0.1 定积分

0.1.1 建立积分递推

例题 0.1 计算 $\int_0^{\frac{\pi}{2}} \cos^n x \sin(nx) dx, n \in \mathbb{N}$. 证明 利用分部积分和和差化积公式可得

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \sin(nx) dx = \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cdot \cos x \sin(nx) dx$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cdot [\sin((n+1)x) + \sin((n-1)x)] dx$$

$$= \frac{I_{n-1}}{2} + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x [\sin(nx) \cos x + \cos(nx) \sin x] dx$$

$$= \frac{I_{n-1}}{2} + \frac{I_{n}}{2} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cos(nx) d\cos x$$

$$= \frac{I_{n-1} + I_{n}}{2} - \frac{1}{2n} \int_{0}^{\frac{\pi}{2}} \cos(nx) d\cos^{n} x$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n} x \sin(nx) dx$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} - \frac{I_{n}}{2}$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n}.$$

故 $I_n = \frac{I_{n-1}}{2} + \frac{1}{2n}$, 则两边同乘 2^n (强行裂项)

$$2^{n}I_{n} = 2^{n-1}I_{n-1} + \frac{2^{n-1}}{n}, n = 1, 2, \cdots$$

又注意到 $I_0 = 0$, 从而

$$2^{n}I_{n} = 0 + \sum_{k=1}^{n} \frac{2^{k-1}}{k} \Longrightarrow I_{n} = \frac{1}{2^{n}} \sum_{k=1}^{n} \frac{2^{k-1}}{k}.$$

命题 0.1

(1)
$$\int_0^{\pi} \frac{\sin(nx)}{\sin x} dx = \begin{cases} 0, & n \text{ and } m \text$$

$$(2) \int_0^\pi \frac{\sin^2(nx)}{\sin^2 x} dx = n\pi$$

(2)
$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin^2 x} dx = n\pi.$$
(3)
$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin x} dx = \sum_{k=1}^n \frac{2}{2k-1}.$$

笔记 提示: $\sin^2 x - \sin^2 y = \sin(x - y)\sin(x + y)$ (证明见命题??).

$$I_{n+2} - I_n = \int_0^\pi \frac{\sin((n+2)x) - \sin(nx)}{\sin x} \, \mathrm{d}x = \int_0^\pi \frac{2\cos((n+1)x)\sin x}{\sin x} \, \mathrm{d}x = 2\int_0^\pi \cos((n+1)x) \, \mathrm{d}x = 0.$$

于是

$$\int_0^\pi \frac{\sin(nx)}{\sin x} \, \mathrm{d}x = I_n = I_{n-2} = \dots = \begin{cases} I_0, & n \text{ 为偶数} \\ I_1, & n \text{ 为奇数} \end{cases} = \begin{cases} 0, & n \text{ 为偶数} \\ \pi, & n \text{ 为奇数} \end{cases}.$$

(2)
$$\[\Box I_n = \int_0^\pi \frac{\sin^2(nx)}{\sin^2 x} \, \mathrm{d}x, \] \]$$

$$I_{n+1} - I_n = \int_0^\pi \frac{\sin^2((n+1)x) - \sin^2(nx)}{\sin^2 x} dx = \int_0^\pi \frac{\sin x \cdot \sin((2n+1)x)}{\sin^2 x} dx$$
$$= \int_0^\pi \frac{\sin((2n+1)x)}{\sin x} dx \xrightarrow{\text{$\Rightarrow \not = 0.1(1)$}} \pi. \tag{1}$$

于是

$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin^2 x} dx = I_n = \pi + I_{n-1} = \dots = (n-1)\pi + I_1 = n\pi.$$

(3)
$$\exists I_n = \int_0^\pi \frac{\sin^2(nx)}{\sin x} \, \mathrm{d}x, \ \mathbb{M}$$

$$I_{n+1} - I_n = \int_0^\pi \frac{\sin^2((n+1)x) - \sin^2(nx)}{\sin x} dx = \int_0^\pi \frac{\sin x \cdot \sin((2n+1)x)}{\sin x} dx$$
$$= \int_0^\pi \sin((2n+1)x) dx = \frac{1}{2n+1} \cos((2n+1)x) \Big|_{\pi}^0 = \frac{2}{2n+1}.$$
 (2)

于是

$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin x} dx = I_n = \frac{2}{2n-1} + I_{n-1} = \dots = \sum_{k=1}^{n-1} \frac{2}{2k+1} + I_1 = \sum_{k=0}^{n-1} \frac{2}{2k+1} = \sum_{k=1}^{n} \frac{2}{2k-1}.$$

例题 **0.2** 设 a > 1, 计算积分 $\int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) dx$.

注 很多情况下不需求出被积函数的原函数, 只需充分利用换元、分部积分以及被积函数的性质, 即可求出积分的值. 见下述解法二.

解 解法一:设 $a_0 = a > 1$. 构造数列如下:

$$a_{n+1} = 2a_n^2 - 1$$
 $(n = 0, 1, \dots),$

则由例题??可知, 存在 $x_0 > 0$ 使得

$$a_0 = \operatorname{ch}(x_0), \quad a_n = \operatorname{ch}(2^n x_0),$$

其中 $ch(x) = \frac{1}{2}(e^x + e^{-x})$. 可以解得

$$x_0 = \ln\left(a_0 + \sqrt{a_0^2 - 1}\right). {3}$$

故

$$a_n = \frac{e^{2^n x_0} + e^{-2^n x_0}}{2}.$$

设

$$I_n = \int_0^\pi \ln(a_n - \cos x) \, dx,$$

则

$$I_0 = \int_0^{\pi} \ln(a_0 - \cos x) \, dx = \int_0^{\frac{\pi}{2}} \ln(a_0 - \cos x) \, dx + \int_{\frac{\pi}{2}}^{\pi} \ln(a_0 - \cos x) \, dx$$
$$= \int_0^{\frac{\pi}{2}} \ln(a_0 - \cos x) \, dx + \int_0^{\frac{\pi}{2}} \ln(a_0 + \cos x) \, dx$$
$$= \int_0^{\frac{\pi}{2}} \ln(a_0^2 - \cos^2 x) \, dx = \int_0^{\frac{\pi}{2}} \ln\left(a_0^2 - \frac{1 + \cos 2x}{2}\right) \, dx$$

$$= \int_0^{\frac{\pi}{2}} \ln\left(\frac{a_1 - \cos 2x}{2}\right) dx = \frac{1}{2} \int_0^{\pi} \ln\left(\frac{a_1 - \cos x}{2}\right) dx = \frac{1}{2} I_1 - \frac{\pi}{2} \ln 2.$$

同理,有

$$I_n = \frac{1}{2}I_{n+1} - \frac{\pi}{2}\ln 2. \tag{4}$$

由此递推公式,可得

$$I_0 = \frac{1}{2^n} I_n - \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}}\right) \frac{\pi}{2} \ln 2.$$
 (5)

因为

$$I_n = \int_0^{\pi} \ln(a_n - \cos x) \, dx = \int_0^{\pi} \ln\left(\frac{e^{2^n x_0} + e^{-2^n x_0}}{2} - \cos x\right) \, dx$$
$$= 2^n x_0 \pi + \int_0^{\pi} \ln\left(\frac{1 + e^{-2^{n+1} x_0}}{2} - e^{-2^n x_0} \cos x\right) \, dx,$$

所以

$$\frac{1}{2^n}I_n \to x_0\pi \quad (n \to +\infty).$$

故从式(5)可得

$$I_0 = x_0 \pi - \pi \ln 2 = \pi \ln \left(\frac{a_0 + \sqrt{a_0^2 - 1}}{2} \right),$$

即所求的积分为

$$\int_0^{\frac{\pi}{2}} \ln(a^2 - \sin^2 x) \, dx = \int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) \, dx = \pi \ln\left(\frac{a + \sqrt{a^2 - 1}}{2}\right).$$

解法二: 我们有

$$F(a) = \int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) \, dx = \int_0^{\pi} \ln(a - \cos x) \, dx.$$

由定理??,关于a求导得到

$$F'(a) = \int_0^{\pi} \frac{1}{a - \cos x} \, dx \xrightarrow{\frac{\pi}{6} \text{ if } k \text{ if } k$$

因此

$$F(a) = \int_{1}^{a} F'(a) da = \pi \ln \left(a + \sqrt{a^2 - 1} \right) + C, \quad a > 1.$$

结合

$$F(1) = 2 \int_0^{\frac{\pi}{2}} \ln \sin x \, dx = -\pi \ln 2.$$

可得

$$\int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) \, dx = \pi \ln \left(\frac{a + \sqrt{a^2 - 1}}{2} \right), \quad a > 1.$$

0.1.2 区间再现

定理 0.1 (区间再现恒等式)

当下述积分有意义时, 我们有

1.

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx = \frac{1}{2} \int_{a}^{b} [f(x) + f(a+b-x)] dx = \int_{a}^{\frac{a+b}{2}} [f(x) + f(a+b-x)] dx.$$

$$\int_0^\infty f(x) dx = \int_0^1 f(x) dx + \int_1^\infty f(x) dx = \int_0^1 \left[f(x) + \frac{f(\frac{1}{x})}{x^2} \right] dx.$$

笔记 注意: 倒代换具有将 [0,1] 转化为 [1,+∞) 的功能.

证明 证明是显然的.(第1问中最后一个等号是由轴对称得到的)

1.
$$\int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{2} \ln 2.$$

2.
$$\int_0^{\frac{\pi}{2}} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$
3.
$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx = \frac{\pi}{8} \ln 2.$$

3.
$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx = \frac{\pi}{8} \ln 2.$$

证明

1.

$$I = \int_0^{\frac{\pi}{2}} \ln \sin x dx = \int_0^{\frac{\pi}{4}} \left[\ln \cos x + \ln \left(\frac{\pi}{2} - x \right) \right] dx$$

$$= \int_0^{\frac{\pi}{4}} \ln (\cos x \sin x) dx = \int_0^{\frac{\pi}{4}} \ln \frac{1}{2} dx + \int_0^{\frac{\pi}{4}} \ln (\sin 2x) dx$$

$$= -\frac{\pi}{4} \ln 2 + \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{4} \ln 2 + \frac{1}{2} I$$

$$\implies I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$

2.

$$I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = \int_0^{\frac{\pi}{2}} \ln \sin x dx = \int_0^{\frac{\pi}{4}} \left[\ln \cos x + \ln \left(\frac{\pi}{2} - x \right) \right] dx$$

$$= \int_0^{\frac{\pi}{4}} \ln (\cos x \sin x) dx = \int_0^{\frac{\pi}{4}} \ln \frac{1}{2} dx + \int_0^{\frac{\pi}{4}} \ln (\sin 2x) dx$$

$$= -\frac{\pi}{4} \ln 2 + \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{4} \ln 2 + \frac{1}{2} I$$

$$\implies I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$

3.

$$\int_{0}^{1} \frac{\ln(1+x)}{1+x^{2}} dx \xrightarrow{\frac{x=\tan\theta}{\theta}} \int_{0}^{\frac{\pi}{4}} \frac{\ln(1+\tan\theta)}{1+\tan\theta^{2}} d\tan\theta = \int_{0}^{\frac{\pi}{4}} \frac{\sec^{2}\theta \cdot \ln(1+\tan\theta)}{\sec^{2}\theta} d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \ln(1+\tan\theta) d\theta = \int_{0}^{\frac{\pi}{8}} \left[\ln(1+\tan\theta) + \ln\left(1+\tan\left(\frac{\pi}{4}-\theta\right)\right)\right] d\theta$$

$$= \int_{0}^{\frac{\pi}{8}} \left[\ln(1+\tan\theta) + \ln\left(1+\frac{1-\tan\theta}{1+\tan\theta}\right)\right] d\theta$$

$$= \int_{0}^{\frac{\pi}{8}} \left[\ln(1+\tan\theta) + \ln\frac{2}{1+\tan\theta}\right] d\theta$$

$$= \int_{0}^{\frac{\pi}{8}} \ln 2d\theta = \frac{\pi}{8} \ln 2.$$

例题 0.3 计算

1.
$$\int_0^\infty \frac{\ln x}{x^2 + a^2} dx, a > 0.$$

$$2. \int_0^\infty \frac{\ln x}{x^2 + x + 1} \mathrm{d}x.$$

3.
$$\int_0^1 \frac{\ln x}{\sqrt{x-x^2}} dx$$
.

1. 注意到

$$\int_{0}^{+\infty} \frac{\ln x}{x^{2} + a^{2}} dx = \frac{1}{a} \int_{0}^{+\infty} \frac{\ln(at)}{1 + t^{2}} dt = \frac{1}{a} \int_{0}^{+\infty} \frac{\ln a}{1 + t^{2}} dt + \frac{1}{a} \int_{0}^{+\infty} \frac{\ln t}{1 + t^{2}} dt = \frac{\pi \ln a}{2a} + \frac{1}{a} \int_{0}^{+\infty} \frac{\ln t}{1 + t^{2}} dt.$$
 (6)
 \(\frac{\frac{1}{2} \tilde{\frac{1}{2}}}{2} \frac{1}{a} \text{ (6)}

$$\int_0^{+\infty} \frac{\ln t}{1+t^2} dt \xrightarrow{t=\frac{1}{x}} \int_0^{+\infty} \frac{\ln \frac{1}{x}}{1+\frac{1}{x^2}} \frac{1}{x^2} dx = \int_0^{+\infty} \frac{-\ln x}{1+x^2} dx \Longrightarrow \int_0^{+\infty} \frac{\ln t}{1+t^2} dt = 0.$$

于是再结合(6)式可得

$$\int_0^{+\infty} \frac{\ln x}{x^2 + a^2} \mathrm{d}x = \frac{\pi \ln a}{2a}.$$

2.

$$\int_0^\infty \frac{\ln x}{x^2+x+1} \mathrm{d}x \xrightarrow{x=\frac{1}{t}} \int_0^\infty \frac{-\ln t}{1+\frac{1}{t}+\frac{1}{t^2}} \mathrm{d}\frac{1}{t} = \int_0^{+\infty} \frac{-\ln t}{1+t+t^2} dt \Longrightarrow \int_0^\infty \frac{\ln x}{x^2+x+1} \mathrm{d}x = 0.$$

3.

$$\int_0^1 \frac{\ln x}{\sqrt{x - x^2}} dx = \frac{x - \sin^2 y}{\int_0^{\frac{\pi}{2}} \frac{\ln \sin^2 y}{\sqrt{\sin^2 y (1 - \sin^2 y)}} d\sin^2 y}$$

$$= 4 \int_0^{\frac{\pi}{2}} \ln \sin y dy = \frac{4 \cdot (-\frac{\pi}{2} \ln 2)}{\int_0^{\frac{\pi}{2}} \ln 2 d\sin^2 y} d\sin^2 y$$

1. $\forall n \in \mathbb{N}$, $\exists f \in \mathbb{N}$

2.
$$\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^x}{1 + \cos^2 x} dx$$

3. 对 $n \in \mathbb{N}$, 计算 $\int_0^{2\pi} \sin(\sin x + nx) dx$.

解

$$\int_{-\pi}^{\pi} \frac{\sin(nx)}{(1+2^{x})\sin x} dx = \int_{-\pi}^{0} \left[\frac{\sin(nx)}{(1+2^{x})\sin x} + \frac{\sin(nx)}{(1+2^{-x})\sin x} \right] dx = \int_{-\pi}^{0} \frac{\sin(nx)}{\sin x} \left(\frac{1}{1+2^{x}} + \frac{1}{1+2^{-x}} \right) dx$$

$$= \int_{-\pi}^{0} \frac{\sin(nx)}{\sin x} \cdot \frac{2+2^{x}+2^{-x}}{2+2^{x}+2^{-x}} dx = \int_{-\pi}^{0} \frac{\sin(nx)}{\sin x} dx = \int_{0}^{\pi} \frac{\sin(nx)}{\sin x} dx \xrightarrow{\text{M$\underline{\otimes}$ 0.1}} \begin{cases} 0, n \text{ A is } \\ \pi, n \text{ A is } \end{cases}$$

 $\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^x}{1 + \cos^2 x} dx = \int_{-\pi}^{0} \left(\frac{x \sin x \arctan e^x}{1 + \cos^2 x} + \frac{x \sin x \arctan e^{-x}}{1 + \cos^2 x} \right) dx = \int_{-\pi}^{0} \frac{x \sin x}{1 + \cos^2 x} (\arctan e^x + \arctan e^{-x}) dx$ $\frac{\text{$\frac{\text{$\frac{4}{2}$}??(1)}{\text{$\frac{1+\cos^2 x}{1+\cos^2 x}$}} \cdot \frac{\pi}{2} dx = \frac{\pi}{2} \int_0^{\pi} \frac{x \sin x}{1+\cos^2 x} dx}{1+\cos^2 x} dx$ $= \frac{\pi}{2} \int_0^{\frac{\pi}{2}} \left(\frac{x \sin x}{1 + \cos^2 x} + \frac{(\pi - x) \sin x}{1 + \cos^2 x} \right) dx = \frac{\pi^2}{2} \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} dx$ $= \frac{\pi^2}{2} \arctan \cos x \Big|_{\frac{\pi}{2}}^0 = \frac{\pi^2}{2} \cdot \frac{\pi}{4} = \frac{\pi^3}{8}.$

3.

$$\int_0^{2\pi} \sin(\sin x + nx) \, dx = \int_0^{2\pi} \sin[\sin(2\pi - x) + n(2\pi - x)] \, dx$$

$$= \int_0^{2\pi} \sin(-\sin x - nx) \, dx = -\int_0^{2\pi} \sin(\sin x + nx) \, dx$$

$$\implies \int_0^{2\pi} \sin(\sin x + nx) \, dx = 0.$$

例题 **0.5** 计算积分 $I = \int_0^1 \frac{\ln(1+x)}{1+x^2} dx$.

注 此例中无法求出被积函数的原函数, 但通过积分的性质仍可算出积分的值. 解 解法一: 作变换 $x = \tan \varphi$, 则 d $\varphi = \frac{1}{1+x^2} dx$, 且当 x = 0 时, $\varphi = 0$; 当 x = 1 时, $\varphi = \frac{\pi}{4}$. 于是

$$I = \int_0^{\frac{\pi}{4}} \ln\left(\frac{\cos\varphi + \sin\varphi}{\cos\varphi}\right) d\varphi$$

$$= \int_0^{\frac{\pi}{4}} \left\{ \ln\left(\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos\varphi + \frac{1}{\sqrt{2}}\sin\varphi\right)\right) - \ln(\cos\varphi) \right\} d\varphi$$

$$= \int_0^{\frac{\pi}{4}} \left\{ \ln\sqrt{2} + \ln\left(\sin\left(\varphi + \frac{\pi}{4}\right)\right) - \ln(\cos\varphi) \right\} d\varphi$$

$$= \frac{\pi}{8} \ln 2 + \int_0^{\frac{\pi}{4}} \ln\left(\sin\left(\varphi + \frac{\pi}{4}\right)\right) d\varphi - \int_0^{\frac{\pi}{4}} \ln(\cos\varphi) d\varphi.$$

因为

$$\int_0^{\frac{\pi}{4}} \ln\left(\sin\left(\varphi + \frac{\pi}{4}\right)\right) d\varphi \xrightarrow{\varphi = \frac{\pi}{4} - t} - \int_{\frac{\pi}{4}}^0 \ln\left(\sin\left(\frac{\pi}{2} - t\right)\right) dt = \int_0^{\frac{\pi}{4}} \ln(\cos t) dt,$$

所以 $I = \frac{\pi}{8} \ln 2$. 解法二:考虑含参量积分

$$\varphi(\alpha) = \int_0^1 \frac{\ln(1 + \alpha x)}{1 + x^2} dx, \quad \alpha \in [0, 1].$$

显然 $\varphi(0) = 0, \varphi(1) = I$, 且函数 $\frac{\ln(1 + \alpha x)}{1 + x^2}$ 在 $R = [0, 1] \times [0, 1]$ 上满足定理?? 的条件, 于是

$$\varphi'(\alpha) = \int_0^1 \frac{x}{(1+x^2)(1+\alpha x)} dx.$$

因为

$$\frac{x}{(1+x^2)(1+\alpha x)} = \frac{1}{1+\alpha^2} \left(\frac{\alpha+x}{1+x^2} - \frac{\alpha}{1+\alpha x} \right),$$

所以

$$\varphi'(\alpha) = \frac{1}{1+\alpha^2} \left(\int_0^1 \frac{\alpha}{1+x^2} \, dx + \int_0^1 \frac{x}{1+x^2} \, dx - \int_0^1 \frac{\alpha}{1+\alpha x} \, dx \right)$$

$$= \frac{1}{1+\alpha^2} \left[\alpha \arctan x \Big|_0^1 + \frac{1}{2} \ln \left(1 + x^2 \right) \Big|_0^1 - \ln \left(1 + \alpha x \right) \Big|_0^1 \right]$$

$$= \frac{1}{1+\alpha^2} \left[\alpha \cdot \frac{\pi}{4} + \frac{1}{2} \ln 2 - \ln \left(1 + \alpha \right) \right].$$

因此

$$\int_0^1 \varphi'(\alpha) \, d\alpha = \int_0^1 \frac{1}{1+\alpha^2} \left[\frac{\pi}{4} \alpha + \frac{1}{2} \ln 2 - \ln (1+\alpha) \right] \, d\alpha$$
$$= \frac{\pi}{8} \ln \left(1 + \alpha^2 \right) \Big|_0^1 + \frac{1}{2} \ln 2 \arctan \alpha \Big|_0^1 - \varphi(1)$$
$$= \frac{\pi}{8} \ln 2 + \frac{\pi}{8} \ln 2 - \varphi(1)$$

$$=\frac{\pi}{4}\ln 2-\varphi(1).$$

另一方面.

$$\int_0^1 \varphi'(\alpha) \, d\alpha = \varphi(1) - \varphi(0) = \varphi(1),$$

所以
$$I = \varphi(1) = \frac{\pi}{8} \ln 2$$
.

0.1.3 化成多元累次积分(换序)

命题 0.3

证明:

(1)
$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
.

$$(2) \int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

(3)
$$\int_0^\infty \sin x^2 dx, \int_0^\infty \cos x^2 dx = \sqrt{\frac{\pi}{8}}.$$

全 笔记 本结果可以直接使用.

证明

(1) 注意到

$$\left(\int_{0}^{+\infty} e^{-x^{2}} dx\right)^{2} = \left(\int_{0}^{+\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{+\infty} e^{-y^{2}} dy\right) = \frac{\mathbb{E} \int_{0}^{+\infty} e^{-y^{2}} dy \operatorname{ff}(\pi \otimes \pi)}{\int_{0}^{+\infty} e^{-x^{2}} \operatorname{ff}(\pi \otimes \pi)} \int_{0}^{+\infty} e^{-x^{2}} \left(\int_{0}^{+\infty} e^{-y^{2}} dx\right) dy$$

$$= \frac{\mathbb{E} e^{-x^{2}} \operatorname{ff}(\pi \otimes \pi)}{\int_{0}^{+\infty} \left(\int_{0}^{+\infty} e^{-(x^{2}+y^{2})} dx\right) dy} = \frac{e^{-(x^{2}+y^{2})} \operatorname{ff}(\pi \otimes \pi)}{\int_{0}^{+\infty} \left(\int_{0}^{+\infty} e^{-(x^{2}+y^{2})} dx\right) dy}$$

$$= \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{+\infty} r e^{-r^{2}} dr = \frac{\pi}{2} \int_{0}^{+\infty} r e^{-r^{2}} dr$$

$$= \frac{\pi}{4} \int_{0}^{+\infty} e^{-r^{2}} dr^{2} = \frac{\pi}{4}.$$

故
$$\int_0^\infty e^{-x^2} \mathrm{d}x = \frac{\sqrt{\pi}}{2}.$$

(2) 注意到

$$\int_0^{+\infty} \sin x e^{-yx} \, dx = \operatorname{Im} \int_0^{+\infty} e^{ix - yx} \, dx = \operatorname{Im} \int_0^{+\infty} e^{-(y - i)x} \, dx = \operatorname{Im} \frac{1}{y - i} = \operatorname{Im} \frac{y + i}{y^2 + 1} = \frac{1}{y^2 + 1}.$$

因此就有

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \int_0^{+\infty} \sin x \left(\int_0^{+\infty} e^{-yx} \, dy \right) \, dx = \int_0^{+\infty} dy \int_0^{+\infty} \sin x e^{-yx} \, dx$$
$$= \int_0^{+\infty} dy \left(\text{Im} \int_0^{+\infty} e^{ix - yx} \right) \, dx = \int_0^{+\infty} \frac{1}{y^2 + 1} \, dy = \frac{\pi}{2}.$$

当然本题也可以直接利用分部积分计算 $\int_0^{+\infty} \sin x e^{-yx} dx = \frac{1}{y^2 + 1}$.

(3) 注意到

$$\int_{0}^{+\infty} e^{-ax^{2}} dx = \frac{x = \frac{t}{\sqrt{a}}}{\sqrt{a}} \int_{0}^{+\infty} e^{-t^{2}} dt = \frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad a > 0.$$
并且 $-i = e^{-\frac{\pi}{2}i}$,从而 $\sqrt{-i} = e^{-\frac{\pi}{4}i} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$. 于是
$$\int_{0}^{+\infty} (\cos x^{2} - i \sin x^{2}) dx = \int_{0}^{+\infty} e^{-ix^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{i}} = \frac{1}{2} \sqrt{-i\pi}$$

$$= \frac{\sqrt{\pi}}{2} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \right) = \frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i.$$

故

$$\int_0^{+\infty} \cos x^2 \, dx = \text{Re} \int_0^{+\infty} (\cos x^2 - i \sin x^2) \, dx = \text{Re} \left(\frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i \right) = \frac{\sqrt{2\pi}}{4} = \sqrt{\frac{\pi}{8}},$$

$$\int_0^{+\infty} \sin x^2 \, dx = \text{Im} \int_0^{+\infty} (\cos x^2 - i \sin x^2) \, dx = \text{Im} \left(\frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i \right) = \frac{\sqrt{2\pi}}{4} = \sqrt{\frac{\pi}{8}}.$$

例题 **0.6** 计算 $\int_0^1 \sin \ln \frac{1}{x} \cdot \frac{x^b - x^a}{\ln x} dx$ (b > a > 0).

证明

0.1.4 化成含参积分(求导)

例题 **0.7** 设 $a,b \ge 0$ 且不全为 0, 计算 $\int_0^{\frac{\pi}{2}} \ln \left(a^2 \cos^2 x + b^2 \sin^2 x \right) dx$.

注 实际上, 根据 a > b 时得到的结果, 可以看出 $F(a,b) = \pi \ln \frac{a+b}{2}$ 对 a,b 有轮换对称性, 故这个结果对其他情况显然也成立.

证明 设 $F(a,b) = \int_0^{\frac{\pi}{2}} \ln\left(a^2 \cos^2 x + b^2 \sin^2 x\right) dx$, 当 a > b 时, 则

$$\begin{split} \frac{\partial}{\partial b} F(a,b) &= \int_0^{\frac{\pi}{2}} \frac{\partial}{\partial b} \ln \left(a^2 \cos^2 x + b^2 \sin^2 x \right) \mathrm{d}x = \int_0^{\frac{\pi}{2}} \frac{2b \sin^2 x}{a^2 \cos^2 x + b^2 \sin^2 x} \mathrm{d}x \\ &= \int_0^{\frac{\pi}{2}} \frac{2b \tan^2 x}{a^2 + b^2 \tan^2 x} \mathrm{d}x = \int_0^{+\infty} \frac{2bt^2}{(a^2 + b^2 t^2)(1 + t^2)} dt \\ &= \frac{1}{a^2 - b^2} \int_0^{+\infty} \left(\frac{2a^2 b}{a^2 + b^2 t^2} - \frac{2b}{1 + t^2} \right) dt \\ &= \frac{1}{a^2 - b^2} \int_0^{+\infty} \frac{2a^2 b}{a^2 + b^2 t^2} dt - \frac{2b}{a^2 - b^2} \int_0^{+\infty} \frac{1}{1 + t^2} dt \\ &= \frac{2b}{a^2 - b^2} \int_0^{+\infty} \frac{1}{1 + \left(\frac{b}{a}t \right)^2} dt - \frac{b\pi}{a^2 - b^2} \\ &= \frac{2b}{a^2 - b^2} \cdot \frac{a}{b} \cdot \frac{\pi}{2} - \frac{b\pi}{a^2 - b^2} = \frac{\pi}{a + b}. \end{split}$$

于是

$$F(a,b) = F(a,0) + \int_0^b \frac{\partial}{\partial b'} F(a,b') db' = F(a,0) + \int_0^b \frac{\pi}{a+b'} db'$$
$$= 2 \int_0^{\frac{\pi}{2}} \ln(a\cos x) dx + \pi \ln \frac{a+b}{a} \xrightarrow{\text{M} \not\equiv 0.2} \pi \ln \frac{a+b}{2}.$$

当 a < b 时, 类似可得 $F(a,b) = \pi \ln \frac{a+b}{2}$. 当 a = b 时, $F(a,b) = \int_0^{\frac{\pi}{2}} \ln a^2 dx = \pi \ln a = \pi \ln \frac{a+b}{2}$. 综上, 对 $\forall a,b \geqslant 0$, 都有 $F(a,b) = \pi \ln \frac{a+b}{2}$.

0.1.5 级数展开方法

积分和求和换序
$$\sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx$$
, 等价于
$$\lim_{m \to \infty} \sum_{n=1}^{m} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx.$$

又由于有限和随意交换,因此上式等价于

$$\lim_{m \to \infty} \int_a^b \sum_{n=1}^m f_n(x) dx = \int_a^b \sum_{n=1}^\infty f_n(x) dx,$$

于是

$$\sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx \Longleftrightarrow \lim_{m \to \infty} \int_{a}^{b} \sum_{n=m+1}^{\infty} f_n(x) dx = 0.$$

例题 **0.8** 计算 $\int_0^\infty \frac{x}{1+e^x} dx$.

解 由于

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, \quad 0 < x < 1.$$

并且 $0 < e^{-x} < 1$,故

$$\int_0^{+\infty} \frac{x}{1+e^x} dx = \int_0^{+\infty} \frac{xe^{-x}}{1+e^{-x}} dx = \int_0^{+\infty} x \sum_{n=0}^{\infty} (-1)^n e^{-(n+1)x} dx$$

$$= \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} (-1)^n \int_0^{+\infty} xe^{-(n+1)x} dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^2}$$

$$= \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} - \sum_{n=0}^{\infty} \frac{1}{(2n)^2}.$$

又因为 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, 所以

$$\sum_{n=0}^{\infty} \frac{1}{(2n)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{24},$$

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{n=0}^{\infty} \frac{1}{(2n)^2} = \frac{\pi^2}{8}.$$

故

$$\int_0^{+\infty} \frac{x}{1+e^x} dx = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} - \sum_{n=0}^{\infty} \frac{1}{(2n)^2} = \frac{\pi^2}{8} - \frac{\pi^2}{24} = \frac{\pi^2}{12}.$$

下面证明(??)式换序成立, 等价于证明 $\lim_{m\to +\infty} \int_0^{+\infty} \sum_{n=m}^{\infty} x(-1)^n e^{-(n+1)x} dx = 0$. 由交错级数不等式及 $xe^{-(n+1)x}$ 关于 n 非负递减, 对 $\forall m \in \mathbb{N}$, 都有

命题 0.4

证明:

(1)
$$\sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n} = \arctan \frac{q \sin x}{1 - q \cos x}, |q| \leqslant 1.$$

(2)
$$\sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n} = -\frac{1}{2} \ln(1 + q^2 - 2q \cos x), |q| \le 1.$$

$$(3) \sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n!} = e^{q \cos x} \cos(q \sin x) - 1, |q| \leqslant 1, x \in \mathbb{R}.$$

$$(4) \sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n!} = e^{q \cos x} \sin(q \sin x), |q| \leqslant 1, x \in \mathbb{R}.$$

$$\operatorname{Ln} z = \ln |z| + i(\arg z + 2k\pi), k \in \mathbb{Z}.$$

我们定义主值支

$$\ln z = \ln |z| + i \arg z.$$

本部分内容无需记忆, 只需要大概有个可以算的感觉即可, 实际做题中可以围绕这种级数给出构造. 证明 \mathfrak{I} 表示取虚部, \mathfrak{R} 表示取实部.

(1) 利用欧拉公式有

$$\sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n} = \Im\left(\sum_{n=1}^{\infty} \frac{q^n e^{inx}}{n}\right) = \Im\left(\sum_{n=1}^{\infty} \frac{(qe^{ix})^n}{n}\right) = \Im(-\ln(1 - qe^{ix}))$$
$$= -\Im\left(\ln|1 - qe^{ix}| + i\frac{-q\sin x}{1 - q\cos x}\right) = \arctan\frac{q\sin x}{1 - q\cos x}.$$

(2) 利用欧拉公式有

$$\sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n} = -\Re \left(\ln|1 - qe^{ix}| + i \frac{-q \sin x}{1 - q \cos x} \right) = -\frac{1}{2} \ln \left[(1 - q \cos x)^2 + q^2 \sin^2 x \right]$$
$$= -\frac{1}{2} \ln(1 + q^2 - 2q \cos x).$$

(3) 利用欧拉公式有

$$\sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n!} = \Re\left(\sum_{n=1}^{\infty} \frac{(qe^{ix})^n}{n!}\right) = \Re\left(e^{qe^{ix}} - 1\right) = \Re\left(e^{q\cos x + iq\sin x} - 1\right)$$
$$= \Re\left(e^{q\cos x}\cos(q\sin x) - 1 + ie^{q\cos x}\sin(q\sin x)\right)$$
$$= e^{q\cos x}\cos(q\sin x) - 1.$$

(4) 利用(3)有

$$\sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n!} = \Im \left(e^{q \cos x} \cos(q \sin x) - 1 + i e^{q \cos x} \sin(q \sin x) \right)$$
$$= e^{q \cos x} \sin(q \sin x).$$

例题 0.9 计算

$$1. \int_0^{2\pi} e^{\cos x} \cos(\sin x) dx.$$

2.
$$\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx, a \in (0, +\infty) \setminus \{1\}.$$

注由1的证明可得

$$e^{\cos x}\cos(\sin x) = \operatorname{Re}\left(\sum_{n=0}^{\infty} \frac{(e^{\mathrm{i}x})^n}{n!}\right) = \operatorname{Re}\left(\sum_{n=0}^{\infty} \frac{e^{\mathrm{i}nx}}{n!}\right) = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n!}.$$

实际上,上式就是命题 0.4(3)的结论.

注 第 2 问也可以用含参积分求导的方法进行计算 (这个方法更容易想到).

证明

1.

$$\int_{0}^{2\pi} e^{\cos x} \cos(\sin x) \, dx = \text{Re} \left(\int_{0}^{2\pi} e^{\cos x} e^{i \sin x} \, dx \right) = \text{Re} \left(\int_{0}^{2\pi} e^{\cos x + i \sin x} \, dx \right)$$

$$= \text{Re} \left(\int_{0}^{2\pi} e^{e^{ix}} \, dx \right) = \text{Re} \left[\int_{0}^{2\pi} \sum_{n=0}^{+\infty} \frac{\left(e^{ix} \right)^{n}}{n!} \, dx \right] = \text{Re} \left[\sum_{n=0}^{+\infty} \int_{0}^{2\pi} \frac{\left(e^{ix} \right)^{n}}{n!} \, dx \right]$$

$$= \text{Re} \left(\sum_{n=0}^{+\infty} \int_{0}^{2\pi} \frac{e^{inx}}{n!} \, dx \right) = \text{Re} \left(\int_{0}^{2\pi} \frac{e^{i \cdot 0 \cdot x}}{n!} \, dx + \sum_{n=1}^{+\infty} \frac{e^{2\pi i x} - 1}{in \cdot n!} \right)$$

$$= \text{Re} \left(\int_{0}^{2\pi} 1 \, dx + 0 \right) = 2\pi.$$

2. 注意到当 $a \in (0,1)$ 时,有

$$\sum_{n=1}^{\infty} \frac{a^n \cos(nx)}{n} = \text{Re}\left[\sum_{n=1}^{\infty} \frac{(ae^{ix})^n}{n}\right] = -\text{Re}\left[\ln(1 - ae^{ix})\right]$$

$$= -\text{Re}\left[\ln|1 - ae^{ix}| + i\arg(1 - ae^{ix})\right] = -\ln|1 - ae^{ix}|$$

$$= -\ln|(1 - a\cos x) + ai\sin x| = -\frac{1}{2}\ln(1 + a^2 - 2a\cos x).$$

于是当 $a \in (0,1)$ 时,就有

$$\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = -\frac{1}{2} \int_0^{\pi} \sum_{n=1}^{\infty} \frac{a^n \cos(nx)}{n} dx = 0.$$

若 a > 1, 则 $\frac{1}{a} \in (0,1)$, 从而此时我们有

$$\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = \pi \ln a^2 + \int_0^{\pi} \ln\left(\frac{1}{a^2} - \frac{2}{a}\cos x + 1\right) dx = \pi \ln a^2 = 2\pi \ln a.$$

又由 $\ln(1-2a\cos x+a^2)$ 关于 a 的偏导存在可知 $\int_0^\pi \ln(1-2a\cos x+a^2)\mathrm{d}x$ 关于 a 连续. 于是由

$$\int_{0}^{\pi} \ln(1 - 2a\cos x + a^{2}) dx = 2\pi \ln a, \quad \forall a > 1.$$

可知当a=1时,我们有

$$\int_0^{\pi} \ln(2 - 2\cos x) dx = \lim_{a \to 1^+} \int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = \lim_{a \to 1^+} (2\pi \ln a) = 0.$$

定义 0.1 (多重对数函数-Li2 函数)

定义

$$\text{Li}_2(x) \triangleq \sum_{n=1}^{\infty} \frac{x^n}{n^2}, \quad x \in [-1, 1].$$

命题 0.5

(1)
$$\operatorname{Li}_2(x) + \operatorname{Li}_2(1-x) = \frac{\pi^2}{6} - \ln x \cdot \ln(1-x), x \in (0,1).$$

(2)
$$\operatorname{Li}_{2}(1) = \sum_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6}$$
, $\operatorname{Li}_{2}(0) = 0$, $\operatorname{Li}_{2}\left(\frac{1}{2}\right) = \frac{\pi^{2}}{12} - \frac{1}{2}\ln^{2}\frac{1}{2}$.

证明

(1) $i \exists f(x) \triangleq \text{Li}_2(x), F(x) \triangleq f(x) + f(1-x) + \ln x \ln(1-x).$ $i \exists f(x) \neq \text{Li}_2(x), F(x) \triangleq f(x) + f(1-x) + \ln x \ln(1-x).$

$$f'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n} = -\frac{1}{x} \ln(1-x).$$

于是

$$F'(x) = -\frac{1}{x}\ln(1-x) + \frac{\ln x}{1-x} - \frac{\ln x}{1-x} + \frac{\ln(1-x)}{x} = 0.$$

故
$$F(x) \equiv F(1) = f(0) + f(1) = 0 + \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

(2) 显然 $\text{Li}_2(1) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, $\text{Li}_2(0) = 0$. 由 (1) 可得

$$\operatorname{Li}_{2}\left(\frac{1}{2}\right) + \operatorname{Li}_{2}\left(\frac{1}{2}\right) = 2\operatorname{Li}_{2}\left(\frac{1}{2}\right) = \frac{\pi^{2}}{6} - \ln^{2}\frac{1}{2} \implies \operatorname{Li}_{2}\left(\frac{1}{2}\right) = \frac{\pi^{2}}{12} - \frac{1}{2}\ln^{2}\frac{1}{2}.$$

例题 **0.10** 计算 $\int_0^{\frac{1}{2}} \frac{\ln x}{1-x} dx$.

解

$$\int_0^{\frac{1}{2}} \frac{\ln x}{1 - x} \, dx = \int_{\frac{1}{2}}^1 \frac{\ln(1 - x)}{x} \, dx = -\sum_{n=1}^\infty \frac{1}{n} \int_{\frac{1}{2}}^1 x^{n-1} \, dx$$
$$= -\sum_{n=1}^\infty \frac{1}{n^2} + \sum_{n=1}^\infty \frac{1}{2^n n^2} = -\frac{\pi^2}{6} + \text{Li}_2\left(\frac{1}{2}\right)$$
$$= \frac{\frac{\pi}{2} + \frac{\pi}{2} \cdot \frac{1}{2}}{12} - \frac{1}{2} \ln^2 \frac{1}{2}.$$

0.1.6 其他

例题 0.11 证明积分 $\int_0^\infty e^{-ax^2 - \frac{b}{x^2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2\sqrt{ab}}, a, b > 0.$

证明 当 a=1 时,就有

$$\int_{0}^{+\infty} e^{-x^{2} - \frac{b}{x^{2}}} dx = e^{-2\sqrt{b}} \int_{0}^{+\infty} e^{-\left(x - \frac{\sqrt{b}}{x}\right)^{2}} dx \xrightarrow{\frac{y = \frac{\sqrt{b}}{x}}{2}} e^{-2\sqrt{b}} \int_{0}^{+\infty} \frac{\sqrt{b}}{y^{2}} e^{-\left(\frac{\sqrt{b}}{y} - y\right)^{2}} dy$$

$$= \frac{e^{-2\sqrt{b}}}{2} \int_{0}^{+\infty} \left(1 + \frac{\sqrt{b}}{y^{2}}\right) e^{-\left(y - \frac{\sqrt{b}}{y}\right)^{2}} dy = \frac{e^{-2\sqrt{b}}}{2} \int_{0}^{+\infty} e^{-\left(y - \frac{\sqrt{b}}{y}\right)^{2}} d\left(y - \frac{\sqrt{b}}{y}\right)^{2}$$

$$= \frac{e^{-2\sqrt{b}}}{2} \int_{-\infty}^{+\infty} e^{-t^{2}} dt = \frac{\sqrt{\pi}}{2} e^{-2\sqrt{b}}.$$

于是对 $\forall a > 0$, 就有

$$\int_0^{+\infty} e^{-ax^2 - \frac{b}{x^2}} dx = \frac{1}{\sqrt{a}} \int_0^{+\infty} e^{-x^2 - \frac{ab}{x^2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2\sqrt{ab}}.$$

例题 **0.12** 计算 $\int_0^\infty \frac{\cos(ax)}{1+x^2} dx, a \in \mathbb{R}.$

注 本题可以用复变函数的方法 (留数定理) 来计算. 但是我们这里用基本的高等数学的方法来计算.

 $\int_0^\infty \frac{\sin{(ax)}}{1+x^2} dx$ 这个积分没办法算出具体的初等数值.

$$\begin{split} \int_{0}^{+\infty} \frac{\cos{(ax)}}{1+x^2} \mathrm{d}x &= \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\cos{(ax)}}{1+x^2} \mathrm{d}x = \frac{1}{2} \int_{-\infty}^{+\infty} \cos{(ax)} \left(\int_{0}^{+\infty} e^{-(1+x^2)y} \mathrm{d}y \right) \mathrm{d}x \\ &= \frac{1}{2} \int_{-\infty}^{+\infty} \left(\int_{0}^{+\infty} e^{-(1+x^2)y} \cos{(ax)} \, \mathrm{d}y \right) \mathrm{d}x = \frac{1}{2} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} e^{-(1+x^2)y} \cos{(ax)} \, \mathrm{d}y \mathrm{d}x \\ &= \frac{1}{2} \int_{0}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-(1+x^2)y} \cos{(ax)} \, \mathrm{d}x \right) \mathrm{d}y = \frac{1}{2} \int_{0}^{+\infty} e^{-y} \left(\int_{-\infty}^{+\infty} e^{-x^2y} \cos{(ax)} \, \mathrm{d}x \right) \mathrm{d}y \\ &= \frac{1}{2} \mathrm{Re} \left(\int_{0}^{+\infty} e^{-y} \left(\int_{-\infty}^{+\infty} e^{-x^2y + iax} \mathrm{d}x \right) \mathrm{d}y \right) = \frac{1}{2} \mathrm{Re} \left(\int_{0}^{+\infty} e^{-y} \left(\int_{-\infty}^{+\infty} e^{-y} \left(\int_{$$

例题 **0.13** 计算 $\int_0^\infty \frac{1}{(1+x^8)^2} dx$. 注 由命题**??**可知对 $\forall s > 0$, 都有

$$\frac{1}{t^s} = \frac{1}{\Gamma(s)} \int_0^{+\infty} y^{s-1} e^{-ty} \mathrm{d}y, \forall t \in \mathbb{R}.$$

本题的核心想法就是利用上式将 $\frac{z}{1+x^8}$ 转化成积分形式.

证明 注意到

$$\int_0^{+\infty} y e^{-(1+x^8)y} dy = \frac{y = \frac{z}{1+x^8}}{(1+x^8)^2} \frac{1}{(1+x^8)^2} \int_0^{+\infty} z e^{-z} dz = \frac{1}{(1+x^8)^2},$$

因此

$$\int_{0}^{+\infty} \frac{1}{(1+x^{8})^{2}} dx = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} y e^{-(1+x^{8})y} dy \right) dx = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} y e^{-(1+x^{8})y} dx \right) dy$$

$$= \int_{0}^{+\infty} y e^{-y} \left(\int_{0}^{+\infty} e^{-x^{8}y} dx \right) dy \xrightarrow{\frac{x=y^{-\frac{1}{8}}z^{\frac{1}{8}}}{2}} \int_{0}^{+\infty} y e^{-y} \left(\int_{0}^{+\infty} y^{-\frac{1}{8}} e^{-z} dz^{\frac{1}{8}} \right) dy$$

$$= \frac{1}{8} \int_{0}^{+\infty} y^{\frac{7}{8}} e^{-y} \left(\int_{0}^{+\infty} z^{-\frac{7}{8}} e^{-z} dz \right) dy = \frac{1}{8} \int_{0}^{+\infty} y^{\frac{7}{8}} e^{-y} \Gamma\left(\frac{1}{8}\right) dy$$

$$= \frac{1}{8} \Gamma\left(\frac{15}{8}\right) \Gamma\left(\frac{1}{8}\right) = \frac{1}{8} \cdot \frac{7}{8} \Gamma\left(\frac{7}{8}\right) \Gamma\left(\frac{1}{8}\right)$$

$$\frac{2?}{64 \sin\left(\frac{\pi}{8}\right)} = \frac{7\pi}{32\sqrt{2-\sqrt{2}}}.$$

例题 **0.14** 计算积分 $I = \int_{-1}^{2} \frac{1+x^2}{1+x^4} dx$.

注 在此例中 $I \neq F(2) - F(-1)$. 这是因为 F 并不是 f 在区间 [-1,2] 上的原函数.

解 在不包含 0 的区间上作变换 $t=x-\frac{1}{r}$ 得

$$\int \frac{1+x^2}{1+x^4} \, \mathrm{d}x = \int \frac{x-\frac{1}{x}}{2+(x-\frac{1}{x})^2} \, \mathrm{d}x = \int \frac{\mathrm{d}t}{2+t^2}$$

0.1 定积分

$$=\frac{1}{\sqrt{2}}\arctan\frac{t}{\sqrt{2}} + C = \frac{1}{\sqrt{2}}\arctan\frac{x^2 - 1}{\sqrt{2}x} + C.$$

这说明在区间 [-1,0) 和 (0,2] 上, 函数 $f(x) = \frac{1+x^2}{1+x^4}$ 的一个原函数是

$$F(x) = \frac{1}{\sqrt{2}} \arctan \frac{x^2 - 1}{\sqrt{2}x}.$$

因此

$$\int_{-1}^{0} f(x) dx = F(0^{-}) - F(-1) = \frac{\pi}{2\sqrt{2}} - 0 = \frac{\pi}{2\sqrt{2}},$$
$$\int_{0}^{2} f(x) dx = F(2) - F(0^{+}) = \frac{1}{\sqrt{2}} \arctan \frac{3}{2\sqrt{2}} + \frac{\pi}{2\sqrt{2}}.$$

故

$$I = \int_{-1}^{0} f(x) dx + \int_{0}^{2} f(x) dx = \frac{\pi}{\sqrt{2}} + \frac{1}{\sqrt{2}} \arctan \frac{3}{2\sqrt{2}}.$$