

Functional Analysis Applied to PDEs (2024-1)

Google Classroom: kmk6w62 Telegram: https://t.me/+bOM71NAzRMI2MDQx

> Professor: Dr. Alberto Saldaña Email: alberto.saldana@im.unam.mx Telegram: AlbertoSaldana

Assignment 4

<u>Instructions:</u> Solve the following exercises, justifying your answers carefully. Upload your written answers in LaTeX using the Google Classroom platform no later than **Monday**, **October 9**.

Exercises:

1. (4 points) Demonstrate the existence of a (weak) solution to the problem

$$-u''(x) + xu'(x) = 1 \quad \text{for } x \in (0, \frac{1}{2}), \qquad u(0) = u(\frac{1}{2}) = 0.$$
 (1)

Consider the previous Cauchy Problem. We will look for week solutions in $H_0^1(1, \frac{1}{2})$. The blilinear form associated to the problem is

$$B[u, v] = \int_0^{\frac{1}{2}} u'v' + xu'v dx.$$

To proove it's coercive we write

$$B[u,u] = \int_0^{\frac{1}{2}} (u')^2 + xu'udx.$$
 (2)

Asume for now that $u \in C_0^{\infty}(1, \frac{1}{2})$. Integration by parts gives

$$\int_0^{\frac{1}{2}} xu'udx = \frac{1}{2} \int_0^{\frac{1}{2}} x \frac{d}{dx} \left(u(x)^2 \right) dx = -\frac{1}{2} \int_0^{\frac{1}{2}} u(x)^2 dx.$$

Replacing this in 2 we have

$$B[u, u] = \int_0^{\frac{1}{2}} (u')^2 - \frac{1}{2}u^2 dx.$$

Poincare in equality asserts that there is a constant C > 0, such that

$$||u||_{L^2(0,\frac{1}{2})} \le C ||u'||_{L^2(0,\frac{1}{2})}.$$

Therfore

$$B\left[u,u\right] \ge \int_0^{\frac{1}{2}} \left(u'\right)^2 - \frac{C^2}{2} \left(u'\right)^2 = \left(1 - \frac{C^2}{2}\right) \left\|u'\right\|_{L^2(0,\frac{1}{2})}^2.$$

Observe that if $\left(1 - \frac{C^2}{2}\right) > 0$ or equivalently if $\sqrt{2} > C > 0$ in Pointcaré's then B is coercive. Let's proove that this is ther case.

We are assuming that $u \in C_c^{\infty}(0, \frac{1}{2})$, so by the fundamental theorem of calculus

$$u(x) = \int_0^x u'(t)dt.$$

Using this fact and applying Jensen's inequality we have that

$$||u||_{L^{2}(1,\frac{1}{2})}^{2} = \int_{0}^{\frac{1}{2}} |u(x)|^{2} dx$$

$$= \int_{0}^{\frac{1}{2}} \left| \int_{0}^{x} u'(t) dt \right|^{2} dx$$

$$\leq \int_{0}^{\frac{1}{2}} \left(\int_{0}^{\frac{1}{2}} |u'(t)| dt \right)^{2} dx$$

$$\leq \int_{0}^{\frac{1}{2}} \frac{1}{2} \int_{0}^{\frac{1}{2}} |u'(t)|^{2} dt dx = \frac{1}{4} ||u'||_{L^{2}(0,\frac{1}{2})}^{2}.$$

Therefore we obtain the point caré constant $C=\frac{1}{2}$ wich satisfies $0 < C < \sqrt{2}$ and therfore, B is coercive over all $u \in C_c^{\infty}(0,\frac{1}{2})$. We can extend this property by coninuity of B to all $H_0^1(0,\frac{1}{2})$. This means that

$$B[u, u] \ge \tilde{C} \|u\|_{L^2(0, \frac{1}{2})}^2$$

for all $u \in H_0^1(0, \frac{1}{2})$ and somme constant $\tilde{C} > 0$. Observe that $\tilde{C} = \frac{7}{8}$. Therefore by Lax Millgram's theorem there is a unique $u \in H_0^1(1, \frac{1}{2})$ such that

$$B[u,v] = (1,v)_{L^2(0,\frac{1}{\alpha})},$$

or more explicitly

$$\int_0^{\frac{1}{2}} u' v dx = \int_0^{\frac{1}{2}} v dx$$

for all $v \in H_0^1(1, \frac{1}{2})$. That proves that (1) has a unique weak solution.

2. (3 points) Let $\Omega \subset \mathbb{R}^N$ be a smooth and bounded domain, and let $f \in L^2(\Omega)$. Consider the problem

$$\Delta^2 u = f \quad \text{in } \Omega, \qquad u = \partial_{\nu} u = 0 \quad \text{on } \partial\Omega,$$
 (3)

where Δ^2 is the bilaplacian operator (apply the Laplacian twice) and ∂_{ν} is the normal derivative on $\partial\Omega$. Lets first provide a weak formulation of the problem (3). Suppose $u \in C^{\infty}(\Omega)$ and $\phi \in C_0^{\infty}(\Omega)$. Since $supp(\phi) \in \Omega$, ϕ and $\partial_{\nu}\phi$ are vanishes on $\partial\Omega$. Integration bay parts gives

$$\int_{\Omega} \Delta^2 u \phi dx = \int_{\Omega} \Delta(\Delta u) \phi dx = \int_{\Omega} \Delta u \Delta \phi dx.$$

This suggests to define a week solution of 3 as a function $u \in H_0^2(\Omega)$ such that

$$\int_{\Omega} \Delta u \Delta v dx = (f, v)_{L^2(\Omega)},$$

for all $v \in H_0^2(\Omega)$.

Let's proove the existence of a weak solution and show it can be characterized as the minimum of a functional in a suitable Hilbert space. Let's asume (for now) the Poincaré inequality in $H_0^2(\Omega)$, i.e., there exists C > 0 such that

$$||u||_{H^2(\Omega)} \le C||\Delta u||_{L^2(\Omega)}$$
 for all $u \in H_0^2(\Omega)$.

Observe that

$$\langle u, v \rangle = \int_{\Omega} \Delta u \Delta v dx,$$

defines a scalar product on $H_0^2(\Omega)$. It's clearly linear on each argument because of the linearity of the Laplacian and the integral. Simetry is clear to. To prove $\langle v, v \rangle \geq 0$ and $\langle u, u \rangle = 0$ if and only if u = 0, we can use the Pointacré inequality mentioned above wich forces u to be 0 if $\Delta u = 0$.

Let's proove that this scalar product induces an equivalent norm on $H_0^2(\Omega)$ to the usual one. First note that for every $u \in H_0^2(\Omega)$, using integration by parts and the fact that the order in wich partial derivatives are taken doesn't matter we have that

$$\int_{\Omega} (\Delta u)^2 dx = \int_{\Omega} \left(\sum_{i}^{N} \partial_i^2 u \right)^2 dx$$

$$= \int_{\Omega} \sum_{i,j}^{N} (\partial_i^2 u) (\partial_j^2 u) dx$$

$$= \sum_{i,j}^{N} \int_{\Omega} (\partial_i^2 u) (\partial_j^2 u) dx$$

$$= \sum_{i,j}^{N} \int_{\Omega} (\partial_j^2 \partial_i^2 u) u dx$$

$$= \sum_{i,j}^{N} \int_{\Omega} (\partial_i \partial_j \partial_i \partial_j u) u dx$$

$$= \sum_{i,j}^{N} \int_{\Omega} (\partial_i \partial_j u)^2 u dx$$

$$= \int_{\Omega} \sum_{i,j}^{N} |\partial_i \partial_j u|^2 dx.$$

Therfore,

$$||u||_{H^{2}(\Omega)}^{2} = \int_{\Omega} |u|^{2} + \sum_{i=1}^{N} |\partial_{i}u|^{2} + \sum_{i=1}^{N} |\partial_{i}\partial_{j}u|^{2} dx \ge \int_{\Omega} (\Delta u)^{2} dx$$

Using this and Pointacré inequality we obtain the equivalence.

$$\|\Delta u\|_{L^{2}(\Omega)} \le \|u\|_{H^{2}(\Omega)} \le C \|\Delta u\|_{L^{2}(\Omega)}.$$

Observe that as in the case of $H_0^1(\Omega)$ we can now define the norm $||u||_{H_0^2(\Omega)} := ||\Delta u||_{L^2(\Omega)}$ in $H_0^2(\Omega)$.

To conclude we observe that $\phi: H_0^2(\Omega) \to \mathbb{R}$ given by $\phi(v) = (f,v)_{L^2(\Omega)}$ is continuous (since the scalar product on a Hilbert space is continuous). The Riesz representation theorem applied to the Hilbert space $H_0^2(\Omega)$ endowed with the new scalar product given above gives the existence and uniquenes of an element $u \in H_0^2(\Omega)$ such that

$$\int_{\Omega} \Delta u \Delta v dx = (f, v)_{L^2(\Omega)},$$

for all $v \in H_0^2(\Omega)$. This is there exists a unique weak solution $u \in H_0^1(\Omega)$ of the problem (3). For the more the Riesz representation theorem asserts that u can be characterised as

$$u = \min_{u \in H_0^2(\Omega)} \left\{ Ju := \frac{1}{2} \|\Delta u\|_{L^2(\Omega)}^2 - (f, u)_{L^2(\Omega)} \right\}.$$

3. (3 points) Let $F: L^2(0,1) \to \mathbb{R}$ be defined by

$$Fu := \int_0^{\frac{1}{2}} u(t) dt.$$

To proove F is bounded we use Holder's inequality in $L^2(0, \frac{1}{2})$ for u and the constant 1, to obtain that

$$|Fu| \le \int_0^{\frac{1}{2}} |u(x)| dx \le \frac{1}{\sqrt{2}} \left(\int_0^{\frac{1}{2}} |u(x)|^2 \right)^{\frac{1}{2}} dx.$$

Therefore F is continous and $|F| \leq \frac{1}{\sqrt{2}}$. Now take the function $\delta = \sqrt{2}\mathbbm{1}_{\left[0,\frac{1}{2}\right]} \in L^2(0,1)$. Observe that

$$\|\delta\|_{L^2(0,1)} = \left(\int_0^{\frac{1}{2}} \sqrt{2}^2 dx\right)^{\frac{1}{2}} = 1. \tag{4}$$

For the more

$$|F(\delta)| = \int_0^{\frac{1}{2}} \sqrt{2} dx = \frac{1}{\sqrt{2}}.$$

Therfore $|F| \geq \frac{1}{\sqrt{2}}$ and $|F| = \frac{1}{\sqrt{2}}$.

Another way to compute the norm of F is via the Riesz representation theorem. We proved F is continous on the Hilber space $L^2(0,1)$, in other words $F \in L^2(0,1)^*$. The Riesz representation theorem asserts that there is a unique function $\gamma \in L^2(0,1)$ such that

$$Fu = \int_0^1 \gamma u dx$$

for all $u \in L^2(0,1)$. Observe that the function $\mathbb{1}_{\left[0,\frac{1}{2}\right]}$ has this exact property. So $\gamma = \mathbb{1}_{\left[0,\frac{1}{2}\right]}$. Riesz representation's lemma asserts that $\|\gamma\|_{L^2(0,1)} = |F|$, this is

$$\frac{1}{\sqrt{2}} = \left(\int_0^{\frac{1}{2}} dx \right)^{\frac{1}{2}} = \|\gamma\|_{L^2(0,1)} = |F|.$$