Formelsammlung Robotik

Vektoren

Skalare Multipl.	$\lambda \cdot ec{a}$	$\left \begin{array}{c} \left(\lambda \cdot a_1 \\ \lambda \cdot a_2 \\ \lambda \cdot a_3 \end{array} \right) \right $
Abstand PUrpsr.		
Betrag (Norm)	$ \vec{a} $	$ \vec{a} = \sqrt{a_1^2 + a_2^2 + a_3^2}$
Skalarprodukt	$ec{a}\cdotec{b}$	$a_1 \cdot b_1 + \ldots + a_n \cdot b_n = x$
Winkel		$\cos lpha = rac{ec{a} \cdot ec{b}}{ ec{a} \cdot ec{b} }$

Matrizen

Gleich	A = B	$(a_{ij}) = (b_{ij})$
Addition	C = A + B	$(c_{ij}) = (a_{ij}) + (b_{ij})$
Differenz	C = A - B	$(c_{ij}) = (a_{ij}) - (b_{ij})$
Multiplikation Skalar	$c \cdot A$	$cA \in R^{m \times n}$
Multiplikation Matrizen	$A \cdot B$	$AB = \sum_{j} a_{ij} b_{ij}$

Multiplikation

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + a_{13} \cdot b_{31} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

Rechte Hand Regel

${\bf Koordinaten systeme}$

Objekt in 3D (OKS)	$ \begin{vmatrix} \vec{v} & = \\ (x, y, z, \alpha, \beta, \gamma) \end{vmatrix} $	$\alpha, \beta, \gamma = \text{Drehwinkel}$
Senkrechte		

Rotationsmatrizen

Rotation um X	$R_x(\alpha) =$	$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$	=	$\begin{bmatrix} 1 & 0 \\ 0 \cos \alpha \\ 0 \sin \alpha \end{bmatrix}$	$0 \\ -\sin \alpha \\ \cos \alpha$].	$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$		
Rotation um Y	$R_y(\alpha) =$	$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$	=	$\cos \alpha$	$\begin{array}{ccc} 0 \sin \alpha \\ 1 & 0 \\ a & 0 \cos \alpha \end{array}$		$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$		
Rotation um Z	$R_z(\alpha) =$	$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$	=		$-\sin \alpha \ 0$ $\cos \alpha \ 0$ 0 1		$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$		
Vormultipl. (Roll-pitch-yaw)	$H_{\text{neu}} = H_n \cdot H_{n-1} \cdot \ldots \cdot H_1$								
Nachmultipl. (Euler- Winkel)	$H_{\text{neu}} = H_1 \cdot H_2 \cdot \ldots \cdot H_n$								
Homogene 4×4 -Matrix	$ \left(\frac{R_{3\times3}}{f_{1\times3} = 0} \frac{u_{3\times1}}{1\times1}\right) = \left(\begin{array}{ccc} n_{x\downarrow z} & o_{x\downarrow z} & a_{x\downarrow z} & u_{x\downarrow z} \\ 0 & 0 & 0 & 1 \end{array}\right) $								
Invertierung 4×4	$ \begin{pmatrix} R_{3\times3} & u_{3\times1} \\ f_{1\times3} = 0 & 1\times1 \end{pmatrix} = \begin{pmatrix} n_{x\downarrow z} & o_{x\downarrow z} & a_{x\downarrow z} & u_{x\downarrow z} \\ 0 & 0 & 0 & 1 \end{pmatrix} $ $ T^{-1} = \begin{pmatrix} n_x & n_y & n_z & -n^T \cdot \vec{u} \\ o_x & o_y & o_z & -o^T \cdot \vec{u} \\ a_x & a_y & a_z & -a^T \cdot \vec{u} \\ 0 & 0 & 0 & 1 \end{pmatrix} $								
Translation um x, y, z	$\begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}$								
Verkettete Lagebeschr.	$^{BKS}H_{B}$ =	BK	H_{A}	$A \cdot A H_B$	(H = Ho	omo). M	[atr.)	

Quaternionen

 $a,b,c,d \in \Box \text{Quaternion} \ q \Rightarrow q = a + b \cdot i + c \cdot *j + d \cdot k$

$$a \in \mathbb{R}, u = (b, c, d)^T \in \mathbb{I}$$

$$q = (a, b, c, d)^T$$
 bzw. $q = (a, u)^T$

$$i^2 = j^2 = k^2 = ijk = -1$$

$$ij = -ji = k$$

$$k = -kj = i$$

$$ki = -ik = j$$

Gegeben	$q = (a_q, u_q), r = (a_r, u_r)$
Addition	$q + r = (a_q + a_r, u_q + u_r)$
Skalar	$q \cdot r = a_q a_r + \langle u_q, u_r \rangle = a_q a_r + b_q b_r + c_q c_r + d_q d_r$
quatern.	q * r =
Multipl.	$(a_q + i \cdot b_q + j \cdot c_q + k \cdot d_q) \cdot (a_r + i \cdot b_r + j \cdot c_r + k \cdot d_r)$
konjugiert	$q^* = (a_q, -u_r)$
Norm	$ q = \sqrt{qq^*} = \sqrt{q^*q} = \sqrt{a^2 + b^2 + c^2 + d^2}$
inverses	$q^{-1} = \frac{q^*}{ q ^2}$
Element	$ q - \frac{1}{ q ^2}$

Rotation mit Quaternionen

Vektor als Quaternion	$p = (x, y, z)^T \Leftrightarrow q_p = (0, p)^T$
Skalar als Quaternion	$s \Leftrightarrow q_s = (s, 0, 0, 0)^T$
Einheitsquaternion	q = 1
Rotation um θ , Achse u	$q_r = (\cos(\frac{\theta}{2}), u \cdot \sin(\frac{\theta}{2}))$
Rotation Punkt p	$q_{p'} = q_r q_p q_r^* = q_r q_p q_r^{-1}$

Sinus

a	0	30	45	60	90	120	135	150	180
$\sin a$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos a$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

Trigonometrie

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \sin \beta \cdot \cos \alpha$$
$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$