Bemerkung:

Das uniforme wie auch das nicht-uniforme Wortproblem ist für Typ-0-Sprachen (also die rekursiv-aufzählbare Sprachen) im Allgemeinen nicht entscheidbar. Wir werden später sehen, dass es zum Halteproblem für Turingmaschinen äquivalent ist.

Es gilt jedoch

Satz 20

Für kontextsensitive Grammatiken ist das Wortproblem entscheidbar.

Genauer: Es gibt einen Algorithmus, der bei Eingabe einer kontextsensitiven Grammatik $G = (V, \Sigma, P, S)$ und eines Wortes w in endlicher Zeit entscheidet, ob $w \in L(G)$.

Beweisidee:

Angenommen $w \in L(G)$. Dann gibt es eine Ableitung

$$S = w^{(0)} \to_G w^{(1)} \to_G \dots \to_G w^{(\ell)} = w$$

 $mit \ w^{(i)} \in (\Sigma \cup V)^* \ für \ i = 1, \dots, \ell.$

Da aber G kontextsensitiv ist, gilt (falls $w \neq \epsilon$)

$$|w^{(0)}| \le |w^{(1)}| \le \dots \le |w^{(\ell)}|$$
,

d.h., es genügt, nur Wörter in $(\Sigma \cup V)^*$ der Länge $\leq |w|$ zu betrachten.

Beweis:

Sei o.B.d.A. $w \neq \epsilon$ und sei $T^n_m := \{w' \in (\Sigma \cup V)^*; \ |w'| \leq n \ \text{und} \ w' \ \text{lässt sich aus } S \ \text{in} \leq m \ \text{Schritten ableiten} \}$

Diese Mengen kann man für alle n und m induktiv wie folgt berechnen:

$$\begin{array}{rcl} T^n_0 &:=& \{S\} \\ T^n_{m+1} &:=& T^n_m \cup \{w' \in (\Sigma \cup V)^*; \; |w'| \leq n \text{ und} \\ & w'' \rightarrow w' \text{ für ein } w'' \in T^n_m\} \end{array}$$

Beachte: Für alle m gilt: $|T_m^n| \leq \sum_{i=1}^n |\Sigma \cup V|^i$.

Es muss daher, für festes n, immer ein m_0 geben mit

$$T_{m_0}^n = T_{m_0+1}^n = \dots$$

Beweis (Forts.):

Algorithmus:

```
n := |w|
T := \{S\}
T' := \emptyset
while T \neq T' do
   T' := T
  T := T' \cup \{ w' \in (V \cup \Sigma)^+; |w'| \le n, (\exists w'' \in T')[w'' \to w'] \}
od
if w \in T return "ja" else return "nein" fi
```

Gegeben sei die Typ-2-Grammatik mit den Produktionen

$$S \to ab$$
 und $S \to aSb$

sowie das Wort w = abab.

$$\begin{array}{rcl} T_0^4 & = & \{S\} \\ T_1^4 & = & \{S,ab,aSb\} \\ T_2^4 & = & \{S,ab,aSb,aabb\} & aaSbb \text{ ist zu lang!} \\ T_3^4 & = & \{S,ab,aSb,aabb\} \end{array}$$

Also lässt sich das Wort w mit der gegebenen Grammatik nicht erzeugen!

Bemerkung:

Der angegebene Algorithmus ist nicht sehr effizient! Für kontextfreie Grammatiken gibt es wesentlich effizientere Verfahren, die wir später kennenlernen werden!

2.4 Ableitungsgraph und Ableitungsbaum

Grammatik:

Beispiel:

$$S \rightarrow AB$$

$$A \rightarrow aA$$

$$A \rightarrow a$$

$$B \rightarrow bB$$

$$B \rightarrow b$$

$$caa \rightarrow c$$

$$cb \rightarrow a$$

Die Symbole ohne Kante nach unten entsprechen, von links nach rechts gelesen, dem durch den Ableitungsgraphen dargestellten Wort.

Grammatik:

$$\begin{array}{cccc} S & \rightarrow & AB \\ A & \rightarrow & aA \\ A & \rightarrow & a \\ B & \rightarrow & bB \\ B & \rightarrow & b \\ aaa & \rightarrow & c \\ cb & \rightarrow & a \end{array}$$

Dem Ableitungsgraph entspricht z.B. die Ableitung

$$S \rightarrow AB \rightarrow aAB \rightarrow aAbB \rightarrow aaAbB \rightarrow aaAbbB \rightarrow aaabbB \rightarrow aaabbb \rightarrow cbbb \rightarrow abb$$

Beobachtung:

Bei kontextfreien Sprachen sind die Ableitungsgraphen immer Bäume.

Beispiel 22

Grammatik:

$$S \rightarrow aB$$

$$S \rightarrow Ac$$

$$A \rightarrow ab$$

$$B \rightarrow bc$$

AbleitungsbaumAbleitungsbäume:

Für das Wort *abc* gibt es zwei verschiedene Ableitungsbäume.

Definition 23

Eine Ableitung

$$S = w^{(0)} \to w^{(1)} \to \cdots \to w^{(n)} = w$$

eines Wortes w heißt Linksableitung, wenn für jede Anwendung einer Produktion $\alpha \to \beta$ auf $w^{(i)} = x\alpha z$ gilt, dass sich keine Regel der Grammatik auf ein echtes Präfix von $x\alpha$ anwenden lässt.

- Eine Grammatik heißt eindeutig, wenn es für jedes Wort $w \in L(G)$ genau eine Linksableitung gibt. Nicht eindeutige Grammatiken nennt man auch mehrdeutig.
- Eine Sprache L heißt eindeutig, wenn es für L eine eindeutige Grammatik gibt. Ansonsten heißt L mehrdeutig.

Bemerkung: Eindeutigkeit wird meist für kontextfreie (und reguläre) Grammatiken betrachtet, ist aber allgemeiner definiert.

Grammatik:

$$S \rightarrow aB$$

$$S \rightarrow Ac$$

$$A \rightarrow ab$$

$$B \rightarrow bc$$

Ableitungsbäume:

Beide Ableitungsbäume für das Wort abc entsprechen Linksableitungen.

Grammatik:

$S \rightarrow AB$ $A \rightarrow aA$ $B \rightarrow bB$ $aaa \rightarrow c$

Ableitung:

Eine Linksableitung ist

$$S \rightarrow AB \rightarrow aAB \rightarrow aaAB \rightarrow aaaB \rightarrow cB \rightarrow cbB \rightarrow aB \rightarrow abB \rightarrow abb$$

Grammatik:

$S \rightarrow AB$ $A \rightarrow aA$ $B \rightarrow bB$ $aaa \rightarrow c$

Eine andere Linksableitung für abb ist

Ableitung:

Grammatik:

$$S \rightarrow AB$$

$$A \rightarrow aA$$

$$A \rightarrow a$$

$$B \rightarrow bB$$

$$B \rightarrow b$$

$$aaa \rightarrow c$$

$$cb \rightarrow a$$

Die Grammatik ist also mehrdeutig.

Ableitung:

3. Reguläre Sprachen

3.1 Deterministische endliche Automaten

Definition 26

Ein deterministischer endlicher Automat (englisch: deterministic finite automaton, kurz DFA) wird durch ein 5-Tupel $M = (Q, \Sigma, \delta, q_0, F)$ beschrieben, das folgende Bedingungen erfüllt:

- Q ist eine endliche Menge von Zuständen.
- Σ ist eine endliche Menge, das Eingabealphabet, wobei $Q \cap \Sigma = \emptyset$.
- $g_0 \in Q$ ist der Startzustand.
- $F \subseteq Q$ ist die Menge der Endzustände (oder auch akzeptierenden Zustände)
- $\delta: Q \times \Sigma \to Q$ heißt Übergangsfunktion.

Die von M akzeptierte/erkannte Sprache ist

$$L(M) := \{ w \in \Sigma^*; \ \hat{\delta}(q_0, w) \in F \} ,$$

wobei $\hat{\delta}: Q \times \Sigma^* \to Q$ induktiv definiert ist durch

$$\begin{array}{lll} \hat{\delta}(q,\epsilon) &=& q & \text{ für alle } q \in Q \\ \hat{\delta}(q,ax) &=& \hat{\delta}(\delta(q,a),x) & \text{ für alle } q \in Q, a \in \Sigma \\ & \text{ und } x \in \Sigma^* \end{array}$$

Bemerkung: Endliche Automaten können durch (gerichtete und markierte) Zustandsgraphen veranschaulicht werden:

- genauer: eine mit $a \in \Sigma$ markierte Kante (u, v) entspricht $\delta(u, a) = v$

Der Anfangszustand wird durch einen Pfeil, Endzustände werden durch doppelte Kreise gekennzeichnet.

Sei
$$M=(Q,\Sigma,\delta,q_0,F)$$
, wobei

$$Q = \{q_0, q_1, q_2, q_3\}$$
 $\Sigma = \{a, b\}$
 $F = \{q_3\}$
 $\delta(q_0, a) = q_1$
 $\delta(q_0, b) = q_3$
 $\delta(q_1, a) = q_2$
 $\delta(q_1, b) = q_0$
 $\delta(q_2, a) = q_3$
 $\delta(q_2, b) = q_1$
 $\delta(q_3, a) = q_0$

 $\delta(q_3, b) = q_2$