1	引言	2
	1.1 编写目的	2 2
2	外部设计	
	2.1 标识符和状态	3
	2.2 使用它的程序	3
	2.3 约定	3
	2.4 支持软件	3
3	结构设计	
	3.1 概念结构设计	3
	3.2 逻辑结构设计	4
	3.3 数据库操作设计	

数据库设计说明书(GB8567——88)

1引言

1.1 编写目的

本数据库说明书旨在说明后台数据库的定义、结构、用途等方面的信息。

本数据库设计说明书适合的读者包括:用户、系统设计人员、系统测试人员、系统维护人员。

1.2 背景

说明:

- a. 数据库的名称: BusLineDatabase
- b. 软件系统的名称:路况可视化 APP
- c. 此项目的任务提出者:中科大软件学院。
- d. 用户:

本系统是中科大软件学院的工程实践项目。本 APP 提供给交通出行人员实时的交通路况信息,为人们的出行提供科学的指导。同时,也可作为交管部门参考之用。

e. 项目结构:

在服务器端计算当前交通路网的拥挤程度值。移动终端向服务器发送请求之后,服务器将移动端请求路段的数值传给移动客户端。客户端 APP 根据传送过来的数据可视化路况。

1.3 定义

MySQL: MySQL 是一个开源的关系数据库管理系统。

触发器:监视某种动作(比如 insert,update,delete),并触发某种动作,执行相应操作。存储过程:一个存储过程是一个可编程的函数,它在数据库中创建并保存。它可以有SQL 语句和一些特殊的控制结构组成,实现相应的功能。

1.4 参考资料

有关的参考资料:

《数据库原理(第五版)》 赵艳铎 葛萌萌 清华大学出版社

2 外部设计

2.1 标识符和状态

数据库软件的名称: MySQL 数据库的名称为: BusLineDatabase

2.2 使用它的程序

路况可视化 APP

2.3 约定

所有的数据库命名都是以具体表的英文词汇组成,这样能够统一数据表的命名,也能够 更好的规范数据库表命名。

所有数据库的设计,采用面向对象的设计方法,首先进行对象实体的设计,最后将对象 持久化到数据库中,所有的表和表之间的关联,这样能够将整个系统的设计和数据库设计有 机的结合起来。

2.4 支持软件

同此数据库直接有关的支持软件包括:

数据库管理系统 MySQL:用于数据管理的软件系统,具有信息存储、检索、修改、共享和保护的功能,对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。用户通过 DBMS 访问数据库中的数据,数据库管理员也通过 DBMS 进行数据库的维护工作。

3结构设计

3.1 概念结构设计

本实例设计的表有公交车实时运行信息表(BusLineDataTable),运行公交车车牌表(bus_id),中间过程表 1(result_1),中间过程表 2(result_2),当前道路拥挤程度表(RoadState),用户信息表(UserInfo),用户提交路况信息表(UserReportedInfo)。

公交车运行信息(BusLineDataTable),包括的数据项有:公交线路名,站台名,站台编号,公交车车牌号,到站时间。

运行公交车表,保存当日运行的所有公交车车牌号,包括的数据项有:公交车车牌号。 中间过程表 1,保存各个公交车当前最新的两条到站记录包括的数据项有:公交车车牌 号,站台名,到站时间。 中间过程表 2,保存公交线路相邻两站行驶的时间,包括的数据项有:上一个公交站名,相邻下一个公交站名,两站运行的时间。

当前道路拥堵程度表,包括的数据项有:上一个公交站名,相邻下一个公交站名,两站运行的拥堵程度。

用户信息表,保存用户的个人信息,包括的数据项有:手机号码,用户名,密码,最后一次登陆时间。

用户提交路况信息表,保存用户分享的路况信息,包括的数据项有:电话号码,经度, 纬度,上传时间,类型,拥挤程度,具体细节。

3.2 逻辑结构设计

根据上面的数据项和数据结构,以及他们之间的关系,设计出的数据库表如下: 公交车实时运行信息(BusLineDataTable):

列名	数据类型	允许空
line_name	varchar(50)	否
platform_name	varchar(20)	否
platform_id	char(3)	否
bus_id	vachar(10)	否
arrive_time	datetime	否

运行公交车车牌表(bus_id)

bus_id	vachar(10)	否
--------	------------	---

中间过程表 1,保存同一条公交线路同一辆车的最新更新的两条到站数据 (result 1):

列名	数据类型	允许空
bus_id	vachar(10)	否
platform_name	varchar(20)	否
arrive_time	datetime	否

中间过程表 2, 保存同一条公交线路同一辆车经过相邻两站所用的时间 (result_2):

列名	数据类型	允许空
plat1	varchar(20)	是
plat2	varchar(20)	是
time	datetime	是

当前路况信息表 (RoadState):

列名	数据类型	允许空
platform_start	varchar(20)	是
platform_end	varchar(20)	是
state	int(11)	是

用户信息(UserInfo):

列名	数据类型	允许空
phone_num	varchar(20)	否
user_name	varchar(40)	否
user_pwd	varchar(20)	否
last_login	datetime	否

用户提交路况信息表(UserReportedInfo):

列名	数据类型	允许空
phone_num	varchar(20)	否
Latitude	double	否
longitude	double	否
report_time	datetime	否
type	varchar(20)	否
Level	varchar(20)	否
Detail	varchar(200)	是

3.3 数据库操作设计

数据库定义了一个触发器和两个存储过程来实现数据库的实时操作。

触发器 t1 是当爬虫程序得到最新的公交车运行数据,执行 insert 操作时触发。触发器 t1 触发后,调用存储过程 p1。

存储过程 p1 主要实现两个功能: 一是保证中间过程表 1 (result_1) 始终保存一辆公交车最新的两条到站数据; 二是将公交车最新的这两条数据,即相邻两站的时间做差,从而求得相邻两站最新的运行时间,并调用存储过程 p2。

存储过程 p2 实现的功能时将存储过程 p1 中得到的同一辆公交车实时更新的相邻两站的运行时间 insert 或者 update 进中间过程表 result_2 中去。