

(19) BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift ₁₀ DE 41 32 607 A 1

(5) Int. Cl.5:

B 21 D 37/20

DEUTSCHES PATENTAMT Aktenzeichen:

P 41 32 607.5

Anmeldetag:

1, 10, 91

Offenlegungstag:

8. 4.93

(71) Anmelder:

Umformtechnik Erfurt GmbH, O-5010 Erfurt, DE

② Erfinder:

Darr, Uwe, O-5034 Erfurt, DE

(A) Verfahren und Vorrichtung zur sollteilspezifischen Werkzeugeinstellung

(57) Werkzeugsätze, insbesondere für Großraumtransferpressen mit mehreren Werkzeugstufen je Stößel, werden in separaten Einarbeitungs- und Probierpressen vor dem Übergang in die Produktionspresse eingefahren.

Um diesen Vorgang, insbesondere den zeitlichen Aufwand zu reduzieren, besteht das Verfahren aus den Arbeitsschrit-

- a) Simulierung maschinenspezifischer Parameter der Produktionspresse durch ein Werkzeuglagerungssystem auf der Einarbeitungspresse,
- b) Ausregelung des Werkzeuges durch ein Werkzeuglageregelungssystem auf der Einarbeitungspresse in eine Grundeinstellung bis zur Fertigung von Sollteilen,
- c) Erfassen werkzeuggebundener Parameter für das Sollteil auf der Einarbeitungspresse und deren Registrierung im Werkzeugcode,
- d) Simulierung von Störgrößen maschinenspezifischer Parameter und prozeßspezifischer Parameter sowie Erfassung und Speicherung der eingetretenen Abweichungen und der Maßnahmen zur Störgrößenkompensation mit Registrierung der Werte im Werkzeugcode,
- e) Übertragung des Werkzeuges und des zugehörigen Werkzeugcodes auf die Produktionspresse,
- f) Erfassung werkzeuggebundener Parameter für das Istteil auf der Produktionspresse und deren Registrierung im Maschinencode,
- g) Erfassung von Störgrößen maschinenspezifischer Parameter und prozeßspezifischer Parameter sowie Erfassung und Speicherung der eingetretenen Abweichungen und Registrierung der Werte im Maschinencode,
- h) Wertevergleich von Maschinen- und Werkzeugcode,
- i) Ausregelung des ...

Verfahren und Vorrichtung finden Anwendung in Pressen, insbesondere Großteilstufenpressen mit mehreren Werkzeugstufen je Stößel, deren Werkzeugsätze in separaten Einarbeitungsund Probierpressen vor dem Übergang in die Produktionspresse eingefahren wer-

Kommen die kostenintensiven Großteilstufenpressen zur Werkzeugerprobung zur Anwendung, wird deren 10 Verfügbarkeit für Produktionszwecke wesentlich eingeschränkt. Die Aufstellung gleicher Pressen im Werkzeugbau mit zur Produktionspresse identischer Geometrie und Steife ist ökonomisch nicht zu vertreten.

Bei den in der Praxis auf separaten Einarbeitungs- 15 pressen eingefahrenen Preßwerkzeugen sind beim Übergang auf die Produktionspresse infolge varianter Vertikal- und Horizontalsteife dieser Pressentypen weiterhin langwierige Nacharbeitsund Einstelloperationen in der Produktionsanlaufphase nicht auszuschließen, die 20 wiederum deren Verfügbarkeit nachteilig beeinflussen.

Das in der Vorrichtung und dem Verfahren zur Anwendung kommende Werkzeuglageregelungssystem dient der Beeinflussung von Vertikal- und Horizontalverformung zur Erzielung reproduzierbarer Ziehteil- 25 qualitäten.

Die weiterhin auf die Schwankungsbreite der Ziehteilqualität wirkenden maschinenspezifischen Parameter, wie z. B.

- Schließgeschwindigkeit von Blechhalter und/oder 30 Werkzeugaktivelemente
- Ziehgeschwindigkeit
- Verlauf der Blechhaltekraft über dem Ziehweg
- Verteilung der Blechhaltekraft über dem Umfang und prozeßspezifischen Parameter, wie z. B
- Blechdickentoleranz
- Blechfestigkeitstoleranz
- Blechschmierungstoleranz

sind nicht ursächlich Gegenstand der Erfindung, sofern und das Verfahren beeinflußbar sind.

Gemäß HFF-Bericht Nr. 11, 1987, Universität Hannover, "Ziehtechnik bei der Herstellung von Karosserieteilen" und Bänder Bleche Rohre 7/1989 S. 28-35, "Reproduzierbarkeit des Einstellens einfachwirkender Ziehpr- 45 essen", hängt das Ziehergebnis neben der Werkzeuggeometrie, den Reibungsverhältnissen, dem Werkstoffverhalten ebenso von der Umformmaschine und insbesondere vom System Werkzeug/Presse ab. Als Hauptstörgrößen beim Anfahren einer Presse nach dem Rüstvorgang können vertikale Auffederung, Kippung und Versatz in horizontaler Richtung zwischen Maschine und Werkzeug infolge außermittiger Belastung bei hinreichender Ausprägung zum Versagen der Ziehteile infolge Reißer oder Faltenbildung führen.

Bei Umformstationen mit Blechhaltefunktionen sind Vorrichtungen nach DD-PS 2 83 086 bekannt, die eine getrennte Steuerung des über Druckbolzen sich an der Kissenplatte des Stößels oder Tisches abstützenden Blechhalters zu ermöglichen, um unter anderem die auf 60 den Blechhaltekraftverlauf Einfluß nehmenden Kippbewegungen des Stößels zu kompensieren. Weiterhin kann bei Werkzeugen für Schneidoperationen eine unzulässige Stößelkippung bei engem Schneidspalt zum Werkzeugbruch führen.

Es sind beispielsweise nach DD 2 89 970 bei hydraulischen Pressen, insbesondere Kunststoffpressen Parallellauf-Gegenhaltesysteme bereits bekannt, die mittels

elektro-hydraulischer Servosysteme, die auf den Pressenstößel wirkenden Kippmomente aktiv ausgleichen und während des Preßhubes eine Parallelität von Tischund Stößelspannfläche sichern. Insbesondere sind kurzhubige Gleichlaufzylinder auf der Aufspannplatte und oberhalb der Preßzylinder in Verbindung mit Meßsystemen angeordnet, die den aktuellen Abstand von Stößel und Tisch erfassen und lageregeln.

Es ist ferner eine Stößelkippungskompensationseinrichtung nach VDI-Z 132 (1990) Nr. 7 bekannt, bei der durch mittels Proportionalventiltechnik angesteuerten Arbeitszylinder die Stößelplatte in der x, y, z-Ebene hinsichtlich Kippung und Versatz lagegeregelt wird.

Bei einer weiteren bekannten Vorrichtung zur Stö-Belkippungskompensation bei Schmiedepressen nach den Kurzberichten der wissenschaftlichen Gesellschaft 90/48 (Industrieanzeiger 67/1990 wird durch negative Vorkompensation mittels Keilverstellungen an den Führungsleisten eine Parallellageregelung während der außermittig wirkenden Lastphase erzielt.

Eine Übertragung der bekannten Stößellageregelungen auf Großteilstufenpressen würde nur anteilig den gewünschten Erfolg bringen, da die mehreren Werkzeuge je Stößelfeld ihre eigene, zuvor auf meist einstufigen Einarbeitungspressen festgelegte Charakteristik aufweisen. Andererseits führt die Anwendung des Parallellaufsystems von Kunststoffpressen zur Erzielung nahezu "absoluter" Parallelität in µm-Bereich bei Anwendung in Einarbeitungs- und Produktionspressen für Blechformteile zu aufwandseitigen ökonomischen Nachteilen.

Die negative Vorkompensation der Führungslageregelung bei Schmiedepressen führt infolge Führungsvorspannung zu erhöhtem Verschleiß, der durch die zuneh-35 mende Führungsspielreduzierung infolge Stößelerwärmungsausdehnung noch weiter erhöht wird.

Nach OS 29 21 906 ist eine Vorrichtung zur zeitsparenden Einstellung von Einzelwerkzeugsätzen einer Mehrstufenpresse bekannt, bei der die auf einem gesie nicht anteilig durch die beschriebene Vorrichtung 40 meinsamen Schiebetisch montierten Unterwerkzeuge nacheinander durch eine einstufige Probierpresse hindurchgeführt werden.

Die unterschiedliche Belastungscharakteristik in der einstufigen Probierpresse und mehrstufigen Produktionspresse hat kein identisches elastisches Verhalten zur Folge. Dadurch sind unterschiedliche Werkstückfehler in beiden Pressen infolge unterschiedlicher Federung, Kippung und Versatz zu erwarten, die insbesondere bei Übertragung dieses Systems auf Großteilstu-50 fenpressen zu weiteren zeitaufwendigen Nacharbeitungen und Nachjustierungen der Werkzeuge führen kön-

Nach Werkstattstechnik 78 (1988) S. 579-582 "Rüstzeitverkürzung durch voreinstellbare Werkzeugsyste-55 me in der Massivumformung" wird ein Rüstablauf und zugehöriges voreinstellbares Werkzeugsystem einer Fließpresse beschrieben, bei der ein rechnerunterstütztes Voreinstellgerät die Produktionsanlaufphase bei Neu- und Wiederholrüstungen mit reproduzierbarer Genauigkeit verkürzt. Da die Probier- und Produktionspresse in diesem Fall identisch ist, ist eine reine Übertragung dieses Systems auf den Bereich der Problematik bei Großteilstufenpressen nicht möglich.

Nach DD 279639 ist ein Antrieb für mechanische 65 Pressen bekannt, bei dem der Druckpunkt des Stößels als zweiseitig aufschlagbarer Arbeitszylinder mit Differenzkolben ausgebildet ist, der eine dem mechanischen Stößelantrieb hydraulisch gesteuert überlagerte Stößel-

4

bewegung in vertikaler Bewegungsrichtung ermöglicht. Diese Einrichtung ist insbesondere bei Großteilstufenpressen, bei denen mehrere unterschiedlich lagezuregelnde Werkzeugstufen einem Stößel zugeordnet sind, nicht anwendbar.

Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zu entwickeln, durch die der Aufwand, insbesondere der zeitliche Aufwand, der sollteilspezifischen Werkzeugeinstellung auf der Einarbeitungspresse und/oder der Produktionspresse wesentlich reduziert 10 wird.

Die Erfindung wird jeweils durch einen der Verfahrensansprüche 1 bis 5 und durch den Vorrichtungsanspruch 6 des Werkzeuglageregelungssystems realisiert.

Die Figur zeigt den Querschnitt durch eine Werkzeugstufe eines Stößelfeldes von einer Großteilstufenpresse. Im Stößel befindet sich im unteren Teil die Stößelplatte 3 zur Aufnahme des Oberwerkzeuges.

Erfindungsgemäß stützt sich die Stößelplatte 3 in Druckrichtung der Umformkraft über die Kolbenstange 20 1 je eines kurzhubigen hydraulisch beaufschlagbaren Gegenhaltezylinders 2 im Stößel ab, wobei mindestens an jedem Eckpunkt der Stößelplatte 3 ein derartiger Gegenhaltezylinder 2 angeordnet ist.

Zur Aufnahme der Rückzugskräfte und der Vorspannung ist die Stößelplatte 3 weiterhin mittels Zugstangen 4 eines kombinierten Hub-Spanngetriebes 5 mit dem Stößel in vertikaler Richtung wirkverbunden. Auf dem mit Bewegungsgewinde versehenen Endstück der Zugstange 4 ist eine Spindelmutter 6 gelagert, die sich einerseits axial über hydraulisch vorgespannte Ringkolben 9 abstützt, die sich in den als Zylinderräumen ausgebildeten Endstücken des Hub-Spanngetriebes 5 befinden.

Andererseits ist die Spindelmutter 6 über ihren keilprofilierten Umfang radial drehfest, jedoch axial verschiebbar mit dem Antriebsrad 7 wirkverbunden. Das Antriebsrad 7 ist als Schneckenrad ausgebildet und über eine Schneckenwelle 11 mit der Antriebseinheit 8 des Hub-Spanngetriebes 5 verbunden.

Zur horizontalen Führung steht der kastenförmig 40 ausgebildete Teil der Stößelplatte 3 über in mindestens einer Ebene angeordneten Führungsstücken 12 der horizontalen Stelleinheiten 13 mit dem Stößel in Wirkverbindung.

Die so in vertikaler und horizontaler Richtung 45 "schwimmend" gelagerte Stößelplatte 3 kann im Zusammenwirken von Maschine/ Werkzeug/Prozeß folgende Funktionen erfüllen:

- 1. vertikale Höhenverstellung zwecks Einbauhöhenkorrektur der Werkzeuge, welche durch die Verstellung 50 der Zugstange 4 des Hub-Spanngetriebes 5 realisiert wird, wobei vorzugsweise eine Synchronverstellung aller vier zu einer Stößelplatte gehörigen Hub-Spanngetriebe 5 erfolgt;
- 2. Kompensation der unterschiedlichen vertikalen Federungen von mehreren Werkzeugstufen untereinander bezogen auf einen gemeinsamen Stößel durch die Einrichtung gemäß Punkt 1;
- 3. Horizontale Lagekorrektur der Stößelplatte mittels korrespondierender Stelleinheiten 13 zwecks Versatz- 60 für die Grundeinstellung. kompensation von Ober- und Unterwerkzeug; Zusätzlich werden Störe
- Winkellageregelung der Stößelplatte in zwei Ebenen durch:
- 4.1 programmierte Parallelsteuerung der vier Eckpunktpaare mittels gesteuerter Ölströme im Gegenhaltezylinder 2 und im Parallelführungszylinder 10 in Abhängigkeit der durch exzentrische Belastungen hervorgerufenen unterschiedlichen Drücke während des Umform-

vorgangs, welche insbesondere durch:

- Kraft(Druck)regelung,
- Wegmessung zwischen Ober- und Unterwerkzeug mit dem Ziel der Biegelinienangleichung und
- Ziehspalt-/Ziehteilmessung gesteuert wird;
- 4.2 über der Umformung festeingestellte Lagekorrektur der Stößelplatte 3 als bewußte Schiefstellung vor dem Umformvorgang;
- 5. Kraftmessung zur Überwachung der Umformstufe;
- 6. Überlastsicherung je Werkzeugstufe durch eingestellten Vorspanndruck im Ölraum der Gegenhaltezylinder
- 7. Zurückziehen der Stößelplatte vor dem Umformbeginn zwecks Reduzierung der Auftreffgeschwindigkeit beim Schließen des Werkzeugs.

Die Ausbildung der Oberwerkzeugbefestigungsplatte bzw. eines zwischen Stößel und Oberwerkzeug anzuordnenden Adapters als derartiges Werkzeuglageregelungssystem liegt im Rahmen der Erfindung.

Für die verfahrensmäßige Lösung der Aufgabe stellt der Anspruch 1 die umfangreichste und anspruchsvollste Lösung dar. Die zu erwartende vertikale und die horizontale Verformung der Produktionspresse, die aufgrund der nicht identischen Auffederung und Biegelinien der elastischen Verformung des Stößel- und Tischbereiches zwischen einstufiger Einarbeitungs- und mehrstufiger Produktionspresse voneinander abweicht, wird durch ein Werkzeuglageregelungssystem auf der Einarbeitungspresse simuliert. Präzise Berechnungsverfahren, gestützt durch meßtechnische Parameterauswertung adäquater Werkstücke bilden die Grundlage.

Anschließend wird das Werkzeug durch ein Werkzeuglageregelungssystem auf der Einarbeitungspresse bis zur Herstellung von Sollteilen eingefahren.

Nun erfolgt die Erfassung von Daten für die spätere Reproduzierbarkeit in der Produktionspresse wie z. B. vorhandene Vertikal-/Horizontalverformung einschließlich Spiel, Lage und Größe der Kraftresultierenden als Eingangsgröße für Federung, Kippung und Versatz des Systems Presse/Werkzeug und deren Registrierung im Werkzeugcode.

Nachdem jetzt Sollteile produziert werden können, erfolgt die Lernphase, um bei maschinen- und prozeßspezifischen Störungen schnell und richtig reagieren zu können.

Es werden maschinenspezifische Parameter in Verbindung mit dem Werkzeug bis zum Erreichen des thermischen Beharrungszustandes, Veränderungen des Führungsspieles sowie technologische Änderungen, wie die Blechdicke, Blechfestigkeit, Blechschmierung u. a. in ihrem möglichen Spektrum simuliert.

Die eingetretenen Abweichungen und die Maßnahmen zur Störgrößenkompensation werden erfaßt, gespeichert und im Werkzeugcode registiert.

Der Werkzeugcode und das entsprechende Werkzeug werden jetzt auf die Produktionspresse übertragen. Nach dieser Übertragung erfolgt die Erfassung der werkzeuggebundenen Parameter für das Istteil und deren Registrierung im Maschinencode als Ausgangsbasis für die Grundeinstellung.

Zusätzlich werden Störgrößen maschinenspezifischer Parameter, produktionsprozeßspezifischer Parameter und darüber hinaus die eingetretenen Abweichungen erfaßt, gespeichert und im Maschinencode registriert.

In einer während des gesamten Produktionsprozesses ablaufenden Regelschleife werden die sich ständig ändernden Istwerte des Maschinencodes mit den Sollwerten des Werkzeugcodes verglichen, so daß das Werk-

10

5

zeuglageregelungssystem das Werkzeug ständig für die Produktion von Sollteilen ausregelt.

Das Verfahren findet nur in einem technologisch sinnvollen und konstruktiv durch das Werkzeuglageregelungssystem eingegrenzten Rahmen Anwendung, wobei es erfindungswesentlich ist, daß Störgrößen auch durch zusätzliche periphere Anlagen kompensiert werden, so z. B. die Konstanthaltung der Werkstückschmierungstoleranz.

Patentansprüche

- Verfahren zur sollteilspezifischen Werkzeugeinstellung, wobei die Merkmale b, c und e den Oberbegriff und die übrigen Merkmale den kennzeichnenden Teil bilden:
- a) Simulierung maschinenspezifischer Parameter der Produktionspresse durch ein Werkzeuglageregelungssystem auf der Einarbeitungspresse,
- b) Ausregelung des Werkzeuges durch ein Werkzeuglageregelungssystem auf der Einarbeitungspresse in eine Grundeinstellung bis zur Fertigung von Sollteilen,
- c) Erfassen werzeuggebundener Parameter für das Sollteil auf der Einarbeitungspresse und deren Registrierung im Werkzeugcode,
- d) Simulierung von Störgrößen maschinenspezifischer Parameter und prozeßspezifischer Parameter sowie Erfassung und Speicherung der eingetretenen Abweichungen und der Maßnahmen zur 30 Störgrößenkompensation mit Registrierung der Werte im Werkzeugcode,
- e) Übertragung des Werkzeuges und des zugehörigen Werkzeugcodes auf die Produktionspresse,
- f) Erfassung werkzeuggebundener Parameter für 35 das Istteil auf der Produktionspresse und deren Registrierung im Maschinencode,
- g) Erfassung von Störgrößen maschinenspezifischer Parameter und prozeßspezifischer Parameter sowie Erfassung und Speicherung der eingetretenen Abweichungen und Registrierung der Werte im Maschinencode,
- h) Wertevergleich von Maschinen- und Werkzeugcode und
- i) Ausregelung des Werkzeuges bis zur Produktion 45 von Sollteilen.
- 2. Verfahren zur sollteilspezifischen Werkzeugeinstellung, wobei die Merkmale b, c und e den Oberbegriff und die übrigen Merkmale den kennzeichnenden Teil bilden:
- a) Simulierung maschinenspezifischer Parameter der Produktionspresse durch das Werkzeuglageregelungssystem auf der Einarbeitungspresse,
- b) Ausregelung des Werkzeuges durch ein Werkzeuglageregelungssystem auf der Einarbeitungspresse in eine Grundeinstellung bis zur Fertigung von Sollteilen.
- c) Erfassen werkzeuggebundener Parameter für das Sollteil auf der Einarbeitungspresse und deren Registrierung im Werkzeugcode,
- e) Übertragung des Werkzeuges und des zugehörigen Werkzeugcodes auf die Produktionspresse,
- f) Erfassung werkzeuggebundener Parameter für das Istteil auf der Produktionspresse und deren Registrierung im Maschinencode,
- h) Wertevergleich von Maschinen- und Werkzeugcode und
- i) Ausregelung des Werkzeuges bis zur Produktion

von Sollteilen.

- 3. Verfahren zur sollteilspezifischen Werkzeugeinstellung, wobei die Merkmale b, c und e den Oberbegriff und die übrigen Merkmale den kennzeichnenden Teil bilden:
- b) Ausregelung des Werkzeuges durch ein Werkzeuglageregelungssystem auf der Einarbeitungspresse in eine Grundeinstellung bis zur Fertigung von Sollteilen,
- c) Erfassen werkzeuggebundener Parameter für das Sollteil auf der Einarbeitungspresse und deren Registrierung im Werkzeugcode,
- d) Simulierung von Störgrößen maschinenspezifischer Parameter und prozeßspezifischer Parameter sowie Erfassung und Speicherung der eingetretenen Abweichungen und der Maßnahmen zur Störgrößenkompensation mit Registrierung der Werte im Werkzeugcode,
- e) Übertragung des Werkzeuges und des zugehörigen Werkzeugcodes auf die Produktionspresse,
- f) Erfassung werkzeuggebundener Parameter für das Istteil auf der Produktionspresse und deren Registrierung im Maschinencode,
- g) Erfassung von Störgrößen maschinenspezifischer Parameter und prozeßspezifischer Parameter sowie Erfassung und Speicherung der eingetretenen Abweichungen und Registrierung der Werte im Maschinencode,
- h) Wertevergleich von Maschinen- und Werkzeugcode und
- i) Ausregelung des Werkzeuges bis zur Produktion von Sollteilen.
- 4. Verfahren zur sollteilspezifischen Werkzeugeinstellung, wobei die Merkmale b, c und e den Oberbegriff und die übrigen Merkmale den kennzeichnenden Teil bilden:
- b) Ausregelung des Werkzeuges durch ein Werkzeuglageregelungssytem auf der Einarbeitungspresse in eine Grundeinstellung bis zur Fertigung von Sollteilen,
- c) Erfassen werkzeuggebundener Parameter für das Sollteil auf der Einarbeitungspresse und deren Registrierung im Werkzeugcode,
- e) Übertragung des Werkzeuges und des zugehörigen Werkzeugcodes auf die Produktionspresse,
- f) Erfassung werkzeuggebundener Parameter für das Istteil auf der Produktionspresse und deren Registrierung im Maschinencode,
- h) Wertevergleich von Maschinen- und Werkzeugcode und
- i) Ausregelung des Werkzeuges bis zur Produktion von Sollteilen.
- 5. Verfahren zur sollteilspezifischen Werkzeugeinstellung, wobei die Merkmale b, c und e den Oberbegriff und die übrigen Merkmale den kennzeichnenden Teil bilden:
- a) Simulierung maschinenspezifischer Parameter der Produktionspresse durch ein Werkzeuglageregelungssystem auf der Einarbeitungspresse,
- b) Ausregelung des Werkzeuges durch ein Werkzeuglageregelungssystem auf der Einarbeitungspresse in eine Grundeinstellung bis zur Fertigung von Sollteilen,
- c) Erfassen werkzeuggebundener Parameter für das Sollteil auf der Einarbeitungspresse und deren Registrierung im Werkzeugcode und
- e) Übertragung des Werkzeuges und des zugehörigen Werkzeugcodes auf die Produktionspresse.

6. Werkzeuglageregelungssystem zur sollteilspezifischen Werkzeugeinstellung, insbesondere zur Kompensation elastischer Lagefehler zwischen Ober- und Unterwerkzeug einer Großraumtransferpresse mit schwimmend gelagerter Stößelplatte, 5 welche je einer Werkzeugstufe zugeordnet ist, dadurch gekennzeichnet,

- daß die Stößelplatte (3) über die jeweilige Kolbenstange (1) von mindestens vier an den Stößeleckpunkten angeordneten hydraulisch beauf- 10 schlagbaren Gegenhaltezylindern (2) vertikal am Stößel abstützend angeordnet ist, und

- daß die Stößelplatte (3) gelenkig mit vier an den Eckpunkten angeordneten Zugstangen (4) eines Hub-Spanngetriebes (5) wirkverbunden ist, und

- daß jede Zugstange (4) an ihrem freien Ende ein Bewegungsgewinde aufweist, auf das eine verdrehbare keilprofilierte Spindelmutter (6) aufgeschraubt ist, und

- daß am äußeren Umfang der Spindelmutter (6) 20 ein in Längsrichtung verschiebbares, jedoch zur Spindelmutter (6) drehfestes Antriebsrad (7) angeordnet ist, daß mit einer gestellfesten und drehgelagerten Antriebseinheit (8) wirkverbunden ist, und - daß die Spindelmutter (6) stirnseitig mit einem 25 hydraulisch beaufschlagbaren auf der Zugstange (4) zentrisch gelagerten Ringkolben (9) eines Paral-

lelführungszylinders (10) in Wirkverbindung steht und

- daß jede Seite eines in den Stößelbereich hinein- 30 ragenden kastenförmig ausgebildeten Teils der Stößelplatte über Führungsstücke (12) der sich paarweise gegenüberliegenden horizontalen Stelleinheiten (13) mit dem Stößel in Wirkverbindung steht.

Hierzu 1 Seite(n) Zeichnungen

40

45

50

55

60

