Course Name	:	DISCRETE STRUCTURES FOR COMPUTER SCIENCE
Course Code	:	CS1303
Credits	:	4
LTP	:	3 1 0
Type of Course	:	Department Core Course (DCC-III)

Course Objectives:

- To develop logical thinking and its application to computer science.
- To reason mathematically about basic data types and structures (such as numbers, sets, graphs, and trees) used in computer algorithms and systems; synthesize elementary proofs, especially proofs by induction.
- To model and analyze computational processes using analytic and combinatorial methods.
- To apply principles of discrete probability to calculate probabilities and expectations of simple random processes.

Total No. of Lectures – 42

Lecti	Lecture wise breakup		
	•	of	
		Lectures	
1	MATHEMATICAL REASONING		
	Mathematical reasoning, Propositions, Negation, disjunction and		
	conjunction, Implication and Equivalence, Truth tables, Predicates,		
	Quantifiers, Natural deduction, Rules of Inference, Methods of proofs,	7	
	Resolution principle, Application to PROLOG.		
2	SET THEORY		
	Paradoxes in set theory, Inductive definition of sets and proof by		
	induction, Peano postulates, Relations, Properties of relations,		
	Equivalence Relations and partitions, Partial orderings, POSETs,		
	Linear and well-ordered sets.		
3			
	Functions; mappings, Injection and Surjections, Composition of		
	functions, Inverse functions, Special functions, Recursive function theory.		
4	COMBINATORICS		
4	Elementary combinatorics, Pigeonhole principle, Permutations and		
	Combinations, Counting techniques, Recurrence relations, Solving	9	
	Linear Recurrence relations, Generating functions.		
5	GRAPH THEORY		
	Elements of graph theory, Graph Isomorphism, Euler graph,	_	
	Hamiltonian path, trees, Tree traversals, Spanning trees,	5	
	Representation of relations by graphs.		
6			
	Definition and elementary properties of groups, Semigroups, Monoids,		
	Rings, Fields, Vector spaces and lattices.		

	7	DISCRETE PROBABILITY	
		Introduction, Probability Theory, Bayes' Theorem, Expected Value	5
l		and Variance, Discrete random variables.	

List of Experiments: (Use Python Programming language)		Number of Turns
1	Print truth table of a compound statement.	1
	Example: $[(p \land q) \land r] \rightarrow (s \lor t)$	
2	Determine whether a compound statement is valid or not.	1
3	List subsets of set $\{1, 2, 3,, n\}$ where $1 \le n \le 10$.	1
4	Perform various set operations on a given set such as Union, intersection, difference etc.	
5	List all selections of size 2 from the objects 1, 2, 3, 4, 5, 6. Mention scenarios such as repetition allowed or not etc. Repeat the same for selections of size 3.	1
6	List the integer solutions of a constrained linear equation. Example: $x_1 + x_2 + x_3 = 10$, $0 \le x_i$, $1 \le i \le 3$	1
7	Write a recursive function to compute gcd of two numbers.	1
8	Based on given data, determine various properties of a relation.	
9	Implement Spanning trees.	1
10	Implement Tree traversal techniques.	1
11	Determine whether a graph is Euler graph or not.	2
12	Solve Tower of Hanoi problem.	2
13	Create Sudoku Solver.	2

Cou	Course Outcomes: At the end of the course, students will be able to:		
1	Use logical notation to define and reason about fundamental mathematical concept such as sets, relations, functions, and integers. Analyze logical propositions via true		
	tables.		
2	Synthesize induction hypotheses and simple induction proofs.		
3	Calculate numbers of possible outcomes of elementary combinatorial processes such		
	as permutations and combinations.		
4	Apply graph theory models of data structures and state machines to solve problems		
	of connectivity and constraint satisfaction, for example, scheduling.		
5	Prove elementary properties of modular arithmetic and explain their applications in		
	Computer Science, for example, in cryptography and hashing algorithms.		
6	Calculate probabilities and discrete distributions for simple combinatorial processes;		
	calculate expectations.		

Suggested Books:		
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint

1	K. H. Rosen, Discrete Mathematics and applications, 7th Edition, McGraw	2012
	Hill	
2	Seymour Lipschutz and Marc Lipson, Schaum's Outline of Discrete	2010
	Mathematics, 3 rd Edition	
3	J. L. Mott, A. Kandel, T. P. Baker, Discrete Mathematics for Computer	2015
	Scientists and Mathematicians, 2 nd Edition, Pearson India	
4	C. L. Liu and D. P. Mohapatra, Elements of Discrete Mathematics, 4 th	2012
	Edition., McGraw-Hill	
5	C. Stein, R. L. Drysdale, K. Bogart, Discrete Mathematics for Computer	2011
3	Scientists, Second edition, Pearson Education Inc.	-
6	W. K. Grassmann and J. P. Trembnlay, Logic and Discrete Mathematics,	2007
	A Computer Science Perspective, Prentice Hall Inc	
7	M. Litvin and G. Litvin, Coding in Python and Elements of Discrete	2019
	mathematics, Skylight Publishing	
8	A. M. Stavely, Programming and Mathematical Thinking, The New	2014
	Mexico Tech Press	