```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

df = pd.read csv("uber.csv")

df.head()

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longit
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200000 non-null	int64
1	key	200000 non-null	object
2	fare_amount	200000 non-null	float64
3	pickup_datetime	200000 non-null	object
4	pickup_longitude	200000 non-null	float64
5	pickup_latitude	200000 non-null	float64
6	dropoff_longitude	199999 non-null	float64
7	dropoff latitude	199999 non-null	float64
8	passenger_count	200000 non-null	int64

dtypes: float64(5), int64(2), object(2)

memory usage: 13.7+ MB

df=df.drop(['Unnamed: 0', 'key'], axis=1)

df.shape

(200000, 7)

```
df.dtypes
df.describe()
df.isnull().sum()
     fare amount
                           0
    pickup datetime
                           0
    pickup_longitude
                           0
    pickup_latitude
                           0
    dropoff longitude
                           1
    dropoff latitude
                           1
    passenger count
                           0
    dtype: int64
df['dropoff_latitude'].fillna(value=df['dropoff_latitude'].mean(), inplace=True)
df['dropoff longitude'].fillna(value=df['dropoff longitude'].mean(), inplace=Tru
df.isnull().sum()
     fare amount
                           0
    pickup_datetime
                           0
    pickup longitude
                           0
    pickup_latitude
                           0
    dropoff_longitude
dropoff_latitude
                           0
                           0
                           0
    passenger_count
    dtype: int64
```

corr=df.corr()

corr

<ipython-input-11-0a2117a8e592>:1: FutureWarning: The default value of nume
 corr=df.corr()

	fare_amount	<pre>pickup_longitude</pre>	<pre>pickup_latitude</pre>	dropoff_l
fare_amount	1.000000	0.010457	-0.008481	
pickup_longitude	0.010457	1.000000	-0.816461	
pickup_latitude	-0.008481	-0.816461	1.000000	-
dropoff_longitude	0.008986	0.833026	-0.774787	
dropoff_latitude	-0.011014	-0.846324	0.702367	-
passenger_count	0.010150	-0.000414	-0.001560	

x=df[['pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latit
v=df['fare amount']

```
from sklearn.model selection import train test split
X train, X test, Y train, Y test=train test split(x,y,test size=0.33)
from sklearn.linear_model import LinearRegression
regression=LinearRegression()
regression.fit(X train, Y train)
prediction=regression.predict(X test)
print(prediction)
    [11.36392632 11.29399232 11.2942145 ... 11.36430671 11.29528197
     11.29509535]
Y_test
    145149 9.3
    155648
             11.0
    124903
             9.5
             4.5
    90823
    174857
             5.7
              . . .
    57547
            14.0
    57835
              4.5
    123562
              13.0
    76365
             15.5
    106005
              9.3
    Name: fare amount, Length: 66000, dtype: float64
from sklearn.metrics import r2 score, mean squared error
print(r2 score(Y test, prediction))
MSE=mean squared error(Y test, prediction)
print(MSE)
print(np.sqrt(MSE))
    1.203615155009885e-05
    101.07593364758644
    10.053652751492187
from sklearn.ensemble import RandomForestRegressor
rf=RandomForestRegressor(n_estimators=100)
rf.fit(X train, Y train)
y pred=rf.predict(X test)
print(y_pred)
    [11.778 14.238 8.483 ... 10.907 15.34 7.024]
print(r2_score(Y_test, y_pred))
```

```
mser=mean_squarea_error(r_test, y_prea)
print(mser)
print(np.sqrt(mser))print(r2_score(Y_test, y_pred))
mser=mean_squared_error(Y_test, y_pred)
print(mser)
print(np.sqrt(mser))

0.7287275728764295
27.419443868943556
5.2363578820534755
```