FINITE AUTOMATA

Chap. 2

Summary

- The *simple* automaton, a finite state accepter:
 - a finite set of internal states and no other memory.
 - It process strings and either accepts or reject them.
 - A simple pattern recognition mechanism.
- Deterministic Finite Automaton/Accepter (DFA)
 - Deterministic: the automaton has only one transition to a next state per a symbol at one time.
 - Regular language
- Nondeterministic Finite Automaton/Accepter (NFA)
 - Nondeterministic: several transitions for a choice of next state.
 - NFA explores all choices and makes no decision until all options have been analyzed.
 - NFA simplifies the solution of many problems.
- Equivalence of DFA & NFA

Learning Objectives

- Describe the components of a *Deterministic Finite Automata* (DFA).
- State whether an input string is accepted by a DFA.
- Describe the *language* accepted by a DFA.
- Construct a DFA to accept a specific language.
- Show that a particular language is regular.
- Describe the differences between DFA and NFA.
- State whether an input string is accepted by a NFA.
- Construct a NFA to accept a specific language.
- Transform an arbitrary NFA to an equivalent DFA.

Deterministic Finite Automata

```
• Formal Definition 2.1: A Deterministic Finite Automata, DFA,

(or accepter, recognizer) is defined by the quintuple

M = (Q, \Sigma, \delta, q_0, F)
```

```
where
```

```
Q: a finite set of internal states
```

 Σ : a set of symbols, called the *input alphabet*

 $\delta: Q \times \Sigma \to Q$ -- a transition function

 $q_0 \in Q$: the *initial state*

 $F \subseteq Q$: a set of the *final states*.

• Example 2.1: Consider the DFA

$$Q = \{ q_0, q_1, q_2 \}, \qquad \Sigma = \{ 0, 1 \}, \quad F = \{ q_1 \}$$

where the transition function is given by

$$\{ \delta(q_0, 0) = q_0, \quad \delta(q_0, 1) = q_1, \quad \delta(q_1, 0) = q_0 \\ \delta(q_1, 1) = q_2, \quad \delta(q_2, 0) = q_2, \quad \delta(q_2, 1) = q_1 \}.$$

Transition Diagram/Graph

- A transition function of DFA can be visualized with a *Transition Diagram*.
- Example 2.1: $M = (Q, \Sigma, \delta, q_0, F)$ where

```
\begin{aligned} & Q = \{ \ q_0, \ q_1, \ q_2 \}, \quad \Sigma = \{ \ 0, \ 1 \ \}, \quad F = \{ \ q_1 \ \} \\ & \{ \ \delta(q_0, \ 0) = q_0 \ , \quad \delta(q_0, \ 1) = q_1 \ , \quad \delta(q_1, \ 0) = q_0 \\ & \delta(q_1, \ 1) = q_2 \ , \quad \delta(q_2, \ 0) = q_2 \ , \quad \delta(q_2, \ 1) = q_1 \ \}. \end{aligned}
```


Processing Input with a DFA

- A DFA starts by processing the leftmost input symbol with its control in state q_0 . The transition function determines the next state, based on current state and input symbol.
- The DFA continues processing input symbols until the end of the input string is reached.
- The input string is *accepted* if the automaton is in a final state after the last symbol is processed. Otherwise, the string is *rejected*.
- For example, the DFA in Ex. 2.1 accepts the string 111 but rejects the string 110.

The Language Accepted by a DFA

- For a given DFA, the extended transition function δ^* accepts a DFA state and an input string as input. The value of the function is the state of the automaton after the string is processed: $\delta^*: Q \times \Sigma^* \to Q$, s.t.
 - $\delta^*(q, \lambda) = q$,
 - $\delta^*(q, wa) = \delta(\delta^*(q, w), a), w \in \Sigma^*, a \in \Sigma$
- Sample values of δ^* for the DFA in Ex. 2.1,

 $\delta^*(q_0, 1001) = q_1 (\in F), \qquad \delta^*(q_1, 000) = q_0 (\notin F)$

The Language Accepted by a DFA (cont.)

• <u>Def 2.2</u>: The <u>language accepted by a DFA M = (Q, Σ , δ , q_0 , F) is the <u>set of all strings</u> on Σ accepted by M, i.e. the set of all strings w whose transition results in a final state.</u>

Formally, $L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}.$

• Note: The language *rejected* by a DFA M is

$$\overline{L(M)} = \{ w \in \Sigma^* | \delta^*(q_0, w) \notin \mathsf{F} \}$$

Example: DFA (Acceptor, Recognizer)

- Example 2.2: a DFA to accept the set of all strings on $\Sigma = \{a, b\}$, consisting of an arbitrary number of a's, followed by a single b, i.e. $L = \{a^n b \mid n \ge 0\}$.
- Note that q_2 is a trap state.

	а	ь
q_0	q_{o}	q_1
q_I	q_2	q_2
q_2	q_2	q_2

Example: DFA (Acceptor, Recognizer)

- Example 2.3: a DFA to accept the set of all strings on $\{a, b\}$ that start with the prefix ab, i.e. $\{abw \mid w \in \{a, b\}^*\}$
- Note that q_3 is a trap state.

Example: DFA (Acceptor, Recognizer)

• Example 2.4: a DFA M' to accept all strings on Σ ={0, 1}, except those containing the substring 001.

i.e. L(M) = {
$$v001w \mid \delta^*(q_0, v001w) \in F \ \forall v, w \in \{0,1\}^* \}$$

 $\rightarrow L(M') = \overline{L(M)} = \{ u \mid \delta^*(q_0, v001w) \notin F, \ \forall u, v, w \in \{0,1\}^* \}$

• Note that any state except a state 'q001' is a final state.

Example: cont.

• Example 2.4A: a DFA M to accept all strings on Σ ={0, 1}, containing the substring 001.

i.e. L(M) = { $v001w \mid \delta^*(q_0, v001w) \in F \ \forall v, w \in \{0,1\}^*$ }

Example 2.4B: a DFA M' to accept all strings on Σ ={0, 1}, except those containing the substring 001.

 \rightarrow L(M') = $\overline{\text{L}(\text{M})}$ = { $u \mid \delta^*(q_0, v001w) \notin F, \forall u, v, w \in \{0,1\}^*$ }

Regular Languages

- Finite automata accept a family of languages collectively known as *regular languages*.
- <u>Def. 2.3:</u> A language L is *regular* if and only if there exists a DFA, M, that accepts L, i.e. L = L(M).
- To show that a language is regular, one must construct a DFA to accept it.
- Example: Show that $L = \{(ab)^n a \mid n > 0\}$ is regular.
 - \rightarrow Construct a DFA, M, that accepts L, i.e. L = L(M).
 - $L = \{aba, ababa, abababa, \dots \}$
- Regular languages have wide applicability in problems that involve scanning input strings in search of specific patterns.

Example: Regular Languages

- Example 2.5: Show that the language $L=\{awa \mid w \in \{a,b\}^*\}$ is regular.
- Example 2.6: Show the language L^2 = LL is regular, $L^2 = \{aw_1aaw_2a \mid w_1, w_2 \in \{a,b\}^*\}.$

where q_1 is a trap state.

Nondeterministic Finite Automaton (NFA)

- An automaton is *nondeterministic* if it has a choice of actions for given inputs.
- <u>Def 2.4</u>: A *Nondeterministic Finite Automata, NFA,* (or accepter, recognizer) is defined by the quintuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

where Q, Σ , q_0 , F are defined as for DFA, but $\delta: Q \times (\Sigma \cup \lambda) \rightarrow \mathbf{2}^Q$ -- a transition function

- Basic Differences between DFA and NFA:
 - 1. In an NFA, a transition of (state, symbol) may lead to several states simultaneously.
 - 2. If a transition is labeled with the empty string (λ) as its input symbol, the NFA *may change states* without consuming input (i.e. with λ): λ -transition
 - 3. An NFA may have undefined transitions.

Example: Nondeterministic FA

• Example 2.7: a Nondeterministic FA in which there are two transitions labeled 'a' out of state q_0 :

$$\delta(q_0, a) = \{ q_1, q_4 \}$$

Example: Nondeterministic FA

• Example 2.8: A NFA which contains both a λ -transition as well as undefined transitions:

$$\delta(q_0, \lambda) = \{ q_2 \}$$
 and $\delta(q_0, 0) = \emptyset$, $\delta(q_2, 0) = \delta(q_2, 1) = \emptyset$

The Language Accepted by a NFA

- For a given NFA, the value of the extended transition function $\delta^*(q_i, w)$ is the set of all possible states for the control unit after processing w, having started in q_i .
- Sample values of δ^* for the NFA in Ex. 2.8:

$$\delta^*(q_0, 10) = \{ q_0, q_2 \}$$

$$\delta^*(q_0, 101) = \{ q_1 \}$$

• A string w is accepted if $\delta^*(q_0, w)$ contains a final state.

i.e.
$$\delta^*(q_0, w) \cap F \neq \emptyset$$
.

- In Ex 2.8, 10 would be accepted but 101 would be rejected.
- The language accepted by a NFA M is the set of all accepted strings: L(M) = { w | δ*(q₀, w) ∩ F ≠ ∅ }.
- The NFA in Ex. 2.8 accepts $L = \{ (10)^n \mid n \ge 0 \}$.

Equivalence of DFA and NFA

• <u>Def. 2.7:</u> Two FAs, M_1 and M_2 , are said to be *equivalent* if $L(M_1) = L(M_2)$

i.e. if they both accept the same language.

• Ex. 2.11: $L = \{ (10)^n \mid n \ge 0 \}$

Equivalence of DFA and NFA

- Does Nondeterminism make it possible to accept languages that DFA cannot recognize?
- Theorem 2.2:

```
Let L be the language accepted by a NFA M_N = (Q, \Sigma, \delta, q_0, F).
Then, there exists a DFA M_D = (Q', \Sigma, \delta', q_0', F')
       where Q' \subseteq \mathcal{P}(Q), q_0' = \{q_0\},
       F' \subseteq \mathcal{P}(q_F), for any q_F \in F
                 i.e. F' = \{q' \in Q' \mid q' \text{ contains an accept state of N} \},
such that L=L(M_D)=L(M_N)
```

i.e. For any NFA, there is an equivalent DFA that accepts the same language.

- Therefore, every language accepted by a NFA is regular.
- Proof) A constructive proof for Thm 2.2: The algorithm of building a DFA equivalent to a particular NFA.

Procedure: NFA with no λ -transition -to-DFA Conversion

- 1. Create DFA with an initial start state $\{q_0\}$. Beginning with the start state q_0 in NFA, define input transitions for the DFA as follows:
- 2. Repeat
 - If the NFA input transition to a single state q_{ν} , replicate it for the DFA $\{q_k\}$.
 - If the NFA input transition leads to more than one state, create a new state in the DFA labeled $\{q_i, ..., q_i\}$,

where q_i , ..., q_i are the states to which the NFA transition can lead.

If the NFA input transition is not defined, the corresponding DFA transition should lead to a trap state.

Until no new states are created for all newly created DFA states.

- 3. Any DFA state containing any $q_F \in F$ is labeled as a final state.
- 4. (If the NFA accepts λ , label the start state of DFA as a *final state*).

λ -closure (or ϵ -closure) — not in the textbook

Prior to construct an equivalent DFA from a NFA, let's define a λ -closure (or ϵ -closure) of a state for Q'

- For any $q' \in Q' \subseteq \mathcal{P}(Q)$, the λ -closure of q' is $\Lambda(q') (= E(q'))$
 - = $q' \cup \{ q \in Q \mid q \text{ is reachable from } q' \text{ through 0 or more } \lambda\text{-transitions} \}$
 - $= \mathbf{q'} \cup \{\mathbf{q} \in Q \mid \forall r_1 \in \mathbf{q'}, \exists r_2, \dots, r_k \in Q, r_{i+1} \in \delta(r_i, \lambda), r_k = \mathbf{q}\}$
 - i.e. the collection of states that are reachable from q' through 0 or $more \lambda$ transitions, including the members of q' themselves.
- DFA M_D is such that
 - 1. $Q' \subseteq \mathcal{P}(Q)$, (i.e. $q' \subseteq Q \Leftrightarrow \forall q' \in Q'$)
 - 2. For $q' \in Q'$ and $a \in \Sigma$, $\delta'(q', a) = \bigcup_{r \in q', q' \subseteq Q} \Lambda(\delta(r, a))$
 - 3. $q_0' = \Lambda \{q_0\}$
 - 4. $F' = \{q' \in Q' \mid q' \cap F \neq \emptyset, \text{ i. e. } q' \text{ contains a final state of an NFA } M_N \} \cup \{q_0' \mid \text{if N accepts } \lambda\}$

Procedure: NFA with λ -transition -to-DFA Conversion

- 1. Create DFA with an initial start state, $q_0' = \Lambda\{q_0\}$ Beginning with the start state of q_0 in NFA, define input transitions for the DFA as follows:
- 2. Repeat
 - If the NFA input transition to a single state q_k , replicate it for the DFA $q_k' = \Lambda(\{q_k\})$.
 - If the NFA input transition leads to more than one state, create a new state in the DFA labeled $\{q_i,...,q_j\}$, where $q_i,...,q_j$ are the states to which the NFA transition with its λ -closure can lead : i.e. $\delta'(q',a) = \bigcup_{r \in q',q' \subseteq Q} \Lambda(\delta(r,a))$
 - If the NFA input transition is not defined, the corresponding DFA transition should lead to a trap state.

Until no new states are created for all newly created DFA states.

- 3. Any DFA state containing any $q_F \in F$ is labeled as a final state.
- 4. If the NFA accepts λ , label the start state of DFA as a *final state*.

Example 2.13: NFA-to-DFA Conversion -- NFA without λ-transition

 When applying the conversion procedure to the NFA below, we note the following NFA transitions

$$\begin{split} \delta_N(q_0,\,0) &= \{\,q_0,\,q_1\,\} & \delta_N\,(q_0,\,1) &= \{\,q_1\,\} \\ \delta_N\,(q_1,\,0) &= \{\,q_2\,\} & \delta_N\,(q_1,\,1) &= \{\,q_2\,\} \\ \delta_N\,(q_2,\,0) &= \varnothing & \delta_N\,(q_2,\,1) &= \{\,q_2\,\} \end{split}$$

Example: NFA-to-DFA Conversion (cont.)

• Add a new start state {q₀} in M_D.

- For a new $\{q_0\}$,
 - note that $\delta_N(q_0,0) = \{q_0, q_1\}$ and $\delta_N(q_0,1) = \{q_1\}$.
 - So, add transitions from {q₀} to states { q₀, q₁} and { q₁}:

$$\delta_D(\{q_0\},\,0)=\{\,q_0,\,q_1\,\}\ \ \text{and}\ \ \delta_D(\{q_0\},\,1)=\{q_1\}.$$

- For a new $\{q_0, q_1\}$,
 - note that $\delta_N(q_0,0) \cup \delta_N(q_1,0) = \{q_0, q_1, q_2\}$ and $\delta_N(q_0,1) \cup \delta_N(q_1,1) = \{q_1, q_2\}.$
 - So, add transitions from $\{q_0, q_1\}$ to states $\{q_0, q_1, q_2\}$ and $\{q_1, q_2\}$:

$$\begin{split} \delta_D(\{q_0,\,q_1\},\,0) &= \{\,q_0,\,q_1,\,q_2\,\} \\ \text{and } \delta_D(\{q_0,\,q_1\},\,1) &= \{q_1,\,q_2\,\} \end{split}$$

Example: NFA-to-DFA Conversion (cont.)

- For a new {q₀, q₁, q₂},
 - $\begin{array}{ll} \bullet \ \ \text{note that} & \delta_N(q_0,\,0) \cup \delta_N(q_1,\,0) \cup \delta_N(q_2,\,0) = \{q_0,\,q_1,\,q_2\} \\ & \text{and} & \delta_N(q_0,\,1) \cup \delta_N(q_1,\,1) \cup \delta_N(q_2,\,1) = \{\,q_1,\,q_2\,\} \end{array}$
 - So, add transitions from $\{q_0,q_1,q_2\}$ to states $\{q_0,q_1,q_2\}$ and $\{q_1,q_2\}$:

$$\delta_D(\{q_0,q_1,q_2\},\,0)=\{q_0,q_1,q_2\}\text{ and }\delta_D(\{q_0,q_1,q_2\},\,1)=\{q_1,\,q_2\}\,.$$

Example: NFA-to-DFA Conversion (cont.)

- For a new $\{q_1\}$,
 - note that $\delta_N(q_1, 0) = \{q_2\}$ and $\delta_N(q_1, 1) = \{q_2\}$.
 - So, add 0-1 transitions from {q₁} to state {q₂}:

$$\delta_D(\{q_1\}, 0) = \delta_D(\{q_1\}, 1) = \{q_2\}.$$

- For a new $\{q_1, q_2\}$,
 - $\bullet \ \ \text{note that} \ \ \delta_N(q_1,\,0) \cup \delta_N(q_2,\,0) = \{q_2\} \ \text{and} \ \delta_N(q_1,\,1) \cup \delta_N(q_2,\,1) = \{q_2\}.$
 - So, add transitions from {q₁,q₂} to state {q₂}:

 $\delta_{D}(\{q_{1},q_{2}\},0) = \delta_{D}(\{q_{1},q_{2}\},1) = \{q_{2}\}.$

Example: NFA-to-DFA Conversion (cont.)

- For a new $\{q_2\}$,
 - add a transition $\delta_D(\{q_2\}, 1) = \{q_2\}$ since $\delta_N(q_2, 1) = \{q_2\}$.
 - However, since $\delta_N(q_2, 0)$ is undefined, we add a trap state (labeled \varnothing) for a transition with 0 from $\{q_2\}$: i.e. $\delta_D(\{q_2\}, 0) = \varnothing$.
- For a trap state Ø,
 - add the dummy transitions to itself:

$$\delta_D(\emptyset, 0) = \delta_D(\emptyset, 1) = \emptyset$$

- Since there are no DFA states with undefined transitions, the process stops.
- All states containing q₁(=q_F) in their label are designated as final states.

Example: NFA-to-DFA Conversion (cont.)

• Mark the new final states:

All states containing $q_1(=q_F)$ of NFA) in their label are designated as final states.

• $\lambda \in L(M_N)$? No! So, $\{q_0\} \notin F_D$

Example: NFA with λ -transition -to-DFA Conversion

• Convert the NFA defined by the transitions below with the initial state q_0 and the final state q_2 into an equivalent DFA.

Draw the transition graph of the DFA.

$$\delta(q_o, \, a) = \{q_o, \, q_1\}, \, \delta(q_1, \, b) = \{q_1, \, q_2\}, \, \delta(q_2, \, a) = \{q_2\}, \, \delta(q_o, \, \lambda) = \{q_2\}.$$

Reduction of the Number of States in DFA

- Construct a FA with the minimum # of states.
- The computation requires space/time proportional to the # of states → Reduce the # of states for the storage/time efficiency.
- Definition 2.8:

Two states p and q of a DFA are indistinguishable if

$$\delta^*(p, w) \in F \text{ implies } \delta^*(q, w) \in F,$$
 and
$$\delta^*(p, w) \notin F \text{ implies } \delta^*(q, w) \notin F, \quad \forall w \in \Sigma^*.$$

If, on the other hand, there exists some string $w \in \Sigma^*$ s.t.

 $\delta^*(p, w) \in F$ and $\delta^*(q, w) \notin F$, or vice versa,

then, the states p and q are said to be distinguishable by a string w.

Reduction of the # of States (cont.)

• Example 2.15: Mark procedure

- Partition the states into a class of final states and that of non-finals: $\{q_0,\,q_1,\,q_3\}\ \ \text{and}\ \ \{q_2,\,q_4\}$
- For all pair of states in the same class, mark the distinguishable:
 - For (q_0, q_1) : $\delta(q_0, 0) = q_1$ and $\delta(q_1, 0) = q_2$: So, q_0, q_1 are distinguishable.
 - For (q_1, q_3) : $\delta(q_1, 0) = \delta(q_3, 0) = q_2$: So, q_1, q_3 are indistinguishable.
 - For (q_2, q_4) : $\delta(q_2, 0) = q_1$ and $\delta(q_4, 0) = q_4$: So, q_2 , q_4 are distinguishable.
 - So, the equivalence classes are $\{q_0\}$, $\{q_1, q_3\}$, $\{q_2\}$ and $\{q_4\}$.

Reduction of the # of States (cont.)

• Procedure: Reduce.

Given a DFA M=(Q, Σ , δ , q_0 ,F),

we construct a reduced DFA $M' = (Q', \Sigma, \delta', q_0', F')$ where $Q' \in \wp(Q)$, $\delta' : Q' \times \Sigma \rightarrow Q'$, $q_0' = \{q_0\}$, $F' \subseteq \wp(q_F)$

- 1. Generate the equivalence classes by Mark procedure.
- 2. For each class C_i , create a state labeled C_i for M'.
- 3. For each transition rule of M, $\delta(q_r, a) = q_p$, find the classes C_r and C_p to which q_r and q_p belong, resp., then, add to δ' a rule: $\delta'(C_r, a) = C_p$.
- 4. The initial state q_0 is the labeled equiv. class which includes q_0 .
- 5. F' is the set of all the labeled equiv. states which contains $q_{\varepsilon} \in F$.

Reduction of the # of States (cont.)

• Example 2.16: Reduce procedure

From the equivalence classes $C_0 = \{q_0\}$, $C_{13} = \{q_1, q_3\}$, $C_2 = \{q_2\}$ and $C_4 = \{q_4\}$ in Ex. 2.15.

- For $\delta(q_0, 0) = q_1$ and $\delta(q_0, 1) = q_3$, add a transition $\delta'(C_0, 0) = \delta'(C_0, 1) = C_{13}$ to M'.
- For $\delta(q_1, 0) = q_2$ and $\delta(q_1, 1) = q_4$ add a transition $\delta'(C_{13}, 0) = C_2$ and $\delta'(C_{13}, 1) = C_4$
- For $\delta(q_2, 0) = q_1$ and $\delta(q_2, 1) = q_4$, add a transition $\delta'(C_2, 0) = C_{13}$ and $\delta'(C_2, 1) = C_4$.
- For $\delta(q_4, 0) = \delta(q_4, 1) = q_4$ add a transition $\delta'(C_4, 0) = \delta'(C_4, 1) = C_4$

Example: NFA-to-DFA Conversion in NFA with λ -transition

$$\begin{split} q_0' &= \Lambda\{q_0\} = \Lambda\{1\} = \{1,3\} \\ \forall q' \in \mathbf{Q}' \text{ and } a \in \Sigma, \\ \delta'(q',a) &= \bigcup_{r \in q',q' \subseteq Q} \Lambda(\delta(r,a)) \end{split}$$

$$\delta(1, a) = \emptyset \rightarrow \Lambda(\emptyset) = \emptyset$$

$$\delta(3, a) = \{1\} \rightarrow \Lambda(\{1\}) = \{1, 3\}$$

Add a new start state
$$\Lambda(\{1\}) = \{1, 3\}$$
 in M_D .
For a new $\{1, 3\}$, note that $\delta(1, a) = \emptyset \rightarrow \Lambda(\emptyset) = \emptyset$
 $\delta(3, a) = \{1\} \rightarrow \Lambda(\{1\}) = \{1, 3\}$
 $\delta(1, b) = \{2\} \rightarrow \Lambda(\{2\}) = \{2\}$
 $\delta(3, b) = \emptyset \rightarrow \Lambda(\emptyset) = \emptyset$

$$\delta(1, b) = \{2\} \rightarrow \Lambda(\{2\}) = \{2\}$$

$$\delta(3, b) = \emptyset \rightarrow \Lambda(\emptyset) = \emptyset$$

→
$$\Lambda(\delta(\{1, 3\}, b)) = \{2\} \cup \emptyset = \{2\}.$$

So, add transitions from {1, 3} to states {1, 3} and {2} for a symbol a, b, respectively:

 $\delta'(\{1, 3\}, a) = \{1, 3\} \text{ and } \delta'(\{1, 3\}, b) = \{2\}.$

Example: NFA-to-DFA Conversion in NFA with λ -transition

NFA N

For a new state {2},

$$\delta(2, a) = \{2, 3\} \rightarrow \Lambda(\{2, 3\}) = \{2, 3\} \rightarrow \Lambda(\delta(2, a)) = \{2, 3\}$$

 $\delta(2, b) = \{3\} \rightarrow \Lambda(\{3\}) = \{3\} \rightarrow \Lambda(\delta(2, b)) = \{3\}$

So, add transitions from $\{2\}$ to states $\{2, 3\}$ and $\{3\}$ for a, b, respectively.

 $\delta'(\{2\}, a) = \{2, 3\}$ and $\delta'(\{2\}, b) = \{3\}$. For a new state $\{3\}$,

So, add transitions from {3} to states {1, 3} and \varnothing for a, b, respectively. $\delta'(\{3\}, a) = \{1, 3\}$ and $\delta'(\{3\}, b) = \varnothing$.

Example: NFA-to-DFA Conversion in NFA with λ -transition

NFA N

• For a new state {2, 3},

$$\delta(2, a) = \{2, 3\} \rightarrow \Lambda(\{2, 3\}) = \{2, 3\}$$

 $\delta(3, a) = \{1\} \rightarrow \Lambda(\{1\}) = \{1, 3\}$

$$(1,3)$$
 (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (4) (2) (2) (2) (3) (3) (3) (4) (2) (3) (4) (2) (3) (4) $(4$

→
$$\Lambda(\delta(\{2,3\}a)) = \{2,3\} \cup \{1,3\} = \{1,2,3\}.$$

$$\delta(2, b) = \{3\} \rightarrow \Lambda(\{3\}) = \{3\}$$

$$\delta(3,\,b)=\varnothing\,\, \boldsymbol{\rightarrow}\, \Lambda(\varnothing)=\varnothing \qquad \boldsymbol{\rightarrow}\, \Lambda(\delta(\{2,\,3\}\,b))=\{3\}\,.$$

So, add transitions from $\{2, 3\}$ to states $\{1, 2, 3\}$ and $\{3\}$ for a, b, respectively.

 $\delta'(\{2,3\},a) = \{1,2,3\} \text{ and } \delta'(\{2,3\},b) = \{3\}.$

Example: NFA-to-DFA Conversion in NFA with λ -transition

NFA N 1

• For a new state {1, 2, 3},

 $\delta(2,\,a) = \{2,\,3\,\} \, \Longrightarrow \, \Lambda(\{2,\,3\}) = \{2,\,3\}, \qquad \Lambda(\delta(\{1,\,2,\,3\}\,a)) = \{1,\,2,\,3\}.$

 $\delta(3, a) = \{1\} \rightarrow \Lambda(\{1\}) = \{1, 3\}$ $\delta(1, b) = \{2\} \rightarrow \Lambda(\{2\}) = \{2\},$

 $\delta(1, b) = \{2\} \rightarrow \Lambda(\{2\}) = \{2\},\$ $\delta(2, b) = \{3\} \rightarrow \Lambda(\{3\}) = \{3\},\$

 $\delta(3,b)=\varnothing \ \, \raise \rightarrow \Lambda(\varnothing)=\varnothing$

 $\Lambda(\delta(\{1, 2, 3\}, b)) = \{2, 3\}$

So, add transitions from $\{1, 2, 3\}$ to states $\{1, 2, 3\}$ and $\{2, 3\}$ for a, b, respectively.

 $\delta'(\{1, 2, 3\}, a) = \{1, 2, 3\} \text{ and } \delta'(\{1, 2, 3\}, b) = \{2, 3\}.$

Example: NFA-to-DFA Conversion in NFA with λ -transition

For a trap state ∅,

$$\delta(\varnothing,\,a)=\delta(\varnothing,\,b)=\varnothing \Rightarrow \Lambda(\varnothing)=\varnothing$$

So, add transitions from \emptyset to \emptyset for a, b, respectively.

$$\delta'(\emptyset, a) = \delta'(\emptyset, b) = \emptyset.$$

The final minimal DFA M: No reduction is necessary.

DFA M

