TD-EDP-25 SEPT 2018

1. EQUATION DE BURGERS, UNE ÉQUATION DE TRANSPORT NON LINÉAIRE Dans cet exercice, on considère une équation de transport en dimension 1 :

(1.1)
$$\begin{cases} \partial_t u(t,x) + \frac{1}{2} \partial_x (u)^2(t,x) = 0, & t > 0, \ x \in \mathbb{R} \\ u(0,x) = u_0(x) & x \in \mathbb{R}. \end{cases}$$

1) Dans cette question, on suppose que $u_0 \in C^1(\mathbb{R})$, que u0 est bornée ainsi que sa dérivée u_0' . Le but de cette question est de montrer que (1.1) admet une solution de classe C^1 sur $[0, T] \times \mathbb{R}$ où

$$T = \frac{1}{\sup_{z \in \mathbb{R}} (\max(0, u_0'(z)))}$$

avec la convention $1/0 = +\infty$.

a) Pours $s \geq 0$, on définit ϕ par

$$\phi_s(z) = z + su_0(z), \quad \forall z \in \mathbb{R}.$$

Montrer que pour tout $s \in [0, T]$, ϕ_s est bijective de classe C^1 ainsi que sa reciproque.

b) Montrer que lapplication ϕ definie par

$$\phi(t,x) = \phi_t^{-1}(x), \forall (t,x) \in [0,T[\times \mathbb{R}$$

est de classe C^1 sur $[0, T] \times \mathbb{R}$. [Indication : on pourra introduire la fonction F definie par $F(t, x, z) = z + tu_0(z)x$.]

- c) Conclure. [Remarque : cette solution est en fait unique et cela se montre grace a la methode des caracteristiques qui sera vue ulterieurement.]
- 2) On définit la notion de solution faible : on dira que u, bornée localement, sur $\mathbb{R}^+ \times \mathbb{R}$ est une solution faible du probleme (1.1) si pour tout $\phi \in C_c^{\infty}(\mathbb{R}^+ \times \mathbb{R})$, on a :

$$\int_{\mathbb{R}^+ \times \mathbb{R}} \left[u(t, x) \partial_t \varphi(t, x) + \frac{1}{2} u^2(t, x) \partial_x \varphi(t, x) \right] dx dt + \int_{\mathbb{R}} u_0(x) \varphi(0, x) dx = 0.$$

- a) Montrer quune solution classique (lorsque $u_0 \in C^1(\mathbb{R}^n)$) est une solution faible.
- b) On suppose maintenant que $u_0 = 0$ et on definit pour p > 0, $(t, x) \in \mathbb{R}_*^+ \times \mathbb{R}$,

(1.2)
$$v(t,x) = \begin{cases} 0 & \text{si }, & x < -pt, \\ -2p & \text{si }, & -pt < x < 0, \\ 2p & \text{si }, & 0 < x < pt, \\ 0 & \text{si }, & x > pt. \end{cases}$$

Verifier que pour tout p > 0, v_p est une solution faible de l'équation (1.1).

2. Principe du maximum faible pour lequation de la chaleur

Le but de cet exercice est de prouver un principe du maximum faible pour l'équation de la chaleur. On considère Ω un ouvert borne de \mathbb{R}^n et T > 0. On définit :

$$K_T = [0, T] \times \bar{\Omega} \text{ et } \Gamma_T = (\{0\} \times \bar{\Omega}) \cup ([0, T] \times \partial \Omega).$$

On note egalement

$$Q =]0, +\infty[\times\Omega \text{ et donc } \bar{Q} = [0, +\infty[\times\bar{\Omega}.$$

Soit $u \in C^0(\bar{Q}) \cap C^2(\bar{Q})$ telle que $\partial_t u - \Delta u \leq 0$ dans Q.

- 1) Soit $\epsilon > 0$. On introduit la fonction u_{ϵ} définie par $u_{\epsilon}(t,x) = u(t,x) + \epsilon |x| 2$ sur Q.
- a) Montrer que $u_{\epsilon_{|K_T}}$ atteint son maximum en un point $(t_{\epsilon}, x_{\epsilon}) \in K_T$ puis que si $(t_{\epsilon}, x_{\epsilon}) \notin \Gamma_T$, on a $\Delta u_{\epsilon}(t_{\epsilon}, x_{\epsilon}) \leq 0$.
- b) Toujours en supposant que $(t_{\epsilon}, x_{\epsilon}) \notin \Gamma_T$, montrer que $\partial_t u_{\epsilon}(t_{\epsilon}, x_{\epsilon}) \geq 0$. c) Montrer que $(t_{\epsilon}, x_{\epsilon}) \in \Gamma_T$.
 - 2) Montrer que $\sup_{K_T} u = \sup_{\gamma_T} u$.
- 3) Montrer l'unicité des solutions fortes pour l'équation de la chaleur dans le cas de condition aux limites de Dirichlet : $\forall (t,x) \in [0,T] \times \partial \Omega$, $u(t,x) = u_{bord}(t,x)$.
 - 4) Que dire dans le cas des solutions faibles.

FIMFA-ENS