1 Definitions with Examples

1.1 Infimum

Let $S \subset \mathbb{R}$ be a set bounded from below. Then their exist a unique lower bound α_0 for S such that if, α is a lower bound then $\alpha \leq \alpha_0$. Thus α_0 is greatest lower bound and is called infimum of Sdenoted by inf S. Example:

- For the set (-2,inf) and [-2,inf], -2 is infimum as for any lower bound α , -2 $\geq \alpha$.
- For the set {-1,0,1,...}, -1 is infimum as -1 is greatest lower bound of the set.

1.2 Minimum

If $\alpha_0 = \inf S \in S$, then α_0 is called minimum of set S denoted by min S. Example:

- For the set (-2,inf) and [-2,inf], -2 is minimum for second set as -2 ∈ [-2, inf] but it is not minimum for the first set.
- For the set {-1,0,1,...}, -1 is minimum as -1 is greatest lower bound of the set and -1 belongs to the set.

1.3 Supremum

Let $S \subset \mathbb{R}$ be a set bounded from above. Then their exist a unique upper bound β_0 for S such that if, β is a upper bound then $\beta \geq \beta_0$. Thus 0 is lowest upper bound and is called supremum of S denoted by sup S. Example:

- For the set (-inf,2) and [-inf,2], 2 is supremum as for any upper bound β , $2 \le \beta$.
- For the set {-1,-2,-3,...}, -1 is supremum as -1 is lowest upper bound of the set.

1.4 Maximum

If $\beta_0 = \sup S \in S$, then β_0 is called maximum of set S denoted by max S. Example:

- For the set (-inf,2) and [-inf,2], 2 is maximum for second set as 2 ∈ [-inf,2] but it is not maximum for the first set.
- For the set {-1,-2,-3,...}, -1 is maximum as -1 is lowest upper bound of the set and -1 belongs to the set.

1.5 Compact Set

A set *S* of real numbers is called compact if every sequence in S has a sub sequence that converges to an element again contained in *S*. Examples:

- Set [0,1] is compact since every sequence contained in it is bounded, so we can extract a convergent sub sequence by the Bolzano-Weierstrass theorem. Using the theorem on intermediate and boundary points and noting that the set [0, 1] is closed, the limit of this sub sequence must be contained in [0, 1]. Hence, the set is compact by definition.
- The Set [0, 1) is not compact. Consider the sequence { 1 1/n }. Then that sequence is contained in [0, 1), and converges to 1. Therefore, every sub sequence of it must also converge to 1, which is not part of the original set. Therefore, the set can not be compact.
- set of Natural number $\mathbb N$ is not compact since the sequence $\{n\}$ of natural numbers converges to infinity, and so does every sub sequence. But infinity is not part of the natural numbers.

Proposition: A set *S* of real numbers is compact if and only if it is closed and bounded.

1.6 Convex set

A set *C* is convex if the line segment between any two points in *C* lies in *C*, *i.e.* $\forall x_1, x_2 \in C, \forall \theta \in [0,1]$:

$$\theta x_1 + (1 - \theta)x_2 \in C$$

Examples:

- The empty set \emptyset , the singleton set $\{x_0\}$, and the complete space \mathbb{R}^n .
- Line $a^T x = b$
- $f: \mathbb{R}^2 \mapsto \mathbb{R}$ with $f(x,y) = x^2 + y^2$

2 Weierstrass's theorem

Theorem: Let $D \subset \mathbb{R}^m$ be compact and $f: D \mapsto \mathbb{R}$ be continuous, then f has a global minimizer. In addition, if D is convex set and f is strictly convex function, then f has a strict global minimizer.

This results do not hold in general if the assumption about D and f is weakened.

For example, consider $D = \mathbb{R}$ and $f(x) = x + e^x - 1$, where $x \in D$. Here note that f is strictly convex but D is not compact since \mathbb{R} is closed but not bounded. So f(x) does not have a global minimizer in D.

Abbildung 1: $f(x) = x + e^x - 1$, strictly convex but no global minimizer in \mathbb{R}