

Contents lists available at SciVerse ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Corrigendum

Corrigendum to "Robust smoothing of gridded data in one and higher dimensions with missing values" [Comput. Statist. Data Anal. 54 (2010) 1167–1178]

Louis Le Tarnec, Damien Garcia*

CRCHUM - Research Centre, University of Montreal Hospital, Canada

ARTICLE INFO

Article history:

Available online 13 December 2011

On page 1170, Eq. (14) converges, for any initial conditions, if the matrix A is positive definite.

In the original paper, it was asserted that D is nonsingular. This is obviously wrong since one eigenvalue is zero (see Eq. (8)). Thus the positive definiteness of A still remains to be proved.

We assume that the non negative weights w_i are not identically zero. By definition, $A = sD^TD + W$ and s > 0. Since, for any X, we have $X^T(D^TD)X = \|DX\|^2 \ge 0$ and $X^TWX = \sum_{i=1}^n w_i x_i^2 \ge 0$, one has $X^TAX \ge 0$. Since A is symmetric, A is positive semidefinite.

Now, let X be a vector such that $X^{T}AX = 0$; then (1) DX = 0 and (2) $X^{T}WX = 0$.

(1) From Eq. (8), the $n \times n$ matrix D has n distinct eigenvalues, one of them being zero. Therefore, the kernel of D is of dimension 1. Since it is clear that any constant vector belongs to this kernel, the latter consists of the set of the constant vectors. Therefore, since DX = 0, we deduce that X is constant.

vectors. Therefore, since DX = 0, we deduce that X is constant. (2) We write $X^TWX = \sum_{i=1}^n w_i x_i^2 = \left(\sum_{i=1}^n w_i\right) x_1^2 = 0$ (because X is constant). But $\left(\sum_{i=1}^n w_i\right) > 0$, by hypothesis. Therefore, $x_1 = 0$, and hence, X = 0.

As a consequence $X^TAX = 0$ implies X = 0. The matrix A is thus positive definite.

According to Theorem 3 of Keller (1965), the convergence of (14) is ensured.

DOI of original article: 10.1016/j.csda.2009.09.020.

^{*} Correspondence to: CRCHUM, Pavilion J.A. de Séve, 2099 Alexandre de Séve, Montreal, QC, H2L2W5, Canada. Tel.: +1 514 890 8000x24705. E-mail address: Damien.Garcia@crchum.qc.ca (D. Garcia).