Operator Positivstellensätze for noncommutative polynomials positive on matrix convex sets

Aljaž Zalar, University of Ljubljana, Slovenia

IWOTA 2016

Main results

Main results:

- Operator linear Positivstellensatz: the characterization of the inclusion of free Hilbert spectrahedra.
- **Matrix linear Gleichstellensatz:** the characterization of the equality of free spectrahedra.
- Operator convex Positivstellensatz: the characterization of the inclusion of a free Hilbert spectrahedron in the free positivity domain of a matrix polynomial.

Main results

Main results:

- Operator linear Positivstellensatz: the characterization of the inclusion of free Hilbert spectrahedra.
- **Matrix linear Gleichstellensatz:** the characterization of the equality of free spectrahedra.
- Operator convex Positivstellensatz: the characterization of the inclusion of a free Hilbert spectrahedron in the free positivity domain of a matrix polynomial.

Context: Operator version of the results of Helton, Klep and McCullough.

Notation

```
\mathcal{H}, \mathcal{H}_1, \mathcal{H}_2, \mathcal{K}, \mathcal{G} ... separable real Hilbert space B(\mathcal{H}) ... an algebra of bounded linear operators on \mathcal{H} \mathbb{S}_{\mathcal{H}} ... a vector space of self-adjoint operators on \mathcal{H} I_{\mathcal{H}} ... the identity operator on \mathcal{H} \mathbb{S}_n ... real symmetric n \times n matrices
```

Linear pencils and LOI sets

For $A_0, A_1, \ldots, A_g \in \mathbb{S}_{\mathscr{H}}$, the expression

$$L(x) = A_0 + \sum_{j=1}^g A_j x_j$$

is a linear operator pencil (LOP).

- **1** If $\dim(\mathcal{H}) < \infty$, then L(x) is a **linear matrix pencil (LMP)**.
- ② If $A_0 = I_{\mathcal{H}}$, then L is **monic**.

Linear pencils and LOI sets

For a tuple $X=(X_1,\ldots,X_g)\in\mathbb{S}_n^g$, the **evaluation** L(X) is defined as

$$L(X) = A_0 \otimes I_n + \sum_{j=1}^g A_j \otimes X_j,$$

where \otimes stands for a tensor product of vector spaces.

Linear pencils and LOI sets

For a tuple $X=(X_1,\ldots,X_g)\in\mathbb{S}_n^g$, the **evaluation** L(X) is defined as

$$L(X) = A_0 \otimes I_n + \sum_{j=1}^g A_j \otimes X_j,$$

where \otimes stands for a tensor product of vector spaces. We call the set

$$D_L(1) = \{ x \in \mathbb{R}^g \colon L(x) \succeq 0 \}$$

a Hilbert spectrahedron or a LOI domain and the set

$$D_L = (D_L(n))_n$$
 where $D_L(n) = \{X \in \mathbb{S}_n^g \colon L(X) \succeq 0\},$

a free Hilbert spectrahedron or a free LOI set.

Inclusion and equality of free Hilbert spectrahedra

Given L_1 and L_2 monic linear operator pencils

$$L_1(x) := I_{\mathcal{H}_1} + \sum_{j=1}^g A_j x_j, \quad L_2(x) := I_{\mathcal{H}_2} + \sum_{j=1}^g B_j x_j,$$

where $A_j \in \mathbb{S}_{\mathscr{H}_1}$ and $B_j \in \mathbb{S}_{\mathscr{H}_2}$, we are interested in the algebraic characterization of the inclusion and equality of the free LOI sets:

- **1** When does $D_{L_1} \subseteq D_{L_2}$ hold?
- ② When does $D_{L_1} = D_{L_2}$ hold?

Problem
Solution
Monicity
Some notation and definitions
Solution
Counterexamples for the operator case

Operator linear Positivstellensatz

Theorem (Z.; Davidson, Dor-On, Shalit, Solel)

For LOPs $L_1 \in \mathbb{S}_{\mathscr{H}_1}\langle x \rangle$, $L_2 \in \mathbb{S}_{\mathscr{H}_2}\langle x \rangle$ the inclusion $D_{L_1} \subseteq D_{L_2}$ is true if and only if there exist:

- $oldsymbol{0}$ a separable real Hilbert space $\mathcal K$,
- 2 a contraction $V: \mathcal{H}_2 \to \mathcal{K}$,
- **3** a positive semidefinite operator $S \in B(\mathcal{H}_2)$ and
- **1** a *-homomorphism $\pi: B(\mathscr{H}_1) \to B(\mathscr{K})$ such that

$$L_2 = S + V^*\pi(L_1)V.$$

Problem
Solution
Monicity
Some notation and definitions
Solution
Counterexamples for the operator case

Operator linear Positivstellensatz

Theorem (Z.; Davidson, Dor-On, Shalit, Solel)

For LOPs $L_1 \in \mathbb{S}_{\mathscr{H}_1}\langle x \rangle$, $L_2 \in \mathbb{S}_{\mathscr{H}_2}\langle x \rangle$ the inclusion $D_{L_1} \subseteq D_{L_2}$ is true if and only if there exist:

- $oldsymbol{0}$ a separable real Hilbert space \mathcal{K} ,
- **2** a contraction $V: \mathcal{H}_2 \to \mathcal{K}$,
- **3** a positive semidefinite operator $S \in B(\mathcal{H}_2)$ and
- **4 a** *-homomorphism $\pi: B(\mathscr{H}_1) \to B(\mathscr{K})$ such that

$$L_2 = S + V^*\pi(L_1)V.$$

Moreover, if $D_{L_1}(1)$ is bounded, then V can be chosen to be isometric and π a unital *-homomorphism.

Monicity necessary

Example

Let

$$L(y) = \left| \begin{array}{cc} 1 & y \\ y & 0 \end{array} \right|, \quad \ell(y) = y,$$

be a non-monic LMP and a polynomial, respectively. Then

$$\cup_n \{0_n\} = D_L \subseteq D_\ell = \cup_n \{X \in \mathbb{S}_n \colon X \succeq 0\},\$$

but the conclusion of LPsatz is not true.

Solution
Monicity
Some notation and definitions
Solution
Counterexamples for the operator case

Polar duals and operator convex hulls

The operator free polar dual $\mathcal{K}^{\mathscr{K},\circ}$ of a free set $\mathcal{K}\subseteq\mathbb{S}^g$ in \mathscr{K} is

$$\mathcal{K}^{\mathscr{K},\circ} = \left\{ A \in \mathbb{S}_{\mathscr{K}}^{\mathsf{g}} \colon L_A(X) = I_{\mathscr{K}} \otimes I + \sum_{j=1}^{\mathsf{g}} A_j \otimes X_j \succeq 0 \text{ for all } X \in \mathcal{K} \right\}.$$

The **operator Hilbert convex hull** oper-conv $_{\mathscr{K}}\{A\}$ of $A:=(A_1,\ldots,A_g)\in\mathbb{S}_{\mathscr{H}}^g$ in \mathscr{K} is the set

$$\mathsf{oper\text{-}conv}_\mathscr{K}\{A\} := \bigcup_{(\mathscr{G},\pi,V)\in\Pi} (V^*\pi(A_1)V,\ldots,V^*\pi(A_g)V),$$

where Π is the set of all triples (\mathcal{G}, π, V) of a separable real Hilbert space \mathcal{G} , a contraction $V : \mathcal{K} \to \mathcal{G}$ and a unital *-homomorphism $\pi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{G})$.

Counterexamples for the operator case

Polar duals and operator convex hulls

Corollary

Suppose

$$L := I_{\mathscr{H}} + \sum_{j=1}^{g} A_j x_j \in \mathbb{S}_{\mathscr{H}} \langle x \rangle$$

is a monic LOP. Then

$$(D_L)^{\mathcal{K},\circ} = \mathsf{oper\text{-}conv}_{\mathcal{K}}\{(A_1,\ldots,A_g)\}.$$

Counterexamples for the operator case

Equality of free Hilbert spectrahedra - definitions

Minimality of a pencil: Let H be a closed subspace of $\mathscr H$ such that

$$A_jH\subseteq H$$
 for $j=0,\ldots,g$.

Then L is unitarily equivalent to

$$\begin{pmatrix} L|_{H} & 0 \\ 0 & L|_{H^{\perp}} \end{pmatrix} := \begin{pmatrix} I_{H} + \sum_{j=1}^{g} (A_{j})|_{H} x_{j}, & 0 \\ 0 & I_{H^{\perp}} + \sum_{j=1}^{g} (A_{j})|_{H^{\perp}} x_{j} \end{pmatrix}.$$

If there is no proper closed subspace of \mathcal{H} such that $D_L = D_{L|_H}$, then L is σ -minimal pencil.

Equality of free spectrahedra - solution

Theorem (Linear Gleichstellensatz)

Let L_1 , L_2 be monic σ -minimal LMIs. Then $D_{L_1} = D_{L_2}$ if and only there is a unitary matrix U such that

$$L_2 = U^*L_1U$$
.

For LMIs with bounded D_{L_1} LG was proved for LMIs by Helton, Klep, McCullough in 2010, while for LOIs with compact operator coefficients and bounded D_{L_1} by Davidson, Dor-On, Shalit, Solel in 2016.

Counterexamples for the operator case

Nonexistence of σ -minimal operator subpencil

Example

Let

$$L(x) = I_{\ell^2} + \operatorname{diag}\left(\frac{n}{n+1}\right)_{n \in \mathbb{N}} x$$

be a diagonal linear operator pencil with coefficients from $B(\ell^2(\mathbb{N}))$. Then

$$D_L(m) = \{X \in \mathbb{S}_m \colon X \succeq -I_{\ell^2}\}$$

and there does not exist a σ -minimal whole subpencil of L.

Counterexamples for the operator case

Counterexample to the operator Linear Gleichstellensatz

Example

Let $S_1, S_2 \in B(\ell^2(\mathbb{N}))$ be defined by

$$e_i \mapsto e_{2i-1}$$
 and $e_i \mapsto e_{2i}$ for $i \in \mathbb{N}$

respectively. Cuntz C^* -algebra $C^*(S_1, S_2)$ has a unique *-isomorphism θ such that

$$\theta(S_1) = S_2, \quad \theta(S_2) = S_1.$$

Let

$$A_1:=S_1+S_1^*,\quad A_2:=S_2+S_2^*,$$

$$A_3 := i(S_1 - S_1^*), \quad A_4 := i(S_2 - S_2^*).$$

Counterexamples for the operator case

Counterexample to the operator Linear Gleichstellensatz

Example

The LOPs

$$L_1(x) = I_{\ell^2} + A_1x_1 + A_2x_2 + A_3x_3 + A_4x_4,$$

$$L_2(x) = I_{\ell^2} + A_2x_1 + A_1x_2 + A_4x_3 + A_3x_4$$

are σ -minimal pencils with $D_{L_1}=D_{L_2}$, but there is no unitary operator $U:\ell^2\to\ell^2$ such that

$$L_2 = U^* L_1 U$$
 or $L_2 = U^* \overline{L_1} U$.

Noncommutative (nc) polynomials

```
\langle x \rangle \dots free monoid generated by x = (x_1, \dots, x_g) \mathbb{R}\langle x \rangle \dots the associative \mathbb{R}-algebra freely generated by x f \in \mathbb{R}\langle x \rangle \dots noncommutative (nc) polynomial \deg(f) \dots the length of the longest word in f
```

Involution * fixes $\mathbb{R} \cup \{\emptyset\}$, reverses the order of words, and acts linearly on polynomials.

Polynomials invariant under this involution are symmetric.

Noncommutative (nc) polynomials

Operator-valued nc polynomials are the elements of the form

$$P = \sum_{w \in \langle x \rangle} A_w \otimes w \in B(\mathcal{H}_1, \mathcal{H}_2) \otimes \mathbb{R} \langle x \rangle,$$

where the sum is finite.

The involution * extends to $B(\mathcal{H}) \otimes \mathbb{R}\langle x \rangle$ by

$$P^* = \sum_{w \in \langle x \rangle} A_w^* \otimes w^* \in B(\mathscr{H}_2, \mathscr{H}_1) \otimes \mathbb{R} \langle x \rangle.$$

If $P = P^*$, then we say P is **symmetric**.

Polynomial evaluations

If $P \in B(\mathcal{H}) \otimes \mathbb{R}\langle x \rangle$ and $X \in M_n^g$, then the **evaluation**

$$P(X) \in B(\mathcal{H}) \otimes M_n$$

is defined by replacing x_i by X_i and sending the empty word to the identity operator on \mathcal{K} .

 $P = P^*$ determines the **free Hilbert semialgebraic set** by

$$D_P = (D_P(n))_n$$
 where $D_P(n) = \{X \in \mathbb{S}_n^g \colon P(X) \succeq 0\}.$

Positivstellensatz problem

Suppose $L \in \mathbb{S}_{\mathscr{H}}\langle x \rangle$ is a monic linear operator pencil (LOP) and

$$P = P^* \in \mathcal{B}(\mathscr{K}) \otimes \mathbb{R}\langle x \rangle$$

a symmetric operator-valued nc polynomial such that

$$D_L \subseteq D_P$$
.

The problem is to find an algebraic expression for the polynomial ${\it P}$ in terms of the polynomial ${\it L}$.

Operator convex multivariate Positivstellensatz

Theorem (Operator convex multivariate Positivstellensatz)

Let $L \in \mathbb{S}_{\mathscr{H}}\langle x \rangle$ be a monic LOP and $P = P^* \in \mathbb{R}^{\nu \times \nu}\langle x \rangle$ a matrix-valued nc polynomial. Then $D_L \subseteq D_P$ is true if and only if there exist:

- $oldsymbol{0}$ a separable real Hilbert space \mathcal{K} ,
- **2** a *-homomorphism $\pi: B(\mathcal{H}) \to B(\mathcal{K})$,
- **1** matrix polynomials $R_j \in \mathbb{R}^{\nu \times \nu} \langle x \rangle$ and
- **1** operator polynomials $Q_k \in B(\mathbb{R}^{\nu}, \mathcal{K}) \otimes \mathbb{R}\langle x \rangle$

all of degree at most $\frac{\deg(P)+2}{2}$ such that

$$P = \sum_{j} R_j^* R_j + \sum_{k} Q_k^* \pi(L) Q_k.$$

Operator convex univariate Positivstellensatz

Theorem (Operator convex univariate Positivstellensatz)

Let $L = I_{\mathscr{H}} + A_1 y \in \mathbb{S}_{\mathscr{H}} \langle y \rangle$ be a univariate monic LOP and $P = P^* \in \mathcal{B}(\mathscr{K}) \otimes \mathbb{R} \langle x \rangle$ an operator-valued nc polynomial. Then $D_L \subseteq D_P$ is true if and only if there exist:

- a separable real Hilbert space G,
- **2** a *-homomorphism $\pi: B(\mathcal{H}) \to B(\mathcal{G})$ and
- **3** operator polynomials $R_j \in B(\mathcal{K}) \otimes \mathbb{R}\langle x \rangle$ and $Q_k \in B(\mathcal{K}, \mathcal{G}) \otimes \mathbb{R}\langle x \rangle$

all of degree at most $\frac{\deg(P)+2}{2}$ such that

$$P = \sum_{j} R_j^* R_j + \sum_{k} Q_k^* \pi(L) Q_k.$$

Monicity necessary

Example

Let

$$L(y) = \operatorname{diag}\left(-\frac{1}{n} + \frac{y}{n^2}\right)_{n \in \mathbb{N}}$$

be a diagonal LOP and $\ell(y) = -1$ a constant polynomial. Then

$$\emptyset = D_L = D_\ell$$

but the conclusion of CPsatz is not true.

Thank you for your attention!