

<u>Help</u>

HuitianDiao 🗸

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

Course / Unit 4 Hypothesis t... / Lecture 14: Wald's Test, Likelihood Ratio Test, and Implicit Hy...

()

4. Interlude: Square Roots of Matrices

□ Bookmark this page

Exercises due Jul 27, 2021 19:59 EDT

Interlude: Square root of a positive semi-definite matrix

Recall that a matrix \mathbf{A} of size $d \times d$ is **positive semi-definite** if $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^d$. Two example classes of positive semi-definite matrices are:

- Diagonal matrices with non-negative entries: $\mathbf{D} = \begin{pmatrix} c_1 & 0 & \dots & 0 \\ 0 & c_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & c_d \end{pmatrix}$ where $c_i \geq 0$ for all i. (You have shown in exercise in a previous lecture that indeed $\mathbf{x}^T\mathbf{D}\mathbf{x} \geq 0$ for all \mathbf{x} .
- Matrix products $\mathbf{P}^T \mathbf{D} \mathbf{P}$ where \mathbf{P} is an invertible (square) matrix and \mathbf{D} is a diagonal matrix with non-negative entries (as above). **Proof:** $\mathbf{x}^T (\mathbf{P}^T \mathbf{D} \mathbf{P}) \mathbf{x} = (\mathbf{P} \mathbf{x})^T \mathbf{D} (\mathbf{P} \mathbf{x}) = \mathbf{y}^T \mathbf{D} \mathbf{y} \ge 0$ for all vectors \mathbf{x} .

The **positive semi-definite square root** (or simply the square root) of a positive semi-definite matrix $\bf A$ is another positive semi-definite matrix, denoted by $\bf A^{1/2}$, satisfying $\bf A^{1/2} \bf A^{1/2} = \bf A$. It is the case that for any positive semi-definite matrix (positive definite matrix, respectively), the positive semi-definite square root (positive definite square root, respectively) is unique.

Square Root of a Matrix

1 point possible (graded)

Using the definition above of the square root of a matrix, find the square root ${f D}^{1/2}$ of ${f D}=\left(egin{array}{cc}2&0\0&0\end{array}
ight)$.

(Enter your answer as a matrix, e.g. by typing **[[1,2],[5,1]]** for the matrix $\begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}$. Note the square brackets, and the commas as separators.)

$${f D}^{1/2} =$$

STANDARD NOTATION

Submit

You have used 0 of 3 attempts

(Optional): Square Root of a Matrix

0 points possible (ungraded) Let

$$\mathbf{A} = \mathbf{P}^T \mathbf{D} \mathbf{P} \qquad ext{where} \quad \mathbf{D} \ = egin{pmatrix} 3 & 0 \ 0 & 0 \end{pmatrix} \ \mathbf{P} \ = rac{1}{\sqrt{2}} egin{pmatrix} 1 & -1 \ 1 & 1 \end{pmatrix}.$$

Note that $\mathbf{P}^T = \mathbf{P}^{-1}$.

Find the square root $\mathbf{A}^{1/2}$ of the matrix \mathbf{A} . Hint: $\mathbf{P}^T\mathbf{B}^2\mathbf{P} = \mathbf{P}^T\mathbf{B}(\mathbf{P}\mathbf{P}^T)\mathbf{B}\mathbf{P}$.

(Enter your answer as a matrix, e.g. by typing **[[1,2],[5,-1]]** for the matrix $\begin{pmatrix} 1 & 2 \\ 5 & -1 \end{pmatrix}$. Note the square brackets, and

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>