Coordonnées curvilignes, Champs

- 1. Une hélice est une courbe définie en coordonnées cylindriques r, θ, z par le fait que r = R et $z = \frac{h\theta}{2\pi}$. (h et
 - R sont des constantes positives et on considère ici que θ peut prendre toute valeur réelle).
 - a. Dessiner cette hélice. Quelle est la signification de h? Comment nomme-t-on ce paramètre?
 - b. Exprimer le déplacement élémentaire (vecteur) le long de cette hélice. Quel est son module ?
 - c. Déterminer la longueur de la portion de l'hélice correspondant à $\theta \in [0, 2\pi]$.
 - d. Calculer la circulation du champ vectoriel $\overrightarrow{E}=E\overrightarrow{u}_z$ sur la portion d'hélice précédente orientée dans le sens θ croissant.
 - e. Calculer la circulation du champ vectoriel $\stackrel{\rightarrow}{F}=z\vec{u}_{\theta}$ sur la même portion d'hélice.

Vendredi (2)

La forme d'un pneu est modélisée par un tore de rayon moyen a de section circulaire de rayon R c'est-à-dire que le pneu est engendré par rotation autour de Oz du cercle du plan xOz, centré en $\left(x=a,z=0\right)$ de rayon R < a. On introduit les coordonnées r, θ, ϕ définies par :

- ϕ a la même définition qu'en coordonnées sphériques. C'est l'angle entre le demi-plan $(\pi) = (Oz, M)$ et la demi-droite Ox.
- r et θ repèrent M dans le demi-plan (π) suivant le schéma ci-contre où Ox^2 est dans le plan Oxy (et fait l'angle ϕ avec Ox), $OO_1 = a$ (fixé par le pneu à étudier).

- a. Dans quelle gamme doivent varier $r,~\theta~$ et $\phi~$ pour décrire tous les points intérieurs au pneu ?
- b. Exprimer le déplacement élémentaire en coordonnées r, θ, ϕ après avoir introduit la base adaptée de \mathbb{R}^3 . Ces coordonnées sont-elles des « coordonnées curvilignes orthogonales » ?
- c. Exprimer l'aire élémentaire sur la surface du pneu. Calculer l'aire du pneu.
- d. Exprimer le volume élémentaire en coordonnées r, θ, ϕ . Calculer le volume d'air contenu dans le pneu.
- e. Calculer le flux du champ vectoriel $\overrightarrow{E}=z\overrightarrow{u}_z$ à travers la surface du pneu. Comparer avec le volume précédent. Faire de même avec $\overrightarrow{F}=x\overrightarrow{u}_x$. Interpréter le résultat.
- f. Le pneu est en fait constitué d'une couche de caoutchouc d'épaisseur e (le caoutchouc occupe la zone de l'espace $r \in [R-e \ , R]$ et est de masse volumique ρ . Quelle est la masse du pneu ?
- 3. On utilise les coordonnées sphériques r, θ, ϕ . Soit V le champ scalaire défini par :

$$V(M) = \frac{1}{3} \frac{3(\cos \theta)^2 - 1}{r^3}$$

- a. Calculer le champ vectoriel $\overline{E} = -\overline{\text{grad}} V$
- b. On se place dans le demi-plan y=0, x>0 (c'est-à-dire $\phi=0$). Dessiner en quelques points (par exemple 9 ou 11) équirépartis sur le demi-cercle de centre O, de rayon 1 un vecteur colinéaire à \overrightarrow{E} , de norme constante assez petite.
- c. Faire de même pour un ensemble de demi-cercles concentriques de différents rayons.
- d. Une ligne de champ est une courbe tangente en tout point M à $\vec{E}(M)$. Tracer à main levée les lignes de champ sur le dessin précédent.
- e. En utilisant l'expression du déplacement élémentaire, traduire la définition d'une ligne de champ sous forme d'une équation différentielle.
- f. Quelle est la particularité qui rend cette équation différentielle simple ? La résoudre. On pourra remarquer que la dérivée par rapport à θ de $\sin^2\theta\cos\theta$ est $\sin\theta\left(3\cos^2\theta-1\right)$.