12. Ansambli

Strojno učenje 1, UNIZG FER, ak. god. 2021./2022.

Jan Šnajder, natuknice s predavanja, v1.3

1 Kombiniranje klasifikatora

- "No free lunch theorem" niti jedan algoritam ne radi najbolje na svim problemima
- Različiti algoritmi ne griješe na isti način, pa ih ima smisla kombinirati
- Kombinacija osnovnih klasifikatora (base learners) u meta-klasifikator
- Kod nekih metoda, osnovni klasifikatori su slabi klasifikatori (weak learners)
- Osnovni klasifikatori trebaju biti različiti i komplementarni
- Komplementarnost ⇒ različiti skupovi za učenje, značajke, algoritmi/hiperparametri

2 Glasanje i stacking

• Glasanje – težinska predikcija L osnovnih klasifikatora:

$$h(\mathbf{x}; \mathbf{w}) = \underset{y}{\operatorname{argmax}} \sum_{j=1}^{L} w_j \mathbf{1} \{ h_j(\mathbf{x}) = y \}$$

gdje su w_j težine osnovnih klasifikatora, $w_j \ge 0$, $\sum w_j = 1$

• $w_j = 1/L \Rightarrow$ većinsko glasanje

• Glasanje kod regresije:

$$h(\mathbf{x}; \mathbf{w}) = \frac{1}{L} \sum_{j=1}^{L} w_j h_j(\mathbf{x})$$

• Vjerojatnost da većina od L klasifikatora pogriješi:

$$\sum_{i=\lfloor L/2\rfloor}^{L} {L \choose i} E^{i} (1-E)^{L-i}$$

 \Rightarrow pogreška ansambla ovisi o Li pogrešci Eosnovnih klasfikatora

• $E < 0.5 \Rightarrow$ točnost ansambla monotono raste sa L:

ullet Varijanca ansambla (uz pretpostavku da su h_j nezavisni i imaju jednaku varijancu):

$$\operatorname{Var}(h(\mathbf{x})) = \operatorname{Var}\left(\frac{1}{L}\sum_{j}h_{j}(\mathbf{x})\right) = \frac{1}{L^{2}}\operatorname{Var}\left(\sum_{j}h_{j}(\mathbf{x})\right) = \frac{1}{L^{2}}L\operatorname{Var}(h_{j}(\mathbf{x})) = \frac{1}{L}\operatorname{Var}(h_{j}(\mathbf{x}))$$

 \Rightarrow varijanca se smanjuje proporcionalno sa L

• Stacking – meta-klasifikator treniran na predikcijama osnovnih klasifikatora

2

• Meta-klasifikator se uči na izdvojenom skupu (unakrsna provjera)

3 Bagging

- ullet Bagging (bootstrap aggregating) treniranje na L poduzoraka skupa za učenje
- Poduzorci dobiveni **uzorkovanjem s ponavljanjem** (sampling with replacement)
- ullet Vjerojatnost neuključivanja primjera u uzorak veličine N:

$$\lim_{N\to\infty} \left(1-\frac{1}{N}\right)^N = \frac{1}{e}\approx 0.368$$

- \Rightarrow vjerojatnost uključivanja primjera je $1-0.368=0.632\Rightarrow$ "0.632 bootstrap"
- Primjer: bagging za regresiju:

- Problem: osnovni klasifikatori su visoko korelirani
- Slučajna šuma bagging sa stablima odluke kao osnovnim klasifikatorima
- Dodatna diverzifikacija slučajnim odabirom podskupom značajki
- Konačna predikcija ⇒ većinsko glasanje

Slučajna šuma

- 1: $forest \leftarrow \emptyset$
- 2: Za j = 1 ... L
- 3: $\mathcal{D}_i \leftarrow \text{bootstrap uzorak}$
- 4: $\mathcal{F}_j \leftarrow \text{odabir } n' \text{ značajki}$
- 5: h_j \leftarrow treniraj stablo odluke na \mathcal{D}_j sa značajkama \mathcal{F}_j
- 6: $forest \rightarrow forest \cup \{h_i\}$

4 Boosting

• Boosting – slijedno učenje algoritama na pogreškama prethodnih algoritama

- Krenuvši od slabih klasifikatora, dobivamo jak klasifikator
- AdaBoost iterativno mijenjanje distribucije uzorkovanja u ovisnosti o pogrešci
- \bullet Početna vjerojatnost uzorkovanja 1/N, raste za pogrešno klasificirane primjere

AdaBoost

- inicijaliziraj težine primjera na $w^i_j=1/N$
- $\text{Za } j = 1 \dots L$
- $\mathcal{D}_j \leftarrow \text{bootstrap}$ uzorak s težinama \mathbf{w}_j
- $h_j \leftarrow \text{treniraj klasifikator na } \mathcal{D}_j$
- izračunaj pogrešku učenja E_j 5:
- pouzdanost $\alpha_j \leftarrow \ln \frac{1 E_j}{E_j}$ 6:
- ažuriraj težine primjera: $w_{j+1}^i \leftarrow w_j^i \exp\left(\alpha_j \mathbf{1}\{h_j(\mathbf{x}^{(i)}) \neq y^{(i)}\}\right)$ normaliziraj vektor: $\mathbf{w}_{j+1} \leftarrow \frac{\mathbf{w}_{j+1}}{\|\mathbf{w}_{j+1}\|}$ 7:
- 8:
- Konačna predikcija ⇒ težinsko glasanje:

$$h(\mathbf{x}; \boldsymbol{\alpha}) = \underset{y}{\operatorname{argmax}} \sum_{j=1}^{L} \alpha_j \mathbf{1} \{ h_j(\mathbf{x}) = y \}$$

- Osnovni klasifikator: često panj odluke (decision stump) stablo odluke dubine 1
- Primjer (iz MLPP):

• Osnovni modeli zapravo minimiziraju **eksponencijalni gubitak** (zelena krivulja):

$$L(y, h(\mathbf{x})) = \exp(-yh(\mathbf{x}))$$

- \Rightarrow strogo kažnjavanje pogrešno klasificiranih primjera
- Alternativni algoritmi boostinga: logit boost, gradient boosting

 $SA\check{Z}ETAK$