Introduction to Multilayer Perceptron Multilayer Fully Connected Feedforward Neural Networks

Vitor Greati¹

¹Federal University of Rio Grande do Norte

Table of Contents

Introduction

Concept

Applications

Neurons

Activation functions

Multilayer Perceptron

Architecture

Mathematical representation

Output computation

Concept Defining Neural Networks

Neural Networks or Artificial Neural Networks are computational models inspired in the neural system, containing a **labelled** directed graph G = (V, E) whose nodes are capable of performing some simple computation and where each edge $(u, v) \in E$ carries the output of such computation from u to v increased or diminished by the edge weight w(u, v).

The weights indicate the importance degree of the signal of each connection.

In a Neural Network, these **weights** are **modified** during the learning process by **learning algorithms**.

Applications

Neural Networks for what?

Neural networks can be applied to supervised, unsupervised and semi-supervised learning tasks, given the right architecture.

Common applications are:

- classification;
- regression;
- clustering;
- vector quantization;
- pattern association;
- function approximation.

Neurons

Basic elements

The neuron's basic task is to take an input, perform some computation and output a value.

Main elements

- ▶ An input vector $\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle \in \mathbb{R}^n$.
- ▶ A vector of weights $\mathbf{w} = \langle w_1, w_2, \dots, w_n \rangle \in \mathbb{R}^n$.
- ▶ A value $b \in \mathbb{R}$, called *bias*.
- ► A computation between inputs and weights, like

$$z = \mathbf{x} \cdot \mathbf{w} = \sum_{i} x_{i} w_{i}.$$

▶ An activation function f to produce an output f(z + b).

Neurons

Graphical representation

A common graphical representation highlights those elements:

Neurons

Graphical representation

The same representation, but using only vectors:

Sigmoid function

The sigmoid is a classical function in the neuron activation context. It is defined by:

$$f_{sig}(net) = rac{1}{1 + e^{-net}}$$

When compared to the step function:

- $ightharpoonup f_{sig}$ is continuous and differentiable everywhere;
- f_{sig} is symmetric around the y-axis;
- $ightharpoonup f_{sig}$ asymptotically approaches its saturation values.

However:

- $ightharpoonup f_{sig}$ outputs are not zero centered;
- ► Saturated neurons essentially kill the gradient, since the delta will be extremely small.

The step function is defined as

$$f_s(net) = egin{cases} 1, net > 0 \\ 0, net < 0 \end{cases}$$

Notice that:

- f_s only lets the signal pass if the computation results in a positive net;
- f_s is not differentiable, which produce problems for some learning algorithms;

This activation is used in the classic **Perceptron**.

Hyperbolic tangent function

The hyperbolic tangent function is defined as

$$f_{tanh}(net) = anh(net) = rac{e^{net} - e^{-net}}{e^{net} + e^{-net}}.$$

Notice that:

- f_{tanh} is zero centered;
- The problem for saturated neurons remains.

ReLU - Rectified Linear Unit

The ReLU function is defined as:

$$f_{relu}(net) = \max(0, net).$$

Notice:

- $ightharpoonup f_{relu}$ is not saturable and it is extremely efficient;
- $ightharpoonup f_{relu}$ is not differentiable at 0.

Leaky ReLU - Leaky Rectified Linear Unit

The Leaky ReLU is defined as:

$$f_{Irelu}(\mathit{net}) = egin{cases} \mathit{net}, \mathit{net} \geq 0 \\ lpha imes \mathit{net}, \mathit{net} < 0 \end{cases}$$

- f_{Irelu} allows a small, non-zero gradient at 0;
- f_{Irelu} allows negative values;
- ▶ PReLUs, Parametric ReLUs, allows α to be learned differently for each node.

ELU - Exponential Linear Units

The ELU function is defined as:

$$f_{elu}(\textit{net}) = egin{cases} \textit{net}, \textit{net} \geq 0 \\ lpha imes (e^{\textit{net}} - 1), \textit{neq} < 0 \end{cases}$$

Here, α is a constant, set when the network is instantiated. A common value for it is $\alpha=1.0$.

ELUs have presented better results than ReLUs.

Table of Contents

Introduction

Concept

Applications

Neurons

Activation functions

Multilayer Perceptron

Architecture

Mathematical representation

Output computation

Fully connected feedforward architecture

An architecture with C layers, $L_0, L_1, \ldots, L_{C-1}$, is graphically represented as:

Fully connected feedforward architecture

Observations

- ▶ A layer L_i has its own size (number of neurons) $|L_i|$.
- $ightharpoonup L_0$ is the **input layer**.
 - Neurons in this layer are input neurons.
 - An input neuron *j* takes the *j*-th component of the input vector.
 - Input neurons do not perform any computation or activation: just output the input value.
 - ▶ The output of L_0 is **x**, the input vector.
- ▶ L_{C-1} is the output layer and its output is the network output.
- Any other layer is a hidden layer.
- ▶ This architecture is **fully connected** because each neuron in layer L_i is connected to every neuron in layer L_{i+1} .
- ► This architecture is **feedforward** because there is no back arrows forming cycles; otherwise, it would be *recurrent*.

Fully connected feedforward architecture

How can we perform calculations and learning in this architecture? Mathematics, of course.

Representing connections between layers

Consider layer L_l , $l=1,\ldots,C-1$, and neuron k of L_l . Since the architecture is fully connected, k is connected to all neurons j in L_{l-1} . Denote by w_{kj}^l the weight of the connection between neuron j of L_{l-1} and neuron k of L_l :

Fully connected feedforward architecture

In this way, we can represent all weights between two layers using only one matrix $\mathbf{W}^{l} = (w_{kj}^{l})$:

$$\mathbf{W}^{l} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \dots & w_{1|L_{l-1}|}^{l} \\ w_{21}^{l} & w_{22}^{l} & \dots & w_{2|L_{l-1}|}^{l} \\ \vdots & \vdots & \ddots & \vdots \\ w_{|L_{l}|1}^{l} & w_{|L_{l}|2}^{l} & \dots & w_{|L_{l}||L_{l-1}|}^{l} \end{bmatrix}.$$

Notice that:

- ▶ **W**^{*I*} has dimensions $|L_I| \times |L_{I-1}|$.
- The weight vector of connections to neuron k in L_l is the k-th row of \mathbf{W}^l , denoted by \mathbf{w}_k^l .
- All connections in the network are represented! They are all in matrices $\mathbf{W}^1, \mathbf{W}^2, \dots, \mathbf{W}^{C-1}$.

Fully connected feedforward architecture

Representing the biases

Remember that each neuron has its own bias. So, let b_k^I denote the bias of neuron k in layer L_I . Then, the biases in layer I are represented as just a vector

$$\mathbf{b}^I = \langle b_1^I, b_2^I, \dots, b_{|L_I|}^I \rangle.$$

In this way, all biases are represented by vectors $\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^{C-1}$.

Fully connected feedforward architecture

Representing layer outputs

Denote by a_k^l the output of neuron k in layer L_l , and by \mathbf{a}^l the output vector for layer L_l . How to compute such output? First, look:

Fully connected feedforward architecture

Denote by z_k^I the computation performed by the neuron, i.e.

$$z_k^l = \sum_{j}^{|L_{l-1}|} w_{kj}^l a_j^{l-1} = \mathbf{w_k^l} \mathbf{a^{l-1}}.$$

Then, the neuron output is

$$a_k^I = f(z_k^I + b_k^I).$$

And the layer output is

$$\mathbf{a}' = \mathbf{f}(\mathbf{W}' \cdot \mathbf{a}'^{-1} + \mathbf{b}').$$

Fully connected feedforward architecture

Didn't get it? Look:

$$\begin{split} \mathbf{f} \left(\mathbf{W}^{l} \cdot \mathbf{a^{l-1}} + \mathbf{b^{l}} \right) &= \mathbf{f} \left(\begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \dots & w_{1}^{l} |_{L_{l-1}|} \\ w_{21}^{l} & w_{22}^{l} & \dots & w_{2}^{l} |_{L_{l-1}|} \\ \vdots & \vdots & \ddots & \vdots \\ w_{|L_{l}|1} & w_{|L_{l}|2}^{l} & \dots & w_{|L_{l}||L_{l-1}|}^{l} \end{bmatrix} \cdot \begin{bmatrix} a_{1}^{l-1} \\ a_{2}^{l-1} \\ \vdots \\ \vdots \\ a_{l-1}^{l-1} \end{bmatrix} + \begin{bmatrix} b_{1}^{l} \\ b_{2}^{l} \\ \vdots \\ b_{|L_{l}|}^{l} \end{bmatrix} \right) \\ &= \mathbf{f} \left(\begin{bmatrix} \sum_{j}^{|L_{l-1}|} w_{1j} a_{j}^{l-1} + b_{1}^{l} \\ \sum_{j}^{|L_{l-1}|} w_{2j} a_{j}^{l-1} + b_{2}^{l} \\ \vdots \\ \sum_{j}^{|L_{l-1}|} w_{|L_{l}|} a_{l}^{l-1} + b_{|L_{l}|}^{l} \end{bmatrix} \right) \\ &= \mathbf{f} \left(\begin{bmatrix} \mathbf{w}_{1}^{l} \mathbf{a}^{l-1} + b_{1}^{l} \\ \mathbf{w}_{2}^{l} \mathbf{a}^{l-1} + b_{2}^{l} \\ \vdots \\ \mathbf{w}_{|L_{l}|} \mathbf{a}^{l-1} + b_{|L_{l}|}^{l} \end{bmatrix} \right) \\ &= \left[\mathbf{f} (\mathbf{z}_{1}^{l}) & \mathbf{f} (\mathbf{z}_{2}^{l}) & \dots & \mathbf{f} (\mathbf{z}_{|L_{l}|}^{l}) \end{bmatrix}^{T} \\ &= \left[a_{1}^{l} & a_{2}^{l} & \dots & a_{|L_{l}|}^{l} \end{bmatrix}^{T} \\ &= \begin{bmatrix} a_{1}^{l} & a_{2}^{l} & \dots & a_{|L_{l}|}^{l} \end{bmatrix}^{T} \end{aligned}$$

Computing the network output

Given an input vector \mathbf{x} , how to compute the output of the network?

We have an equation to compute any \mathbf{a}^I and the algorithm just goes like this:

```
Input: Input vector \mathbf{x}
Output: Network output \mathbf{a}^{C-1}
1 begin
2 | \mathbf{a}^0 \leftarrow \mathbf{x}
3 | for l \leftarrow 1 to C-1 do
4 | \mathbf{a}^l \leftarrow \mathbf{W}^l \cdot \mathbf{a}^{l-1} + \mathbf{b}^l
5 | end
6 | return \mathbf{a}^{C-1}
7 end
```