Практика по алгоритмам #6

1. QuickSort

Посчитаем точно матожидание числа сравнений, которое делает Quicksort на перестановке из n элементов. Сумма гармонического ряда.

2. Задачи про бинарный поиск

- 1. Найти корень вещественного числа с использованием стандартных арифметических операций.
- 2. Найти расстояние от точки до прямой в 3D (в nD).
- 3. Корни многочлена
 - а) Найти корень многочлена нечетной степени за $\mathcal{O}(\log M)$.
 - b) Зная все корни производной, найти все вещественные корни многочлена за $\mathcal{O}(n\log M)$.
 - c) Найти все вещественные корни многочлена за $\mathcal{O}(n^2 \log M)$.
- 4. Бинарный поиск на массиве
 - а) Выразить upper_bound для целых чисел через lower_bound.
 - b) Докажите, что нельзя сделать и lower_bound, и upper_bound одновременно, используя в худшем случае меньше чем $2\log_2 n + \mathcal{O}(1)$ сравнений?
 - с) Сделать предподсчет за $\mathcal{O}(n \log n)$, чтобы за $\mathcal{O}(\log n)$ отвечать на запрос "сколько раз число x встречается на отрезке [l..r]"?

3. Задачи про поиск точки

Каждую из предложенных задач можно решить за время $\mathcal{O}(n) + \mathcal{O}(sort)$, тем не менее решения за линию от n на полилогарифм тоже приветствуются. Для разминки предлагается продифференцировать e^x и найти за $\mathcal{O}(n)$ площадь пересечения n прямоугольников со сторонами параллельными осям координат.

- 1. Даны n точек на прямой x_i . Найти точку x^* :
 - a) $\sum_i |x_i x^*| \to \min$
 - b) $\sum_{i}(x_i-x^*)^2 \to \min$
 - c) $\max_i |x_i x^*| \to \min$
 - d) $\max_i (x_i x^*)^2 \to \min$
- 2. Даны n точек на плоскости (x_i, y_i) . Найти точку (x^*, y^*) :
 - a) $\sum_{i} [\max(|x_i x^*|, |y_i y^*|)] \to \min$
 - b) $\sum_{i} [|x_i x^*| + |y_i y^*|] \to \min$
 - c) $\sum_{i} [(x_i x^*)^2 + (y_i y^*)^2] \to \min$
 - d) $\max_{i} [\max(|x_{i} x^{*}|, |y_{i} y^{*}|)] \to \min$
 - e) $\max_{i} [|x_i x^*| + |y_i y^*|] \to \min$
 - f) $\max_{i} [(x_i x^*)^2 + (y_i y^*)^2] \to \min$
- 3. На прямой расположено n точек p_1, p_2, \ldots, p_n . Каждая точка имеет вес $w_i \geq 0$. Требуется найти точку $q: \sum_i \left[w_i \cdot |p_i q|\right] \to \min$.

4. Домашнее задание

4.1. Обязательная часть

- 1. (1) Предложите алгоритм на основе бинарного поиска для поиска остовного дерева графа, в котором максимальный вес ребра минимален.
- 2. (1) Даны n точек на прямой x_i с весами $w_i \geq 0$. Найти точку x^* : $\sum_i \left[w_i (x_i x^*)^2 \right] \to \min$
- 3. (1) Даны n точек на плоскости (x_i,y_i) с весами $w_i \ge 0$. Найти точку (x^*,y^*) : $\sum_i \left[w_i(|x_i-x^*|+|y_i-y^*|) \right] \to \min$
- 4. (2) Даны n точек на плоскости (x_i, y_i) с весами $w_i \ge 0$. Найти точку (x^*, y^*) : $\max_i \left[w_i(|x_i x^*| + |y_i y^*|) \right] \to \min$. Дополнительный балл можно заработать, решив эту задачу $\mathcal{O}(sort + n)$.
- 5. (3) На прямой расположено n точек p_1, p_2, \ldots, p_n . Каждая точка имеет вес $w_i \ge 0$. Выбрать две точки q_1, q_2 : $\sum_i \left[w_i \cdot \min(|p_i q_1|, |p_i q_2|) \right] \to \min$.
- 6. (3) Вариация на тему Pairing heap: докажите, что если в DeleteMin вместо процедуры Pairing список $[a_1,\ldots,a_n]$ произвольным образом разбить на пары $[(a_{i_1},a_{j_1}),\ldots,(a_{i_{n/2}},a_{j_{n/2}})]$, то амортизированное время работы операции DeleteMin будет $\mathcal{O}(\sqrt{n})$.

4.2. Дополнительная часть

- 1. (6) Есть n отрезков на окружности. Выбрать максимальное по размеру множество, покрывающее каждую точку не более чем 2 раза.
 - а) (3 из 6) $\mathcal{O}(n^3)$
 - b) $(4 \text{ из } 6) o(n^3)$
 - c) (6 из 6) $\mathcal{O}(n \cdot Poly(\log n))$
- 2. (4) Даны n точек на плоскости (x_i, y_i) с весами $w_i \ge 0$. Найти точку (x^*, y^*) : $\max_i \left[w_i ((x_i x^*)^2 + (y_i y^*)^2) \right] \to \min$. Требуется решение за линию на полилогарифм.
- 3. (5) На прямой расположено n точек p_1, p_2, \ldots, p_n . Каждая точка имеет вес $w_i \geq 0$. Выбрать три точки q_1, q_2, q_3 : $\sum_i \left[w_i \cdot \min(|p_i q_1|, |p_i q_2|, |p_i q_3|) \right] \to \min$. Требуется решение за линию на полилогарифм.