MODELITZACIÓ DEL TEMPS DE VIDA

- 1. Definició de procés de Renovació. Funció de renovació. Cas exponencial. Distribució k-Erlang
- 2. Teorema Elemental de Renovació.
- 3. Funció de Fiabilitat i funció de taxa de fallides. Distribucions importants.
- 4. Concepte de Vida Residual i Condicional. Cas exponencial. Absència de memòria.

MODELITZACIÓ DEL TEMPS DE VIDA

Procés de Renovació

Definició: Col·lecció de variables aleatòries $\{\tau_n\}$ (discretes o **continues**) amb índex discret. Indep. Mútuament Función de densidad f_{τ} Función de distribución F_{τ} Idènticament distrib.

Variables aleatòries importants: Temps fins el succés k:

$$T_k \stackrel{\triangle}{=} \sum_{\ell=1}^k \tau_\ell \longrightarrow F_{T_k}(t) \stackrel{\triangle}{=} P(T_k \le t) \longrightarrow P(N(t) = k) = P(T_k \le t \le T_{k+1}) = F_{T_k}(t) - F_{T_{k+1}}(t)$$

$$F_{T_k}(t) = 1 - \sum_{\ell=0}^{k-1} P(N(t) = \ell)$$

Número de renovacions N(t) \longrightarrow Funció de renovació: $m(t) \stackrel{\Delta}{=} E[N(t)]$

Cas $\tau_n \sim \exp \operatorname{depar}. \alpha$, $\mathrm{E}[\tau_n] = 1/\alpha$

$$f_{\tau}(t) = \begin{cases} \boldsymbol{\alpha} \cdot e^{-\alpha t} & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$F_{\tau}(t) = P(T \le t) = \int_{-\infty}^{t} f_{\tau}(t) \cdot dt = \begin{cases} 1 - e^{-\alpha t} & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$E[T] = \int_{-\infty}^{+\infty} t \cdot f_T(t) \cdot dt = \int_{0}^{+\infty} t \cdot (\alpha \cdot e^{-\alpha t}) \cdot dt = \dots = \frac{1}{\alpha}$$

$$Var[T] = \int_{-\infty}^{+\infty} (t - E[T])^2 \cdot f_T(t) \cdot dt = E[T^2] - E[T]^2 = \int_0^{+\infty} t^2 \cdot (\alpha \cdot e^{-\alpha t}) \cdot dt - \frac{1}{\alpha^2} = \dots = \frac{1}{\alpha^2}$$

Número de renovacions a [0,t]

Distribució de Poisson.

PROPIETAT 1

$$P(N(t) = k) = \frac{e^{-\alpha t} (\alpha t)^k}{k!}$$

Funció de renovació: $m(t) \stackrel{\triangle}{=} E[N(t)] = \alpha t$

Temps fins el succés $k:T_k$

$$T_k \stackrel{\Delta}{=} \sum_{\ell=1}^k \tau_\ell$$

$$T_k \stackrel{\Delta}{=} \sum_{\ell=1}^k \tau_\ell$$
 $F_{T_k}(t) = 1 - \sum_{\ell=0}^{k-1} P(N(t) = \ell) = 1 - \sum_{\ell=0}^{k-1} \frac{e^{-\alpha t} (\alpha t)^{\ell}}{\ell!}$

Defineix una variable k-Erlang

$$\mu = 1, k = 1, 2, 5, 20$$

$$E[T_k] = E[\tau_1] + \cdots + E[\tau_k] = \frac{1}{\alpha} + \cdots + \frac{1}{\alpha} = \frac{k}{\alpha} = \frac{1}{\mu}$$

$$Var[T_k] = Var[\tau_1] + \cdots + Var[\tau_k] = \left(\frac{1}{\alpha}\right)^2 + \cdots + \left(\frac{1}{\alpha}\right)^2 = \frac{k}{\alpha^2} = \frac{1}{k \cdot \mu^2}$$

$$\boldsymbol{\theta} = \frac{(Var[T_k])^{1/2}}{E[T_k]} = \frac{1}{k^{1/2}} < 1 \quad (k > 1)$$

TEOREMA ELEMENTAL DE RENOVACIÓ

• Cas τ **k-Erlang**

Es defineix un nou procés de renovació $\{\tau'_n\}$ con $\tau' = T_k$ per a k fixat.

$$k=2$$
 etapas,
E[τ]=20

• Cas τ Weibull $F_{\tau}(t) = 1 - \exp(-(t/b)^a)$

$$a=2$$
, $b=40$
E[τ]= 35,4

$$1/\mathrm{E}[\tau']{=}0{,}028$$

$$\lim_{t \to \infty} \frac{m(t)}{t} = \frac{1}{E[\tau]}$$

FUNCIÓ DE FIABILITAT.

FUNCIÓ DE TAXA DE FALLIDES

$$R_{\tau}(t) \stackrel{\Delta}{=} 1 - F_{\tau}(t)$$

$$h_{\tau}(t) = \frac{f_{\tau}(t)}{R_{\tau}(t)}$$

Distribució exponencial. $\tau_n \sim \exp \operatorname{de} \operatorname{par.} \alpha$

$$f_{\tau}(t) = \begin{cases} \boldsymbol{\alpha} \cdot e^{-\alpha t} & t \ge 0 \\ 0 & t < 0 \end{cases} \quad \mathbf{E}[\tau_n] = \mathbf{1}/\alpha, \, \mathbf{Var}[\tau_n] = \mathbf{1}/\alpha^2$$

$$h_{\tau}(t) = \frac{f_{\tau}(t)}{R_{\tau}(t)} = \frac{\alpha e^{-\alpha t}}{e^{-\alpha t}} = \alpha$$

Taxa constant. Las sol·licitacions que no ocasionen fallida del componente no ocasionen envelliment.

Funció empírica de taxa de fallides.

- a) Etapa de mort precoç. Fallides ocasionades per defectes de fabricació. El component és més vulnerable a las sol·licitacions exteriors.
- b) Etapa de vida útil. Fallides degudes a causes exteriors. Les sol·licitacions que no ocasionen fallida del component no ocasionen envelliment.
- c) Etapa de desgast. Las sol·licitacions exteriors ocasionen envelliment. A cada sol·licitació, el component és més vulnerable.

Distribució Hipoexponencial

Definició: $\tau = \sum_{i=1}^{n} t_i, t_i \sim exp$, Mútuament indep., $E[t_i] = 1/\lambda_i$. (Es suposa $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$)

Cas n=2.

$$f_{\tau}(t) = \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$$

$$F_{\tau}(t) = 1 - \frac{\lambda_2}{\lambda_2 - \lambda_1} e^{-\lambda_1 t} + \frac{\lambda_1}{\lambda_2 - \lambda_1} e^{-\lambda_2 t}$$

$$h_{\tau}(t) = \frac{\lambda_1 \lambda_2 (e^{-\lambda_1 t} - e^{-\lambda_2 t})}{\lambda_2 e^{-\lambda_1 t} - \lambda_1 e^{-\lambda_2 t}}$$

$$E[\tau] = \sum_{i=1}^{n} 1/\lambda_i, \ Var[t_i] = \sum_{i=1}^{n} 1/\lambda_i^2$$

$$C_{\tau} = \frac{\sigma_{\tau}}{E[\tau]} = \frac{\sqrt{\sum_{i=1}^{n} 1/\lambda_i^2}}{\sum_{i=1}^{n} 1/\lambda_i} \le 1$$

 $\lambda_1=1$, $\lambda_2=5$

Distribució Hiperexponencial

$$f_{\tau}(t) = \sum_{i=1}^{k} \alpha_i \lambda_i e^{-\lambda_i t}$$

$$R_{\tau}(t) = \sum_{i=1}^{k} e^{-\lambda_i t} \alpha_i$$

$$h_{\tau}(t) = \frac{\sum_{i=1}^{k} \alpha_i \lambda_i e^{-\lambda_i t}}{\sum_{i=1}^{k} \alpha_i e^{-\lambda_i t}}$$

$$\sum_{i=1}^{k} \alpha_i = 1, \ \alpha_i \ge 0$$

$$E[\tau] = \sum_{i=1}^{k} \frac{\alpha_i}{\lambda_i}$$

$$Var[\tau] = 2\sum_{i=1}^{k} \frac{\alpha_i}{\lambda_i^2} - \left(\sum_{i=1}^{k} \frac{\alpha_i}{\lambda_i}\right)^2$$

Distribució Weibull

$$f_{\tau}(t) = \frac{at^{a-1}\bar{e}^{(t/b)^a}}{b^a}$$

$$F_{\tau}(t) = 1 - \bar{e}^{(t/b)^a}$$

$$h_{\tau}(t) = \frac{a}{b} \left(\frac{t}{b}\right)^{a-1}$$

$$\begin{split} E[\tau] &= b\Gamma\left(\frac{a+1}{a}\right) \\ Var[\tau] &= b^2 \left\{ \Gamma\left(\frac{a+2}{a}\right) - \Gamma^2\left(\frac{a+1}{a}\right) \right\} \\ (\Gamma(x+1) &= x\Gamma(x); \quad \Gamma(1/2) = \sqrt{\pi} \) \end{split}$$

Distribució Lognormal

$$(\ell n \tau \sim N(\mu, \sigma))$$

$$f_{\tau}(t) = \frac{1}{t\sigma\sqrt{2\pi}} exp\left(\frac{-(\ln t - \mu)^2}{2\sigma^2}\right)$$

$$m = me(t) = \text{mediana}, \ \mu = \ell n m$$

$$E[t] = m \cdot e^{\frac{\sigma^2}{2}}$$

$$Var[t] = m^2 \omega(\omega - 1), (\omega = e^{(\sigma^2)})$$

$$C_{\tau} = \sqrt{\omega - 1}$$

CONCEPTE D'EDAT DE LA POBLACIÓ r I VIDA RESIDUAL r'.

w v.a. temps entre successos observat al triar un instant a l'atzar.

Proceso de renovación con variable aleatoria τ discreta. Tiempo discreto τ puede tomar dos valores $\tau=N$ u.t. o $\tau=n$ u.t.

$$f_{\tau}(N) = P(\tau = N) = q, \ f_{\tau}(n) = P(\tau = n) = p = 1 - q$$

 $E[\tau] = Nq + np.$

Se elige una unidad de tiempo π al azar.

$$f_w(n) = P(w = n) = P(\pi \in I_1) = \frac{np}{Nq + np} = \frac{n \cdot f_{\tau}(n)}{E[\tau]}$$

$$f_w(N) = P(w = N) = P(\pi \in I_2) = \frac{Nq}{Nq + np} = \frac{N \cdot f_{\tau}(N)}{E[\tau]}$$

$$f_w(u) = \frac{uf_{\tau}(u)}{E[\tau]}$$

CONCEPTE D'EDAT DE LA POBLACIÓ.

$$P(r = x \mid \pi \in I_1) = \begin{cases} \frac{1}{n} & 0 \le x \le n - 1 \\ 0 & x > n - 1 \end{cases}$$

 τ_{i-1}

$$P(r = x \mid \pi \in I_2) = \begin{cases} \frac{1}{N} & 0 \le x \le N - 1\\ 0 & x > N - 1 \end{cases}$$

$$f_r(x) = P(r = x) = P(r = x \mid \pi \in I_1) \cdot P(\pi = I_1) + P(r = x \mid \pi \in I_2) \cdot P(\pi = I_2) = \begin{cases} \frac{1}{|\pi|-1|} & 0 \le x \le n-1 \end{cases}$$

$$= \left\{ \begin{array}{cc} \frac{1}{\mathrm{E}[\tau]} & 0 \le x \le n-1 \\ \frac{q}{\mathrm{E}[\tau]} & n-1 < x \le N-1 \\ 0 & x > N-1 \end{array} \right\} = \frac{1-F_{\tau}(x)}{\mathrm{E}[\tau]} = \boxed{\frac{R_{\tau}(x)}{\mathrm{E}[\tau]}}$$

En general:

$$E[w] = \frac{1}{E[\tau]} \int_0^\infty w^2 f_{\tau}(w) dw = \frac{Var[\tau] + E^2[\tau]}{E[\tau]} = E[\tau](1 + C_{\tau}^2)$$

Exemples:

$$\tau \sim unif[0,T], \ C_{\tau} = \frac{T/\sqrt{12}}{T/2} = \frac{1}{\sqrt{3}}$$

$$f_w(u) = \frac{2u}{T^2}, \ 0 \le u \le T, \quad E[w] = \frac{2}{3}T \ \left(> E[\tau] = \frac{T}{2} \right)$$

$$f_r(x) = \frac{R_{\tau}(x)}{E[\tau]} = \frac{1 - x/T}{T/2} = \frac{2(T - x)}{T^2}, \ E[r] = 2\int_0^T \alpha \frac{T - \alpha}{T^2} d\alpha = \frac{T}{3}$$

Exemples:

$$\tau \sim \exp, \ C_{\tau} = 1$$

$$f_w(u) = \frac{u\lambda e^{-\lambda u}}{1/\lambda} = u\lambda^2 e^{-\lambda u} \rightarrow w \sim 2\text{-Erlang} \rightarrow E[w] = \frac{2}{\lambda}$$

$$f_r(x) = \frac{e^{-\lambda x}}{1/\lambda} = \lambda e^{-\lambda x} \to r \sim \exp \to E[r] = \frac{1}{\lambda}$$

CONSEQUENCIES: ÉS INÚTIL REEMPLAÇAR UNITATS "VELLES":

TENEN IGUAL TEMPS RESIDUAL DE VIDA QUE LES NOVES.

TEMPS DE VIDA CONDICIONAL

$$f_{s|\theta}(x) = P(x \le s \le x + dx \mid \tau \ge \theta) = \frac{f_{\tau}(x + \theta)}{R_{\tau}(\theta)}$$

PROPIETAT 2. Cas exponencial. Absència de memoria

$$f_{s|\theta}(x) = \frac{\lambda e^{-\lambda(x+\theta)}}{e^{-\lambda\theta}} = \lambda e^{-\lambda x}$$

$$\text{Si } \tau \sim exp \implies \text{E}[s|\theta] = \text{E}[\tau]$$

Si
$$\tau \sim exp \implies \mathrm{E}[s|\theta] = \mathrm{E}[\tau]$$

$$\tau \sim \text{unif}[0, T], \ F_{\tau}(t) = t/T, \ 0 \le t \le T$$

$$f_{s|\theta}(t) = \frac{1/T}{1 - \theta/T}$$
, $0 \le x \le T - \theta$

$$s|\theta \sim \text{unif}[0, T - \theta] \rightarrow \text{E}[s|\theta] = \frac{T - \theta}{2}$$

$$F_{ au}(t_\ell)pprox 1-rac{M_\ell}{M_0}$$
 , $R_{ au}(t_\ell)pprox rac{M_\ell}{M_0}$

$$F_{ au}(t_{\ell}) pprox 1 - rac{M_{\ell}}{M_0} , \quad R_{ au}(t_{\ell}) pprox rac{M_{\ell}}{M_0}$$

$$f_{\tau}(t_{\ell}) \approx \frac{M_{\ell} - M_{\ell+1}}{M_0}, \quad \ell = 0, 1, 2, ...k - 1.$$

$$p_{\ell} = \frac{M_{\ell+1}}{M_{\ell}}, \quad \ell = 0, 1, 2, ...k - 1.$$

$$q_{\ell} = 1 - p_{\ell} = \frac{M_{\ell} - M_{\ell+1}}{M_{\ell}} = \frac{(M_{\ell} - M_{\ell+1})/M_0}{M_{\ell}/M_0} \approx h_{\tau}(t_{\ell})\Delta t.$$

Probabilidades de estado estacionario

$$\begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\ p_0 & -1 & 0 & 0 & \cdots & \cdots & 0 \\ 0 & p_1 & -1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & -1 & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & p_{k-1} & -1 \end{bmatrix} \begin{bmatrix} \pi_0 \\ \pi_1 \\ \pi_2 \\ \vdots \\ \vdots \\ \pi_k \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{bmatrix}$$

$$\pi_0 = \left[1 + \sum_{i=0}^{k-1} \prod_{j=0}^{i} p_j \right]^{-1}; \qquad \pi_i = \pi_0 \prod_{j=0}^{i-1} p_j, \quad i = 1, 2, \dots k$$

Aproximan la distribución de la edad de la población

$$\pi_j \rightarrow p(t_j) = \frac{R(t_j)}{\int_0^T R(x) dx} = \frac{R(t_j)}{E[\tau]}$$

Pràctica 1. Temps de vida. (CONTINGUTS ORIENTATIUS. SIBJECTE A CANVIS)

L'objectiu de la pràctica és l'avaluació de la distribució de probabilitats per la edat de la població i la seva esperança per a una distribució de temps de vida Weibull, amb paràmetres determinats.

Per a la realització de la pràctica s'utilitzarà la macro Pm1 1.mtb

Es suposa una funció de distribució de probabilitat del tipus:

$$F(t) = 1 - \exp\left(-\left(\frac{t}{b}\right)^{a}\right)$$

Es proporcionaran els paràmetres a, b.

Preparació inicial: (per exemple per a a=2, b=40)

- 1. Copiar en el directori de treball el fitxer sample IOEP1.MPJ i obriu-lo.
- 2. Guardar en les constants K5 i K6 els paràmetres *a,b*:

MTB> let
$$K5 = 2$$

MTB> let $K6 = 40,0$

3. Amb l'ajut de MINITAB, calculeu el temps T tal que: $P(t \le T)=0.998$

```
MTB > InvCDF 0,998;
SUBC> Weibull 2 40.
```

4. Preneu com longitud del subinterval de temps T/20

MTB> let
$$K4 = T/20,0$$

5. Fixeu un número de components inicials determinat (p.ex. 1000) emmagatzemeu-lo en la constant K1:

MTB > let K1 = 1000,0

EXECUCIÓ de la PRÀCTICA

Desprès de la preparació inicial:

Executeu la macro P1m 1.mtb mitjançant:

Després de l'acció d'aquesta macro s'emplenaran les columnes del full de càlcul, es mostrarà per terminal la esperança E[t] (valor aproximat)

Resultats:

K2 = Aproximació de E[t]

Densitat de probabilitat: Probabilitat acumulada: Funció de taxa de fallides:

Descripció de la Macro Plm 1.mtb

Objectiu:

Calcula en un full de càlcul MINITAB la funció de densitat, de probabilitat acumulada y de taxa de fallides per a una distribució del temps de vida.

Paràmetres d'entrada:

K1 = Número de components inicial M0

K4 = Longitud de l'interval de temps.

K5, K6 = paràmetres de la distribució del temps de vida.

En el full de càlcul apareixen:

't'	Instant de temps			
'f(t)'	Valors de la funció densitat de probabilitat			
'Fdis(t)'	Valors de la funció de probabilitat acumulada F(t)			
'h(t)'	Valors de la funció de taxa de fallides			
'R(t)'	Valors de la funció de fiabilitat R(t) = 1-F(t)			
'Mlteo'	Número de components supervivents " "			
'Ml'	Id. però arrodonit.			

Pràctica 1. QÜESTIONARI.							
	om i Cognoms 1: om i Cognoms 2:			Curs: Data:			
Va	llors per a:						
	5) a = 6) b =	T = (K4) T/20 =	(K1) Mo =				
1.		ro P1m_1.mtb. nulada i funció de		aproximadament les funcions de densitat de proba	bilitat,		
2.	Valor per al temp	s mig de vida, E	[t] ≅ .				
3. Calculeu la funció de densitat de probabilitat de la variable aleatòria <i>r</i> (temps de vida de la población)							
4. Calculeu el valor de la edat mitjana de la població i de la vida residual r' , $E[r] \cong E[r'] \cong .$							
6.	Fent servir els va $P(t \ge T/2) =$		erat les macros $P1m_{\underline{}}$ $(r \ge T/2) =$	_1.mtb., P1m_2.mtb. digueu quan val			
7.			ibull de paràmetres a ara continuï funciona	a, b. Sabent que ha iniciat el seu funcionament fa (ant?	0,75 T		
8.	reemplaça per ur funcionar en un	de nou sempre.	En un taller mecànic uants mecanismes és	n d'aquests motors. Després d'una fallida el mo c hi ha 100 d'aquests mecanismes que varen come s de esperar que estiguin funcionant amb un moto	nçar a		