

Apple IIc Technical Reference Manual

Apple® Technical Library Titles for the Apple IIe and IIc The Official Publications from Apple Computer, Inc.

Apple IIe and Apple IIc programmers, developers, and enthusiasts will find a wealth of information in the Apple Technical Library, an ongoing series of comprehensive reference manuals. The first volumes in the Library contained detailed information about the Apple IIe and Apple IIc computers. They describe the hardware, firmware, the ProDOS 8 operating system, and the Applesoft BASIC programming language found in Apple IIe and IIc computers.

These books, written and produced by Apple Computer, Inc., provide definitive references for those interested in getting the most out of their Apple IIe or IIc.

Apple Technical Library Titles for the Apple IIe and IIc include:

Apple IIe Technical Reference
Apple IIc Technical Reference
Applesoft Tutorial
Applesoft BASIC Programmer's Reference
Manual
ProDOS 8 Technical Reference
BASIC Programming with ProDOS
Apple Numerics Manual
ImageWriter II Technical Reference
Manual

Apple_® II Apple IIc Technical Reference Manual

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo Madrid Bogotá Santiago San Juan

APPLE COMPUTER, INC.

Copyright © 1984, 1986 by Apple Computer, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of Apple Computer, Inc. Printed in the United States of America.

Apple, the Apple logo, ProDOS, and LaserWriter are registered trademarks of Apple Computer, Inc.

Macintosh is a trademark of Apple Computer, Inc.

Microsoft is a registered trademark of Microsoft Corporation.

POSTSCRIPT is a trademark of Adobe Systems Incorporated.

ITC Garamond, ITC Avant Garde Gothic, and ITC Zapf Dingbats are registered trademarks of International Typeface Corporation.

Simultaneously published in the United States and Canada.

ISBN 0-201-17752-8 ABCDEFGHIJ-DO-89876 First printing, March 1987

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON THIS MANUAL, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though Apple has reviewed this manual, APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS SOLD "AS IS," AND YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS MANUAL, even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification, extension, or addition to this warranty.

Some states do no allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

Figures and tables xiv

Preface About This Manual xxi

Contents of this manual xxi

The Apple IIc family xxiii

Identifying your Apple IIc xxiii

The original Apple IIc xxiv

The UniDisk 3.5 Apple IIc xxiv

The memory expansion Apple IIc xxiv

Conventions used in this manual xxv

Chapter 1 Introduction 1

The outside of the machine 2 The keyboard 3 Features 3 Special function keys 4 Cursor movement keys 4 Modifier keys 5 The 80/40 switch 5 The keyboard switch 6 Disk-use and power lights 7 The speaker 8 The built-in disk drive 8 The back panel 9 The inside of the machine 11 The internal voltage converter 11 The main logic board 12 The other circuit boards 15

Chapter 2 Memory Organization and Control 17

The 65C02 microprocessor 18 Overview of the address space 20 Memory map and memory switching 20 Main RAM addresses (\$0000-\$BFFF and \$D000-\$FFFF) 22 Auxiliary RAM addresses (\$0000-BFFF and \$D000-\$FFFF) 22 ROM addresses (\$C100-\$FFFF) 22 Hardware addresses (\$C000-\$C0FF) 23 Bank-switched memory 24 Page allocations 26 Page \$00 (one-byte addresses) 26 Page \$01 (the 65C02 stack) 26 Pages \$D0-\$FF (ROM and RAM) 26 Using bank selector switches 27 48K memory 36 Page allocations 36 Page \$02 (the input buffer) 36 Page \$03 (global storage and vectors) 36 Pages \$04-\$07 (text and low-resolution Page 1) 36 Pages \$08-\$0B (text and low-resolution Page 2) 38 Pages \$08 (communication port buffers) 38 Pages \$20-\$3F (high-resolution Page 1) 38

Using 48K memory switches 39

Transfers between main and auxiliary memory 42

Pages \$40-\$5F (high-resolution Page 2) 39

Transferring data 42

Transferring control 43

Using display memory switches 44

The reset routine 49

The cold-start procedure (power on) 51
The warm-start procedure (Control-Reset) 51
Forced cold start (Open Apple-Control-Reset) 52
The reset vector 52

Chapter 3 Introduction to Apple IIc I/O 55

The standard I/O links 56
Standard input features 58
RdKey subroutine 58
KeyIn subroutine 58
GetLn subroutine 59
Escape codes with GetLn 60
Editing with GetLn 63
Cancel line 63
Backspace 63
Retype 63

Standard output features 64 COut subroutine 64 Control characters with COut1 65 Control characters with C3COut1 65 The stop-list feature 67 The text window 68 Normal, inverse, and flashing text 69 Primary character set display 70 Alternate character set display 70 Port I/O 71 Standard link entry points 71 Firmware protocol 72 Port I/O space 73 Port ROM space 73 Expansion ROM space 74 Port screen hole RAM space 74 Interrupts 75

Chapter 4 Keyboard and Speaker 77

Keyboard input 78
Reading the keyboard 78
Monitor firmware support for keyboard input 82
Speaker output 82
Using the speaker 83
Monitor firmware support for speaker output 84

Chapter 5 Video Display Output 85

Video display specifications 87

Text modes 88

Text character sets 88

MouseText 90

40-column versus 80-column text 91

Graphics modes 94

Low-resolution graphics 94

High-resolution graphics 95

Double high-resolution graphics 97

Mixed-mode displays 98

Display pages 99

Display mode switching 101

Display page maps 105

Monitor support for video display output 112

I/O firmware support for video display output 116

Chapter 6 Block Device I/O 119

Disk drive I/O 120

Startup 121

Cold start 121

Warm start 123

Memory expansion card I/O 123

The Smartport I/O interface 123

Locating the Smartport 124

Issuing a call to the Smartport 125

Cautions 126

Descriptions of the Smartport calls 126

STATUS 128

Parameter descriptions 128

Possible errors 132

READ BLOCK 132

Parameter descriptions 133

Possible errors 133

WRITE BLOCK 134

Parameter descriptions 134

Possible errors 135

FORMAT 135

Parameter descriptions 135

Possible errors 136

CONTROL 136

Parameter descriptions 136

Possible errors 139

INIT 139

Parameter descriptions 140

Possible errors 140

OPEN 140

Parameter descriptions 140

Possible errors 141

CLOSE 141

Parameter descriptions 141

Possible errors 142

READ 142

Parameter descriptions 142

Possible errors 143

WRITE 143

Parameter descriptions 144

Possible errors 144

An example: issuing a Smartport call 145

Summary of commands and parameters 149

Summary of error codes 150

Chapter 7 Serial I/O Port 1 153

Using serial port 1 155
Characteristics of port 1 at startup 159
Hardware page locations for port 1 159
I/O firmware support for port 1 160
Screen hole locations for port 1 160
Changing port 1 characteristics 161
Data format and baud rate 163
Carriage return and line feed 164
Sending special characters 165
Displaying output on the screen 165

Chapter 8 Serial I/O Port 2 167

Using serial port 2 169
Characteristics of port 2 at startup 173
Hardware page locations for port 2 174
I/O firmware support for port 2 174
Screen hole locations for port 2 174
Changing port 2 characteristics 176
Data format and baud rate 177
Carriage return and line feed 179
Routing input and output 179
Half-duplex operation 180
Full-duplex operation 182
Terminal mode 184

Chapter 9 Mouse and Game Input 185

Mouse input 186

Mouse connector signals 187

Mouse operating modes 187

Transparent mode 187

Movement interrupt mode 188

Button interrupt mode 188

Movement/button interrupt mode 188

Vertical blanking active modes 188

Mouse soft switches 189

I/O firmware support for mouse input 191

Pascal support 195

BASIC and assembly-language support 195

Screen holes 196

Using the mouse as a hand controller 198

Game input 198

The hand controller connector signals 199
Switch inputs (Sw0 and Sw1) 200
Analog inputs (Pdl0 and Pdl1) 200
Monitor support for game input 201

Chapter 10 Using the Monitor 203

Invoking the Monitor 204 Syntax of Monitor commands 205 Monitor memory commands 205 Examining memory contents 206 Memory dump 206 Changing memory contents 208 Changing one byte 208 Changing consecutive locations 209 Moving data in memory 210 Comparing data in memory 211 Monitor register commands 212 Changing registers 213 Examining registers 213 Miscellaneous Monitor commands 213 Display inverse and normal 214 Back to BASIC 214 Redirecting input and output 215 Hexadecimal arithmetic 215 Advanced operations 216 Multiple-command lines 216 Filling memory 216 Repeating commands 217 Creating your own commands 218 Machine-language programs 219 Running a program 219 Disassembled programs 220 The STEP and TRACE commands 221 The Mini-Assembler 223 Starting the Mini-Assembler 223 Using the Mini-Assembler 224 Mini-Assembler instruction formats 226 Summary of Monitor commands 227 Examining memory 227 Changing the contents of memory 227 Moving and comparing 227 The Register command 228 Miscellaneous Monitor commands 228 Running and listing programs 229

Chapter 11 Hardware Implementation 231

Environmental specifications 232

Power requirements 233

The external power supply 233

The external power connector 234

The internal converter 234

Apple IIc overall block diagram 235

The 65C02 microprocessor 237

65C02 block diagram 237

65C02 timing 239

The custom integrated circuits 241

The memory management unit (MMU) 241

The input/output unit (IOU) 243

The timing generator (TMG) 245

The general logic unit (GLU) 245

The disk controller unit (IWM) 247

Memory addressing 248

ROM addressing 249

RAM addressing 251

Dynamic RAM refreshment 251

Dynamic RAM timing 252

The keyboard 254

The speaker 256

Volume control 256

Output jack 256

The video display 257

The video counters 257

Display memory addressing 258

Display address mapping 258

Video display modes 261

Text displays 263

Low-resolution display 266

High-resolution display 267

Double high-resolution display 269

Video output signals 270

Monitor output 270

Video expansion output 271

Disk I/O 273

Serial I/O 274

ACIA control register 278

ACIA command register 280

ACIA status register 281

ACIA transmit/receive register 282

Mouse input 282 Hand controller input 287 Memory expansion card 291 Schematic diagrams 291

Appendix A The 65C02 Microprocessor 297

Differences between 6502 and 65C02 297
Differing cycle times 297
Differing instruction results 298
Data sheet 298

Appendix B Memory Map 308

Page \$00 308
Page \$03 312
Screen holes 312
The hardware page 316

Appendix C Important Firmware Locations 322

The tables 322 Port addresses 323 Other video and I/O firmware addresses 326 Applesoft BASIC interpreter addresses 326 Monitor addresses 326

Appendix D Operating Systems and Languages 328

Operating systems 328
ProDOS 328
DOS 328
Pascal Operating System 329
Languages 329
Applesoft BASIC 329
Integer BASIC 330
Pascal 330
Fortran 330
Logo II 330

Appendix E Interrupts 331

Introduction 331
What is an interrupt? 331
Interrupts on Apple II computers 332
Interrupt handling on the 65C02 333
The interrupt vector at \$FFFE 333

The built-in interrupt handler 334 Saving the memory configuration 335 Managing main and auxiliary stacks 336 User's interrupt handler at \$03FE 336 Handling break instructions 337 Sources of interrupts 338 Firmware handling of interrupts 339 Firmware for mouse and VBL 339 Firmware for keyboard interrupts 340 Using keyboard buffering firmware 341 Using keyboard interrupts through firmware 342 Using external interrupts through firmware 342 Firmware for serial interrupts 343 Using serial buffering transparently 343 Using serial interrupts through firmware 344 Transmitting serial data 344 A loophole in the firmware 345 Bypassing the interrupt firmware 345 Using mouse interrupts without the firmware 345 Using ACIA interrupts without the firmware 347

Appendix F Apple II Series Differences 348

Overview 348

Type of processor 350

Machine indentification 350

Memory structure 351

Amount and address ranges of RAM 351

Amount and address ranges of ROM 351

Peripheral-card memory spaces 352

Hardware addresses 353

\$C000-\$C00F 353

\$C010-\$C01F 353

\$C020-\$C02F 354

\$C030-\$C03F 354

\$C040-\$C04F 354

\$C050-\$C05F 354

\$C060-\$C06F 355

\$C070-\$C07F 355

\$C080-\$C08F 356

40000 40001 JJ0

\$C090-\$C0FF 356

Monitors 356

I/O in general 357

DMA transfers 357

Slots versus ports 357

Interrupts 357

The keyboard 357

Keys, switches, and lights 358

Character sets 358

The speaker 359

The video display 359

Character sets 359

MouseText 360

Vertical blanking 360

Display modes 360

Disk I/O 361

Serial I/O 361

Serial ports versus serial cards 361

Serial I/O buffers 362

Mouse and hand controllers 363

Mouse input 363

Hand controller input and output 363

Cassette I/O 364

Hardware 365

Power 365

Custom chips 365

Appendix G **USA and International Models 366**

Keyboard layouts and codes 366

USA standard (Sholes) keyboard 367

USA simplified (Dvorak) keyboard 370

ISO layout of USA keyboard 371

English keyboard 372

French keyboad 373

Canadian keyboard 375

German keyboard 376

Italian keyboard 378

Western Spanish keyboard 380

ASCII character sets 381

Certification 383

Product safety 383

Important safety instructions 383

Power supply specifications 383

Appendix H Conversion Tables 384

Bits and bytes 384
Hexadecimal and decimal 387
Hexadecimal and negative decimal 388
Peripheral identification numbers 389
Eight-bit code conversions 391

Appendix | Firmware Listings 396

Glossary 509 Bibliography 533 Index 535 Tell Apple Card

Figures and tables

Chapter 1 Introduction 1

	rigule 1-1	Apple he external leatures, from 2	
	Figure 1-2	Apple IIc external features, back 2	
	Figure 1-3	Front of Apple IIc with standard USA keyboard 3	
	Figure 1-4	USA standard (or Sholes) keyboard,	
		keyboard switch up 6	
	Figure 1-5	USA simplified (or Dvorak) keyboard,	
		keyboard switch down 7	
	Figure 1-6	Speaker, volume control, and audio output jack 8	
	Figure 1-7	Built-in disk drive 9	
	Figure 1-8	Back panel connectors 10	
	Figure 1-9	Inside the machine 11	
	Figure 1-10	Power supply and voltage converter 12	
	Figure 1-11	Original and UniDisk 3.5 IIc main logic board 13	
	Figure 1-12	Memory expansion IIc main logic board 14	
	Table 1-1	Keyboard specifications	
Chapter 2	Memory Organization and Control 17		
	Figure 2-1	Internal model of the 65C02 microprocessor 19	
	Figure 2-2	Apple IIc memory map 21	
	Figure 2-3	Bank-switched memory map 25	
	Figure 2-4	Read ROM 29	
	Figure 2-5	Read ROM, write RAM, and use first \$D0 bank 30	
	Figure 2-6	Read ROM, write RAM, and use second \$D0 bank 31	
	Figure 2-7	Read RAM and use first \$D0 bank 32	
	Figure 2-8	Read RAM and use second \$D0 bank 33	
	Figure 2-9	Read and write RAM and use first \$D0 bank 34	
	Figure 2-10	Read and write RAM and use second \$D0 bank 35	
	Figure 2-11	48K memory map 37	
	Figure 2-12	48K RAM selection, split pairs 40	
	Figure 2-13	48K RAM selection, one side only 41	
	Figure 2-14	Page2 selections, 80Store on and HiRes off 47	
	Figure 2-15	Page2 selections, 80Store on and HiRes on 48	
	Figure 2-16	Reset routine flowchart 49	
	Table 2-1	Bank selector switches 28	

	Table 2-2 Table 2-3 Table 2-4 Table 2-5 Table 2-6 Table 2-7	48K memory switches 39 48K RAM transfer routines 42 Parameters for MoveAux routine 43 Parameters for XFer routine 43 Display memory switches 45 Page \$03 vectors 50
Chapter 3	Introduction	to Apple IIc I/O 55
	Table 3-1 Table 3-2 Table 3-3 Table 3-4 Table 3-5 Table 3-6 Table 3-7 Table 3-8 Table 3-9	Prompt characters 59 Escape codes with GetLn 61 Control characters with COut1 65 Control characters with C3COut1 66 Text window memory locations 69 Port characteristics 71 Firmware protocol locations 72 Port I/O locations 73 Port screen hole memory locations 74
Chapter 4 Keyboard and Speaker 77		nd Speaker 77
	Table 4-1 Table 4-2 Table 4-3	Keyboard input characteristics 79 Keys and ASCII codes 80 Speaker output characteristics 83
Chapter 5 Video Display Output 85		ay Output 85
	Figure 5-1 Figure 5-2 Figure 5-3 Figure 5-4 Figure 5-5 Figure 5-6 Figure 5-7 Figure 5-8 Figure 5-9 Table 5-1 Table 5-2 Table 5-3 Table 5-4 Table 5-5 Table 5-6 Table 5-7	MouseText characters 91 40-column and 80-column text with alternate character set 92 Text mode characteristics and switching 93 High-resolution display bits 96 Map of 40-column text display 107 Map of 80-column text display 108 Map of low-resolution graphics display 109 Map of high-resolution graphics display 110 Map of double high-resolution graphics display 111 Video output port characteristics 86 Video display specifications 87 Display character sets 89 Low-resolution graphics colors 94 High-resolution graphics colors 97 Double high-resolution graphics colors 99 Video display page locations 101
	Table 5-8	Display soft switches 102

	Table 5-9	Display modes supported by firmware, including Applesoft 104
	Table 5-10	Other display modes 104
		Monitor firmware routines 112
	Table 5-11	
	Table 5-12	Port 3 firmware protocol table 116
	Table 5-13	Pascal video control functions 117
Chapter 6	Block Device	1/0 119
	Figure 6-1	Summary of Smartport calls 149
	Table 6-1	Disk I/O port characteristics 120
Chapter 7	Serial I/O Por	1 153
	Figure 7-1	Diagram of port 1 characteristics storage 162
	Figure 7-2	Data format 163
	Table 7-1	Serial port 1 characteristics 154
	Table 7-2	Printer port commands 155 Port 1 hardware page locations 159
	Table 7-3	Port 1 I/O firmware protocol 160
	Table 7-4	Port 1 screen hole locations 160
	Table 7-5	Port 1 screen note locations 100
Chapter 8	Serial I/O Por	† 2 167
	Figure 8-1	Diagram of port 2 characteristics storage 177
	Figure 8-2	Devices in a typical communication setup 178
	Figure 8-3	Effect of IN#2 180
	Figure 8-4	Effect of IN#2 and T command, half duplex 181
	Figure 8-5	Effect of IN#2 and T command,
	J	full-duplex terminal 182
	Figure 8-6	Effect of IN#2, PR#2, and T command,
	J	full-duplex host 183
	Table 8-1	Serial port 2 characteristics 168
	Table 8-2	Modem port commands 170
	Table 8-3	Port 2 hardware page locations 174
	Table 8-4	Port 2 I/O firmware protocol 174
	Table 8-5	Port 2 screen hole locations 175
Chapter 0	Mouse and G	Game Input 185
Chapter 9		
	Table 9-1	Mouse input port characteristics 186
	Table 9-2	Mouse soft switches 189
	Table 9-3	Mouse firmware routines 193
	Table 9-4	Mouse port I/O firmware protocol 195
	Table 9-5	Mouse port screen hole locations 197
	Table 9-6	Game input characteristics 199

Chapter 10 Using the Monitor 203

Table 10-1 Mini-Assembler address formats 226

Chapter 11 Hardware Implementation 231

Figure 11-1	External power connector 234
Figure 11-2	Apple IIc block diagram 236
Figure 11-3	65C02 block diagram 238
Figure 11-4	65C02 timing signals 240
Figure 11-5	MMU pinouts 242
Figure 11-6	IOU pinouts 243
Figure 11-7	TMG pinouts 245
Figure 11-8	GLU pinouts 246
Figure 11-9	IWM pinouts 247
Figure 11-10	Memory bus organization 249
Figure 11-11	23128 ROM pinouts 249
Figure 11-12	2316 ROM pinouts 250
Figure 11-13	2364 pinouts 250
Figure 11-14	64K RAM pinouts 251
Figure 11-15	RAM timing signals 253
Figure 11-16	Keyboard circuit diagram 254
Figure 11-17	Keyboard signals 255
Figure 11-18	Speaker circuit diagram 256
Figure 11-19	Display address transformation 260
Figure 11-20	40-column text display memory 261
Figure 11-21	Video display circuits 262
Figure 11-22	7-MHz video timing signals: 40-column,
	low-resolution, and high-resolution display 264
Figure 11-23	14-MHz video timing signals: 80-column
	and double high-resolution display 265
Figure 11-24	Video output back panel connectors 270
Figure 11-25	Video expansion connector pinouts 272
Figure 11-26	Disk drive connector 274
Figure 11-27	Serial port circuits 275
Figure 11-28	6551 ACIA block diagram 276
Figure 11-29	6551 pinouts 277
Figure 11-30	Serial port connectors 278
Figure 11-31	ACIA control register 279
Figure 11-32	ACIA command register 280
Figure 11-33	ACIA status register 281
Figure 11-34	Sample mouse waveform 283
Figure 11-35	Mouse movement and direction waveforms 283
Figure 11-36	Mouse connector 284
Figure 11-37	Mouse circuits 285
Figure 11-38	Mouse button signals 286

Figure 11-39	Hand controller connector 287			
Figure 11-40	How to connect switch inputs 288			
Figure 11-41	Hand controller circuits 288			
Figure 11-42	Hand controller signals 289			
Figure 11-43	Memory expansion card connector			
	pinout diagram 291			
Figure 11-44	Apple IIc schematic diagram 292			
Table 11-1	Environmental specifications 232			
Table 11-2	Power supply specifications 233			
Table 11-3	External power connector signals 234			
Table 11-4	Internal converter specifications 234			
Table 11-5	65C02 microprocessor specifications 239			
Table 11-6	65C02 timing signal descriptions 240			
Table 11-7	MMU signal descriptions 242			
Table 11-8	IOU signal descriptions 243			
Table 11-9	TMG signal descriptions 245			
Table 11-10	GLU signal descriptions 246			
Table 11-11	IWM signal descriptions 247			
Table 11-12	RAM address multiplexing 252			
Table 11-13	RAM timing signals 253			
Table 11-14	Display memory addressing 260			
Table 11-15	Memory address bits for display modes 260			
Table 11-16	Character-generator control signals 266			
Table 11-17	Video expansion connector signals 272			
Table 11-18	Disk drive connector signals 274			
Table 11-19	6551 signal descriptions 277			
Table 11-20	Serial port connector signals 278			
Table 11-21	Mouse connector signals 284			
Table 11-22	Hand controller connector signals 287			
The 65C02 Mi	The 65C02 Microprocessor 297			
Table A-1	Cycle time differences 298			

Appendix A

Appendix B Memory Map 308

Table I	B-1	Page \$00 use 309
Table 1	B-2	Page \$03 use 312
Table I	B-3	Main memory screen hole allocations 313
Table I	B-4	Auxiliary memory screen hole allocations 315
Table 1	B-5	Addresses \$C000-\$C03F 316
Table I	B-6	Addresses \$C040-\$C05F 318
Table I	B-7	Addresses \$C060-\$C07F 319
Table I	B-8	Addresses \$C080-\$C0AF 320
Table I	B-9	Addresses \$C0B0-\$C0FF 321

Appendix C	Important Fir	mware Locations 322	
	Table C-1	Serial port 1 addresses 323	
	Table C-2	Serial port 2 addresses 324	
	Table C-3	Video firmware addresses 324	
	Table C-4	Mouse port addresses 325	
	Table C-5	Apple IIc enhanced video	
		and miscellaneous firmware 326	
	Table C-6	Apple IIc monitor entry points and vectors 326	
Appendix E	Interrupts 33	1	
	Table E-1	Interrupt-handling sequence 335	
	Table E-2	Activating mouse interrupts 346	
	Table E-3	Reading mouse interrupts 346	
Annondiy E	Annie II Cerie	a Differences 240	
Appendix F		s Differences 348	
	Figure F-1	Apple II, II Plus, and IIe hand controller signals 364	
	Table F-1	Apple II series indentification bytes 350	
Appendix G	USA and International Models 366		
	Figure G-1	USA standard (or Sholes) keyboard, keyboard switch up 368	
	Figure G-2	USA simplified (or Dvorak) keyboard,	
	0	keyboard switch down 370	
	Figure G-3	ISO version of USA standard keyboard,	
		keyboard switch up 371	
	Figure G-4	English keyboard, keyboard switch up 372	
	Figure G-5	French keyboard, keyboard switch down 373	
	Figure G-6	Canadian keyboard, keyboard switch down 375	
	Figure G-7	German keyboard, keyboard switch down 376	
	Figure G-8	Italian keyboard, keyboard switch down 378	
	Figure G-9	Western Spanish keyboard, keyboard switch down 380	
	Table G-1	Keys and ASCII codes 368	
	Table G-2	English keyboard code differences	
		from Table G-1 372	
	Table G-3	French keyboard code differences	
		from Table G-1 374	
	Table G-4	Canadian keyboard code differences	
		from Table G-1 375	
	Table G-5	German keyboard code differences	
		from Table G-1 377	

	Table G-6	Italian keyboard code differences from Table G-1 379
	Table G-7	Western Spanish keyboard code differences from Table G-1 381
	Table G-8	ASCII code equivalents 381
	Table G-9	50-Hz power supply specifications 383
Appendix H	Conversion	Tables 384
	Figure H-1	Bits, nibbles, and bytes 386
	Table H-1	
	Table H-2	
	Table H-3	
	Table H-4	
	Table H-5	
	Table H-6	
	Table H-7	Special characters, high bit off 393
	Table H-8	Uppercase characters, high bit off 394
	Table H-9	Lowercase characters, high bit off 395
Appendix I	Eirmware Lie	tings 304
Appendix I		
	Table I-1	Main side ROM map 397
	Table I-2	Auxiliary side ROM map 398

About This Manual

This is the reference manual for the Apple® IIc personal computer. It contains detailed descriptions of all the hardware and firmware that make up the Apple IIc and provides the technical information that peripheral-card designers and programmers need.

The information in this manual is aimed at assembly-language programmers and hardware designers, but others interested in the internal operation of the Apple IIc can also benefit from reading it.

This manual tells you how the Apple IIc works, but not how to use it. If you need to know how to set up and use your Apple IIc, read the *Apple IIc Owner's Manual*.

This manual describes three versions of the Apple IIc:

- □ the original Apple IIc
- □ the Apple IIc that supports the UniDisk™ 3.5 drive
- ☐ the Apple IIc that supports the Memory Expansion Card

More information on the various versions of the Apple IIc is provided under "The Apple IIc Family," later in this Preface.

Contents of this manual

The Apple IIc is presented in this manual from the outside in.

Chapter 1 introduces the Apple IIc, including external controls, connectors, and the main internal components.

Chapter 2 introduces the 65C02 microprocessor and its directly addressable memory space.

Chapter 3 introduces the I/O characteristics of the Apple IIc. Chapters 4 and 9 cover specific areas of the I/O interface.

Chapter 4 describes the keyboard and speaker.

Chapter 5 describes the video display.

Chapter 6 describes block device I/O, including the Smartport firmware interface.

Chapter 7 describes serial port 1.

Chapter 8 describes serial port 2.

Chapter 9 describes the mouse/game paddle port.

Chapter 10 describes the Apple IIc's built-in Monitor firmware. The Monitor helps you write, disassemble, and debug machinelanguage programs, as well as providing you with a means to look at and manipulate the contents of main memory.

Chapter 11 describes the Apple IIc hardware in detail.

Appendix A describes the 65C02 microprocessor in detail, including the differences between it and the 6502 microprocessor used on early-model Apple II's. Most of this appendix is a reprint of the manufacturer's data sheet for the 65C02.

Appendix B contains a memory map of the Apple IIc main memory. Detailed maps are provided for memory pages \$00 and \$03, the screen holes, and the hardware page.

Appendix C lists the Apple IIc firmware entry points, including those for the I/O firmware and the Monitor firmware.

Appendix D describes some of the operating systems and languages supported by Apple Computer for the Apple IIc.

Appendix E describes the operation of the Apple IIc interrupt handler firmware and how to use it in your programs.

Appendix F outlines the differences and similarities between the diverse members of the Apple II family of computers.

Appendix G describes the various international versions of the Apple IIc keyboard and character set. Power and safety information for international versions of the Apple IIc is also included in this appendix.

Appendix H contains tables to aid you in code and number base conversions.

Appendix I contains the firmware listing for the new version of the Apple IIc and information on obtaining listings for the original and UniDisk 3.5 ROMs.

The Glossary defines many of the technical terms used in this manual.

The Bibliography lists articles and books with additional information about the Apple IIc.

Finally, after the index at the back of this manual, you'll find the Tell Apple Card; please take a minute to fill this card out and mail it back to us. Your experience with this and other Apple manuals can help us plan new reference materials.

The Apple IIc family

Changes have been made to the Apple IIc since the original version was introduced. The first change was made in order to support the UniDisk 3.5 external drive, and included a set of ROM-based machine-language routines called the **Protocol Converter**. The latest version incorporates all the UniDisk 3.5 upgrade features, a new version of the Protocol Converter called the **Smartport**, and support for an optional memory expansion card. All of these versions are described in this manual. Where there are differences between the various versions of the Apple IIc, they will be called out in the manual. For the sake of convenience, the various versions of the Apple IIc are identified by the features they support, such as memory expansion for the newest IIc and UniDisk 3.5 for the version that introduced the UniDisk 3.5 drive support. Unless specified, all versions of the Apple IIc operate identically.

Important

Smartport is merely a new name for the Protocol Converter; all the specifications for the Smartport apply to the Protocol Converter, and vice versa.

Identifying your Apple IIc

There are basically three versions of the Apple IIc:

- □ the *original* Apple IIc
- □ the UniDisk 3.5 Apple IIc
- □ the memory expansion Apple IIc

You can tell which Apple IIc you have by checking the value of the ID byte at ROM location 64447 (\$FBBF in hexadecimal). The value of this byte is 255 (\$FF) in the original Apple IIc, 0 (\$00) in the UniDisk 3.5 version, and 3 (\$03) in the memory expansion version.

Checking the ID byte: You can check the value of the ID byte from Applesoft by typing PRINT PEEK (64447).

The original Apple IIc

The original Apple IIc is the oldest member of the IIc family. It has the following features:

- □ the 65C02 microprocessor
- □ 128K of RAM

The UniDisk 3.5 Apple IIc

The Apple IIc that introduced support for the UniDisk 3.5 drive is identified in this manual as the UniDisk 3.5 version. It includes the following changes from the original Apple IIc:

- ☐ the Protocol Converter, to support the UniDisk 3.5 external disk drive
- □ a 256K ROM IC to replace the 128K ROM
- □ some new serial port commands
- □ the Mini-Assembler
- □ two new Monitor commands (STEP and TRACE)
- □ built-in diagnostics

The UniDisk 3.5 Apple IIc also includes improved interrupt handler features and new external drive startup procedures.

The memory expansion Apple IIc

The Apple IIc that supports an optional memory expansion card supports all the features of the UniDisk 3.5 version. It includes the following changes from the UniDisk 3.5 IIc:

- □ an internal connector to support an optional memory expansion card
- ☐ 4 64Kx4 RAM ICs to replace the 16 64Kx1 ICs

The Apple IIc that supports the memory expansion option also reorganizes the I/O port ("slot") entry points in the firmware. The mouse, located at port 4 in the original and UniDisk 3.5 versions, is now at port 7. The memory expansion card uses port 4 in the new Apple IIc. What this means is that all the mouse I/O entry point addresses have been changed from \$C4XX to \$C7XX.

Preface: About This Manual

To avoid confusion and maintain compatibility with previous versions, the text and tables in this book still show the values used for the original and UniDisk 3.5 versions of the Apple IIc. However, a statement reminding you of the change appears near affected tables.

Remember that the Smartport and the Protocol Converter are the same thing.

Conventions used in this manual

Special text in this manual is set off in several different ways, as shown in these examples.

Warning

Important warnings look like this. These flag potential danger to the Apple IIc, its software, or you.

Important

Text set off like this is less urgent or threatening than text in a Warning box, but still of a critical nature.

Original lic

Text set off like this applies only to the original version of the Apple IIc.

UniDisk 3.5

Text set off like this applies only to the UniDisk 3.5 version of the Apple IIc.

Memory expansion

Text set off like this applies only to the memory expansion version of the Apple IIc.

By the way: Information that is useful but incidental to the text is set off like this. You may want to skip over such information and return to it later.

Terms that appear in **boldface** in the text are defined in the Glossary or a marginal gloss.

Computer voice is used to indicate text that should be identical to your screen display or printout.

Introduction

This chapter introduces you to the working parts of the Apple IIc by briefly describing the major components of the computer—both internal and external hardware and firmware—and telling you where in the manual to find out more about them.

The outside of the machine

This section briefly describes the Apple IIc's keyboard, controls, indicators, and expansion connectors.

The Apple IIc comes equipped with a keyboard, speaker (with audio output jack and volume control), built-in disk drive, external power supply, and internal voltage converter. It also has built-in interfaces with external connectors for a serial printer, video monitor, special video display adapters, modem, mouse, and game controllers. These external connectors allow you to plug in accessory equipment without having to go inside the machine to use expansion slots like those in the Apple IIe.

Figure 1-1 shows the front and right side of an Apple IIc, and Figure 1-2 shows the back and left side.

Figure 1-1 Apple IIc external features, front

Figure 1-2 Apple IIc external features, back

ASCII stands for American Standard Code for Information Interchange. Table 4-2 lists the ASCII character encoding for the standard and simplified USA keyboards. Appendix G lists the encoding for International keyboards.

The keyboard

The Apple IIc's primary input device is the keyboard, shown in Figure 1-3. The keyboard has a 63-key typewriter layout with both uppercase and lowercase characters and can generate all 128 standard **ASCII** characters. A reset key, 80/40-column display selector switch, keyboard layout selector switch, disk-use light, and power light are also located on the front of the computer.

Figure 1-3
Front of Apple IIc with standard USA keyboard

Table 1-1 lists the characteristics of all Apple IIc keyboards and front panels.

Features

The Apple IIc keyboard has automatic repeat on all character keys. This means that if you hold the key down longer than about a second, the character it generates repeats until you let up the key. It also has two-key rollover, which means if you press a key before releasing the one you pressed before it, the second character enters the computer the same as though you had released the previous key first. (This is important for fast touch-typists.)

Table 1-1
Keyboard specifications

Number of keys	63
Character encoding	ASCII
Number of codes	128
Features	Automatic repeat, two-key rollover
Special function keys	Reset, Open Apple, Solid Apple,
Cursor movement keys	Left Arrow, Right Arrow, Down Arrow,
	Up Arrow, Return, Delete, Tab
Modifier keys	Control, Shift, Caps Lock, Escape
Front-panel switches	80/40 switch, keyboard switch
Front-panel lights	Power light, disk-use light

The Open Apple and Solid Apple keys are connected to 1-bit addresses in memory, described in Chapter 9.

Chapter 2 describes the results of the various reset procedures.

Special function keys

The Apple IIc keyboard has three special function keys: Reset, and two keys marked with apples—one outlined (Open Apple) and one filled in (Solid Apple).

Reset has a direct line to the 65C02 microprocessor's RESET signal line (see Chapter 11): holding down Control while pressing Reset causes the Apple IIc to restart processing with an internal firmware program that puts the machine in a known state (see Chapter 2).

You can restart the Apple IIc without turning the power off and back on again, by holding down both Control and Open Apple while pressing Reset. Restarting this way is less stressful to the Apple IIc's components than normal powerup.

Cursor movement keys

The Apple IIc keyboard has four cursor movement keys with arrows marked on them: left, right, down, and up. Three other keys can also cause cursor movements: Return, Delete, and Tab. All seven of these keys generate ASCII control characters (see Table 4-2). It is up to the operating system or application program to interpret and act on the control codes that these keys generate.

The Monitor is a bullt-in program that performs some of the basic activities of the computer, such as retrieving and storing key codes as they come in, and clearing or updating the display

screen.

Modifier keys

Three special keys—Control, Shift, and Caps Lock—generate no codes when pressed by themselves, but change the codes generated by other keys they are pressed in combination with. A fourth key, Escape, generates a nonprinting control code that causes the **Monitor** to interpret certain subsequent keystrokes in a modified way.

- ☐ Control, when pressed in combination with letter keys or certain other keys, produces ASCII control characters. Most of the control characters are invisible most of the time.
- ☐ Shift works the same on the Apple IIc as on an ordinary typewriter: it selects uppercase letters and the upper characters on the keys.
- ☐ Caps Lock, in its down position, changes the letter keys to uppercase, but does not affect other keys.
- ☐ Escape is not a modifier key in the same sense as Control and Shift: you do not hold it down while pressing other keys. Rather, you press Escape and it generates the ASCII escape (ESC) control character (key code \$1B—see Table 4-2). When the Escape key is pressed, many programs—including the built-in Monitor program—then interpret other specific keys as designating an escape sequence.

The 80/40 switch

The 80/40 switch lets you specify whether a program should display information in 40 or 80 columns per line. The switch indicates 40-column display when in its down position, and 80-column display when in its up position.

Important

Not all programs check this switch. Even programs that do check the switch may do so only when the program first starts up. If that is the case, changing the switch position while the program is running will have no effect on the program's display. (See Table 4-1.)

The keyboard switch

You use the keyboard switch to select for use one of the two keyboard layouts and screen character sets built into your Apple IIc. On USA versions of the Apple IIc, you select the standard Sholes keyboard layout (Figure 1-4) with the switch in the up position, and the Dvorak simplified layout (Figure 1-5) with the switch in the down position.

If you normally use the Dvorak keyboard layout, you can *gently* pry up the keys from the keyboard and rearrange and replace them in their Dvorak positions.

Figure 1-4 USA standard (or Sholes) keyboard, keyboard switch up

Figure 1-5 USA simplified (or Dvorak) keyboard, keyboard switch down (shaded characters may be in different positions on some models)

Appendix G illustrates the keyboard layouts for both keyboard switch positions on several international versions of the Apple IIc.

On international models, the keycaps indicate the character positions for the local keyboard layout, which is selected when the keyboard switch is down. When up, the keyboard switch selects the USA standard characters and key layout.

Disk-use and power lights

The red disk-use light glows whenever the built-in disk drive's motor is switched on.

The green power light glows when the Apple IIc is turned on and normal power is present at the Apple IIc's internal power supply.

Warning

If the power light flashes on and off, turn off the computer **immediately.** Find out what caused the condition (such as a brownout or short circuit) and fix the problem before turning the computer on again. Above all, do not use the disk drive when the power light is flashing; this may damage the computer.

The way programs control the speaker is described under "Speaker Output" in Chapter 4.

The speaker

The Apple IIc has a speaker in the bottom of the case, as shown in Figure 1-6. The speaker lets Apple IIc programs produce a variety of sounds. There is also a volume control on the left side of the Apple IIc case, and a jack for connecting headphones or an external speaker. The jack accepts either one-channel (monaural) or two-channel (stereo) plugs, although speaker output is monaural only. Inserting a plug disconnects the built-in speaker

Figure 1-6 Speaker, volume control, and audio output jack

The built-in disk drive

The Apple IIc's built-in disk drive (Figure 1-7) is fully compatible with the Apple Disk IIc that reads and writes 5.25-inch single-sided 35-track disks. The drive door is on the right side of the Apple IIc case.

Figure 1-7 Built-in disk drive

The back panel

The back panel of the Apple IIc (Figure 1-8) has seven connectors and a main power switch. From left to right they are

- □ a 9-pin D-type miniature connector for connecting hand controllers, a mouse, a joystick, or some other device (see Chapters 9 and 11)
- □ a 5-pin DIN connector for serial input and output (port 2; normally for a modem) (see Chapters 7 and 11)
- □ a 15-pin D-type connector for video expansion (see Chapter 11)
- □ an RCA-type jack for a video monitor (see Chapter 11)
- □ a 19-pin D-type connector for connecting one or more external devices, such as intelligent disk drives (see Chapters 6 and 11)
- □ another 5-pin DIN connector for serial input and output (port 1; normally for a printer or plotter) (see Chapters 8 and 11)
- □ a special 7-pin DIN connector for power input (see Chapter 11)

Before attaching cables to the Apple IIc back panel connectors, be sure to move the handle until it clicks into position for propping up the computer. The handle should be down whenever the computer is running so that it can maintain proper cooling airflow.

The installation manuals for external devices contain instructions for connecting them to the Apple IIc.

Figure 1-8
Back panel connectors

The inside of the machine

Figure 1-9 shows the main components inside the Apple IIc computer.

Figure 1-9 Inside the machine

The internal voltage converter

Complete specifications of the Apple IIc power supply and voltage converter appear in Chapter 11. The built-in voltage converter operates from a 12 to 15 VDC input source, such as provided by the external power supply furnished with the Apple IIc (Figure 1-10). The voltage converter provides power for the logic board, built-in disk drive, one external disk drive, and the I/O signals available at the back panel.

Figure 1-10
Power supply and voltage converter

The voltage converter produces three different voltages: +5V, +12V, and -12V. (Minus 5V, needed by some components in the Apple IIc, is derived from -12V on the main logic board.) It is a high-efficiency switching converter that protects itself and the rest of the Apple IIc against short circuits and other electrical mishaps.

The main logic board

The main logic board, which is mounted flat in the bottom of the Apple IIc's case, has almost all the electronic parts of the computer attached to it.

Firmware is program code that is stored in ROM. It can be read and executed, but not changed.

Figure 1-11 shows the main logic board and the most important integrated circuits (ICs) in the Apple IIc. They are the CPU (central processing unit), RAM (random-access memory), ROM (read-only memory) ICs for keyboard encoding, display character generation, and **firmware**, and the five custom ICs.

The processor is a 65C02 microprocessor. The 65C02 is a CMOS version of the 6502 used in other members of the Apple II family. It is an 8-bit microprocessor with a 16-bit address bus. In the Apple IIc, the 65C02 runs at 1 MHz and performs up to 500,000 8-bit operations per second.

Figure 1-11
Original and UniDisk 3.5 lle main logic board

Figure 1-12 Memory expansion llc main logic board

The keyboard is scanned by an IC that generates matrix values for a ROM. The value of the ASCII code supplied by the ROM is latched at a specified memory location and is readable by programs.

The character generator ROM converts ASCII character values to a form that the video display can use.

The other ROM contains the Monitor, the Applesoft BASIC interpreter, enhanced video firmware, and other input/output firmware. The firmware that this ROM contains is described throughout this manual.

The Applesoft language interpreter is described in the Applesoft Tutorial and the Applesoft BASIC Programmer's Reference Manual.

For more on memory addressing, see Chapter 2.

See Chapters 3 through 9.

Chapter 11 discusses the functions of these integrated circuits in some detail.

Five of the large ICs on the main logic board are custom-made for the Apple IIc:

- ☐ The *memory management unit* (MMU) contains most of the logic that controls memory addressing in the Apple IIc.
- ☐ The *input/output unit* (IOU) contains most of the logic that controls the built-in input and output features of the Apple IIc.
- ☐ The *timing generator* (TMG) generates all the system and I/O clock and timing signals from a 14-MHz oscillator.
- ☐ The *general logic unit* (GLU) performs the remaining required logic functions.
- ☐ The *disk controller unit*, also known as the Integrated Woz Machine (IWM), is a single-chip version of the Apple Disk II controller card. It controls the built-in and external disk drives connected to the Apple IIc.

The other circuit boards

The Apple IIc contains other circuit boards that serve special purposes: a motor-speed control and read/write logic board for the disk drive, and a matrix board for detecting the position of keys pressed. This manual does not discuss these circuit boards.

Warning

Adjustment of disk drive speed must be done by an authorized Apple Service Center. Do not attempt to adjust the speed of your built-in disk drive. If you do, you may damage it and you will void your warranty.

Memory Organization and Control This chapter introduces the Apple IIc's processor, the 65C02, and the memory ranges and locations in the Apple IIc that have been set aside for special purposes. The last section of this chapter describes the reset routines, which restore the computer to a known state.

The 65C02 microprocessor

The 65C02 is a general-purpose 8-bit CMOS microprocessor similar in operation to the 6502 used in other members of the Apple II family of computers.

Figure 2-1 is a model of the 65C02 microprocessor's register organization. Registers are fast-acting built-in storage areas where the processor performs and keeps track of its work. The 65C02 has one 16-bit register and five 8-bit registers.

The 16-bit register is called the *program counter* (PC). It specifies the address in memory that contains the instruction the processor is currently carrying out. A 16-bit register can specify any one of 65,536 memory addresses, and so the 65C02 is said to have an address space of 65,536 locations.

The five 8-bit registers in the 65C02 are the following:

- ☐ The *accumulator*, or A register. The accumulator is like a desk top where the processor performs mathematical and logical operations on information.
- ☐ The *index registers*, X and Y. The processor uses these registers to modify the address where information is to be found or placed, and to pass information from one program to another.
- □ A stack pointer, or S register. The processor uses a 256-byte region of memory—page \$01—as an area to stack up bytes for future use. The stack is empty when the computer is turned on. Several 65C02 instructions either push (store) the contents of a register onto the stack, or pull (retrieve) a byte from the stack and place it in a register. The S register keeps track of the address of the byte in the stack that is currently ready for use.
- □ A processor status register, or P register. Seven of the eight bits of this register are used as flags to record the outcome of processor activities, and can be checked by later instructions to determine what has happened and what the processor should do next.

Each of the other registers holds eight bits (one byte), so the 65C02 is called an 8-bit processor.

Appendix A lists the instructions the 65C02 can carry out, their use, and their effects on the registers. For further information, consult the pertinent books listed in the Bibliography.

Figure 2-1 Internal model of the 65C02 microprocessor (copyright © 1982 by NCR Corporation; used by permission)

Soft switches are described more fully under "Bank-Switched Memory" and "48K Memory."

There are two other ROMs in the Apple IIc: one to generate characters corresponding to keystrokes and another to generate characters for display. (See "The Keyboard" and "The Video Display" in Chapter 9.) However, these ROMs are not addressable by the microprocessor.

Overview of the address space

The Apple IIc's 65C02 microprocessor can address 65,536 (64K) memory locations. All the Apple IIc's RAM, ROM, and input and output (I/O) devices are accessed using addresses in this 64K address range. Some functions have the same addresses—but not at the same time. The Apple IIc controls its shared addresses by using soft switches. A **soft switch** is a memory location that controls some aspect of the computer's operation when it is accessed.

All input and output in the Apple IIc is memory mapped—that is, specific memory addresses (all in the \$C0 page) are allocated to each I/O device. In this chapter, the I/O memory spaces are described simply as areas of memory. For details of the built-in I/O features and firmware, refer to the descriptions in Chapters 3 through 9.

A contiguous block of 256 address locations in the 65C02's address range is called a **page**. A 1-byte address counter or 8-bit register can specify 1 of 256 different locations. Thus, page \$00 consists of memory locations from 0 through 255 (hexadecimal \$00 through \$FF); page \$01 consists of locations 256 through 511 (hexadecimal \$0100 through \$01FF); and so on. In this manual, all page numbers are given in hexadecimal format.

Note: The first two digits of a four-digit hexadecimal address are the page number. There are 256 pages of 256 bytes each in the address space. This kind of page is different from the display areas in the Apple IIc, which are sometimes referred to as Page 1 and Page 2. In this manual, dollar signs (\$) in addresses signify that the addresses are in hexadecimal notation.

Memory map and memory switching

Figure 2-2 is a map of the Apple IIc's memory address space and what the major blocks of addresses are used for. As you can see in the figure, addresses \$C000 through \$C0FF contain hardware only, and addresses \$C100 through \$CFFF contain ROM only. At all other addresses there are two to five blocks of RAM or ROM locations. At any given time, only one block of RAM or ROM occupies each set of addresses. As described later in this chapter, soft switches in the hardware page control that blocks the processor is currently using.

Figure 2-2 Apple IIc memory map

Main RAM addresses (\$0000-\$BFFF and \$D000-\$FFFF)

The area labeled *Main RAM* in Figure 2-2 is so called because some or all of it is present in all models of the Apple II series of computers. The Apple IIc has 64K bytes of main RAM.

Auxiliary RAM addresses (\$0000-\$BFFF and \$D000-\$FFFF)

The Apple IIc has 64K of auxiliary RAM built in. Some or all of that range of auxiliary memory is present in an Apple IIe with one of the 80-column text cards installed (see Appendix F), but there is no auxiliary RAM in the Apple II or II Plus.

A range of addresses in auxiliary RAM cannot be used simultaneously with the same range of addresses in main RAM; your programs must use the soft switches described in this chapter to select either main or auxiliary memory for any given range of addresses.

ROM addresses (\$C100-\$FFFF)

ROM addresses contain the built-in Apple IIc firmware. Addresses \$C100 through \$CFFF belong exclusively to ROM. Addresses \$D000 through \$FFFF are shared by ROM, main RAM, and auxiliary RAM; the selection techniques are described later in this chapter.

The Apple IIc's built-in ROM pages \$C1 through CF (addresses \$C100 through \$CFFF) contain I/O firmware. The Apple IIc I/O firmware is roughly divided among the built-in I/O devices as follows:

- Serial port 1 (RS-232 device) firmware entry points are on page \$C1. Much, but not all, of the firmware for the port is in the \$C100 space.
- □ Serial port 2 (communication device) firmware entry points are on page \$C2. Much, but not all, of the firmware for the port is in the \$C100 space.

- □ Video output firmware entry points are on page \$C3; the enhanced video firmware and miscellaneous I/O support routines occupy pages \$C8 through \$CF. This is partly because there are no slots 8 through F on the Apple IIc and because the firmware takes up more than one page of firmware memory space.
- ☐ Mouse firmware entry points are on page \$C4 (page \$C7 in the memory expansion version).
- ☐ Block device I/O firmware entry points are on page \$C6.
- ❖ Note: This correspondence of ports and entry points does not imply that all of each port's firmware occupies a specific page. The Apple IIc I/O port firmware space is allocated in a way that provides the best possible performance in the available space.

The ROM address range of pages \$D0 through \$FF contain the Applesoft BASIC interpreter and the Monitor firmware, allocated as follows:

- □ Pages \$D0 through \$F7 (addresses \$D000 through \$F7FF) contain the Applesoft interpreter firmware.
- □ Pages \$F8 through \$FF (addresses \$F800 through \$FFFF) contain the Monitor, described in Chapter 10. You can use some of the built-in Monitor routines to make input and output procedures in your assembly-language programs easier to write. These routines are described in Chapters 3 through 9.

Hardware addresses (\$C000-\$C0FF)

The soft switches that the Apple IIc and your programs use to control the Apple IIc's built-in input and output functions are all found in the \$C0 memory page (addresses \$C000 through \$C0FF). In the same range of memory are the switches for selecting blocks of memory throughout the address space. This chapter describes the address space (memory) switches.

The hardware functions of the switches in this page fall into five basic categories:

- □ Data inputs. The only data input is location \$C000, where the low-order seven bits (bits 6 through 0) represent the keyboard key just pressed. (These data are guaranteed valid only when bit 7 = 1.)
- □ Flag inputs. Most built-in input locations are single-bit flags in the high-order (bit 7) position of their respective memory addresses. Flags have only two values: on (greater than or equal to 128 or \$80) or off (less than 128 or \$80).

The operation of the Applesoft interpreter firmware is described in the Applesoft BASIC Programmer's Reference Manual.

Chapters 3 through 9 describe the Apple lic's input and output locations. Appendix B lists these locations in address order, rather than by function.

Bit numbering in a byte is explained in Appendix H.

- The switch, hand controller (analog) and button inputs, and the keyboard strobe are examples of flag inputs. The locations for reading soft-switch states are also of this type.
- □ Strobe outputs. The clear keyboard strobe (Chapter 4) and paddle timer strobe (Chapter 9) outputs are controlled by memory locations. If your program reads the contents of one of these locations, then the function associated with that location will be activated.
- □ Toggle switches. The Apple IIc has only one toggle switch: the speaker switch. A toggle switch has only one address assigned to it; each time you access it, it changes to its other state (on or off). Reading the speaker toggle at location \$C030 clicks the speaker once. However, if you write to the speaker location, the microprocessor activates the address bus twice during successive clock cycles, causing the speaker toggle to end up in its original state before the speaker cone can move. Therefore, you should read, rather than write, to use this device.
 - The processor cannot read the on/off status of the speaker switch.
- □ Soft switches. Soft switches are two-position switches turned on by accessing one address and turned off by accessing another address. Most of these switches have a third address associated with them for reading the state of the switch.
 - There are eight soft switches that select different combinations of bank-switched memory. Four of these eight switches require that your program read them twice in succession to activate them.

Bank-switched memory

The memory areas described in this section are called bank-switched memory (Figure 2-3) because so many banks (ranges) of addresses—one bank of ROM and up to four banks of RAM—occupy the same group of locations among the upper addresses of memory. Pages \$00 and \$01, at the low end of memory, are included here because the two sets of them—one in main RAM and one in auxiliary RAM—are controlled by the same switches as the high-address banks. The stack and zero page are switched this way so that system software running in the bank-switched memory space can maintain its own stack and zero page while it manipulates the 48K memory space.

Figure 2-3 Bank-switched memory map

Page allocations

Pages \$00 and \$01 are used by many of the 65C02 instructions. The ROM and RAM addresses in bank-switched memory are usually occupied by system software such as interpreters, compilers, and operating systems.

Page \$00 (one-byte addresses)

Several of the 65C02 microprocessor's addressing modes—for example, indirect addressing—require the use of addresses in page \$00, or zero page. However, the Monitor, the interpreters, and the operating systems all make extensive use of page \$00, too. One way to avoid conflicts is to use only those page-\$00 locations not already used by these other programs. But there is another way.

As you can see from Table B-1 in Appendix B, page \$00 is pretty well used up, except for a few bytes here and there. Rather than trying to squeeze your data into an unused corner, you may prefer a safer alternative: turn off interrupts, save the contents of part of page \$00, use that part, then restore the previous contents to page \$00, restore interrupts to their previous state, and then pass control to another program.

Page \$01 (the 65C02 stack)

The 65C02 microprocessor uses page \$01 as its stack—a place where it can store subroutine return addresses, in last-in, first-out sequence. Programs can also use the stack for temporary storage of registers (via push and pull instructions). However, programs should use the stack carefully.

Pages \$D0-\$FF (ROM and RAM)

The memory address space from locations \$D000 through \$FFFF is used for both ROM and RAM. The 12K bytes of ROM in this address space contain the Monitor and the Applesoft BASIC interpreter.

There are 16K bytes of main RAM in this 12K space, with two banks occupying the 4K of addresses from \$D000 through \$DFFF. The RAM is normally used for storing other languages such as Pascal, or operating systems such as ProDOS®.

There are also 16K bytes of auxiliary RAM in this 12K space, again with double occupancy in the address range \$D000 through \$DFFF.

These memory banks are controlled by the soft switches described under "Using Bank Selector Switches."

Using bank selector switches

You switch banks of memory in the same way you switch other functions in the Apple IIc: by using soft switches. These soft switches do four things:

- □ select either RAM or ROM in this memory space
- □ allow or inhibit (write-protect) writing to the RAM when RAM is selected
- □ select the first or second 4K-byte bank of RAM in the address space \$D000 through \$DFFF
- □ select either main RAM or auxiliary RAM

Warning

Do not use soft switches without careful planning. Careless switching between RAM and ROM is almost certain to have catastrophic effects on your program.

Table 2-1 shows the addresses of the soft switches for selecting all allowed combinations of reading and writing in this memory space, and the addresses of the locations to read the switch settings. Figures 2-4 through 2-10 illustrate how to select the combinations and what the resulting status of each switch is.

To make sure you do not inadvertently remove write protection from bank-switched RAM, the four write-enable addresses require that you read them twice in succession (indicated by RR in Table 2-1).

Because the AltZP switch shares the read keyboard address, you must write (W in Table 2-1) to its locations to change the switch setting.

To find out which way a switch is set, read the appropriate location and then check bit 7 (shown as R7 in Table 2-1). If the bit is a 1, the answer to the question given in the table is affirmative.

Note that there is no way to check whether write protection is on or off.

Important

You can't read one RAM bank and write to the other; if you select either RAM bank for reading, you get that one for writing as well. However, you can read ROM and write RAM (Figures 2-5 and 2-6), which makes it easy to transfer firmware to bank-switched RAM if you want to use it with a program there.

Table 2-1
Bank selector switches

Name	Action	Hex	Dec	Function
	R	\$C080	49280	Read RAM; no write; use \$D000 bank 2
	RR	\$C081	49281	Read ROM; write RAM; use\$D000 bank 2
	R	\$C082	49282	Read ROM; no write; use \$D000 bank 2
	RR	\$C083	49283	Read and write RAM; use \$D000 bank 2
	R	\$C088	49288	Read RAM; no write; use \$D000 bank 1
	RR	\$C089	49289	Read ROM; write RAM; use\$D000 bank 1
	R	\$C08A	49290	Read ROM; no write; use \$D000 bank 1
	RR	\$C08B	49291	Read and write RAM; use \$D000 bank 1
RdBnk2	R7	\$C011	49169	Read whether \$D000 bank 2 (1) or bank 1 (0)
RdLCRAM	R7	\$C012	49170	Read RAM (1) or ROM (0)
AltZP	W	\$C008	49160	Off: Use main bank, page \$00 and page \$01
AltZP	W	\$C009	49161	On: Use auxiliary bank, page \$00 and page \$01
RdAltZP	R7	\$C016	49174	Read whether auxiliary (1) or main (0) bank

Figure 2-4 Read ROM

Figure 2-5
Read ROM, write RAM, and use first \$D0 bank

Figure 2-6
Read ROM, write RAM, and use second \$D0 bank

Figure 2-7
Read RAM and use first \$D0 bank

Figure 2-8
Read RAM and use second \$D0 bank

Figure 2-9
Read and write RAM and use first \$D0 bank

Figure 2-10 Read and write RAM and use second \$D0 bank

48K memory

The 48K memory space (actually, 47.5K) extends from location \$0200 to location \$BFFF (Figure 2-11) in both main and auxiliary RAM. The amount of storage available in this address space depends on what language or operating system you are using, and what video display needs your program has.

Page allocations

Most of the Apple IIc's 48K RAM is available for storing your programs and data. However, a few RAM pages are reserved for the use of the Monitor firmware, the Applesoft BASIC interpreter, and whatever video display you may select.

Important

The system does not prevent your using these pages, but if you do use them, you must be careful not to disturb the system data they contain.

Page \$02 (the input buffer)

The GetLn input routine uses page \$02 as its keyboard-input **buffer**. The size of this buffer (256 bytes) sets the maximum size of input strings read by Applesoft or the Monitor. If you know that you won't be typing any long input strings (more than, say, 30 characters), you can store temporary data at the upper end of page \$02.

Page \$03 (global storage and vectors)

The Monitor and operating systems use parts of page \$03 for **global storage** and **vectors.** Table 2-7, later in this chapter, shows the part of page \$03 the built-in firmware uses.

Pages \$04–\$07 (text and low-resolution Page 1)

The most often used display buffer is the text and low-resolution graphics Page 1 (TLP1 in Figure 2-11), which occupies main memory pages \$04 through \$07. It is not usable for program and data storage if you are using Monitor routines or Applesoft, or with almost any other program that uses text or low-resolution display.

A buffer is any storage area set aside for one program or device to put information into and another to take information out of at a different time or rate.

Refer to Appendix D and to the appropriate programmer and reference manuals for operating system use of page \$03.

Global storage refers to an area reserved for information that programs use in common.

Vectors—the addresses of special routines—are examples of this kind of information. See "The Reset Routine" about the global storage and vectors found on page \$03.

Figure 2-11 48K memory map

Text and low-resolution Page 1X (TLP1X) is an identical display page occupying auxiliary memory pages \$04 through \$07. This pair of text and low-resolution graphics pages are used together to produce 80-column text display.

There are 128 locations in pages \$04 through \$07 (64 in main RAM, 64 in auxiliary RAM) that are not displayed on the screen. These locations are called *screen holes*.

See "Port Screen Hole RAM Space" in Chapter 3.

Warning

The screen holes are reserved for use by the built-in firmware.

Pages \$08-\$0B (text and low-resolution Page 2)

The second text and low-resolution graphics display buffer, TLP2, occupies main memory pages \$08 through \$0B. Most programs do not use Page 2 for displays, but TLP2 is there for display use if required.

Text and low-resolution Page 2X (TLP2X) is an identical display buffer occupying pages \$08 through \$0B in auxiliary memory.

Note that Apple IIc firmware does not provide a way to use the second pair of text and low-resolution graphics pages for 80-column text display.

Page \$08 (communication port buffers)

Serial port 2 uses the first half of auxiliary memory page \$08 (addresses \$0800 through \$087F) as a keyboard input buffer, and the second half of the page (addresses \$0880 through \$08FF) as a serial input buffer. These buffers increase the data transfer rates possible with the serial communication port. Appendix E explains how to use these features. If your program does not use this page for buffers, it can use it as part of TLP2X.

Pages \$20–\$3F (high-resolution Page 1)

The primary high-resolution graphics display buffer, high-resolution Page 1 (HRP1), occupies the 32 memory pages from \$20 through \$3F (locations \$2000 through \$3FFF). If your program doesn't use high-resolution graphics, this area is usable for programs or data.

High-resolution Page 1X (HRP1X) is an identical display page occupying auxiliary memory pages \$20 through \$3F.

The Apple IIc can display double high-resolution graphics by interleaving HRP1 and HRP1X.

For more on serial port 2, see Chapter 8.

See Chapter 5.

Pages \$40-\$5F (high-resolution Page 2)

High-resolution Page 2 occupies main memory pages \$40 through \$5F (locations \$4000 through \$5FFF). Most programs use this area for program or data storage, but it is also available as a second high-resolution page.

High-resolution Page 2X (HRP2X) occupies auxiliary memory pages \$40 through \$5F.

Apple IIc firmware provides high-resolution graphics routines for HRP1 and HRP2 only. Refer to the *Applesoft BASIC Programmer's Reference Manual*.

For more information about the display buffers, see Chapter 5.

For details, refer to "Using Display Memory Switches."

Using 48K memory switches

Two switches select main or auxiliary RAM in the 48K memory space: RAMRd determines which to use for reading, and RAMWrt determines which to use for writing. When these switches are on, they select auxiliary memory. When they are off, they select main memory. (This discussion assumes that the 80Store switch, used to control display memory, is off.)

Each switch has three locations assigned to it (Table 2-2): one to turn it on, one to turn it off, and a third to read its state. Because the memory locations for turning the switches on and off are shared with keyboard reading functions, you must write to these addresses to use them for memory switching. For each switch, you can read bit 7 at its third location to check whether the switch is on or off. If the switch is on, bit 7 is 1; if the switch is off, bit 7 is 0.

Table 2-2 48K memory switches

Name	Action	Hex	Dec	Function
RAMRd	W	\$C002	49154	Off: Read main 48K RAM
RAMRd	W	\$C003	49155	On: Read auxiliary 48K RAM
RdRAMRd	R7	\$C013	49171	Read whether main (0) or aux. (1)
RAMWrt	W	\$C004	49156	Off: Write to main 48K RAM
RAMWrt	W	\$C005	49157	On: Write to auxiliary 48K RAM
RdRAMWrt	R7	\$C014	49172	Read whether main (0) or aux. (1)

Note: 80Store must be off to switch all memory in this range, including display memory (Table 2-6).

Figure 2-12 48K RAM selection, split pairs

Figure 2-13 48K RAM selection, one side only

Transfers between main and auxiliary memory

If you want to write assembly-language programs that use auxiliary memory but you don't want to manage the auxiliary memory yourself, you can use the built-in 48K RAM transfer routines. These routines (listed in Table 2-3) make it possible to move between main and auxiliary memory without having to manipulate the soft switches described earlier in this chapter.

Important

The routines described below make it easier to use auxiliary memory, but they do not protect you from errors. You still have to plan your use of auxiliary memory to avoid catastrophic effects on your program.

Table 2-3
48K RAM transfer routines

Name	Action	Hex	Function
MoveAux	JSR	\$C311	Move data blocks between main and auxiliary 48K memory.
XFer	JMP	\$C314	Transfer program control between main and auxiliary 48K memory.

Transferring data

In your assembly-language programs, you can use the built-in routine named MoveAux to copy blocks of data from main memory to auxiliary memory or from auxiliary memory to main memory. Before calling this routine, you must put the data addresses into byte pairs in page \$00 and set or clear the carry bit to select the direction of the move.

Warning

Don't try to use MoveAux to copy data in bank-switched memory (page \$00, page \$01, or pages \$D0 through \$FF). MoveAux uses page \$00 all during the copy.

The pairs of bytes you use for passing addresses to this routine are called A1, A2, and A4, and they are used for parameter passing by several of the Apple IIc's built-in routines. The addresses of these byte pairs are shown in Table 2-4.

Put the addresses of the first and last bytes of the block of memory you want to copy into A1 and A2. Put the starting address of the block of memory you want to copy the data to into A4.

Table 2-4
Parameters for MoveAux routine

Name	Location	Parameter passed
Carry		1 = Move from main to auxiliary memory.
		0 = Move from auxiliary to main memory.
A1L	\$3C	Source starting address, low-order byte.
A1H	\$3D	Source starting address, high-order byte.
A2L	\$3E	Source ending address, low-order byte.
A2H	\$3F	Source ending address, high-order byte.
A4L	\$42	Destination starting address, low-order byte.
A4H	\$43	Destination starting address, high-order byte.
	X, Y, A	These registers are preserved.

The MoveAux routine uses the carry bit to select the direction to copy the data. To copy data from main memory to auxiliary memory, set the carry bit (SEC instruction); to copy data from auxiliary memory to main memory, clear the carry bit (CLC instruction).

When you make the subroutine call to MoveAux, the subroutine copies the block of data as specified by the A register and the carry bit. When it is finished, the accumulator and the X and Y registers are just as they were when you called it.

Transferring control

You can use the built-in routine named *XFer* to transfer control to and from program segments in auxiliary memory. You must set up three parameters before using XFer: the address of the routine you are transferring to, the direction of the transfer, and which page \$00 and stack you want to use (Table 2-5).

Table 2-5Parameters for XFer routine

Name	Location	Parameter passed
Carry		1 = Transfer from main to auxiliary memory.
		0 = Transfer from auxiliary to main memory.
Overflow		1 = Use page \$00 and stack in auxiliary
		memory.
		0 = Use page \$00 and stack in main memory.
	\$03ED	Program starting address, low-order byte.
	\$03EE	Program starting address, high-order byte.
	X, Y, A	These registers are preserved.

Put the transfer address into the two bytes at locations \$03ED and \$03EE, with the low-order byte first, as usual. The direction of the transfer is controlled by the carry bit: set the carry bit to transfer to a program in auxiliary memory; clear the carry bit to transfer to a program in main memory.

Use the overflow bit to select which page \$00 and stack you want to use: clear the overflow bit to use the main memory; set the overflow bit (cause an overflow condition) to use the auxiliary memory.

After you have set up the parameters, pass control to the XFer routine by a jump instruction, rather than a subroutine call.

Warning

It is your responsibility as the programmer to save the current stack pointer before using XFer and to restore it after regaining control. Failure to do so will cause program errors. Refer to Appendix E for instructions on how to do this.

Using display memory switches

Selection of main or auxiliary RAM for the 48K memory space is described earlier in this chapter. However, under many circumstances your program may want to control reading and writing to display pages separately. The switches discussed in this section override the effects of RAMRd and RAMWrt for display pages only.

Three switches are involved in the display page selection process. Each of them has three locations assigned to it: one to turn it on, one to turn it off, and a third to read its state (Table 2-6). One of the switches, 80Store, shares its on and off addresses with a keyboard reading function. As a result, your program must write to these locations to turn the switch on and off.

Table 2-6Display memory switches

Name	Action	Hex	Dec	Function
80Store	W	\$C000	49152	Off: RAMRd and RAMWrt determine RAM locations.
80Store	W	\$C001	49153	On: Page2 switches between TLP1 and TLP1X, and (if HiRes on) between HRP1 and HRP1X.
Rd80Store	R7	\$C018	49176	Read whether 80Store on (1) or off (0).
Page2	R	\$C054	49236	Off: Select TLP1 and HRP1.
Page2	R	\$C055	49237	On: If 80Store off, switch to TLP2, and (if HiRes on) to HRP2. If 80Store on, switch to TLP1X, and (if HiRes on) to HRP1X.
RdPage2	R7	\$C01C	49180	Read whether Page2 on (1) or off (0).
HiRes	R	\$C056	49238	Off: Display text and low-resolution page.
HiRes	R	\$C057	49239	On: Display high- resolution pages; make Page2 switch between high-resolution pages.
RdHiRes	R7	\$C01D	49181	Read whether HiRes on (1) or off (0).
IOUDis	W	\$CO7E	49278	On: Disable IOU access for addresses\$CO58 to \$CO5F; enable access to DHiRes switch*.
IOUDis	W	\$CO7F	49279	Off: Enable IOU access for addresses \$CO58 to \$CO5F; disable access to DHiRes switch*.

Table 2-6 (continued)
Display memory switches

Name	Action	Hex	Dec	Function
RdIOUDis	R7	\$CO7E	49278	Read IOUDis switch (1=off)†.
DHiRes	R/W	\$CO5E	49246	On: (If IOUDis on) turn on double high-resolution.
DHiRes	R/W	\$CO5F	49247	Off: (If IOUDis on) turn off double high-resolution.
RdDHiRes	R7	\$CO7F	49279	Read DHiRes switch (1=on)†.

^{*} The firmware normally leaves IOUDis on.

For each switch, you can read bit 7 at its third location to check whether the switch is on or off. If the switch is on, bit 7 is 1; if the switch is off, bit 7 is 0.

Here is how these switches work for reading and writing:

- ☐ If HiRes is off, then Page2 switches between text and low-resolution graphics pages (TLP) only. If HiRes is on, then Page2 switches between TLP and high-resolution graphics pages (HRP).
- ☐ If 80Store is off, RAMRd and RAMWrt (Table 2-2) determine whether main or auxiliary RAM locations are used. Page2 selects pages for display (Chapter 5), but not for reading and writing.
- ☐ If 80Store is on, it overrides RAMRd and RAMWrt with respect to the display pages selected by HiRes and Page2 (Figures 2-14 and 2-15).

[†] Reading or writing any address in the range \$CO70-\$CO7F also triggers the paddle timer and resets VBIInt (see Chapter 9).

Figure 2-14 Page2 selections, 80Store on and HiRes off

Figure 2-15 Page2 selections, 80Store on and HiRes on

The reset routine

A procedure called the *reset routine* (Figure 2-16) puts the Apple IIc into a known state when it has just been turned on or when you hold down Control while pressing Reset. The reset routine puts the Apple IIc into its normal operating mode and restarts the program indicated at locations \$03F2 and \$03F3 (Table 2-7).

When you initiate a reset, hardware in the Apple IIc sets the memory-controlling soft switches to normal: main ROM and RAM are enabled, auxiliary RAM is disabled and the bank-switched memory space is set up to read from ROM and write to RAM, using the second bank at \$D000.

Figure 2-16
Reset routine flowchart

Table 2-7
Page \$03 vectors

Vector address	Vector function
\$03F0 (1008) \$03F1 (1009)	Address of the subroutine that handles BRK requests (normally \$59, \$FA)
\$03F2 (1010)	Reset vector (see text) \$03F3 (1011)
\$03F4 (1012)	Power-up byte (see text)
\$03F5 (1013) \$03F6 (1014)	Jump instruction to the subroutine that handles Applesoft and commands (normally \$4C,\$58,\$FF)
\$03F7 (1015)	
\$03F8 (1016) \$03F9 (1017) \$03FA (1018)	Jump instruction to the subroutine that handles user Control-Y commands
\$03FB (1019) \$03FC (1020) \$03FD (1021)	Jump instruction to the subroutine that handles nonmaskable interrupts (not used on Apple IIc)
\$03FE (1022) \$03FF (1023)	Interrupt vector (address of the subroutine that handles interrupt requests) (Appendix E)

The reset routine sets the display-controlling soft switches to display 40-column text Page 1 using the primary character set, then sets the display window equal to the full 40-column display, puts the cursor at the bottom of the screen, and sets the text display format to normal.

The reset routine also sets the keyboard and display as the standard input and output devices (Chapter 3). It masks mouse interrupts and sets mouse defaults (Table 9-1). Finally, it enables DHiRes switch access (by turning on IOUDis), clears the keyboard strobe, and sounds the speaker.

The Apple IIc has three types of reset: power-on reset, also called cold-start reset; warm-start reset; and forced cold-start reset. The procedure described above is the same for any type of reset. What happens next depends on the reset vector. The reset routine checks the reset vector to determine whether it is valid or not. If the reset was caused by turning the power on, the vector will not be valid, and the reset routine will perform the cold-start procedure. If the vector is valid, the routine will perform the warm-start procedure.

The reset vector validity check is described under "The Reset Vector."

The cold-start procedure (power on)

If the reset vector is not valid, either the Apple IIc has just been turned on or something has caused memory contents to be changed. The reset routine clears the display and puts the string Apple© IIc at the top of the display. It loads the reset vector and the validity-check byte, then initiates the startup routine that resides in the disk controller firmware. The bootstrap routine then loads whatever operating system resides on the disk in the built-in drive. When the operating system has been loaded, it displays other messages on the screen. If there is no disk in the disk drive, the drive motor keeps spinning for a brief time. Then the firmware shuts it off and displays the message Check Disk Drive at the bottom of the screen.

If you press Control-Reset again before the startup procedure is completed, the reset routine continues without using the disk, and passes control to the Applesoft BASIC interpreter.

The warm-start procedure (Control-Reset)

Whenever you press Control-Reset when the Apple IIc has already completed a cold-start reset, the reset vector is still valid and it is not necessary to reinitialize the entire system. The reset routine simply uses the vector to transfer control to the program it points to, which at power-up is the Applesoft interpreter.

If the vector does point to the Applesoft interpreter, your Applesoft program and variables are still intact. If you are using DOS or ProDOS, that operating system is the resident program and it restarts the BASIC interpreter you were using when you pressed Control-Reset.

Important

A program residing only in bank-switched RAM cannot use the reset vector to regain control after a reset, because upon reset the hardware selects the ROM for reading in the bank-switched memory space.

Forced cold start (Open Apple-Control-Reset)

If a program has set the reset vector to point to its own warm-start address, as described below, pressing Control-Reset causes transfer of control to that program. If you want to stop such a program without turning the power off and on, you can force a cold-start reset by holding down Control and Open Apple, then pressing and releasing Reset.

Important

When you want to stop a program unconditionally—for example, to start up the Apple IIc with some other program—you should use the forced cold-start reset, Open Apple-Control-Reset, instead of turning the power off and on.

UniDisk 3.5 You must hold Open Apple down until the built-in drive starts to spin. If you release Open Apple before the drive starts to spin, the Apple IIc drops into BASIC instead of rebooting.

The forced cold-start reset works as follows. First, it destroys the program or data in memory by writing two bytes of arbitrary data into each page of main RAM. The two bytes that get written over in page \$03 are the ones that contain the reset vector. The warm-start reset routine finds the error, and so performs a normal cold-start reset.

Note that if you press both Open Apple and Solid Apple during power-up or Control-Reset, built-in exercise code is executed. This code is for production and has no end-user value.

The reset vector

The cold-start reset routine stores the starting address of the built-in Applesoft interpreter, low-order byte first, in the reset vector address at locations \$03F2 and \$03F3. It then stores a validity-check byte, also called the power-up byte, at location \$03F4. The validity-check byte is computed by performing an exclusive-OR of the second byte of the vector with the constant 165 (hexadecimal \$A5). Each time you reset the Apple IIc, the reset routine uses this byte to determine whether the reset vector is still valid.

You can change the reset vector so that the reset routine will transfer control to your program instead of to the Applesoft interpreter. For this to work, you must also change the validity-check byte to the exclusive-OR of the high-order byte of your new reset vector with the constant 165 (\$A5). If you fail to do this, then the next time you reset the Apple IIc, the reset routine will determine that the reset vector is invalid and perform a cold-start reset, eventually transferring control to the disk bootstrap routine or to Applesoft.

There is a subroutine that generates the validity-check byte for the current reset vector. This subroutine, called *SetPWRC*, is at location \$FB6F. When your program finishes, it can return the Apple IIc to normal operation by restoring the original reset vector and again calling the subroutine to fix up the validity-check byte.

Chapter 3

Introduction to Apple IIc I/O

This chapter is an introduction to the built-in I/O capabilities of the Apple IIc. It outlines
□ standard I/O links and their functions
☐ I/O firmware protocols
□ dedicated memory storage locations
□ direct I/O
The next six chapters discuss these capabilities in detail.

The standard I/O links

You can use some of the routines in the Apple IIc's firmware for your own programs. This can save you both program space and the time and effort of writing all your own I/O routines.

To use the built-in firmware routines, your program must perform a JSR to the routine's entry address. The called routine then performs an indirect jump through an address stored somewhere in RAM and begins executing. When the routine has finished doing its work, it returns (with an RTS) to your program at the first instruction following the JSR used to call the routine. Memory locations used for transferring control to other subroutines, such as the indirect jump's address used by the character I/O routine, are sometimes called *vectors*. In this manual, the locations used for transferring control to the Apple IIc's I/O subroutines are called the *I/O links*.

In an Apple IIc running without an operating system, each I/O link normally contains the address of the standard input or output subroutine. An operating system will typically place addresses of its own I/O routines in these link locations instead.

By calling the I/O subroutines that then jump to the routines pointed to by the link addresses instead of calling the standard subroutines directly, you ensure that your program will work properly with other software, such as the operating system or a device driver. The I/O links contain the addresses of KeyIn and COut1 if the enhanced video firmware is off (when the display shows a flashing checkerboard cursor), and of C3KeyIn and C3COut1 if that firmware is on (when the display shows an inverse solid cursor).

The standard I/O links are two pairs of locations in the Apple IIc RAM in the range \$36 through \$39 that are used for controlling character input and output.

♦ Note: Not all operating systems use the standard I/O links. For example, Apple Pascal does not use them.

The link at locations \$36 and \$37 is called CSW (character output switch). Individually, location \$36 is called CSWL (CSW low) and location \$37 is called CSWH (CSW high). This link holds the starting address of the subroutine the Apple IIc is currently using for single-character output. This address is normally \$FDF0, the address of routine COut1.

The Monitor is discussed in Chapter 10.

When you issue either a PR#n from BASIC or an n Control-P from the Monitor, the Apple IIc changes this link address to the first address in the ROM space allocated to port n. That address has the form \$Cn00. Subsequent calls for character output are thus transferred to the firmware starting at that address. When it has finished, the firmware executes an RTS (return from subroutine) instruction to return control to the calling program. Sometimes a PR#n will cause both input and output switches to be changed (as in the 80-column firmware).

A similar link at locations \$38 and \$39 is called KSW (keyboard input switch). Individually, location \$38 is called KSWI (KSW low) and location \$39 is called KSWH (KSW high). This link holds the starting address of the routine currently being used for single-character input—normally \$FD1B, the starting address of the standard input routine KeyIn.

When you issue an IN#n command from BASIC or an n Control-K from the Monitor, the Apple IIc changes the link address in KSW to \$Cn00, the beginning of an I/O firmware subroutine. Subsequent calls for character input are thus transferred to that firmware. The firmware puts the input character, with its high bit set, into the accumulator and executes an RTS (return from subroutine) instruction to return control to the program that requested input.

When a disk operating system (DOS or ProDOS) is running, one or both of the standard I/O links hold addresses of the disk operating system's input and output routines. The operating system has internal locations that hold the addresses of the currently active character input and output routines.

Warning

If a program that is running with DOS or ProDOS changes the standard link addresses, either directly or via IN# and PR# commands, the operating system may be disconnected from the system. To avoid this problem, when programming in BASIC you should always issue an empty PRINT statement (to be sure that what follows begins a new line) before issuing the PRINT statement containing Control-D and the IN# or PR# command.

Refer to the section on input and output link addresses in the operating system manuals for further details.

GetLn also provides on-screen editing features. See "Editing With GetLn."

After changing either CSW or KSW, your assembly-language programs running under DOS should call the subroutine at location \$03EA. This subroutine transfers the link address to a location inside the operating system and then restores the operating system link address in the standard link location.

Standard input features

The Apple IIc's firmware includes two different subroutines for reading from the keyboard, *RdKey* (read key) and *GetLn* (get line).

RdKey calls the current character input routine (that is, the one whose address is stored at KSW). This is normally KeyIn or C3KeyIn, which accepts one character from the keyboard. GetLn accepts a *sequence* of characters terminated with a carriage return. Thus GetLn allows line-oriented input using the current input routine.

RdKey subroutine

A program can get a character from the keyboard by making a subroutine call to RdKey at memory location \$FD0C. RdKey passes control via the input link KSW to the current input subroutine, which is normally KeyIn.

RdKey displays a cursor at the current cursor position, which is immediately to the right of whatever character you last sent to the display (normally by using the COut routine, described below).

KeyIn subroutine

KeyIn is the standard input subroutine. When your program calls it, KeyIn displays a cursor, waits until someone presses a key, then inserts the ASCII code of the key just pressed in the accumulator and returns to the calling program.

If the enhanced video firmware is inactive, KeyIn displays a cursor by alternately storing a checkerboard block in the cursor location, storing the original character, then storing the checkerboard again. If the firmware is active, C3KeyIn places a block cursor on the screen by inverting (swapping black for white) the character at the cursor position.

KeyIn also generates a random number. While it is waiting for the user to press a key, KeyIn repeatedly increments the 16-bit number in memory locations \$4E and \$4F. This number keeps increasing from 0 to \$FFFF (65535), then starts over again at 0. The value of this number changes so rapidly that it is very difficult to predict what it will be after a key is pressed. A program that reads from the keyboard can use this value as a random number or as a seed for a pseudo-random number routine.

GetLn subroutine

Programs often need strings of characters as input. While you could call RdKey repeatedly to get several characters from the keyboard, there is an easier way to do it. The routine that you want to use in this case is named *GetLn*, and it starts at location \$FD6A. Using repeated calls to RdKey, GetLn accepts characters from the standard input subroutine—usually KeyIn—and puts them into the input buffer located in the memory page from \$0200 to \$02FF. GetLn also provides you with some basic on-screen editing and control features.

The first thing GetLn does when you call it is to display a prompt. The prompt indicates to the user that the program is waiting for input. Different programs use different prompt characters, helping to remind the user which program is requesting the input. Table 3-1 shows the prompt characters used by different programs on the Apple IIc.

GetLn uses the character stored at memory location \$33 as the prompt character. In an assembly-language program, you can change the prompt to any character you wish. In BASIC, changing the prompt character has no effect because both BASIC interpreters and the Monitor restore it each time they request input from the user.

Table 3-1
Prompt characters

Prompt character	Program requesting input						
?	User's BASIC program (INPUT statement)						
]	Applesoft BASIC (Appendix D)						
>	Integer BASIC (Appendix D)						
*	Firmware Monitor (Chapter 10)						

♦ *Note:* Applesoft uses GetLn1 (\$FD6F) when a program is executing. GetLn1 does not print a prompt.

As the user types each character, GetLn sends the character to the standard output routine—normally COut1—which displays it at the current cursor position and then advances the cursor to indicate the next character position. Control characters echoed by GetLn are not executed.

GetLn stores the characters in its buffer, starting at memory location \$0200 and using the X register to index the buffer. GetLn continues to accept and display characters until the user presses Return (or Control-X to cancel the line). Then it clears the remainder of the line the cursor is on, stores the carriage-return code to mark the end of the buffer, places the cursor at the beginning of the next line, and returns.

The maximum line-length that GetLn can handle is 255 characters. If the user types more than this, GetLn sends a backslash (\) and a carriage return to the display, cancels the line it has accepted so far, and starts over. To warn the user that the line is getting full, GetLn sounds a bell (tone) at every keypress after the 248th.

♦ Note: The Applesoft interpreter accepts only 239 characters.

Escape codes with GetLn

GetLn has many special functions that you invoke by typing escape codes on the keyboard. An escape code is sent by pressing Escape, releasing it, and then pressing some other key, as shown in Table 3-2.

Important

Be sure to release Escape right away. If you hold it too long, the auto-repeat mechanism begins, which may cancel the Escape.

Table 3-2 Escape codes with GetLn

Escape code	Function
Escape	Clears the window and homes the cursor (places it in the upper-left corner of the screen); exits from escape mode
Escape A or Escape a	Moves the cursor right one line; exits from escape mode
Escape B or Escape b	Moves the cursor left one line; exits from escape mode
Escape C or Escape c	Moves the cursor down one line; exits from escape mode
Escape D or Escape d	Moves the cursor up one line; exits from escape mode
Escape E or Escape e	Clears to the end of the line; exits from escape mode
Escape F or Escape f	Clears to the bottom of the window; exits from escape mode
Escape I or Escape i or Escape Up Arrow	Moves the cursor up one line; remains in escape mode
Escape J or Escape j or Escape Left Arrow	Moves the cursor left one space; remains in escape mode*
Escape K or Escape k or Escape Right Arrow	Moves the cursor right one space; remains in escape mode*
Escape M or Escape m or Escape Down Arrow	Moves the cursor down one line; remains in escape mode*
Escape 4	Switches to 40-column mode; sets links to C3KeyIn and C3COut1; restores normal window size (Table 3-5); exits from escape mode†

Table 3-2 (continued)
Escape codes with GetLn

Escape code	Function					
Escape 8	Switches to 80-column mode; sets link to C3KeyIn and C3COut1; restores normal window size (Table 3-5); exits from escape mode†					
Escape Control-D	Disables control characters; only carriage return, linefeed, bell, and backspace have an effect when printed					
Escape Control-E	Reactivates control characters					
Escape Control-Q	Deactivates the enhanced video firmware; sets links to KeyIn and COut1; restores normal window size (Table 3-5); exits from escape mode†					

^{*} Cursor-control key: see text.

In escape mode, you can keep using the arrow keys and the cursor movement keys I, J, K, and M without pressing Escape again. This enables you to perform repeated cursor moves by holding down the appropriate key.

When GetLn is in escape mode, it displays an inverse plus sign as the cursor. You leave escape mode by typing any key other than a cursor movement key.

Note: The escape codes with the arrow keys are the standard cursor movement keys on the Apple IIc. The escape codes with I, J, K, and M are the standard cursor movement keys on the Apple II and II Plus, and are present on the Apple IIc for compatibility.

Escape sequences can be used in the middle of an input line to change the appearance of the screen. They have no effect on the input line.

[†] This code functions only when the enhanced video firmware is active.

Editing with GetLn

For an Introduction to editing with these features, refer to the Applesoft Tutorial.

Subroutine GetLn provides the standard on-screen editing features used by the BASIC interpreters and the Monitor. Any program that uses GetLn for reading the keyboard has these features.

Cancel line

Any time you are typing a line, pressing Control-X causes GetLn to cancel the line. GetLn displays a backslash (\) and issues a carriage return, then displays the prompt and waits for you to type a new line. GetLn takes the same action when you type more than 255 characters, as described above.

Backspace

When you press Left Arrow (or Control-H), GetLn moves its buffer pointer back one space, effectively deleting the last character in its buffer. It also sends a backspace character to routine COut, which moves the cursor back one space. If you type another character now, it replaces the character you backspaced over, both on the display and in the line buffer.

Each time you press Left Arrow, it moves the cursor left and deletes another character, until you are back at the beginning of the line. If you then press Left Arrow one more time, you have effectively canceled the line, and GetLn issues a carriage return and displays the prompt. The cursor moves even if the deleted character is an invisible control character. Thus it is possible for screen alignment and buffer alignment to be different.

Retype

See "Escape Codes With GetLn."

Right Arrow (or Control-U) has a function that is complementary to the backspace function. When you press Right Arrow, GetLn picks up the character under the cursor just as if it had been typed on the keyboard. You can use this procedure to pick up characters that you just deleted by backspacing across them. You can use the backspace and retype functions with the cursor-motion functions to edit data on the display.

Standard output features

The standard output routine is named *COut* (character output). COut normally calls COut1 or C3COut1, which sends one character to the display, advances the cursor position, and scrolls the display when necessary. COut1 and C3COut1 restrict their use of the display to an active area called the text window, described later in this chapter.

COut subroutine

Your program makes a subroutine call to COut at memory location \$FDED with a character in the accumulator. COut then passes control via the output link CSW to the current output subroutine, normally COut1 or C3COut1, which takes the character in the accumulator and writes it out. If the accumulator contains an uppercase or lowercase letter, a number, or a special character, COut1 or C3COut1 displays it; if the accumulator contains a control character, COut1 or C3COut1 either performs one of the special functions described below or ignores the character.

Each time you send a character to COut1 or C3COut1, it displays the character at the current cursor position, replacing whatever was there, and then advances the cursor position one space to the right. If the cursor position is already at the right edge of the window, COut1 or C3COut1 moves it to the leftmost position on the next line down. If this would move the cursor position past the end of the last line in the window, COut1 or C3COut1 scrolls the display up one line and sets the cursor position at the left end of the new bottom line.

The cursor position is controlled by the values in memory locations \$24 and \$25. These locations are named CH, for cursor horizontal, and CV, for cursor vertical. COut1 and C3COut1 do not display a cursor, but the input routines described above do, and they use this cursor position. However, changing CV directly does not change the cursor's vertical position until the next carriage return or reaching the end of the current line causes a call to VTab (for setting the base address within windows). If some other routine displays a cursor, it will not necessarily put it in the cursor position used by COut1 or C3COut1.

Warning

When the video firmware is set for 80-column display, the value of CH is kept at 0 and the true horizontal position is stored at \$057B. When the 80-column video firmware is active, use \$057B instead of CH.

Escape codes are described under "Escape Codes With GetLn."

Control characters with COut1

COut1 does not display control characters. Instead, the control characters listed in Table 3-3 are used to initiate some action by the firmware. Other control characters are ignored. Most of the functions listed here can also be invoked from the keyboard, either by typing the control character listed or by using the appropriate escape code. The stop-list function, described separately, can only be invoked from the keyboard.

Table 3-3
Control characters with COut1

	40011	A I II				
Control ASCII Apple IIc character name name		Apple lic name	Action taken by COut1			
Control-G	BEL	Bell	Produces a 1000-Hz tone for 0.1 second			
Control-H	BS	Backspace	Moves cursor position one space to the left; from left edge of window, moves to right end of line above			
Control-J	LF	Line feed	Moves cursor position down to next line in window; scrolls if needed			
Control-M	CR	Return	Moves cursor position to left end of next line in window; scrolls if needed			

Control characters with C3COut1

When the 80-column firmware is active, COut calls C3COut1 instead of COut1 for character output. C3COut1 does not display control characters, but you can use some control characters to control some of what the routine does. All other control characters are ignored.

The control characters listed in Table 3-4 are used to initiate some action by the firmware. Except for the stop-list function (Control-S) you can send control characters to C3COut1 either from a program or from the Apple IIc's keyboard. The stop-list function can only be invoked from the keyboard. Most of the functions listed here can also be performed by using an equivalent escape code.

Table 3-4
Control characters with C3COut1

Control character	ASCII name	Apple IIc name	Action taken by C3COut1		
Control-G	BEL	Bell	Produces a 1000-Hz tone for 0.1 second		
Control-H	BS	Backspace	Moves cursor position one space to the left; from left edge of window, moves to right end of line above		
Control-J	LF	Line feed	Moves cursor position down to next line in window; scrolls if needed		
Control-K	VT	Clear EOS	Clears from cursor position to the end of the screen*		
Control-L	FF	Home and clear	Moves cursor position to upper-left corner of windo and clears window*		
Control-M	CR	Return	Moves cursor position to left end of next line in window; scrolls if needed		
Control-N	SO	Normal	Sets display format normal*		
Control-O	SI	Inverse	Sets display format inverse*		
Control-Q	DC1	40-column	Sets display to 40-column		
Control-R	DC2	80-column	Sets display to 80-column*		
Control-S	DC3	Stop-list	Stops listing characters on the display until another key is pressed†		
Control-U	NAK	Quit	Turns off enhanced video firmware*		
Control-V	SYN	Scroll	Scrolls the display down one line, leaving the curso in the current position*		
Control-W	ЕТВ	Scroll-up	Scrolls the display up one line, leaving the cursor in the current position*		

Table 3-4 (continued)
Control characters with C3COut1

Control character	ASCII name	Apple lic name	Action taken by C3COut1
Control-X	CAN	Disable MouseText	Disables MouseText character display; uses inverse uppercase
Control-Y	EM	Home	Moves cursor position to upper-left corner of window (but doesn't clear)*
Control-Z	SUB	Clear line	Clears the line the cursor position is on*
Control-[ESC	Enable MouseText	Maps inverse uppercase characters to MouseText characters
Control-\	FS	Fwd. space	Moves cursor position one space to the right; from right edge of window, moves it to left end of line below*
Control-]	GS	Clear EOL	Clears from the current cursor position to the end of the line (that is, to the right edge of the window)*
Control	US	Up	Moves cursor up a line, no scroll

^{*} Doesn't work from the keyboard.

The stop-list feature

You can stop the Apple IIc from updating its display (if it is using either COut1 or C3COut1) by pressing Control-S. Whenever COut1 or C3COut1 gets a carriage return from the program, it checks the keyboard for a Control-S. If a Control-S has been pressed, COut1 or C3COut1 stops and waits for another key to be pressed before resuming. The character code of the key that is pressed is ignored unless it is Control-C, which is passed to the program. This feature lets you exit BASIC programs from stop-list mode.

[†] Only works from the keyboard.

The text window

The active portion of the display is called the *text window*. After you start up the computer or perform a reset, the entire display is the text window. COut1 or C3COut1 puts characters only into the window; when it reaches the end of the last line in the window, it scrolls only the contents of the window.

You can restrict video activity to any rectangular portion of the display by changing the current text window. Your programs can thus control the placement of text in the display and protect other portions of the screen from being written over by new text. To do this, store the appropriate values into four locations in memory to set the top, bottom, left margin, and width of the text window. The following memory locations control the text window:

- ☐ The left margin is stored in memory location \$20. This number is normally 0, the number of the leftmost column in the display. In a 40-column display, the maximum value for this number is 39 (hexadecimal \$27); in an 80-column display, the maximum value is 79 (hexadecimal \$4F).
- ☐ The width of the text window is stored in memory location \$21. For a 40-column display, this value is normally 40 (hexadecimal \$28); for an 80-column display, it is normally 80 (hexadecimal \$50).
- ☐ The position of the top line of the text window is stored in memory location \$22. This is normally 0, the topmost line in the display. Its maximum value is 23 (hexadecimal \$17).
- ☐ The position of the bottom line of the screen plus 1 is stored in memory location \$23. It is normally 24 (hexadecimal \$18) for the bottom line of the display. Its minimum value is 1.

Important

Pascal does not use this method of supporting window widths.

Warning

Be careful not to let the sum of the window width and the leftmost position in the window exceed the width of the display you are using (40 or 80 columns). If this happens, COut1 or C3COut1 may put characters into memory locations outside the display page, possibly destroying programs or data.

Table 3-5 summarizes the memory locations and the possible values for the text window parameters.

Table 3-5Text window memory locations

Window -			Minimum			Normal values				Maximum values			
	Loc	Location		value		40-col.		80-col.		40-col.		80-col.	
	Dec	Hex	Dec	Hex	Dec	Hex	Dec	Hex	Dec	Hex	Dec	Hex	
Left edge	32	\$20	00	\$00	00	\$00	00	\$00	39	\$27	79	\$4F	
Width	33	\$21	00	\$00	40	\$28	80	\$50	40	\$28	80	\$50	
Гор edge	34	\$22	00	\$00	00	\$00	00	\$00	23	\$17	23	\$17	
Bottom edge	35	\$23	01	\$01	24	\$18	24	\$18	24	\$18	24	\$18	

Normal, inverse, and flashing text

The way that the Apple IIc displays characters is affected by two things: the value that is stored in the inverse flag (zero page location \$32), and whether the enhanced video firmware is off or on. The inverse flag's influence is discussed in the next two subsections.

If the enhanced video firmware is off, the Apple IIc displays what is called the *primary character set*; if the video firmware is on, the Apple IIc displays what is called the *alternate character set*.

The primary character set includes normal (light on dark), inverse (dark on light), and flashing (alternating normal and inverse) characters. Lowercase inverse characters are not included in the primary character set.

The alternate character set includes normal and inverse characters (including lowercase inverse), and a set of graphic characters called *MouseText*. Flashing characters are not included in the alternate character set.

If you want your program to display a character, it should first load the character to be displayed in the accumulator, and then call the character-output subroutine COut. For example, to display the character corresponding to \$C8, you can use something like this:

LDA #\$C8 JSR COut

hese display character sets are described in Chapter 5.

Primary character set display

The primary character set is displayed by COut1, which operates only when the enhanced video firmware is off. The primary character set includes text in normal, inverse, or flashing format, but not inverse or flashing lowercase text.

For a brief explanation of logical functions, refer to Appendix H.

If the value of the character sent to COut1 is greater than or equal to \$A0, that value is logically ANDed with the value of the inverse flag (at location \$32), then displayed. (If you're curious about which ASCII character is being sent, subtract \$80 from the value being sent to COut1.) You can use the following inverse flag values:

- □ \$FF (decimal 255) produces the normal character format.
- □ \$3F (decimal 63) produces the inverse character format.
- □ \$7F (decimal 127) produces the flashing character format.

Important

To avoid unusual character display results, use only the three values \$3F, \$7F, and \$FF.

COut1 interprets character values from \$80 through \$9F as control characters and tries to execute them.

Character values from \$00 through \$7F are all interpreted as display characters, not control characters.

Alternate character set display

MouseText is described more fully in Chapter 5.

The alternate character set includes normal and inverse format characters and the MouseText graphic characters. You should use C3COut1, the standard output link when the enhanced video firmware is active, to display the alternate character set. Here are the rules for using the alternate character set:

- □ Control characters are not displayed. Characters sent to C3COut1 are interpreted as control characters if they are in the range \$00 through \$1F or \$80 through \$9F.
- ☐ Characters in the range \$20 through \$7F and \$A0 through \$FF are displayed.
- ☐ If inverse flag (location \$32) bit 7 is 1, the character is normal.
- ☐ If inverse flag bit 7 is 0, the character is inverse.
- ☐ If MouseText is off, characters \$40 through \$5F are remapped to the range \$00 through \$1F and are displayed as uppercase inverse characters.

See "MouseText" in Chapter 5.

☐ If MouseText is on, character values \$40 through \$5F are left unchanged, and the characters are displayed as MouseText.

Port I/O

The Apple IIc is a member of the Apple II family of computers; however, unlike the Apple II, II Plus, and IIe, the Apple IIc does not have peripheral connector slots. In place of these, it has **ports**—the equivalent of firmware interface cards installed in slots.

Standard link entry points

To maintain compatibility with existing software and its protocols, each port's I/O firmware has the same standard entry points (\$Cn00) as its equivalent slot in another Apple II would have. Table 3-6 shows these equivalents, as well as listing the chapter where each port is described.

The section on the standard I/O links describes how and when these entry addresses are placed in CSW and KSW. For example, issuing PR#n or IN#n changes the output and input links, respectively, so that subsequent output or input is handled by the firmware starting at address \$Cn00, and thus goes to or comes from the selected device.

Memory expansion

The memory expansion version of the Apple IIc places the mouse at \$C700 and the memory expansion card at \$C400.

Table 3-6Port characteristics

Port	Entry. point	Port connector	Use	Chapter
	,			
1	\$C100	Serial port 1	Printers	7
2	\$C200	Serial port 2	Communication	8
3	\$C300	Video connectors	Enhanced video firmware	5
4	\$C400	Mouse	Mouse	9
5	\$C500	Intelligent disk port devices		
6	\$C600	Disk drives	Built-in and external drives	6
7	\$C700	No device	Reserved	6

Important

The addresses shown in Table 3-6 are not entry points in the sense that you can send characters to be printed by sending them to JSR \$Cn00.

Firmware protocol

The Apple IIc supports a standard firmware protocol that, in addition to the standard link address, provides a table of device identification and entry points to standard and optional firmware subroutines. The protocol is equivalent to the Pascal 1.1 firmware protocol in use on other Apple II's, and is outlined in Table 3-7.

Table 3-7 Firmware protocol locations

Address	Value	Description
\$Cn05	\$38	Pascal firmware card/port identifier.
\$Cn07	\$ 18	Pascal firmware card/port identifier.
\$Cn0B	\$01	Generic signature byte of a firmware card/port.
\$Cn0C	\$ci	Device signature byte: i is an identifier (not necessarily unique).
		c = device class (not all used on the Apple IIc): \$00 reserved \$01 printer \$02 hand control or other X-Y device \$03 serial or parallel I/O card/port \$04 modem \$05 sound or speech device \$06 clock \$07 mass-storage device \$08 80-column card/port \$09 network or bus interface \$0A special purpose (none of the above) \$0B-0F reserved
\$Cn0D	ii	\$Cnii is the initialization entry address (PInit).
\$Cn0E	rr	\$Cnrr is the read routine entry address (PRead) (returns character read in A register).
\$Cn0F	WW .	\$Cnww is the write routine entry address (PWrite) (enters with character to write in A register).
\$Cn10	SS	\$Cnss is the status routine entry address (PStatus) (enters with request code in A register: 0 to ask "Are you ready to accept output?" or 1 to ask "Do you have input ready?").
\$Cn11	\$00	If additional address bytes follow, nonzero if not.

Each table begins with identification bytes (\$Cn05 through \$Cn0C). Then, starting with address \$Cn0D, each byte in the table represents the low-order byte of the entry-point address of a firmware routine. The high-order byte of each address is always \$Cn, where n is the port number. Your program uses these byte values to construct its own jump table for subroutine calls to the ports.

All port routines require, on entry, that the X register contain \$Cn and that the Y register contain \$n0.

All routines, on exit, return an error code in the X register (0 means no error occurred; 3 means the request was invalid). The carry bit in the program status register usually contains a reply to a request code (0 means no; 1 means yes).

All the Apple IIc ports except the disk port conform to this protocol. The disk port is described in Chapter 6.

Port I/O space

By a convention used in other Apple II series machines, each port or slot has exclusive use of 16 memory locations set aside for data input and output. The addresses of these locations are of the form \$C080 + #n0, where n is the port or slot number. Table 3-8 lists the port I/O space used in the Apple IIc.

Port ROM space

In the Apple II and IIe, one 256-byte page of memory space is allocated to each slot. This space is used for read-only memory (ROM or PROM on the interface card) with driver programs that control the operation of input/output devices, as outlined in Table 3-7. On the Apple IIc, this space is dedicated to port firmware. However, I/O ROM space in the Apple IIc is used as efficiently as possible, and there is not a strict correspondence between firmware for port n and the \$Cn00 space, except as regards entry points.

For more information, refer to the hardware page memory map in Appendix B.

Table 3-8Port I/O locations

Port	Locations			
1	\$C090-\$C09F			
2	\$C0A0-\$C0AF			
6	\$C0E0-\$C0EF			

Expansion ROM space

The 2K-byte memory space from \$C800 to \$CFFF in the Apple IIc—called *expansion ROM space* on the Apple II, II Plus, and IIe—contains the enhanced video firmware and port and memory transfer subroutines. The Apple IIc, unlike the II, II Plus, or IIe, always has this space switched in.

Port screen hole RAM space

There are 128 bytes of memory (64 in main memory, 64 in auxiliary memory) allocated to the ports, eight bytes per port, as shown in Table 3-9. These bytes are reserved for use by the system, except as described in Chapters 4 through 9.

Table 3-9Port screen hole memory locations

8ase	Ports								
address	1	2	3	4	5	6	7		
\$0478	\$0479	\$047A	\$047B	\$047C	\$047D	\$047E	\$047F		
\$04F8	\$04F9	\$04FA	\$04FB	\$04FC	\$04FD	\$04FE	\$04FF		
\$0578	\$0579	\$057A	\$057B	\$057C	\$057D	\$057E	\$057F		
\$05F8	\$05F9	\$05FA	\$05FB	\$05FC	\$05FD	\$05FE	\$05FF		
\$0678	\$0679	\$067A	\$067B	\$067C	\$067D	\$067E	\$067F		
\$06F8	\$06F9	\$06FA	\$06FB	\$06FC	\$06FD	\$06FE	\$06FF		
\$0778	\$0779	\$077A	\$077B	\$077C	\$077D	\$077E	\$077F		
\$07F8	\$07F9	\$07FA	\$07FB	\$07FC	\$07FD	\$07FE	\$07FF		

These addresses are unused bytes in the RAM reserved for text and low-resolution graphics displays, and hence they are sometimes called screen holes. These particular locations are not displayed on the screen and their contents are not changed by the built-in output routines. In other words, they are used by the output routines but they are not part of the video display.

Warning

All the screen holes in auxiliary memory, and many of them in main memory, are reserved for special use by Apple IIc firmware—for example, to store initialization information. Do not use any locations marked **reserved** in this manual.

The way that port firmware uses these RAM locations and their addresses is covered in Chapters 4 through 10.

Appendix E describes interrupt handling on the Apple IIc.

Interrupts

Interrupts are a way to more efficiently use the hardware in a computer. Interrupt support built into the Apple IIc's firmware is described briefly below.

When the IRQ line on the 65C02 microprocessor is activated, the 65C02 transfers program control through the vector in locations \$FFFE through \$FFFF of ROM or whichever bank of RAM is switched in (Chapter 2). If ROM is switched in, this vector is the address of the Monitor's interrupt handler, which determines whether the request is due to an interrupt that should be handled internally. If so, the Monitor handles it and then returns control to the interrupted program.

If the interrupt is due to a BRK (\$00) instruction, control is transferred through the BRK vector (\$03F0-03F1). Otherwise, control is transferred through the IRQ vector (\$03FE-\$03FF).

Keyboard and Speaker This chapter describes how to use two of the Apple IIc's built-in devices: the keyboard and the speaker.

Keyboard input

Table 4-1 describes the characteristics of the keyboard that relate to programming. You won't have to write routines to read the keyboard from all your assembly-language programs since the Apple IIc firmware Monitor provides keyboard support through the three standard input routines described in Chapter 3—RdKey, KeyIn, and GetLn. You can do all your keyboard handling directly in your programs if you want to, but it's nice to know that you're not forced to.

For a description of how the keyboard strobe works, refer to Appendix E.

Reading the keyboard

The keyboard encoder and ROM (see Chapter 11) can generate all 128 ASCII codes, so all the special character codes in the ASCII character set are available from the keyboard. Your machinelanguage programs can call RdKey to get characters from the keyboard. RdKey reads characters a byte at a time from the keyboard data location (\$C000) shown in Table 4-1.

Here is how your programs should go about reading the keyboard:

- 1. Test bit 7 of address \$C000 to see if a key has been pressed. Bit 7 is the keyboard strobe bit.
- 2. When bit 7 goes to a 1, you know that the low-order seven bits of \$C000 are a valid character.
- 3. Clear the keyboard strobe (bit 7) at \$C000 by reading or writing anything to address \$C010.

\$C010 has another function besides clearing the keyboard strobe: its high bit is a 1 while a key is pressed (except the Apple keys, Control, Shift, Caps Lock, and Reset). Bit 7 at this location is therefore called *any-key-down*. You could use this to let a program do something useful other than just waiting for the next key to be pressed. (People are generally a *lot* slower than the Apple IIc.) Check \$C010 occasionally to see if something should be done.

Important

If your program needs to read both the keyboard flag and the strobe, it must read the strobe bit first. Any time you read the any-key-down bit at \$C010, you also clear the keyboard strobe bit at \$C000.

Table 4-1 Keyboard input characteristics

Port number	None				
Commands	Keyboard is always on, in the sense that any keypress generates a KSTRB.				
Initial characteristics	Reset routine clears the keyboard strobe and sets the keyboard as the standard input device (that is, sets KSW to point to RdKey).				
Hardware location	ons				
\$C000	Keyboard data and strobe				
\$C010	Any-key-down flag and clear-strobe switch				
\$C060	40-column switch status on bit 7; 1 = 40-column display = switch down				
\$C061	Open Apple status on bit 7; 1 = pressed (also game input switch 0)				
\$C062	Solid Apple status on bit 7, 1 = pressed				
Monitor firmware					

On game input switches, see Chapter 9.

On GetLn, GetLn1, and RdKey,

see Chapter 3.

routines

Location \$FD6A	Name GetLn	Description Gets an input line with prompt
\$FD67	GetLnZ	Gets an input line with preceding carriage return
\$FD6F	GetLn1	Gets an input line, but with no preceding prompt
\$FD1B	KeyIn	The keyboard input subroutine
\$FD35	RdChar	Gets an input character or escape code
\$FD0C	RdKey	The standard character input subroutine

Use of other pages

The standard character string input buffer (see GetLn Page 2 description)

After your program has cleared the keyboard strobe, the strobe remains low until another key is pressed.

Table 4-2 shows the ASCII codes generated by all the keys on the Apple IIc keyboard. Remember, if the strobe bit is set, the character values that your program sees will be equal to the values given in Table 4-2 plus \$80.

Table 4-2 Keys and ASCII codes

	Key alone		+ Control		+ Shift		+ Both	
Key	Code	Char	Code	Char	Code	Char	Code	Char
Delete	7F	DEL	7F	DEL	7F	DEL	7 F	DEL
Left Arrow	08	BS	08	BS	08	BS	80	BS
Tab	09	HT	09	HT	09	HT	09	HT
Down Arrow	0A	LF	0A	LF	OA.	LF	0A	LF
Up Arrow	0B	VT	$\mathbf{0B}$	VT	OB	VT	\mathbf{OB}	VT
Return	0D	CR	0D	CR	0D	CR	OD	CR
Right Arrow	15	NAK	15	NAK	15	NAK	15	NAK
Escape	1B	ESC	1 B	ESC	1B	ESC	1B	ESC
Space	20	SP	20	SP	20	SP	20	SP
1 11	27	•	27	1	22	19	22	89
, <	2C	,	2C	,	3C	<	3C	<
	2D	-	1 F	US	5F		1F	US
. >	2E		2E		3E	>	3E	>
/ ?	2F	/	2F	/	3F	?	3F	?
0)	30	0	30	0	29)	29)
1!	31	1	31	1	21	1	21	!
2 @	32	2	00	NUL	40	@	00	NUL
3 #	33	3	33	3	23	#	23	#
4 \$	34	4	34	4	24	\$	24	\$
5 %	35	5	35	5	25	%	25	%
6 ^	36	6	1E	RS	5E	٨	1E	RS
7 &	37	7	37	7	26	&	26	&
8 *	38	8	38	8	2A		2A	
9(39	9	39	9	28	(28	(
; :	3B	;	3B	;	3A	:	3A	:
= +	3D	=	3D	=	2B	+	2B	+
}}	5B	I	1B	ESC	7B	{	1B	ESC
\ I	5C	i	1C	FS	7C	ì	1C	FS
13	5D	1	1D	GS	7D	}	1D	GS
1~	60	i	60	1	7E	~	7E	~
A	61	a	01	SOH	41	A	01	SOH
В	62	b	02	STX	42	В	02	STX
C	63	c	03	ETX	43	C	03	ETX
D	64	d	04	EOT	44	D	04	EOT
E	65	e	05	ENQ	45	E	05	ENQ
F	66	f	06	ACK	46	F	06	ACK
G	67		07	BEL	47	G	07	BEL
Н	68	g h	08	BS	48	H	08	BS
I	69	i	09	HT	49	I	09	HT
1	07	1	Uy	ш	47	1	Uy	ш

Table 4-2 (continued) Keys and ASCII codes

	Key o	Key alone		+ Control		+ Shift		+ Both	
Key	Code	Char	Code	Char	Code	Char	Code	Char	
J	6 A	j	0A	LF	4A	J	0 A	LF	
K	6B	k	0B	VT	4B	K	0B	VT	
L	6C	1	0C	FF	4C	L	0C	FF	
M	6D	m	0D	CR	4D	M	0D	CR	
N	6E	n	0E	SO	4E	N	0E	SO	
0	6F	0	0F	SI	4F	0	OF	SI	
P	70	p	10	DLE	50	P	10	DLE	
Q	71	q	11	DC1	51	Q	11	DC1	
R	72	r	12	DC2	52	R	12	DC2	
S	73	s	13	DC3	53	S	13	DC3	
T	74	t	14	DC4	54	T	14	DC4	
U	75	u	15	NAK	55	U	15	NAK	
V	76	v	16	SYN	56	V	16	SYN	
W	77	w	17	ETB	57	W	17	ETB	
X	78	x	18	CAN	58	X	18	CAN	
Y	79	y	19	EM	59	Y	19	EM	
Z	7A	z	1A	SUB	5A	Z	1A	SUB	

Note: Codes are in hexadecimal here; refer to Table G-8 for decimal equivalents.

Keystrokes can also generate Interrupts. See Appendix E.

There are several keys that do not generate ASCII codes themselves, but alter the characters produced by other keys. These modifier keys are Control, Shift, and Caps Lock.

The reset routine is described in Chapter 2.

Your programs can also use the Open Apple and Solid Apple as character modifier keys while handling keyboard input, and, if one or both of them are pressed, branch to a special routine, such as a help program. Your program can read Open Apple at \$C061 and Solid Apple at \$C062.

For Information on how to have programs interpret keystrokes in a standard way, refer to the *Apple II Design Guidelines* listed in the Bibliography.

Another key that doesn't generate a code is Reset, located at the upper-left corner of the keyboard; it is connected directly to the Apple IIc's processor. Pressing Reset with Control depressed normally causes the system to stop whatever program it's running and restart itself. If you hold Open Apple while pressing Control-Reset, the Apple IIc performs a forced cold start. The restart sequence is described in Chapter 2.

Monitor firmware support for keyboard input

Chapter 3 describes the three standard Monitor input routines serving the keyboard: GetLn, RdKey, and KeyIn. This section discusses the three other available Monitor routines.

GetLnZ

GetLnZ (at address \$FD67) is an alternate entry point for GetLn that first sends a carriage return to the standard output, then continues into GetLn.

GetLn1

GetLn1 (at address \$FD6F) is an alternate entry point for GetLn that does not issue a prompt before it accepts the input line. However, if the user cancels the input line with too many backspaces or with Control-X, then GetLn1 issues the prompt stored at location \$33 when it gets another line.

RdChar

RdChar (at address \$FD35) is a subroutine that gets characters from the standard input subroutine, and also interprets the escape codes listed in Chapter 3.

If the enhanced video firmware is active, Right Arrow (Control-U) reads a character from the screen as if it were typed from the keyboard. This is a function of the Monitor's built-in editing capability described in Chapter 3.

Speaker output

Electrical specifications of the speaker circuit appear in

The Apple IIc has a small speaker mounted near the front of the bottom plate of its case. The speaker is connected to a soft switch that toggles; that is, the switch has two states, off and on, and it changes from one to the other each time it is accessed. Table 4-3 describes the speaker output characteristics.

Chapter 11.

Table 4-3Speaker output characteristics

Port number

None.

Commands

Some programs sound the speaker in response to

Control-G.

Initial

Reset routine sounds the speaker.

characteristics

Hardware location

\$C030

Toggle speaker (read only).

Monitor firmware routines

Location Name

Description

\$FBDD Bell1

Sends a beep to the speaker.

\$FF3A

Bell

Sends Control-G to the current output.

Using the speaker

If you switch the speaker once, by reading or writing to \$C030, it emits a click; to make longer sounds, access the speaker repeatedly. The switch for the speaker uses memory location \$C030. You can make various tones and buzzes with the speaker by using combinations of timing loops in your program.

Important

You should always use a read operation to toggle the speaker. If you write to this soft switch, it switches twice in rapid succession. The resulting pulse is so short that the speaker doesn't have time to respond; it doesn't make a sound.

Monitor firmware support for speaker output

See Chapter 3.

The Monitor supports the speaker with one simple routine, Bell1. A related routine, Bell, supports the current output device—the one that CSW points to.

Bell1

Bell1 (at address \$FDBB) makes a beep through the speaker by generating a 1-kHz tone in the Apple IIc's speaker for 0.1 second. This routine scrambles the A and X registers.

Bell

The Monitor routine Bell (at location \$FF3A) writes a bell control character (ASCII Control-G) to the current output device. This routine leaves the accumulator holding \$87.

Video Display Output NTSC stands for National Television Standards Committee, a group that formulates broadcast and reception guidelines used by the USA and several other countries. The Apple IIc's primary output device is its video display. You can use any ordinary color or monochrome video monitor with the Apple IIc. An ordinary monitor is one that accepts NTSC-compatible composite video. If you use Apple IIc color graphics with a black-and-white monitor, the display will appear as black, white, and two shades of gray.

If you are only using graphics modes and 40-column text, you can use a television set for your video display. If the TV set has an input connector for composite video, you can connect it directly to your Apple IIc; otherwise, you must attach an RF video modulator between the Apple IIc and the television set.

Important

The Apple IIc can produce an 80-column text display. However, if you use an ordinary color or black-and-white television set, 80-column text will be too blurry to read. For a clear 80-column display, you must use a high-resolution video monitor with a bandwidth of 14 MHz or greater.

Table 5-1 summarizes the video output port's characteristics and points to other information in this chapter.

Table 5-1 Video output port characteristics

Port number	Output port 3.
Commands	See Figure 5-3.
Initial characteristics	See Figure 5-3. Note: If a program is to use the enhanced video firmware, it should turn it on and then immediately check the 80/40 switch. If the switch is in the 40 position, the program should issue a Control-Q.
Hardware locations	See Table 5-7.
Monitor firmware routines	See Table 5-11.
I/O firmware entry points	See Table 5-12.

Video display specifications

Table 5-2 summarizes the video display's specifications, and provides a further guide to other information in this chapter.

Table 5-2 Video display specifications

	•
Display modes	40-column text; map: Figure 5-5 80-column text; map: Figure 5-6
	Low-resolution color graphics; map: Figure 5-7
	High-resolution color graphics; map: Figure 5-8
	Double high-resolution color graphics; map: Figure 5-9
Text capacity	24 lines by 80 columns (character positions)
Character set	96 ASCII characters (uppercase and lowercase)
Display formats	Normal, inverse, flashing, MouseText (Table 5-3)
Low-resolution graphics	16 colors (Table 5-4): 40 horizontal by 48 vertical; map: Figure 5-7
High-resolution graphics	6 colors (Table 5-5): 140 horizontal by 192 vertical (restricted)
	Black and white: 280 horizontal by 192 vertical; map: Figure 5-8
Double high-resolution graphics	16 colors (Table 5-6): 140 horizontal by 192 vertical (no restrictions)
	Black and white: 560 horizontal by 192 vertical; map: Figure 5-9

The video signal produced by the Apple IIc is NTSC-compatible composite color video available at two places on the back panel of the Apple IIc: the RCA-type phono jack and the 15-pin D-type connector. Use the RCA-type phono jack to connect a video monitor, and the DB-15 connector for an external video modulator or other video expansion hardware.

See "Video Output Signals" in Chapter 11 for more on video expansion hardware.

Text modes

Either of the Apple IIc's two text modes can display all 96 ASCII characters: uppercase and lowercase letters, the ten digits, punctuation marks, and special characters. Each character is displayed in an area of the screen that is seven dots wide by eight dots high. The characters are formed by a dot matrix five dots wide (with a few exceptions, such as underscore), leaving two blank columns of dots between characters in a row. Except for lowercase letters with descenders, the characters are only seven dots high, leaving one blank line of dots between rows of characters.

The normal display has white (or other monochrome color used by your monitor) dots on a dark background. Characters can also be displayed as black dots on a white background; this is called **inverse video.**

Text character sets

The Apple IIc can display either of two text character sets: the primary set and an alternate set (Table 5-3). The forms of the characters in the two sets are actually the same, but the available display formats are different. The display formats are

- □ normal, with white dots on a black screen
- □ inverse, with black dots on a white screen
- □ flashing, alternating between normal and inverse

The Apple IIc can display uppercase characters in all three formats—normal, inverse, and flashing—with the primary character set. Lowercase letters can only be displayed in normal format. This makes the primary character set compatible with most software written for the Apple II and II Plus, which can display text in flashing format but don't have lowercase characters.

The alternate character set trades the flashing format for a complete set of inverse characters. With the alternate character set, the Apple IIc can display uppercase letters, lowercase letters, numbers, and special characters in either normal format or inverse format. It can also display MouseText.

See "MouseText."

To identify particular characters and values, refer to Table 4-2.

You can select between character sets with the alternate-text soft switch, described later in this chapter. Table 5-3 shows the character codes in decimal and hexadecimal for the Apple IIc primary and alternate character sets in normal, inverse, and flashing formats.

Table 5-3Display character sets

Hex	Primary charac	cter set	Alternate character set			
values	Character type	Format	Character type	Format		
\$00-\$1F	Uppercase letters	Inverse	Uppercase letters	Inverse		
\$20-\$3F	Special characters	Inverse	Special characters	Inverse		
\$40-\$5F	Uppercase letters	Flashing	MouseText			
\$60-\$7F	Special characters	Flashing	Lowercase letters	Inverse		
\$80-\$9F	Uppercase letters	Normal	Uppercase letters	Normal		
\$A0-\$BF	Special characters	Normal	Special character	Normal		
\$C0-\$DF	Uppercase letters	Normal	Uppercase letters	Normal		
\$E0-\$FF	Lowercase letters	Normal	Lowercase letters	Normal		

Each character on the screen is stored as one byte of display data. The low-order six bits make up the ASCII code of the character being displayed. The remaining two (high-order) bits select format and the group within ASCII.

MouseText

The alternate character set contains 32 graphics characters called *MouseText* in place of the primary set's inverse uppercase characters from \$40 through \$5F. These graphics are especially convenient to use with a mouse because they can be generated by character codes instead of groups of high-resolution byte values, and they can be moved around quickly. To use MouseText characters, do the following:

- 1. Turn on the enhanced video firmware with PR#3 or 6 Control-P.
- 2. Set inverse mode: use the INVERSE command or put \$3F in location \$32, or print Control-O.
- 3. Turn on MouseText with PRINT CHR\$(27); or pass \$1B to COut in the accumulator.
- 4. Print the uppercase letter (or other ASCII character in the range \$40 through \$5F:@[\] ^ or _) that corresponds to the MouseText character you want.
- 5. Turn off MouseText with PRINT CHR\$(24); or pass \$18 to COut1 in the accumulator.
- 6. Set normal mode: use the NORMAL command or put \$FF in location \$32, or print a Control-N.

Here is a sample Applesoft program that prints all the MouseText characters:

```
10 D$=CHR$(4)
20 PRINT PRINT D$; "PR#3"
30 INVERSE
40 PRINT CHR$(27); "ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_";
50 PRINT CHR$(24);
60 NORMAL
```

MouseText characters and their corresponding ASCII characters are shown in Figure 5-1.

Figure 5-1 MouseText characters

40-column versus 80-column text

The Apple IIc has two text display modes: 40-column and 80-column. The number of dots in each character does not change, but the characters in 80-column mode are only half as wide as the characters in 40-column mode. Compare the two displays in Figure 5-2. On an ordinary color or black-and-white television set, the narrow characters in the 80-column display blur together; you must use the 40-column mode to display text on a television set.

90 PRINT: PRINT "...printing th e same line, first" 100 PRINT " in NORMAL, then INVE RSE ,then FLASH:": PRINT

lLIST

```
10 REM APPLESOFT CHARACTER DEMO
20 TEXT : HOME
30 PRINT : PRINT "Applesoft Character Demo"
40 PRINT : PRINT "Which character set--"
50 PRINT: INPUT "Primary (P) or Alternate (A) ?"; A$
60 IF LEN (A$) < 1 THEN 50
70 LET A$ = LEFT$ (A$,1)
80 IF A$ = "P" THEN POKE 49166,0
90 IF A$ = "A" THEN POKE 49167,0
100 PRINT : PRINT "...printing the same line, first"
150 PRINT " in NORMAL, then INVERSE , then FLASH: ": PRINT
160 NORMAL : GOSUB 1000
170 INVERSE : GOSUB 1000
180 FLASH : GOSUB 1000
190 NORMAL : PRINT : PRINT : PRINT "Press any key to repeat." GET A$
200 GOTO 10
1000 PRINT : PRINT "SAMPLE TEXT: Now is the time--12:00"
1100 RETURN
] 🔳
```

Figure 5-2 40-column and 80-column text with alternate character set

Figure 5-3 shows the characteristics of the text display modes and how to switch between them.

Figure 5-3
Text mode characteristics and switching

Graphics modes

The Apple IIc can produce color video graphics in any of three different modes:

- □ low-resolution graphics, 48 rows by 40 columns
- ☐ high-resolution graphics, 192 rows by 280 columns
- □ double high-resolution graphics, 192 rows by 560 columns

Each graphics mode treats the screen as a rectangular array of spots. Normally, your programs will use the features of some high-level language to draw graphics dots, lines, and shapes on the screen; this section describes the way the resulting graphics data are stored in the Apple IIc's memory.

Table 5-4 Low-resolution graphics colors

Nibble	e value	
Dec	Hex	Color
0	\$00	Black
1	\$01	Magenta
2	\$02	Dark blue
3	\$03	Purple
4	\$04	Dark green
5	\$05	Gray 1
6	\$06	Medium blue
7	\$07	Light blue
8	\$08	Brown
9	\$09	Orange
10	\$0A	Gray 2
11	\$0B	Pink
12	\$0C	Light green
13	\$0D	Yellow
14	\$0E	Aquamarine
15	\$OF	White

Note: colors may vary, depending on adjustment of monitor or television set.

Low-resolution graphics

The Apple IIc displays an array of 48 rows by 40 columns of colored blocks in the low-resolution graphics mode. Each block can be any one of sixteen colors, including black and white. On a black-and-white monitor or television set, these colors appear as black, white, and two shades of gray. There are no blank dots between blocks; adjacent blocks of the same color merge to make a larger shape.

The low-resolution graphics display data are stored in the same part of memory as the data for the 40-column text display. Each byte contains data for two low-resolution graphics blocks. The two blocks are displayed one atop the other in a display space the same size as a 40-column text character, seven dots wide by eight dots high.

Half a byte—four bits, or one nibble—is assigned to each graphics block. Each nibble can have a value from 0 to 15, and this value determines which one of sixteen colors appears on the screen. The colors and their corresponding nibble values are shown in Table 5-4. In each byte, the low-order nibble sets the color for the top block of the pair, and the high-order nibble sets the color for the bottom block. Thus, a byte containing the hexadecimal value \$D8 produces a brown block atop a yellow block on the screen.

As explained earlier in this chapter, the text display and the low-resolution graphics display use the same area in memory. Your programs should usually clear this part of memory when they change display modes, but you can store data as text and display them as graphics, or vice versa. All you have to do is change the mode switch, described later in this chapter, without changing the display data. This usually produces meaningless jumbles on the display, but some programs have used this technique to good advantage for producing complex low-resolution graphics displays quickly.

High-resolution graphics

In the high-resolution graphics mode, the Apple IIc displays an array of colored dots in 192 rows and 280 columns. The colors available are black, white, purple, green, orange, and blue, although the colors of the individual dots are limited, as described below, by the color of adjacent dots. Adjacent dots of the same color merge to form a continuous colored area.

High-resolution graphics display data are stored in either of two 8192-byte areas in memory. These areas are called *high-resolution Page 1* and *Page 2*; think of them as display data buffers. Normally, your programs will use the features of some high-level language to draw graphics dots, lines, and shapes to display; this section describes the way the resulting graphics data are stored in the Apple IIc's memory.

The Apple IIc high-resolution graphics display is bit-mapped: each dot on the screen corresponds to a bit in the Apple IIc's memory. The seven low-order bits of each display byte control a row of seven adjacent dots on the screen, and 40 adjacent bytes in memory control a row of 280 (7 times 40) dots. The eighth bit (the most significant) of each byte is not displayed; it selects one of two color sets, as described below. The least significant bit of each byte is displayed as the leftmost dot in a row of seven, followed by the next-least significant bit, and so on, as shown in Figure 5-4.

Figure 5-4 High-resolution display bits

There is a simple correspondence between bits in memory and dots on the screen on a black-and-white monitor. A dot is white if the bit controlling it is on (1), and the dot is black if the bit is off (0). On a black-and-white television set, pairs of dots merge together; alternating black and white dots merge to a continuous gray.

A dot whose controlling bit is off (0) is black on an NTSC color monitor or a color television set. If the bit is on, the dot is white or a color, depending on its position, the dots on either side, and the setting of the high-order bit of the byte. Call the leftmost column of dots column 0, and assume (for the moment) that the high-order bits of all the data bytes are off (0). If the bits that control them are on, dots in even-numbered columns, 0, 2, 4, and so forth, are purple, and dots in odd-numbered columns are green—but only if the dots on either side are black. If two adjacent dots are both on, they are both white.

You select the other two colors, blue and orange, by turning the high-order bit (bit 7) of a data byte on (1). The colored dots controlled by a byte with the high-order bit on are either blue or orange: the dots in even-numbered columns are blue, and the dots in odd-numbered columns are orange (again, only if the dots on either side are black). Within each horizontal line of seven dots controlled by a single byte, you can have black, white, and one pair of colors. To change the color of any dot to one of the other pair of colors, you must change the high-order bit of its byte, which affects the colors of all seven dots controlled by the byte.

In brief, high-resolution graphics displayed on a color monitor or television set are made up of colored dots, according to the following rules:

- □ Dots in even-numbered columns can be black, purple, or blue.
- □ Dots in odd-numbered columns can be black, green, or orange.
- ☐ If adjacent dots in a row are both on, they are both white.
- ☐ The colors in each row of seven dots controlled by a single byte are either purple and green, or blue and orange, depending on whether the high-order bit is off (0) or on (1).

These rules are summarized in Table 5-5. The blacks and whites are numbered to remind you that the high-order bit is different.

Table 5-5High-resolution graphics colors

Bits 0-6	Bit 7 off	Bit 7 on
Adjacent columns off	Black 1	Black 2
Even columns on	Purple	Blue
Odd columns on	Green	Orange
Adjacent columns on	White 1	White 2

Note: Colors may vary, depending on adjustment of monitor or television set.

The peculiar behavior of the high-resolution colors reflects in part the way NTSC color television works. The dots that make up the Apple IIc video signal are spaced to coincide with the frequency of the color subcarrier used in the NTSC system. Alternating on and off dots at this spacing cause a color monitor or TV set to produce color, but two or more on dots together do not.

For more details about the way the Apple IIc produces color on a TV set, see Chapter 11. For a table of reversed bit patterns, refer to Appendix H.

Double high-resolution graphics

The horizontal resolution of double high-resolution graphics is 560 dots per line, with 192 lines. Double high-resolution graphics maps the low-order seven bits of the bytes in the two double high-resolution graphics pages. A double high-resolution page is made up of a 8192-byte page in main memory and an equivalent page having the same address in auxiliary memory. In most cases, only the first double high-resolution graphics page is used.

The bytes in the main-memory and auxiliary-memory pages are displayed in exactly the same manner as the characters in 80-column text: of each pair of identical addresses, the auxiliary-memory byte is displayed first, and the main-memory byte is displayed second. A dot whose controlling bit is off (0) is black when displayed.

Unlike high-resolution color, double high-resolution color has no restrictions on which colors can be adjacent. Color is determined by any four adjacent dots along a line. Think of a four-dot-wide window moving across the screen: at any given time, the color displayed corresponds to the 4-bit value from Table 5-6 that corresponds to the window's position (Figure 5-9). Effective horizontal resolution with color is 140 (560 divided by 4).

Table 5-6 describes the data values used to produce colors in double high-resolution graphics. To use the table, divide the column number by four and use the remainder to find the correct column: ab0 is a byte residing in auxiliary memory corresponding to a remainder of 0 (byte 0, 4, 8, and so on), mb1 is a byte residing in main memory corresponding to a remainder of 1 (byte 1, 2, 9 and so on), and similarly for ab2 and mb3.

Mixed-mode displays

Any of the graphics displays can have four lines of text, either 40-column or 80-column, at the bottom of the screen. Graphics displays with text at the bottom are called *mixed-mode displays*. To use them, the TEXT switch must be off (read \$C050) and the MIXED switch on (read \$C053).

Important

You cannot display 40-column text with double high-resolution graphics.

To determine what appears where in mixed-mode displays, refer to Figures 5-5 through 5-9 later in this chapter. See the bottom sixth of the appropriate text display (Figure 5-5 or 5-6) and the upper five-sixths (down to the heavy horizontal line) in the appropriate graphics display (Figures 5-7 to 5-9).

Table 5-6Double high-resolution graphics colors

Color	ab0	mb1	ab2	mb3	Repeated bit pattern
Black	\$00	\$00	\$00	\$00	0000
Magenta	\$08	\$11	\$22	\$44	0001
Brown	\$44	\$08	\$11	\$22	0010
Orange	\$4C	\$19	\$33	\$66	0011
Dark green	\$22	\$44	\$08	\$11	0100
Gray 1	\$2A	\$55	\$2A	\$55	0101
Green	\$66	\$4C	\$19	\$33	0110
Yellow	\$6E	\$5D	\$3B	\$77	0111
Dark blue	\$11	\$22	\$44	\$08	1000
Purple	\$19	\$33	\$66	\$4C	1001
Gray 2	\$55	\$2A	\$55	\$2A	1010
Pink	\$5D	\$3B	\$77	\$6E	1011
Medium blue	\$33	\$66	\$4C	\$19	1100
Light blue	\$3B	\$77	\$6E	\$5D	1101
Aqua	\$77	\$6E	\$5D	\$3B	1110
White	\$7F	\$7F	\$7F	\$7F	1111

Note: Colors may vary, depending on adjustment of monitor or television set.

Display pages

The Apple IIc uses data stored in specific areas in memory to generate its video displays. These areas, called *display pages*, serve as buffers where your programs can put data to be displayed. Each byte in a display buffer controls an object—a character, a colored block, or a group of adjacent dots—at a certain location on the display, depending on the current display mode.

The 40-column-text and low-resolution-graphics modes use two display pages of 1024 bytes each. These are called *text Page 1* and *text Page 2*, and they are located at \$0400 through \$07FF and \$0800 through \$0BFF in main memory. Normally, only Page 1 is used, but you can put text or graphics data into Page 2 and switch between displays. Either page can be displayed as 40-column text, low-resolution graphics, or mixed-mode (four lines of text at the bottom of a graphics display).

The 80-column text mode displays twice as much data as the 40-column mode—1920 bytes—but it cannot switch pages when the enhanced video firmware is active. The 80-column text display uses a combination page made up of text Page 1 in main memory plus another page in auxiliary memory. This additional memory is *not* the same as text Page 2—in fact, it is text Page 1X, and it occupies the same address space as text Page 1 (see Figure 2-11). The built-in firmware I/O routines described in Chapter 3 take care of this extra addressing automatically; that is one reason to use these routines for all normal text output.

Important

The built-in video firmware always displays Page 1 text. You cannot write text to Page 2 with the built-in firmware.

The high-resolution graphics mode also has two display pages, but each page is 8192 bytes long. In the 40-column text and low-resolution graphics modes each byte controls a display area seven dots wide by eight dots high. In high-resolution graphics mode each byte controls an area seven dots wide by one dot high. Thus, a high-resolution display requires eight times as much data storage as a low-resolution display, as shown in Table 5-7.

The double high-resolution graphics mode interleaves the two high-resolution pages (Pages 1 and 1X) in exactly the same way as 80-column text mode interleaves the text pages: column 0 and all subsequent even-numbered columns come from the auxiliary page; column 1 and all subsequent odd-numbered columns come from the main page.

Table 5-7 Video display page locations

Display mode	Display page	Lowest address	Highest address
40-column text,	1	\$0400 1024	\$07FF 2047
low-resolution graphics	2*	\$0800 2048	\$0BFF 3071
80-column text	1	\$0400 1024	\$07FF 2047
	2*	\$0800 2048	\$0bFF 3071
High-resolution	1	\$2000 8192	\$3FFF 16383
graphics	2	\$4000 16384	\$5FFF 24575
Double high-	1†	\$2000 8192	\$3FFF 16383
resolution graphics	2†	\$4000 6384	\$5FFF 24575

This is not supported by firmware; for instructions on how to switch pages, refer to "Display Mode Switching."

Display mode switching

Table 5-8 shows the reserved locations for the soft switches that control the different display modes. The column of the table labeled *Action* indicates what to do to activate or read a switch setting: *R* means read the location, *W* means write anything to the location, *R/W* means read or write, and *R7* means read the location and then check bit 7.

Table 5-9 lists the display modes that the firmware can set up automatically. In the 40-column modes, the contents of the standard I/O hooks KSW and CSW (Chapter 3) determine whether the enhanced video firmware features are available or not. The firmware also takes care of setting or clearing AltChar.

Table 5-10 lists other display modes available but not supported by firmware. For modes that display Page 2 with the 80Col switch on, your program may have to turn 80Store off after the firmware has turned it on.

Double low-resolution shows on the display screen when HiRes is off and both 80Col and DHiRes are on. It is the low-resolution graphics equivalent of 80-column text, and it uses the same map (Figure 5-6), giving you 48 rows of 80 blocks.

[†] See "Double High-Resolution Graphics."

The IOUDis (\$C07E) switch must be on to allow you to use locations \$C05E and \$C05F to change DHiRes. The firmware in fact leaves it on—and your program should, too—unless it wants to use locations \$C05E and \$C05F to change mouse values (Chapter 9).

Table 5-8Display soft switches

Name	Action	Hex	Function
AltChar	W	\$C00E	Off: Display text using primary character set
AltChar	W	\$C00F	On: Display text using alternate character set
RdAltChar	R7	\$C01E	Read AltChar switch (1 = on)
80Col	W	\$C00C	Off: Display 40 columns
80Col	W	\$C00D	On: Display 80 columns
Rd80Col	R7	\$C01F	Read 80Col switch (1 = on)
80Store	W	\$C000	Off: Cause Page2 on to select auxiliary RAM
80Store	W	\$C001	On: Allow Page2 to switch main RAM areas
Rd80Store	R7	\$C018	Read 80Store switch (1 = on)
Page2	R/W	\$C054	Off: Select Page 1
Page2	R/W	\$C055	On: Select Page 1X (80Store on) or 2
RdPage2	R7	\$C01C	Read Page2 switch (1 = on)
TEXT	R/W	\$C050	Off: Display graphics or (if MIXED on) mixed
TEXT	R/W	\$C051	On: Display text
RdTEXT	R7	\$C01A	Read TEXT switch (1 = on)
MIXED	R/W	\$C053	Off: Display only text or only graphics

Table 5-8 (continued) Display soft switches

Name	Action	Hex	Function
MIXED	R/W	\$C054	On: (If TEXT off) display text and graphics
RdMIXED	R7	\$C01B	Read MIXED switch (1 = on)
HiRes	R/W	\$C057	Off: (If TEXT off) display low-resolution graphics
HiRes	R/W	\$C058	On: (If TEXT off) display high-resolution or (if DHiRes on) double high-resolution graphics
RdHiRes	R7	\$C01D	Read HiRes switch (1 = on)
IOUDis	W	\$C07E	On: Disable IOU access for addresses \$C058 to \$C05F; enable access to DHiRes switch
IOUDis	W	\$C07F	Off: Enable IOU access for addresses \$C058 to \$C05F; disable access to DHiRes switch*
RdIOUDis	R7	\$C07E	Read IOUDis switch (1 = off)†
DHiRes	R/W	\$C05E	On: (If IOUDis on) turn on double high-resolution
DHiRes	R/W	\$C05F	Off: (If IOUDis on) turn off double high-resolution
RdDHiRes	R7	\$C07F	Read DHiRes switch (1 = on)†

^{*} The firmware normally leaves IOUDis on. See also the following footnote.

[†] Reading or writing any address in the range \$C070-\$C07F also triggers the paddle timer and resets VBLInt (Chapter 9).

Table 5-9
Display modes supported by firmware, including Applesoft

Dispigy			Switches						
col/res	Туре	Page	80Col	80Store	Page2	TEXT	MIXED	HiRes	DHiRes
40-column	Text	1	Off		Off	On	Off	Off	Off
80-column	Text	1	On	•		On			
Low-res	Graphics	1	Off		Off	Off	Off	Off	Off
40/low	Mixed	1	Off		Off	Off	On	Off	
80/low	Mixed	1	On		Off	Off	On	Off	Off
Hi-res	Graphics	1	Off		Off	Off	Off	On	
Hi-res	Graphics	2	Off		On	Off	Off	On	
40/high	Mixed	1	Off		Off	Off	On	On	
80/high	Mixed	1	On	•	Off	Off	On	On	Off

^{* 80}Store is set by the firmware when 80Col is turned on.

Table 5-10 Other display modes

Display			Switches						· .
col/res	Туре	Page	80Col	80Store	Page2	TEXT	MIXED	HiRes	DHIRes
40-column	Text	2	Off		On	On			
80-column		2	On	Off	On	On			
Low-res	Graphics	2	Off		On	Off	Off	Off	
40/low	Mixed	2	Off		On	Off	On	Off	
80/low	Mixed	2	On	Off	On	Off	On	Off	Off
Dbl-low	Graphics	1	On	•	Off	Off	Off	Off	On
Dbl-low	Graphics	2	On	Off	On	Off	Off	Off	On
80/dbl-low	Mixed	1	On	•	Off	Off	On	Off	On
80/dbl-low	Mixed	2	On	Off	On	Off	On	Off	On
40/high	Mixed	2	Off		On	Off	On	On	
80/high	Mixed	2	On	Off	On	Off	On	On	Off
Dbl-high	Graphics	1	On		Off	Off	Off	On	On
Dbl-high	Graphics	2	On	Off	On	Off	Off	On	On
80/dbl-high	Mixed	1	On	•	Off	Off	On	On	On
80/dbl-high	Mixed	2	On	Off	On	Off	On	On	On

^{* 80}Store is set by the firmware when 80Col is turned on, and must be turned off to use the second 80-column or double high-resolution page. This means that you cannot use firmware routines such as COut when displaying Page 2 modes not supported by firmware.

For example, to switch to mixed 80-column and double highresolution display Page 1, you can use these instructions in your program:

STA	\$C00D	Turns on 80Col; firmware then turns on 80Store.
LDA	\$C054	Turns off Page2; you could also have done a STA.
STA	\$C050	Turns off TEXT; that is, turns on graphics mode.
STA	\$C053	Turns on MIXED; it works now that TEXT is off.
STA	\$C057	Turns on HiRes; it works now that TEXT is off.
STA	\$C07E	Makes sure IOUDis is on so you can access DHiRes.
LDA	\$C05E	Turns on DHiRes; it works now that IOUDis is on.

Display page maps

You should never have to store directly into display memory. Most high-level languages let you write statements that control the text and graphics displays. Similarly, if you are programming in assembly language, you should use the display features of the built-in I/O firmware.

Warning

Never call any firmware with 80Col on or with 80Store and Page2 both on. If you do, the firmware will not function properly. As a general rule, always leave Page2 off.

All the different display modes use the same basic addressing scheme: characters or graphics bytes are stored as rows of 40 contiguous bytes, but the rows themselves are not stored at locations corresponding to their locations on the display. Instead, the display address is transformed so that three rows that are eight rows apart on the display are grouped together and stored in the first 120 locations of each block of 128 bytes (\$80 hex). For example, the first 128-byte block contains the data for rows 0, 8, and 16. The next 128-byte block contains data for rows 1, 9, and 17, and so on.

The display memory maps are shown in Figures 5-5 through 5-9. For a full description of the way the Apple IIc hardware handles display memory, see Chapter 11.

High-resolution graphics data are stored in much the same way as text, but there are eight times as many bytes to store, because eight rows of dots occupy the same space on the display as one row of characters.

The first 1024 bytes of the high-resolution display page contain the first row of dots from *each* of the 24 groups of eight rows of dots. The second 1024 bytes of the high-resolution display page contain the second row of dots from *each* group of eight rows of dots, and so on for all eight rows of all the groups. This fills up the 8192 bytes of the high-resolution display page.

The display maps show addresses only for each Page 1. To obtain addresses for text or low-resolution graphics Page 2, add 1024 (\$0400); to obtain addresses for high-resolution Page 2, add 8192 (\$2000).

The 80-column display works a little differently. Half of the data are stored in the normal text Page 1 memory, and the other half are stored in the *auxiliary* memory text Page 1. The display circuitry fetches bytes from the same address in both memory areas simultaneously and displays them sequentially: first the byte from the auxiliary memory, then the byte from the main memory. The characters in the even-numbered columns of the display are stored (starting with column 0) in main memory, and the characters in the odd-numbered columns of the display are stored (starting with column 1) in main memory.

To store display data in auxiliary memory, first turn on the 80Store soft switch by writing to location \$C001. With 80Store on, the page-select switch Page2 selects between the portion of the 80-column display stored in Page 1 of main memory and the portion stored in the auxiliary memory. To select auxiliary memory, turn the Page2 soft switch on by reading or writing at location \$C055.

The double high-resolution graphics display stores information in the same way as high-resolution graphics, except there is an auxiliary memory location as well as a main memory location corresponding to each address. The two sets of display information are interleaved in a manner similar to the interleaving of two 40-column displays to create an 80-column text display (Figure 5-9).

For more details about the way the displays are generated, see Chapter 11.

Figure 5-5 Map of 40-column text display

Figure 5-6 Map of 80-column text display

Figure 5-7
Map of low-resolution graphics display

Figure 5-8

Map of high-resolution graphics display

Figure 5-9

Vap of double high-resolution graphics display

Monitor support for video display output

Table 5-11 summarizes the addresses and functions of the video display support routines the Monitor provides. Except for COut and COut1, which are explained in Chapter 3, these routines are described in the subsections that follow.

Table 5-11 Monitor firmware routines

Name	Location	Description
ClrEOL	\$FC9C	Clears to end of line from current cursor position
ClEOLZ	\$FC9E	Clears to end of line using contents of Y register as cursor position
ClrEOP	\$FC42	Clears to bottom of window
ClrScr	F832	Clears the low-resolution screen
ClrTop	\$F836	Clears top 40 lines of low-resolution screen
COut	\$FDED	Calls output routine whose address is stored in CSW (normally COut1, Chapter 3)
COut1	\$FDF0	Displays a character on the screen (Chapter 3)
CROut	\$FD8E	Generates a carriage return character
CROut1	\$FD8B	Clears to end of line, then generates a carriage return character
HLine	\$F819	Draws a horizontal line of blocks
HOME	\$FC58	Clears the window and puts cursor in upper-left corner of window
PLOT	\$F800	Plots a single low-resolution block on the screen
PrBl2	\$F94A	Sends 1 to 256 blank spaces to the output device whose address is in CSW
PrByte	\$FDDA	Prints a hexadecimal byte
PrErr	\$FF2D	Sends ERR and Control-G to the output device whose output routine address is in CSW
PrHex	\$FDE3	Prints four bits as a hexadecimal number

Table 5-11 (continued)

Monitor firmware routines

Name	Location	Description
PrntAX	\$F941	Prints contents of A and X in hexadecimal
SCRN	\$F871	Reads color value of a low resolution block on the screen
SetCol	\$F864	Sets the color for plotting in low resolution
VTabZ	\$FC24	Sets cursor vertical position (setting CV at location \$25 does not change vertical position until a carriage return)
VLine	\$F828	Draws a vertical line of low-resolution blocks

ClrEOL

ClrEOL clears a text line from the cursor position to the right edge of the window. This routine destroys the contents of A and Y.

CIEOLZ

CIEOLZ clears a text line to the right edge of the window, starting at the location given by base address BASL indexed by the contents of the Y register. This routine destroys the contents of A and Y.

ClrEOP

ClrEOP clears the text window from the cursor position to the bottom of the window. This routine destroys the contents of A and Y.

Cirsor

ClrScr clears the low-resolution graphics display to black. If you call this routine while the video display is in text mode, it fills the screen with inverse-mode at-sign (a) characters. This routine destroys the contents of A and Y.

ClrTop

ClrTop is the same as ClrScr, except that it clears only the top 40 rows of the low-resolution display.

COut

COut calls the current character output subroutine. The character to be sent to the output device should be in the accumulator. COut calls the subroutine whose address is stored in CSW (locations \$36 and \$37), usually the standard character output COut1.

COut1

COut1 displays the character in the accumulator on the display screen at the current cursor position and advances the cursor. It places the character using the setting of the inverse mask (location \$32). It handles these control characters: carriage return, line feed, backspace, and bell. When it returns control to the calling program, all registers are intact.

CROut

CROut sends a carriage return to the current output device.

CROut1

CROut1 clears the screen from the current cursor position to the edge of the text window, then calls CROut.

HLine

HLine draws a horizontal line of blocks of the color set by SetCol on the low-resolution graphics display. Call HLine with the vertical coordinate of the line in the accumulator, the leftmost horizontal coordinate in the Y register, and the rightmost horizontal coordinate in location \$2C. HLine returns with A and Y scrambled and X intact.

HOME

HOME clears the display and puts the cursor in the upper-left corner of the screen.

PLOT

PLOT puts a single block of the color value set by SetCol on the low-resolution display screen. Call PLOT with the vertical coordinate of the line in the accumulator, and its horizontal position in the Y register. PLOT returns with the accumulator scrambled, but X and Y intact.

PrB12

PrBl2 sends from 1 to 256 blanks to the standard output device. Upon entry, the X register should contain the number of blanks to send. If X = \$00, then PrBlank will send 256 blanks.

PrByte

PrByte sends the contents of the accumulator in hexadecimal to the current output device. The contents of the accumulator are scrambled.

PrErr

PrErr sends the word ERR, followed by a bell character (ASCII \$07), to the standard output device. On return, the accumulator is scrambled.

PrHex

PrHex prints the lower nibble of the byte in the accumulator as a single hexadecimal digit. On return, the contents of the accumulator are scrambled.

PrntAX

PrntAX prints the contents of the A and X registers as a four-digit hexadecimal value. The accumulator contains the first byte printed, and the X register contains the second. On return, the contents of the accumulator are scrambled.

SCRN

SCRN returns the color value of a single block on the low-resolution display. Call it with the vertical position of the block in the accumulator and the horizontal position in the Y register. The block's color is returned in the accumulator. No other registers are changed.

SetCo1

SetCol sets the color used for plotting in low-resolution graphics to the value passed in the accumulator. The colors and their values are listed in Table 5-4.

VLine

VLine draws a vertical line of blocks of the color set by SetCol on the low-resolution display. Call VLine with the horizontal coordinate of the line in the Y register, the top vertical coordinate in the accumulator, and the bottom vertical coordinate in location \$2D. VLine returns with the accumulator scrambled.

I/O firmware support for video display output

Apple IIc video firmware conforms to the I/O firmware protocol described in Chapter 3. However, it does not support windows other than the full 80-by-24 window in 80-column mode, and the full 40-by-24 window in 40-column mode.

The video (port 3) protocol table is shown in Table 5-12.

Table 5-12Port 3 firmware protocol table

Address	Value	Description
\$C30B	\$01	Generic signature byte of firmware cards
\$C30C	\$88	80-column card device signature
\$C30D	\$ii	\$C3ii is entry point of initialization routine (PInit)
\$C30E	\$rr	\$C3rr is entry point of read routine (PRead)
\$C30F	\$ww	\$C3ww is entry point of write routine (PWrite)
\$C310	\$ss	\$C3ss is entry point of the status routine (PStatus).

PInit

PInit does the following:

- □ sets a full 80-column window
- □ sets 80Store (\$C001)
- □ sets 80Col (\$C00D)
- □ switches on AltChar (\$C00F)
- □ clears the screen; places cursor in upper-left corner
- □ displays the cursor

PRead

PRead reads a character from the keyboard and places it in the accumulator with the high bit cleared. It also puts a 0 in the X register to indicate IOResult = GOOD.

PWrite

PWrite should be called after placing a character in the accumulator with its high bit cleared. PWrite does the following:

- □ turns the cursor off
- □ if the character in the accumulator is not a control character, turns the high bit on for normal display or off for inverse display, displays it at the current cursor position, and advances the cursor; if at the end of a line, does carriage return but not line feed
- ☐ carries out control functions as shown in Table 5-13

Table 5-13Pascal video control functions

Control-	Hex	Function
E or e	\$05	Turns cursor on (enables cursor display)
F or f	\$06	Turns cursor off (disables cursor display)
G or g	\$07	Sounds bell (beeps)
H or h	\$08	Moves cursor left one column; if cursor was at beginning of line, moves it to end of previous line
J or j	\$0A	Moves cursor down one row; scrolls if needed
K or k	\$0B	Clears to end of screen
L or l	\$0C	Clears screen; moves cursor to upper-left position on screen
M or m	\$0D	Moves cursor to column 0
N or n	\$0E	Displays subsequent characters in normal video; characters already on display are unaffected
O or o	\$0F	Displays subsequent characters in inverse video; characters already on display are unaffected
V or v	\$16	Scrolls screen up one line; clears bottom line
W or w	\$ 17	Scrolls screen down one line; clears top line
Y or y	\$19	Moves cursor to upper-left (home) position on screen
Z or z	\$1A	Clears entire line that cursor is on

Table 5-13 (continued)
Pascal video control functions

Control-	Hex	Function
l or \	\$1C	Moves cursor right one column; if at end of line, does Control-M
} or]	\$1D	Clears to end of the line the cursor is on, including current cursor position; does not move cursor
^ or 6	\$1E	GOTOxy: Initiates a GOTOxy sequence; interprets the next two characters as x+32 and y+32, respectively
_	\$1F	If not at top of screen, moves cursor up one line

When PWrite has completed this, it

- □ turns the cursor back on (if it was not intentionally turned off)
- □ puts a 0 in the X register (IOResult = GOOD) and returns to the calling program

PStatus

A program that calls PStatus must first put a request code in the accumulator: either a 0 (meaning "Ready for output?") or a 1 (meaning "Is there any input?"). PStatus returns with the reply in the carry bit: 0 (no) or 1 (yes). If the request was not 0 or 1, PStatus returns with a 3 in the X register (IOResult = ILLEGAL OPERATION); otherwise, PStatus returns with a 0 in the X register (IOResult = GOOD).

Block Device I/O A block-type device, or block device, executes I/O operations by grouping data into bundles, called blocks. A block may be made up of virtually any number of bytes, but in the Apple IIc a standard block is 512 bytes.

The Apple IIc supports both built-in and external **block-type devices.** External block devices may be 5.25-inch Disk IIc drives, UniDisk 3.5-inch disk drives, a memory expansion card, and other similar devices. If you use a 5.25-inch Disk IIc as an external drive, you must install it as the last device in the daisy chain.

Original IIc

The original Apple IIc does not support devices other than its internal 5.25-inch disk drive and an (optional) external 5.25-inch Disk IIc drive.

The external block device interface is provided by the Smartport firmware. The Smartport is described later in this chapter.

UniDisk 3.5

The UniDisk 3.5 ROM contains an older version of the Smartport, the Protocol Converter. The description of the Smartport applies to the Protocol Converter, and vice versa.

The external disk drive connector is described under "Disk I/O" in Chapter 11.

Disk drive I/O

Disk I/O firmware for the 5.25-inch drives resides in the \$C600 address space on the main side of the ROM. The built-in 5.25-inch drive is supported as if it were slot 6, drive 1, and the external 5.25-inch drive as if it were slot 6, drive 2.

Disk I/O firmware for the UniDisk 3.5 drive resides in the \$C500-\$C58D address space on the main side, and in the \$C880-\$CFFF address space on the auxiliary side of the ROM.

Table 6-1 summarizes the disk I/O port characteristics.

Table 6-1
Disk I/O port characteristics

Initial characteristics

Port number	I/O port 6 drive 1 (built-in 5.25-inch drive). I/O port 6 drive 2 (external 5.25-inch drive). I/O port 5 drive 1 (external 3.5-inch drive).
Commands	IN#6 or PR#6 CALL –151 (to get to the Monitor from BASIC), then 6 Control-K or 6 Control-P.

built-in disk drive.

All resets except Control-Reset with a valid

reset vector eventually pass control to the

Chapter 6: Block Device I/O

Table 6-1 (continued) Disk I/O port characteristics

Hardware location

\$COEO-EF

Reserved.

Monitor firmware

None.

routines

I/O firmware

entry points

\$C600 (port 6).

Use of screen holes

Port 6 main and auxiliary memory screen

holes are reserved.

Startup

The Apple IIc has two ways to start up—a cold start and a warm start. A cold start clears the machine's memory and tries to load an operating system from disk. A warm start halts the program that is running and leaves the machine in Applesoft with the contents of memory intact.

Cold start

A cold start can be initiated by any of the following:

- □ turning the machine on
- ☐ pressing Open Apple-Control-Reset
- □ issuing a reboot command from the Monitor, BASIC, or a program
- □ pressing Control-Reset, if a valid reset vector does not exist

The startup routine first sets a number of soft switches to their initialization settings (see Chapter 2) and then passes control to the memory expansion card I/O entry point at \$C400. Because the contents of the memory expansion card's RAM are invalid in all cold-start situations, the Apple IIc cannot boot from card and control is returned to the startup routine.

Original IIc

The original Apple IIc does not support the memory expansion card; the restart routine in the original IIc begins with the internal 5.25-inch drive.

When control is returned to the startup routine by the memory expansion card, it will attempt to boot the Apple IIc from the internal 5.25-inch drive. Control is passed to the 5.25-inch disk I/O entry point at \$C600. The code at this address turns on the internal drive motor, recalibrates the read/write head at track 0, then reads sector 0 from that track. The sector contents are loaded into main memory, starting at address \$0800. Once the contents of sector 0 have been loaded into main memory, control passes to \$0801. The program loaded depends on the operating system or application program on the disk in internal drive.

If for any reason the Apple IIc is unable to boot from the internal drive, control is returned to the startup routine. The startup routine then attempts to boot the Apple IIc from the external UniDisk 3.5 drive. Control is passed to the UniDisk 3.5 I/O entry point at \$C500, and the startup attempt proceeds in the same manner as that of the internal 5.25-inch drive.

Original lic

The original Apple IIc does not support the UniDisk 3.5 drive. However, it is possible to start the original Apple IIc from the external 5.25-inch drive. If you want to start your Apple IIc from the external 5.25-inch drive, you must use the ProDOS operating system. To start from the external drive, insert a ProDOS disk in the drive and

- \square From the Monitor, type CALL -151 and press 7 Control-P.
- ☐ From BASIC, type PR#7.

To force a cold restart of the system:

- ☐ From BASIC, issue a PR#6 command.
- ☐ From the Monitor, issue 6 Control-P.
- ☐ From a machine-language program, JMP \$C600.

Memory expansion

To force a cold restart from a machine-language program in an Apple IIc that supports the memory expansion card, JMP \$C400 (the memory expansion card entry point).

UniDisk 3.5

The Apple IIc that supports the UniDisk 3.5 can force a cold restart that skips the internal 5.25-inch drive and passes control to the external drive port at \$C500 entry point. This allows the system to start up from the first *intelligent* drive connected to the external drive port. You can use the ProDOS or Pascal operating system If you want to start the system from an external drive, but DOS and versions of Pascal earlier than 1.3 will not work.

Warm start

A warm start is initiated by pressing Control-Reset. The warm start routine checks \$F800-\$FFFF on the main side ROM for a valid reset vector. Provided a valid reset vector exists, control is turned over to the entry point specified by the vector. Generally, a warm start leaves you in BASIC with memory unchanged.

If there is no valid reset vector, a number of things may happen:

- ☐ The Apple IIc passes control to \$C600 on the main side ROM and the cold-start boot procedure begins.
- ☐ The Apple IIc beeps.
- ☐ The Apple IIc does nothing.

Memory expansion

In the Apple IIc that supports the memory expansion card, control is turned over to \$C400 on the main side ROM in the event there is no valid reset vector.

Memory expansion card I/O

The memory expansion card provides up to 1Mb of RAM, in 256K steps, for storage of program and data files. In this sense, it is like a very fast disk drive. Programs can be loaded into the memory expansion card's RAM, but in order to be executed they must be moved, in whole or in part, to the Apple IIc's main memory.

The memory expansion card is a block-type device, so I/O operations involving the card use the operating system or Smartport I/O interface. The Smartport I/O interface is described later in this chapter.

More information on the memory expansion card can be found in the Apple IIc Memory Expansion Card Technical Reference.

The Smartport I/O interface

Important

The rest of this chapter applies only to the UniDisk 3.5 and memory expansion versions of the Apple IIc.

UniDisk 3.5 The

The Smartport and the Protocol Converter are essentially the same firmware interface with different names. All the specifications given in this manual for the Smartport interface apply to the Protocol Converter as well.

The rest of this chapter is about the Smartport, which is a set of assembly-language routines used to support external I/O devices, such as UniDisk 3.5. To ProDOS and Pascal 1.3, the Smartport appears to be a block device.

At the end of this chapter is an example of an assembly-language program that uses a Smartport call.

Locating the Smartport

The Smartport code in the Apple IIc's firmware always begins at address \$C500. To ensure compatibility of your programs with the Apple IIe, however, your Smartport routines should always begin with a search for the Smartport. Your program can identify the Smartport by finding the following bytes:

\$Cn01=\$20

\$Cn03=\$00

\$Cn05=\$03

\$Cn07=\$00

where n can be an integer from 1 to 7. The Smartport entry point is then found at address \$Cn00 + (\$CnFF) + 3, where (\$CnFF) refers to the value of the byte located at \$CnFF. The sample program at the end of this chapter illustrates such a search.

Important

The Smartport firmware is present even when the Memory Expansion Card is not. To check for the Memory Expansion Card, issue a STATUS call, code \$03, from the operating system or the Smartport. If the data returned indicates 0 bytes available, the card is not present.

On **MU** calls, see the *ProDOS Technical Reference Manual,* Chapter 4.

Issuing a call to the Smartport

Smartport calls are coded like ProDOS Machine Language Interface (MLI) calls: the program executes a JSR to a dispatch routine at address \$C500 + (\$C5FF) + 3, where (\$C5FF) refers to the value of the byte located at \$C5FF.

The Smartport call number and a two-byte pointer to the call's parameter list must immediately follow the call. Here is an example of a call to the Smartport:

IMMCALL	
JSR DISPATCH	Calls PC command dispatcher
DFB CmdNum	Specifies the command type

DW CmdList 2-byte (low, high) pointer to parameter list

BCS ERROR Sets carry on an error

The command number (CmdNum) defines which Smartport call you want to make. Most Smartport calls include a two-byte pointer to a parameter list. The parameter list can contain information to be used by the call, or can provide space for information to be returned by the call. The length and content of the parameter list depend on the call being made. The format of each Smartport call's parameter list is described later in this chapter.

When the call has finished, the program resumes execution at the statement following the pointer to the parameter list. In the example above, the DFB and DW statements are skipped and execution resumes with the BCS statement. If the call is successful, the C flag (in the processor status register) is cleared (0), and the accumulator (the A register) is cleared to all 0's. If the call is unsuccessful, the C flag is set (1) and the error code is placed in the A register. After the Smartport call, the contents of the 65C02's registers are as follows:

Register			P	rocess	or stat	us			X	Y	A	PC	S
	N	٧	1	В	D	ı	Z	С					
Successful call	x	x	1	u	0	u	x	0	x	x	0	JSR+3	u
Unsuccessful call	x	x	1	u	0	u	x	1	x	x	Error	JSR+3	u

x = undefined, except in cases where index information is returned in X and Y registers

u = unchanged

Cautions

You must observe the following cautions when using the Smartport, or your program will crash:

- □ Leave space on the stack for the Smartport. The Smartport requires up to 35 bytes of stack space. Be sure to take this into account when calculating the stack space used by your program. If you don't do this, your program will fail if it tries to access data that *used* to be on the stack.
- ☐ Be sure that all RAM that you intend the Smartport to access is both read-enabled and write-enabled. The Smartport must be able to read from the RAM after writing to it, to obtain a checksum. Failure to observe this rule results in an error (BusErr \$06).
- Don't pass data to or from the Smartport through any zero page locations. Some of these locations are reserved for temporary storage of data by the Smartport, and your data will get changed.

On reading and writing to RAM, see "Bank-Switched Memory" in Chapter 4.

Descriptions of the Smartport calls

Calls to the Smartport are used

- □ to obtain status information about a device
- □ to reset a device
- □ to format the medium in a device
- □ to read from a device
- □ to write to a device
- □ to send control information to a device

The Smartport calls, in command-number sequence, are

STATUS (\$00)

Returns status information about a particular device, including general status (character or block device, read or write protection, format allowed, device on line); the device control block (set with the CONTROL call); the device newline status (character devices only); and device-specific information (number of blocks, ID string, device name, device type, device firmware version).

READ BLOCK (\$01)

Reads one 512-byte block from a disk device, and writes it to memory.

WRITE BLOCK (\$02)	Writes one 512-byte block from memory to a disk device.
FORMAT (\$03)	Prepares all blocks on a block device for reading and writing.
CONTROL (\$04)	Controls some device functions, including soft resets, setting the device control block (which controls global aspects of the device's operating environment), setting newline status (character devices only), and device interrupts. Several CONTROL calls are device-specific.
INIT (\$05)	Resets all resident devices. A global reset is done automatically on startup or system resets from the keyboard; an application should never have to reset all devices.
OPEN (\$06)	Prepares a character device for reading or writing.
CLOSE (\$07)	Tells a character device that a sequence of reads or writes is over.
READ (\$08)	Reads a specified number of bytes from a specified device.
WRITE (\$09)	Writes a specified number of bytes from memory to a specified device.

The following sections describe each Smartport call, including the command number, the parameter list, and error codes. The calls are discussed in command-number order in this format:

Command name: The name used to identify the call.

Command number: A hexadecimal number that specifies which call is being made to the Smartport.

Parameter list: A list of required call parameters.

General description: What the call does and what you use it for.

Parameter descriptions: A description of each parameter and the data it refers to. When a parameter refers to a status or control code, the meaning of each code number is discussed.

Possible errors: A list of the error codes that can be returned by this call. A complete list of Smartport error codes is included at the end of this chapter.

STATUS

Command number

\$00

Parameter

\$03 (parameter count)

list

Unit number

Status list pointer (low byte, high byte)

Status code

The STATUS call returns status information about a specified device. The type of information returned is determined by the device and its status-code parameter. The status list pointer defines where the status information is returned to.

STATUS returns the number of bytes of status information that it generates in the X and Y registers, the low byte of this number in the X register, and the high byte in the Y register.

Parameter descriptions

Parameter

count

1-byte value

Three for this call.

Unit number

1-byte value

The Smartport assigns each device a unique number during initialization (on startup and cold reset). The numbers are in the range \$01-\$7E and are assigned according to the devices' positions in

the chain.

Important

You can get the status of the Smartport Itself if you use a unit number of \$00 and a status code of \$00 in a STATUS call (see the discussion beginning "Status code = \$00," below).

Status list pointer 2-byte value Points to the buffer to which the status is to be returned. The length required for the buffer varies depending on the status request being made. Status code 1-byte value Indicates what kind of status request is being made. Status codes are in the range \$00-\$FF, as follows: Code Status returned \$00 Return device status \$01 Return device control block (DCB) (not supported by UniDisk 3.5)

Status code = \$00 returns a device status consisting of four bytes. The first is the general status byte, with the following format:

Return UniDisk 3.5 status

Return newline status (character devices only) (not supported by UniDisk 3.5)

Return device information block (DIB)

\$02

\$03

\$05

Bit	Description
7	0 = character device, 1 = block device
6	1 = write allowed
5	1 = read allowed
4	1 = device on line or disk in drive
3	0 = format allowed
2	0 = medium write protected (block devices only)
1	1 = device currently interrupting
0	1 = device currently open (character devices only)

If the STATUS call is for a block device, the next three bytes (low byte first) are the size in 512-byte blocks. The maximum size is 16 million (\$FFFFFF) blocks (about 8 gigabytes). If the call is for a character device, these three bytes must be set to 0.

A STATUS call with status code = \$00 and unit number = \$00 returns the status of the Smartport itself. In this case, the status list consists of 8 bytes, as follows:

STAT_LIST	DFB DFB DFB DFB DFB DFB	Number_Devices Interrupt_Status	Devices hooked to PC Bit 6 clear = interrupt sent Reserved Reserved Reserved Reserved Reserved Reserved
	DFB		Reserved

The Number_Devices byte returns the total number of intelligent devices attached to the Smartport. The Interrupt_Status byte is a copy of the asynchronous communications interface adapter (ACIA) status register at the time of the interrupt, and is used to indicate that a device requires interrupt servicing. If the sixth bit of this byte equals 0, one or more devices in the Smartport bus daisy chain must be serviced; your interrupt handler must poll each device on the chain to determine which ones.

♦ About interrupts: Devices that require interrupt servicing must use the EXTINT line on the Apple IIc's external disk port connector to be supported by the Smartport.

For example, UniDisk 3.5 does not support this line, and so cannot generate interrupts to the Smartport. See the description of the CONTROL command for instructions on enabling Smartport interrupts. See Appendix E for more information about programming with interrupts.

Status code = \$01 returns the device control block (DCB). The DCB is used to control various operating characteristics of a device and is device dependent. Each device has a default DCB, which can be altered with a CONTROL call. The first byte (the count byte) gives the number of bytes in the control block (*not* including the count byte), so the length never exceeds 256 bytes (257 including the count byte). Note that UniDisk 3.5 has no DCB and returns an error (BadCtl \$21) in response to this call.

Status code = \$02 returns newline status. Newline status applies only to character devices. A status code = \$02 passed to a block device returns a BadCtl (\$21) error.

On newline read mode, see Chapter 4 in the *ProDOS* Technical Reference Manual. Status code = \$03 returns the device information block (DIB). The device's information block identifies the device, its type, and various other attributes. The returned status list has the following form:

STAT_LIST	DFB	Device_Statbyte1	Same as byte 1 in status code = 0
	DFB	Device_Size_Lo	Number of blocks (block device)
	DFB	Device_Size_Med	Number of blocks
	DFB	Device_Size_Hi	(middle byte) Number of blocks (high
			byte)
	DFB	ID_String_Length	Length in bytes (16 max.)
	ASC	<pre>'<device name="">'</device></pre>	7-bit ASCII, uppercase,
			padded with spaces, 8th
			bit always=0 (16 bytes)
	DFB	Device_Type_Code	
	DFB	Device_Subtype_Code	
	DW	Version	Device firmware version number

Status code = \$05 returns the UniDisk 3.5 status. This call allows a diagnostic program to get more detailed information about the cause of a read or write error, and to examine the contents of the 65C02's registers after a CONTROL call with control code = \$05. The returned status list has this form:

STAT_LIST	DFB	\$00	
	DFB	Error	Soft Error byte (see below)
	DFB	Retries	Number of retries (see below)
	DFB	\$00	
	DFB	A_Value	Acc value after a CONTROL EXECUTE
			call
	DFB	X_Value	X value after EXECUTE
	DFB	Y_Value	Y value after EXECUTE
	DFB	P_Value	Processor status value after EXECUTE

The Error byte returned by a STATUS call with status code = \$05 contains the following bits:

BIf	Description
7	0
6	0
5	1 = address field mark or checksum error
4	1 = data field checksum error
3	1 = data field bitslip mark mismatch
2	1 = seek error; unexpected track value found in address field
1	0
0	0

The Retries byte returned by a STATUS call with status code = \$05 specifies the number of address fields that had to be passed before the operation was completed. This information could be used, for example, to determine the number of passes necessary to read a data field correctly. If Retries is found to be greater than the number of sectors on the target track, then more than one pass was required.

The last four bytes of the status list are set only after a CONTROL call with control code = \$05, and are 0 after any other call (STATUS calls do not clear the status bytes).

Possible errors

The following errors can be returned by the STATUS call:

\$01	BadCmd	An unimplemented command was issued
	DauCinu	•
\$04	BadPCnt	Bad call parameter count
\$06	BusErr	Communications error
\$21	BadCtl	Invalid status code
\$30-\$3F		Device-specific errors

READ BLOCK

Command \$01 number \$03.6

Parameter \$03 (parameter count) \$03 (parameter count)

Unit number

Data buffer (low byte, high byte)

Block number (low byte, mid byte, high byte)

The READ BLOCK call reads one 512-byte block into memory from the block device specified by the unit-number parameter. The block of data is placed in a buffer starting at the address specified by the data-buffer parameter.

Parameter descriptions

Parameter count

1-byte value

Three for this call.

Unit number

1-byte value

The Smartport assigns each device a unique number during initialization (on startup and cold reset). The numbers are in the range \$01–\$7E and are assigned according to the devices' positions in the daisy chain. A unit number of \$00 in the STATUS call returns the number of devices connected to the Smartport.

Data buffer

2-byte value

Points to the buffer into which the data are read. The buffer must be 512 or more bytes in length.

Block number

3-byte value

The logical address of a block of data to be read. There is no general connection between block numbers and the layout of tracks and sectors on the disk. The translation from logical to physical blocks is performed by the device. (The most significant byte is 0 for all devices currently in use.)

Possible errors

The following errors can be returned by the READ BLOCK call:

\$01	BadCmd	An unimplemented command was issued
\$04	BadPCnt	Bad call parameter count
\$06	BusErr	Communications error
\$27	IOError	I/O error
\$28	NoDrive	No device connected
\$2D	BadBlock	Invalid block number
\$2F	OffLine	Device off-line or no disk in drive

WRITE BLOCK

Command

\$02

number

Parameter

\$03 (parameter count)

ist

Unit number

Data buffer (low byte, high byte)

Block number (low byte, mid byte, high byte)

The WRITE BLOCK call writes one 512-byte block from memory to the disk device specified by the unit-number parameter. The block in memory starts at the address specified by the data-buffer parameter.

Parameter descriptions

Parameter

count

1-byte value

Three for this call.

Unit number

1-byte value

The Smartport assigns each device a unique number during initialization (on startup and cold reset). The numbers are in the range \$01-\$7E and are assigned according to the devices' positions in the daisy chain. A unit number of \$00 in the STATUS call returns the number of devices connected to the Smartport.

Data buffer

2-byte value

Points to the buffer from which the data are to be

written.

Block number

3-byte value

The logical address of a block of data to be written. There is no general connection between block numbers and the layout of tracks and sectors on the disk. The translation from logical to physical blocks is performed by the device. (The most significant byte is 0 for all devices currently in use.)

Possible errors

The following errors can be returned by the WRITE BLOCK call:

\$01	BadCmd	An unimplemented command was issued
\$04	BadPCnt	Bad call parameter count
\$06	BusErr	Communications error
\$27	IOError	I/O error
\$28	NoDrive	No device connected
\$2B	NoWrite	Disk write protected
\$2D	BadBlock	Invalid block number
\$2F	OffLine	Device off-line or no disk in drive

FORMAT

Command

\$03

number

Parameter

\$01 (parameter count)

list

Unit number

The FORMAT call prepares all blocks on the recording medium of a block device for reading and writing. The formatting done by this call is specific to each device and is not linked to any operating system; for example, bitmaps and catalogs are not written by this call.

Parameter descriptions

Parameter

count

1-byte value

One for this call.

Unit number

1-byte value

The Smartport assigns each device a unique number during initialization (on startup and cold reset). The numbers are in the range \$01-\$7E and are assigned according to the devices' positions in the daisy chain. A unit number of \$00 in the STATUS call returns the number of devices

connected to the Smartport.

Possible errors

The following errors can be returned by the FORMAT call:

\$01	BadCmd	An unimplemented command was issued
\$04	BadPCnt	Bad call parameter count
\$06	BusErr	Communications error
\$27	IOError	I/O error
\$28	NoDrive	No device connected
\$2B	NoWrite	Disk write protected
\$2F	OffLine	Device off-line or no disk in drive

CONTROL

Command

\$04

number

Parameter

\$03 (parameter count)

list Unit number

Control list (low byte, high byte)

Control code

The CONTROL call sends control information to the device. The information can be of a general nature (such as resets or interrupts), or device-specific (such as Download to UniDisk 3.5 RAM).

Important

A CONTROL call to unit number \$00 sends control information to the Smartport itself. See the discussions of control code = \$00 and control code = \$01, below.

Parameter descriptions

Parameter

count

1-byte value

Three for this call.

Unit number

1-byte value

The Smartport assigns each device a unique number during initialization (on startup and cold reset). The numbers are in the range \$01-\$7E and are assigned according to the devices' positions in the daisy chain. A unit number of \$00 in the STATUS call returns the number of devices connected to the Smartport. Use a unit number of \$00 in the CONTROL call to send control information to the Smartport itself.

Control list

2-byte value

Points to the buffer containing the control information. The first two bytes (the count bytes, low byte first) of the control list specify the number of bytes in the list (*not* including the count bytes); the remainder of the list contains the control information passed to the device.

Important

Every CONTROL call must have a control list; If no control information is being passed, then the control list consists of the count bytes only:

CTRL LIST DW \$00

Control code 1-byte value

The number of the control request being made. Control codes are in the range \$00-\$FF. The following requests are not device specific:

Code	Control function
\$00	Reset the device
\$01	Set device control block (DCB)
\$02	Set newline status (character devices only)
\$03	Service device interrupt

Control requests to unit number \$00 are sent to the Smartport itself:

Code	Control function
\$00	Enable interrupts from Smartport
\$01	Disable interrupts from Smartport

Specific devices may respond to some or all of these additional control requests:

Code	Control function
\$04	Eject disk
\$05	Run a 65C02 subroutine
\$06	Set download address
\$07	Download to device RAM

Control code = \$00 performs a warm reset of the device and generally returns "housekeeping" values to some reset value. The control list for this call is device dependent.

The control list for this call for UniDisk 3.5 devices is

CTRL LIST DW \$00 No parameters are passed.

A CONTROL call with control code = \$00 and unit number = \$00 enables interrupts from the Smartport. This informs the firmware that external interrupts are possible, and directs it to call the user's interrupt handler if an interrupt occurs. It also turns on the ACIA for port 1.

When the user's interrupt handler identifies an external interrupt, you can determine if it came from the Smartport by making a STATUS call with unit number = \$00 and control code = \$00. See Appendix E for more information on handling interrupts.

Control code = \$01 alters the contents of the device control block (DCB). The DCB is used to set global aspects of a device's operating environment. Each device has a default setting for the DCB, set on initialization. Because the length of the DCB is device dependent, you should first read in the DCB with the STATUS call, then alter the bits of interest, and finally, use the same byte string as the control block for the CONTROL call. The first byte (the count byte) of the DCB gives the number of bytes in the control block (not including the count byte), so the length never exceeds 257 bytes, including the count byte.

Note that because UniDisk 3.5 has no DCB, a Set DCB CONTROL call to UniDisk 3.5 returns an error (BadCtl \$21).

A CONTROL call with control code = \$01 and unit number = \$00 disables interrupts from the Smartport. This call turns off the ACIA for port 1 and sets the least significant bit of the ACIA control register to 0.

Control code = \$02 sets a character device to newline enabled or newline disabled.

Control code = \$03 sends a device service interrupt. This code is to be used as needed for interrupt-driven devices.

Control code = \$04 ejects a disk. This code is to be used for devices that support an auto-eject feature. This code causes UniDisk 3.5 to auto-eject a disk. There are no parameters in the control list, and no errors are returned if the disk ejected correctly or there was no disk in the drive. Error code \$27 (IOError) is returned if the eject failed—that is, if a disk is still in the drive. The control list for UniDisk 3.5 is

CTRL_LIST DW

\$00

No parameters are passed.

Warning

Control codes \$05 and higher are reserved; use of some of these codes can cause your system to crash.

Possible errors

The following errors can be returned by the CONTROL call:

\$01	BadCmd	An unimplemented command was issued
\$04	BadPCnt	Bad call parameter count
\$06	BusErr	Communications error
\$21	BadCtl	Invalid control code
\$22	BadCtlParm	Invalid parameter list
\$30-\$3F		Device-specific errors

INIT

Command

\$05

number

Parameter

\$01 (parameter count)

list

\$00 (unit number)

The INIT call resets all intelligent devices attached to the Smartport. The Smartport goes through an initialization sequence, cold-resetting all devices and sending each its unit number. This call is made automatically on startup; an application should never have to make this call.

Parameter descriptions

Parameter

count

1-byte value One for this call.

Unit number

1-byte value The unit number used in this call is always \$00.

Possible errors

The following errors can be returned by the INIT call:

\$01	BadCmd	An unimplemented command was issued
\$04	BadPCnt	Bad call parameter count
\$06	BusErr	Communications error

\$06 BusErr Communications erro \$28 NoDrive No device connected

OPEN

Command \$06

number

Parameter \$01 (parameter count)

list Unit number

The OPEN call prepares a character device for reading or writing.

Note that since UniDisk 3.5 is a block device, it does not accept this call. An attempt to use an OPEN call with UniDisk 3.5 will result in an error (BadCmd \$01).

Parameter descriptions

Parameter

count 1-byte value

One for this call.

Unit number

1-byte value

The Smartport assigns each device a unique number during initialization (on startup and cold

reset). The numbers are in the range \$01-\$7E and are assigned according to the devices' positions in the daisy chain. A unit number of \$00 in the STATUS call returns the number of devices

connected to the Smartport.

Possible errors

The following errors can be returned by the OPEN call:

\$01	BadCmd	An unimplemented command was issued
\$04	BadPCnt	Bad call parameter count
\$06	BusErr	Communications error
\$28	NoDrive	No device connected
\$2F	OffLine	Device off-line or no disk in drive

CLOSE

Command

\$07

number

Parameter

\$01 (parameter count)

list

Unit number

The CLOSE call tells a character device that a sequence of reads or writes is over.

Note that since UniDisk 3.5 is a block device, it does not accept this call. An attempt to use a CLOSE call with UniDisk 3.5 will result in an error (BadCmd \$01).

Parameter descriptions

Parameter

count

1-byte value

One for this call.

Unit number

1-byte value

The Smartport assigns each device a unique number during initialization (on startup and cold reset). The numbers are in the range \$01–\$7E and are assigned according to the devices' positions in the daisy chain. A unit number of \$00 in the STATUS call returns the number of devices connected to the Smartport.

Possible errors

The following errors can be returned by the CLOSE call:

BadCmd	An unimplemented command was issued
BadPCnt	Bad call parameter count
BusErr	Communications error
NoDrive	No device connected
OffLine	Device off-line or no disk in drive
	BadPCnt BusErr NoDrive

READ

Command

\$08

number

Parameter

\$04 (parameter count)

list

Unit number

Buffer pointer (low byte, high byte)
Byte count (low byte, high byte)

Address pointer (low byte, mid byte, high byte)

The READ call reads into memory the number of bytes specified by the byte-count parameter. The bytes are placed in a buffer starting at the address specified by the buffer-pointer parameter.

Parameter descriptions

Parameter

count

1-byte value

Four for this call.

Unit number

1-byte value

The Smartport assigns each device a unique number during initialization (on startup and cold reset). The numbers are in the range \$01–\$7E and are assigned according to the devices' positions in the daisy chain. A unit number of \$00 in the

connected to the Smartport.

Buffer pointer

2-byte point

Points to the buffer into which the data is read. The buffer must be large enough to contain the number of bytes requested by the byte-count parameter.

STATUS call returns the number of devices

Byte count

2-byte value Specifies the number of bytes to be transferred.

Address pointer

3-byte value Specifies the address to start reading from. The

meaning of this parameter depends on the device

being read.

Possible errors

The following errors can be returned by the READ call:

\$01	BadCmd	An unimplemented command was issued
\$04	BadPCnt	Bad call parameter count
\$06	BusErr	Communications error
\$27	IOError	I/O error
\$28	NoDrive	No device connected
\$2D	BadBlock	Invalid block number
\$2F	OffLine	Device off-line or no disk in drive

WRITE

Command \$09

number

Parameter

\$04 (parameter count)-

list Unit number

Buffer pointer (low byte, high byte)
Byte count (low byte, high byte)

Address pointer (low byte, mid byte, high

byte)

The WRITE call writes from memory the number of bytes specified by the byte-count parameter to the specified unit. The bytes in memory start at the address indicated by the buffer-pointer parameter. The meaning of the address pointer depends on the type of device (see parameter descriptions).

Parameter descriptions

Parameter

count

Four for this call. 1-byte value

Unit number

1-byte value The Smartport assigns each device a unique

number during initialization (on startup and cold reset). The numbers are in the range \$01-\$7E and are assigned according to the devices' positions in the daisy chain. A unit number of \$00 in the STATUS call returns the number of devices connected to the Protocol Converter.

Buffer pointer

Points to the buffer from which the data is to be 2-byte value

written.

Byte count

Specifies the number of bytes to be transferred. 2-byte value

Address pointer

Specifies the address to start writing from. The 3-byte value

meaning of this parameter depends on

the device being written to.

Possible errors

The following errors can be returned by the WRITE call:

\$01	BadCmd	An unimplemented command was issued
\$04	BadPCnt	Bad call parameter count
\$06	BusErr	Communications error
\$27	IOError	I/O error
\$28	NoDrive	No device connected
\$2D	BadBlock	Invalid block number
\$2F	OffLine	Device off-line or no disk in drive

An example: issuing a Smartport call

Here is an example of a program that issues a STATUS call to the Smartport to obtain information about a device.

The code for the Smartport in the version of the Apple IIc that supports UniDisk 3.5 always begins at address \$C500; however, to ensure compatibility with the Apple IIe, your programs should always do a search for the Smartport, as in this example.

```
0000:
                     1 *
0000:
                     2 *
0000:
                     3 *
0000:
                     4 *
                          This example shows how to find
0000:
                     5 *
                          and use a PC interface. A search
0000:
                     6 *
                          is made for a PC, and when one is
                     7 *
                          found, a vector is set up which
0000:
0000:
                          points to the PC entry. Then a
0000:
                     9 *
                          Device Information Block STATUS call
0000:
                    10 *
                          is made, and if successful, the name
0000:
                    11 *
                          string embedded in the DIB is output
0000:
                    12 *
                          to the screen. Only the first device
0000:
                    13 *
                          in the chain is accessed.
0000:
                    14 *
0000:
                    15 *
0000:
                    16
                                  MSB
                                        ON
0000:
                    17 *
0000:
                    18 *
0000:
            0006
                    19 ZPTempL
                                        $0006
                                  equ
                                                  ;Temporary zero
0000:
                    20 *
                                                    page storage
0000:
            0007
                    21 ZPTempH
                                  equ
                                        $0007
0000:
                    22 *
                                        $FDED
0000:
            FDED
                    23 COut
                                  equ
                                                  ;Console output
0000:
            FD8E
                    24 CROut
                                  equ
                                        $FD8E
                                                  ;Carriage return
0000:
                    25 *
0000:
            0000
                    26 StatusCmd equ
0000:
                    27 *
0000:
                    28 *
0300:
                    29
            0300
                                  org
                                        $300
0300:
0300:
                    31 * Find a Smartport in one of the
0300:
                    32 *
                          slots.
0300:
                    33 *
0300:20 43 03
                    34
                                  jsr
                                        FindPC
0303:B0 1C 0321
                    35
                                  bcs
                                        Error
0305:
                    36 *
0305:
                    37 * Now make the DIB call to the first quy
0305:
                    38 *
```

```
0305:20 67 03
                   39
                                jsr Dispatch
0308:00
                   40
                                dfb
                                      StatusCmd
0309:6A 03
                                dw
                                       DParms
                   41
030B:B0 14
             0321 42
                                bcs
                                      Error
                   43 ≖
030D:
030D:
                   44 * Got the DIB; now print the name string
                   45 *
030D:
030D:A2 00
                   46
                                ldx
                                       #0
            030F
                   47 morechars equ
030F:
030F:BD 74 03
                   48
                                lda
                                       DIBName, x
0312:09 80
                   49
                                ora
                                       #$80
                                              ;COut wants high
                                                  Bit set
0314
                   50 *
0314:
                   51 * 0314:20 ED FD
                                             52
                                                         jsr COut
0317:E8
                   53
                                inx
0318:EC 73 03
                   54
                                срх
                                       DIBNameLen
                                      morechars
031B:90 F2 030F 55
                                blt
031D:
                   56 *
031D:20 8E FD
                   57
                                jsr
                                       CROut
                                                ;Finish it off
0320:
                   58 *
                                                  with a return
0320:
                   59 *
0320:60
                   60
                                rts
0321:
                   61 *
0321:
                   62 *
0321:
            0321
                   63 Error
                                equ
0321:
                   64 *
0321:
                   65 * There's either no PC around, or there
0321:
                   66 * was no Unit #1... give message
0321:
                   67 *
0321:A2 00
                   68
                                ldx
                                       #0
0323:
           0323
                   69 errl
                                equ
0323:BD 2F 03
                   70
                                lda
                                      Message, x
0326:F0 06 032E
                   71
                                beq
                                      errout
0328:20 ED FD
                   72
                                jsr
                                      COut
032B:E8
                   73
                                inx
032C:D0 F5 0323
                  74
                                bne
                                     err1
                   75 *
032E:
032E:
            032E
                   76 errout
                                equ
032E:60
                   77
                                rts
032F:
                   78 *
032F:CE CF A0 D0
                                     'NO PC OR NO DEVICE'
                   79 Message
                                asc
0341:8D 00
                   80
                                dfb
                                       $8D,0
0343:
                   81 *
                   82 *
0343:
0343:
            0343
                   83 FindPC
                                equ
0343:
                   84 *
0343:
                   85 * Search slot 7 to slot 1 looking for
0343:
                   86 *
                         signature bytes
0343:
                   87 *
0343:A2 07
                   88
                                ldx #7
                                                ;Do for seven
0345:
                   89 *
                                                  slots
```

```
0345:A9 C7
                     90
                                   lda
                                         #$C7
0347:85 07
                     91
                                   sta
                                         ZPTempH
0349:A9 00
                     92
                                   lda
                                         #$00
034B:85 06
                     93
                                   sta
                                         ZPTempL
034D:
                     94 *
034D:
             034D
                     95 newslot
                                   equ
                                         #7
034D:A0 07
                     96
                                   ldy
034F:
                     97 *
034F:
                     98 again
             034F
                                   equ
034F:B1 06
                     99
                                   lda
                                          (ZPTempL), y
0351:D9 70 03
                   100
                                         sigtab, y
                                                       ;One of four
                                   cmp
0354:
                   101 *
                                                     byte signature
0354:F0 07
              035D 102
                                                       ;Found one
                                   beq
                                         maybe
                   103 *
0356:
                                                     signature byte
0356:C6 07
                   104
                                   dec
                                         ZPTempH
0358:CA
                   105
                                   dex
0359:D0 F2
              034D 106
                                   bne
                                         newslot
035B:
                   107 *
035B:
                   108 * If we get here, it's because we couldn't
035B:
                   109 * find a Smartport.
035B:
                   110 * Exit with the carry set.
035B:
                   111 *
035B:38
                   112
                                   sec
035C:60
                   113
                                   rts
035D:
                   114 *
035D:
                   115 * If we get here, it means that one or
035D:
                   116 * more of the signature bytes
035D:
                   117 * for this card are what we're looking
035D:
                   118 *
                           for. Decrement the byte
035D:
                   119 * counter and branch back to verify any
035D:
                   120 *
                           remaining bytes.
035D:
                   121 *
035D:
             035D
                   122 maybe
                                   equ
035D:88
                   123
                                  dey
035E:88
                   124
                                                       ;If N=1 then
                                   dey
035F:
                   125 *
                                                all sig bytes okay
035F:10 EE
              034F 126
                                  bpl
                                         again
0361:
                   127 *
0361:
                   128 * Found a Smartport interface.
0361:
                         Set up the call address.
                   130 * We already have the high byte ($CN);
0361:
0361:
                   131 * we just need the low byte.
0361:
                   132 *
0361:
             0361
                   133 foundPC
                                   equ
0361:A9 FF
                   134
                                         #$FF
                                   lda
0363:85 06
                   135
                                   sta
                                         ZPTempL
0365:A0 00
                   136
                                   ldy
                                         #0
                                                        :For
0367:
                   137 *
                                                     indirect load
0367:B1 06
                   138
                                  lda
                                         (ZPTempL), y
                                                        ;Get the
0369:
                   139 *
                                                          byte
```

```
0369:
                  140 *
0369:
                  141 * Now the Acc has the low order ProDOS
0369:
                  142 * entry point. The PC entry is
                   143 * three locations past this...
0369:
0369:
                  144 *
0369:18
                  145
                                 clc
                                 adc
036A:69 03
                   146
                                       #3
036C:85 06
                  147
                                 sta
                                       ZPTempL
                   148 *
036E:
036E:
                   149 * Now ZPTempL has the PC entry point.
036E:
                   150 * Return with carry clear.
036E:
                   151 *
036E:18
                   152
                                 clc
036F:60
                  153
                                 rts
0370:
                   154 *
0370:
                  155 *
                  156 * These are the PC signature bytes in
0370:
0370:
                  157 * their relative order.
0370:
                   158 * The $FF bytes are filler bytes and
                   159 * are not compared.
0370:
0370:
                   160 *
                  161 sigtab
                                 dfb
                                       $FF, $20, $FF, $00
0370:FF 20 FF 00
0374:FF 03 FF 00
                                 dfb
                                       $FF,$03,$FF,$00
                  162
0378:
                   163 *
0378:
                   164 *
0378:
            0378 165 Dispatch
                                 equ
0378:6C 06 00
                  166
                                 qmt
                                        (ZPTempL)
                                                     :Simulate
037B:
                   167 *
                                            an indirect JSR to PC
037B:
                  168 *
037B:
                  169 *
037B:
            037B 170 DParms
                                 equ
037B:03
                  171 DPParmCt
                                 dfb
                                       3
                                                      ;Status
                  172 *
037C:
                                     calls have three parameters
                  173 DPUnit
037C:01
                                 dfb
                                       1
037D:80 03
                  174 DPBuffer dw
                                       DIB
037F:03
                  175 DPStatCode dfb 3
0380:
                  176 *
0380:
                  177 *
0380:
            0380 178 DIB
                                 equ
0380:00
                  179 DIBStatByte1 dfb 0
0381:00 00 00
                  180 DIBDevSize dfb
                                       0,0,0
0384:00
                  181 DIBNameLen dfb
0385:
            0010 182 DIBName
                                 ds
                                       16.0
0395:00
                  183 DIBType
                                 dfb
0396:00
                  184 DIBSubType dfb
0397:00 00
                  185 DIBVersion dw
0399:
                  186 *
0399:
                  187 *
```

Summary of commands and parameters

The following is a summary of Smartport calls. In each case, byte 0 of the command parameter list (CmdLst) specifies the number of parameters in the command list (not including byte 0). Parameters that require more than one byte (the status list pointer, for example) are entered low byte first. The meaning of the address-pointer parameter is device specific. See the sections on the individual calls in this chapter for a discussion of each parameter.

Command	STATUS	READBLOCK	WRITEBLOCK	FORMAT	CONTROL
CmdNum	\$00	\$01	\$02	\$03	\$04
CmdList Byte	\$03	\$03	\$03	\$01	\$03
1 2 3	Unit Num Stat List Ptr	Unit Num Buffer Ptr	Unit Num Buffer Ptr	Unit Num	Unit Num Ctl List Ptr
5 6	Stat Code	Block Num	Block Num		Ctl Code

Command	INIT	OPEN	CLOSE	READ	WRITE
CmdNum	\$05	\$06	\$07	\$08	\$09
CmdList Byte	\$01	\$01	\$01	\$04	\$04
1	\$00	Unit Num	Unit Num	Unit Num	Unit Num
3				Buffer Ptr	Buffer Ptr
4 5				Byte Count	Byte Count
6 7 8				Address Ptr	Address Ptr

Unused	bytes	

Figure 6-1 Summary of Smartport calls

Summary of error codes

The following is a summary of Smartport call error codes, including a brief description of the possible causes for each. If there is no error, the C flag (in the processor status register of the 65C02 microprocessor) is cleared (0) and the accumulator (the A register) contains 0s. If the call was unsuccessful, the C flag is set (1) and the A register contains the error code.

\$00		No error.
\$01	BadCmd	A nonexistent command was issued. Check the command number in the Smartport call.
\$04	BadPCnt	Bad call parameter count. The call parameter list was not properly constructed. Make sure the parameter list has the correct number of parameters.
\$06	BusErr	A communications error between the device controller and the host. Make sure that RAM is both read-enabled and write-enabled. Check the hardware (cables and connectors) between the device and the host. Check for noise sources. Make sure the cable is properly shielded.
\$11	BadUnit	Unit number \$00 was used in a call other than STATUS, CONTROL, or INIT.
\$21	BadCtl	The control or status code is not supported by the device.
\$22	BadCtlParm	The control parameter list contains invalid information. Make sure each value is within the range allowed for that parameter.

\$27	IOError	The device encountered an I/O error when trying to read or write to the recording medium. Make sure that the medium in the device is formatted and not defective and that the device is operating correctly.
\$28	NoDrive .	The device is not connected. This can occur if the device is not connected but its controller is, or if there is no device with the unit number specified.
\$2B	NoWrite	The medium in the device is write protected.
\$2D	BadBlock	The block number is outside the range allowed for the medium in the device. Note that this range depends on the type of device and the type of medium in the device (single-sided versus double-sided disk, for example).
\$2F	OffLine	Device off-line or no disk in drive. Check the cables and connections. Make sure that the medium is present in the drive and that the drive is functioning correctly.
\$30-\$3F	DevSpec	Errors that differ from device to device. See the technical manual for the device in question for details. \$40-\$4F. Reserved for future expansion.
\$50 – \$7F	NonFatal	A device-specific soft error. The operation completed successfully, but some exception condition was detected. See the technical manual for the device in question for details.

Serial I/O Port 1 Serial port 1 is one of two serial I/O ports available on the Apple IIc. It is intended primarily as an output port for RS-232 devices, such as printers and plotters. It can be changed to a serial communication port (like port 2) by using the *System Utilities* disk or from a program.

Warning

Although the Apple IIc serial ports are similar to the Apple IIe Super Serial Card, there are important differences. Refer to Appendix F for a summary of these differences.

Table 7-1 summarizes the characteristics of this port if used as a printer/plotter port, and is a guide to the other information in this chapter. If you change port 1 to a communication port, refer to the descriptions in Chapter 8, and use 1 instead of 2 for the port number when required.

The serial port back panel connectors are described in Chapter 11.

Table 7-1 Serial port 1 characteristics

Port number	Serial port 1.
Commands	Keyboard command: PR#1. BASIC command: PR#1. Monitor command: 1 Control-P (does not work if there is an operating system in RAM). All other commands: See Table 7-2.
Initial characteristics	See "Characteristics of Port 1 at Startup."
Hardware page locations	See Table 7-3.
Monitor firmware routines	None.
I/O firmware entry points	See Table 7-4.
Use of screen holes	See Table 7-5.
Use of other pages	None.

Using serial port 1

You can access the firmware from BASIC in the usual way—that is, by issuing Control-D (if DOS or ProDOS is in RAM) and PR#1. Subsequent output is directed to the printer (or other device) connected to serial port 1.

To direct Pascal output to the printer, you can use either #6: or PRINTER:.

Your programs can also access the port by changing the value of CSW (see Chapter 3).

Table 7-2 lists the commands you can use with serial port 1, either from a program or from the keyboard, after you issue PR#1.

UniDisk 3.5

Refer to Table 7-4 for the

standard firmware entry points that Pascal 1.1 and 1.2 use.

Commands followed by an asterisk in Table 7-2 (with the exception of L) are available only on the version of the Apple IIc that supports UniDisk 3.5. These commands can be toggled by following them directly with E (enable) or D (disable).

Each command must be preceded by Control-I (the command character). As soon as you issue the command character, the serial port firmware displays a flashing question mark cursor to indicate it is awaiting a command. You do not have to press Return after commands that you have entered from the keyboard, or send the return character from your program if it is sending commands to the port. You can type more than one command on a line, but each must be preceded by the command character.

Table 7-2Printer port commands

Command	Desci	ription				
nnn	comr	new line width of a mand must be follo age return.			•	
nnB	Sets	baud rate to value	corres	ponding	to nn:	
	nn	Rate	nn	Rate	nn	Rate
	1	50	6	300	11	3600
	2 .	75	7	600	12	4800
	3	110 (109.92)	8	1200	13	7200
	4	135 (134.58)	9	1800	14	9600
	5	150	10	2400	15	1920

Table 7-2 (continued) Printer port commands

Command	Desc	cription					
C*	retu the	When enabled, this command causes a carriage return character to be sent automatically whenever the column count exceeds the printer line width. The command is normally enabled.					
nD	Sets	data for	mat to va	alues	correspo	nding to n	
	n	Data bits	Stop bits	n	Data bits	Stop bits	
F*	acce seri befe key you tran	epts data al port. Y ore receiv strokes fr ir progran	from the ou can uring or second disrumental or reenable omplete.	keybo se this ending pting les the This o	oard as we see to disable data to the data for keyboar command	2 2 2 2 2 2 2 2 2 2 2 2 2 bit Apple II ell as from le the keyl prevent ac low. Be su d when the l is availab ed.	the coard cidental re that e data
I	Ech	oes print	er outpu	t on t	he screen	1.	
K	Dis	ables aut	omatic li	ne fee	ed after c	arriage ret	urn.
L*	this	Generates line feed after carriage return. Normally, this command is enabled. Disabling it has the same effect as the K command.					
M*	fee	d characte	ers are m	asked	l (remove	incoming d from the enabled.	

Table 7-2 (continued) Printer port commands

Command	Description		
nnnN	Changes line width to nnn (from 1 through 255; nnn is optional); does not echo printer output on the screen. <i>Note:</i> 0N does not disable automatic generation of carriage return; to do so, use Z command, put 0 directly in location \$0579, or use the <i>System Utilities</i> disk.		
nP	Sets parity corresponding to n:		
	n Parity n Parity		
	 None 4 None Odd 5 MARK (1) None 6 None Even 7 SPACE (0) 		
R	Resets port 1 and exits from serial port 1 firmware.		
S	Sends a 233-millisecond BREAK character (used with some printers to synchronize with serial ports).		
X*	When enabled, this command turns on the XON/XOFF protocol: the Apple IIc looks for the XOFF (\$13) character and responds by halting transmission until an XON (\$11) is received. Normally this command is disabled.		
Z	Zaps (ignores) further command characters until Control-Reset or PR#1. Does not format output or insert carriage returns into output stream.		

Note: The commands themselves are letter commands, not control characters.

* Command (with the exception of L) is available only on the version of the Apple IIc that supports UniDisk 3.5. Command can be toggled: If you follow the command with E (with no intervening space), the command is enabled. If you follow the command with D (with no intervening space), command is disabled. The L command is available on the earlier Apple IIc, but cannot be toggled there. The serial port 1 command character is set as Control-I when the Apple IIc is turned on. You can change it to a different control character by sending the current control character followed immediately by the new control character you want. This is useful if you want to be able to send Control-I to the printer without firmware intervention. For example, to change the command character from Control-I to Control-V, send Control-I Control-V either from the keyboard or from a program. (Control-V and Control-W are the recommended substitute control characters.) To change the command character back again, send Control-V Control-I. Don't slip any spaces between the control characters that you send.

Warnina

Do not use Control-A, -B, -C, -H, -J, -L, -M, or -Y: Apple lic firmware may intercept these control characters, causing unpredictable results.

The following are examples of valid commands and command sequences. These examples all show commands being entered from the keyboard, but your programs can send the characters just as well. Remember to issue a PR#1 before starting to send commands to serial port 1.

To echo output to the display screen:

Control-I I

To set line width 72, disable line feed, and echo:

Control-I K Control-I 7 2 N

To change control character to Control-V:

Control-I Control-V Return

To set up the serial port to allow sending Control-I as part of a character stream:

Control-V (command) Return

Characteristics of port 1 at startup

After power-up, the printer firmware sets the following configuration:

- □ 9600 baud
- □ eight data bits, no parity bits, two stop bits
- □ 80-column line width; no echo to display screen
- ☐ firmware supplies line feed after carriage return
- ☐ command character is set to Control-I (see below)

These values are stored in the auxiliary memory screen holes (Table 7-5). You can change some of these settings from the keyboard by typing PR#1, the command character, and one of the commands listed in Table 7-2. How port characteristics change as a result of various activities is described under "Changing Port 1 Characteristics" later in this chapter.

ACIA stands for asynchronous communication interface adapter, a serial I/O chip. Note in Chapter 11 that some of the bit assignments for this port differ from those for port 2.

Hardware page locations for port 1

Table 7-3 lists for serial port 1 the addresses and bit assignments of its hardware registers on page \$C0. The registers are internal to a 6551 ACIA; their bit assignments are described in Chapter 11.

Warning

This table is for your information only. To avoid having problems with the system, you should **never** try to directly access the hardware. Instead, use the Apple IIc's built-in firmware in your programs.

Table 7-3Port 1 hardware page locations

Location	Description
\$C090-\$C097	Reserved
\$C098	ACIA transmit/receive data register
\$C099	ACIA status register
\$C09A	ACIA command register
\$C09B	ACIA control register
\$C09C-\$C09F	Reserved

I/O firmware support for port 1

Table 7-4 lists the locations and values of the I/O firmware protocol table. This standardized protocol is available for use by any application program. Chapter 3 describes how to use this protocol.

Table 7-4Port 1 I/O firmware protocol

Address	Value	Description
\$C105	\$38	Pascal ID byte.
\$C107	\$18	Pascal ID byte.
\$C10B	\$01	Generic signature byte of firmware cards.
\$C10C	\$31	Same ID as for Super Serial Card.
\$C10D	\$ii	\$C1ii is entry point of initialization routine (PInit)
\$C10E	\$rr	\$C1rr is entry point of read routine (PRead).
\$C10F	\$ww	\$C1ww is entry point of write routine (PWrite).
\$C110	\$ss	\$C1ss is entry point of the status routine (PStatus).
\$C111	non-	No optional routines.

The ACIA register bits are defined in Chapter 11.

Screen hole locations for port 1

Table 7-5 lists the screen hole locations that serial port 1 uses. Note that the auxiliary memory locations are reserved for startup value settings, which are listed and interpreted in the table.

Table 7-5
Port 1 screen hole locations

Auxiliary m	Auxiliary memory screen holes (firmware loads values at power-up)		
Location	Desci	ription	
\$0478		(ACIA control reg: eight data + two stop bits, baud)	
\$0479	\$0B	(ACIA command reg: no parity)	
\$047A	\$40 ((flags: no echo, auto LF after CR, serial port)	
	Bit	Interpretation	
	7	Echo output on display (0 = no echo)	
	6	Generate LF after CR (0 = no LF)	
	5–1	Always = 0 (reserved)	

1 = communication port; 0 = serial printer port

Auxiliary memory screen holes (firmware loads values at power-up)

Location	Descri	ption	
\$047B	\$50 (printer width: 80 columns)	
	Bit	Interpretation	Ž
	7–0	Printer width (0 = do not insert CR)	

Main memory screen holes

Location	Description
\$0479	Reserved
\$04F9	Reserved
\$0579	Printer width (1-255; 0 = disable formatting)
\$05F9	Temporary storage location
\$0679	Bit 7 = 1 while the firmware is parsing a command string
\$06F9	Current command character (initially Control-I)
\$0779	Bit $7 = 1$ if echo to display is on; bit $6 = 1$ if firmware is to generate a line feed after carriage return
\$07F9	Current printer column

Changing port 1 characteristics

Figure 7-1 is a diagram of where the port characteristics are stored and moved under different circumstances. You can see the following from the figure:

- ☐ When the power is first turned on, the Monitor reset firmware moves the predefined set of port characteristics listed earlier in this chapter from ROM into the auxiliary memory screen holes listed in Table 7-5.
- ☐ If you specify new characteristics using the *System Utilities* disk, the SUD software changes the values in the auxiliary memory screen holes. Your programs can do the same thing.

- ☐ The values stored in the auxiliary memory screen holes are affected by power-on reset, but not by either Open Apple-Control-Reset or a simple Control-Reset. This feature is provided so that a port that has been reconfigured will remain that way while some other program (such as an application program) is started up. (See Figure 7-1.)
- □ PR#1 causes the firmware to move the characteristics stored in the auxiliary memory screen holes into the main memory screen holes.
- ☐ A program can change values in the main memory screen holes directly. However, the only value guaranteed to be in the same place for the entire Apple II series is the line length in main memory location \$0579.
- ☐ The firmware uses the port as it is defined in the main memory screen holes at any given time. You should use the commands listed in Table 7-2 to change them.

Figure 7-1
Diagram of port 1 characteristics storage

Data format and baud rate

Serial data transfer consists of a string of 1's and 0's sent down a wire at a prearranged rate of transmission, called the baud rate.

Before transfer begins, both sender and receiver look for a continuous value of 1: this is called the carrier (Figure 7-2). When the value goes to 0, the receiver presumes it is a start bit—that is, the bit that designates the beginning of a character of data. If it lasts longer than a bit could possibly last, it is considered a BREAK signal, which some printers use for synchronization.

If the first 0 proves to be a bit, it is interpreted as the start bit. Next come the seven or eight data bits (six is seldom used with computers), low-order bit first. If parity is on, it comes next in the message. Finally, one or two stop bits appear. The stop bits have a value of 1, like the carrier. The next start bit begins transfer of the next character of data.

The parity bit provides a simple check of data validity. Odd parity means the sender counts the number of 1's among the data bits, and sends the appropriate parity bit to make the total number of 1's odd. With even parity, the sender adds the appropriate parity bit to make the total number of 1 bits even. MARK parity is always a 1 bit; SPACE parity is always a 0. The receiver can then check that the parity bit is correct.

If the baud rate is 300 and the data format is one start bit plus seven data bits plus one parity bit plus one stop bit (totaling ten bits transmitted for each byte of data sent), then the actual transfer rate is about 30 characters per second.

ASCII letter M = \$4D; sent as 8 data, odd parity, 1 stop bit

Figure 7-2
Data format

Bit

Parity Bit

Start Bit

Carriage return and line feed

If you are using a typewriter and you push the carriage all the way to the right (in other words, position the printing mechanism at the left margin), you have performed a carriage return. On the other hand, turning the platen so the paper moves to the next line (or using the index key on an electric typewriter) is called a **line feed**. Most typewriters perform a line feed automatically after a carriage return, and so the two seem to be one—but they are not.

Carriage return and line feed are separate ASCII codes. Carriage return is sometimes denoted *CR*; it is ASCII code 13 (\$0D). Line feed, sometimes denoted *LF*, is ASCII code 10 (\$0A). Down Arrow on the Apple IIc keyboard generates a LF.

Some printers can supply a line feed automatically after detecting a carriage return; others cannot. If the printer does not supply a line feed after a carriage return and it is not supplied in the data stream, the printer keeps printing over and over on the same line. On the other hand, if both the printer and the Apple IIc firmware supply LF after CR, double line-spacing results.

If the print head keeps moving too far to the right across the page and then prints many characters on top of one another on the right, then the firmware should be instructed to furnish CR after a certain line width has been reached. If the printer prints too short a line before moving to the next line, then probably the firmware is using too small a line width.

If the printer misses characters at the beginning of each line but otherwise prints correctly, there is probably not enough time for the print mechanism to return to the left margin in response to CR. You must use a lower baud rate with such a printer.

Sending special characters

If you want to send special characters (control characters) to the printer without having them intercepted and executed by the Apple IIc firmware, use the Z command (see Table 7-2). If the only special character that causes a problem is the command character (normally Control-I for port 1), you can change just the command character instead of using the zap (Z) command. If you use the zap command, the firmware does no formatting; that is, it does not check line width or insert carriage returns or line feeds. This may be necessary to send graphics to a printer or plotter.

Displaying output on the screen

You can display printer output on the screen, but if the printer line width exceeds the 40 or 80 columns you have selected for display, you should turn off video display.

Serial I/O Port 2 Serial port 2 is one of two serial I/O ports available on the Apple IIc. It is intended primarily as a communication port for modems. You can change it to a serial printer port (like port 1) using the *System Utilities* disk or from a program.

Warning

Although the Apple IIc serial ports are similar to the Apple IIe Super Serial Card, there are important differences. Refer to Appendix F for a summary of these differences.

Table 8-1 summarizes the characteristics of this port and is a guide to the other information in this chapter. If you change port 2 to a serial printer port, refer to the descriptions in Chapter 7 and use 2 instead of 1 for the port number when required.

The serial port connectors are described in Chapter 11.

Table 8-1 Serial port 2 characteristics

Port number	Serial port 2.
Commands	Keyboard commands: IN#2 before Table 8-2 commands, IN#2 to accept port 2 input, PR#1 to echo input to printer, PR#2 to echo input back to port 2. BASIC commands: same. Monitor command: 2 Control-P (does not work if there is an operating system in RAM). All other commands: see Table 8-2.
Initial characteristics	See "Characteristics of Port 2 at Startup."
Hardware page locations	See Table 8-3.
Monitor firmware routines	None.
I/O firmware entry points	See Table 8-4.

Table 8-1 (continued) Serial port 2 characteristics

Use of screen holes

See Table 8-5.

Use of other pages

In terminal mode, firmware uses auxiliary memory locations \$0800-\$087F to store keyboard input, and \$0880-\$08FF as a serial input buffer.

Using serial port 2

You can access the firmware from BASIC in the usual way—that is, by issuing Control-D (if DOS or ProDOS is in RAM) followed by IN#2 or PR#2. Subsequent input and output are routed through the modem (or other device) connected to serial port 2.

Important

In terminal mode, the modern port commands listed in Table 8-2 must follow Control-D and IN#2 (not PR#2) and the command character (which is usually Control-A).

To transfer files to the modem under Pascal, specify REMOUT: or #8:. To transfer files from the modem under Pascal, specify REMIN: or #7:.

Table 8-2 lists the commands you can use with serial port 2, either

from a program or from the keyboard, after you issue IN#2.

standard firmware entry points that Pascal 1.1 and 1.2 use.

Refer to Table 8-4 for the

UniDisk 3.5 Commands followed by an asterisk in Table 8-2 (with the exception of L) are available only on the version of the Apple IIc that supports UniDisk 3.5. These commands can be toggled by following them directly with E (enable) or D (disable).

> Each command must be preceded by Control-A (the command character). As soon as you issue the command character, the serial port firmware displays a flashing question mark cursor to indicate it is awaiting a command. If you press Return, you get the current video cursor again. You do not have to press Return (or send a return character) after commands. You can type more than one command on a line, but each must be preceded by the command character.

Table 8-2Modem port commands

Command	Desc	cription					
nnn	mus	Sets new line width of nnn (from 1 through 255); this must be followed immediately by N (see below) or by carriage return.					
nnB	Sets	baud rat	te to valu	e con	respondii	ng to ni	n:
	nn	Rate		nn	Rate	nn	Rate
	.1 2 3 4 5	-	(109.92) (134.58)	6 7 8 9 10	300 600 1200 1800 2400	11 12 13 14 15	3600 4800 7200 9600 19200
C*	retu: colu	When enabled, this command causes a carriage return character to be sent automatically whenever the column count exceeds the printer line width. The command is normally enabled.			nenever the		
nD	Sets	data for	mat to va	lues o	correspor	nding to) n:
	n	Data bits	Stop bits	n	Dafa bits	Stop bits	
	0	8	1	4	8	2	
	1	7	1	5	7	2	
	2	6	1	6	6	2	
	3	5	1	7	5	2	
F*	seria befo keys your trans	epts data : al port. You pre receive strokes fro r program sfer is co	om disrup n reenable	keybo se this ending pting t es the This c	oard as we to disab data to the data f keyboar command	ell as frolle the kaprevent prevent low. Be d when I is avai	om the
I	Eche	oes outp	ut on the	scree	n.		
K		_	omatic lin			arriage :	return.
L*	Gen this	erates lir comman	ne feed a nd is enab K comma	fter ca oled. I	arriage re	eturn. N	ormally,

Table 8-2 (continued) Modem port commands

Command	Description		
M *	When this command in enabled, all incoming line feed characters are masked (removed from the data stream). Normally this command is enabled.		
nnnN	Sets line width to nnn (from 1 through 255); does not echo output on the screen. <i>Note:</i> 0N does not disable automatic generation of carriage return; to do so, use the Z command, put 0 directly in location \$057A, or use the <i>System Utilities</i> disk.		
nP	Sets parity corresponding to n:		
	n Parity n Parity		
	0 none 4 none 1 odd 5 MARK (1) 2 none 6 none 3 even 7 SPACE (0)		
Q	Quits terminal mode.		
R	Resets port 2 and exits from serial port 2 firmware.		
S	Sends a 233-millisecond BREAK character.		
Т	Enters terminal mode. Use this command after IN#2 only. Also, if you follow this command by PR#2, the Apple IIc echoes input to output. (If the other device does so too, the first character loops endlessly, locking up the system. Use Control-Reset to get out.)		
X*	When enabled, this command turns on the XON/XOFF protocol: the Apple IIc looks for the XOFF (\$13) character and responds by halting transmission until an XON (\$11) is received. Normally this command is disabled.		
Z	Zaps (ignores) further command characters until Control-Reset. Does not format output or insert carriage returns into output stream.		
Control-T	This command from a remote device puts the Apple IIc in terminal mode if IN#2 is already in effect. It is the same as Control-A T typed locally.		

Table 8-2 (continued)
Modem port commands

Command Description Control-R This command from a remote device undoes the terminal mode command. If IN#2 and PR#2 are in effect, the remote keyboard and display become the input and output devices of the local Apple IIc. It is the same as Control-A Q typed locally.

Note: The commands themselves are letter commands, not control characters.

• Command (with the exception of L) available only on the version of the Apple IIc that supports UniDisk 3.5. Command can be toggled: If you follow the command with E (with no intervening space) the command is enabled. If you follow the command with D (with no intervening space) the command is disabled. The L command is available on the earlier Apple IIc, but it cannot be toggled there.

When the Apple IIc is turned on, the serial port 2 command character is defined as a Control-A. You can change it to a different control character by typing the current control character followed immediately by the new control character you want. This is useful if you want to be able to send Control-A to the output device without firmware intervention.

For example, to change the command character from Control-A to Control-V, send Control-A Control-V either from the keyboard or from a program. (Control-V and Control-W are the recommended substitute control characters.) To change the command character back again, send Control-V Control-A.

Warning

Do not use Control-B, -C, -H, -I, -J, -L, -M, or -Y: Apple IIc firmware may intercept these control characters, causing unpredictable results.

The following are examples of valid commands and command sequences. These examples show commands being entered from the keyboard, but your programs can send the characters just as well.

To enable echo to the screen:

Control-A I

To send a break character to a remote device:

Control-A B

To change the control character to Control-V (for example, so you can send Control-A as part of a character stream):

Control-A Control-V Control-V(command)

Characteristics of port 2 at startup

Characteristics of point at startap
After power-up, the firmware sets the following configuration:
□ 300 baud
eight data bits, no parity bits, one stop bit
firmware does not supply line feed after carriage return
firmware does not insert carriage returns into output stream
firmware does not echo output to the display screen
command character is set to Control-A

These values are stored in the auxiliary memory screen holes (Table 8-5). You can change some of these settings from the keyboard using the command character followed by one of the commands listed in Table 8-2. How port characteristics change as a result of various activities is described later in this chapter.

If you change any of these values using keyboard commands or commands from a program, subsequent accesses to the port firmware (even by another program) use the new settings instead of the power-up values. This allows you to change the settings once at system startup and get the desired configuration for subsequent uses.

Hardware page locations for port 2

Table 8-3 lists for serial port 2 the addresses of its hardware registers on page \$C0. The registers are internal to a 6551 ACIA; their bit assignments are described in Chapter 11.

Warning

This table is for your information only. To avoid having problems with your system, you should **never** try to directly access the hardware. Instead, use the Apple IIc's built-in firmware in your programs.

Table 8-3Port 2 hardware page locations

Location	Description	
\$C0A0-\$C0A7	Reserved	
\$C0A8	ACIA transmit/receive data register	
\$C0A9	ACIA status register	
\$COAA	ACIA command register	
\$C0AB	ACIA control register	
\$COAC-\$COAF	Reserved	

Note in Chapter 11 that some of the bit assignments for this port differ from those for port 1.

I/O firmware support for port 2

Table 8-4 lists the values in the I/O firmware protocol table for serial port 2. This standardized protocol is available for use by any application program. Chapter 3 describes how to use this protocol.

Table 8-4Port 2 I/O firmware protocol

Address	Value	Description
\$C205	\$38	Pascal ID byte.
\$C207	\$18	Pascal ID byte.
\$C20B	\$01	Generic signature byte of firmware cards.
\$C20C	\$31	Same ID as for Super Serial Card.
\$C20D	\$ii	\$C2ii is entry point of initialization routine (PInit).
\$C20E	\$rr	\$C2rr is entry point of read routine (PRead).
\$C20F	\$ww	\$C2ww is entry point of write routine (PWrite).
\$C210	\$ss	\$C2ss is entry point of the status routine (PStatus).
\$C211	non-	No optional routines.
•	zero	•

Screen hole locations for port 2

The ACIA register bits are defined in Chapter 11.

Table 8-5 lists the screen hole locations that serial port 2 uses. Note that the auxiliary memory locations are reserved for startup value settings, which are listed and interpreted in the table.

Table 8-5
Port 2 screen hole locations

Auxiliary memory screen holes (firmware loads values at power-up)		
Location	Description	
\$047C	\$16 (ACIA control reg. eight data + one stop bit, 300 baud)	
\$047D	\$0B (ACIA command reg: no parity)	
\$047E	\$01 (flags: no echo, no auto LF after CR, communication port)	
	Bit	Interpretation
	7 6 5–1 0	Echo output on display (0 = no echo) Generate LF after CR (0 = no LF) Always = 0 (reserved) 1 = communication port; 0 = serial printer port
\$047F	\$00 (1	ine length: do not add any CR to output stream)
	Bit	Interpretation
	7–0	Line length (0 = do not insert CR)

Main memory screen holes

Location	Description
\$047A	Reserved
\$04FA	Reserved
\$057A	Line length (1–255; 0 = disable formatting)
\$05FA	Temporary storage location
\$067A	Bit 7 = 1 if and only if the firmware is currently parsing a command string
\$06FA	Current command character (initially Control-I)
\$077A	Bit $7 = 1$ if echo to display is on; bit $6 = 1$ if firmware is to generate a line feed after carriage return
\$07FA	Current column

Changing port 2 characteristics

Figure 8-1 is a diagram of where the port characteristics are stored and moved under different circumstances. You can see the following from the figure:

- □ When the power is first turned on, the Monitor reset firmware moves the predefined set of port characteristics listed in Table 8-2 from ROM into the auxiliary memory screen holes listed in Table 8-5.
- ☐ If you specify new characteristics using the *System Utilities* disk, the utility software changes the values in the auxiliary memory screen holes.
- ☐ The values stored in the auxiliary memory screen holes are affected by power-on reset, but not by either Open Apple-Control-Reset or a simple Control-Reset. This feature is provided so that a port that has been reconfigured will remain that way while some other program (such as an application program) is started up.
- □ IN#2 causes the firmware to move the characteristics stored in the auxiliary memory screen holes into the main memory screen holes.
- □ A program can change values in the main memory screen holes directly. However, the only value guaranteed to be in the same place for the entire Apple II series is the line length in main memory location \$057A.
- ☐ The firmware uses the port as it is defined in the main memory screen holes at any given time. You should use the commands listed in Table 8-2 to change these characteristics.

Figure 8-1
Diagram of port 2 characteristics storage

Data format and baud rate

Chapter 7 describes data format and baud rate, and explains how they apply to printers. Refer to that chapter for definitions of terms.

A noteworthy characteristic of data communication is its strangeness: sometimes the oddest changes make a given communication arrangement work or not work. You must keep this notion firmly in mind when working with serial port 2.

For example, modem communication involves quite a few elements (Figure 8-2):

- ☐ the Apple IIc and its firmware, with the baud rate, data format, and other characteristics you have selected
- $\ \square$ the cable from the Apple IIc to the modem
- □ the modem
- □ possibly an acoustic coupler for a telephone handset

- □ the telephone lines, with their switching equipment, boosters, and noise
- some combination of modem, cable, and remote computer or terminal

As you can imagine, some method is required for successful data transmission. If you have problems, change only one variable at a time and then cycle through the other variables one at a time. Take nothing for granted. The data format advertised for an information service, for example, may be different from the one you end up using with the Apple IIc.

Figure 8-2
Devices in a typical communication setup

Carriage return and line feed

If you are communicating with a computer or terminal, carriage return and line feed may or may not be involved. Start off without generating them, and turn on automatic generation only as needed. They are described as used with printers in Chapter 7.

Routing input and output

This section discusses the possible ways that serial port 2 can route information. Sometimes the cause of communication problems is that information is not going where you think it is, or it is and you cannot see evidence of the fact. Figures 8-3 through 8-6 show some of the patterns of information flow you can select.

It is best to read all this material as a unit; questions that arise while you read one description may be answered elsewhere.

The simplest serial port 2 command is IN#2 (Figure 8-3). Port 2 becomes the input device. Data coming into the port gets passed to the input buffer (page \$02 of main memory). Applesoft firmware and system software can see the data and carry out commands in the normal way.

Of course, you can also use just the PR#2 command—for example, if you want to send a listing to the modem.

To use port 2 for data communication, you ordinarily put it into terminal mode. Following IN#2, pressing Control-A gets the attention of the port 2 firmware, which displays a blinking question mark (?) as a prompt. Now type T to put the computer in terminal mode. In this mode, the firmware displays a blinking underscore character (_) as a prompt.

In the discussion that follows, *local* refers to your Apple IIc. *Remote* refers to some other device, usually in a distant location and at the other end of a communication link. The remote device can be any ASCII-generating unit: a terminal or a computer.

If a remote computer is another Apple IIc or an Apple II series machine with a Super Serial Card in it, then *most* of the commands described here apply to it as well.

For a further description of what rerminal mode does and how to get into and out of it, refer to the last section of this chapter.

Figure 8-3 Effect of IN#2

Half-duplex operation

In half-duplex operation, information can flow from A to B or from B to A, but in only one direction at a time. In a half-duplex setup, the host does not echo back to the terminal what the terminal sends it. For half-duplex operation, use IN#2 and Control-A T (Figure 8-4) whether the Apple IIc is the host or the terminal.

IN#2 plus Control-A T is the best way to set up the computer for auto-answer operation. The T command allows port 2 firmware to exchange information with the local modern without interference from the local firmware or system software. (The remote device can always cancel the T command with Control-R if necessary, and restore terminal mode with Control-T.) Avoiding PR#2 at this point means that the Apple IIc can operate as a half-duplex terminal, half-duplex host, or full-duplex terminal. (The remote device can also issue Control-A PR#2 if PR#2 is required at the local computer.)

Figure 8-4
Effect of IN#2 and T command, half duplex

In half-duplex operation, the output hook is available for other uses. For example, you can issue PR#1 to print incoming messages from port 2. Use the Control-A I command to display information on the screen.

Full-duplex operation

In full-duplex operation, information can flow from A to B and from B to A simultaneously. Typically, one of the computers (the host computer) echoes its input to output, so the other computer (the terminal) can easily verify that the communication is taking place.

Figure 8-5 shows the flow of information when the Apple IIc is a full-duplex terminal. (The setup commands, IN#2 and Control-A T, are the same as for half duplex.)

Figure 8-5
Effect of IN#2 and T command, full-duplex terminal

If your Apple IIc is the terminal in full-duplex operation, use the N command to turn off echoing input to the screen. If the Apple IIc does echo input to the screen in this setup, everything you type will appear twice: once from the Apple IIc and once from the host computer.

In this mode of operation, if you echo input to the printer you can get a printed record of both sides of the communication session: the input from the host, and the Apple IIc output as echoed by the host.

, Figure 8-6 shows the flow of information when the Apple IIc is a full-duplex host. In this case, the local Apple IIc must echo input to output for the remote device. The setup commands include PR#2 in this case.

Figure 8-6
Effect of IN#2, PR#2, and T command, full-duplex host

Warning

If the Apple IIc echoes input to output and the other computer does too, then the first subsequent keypress will echo back and forth endlessly and lock up the Apple IIc. This will require a Control-Reset to get out.

If you echo input to output when using an information service, the host will end up seeing the echo of what it sent you as though you had typed it.

In this arrangement, the local output hook is not available for using the printer or other device. To display keyboard and port 2 input on the screen, issue Control-A I.

Terminal mode

Terminal mode makes the Apple IIc act like a dumb terminal—one that just sends and receives information, but does not process it. Input and output flow through special serial I/O buffers on page \$08 of auxiliary memory. Applesoft firmware and system software cannot see or interpret the data: only the serial port 2 firmware deals with it.

In most terminal mode setups, the firmware will not display port 2 input unless you use the Control-A I command.

Warning

When using terminal mode, \$0800-\$08FF of auxiliary RAM is used for buffering. Any data stored there will be overwritten when terminal mode is enabled.

Control-A T turns on terminal mode, and Control-A Q turns it off.

The remote device can go into terminal mode, and then turn off the local Apple IIc's terminal mode with the Control-R command. If it then issues Control-A PR#2, local output will go to the remote device. The remote keyboard and display then become the input and output devices of the local Apple IIc processor. This is remote mode.

In remote mode, the local Apple IIc does not use the serial I/O buffers (as it does in terminal mode); therefore, local firmware and system software detect and interpret all input and output data. So, for example, if you type CATALOG at the remote device keyboard, the local Apple IIc will execute the command and list the disk catalog on the remote device's display. (In terminal mode, the local computer would simply display the word CATALOG on its screen.)

The remote device can turn the local Apple IIc's terminal mode back on with Control-T. Control-A T issued at the remote device only turns on the remote device's terminal mode, unless the command character there has already been changed to something else.

Mouse and Game Input

This chapter describes the Apple IIc's mouse port and hand controller (game) input capabilities. The mouse and hand controllers use the same 9-pin connector on the back panel; the firmware uses the port as directed by keyboard or program commands.

Mouse input

Table 9-1 summarizes the mouse port's characteristics and guides you to other information in this part of the chapter.

Warning

If you want your programs that use the mouse on the Apple IIe and other Apple II series computers to work with the Apple IIc, always use the I/O firmware entry points listed in Tables 9-4 and 9-5, rather than dealing directly with the mouse hardware and RAM locations.

The mouse back panel connector is described in Chapter 11.

Table 9-1
Mouse input port characteristics

Port number	Mouse input port 4.
BASIC commands	Turn on mouse: PRINT CHR\$(4)"PR#4":PRINT CHR\$(1)
	Turn off mouse interrupts: PRINT CHR\$(0)
	Turn on graphics character set: See "MouseText" in Chapter 5.
Initial characteristics	After a reset, all mouse interrupts are off and the rising edge of X0 and Y0 are selected for interrupts.
Hardware page locations	See Table 9-2.
Monitor firmware routines	None.
I/O firmware entry points	See Tables 9-3 and 9-4.
Use of screen holes	See Table 9-5.

Memory expansion

The memory expansion version of the Apple IIc places the mouse at input port 7 and the memory expansion card at port 4. Thus, all "PR4" entries become "PR7" entries.

Mouse connector signals

The mouse uses the same DB-9 connector as the hand controllers. However, the interpretation of the signals arriving on the pins differs depending on the commands and signals received. Figure 11-37 shows the names of the pin assignments when a mouse is connected.

Mouse operating modes

This section tells what the mouse operating modes are for. Later sections of this chapter describe how to set the various mouse operating modes.

Your program should call the ServeMouse routine to determine the source of an interrupt as soon as it receives one, in all the interrupt modes except transparent mode.

Transparent mode

In transparent mode, your program must read screen holes to check for mouse movement. An interrupt routine in the Apple IIc firmware updates mouse position counters each time the mouse is moved, then returns control to the main program task. The findings of the interrupt routine are placed in the screen holes for your program to find. Table 9-5 lists the screen holes with the information that your program should look for.

This is the only mouse mode available to BASIC programs.

Movement interrupt mode

On the Apple IIc, a signal called *VBlInt* can interrupt the processor whenever a video vertical blanking signal occurs. This can make it easier for your programs to smoothly move the mouse cursor in response to mouse movements.

In movement interrupt mode, the mouse firmware arms VBIInt whenever the mouse is moved at least one count in any direction. When VBIInt occurs, program control passes to the vector address contained at locations \$03FE and \$03FF; the interrupt handler in your program can then update the cursor smoothly to its next screen position.

Your program's interrupt handler must first call ServeMouse (Table 9-3) to see if the mouse caused the interrupt. It should then call ReadMouse to get mouse status and its current X-Y position. The routine can also change the mouse mode and position if desired.

The maximum amount of mouse movement that can occur between successive VBIInt interrupts is limited to the distance someone can move a mouse in one-sixtieth of a second.

"MouseText" In Chapter 5 contains recommendations for using MouseText characters with a mouse.

Button interrupt mode

The Apple IIc mouse-button hardware location does not generate interrupts. However, a program can simulate mouse-button interrupts by polling the button whenever VBIInt occurs, and acting on the interrupt whenever the button state has changed. This lets your program provide fast response to the mouse movement without too much program overhead.

Movement/button interrupt mode

The movement/button interrupt mode is a combination of the two modes just described. It provides the best response possible without constant polling of the mouse position and button. Your program can effectively process a main task concurrently with cursor and menu updating, as well as menu-selected command processing.

Vertical blanking active modes

The vertical blanking active modes are the same as the four just described except that they allow VBL interrupts to be sent to the user.

Mouse soft switches

The soft switches assigned to the mouse interface are shown in Table 9-2. On power-up or reset, the hardware selects the rising edge of X0 and Y0 (mouse movement signals) and masks out all mouse interrupts.

Appendix E explains how the firmware handles interrupts.

Warning

Table 9-2 is included here for your information only. You should use the built-in firmware to access the mouse; doing so is much easier than writing your own mouse interrupt handler and guarantees compatibility with all other Apple II-series computers.

Table 9-2Mouse soft switches

Name	Action	Hex	Function
IOUDis	W	\$C07E	On: Disable IOU access for addresses \$C058 to \$C05F; enable access to DHiRes switch*
IOUDis	W	\$C07F	Off: Enable IOU access for addresses \$C058 to \$C05F; disable access to DHiRes switch*
RdIOUDis	R7	\$C07E	Read IOUDis switch (1 = off)†
DisXY	R/W	\$C058	Disable (mask) X0 and Y0 movement interrupts‡
EnbXY	R/W	\$C059	Enable (allow) X0 and Y0 movement interrupts‡
RdXYMsk	R7	\$C040	Read status of X0/Y0 interrupt mask (1 = mask on)
RstXY	R	\$C048	Reset X0/Y0 interrupt flags
X0Edge	R/W	\$C05	Select rising edge of X0 for interrupt‡
X0Edge	R/W	\$C05D	Select falling edge of X0 for interrupt‡
RdX0Edge	R7	\$C042	Read status of X0 edge selector (1 = falling)
RstXInt	R	\$C015	Reset mouse X0 interrupt flag

Table 9-2 (continued)
Mouse soft switches

Name	Action	Hex	Function
Y0Edge	R/W	\$C05E	Select rising edge of Y0 for interrupt‡
Y0Edge	R/W	\$C05F	Select falling edge of Y0 for interrupt‡
RdY0Edge	R7	\$C043	Read status of Y0 edge selector (1 = falling)
RstYInt	R	\$C017	Reset mouse Y0 interrupt flag
DisVBl	R/W	\$C05A	Disable (mask) VBL interrupts‡
EnVB1	R/W	\$C05B	Enable (allow) VBL interrupts‡
RdVBlMsk	R7	\$C041	Read status of VBL interrupt mask (1 = mask on)
RstVB1	R	\$C019	Read and then reset VBlInt flag
PTrig	R/W	\$C070	Reset VBlInt flag; trigger paddle timer
RdBtn0	R7	\$C061	Read first mouse button status
Rd63		R7	(1 = pressed)§ \$C063 Read second mouse button status (0 = pressed)¶
MouX1	R7	\$C066	Read status of X1 (mouse X direction) (1 = high)
MouY1	R7	\$C067	Read status of Y1 (mouse Y direction) (1 = high)

[•] When IOUDis is on, \$C058-\$C05F do not affect mouse, and \$C05E and \$C05F become DHiRes (Table 5-8).

Mouse firmware sets interrupts in response to mode settings under program control. The vertical blanking interrupt (VBlInt) is armed if the mouse button is pushed or moves at least a count of 1 in the X0 or Y0 coordinates. Read \$C070 to reset the VBL interrupt. Because a VBL occurs every sixtieth of a second, that is the maximum time that can elapse before the resulting interrupt can be acknowledged and acted upon.

Software can also select which edge of X0 and Y0 information will cause the XInt or YInt.

[†] Read or write to \$C07x also resets VBIInt and triggers paddle timers.

[‡] These work only if IOUDis is off.

[§] This location is also the Open Apple key (Table 4-1).

[¶] This is also the location of the Shift-key mod (Appendix F).

When an interrupt has occurred, you can read the direction of the mouse's X1 movement by reading address \$C066 bit 7, and Y1 movement by reading address \$C067 bit 7.

A program can read the status of the soft switches by reading one of the locations \$C040-\$C043 and then testing data bit 7. The soft switches are described in Table 9-2.

The section on mouse input in Chapter 11 explains what X0, Y0, X1, Y1 are and what they mean with respect to mouse movement.

If you write your own mouse interrupt handler, it should enable the main bank-switched memory, set up its own IRQ vectors at addresses \$FFFE and \$FFFF, keep track of video modes and the alternate stack, and check for the interrupt source in the same manner as the mouse firmware listed in Appendix I, beginning at address \$C400.

Important

The listing in Appendix I provides source code only for the memory expansion version of the Apple IIc. Mouse code starts at \$C700 in the new ROM. There are instructions for obtaining listings for the original and UniDisk 3.5 versions in Appendix I.

UniDisk 3.5

The 32K ROM includes a new feature for programs that need to use mouse interrupts for their own purposes. If your program sets bit 7 of the mouse port mode byte at \$07FC (\$C7FF in the memory expansion IIc) to 1, mouse movement interrupts will be passed to the interrupt handler of your program. VBL interrupts will still be handled by the Apple IIc's firmware. You should use this feature only if the mouse firmware can't keep up with your needs.

I/O firmware support for mouse input

Memory expansion

The memory expansion version of the Apple IIc places the mouse at \$C700 and the memory expansion card at \$C400. This means that the mouse is supported on page \$C7 in the new Apple IIc, so change all \$C4 and \$40 addresses to \$C7 and \$70.

The Apple IIc supports the mouse with firmware starting at address \$C400. This firmware is necessary because the mouse requires fast, transparent interrupt processing to work effectively.

In assembly language you can use direct firmware support for sophisticated mouse applications. To enable the mouse, first load a mode byte into the accumulator (and \$C4 in X, \$40 in Y) and then do a JSR to the firmware routine called *SetMouse* (Table 9-3). Valid mode bytes are the following:

\$00	Turns mouse off
\$01	Sets transparent mode
\$03	Sets movement interrupt mod
\$05	Sets button interrupt mode
\$07	Sets movement or button interrupt mode
\$08	Turns mouse off, VBlInt active
\$09	Sets transparent mode, VBIInt active
\$0B	Sets movement interrupt mode, VBlInt active
\$0D	Sets button interrupt mode, VBIInt active
\$0F	Sets movement or button interrupt mode, VBIInt active

The firmware then initializes the mouse. To read the current position and status of the mouse, first load \$C4 into the X register, load \$40 into the Y register, save processor status, disable interrupts, and then JSR to the firmware routine called *ReadMouse* (Table 9-3), which stores the information in the port 4 screen holes (Table 9-5).

Table 9-3 lists the mouse port firmware routine offsets. Each address contains the low byte of the entry point of the routine described. The calling setup for all routines (except ServeMouse) is the same: the X register must contain \$C4, and the Y register must contain \$40. When the routine has finished, the A, X, and Y register contents are undefined.

Memory expansion

The memory expansion version of the Apple IIc places the mouse at \$C700 and the memory expansion card at \$C400. Thus, all mouse firmware routines start at a \$C7XX address, instead of \$C4XX.

Table 9-3 Mouse firmware routines

Location	Offset for	Description
\$C412	SetMouse	Sets the mouse mode to the value in the accumulator. Input: A register contains mode (see \$07FC, Table 9-5) (\$07FF in new Apple IIc). Output: Carry bit = 0 means mode was legal; carry bit = 1 means mode was not legal.
\$C413	ServeMouse	Services mouse interrupt if needed. Input: X, Y, A registers—doesn't matter. Output: Carry bit = 0 means mouse caused the interrupt; carry bit = 1 means something else caused it. This routine updates \$077C (\$077F in new Apple IIc) to show which event caused the interrupt (values in Table 9-5).
\$C414	ReadMouse	Updates screen holes to show current mouse X-Y position and button status; clears VBIInt, button and movement interrupt bits in the status byte. Doesn't reenable interrupts until after retrieving position values. Output: Carry bit = 0.
\$C415	ClearMouse	Sets the mouse position to 0, though not necessarily within clamping boundaries; leaves button and interrupt bits in status byte unchanged. Output: Carry bit = 0.
\$C416	PosMouse	Sets the mouse coordinates to new values. Input: X and Y screen holes contain new X and Y positions. Output: Carry bit = 0.

Table 9-3 (continued)

Mouse firmware routines

Location	Offset for	Description
\$C417	ClampMouse	Sets new clamping boundaries (see Table 9-5). Does not affect mouse position or update mouse position screen holes; use ReadMouse to do that. Input: A register = 0 means set new X boundaries; A register = 1 means set new Y boundaries. Output: Carry bit = 0.
\$C418	HomeMouse	Sets the internal mouse position to the upper-left corner of the clamping window. Does not update mouse position screen holes; use ReadMouse to do that.
\$C419	InitMouse	Sets startup internal values; does not update mouse-position screen holes. Output: Carry bit = 0.

Here is a sample sequence of events and calls:

- 1. Four screen holes contain the mouse's X and Y coordinates, and one contains the status of the last mouse movement (Table 9-5).
- 2. Call InitMouse.
- 3. Inhibit interrupts, set up the boundaries you want, then call ClampMouse.
- 4. Use PosMouse, HomeMouse, or ClearMouse to position the mouse where you want it.
- 5. Put the mouse mode (see address \$07FC in Table 9-5) that you want to use in the accumulator, then call SetMouse (use address \$07FF for the new Apple IIc).
- 6. If you have set one of the interrupt modes, then when an interrupt arrives, call ServeMouse to determine the source of the interrupt.
- 7. Disable interrupts and call ReadMouse. Retrieve the position values, then reenable interrupts.

Pascal support

Table 9-4 lists the locations and values of the I/O firmware protocol that Pascal 1.1 and later versions use. However, Pascal must use a special attach driver to support the mouse.

Memory expansion

The memory expansion version of the Apple IIc places the mouse at \$C700 and the memory expansion card at \$C400. Thus, all mouse firmware routines start at a \$C7XX address, instead of \$C4XX.

Table 9-4Mouse port I/O firmware protocol

Address	Value	Description
\$C405	\$38	Pascal ID byte
\$C407	\$18	Pascal ID byte
\$C40B	\$01	Generic signature byte of firmware cards
\$C40C	\$20	2 = X-Y pointing device; 0 = identification code
\$C40D		Initialization routine (not implemented; returns error code)
\$C40E		Standard read routine (not implemented; returns error code)
\$C40F		Standard write routine (not implemented; returns error code)
\$C410		Standard status routine (not implemented; returns error code)
\$C411	\$00	Optional routines follow
\$C4FB	\$D6	A mouse identification byte

BASIC and assembly-language support

Memory expansion

The memory expansion version of the Apple IIc places the mouse at \$C700 and the memory expansion card at \$C400. This means that all "PR4" or "IN4" calls change to "PR7" or "IN7" calls.

In BASIC you must turn the mouse on by printing PR#4 and then CHR\$(1) before you can get input from the mouse. This sets transparent mode. After that, reenable video output with PR#3 and take subsequent input from the mouse by issuing IN#4. The first input statement after that (INPUT X,Y,S) initializes and enables the mouse and returns a three-element string

```
+xxxx,+yyyy,+st
```

representing the x-coordinate, y-coordinate, and status digits.

The coordinates will be integers between 0 and +1023. These are called the clamping boundaries of the mouse.

The sign preceding the status digits is normally positive; it becomes negative when you press a key on the keyboard.

The first digit, s, of the status is 0. The second digit, t, of the status is 1 if the mouse button is still pressed, 2 if it was just pressed, 3 if it was just released, and 4 if it is still released.

To disable the mouse, use these statements:

```
PRINT CHR$(4) "PR#4"
PRINT CHR$(0)
PRINT CHR(4) "PR#3"
```

Important

Change all 4's to 7's for the memory expansion version.

Screen holes

Table 9-5 lists the screen holes that the mouse firmware uses. Note that the mouse firmware reserves port 5 screen holes for its own use. Also, the auxiliary page counterparts of the port 4 addresses are reserved for startup values.

Important

Some screen holes are different for the Apple IIe mouse. Refer to Appendix F.

Table 9-5 Mouse port screen hole locations

Location	Description		
\$0478	Low byte of clamping minimum		
\$04F8	Low	byte of clamping maximum	
\$0578	High	byte of clamping mimimum	
\$05F8	High	byte of clamping maximum	
Port 4 scre	en holes		
Location	Descr	iption	
\$047C	Low	byte of X coordinate	
\$04FC		byte of Y coordinate	
\$057C	High	byte of X coordinate	
\$05FC	_	byte of Y coordinate	
\$067C	Reserved		
\$06FC	Reserved		
\$077C	Status bŷte		
	Bit	1 Equals	
	7	Button down	
	6	Button was down on last read and still down	
	5	Movement since last read	
	4	Reserved	
	3	Interrupt from VBlInt	
	2	Interrupt from button	
	1	Interrupt from movement	
	0	Reserved	
\$07FC	Mode testin	byte (current mode; mask out bits 4–7 when g)	
	Bit	1 Equals	
	7-4	Reserved	
	3	VBlInt active	
	2	VBL interrupt on button	
	1	VBL interrupt on movement	
	0	Mouse active	

Reserved

Memory expansion

The screen hole addresses for the mouse in the Apple IIc that supports the memory expansion card all end with F, instead of C; this is because the mouse has moved to slot 7 from slot 4. For example, the low byte of the X coordinate is stored at \$047C in the original and UniDisk 3.5 IIc's, while it is stored at \$047F in the memory expansion IIc.

Using the mouse as a hand controller

You can use the mouse as if it were a set of hand controllers or an X-Y pointing device in port 4. If you turn the mouse on, the Monitor hand controller (game paddle) routines take input from the mouse. This is possible because the mouse and the hand controllers all use the same back panel connector.

You can run a BASIC program that uses the Pdl function to read from the mouse by doing the following, either from the keyboard or from a program:

- 1. Start up the system with the BASIC program that uses paddles.
- 2. Type PR#4 and press Return to turn on the mouse.
- 3. Press Control-A Return to initialize the mouse.
- 4. Type PR#0 and press Return to restore output to the screen.
- 5. Run the program.

Play the game using the mouse instead of the paddles.

Important

Many copy-protected games do not work with a mouse. In addition, many games don't use built-in firmware for the paddles.

Game input

The Apple IIc supports game paddles, joysticks, and other hand controllers connected to the DB-9 connector on its back panel. Table 9-6 is a summary of game input characteristics.

Table 9-6
Game Input characteristics

Port number	None.
Commands	None.
Initial characteristics	Game inputs cannot be disabled.

Hardware page locations

\$C061	Switch input 0 and Open Apple.
\$C062	Switch input 1 and Solid Apple.
\$C063	Mouse button (sense is opposite that of \$C061 to
	distinguish it from paddle button).
\$C064	Analog input (paddle) 0.
\$C065	Analog input (paddle) 1.
\$C070	Trigger paddle timer.

Monitor firmware routines

Location	Name	Description
\$FB1E	PRead	Reads a paddle position.

I/O firmware entry points

None.

Use of screen holes

None.

The hand controller connector signals

Several inputs are available to programs or devices from the 9-pin D-type miniature connector on the back of the Apple IIc: two 1-bit inputs, or *switches*, and two analog inputs.

When you connect a pair of hand controllers to the 9-pin connector, the rotary controllers use two analog inputs, and the pushbuttons use two 1-bit inputs. However, you can also use these inputs for many other jobs. For example, two analog inputs can be used with a two-axis joystick.

Complete electrical specifications of these inputs are given in Chapter 11; Table 11-22 shows the connector pin numbers.

Switch inputs (Sw0 and Sw1)

The two 1-bit inputs can be connected to the output of another electronic device that meets the electrical requirements described in Chapter 11, or to a pushbutton. When you read a byte from one of these locations, only the high-order bit—bit 7—is valid information; the rest of the byte is undefined. From machine language, you can do a Branch Plus or Branch Minus on the state of bit 7. From BASIC, you can read the switch with a PEEK and compare the value with 128. If the value is 128 or greater, the switch is on.

The memory locations for these switches are \$C061, \$C062, and \$C063 (decimal locations 49249 through 49251), as shown in Table 9-6. Switch 0 and switch 1 are permanently connected to Open Apple and Solid Apple on the keyboard; these are the ones connected to the buttons on the hand controllers. Location \$C063 is a second address for the mouse button, so that a program can distinguish it from an Open Apple keypress. When the mouse button is pressed, \$C063 (bit 7) goes from 1 to 0, and \$C061 (bit 7) goes from 0 to 1.

Analog inputs (PdIO and PdI1)

The two analog inputs are designed for use with 150-K Ω variable resistors or potentiometers. The variable resistance is connected between the +5V supply and each input, so that it makes up part of a timing circuit. The circuit changes state when its time constant has elapsed, and the time constant varies as the resistance varies. Your program can measure this time by counting in a loop until the circuit changes state, or times out.

A program must first reset the timing circuits before it can read the analog inputs. Accessing memory location \$C070 does this. As soon as you reset the timing circuits, the high bits of the bytes at locations \$C064 through \$C067 are set to 1. If you PEEK at them from BASIC (locations 49252 through 49255), the values will be 128 or greater. Within about three milliseconds, these bits will change back to 0—byte values less than 128—and remain there until you reset the timing circuits again. The exact amount of time each of the bits remains high is directly proportional to the resistance connected to the corresponding input. If these inputs are open—no resistances are connected—the corresponding bits may remain high indefinitely.

Monitor support for game input

To read the analog inputs from machine language, you can use a program loop that resets the timers and then increments a counter until the bit at the appropriate memory location changes to 0, or you can use the built-in routine PRead. BASIC and other high-level languages also include convenient means of reading the analog inputs—refer to your language manuals. You can read and reread the same paddle at arbitrarily short intervals. However, you must wait at least three milliseconds between reading one paddle and reading a different paddle.

The Monitor routine PRead (at address \$FB1E) places in the Y register a number between \$00 and \$FF that represents the position of a hand controller. You pass the number of the hand controller in the X register.

Warning

If the hand controller number you furnish in the X register does not equal 0 or 1, strange things may happen.

The paddle and vertical blanking both use \$C070. Disable interrupts before calling PRead if you are reading the paddles and using VBL interrupts.

Chapter 10

Using the Monitor

The System Monitor is a set of subroutines in the Apple IIc firmware that provides a standard interface to the built-in I/O devices described in Chapter 1. Many of the I/O subroutines described in Chapters 3 through 9 are part of the System Monitor.

DOS (but not ProDOS) and the BASIC interpreters (Appendix E) use these subroutines by direct calls to their starting locations. You can call the standard subroutines from your programs in the same fashion. The starting addresses for all of the standard subroutines are listed in Appendix C.

You can perform most of the Monitor functions directly from the keyboard. This chapter tells you how to use the Monitor

- □ to look at one or more memory locations
- □ to change the contents of any location
- ☐ to write small programs in machine language to be executed directly by the Apple IIc
- □ to move and compare blocks of memory
- □ to invoke other programs from the Monitor

Invoking the Monitor

The System Monitor starts at memory location \$FF69 (-151). To invoke the Monitor, you make a CALL -151 statement to this location from the keyboard or from a BASIC program. When the Monitor is running, its prompting character, an asterisk (*), appears on the left side of the display screen, followed by a cursor.

To use the Monitor, you type commands at the keyboard. When you have finished using the Monitor, you return to the BASIC language you were previously using by pressing Control-Reset, by pressing Control-C and then Return, or by typing 3D0G, which executes the resident program—usually Applesoft—whose address is stored in a jump instruction at location \$03D0.

Important

if ProDOS (or DOS) is connected via the standard I/O links (Chapter 3), then you can issue commands to it from the Monitor. Under this arrangement, errors will return control to BASIC rather than to the Monitor.

If you want to have Control-Reset return you to the Monitor, load the values \$69, \$FF, and \$5A (decimal 105, 255, and 90) into the three locations starting at address \$03F2 (decimal 1010, the resetvector address and the power-up byte).

The positive and negative decimal equivalents of Monitor locations are listed in Appendix C. in addition, Appendix H contains conversion tables from one numbering system to another. Appendix E gives further details on how to use Apple IIc firmware from BASIC programs.

Syntax of Monitor commands

To give a command to the Monitor, you type a line on the keyboard, then press Return. The Monitor accepts the line using the standard I/O subroutine GetLn described in Chapter 3. A Monitor command can be up to 255 characters in length, ending with a carriage return. It can include three kinds of information: addresses, data values, and command characters. You type addresses and data values in hexadecimal notation.

When the command you type calls for an address, the Monitor accepts any group of hexadecimal digits. If there are fewer than four digits in the group, it adds leading 0's; if there are more than four hexadecimal digits, the Monitor uses only the last four digits. It follows a similar procedure when the command syntax calls for two-digit data values.

Each command you type consists of one command character, usually the first letter of the command name. The Monitor recognizes 22 different command characters. Some of them are punctuation marks, some are letters (uppercase or lowercase), and some are control characters.

Note: Although the Monitor recognizes and interprets them, control characters typed on an input line do not appear on the screen.

This chapter contains examples of Monitor command use. Some of the data values displayed by your Apple IIc may differ from the values printed in these examples, because they are variables stored in RAM.

Monitor memory commands

When you use the Monitor to examine and change the contents of memory, it keeps track of the address of the last location whose value you inquired about and the address of the location that is next to have its value changed. These are called the *last opened location* and the *next changeable location*.

Warning

Because locations \$C000 through \$C0FF contain special hardware circuits, issuing any command that reads or writes on this page can have unpredictable, and perhaps disastrous, results.

Examining memory contents

When you type the address of a memory location and press Return, the Monitor responds with the address you typed, a dash, a space, and the value stored at that location, like this:

```
*E000
E000- 4C
*33
0033- AA
```

Each time the Monitor displays the value stored at a location, it saves that address as the last opened location and as the next changeable location.

Memory dump

When you type a period () followed by an address, and then press Return, the Monitor displays a memory dump: the data values stored at all the memory locations from the one following the last opened location to the location whose address you typed following the period. The Monitor saves the last location displayed as both the last opened location and the next changeable location. In these examples, the amount of data displayed by the Monitor depends on how much larger the address after the period is than the last opened location.

```
*20
0020- 00
*.2B
0021- 28 00 18 OF OC 00 00
0028- A8 06 D0 07
*300
0300- 99
*.315
0301- B9 00 08 0A 0A 0A 99
0308- 00 08 C8 D0 F4 A6 2B A9
0310- 09 85 27 AD CC 03
*.32A
0316- 85 41
0318- 84 40 8A 4A 4A 4A 4A 09
0320- CO 85 3F A9 5D 85 3E 20
0328- 43 03 20
```

When the Monitor performs a memory dump, it starts at the address immediately following the last opened location and displays that address and the data value stored there. It then displays the values of successive locations up to and including the location whose address you typed, but only up to eight values on a line. When it reaches a location whose address is a multiple of 8—that is, one that ends with an 8 or a 0—it displays that address as the beginning of a new line, then continues displaying more values.

After the Monitor has displayed the value at the location whose address you specified in the command, it stops the memory dump and sets that location as both the last opened location and the next changeable location. If the address specified on the input line is less than the address of the last opened location, the Monitor displays only the address and value of the location following the last opened location.

You can combine the two commands, opening a location and dumping memory, by concatenating them: type the first address, a period, and the second address. This combination of two addresses separated by a period is called a *memory range*.

```
*300.32F

0300- 99 B9 00 08 0A 0A 0A 99 0308- 00 08 52 D0 F4 A6 2B A9 0310- 09 85 27 AD CC 03 85 41 0318- 84 40 8A 4A 4A 4A 4A 09 0320- C0 85 3F A9 5D 85 3E 20 0328- 43 03 20 46 03 A5 3D 4D *30.4U

0030- AA 00 FF AA 05 C2 05 C2 0038- 1B FD 00 03 3C 00 40 00 0040- 30 *E015-E025- E016- AC ED FD E018- A9 20 C5 24 B0 0C A9 8D E020- A0 07 20 ED FD A9 ED E020- A0 07 20 ED FD A9 ED
```

- 1

Pressing Return by itself makes the Monitor display one line of a memory dump; that is, a memory dump from the location following the last opened location to the next multiple-of-eight boundary. The Monitor saves the address of the last location displayed as both the last opened location and the next changeable location.

```
*5
0005- 00
*Return
00 00
*Return
0008- 00 00 00 00 00 00 00 00 00
*32
0032- FF
*Return
AA 00 C2 05 C2
*Return
0038- 1B FD D0 03 3C 00 3F 00
```

Changing memory contents

The section on memory dumping showed you how to display values stored in the Apple IIc's memory; this section shows you how to change these values. You can change any location in RAM; you can change the characteristics and treatment of an output device by changing the contents of locations assigned to it; and you can change a soft switch setting by referencing its set and reset addresses.

Warning

Use these commands carefully. If you change the zero-page locations used by the interpreter or operating system (Appendix B), you may lose programs or data stored in memory.

Changing one byte

The previous commands keep track of the next changeable location; these commands make use of it. In the next example, you open location 0, then type a colon followed by a value.

```
*0
0000- 4C
*:5F
```

The contents of the next changeable location have just been changed to the value you typed, as you can see by examining that location:

```
*0
0000- 5F
```

You can also combine opening and changing into one operation by typing an address followed by a colon and a value. In the next example, you type the address again to verify the change.

```
*302:42
*302
0302- 42
```

When you change the contents of a location, the value that was contained in that location is replaced by the new value, which will remain until you or some program replaces it with another value.

ASCII input mode: The Monitor has a tool to make entering values a little easier: ASCII input mode. ASCII input mode lets you enter ASCII characters as well as their hexadecimal ASCII equivalents. This means that 'A is the same as C1 and 'B is the same as C2 to the Monitor. The ASCII value for any character following an apostrophe is used by the Monitor. For example, to enter the string "Good morning!" at \$0300 in memory, type

```
*300:'G 'o 'o 'd ' 'm 'o 'r 'n 'i 'n 'g '!
```

Note that each character to be placed in memory is delimited by a leading and a trailing space. The only exception to this rule is that the last character in the line is followed by a return character instead of a space.

Changing consecutive locations

You don't have to type a separate command with an address, a colon, a value, and press Return for each location you want to change. You can change the values of up to 85 consecutive locations at a time—or even more, if you omit leading 0's from the values—by typing only the initial address and colon followed by all the values separated by spaces; end with Return. The Monitor stores the consecutive values in consecutive locations, starting at the location whose address you typed. After it has processed the string of values, it takes the location following the last changed location as the next changeable location. Thus, you can continue changing consecutive locations, without typing an address on the next input line, by typing another colon and more values.

In these examples, you first change some locations, then examine them to verify the changes.

```
*300:69 01 20 ED FD 4C 03

*300
0300- 69

*Return
01 20 ED FD 4C 00 03

*10:0 1 2 3

*:4 5 6 7

*10.17
0010- 00 01 02 03 04 05 06 07
```

Moving data in memory

You can copy a contiguous block of data from one area in the Apple IIc's memory to another in RAM by using the Monitor's MOVE command. To move a range of memory, you must tell the Monitor both where the data is now situated in memory—the source locations—and where you want the copy to go—the destination locations.

The format of the complete MOVE command looks like this:

```
{destination} < {start} . {end} M
```

The destination is the address where you want the first of the moved data to go. The less-than symbol (<) separates the destination address from the starting and ending addresses of the block of data to be moved. The period between two addresses is the Monitor's standard notation for specifying address ranges. If the second address in the source range specification is less than the first, then only one value (that of the first location in the range) will be moved.

When you type the actual command, replace the words in braces with hexadecimal addresses, and omit the braces and spaces.

Here are some examples of memory moves. First, you examine the values stored in one range of memory, then store several values in another range of memory. The actual MOVE commands end with M.

```
*0.F
0000- 5F 00 05 07 00 00 00 00
0008- 00 00 00 00 00 00 00 00
*300:A9 8D 20 ED FD A9 45 20 DA FD 4C 00 03
*300.30C
0300- A9 8D 20 ED FD A9 45 20
0308- DA FD 4C 00 03
*0<300.30C M
*0.C
0000- A9 8D 20 ED FD A9 45 20
0008- DA FD 4C 00 03
*310<8.A M
*310.312
0310- DA FD 4C
*2<7.9 M
*0.C
0000- A9 8D 20 DA FD A9 45 20
0008- DA FD 4C 00 03
```

The Monitor moves a copy of the data stored in the source range of locations to the destination locations. The values in the source range are left undisturbed. The Monitor remembers the last location in the source range as the last opened location, and the first location in the source range as the next changeable location.

If the destination address of the MOVE command is inside the source range of addresses, then strange things happen: the locations between the beginning of the source range and the destination address are treated as a subrange and the values in this subrange are replicated throughout the source range. Try it.

Comparing data in memory

You can use the VERIFY command to compare two ranges of memory using the same format you use to move a range of memory from one place to another. In fact, the VERIFY command can be used immediately after a MOVE to make sure that the move was successful.

The VERIFY command, like the MOVE command, needs a range and a destination. The syntax of the VERIFY command is

```
{destination} < {start} . {end} V
```

See "Advanced Operations" for an interesting application of this feature. The Monitor compares the values in the source locations with the values in the locations beginning at the destination address. If any values don't match, the Monitor displays the address at which the discrepancy was found and the two values that differ. In the example, you store data values in the range of locations from 0 to \$0D, copy them to locations starting at \$0300 with the MOVE command, and then compare them using the VERIFY command. When you use the VERIFY command after you change the value at location 6 to \$E4, it detects the change.

```
*0:D7 F2 E9 F4 F4 E5 EE A0 E2 F9 A0 C3 C4 C5
*300<0.D M
*300<0.D V
*6:E4
*300<0.D V
0006-E4 (EE)
```

If the VERIFY command finds a discrepancy, it displays the address of the location in the source range whose value differs from its counterpart in the destination range. If there is no discrepancy, VERIFY displays nothing. The VERIFY command leaves the values in both ranges unchanged. The last opened location is the last location in the source range, and the next changeable location is the first location in the source range, just as in the MOVE command. If the ending address of the range is less than the starting address, the values of only the first locations in the ranges are compared. Like the MOVE command, the VERIFY command does unusual things if the destination address is within the source range; see "Advanced Operations" later in this chapter.

Monitor register commands

Even though the actual contents of the 65C02's internal registers are changing as you use the Monitor, you can examine the values that the registers contained at the time the Monitor gained control, either because you called it or because the program you are debugging stopped at a break (BRK). You can also store new register values that will be used when you execute a program from the Monitor using the GO command, described below.

Changing registers

When you call the Monitor, it stores the contents of the 65C02 registers in memory. The registers are stored in the order A, X, Y, P (processor status register), and S (stack pointer), starting at location \$45. When you give the Monitor a GO command, the Monitor loads the registers from these five locations before it executes the first instruction in your program.

Examining registers

Pressing Control-E and then Return invokes the Monitor's EXAMINE command, which displays the stored register values and sets the location containing the contents of the A register as the next changeable location. After using the EXAMINE command, you can change the values in these locations by typing a colon and then typing the new values separated by spaces. In the following example, you display the registers, change the first two, and then display them again to verify the change.

```
*Control-E
M=00 A=0A X=FF Y=D8 P=B0 S=F8
*:B0 02
*Control-E
M=00 A=B0 X=02 Y=D8 P=B0 S=F8
*
```

In the EXAMINE command's display, M shows the current memory state register contents. The memory state register is location \$44, and its interpretation is given in Appendix E.

Miscellaneous Monitor commands

Monitor commands discussed in this section let you do the following:

- □ change the video display format from normal to inverse and back
- □ assign input and output to various devices
- □ leave the Monitor and return to the currently loaded operating system (DOS 3.3 or ProDOS) or BASIC

The COut subroutine is described in Chapter 3.

Display inverse and normal

You can control the setting of the inverse-normal mask location used by the COut subroutine from the Monitor so that all the Monitor's output will be in inverse format. The INVERSE command (I) sets the mask so that all subsequent inputs and outputs are displayed in inverse format. To switch the Monitor's output back to normal format, use the NORMAL command (N).

```
*0.F
0000- 0A 0B 0C 0D 0E 0F D0 04
0008- C6 01 F0 08 CA D0 F6 A6
*I
*0.F
0000- 0A 0B 0C 0D 0E 0F D0 04
0008- C6 01 F0 08 CA D0 F6 A6
*N
*0.F
0000- 0A 0B 0C 0D 0E 0F D0 04
0008- C6 01 F0 08 CA D0 F6 A6
```

Back to BASIC

See Appendix D.

If you are using one of the Apple disk operating systems (ProDOS or DOS), press Control-Reset or type 3D0G to return to the language you were using, with your program and variables intact.

Important

If you type 3D0G, make sure that the third character you type is a zero, not a letter O. The letter G is the Monitor's GO command.

If there is no operating system in RAM, use the BASIC command Control-B to leave the Monitor and enter the BASIC interpreter that was active when you entered the Monitor. (Normally this is Applesoft BASIC.) Any program or variables that you previously had in BASIC will be lost. If you want to reenter BASIC with your previous program and variables intact, use the CONTINUE BASIC command (Control-C).

Chapter 3 lists the Apple IIc port numbers available.

For more information on the way those commands work, refer to "The Standard I/O Links" in Chapter 3.

Redirecting input and output

The Control-P command diverts all output normally destined for the screen (port 0) to a device attached to one of the other ports, from 1 to 7. The format of the command is

{port number} Control-P

A Control-P command to port number 0 switches the stream of output characters back to the Apple IIc's video display. However, use Escape Control-Q if the enhanced video firmware is active (solid-block cursor).

Control-K controls the input stream in much the same way that Control-P controls the output stream. The format for the command is

{port number} Control-K

Pressing O Control-K directs the Monitor to accept input from the Apple IIc's built-in keyboard.

The Control-P and Control-K commands are the exact equivalents of the BASIC (but not DOS and ProDOS) commands PR# and IN#.

Hexadecimal arithmetic

You can use the Monitor as a one-byte hexadecimal addition and subtraction calculator. Just type a line in one of these formats followed by Return:

{value} + {value} Return {value} - {value} Return

The Apple IIc performs the arithmetic and displays the result, as shown in these examples.

- *20+13
- =33
- *4A-C
- =3E
- *

Advanced operations

This section describes some ways of using the Monitor commands to speed up your work.

Multiple-command lines

You can put as many Monitor commands on a single line as you like, as long as you separate them with spaces, and the total number of characters in the line is less than 254. Adjacent single-letter commands such as L, S, I, and N need not be separated by spaces.

You can freely intermix all of the commands except the STORE (:) command. Because the Monitor takes all values following a colon and places them in consecutive memory locations, the last value in a STORE must be followed by a letter command before another address is encountered. You can use the NORMAL command as the required letter command in such cases; it usually has no effect and can be used anywhere.

In the following example, you display a range of memory, change it, and display it again, all with one line of commands.

```
*300.307 300:18 69 1 N 300.302
0300- 00 00 00 00 00 00 00
0300- 18 69 01
```

If the Monitor encounters a character in the input line that it does not recognize as either a hexadecimal digit or a valid command character, it executes all the commands on the input line up to that character, then stops with a beep and ignores the remainder of the input line.

Filling memory

The MOVE command can be used to replicate a pattern of values throughout a range of memory. To do this, first store the pattern in the first locations in the range

```
*300:11 22 33
```

*

Remember the number of values in the pattern: in this case, it is three. Use the number to compute addresses for the MOVE command, like this:

{start+number} < {start} . {end-number} M

This MOVE command first replicates the pattern at the locations immediately following the original pattern, then replicates that pattern following itself, and so on until it fills the entire range.

```
*303<300.32D M

*300.32F

0300- 11 22 33 11 22 33 11 22

0308- 33 11 22 33 11 22 33 11

0310- 22 33 11 22 33 11 22 33

0318- 11 22 33 11 22 33 11 22

0320- 33 11 22 33 11 22 33 11
```

You can use the VERIFY command to check whether a pattern repeats itself through memory. This is especially useful to verify that a given range of memory locations all contain the same value. In this example, to see the VERIFY command detect the discrepancy, you first fill the memory range from \$0300 to \$0320 with 0's and verify it, then change one location and verify again:

```
*300:0

*301<300.31F M

*301<300.31F V

*304:02

*301<300.31F V

0303-00 (02)

0304-02 (00)
```

Repeating commands

You can create a command line that repeats one or more commands over and over. You do this by beginning the part of the command line that you want to repeat with a letter command, such as N, and ending it with the sequence 34:n, where n is a hexadecimal number that specifies the position in the line of the command where you want to start repeating; for the first character in the line, n=0. The value for n must be followed with a space in order for the loop to work properly.

This trick takes advantage of the fact that the Monitor uses an index register to step through the input buffer, starting at location \$0200. Each time the Monitor executes a command, it stores the value of the index at location \$34; when that command is finished, the Monitor reloads the index register with the value at location \$34. By making the last command change the value at location \$34, you change this index so that the Monitor picks up the next command character from an earlier point in the buffer.

The only way to stop a loop like this is to press Control-Reset; that is how this example ends.

```
*N 300 302 34:0 N

0300- 11

0302- 33

0300- 11

0302- 33

0300- 11

0302- 33

0300- 11

0302- 33

0300- 11

0302- 33

0300- 11

0302- 33

0300- 11
```

Creating your own commands

The USER command (Control-Y) forces the Monitor to jump to memory location \$03F8. You can put a JMP instruction there that jumps to your own machine-language program. Your program can then examine the Monitor's registers and pointers or the input buffer itself to obtain its data. For example, here is a program that displays everything on the input line after the Control-Y. The program starts at location \$0300; the command line that starts with \$03F8 stores a jump to \$0300 at location \$03F8.

```
*300:A4 34 B9 00 02 20 ED FD C8 C9 8D D0 F5 4C 69 FF

*3F8:4C 00 03

*Control-Y THIS IS A TEST

THIS IS A TEST
```

Machine-language programs

The main reason to program in machine language is to get more speed and sometimes to also save memory space. A program in machine language can run much faster than the same program written in high-level languages such as BASIC or Pascal, but the machine-language version usually takes a lot longer to write. There are other reasons to use machine language: you might want your program to do something that isn't included in your high-level language, or you might just enjoy the challenge of using machine language to work directly on the bits and bytes.

♦ Note: If you have never used machine language before, you'll need to learn the 65C02 instructions listed in Appendix A. To become proficient at programming in machine language, you'll have to spend some time at it, and study one of the books on 65C02 programming listed in the bibliography.

You can get a hexadecimal dump of your program or move it around in memory using the commands described in the previous sections. The Monitor commands in this section are intended specifically for you to use in creating, writing, and debugging machine-language programs.

Running a program

The Monitor command to start execution of your machine-language program is the GO command. When you type an address and press G, the Apple IIc starts executing machine-language instructions starting at the specified location. If you just press G, execution starts at the last opened location. The Monitor treats this program as a subroutine: it should end with an RTS (return from subroutine) instruction to transfer control back to the Monitor.

The Monitor has some special features that make it easier for you to write and debug machine-language programs, but before you get into that, here is a small machine-language program that you can run using only the simple Monitor commands already described. The program in the example merely displays the letters A through Z: you store it starting at location \$0300, examine it to be sure you typed it correctly, then type 3D0G to start it running.

```
*300:A9 C1 20 ED FD 18 69 1 C9 DB D0 F6 60

*300.30C

0300- A9 C1 20 ED FD 18 69 01

0308- C9 DB D0 F6 60

*300 G

ABCDEFGHIJKLMNOPQRSTUVWXYZ
```

Disassembled programs

Machine-language code in hexadecimal isn't the easiest thing in the world to read and understand. To make this job a little easier, machine-language programs are usually written in assembly language and converted into machine-language code by programs called **assemblers**.

Programs like the Monitor's LIST command are called disassemblers. This command displays machine-language code in assembly-language form. Instead of unformatted hexadecimal gibberish, the LIST command displays each instruction on a separate line, with a three-letter instruction name, or mnemonic, and a formatted hexadecimal operand. The LIST command also converts the relative addresses used in branch instructions to absolute addresses.

The Monitor LIST command has the format

{location} L

The LIST command starts at the specified location and displays as much memory as it takes to make up a screenful (20 lines) of instructions, as shown in the following example:

*300 L			
0300-	A9 C1	LDA	#\$C1
0302-	20 ED FD	JSR	\$FDED
0305-	18	CLC	
0306-	69 01	ADC	#\$01
0308-	C9 DB	CMP	#\$DB
030A-	DO F6	BNE	\$0302
030C-	60	RTS	
030D-	00	BRK	
030E-	00	BRK	
030F-	00	BRK	
0310-	00	BRK	
0311-	00	BRK	
0312-	00	BRK	
0313-	00	BRK	
0314-	00	BRK	
0315-	00	BRK	
0316-	00	BRK	
0317-	00	BRK	
0318-	00	BRK	
0319-	00	BRK	
*			

Chapter 10: Using the Monitor

The first seven lines of this example are the assembly-language form of the program you typed in the previous example. The rest of the lines are BRK instructions only if this part of memory has 0's in it: other values will be disassembled as other instructions.

The Monitor saves the address that you specify in the LIST command, but not as the last opened location used by the other commands. Instead, the Monitor saves this address as the program counter, which it uses only to point to locations within programs. Whenever the Monitor performs a LIST command, it sets the program counter to point to the location immediately following the last location displayed on the screen, so that if you type another LIST command it displays another screenful of instructions, starting where the previous display left off.

The STEP and TRACE commands

Important

This section applies only to the UniDisk 3.5 and memory expansion versions of the Apple IIc.

STEP and TRACE are Monitor facilities for debugging assemblylanguage programs. The STEP command decodes, displays, and executes one instruction at a time, and the TRACE command steps continuously through a program, stopping when a BRK instruction is executed or Solid Apple is pressed. You can press Open Apple to slow down the trace to one step per second.

Each STEP command causes the Monitor to execute the instruction in memory pointed to by the program counter. The instruction is displayed in its disassembled form, then executed. The contents of the 65C02's internal registers are displayed after the instruction is executed. After execution, the program counter is incremented to point to the next instruction in the program.

Here is an example of the STEP command, using the following program:

```
$0300: LDX #02
$0302: LDA $00,X
$0304: STA $10,X
$0306: DEX
$0307: STA $C030
$030A: BPL $0302
$030C: BRK
```

To step through this program, first call the Monitor by typing CALL -151 and pressing Return, and then from the Monitor type 300S (to start the STEP routine at address \$0300). Type S to advance each additional step through the program. The Monitor keeps the program counter and the last opened address separate from one another, so you can examine or change the contents of memory while you are stepping through your program. Here's what happens when you step through the program above, examining the contents of location \$0012 after the third step. Note that in this example, what you type appears just after the * prompt, and the information on the next two lines—that begin without the * prompt—is what the computer displays on the screen in response.

```
*300S
0300- A2 02
                LDX #02
M=CA A=0A X=02 Y=D8 P=30 S=F8
0302- B5 00 LDA $00, X
M=CA A=OC X=O2 Y=D8 P=30 S=F8
0304- 95 10 STA $10,X
M=CA A=0C X=02 Y=D8 P=30 S=F8
*12
0012- OC
*S
0306- CA
                DEX
M=CA A=0C X=01 Y=D8 P=30 S=F8
0307- 8D 30 CO STA $C030
M=CA A=0C X=01 Y=D8 P=30 S=F8
*S
030A-
       10 F6
               BPL $0302
M=CA A=OC X=O1 Y=D8 P=30 S=F8
*S
0302- B5 00
               LDA $00,X
M=CA A=0B X=01 Y=D8 P=30 S=F8
0304- 95 10
               STA $10.X
M=CA A=0B X=01 Y=D8 P=30 S=F8
```

The TRACE command is a continuous version of the STEP command; it stops stepping through the program only when you press Solid Apple, or when it encounters a BRK instruction in the program. Press Open Apple to slow the trace to one step per second.

Important

Keep the following cautions in mind when using the STEP and TRACE Monitor commands:

- ☐ If the program ends with an RTS instruction, the TRACE routine will continue to run indefinitely until stopped with Solid Apple.
- You can't step or trace through routines that use the same zero page locations as the Monitor.

The Mini-Assembler

Important

This section applies only to the UniDisk 3.5 and memory expansion versions of the Apple IIc.

Without an assembler, you have to write your machine-language program, take the hexadecimal values for the opcodes and operands, and store them in memory using the Monitor commands described earlier in this chapter.

The Mini-Assembler lets you enter machine-language programs directly from the keyboard of your Apple. ASCII characters can be entered in Mini-Assembler programs, exactly as you enter them in the Monitor.

Note that the Mini-Assembler doesn't accept labels; you must use actual values and addresses.

Starting the Mini-Assembler

To start the Mini-Assembler, first invoke the Monitor by typing CALL -151 and pressing Return, and then from the Monitor, type! followed by Return. The Monitor prompt character then changes from * to!.

When you finish using the Mini-Assembler, press Return from a blank line to return to the Monitor.

To enter code into memory, type the address, a colon, and the instruction. For example, after entering the Mini-Assembler, you could type

!300:STA C030

You can enter a series of instructions by typing a space, followed by the instruction, followed by Return:

```
!300:STA C030
! LDA #A0
! INX
```

Each succeeding instruction is placed in the next available memory location. As you type in instructions, each is replaced by the starting address of the instruction, the hexadecimal value(s) of the instruction, followed by mnemonics describing the instruction. For example, the sequence of instructions given above would produce the following on your screen:

0300-	8D	30	C0	STA	\$C030
0303-	Α9	ΑO		LDA	#\$A0
0305-	E8			INX	

When you're ready to execute your program, press Return to leave the Mini-Assembler and return to the Monitor. Monitor commands can't be executed directly from the Mini-Assembler.

Using the Mini-Assembler

The Mini-Assembler saves one address, that of the program counter. Before you start to type a program, you must set the program counter to point to the location where you want the Mini-Assembler to store your program. Do this by typing the address followed by a colon.

After the colon, type the mnemonic for the first instruction in your program, followed by a space and the operand of the instruction. Now press Return. The Mini-Assembler converts the line you typed into hexadecimal, stores it in memory beginning at the location of the program counter, and then disassembles it again and displays the disassembled line. It then displays a prompt on the next line.

Now the Mini-Assembler is ready to accept the second instruction in your program. To tell it that you want the next instruction to follow the first, don't type an address or a colon: just type a space and the next instruction's mnemonic and operand, then press Return. The Mini-Assembler assembles that line and waits for another.

If the line you type has an error in it, the Mini-Assembler beeps loudly and displays a caret (^) under or near the offending character in the input line. Most common errors are the result of typographical mistakes: misspelled mnemonics, missing parentheses, and so forth. The Mini-Assembler also rejects the input line if you forget the space before or after a mnemonic or include an extraneous character in a hexadecimal value or address. If the destination address of a branch instruction is out of the range of the branch (more than 127 locations distant from the address of the instruction), the Mini-Assembler flags this as an error.

Dollar signs: In this manual, dollar signs (\$) in addresses signify that the addresses are in hexadecimal notation. The dollar signs are ignored by the Mini-Assembler and can be omitted in programs.

!300:	LDX #02			
0300-	A2 02		LDX	#\$02
! LDA	\$00,X			
0302-	B5 00		LDA	\$00,X
! STA	\$10,X			
0304	95 10		STA	\$10,X
! DEX				
0306-	CA		DEX	
! STA	\$C030			
0307-	8D 30	C0	STA	\$C030
! BPL	\$0302			
030A-	10 F6		BPL	\$0302
! BRK				
030C-	00		BRK	
!				

To leave the Mini-Assembler and reenter the Monitor, press Return at a blank line.

Your assembly-language program is now stored in memory. You can display it with the LIST command:

*300L					
0300-	A2	02		LDX	#\$02
0302-	В5	00		LDA	\$00,X
0304-	95	10		STA	\$10,X
0306-	CA			DEX	
0307-	8D	30	CO	STA	\$C030
030A-	10	F6		BPL	\$0302
030C-	00			BRK	
030D-	00			BRK	
030E-	00			BRK	
030F-	00			BRK	
0310-	00			BRK	

0311-	00	BRK
0312-	00	BRK
0313-	00	BRK
0314-	00	BRK
0316-	00	BRK
0316-	00	BRK
0317-	00	BRK
0318-	00	BRK
0319-	00	BRK

Table 10-1
Mini-Assembler address formats

Addressing mode	Format
Accumulator	•
Implied	•
Immediate	#\$ {value}
Absolute	\${address}
Zero page	\${address}
Indexed zero page	\${address},X \${address},Y
Indexed absolute	\${address},X \${address},Y
Relative	\${address}
Indexed indirect	(\${address},X)
Indirect indexed	(\${address},Y)
Absolute indirect	(\${address})
* Those instructi	and have no

These instructions have no operands.

Mini-Assembler instruction formats

The Apple IIc Mini-Assembler recognizes 66 mnemonics and 15 addressing formats. The mnemonics are standard, as used in the *Synertek Programming Manual* (Apple part number A2L0003), but the addressing formats are somewhat different, as shown in Table 10-1.

An address consists of one or more hexadecimal digits. The Mini-Assembler interprets addresses the same way the Monitor does: if an address has fewer than four digits, the Mini-Assembler adds leading 0's; if the address has more than four digits, then it uses only the last four.

There is no syntactical distinction between the absolute and zero-page addressing modes. If you give an instruction to the Mini-Assembler that can be used in both absolute and zero-page mode, the Mini-Assembler assembles that instruction in absolute mode if the operand for that instruction is greater than \$FF, and it assembles it in zero-page mode if the operand is less than \$0100.

Instructions in accumulator mode and implied addressing mode need no operands.

Branch instructions, which use the relative addressing mode, require the target address of the branch. The Mini-Assembler calculates the relative distance to use in the instruction automatically. If the target address is more than 127 locations distant from the instruction, the Mini-Assembler sounds a bell (beep), displays a caret (^) under the target address, and does not assemble the line.

If you give the Mini-Assembler the mnemonic for an instruction and an operand, and the addressing mode of the operand cannot be used with the instruction you entered, then the Mini-Assembler will not accept the line.

Summary of Monitor commands

Here is a summary of the Monitor commands, showing the syntax diagram for each one.

Examining memory

{adrs}Return Displays the value contained in one

location.

{adrs1}.{adrs2}Return Displays the values contained in all

locations between {adrs1} and {adrs2}

Return Displays the values in up to eight locations

following the last opened location.

{adrs}L Lists disassembled code starting at {adrs}

and continuing until the screen is full.

Changing the contents of memory

{adrs}:{val}{val}... STORE command. Stores the values in

consecutive memory locations starting at

 $\{adrs\}.$

 $\{val\}\{val\}...$ Stores values in memory starting at the

next changeable location.

Moving and comparing

{dest}<{start}.{end}M MOVE command. Copies the values in

the range {start}.{end} into the range

beginning at {dest}.

{dest}<{start}.{end}V VERIFY command. Compares the values

in the range (start). (end) to those in the

range beginning at {dest}.

The Register command

Control-E EXAMINE command. Displays the

locations where the contents of the 65C02's registers are stored and opens

them for changing.

Miscellaneous Monitor commands

I INVERSE command. Sets inverse display

mode.

N NORMAL command. Sets normal display

mode.

Control-B BASIC command. Enters the language

currently active (normally Applesoft).

Control-C CONTINUE BASIC command. Returns to

the language currently active (normally

Applesoft).

 $\{val\}+\{val\}$ Adds the two values and prints the

hexadecimal result.

 $\{val\}-\{val\}$ Subtracts the second value from the first

and prints the result.

{port}Control-P Redirects output to the device connected

to port number {port}. If {port}=0, sends output to the video display. Use only when the enhanced video firmware is not

active (checkerboard cursor).

Escape Control-Q Redirects output to video display when

enhanced video firmware is active (solid

block cursor).

{port}Control-K Takes input from the device connected to

port number {port}. If {port}=0, accepts

input from the keyboard.

Control-Y USER command. Jumps to the

machine-language subroutine at

location \$03F8.

Running and listing programs

{adrs}G Transfers control to the machine-

language program beginning at {adrs}.

{adrs}L Disassembles and displays 20 instructions

starting at {adrs}. Subsequent L's display

20 more instructions each.

Hardware Implementation Most of this manual describes functions—what the Apple IIc does. This chapter, on the other hand, describes objects—the pieces of hardware the Apple IIc uses to carry out its functions. If you are designing a device to connect to the Apple IIc back panel, or if you just want to know more about how the Apple IIc is built, you should study this chapter.

Environmental specifications

The Apple IIc is quite sturdy when used in the way it was intended: as a transportable computer, made for use in an indoor environment. You can carry it by its handle from room to room, but for longer trips you should use its carrying case or some other protective container (such as an attaché case). Table 11-1 defines the conditions under which the Apple IIc is designed to function properly.

You should treat the Apple IIc with the same kind of care as any other electrical appliance; protect it from physical abuse, and be careful not to bump it against furniture when you move it around. Put it in an attache case or other protective covering if you carry it outside. You should also protect the mechanical keyboard and the electrical connectors inside the case from spilled liquids, particularly those with dissolved contaminants, such as soups, fruit juices, and carbonated soft drinks.

In normal operation (with the handle locked in its down position), enough air flows through the openings in the case to keep the insides from getting too hot. If you do overheat your Apple IIc—for example, by blocking the upper or lower ventilation openings—the first symptom will be erratic operation, such as unexpectedly changed data. (The memory devices in the Apple IIc are especially sensitive to heat.) Letting the machine cool down by turning it off for a while and unblocking the vents before using it again will bring it back to normal operation. The only exception to this is if you have gotten your Apple IIc too hot and physically damaged some internal component.

Disks are another heat-sensitive element of the system. If the builtin drive becomes too hot, a disk within can warp or even melt. A melted or warped disk can't be used again.

Table 11-1 Environmental specifications

Operating temperature	10° to 40° C (50° to 104° F)
Relative	20% to 95%
humidity	

Power requirements

The electrical power used by the Apple IIc—and everything that draws power from it—is limited by the capacities of the computer's power supply and internal voltage converter. This section describes these limits for the USA external power supply. Appendix G describes them for models built for other countries. The internal voltage converter is the same on all models.

The external power supply

If you purchased your Apple IIc outside the USA, consult Appendix G for external power supply characteristics.

The external power supply operates on normal household AC power and provides DC power to the Apple IIc internal converter. The basic specifications of the external power supply are listed in Table 11-2. The Apple IIc external power supply's cord must be plugged into a three-wire 115-volt (nominal) outlet. A two-wire outlet is not properly grounded—using it will damage the external power supply and perhaps the Apple IIc as well. The line voltage must be in the range given in Table 11-2.

Warning

Important safety instructions: This product is equipped with a three-wire grounding-type plug—a plug having a third (grounding) pin. This plug will only fit into a grounding-type AC outlet. This is a safety feature.

If you are unable to insert the plug into the outlet, contact a licensed electrician to replace the outlet and, if necessary, install a grounding conductor.

Do not defeat the purpose of the grounding-type plug.

Table 11-2Power supply specifications

Line voltage	105 to 129 VAC, 60 Hz			
Maximum power consumption	25 W			
Supply voltage	+15 VDC (nominal)			
Supply current	1.2 A (nominal)			

Pin	Signal
1	Not connected
2, 3	Signal ground
4	Shield ground
5, 6	+15 VDC
7	Not connected

Figure 11-1
External power connector

The external power connector

The external power supply is attached to the internal converter by means of a 7-pin DIN connector. The connector pins are identified in Figure 11-1 and Table 11-3.

Table 11-3External power connector signals

Pin	Signal	Description
1, 7		Not connected
2, 3	Ground	Common electrical ground
4	Chassis	Chassis ground
5, 6	+15V	+15-volt DC input to converter

The internal converter

The internal converter in the Apple IIc operates with a supply voltage from 9 to 20 volts DC as provided by the external power supply or its equivalent. The internal converter provides enough low-voltage electrical power for the built-in electronics plus an external disk drive attached via the 19-pin connector. The basic specifications of the internal converter are listed in Table 11-4. Minus 5 volts is derived from the -12 volts (nominal) provided by the voltage converter.

Table 11-4
Internal converter specifications

Input voltage	+9 to 20 VDC	
Maximum power consumption	25 W	
Supply voltages	+5V ±5% +12V ±10% -12V ±10%	
Maximum supply currents	+5V: 1.5 A +12V: 0.6 A continuous 0.9 A intermittent 1.5 A surge (for < 100 ms -12V: 100 mA (-5V: 50 mA)	
Maximum case temperature	60° C (140° F)	

The Apple IIc uses a switching-type internal voltage converter as a power supply. It is small and lightweight, and it generates less heat than other types of voltage converters.

The voltage converter works by using the DC voltage input to power a variable-frequency oscillator. The oscillator drives a small transformer with several separate windings to produce the different voltages required. A circuit compares the voltage of the +5-volt supply with a reference voltage and feeds an error signal back to the oscillator circuit. The oscillator circuit uses the error signal to control the duty cycle of its oscillation and keep the output voltages in their normal ranges.

The converter includes circuitry to protect itself and the other electronic parts of the Apple IIc by limiting all three output voltages whenever it detects one of the following malfunctions:

- □ any supply voltage short-circuited to ground
- □ any output voltage outside the normal range

Whenever one of these malfunctions occurs, the protection circuit varies the duty cycle of the oscillator, and all the output voltages drop to 0 if they cannot be brought back into their normal range.

Apple IIc overall block diagram

Figure 11-2 is an overall block diagram of the Apple IIc. The following sections contain more detailed diagrams of the major parts of the machine. A full set of schematic diagrams of the Apple IIc appears later in this chapter.

Figure 11-2 Apple IIc block diagram

CMOS (complementary metaloxide semiconductor) is a way of making integrated circuits that require less power to operate than other technologies such as NMOS (negative-doped metal-oxide semiconductor), used by the 6502.

These instructions are described in Appendix A.

The 65C02 microprocessor

The Apple IIc uses a **CMOS** 6502 (designated as 65C02) microprocessor as its central processing unit (CPU). The 65C02 in the Apple IIc runs at a clock rate of 1.023 MHz and performs up to 500,000 8-bit operations per second.

Note: The clock rate is not a very good criterion for comparing different types of microprocessors. The 65C02 has a simpler instruction cycle than most other microprocessors and it uses instruction pipelining for faster processing. The speed of the 65C02 with a 1-MHz clock is equivalent to many other types of microprocessors with clock rates up to 5 MHz.

In addition to requiring less power than earlier NMOS 6502 processors, the 65C02 in the Apple IIc has 27 new instructions. However, programs that use these additional instructions are not backward compatible with other Apple II series computers that are not equipped with a CMOS 6502.

65C02 block diagram

Figure 11-3 is a block diagram of the 65C02 microprocessor. Table 11-5 contains the general specifications of this chip. The 65C02 has a 16-bit address bus, giving it an address space of 64K bytes. The Apple IIc uses special techniques to address a total of more than 64K (see Chapter 2).

Figure 11-3 65C02 block diagram (copyright © 1982 by NCR Corporation; used by permission)

Table 11-5 65C02 microprocessor specifications

Туре	65C02
Register complement	8-bit accumulator (A) 8-bit index registers (X,Y) 8-bit stack pointer (S) 8-bit processor status (P) 16-bit program counter (PC)
Data bus	8 bits wide
Address bus	16 bits wide
Address range	65,536 (64K)
Interrupts	IRQ (maskable) NMI (nonmaskable) BRK (programmed)
Operating voltage	+5V (±5%)
Power dissipation	5 mW (at 1 MHz)

65C02 timing

The Apple IIc's operation is controlled by a set of synchronous timing signals, sometimes called *clock signals*. The Apple IIc uses a 14.318-MHz master timing signal, called 14M, to produce all the other timing signals. These timing signals perform two major tasks: controlling the computing functions, and generating the video display. The timing signals directly involved with the 65C02's operation are described in this section. Other timing signals are described later in this chapter.

The relationships of the main 65C02 timing signals are diagrammed in Figure 11-4, and the signals are listed in Table 11-6. The 65C02 clock signals are Ø1 and Ø0, complementary signals at a frequency of 1.0227 MHz. The Apple IIc signal Ø0 is similar to the signal Ø2 in Appendix A (it isn't identical—it's a tiny bit early).

Figure 11-4 65C02 timing signals

Table 11-6 65C02 timing signal descriptions

Signal	Description
14M	Master oscillator, 14.318 MHz; also 80-column dot clock
VID7M	Intermediate timing signal and 40-column dot clock
Q3	Intermediate timing signal, 2.045 MHz with
	asymmetrical duty cycle
ø0	Phase 0 of 65C02 clock, 1.0227 MHz; complement of ø1
ø1	Phase 1 of 65C02 clock, 1.0227 MHz; complement of Ø0

The 65C02's operations are related to the clock signals in a simple way: internal during Ø1, external during Ø0. The 65C02 puts an address on the address bus during Ø1. This address is valid not later than 110 nanoseconds after Ø1 goes high and remains valid through all of Ø0. The 65C02 reads or writes data during Ø0. If the 65C02 is writing, the read/write signal is low during Ø0 and the 65C02 puts data on the data bus. The data are valid not later than 75 nanoseconds after Ø0 goes high. If the 65C02 is reading, the read/write signal remains high. Data on the data bus must be valid no later than 50 nanoseconds before the end of Ø0.

More information about the 65C02 and its instruction set is in Appendix A.

The custom integrated circuits

Most of the circuitry that controls memory and I/O addressing in the Apple IIc is in five custom integrated circuits:

- ☐ the memory management unit (MMU)
- ☐ the input-output unit (IOU)
- ☐ the timing generator (TMG)
- □ the general logic unit (GLU)
- the disk controller unit, also known as the Integrated Woz Machine (IWM)

The soft switches that control the various I/O and addressing modes of the Apple IIc are addressable flags inside the MMU, IOU, and GLU. The functions of the MMU and IOU are not as independent as their names suggest; working together, they generate all the addressing signals. For example, the MMU generates the RAM address signals for the CPU, while the IOU generates similar RAM address signals for the video display and most I/O hardware addresses.

The memory management unit (MMU)

The circuitry inside the MMU implements these soft switches:

- □ Page 2 display (Page2) (described in Chapter 5)
- □ high-resolution mode (HiRes) (Chapter 5)
- □ store to 80-column display (80Store) (Chapter 5)
- □ select bank 2 (Bank2) (Chapter 2)

- □ enable bank-switched RAM (EnlCRAM) (Chapter 2)
- □ read auxiliary memory (RAMRd) (Chapter 2)
- □ write auxiliary memory (RAMWrt) (Chapter 2)
- □ auxiliary stack and zero page (AltZP) (Chapter 2)
- □ reset mouse Y interrupt (RstYInt) (Chapter 9)
- □ reset mouse X interrupt (RstXInt) (Chapter 9)

These switches are available on MMU pin 21, which is connected to bit 7 on the data bus. Figure 11-5 shows the MMU pinouts; Table 11-7 describes the signals.

Important

A signal name followed by an asterisk is active low—that is, it is true when the signal is at a TTL high (+5V) level.

The 64K dynamic RAMs used in the Apple IIc use a multiplexed address, as described later in this chapter. The MMU generates this multiplexed address for memory reading and writing by the 65C02 CPU.

Table 11-7 MMU signal descriptions

				Pin	Signal	Description
			١.,	1	GND	Power and signal common
GND A0	2	40 39	A1 A2	2	A 0	65C02 address input
Ø0	3	38	A3	3	Ø0	Clock phase 0 input
Q3	4	37	A4	4	Q3	Timing signal input
PRAS*	5	36	A5	5	PRAS*	Memory row-address strobe
RA0	6	35	A6	6–13	RAO-RA7	Multiplexed address output
RA1	7	34	A7	14	R/W*	65C02 read-write control signal
RA2	8	33	A8	15	INH*	Inhibits main memory (tied to +5V)
RA3 RA4	9	32 31	A9 A10	16	C06X*	Causes \$C06x outputs to go to 0 during Ø0
RA5	11	30	A11	17	EN80*	Enables auxiliary RAM
RA6	12	29	A12	18	KBD*	Enables keyboard data bits 0-6
RA7	13	28	A13	19	ROMEN2*	Enables ROM (tied to ROMEN1*)
R/W*	14	27	A14			
INH*	15	26	A15	20	ROMEN1*	Enables ROM (tied to ROMEN2*)
C06X*	16	25	+5V	21	MD7	State of MMU flags on data bus bit 7
EN80*	17	24	SELIO*	22	C07X	Causes \$C07x outputs to go to 0 during ø0
KBD*	18	23	CASEN*	23	CASEN*	Enables main RAM
ROMEN2*	19	22	C07X*	24	SELIO*	Goes to 0 during Ø0 for any access to
ROMEN1*	20	21	MD7			\$C0 page except \$C08x, Bx, Cx, or Fx
	_			25	+5V	Power
Figure 11: MMU pind				26-40	A15-A1	65C02 address input

Chapter 11: Hardware Implementation

The input/output unit (IOU)

Input/output unit (IOU) implements the following soft switches, all described in Chapters 2 and 3:

- □ Page 2 display (Page2)
- □ high-resolution mode (HiRes)
- □ text mode (TEXT)
- □ mixed mode (MIXED)
- □ 80-column display (80Col)
- □ character-set select (AltChar)
- □ any-key-down (AKD)
- □ mouse movement (X0, Y0)
- vertical blanking interrupt (VBlInt)

These switches are available on IOU pin 9, which is connected to bit 7 on the data bus. Figure 11-6 shows the IOU pinouts; Table 11-8 describes the signals.

The 64K dynamic RAMs used in the Apple IIc require a multiplexed address, as described later in this chapter. The IOU generates this multiplexed address during clock phase 1 for the data transfers required for display and memory refresh. The way this address is generated is described under "The Video Counters" in this chapter.

Table 11-8 IOU signal descriptions

GND		フ ₄₀ ト	-10	Pin	Signal	Description
GB	2		SYNC*			
SEGA	3	38 V	WNDW*	1	GND	Power and signal common
SEGB	4	37 C	CLRGAT*			9
VC	5	36 F	RA10*	2	GR	Graphics mode enable
80COL*	6		7A9*	3	SEGA	In text mode, works with VC (see pin 5)
CASSO	7		/IDD6	5	SEGA	•
SPKR	8		/IDD7			and SEGB to determine character row
MD7	9	. –	KSTRB			address
YMOVE	10		AKD .			
(N.C.)	11		OUSELIO*	4	SEGB	In text mode, works with VC (see pin 5)
(N.C.)	12		46			and SEGA; in graphics mode, selects
PDL0/XMOVE	13		+ 5V			
R/W*	14		23			high resolution when low, low resolution
RESET*	15		20			when high
IRQ*	16		PRAS*	_	370	Displace continuit accepts this in text
RA0	17		RA7	5	VC	Displays vertical counter bit: in text
RA1	18 19		RA6			mode, SEGA, SEGB, and VC determine
RA2		'	RA5			which of the eight rows of a character's
RA3	20	21 1	RA4			
						dot pattern to display; in low resolution,
Figure 11-	4					selects upper or lower block defined by a
						* *
100 pinou	TS					byte

Table 11-8 (continued) IOU signal descriptions

Pin	Signal	Description	
6	80COL*	80-column video enable	
7	CASSO	Reserved	
8	SPKR	Speaker output signal	
9	MD7	Internal IOU flags for data bus (bit 7)	
10	YMOVE	Detects mouse movement along Y axis	
11	N.C.	Not used	
12	N.C.	Not used	
13	PDL0/XMOVE	Detects mouse movement along X axis	
14	R/W*	65C02 read-write control signal	
15	RESET*	Power on and reset output	
16	IRQ*	Maskable interrupt line to 65C02	
17-24	RAO-RA7	Video refresh multiplexed RAM address (phase 1)	
25	PRAS*	Row-address strobe (phase 0)	
26	ø0	Master clock phase 0	
27	Q3	Intermediate timing signal	
28	+5V	Power	
29	A6	Address bit 6 from 65C02	
30	IOUSELIO*	Derived from the SELIO* output for MMU pin 24	
31	AKD	Any-key-down signal	
32	KSTRB	Keyboard strobe signal	
33,34	VIDD7,VIDD6	Video display data bits	
35,36	RA9*,RA10*	Video display control bits	
37	CLRGAT*	Color-burst gate (enable)	
38	WNDW*	Displays blanking signal	
39	SYNC*	Displays synchronization signal	
40	Н0	Displays horizontal timing signal (low bit of character counter)	

Figure 11-7
TMG pinouts

The timing generator (TMG)

A custom timing generator chip (TMG) generates several timing and control signals in the Apple IIc. The TMG pinouts are shown in Figure 11-7; the signals are listed in Table 11-9.

Table 11-9
TMG signal descriptions

Pin	Signal	Description			
1	14M	14.318-MHz master timing signal input			
2	7M	7.159-MHz timing signal			
3	CREF	3.5795-MHz color reference timing signal			
4	H0	Horizontal video timing signal			
5	VIDD7	Video data bit 7			
6	SEGB	Video timing signal			
7	TEXT	Video display text-modes enable			
8	CASEN*	RAM enable (CAS enable)			
9	80COL*	Enables 80-column display mode			
10	GND	Power and signal common			
11	TMGEN*	Enables master timing			
12	LDPS*	Video shift-register load enable			
13	VID7M	Video dot clock enable, 7 MHz or continuous 0			
14	ø1	Phase 1 system clock			
15	ø0	Phase 0 system clock			
16	Q3	Intermediate timing and strobe signal			
17	PCAS*	RAM column-address strobe			
18	N.C.	Reserved for testing			
19	PRAS*	RAM row-address strobe			
20	+5V	Power			

The general logic unit (GLU)

The general logic unit is a single chip that contains the miscellaneous logic required for the system. It provides

- □ all RAM read/write timing
- □ double high-resolution enable/disable
- □ soft-switch status registers
- □ write command registers
- □ IOU control for mouse interrupts
- □ double high-resolution soft switches

Figure 11-8 GLU pinouts

The GLU's pin assignments are shown in Figure 11-8 and its signals are listed in Table 11-10.

Table 11-10 GLU signal descriptions

Pin	Signal	Description
1	14M	Master clock (14.318 MHz)
2,3–7	A0,A3-A7	Address lines to select least significant byte of addresses on C0 page
8	ø0	Phase 0 of 1.0227-MHz processor sync clock
9	SELIO*	Device select for selecting most significant byte of the address
10	GR	Graphics mode select line
11	RESET*	Master reset for system; resets GLU
12	GND	Ground reference and negative supply
13	GLUEN*	Enables GLU
14	MD7	Indicates status of MMU flags on data bus bit 7
15	R/W*	Read/write qualifier input from processor
16	TEXT	Signal used to generate video timing in double high-resolution or not-graphics
17,18	N.C.	Not used
19	CREF	Color reference signal
20	7M	7-MHz clock output
21	DISK*	Disk controller device select output
22	IOUHOLE	Controls IOUSELIO
23	SER*	Serial controller device select output
24	+5V	+5 volt supply

The disk controller unit (IWM)

The IWM (for Integrated Woz Machine) is a disk controller that includes, on a single chip, all the capabilities of the disk controller card originally designed by Steve Wozniak in 1977.

Right after reset, the IWM is an integrated GCR (group code recording) disk drive controller. It also has a status register, mode register, and multiple operating modes. It provides both synchronous and asynchronous modes, and a fast mode with a data rate twice that of normal disk I/O speeds. Figure 11-9 shows the IWM pin assignments; Table 11-11 describes the IWM signals.

Table 11-11
IWM signal descriptions

Pin	Signal	Description
1	SEEKPH0	Stepper motor control phase 0, one of four programmable disk drive motor phase outputs.
2	SEEKPH2	Stepper motor control phase 2.
3	A 0	The data input to the state bit selected by A1 to A3.
46	A1-A3	These three inputs select one of the eight bits in the state register to be updated.
7	DISK*	Device enable. The falling edge of DISK* latches information on A1 to A3. The rising edge of either Q3 or DISK* qualifies write register data.
8	WRDATA	The serial data output. Each 1-bit causes a transition on this output.
9	WRREQ*	This signal is a programmable buffered output line.
10–13	D0-D3	D0 to D7 make up the bidirectional data bus.
14	GND	Ground reference and negative supply.
15–18	D4-D7	The remaining bits of the bidirectional data bus.
19	DR2*	Drive 2 select.

For further information on GCR, refer to "Disk I/O."

SEEKPH0	1	\bigcup	28	SEEKPH1
SEEKPH2	2		27	SEEKPH3
A0	3		26	+5V
A1	4		25	Q3
A2	5		24	7M
A3	6		23	RESET*
DISK*	7		22	RDDATA
WRDATA	8		21	WRPROT
WRREQ*	9		20	DR1*
D0	10		19	DR2*
D1	11		18	D7
D2	12		17	D6
D3	13		16	D5
GND	14		15	D4
	ı			

Figure 11-9 IWM pinouts

Table 11-11 (continued) IWM signal descriptions

Pin	Signal	Description
20	DR1*	Drive 1 select.
21	WRPROT	Write-protect input; this can be polled via bit 7 of the status register.
22	RDDATA	Serial data input line. The IWM synchronizes the falling transition of each pulse.
23	RESET*	IWM reset: places all IWM outputs in their inactive state and sets all state and mode register bits to 0.
24	7M	7-MHz clock input.
25	Q3	A 2.0-MHz clock input used to qualify the timing of the serial data being written or read.
26	+5V	The +5 volt supply.
27	SEEKPH3	Stepper motor control phase 3.
28	SEEKPH1	Stepper motor control phase 1.

Memory addressing

The 65C02 microprocessor can directly address 65,536 locations. The Apple IIc uses this entire address space, and then some: some areas in memory are used for more than one function. The following sections describe the memory devices used in the Apple IIc and the way they are addressed. Input and output also use portions of the memory address space; refer to Chapter 2 for information.

Figure 11-10 illustrates the Apple IIc's overall memory bus organization and memory selection signals.

♦ Note: Some Apple IIc's have ROMs with 27xx designations, some have 23xx. They are functionally equivalent.

Figure 11-10 Memory bus organization

2 27 (N.C.) A12 **A7** 3 26 A13 A6 4 25 **A8** 5 **A5** 24 A9 A4 6 23 A11 АЗ 7 22 OE* 8 21 A10 A2 9 20 CE* **A1** A0 10 19 D7 D₀ 11 18 D6 D1 12 17 D5 D2 13 D4 16

14

GND

28

+5V

D3

+5V

Figure 11-11 23128 ROM pinouts (in type 23256 ROM, pin #27 is A14)

15

ROM addressing

In the Apple IIc the following programs are permanently stored in a type 23128 16K-by-8-bit ROM (Figure 11-11):

- □ Applesoft editor and interpreter
- □ Monitor
- □ enhanced video firmware

UniDisk 3.5

The version of the Apple IIc that supports the UniDisk 3.5 uses a 23256 32K-by-8-bit ROM. It needs the extra space for the Protocol Converter, Mini-Assembler, and other added functions that it supports.

Memory expansion

The Apple IIc that supports the memory expansion card also uses the 23256 ROM IC.

The ROM is enabled by two signals called *ROMEN1* and *ROMEN2*. (In the Apple IIc, ROMEN1 and ROMEN2 are electrically connected.) The segment of the ROM enabled by ROMEN1 occupies the memory address space from \$C100 through \$DFFF. The address space from \$C300 through \$C3FF and much of \$C800 through \$CFFF contains the enhanced video firmware.

These ROM address allocations are approximately true (some space sharing takes place):

- □ ROM addresses \$C000 through \$C0FF are never available.
- □ ROM addresses \$C100 and \$C200 are entry points to firmware for serial ports 1 and 2, respectively.
- □ ROM address \$C400 is the entry point to mouse interface support.
- ☐ ROM addresses \$C500 through \$C5FF are reserved.
- □ ROM address \$C600 is the entry point to firmware for the built-in and external disk drives. The built-in drive is considered slot 6 drive 1 or its equivalent. The external drive is considered slot 6 drive 2.
- ☐ ROM addresses starting at \$C700 support (from the Monitor) the external drive as if it were slot 7 drive 1, for external-drive startup only.
- ☐ Addresses \$D000 through \$F7FF contain the Applesoft BASIC interpreter; addresses \$F800 through \$FFFF contain the Monitor firmware.

KA7 1 24 +5V KA6 2 23 KA8 KA5 3 22 CAPS KA4 4 21 +5V KA3 5 20 KBD* KA2 в 19 LANGSW KA1 7 **GND** 18 KA0 8 17 (N.C.) 9 16 D0 D6 D1 10 15 **D5** D2 11 14 D4 **GND** 12 13 D3

Figure 11-12 2316 ROM pinouts

Memory expansion

+5V	1	\bigcirc	28	+5V
A12	2		27	+5V
A7	3		26	+5V
A6	4		25	A8
A 5	5		24	A9
A4	6		23	A11
А3	7		22	GND
A2	8		21	A10
A1	9		20	WNDW*
A0	10		19	07
00	11		18	O6
01	12		17	O5
02	13		16	O4
GND	14		15	O3
				ı

Figure 11-13 2364 pinouts

The Apple IIc that supports the memory expansion card has a ROM map that is different from that given for the original and UniDisk 3.5 IIc. The memory expansion ROM map is provided in Appendix I.

The other ROMs in the Apple IIc are a type 2316 ROM (Figure 11-12) used for the keyboard character decoder, and a type 2364 ROM (Figure 11-13) used for character sets for the video display. This 2364 ROM is rather large because it includes a section of straight-through bit-mapping for the graphics modes. This way, graphics display video can pass through the same circuits as text without additional switching circuitry.

RAM addressing

The RAM (programmable) memory in the Apple IIc is used both for program and data storage and for the video display. The areas in RAM that are used for the display are accessed both by the 65C02 microprocessor and by the video display circuits. In some computers, this dual access results in addressing conflicts (cycle stealing) that can cause temporary dropouts in the video display. This problem does not occur in the Apple IIc, thanks to the way the microprocessor and the video circuits share the memory.

The memory circuits in the Apple IIc take advantage of the twophase system clock to interleave the microprocessor memory accesses and the display memory accesses so that they never interfere with each other. The microprocessor reads or writes to RAM only during Ø0, and the display circuits read data only during Ø1.

Dynamic RAM refreshment

The image on a video display is not permanent; it fades rapidly and must be refreshed periodically. To refresh the video display, the Apple IIc reads the data in the active display page and sends them to the display. To prevent visible flicker in the display, and to conform to standard practice for broadcast video, the Apple IIc refreshes the display 60 times per second.

The dynamic RAM devices used in the Apple IIc also need a kind of refreshment, because the data are stored in the form of electric charges that diminish with time and must be replenished. The Apple IIc is designed so that refreshing the display also refreshes the dynamic RAMs. The next few paragraphs explain how this is done.

The job of refreshing the dynamic RAM devices is minimized by the structure of the devices themselves. The individual data cells in each RAM device are arranged in a rectangular array of rows and columns. When the device is addressed, the part of the address that specifies a row is presented first, followed by the address of the column. Splitting information into parts that follow each other in time is called *multiplexing*. Because only half of the address is needed at one time, multiplexing the address reduces the number of pins needed for connecting the RAMs (Figure 11-14).

+5V	1	\cup	16	GND
MDx	2		15	CAS*
R/W*	3		14	MDx
RAS*	4		13	RA1
RA7	5		12	RA4
RA5	6		11	RA3
RA6	7		10	RA2
+5V	8		9	RA0
	_			4

Figure 11-14 64K RAM pinouts

Memory expansion

In the Apple IIc that supports the memory expansion card, the 16 64Kx1 RAM ICs used for the original and UniDisk 3.5 IIc's are replaced by 4 64Kx4 ICs.

Table 11-12
RAM address multiplexing

Mux'd address	Row address	Column address
RA0	A 0	A9
RA1	A1	A 6
RA2	A2	A10
RA3	A3	A11
RA4	A4	A12
RA5	A5	A13
RA6	A 7	A14
RA7	A8	A15

Different manufacturers' 64K RAMs have cell arrays of either 128 rows by 512 columns or 256 rows by 256 columns. Only the row portion of the address is used in refreshing the RAMs.

Now consider how the display is refreshed. As described later in this chapter, the display circuitry generates a sequence of 8,192 memory addresses in high-resolution mode; in text and low-resolution modes, this sequence is the 1,024 display-page addresses repeated 8 times. The display address cycles through this sequence 60 times a second, or once every 17 milliseconds. The way the low-order address lines are assigned to the RAMs, the row address cycles through all 256 possible values once every 2 milliseconds (see Table 11-12). This more than satisfies the refresh requirements of the dynamic RAMs.

Dynamic RAM timing

The Apple IIc's microprocessor clock runs at a speed of 1.023 MHz, but the interleaving of CPU and display cycles means that the RAM is being accessed at a 2-MHz rate, or a cycle time of just under 500 nanoseconds. Data for the CPU are strobed by the falling edge of Ø0, and display data are strobed by the falling edge of Ø1, as shown in Figure 11-15.

The RAM timing looks complicated because the RAM address is multiplexed, as described previously. The MMU takes care of multiplexing the address for the CPU cycle, and the IOU performs the same function for the display cycle. The multiplexed address is sent to the RAM ICs over the lines RA0–RA7 (Table 11-13). Along with the other timing signals, the TMG generates two signals that control the RAM addressing: row-address strobe (RAS) and column-address strobe (CAS).

Table 11-13 RAM timing signals

Signal	Description			
ø0	Clock phase 0 (CPU phase)			
ø1	Clock phase 1 (display phase)			
RAS	Row-address strobe			
CAS	Column-address strobe			
Q3	Alternate RAM/column-address strobe			
RA0-RA7	Multiplexed address bus			
MD0-MD7	Internal data bus			

Figure 11-15 RAM timing signals

The keyboard

The Apple IIc's keyboard is a matrix of key switches connected to an AY-3600-type keyboard decoder via a ribbon cable and a 26-pin connector (Figure 11-16). The AY-3600 scans the array of keys over and over to detect any keys pressed. The scanning rate is set by the external resistor-capacitor network made up of C46 and R6. The debounce time is also set externally, by C45.

Figure 11-16 Keyboard circuit diagram

The AY-3600's outputs include five bits of key code plus separate lines for Control, Shift, any-key-down, and keyboard strobe. The any-key-down and keyboard-strobe lines are connected to the IOU, which addresses them as soft switches. The key-code line and Control and Shift are inputs to a separate 2316 ROM. The ROM translates them to the character codes that are enabled onto the data bus by signals named *KBD** and *ENKBD**. The KBD* signal is enabled by the MMU whenever a program reads location \$C000, as described in Chapter 2.

Figure 11-17 illustrates the events that occur when a key is pressed, when the keypress is detected by a program, and when a key is pressed and held for more than about a second.

Figure 11-17 Keyboard signals

The speaker

The Apple IIc's built-in loudspeaker is controlled by a single bit of output from the input/output unit (IOU), amplified by a hybrid circuit (Figure 11-18).

Figure 11-18 Speaker circuit diagram

Volume control

There is a 500-ohm variable resistor feeding anywhere from 0 to 5 volts to pin 5 of **AUD** to control the speaker volume. This potentiometer controls the volume of both the built-in speaker and whatever is plugged into the output jack.

AUD is an audio-amplifier hybrid circuit.

Output jack

Next to the volume control, along the lower-left side of the Apple IIc case, there is a 3.5-mm audio output jack. Although speaker output is monaural, the jack accommodates stereo headphone plugs (as well as monaural), providing sound to both channels. Inserting a headphone plug into the jack disconnects the built-in speaker.

The video display

The Apple IIc produces a video signal that creates a display on a standard video monitor or, if you add an RF modulator, on a black-and-white or color television set. The video signal is a composite made up of the data that are being displayed plus the horizontal and vertical synchronization signals that the video monitor uses to arrange the lines of display data on the screen.

Note: Apple IIc computers manufactured for sale in the USA generate a video signal that is compatible with the standards set by the NTSC (National Television Standards Committee). Apple IIc's used in European countries require an external adapter to provide video that is compatible with the standard used there, which is called PAL (for phase alternating lines). References to the PAL standard are found in the bibliography at the end of this manual. This manual describes only the NTSC version of the video circuits.

The display portion of the video signal is a time-varying voltage generated from a stream of data bits, where a 1 corresponds to a voltage that generates a bright dot, and a 0 to a dark dot. The display bit stream is generated in bursts that correspond to the horizontal lines of dots on the video screen. The signal named WNDW* is low during these bursts.

During the time intervals between bursts of data, nothing is displayed on the screen. During these intervals, called the blanking intervals, the display is blank and the WNDW* signal is high. The synchronization signals, called sync for short, are produced by making the signal named SYNC* low during portions of the blanking intervals. The sync pulses are at a voltage equivalent to blacker-than-black video and don't show on the screen.

The video counters

The address and timing signals that control the generation of the video display are all derived from a chain of counters inside the IOU. Only a few of these counter signals are accessible from outside the IOU, but they are all important in understanding the operation of the display generation process, particularly the display memory addressing described in the next section.

The horizontal counter is made up of seven stages: H0, H1, H2, H3, H4, H5, and HPE*. The input to the horizontal counter is the 1-MHz signal that controls the reading of data being displayed. The complete cycle of the horizontal counter consists of 65 states. The six bits H0 through H5 count from 0 to 64, then start over at 0. Whenever this happens, HPE* forces another count with H0 through H5 held at 0, extending the total count to 65.

The IOU uses the 40 horizontal count values from 25 through 64 in generating the low-order part of the display data address. The IOU uses the count values from 0 to 24 to generate the horizontal blanking, the horizontal sync pulse, and the color-burst gate.

When the horizontal count gets to 65, it signals the end of a line by triggering the vertical counter. The vertical counter has nine stages: VA, VB, VC, V0, V1, V2, V3, V4, and V5. When the vertical count reaches 262, the IOU resets it and starts counting again from 0. Only the first 192 scanning lines are actually displayed; the IOU uses the vertical counts from 192 to 262 to generate the vertical blanking and sync pulse. Nothing is displayed during the vertical blanking interval. (The vertical line count is 262 rather than the standard 262.5 because, unlike normal television, the Apple IIc's video display is not interlaced.)

Display memory addressing

As described in Chapter 5, data bytes are not stored in memory in the same sequence in which they appear on the display. You can get an idea of the way the display data are stored by using the Monitor to set the display to graphics mode, then storing data starting at the beginning of the display page at hexadecimal \$0400 and watching the effect on the display. If you do this, you should use the graphics display instead of text to avoid confusion: the text display is also used for Monitor input and output.

If you want your program to display data by storing them directly into the display memory, you must first transform the display coordinates into the appropriate memory addresses, as shown in Chapter 2. The descriptions that follow will help you understand how this address transformation is done and why it is necessary.

The address transformation that folds three rows of 40 display bytes into 128 contiguous memory locations is the same for all display modes, so it is described first. The differences among the different display modes are described later in this chapter.

Display address mapping

Consider the simplest display on the Apple IIc, the 40-column text mode. To address 40 columns requires 6 bits, and to address 24 rows requires another 5 bits, for a total of 11 address bits. Addressing the display this way would involve 2048 (2 to the 11th power) bytes of memory to display a mere 960 characters. The 80-column text mode would require 4096 bytes to display 1920 characters. The leftover chunks of memory that were not displayed could be used for storing other data, but not easily, because they would not be contiguous.

Instead of using the horizontal and vertical counts to address memory directly, the circuitry inside the IOU transforms them into the new address signals described below. The transformed display address must meet the following criteria:

- □ map the 960 bytes of 40-column text into only 1024 bytes
- □ scan the low-order address to refresh the dynamic RAMs
- □ continue to refresh the RAMs during video blanking

The transformation involves only horizontal counts H3, H4, and H5, and vertical counts V3 and V4. Vertical count bits VA, VB, and VC address the lines making up the characters, and are not involved in the address transformation. The remaining low-order count bits, H0, H1, H2, V0, V1, and V2 are used directly, and are not involved in the transformation.

The IOU performs an addition that reduces the five significant count bits to four new signals S0, S1, S2, and S3, where S stands for sum. Figure 11-19 is a diagram showing the addition in binary form, with V3 appearing as the carry in and H5 appearing as its complement H5*. A constant value of 1 appears as the low-order bit of the addend. The carry bit generated with the sum is not used.

If this transformation seems terribly obscure, try it with actual values. For example, for the upper-left corner of the display, the vertical count is 0 and the horizontal count is 24: H0, H1, H2, and H5 are 0's, and H3 and H4 are 1's. The value of the sum is 0, so the memory location for the first character on the display is the first location in the display page, as you might expect.

The requirements for RAM refreshing are discussed earlier in this chapter under "RAM addressing."

Table 11-14
Display memory
addressing

Memory address bit	Display address bit
A0	но
A 1	H1
A2	H2
A3	S0
A4	S1
A5	S2
A 6	S3
A7	V0
A8	V1
A9	V2
A10	•
A11	•
A12	•
A13	*
A14	•
A15	GND

For these address bits, see Table 11-15.

			V3	Carry in
H5*	V3	H4	НЗ	Augend
V4	H5*	V4	1	Addend
S3	S2	S1	50	Sum

Figure 11-19
Display address transformation

Horizontal bits H0, H1, and H2 and sum bits S0, S1, and S2 make up the transformed horizontal address (A0 through A6 in Table 11-14). As the horizontal count increases from 24 to 63, the value of the sum (S3 S2 S1 S0) increases from 0 to 4 and the transformed address goes from 0 to 39, relative to the beginning of the display page.

The low-order three bits of the vertical row counter are V0, V1, and V2. These bits control address bits A7, A8, and A9, as shown in Table 11-14, so that rows 0 through 7 start on 128-byte boundaries. When the vertical row counter reaches 8, V0, V1, and V2 are 0 again, and V3 changes to 1. If you do the addition in Figure 11-19 with H equal to 24 (the horizontal count for the first column displayed) and V equal to 8, the sum is 5 and the horizontal address is 40: the first character in row 8 is stored in the memory location 40 bytes from the beginning of the display page.

Table 11-14 shows how the signals from the video counters are assigned to the address lines. H0, H1, and H2 are horizontal-count bits, and V0, V1, and V2 are vertical-count bits. S0, S1, S2, and S3 are the folded address bits described above. Table 11-15 shows memory address bits for the display modes.

Table 11-15
Memory address bits for display modes

Address bit	Text and low resolution	High resolution and double high resolution
A10	80STORE+PAGE2'	VA
A11	80STORE'.PAGE2	VB
A12	0	VC
A13	0	80STORE+PAGE2'
A14	0	80STORE'.PAGE2

Note: Period (,) means logical AND; prime (') means logical NOT.

Figure 11-20 shows how groups of three 40-character rows are stored in blocks of 120 contiguous bytes starting on 128-byte address boundaries. This diagram is another way of describing the display mapping shown in Figure 5-5. Notice that the three rows in each block of 120 bytes are not adjacent on the display.

	—	128 Bytes -	w	
	← 40 Bytes →	40 Bytes →	← 40 Bytes ← ►	Bytes
\$400	Row 0	Row 8	Row 16	**
\$480	Row 1	Row 9	Row 17	**
\$500	Row 2	Row 10	Row 18	**
\$580	Row 3	Row 11	Row 19	**
\$600	Row 4	Row 12	Row 20	**
\$680	Row 5	Row 13	Row 21	**
\$700	Row 6	Row 14	Row 22	**
\$780	Row 7	Row 15	Row 23	**

Figure 11-20
40-column text display memory (memory locations marked with a double asterisk ** are screen holes, described in Chapter 2)

Video display modes

The different display modes all use the address-mapping scheme described later in this chapter, but they use different-sized memory areas in different locations. This section describes the addressing schemes and the methods of generating the actual video signals for the different display modes. Figure 11-21 illustrates the video display circuits discussed in this section.

Figure 11-21 Video display circuits

Text displays

The text and low-resolution graphics pages begin at memory locations \$0400 and \$0800. Table 11-15 shows how the display-mode signals control the address bits to produce these addresses. Address bits A10 and A11 are controlled by the settings of Page2 and 80Store, the display-page and 80-column-video soft switches. Address bits A12, A13, and A14 are set to 0. Notice that 80Store active inhibits Page2: there is only one display page in 80-column mode.

The low-order six bits of each data byte reach the character generator directly, via the video data bus VID0-VID5. The two high-order bits are modified by the IOU to select between the primary and alternate character sets and are sent to the character generator on lines RA9 and RA10.

The data for each row of characters are read eight times, once for each of the eight lines of dots making up the row of characters. The data bits are sent to the character generator along with VA, VB, and VC, the low-order bits from the vertical counter. For each character being displayed, the character generator puts out one of eight stored bit patterns selected by the three-bit number made up of VA, VB, and VC.

The bit patterns from the character generator are loaded into the 74166 parallel-to-serial shift register and output as a serial bit stream that goes to the video output circuit (Figure 11-21). The shift register is controlled by signals named LDPS* (for load parallel-to-serial shifter) and VID7M (for video 7 MHz). In 40-column mode, LDPS* strobes the output of the character generator into the shift register once each microsecond, and VID7M shifts the bits out at 7 MHz (Figure 11-22).

The addressing for the 80-column display is exactly the same as for the 40-column display: the 40 columns of display memory in auxiliary memory are addressed in parallel with the 40 columns in main memory. The data from these two memories reach the video data bus (lines VID0-VID7) via separate 74LS374 three-state buffers. These buffers are loaded simultaneously (at the rising edge of Ø0), but their outputs are sent to the character generator alternately by the falling edge of Ø0 and Ø1. In 80-column mode, LDPS* loads data from the character generator into the shift register twice during each microsecond, once during Ø0 and once during Ø1, and VID7M remains low, enabling the clock continuously at 14M (Figure 11-23).

Figure 11-22
7-MHz video timing signals: 40-column, low-resolution, and high-resolution display

Figure 11-23
14-MHz video timing signals: 80-column and double high-resolution display

Low-resolution display

In the graphics modes, VA and VB are not used by the character generator, so the IOU uses lines SEGA and SEGB to transmit H0 and HIRES*, as shown in Table 11-16.

Table 11-16
Character-generator control signals

Display mode	SEGA	SEGB	SEGC
Text	VA	VB	VC
Graphics	H0	HIRES*	VC

The low-resolution graphics display uses VC to divide the eight display lines corresponding to a row of characters into two groups of four lines each. Each row of data bytes is addressed eight times, the same as in text mode, but each byte is interpreted as two nibbles. Each nibble selects 1 of 16 colors. During the upper four of the eight display lines, VC is low and the low-order nibble determines the color. During the lower four display lines, VC is high and the high-order nibble determines the color.

The bit patterns that produce the low-resolution colors are read from the character-generator ROM in the same way the bit patterns for characters are produced in text mode. The 74166 parallel-to-serial shift register converts the bit patterns to a serial bit stream for the video circuits (Figure 11-21).

The video signal generated by the Apple IIc includes a short burst of 3.58-MHz signal that is used by an NTSC color monitor or color TV set to generate a reference 3.58-MHz color signal. The Apple IIc's video signal produces color by interacting with this 3.58-MHz signal inside the monitor or TV set. Different bit patterns produce different colors by changing the duty cycles and delays of the bit stream relative to the 3.58-MHz color signal. To produce the small delays required for so many different colors, the shift register runs at 14 MHz and shifts out 14 bits during each cycle of the 1-MHz data clock. To generate a stream of 14 bits from each 8-bit pattern read from the ROM, the output of the shift register is connected back to the register's serial input to repeat the same 8 bits; the last 2 bits are ignored the second time around.

Each bit pattern is output for the same amount of time as a character: 1.02 microseconds. Because that is exactly enough time for three and a half cycles of the 3.58-MHz color signal, the phase relationship between the bit patterns and the signal changes by a half cycle for each successive pattern. To compensate for this, the character generator puts out one of two different bit patterns for each nibble, depending on the state of H0, the low-order bit of the horizontal counter.

High-resolution display

The high-resolution graphics pages begin at memory locations \$2000 and \$4000 (decimal 8192 and 16384). These page addresses are selected by address bits A13 and A14. In high-resolution mode, these address bits are controlled by PAGE2 and 80STORE, the signals controlled by the display-page (Page2) and 80-column-video (80Col) soft switches. As in text mode, 80STORE inhibits addressing of the second page because there is only one page of 80-column text available for mixed mode.

In high-resolution graphics mode, the display data are still stored in blocks like the one shown in Figure 11-20, but there are eight of these blocks. As Tables 11-14 and 11-15 show, vertical counts VA, VB, and VC are used for address bits A10, A11, and A12, which address eight blocks of 1024 bytes each. Remember that in the display, VA, VB, and VC count adjacent horizontal lines in groups of eight. This addressing scheme maps each of those lines into a different 1024-byte block.

It might help to think of this scheme as a kind of eight-way multiplexer: it's as if eight text displays were combined to produce a single high-resolution display, with each text display providing one line of dots in turn, instead of a row of characters.

The high-resolution bit patterns are produced by the charactergenerator ROM. In this mode, the bit patterns simply reproduce the seven bits of display data. The low-order six bits of data reach the ROM via the video data bus VIDO-VID5. The IOU sends the other two data bits to the ROM via RA9 and RA10. The high-resolution colors described in Chapter 2 are produced by the interaction between the video signal the bit patterns generate and the 3.58-MHz color signal generated inside the monitor or TV set. The high-resolution bit patterns are always shifted out at 7 MHz, so each dot corresponds to a half-cycle of the 3.58-MHz color signal. Any part of the video signal that produces a single white dot between two black dots, or vice versa, is effectively a short burst of 3.58 MHz and is therefore displayed as color. In other words, a bit pattern consisting of alternating 1's and 0's gets displayed as a line of color. The high-resolution graphics subroutines produce the appropriate bit patterns by masking the data bits with alternating 1's and 0's.

To produce different colors, the bit patterns must have different phase relationships to the 3.58-MHz color signal. If alternating 1s and 0's produce a certain color, say green, then reversing the pattern to 0's and 1's will produce the complementary color, purple. As in the low-resolution mode, each bit pattern corresponds to three and a half cycles of the color signal, so the phase relationship between the data bits and the color signal changes by a half cycle for each successive byte of data. Here, however, the bit patterns produced by the hardware are the same for adjacent bytes; the color compensation is performed by the high-resolution software, which uses different color masks for data being displayed in even and odd columns.

To produce other colors, bit patterns must have other timing relationships to the 3.58-MHz color signal. In high-resolution mode, the Apple IIc produces two more colors by delaying the output of the shift register by half a dot (70 ns), depending on the high-order bit of the data byte being displayed. (The high-order bit doesn't actually get displayed as a dot, because at 7 MHz there is only time to shift out seven of the eight bits.)

As each byte of data is sent from the character generator to the shift register, high-order data bit D7 is also sent to the TMG. If D7 is off, the TMG transmits shift-register timing signals LDPS* and VID7M normally. If D7 is on, the TMG delays LDPS* and VID7M by 70 nanoseconds, the time corresponding to half a dot. The bit pattern that formerly produced green now produces orange; the pattern for purple now produces blue.

A note about timing: For 80-column text, the shift register is clocked at twice normal speed. When 80-column text is used with graphics in mixed mode, the TMG controls shift-register timing signals LDPS* and VID7M so that the graphics portion of the display works correctly even when the text window is in 80-column mode.

Double high-resolution display

Double high-resolution graphics mode displays two bytes in the time normally required for one, but it uses high-resolution graphics Pages 1 and 1X instead of text and low-resolution Pages 1 and 1X.

♦ Note: There is a second pair of bytes, HRP2 and HRP2X, which can be used to display a second double high-resolution page.

Double high-resolution graphics mode displays each pair of data bytes as 14 adjacent dots, 7 from each byte. The high-order bit (color-select bit) of each byte is ignored. The auxiliary-memory byte is displayed first, so data from auxiliary memory appear in columns 0–6, 14–20, and so on, up to columns 547–552. Data from main memory appear in columns 7–13, 21–27, and so on, up to 553–559.

As in 80-column text, there are twice as many dots across the display screen, so the dots are only half as wide. On a TV set or low-bandwidth (less than 14 MHz) monitor, single dots are dimmer than normal.

Note: Except for some expensive RGB-type color monitors, any video monitor with a bandwidth as high as 14 MHz will be a monochrome monitor. Monochrome means one color: a monochrome video monitor can have a screen color of white, green, orange, or any other single color.

The main memory and auxiliary memory are connected to the address bus in parallel, so both are activated during the display cycle. The rising edge of Ø0 clocks a byte of main memory data into the video latch, and a byte of auxiliary memory data into the 80 latch (Figure 11-21).

Phi 1 enables output from the (auxiliary) 80 latch, and ø0 enables output from the (main) video latch. Output from both latches goes to CHARGEN, where GR and SEGB* select high-resolution graphics. LDPS operates at 2 MHz in this mode, alternately gating the auxiliary byte and main byte into the parallel-to-serial shift register. VID7M is active (kept true) for double high-resolution display mode, so when it is ANDed with 14M, the result is still 14M. The 14M serial clock signal gates shift register output to VID, the video display hybrid circuit, for output to the display device.

RGB stands for red, green, and blue, and identifies a type of color monitor that uses independent inputs for the three primary colors.

For further information about double high-resolution graphics display, refer to the Bibliography.

VID is a video-amplifier hybrid circuit.

Video output signals

The stream of video data generated by the display circuits described above goes to a hybrid circuit (VID) that adjusts the signals to the proper amplitudes and conditions the color burst.

The resulting video signal is an NTSC-compatible composite-video signal that can be displayed on a standard video monitor. The signal is similar to the EIA (Electronic Industries Association) standard positive composite video. This signal is available in two places in the Apple IIc (Figure 11-24):

- □ at the video output connector on the back of the Apple IIc
- ☐ at the video expansion connector (pin 12) on the back panel (Table 11-17)

Monitor output

The sleeve of the video output connector at the center of the Apple IIc back panel is connected to ground and the tip is connected to the video output through a resistor network that attenuates it to about 1 volt and matches its impedance to 75 ohms. This arrangement is suitable for most video monitors.

Figure 11-24
Video output back panel connectors

Video expansion output

The back panel of the Apple IIc has a DB-15 connector for sophisticated video interfaces external to the computer. Figure 11-25 shows the pin assignments for this connector; Table 11-17 describes the signals. In Table 11-17, the column labeled *Deriv* indicates what clock signals the video signals are derived from. LDPS, CREF, and PRAS have a maximum delay of 30 ns from the appropriate 14-MHz rising edge. SEROUT is clocked out of a 74LS166 by the rising edge of 14M and has a maximum delay of 35 ns. VIDD7 is driven from a 74LS374 and has a maximum delay of 28 ns from the rising and (if 80-column) falling edges of Ø1.

To align CREF so it is in the same phase at the beginning of every line, certain clock signals must be stretched. This stretch is for one 7M cycle (140 ns), and occurs at the end of each video line. All timing signals except 14M, 7M, and CREF are stretched.

Warning

The maximum allowable current drain of +12V regulated power at the video expansion connector is 300 milliamps. If the external device draws more than this, it can damage the computer or cause the power supply to shut down.

Warning

The signals at the DB-15 on the Apple IIc are not the same as those at the DB-15 on the Apple III. Do not attempt to plug a cable intended for one into the other.

Several of these signals, such as 14 MHz, must be buffered within about 4 inches (10 cm) of the back panel connector—preferably inside a container directly connected to the back panel. For technical information, contact Apple Technical Support.

Pin	Signal	Pin	Signal
1	TEXT	9	PRAS*
2	14 M	10	GR
3	SYNC*	11	SEROUT*
4	SEGB	12	NTSC
5	1VSOUND	13	GND
6	LDPS*	14	VIDD7
7	WNDW*	15	CREF
8	+12V		

Figure 11-25 Video expansion connector plnouts

Table 11-17 Video expansion connector signals

Pin	Deriv	Signal	Description
1	ø0	TEXT	Video text signal from TMG; set to inverse of GR, except in double high-resolution mode
2		14M	14-MHz master timing signal from the system oscillator
3	Q3	SYNC*	Displays horizontal and vertical synchronization signal from IOU pin 39
4	PRAS	SEGB	Displays vertical counter bit from IOU pin 4; in text mode indicates second low-order vertical counter; in graphics mode indicates low-resolution
5		1VSOUND	One-volt sound signal from pin 5 of the audio hybrid circuit (AUD)
6	14M	LDPS*	Video shift-register load enable from pin 12 of TMG
7	PRAS	WNDW*	Active area display blanking; includes both horizontal and vertical blanking

Table 11-17 (continued)
Video expansion connector signals

Pin	Deriv	Signal	Description
8		+12V	Regulated +12 volts DC; can drive 300 mA
9	14M	PRAS*	RAM row-address strobe from TMG pin 19
10	PRAS	GR	Graphics mode enable from IOU pin 2
11	14M	SEROUT*	Serialized character-generator output from pin 1 of the 74LS166 shift register
12		NTSC	Composite NTSC video signal from VID hybrid chip
13		GND	Ground reference and supply
14	ø0	VIDD7	From 74LS374 video latch; causes half-dot shift if high
15	14M	CREF	Color reference signal from TMG pin 3; 3.58 MHz

Disk I/O

Disk I/O—for both the built-in and the external drive—is supported by the IWM disk controller unit. The external drive is attached via a DB-19 connector. Figure 11-26 shows this connector. Table 11-18 describes the pin assignments. Supply voltages come from the power supply; all other signals come from the IWM, described earlier in this chapter.

Warning

The power available at this connector is for a Disk IIc or similar drive only. Do not use power from the external disk connector for any other purpose—you may damage the internal voltage converter. To derive external power for an attached device, use one of the other connectors and observe the current limits given in this manual.

Pin	Signal	Pin	Signal
1,2,3,4	GND	13	SEEKPH2
5	—12V	14	SEEKPH3
6	+5V	15	WRREQ*
7,8	+12V	16	N.C.
9	EXTINT*	17	DR2*
10	WRPROT	18	RDDATA
11	SEEKPH0	19	WRDATA
12	SEEKPH1		

Figure 11-26 Disk drive connector

Table 11-18Disk drive connector signals

Connector					
pin	Signal	Description			
1,2,3,4	GND	Ground reference and supply			
6	+5V	+5 volt supply			
7,8	+12	+12 volt supply			
9	EXTINT*	External interrupt			
10	WRPROT	Write-protect input			
11-14	ø0-4	Motor phase 0-4 output			
15	WRREQ*	Write request			
17	DR1*	Drive 1 select			
18	RDDATA	Read data input			
19	WRDATA	Write data output			

Serial I/O

The Apple IIc has built into it two 6551 asynchronous communication interface adapters (ACIA) and supporting input and output buffers for full-duplex serial communication. Figure 11-27 is a block diagram of the Apple IIc serial ports. ACIA outputs are buffered by a 1448-quad line driver. Similarly, ACIA inputs are buffered by a 1489-quad line receiver.

Figure 11-27 Serial port circuits

Figure 11-28 is a detailed block diagram of the 6551 ACIA. The registers are described later in this chapter.

Figure 11-28
6551 ACIA block diagram (copyright © 1978 by Synertek Inc.; used by permission)

The 6551 pin assignments are shown in Figure 11-29 and described in Table 11-19. Note that the two 6551's are not used in exactly the same way—each one supports a different set of interrupts.

Port 1 reads external interrupts (EXTINT*) on its Data Set Ready (DSR) pin. This input is tied to +5V through a 3.3-K Ω pullup resistor.

GND	1	\cup	28	R/W*
A5	2		27	ø0
SER*	3		26	IRQ*
RESET*	4		25	D7
(N.C.)	5		24	D6
BCLK	6		23	D5
(N.C.)	7		22	D4
RTS*	8		21	D3
CTS*	9		20	D2
TxD	10		19	D1
(N.C.)	11		18	DO
RxD	12		17	DSR*
A0	13		16	DCD.
A1	14		15	+5V

Figure 11-29 6551 pinouts

Table 11-19 6551 signal descriptions

Pin	Signal	Description
1	GND	Power and signal common ground
2	A4 A5	Address line 4 to select serial port 1 Address line 5 to select serial port 2
3	SER*	Serial device select from GLU
4	RESET*	Resets both serial ports
5	N.C.	Not connected
6	BCLK	Baud rate clock from GLU
7	N.C.	Not connected
8	RTS*	Request to Send output
9	CTS*	Clear to Send input (not used on IIc; tied to ground)
10	TXD	Transmit Data output
11	N.C.	Not connected
12	RXD	Receive Data input
13,14	A0,A1	Address lines 0 and 1
15	+5V	+5 volt supply
16	DSR	DCD* pin; used on IIc as Data Set Ready input
17	EXTINT* KSTRB	DSR*pin; used on IIc as External interrupt (port 1 ACIA), or Keyboard strobe input (port 2 ACIA; Appendix E)
18–25	D0-D7	8-bit data bus
26	IRQ*	Interrupt Request input
27	ø0	Phase 0 clock pulse
28	R/W*	Read/write select input

Pin	Port 1	Port 2
1	DTR1B	DTR2B
2	TD1B	TD2B
3	GND	GND
4	RD1B	RD2B
5	DSR1B	DSR2B

Figure 11-30 Serial port connectors

The back panel connectors for both serial ports are 5-pin DIN jacks. The pin assignments are shown in Figure 11-30 and described in Table 11-20.

Table 11-20 Serial port connector signals

	•	•
Pin	Signal	Description
1	DTR1B DTR2B	Data Terminal Ready output
2	TD1B TD2B	Transmit Data output
3	GND	Power and signal common
4	RD1B RD2B	Read Data input
5	DSR1B DSR2B	Data Set Ready input

ACIA control register

Figure 11-31 shows the bit assignments for the ACIA control register, which the hardware locates at address \$C09B for serial port 1, and \$C0AB for serial port 2. This register determines the number of data and stop bits the ACIA will transmit and receive, and the clock source and baud rate to use for data transfer.

The receiver clock source is derived from the Apple IIc's TMG chip; the resulting baud rates are equal to or up to two percent lower than the nominal rate. (The EIA standard allows plus or minus two percent variation.) If an Apple IIc serial port is used with a modem that is two percent above the nominal rate, framing errors can occur, especially at 1200 baud and above, when using 8 data bits. It may be necessary to select a lower baud rate for 8-bit binary data transfers.

^{**}This allows for 9-bit transmission (8 data plus parity).

	7	6	5	4	3	2	1	0
Hardware Reset	0	0	0	0	0	0	0	0
Program Reset	-	-	_	_	-	-	-	-

Figure 11-31
ACIA control register (copyright © 1978 by Synertek Inc.; used by permission)

ACIA command register

Figure 11-32 shows the bit assignments for the ACIA command register, which the hardware locates at address \$C09A for serial port 1, and at \$C0AA for serial port 2. This register controls specific transmit and receive functions: parity checking, echoing input to output, allowing transmit and receive interrupts, and setting levels for Data Terminal Ready and Request to Send.

Figure 11-32
ACIA command register (copyright © 1978 by Synertek Inc.; used by permission)

ACIA status register

Figure 11-33 shows the bit assignments for the ACIA status register, which is hard-wired to address \$C099 for serial port 1, and \$C0A9 for serial port 2. This register reports the condition of the transmit/receive register, errors detected during data transfer, and the level of the Data Carrier Detect, Data Set Ready, and Interrupt Request lines.

[†] No interrupt generated for these conditions.

^{**} Cleared automatically after a read of RDR and the next error-free receipt of data.

	7	6	5	4	3	2	1	Q
Hardware Reset	0	0	0	0	0	0	0	O
Program Reset	_	_	_	_	_	_	_	_

Figure 11-33
ACIA status register (copyright © 1978 by Synertek Inc.; used by permission)

ACIA transmit/receive register

Each ACIA uses the same address—\$C098 for serial port 1, \$C0A8 for serial port 2—as temporary storage for both transmission and reception of data.

When the register is used for transmitting data, bit 0 is the leading bit to be transmitted; unused data bits are the high-order bits, which are ignored.

When the register is used for receiving data, bit 0 is the first bit received; unused data bits are the high-order bits, which are set to 0. Parity bits never appear in the receive data register; they are stripped off after being used for external parity checking.

Mouse input

The mouse is a hand-held X-Y pointing device that can be rolled along a flat surface. It has an attached pushbutton. This section describes how mouse movement and direction can be detected and interpreted.

A mouse has a ball inside its housing that protrudes a small distance so that its turning corresponds to mouse movements across a table top. Two wheels inside the housing, set at 90-degree angles to each other, follow movements of the ball; this causes two disks to rotate. The disks have rectangular holes arranged near their edges, making them resemble circular slide mounts used with stereoscopic slide viewers.

The light from a tiny infrared emitter reaches a photoreceptor whenever one of the holes on the disk lies between them. An internal circuit in the mouse causes the resulting voltage to swing quickly to a 1 or a 0 value as soon as a certain threshold is crossed. The result is something approximating a square wave (Figure 11-34) that varies directly with the speed of mouse movement. One of these indicates the X component (X0) of mouse movement; the other, the Y component (Y0).

Figure 11-34 Sample mouse waveform

Under program control, either the rising edge or the falling edge of each square wave can cause an interrupt, which the firmware handles by updating a counter. However, the program needs to know whether to add or to subtract 1 from a counter; that is, it needs to know the direction of X or Y movement.

There is a second infrared emitter/photoreceptor pair almost 180 degrees opposite the first pair for each disk. These pairs are positioned in such a way that the square waves they generate are approximately a quarter-wave offset from their respective movement waves (Figure 11-35). These waveforms are called X1 (X direction) and Y1 (Y direction).

Figure 11-35
Mouse movement and direction waveforms

Pin	Signal			
1	MOUSEID*			
2	+5V			
3	GND			
4	XDIR			
5	XMOVE			
6	(N.C.)			
7	MSW*			
8	YDIR			
9	YMOVE			

Figure 11-36 Mouse connector

When a rising edge of X0 causes an interrupt, a mouse-driver program can immediately check whether X1 is 0 (indicating a movement to the right) or 1 (indicating a movement to the left). Similarly, the mouse driver can read Y1 immediately after a Y0 interrupt to determine whether the mouse moved up or down one count along the Y axis.

Figure 11-36 shows the pin assignments for the mouse DB-9 connector on the back panel. Table 11-21 gives the signal names and descriptions.

Table 11-21 Mouse connector signals

Pin	Signal	Description			
1	MOUSEID*	Mouse identifier: when active, disables NE556 hand controller timer			
2	+5V	Total current drain from this pin must not exceed 100 mA			
3	GND	System ground			
4	XDIR	Mouse X-direction indicator			
5	XMOVE	Mouse X-movement interrupt			
6	N.C.	Not connected			
7	MSW*	Mouse button			
8	YDIR	Mouse Y-direction indicator			
9	YMOVE	Mouse Y-movement interrupt			

Figure 11-37 shows the mouse and hand controller circuitry with the mouse circuits emphasized. Figure 11-38 illustrates the values of the mouse-button circuit when the button is pressed or not pressed. Pressing the button disables the NE556 by pulling the reset comparator threshold value up so that it cannot reset the flip flop. As a result the mouse-button input value remains at a TTL level.

Figure 11-37 Mouse circuits

Figure 11-38

Mouse button signals

Signal

O 1 3 573 OTT 7

Pin

1	GAMESW1
2	+5V
3	GND
4	Not used for hand controllers
5	PDL0
6	(N.C.)
7	GAMESW0
8	PDL1
9	Not used for hand controllers

Figure 11-39
Hand controller connector

Hand controller input

Several input signals that are individually controlled via soft switches are collectively referred to as the **hand controller** (game) signals. These signals arrive in the Apple IIc via the same DB-9 connector as the one used for the mouse, but the Apple IIc interprets these signals differently.

The DB-9 connector pin assignments and signal descriptions, as used for hand controller input, appear in Figure 11-39 and Table 11-22.

Even though they are normally used for hand controllers, these signals can be used for other simple I/O applications. There are two 1-bit switch inputs, labeled *Sw0* and *Sw1*, and two analog inputs, called *paddles* and labeled *Pdl0* and *Pdl1*. Figure 11-40 shows how to connect the 1-bit switch inputs for compatibility with all other Apple II series computers.

The switch inputs are multiplexed by a 74LS251 8-to-1 multiplexer enabled by the C06X* signal from the MMU. Depending on the low-order address, the appropriate game input is connected to bit 7 of the data bus. Figure 11-41 shows the mouse and hand controller circuitry with the hand controller circuits highlighted. Figure 11-42 illustrates the values of the hand controller switch inputs when the switch is open or closed.

Table 11-22 Hand controller connector signals

Pin Signai		Description			
1	GAMESW1	Switch input 1 (sometimes called paddle button 1).			
2	+5V	+5V power supply; total current drain from this pin must not exceed 100 mA			
3	GND	System ground.			
4,9		Not used for hand controllers.			
5,8	PDLO and PDL1	Hand controller inputs; each of these must be connected to a 150-K Ω variable resistor connected to +5V.			
6	N.C.	Not connected.			
7	GAMESW0	Switch input 0 (sometimes called paddle button 0).			

Figure 11-41 Hand controller circuits

Figure 11-42 Hand controller signals

The hand controller inputs are connected to the timing inputs of an NE556 dual analog timer. Addressing \$C07X sends a signal from MMU pin 22 that resets both timers and causes their outputs to go to 1 (high). A variable resistance of up to 150 K Ω connected between one of these inputs and the +5V supply controls the charging time of one of the two 0.022 microfarad capacitors.

When the voltage on the capacitor passes a certain threshold, the output of the NE556 changes back to 0 (low). Programs can determine the setting of a variable resistor by resetting the timers and then counting time until the selected timer input changes from high to low. The resulting count is proportional to the resistance.

Warning

The only way to ensure correct paddle values is to make sure the output of the paddle you intend to read is low before you trigger the timer. Triggering the timer starts the charging cycle for the capacitor in each paddle circuit; the cycle for one may not be completed by the time you have read the other. If you retrigger or read the other paddle too soon (that is, in less than 3 ms), you will get a false value for it.

Memory expansion card

Memory expansion card I/O is supported by an internal connector mounted on the main logic board. Figure 11-43 is a pinout diagram for this connector.

For information on the Apple IIc Memory Expansion Card, refer to the Apple IIc Memory Expansion Card Reference.

	¬ Pin	Signal	Pin	Signal
2 •		D0	18	A9
4 • •		D1	19	A10
6 •		D2	20	A11
8 •	4	D3	21	A12
10 •		D4	22	A13
12 • 1		D5	23	A15
14 • • 1	1	D6	24	A15
16 ● 1	_ 0	D7	25	RESET
18 ● 1	9	GND	26	$\overline{\mathrm{RW}}$
20 • 1	10	GND	27	+5V
22 • 2	. 11	A0	28	+5V
24 • 2		A1	29	PHO
26 ● 2		A4	30	GND
28 ● 2		A5	31	7M
30 ● 2		A6	32	GND
32 ● 3		A7	33	$\mathbf{Q}3$
34 ● 3		A8	34	+5V

Figure 11-43
Memory expansion card connector pinout diagram

Schematic diagrams

Figure 11-44, on the following pages, is a set of schematic diagrams for the Apple IIc.

Figure 11-44a Apple IIc schematic diagram, part 1

Figure 11-44b Apple IIc schematic diagram, part 2

Figure 11-44c Apple IIc schematic diagram, part 3

Figure 11-44e Apple IIc schematic diagram, part 5

The 65C02 Microprocessor

This appendix describes the differences between the 6502 and the 65C02 microprocessors. It also contains the data sheet for the NCR 65C02 microprocessor.

In the data sheet tables, execution times are specified in numbers of cycles. One cycle for the Apple IIc equals 0.978 microseconds.

If you want to write programs that execute on all computers in the Apple II series, make sure your code uses only the subset of 65C02 instructions present on the 6502.

Differences between 6502 and 65C02

The data sheet in this chapter lists the new 65C02 instructions and addressing modes. This section supplements that information by listing the instructions whose execution times or results have changed from their 6502 counterparts.

Differing cycle times

In general, differences in execution times are significant only in time-dependent code, such as precise wait loops. Fortunately, instructions with changed execution times are few.

Table A-1 lists the 65C02 instructions whose number of instruction execution cycles is different from their number on the 6502.

Table A-1
Cycle time differences

Instruction/mode	Opcode	6502 cycles	65C02 cycles
ASL Absolute, X	1E	7	6
DEC Absolute, X	DE	7	6
INC Absolute, X	FE	7	6
JMP (Absolute)	6C	5	6
LSR Absolute, X	5E	7	6
ROL Absolute, X	3E	7	6
ROR Absolute, X	7E	7	6

Differing instruction results

The instructions that have different results from their 6502 equivalents are

- ☐ BIT (in immediate mode)
- ☐ JMP (indirect, when crossing a page boundary).

The BIT instruction when used in immediate mode (code \$89) leaves processor status register bits 7 (N) and 6 (V) unchanged on the 65C02. On the 6502, all modes of the BIT instruction have the same effect on the status register: the value of memory bit 7 is placed in status bit 7, and memory bit 6 is placed in status bit 6. However, all BIT instructions on both versions of the processor set status bit 1 (Z) if the memory location being tested contains a 0.

If the JMP indirect instruction (code \$6C) references an indirect address location that spans a page boundary, the 65C02 fetches the high-order byte of the effective address from the first byte of the next page, while the 6502 fetches it from the first byte of the current page. For example, JMP (\$02FF) gets ADL from location \$02FF on both processors. On the 65C02, ADH comes from \$0300 while on the 6502, ADH comes from \$0200.

Data sheet

The rest of this appendix is copyright 1982, NCR Corporation, Dayton, Ohio, and is reprinted with their permission.

NCR

NCR65C02

GENERAL DESCRIPTION

The NCR CMOS 6502 is an 8-bit microprocessor which is software compatible with the NMOS 6502. The NCR65C02 hardware interfaces with all 6500 peripherals. The enhancements include ten additional instructions, expanded operational codes and two new addressing modes. This microprocessor has all of the advantages of CMOS technology: low power consumption, increased noise immunity and higher reliability. The CMOS 6502 is a low power high performance microprocessor with applications in the consumer, business, automotive and communications market.

FEATURES

- Enhanced software performance including 27 additional OP codes encompassing ten new instructions and two additional addressing modes.
- 66 microprocessor instructions.
- 15 addressing modes.
- 178 operational codes.
- 1MHz, 2MHz operation.
- Operates at frequencies as low as 200 Hz for even lower power consumption (pseudo-static: stop during Ø2 high).
- microprocessors. 64 K-byte addressable memory.
- Interrupt capability.
- Lower power consumption. 4mA@1MHz.
- +5 volt power supply.
- 8-bit bidirectional data bus.
- Bus Compatible with M6800.
- Non-maskable interrupt.
- 40 pin dual-in-line packaging.
- 8-bit parallel processing
- Decimal and binary arithmetic.
- Pipeline architecture.
- Programmable stack pointer.
- Variable length stack.
- Optional internal pullups for (RDY, IRQ, SO, NMI and RES)
- Specifications are subject to change without notice.

PIN CONFIGURATION

NCR65C02 BLOCK DIAGRAM

NCR65C02

ABSOLUTE MAXIMUM RATINGS:

(V _{DD}	=	5.0	٧	± 5%,	V_{SS}	= 1	0 V,	T_A	= 0°	to+	70°C)
------------------	---	-----	---	-------	----------	-----	------	-------	------	-----	-------

RATING	SYMBOL	VALUE	UNIT
SUPPLY VOLTAGE	V _{DD}	-0.3 to +7.0	V
INPUT VOLTAGE	V _{IN}	-0.3 to +7.0	V
OPERATING TEMP.	TA	0 to + 70	°C
STORAGE TEMP.	T _{STG}	-55 to + 150	°C

PIN FUNCTION

PIN	FUNCTION
A0 - A15	Address Bus
D0 - D7	Data Bus
IRQ *	Interrupt Request
RDY *	Ready
ML	Memory Lock
NMI*	Non-Maskable Interrupt
SYNC	Synchronize
RES *	Reset
<u>SO</u> *	Set Overflow
NC	No Connection
R/W	Read/Write
VDD	Power Supply (+5V)
VSS	Internal Logic Ground
00	Clock Input
01, 02	Clock Output

^{*}This pin has an optional internal pullup for a No Connect condition.

■ DC CHARACTERISTICS

	SYMBOL	MIN.	TYP.	MAX	UNIT
Input High Voltage					
Ø ₀ (IN)	V _{IH}	V _{SS} + 2.4	-	V_{DD}	V
Input High Voltage		1	1		
RES, NMI, RDY, IRQ, Data, S.O.		V _{SS} + 2.0	_	_	V
Input Low Voltage					
Ø ₀ (IN)	VIL	V _{SS} -0.3	-	$V_{SS} + 0.4$	V
RES, NMI, RDY, IRQ, Data, S.O.		_	-	V _{SS} + 0.8	V
Input Leakage Current					
$(V_{IN} = 0 \text{ to } 5.25V, V_{DD} = 5.25V)$	I _{IN}				
With pullups		-30	_	+30	μΑ
Without pullups		_	-	+1.0	μA
Three State (Off State) Input Current					
$(V_{1N} = 0.4 \text{ to } 2.4V, V_{CC} = 5.25V)$					
Data Lines	I _{TSI}	_	-	10	μΑ
Output High Voltage					
$(I_{OH} = -100 \mu Adc, V_{DD} = 4.75 V$					
SYNC, Data, A0-A15, R/W)	V _{OH}	V _{SS} + 2.4	-	_	V
Out Low Voltage					
$(I_{OL} = 1.6 \text{mAdc}, V_{DD} = 4.75 \text{V})$					
SYNC, Data, A0-A15, R/W)	VoL	_	-	V _{SS} + 0.4	V
Supply Current f = 1MHz	I _{DD}	_	_	4	mA
Supply Current f = 2MHz	I _{DD}		_	8	mA
Capacitance	C				pF
(V _{IN} = 0, T _A = 25°C, f = 1MHz) Logic	GN	_	_	5	
Data	J MN	_	_	10	
A0-A15, R/W, SYNC	Cout		_	10	
Ø ₀ (IN)	CØO (IN)	-	-	10	

■ AC CHARACTERISTICS V_{DD} = 5.0V ± 5%, T_A = 0°C to 70°C, Load = 1 TTL + 130 pF

		11	MHZ	21	/lHZ	31/		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Delay Time, Ø ₀ (IN) to Ø ₂ (OUT)	t _{DLY}	_	60	_	60	20	60	nS
Delay Time, Ø ₁ (OUT) to Ø ₂ (OUT)	t _{DLY1}	20	20	-20	20	-20	20	nS
Cycle Time	tcyc	1.0	5000*	0.50	5000*	0.33	5000*	μS
Clock Pulse Width Low	t _{PL}	460	-	220	-	160	_	nS
Clock Pulse Width High	t _{PH}	460	_	220	_	160	_	nS
Fall Time, Rise Time	t _F , t _R	_	25		25	_	25	nS
Address Hold Time	t _{AH}	20	_	20	-	0		nS
Address Setup Time	t _{ADS}	_	225	_	140		110	nS
Access Time	t _{ACC}	650	_	310	_	170		nS
Read Data Hold Time	t _{DHR}	10	-	10	_	10	-	nS
Read Data Setup Time	t _{DSU}	100	_	60	_	60	_	пS
Write Data Delay Time	t _{MDS}	-	30		30	_	30	nS
Write Data Hold Time	t _{DHW}	20	-	20	_	15	_	nS
SO Setup Time	t _{SO}	100	-	100	_	100	_	nS
Processor Control Setup Time**	t _{PCS}	200	_	150	_	150		nS
SYNC Setup Time	tsync	-	225	-	140	_	100	nS
ML Setup Time	t _{ML}	_	225	_	140	_	100	nS
Input Clock Rise/Fall Time	t _{FØO} ,t _{RØO}	-	25	_	25	-	25	nS

^{*}NCR65C02 can be held static with 0 2 high.

MICROPROCESSOR OPERATIONAL ENHANCEMENTS

Function	NMOS 6502 Microprocessor	NCR65C02 Microprocessor					
Indexed addressing across page boundary.	Extra read of invalid address.	Extra read of last instruction byte					
Execution of invalid op codes.	Some terminate only by reset. Results	All are NOPs (reserved for future use).					
	are undefined.	Op Code	Bytes	Cycles			
		X2	2	2			
		X3, X7, XB, XF	1	1			
		44	2	3			
		54, D4, F4	2	4			
		5C	3	8			
		DC, FC	3	4			
Jump indirect, operand = XXFF.	Page address does not increment.	Page address incr additional cycle.	ements and	d adds one			
Read/modify/write instructions at effective address.	One read and two write cycles.	Two read and one	write cycl	e.			
Decimal flag.	Indeterminate after reset.	Initialized to bina reset and interrup)=0) after			
Flags after decimal operation.	Invalid N, V and Z flags.	Valid flag adds	one additio	onal cycle.			
Interrupt after fetch of BRK instruction.	Interrupt vector is loaded, BRK vector is ignored.	BRK is executed, executed.	BRK is executed, then interrupt is				

MICROPROCESSOR HARDWARE ENHANCEMENTS

Function	NMOS 6502	NCR65C02
Assertion of Ready RDY during write operations.	Ignored.	Stops processor during Ø2.
Unused input-only pins (IRQ, NMI, RDY, RES, SQ).	Must be connected to low impedance signal to avoid noise problems.	Connected internally by a high- resistance to V _{DD} (approximately 250 K ohm.)

^{**}This parameter must only be met to guarantee that the signal will be recognized at the current clock cycle.

NCR65C02

TIMING DIAGRAM

Note: All timing is referenced from a high voltage of 2.0 volts and a low voltage of 0.8 volts.

NEW INSTRUCTION MNEMONICS

HEX	MNEMONIC	DESCRIPTION
80	BRA	Branch relative always [Relative]
3A	DEA	Decrement accumulator [Accum]
1A	INA	Increment accumulator [Accum]
DA	PHX	Push X on stack [Implied]
5A	PHY	Push Y on stack [Implied]
FA	PLX	Pull X from stack [Implied]
7A	PLY	Pull Y from stack [Implied]
9C	STZ	Store zero [Absolute]
9E	STZ	Store zero [ABS, X]
64	STZ	Store zero [Zero page]
74	STZ	Store zero [ZPG,X]
1C	TRB	Test and reset memory bits with accumulator [Absolute]
14	TRB	Test and reset memory bits with accumulator [Zero page]
OC	TSB	Test and set memory bits with accumulator [Absolute]
04	TSB	Test and set memory bits with accumulator [Zero page]

ADDITIONAL INSTRUCTION ADDRESSING MODES

HEX	MNEMONIC	DESCRIPTION
72	ADC	Add memory to accumulator with carry [(ZPG)]
32 3C	AND	"AND" memory with accumulator [(ZPG)]
3C	BIT	Test memory bits with accumulator [ABS, X]
34	BIT	Test memory bits with accumulator [ZPG, X]
D2	CMP	Compare memory and accumulator [(ZPG)]
52	EOR	"Exclusive Or" memory with accumulator [(ZPG)]
7C	JMP	Jump (New addressing mode) [ABS(IND,X)]
B2	LDA	Load accumulator with memory [(ZPG)]
12	ORA	"OR" memory with accumulator [(ZPG)]
F2	SBC	Subtract memory from accumulator with borrow [(ZPG)]
92	STA	Store accumulator in memory [(ZPG)]

MICROPROCESSOR PROGRAMMING MODEL

FUNCTIONAL DESCRIPTION

Timing Control

The timing control unit keeps track of the instruction cycle being monitored. The unit is set to zero each time an instruction fetch is executed and is advanced at the beginning of each phase one clock pulse for as many cycles as is required to complete the instruction. Each data transfer which takes place between the registers depends upon decoding the contents of both the instruction register and the timing control unit.

Program Counter

The 16-bit program counterprovides the addresses which step the microprocessor through sequential instructions in a program.

Each time the microprocessor fetches an instruction from program memory, the lower byte of the program counter (PCL) is placed on the low-order bits of the address bus and the higher byte of the program counter (PCH) is placed on the high-order 8 bits. The counter is incremented each time an instruction or data is fetched from program memory.

Instruction Register and Decode

Instructions fetched from memory are gated onto the internal data bus. These instructions are latched into the instruction register, then decoded, along with timing and interrupt signals, to generate control signals for the various registers.

Arithmetic and Logic Unit (ALU)

All arithmetic and logic operations take place in the ALU including incrementing and decrementing internal registers (except the program counter). The ALU has no internal memory and is used only to perform logical and transient numerical operations.

Accumulator

The accumulator is a general purpose 8-bit register that stores the results of most arithmetic and logic operations, and in addition, the accumulator usually contains one of the two data words used in these operations.

Index Registers

There are two 8-bit index registers (X and Y), which may be used to count program steps or to provide an index value to be used in generating an effective address. When executing an instruction which specifies indexed addressing, the CPU fetches the op code and the base address, and modifies the address by adding the index register to it prior to performing the desired operation. Pre- or post-indexing of indirect addresses is possible (see addressing modes).

Stack Pointer

The stack pointer is an 8-bit register used to control the addressing of the variable-length stack on page one. The stack pointer is automatically incremented and decremented under control of the microprocessor to perform stack manipulations under direction of either the program or interrupts ($\overline{\text{NM}}$ and $\overline{\text{IRO}}$). The stack allows simple implementation of nested subroutines and multiple level interrupts. The stack pointer should be initialized before any interrupts or stack operations occur.

Processor Status Register

The 8-bit processor status register contains seven status flags. Some of the flags are controlled by the program, others may be controlled both by the program and the CPU. The 6500 instruction set contains a number of conditional branch instructions which are designed to allow testing of these flags (see microprocessor programming model).

NCR65C02

ADDRESSING MODES

Fifteen addressing modes are available to the user of the NCR65C02 microprocessor. The addressing modes are described in the following paragraphs:

Implied Addressing [Implied]

In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction.

Accumulator Addressing [Accum]

This form of addressing is represented with a one byte instruction and implies an operation on the accumulator.

Immediate Addressing [Immediate]

With immediate addressing, the operand is contained in the second byte of the instruction; no further memory addressing is required.

Absolute Addressing [Absolute]

For absolute addressing, the second byte of the instruction specifies the eight low-order bits of the effective address, while the third byte specifies the eight high-order bits. Therefore, this addressing mode allows access to the total 64K bytes of addressable memory.

Zero Page Addressing [Zero Page]

Zero page addressing allows shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. The careful use of zero page addressing can result in significant increase in code efficiency.

Absolute Indexed Addressing [ABS, X or ABS, Y]

Absolute indexed addressing is used in conjunction with X or Y index register and is referred to as "Absolute, X," and "Absolute, Y." The effective address is formed by adding the contents of X or Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields, resulting in reduced coding and execution time.

Zero Page Indexed Addressing [ZPG, X or ZPG, Y]

Zero page absolute addressing is used in conjunction with the index register and is referred to as "Zero Page, X" or "Zero Page, Y." The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally, due to the "Zero Page" addressing nature of this mode, no carry is added to the highorder eight bits of memory, and crossing of page boundaries does not occur,

Relative Addressing [Relative]

Relative addressing is used only with branch instructions;

it establishes a destination for the conditional branch. The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the program counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the next instruction.

Zero Page Indexed Indirect Addressing [(IND, X)]

With zero page indexed indirect addressing (usually referred to as indirect X) the second byte of the instruction is added to the contents of the X index register; the carry is discarded. The result of this addition points to a memory location on page zero whose contents is the low-order eight bits of the effective address. The next memory location in page zero contains the high-order eight bits of the effective address. Both memory locations specifying the high- and low-order bytes of the effective address must be in page zero.

*Absolute Indexed Indirect Addressing [ABS(IND, X)] (Jump Instruction Only)

With absolute indexed indirect addressing the contents of the second and third instruction bytes are added to the X register. The result of this addition, points to a memory location containing the lower-order eight bits of the effective address. The next memory location contains the higher-order eight bits of the effective address.

Indirect Indexed Addressing [(IND), Y]

This form of addressing is usually referred to as Indirect, Y. The second byte of the instruction points to a memory location in page zero. The contents of this memory location are added to the contents of the Y index register, the result being the low-order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being the high-order eight bits of the effective address.

*Zero Page Indirect Addressing [(ZPG)]

In the zero page indirect addressing mode, the second byte of the instruction points to a memory location on page zero containing the low-order byte of the effective address. The next location on page zero contains the high-order byte of the effective address.

Absolute Indirect Addressing [(ABS)]

(Jump Instruction Only)

The second byte of the instruction contains the low-order eight bits of a memory location. The high-order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully specified memory location is the low-order byte of the effective address. The next memory location contains the high-order byte of the effective address which is loaded into the 16 bit program counter.

NOTE: * = New Address Modes

SIGNAL DESCRIPTION

Address Bus (A0-A15)

A0-A15 forms a 16-bit address bus for memory and I/O exchanges on the data bus. The output of each address line is TTL compatible, capable of driving one standard TTL load and 130pF.

Clocks (\$0, \$1, and \$2)

 \emptyset_0 is a TTL level input that is used to generate the internal clocks in the 6502. Two full level output clocks are generated by the 6502. The \emptyset_2 clock output is in phase with \emptyset_0 . The \emptyset_1 output pin is 180° out of phase with \emptyset_0 . (See timing diagram.)

Data Bus (D0-D7)

The data lines (D0-D7) constitute an 8-bit bidirectional data bus used for data exchanges to and from the device and peripherals. The outputs are three-state buffers capable of driving one TTL load and 130 pF.

Interrupt Request (IRQ)

This TTL compatible input requests that an interrupt sequence begin within the microprocessor. The \overline{IRQ} is sampled during \emptyset_2 operation; if the interrupt flag in the processor status register is zero, the current instruction is completed and the interrupt sequence begins during \emptyset_1 . The program counter and processor status register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further \overline{IRQs} may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, transferring program control to the memory vector located at these addresses. The RDY signal must be in the high state for any interrupt to be recognized. A 3K ohm external resistor should be used for proper wire OR operation.

Memory Lock (ML)

In a multiprocessor system, the ML output indicates the need to defer the rearbitration of the next bus cycle to ensure the integrity of read-modify-write instructions. ML goes low during ASL, DEC, INC, LSR, ROL, ROR, TRB, TSB memory referencing instructions. This signal is low for the modify and write cycles.

Non-Maskable Interrupt (NMI)

A negative-going edge on this input requests that a non-maskable interrupt sequence be generated within the microprocessor. The NMI is sampled during θ_2 ; the current instruction is completed and the interrupt sequence begins during θ_1 . The program counter is loaded with the interrupt vector from locations FFFA (low byte) and FFFB (high byte), thereby transferring program control to the non-maskable interrupt routine.

Note: Since this interrupt is non-maskable, another \overline{NMI} can occur before the first is finished. Care should be taken when using \overline{NMI} to avoid this.

Ready (RDY)

This input allows the user to single-cycle the microprocessor on all cycles including write cycles. A negative transition to the low state, during or coincident with phase one (01), will halt the microprocessor with the output address lines reflecting the current address being fetched. This condition will remain through a subsequent phase two (02) in which the ready signal is low. This feature allows microprocessor interfacing with low-speed memory as well as direct memory access (DMA).

Reset (RES)

This input is used to reset the microprocessor. Reset must be held low for at least two clock cycles after VDD reaches operating voltage from a power down. A positive transistion on this pin will then cause an initialization sequence to begin. Likewise, after the system has been operating, a low on this line of at least two cycles will cease microprocessing activity, followed by initialization after the positive edge on RES.

When a positive edge is detected, there is an initialization sequence lasting six clock cycles. Then the interrupt mask flag is set, the decimal mode is cleared, and the program counter is loaded with the restart vector from locations FFFC (low byte) and FFFD (high byte). This is the start location for program control. This input should be high in normal operation.

Read/Write (R/W)

This signal is normally in the high state indicating that the microprocessor is reading data from memory or I/O bus. In the low state the data bus has valid data from the microprocessor to be stored at the addressed memory location.

Set Overflow (SO)

A negative transition on this line sets the overflow bit in the status code register. The signal is sampled on the trailing edge of \emptyset_1 .

Synchronize (SYNC)

This output line is provided to identify those cycles during which the microprocessor is doing an OP CODE fetch. The SYNC line goes high during \emptyset_1 of an OP CODE fetch and stays high for the remainder of that cycle. If the RDY line is pulled low during the \emptyset_1 clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the state until the RDY line goes high. In this manner, the SYNC signal can be used to control RDY to cause single instruction execution.

NCR65C02

■ INSTRUCTION SET — ALPHABETICAL SEQUENCE

ADC	Add Memory to Accumulator with Carry	LDX	Load Index X with Memory
AND	"AND" Memory with Accumulator	LDY	Load Index Y with Memory
ASL	Shift One Bit Left	LSR	Shift One Bit Right
BCC	Branch on Carry Clear	NOP	No Operation
BCS	Branch on Carry Set	ORA	"OR" Memory with Accumulator
BEQ	Branch on Result Zero	PHA	Push Accumulator on Stack
BIT	Test Memory Bits with Accumulator	PHP	Push Processor Status on Stack
BMI	Branch on Result Minus	* PHX	Push Index X on Stack
BNE	Branch on Result not Zero	* PHY	Push Index Y on Stack
BPL	Branch on Result Plus	PLA	Pull Accumulator from Stack
*BRA	Branch Always	PLP	Pull Processor Status from Stack
	Force Break	* PLX	Pull Index X from Stack
BVC	Branch on Overflow Clear	* PLY	Pull Index Y from Stack
BVS	Branch on Overflow Set	ROL	Rotate One Bit Left
CLC	Clear Carry Flag	ROR	Rotate One Bit Right
CLD	Clear Decimal Mode	RTI	Return from Interrupt
CLI	Clear Interrupt Disable Bit	RTS	Return from Subroutine
CLV	Clear Overflow Flag	SBC	Subtract Memory from Accumulator with Borrow
CMP	Compare Memory and Accumulator	SEC	Set Carry Flag
CPX	Compare Memory and Index X	SED	Set Decimal Mode
CPY	Compare Memory and Index Y	SEI	Set Interrupt Disable Bit
* DEA	Decrement Accumulator	STA	Store Accumulator in Memory
DEC	Decrement by One	STX	Store Index X in Memory
	Decrement Index X by One	STY	Store Index Y in Memory
	Decrement Index Y by One	* STZ	Store Zero in Memory
	"Exclusive-or" Memory with Accumulator	TAX	Transfer Accumulator to Index X
*INA	Increment Accumulator		Transfer Accumulator to Index Y
INC	Increment by One	* TRB	Test and Reset Memory Bits with Accumulator
INX	Increment Index X by One		Test and Set Memory Bits with Accumulator
	Increment Index Y by One		Transfer Stack Pointer to Index X
JMP	Jump to New Location		Transfer Index X to Accumulator
JSR	Jump to New Location Saving Return Address		Transfer Index X to Stack Pointer
LDA	Load Accumulator with Memory	TYA	Transfer Index Y to Accumulator

Note: * = New Instruction

■ MICROPROCESSOR OP CODE TABLE

S D		1	2	3		5	6	7	8	9	A	В	С	D	E	F	
0	BRK	ORA ind, X			TSB°	ORA zpg	ASL zpg		PHP	ORA	ASL A		TSB° abs	ORA abs	ASL abs		0
1	BPL rel	ORA ind, Y	ORA°†		TRB*	ORA zpg, X	ASL zpg, X		CLC	ORA abs, Y	INA*		TRB* abs	ORA abs, X	ASL abs, X		1
2	JSR abs	AND ind, X			BIT zpg	AND zpg	ROL zpg		PLP	AND	ROL		BIT abs	AND abs	ROL abs		2
3	BMI rel	AND ind, Y	AND°†		BIT* zpg, X	AND zpg, X	ROL zpg, X		SEC	AND abs, Y	DEA*		BIT*† abs, X	AND abs, X	ROL abs, X		3
4	RTI	EOR ind, X				EOR zpg	LSR zpg		PHA	EOR Imm	LSR A		JMP abs	EOR abs	LSR abs		ā
5	BVC rel	EOR ind, Y	EOR*†			EOR zpg, X	LSR zpg, X		CLI	EOR abs, Y	PHY.			EOR abs, X	LSR abs, X		5
6	RTS	ADC ind, X			STZ* zpg	ADC zpg	ROR zpg		PLA	ADC imm	ROR		JMP (abs)	ADC abs	ROR abs		6
7	BVS rel	ADC ind, Y	ADC*†		STZ* zpg, X	ADC zpg, X	ROR zpg, X		SEI	ADC abs, Y	PLY*		JMP+† abs (ind, X)	ADC abs, X	ROR abs, X		7
8	BRA*	STA ind, X			STY zpg	STA zpg	STX zpg		DEY	BIT*	TXA		STY	STA abs	STX abs		8
0	BCC rel	STA ind, Y	STA*†		STY zpg, X	STA zpg, X	STX zpg, Y		TYA	STA abs, Y	TXS		STZ*	STA abs, X	STZ* abs, X		9
A	LDY	LDA ind, X	LDX imm		LDY zpg	LDA zpg	LDX zpg		TAY	LDA	TAX		LDY abs	LDA abs	LDX abs		A
8	BCS rel	LDA ind, Y	LDA°†		LDY zpg, X	LDA zpg, X	LDX zpg, Y		CLV	LDA abs, Y	TSX		LDY abs, X	LDA abs, X	LDX abs, Y		В
С	CPY	CMP ind, X			CPY zpg	CMP zpg	DEC zpg		INY	CMP	DEX		CPY abs	CMP abs	DEC abs		С
D	BNE rel	CMP ind, Y	CMP+† (zpg)			CMP zpg, X	DEC zpg, X		CLD	CMP abs, Y	PHX*			CMP abs, X	DEC abs, X		D
E	CPX	SBC ind, X			CPX	SBC	INC zpg		INX	SBC	NOP		CPX abs	SBC abs	INC abs		8
F	BEQ rel	SBC ind, Y	SBC*†			SBC zpg, X	INC zpg, X		SED	SBC abs, Y	PLX*			SBC abs, X	INC abs, X		F
	D	1	2	3	4	5	6	7	В	9	A	В	С	D	Ε	F	

Note: * = New OP Codes Note: † = New Address Modes

OPERATIONAL CODES, EXECUTION TIME, AND MEMORY REQUIREMENTS

		II	MN I A	IE-	A		SO-	1	ZE!	RO GE	A	cc	UN	A,P	LIE	D		NC XI		(in		Z	PG	, x	ZP	G,	v .	ABS	. x	A	BS	, Y	RE	LA		IAE	35)		ND		ız	PC	ii				SS	DA DES		_
MNE	OPERATION		P	Ţ	1)P	,	Į,)P	2	#0	P	0	,	P n		ОР	l,		OP	, ,	,	۹,	Ţ	OP	Ĺ		OP.	n d	0	PIO	,	OP	n	,,,	P		, 0	P	,	OP	'n		7 I				2 1		MNE
ADC	A + M + C + A (1.3 A A M + A (1) G + 7 0 + 0 (1) Branch if C=0 (2) Branch if C=1 (2)) 6	9	2 2 2	8 2	000	M :	3 2	55	3 2	1		1								5 2	2 7 2 IS	5 1	2 2 2				7D 3D 1E	a 3 a 3 6 3	7:				2	2						-	Б	2	N Y					C A	ADC AND ASL BCC BCS
BEQ BIT BMI BNE BPL	Branch of Z=1 (21 A A M (4,5 Branch of N=1 (21 Branch of Z=0 (21 Branch of N=0 (2)	8	9	2 2	2	С	4	3 2	24	3 2	2											3	4	2				3C	4 3				30 D0 10	2	2 2 2									My*I	w6°		:	z	. 6	BEQ BIT BMI BNE BPL
CLC	Branch Always (2) Break Branch if V=0 (2) Branch if V=1 (2) 0 + C													1	8 2	2 1																		2 2 2	2											1			0 8	BRA BRK BVC BVS CLC
CLD CLV CMP CPX	0+D 0+I 0+V A+M (1) X-M									3 3				5	8 1	1 1			2	D1	5	2 0	05	4 2				DD	4 1	10	9 4	3									D2	5	2	N	0			2 . Z	000	CLD CLV CMP CPX
CPY DEA DEC DEX DEY	Y · M A · 1 * A M · 1 * M X · 1 * X Y · 1 * Y				c	E	6	3 (06	5 2	2 3	A	2		A 2	2 1						C	6	6 2				DE	6 1															2222	. ,			. Z Z Z Z		CPY DEA DEC DEX DEY
EOR INA INC INX INY	A V M + A A + 1 + A M + 1 + M (1) X + 1 + X Y + 1 + Y	4	9	2				1		5	1	A	2	E	8 2			6	2	51	5		-1	6 2			Н	5D FE			9 4	3									52	5		22222			•	2 2 2 2 2 2		EOR INA INC INX INY
JMP JSR LDA LDX LDX LDY	Jump to new (oc Jump Subroutine M+A (1) M+X (1) M+Y (1)	444	9	2 :	2 4	ODE	3 6 4 11 4	3 4	A5 A6 A4	3:	2						A	1 6	2	В1	5			4 2	B6		2	BD BC		В	9 4 E 4					ic.	6	3 7	'C (5 3	В2	5	2	222		-		z z z	i	JMP JSR LDA LDX LDY
LSR NOP ORA PHA PHP	0+7 0+© (1) PC+1+PC A V M +A A+M _s S 1+S P+M _s S · 1+S	0	9	2 2	П		ļ		- 1	3	2 4	A	2	4	A :		0.	6	2	11	5			6 2				5E	Ш		9 1	3									12	5	2	0				z	0	LSR NOP OR A PHA PHP
PLP	X + M ₅ S 1 + S Y + M ₅ S 1 + S S + 1 + S M ₅ + A S + 1 + S M ₅ + P S + 1 + S M ₅ + X													5	A 8 8 8	4 1																												N N	v	. 1	D	. Z	C F	PHX PHY PLA PLP PLX
RTI	S + 1 *S M _S * Y Tr 0 + C + II C - 7 0 - II Return from Inter Return from Subr	13									2 2 2 6	A	2	1 4	A 4	8 1								6 2				3E 7E	6	3														2222	v	1	D	Z Z Z I Z	G F	PLY ROL ROR RTI RTS
SBC SEC SED SEI STA	A M Č+A (13) 1+C 1+D 1+I A+M) E	9	2			4	3	85	3	2			F	8 8 78	2 1								4 2				FD 9D														9 5		N	v		1	1	1 5	SBC SEC SED SE!
STX STY STZ TAX TAX	X + M Y - M OO + M A + X A + Y				8		1	3	84	3 3	2			4	A 8	2 1						9	74	# 2 4 2		4	Н	9E	5	3														22				z	5	STX STY STZ TAX
	Ā				1	C	6	3	14 04	5	2			8 9	A SA	2 1 2 1	'																											. 2 2 .			:	z z z z	1	TRB TSB TSX TXA
TYA	Y * A	İ	_		İ	_					İ					2 1	İ	İ	İ			İ		1	İ	Ť	Ħ		Ħ	1	1	†	T	t	11		H	†	_	+	t	t	t	N				ż	-	TYA

Notes

- Add 1 to "n" if page boundary is crossed.
 Add 1 to "n" if branch occurs to same page.
 Add 2 to "n" if branch occurs to different page.
 Add 1 to "n" if decimal mode.

- 4. V bit equals memory bit 6 prior to execution. N bit equals memory bit 7 prior to execution.
- X Index X Y Index Y A Accumulator M Memory per effective address

Ms Memory per stack pointer

- + Add Subtract
 - ∧ And V Or
 - ₩ Exclusive or
- n No. Cycles # No. Bytes M₆ Memory bit 6 M₇ Memory bit 7

*5. The immediate addressing mode of the BIT instruction leaves bits 6 & 7 (V & N) in the Processor Status Code Register unchanged.

Memory Map

This appendix lists all important RAM and hardware locations in address order and briefly describes them. Appendix C contains a similar list for important firmware addresses.

The tables in this appendix list addresses in either two or three forms: the hexadecimal form (preceded by a dollar sign) for use in assembly language; the decimal form for use in Applesoft BASIC; and (for numbers greater than 32,767) the complementary decimal value for use in Apple Integer BASIC.

Page \$00

Table B-1 lists the zero page addresses in hexadecimal and decimal form, followed by symbols denoting the firmware or system software that uses them.

- \square M denotes the monitor.
- □ A denotes Applesoft BASIC.
- □ I denotes Integer BASIC.
- \square D denotes DOS 3.3.
- ☐ P denotes ProDOS. Locations whose contents ProDOS saves and restores afterward have a P in parentheses, indicating that ProDOS has no net effect on them.

Table B-1 Page \$00 use

Hex	Dec	Used	by	Hex	Dec	Used	by
\$00	0	A		\$30	48	M	
\$01	1	Α		\$31	49	M	
\$02	2	Α		\$32	50	M	
\$03	3	Α		\$33	51	M	
\$04	4	Α		\$34	52	M	
\$05	5	Α		\$35	53	M	D
\$06	6			\$36	54	M	D
\$07	7			\$37	55	M	D
\$08	8			\$38	56	M	D
\$09	9			\$39	57	M	D
\$0 A	10	Α		\$3A	58	M	P
\$0B	11	Α		\$3B	59	M	P
\$0C	12	Α		\$3C	60	M	P
\$0D	13	Α		\$3D	61	M	P
\$0E	14	Α		\$3E	62	M	DΡ
\$OF	15	Α	L	\$3F	63	M	DΡ
\$10	16	Α		\$40	64	M	D (P)
\$11	17	A		\$41	65	M	D (P)
\$12	18	A		\$42	66	M	D (P)
\$13	19	Α		\$43	67	M	D (P)
\$14	20	Α		\$44	68	M	D (P)
\$15	21	Α		\$45	69	M	D (P)
\$16	22	Α		\$46	70	M	D (P)
\$17	23	Α		\$47	71	M	D (P)
\$18	24	Α		\$48	72	M	D (P)
\$19	25			\$49	73	M	(P)
\$1A	26			\$4A	74	I	D (P)
\$1B	27		•	\$4B	75	I	D (P)
\$1C	28			\$4C	76	I	D (P)
\$1D	29			\$4D	77	I	D (P)
\$1F	31			\$4F	79	M	
\$25	37	M		\$55	85	M A	I
\$26	38	M	D	\$56	86	Α	I
\$27	39	M	D	\$57	87	Α	I
\$28	40	M	D	\$58	88	A	
\$29	41	M	D	\$59	89	A	
\$2A	42	M	D	\$5A	90	A	
\$2B	43	M	D	\$5B	91	A	
\$2C	44	M	D	\$5C	92	A	
\$2D	45	M	D	\$5D	93	A	
\$2E	46	M	D	\$5E	94	Α	
\$2F	47	M	D	\$5F	95	Α	

Table B-1 (continued) Page \$00 use

Hex	Dec	Used by	Hex	Dec	Used by
\$60	96	ΑI	\$90	144	ΑI
\$61	97	ΑI	\$91	145	ΑI
\$62	98	ΑI	\$92	146	ΑI
\$63	99	ΑI	\$93	147	ΑI
\$64	100	ΑI	\$94	148	ÀΙ
\$65	101	ΑI	\$95	149	ΑI
\$66	102	ΑI	\$96	150	ΑI
\$67	103	AID	\$97	151	ΑI
\$68	104	AID	\$98	152	ΑI
\$69	105	AID	\$99	153	ΑI
\$6A	106	AID	\$9A	154	ΑI
\$6B	107	ΑI	\$9B	155	ΑI
\$6C	108	ΑI	\$9C	156	ΑI
\$6D	109	ΑI	\$9D	157	ΑI
\$6E	110	ΑI	\$9E	158	ΑI
\$6F	111	AID	\$9F	159	ΑI
\$70	112	AID	\$A0	160	ΑI
\$71	113	ΑI	\$A1	161	ΑI
\$72	114	ΑI	\$A2	162	ΑI
\$73	115	ΑI	\$A3	163	ΑI
\$74	116	ΑI	\$A4	164	ΑI
\$75	117	ΑI	\$A5	165	ΑI
\$76	118	ΑI	\$A6	166	Αİ
\$77	119	ΑI	\$A7	167	ΑI
\$78	120	ΑI	\$A8	168	ΑI
\$79	121	ΑI	\$A9	169	ΑI
\$7A	122	ΑI	\$AA	170	ΑI
\$7B	' 123	ΑI	\$AB	171	ΑI
\$7C	124	ΑI	\$AC	172	ΑI
\$7D	125	ΑI	\$AD	173	ΑI
\$7E	126	ΑI	\$AE	174	ΑI
\$7F	127	ΑI	\$AF	175	AID
\$80	128	ΑI	\$B0	176	AID
\$81	129	ΑI	\$B1	177	ΑI
\$82	130	ΑI	\$B2	178	ΑI
\$83	131	ΑI	\$B3	179	ΑI
\$84	132	ΑI	\$B4	180	ΑI
\$85	133	ΑI	\$B5	181	ΑI
\$86	134	ΑI	\$B6	182	ΑI
\$87	135	ΑI	\$B7	183	ΑI
\$88	136	ΑI	\$B8	184	ΑI
\$89	137	AI	\$B9	185	ΑI

Table B-1 (continued) Page \$00 use

Hex	Dec	Used by	Hex	Dec	Used by
\$8A	138	ΑI	\$BA	186	ΑI
\$8B	139	ΑI	\$BB	187	ΑI
\$8C	140	ΑI	\$BC	188	ΑI
\$8D	141	ΑI	\$BD	189	ΑI
\$8E	142	ΑI	\$BE	190	ΑI
\$8F	143	ΑI	\$BF	191	ΑI
\$C0	192	ΑI	\$E0	224	A
\$C1	193	ΑI	\$E1	225	A
\$C2	194	ΑI	\$E2	226	A
\$C3	195	ΑI	\$E3	227	
\$C4	196	ΑI	\$E4	228	Α
\$C5	197	ΑI	\$E5	229	Α
\$C6	198	ΑI	\$E6	230	A
\$C7	199	ΑI	\$E7	231	A
\$C8	200	ΑI	\$E8	232	A
\$C9	201	ΑI	\$E9	233	A
\$CA	202	AID	\$EA	234	Α
\$CB	203	AID	\$EB	235	
\$CC	204	AID	\$EC	236	
\$CD	205	AID	\$ED	237	
\$CE	206	I	\$EE	238	
\$CF	207	I	\$EF	239	
\$D0	208	ΑI	\$F0	240	A
\$D1	209	ΑI	\$F1	241	A
\$D2	210	ΑI	\$F2	242	A
\$D3	211	ΑI	\$F3	243	A
\$D4	212	ΑI	\$F4	244	A
\$D5	213	ΑI	\$F5	245	A
\$D6	214	I	\$F6	246	A
\$D7	215	I	\$F7	247	A
\$D8	216	AID	\$F8	248	A
\$D9	217	ΑI	\$F9	249	
\$DA	218	ΑI	\$FA	250	
\$DB	219	ΑI	\$FB	251	
\$DC	220	ΑI	\$FC	252	
\$DD	221	ΑI	\$FD	253	
\$DE	222	ΑI	\$FE	254	
\$DF	223	ΑI	\$FF	255	

Page \$03

Most of page \$03 is available for small machine-language programs. The built-in Monitor uses the top 16 addresses of page \$03, as shown in Figure B-2; the XFer routine uses locations \$03ED and \$03EE. If you are using DOS or ProDOS, it also uses the 32 locations \$03D0 through \$03EF.

Table B-2 Page \$03 use

Hex	Dec	Use
\$03F0 \$03F1	1008 1009	Address of BRK request handler (normally \$59, \$FA)
\$03F2 \$03F3 \$03F4	1010 1011 1012	Reset vector
\$03F5 \$03F6 \$03F7	1012 1013 1014 1015	Power-up byte (see text) Jump instruction to Applesoft &-command handler (initially \$4C, \$58, \$FF)
\$03F8 \$03F9 \$03FA	1016 1017 1018	Jump instruction to user Control-Y command handler
\$03FB \$03FC \$03FD	1019 1020 1021	Jump instruction to NMI interrupt handler (not used by Apple IIc)
\$03FE \$03FF	1022 1023	Address of user IRQ interrupt handler

Screen holes

One result of the way the Apple IIc hardware maps display memory on the screen is that groups of 8 memory addresses are left over in 16 areas of the text and low-resolution display pages—8 areas in main RAM and 8 in auxiliary RAM. The firmware uses for these 128 bytes are shown in Tables B-3 and B-4.

Memory expansion

The version of the Apple IIc that supports the memory expansion card uses some of the screen holes differently than earlier versions. Where they differ, the memory expansion ROM assignments are given in parentheses in Tables B-3 and B-4 following the original and UniDisk 3.5 assignments.

Table B-3Main memory screen hole allocations

Hex	Dec	Description
\$0478	1144	Mouse port: low byte of clamping minimum
\$0479	1145	Reserved for serial port 1
\$047A	1146	Reserved for serial port 2
\$047B	1147	Reserved
\$047C	1148	Low byte of X coordinate (Reserved)
\$047D	1149	Reserved for mouse port
\$047E	1150	Reserved
\$047F	1151	Reserved (Low byte of X coordinate)
\$04F8	1272	Mouse port: low byte of clamping maximum
\$04F9	1273	Reserved for serial port 1
\$04FA	1274	Reserved for serial port 2
\$04FB	1275	Reserved
\$04FC	1276	Low byte of Y coordinate (Reserved)
\$04FD	1277	Reserved for mouse port
\$04FE	1278	Reserved
\$04FF	1279	Reserved (Low byte of Y coordinate)
\$0578	1400	Mouse port: high byte of clamping minimum
\$0579	1401	Port 1 printer width (1–255; 0 = unlimited)
\$057A	1402	Port 2 line length (1–255; 0 = unlimited)
\$057B	1403	Cursor horizontal position (80-column display)
\$057C	1404	High byte of X coordinate (Reserved)
\$057D	1405	Reserved for mouse port
\$057E	1406	Reserved
\$057F	1407	Reserved (High byte of X coordinate)
\$05F8	1528	Mouse port: high byte of clamping maximum
\$05F9	1529	Port 1 temporary storage location
\$05FA	1530	Port 2 temporary storage location
\$05FB	1531	Reserved
\$05FC	1532	High byte of Y coordinate (Reserved)
\$05FD	1533	Reserved for mouse port
\$05FE	1534	Reserved
\$05FF	1535	Reserved (High byte of Y coordinate)

Table B-3 (continued)
Main memory screen hole allocations

Hex	Dec	Description
\$0678	1656	Reserved
\$0679	1657	Indicates when port 1 firmware is parsing a
		command
\$067A	1658	Indicates when port 2 firmware is parsing a
		command
\$067B	1659	Reserved
\$067C	1660	Mouse port: reserved (Reserved)
\$067D	1661	Reserved for mouse port
\$067E	1662	Reserved
\$ 067F	1663	Reserved (Mouse port: reserved)
\$06F8	1784	Reserved
\$06F9	1785	Current port 1 command character
\$06FA	1786	Current port 2 command character
\$06FB	1787	Reserved
\$06FC	1788	Mouse port: reserved (Reserved)
\$06FD	1789	Reserved for mouse port
\$06FF.	1790	Reserved
\$06FF	1791	Reserved (Mouse port: reserved)
\$0778	1912	DEVNO: \$n0 = current active port number x 16
\$0779	1913	Port 1 flags for echo and auto line feed
\$077A	1914	Port 2 flags for each and auto line feed
\$077B	1915	Reserved
\$077C	1916	Mouse port status byte (Reserved)
\$077D	1917	Reserved for mouse port
\$077E	1918	Reserved
\$077F	1919	Reserved (Mouse port status byte)
\$07F8	2040	MSLOT: owner of \$C800-\$CFFF (\$C3, video)
\$07F9	2041	Port 1 current printer column
\$07FA	2042	Port 2 current line position
\$07FB	2043	Reserved
\$07FC	2044	Mouse port mode byte (Reserved)
\$07FD	2045	Reserved for mouse port
\$07FE	2046	Reserved
\$07FF	2047	Reserved (Mouse port mode byte)

Table B-4Auxiliary memory screen hole allocations

Hex	Dec	Description
\$0478 \$0479 \$047A \$047B \$047C \$047D \$047E \$047F	1144 1145 1146 1147 1148 1149 1150 1151	Initial port 1 ACIA control register values (\$9E) Initial port 1 ACIA command register values (\$0B) Initial port 1 characteristics flags (\$40) Initial port 1 printer width (\$50) Initial port 2 ACIA control register values (\$16) Initial port 2 ACIA command register values (\$0B) Initial port 2 characteristics flags (\$01) Initial port 2 line length (\$00)
\$04F8 through \$04FF	1272 1279	Reserved
\$0578 through \$057F	1400 1407	Reserved
\$05F8 through \$05FF	1528 1535	Reserved
\$0678 through \$067F	1656 1663	Reserved
\$06F8 through \$06FF	1784 1791	Reserved
\$0778 through \$077F	1912 1919	Reserved
\$07F8 through \$07FF	2040 2047	Reserved

The hardware page

Tables B-5 through B-9 list all the hardware locations available for use in the Apple IIc. These tables have a column at the left that is not present in other tables. This column, labeled *RW*, indicates the action to take at a particular location.

- □ R means read.
- □ RR means read twice in succession.
- ☐ R7 means read the byte and then check bit 7; in the use column, "See if..." refers to the condition represented by bit 7 = 1, unless otherwise specified. Bit 7 has a value of \$80, so if the contents of the location are greater than or equal to \$80, the bit is on.

Another way to test bit 7 (the sign bit) is with a BIT instruction, followed by BPL (bit 7 was 0) or BMI (bit 7 was 1).

- □ R/W means to either read or write. For writing, the value is unimportant.
- ☐ W means to write only. The value is unimportant.
- □ N means not to read or write, because the location is reserved.

An address of the form \$C00x refers to the 16 locations from \$C000 through \$C00F. Labels, when they are shown, are simply memory aids. Some of them correspond to the labels at those addresses in the firmware, others do not. Your program will have to assign a label for it anyway.

Table B-5 Addresses \$C000-\$C03F

RW	Hex	Dec	Neg dec	Label	Use
R	\$C00x			KStrb	Read keyboard data (bits 0-6) and strobe (bit 7)
W	\$C000	49152	-16384	80Store	Off: Page2 switches Page 1 and 2
W	\$C001	49153	-16383	80Store	On: Page2 switches Page 1 and 1X
W	\$C002	49154	-16382	RAMRd	Off: Read main 48K RAM
W	\$C004	49156	-16380	RAMWrt	Off: Write in main 48K RAM
W	\$C005	49157	-16379	RAMWrt	On: Write in auxiliary 48K RAM
W	\$C006	49158	-16378		Reserved
W	\$C007	49159	-1637 7		Reserved
W	\$C008	49160	-16376	AltZP	Off: Use main P0, P1, bank-switched RAM
W	\$C009	49161	-16375	AltZP	On: Use auxiliary P0, P1, bank-switched RAM
W	\$C00A	49162	-16374		Reserved
W	\$C00B	49163	-16373		Reserved
W	\$C00C	49164	-16372	80Col	Off: 40-column display

Table B-5 (continued) Addresses \$C000-\$C03F

RW	Hex	Dec	Neg dec	Label	Use
W	\$C00D	49165	-16371	80Col	On: 80-column display
W	\$C00E	49166	-16270	AltChar	Off: Display primary character set
W	\$C00F	49167	-16369	AltChar	On: Display alternate character set
W	\$C01x				Clear keyboard strobe (\$C00x bit 7)
R7	\$C010	49168	-16368	AKD	See if any key now down; clear strobe
R7	\$C011	49169	-16367	RdBnk2	See if using \$D000 bank 2 (or 1)
R7	\$C012	49170	-16366	RdLCRAM	See if reading RAM (or ROM).
R7	\$C013	49171	-16365	RdRAMRd	See if reading auxiliary 48K RAM (or main)
R7	\$C014	49172	-16364	RdRAMWrt	See if writing auxiliary 48K RAM (or main)
R	\$C015	49173	-16363	RstXInt	Reset mouse X0 interrupt
R7	\$C016	49174	-16362	RdAltZP	See if auxiliary P0, P1 and bank-switched RAM
R	\$C017	49175	-16361	RstYInt	Reset mouse Y interrupt
R7	\$C018	49176	-16360	Rd80Store	See if 80Store on (or off)
R7	\$C019	49177	-16359	RstVB1	See if VBlInt off (1); reset it
R7	\$C01A	49178	-16358	RdTEXT	See if text (or graphics)
R7	\$C01B	49179	-16357	RdMIXED	See if mixed mode switch on
R7	\$C01C	49180	-16356	RdPage2	See if Page 2/1X selected (or 1)
R7	\$C01D	49181	-16355	RdHiRes	See if high-resolution switch on
R7	\$C01E	49182	-16354	RdAltChar	See if alternate character set (or primary)
R7	\$C01F	49183	-16353	Rd80Col	See if 80-column hardware on
N	\$C020 through	49184	-16352		Reserved (read and write)
N	\$C02F	49199	-16337		
W	\$C030	49200	-16336	Reserved	
R	\$C030	49200	-16336		Toggle speaker
N	\$C031	49201	-16335		
N	through \$C03F	49215	-16321		Reserved (read and write)

Table B-6 Addresses \$C040-\$C05F

RW	Hex	Dec	Neg dec	Label	Use
R7	\$C040	49216	-16320	RdXYMsk	See if X0/Y0 mask set
R7	\$C041	49217	-16319	RdVBlMsk	See if VBL mask set
R7	\$C042	49218	-16318	RdX0Edge	See if interrupt on falling X0 edge
R7	\$C043	49219	-16317	RdY0Edge	See if interrupt on falling Y0 edge
N	\$C044	49220	-16316	Ü	Reserved
N	\$C045	49221	-16315)		Reserved
N	\$C046	49222	-16314		Reserved
N	\$C047	49223	-16313		Reserved
R	\$C048	49224	-16312	RstXY	Reset X0/Y0 interrupt flags
N	\$C049	49225	-16311		Reserved
N	\$C04A	49226	-16310		Reserved
N	\$C04B	49227	-16309		Reserved
V	\$C04C	49228	-16308		Reserved
N	\$C04D	49229	-16307		Reserved
N	\$C04E	49230	-16306		Reserved
N	\$C04F	49231	-16305		Reserved
R/W	\$C050	49232	-16304	TEXT	Off: Graphics display
R/W	\$C051	49233	-16303	TEXT	On: Text display
R/W	\$C052	49234	-16302	MIXED	Off: Text or graphics only
R/W	\$C053	49235	-16301	MIXED	On: Combination text and graphics
R/W	\$C054	49236	-16300	Page2	Off: Use Page 1
R/W	\$C055	49237	-16299	Page2	On: Display Page 2 (80Store off); store to Page 1X (80Store on)
R/W	\$C056	49238	-16298	HiRes	Off: Low resolution
R/W	\$C057	49239	-16297	HiRes	On: High resolution; double if 80Col and DHiRes on
N	\$C058	49240	-16296		Reserved if IOUDis on (\$C07E bit 7=1)
R/W N	\$C059	49241	-16295	DisX	Disable (mask) mouse X0/Y0 interrupts Reserved if IOUDis on
R/W	\$(0)9	49241	-10293	EnbXY	
V	\$C05A	49242	-16294	EHDXI	Enable (allow) mouse X0/Y0 interrupts Reserved if IOUDis on
R/W	\$COJA	47242	-10294	DisVB1	
N.	\$C05B	49243	-16293	DISVDI	Disable (mask) VBL interrupts Reserved if IOUDis on
R/W	\$CO)D	47243	-10293	EnVB1	Enable (allow) VBL interrupts
V	\$C05C	49244	-16292	LIIVDI	Reserved if IOUDis on
R/W	\$0000	47244	-10292	X0Edge	
V	\$C05D	49245	-1629	AULuge	Interrupt on rising edge of X0 Reserved if IOUDis on
R/W	φυσορ	4764)	-1029	X0Edge	
R/W	\$C05E	49246	-16290	DHiRes	Interrupt on falling edge of X0 If IOUDis on: Set double high-resolution
R/W	\$CU)E	47240	-10250		9
R/W	\$C05F	49247	-16289	Y0Edge DHiRes	If IOUDis off: Interrupt on rising Y0
R/W	\$CU)F	4744/	-10209	Y0Edge	If IOUDis on: Clear double high-resolution
V/ VV				Torrage	If IOUDis off: Interrupt on falling Y0

Table B-7 Addresses \$C060-\$C07F

RW	Hex	Dec	Neg dec	Label	Use
W	\$C06x				Reserved (write)
R7	\$C060	4924	-16288	Rd80Sw	See if 80/40 switch down (= 40)
R7	\$C061	49249	-16287	RdBtn0	See if mouse button/Open-Apple pressed
R7	\$C062	49250	-16286	RdBtn1	See if switch 1/Solid Apple pressed
R7	\$C063	49251	-16285	Rd63	See if mouse button not pressed
R7	\$C064	49252	-16284	Pdl0	See if hand control button 0 pressed
R7	\$C065	49253	-16283	Pdl1	See if hand control button 1 pressed
R7	\$C066	49254	-16282	MouX1	See if mouse X1 (direction) is high
R7	\$C067	49255	-16281	MouY1	See if mouse Y1 (direction) is high
N	\$C068	49256	-16280		
	through				Reserved (write and read)
N	\$C06F	49263	-16273		
R/W	\$C07x				Trigger paddle timer; reset VBIInt; however, some \$C07x are reserved
R/W	\$C070	49264	-16272	PTrig	Designated trigger or reset location
N N	\$C070	49265	-16272 -16271	1 1118	Designated trigger of react recation
14	through	17207	-102/1		Reserved
N	\$C07D	49277	-16259		neserved
- 1	40072	1/2//	10-77		
R7	\$C07E	49278	-16258	RdIOUDis	See if IOUDis on; trigger paddle timer; reset VBlInt
W				IOUDis	On: Enable access to DHiRes switch;
• •					disable \$C058–\$C05F IOU access
R7	\$C07F	49279	-16257	RdDHiRes	See if DHiRes on
W	,,-	-, ,		IOUDis	Off: Disable access to DHiRes switch; enable \$C058-\$C05F IOU access

Table B-8 Addresses \$C080-\$C0AF

RW	Hex	Dec	Neg dec	Label	Use
R	\$C080	49280	-16256		Read RAM; no write; use \$D000 bank 2
RR	\$C081	49281	-16255		Read ROM; write RAM; use \$D000 bank 2
R	\$C082	49282	-16254		Read ROM; no write; use \$D000 bank 2
RR	\$C083	49283	-16253		Read and write RAM; use \$D000 bank 2
N	\$C084	49284	-16252		Reserved
N	\$C085	49285	-16251		Reserved
N	\$C086	49286	-16250		Reserved
N	\$C087	49287	-16249		Reserved
?	\$C088	49288	-16248		Read RAM; no write; use \$D000 bank 1
RR	\$C089	49289	-16247		Read ROM; write RAM; use \$D000 bank 1
?	\$C08A	49290	-16246		Read ROM; no write; use \$D000 bank 1
RR	\$C08B	49291	-16245		Read and write RAM; use \$D000 bank 1
N	\$C08C	49292	-16244		Reserved
V	\$C08D	49293	-16243		Reserved
N	\$C08E	49294	-16242		Reserved
N	\$C08F	49295	-16241		Reserved
N	\$C090	49296	-16240		
	through				Reserved
N	\$C097	49303	-16233		
R/W	\$C098	49304	-16232		Port 1 ACIA transmit/receive register
R/W	\$C099	49305	-16231		Port 1 ACIA status register
R/W	\$C09A	49306	-16230		Port 1 ACIA command register
R/W	\$C09B	49307	-16229		Port 1 ACIA control register
					1000 1 11022 400000 1080000
N	\$C09C	49308	-16228		
	through				Reserved
N	\$C09F	49311	-16225		
N	\$C0A0	49312	-16224		
	through	(0010	4604=		Reserved
N	\$C0A7	49319	-16217		
R/W	\$C0A8	49320	-16216		Port 2 ACIA transmit/receive register
R/W	\$C0A9	49321	-16215		Port 2 ACIA status register
R/W	\$COAA	49322	-16214		Port 2 ACIA command register
R/W	\$C0AB	49323	-16213		Port 2 ACIA control register
N	\$COAC	49324	-16212		Page 1
	through	(020 -	1/200		Reserved
N	\$C0AF	49327	-16209		

Table B-9 Addresses \$C0B0-\$C0FF

RW	Hex	Dec	Neg Dec	Label	Use	
N	\$C0B0 through	49328	-16208		Reserved	
N	\$COBF	49343	-16193			
N	\$C0C0 through	49344	-16192		Reserved	
N	\$C0CF	49359	-16177			
N	\$C0D0 through	49360	-16176		Reserved	
N	\$CODF	49375	-16161			
N	\$C0E0 through	49376	-16160		Reserved	
N	\$COEF	49391	-16145			
N	\$C0F0 through	49392	-16144		Reserved	
N	\$C0FF	49407	-16129			

Important Firmware Locations

This appendix lists all significant firmware addresses: entry points, locations containing the addresses of entry points, and locations where machine and device identification bytes reside.

Warning

The Monitor firmware entry points are the only *published* entry points in the sense that they are the only ones that will remain in the same locations in future Apple II series computers.

The firmware protocol identification bytes and offsets will work with other Apple II-series computers only if used as directed.

The tables

This appendix supplements the chapter text by specifying three forms of each address: hexadecimal, decimal, and complementary (negative) decimal.

In these tables, some of the addresses are followed by a label. These labels are listed only to help you find the named location in the firmware listings, or to remember the function found at the address. The Apple IIc contains no global label table: your program must assign its own labels to the addresses as required.

There are several types of information at these firmware addresses: actual entry points (labeled *entry*), the low-order byte of an entry point (labeled *offset*), a device or machine identification byte (labeled *ident*), and indicators (labeled *indic*) specifying whether there are optional routines, vector addresses (labeled *vector*), or an RTS instruction location.

Each input/output port has an associated protocol table, as shown in Tables C-1 through C-4. Many of the bytes (labeled *offset*) in the protocol tables are the low-order bytes of addresses of I/O routines for the ports; the high-order byte of these addresses must be \$Cn (where n is the port number). This structure is explained in Chapter 3. Although your program must perform some extra processing to use these tables, the benefit is simplified compatible port and slot I/O for all Apple II–series machines.

Port addresses

Addresses for serial ports 1 and 2, output port 3, and mouse input port 4 are shown in the following four tables.

Table C-1 Serial port 1 addresses

Hex	Dec	Neg dec	Label	Туре	Description
\$C100	49408	-16128		entry	Main port 1 entry point
\$C105	49413	-16123		ident	ID byte (\$38)
\$C107	49415	-16121		ident	ID byte (\$18)
\$C10B	49419	-16117		ident	Firmware card signature (\$01)
\$C10C	49420	-16116		ident	Super Serial Card ID (\$31)
\$C10D	49421	-16115		offset	Low-order PInit address
\$C10E	49422	-16114		offset	Low-order PRead address
\$C10F	49423	-16113		offset	Low-order PWrite address
\$C110	49424	-16112		offset	Low-order PStatus address
\$C111	49425	-16111		indic	Non-zero: no optional routines

Table C-2 Serial port 2 addresses

Hex	Dec	Neg dec	Label	Туре	Description
\$C200	49664	-15872		entry	Main port 2 entry point
\$C205	49669	-15867		iden	ID byte (\$38)
\$C207	49671	-15865		ident	ID byte (\$18)
\$C20B	49675	-15861		ident	Firmware card ID (\$01)
\$C20D	49676	-15860		ident	Super Serial Card ID (\$31)
\$C20D	49677	-15859		offset	Low-order PInit address
\$C20E	49678	-15858		offset	Low-order PRead address
\$C20F	49679	-15857		offset	Low-order PWrite address
\$C210	49680	-15856		offset	Low-order PStatus address
\$C211	49681	-15855		indic	Non-zero: no optional routines

Table C-3 Video firmware addresses

Hex	Dec	Neg Dec	Label	Type	Description
\$C300	49920	-15616		entry	Main video entry point (output only)
\$C305	49925	-15611	C3KeyIn	ident	ID byte (\$38)
\$C307	49927	-15609	C3COut1	ident	ID byte (\$18)
\$C30B	49931	-15605		ident	Firmware card signature (\$01)
\$C30C	49932	-15604		ident	80-column card ID (\$88)
\$C30D	49933	-15603		offset	Low-order PInit address
\$C30E	49934	-15602		offset	Low-order PRead address
\$C30F	49935	-15601		offset	Low-order PWrite address
\$C310	49936	-15600		offset	Low-order PStatus address
\$C311	49937	-15599	MoveAux	entry	Routine for main/auxiliary control swapping (also called <i>AuxMove</i>)

Table C-4 Mouse port addresses

Hex	Dec	Neg dec	Label	Туре	Description
\$C400	50176	-15360		entry	Main mouse entry point
\$C405	50181	-15355		ident	ID byte (\$38)
\$C407	50183	-15353		ident	ID byte (\$18)
\$C40B	50187	-15349		ident	Firmware card signature (\$01)
\$C40C	50188	-15348		type	X-Y pointing device ID (\$20)
\$C40D	50189	-15347		offset	Low-order PInit address
\$C40E	50190	-15346		offset	Low-order PRead address
\$C40F	50191	-15345		offset	Low-order PWrite address
\$C410	50192	-15344		offset	Low-order PStatus address
\$C411	50193	-15343		indic	Optional routines follow (\$00)
\$C412	50194	-15342	SetMouse	offset	Low-order SetMouse address
\$C413	50195	-15341	ServeMouse	offset	Low-order ServeMouse address
\$C414	50196	-15340	ReadMouse	offset	Low-order ReadMouse address
\$C415	50197	-15339	ClearMouse	offset	Low-order ClearMouse address
\$C416	50198	-15338	PosMouse	offset	Low-order PosMouse address
\$C417	50199	-15337	ClampMouse	offset	Low-order ClampMouse address
\$C418	50200	-15336	HomeMouse	offset	Low-order HomeMouse address
\$C419	50201	-15335	InitMouse	offset	Low-order InitMouse address

Memory expansion

The memory expansion version of the Apple IIc supports the mouse in port 7. This means that the firmware entry points are \$C7XX addresses, instead of \$C4XX address; change the 4's to 7's in Table C-4.

Other video and I/O firmware addresses

Miscellaneous firmware addresses are listed in Table C-5.

Table C-5
Apple IIc enhanced video and miscellaneous firmware

Hex	Dec	Neg dec	Label	Туре	Description
\$C600 \$C700 \$C803	50688 50944 51203	-14848 -14592 -14333	NewIRQ	entry entry entry	Disk drive firmware entry point External disk startup routine IRQ handling routine
	Memor	y expansion	\$C700 supp	orts the mou	ise in the memory expansion version.

Applesoft BASIC interpreter addresses

The addresses of Applesoft BASIC entry points are listed in the *Applesoft BASIC Programmer's Reference Manual*. The Applesoft interpreter occupies ROM addresses from \$D000 through \$F7FF.

Monitor addresses

Table C-6 lists the Monitor entry points, machine identifier bytes, interrupt vectors, and the address of a known RTS instruction.

Table C-6Apple IIc monitor entry points and vectors

Hex	Dec	Neg dec	Label	Туре	Description
\$F800	63488	-2048	PLOT	entry	Plots a low-resolution block
\$F819	63513	-2023	HLine	entry	Draws low-resolution horizontal line
\$F828	63528	-2008	VLine	entry	Draws low-resolution vertical line
\$F832	63538	-1998	ClrScr	entry	Clears low-resolution screen
\$F836	63542	-1994	ClrTop	entry	Clears top 40 low-resolution lines
\$F864	63588	-1948	SetCol	entry	Sets low-resolution color (Table 5-4)
\$F871	63601	-1935	SCRN	entry	Reads color of low-resolution block
\$F941	63809	-1727	PrntAX	entry	Displays A and X in hex
\$F94A	63818	-1718	PrBl2	entry	Sends X blanks to output

Table C-6 (continued)
Apple IIc monitor entry points and vectors

Teple to the first of the point and the test of the point and the test of the point and the test of the point and the test of the point and th							
Hex	Dec	Neg dec	Label	Туре	Description		
\$FA47	63845	-1691	NewBRK	entry	Apple IIc break handler		
\$FA62	64098	-1438	Reset	entry	Hardware reset routine		
\$FB1E	64386	-1150	PRead	entry	Reads hand controller position		
\$FB6F	64467	-1169	SetPwrC	entry	Routine to create power-up byte		
\$FBB3	64535	-1101		ident	Machine identification byte		
\$FBC0	64548	-1088		ident	Machine identification byte		
\$FBDD	64477	-1059	Bell1	entry	Sends 1-kHz beep to speaker		
\$FC42	64578	-958	ClrEOP	entry	Clears from cursor to bottom		
\$FC58	64600	- 936	HOME	entry	Clears from cursor to upper left		
\$FC9C	64668	 868	ClrEOL	entry	Clears from cursor to end of line		
\$FC9E	64670	-866	Cleolz	entry	Clears from BASL to end of line		
\$FCA8	64680	- 856	WAIT	entry	Delays for time specified by A		
\$FD0C	64780	-756	RdKey	entry	Displays cursor, jumps to KSW		
\$FD1B	64795	-741	KeyIn	entry	Waits for keypress, reads key		
\$FD35	64821	-715	RdChar	entry	Gets input, interprets ESC codes		
\$FD67	64871	-665	GetLnZ	entry	Sends CR to output, goes to GetLn		
\$FD6A	64874	-662	GetLn	entry	Displays prompt, gets input line		
\$fD6f	64879	-657	GetLn1	entry	No prompt; gets input line		
\$FD8B	64907	-629	CROut1	entry	Clears to end of line, calls CROut		
\$FD8E	64910	– 626	CROut	entry	Sends CR to output		
\$FDDA	64986	-550	PrByte	entry	Sends A to output		
\$FDE3	64995	-541	PrHex	entry	Displays low nibble of A in hex		
\$FDED	65005	-531	COut	entry	Jumps to CSW		
\$FDF0	65008	-528	COut1	entry	Displays A, advances cursor		
\$FE2C	65068	-4 68	MOVE	entry	Copies memory elsewhere		
\$FE36	65078	-4 58	VERIFY	entry	Compares two blocks of memory		
\$FF2D	65325	-211	PrErr	entry	Sends ERR to output; beeps		
\$FF3A	65338	-198	Bell	entry	Sends CONTROL-G to output		
\$FF3F	65343	-193	IORest	entry	Loads \$45-\$49 into registers		
\$FF4A	65354	-182	IOSave	entry	Stores A, X, Y, P, S at \$45–\$49		
\$FF58	65368	-168	IORTS	RTS	Location of known RTS instruction		
\$FF69	65385	-151	Monitor	entry	Standard Monitor entry point		
\$FFFA	65530	6		vector	Low-order NMI vector (unused)		
\$FFFB	65531	- 5		vector	High-order NMI vector (unused)		
\$FFFC	65532	-4		vector	Low-order reset vector (\$62)		
\$FFFD	65533	-3		vector	High-order reset vector (\$FA)		
\$FFFE	65534	-2	IRQVect	vector	Low-order IRQ vector (\$03)		
\$FFFF	65535	-1		vector	High-order IRQ vector (\$CB)		

Operating Systems and Languages

This appendix is an overview of the characteristics of operating systems and languages when run on the Apple IIc. It is not intended to be a complete description. For more information, refer to the manuals that are provided with each product.

Operating systems

This section discusses the operating systems that the Apple IIc works with CP/M, and any other operating system that requires an interface card, does not work on the Apple IIc.

ProDOS

ProDOS is the preferred disk operating system for the Apple IIc. It supports startup from the external disk drive (on original Apple IIc's with the command PR#7), interrupts, and all other hardware and firmware features of the Apple IIc.

DOS

The Apple IIc works with DOS 3.3. Its built-in disk drive hardware and firmware can also access DOS 3.2 disks by using the *BASICS* disk. DOS support is provided for the sake of Apple II series compatibility; neither version of DOS takes full advantage of all the features of the Apple IIc.

Pascal Operating System

Versions 1.2 and later of the Pascal Operating System use the 80/40 switch and the interrupt features of the Apple IIc, while remaining compatible with the other Apple II series computers.

While the Apple IIc works with Pascal 1.1, this version of the Pascal Operating System does not use the 80/40 switch or handle interrupts.

The Apple IIc does not work with Pascal 1.0, because the I/O firmware entry points of that version of the operating system are rigidly defined (rather than being accessed via a table), and the Apple IIc's built-in firmware does not correspond to these entry points.

Languages

This section discusses using Apple programming languages with the Apple IIc. It is also a guide to using this reference manual with these languages.

Applesoft BASIC

The programming examples in this manual are almost entirely in assembly language, and so most addresses and values are given in hexadecimal notation.

Use a PEEK in BASIC (instead of LDA in assembly language) to read a location, and a POKE (instead of STA) to write to a location. The values used by Applesoft must be in decimal, so you will have to convert hexadecimal values given in this manual to decimal. (Several tables in this manual include decimal equivalents to make the job easier for you.)

If you read a hardware address from a BASIC program, you get a value between 0 and 255. Bit 7 has a value of 128, so if a soft switch is on, its value will be equal to or greater than 128; if the switch is off, the value will be less than 128.

Integer BASIC

You will have to run a version of DOS in your Apple IIc to use Integer BASIC. ProDOS does not support Integer BASIC.

Pascal

The Pascal language runs on the Apple IIc under versions 1.1 or later of the Pascal Operating System. However, for best performance, use Pascal versions 1.2 or later.

Fortran

Fortran runs under version 1.1 of the Pascal Operating System, which does not detect or use certain Apple IIc features, such as the 80/40 switch or auxiliary memory. Therefore, Fortran does not take advantage of these features either.

Logo II

Apple Logo II works under ProDOS on Apple II series machines with at least 128K of memory. Logo II is a version of the Logo language originally developed from the LISP (LISt Processing) language at MIT as a language to be used for learning. Logo II takes advantage of the Apple II's graphics and retains much of the power and flavor of LISP without LISP's somewhat cryptic syntax.

Interrupts

This appendix describes the sources of interrupts on the Apple IIc, how the firmware handles the interrupts, and how to use interrupt-driven features directly in those rare cases when the firmware cannot meet your needs.

Warning

If you use interrupt hardware directly, instead of using the builtin interrupt-handling firmware, you can't be sure that your programs will be compatible with possible future Apple II series computers or revisions,

Introduction

This section describes interrupts and their effects on the Apple IIc hardware.

What is an interrupt?

An **interrupt** is a signal that a computer uses to know when to stop what it's doing so it can quickly handle a time-dependent task. For example, the Apple IIc mouse sends an interrupt to the computer every time it moves. This lets the system keep track of the mouse's position and maintain smooth movement of the pointer on the screen.

When an interrupt occurs, control passes to an interrupt handler, which must record the exact state of the computer at the moment of the interrupt, determine the source of the interrupt, and take appropriate action. It is important that the computer preserve a "snapshot" of its state when interrupted, so that when it continues later with what it was doing, those conditions can be restored.

Interrupts on Apple II computers

Interrupts have not always been fully supported on the Apple II. All versions of Apple's DOS, as well as the Monitor program, rely on the integrity of location \$45, which the built-in interrupt handler has always destroyed by saving the accumulator in it. Most versions of Pascal simply do not work with interrupts enabled.

The Apple IIc built-in interrupt handler now saves the accumulator on the stack instead of in location \$45. DOS 3.3, ProDOS, Pascal 1.2 (or later versions), and the Monitor all work with interrupts on the Apple IIc.

You should use either ProDOS or Pascal 1.2 (or later versions) if you want interrupt-using software to work on the Apple IIe and the Apple II Plus. Both operating systems have full interrupt support built in.

Interrupts are effective only if they are enabled most of the time since interrupts that occur while interrupts are disabled cannot be detected. Because of the critical timing of disk read and write operations, Pascal, DOS 3.3, and ProDOS turn off interrupts while accessing the disk. Thus it is important to remember that while a disk drive is being accessed, all the interrupt sources discussed below are turned off.

On the Apple IIe only, interrupts are periodically turned off while 80-column screen operations are being performed. This is most noticeable while the screen is scrolling. Also, most peripheral cards used in the Apple IIe disable interrupts while reading and writing.

Interrupt handling on the 65C02

From the point of view of the 65C02, there are three possible causes of interrupts.

- 1. The IRQ line on the microprocessor can be pulled low if 65C02 interrupts are not masked (that is, the CLI instruction has been used). This is the standard technique that devices use when they need immediate attention.
- 2. The processor executes a break (BRK, opcode \$00) instruction.
- 3. A nonmaskable interrupt (NMI) occurs. Because the NMI line in the Apple IIc's 65C02 is not used, this never happens on the Apple IIc.

The first two possibilities cause the 65C02 to save the current program counter and status byte on the stack and then jump to the routine whose address is stored in \$FFFE and \$FFFF. The sequence performed by the 65C02 is:

- 1. If an IRQ occurs, finish executing the current instruction. (If a BRK occurs, the current instruction is already finished.)
- 2. Push the high byte of the program counter onto the stack.
- 3. Push the low byte of the program counter onto the stack.
- 4. Push the program status byte onto the stack.
- 5. Jump to the address stored in \$FFFE, \$FFFF—that is, JMP (\$FFFE).

The different sources of interrupt signals are discussed below.

The interrupt vector at \$FFFE

In the Apple IIc there are three separate regions of memory that contain address \$FFFE: the built-in ROM, the bank-switched memory in main RAM, and the bank-switched memory in auxiliary RAM. The vector at \$FFFE in the ROM points to Apple IIc's built-in interrupt handling routine. You should generally use the built-in interrupt handler, rather than writing your own, because of the complexity of interrupts on the Apple IIc.

When you initialize the mouse or serial communication firmware, copies of the ROM's interrupt vector are placed in the interrupt vector addresses in both main and auxiliary bank-switched memory. If you plan to use interrupts and the bank-switched memory without the mouse or communication firmware, you must copy the ROM's interrupt vector yourself.

The built-in interrupt handler

The built-in interrupt handler is responsible for determining whether a BRK or an IRQ interrupt occurred. If it was an IRQ interrupt, it decides whether the interrupt should be handled internally, handled by the user, or simply ignored.

The built-in interrupt-handling routine records the current memory configuration, then sets up its own standard memory configuration so that a user's interrupt handler knows the precise memory configuration when it is called.

Next the handler checks to see if the interrupt was caused by a break instruction, and if it was, handles it as described later in this appendix.

If the interrupt was not caused by a BRK, the handler checks for interrupts that it knows how to handle (for example, a properly initialized mouse) and handles them.

Depending on the state of the system, it either ignores other interrupts or passes them to a user's interrupt handling routine whose address is stored at \$03FE and \$03FF of main memory.

After handling an interrupt itself, or after the user's handler returns (with an RTI), the built-in interrupt handler restores the memory configuration, and then does an RTI to restore processing to where it was when the interrupt occurred. Table E-1 illustrates this whole process. Each of the steps is explained in detail in the sections that follow.

Table E-1 Interrupt-handling sequence

Interrupted program	Processor	Built-in handler	User's handler
Program—	→Push address Push status		
		Save old and set new memory configuration	
	••	If BRK, then go to break handler (\$FA47)————	
		Our interrupt?	
		NO: Push address Push status JMP (\$03FE)—	→Handle interrupt
		YES: Handle it	
		Restore memory < configuration	RTI
Program «	Pull status	—RTI	

Saving the memory configuration

The built-in interrupt handler saves the state of the system, and sets it to a known state according to these rules:

- ☐ If 80Store and Page2 are on, then it switches in text Page 1 (Page2 off) so that main screen holes are accessible.
- ☐ It switches in main memory for reading (RAMRd off).
- ☐ It switches in main memory for writing (RAMWrt off).
- ☐ It switches in ROM addresses \$D000-\$FFFF for reading (RdLCRAM off).
- ☐ It switches in main stack and zero page (AltZP off).
- ☐ It preserves the auxiliary stack pointer, and restores the main stack pointer.

- ☐ It preserves the current ROM state and switches in the ROM bank 1.
- Note: Because main memory is switched in, all memory addresses used later in this appendix are in main memory unless otherwise specified.

Managing main and auxiliary stacks

Because the Apple IIc has two stack pages, the firmware has established a convention that allows the system to be run with two separate stack pointers. Two bytes in the auxiliary stack page are to be used as storage for inactive stack pointers: \$0100 for the main stack pointer when the auxiliary stack is active, and \$0101 for the auxiliary stack pointer when the main stack is active.

When a program that uses interrupts switches in the auxiliary stack for the first time, it should place the value of the main stack pointer at auxiliary stack address \$0100, and initialize the auxiliary stack pointer to \$FF (the top of the stack). When it subsequently switches from one stack to the other, it should save the current stack pointer before loading the pointer for the other stack.

When an interrupt occurs while the auxiliary stack is switched in, the current stack pointer is stored at \$0101, and the main stack pointer is retrieved from \$0100. Then the main stack is switched in for use. After the interrupt has been handled, the stack pointer is restored to its original value.

User's interrupt handler at \$03FE

You can set up screen hole locations to indicate that the user's interrupt handler should be called when certain interrupts occur. To do this, place your interrupt handler's address at \$03FE and \$03FF in main memory, low byte first.

The user's interrupt handler should do the following:

- Verify that the interrupt came from the expected source. The following sections describe how this should be done for each interrupt source.
- ☐ Handle the interrupt as desired.
- ☐ Clear the interrupt, if necessary. The following sections describe how to clear the interrupts.
- Return with an RTL

If your interrupt handler needs to know the memory configuration at the time of the interrupt, it can check the encoded byte stored four bytes down on the stack. This byte is explained later in this appendix.

In general there is no guaranteed *maximum* response time for interrupts. This is because the system may be doing a disk operation, which could last for several seconds.

Once the built-in interrupt handler has been called, it takes about 250 to 300 microseconds for it to call your interrupt-handling routine. After your routine returns, it takes 40 to 140 microseconds to restore memory and return to the interrupted program.

If memory is in the standard state when the interrupt occurs, the total overhead for interrupt processing is about 150 microseconds less than if memory is in the worst possible state (80Store and Page2 on, auxiliary memory switched in for reading and writing, auxiliary bank-switched memory page \$02 switched in for reading and writing).

Handling break instructions

After the interrupt handler has set the memory configuration, it checks to see if the interrupt was caused by a BRK (opcode \$00) instruction. (If it was, bit 4 of the processor status byte is a 1.) If so, it jumps to a break-handling routine, which saves the state of the computer at the time of the break as follows:

Location
\$3A
\$3B
\$44
\$45
\$46
\$47
\$48

Finally, the break routine jumps to the routine whose address is stored at \$03F0 and \$03F1.

The encoded memory state in location \$44 can be interpreted as follows:

Bit 7 = 0

Bit 6 = 1 if 80Store and Page2 both on

Bit 5 = 1 if auxiliary RAM switched in for reading

Bit 4 = 1 if auxiliary RAM switched in for writing

Bit 3 = 1 if bank-switched RAM being read

Bit 2 = 1 if bank-switched \$D000 page \$01 switched in

Bit 1 = 1 if bank-switched \$D000 page \$02 switched in

Bit 0 = 0

Sources of interrupts

The Apple IIc can receive interrupts from many different sources. Each source is enabled and used slightly differently from the others. There are two basic sources of interrupts: use of the mouse, and actions affecting the two 6551 ACIA circuits (the chips that control serial communication). How to use these sources of interrupts in conjunction with the built-in interrupt handler is discussed later in this appendix.

Mouse use can cause interrupts when

- □ the mouse is moved in the horizontal (X) direction
- □ the mouse is moved in the vertical (Y) direction
- ☐ the mouse button is pressed

Interrupts can also be generated every 1/60 second by the rising edge of the vertical blanking signal. This is called the *vertical blanking* (VBL) interrupt and is synchronized with a signal used for the video display.

Actions affecting the ACIA circuits can cause interrupts when

- □ a key is pressed (the firmware can use this interrupt to buffer keystrokes, or it can pass the interrupt on to the user)
- either ACIA has received a byte of data from its port (the firmware can use this interrupt to buffer data or it can pass the interrupt on to the user)
- □ pin 5 of either serial port changes state (device ready/not ready to accept data) (when the serial firmware is active, this interrupt is absorbed; however, the serial firmware uses the signal to decide whether or not to transmit the next byte of data)

- either ACIA is ready to accept another character to be transmitted (when the serial firmware is active, this interrupt is absorbed; however, the serial firmware uses the signal to decide whether or not to transmit the next byte of data)
- ☐ the keyboard strobe is cleared (the firmware absorbs this interrupt)

An interrupt can also be generated by a device attached to the external disk drive port. The firmware can pass this interrupt on to the user.

Firmware handling of interrupts

The following sections discuss how the various sources of interrupts should be used together with the built-in interrupt handler.

Firmware for mouse and VBL

As described in Chapter 9, the mouse can be initialized (by the SetMouse call) to nine different modes that enable one or more sources of interrupts. In transparent mode, the interrupts are entirely handled by the built-in interrupt handler; the other modes require a user-installed interrupt handler.

When the mouse is initialized, the interrupt vector is copied to addresses \$FFFE and \$FFFF in main and auxiliary bank-switched RAM. This permits mouse interrupts with any memory configuration.

When the mouse is active, possible sources of interrupts are those listed earlier in this appendix as resulting from mouse use.

When an interrupt occurs, the built-in interrupt handler determines whether that particular interrupt source was enabled (by the SetMouse call). If so, the user's interrupt handler, whose address is stored at \$03FE, is called.

The user's interrupt handler should first call ServeMouse to determine the source of the interrupt. This call updates the mouse status byte at \$077C and returns with the carry bit clear if mouse movement, button, or vertical blanking was the source of the interrupt.

The values of this mouse status byte at \$077C (\$077F in the memory expansion IIc) are as follows:

Bit 1 means that

- 3 Interrupt was from vertical blanking
- 2 Interrupt was from button
- 1 Interrupt was from mouse movement

If the interrupt was due to mouse movement or button, the user's interrupt handler should then do a call to ReadMouse. This causes the mouse coordinates and status to be updated as follows:

\$047C	Low byte of X coordinate
\$04FC	Low byte of Y coordinate
\$057C	High byte of X coordinate
\$05FC	High byte of Y coordinate
\$077C	Button and movement status

Bit Means

- 7 0 = button up; 1 = button down
- 6 0 = button up on last ReadMouse
 - 1 = button down on last ReadMouse
- 5 0 = no movement since last ReadMouse
 - 1 = movement since last ReadMouse
- 3-1 Always set to 0 (interrupt cleared)

After the interrupt has been handled, the routine should terminate with an RTI.

Remember that interrupts may be missed during disk accesses.

If you turn on mouse interrupts without initializing the mouse, the built-in interrupt handler will absorb the interrupts. If you want to handle mouse interrupts yourself, you must write your own interrupt handler and place vectors to it at addresses \$FFFE and \$FFFF in bank-switched RAM. Interrupts will be ignored whenever the \$D000-\$FFFF ROM is switched in.

Firmware for keyboard interrupts

The Apple IIc hardware is able to generate an interrupt when a key is pressed. The firmware is able to buffer up to 128 keystrokes, completely transparently, when properly enabled to do so. It saves them in the second half of page \$08 of auxiliary memory. After the buffer is full, subsequent keystrokes are ignored. Because interrupts are only generated when keypresses occur, characters generated by the auto-repeat feature are not buffered. They can, however, be read when the buffer is empty.

Once keyboard buffering has been turned on, the next key should be read by calling RdKey (\$FD0C).

Warning

Do not call the buffer reading routine directly. Its entry address will not be the same in future versions of the computer.

The special characters Control-S (stop list) and Control-C (stop Applesoft execution) do not work while keyboard buffering is turned on. A new keystroke, Solid Apple-Control-X, clears the buffer.

Using keyboard buffering firmware

Keyboard buffering is automatically turned on when the serial firmware is placed in terminal mode. Otherwise you must turn it on yourself this way:

Memory expansion

The Apple IIc that supports memory expansion places the keyboard screen holes in different locations from those used in earlier versions. For the memory expansion IIc, change all \$nnnF addresses to \$nnnC (that is, change \$05FF to \$05FC).

- 1. Disable processor interrupts (SEI).
- 2. Set location \$05FA to \$80. This tells the firmware to buffer keystrokes without calling the user's interrupt handler.
- 3. Set locations \$05FF and \$06FF to \$80. These are pointers to where in the buffer the next keystroke will be stored and where the next will be read from, respectively.
- 4. Turn on the ACIA for port 2 by setting the low nibble of \$C0AA to the value \$0F. For example:

LDA \$COAA Read port 2 ACIA command register
ORA #\$0F Set low nibble to \$0F
STA \$COAA Set port 2 ACIA command register

If you are using the serial ports at the same time, just set the low bit of \$C0AA to 1. This prevents receiver interrupts from being turned off.

A PR#2 or IN#2 or the equivalent will shut off keyboard interrupts.

5. Enable processor interrupts (CLI).

Using keyboard interrupts through firmware

Keyboard interrupts are received through the ACIA for port 2. They can be enabled as follows:

- 1. Disable processor interrupts (SEI).
- 2. Set location \$05FA to \$C0. This tells the firmware to identify a keystroke interrupt, and to call the user's interrupt handler.
- 3. Turn on the ACIA for port 2 by setting the low nibble of \$C0AA to the value \$0F. For example:

```
LDA $COAA Read port 2 ACIA command register
ORA #$0F Set low nibble to $0F
STA $COAA Set port 2 ACIA command register
```

4. Enable processor interrupts (CLI).

When the user's interrupt handler is called, it can identify the keyboard as the interrupt source by reading location \$04FA. This is a copy of the ACIA status register at the time of the interrupt. If the interrupt was due to something on the ACIA for port 2, bit 7 is set. If the interrupt was caused by a keystroke, bit 6 is set and bit 5 is unchanged.

After servicing this interrupt, the interrupt handler should clear the interrupt by setting \$04FA to \$00.

Using external interrupts through firmware

Pin 9 of the external disk drive connector (EXTINT) can be used to generate interrupts through the ACIA for port 1. It can be used as a source of interrupts (on a high-to-low transition) if enabled as follows:

- 1. Disable processor interrupts (SEI).
- 2. Set location \$05F9 to \$C0. This tells the firmware to identify an external interrupt, and to call the user's interrupt handler.
- 3. Turn on the ACIA for port 1 by setting the low nibble of \$C09A to the value \$0F. For example:

```
LDA $C09A Read port 1 ACIA command register
ORA #$0F Set low nibble to $0F
STA $C09A Set port 1 ACIA command register
```

4. Enable processor interrupts (CLI).

When the user's interrupt handler is called, it can identify this interrupt by reading location \$04F9. This is a copy of the ACIA status register at the time of the interrupt. If the interrupt was due to something on the ACIA for port 1, bit 7 is set. If the interrupt was caused by the external interrupt line, bit 6 is clear and bit 5 is unchanged.

After servicing this interrupt, the interrupt handler should clear the interrupt by setting \$04F9 to \$00.

Firmware for serial interrupts

The Apple IIc hardware is able to generate interrupts both when the ACIA receives data and when it is ready to send data. The built-in interrupt handler responds to incoming data only. The firmware is able to buffer up to 128 incoming bytes of serial data from either serial port. After the buffer is full, data are ignored. Only one port can be buffered at a time. The following sections assume that the serial port to be buffered is already initialized, as explained in Chapter 8.

Using serial buffering transparently

Serial buffering is automatically turned on when the serial firmware is placed in terminal mode. Otherwise you must turn it on yourself, as follows:

Memory expansion

For the memory expansion IIc, change all \$nnnF addresses to \$nnnC and change the \$0D value to \$09.

- 1. Disable processor interrupts (SEI).
- 2. Set location \$04FF to \$C1 to buffer port 1, or to \$C2 to buffer port 2.
- 3. Set locations \$057F and \$067F to \$00. These are pointers to the next byte in the buffer to be used and the next character to be read from the buffer, respectively.
- 4. Turn on the ACIA for the port by setting the low nibble of \$C09A for port 1 or \$C0AA for port 2 to \$0D. For example:

LDA \$C09A Read port 1 ACIA command register
AND \$F0 Clear low nibble
ORA #\$0D Set low nibble to \$0D
STA \$C09A Set port 1 ACIA command register

The 0 in bit 1 of the command register enables receiver interrupts; thus an interrupt is generated when a byte of data is received.

5. Enable processor interrupts (CLI).

When serial port buffering is thus enabled, normal reads from the serial port firmware fetch data from the buffer rather than directly from the ACIA.

Using serial interrupts through firmware

It is also possible to use the firmware to call the user interrupt handler whenever a byte of data is read by the ACIA. In this mode buffering is not performed by the firmware.

Memory expansion

For the memory expansion IIc, change all \$nnnF addresses to \$nnnC and change the \$0D value to \$09.

- 1. Disable processor interrupts (SEI).
- 2. Set location \$04FF to a value other than \$C1 or \$C2.
- 3. Turn on the ACIA for the port by setting the low nibble of \$C09A for port 1 or \$C0AA for port 2 to \$0D. For example:

LDA \$C09A Read port 1 ACIA command register
AND \$F0 Clear low nibble
ORA #\$0D Set low nibble to \$0D
STA \$C09A Set port 1 ACIA command register

The 0 in bit 1 of the command register enables receiver interrupts; thus an interrupt is generated when a byte of data is received.

4. Enable processor interrupts (CLI).

When a serial port is thus enabled, the user's interrupt handler is called each time the port receives a byte of data. The status byte saved by the firmware (\$04F9 for port 1; \$04FA for port 2) has the high bit set if the interrupt occurred on that port. Bit 3 is set if the interrupt was due to a received byte of data.

The interrupt handler should clear the interrupt by clearing bits 7 and 3 of that port's status byte (\$04F9 for port 1; \$04FA for port 2).

Transmitting serial data

The serial firmware does not implement buffering for serial output. Instead it waits for two conditions to be true before transmitting a character:

- ☐ The ACIA's transmit register must be ready to accept a character. This is true if bit 4 of the ACIA's status register is 1.
- ☐ The device must signal that it is ready to accept data. This is true if bit 5 of the ACIA's status register is 0. Bit 5 is 0 if pin 5 of the port's connector is also 0.

When the serial firmware is active, a change of state on pin 5 of that port generates an interrupt. That interrupt is absorbed, but the data remain in bit 5 of the status register. Interrupts from the ACIA's transmit register are normally disabled.

A loophole in the firmware

So that programs can make use of interrupts on the ACIAs without affecting mouse interrupt handling, there is a tiny loophole purposely left in the built-in interrupt handler. If transmit interrupts are enabled on the ACIA—that is, if bits 3, 2, and 0 of the ACIA's command register have the values 0, 1, and 1, respectively—then control is passed to the user's interrupt handler if the interrupt is not intended for the mouse (movement, button, or VBL).

This means that you can write more sophisticated serial interrupthandling routines than the limited firmware space could provide (such as printer spooling). The firmware will still set memory to its standard state, handle mouse interrupts, and restore memory after your routine is finished.

When you receive the interrupt, neither ACIA's status register has been read. You are fully responsible for checking for interrupts on both ACIAs, determining which of the four interrupt sources on each ACIA caused the interrupt, and how to handle them. Refer to the 6551 specification for more details. The built-in firmware itself is an excellent example of how interrupts on the ACIA can be handled.

Bypassing the interrupt firmware

The following sections give further details on using interrupts on the Apple IIc computer without using the built-in interrupt handler.

A method of handling mouse interrupts directly is described in Chapter 9.

Using mouse interrupts without the firmware

To use mouse interrupts without the firmware, as mentioned above, you must set your own interrupt vectors. If the \$D000-\$FFFF ROM is ever switched in, the built-in interrupt handler will absorb the mouse interrupts.

Tables E-2 and E-3 show how to activate and read mouse interrupts without using the firmware. Remember to disable interrupts (SEI) before enabling mouse interrupts, then turn them on when done (CLI).

Table E-2Activating mouse interrupts

To activate interrupts on	Enable IOU access	Select source	Enable source	Disable IOU access	
Mouse X (rising edge)	STA \$C079	STA \$C05C	STA \$C059	STA \$C078	
Mouse X (falling edge)	STA \$C079	STA \$C05D	STA \$C059	STA \$C078	
Mouse Y (rising edge)	STA \$C079	STA \$C05E	STA \$C059	STA \$C078	
Mouse Y (falling edge)	STA \$C079	STA \$C05F	STA \$C059	STA \$C078	
VBL	STA \$C079		STA \$C05B	STA \$C078	

Table E-3Reading mouse interrupts

To read interrupts from	Read direction (A.S.A.P)	Determine source	Handle it	Return
Mouse X	LDA \$C066	LDA \$C015 (bit 7=1 if true)	• • •	RTI
Mouse Y	LDA \$C067	LDA \$C017 (bit 7=1 if true)	•••	RTI
VBL		LDA \$C019 (bit 7=1 if true)	•••	RTI

The mouse direction data read from \$C066 and \$C067 are guaranteed valid for at least 40 microseconds, and average duration is at least 200 microseconds, so you should read the direction as soon as possible.

Using ACIA interrupts without the firmware

To use ACIA interrupts without the firmware, you must set your own interrupt vectors. If the \$D000-\$FFFF ROM is ever switched in, the built-in interrupt handler will handle the interrupt as determined by certain mode bytes.

When writing your serial interrupt handler, refer to Figures 11-31 through 11-33 and to the Synertek 6551 ACIA specification. As shown in Chapter 11, the ACIAs have the following connections:

- Port 1 DSR line connected to the EXTINT line on the external disk port.

 DCD line connected to pin 5 of port 1 connector.
- Port 2 DSR line goes high when a key is pressed.

 DCD line connected to pin 5 of port 2 connector.

The ACIA registers have the following addresses:

Port 1			Port 2		
Data register	=	\$C098	Data register	=	\$C0A8
Status register	=	\$C099	Status register	=	\$C0A9
Command register	=	\$C09A	Command register	=	\$COAA
Control register	=	\$C09B	Control register	=	\$C0AB

Apple II Series Differences

This appendix compares the Apple IIc to the Apple IIe, Apple II Plus, and Apple II. It does not contain an exhaustive list of differences, but it does mention those differences most likely to affect the accuracy of programs, displays, and instructions created for end users of two or more Apple II series models.

Overview

The differences between the Apple II series computers can be expressed as a series of equations: this computer equals that one plus or minus certain features.

The following equations compare each model of Apple II series with its predecessor in terms of functional equivalence, not literal equality. For example,

Apple II Plus = Apple II - Integer BASIC firmware

does not mean that Integer BASIC firmware can be removed from the Apple II—just that the one machine functions as if it were the other without such firmware.

Apple II Plus = II

- + Autostart ROM
- + Applesoft firmware
- + 48K RAM standard
- old Monitor ROM
- Integer BASIC firmware

Apple IIe = II Plus + Apple Language Card (with 16K of RAM)

- + 80-column (enhanced) video firmware
- + built-in diagnostics
- + full ASCII keyboard
- + internal power light
- + FCC approval
- + improved back panel
- + 9-pin back panel game connector
- + auxiliary slot (with possibility of 80-column text card and extra 64K RAM)
- slot 0
- + interrupt support in firmware (enhanced Apple IIe)
- + Mini-Assembler in firmware (enhanced Apple IIe)

Apple IIc = IIe

- + extended 80-column text card
- + 80/40 switch
- + keyboard switch
- + disk-use light
- + disk controller port
- + disk drive
- + mouse port
- + serial printer port
- + serial communication port
- + built-in port firmware
- + video expansion connector
- removable cover
- slots 1 to 7
- auxiliary slot
- internal power light
- cassette I/O connectors
- internal game I/O connector (hence no game output)
- auxiliary video pin
- Monitor cassette support
- + Mini-Assembler in firmware (Apple IIc with UniDisk 3.5 support)
- + Smartport in firmware (UniDisk 3.5 and memory expansion Apple IIc)
- + memory expansion card support (memory expansion Apple IIc)

Type of processor

The processor in the Apple II and II Plus is the 6502. The original Apple IIe uses a 6502A. The Apple IIc and enhanced Apple IIe both use the 65C02: this is a redesigned CMOS CPU that has 27 new instructions, new addressing modes, and for some instructions a differing execution scheme and machine cycle counts (see Appendix A).

Programs written for the Apple IIc will run on the earlier machines only if they do not contain instructions unique to the 65C02, or depend on shared instructions whose cycle times differ. Programs should also use only published entry points in the Monitor firmware to allow maximum compatibility between different Apple II series computers.

Machine identification

Identification of Apple II series computers is as shown in Table F-1.

Table F-1
Apple II series identification bytes

Machine	\$FBB3	\$FB1E	\$FBC0	\$FBBF	
Apple II	\$38				
Apple II Plus	\$EA	\$AD			
Apple IIe	\$06		\$EA		
Apple IIe (enhanced)	\$06		\$E0		
Apple IIc	\$06		\$00	\$FF	
Apple IIc (UniDisk 3.5 support)	\$06		\$00	\$00	
Apple IIc (memory expansion)	\$06		\$00	\$03	
Apple III in Apple II					
emulation mode	\$EA	\$8A			

Any future Apple II series computer or ROM release will have different values in these locations. Machine identification routines are available from Apple Vendor Technical Support.

The MachID byte for ProDOS (\$BF98 on the global page) will have bit 3 set to 0 if the computer is an Apple II, II Plus, IIe, or III, and to 1 if the computer is not one of these machines. In an Apple IIc, bits 7 and 6 are also set to binary 10.

Bits 7 and 6 set to binary 10 indicate that a computer is Apple IIe and IIc compatible, regardless of the value of bit 3.

Memory structure

This section compares the memory organization of the Apple IIc with that of the Apple II, II Plus, and IIe. These machines differ in RAM space, ROM space, slot or port address space, and hardware page use.

Amount and address ranges of RAM

The Apple II could have as little as 4K of RAM at the time of purchase, and could be upgraded to as much as 48K of RAM.

The Apple II Plus has 48K of RAM (\$0000 through \$BFFF) as a standard feature. With the addition of an Apple Language Card, a 48K Apple II or II Plus could be expanded to have 64K of RAM.

The Apple IIe has a full 64K of RAM. The top 12K addresses overlap with the ROM addresses \$D000 through \$FFFF. There is an additional bank-switched area of 4K from \$D000 through \$DFFF. This arrangement is equivalent to an Apple II Plus with an Apple Language Card installed. A program selects between the RAM and ROM address spaces and between the \$Dxxx banks by changing soft switches located in memory.

With an Extended 80-Column Text Card installed in its auxiliary slot, an Apple IIe has an additional 64K of RAM available, although no more than half of the 128K of RAM space is available at any given time. Soft switches located in memory control these address space selections.

The RAM in the Apple IIc is equivalent to the RAM in an Apple IIe with an Extended 80-Column Text Card. The optional memory expansion card can add as much as 1Mb of RAM to the IIc in 256K steps.

Amount and address ranges of ROM

The Apple II has 8K of ROM (\$E000 through \$FFFF), and the Apple II Plus has 12K of ROM (\$D000 through \$FFFF). Users can plug their own ROMs into the sockets provided. The on-board (as opposed to slot) ROM address range is from \$D000 through \$FFFF.

The Apple IIe has 16K of ROM, of which it uses 15.75K (addresses \$C100 through \$FFFF; page \$C0 addresses are for I/O hardware). ROM addresses \$C300 through \$C3FF (normally assigned to the ROM in a card in slot 3) and \$C800 through \$CFFF contain 80-column video firmware; ROM addresses \$C100 through \$C2FF and \$C400 through \$C7FF (normally assigned to the ROM on cards in slots 1, 2, 4, 5, 6, and 7) contain built-in self-test routines.

A soft switch in RAM controls whether the video firmware or slot 3 card ROM is active. Invoking the self-tests with Solid Apple-Control-Reset causes the self-test firmware to take over the slot ROM address spaces.

The Apple IIc ROM also uses the 15.75K from \$C100 through \$FFFF, and its enhanced video firmware has the same entry point addresses as on the Apple IIe. However, there are only rudimentary built-in self-tests, and these do not preempt any port firmware space.

UniDisk 3.5

The Apple IIc with built-in UniDisk 3.5 support has twice the ROM (32K) of the original Apple IIc. The extra ROM contains support for the Smartport, a Mini-Assembler, STEP and TRACE functions in the Monitor firmware, expanded self-test routines, and improved interrupt support.

In the Apple IIc, addresses \$C100 through \$CFFF contain I/O and interrupt firmware, addresses \$D000 through \$F7FF contain the Applesoft BASIC interpreter, and addresses \$F800 through \$FFFF contain the Monitor.

Peripheral-card memory spaces

Each Apple IIc port has up to 16 peripheral-card I/O space locations in main memory on the hardware page (beginning at location \$C0s0 + \$80 for slot or port s), allocated in the standard Apple II series way (that is, beginning at location \$C0s0 + \$80 for each slot s).

The peripheral-card ROM space (page \$Cs for slot s in the Apple II, II Plus, and IIe) contains the starting and entry-point addresses for port s, but port routines are not limited to their allocated \$Cs pages.

The 2K-byte expansion ROM space from \$C800 to \$CFFF in the Apple IIc is used by the enhanced video firmware and miscellaneous I/O and memory-transfer routines.

The 128 bytes of peripheral-card RAM space (or scratch-pad RAM) (64 screen holes in main memory and their equivalent addresses in auxiliary memory) are reserved for use by the built-in firmware. It is extremely important for the correct operation of Apple IIc firmware that these locations not be altered by software except for the specific purposes described in Chapters 7, 8, and 9, and in Appendix E.

Hardware addresses

The hardware page (the addresses from \$C000 through \$C0FF) controls memory selection and input/output hardware characteristics. All input and output (except video output) takes place at one or more hardware page addresses. For the sake of simplicity, this section presents only a general comparison between the Apple IIc on the one hand, and the Apple II, II Plus, and IIe on the other, with respect to hardware page use. However, for many characteristics, the Apple IIe and IIc work one way, while the Apple II and II Plus work another.

\$C000-\$C00F

On all Apple II series computers, reading any one of these addresses reads the keyboard data and strobe. On the Apple IIe and IIc, writing to each of these addresses turns memory and display switches on and off. Writing to addresses \$C006, \$C007, \$C00A, and \$C00B performs ROM selection on the Apple IIe. Writing to these four addresses is reserved on the Apple IIc.

For reading the keyboard, use \$C000; reserve \$C001 through \$C00F.

\$C010-\$C01F

On all Apple II series computers, writing to any one of these addresses clears the keyboard strobe. On the Apple IIe and IIc, reading each of these addresses checks the status of a memory or display switch, or the any-key-down flag.

For clearing the keyboard strobe, use \$C010; reserve \$C011 through \$C01F.

Reading \$C015 checks the SLOTCXROM switch on the Apple IIe, but it resets the X-movement interrupt (XInt) on the Apple IIc. Similarly, reading \$C017 checks the SLOTC3ROM switch on the Apple IIe, but it resets the Y-movement interrupt (YInt) on the Apple IIc.

Reading \$C019 checks the current state of vertical blanking (VBL) on the Apple IIe, but it resets the latched vertical blanking interrupt (VBIInt) on the Apple IIc.

\$C020-\$C02F

On the Apple II, II Plus, and IIe, reading any address \$C02x toggles the cassette output signal. On the original Apple IIc, both reading from and writing to these locations are reserved. The Apple IIc with 32K of ROM uses \$C028 to switch in or out the extra 16K of ROM.

\$C030-\$C03F

On all Apple II series computers, reading an address of the form \$C03x toggles the speaker. For full Apple II series compatibility, toggle the speaker using \$C030, and reserve \$C031 through \$C03F.

On the Apple IIc, writing to \$C031 through \$C03F is explicitly reserved.

\$C040-\$C04F

On the Apple II, II Plus, and IIe, reading any address of the form \$C04x triggers the utility strobe. The Apple IIc has no utility strobe.

On the Apple IIc, addresses \$C044 through \$C047 are explicitly reserved, and reading or writing any address from \$C048 through \$C04F resets both the X and Y mouse interrupts (XInt and YInt).

\$C050-\$C05F

Addresses \$C050 through \$C057 work the same on the Apple IIc as on the Apple IIe: they turn the TEXT, MIXED, Page2, and HiRes switches on and off.

On the Apple IIe, addresses \$C058 through \$C05F turn the annunciator outputs on and off. On an Apple IIe with a revision B main logic board or later, an Apple Extended 80-Column Text Card, and a jumper installed on the card, reading locations \$C05E and \$C05F set and clear double high-resolution display mode.

On the Apple IIc, if the IOUDis switch is on, both reading from and writing to addresses \$C058 through \$C05D are reserved, and addresses \$C05E and \$C05F set and clear the double high-resolution display (as on the Apple IIe equipped as described in the preceding paragraph). If the IOUDis switch is off, then addresses \$C058 through \$C05F control various characteristics of mouse and vertical blanking interrupts (Table 9-2).

\$C060-\$C06F

On the Apple IIc, writing to any address of the form \$C06x is reserved, and reading addresses \$C068 through \$C06F is reserved.

Reading addresses \$C061 and \$C062 is the same as on the Apple IIe (switch inputs and Apple keys). Reading addresses \$C064 and \$C065 is the same as on all other Apple II series computers (analog inputs 0 and 1).

On the Apple IIc, address \$C063 bit 7 is 1 if the mouse switch is not pressed, and 0 if it is pressed, so that software looking for the shift-key mod (used on Apple II, II Plus, and IIe with some text cards) will find it and display lowercase correctly. If by chance the mouse button is pressed when the software checks location \$C063, it will appear that the Shift-key mod is not present.

On the Apple IIc, address \$C060 is used for reading the state of the 80/40 switch; on the Apple II, II Plus, and IIe, this address is for reading cassette input.

The Apple IIc has two, rather than four, analog (paddle) inputs. Addresses \$C066 and \$C067 are used for reading the mouse X and Y direction bits.

\$C070-\$C07F

On the Apple II, II Plus, and IIe, reading from or writing to any address of the form \$C07x triggers the (analog input) paddle timers.

On the Apple IIc, only address \$C070 is to be used for that one function. Addresses \$C071 through \$C07D are explicitly reserved. The results of reading from or writing to addresses \$C07E and \$C07F are described in Table 5-8.

\$C080-\$C08F

On the Apple IIe and IIc, accessing addresses in this range selects different combinations of bank-switched memory banks. However, addresses \$C084 through \$C087 duplicate the functions of the four addresses preceding them, and addresses \$C08C through \$C08F do also. These eight addresses are explicitly reserved on the Apple IIc.

\$C090-\$C0FF

On the Apple II, II Plus, and IIe, each group of 16 addresses of the form \$C080 + \$s0 is allocated to an interface card (if present) in slot s.

On the Apple IIc, addresses corresponding to slots 1, 2, 3, 4, and 6 are allocated to a serial interface card, communication interface card, 80-column text card, mouse interface card, and disk controller card, respectively. All other addresses in this range are reserved.

Monitors

The older models of the Apple II and Apple II Plus included a different version of the System Monitor from the one built into more recent models (and the Apple IIe and IIc). The older version, called the Monitor ROM, had the same standard I/O subroutines as the newer Autostart ROM, but a few of their features were different; for example, there were no arrow keys for vertical cursor motion.

When you start the Apple IIc with a DOS or *BASICS* disk and it loads Integer BASIC into the bank-switched area in RAM, it loads the old Monitor along with it. When you type INT from Applesoft to activate Integer BASIC, you also activate this copy of the old Monitor, which remains active until you either type FP to switch back to Applesoft, which uses the new Monitor in ROM, or activate the 80-column firmware.

I/O in general

Apple IIc I/O is different from I/O on the Apple II, II Plus, and IIe in three important respects: the possibility of direct memory access (DMA) transfers, the presence or absence of slots, and the presence or absence of built-in interrupt handling.

DMA transfers

The Apple II, II Plus, and IIe allow DMA transfers, because both the address and the data bus are available at the slots. No true DMA transfer is possible with the Apple IIc because neither bus is available at any of the back panel connectors.

Slots versus ports

The Apple II and II Plus have eight identical slots; the Apple IIe has seven identical slots plus a 60-pin auxiliary slot for video, add-on memory, and test cards. The Apple IIc has no slots; instead, it has back panel connectors and built-in hardware and firmware that are functional equivalents of slots with cards in them. The back panel connectors are called *ports* on the Apple IIc.

Interrupts

The Apple IIc is the first computer in the Apple II series to have built-in interrupt-handling capabilities. The enhanced Apple IIe has very similar interrupt-handling capability included.

The keyboard

Both keyboard layout and character sets vary in the Apple II series computers. The major keyboard difference in the Apple II series is that the Apple IIe and IIc have full ASCII keyboards, while the Apple II and II Plus do not.

Keys, switches, and lights

The Apple II and II Plus have identical 52-key keyboards. The Apple IIe and Apple IIc keyboards have the same 63-key full ASCII keyboard layout, with new and repositioned keys and characters as compared to the Apple II and II Plus. While the Apple II and II Plus have a Rept key, the IIe and IIc have an auto-repeat feature built into each character key.

Some Apple II and Apple II Plus machines have a slide switch inside the case, under the keyboard edge of the cover, for selecting whether or not Reset works without Control. On the Apple IIe and Apple IIc, there is no choice: Control-Reset works, and Reset alone does not.

The Apple IIc and IIe have an Open Apple and a Solid Apple key; the Apple II and II Plus do not have these two keys.

The captions on several keys—Escape, Tab, Control, Shift, Caps Lock, Delete, Return, and Reset—can vary: on the Apple II and II Plus some are abbreviated or missing; on the Apple IIc all keycaps are lowercase italic; on international models, some captions are replaced by symbols (Appendix G).

The Apple IIc has two switches that the other models do not have. One switch is for changing between 40-column and 80-column display, the other is for selecting keyboard layout (Sholes versus Dvorak on USA models), or both keyboard layout and character set (on international models).

The position of the power-on light differs on the Apple II and II Plus, Apple IIe, and Apple IIc. The Apple IIc has a disk-use light as well.

Character sets

The Apple II and II Plus keyboard character sets are the same. They are described in the Apple II Reference Manual.

The Apple IIe and Apple IIc keyboard character sets are the same: full ASCII. The standard (Sholes) layout and key assignments are described in the *Apple IIe Reference Manual*. The Dvorak layout and key assignments are described in Chapter 4 and Appendix G of this manual.

To change between the two available keyboard layouts requires modification to the main logic board on the Apple IIe, but only toggling of the keyboard switch on the Apple IIc.

Apple Computer, Inc., manufactures fully localized models (with regard to power supply and character sets) of both the Apple IIe and the Apple IIc. However, there are minor variations in keyboard layout, even among early and late production models of the same machine. For further details, refer to Appendix G of this manual or to the Apple IIe Supplement to the Owner's Manual.

The speaker

The Apple IIc has two speaker features that the three previous models do not have. They are a two-channel, but monaural, audio output jack for headphones—which disconnects the internal speaker when something is plugged into it—and a volume control.

The video display

This section discusses the general differences between Apple IIc video display capabilities and those of the other computers in the series. Note, however, that as new ROMs become available for the Apple IIe, many differences between these two machines will vanish.

Character sets

The Apple II and II Plus display only uppercase characters, but they display them in three ways: normal, inverse, and flashing. The Apple IIc and IIe can display uppercase characters in all three ways, and they can display lowercase characters in the normal way. This combination is called the *primary character set*.

The Apple IIc and IIe have another character set, called the alternate character set, that displays a full set of normal and inverse uppercase and lowercase characters, but can't display flashing characters. The primary and alternate character sets are described in Chapter 5. You can switch character sets at any time by means of the AltChar soft switch, also described in Chapter 5.

Flashing display must not be used with the enhanced video firmware active. Use it in 40-column mode with the enhanced video firmware turned off; otherwise, strange displays may result, such as MouseText characters appearing in place of uppercase letters.

To be sure of compatibility with some software, you have to switch the Apple IIc keyboard to uppercase by pressing Caps Lock.

MouseText

MouseText characters (Chapter 5) are available on every Apple IIc, and on the enhanced Apple IIe.

Vertical blanking

A signal called *vertical blanking* indicates when a display device should stop projecting dots until the display mechanism returns from the bottom of the screen to the top to make another pass. During this interval, a program can make changes to display memory pages, and thus provide a smooth, flicker-free transition to a new display.

On the Apple IIe, vertical blanking (VBL) is a signal whose level must be polled. (VBL is not available to software on the Apple II or II Plus.) On the Apple IIc, vertical blanking is an interrupt (VBIInt) that occurs on the trailing edge of the active-low VBL signal. Programs intended to run on all Apple II series computers must take this difference into account.

Display modes

All models have 40-column text mode, low-resolution graphics mode, high-resolution graphics mode, and mixed graphics and text modes. The Apple IIe (revision B motherboard) with an Apple Extended 80-Column Text Card, and the Apple IIc have double high-resolution graphics mode also.

Disk I/O

The Apple II, II Plus, and IIe can support up to six disk drives (although four is the recommended maximum) attached in controller cards plugged into slots 6, 5, and 4. The Apple IIc supports up to two disk drives: its built-in drive (treated as slot 6, drive 1), and one external disk drive (treated as slot 6, drive 2; also treated as slot 7, drive 1 under ProDOS) for external-drive startup purposes.

UniDisk 3.5 The Apple IIc with UniDisk 3.5 support does not use slot 7, drive 1 for external drives. They are handled through the Smartport described in Chapter 6. The firmware for slot 7 (\$C7xx) is needed for other parts of the firmware.

Serial I/O

The Apple IIc serial ports (ports 1 and 2) are similar to Super Serial Cards installed in slots 1 and 2 of an Apple IIe. The serial port commands are a slightly modified subset of Super Serial Card commands. This subset includes all the commands supported by the earlier Apple Serial Interface Card and Communication Card.

Serial ports versus serial cards

There are several important differences between Apple IIc serial ports and other Apple II series computers with serial cards installed in them.

Apple IIc serial ports have no switches. Instead, initial values are moved from firmware locations into auxiliary memory when the power is turned on. Changes made to these values in auxiliary memory remain in effect until the power is turned off. Pressing Open Apple-Control-Reset does not change them.

When the port itself is turned on (with an IN or PR command), the initial values in auxiliary memory are placed in the main memory screen holes assigned to the port. These characteristics can be changed by the port commands. The changed characteristics remain in effect until the port is turned off and then on again (with PR and IN commands).

The command syntax for the Apple IIc ports also differs from the syntax for serial cards. A separate command character, Control-A or Control-I, must precede each individual port command, whereas several commands to a serial card can be strung together between the command character and a carriage return character.

The letters used for some of the commands have been changed from those used with the Super Serial Card (such as S instead of B for sending a BREAK signal). Each serial port command letter is unique, to simplify command interpretation.

Changing the command character from Control-A to Control-I, or vice versa, makes the Super Serial Card change from communication mode to printer mode and back; this is not the case with Apple IIc serial ports. With the Apple IIc, use the *System Utilities* disk to change modes.

Super Serial Card commands support some functions that Apple IIc serial port commands don't support: translating incoming characters, such as changing lowercase to uppercase (for the benefit of the Apple II or II Plus); delaying after sending carriage return, line feed, or form feed, and so on.

UniDisk 3.5

Several new serial port commands are available on the Apple IIc with UniDisk 3.5 support. These commands have been added to make It easier to write programs that are also compatible with the Super Serial Card. See Chapters 7 and 8 for these new commands.

Following a Control-I nnnN command, the Apple IIc automatically generates a carriage return after nnnN characters; with the Super Serial Card, you need to turn this on with Control-I C.

Serial I/O buffers

The communication port firmware uses auxiliary memory page \$08 as an input and output buffer. By doing so, the firmware can keep up with higher baud rates. It can also hide data from the Monitor, Applesoft, and other system software.

Programs written for the Apple IIe or IIc can, of course, store information in auxiliary memory page \$08. However, such information is destroyed when the communication port is activated.

Mouse and hand controllers

The DB-9 back panel connector on the Apple IIc is used for both the mouse and hand controllers. On the Apple IIe, the DB-9 connector supports hand controllers only; the mouse must use the connector on the interface card.

Mouse input

The Apple IIc provides built-in firmware support for a mouse connected to the DB-9 mouse and hand controller connector. Apple IIc mouse support includes mouse movement and button interrupts (and vertical blanking interrupts for synchronization with the display); Apple IIe mouse support relies on polling VBL instead of vertical blanking interrupts.

As a result of how interrupts are handled on the two machines, the mouse firmware routine calls function somewhat differently for the Apple IIc and Apple IIe. However, using the calls in the manner described in Chapter 9 ensures mouse support compatibility between the two machines. The ratio of mouse movement to cursor movement is different on the Apple IIc from on the Apple IIe.

Hand controller input and output

The Apple II, II Plus, and IIe have a 16-pin game I/O connector inside the case that supports three switch inputs, four analog (paddle) inputs, and four annunciator outputs. The Apple IIe and Apple IIc have a DB-9 back panel connector that supports the three switch inputs and two paddle inputs (plus two more on the internal GAME I/O connector of the Apple II, II Plus, and IIe).

The Apple IIc does not support the four annunciator outputs.

The characteristic response curve for hand controllers differs for the Apple IIc from that of the Apple II, II Plus, and IIe. Compare Figure F-1 with Figure 11-42. This was done so the hardware would support identifiable mouse and hand controller signals using the same circuits. The paddle-timing circuit on the Apple II Plus is slightly different from the one on the Apple IIe and IIc. On the Apple IIe and IIc the 100-ohm fixed resistor is between the NE556 discharge lead and the capacitor; the variable resistor in the paddle is connected directly to the capacitor. On the Apple II Plus, the capacitor is connected directly to the discharge lead, and the fixed resistor is in series with the paddle resistor.

Figuré F-1 Apple II, II Plus, and IIe hand controller signals

Cassette I/O

The Apple II, II Plus, and IIe all have cassette input and output jacks, memory locations, and Monitor support. The Apple IIc does not.

UniDisk 3.5 If you plan to run a program on your Apple IIc that handles cassette I/O, make sure that It does not access \$C028. The Apple IIc with UniDisk 3.5 support uses address \$C028 to toggle between its two 16K banks of memory.

Hardware

Besides the different microprocessors used in various models in the Apple II series, there are important differences in power specifications and custom chips.

Power

The power supplies for the Apple II, II Plus, and IIe are essentially the same. The floor transformer and voltage converter for the Apple IIc have smaller capacity for current and heat dissipation. Therefore, it is important to observe the load limits specified in each of the reference manuals.

Custom chips

The Apple IIe custom chips (memory management unit and input/output unit) replaced dozens of Apple II Plus chips, and added the functionality of dozens more. The Apple IIc has custom MMU and IOU chips, too, but they represent different bonding options, and so their pin assignments are not compatible.

In addition, the Apple IIc has a custom general logic unit (GLU), timing generator (TMG), and disk controller unit (also known as an Integrated Woz Machine, or IWM). The Apple IIc has two hybrid units (AUD and VID) for audio and video amplification.

USA and International Models

This appendix repeats some of the keyboard information given in Chapter 4 for the two USA keyboard layouts, for easy comparison with the other layouts available. Following these is a composite table of the ASCII codes and the characters associated with them on all the models discussed.

Keyboard layouts and codes

Each of the following subsections has a keyboard illustration and a table of the codes that result from the possible keystrokes. Note, however, that Table G-1 is the basic table of keystrokes and their codes. For simplicity, subsequent tables (up to Table G-7) list only the keystrokes and codes that differ from those in Table G-1.

For example, pressing the A key produces *a* (hexadecimal 61); pressing Shift-A produces uppercase *A* (hexadecimal 41); pressing Control-A or Control-Shift-A produces *SOH* (the ASCII Start Of Header control character, hexadecimal 01). You can tell that this key has the same effect on all keyboards because nothing appears in Tables G-2 through G-7 for that key.

A quick way to find out which characters in the ASCII set change on international keyboards is to check Table G-8. In fact, only a few of them change. The pairing of characters on keys varies more.

Note: On all but the French and Italian keyboards, Caps Lock affects only keys that can produce both lowercase letters (with or without an accent) and their uppercase equivalents. With these keys, Caps Lock down is equivalent to holding down Shift, resulting in uppercase instead of lowercase. If a key produces only a lowercase version of an accented letter, then Caps Lock does not affect it.

On the French and Italian keyboards, Caps Lock shifts all the keys. Furthermore, on the French keyboard, when Caps Lock is down the Shift key undoes the shifting.

The shapes and arrangement of keys in Figures G-1 and G-2 follow the ANSI (American National Standards Institute) standard, which is used mainly in North and South America. The shapes and arrangement of keys in Figure G-3 follow the ISO (International Standards Organization) standard used in Europe and elsewhere.

The only differences between the ANSI and ISO versions of the USA keyboard are

- □ the shapes of three keys: the left Shift key, Caps Lock, and Return
- □ the resulting repositioning of two keys (1 and ~) in Figures G-1 and G-3
- ☐ for some countries, the arrow symbols on Tab, Caps Lock, Return, and the two Shift keys (as shown in Figure G-3)

USA standard (Sholes) keyboard

Figure G-1 shows the standard (Sholes) keyboard as it is laid out for USA models of the Apple IIc with the keyboard switch up. Table G-1 lists the ASCII codes resulting from all simple and combination keystrokes on this keyboard.

Figure G-1 USA standard (or Sholes) keyboard, keyboard switch up

Table G-1 Keys and ASCII codes

	Key alone		+ Control		+ Shift		+ Both		
Key	Code	Char	Code	Char	Code	Char	Code	Char	
Delete	7F	DEL	7F	DEL	7F	DEL	7 F	DEL	
Left Arrow	08	BS	80	BS	08	BS	80	BS	
Tab	09	HT	09	HT	09	HT	09	HT	
Down Arrow	0A	LF	OA.	LF	0 A	LF	0A	LF	
Up Arrow	OB	VT	$\mathbf{0B}$	VT	0B	VT	0B	VT	
Return	0D	CR	0D	CR	0D	CR	0D	CR	
Right Arrow	15	NAK	15	NAK	15	NAK	15	NAK	
Escape	1B	ESC	1B	ESC	1B	ESC	1B	ESC	
Space	20	SP	20	SP	20	SP	20	SP	
1.11	27	1	27	1	22	Pf .	22	#	
, <	2C	,	2C	,	3C	<	3C	<	
	2D	-	1F	US	5F	_	1F	US	
. >	2E		2E		3E	>	3E	>	
/ ?	2F	/	2F	/	3F	?	3F	?	
0)	30	0	30	0	29)	29)	
1!	31	1	31	1	21	!	21	!	
2 @	32	2	00	NUL	40	@	00	NUI	
3 #	33	3	33	3	23	#	23	#	

Table G-1 (continued) Keys and ASCII codes

	Key	Key alone		ntrol	+ Sh	nift	+ Bo	oth
Key	Code	Char	Code	Char	Code	Char	Code	Char
4 \$	34	4	34	4	24	\$	24	\$
5 %	35	5	35	5	25	%	25	%
6 ^	36	6	1E	RS	5E	٨	1E	RS
7 &	37	7	37	7	26	&	26	&
8 *	38	8	38	8	2A	•	2A	*
9 (39	9	39	9	28	(28	(
; :	3B	;	3B	;	3A	:	3A	:
= +	3D	=	3D	=	2B	+	2B	+
}]	5B	1	1B	ESC	7B	{	1B	ESC
\	5C	\	1C	FS	7C	1	1C	FS
] }	5D	1	1D	GS	7D	}	1D	GS
! ~	60	!	60	!	7E	~	7E	~
A	61	a	01	SOH	41	Α	01	SOH
В	62	b	02	STX	42	В	02	STX
С	63	С	03	ETX	43	С	03	ETX
D	64	d	04	EOT	44	D	04	EOT
E	65	е	05	ENQ	45	E	05	ENQ
F	66	f	06	ACK	46	F	06	ACK
G	67	g	07	BEL	47	G	07	BEL
H	68	h	08	BS	48	Н	08	BS
I	69	i	09	HT	49	I	09	HT
J	6 A	j	0A	LF	4A	J	0A	LF
K	6B	k	0B	VT	4B	K	0B	VT
L	6C	I	0C	FF	4C	L	0C	FF
M	6D	m	0D	CR	4D	M	0D	CR
N	6E	n	0E	SO	4E	N	0E	SO
O	6F	0	0F	SI	4F	0	0F	SI
P	70	p	10	DLE	50	P	10	DLE
Q	71	q	11	DC1	51	Q	11	DC1
R	72	r	12	DC2	52	R	12	DC2
S	73	S	13	DC3	53	S	13	DC3
Т	74	t	14	DC4	54	T	14	DC4
U	75	u	15	NAK	55	U	15	NAK
V	76	v	16	SYN	56	V	16	SYN
W	77	w	17	ETB	57	W	17	ETB
X	78	x	18	CAN	58	X	18	CAN
Y	79	y	19	EM	-59	Y	19	EM
Z	7A	z	1A	SUB	5A	Z	1A	SUB

USA simplified (Dvorak) keyboard

Figure G-2 shows the Dvorak layout of the USA keyboard. Characters are paired up on keys in exactly the same way as on the USA standard keyboard; only individual key positions are changed. In fact, you can change the keycap arrangement to match Figure G-2, lock the keyboard switch in its down position, and have a working Dvorak keyboard. All keystrokes produce the same ASCII codes as those shown in Table G-1.

Figure G-2
USA simplified (or Dvorak) keyboard, keyboard switch down

ISO layout of USA keyboard

Figure G-3 shows the layout of all ISO European keyboards (except the Italian keyboard) when the keyboard switch is up. All keystrokes produce the same ASCII codes as those shown in Table G-1.

Figure G-3 ISO version of USA standard keyboard, keyboard switch up

English keyboard

With the keyboard switch up, the English model of the Apple IIc keyboard layout is as shown in Figure G-3, and keystrokes produce the ASCII codes shown in Table G-1.

With the keyboard switch down, the English model keyboard layout is as shown in Figure G-4. The change in ASCII code production (from that in Table G-1) is shown in Table G-2.

The only changed character is the substitution of the British poundsterling symbol (£) for the cross-hatch symbol (#) on the shifted 3-key.

Figure G-4
English keyboard, keyboard switch down

Table G-2English keyboard code differences from Table G-1

Key alone		+ C	ontrol	+ S	hift	+ Both		
Key	Code	Char	Code	Char	Code	Char	Code	Char
3 £	33	3	33	3	23	£	23	£

French keyboard

With the keyboard switch up, the French model of the Apple IIc keyboard layout is as shown in Figure G-3, and keystrokes produce the ASCII codes shown in Table G-1.

With the keyboard switch down, the French model keyboard layout is as shown in Figure G-5. The changes in ASCII code production (from that in Table G-1) are shown in Table G-3.

Note that on the French keyboard, Caps Lock shifts to the upper characters on all keys. With Caps Lock on, Shift "unshifts" to the lower character on any key pressed with it.

Figure G-5
French keyboard, keyboard switch down

Table G-3French keyboard code differences from Table G-1

	Key	alone	+ Co	ontrol	+ \$	hift	+ B	oth
Key	Code	Char	Code	Char	Code	Char	Code	Char
& 1	26	&c	26	&c	31	1	31	1
é 2	7B	é	7B	é	32	2	32	2
* 3	22	**	22	Ħ	33	3	33	3
14	27	1	27	1	34	4	34	4
(5	28	(28	(35	5	35	5
\$6	5D	9	1D	GS	36	6	1D	GS
è 7	7D	è	7D	è	37	7	37	7
! 8	21	!	21	1	38	8	38	8
ç9	5C	ç	1C	FS	39	9	1C	FS
à O	40	à	00	NUL	30	0	00	NUL
) °	29)	1B	ESC	5B	0	1B	ESC
۸	5E	^	1E	RS	7E	••	1E	RS
\$ *	24	\$	24	\$	2A	0	2A	*
ù %	7C	ù	7C	ù	25	%	25	%
æ (60	•	60	`	23	£	23	£
< >	3C	<	3C		3E	>	3E	>
, ?	2C	,	2C	,	3F	?	3F	?
; .	3B	;	3B	;	2E		2E	
: /	3A	:	3A	:	2F	/	2F	/

Canadian keyboard

With the keyboard switch up, the Canadian model of the Apple IIc keyboard layout is as shown in Figure G-1, and keystrokes produce the ASCII codes shown in Table G-1.

With the keyboard switch down, the Canadian model keyboard layout is as shown in Figure G-6. The changes in ASCII code production (from that in Table G-1) are shown in Table G-4.

<mark>Flgure G-6</mark> Canadian keyboard, keyboard switch down

Table G-4Canadlan keyboard code differences from Table G-1

	Key alone		+ Co	ontrol	+ S	hift	+ Both	
Key	Code	Char	Code	Char	Code	Char	Code	Char
2 °	32	2	00	NUL	5B	٥	00	NUL
3 £	33	3	33	3	23	£	23	£
65	36	6	RS	1E	5D	S	RS	1E
àè	40	à	7 F	DEL	7D	è	7F	DEL
ÙΛ	7C	Ù	7C	Ù	5E	٨	5E	٨
~ ?	60	`	ESC	1B	3F	?	1D	GS
éç	7B	é	1C	FS	5C	ç	1C	FS
" /	7E	23	7E	23	2F	/	2F	/

German keyboard

With the keyboard switch up, the German model of the Apple IIc keyboard layout is as shown in Figure G-3, and keystrokes produce the ASCII codes shown in Table G-1.

With the keyboard switch down, the German model keyboard layout is as shown in Figure G-7. The change in ASCII code production (from that in Table G-1) is shown in Table G-5.

Figure G-7 German keyboard, keyboard switch down

Table G-5German keyboard code differences from Table G-1

	Key	alone	+ Co	ontrol	+ S	hift	+ B	oth
Key	Code	Char	Code	Char	Code	Char	Code	Char
2 "	32	2	32	2	22	"	22	**
3 §	33	3	00	NUL	40	S	00	NUL
6&	36	6	36	6	26	&	26	&
7/	37	7	37	7	2F	/	2F	/
8 (38	8	38	8	28	(28	(
9)	39	9	39	9	29)	29)
0 =	30	0	30	0	3D	_	3D	=
ß?	7E	ß	7E	ß	3F	?	3F	?
Ü	7D	Ü	1D	GS	5D	Ü	1D	GS
+ *	2B	+	2B	+	2A	*	2A	
Ö	7C	Ö	1C	FS	5C	Ö	1C	FS
Ä	7B	Ä	1B	ESC	5B	Ä	1B	ESC
# ^	23	#	1E	RS	5E	٨	1E	RS
< >	3C	<	3C	<	3E	>	3E	>
, ;	2C	,	2C	,	3B	;	3B	i
. :	2E		2E		3A	:	3A	:

Italian keyboard

With the keyboard switch down, the Italian model keyboard layout is as shown in Figure G-8. The change in ASCII code production (from that in Table G-1) is shown in Table G-6.

With the keyboard switch up, the Italian model keyboard produces exactly the same ASCII codes for each key, but what is displayed differs for the ten characters indicated with the circled numbers 0, 2–5, and 7–11 in Table G-8.

Figure G-8
Italian keyboard, keyboard switch down

Table G-6Italian keyboard code differences from Table G-1

	Key	alone	+ C	ontrol	+ S	hift	+ Both	
Key	Code	Char	Code	Char	Code	Char	Code	Char
& 1	26	&	26	&x	31	1	31	1
[#] 2	22	H	22	#	32	2	32	2
13	27	1	27	1	33	3	33	3
(4	28	(28	(34	4	34	4
ç 5	5C	ç	1C	FS	35	5	1C	FS
è 6	7D	è	7D	è	36	6	36	6
)7	29)	29)	37	7	37	7
£ 8	23	£	23	£	38	8	38	8
à9	7B	à	7B	à	39	9	39	9
é0	5D	é	1D	GS	30	0	1D	GS
ÌΛ	7E	Ì	1E	RS	5E	٨	1E	RS
\$ *	24	\$	24	\$	2A	•	2A	
ù %	60	ù	60	ù	25	%	25	%
§°	40	S	00	NUL	5B	•	1B	ESC
< >	3C	<	3C	<	3E	>	3E	>
, ?	2C	,	2C	,	3F	?	3F	?
; .	3B	;	3B	;	2E		2E	
:/	3A		3A	:	2F	/	2F	/
ò!	7C	δ	7C	ò	21	!	21	!

Western Spanish keyboard

With the keyboard switch up, the Western (that is, American) Spanish model of the Apple IIc keyboard layout is as shown in Figure G-1, and keystrokes produce the ASCII codes shown in Table G-1.

With the keyboard switch down, the Western Spanish model keyboard layout is as shown in Figure G-9. The change in ASCII code production (from that in Table G-1) is shown in Table G-7.

Figure G-9 Western Spanish keyboard, keyboard switch down

Table G-7Western Spanish keyboard code differences from Table G-1

	Key alone		+ Co	ontrol	+ Shift		+ Both	
Key	Code	Char	Code	Char	Code	Char	Code	Char
1 ¡	31	1	31	1	5B	i	5B	i
2 ¿	32	2	32	2	5D	¿	5D	ė
3 £	33	3	33	3	23	£	23	_
6/	36	6	36	6	2F	/	2F	/
- 0	27	•	27	•	7B	•	7B	0
`^	60	`	00	NUL	5E	٨	00	NUL
~ §	7E	~	7F	DEL	40	S	7F	DEL
Ñ	7C	Ñ	1C	FS	5C	Ñ	1C	FS
, ?	2C	,	2C	,	3F	?	3F	?
. !	2E	•	2E	•	21	!	21	1
Ç"	7D	ç	1D	GS	22	**	1D	GS
< >	3C	<	1E	RS	3E	>	1E	RS

ASCII character sets

Table G-8 lists the ASCII (American National Standard Code for Information Interchange) codes that the Apple IIc uses, as well as the decimal and hexadecimal equivalents. Where there are differences between character sets, an asterisked number in the main table refers to a column in the following part of the table.

Table G-8ASCII code equivalents

ASCII	Dec	Hex	ASC	II Dec	Hex	ASCII	Dec	Hex	ASCII	Dec	Hex
NUL	00	00	SP	32	20	2*	64	40	7*	96	60
SOH	01	01	!	33	21	A	65	41	a	97	61
STX	02	02	Ħ	34	22	В	66	42	b	98	62
ETX	03	03	0*	35	23	С	67	43	С	99	63
EOT	04	04	1*	36	24	D	68	44	d	100	64
ENQ	05	05	%	37	25	E	69	45	e	101	65
ACK	06	06	&	38	26	F	70	46	f	102	66
BEL	07	07	1	39	27	G	71	47	g	103	67

Table G-8 (continued)
ASCII code equivalents

ASCII	Dec	Hex	ASCI	l Dec	Hex	ASCII	Dec	Hex	ASCII	Dec	Hex
BS	08	08	(40	28	Н	72	48	h	104	68
HT	09	09)	41	29	I	73	49	i	105	69
LF	10	0A	*	42	2A	J	74	4A	j	106	6A
VT	11	0B	+	43	2B	K	75	4	k	107	6B
FF	12	OC	,	44	2C	L	76	4C	1	108	6C
CR	13	0D	-	45	2D	M	77	4D	m	109	6D
SO	14	0E		46	2E	N	78	4E	n	110	6E
SI	15	0F	/	47	2F	O	79	4F	0	111	6F
DLE	16	10	0	48	30	P	80	50	p	112	70
DC1	17	11	1	49	31	Q	81	51	q	113	71
DC2	18	12	2	50	32	R	82	52	r	114	72
DC3	19	13	3	51	33	S	83	53	8	115	73
DC4	20	14	4	52	34	T	84	54	t	116	74
NAK	21	15	5	53	35	U	85	55	u	117	75
SYN	22	16	6	54	36	V	86	56	\mathbf{v}	118	76
ETB	23	17	7	55	37	W	8	57	w	119	77
CAN	24	18	8	56	38	\mathbf{X}	88	58	x	120	78
EM	25	19	9	57	39	Y	89	59	y	121	79
SUB	26	1 A	:	58	3A	Z	90	5A	Z	122	7A.
ESC	27	1B	;	59	3B	3*	91	5B	8*	123	7B
FS	28	1C	<	60	3C	4*	92	5C	9*	124	7C
GS	29	1D	=	61	3D	5*	93	5D	10*	125	7D
RS	30	1E	>	62	3E	6*	94	5E	11*	126	7E
US	31	1F	?	63	3F	_	95	5F	DEL	127	7F

The following characters correspond to those followed by an asterisk in the preceding part of the table.

•	0	1	2	3	4	5	6	7	8	9	10	11
Hexadecimal	23	24	40	5B	5C	5D	5E	60	7B	7C	7D	7E
English (USA)	#	\$	@	[\	1	٨	`	{		}	~
English (UK)	£	\$	@	[\]	٨	`	{		}	~
German	#	\$	\$	Ä	Ö	Ü	٨	`	ä	ö	ü	ß
French	£	\$	à	0	ç	S	٨	`	é	Ù	è	**
Italian	£	\$	8	0	ç	é	٨	Ù	à	ò	è	Ì
Spanish	£	\$	8	i	Ñ	ż	٨	`	0	ñ	ç	~

Certification

In the countries where it is applicable, the following product safety certification supplements the USA FCC Class B notice printed on the inside front cover of this manual. The safety instructions apply to all countries.

Product safety

This product is designed to meet the requirements of safety standard IEC 380, Safety of Electrically Energized Office Machines.

Important safety instructions

This equipment is intended to be electrically grounded. This product is equipped with a plug having a third (grounding) pin. This plug will fit only into a grounding-type alternating current outlet. This is a safety feature.

If you are unable to insert the plug into the outlet, contact a licensed electrician to replace the outlet and, if necessary, install a grounding conductor.

Do not defeat the purpose of the grounding-type plug.

Power supply specifications

The basic specifications of the power supply furnished with the Apple IIc for use in Europe and other countries having 50-Hz alternating current are shown in Table G-8.

Table G-850-Hz power supply specifications

Line voltage	199 to 255 VAC, 50 Hz
Maximum input	25 W
power consumption	
Supply voltage	+15 VDC (nominal)
Supply current	1.2 A (nominal)

Conversion Tables

This briefly discusses bits and bytes and what they can represent, and peripheral identification numbers. It also contains conversion tables for hexadecimal to decimal and negative decimal, and a number of 8-bit codes.

These tables are intended for convenient reference. This appendix is not intended as a tutorial for the materials discussed. The brief section introductions are for orientation only.

Bits and bytes

This section discusses the relationships between bit values and their position within a byte. Here are some rules of thumb regarding the 65C02:

- \Box A **bit** is a binary digit; it can be either a 0 or a 1.
- □ A bit can be used to represent any two-way choice. Some choices that a bit can represent in the Apple IIc are listed in Table H-1.
- Bits can also be combined in groups of any size to represent numbers. Most of the commonly used sizes are multiples of four bits.
- ☐ Four bits make a **nibble** (sometimes spelled *nybble*).
- ☐ One nibble can represent any of 16 values. Each of these values is assigned a number from 0 through 9 and (because our decimal system has only 10 of the 16 digits we need) A through F.
- ☐ Eight bits (two nibbles) make a byte (Figure H-1).

- \Box One **byte** can represent any of 16 x 16 (or 256) values. The value can be specified by exactly two hexadecimal digits.
- ☐ Bits within a byte are numbered from bit 0 on the right to bit 7 on the left.
- ☐ The bit number is the same as the power of 2 that it represents, in a manner completely analogous to the digits in a decimal number.
- ☐ One memory position in the Apple IIc contains one 8-bit byte of data.
- □ How byte values are interpreted depends on whether the byte is an instruction in a language, part or all of an address, an ASCII code, or some other form of data. Tables H-6 through H-9 list some of the ways bytes are commonly interpreted.
- \square Two bytes make a **word.** The 16 bits of a word can represent any one of 256 x 256 (or 65,536) different values.
- ☐ The 65C02 uses a 16-bit word to represent memory locations. It can therefore distinguish among 65,536 (64K) locations at any given time.
- ☐ A memory location is one byte of a 256-byte page. The low-order byte of an address specifies this byte. The high-order byte specifies the memory page the byte is on.

Table H-1 What a bit can represent

Context	Representing	0 =	1 =
Binary number	Place value	0	1 x that power of 2
Logic	Condition	False	True
Any switch Any switch	Position Position	Off Clear*	On Set
Serial transfer	Beginning	Start	Carrier (no information yet)
Serial transfer	Data	0 value	1 value
Serial transfer	Parity	SPACE	MARK
Serial transfer	End		Stop bit(s)
Serial transfer	Communication state	BREAK	Carrier

Table H-1 (continued) What a bit can represent

Context	Representing	0 =	ì =
P reg. bit N	Neg. result?	No	Yes
P reg. bit V	Overflow?	No	Yes
P reg. bit B	BRK command?	No	Yes
P reg. bit D	Decimal mode?	No	Yes
P reg. bit I	IRQ interrupts	Enabled	Disabled (masked out)
P reg. bit Z	Zero result?	No	Yes
P reg. bit C	Carry required?	No	Yes

^{*} Sometimes ambiguously termed reset.

Figure H-1 Bits, nibbles, and bytes

Table H-2Values represented by a nibble

Binary	Hex	Dec	Binary	Hex	Dec
0000	\$0	0	1000	\$8	8
0000	\$ 1	1	1000	\$9	9
0010	\$2	2	1010	\$A	10
0011	\$3	3	1011	\$B	11
0100	\$4	4	1100	\$C	12
0101	\$5	5	1101	\$D	13
0110	\$6	6	1110	\$E	14
0111	\$7	7	1111	\$F	15

Hexadecimal and decimal

Use Table H-3 for conversion of hexadecimal and decimal numbers.

Table H-3Hexadecimal/decimal conversion

Digit	\$x000	\$0x00	\$00x0	\$000x
F	61440	3840	240	15
E	57344	3584	224	14
D	53248	3328	208	13
С	49152	3072	192	12
В	45056	2816	176	11
A	40960	2560	160	10
9	36864	2304	144	9
8	32768	2048	128	8
7	28672	1792	112	7
6	24576	1536	96	6
5	20480	1280	80	5
4	16384	1024	64	4
3	12288	768	48	3
2	8192	512	32	2
1	4096	256	16	1

To convert a hexadecimal number to a decimal number, find the decimal numbers corresponding to the positions of each hexadecimal digit. Write them down and add them up.

For example:

To convert a decimal number to hexadecimal, subtract from the decimal number the largest decimal entry in the table that is less than it. Write down the hexadecimal digit (noting its place value) also. Now subtract the largest decimal number in the table that is less than the decimal remainder, and write down the next hexadecimal digit. Continue until you have 0 left. Add up the hexadecimal numbers.

For example:

```
16215 = $ ?
16215 - 12288
               = 3927
                       12288
                                 $7000
3927 - 3840
               = 87
                        3840
                                 $ F00
  87
           80
                          80
                                    50
            7
                           7
                                     7
                        16215 =
                                 $7F57
```

Hexadecimal and negative decimal

If a number is larger than decimal 32,767, Applesoft BASIC allows and Integer BASIC requires you to use the negative-decimal equivalent of the number. Table H-4 is set up to make it easy for you to convert a hexadecimal number directly to a negative-decimal number.

Table H-4Hexadecimal to negative decimal conversion

Digit	\$x000	\$\$0x00	\$\$00x0	\$\$000x
F	0	0	0	-1
E	-4 096	-256	-16	-2
D	-8192	-512	-32	-3
С	-12288	-768	-48	-4
В	-16384	-1024	-64	- 5
A	-20480	-1280	-80	- 6
9	-24576	-1536	-96	- 7
8	-28672	-1792	-112	-8
7		-2048	-128	- 9
6		-2304	-144	-10
5		-2560	-160	-11
4		-2816	-176	-12
3		-3072	-192	-13
2		-3328	-208	-14
1		-3584	-224	-15
0		-3840	-240	-16

To perform this conversion, write down the four decimal numbers corresponding to the four hexadecimal digits (0's included). Then add their values (ignoring their signs for a moment). The resulting number, with a minus sign in front of it, is the desired negative-decimal number.

For example:

```
$C010 = -?

$C000: -12288

$ 000: - 3840

$ 10: - 224

$ 0: - 16

$C010 -16368
```

To convert a negative-decimal number directly to a positive-decimal number, add it to 65,536. (This addition ends up looking like subtraction.)

For example:

```
-151 = + ?

65536 + (-151) = 65536 - 151 = 65385
```

To convert a negative-decimal number to a hexadecimal number, first convert it to a positive-decimal number, then use Table H-3.

Peripheral identification numbers

Many Apple products now use peripheral identification numbers (called *PIN numbers*) as shorthand to designate serial device characteristics. The Apple II series *Universal Utilities* disk presents a menu from which to select the characteristics of, say, a printer or modem. From the selections made, it generates a PIN for the user. Other products have a ready-made PIN that the user can simply type in.

Table H-5 is a definition of the PIN number digits. When communication mode is selected, the seventh digit is ignored.

For example:

252/1111 means:

Communication mode. 8 data bits, 1 stop bit. 300 baud (bits per second). No parity. Do not echo output to display. No line feed after carriage return. Do not generate carriage returns.

^{*} If you select communication mode, then seventh digit must equal 1. This value is supplied automatically when you use the UUD.

Eight-bit code conversions

Tables H-6 through H-9 show the entire ASCII character set. Note that character values are shown with the high bit off. Unless otherwise noted, all ASCII character values above \$7F (127 decimal) generate the same character as that value with the high bit off. Here is how to interpret these tables:

- ☐ The *Binary* column has the 8-bit code for each ASCII character.
- ☐ The first 128 ASCII entries represent 7-bit ASCII codes plus a high-order bit of 0 (SPACE parity or Pascal)—for example, 01001000 for the letter *H*.
- ☐ The last 128 ASCII entries (from 128 through 255) represent 7-bit ASCII codes plus a high-order bit of 1 (MARK parity or BASIC)—for example, 11001000 for the letter H.
- □ A transmitted or received ASCII character will take whichever form (in the communication register) is appropriate if odd or even parity is selected—for example, 11001000 for an odd-parity *H*, 01001000 for an even-parity *H*.
- ☐ The ASCII Char column gives the ASCII character name.
- ☐ The *Interpretation* column spells out the meaning of special symbols and abbreviations, where necessary.
- ☐ The What to type column indicates what keystrokes generate the ASCII character (where it is not obvious).
- ☐ The columns marked *Pri* and *Alt* indicate what displayed character results from each code when using the primary or alternate display character set, respectively. Boldface is used for inverse characters; italic is used for flashing characters.
 - Note that the values \$40 through \$5F (and \$C0 through \$DF) in the alternate character set are displayed as MouseText characters (Figure 5-1) if the firmware is set to do so, or if the firmware is bypassed.
- Note: The primary and alternate displayed character sets in Tables H-6 through H-9 are the result of firmware mapping. The character generator ROM actually contains only one character set. The firmware mapping procedure is described in Chapter 3.

Table H-6 Control characters, high bit off

Binary	Dec	Hex	ASCII char	Interpretation	What to type	Pri	Alt
0000000	0	\$00	NUL	Blank (null)	Control-@	@	@
0000001	1	\$01	SOH	Start of header	Control-A	A	A
0000010	2	\$02	STX	Start of text	Control-B	В	В
0000011	3	\$03	ETX	End of text	Control-C	C	C
0000100	4	\$04	EOT	End of transm.	Control-D	D	D
0000101	5	\$05	ENQ	Enquiry	Control-E	E	E
0000110	6	\$06	ACK	Acknowledge	Control-F	F	F
0000111	7	\$07	BEL	Bell	Control-G	G	G
0001000	8	\$08	BS	Backspace	Control-H or Left Arrow-H	H	H
0001001	9	\$09	HT	Horizontal tab	Control-I or Tab	I	I
0001010	10	\$0A	LF	Line feed	Control-J or Down Arrow-J	J	J
0001011	11	\$0B	VT	Vertical tab	Control-K or Up Arrow	K	K
0001100	12	\$0C	FF	Form feed	Control-L	L	L
0001101	13	\$0D	CR	Carriage return	Control-M or Return	\mathbf{M}	M
0001110	14	\$0E	SO	Shift out	Control-N	N	N
0001111	15	\$0F	SI	Shift in	Control-O	0	O
0010000	16	\$10	DLE	Data link escape	Control-P	P	P
0010001	17	\$11	DC1	Device control 1	Control-Q	Q	Q
0010010	18	\$12	DC2	Device control 2	Control-R	R	R
0010011	19	\$13	DC3	Device control 3	Control-S	s	S
0010100	20	\$14	DC4	Device control 4	Control-T	T	T
0010101	21	\$15	NAK	Neg. acknowledge	Control-U or Right Arrow	\mathbf{U}	\mathbf{U}
0010110	22	\$16	SYN	Synchronization	Control-V	\mathbf{v}	\mathbf{V}
0010111	23	\$17	ETB	End of text blk.	Control-W	\mathbf{w}	\mathbf{W}
0011000	24	\$18	CAN	Cancel	Control-X	\mathbf{x}	\mathbf{x}
0011001	25	\$19	EM	End of medium	Control-Y	Y	\mathbf{Y}
0011010	26	\$1A	SUB	Substitute	Control-Z	Z	Z
0011011	27	\$1B	ESC	Escape	Control-I or Escape	[E
0011100	28	\$1C	FS	File separator	Control-\	\	\
0011101	29	\$1D	GS	Group separator	Control-]	1	1
0011110	30	\$1E	RS	Record separator	Control-^	٨	٨
0011111	31	\$1F	US	Unit separator	Control	-	_

Table H-7 Special characters, high bit off

			ASCII				
Binary	Dec	Нех	char	Interpretation	What to type	Pri	Alt
0100000	32	\$20	SP	Space	Space bar		
0100001	33	\$21	1			İ	1
0100010	34	\$22	66			99	99
0100011	35	\$23	#			#	#
0100100	36	\$24	\$			\$	\$
0100101	37	\$25	%			%	%
0100110	38	\$26	&c			&	&
0100111	39	\$27	1	Apostrophe		•	ı
0101000	40	\$28	(((
0101001	41	\$29)))
0101010	42	\$2A				*	
0101011	43	\$2B	+			+	+
0101100	44	\$2C	,	Comma		,	,
0101101	45	\$2D	-	Hyphen		-	-
0101110	46	\$2E		Period		•	
0101111	47	\$2F	/			/	/
0110000	48	\$30	0			0	0
0110001	49	\$31	1			1	1
0110010	50	\$32	2			2	2
0110011	51	\$33	3			3	3
0110100	52	\$34	4			4	4
0110101	53	\$35	5			5	5
0110110	54	\$36	6			6	6
0110111	55	\$37	7			7	7
0111000	56	\$38	8			8	8
0111001	57	\$39	9			9	9
0111010	58	\$3A	:			:	:
0111011	59	\$3B	;			;	;
0111100	60	\$3C	<			<	<
0111101	61	\$3D	=			-	-
0111110	62	\$3E	>			>	>
0111111	63	\$3F	?			?	?

Table H-8Uppercase characters, high bit off

Binary	Dec	Hex	ASCII char	Interpretation	What to type	Pri	Alt
1000000	64	\$40	Ø			@	ú
1000001	65	\$41	A			\boldsymbol{A}	Ć
1000010	66	\$42	В			B	<u> </u>
1000011	67	\$43	С			С	X X
1000100	68	\$44	D			D	\leq
1000101	69	\$45	E			$\boldsymbol{\mathit{E}}$	\checkmark
1000110	70	\$46	F			F	≣ ←
1000111	71	\$47	G			\boldsymbol{G}	
1001000	72	\$48	H			H	\leftarrow
1001001	73	\$49	I			I	•••
1001010	74	\$4A	J			J	\downarrow
1001011	75	\$4B	K			K	\uparrow
1001100	76	\$4C	L			L	
1001101	77	\$4D	M			M	↓
1001110	78	\$4E	N			N	
1001111	79	\$4F	O			Ο	<u> </u>
1010000	80	\$50	P			P	
1010001	81	\$51	Q			Q	•
1010010	82	\$52	R			R	↑ ;
1010011	83	\$53	S			S	-
1010100	84	\$54	T			T	Ļ
1010101	85	\$55	U			U	\rightarrow
1010110	86	\$56	V			V	**
1010111	87	\$57	W			W	***
1011000	88	\$58	X			X	
1011001	89	\$59	Y			Y	Ξ.
1011010	90	\$5A	Z			Z	
1011011	91	\$5B	ľ		Opening bracket	ſ	<u> </u>
1011100	92	\$5C	\		Reverse slant	\	
1011101	93	\$5D	3		Closing bracket	J	亚
1011110	94	\$5E	٨		Caret	٨	⋽
1011111	95	\$5F	-		Underline	_	I

^{*} If the high bit is set, the MouseText characters are replaced with their equivalent in the primary character set with that value.

Table H-9 Lowercase characters, high bit off

Dia			ASCII	I-1	Mile of An Arms	n-:	A 14
Binary	Dec	Hex	char	Interpretation	What to type	Pri	Alt
1100000	96	\$60	`	Grave accent			•
1100001	97	\$61	a			/	a
1100010	98	\$62	b			"	b
1100011	99	\$63	С			#	c
1100100	100	\$64	d			\$	đ
1100101	101	\$65	e			%	e
1100110	102	\$66	f			$\boldsymbol{arepsilon}$	f
1100111	103	\$67	g			,	g
1101000	104	\$68	h			(h
1101001	105	\$69	i)	I
1101010	106	\$6A	j			•	j
1101011	107	\$6B	k			+	k
1101100	108	\$6C	I			,	1
1101101	109	\$6D	m			-	m
1101110	110	\$6E	n				n
1101111	111	\$6F	0			/	0
1110000	112	\$70	р			0	p
1110001	113	\$71	q			1	\mathbf{q}
1110010	114	\$72	r			2	r
1110011	115	\$73	S			3	S
1110100	116	\$74	t			4	t
1110101	117	\$75	u			5	u
1110110	118	\$76	v			6	\mathbf{v}
1110111	119	\$77	W			7	\mathbf{w}
1111000	120	\$78	x			8	x
1111001	121	\$79	у			9	y
1111010	122	\$7A	Z			:	Z
1111011	123	\$7B	{	Opening brace		;	{
1111100	124	\$7C	1	Vertical line		<	1
1111101	125	\$7D	}	Closing brace		=	}
1111110	126	\$7E	~	Overline (tilde)		>	~
1111111	127	\$7F	DEL	Delete/rubout		?	DE

Firmware Listings

Appendix I is a listing of the source code for the Monitor firmware (including the Smartport) contained in the memory expansion version of the Apple IIc.

If you are developing products for an earlier version of the IIc, you can obtain a complete set of firmware listings from the Apple Programmer's and Developer's Association (APDA). You can also order additional technical information on other Apple products from the APDA. To obtain the listing set or other technical information, write to

Apple Programmer's and Developer's Association 290 SW 43d Street Renton, WA 98055 206-251-6548

Table I-1 Main side ROM map

C100		serial port
C200		communications port
C300		80-column routines
C400		memory expansion card: boot code/entry point for ProDOS/entry point for DOS
C500-C5	58D	UniDisk 3.5 routines
C58E		miscellaneous
C600		Disk II routines
C700-C7	77F	Mouse entry points
C780		ROM switch routines
C7FC		last screen hole
C800		Interrupt routines
C900		Paddle patch; Mini-Assembler
CA00		Mini-Assembler; step and trace
CB00		scroll routines
CC00		pasinvert; picky; showcur; update; escape
CD00		video routines
CE00		video routines
CF00		video routines; miscellaneous
D000-F7	7FF	Applesoft BASIC
F800-FF	FF	RESET vectors

Table 1-2			
Auxiliary	side	ROM	map

C100	Mouse interrupt handler; ACIA interrupt handler
C200	continue; ACIA routines
C300	ACIA routines; moveaux; xfer; memory test
C400	continue; switch test
C500-C57F	diagnostics
C780	ROM switch routines
C800-C87F	miscellaneous
C880-CFFF	UniDisk 3.5 routines
D000	command processor for serial and communications ports
D100	continue
D200-D249	Mouse BASIC routines
D24A-D3FF	empty
D400	basilin; hex-to-dec
D4A9-D52B	zero page test
D500-D52B	miscellaneous
D52C-D5FF	empty
D600-D700	Mouse routines
D800	execute; xdiag; xstatus; pstat0; pcn41; pstatus; xread; xwrite; prdblk; pwrblk; pread
D900	pread continue; pwrite
DA00	dospatch; dosconv; stattbl; parmtbl; undtbl; testsize; format
DB00	fmpas; fmdos; makecat; cattbl; procut
DC00	doscut; pascut
DCF0-DCFF	diagnostics (orged at \$DD00)
DD00	stattest; addresstest; rollovertest; addbustest; cleartest; fulltest
DE00	continue; computed; pass; fail; miscellaneous
DF00	print; messages
E000-FFF9	empty

; Equates for Video & Monitor ROM

on, vsym, asym lst on, vsym, as include equates

INCLUDE FILE #02 -=>NAMES

F800

49

399

20-0CT-86 06:41 PAGE 4	;Wonitor temp ;Wonitor temp ;Wonitor temp ;Wonitor temp ;Wonitor temp ;Wonitor temp ;Wonitor temp ;Wonitor temp ;Wonitor temp	In Apple II, //e, both interrupts and BRK destroyed: on 845. Now only BRK destroys \$45 {ACC} and it lestroys \$44 (MACSTAT). EQU \$44 ; Machine state after BRK EQU \$45 ; Acc after BRK	;X reg after break ;Y reg after break ;P reg after break :SP after break	;random counter low ;random counter high	; value of //e, lolly ID byte ; coNTROT-U character ; what ESC generates	are placed in age return. ;input buffer for GETIM	; vectors here after break ; vector for warm start ; THIS MUST = EOR \$5A5 OF SOFTEV+1 : APPLESORY & EXPIT VECTOR	APPLEASOFT USR function vector FMI vector FASKable interrupt vector First line of text screen Sowner of \$C8 space	jfor IN#, PR# vector ;127 if keystroke jdisable 80 column store ;enable 80 column store ;read from main 48K RAM ;read from alt, 48K RAM ;write to main 48K RAM ;write to alt, 48K RAM ;write to alt, 48K RAM
Apple //c Video Firmware	003b 60 A1H EQU \$3D 003B 61 A2L EQU \$3B 0040 62 A2H EQU \$3F 0040 63 A3L EQU \$41 0041 64 A3H EQU \$41 0042 65 A4L EQU \$42 0043 66 A4H EQU \$42 0044 67 A5L EQU \$43 0045 68 A8H EQU \$45 0046 67 A8L EQU \$45 0047 67 A8L EQU \$44	so d	76 "T XREG EQU \$46 0047 78 YREG EQU \$47 0048 79 STRTUS EQU \$48 0048 80 SDWT FOI \$49	RNDL EQU	84 * Value equates 85 4 60000F8 EQU \$06 1095 87 PICK EQU \$95 1098 88 ESC EQU \$98	90 * Characters read by GETLM are placed in 91 * IM, terminated by a carriage return. 92 * Card EQU \$0200 93 IN EQU \$0200 ;input buf 94 *	95 * Page 3 v 96 * 97 BRKV 98 SOFTEV 99 PWREDUP	NMI EQU IRQIOC EQU IRILE EQU MSLOT EQU ** HARDWARE EQUAT	C000 110 KBD EQU \$C000 C000 1110 KBD EQU \$C000 C000 1110 KBOCL EQU \$C000 C000 1110 KBOCLD EQU \$C001 C001 112 KBCCNI RCAN EQU \$C001 C002 113 KRAINIRAM EQU \$C002 C003 114 KDCARDRAM EQU \$C004 C005 115 KRAINIRAM EQU \$C004 C005 115 KRAINIRAM EQU \$C004 C006 117 SETSTDZP EQU \$C006
03 EQUATES				:::::::::::::::::::::::::::::::::::::::					
20-OCT-86 06:41 PAGE 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	977 977 978 981	专业 电电阻 医皮肤	;wector for autostart from disk ;left edge of text window	; width of text window; top of text window; bottom+1 of text window; cursor horizontal position; cursor vertical position: lo-res craphics hase addr.	;text base address; ;temp base for scrolling	;temp for lo-res graphics; temp for memonic decoding; Step return address; ;temp for lo-res graphics ;temp for memonic decoding ;temp for memonic decoding	; onlor mask for lo-res gr.; temp for opcode decode; temp for opcode decode; color for lo-res graphics; Monitor mode; normal/inverse(/flash); prompt character	; temp for Y register ; them for Y register ; character output hook ; temp for program counter ; Step and trace execute area ; Monitor temp
	2 ************************************	* * * * * *	18 ** 20 *********************************	23 LOCO EQU \$00 24 LOC1 EQU \$01 25 WNDLET EQU \$20	26 NYDNOTH EQU \$21 27 NNDTOP EQU \$22 28 NNDETP EQU \$23 29 CR EQU \$24 30 CV EQU \$25 31 CRASI. PURI S26	32 GRASH EQU \$277 33 BASL EQU \$277 34 BASH EQU \$29 35 BASL EQU \$29 36 BASL EQU \$29 37 BASL EQU \$28	37 B2 EQU \$2C 38 LMNEM EQU \$2C 39 RTML equ \$2C 41 RANKE EQU \$2D 47 TML A0 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A7 TTML EQU \$2D 57 TML A	EQU 522 EQU 523 EQU 531 EQU 531 EQU 533 EQU 533 EQU 533	51 YSM1 EQU \$35 52 CSM1 EQU \$35 53 CSM1 EQU \$36 54 KSM1 EQU \$37 55 KSM1 EQU \$38 56 PCL EQU \$38 57 PCH EQU \$38 58 KQT EQU \$38 58 KQT EQU \$38

20-0CT-86 06:41 PAGE 6	l chars l chars. l chars. l chars. l chars. l bon't print controls jbon't print mouse chars jbon't print mouse chars jbon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor jon't print cursor char jused by scroll jused by scroll jused by scroll jused by scroll jused by scroll jused by scroll jused by scroll jused by scroll jused by croll jused
Firmare	10
Apple //c Video Firmware	177 * Don't 197 * Don't 198 *
	0000 0000 0000 0000 0000 0000 0000 0000 0000
03 EQUATES	
20-0CT-86 06:41 PAGE 5	;use alt. zero page/stack ;dashe 80 column hardware ;enable 80 column hardware ;normal inverse, IC; no flash ;urn off key pressed flag ;urn off key pressed flag ;urn off key pressed flag ;urn off key pressed flag ;urn off key pressed flag ;urn off key pressed flag ;urn off key pressed flag ;urn off key pressed flag ;urn off key pressed flag ;urn if Endung main 48K ;urn if Alt EP and LC switched in ;urn if Endung main 48K ;urn if Alt EP and LC switched in ;urn if Endung endung in ;urn if Endung endung in ;urn if Endung endung in ;urn if Alt EP and in set in use ;urn in hext page 2 ;ulers the speaker ;switch in text page 2 ;ulers mixed-mode (4 lines text) ;switch in text page 2 ;uler mixed-mode (4 lines text) ;switch in text page 2 ;uler-esolution graphics ;unique-the paddles ;switch in Lobank 2 ;switch in Lobank 2 ;switch in Lobank 2 ;switch in Lobank 2 ;switch in Lobank 2 ;switch in Lobank 2 ;switch in Lobank 2 ;switch in Lobank 2 ;switch in Lobank 1 ;switch out \$CR ROMs ;BASIC warm entry point ;QPERMING WOUE
Apple //c Video Firmware	C000 118 SETALTED EQU \$C000 ; juse alle C000 120 SETRAUTID EQU \$C000 ; juse alle C000 120 SETRAUTID EQU \$C000 ; juse alle C000 120 SETRAUTID EQU \$C000 ; juse alle C000 121 SETRAUTIDERE EQU \$C0010 ; just and color 121 SETRAUTIDERE EQU \$C0010 ; just and color 122 SETALICEREE EQU \$C0010 ; just and color 123 SETRAUTIDERE EQU \$C0011 ; just and color 123 SETRAUTIDERE EQU \$C0011 ; just and color 123 SETRAUTIDERE EQU \$C0011 ; just and color 123 SETRAUTIDERE EQU \$C0011 ; just and color 123 SETRAUTIDERE EQU \$C0011 ; just and color 123 SETRAUTIDERE EQU \$C0011 ; just and color 123 SETRAUTIDERE EQU \$C0011 ; just and color 123 SETRAUTIDERE EQU \$C0011 ; just and color 123 SETRAUTIDERE EQU \$C0011 ; just and color 123 SETRAUTIDERE EQU \$C0011 ; just and color 123 SETRAUTIDERE EQU \$C0012 ; just
03 EQUATES	

Serial & Communications equates 20-CCT-86 06:41 PAGE 8	3 ************************************	* Default com * ^AnnB: * ^AnnD: * ^AI:	21 * 'AK: INSADIe CKIA* 22 * 'AKI. Enable CRIA* 23 * 'Anni: Disable Tideo echo & set printer width 24 * 'Anni: Disable Tideo echo & set printer width 25 * 'Anni: Disable Tideo echo & set printer width 26 * 'AR Reset the ACIA, INWO PRV 27 * 'AR Send a 233 ms break character 28 * 'AR Enter terminal mode	* ^AZ: * ^AncR: * New command	35 * ^AC E/D Column overflow 6 36 * ^AL E/D Linefeed same as L & K 37 * ^AM E/D Mask Incoming linefeeds 38 * ^AE E/D Yon Xoff handshaking 39 * ^AF E/D Find keyboard 41 ************************************	42 sersiot equ \$C100 43 comsiot equ \$C200 M msb ON ;Cursor while in command mode 45 curdent equ '', ;Cursor while in terminal mode 46 termour equ '', ;Cursor while in terminal mode	ase e e e e e e e e e e e e e e e e e e	extint2 equ \$5F9 typhed equ \$5FA oldenz equ \$679 ; oldenz equ \$678 ; eschar equ \$638 ; flags equ \$688
04 SERIAL Ser	pol p				2000: 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	C200 C200 00BF	C100; 008A 4 C100; 008B 4 C100; 008B 5 C100; 008B 5 C100; 03B 5 C100; 043B 5 C100;	05F9 05FA 0679 067A 0638
20-0CT-86 06:41 PAGE 7 04			៩៩៩៩៩៩ <u>-</u>	,	3 5 5 5 5 5 5 5		55555555555555555555555555555555555555	

03 EQUATES

Apple //c Video Firmware

EQU \$2B EQU \$3C EQU \$4F

002B 234 SLOTZ 003C 235 BOOTTMP 004F 236 BOOTDEV

238 *Entry points for other modules
240 **Entry points for other modules
240 **Entry points for other modules
250 241 pcnv equ \$C580
C5F5 242 boxfail equ \$C5F5 ;Boot fails met
C5F8 243 pcnvrst equ \$C5F8 ;Protocol conve
C5F8 243 atalk equ \$C580 ;Apple talk
41 include serial ;Equates for se

20-OCT-86 06:41 PAGE 10	;Set V to indicate initial entry;Always taken ;Induc entry point ;BCC opcode ;V = 0 since not initial entry ;Always taken	; pascal signiture byte ; device signiture	;Save the reg; ;X = Cn; ;Set malot, etc; ;Only output allowed ;Reset the hooks; ;A = flags:	;Formatting enabled?	<pre>;Get current horiz position ;Branch if video echo ;if CH >= PWIDTH, then CH = COL</pre>	<pre>:Must be > col for valid tab ;Branch if ok ;8 or 16;</pre>	<pre>/if > Torget it /Find next comma cheaply /Don't blame me it's Dick's trick</pre>	;Save the new position	;If ch>= wndwdth go back to start of line	;Go back to left edge		; Have we exceeded width?	;Are we tabbing?	;Space * 2	;CR * 2 :C = High bit	
: routine	serrts entr1 \$90 entr1	\$01 \$31 >plinit >plread >plwrite >plstatus	# <serslot setup serisout swzznm A</serslot 	pwdth, x prnow	ch servid pwdth,x chok	col,x fixch #\$11	prnt #\$F0 col,x	មម្	print wndwdth prnt	f	a char to print ply phy	col, x pwdth, x	ch	#\$40	#51A #580	
ut port	rslot bit bvs sec dfb clc clc clv bvc	44444	p d d d d d d d d d d d d d d d d d d d	phy lda peq	P C C C C C C C C C C C C C C C C C C C		ora and	sta Sta	E G	stz		g d	e di	ida j	Ida Cov	T.
Serial output port routine	3 *org serslot 4 4 bi 5 bv 6 se 7 df 7 df 8 cl 9 cl	12 13 14 15 17	19 entr1 20 21 22 serport 23 24 serisout	26 27 28	3 2 2 2 2 3	34 chok 35 36	38 33	40 41 fixch	42 43 servid 44	45	47 * We have 48 prnt 49	21 20	323	¥ 55 5	57 toofar 58 tab)
	ciii		c2 c11c c7	04 C166	C144 04 C130	07 C140	C14A 07	87.0	C148			~ ~			ZCI3	
05 SER	C100: C100:2C 89 C103:70 0C C105:38 C106:90 C107:18 C108:88	C108:01 C10C:31 C10D:9E C10E:A8 C10F:B4 C110:BB	CILLIDA CILZAZ CI CIL4:4C IC C2 CIT7:90 03 C CIT9:4C E5 C7 CILC:0A	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33 2 2 3 3 5 5 5			C13E:65 24 C140:85 24	C144:C5 21 C146:90 02	C148:64 24	C148: C148:78 C148:58	C14C:BD 38 (C152:B0 08	C156:B0 0E C158:A9 40	C15C:A9 1A C15E:C0 80	
		LO .							-							
20-0CT-86 06:41 PAGE 9	Current printer column 7F9 & 7FA Number accumulated in command Cowner of serial buffer Storage pointer for serial buffer Storage pointer for serial buffer Retrieve pointer for serial buffer Retrieve buffer for type ahead buffer Buffer in alt ram space	7 temp Stockage 7.50, 67E are one byte character buffers 7.48N0+590 is output port 7.48N0+590 is output port 7.48N1 command register 7.48N1 command register 7.48N1 control register 7.58N1 control register														
	** ** ** ** ** ** **															
equates	477E 477E 547C 557C 667C 667C	\$17E \$BFF9 \$BFF9 \$BFF8 \$BFFB														
equates	equ \$778 equ \$777 equ \$577 equ \$577 equ \$577 equ \$577	equ 30re equ 55FE equ 58FF8 equ 58FF9 equ 58FF9 include ser														
	equ \$778 equ \$777 equ \$577 equ \$577 equ \$577 equ \$577	Chang equ soro charbuí equ soro charbuí equ sirE sstat equ siBEF9 scomd equ siBEF9 scord equ siBEF9 include ser														
& Communications equates	col equ \$738 aciabuf equ \$77E twser equ \$57C twser equ \$57C trser equ \$67C trkey equ \$67C trbbuf equ \$67C	70 charbuf equ \$FFE 71 sdata equ \$FFE 71 sstat equ \$BFF8 72 sstat equ \$FFFA 73 scond equ \$FFFA 74 scntl equ \$FFFA 74 scntl include ser														
& Communications equates	61 col equ \$738 62 number equ \$772 63 aciabuf equ \$870 64 twser equ \$570 65 twkey equ \$570 67 trkey equ \$670 67 trkey equ \$670 68 thbuf equ \$680	05E 70 charbuf equ 55E 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6														

20-OCT-86 06:41 PAGE 12	;C = 0 output, 1 input ;Branch if bad call ;Get status in A ;Test DCD = 0 & rowr full ;508 -> \$10 ;Test DCD = 0 & xmit empty ;Is it what we want? ;C = 1 if equal ;Not ready ;Bad call	TO START FROM MEMORY CARD	,\$00 ;Communications port @ \$C200				
routine	A plerr swgetst plstwr plstwr plstwr A plstrd #528 A plstrd #530 #530 plread2 plread2 plread2	OFF	ds comslot-*,\$00 include comm				
t port	phy phy phy phy phy phy phy phy pho pho phy phy phy phy phy phy phy phy phy phy	asc dfb MSB	ds incli				
Serial output port routine	113 pistatus 114 115 116 117 118 119 1120 1121 1121 1121 1125 pistrd 1126 1127 1127 1128 1129 1131 1131 1131 1131 1131 1131 1131	137 138 139	14 43				
	10 ti ti ti ti	E.	0004				
05 SER	CIRCSA CIRCSA CIRCOA CICCSO CICCS CICCSO CICCS CICCS CICCSO CICCSO CICCSO CICCS CICCSO CICCS CICC	CIDB:DS CE C1 C2 C1FB:00 C1FC:	C17C: C200:				
20-0CT-86 06:41 PAGE 11	;Shift it into char ;Out it goes ;Print the actual char ;Formatting enabled ;In video echo? ;Check if within 8 chars of right edge ;So BASIC can format output ;If not within 8, we're done ;Dummy LDY to skip next two bytes ;Restore regs ;Restore regs	; Serial output ; Check if command • all done if if ic	;N=1 iff video on ;Don't echo ^Q	;Echo it ;Go to serout3	;set defaults, enable acia ;all done	read data from serial port (or buffer); Exanch if data not ready; ECC to skip pla	;60 output character
utine	A goser3 goser3 print pr	SWCERC	flags,x goser3	goser3 coutl swser3	stuff default flags,x plread2	swread plread \$90 #0	serout piread2
port routine	isr pist pist pist pist pist pist pist pist		P F G G		support stuff phy pha jsr defauli stz flags,	phy jsr bcc r dfb q pla ply i	phy pha jsr s bra g
Serial output	59 60 61 62 prnow 64 64 65 66 67 70 71 71 72 73 73 74 73 80 serrts	82 serout 83	85 serout2 86 87 88	89 90 91 goser3	93 * Pascal s 94 plinit 95 96 97	100 piread 101 102 103 104 piread2 105 106	109 plwrite 110 111 112
05 SER	CL 60:6A CL 61:20 9B CL CL 61:20 BZ CL 14A CL 66:98 CL CL 67:20 BZ CL CL 67:20 BZ CL CL 67:3C BZ CL CL 77:2D BZ QL CL 77:2D BZ QL CL 77:2D BZ QL CL 77:2D CL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL CL 18A CL 77:2D QL 18A CL	ည် ရေး	C18F: C18F C18F: C18F C18F:3C B8 06 C19Z:10 07 C19B C194:C9 91	C196:F0 03 C198 C198:20 F0 FD C198:4C CD C7	C19E: C19E:5A C19F:48 C1A0:20 B6 C2 C1A3:9E B8 06 C1A6:80 07 C1AF	CIA8:5A CIA9:20 D9 C7 CIAC:90 FA CIA8 CIAE:90 CIAF:68 CIB0:7A CIB1:A2 00	C1B4;5A C1B5:48 C1B6;20 8A C1 C1B9:80 F4 C1AF

20-OCT-86 06;41 PAGE 14	;Get current char ;Update cursor & check keyboard ;He0 if no new key ;Test for command ;Branch if not ;ryshiff for following tests ;nitt;	;Reset; ;Co check serial ;Teturn a CTRL-X	;Into remote mode ;Into terminal mode	<pre>;Get current char on screen ;Is it ready? :Rranch if we not data</pre>	; Is keyboard enabled? ;Branch if enabled	;Go test acia again ;Save new input in y for now	;Save new char on stack ;Fix the screen	;if 0, don't modify char	;Apple loves the high bit	;Ignore ^Q ;Ignore FFs	;^R for remote?	;^T for terminal mode?	;In terminal mode?	<pre>;Return to user 1f not A = Char ;Onto the screen With it</pre>	;Set up the defaults		jet derault irom ait screen	;Done if minus	for if 2 ;Jam irg vector into LC ;Command, control & flags on stack	
rt routine	update serin swcmd noesc #\$\$f		swsttm				storch	eschar, x							term]				defloop moveirq devno,x	
od suc	pla plant pla plant plant plant plant plant plant plant plant plant plant plan			pharit ist jsr	and ped	bra tay	ar i	p idy	er o	g g	g g	di di	E E	jsr	equ equ	jsr ldy	jsr pha dey	cby Dill	bne jsr pla ldy	
Communications port routine	61 testkbd 62 63 64 65 66 67	69 70 71 72 exitX 73 exit1 74	76 goremote 77 goterm	78 term1 79 80 serin 81 sinokbd 82	88 8 33 E	86 87 sidata	8 8 8 8	92	5 2 8	96 97	86	101	103 sinomod	104	106 107 default	108	110 defloop 111 112	113	115 116 defff 117 118	
MWO 90	C25E: C25E C25E:68 C25:10 10 CC C26:10 18 C2F C26:10 B C7 C26:10 B C7 C26:10 B C7 C26:19 F C26:19 F	250:00 94 C273 C26:09 52 C271:00 09 C27C C273:18 98 C276:78 C276:78 C277:60 C277:60	8 0 A3 C7	C27C: C27C C27C:20 4C CC C27F:48 C280:20 D9 C7	5 82 82 83	F2	C290:5A C291:20 B8 C3	C295:8C 38 06 C295:8C 38 06	C29A:09 80 C29C:C9 91	28	28 28	2 % 1	3 3 8 5	를 교 대	C2B6: C6 C27C C2B6: C2B6	10 A0 CF	3	C2C1:30 04 C2C7 C2C3:C0 03	C2C5:D0 F5 C2BC C2C7:20 A0 CF C2CA:68 C2CB:BC 2B C2	
20-OCT-86 06:41 PAGE 13	<pre>;Set V to indicate initial entry ;Input entry point ;BCC opcode to skip next byte ;Output entry point ;Mark not initial entry ;Branch around pascal entry stuff</pre>	;pascal signiture byte ;device signiture			; X = <cn00< td=""><td></td><td><pre>;First call? ;If both hooks CN00 setup defaults</pre></td><td></td><td>;ii both hooks CN then don't do der ;since it has already been done</td><td>;Set up defaults</td><td>;Input call?</td><td><pre>;Must be Cn00 ;Fix the input hook</pre></td><td>;C = 1 for input call</td><td>Fix output hook</td><td>;Note C might not be 0 :C=0 for output</td><td>; Check if serial or comm port ; Leave flags in a for serport</td><td>;Outout?</td><td>;Get the char ;Input</td><td>;In terminal mode: ;If not, return key ;Out it goes</td><td></td></cn00<>		<pre>;First call? ;If both hooks CN00 setup defaults</pre>		;ii both hooks CN then don't do der ;since it has already been done	;Set up defaults	;Input call?	<pre>;Must be Cn00 ;Fix the input hook</pre>	;C = 1 for input call	Fix output hook	;Note C might not be 0 :C=0 for output	; Check if serial or comm port ; Leave flags in a for serport	;Outout?	;Get the char ;Input	;In terminal mode: ;If not, return key ;Out it goes	
routine	serrts entr \$90 entr	\$01 \$31 >p2init >p2read >p2write >p2status	support stuff	plinit plread plwrite plstatus	# <comslot< td=""><td>;</td><td>mslot sudone cswl</td><td>kswl</td><td>cswn kswh eurodof</td><td>default</td><td>kswh kswl</td><td>suout #>sin</td><td>kswl</td><td>sudone #>sout</td><td>cswl</td><td>flags,x ∦1</td><td>commport serport comout</td><td>term1</td><td>sermode,x exit1 serout2 term1</td><td></td></comslot<>	;	mslot sudone cswl	kswl	cswn kswh eurodof	default	kswh kswl	suout #>sin	kswl	sudone #>sout	cswl	flags,x ∦1	commport serport comout	term1	sermode,x exit1 serout2 term1	
is port	bit bys sec dfb clc cly byc	44444	suppor	bra bra bra bra	phy phy phy phy phy phy phy phy phy phy	by de ed	stx bvc lda	ped .		t ya	eor	bne 1da	sta	bra Ida	sta	lda	bne pcc	pla bra	bit bvc jsr bra	
Communications port	3 4 4 5 sin 6 7 sout 9	11 12 13 14 16	18 * Pascal	20 p2init 21 p2read 22 p2write 23 p2status	25 entr 26 27 setum	28 29 29	33 31 8	333	36	38 sudodef 39 sunodef		42 43	44 45	46 47 suout	48	50 sudone 51	52 53 comout 54 commport		57 noesc 58 59 60	
	C1 C219 C219			C19E C1A8 C1B4 C1BB	2167	3	c245	C22F	6267			C240		C245		90	C24F	C27C	03 C275 C1 C27C	

20-OCT-86 06:41 PAGE 16	*********** CE: ;save regs ;and init video firmware ;Pascal 1.1 ID byte ;Pascal 1.1 ID byte ;Pascal 1.1 ID byte ;Pascal 1.1 ID byte ;Pascal 1.1 ID byte ;Pascal 1.1 ID byte ;CO: TANIE:	GENERIC SIGNATURE BYTE ; DEVICE SIGNATURE BYTE ; PASCAL INIT ; PASCAL READ ; PASCAL READ ; PASCAL RITE ; PASCAL STATUS ************************************	; NEMORY MOVE ACROSS BANKS ; TRANSFER ACROSS BANKS ;************************************	;COPYROW if needed, sethooks; setup 80 columns; setup 80 columns; clear screen; restore dar ;restore char; joubput a character; print a character; print a character; print a character; pascal init; pascal init; pascal withe ;pascal write ;pascal write ; pascal status call revideo firmware is juage card is switched is the P8 ROM to the ss the state of the
Communications port routine	2 ************************************	18 * DFB \$01 ; GENERIC S. 19 DFB \$01 ; GENERIC S. 20 DFB \$8 ; DEVICE S. 21 * DFB > JPRIT ; PASCAL IN. 22 DFB > JPRIT ; PASCAL RE. 23 DFB > JPRIT ; PASCAL RE. 24 DFB > JPRIT ; PASCAL RE. 25 ***********************************	30 JAP SKRUX ; MEMORY MON 31 JAP SKKER ; TRANSFER ; 32 ************************************	38
07 C3SPACE CC	18 7.7. 7.7. 7.7. 7.7. 7.7. 7.7. 7.7. 7.7	0.008: 0.008:01 0.000:08 0.000:27 0.000:28 0.000:33 0.000:000:000:000	4C BS C7	20 20 CE 20 38 CD 30 58 FC 30 58 FC 58 68 68 68 18 03 C329 4C 18 FD 4C 18 FD 4C 20 CE 4C 21 CE 4C 21 CE 4C 21 CE
20-CCT-86 06:41 PAGE 15	<pre>;Set command reg ;And the flags ;A = \$01 (^A) if comm mode ;'I for serial port ;Get printer width ;Get printer width</pre>	;80 column card-0 \$C300		
Communications port routine	sta pla sta sta sta and bne lda lda sta sta sta sta sta sta sta sta sta st	134 devno equ "-sitdmy 135 dfb \$A0,\$B0 137 ds \$C300-*,\$00 44 include c3space		

C2DF

C2CE:99 FB BF C2D2:99 FB BF C2D2:99 FA BF C2D5:88 C2D5:98 90 6 C2D5:93 80 6 C2D5:93 80 4 C2D5:98 80 3 C2E5:92 60 C2E5:92

00C1 C22B

0012

C2EE:

tine 20-OCT-86 06:41 PAGE 18	CLR80COL ;no 80STORE to get page 1 RCCANDRAM ;pop in the other half of RAM \$478, Y ;read the desired byte ;read the desired byte ;and restore memory RDWAINRAM GETALT: RDWAINRAM GETALT: SET80COL ;set high bit for exects 4580 ;set high bit for exects 4581 ;xupsHFT ;451 ;xupsHFT ;451 ;xupsHFT ;451 ;xupsHFT	33 * GETCOUT performs COUT for GETIN. It disables the 33 * M.CIL mode bit, prints the char, then restores 38 * M.CIL mode bit, prints the char, then restores 38 * M.CIL mode bit, prints the char, then restores 40 * disable escape sequences. 41 * M.CIL DA HM.CIL ; save char to print 42 GETCOUT PEA ; disable control chars 45 * TRB WHODE ; save character 46 * STR COOT ; and print it 47 * TRB WHODE ; enable control chars 48 * COOT ; and print it 49 * STORCH determines loads the current cursor position, 49 * STORCH determines the character and displays it at the 49 * STORCHAR inverts the character and displays it at the 40 * STORY determines the current cursor position, and 41 * STORY determines the current cursor position in Y 40 * STORY determines the character without inverting it 40 * STORY determines the character without inverting it 40 * STORY determines the character without inverting it 41 * STORY determines the character without inverting it 42 * STORY determines the character set is switched in, Normally 45 * STORY determines characters set is switched in, Normally 46 * Values \$40-\$5F are shifted to \$0-\$1F before display. 47 * Calls to GETCUR trash Y	CUR ;get newest cursor into Y RE ;first, get cursor position CUR ;inormal or inverse? FE ;=>normal or inverse? FF ;inverse it ;aave real Y ;does char have high bit set? ;>>yes, don't do mouse check ;save char ;save char ;save char
Communications port routine	118 STA 119 STA 1110 LDA 121 LDA 122 BCS 123 STA 124 GETALT1 BPL 125 GETALT2 RTS 127 ** 128 UPSHIFT CMP 130 CMP 131 CMP 131 CMP 133 AND 134 X.UPSHIFT RTS	****************	163 * 164 St 165 St 166 St 166 St 167 St 177
07 C3SPACE	C384:8D 00 C0 C387:8D 03 C0 C387:8D 03 C0 C380:28 C380:28 C380:28 C393:10 C0	C3A6: C3A6: C3A6: C3A6: C3A6: C3A6: C3A6: C3A7:A9 08 C3	C383: C383:20 90 CC C386:80 09 C3C1 C388:20 90 CC C388:24 32 C388:29 77 C388:29 78 C3C1:5A C3C2:09 00 C3C4:30 15 C3D8 C3C4:48 C3C5:AD FB 04
20-OCT-86 06:41 PAGE 17	get the ID byte ver is readable. If it oot, need to copy. jdoes it match? read RCM, write RAM, save state jfrom F800-FFFF jget a byte jand save a byte	up card to the state always leaves the card ;save X ;get the state ;set bank & ROM/RAM read ;set write enable ;restore X for reading, the RAM the state of the ot save the write d, ;save x ;save x ;save x ;save x ;save x ;save x ;save x ;save x ;save x ;indicate bank 1 ;s bank 2 switched in? ;-yve ;-yve ;indicate RAM readable? ;-hon ;indicate RAM read ;ROM read	;RAM write; sawe state; restore X; restore X aux memory screenholes. e (0-7) indexed off of; save state of aux memory; and of the 80STORE switch
Communications port routine 20-CCT-86 06:41 PAGE 17	#GCODP8 Pytes to whatever I is ok. If not, FBVERSICN RCHOK SETROM # \$758 CSWIL (CSWIL) (CSWIL) (CSWIL) CCSWIL CCS	* RESETLC resets the language determined by SETROM. It alwarite enabled. * RESETLC PERK IN X NOWSTATE BIT ROWIN.X BIT ROWIN.X PLX RYS * SETROM switches in the ROM for for writing, and it saves the for writing, and it saves the language card. It does not a protect status of the card. * SETROM PHK IN MOTHER BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT ROJCHARD BUT NOTH BIT SCOR!	BIT \$C081 STX ROWSTATE PLX RTS RTS RTS LIT reads a byte from aux the index to the byte (ses \$478. LDA RDRAMRD ASI, A LDA RD80COL

20-OCT-86 06:41 PAGE 20	<pre>;::::::::::::::::::::::::::::::::::::</pre>	;command to be executed ;DC6-4> = slot ;pointer to 512 byte data buffer ;block number	\$43 ;;parameter count \$44 ;unit number \$45 ;two byte buffer pointer \$47 ;block number \$47 ;block number \$48 ;address for read \$48 ;pointer to params must be last 2 zp byte tempptr-cumand+2 ;zero page bytes used	<pre>;status command ;read command ;wite command ;format command</pre>	;pointer to IOB ;slot * 16 ;drive 1 or 2 ;track number ;sector number ;command ;status ;DOS 1/0 error ;DOS init vector use addr-1 ;DOS syntax error ;NRTS entry point					
slinky equates	2 ************************************	cumand equ unit equ buffer equ block equ	17 pparm equ 543 18 punit equ 544 20 pstat equ 547 21 pblock equ 547 22 pcount equ 547 22 paddr equ 547 22 paddr equ 547 24 tempptr equ 548 25 zused equ tempptr-cmm	29 prostat equ 0 30 prostat equ 1 31 prowrit equ 2 32 proform equ 3 34 * DOS equates	36 iobpl equ \$48 37 iobph equ \$49 38 ibslot equ 1 40 ibrx equ 2 40 ibrx equ 4 41 ibsect equ 5 42 ibbufp equ 12 44 ibstat equ 8 43 ibcmd equ 12 44 ibstat equ \$80 46 dosinit equ \$80 47 dossyn equ \$A6C4-1 48 rwts equ \$B000					
08 EQUATES2	C400: C400: C400: C400: C400: C400:	C400: 0042 C400: 0044 C400: 0044 C400: 0046	C400: 0043 C400: 0047 C400: 0047 C400: 0047 C400: 0047 C400: 0048 C400: 0048	C400: 0000 C400: 0000 C400: 0000 C400: 0000	C400: 0049 C400: 00049 C400: 0002 C400: 0006 C400: T-86 06:41 PAGE 19	restore char >>no, don't do mouse shift >no shift if][char set >> it is! ;40-\$5F->0-\$1f	<pre>;80 columns? ;=>ho, store char ;save (shifted) char ;hit 80 store C=1 if char in main ram</pre>	;->yes, main RAM ;else flip in aux RAM ;do this for odd left, aux bytes ;divide pos'n by 2 ;get (shifted) char ;stuff it ;else restore pagel	; testone real : ; to 40 column store ; restore Y ; and exit ; Equates for PC and Slinky	
07 C3SPACE Communications port routine	176 ROR 177 PLA 177 PLA C3DB 178 BJC C3DB 180 BPL 181 EOR 181 EOR	02 C3DB 183 40 184 18 C3 185 STORE1 19 C3F9 186 01 C0 188 20 190	CER:74A 191 LSR A CER:74A 191 LSR A CER:180 04 CEE 192 BCS STORE2 CED:CS 193 LDA TXTPAGEZ CED:CS 194 IN TXTPAGEZ CEE:196 195 STORE2 TYA CER:196 196 PLA CER:168 198 PLA CER:168 199 STORE3 STA (BASL), Y CER:165 199 STORE3 STA (CARL), Y CARL, Y CAR	* STORES						

50 * error codes

C400:

; bad command
; bad parameter count
; bad unit number
; bad unit number
; other I/O error
; bo device error
; bad block or address

52 badcmd 53 badpent 54 badunit 55 badetl 56 loerr 57 nderr 58 badblk

0001 0004 0011 0021 0027 0028

20-OCT-86 06:41 PAGE 22	* slinty boot code	;Boot entry point ;Signature byte stuff	;Always taken ;Diagnostics entry point	Dne dos24 * Here is the boot code * Boods in hinch tithe SRND and executes at SRUI	;No interrupts if booting	; Save IN	* the following two bytes must be \$99 and \$48 in locations \$C411 and	* and \$C412 respectively. The bcc (\$90) is never taken by the * sinky code and the \$48 is used to duplicate the mouse entry * point as found in slot 7, this 'fix' enables some programs * to still work correctly. (fim, you owe me a beer for this one!)	A TOUGHT	יותר דם וומאבד המאפוו	; keset the nooks	;Go get boot block	;boot not okay ;X=n0	39 * discontinue boot sequence if not power on reset or forced cold start			should be \$C6 now	try slot 6 instead	;go to bottom of screen		;'unable to start from memory card.' ;skip if done		;drop into basic
	de	#\$20 #\$00 #\$03	boot4	dos24	*	kswh	two bytes	and \$C412 respectively. It slinky code and the \$4B is point as found in slot 7, to still work correctly.	**************************************	מבי יועי	setvid	slboot bootbuf+1	btok4 #4*\$10 bootbuf+1	ot sequen	loc0 btok4.1	loc1 #4+\$C0	btok4.1	loc1 (loc0)	#23	CV	utsmsg,x btok4.3 cout	btok4.2	basic
points	boot co		bcs 1dy	bne s the bo	equ sei	lda	llowing	412 resp code an as found 11 work	***************************************	et d	jsr	is à	beq Jap Jap	tinue bo	1da bne	lda cmp	bne 1da	sta	1da	sta	lda beq jsr	inx bne	qmi
slinky entry points	2 ************************************	∕or-∞σ	110	12 bne dos24 13 * Here is the boot code		17		21 * and \$C 22 * slinky 23 * point 24 * to sti	25 ********	29	31.6	38.35	35 37	39 * discor	41 btok4	43	45	47	50 btok4.1	51	53 btok4.2 54 55	56 57	59 btok4.3
09 SLINKY	C400: C400: C400:	C400:C9 20 C402:C9 00 C404:C9 03 C406:C9 00	C408:80 04 C40E		C40E: C40E	C40F:A5 39	C411:	2611: 2611: 211:			C417:20 93 FE		C421:F0 05 C428 C423:A2 40 C425:4C 01 08	C428:	C428:A5 00 C428:A5 00 C439	2 2 2	C430:D0 07 C439	C434:85 01 C436:6C 00 00	17	C43B:85 25	C43D:BD DB C1 C440:F0 06 C448 C442:20 ED FD	C445:E8 C446:D0 F5 C43D	C448:4C 00 E0
20-0CT-86 06:41 PAGE 21	rmake imp to entry	into \$800 ;re-entry point to auto boot ;go to monitor if boot fails		;holds # blocks ;error flag ;value to be returned in X	; value to be returned in Y ; language card state	;slot * 16 (\$n0) + \$88 ;\$C0 + slot (\$Cn)					powerup byte	in \$BF00 to avoid double access	;address pointer ;auto incs after every data access	; data pointed to		;0 = Pascal, \$4C = ProDOS, other = DOS; value unused in any catalog	;block size flag ;catalog skip flag	;skip FE bytes in catalog ;slot #	;location of diagnostic code ;location of diagnostics in ram	<pre>;start location of diagnostics ;ram card at \$C400</pre>			
06:41 PAGE	60 * prodos boot equates 62 bootjmp equ 2 63 bootjmp equ 2	\$FABA \$FT59	68 * scratch area e	10	73 yval equ \$5F8 74 sl.lcstate equ \$678	75 sl.devno equ \$778 76 sl.mslot equ \$7F8		equ \$478-500 equ \$478-500 equ \$738-50	83 sl.scrn4 equ 84 sl.scrn5 equ 85 sl.scrn6 equ	86 81.scrn7 equ \$778-\$00 87 81.scrn8 equ \$7F8-\$00	os numeraiss equ sissini , numer or est mains en 89 powerup equ sissini ; powerup byte 90 :nomer? emisissins	* hardware equ	equ \$BFF8	96 addrh equ \$BFFA 97 data equ \$BFFB		101 proflag equ \$BF00 102 nameflg equ \$AA	103 sizeflg equ \$FC 104 zers equ \$FD	105 skpfe equ \$FE 106 slot equ \$04	equ \$DC00 equ \$2000	<pre>109 diagstart equ diagdest-1 ; 46 include slinky ;</pre>			

slinky entry points 20-00T-86 06:41 PAGE 24	63 * Entry point for prodos driver 64 * Entry point for prodos driver 65 ************************************	entry4 jmp ent4 ;Jump to ProDOS ent4 lda Anderr ;Assume wrong drive ldx unit hmi rats4 ;Error!!! lda Abademed ;Assume bad command ldy command ;Get command	75 * the 'cpy #4' below use to be a 'cmp #4', because of this 76 * change, revnum will be 1.0.1	cpy 44 ;Branch if bad command dos24 ldx grased ;Save sp DOS jumps in here asave4 lda cumand-1,x ;Save sp DOS jumps in here pha	Described to the command for table look up tya clc adc #20	89 ************************************	doit4 jsr slæe ;Go do command done4 ldx 40 ;Restore zp rsloop4 pla sta cmmand,x inx inx freq cpx sta cmmand,x		107 pccmd 1da #badcmd ; Bad command 108 bcbdd 1da #badunit ; Bad protocol unit 110 pcbdd 1da #badunit ; Bad protocol unit 110 pcbdd 1da #badunit ; Saue fab error code
09 SLINKY	CA4E: CA4E: CA4E:	C4E:4C 54 C4 C451:4C 94 C4 C454:49 28 C456:36 43 C458:30 2A C484 C458:39 01 C450:34 42		C45E:C0 04 C460:B0 22 C484 C462:A2 0A C464:B5 41 C466:48	C468:D0 FA C464 C468:98 C468:18 C46C:69 14	C46E: C46E:	C468:20 52 C7 C411:A2 00 C473:68 C474:95 42 C476:E8 C477:9:40 E8	78 78 00 78 00 78 00 78 00 78 00	C489;A9 01 C48B;D0 02 C48F C48D;A9 11

09 STINKY

slinky entry points

jmp xsetmou

19

C44B:4C 1C C7

20-0CT-86 06:41 PAGE 26	156 ************************************	store pointer to 108 (Get slot): it us? Seck to rwts	; command for DOS do of it and come back A = Error code ; DOS io error code ; Put error code in status ; pad with 0's	Smartport revision number Mark ram card Number of blocks = 0 for status call Niscellaneous junk
2	stuff	11 hh 11ot 110 110 114	#4 ; Codosca ; C	
ints	point	sty io		ddb pcrewn ddb \$01 dw 0 dw 0 34F ddb >entryd include misc ds \$C58E-ds
slinky entry points	156 ************************************		167 dossit4 1 168 169 170 170 170 171 dosok4 1 172 s 173 1	177 178 181 181 181 1 181 1 1 1 1 1 1 1 1 1 1
09 SLINKI	C4D1: C4D1: C4D1:	C4D1:84 48 C4D3:85 49 C4D5:A0 01 C4D7:B1 48 C4D8:C0 40 C4DB:F0 03 C4E0 C4DD:4C 04 BD	C4ED:30 04 C4ED:20 62 C4 C4ED:20 02 C4E9 C4E7:30 80 C4E9:31 48 C4ED:60 C4ED:70 00 C4ED:70 00 C4ED:70 00	C4F3:11 C4F3:01 C4F3:01 C4F7:4F C4F7:4F C5:00: C5:00:
_				
20-OCT-86 06:41 PAGE 25	aasaasaasaasaasaasaasaa Doint aasaasaasaasaasaa	;Pull the return address;C = 1 if carry in +3;High byte of return address	;C = 0 from previous add ;Return address + 3 now pushed ;Save zero page ;Save rest of zp	
	erter entry point	#SFD ;Pull the return address; ;C = 1 if carry in +3 ;High byte of return address	33; C = 0 from previous add ;Return address + 3 now pushed tempptr+1;Save zero page tempptr+1 faused-1 cmmand-1,x;Save rest of zp	r.r. r.l-1.y vtr),y id),y is4
	**************************************	G35\$; ; ipptr+1 ;sed-1;x ;	dex bne pcsvzp4 sty tempptr ldy #3 sta cmmand-1,y dey bne pcytp4 tax lda (cmmand),y sta cmmand),y sta cmmand,y sta punit bpi pcparms4 lsr punit bne pcbad4 txa rol A ro
slinky entry points 20-0CT-86 06:41 PAGE 25	113 ***********************************	G35\$	tya adc #3 ; pha lda temptr+1 ; pha stx temptr+1 ldx #zused-1 ldx #zused-1 pba command-1,x ;	dex bne pcsvzp4 sty tempptr ldy #3 formand-1,y pcskp4 lda (tempptr),y dey dey (cmmand),y tax ldy #8 pcparms4 lda (cmmand),y dey pparms4 lda (cmmand),y tax rea cmmand+1,y dey pparms4 lsr punit bne pchad4 txa rol A rol
	* Protocol conve	pconv4 pla tay cmp 45FD ; pla tax adc #0 pla	tya adc #3 ; pha lda temptr+1 ; pha stx temptr+1 ldx #zused-1 ldx #zused-1 pba command-1,x ;	dex bne pcsvzp4 sty tempptr ldy #3 pcytp4 sta cmmand-1,y dey dey (empptr),y dey tax ldy #8 pcparms4 lda (cmmand),y sta cmmand+1,y bp1 pcparms4 lar punit bne pchad4 txa rol A

20-OCT-86 06:41 PAGE 28	;input from \$C400? ;save X too ;we don't care about high bit ;only 0,1 valid	go to input foutine; more disk stuff ;Disk II boot @\$C600 ;Disk II in slot 6								
slinky entry points	bcs ldy phe phe phe phe phe phe phe phe and and and phe jsr jsr phe ple prope prope jsr prope prope prope jsr prope prop	/8 gobasicin jmp swbasicin 80 ds \$C5F5-#,0 48 include boot 1 ds \$C600-#,0								
10 MISC	C500.180 1C C5EE C502.1A0 C7 C504.04 39 C506.100 04 C5DC C508.1A0 12 C5EE C500.1A6 C500.1A6 C500.1A6 C500.1A6 C500.1A7 C	C5F3; 0004 C5F3; 0004 C5F3; 000B								
20-OCT-86 06:41 PAGE 27	**************************************		- get char from input buffer, iny and upshift it	get character:	sarraterraterraterraterraterraterraterra	//c'	**************************************		**************************************	
slinky entry points	* maktbl ********* MANTBL TBLLOOP TBLLOOP 2	20 TTA DNIBL,X 22 INY 23 NOPATRN INX 24 BPL TBLICOP 25 BPL 7508 26 STA \$27 27 LDY \$\$7F 28 RTS	30 ************************************	34 getup lda in,y 35 iny 36 jmp upshift0	38 ************************************	42 MSB ON 43 apple2c asc 'Apple 44 MSB OFF	46 ************************************	50 showinst jsr instdsp 51 jsr pcadj 52 sta pcl 53 sty pch 54 rts	56 serresserresserresserresserresserresserresserresserresser 57 s xmbasic - basic call to the mouse 58 serresserresserresserresserresserresser	60 xmbasic phy
10 MISC	CSE: CSE: CSE: CSE: CSE:AZ 03 CS9:A0 CS9:A3 CS9:CA 3C CS9:CA 3C CS9:CA 3C CS9:CA 3C CS9:CA 3C CSP:CA 3C CS	CAA5.98 CAA5.98 CAA6.08 CAA5.08 CAA10 ES C592 CAA5.10 ES C592 CAA7.85 27 C512.10 08 CAR7.85 27	C584: C584: C584:	C5B4:B9 00 02 C5B7:C8 C5B8:4C 99 C3	CSB: CSB: CSB:	C5BB: C5BB:C1 F0 F0 EC C5C4:	0504; 0504; 0504;	C5C4;20 D0 F8 C5C7;20 53 F9 C5CA;85 3A C5CC;84 3B	65GF: 65GF: 65GF:	C5CF:5A

Mouse firmware 20-0CT-86 06:41 PAGE 32	2 ************************************	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12 MOUSE	C700 C700 C700 C700 C700 C700 C700 C700	

31																												
PAGE																											0	use.
06:41																											ust be	the mo
20-OCT-86 06:41 PAGE 31																											Last byte must be 0	Equates for the mouse.
20-															*	*	*	*	*								Jast	Equa
	V,0														*	is not	rverted	ervert.	* *									••
	DNIBL-\$80, Y	BADRD1	1500	\$ \$26		DENIBL	(\$26), Y	NBUF1,X	A	NBUF1,X	A	(\$26), Y		DEN IB1	* * * *	Code beyond this point is not	sacred It may be perverted	by any pervert	**	\$27	\$30	\$30	\$0800	BOOTDEV	BADREAD	\$0801	\$C700-4,0	include mouse
code	EOR	BNE	LDY	ΙDΧ	DEX	BMI	LDA	LSR	ROL	LSR	ROL	STA	INX	BNE	#	eyond ti	.: It	in any manner	* * *	INC	INC	LDA	S	LDX) (邑	S	inclu
Disk II boot code		BADREAD		DENIBL	DEN IB1										* * * *	* Code be	* sacred	* in any	* * *									
Disk	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	49
	02	C6A2				C6D7		03		03				6 0 90									80		C6D3	80	0002	
	D6 02		8	26		E	56	8		8		56		13						23	8	9	8	45	8	01		
11 BOOT	C6D0:59	C6D3:D0	C6D5:A0	C6D7:A2	C6D9:CA	C6DA:30	C6DC:B1	C6DE:5E	C6E1:2A	C6E2:5E	C6E5:2A	C6E6:91	C6E8:C8	C6E9:D0	C6EB:	CGEB:	C6EB:	C6EB:	C6EB:	C6EB;E6	CGED:E6	C6EF: A5	C6F1:CD	C6F4:A6	C6F6:90	C6F8:4C	C6FB:	C700:

C71C:8D 28 C0 35 xsetmou sta rombank C71E:4C C2 C6 36 jmp sw.xsetmou ;do the real thing C725:4C CD C6 39 xmtstint sta rombank C728:4C CD C6 39 imp sw.mtstint ;do the real thing C728:8D 28 C0 41 xmread sta rombank C728:4C D8 C6 42 jmp sw.mread ;do the real thing C728:8D 28 C0 47 xmclamp sta rombank C731:4C E3 C6 47 xmclamp sta rombank C731:4C E3 C6 47 xmclamp sta rombank C731:4C E2 C6 48 imp sw.mclamp ;do the real thing C734:8D 28 C0 50 xmhome sta rombank C735:4C D8 C5 51 initmouse sta rombank C736:4C D8 C5 51 initmouse sta rombank									
35 xsetmou sta rombank 36 xmtstint sta rombank 39 xmtstint sta rombank 42 jmp sw.mtstint 41 xmread sta rombank 43 jmp sw.mclear 47 xmclamp sta rombank 48 jmp sw.mclamp 50 xmhome sta rombank 51 jmp sw.mclamp 53 initmouse sta rombank 54 jmp sw.minimouse 55 sta rombank 56 sta rombank 57 jmp sw.minimouse	real thing	ther side							
35 xsetmou sta 36 xmtstint sta 39 ymtstint sta 41 xmread sta 42 jmp 44 xmclear sta 45 ymclamp sta 47 xmclamp sta 50 xmhome sta 51 initmouse sta 53 initmouse sta 54 jmp 55 sta 56 sta	;do the	; from ot							
35 xsetmou 36 xmtstint 39 xmtstint 39 xmtstint 41 xmread 42 42 44 xmclear 45 45 47 xmclamp 48 50 xmhome 51 xmlamp 53 initmouse 54 55 57 57 57 57 57 57 57 57 57 57 57 57	rombank sw.setmou	rombank sw.mtstint	rombank sw.mread	rombank sw.mclear	rombank sw.mclamp	rombank sw.mhome	rombank sw.initmouse	rombank m.oveirg	
	sta jmp	sta Ĵa							
	xsetmou	xmtstint	xmread	xaclear	xmclamp	xmhome	initmouse		
C71C:8D 28 C0 C722:8D 28 C0 C725:4C CD C6 C728:8D 28 C0 C728:4C DS C6 C731:4C E3 C6 C731:4C E2 C6 C734:8D 28 C0 C735:4C DF C6 C736:4D 28 C0 C736:4D 28 C0 C736:4D 28 C0 C736:4D 28 C0 C746:8D 28 C0 C746:8D 28 C0 C746:8D 28 C0 C746:8D 28 C0 C746:8D 28 C0	35	38	41	44	47	50	53	56	
	C71C:8D 28 C0 C71F:4C C2 C6	C722:8D 28 C0 C725:4C CD C6	C728:8D 28 C0 C72B:4C D8 C6	C72E:8D 28 C0 C731:4C E3 C6	C734:8D 28 C0 C737:4C EE C6	C73A:8D 28 C0 C73D:4C F9 C6	C740;8D 28 C0 C743;4C 04 C7	C746;8D 28 C0 C749;4C 9A CF	

;dfb >goxmint

DOELTOL

33 33

C71A:18 C71B:60

rombank

sta

59 slboot

C74C:8D 28 C0

20-0CT-86 06:41 PAGE 36	ds \$C780-#,0 ************************************	* Code for switching between banks * This code appears in both banks of the rom	2000年代中华市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	;RTI to the other bank	;RIS to the other bank	;Reset routine	4	; interrupt fourther; Set V = 1 for other bank	- Drotton [october 64	Jump to sethooks from other side	Mouse BASIC routines	.Jump to zzgult irom other side		;Serial port command processor	; Moveaux			;Mouse interrupt handler			;Jump to appletalk	;Jump to serout3		joump to getstat	; Jump to xrdser	:Jump to cetbuf			;Jump to users xfer dest				;should be at \$C7FB	;Appletalk version number ;Interrupt stuff @\$C800
	\$5780-4,0	for switching between banks code appears in both banks (*****	rombank	rombank	rombank	reset	Swrtson	irgent	swsthk3	rombank	SWZ ZQT3	swsttm3	rombank	swemd3 rombank	moveaux	rombank	rombank	mouseint	diags	rombank	rombank	serout3	rombank	rombank	xrdser	getbuf	ZZDM	rombank	(\$3ED) sethooks	swrts	zzguit swrts	\$00	ds \$C7FF-*,0 dfb 0 include irqbuf
e)	ds	or swit	***	sta rti	sta	sta	Ē.	sta bit	Ē.	P C		£:	E E	sta	Sta	Ē.	Sta	sta	gr t	E C	sta	sta	E.	Sta	sta	dat sta	Ę	E CE	sta.	omic isr	bra	jsr bra	db	ds the
Mouse firmware	3 ******		8 ****	9 swrti 10		12 switsop 13 swreset		15		16 SWpcnv	20 swbasicin	21 22 cuettm		24 swcmd	25 26 swaux		28 SWXIEL	30 swmint	31	33 nanger 33	34 swatalk	35 36 swser3	37	38 swgetst	40 swread	41 42 sweetb	43	45 5 8 2 2 11111	46 swxfgo	47 48 swsthk3	49	50 swzząta 51	53	55 52 52
	0000			ខ	8	ខ	FA	85	88	35	8	េះ	35	8	ස ස	ខ	38	38	ឌ	3 5	ខម	88	8	8 8	38	88	888	26	ខេះ	8 5	C784	CE C784		0003
14 SWITCHER	C780:			C780:8D 28	28	C788:6D 28		C78E:8D 28	38	C79A:4C F1	28	C7A0:4C F6	9 E	82	28 08		23	28 2	88	C7C4:4C 8E				C7D3:8D 28		C7DC:4C C3				C7EE: 6C ED		C7F6:20 4D C7F9:80 89	C7FB:D6	C7FC: C7FF:00 C800:
20-OCT-86 06:41 PAGE 35	other side	,				Rank switcher @ \$C780																					-							

C74F:4C B4 C6 13 MCODE.X

Mouse firmware

swsl.bt rombank getlc ds \$c780-*,\$00 include switcher

70 51 001D

sl,lcstate execute fixlc

sta phx jsr phy sty jsr jmp

62 slxeq 63 64 65 65 67 68

C752:8D 28 C0 C755:DA C756:20 16 C8 C759:5A C758:80 6 C750:20 00 D8 C760:4C 08 C8

20-OCT-86 06:41 PAGE 38	BCC IROLOG
serial & Meyboard buffering	65 65 65 65 65 65 65 65 65 65 65 65 65 6
TORONT CI	C844:90 3C C882 C846:68 C846:68 C846:68 C840:C12 C0 C840:C12 C0 C840:C13 C0 C840:C13 C0 C840:C13 C0 C840:C13 C0 C850:C10 CC C855:C10 CC C8
20-0CT-86 06:41 PAGE 37	NEWING - The main (only) IRQ handling routines INGENT - Entry point from alternate rom hank This routine saves the memory state of the machine, checks for an internal interrupt, and then calls the user's Interrupt handler at SPE. The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is encoded as follows: The memory state is and the same with a fear and spool bank is the interrupt handler are marked with a tender if frite and spool bank is the memory in the m
Serial & Keyboard buffering	NEWRING - The main (only) IRQ handling IRQBWT - Entry point from alternate roc Checks for an internal interrupt, and interrupt handler at \$37E. The memory state is encoded as follows interrupt handler at \$37E. The memory state is encoded as follows D7 = 1 if Alernate zero page / stack D6 = 1 if Read aux D7 = 1 if Alernate zero page / stack D6 = 1 if Read aux D6 = 1 if Read aux D6 = 1 if Read aux D6 = 1 if Int. c. and \$D000 bank 1 D1 = 1 if I.C. and \$D000 bank 2 D0 = 1 if Alernate rom bank D0 = 1 if Alernate rom bank D0 = 1 if Alernate rom bank D0 = 1 if Alernate rom bank D0 = 1 if Alernate rom bank D0 = 1 if Alernate rom bank D0 = 1 if Alernate rom bank D0 = 1 if Alernate rom bank D0 = 1 if Alernate rom bank D1 = 1 if I.C. and \$D000 bank 2 D2
15 IRQBUF Serial	CROOL: CR

20-0CT-86 06:41 PAGE 40	162 * The following routine is for reading key- 163 * board from buffers or directly. 164 * Type-ahead buffering only occurs for non auto- 165 * repeat keypresses. When a key is pressed for 165 * repeat the buffer is first emptied, then the 167 * repeated characters are returned. 168 * The minus flag is used to indicate if a keystroke 169 * is being returned.	; test keyboard directly ; loop if Duffered since test. ; Clear keyboard strobe. ; Clear keyboard strobe. ; Clear keyboard indicates valid character ; Branch if ont. ; Branch if direct KBD input. ; Branch if direct KBD input. ; Save Y ; Y-\$80 for keyboard buffer ; Get data from buffer ; Get data from buffer ; Get minus flag ; instructions so as to function with type-ahead ; anticipate data in buffer is ready ; save rarry and minus flags ; preserve accumulator ; is there data to be read? ; hranch if type-ahead buffer empty ; carry and minus flag already set. ; restore ACC and Status ; test KBD Directly ; indicate direct test	
	ing row uffers buffer esses. the buf racters flag is	KBD KRDSTRB KBDSTRB XB1TKBD XROKEY XRKBD 1 #580 SINCETB #0 TYPHED XBKB2 TRKEY TRKEY TRKEY TRKEY KBD	
fering	follow from b -ahead keypricepeat ed cha minus	LIDA STRING STRI	
Keyboard buffering	162 * The following rolls? * board from buffers lid* Type-ahead buffer lif5 * repeat keypresses. lif6 * auto-repeat the bu lif7 * repeated character. lif8 * The minus flag is being returned. lif9 * is being returned.	1172 KKRBD1 1173 KROKEY 1174 KROKED 1179 1179 1180 1181 1183 1183 1184 1189 1190 1191 1193 1194 1195 1196 1196 1196 1196 1196 1196 1196	
		8D5 8CC 8FB 8FB	
15 IRQBUF	32333333333333333333333333333333333333	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
20-OCT-86 06:41 PAGE 39	;RESTORE ALL REGISTERS ;+ Which rom bank? ;DO THE REAL Will ;+ Go back to the other bank	*** GOREAK- If a brack instruction has occurred, we check * if the BRK happened in the alternate rom bank. If it has, * sone fool may have hit the rom switch by accident and the PC is * decremented by two, the main rom is switched in and we resume * decremented by two, the main rom is switched in and we resume * where we think he wanted to go * where we think he wanted to go * BRK	
buffering	IRQDN5 SWRTI	GORREAK— If a brack instruction of the BRK happened in the alite some fool may have hit the rom decremented by two, the main rowhere we think he wanted to go short the brack has been seen that he wanted to go short the brack has been seen the brack has been seen the brack has been seen seen the brack has been seen seen seen seen seen seen see	
yboard	>> >< e< c>	RRK III LIF LIIII LIIII LIIII L	
av.	PLY PLA PLA BCS BCS RTI JMP	CAK- he Bit he Bit K * * * * * * * * * * * * * * * * * * *	
ial & Ke	IRQDN 5		i
Serial & Keyboard buffering		125 ************************************	

C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:
C900:

C90D

20-0CT-86 06:41 PAGE 42	ess mode	;get next non-blank ;save Y ;get next non-blank	<pre>;done yet? ;if "\$" then done ;restore X ;shift bit into format</pre>	; get high byte of address ; =>	r relative addresses ;calc relative address ;bad branch	;point to offset ;displacement - 1 ;subtract current PCL ;and save as displacement ;deck page ;get page	and some
65C02 Mini assembler	3 ************************************	AWOD1 JSR CMP CMP BEE BEE JSR CMP CMP	LIDA LIDA BEQ CMP BEQ LIDY AMOD2 CLC AMOD3 ROL ROL ROL ROL ROL ROL ROL ROL ROL ROL	26 RAVIDE ANODE 29 JSR CETRUM 29 LDA AZH 29 IRX AZH 31 ANODE STX YSAYI 32 LDX 4503 33 ANODE STX ALH 35 BEL ANODI 37 RTS	39 * 40 * 41 * Calculate offset byte for relative addresses 42 * 43 RE SBC #\$81 ; calc relative a 44 LSR A ; 54 LOY AZE 47 LOY AZE 47 RWE GCERR ; bad branch 48 RWE SPERR ;		202
16 MINI	C310; C310; C310; C310; C310;	C910: C910:2 38 CA C920:84 34 C920:40 34 F9 C927:20 38 CA C927:20 38 CA C927:70 00 C93C	SYCYCY 188	C340:100 00 C94F C342:20 A7 FF C345:A5 3F C347:F0 01 C94A C348:B8 C346:88 C346:88 C347:86 39 C347:86 30 C351:00 C910 C352:10 C9 C910	C955; C955; C955; C955; C955;B 81 C957;4A C958;A 3E C958;A 3E C958;A 3E	3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
20-0CT-86 06:41 PAGE 41	;C=1 if X=1 ;A=80 or 0 :Ger high byte	;Wini assembler & step routines					

imp \$FB21
equ *
tox #1
ror # 1
lda mouth, y
beq pok pok lda #\$FF
ora mouxl, y
ris
include mini

219 pdon

C90A; 4C 21 FB 2 2 C90D; C90D; C90D; C90D; C90D; C91D; C91D; C91D; C91D; C91E;

Keyboard buffering

20-0CT-86 06:41 PAGE 44		; to point to error	;Beep cause we're mad ;try again	124 * Read a line of input. If prefaced with " ", decode 125 * meaned of feet do monitor command Others's narse	oding mnemonic.	;clear mode ;get first char in line	<pre>;if blank, ;=>qo attempt disassembly</pre>	; is it return? :=>no, continue	;else return to Monitor	;parse hexadecimal input	no ":", display error	; no "ADDR", display error	; move address to PC	get starting opcode;	get next non-blank	Yattoare entry	; ⇒>flag bad mnemonic	mnemonic for later comparison						;decrement mnemonic count		;index into address mode tables	;do this elsewhere ;det format	•		tempo un format	
er	*	#\$DE	COUT BELL GETINSTI	of input.	before dec	ZMODE \$200	#\$A0 DOLIN	#\$8D GET11		GETNUM #593	ERR2	ERR2	AIPCLP	#503 A1H	NNBL	# *285	# \$C2 ERR2	c for late	×	1 PR 1	ro÷ «V	A4E		NXTMN A18	MALXIN	#\$5	AMOD1	r4€ r4€	YSAV1	AMOD7	AMOD7
ssembl	TAX	LDA	JSR	11ine	dress	JSR	BEO	S E	RTS	SSE	BNE	BEO	JSR	STA	JSR	SBC		nemoni	ACT	ASL	ASL	10 E	DEX	BPL DEC	BEO	IDX	JSR	ASL	ORA GMP	SC A	BEO
65C02 Mini assembler	117 118 ERR3	120	121 122 123	124 * 125 * Read a 125 * mreun;	127 * hex ac	129 DOINST 130	131 132	133	135	137 GETI1	139 GOERR2	140		144 DOLIN 145	146 NXTCH	148	149 150	Form	153 *	155	157 NXTMN	158	160	161	163	165	166	168	170 171	172	
16 MINI	C9CA:AA C9CB	C9CE:A9 DE	C9D0:20 ED FD C9D3:20 3A FF C9D6:80 AE C986	3008: 3008:	: :: :::::::::::::::::::::::::::::::::	C9D8:20 C7 FF C9DB:AD 00 02	C9DE:C9 A0 C9E0:F0 12 C9F4	8 5	:	C9E7:20 A7 FF		C9EE:8A C9EF:F0 D8 C9C9	2	C9F6:85 3D		C9FC:E9 BE	CA00:90 C7 C9C9	CA02: CA02:	CA02:		CA06:0A	CA07:26 42	: :	CA0C:10 F8 CA06	CA10:F0 F4 CA06	CA14:A2 05	CA16:20 1D C9	CAIB:0A	22 22	CA21:B0 06 CA29	CA25:F0 02 CA29
20-0CT-86 06:41 PAGE 43	;display error		<pre>;get instruction length ;get a byte ;and move it</pre>			print blanks to make ProDOS work		Display line 6 get next instruction	; for prompt	Get a line	י פס מס רווב דוופרזמרזמוו	disassembly of all known opcodes with typed in until a match is found	; get apcode	<pre>;determine mnemonic index .x = index</pre>	get right half of index	<pre>;does it match entry? ;=>try next opcode</pre>	;get left half of index	;Skip past pascal stuff :Rello I'm the pascal 1.0 entry point	Just getting in the way		<pre>;does it match entry; ;=>no, try next opcode</pre>	; found opcode, check address mode	; is it relative?	<pre>;=>yes, calc relative address .does mode match?</pre>	;=>yes, move instruction to memory	;else try next opcode ;⇒yo try it	;else try next format	;=>go try next format	o the error with a caret, beep, and fall te mini-assembler.	444	ger position
sembler	BNE MINIERR	struction to memory	LDY LENGTH LDA A1H, Y STA (PCL), Y	DEY BPL MOV1	instruction	JSR PRBIAK		JSR SHOWINST		JSR GETINZ	DRAS DOLMSI	disassembly of all known opcodes typed in until a match is found	LDA A1B	JSR INSDS2		CMP A4L BNE NXTOP	LDA MNEML, X	bra plskip ds \$C9AA-*.0	_		CMP A4H BNE NXTOP		-	BEQ REL		DEC AIH BNE GETOP	INC A5L		o the error with a mini-assembler.		LUI ISAV TYA
65CO2 Mini asso	GOERR	* Move in	63 MOVINST 1 64 MOV1 65		* Display		DICETE	BTREET,	Treattee		•	82 * Compare 83 * the one	GETOP					93	17.0	piskip	200			103	į	106 NXTOP			112 * Point to 113 * into the	*	IIS MINIEKK 116 ERR2
16 MINI	C96E:D0 57 C9C7	C970:	C970:A4 2F C972:B9 3D 00 C975:91 3A	C977:88 C978:10 F8 C972	C97A:	C97A:20 48 F9	1	0 C4 C5	19 A1	C988:85 33 C98A:20 67 FD		C98F: C98F:	8	C991:20 8E F8	C995:BD 00 FA	42	C99C:BD C0 F9	C99F:80 0C C9AD	:4C B4 C1		C9AD:C5 43	4	38	C9B7:F0 9C C955		C9BF:D0 CE C98F	C9C1:E6 44	C9C5:F0 C8 C98F	3007:		C9C7:84 34 C9C9:98

20-0CT-86 06:41 PACE 46	; Gopen apple = slow step; Rait about a second; Closed apple = break; If user specified an address, move it; Disassemble one instruction; Adjust to user stack; Save return address; Init XEQ area; Init XEQ area; Special if break; Do JSR, KTS, JMP, JMP (), JMP (,X), RTI; Do JSR, RTS, JMP, do JDP; AMARe bra turn into bpl; Gopy user inst to weq area; Change rel branch; displacement to 4 for jmp to branch; displacement to 4 for jmp to branch; displacement to 4 for jmp to branch; displacement to 4 for jmp to branch; skestore user req contents; kestore user req contents; kestore user op from ram; print reqisters and qo to monitor.	; Display regs & go to monitor
ler	step and trace routines step by the butno 'Open appl by tamobto' by tamobto' by the wait dex dex dex and the butno 'Den appl by the butno' 'Den appl by the butno' 'Step and trace appl by the butno' 'Step and 'Step by the butno' 'Step	# <mon-1 rtnjmp2</mon-1
assemb]	and transfer to the point of th	ldx bra clc
65CO2 Mini assembler	196 ********* 200 ********* 200 ********* 201 Step a 199 * ******* 201 Step b 202 Color Co	251 252 253 xrti
	CA43 CO CA50 CA50 CA44 CA46 CA64 CA64 CA66 CA66 CA66 CA66	CAD9
16 MINI	CA43:: CA	
20-OCT-86 06:41 PAGE 45	; update format ; update position ; update position ; is it a ";"; ; is it a ";"; ; > yes, skip comment ;; is it carriage return ;; is it carriage return ;; set next opcode ;; et next opcode ;; set next upshifted character ;; shank; ; shank;	
65C02 Mini assembler	175 AND STA \$55. 177 YSAV 178 LDA \$0200,Y 179 COPP \$580 181 COPP \$580 181 COPP \$580 182 AND B BNC GCRR2 183 AND B BNC GCRR2 184 ************************************	

CA3B:
CA3B:
CA3B:
CA3B:
CA3B:
CA3B:
CA3B:
CA3B:
CA3B:C9 A0
CA4C:P0 P9 CA3B
CA42:60

CAZ7:09 80 CAZ9:85 44 CAZB:84 34 CAZ9:99 00 22 CA30:09 BB CA34:09 00 CA36:00 B4 CA36:00 B4 CA36:00 B7 CA36:00 B7 CA36:00 B7

16 MINI

65C02 Mini assembler 20-0CT-86 06:41 PAGE 48	312 initbl nop 313 nop nop CA 314 jmp nbrnch CA 315 jmp branch	317 ************************************	320 ° C = 1 register display 322 * used by step and trace 323 * used by step and trace 324 * used by step and trace 325 codes equ *	320 1da CSW1 327 pha ;Save output hook 329 pha ?Soure output hook 330 1da \$>cout1	331 sta csw1 332 lda 4ccoutl 333 sta cswn CB22 334 bcs godreg ;Which display? 8 335 jsr instdsp CB25 336 bra goddone 8 337 godreg jsr rgdsp1		54 INCLUDE SCROLLING ; More Video stuff #SCB30			
INIM 91	CBOS:EA CBO6:EA CBO7:4C FF C CBOA:4C F1 C	CB0D; CB0D; CB0D;		CB0D:A5 36 CB0F:48 CB10:A5 37 CB12:48 CB13:A9 F0	CB15:85 36 CB17:A9 TD CB19:85 37 CB19:86 37 CB19:0 05 CB10:20 D0 F8 CB20:80 03 CB22:20 DA FA	CB25:68 CB26:85 37 CB28:68 CB29:85 36 CB2B:60	CB2C:			·····
20-OCT-86 06:41 PAGE 47	;Simulate rti by getting status ;from stack then doing rts ;Pop PC.(not pc - 1)!	;Update Pc by 1 (Len = 0) ;Update pc by length	Push pc onto stack for jsr	,Load pc for jmp, (jmp) simulate		;bove over:	; Add x to address; to address; C = 1 for indirect jump	;Branch taken ;Add len+2 to PC	;Normal return from xeq ;Go update PC	**************************************
assembler	pla sta status pla sta pcl	pla sta jsr sty clc	bcc newpcl clc jsr pcadj2 phy pha ldv #802		sta bcs lda lda phx		adc adc the standard the standa		jsr sec bcs	
65C02 Mini	254 255 256 xrts	258 259 pcinc2 260 pcinc3 261 262 263	264 265 xjsr 266 267 268	270 xjmp 271 xjmpat 272 273	275 276 newpcl 277 278 rtnjmp 279 280 rtnjmp2	282 283 284 285 285 vimosty	287 288 289 290 291 292 x jxnoc	293 294 branch 295 296 297 299		306 ******* 307 * 308 * This i 309 * When s 310 *
16 MINI	CAAD:68 CAAE:85 48 CABO:68 CABI:85 3A	CAB3:68 CAB4:85 3B CAB6:A5 2F CAB8:20 56 F9 CABB:84 3B CABD:18	CABE:90 11 CAD1 CAC0:18 CAC1:20 54 F9 CAC4:5A CAC5:48		CACC1:86 38 CAD1:85 3A CAD3:80 F3 CAC8 CAD5:A6 2D CAD7:A5 2C CAD9:DA	CADB: 89 27 CADD: 85 24 CADF: 38 CAEG: 4C OD CB	CAE4.15 CAE4.85 3A CAE8.85 3A CAE8.90 02 CAEE CAEC.E6 3B CAEE:38	D8 01 33 35 56 F9	CAFD:80 B5 CAB4 CAFF:20 4A FF CB02:38 CB03:80 B1 CAB6	CB05; CB05; CB05; CB05; CB05; CB05;

20-0CT-86 06:41 PAGE 50	;yes! clear bottom line, exit	Save new current line ;get width for scroll ;get status for scroll ;get status for scroll ;##=1 f 80 columns ;>only do 40 columns	<pre>;scroll aux page first (even bytes) ;test Y ;if Y=0, only scroll one byte</pre>	do all but last even byte; odd left edge, skip this byte	now do main page (odd bytes) restore width reven right edge, stip this byte;	;scroll next line	rclear current line restore original cursor line spull status off stack restore X schomili			
irmware		VYABI TEMY SKPRT	-	0,0,00		SCRLODD	CLALIN			
Apple //c Video firmware	61 BCS 62 *	64 2513N. 2518 65 1101 66 7 PHP 68 891.	69 LDA 70 TYA TYA 71 BEQ 72 SCRLEVEN LDA 73 SCRLEVEN LDA	SCULT	SCRLODO		86 SCRL3 JSR 89 JSR 90 PLP 91 PLR 92 SEV1 RTS			
17 SCROLLING	CB86:B0 31 CBB9	C888:20 24 FC C888:20 24 FC C881:28 C891:28 C892:08 C893:10 1F C884	C895:AD 55 C0 C898:98 C899:F0 07 C8A2 C898:B1 28			CBB5:10 F9 CBB0 CBB7:80 B4 CB6D	20 A0 FC 20 22 FC 28 FA 60			
20-CCT-86 06:41 PAGE 49	this for fools with illegal entry points ds .\$CB30-*,0	SCROLLIF scrolls the screen either up or down, depending on the value of X. It scrolls within windows with even or odd edges for both 40 and 80 columns. It can scroll windows down to I characters wide.	;save X ;direction = down ;do scroll	<pre>;save X ;direction = up ;qet width of screen window ;in 40 or 80 columns? ;=>40, determine starting line</pre>	pack sure into is enabled pack sure in the pack sure in t	<pre>/ v=0 ir left edge even / v>check right edge / v=1 if left edge odd</pre>	restore NNDLFT ;pet oddity of right edge ;get oddity of right edge ;get odd left, don't DEX ;if odd left, don't DEX ;if right edge odd, need one less ;sawe window width	#=1 if 80 columns ; save W.z.v ; assume scroll from top ; up or down? ; you gast scrolling at bottom ; really need one less	; calculate base with window width ; calculate base with window width ; current line is destination	going up? -up, inc current line ;going up? -up, inc current line ;down. Reached top yet? ;yes: clear top line, exit ;no, go up a line ;set source for scroll ;up, inc current line
TRWATE	r fools with SCB30-*,0	SCROLLIF scrolls the screen either on the value of X. It scrolls with or odd edges for both 40 and 80 co windows down to I characters wide.	#0 SCROLLIT	#1 WNDWDTE RD80VID GETST	A MEDIT	CHKRT SEV1	A MNDNDTE A GETST GETST	RD80VID MUDTOP #0 SETDBAS MNDBTM A	TEMPA VTABZ BASI BASI BASI BASH BASH BASH	TEMPA #0 SETUP2 NNDTOP SCRL3 A A A A A A A A A A
deo III	his for	IT scrive value dedges	LUX	BIT	TYN LISR LIDA	a se se	ROL LSR BVS DEY	LDA LDA CPX CPX BNE LDA DEC	STA JSR LDA STA STA	LDA CPX CMP CMP BEQ BEQ INC
Apple //c Video Lirmware	3 ;align t	* SCROL * on th * or od * windo		15 SCROLLIT 16 SCROLLIT 18 19	3	27.28	29 CBRRT 30 31 32 33 34 GZTST	33 33 40 41 41	44 SETDBAS 45 46 * 47 SCRLIN 49 50	51 * 52 53 55 55 57 59 SETUP2
17 SCROLLING	CB2C: 0004	CB30: CB30: CB30: CB30: CB30:	CB30:DA CB31:A2 00 CB33:80 03 CB38 CB35:	CB36:A2 01 CB36:A2 01 CB3A:2C 1F C0 CB3D:10 18 CB57	8	CB49:30 03 CB4E CB48:2C C1 CB	2 63 5	CBSA:AD IF CO CBSD:08 CBSD:EAS 22 CBSD:E00 03 CB67 CBG4:AS 23	CB67:80 78 05 CB66:20 24 FC CB60: CB60:85 28 CB67:85 2A CB73:85 2B	CB75:AD 78 05 CB75:AD 78 05 CB7A:DD 07 CB83 CB7C:C5 22 CB7E:F0 39 CB89 CB81:3A CB81:B0 05 CB88

Apple //c Video firmware 20-0CT-86 06:41 PAGE 52	* PASIWVERT is used by Pascal to display the cursor. Pascal * normally leaves the cursor on the screen at all times. It is is fleetingly removed While a character is displayed, then * promptly redisplayed. GTL-P, respectively,	disable and enable display of the cursor when printed using the Pascal 1.1 entry point (PWRITE). Screen 1/0 is significantly faster when the cursor is disabled. This feature is supported by Pascal 1.2 and later.	PASINVERTIDA VMODE ;Called by pascal to AND 4M;CURSOR ;Called by pascal to surp lawy :->correct off don't invert	EQU * JSR PICKY ;		MTS MTS Trom the screen in either	100 * 40 or 80 columns from the current cursor position. 110 * 15 the alternate character set is switched in, 171 * 15 the alternate columns from the current cursor position.	is what must have been originally printed to the location).	Y PHY Save Y save Y SECURAL SOLUTION Y SAVE	BPL PICKI	TATOM	BCS PICK2	INY	LSR A	TXTPAGE1	BRA PICK3 LDA (BASL), Y			* SEGWCUR displays either a checkerboard cursor, a solid * rectangle, or the current cursor character, depending * on the value of the CURSOR location, 0-inverse cursor, * \$FF-checkerboard cursor, anything else is displayed * after being anded with inverse mask.
// eldă		152 * di 153 * th 154 * si 155 * fe	157 PASTI 158	160 INVERT		166 1NVX 167 *	169 * 40 170 * 15	172 * 18	174 PICKY 175	171	179	182	184 185 PICK2	186	9 6 6	190 191 PICKI	192 PICK3 193 194	195 196 197 PICK4 198	
17 SCROLLING	CC08: CC08: CC08: CC08:	######################################	29 10 CC1C	10 CC 12	88 23 23	8616;60			8 : 8 :	0030	CC29:98 CC2A:45 20	04 CC33	3	,	₹ %	02 CC3F 28	1E C0 06 CC4A 20	CC46:80 92 CC4A CC48:09 40 CC48:60 CC48:60	
20-0CT-86 06:41 PACE 51	called by CLREOL. It decides whether quick) 40 or 80 column clear to end of line.	;40 or 80 columns;**clear 80 columns		;clear right half of screen ;for SCRM48	; => jump into middle	;preserve X ;and blank	<pre>;get count for CB ;save for left edge check ;count=WWEDVIE-Y-1</pre>	; save CH counter	י דרו יומר דרו אחול	restore original CR get starting page		;iff WNDLFT odd, starting byte odd ;get blankity blank	<pre>;starting page is 1 (default) ;else do page 2</pre>	; now do page 1	;all done	; forward 2 columns	not done yet	disable typeahead; and external interrupts	
firmware	od by CLREOL.	CLR80 CLR80 (BASL), Y	CLR40	#\$D8 #20	INVFLG #\$A0 CLR2			ELONGMA	Ā	TATOM	CLRO CLRO		CLR1 TXTPAGE2	TXTPAGE1	CLR3	T / (mount)	CLR2	TYPEED EXTINT2	
	is calle a (quic)	STA	RTS	E E E	AND AND	PEX	SE ES	TAX	LSR	FLA EOR	B CS B	INY		BIT	BEO	INY	PLX	STZ STZ RTS	
VIO																		E	
Apple //c Video	* DOCIR * to do	96 DOCLR 99 100 CLR40 101	103 104 105 *	106 CLRBALF 107 108	109 110 1111		115 116 117	118	121	123	125 126 127	128 129 CLR0	130 131 CLR2	133	135 136 CEP1		139 140 CLR3 141	142 * 143 CLRPORT 144 145	

20-OCT-86 06:41 PAGE 54	been poked as either CH or OURCH.	<pre>2bb * It also forces UH and ULDUM to 0 II 80 column mode active. 266 * This prevents LDV CB, STA (RASL), Y from trashing non screen 267 * memory. It works just like the //e. 268 *</pre>	* All routines that update the cursor's horizontal position	* are here. This ensures that the newest value of the cursor * is always used, and that 80 column CH is always 0.	Y register	;if CH=OLDCH, then ;OURCH is valid 	; use OURCE	;=>no, fits just fine	2011	i to set the current cursor used.	;update real cursor			get cursor;																
Apple //c Video firmware	263 * //e mode, which may have 264 *	<pre>265 * It also forces CH and Ol 266 * This prevents LDY CH, S' 267 * memory. It works just 1: 268 *</pre>	269 * All routines that update	270 * are here. This ensures 271 * is always used, and that	272 * 273 * GETCUR only affects the Y register	275 GETCUR LDY CH 276 CPY OLDCH	278 LDY 279 GETCURI CPY		282	283 * GETCURZ IS COMMONLY USED TO 284 * position when Y can be used, 285 *	286 GETCUR2 STY OURCH		GETCURA STY STY	293 GETCURX RTS 55 INCLUDE ESCAPE																
17 SCROLLING	CC 30:	::::::::::::::::::::::::::::::::::::::	300	:: :::::::::::::::::::::::::::::::::::	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	CC90:A4 24 CC90:A4 24 CC9F:CC 7B 04	8 E Z	CCA9:90 02 CCAD	2	::::::::::::::::::::::::::::::::::::::		2884	CCB7:84 24 CCB9:8C 7B 04	CCBF:60																
20-OCT-86 06:41 PAGE 53	;what's my type?	;=>not inverse ;else invert the char (exit)	ator	get char on screen	; save for update ; test for checkerboard	;⇒checkerboard, display it ;test char	;don't need inverse	; character set,	<pre>;35f if normal char set ;form char to display</pre>	;and display it ;restore real char		The UPDATE routine increments the random seed. If a certain value is reached and we are in Apple II mode, the blinking check cursor is updated. If a	essed, the old char is replaced on the return with BMI.	ine used by COPM firmware!!	rear ones.	; update seed ; check for key		;need to update cursor?	;=>no, check for key	;=>//e cursor, leave alone	;+ Save Y ;qet the character into A	get next character	ישמע זובער זופער רווסוסררבן	; and print it	;get real char	; was a key presseu; ;=>no key pressed	<pre>;+ restore old key look for key and exit ;+ Keep code alignedkey</pre>	Whenever the horizontal crans and the	EDUCATION OF THE STATE OF THE S	
o firmware	_	2 -	with clai in accumulator	JSR PICKY	STA NXTCUR	INY BEQ NOTINV2 PLY	MI NOTINUZ	L;	AND CURSOR		S. C.	PDATE routine increm- certain value is rea- the blinking check	been pressed, the old c and we return with BMI.	this routine used by	HA	INC RNDL BNE UD2	LDA RNDB INC RNDB	-	D (, ,	SR PICKY	DY NXTCUR		SR STORY LY		< ひ	JMP CLRKBD2 NOP		call i	
Apple //c Video firmw	* SHOWCUR	207 208 209 *	TVT.	NOTINU	214				NOTINVI	NOTINV2	*	229 * The UPDATE 230 * If a certal 231 * mode, the b	* key h	* NOTE:	UPDATE									252 J 253 P	200		257 CLRKBD JJ 258 N	259 * 08 CHRSORE	needed, of a LDY	
17 SCROLLING	9	CC4F:D0 02 CC53 CC51:80 BF CC12 CC53:	cc53:	CC53:20 1D CC CC56:48	CC57:8D 7B 07 CC5A:98	CCSB:CB CCSC:FO 0D CCGB CCSE:7A	CC 60:30 09 CC 6B	1 64	CC68:2D FB 07		CC70:	00700 00700 00700	0C70: 0C70:	6070: 6070:	CC70:48	CC71:E6 4E CC73:D0 1E CC93	CC75:85 4F CC77:E6 4F		CC7D:F0 14 CC93	8	A	CC88:AC 7B 07 CC88:8D 7B 07	: :	CC8F:20 B3 C3 CC92:7A	CC93:68	50	CC9C:EA	CC90:	CC30: CC30:	

20-OCT-86 06:41 PAGE 56	When in escape mode, the characters in ESCTAB (high) bits set), are mapped into the characters in ESCCHAR. These characters are then executed by a call to CTLCHAR.	* CTLCHAR looks up a character in the table starting at CTLCHAB. It uses the current index as an index into the table of routine addresses, CTLCHAR. If the character is not in the table, a call to VIDOUTI is done in case the character is RS. LF. CR. Or BEL.	* NOTE: CTION and CTIOFF are not accessible except through and escape sequence	; high bit on	;left (stay esc) ;left arrow (stay esc) ;down (stay esc)	;up arrow (stay esc)	<pre>;down arrow (stay esc) ;up (stay esc) .rinht (stay esc)</pre>	; left	dn:	;right ;form feed ;clear EO1.	; clear EOS ; 40 column mode	;80 column mode	CTL-D ;ctl char disable ;CTL-E ;ctl char enable		;list of escape chars	;J: BS (stay esc) ;<-:BS (stay esc)	:M: LF (stay esc)	;->:FS (stay esc)	;DN: LF (stay esc)	:K: RT (stay esc)	; list of control characters ; ESC-C = DN	; ESC-D = UP ; ESC-A = RT	; @: Formfeed ; E: CLREOL	F: CLREOP; SET40; SET80	
irmware	ape mode, the are mapped int cters are then	CTLCHAR looks up a character in CTLCHAR. It uses the current inductable of routine addresses, CTLA mot in the table, a call to VIDO character is RS. IF. CR. or BEL.	and CTLOFF ar	NO *			\$8¥					80 GF				80 80 80 80 67 47				280		\$9F		\$91 \$92	
Apple //c Video firmware	When in esc. bits set), a These charac	CTLCHAR lool CTLTAB. It table of ron not in the character is	* NOTE: CTLON and CTLO * and escape sequence	73 MSB 74 ESCTAR ROU			ASC ASS		ASC	ASC	ASC	ASC		CNUM	SCCEAR	DFB DFB	DFB	DIB	ETC ETC	ETG ETG	109 CTLTAB EQU 110 DFB		DFB		
Apple	8288	3 2 2 3 2 2 3		73 74 E		79	8 8 8	0008 83 YHI 84	S &	60 00 00 7 00 00	382	3 2	828	96 # 0013 97 E	# 86 CD0C	100	102	104	105	107	CD15 109 C	111	113	115 116 117	
18 ESCAPE	COFF		0018: 0018:			CCTB:88 CCTC:95	CCF2:03	000:c2	CD02:C4	0003	CD06:C6	88:88	COOR:84	3000 0000		CD0C:88	CDOE:8A	CD10:9C	CD11:8A	CD13:9C		CD16:9F CD17:9C	018:8C	CD1A:8B CD1B:91 CD1C:92	
re 20-0CT-86 06:41 PAGE 55	ANDLE THE FOLLOWING CHES: 1 - HOME & CLEAR	ght en en	F - CLM TO EUS I, Up Arrow - CURSOR UP (stay escape) J, Lft Arrow - CURSOR LEFT (stay escape) K, Rt Arrow - CURSOR RIGET (stay escape)	CURSOR DOWN (stay escape)	8 - GNTO 80 COLUMN MODE 	TANGE TO SET CHAD TO TOBLING		<pre>;restore index !YHI ; If YCYHI, stay escape ESCRDEXY :=>exit escane mode</pre>	sources 39 VINC and bolles taken	ints is the entry point caired by Anna in examples are enabled and an escape is encountered. The next keypress is read and processed. If it is a key that	e mode, a new key is read by ESCRIMKK. Thould not be terminated, NEWESC is			#\$80 ;save invert bit #\$AB ;make it inverted "+" STORY :and non it on the screen	<u>e</u>		UPSHIFT ; upshift esc char	#ESCNUM ;COUNT/INDEX ;CTAR,Y :1S IT A VALID ESCAPE?	- "	CC ;TRY 'EM ALL	of escape sequence, read next character,	s is initially called by ACCEAN WHICH is usually called GETLN to read characters with escapes enabled.	#M.CTL ; enable escape sequences	RDESCAPE ; got the key, disable escapes	
Apple //c Video firmware	2 * START AN ESCAPE SEQUENCE: 3 * WE BANDLE THE FOLLOWING 4 * @ - BOME & CLEAR	5 * A - Cursor right 6 * B - Cursor left 7 * C - Cursor down 8 * D - Cursor up 9 * E - CLR TO EOL	10 * F - CLK TO EUS 11 * I, Up Arrow - 12 * J, Lft Arrow - 13 * K, Rt Arrow -	14 * M, Dn Arrow - CURSOR DOI 15 * 4 - GOTO 40 COLUMN MODE	. EEE	rem Ina	PHY JSR	PLY	46 4		* * *	-#£	NEWESC JSR PHA	EOR	ESCO JSR RPI.	PLA	JSR	ESC1 LDY	BEO		* 270	4 +	ESCROKEY LDA		≈ ≈
18 ESCAPE	:::::::::::::::::::::::::::::::::::::::	0000: 0000: 0000:		:0000	::::::::::::::::::::::::::::::::::::::	CCC0:	2 60	CCC :7A CCC :C0 08 CCC : C0 08	1	:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::		CCC:20 1D CC CCCF:48	223	CCD7:20 E6 C8	i	CCDD:20 99 CC CCED:20 98 C3	CCE3:A0 13	9	CCEA:88 CCEB:10 F8 CCE5	CCED:		8 2	CCF2:20 0C FD CCF5:4C 44 FD	CCF8:

20-0CT-86 06:41 PAGE 58	176 CAP THEP! Lift to execute CR, 17, 85, or BEL 177 CAP THEP! Lift acr has danged 178 CTLOONE CTLOONE CTLOONE 180 FROCTL CAP CTLOONE 181 DEX CTLOONE CTLOON 182 CTLOONE CTLOON 183 CTLOONE CTLOON 184 CTLOONE CTLOON 185 CTLOONE CTLOON 185 CTLOONE CTLOON 186 CTLOONE CTLOON 186 CTLOON 187 CTLOONE CTLOON 188 CTLOONE CTLOON 180
rmware	THOUTI TITY to exceed the following of t
/ideo fi	JSR COPE BRE BRE BRE BRO DEN TON BRO BRO BRO TAN TAN TAN TAN TAN TAN TAN TA
Apple //c Video firmware	177 CMP JSR 177 CMP 178 CMP 180 180 181 181 182 182 182 182 182 182 182 182 182 182 183
18 ESCAPE	CUSD120 04 FC CUG61CD F8 04 CUG61CD F8 04 CUG61CD F8 04 CUG61DD 15 CD CUG61FA CUG61FA CUG61FA CUG61FA CUG61FA CUG71AB
20-OCT-86 06:41 PAGE 57	DER 595 ; OUTT DER 504 ; Disable controls (escape only) DER 585 ; X.CUR.OR DER 586 ; X.CUR.OR DER 586 ; X.CUR.OF DER 586 ; X.CUR.OF DER 596 ; X.CUR.OF DER 596 ; X.CUR.OF DER 597 ; X.CUR.OF DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 598 ; X.COR.OR DER 508 ; X.COR.OR DER 508 ; X.COR.OR DER 508 ; X.COR.OR DER 509 ; X.COR.OR DER 500 ; X.CO
nware.	escape chars sobsected by State Stat
Apple //c Video firmware	THE TARREST OF THE STREET OF T
Apple //c	118 6 8 6 6 7 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19
	CB CB
18 ESCAPE	0010:95 0010:05 0020:0

20-0CT-86 06:41 PAGE 60	; done converting ;=>80: no convert ;40: convert to 80 ; determine absolute CH ;in case the window setting ;was different ;pin to right edge if	P (s) P (s) P (s)	; Called by INIT and Pascal; and bottom; set left, width, bottom; set width to 80 if 80 columns; set width ; set width	7 BASI COM to The in	; In vigor Influence directly divined ; Copy ROW to IC?; IN ;set up \$C300 hooks II :	the video firmware active STZ CURSOR ;set a solid inverse cursor LDA #H.CTL ;preserve M.CTL bit AND VHOOE ORA #M.PASCALW.MOUSE ;no pascal,mouse calls here to set its mode STA VMODE ;set mode bits STZ VMODE ;set wideo firmware active STA SETALTCHAR ;and set alternate char set RTS
гшиаге	HIN3 HIN3 SCRN48 GETCUR	WIN4 #40 WIN4 #39 SETCUR CV BASCALC	WNDLFT #518 WNDBTM #528 RDBOVID WIN5 A WNDWDTB	* Turn on video firmware: * This routine is used by * It copies the Monitor if * if necessary; it sets at the SGOM; it sets all switter * SGOM; It sets all switter * SGOM; IN SMIT VEACTV ** Transment	V LUMBER COPYRON F SAN F SCOUTI CSWIL F < C3COUTI KSWIE CSWIE CSWIE CSWIE	A
deo fi	BRA BMI JSR JSR TYA CLC ADC		STA LDA STA BPL STA STA	n vide outine des th essary it se	STA ESTA ESTA ESTA ESTA ESTA ESTA ESTA E	STZ STZ STZ STZ STZ STZ STZ STZ STZ STZ
Apple //c Video firmware	292 293 WIN2 294 295 WIN3 296 297 298	300 301 302 303 304 WIN4 305 307 *	3.08 WHDREST 3.09 3.09 3.11 3.12 3.13 3.14 3.15 WINS	317 * 318 * Turn o 318 * Turn o 319 * This r 321 * It cop 322 * if nec 323 * \$530x; 324 * 325 *	327 GCDKUP JSR 328 SETHOOKS LDA 329 STA 330 LDA 331 STA 332 STA 333 STA 333 STA	336 * Now set 337 * Now set 338 VIDWODE 349 341 342 * 342 * 344 * 346 347 349 *
	CDF2	CE02	00 CE18		3 CS	7. 4. 4.000
18 ESCAPE	20 8035		CEGA:64 20 CEGC:A9 18 CEGG:B9 28 CEL2:2C IF CO CEL7:10 01 C CEL7:0A CEL7:06	٤ ج	35 39 38 33 38 33 33 33 33 33 33 33 33 33 33	CE31: CE31:9C FB (CE34:A) 08 CE36:2D FB (CE39:09 81 CE38: CE
20-0CT-86 06:41 PAGE 59		ft ourcv	e bit oit	N (ii) N	I/O hooks	en) rsion
20-0CT-86	ting M.MOUSE	; probably not needed) ; probably not needed) ;and to top of Window ;then set base address, OURCV	;set INVFLG to \$FF ;then clear inverse mode bit ;set INVFLG to \$3F ;then set inverse mode bit	*SUCOL MODE'; ;flag an 80 column window ;BCC opcode (never taken);flag a 40 column window ;butis it pascal? ;>yes, don't execute	;save window size ;COPYROW if needed, set I/O hooks ;and get 40/80 ;>set window to convert to 40 if it was is left ajar. ;don't set 40 if ;lready 40	;flag 40 column window ;ECS opcode (never taken) ;flag 80 column window ;set window top now ;for text or mixed ;⇒>text ;used by 80<->40 conversion ;80 columns now? ;save 80 or 40 ;>>40; convert if 40 ;>>40; no convert ;80; convert to 40
	text by setting M.MOUSE WAODE			SETIT MODE or 80COL MODE:	## HOOKITUP ; COPTROM If needed, set ; and get 40/80 WIND ; -> set window ed by PR#O to convert to 40 if it was the window is left ajar. RDBGVID ; don't set 40 if SETX ; already 40	; flag 40 column window ;BCS opcode (never take); flag 80 column window ; flag 80 column window ; flag 80 column window ; set window top now ; for text or mixed WIN. ; ->text #IN. ; ->text #IN. ; ->text #NDROYP ; used by 80<->40 conver RDBOVID ; save 80 or 40 ; save 80 or 40 ; ->80; convert if 40 WINZ ; ->90; convert if 40 WINZ ; ->90; convert
firmware	mouse LDA TSB RTS ROME:	JSR CLRCH TAX WNDTOP LDA WNDTOP STA CV JWP NEWTABZ "NORMAL VIDEO"	JSR SETWORM LDA #M.VMODE BRA CLRIT "INVERSE VIDEO" JSR SETINV LDA #M.VMODE	BRA SETIT '40COL MODE' or '80CC SEC CLC CLC BIT WMODE BIT SETX	PRD ; save window size ; save window size pla ; noPRTOP if needed, set Pla ; and get 40/80 BRA WINO ; -> set window is called by PRBO to convert to 40 if it was herwise the window is left ajar. BIT RDSGVID ; don't set 40 if BL SETX ; already 40	
	* Disable * MOUSOFF SETIT *	* CLRCH TAX LDA WNDTOP STA CV STA CV JHP NEWTABI * EXECUTE "HORMAL VIDBO"	X.SO JSR SETNORM LDA #W.WODE BRA CLRIT * EXECUTE "INVERSE VIDEO" X.SI JSR SETINV LDA #W.WODE	BRA SETIT * EXECUTE '40COL MODE' or '80CC SETAO SEC SETAO CLC SETA CLC BPL SETX	PRP JSR HOOKITUP 128 HOOKITUP 128 WING * CHRBO is called by PRFO to co * 80. Otherwise the window is lace. * CHR80 BIT RD80VID * SETX	\$B0 MNDTOP RDFEXT WINI #100 #20 RNDTOP RDBOUD WINZ WINZ WINZ WINZ

20-OCT-86 06:41 PAGE 62	360 * 361 * SCRN84 and SCRN48 convert screens between 40 £ 80 cols. 362 * WNDTOP must be set up to indicate the last line to 363 * be done. All registers are trashed.	start at bottom of screen; allow page 2 access; calc base for line	start at right of screen	;save 40 index ;div by 2 for 80 column ind	; even column, do page 2	get 80 char	get 40 index		;do next 40 byte ;do next line	;=>done with setup	;at top yet?	; clear 80STORE for 40 column	;clear 80VID for 40 columns	;start at bottom of screen	;set base for current line	;start at left of screen	enable page2 store	get 40 column char	; save char	;div 2 for 80 column index	; save on pagel	; get 80 column index	; now save character	:flip pagel	restore 40 column index	;move to the right	;dt Ilynt yet: :⇒>no. do next column	tology byle of concer
rmware	CRN48 convert be set up to l registers a	#23 SET80COL	BASCALC #39	A	SCR3 TXTPAGE2	(BASL), Y	IAIFRIGEI	(BASE), I	SCR2	SCR4	WNDTOP SCR1	CLR80COL	CLRSOVID	# 23	2160016	BASCALC.	SET80COL	(BASL), Y		~	SCR7	19114000		TXTPAGE:		140	SCR6	CIBUALE
ideo fi	and S must ne. Al	STA TXA	LDY I	TAY	S II E	E E	PLY	STA	EX E	BWI	S C	STA	RTS	TDX	ZY.	ED S	STA	EDA FIR	PHA	TY LSR	BCS	TAY	PLA	STA	PLY	INI	5 g	100
Apple //c Video firmware	360 * 361 * SCRN8. 362 * WNDTOI 363 * be doi	365 SCRN84 366 367 SCR1	368	370 SCR2 371 372	373 374 575 6m3	376 376	378	380	381 382	383	385 385	386 SCR4	388	390 SCRN48	391 SCR5	393	394	395 SCR6 396 SCR8	397	398	400	402 SCR7	403	404	406	407	409	410
18 ESCAPE	CB3: CB3: CB3: CB3:	288	CESC:A0 27	CESE: 5A CESF: 98 CE60: 4A	CE61:80 03 CE66 CE63:2C 55 C0	CE 67: B1 28			CE70:10 EC CESE CE72:CA	CE73:30 04 CE79	CE77:B0 DF CE58	\sim	CE/C:8D 9C C0 CE/F:60 CE80:	CE80:A2 17	5	CE86:A0 00	CE88:8D 01 C0	CE8B:B1 28	CESE: 48	CE90:4A	CE91:B0 03 CE96	CE96:A8	CE97:68	CE98:80 54 C0	CE90:7A	CENESCO CE ODE CO	CEA1:90 E8 CE8B	a
20-0CT-86 06:41 PAGE 61	and .	;no quitting irom pascal ;first, do an escape 4 ;do a 1N#O (used by COMM)																										
18 ESCAPE Apple //c Video firmware	350 * 0 351 * s 352 * h	FB 04 FA CE44 D2 CD 89 FE	93 FE 358 JMP																									

save 40 index div by 2 for 80 column index

clear 80STORE for 40 columns; clear 80VID for 40 columns

at right yet?

=>no, do next column

clear half of screen

=lse do next line of screen

>>done with top line

at top yet?

convert to 80 columns Pascal support stuff

SCR9

ខ

CE82 CEAD

CEA6:CA CEA7:30 04 CEA9:E4 22 CEAB:B0 D5 CEAD:8D 0D C CEB0:60

20-0CT-86 06;41 PAGE 64	<pre>;turn off gotoxy ;=>DONE (ALMAYS TAKEN)</pre>	<pre>;turn off cursor ;get char ;is it gotoXY? ;=>yes, start it up</pre>	<pre>;must switch in ROM for controls ;EXECUTE IT IF POSSIBLE ;=>display new cursor, exit</pre>	••	;turn on gotoxy	<pre>;set X ;=>display cursor and exit</pre>		; SETUP ZP STUFF	:=>not yet ;DROP HI BIT ;good exit		:Set mode to mascal	:without mouse characters setup zero page for pascal do 40-80 convert	; home and clear screen ; display cursor, set CURCE, CURCY	eave 10 state, set ROM read	; set top to 0; init either 40 or 80 window	;assume normal text	;=>yes :no. make flag inverse	; set all cursors		<pre>114 * 115 * Put BASCALC here so we don't have to switch 116 * in the ROMs for each character output.</pre>	
scal stuff	#M.GOXY VMODE PHRET	PASINVERT #\$9E STARTXY		THE GOTOXY SEQUENCE:	#M.GOXY VMODE		ī:	PSETUP2 XRDKBD		N	# MOUSE	, hri hri 72		*			VMODE P.S.1		OURCV	here so we do for each char	æ
ware Pa:	LDA TRB BRA	JSR CHP BEO	JSR JSR BRA			STA	AL INPUT	JSR	BPL AND BRA	AL INIT	DO3	JSR SST	JSR	EQU		STA	BEO 1.52	JSR AS	STA	BASCALC he ROMs	ASL
Video firmware Pascal stuff	2882		69 11 t	73 * START	75 STARTXY 76 77	79 PSETX 80	81 * 82 * PASCAL 82 *	84 PASREAD 85 CKEY	88 88	89 * 90 * PASCAL	91 * 92 PINIT 93	ያ ኤ ኤ ኔ	% 55 SK	99 * 100 PSETUP	102 PSETUP2 103	104 105 106	108	110 PS1	112	114 * 115 * Put BASCALC 116 * in the ROMS	117 " 118 PASCALC
19 PASCAL	CF12:A9 08 CF14:1C FB 04 CF17:80 DB CEF4	CF19:20 0B CC CF10:8A CF10:C9 9E CF10:C9 06 CF29	CF21:20 60 C3 CF24:20 58 CD CF27:80 C8 CEF1		CF29; CF29 CF29:A9 08 CF28:0C FB 04	CF30:8D FB 06 CF33:80 BF CEF4	G35:	CF35:20 54 CF	CF3B:10 FB CF38 CF3D:29 7F CF3F:80 B6 CEF7		CF41: CF41: CF41 CF41:A9 01	CF43:20 3B CE CF46:20 51 CF	2 2	CF51: CF51: CF51 CF51:20 60 73	328	CF59;A9 FF CF5B;85 32 CF5D;A9 04		CF66:AC 78 05 CF69:20 AD CC	AD FB 85 25	GF71: GF71:	CF71:0A
20-0CT-86 06:41 PAGE 63	<pre>;is request code = 0; ;=>yes, ready for output ;check for any input</pre>	<pre>;=>bad request, return error ;test keyboard ;=>no keystroked ;good return</pre>	;else flag error		turn on high bit; save character	;SETUP ZP STUFF, don't set ROM ;ARE WE DOING GOTOXY?	;=>Doing X or Y? ;now check for control char	;is it control? ;=>yes, do control	<pre>;get norizontal position ;check for inverse ;normal, go store it</pre>	;now store it (erasing cursor)		;set cursor position to 0	tostis und velasib.	return with no error		turn off cursor	;get character;;MAKE BINARY	;doing X? ;=>yes, set it		; calc base addr	;set proper cursors
scal stuff	PIORDY	PSTERR XBITKBD PNOTRDY	#3	u:	42 Hilps 60 60 7/2-	PSETUP2 #M.GOXY	GETX	#\$60 PCTL	OUNCH INVFLG PWR1	STORE	OURCE	PWRET SETROM CLRCH	LF RESETIC PASTMVRRT	0\$#	OXY STUFF:	* PASINVERT	#160	XCOORD PSETX	the GOTOXY	* OURCV PASCALC	XCOORD GETCUR2
Pa	TAX BEQ DEX	BNE JSR BPL SEC		00TI	EQU ORA TAX	JSR	BNE	BEO	BMI	JSR	STY	SS SS		RTS	GO	EQU	SEC	BMI	and do	STA	JSR
Video firmware	3 PSTATUS 4 5	6 8 9 PIORDY	11 PSTERR 12 PNOTRDY 13	14 * 15 * PASCAL 16 *	17 PWRITE 18 19	20 21 33	23 24	25 26	2.4 2.9	30 31 PMR1 32	333	37 37	38 39 PWRITERET 40 PWRET		43 * 44 * HANDLE		50 48	52	54 * Set Y 55 *	56 GETY 57 58	59 60
19 PASCAL	CEB1:AA CEB2:FO 08 CEBC CEB4:CA	CEBS:D0 07 CEBE CEB7:20 E6 C8 CEBA:10 04 CEC0 CEBC:38	CEBE: A2 03 CEC0: 18 CEC1: 60	GC2:	CEC2: CEC2:09 80 CEC4:AA	CEC5:20 54 CF CEC8:A9 08	29.2	8 4	CED4:AC 78 05 CED7:24 32 CED9:30 02 CEDD	CEDD:20 C1 C3	7B 05	888	CEEE:20 66 FC CEF1:20 54 C3	88	CEFA: CEFA:	CEFA: CEFA:20 0B CC		CF01:2C FB 06 CF04:30 2A CF30	CF06:	CF06: CF06:8D FB 05 CF09:20 71 CF	E 2

al stuff 20-OCT-86 06:41 PAGE 66	2 ************************************	55	>lcbank2,>lcbank1,>lcbank1 >wrcardram,>rdcardram,>txtpage2	\$91, \$08, \$40, \$50, \$16, \$08, \$01, \$00	asc 'MAXYPS'	16 ************************************
e Pasc	e more	table	gg g	dfb	asc	bot
Video firmware Pascal stuff	2 ********** 3 * here ar 4 * valiant 5 ************************************	7 * various tables	9 irqtble 10	12 contbl	14 rtbl	16 ************************************
20 MOREMISC	CF86: CF86: CF86:	CF86:	CF86:83 8B 8B CF89:05 03 55	CF8C:9E 0B 40 50	CF94:CD C1 D8 D9	CF9A: CF9A: CF9A: CF9A:
20-0CT-86 06:41 PAGE 65	calc base addr in BASL, H ; for given line no.	; uc=line no.=>1/ ; arg=000ABCDE, generate ; BASH=000001CD	; BASL=EABABOOO			;More random junk
Video firmware Pascal stuff		A #54	R A D #\$98	A BASI I A	L A B BASL	RTS include moremisc
lare P	LSR	ORA	TYA ROR AND	STA	ASL	RTS
Video firm	119 120 121	123	125 126 127	128 PASCLC2 129	130 131	132 57
19 PASCAL	CF72:A8 CF73:4A CF74:4A	CF77:09 04 CF79:85 29	CF7B:98 CF7C:6A CF7D:29 98	CF7F:85 28 CF81:0A	CF82:0A CF83:04 28	CF85:60 CF86:

21 m.oveirg jsr moveirg 22 jmp swrts	movelrq JSR SETROM JDA RDALTZP ASL A IDY #1 MIRGLP JJA IRQVECT,Y STA SETALTZP STA SETSTDZP STA IRQVECT,Y STA SETSTDZP STA IRQVECT,Y	34 BPL MINGUR ; Go do the second byte 35 BCC MINGUR ; Is the card set right? 37 MINGYD JR RESTILC ; Clean up 6 go home 39 ************************************	41 cirbd2 phy ;Now preserves I Sir story ;Now preserves I Sir story ;Now preserves I Sir story Sir sto	33 lookasc bcs ladig ; Was char a hex digit; 54 cmp #\$A0
CF9A:20 A0 CF CF90:4C 84 C7	60 C3 16 C0 17 C0 18 FF 18 FF 18 FF	CT89:10 EE CFA9 CTBB:80 03 CFC0 CFC0:4C 54 C3 CFC3:	CC3:5A CCC4:20 B3 C3 CCC7:7A CCC3:C D5 C8 CCC3: CCC3: CCC3:	CYCB:B0 11 CFDE CYCD:C9 A0 CYCY:D0 13 CFE4 CYD1:B9 00 02 CYD4:A2 07 CYD6:C9 8D CYD6:C9 8D CYD6:C9 07 CFE1

20-CCT-86 06:41 PAGE 68	;Y-COORD/2 ;SAVE LSB IN CARRY ;CALC BASE ADR IN GBASL,H ;RESTORE LSB FROM CARRY	HASK STO IF EVEN:	; DATA : XOR COLOR	AND MASK XOR DATA	TO DATA	; PLOT SQUARE	YES, RETURN	PLOT NEXT SQUARE	; ALMAIS TAALN ; NEXT Y-COORD • SAVE ON STACK	; PLOT SQUARE	; DONE:	; MAX Y, FULL SCRN CLR : ALMAYS TAKEN	; STORE AS BOTTOM COORD	; RIGHTHOST X-COORD (COLUMN)	;CLEAR COLOR (BLACK);DRAW VLINE	; LCOP UNTIL DONE.	FOR INPUT 00DEFGH	;GENERATE GBASH=000001FG	;AND GBASI~HDEDE000		
r firmware	A GBASCALC	#\$OF RTMASK #\$E0	MASK (GBASL), Y	MASK (GBASI.), Y	(GBASL), Y	PLOT	RTS1	PLOTI	#501	PLOT	V2 VLINEZ	#\$2F CLRSC2	#\$27 V2	#\$27 #\$00	COLOR	CLRSC3		#\$03 #\$04	GBASH	#\$18 GBCALC #\$7F GBASL A A	GRASI
monito	ESS CHILL	A SC B	STA LDA		STA	JSR	32	SS	S S S S	SS I	E S S S	LDY	YOY	LDY	STA	DEY BPL RTS	_	S S S	PLA	AND ADC STA ASL ASL	STA
Apple //c F8 monitor firmware	3 PLOT 4 5 5	r- & 6	10 RIMASK 11 PLOT1	13 15	15 15 1		20 20 20	77	23 24 VLINEZ 25 VT IND	26 VALINE	27 28 29 30 RTS1		34 CLRTOP 35 CLRSC2	36 ; 37 38 CLRSC3	39 40	17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	44 * 45 GBASCALC	8 t- 8	49 50	51 52 53 54 GBCALC 55	* 869
		F80C					F831		F81C		F826	70			80 [44	F83C				F856	
	22			2 23 25	2.9	00 F8	3 ==	0E F8	F6 01	00 F8	82		22	22	2 8			2 2	27	18 02 7F 26	56
21 AUTOST1	F800:4A F801:08 F802:20 47 I	F806:A9 OF F808:90 02 F808:69 E0								F829:20 00	F82C; 68 F82D; C5 F82F; 90	F832: F832:A0	F836:A0 F838:84	F83A: F83A:A0 F83C:A9	F83E:85		F847:48	F848:4A F849:29 (F850:29 18 F852:90 02 F854:69 7F F856:85 26 F858:08 F859:08	F85C:85 26 F85E:60 F85E:60

20 MOREMISC

Video firmware Pascal stuff

CFDB:4C 90 FF 61 1my nxtbit CFDB:4C 90 FF 62 ladiq jmp dig CFE1:4C A7 FF 63 lacr jmp getnum CFE4:60 64 ladone rts 5000-*,0 CFE5: 001B 58 ds 5000-*,0 CFE5: 001B 58 ds 5000-*,0 CFE0: 001B 58 ds 50000-*,0 CFE0: 001B 58 ds 50000-*,0 CFE0: 001B 58 ds 50000-*,0 CFE0: 001B 59 ds 50000-*,0 CFE0: 00

20-CCT-86 06:41 PAGE 70	; FORM INDEX INTO PNEMONIC TABLE ; 1) IXXX1010 => 00101XXX ; 2) XXXXYY01 => 00111XXX ; 3) XXXXYY10 => 00110XXX ; 4) XXXXX000 => 00100XXX ; 5) XXXXXXXXX	GEN PMT, LEN BYTES ;SAVE MNEMONIC TABLE INDEX ;PRINT 2 BLANKS ;PRINT 1 SER FIELD ;CEAR COUNT FOR MNEMONIC INDEX ;RECOVER MNEMONIC INDEX ;RECOVER MNEMONIC INDEX ;RECOVER MNEMONIC INDEX ;RETCE 3-CHAR NNIMONIC ; (PACKED INTO 2-BYTES) ; (CLEARS CARKY) ;ADD "?" OFFSET ;OUTPUT 3 BLANKS ;CNT FOR 6 FORMAT BITS ;IF X-3 THEM ADDR.	
Apple //c F8 monitor firmware	BCC MNNDX3 LSR A LSR A LSR A CRA #\$20 DEY BNE MNNDX1 RTS RTS RTS		BEQ PRADR3 JSR COUT DEX BNE PRADR1 RTS
C F8 M		Programme and the second secon	
// əldd	119 MNNDX1 122 MNNDX2 1123 MNNDX2 1124 1125 1126 1126 1129 1129 1129 1129 1130 1130 1130 1130 1130 1130 1130 113	131 ** 132 ** 134 134 135 135 136 137 137 137 137 137 137 137 137 137 137	172 173 174 PRADR3 175 176
Æ	F8C9 11 18C2 11 11 11 11 11 11 11 11 11 11 11 11 11	8D4 8E5 330 330 350 8E6 3 8E5	F926 11 11 11 11 11 11 11 11 11 11 11 11 11
STI	08 20 E7 F7	F F F F F F F F F F F F F F F F F F F	28 E
21 AUTOSTI	F8BE:4A F8BF:90 F8C1:4A F8C2:4A F8C5:88 F8C5:08 F8C5:08 F8C5:08 F8C5:08 F8C5:08 F8C5:08	FROD, FF FF FF FF FF FF FF FF FF FF FF FF FF	F921:F0 F923:20 F926:CA F927:D0 F929:60
06:41 PAGE 69	I BY 3 I MOD 16 I OF COLOR EQUAL	ETE DOWN TIE DOWN TIE DOWN 1 1 1 1 1 1 1 1 1 1 1 1 1	
20-0CT-86	; INCREMENT COLOR BY 3 ; SETS COLOR=17*A MOD 16 ; BOTH BALF BYTES OF COLOR EQUAL	RASSECTION OF THE SEC	; SAVE IT ;OPCODE TO A AGAIN
firmware		, Y , Y , Y , Y , Y , Y , Y , Y , Y , Y	
or firmware	COLOR #\$0F COLOR A A A A A COLOR COLOR	A GBASCALC (GBASL), Y RINSKZ A A A A A A A A A A A A A A A A A A A	#\$03 #\$8A MNDX3
or firmware	LDA COLOR CLC ADC AND #\$0F STA COLOR ASI. A	LISR A PHE JUN (GRASI), Y PLP BCC RTMSKI LISR A LISR A LISR A LISR A LISR A LISR A LISR A LISR A LISR A LISR A LIDY PCL LUY PCL LUY PCL LUY PCL LUY PCL LUY PCL LUY PCL LUY PCR LUN PCR LUN PRINK LUN PCR LUN PCR LUN PCR LUN PCR LUN PCR LUN PCR LUN PRINK LUN PCR LUN PRINK LUN PRINK LUN PRINK LUN PRINC LUN P	#\$03 #\$8A MNDX3
or firmware	NXTCOL LDA COLOR CLC #\$03 SETCOL #\$05 \$12 COLOR \$13 AND #\$90 \$13 AND #\$90 \$14 COLOR \$15 AND AND AND AND AND AND AND AND AND AND	SCRN 1.SR A SCRN2 PHP 1.DA (GBASL), Y PLP 1.DA (GBASL), Y 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.SR A 1.DX PCL 1.DX PCL 1.DX PCL 1.DX PCL 1.DX PCR 2.SR PRBIMK 1.DX PCR 2.SR A 1.DX PCR 3.SR A 1.DX PCR 4.50 C GETPMT 1.DA #500 GETPMT 1.DA #500 GETPMT 1.DA #500 GETPMT 1.DA #500 GETPMT 1.DA #500 GETPMT 1.DA #500 GETPMT 1.DA #500 GETPMT 1.DA #500 GETPMT 1.DA #500 GETPMT 2.SR A 1.DA #500 GETPMT 3.SR A 1.DA #500 GETPMT 1.DA #500 GETPMT 1.DA #500 GETPMT 2.SR A 1.DA #500 GETPMT 2.SR A 3.SR A 3.SR A 3.SR A 4.SO GETPMT 1.DA #500 GETPMT 2.SR A 1.DA #500 GETPMT 2.SR A 3.SR A 3.SR A 3.SR A 3.SR A 4.SO GETPMT 1.DA #500 GETPMT 2.SR A 3.SR A 3.SR A 3.SR A 4.SO 3.SR A 4.SO 4.SO 6.SR A 5	TAX TYA LDY 4503 CPX 458A BEQ MNNDX3
firmware	NXTCOL LDA COLOR CLC #\$03 SETCOL #\$05 \$12 COLOR \$13 AND #\$90 \$13 AND #\$90 \$14 COLOR \$15 AND AND AND AND AND AND AND AND AND AND	13 * 15	#\$03 #\$8A MNDX3
or firmware	NXTCOL LDA COLOR CLC #\$03 SETCOL #\$05 \$12 COLOR \$13 AND #\$90 \$13 AND #\$90 \$14 COLOR \$15 AND AND AND AND AND AND AND AND AND AND	13 * 15	114 TAX 115 TYA 116 LDY #\$03 117 CPX #\$8A 118 BEQ MNNDX3

20-0CT-86 06:41 PAGE 74	; (B) FORMAT	; (C) FORMAI	; (D) FORMAT	; (E) FORMAT	4 dd 4.		
Apple //c F8 monitor firmware		078 078 078 078	367 078 985 368 078 969 369 078 959 371 078 984 372 078 913 374 078 914		380 MNEMR DEB 5D8 381 DEB 562 382 DEB 563 384 DEB 562 385 DEB 562 386 DEB 562 387 DEB 564 389 DEB 564 390 DEB 568 391 DEB 568 393 DEB 568 394 DEB 568 395 DEB 568 395 DEB 568 396 DEB 568 397 DEB 568 397 DEB 568 397 DEB 568	0 0 13 8 13 13 13 13 13 13 13 13 13 13 13 13 13	
21 AUTOST1	F9E4; A5 F9E5; 69 F9E7; 24 F9E8; AE F9E9; AB F9E8; AB F9E8; AB	F9ED: 8A F9ED: 7E F9ED: 7E F9FD: 15 F9FT: 6D	P9F135 P9F153 P9F153 P9F153 P9F9113 P9F9111	F9FC;A5 F9FD;69 F9FF;23 F9FF;A0	RA00: DB RA01: 62 RA02: 54 RA03: 46 RA03: 62 RA05: 62 RA05: 64 RA05: 54 RA05: 54 RA05: 54 RA05: 54 RA05: 54	FALS CONTROL C	
20-0CT-86 06:41 PAGE 73	; ZPBG, X ; ABS, Y ; ABS, Y ; ZPAG, Y ; RELATIVE ; (ZPAG) ; (ABS, X) (new)	; (byte F of FMT2); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			; BRA	; (A) FORMAT ABOVE ; TSB	
Apple //c F8 monitor firmware	293 DFB \$91 294 DFB \$92 295 DFB \$4A 296 DFB \$65 297 DFB \$65 298 DFB \$90 299 DFB \$49		CGAR1 DFB DFB DFB DFB DFB DFB DFB DFB DFB DFB	073 073 073	322 DFB \$41.5 323 DFB \$90.5 324 DFB \$90.5 325 DFB \$90.5 326 DFB \$10.5 327 DFB \$50.5 328 DFB \$10.5 330 DFB \$10.5 331 DFB \$10.5 332 DFB \$10.5 333 DFB \$10.5 334 DFB \$13.5 335 DFB \$13.5 337 DFB \$13.5 337 DFB \$13.5 338 DFB \$13.5 339 DFB \$13.5 330 DFB \$13.5 331 DFB \$13.5 332 DFB \$13.5 333 DFB \$13.5 334 DFB \$13.5 335 DFB \$13.5 337 DFB \$13.5 338 DFB \$13.5 338 DFB \$13.5 339 DFB \$13.5 330 DF	078 9 078 9	
21 AUTOST1	F9AC:91 F9AD:92 F9AE:86 F9AE:4A F9B0:85 F9B1:9D F9B2:49	F984; F984;D9 F985;00 F986;D8 F987;A4 F988;A4	F98A3; F98B.A9 F98B.A9 F98C.AC F98C.AC F98E.A8 F9C0.1C	F9C2:1C F9C3:23 F9C4:5D F9C5:8B	P9C7.41 P9C7.41 P9C8.39 P9C8.30 P9C8.23 P9C8.23 P9C8.10 P9C7.11 P9C8.11 P9C8.11 P9D8.11C P9D8.119 P9D8.119 P9D8.119	F909 53 F909 53 F909 53 F909 53 F905 13 F900 53 F900 140 F921 1A F921 1A F922 58	

20-OCT-86 06:41 PAGE 76	; call BRK EANDLER	;PRINT USER PC ; AND REGS ;CO TO MONITOR (NO PASS GO, NO \$200!)	;DO THIS FIRST THIS TIME	;+ Setvid & Setibd	clear port setup bytes	; AN3 = III HI	; CLEAR KEYBOARD ;+ Bell already beeped	;+ align code	; CAUSES DELAY IF REY BOUNCES	;A FURNY COMPLEMENT OF THE ; PWR UP BYTE ???	; NO SO PWRUP : YES SEE IF COLD START	; HAS BEEN DONE YET? ; DOES SEV POINT AT BASIC?	; YES SO REENTER SYSTEM ; NO SO POINT AT WARM START	; FOR NEXT RESET ; AND DO THE COLD START		; Trash memory, init ports ; SET PAGE 3 VECTORS	; WITH CHTRL B ADRS	; LOAD HI SLOT +1	;branch around mnemonics nemonics}	>	FILE	TRB	Po Po Po	520 * This extension to the monitor reset routine (\$FA62)	checks for apple keys. If both are pressed, it goes into an exerciser mode. If the open apple key only is	523 * pressed, memory is selectively trashed and a cold start	
or firmware	(BRKV)	INSDS1 RCDSP1 MON	SETWORM	TION TINI	CLRPORT	SETAN3	KBDSTRB		BELL SOFTEV+1	#\$A5 PWREDUP	PWRUP	NOFIX 45E0	SOFTEV+1 NOFIX #3	SOFTEV	(SOFTEV)	COLDSTART	#5 PWRCON-1, X BRKV-1, X	SETPLP #\$C4	PWRUP2 ;branch MNEML (left mnemonics)	493	288	\$3C	200	on to the moni	521 * checks for apple keys. If 522 * into an exerciser mode. I	ory is selecti	
monito		JSR	38 6	S S S	ST2	LDA	BIT		JSR		BNE	E PA	E SNE	STS OF		7SR 200	X S S S S S S S S S S S S S S S S S S S	PAR	BRA ion to	DFR			DEB	xtensic	for ag n exer(d, nenc	5
Apple //c F8 monitor firmware	467		472 * 473 RESET 474	55	478	480	482	484 485 NEMPOR	486 487 BEEPSKIP	488	490	492	494 495 496 FIXSEV	498	500 NOFIX 501 *	502 PWRUP 503 SETPG3	504 505 SETPLP 506	508	510 BRA 511 * 512 * Extension to	513 *	515	517	518 519 *	520 * This e	521 * checks 522 * into a	523 * presse	
21 AUTOST1	FA56:6C F0 03	FA59:20 82 F8 FA50:20 DA FA FA5F:4C 65 FF		FA65:20 ZF FB FA69:20 40 CE FA67:20 40 C7		25	228		FA82:20 3A FF FA85:AD F3 03	22	FA8D: DO 17 FAA6	68	FA96:CD F3 03 FA99:D0 08 FAA3 FA98:A0 03	FA90:8C FZ 03 FAA0:4C 00 E0	FAA3:6C F2 03 FAA6:	20	FAA9:A2 05 FAA8:BD FC FA FAAE:9D EF 03	22	FAB6:80 5A FB12 FAB8: FAB8:	FABS:	FAB9:8B	FABB:AC	FABC:00 FABD:	FABD:	FABD: FABD:	FABD:	
-4																											
CT-86 06:41 PAGE 75		FORMAT		FORMAT				FORMAT				FORMAT			FORMAT	sh \$45 for those who want it		handler which has	<pre>LWare that Wahts system resources this value.</pre>	state of machine	re registers for save		same as old BREAK routine!!	reg's on BRK	ding PC		
20-OCT-86 06:41 PAGE 75		; (A) FORMAT ; TSB		: (B) FORMAT				; (C) FORMAT				; (D) FORMAT			; (E) FORMAT	;+ Trash \$45 for those who want it	+ + ** **	errupt handler which has ault state and encoded	r. soluware that wants g full system resources te from this value.	save state of machine	; restore registers for save		; Note: same as old BREAK routine!!	save reg's on BRK	; including Pc		
firmware	\$12	** **	5%2 5%2 57.4			\$B2 \$32	\$B2 \$72	••	SIA	\$26 \$26	\$72 \$72	••	504 503 526	00 to 10 to	\$A2 \$C8 ; (E) FORMAT		SENTRQ :+	led by the interrupt handler which has are to its default state and encoded	the accumulator. Software that wants rocessing using full system resources he machine state from this value.	MACSTAT : save state of machine				SAVE ; save reg's on BRK	FCL ; including PC	田ご品	
Monitor firmware		** **		\$74	544			\$22 \$72				\$88 \$C8	_, _, _,	ur ur ur	sA2	\$45		is called by the interrupt handler which has hardware to its default state and encoded	are in the accumulator. Software that Wants press processing using full system resources store the machine state from this value.	MACSTAT		P.I.A.		SAVE	PCL	PLA STA PCE	
firmware		DFB \$8A ; DFB \$06 ;		DFB \$74 DFB \$72	DFB \$44 DFB \$68	Dis	073	DFB \$22 DFB \$72 ;	250 250 250	840 840	64 C	DFB \$88 DFB \$C8 ;		0F18 \$	DFB \$A2	IRQ STA \$45	LDA 545 JNP NEHIRQ *	-96 -96 -9	43. The state in the accumulator. Sortware that wants 43. The do break processing using full system resources 454 can restore the machine state from this value.	NEWBRK STA MACSTAT	PLY	4	BREAK PLP	JSR SAVE	PLA STA PCL		

20-OCT-86 06:41 PAGE 78	FXIT AT 255 MAX			
Apple //c F8 monitor firmware	BPL RTS2D INY BRE PREAD2 DET RTS INCLUDE AUTOST2			
Apple //c Þ	FB2E 583 584 584 585 587 61			
21 AUTOST1	FB28:10 04 FB23:08 FB2D:88 FB2D:88 FB2D:			
20-0CT-86 06:41 PAGE 77	#SFF ;initialize mode BELL ;+ Need bell delay for 3.5° drive PCNYRST ;+ Reset protocol converter BUTNN	; PBY ; PLY ; STZ ; TRB ; 27?	[' ; optional filler ; SETPG3 MUST RETURN X=0 ; SET FTR B ; Display our hanner ; JUMP \$C600	; read mouse paddle; INIT COUNT; COMPENSATE FOR 1ST COUNT; COUNT Y-REG EVERY 12 USEC.
/c F8 monitor firmware	45FF WACOE BELL BELL BUTNI BUTNI BUTNI BUTNI BUTNI BUTNI CROUT 4544 4544 4550 COUT 4550 COUT ACC	\$74 \$76 \$76 \$00 \$00 Oldbrk \$00,\$20,\$45 Prbyte	'Apple \$C4 LOC0 LOC1 LOC1 APPLEII (LOC0)	MPADDIE #\$00 PADDIO,X
3 monit	LDA STRA JSR ASL ASL BEL BEC JOR NOP NOP STRA LDA LDA JSR LDA JSR LDA JSR LDA JSR LDA JSR LDA JSR LDA JSR LDA JSR	DFB DFB DFB DFB DFB JSR INX INX	ASC DFB DFB STX STA JMP BRK BRK	JAPP LIDY NOP NOP LIDA
Apple //c F6	525 * 526 RESET.X 528 529 529 529 529 530 531 532 533 534 534 544 544 544 544 545 545 546 555 556	* * PWRCON * RGDSP2	568 TITLE 568 TITLE 559 * 571 PWRUP2 573 573 574	578 PREAD 579 580 581 582 PREAD2
21 AUTOST1	FABD: FABC: 19 IF FABC: 10 IA FACZ: 20 IA FF FACC: 20 IA FACC: 20 IA FACC: 20 IA FACC: 20 IA FACC: 20 IA FACC: 20 IA FACC: 20 IA FACC: 20 IA FACC: 30	FAF8: FAF8:14 FAF8:14 FAF8:14 FAF8:16 FAFC:00	FB09: 10 FE0 FE FB09: 10 FE FB11: 4 FB12: 86 00 FB FB14: 85 01 FB14: 85 00 FB FB19: 60 00 FB FB10: 00 00 FB10: 00	FB1E; FB1E;4C 00 C9 FB21:A0 00 FB23:EA FB24:EA FB25:BD 64 C0

20-0CT-86 06:41 PAGE 80	; =>80 columns, leav'em	;check for CR	;//e, chels ID byte	;=>video firmware active, no mask ;is it control char?	;=>yes, no mask ;else apply inverse mask	; and print character ; revision byte.	; chels ID byte	;CALC BASE ADDR IN BASI, H	; FOR GIVEN LINE NO. ; 0<=LINE NO.<=\$17	; BASE=00001CD	; BASL=EABABOOO				; BELL CHAR? (CONTROL-G) ; NO, RETURN.	YES	British British and Street A	; FOR .1 SEC.			<pre>;get 40 column position ;and store</pre>	;increment cursor	; YES, CR TO NEXT LINE.	; NO, RETURN,	CONTROL CEAR? ; NO, OUTPUT IT.	; INVERSE VIDEO:
or firmware	ID8 OV ID NEWADVI OLDCE CH	ADV2	GOODF8	DCX #\$A0	DCX	COUTZ \$03	\$00		#\$03	BASE	#\$18 BASCLC2	#\$7F BASL	A BASI	BASI	#\$87 RTS2B	#\$40	#\$C0	# \$0C	BELL2		CE (BASL), Y	8 8	MNDWDTH		#\$A0 STORADV	
monit	BIT BMI STA STA	BRA	I DFB	S E	2 R	骨骨	DITB	PHA	AND	STS	S S S	ADC STA	AST.	STA	BNE	LDA Go	TOX	SS S	DEY	RTS	STA	INC	88	RTS	A S	IAY
Apple //c F8 monitor firmware	61 62 63 63 64 64 65 64 64 64 64 64 64 64 64 64 64 64 64 64	64 NEWADV1 65 * 66 67 *	68 FBVERSION DFB 69 *	70 DOCOUT1 71	22	74 DCX 75	76 *	78 * 79 BASCALC	81 81	83	5 2 3	88 BASCLC2	\$ S 15	. 33.23	ደ ዴ ኤ		8 8	100 BELL2 101	103	* 105 RTS2B 106 *	107 STORADV	109 ADVANCE		113 RTS3		117
22 AUTOST2	5 5	FBB0:80 46 FBF8 FBB2: FBB2:EA	FBB3:06	90 90	FBB8:90 02 FBBC		FBC0:00	FBC1: FBC1:48	FBC2:4A FBC3:29 03	FBC7:85 29	FBCA:29 18 FBCC:40 02 FRDD	78 78 78	FBD2:0A FBD3:0A FBD4:05 28	25 22	FBD9:C9 87 FBD8:D0 12 FBEF	1 2 2 2 3	88	FBE4:A9 OC FBE6:20 A8 FC	3 5	FBEF: 60 FBF0:	FBF0:A4 24 FRF2:91 28			FBFC: 60	FBFD:C9 A0 FBFF:B0 EF FBF0	FC01:A8
20-0CT-86 06:41.PAGE 79	CLR STATUS FOR DEBUG SOFTWARE	;INIT VIDEO MODE ;SET ROR TEXT MODE ;FULL SCREEM MINOW	SET FOR GRAPHICS MODE		; SET WINDOW	:40/80 column width		controls need high bit	; VIAB TO ROW 23	;VTABS TO ROW IN A-REG;don't set CURCV!!	CLEAR THE SCRN	GET A CHAR; PUT IT AT TOP CENTER OF SCREEN		ROUTINE TO CALCULATE THE FUNNY	COMPLEMENT' FOR THE RESET VECTOR	10 Industry) matter a non women.	CHECK FOR A FAUSE (CONINCL-S):	;NOT SO, DO REGULAR ;IS KEY PRESSED?	;NO. ;YES IS IT CTRL-S? ;NOPE - IGNORE.	CLEAR STROBE SWAIT TILL NEXT KEY TO RESUME	;WAIT FOR KEYPRESS	; IS II CONTROLLC:	; is video firmware active?; =>no, do normal 40 column	;is it a control?	print w/inverse mask; advance cursor	;and update others
20-0CT-86	#\$00 ;CLR STATUS FOR DEBUG SOFTWARE STATUS LORES			CIRTOP #514	. J	WANDEST :40/80 column width		#\$80 ; controls need high bit	-	CV ; VTABS TO ROW IN A-REG VTAB ; don't set OURCV!!	HOME ;CLEAR THE SCRN	LE2C-1, Y IE1+13, Y	STITLE		#\$A5 ;COMPLEMENT FOR THE RESET VECTOR PWREDUP	19. TANBURAN DATER E MAT SANTO	••••		NOMBIT ;NO. † 18. IT CTRL-S? † \$53 ;YES IS IT CTRL-S? NOMBIT : NOPE - IGNORE.					#\$60 ; is it a control?		OURCE ; and update others
or firmware 20-0CT-86	#\$00 STATUS LORES	eed	TXTCLR	CLRTOP #\$14	WNDTOP	WNDREST		ARO	#\$17	9		APPLE2C-1,Y LINE1+13,Y	DEY BNE STITLE RTS	SOFTEV+1		,	••••	NOWALT		KBDSTRB	KBDWAIT	NOWALT	VFACTV ;	1 09\$	STORCE ;	OURCH
20-0CT-86	#\$00 STATUS LORES	TXTPAGE1 TXTSET #\$00	SETCR LDA TXTCLR	JSR CLRTOP	SETWID STA WINDTOP	WNDREST	BRA VIAB23	DOCTL ORA #\$80	* VTAB23 LDA #\$17	TABV STA CV JMP VTAB	APPLEII JSR HOME	STITLE LDA APPLEZC-1,Y STA LINEI+13,Y		SETPWRC LDA SOFTEV+1	EOR #\$A5 STA PWREDUP	KIN T	VIDWAIT EQU *	NOWALT	NOWAIT #\$93 NOWAIT	KRDMATT LDY KBD	BPL KBDWAIT	BEQ NOWALT	NOWALT BIT VEACTV ;	. 09\$# II8	STORCE ;	LDA OURCE

20-OCT-86 06:41 PAGE 82	;before clearing page	only LF if not Pascal:	; INCR CURSOR V. (DOWN 1 LINE)	;OFF SCREEN; ;set base+WNDLFT ;DECR CURSOR V. (BRCK TO BOTTOM)	;scroll the screen	;set CH's to 0	;is it rascal; ;pascal, no LF	;else clear escape mode ;then do LF	;lookup index for mnemonic ;exit with BEQ		;update //e CV	;and calc base+WNDLFT	get current cursor get a blank	<pre>;if Video Ilfmware active, ;=>don't use inverse mask</pre>	;go do clear	; get cursor and clear			<pre>;} ;jump to proper routine</pre>			:1.0204 USEC	; (13+2712*A+512*A*A)		; INCR 2-BYTE A4 ; AND A1	; INCR 2-BYTE A1.
r firmware	CLREOP2	NEWCR	CG CG	WNDSTM NEWVTABZ CV	SCROLLUP	CLRCH	CRRTS	NOESCAPE LF	INDX, X #0		CV OURCV	VTAB2	GETCUR #\$A0	VFACTV NEWC1	INVFLG	NEWCLREOL NEWCLFOLZ	0#	NEWCLEOLZ	(CTLADR, X)			#\$01 WAIT3	#\$01	WAIT2	A4L NXTA1	All
monito	BRA	BRA BRK BRK	INC		邑	JSR	BPL	JSR	LDA	RIS		BRA	JSR	BMI		BRA	KG1	BRA		NOP	SEC	SBC	PLA	BNE	INC	LDA
Apple //c F8 monitor firmware	176	178	182 LF 183		187 * 188 SCROLL	189 * 190 NEWCR		193 194		198 CRRTS 199 *		202	204 NEWCLREOL 205 NEWCLEOLZ		208 209 NEWCI	210 : 211 CLREGL 212 CLEGLZ		215 216 *	217 CTLDO 218 *	219	221 WAIT 222 WAIT2	223	225 226			233 NXTA1
22 AUTOST2	FC60:80 E2 FC44	FC62:80 OF FC73 FC64:00 FC65:00	99	FC6A:C5 23 FC6C:90 1A FC88 FC6E:C6 25	FC70: FC70:4C 35 CB	2	FC76:2C FB 04 FC79:10 0A FC85	FC7B:20 44 FD FC7E:80 E6 FC66	FC80:BD 15 FF FC83:A0 00	FC85:60 FC86:	ö	FC8B:80 97 FC24	FC8D:20 9D CC FC90:A9 A0	FC92:2C 7B 06 FC95:30 02 FC99	FC97:25 32 FC99:4C C2 CB	FC9C:80 EF FC8D	2 8	FCAZ:80 EC FC90 FCA4:	FCA4:7C 2A CD FCA7:	FCA7:EA	FCA8:38 FCA9:48	FCAA:E9 01 FCAC:D0 FC FCAA	01	FCB1:D0 F6 FCA9 FCB3:60	FCB4:E6 42 FCB6:D0 02 FCBA	rcba: 85 3C
20-OCT-86 06:41 PAGE 81	; YES, OUTPUT IT.	;CR? ;Yes, use new routine ;LINE FEED? ; IF SO, DO IT.	<pre>; back SPACE? (CONTROL-H) ; NO, CHECK FOR BELL. ;decrement all cursor H indices</pre>	; IF POSITIVE, OK; ELSE MOVE UP. ; get window width,	CURSOR V INDEX	;top line, exit;;not top, go up one	oo modate OURCV	;calculate the base address ;get the left window edge	;80 columns?;;=>no, left edge ok	; prepare to add	י מתון שדתרון הם המספ	:	islates the opcode in the Y register iic table index and returns with 2=1. . a new opcode, 2=0.	: oet the opcode	; check through new opcodes ; does it match?	;=>yes, get new index	;else check next one ;not found, exit with BNE		;ESC F IS CLR TO END OF PAGE	SAVE CURRENT LINE NO. ON STACK	;CALC BASE AUDKESS ;CLEAR TO EQL. (SETS CARRY)	; CLEAR FROM A INDEATURE TOR REST.	DONE TO BOTTOM OF WINDOW?	; YES, TAB TO CURRENT LINE	;move cursor home ;then clear to end of page	;load Y with proper CH
or firmware	STORADV	#\$8D #\$8A #\$8A LF	#588 CHKBELL DECCE	RTS3 WNDWDTH	WINDTOP	RTS3	NEWTAR	BASCALC	RD80VID VTAB40	Bact	BASL	;	ates the op table inde new opcode	•	#NUMOPS OPTBL, X	GETINDX	NEWOP 1		CLREOP1	!	CLEOLZ	000	WINDBIM	VIAB	HOMECUR CLREOP2	GETCUR
monit	BPL		BNE	BPL	LDA	S 22	RRA	JSR	BPL	35	STA	T .	irar Maor	2	LDX CMP	SEX SEC	RTS	BRK	BRA	PEA	ž ž ž	PIA E		BR SCS	JSR BRA	JSR
Apple //c F8	18	119 VIDOUT1 120 121 121	123 124 125 BS	126	29 UP	33.33	33 *		137	40 41 UTRRAD		*	145 * NEWOPS t 146 * to a mne 147 * If Y is	* NEMOPS	150 151 NEWOP1	152	55	157 *	159 CLREOP	161 CLEOP1	163	65	6.79 6.09			174 * 175 CLREOP1
	-																									

20-OCT-86 06:41 PAGE 84	NI-AAN BASH OF 65.	erase false images	display true cursor; look for key, blink II cursor	; save character	were escapes enabled?	; yes, there may be a way out!!	; escape;	e>onentes edasse op ob<=:	; do RDKEY with escapes	; only process f.arrow	;if video firmware is active	; wds it Fich: (-/,cin-v); no, just return	; yes, pick the character	UT too.		;save it ;disable escape sequences	; and enable controls			disable controls and print	CHECK FOR EDIT KEYS	: - BAUNSPAUK	; - CONTROL-X	; MARGIN?	; ADVANCE INPUT INDEX	;BACKSLASH AFTER CANCELLED LINE	'an' thathe.	COUTPUT PROMPT CHAR	; INIT INPUT INDEX	;WILL BACKSPACE TO 0	factors wells (1) denoted the chi	; TOR CONTROL—U	;lift char from screen
or firmware	(TREAL)	(BASL), Y	SHOWCUR	DONATOUR	VMODE	NOESCZ	FESC LOOKPICK	NEWESC	ESCROKEY	VFACTV	NOESCAPE	NOESCAPE	PICKY	317 * NOESCAPE is used by GETCOUT too.	•	#W.CFI	VMODE			CETCOUT	*\$88	BCKSPC #\$98	CANCEL #SF8	NOTCR1	prop	NXTCHAR #\$DC	GETCOUT	PROMPT	#\$01	GETINZ	Adadabaa	#PICK ADDINP	PICKY
monit	NON P	STA	AS AS	E E	BIT	PLA					E 8	E	JSR	PE is			TSB	E S	NOP	ISB	8			8 8	INX	BNE	Jeb	EDA S	E	E S	DEX	S C SX	JSR
Apple //c F8 monitor firmware	292 293 *	295 * 296 KEYIN	297 298 DONXTCUR	299 300 GOTKEY	301 302	303 304	305	307	309 RDCHAR	311 LOOKPICK	312	313 314	315	316 * 317 * NOESCA	318 *	319 NOESCAPE 320 NOESC1	321 333 MORGES	323	325	326 *	328	329 330	331	333	334 335 NOTCR1	336 337 CANCEL	338 224 CERT N7	340 GETLN	341 342 GETLN1	343 BCKSPC 344	345	346 NATCHAR 347 348	349
22 AUTOST2	FD17;EA FD18;	28 2	일 원	FB FDZ0	28	FD2B:D0 10 FD4A FD2D:68	FD2E;C9 9B	Я	FD35:4C ED CC	FD38:2C 7B 06	FD3B:30 07 FD44	FD3F;D0 03 FD44	20	FD44:	FD44:	FD44:48 FD45:A9 08	FD47:0C FB 04	FD48:60	FD4C:	FD4D:	3 2	FD52:F0 1D FD71			FD5C:20 3A FF FD5F:E8	FD60:D0 13 FD75 FD62:A9 DC		FD6A:A5 33	FD6C:20 ED FD FD6F:A2 01	FD71:8A FD72:F0 F3 FD67	6	FD78:C9 95 FD78:C9 95 FD78:D0 08 FD84	FD7C:20 1D CC
20-OCT-86 06;41 PAGE 83	; AND COMPARE TO A2 ; (CARRY SET IF >=)			;don't do it	;let it precess down	start from BFXX down	owner in create.	racote brains		<pre>;back down to next page :stav awav from stack</pre>	fall into COMINIT	sinit ALT screen holes	for serial and comm ports	;C = 1 from CPX #1 :YFER from rom	; branch if defaults ok	test for prior setup	if \$4F8 & \$4FF = TBL values		;move all 8	and the same of th	; restore switches; to default states	÷							<pre>;get char at current position ;for those who restore it</pre>	; if a program controls input ; hooks, no cursor may be displayed	no fordam or for reason or femous		
20-OCT-86 06:41 PAGE	A2L ; AND COMPARE TO A2 A1H ; (CARRY SET IF >=)	AZH A1L RTS4B	AlB	;don't do it	#SBO ;let it precess down			¥.	(ALL), Y	;back down to next page	ISI	SETBOCOL. : init ALT screen holes	•••	#\$88 ;C = 1 from CPX #1 COMTRI-1.X :XFFR from rom	•	×		#582 COM3	×.`	COM1		÷.							CH ;get char at current position (BASL), Y ;for those who restore it	; if a program controls input ; hooks, no cursor may be displayed	Torday or Fourthean or Innoved		
monitor firmware 20-0CT-86 06:41 PAGE	CMP A21 LDA A1H	SBC	INC RTS4B RTS	# HEADR RTS	* COLDSTART LDY #\$B0	STZ AIL LOX #SBF	BLAST STX A1H	STA (ALL), Y	STA (ALL), Y	CPX #1	BNE BLAST	STA SPTROCOL	LDA TXTPAGE2	COM1 LDX #\$88 ;	BCC COM2	CMP \$477, X	BNE COM2	X 8	COM2 STA \$477,X DEX 5477,X	BNE COM1	STA CLR80COL	RTS	NOP MON	ZZ	276 NOP NOP	: 22 2	: 26 :	NOP	RDKEY LDY CH LDA (BASL), Y	NOP PON	NOP	885 NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP	e z
nitor firmware 20-OCT-86 06:41 PAGE	CMP A21 LDA A1H		239 INC 240 RTS4B RTS	# HEADR RTS	FART LDY #\$B0	STZ AIL LOX #SBF	BLAST STX A1H	STA (ALL), Y	STA (ALL), Y	DEX *	BNE BLAST	255 * STA SFT80COL	LDA TXTPAGE2	COM1 LDX #\$88 ;	FCF5 260 BCC COM2 ;	261 CMP \$477,X	BNE COM2	264 CPX FCFB 265 BCC	266 COM2 STA \$477,X 267 DEX 5	FCE 6 268 BNE COM1	STA CLR80COL	RTS	NOP	ZZ	22	: 22 2	: 26 :	NOP	RDKEY LDY CH LDA (BASL), Y	NOP PON	NOP	288 NOP	e z

20-CCT-86 06:41 PAGE 86	;PRINT HEK DIGIT IN A-REG;LSBITS ONLY.	; VECTOR TO USER OUTPUT ROUTINE	;video firmware active? ;mask II mode characters ;SAPT FREG :SAVF A -PFF	; OTTOT CER AND CHECK FOR CTRI-S; RESTORE A-REG; AND Y-REG; RETURN TO SENDER		;BLANK TO MON ;ATER BLANK ;DATA STORE MODE? ; NO; XAM, ADD, OR SUBIRACT.	KEEP IN STORE MODE	; JINCR A3, RETURN.	; SAVE CONVERTED ':', '+', ; '-', '.' AS MODE	;COPY AZ (2 BYTES) TO ; A4 AND A5	;MOVE (A1) THRU (A2) TO (A4)	;VERIFY (A1) THRU (A2) ; WITH (A4)
r firmware	#50F #5B0 #5BA COUT #506	(CSML)	VFACTV DOCOUT1 YSAV1	VIDWAIT YSAV1	YSAV XAM8	SETMDZ #\$BA XAMPM	MODE AZL	A3L RTS5 A3H	YSAV IN-1, Y MODE	#\$01 A2L,X A4L,X A5L,X LT2	(A11), Y (A41), Y NXTA4 MOVE	(A1L), Y (A4L), Y VFYOK PRA1 (A1L), Y PRBYTE
monito	AND CMP ADC ADC	JAID.	BIT STY STY	JSR PILA LDY RTS	DEC DEC	DEX BNE CMP BNE	STA	INC INC RTS	LDY LDA STA RTS	LDX LDA STA STA DEX BPL	LDA STA JSR JSR	LIDA CMP CMP JSR LIDA JSR
Apple //c F8 monitor firmware	408 PRHEX 409 PRHEX2 410 411 412	413 ° 414 COUT 415 *	416 COUT1 417 418 COUTZ	420 421 423 423	424 * 425 BL1 426	428 429 430 430 431 430	433 STOR 434		440 * 441 SETMODE 442 443 SETMDZ 444	445 * 446 LT 447 LT2 448 449 450		
22 AUTOST2	FDE3:29 OF FDE5:09 BO FDE7:09 BA FDE9:90 02 FDED FDE9:00 02 FDED FDE8:69 06	TDED: 6C 36 00	FDF0:2C 7B 06 FDF3:4C B4 FB FDF6:84 35	FDF9.20 78 FB FDFC.68 FDFD.54 35 FDFF:60	FE00: FE00:C6 34 FE02:F0 9F FDA3	FE04:CA FE05:D0 16 FEID FE07:C9 BA FE09:D0 BB FDC6	FEOS: FEOD:A5 3E	FEUT 51 40 FEUT 66 40 FEUT 50 02 FEUT FEUT 60	FE18: FE18:A4 34 FE1A:B9 FF 01 FE1D:85 31 FE1F:60	FE20: FE20:A2 01 FE24:35 3E FE24:95 42 FE26:95 44 FE28:CA	FEZE: 60 FEZE: 91 42 FEZE: 91 42 FEZE: 90 F7 FEZE	FE3:50 FE36:B1 3C FE36:B1 42 FE36:P1 42 FE36:P1 5C FE37:B1 3C FE37:B1 3C FE41:20 DA FD
20-0CT-86 06:41 PAGE 85	; no upshifting needed	;ADD TO INPUT BUFFER	; (ALMAYS)	;Print Cr, al in Hex	;PRINT '-'	; MOD 8=7		; OUTPUT BLANK	;OUTPUT BYTE IN HEX ;NOT DOME YET. GO CHECK MOD 8 ;DONE.	; EXAMINE, ADD OR SUBTRACT ; EXAMINE, ADD OR SUBTRACT ;FORM 2'S COMPLEMENT FOR SUBTRACT.	;PRINT '=', THEN RESOLT	; OESTROYS A-REG)
tor firmware		N, X 58D	NOICK CLREOL #\$8D COUT	All All CROUT PRNTYX	#\$00 #\$AD COUT	111 1507 121 118	AZH Ali FSO7	DATAOUT PRA1 #SA0 COUT (AIL), Y	RBYTE IXTA1 IOD8CEK	A XAM A A A A ADD ADD	AlL #\$BD COUT	A A A Prhexz
ij												
Apple //c F8 monit	N N N N N N N N N N N N N N N N N N N	ADDINP STA	CROUT1 JSR CROUT LDA BNE	PRAI LDY LDX LDX PRYX2 JSR JSR	LDY LDA JMP	XAM8 LDA ORA STA LDA	STA MODSCHK LDA AND	BNE XAM JSR DATAOUT LDA JSR LDA	JSR JSR BCC RTS4C RTS	XAMPM LSR BCC LSR LSR LDA BCC EOR	ADD ADC PHA LDA JSR PIA *	400 PRBYTE PHA 401 LSR 403 LSR 404 JSR 406 PLA 406 PLA

20-0CT-86 06:41 PAGE 88		;TO BASIC, COLD START	;TO BASIC, WARM START	;ADDR TO PC IF SPECIFIED ;RESTORE FAKE REGISTERS ; AND GO!	GO DISPLAY REGISTERS	;Need \$FF ;set checkerboard cursor	;reset mode	;JUMP TO CONTROL-Y VECTOR IN RAM	;Tape write not needed	;say video firmware inactive ;switch in normal char set	don't change M.CTL	; save X and I : for rest of PR#0	convert to 40 if needed		;⇒yo set output hook	rent cursor	alue in Acc. n GETCUR	; (from \$PC10)	;get current on ;decrement it	;go update cursors	;set all cursors to 0 ;dec window width (from \$FC17)	; save Y	; save new CH	; restore I ; and get new CH into acc ; (Need IDA to set flags)	There is a manual.	; THEN POP STACK	; (ALMAYS)	
or firmware	LOC0, X LOC1, X	BASIC	BAS 1C2	A1PC RESTORE (PCL)	REGDSP	A CURSOR	#\$FF-M.CTL DOPRO	USRADR		VFACTV	VMODE		CHK80	1	IOPRT2	558 * DECCH decrements the current cursor	* SETCUR sets cursors to value in Acc. * See explanatory note with GETCUR		GETCUK	SETCURI	#1 A		GETCUR2	OURCE	,	841	ZNOW	
monit	STY STA RTS		JMD	JSR	影	DEC	LDA	AM.	RTS	STA	TSB	Ä	JSR	Z	BRA	decrem	sets R sets Oplanat	PHY	DEY	BRA	LDA	PHY		LDA		PLA S	PLA	
Apple //c F8 monitor firmware	524 IOPRT2 525 526	528 XBASIC	530 BASCONT	532 G0 533 G0 534	536 REGZ	538 OPRT0 539	540 541	543 USR 544 *	545 WRITE	547 DOPR0	549	550	552	554	555 IOPRTI 556 557 *	558 * DECCH	560 * SETCUI 561 * See ea	562 * 563 DECCH	565 565		568 CLRCE 569 MDTRCE	570 SETCUR	572 SETCURI	574	576 *	577 CRMON 578		* 18c
22 AUTOST2	FEAD: 95 01 FEAD: 95 01	FEB0: FEB0:4C 00 E0	FEB3:4C 03 E0	FEBG: 20 75 FE FEBG: 20 3F FF FEBC: 6C 3A 00	FEBF: 4C D7 FA	FEC2:3A FEC2:3A FFC3:8D FR 07	23	FECA: 4C F8 03 FFCD:	FECD: 60	FECE:8D 7B 06	FED4:0C FB 04	FED7:DA	FED9:20 CD CD	FEDO: FA	FEDE:A9 FD FEED:80 C9 FEAB	FEE2:	FEEZ: FEEZ:	FEE2: FEE2:5A	FEE3:20 90 CC	FEE7:80 05 FEEE	FEE9:A9 01	FEEC: 5A	FEEE:20 AD CC	FEF1:7A FEF2:AD 7B 05	:	FEF6:20 00 FE FEF9:68	FEFA:68 FEFB:D0 6C FF69	FEFD:
20-0CT-86 06:41 PAGE 87					; MOVE AI (2 BYTES) TO	; PC IF SPEC'D AND ; +DISASSEMBLE 20 INSTRUCTIONS.	;+Count down		;+Go to the mini assembler	; +bff to the step routine	taxtra nytes	; IF USER SPECIFIED AN ADDRESS,	; YEP, SO COPY IT.			SET FOR INVERSE VID	; VIA COUIT ; SET FOR NORMAL VID		OPORTNI OC.			, DO PR#0	DO PREMES		;not slot 0	;Continue if KEYIN	;=>do PR#0	
tor firmware	#\$A0 COUT	COUT (A4L), Y	PRBYTE #\$A9	COUT NXTA4 VERIFY	AIPC	#514 coostner	. ₹	LIST2	GET INSTI	STEP	\$FE /3-", U	Shapara	All, X	PCL, X	AIPCLP	#\$3F	SETIFIG #SFF INVFLG		# \$00	#KSWL	FALTIN	05#	AZL #CSWL	#COUT1	#\$OF NOTPRT0	#KEYIN IOPRT1	OPRTO # <ioadr< td=""><td>005#</td></ioadr<>	005#
monito	LDA JSR LDA	JSR	J.D.A.	JSR BCC RTS	JSR	PHA	PLA	RTS	dec	걸 팀 .	gp	TXI	IDA I	STA DEX	BPL	TDX	BNE	RTS	LDA	YOT	BNE	LDA	LDX	EDY LDA	AND	CPY	BRA	TDX
Apple //c F8	466 467 468	469 470	471	473 474 VFYOK 475 476	477 * 478 LIST	479 480 LIST2	482 483	485	487 MINI	488 TRACE 489 STEPZ		492 AIPC	494 AIPCLP	495 496	497 498 AIPCRIS	500 SETINU	501 502 SETNORM 503 SETIFIG	504 505 *	506 SETKBD		510		513 OUTPORT 514 OUTPRT	515 516 IOPRT	517 518	519 520	521 522 NOTPRT0	523
				FE36				FE63			0001		E/E		FE78		FE86				FE9B				FEA7	EDE	FEC2	

20-CCT-86 06:41 PAGE 90	; FWERPER, ; FWEEPER, ; WAKE A JOYFUL NOISE, THEN RETURN, ; RESTORE 6502 REGISTER CONTENTS ; USED BY DEBUG SOFTWARE	; FOR DEBUG SOFTWARE	; SET SCREEN MODE ; AND INIT KED/SCREEN ; AS I/O DEVS. ; MUST SET HEX MODE! ; PROMPT FOR MONITOR ; CLEAR MONITOR MODE, SCAN IDX ; CLEAR MONITOR MODE, SCAN IDX ; CLEAR IN A-HEX; I. ; X-REG-O IF NO HEX INPUT ; COMMAND NOT FOUND, BEER & TRY AGAIN. ; TIND COMMAND CHAR IN TABLE ; NOT THIS TIME ; NOT THIS TIME ; NOT THIS TIME ; GOT I!! CALL CORRESPONDING SUBROUTINE ; RACCESS NEXT ENTRY ON HIS LINE ; SHIFT INTO A2 ; SHIFT INTO A2
Apple //c F8 monitor firmware		LDI IREG RTS STA ASH STY KREG STY YREG PLA STA STATUS TSK CLD	JSR SETNORM JSR INIT JSR SETRED CLD JSR SETRED CLD JSR SETRED JSR SETLI LIDA #\$AA STA SCAN JSR GETINE CRETINE CRETINE STA SUBTEL-CRETEL LIDY #SUBTEL-CRETEL LIDY #SUBTEL-CRETEL CMC CRETEL, Y SMC CRETEL, Y
Apple //c F8	640 * 641 PRERR 643 644 645 645 646 4 647 BELL 648 650 RESTORE 653 RESTR1	655 656 656 658 SAVE 669 SAVI 661 663 664 665 665 668	
22 AUTOST2	FF2D: C FF2D:A9 C5 FF2D:A9 C5 FF3A:20 ED FD FF3A:20 ED FD FF3A: FF3A:4C ED FD FF3F: FF3C:4C ED FD FF3F:4C ED FD FF3F:4C ED FD FF3F:4C ED FD FF4:A6 45 FF4:A6 46	FF8.674 47 FF8.674 47 FF9.628 FF9.638 46 FF8.84 47 FF9.168 FF9.168 FF9.168 FF9.168 FF9.168 FF9.168 FF9.168	FF59:20 84 FE FF50:20 27 FB FF50:20 39 FE FF65:20 38 FF FF65:20 38 FF FF65:20 38 FF FF65:20 38 FF FF70:20 C7 FF FF70:20 C7 FF FF70:20 C7 FF FF70:20 C8 FF FF70:20 C8 FF FF80:20 28 FF7 FF80:20
20-OCT-86 06:41 PAGE 89	; Tape read not needed containing the new opcodes that the existing lookup table. ; CRA (2PAG) ; TRB 2PAG ; TRC A ; TRC A ; TRC A ; TRC A ; TRC A ; TRC A ; BLC A ; BLT ABS, X ; ECR (2PAG)	PHY STZ ZPAG SDC (2PAG) STZ ZPAG, X PHY (ABS, X) BIT TMM STZ ABS, X STZ ABS, X STZ ABS, X SDC (2PAG) SSC (2PAG) SSC (2PAG) SSC (2PAG) SSC (2PAG) SSC (2PAG) SSC (2PAG) SSC (2PAG)	## Pointers to the mnemonics for each of an OPTBL. Pointers with BIT 7 extensions to MNEMS. OF MNEMS. \$38 \$37 \$87 \$87 \$87 \$87 \$88 \$30 \$87 \$87 \$87 \$87 \$87 \$87 \$87 \$87 \$87 \$87
Apple //c F8 monitor firmware	TAD RTS OPTBL is a table wouldn't fit into DPB \$12 DPB \$14 DPB \$14 DPB \$15 DPB	DER \$5A DER \$7A DER \$77 DER \$77 DER \$77 DER \$77 DER \$78 DER \$89 DER \$92 DER \$92 DER \$92 DER \$92 DER \$92 DER \$92 DER \$92 DER \$92 DER \$92 DER \$92 DER \$92 DER \$92 DER \$92 DER \$92 DER \$92 DER \$10	X contains opposed to the cont
	00 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	596 598 598 598 600 602 603 604 606 606 608 608	611 611 611 611 611 611 611 611 611 611
22 AUTOST2	FEFD: 60 FEFE: FEFE: FEFE: FEFE: FFFE: 14 FFFO: 14 FFFO: 32 FFFO: 33 FFFO: 34 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35 FFFO: 35	FF07:5A FF08:64 FF08:74 FF08:7A FF08:7A FF08:92 FF08:92 FF18:92 FF18:92 FF18:92 FF18:92	F15: F15: F15: F15: F16: 38 F16: 38 F16: 23 F17: 37 F17: 37 F17: 31 F1

20-0CT-86 06:41 PAGE 92	t.	; HOB-MASKABLE INTERRUPT VECTOR; RESET VECTOR; INTERRUPT REQUEST VECTOR
Apple //c F8 monitor firmware	>BASCOWT-1 >USR-1 >WEG2-1 >NEG2-1 >NEG3-1 >NERG1-1 >URRT-1 >NWRT-1 >NWRT-1 >NWRT-1 >NWRT-1 >NWRT-1 >NWRT-1 >NRT-1 >NRTR-1	ds \$FFEA-4,0 bw wwit bw NSET bw NSET include bank2
monit	013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
//c F8	SUBTBL	7178 * 7779 * 7779 * 781 * 782 783 784 18QVECT 62
Apple	4 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 7 7 7 7 7 7 7 7 7 7 7 8 7 8 7 8 4 1 1 8 4 1 1 1 8 4 1 1 1 8 4 1 1 1 8 4 1 1 1 8 8 1 1 1 8 1 1 1 1
		0000
22 AUTOST2	FFE3: FFE3: CB FFE3:	FFFS: 6E FFFS: FFFS: 62 FA FFFE: 03 C8 0000:
20-0CT-86 06:41 PAGE 91	; LEAVE X-SFE IF DIG ; IF MODE IS ZERO, ; THEM COPY AZ TO A1 AND A3 ; CLEAR A2 ; Get char, iny, upshift ; it's a digit ; theck for quote	; DISPATCH TO SUBROUTINE, BY ; PUSHING THE HI-ORDER SUBR ADDR; ; THEN THE LO-RORE SUBR ADDR; ; (CLEARING THE WODE, SAVE THE OLD; ; MOUR THE STRACK, ; (CLEARING THE WODE, SAVE THE OLD; ; MOUR IN R-REG), ; AND 'RES' TO THE SUBROUTINE; ; Y (USEN VECTOR) ; Y (USEN VECTOR) ; Y (WENGY VERIFY) ; Y (WENGY VERIFY) ; Y (MENGY
monitor firmware	A2B WXTBIT WODE WXTBS2 A2B, X A3B, X A3B, X A3B, X A2L A2L A2L A2L A2L A2B 65TUP 650A 01G 450A 100KASC	10.00 10.15 10.15 10.00 10.15 10.00 10.0
	ROD DEXX BPL LDA BNE STA STA INX BEC BNE LDX STX JSR CMP BCC ADC CMP BCC ADC CMP BCC ADC CMP BCC ADC CMP BCC ADC CMP BCC BCC BCC BCC BCC BCC BCC BCC BCC BC	103 PER PER PER PER PER PER PER PER PER PER
Apple //c F8		720 * 722
	FF90 FF72 FF74 FF74 C5 C5	E E
22 AUTOST2	26 3F 27 3F 27 3F 27 27 3F 27 27 3F 27 27 3F 27 27 3F 28 28 3F 29 39 3F 20 84 3F 20 86	31 E 3 31 6 31 E 3 31 6 31 E 3 31 6 31 E 3 31 6 31 E 3 31 E 3 31 E 3 31 E 3 31 E 3 31 E 3 31 E 3 31 E 3 31 E 3

23 BANK2

:0000 9000 0000

A = current low byte

nouxl,x

mouyint

eor ldx bit bpl asl

cmnoy

CHAMBOV

C18E

C14C:49 80 C14E:A2 80 C150:2C 17 C0 C153:10 39 C1 C155:0A C156:BD 7F 04

20-0CT-86 06:41 PAGE 95	24 MINT	Mouse & serial	Mouse & serial interrupt stuff	F 20-0CT-86 06:41 PAGE 96
;Which way; ;Wove left	C1B2: C1B2: C1B2: C1B2: C1B2: C1B2:	96 * This ray 97 * is either 98 * generates 99 * to a trans 100 * 'unbuffer 101 * cating a 101 * cating a 102 * Tf the second 99 * Tf the second 9	outine will determine to the built. I the interrupt. Ismit buffer employed receiver fire externally see interrupt.	This routine will determine if the source of is either of the built in ACIAs. If neither port generated the literrupt, or the interrupt was due to a transmit buffer empty, protocol converter, or 'unbuffered' receiver full, the carry is set indiating an externally estyloed interrupt. The historiant course was kewboard. 'In ffered'
;Borrow from high byte?	C182: C182: C182:	* * * *	serial input, or the DCD, and the carry is cleared : serviced. (DCD handshake)	in the interpretation was reported and the carry is cleared indicating interrupt is serviced and the carry is cleared indicating interrupt was serviced. (NCD handshake replaces CTS.)
;At high bound?	C182; C182; C182;	* * * * *	ita is buffered port 2 a \$C2. is to pass to e in TYPHED" spe	potation and a specifical with the state of
; Move right	C182; C182; C182; C182; C182; C182;	* * * * *	It be bullered, I routines. If is is placed in set the interr ized and servi s = 0, the inte	pur smouth to intracted, you becomes an upper smouth to the first RAM based routines. If bit 7=1 and bit 6=0, key-board data is placed in the type-ahead buffer. If but 6 is set the interrupt is cleared, but must be recognized and serviced by a RAM routine. If both bits = 0, the interrupt is serviced, but the
;Should we enable VBL?	C182: C182: C182:	* * *	data is ignore ising type-ahea e buffer. No o	<pre>keyboard data is ignored. While using type-ahead, Open-Apple CTRL-X will flush the buffer. No other code is recognized.</pre>
;Branch if not	C1B2:		source was an enabled, the	If the source was an ACIA that has the transmit interrupt enabled, the original value of the ACIAs
;Enable VBL int Mark that we moved	C182: C182: C182:		egisters is pre y is not servic ts originating	status registers is preserved. Automatic serial input buffering is not serviced from a port so configured. Interrupts originating from the protocol converter or
	C1B2: C1B2: C1B2:	* * *	(RAM serviced) passed thru. T he interrupt so	keyboard (RMM serviced) do not inhibit serial buitering and are passed thru. The RMM service routine can rec- oquise the interrupt source by a 1 state in bit 6 of
;C-i iff any bits were 1 ;If not handled, try acia ;Back we go	C182: C182: C182: C182:	* * * * *	s status regist e clearing of D the status regi	the ACIAs status register. The RAM service routine must cause the clearing of DSR (bit 6) AND make a second access to the status register before returning.
	C1B2: C1B2:38	132 * 133 notacia	sec	;Not acia int
	C1B3:60 C1B4: C1B4	134 acdone 135 aciaint	rts equ *	
	0 BA C1		jsr aciaint2 jmp swrts2	<pre>/Extra jsr since rest needs RTS</pre>
	22		ldx # <comslot jsr aciatst</comslot 	
	C1BF:90 F2 C1B3 C1C1:CA	141 142	-	<pre>;Return if interrupt done ;Try port 1</pre>
	C1C2:BC 42 C1 C1C5:A9 04	143 aciatst 144 145	ldy devno2,x lda #\$4 eor scomd.v	<pre>;Get index for acia ;If xmit ints.enabled pass to user :Check if D<3>, D<2> = 01</pre>
	CICA:29 0C CICC:F0 E4 CIB2	146		; ;User better take it!
	B 6	148 149		;Get status ;Save it away
	C1D4:10 DC C1B2 C1D6:E0 C2 C1D8:B0 02 C1DC	150 151 aitst2 152	opi notacia cpx # <comslot bcs alport2</comslot 	; no interrupt; ;C=1 if com port, Called from serout3 ;Invert DSR if port1
	C1DA:49 40	153	eor #\$40	

mainkl, x mainkl, x mainkl, x mainkl, x candin mauxl, x candin maxxl, x candin maxxl, x candin maxxl, x candin maxxl, x candin maxxl, x candin maxxl, x candin maxxl, x maxxl,

C159:B0 1A C175
C158:D0 70 04
C166:B0 76 05
C166:B0 76 05
C166:B0 76 05
C166:B0 77 04
C166:B0 77 04
C166:B0 77 04
C166:B0 77 04
C166:B0 77 04
C166:B0 77 04
C166:B0 77 04
C166:B0 77 04
C166:B0 77 04
C175:B0 15
C175:B0 15
C175:B0 15
C175:B0 15
C175:B0 15
C175:B0 15
C175:B0 16
C175:B0 17
C166:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78
C175:B0 78

Mouse & serial interrupt stuff

20-OCT-86 06:41 PAG	n, Y = devno ;Return to other side ;Save interrupt statu ;Get index into hardwa ;Get index into hardwa ;Get status ;Dr = 1 if interrupt ;Do service the interrupt ;Interrupt may have ch ;Restore interrupt st	
Mouse & serial interrupt stuff	271 * inputs: X = Cn 272 * outputs: A = status, X = Cn, Y = devno 273 * outputs: A = status, X = Cn, Y = devno 273 * outputs: A = status, X = Cn, Y = devno 273 * outputs: A = status C22 276 * outputs: A = status C22 276 * outputs: A = status C22 276 * outputs: A = status C22 277 * outputs: A = status C22 278 * outputs: A = status C23 278 * outputs: A = status C23 278 * outputs: A = status C23 278 * outputs: A = status C23	
24 MINT	C2AC; C2AC;	
20-OCT-86 06:41 PAGE 99	######################################	********** from a acia side liled are lost
se 🕻 serial interrupt stuff	Serout3 - Outputs a character to a acia * Inputs: A = char, X = Cn * Inputs: A = char, X = Cn * Serout3 Serout4 * Jen	**CTSTAT - Gets the status from a acia * GETSTAT - Call from this side * GETSTAT - Call from this side * If interrupt, aciatet is called * note: external interrupts are lost
Mouse & serial	215 217 218 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	265 ************************************
24 MINT	04F: 04F: 04F: 04F: 04F: 04F: 04F: 04F:	CAC: CAC: CAC: CAC: CAC: CAC:

20-OCT-86 06:41 PAGE 102	346 gbnoovr sta trser,y ;Store the updated pointer 347 lda rdramrd ;Get the old value of the pointer 348 sal A ;Cer for Max ram 349 sta rdcardram ;Cer for Max ram 350 lda thbuf,Y ;Get byte from buffer 351 bcs gbdone ;Earnch if we were in aux bank 352 sta rdmainram ;Sec byte from buffer 353 sta rdmainram ;Sec byte from buffer 354 gbdone rts ;Mark data there 355 ***********************************	; Save the data ; Set D7 for compares ; Cet options byte ; Rat linefeeds? ; Is it a LF? ; Rat it if it is	;Xon/XOFF enabled? ;Is it an XON? ;Clear xoff bit ;And eat it ;Set xoff bit ;BCS opcode	; Auxillary move stuff
Mouse & serial interrupt stuff	345 gbnoovr sta trser,y 346	364 getdata equ * 365 getdata pha sdata,y 366 ora #\$80 368 tay 369 tay 370 bit #\$98 371 bne gdnolf 372 cgy #lfeed 373 beg gdeat	374 gdnolf bit 375 beq cpy 376 cpy 377 bne 378 and 378 and 378 and 378 and 379 cor 381 gdeat clc 383 gdeat clc 385 gdeat clc	pla pla rrs includ
24 MINT	G00:99 7C 06 G310:7A G310:7A G311:AD 13 C0 G311:AD 13 C0 G311:AD 13 C0 G311:AD 13 C0 G311:AD 13 C0 G311:AD 13 C0 G311:AD 13 C0 G321:AD 13 C0 G	C3 C3 C48 C48 C48 C48 C48 C58 C68 C68 C78 C78 C78 C78 C78 C78 C78 C7	C34:18 20 C34:18 20 C34:19 10 C34:10 10 C34:10 04 C34:19 10 C34:10 10 C34:10 04 C34:19 02 C34:18 C34:18 C34:18 C34:18	
20-OCT-86 06:41 PAGE 101	s the serial input routine. Carry indicates that returned data is indicates that returned data is indicates that returned data is indicates that returned data is indicates that returned data is indicates that returned data is is x datis is x data in input buffered; it serial input buffered; it section if its serial input buffered; it should if its there a char in the onr byte buffered; it should it is there a char in the onr byte buffered; it should it is it income it is it income it is it income it is it income it is it is it is it is it income it is it is it is it income it is it	<pre>;Get ACIA status ;indicate no data ;Branch if no data; ;Get data and check xon, etc</pre>	*-\$C1 ;Pointer to character buffers \$0,880 *********************************	etbuf2 wrts wrts .Test for data in buffer wser,Y ;If = then no data bdone ;Branch if empty ;Save current value ;Update the pointer shoover
interrupt stuff	the serial inp indicates that: ************************************	y charptr,x a charbuf,y s c detstat2 d 458 c xrddone r getdata	tra * 45*	*
serial 6	* This is * This is * Ilag set * valid. * ** ********************************	* xrdnobuf	charptr e *********** ** GETBUP - ** Inputs: Y ** C = 0 if	getbuf squ getbuf squ jmp getbuf2 equ lda cmp clc clc clc bed inc inc inc tya
Mouse	289 290 291 292 293 293 293 293 293 293 293 293 203 203 303 203 203 203 203 203 203 20	C2 315 C2 315 C2 315 C2 315 C2F4 318 C3 319	5234 322 323 323 326 326 327 328 328 338	22F7 333 C2 333 C7 334 C2FD 335 06 337 06 337 C321 339 C321 334 341 341 341 341 341 341 341 341 341
24 MINT	223: 223: 223: 223: 223: 223: 223: 223:	CZE118C 34 CZE118B FE CZE1138 CZE8160 CZE9120 BZ CZEC129 08 CZEC129 08 CZEC129 08 CZEC129 08 CZEC129 08 CZEC129 08	C2F5: 00 80 C2F7:	CZF7: CZF7:20 FD CZF7:20 FD CZF7:30 FD CZF7:

Aux ram support stuff 20-CCT-86 06:41 PAGE 104	62 ************************************	76 XFER EQU * ; SAVE AC ON CURRENT STACK 77 78 * 79 * COPY DESTINATION ADDRESS TO THE 80 * OTHER BANK SO THAT WE HAVE IT 81 * IN CASE WE DO A SWAP:	83 84 85 86 87 88 88 88 88 88 88 88	91 STA RICARDEAN 92 STA RICARDEAN 93 RECREDEN STA RICARDEAN 94 XFERCZM EQU * 95 STA RINMALINAM 97 * 98 XFERZP EQU * 99 PLA 100 STA \$035E		
25 AUXSTUFF		0.97: 0.97:48 0.98: 0.98:	48 EE 03 48 EE 03 48 EE 03 48 EE 03 48 EE 03 48 EE 03 48 EE 03 68	CAA2:80 05 COA3:80 05	CBS:8D ED 03 CBBS:6B CBBS:6B CBBS:70 6 C3C0 CBBS:50 03 C3C3 CGC:8B 09 C0 CGC:8B C7 CGC:8C C3C3 CGC:6C C3C3	
20-OCT-86 06:41 PAGE 103	**** WOVE	SAPE STATE OF TRUCKY FLAGS	=>CARD>MAIN SET FOR MAIN ; TO CARD ; >> (ALMAYS TAKEN) ; SET FOR CARD	Ain byte it	->more to move CLPAR FLAG2 CET ORIGINAL STATE ->IT WAS OFF	CLEAR FLAGI GET ORIGINAL STATE ->IT WAS OFF Restore AC
20-α	MOVEAUX PERPORE ADDRESS AZ=SOURCE END AZ=SOURCE END AZ=SOURCE END CARY SET—WAIN—>CARD CARY SET—WAIN—>CARD NOME IN OTHING IN OT	D ; SAVE ; MEMOI ; MEMOI RT ANK MOVE:		RAM ; TO MAIN ; get a byte ; move it		RAM ;
x ram support stuff	NAME FUNCTION INPUT OUTPUT OUTPUT CALLS CALLS MOVEAUX	* SET FLAC	* BCC PSTA BCC PSTA BCS PSTA B	33 * ROCARDRAM 34 * ROCARDRAM 35 * MOVELOOP LDA (A1L) 36 * MOVELOOP LDA (A1L) 37 * ROCARDRAM 38 * ROCARDRAM 40 * RECTAL LDA A1R 41 * CMP A2L 42 * CMP A2L 43 * CMP A2L 44 * CMP A2L 45 * CMP A2L 46 * CMP A2L 47 * CMP A2L 48 * CMP A2L 49 * CMP A2L 40 * CMP A2L 41 * CMP A2L 42 * CMP A2L 43 * CMP A2L 44 * CMP A2L 45 * CMP A2L 46 * CMP A2L 47 * CMP A2L 48 * CMP A2L 48 * CMP A2L 48 * CMP A2L 48 * CMP A2L 48 * CMP A2L 48 * CMP A2L 49 * CMP A2L 40 * CMP A2L 40 * CMP A2L 41 * CMP A2L 42 * CMP A2L 43 * CMP A2L 44 * CMP A2L 44 * CMP A2L 44 * CMP A2L 45 * CMP A2L 46 * CMP A2L 47 * CMP A2L 48 * CM	STA STA BPL BPL BPL BPL BPL BPL BPL BPL BPL BPL	55 CU3 EV0 STA REMAINRAM 55 PLA REMAINRAM 56 BPL MOVERET 56 STA RECARDRAM 58 MOVERET EQU PLA 59 PLA 60 UMP SWRIS2
25 AUXSTUFF Aux	0.345; 0.	13 C0	28 C361 22 C0 35 C0 36 C367 C361 94 C0	33 C0 35 C367 42 C371 35 C371	35 30 30 50 50 50 50 50 50 50 50 50 50 50 50 50	C38A 03 C3 03 C0 03 C0 C393

20-OCT-86 06:41 PAGE 106	restore pattern to ACC ;fill this page with the pattern ;fill this page with the pattern ;if any bits are different, give up!!!	keep x in the range 0-4	All too Intend yet; bump page # ;loop through \$0100 to \$FF00 ;change ALL for next page # ;see BINNH for a liftle randomness.	; have 5 passes been done yet? ;skip if yes ;start next pass	; save acc ; main or aux ram ; ; skip if aux ram ; enable aux mem write ; enable aux mem read ; swap in alt zero page ; Force rom enable	; swap in main zero page	
83.	\$01 \$03 \$\$00 ntbl,x (\$02),y MEMERROR	(\$02),y memB #4	menA 1 men? a	travitual memc \$504 nemD nem1	MEME MEME Wreardram rdeardram setaltzp ROMIN	Security Security	
agnosti	lda sta tya ldy clc adc eor bne	p de la	inc inc ror	ppi dec dec	TAX BIT BAT CXA STA STA STA STA STA STA	STA	
Apple //c diagnostics	61 mem8 62 mem9 63 64 64 65 memA 66		27	79 80 81 memC 83	85 memD 86 87 88 89 90 91	95 MEMF 96 MEMF	
	78 C472	C440	C431	C44F	82 82 82 82 82 82 82 82 82 82 82 82 82 8	Z 83	
26 BANGER2	C42A:A5 01 C42C:85 03 C42E:98 C42E:A0 00 C43I:18 C432:7D 2A C8 C435:51 02 C435:51 02		C440:C8 C441:D0 EE C443:E6 01 C445:D0 CB C447:6A	C448:10 02 C440:49 A5 C447:06 04 C457:30 03 C453:4C D0	113 10 03 03 81		
20-OCT-86 06:41 PAGE 105	**************************************	do RAM \$100-\$FFFF five times	;keep acc in a safe place ;point to page 1 first	<pre>;save ACC in Y for now ;anticipate not \$C000 range ;get page address ;test for \$C0-\$CE range ;branch if not</pre>	;select primary \$D000 space ;Plus carry =+\$10 ;branch always taken ;restore pattern to ACC ;fill this page with the pattern	;keep x in the range 0-4;all 256 filled yet;branch if not;brump page 4;loop through \$0100 to \$FF00	;save ACC in Y for now; anticipate not \$0000 range; get page address; test for \$00-\$0T range; branch if not; select primary \$0000 space; Plus carry =+\$10; branch always taken
Apple //c diagnostics	* Bore is the rest of the diagnostic stuff * Bore is the rest of the diagnostic stuff * the first part has been moved into the \$1 * to make desperately needed room ***********************************	stx stx ldx	stx \$04 MEMI STA \$05 ldx #4 stz \$01 lnc l	memiz tay tobank2 sta icbank2 lda \$01 and \$\$F0 cmp \$\$\frac{8}{4}\$\$C0 bne memi3		cnem5 clc adc ntbl,x sta (\$02),y dax dax ldx #4 mem6 lny lnc #4 lnc lny lnc lnc lnc lnc lnc lnc lnc lnc lnc lnc	inc \$01 LDX #4 LDX #4 LDX #505 LDA \$05 LDA \$05 LDA 1Chank2 Ida 1Chank2 and #5FU Cmp #5C0 Cmp #5C0 bne mem8 Ida 1Chank1 Ida 501 adc #5F bne mem9
Apple	W 4 4 4 4 4 4 E				34341888		55 55 55 55 55 55 55 55 55 55 55 55 55
Apple	*****	13 11 1		C3F3 26			

20-0CT-86 06:41 PAGE 108	participate MMO error participate MMO error compare with where we left off skip if MMO skip if GLU (loudis or dhires failure) skip if GLU (loudis failure) grin error (loudis failure) print "MMU", "IOU" or "GLU" pranch if Grever branch if setting switch to 0-state ibranch if setting switch to 1 pranch if done setting switch to 1 pranch always taken pranch always taken pranch always pranch if done this pass pranch always pranch if done this switch no to be verified. pranch always
stics	smess,x bswtch2 smess+3,x bswtch2 smess+3,x fswtch3 smess+6,x smess+6,
Apple //c diagnostics	143 BADSWTCH 144 146 bswtch1 14b phy 146 bswtch2 149 phy 140 phy 140 p
26 BANCER2	CACALAN 02 CACALAN 02 CACALAN 02 CACALAN 03 CACALAN 03 CALALIAN 03 CALALIAN 03 CALALIAN 04 CALALIAN 04 CALALIAN 04 CALALIAN 07
20-0CT-86 06:41 PAGE 107	; indicate main ram failure ; save bit pattern in x for now ; main or aux men? ; with V-FLG ; branch if primary bank ; branch if it was a switch ; branch if it was a switch ; branch if it was a switch ; mark aux report with an asterisks ; mark aux report with an asterisks ; print bits ; bits are printed as ascil 0 or 1 ; bits are printed as ascil 0 or 1 ; hang forever and ever
Apple //c diagnostics	98 MEMERROR Sec 99 BABBITS tax 100 clb bits lid setv 101 bbits lid \$500 102 bpl bbits lid \$60 103 bits lidy \$60 104 bbits lidy \$60 105 clrsts sta ioadr'e, y dey lids \$100 107 dey loadr'e, y dey lids \$100 108 dey clrsts tax tax ext ext ext ext ext ext ext ext ext ex
26 BANGER2 A	C472:38 C473:3A C473:AA C477:BB C478:110 33 C47D C477:BB C478:110 33 C47D C478:AB C478

20-0CT-86 06:41 PAGE 110	clear screen for success message:	test for both Open and Closed Apple; pressed; put result in carry	; put success message on the screen; loop forever	
Apple //c diagnostics	ão S	bre blp3 LDA butn0 AND butn1 as1 INC \$FF LDA \$FF bcc dquit jmp DlAGS	lda txtset ldy #8 lda success,y sta SCREEM,y dey bpl suc2 bml blp4	ds \$c580-*,\$00 include rw.slinky
Apple //c	209 BIGLOOP 211 blp2 212 blp3 213 blp3 213 blp3 214 215 215	C547 218 219 blp4 220 221 222 222 223 C566 224 1 226 *	227 dquit 228 suc2 230 230 231 C56B 232 C556 233	000A 235
26 BANGER2	C53F:46 80 C541:D0 AC C C543:A9 A0 C547:39 00 04 C547:39 00 05 C547:39 00 05 C550:39 00 05 C550:39 00 07	99 4	8 8 5	CS 80: CS 80:
_				
20-OCT-86 06:41 PAGE 109	<pre>;branch always ;save y to distinguish from MMO or GLU failure ;indicate switch error ;set carry if IOO was cause</pre>			
	# FOUIDX swist1 ;branch always ;save y to distinguish from MMU or GDU fallure # On ;indicate switch error # FOUIDX+1 ;set carry if IOU was cause bbits1			
Apple //c diagnostics 20-0CT-86 06:41 PAGE 109	#IOUIDX swtstl #0 #IOUIDX+1 bbitsl			

Apple //c diagnostics 20-0CT-86 06:41 PAGE 112	60 prbad .lda #badblk ;Invalid address 61 sta error 62 prbadz sta romin ;put the rom back in 63 rts		
27 RM.SLINKY	C5EE:A9 2D C5F0:8D F8 04 C5F3:8D 81 C0 C5F6:60		
20-OCT-86 06:41 PAGE 111	READ - Reads bytes from card into the Apple 7 of the address = 1 if aux ram	<pre>;save x ;get language card state ;restore it, the rom is ayway ;restore x</pre>	; Move the address ; Mask off high bit ; Valid address ; Save current bank ; Assume main ; If D7 = 1 then aux ; Its the card ram ; More than a page to move? ; Get a byte ; Bump buffer pointer to next page ; Dec page count ; Any bytes left to do? ; Save bytes moved ; C = 1 if odd # of bytes ; Fix main / aux ram
SO	bytes from a lifess = 1 if	sl.lcstate \$C000,x	paddr addr1,x paddr+1 paddr+2 #57F numbanks,y prbad addr+2 prmain #0 pocunt+1 priast #0 priast #0 priast #0 priast #0 priast #0 priast
c diagnostics) - Reads the add	nd phx ldx inc plx	lda sta sta sta sta sta sta sta sta sta st
Apple //c d	2 ****** 3 * PREAD 4 * D7 of 5 *****	7 sl.pread 8 9 10	12 13 13 14 15 16 17 17 18 19 22 23 24 25 26 27 28 33 33 33 34 41 41 41 42 44 44 44 45 46 47 47 48 49 40 50 50 50 50 50 50 50 50 50 5
27 RW. SLINKY	C580: C580: C580: C580:	C580:DA C581:AE 78 06 C584:FE 00 C0 C587:FA	CSB 8.1.8. 49 CSB 8.18. 49 CSB 1.3.8. 48 CSB 1.3.8. 48 CSB 1.2.8. 48 CSB 1.2.9. 17 CSB 1.2.9. 17 CSB 1.2.9. 17 CSB 1.2.9. 18 CSB 1.3.9. 18 CSB

20-OCT-86 06:41 PAGE 114	在 化催化剂 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	; Status byte ; Size ; Name length	; Type subtype ; Version	; Table of parameters	** ** ** ** ** ** ** **	i cormat ; Control unit 0 ; Control ; Init unit 0 ; Thit ; Open unit 0 ; Open	;Close ;Read unit 0 ;Read ;Write unit 0 ;Write unit 0 ;Write Status call ;ProDOS status call ;ProDOS format call ;Dos Command	; Diagnostics !
S	124 ************************************	able \$F8 500,500,500	'RAMCARD' ' ON O' revnum	03,03,03 03,03,03 03,01,01 03,01,01 01,01,01 04,04,5FF \$FF,\$FF;	>pstat0-1 >sl.pstatus-1 >pzcmd-1 >pzcmd-1 >pzcmd-1 >pzcmd-1 >pzcmd-1	>lorts-1 >pontl-1 >pontl-1 >iorts-1 >iorts-1 >iorts-1 >pormd-1 >pocmd-1	<pre>>prcmd-1 >prcmd-1 >prcmd-1 >prcmd-1 >pwrite2-1 >xstatus-1 >xread-1 >xvrite-1 >lorts-1 >dosconv2-1</pre>	>xdiag-1
agnosti	data	is to the depth of the the the the the the the the the the	asc asc MSB dw	99999999	89999999	9999999	999999999	dip
Apple //c diagnostics	124 ************************************		134 135 136 137	140 parmtbl 141 142 144 145 146 146		158 160 161 162 163 164 165	166 167 169 170 171 172 173 174	176
LINKY		8	41 40 43 20 20 20 00 01	03 03 03 03 03 03 03 03 03 03 03 03 03 0	C698			
27 RM.SLINKY	C667: C667: C667:	C667: C667: C668:00 C668:00 C668:00	C66C:52 C673:20 C67C: C67C:00	C680:03 C683:03 C686:01 C689:03 C689:03 C68F:01 C692:04 C692:04	C69A: C69B:73 C69B:73 C69C:2F C69C:8B C69E:2F C69F:BC	C6A1:38 C6A2:69 C6A3:69 C6A4:38 C6A5:38 C6A5:38 C6A5:2F C6A7:2F	C6A9:2F C6A8:39 C6A0:3C C6A0:3C C6A0:3C C6AE:45 C6AE:9D C6AE:38	C6B3:42
20-OCT-86 06:41 PAGE 113	* D7 of the address = 1 if aux ram	<pre>;save x ;get language card state ;restore it, the rom is ayway ;restore x</pre>	; Move the address	; Mask off high bit; ; Valid address ; Save current bank ; Assume main ; If D7 = 1 then aux ; Its the card ram	;More than a page to move? ;Get a byte	;Bump buffer pointer to next page ;Dec page count ;Any bytes left to do?	;C = 1 if odd # of bytes	; Fix main / aux ram ; put the rom back in
ics	ites bytes fro	sl.lcstate \$COOO,x	paddr addrl,x paddr+1 addrm,x paddr+2	#\$7F numbanks,y prbad addth,x rdramrd rdmainram paddr+2 pwmain- rdcardram	#0 pcount+1 yval pwlast (pbuff),y data,x (pbuff),y data,x	pwloop pbuff+1 pcount+1 pwloop pcount xval	pwoone pwodd pwodd (pbuff),y data,x (pbuff),y data,x	pwicopz rdmainz pwmainz rdcardram romin
c diagnostics	the ad	e phx ldx inc plx	lda sta lda sta lda	and cap bore sta sta sta sta sta sta sta sta sta sta	idy sta sta lda lda iny sta sta sta	iny bne dec dec bne lda sta	bed lsr lda sta sta iny cpy	
Apple //c di	65 annanna 66 a PHRITI 67 a D7 of		52 2 2 2 2 2	88 23 38 88 24 88 88 24 88 88 24 88 88 24 88 88 24 88 88 24 88 88 24 88 88 24 88 88 24 88 88 88 88 88 88 88 88 88 88 88 88 88	90 pwmain 91 92 93 94 pwloop 95 96 97	99 100 101 102 103 104 pwlast	106 107 108 109 110 111 112 pwodd 113	116 117 pwdone 118 119 120 121 pwmain2
27 RW. SLINKY	CSF7; CSF7; CSF7;	C5F7:DA C5F8:AE 78 06 C5F8:FE 00 C0 C5FE:FA	C5FF:R5 49 C601:9D F8 BF C604:R5 4A C606:9D F9 BF C609:R5 4B	C609.29 TF C601.09 B8 03 C601.09 DC C5EE C612.90 FA BF C613.2C 13 C0 C613.2C 13 C0	C623.A5 40 C625.A5 40 C627.80 F8 05 C627.81 14 C640 C627.81 45 C631.08 BF C632.81 45 C632.81 45	747 747 78 08	m m	C658:101 FV C648 C650:28 C650:28 C660:30 03 C6 C660:30 03 C0 C663:30 81 C0 C665:60

20-OCT-86 06:41 PAGE 116	2 secondary control of the following code had better start at \$771C or else	;do the real thing	; do the real thing	;do the real thing	;do the real thing	;do the real thing	;do the real thing	;do the real thing			;save x ;get language card state ;save it ;save it here too	restore language card state and return restore language card state and return Rank switch stuff @ 2:C780		
ន	code had bett	rombank sw.setmou	rombank sw.mtstint	rombank sw.mread	rombank sw.mclear	rombank sw.mclamp	rombank sw.mhome	rombank sw.initmouse	rombank m.oveirq	rombank swsl.bt	rombank getlc sl.lcstate	js, execute jmp fixlc ds \$c780-*,\$00 include switcher2		
Apple //c diagnostics	the following	sta	sta	sta	sta	sta	sta	sta	27 moveirg sta 28 jmp	sta jmp	sta phx jsr phy sty	jap jap ds incli		
Apple	2 C A	91-	9	13	15	18	21	23	27 28	33	33.34.3			
28 MOODE .X . AUX	מוכ: מוכ: מוכ:	C71C:8D 28 C0 C71F:4C C2 C6	C722:8D 28 C0 C725:4C CD C6	C728:8D 28 C0 C728:4C D8 C6	C72E:8D 28 C0 C731:4C E3 C6	C734:8D 28 C0 C737:4C EE C6	C73A:8D 28 C0 C73D:4C F9 C6	C740:8D 28 C0 C743:4C 04 C7	C746:8D 28 C0 C749:4C 9A CF	C74C:8D 28 C0 C74F:4C 34 C6	C752:8D 28 C0 C755:DA C756:20 16 C8 C759:5A C750:20 D6	88		
20-00T-86 06:41 PAGE 115	;save k ;get language state ;save it	; save it make too ; do the boot ; restore language card state and return	;save x ;get language card state	save it; set the mouse mode to a ;restore language card state and return	;save x ;qet language card state	save it; check mouse status bits; restore language card state and return	; save x ; get language card state	; whates the mouse screen holes ; restore language card state and return	;save x ;get language card state	save it; sets the mouse to 0,0; restore language card state and return;	;save x ;get language card state ;save it ;store new mouse bounds ;restore language card state and return	;save x ;get language card state ;save it ;clear mouse position and status ;restore language card state and return	;save x ;get language card state ;save it ;reset the mouse ;restore language card state and return	
lcs	getlc	silicate boot.sl fixic	getlc	x.setmou fixlc	getlc	x.mtstint fixlc	getlc	x.mread fixlc	getlc	x.mclear fixic	getlc x.mclamp fixlc	getlc x.mhome fixlc	phx getlc i.nitmouse fixic	ds \$C71C-*,00 include mcode.x.aux
agnost.	phx jsr phy	Z H E		dar dar	nt phx jsr	E TE		rist di		EHR	p phy jsr jsr jap	phy jar jar	ouse pl jsr jsr jmp	incl
Apple //c diagnostics	178 swsl.bt 179 180	182 183	185 sw.setmou 186	188 189	191 sw.mtstint 192	194 195	197 sw.mread 198	200	203 sw.mclear 204	206 207	209 sw.mclamp 210 211 212 213	215 sw.mhome 216 217 218 219	221 sw.initmouse 222 jst 223 phy 224 jst 225 jm	67
27 RW. SLINKY	19	C6BF:4C 0E C8	C6C2:DA C6C3:20 16 C8	C6C6:5A C6C7:20 21 D6 C6CA:4C 0E C8	C6CD:DA C6CE:20 16 C8	C6D2:20 C2 D6 C6D2:4C OE C8	C6D8:DA C6D9:20 16 C8	C6DD:20 79 D6 C6EO:4C 0E C8	C6E3:DA C6E4:20 16 C8	C6EB:20 68 D6 C6EB:4C 0E C8	C6EE:DA C6EF:5A C6F2:5A C6F3:20 A3 D6 C6F6:4C OE C8	C6F9:DA C6FB:20 16 C8 C6FD:5A C6FE:20 51 D6 C701:4C 0E C8	C704:DA C705:20 16 C8 C708:5A C709:20 00 D6 C70C:4C GE C8	C71C: 000D

29 SWITCHER2 Apple //c diagnostics 20-007-86 06:41 PAGE 118	00 C0 61 inc \$C000,x ; Restore LC	C812:FA 62 plx ;Restore real X	3	53	CSI6: 60 "GEILC - Gets language card state in I	C816 68 getlc equ	69 Idy #581	12 CU /U	88 72 Idy	11 C0 73 bit 1	02 C826 74 bpl	CO 76 Alabah ata manan	77 glodone rts			79 * Diagnost	C82A 80 sety equ	43 28 29 81 ntbl dfb	03 03 82 SWCDLU GID	81 04 06 84 swtbl1 dfb	84 52 54 85 dfb	11 13 14 86 rswtbl	12 IA 1B 87 dib	22 C1 CD A0 89 rmess asc	CD D5 C9 90 smess		C875:D3 F9 F3 F4 92 success asc "System OK"	0002 69 ds \$C880-*,0	0780 70 ds \$D000-*,0	DOOD: 1 THETROE COMMENTS SETTED DOOD									rn			
20-OCT-86 06:41 PAGE 117	ds \$C780-4,\$00			医医检查检验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检					:Tra entry	Farm Free (Mouse basic routines	of the state of th	enou reururan nac!	; Jump to command routine		; Aux move		, Ar EK	:Mouse interrupt handler		;Diagnostics	: Appletalk		;Serial output	Set status		; Read from serial port	of other from hitter	ימכר חופד דומה חודובד		4000	ied to users Aret dest	Y outs	Lagra V			;Fix Language card and return	.SCRN3 interrunt entry moint	iscent micerials carry porms	
	\$C780-4,\$00			***	ank	ank		ank	rombank	gos	nt	ank.	cnv	ctn	OMDANK	ank	rd3	company	Aux	rombank	ank	iouseint	rombank	d Lags rombank	м.	ombank	serout3	tat	rombank	er	ouf.	combank	ZDM	T C	1	D)		Setterm	2	\$1203-4.0	'g2'	
tics	\$528	OTHER THING	SMITCHING KOULINES	****	rombank	rombank						-	M M	,14	Η Ψ		0,									м	••			xrdser	4 0.	-				getlc						
diagnostics	ds		א טער א	*****	sta	sta		2 sta	E to	bit	A	. ST	Sta		SC	sta	其	sta	風	STO	sta	其	sta.		具	S.	其 t	t of	tt.	Ĭ.	神	ST.	Ĕ.	41100	The state of	İsr	phy	181	bra	-	S CIL	
1/0		*		***	8 swrti2	10 swrts2		SWreset	13 14 ewirn?			17 Swsthk2	IS 19 SWZZGt2		17	22	24	52	56	77	23 23	8	E :	33	3 25	35	36	5 8	39	2 =	42	43		70DIXMS CB	40 A7 cuettm1		49	25	21.5	5	24	
Apple	2 6		—																																							

Command processor for serial & comm 20-CCT-86 06:41 PAGE 120	;is it a space; {uppercased} ;no, go on with 2-chr cmd handling ;yes, ignore spaces between characters of 2-chr commands ;pull uppercased char off stack ;ie mark them "handled" and don't do anything else	temp ; sawe sermode for a millit #Throw out all but bits 0-2 #FOW clear bits 0-3 sermode,x ; save - this is index of which cmd it is get sermode back #FOW ; prow clear bits 0-3 sermode,x ; get character back ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) On stack ##HOW x (Ch) Of stack ##HOW x (Ch) ON	; Save stor; ; check 5 possible 2-chr cmds ; is it there? ; yes, need to flag it for next time
for serial 4 c	fucspace incmd3 nocmd2		#4 cmd2list,x cmd2found
mand processor	cmp bne clc ; pla bra	69 pha 77 and 77 sta 77	cmd2100p
Com	60 62 63 63 63 64 50 64 64 64 66	71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a
30 CCMMAND	D034:C9 00 D036:D0 04 D0 D038:18 D039: D039:68 D038:80 E4 D0	D045:148 D044:189 80 D044:189 80 D048:189 80 D048:189 88 03 D048:189 88 03 D048:189 88 03 D049:180 88 03 D055:180 45 D055:180 45 D055:180 45 D055:180 45 D055:180 45 D055:180 45 D055:180 45 D055:180 45 D065:180 17 D066:180 17 D066:180 180 D077:180 88 03 D077:180 88 03 D077:180 88 03 D077:180 88 03 D077:180 80 D077:180	D084:DA D085:AZ 04 D087:DD 25 D2 D08A:FO 71 D01
& comm 20-0CT-86 06:41 PAGE 119	* The command routine now supports 5 new 2-character commands. These * commands enable or disable a feature of the serial port and are * derived from their equivalent in the super serial card for the //. * The new commands are as follows: L - send IF out after CR	The LF in after CR OR when column count > printer width tion \$779 (port 1) and \$77A (port 2) are as follows: echo output to screen if on generate IF after CR if on accept LF in after CR if on accept LF in after CR if on accept LF in after CR if on a character was received through the ACIA and is in location \$5E (port 1) or \$6TE (port 2) if on NORT is accepted, awaiting XOM if on ignificate own port if on, printer port if off incomed \$00	;handle 2nd chr of 2-chr commands ;pull char off stack ; & reshove it to keep stack neat
for serial	command routine now supports ands enable or disable a fea ands from their equivalent in new commands are as follows: I - send if out after CR		46
Command processor	2 ************************************		57 incmd2 equ 58 pla 59 pha
30 COMMAND		D000: D000:	D032: D032 D032:68 D033:48

Command processor for serial 6 comm 20-CCT-86 06:41 PAGE 122	;go do mask stuff to FLAGS	178 ;sermode bit 0 tells whether to set or clear command mode	; so get it	;shift bit 0 to carry ;if set, start new cmd mode	Restore the cursor fall through to caset with carry clear	set command mode according to carry	TEG A STATEM GASTON (; character handled	recause cally creation	; come here to handle LE & LD ; make LE look like L	<pre>;get P back with carry indicating E or D ;carry set means it was an E</pre>	; make LD look like K	:copy index of cam to acc	restore X to Cn remove ten 2 bits of sermode	is set bit 3 - 2-chr-command-mode flag	<pre>;sermode = index to Z-cnr cmds issued ;set carry so we stay in command mode</pre>	; for next time	get hi byte of where to go	get lo byte of where to go	;save it on stack ;go there by RTSing		restore status to there wanty are	;skip if enable	; we're done here	defide2-\$rl w and w index into anx screenholes	;go get it from anx ;restore default PMDTH ;we're done here	; Bero escape character ; And the width		
for serial & c	cmdi	tells whether	sermode, x	A cominit1	oldcur	sermode.x	a openion	w formation		#\$4C	backtol	#\$4B backtol		sormode.x	\$0\$ 4	sernode, x	caset		cmdtable, x				caid.cl	cdone cdone	dofide2-SCI	r.getalt pwdth,x cdone	pwdth, x	cmdz2	42 45
essor	ğ	bit 0	क्या वि	lsr	lda sta	ofd	did	a d	ILS	edu Ida	d'd Sid	lda	d txa		ora	sta sec	bra	ap 1	i i	pha rts	-	đặ	bcs	bra	140	jsr sta bra	plx	其	
Command proc	176 xready	178 ; sermode	180 cdone 181	182	184	186 caset	1000	190		193 cmd21 194	195	197	200 cmd2found		203	204 205	206	208 cmfound	210	211 212		214 cma.c 215	216	218	220 cmd c1	221 222 223	225 cmds 226	228	230 cmdcr 231 cmdn
30 сомил	D0DB:4C 39 D1	DODE:	DODE: DODE: DODE		2.00 E	DOEA:08		DOF2: 68	2	DOF4: DOF4:A9 4C		8 2 2	DOFT: 83		8	D104:9D B8 03 D107:38	D108:80 E0 D0EA	D10A:A9 D1	D10D:BD F5 D1	D110:48		D113:FA	D114:B0 05 D11B	ខ្ល	10 36 DI 10		D126:FA D127:9E B8 04	D12C:4C A2 D0	D12F: D12F D12F: D12F
6 comm 20-OCT-86 06:41 PAGE 121	adou!	try next if there is one ; come here to check for 1-chr cads	Check 13 comands		;We didn't find it	Pode free of rede	; it can be the new comd char	; branch 11 not child character ; save command char and	drop thru ckdig to cdome ;zap it down to Un if char was a digit	;is it a digit?	A = A + 10 " current number		; not starting new cmd mode, just save +	•- •	; clear bits 0-5 (starting a new cmd seq			;Mark in command mode	: not a 2-chr command al	set carry	;got a 2-chr command aD	; clear carry : nush P to save carry	if X=0 then command is LE or LD	; so just make it act like L or K	; skip if so	* for other 2-th rands, their FLAGS masks' indexes are 2X+3 * for at E or 2X+4 for a D ** for an E or 2X+4 for a D	copy x to acc for arithmetic; clear carry for arithmetic	<pre>;mutiply index by z ;add 3 to get mask index ;put mask index in X</pre>	<pre>;get carry back ;carry set = Enable so X is ready ;cmd was Disable so inc X to next mask</pre>
		cad2loop	#12 cmdlist,x		doorna	20	1520	ckdig eschar, x	130	#\$0A	#10	digloop	cominit		sermode, x #\$C0	sermode, x 80	number	caset		5	2		£0	cnd21	card.c	chr cads, t		₽ #3	xready
or for		-	* 0 6 \$ 8 8			pha e		sta c	FOZ		ldy +			edin *		sta s		sec bra c	agru h	Sec		clc M			bed	r 2-chr or 2X+			plp bcs x ink
Command processor for serial	18 d	119 120 backtol e	cadloop	27.				cmdz2	133 ; 134 ckdia e		1121200	139 digitory d		143 cominiti e			cominit	149 8	152 enable		disable	156			161	163 ************************************		170	
Ь	1	D087 1	1040		1600	~ 0-4 0	-	00A5		1 1000	2	OAD		D0B5				DOEA 1	0005		D0C7 1	•		DOF4 1	0112				0008
30 COMMAND		20	D08F:A2 0C D091:DD 18 D2	. 8	9	D098:48	= 유	ő	DOAS:		DOAB:AO OA		DOB3:80 0A	1	D085:8D 86 03 D088:29 C0	DOBA: 9D B8 03	DOBE:8D 7E 07	DOC2:38 DOC3:80 25	.500	D0C5:38	D0C7:	D0C7:18		D0CB:F0 27	DOCF:F0 41	D001: D001: D001:	D0D1:8A D0D2:18	D0D3:0A D0D4:69 03 D0D6:AA	DOD7:28 DOD8:30 01 DODA:E8

Command processor for serial & comm 20-OCT-86 06:41 PAGE 124	; Reset the ACIA ; Check if video firmware active ; Save it in: ; assume video firmware active ; branch if good guesser ; Reset the hooks ; Quit terminal mode ; BCS to skip next byte ; Into terminal mode	set Clear terminal mode ; set Clear terminal mode ; det terminal mode ; det terminal mode ; f=1 if not in terminal mode ; Rranch if clearing terminal mode ; Rs already set ; Are we in the input hooks ; leaves C=1 if = ; set term mode bit ; save what was in olderr ; dear the bit ; lear the bit ; kestore the cursor value ; kestore the cursor to be restored after command ; want to leave with interrupts active ; but off while we twittle bits ; disable receiver interrupts if ; not in terminal mode ; enable when in terminal mode	<pre>;set kbd interrupts according to t-mode ;branch if leaving terminal mode ; and ser buf ;use x to enable serial buffering ;restore carry, enable interrupts. ;Flush the type ahead buffer</pre>
or serial	sstat,y vfactv A swsthk2 cmdq swzqt2 \$B0	sermode, x #\$40 stell st	f 0 a typhed cmdt3 twser trser aciabuf twkey trkey
essor fo	equesta standard stan	eque bita bita bita bita bita bita bita bita	lda roc sta stz stz stz stz stz stx stx stx stx
30 COMMAND Command proc	D188; D188 288 cmdr D188 289 pp BF 289 D188; AD 78 06 290 D188; AD 77 292 D192; 90 03 D197; 18 295 cmdq D199; 38 295 cmdq D199; 38 296 cmdq D199; 38 296 cmdq D198; AB D198; A	DIA DIA DIA DIA DIA DIA DIA DIA DIA DIA	DIDE:A9 00 329 DIDE:A9 00 330 DIDE:A9 00 331 DIDE:B9 FA 05 332 DIE:19 07 DIEA 333 DIES:90 7C 05 334 DIES:80 7C 06 335 DIEE:80 7C 06 335 DIEE:80 7C 06 336 DIEE:80 7C 05 338 DIEE:80 7C 05 339 DIEE:80 7C 05 339 DIEE:80 7C 05 340 DI
ial & comm 20-OCT-86 06:41 PAGE 123	;Get number inputted ; skip if 0 ; Update printer width ; BEQ opcode to skip next byte (the PLY) ; Mask off bit we'll change ; Change it ; Back it goes ; Put slot back in x ; (via a cc) ; Good hyee	; Make y point to command reg ; Mask off high three bits ; C	;For 233 ms ;Hait 1 ms ; ((12*82)+11)+2+3=1000us
for serial 6	number cadil, pwdth,y \$F0 * * * flags,y maskl,x maskl,x flags,y	#\$1F \$90 #\$F0 \$cntl,y temp number #\$0E noshift A	
processor	ply lida beq dfb dfb equ equ equ equ equ equ equ equ equ equ		
Command pro	232 233 233 234 235 236 235 237 239 240 241 241 241 242 243 243 244 244 244 244 245 245 245 246 247 247 247 247 247 247 247 247 247 247	250 cmdd 251 cmdd 252 253 cmdd 254 254 256 256 257 257 257 261 261 262 263 263 264 265 266 266 267 267 267 267 271 271 271 271	2/13 2/15 mswait 2/16 msloop 2/7 2/7 2/7 2/8 2/8 2/8 2/8 2/8 2/8 2/8 2/8 2/8 2/8
30 COMMAND	D12F:7A D103:AD 7E 07 D103:BD 05 D103:BD 05 D103:PD 06 D109:D109:D109:D109:D109:D109:D109:D109:	1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1	ES ES ES ES ES ES ES ES ES ES ES ES ES E

20-OCT-86 06:41 PAGE 126	* BASICIN - input from basic * creates +XXXXX, +YYYY, 45s * XXXXX = x position, YYYYY = y position, SS = status - key pressed - labutton pressed * 2 = button just released * 3 = button not pressed * 4 = button not pressed * 4 = button not pressed * 5 = button inst released * 6 = button inst released * 7 = button first released * 8 = button first released * 9 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 2 = button first released * 3 = button first released * 4 = button first released * 5 = button first released * 6 = button first released * 7 = button first released * 7 = button first released * 8 = button first released * 9 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 2 = button first released * 3 = button first released * 4 = button first released * 5 = button first released * 6 = button first released * 7 = button first released * 7 = button first released * 7 = button first released * 7 = button first released * 7 = button first released * 8 = button first released * 9 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 2 = button first released * 3 = button first released * 4 = button first released * 4 = button first released * 4 = button first released * 6 = button first released * 7 = button first released * 7 = button first released * 8 = button first released * 8 = button first released * 8 = button first released * 8 = button first released * 9 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = button first released * 1 = but	<pre>;test the keyboard ;save kbd and int stat for later</pre>	<pre>;no interrupts while getting position ;move x position into the buffer ;convert it</pre>		<pre>;x=0 from last div10 ;x = eol ;cr ;goback</pre>	4) ************************************	<pre>;is it a negative number? ;form two's complement ;c = 1 from compare ;save it</pre>
	* BASICIN - input from basic creates +XXXXX,+YYYYY,+SS * XXXXX = x position, YYYYY - - key pressed 1 = button pressed 2 = button just press 3 = button just relea- 4 - button not press + A - button not press + button not press + A - button not press + A	ksw] kbd A	x.mread #5 mouxh mouxl hextodec	mouyn mouyl hextodec moustat A	A A A A A A A A A A A A A A A A A A A	********** s +000, i w byte of gh byte of sition of	#\$80 hexdec2 #\$FF #0
routines	W - inpu + xxxxx + xxxxx + xxxxx - = key = butt = butt = butt = butt = butt = butt = butt = butt = butt = butt = butt = butt = butt	sta lda asl php			rol and eor inc plp plp ply ply ldx lda sta	x = hi y = po	cpx bcc eor txa eor
mouse BASIC routines	* BASICII * Create * XXXXX				33 33 33 33 33 39 40 41 41 43 43 44 45	HEXTODE inputs:	54 hextodec 55 56 57 57 59 60
Mouse		13 19 20	2 2222 22	888 H R R	335 335 337 337 337 337 337 337 337 337	47 47 50 52 52 53 54 54 54 54 54 54 54 54 54 54 54 54 54	
		8		242	05 C7		D452
31 MBASIC	D400: D400: D400: D400: D400: D400: D400: D400: D400: D400: D400: D400: D400:		D408:78 D40C:20 79 D40C:20 79 D411:AE 7F D414:AD 7E D417:20 41 D417:20 41		D425;2A D428;29 03 D42B;29 03 D42B;49 03 D42B;13 D43B;28 D43B;28 D43B;28 D43B;28 D43B;28 D43B;28 D43B;28 D43B;28 D43B;28 D43B;28 D43B;28 D43B;28 D43B;28	D441: D441: D441: D441: D441: D441:	D441:E0 80 D443:90 DD D445:49 FF D449:48 D448:8A D448:49 FF
serial & comm 20-0cT-86 06:41 PAGE 125	; command routines' lo bytes	I K L W CR XE XD FE FD ME MD TP, SBF, SBF, SFF, SFF, SFF, SFF, SFF, SFF	<pre>;cr (part of cmdlist) ;2-chr commands' first chrs</pre>	**************************************	; save state of aux memory ; and the 80STORE switch ; no 80STORE to get page 1 ; pop in the other half of RAM ; read the desired byte ; and restore memory	;same as DEFIDX in main rom.;Mouse BASIC routines @ 2:C100	
for serial	> ca di -1 > ca di -1	I K 1 \$7F,\$BF,\$1 \$80,\$00,\$4	* IKIN" \$0D "BDPQRSTZ" *	**************************************	rdramrd rd80col clr80col rdcardram \$478,y r.getaltl rdmainram r.getalt2	dfb 3,7 include mbasic ds \$D400-*,0	
				* 17 40 4		9	
Ř	######################################	for: dfb	asc asc asc	ALT is ion is	asl lda lda php sta sta lda plp bcs sta ti bpl	dfb incli ds	
Command processor	344 cadtable equ 345 346 347 348 348 349 351 352 353 353 355 355 355 355 355 355 355	359 * masks for: 360 maskl dfb 361 mask2 dfb	363 cmdlist equasc 364 asc 365 dfb 366 asc 367 cmd2list equasc 368 asc	370 ************************************	375 r.getalt 1da 377 1da 381 1da 378 php 379 sta 380 sta 381 1da 382 php 382 php 383 sta 384 sta 387 r.getalt1 ppl 385 r.getalt1 ppl 385 r.getalt2 rts 387 r.getalt2 rts	389 defidx2 dfb 72 incl 1 ds	

20-CCT-86 06:41 PAGE 128	These routines test all 128K ram. All combinations of soft switches applicable to the //c are tested and verified. In the event of any failure, the diagnostic is halted. A message is written to screen memory indicating the source of the failure. When RAM fails the message is composed of "RAM" [" Indicating failure detected in the first page of RAM] or "RAM" (meaning the failure detected in the first page of RAM) or "RAM" (meaning the bits set to "1". For example, "RAM 0 1 10 0 0 0" indicates that bits 5 and 6 were detected as failing. To represent that bits 5 and 6 were detected as failing. To represent anity memory, a "" symbol is printed preceeding the message. When the MMU or IOU fail, the message is simply "MWU" or "IOU".	The test will run continuously for as long as the Open and Closed * The test will run continuously for as long as the Open and Closed * Apple keys remain depressed (or no keyboard is connected) and no * failures are encountered. The message 'System CK' will appear in * the middle of the screen when a successful cycle has been run and * either of the Apple keys are no longer depressed. Another cycle * may be initiated by pressing both Apple keys again while this * message is on the acreen. To exit diagnostics, Control-Reset * must be pressed without the Apple keys depressed. * GLUIDX EQU \$01 * MANUDX EQU \$01 * STA EXCLE ; text mode off * Text ioudsh ; Disable 100 * sta setan3 ; Double hires off * Test Zero-Page, then all of memory. Report errors when * encountered. Accumulator can be anything on entry. All	39 * Cargisters used, but no stack. Andresses Develor 34000 40 * and \$CFF are mapped to main \$0000 bank. Addresses 41 * between \$C000 and \$CFF are mapped to main \$0000 bank. 41 * between \$C000 and \$CFF are mapped to main \$0000 bank. 42 * TSTZPG
Apple //c Diagnostics	******	17 * The Live Louds of Dailand Switchin Earles) the measury 17 * 19 * Apple keys remain depressed for no keyboard is of 20 * failures are encountered. The message "System Ol 21 * the middle of the screen when a successful cycle 22 * either of the Apple keys are no longer depressed 23 * may be initiated by pressing both Apple keys aga 24 * must be pressed without the Apple keys aga 25 * must be pressed without the Apple keys depressed 25 * must be pressed without the Apple keys depressed 27 * 100 IDX EQU 501 * 20 IOX EQU 501 * 2	39 registers used, but no st. 40 * and \$CFFF are mapped to m. 41 * between \$C000 and \$CFFF a. 43 TST2PG 1dy #\$4 44 1 1dx #0 45 pd clc ntbl,y 47 sta \$00,x 48 hne zpl 50 zp2 clc ntbl,y 51 adc ntbl,y 52 cmp \$90,x 53 hne ZpRROR 54 inx 55 hne ZpRROR 55 cmp \$10,x 55 cmp \$10,x 55 cmp \$10,x 55 cmp \$10,x 55 cmp \$10,x 55 cmp \$10,x 55 cmp \$10,x 55 cmp \$10,x 55 cmp \$10,x 55 cmp \$10,x 55 cmp \$10,x 55 cmp \$10,x 56 cmp \$10,x 57 cmp \$10,x 58 cmp \$10,x 59 cor #\$85
32 BANGER ADD		0482: 170 0482: 170 0482: 180 0482: 280 0482: 280 0482: 280 0482: 280 0482: 280 0482: 280 0482: 0001 28 0482: 0001 28 0482: 0001 28 0482: 0001 33 0482: 0001 33 0482: 0001 33	D497: 339 D497: 40 D497: 41 D497: 41 D497: 42 D497: 43 D498: 18 D480: 92 D4A1: 28 D4A1: 29 D4A1: 29 D4A1: 20 D4A2: 20 D4A2: 20 D4A2: 20 D4A2: 20 D4A2: 20 D4A3: 20 D4
20-OCT-86 06:41 PAGE 127	<pre>;store the number to convert ;store the sign in the buffer ;save the sign ;store a comma after the number ;divide by 10</pre>	ave remainder in a ;16 bits and first time do nothing ;c=0 so first ROL leaves a=0 ;a >= 10? ;branch if < ;c = 1 from compare and is left set ;rake a ascii char ;stop on 0,6,12 ;cet the sion	
mouse BASIC routines 20-CCT-86 06:41 PAGE 127	61 adc #0 62 tax 63 pla 64 secdec2 sta bini ;store the number to convert 65 hexdec2 sta bini ;store the number to convert 66 stx binh ;store the sign in the buffer 67 lda #'+' ;store the sign in the buffer 68 bcc hdps2 lda #'-' ;save the sign in the buffer 69 lda #'-' ;save the sign in the buffer 70 hdpos2 pla #'-' ;save the sign in the buffer 71 lda #'-' ;save the sign in the number 72 sta inbuffl,y ;divide by 10	75 * divide BINH, 1 by 10 and leave remainder in a 77	97 sta inbuf,y 98 rts 73 include banger

20-0CT-86 06:41 PAGE 130).************************************	* Also clears all of the mouse holes * note that low access fires pdlatch & makes mouse happy ***********************************	; Clear status	;Maximum = \$0000 ;Maximum = \$03FF	;clear the mouse holes ;Fall into SERMOU	mode to A	; Hake sure interrupt wector is right	;Only a preserved by moveing	;D0 = 1 if mouse active ;D2 = 1 if vbl active	;If >=\$10 then invalid mode	Extract VBL & Mouse ; Turning it off?	;II Not, Ints active ;Make iou byte C=0	retrupt modes to A ye ye ye ye ye ye ye ye ye ye ye ye ye
Apple //c Diagnostics	e a a a	5 * Also clears all of the mouse holes 6 * note that ion access fires pulstra & makes mouse 7 ************************************	9 i.nitmouse stz moustat 10 ldx #\$80 11 ldx #1	11 xrloop str minxl,x 13 xrloop str minxl,x 14 1da \$5F 15 sta maxxl,x 16 1da \$03 17 sta maxxh,x 18 1da \$03	19 dey 20 bpl 21 jsr 22 lda	24 ************************************	26 x.setmou tax 29 x.setmou tax 29 jsr moweirg ;Make sure interrupt	30 txa 31 sta moutemp	32 lsr A 33 ora moutemp	35 34	36 and 37	39 xsoff adc #\$55	Nuts: A = B Nuts: A = B Nuts: A = B Y int on = X i
33 MOUSEIR/,X	D510: 00F0 D600: D600:	D600: D600: D600:	D600:9C 7F 07 D603:A2 80			D621: D621:	D621: D621:AA D622:20 46 C7	D625:8A D626:8D 78 04		D62F:B0 1F D650	62	D636:69 55	D638: D638:
ZU-CCT-86 U6:41 PAGE 129	;branch to retest with other value ;branch always	;which bits are bad? ;indicate zero page failure	;Off to the rest of it	;Get out of the hooks ;Get junk off of stack			\$BD,\$3B,\$0B,\$6B,\$4B,\$77,\$3E,\$05 \$00,\$05,\$08,\$0C,\$1E,\$53,\$65,\$37 \$1C,\$07,\$0C,\$45,\$62,\$27,\$00,\$17 \$1C,\$07,\$07,\$07,\$15,\$41,\$00	,\$32,\$18,\$02,\$07,\$1D ,\$0C,\$08,\$16,\$53,\$68	\$30,\$06,\$07,\$1B,\$01,\$E3				
\$211	zpl TSTMEM2	\$00°, x	TSTMEM	swzząt2	qtbl,x inbuf,x	swrts2	\$80,538,508 \$00,505,508 \$10,507,500	\$0E, \$45, \$61 \$53, \$68, \$2E	\$30,506,507, ude mousein7.x				
gnost	Par Figure	clc cl		equ pla pla	tax sta		9999						
Apple //c usagnos	62	64 ZPERROR 65	67 TSTMEN2	69 zzma 70 71 73 73	75 76 zzloop 77 78		82 qtb1 83 84 85	86	88 74				
32 BANGER	D4BB:10 E1 D49B D4BA:30 06 D4C2		D4C2:4C C6 C3	D4C5: D4C5: D4C5 D4C5:20 90 C7 D4C8:68 D4C9:7A D4C9:7A	66 188	2. E	D4DA:AD 3B 0A 0B D4E2:00 05 08 0C D4EA:1C 07 0C 45 D4F2:1C 07 07 05	45 61 6A 2B	07				

20-OCT-86 06:41 PAGE 132	;Button bits	122 ***********************************	71 -> 80	No error	143 ************************************				
ន	moustat #\$E0 xrbut2	.re new bounds for Y, 0 for , maxl, maxh =	# \$80	aint ainkl, k ainkh, k azzl, azxl, k azxh, k	* XMISTRY - Checks mouse status bits * Used for user mouse interrupt ************************************	650E moustat nostat2	ds \$D700-*,\$00 include s.execute ds \$D800-*,\$00		
agností	ora and bra	P - Sto S A = 1 I, minh		sta sta sta sta lda sta sta sta	MT - Ch	t pha clc lda and bne sec pla rts	ds inclu ds	1	
Apple //c Diagnostics		XMCLAM Input min	x.nclamp		XMTSTI	K.mtstint nostat2			
Apple	118 119 120	122 + 123 + 124 + 125 + 126 +	128 x 129 130 131	133 134 135 136 137 138 139	143 144 145 146	148 149 150 151 152 153 153 154	157 75 1		
×.	07 D697		2	000000000000000000000000000000000000000		07 D6CC	0032		
33 MOUSEIN7.X	D69C:0D 7F D69F:29 E0 D6AI:80 F4	D6A3: D6A3: D6A3: D6A3: D6A3:	D6A3:6A D6A4:6A D6A5:29 80 D6A7:AA	D6A8:340 78 D6A8:390 70 D6A8:390 70 D6B1:390 70 D6B4:30 70 D6BA:30 70 D6BA:30 70 D6BA:30 70 D6BA:30 70 D6C0:18	D6C2: D6C2: D6C2:	D6C2:18 D6C4:19 D6C4:19 OE D6C4:19 OE D6C9:D0 OI D6CB:38 D6CC:68	D6CE: D700:	•	
20-0CT-86 06:41 PAGE 131	Get a bit to check	; No ctange ii cw, ; Set it ; Any bits left in A? ; Turn off iou access	Sminvalid fits ***********************************	;Point mouse to upper left	Dra xmcdone ***********************************		*XMREAD - Updates the screen holes	; Has mouse moved? ; Clear arm bit ; Lear arm bit ; If D7 = 1 leave buttons alone ; Button pressed? ; Pressed last time? ; Leave button bits alone	
'n	* ×	sinocn iou,x siloop ioudsbl	monse	#\$80 #0 #10 minxl,x mouxl,x minxh,x mouxh,x	xacdone	mouxi mouxh mouyl mouyh mouarm	tes the	#movarm moustat mouarm mouarm mouace moubut xrbut \$\$80 moubut xrbut \$\$40 moustat moustat	
/c Diagnostics	ldx dex asl	sta bhe clc	rts	ldx bra ldx sta sta dex bpl	bra	r corrected to the second seco	- Upda	lda and trb bit bit bit bit ora sta clc rts	
Apple //c Dia	60 61 siloop 62	64 65 sinoch 66 67	Sm:	75 x.mhome 76 xmhloop 78 xmh2 79 881. 81. 83.		90 x.mclear 91 92 93 94 xmcdone 95	98 ******** 99 * XMREAD 100 *******	102 x.mread 103 104 105 105 107 108 110 111 xrbut 111 xrbut 111 xrbut 113 114 xrbut 115 116	
33 MOUSEIN7.X	8 8	D644:90 03 D649 D646:9D 58 C0 D649:DD F7 D642 D64B:8D 78 C0 D64E:28	D650:60 D651: D651: D651:	9999	D666:80 OC D674 D668: D668: D668:	D668:9C 7F 04 D668:9C 7F 05 D671:9C FF 05 D671:9C 7F 05 D677:18	D679; D679; D679;	D679:A9 20 D678:LC 7F 07 D678:LC 7F 06 D681:LC 7F 06 D681:LC 7F 06 D681:LC 7F 07 D681:LC 7F 07 D681:LC 7F 07 D682:LC 30 2 D692:LC 7F 07 D692:LC 7F 07 D693:L	

slinky execution routines 20-OCT-86 06:41 PAGE 134	61 * returns status block for call 0 62 * 1 0 0 0 0 0 0 0 63 ************************************	65 pstat0 66 67 68	70 dey 71 st01p sta 72 dey 73 bne 74 1da 75 sta 76 rts	* PCNTL - control call	os ponta lad partok ; call 85 stbad lada #badetl ; cops 86 sta error 87 pontok rts	* PSTATUS - status call for device 1 call 0,3 supported	94 sl.pstatus 95 96 97 98 99		106 sta 107 dey 108 bpl 109 ldy 110 lda		116 ***********************************
34 S.EXECUTE	D853; D853; D853;	D853:85 47 D855:D0 17 D86E D857:8D F8 05 D858:R0 08		D86A: D86A: D86A:	D86C:F0 05 D873 D86E:A9 21 D870:8D F8 04 D873:60	D674: D674: D674: D874:	D874:39 04 D876:36 47 D878:F0 05 D880 D878:F0 05 D86E D877:59 19	282 5	D88D:91 45 D88F:88 D890:10 F8 D88A D892:AC F8 07 D895:89 B8 03	45 2	D8 9E;
20-0CT-86 06:41 PACE 133	* execution routines. these routines must begin in the same page	**************************************	; save command and hardware index ; clear error flag .do we need to format?	get command ;check parameter count ;if negative, no parm check	sair entry points on same page ;skip around the basic patch ;break handler will correct for this		;invalid command	sentry point in this page sentry point in this page sentry point in this page sentry point in this page	*XSTATUS - ProDOS status call **ASTATUS - ProDOS status call **Astatus ida numbanks.v ;siže = # 64K banks / 2		annennennennennennennennennennennennenne
outines	utines, these	interestates the state of the command in command in command in pluts; a * command is the state of the state o	cremand #445C0 sl.mslot #4*510+\$8 sl.deyno #0	cmand parmtbl,y exec2 pparm pzcnt	exec3 \$d824-*,\$00	cmdtbl,y sl.mslot sl.devno	#badcmd pzcnt2 #badpcnt error	sl.pwrite doscony xdiagz	cobos status cal	A yval #0 xval	status call for device 0
ution r	tion ro	TH - do	sta ldy sty ldx stx lda sta	E de lida	bra ds	pha lda ldy rts	lda bne lda sta rts	dmt 2,	TUS - PI		10 - Sta
slinky execution routines	3 *******	7 ************************************	12 execute 13 14 15 16 17 18		23 exect. 26 28	30 exec3 31 32 33 34 35	37 pzcmd 38 39 pzcnt 40 pzcnt2			53 55 57	59 **********60 * PSTATO
34 S.EXECUTE	D800: D800:	D800: D800: D800:	D800.85.42 D802.80 C4 D804.8C F8 07 D807.8Z C8 D807.8Z C8 D805.8Z 08 D805.RS 07 D805.RS 07 D805.RS 07	328245	D821:80 01 D824 D823: 0001	D824:48 D825:B9 9A C6 D828:48 D829:AC F8 07 D82C:AE 78 07 D82F:60	D830:A9 01 D832:D0 02 D834:A9 04 D836:8D F8 04 D839:60	D83A:4C 80 C5 D83D:4C F7 C5 D840.4C 4F D9 D843:4C 30 DB	D846: D846: D846:		D853:

20-OCT-86 06:41 PAGE 136	174 ************************************		;is it a IN	;are we in DOS; ;0 = Pascal :JMP = ProOOS		<pre>btnodos stz bootbuf+1 ;assume fail ida power2,y;if power up bytes not set, don't boot ;art #83,8</pre>	get power up byte				;go read the block and return	read in block 0 @ \$800	经存储 电影 医神经 医多种 医多种 医多种 医多种 医多种 医多种 医多种 医多种 医多种 医多种	211 * DOSPATCH - patches rwts to jump to us	医医院 医医宫宫 医前 医乳 医医性性 化氯 化硫化 化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化	; JMP opcode		;Y = Cn :patch out init command		noo off return address	ia ia	byen aneime and there	restore real x	
utines	est of the wh, output patch if I	#4+\$CD sl.mslot #4*\$10+\$8	sl.devno sl.mslot	proflag btnodos	dospatch	bootbuf+1 if power u	powerup, y	#\$A5 btfail #3	btcmd, y	buner, y	xread	\$800	***	atches rwts	***	#\$4C rwts	#>dosent4 rwts+1	rwts+2 #>dossyn	dosinit	dosinit+1		2	· Conn	
tion ro	s the r a = ks to DOS	ldy sty ldx	S G St	ped la		stz Mer2,y;	erup, y	on p	[[]	dey bpl	ds tr	3 3		CH - P	***		lda sta	sty 1da	sta 1da	sta	pla	xld.	ply pla	prd
slinky execution routines	174 ******* 175 * here i 176 * input: 177 * jumps 178 *******	180 boot,sl 181 182	183 184	186 187 188	189	191 btnodos 192 ;lda powei 193 :eor #\$#5	194 ; cmp powerup, y	196 197	199 btmv	202 203 303	204 204 205 btfail	207 btcmd		211 * DOSPA	212 ****	214 dospatch 215	216 217	218	220	222	224	226	228 229	230
34 S.EXECUTE	D8EF: D8EF: D8EF: D8EF:	D8EF:A0 C4 D8F1:8C F8 07 D8F4:A2 C8		2882	D905:D0 20 D927	D907:9C 01 08 D90A:	8	D90D:C9 A5 D90F:D0 11 D922	D913:89 23 D9	D916:99 44 00 D919:88 D91A:10 F7 D913	S 8	D923:00 08	200000000000000000000000000000000000000	D927:	D927:	D927:A9 4C D929:8D 00 BD	12 12	D931:8C 02 BD	D936:8D 1E 9D	D93B:8D 1F 9D	D93F;68	5	D941:FE 00 CO D944:FA D945:68	0946:68
20-0CT-86 06:41 PAGE 135	* ProDOS read & write are changed into Protocol converter read block * and write block which are then changed into read & write	;V = 1 for read ;BVC never taken ;V = 0 for write	;move block & buffer pointer	; be careful not to step ; on our own toes		eable most other court alv	Aledan the transfer the transfer the transfer the transfer the transfer transfer the transfer	- Protocol converter block read - Protocol converter block write		;V = 1 for read ;BVC never taken	; convert block into 512 bytes			;if C≈1 then bad address ;third byte must be 0	C at managed the state of the s	count = \$200	fix anx bit in address		;D7 = 1 if aux	- Te - C - C - C - C - C - C - C - C - C -	near on of			
outines	write are (iorts \$50	block+1 pblock+1	block pblock buffer+1	pburr+1 buffer pbuff	#0 pblock+2	Aleduz	tocol conver		iorts \$50	phlock	paddr+1 pblock+1	paddr+2	prbad2 pblock+2	prbad2	pador pcount #2	pcount+1	prdread	#\$80	paddr +2	sl.pwrite	perid	sl.pread	
tion rc	read (ite blo	bit clv	lda	ida Sta	sta Ida sta	st a				g g	ida 1	sta Ida	sta	pcs da	pue	sta sta lda	sta	bvs	and i	sta	S di	È	Qi Di	
slinky execution routines	119 * ProDOS 120 * ProDOS 121 * and Wr. 122 ********	124 xread 125 126 xwrite	128 xrwcmn 129	130 132	134	136 137		141 * PRDBLK 142 * PWRBLK		145 prdblk 146 147 pwrblk	149 xread2	151	154	155 156	157	159	161	163	165 prdread	167	169	Theorem 1	172 prbad3	
CUTE		39 D8	47	47	44 655					39 D8	47	4A 48		1F D8E9	1B D8E9	47	48	:8:	3 8 5		Ve Desc		80 CS	
34 S.EXECUTE	D89E: D89E: D89E: D89E:	D89E:2C : D8A1:50 D8A2:B8				D8B3:A9	>	D8B9:	:6880	D8B9:2C D8BC:50 D8BD:B8	D8BE:A5					D800:85	D8D4:85						D8EC:4C	

```
;bad drive number
;get track & sector
;addr = 00000TIT TITSSSS 00000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ;get pointer to user's buffer
  20-0CT-86 06:41 PAGE 138
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ;4 = format is an error
;1 -> 17 , 2 -> 19
;Y = command
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ;0 = null = do nothing
                                    count = $100 bytes
                                                                                                                                                ;get drive 1 or 2
                                                                                                                                                                                         only 1 valid
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           or in sector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              get command:
                                                                                                                                            ldy fibdryn lda (10bpl), y beg dci lobel dci lobel), y beg dci lobel dci lobel, y list A loor paddr+1 list A loor paddr+1 list A loor paddr+1 list A loor A loor fibd paddr+1 lda paddr+1 lda paddr+1 lda (10bpl), y sta paddr+1 ldy fibbufp lda (10bpl), y lda (10bpl), y lda (10bpl), y lda (10bpl), y beg dcrts and fill (10bpl), y beg dcrts and fill (10bpl), y ldx pooutt ldx paddr lda (10bpl), y beg dcrts and fill (10bpl), y ldx pooutt ldx paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx sta paddr lnx st
  slinky execution routines
                                                                                                                                                doscony
                                                                                                                                            D95A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D94E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            D957
                                                                                                                                         D94F:A0 02
D955:191 48
D955:C0 03
D957:4C 30 D8
D957:4C 30 D8
D957:4C 4A
D957:6C 4A
D967:4C 4A
D967:4C 4A
D967:4C 4A
D967:4C 4A
D967:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
D966:4C 4A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8
34 S.EXECUTE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D975:85 45
D977:C8
D977:C8
D978:B1 48
D976:B1 48
D976:B1 48
D980:F0 CC
D981:29 03
D984:F0 D1
D986:D9 11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D989:A2 00
D98B:86 47
D98D:86 49
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            48 84 49
45 48 48
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            D96F:85
```

20-0CT-86 06:41 PAGE 137

slinky execution routines

34 S.EXECUTE

return a control-X switch rom bank and return

#0 #\$98 SWTts2

ag g

232

D947:A2 00 D949:A9 98 D94B:4C 84 C7 rts

236 derts

D94E:60

20-OCT-86 06:41 PAGE 140	#Mat type of catalog? #Da ProDOS catalog #ProDOS catalo
slinky miscellaneous routines	60 jsr testsize 61 plp findone 62 bdq fintdone 63 bdq fintdone 64 fingas 65 cm fingas 66 cm findas 68 jsr makecat 68 jsr makecat 71 fingmap2 sta data,x 73 dey fingmap2 74 bne fingmap2 75 fintdone rts fingmap1 77 fintdone rts fingmap1 78 bo a Pascal catalog 88 in askecat 88 in askecat 88 in askecat 89 sta addri,x 99 cm findmap 94 ind findmap 95 cm find findmap 95 cm fintdone 96 fintdone sta addri,x 97 cm fintdone 97 fintdone 98 sta addri,x 99 sta addri,x 99 sta addri,x 91 ddy fiste 99 sta addri,x 91 ddy fiste 96 fintdone 96 fintdone 97 fintdone 97 fintdone 98 fintdone 99 sta addri,x 91 ddy fiste 99 sta addri,x 91 ddy fiste 96 fintdone 96 fintdone 97 fintdone 97 fintdone 98 fintdone 99 fintdone 99 fintdone 90 fintdone 90 fintdone 90 fintdone 91 fintdone 91 fintdone 92 fintdone 93 fint 94 fiste 96 data,x 96 det 96 fintdone 97 fintdone 98 fintdone 99 fintdone 99 fintlone 90 fintlone 90 fintlone 90 fintlone 90 fintlone 90 fintlone 91 fintlone 91 fintlone 91 fintlone 92 fintlone 93 fintlone 94 fintlone 95 fintlone 96 fintlone 97 fintlone 97 fintlone 98 fintlone 99 fintlone 90
35 S.MAKECAT	D925.20 95 D9 D926.28 D926.28 D926.28 D927.20 D BF D927.30 D BF D927.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D D D977.30 D
slinky miscellaneous routines 20-CCT-86 06:41 PAGE 139	3 *TENTER.** 3 *TENTER.** 4 *TENTER.** 5 *** 5 *** 6 *** 6 *** 6 *** 7 *** 1 ** 1 *** 1 *** 1 *** 1 ** 1
35 S.MAKECAT	0.995; 0.995; 0.995; 0.995; 0.995; 0.995; 0.995; 0.997; 0.

20-OCT-86 06:41 PAGE 142	163 ************************************	Prevoius pointer Next block Storage type Mumber of blocks Block 3 \$600	## ## ## ## ## ## ## ## ## ## ## ## ##
eous routines	g tables es contain the c e so clever it p g ank: byte is the ban kypn 0s fill rest of pag = All done ill SFE 0s ireplace with as replace with as	"-cattbl-1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
slinky miscellaneous routines	163 ************************************	179 procat equ 181 dw 182 dw 182 db 182 lb 183 asc 184 db 186 db 187 dw 188 dw 189 db 199 db 199 db 193 dw 193 dw 193 dw 193 dw 194 db 194 db 194 db 194 db 194 db 195 dw	doscat
35 S.MAKECAT	DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7: DAA7:	DAA7; DAA7:00 00 DAA9:03 00 DAA8:14 DAAC:52 41 4D DAAC:52 41 4D DAAC:52 27 0D DAB2:C3 27 0D DAB5:C0 00 DAB5:C0 00 DAB5:C0 00 DAB5:C0 00 DAB5:C0 00 DAB5:C0 00 DAB5:C0 00 DAB5:C0 00 DAB5:C0 00 DAB5:C0 00 DAB5:C0 00 DAB5:C0 00 DAC5:CF FF DAC5:CF FF DAC5:CF FF DAC5:CF FF DAC5:CF FF	DACE:05 00 DACE:05 00 DACE:05 00 DACE:07 00 DACE:07 00 DACE:07 02 DADA:07 00 DADA:07 00 DADA:07 00 DADA:07 00 DADA:07 00 DADE:07 00
20-0CT-86 06:41 PAGE 141	log tables ************************************	Get next byte from the table ; Zeros flag? ; Feros; Seros; Slock size? ; Get <* blocks Better not be 0 ; Slot * for name? ; Gct \$Cn	Get # Peros ; Save count ; Save count ; Save count Store a 0 ; Finish off current page ; Get new address ; If 0, all done
.,	.***** og atalog atalog .***** ; Fi ; St ; Lo ; Lo	Get next b ; Get next b ; Feros fla ; FEE zeros? ; Block size ; Get <# blo ; Better not ; Slot # for ; Get \$Cn ; Get \$Cn ; Get \$Cn ; Get \$Cn ; Get \$Cn ; Got onext	;Get # zeros ;If 0, it's an a ;Save count ;Always taken ;Store a 0 ;Finish off curr ;Get new address ;If 0, all done
	Creates a catalog = index into catalog ***********************************	cattbl,y fzers mc0 fskpfe mcfe fsizefig mcnts sizetemp mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta	cattbl,y mcadd #0 data,x #1 mcfe mcyte data,x addr1,x mcadd2 cattbl,y mcone addrm,x cattbl,y addrh,x mcbyte
slinky miscellaneous routines	* MAXECAT - Creates a catalog * Inputs: X = index into cata ** inputs: X = index into cata ***********************************	cattbl,y fzers mc0 fskpfe mcfe fsizefig mcnts sizetemp mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta fnamefig mcntta	med 11y mefe pha cattbl, y beq meadd sta data, x pla sec spc 11 bne mefe bne mefe bne medd iny addi, x iny addi, x beq medone sta data, x iny addi, x iny addi, x iny addi, x iny addin, x iny iny lda cattbl, y sta addin, x iny inda cattbl, y sta addin, x iny inda cattbl, y sta addin, x iny inda cattbl, y sta addin, x iny inda cattbl, y sta addin, x iny inda cattbl, y sta addin, x iny inda cattbl, y sta addin, x iny iny inda cattbl, y sta addin, x iny iny inda cattbl, y sta addin, x iny iny inda cattbl, y sta addin, x iny inda cattbl, y sta addin, x iny inda cattbl, y sta addin, x iny iny iny iny iny iny iny in

36 S.DIAGO.SRC slinky miscellaneous routines 20-OCT-86 06:41 PAGE 144		00 22 13 sta 00 0F 14 1da 00 23 15 sta 16 ins 18 07 18 1dx 18 07 18 1dx 17 19 1da 18 20 pha FF 21 1da	DBS6: 24 ***********************************	DC00: 2 **********************************
20-OCT-86 06:41 PAGE 143		Rers,0,520,502; Jeave pointing at VTOC rers,0,0 ;All done -cattbl-1 ,0 sers,3 RAW namefig		
s routines	\$11, \$04, \$xpfe \$11, \$05, \$xpfe \$11, \$05, \$xpfe \$11, \$06, \$xpfe \$11, \$09, \$xpfe \$11, \$09, \$xpfe \$11, \$09, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe \$11, \$08, \$xpfe	zers,0,520,502 zers,0,00 -cattbl-1 0,0 zers,3 zers,3 mameflg	ifb zers,4 lifb sizeElg lifb zers,0,0 Include s.diag0.src	
llaneou	444444444		dfb dfb dfb includ	
slinky miscellaneous routines	221 222 224 225 225 226 227 230 230	232 233 233 235 pascat 236 238 239 240	242 243 77	

DB20: 00
DB22:00
DB22:06
DB23:EP 03
DB25:64
DB25:64
DB25:85
DB25:A1 4D
DB25:A2 41 4D
DB25:A2 40
DB25:A2 04
DB27:FD 04
DB27:FC
DB27:FC
DB37:FC

35 S.MAKECAT

DAPR:11 04 FE
DAPR:11 05 FE
DARE:11 06 FE
DB01:11 07 FE
DB04:11 08 FE
DB07:11 09 FE
DB07:11 09 FE
DB107:11 09 FE
DB107:11 00 FE
DB107:11 00 FE
DB107:11 00 FE
DB107:10 00 FE
DB107:10 00 FE
DB107:10 00 FE
DB107:10 00 FE
DB107:10 00 FE

	CFRC CONTRIL FDFG CROUIL FDFG CROUIL FDFG CROUIL FDFG CROUIL FDFG CROUIL FDFG CROUIL FDFG CROUIL FDFG CROUIL FDFG DEFE FDFG FDFG FDFG FDFG FDFG FDFG FDFG FDFG
	C200 COMSLOT FDED COUT FCG CR 37 CS CR 37 CS CR 37 CS CR 37 CS CR 37 CS CR 37 CS CR 5015 CTLCAD CD15 CTLCAD CD15 CTLCAD CD15 CTLCAD CD16 CTLCAD CD16 CTLCAD CD17 CTLCAD CD20 DIAGOSST D0AD DIGLOOP CBC2 DOCLA CBC2 DOCLA CBC2 DOCLA CBC2 DOCLA CBC2 DOCLA CBC2 DOCLA CBC2 DOCLA CBC2 DOCLA CBC2 DOCLA CBC2 DOCLA CBC3 EXCLAD CBC3 EXCLAD CBC3 EXCLAD CBC3 EXCLAD CCC3 EXCLAD CCC3 EXCLAD CCC3 EXCLAD CCC3 EXCLAD CCC3 EXCLAD CCC3 EXCLAD CCC3 CBCAL CCC3
	C24C COMOUT C238 COPTROM C238 COPTROM C238 CADTI FC05 CREEK CD5 CTLCO10 CD95 CTLCO10 CD95 CTLCO10 CD95 CTLCO10 CD95 CTLCO10 CD95 CTLCO10 CD95 CTLCO10 CD95 CTLCO10 CD95 CTLCO10 CD95 CTLCO10 CD95 CTLCO10 C112 CMOVUED C009 DENIBI C009 DENIBI C009 DENIBI C009 DENIBI C009 DENIBI C009 DENIBI C009 DENIBI C009 DENIBI C009 DENIBI C009 DENIBI C009 DENIBI C009 DENIBI C009 DENIBI C000 CTLCO10 CECCAR C000 CECAR C000 CECCAR C000 CECCAR C000 CECCAR C000 CECCAR C000 CECCAR
	C246 COMPORT C248 COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE COUTZ FDBE DATAOUTZ D94B ENTESTE C142 DEWOOZ 1FFP DIAGETRA C142 DEWOOZ 1FFP DIAGETRA C142 DEWOOZ 1FFP DIAGETRA C142 DEWOOZ 1FFP DIAGETRA C142 DEWOOZ 1FFP DIAGETRA C142 DEWOOZ 1FFP DIAGETRA C142 DEWOOZ 1FFP DIAGETRA C143 DEWOOZ 1FFP DIAGETRA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 DATA C144 CATA C145 CATA C144 CATA C1
_	
	## A PPCRTS ## A A A B A B A B A B A B B A B B B B B
	### AIPCLP ### AIPCLP ### AAL ### AAL ### AAL ### ADOBH ### ADOBH ### ADOBH ### ADONANCE ### ADOBH ### ADONANCE ### ADOBH ### ADONANCE ### ADOBH ### ADOBH ### ADONANCE ### ADOBH ### ACONA ###
	3C ALL 3F A2H 45 ACC C184 ACIAINT 45 ACC C184 ACIAINT FDD1 ADD FREE ADVZ C208 ALTSTZ C208 ALTSTZ C208 ALTSTZ C208 ALTSTZ C208 ALTSTZ C307 AMO03 CA29 AMO03 CA29 AMO03 CA29 AMO03 CA29 BADELI D08F BACKTOI 21 BANGTH C6A2 BADRI C7CI BANGER FEBO BASICLEZ C317 BASICLINIT 28 BASIL FEBO BASICLEZ C317 BASICLINIT CASI BASIC CASI BUST CASI BUST CASI BUST CASI BUST CASI BUST CASI FCG CASI FCG CONINTI FCG CONINTI FCG CONINTI FCG CONINTI FCG CONINTI FCG CONINTI FCG CONINTI FCG CONINTI

F88E INSDS2

2 27 1010X

2 27 1010X

2 27 1010X

2 27 1010X

2 28 1010

C810 INQ

C810 INQ

C811 INQ

C825 INQ

C825 INQ

C825 INQ

C825 INQ

C825 INC

C826 INQ

C826 INQ

C826 INQ

C826 INQ

C826 INQ

C826 INQ

C826 INC

C826 INC

C826 INC

C826 INC

C826 INC

C826 INC

C826 INC

C826 INC

C826 INC

C626 INC

C626 INC

C626 INC

C637 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638 INC

C638

64
PCAD5 KTWAPP PREF RYS2B PFCES RYS4C PFCES RYS4C EX66 SCR3 CES6 SCR3 CES6 SCR3 CES6 SCR3 CES7 CES7 CES7 CES7 CES5 SCR0AL CON SERSIOT CON SERSIOT CES7 CES7 CES7 CES7 CES7 CES5 CES
2D RTNH P831 RTS1 PETC RTS3 PETC RTS3 PETC RTS3 PETC RTS3 PETC RTS3 PETC RTS3 PETC RTS3 PETC RTS3 PETC RTS3 PETC RTS3 PETC RTS4 PETS SCRL PETS SCR
2C RTML 2C RTML 2C RTML 2C RTML 2C RTML 2CR M32B 2FF4C SAV1 CESS SCRI CESS S
E80C KTWASK CAD9 KTNJPE2 P561 KT52 P7C34 KT54 BD00 RKT54 BD00 RKT54 BD00 RKT5 BSD00 RKT5 SCRILEVEN F879 SCRILEVEN F870 SCRILEVEN F879 SCRILEVEN F879 SCRILEVEN F870 SCRILEV

20-0CT-86 06:41 PAGE 152	C37B ROWOK C393 WOVERET C399 UPSHIFTO C3AZ KFERCZM C3CO KFERAZP C3DO MENI PC3F2 STORE3
20	C371 NOREAD C384 C03 C384 C03 C386 GETALT2 C386 STORCH C3C6 TSTMEM C3EE STORE2
SS	

20-0CT-8	
20	C000 K3D C004 REMATINAM C006 REMATINAM C010 KBDSTRB C014 BDRAMERT C018 ROBOSTRB C018 ROBOSTR C018 ROBOSTR C018 ROBOST C018 ROBOST C019 SETANZ C019 SETANZ C010 SETANZ C010 BUTNO C010 SETANZ C011 REPRI C112 CYMCVED C140 FIXCH C124 CYMCVED C140 FIXCH C124 CYMCVED C140 FIXCH C124 CYMCVED C132 SETON C134 CYMCVED C134 CYMCVED C135 ROBOST C136 AITST C136 AITST C136 AITST C136 AITST C137 ROBOST C210 AINOFISE C220 AINORED C226 CEPTAT C227 SEROUT C227 SEROUT C227 SEROUT C227 SEROUT C227 SEROUT C228 CEPTAT C226 CEPTAT C237 SEROUT C237 SEROUT C237 SEROUT C237 SEROUT C237 SEROUT C237 SEROUT C237 SEROUT C237 SEROUT C237 SEROUT C237 SEROUT C237 SEROUT C238 CEPTAT C331 PASICINIT C332 DERRITE C332 GENTRI C331 MONEAD C338 CONNOR C334 GONNOR C336 GENTRI C336 GENTRI C337 MONEAD C338 GENTCOUT
SORTED BY ADDRESS	C000 10AD/R C003 BDCARDRAM C003 BDCARDRAM C013 BDRAMED C013 BDRAMED C014 BDCLIA C015 BDRAMED C015 BDRAMED C016 BDCLIA C016 BDCLIA C017 BDRAME C018 BDRAME C018 BDRAME C018 BDRAME C018 BDRAME C018 BDRAME C018 BRANC C110 BOUSEINT C111 BOUSEINT
37 SYMBOL TABLE	C000 CLR8 GCOL C002 RDPG.HRAM C002 RDPG.HRAM C012 RDLCRAM C013 RDLCRAM C014 RDALTAP C015 RDLTAP C015 RDLTAP C015 RDLTAP C015 RDLTAP C015 RTANI C056 LORES C056 LORES C056 LORES C056 LORES C056 LORES C056 LORES C056 LORES C056 LORES C056 LORES C056 LORES C056 LORES C056 LORES C057 RDLTAP C118 CWOVEL C118 CWOVEL C118 CWOVEL C118 CWOVEL C118 CWOVEL C118 CWOVEL C118 CWOVEL C118 CWOVEL C118 CWOVEL C120 CRANT C130 CROC C121 SETUP C121 CONTO C121 RDLTAP C121 RDLTAP C121 RDLTAP C122 SUNODE C221 SERVI C221 SERVI C221 SORT C221 SORT C221 SORT C221 SORT C221 GETUR C232 GETURA C335 APSTAT C336 GETURA C336 GETURA C336 GETURA C338 MCTI C338 MCTI C338 MCTI C338 MCTI C338 MCTI C338 MCTI C338 MCTI C338 MCTI C339 GETALT C338 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348 MCTI C348
20-OCT-86 06:41 PAGE 15	2 01 PROREAD 02 I BROKEAD 04 IBRINN 04 IM.WODE 08 M.COXT 08 M.COXT 08 A.COXT 08 A.COXT 09 CERRCR 11 PCEEVAUM 2 D D CHARCR 12 FOREWOUND 2 I MUDER 2 S TO TEST 2 I MUNICT 2 S INDER 2 S INDER 2 S INDER 2 S INDER 2 S INDER 2 S INDER 2 S INDER 3 S INDER 3 S INDER 3 S INDER 4 S STATUS 4 S STRUCT 4 S INDER 4 S STATUS 4 S STRUCT 4 S INDER 6 S
-02	2 00 PROSTAT 01 M.MOUSE 2 03 RROTORM 2 04 SLOT 0009 1001DX 001 IBSTAT 001 IGUIDX 00
SORTED BY ADDRESS	2 00 BOOTBLK 0011 MOTOR 01 LOCTI 00 BOOTBLK 02 MOVODE 08 IBBUPCNT 06 GOODPS 08 IBBUPCNT 14 CTINNIT 14 CTINNIT 14 CTINNIT 14 CTINNIT 14 CTINNIT 14 CTINNIT 15 CBASE 29 BASE 29 BASE 22 BASE 22 BASE 22 BASE 22 BASE 22 BASE 22 BASE 22 BASE 24 AAB 26 BADELK 21 MODE 35 KARB 36 KARB 37 KAB 47 PODUR 48 BADELK 48 BADELK 56 B
37 SYMBOL TABLE	10 LOCO 11 BADCMD 11 BADCMD 11 BADCMD 11 BADCMD 11 BADCMD 12 OZ PROWRIT 10 STANTINGDE 10 STRECT

C955 REL C970 WOVINST C976 GETOP C929 RER2 C925 GERR2 C329 ANOD7 C329 ANOD7 C329 ANOD7 C329 ANOD7 C320 C325 C325 C325 C325 C327 C326 C327 C326 C327 C327 C327 C328 SSTUPT C328 SSTUPT C328 SSTUPT C328 SSTUPT C328 C327 C320 C320 C321 C327 C321 C327 C321 C327 C322 C327 C323 C327 C324 C327 C326 C327 C326 C327 C326 C327 C327 C328 SSTU C320 C327 C321 C327 C321 C327 C321 C327 C322 C327 C322 C327 C323 SSTUPT C320 C327 C321 C327 C321 C327 C322 C327 C32 SSTU C320 C327 C321 C327 C321 C327 C321 C327 C322 C327 C323 C327 C324 WOVE C320 C327 C325 SSTU C320 C327 C327 C327 C327 C327 C327 C327 C327
COSAF ANOD 6 COSAF AND 6 COSAF AND 6 COSAF CATLI CANO KUTHNI CANO CONDI DOBE COMINITI DOBE COMINI
C944 MOD5 C948 RELD C983 DISLIN C983 DISLIN C983 DISLIN C983 DISLIN C983 DISLIN C984 NATCH C4A6 AQINIT CAA6 AGINIT CAA6 AQINIT CAA6 AGINIT CAA6 AGINIT CAA6 AGINIT CAA6 AGINIT CAA6 AGINIT CAA6 AGINIT CAA6 AGINIT CAA6 AGINIT CAA6 AGINIT CAA6 AGINIT CAA6 AGINIT CAA7 PARIL CAA7 PA
C93C AMOD3 C93C AMOD3 C93C AMOD3 C93B DELLI C972 MOD1N C938 DACOR CA38 AMOD8 CA38 AMOD8 CA38 AMOD8 CA38 AMOD8 CA38 AMOD8 CA39 CAMPAT CA39 AMOD8 CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CA39 CAMPAT CC39 CETCURK CC30 CCTCA CC30 CCTCA CC30 CCTCA CC30 CCCA
C3F9 STORES C479 STORES C43 HERAT C431 HERAT C431 HERAT C448 HTOK4,3 C46E DOUT C46E DOUT C46E DOUT C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C49 PCCMP4 C478 SHTSTZ C48 BWATHL C56C SPMATHL C56C SPMATHL C56C SPMATHL C56C SPMATHL C56C SPMATHL C56C SPMATHL C56C SPMATHL C56C SPMATHL C56C SPMATHL C56C SPMATHL C56C SPMATHL C56C SPMATHL C66T PRETTY C700 PRETTY C700 PRETTY C700 SPMETTY
C426 BOX74
STORE 4 C3F9 BOOT4 C412 BOOT4 C412 BENN C412 BENN C413 BATTS C413 BATTS C413 BATTS C413 BATTS C413 BATTS C413 BATTS C413 BATTS C413 BATTS C413 BATTS C413 SATTS C413 SATTS C413 SATTS C413 SATTS C413 SATTS C413 SATTS C413 SATTS C413 SATTS C413 SATTS C413 SATTS C413 SATTS C413 SATTS C413 SATTS C413 BADDI C513 SATTS C514 BADDI C515 BADDI

20-0CI-86 06:41 PAGE 156	FBEF RTS2B			_	_	_				FCBA NXTA1	FCD0 BLAST	FD0C RDKEY	?FD25 GOTKEY	?FD45 NOESC1	FD62 CANCEL				FDC6 XAMPM			FE2C MOVE				FESD INPRT		FEBS BASCONT	FEES DECKE	-	•		_	_		FFFF PROCAT
20-α	FRE4 BELL2		FC30 VTAB40		FCSD CLREOP1	_	_	FC9C CLREOL	_	_	_	_	_						PEDCS RIS4C	_		_		FE71 STEP2	FE80 SETINV	PESB INPORT	FE9/ OUTER	FEBU XBASIC	rene toppart							FFFE IROVECT
SORTED BY ADDRESS	PERFA ADVANCE	• -	-	_				FC99 NEMC1	_					FD38 LOOKPICK	FD4D NOTCR	PEDGA CETLN	FD84 ADDING	FD96 PRYX2	FDB6 DATAOUT	FDF0 COUT!		FE20 LT	FE58 VFYOR	FE6F TRACE	FE7F AIPCRIS			FEAB IOPRIZ								FFE3 SUBTRI
37 SYMBOL TABLE	FRD9 CHKBELL		FC22 VTAB			FC66 IF	PC85 CRRTS	FC90 NEMCIEOLZ	FCAO CLRLIN	FCAA WAIT3	FCC8 RTS4B	FCE6 COM1	PED18 KEYINO	PED35 ROCHAR	FD4A NOESC2	FD67 GETLINZ					FE04 BLANK	FEID SETMDZ	FE36 VERIFY	FE6C MINI	FE78 AIPCLP	FESS SETIFIC	FE93 SETVID	FEA! NOTPRIO	SECO SOLUTION	DOLL BASE	PPF6 CPMON	PFF2D PRERR	FF4A SAVE		FFA7 GETNUM	FFCC CHRTBL

37 SYMBOL TABLE SORTED BY ADDRESS	FRD CHGELL TERD BELLI FRD STORADY TER4 ADVANCE FREW STORADY TER4 ADVANCE FREW STORADY TO THE ADVANCE FREW STORADY TO THE ADVANCE FROM GLEDPI FCS REWOFE FCS GLEDPI FCS REWOFE FCS GLEDPI FCS REWOFE FCS GLEDPI FCS REWOFE FCS CREST FCS REWOFE FCS CREST FCS REWOFE FCS CREST FCS REWOFE FCS CREST FCS REWOFE FCS CREST FCS REWOFE FCS CREST FCS REWOFE FCS CREST FCS FCS REWOFE FCS CREST FCS
20-0CT-86 06:41 PAGE 155	D179 KSLOOP D199 CHOT D199 CHOT D199 CHOT D199 CHOT D199 CHOT D199 CHOT D191 CHOLST D246 CETALIZ2 D441 HEXTODEC D469 DVI 01.00P D469 DVI 01.00
	D177 MSRALT D197 CMOD D197 CMOD D197 CMOD D197 CMOD D197 CMOD D197 CMOD D197 CMOD D197 CMOD D48 UTINBUT D48 D1ACS D487 ZP.3 D488 D1ACS D487 ZP.3 D488 D1ACS D487 ZP.3 D488 D1ACS D487 ZP.3 D488 D1ACS D487 ZP.3 D488 D1ACS D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D697 XETMOJ D698 PREJ D698 PREJ D698 WT.NE P698 PLOTI P698 PLOTI P698 PLOTI P698 PLOTI P698 PLOTI P698 PLOJ P698 PLOJ P698 PLOJ P698 PLOJ P698 PLOJ P698 PREJ P698 PR
SORTED BY ADDRESS	D16C CMDS D18 CMDR D18 CMDR D18 CMDR D18 CMDR D18 CMSX1 D202 MASX1 D202 MASX1 D202 MASX1 D400 BASX1 D400 BASX1 D401 BASX1 D402 BASX1 D405 E EDPOSS D405 E EDPOSS D405 E EDPOSS D405 E EDPOSS D405 E EDPOSS D605 E E
37 SYMBOL TABLE	D166 NOSHET D183 CMD2 D180 CMD2 D180 CMD2 D180 CMD2 D180 CMD2 D247 DEFEND D247 DEFEND D247 DEFEND D452 BEXDEC2 D452 BEXDEC2 D460 I.NITMONE D653 K.MIDD D651 K.MIGME D661 K.MIGME D661 K.MIGME D661 K.MIGME D662 EXCUTE D663 PRINTE2 D660 EXCUTE D663 PRINTE2 D660 EXCUTE D661 K.MIGME D662 EXCUTE D663 PRINTE2 D663 PRINTE2 D663 PRINTE2 D664 KREAD D674 CMCOT D674 CMCOT D674 CMCOT D674 CMCOT D675 PRINTE2 D676 DECON D675 PRINTE2 D676 DECON D676 PRINTE2 D676 DECON D676 PRINTE2 D776 CLINE1 EF00 PLOT FREC CLINE1 FF00 DIACCODE FREC CLINE1 FF00 DIACCODE FREC CLINE1 FF00 DIACCODE FREC CLINE1 FF00 DIACCODE FREC CLINE1 FF00 DIACCODE FREC CLINE1 FF00 DIACCODE FREC CLINE1 FF00 DIACCODE FREC CLINE1 FF00 DIACCODE FREC CLINE1 FF00 DIACCODE FREC CLINE1 FF00 DIACCODE FREC CLINE1 FF01 DIACCODE FF02 CLINE1 FF03 DIACCODE FF03 CLINE1 FF03 DIACCODE FF04 CHARZ FF04 CHARZ FF04 CHARZ FF04 CHARZ FF04 CHARZ FF04 CHARZ FF04 CHARZ FF05 CHARZ FF07 CH

;v1.0.1

equ \$101 x6502 MSB ON

SOURCE FILE #01 =>PC
INCLUDE FILE #02 =>PC.EQUATES
INCLUDE FILE #03 =>PC.EQUATES
INCLUDE FILE #04 =>PC.EQUATE
INCLUDE FILE #04 =>PC.EACKET
INCLUDE FILE #06 =>PC.CREAD
INCLUDE FILE #06 =>PC.CREAD
INCLUDE FILE #07 =>PC.ANIN
0000: 0101 1 version eq
0000: 3 NS

on, vsym, asym

lst

:0000

89 * 10 Apr 86 RC removed reference to AppleTalk 90 * 10 Apr 86 RC forgot to add hi byte of auxptr in 91 * 0 Apr 86 RC returns write protect from old Lira 92 * 10 Apr 86 RC returns write protect from old Lira 93 * *** 10 Apr 86 PC PRIPARE WIPSTON 10 1	93 *** In Agr on NC. Remember Vassion 1.0.1 94 * RC v1.0.1 is to be used with Tiger only ** 95 *********************************	A DO TO THE STATE OF	C500 98 org \$C500 99 include pc.equates																
		***	C500:		* * *		* * *	* *	* * *	* * *		* * *	* * 4	k 44 4	* * *	* *	* * *	* *	* *
on History:	A ACTION 1 RELEASE VERSION 0.02 (Sony) Added //c support: General conditional assembly overhead	BELER				A RELEASE VERSION 1.00A (alpha) A RELEASE VERSION 1.00A (alpha)			Hard reset time to 40 ms Pass *parms instead of unit* and no chk Init code (all reset vs. comm reset)	Add 2 bytes to pass a full 9 byte cmd 1 Flx bytecount on retries Boot block must be \$800=\$01 \$80125\$00			//c delay of 100 ms on initial AssignID ID bytes changed	Retransmit implemented (Recrack) Add send data packet retries (5)			Eight bytes are returned on stat unit#0 Stat Unit#0 scode<>0 is rejected V and V oct to AAAO on status unit#0	A did i Set to book on status mittar Enable interrupts done correctly Add unit#O parameter count checking	. – –
on History:	MSA MSA		MSA		MSA	MSA MSA MSA		MSA		MSA	MSA	MSA				MSA			MSA
*	Dec 84 Jan 85	Jan			Jan 85	Feb 85 Feb 85		Mar 85		Mar 85	Mar 85	Mar 85			Mar	Mar 85 Apr 85			Apr 85 May 85
# #	E 22	16		23	30	28		90		16	17	20			24	25			22
* * * * *		* * * * *	. * * * *		* * *	* * *	* * *	* *	* * *	* * *	: 4c +		* *	* * -	* * *	* *	* * *	. * *	* * *
33 33 34 34	*******	42 42 43		52 49	1 1 W A	2000	- 00 00 0	2 m c	CJ W LD	- C	000	2 - 5	(2)	ຜາທາເ	~ თ. თ	0 -	22 22 3	322	2 2

20-OCT-86 06:29 PAGE 6	follows: //c 4478 \$478 \$578 \$578 \$578 \$578 \$578 \$578 \$78 \$
	s as 2000
UATES Equates	CFF 6
02 PC.EQUATES	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
20-OCT-86 06:29 PAGE 5	ProbOS attributes byte ; ProbOS parameter passing area ; ProbOS parameter passing area ; ProbOS parameter passing area ; Current target unit
ATES Equates	008F 3 PDIDByte equ \$BF 0000 5 ********************************
02 PC.EQUATES	C500: C500:

20-CCT-86 06:29 PAGE 8	The soft error bit in statbyte	ive ; Send a command pack 3000 times (3 sec) ; Data Packs get trled only 5 times space
	\$20 \$20 \$40 \$40 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$5	equ \$01 equ \$01 equ \$01 equ \$01 equ \$10 equ \$11 equ \$12 equ \$22 equ \$22 equ \$23 equ \$23 equ \$28 equ \$300
	Se	include
Equates	176 csumerr equ 177 hopatkend equ 179 hoshog equ 179 t Command Codes 181 c Command Codes 181 StatusCmd equ 182 StatusCmd equ 183 ReadCmd equ 185 PormatCmd equ 186 ControlCmd equ 187 initcmd equ 187 initcmd equ 189 fontrol	191 * 191 *
VIES	0010 0020 0040 0040 0000 0000 0003 0004 0004	0001 0001 0001 0001 0002 0002 0002 0002
02 PC.EQUATES	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
20-OCT-86 06:29 PAGE 7	;Powerup Byte Base Value ;Powerup Byte Complement Value	; (.55 ms) T/O on /BSY after send ; (.12 ms) T/O on /BSY after send ; 30 bytes stat mark timeout ; Command packet length ; Mark at beginning of packet mark ; Command packet identifier ; Status Packet identifier ; Status Packet identifier ; But imer, asynch, latch ; Get Device Specific Status ; Get Device Specific Status ; Get Device Device lnfo Block ; Get Device Info Block ; Get Device Info Block
Equates	•	13. baytol equ 50 8. 134 bayto2 equ 10 8. 134 bayto2 equ 10 9. 136 cmdlangth equ 30 13. 137 packethed equ 9CB 13. 137 packethed equ 9CB 13. 137 packethed equ 9CB 14. 40 statnark equ 881 14. 3 immode equ 9CB 14. 3 immode equ 11 14. 5CBetDE equ 1 14. 5CBetDE equ 1 15. 14. 5CBetDE equ 1 16. 15. 14. 5CBetDE equ 1 17. 13. 15m equ 1 18. 15C caclor equ 1 imm+0 19. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15
PC.EQUATES	0000 0000 0000	00032 00018 00018 00018 0002 0003 0003 0003 0003 0003 0003 000
02 PC	5500 5500 5500 5500 5500 5500 5500 550	

20-CCT-86 06:29 PAGE 10		;Copy a command table ck zero	y ;If fail, check loc ;If (\$800)⇔l this is no A// boot disk	;If \$801 is zero, no boot sil sero, no boot Jump to the code with NO in X.	;Jump to it	No this was an autoboot can't be done. If this was an autoboot (loc-\$CN00), continue the slot scan. If not, drop into basic after issuing appropriate message offail ldx {>Dmsglen-1	,He's dead Jim.
ıest	x slot x slot a #\$C5 m MSlot r reset	boottab,y condcode,y l condcode,y l bcl read from blc	ProDOSEntry bootfail \$800 bootfail	t \$801 bootfail s okay. Jump	Slot a a a a soft	e if the boot s an autoboot op into basic **>bmsglen-1	bootmsg,x bootscrn,x morchrs
Service Boot Request	2 * 3 Bootcode equ 4 stx 5 * 5 * lda 6 1da 7 sta 9 *	10 1dy #5 ;CO ₃ 111 bcl 1da boottab,y 12 sta cmdcode,y 13 dey 14 bpl bcl 15 * Now do the read from block zero	18 jsr 19 bcs 20 * 1dx 21 1dx 22 dex 22 dex	24	30 Ida 31 asl 32 asl 33 asl 34 asl 35 tax 37 t	* * * * &	44 morchrs 1da 45 sta 46 dex 47 bpl 48 coma bra
04 PC.BOOT	C523: C523 C523:86 58 C523:86 58 C525: C52	C520:A0 05 C527:B9 70 C5 C527:99 42 00 C535:88 C536:10 F7 C52F C538: C538:	C538:20 0A C5 C538:80 15 C552 C530: C530:AE 00 08 C540:CA	C543:AE 01 08 C546:F0 0A C552 C548: C548: C548:	C548.35 58 C548.0A C548.0A C548.0A C540.0A C542.AA C542.4C	C552: C552: C552: C552: C552: C552:A	C554:BD 5F C5 C557:9D DB 07 C558:CA C558:10 F7 C554 C550:80 FE C55D
20-OCT-86 06:29 PAGE 9	;On //c lwM in slot 6 at code which resideth in the boot space card resteth in slot the fifth.	boot (auto & PR#5) entry point. 10 3	the ProDOS normal entry point ry equ * so that ProFIAG will have the top bit set	;Skip the clear point	;Only use this label in //c version AG,x ;ProFIAG[7]=1 if ProDOS, =0 if MLI ;This is not a boot entry clear all \$C800 ROMs	;Load value for MSLOT ;Clear all \$C800 latches but ours	;Need slot number
Boot Space	2 TheOff equ \$60 ;On //c INM in slot 3 * 4 * Here beginneth that code which resideth in the b 5 * at the time the card resteth in slot the fifth. 6 * 7 C500org equ * 8 * Auto Boot signature bytes	10 * This is also the boot (aut) 11	18 * 19 * Here is the ProbOS normal 6 20 * 20 * 22 * 22 * 22 * 22 * 23 * Set up so that ProFLAG will	24 sec 25 bcs *+3 ;Ski 27 * This is the MLIxface entry point 29 *	MLIEntry equ * clc ldx #\$05 ror ProFI clc clc * * Now save mslot and	38 bootcase5 equ * 39	44 jmp SHPROTO 45 Bootc equ * 46 ldx #\$05 101 include pc.boot
03 PC.BOOTSPACE I	C500: 0060 C500: C	C500: C500: C501:22 20 C502:A2 00 C504:A2 03 C506: C508:80 17 C521	C50A: C50A: C50A: C50A: C50A:	C50A:38 C50B:B0 01 C50E C50D: C50D: C50D:	C50D: C50D C50D:18 C50E:72 05 C51D:7E 73 04 C513:18 C514:	C514: C514 C514:A2 C5 C516:8E F8 07 C519:A2 05 C519:A2 05 C51B:AD FF CF	IC 97 C7 C521 12 05 1

C55F:C3 E8 E5 E3 C570: C570: C570: C576: C576: C576: C576: C576: C576: C576:

Send a CBus Packet 20-0CT-86 06:29 PAGE 12	4 ************************************	/BSY 11) 2) 3)	n= ******	31 * Output; carry set- handshake error * * 33 * Cir- bytes sent * 33 * * * * * * * * * * * * * * * * *		41 * 43 * Enable PC chain, 43 * jsr enablechain ;This sets X reg 44 jsr enablechain ;This is the mode value 45 jsr SetliMode ;Dnn't mess unless we gotta 47 * Turn on the IMM	<pre># Ida enable2,x lda monset,x * !</pre>	55 Idy #Dsytol ; Jach loop is 11 microseconds 56 ubsyl lda 17clr,x ; Test if /Bsy is hi or lo 57 bmi chainubsy ; If hi, bus is not busy 58 dey ; John ubsyl ; Keep trying 60 sec
Se					(6)	929	(4)	(2) (2) (3) (2) (2) (2) (2) (2) (2)
KET					C883	70 CA 07 20 CC	88	В
05 PC.PACKET					C883: C883: C883: C883: C883:20 61	20 07 20 07 20 07	:BD 8B	C894:A0 32 C896:BD 8E C899:30 07 C89E:88 C89E:00 F8 C89E:38
95			3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88888888888888888888888888888888888888	8888888	C886: C886: C886: C886: C888:20 C88E: C88E:	C88E; C891;BD C894; C894; C894;	C894:30 C896:BD C899:30 C898:88 C89C:DO C89E:
20-0CT-86 06:29 PAGE 11		;One parm - the unit \$00	;Jump to the boot failure message ;Reset vector y	The //c bank switch jumps here				
st	# # rcode,x loc0+2,x rst1 loc0+2	* MLIEntry InitCMD \$0009 1,0	\$C5F5 bootfall reset PCID2 0 PDIDByte >>roDOSEntry	\$C880 Entry	include pc.packet lst cyc			
Request	equ ldx equ lda sta dex dex jmp	equ jsr dfb dw rts	PC.1 org inp dib dib dib	IS PC.2 org jmp	incli lst			
e Boot	Reset rst1	rcode	S IS	18 IS				
Service Boot	60 Resel 61 rst1 63 64 65 66	69 rcx 71 72 73 75 cmc	ILE NAN 103 104 105 106 107 108	FILE NAME 111 112	114			
04 PC.BOOT	C576 C5 C5 C5 C5 C5	C583	CSF: CSFS 103 or CSFS: CSFS 103 or CSFS: CSFS 103 or CSFS: CSFS 104 jim CSFS: CSFS: 0.04 jim CSFS: 0.00 0.00 did CSFS: 0.00 0.	NEXT OBJECT FI C880: C880 1 C880:4C 4C CD 1				

20-OCT-86 06:29 PAGE 14	;Get the odd bytes msb's (A[7]=1)	;Do a write handshake	<pre>// Get the data byte :File on the hi bit</pre>	;Are we done?	131 * 32 * Now send over the groups of seven contents 32 * Now send over the groups of seven contents	ים שמפר אם מר דכומה מזים ארכות מדים ארכות מדים ארכות מדים ארכות מדים ארכות מדים ארכות מדים ארכות מדים ארכות מד	<pre>;Check 11 there are groups to send ;=> At least one group ;Skip to send checksum</pre>	:Naste 2 cvcles	•		; Swap Y for short handshake	; Send the byte	154	Nyte for next time v	,	;Store the top bit	63 * It's possible that we're at a page boundary now. If so, bump the 65 * hi order nart of the nointer.		: Foundlize the cases	ות משריים ליוני לי	* Push us ahead by an additional 8 cycles for margin reasons * Plus I gotta get the topbits MSB set somehow	;Flip what will be MSB
	#\$FF tbodd	l6clr,x sobl l6set,x	(buffer),y	oddbytes	over the gr		grp/ctr sob3 datdone	*	#0 topbits l6set,x	t byte	#580 temp	achel l6set,x	temp	next 'Ist" by (buffer?).v	next1	topbits	t's possible that we're at a hi order part of the pointer.	skipl	buffer2+1 skip2		head by an otta get the	* #\$00000010
Send a CBus Packet	20 1dy 21 1da	sob1	126 1ny 127 1da 128 ora	129 cpy	131 * Now send	134 * 135 sob2 equ		139 * 140 sob3 equ	142 ldy 143 start lda 144 sta		_	151 acnel ldy 152 bpl 153 sta	54 1dy 55 *	50 * Prep the 57 * 62 58 64			63 * It's poss 64 * It's poss 65 * hi order	166 * bne		171 pla 171 pla 172 *	173 * Push us a	175 * 176 skip2 equ 177 lda
05 PC.PACKET Send	C8E1:A0 FF (2) C8E3:A5 59 (3)	8553 (5)	223	(3)		C8F6	A5 48 (3) 00 03 C8FD(3) 4C 96 C9 (3)		(3) (3) (3) (3) (3) (3) (4) (4)	: :	323	908 (3) (5)	14 59 (3)	56 (5)		41 (5)		DO 05 C924(3)	26 C9 (5)	€		C926 A9 02 (2)
SE 13																				-		
20-CCT-86 06:29 PAGE 13		a is coming and send the sync bytes pht 2's separated by a 6 (micS cell)	; Raise REQ	;Sync plus packet begin	;Send out the 1st byte sync		,Wait 'til buffer empty		;Back for more bytes on ID	;Make the device ID	hat's us we're an \$80}		ype (command or data)		rpe byte (an \$80 from this rev PC)		null for us), and length bytes				" part of the packet contents	;Get ⊭ of "odd" bytes ;Skip if no odd bytes
Packet	s quit	gro 100:	equ * reqset,x	ldy #5 ;Sync plus packet begin	lda #\$FF sta l7set,x	sb lda preamble,y	asl l6clr,x bcc ssd	sta 16set,x dev	bpl ssb	lda Unit ora #\$80	Send the so	jsr send80	Send over th	ida mpackettype jsr sendbyte	Send the Auxilliary Type byte (an \$80 from this rev PC)	jsr send80	Send	Ida oddbytes ora \$80	. n ⊝.⇒	jsr	Now send the "oddbytes" p	lda oddbytes ;Get ∦ of "odd" bytes beg sob2 ;Skip if no odd bytes
	s quit *	64 * Tell the bus 65 * Sync is gro 66 * (1111111100	* egset, x	SC ****	#\$FF l7set,x	ssb lda p	sd asl l6clr,x bcc ssd		84 bpl ssb 85 * Send over the desination	87 * 1da Unit (2) 89 ora #\$80	91 * Send the sou	Ø,	96 * Send over the	E O	* Send the Aux	s jsr s	105 * Send the state 106 * 107 48r 8c	(3) 108 Ida o	jsr s Ida g	112 OLG #	115 * Now send the	oddbytes sob2

ACKET Send a CBus Packet 20-0CT-86 06:29 PAGE 16	236 * Send the sixth byte	237 # 1da	80 (2) 239	8D CO (5) 240 sta	56 (5) 241 Ida	32 (3) 242 Std (2) 243 as]	41 (5) 244 rol topbits	(2)	247 * Send the last byte of the origin		23	80 C0 (5) 251 sta	56 (5) 252 1da	33 (3) 253 SCA (2) 254 asl	41 (5) 255 rol topbits		258 * Now see if we have sent enough groups of seven	259 *	(8 (5) 260 dec grp7ctr	felacca	263 * Otherwise, back to do more. Note it's too far for a branch.	(3)	:	267 * Whew! Now send the damn checksum as two PM bytes 268 *	C996 269 datdone equ *	(3) 270 Ida checksum ;c7 c6	(2) 2/1 Ora #5AA ; 1 C0 1 C4 1 C2 1.	C99A(3) 273 bpl scm1	7	(3) 276 Ida checksum ;c7 c6 c5 c4 c3 c2 c1	AN (2) 279 LSE A ; U C/ C6 C5	CA (6) 279 jsr sendbyte	280 *	281 * Sena the ena of packet mark	(2) 283 1da	(a)	286 * Wait until write underflow	287 #	60 (4) 200 St. 1dd 10011, x 40 (2) 289 and #\$40	9AF (3) 290 bne	291 * 8D CO (5) 292 sta 16set, x ;Back to sense mode (dummy write)	293 *	
05 PC. PACKET	C971:	C971:	C973:09	C975:9D	C978:B1	C97C:03	C97D:26 41	C97F:C8	280	.0863	C980:A5	C984:9D	C987:B1	C989:63	C98C:26 41	C98E:C8	C98F:	C98F:	C98F:C6 4B	C993:	C993:	C993:4C 00	:9663	:9663	:960	C996:A5	C938:03	C990:10 FB	C99F:9D	C9A2:A5 40	C984:48	C9A7:20 50	C9AA:	C9AA:	C9AA:A9 C8	CSAC: ZU	C9AF:	C9AF:	C9B2:29 40	C984:D0 F9	C986:9D 8D C0	C989:	
20-0CT-86 06:29 PAGE 15						:Send the byte			Store the ton hit	Next byte				:Send the byte			:Store the top bit	;Next byte				Send the byte			;Store the top bit	;Next byte	first 256 bytes, we will cross pages here. If we did	r. If not, equalize the cases	wasting.									; Send the byte		:	;Store the top bit		
Send a CBus Packet	178 ora	179		*	Ida		1da (187 sta next2		tny	4	192 " Send the talld byte 193 *	194 lda	195	197 lda	198 sta 1	200	201 iny	202 *	י אבוער רוופ ד *	205 lda		208 lda	209 sta 1	211 rol	212 iny	* * After the	* cross, b	<pre>216 * seven cycles of time wasting. 217 *</pre>	218	219 inc		222	223 skip4 equ *	225 * Send the fifth byte	226 * Ida	228 ora	229 sta		232 as1	233	235 *	
05 PC.PACKET S	C928:05 #1 (3)		.320		E :	2 2	3	C935:85 4E (3)	5	+		C938:	4	5 6	200	C944:85 EE (3)	5		C94A:	C94A:	2	8	26	C953:85 \$0 (3)	11		C959:	C929:	.0559;	P5 I:960	27	C960:48 (3)		C962: £.962	C962:	51		2 2	51		C96E:26 &1 (5)		

8 + + +		Packet wait until the drive a ring or until timeout ldy #bsyto2	acket 20-OCT-86 06:29 PAGE 17 wait until the drive acknowledges reciept of the cing or until timeout ldy #bsyto2 ;Load timeout to see bsy low	05 PC.PACKET C9D9: C9D9: C9D9:	8	~
	patchl dey hne table table table lda lda	sd9 ime has elapsed fnoanswer	dey sd9 ;There's still time and error bne sd9 ;There's still time much time has elapsed. Drive didn't get string.	C909;20 DE C9 C90C;EA C90E;EA C90E;EA C90E;60 C90E;0	(6) 339 Waste32 jsr (2) 340 Waste18 nop (2) 341 Waste16 nop (2) 342 Waste14 nop (6) 343 Waste12 rts	waste14
304 dbei 305 306 307 308 * 310 * 311 * 313 * 314 * F:		ror equ * * 51 SetXMO 51 SetXMO 52 SetXMO 52 SetXMO 52 SetXMO 53 SetXMO 54 SetXMO 54 SetXMO 55 S	r equ * 1. Sct.NNO ; For dherror entry sec ; Signal a problem bcs sdi0 if drive has acknowledged the bytes yet lda l7clr,x ; Wait 'til /BSY lo bml patchl sh the sequence	C9ED: C9ED: C9ED	345 m 346 markerr equ (3) 347 jmp	dberror
316 317 sd 318 319 * 320 * 321 * 322 *		clc ; This is a lda reqclr,x ; Set REQ lo lda l6clr,x ; Back into l back the bytecount in all cases rts	This is a normal exit. Set REQ lo Back into read mode n all cases			
325 * 327 * 327 * 327 * 327 * 337 9 9 133 1 8 133 8 1 8 133 8 1 333 8 1 8 133 8 1 8 1	* This table, * sync patte * the data s * packet beg * preamble dfb synctab dfb *	* This table, when sent in rever * sync pattern used to synchron * the data stream. The first b * packet begin mark. * preamble dib packetbeg synctab dib \$FF,\$FC,\$F3,\$CF,\$3F	This table, when sent in reverse order, provides a sync pattern used to synchronize the drive IMW with the data stream. The first byte (last sent) is the packet begin mark. eamble dfb packetbeg nctab dfb \$FF,\$FC,\$F3,\$CF,\$3F			

20-OCT-86 06;29 PAGE 20	iron or timeout	<pre>;Max bytes 'til stat mark ;*** No Page Cross ***</pre>	;Didn't find a packet in time	the packet?	Find the packet begin mark; Back again - no timeout for now	table with this stuff		;Seven bytes of overhead; If byte ready, grab it	<pre>;*** No Page Cross *** .;Strip start bit</pre>	;Pop MSB back on for checksum			of seven buffer pointer buffer2	;Skip alteration if no oddbytes				rtes	;Read in the odd bytes topbits	;Pop off the start bit	:Get an odd byte	.Cet an MSB	; If MSB set, leave start bit ; MSB clear filp start bit	;Squirrel it away ;Next spot ;Are we done?	;If more, branch
Receive a CBus Packet	Wait for a byte from Liron or timeout	ldy #statmto lda 16clr,x bbl rdh2	dey bmi markerr	it the beginning of	cmp #packetbeg bne rdh2	up the	equ *				eor checksum sta checksum	dey bpl rdh3	groups	Ida oddbytes beq start2	cic adc buffer sta buffer2 lda buffer41		1dy #0	receive the odd bytes	lda l6clr,x bol start0		equ 1da			sta (buffer),y iny cpy oddbytes	blt start1
we a CBu	* *	409 410 rdh2 411		Is		419 * 420 * Okay load	422 rdh5	24 124 125 rdh3	9 ~	ao an	o	* 3.5	435 * Set 436 *	r- eo e			* *	448 * Now	450 start0	~ ~	start1			9 gobl	*
Recei	407			414		419			-			(2) (3) 433 434 434 434 434 434 434 434 434 4	<u> </u>		(3) 440 (3) 441 (3) 441		(2) 446 447	448	£ 6	32	454				(3) 463
į.		C0 (4)			(2) C9FF(3)		CAOB	U		Ö	<u>@@</u>				8666				CA31		CA39	,		339	
05 PC.PACKET	COFD:	C9FD:A0 1E C9FF:BD 8C CA02:10 FB	CA04:88 CA05:30 D9	CA07:	CA07: CA07:C9 C3 CA09:D0 F4	CAOB:	CAOB:	CA0B:A0 06 CA0D:BD 8C	CA10:10 FB CA12:29 7F	CA14:99 4B CA17:49 80		CAID:88 CAIE:10 ED	CA20:	CA20:A5 4C CA22:F0 27	CA24:18 CA25:65 54 CA27:85 56 CA29:R5 55	CA2D:85 57	CAZF: CAZF:A0 00	CA31:	CA31:BD 8C	CA36:0A	CA39:	CA3C:10 FB	CA40:B0 02 CA42:49 80	CA44:91 54 CA46:C8 CA47:C4 4C	CA49:90 EE CA4B:
06:29 PAGE 19	****	元 資金素		• • 	* * * g	* * :			* *										a)						
a CBus Packet 20-0CT-86	946 ************************************	330 * ReceivePack Get a packet from bus resident 352 * 352 * 352 * 353 *	354 * RED 2 5	356 * /BST 1 3 4	358 * 1) Drive signals ready to send packet 359 * 2) Rost signals ready to recieve data 360 * 3) Packet is transmitted (sync, mark, IDs, data,	* *	* 3) Host acknowledges reciept of pac	365 * The bytes are sent in slow mode (32 CyCles/Dyre) 366 * and the timing is critical. Branches which should 37 * not cross page boundaries are marked.	* *	* *	* * *	374 * 375 sekesstabetheren behanderen behanderen behande behan	377 grabstatus equ * 378 bocoimedark emi *		381 * 382 ida #\$00 383 sta checksum		387 Ida buffer 388 sta buffer 388 sta buffer?	sta		394 jsr enablechain ;Set X register to \$N0	396 Ida léset,x ;Prep for sense mode			402 * 403 * Signal Liron we're ready to recieve	405 * lda regset,x ;Raise/REQ 406 *
CBus Packet 20-OCT-86	****	* ReceivePack Get *	* RED 2	* /BSY	* 1) Drive signals ready to send packet * 2) Eost signals ready to recieve data * 3) Packet is transmitted (sync, mark, IDs,	* *	* 3) Nost acknowledges reciept of pac	* The bytes are sent in slow * and the timing is critical. * not cross page boundaries are	* Imput:	* Output: carry	* * *	***		379 * Init the	ida sta	* Copy over	lda sta	390 sta	* Set up the indirect pointer for jump to 2nd part of	jsr enablechain *	lda l6set,x	* Now wait for BSY to go hi, signalling 'ready w/	rdhl lda 17clr,x ;Read bpl rdhl ;Walt	402 * 403 * Signal L	lda regset, x

20-OCT-86 06:29 PAGE 24	; Recycle handshake and set carry; carry set still							
Packet	sta Retry, y err Receivebach bcc rpout ldy fl rys rMSMait lst rMSMait lst rMSMait lst Slot chec Retry, x bee Retry, x bee rput	s t						
05 PC.PACKET Receive a CBus Packet	05 (2) 598 F3 04 (5) 599 CB37 600 rpk1 CB C9 (6) 601 OF CB4B(3) 602 OT C (6) 604 CD C9 (6) 604 CD C9 (6) 605 SS (3) 606 EC CB37(3) 608 EC CB37(3) 608 CB4B (6) 609 F2 CB37(3) 608	CB43:60 (6) 610 F CB4C: 611 * 612 *						
20-OCT-86 06:29 PAGE 23		<pre>;Try to send a pack ;This is a communications failure ;Reset to try again ;Get back the packetlength</pre>	;Retry count (big!)		yrecount.	י סבות רוב השקיעהר	; If all fails, carry is set	
CBus Packet	Jata equ * lda +5RC2 lda +5RC2 jsr Sendfile bcc sdoubt lda +Com-Reset jsr AssigniD t equ *		sta bytecountl lda SyBCH sta bytecounth e equ * lda #>RC1 ldy # <rc1< td=""><td>ndPile equ the slot sta Retry, x tya Retry, x sta Retry, x tya sta Retry2, x</td><td>8</td><td>lda SvBcL sta bytecountl lda SvBcK sta bytecounth</td><td>bcc spilout ldx slot dec Retry,x bpn spilel bpg spilel ctrs ctrs ctrs</td><td>equ * ldy Slot</td></rc1<>	ndPile equ the slot sta Retry, x tya Retry, x sta Retry, x tya sta Retry2, x	8	lda SvBcL sta bytecountl lda SvBcK sta bytecounth	bcc spilout ldx slot dec Retry,x bpn spilel bpg spilel ctrs ctrs ctrs	equ * ldy Slot
Receive a CBus	540 * 541 Sendi \$542 \$543 \$543 \$544 \$545 \$544 \$546 \$546 \$550 \$550 \$550 \$550 \$550 \$550 \$550 \$55	552 Sendi 553 554 555 556 557 558	559 560 561 562 * 563 SendPil 564	567 ALLS6 568 569 570 572 572	spile *		588 589 590 591 592 593 594 spilout	595 RecPack equ 597 ldy
05 PC.PACKET R	A9 05 20 00 20 05 30 05 20 98 CF	CAE9 FID CA 80 98 CF	CAP6:83 4D (3) CAF8:85 4E (3) CAF8:85 4E (3) CAFD: CAFD CAFD: CAFD CAFF:80 08 (2) CAFF:A0 08 (2)	CD01: CB01 CB01.A6 58 (3) CB03.90 F3 04 (5) CB06.98 (2) CB07.90 73 05 (5)	CBOA: CBOA: CBOA: CBOA-A5 4D (3) CBOE-A5 4E (4) CBOE-A5 4E (4) CBOE-A5 4E (4) CBOE-A5 4E (4)	2008	CB21:90 CC CB2F(3) CB23:A6 58 (3) CB25:DE F3 04 (7) CB28:DE F3 05 (7) CB28:DE F3 05 (7) CB2D:10 DB CB0A(3) CB2D:10 DB CB0A(3)	CB30: CB30 CB30 CB30: A4 58 (3)

bits in the lo order bytecount, correcting each time MOD becomes bigger than 6.	;Do for five bits	<pre>;Store lo order for shifting ;Save lo three for later</pre>		C <- next from bytecountl	;Get MOD7 for 2'n		Got new MOD value	: Is it too big?	; Bring MOD under 7 - C still set		Get DIV for this 2'n	<pre>;Add to DIV along with correction (C) :Undate the DIV</pre>		;One less bit to deal with ;Escape after 6 times through loop ;Take brnch 1st 5 loops	;Get back the last three bits	;Sixth pass add in remains														
he lo order an 6.	#5 hytecount 1	#100000111	-14	temp	mod7tab,x	*	oddbytes	41	47	* oddhutos	div7tab,x	grp7ctr grb7ctr	i i i	divide5 divide3	:	divided														
* * *	Idx		680 * 681 divide3 equ	asl	Ida	685 divided equ			spc	dividel equ		adc	divide2	dex bai	tya	duit.	705 * 706 *													
673			680 681 61						69	691			969	699	202	703	202													
	(2)	2000	CB8F	(5)	()	CB96	200	(7)	(2)	CB9F		<u> </u>	CBA8	(2) CBB1 (3) CB8F (3)	(2)	1	CBB													
	92	200			2						52 CB	##	!	90	1	96 36														
CB86: CB86:	CB86:A2	CB8A:85 59 CB8C:29 07 CB8E:A8	CBBF:	CB8F:06 59	CB93:BD 58	CB96:18	CB97:65	20.00	CB90:E9 07	CB9F:	CBA1:BD	CBA4:65 CBA6:85	CBA8:	CBAB: CA CBA9: 30 CBAB: D0	CBAD:	CBAE:4C	CBB1:													
טטנ	386	3666	88	8	8 8	3 5	8 8 8	3 5	38	25	10	88	5	3 8 8	88	3 5 6	388													
000	366		88	Ē	8 8	3 5		3 8	3 5	88									_											
	* *	seven bytes to *	K 46	Csimming *	bytecount MOD 7	c. bytecount DIV / * CB		-						if \$0FF < bytecount < \$200	II \$IFF < bytecount	; Numptr used only for full pages	Copy over hi order part C	;Anticipate smaller bytecount	;Check Dytecount ;=> \$0FF < Dytecount < \$200	;Add \$100 to bytecount instead	PARKE SUITE TO OTHER UNATURE EN		;skip if no carry :don't forget me	order mess for DIV and MOD. X still has						divs for each of the five hi order
issubstance to the section of the se	divides the bytecoint by seven. The *	seven bytes to *	K 46	<- pointer to data *	<- bytecount MOD 7	<- Dytecount DIA /		77 36 73	0,4,1			15. 4FF	*	<- buffer+\$80 if \$0FF < bytecount < \$200	<- bulter+\$100 if \$1FF < bytecount			0	#1 ;Check Dytecount sap1 ;=> \$0FF < bytecount < \$200	auxptr+1 ;Add \$100 to bytecount instead		buffer auxotr	4-			4	pdiv/tab,x grp7ctr	pmod7tab, x		the mods and divs for each of the five hi order
	outine divides the bytecount by seven. The	the remainder gives the number of "odd" *	ite *	buffer <- pointer to data **	oddbytes <- bytecount MOD 7	. *	10年度的企业企业的企业企业企业企业企业企业企业企业企业企业企业企业企业企业企业企业企	77 36 73	0,4,1	0,1,2,4,9,18		15. 4FF	*	Valoe; equ . Set up auxptr <- buffer+\$80 if \$0FF < bytecount < \$200	<- bulter+\$100 if \$1FF < bytecount	;0, 1 or 2 ;Auxptr used only for full pages	;Copy over hi order part	085	;=> \$OFF < bytecount ;=> \$OFF < bytecount		כוכ בוכ		noauxptr auxptr+1	in the first order oness for DIV and MOD.		noauxptr equ *	lda pdlv7tab,x sta grp7ctr			
issubstance to the section of the se	* This routine divides the bytecount by seven. The	quotient gives the number of groups of seven bytes to be sent, and the remainder gives the number of "odd" * bytes.	* Input: bytecountl,h <- # of bytes to write *	buffer <- pointer to data *	dedbytes <- bytecount MOD 7	# drp/crr <- Dytecount DIV / *		and turth of the O 26 72	pmod7tab dfb 0,4,1		the state of the s	auxptrine drb 0,5%; \$FF	WritePrep equ *	<pre>buvine equ * Set up auxptr <- buffer+\$80 if \$0FF < bytecount < \$200</pre>	* or auxptr <- burner+5100 lf \$1FF < bytecount	Dyrecounth 50, 1 or 2 noauxptr ;Auxptr used only for full pages	lda buffer+1 ;Copy over hi order part	1da \$\$80	<pre>\$1 ; Check bytecount sap1 ;=> \$0FF < bytecount</pre>	inc auxptr+1	2	adc	noauxptr auxptr+1	* Now look in the first order mess for DIV and MOD.	* bytecount DIV 256.	noauxptr equ		1da sta		* Now add in the
* ************************************	* This routine divides the bytecount by seven. The	* quotient gives the number of groups of seven bytes to * be sent, and the remainder gives the number of "odd" * * bytes.	* Input: bytecountl,h <- # of bytes to write *	* buffer <- pointer to data *	dedbytes <- bytecount MOD 7	# drp/crr <- Dytecount DIV / *	的现在形式 医医内内氏试验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	631 ad/tr7hah deh 0 36 73	632 pmod7tab dfb 0,4,1	04 633 div7tab dfb 0,1,2,4,9,18	(35 %	636 auxptrinc dib 0,5/F,5FF	WritePrep equ *	039 11V1de/ equ * 640 * Set up auxptr <- buffer+\$80 if \$0FF < bytecount < \$200	642 * or auxptr <- buffer+\$100 if \$1FF < bytecount	ldx Dytecounth 50, 1 of 2 beq neauxptr ;Auxptr used only for full pages	lda buffer+1 ;Copy over hi order part	650 Ida \$580	cpx #1 ;Check bytecount beq sap1 ;=> \$0FF < bytecount	654 inc auxptr+1	656 sapl clc	657 adc 658 sta	bcc noauxptr inc auxptr+1	661 * Now look up the first order mess for DIV and MOD.	* bytecount DIV 256.	CB7C 665 noauxptr equ	(4) 666 Ida (3) 667 sta	(4) 668 1da (3) 669 sta	670 * COO	* Now add in the
* ************************************	* This routine divides the bytecount by seven. The	* quotient gives the number of groups of seven bytes to * be sent, and the remainder gives the number of "odd" * * bytes.	* Input: bytecountl,h <- # of bytes to write *	* buffer <- pointer to data *	dedbytes <- bytecount MOD 7	# drp/crr <- Dytecount DIV / *	629 化化物法检查检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检	0.50 % May 1.50 APh 0.36 73	14 01 632 pmod7tab dfb 0,4,1	633 div7tab dfb 0,1,2,4,9,18 634 mod7tab dfb 0.1,2,4,1,2	(35 #	auxptrine drb 0,5%; \$FF	638 WritePrep equ *	039 11V1de/ equ * 640 * Set up auxptr <- buffer+\$80 if \$0FF < bytecount < \$200	642 * or auxptr <- buffer+\$100 if \$1FF < Dytecount 643 *	644 Ldx Dyrecounth 30, 1 or 2 645 beq noauxptr ;Auxptr used only for full pages	647 1da buffer+1 648 sta auxptr+1 ;Copy over hi order part 648	80 (2) 650 1da \$580	651 cpx #1 ;Check Dytecount 652 beq sap1 ;=> \$0FF < bytecount	57 (5) 654 inc auxptr+1	(2) 656 sapl clc	657 adc 658 sta	02 CB7C(3) 659 bcc noauxptr 57 (5) 660 inc auxptr+1	661 * Now look in the first order mess for DIV and MOD.	663 * hytecount DIV 256.	CB7C 665 noauxptr equ	4C CB (4) 666 Ida 4B (3) 667 sta	4F CB (4) 668 1da	670 * 670	* Now add in the

is 20-0CT-86 06:29 PAGE 28	766 **DetTopBits Get topbits for odd bytes ** 763 ** 768 ** DetTopBits ** 769 ** 769 **	Also sets buffer2 pointer to pointer at groups of * * * * * * * * * * * * *	<- topbits for odd bytes * ir2 <- buffer+oddbytes * *		/81	P	(buffer), y	d d	p	oddbytes	oniter buffer2 buffer+1	buffer2+1								
Get topbits byte for odds	166 ***********************************	S H	Output: tbodd buffer2	WetTopBits equ *	ldy oddb dey	lda #0 sta tbod	rtbob lda (buf asla	789 ror thodd 790 dey 791 bpl gtbob	sec	lda.	adc buller sta buffer lda buffer									
t topk	766 ** 767 * 768 *	771	775 * 776 * 777	280	782 782 783	785	2 2 2	789 790 791	792	28.8	967	802	803							
Get				CBE2	68	33	65	(5) CBE9(3)	25	68	වෙලල	36								
05 PC.PACKET	CBE2: CBE2: CBE2: CBE2:	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		CBEZ: CBEZ:A4 4C CBE4:88	CBE5:A9 00 CBE7:85 59	81 54 3A			CBF4:A5 4C CBF6:18	CBF7:65 54 CBF9:85 56 CBF8:A5 55	מי ע	C01:			-				
27	prepass *	cess * *	4 4 4			his														
20-OCT-86 06:29 PAGE 27	**************************************	<pre><- bytes in buffer <- pointer to data to send <- extra pointer to speed process <- 8 bit XOR of data to be sent</pre>	医骨头的 化苯基苯酚 化苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基	89	;Preserve buffer pointer	;If no complete pages, skip this	;Get number of bytes each ptr	en less		for next section	;If 256 and up bytes, bump xl	; otherwise XZ	than a page with a single pointer		;Compensate for nth byte	;Last damn (0th) byte	trieve old buffer value.			
20-OCT-86 06:29 PAGE	**************************************	bytecount <- bytes in buffer buffer <- pointer to data to send auxptr <- extra pointer to speed pro- checksum <- 8 bit XOR of data to be sei	***************************************	nny full pages	<pre>buffer+1 ;Preserve buffer pointer #0</pre>	bytecounth lastpass, skip the lastpass, skip the lastpass is line complete pages, skip the last pages is line to the last pages.	auxptrinc,x ;Get number of bytes each ptr	(buffer),y (auxptr),y :Ome less	(buffer), y	dargit; y , have to uear with y case. the buffer up for next section		Duller+1 ; otherwise X2 Duffer+1	ı* naining less than a page with a single pointer	bytecount	er),y	xor3 (buffer),y ;Last damn (Oth) byte	ult away. Retrieve old buffer value.	* checksum	buffer+1	
Prepass 20-0CT-86	**************************************		717 ***********************************	* Checksum an	lda buffer+1 pha lda #0	ldx bytecounth beg lastpass	xorz equ " ldy auxptrinc,x xorl ecu *	eor (buffer),y eor (auxptr),y	bne xorl eor (buffer), y	* Now move the buffer up fo	cpx #1 beq xor5	buffer+1	743 lastpass equ * 746 * 747 * Do the remaining less than a page with a single pointer	*	eor (buffer), y xor3 eor (buffer), y	er),y	* * Store result away. *	xor4 equ	781 pia 762 sta buffer+1 763 * 764 *	
20-0CT-86	i	* Input: bytecount * buffer * auxptr * Output: checksum	* + H.	721 *	lda buffer+1 pha lda #0	(3) 726 1dx bytecounth (3) 727 beg lastpass	xorz equ " ldy auxptrinc,x xorl ecu *	(5) 731 eor (buffer), y (5) 732 eor (auxptr), y (2) 733 dev	734 bne xorl 735 eor (buffer), y	/3b eor (duxpli,) 737 * 738 * Now move the buffer up fo	cpx #1 beq xor5	742 inc buffer+1 743 xor5 inc buffer+1 744 *	last; * * Do	748 *	(5) 751 eor (buffer), y (5) 752 xor3 eor (buffer), y	dey bne xor3 eor (buffer),y	* * Store result away. *	759 xor4 equ 760 sta	ple sta *	

898 * This takes grp7ctr and oddbytes and calculates 7^4 grp7ctr+oddbytes, 900 * The results are in Y(h1) and A(10). This is the number of bytes The results are in Y(hi) and A(lo). This is the number of bytes that were received in the last Receivedack.

Wilm2

ply rts

E

CC40:00 FD

CC4F:7A CC50:60

823:

grp7ctr

Acycount equ

CC51

83

0051:

43 8 CC53:N8 CC54:N2 (CC51:A5

2

ta ig

00240

553

																				Update													
20-OCT-86 06:29 PAGE 32	Update the buffer pointer if it occurred.			;Back 1 instruction	Recombine the MSB with data Store it away	;Add it to the checksum			:Back 1 instruction	Recombine the MSB with data	;Store it away :Add it to the checksum					Back 1 instruction Decombine the MCR with data	Store it away	;Add it to the checksum		* The first Y turn over occurs at this point in the loop.	t occurred.		and the said the said of the said.	NOW WE THOSE THE OFFICE THREE		de de la company	Recombine the MSB with data	<pre>;Store it away ;Add it to the checksum</pre>				;Back 1 instruction	;Recombine the MSB with data
ба	pdate the buffe	*+4 buffer2+1	Now the second byte	16clr+TheOff *-3	shift2,x (buffer2),y	checksum		hird byte	16clr+TheOff *-3	shift3, x	(buffer2),y	checksum		ourth byte	16clr+TheOff	4-3 chift 4	(buffer2),y	checksum	CHECKSON	Y turn over oc	er pointer if i	*+4 buffer2+1	į	dille	ifth byte	16clr+TheOff	shift2,x	(buffer2),y	checksum	ixth byte	7	16clr+TheOff *-3	shift3,x
Set the IMM mode reg	* loop.	bne inc	- 45 -4	lda Ippl			tny tny	54 * Now the third byte	lda bol		sta		t Tuy	64 * Now the fourth byte		ph ph		eor	iny	* * The first	75 * the buffe	bne	*	81 * LUA	82 * Now the fifth byte 83 *	1da		sta	89 sta checksum 90 iny	* Now the s	*	lda bpl	Toe
Set th	39		34.			25.5		54			60 20			79	99 (202	72.	7.4	75	77.			2 60		98			91			
		CCA3 (3) (5)		(4) CCA3 (3)	4		2		0 (4)	A (4)	೬೮	ලි	2		0 (4)	0001	99	2	22			(5)		(c)		0 (4)	Š.	9.0	68			CCE5 (4)	A (4
06 PC. CREAD	CC9F:	CC9F:D0 02 CCA1:E6 57	G (1)	CCA3:AD EC CO	CCAB:5D AA CA CCAB:91 56	CCAD: 45 40 CCAF: 85 40	CCB1:CB	OCB2:	CCB2:AD EC CO		CCBA:91 56 CCBC:45 40	CCBE;85 40		: CCC1:	222		CC9:91 56	OCCB:45 40	CCCF:C8	:000:	CCD0:	CCD0:D0 02	CCD4:	CCD6:	ccD6:	CCD6:AD EC CO	CCDB:5D AA CA	CCDE:91 56 CCE0:45 40	CCE2:85 40 CCE4:C8	CCES:	CCE5:	CCES:AD EC CO	CCEA;5D BA C
20-OCT-86 06:29 PAGE 31													:Save groups of seven counter		ne checksum	the groups of seven	I SASS TO GOOD STILL TOT STEED	4000		just a second	the seven bits into two indices for topbit tables	;0 1 d1 d2 d3 d4 d5 d6	0 0 1 d1 d2 d3		1 d1 d2 d3 d4 d5 d6 d7	sep for last three bytes	1st byte, reunite its msb, store and checksum it	4.4	;Back 1 instruction :Recombine the MSB with data	;Store it away .Add it to the checksum			second Y turn over occurs at this point in the
5	grp7ctr	a grp7ctr	times7	oddbytes t71	grp7ctr oddbytes	oddbytes	t72 grp7ctr	grp7ctr		lude pc.cread	* *	10	drb/crt	start35	cauco	the groups of seven	מבררדוום רוופ	1 Cal rampones	start35	temp	he seven bit	nt m	a 100001111	# \$0000TTTT	temp	temp	st byte, reu	16clr+TheOff	*-3 shiftl, x	(buffer2), y	checksum		econd Y turn
IMM mode reg	stx	times7 asl	bne	og og	inc t71 sty	sec spc	pcs dec	T72 1dy	* *		SlotDepRd equ start25 equ '	ldy	E P	pue l		* Okay, get	r by	start35 equ	p [dd	sta	* Split up t	lsr	lsr	tax	Ida		Read the	* Ida	bpl eor	sta	sta	iny *	* Now, the s
Set the	907		912	914		918	920		924	115	~	m	di. PU		~ 00	ی د		12	14	12		2 6 2	21	7 2	24			308	31	33	35	34	
	විදි	3888	CC5A(3)	CC67(3) ES	93		(5) (5)	<u> </u>	2		CC 23	62	2 6	(2) 0(2)	2			0,000	CC7D(3)	(3)		20	200	(2)	33	(3)		C0 (4)	CS (4)	(9)	9	(2)	
05 PC.PACKET	CC56:86 4B	CC5A:0A CC5B:26 4B	CCSE:D0 FA	CC61:65 4C CC63:90 02	CC65:E6 4B CC67:84 4C		CC6C:B0 02 CC6E:C6 4B		0073: 0073:	CC73:	cc73:	CC73:A0 00		CC78:D0 03	S S	:00.00		Ę	38	22	CC84:	CC84:4A		CC89:AA	CC8A:A5 59		383	ដ្ឋ	CC93:10 FB	CC98:91 56 CC9A:45 40	CC9C:85 40	CC9E:C8 CC9F:	CC9F:

Protocol Converter / CBus Driver 20-CCT-86 06:29 PAGE 36	sty Slot * ** ** ** Now map any ProDOS unit references to our sequential ones. ** The map had is hidaze and mandrians newes! their serrets.	==	lda CMDUnit ;76543210 766 specify unit rol a ;6543210X C<-7	; Save drive num ; 543210X7 C<-6	TOI a (432UATe to 18 grp or 2) plp (6-7) rol s (3310YE7)	#\$0000011 ;	#4	J		os - 84 * Now if this is through the MLI xface, gotta copy stuff into the 85 * send buffer from the parameter list.	lda ProFlag,y bpl darnit jmp skipcopy	90 * 91 * Get the address of the in-line parameter table	arnit equ lda	sta Duffer lda SHTenpty, ; and the hi part sta Duffer+1	Now pull ou	ldy	<pre>lda (burrer),y sta cmdcode ;Nice</pre>	(buffer), y			Now buffer Check comm	lda #BadCmd liv rendicida	
Protoco]	(3) 61 62 4 63 4 64 4 64 4	66 * CD7E 67 a	(3) 68	(E) (S) (S)	(4) (5) (5) (7)	(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(2) 77			0 00 00 0 0 44 72 7	(4) D9C(3) (3)			(3) 95 (4) 96 (3) 97	-	101			(2) 106 (2) 107 (5) 108		111 112 113	(2) 115 (3) 116	
07 PC.MAIN	CD7C: CD7C:84 58 CD7E: CD7E: CD7E:	300 3100 31100	CD7E:A5 43 CD80:2A	CD81:08 CD82:2A	CD84:28		CD8A:C0 04	CD8E:49 02	CD91:E8 CD92:86 43	9668	CD94:B9 73 04 CD97:10 03 C CD99:4C 40 CE	:::::: :::::::::::::::::::::::::::::::	B9 F3	S 23 S		CDA6:A0 01		CDAC:C8 CDAD:B1 54	CDB0:CB	CDB3:85 55 CDB5:86 54	CDB7; CDB7; CDB7;	CDB7: CDB7:A9 01	CDBB:E0 0A
20-CCT-86 06:29 PAGE 35	;If non-boot, skip jump to boot	umber.		ProFlag is fixed in //c		;Don't want decimal mode!!	;Really want it in Y no ROR ABS, Y!	en get the address of the parm table		Get lo order Feep lo parm address-1	;lo order new return address :Get hi order address	;Keep hi parm addr-1	Push back new return address hi Push new return address lo		ant to have the Disk // enable lines ible before using the IMM (phases,	re 'til the Disk // motors are oil.	#Must preserve Y!!	n most of the code, so disable	;Save interrupt status ;No interrupts please	ork area			it's all right to store in zero page
20-0CT-86	equ * bcc bentry jmp bootcode	X is still set to slot number,	ntry equ *	lda #%010000000 trb ProFlag+5 ,ProFlag is fixed in //c	entry equ *	cld	txa ;Really want it in Y no ROR ABS,Y!	If this is a PC call, then get the address of the parm table	lda ProFlag,y bmi noplay	SHTempX, y	clc adc #3 .Lo order new return address tax ;Lo order new return address	SHTempY,y	pha ; Push back new return address hi txa ;Push new return address lo pha ;Push new return address lo	play equ *	c, it is as long	her	jsr WaitIMMOff ;Must preserve Y!!	We can't tolerate ints in most of the code, so disable	php ;Sawe interrupt status sei ;No interrupts please	Preserve the zero page work	ldx #ZPSize-1 p lda ZeroPage, x pla	dex bpl pzp	Okay, we're safe now it's all right to store in zero page
	* bentry bootcode	is still set	CD51 10 bentry equ *	lda #%01000000 trb ProFlag+5	14 * CD56 15 atentry equ *	16 " cld	txa tay	this is a	i lda Pro bmi nog	25 * 26 pla 27 sta SHTempX,y	E.	32 sta SHTempY,y 33 adc #0	34 pha 35 txa 36 pha	37 * 38 noplay	* On the //c, it * off for as lor		WaitIMMOff	* We can't tolerate ints	php sei	* * Preserve the zero page work *	1dx #21 zp 1da 2e1 oba	56 dex 57 bpl	59 * Okay, we're safe now it's all right to store in zero page

20-OCT-86 06:29 PAGE 38	(OMDBufferl), y , stick it where they want it s4f9 ;//c Port l interrupt status	(CMOBufferl), y ;Store PC interrupt status	A, I has unuo; # byces status; Skip down (up) with no error	;Unit #0 was a bad one	; We allow two control calls for Unit#0; O means enable interrupts ; I means disable interrupts	;No other codes allowed	;Cnly certain calls can have Unit#O ;Branch always		abint equ * 1da 4801 Ida 4801 th \$C09A caphitch jmp AOKay Kay, everything's all groovy. PrODOS re-enters here,	;Anticpate had unit number	CMUDAIL EXPORTIGED: ; Fafe- If C clr then Z is clr and bytecount in antigration of the inevitable Sendrack. e>candlength bytecount f <continuous bytecounth="" bytecounth<="" th=""></continuous>
Protocol Converter / CBus Driver	176 sta 177 iny 178 t 1da	180 sta 181 sta 182 lda		188 maybectrl equ * 189 cmp #ControlOMD 190 bne BUnit		197 ErrorHitch2 e 198 bne 199 *		205 205 207 208 208	212 213 418 215 4 20 4 215 4 20 4 215 4 20 4 215 4 20 4 215 4 20 4 215 4 20 4 215 4	219 * 220 ski 221 222 222 223	224 cpx 225 blt 226 cblf 227 cst buffer 228 ct lda 230 cta 231 lda 232 cta 233 cta
07 PC.MAIN		98 44	20 TO CE	CE19: CE19 CE19:C9 04 (2) CE18:D0 0B CE28(3) CE1D:	CEID:A6 46 (3) CEIF:FO 0B CE2C(3) CE2I:CA (2) CE2I:CA (2) CE3:FO 14 CE36(3)	CEZ6	A9 11 D0 93	CE2C: CE2C: CE2C (2) CE2C: A9 C (4) CE2E: 80 F 9 05 (4) CE31: 40 F (5) CE31: 40 F (6) CE36: 50 05 CE30 (3)	A9 01 1C 9A C 4C ED CI	CE40: CE40: CE40: CE40:38 28 CE42:34 58 (3) CE44:3E F9 06 (4)	CG47:E4 43 CG49:90 DB CE26(3) CG4B: CG4B: CG4B:A9 09 (2) CG4D:R5 40 (3) CG4D:R5 40 (3) CG51:R5 4E (3) CG51:R5 4E (3)
20-0CT-86 06:29 PAGE 37	<pre>;=> at least he got that right ;Gee, maybe we should promote this guy :Set for indct commare</pre>	;Get ∉ of parms?	* *Comdlength-1 ;Always copy the maximum	;Pull it out of their hat ;Stuff it into mine	be copyloop ; topp? em all. The caller of the PC could be making one of three calls a unit number of \$00, Control, Init or Status. Check for and do what is appropriate.	; Never mind	count for this call to unit#0 x :Get the length this command	Force 0 -> MSB flamp on flamp on flamp fla	three commands ;Not an Init call ;Just like powerup or reset key(//c) ;Do a reset cycle ;No error allowed	;Equiv to 'cmp #StatusCMD' ;Antic a non zero stat code ;Stat unit#0 can only be code=0	>
/ CBus Driver	noeh jmp Error *	(buffer),y Unit he bytes				CMDUnit skipcopy	parameter cour CMDCode parmetab.x	#\$7F #BadPCnt Unit ErrorRitch	service one of the copx #InitCMD bne notinit lida #PowerNeset jar AssignID lida #0 pm sa2	maybectrl #Badctl CMDSCode	ErrorAitch Slot #7 (CmdBufferl), ninl NumDevices,x
Protocol Converter / CBus Driver	118 blt 119 Errorhitch 120 noeh equ	(5) 122 Ida (buffer (3) 123 sta Unit 124 * Now copy the bytes	126 * 127 ok (2) 128	130	134 * 134 * 135 * Okay. 136 * With 2	(3) 139 1da (3) 140 bne 141 *	142 * Check the 143 * 144 1dx	146 147 148 150 151	2) 153 * 159	160 * (2) 161 notinit twa (3) 162 bne (2) 163 * 1da (2) 164 1da (3) 165 1dx	166 167 * 168 169 170 171 nin1 172 174 *
07 PC.MAIN	CF CDC2	54 SA	08 CDC8	8	F8 CIXA	43 (3) 6A CE40(3)	42 88 CF	77 (2) 04 (2) 5A (3) DB CDBF(3)	DE4: DE4:E0 05 DE8:E0 0A CDF2 CDE8:E0 0B CF CDE5:20 98 CF CDE7:4C 39 CF	CDF2: (2) CDF2:8A (2) CDF3:D0 24 CE19(3) CDF5:A 21 (2) CDF5:A 46 (3)	CE00

Protocol Converter / CBus Driver 20-001-86 06:29 PACE 40	The buffer address and bytecount depend on the call type.	срх #ControlCmd bne NOControl	398 * In the case of control, bytecount:={buffer} 1998 * and buffer := buffer+2	<pre>ldy #1 lda (buffer),y ;Get Hi order bytecount page</pre>	dey ida (buffer),y ;Neep for later	1da \$2 adc buffer			315 MControl equ * 315 Check for a writeblock 316 cpx #WriteCMD ; Check for a writeblock ; Must be control or write	In the case of WriteBlock, the length is 512 and the buffer address is at buffer in the command table	ida #0 idx #2 bne secondsend	* For FileWrite, the buffer address is at CMDbuffer * and the length is at CMDblock.	k equ * ldw CMOBlockh lda CMOBlockl	end equ * stx bytecounth sta bytecountl	lda #datamark sta WPacketType ;Identify this as a data packet	SendData noxtrasend	egu . lda #Buskrr ;This is the bus error hitch bne Error	346 * On ProDOS status call, we've got to point the buffer pointer 347 * correctly to zero page it's the only case special case 348 * (on Write, Format and Control no data comes back).	
1 Conver	* The bu		* In the			, , , , ,	, 1414		MOContro	In the		For Fi	NOMBloc	seconds	*	* Mahitri	benicon 3	* On Pro	
rotoco		293			304					319 1 320 1 231 2	323	326		334	336			346	
P		(2) CEB2 (3)		222	39999	888	CECO (3)	(3)	CEB2 (2)		(2) (2) CBC0 (3)		CEBC (3)	CEC0 (3) (3)	32	ED1	(2) CF17(3)		
07 PC.MAIN	CE96:	CE96: CE96:E0 04 CE98:D0 18	C C C C C C C C C C C C C C C C C C C	CE9A:A0 01 CE9C:B1 54	CESF: 88 CEAD: 81 54 CEA2: 48	CEA6:65 54		CEAF:4C CO	CEB2: CEB2: CEB4:D0 06		CEB6:A9 00 CEB8:A2 02 CEBA:D0 04		CEBC: CEBC: CEBC:A6 47 CEBC:A5 46	CECO: 86 4E CECO: 86 4E CECO: 85 4D	CEC4:A9 82 CEC4:A9 82 CEC6:85 5B	CEC8:20 DA CA CEC8:20 DA CA CEC8:90 04		0.001 0.001 0.001 0.001 0.001	
			-														Ş		
ocol Converter / CBus Driver 20-OCT-86 06:29 PAGE 39		sta * If it's a P	* 1dx Slot lda Proflag,x ;Is	. Need to generate a parame	14 CMDCode 15 ldx CMDCode 16 lda ParmCTab, x 17 and 87F	* ProDOS always		<pre>4 * 55 * If this is a ProDOS status call, set stat code to zero</pre>	* Ida CMDCode bne notstat *Ida #SCDeviceStat;A is al	<pre>60</pre>	notstat equ lda ldx	stx sta			18 * Now copy over the buffer address for any data xfer. 19 * Ida Cambuffer R0	sta Ida sta	84 * 85 * Now for some commands, we have to send over a packet of data, too. 86 * See if this command is one of TROSE.	88 ldx cmdcode 89 lda parmctab,x 90 bpl noxtrasend ;Encoded in top bit 91 *	
20-OCT-86 06:29 PAGE	234 Ida	sta If it's a	238 * 1dx Slot (4) 240 lda ProFlag,x ;Is	242 * Dp1 242 * Need to ge		249 # 250 #	ida sta	* If this is	250 *	sta CMDSCode * Okay, finally send over t	notstat equ * lda Unit ldx CmdPCount	267 stx Unit 268 sta CMDPCount 269*	<pre>lda #cmdmark sta WPacketType jsr ClrPhases</pre>	s jsr SendPack bcs behitch	278 * Now copy over the buffer 279 * 1da CWDRuffer 280	sta lda sta	* Now for * See if	cmdcode parmctab, x noxtrasend	

20-OCT-86 06:29 PAGE 42	112 Error equ * 113 Error equ * 114 Error equ * 115 Age Siot ; Reeq uncess to screenholes 115 Age Siot ; Reeq uncattered error in shole 116 Age Siot ; Reeq unadditerated error in shole 117 Lax Siot ; Reet in Deroom call or not 118 Age Siot ; Reed access to screenholes 119 Age Siot ; Ree Siot Siot Siot 110 Age Siot ; Ree Siot Siot Siot 111 Age Age Siot ; Reed Siot Siot Siot 112 Age Siot ; Reed Siot Siot Siot 113 Age Siot ; Reed Siot Siot Siot 114 Age Siot ; Reed Siot Siot Siot Siot 115 Age Siot ; Reed Siot Siot Siot Siot 116 Age Siot ; Reed Siot Siot Siot Siot Siot 117 Age Siot ; Reed Siot Siot Siot Siot Siot 118 Age Siot ; Reed Siot Siot Siot Siot Siot 119 Age Siot ; Reed Siot Siot Siot Siot Siot Siot Siot 110 Age Siot ; Reed Siot
Protocol Converter / CBus Driver	rror equ * lida statbyte lida statbyte lidy Slot sta Retry,Y ;Reep sta Retry,Y ;Reep tax beq sa2 ;Seci lidx Proflag,Y ;Set lidx #01000000 ;Soft lidx #0 **Assum cmp #0100000 ;Soft lidx #10Error ;Now a cmp #Norive lidx #10Error ;Now a lidx #10Error ;Now a sta streaway ;!f %4 lidx #10Error ;Now a lidx #10Error ;Now
col Converter	* * * * * * * * * * * * * * * * * * *
Proto	CT15 CT17 (3) CT39 (3) CT40 (3) CT40 (3) CT40 (3) CT40 (3) CT50 (4)
07 PC.MAIN	CT15: CT15: CT15: CT17:A4 58 CT17:A4 58 CT17:A4 58 CT17:A4 58 CT17:A4 58 CT17:A4 58 CT17:A4 58 CT17:A4 58 CT17:A4 58 CT17:A4 58 CT22:10 15 CT22:10 15 CT22:10 15 CT22:10 15 CT23:A2 27 CT23:A2 27 CT23:A2 27 CT23:A2 27 CT23:A2 27 CT23:A2 28 CT23
20-0CT-86 06:29 PAGE 41	Actrasend equitable January John January Januar
Protocol Converter / CBus Driver	noxtrasend equ * lda ProPlad, y bil getresults lda comdoode bne getresults lda #CMDBufferh lda #CMDBufferh lda #CMDBufferh sta buffer: *Please to be calling Neces sta buffer: *Figure how many bytes wen fir squiresults equ * Figure how many bytes wen sta squiresults equ * Figure how many bytes wen fir squiresults equ * For the ProDos status cal sta SHTempk, x bpl noerror lda CMDBufferh lda CMDBufferh lda CMDBufferh lda CMDBufferh lda CMDBufferh lda CMDBufferh lda CMDBufferh lsr a ls
Protoco	CED 350 CEE 4 (3) 351 (3) 352 (2) 355 (2) 355 (2) 356 (2) 356 (2) 356 (2) 36 (3) 36 (4) 370 (2) 370 (2) 38 (3) 38 (4) 40 (4) 40 (4) 40
07 PC.MAIN	CED1: CED1: CED1: A 58 CED2: B 58 CED5: B 59 CED5: B 50

20-CCT-86 06:29 PAGE 44	;Save the init code ;Reset all of those things ;Save InitCode unit, and init code		;Store away the type of INIT	<pre>send DefID command packets #InitCand CMDCode #00 Unit</pre>	ia ia	550 jsr ClrPhases ;Make sure phases are off for Quark 552 * 553 * Send an ID for the next device in the chain 554 mordevices equ *	ReceivePack scrambles count	;Send the command ;If okay, skip to get response	;Get the response ice. Squirrel away the number of devices.
	signID equ * pha jir resetchain pla tax Save the command code, un	CMDCode	CMDSCode	send DefID c #InitCmd CMDCode #0 Unit #2 CMDPCount	* Point the buffer pointer lda *CMDCode sta buffer lda *CMDCode sta bufferti lda *CMCode sta bufferti lda *CMCode sta MEacketType	CirPhases ID for the nex	Unit #>cmdlength bytecount1 # <cmdlength bytecounth</cmdlength 	SendOnePack mdev2 Unit mdev1	568 mdev2 jsr ReceivePack ;G4 559 lda statbyte 570 beq mordevices 571 k 572 * Okay, we done last device.
ID Assignment Cycle	515 * 516 AssignID equ 517 pha 518 pha 519 pla 520 tax 521 * 522 * 523 * Cause the cc 523 * Cause we',		pha lda pha stx	Set up to lda sta lda sta lda sta lda sta	Point the lda sta lda sta lda sta sta sta	jsr * Send an ID mordevices e	inc lda sta lda sta	jsr bcc dec jmp	dev2 jsr 1da beq Okay, we d
) Assig	515 * 516 As 517 S18 S19 520 * 520 * 522 * 522 * 523 *	524 * 525 526 527	528 529 530 531 532 *	533 * * * 540 * * * * * * 540 * * * * * 540		5521 5551 5551 5551 5551 5551 5551 5551	556 557 558 559 560 *	, , , , , , , , , , , , , , , , , , , ,	
I	CF98 (3) (4) (4) (2)	666	9999	868686	999999	(6) (CFC4	99999	CFD8 (3) (5) (5)	9 (6) (3) CFC4(3)
07 PC.MAIN	CF98: CF98: 4 CF98: 48 CF99: 20 5D CA CF90: AA CF92: CF92: CF92: CF93: C	CF9E: A5 42 CF9E: A5 42 CFA0: 48 CFA1: A5 43	CFA3:48 CFA4:A5 46 CFA6:48 CFA7:86 46 CFA9:	CFA9: CFA9: CFA9:A9 05 CFAB:85 42 CFA1:A9 00 CFA7:R5 5A CFB1:A9 02	CFB5: CFB5: CFB5:A9 42 CFB7:85 54 CFB9:A9 00 CFB1:85 55 CFB1:A9 80	0 87 CF	E6 5A A9 09 85 4D A9 00 85 4E	10 83 Cf 10 05 16 5A 1C DF Cl	20 E3 C1
20-OCT-86 06:29 PAGE 43	ge area.		Get X value Grab the error result code:Pull out the Y value	No more access to screenholes Anticipate zero result code Pull back result code Seturn with carry clear Some type of error	;ICh - Froing is likeu in //c ;If bit 6=1, then return to alt ROM ;Vclr so return across ROM bank bdy ;Flags set correctly again	;Status: 3 parms/no data send; ;Read: 3 parms/no data send ;Write: 3 parms/data send ;Pormat: 1 parm /no data send _Confrol: 3 narms/data send	, ⊢ ← ← `` ;;		
'CBus Driver	re our zero page area #0 zeropage, x #2PSize		SHTempx,y SHTemp1,y SHTemp0,y	finalskip	ickl ickl SWRTS2	* \$00500011 \$00500011 \$10000011 \$00000011	\$00000001 \$00000001 \$00000011 \$1000011		
Protocol Converter /	Now, restore ldx # ppla sta za inx cpx # blt r	We're into and A and plp	lda tax lda lda	nalsk	bys bys plp jmp ickl equ plp rts rts	parmetabeque debet	99999		
otocol	466 * % 467 * 469 rzp 470 rzp 471 472	* * *	479 480 482 483	4	492 493 495 495 499 499 499 499		507 508 510 511	513 *	
Pro	(2) (4) (2) (2) (2) (2)	(4)	9 92 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	CF82(3) CF82(3) CF82(3) (4) CF82(3) (3)	C7 (4) C7 (3) C18C (3) C18C (4)	CFSE			
PC.MAIN					84 84				

CEEO

CPDF: SA CFDF: SA CFDF: SA CFDF: SA CFDF: CFDF: CFDF: CFDF: CFDF: SA CFDF:

07 PC.MAIN

SA2 SCGETDEVINFO

SCRETNLSTAT SDOUBT SENDDATA

RC1
RCVCOUNT
RDH45
RECEIVEPACK
RESET
RPACKETTYPE
RZP

06:29 PACE 47	SHIFT2	HIEMPX	KIP3	LOT	OFT	DUIRREL	TARTO	TART35	TATMTO	UN	VBCL	YNCTAB	EMD	BSY1	AITIMMOFF	ASTE14	INMI	RITEPREP	OR3	ZEROPACE
0-0CT-86 0	CAAA SI	05F3 S	S 0960	588	40 S	CFF0 S	CA31 S	S CC1D S	1E S	SCC01 SI	06F8 S	2C9D4 S	E 69	C896 U	M 9600	CODE N	CC3F W	CB61 M	CBD6 X	Z 04
20	SHIFTI	SHTEMP1	SKIP2	SLOTDEPRD	SOB3	SP ILOUT	STACK	START25	STATMARK	SUN2	SVBCE	SWRTS2	TRODD	TOPBITS	VTAB	WASTE12	WASTE32	WRITECHD	XOR2	MSWAIT
	CA9A	0573	C926	CC73	CSED	CB2F	20100	20073	2 81	CC03	0778	C784	59	41	2FC22	2C9DF	30309	05	?CBBA	CA70
SORTED BY SYMBOL	SETXNO	SHIFT4	SKIP1	SKIPCOPY	SOB2	SP ILE1	SSD	STARTZ	STATBYTE	STOREAWAY	SUN3	SWPROTO	T72	TIMEST	VERS ION	WASRESET	WASTE18	WPACKETTYPE	XOR1	XOR5
SORTED	CA97	CACA	C924	CE40	C8F6	CB0A	CSAF	CA4B	4	CF38	CCIF	C797	0,00	CCSA	20101	2 04	20900	58	CBBO	CBCE
SYMBOL TABLE	SETVID	SHIFT3	SHIEMPY	SKIP4	SOB1	SOFTERROR	SSB	STARTI	START	STATUSOMD	SUN1	SVMASK1	T71	THEOFF	TIND	WAITOFF	WASTE16	HI MAZ	WRITEPROT	XOR4
07 SY	?FE93	CABA	0673	C962	CSES	3 67	CBAC	CA39	0060	3 00	200	2 10	CC67	09	5A	CF4D	20900	CC4C	2B	CBDD

1C ZPSIZE

20-0CT-86 06:29 PAGE 49	CEEP GTROB CCLF SIN3 CCLF SIN3 CCCAS MATH WOFF CCCAS ATTHEST CCCAS TIMEST CCCAS ATTHEST CCCAS ATTHEST COLOR LOST COLOR LALIST COLOR ALLIST CCCAS BUNIT
20-00	CCCC CAREGUL CCCC CAREGUL CCCC CAREGUL CCCI REVICORUL CCCI REVICORUL CCCI REVICORUL CCCI REVICORUL CCCI REVICORUL CCCI REVICORUL CCCI REVICORUL CDE REVICORUL CDE REVICORUL CDE REVICORUL CDE REVORITICA CDE REVORITICA CDE REVORITICA CDE REVORITICA CDE REVORITICA CDE REVORITICA CDE REVORITICA CDE REVORITICA CDE REVORITICA CDE REVORITICA CDE REVORITICA CTET CIPARIORORI TETEL COUT
SORTED BY ADDRESS	SUN SUN CEOD NOR4
07 SYMBOL TABLE	CEDIG KORSS CCOS STITMADE CCO CCOS STITMADE CCO CCOS TT1 CCOS CCOS TT1 CCOS CCOS CCOS TT1 CCOS CCOS CCOS CCOS CCOS CCOS CCOS CCOS

OURCE FILE #01 =>ASM.S INCLUDE FILE #02 =>S.DIAG1.SRC	1.SRC	02 S.DIAGI.SRC	1.SRC	slinky diagnostics 2 ************************************	*****	20
	lst on,vsym.asym include s.diagl.src	: 0000 : 0000 : 0000		3 * Internal Slinky 5 *	Internal Slinky	linky
		0000 : 00		8 ************************************	Eric Larson Rich Williams c rom by Ray Ch	iang
		:0000 :0000 :0000		14 ************************************	**************************************	alue calue calue.calue.c
		: : : : : : : : : : : : : : : : : : :	0000	2 2	\$45	equa ******
			0046 0047 0047 0025 0007 0000 0018	23 composta equ 22 Limit equ 28 Loopcount equ 29 cv equ 30 dot equ 31 bell equ 33 cr equ 33 esc equ	445 6446 6449 6496 6496 6496 6496 6496 6	Se :
		:0000 :0000	03B8 0438 04B8	35 numbanks equ 36 powerup equ 37 power2 equ	\$478-\$C0 \$4F8-\$C0 \$578-\$C0	mu:
		:0000		39 * hardware equates, MUST be in \$BF	uates, MUST be	in SBE
		-				•

20-0CT-86 06;36 PAGE 2	internal Slinky Diagnostics	* written by Eric Larson 19 April 1985 * modified by Rich Williams 09 May 1985 * put into //c row by Ray Chiang 20 Feb 1986	* on entry: y-reg has the value of sl.mslot (screen hole offset) * x-reg has the value of sl.devno (hardware offset) * card size is in numbanks,y	eguates testin equ \$42 ;indirect pointer to messages testin equ \$45 ;indirect pointer to messages compdata equ \$45 limit equ \$46 compount equ \$47 toopcount equ \$47 cope equ \$25 cy equ \$25	numbanks equ \$478-\$C0 ; number of 64K banks on card powerup equ \$4F8-\$C0 ; powerup byte power2 equ \$578-\$C0 ; powerup byte * hardware equates, MUST be in \$BF00 to avoid double access	; address pointers ; auto incs every data access ; data pointed to	
	Intern	written by Eric Larson modified by Rich Williams put into //c rom by Ray Chiang	y-reg has t x-reg has t card size i	****** \$\$42 \$\$42 \$\$45	\$478-\$C0 \$4F8-\$C0 \$578-\$C0	SBEF8 SBFF9 SBFFA SBFFB	\$C000 \$C010 \$FC42 \$FC58 \$FC9C \$FD8E \$FD8E \$FD8E
stics	* * *	by Er d by R	7 7 2		edin edin edin	ಕ್ಷಕ್ಕೆ ಕ್ಷಕ್ಕ	######################################
slinky diagnostics	****					addrl addrm addrh data	kstrobe clreop home clreol. crout prbyte
sli	0 W 4 TO 0	8 11 12 12	14 15 16 17	22 22 23 33 33 33 33 33 33 33 33 33 33 3	35 37 39	42 443 443	46 47 48 49 50 51 52 53 53
S.DIAG1.SRC				0042 0045 0045 0045 0049 0049 0005 0000	03B8 0438 04B8	BFF9 BFF9 BFFA BFFB	C000 C010 FC42 FC58 FC56 FDBE FDDA
02 S.DI	::::::		:::::::::::::::::::::::::::::::::::::::		:::::::::::::::::::::::::::::::::::::::	:::::	:::0000

20-OCT-86 06:36 PAGE 4	;read & write to address register	;cursor vertical position		; "PASSES = "							start test number at 1	; index into data patterns	. Cot address to nattern	read register back	they didn't match			;fill high 4 bits			;index to next pattern				Total I for another an another of C to H.	TEST 7. DO doutess conficers fort	;addrl, m, n = \$FF irom previous test	start With address Prifit.	dec of since are -> are doesn't carry	;address should now be \$00000		mask off upper 4 bits		SOUND inches and SOUND	January and Timeen toolog	
		2 €	Crout	Print	LoopCount+1	PrByte	LoopCount	PrByte	NxtLine	#1	TestNum	2	Patterns, Y	addrl.X	atf	addrm,X	atf	#\$F0	addrh, X	atī		at1	RollOverTest	Fail	4		TestNum	addrl, X	data, X	data, X	addrh, X	#\$0F	addrm, X	AGGIL, A	Fail	
agnostics	84 AddressTest equ	sta	jsr Ida	jsr	Ida	jsr	lda	jsr	jsr	Ida	sta	Idy	Ida to	Te C	pne	Cuito	pne	ora	Î,	pne	dey	뎞	pmi	E	i i	veriest ed	inc.	gec :	Ida	sta	lda	and	ora	ora	Z E	
slinky diagnostics	84 Addres	86	88	89	8	91	92	33	75	95	96	.6	98 atl	100	101	102	103	104	105	106	107	108	109	110 atf	011-4	IIZ KOTIOVETIEST equ -	113	*!	115	116	117	118	119	121	122	
02 S.DIAGI.SRC		2031:A9 05 2033:85 25	2035;20 8E FD 2038;89 10		203D:A5 4A				2047:20 OB 22	204A:A9 01	204C:85 00	204E:A0 05	2050:B9 F4 22	2056:DD F8 RF	2059:D0 11 206C	205B:DD F9 BF	205E:D0 0C 206C	2060:09 F0	æ	2065:D0 05 206C			206A:30 03 206F	206C:4C 97 21		Z00E	206F:E6 00	2071:DE F8 BF	2	2077:9D FB BF	207A:BD FA BF	207D:29 OF	207F:1D F9 BF	2082:1D #8 BF	2087:4C 97 21	
20-0CT-86 06:36 PAGE 3			;entry point for self diagnostics	:clear counter		; marks card as having no directory		;get result					H 1945 H + Y TO HE WAS AND WASHINGTON	EXITCENSIEST WILL TAKE "				;divide by 4 (0-3)	; save size index	;0-3> 4-7	,45, 90, 135, or 180		;" SECONDS <cr>CARD SIZE = "</cr>	; size index	;256K, 512K, 768K, 1 MEG											
20-0CT-86 06:36 PAGE 3		\$200 0 PF						×		Limit	Home	80	H PREM + VIEW PROPERTY AND AND AND AND AND AND AND AND AND AND	ESTACROESC TO EXITACROTEST WILL TAKE "	ta	Similar Similar									_	Crout										
slinky diagnostics 20-0CT-86 06:36 PAGE 3	0	55 org \$2000 56 MSR OFF		sta LoonCount	sta LoopCount+1	sta PowerUp, Y	sta Power2, Y	lda numbanks, Y	and #\$0F	sta	66 jsr Home			69 * "MEMORY CARD TESTCRACESC TO EXITCRATEST WILL TAKE "	ter		lsr	1sr A	pha	ora #4	isr Print	Ida ≰9	isr Print	pla	81 jsr Print ;256K, 512K, 768K, 1 MEG	jsr										

gnostics 20-CCT-86 06:36 PAGE 6	bpl ab4 bml ClearTest jmp Fail	186 ««мальная мененененененененененененененененененен	equ * jsr clraddr eon *	t ga ga	Data, X Data, X Data, X addrl, X		NxtLine Data,X CompData		cpl cpl addrm,X cpl PrDot	<pre>jsr NxLine ;Go to next line and clear address lda CompData eor #\$FF ;0 -> FF bne FillTest</pre>		
slinky diagnostics	182 183 184 abFail	186 ****** 187 * 188 *****	190 ClearTest of 191	193 194 195 11	198 198 200 200	202 203 204 205	206 207 cp1 208	209 210 212	213 215 216 217 218	219 220 221 222		
02 S.DIAGI.SRC	20E3:10 E3 20C8 20E5:30 03 20EA 20E7:4C 97 21	20EA: 20EA: 20EA:	20EA: 20EA 20EA:20 11 22 20ED: 20ED	1550	2015;37 FB BE 2016;30 FB BE 2017;30 FB BE 2017;30 FB BE	2104:10 ED 2011 2104:10 F9 BF 2107:00 E8 20F1 2109:20 E4 21 210C:00 E3 20F1	210E:20 0B 22 2111:BD FB BF 2114:C5 45	2116:DO CF 20E7 2118:SD FB BF 2118:C5 45 2110:DO C8 20E7	212:06 F8 BF 2122:06 E2 2111 2124:10 F9 BF 2127:00 E8 2111 2129:20 E4 21 2120:00 E3 2111	212E:20 0B 22 2131:A5 45 2133:49 FF 2135:D0 B6 20ED		
20-CCT-86 06:36 PAGE 5	address registers to test for bus shorts	IIOM previous test ************** ; check for address buss shorts	ilest 3 :Make nointer to addrl		;Bow many bits used in high address? ;If 1M then test D3210 ;If 768K then test D3210	JIF 512K then test D210 if 256K then D10; Save it for later R. Raka one thru high med and low address	;Clear address in case of false carries	;Store pattern in address ;get value to store	'Jach address gets a diliterent Value ; Jach address gets a diliterent value ; Jove the 1 over. \$80 -> \$40 etc.; Juhil all bits tested ; Zero out current byte ; 0 -> \$80	<pre>;loop through all 3 address registers ;low read em all back ;Get start value for high byte</pre>	<pre>;Clear address in case of false carry ;Set address ;Don't pha since we might abort ;Right data?</pre>	085 < 0:
slinky diagnostics	**************************************	assumes addresses = 0 **********************************	131 Inc TestNum 132 Ida #1 133 sta CompData 134 txa			abl lda ab2 lsr pha ldy	ab3 pha jsr o pla			161 dey 162 bpl ab3 163 164 #1 164 sta CompData 165 pla 164 167 #2		lda lsr bne sta ror dey
		208A			20A2		22	BF	20A8	20A8	22 BF 20E7	20C8
02 s.DIAG1.SRC	208A: 208A: 208A:		208A:E6 00 208C:A9 01 208E:85 45 2090:8A	2091:18 2092:69 F8 2094:85 42	2098:85 43 2098:85 46 2090:F0 04 209E:C9 0C	20A2;A9 10 20A2;A9 10 20A4;4A 20A5;48 20A6;A0 02	11	B 42	2083;E6 43 2087;68 2088;4A 2089;D0 ED 2088;91 42 208D:6A	20BE:88 20BF:10 E7 20C1:A9 01 20C3:85 45 20C5:68 20C6:A0 02	11 442 45 66 66	

20-0CT-86 06:36 PAGE 8	;passed all the tests	and Editor .	s orang on					1		-		t ;loop until lirst rallum	And the first first from the second	tasped terruing message	man manage date!		; "CARD FAILED! <cr>"</cr>		and thousand an analysis and thousand	there is no failling data weally	יושרב זם זע זעדדדדווון תקרם דפנדדל	"ADDRESS ERROR"			. "DATA ERROR "		set back to actual failing value			;propagate borrows (if any)		;mask off high 4 bits		print as two hex digits	;print addrm as two hex digits		print addri as two hex digits	B 1 h 2 h	;actual data	and be did not be an an an all the second the second the second to the second the second tensor the second tensor the second tensor the second tensor	print falling data as two nex digits	; "CCR>SEE DEALER FOR SERVICE <cr>"</cr>					Te person proceed?	I to conduct proports
	41 16	#50B	TITIE	LoonCount		11	LoopCount	LoopCount +1	0#	LoopCount+1		Addressmest	4		ClrEon	#50A	Print	Testium	#3	Dardell	200	Print	ErrCommon	#\$0D	Print	y (Appl	#1		addrn, X	2	addrh.X	# SOF	0.4	PrByte	PrByte		PrByte	Print		CompData	FIBYCe	Print			•	#Dot	Cout	TOP TO
ostics	equ	E .	Tel a	g -5	12	adc	sta	lda	adc	Sta	g .	Ê		n cdu	ļ	lg.	jsr	lda	<u> </u>	3 5	lda ebi	İst	A	된	JSI	Sec 143	Spc	pha	lda	spc	e e	and	spc	jsr 1	Į įs	pla)SI	İst	pla	eor			rts		100	g eg	jsr	1,482
slinky diagnostics	258 Pass	653	261	262	263	264	265	266	267	268	269	270		272	274	275	276	277		-	281	282	283	284 DataErr	285	997	288	289	290	291	293	294	295	296	298	299	300	302	303	304	305	307	308				314	210
02 S.DIAGI.SRC	2180: 2180		3	2186:35 49	2188:18	2189:69 01	Z18B:85 49			2191:85 4A	2193:08	2194:4C 31 20		2107-48	2198-30 42 PC	219B:A9 0A	1190:20 1D 22	21A0:A5 00	21A2:C9 03	5	7127-149 00	21A9:20 1D 22	끰	21AF:A9 0D	Z1B1:Z0 1D 22	21B4:38	2188:E9 01	21BA:48		21BE:E9 00	21C1:8D FA BF	21C4:29 OF	ZICE:N9 00	21C8:20 DA FD	21CC:20 DA FD	Z1CF:68	21D0:20 DA FD	2105:20 10 22	21D8:68	2109;45 45	ZIDB:ZU DA FD	Z1E0:20 1D 22	31E3:60	21E4:	21E4:	21E4:AM AE	21E6:20 ED FD	מי מי מי ביויי
20-OCT-86 06:36 PACE 7	;each byte gets computed value	TEST 0	saddens left at 0 from last toot	.Value = addrm + addrh + \$55. A = 0					; Save for next add			;Time to print a dot?	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$r_{i} = 1$ 11 done	of the sail the sail reas of co.	Starting data pattern		; Now read em back					:Is it right?	•		+ + + + + + + + + + + + + + + + + + +	Time to pitter a dot:	; Z = 1 if done																				
	* 6	Testaum	1477	ret value	200	Value	CompData	data, x	CompData	addrl, x	C2	addra, x	CI	rruot s1	Nort Line	#\$55	CompData	getvalue	Welme	Value	Complata	data.x	CompData	Fail	addrl, x	C.d.	c3	PrDot	23																			
stics	edn	145	100	ter t	il o	adc	adc		sta	Ida			DIG	Jsr	Tet -	lda	sta	jsr	clc T	age	et a	lda			Eg .	Dhe	pue que	jsr	pne																			
slinky diagnostics	224 Computed	577	077		229 62		231	232	233	234	235	236	231	357	240	241	242	243 c3		CP2	242	248	249	250	251	252	254	255	256																			
02 S.DIAGI.SRC	2137: 2137			21 C U1 02 U1 21	1	2141:65 47			45	F8 B1	Z	E 62	2	2154:20 54 21	20	55	215E:85 45	2160:20 FD 21	2163:18	36 CO: POIZ	2162-05 43		45	56	2171:BD F8 BF	2174:D0 ED 2163	2 12	E4 21	217E:D0 E0 2160																			

20-0CT-86 06:36 PAGE 10	MOS-MO MO MOS-MO MO MOS-MO MO MOS-MO		TEST #11.1 TAKE " CR SECONDS" CR, CR SIZE = " CR, CR FALL, BELL, 128 CR, CR OK" CR, CR OK" CR, CR OK" CR, CR OK" CR, CR OK" CR, CR OK" CR, CR OK"		
stics			assc. TEXA ddb CR,(GA ddb CR,(GA ddb CR,(GA ddb CR,(IA		
slinky diagnostics	374 375 376 377 378 380 M0	382 M2 383 M3 384 M4 386 M6 386 M6 389 M6 390 390	392 393 M9 395 M0A 396 M0A 399 M0B 400 402 M0C 402 M0C	404 MOE 405 MOF 406 406 408 M10 409 Patterns 410 411 231d.end 414	
	v- e-	ара но	4 4 4 4 6 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6	G	
02 S.DIAGI.SRC	223B:6D 223C;77 223D:84 223E:8F 223F:9F 2240:AA 2241:31 20 4	2248.37 36 32 2248.37 36 32 2255.31 38 82 2255.31 38 82 2255.31 33 82 2255.40 45 45 2255.40 45 45 2255.40 45 45 2255.40 45 45 2255.40 45 45 2255.40 45 45 45 45 45 45 45 45 45 45 45 45 45	2288.20 53 45 45 53 5 2288.20 53 45 45 53 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2200;20 20 NO 2203:00 2204:33 45 45 20 2204:33 45 2204:35 62 2204:17 C 2204:17 C 2207:43 67 10 79 2339:61 GC CC 20 2337; 2337; 2337; 2337;	
20-OCT-86 06:36 PAGE 9	;Pop current return address ;Test if last dot	;2 = 1 if last dot	Go to next line and clear address; Clears the address registers; Sets the address registers to A; Wust do in this order; to avoid false carry	**************************************	;index to next character;last character had high bit set;table of pointers to actual messages
	#ESC+\$80 noesc KStrobe # addrh,x	Limit * addrm,x addrh,x #\$55 Value #0	. crout ClrEol addr # #0 #addrl,x addrm,x	**************************************	Cout pr1 m0-m0 M1-m0 M3-m0 M3-m0 M3-m0 M3-m0 M3-m0 M3-m0 M8-M0 M8-M0 M8-M0 M9-M0
nostics	cmp bla pla sta equ		equ * jsr Cro jsr Crr into clraddr equ * lda #0 equ * sta add sta add sta add rts	equ tay lda tay lda lda pha ora	iny philosophy in the philosop
slinky diagnostics	316 317 318 319 320 321 noesc 322	324 325 326 get value 327 328 330 331 331	NxtLine * fall clraddr setaddr	******* ******* Print	357 358 359 361 361 362 365 366 367 371 371 372
02 S.DIAGI.SRC	21EC:C9 9B 21EE:00 05 21F5 21F0:68 21F1:68 21F1:80 10 C0 21F5:30 FA BF 21F5:30 FA BF	46 FA BF 555 47	2208:20 2208 2208:20 E FD 2201:20 9C FC 2311: 2211 2211:39 00 2213:90 F8 FF 2216:90 F9 BF 2216:90 F8 FF 2210:60	221D: 221D: 221D: 221D: 221D: 221E-89 30 22 221E-89 41 22 2222:89 41 22 2225:69 80	2228:20 ED FD 2228:08 2220:08 2220:08 2220:00 2230:00 2231:05 2233:09 2233:04 2233:14 2233:14 2233:18 2233:18 2233:18 2233:14 2233:18 2233:18 2233:18 2233:14 2233:18

** ASSEMBLER CREATED ON 15-JAN-84 21:28

** TOTAL LINES ASSEMBLED
** FREE SPACE PAGE COUNT

** SUCCESSFUL ASSEMBLY := NO ERRORS

FDOA PRBYTE

ZSID END

507

accumulator: The register in the 65C02 microprocessor where most computations are performed.

ACIA: Acronym for Asynchronous Communications Interface Adapter. A single chip that converts data from parallel to serial form and vice versa. An ACIA handles serial transmission and reception and RS-232-C signals under the control of its internal registers, which can be set and changed by firmware or software.

acronym: A word formed from the initial letters of a name or phrase, such as ROM (from read-only memory).

ADC: See analog-to-digital converter.

address: A number that specifies the location of a single byte of memory. Addresses can be given as decimal integers or as hexadecimal integers. A 64K system has addresses ranging from 0 to 65535 (in decimal) or from \$0000 to \$FFFF (in hexadecimal).

algorithm: A step-by-step procedure for solving a problem or accomplishing a task.

American Simplified Keyboard: See Dvorak keyboard.

analog: Varying smoothly and continuously over a range, rather than changing in discrete jumps. For example, a conventional 12-hour clock face is an analog device that shows the time of day by the continuously changing position of the clock's hands. Compare digital.

analog data: Data in the form of continuously variable quantities. Compare **digital data.**

analog signal: A signal that varies continuously over time, rather than being sent and received in discrete intervals. Compare **digital signal.**

analog-to-digital converter (ADC): A device that converts quantities from analog to digital form. For example, computer hand controls convert the position of the control dial (an analog quantity) into a discrete number (a digital quantity) that changes stepwise even when the dial is turned smoothly.

AND: A logical operator that produces a true result if both its operands are true, and a false result if either or both its operands are false. Compare **OR, NOT, exclusive OR.**

ANSI: Acronym for *American National Standards Institute*, which sets standards for many technical fields and is the most common standard for computer terminals.

Apple I: The first Apple computer. It was built in a garage in California by Steve Jobs and Steve Wozniak.

Applesoft BASIC: The Apple II dialect of the BASIC programming language. An interpreter for creating and executing Applesoft BASIC programs is built into the firmware of computers in the Apple II family. See also **BASIC**, **Integer BASIC**.

Apple III: An Apple computer; part of the Apple II family. The Apple III offered a built-in disk drive and built-in RS-232-C (serial) port. Its memory was expandable to 256K.

Apple II: A family of computers, including the original Apple II, the Apple II Plus, the Apple IIe, the Apple IIc, and the Apple IIGS. The original Apple II used Integer BASIC instead of Applesoft BASIC, and it required a keyboard command (PR#6) in order to start up from a disk.

Apple IIc: A transportable personal computer in the Apple II family, with a disk drive and 80-column display capability built in.

Apple IIe: A personal computer in the Apple II family with seven expansion slots and an auxiliary memory slot that allow the user to enhance the computer's capabilities with peripheral and auxiliary cards. The Apple IIe has been improved and enhanced over the years.

Apple He 80-Column Text Card: A peripheral card that plugs into the Apple IIe's auxiliary memory slot and allows the computer to display either 40 or 80 characters per line.

Apple IIe Extended 80-Column Text Card: A peripheral card that plugs into the Apple IIe's auxiliary memory slot and allows the computer to display either 40 or 80 characters per line while extending the computer's memory capacity by 64K.

Apple IIGS: A powerful new member of the Apple II family. The Apple IIGS uses a 16-bit microprocessor and has 256K of RAM. It has slots like the Apple IIe and ports like the Apple IIc, and contains a 15-voice custom sound chip.

Apple II Pascal: A software system for the Apple II family that lets you create and execute programs written in the Pascal programming language. Apple II Pascal was adapted by Apple Computer from the University of California, San Diego, Pascal Operating System (UCSD Pascal).

Apple II Plus: A personal computer in the Apple II family with expansion slots that allow the user to enhance the computer's capabilities with peripheral and auxiliary cards.

application program: A program written for some specific purpose, such as word processing, data base management, graphics, or telecommunication. Compare **system program.**

argument: A value on which a function or statement operates; it can be a number or a variable. For example, in the BASIC statement VTAB 10, the number 10 is the argument. Compare **operand.**

arithmetic expression: A combination of numbers and arithmetic operators (such as 3 + 5) that indicates some operation to be carried out.

arithmetic operator: An operator, such as +, that combines numeric values to produce a numeric result. Compare logical operator, relational operator.

ASCII: Acronym for *American Standard Code for Information Interchange*; pronounced "ASK-ee." A code in which the numbers from 0 to 127 stand for text characters, ASCII code is used for representing text inside a computer and for transmitting text between computers or between a computer and a peripheral device. Compare **EBCDIC.**

assembler: A language translator that converts a program written in assembly language into an equivalent program in machine language. The opposite of a **disassembler.**

assembly language: A low-level programming language in which individual machine-language instructions are written in a symbolic form that's easier to understand than machine language itself. Each assembly-language instruction produces one machine-language instruction. See also machine language.

asynchronous: Not synchronized by a mutual timing signal or clock. Compare **synchronous.**

asynchronous transmission: A method of data transmission in which the receiving and sending devices don't share a common timer, and no timing data is transmitted. Each information character is individually synchronized, usually by the use of start and stop bits. The time interval between characters isn't necessarily fixed. Compare synchronous transmission.

auxiliary slot: The special expansion slot inside the Apple IIe used for the Apple IIe 80-Column Text Card or Extended 80-Column Text Card, and also for the **RGB monitor** card. The slot is labeled AUX. CONNECTOR on the circuit board.

back panel: The rear surface of the computer, which includes the power switch, the power connector, and connectors for peripheral devices.

bandwidth: The range of frequencies a device can handle. Bandwidth and maximum data transfer rate are directly proportional. For example, a video monitor's greater bandwidth allows it to display more information per scan frame than most home television sets can. To display 80 columns of text, a monitor should have a bandwidth of at least 12 MHz.

base address: In *indexed addressing*, the fixed component of an address.

BASIC: Acronym for Beginners All-purpose Symbolic Instruction Code. BASIC is a high-level programming language designed to be easy to learn. Two versions of BASIC are available from Apple Computer for use with all Apple II–family systems: Applesoft BASIC (built into the firmware) and Integer BASIC.

baud: A unit of data transmission speed: the number of discrete signal state changes per second. Often, but not always, equivalent to *bits* per second. Compare **bit rate.**

binary: Characterized by having two different components, or by having only two alternatives or values available; sometimes used synonymously with **binary system.**

binary digit: The smallest unit of information in the binary number system; a 0 or a 1. Also called a **bit.**

binary operator: An operator that combines two operands to produce a result. For example, + is a binary arithmetic operator; < is a binary relational operator; OR is a binary logical operator. Compare **unary operator**.

binary system: The representation of numbers in the base-2 system, using only the two digits 0 and 1. For example, the numbers 0, 1, 2, 3, and 4 become 0, 1, 10, 11, and 100 in binary notation. The binary system is commonly used in computers because the values 0 and 1 can easily be represented in a variety of ways, such as the presence or absence of current, positive or negative voltage, or a white or black dot on the display screen. A single binary digit—a 0 or a 1—is called a bit. Compare decimal, hexadecimal.

bit: A contraction of binary digit. The smallest unit of information that a computer can hold. The value of a bit (1 or 0) represents a simple two-way choice, such as yes or no, on or off, positive or negative, something or nothing. See also binary system.

bit rate: The speed at which bits are transmitted, usually expressed as *bits per second*, or *bps*. Compare **baud**.

bits per second: See bit rate.

board: See printed-circuit board.

body: In BASIC, the statements or instructions that make up a part of a program, such as a loop or a subroutine.

boot: Another way to say start up. A computer boots by loading a program into memory from an external storage medium such as a disk. Starting up is often accomplished by first loading a small program, which then reads a larger program into memory. The program is said to "pull itself up by its own bootstraps"—hence the term bootstrapping or booting.

boot disk: See startup disk.

bootstrap: See boot.

bps: See bit rate.

branch: (v) To pass program control to a line or statement other than the next in sequence. (n) A statement that performs a branch. See **conditional branch, unconditional branch.**

BREAK: A SPACE (0) signal, sent over a communication line, of long enough duration to interrupt the sender. This signal is often used to end a session with a time-sharing service. BREAK is also used in BASIC to stop execution of a program; it's generated by pressing Control-C.

BRK: A "software interrupt." An instruction that causes the 6502 or 65C02 microprocessor to halt. Pronounced "break."

buffer: A "holding area" of the computer's memory where information can be stored by one program or device and then read at a different rate by another; for example, a print buffer. In editing functions, an area in memory where deleted (cut) or copied data is held. In some applications, this area is called the *Clipboard*.

bug: An error in a program that causes it not to work as intended. The expression reportedly comes from the early days of computing when an itinerant moth shorted a connection and caused a breakdown in a room-size computer.

bus: A group of wires or circuits that transmit related information from one part of a computer system to another. In a network, a line of cable with connectors linking devices together. A bus network has a beginning and an end. (It's not in a closed circle or T shape.)

byte: A unit of information consisting of a fixed number of **bits.** On Apple II systems, one byte consists of a series of eight bits, and a byte can represent any value between 0 and 255. The sequence represents an instruction, letter, number, punctuation mark, or other character. See also **kilobyte, megabyte.**

cable: An insulated bundle of wires with connectors on the ends; the number of wires varies with the type of connection. Examples are serial cables, disk drive cables, and AppleTalk cables.

call: (v) To request the execution of a subroutine, function, or procedure. (n) A request from the keyboard or from a procedure to execute a named procedure. See **procedure.**

carriage return: An ASCII character (decimal 13) that ordinarily causes a printer or display device to place the next character on the left margin.

carrier: The background signal on a communication channel that is modified to carry information. Under RS-232-C rules, the carrier signal is equivalent to a continuous MARK (1) signal; a transition to 0 then represents a start bit.

carry flag: A status bit in the 6502 or 65C02 microprocessor, used as a ninth bit with the eight accumulator bits in addition, subtraction, rotation, and shift operations.

cathode-ray tube (CRT): An electronic device, such as a television picture tube, that produces images on a phosphor-coated screen. The phosphor coating emits light when struck by a focused beam of electrons. A common display device used with personal computers.

central processing unit (CPU): The "brain" of the computer; the microprocessor that performs the actual computations in machine language. See microprocessor.

character: Any symbol that has a widely understood meaning and thus can convey information. Some characters—such as letters, numbers, and punctuation—can be displayed on the monitor screen and printed on a printer. Compare control character.

character code: A number used to represent a character for processing by a computer system.

character set: The entire set of characters that can be either shown on a monitor or used to code computer instructions. In a printer, the entire set of characters that the printer is capable of printing.

chip: See integrated circuit.

Clear To Send: An RS-232-C signal from a DCE to a DTE that is normally kept false until the DCE makes it true, indicating that all circuits are ready to transfer data out. See Data Communication Equipment, Data Terminal Equipment.

code: (1) A number or symbol used to represent some piece of information. (2) The statements or instructions that make up a program.

cold start: The process of starting up the Apple II when the power is first turned on (or as if the power had just been turned on) by loading the operating system into main memory, and then loading and running a program. Compare **warm start.**

column: A vertical arrangement of graphics points or character positions on the display.

command: An instruction that causes the computer to perform some action. A command can be typed from a keyboard, selected from a menu with a hand-held device (such as a mouse), or embedded in a program.

command character: An ASCII character, usually Control-A or Control-I, that causes the serial port firmware to interpret subsequent characters as commands.

command register: An ACIA location (at \$C09A for port 1 and \$C0AA for port 2) that stores parity type and RS-232-C signal characteristics.

compiler: A language translator that converts a program written in a high-level programming language (source code) into an equivalent program in some lower-level language such as machine language (object code) for later execution. Compare interpreter.

composite video: A video signal that includes both display information and the synchronization (and other) signals needed to display it. See **RGB** monitor.

computer: An electronic device that performs predefined (programmed) computations at high speed and with great accuracy. A machine that is used to store, transfer, and transform information.

computer language: See programming language.

computer system: A computer and its associated hardware, firmware, and software.

conditional branch: A branch whose execution depends on the truth of a condition or the value of an expression. Compare unconditional branch.

configuration: (1) The total combination of hardware components—CPU, video display device, keyboard, and peripheral devices—that make up a computer system. (2) The software settings that allow various hardware components of a computer system to communicate with each other.

connector: A plug, socket, jack, or port.

constant: In a program, a symbol that represents a fixed, unchanging value. Compare **variable**.

control character: A nonprinting character that controls or modifies the way information is printed or displayed. In the Apple II family, control characters have ASCII values between 0 and 31, and are typed from a keyboard by holding down the Control key while pressing some other key. In the Macintosh family, the Command key performs a similar function.

control code: One or more nonprinting characters—included in a text file—whose function is to change the way a printer prints the text. For example, a program may use certain control codes to turn boldface printing on and off. See control character.

control key: A general term for a key that controls the operation of other keys; for example, Apple, Caps Lock, Control, Option, and Shift. When you hold down or engage a control key while pressing another key, the combination makes that other key behave differently. Also called a *modifier key*.

Control key: A specific key on Apple II–family keyboards that produces **control characters** when used in combination with other keys.

controller card: A peripheral card that connects a device such as a printer or disk drive to a computer's main logic board and controls the operation of the device.

control register: An ACIA location (at \$C09B for port 1 and \$C0AB for port 2) that stores data format and baud rate selections.

Control-Reset: A combination keystroke on Apple II–family computers that usually causes an Applesoft BASIC program or command to stop immediately. If a program disables the Control-Reset feature, you need to turn the computer off to get the program to stop.

copy protect: To make a disk uncopyable. Software publishers frequently try to copy protect their disks to prevent them from being illegally duplicated by software pirates. Compare **write protect.**

CPU: See central processing unit.

CRT: See cathode-ray tube.

CTS: See Clear To Send.

crash: To cease to operate unexpectedly, possibly destroying information in the process.

current input device: The source, such as the keyboard or a modem, from which a program is currently receiving its input.

current output device: The destination, such as the display screen or a printer, currently receiving a program's output.

cursor: A symbol displayed on the screen marking where the user's next action will take effect or where the next character typed from the keyboard will appear.

DAC: See digital-to-analog converter.

data: Information, especially information used or operated on by a program. The smallest unit of information a computer can understand is a bit.

data bits: The bits in a communication transfer that contain information. Compare start bit, stop bit.

Data Carrier Detect (DCD): An RS-232-C signal from a DCE (such as a modem) to a DTE (such as an Apple IIe) indicating that a communication connection has been established. See Data Communication Equipment, Data Terminal Equipment.

Data Communication Equipment (DCE): As defined by the RS-232-C standard, any device that transmits or receives information. Usually this device is a **modem.**

data format: The form in which data is stored manipulated, or transferred.

data set: A device that modulates, demodulates, and controls signals transferred between business machines and communication facilities. A form of modem.

Data Set Ready (DSR): An RS-232-C signal from a DCE to a DTE indicating that the DCE has established a connection. See Data Communication Equipment, Data Terminal Equipment.

Data Terminal Equipment (DTE): As defined by the RS-232-C standard, any device that generates or absorbs information, thus acting as an endpoint of a communication connection. A computer might serve as a DTE.

Data Terminal Ready (DTR): An RS-232-C signal from a DTE to a DCE indicating a readiness to transmit or receive data. See **Data**

Communication Equipment, Data Terminal Equipment.

DCD: See Data Carrier Detect.

DCE: See Data Communication Equipment.

debug: A colloquial term that means to locate and correct an error or the cause of a problem or malfunction in a computer program. Compare **troubleshoot.** See also **bug.**

decimal: The common form of number representation used in everyday life, in which numbers are expressed in in the base-10 system, using the ten digits 0 through 9. Compare **binary**, **hexadecimal**.

default: A preset response to a question or prompt. The default is automatically used by the computer if you don't supply a different response. Default values prevent a program from stalling or crashing if no value is supplied by the user.

deferred execution: The execution of a BASIC program instruction that is part of a complete program. The program instruction is executed only when the complete program is run. You defer execution of the instruction by preceding it with a program line number. The complete program executes consecutive instructions in numerical order. Compare immediate execution.

Delete key: A key on the upper-right corner of the Apple IIe and IIc keyboards that erases the character immediately preceding (to the left of) the cursor. Similar to the Macintosh Backspace key.

delimiter: A character that is used for punctuation to mark the beginning or end of a sequence of characters, and which therefore is not considered part of the sequence itself. For example, Applesoft BASIC uses the double quotation mark (") as a delimiter for string constants: the string "DOG" consists of the three characters *D*, *O*, and *G*, and does not include the quotation marks.

demodulate: To recover the information being transmitted by a modulated signal. For example, a conventional radio receiver demodulates an incoming broadcast signal to convert it into the sound emitted by the radio's speaker. Compare modulate.

device: Frequently used as a short form of **peripheral device.**

device driver: A program that manages the transfer of information between the computer and a peripheral device.

device handler: See device driver.

digit: (1) One of the characters 0 through 9, used to express numbers in decimal form. (2) One of the characters used to express numbers in some other form, such as 0 and 1 in binary or 0 through 9 and A through F in hexadecimal.

digital: Represented in a discrete (noncontinuous) form, such as numerical digits or integers. For example, contemporary digital clocks show the time as a digital display (such as 2:57) instead of using the positions of a pair of hands on a clock face. Compare analog.

digital data: Data that can be represented by digits—that is, data that are discrete rather than continuously variable. Compare analog data.

digital signal: A signal that is sent and received in discrete intervals. A signal that does not vary continuously over time. Compare analog signal.

digital-to-analog converter: A device that converts quantities from digital to analog form.

DIP: See dual in-line package.

DIP switches: A bank of tiny switches, each of which can be moved manually one way or the other to represent one of two values (usually on and off). See **dual in-line package.**

disassembler: A language translator that converts a machine-language program into an equivalent program in assembly language, which is easier for programmers to understand. The opposite of an assembler.

disk: An information-storage medium consisting of a flat, circular, magnetic surface on which information can be recorded in the form of small magnetized spots, in a manner similar to the way sounds are recorded on tape. See floppy disk, hard disk.

disk-based: See disk-resident.

disk controller card: A peripheral card that provides the connection between one or two disk drives and the computer. This connection, or interface, is built into both the Apple IIc and Macintosh-family computers.

disk drive: The device that holds a disk, retrieves information from it, and saves information to it.

disk envelope: A removable, protective paper sleeve used when handling or storing a 5.25-inch disk. It must be removed before you insert the disk in a disk drive. Compare **disk jacket.**

disk jacket: A permanent, protective covering for a disk. 5.25-inch disks have flexible, paper or plastic jackets; 3.5-inch disks have hard plastic jackets. The disk is never removed from the jacket. Compare **disk envelope.**

Disk Operating System (DOS): An optional software system for the Apple II family of computers that enables the computer to control and communicate with one or more disk drives. The acronym *DOS* rhymes with *boss*.

disk-resident: An adjective describing a program that does not remain in memory. The computer retrieves all or part of the program from the disk, as needed. Sometimes called disk-based. Compare memory-resident.

Disk II drive: An older type of disk drive made and sold by Apple Computer for use with the Apple II, II Plus, and IIe. It uses 5.25-inch disks.

display: (1) A general term to describe what you see on the screen of your display device when you're using a computer; from the verb form, which means "to place into view." (2) Short for a display device.

display color: The color currently being used to draw high-resolution or low-resolution graphics on the display screen.

display device: A device that displays information, such as a television set or video monitor.

display screen: The screen of the monitor; the area where you view text and pictures when using the computer.

DOS 3.2: An early Apple II operating system. DOS stands for **Disk Operating System;** 3.2 is the version number. Disks formatted using DOS 3.2 have 13 sectors per track.

DOS 3.3: An operating system used by the Apple II family of computers. DOS stands for **Disk Operating System;** 3.3 is the version number.
Disks formatted with DOS 3.3 have 16 sectors per track.

drive: See disk drive.

DSR: See Data Set Ready.

DTE: See Data Terminal Equipment.

DTR: See Data Terminal Ready.

dual in-line package (DIP): An integrated circuit packaged in a narrow rectangular box with a row of metal pins along each side. DIP switches on the box allow you to change settings. For example, ImageWriter printer DIP switches control functions such as line feed, form length, and baud setting.

Dvorak keyboard: An alternate keyboard layout, also known as the *American Simplified Keyboard*, which increases typing speed because the keys most often used are in the positions easiest to reach. Compare **QWERTY keyboard**.

EBCDIC: Acronym for *Extended Binary-Coded Decimal Interchange Code*; pronounced "EB-sidik." A code used by IBM that represents each letter, number, special character, and control character as an 8-bit binary number. EBCDIC has a character set of 256 8-bit characters. Compare **ASCII.**

effective address: In machine-language programming, the address of the memory location on which a particular instruction operates, which may be arrived at by indexed addressing or some other addressing method.

80-column text card: A peripheral card that allows the Apple II, Apple II Plus, and Apple IIe to display text in either 40 columns or 80 columns.

80/40-column switch: A switch that controls the maximum number of columns or characters across the screen. A television can legibly display a maximum of 40 characters across the screen, whereas a video monitor can display 80 characters.

embedded: Contained within. For example, the string 'HUMPTY DUMPTY' is said to contain an embedded space.

emulate: To operate in a way identical to a different system. For example, the Apple II 2780/3780 Protocol Emulator and the Apple II 3270 BSC Protocol Emulator, together with the Apple Communications Protocol Card (ACPC), allow the Apple II, Apple II Plus, or Apple IIe to emulate the operations of IBM 3278 and 3277 terminals and 3274 and 3271 control units.

emulation mode: A mode of operation in which the computer is emulating the operation of another computer or interface. See **emulate.**

end-of-command mark: A punctuation mark used to separate commands sent to a peripheral device such as a printer or plotter. Also called a command terminator.

end-of-line character: A character which indicates that the preceding text constitutes a full line.

error code: A number or other symbol representing a type of error.

error message: A message displayed or printed to tell you of an error or problem in the execution of a program or in your communication with the system. An error message is often accompanied by a beep.

escape character: An ASCII character that, with many programs and devices, allows you to perform special functions when used in combination keypresses.

escape code: A sequence of characters that begins with an ESCAPE character and constitutes a complete command. Usually synonymous with **escape sequence.**

Escape key: A key on Apple II–family computers that generates the ESCAPE character. The Escape key is labeled *Esc.* In many applications, pressing Esc allows you to return to a previous **menu** or to stop a procedure.

escape mode: A state of the Apple IIe and IIc entered by pressing the Esc key and certain other keys. The other keys take on special meanings for positioning the cursor and controlling the display of text on the screen.

escape sequence: A sequence of keystrokes, beginning with the Esc key. In **escape mode**, escape sequences are used for positioning the cursor and controlling the display of text on the screen. Escape sequences are also used as codes to control printers.

Esc key: See Escape key.

even/odd parity check: In data transmission, a check that tests whether the number of 1 bits in a group of binary digits is even (even parity check) or odd (odd parity check).

even parity: In data transmission, the use of an extra bit set to 0 or 1 as necessary to make the total number of 1 bits an even number; used as a means of error checking. Compare MARK parity, odd parity.

exclusive OR: A logical operator that produces a true result if one of its operands is true and the other false, and a false result if its operands are both true or both false. Compare **OR, AND,** and **NOT.**

execute: To perform the actions specified by a program command or sequence of commands.

expansion slot: A connector into which you can install a peripheral card. Sometimes called a *peripheral slot*. See also **auxiliary slot**.

expression: A formula in a program that defines a calculation to be performed.

FIFO: Acronym for "first in, first out" order, as in a queue.

file: Any named, ordered collection of information stored on a disk. Application programs and operating systems on disks are files. You make a file when you create text or graphics, give the material a name, and save it to disk.

firmware: Programs stored permanently in readonly memory (ROM). Such programs (for example, the Applesoft Interpreter and the Monitor program) are built into the computer at the factory. They can be executed at any time but cannot be modified or erased from main memory. Compare hardware, software.

fixed-point: A method of representing numbers inside the computer in which the decimal point (more correctly, the binary point) is considered to occur at a fixed position within the number. Typically, the point is considered to lie at the right end of the number so that the number is interpreted as an **integer.** Compare **floating-point.**

flag: A variable whose value (usually 1 or 0, standing for *true* or *false*) indicates whether some condition holds or whether some event has occurred. A flag is used to control the program's actions at some later time.

floating-point: A method of representing numbers inside the computer in which the decimal point (more correctly, the binary point) is permitted to "float" to different positions within the number. Some of the bits within the number itself are used to keep track of the point's position. Compare fixed-point.

floppy disk: A disk made of flexible plastic, as compared to a hard disk, which is made of metal. The term floppy is now usually applied only to disks with thin, flexible disk jackets, such as 5.25-inch disks. With 3.5-inch disks, the disk itself is flexible, but the jacket is made of hard plastic; thus, 3.5-inch disks aren't particularly "floppy."

format: (n) (1) The form in which information is organized or presented. (2) The general shape and appearance of a printed page, including page size, character width and spacing, line spacing, and so on. (v) To divide a disk into tracks and sectors where information can be stored. Blank disks must be formatted before you can save information on them for the first time; same as **initialize**.

form feed: An ASCII character (decimal 12) that causes a printer or other paper-handling device to advance to the top of the next page.

Fortran: Short for Formula Translator. A highlevel programming language especially suitable for applications requiring extensive numerical calculations, such as in mathematics, engineering, and the sciences.

framing error: In serial data transfer, the absence of the expected stop bit(s) at the end of a received character.

frequency: In alternating current (AC) signals, the number of complete cycles transmitted per second. Frequency is usually expressed in hertz (cycles per second), kilohertz (kilocycles per second), or megahertz (megacycles per second). In acoustics, frequency of vibration determines musical pitch. Compare duration.

full duplex: A four-wire communication circuit or protocol that allows two-way data transmission between two points at the same time. Compare half duplex.

function: A preprogrammed calculation that can be carried out on request from any point in a program. A function takes in one or more arguments and returns a single value. It can therefore be embedded in an expression.

game I/O connector: A 16-pin connector inside the Apple II, II Plus, and IIe, originally designed for connecting hand controls to the computer, but also used for connecting some other peripheral devices. Compare hand control connector.

graph: A pictorial representation of data.

graphics: (1) Information presented in the form of pictures or images. (2) The display of pictures or images on a computer's display screen. Compare **text.**

half duplex: A two-wire communication circuit or protocol designed for data transmission in either direction but not both directions simultaneously. Compare full duplex.

hand control connector: A 9-pin connector on the back panel of the Apple IIe and IIc computers, used for connecting hand controls to the computer. Compare game I/O connector.

hand controller: Peripheral devices, with rotating dials and push buttons. Hand controllers are used to control game-playing programs, but they can also be used in other applications.

hang: To cease operation because either an expected condition is not satisfied or an infinite loop is occurring. A computer that's hanging is called a *hung system*. Compare **crash**.

hard disk: A disk made of metal and sealed into a drive or cartridge. A hard disk can store very large amounts of information compared to a floppy disk.

hard disk drive: A device that holds a hard disk, retrieves information from it, and saves information to it. Hard disks made for microprocessors are permanently sealed into the drives.

hardware: In computer terminology, the machinery that makes up a computer system. Compare firmware, software.

hertz: The unit of frequency of vibration or oscillation, defined as the number of cycles per seoond. Named for the physicist Heinrich Hertz and abbreviated Hz. The 6502 microprocessor used in the Apple II systems operates at a clock frequency of about 1 million hertz, or 1 megahertz (MHz). The 68000 microprocessor used in the Macintosh operates at 7.8336 MHz.

hexadecimal: The representation of numbers in the base-16 system, using the ten digits 0 through 9 and the six letters A through F. For example, the decimal numbers 0, 1, 2, 3, 4, ... 8, 9, 10, 11, ... 15, 16, 17 would be shown in hexadecimal notation as 00, 01, 02, 03, 04, ... 08, 09, 0A, 0B, ... 0F, 10, 11. Hexadecimal numbers are easier for people to read and understand than are binary numbers, and they can be converted easily and directly to binary form. Each hexadecimal digit corresponds to a sequence of four binary digits, or bits. Hexadecimal numbers are usually preceded by a dollar sign (\$).

high ASCII characters: ASCII characters with decimal values of 128 to 255. Called *high ASCII* because their high bit (first binary digit) is set to 1 (for *on*) rather than 0 (for *off*).

high-level language: A programming language that is relatively easy for people to understand. A single statement in a high-level language typically corresponds to several instructions of machine language. High-level languages available from Apple Computer include BASIC, Pascal, Instant Pascal, Logo, Pilot, SuperPILOT, and Fortran. Compare low-level language.

high-order byte: The more significant half of a memory address or other two-byte quantity. In the 6502 microprocessor used in the Apple II family of computers, the low-order byte of an address is usually stored first, and the high-order byte second. In the 68000 microprocessors used in the Macintosh family, the high-order byte is stored first.

high-resolution graphics: The display of graphics on a screen as a six-color array of points, 280 columns wide and 192 rows high. When a text window is in use, the visible high-resolution graphics display is 280 by 160 points.

hold time: In computer circuits, the amount of time a signal must remain valid after some related signal has been turned off. Compare **setup time.**

Hz: See hertz.

IC: See integrated circuit.

immediate execution: The execution of a program statement as soon as it is typed. In BASIC, immediate execution occurs when the line is typed without a line number; immediate execution allows you to try out nearly every statement immediately to see how it works. Compare deferred execution.

implement: To put into practical effect, as to *implement* a plan. For example, a language translator implements a particular language.

IN#: This command designates the source of subsequent input characters. It can be used to designate a device in a slot or a machine-language routine as the source of input.

index: (1) A number used to identify a member of a list or table by its sequential position. (2) A list or table whose entries are identified by sequential position. (3) In machine-language programming, the variable component of an indexed address, contained in an index register and added to the base address to form the effective address.

indexed addressing: A method used in machine language programming to specify memory addresses. See also **memory location.**

index register: A register in a computer processor that holds an index for use in indexed addressing. The 6502 microprocessor used in the Apple II family of computers has two index registers, called the **X register** and the **Y register**. The 68000 microprocessor used in Macintosh-family computers has 16 registers that can be used as index registers.

index variable: A variable whose value changes on each pass through a loop. Often called *control* variable or loop variable.

infinite loop: A section of a program that will repeat the same sequence of actions indefinitely.

Initialize: (1) To set to an initial state or value in preparation for some computation. (2) To prepare a blank disk to receive information by organizing its surface into tracks and sectors; same as format.

initialized disk: A disk that has been organized into tracks and sectors by the computer and is therefore ready to store information.

input: Information transferred into a computer from some external source, such as the keyboard, a disk drive, or a modem.

input/output (I/O): The process by which information is transferred between the computer's memory and its keyboard or peripheral devices.

input routine: A machine-language routine; the standard input routine reads characters from the keyboard. A different input routine might, for example, read them from an external terminal.

instruction: A unit of a machine-language or assembly-language program corresponding to a single action for the computer's processor to perform.

integer: A whole number in fixed-point form. Compare **real number.**

Integer BASIC: A version of the BASIC programming language used by the Apple II family of computers. Integer BASIC is older than Applesoft BASIC and is capable of processing numbers in integer (fixed-point) form only. Many games are written in Integer BASIC because its instructions can be executed very quickly. Compare Applesoft BASIC.

integrated circuit: An electronic circuit—including components and nterconnections—entirely contained in a single piece of semiconducting material, usually silicon. Often referred to as an IC or a chip.

interface: (1) The point at which independent systems or diverse groups interact. The devices, rules, or conventions by which one component of a system communicates with another. Also, the point of communication between a person and a computer. (2) The part of a program that defines constants, variables, and data structures, rather than procedures.

interface card: A peripheral card that implements a particular interface (such as a parallel or serial interface) by which the computer can communicate with a peripheral device such as a printer or modem.

interpreter: A language translator that reads a program instruction by instruction and immediately translates each instruction for the computer to carry out. Compare **compiler.**

interrupt: A temporary suspension in the execution of a program that allows the computer to perform some other task, typically in response to a signal from a peripheral device or other source external to the computer.

inverse video: The display of text on the computer's display screen in the form of dark dots on a light (or other single phosphor color) background, instead of the usual light dots on a dark background.

I/O: See input/output.

I/O device: Input/output device. A device that transfers information into or out of a computer. See input, output, peripheral device.

I/O link: A fixed location that contains the address of an input/output subroutine in the computer's Monitor program.

IWM: "Integrated Woz Machine"; the custom chip that controls Apple's 3.5-inch disk drives.

joystick: A peripheral device with a lever, typically used to move creatures and objects in game programs; a joystick can also used in applications such as computer-aided design and graphics programs.

K: See kilobyte.

keyboard: The set of keys, similar to a typewriter keyboard, used for entering information into the computer.

keyboard input connector: The connector inside the Apple II family of computers by which the keyboard is connected to the computer.

keyword: A special word or sequence of characters that identifies a particular type of statement or command, such as *RUN*, *BRUN*, or *PRINT*.

kilobyte (K): A unit of measurement consisting of 1024 (2¹⁰) **bytes.** In this usage, *kilo* (from the Greek, meaning a thousand) stands for 1024. Thus, 64K memory equals 65,536 bytes. See also **megabyte.**

KSW: The symbolic name of the location in the computer's memory where the standard input link (namely, to the keyboard) is stored. *KSW* stands for *keyboard switch*.

language: See programming language.

language card: A peripheral card that, when placed in slot 0 of a 48K Apple II or Apple II Plus, gives the computer a total of 64K of memory. If you have an Apple II or Apple II Plus, you need a language card or the equivalent to use ProDOS.

language translator: A system program that reads another program written in a particular programming language and either executes it directly or converts it into some other language (such as machine language) for later execution. See interpreter, compiler, assembler.

leading zero: A zero occurring at the beginning of a decimal number, deleted by most computing programs.

least significant bit: The rightmost bit of a binary number. The least significant bit contributes the smallest quantity to the value of the number. Compare **most significant bit.**

LIFO: Acronym for "last in, first out" order, as in a stack.

line: See program line.

line feed: An ASCII character (decimal 10) that ordinarily causes a printer or video display to advance to the next line.

line number: A number identifying a program line in an Applesoft BASIC program.

line width: The number of characters that fit on a line on the screen or on a page.

list: To display on a monitor, or print on a printer, the contents of memory or of a file.

load: To transfer information from a peripheral storage medium (such as a disk) into main memory for use—for example, to transfer a program into memory for execution.

local: Connected to or close by the host system.

location: See memory location.

logic: (1) In microcomputers, a mathematical treatment of formal logic using a set of symbols to represent quantities and relationships that can be translated into switching circuits, or gates. AND, OR, and NOT are examples of logical gates. Each gate has two states, open or closed, allowing the application of binary numbers for solving problems. (2) The systematic scheme that defines the interactions of signals in the design of an automatic data processing system.

logical operator: An operator, such as AND, tha combines logical values to produce a logical result, such as true or false; sometimes called a Boolean operator. Compare arithmetic operator, relational operator.

logic board: See main logic board.

loop: A section of a program that is executed repeatedly until a limit or condition is met, such a an index variable's reaching a specified ending value. See **loop.**

loop variable: See index variable.

low-level language: A programming language that is relatively close to the form the computer's processor can execute directly. One statement in a low-level language corresponds to a single machine-language instruction. Examples are 6502 machine language, 6502 assembly language, and 68000 machine and assembly languages. Compare high-level language.

low-order byte: The less significant half of a memory address or other two-byte quantity. In the 6502 microprocessor used in the Apple II family of computers, the low-order byte of an address is usually stored first, and the **high-order byte** second. The opposite is true for Macintosh computers.

low-power Schottky (LS): A type of transistor-transistor logic (TTL) integrated circuit having lower power and higher speed than a conventional TTL integrated circuit; named for Walter Schottky (1886–1956), a semiconductor physicist.

low-resolution graphics: The display of graphics on a display screen as a 16-color array of blocks, 40 columns wide and 48 rows high. For example, on a Macintosh when the text window is in use, the visible low-resolution graphics display is 40 by 40 plotting points—that is, 40 by 40 pixels. See high-resolution graphics.

LS: See low-power Schottky.

machine language: The form in which instructions to a computer are stored in memory for direct execution by the computer's processor. Each model of computer processor (such as the 6502 microprocessor used in the Apple II family of computers) has its own form of machine language.

mainframe computer: A central processing unit or computer that is larger and more powerful than a minicomputer or a personal computer (microcomputer). Frequently called simply a mainframe for short. The Apple Access II program and MacTerminal make it possible to communicate with mainframe computers over telecommunications media.

main logic board: A large circuit board that holds RAM, ROM, the microprocessor, customintegrated circuits, and other components that make the computer a computer.

main memory: The part of a computer's memory whose contents are directly accessible to the microprocessor; usually synonymous with random-access memory (RAM). Programs are loaded into main memory, and that's where the computer keeps information while you're working. Sometimes simply called *memory*. See also readonly memory, read-write memory.

MARK parity: A bit of value 1 appended to a binary number for transmission. The receiving device checks for errors by looking for this value on each character. Compare even parity, odd parity.

megabyte: A unit of measurement equal to 1024 kilobytes, or 1,048,576 bytes; abbreviated Mb. See **kilobyte.**

memory: A hardware component of a computer system that can store information for later retrieval. See main memory, random-access memory, read-only memory, read-write memory.

memory location: A unit of main memory that is identified by an address and can hold a single item of information of a fixed size. In the Apple II family of computers, a memory location holds one byte, or eight bits, of information.

memory-resident: (1) Stored permanently in memory as firmware (ROM). (2) Held continually in memory even while not in use. DOS is a memory-resident program.

menu: A list of choices presented by a program, from which you can select an action.

MHz: Megahertz; one million hertz. See hertz.

microcomputer: A computer, such as any of the Apple II or Macintosh computers, whose processor is a **microprocessor**.

microprocessor: A computer processor contained in a single integrated circuit, such as the 6502 or 65C02 microprocessor used in the Apple II family of computers and the 68000 microprocessor used in the Macintosh family. The microprocessor is the central processing unit (CPU) of the microcomputer.

microsecond: One millionth of a second. Abbreviated μs.

millisecond: One thousandth of a second. Abbreviated ms.

mode: A state of a computer or system that determines its behavior. A manner of operating.

modem: Short for *MOdulator/DEModulator*. A peripheral device that links your computer to other computers and information services using the telephone lines.

modifier key: A key (Apple, Caps Lock, Control, Option, Shift) that generates no keyboard events of its own, but changes the meaning of other keys or mouse actions. Also called a *control key*.

modulate: To modify or alter a signal so as to transmit information. For example, conventional broadcast radio transmits sound by modulating the amplitude (amplitude modulation, or *AM*) or the frequency (frequency modulation, or *FM*) of a carrier signal.

monitor: See video monitor.

Monitor program: A system program built into the firmware of some computers, used for directly inspecting or changing the contents of main memory and for operating the computer at the machine-language level. The Monitor program activates the disk drive when you turn on the computer.

most significant bit: The leftmost bit of a binary number. The most significant bit contributes the largest quantity to the value of the number. For example, in the binary number 10110 (decimal value 22), the leftmost bit has the decimal value 16 (2⁴). Compare least significant bit.

mouse: A small device you move around on a flat surface next to your computer. The mouse controls a pointer on the screen whose movements correspond to those of the mouse. You use the pointer to select menu items, to move data, and to draw with in graphics programs.

mouse button: The button on the top of the mouse. In general, pressing the mouse button initiates some action on whatever is under the pointer, and releasing the button confirms the action.

nanosecond: One billionth of a second. Abbreviated ns.

nested loop: A loop contained within the body of another loop and executed repeatedly during each pass through the outer loop. See **loop.**

nested subroutine call: A call to a subroutine from within the body of another subroutine.

nibble: A unit of data equal to half a byte, or four bits. A nibble can hold any value from 0 to 15.

NOT: A unary logical operator that produces a true result if its operand is false, and a false result if its operand is true. Compare **AND**, **OR**, **exclusive OR**.

NTSC: (1) Abbreviation for *National Television*Standards Committee. The committee that defined the standard format used for transmitting broadcast video signals in the United States. (2) The standard video format defined by the NTSC.

object code: See object program.

object program: The translated form of a program produced by a language translator such as a compiler or assembler. Also called *object code*. Compare **source program.**

odd parity: In data transmission, the use of an extra bit set to 0 or 1 as necessary to make the total number of 1 bits an odd number; used as a means of error checking. Compare **even parity, MARK parity.**

opcode: See operation code.

Open Apple: A **control key** on the Apple II-family keyboards; on later keyboards, simply called the *Apple key*.

operand: A value to which an operator is applied. The value on which an operation code operates. Compare **argument.**

operating system: A program that organizes the actions of the parts of the computer and its peripheral devices. See **disk operating system.**

operation code: The part of a machine-language instruction that specifies the operation to be performed. Often called *opcode*.

operator: A symbol or sequence of characters, such as + or AND, specifying an operation to be performed on one or more values (the operands) to produce a result. See arithmetic operator, relational operator, logical operator, unary operator, binary operator.

option: (1) Something chosen or available as a choice; for instance, items in a menu. (2) An argument whose provision is optional.

OR: A logical operator that produces a true result if either or both of its operands are true, and a false result if both of its operands are false. Compare **exclusive OR, AND, NOT.**

output: Information transferred from a computer to some external destination, such as the display screen, a disk drive, a printer, or a modem.

output routine: A machine-language routine that performs the sending of characters. The standard output routine sends characters to the screen. A different output routine might, for example, send them to a printer.

overflow: The condition that exists when an attempt is made to put more data into a given memory area than it can hold; for example, a computational result that exceeds the allowed range.

override: To modify or cancel an instruction by issuing another one.

overrun: A condition that occurs when the processor does not retrieve a received character from the receive data register of the Asynchronous Communications Interface Adapter (ACIA) before the subsequent character arrives. The ACIA automatically sets bit 2 (OVR) of its status register; subsequent characters are lost. The receive data register contains the last valid data word received.

page: (1) A screenful of information on a video display. In the Apple II family of computers, a page consists of 24 lines of 40 or 80 characters each. (2) An area of main memory containing text or graphical information being displayed on the screen. (3) A segment of main memory 256 bytes long and beginning at an address that is an even multiple of 256.

page zero: See zero page.

parallel interface: An interface in which several bits of information (typically 8 bits, or 1 byte) are transmitted simultaneously over different wires or channels. Compare serial interface.

parity: Sameness of level or count, usually the count of 1 bits in each character, used for error checking in data transmission. See even parity, MARK parity, odd parity, parity bit.

Pascal: A high-level programming language with statements that resemble English phrases. Pascal was designed to teach programming as a systematic approach to problem solving. Named after the philosopher and mathematician Blaise Pascal.

pass: A single execution of a loop.

PC board: See printed-circuit board.

peek: To read information directly from a location in the computer's memory.

peripheral: (adj) At or outside the boundaries of the computer itself, either physically (as a peripheral device) or in a logical sense (as a peripheral card). (n) Short for *peripheral device*.

peripheral bus: The **bus** used for transmitting information between the computer and peripheral devices connected to the computer's expansion slots or ports.

peripheral card: A removable printed-circuit board that plugs into one of the computer's expansion slots. Peripheral cards allow the computer to use peripheral devices or to perform some subsidiary or peripheral function.

peripheral device: A piece of hardware—such as a video monitor, disk drive, printer, or modem—used in conjunction with a computer and under the computer's control. Peripheral devices are often (but not necessarily) physically separate from the computer and connected to it by wires, cables, or some other form of interface. They often require peripheral cards.

peripheral slot: See expansion slot.

phase: (1) A stage in a periodic process. A point in a cycle. For example, the 6502 microprocessor uses a clock cycle consisting of two phases called Φ 0 and Φ 1. (2) The relationship between two periodic signals or processes.

PILOT: Acronym for *Programmed Inquiry*, *Learning, Or Teaching*. A high-level programming language designed for teachers and used to create computer-aided instruction (CAI) lessons that include color graphics, sound effects, lesson text, and answer checking. SuperPILOT is an enhanced version of the original Apple II PILOT programming language.

pipelining: A feature of a processor that enables it to begin fetching the next instruction before it has finished executing the current instruction. All else being equal, processors with this feature run faster than those without it.

pixel: Short for *picture element*. A point on the graphics screen; the visual representation of a bit on the screen (white if the bit is 0, black if it's 1). Also, a location in video memory that maps to a point on the graphics screen when the viewing window includes that location.

plotting vector: A code representing a single step in drawing a shape on the high-resolution graphics screen. The plotting vector specifies whether to plot a point at the current screen position, and in what direction to move (up, down, left, or right) before processing the next vector. See **shape definition**, **shape table**.

pointer: An item of information consisting of the memory address of some other item. For example, Applesoft BASIC maintains internal pointers to the most recently stored variable, the most recently typed program line, and the most recently read data item, among other things. The 6502 uses one of its internal registers as a pointer to the top of the stack.

point of call: The point in a program from which a subroutine or function is called.

poke: To store information directly into a location in the computer's memory.

pop: To remove the top entry from a **stack**, moving the stack pointer to the entry below it. Synonymous with *pull*. Compare **push**.

port: In the Apple IIc, slots are called ports.

power supply: A circuit that draws electrical power from a power outlet and converts it to the kind of power the computer can use.

power supply case: The metal case inside most Apple II and Macintosh computers that houses the power supply. The Apple IIc uses an external power supply case.

PR#: An Applesoft BASIC command that sends output to a slot or a machine-language program. It specifies an output routine in the ROM on a peripheral card or in a machine-language routine in RAM by changing the address of the standard output routine used by the computer.

precedence: The order in which operators are applied in evaluating an expression. Precedence varies from language to language, but usually resembles the precedence rules of algebra.

printed-circuit board: A hardware component of a computer or other electronic device, consisting of a flat, rectangular piece of rigid material, commonly Fiberglas, to which integrated circuits and other electronic components are connected.

procedure: In the Pascal and Logo programming languages, a set of instructions that work as a unit; approximately equivalent to the term **subroutine** in BASIC.

processor: The hardware component of a computer that performs the actual computation by directly executing instructions represented in machine language and stored in main memory. See **microprocessor.**

ProDOS: An Apple II operating system designed to support hard disk drives like the ProFile, as well as floppy disk storage devices. ProDOS stands for *Professional Disk Operating System*. Compare **Disk Operating System** (**DOS**).

ProDOS command: Any one of the 28 commands recognized by ProDOS.

program: (n) A set of instructions describing actions for a computer to perform in order to accomplish some task, conforming to the rules and conventions of a particular programming language. (v) To write a program.

program line: The basic unit of an Applesoft BASIC program, consisting of one or more statements separated by colons (:).

programming language: A set of symbols and associated rules or conventions for writing programs. BASIC, Logo, and Pascal are programming languages.

prompt: A message on the screen that tells you of some need for response or action. A prompt usually takes the form of a symbol, a message, a dialog box, or a menu of choices.

prompt character: A text character displayed on the screen, usually just to the left of a cursor, where your next action is expected. The prompt character often identifies the program or component of the system that's prompting you. For example, Applesoft BASIC uses a square bracket prompt character (1); Integer BASIC, an angle bracket (>); and the system Monitor program, an asterisk (*).

prompt line: A specific area on the display reserved for **prompts**.

protocol: A formal set of rules for sending and receiving data on a communication line.

Protocol Converter: A set of machine language routines used in the Apple II family for performing block device I/O. See **Smartport**.

push: To add an entry to the top of a **stack**, moving the stack pointer to point to it. Compare **pop.**

queue: A list in which entries are added at one end and removed at the other, causing entries to be removed in first-in, first-out (FIFO) order. Compare **stack.**

QWERTY keyboard: The standard layout of keys on a typewriter keyboard; its name is formed from the first six letters on the top row of letter keys. Compare **Dvorak keyboard.**

radio-frequency (RF) modulator: A device that makes your television set work as a monitor.

RAM: See random-access memory.

random-access memory (RAM): Memory in which information can be referred to in an arbitrary or random order. As an analogy, a book is a random-access storage device in that it can be opened and read at any point. RAM usually means the part of memory available for programs from a disk; the programs and other data are lost when the computer is turned off. A computer with 512K RAM has 512 kilobytes available to the user. (Technically, the read-only memory [ROM] is also random access, and what's called RAM should correctly be termed read-write memory.) Compare read-only memory, read-write memory.

random-access text file: A text file that is partitioned into an unlimited number of uniform-length compartments called *records*. When you open a random-access text file for the first time, you must specify its record length. No record is placed in the file until written to. Each record can be individually read from or written to—hence, *random-access*.

raster: The pattern of parallel lines making up the image on a video display screen. The image is produced by controlling the brightness of successive points on the individual lines of the raster.

read: To transfer information into the computer's memory from outside the computer (such as a disk drive or modem) or into the computer's processor from a source external to the processor (such as the keyboard or main memory).

read-only memory (ROM): Memory whose contents can be read, but not changed; used for storing firmware. Information is placed into read-only memory once, during manufacture; it then remains there permanently, even when the computer's power is turned off. Compare random-access memory, read-write memory.

read-write memory: Memory whose contents can be both read and changed (or written to). The information contained in read-write memory is erased when the computer's power is turned off and is permanently lost unless it has been saved or a disk or other storage device. Compare random-access memory, read-only memory.

real number: In computer usage, a number that may include a fractional part; represented inside the computer in **floating-point** form. Because a real number is of infinite precision, this representation is usually approximate. Compare **integer.**

receive data register: A read-only register in the serial port ACIA (at \$C098 for port 1 and \$C0A8 for port 2) that stores the most recent character successfully received.

register: A location in a processor or other chip where an item of information is held and modified under program control.

relational operator: An operator, such as >, that operates on numeric values to produce a logical result. Compare arithmetic operator, logical operator.

Request-To-Send: An RS-232-C signal from a DTE to a DCE that serves to prepare the DCE for data transmission.

reserved word: A word or sequence of characters reserved by a programming language for some special use and therefore unavailable as a variable name in a program.

resident: See memory-resident, diskresident.

return address: The point in a program to which control returns on completion of a subroutine or function.

RF modulator: See radio-frequency modulator.

RGB monitor: A type of color monitor that receives separate signals for each color (red, green, and blue). See **composite video.**

ROM: See read-only memory.

routine: A part of a program that accomplishes some task subordinate to the overall task of the program.

row: A horizontal arrangement of character cells or graphics **pixels** on the screen.

RS-232 cable: Any cable that is wired in accordance with the RS-232 standard, which is the common serial data communication interface standard.

RTS: See Request-To-Send.

run: (1) To execute a program. When a program runs, the computer performs the instructions.
(2) To load a program into main memory from a peripheral storage medium, such as a disk, and execute it.

save: To store information by transferring the information from main memory to a disk. Work not saved disappears when you turn off the computer or when the power is interrupted.

screen: See display screen.

scroll: To move all the text on the screen upward or downward, and, in some cases, sideways. See **viewport, window.**

serial interface: An interface in which information is transmitted sequentially, a bit at a time, over a single wire or channel. Compare parallel interface.

setup time: The amount of time a signal must be valid in advance of some event. Compare **hold time.** See **valid signal.**

silicon (Si): A solid, crystalline chemical element from which integrated circuits are made. Silicon is a *semiconductor*; that is, it conducts electricity better than insulators, but not as well as metallic conductors. Silicon should not be confused with silica—that is, silicon dioxide, such as quartz, opal, or sand—or with silicone, any of a group of organic compounds containing silicon.

simple variable: A variable that is not an element of an array.

68000: The microprocessor used in the Macintosh and Macintosh Plus.

6502: The microprocessor used in the Apple II, in the Apple II Plus, and in early models of the Apple IIe.

65C02: The microprocessor used in the enhanced Apple IIe, the extended keyboard IIe, and the Apple IIc.

slot: A narrow socket inside the computer where you can install peripheral cards. Also called an **expansion slot.**

Smartport: A set of machine language routines used in the Apple II family for performing block device I/O. See **Protocol Converter.**

soft switch: Also called a *software switch*; a means of changing some feature of the computer from within a program. For example, **DIP switch** settings on ImageWriter printers can be overridden with soft switches. Specifically, a soft switch is a location in memory that produces some special effect whenever its contents are read or written.

software: A collective term for **programs**, the instructions that tell the computer what to do. They're usually stored on disks. Compare **hardware**, **firmware**.

source code: See source program.

source program: The form of a program given to a language translator, such as a compiler or assembler, for conversion into another form; sometimes called *source code*. Compare **object program.**

space character: A text character whose printed representation is a blank space, typed from the keyboard by pressing the Space bar.

SPACE parity: A bit value of 0 appended to a binary number for transmission. The receving device can look for this value on each character as a means of error checking.

stack: A list in which entries are added (pushed) or removed (popped) at one end only (the top of the stack), causing them to be removed in last-in, first-out (LIFO) order. Compare **queue.**

standard instruction: An instruction automatically present when no superseding instruction has been received.

start bit: A transition from a MARK signal to a SPACE signal for one bit-time, indicating that next string of bits represents a character.

starting value: The value assigned to the index variable on the first pass through a loop.

start up: To get the system running. Starting up is the process of first reading the operating system program from the disk, and then running an application program.

startup disk: A disk with all the necessary program files—such as the Finder and System files contained in the System folder in Macintosh—to set the computer into operation. In Apple II, sometimes called a *boot disk*.

statement: A unit of a program in a high-level language that specifies an action for the computer to perform. A statement typically corresponds to several instructions of machine language.

status register: A location in the ACIA (at \$C099 for port 1 and \$C0A9 for port 2) that stores the state of two RS-232-C signals and the state of the transmit and receive data registers, as well as the outcome of the most recent character transfer.

step value: The amount by which the index variable changes on each pass through a loop.

stop bit: A MARK signal following a data string (or the optional parity bit), indicating the end of a character.

string: An item of information consisting of a sequence of text characters.

strobe: A signal whose change is used to trigger some action.

subroutine: A part of a program that can be executed on request from another point in the program and that returns control, on completion, to the point of the request.

synchronous: A mode of data transmission in which a constant time interval exists between transmission of successive bits, characters, or events. Compare asynchronous.

synchronous transmission: A transmission process that uses a clocking signal to ensure an integral number of unit (time) intervals between any two characters. Compare **asynchronous transmission.**

syntax: (1) The rules governing the structure of statements or instructions in a programming language. (2) A representation of a command that specifies all the possible forms the command can take.

system: A coordinated collection of interrelated and interacting parts organized to perform some function or achieve some purpose—for example, a computer system comprising a processor, keyboard, monitor, and disk drive.

system configuration: See configuration.

system program: A program that makes the resources and capabilities of the computer available for general purposes, such as an operating system or a language translator. Compare application program.

system software: The component of a computer system that supports application programs by managing system resources such as memory and I/O devices

tab: An ASCII character that commands a device such as a printer to start printing at a preset location (called a *tab stop*). There are two such characters: horizontal tab (hex 09) and vertical tab (hex 0B). TAB works like the tabs on a typewriter.

television set: A display device capable of receiving broadcast video signals (such as commercial television broadcasts) by means of an antenna. Can be used in combination with a radio-frequency modulator as a display device for the Apple II family of computers. Compare video monitor.

text: (1) Information presented in the form of readable characters. (2) The display of characters on a display screen. Compare **graphics.**

text window: An area on the video display screen within which text is displayed and scrolled.

traces: Electrical paths that connect the components on a circuit board.

transistor-transistor logic (TTL): (1) A family of integrated circuits having bipolar circuit logic; TTLs are used in computers and related devices. (2) A standard for interconnecting such circuits, which defines the voltages used to represent logical zeros and ones.

transmit data register: A location in the ACIA (at location \$C098 for port 1 and \$C0A8 for port 2) that holds the current character to be transmitted.

troubleshoot: To locate and correct the cause of a problem or malfunction, especially in hardware. Compare **debug.**

TTL: See transistor-transistor logic.

turnkey disk: See startup disk.

unary operator: An operator that applies to a single operand. For example, the minus sign (–) in a negative number such as –6 is a unary arithmetic operator. Compare binary operator.

unconditional branch: A branch that does not depend on the truth of any condition. Compare conditional branch.

value: An item of information that can be stored in a variable, such as a number or a string.

variable: (1) A location in the computer's memory where a value can be stored. (2) The symbol used in a program to represent such a location. Compare constant.

vector: (1) The starting address of a program segment, when used as a common point for transferring control from other programs. (2) A memory location used to hold a vector, or the address of such a location.

video: (1) A medium for transmitting information in the form of images to be displayed on the screen of a cathode-ray tube. (2) Information organized or transmitted in video form.

video monitor: A display device that can receive video signals by direct connection only, and that cannot receive broadcast signals such as commercial television. Can be connected directly to the computer as a display device. Compare television set.

viewport: All or part of the display screen used by an application program to display a portion of the information (such as a document, picture, or worksheet) on which a program is working. Compare **window.**

volume: A general term referring to a storage device; a source of or a destination for information. A volume has a name and a volume directory with the same name. Its information is organized into files.

warm start: The process of transferring control back to the operating system in response to a failure in an application program. Compare cold start.

window: The portion of a collection of information (such as a document, picture, or worksheet) that is visible in a viewport on the display screen. Compare viewport.

word: A group of bits that is treated as a unit; the number of bits in a word is a characteristic of each particular computer.

write: To transfer information from the computer to a destination external to the computer (such as a disk drive, printer, or modem) or from the computer's processor to a destination external to the processor (such as main memory).

write-enable notch: The square cutout on one edge of a 5.25-inch disk's jacket. If there is no write-enable notch, or if it is covered with a write-protect tab, the disk drive can read information from the disk, but cannot write on it.

write protect: To protect the information on a 5.25-inch disk by covering the write-enable notch with a write-protect tab, preventing the disk drive from writing any new information onto the disk. Compare copy protect.

write-protect tab: (1) A small adhesive sticker used to write protect a 5.25-inch disk by covering the write-enable notch. (2) The small plastic tab i the corner of a 3.5-inch disk jacket. You lock (writ protect) the disk by sliding the tab toward the edg of the disk; you unlock the disk by sliding the tab back so that it covers the rectangular hole.

X register: One of the two index registers in the 6502 microprocessor.

Y register: One of the two index registers in the 6502 microprocessor.

zero page: The first page (256 bytes) of memory in the Apple II family of computers, also called page zero. Since the high-order byte of any address in this page is zero, only the low-order byte is needed to specify a zero-page address; thi makes zero-page locations more efficient to address, in both time and space, than locations i any other page of memory.

- Addendum to the Design Guidelines. Cupertino, Calif.: Apple Computer, Inc., 1984.
- Applesoft BASIC Programmer's Reference Manual, Vols. 1 and 2. For the Apple II, IIe, and IIc. Cupertino, Calif.: Apple Computer, Inc., 1982. The version that applies to both the Apple IIe and the Apple IIc has Apple product number A2L0084 (Vol. 1) and A2L0085 (Vol. 2).
- Applesoft Tutorial. Cupertino, Calif.: Apple Computer, Inc., 1982.
- Apple IIe Design Guidelines. Cupertino, Calif.: Apple Computer, Inc., 1982.
- Apple II Monitors Peeled. Cupertino, Calif.: Apple Computer, Inc., 1978. Currently not updated for Apple IIe and IIc, but a good introduction to Apple II–series input/output procedures; also useful for historical background.
- Leventhal, Lance. 6502 Assembly Language Programming. Berkeley, Calif.: Osborne/McGraw-Hill, 1979.
- Synertek Hardware. Santa Clara, Calif.: Synertek Incorporated, 1976. Does not contain instructions new to 65C02, but is the only currently available manufacturer's hardware manual for 6500-series microcomputers.
- Synertek Programming. Santa Clara, Calif.: Synertek Incorporated, 1976. The only currently available manufacturer's programming manual for 6500-series microcomputers.
- Watson, Allen, III. "A Simplified Theory of Video Graphics, Part I." *Byte*, Vol. 5, No. 11 (November 1980).

- ———. "True Sixteen-Color Hi-Res." Apple Orchard, Vol. 5, No. 1 (January 1984).
- Wozniak, Steve. "System Description: The Apple II." Byte, Vol. 2, No. 5 (May 1977).
- ——. "SWEET16: The 6502 Dream Machine." *Byte,* Vol. 2, No. 10 (October 1977).

Index

Cast of Characters addressing modes 26, 226 ASCII codes 58, 78, 80-81, 89, 65C02 302, 304 164, 368 * (asterisk) 59, 104 ASCII input mode 209 AltChar switch 102, 243, 360 @ (at sign) 113 alternate character set 69, 70, 88, assembler 220 \ (backslash) 59, 63 92, 360 ^ (caret) 225 AltZP switch 28, 242 195-196 : (colon) 216, 224 analog inputs 200 \$ (dollar) 225 any-key-down (AKD) 78, 243, 255 debugging 221 (period) 206 Apple Integer BASIC 308, 330, asterisk (*) 59, 204 ? (question mark) 59, 169, 179 348, 356, 388 (underscore) 179 Apple Language Card 351 Apple Logo II 330 at sign (@) 113 AUD 256, 365 Applesoft BASIC 169, 308, 329, accumulator 18, 64, 69, 84, 90, mouse and 195-196 115 Applesoft BASIC interpreter 14, Autostart ROM 356 ACIA 23, 36, 51, 52, 59, 63, 204, block diagram 276 214, 250, 352 command register 280 addresses 326 screen holes 315 control register 278-279 Apple IIc register locations for port 1 159 block diagram 235-236 register locations for port 2 173 schematic diagrams 291-296 status register 130, 281 Apple II computers, interrupts 332 transmit/receive register 282 back panel 9-10 Apple II series acoustic coupler 177 backslash (\) 59, 63 differences 348-365 addresses backspace 63, 114 disk I/O 361 Applesoft BASIC interpreter 326 hardware 365 display 259-261 I/O 357 firmware 322-327 keyboard 357-359 BadCtl \$21 error 150 hardware 316-321, 353-356 machine identification 350 I/O link 56-58 memory structure 351-356 memory 20 video display 359-360 mouse port 325 A register 18, 43, 84, 113-115, Bank2 switch 241 port 323-325 192, 213 RAM 22, 351 arithmetic, hexadecimal 215 ROM 22-23, 250, 351-352 arrow keys 4

ASCII character set 3, 70, 78,

80-81, 381-382, 391-395

serial port 323-324

video firmware 324

video display 101

bell 114	character sets 358-360	Control-A Q 184
bell character 115	alternate 69, 70, 88, 92, 360	Control-A T 180-182, 184
Bell routine 84	ASCII 3, 70, 78, 80–81,	Control-B 214, 228
Bell1 routine 84	381–382, 391–395	Control-C 67, 204, 214, 228, 341
bits 384-386	display 89	CONTROL call 127, 136-139
blanking intervals 257	MouseText 91	control characters 4, 5, 60, 65-67,
block device I/O firmware, entry	primary 69, 70, 88, 359	70, 114, 165, 392
points 23	screen 6	Control-D 155, 169
block-type devices 120	text 88–89	Control-E 213, 228
BREAK signal 163	ClampMouse routine 194	Control-G 65, 66, 84
BRK (\$00) instructions 212, 221,	ClearMouse routine 193	Control-H 63, 65, 66
334	ClEOLZ routine 112, 113	Control-I 155, 158, 165, 362
handling 337–338	clock rate 237	Control-J 65, 66
buffers	clock signals 239–241	Control-K 57, 66, 228
display 38, 99	CLOSE call 127, 141–142	Control-L 66
input 36, 38	·	control list 137, 138
serial I/O 343–345, 362	ClrEOL routine 112, 113	
BusErr \$06 error 150	ClrEOP routine 112, 113 ClrScr routine 112, 113	Control-M 65, 66, 118 Control-N 66
button interrupt mode 188		
bytes 384–386	ClrTop routine 112, 113 CmdNum 125	Control-O 66, 90
Dytes 364-380		Control-P 57, 90, 215, 228
	CMOS 237	Control-Q 66
C	code conversions 391	Control-R 66, 172, 181, 184
CATT 151 1 222	cold start 51, 121–122	control register ACIA, 278–279
CALL -151 command 223	colon (;) 216, 224	Control-Reset 4, 49, 51, 52, 81,
Canadian keyboard 375	colors	121, 123, 162, 171, 176, 204,
cancel line 63	double high-resolution	218
Caps Lock 5, 81, 358, 360	graphics 99	Control-S 66, 67, 341
caret (^) 225	high-resolution 97, 268	Control-T 171
carriage return (CR) 63, 114, 164,	low-resolution 94, 266	Control-U 63, 66, 82
179	column-address strobe (CAS) 252	Control-V 66, 158, 172
carry bit 43	command character 155, 205	Control-W 66, 158
cassette I/O 364	command number 125, 127	Control-X 60, 63, 67, 82
C command 156, 170	command register, ACIA 280	Control-Y 67, 218, 228
CH (cursor horizontal) 64	connectors 9–10	Control-Z 67
character generator 14, 263	disk drive 274	COut routine 63, 64, 90, 112, 113,
control signals 266	external power 234	214
character output switch (CSW) 57,	hand controller 199-200, 287	COut1 routine 56, 60, 65, 67, 68,
64, 71, 84, 101, 113, 115	keyboard 254	70, 112, 114
characters	mouse 187, 284	CP/M 328
at sign (@) 113	serial port 154, 278	CPU 13
command 155, 205	video expansion 270	CR See carriage return
control 4, 5, 60, 65–67, 70,	video output 270	CROut routine 112, 114
114, 165, 392	CONTINUE BASIC command 228	CROut1 routine 112, 114
flashing 69, 70, 88-89	Control 5, 81, 255, 358	CSW 57, 64, 71, 84, 101, 113, 155
inverse 69, 70, 88–89	Control-\ 67	CSWH 57
lowercase 395	Control-[67	CSWL 57
normal 69, 70, 88-89	Control-] 67	C3COut1 routine 56, 61, 62,
prompt 59	Control 67	65–67, 68, 70
special 393	Control-A 169, 171, 172, 179, 362	C3KeyIn routine 56, 58, 61, 62
uppercase 394	Control-A I 181, 184	

serial port 1 163 serial port 2 177–178 data inputs 23 Data Set Ready (DSR) 281 Data Terminal Ready (DTR) 280 data transfer 42–43 debugging 212, 221 decimal 387–388 negative 388–389 Delete 4, 358 device control block (DCB) 130,	HRP2X 39, 269 maps 105-111 TLP1 36	Card 351, 354, 360 EXTINT 276, 342
Data Carrier Detect 281 data format serial port 1 163 serial port 2 177-178 data inputs 23 Data Set Ready (DSR) 281 Data Terminal Ready (DTR) 280 data transfer 42-43 debugging 212, 221 decimal 387-388 negative 388-389 Delete 4, 358 device control block (DCB) 130,		LAINT E/O, JTE
data format serial port 1 163 serial port 2 177-178 data inputs 23 Data Set Ready (DSR) 281 Data Terminal Ready (DTR) 280 data transfer 42-43 debugging 212, 221 decimal 387-388 negative 388-389 Delete 4, 358 device control block (DCB) 130,	TLP1X 38 TLP2 38	F
device information block (DIB) 131 DevSpec \$30-\$3F error 151 DHiRes switch 46, 102, 103 disassembler 220 disk controller unit 15, 247-248, 273, 365 disk drive 8-9 connector 274 connector signals 274 I/O 120-121, 273-274, 361 I/O port 120-121 disk-use light 3, 7 display addresses mapping 259-261	TLP2 38 TLP2X 38 display soft switches 50, 101–105 DisVBl switch 190 DisXY switch 189 DMA transfers 357 dollar sign (\$) 225 DOS 51, 57, 58, 155, 169, 204, 214, 312, 328, 332 Down Arrow 4 Dvorak keyboard 6–7, 358, 370 E editing, GetLn 63 80Col switch 101, 102, 243 80-column display 38, 64, 68, 86, 91, 92, 100, 106, 358 addressing 263 dot patterns 269 map 108 switching to 5 80/40 switch 3, 5 80Store switch 39, 45, 101, 102, 106, 241 EnbXY switch 189 English keyboard 372 enhanced video firmware 249–250 EnlCRAM switch 242 entry points firmware 23 memory expansion card 122 Monitor 322, 326–327 ports 71 UniDisk 3.5 I/O 122	F command 156, 170 firmware 13 addresses 322–327 disk I/O 120 display mode 104 enhanced video 249–250 entry points 23 I/O 71–73 mouse 191–196 protocols 72–73 serial port 1 160 serial port 2 174 Smartport 124 firmware routines Monitor 112–115 mouse 193–194 video 116–118 flag inputs 23 flags inverse 69, 70 keyboard 78 flashing characters 69, 70, 88–8 forced cold-start reset 50, 52 FORMAT call 127, 135–136 Fortran 330 40-column display 5, 50, 86, 91 92, 94, 259, 358 addressing 263 map 107 memory 261 switching to 5 48K memory 36–39 switches 39 French keyboard 373–374
display memory addressing 258, 260 switches 44–46 display modes 104, 261–269, 360 switching 101–105	EnVBl switch 190 environmental specifications 232	full-duplex operation 182–184 function keys 4

G	HLine routine 112, 114	interrupts 74, 331-347, 357
game input 198-201	HomeMouse routine 194	bypassing 345-347
characteristics 199	HOME routine 112, 114	external 342-343
game paddles 198, 287	horizontal-count bits 259-260	EXTINT 276
GCR 247	HRP1 38	handling 334–345
general logic unit (GLU) 15,	HRP1X 38	keyboard 341–342
245–246, 365	HRP2 39, 269	mouse 50, 187-188, 190-191,
German keyboard 376-377	HRP2X 39, 269	339–340, 345–346, 354
GetLn routine 36, 59–60, 78, 82,		serial 343-345
205		Smartport 130, 138
escape codes 60-62		sources 338-339
GetLn1 routine 82	I command 156, 170, 228	VBlInt 187-188, 190, 243
GetLnZ routine 82	identification bytes 73	vectors 333-334
global storage 36	index registers 18	XInt 190
GO command 219	INIT call 127, 139-140	YInt 190
graphics display	InitMouse routine 194	inverse characters 69, 70, 88-89
buffer 38	IN#n command 57	INVERSE command 90, 214, 22
	IN#2 command 169, 171, 172,	inverse display 214
double high-resolution 97–98,	176, 179, 180–183	inverse flag 69, 70
111, 269	IN#4 command 196	I/O 357
high-resolution 38–39, 95–97,	input buffer 36	cassette 364
110, 267–268	input/output unit (IOU) 15,	disk 273-274, 361
low-resolution 94–95, 109,	243–244, 256, 365	disk drive 120-121
266–267	inputs	links 56-58
mixed-mode 98-99	analog 200	memory expansion card 123
	data 23	port 71–74
Н	flag 23	serial 274-282, 361-362
	game 198-201	Smartport 123-124
half-duplex operation 180–181	hand controller 287–290,	IOError \$27 error 150
hand controller 198	363–364	IOUDis switch 45, 103, 189, 355
circuits 288	keyboard 78–82	IRQ 334
connector 287	mouse 186–198, 282–286, 363	ISO keyboard 371
connector signals 199-200, 287	switch 200	Italian keyboard 378-379
input and output 287-290,	input subroutines 58–63	
363–364	GetLn 59–60	
signals 289, 364	KeyIn 58–59	J
handle 232	Monitor 82	jacks
hardware 365	RdKey 58, 78, 341	headphone 8, 256
addresses 316–321, 353–356	Integer BASIC 308, 330, 348,	output 8, 256
headphone jack 8, 256	_	joysticks 198, 199
hexadecimal 387–389	356, 388 integrated circuits 13, 241–248	JOYSHEKS 190, 199
hexadecimal arithmetic 215	Integrated Woz Machine (IWM) 15,	
hexadecimal notation 225	247–248, 273, 365	
high-resolution graphics 38–39,		
95–97, 267–268	internal converter 234–235 specifications 234	
double 97–98, 111, 269	=	
map 110	Interrupt Request 281	
HiRes switch 45, 103, 241, 243, 354		

K command 156, 170	Left Arrow 4, 63 LF See line feed line feed 114, 164, 179	memory addresses 20 display 258, 260 hardware page 316–321
keyboard 3-7, 254-255, 357-359 Canadian 375 characteristics 79	LIST command 220–221, 225 Logo II 330	port I/O 72–73 port screen hole 74
circuit diagram 254	lowercase characters 395	text window 68-69
Dvorak 6-7, 358, 370	low-resolution graphics 94-95,	memory bus organization 249
encoder 78	266–267	memory expansion 14
English 372	map 109	mouse and 191, 195
features 3		memory expansion card 120, 250,
flag 78	M	291
French 373-374	M	entry points 122
German 376-377	Machine Language Interface 125	I/O 123
input buffer 36, 38	machine-language	startup routine 122
inputs 78–82	programs 219–221	memory management unit
interrupts 340–342	main logic board 12–15	(MMU) 15, 241–242, 365
ISO 371	main memory 42–44, 161, 175, 269	memory pages
Italian 378–379	screen holes 313-314	\$00 (zero page) 20, 24, 25,
layouts and codes 3, 6–7,	main RAM 22	308-311 \$01 (stack) 20, 24, 25
366–381	maps	\$02 (input buffer) 36
Sholes 6, 358, 367–368 signals 255	display address 259–261	\$03 (global storage, vectors) 36,
specifications 3	display page 105-111	312
strobe 78, 339, 353	48K memory 37	\$04-\$07 (TLP1) 36-38
switch 3, 6–7	memory 20, 308-321	\$08 (communication port
Western Spanish 380–381	ROM 397, 398	buffers) 38
keyboard input switch (KSW) 57,	M command 156, 171	\$08-\$0B (TLP2) 38
71, 101	memory	\$20-\$3F (HRP1) 38
KeyIn routine 56-57, 58-59, 78	addressing 248-253	\$40-\$5F (HRP2) 39
keys	auxiliary 42-44, 74, 106,	\$D0-\$FF 26
cursor movement 4, 62	160–161, 175, 269, 315	microprocessor 13, 18-19
modifier 5, 81	bank-switched 24-35	See also 65C02 microprocessor
special function 4	changing contents 208–210	Mini-Assembler
KSW 57, 71, 101	comparing data 211–212	address formats 226
KSWH 57	dump 206–208	instruction formats 226
KSWL 57	examining 206 48K 36–39	starting 223–224
	main 42–44, 161, 175, 269,	using 224-226 mixed-mode displays 98-99
L	313–314	MIXED switch 102, 243, 354
	maps 20, 308-321	MLI 125
languages 329–330	moving data 210-211	modem 177–178
last opened location 205 L command 156, 170	RAM 13	modem port, commands 170-172
L Command 170, 170	range 207	modifier keys 5, 81
	ROM 13	•

Monitor 5, 23, 36, 57, 59, 63, 161, 176, 258, 312, 356 entry points 322, 326-327 firmware routines 112-115 game support 201 input routines 82 interrupts 74 movement/button interrupt mode 187-188 well-playing 251 RAM address 252 movement/button interrupt mode 187-188 will-plexing 251 RAM address 252 movement/button interrupt mode 187-188 will-plexing 251 RAM address 252 movement/button interrupt mode 187-188 multiplexing 251 RAM address 252 movement/button interrupt mode 187-188 multiplexing 251 RAM address 252 movement/button interrupt mode 187-188 multiplexing 251 RAM address 252 movement/button interrupt mode 187-188 multiplexing 251 RAM address 252 movement/button interrupt mode 187-188 multiplexing 251 RAM address 252 movement/button interrupt mode 187-188 multiplexing 251 RAM address 252 movement/button interrupt mode 187-188 multiplexing 251 RAM address 252 movement/button interrupt mode 187-188 multiplexing 251 RAM address 252 movement/button interrupt mode 187-188 multiplexing 251 RAM address 252 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-188 movement/button interrupt mode 187-188 multiplexing 251 movement 196-188 multiplexing 251 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-188 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-187 movement 196-170 movement 196-170 movement 196-170 movement 196-170 movement 196-170 movement 196-170 movement 196-170 movement 196-170 movement 196-170 movement 196-170 movement 196-170 m			
advanced 216–218 debugging 221 machine-language program 219–221 memory 205–212 negative decimal 388–389 rejeating 217–218 summary 227–229 syntax 205 mouse as hand controller 198 assembly-language support 195–196 BASIC support 195–196 button signals 286 circuits 285 connector 284 connector 284 connector 36gnals 284 defaults 50 firmware entry points 23 firmware routines 193–194 inputs 186–198, 288–286, 363 interrupts 50, 339–340, 345–346, 354 I/O firmware support soft switches 189–191 waveforms 283 mouse port addresses 325 I/O firmware protocol 195 screen holes 197	176, 258, 312, 356 entry points 322, 326–327 firmware routines 112–115 game support 201 input routines 82 interrupts 74 memory location 204 output 270 speaker routines 84 vectors 326–327	MouY1 switch 190 MoveAux routine 42-43 MOVE command 210-211, 216-217, 227 movement/button interrupt mode 188 movement interrupt mode 187-188 multiplexing 251	hand controller 363-364 speaker 82-84 strobe 24 video display 116-118 video signal 270-273 output subroutines 64-70 COut 64 COut1 65 C3Out1 65-67
debugging 221 machine-language program 219-221 memory 205-212 register 212-213 repeating 217-218 summary 227-229 syntax 205 mouse as hand controller 198 assembly-language Support 195-196 BASIC support 195-196 button signals 286 circuits 285 connector 284 connector 284 connector 284 defaults 50 firmware entry points 23 firmware routines 193-194 inputs 186-198, 282-286, 363 interrupts 50, 339-340, 345-346, 354 I/O firmware support 195 port characteristics 186 screen holes 196-197 soft switches 189-191 waveforms 283 mouse port addresses 325 I/O firmware protocol 195 screen holes 197 N command 156, 170 negative decimal 388-389 negative decimal 388-389 negative decimal 388-389 negative decimal 368-180, 170 negative decimal 388-389 negative decimal 388-389 negative decimal 388-389 negative decimal 388-389 negative decimal 388-389 negative decimal 388-389 negative decimal 388-389 negative decimal 388-389 negative decimal 388-389 next changeable location 205, 120, 36-38, 50, 269 high-resolution 95 text 100, 106 Page 2 20, 39 high-resolution 95 text 100 Page 2 20, 39 high	_	E)	
characters 91	debugging 221 machine-language program 219–221 memory 205–212 register 212–213 repeating 217–218 summary 227–229 syntax 205 mouse as hand controller 198 assembly-language support 195–196 BASIC support 195–196 button signals 286 circuits 285 connector 284 connector signals 284 defaults 50 firmware entry points 23 firmware routines 193–194 inputs 186–198, 282–286, 363 interrupts 50, 339–340, 345–346, 354 I/O firmware support 191–196 operating modes 187–188 Pascal support 195 port characteristics 186 screen holes 196–197 soft switches 189–191 waveforms 283 mouse port addresses 325 I/O firmware protocol 195 screen holes 197 MouseText 69, 70, 88, 90, 360	N command 228 nD command 156, 170 negative decimal 388–389 next changeable location 205,	paddles 198, 287 Page 1 20, 36–38, 50, 269 high-resolution 95 text 100, 106 Page 1X 38, 269 text 100 Page 2 20, 39 high-resolution 95 text 100 Page2 switch 45, 102, 241, 243, 354 Page 2X 38, 39 pages, display See display pages pages, memory See memory pages PAL 257 parity bit 163 Pascal 56, 68, 72, 124, 169, 330, 332 mouse and 195 video control functions 117–118 Pascal Operating System 329 Pdl0 287 Pdl1 287 Pdl1 287 PEEK 329 period (.) 206 peripheral-card memory spaces 352–353 peripheral identification numbers (PIN) 389–390

pinouts GLU 246 IOU 243 IWM 247 MMU 242 RAM 251 ROM 249, 250 6551 277 TMG 245 video expansion connector 272 PLOT routine 112, 114 POKE 329 ports characteristics 71 disk I/O 120–121 entry points 71 I/O 71–74 mouse 186, 325 printer 155–157	PrHex routine 112, 115 primary character set 69, 70, 88, 359 PRINTER command 155 printer port, commands 155–157 PrntAX routine 113, 115 processor status register 18, 213 ProDOS 51, 57, 124, 155, 169, 204, 214, 312, 328, 332 Machine Language Interface 125 program counter (PC) 18 prompt characters 59 Protocol Converter 124 PStatus routine 118 PTrig switch 190 PWrite routine 117	RdChar routine 82 RdDHiRes switch 46, 103 RdHiRes switch 45, 103 RdIOUDis switch 46, 103, 189 RdKey routine 58, 78, 341 RdLCRAM switch 28 RdMIXED switch 102 RdPage2 switch 45, 102 RdRAMRd switch 39 RdRAMWrt switch 39 RdTEXT switch 102 RdVBIMsk switch 190 RdX0Edge switch 189 RdXYMsk switch 189 RdY0Edge switch 190 READ BLOCK call 126, 132–133 READ call 127 ReadMouse routine 188, 192, 193 registers 18–19
ROM space 73 screen hole RAM space 74 serial 275 serial port 1 22, 154–165 serial port 2 22, 38, 167–184 video output 86 PosMouse routine 193 power converter 234–235 specifications 234 power light 3, 7 power-on reset 50	Q command 171 question mark (?) 59 blinking 169, 179 R RAM 13 addressing 251–253 auxiliary 22, 184 main 22 memory expansion card 123	changing 213 command 280 control 278–279 examining 213 shift 263, 268 Smartport 125 status 18, 130, 213, 281 transmit/receive 282 REMIN command 169 REMOUT command 169 Request to Send (RTS) 280
power supply 11–12 specifications 233, 383 PR#n command 57 PR#0 command 198 PR#1 command 155, 159, 162, 181 PR#2 command 169, 171, 172, 179, 181, 183, 184 PR#3 command 90, 196 PR#4 command 196, 198 PR#7 command 328 PRBI2 routine 112, 114 PrByte routine 112, 115 PRead routine 116, 201 P register 18, 213	peripheral-card 353 port screen hole 74 refreshing 251–252 Smartport 126 timing 252–253 RAM addresses 22, 351 multiplexing 252 RAMRd switch 39, 44, 242 RAMWrt switch 39, 44, 242 R command 157, 171 Rd63 switch 190 Rd80Col switch 102 Rd80Store switch 45, 102 RdAltChar switch 102 RdAltZP switch 28	Reset 3, 4, 81, 358 reset routine 49-50 reset vectors 50-53 Return 4, 60, 169, 204, 206, 208, 209, 213, 215, 224, 227 return from subroutine (RTS) 57, 219 retype 63 RGB 269 Right Arrow 4, 63, 82 ROM 13 addresses 22-23, 351-352 addressing 249-250 Autostart 356 character generator 14, 266, 267
PrErr routine 112, 115	RdBnk2 switch 28 RdBtn0 switch 190	Monitor 356 peripheral-card 352

ROMEN1 250 ROMEN2 250 ROMEN2 250 ROM map auxiliary side 398 main side 397 ROM space expansion 74 port 73 row-address strobe (RAS) 252 RstVBl switch 190 RstXInt switch 189, 242 RstXY switch 189 RstYInt switch 190, 242 RTS Request to Send 280 return from subroutine 57, 219	serial port 2 22, 38, 167–184 addresses 324 at startup 173 carriage return and line feed 179 characteristics 168–169, 176–184 commands 170–172 data format and baud rate 177–178 hardware page locations 173–174 I/O firmware support 174 routing input and output 179–184 screen holes 174–175 using 169–173 ServeMouse routine 187, 188, 193, 339	65C02 microprocessor 13, 75, 237–241, 297–307 addressing modes 26, 302, 304 block diagram 237–238, 299 characteristics 300–301 data sheets 298–307 enhancements 301 instruction mnemonics 302 instruction set 306 interrupt handling 333 operational codes 306–307 pin configuration 299 pin function 300 programming model 303 ratings 300 registers 18–19 signal description 305
	SetCol routine 113, 115	specifications 239
\$	SetMouse routine 192, 193, 339	timing 239-241, 302
S command 157, 171	SetPWRC routine 53	versus 6502 297-298
screen holes 38, 312-315	Shift 5, 81, 255, 358	SLOTC3ROM switch 354
auxiliary memory 315	shift register 263, 268	SLOTCXROM switch 354
main memory 313-314	Sholes keyboard 6, 358, 367–368	Smartport
mouse 196-197	signals	calls 125–148
serial port 1 160-161	BREAK 163	commands and parameters 149
serial port 2 174-175	character generator 266	error codes 150–151
SCRN routine 113, 115	clock 239–241	I/O interface 123-124
serial buffering 343-344	disk drive connector 274	locating 124
serial cards 361-362	GLU 246	soft switches 20, 24
serial I/O 274-282, 361-362	hand controller 199-200, 289,	bank selector 27
buffers 362	364	display 50, 101–105
serial port 361–362	hand controller connector 287	mouse 189–191
circuits 275	IOU 243–244	Solid Apple 4, 52, 81, 200, 221,
connectors 278	IWM 247	222, 358
connector signals 278	keyboard 255	Solid Apple-Control-X 341
serial port 1 22, 154-165	MMU 242	speaker 359
addresses 323	mouse button 286	circuit diagram 256
at startup 159	mouse connector 187, 284	outputs 82–84
carriage return and line feed 164	RAM timing 253	volume control 8, 256
characteristics 154, 161-165	ROM 250	special characters 393
data format and baud rate 163	serial port connector 278	special function keys 4
displaying output 165	65C02 305	specifications
hardware page locations 159	6551 277	environmental 232
I/O firmware support 160	synchronization 257	power supply 233, 383
screen holes 160-161	timing 264–265	65C02 239
sending special characters 165	TMG 245	S register 18, 213
using 155-158	video expansion	stack pointer 18, 213
	connector 272–273	startup 121–123 STATUS call 126, 128–132
	video ouidui 2/0-2/5	31A1U3 CAH 140. 148-134

W U status register, ACIA 130, 281 STEP command 221-223 underscore (), blinking 179 warm start 50, 51, 123 stop-list function 67 UniDisk 3.5 120, 124, 130, 223 Western Spanish STORE command 216, 227 control list 138 keyboard 380-381 strobes **WNDW 257** I/O entry points 122 column-address 252 words 385 Up Arrow 4 keyboard 78, 255, 339, 353 uppercase characters 394 WRITE BLOCK call 127, 134-135 outputs 24 WRITE call 127, 143-144 USER command 218, 228 row-address 252 Super Serial Card 179, 361, 362 Sw0 287 X Sw1 287 X0 243, 284 validity-check byte 51, 53 switch inputs 200 X0Edge switch 189 VBlInt switch 243 synchronization signals 257 vectors 36, 56 X1 284 interrupt 333-334 X command 157, 171 XFer routine 42-44, 312 Monitor 326–327 T XInt 190, 354 reset 50-53 Tab 4, 358 VERIFY command 211-212, 217, XON/XOFF protocol 171 T command 171, 180-183 X register 18, 43, 73, 84, 114, 227 terminal mode 179, 184 115, 118, 128, 192, 201, vertical blanking 338, 354, 360 text, character sets 88-89 active modes 188 213 text display 263 vertical-count bits 260 characteristics 93 VID 270, 365 Υ 40-column 5, 50, 86, 91, 92, video counters 257-258 94, 107, 259, 261, 358 video display 257-273, 359-360 Y0 243, 284 80-column 5, 38, 64, 68, 86, addresses 101 Y0Edge switch 190 91, 92, 100, 106, 108, circuits 262 Y1 284 269, 358 I/O firmware support 116-118 YInt 190, 354 switching 93 modes 261-269 Y register 18, 43, 113, 114, 115, text Page 1 100, 106 128, 192, 201, 213 specifications 87 text Page 1X 100 video expansion text Page 2 100 connector signals 272-273 Z TEXT switch 102, 243, 354 output 271-273 text window 68-69 Z command 157, 165, 171 video output firmware timing generator (TMG) 15, 245, addresses 324 365 entry points 23 TLP1 36 video output port, TLP1X 38 characteristics 86 TLP2 38 video output signals 257, 270-273 TLP2X 38 VLine routine 113, 115 toggle switches 24 voltage converter 11-12 TRACE command 221-223 volume control 8, 256 transmit/receive register, VTabZ routine 113 ACIA 282

transparent mode 187

THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited, and composed on a desktop publishing system using the Apple Macintosh™ Plus and Microsoft® Word. Proof and final pages were created on the Apple LaserWriter® Plus. POSTSCRIPT™, the LaserWriter's page-description language, was developed by Adobe Systems Incorporated.

Text type is ITC Garamond® (a downloadable font distributed by Adobe Systems). Display type is ITC Avant Garde Gothic®. Bullets are ITC Zapf Dingbats®. Program listings are set in Apple Courier, a monospaced font.

The Apple Technical Library The Official Publications from Apple® Computer, Inc.

The Apple Technical Library offers programmers, developers, and enthusiasts the most complete technical information available on Apple computers, peripherals, and software. The Library consists of technical manuals for the Apple II family of computers, the Macintosh family of computers, key peripherals, and programming environments.

Apple Technical Library titles on the Apple II family include technical references to the Apple IIe, Apple IIc, and Apple IIgs computers, with detailed descriptions of the hardware, firmware, ProDOS operating system, and the built-in programming tools that programmers and developers can draw upon. In addition to a technical introduction and programmer's guide to the Apple IIgs, there are tutorials and references for Applesoft BASIC and Instant Pascal programmers.

The Inside Macintosh Library provides complete technical references to the Macintosh 512, Macintosh 512 enhanced, Macintosh Plus, Macintosh SE, and Macintosh II computers. Individual volumes provide technical introductions and programmer's guides to the Macintosh as well as detailed information on hardware, firmware, system software, and programming tools. The Inside Macintosh Library offers the most detailed and complete source of information available for the Macintosh family of computers.

In addition, titles in the Apple Technical Library offer references to the wide range of important printers, communications standards, and programming environments such as the Standard Apple Numerics Environment (SANE) to help programmers and experienced users get the most out their computer systems.

Apple IIc Technical Reference Manual

The Official Publication from Apple Computer, Inc.

Apple's definitive guide to all versions of the Apple® IIc personal computer. Written and produced by the people at Apple Computer, this manual provides a comprehensive, single-source reference for programmers and hardware designers.

The Apple IIc Technical Reference Manual describes all aspects of the IIc—including its physical characteristics, the hardware/firmware locations that control memory and I/O, and the electrical and electronic implementation of machine features and capabilities. Summary tables provide quick reference to all of the I/O firmware entry points, including those used by the system's Smartport.

The manual describes:

- Memory organization and control.
- Apple IIc I/O interface, including keyboard and speaker, video display modes (including graphics modes), internal and external disk drives, the Apple IIc Memory Expansion Card, serial ports, and the mouse and game port.
- Use of the system Monitor routines in the IIc firmware to disassemble and debug machine-language programs.
- The hardware, including pinouts of custom ICs and internal/external connectors, plus schematic diagrams.

Appendixes contain quick-reference tables, describe interrupt handling, and include product comparisons of all members of the Apple II family of computers.

This edition of the *Apple IIc Technical Reference Manual* also includes firmware listings for the new Apple IIc Memory Expansion Card. Information on obtaining firmware listings for earlier versions of the IIc, as well as supplementary technical information, is provided.

Apple Computer, Inc. 20525 Mariani Avenue Cupertino, California 95014 (408) 996-1010 TLX 171-576

030-1238-B Printed in U.S.A.