Problem Set #2 (Data Communications)

Department: _	
Student ID:	
Student Name:	

Consider Section IV of [1].

- 1. Express the probability p in terms of τ and n. Then, explain the expression.
- 2. Express the probability P_{tr} in terms of τ and n. Then, explain the expression.
- 3. Express the probability P_s in terms of τ and n. Then, explain the expression.
- 4. Express the normalized system throughput S in terms of P_{tr} , P_s , E[P], T_s , T_c , and σ . Then, explain the expression and the terms.
- 5. Express the average time T_s^{bas} in terms of E[P], H, SIFS, DIFS, ACK, and δ . Then, explain the expression and the terms.
- 6. Express the average time T_c^{bas} in terms of $E[P^*]$, H, DIFS, and δ . Then, explain the expression and the terms.

References:

[1] G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function," *IEEE Journal on Selected Areas in Communications*, vol. 18, no. 3, pp. 535–547, 2000. (https://doi.org/10.1109/49.840210)