

Volatiliy contract가 나오게 된 이유

• Imvol이 싸거나 비싸다 생각해서 Imvol만 사고 팔고 싶다.

→이론적으로 구성가능

-비싼 옵션을 매수하고 Dynamic hedging으로 옵션을 복제해 매도

- 싼 옵션을 매도하고 Dynamic hedging으로 옵션을 복제해 매수

Volatility contract가 나오게 된 이유

- Dynamic hedging의 한계 존재
 - 내 order의 price impact + transaction cost
 - bid- ask gap
 - underlying asset의 분포가 normal이 아님.
- → 증권사 : 귀찮은건 내가 해줄게

Realized volatility contracts

- Realized volatility contracts의 만기가치
- = 계약기간 동안의 로그리턴의 연율화 표준편차
- *xi=오늘가격/어제가격
- *n= 계산기간의 거래일
- *252거래일로 연율화

Realized volatility contracts

Realized volatility contracts **역人**

• 호가는 notional vega로 불리는 volatility 로 한다.

```
 P&L = (Realized vol – 계약한 vol) *계약금
 ex) ( 23.75 - 20 ) * 1000$ = +3750$
 ( 18.6 - 20 ) * 1000$ = -1400%
```

Realized volatility contracts as a variance swap

• 실제 settlement 는 volatility가 아니라 variance를 거래한다.

- 이유 i) variance를 복제하기가 더 쉽기 때문.
 - ii) 분산은 시간에 1대1로 비례
 →2개의 다른 시간대의 계약을 합치기가 쉬움
 예시) 2개월 25% + 1 개월 22%

$$\frac{(2/12\times25^2)+(1/12\times22^2)}{3/12} = 578$$

Realized volatility contracts as a variance swap

- 호가와 settlement가 다르기 때문에
- Value per variance point

$$=\frac{\text{vega notational}}{2 \times \text{volatility price}}$$

Realized volatility contracts as a variance swap 역人

- If the buyer of a volatility contract pays 20 for \$10,000 vega notional,
- Variance point value = $$10,000/2 \times 20 = 250
- When Real vol = 19%

•
$$\$250 \times (19^2 - 20^2) = \$250 \times (361 - 400) = \$9,750$$

• When Real vol = 23%

•
$$\$250 \times (23^2 - 20^2) = \$250 \times (529 - 400) = \$32,250$$

Realized volatility contracts as a variance swap 예시

• When Real vol = 50%

•
$$\$250 \times (50^2 - 20^2) = \$250 \times (2,500 - 400) = \$525,000$$

- →손익이 너무 커서 cap을 둠
- * 특히 개별주식에 적용 index는 없는 경우도 있음.
- When Real vol = 50 % & cap= 40%
 - $\$250 \times (40^2 20^2) = \$250 \times (1,600 400) = \$300,000$

Implied Volatility Contracts

VIX 등장의 배경

- Option Exchange index(OEX)
- -과거 전체시장을 대표할 수 있는 옵션지수
- → OEX의 30일 이론적 im-vol을 뽑아낸 것이 과거VIX
- → VIX자체를 거래할 수 있게 발전되며 2003년부터 S&P500의 Im-vol을 사용

Implied Volatility Contracts VIX(과거버전)

VIX 계산하기 (과거버전)

Step1) ATM put call imvol average

Step2) interpolate with 2 closest strike price

Step3) interpolate with 2 closest marturity

Implied Volatility Contracts VIX 계산 예시

S&P500 spot = 863.4 가까운 행사가격 = [860, 870] 가까운 만기 =[14 일, 42일] 옵션Imvol

Implied Volatility Contracts VIX 계산 예시

Implied Volatility Contracts VIX 계산 예시

strike price interpolate

Implied Volatility Contracts 구버전VIX한계

- Imvol를 사는것은 vega에만 노출되고 싶은것.
- 단점 1.

ATM에서 벗어나면 vega는 변한다.

Figure 25-1 The vega (volatility sensitivity) of an option.

Implied Volatility Contracts 구버전VIX한계

- Imvol를 사는것은 vega에만 노출되고 싶은것.
- 단점 1. ATM에서 벗어나면 vega는 변한다.
- → 그렇담 모든 K에 대해 분산투자를 한다면? 그래도 안된다.

Figure 25-2 Volatility exposure if we purchase one option at each exercise price.

Implied Volatility Contracts 구버전VIX한계

→ 1/(행사가)^2 만큼의 수량을 사줘야 기초자산의 변화와 상관없이 vega생성.

Figure 25-3 Purchasing $1/X^2$ options at each exercise price.

Implied Volatility Contracts VIX 신버전

- Timevalue를 capture하기위해 forword price기준 OTM 옵션을 쓴다.
- Put Call Parity를 사용해 forward price를 산출하고, 그에 가까운 행사가를 정한다.(closest-to-the-money)
- Price는 bid-ask mid point를 사용한다.
- 근처의 2개의 행사가격에서 계산을 진행한다. 단 낮은 행사가의 put과 높은 행사가의 call은 계산에 넣지 않는다.
- 존재하는 모든 행사가격의 거리를 감안하여 계산한다.

Implied Volatility Contracts VIX 신버전

VIX의 특성1

주식의 imvol은 주식과 negatively correlated 되어있다.

Figure 25-4 S&P 500 and VIX prices: 2003–2012.

VIX의 특성2

주식의 imvol이 올라간다고 미래 realized vol이 올라가는건 아니다.

조금 따라간다.

Figure 25-6 Does a change in the VIX predict a change in realized volatility?

VIX Futures

- 1pts 가 1000\$를 가지게 만기에 VIX지수로 settle을 해주는 선물.
- 특징:
- -Imvol에 대한 term structure를 보여줌.
- (*잔존만기에 따라 imvol 변화가 달라서발생) 대부분의 경우 contango(upward sloping)
- VIX의 spot을 복제하기 어려움

Figure 20-12 The term structure of implied volatility.

Figure 25-8 VIX futures in contango (upward sloping).

VIX Futures

위기시 VIX Futures term structure는 backwardation의 모습을 보임

Figure 25-10 VIX futures moved dramatically from contango to backward during the financial crisis in late 2008.

Figure 25-9 VIX futures in backwardation (downward sloping).

VIX Futures prices do not change as quickly as the index.

- 만기보다 먼 VIX futures의 가격 상승은 기초자산의 가격상승을 따라가지 않는다.
- 4일간 19.4 →23.7 로 기초자산이 올랐을때의 VIX termstructure

Figure 25-11 VIX futures prices do not change as quickly as the index.

VIX Futures prices do not change as quickly as the index.

- 만기보다 먼 VIX futures의 가격 하락은 기초자산의 가격하락을 따라가지 않는다.
- 4일간 52.4 →44.9 로 기초자산이 하락했을때의

VIX termstructure

Figure 25-12 VIX futures prices do not change as quickly as the index.

VIX Futures prices do not change as quickly as the index.

VIX 현물을 복제하기 어렵기 때문에 선현물 차익거래가 안되고 term structure의 y축 평행이동이 어렵다.

*만기에 가면 어차피 붙긴함...

VIX Futures 유의사항

Contango일때 VIX futures prices는 time decay가 있다.

VIX future의 가격움직임은 spot보다 훨씬 작고 만기가 길면 더작다.

근데 만기에 가면 어차피 붙는다.

현물복제는 불가능하기 때문에 현물과 떨어트려 평가해야한다.

VIX futures calendar spread

• Curved term structure& contango 하에 short-term 이 long-term보다 time decay가 크다

단기물 short & 장기물 long 포지션구축

backwardation상황에는 반대로 구축한다.

Figure 25-13 A futures spread in a contango market.

VIX futures calendar spread Contango → backwardation

- 단기물 long 장기물 short
- 반대의 경우 (backwardation → contango)
 단기물 short 장기물 long

Figure 25-15 A futures spread when the term structure moves from backward toward contango.

Figure 25-14 A futures spread when the term structure moves from contango toward backward.

VIX options

- VIX현물을 복제하기 어렵기 때문에 VIXfutures로 option을 hedge하게 되고
- 따라서 imvol이 현물의 변동성이 아니라 덜 변동하는 선물 변동성을 따라감.

Figure 25-16 VIX 50- and 250-day historical volatility: 2003-2012.

VIX options

- Imvol은 상한과 하한에 제한이 있고 mean reverting함.
- vix option의 imvol은 underling asset의 급격한 변동 때문에 오히려 strike price가 높아지면 높아질 수록 imvol이 상승하는 모습을 보이다가
- 상한 때문에 특정시점을 넘어가면 더이상 상승하지 않음.
- 때문에 VIX option은 행사가 imvol평면에서 smile이나 smirk가 나타나지 않고 half frown이 나타남.

Figure 25-18 VIX option implied volatility skews, March 19, 2012.

VIX options

- Option price & Butterfly approach로 뽑아낸 implied price distribution for VIX
- Left tail이 막혀있고, right tail이 열려있다.

Figure 25-19 Three-month price distribution implied from VIX option prices, March 19, 2012 [with the three-month (June) future at 23.95].

Replicating Volatility Contract

vega exposure 10,000 at price 20

• Variance position 복제하기

Step1)만기가 같은 모든 행사가의 옵션을 1/(행사가)^2 만큼 산다.

Step2) 전체 포지션을 delta hedging 한다

• Volatility position 복제하기 아주어건물

Sqrt(variance)가 vol이므로 variance변화에 선형의 포지션은 vol변화에 비선형의 포지션이됨.

	Realized Variance	Variance P&L	Realized Volatility	Volatility P&L
	250	-\$37,500	15.81	-\$41,900
	300	-\$25,000	17.32	-\$26,800
Γ.	350	-\$12,500	18.71	-\$12,900
	400	0	20	0
	450	+\$12,500	21.21	+\$12,100
	500	+\$25,000	22.36	+\$23,600
	550	+\$37,500	23.45	+\$34,500

/p+ हेर्युवा 10,000 दिस्थ

Replicating Volatility Contract VIX 목제하기

- Step1) 30일 전후 만기의, 동일 만기 모든 옵션(strip)을
 1/(행사가^2) 만큼 각각의 long-term과 short-term에 대해 long, short 한다.
- Long-term strip can be closed out at option market price(수요일)
- But Short- term position close가 long-term strip close보다 먼저 발생하는 경우가 있고(전 주 금요일),
- 늦게 발생하더라도(다음주 금요일), 모두 청산하는데는 price impact가 크다.
- 결국은 short-term strip과 long-term strip의 만기가 달라 생기는문제가 있다.

Replicating Volatility Contract VIX 목제하기

- VIX가 OTM으로 계산된다는것도 문제이다.
- 내가 복제를 하려고 strip을 사면 어떤 OTM 옵션은 ITM옵션이 될 것이다.
- 때문에 ITM옵션은 OTM 옵션으로 변환되어야한다.
- 이를 위해 기초자산을 heding해 ITM을 OTM으로 변환해야하는데
- 그러려면 S&P500 기초자산 basket을 사야한다. 선물로 헷지하려면 만기를 맞춰야하는 문제가 있다.
- 혹은 put-call parity로 현물을 복제해야한다.
- 전문 파생상품 trading firm이 할 수 있는 process 이다.
- 하여튼 이론적으로 가능한데 복잡하다.

Volatility contract applications

VIX 와 variance contract 는 imvol에 대한 speculation 으로 사용된다. Hedging으로도 사용되는데, gamma나 vega 포지션의 hedging에 사용된다. 주식과의 음의 corrleation을 활용해 자산배분에 사용하기도한다.

Volatility contract applications with indirect position

- Market maker는 vol이 낮을때 bussiness에서 돈을 잘 못 버니, 헷지를 위해 VIX를 short한다.
- 주기적 리밸런싱을 해야하는 포트폴리오 매니저는 vol이 높을 때 bid-ask가 벌어지므로 vix를 short해 hedge한다.
- 커버드 콜 포지션을 구축한 포트폴리오 매니저는 실질적 short vol상태이니 vix long을 통해 포지션 헷지를 한다.