$$31N+51N = m | N, \frac{m}{2}$$
 is some number

*
$$A, B \leq \mathbb{Z}$$
, then $AUB \leq \mathbb{Z} \iff A \leq B$ or $B \leq A$

Ans

 (\Leftarrow)

$$(\Rightarrow)$$
 AUB $\leq \mathbb{Z}$ \Rightarrow A \subseteq B or B \subseteq A.

a e A = AUB

Give a homomorphism
$$\phi: (IR, +) \longrightarrow (IR_{>0}, \cdot)$$

Lisomorphism (think calculus), a familiar function

Lisomorphism (you can give an easy answer)

$$S = \{ z \in \mathbb{C} \mid |z| = 1 \}$$

Then $S \leq \mathbb{C}^{\times}$

2 (a)
$$(R_{<0}, \cdot)$$
 a subgroup?

No!

 $-1, -1 \in R_{<0}$
 $(-1)^2 = 1 \notin R_{<0}$

odd numbers are
not a subgroup

3+7=10 not odd!

$$\frac{\partial}{\partial x} = \frac{1}{2} \frac{1}{2}$$

(b)
$$S = \{Z \in \mathbb{C} \mid |Z| = 1\} \leq \mathbb{C}$$

 $* S \neq \emptyset, \quad |eS|$
 $* Z_1 w \in S, \quad |eS|$
 $|Zw^{-1}| = |Z| = |Z| = 1, \quad |eS|$

$$S = \{z \in \mathbb{C} \mid |z| = 1\}$$

$$= \{z + iy \mid |z| + iy| = 1\}$$

$$= \{(z,y) \in |z|^2 \mid |z|^2 = 1\}$$

$$= \{(z,y) \in |z|^2 \mid |z|^2 = 1\}$$

$$= \{z + iy \mid |z| + iy| = 1\}$$

$$= \{(z,y) \in |z|^2 \mid |z|^2 = 1\}$$

$$= \{(z,y) \in |z|^2 \mid |z|^2 = 1\}$$

$$= \{z + iy \mid |z| = 1\}$$

$$= \{z + iy \mid |z$$