Análise das Características do Solo ideiais para cada Cultura

Projeto da disciplina SME0860 - Aprendizado de Máquina Aplicado a Problemas

Membros

- Alexandre E. de Souza Jesus alexandre_souza@usp.br 12559506
- Eduardo Zaffari Monteiro eduardozaffarimonteiro@usp.br 12559490
- Lucas Ivars Cadima Ciziks luciziks@usp.br 12559472

1. Introdução

O uso do solo de maneira adequada é de fundamental importância para maximizar o retorno do plantio e mantê-lo em boas condições para que possa ser utilizado por vários anos sem degradação. Caso o solo seja mal manejado, pode-se acabar com um terreno infértil, o que aumenta a demanda de recursos para o cultivo e recuperação da área de plantio.

Conforme o solo é utilizado para o plantio de um tipo de alimento, ocorre a diminuição dos tipos de nutrientes consumidos por essa planta, e em contrapartida os outros se tornam abundantes pelo acúmulo durante o tempo em que não foi consumido. Dessa forma, pode-se realizar a rotação de culturas, que consiste em plantar alimentos que consomem nutrientes diferentes de maneira cíclica, fazendo com que o solo se mantenha mais bem preservado.

Com objetivo de facilitar a escolha da cultura a ser semeada em um terreno específico será feito o treinamento de um modelo de aprendizado supervisionado. Para isso, serão utilizados dados que consistem em características do terreno, principalmente relacionadas à quantidade de nutrientes e substâncias nele presentes. A classificação dar-se-á de acordo com um tipo de cultura que é considerado ideal para o solo observado.

A tabela de dados apresenta 2200 diferentes condições de solo e suas respectivas culturas ideais, as quais são divididas em 22 classes que indicam diferentes sementes e frutas. Para cada um desses terrenos existem valores de quantidade de nitrogênio, fósforo, potássio, além de temperatura, umidade e pH, além da precipitação plantação recebe durante o crescimento.

2. Metodologia

O projeto está sendo realizado e versionado remotamente através da plataforma Github. Seu acesso é possível por meio do link https://github.com/ale-souza/crop-recommendation

2.1. Origem dos Dados

Os dados foram obtidos diretamente da plataforma kaggle, um site para estudo de ciência de dados e machine learning, e podem ser obtidos através do link https://www.kaggle.com/datasets/aksahaha/crop-recommendation. Segundo o usuário Abhishek Kumar, que disponibilizou os dados, eles são provenientes do ICAR (Indian Council of Agriculture Research), e complementados por pesquisas na internet feitas por ele.

2.2 Dicionário de Dados

- Nitrogênio (nitrogen): Representa a quantidade de nitrogênio (em kg/ha) presente no solo para a cultura. O nitrogênio é um nutriente essencial para o crescimento de plantas, e sua deficiência ou excesso pode afetar o crescimento e a produção da cultura;
- **Fósforo (phosphorus)**: Representa a quantidade de fósforo (em kg/ha) presente no solo para a cultura. Também é um elemento essencial no plantio, sendo importante para processos como transferência de energia e fotossíntese;
- Potássio (potassium): Representa a quantidade de potássio (em kg/ha) presente no solo para a cultura. Também é um elemento essencial, e é importante para processos fisiológicos como regulação de água e transporte de nutrientes;
- **Temperatura (temperature)**: Representa a temperatura média (em Celsius) durante o período de crescimento da cultura. A temperatura é um fator ambiental importante que pode afetar o crescimento e o desenvolvimento das plantas, e cada cultura possui uma temperatura ideal;
- Umidade (humidity): Representa a humidade relativa (em porcentagem) durante o período de
 crescimento da cultura. A humidade é outro fator ambiental importante, tendo em vista que uma alta
 humidade pode promover a proliferação de fungos e desenvolvimento de doenças;
- **pH**: Representa o pH da cultura durante seu período de crescimento. O pH é uma medida de acidez ou alcalinidade do solo e pode afetar a disponibilidade de nutrientes para a cultura;
- Precipitação (rainfall): Representa a precipitação (em mm) durante o período de crescimento da cultura. Cada cultura necessita de uma quantidade diferente de água, o que torna a precipitação outro fator ambiental importante;
- Crop (label): Representa o tipo da cultura.

3. Coleta dos Dados

```
In [44]: # Importando bibliotecas
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats

# Modelos de aprendizado supervisionado
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
```

```
from sklearn.svm import SVC
         # Normalização dos dados
         from sklearn.preprocessing import StandardScaler, MinMaxScaler
         # Validação e Particionamento dos dados
         from sklearn.model selection import StratifiedKFold, LeaveOneOut, GridSearchCV, Stratifi
         # Métricas de Avaliação
         from sklearn.metrics import accuracy score, precision score, recall score, roc auc score
In [6]:
         # Leitura dos dados do problema
         df = pd.read csv("https://raw.githubusercontent.com/ale-souza/crop-recommendation/main/C
         df.head()
Out[6]:
                                                                                        Unnamed: Unnamed:
                                                                           rainfall label
           Nitrogen phosphorus potassium temperature
                                                      humidity
                                                                    ph
                                                                                               8
                                            20.879744 82.002744 6.502985 202.935536
        0
                 90
                            42
                                      43
                                                                                             NaN
                                                                                                       NaN
                                                                                    rice
                                            21.770462 80.319644 7.038096 226.655537
                 85
                            58
                                      41
                                                                                    rice
                                                                                             NaN
                                                                                                       NaN
         2
                 60
                            55
                                            23.004459 82.320763 7.840207 263.964248
                                                                                                       NaN
                                      44
                                                                                    rice
                                                                                             NaN
                 74
                            35
                                      40
                                            26.491096 80.158363 6.980401 242.864034
                                                                                    rice
                                                                                             NaN
                                                                                                       NaN
         4
                 78
                            42
                                      42
                                            20.130175 81.604873 7.628473 262.717340
                                                                                             NaN
                                                                                                       NaN
                                                                                    rice
In [7]: # Limpando conjunto de dados
         df = df.drop(['Unnamed: 8', 'Unnamed: 9'], axis=1)
         df = df.rename(columns={"label": "crop"})
         df.head()
Out[7]:
           Nitrogen phosphorus potassium temperature
                                                      humidity
                                                                    ph
                                                                           rainfall crop
        0
                            42
                                            20.879744 82.002744 6.502985 202.935536
                 90
                                      43
                                                                                   rice
         1
                 85
                            58
                                      41
                                            21.770462 80.319644 7.038096 226.655537
                                                                                   rice
         2
                 60
                            55
                                            23.004459 82.320763 7.840207 263.964248
                                      44
                                                                                   rice
         3
                 74
                                            26.491096 80.158363 6.980401 242.864034
                            35
                                      40
                                                                                   rice
                            42
         4
                 78
                                      42
                                            20.130175 81.604873 7.628473 262.717340
                                                                                   rice
         # Verificando as categorias de plantação
In [8]:
         labels = df['crop'].astype('category').values
         labels = list(labels.categories)
         labels
         ['apple',
Out[8]:
          'banana',
          'blackgram',
          'chickpea',
          'coconut',
          'coffee',
          'cotton',
          'grapes',
          'jute',
          'kidneybeans',
          'lentil',
          'maize',
          'mango',
```

```
'mungbean',
          'muskmelon',
          'orange',
         'papaya',
          'pigeonpeas',
          'pomegranate',
          'rice',
         'watermelon']
In [57]: # Discretizando categorias de plantação
         df["crop int"] = pd.Categorical(df["crop"]).codes
         df["crop int"]
                20
Out[57]:
                20
               20
        2195 5
        2197
        2198
        2199
        Name: crop int, Length: 2200, dtype: int8
```

4. Análise Exploratória dos Dados

4.1. Medidas Descritivas

'mothbeans',

```
In [ ]: # Função para calcular o coeficiente de variância (CV)
        def coeficiente variancia(table):
            return 100 * table.std() / table.mean()
        # Função para calcular a amplitude
        def amplitude(table):
            return table.max() - table.min()
        # Aplicando medidas de posição e dispersão aos atributos preditivos
        medidas descritivas = df.drop(["crop"], axis=1).agg(["min", "max", "mean", "median",
                                                              "var", "std",
                                                              coeficiente variancia, amplitude])
In [ ]: # Renomeando das medidas descritivas
        novos nomes = {
           "min": "Minimo",
            "max": "Maximo",
            "mean": "Media",
            "median": "Mediana",
            "var": "Variancia",
            "std": "Desvio-padrao",
            "coeficiente variancia": "Coeficiente de Variancia",
            "amplitude": "Amplitude"
        medidas descritivas = medidas descritivas.rename(novos nomes)
        # Arredondando casas decimais das medidas descritivas e de dispersão
        medidas descritivas = medidas descritivas.round(3)
```

```
In [ ]: medidas_descritivas
```

	Nitrogen	phosphorus	potassium	temperature	humidity	ph	rainfall
Minimo	0.000	5.000	5.000	8.826	14.258	3.505	20.211
Maximo	140.000	145.000	205.000	43.675	99.982	9.935	298.560
Media	50.552	53.363	48.149	25.616	71.482	6.469	103.464
Mediana	37.000	51.000	32.000	25.599	80.473	6.425	94.868
Variancia	1362.890	1088.068	2565.213	25.642	495.677	0.599	3020.424
Desvio-padrao	36.917	32.986	50.648	5.064	22.264	0.774	54.958
Coeficiente de Variancia	73.029	61.814	105.190	19.768	31.146	11.963	53.119
Amplitude	140.000	140.000	200.000	34.850	85.724	6.430	278.349

A partir das medidas descritivas, pode-se ter uma ideia inicial das distribuições das características. É possível inferir que as variáveis *temperature* e *pH* possuem uma curva simétrica, já que suas médias e medianas são bem próximas, enquanto *humidity* provavelmente possui uma curva assimétrica à esquerda. Para todos os outros atributos as curvas são possivelmente assimétricas à direita.

No que tange as medidas de dispersão, a análise anterior é reforçada. As medidas de variância e desviopadrão apresentam valores altos para as variáveis que não são simétricas, o que indica que há uma alta variabilidade nos dados. Ou seja, há valores que possuem uma grande distância da média.

4.2. Visualização dos Dados

4.2.1. Histogramas

Out[]:

Abaixo, é possível observar o formato da curva dos atributos. Assim, há ainda mais evidências de que a análise anteriormente feita está, provavelmente, correta. Fazem-se necessários, então, testes de hipóteses.

```
In [ ]: # Nitrogen
    sns.histplot(data=df, x="Nitrogen", kde=True, color="gold")
Out[ ]: <Axes: xlabel='Nitrogen', ylabel='Count'>
```



```
In [ ]: # Phosphorus
sns.histplot(data=df, x="phosphorus", kde=True, color="salmon")
```

Out[]: <Axes: xlabel='phosphorus', ylabel='Count'>


```
In []: # Potassium
sns.histplot(data=df, x="potassium", kde=True, color="green")
```

Out[]: <Axes: xlabel='potassium', ylabel='Count'>


```
In [ ]: # temperature
sns.histplot(data=df, x="temperature", kde=True, color="red")
```

Out[]: <Axes: xlabel='temperature', ylabel='Count'>

Percebe-se, como anteriormente dito, que a distribuição dos dados referentes à variável temperatura provavelmente segue uma distribuição.

```
In [ ]: # Humidity
sns.histplot(data=df, x="humidity", kde=True, color="steelblue")
```

Out[]: <Axes: xlabel='humidity', ylabel='Count'>


```
In [ ]: # ph
sns.histplot(data=df, x="ph", kde=True, color="hotpink")
```

Out[]: <Axes: xlabel='ph', ylabel='Count'>

Percebe-se, como anteriormente dito, que a distribuição dos dados referentes à variável pH provavelmente segue uma distribuição.

```
In [ ]:
        ## Rainfall
        sns.histplot(data=df, x="rainfall", kde=True, color="aqua")
       <Axes: xlabel='rainfall', ylabel='Count'>
```

Out[]:

4.2.2. Boxplots

Com os boxplots, é possível comparar a distribuição dos dados em relação ao atributo-alvo. Mais uma vez, a teoria de que as variáveis *pH* e *temperature* são mais balanceadas é corroborada.

```
In [ ]:
            Nitrogen x Crop
        sns.boxplot(x=df["Nitrogen"], y=df["crop"])
        <Axes: xlabel='Nitrogen', ylabel='crop'>
Out[]:
```



```
In [ ]: # ------
# Phosphorus x Crop
# ------
sns.boxplot(x=df["phosphorus"], y=df["crop"])
```

Out[]: <Axes: xlabel='phosphorus', ylabel='crop'>


```
In [ ]: | # -----
```

```
# Potassium x Crop
# -----
sns.boxplot(x=df["potassium"], y=df["crop"])
```

Out[]: <Axes: xlabel='potassium', ylabel='crop'>


```
In [ ]: # ------
# Temperature x Crop
# -----
sns.boxplot(x=df["temperature"], y=df["crop"])
```

Out[]: <Axes: xlabel='temperature', ylabel='crop'>

A maior parte dos valores está ao redor da média, que é de aproximadamente 25. Apesar de certos valores apresentarem grande variação, como *grapes* e *orange*, isso não afetou a curva.


```
sns.boxplot(x=df["ph"], y=df["crop"])
        <Axes: xlabel='ph', ylabel='crop'>
Out[]:
                    rice
                  maize
               chickpea
            kidneybeans
             pigeonpeas
             mothbeans
             mungbean
             blackgram
                   lentil
           pomegranate
                 banana
                 mango
                 grapes
            watermelon
             muskmelon
                  apple
                 orange
                papaya
```

In []:

coconut cotton jute coffee -

O padrão se repete com o atributo pH. A maior parte dos valores está concentrada ao redor da média.

6

ph

8

9

10

5

4

Neste caso, tal resultado é previsível, visto que essa medida varia entre 0 e 14, e 7 representa um meio neutro (a média dos valores foi de aproximadamente 6,4)

```
In []: # ------
# Rainfall x Crop
# ------
sns.boxplot(x=df["rainfall"], y=df["crop"])

<Aves: xlabel='rainfall', ylabel='crop'>
```

Out[]: <Axes: xlabel='rainfall', ylabel='crop'>

É possível perceber, então, que há certa separação no que tange aos atributos para cada tipo de cultura. Há indícios, portanto, de que é possível classificar o rótulo de novas observações a partir deste conjunto de variáveis.

4.2.3. Balaceamento dos Dados

```
In [ ]: plt.figure(figsize=(8, 8))
    colors = sns.color_palette('pastel')

plt.pie(df['crop'].groupby(df['crop']).count(), labels = labels, colors = colors, autopc
    plt.show()
```


É possível perceber que a distribuição dos valores é idêntica.

4.3. Correlação entre as Variáveis

```
In [ ]: # Mapa de calor com as correlações entre os atributos
    sns.heatmap(df.drop(columns=["crop"]).corr(), annot=True, linewidths=0.5)
Out[ ]:
```


A maior parte das variáveis **não** está relacionada entre si, com exceção dos atributos *potassium* e *phosphorus*, que possuem uma correlação positiva considerável. Para que a classificação dos dados seja mais efetiva, um dos atributos pode ser removido. Abaixo é possível visualizar a **matriz de dispersão** entre todos as culturas possíveis (os rótulos) e os atributos, o que é necessário para avaliar qual das duas variáveis relacionadas poderia ser removida.

```
In []: dummies = pd.get_dummies(df['crop'])
    dummy_df = pd.concat([df, dummies], axis=1)

    plt.figure(figsize=(30, 35))
    corr = dummy_df.drop(columns=["crop"]).corr()
    sns.heatmap(corr, annot=True, linewidths=0.5)

Out[]:
```


É possível perceber que dentre elas a que possui maior relação com os atributos-alvo é a *potassium*. Sendo assim, uma possível saída para o problema seria remover a variável *phosporus* do conjunto de dados, visto que *potassium* tem maior relação com o atributo-alvo.

```
In [ ]: # Interação entre os atributos preditivos
sns.pairplot(df, hue='crop')
```


5. Modelos de Aprendizado Supervisionado (Classificação)

```
In [58]: X = df.drop(["crop", "crop_int"], axis=1)
    y = df["crop_int"]

In [59]: # Separando em conjunto de treino e teste
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state =

In [60]: # Normalização dos dados
    scaler = StandardScaler()
    X_train_norm = scaler.fit_transform(X_train)
    X_test_norm = scaler.fit_transform(X_test)

minmax = MinMaxScaler()
    X_train_MinMax = minmax.fit_transform(X_train)
    X_test_MinMax = minmax.fit_transform(X_test)
```

5.1. K-Nearest Neighbors

Precision: 0.9788600288600289 Recall: 0.97727272727271

```
In [61]: # Inicializando Classificador kNN
         knn = KNeighborsClassifier()
         # Hiper-parâmetros do kNN
         params knn = {
             "n neighbors": tuple(range(1, 31)),
             "p": tuple(range(1, 6))
         # Cross-validation Holdout
In [69]:
         knn holdout = GridSearchCV(estimator=knn, param grid=params knn, cv=StratifiedShuffleSpl
         # Treinando modelo
         knn holdout.fit(X train MinMax, y train)
         print(f'Os melhores parâmetros para o kNN com o Holdout foram: {knn holdout.best params
         # Predizendo conjunto de teste
         y prediction = knn holdout.predict(X test MinMax)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision_score(y_test, y_prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
        print("F1 Score: ", np.mean(f1))
         print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o kNN com o Holdout foram: {'n neighbors': 1, 'p': 4}
        Precision: 0.972488038277512
        Recall: 0.9704545454545453
        F1 Score: 0.9702885838374226
        Accuracy: 0.9704545454545455
In [72]: # Cross-Validation K-Fold
         knn kfold = GridSearchCV(estimator=knn, param grid=params knn, cv=5)
         # Treinando modelo
         knn kfold.fit(X train MinMax, y train)
         print(f'Os melhores parâmetros para o kNN com o 5-fold foram: {knn kfold.best params }')
         # Predizendo conjunto de teste
         y prediction = knn kfold.predict(X test MinMax)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
        print("F1 Score: ", np.mean(f1))
         print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o kNN com o 5-fold foram: {'n neighbors': 3, 'p': 1}
```

```
Accuracy: 0.97727272727273
In [74]: # Cross-Validation Leave-One-Out
        knn loo = GridSearchCV(estimator=knn, param grid=params knn, cv=LeaveOneOut(), n jobs=-1
         # Treinando modelo
         knn loo.fit(X train MinMax, y train)
        print(f'Os melhores parâmetros para o kNN com o Leave-One-Out foram: {knn loo.best param
         # Predizendo conjunto de teste
         y prediction = knn loo.predict(X test MinMax)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
        precision = precision score(y test, y prediction, average=None)
        recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
        print("Precision:", np.mean(precision))
        print("Recall:", np.mean(recall))
        print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o kNN com o Leave-One-Out foram: {'n neighbors': 5, 'p': 1}
        Precision: 0.9803915781188508
        Recall: 0.9795454545454544
        F1 Score: 0.9794670348906549
        Accuracy: 0.9795454545454545
        5.2. Árvore de Decisão
In [77]: # Inicializando Classificador Decision Tree
         decision tree = DecisionTreeClassifier(random state=50)
         # Hiper-parâmetros do Decision tree
        params dt = {
            "max depth": range(5, 21),
             "criterion": ["gini", "log loss", "entropy"]
In [78]: # Decision Tree Cross-validation Holdout
         dt holdout = GridSearchCV(estimator=decision_tree, param_grid=params_dt, cv=StratifiedSh
         # Treinando modelo
         dt holdout.fit(X train norm, y train)
        print(f'Os melhores parâmetros para o Decision Tree com o Holdout foram: {dt holdout.bes
         # Predizendo conjunto de teste
        y prediction = dt holdout.predict(X test norm)
         # Calculando métricas para avaliação
        accuracy = accuracy_score(y_test, y_prediction)
        precision = precision_score(y_test, y_prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
        print("Precision:", np.mean(precision))
```

F1 Score: 0.9772614925433224

print("Recall:", np.mean(recall))
print("F1 Score: ", np.mean(f1))
print("Accuracy:", np.mean(accuracy))

```
Os melhores parâmetros para o Decision Tree com o Holdout foram: {'criterion': 'gini',
        'max depth': 12}
        Precision: 0.9788469106650924
        Recall: 0.9772727272727271
        F1 Score: 0.9771376106421035
        Accuracy: 0.97727272727273
In [79]: # Decision Tree Cross-validation K-Fold
         dt kfold = GridSearchCV(estimator=decision tree, param grid=params dt, cv=5)
         # Treinando modelo
         dt kfold.fit(X train norm, y train)
         print(f'Os melhores parâmetros para o Decision Tree com o 5-fold foram: {dt kfold.best p
         # Predizendo conjunto de teste
         y prediction = dt kfold.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
        precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1_score(y_test, y_prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
         print("F1 Score: ", np.mean(f1))
         print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o Decision Tree com o 5-fold foram: {'criterion': 'gini', 'm
        ax depth': 13}
        Precision: 0.9808146399055488
        Recall: 0.9795454545454544
        F1 Score: 0.9794203086886014
        Accuracy: 0.9795454545454545
```

5.3. Multi-Layer Perceptron

```
In [87]: # Inicializando MLP Classifier
        mlp = MLPClassifier(random state=50)
         # Hiper-parâmetros do MLP
         params mlp = {
             "hidden layer sizes": [[], [5], [10], [5, 5], [10, 10]]
In [91]: # MLP Cross-validation Holdout
         mlp holdout = GridSearchCV(estimator=mlp, param grid=params mlp, cv=StratifiedShuffleSpl
         # Treinando modelo
        mlp holdout.fit(X train norm, y train)
         print(f'Os melhores parâmetros para o MLP com o Holdout foram: {mlp holdout.best params
         # Predizendo conjunto de teste
         y prediction = mlp holdout.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
```

```
print("F1 Score: ", np.mean(f1))
         print("Accuracy:", np.mean(accuracy))
        /usr/local/lib/python3.10/dist-packages/sklearn/neural network/ multilayer perceptron.p
        y:686: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and th
        e optimization hasn't converged yet.
          warnings.warn(
        /usr/local/lib/python3.10/dist-packages/sklearn/neural network/ multilayer perceptron.p
        y:686: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and th
        e optimization hasn't converged yet.
          warnings.warn(
         /usr/local/lib/python3.10/dist-packages/sklearn/neural network/ multilayer perceptron.p
        y:686: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and th
        e optimization hasn't converged yet.
          warnings.warn(
        /usr/local/lib/python3.10/dist-packages/sklearn/neural network/ multilayer perceptron.p
        y:686: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and th
        e optimization hasn't converged yet.
          warnings.warn(
        /usr/local/lib/python3.10/dist-packages/sklearn/neural network/ multilayer perceptron.p
        y:686: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and th
        e optimization hasn't converged yet.
         warnings.warn(
        Os melhores parâmetros para o MLP com o Holdout foram: {'hidden layer sizes': [10, 10]}
        Precision: 0.963021534552635
        Recall: 0.9613636363636361
        F1 Score: 0.9612955080862654
        Accuracy: 0.9613636363636363
        /usr/local/lib/python3.10/dist-packages/sklearn/neural network/ multilayer perceptron.p
        y:686: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and th
        e optimization hasn't converged yet.
         warnings.warn(
In [92]: # MLP Cross-validation K-Fold
         dt kfold = GridSearchCV(estimator=decision_tree, param_grid=params_dt, cv=5)
         # Treinando modelo
         dt kfold.fit(X train norm, y train)
         print(f'Os melhores parâmetros para o MLP com o 5-fold foram: {dt kfold.best params }')
         # Predizendo conjunto de teste
         y prediction = dt kfold.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
        precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
        print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o MLP com o 5-fold foram: {'criterion': 'qini', 'max depth':
        Precision: 0.9808146399055488
        Recall: 0.9795454545454544
        F1 Score: 0.9794203086886014
        Accuracy: 0.9795454545454545
```

5.4. Support Vector Machine

print("Recall:", np.mean(recall))

```
In [83]: # Inicializando SVM
         svm = SVC()
         # K-fold
        kfold = StratifiedKFold(n splits=5)
         # Acurácia do Treinamento
         scores = []
         # Aplicando Cross-Validation K-Fold
         for train index, test index in kfold.split(X train, y train):
          # Separando conjunto de treinamento com base no k-fold
          train data, test data = X train norm[train index], X train norm[test index]
          train labels, test labels = y train.values[train index], y train.values[test index]
          # Treinando modelo
          svm.fit(train data, train labels)
          # Calculando acurácia do conjunto de teste do k-fold
          accuracy = svm.score(test data, test labels)
          # Coletando acurácia do treinamento
          scores.append(accuracy)
        print('Acurácia no treino com 5-fold', np.mean(scores))
        print('Acurácia no teste: ', svm.score(X test norm, y test))
        Acurácia no treino com 5-fold 0.9761363636363637
        Acurácia no teste: 0.98181818181818
In [ ]: # Predizendo conjunto de teste
        y prediction = dt kfold.predict(X test norm)
         # Calculando métricas para avaliação
        accuracy = accuracy score(y test, y prediction)
        precision = precision score(y test, y prediction, average=None)
        recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
        print("Precision:", np.mean(precision))
        print("Recall:", np.mean(recall))
        print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
```

5.5. Random Forest

```
In [84]: # Inicializando Random Forest Classifier
    random_forest = RandomForestClassifier(random_state=50)

# Hiper-parâmetros do Random Forest
    params_rf = {
        "max_depth": range(5, 21)
    }

In [85]: # Random Forest Cross-validation Holdout
```

```
rf_holdout = GridSearchCV(estimator=random_forest, param_grid=params_rf, cv=StratifiedSh

# Treinando modelo
rf_holdout.fit(X_train_norm, y_train)

print(f'Os melhores parâmetros para o Random Forest com o Holdout foram: {rf_holdout.bes

# Predizendo conjunto de teste
```

```
y prediction = rf holdout.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
         print("F1 Score: ", np.mean(f1))
         print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o Random Forest com o Holdout foram: {'max depth': 8}
        Precision: 0.991538764266037
        Recall: 0.990909090909091
        F1 Score: 0.9908948561066662
        Accuracy: 0.990909090909091
In [90]: # Random Forest Cross-validation K-Fold
        rf kfold = GridSearchCV(estimator=random forest, param grid=params rf, cv=5)
         # Treinando modelo
         rf kfold.fit(X train norm, y train)
         print(f'Os melhores parâmetros para o Random Forest com o 5-fold foram: {rf kfold.best p
         # Predizendo conjunto de teste
         y prediction = rf kfold.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
        print("F1 Score: ", np.mean(f1))
         print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o Random Forest com o 5-fold foram: {'max depth': 14}
        Precision: 0.9895710350255804
        Recall: 0.9886363636363636
        F1 Score: 0.9886121580601682
        Accuracy: 0.9886363636363636
```

5.6. Naive Bayes

```
In [93]: # Inicializando o Naive Bayes
nb = GaussianNB()

# Determinando os parâmetros do Grid Search
# https://medium.com/analytics-vidhya/how-to-improve-naive-bayes-9fa698e14cba
params_nb = {
    'var_smoothing': np.logspace(0, -9, num=100)
}
```

```
In [94]: # Naive Bayes Cross-validation Holdout
   nb_holdout = GridSearchCV(estimator=nb, param_grid=params_nb, cv=5)

# Treinando modelo
   nb_holdout.fit(X_train_norm, y_train)
```

```
print(f'Os melhores parâmetros para o Naive Bayes com o Holdout foram: {nb holdout.best
         # Predizendo conjunto de teste
        y prediction = nb holdout.predict(X test norm)
         # Calculando métricas para avaliação
        accuracy = accuracy score(y test, y prediction)
        precision = precision score(y test, y prediction, average=None)
        recall = recall score(y test, y prediction, average=None)
        f1 = f1 score(y test, y prediction, average=None)
        print("Precision:", np.mean(precision))
        print("Recall:", np.mean(recall))
        print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o Naive Bayes com o Holdout foram: {'var smoothing': 0.00053
        36699231206307}
        Precision: 0.9937032664305392
        Recall: 0.993181818181818
        F1 Score: 0.9931690047222781
        Accuracy: 0.99318181818182
In [95]: # Naive Bayes Cross-validation K-Fold
        nb kfold = GridSearchCV(estimator=nb, param grid=params nb, cv=5)
         # Treinando modelo
        nb kfold.fit(X train norm, y train)
        print(f'Os melhores parâmetros para o Naive Bayes com o 5-fold foram: {nb kfold.best par
         # Predizendo conjunto de teste
        y prediction = nb kfold.predict(X test norm)
         # Calculando métricas para avaliação
        accuracy = accuracy_score(y_test, y_prediction)
        precision = precision_score(y_test, y_prediction, average=None)
        recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
        print("Precision:", np.mean(precision))
        print("Recall:", np.mean(recall))
        print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o Naive Bayes com o 5-fold foram: {'var smoothing': 0.000533
        6699231206307}
        Precision: 0.9937032664305392
        Recall: 0.993181818181818
        F1 Score: 0.9931690047222781
        Accuracy: 0.99318181818182
```

6. Referências Bibliográficas

- SISTEMA DE PRODUÇÃO DE MELÃO. [S. I.]: Embrapa Semiárido, ISSN 1807-0027. Mensal. Disponível em: http://www.cpatsa.embrapa.br:8080/sistema_producao/spmelao/manejo_do_solo.html. Acesso em: 1 maio 2023:
- SOUSA, Rafaela. Rotação de culturas. [S. l.]: Brasil Escola. Disponível em: https://brasilescola.uol.com.br/geografia/rotacao-culturas.htm. Acesso em: 1 maio 2023.

In []: !jupyter nbconvert --to webpdf --allow-chromium-download "Análise de Culturas.ipynb"

[NbConvertApp] Converting notebook Análise de Culturas.ipynb to webpdf
[NbConvertApp] Building PDF
[NbConvertApp] PDF successfully created

[NbConvertApp] Writing 2532278 bytes to Análise de Culturas.pdf