Markov Random Fields for Collaborative Filtering

Harald Steck

(hsteck@netflix.com)

NETFLIX

Summary

- simple linear model
- competitive experimental results on three popular data-sets, compared to various baselines, including deep nonlinear models:
 - training-time reduced by factor 10 (dense model) to 400 (sparse model).
 - recommendation-accuracy increased by 20% on data-set with the largest number of items.
- tradeoff between accuracy and training time can be controlled by two hyper-parameters.

Model

Collaborative Filtering:

Markov Random Field (MRF): models the similarities (dependencies) among items.

- items \leftrightharpoons nodes in MRF \leftrightharpoons random variables $X = (X_1, ..., X_m)$
- users \Longrightarrow samples drawn from p(X)

Besag's Approach (1975)

- instead of Hammersley-Clifford theorem
- for computational efficiency
- yields asymptotically consistent estimates
- Gaussian distribution $\mathcal{N}(0,\Sigma)$

1. auto-normal parameterization:

regress each item against its neighbors:

conditional means:

$$\mathbb{E}[X_i|X_{\mathcal{I}\setminus\{i\}} = x_{\mathcal{I}\setminus\{i\}}] = \sum_{i\in\mathcal{I}\setminus\{i\}} \beta_{j,i}x_j = x \cdot \mathbf{B}_{\cdot,i}$$

- ullet conditional variances: $\vec{\sigma}^2 := (\sigma_1^2, ..., \sigma_m^2)$
- symmetry of covariance matrix Σ imposes constraint: $\sigma_i^2\beta_{i,j}=\sigma_j^2\beta_{j,i}$

2. log pseudo-likelihood:

$$L(\mathbf{X}|\mathbf{B}, \vec{\sigma}^2) = \sum_{i \in \mathcal{I}} L(\mathbf{X}_{\cdot,i}|\mathbf{X}_{\cdot,\mathcal{I}\setminus\{i\}}; \mathbf{B}_{\cdot,i}, \sigma_i^2)$$

After dropping symmetry-constraint, likelihood decouples:

$$L(\mathbf{X}|\mathbf{B}) = -\sum_{i \in \mathcal{I}} ||\mathbf{X}_{\cdot,i} - \mathbf{X}\mathbf{B}_{\cdot,i}||_2^2$$
$$= -||\mathbf{X} - \mathbf{X}\mathbf{B}||_F^2$$

Paper & Code

Dense Model

Least-squares with L2-norm regularization:

$$\hat{\mathbf{B}} = \arg\min_{B} ||\mathbf{X} - \mathbf{X}\mathbf{B}||_{F}^{2} + \lambda \cdot ||\mathbf{B}||_{F}^{2}$$
where diag(B) = 0

Closed-form solution:

$$\hat{\mathbf{B}}_{i,j} = -\frac{\hat{\mathbf{C}}_{i,j}}{\hat{\mathbf{C}}_{i,j}} \text{ for } i \neq j$$

where: concentration matrix $\hat{\mathbf{C}} = \mathbf{S}_{\lambda}^{-1}$ $\mathbf{S}_{\lambda} = n^{-1}(\mathbf{X}^{\top}\mathbf{X} + \lambda \cdot \mathbf{I})$

 ${f X}$... user-item interaction matrix

Derivation using vector of Lagrangian multipliers
$$\gamma$$
:
$$\hat{\mathbf{B}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \cdot \mathbf{I})^{-1} (\mathbf{X}^{\top}\mathbf{X} - \mathrm{dMat}(\gamma))$$

$$= n^{-1}\hat{\mathbf{C}}(n\hat{\mathbf{C}}^{-1} - \lambda \cdot \mathbf{I} - d\text{Mat}(\gamma))$$
$$= \mathbf{I} - n^{-1}\hat{\mathbf{C}} \cdot d\text{Mat}(\gamma + \lambda)$$

hence $\gamma + \lambda = n \oslash \operatorname{diag}(\mathbf{\hat{C}})$

Sparse Approximation

Goal: reduced training-time

(rather than increased accuracy)

High-level Idea:

invert small *submatrices* of the cov.-matrix Σ , each pertaining to a *subset* \mathcal{D} of (completely) connected items and their Markov blanket \mathcal{C} .

Analogous to Besag's approach, this also yields asymptotically consistent estimates (cf. paper).

Approximation:

- determine sparsity pattern (MRF graph) by thresholding the correlation matrix.
- iterate through the items i in descending order of their number of neighbors $\mathcal{N}^{(i)}$ (skip i if $i \in \mathcal{D}^{(j)}$ of an earlier j):
 - compute closed-form solution for submatrix involving items $\{i\} \cup \mathcal{N}^{(i)}$.
 - \rightarrow exact solution for item i.
 - subset $\mathcal{D}^{(i)}$ contains $m^{(i)} := \operatorname{round}(r \cdot |\mathcal{N}^{(i)}|)$ items with highest correlation to item i.
 - subset $\mathcal{C}^{(i)} := \mathcal{N}^{(i)} \setminus \mathcal{D}^{(i)}$.
 - we assume that $\mathcal{C}^{(i)}$ is the Markov blanket of subset $\mathcal{D}^{(i)}$ (and completely connected). Generally, this is an **approximation**, especially as parameter-value r is increased.
 - above closed-form solution provides add'l approximate estimates for all the items $j \in \mathcal{D}^{(i)}$. \rightarrow Free Lunch!

Parameter r controls the sizes of the subsets, and hence the trade-off between accuracy and training-time.

Note: correlation matrix determines sparsity pattern, while covariance matrix determines non-zero values

Results of Dense Model

	Data Sets			
	ML-20M	Netflix	MSD	
Models	Recall@50	(see paper	for more)	
$\mathbf{\hat{B}}^{(\mathrm{dense})}$	0.522	0.448	0.430	
reproduced from [Liang et al., 2018]:				
MULT-VAE	0.537	0.444	0.364	
MULT-DAE	0.524	0.438	0.363	
CDAE	0.523	0.428	0.283	
SLIM	0.495	0.428	–dnf–	
WMF	0.498	0.404	0.312	
std. errors	0.002	0.001	0.001	
Training Times				
$\mathbf{\hat{B}}^{(\mathrm{dense})}$	2m 0s	1m 30s	15m 45s	
MULT-VAE	28m 10s	1h 26m	4h 30m	
Data-Set Properties				
users	136,677	463,435	571,355	
items	20,108	17,769	41,140	
interactions	10 mil.	57 mil.	34 mil.	

- 10× faster training (vs. Mult-vae).
- about 20% increase in accuracy on the dataset with the largest number of items.
- \rightarrow preventing self-similarity of items (zero diagonal in B) is an effective alternative to low-rank embeddings.

Results of Sparse Model

Models	Recall@50	Training Times
$\mathbf{\hat{B}}^{ ext{(dense)}}$	0.430	15 min 45 sec
0.5% spars	e approximation	on:
r = 0	0.427	21 min 12 sec
r = 0.1	0.424	3 min 27 sec
r = 0.5	0.424	2 min 1 sec
0.1% spars	e approximation	on:
r = 0	0.421	3 min 7 sec
r = 0.1	0.417	1 min 10 sec
r = 0.5	0.417	39 sec
MULT-VAE	0.364	4 h 30 min

- ullet sparsity and parameter r determine tradeoff between accuracy and training time
- up to 400× faster training (vs. MULT-VAE)
- only slight drop in accuracy
- sparse MRF has much fewer parameters than MULT-VAE
- → sparse full-rank modeling is more effective than dense low-rank modeling.

Related Approaches

