Lecture 7: Binary Heaps, Heapsort, Union-Find

Instructor: Saravanan Thirumuruganathan

Outline

- Data Structures to speed up algorithms
 - Binary Heap
 - Heapsort
 - Union Find

In-Class Quizzes

- URL: http://m.socrative.com/
- Room Name: 4f2bb99e

Data Structures

Key Things to Know for Data Structures

- Motivation
- Distinctive Property
- Major operations
- Key Helper Routines
- Representation
- Algorithms for major operations
- Applications

Data Structures for Algorithmic Speedup

- BST and RBT are two examples of data structures to represent dynamic set
- Today's topic, Heap and Union-Find, can also be used to represent dynamic set
- However, these are used more often to speed up algorithms

Binary Heap

Motivation

- Heap Sort (CLRS is organized that way!)
- Priority Queue
- Most space efficient data structure

Priority Queue

- "Queue" data structure has a FIFO property
- Some times it is useful to consider priority
- Output element with highest priority first

Priority Queue - Major Operations

- Insert
- FindMin (resp. FindMax)
- DeleteMin (resp. DeleteMax)
- DecreaseKey (resp. IncreaseKey)

Priority Queue - Applications¹

- Dijkstra's shortest path algorithm
- Prim's MST algorithm
- Heapsort
- Online median
- Huffman Encoding
- A* Search (or any Best first search)
- Discrete event simulation
- CPU Scheduling
- ...
- See Wikipedia entry for priority for details

¹Kleinberg-Tardos Book and Wikipedia

- Assume: for DeleteMin and DecreaseKey, pointer to element is given
- LinkedList
 - Insert:

- Assume: for DeleteMin and DecreaseKey, pointer to element is given
- LinkedList
 - Insert: *O*(1)
 - FindMin:

- Assume: for DeleteMin and DecreaseKey, pointer to element is given
- LinkedList
 - Insert: *O*(1)
 - FindMin: O(n)
 - DeleteMin:

- Assume: for DeleteMin and DecreaseKey, pointer to element is given
- LinkedList
 - Insert: *O*(1)
 FindMin: *O*(*n*)
 - DeleteMin: O(1)
 - DecreaseKey:

- Assume: for DeleteMin and DecreaseKey, pointer to element is given
- LinkedList
 - Insert: O(1)
 FindMin: O(n)
 DeleteMin: O(1)
 - DecreaseKey: O(1)
- Binary Heap
 - Insert: O(lg n)
 FindMin: O(1)
 - DeleteMin: $O(\lg n)$
 - DecreaseKey: O(lg n)
- Binomial Heaps, Fibonacci Heaps etc.

Binary Heaps

- Perfect data structure for implementing Priority Queue
- MaxHeap and MinHeap
- We will focus on MaxHeaps in this lecture

Complete Tree²

- Perfectly balanced, except for bottom level
- Elements were inserted top-to-bottom and left-to-right

²http://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/BinomialHeaps.pdf

Heap Property

- Heap is a binary tree (NOT BST)
- Heap:
 - Completeness Property: Heap has restricted structure. It must be a complete binary tree.
 - Ordering Property: Relates parent value with that of its children
- MaxHeap property: Value of parent must be greater than both its children
- MinHeap property: Value of parent must be less than both its children
- Heap with n elements has height $O(\lg n)$

Max Heap Example³

³Wikipedia page for Heap

Heap Property⁴

⁴http://courses.cs.washington.edu/courses/cse373/06sp/handouts/lecture10.pdf

Major Operations

- Insert
- FindMax
- DeleteMax (aka ExtractMax)
- IncreaseKey

Key Helper Routines

- Max-Heapify (or Min-Heapify)
- Bubble-Up
- Bubble-Down
- Heapify

Representation: Arrays

- Very efficient implementation using arrays
- Possible due to completeness property
- Parent(i): return $\lfloor i/2 \rfloor$
- LeftChild(i): return 2i
- RightChild(i): return 2i + 1

Representation: Arrays⁵

⁵CLRS Fig 6.1

Max-Heapify

- Objective: Maintain heap property
- Invocation: Max-Heapify(A, i)
- Assume: Left(i) and Right(i) are valid max-heaps
- A[i] might violate max-heap property
- Bubble-Down the violation
- Analysis: $O(\lg n)$

Max-Heapify: Example⁶

⁶CLRS Fig 6.2

Max-Heapify: Example⁷

⁷CLRS Fig 6.2

Max-Heapify: Example⁸

⁸CLRS Fig 6.2

Build-Max-Heap

- Given an array A, convert it to a max-heap
- A.length: Length of the array
- A.heapSize: Elements from 1 . . . A.heapSize form a heap
- Build-Max-Heap(A):
 - A.heapSize = A.length
 - for $i = \lfloor A.length/2 \rfloor$ down to 1 Max-Heapify(A, i)
- Analysis: O(n) (See book for details)

⁹CLRS Fig 6.3

¹⁰CLRS Fig 6.3

Build-Max-Heap : Example 11

¹¹CLRS Fig 6.3

¹²CLRS Fig 6.3

¹³CLRS Fig 6.3

¹⁴CLRS Fig 6.3

Heap : Insert

- Insert element at first available slot (no completeness property violation!)
- Fix heap property violations by bubbling up the vilolation till it is fixed
- Complexity:

- Insert element at first available slot (no completeness property violation!)
- Fix heap property violations by bubbling up the vilolation till it is fixed
- Complexity: $O(\lg n)$

Heap : FindMax

- Look at the root element
- Time complexity: O(1)

- Delete the maximum element (root)
- Fix the heap

- Remove root
- Replace root with last element (does not affect Completeness property)
- Fix heap violations by bubbling it down till it is fixed
- Complexity:

- Remove root
- Replace root with last element (does not affect Completeness property)
- Fix heap violations by bubbling it down till it is fixed
- Complexity: $O(\lg n)$

Heap: IncreaseKey

- Given a node, increase its priority to a new, higher value
- Fix heap property violations

Heap: IncreaseKey¹⁵

¹⁵CLRS Fig 6.5

Heap: IncreaseKey¹⁶

¹⁶CLRS Fig 6.5

Heap: IncreaseKey¹⁷

¹⁷CLRS Fig 6.5

Heap: IncreaseKey¹⁸

¹⁸CLRS Fig 6.5

Heap: IncreaseKey

- Update element
- Fix heap violations by bubbling it up till it is fixed
- Complexity:

Heap: IncreaseKey

- Update element
- Fix heap violations by bubbling it up till it is fixed
- Complexity: $O(\lg n)$

HeapSort

```
HeapSort(A):
    Build-Max-Heap(A)
    for i = A.length down to 2
        Exchange A[1] with A[i]
        A.heapSize = A.heapSize - 1
        Max-Heapify(A, 1)
```

Heap Sort: Example 19

¹⁹CLRS Fig 6.4

Heap Sort: Example 20

²⁰CLRS Fig 6.4

Heap Sort: Example²¹

²¹CLRS Fig 6.4

Heap Sort: Example²²

²²CLRS Fig 6.4

Heap Sort: Example²³

²³CLRS Fig 6.4

Heap Sort: Example²⁴

²⁴CLRS Fig 6.4

Heap Sort: Example²⁵

²⁵CLRS Fig 6.4

Heap Sort: Example 26

²⁶CLRS Fig 6.4

Heap Sort: Example²⁷

²⁷CLRS Fig 6.4

Heap Sort: Example 28

²⁸CLRS Fig 6.4

Heap Sort: Example²⁹

A 1 2 3 4 7 8 9 10 14 16

²⁹CLRS Fig 6.4

HeapSort: Analysis

- Operations:
 - Build-Max-Heap:

HeapSort: Analysis

- Operations:
 - Build-Max-Heap: O(n)
 - *n* Max-Heapify:

HeapSort: Analysis

- Operations:
 - Build-Max-Heap: O(n)
 - n Max-Heapify: $n \times \lg n = O(n \lg n)$
 - Complexity: $O(n) + O(n \lg n) = O(n \lg n)$

HeapSort

- Very efficient in practice often competitive with QuickSort
- In-Place but not stable (why?)
- Requires constant extra space
- Best, average and worst case complexity is $O(n \lg n)$ (unlike Quicksort)

Data Structures for Disjoint Sets

Data Structures for Disjoint Sets

Disjoint Sets ADT

- Objective: Represent and manipulate disjoint sets (sets that do not overlap)
- Required Operations
 - MakeSet(x): Create a new set {x} with single element x
 - Find(x): Find the set containing x
 - Union(x, y): Merge sets containing x and y

Disjoint Sets: Example³⁰

· Objects.

0 1 2 3 4 5 6 7 8 9

Disjoint sets of objects.

0 1 { 2 3 9 } { 5 6 } 7 { 4 8 }

Find query: are objects 2 and 9 in the same set?

0 1 { 2 3 9 } { 5 6 } 7 { 4 8 }

Union command: merge sets containing 3 and 8.

0 1 { 2 3 4 8 9 } { 5 6 } 7

³⁰https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf

Disjoint Sets: Applications³¹

- Network connectivity: are two computers connected?
- Compilers: are two variables aliases?
- Image segmentation: are both pixels in same segment?
- Chip design: are two transistors connected to each other?
- Maze design
- Speeding up Kruskal's MST algorithm
- Many many more

³¹http://courses.cs.washington.edu/courses/cse326/08sp/lectures/18-disjoint-union-find.pdf

Disjoint Sets: Naming

- Represent each disjoint set by a unique name
- For convenience, the name is one of its elements
- This element is called the leader of the set
- Find(x) returns the leader of set containing x
- Typically, Union takes leaders as input. For eg, Union(a, b). If not easily fixable by Union(Find(a), Find(b))

Data Structures for Disjoint Sets

Objective:

- Design an efficient data structure to represent DS ADT
- ullet Assume that there are N elements represented by $1,\ldots,N$
- M operations (any mixture of union and find)

Candidate Representations:

- Array based
- Linked List based
- Tree based

Idea:

- Maintain an array A with N elements
- A[i] stores the leader for set containing element i

Find: Find(3)=4, Find(6)=8

i	1	2	3	4	5	6	7	8	9	10
A[i]	1	2	4	4	5	8	5	8	8	5

Union: Union(4,8)

Analysis:

• Find:

Analysis:

- Find: *O*(1)
- Union:

Analysis:

- Find: *O*(1)
- Union: O(n)
- Complexity for M operations: O(MN)

Disjoint Sets Implementation: Doubly Linked List³²

Idea:

- Represent each set as a doubly linked list
- Set first element of each linked list as the leader

³²CLRS Fig 21.2

GiG

GiG

Summary

Major Concepts:

- Binary Heap
- Heapsort
- Disjoint set data structures
- Union-Find