Devoir Surveillé, 22 février 2023 Durée 1h30, documents interdits

La qualité de la rédaction sera un facteur d'appréciation.

Exercice 1 – On considère un cryptosystème symétrique dans lequel l'espace des clairs et l'espace des chiffrés sont finis de même cardinal : $|\mathcal{M}| = |\mathcal{C}|$. Quelles sont les probabilités d'imposture et de substitution de ce système ?

Exercice 2 – On considère un système de chiffrement symétrique où l'espace des messages clairs est $\mathcal{M} = \{a,b,c\}$, l'espace des messages chiffrés est $\mathcal{C} = \{1,2,3,4,5,6\}$ et celui des clés est $\mathcal{K} = \{i,ii,iii,iv,v,vi,vii,viii,ix\}$. Le système est décrit par le tableau suivant dont certaines cases ont été effacées :

MK	i	ii	iii	iv	v	vi	vii	viii	ix
a	1	1	3	5	2.	4	2	6	6
<i>b</i> .	2	6	1	1	6	3	5	2	4
c	6	5	Z	4.	1	1	8	3	2

On suppose, comme d'habitude, que la clé est indépendante du message clair. On suppose également que les clés sont équiprobables et, pour simplifier, que les messages clairs le sont aussi.

- (1) Remplir les cases vides de manière à rendre le système à confidentialité parfaite. Justifier.
- (2) Quelles sont les probabilités d'imposture et de substitution du système?

Exercice 3 – On s'intéresse ici au mode opératoire dit PCBC (Plaintext Cipher Block Chaining) utilisé pour un chiffrement par bloc à clé secrète. Le fonctionnement en est le suivant. Alice désire envoyer à Bob le clair $M = m_1 || m_2 || \dots || m_s$ où les m_i sont des blocs de l bits et $s \geq 2$. Leur clé secrète est K, la fonction de chiffrement qui va de $\{0,1\}^l$ dans $\{0,1\}^l$ est notée E_K et celle de déchiffrement D_K .

- Elle prend un bloc aléatoire initial de l bits $IV = c_0$;
- Elle calcule $c_1 = E_K(m_1 \oplus c_0)$;
- Pour $2 \le i \le s$ elle calcule $c_i = E_K(m_i \oplus m_{i-1} \oplus c_{i-1})$;
- Le chiffré envoyé à Bob est $C = c_0 \|c_1\| \dots \|c_s$.
- (1) Décrire l'algorithme de déchiffrement.
- (2) Un attaquant intercepte C et le transforme en substituant à un c_i un $c'_i \neq c_i$. Que se passera-t-il au cours du déchiffrement ?
- (3) Alice et Bob veulent exploiter cette propriété en terminant toujours les messages clairs à envoyer par un bloc m_s fixé d'avance et connu d'eux seuls. Ainsi, si une attaque de ce type a lieu, Bob le saura car il ne retrouvera pas m_s lors du déchiffrement. Montrer que malgré tout, si $s \ge 4$, l'attaquant peut intervertir

deux blocs chiffrés consécutifs, c_j et c_{j+1} avec 1 < j < j+1 < s, sans que Bob s'en aperçoive.

Exercice 4 – Soit $s=(s_i)_{i\geq 0}\in \mathbb{F}_2^{\mathbb{N}}$ une suite périodique de période 7 et dont les 7 premiers termes sont 0,1,0,1,1,0,0. Soit $t=(t_i)_{i\geq 0}\in \mathbb{F}_2^{\mathbb{N}}$ la suite engendrée par la relation de récurrence linéaire $t_{i+8}=t_{i+7}+t_{i+4}+t_{i+3}+t_i$ pour tout $i\geq 0$ et de graine 1,1,0,1,0,1,0,0. Soit enfin $u=(u_i)_{i\geq 0}\in \mathbb{F}_2^{\mathbb{N}}$ la suite définie par $u_i=s_i+t_{2i}$ pour tout $i\geq 0$.

- (1) Expliquer pourquoi s n'est pas une MLS.
- (2) Déterminer la complexité linéaire de s et la plus courte relation de récurrence linéaire satisfaite par s.
- (3) Montrer que $X^5 + X^2 + 1$ est irréductible dans $\mathbb{F}_2[X]$ et en déduire la décomposition en produit d'irréductibles de $X^8 + X^7 + X^4 + X^3 + 1$.
- (4) Déterminer la plus courte relation de récurrence linéaire satisfaite par t.
- (5) Quelle est la période de t? La suite t est-elle une MLS?
- (6) Déterminer la complexité linéaire de u et la plus courte relation de récurrence linéaire satisfaite par u.
- (7) Quelle est la période de u?

Exercice 5 – Soit le premier p = 503. Est-ce que 202 est un carré modulo p?

t= 1 1 0 1 0 1 0 0 0 1 0