Lambda calculus and Functional Programming, exercises ; v. 14. ledna 2018 Solve for credit:

4d

5a SIIx

6b,c2

6.1

7a,d2

13d

14a

10b

10e

11a

9c using 8

1st seminar

1. (HW) Prove:

- a) $\lambda \vdash SKK = I$
- b) $\lambda \vdash KI = K_*$
- 1.1 (HW) a) Write explicitely as lambda-abstractions (including parentheses, dots, etc.), with all parentheses, with only necessary parentheses, and reduce: a.1) KII; a.2) $K(IK_*)I$
- b) Explain: $KA \neq \lambda xy.xA$; (A lesson learned: you can't use a text or string substitution (naively)
- c) Explain a difference between relations = a \equiv ; c.1) If F is defined as C[x,y] and particularly $\lambda x.yx$, then which pairs of following terms are in the relation \equiv and which are in the relation \equiv : FI, F[y:=I], C[x,I], C[I,I], $\lambda x.Ix$, $\lambda x.x$, $(\lambda x.yx)I$?
 - 2. Prove (by structural induction) for arbitrary λ -terms $s, t, u \in \Lambda$ and (nonequal) variables x and y:
- a) if s = t, then s[x := u] = t[x := u]
- b) if s = t, then u[x := s] = u[x := t]
- c) (s[x := u])[y := t] = s[y := t]([x := u[y := t]]), if $x \notin freevar(t)$
 - 3. Find a closed λ -term F:
- a) $F \in \Lambda$, s.t. FGHX = G(HX)(HX).
- b) $F \in \Lambda$, s.t. FX = XXX.
 - 4. Prove:
- a) $\exists F \ \forall X \ FX = FF$
- b) $\exists F \ \forall X \ FX = XF$
- c) $\exists F \ \forall X \ FX = F$, sometimes denoted K_{∞}
- d) $\exists F \ \forall X \ FX = SFX \ (\text{and } \eta\text{-reduced expression})$
- e) $\exists F \ \forall X \ FX = FXX$
- (q) It does not exist such F that $\forall X, Y \ F(XY) = X$
- z) (Can you find a solution of a), and d) without a fixed point combinator?)

Hint: Write an equation in a form $F = (\lambda f.C[f,x])F$ and use the fixed point theorem to find F.

Note: We can reduce the λ -terms "under" λ -abstraction, but such transformations cannot be used (in functions) in classical programming languages. It can be used in optimisation and in partial evaluation.

4.1 (HW) How can be a term substituted (for example) to the second argument of a function? We want to substitute the term T for the second argument y of the function $F = \lambda xy.C[x,y]$. Write such a term Z that $ZFT = \lambda x.C[x,T] = \lambda x.(C[x,y][y:=T])$

Note: Partial evaluation; a relation to lambda-lifting (and to supercombinators).

- 5. Simplify:
- a) SIIx, (SII(SII))
- (b) SIIt for t = S(Ku)(SII)
- c) S(KK)I
 - 6. Prove (1st + 3rd seminar)
- a) If Z is a fixed point combinator, then Z(SI) is also a fixed point combinator.
- b) The combinator Z = VVVV, where $V = \lambda helo.o(hello)$ (respectively $V = \lambda ehlo.o(hello)$), is a f.p.combinator.
- b1) Question: Is it valid for $Z: ZF \to_{\beta}^* F(ZF)$?
- c) Turing's f.p.comb. $\Theta = AA$, where $A = \lambda xy.y(xxy)$ is a f.p.combinator
- c1) Is it valid that $\Theta F \to_{\beta}^* F(\Theta F)$?
- c2) Is it valid that $Y(SI) \to_{\beta}^* \Theta$? (where Y is a f.p.comb. from a lecture)
- c3) Decide: true or false?: $Z(SI)F \to_{\beta}^{*} F(Z(SI)F)$ (TODO/Check)

Note: (p. 79) Turing's combinator Θ is in a form of a supercombinator, but Y is not. (The argument F is placed after the reduction of ΘF as an argument.)

- d) Turing's Θ , call-by-value version: $\Theta_v = A'A'$, where $A' = \lambda xy.y(\lambda z.xxyz)$ is a f.p.comb.
- d2) Y, call-by-value version: $Y_v = \lambda f A'A'$, where $A' = \lambda x f(\lambda v((xx)v))$ is a f.p.comb.
- d.3) Explain a relation of Θ , respectively Y, to Θ_v , respectively Y_v , using η -expansion.
- e) Can a reduction of YF be finite (at least in some cases)? Explain and/or give an example.

2nd seminar

6.1 Find examples of λ -terms (S2.2,2.6):

A term is *strongly normalizing*, if all reduction strategies are finite. A theory is strongly normalizing, if all terms are strongly normalizing.

- a) Pairs of terms, which show that the relations \rightarrow_{β} , \rightarrow_{β}^* , and $=_{\beta}$ are different.
- b) in β -normal form
- c) strongly normalizing, but not in the β -reduced form
- d) normalizing, but not strongly normalizing
- e) are not normalizing
- 7. Definition. The rule η (eta). For an arbitrary λ -term F and a variable x which does not occur free in F, the following equality is valid

$$\lambda x.Fx = F$$

It is possible to show that the rule η is consistent with the axioms of λ -calculus. A calculus, which includes the η rule is denoted $\lambda \eta$.

The rule η is called an extensionality rule because it allows to prove for any two λ -terms F and G and a variable x, which is not free in F nor in G, that a) is valid, that means from the equality Fx = Gx (1) to entail the equality F = G. (2)

- a) Show that in $\lambda \eta$ -calculus the equality F = G follows from Fx = Gx.
- b) Is the opposite implication valid? :-) :-)

If we take F and G as functions of a single argument, then (1) says that these functions have equal values for all arguments. The rule η enables to derive the equality (2) of functions F and G.

Extensionality of functions expresses the fact that functions which have all results equal are the same.

Def. The rule ext: If Nx = Mx for $x \notin FV(MN)$, then M = N. (!only for a variable x)

Def. Let T be a formal theory with formulas in a form of equations between terms. We say that T is extensional if

$$T \vdash ML = NL$$
 for all L, then $T \vdash M = N$

c) Show that the theory λ is not extensional

- d) Prove:
- d.1) The theory $\lambda + ext$ is extensional
- d.2) The theory $\lambda \eta$ is extensional
- d.3) $\lambda + ext \vdash M = N \Leftrightarrow \lambda \eta \vdash M = N$
- d.4) The theories $\lambda + ext$ and $\lambda \eta$ are the smallest extensional extensions of the theory λ .

Note: The rule η (eta) enables to consider any term M for the function $\lambda x.Mx$, but this need not be desirable in some context of usage. This is the reason why the rule was not included by Church to the theory λ .

Note: The rule ξ (ksi, xi), p. 17, $M = M' \rightarrow (\lambda x. M = \lambda x. M')$ is the weak extensionality: if there are convertible bodies of functions, then the functions are convertible as well.

Also: the reduction η ; η is strongly normalizing and is Church-Rosser (CR) (it has CR property); the reduction $\beta\eta$, it is CR, a relation to $\lambda\eta$ -calculus, consistency of $\lambda\eta$, $\beta\eta$ -NF $\Leftrightarrow \beta$ -NF (NF for Normal Form), "completeness" of $\lambda\eta$: for M, N with $\beta\eta$ -NF: $M = N \vee M \# N$ (incompatibility of terms, later) Note: Extensionality is in contrast to the concept of *intensionality*, which compares internal definitions of

- 13. Prove that for $n, m \in N$, $c_n \equiv \lambda f x. f^n(x)$:
- a) for $A_{+} \equiv \lambda xypq.xp(xpq)$ holds $A_{+}c_{n}c_{m} = c_{n+m}$
- b) for $A_* \equiv \lambda xyz.x(yz)$ holds $A_*c_nc_m = c_{n*m}$

objects. E. g. Turing Machines are intensional.

- c) for $A_{exp} \equiv \lambda xy.yx$ holds $A_{exp}c_nc_m = c_{n^m}$, except for m = 0
- d) find a term A_{succ} which fulfills $A_{succ}c_n = c_{n+1}$ (two possibilities)
- (e) find a term A_{pred} which fulfills $A_{pred}c_{n+1} = c_n$
- (f) express (and reduce) functions 2 + n, n + 2, 2 * n, n^2 , 2^n , tower(n,m)
- 14. (HW) a) Formulate and prove an analogical theorem to "Double Fixed Point Theorem" for n terms in n (mutually recursive) equations. (p. 40)
- b) Formulate and prove an analogical corollary (p. 43) for n mutually recursive equations (given by n contexts).
- c.1) Find combinator(s) analogical to the Turing's combinator Θ (p. 80) for the "Double F.P.Th.", which allow β -reductions from left side to right side.
- c.2) similarly for Second F.P.Th.

3rd seminar

- 6. c), d) see above
- 6.2 Find examples of situations (or what Church-Rosser property does not imply):
- a) $M =_{\beta} N$, $M \not\equiv N$, M has NF and has an infinite reduction sequence as well.
- a.1) moreover $M \not\rightarrow_{\beta} N$
- a.2) moreover M has an infinite reduction sequence of different terms.
- b) $M =_{\beta} N$, M and N have NF, but (some) common term L is not in NF
- c) $M =_{\beta} N$, $M \not\equiv N$, M doesn't have NF
- d) M has (at least) two infinite reduction sequences of different terms.
- z) Def.: The weak Church-Rosser property (for a relation R): if $M_1 \leftarrow_R^1 M \rightarrow_R^1 M_2$, then exists M_3 s.t. $M_1 \rightarrow_R^* M_3 \leftarrow_R^* M_2$.
- z.1) The weak C-R property is a weaker assumption than the (strong) C-R property. They are the same, when the reduction R is always finite (i.e. for strongly normalizing theories).
- 10. Definition. We say that λ -terms s and t are incompatible (with $\lambda\beta$), if an addition of an axiom s=t to $\lambda\beta$ creates an inconsistent theory. We denote the incompatibility of terms by s#t.

It holds s=t for all two λ -terms s and t in an inconsistent theory.

Show:

a) S # K. Hint: Apply the both sides of the equation S = K to well chosen terms p, q, and r and show

that I = t for any term t.

- b) I # K. (Also a direct proof.)
- c) I # S.
- d) $K \# K_*$.
- e) $s \# t \leftrightarrow \lambda + (s = t) \vdash K = K_*$

(If $true \equiv K$ and $false \equiv K_*$, then the right equality on the right side means true = false.)

- (f) Find a λ -term F, s.t. FI = x and FK = y.
 - 12. Let G = C[f, n] is $\lambda fn.if\ Zero\ n\ then\ 1\ else\ 2 * f(Pred\ n))$
- a) What does compute a (recursive) function F given by the definition FN = GFN?
- b) Find an explicit expression for F.
- c) Reduce F 2.
- d) Which function does compute a finite number of k applications of a function G to the everywhere undefined function \bot (i.e. bottom). That is $c_k G\Omega$, expressed using a Church numeral c_k .
- 11. (HW) Supercombinators are combinators where each λ -abstraction (in all its arguments) is again a (closed) supercombinator. So each term S in a form $(\lambda x_1 \lambda x_2 \dots \lambda x_n.E)$, where $n \geq 0$, is supercombinator (of the arity n) if it is true, that S does not have free variables, E does not begin with λ -abstraction, and every λ -abstraction in E is again a supercombinator. That means that also embedded functions (in all their arguments) are closed, so they don't have nonlocal variables. (For remembering: combinators are closed λ -terms.) A constant is a supercombinator as well.

Ex.: $\lambda x.x(\lambda y.\underline{x}y) \rightarrow \lambda x.x((\underline{\lambda z}\lambda y.zy)\underline{x})$

- a) Transform to a supercombinator: $\lambda fgh.f(\lambda y.g(hy))$
- b) Transform Y, Y_v , and Θ_v to a supercombinator.
- c) Are the terms S, K, and I supercombinators?

Implementation notes: lambda-lifting, (supercombinators do not need environment/evaluation): functions with free variables get additional arguments and original free variables are transferred as values of new arguments; the *closure* is created.

15. Definition. A set A of λ -terms is closed to the equality if for any two terms M, N holds: if $M \in A$ and $M =_{\beta} N$, then $N \in A$.

Prove a generalization of the Scott Theorem (p. 54) and corollaries:

- a) [Zl.104] Let A and B are nonempty sets of Λ -terms closed to the equality. Then A and B are not recursively separable. That means, it does not exists such recursive set R that $A \subset R$ and $B \subset -R$.
- a.1) another way of using diagonalization/a fixed point theorem: if the separating function is total, then a fixed point (of an analogical functional to the one on p. 55) does not belong nor to A neither to B. Applications/Corollaries:
- b) Scott (p. 54): if A is a set closed to the equality, $A \neq \emptyset$, $A \neq \Lambda$, then A is not recursive.
- c) Church (p. 60): The set $\{M|M \text{ has a NF}\}$ is not recursive (and is recursively enumerable).
- d) The relation of convertibility is not recursive. Hint: $A = \{M | M = I\}$.
- e) Let E is a consistent set of equations. Then the relation $=_E$ of E-convertibility in the theory $\lambda + E$ is not recursive. (Consistent extensions of λ -calculus are not decidable.)
- f) Halting problem is not decidable. Hint: $A = \{M | M \text{ has a head normal form}\}.$

4th seminar

8. Combinatory logic, (SK calculus), an elimination of abstraction

It holds in λ -calculus

- a.1) $\lambda x.x = SKK (= I)$
- a.2) $\lambda x.M = KM$, for $x \notin FV(M)$
- a.3) $\lambda x.MN = S(\lambda x.M)(\lambda x.N)$

The rules provide an algorithm for terms translation to applications of S and K. They cover all;-) structures

of terms and are disjoint. We denote terms on the right side as $\lambda^*x.x$, $\lambda^*x.M$, and $\lambda^*x.MN$.

Def. Combinatory logic (CL) has axioms for K and S: KMN = M, SMNL = ML(NL). Then it has schemas of axioms for the equality and assignment in an application (p. 17, except the rule ξ (ksi, xi), which does not hold in CL: $M =_{CL} N \not\Rightarrow \lambda x.M =_{CL} \lambda x.N$) The CL doesn't have an abstraction, bound variables, and α -conversion. Terms of combinatory logic are S, K, (free) variables x, and they are closed to an application. (T::=V|<pri>|TT; Primitive terms may differ in other variants.)

We can define reductions in CL (analogically to p. 65): base rules of a weak w-reduction (i.1) are $KMN \to_w M$ and $SMNL \to_w ML(NL)$, and then we can define a single-step reduction, a (multi-step) reduction, and a convertibility.

It holds:

- b.1) $SKK \neq_{CL} I$, for I with IM = M
- b.2) $SKKx =_{CL} x (= Ix)$
- b.3) $CL \not\vdash SKK = SKS$, but $SKK =_{\beta} SKS$

Note: We can see from b.3 that provability (and a weak w-convertibility) in CL does not coincide with provability in λ (and β -convertibility). (A missing coincidence can be "eliminated" by supplementary axioms, but the system gets more complicated. For example the axiom $K = \lambda^* xy.Kxy$ can be added (as $CL \not\vdash K = \lambda^* xy.Kxy$), so in this case, the problem is missing arguments on the left side.) (?Critical pairs.)

Ex.: Expressing conditions using combinators: we want to express "F is commutative" using a combinator C: instead of $\forall x, y : Fxy = Fyx$, we demand an equality Cfxy = fyx for the combinator C and then the commutativity of F is expressed as CF = F.

Ex.: F is associative: $\forall x, y, z : Fx(Fyz) = F(Fxy)z$. We introduce A_1 and A_2 with $A_1fxyz = fx(fyz)$ and $A_2fxyz = f(fxy)z$ and demand an equality $A_1F = A_2F$ for F.

- (c) A translation of λ -terms to the combinators S and K; a completeness.
- d) A coding of λ -terms using λ^* notations/transformation to terms of CL (according to b).

Note: An introduction of $\lambda^* : \Lambda \to \mathcal{C}$ notation to CL is only syntactic sugar and not an introduction of a λ -abstraction to CL.

- (e) Definitions of B, C (and W, K); a completeness. Bfgz = f(gz), Cfxz = fzx. The combinators B and C are similar to Sxyz, but the argument z is not propagated to x and y, respectively. (Wfxx = fxx)
- (e.1) A strict version of CL: CL_I (versus CL_K) for strict functions (λ_I : the variable x from $\lambda x.E$ has at least one occurrence in E.): CL_I uses S, B, C, and I (without K).
- (f) "Extreme programming": A single combinator $X \equiv \lambda x.xKSK$ is enough and it holds XXX = K a X.XX = S. (Note to Curry-Howard isomorphism: S and K are in X in assumptions.)

Note: The rule $M = N \wedge N = L \Rightarrow \underline{L} = \underline{M}$ includes and replaces the rules for symmetry and transitivity.

- 9. Transform to CL (with S, K, I):
- a) $\lambda x.xx$, that means, write $\lambda^*x.xx$
- b) $(K=)\lambda xy.x$, b2) $(K_*=)\lambda xy.y$
- c) $\lambda xy.yx$
- d) d1) $\lambda xy.xx$, d2) $\lambda xy.yy$, d3) $\lambda xy.xy$
- e) Transform to combinators S, I, B, and C: e1) $\lambda xy.yx$, e2) $\lambda xy.xy$, e3) $\lambda x(\lambda y.y)x$

10.-15 see above

- 16. a) How does it appear $[D \to D]$ for a singleton D?
- b) Does it hold $S \neq K$ in a single point model?
- c) A corollary for consistency?

5th seminar

Typed lambda calculus

- 17. Prove, that I, K, S, K* have types in $\lambda \to_{Curry}$
- 18. Show type of a Church numeral c_2 .

TO DO: improve

```
Errata. Calculus 1.
54, down. \#A = \{ \#M | M \in A \} instead of \#A = \{ \#M | M \in \underline{\Lambda} \}
60, up. NF = \{M|M \text{ has a normal form}\}\ instead of NF = \{M|M \text{ a normal form}\}\
109 down rightmost: missing a right parenthesis: ... = ||M||_{\rho(x:=||N||_{\rho})}
Calculus 2.
30. Ex. S = (\lambda xyz.xz(yz)) instead of S = (\lambda xyz.xy(yz))
32. under line in footnote. \lambda uv.u: instead of \lambda uv:
33(,34). M' - >>_{\beta} M, instead of M - >>_{\beta} M', see teaching materials chap.5.12
42 l.2: <u>and</u> and
45 c) x : \sigma \vdash (\lambda y : \tau . x) : (\tau \rightarrow \sigma)
82 b) \vdash (\lambda xy.y) : (\forall \alpha \beta. \alpha \to \beta \to \beta)
(99 terminology (in Czech): preorder: kvaziuspoĹdn, pĹeduspoĹdn)
99 (i) 1.7: \sigma \le \tau, \sigma \le \rho \Rightarrow \sigma \le \tau \cap \rho
103 a) \vdash (\lambda x.xx) : ((\sigma \to \tau) \cap \underline{\sigma}) \to \tau
114 (i) \Gamma \vdash x : \sigma \Rightarrow \exists \sigma' \geq \sigma((x : \underline{\sigma'}) \in \Gamma)
182 iii. including
Calculus 3.
53 l.2 conjunction
```

Errata. In Czech ex. (Check!): Ex. 4z Hint: F = C[f, x]F - i, $F = (\lambda f. C[f, x])F$

KomentLe:

s 21. PĹm rekurze pomoc komb. pevnŠho bodu, vzjemn rekurze pozdÄji pomoc dvojitŠho pevnŠho bodu. (PodobnÄ: pevn bod pro n rovnic.) Impl: Jeden pevn bod pro cel program vs. (stratifikovan) definice pro komponenty silnŠ souvislosti v grafu zvislost.

116: prvn varianty kombinatorick Š
 logiky a lambda kalkulu byly nekonzistentn. :-(

Lambda 2, 99: kontravariantnÄ v argumentu, kovariantnÄ ve vsledku

$\operatorname{Pozn}.$

A.1 Pou Ĺžit Y a $Mu(\mu)$ v datatypu (alias Fix, FixF), zpracovn po rovn
ch; fold, unfold, refold

A.2 Zl 103: rekurzivnÁ neoddÁlitelnS mnoLžiny

A.3 Hlavov NF: nelze redukovat funkci (i pod λ -abstrakc), ale nestarme se o redukci argumentĹ; m tvar $M \equiv \lambda x_1...x_n.yL_1...L_m$. Termy bez hlavovŠ NF lze povaĹžovat za oznaĉen nedefinovanch vrazĹ.

A.3.1 Zl 96: nelze ztoto Lžnit termy bez NF; ZL 138: pro M, N v NF(!) je v lambda,
eta teorii bu ÄM=N neboM#N

A.4 PĹepisovac systŠmy (rewriting s.), Knuth-BendixĹv alg. pro dokazovn v rovnostnch teorich, neselhvajc varianta KB; rippling; konfluence, slab konfluence;

A.5 v druhŠm semestru: Curry-HowardĹv izomorfizmus (a "proof assistants"), zvislŠ typovŠ systŠmy (pĹ. vektory s dŠlkou);

Dokazovaĉe jsou killer application pro OCAML, (ale: soutÄĹž dokazovaĉĹ vyhrvaj ty rychlŠ)

A.5.1 implicitn typovn v Haskellu; pĹi rozĹĹench explicitn typ pouze u urĉitch konstrukc; (statickŠ) typy taky umoĹžĹuj optimalizace (v runtime se (nepouĹžvaj, a proto) netestuj tagy/typy); Haskell jako typov laboratoĹ;

typy: (velmi) rĹznŠ pouĹžit (polyTypickŠ, fantomovŠ, multistage, BTA v PE: Binding Time Anotation) ..., statickŠ typy vyvolaj typovou chybu pĹi kompilaci (1. v netestovanch ĉstech, 2. v jinŠ rovni (generovan string, on-the-fly, DSEL - ale: kryptickŠ chybovŠ hlĹky))

- A.5.2 Vztah k teorii (k teorii kategori); funktory, mondy, komondy, Arrows, Fix, FixF pro datovŠ typy, fold, unfold;
- ... a nstroje: GADT (Generalized Abstract Data Types), aplikativn funktory, aktivn konstruktory;
- ... a dĹvÄjĹ prci: s-vrazy \approx XML;
- ... parametricity; catamorphism, anamorphism, paramorphism (cata/fold se zachovnm hodnoty), apomorphism, hylomorphism = cata(f).ana(g) (je pĹpad deforestation), metamorphism ...
- A.5.3 implementaĉn triky: superkombintory, grafovŠ pĹepisovn, lambda-lifting pĹemÄna loklnch procedur na globln (viz jinŠ pĹednĹky) a lambda dropping, closure conversion; defunkcionalizace (s pomoc apply); full laziness (pro ĉsteĉnÄ aplikovanŠ funkce)
- A.5.4 HOAS: higher-order abstract syntax, repr. abstraktnch syntaktickch stromĹ s vzanmi promÄnnmi, prom. nemaj jmŠna a jejich vskyty ukazuj na vzac msto; moĹžn impl. HOAS: de Bruijn indexy; FOAS: first-order abstract syntax;
- A.6 pull (FP) vs. push (OO) alg./styl, prce s celmi dat. strukturami, "vzory" rekurze: map, fmap, fold, unfold, scan, ...; Filter-Map-Reduce; lambda abstrakce (FP: lambda funkce, closures) umoĹžĹuje dynamickou vazbu, hooks, (implementaci TVM, parametrizaci pomoc "vmÄny" procedur, metaparametry; srv. Lua: metatabulky);

vhody a pĹnosy Lispu (Paul Graham, viz);

- abstraktn interpretace: poĉtn s jinou, typicky omezenou sŠmantikou; pouĹžitelnŠ pro globln analzu programu pĹed kompilac; (impl.: ...); pĹ: msto standardn sŠmantiky regulrnch vrazĹ/BKG nad jazyky poĉtm first, empty a follow (v koneĉnch domŠnch);
- A.7 Manipulace s programy: odvozovn typĹ, ĉsteĉnŠ vyhodnocovn (partial evaluation, PE), Futamurovy projekce, optimalizaĉn transformace (map f.map g=map(f.g)), poĉtn s programy (fusion laws, P. Wadler: Theorems for free!; pointfree vs. pointwise), (taky run-time code generation), deforestation;
- JinŠ styly/druhy psan: (continuation passing style); polytypickŠ programy (pro pĹedstavu: umoĹžn vygenerovat definici funkce map pro uĹživatelsk datatyp pomoc strukturln rekurze podle struktury typu), generic programming: Generic Haskell; (multi-)staged programming (vcerovĹovŠ programovn): MetaO-Caml, (MetaML), (pro pĹedstavu: generuje typovÄ bezpeĉn kd za bÄhu (typesafe run-time code generation), napĹ. .<int->int->int>.; nepĹesnÄ/zjednoduĹenÄ: typovÄ sprvn makra), splicing vkldn kdu (a dat) typovÄ sprvnÄ, (operace: .< >., ~ splice, lift, run);
- meta-jazyk a objektov jazyk; pĹstup k zdrojku (string nebo syntax tree): lispovskŠ eval (A.8b), quasi-quote; Template Haskell [| |];
 - A.7.1a Type-directed partial evaluation (TDPE);
- A.7.1b Normalization by evaluation (NBE): vyuĹžva pĹevod do domŠn a zptky fce reflect a reify; reifikace; eta-dlouh forma;
- A.7.2 Dokazovn vlastnost programu/modulĹ, zapisovn vlastnost (napĹ. pro unit testy, rev(rev(x))=x); QuickCheck testovn vlastnost pomoc nhodnch vstupĹ (srv: redukce tĹdcch st na 0-1 vstupy) pozdÄji pĹeveden do jinch jazykĹ; (navc Hs: (nÄjak) genertor nhodnch vstupĹ, i strukturovanch dat (seznamy, stromy, funkce ...) vygenerovn automaticky pomoc typovch tĹd (pĹi troĹce opatrnosti))

A.8a pohled zvrchu na hierarchii jazykĹ (Paul Graham);

A.8b Greenspun's tenth rule: Any sufficiently complicated C or Fortran program contains an ad hoc, informally-specified, bug-ridden, slow implementation of half of Common Lisp.

(MorrisLv dodatek: :-) ... vĉetnÄ Common Lispu)

A.9 vÄtĹ abstrakce = kratĹ programy (=mŠnÄ chyb=lepĹ udrĹžovatelnost), abstrakce dovol lepĹ/obecnÄjĹ nvrh; (nvrhovŠ vzory (skoro) jako kd: co je (ve FP) vzor Strategie? apod.; ale: FP m jinŠ nvrhovŠ vzory), znovupouĹžitelnost a parametrizace, vĉetnÄ metaparam.;

Pro "uĹživatele": tvorba DSEL: Domain Specific (Embedded) Languages, domenovŠ kombintory (napĹ. parsery ...), (napĹ. generovn sprvnch (DTD valid) XML/HTML dat, SQL dotazĹ); prototypy, psan interpretĹ, fantomovŠ typy;

A.10 Kombinace FP a LP: funkcionl
n logick Š programovn, nap Ĺ. jazyky Curry, Mercury; obsahuje vpo
ĉtov mechanizmus Narrowing (zu Ĺžovn), pou Ĺžv substituce, rewriting; vstup: funkcionl
n term s logickmi prom Ännmi;

FP: OCAML; FP+OOP: Scala (nad JVM), F# (nad .NET); nÄkterŠ rysy maj skriptovac jazyky (ale: dynamickŠ typovn)