ASSIGNMENT-2.

08

De Rephrase the definitions for the reflexive, Symmetrie, transfére, la antisymmetric properties of a relation 2 (on a set A), using quantifiers.

If R is a relation, A to A, then R CAXA; we say that R is a relation on A.

A relation R on A û said to be?

* reflexive: if (a, a) ER Y a EA,

* symmetric: if (a,b) ER => (b,a) ER \ a,b EA

* transitive: if [(a,b) ER 1 (b,c) ER] => (a,c) ER +
a,b,c EA.

* antisymmetrie : if $[(a,b) \in R \land (b,a) \in R] \Rightarrow a=b + a,b \in A$.

b) Use of results of past (a) to specify when a relation iR Conaset

A) is (i) not reflexive (ii) not symmetric, (iii) not transitive

& IV) not antisymmetric

If Ris a relation from A to A, then RCAXA; We say that Risa relation on A.

A relation R on A is said to be :-

* reflexive : if (a,a) &R Y a EA

* not symmetric: if $(a,b) \in R \Rightarrow (b,a) \notin R \quad \forall \ a,b \in A$

* not transitive : if [ca,b) ER 1 (b,c) ER] => (a,c) &R \ a,b,c \ EA

* not antisymmetric : if [(a,b) ER 1 (b,a) ER] => a>b + a,b & A.

For each of the following statements about relations on a set A, where IAI = n, defermine whether the statement is true or falle If it is false, give a counterexample.

a) if Risa relation on A & IRII > n, then Ris reflexive. 6) if R1, 1R2 are relations on A & R2 2R1, then R1 reflexives (Symmetric, antisymmetric, transitive) => R2 reflexive (symmetric, il R1, R2 are relations on A & R2 = R1 then Ra reflexive Csymmetrie, antisymmetrie, transfere) => R1 reflexive Csymmetric antisymmetrie, transitive). antisymmetric, transcrive) d) if IR is an equivalence relation on A then $n \leq |R| \leq n^2$. Ans: a) No (False), not exerytime Ris reflexive IIRI > n Counterexample: False: let A = 21, 27, &R = 2(1, 2), (2,1)} dere R à not reflexive b) We have, Ri, Ra > relations Let A = 21,29, R= 20,1), & Ra = 2(1,1), (1,a)} (1) Réflexive : True Checause if Ri is reflexive than it must contain all elements of A, & R2 is also reflexive as R2 2R1 Or we can say if R1 is reflexive =) Ra is reflerive :- as (R1=R2) (11) Symmetric : False. let A = 21,23, R=2(1,1) & Ra = 2(1,1),(1,2)} So, Ri à symmetrie but Ra le not symmetrie. Antisymmetric: False Let A=21,23, R1 = 2(1,2) & Ra = 2(1,2), (2,1)}

So, Ri à antésymmetric but Ra à not antésymmetric (17) Transifire : false

A=21,23, $R_1=\frac{1}{2}(1,0)$ & $R_2=\frac{1}{2}(1,0)$, (2,1)} dere R_1 & transitive but R_2 is not transitive.

(c) We have R1, R2 -> refations on A.
R2 = R1

(1) Reflexive: False.

Let (A = 21, 27), Ra=2(1,1), (2,2) } &R_1 = 2(1,1)}

dere, Rg & reflexive but Ra is not reflexive.

(11) Symmetric :- False let A=21,23, Ra = 2U,2), (2,1)}, R_1 = 2C1,2)} dere, Ra is symmetric but R1 is not symmetric.

(III) Antisymmetrie: True

Let A = 21, 23, $R_2 = 2(20), 3$, $R_1 = 2(1,0)$ 3

dence both $R_1 2 R_2 \rightarrow Antisymmetric$

(IV) Transcture : false. A = 21,27, $R_2 = 2(1,2),(2,1)(1,1)$ $R_1 = 26,1)$?

thence, R_2 is transitive but R_1 is not transitive

True : (4e, et l'és an equivalence sel?

then no, of exements min. required for the l'R to be Represent also, no no of max exeme required for the R to be represent symmetrice.)

(d) reflexive & contain (x,y)

Any xell that is reflexive & contains (x,y) cestainly contains 5 pairs (all of the form (a,a) & (x,y)).

All the other 11 pairs can either be inefuded or not, so we choose by a 2 person (ans)

(a) 2 pairs (ans)

(e) Symmetrie & contain (x, y)

All the Symmetric vel' can be dévided into a categories:

those who don't contain {(x,y), (y,x)} & those who

do & there is a one to one correspondence b|w them,

hence the required answer is

(f) Antisymmetric: N=4, 2^4 . $3^{4\frac{2}{4}}=2^4$. 3^6 .

Antisymmetrie & contain (x,y):

The pair (a,b) is in such a rel', since it is antisymometric containing (x,y) quarantees non-containment (y,x):
Thus, we can divide all the antisymmetric relations into
3 categories, containing exactly (x,y), but not (y,x):
containing (y,x), but not (x,y); & containing nonethere is a one-to-one correspondence blue each of these.
So, each category contains exactly one-third of the

(1,4)(21) antisymmetric relations, i.e. 1/3. 24. 36 = 24. 35 -> (ans) (b) symmetrie 2 antésymmetrie : (c1) 1/2) 212 > If R & a relation on A which is both symmetric & antisymm efric, then the set 8 = 2(a,b): a,b & A, a > b & CR is empty, hence there are a options for each of the pairs 2 (a,a), a & A &, hence, the required are wer is 29 (1) Reflexive, symmetric & antesymmetric. > Inh, such relations can only contain pair of form (a,a) for some at A. clowerer, reflexivity also means that they must contain all such pairs. Thus, only one among the 2 such sel? fits the bill, hence the answer is 1, particularly; $\{(\omega,\omega),(x,x),(y,y),(x,z)\}$ (4) Let A be a set with IAI = n, let R be a relation on A that is artisymmetric. What is the maximum value for IRI ? dow many antisymmetrie vel can have this size ? Each element in A can be related to itself, so there are n Such paiss. For the remaining pairs, if (a,b) is in R, then (b,a) Cannot be in R due to the antisymmetry. So, for each pair of disfinct élémente, une can include atmost one of (a,b) & (b,a) in R. There are n (n-1)/2 such pairs of distinct elements in A. Therefore, the max. size of R is n+ n(n-1)/2 = n(n+1)/2. The no. of antisymmetric relations that can have this size

(5) With A = 21,2,3,43, let R= 2(1,1), (1,2), (2,3) (3,3) (3,3) be a relation on A. Find a relations 8 & T on A where 8 + T. but RO8 = ROT = {(1,1), (1,2), (1,4)} ans: We have: R = {(1,1), (1,2), (2,3), (3,3), (3,4), $S = \{(a,1), (a,a), (1,4)\}$ 2 1= 2 (1,1), (1,2), (1,4) } (6) Let A be a set with |A| = n & let R be an equivalence relation on A with |R| = v, why is v-n always even vans: In R, pno. of rel are there which are reflexive So, & n => it counts the elements in R of the form (x,y), where x = y. 80, 1R is an equivalence rel'; So, R is also symmetrie, (contains Esb) then (bs) honce on e hence, 8-11 & even F) Defermine how many inleger solutions, there are to 21+2+23+ x4 = 19, if a) 0 \ \chi i for all 1 \ i \ 4 b) 05 xi <8 + 15 i ≤ 4 $0 \le x_1 \le 5$, $0 \le x_2 \le 6$, $3 \le x_3 \le 7$, $3 \le x_4 \le 8$. 3 = 9 Gusen x1+x2+ x3+x4 = 19 $0 \le xi$, $1 \le i \le 4 \implies (19+4-1) = (22)$

$$= \frac{20 \times 27 \times 20}{3 \times 21} = 77 \times 20 = 1540 \rightarrow (ans)$$

$$N(C_1) = x_1 + x_2 + x_3 + x_4 = 19$$

=>
$$y_1 + 8 + x_2 + x_3 + x_4 = 19$$

=> $y_1 + x_2 + x_3 + x_4 = 11$

So,
$$\left(11+4-1\right) = \left(\frac{14}{11}\right) = \left(\frac{14}{3}\right) = N(C_2) = N(C_3) = N(C_4)$$

So,
$$N(C_1) = N(C_2) = N(C_3) = N(C_4) = \frac{14 \times 13 \times 12^2}{3 \times 2 \times 1} = \frac{364}{1}$$

So,
$$N(CG(Q)) = \begin{pmatrix} 3+4-1 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix} = N(CG(G))$$

= $N(CG(G))$

$$=N(G(4))$$

 $=N(G(4))$

(S) We have
$$= x_1 + x_2 + x_3 + x_4 = 19$$
 $0 \le x_1 \le 5 \longrightarrow x_1 \ge 6$ (Unaccepted state)

 $0 \le x_3 \le 6 \longrightarrow x_2 \ge 7$
 $3 \le x_3 \le 7 \Rightarrow 0 \le x_3 - 3 \le 4 \Rightarrow 0 \le y_3 \le 9$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 5$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \le 6$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \ge 6$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \ge 6$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \ge 6$
 $(3 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \ge 6$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \ge 6$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \ge 6$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \ge 6$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \ge 6$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \ge 6$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \ge 6$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3 \ge 6$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3$
 $(4 \le x_4 \le 8) \Rightarrow 0 \le x_4 - 3$
 $(4$

NCC3) =
$$x_1 + x_2 + y_3 + y_4 = 13$$

=> $x_1 + x_2 + (x_3 + 5) + y_4 = 13$
=> $x_1 + x_2 + x_3 + y_4 = 8$
NCC3): $(8+4-1) = (1) = (1) = 13$

NCC3):
$$\binom{8+4-1}{8} = \binom{11}{8} = \binom{11}{3} =$$

Now taking combination of 2 cases:

$$N(C_{1}(g) \Rightarrow \chi_{1} + \chi_{2} + y_{3} + y_{4} = 13$$

$$(y_{1} + 6) + \chi_{2} + (\chi_{3} + 5) + y_{4} = 13$$

$$\Rightarrow y_{1} + \chi_{2} + \chi_{3} + y_{4} = 0$$

$$N(4(3): (2+4-1) = (5) = \frac{5\times4}{2} = 10$$

$$NCGC4) = (4) = 4$$

$$N(2 + 3) = (1)$$

 $N(2 + 4) = 1$ & $N(2 + 4) = (5) = 10$

Now, N(95254) = N- (120+120+84+165) - (2+1+4+4)

$$=560-489+30$$

For the directed graph $G_1 = (V, E)$ in fig 7.12 classify each of the following statements as true or false

For A = 2a, b, c, d, e, f, each graph or digraph fy 7.13 represents a rel R on A. Determine the relations:

10

(IV)

Ans; (i) R₁= 2 (a,b), (b,a), (a,e), (e,a), (b,c), (c,b), (b,d), (d,b), (b,e), (e,b), (d,e), (e,d), (d,f), (f,d) }.

 $R_2 = 2(a,b), (b,e), (d,b), (d,e), (e,f)$

 $R_3 = \{(a,a), (a,b), (b,a), (c,d), (d,c), (d,e), (e,d), (d,e), (e,d), (d,e)\}$

R4 = 2(b,a), (b,c), (b), (b,e), (c,d), (e,d)}.