Lista 3 Inteligência Artificial

Iyan Lucas Duarte Marques¹, Samir do Amorim Cambraia¹

¹Instituto de Ciências Exatas e Informática - Pontifícia Universidade Católica Minas Gerais (PUC-MG)

1. Questão 01

Faça um resumo do artigo "Estudo Comparativo entre os algoritmos de Mineração de Dados Random Forest e J48 na tomada de Decisão" que está no CANVAS

O artigo apresenta uma comparação dos métodos de *data mining* J48 e Random Forest utilizando como base os dados de óbitos do Rio Grande do Sul de 2013 (30 mil linhas). Após uma breve introdução de ambos algoritmos e da base em si, o autor apresenta os resultados da comparação que se resume em:

- **J48:** Apresenta tempo de execução *de facto* baixos, porém baixa taxa de acerto.
- Random Forest: Apresenta altissima taxa de acerto ($\approx 99.7\%$), entretanto possui um alto tempo de execução.

2. Questão 02

Faça um resumo do artigo "Balanceamento de Dados" que está no CANVAS

O artigo, A Study of Behavior of Several Methods for Balancing Machine Learning Training Data apresenta o conceito de um dos maiores problemas do Machine Learning: o desbalanceamento de classes. Desta forma, classes não balanceadas se tornam grandes empecilhos, principalmente para algoritmos de classificação. Como solução, o artigo propõe a comparação entre vários métodos de balanceamento. Sucintamente, os métodos podem ser divididos entre métodos de oversampling e undersampling. Contrariando a opinião geral da comunidade que pesquisa ML, o artigo conclui que, os métodos de oversampling, foram mais eficientes em auxiliar a indução de classificadores, além de contribuir para o aumento de acurácia dos métodos, em contrapartida dos metodos de undersampling, que foram inferiores nestes quesitos.

3. Questão 03

Cite e explique os principais parâmetros que podem ser ajustados para melhorar o desempenho do classificador Random Forest. Quais os valores default destes parâmetros na ferramenta WEKA?. Explique cada um deles. Investigue o funcionamento do algoritmo no Python

Delimitar a profundidade máxima das árvores: Por padrão, as árvores são expandidas até que todas as folhas sejam puras ou contenham menos do que as amostras mínimas para a divisão. Isso ainda pode fazer com que as árvores se ajustem demais ou mal. Desta forma, achar o numero ótimo de profundidade também torna o método mais eficiente

- Aumentar ou diminuir o número de estimadores: Maior numero de estimadores, maior a acurácia. Menor numero de estimadores, maior a velocidade
- Especificar o numero máximo de features a serem incluidas em cada split: Isso depende muito do seu conjunto de dados. Se suas variáveis independentes forem altamente correlacionadas, você desejará diminuir o número máximo de recursos. Se seus atributos de entrada não estiverem correlacionados e seu modelo estiver sofrendo de baixa precisão, aumente o número de recursos a serem incluídos.

Utilizando a ferramenta WEKA, o método Random Forest possui os seguintes valores por *default*:

• *bagSizePercent*: Size of each bag, as a percentage of the training set size. (default 100)

- batch Size: The desired batch size for batch prediction (default 100).
- *breakTreeRandomly:* Break ties randomly when several attributes look equally good.
- calcOutOfBag:
- *computeAtributeImportance:* Compute and output attribute importance (mean impurity decrease method)
- *debug:* If set, classifier is run in debug mode and may output additional info to the console
- *doNotCheckCapabillities:* If set, classifier capabilities are not checked before classifier is built (use with caution).
- maxDepth: The maximum depth of the tree, 0 for unlimited. (default 0)
- *numDecimalPlaces*: The number of decimal places for the output of numbers in the model (default 2).
- *numExecutionSlots:* Number of execution slots. (default 1 i.e. no parallelism) (use 0 to auto-detect number of cores)
- numFeatures: Number of attributes to randomly investigate. (default 0) $(< 1 = int(log_2(\#predictors) + 1)).$
- *numIterations*: Number of iterations (i.e., the number of trees in the random forest). (current value 100)
- *outputOutOfBagComplexityStatistics:* Whether to output complexity-based statistics when out-of-bag evaluation is performed.
- printClassifiers: Print the individual classifiers in the output
- seed: Seed for random number generator. (default 1)
- storeOutOfBagPredictions: Whether to store out of bag predictions in internal evaluation object.

O algoritmo em python pode ser na biblioteca sklearn.

4. Questão 04

Faça um resumo comparativo entre os seguintes métodos do tipo ensemble

4.1. Bagging

No Bagging os classificadores são treinados de forma independente por diferentes conjuntos de treinamento através do método de inicialização. Para construí-los é necessário montar k conjuntos de treinamento idênticos e replicar esses dados de treinamento de forma aleatória para construir k redes independentes por re-amostragem com reposição. Em seguida, deve-se agregar as k redes através de um método de combinação apropriada, tal como a maioria de votos (Breiman, 1996).

Para garantir que há amostras de treinamento suficientes em cada subconjunto, grandes porções de amostras (75-100%) são colocadas em cada subconjunto. Com isso, os subconjuntos individuais de formação se sobrepõem de forma significativa, com muitos casos fazendo parte da maioria dos subconjuntos e podendo até mesmo aparecer várias vezes num mesmo subconjunto. A fim de assegurar a diversidade de situações, um learner de base relativamente instável é usado para que limites de decisão diferentes possam ser obtidos, considerando-se pequenas perturbações em diferentes amostras de treinamento (Wang, 2011).

4.2. Boosting

No Boosting, de forma semelhante ao Bagging, cada classificador é treinado usando um conjunto de treinamento diferente. A abordagem por Boosting original foi proposta por Schapire em 1990. A principal diferença em relação ao Bagging é que os conjuntos de dados re-amostrados são construídos especificamente para gerar aprendizados complementares e a importância do voto é ponderado com base no desempenho de cada modelo, em vez da atribuição de mesmo peso para todos os votos. Essencialmente, esse procedimento permite aumentar o desempenho de um limiar arbitrário simplesmente adicionando learners mais fracos. Dada a utilidade desse achado, Boosting é considerado uma das descobertas mais significativas em aprendizado de máquina (LANTZ, 2013).

4.3. Random Forest

Uma Random Forest é uma técnica de aprendizado de máquina usada para resolver problemas de regressão e classificação. Ele utiliza aprendizagem por conjunto, que é uma técnica que combina muitos classificadores para fornecer soluções para problemas complexos.

Um algoritmo de random forest consiste em muitas árvores de decisão. A "floresta" gerada pelo RF é treinada por meio de bagging ou bootstrap agregation.

O algoritmo estabelece o resultado com base nas previsões das árvores de decisão. Ele prevê tomando a média ou média da produção de várias árvores. Aumentar o número de árvores aumenta a precisão do resultado.

Uma RF erradica as limitações de um algoritmo de árvore de decisão. Reduz o overfitting de conjuntos de dados e aumenta a precisão.

5. Questão 05

Considerando a base de dados "Breast Cancer.arff" (que está no CANVAS) experimente um(1) algoritmo de balanceamento undersampling e um(1) oversampling. Compare os resultados com a base de dados desbalanceada. Discuta os resultados. Você pode utilizar qualquer algoritmo de aprendizado (árvore, random forest, etc).

Ambos tiveram o mesmo resultado.

6. Questão 06

A partir das matrizes de confusão obtidas na questão acima, calcule as métricas TVP, TVN, TFP, TFN, recall, precisão e F-measure.

TVP	TNP	TFP	TFN	Recall	Precisão	F1Score
0,696	0,304	0,543	0,304	0,696	0,664	0,669