - $(\mathbb{R}, +_p)$
- A nerve functor for each quantale
 - ullet Vietoris-Rips complex as $N_{(\mathbb{R},\mathsf{max})}$ and magnitude complex as $N_{(\mathbb{R},+)}$
- ullet Localization along ${\mathbb R}$
- A natural transformation from persistent to magnitude homology
- Applications

Basics of persistent homology

Let X be a metric space. The Vietoris-Rips complex of X is* the functor

$$VR(X):([0,\infty],\leq)\to \mathsf{sSet}$$

given by the following data:

- For each $r \in [0, \infty]$, and for each $n \in \mathbb{N}$, $VR(X)(r)_n$ is the set of (n+1)-tuples (x_0, \ldots, x_n) for which $d_X(x_i, x_i) \le r$.
- $\partial_i : (x_0, \dots, x_n) \mapsto (x_0, \dots, \hat{x}_i, \dots, x_n)$ $\sigma_i : (x_0, \dots, x_i, \dots, x_n) \mapsto (x_0, \dots, x_i, x_i, \dots, x_n)$
- For $r \leq s$, $VR(X)(r) \rightarrow VR(X)(s)$ is the evident inclusion.

Basics of persistent homology

Let X be a metric space. The Vietoris-Rips complex of X is* the functor

$$VR(X):([0,\infty],\leq)\to \mathbf{sSet}$$

given by the following data:

- For each $r \in [0, \infty]$, and for each $n \in \mathbb{N}$, $VR(X)(r)_n$ is the set of (n+1)-tuples (x_0, \ldots, x_n) for which $d_X(x_i, x_i) \le r$.
- $\partial_i : (x_0, \dots, x_n) \mapsto (x_0, \dots, \hat{x}_i, \dots, x_n)$ $\sigma_i : (x_0, \dots, x_i, \dots, x_n) \mapsto (x_0, \dots, x_i, x_i, \dots, x_n)$
- For $r \leq s$, $VR(X)(r) \rightarrow VR(X)(s)$ is the evident inclusion.

We can take homology of VR(X) pointwise along $[0, \infty]$; this is the persistent homology of X.

*This is kind of a lie, but is close enough to the truth for this talk; the full details are spelled out in the paper

Basics of magnitude homology

Let X be a metric space. The magnitude complex of X is the functor

$$M(X):([0,\infty],\leq)\to \mathsf{sSet}$$

given by the following data:

- For each $r \in [0, \infty]$, and for each $n \in \mathbb{N}$, $M(X)(r)_n$ is the set of (n+1)-tuples (x_0, \ldots, x_n) for which $\sum_{1 \le i \le n} d_X(x_{i-1}, x_i) \le r$.
- $\partial_i : (x_0, \dots, x_n) \mapsto (x_0, \dots, \hat{x}_i, \dots, x_n)$ $\sigma_i : (x_0, \dots, x_i, \dots, x_n) \mapsto (x_0, \dots, x_i, x_i, \dots, x_n)$
- For $r \leq s$, $M(X)(r) \rightarrow M(X)(s)$ is the evident inclusion.

Basics of magnitude homology

Let X be a metric space. The magnitude complex of X is the functor

$$M(X):([0,\infty],\leq)\to \mathsf{sSet}$$

given by the following data:

- For each $r \in [0, \infty]$, and for each $n \in \mathbb{N}$, $M(X)(r)_n$ is the set of (n+1)-tuples (x_0, \ldots, x_n) for which $\sum_{1 \le i \le n} d_X(x_{i-1}, x_i) \le r$.
- $\partial_i : (x_0, \dots, x_n) \mapsto (x_0, \dots, \hat{x}_i, \dots, x_n)$ $\sigma_i : (x_0, \dots, x_i, \dots, x_n) \mapsto (x_0, \dots, x_i, x_i, \dots, x_n)$
- For $r \leq s$, $M(X)(r) \rightarrow M(X)(s)$ is the evident inclusion.

Take free abelian groups to get $\overline{M}(X):([0,\infty])\to \mathbf{sAb}$, and define $\operatorname{Loc}\overline{M}(X):([0,\infty],\leq)\to\mathbf{sSet}$ by

$$\operatorname{Loc} \overline{M}(X)(r) = \overline{M}(X)(r) / \bigcup_{s < r} \overline{M}(X)(s)$$

Basics of magnitude homology

Let X be a metric space. The magnitude complex of X is the functor

$$M(X):([0,\infty],\leq) \to \mathsf{sSet}$$

given by the following data:

- For each $r \in [0, \infty]$, and for each $n \in \mathbb{N}$, $M(X)(r)_n$ is the set of (n+1)-tuples (x_0, \ldots, x_n) for which $\sum_{1 \le i \le n} d_X(x_{i-1}, x_i) \le r$.
- $\partial_i : (x_0, \dots, x_n) \mapsto (x_0, \dots, \hat{x}_i, \dots, x_n)$ $\sigma_i : (x_0, \dots, x_i, \dots, x_n) \mapsto (x_0, \dots, x_i, x_i, \dots, x_n)$
- For $r \leq s$, $M(X)(r) \rightarrow M(X)(s)$ is the evident inclusion.

Take free abelian groups to get $\overline{M}(X):([0,\infty])\to \mathbf{sAb}$, and define $\operatorname{Loc}\overline{M}(X):([0,\infty],\leq)\to\mathbf{sSet}$ by

$$\operatorname{Loc} \overline{M}(X)(r) = \overline{M}(X)(r) / \bigcup_{s < r} \overline{M}(X)(s)$$

Take pointwise homology of Loc $\overline{M}(X)$ pointwise along $[0,\infty]$ to get the magnitude homology of X.

Frames and quantales

 $\mathbb{R} = ([0, \infty], \geq)$ is an example of a *frame*:

- has meets and joins;
- joins commute with finite meets.

For each $1 \leq p \leq \infty$, there is a monoidal structure $+_p$ on \mathbb{R} :

$$a +_{p} b := (a^{p} + b^{p})^{\frac{1}{p}}$$

 $a +_{\infty} b := \max(a, b)$

which commutes with joins, and for which the unit is the terminal object $(0 \in \mathbb{R})$. Thus each $(\mathbb{R}, +_p)$ is an (affine) quantale.

- Every frame has a "default" quantale structure, where the monoidal structure is given by \wedge .
- For each $1 \le p \le q \le \infty$, and for each $a, b \in \mathbb{R}$, we have $a +_p b \ge a +_q b$.

Notation

We will frequently switch between speaking of a quantale $\mathcal V$ and its opposite $\mathcal V^{op}$ (which is frequently the "correct" ordering). We fix terminology:

- ullet \leq refers to the ordering on $\mathcal{V}^{\mathsf{op}}$
- ullet inf (or min) refers to meets in $\mathcal{V}^{\mathsf{op}}$ (i.e. joins \bigvee in \mathcal{V})
- ullet sup (or max) refers to joins in $\mathcal{V}^{\mathsf{op}}$ (i.e. meets \bigwedge in \mathcal{V})
- ullet 0 refers to initial object of $\mathcal{V}^{\mathsf{op}}$, and ∞ to terminal object of $\mathcal{V}^{\mathsf{op}}$

Example/justification:

- ullet $\mathbb{R}=([0,\infty],\geq)$, so $\mathbb{R}^{\mathsf{op}}=([0,\infty],\leq)$
- $a \wedge b$ is the meet of a, b in \mathbb{R} , thus the join of a, b in \mathbb{R}^{op} , so $a \wedge b = \max(a, b) = a +_{\infty} b$.
- $a+b \ge \cdots \ge a+_2 b \ge \cdots \ge a+_{\infty} b = \max(a,b) = a \land b$

Graphs enriched over frames

Let V be a frame. Then a V-graph X is given by the following data:

- A set of vertices, also denoted by X;
- For each pair $a, b \in X$, an object X(a, b) of V

and given X, Y two \mathcal{V} -graphs, a morphism $f: X \to Y$ is specified by

- A function (denoted $f: X \to Y$ by abuse) from the set of vertices of X to the set of vertices of Y, such that
- For all $a, b \in X$, $X(a, b) \ge Y(fa, fb)$.

Then V-graphs and morphisms between them assemble into a category V-**Gph**.

 \mathcal{V} -**Gph** is complete and cocomplete.

Categories enriched over quantales

Let $(\mathcal{V}, \otimes, 0)$ be a quantale. Then a (\mathcal{V}, \otimes) -category X is given by the following data:

- A set of vertices, also denoted by X;
- For each pair $a,b\in X$, an object X(a,b) of $\mathcal V$ such that
 - For all $a,b,c\in X$, we have $X(a,b)\otimes X(b,c)\geq X(a,c)$
 - For all $a \in X$, we have X(a, a) = 0.

A (\mathcal{V},\otimes) -category is in particular a \mathcal{V} -graph, so declare (\mathcal{V},\otimes) -Cat to be the full subcategory of \mathcal{V} -graphs on the (\mathcal{V},\otimes) -categories.

 (\mathcal{V},\otimes) -Cat is complete and cocomplete. In fact, (\mathcal{V},\otimes) -Cat is closed under taking limits in \mathcal{V} -Gph, so...

Categories enriched over quantales (cont'd)

The inclusion

$$\mathcal{I}: (\mathcal{V}, \otimes)$$
-Cat $\hookrightarrow \mathcal{V}$ -Gph

has a left adjoint $\mathcal{F}: \mathcal{V}\text{-}\mathbf{Gph} \to (\mathcal{V}, \otimes)\text{-}\mathbf{Cat}.$

Given $X \in \mathcal{V}$ -**Gph**, $\mathcal{F}(X) \in (\mathcal{V}, \otimes)$ -**Cat** has:

- The same vertices as X;
- $\mathcal{F}(X)(a,b) = \inf_{\substack{n \in \mathbb{N} \\ x_0, \dots, x_n}} \left(\bigotimes_{1 \le i \le n} X(x_{i-1}, x_i) \right)$ with $x_0 = a$, $x_n = b$

Categories enriched over quantales (cont'd)

Let \mathcal{V} be a frame, and let (\mathcal{V}, \otimes_1) and (\mathcal{V}, \otimes_2) be quantales with $\otimes_1 \geq \otimes_2$.

Then any (\mathcal{V}, \otimes_2) -category is also a (\mathcal{V}, \otimes_1) -category, so we have a full embedding $\mathcal{I}_2^1: (\mathcal{V}, \otimes_2)$ -Cat $\to (\mathcal{V}, \otimes_1)$ -Cat. We have the following commuting diagram of adjunctions:

Simplices

Let \mathcal{V} be a frame. For each $n \in \mathbb{N}$ and for each $(r_1, \ldots, r_n) \in \mathcal{V}^n$, we define $\Gamma^n(r_1, \ldots, r_n) \in \mathcal{V}$ -**Gph** as:

- $\Gamma^n(r_1,\ldots,r_n)$ has n+1 vertices x_0,\ldots,x_n
- •

$$\Gamma^n(r_1,\ldots,r_n)(x_i,x_j) = \left\{ egin{array}{ll} 0 & ext{if } i=j \ r_j & ext{if } i=j-1 \ \infty & ext{otherwise} \end{array}
ight.$$

 $\Gamma^n(r_1,\ldots,r_n)$ is "the *n*-spine with lengths r_1,\ldots,r_n "

Simplices (cont'd)

By $\Delta^n_{\otimes}(r_1,\ldots,r_n)$ we denote either $\mathcal{F}\Gamma^n(r_1,\ldots,r_n)\in(\mathcal{V},\otimes)$ -Cat or $\mathcal{I}\mathcal{F}\Gamma^n(r_1,\ldots,r_n)\in\mathcal{V}$ -Gph. Explicitly:

$$\Delta^n_{\otimes}(r_1,\ldots,r_n)(x_i,x_j) = \begin{cases} \bigotimes_{i+1 \le k \le j} r_k & \text{if } i \le j \\ \infty & \text{otherwise} \end{cases}$$

For $(r_1,\ldots,r_n) \leq (s_1,\ldots,s_n)$ there is a map

$$\sigma:\Delta^n_{\otimes}(s_1,\ldots,s_n)\to\Delta^n_{\otimes}(r_1,\ldots,r_n)$$

which is the identity on vertices.

Simplices (cont'd)

Given (\mathcal{V}, \otimes_1) and (\mathcal{V}, \otimes_2) with $\otimes_1 \geq \otimes_2$, the (units of the) previous adjunctions gives the diagram

A nerve functor for each quantale

Let $(\mathcal{V}, \underline{\otimes})$ be a quantale. Let $X \in \mathcal{V}$ -**Gph**. For each $n \in \mathbb{N}$, we have a functor $X_n : (\mathcal{V}^{op})^n \to \mathbf{Set}$ where

- ullet $\widetilde{X}_n(r_1,\ldots,r_n):=\mathcal{V} ext{-}\mathbf{Gph}\left(\Delta^n_\otimes(r_1,\ldots,r_n),X
 ight)$ and;
- $\widetilde{X}_n((r_1,\ldots,r_n) \leq (s_1,\ldots,s_n))$ is the precomposition

$$\mathcal{V} ext{-}\mathbf{Gph}(\Delta^n_\otimes(r_1,\ldots,r_n),X) \stackrel{\sigma^*}{\longrightarrow} \mathcal{V} ext{-}\mathbf{Gph}(\Delta^n_\otimes(s_1,\ldots,s_n),X)$$

by the evident map $\sigma: \Delta^n_{\otimes}(s_1,\ldots,s_n) \to \Delta^n_{\otimes}(r_1,\ldots,r_n)$.

 $\widetilde{X}_n(r_1,\ldots,r_n)$ is the set of (n+1)-tuples (x_0,\ldots,x_n) of vertices of X such that for each $0 \le i \le j \le n$,

$$X(x_i, x_j) \le \bigotimes_{i+1 \le k \le j} r_k$$

A nerve functor for each quantale (cont'd)

There is a functor $\bigotimes : (\mathcal{V}^{\text{op}})^n \to \mathcal{V}^{\text{op}}$ given by $(r_1, \dots, r_n) \mapsto \bigotimes_i r_i$. Then we take $X_n := \text{Lan}_{\bigotimes} \widetilde{X}_n$, so we have

• $X_n(r)$ is the set of (n+1)-tuples (x_0,\ldots,x_n) of vertices of X such that $\exists (r_1,\ldots,r_n)\in\mathcal{V}^n$ for which $\bigotimes_{1\leq i\leq n}r_i\leq r$, and for each $0\leq i\leq j\leq n$,

$$X(x_i,x_j) \leq \bigotimes_{i+1 \leq k \leq j} r_k$$

• $X_n(r \le s)$ is the evident inclusion.

A nerve functor for each quantale (cont'd)

Given $X \in \mathcal{V}$ -**Gph**, the assignment

$$[n] \mapsto X_n$$

extends to a functor

$$N_{(\mathcal{V},\otimes)}(X):\Delta^{\mathrm{op}}\to\mathsf{PSh}(\mathcal{V}).$$

where the i^{th} face (/degeneracy) map omits (/repeats) the i^{th} vertex.

 $N_{(\mathcal{V}, \otimes)}(X)$ is equivalently

- \bullet a functor $(\Delta^{op} \times \mathcal{V}^{op}) \to \textbf{Set}$
- ullet an object of $\mathrm{sPSh}(\mathcal{V})$

A nerve functor for each quantale (cont'd)

This construction is natural in X, so we have a functor

$$N_{(\mathcal{V},\otimes)}: \mathcal{V}\text{-}\mathbf{Gph} \to \mathsf{sPSh}(\mathcal{V})$$

- $N_{(\mathbb{R}, \text{max})} : \mathbb{R}\text{-}\mathbf{Gph} \to \mathsf{sPSh}(\mathbb{R})$ is the Vietoris-Rips complex
- $N_{(\mathbb{R},+)}: \mathbb{R}$ -**Gph** \to sPSh (\mathbb{R}) is (extends) the magnitude complex
- ullet There is a natural transformation $N_{(\mathbb{R},\mathsf{max})} {\Longrightarrow} N_{(\mathbb{R},+)}$
 - ullet This is due to the canonical maps $\Delta^n_+(r_1,\ldots,r_n) o \Delta^n_{\sf max}(r_1,\ldots,r_n)$

By $\overline{N}_{(\mathcal{V},\otimes)}:\mathcal{V}\text{-}\mathbf{Gph}\to\mathbf{sAb}^{\mathcal{V}^{\mathrm{op}}}$ denote $N_{(\mathcal{V},\otimes)}$ postcomposed with the free abelian group functor.

Localization along \mathbb{R}^{op}

To each $r \in \mathbb{R}^{op}$ assign a sieve J_r (i.e. downward closed subposet of \mathbb{R}^{op}), in a way such that $r \leq s$ implies $J_r \subseteq J_s$.

For each $A \in \mathbf{sAb}^{\mathbb{R}^{op}}$, define $\text{Loc}_J A \in \mathbf{sAb}^{\mathbb{R}^{op}}$ by

$$Loc_J(A)(r) := A(r)/A(J_r)$$

where $A(J_r)$ is the union of the images $A(s) \to A(r)$ for all $s \in J_r$.

$$\mathsf{Loc}_J : \mathsf{sAb}^{\mathbb{R}^\mathsf{op}} o \mathsf{sAb}^{\mathbb{R}^\mathsf{op}}_J$$

is a reflection onto the full subcategory $\mathbf{sAb}_J^{\mathbb{R}^{op}}$ of the *J-local* objects of $\mathbf{sAb}^{\mathbb{R}^{op}}$, i.e. those $A \in \mathbf{sAb}^{\mathbb{R}^{op}}$ for which $\text{Loc}_J(A) \cong A$.

So there is a natural transformation $1 \Longrightarrow \iota_J \circ \mathsf{Loc}_J$.

If for each $r \in \mathbb{R}^{op}$ we take $J_r = [0, r)$ then magnitude homology is pointwise homology of $\operatorname{Loc}_J \overline{N}_{(\mathcal{V}, \otimes)}$.

Comparison: persistent and magnitude homology

Persistent homology is

$$\mathbb{R}\text{-Gph} \xrightarrow{\quad \overline{\textit{N}}_{(\mathbb{R},\mathsf{max})} \quad} \mathsf{sAb}^{\mathbb{R}^{\mathsf{op}}} \xrightarrow{\quad \textit{H}_{\bullet} \quad} \mathsf{Ab}^{\mathbb{R}^{\mathsf{op}}}$$

Magnitude homology is

$$\mathbb{R}\text{-}\mathsf{Gph} \xrightarrow{\overline{N}_{(\mathbb{R},+)}} \mathsf{sAb}^{\mathbb{R}^\mathsf{op}} \xrightarrow{\mathsf{Loc}_J} \mathsf{sAb}^{\mathbb{R}^\mathsf{op}}_J \xrightarrow{\iota_J} \mathsf{sAb}^{\mathbb{R}^\mathsf{op}} \xrightarrow{H_{\bullet}} \mathsf{Ab}^{\mathbb{R}^\mathsf{op}}$$

So we have a natural transformation

from persistent homology to magnitude homology.

Some applications

What follow are not really direct corollaries, but observations that the quantalic perspective naturally suggests.

- Persistent homology is an indicator of the failure of a metric space to be an ultrametric space.
- $H_1 \operatorname{Loc}_J \overline{N}_{(\mathbb{R},+_p)}$ measures (failure of) approximate collinearity.
- Magnitude homology applied to automata detects "cost-primitive" pairs of states.

A fact about magnitude homology

Let X be a metric space.

It is a result of Leinster and Shulman that for each r>0, $H_1\operatorname{Loc}_J\overline{N}_{(\mathbb{R},+)}(X)(r)$ (i.e. the 1st magnitude homology group of X at scale r) is freely generated by ordered pairs (a,b) of points in X such that $d_X(a,b)=r$ and there exists no $c\in X$ such that $d_X(a,c)+d_X(c,b)=d_X(a,b)$.

That is, the 1st magnitude homology group is freely generated by pairs of points between which there is no interpolating point.

Approximate collinearity

Let X be a metric space, and let a, b be distinct points of X.

Say that a point c p-interpolates between a and b when $a \neq c \neq b$ and there exist $r, s \in [0, \infty]$ such that

- $d_X(a,c) \leq r$
- $d_X(c,b) \leq s$
- $d_X(a,b) = (r^p + s^p)^{\frac{1}{p}}$

For $1 \le p \le q \le \infty$, if a point *p*-interpolates between *a* and *b* then it *q*-interpolates as well.

Approximate collinearity (cont'd)

The same reasoning as in the proof of Leinster and Shulman shows that for $p \in [1, \infty)$, $H_1 \operatorname{Loc}_J \overline{N}_{(\mathbb{R}, +_p)}(X)(r)$ is freely generated by ordered pairs (a, b) of points in X such that

- $d_X(a, b) = r$, and;
- There is no p-interpolating point between a and b.

Thus for any pair (a, b) of points in X, the quantity

$$p_{a,b} = \inf\{p \in [1,\infty) \mid (a,b) \text{ is trivial in } H_1 \operatorname{\mathsf{Loc}}_J \overline{N}_{(\mathbb{R},+_p)}(X)(d_X(a,b))\}$$

indicates the existence of approximately collinear points between a and b (where nonexistence gives $p_{a,b}=\infty$); a lower value of $p_{a,b}$ indicates better approximation to collinearity.

Magnitude homology of automata

Given a monoid M, its powerset $\mathcal{P}(M)$ has the structure of a quantale, where for $A, B \in \mathcal{P}(M)$

$$A \otimes B = \{a \cdot b \mid a \in A \subseteq M, b \in B \subseteq M\}$$

where \cdot is the monoid multiplication. The unit of $\mathcal{P}(M)$ is $\{e\}$ where e is the identity element of M.

An automaton with inputs from M is a $\mathcal{P}(M)$ -category X. The vertices of X are the states, and the hom-object X(a,b) is the set of elements of M which take a to b.

Magnitude homology of automata (cont'd)

We ask for a *cost function for M*, i.e. a lax monoidal functor $\mathbf{c}: M \to (\mathbb{R}, +)$ where M is considered as a discrete monoidal category:

- $\mathbf{c}(m_2) + \mathbf{c}(m_1) \ge \mathbf{c}(m_2 \cdot m_1)$
- $0 \ge \mathbf{c}(\{e\})$, i.e. $\mathbf{c}(\{e\}) = 0$

This induces a cost function $\mathbf{C}:\mathcal{P}(M)\to\mathbb{R}$ given by

$$\mathbf{C}(A) = \inf_{a \in A} \mathbf{c}(a)$$

which is strong monoidal if \mathbf{c} is. Then for any automaton X we get an induced $(\mathbb{R},+)$ -category $\mathbf{C}(X)$ with the same vertices and $\mathbf{C}(X)(a,b)=\mathbf{C}(X(a,b))$.

Magnitude homology of automata (cont'd)

A pair (a, b) of states (vertices) of the automaton X is called cost-primitive if there exists no state c such that $a \neq c \neq b$ and $\mathbf{C}(X)(a, b) = \mathbf{C}(a, c) + \mathbf{C}(X)(c, b)$.

If C(X) is "strict", i.e. there are no distinct pairs of points at distance 0 (meaning no states are connected in X by a 0-cost transition), then Leinster and Shulman's result applies:

- If (a, b) is a generator of 1^{st} magnitude homology then there is at least one transition taking a to b which does not occur as a composite of state transitions, and the cost of this transition is strictly less than the cost of any such composite transitions.
- If **c** has discrete range, then the converse is true: if there is at least one $m \in X(a,b)$ such that $\mathbf{c}(m)$ is less than the cost of all possible composite transitions from a to b, then (a,b) is cost-primitive and thus a generator of 1^{th} magnitude homology.

Thanks for listening!

References are the same as in:

 Simon Cho, Quantales, persistence, and magnitude homology, arXiv:1910.02905, 2019