华东师范大学期末试卷(A卷)

2014 - 2015 学年 第二学期

课程名称: 高等数学A(二)		二) 课程	课程性质: 专业必修 考试日期: 2015.		5. 07. 06
学生姓名_			学 号_		_
专 业_			年级/班级_	2014	_
	=	三	总 分	阅卷人签名	
一、填空匙	5 (每小题4	4分,共20分	>)		
1. $\lim_{(x,y)\to(0,0)}$	$\frac{1 - \cos(xy)}{e^{x^2y^2} - 1} =$		·		
2. 设 $f(x,$	y) = arctan	$\frac{x}{y}$, 则grad f	(0,1)=	_·	
3. 区域D	由直线x =	2, y = x及	曲线xy = 1所围原	戊,则 $\iint\limits_D xd\sigma$ =	=
4. 微分方	ī程2xy²dx -	-dy = 0的	通解为	<u> </u>	
			$x - \pi; \stackrel{.}{=} 0 \le x \le$ 是 $S(x)$,则 $S(\pi) =$		$x + \frac{\pi}{2}, f(x)$ 在[$-\pi, \pi$]上
二、简答题	(本题共40	分, 要求绝	台出主要解题步骤	聚)	
1. (6分) 才	总微分方程	$\frac{dy}{dx} = y + e^x \mathbf{I}$	的通解.		

2. (6分) 求微分方程 $y'' + 2y' + y = 10\sin 2x$ 的通解.

3. (6分) 求幂级数 $\sum_{n=1}^{+\infty} \frac{x^n}{n!}$ 的收敛域与和函数.

4. (10分) 判别下列级数的敛散性.(如果收敛,请指出是绝对收敛还是条件收敛)

(1)
$$\sum_{n=1}^{+\infty} n \sin \frac{1}{n^3}$$
;

(2)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n\sqrt[3]{n}}$$
.

5. (6分) 设曲线L以(1,1)点为起点,(2,3)点为终点,计算 $I = \int\limits_{L} (x+y) dx + (x-y) dy$.

6. (6分) 求函数 $f(x) = \int_0^x \frac{\sin(2t)}{t} dt$ 在点 x = 0处的幂级数展开式.

- 三、解答题 (本题共40分,要求给出主要解题步骤)
 - 1. (8分) 设函数 z=f(u,v) 有二阶连续偏导数,且 $u=xy,v=x^2+y^2,$ 求 $\frac{\partial^2 z}{\partial x\partial y}$.

2. (8分) 计算曲线积分 $\oint_L (zy^2) dx + (zx^2) dy + (y+x) dz$, 其中 L为圆柱 $x^2 + y^2 = 1$ 与平面z = x - y的交线,从z轴正向看去为逆时针方向.

3. (8分)已知锥面 $\Sigma: z = \sqrt{x^2 + y^2}, z \le t, t > 0$ 的密度函数是 $x^2 + y^2$. 求该锥面的质量f(t), 并由此计算

$$\lim_{t \to 0^+} \frac{f(t)}{(\sin^2 t)(e^{2t^2} - 1)}.$$

4. (8分) 设Σ为抛物面 $z = 1 - x^2 - y^2$ 位于 $z \ge 0$ 的上侧, 求

$$I = \iint\limits_{\Sigma} (\sin y - x) dy dz + (y - x^2 z) dz dx + (xy + 2z) dx dy.$$

5. (8分) 设f(x)有二阶连续导数, f(0) = f'(0) = 1, 已知方程

$$f(x)ydx + [f(x) - f'(x)]dy = 0$$

是一个全微分方程, 求f(x).