Counting intersection numbers on Shimura curves

James Rickards

McGill University/CU Boulder

james.rickards@mail.mcgill.ca james.rickards@colorado.edu

25 May 2021

Talk outline

lacktriangle Recall the Gross-Zagier formula for $\mathrm{Nm}_{K/\mathbb{Q}}(j(au_1)-j(au_2))$

25 May 2021

Talk outline

- lacktriangle Recall the Gross-Zagier formula for $\mathrm{Nm}_{K/\mathbb{Q}}(j(au_1)-j(au_2))$
- Introduce and explain my main result

Talk outline

- Recall the Gross-Zagier formula for $Nm_{K/\mathbb{Q}}(j(\tau_1)-j(\tau_2))$
- Introduce and explain my main result
- Explore the analogies between the two situations

$$j(\tau)$$

Let

$$j(\tau) = \frac{1}{q} + 744 + 196884q + \cdots$$

denote the classical j-function, where $q=e^{2\pi i \tau}$.

$j(\tau)$

Let

$$j(\tau) = \frac{1}{q} + 744 + 196884q + \cdots$$

denote the classical j-function, where $q = e^{2\pi i \tau}$.

• If au is an imaginary quadratic number, then $j(au) \in \overline{\mathbb{Q}}$.

$j(\tau)$

Let

$$j(\tau) = \frac{1}{q} + 744 + 196884q + \cdots$$

denote the classical j-function, where $q = e^{2\pi i \tau}$.

- If τ is an imaginary quadratic number, then $j(\tau) \in \overline{\mathbb{Q}}$.
- In fact, $j(\tau)$ generates a certain abelian extension of $\mathbb{Q}(\sqrt{D})$, and provides a solution to explicit class field theory over imaginary quadratic fields.

James Rickards (McGill)

$$j(\tau)$$

Let

$$j(\tau) = \frac{1}{q} + 744 + 196884q + \cdots$$

denote the classical j-function, where $q = e^{2\pi i \tau}$.

- If au is an imaginary quadratic number, then $j(au) \in \overline{\mathbb{Q}}$.
- In fact, $j(\tau)$ generates a certain abelian extension of $\mathbb{Q}(\sqrt{D})$, and provides a solution to explicit class field theory over imaginary quadratic fields.
- In 1985, Gross and Zagier proved that $j(\tau_1) j(\tau_2)$ had remarkable factorization properties ([GZ85]).

James Rickards (McGill)

$J(D_1,D_2)$

Definition

Let D_1, D_2 be coprime fundamental negative discriminants, and define

$$J(D_1,D_2) = \left(\prod_{\substack{[au_1],[au_2]\ \mathsf{disc}(au_i) = D_i}} j(au_1) - j(au_2)
ight)^{rac{u}{w_1w_2}}$$

$J(D_1,D_2)$

Definition

Let D_1, D_2 be coprime fundamental negative discriminants, and define

$$J(D_1,D_2) = \left(\prod_{\substack{[au_1],[au_2]\ \mathsf{disc}(au_i) = D_i}} j(au_1) - j(au_2)
ight)^{rac{4}{w_1w_2}}$$

• If $D_1, D_2 < -4$, this is the norm to \mathbb{Q} of $j(\tau_1) - j(\tau_2)$, and is therefore an integer.

$J(D_1,D_2)$

Definition

Let D_1, D_2 be coprime fundamental negative discriminants, and define

$$J(D_1,D_2) = \left(\prod_{\substack{[au_1],[au_2]\ \operatorname{disc}(au_i) = D_i}} j(au_1) - j(au_2)
ight)^{rac{4}{w_1w_2}}$$

- If $D_1, D_2 < -4$, this is the norm to \mathbb{Q} of $j(\tau_1) j(\tau_2)$, and is therefore an integer.
- In general, $J(D_1, D_2)^2$ is an integer.

ϵ function

Definition

Let p be a prime with $\left(\frac{D_1D_2}{p}\right) \neq -1$. Define

$$\epsilon(p) := egin{cases} \left(rac{D_1}{p}
ight) & ext{if p and D_1 are coprime;} \ \left(rac{D_2}{p}
ight) & ext{if p and D_2 are coprime.} \end{cases}$$

Extend ϵ multiplicatively, so that $\epsilon(mn) = \epsilon(m)\epsilon(n)$ when $\epsilon(m)$ and $\epsilon(n)$ are defined.

James Rickards (McGill)

Gross-Zagier formula

Definition

Let

$$F_{\mathsf{GZ}}(m) = \prod_{nn'=m,n>0} n^{\epsilon(n')}.$$

Gross-Zagier formula

Definition

Let

$$F_{\mathsf{GZ}}(m) = \prod_{nn'=m,n>0} n^{\epsilon(n')}.$$

Theorem (Gross-Zagier, 1985)

$$J(D_1, D_2)^2 = \pm \prod_{\substack{x^2 < D_1 D_2 \\ x \equiv D_1 D_2 \pmod{2}}} F_{GZ} \left(\frac{D_1 D_2 - x^2}{4} \right)$$

Gross-Zagier formula remarks

• $J(D_1, D_2)^2$ is only divisible by primes dividing a number of the form $\frac{D_1D_2-x^2}{4}$ for $x^2 < D_1D_2$.

Gross-Zagier formula remarks

- $J(D_1,D_2)^2$ is only divisible by primes dividing a number of the form $\frac{D_1D_2-x^2}{4}$ for $x^2 < D_1D_2$.
- $F_{GZ}(m)$ is either 1 or a power of a prime ℓ .

Gross-Zagier formula remarks

- $J(D_1,D_2)^2$ is only divisible by primes dividing a number of the form $\frac{D_1D_2-x^2}{4}$ for $x^2 < D_1D_2$.
- $F_{GZ}(m)$ is either 1 or a power of a prime ℓ .
- The latter occurs if and only if ℓ is the only prime dividing m to an odd exponent for which $\epsilon(\ell)=-1$.

Proof of Gross-Zagier

• Zagier produced an analytic proof, and Gross the algebraic proof.

25 May 2021

Proof of Gross-Zagier

- Zagier produced an analytic proof, and Gross the algebraic proof.
- For the algebraic proof, they exploit the connection to elliptic curves, and computing $v_{\ell}(J(D_1,D_2)^2)$ reduces to counting isomorphisms between curves.

Proof of Gross-Zagier

- Zagier produced an analytic proof, and Gross the algebraic proof.
- For the algebraic proof, they exploit the connection to elliptic curves, and computing $v_{\ell}(J(D_1,D_2)^2)$ reduces to counting isomorphisms between curves.
- This is further reduced to counting solutions to an equation in the maximal order of the quaternion algebra over $\mathbb Q$ ramified at ℓ and ∞ .

Discrete subgroups

• Γ is a discrete subgroup of $PSL(2, \mathbb{R})$.

Discrete subgroups

- Γ is a discrete subgroup of $PSL(2, \mathbb{R})$.
- ullet II is the upper half plane.

Discrete subgroups

- Γ is a discrete subgroup of $PSL(2, \mathbb{R})$.
- ullet II is the upper half plane.
- Equip $\Gamma \backslash \mathbb{H}$ with the usual hyperbolic metric.

Geodesics in $\mathbb H$

Closed geodesics in $\Gamma \setminus \mathbb{H}$

• Let $\gamma \in \Gamma$ be primitive and hyperbolic. Then $\gamma(x) = x$ has two real solutions, γ_f, γ_s .

11/33

Closed geodesics in $\Gamma \setminus \mathbb{H}$

- Let $\gamma \in \Gamma$ be primitive and hyperbolic. Then $\gamma(x) = x$ has two real solutions, γ_f, γ_s .
- Let ℓ_{γ} be the geodesic running from γ_s to γ_f .

Closed geodesics in $\Gamma \setminus \mathbb{H}$

- Let $\gamma \in \Gamma$ be primitive and hyperbolic. Then $\gamma(x) = x$ has two real solutions, γ_f, γ_s .
- Let ℓ_{γ} be the geodesic running from γ_s to γ_f .
- \bullet This descends to the closed geodesic $\tilde{\ell}_{\gamma}$ in $\Gamma \backslash \mathbb{H}.$

Example

Intersections of closed geodesics

Definition

Let f be a function defined on transverse intersections of geodesics. Define

$$\mathsf{Int}^f_{\mathsf{\Gamma}}(\gamma_1,\gamma_2) := \sum_{oldsymbol{p} \in ilde{\ell}_{\gamma_1} \pitchfork ilde{\ell}_{\gamma_2}} f(oldsymbol{p})$$

to be the f—weighted intersection number.

• Let B be an indefinite quaternion algebra over $\mathbb Q$ of discriminant $\mathfrak D.$

- Let B be an indefinite quaternion algebra over $\mathbb Q$ of discriminant $\mathfrak D$.
- Let O be an Eichler order in B of level \mathfrak{M} .

- Let B be an indefinite quaternion algebra over $\mathbb Q$ of discriminant $\mathfrak D$.
- Let O be an Eichler order in B of level \mathfrak{M} .
- Let $\iota: B \to \mathsf{Mat}(2,\mathbb{R})$ be an embedding.

- Let B be an indefinite quaternion algebra over $\mathbb Q$ of discriminant $\mathfrak D$.
- Let O be an Eichler order in B of level \mathfrak{M} .
- Let $\iota: B \to \mathsf{Mat}(2,\mathbb{R})$ be an embedding.
- The image $\Gamma_O := \iota(O_{N=1})/\{\pm 1\}$ is a discrete subgroup of $\mathsf{PSL}(2,\mathbb{R})$.

- Let B be an indefinite quaternion algebra over $\mathbb Q$ of discriminant $\mathfrak D$.
- Let O be an Eichler order in B of level \mathfrak{M} .
- Let $\iota: B \to \mathsf{Mat}(2,\mathbb{R})$ be an embedding.
- The image $\Gamma_O := \iota(O_{N=1})/\{\pm 1\}$ is a discrete subgroup of $\mathsf{PSL}(2,\mathbb{R})$.
- If $\mathfrak{D}=1$, then $\Gamma_{\mathrm{O}}=\Gamma_{0}(\mathfrak{M})$.

- Let B be an indefinite quaternion algebra over $\mathbb Q$ of discriminant $\mathfrak D$.
- Let O be an Eichler order in B of level \mathfrak{M} .
- Let $\iota: B \to \mathsf{Mat}(2,\mathbb{R})$ be an embedding.
- The image $\Gamma_{\rm O}:=\iota({\rm O}_{N=1})/\{\pm 1\}$ is a discrete subgroup of ${\sf PSL}(2,\mathbb{R}).$
- If $\mathfrak{D}=1$, then $\Gamma_{\mathrm{O}}=\Gamma_{0}(\mathfrak{M})$.
- Otherwise, the corresponding Shimura curve is compact.

Optimal embeddings I

• For D a discriminant, let \mathcal{O}_D be the unique quadratic order of discriminant D, lying in $\mathbb{Q}(\sqrt{D})$.

- For D a discriminant, let \mathcal{O}_D be the unique quadratic order of discriminant D, lying in $\mathbb{Q}(\sqrt{D})$.
- Let D > 0 and $\epsilon_D > 1$ be the fundamental unit of \mathcal{O}_D .

- For D a discriminant, let \mathcal{O}_D be the unique quadratic order of discriminant D, lying in $\mathbb{Q}(\sqrt{D})$.
- Let D > 0 and $\epsilon_D > 1$ be the fundamental unit of \mathcal{O}_D .

Definition

An optimal embedding of \mathcal{O}_D into O is a ring homomorphism $\phi: \mathcal{O}_D \to O$ that does not extend to an embedding of a larger order.

- For D a discriminant, let \mathcal{O}_D be the unique quadratic order of discriminant D, lying in $\mathbb{Q}(\sqrt{D})$.
- Let D > 0 and $\epsilon_D > 1$ be the fundamental unit of \mathcal{O}_D .

Definition

An optimal embedding of \mathcal{O}_D into O is a ring homomorphism $\phi:\mathcal{O}_D\to O$ that does not extend to an embedding of a larger order. Two optimal embeddings ϕ_1,ϕ_2 are equivalent if there exists an $r\in O_{N=1}$ with $r\phi_1r^{-1}=\phi_2$.

• The set of equivalence classes optimal embeddings of \mathcal{O}_D into O is denoted $\mathsf{Emb}(\mathsf{O},D).$

- The set of equivalence classes optimal embeddings of \mathcal{O}_D into O is denoted $\mathsf{Emb}(\mathsf{O},D).$
- $[\phi], [\phi'] \in \text{Emb}(O, D)$ are said to have the same orientation if they are equivalent in all completions of B.

- The set of equivalence classes optimal embeddings of \mathcal{O}_D into O is denoted $\mathsf{Emb}(\mathsf{O},D).$
- $[\phi], [\phi'] \in \text{Emb}(O, D)$ are said to have the same orientation if they are equivalent in all completions of B.
- There is a free action of $Cl^+(D)$ on Emb(O, D), with the orbits being the orientations. In particular, Emb(O, D) is finite.

- The set of equivalence classes optimal embeddings of \mathcal{O}_D into O is denoted $\mathsf{Emb}(\mathsf{O},D).$
- $[\phi], [\phi'] \in \mathsf{Emb}(\mathcal{O}, D)$ are said to have the same orientation if they are equivalent in all completions of B.
- There is a free action of $Cl^+(D)$ on Emb(O, D), with the orbits being the orientations. In particular, Emb(O, D) is finite.
- $\iota(\phi(\epsilon_D)) \in \Gamma_O$ is a primitive hyperbolic element! In fact, all such elements arise in this fashion.

Recasting the question

Definition

Let ϕ_1, ϕ_2 be optimal embeddings of discriminants D_1, D_2 into O, and let f be an intersection function. Define

$$\mathsf{Int}_{\mathcal{O}}^f(\phi_1,\phi_2) := \mathsf{Int}_{\Gamma_{\mathcal{O}}}^f(\iota(\phi_1(\epsilon_{D_1})),\iota(\phi_2(\epsilon_{D_2}))).$$

Recasting the question

Definition

Let ϕ_1, ϕ_2 be optimal embeddings of discriminants D_1, D_2 into O, and let f be an intersection function. Define

$$\mathsf{Int}_{\mathcal{O}}^f(\phi_1,\phi_2) := \mathsf{Int}_{\Gamma_{\mathcal{O}}}^f(\iota(\phi_1(\epsilon_{D_1})),\iota(\phi_2(\epsilon_{D_2}))).$$

Question

What can we say about $\operatorname{Int}_{\mathcal{O}}^f(\phi_1,\phi_2)$ in terms of $D_1,D_2,\mathfrak{D},\mathfrak{M}$?

Reinterpreting the intersection number

• Each transverse intersection of $\tilde{\ell}_{\phi_1}$, $\tilde{\ell}_{\phi_2}$ corresponds to a pair of optimal embeddings ϕ_1' , ϕ_2' with $\phi_i' \sim \phi_i$ and $\ell_{\phi_1'}$, $\ell_{\phi_2'}$ having a transverse intersection.

Reinterpreting the intersection number

- Each transverse intersection of $\tilde{\ell}_{\phi_1}, \tilde{\ell}_{\phi_2}$ corresponds to a pair of optimal embeddings ϕ_1', ϕ_2' with $\phi_i' \sim \phi_i$ and $\ell_{\phi_1'}, \ell_{\phi_2'}$ having a transverse intersection.
- ullet This lifting is unique up to the action of $\mathrm{O}_{N=1}$ via simultaneous conjugation.

Reinterpreting the intersection number

- Each transverse intersection of $\tilde{\ell}_{\phi_1}, \tilde{\ell}_{\phi_2}$ corresponds to a pair of optimal embeddings ϕ_1', ϕ_2' with $\phi_i' \sim \phi_i$ and $\ell_{\phi_1'}, \ell_{\phi_2'}$ having a transverse intersection.
- \bullet This lifting is unique up to the action of $\mathrm{O}_{\mathit{N}=1}$ via simultaneous conjugation.
- In other words, the set of transverse intersections bijects with

$$\{(\phi_1',\phi_2'):\phi_i\sim\phi_i',|\ell_{\phi_1'}\pitchfork\ell_{\phi_2'}|=1\}/\sim.$$

x—linking

Definition

Call ϕ_1, ϕ_2 x-linked if $x^2 \neq D_1D_2$ and

$$\frac{1}{2}\operatorname{trd}(\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2}))=x.$$

x—linking

Definition

Call ϕ_1, ϕ_2 x-linked if $x^2 \neq D_1D_2$ and

$$\frac{1}{2}\operatorname{trd}(\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2}))=x.$$

All pairs simultaneously conjugate to an x-linked pair are also x-linked.

x—linking

Definition

Call ϕ_1, ϕ_2 x-linked if $x^2 \neq D_1D_2$ and

$$\frac{1}{2}\operatorname{trd}(\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2}))=x.$$

All pairs simultaneously conjugate to an x-linked pair are also x-linked.

Proposition

We have $x \equiv D_1D_2 \pmod{2}$ and

$$\mathfrak{DM}\mid \frac{D_1D_2-x^2}{4}.$$

Root geodesics intersecting in the upper half plane

Proposition

• The upper half plane root geodesics corresponding to the x-linked pair (ϕ_1, ϕ_2) intersect if and only if $x^2 < D_1D_2$.

Root geodesics intersecting in the upper half plane

Proposition

- The upper half plane root geodesics corresponding to the x-linked pair (ϕ_1, ϕ_2) intersect if and only if $x^2 < D_1D_2$.
- The intersection point is the upper half plane root of $\iota(\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2}))$, and hence corresponds to a (not necessarily optimal) embedding of the negative quadratic order $\mathcal{O}_{x^2-D_1D_2}$.

Root geodesics intersecting in the upper half plane

Proposition

- The upper half plane root geodesics corresponding to the x-linked pair (ϕ_1, ϕ_2) intersect if and only if $x^2 < D_1D_2$.
- The intersection point is the upper half plane root of $\iota(\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2}))$, and hence corresponds to a (not necessarily optimal) embedding of the negative quadratic order $\mathcal{O}_{\mathsf{x}^2-D_1D_2}$.
- ullet The angle of intersection heta satisfies

$$\tan(\theta) = \frac{\sqrt{D_1 D_2 - x^2}}{x}.$$

• Let the sign of intersecting geodesics be denoted $sg(\phi_1,\phi_2)$.

- Let the sign of intersecting geodesics be denoted $sg(\phi_1,\phi_2)$.
- Let $\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2})$ correspond to an optimal embedding of discriminant $\frac{x^2-D_1D_2}{\ell^2}$ for an integer $\ell \geq 1$.

- Let the sign of intersecting geodesics be denoted $sg(\phi_1,\phi_2)$.
- Let $\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2})$ correspond to an optimal embedding of discriminant $\frac{x^2-D_1D_2}{\ell^2}$ for an integer $\ell \geq 1$.
- Call ℓ the *level* of the intersection, and $sg(\phi_1, \phi_2)\ell$ the *signed level* of the intersection.

- Let the sign of intersecting geodesics be denoted $sg(\phi_1,\phi_2)$.
- Let $\phi_1(\sqrt{D_1})\phi_2(\sqrt{D_2})$ correspond to an optimal embedding of discriminant $\frac{\chi^2-D_1D_2}{\ell^2}$ for an integer $\ell\geq 1$.
- Call ℓ the *level* of the intersection, and $sg(\phi_1, \phi_2)\ell$ the *signed level* of the intersection.
- The level is defined for all x with $x^2 \neq D_1D_2$, whereas the sign is only defined for $x^2 < D_1D_2$.

Intersection number, revisited

Definition

Let $\mathsf{Emb}(O, \phi_1, \phi_2, x)$ denote the set of simultaneous equivalence class pairs of optimal embeddings individually equivalent to ϕ_1, ϕ_2 that are x-linked.

25 May 2021

22 / 33

Intersection number, revisited

Definition

Let $\mathsf{Emb}(O, \phi_1, \phi_2, x)$ denote the set of simultaneous equivalence class pairs of optimal embeddings individually equivalent to ϕ_1, ϕ_2 that are x-linked.

In particular, we see that

$$\mathsf{Int}_{\mathcal{O}}^f\big(\phi_1,\phi_2\big) = \sum_{\substack{x^2 < D_1D_2 \\ x \equiv D_1D_2 \pmod 2}} \sum_{(\phi_1',\phi_2') \in \mathsf{Emb}(\mathcal{O},\phi_1,\phi_2,x)} f\big(\phi_1',\phi_2'\big).$$

Intersection number, revisited

Definition

Let $\mathsf{Emb}(O, \phi_1, \phi_2, x)$ denote the set of simultaneous equivalence class pairs of optimal embeddings individually equivalent to ϕ_1, ϕ_2 that are x-linked.

In particular, we see that

$$\mathsf{Int}_{\mathcal{O}}^f\big(\phi_1,\phi_2\big) = \sum_{\substack{x^2 < D_1D_2 \\ x \equiv D_1D_2 \pmod 2}} \sum_{\substack{(\phi_1',\phi_2') \in \mathsf{Emb}(\mathcal{O},\phi_1,\phi_2,x)}} f\big(\phi_1',\phi_2'\big).$$

Corollary

Given D_1, D_2 , there are finitely many pairs $(\mathfrak{D}, \mathfrak{M})$ for which there exist optimal embeddings ϕ_1, ϕ_2 of discriminants D_1, D_2 for which $\operatorname{Int}_{\mathcal{O}}(\phi_1, \phi_2) \neq 0$.

Summing over all embeddings

• Unfortunately, the sets $\operatorname{Emb}(O, \phi_1, \phi_2, x)$ are difficult to access theoretically.

25 May 2021

23 / 33

Summing over all embeddings

- Unfortunately, the sets $\text{Emb}(O, \phi_1, \phi_2, x)$ are difficult to access theoretically.
- Instead, consider

$$\mathsf{Emb}(\mathcal{O}, D_1, D_2, x) := \bigcup_{\phi_i \in \mathsf{Emb}(\mathcal{O}, D_i)} \mathsf{Emb}(\mathcal{O}, \phi_1, \phi_2, x),$$

the total x-linking of discriminants D_1, D_2 into O, and

$$\operatorname{Int}_{\mathcal{O}}^f \big(D_1,D_2\big) := \sum_{\phi_i \in \operatorname{Emb}(\mathcal{O},D_i)} \operatorname{Int}_{\mathcal{O}}^f \big(\phi_1,\phi_2\big).$$

Main result I

Theorem (Theorem 1.10 of [Ric21a])

Assume D_1, D_2 are coprime and fundamental, $\mathfrak{M} = 1$, and factorize

$$\frac{D_1D_2 - x^2}{4} = \pm \prod_{i=1}^r \rho_i^{2e_i+1} \prod_{i=1}^s q_i^{2f_i} \prod_{i=1}^t w_i^{g_i},$$

where p_i are the primes for which $\epsilon(p_i) = -1$ that appear to an odd power, q_i are the primes for which $\epsilon(q_i) = -1$ that appear to an even power, and w_i are the primes for which $\epsilon(w_i) = 1$. Then r is even, and

Main result I

Theorem (Theorem 1.10 of [Ric21a])

Assume D_1, D_2 are coprime and fundamental, $\mathfrak{M}=1$, and factorize

$$\frac{D_1D_2 - x^2}{4} = \pm \prod_{i=1}^r \rho_i^{2e_i+1} \prod_{i=1}^s q_i^{2f_i} \prod_{i=1}^t w_i^{g_i},$$

where p_i are the primes for which $\epsilon(p_i) = -1$ that appear to an odd power, q_i are the primes for which $\epsilon(q_i) = -1$ that appear to an even power, and w_i are the primes for which $\epsilon(w_i) = 1$. Then r is even, and

• $Emb(O, D_1, D_2, x)$ is non-empty if and only if

$$\mathfrak{D}=p_1p_2,\cdots p_r.$$

Main result I

Theorem (Theorem 1.10 of [Ric21a])

Assume D_1, D_2 are coprime and fundamental, $\mathfrak{M} = 1$, and factorize

$$\frac{D_1 D_2 - x^2}{4} = \pm \prod_{i=1}^r p_i^{2e_i + 1} \prod_{i=1}^s q_i^{2f_i} \prod_{i=1}^t w_i^{g_i},$$

where p_i are the primes for which $\epsilon(p_i) = -1$ that appear to an odd power, q_i are the primes for which $\epsilon(q_i) = -1$ that appear to an even power, and w_i are the primes for which $\epsilon(w_i) = 1$. Then r is even, and

• $Emb(O, D_1, D_2, x)$ is non-empty if and only if

$$\mathfrak{D}=p_1p_2,\cdots p_r.$$

Assume this holds. Then

$$|\operatorname{Emb}(O, D_1, D_2, x)| = 2^{r+1} \prod_{i=1}^{t} (g_i + 1).$$

Main result II

Theorem (Theorem 1.10 of [Ric21a])

• Emb(O, D_1 , D_2 , x, ℓ) is non-empty if and only if

$$\ell = \prod_{i=1}^{r} p_{i}^{e_{i}} \prod_{i=1}^{s} q_{i}^{f_{i}} \prod_{i=1}^{t} w_{i}^{g_{i}'},$$

where $2g_i' \leq g_i$.

Main result II

Theorem (Theorem 1.10 of [Ric21a])

• $Emb(O, D_1, D_2, x, \ell)$ is non-empty if and only if

$$\ell = \prod_{i=1}^{r} p_{i}^{e_{i}} \prod_{i=1}^{s} q_{i}^{f_{i}} \prod_{i=1}^{t} w_{i}^{g'_{i}},$$

where $2g_i' \leq g_i$.

• Assume the above holds. Let n be the number of indices i for which $2g'_i < g_i$. Then

$$|\operatorname{Emb}(O, D_1, D_2, x, \ell)| = 2^{r+n+1}.$$

Main result commentary

• In my paper, the results allow O to be Eichler, and D_1, D_2 to be non-fundamental and non-coprime. The only restriction is

$$\gcd(D_1, D_2, D_1D_2 - x^2) = 1.$$

Main result commentary

• In my paper, the results allow O to be Eichler, and D_1, D_2 to be non-fundamental and non-coprime. The only restriction is

$$\gcd(D_1, D_2, D_1D_2 - x^2) = 1.$$

• We also understand how these pairs divide amongst the possible orientations of $\phi_1,\phi_2.$

Main result commentary

• In my paper, the results allow O to be Eichler, and D_1, D_2 to be non-fundamental and non-coprime. The only restriction is

$$\gcd(D_1, D_2, D_1D_2 - x^2) = 1.$$

- We also understand how these pairs divide amongst the possible orientations of $\phi_1,\phi_2.$
- Accessing the individual terms $\operatorname{Emb}(O, \phi_1, \phi_2, x, \ell)$ does not seem to be viable with this approach.

Comparison to Gross-Zagier

• D_1, D_2 negative discriminants

• D_1, D_2 positive discriminants

• D_1, D_2 negative discriminants

0

$$J(D_1, D_2)^2 = \pm \prod_{\substack{x^2 < D_1 D_2 \\ x \equiv D_1 D_2 \pmod{2}}} F_{\mathsf{GZ}} \left(\frac{D_1 D_2 - x^2}{4} \right)$$

• D_1 , D_2 positive discriminants

•

$$Int_{O}(D_{1}, D_{2}) = \sum_{\substack{x^{2} < D_{1}D_{2} \\ x \equiv D_{1}D_{2} \pmod{2}}} F\left(\frac{D_{1}D_{2} - x^{2}}{4}\right)$$

•

$$J(D_1, D_2)^2 = \pm \prod_{\substack{x^2 < D_1 D_2 \\ x \equiv D_1 D_2 \pmod{2}}} F_{\mathsf{GZ}} \left(\frac{D_1 D_2 - x^2}{4} \right)$$

• $v_\ell\left(F_{\mathsf{GZ}}\left(rac{D_1D_2-\chi^2}{4}
ight)
ight)
eq 0$ if and only if $\ell=\prod_{i=1}^r p_i$

•

$$Int_{O}(D_{1}, D_{2}) = \sum_{\substack{x^{2} < D_{1}D_{2} \\ x \equiv D_{1}D_{2} \pmod{2}}} F\left(\frac{D_{1}D_{2} - x^{2}}{4}\right)$$

• $F\left(rac{D_1D_2-x^2}{4}
ight)
eq 0$ if and only if $\mathfrak{D}=\prod_{i=1}^r p_i$

•
$$v_{\ell}\left(F_{\mathsf{GZ}}\left(\frac{D_1D_2-x^2}{4}\right)\right) \neq 0$$
 if and only if $\ell=\prod_{i=1}^r p_i$

• If this holds, then

$$v_{\ell}\left(F_{\mathsf{GZ}}\left(\frac{D_{1}D_{2}-x^{2}}{4}\right)\right) = (e_{1}+1)\prod_{i=1}^{t}(g_{i}+1) = (e_{1}+1)\sum_{d\mid\frac{D_{1}D_{2}-x^{2}}{4\ell}}\epsilon(d).$$

- $F\left(\frac{D_1D_2-x^2}{4}\right) \neq 0$ if and only if $\mathfrak{D}=\prod_{i=1}^r p_i$
- If this holds, then

$$F\left(\frac{D_1D_2-x^2}{4}\right)=2^{r+1}\prod_{i=1}^t(g_i+1)=2^{r+1}\sum_{\substack{d\mid \frac{D_1D_2-x^2}{4D}\\ }}\epsilon(d).$$

• The total unweighted intersection number of positive discriminants, $\operatorname{Int}_{\mathcal{O}}(D_1,D_2)$, behaves like the exponents of primes in the factorization of $J(D_1,D_2)^2$ for negative discriminants.

- The total unweighted intersection number of positive discriminants, $\operatorname{Int}_{\mathcal{O}}(D_1,D_2)$, behaves like the exponents of primes in the factorization of $J(D_1,D_2)^2$ for negative discriminants.
- The components $\operatorname{Int}_{\mathcal{O}}^f(\phi_1,\phi_2)$ should behave like exponents of primes in the factorization of $j(\tau_1)-j(\tau_2)$ for an appropriate f.

- The total unweighted intersection number of positive discriminants, $\operatorname{Int}_{\mathcal{O}}(D_1,D_2)$, behaves like the exponents of primes in the factorization of $J(D_1,D_2)^2$ for negative discriminants.
- The components $\operatorname{Int}_{\mathcal{O}}^f(\phi_1,\phi_2)$ should behave like exponents of primes in the factorization of $j(\tau_1)-j(\tau_2)$ for an appropriate f.
- This indicates that there should exist some function J defined on real quadratic irrationalities for which the exponents of primes dividing $J(\tau_1)-J(\tau_2)$ are precisely $\mathrm{Int}_{\mathrm{O}}^f(\phi_1,\phi_2)$.

Figure: Henri Darmon

Figure: Jan Vonk

29 / 33

• If (ϕ_1', ϕ_2') is x-linked of level ℓ and q is a prime, we define their q-intersection by

$$\operatorname{sg}(\phi_1',\phi_2')(1+\nu_q(\ell)).$$

Denote the q-weighted intersection number by $\operatorname{Int}_{\mathcal{O}}^q$.

• If (ϕ_1', ϕ_2') is x-linked of level ℓ and q is a prime, we define their q-intersection by

$$\operatorname{sg}(\phi_1',\phi_2')(1+\mathit{v}_q(\ell)).$$

Denote the q-weighted intersection number by $Int_{\mathcal{O}}^q$.

• In [DV20], given τ_1, τ_2 real quadratic points corresponding to coprime fundamental discriminants D_1, D_2 and a prime $p \leq 13$, Darmon and Vonk p-adically construct a $J_p(D_1, D_2)$, which is conjecturally algebraic and belonging to the compositum of ring class fields associated to D_1, D_2 .

Conjecture (Conjecture 4.26 of [DV20])

Let \mathfrak{q} lie above the integer prime $q \neq p$. If q is split in $\mathbb{Q}(\sqrt{D_1})$ or $\mathbb{Q}(\sqrt{D_2})$, then $v_{\mathfrak{q}}(J_p(\tau_1,\tau_2))=0$. Otherwise, let O be a maximal order in the quaternion algebra ramified at p,q. Then there exist optimal embeddings ϕ_1,ϕ_2 of discriminants D_1,D_2 into O for which

$$v_{\mathfrak{q}}(J_p(\tau_1,\tau_2)) = \operatorname{Int}_{\mathcal{O}}^q(\phi_1,\phi_2).$$

Computational evidence

• I have written methods to compute (among other related things) optimal embeddings and intersection numbers in PARI ([The21]), and the package is publicly hosted on GitHub ([Ric21b]).

Computational evidence

- I have written methods to compute (among other related things) optimal embeddings and intersection numbers in PARI ([The21]), and the package is publicly hosted on GitHub ([Ric21b]).
- I computed the intersection numbers $\operatorname{Int}_{\mathcal{O}}^q(\phi_1,\phi_2)$ for all pairs with $D_1=5,13$ and $D_2\leq 1000$, and compiled it into a 600 page document. On the other side, Jan Vonk computed the q-adic valuations of $J_p(\tau_1,\tau_2)$ for many of these examples, and the data matched perfectly.

Acknowledgments and References

This research was supported by an NSERC Vanier Scholarship.

Henri Darmon and Jan Vonk.

Singular moduli for real quadratic fields: A rigid analytic approach.

Duke Math. J., 2020.

Benedict H. Gross and Don B. Zagier.

On singular moduli.

J. Reine Angew. Math., 355:191-220, 1985.

James Rickards.

Counting intersection numbers of closed geodesics on Shimura curves, 2021.

James Rickards.

Q- Quadratic.

https://github.com/JamesRickards-Canada/Q-Quadratic, 2021.

The PARI Group, Univ. Bordeaux.

PARI/GP version 2.13.2, 2021.

available from http://pari.math.u-bordeaux.fr/.