Matlab Files for Logistic Regression

NR_logistic.m

```
% This Matlab code provides a function that uses the Newton-Raphson algorithm
\% to calculate ML estimates of a simple logistic regression. Most of the
% code comes from Anders Swensen, "Non-linear regression." There are two
% elements in the beta vector, which we wish to estimate.
function [beta,J_bar] = NR_logistic(data,beta_start)
  x=data(:,1);
                                % x is first column of data
  y=data(:,2);
                                % y is second column of data
  n=length(x)
  diff = 1; beta = beta_start; % initial values
                                % convergence criterion
  while diff>0.0001
    beta_old = beta;
    p = \exp(beta(1) + beta(2) * x) . / (1 + \exp(beta(1) + beta(2) * x));
    1 = sum(y.*log(p)+(1-y).*log(1-p))
    s = [sum(y-p);
                                   % scoring function
         sum((y-p).*x)];
    J_bar = [sum(p.*(1-p))]
                              sum(p.*(1-p).*x);
                                                    % information matrix
             sum(p.*(1-p).*x) sum(p.*(1-p).*x.*x)]
    beta = beta_old + J_bar\s
                                    % new value of beta
    diff = sum(abs(beta-beta_old)); % sum of absolute differences
  end
```

beetle.m

```
% This Matlab program illustrates the use of the Newton-Raphson algorithm
% to obtain maximum likelihood estimates of a logistic regression. The data
% and much of the code are taken from Anders Swensen, "Non-linear regression,"
% www.math.uio_no/avdc/kurs/ST110/materiale/opti_30.ps.
% First, load and transform data:
load 'beetle.dat';
                                     % load data
m=length(beetle(:,1))
                                     % count the rows in the data matrix
x=[];
                                     % create empty vectors
y=[];
for j=1:m
                                     \% expand group data into individual data
 x=[x,beetle(j,1)*ones(1,beetle(j,2))];
y=[y,ones(1,beetle(j,3)),zeros(1,beetle(j,2)-beetle(j,3))];
end
beetle2=[x;y]';
% Next, specify starting points for iteration on parameter values:
beta0 = [0;
% Finally, call the function NR_logistic and use its output
[betaml, Jbar] = NR_logistic(beetle2, beta0)
covmat = inv(Jbar)
stderr = sqrt(diag(covmat))
```

Data and Output for Logistic Regression

Data input				
Dose	Number	r Number		
	of insects	killed		
1.6907	59	6		
1.7242	60	13		
1.7552	62	18		
1.7842	56	28		
1.8113	63	52		
1.8369	59	53		
1.8610	62	61		
1.8839	60	60		

ITERATIONS IN THE NEWTON-RAPHSON ALGORITHM

$\overline{\text{Iteration } s}$	$\beta_0^{(s)}$	$\beta_1^{(s)}$	$l(\beta^{(s)})$
0	0.0000	0.0000	-333.4038
1	-37.8564	21.3374	-200.0098
2	-53.8532	30.3835	-187.2743
3	-59.9652	33.8442	-186.2471
4	-60.7078	34.2648	-186.2354
5	-60.7175	34.2703	-186.2354
6	-60.7175	34.2703	-186.2354

ESTIMATED COVARIANCE MATRIX
$$\begin{pmatrix} 26.8398 & -15.0822 \\ -15.0822 & 8.4806 \end{pmatrix}$$

Standard errors of estimators for β_0 and β_1 $5.1807,\, 2.9121$