Practice quiz on Types of Functions

TOTAL POINTS 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a function $f:A\to B$?

1/1 point

- $\bigcap f(1) = 4, f(2) = 40, \text{ and } f(10) = 8.$
- $\bigcap f(1) = 4, f(2) = 4, \text{ and } f(10) = 4.$
- $\bigcirc \ f(a)=4a, \text{for each } a\in A$

✓ Correct

A function $f:A\to B$ is a rule which assigns an element $f(a)\in B$ to each $a\in A$. In this case, unfortunately, $f(1)=5\notin B$.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

1/1 point

Suppose that $T:A \to Y$ is the function which gives T(a) = + if person a tests positive and T(a) = - if they test negative.

Suppose that D:A o Z is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

- $\bigcirc \ T(a) = \text{ and } D(a) = S$
- \bigcirc T(a) = + and D(a) = H
- $\bigcap T(a) = + \operatorname{and} D(a) = S$
- $\bigcirc \ T(a) = \text{ and } D(a) = H$

✓ Correct

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

- 3. Consider the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^2 1$. Which of the following points are *not* on the graph of g?
 - O (1,0)

 - \bigcirc (-1,0)
 - $\bigcirc (0,-1)$

✓ Correct

Recall that the graph of g consists of all points (x,y) such that y=g(x). Here $g(2)=3\neq -1$, so the point (2,-1) is \temph{(not)} is property of g.

4. Let the point A=(2,4) . Which of the following graphs does $\it not$ contain the point A?

1/1 point

- The graph of h(x) = x-1
- $\bigcirc \ \ \mathsf{The} \ \mathsf{graph} \ \mathsf{of} \ f(x) = 2x$
- $\bigcirc \ \ {\rm The \ graph \ of} \ s(x)=x^2$
- $\ \ \, \bigcap \, \operatorname{The} \operatorname{graph} \operatorname{of} g(x) = x+2$

✓ Correc

The graph of h consists of all points (x,y) such that y=h(x). Here $h(2)=1\neq 4$, so the point (2,4) is not on the graph of h.

5. Suppose that h(x)=-3x+4. Which of the following statements is true?

1/1 point

- igodelightarrow h is a strictly decreasing function
- $\bigcirc \ \, h \text{ is a strictly increasing function}$
- O All statements are correct
- igcirc h is neither a strictly increasing function nor a strictly decreasing function.

✓ Corr

A function h is called strictly decreasing if whenever a < b, then h(a) > h(b)

Since the graph of \boldsymbol{h} is a line with negative slope, this is in fact true!

Which of the following is a possible value for $f(3.7)$?	
0 -	3
17	,
O 14	.7
O 3	
~	Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$.
	A function f is called strictly increasing if whenever $u < v$, then $f(u) < f(v)$.
	Since $f(3)=15$ is given and $3<3.7$, it must be that $15< f(3.7)$, and this answer satisfies that

1/1 point

6. Suppose that $f:\mathbb{R} o \mathbb{R}$ is a strictly increasing function, with f(3)=15