Mapping the sub-cellular proteome

Laurent Gatto

lg390@cam.ac.uk - @lgatt0
http://cpu.sysbiol.cam.ac.uk/

Slides @ http://bit.ly/20171108FLI

DOI 10.5281/zenodo.1042726

Last update: November 8, 2017

8 Nov 2017, Fritz Lipmann Institute

Plan

Spatial proteomics

The LOPIT pipeline

Improving on LOPIT

Experimental advances: hyperLOPIT

Computational advances: Transfer learning

Biological applications

Dual-localisation

Trans-localisation

R/Bioconductor software

Open development

Regulations

Cell organisation

Spatial proteomics is the systematic study of protein localisations.

Spatial proteomics - Why?

Localisation is function

- ► The cellular sub-division allows cells to establish a range of distinct micro-environments, each favouring different biochemical reactions and interactions and, therefore, allowing each compartment to fulfil a particular functional role.
- ▶ Localisation and sequestration of proteins within sub-cellular niches is a fundamental mechanism for the post-translational regulation of protein function.

Spatial proteomics - Why?

Mis-localisation

Disruption of the targeting/trafficking process alters proper sub-cellular localisation, which in turn perturb the cellular functions of the proteins.

- Abnormal protein localisation leading to the loss of functional effects in diseases (Laurila and Vihinen, 2009).
- Disruption of the nuclear/cytoplasmic transport (nuclear pores) have been detected in many types of carcinoma cells (Kau et al., 2004).

Re-localisation in

- ▶ Differentiation: Tfe3 in mouse ESC (Betschinger et al., 2013).
- ▶ Metabolism: changes in carbon sources, elemental limitations.

Spatial proteomics - How, experimentally

Figure: Organelle proteomics approaches (Gatto et al., 2010)

Fusion proteins and immunofluorescence

Fusion proteins and immunofluorescence

Figure: Example of discrepancies between IF and FPs as well as between FP tagging at the N and C termini (Stadler et al., 2013).

Spatial proteomics - How, experimentally

Figure: Organelle proteomics approaches (Gatto et al., 2010). Gradient approaches: Dunkley et al. (2006), Foster et al. (2006).

⇒ Explorative/discovery approches, global localisation maps.

Cell lysis

Fractionation/centrifugation

Quantitation/identification by mass spectrometry

Quantitation data and organelle markers

	$Fraction_1$	$Fraction_2$		Fraction _m	markers
p_1	q _{1,1}	q _{1,2}		q _{1, m}	unknown
p_2	q _{2,1}	$q_{2,2}$		q _{2, m}	loc ₁
p ₃	q _{3,1}	$q_{3,2}$		q _{3, m}	unknown
p ₄	q _{4,1}	$q_{4,2}$		q _{4, m}	loci
:	:	:	:	:	:
pj	$q_{j,1}$	$q_{j,2}$		q _{j, m}	unknown

Visualisation and classification

Figure : From Gatto et al. (2010), *Arabidopsis thaliana* data from Dunkley et al. (2006)

Data analysis

Supervised machine learning

Using labelled marker proteins to match unlabelled proteins (of unknown localisation) with similar profiles and classify them as residents to the markers organelle class.

Supervised ML

Figure: Support vector machines classifier on the embryonic stem cell data from Christoforou et al. (2016).

Limitations

Incomplete annotation, and therefore lack of training data, for many/most organelles. *Drosophila* data from Tan et al. (2009).

Novelty detection

Figure : Left: *Drosophila* data from Tan et al. (2009). Right: Semi-supervised learning, Breckels et al. (2013).

Improving on LOPIT

Improving is obtaining better sub-cellular resolution to increase the number of protein that can be **confidently** assigned to a sub-cellular niche.

Figure: E14TG2a embryonic stem cells: old (left) vs. new, better resolved (right) experiments (Christoforou et al. (2016)).

Improving on LOPIT

LOPIT Dunkley et al. (2006)	Computational : transfer learning Breckels et al. (2016)	
Experimental : hyperLOPIT	Biological	
Christoforou et al. (2016) Mulvey et al. (2017)	discoveries	

hyperLOPIT

Figure: From Mulvey et al. (2017) Using hyperLOPIT to perform high-resolution mapping of the spatial proteome.

Figure : E14TG2a LOPIT on 8 fractions (using iTRAQ 8-plex) and 1109 proteins vs. hyperLOPIT on 10 fractions (using TMT 10-plex) and SPS-MS³ for 5032 proteins.

Transfer learning

What about annotation data from repositories such as the Gene Ontogy (GO), sequence features, signal peptide, transmembrane domains, images, prediction software, . . .

- ► From a user perspective: "free/cheap" vs. expensive
- ► Abundant (all proteins, 100s of features) vs. (experimentally) limited/**targeted** (1000s of proteins, 6 20 of features)
- ► For localisation in system at hand: low vs. high quality
- Static vs. dynamic

Transfer learning

What about annotation data from repositories such as the Gene Ontology (GO), sequence features, signal peptide, transmembrane domains, images, prediction software, . . .

Transfer learning

Support/complement the **primary** target domain (experimental data) with **auxiliary** data (annotation, imaging, PPI, ...) features without compromising the integrity of our primary data (Breckels et al., 2016).

Database query Extract GO CC terms

Visualisation

Transfer learnig, based on Wu and Dietterich (2004):

Class-weighted kNN

$$V(c_i)_j = \theta^* n_{ij}^P + (1 - \theta^*) n_{ij}^A$$

Linear programming SVM

$$f(\mathbf{x}, \mathbf{v}; \boldsymbol{\alpha}_P, \boldsymbol{\alpha}_A, b) = \sum_{l=1}^m y_l \left[\alpha_l^P K^P(\mathbf{x}_l, \mathbf{x}) + \alpha_l^A K^A(\mathbf{v}_l, \mathbf{v}) \right] + b$$

Data from mouse stem cells (E14TG2a).

Figure: From Breckels et al. (2016) Learning from heterogeneous data sources: an application in spatial proteomics.

Biological applications

- Multi-localisation
- Trans-localisation

Dependent on good sub-cellular resolution.

Dual-localisation Proteins may be present simultaneously in several organelles (e.g. trafficking). Example from embryonic stem cells (Christoforou et al., 2016).

Dual-localisation Proteins may be present simultaneously in several organelles (e.g. trafficking). Example from embryonic stem cells (Christoforou et al., 2016).

PC1 (50.05%)

from

Examp

24h N2B27

Spatial dynamics

Trans-localisation monocyte to macrophage differenciation

Goal: to investigate the effect of LPS-mediated inflammatory response in human monocytic cells (THP-1)

Data

- ► Triplicate **temporal** profiling (0, 2, 4, 6, 12, 24 hours).
- Triplicate spatial profiling (0 vs 12 hours) early trafficking components, before actual morphological differentiation at 24h.

Work lead by **Dr Claire Mulvey**, Cambridge Centre for Proteomics.

Figure: Spatial maps: unstimulated and LPS-treated.

Figure: Relocation of Protein Kinase C alpha and beta from the cytosol to the plasma membrane, driving maturation into a differentiated macrophage phenotype.

Figure: Relocation of STAT6 from the cytosol to the Nucleus, activating anti-bacterial and anti-viral-like response. Validated by microscopy and see also Chen et al. (2011).

Beyond organelles: application to PPI/Protein complexes

Figure: Data on proteasome complexes from Fabre *et al.* Mol Syst Biol (2015), DOI: 10.15252/msb.20145497

Plan

```
Spatial proteomics
The LOPIT pipeline
Improving on LOPIT
Experimental advances: hyperLOPIT
Computational advances: Transfer learning
Biological applications
Dual-localisation
Trans-localisation
```

R/Bioconductor software

Open development

R/Bioconductor:

- Software for spatial proteomics.
- Ecosystem for high throughput biology data analysis and comprehension.

Software for mass spectrometry and (spatial) proteomics

Bioconductor Open source, enable **reproducible research**, enables understanding of the data (not a black box) and **drive scientific innovation**.

- MSnbase infrastructure to handle quantitative data and meta-data (Gatto and Lilley, 2012) (~500 unique IP download/month in 2016).
- pRoloc and pRolocGUI dedicated visualisation and ML infrastructure for spatial proteomics (Gatto et al., 2014) (~200 unique IP download/month in 2016).
- pRolocdata structured and annotated spatial proteomics data (Gatto et al., 2014).
- ► And more generally RforProteomics (Gatto and Christoforou, 2014) (~160 unique IP download/month in 2016).

Plan

Spatial proteomics
The LOPIT pipeline
Improving on LOPIT
Experimental advances: hyperLOPIT
Computational advances: Transfer learning
Biological applications
Dual-localisation
Trans-localisation

R/Bioconductor software

Open development

- What is Collaborative and open development?
- Use case: MSnbase and mzR: contributors and shared infrastructure for MS-based proteomics and metabolomics.

Use case

Figure: Contributions to the MSnbase package since its creation. More details: https://lgatto.github.io/msnbase-contribs/

References I

- J Betschinger, J Nichols, S Dietmann, P D Corrin, P J Paddison, and A Smith. Exit from pluripotency is gated by intracellular redistribution of the bhlh transcription factor tfe3. *Cell*, 153(2):335–47, Apr 2013. doi: 10.1016/j.cell.2013.03.012.
- L M Breckels, S B Holden, D Wojnar, C M Mulvey, A Christoforou, A Groen, M W Trotter, O Kohlbacher, K S Lilley, and L Gatto. Learning from heterogeneous data sources: An application in spatial proteomics. *PLoS Comput Biol*, 12(5):e1004920, May 2016. doi: 10.1371/journal.pcbi.1004920.
- LM Breckels, L Gatto, A Christoforou, AJ Groen, KS Lilley, and MW Trotter. The effect of organelle discovery upon sub-cellular protein localisation. *J Proteomics*, 88:129–40, Aug 2013.
- H Chen, H Sun, F You, W Sun, X Zhou, L Chen, J Yang, Y Wang, H Tang, Y Guan, W Xia, J Gu, H Ishikawa, D Gutman, G Barber, Z Qin, and Z Jiang. Activation of stat6 by sting is critical for antiviral innate immunity. *Cell*, 147(2):436–46, Oct 2011. doi: 10.1016/j.cell.2011.09.022.

References II

- A Christoforou, C M Mulvey, L M Breckels, A Geladaki, T Hurrell, P C Hayward, T Naake, L Gatto, R Viner, A Martinez Arias, and K S Lilley. A draft map of the mouse pluripotent stem cell spatial proteome. *Nat Commun*, 7:8992, Jan 2016. doi: 10.1038/ncomms9992.
- TPJ Dunkley, S Hester, IP Shadforth, J Runions, T Weimar, SL Hanton, JL Griffin, C Bessant, F Brandizzi, C Hawes, RB Watson, P Dupree, and KS Lilley. Mapping the Arabidopsis organelle proteome. *PNAS*, 103(17): 6518–6523, Apr 2006.
- LJ Foster, CL de Hoog, Y Zhang, Y Zhang, X Xie, VK Mootha, and M Mann. A mammalian organelle map by protein correlation profiling. *Cell*, 125(1): 187–199, Apr 2006.
- L Gatto and A Christoforou. Using R and Bioconductor for proteomics data analysis. *Biochim Biophys Acta*, 1844(1 Pt A):42–51, Jan 2014.
- L Gatto and KS Lilley. MSnbase an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. *Bioinformatics*, 28(2):288–9, Jan 2012.
- L Gatto, JA Vizcaino, H Hermjakob, W Huber, and KS Lilley. Organelle proteomics experimental designs and analysis. *Proteomics*, 2010.

References III

- L Gatto, L M Breckels, S Wieczorek, T Burger, and K S Lilley. Mass-spectrometry based spatial proteomics data analysis using pRoloc and pRolocdata. *Bioinformatics*, Jan 2014.
- TR Kau, JC Way, and PA Silver. Nuclear transport and cancer: from mechanism to intervention. *Nat Rev Cancer*, 4(2):106–17, Feb 2004.
- K Laurila and M Vihinen. Prediction of disease-related mutations affecting protein localization. *BMC Genomics*, 10:122, 2009.
- C M Mulvey, L M Breckels, A Geladaki, N K Britov?ek, DJH Nightingale, A Christoforou, M Elzek, M J Deery, L Gatto, and K S Lilley. Using hyperlopit to perform high-resolution mapping of the spatial proteome. *Nat Protoc*, 12(6):1110–1135, Jun 2017. doi: 10.1038/nprot.2017.026.
- DJL Tan, H Dvinge, A Christoforou, P Bertone, A Arias Martinez, and KS Lilley. Mapping organelle proteins and protein complexes in Drosophila melanogaster. *J Proteome Res*, 8(6):2667–2678, Jun 2009.
- P Wu and TG Dietterich. Improving svm accuracy by training on auxiliary data sources. In *Proceedings of the Twenty-first International Conference on Machine Learning*, ICML '04, New York, NY, USA, 2004. ACM.

Acknowledgements

- Lisa Breckels, Computational Proteomics Unit, Cambridge (ML, algo)
- ► **Kathryn Lilley**, Cambridge Centre of Proteomics (Proteomics)
- ► Funding: BBSRC, Wellcome Trust
- ► Slides: http://bit.ly/20171108FLI DOI 10.5281/zenodo.1042726
- License: © ①

Thank you for your attention