1. 设 $m, n \in \mathbb{N}^+, (n, \varphi(m)) = 1$,求证: 当a遍历模m的简化剩余系时,a"也遍历模m的简化剩余系.

2. 求解同余方程 $x^8 \equiv 38 \pmod{11}$.

注意到
$$11$$
是一个素数,有 $(38,11)=1$,于是查原根表,模 11 有一个原根 $g=2$ 将方程指标化,得到 $8ind(x)\equiv ind(38)(mod \varphi(m)=10)$ 而 $38\equiv 5(mod 11)$,因此 $ind(38)=ind(5)=r$,有 $2^r\equiv 5(mod 11)$,所以 $r=4$ $8ind(x)\equiv 4(mod 10)$ 解得 $ind(x)\equiv 3(mod 5)\equiv 3,8(mod 10)$ 所以, $ind(x)\equiv 3,8(mod 10)$ $x\equiv 2^{ind(x)}\equiv 2^3,2^8(mod 11)$ 也就是 $x\equiv 8,3(mod 11)$

3. 构造模23的指数表.

(1)指数表 arphi(23)=22,因此模 23的指数只可能是 22的因数:1,2,11,22 对 0-22依次代入这些因数次方即可 (2)指标表,23的原根 g=5

十位\个位	0	1	2	3	4	5	6	7	8	9
0		22	2	16	4	1	18	19	6	10
1	3	9	20	14	21	17	8	7	12	15
2	5	13	11							

4. 设p为奇素数,a,b为模p的两个原根,求证: $ord_{p}(ab) < \varphi(p)$.

5. 设 $(a,2)=1, l \geq 3$,证明 $a^{2^{l-2}} \equiv 1 \pmod{2^l}$.

证明 (数学归纳法): 由 (a,2)=1可知, a必为奇数, $a\equiv 1 \pmod{2}$,设 a=2k+1 $k\in Z$ 当 l=3时, $a^{2^{l-2}}=a^2=(2k+1)^2=4k^2+4k+1=4k(k+1)+1$, k和 k+1中必有一数是偶数 2n 因此,原式 $=4k(k+1)+1\equiv 1 \pmod{8}=2^l=2^3$,成立当 l>3时,假设 $l=n\geq 3$ 时,命题成立,也就是有: $a^{2^{n-2}}\equiv 1 \pmod{2^n}$ 可以设 $a^{2^{n-2}}=k\cdot 2^n+1$, $k\in Z$ 那么,当 l=n+1时, $a^{2^{l-2}}=a^{2^{n-1}}=a^{2^{n-2}+2^{n-2}}=a^{2^{n-2}}\cdot a^{2^{n-2}}=(k\cdot 2^n+1)^2=k^22^{2n}+2k\cdot 2^n+1$ 欲证: $a^{2^{(n+1)-2}}\equiv 2^{n+1} \pmod{2^{n+1}}$ 可以发现, $2^n|2^{n+1}$,因此 $a^{2^{(n+1)-2}}=k^22^{2n}+2k\cdot 2^n+1\equiv 1 \pmod{2^{n+1}}$ 归纳证明成立.

6. 求解同余方程6·8^x ≡ 9 (mod 13).

注意到 13是一个素数,查原根表得到,13的一个原根 g=2 将原方程指标化为: $ind_g 6+x\cdot ind_g 8\equiv ind_g 9 (mod \ \varphi(13)=12)$ 计算指标表 $ind_g 6=5$ $ind_g 8=3$ $ind_g 9=8$ 因此原式可以写成: $5+3x\equiv 8 (mod \ 12)$ $3x\equiv 3 (mod \ 12)$ 解得 $x\equiv 1 (mod \ 4)$ 因此 $x\equiv 1,5,9 (mod \ 13)$