

Machine Learning

Makine Öğrenmesi – 5

Overall Table of Contents

General Content

- Supervised LearnigAlgorithm Bagging –Boosting Methods
- Supervised Algorithm practices Python application
- Projects Solutions

Supervised Learning

ENSEMBLE LEARNING METHODS (Kolektif Öğrenme Metotları)

Farklı makine öğrenmesi algoritmalarını daha iyi bir tahmin için birlikte kullanmak mümkün mü?

Supervised Learning

Özetle...

Supervised L. - ENSEMBLE LEARNING METHODS

- √ Bagging (Bootstrap Aggregating)
- ✓ Boosting

- √ Bagging
- √ Boosting (Ada Boost-Gradient Boost-XGBoost)

Bagging Building multiple models (typically of the same type) from different subsamples of the training dataset Criginal Training data Step 1: Create Multiple Data See Step 2: Build Multiple Colassifiers Colassifiers Colassifiers Colassifiers Colassifiers Colassifiers

	Bagging	Boosting	
Similarities	 Uses voting Combines models of the same type		
Differences	Individual models are built separately	Each new model is influenced by the performance of those built previously	BOOSTING>AdaBoost
	Equal weight is given to all models	Weights a model's contribution by its performance	BAGGING> R F

Boosting

Building multiple models (typically of the same type) each of which learns to fix the prediction errors of a prior model in the chain.

Model 1,2,..., N are individual models (e.g. decision tree)

Bagging (Bootstrap Aggregating)

Supervised L. - ENSEMBLE LEARNING METHODS

√ Random Forest (RF)

Hyperparameters: "n_estimators" parameter: (default=100) The number of trees in the forest. The more # of trees, the better accuracy. But CPU intensive. "max_depth" parameter: (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure. "max_features" parameter: Number of features to consider when looking for the best split. Increase will improve the performance but results in a correlation between the trees.

Avantaj -Dezavantajları

✓ Boosting

Supervised L. - ENSEMBLE LEARNING METHODS

✓ Boosting (Yükseltme)

Ada Boosting (Adaptive Boosting)

Supervised L. - ENSEMBLE LEARNING METHODS

Ada Boosting (Adaptive Boosting)

- 188 # Varyans sorunu var mı?
- 189 from sklearn import metrics
- 190 # Modelin eğtim seti için doğruluk oranı:
- 191 print('Accuracy:%0.3f'%metrics.accuracy_score(y_train, y_pred_train))
- 192 # Modelin test seti için doğruluk oranı:
- 193 print('Accuracy:%0.3f'%metrics.accuracy_score(y_test, y_pred_test))

Accuracy:0.863 Accuracy:0.827

Gradient Boosting

Learn a regression predictor Compute the error residual Learn to predict the residual Learn a simple predictor... Then try to correct its errors

https://youtu.be/3zEqUSf5duw

Supervised L. - ENSEMBLE LEARNING METHODS

Gradient Boosting

https://blog.mlreview.com/gradient-boosting-from-scratch-1e317ae4587d

XG Boost (EXtreme Gradient Boosting)

Supervised L. - ENSEMBLE LEARNING METHODS

- ✓ XG Boost (EXtreme Gradient Boosting)
- XGB neden diğerlerinden daha iyi?
- Regularization
- Parallel Processing
- High Flexibility
- √ Handling Missing Values
- **Tree Pruning**
- **Built-in Cross-Validation**

- ✓ ENSEMBLE KOLEKTİF ÖGRENME YÖNTEMLERİ ARASINDAN MODEL SEÇİMİ
 - ✓ Zaman-performans ikilemi
- ✓ i) ortaya çıkacak performans bir tek algoritmanın ürettiği modelinkinden daha yüksek olmalı;
- ✓ ii) işlem süresi algoritmaların tek tek uygulanmasından daha kısa sürmeli.

Supervised L. - ENSEMBLE LEARNING METHODS

XG BOOST (eXtram Gradient Boosting)

REGRESYON OLARAK KULLANILABİLEN SINIFLANDIRMA ALGORTÍMALARI

Eğitim Seti için RMSE:36.87 Test Seti için RMSE:77.11

Eğitim Seti için R2:0.88 Test Seti için R2:0.56

Exploratory Data Analysis and Visualization

- Machine Learning
 - Train | Test Split
 - X_train, X_test, y_train, y_test = train_test_split()
 - Scalling (if needed)
 - scaler = scaler name()
 - scaler.fit_transform(X_train)
 - scaler.transform(X_test)
 - Modelling
 - model = model_name().fit(X_train, y_train)
 - y_pred = model.predict(X_test)
 - y_pred_proba = model.predict_proba(X_test)
 - Model Performance
 - Regression => r2_score, MAE, MSE, RMSE
 - Classification => accuracy, recall, precision, f1_score (confusion_matrix, classification_report)
 - Cross Validate => cross_val_score, cross_validate
 - Tunning (if needed)
 - grid param = {}
 - GridsearchCV(grid_param)
 - Final Model
 - model = model_name().fit(X, y)
- Model Deployment

Do you have any questions?

Send it to us! We hope you learned something new.

