This is formatted as code

descriptive COVID statistics analysis - New York State

Yannan Li

2/19/2021

Data Import

import pandas as pd
import numpy as np
from functools import reduce
import matplotlib.pyplot as plt
%matplotlib inline

Loading csv data to notebook

 $\label{local_covid} \begin{tabular}{ll} $\tt covid = pd.read_csv('/content/New_York_State_Statewide_COVID-19_Testing.csv', header=0) \\ \tt covid.head(5) \end{tabular}$

	Test Date	County	New Positives	Cumulative Number of Positives	Total Number of Tests Performed	Cumulative Number of Tests Performed
0	03/01/2020	Albany	0	0	0	0
1	03/02/2020	Albany	0	0	0	0
2	03/03/2020	Albany	0	0	0	0
3	03/04/2020	Albany	0	0	0	0

Data Cleansing

covid1 = covid[covid['County']=="New York"]
covid1.head()
covid1.tail(1)

Test		New	Cumulative	Total Number	Cumulative
	County	Positives	Number of	of Tests	Number of Tests
Date	_	Positives	Positives	Performed	Performed

Data analysis and visualiztinon

1. test for data consistency

covid1.sum(axis=0)

Test Date County New Positives Cumulative Number of Positives Total Number of Tests Performed Cumulative Number of Tests Performed dtype: object 03/01/202003/02/202003/03/202003/04/202003/05/...

New YorkNew YorkNew YorkNew YorkNew YorkNew Yo...
93635
12183438
3496585
364588426

₽		Test Date	County	New Positives	Cumulative Number of Positives	Total Number of Tests Performed	Cumulative Number of Tests Performed
	10424	04/14/2020	New York	1737	16617	4068	40517
	10699	01/14/2021	New York	1066	74215	32603	2927703
	10700	01/15/2021	New York	997	75212	29886	2957589
	10692	01/07/2021	New York	978	68254	26143	2760768
	10706	01/21/2021	New York	932	79812	28980	3082723
	10712	01/27/2021	New York	923	84857	26040	3229328
			Now				

We can tell from the data that covid cases has two periods of peaks, one is around April 2020, and the second one is around January 2021.

3. Create positive rate and do descriptive analysis

```
# generate positive rate column
covid1["Positive Rate"] = covid1['New Positives'] / covid1['Total Number of Tests Performed']*100
# descriptive analysis
covid1.mean()
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:2: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-
    New Positives
                                              2.706214e+02
    Cumulative Number of Positives
                                            3.521225e+04
    Total Number of Tests Performed 1.010574e+04
Cumulative Number of Tests Performed 1.053724e+06
    Total Number of Tests Performed
                                             6.602876e+00
    Positive Rate
    dtype: float64
covid1.std()
    New Positives
                                             2.781760e+02
     Cumulative Number of Positives
                                            2.066696e+04
    Total Number of Tests Performed
                                             7.809706e+03
    Cumulative Number of Tests Performed
                                              1.025322e+06
    Positive Rate
                                              1.201236e+01
    dtype: float64
covid1.median()
     New Positives
                                                 117.500000
```

31684.500000

7862,500000

1.715802

4. Plot the data

Positive Rate dtype: float64

```
# plot positive rate over time
date_list = covid1['Test Date'].tolist()
positiver_list = covid1['Positive Rate'].tolist()
```

Cumulative Number of Positives

Total Number of Tests Performed

Cumulative Number of Tests Performed 727016.500000

```
# plot positive rate over time
pl = plt.scatter(date_list,positiver_list, s=0.1);
```


positive number overtime
positiven_list = covid1['New Positives'].tolist()
p2 = plt.scatter(date_list,positiven_list, s=0.1);

total tests per day
totaltest_list = covid1['Total Number of Tests Performed'].tolist()
p3 = plt.scatter(date_list,totaltest_list,s=0.1);

cumulative total positive test over time
cumtotalp_list = covid1['Cumulative Number of Positives'].tolist()
p4 = plt.scatter(date_list,cumtotalp_list, s=0.1);

cumulative total test over time
cumtest_list = covid1['Cumulative Number of Tests Performed'].tolist()
p5 = plt.scatter(date_list,cumtest_list, s=0.1)

Correlations

covid1.corr()

	New Positives	Cumulative Number of Positives	Total Number of Tests Performed	Cumulative Number of Tests Performed	Positive Rate
New Positives	1.000000	0.560988	0.552787	0.617369	0.366361
Cumulative Number of Positives	0.560988	1.000000	0.830142	0.942585	-0.455666
Total Number of Tests Performed	0.552787	0.830142	1.000000	0.889318	-0.427358