MLALGORITHM

In this session

- Supervised vs Unsupervised
- Algorithm group
- Linear regression
- Logistic regression
- Decision trees
- Neural networks
- Support vector machines (SVMs)
- Bayesian methods
- Considerations when choosing an algorithm
- Cheat Sheet
- Algorithm's performance comparison

ML Algorithm Supervised vs Unsupervised

Supervised

- Train with know answer
- Can give answer with any new input, after sufficient training
- Create a function from inputs to give answer
- If the answers are expressed in classes, it is called classification problem
- If the answer space is continuous, it is called regression problem.

Unsupervised

- Training with unknown answer
- Can find the structure or relationships between different inputs
- Most important = clustering
- Anomaly detection

ML Algorithm Algorithm group

Supervised: Make predictions based on a set of examples

- Classification: predict a category
- Regression: predicted a value
- Anomaly detection: identify data unusual

Unsupervised: data points have no labels associated with them

• Clustering: discovering structure

ML Algorithm Linear regression

- Use when data fits a line
- It's a workhorse
- Simple and fast
- May be overly simplistic for some problems.

Higher temperature predicts better frozen yogurt sold

Logistic regression

- Tool for two-class and multiclass classification
- Fast and simple
- Uses an 'S'-shaped curve
- Fit for dividing data into groups
- Linear approximation

Graph of a logistic regression curve showing probability of passing an exam versus hours studying

Hours of study	Probability of passing exam
1	0.07
2	0.26
3	0.61
4	0.87
5	0.97

Decision trees

- Subdivide the feature space into regions with mostly the same label
- Decision forests (regression, two-class, and multiclass)
- Decision jungles (two-class and multiclass)
- Boosted decision trees (regression and two-class)
- Foundational machine learning concept

A decision tree is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences

ML Algorithm Neural networks

- Brain-inspired
- Multiclass, two-class, and regression
- Many-layered networks = "deep learning"
- Take a long time to train
- Have more parameters

Deep learning use a cascade of many layers of nonlinear processing units for feature extraction and transformation

Support vector machines (SVMs)

- Find the boundary that separates classes
- When the two classes can't be clearly separated
- Uses a linear kernel
- Run fairly quickly
- Feature-intense data (DNA)
- Requiring only a modest amount of memory

A typical support vector machine class boundary maximizes the margin separating two classes

ML Algorithm Bayesian methods

- Make the assumption of data points
- One data point is related with others
- Number of minutes until the next subway train arrives
- Two measurements taken a day apart are independent
- Two measurements taken a minute apart are not independent
- The value is highly predictive

This expression describes how an existing belief ("prior") held before any evidence is considered, is updated by the evidence to produce a new level of belief ("posterior").

Considerations when choosing an algorithm

Considerations when choosing an algorithm

- Accuracy: most accurate isn't always necessary
- Training time: more accuracy = longer time
- Linearity: most are liner but not always

Considerations when choosing an algorithm

Data with a nonlinear trend - using a linear regression method would generate much larger errors than necessary

Considerations when choosing an algorithm

Algorithm's parameters

- Are the knobs a data scientist
- Turn when setting up an algorithm
- Affect the algorithm's behavior
- Must understand the in-side out of algorithm
- Use parameter sweeping to automatically tries all parameter

Considerations when choosing an algorithm

Number of features

- Can be very large for genetics or textual data
- The large number can bog down some algorithms
- Making training time long
- Go deep
- Support Vector Machines (SVM)

ML Algorithm Cheat Sheet

Machine Learning Algorithm Cheat Sheet (11x17 in.)

http://download.microsoft.com/download/A/6/1/A613E11E-8F9C-424A-B99D-65344785C288/microsoft-machine-learning-algorithm-cheat-sheet-v6.pdf

Algorithm's performance comparison

Algorithm's performance comparison

Algorithm's performance comparison

- 1. Open Experiment Titanic
- 2. Save as Titanic two algorithm
- 3. Drag & drop modules
 - a. Two-Class Decision Forest module
 - b.Train Module
 - c. Score Module
- 4. Set module properties
- 5. Save Experiment
- 6. Run Experiment
- 7. View Visualize / ROC Curve and Evaluation metrics

Algorithm's performance comparison

Modules properties setting

ML Algorithm More information

A Tour of Machine Learning Algorithms

http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

