Zadanie 1. (0-1)

Na rysunku przedstawiony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność $|2x-8| \le 10$.

Stąd wynika, że

A.
$$k = 2$$

B.
$$k = 4$$

C.
$$k = 5$$

D.
$$k = 9$$

Zadanie 2. (0–1)

Dana jest funkcja f określona wzorem $f(x) = \begin{cases} x-2 & \text{dla } x \le 0 \\ \left\|x+3\right\|-4 & \text{dla } x > 0 \end{cases}$

Równanie f(x) = 1 ma dokładnie

A. jedno rozwiązanie.

B. dwa rozwiązania.

C. cztery rozwiązania.

D. pięć rozwiązań.

Zadanie 3. (0–1)

Liczba $(3-2\sqrt{3})^3$ jest równa

A.
$$27 - 24\sqrt{3}$$

B.
$$27 - 30\sqrt{3}$$

C.
$$135 - 78\sqrt{3}$$

D.
$$135 - 30\sqrt{3}$$

Zadanie 4. (0-1)

Równanie $2\sin x + 3\cos x = 6$ w przedziale $(0, 2\pi)$

A. nie ma rozwiązań rzeczywistych.

B. ma dokładnie jedno rozwiązanie rzeczywiste.

C. ma dokładnie dwa rozwiązania rzeczywiste.

D. ma więcej niż dwa rozwiązania rzeczywiste.

Zadanie 5. (0–1)

Odległość początku układu współrzędnych od prostej o równaniu y = 2x + 4 jest równa

A.
$$\frac{\sqrt{5}}{5}$$

B.
$$\frac{4\sqrt{5}}{5}$$

C.
$$\frac{4}{5}$$

Zadanie 6. (0-2)

Oblicz granicę $\lim_{n\to\infty} \left(\frac{11n^3 + 6n + 5}{6n^3 + 1} - \frac{2n^2 + 2n + 1}{5n^2 - 4} \right)$. W poniższe kratki wpisz kolejno cyfrę jedności i pierwsze dwie cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Zadanie 7. (0–2)

Liczby (-1) i 3 są miejscami zerowymi funkcji kwadratowej f. Oblicz $\frac{f(6)}{f(12)}$.

Zadanie 8. (0-3)

Udowodnij, że dla każdej liczby rzeczywistej x prawdziwa jest nierówność

$$x^4 - x^2 - 2x + 3 > 0$$
.

Zadanie 9. (0-3)

Dwusieczne czworokąta ABCD wpisanego w okrąg przecinają się w czterech różnych punktach: P, Q, R, S (zobacz rysunek).

Wykaż, że na czworokącie PQRS można opisać okrąg.

Zadanie 10. (0-4)

Długości boków czworokąta ABCD są równe: |AB|=2, |BC|=3, |CD|=4, |DA|=5. Na czworokącie ABCD opisano okrąg. Oblicz długość przekątnej AC tego czworokąta.

Zadanie 11. (0-4)

W pierwszej urnie umieszczono 3 kule białe i 5 kul czarnych, a w drugiej urnie 7 kul białych i 2 kule czarne. Losujemy jedną kulę z pierwszej urny, przekładamy ją do urny drugiej i dodatkowo dokładamy do urny drugiej jeszcze dwie kule tego samego koloru, co wylosowana kula. Następnie losujemy dwie kule z urny drugiej. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że obie kule wylosowane z drugiej urny będą białe.

Zadanie 12. (0-4)

Funkcja f określona jest wzorem $f(x) = x^3 - 2x^2 + 1$ dla każdej liczby rzeczywistej x. Wyznacz równania tych stycznych do wykresu funkcji f, które są równoległe do prostej o równaniu y = 4x.

Zadanie 13. (0-5)

Dany jest trójmian kwadratowy $f(x) = (m+1)x^2 + 2(m-2)x - m + 4$. Wyznacz wszystkie wartości parametru m, dla których trójmian f ma dwa różne pierwiastki rzeczywiste x_1 , x_2 , spełniające warunek $x_1^2 - x_2^2 = x_1^4 - x_2^4$.

Zadanie 14. (0-5)

Podstawą ostrosłupa *ABCDS* jest kwadrat *ABCD*. Krawędź boczna *SD* jest wysokością ostrosłupa, a jej długość jest dwa razy większa od długości krawędzi podstawy. Oblicz sinus kąta między ścianami bocznymi *ABS* i *CBS* tego ostrosłupa.

Zadanie 15. (0-6)

Suma wszystkich czterech współczynników wielomianu $W(x) = x^3 + ax^2 + bx + c$ jest równa 0. Trzy pierwiastki tego wielomianu tworzą ciąg arytmetyczny o różnicy równej 3. Oblicz współczynniki a, b i c. Rozważ wszystkie możliwe przypadki.

Zadanie 16. (0-7)

Rozpatrujemy wszystkie stożki, których przekrojem osiowym jest trójkąt o obwodzie 20. Oblicz wysokość i promień podstawy tego stożka, którego objętość jest największa. Oblicz objętość tego stożka.