2. Number Systems

Number Systems

- A number system defines a set of values used to represent quantity.
- It can be categorized in two broad categories:
 - Non Positional Number Systems
 - Stones or sticks were used to indicate values
- Difficult to perform arithmetic because it has no symbol for zero.

Example: Roman number systems – Few characters are used such as I, V, X, L (fifty), C (hundred)

Number System

2. Positional Number Systems

- The value of each digit in number is defined not only by the symbol but also by symbol's position.
- Positional number systems have base or radix.

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

fppt.com

Quantities/Counting (1 of 3)

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Quantities/Counting (2 of 3)

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Quantities/Counting (3 of 3)

Decimal	Binary	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Etc.

Conversion Among Bases

The possibilities:

Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$

Decimal to Decimal (just for fun)

Binary

Decimal to Binary

Decimal to Binary

Technique

- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit 1
- Etc.

Conversion of Decimal to Binary

1. Determine the Binary equivalent of (125)10

2	125	Remainder
2	62	1
2	31	0
2	15	1
2	7	1
2	3	1
2	1	1
	0	1

Least Significant Bit (LSB)

$$125_{10} = 1111101_2$$

Conversion of Decimal to Binary

2. Determine the Binary equivalent of (36)10

2	36	Remainder
2	18	0
2	9	0
2	4	1
2	2	0
2	1	0
	0	1

Least Significant Bit (LSB)

$$36_{10} = 100100_2$$

Conversion of Decimal to Binary

3. Determine the Binary equivalent of (671)10

2	671	Remainder
2	335	1
2	167	1
2	83	1
2	41	1
2	20	1
2	10	0
2	5	0
2	2	1
2	1	0
	0	1

Least Significant Bit (LSB)

Most Significant Bit (MSB)

 $671_{10} = 1010011111_2$

Conversion of Decimal Fraction to Binary Fraction

1. Determine the Binary equivalent of (0.375)10

0.375	X	2	= 0.750	0	
0.750	Χ	2	= 1.500	1	
0.500	X	2	= 1.000	1	

$$0.375_{10} = 011_2$$

Conversion of Decimal Fraction to Binary Fraction

2. Determine the Binary equivalent of (0.29)10

0.29	X	2	= 0.58	0	
0.58	X	2	= 1.16	1	
0.16	X	2	= 0.32	0	
0.32	X	2	= 0.64	0	
0.64	X	2	= 1.28	1	
0.28	X	2	= 0.56	0	
	•				
	•				
	•				
	∞				

$$0.29_{10} = (0.010010)_2$$

Octal

Hexadecimal

Technique

- Multiply each bit by 2ⁿ, where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

1. Determine the Decimal equivalent of (101011)2

Binary Number	1	0	1	0	1	1
Weight of Each Bit	25	24	23	22	21	20
Weighted Value	1 X 2 ⁵	0 X 2 ⁴	1 X 2 ³	0 X 2 ²	1 X 2 ¹	1 X 2º
Solved Multiplicati on	32	0	8	0	2	1

Sum of weight of all bits = 32 + 0 + 8 + 2 + 1= 43

2. Determine the Decimal equivalent of (11010)2

Binary Number	1	1	0	1	0
Weight of Each Bit	24	23	22	21	20
Weighted Value	1 X 2 ⁴	1 X 2 ³	0 X 2 ²	1 X 2 ¹	0 X 2 ⁰
Solved Multiplication	16	8	0	2	0

Sum of weight of all bits = 16 + 8 + 0 + 2 + 0= 26

3. Determine the Decimal equivalent of (10110011)2

Binary Number	1	0	1	1	0	0	1	1
Weight of Each Bit	27	2 ⁶	2 ⁵	24	23	22	21	20
Weighted Value	1 X 2 ⁷	0 X 2 ⁶	1 X 2 ⁵	1 X 2 ⁴	0 X 2 ³	0 X 2 ²	1 X 2 ¹	1 X 2 ⁰
Solved Multiplica tion	128	0	32	16	0	0	2	1

Sum of weight of all bits = 128 + 0 + 32 + 16 + 0 + 2 + 1 = 179

fppt.com

Conversion of Binary Fraction to Decimal Fractions

1. Determine the Decimal equivalent of (0.01101)2

Binary Number	0	1	1	0	1
Weight of Each Bit	2-1	2-2	2-3	2-4	2 ⁻⁵
Weighted Value	0 X 2 ⁻¹	1 X 2 ⁻²	1 X 2 ⁻³	0 X 2 ⁻⁴	1 X 2 ⁻⁵
Solved Multiplicati on	0	1/4	1/8	0	1/32

Sum of weight of all bits =
$$0 + 1/4 + 1/8 + 0 + 1/32$$

= $0 + 0.25 + 0.125 + 0 + 0.03125$
= 0.40625

Conversion of Binary Fraction to Decimal Fractions

2. Determine the Decimal equivalent of (11101.10111)2

Binary Numb er	1	1	1	0	1	1	0	1	1	1
Weight of Each Bit	24	23	22	21	20	2-1	2-2	2-3	2-4	2-5
Weight ed Value	1 X 2 ⁴	1 X 2 ³	1 X 2 ²	0 X 2 ¹	1 X	1 X 2 ⁻¹	0 X 2 ⁻²	1 X 2 ⁻³	1 X 2 ⁻⁴	1 X 2 ⁻⁵
Solved Multipli cation	16	8	4	0	1	1/2	0	1/8	1/16	1/32

Sum of weight of all bits = 16+8+4+0+1+(1/2)+0+(1/8)+(1/16)+(1/32)

= 16+8+4+0+1+0.5+0+0.125+0.0625+0.03125

= 29.71875

fppt.com

Conversion of Binary Fraction to Decimal Fractions

3. Determine the Decimal equivalent of (10.1011)2

Binary Number	1	0	1	0	1	1
Weight of Each Bit	21	20	2-1	2-2	2 ⁻³	2-4
Weighted Value	1 X 2	1 X 2 ⁰	1 X 2 ⁻¹	0 X 2 ⁻²	1 X 2 ⁻³	1 X 2 ⁻⁴
Solved Multiplicati on	2	1	1/2	0	1/8	1/16

Sum of weight of all bits = 2 + 1 + (1/2) + 0+ (1/8) + (1/16) =2 + 1 + 0.5 + 0 + 0.125 + 0.0625 = 2.6875

Decimal to Octal

Binary

Hexadecimal

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

Conversion of Decimal to Octal

1. Determine the Octal equivalent of (1234)10

8	1234	Remainder
8	154	2
8	19	2
8	2	3
	0	2

Least Significant Bit (LSB)

$$1234_{10} = 2322_{8}$$

Conversion of Decimal to Octal

2. Determine the Octal equivalent of (359)10

8	359	Remainder
8	44	7
8	5	4
	0	5

Least Significant Bit (LSB)

$$359_{10} = 547_{8}$$

Conversion of Decimal to Octal

3. Determine the Octal equivalent of (432267)10

8	432267	Remainder
8	54033	3
8	6754	1
8	844	2
8	105	4
8	13	1
8	1	5
	0	1

Least Significant Bit (LSB)

$$432267_{10} = 1514213_{8}$$

Conversion of Decimal Fraction to Octal Fraction

1. Determine the Octal equivalent of (0.3125)10

0.3125	X	8	= 2.5	2	
0.50	X	8	= 4.0	4	

$$0.375_{10} = 0.24_{8}$$

Conversion of Decimal Fraction to Octal Fraction

2. Determine the Octal equivalent of (0.1325)10

0.1325	X	8	= 1.0600	1
0.0600	X	8	= 0.4800	0
0.4800	X	8	= 3.8400	3
0.8400	Χ	8	= 6.7200	6
6.7200	X	8	= 5.7600	5
	∞			

Octal to Decimal

Binary

Hexadecimal

Octal to Decimal

Technique

- Multiply each bit by 8ⁿ, where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Conversion of Octal to Decimal

1. Determine the Decimal equivalent of (724)8

Octal Number	7	2	4
Weight of Each Bit	82	81	80
Weighted Value	7 X 8 ²	2 X 8 ¹	4 X 80
Solved Multiplication	448	16	4

Conversion of Octal to Decimal

2. Determine the Decimal equivalent of (456)8

Octal Number	4	5	6
Weight of Each Bit	82	81	80
Weighted Value	4 X 8 ²	5 X 8 ¹	6 X 8°
Solved Multiplication	256	40	6

Conversion of Octal to Decimal

3. Determine the Decimal equivalent of (127662)8

Octal Number	1	2	7	6	6	2
Weight of Each Bit	85	84	83	82	81	80
Weighted Value	1 X 8 ⁵	2 X 8 ⁴	7 X 8 ³	6 X 8 ²	6 X 8 ¹	2 X 8 ⁰
Solved Multiplicatio n	32768	8192	3584	384	48	2

fppt.com

Conversion of Octal Fractions to Decimal Fractions

1. Determine the Decimal equivalent of (237.04)8

Octal Number	2	3	7	0	4
Weight of Each Bit	8 ²	81	80	8-1	8-2
Weighted Value	2 X 8 ²	3 X 8 ¹	7 X 8°	0 X 8 ⁻¹	4 X 8 ⁻²
Solved Multiplicatio n	128	24	7	0	0.0625

Conversion of Octal Fractions to Decimal Fractions

2. Determine the Decimal equivalent of (6732.032)8

Octal Number	6	7	3	2	0	3	2
Weight of Each Bit	83	82	81	80	8-1	8-2	8-3
Weighte d Value	6 X 8 ³	7 X 8 ²	3 X 8 ¹	2 X 80	0 X 8 ⁻¹	3 X 8 ⁻²	2 X 8 ⁻³
Solved Multiplic ation	307 2	448	24	2	0	0.046 87	0.003 90

Sum of weight of all bits = 3072 + 448 + 24 + 2 +0+ 0.04687+0.00390 = 3546.05077

fppt.com

Binary to Octal

Binary to Octal

- Technique
 - Break the binary number into 3 sections starting from LSB to MSB (starting on right)
 - Convert to octal digits

Conversion of Binary to Octal

1. Determine the Octal equivalent of (1011010111)2

Binary Number	001 (MSB)	011	010	111(LSB)
Octal Number	1	3	2	7

$$1011010111_2 = (1327)_8$$

Conversion of Binary to Octal

2. Determine the Octal equivalent of (010111)2

Binary Number	010(MSB)	111 (LSB)
Octal Number	2	7

$$010111_2 = (27)_8$$

Conversion of Binary to Octal

3. Determine the Octal equivalent of (1010111110110010)2

Binary Number	001(MS B)	010	111	110	110	010(LS B)
Octal Number	1	2	7	6	6	2

$$1010111110110010_2 = (127662)_8$$

Conversion of Binary Fractions to Octal Fractions

1. Determine the Octal equivalent of (0.110101)2

Binary	000	110(M	101
Number		SB)	(LSB)
Octal Number	0	6	5

$$0.110101_2 = (0.65)_8$$

Conversion of Binary Fraction to Octal Fraction

2. Determine the Octal equivalent of (1100010.1110110)2

Binary Number	001	100	010	111	011	000
Octal Number	1	4	2	7	3	0

$$1100010.1110110_2 = (142.730)_8$$

Octal to Binary

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

Conversion of Octal to Binary

1. Determine the Binary equivalent of (705)8

Octal Number	7	0	5
Binary Coded Value	111	000	101

$$705_8 = (111000101)_2$$

Conversion of Octal to Binary

2. Determine the Binary equivalent of (231)8

Octal Number	2	3	1
Binary Coded Value	010	011	001

$$231_8 = (010011001)_2$$

Conversion of Octal to Binary

3. Determine the Binary equivalent of (453267)8

Octal Number	4	5	3	2	6	7
Binary Coded Value	100	101	011	010	110	111

$$453267_8 = (100101011011111)_2$$

Conversion of Octal Fractions to Binary Fractions

1. Determine the Binary equivalent of (2.335)8

Octal Number	2	3	3	5
Binary Coded Value	010	011	011	101

$$2.335_8 = (010.011011101)_2$$

Conversion of Octal Fractions to Binary Fractions

2. Determine the Binary equivalent of (5667.2411)8

Octal Number	5	6	6	7	2	4	1	1
Binary Coded Value	101	110	110	111	010	100	001	001

$$5667.2411_8 = (101110110111.010100001001)_2$$

Decimal to Hexadecimal

Decimal to Hexadecimal

- Technique
 - Divide by 16
 - Keep track of the remainder

Conversion of Decimal to Hexadecimal

1. Determine the Hexadecimal equivalent of (1234)10

16	1234	Remainder
16	77	2
16	4	13
	0	4

Least Significant Bit (LSB)

Most Significant Bit (MSB)

$$1234_{10} = 4D2_{16}$$

Conversion of Decimal to Hexadecimal

2. Determine the Hexadecimal equivalent of (5112)10

16	511 2	Remainder	
16	319	8	
16	19	15 = F	
16	1	3	
	0	1	

Least Significant Bit (LSB)

Most Significant Bit (MSB)

$$5112_{10} = 13F8_{16}$$

Conversion of Decimal to Hexadecimal

3. Determine the Hexadecimal equivalent of (584666)10

Least Significant Bit (LSI	3)
-----------------------------	----

16	584666	Remainder
16	36541	10=A
16	2283	13 = D
16	142	11=B
16	8	14=E
	0	8

Most Significant Bit (MSB)

$$584666_{10} = 8EBDA_{16}$$

Conversion of Decimal Fraction to Hexadecimal Fraction

1. Determine the Hexadecimal equivalent of (0.625)10

0.625	X	16	= 10.000	10 = A	
0.000	X	16	= 0.000	0	

$$0.1325_{10} = 0.A0_{16}$$

Conversion of Decimal Fraction to Hexadecimal Fraction

2. Determine the Hexadecimal equivalent of (0.2715)10

0.2715	X	16	= 4.3440	4	
0.3440	X	16	= 5.5040	5	
0.5040	X	16	= 8.0640	8	
0.0640	X	16	= 1.0240	1	
0.0240	X	16	= 0.3840	0	
	∞				

$$0.2715_{10} = 0.45810_{16}$$

Hexadecimal to Decimal

Hexadecimal to Decimal

Technique

- Multiply each bit by 16ⁿ, where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Conversion of Hexadecimal to Decimal

1. Determine the Decimal equivalent of (B14)16

Hexadecimal Number	B=11	1	4
Weight of Each Bit	16 ²	16 ¹	160
Weighted Value	11 X 16 ²	1 X 16 ¹	4 X 16 ⁰
Solved Multiplication	2816	16	4

Conversion of Hexadecimal to Decimal

2. Determine the Decimal equivalent of (ABC)16

Hexadecimal Number	A	В	С
Weight of Each Bit	16 ²	16 ¹	16 ⁰
Weighted Value	10 X 16 ²	11 X 16 ¹	12 X 16 ⁰
Solved Multiplication	2560	176	12

Conversion of Hexadecimal to Decimal

3. Determine the Decimal equivalent of (8AFE2B)16

Hexadecim al Number	8	A	F	E	2	В
Weight of Each Bit	16 ⁵	164	16 ³	16 ²	16 ¹	16°
Weighted Value	8 X 16 ⁵	10 X 16 ⁴	15 X 16 ³	14 X 16 ²	2 X 16 ¹	11 X 16°
Solved Multiplicatio n	8388608	655360	61440	3584	32	11

Sum of weight of all bits = 8388608+655360+61440+3584+32+1 = 9109035

Conversion of Hexadecimal Fractions to Decimal Fractions

1. Determine the Decimal equivalent of (A.23)16

Octal Number	A	2	3
Weight of Each Bit	16 ⁰	16 ⁻¹	16 ⁻²
Weighted Value	10 X 1	2 X 16 ⁻¹	3 X 16 ⁻²
Solved Multiplication	10	0.125	0.01171875

Sum of weight of all bits = 10 + 0.125 + 0.01171875 = 10.13671875

Conversion of Hexadecimal Fractions to Decimal Fractions

2. Determine the Decimal equivalent of (45C.8BE3)16

Octal Number	4	5	C=12	8	B=11	E=14	3
Weight of Each Bit	16 ²	16 ¹	160	16-1	16-2	16-3	16-4
Weighted Value	4 X 256	5 X 16	12 X 1	8 X 16 ⁻¹	11 X 16 ⁻²	14 X 16 ⁻³	3 X 16 ⁻⁴
Solved Multiplicati on	1024	80	12	0.5	0.042 9687	0.0034 179	0.0000 457

Sum of weight of all bits = =1024 + 80 + 12 + 0.5+ 0.0429687+0.034179+0.0000457 = 1116.5464323

Hexadecimal to Binary

Decimal

Octal

Binary

Hexadecimal

Hexadecimal to Binary

Technique

Convert each hexadecimal digit to a 4-bit equivalent binary representation

Conversion of Hexadecimal to Binary

1. Determine the Binary equivalent of (10AF)16

Hexadeci mal Number	1	0	A=10	F=15
Binary Coded Value	0001	0000	1010	1111

$$10AF_{16} = (0001000010101111)_{2}$$

Conversion of Hexadecimal to Binary

1. Determine the Binary equivalent of (5AF)16

Hexadeci mal Number	5	A=10	F=15
Binary Coded Value	0101	1010	1111

$$5AF_{16} = (010110101111)_{2}$$

Conversion of Hexadecimal to Binary

1. Determine the Binary equivalent of (86DB45C)16

Hexadeci mal Number	8	6	D=13	B=11	4	5	C=12
Binary Coded Value	1000	0110	1101	1011	0100	0101	1100

 $86DB45C_{16} = (1000011011011011010001011100)_{2}$

Conversion of Hexadecimal Fractions to Binary Fractions

1. Determine the Binary equivalent of (2B.6C)16

Hexadeci mal Number	2	B=11	6	C=12
Binary Coded Value	0010	1011	0110	1100

$$2B.6C_{16} = (00101011.01101100)_{2}$$

Conversion of Hexadecimal Fractions to Binary Fractions

2. Determine the Binary equivalent of (576E.34DF)16

Hexade cimal Number	5	7	6	E=14	3	4	D=13	F=15
Binary Coded Value	010	0111	0110	1110	0011	0100	1101	1111

 $576E.34DF_{16} = (01010111011011110.00110110111111)_{2}$

Binary to Hexadecimal

Decimal

Octal

Binary

Hexadecimal

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits

Conversion of Binary to Hexadecimal

1. Determine the Hexadecimal equivalent of (1010111011)2

Binary Number	0010	1011	1011
Decimal Number	2	11	11
Hexadecimal Number	2	В	В

$$1010111011_2 = (2BB)_{16}$$

Conversion of Binary to Hexadecimal

2. Determine the Hexadecimal equivalent of (11001011)2

Binary Number	1100	1011
Decimal Number	12	11
Hexadecimal Number	С	В

$$11001011_2 = (CB)_{16}$$

Conversion of Binary to Hexadecimal

3. Determine the Hexadecimal equivalent of (101011110011011001)2

Binary Number	0010	1011	1100	1101	1001
Decimal Number	2	11	12	13	9
Hexadecima I Number	2	В	С	D	9

$$11001011_2 = (2BCD9)_{16}$$

Conversion of Binary Fraction to Hexadecimal Fraction

1. Determine the Hexadecimal equivalent of (0.11101000)2

Binary Number	0000	1110	1000
Decimal Number	0	14	8
Hexadecima I Number	0	E	8

$$0.11101000_2 = (0.E8)_{16}$$

Conversion of Binary Fraction to Hexadecimal Fraction

2. Determine the Hexadecimal equivalent of (1100001.101011110011)2

Binary Number	0110	0001	1010	1111	0011
Decimal Number	6	1	10	15	3
Hexadecimal Number	6	1	Α	F	3

Octal to Hexadecimal

Decimal

Binary

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary

Conversion of Octal to Hexadecimal

1. Determine the Hexadecimal equivalent of (2327)8

Octal Number	2	3	2	7
Binary Coded Value	010	011	010	111

$$2327_8 = (0100 \ 1101 \ 0111)_2$$
4 13 7

$$2327_8 = (4D7)_{16}$$

Conversion of Octal to Hexadecimal

2. Determine the Hexadecimal equivalent of (1076)8

Octal Number	1	0	7	6
Binary Coded Value	001	000	111	110

$$1076_8 = (0010 \ 0011 \ 1110)_2$$

2 3 14

$$1076_8 = (23E)_{16}$$

Conversion of Octal Fraction to Hexadecimal Fraction

1. Determine the Hexadecimal equivalent of (31.57)8

Octal Number	3	1	5	7
Binary Coded Value	011	001	101	111

Conversion of Octal Fraction to Hexadecimal Fraction

2. Determine the Hexadecimal equivalent of (76.665)8

Octal Number	7	6	6	6	5
Binary Coded Value	111	110	110	110	101

$$76.665_8 = (111110.110110101)_2$$
= $(0011 \ 1110 \ . \ 1101 \ 1010 \ 1000)$
 $3 \ 14 \ . \ 13 \ 10$
 $76.665_8 = (3E.DA8)_{16}$

Hexadecimal to Octal

Decimal

Binary

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

Conversion of Hexadecimal to Octal

1. Determine the Octal equivalent of (2B6)16

Hexa decimal Number	2	B=11	6
Binary Coded Value	0010	1011	0110

$$2B6_{16} = (001010110110)_{2}$$

$$= (001 \ 010 \ 110 \ 110)$$

$$= 1 2 6 6$$

$$2B6_{16} = (1266)_{8}$$

Conversion of Hexadecimal to Octal

2. Determine the Octal equivalent of (1F0C)16

Hexa decimal Number	1	F=15	0	C=12
Binary Coded Value	0001	1111	0000	1100

Conversion of Hexadecimal to Octal

3. Determine the Octal equivalent of (5DE247)16

Hexa decimal Number	5	D=13	E=14	2	4	7
Binary Coded Value	0101	1101	1110	0010	0100	0111

$$5DE247_{16} = (010111011110001001000111)_2$$

$$= (010 111 011 110 001 001 000 111)$$

$$2 7 3 6 1 1$$

$$5DE247_{16} = (27361107)_8$$

Conversion of Hexadecimal Fractions to Octal Fractions

1. Determine the Octal equivalent of (4.3C)16

Hexa decimal Number	4	3	C=12
Binary Coded Value	0100	0011	1100

Conversion of Hexadecimal Fractions to Octal Fractions

2. Determine the Octal equivalent of (7B.64D)16

Hexa decimal Number	7	B=11	6	4	D=13
Binary Coded Value	0111	1011	0110	0100	1101

$$7B.64D_{16} = (01111011.011001001101)_{2}$$

$$= (001 111 011.011 001 001 101)_{2}$$
 $1 7 3 . 3 1 1$
 $7B.64D_{16} = (173.3115)_{8}$

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Don't use a calculator!

Answer

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

Decimal	Binary	Octal	Hexa- decimal
29.8			
	101.1101		
		3.07	
			C.82

Don't use a calculator!

Answer

Decimal	Binary	Octal	Hexa- decimal
29.8	11101.110011	35.63	1D.CC
5.8125	101.1101	5.64	5.D
3.109375	11.000111	3.07	3.1C
12.5078125	1100.10000010	14.404	C.82

Arithmetic System

Addition of Binary Numbers

INI	PUT	OUTPUT		
X	Y	SUM(S)	CARRY(C)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Add binary numbers 1111 and 1010

Binary

1 1 1

1 1 1 1

+ 1010

11001

Decimal

1 5

+ 1 0

2 5

Add binary numbers 110011, 10010, 1100 and 101

E	Binary									
1	1	1	1	1	1					
	1	1	0	0	1	1				
		1	0	0	1	0				
			1	1	0	0				
+_				1	0	1	_			
,	1 () 1) 1	1	0				

fppt.com

Add binary numbers 11.10, 10.10

Binary

111

11.10

+ 10.10

110.00

1

3.5

2.5

6.0

Add binary numbers 11010.0100, 1001.01,001.11 and 10.1010

Binary

```
11 11 1

110 10 .010 0

10 01. 01

0 01. 11

+ 10. 101 0

100111. 1110
```


Binary Subtraction

Subtraction of Binary Numbers

IN	PUT	OUTPUT		
X	Y	Difference(D)	Borrow(B)	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

Example

	1				
	10	10	0	10	
1	Ø	Ø	1	Ø	1
0	0	1	0	1	1
0	1	1	0	1	0

Example

Find the binary difference of 1101 - 10110

	,	10		
1	1	Ø	1	
1	0	1	1	
0	0	1	0	

Example

Calculate the binary difference of 11100011 - 10101000

Octal Addition

- First, add the two digits of the unit column of the octal number in decimal.
- During the process of addition, if the sum is less than or equal to 7, then it can be directly written as octal digit.
- B. If the sum is greater than 7, then subtract 8 from that particular digit and carry 1 to the next digit position.

fppt.com

Octal Addition

Add the octal numbers 26 and 17.

```
1
2 6
+ 1 7
4 13
- 8
4 5
```


Octal Addition

Add the octal numbers 5647 and 1425

```
1 1 7 1 5 6 4 7 + 1 4 2 5 7 10 7 12 -8 -8 7 2 7 4
```


Octal Subtraction

Subtract the octal numbers 677 from 770

	8+6=14	1
6	6	8
/ 7	7	Ø
6	7	7
0	7	1

Octal Subtraction

Subtract the octal numbers 2761 from 6357

5	8+2=10	8+5=13	
6	3	5	7
2	7	6	1
3	3	7	6

Hexadecimal Addition

- First, add the two digits of the unit column of the octal number in decimal.
- During the process of addition, if the sum is less than or equal to 15, then it can be directly written as a hexadecimal digit.
- B. If the sum is greater than 15, then subtract 16 from that particular digit and carry 1 to the next digit position.

Hexadecimal Addition

Add the hexadecimal numbers 76 and 45.

Hexadecimal Addition

Add the hexadecimal numbers
 A27E9 and 6FB43

		1	1	1		
		Α	2	7	Е	9
	+	6	F	В	4	3
1		17	18	19	18	12
		-16	-16	-16	-16	
1		1	2	3	2	12
1		1	2	3	2	С

Hexadecimal Subtraction

Subtract the hexadecimal numbers 75 from 527

4	16+2=1	8
5	2	7
	7	5
4	11	2
4	В	2

Hexadecimal Subtraction

Subtract the hexadecimal numbers 1F65 from 7E2CA

	13	16+2=18	3		
7	E	2	С	Α	
	1	F	6	5	
7	12	3	6	5	
7	С	3	6	5	

Binary Addition: Example

```
10001 + 11101 = ?

101101 + 11001 =?

1011001 + 111010 = ?

0011010 + 0001100 = ?
```


Binary Addition: Example

```
10001 + 11101 = 101110

101101 + 11001 = 1000110

1011001 + 111010 = 10010011

0011010 + 0001100 = 0100110
```


Binary Subtraction: Example

- 1011011 10010 = ?
- **1010110 − 101010 =?**
- **▶** 100010110 − 1111010 = ?
- 1110110 1010111 = ?

Binary Subtraction: Example

- ↑ 1011011 10010 = 1001001
- **▶** 1010110 − 101010 = 0101100
- **▶** 100010110 − 1111010 = 010011100
 - 1110110 1010111 = 0011111

Octal Addition: Example

```
45667 + 2341 = ?
```

- 77542 + 16423 = ?
- 211345 + 456771 = ?

Octal Addition: Example

- 45667 + 2341 = 50230
- 77542 + 16423 = 116165
- 211345 + 456771 = 670336

Octal Subtraction: Example

- **→** 76542 − 44367 = ?
- 123457 44663 = ?
- 456771 211345 = ?

Octal Subtraction: Example

- 76542 44367 = 32153
- 123457 44663 = 56574
- **♦** 456771 − 211345 = 245424

Hexadecimal Addition: Example

- + A89EF + 347C = ?
- 2467 + 895A = ?
- 1B59A + 2E3FD = ?

Hexadecimal Addition: Example

- A89EF + 347C = ABE6B
- 2467 + 895A = ADC1
- 1B59A + 2E3FD = 49997

Hexadecimal Subtraction: Example

- ▶ E89B5 1FA27 = ?
- 6B432 59876 = ?
- ▶ 1B59A 2E3D = ?
- ABCDEF FEDCB = ?

Hexadecimal Subtraction: Example

- ▶ E89B5 1FA27 = C8F8E
- ♦ 6B432 59876 = 11BBC
- ▶ 1B59A 2E3D = 1875D
- ABCDEF FEDCB = 9BE024

Signed And Unsigned Numbers

COMPLEMENT OF NUMBERS

Two types of complements for base R number system:

- R's complement and (R-1)'s complement

Example

- Decimal r= 10, 9's complement and 10's complement
- -Binary r=2, 1's and 2's complement
- -Octal r=8, 7's and 8's complement

The R's Complement

Add 1 to the low-order digit of its (R-1)'s complement

SIGNED NUMBERS

Need to be able to represent both *positive* and *negative* numbers

- Following 3 representations

Signed magnitude representation
Signed 1's complement representation
Signed 2's complement representation

Example: Represent +9 and -9 in 7 bit-binary number

Only one way to represent +9 ==> 0 001001

Three different ways to represent -9:

In signed-magnitude: 1 001001 In signed-1's complement: 1 110110 In signed-2's complement: 1 110111

- (14) in 2's complement form

Binary Number		1	1	1	0
1's Complement		0	0	0	1
2's Complement		0	0	1	0
With Sign Bit	1	0	0	1	0

+(12) in 2's complement form

Binary Number		1	1	0	0
1's Complement		0	0	1	1
2's Complement		0	1	0	0
With Sign Bit	0	0	1	0	0

- 1. Convert both numbers to equivalent binary form
- 2. Find the 2's complement of subtrahend
- 3. Add this 2's complement number to the minuend
- If there is carry of 1, ignore it from the result to obtain the correct result.
- 5. If there is no carry, recomplement the result
 - attach the negative sign to the obtained result

 Add (27)₁₀ and (-11)₁₀ using complementary representation for the negative value.

```
27 = 011011 and 11 = 001011

2's complement of (001011) = 1's complement of (001011) + 1

= 110100 + 1

= 110101
```

Add (011011) and (110101)

Carry Hence, result is (010000)2 or (16)10


```
Subtract (25)10 from (42)10
25 = 011001 and 42 = 101010
2's complement of (011001) = 1's complement of (011001) + 1
                          = 100110 + 1
                             100111
Add (101010) and (100111)
```

Carry Hence, Ignore carry and result is (010001)2 or (17)₁₀


```
Subtract (14)<sub>10</sub> from (46)<sub>10</sub>
14 = 00001110 and 46 = 00101110
2's complement of (00001110) = 1's complement of
 (00001110) + 1
                            = 11110001 + 1
                              11110010
Add (00101110) and (11110010)
   0 0 1 0 1 1 1 0
   1 1 1 1 0 0 1 0
   0 0 1 0 0 0 0 0
```

Hence, Ignore carry and

result is (00100000)2 or (32)10

Carry

4. Subtract 84 from 68 (68 – 84)

```
binary of 84 = 1010100
binary of 68 = 1000100
1's complement of 84 = 0101011
2's complement of 84 =
0 1 0 1 0 1 1
+ 1
0 1 0 1 1 0 0
```

Now, add 1000100 + 0101100 = 1110000

There is no carry, so we will take 2's complement of result

Answer: -0010000

Two's Complement Overflow Rules

- The rules for detecting overflow in a two's complement sum are simple:
- 1. If the sum of two positive numbers yields a negative result, the sum has overflowed.
- 2. If the sum of two negative numbers yields a positive result, the sum has underflowed.

Overflow

Example: If we add two positive number 7 + 6 using 4-bit binary number, result should be +13

In signed notation, this is a result of -3, not +13

(because in 4 bit binary system, 4th bit represent sign bit and only 3 bits represent magnitude of the number.

Therefore, an overflow has occurred, where result would have more bits than the original numbers.

fppt.com

Underflow

Example: If we add two negative numbers -29 and -13 using 8-bit binary number, result should be -42

29 = 00011101
1's of 29 = 11100010
2's of 29 = 11100011
now, add 1 1 1 0 0 0 1 1

$$+ 1 1 1 1 0 0 1 1$$

 $1 1 1 0 1 0 1 1 0$

13 = 00001101

1's of 13 = 11110010

2's of 13 = 11110011

Result is 11010110

In signed notation, this is a result of +214 and not of -42.

Therefore, an underflow has occurred.

Cont...

- Overflow in two's complement occurs, not when a bit is carried out of the left column, but when there is a carry into the sign.
- A negative and positive added together cannot overflow, because the sum is between the addends.

Examples

•
$$-75 + 59 = -16$$
:

1 1 1 1 1 1

1 0 1 1 0 1

+ 0 0 1 1 1 0 1 1

1 1 1 1 1 0 0 0

No overflow nor carryout.

Basic Logic Gates

- Logic gate is an elementary building block of a digital circuit.
 - Which when combined with each other are able to perform complex logical and arithmetic operations.
- Two possible input

$$0 = 0v = False$$

$$1 = +5v = True$$

AND Function

Text Description ⇒

Output Y is TRUE if inputs A AND B are TRUE, else it is FALSE.

Logic Symbol \Rightarrow

Truth Table ⇒

INPUTS		OUTPUT	
A	В	Y	
0	0	0	
0	1	0	
1	0	0	
1 1		1	
AND Gate Truth Table			

Boolean Expression
$$\Rightarrow$$
 Y = A x B = A \bullet B = AB

OR Function

Text Description ⇒

Output Y is TRUE if input A <u>OR</u> B is TRUE, else it is FALSE.

Logic Symbol
$$\Rightarrow$$
 A \rightarrow OR \rightarrow Y

Truth Table ⇒

INF	PUTS	OUTPUT	
A	В	Y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	
OR Gate Truth Table			

Boolean Expression \Rightarrow Y = A + B

NOT Function (inverter)

Text Description ⇒

Output Y is TRUE if input A is FALSE, else it is FALSE. Y is the inverse of A.

Logic Symbol \Rightarrow

Truth Table ⇒

INPUT	OUTPUT	
A	Y	
0	1	
1 0		
NOT Gate Truth Table		

Boolean Expression \Rightarrow

$$\begin{array}{c}
 & \text{NOT} \\
 & \text{Bar}
\end{array}$$

Combination of Logic Gates

NAND Function

- ➤ The term NAND is formed by the combination of NOT-AND
 - implies an AND function with an inverted output.

NAND Function

Text Description \Rightarrow

Output Y is FALSE if inputs A <u>AND</u> B are TRUE, else it is TRUE.

 $\mathsf{Logic}\;\mathsf{Symbol}\Rightarrow$

A bubble is an inverter
This is an AND Gate with an inverted output

Truth Table ⇒

INPUTS		OUTPUT	
A	В	Y	
0	0	1	
0	1	1	
1	0	1	
1 1		0	
NAND Gate Truth Table			

Boolean Expression ⇒

$$Y = A \times B = AB$$

NOR Function

- ➤ The term NOR is formed by the combination of NOT-OR
 - implies an OR function with an inverted output.

NOR Function

Text Description ⇒

Output Y is FALSE if input A <u>OR</u> B is TRUE, else it is TRUE.

 $\mathsf{Logic}\;\mathsf{Symbol}\Rightarrow$

A bubble is an inverter.
This is an OR Gate with its output inverted.

Truth Table ⇒

INPUTS		OUTPUT	
A	В	Y	
0	0	1	
0	1	0	
1	0	0	
1 1		0	
NOR Gate Truth Table			

Boolean Expression ⇒

$$Y = A + B$$

XOR and XNOR

➤ XOR is an 'inequality' function → output is high(1) when the inputs are not equal to each other.

➤ XNOR is an 'equality' function → output is high(1) when the inputs are equal to each other.

fppt.com

Exclusive-OR Gate

Χ	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

$$B = A \bullet B' + A' \bullet B$$

Exclusive-NOR Gate

Exclusive-NOR gate

A	В	Output
О	О	1
О	1	0
1	О	О
1	1	1

A ⊙B = A · B + A · B · B · Equivalent gate circuit

Boolean Algebra

- ➤ Boolean algebra is the mathematics of digital systems.
- ➤ It is extensively used in designing the circuitry that is used in computers.

Boolean Operations

- •The complement is denoted by a bar. It is defined by
- $\overline{0} = 1$ and $\overline{1} = 0$.
- •The **Boolean sum**, denoted by + or by OR, has the following values:
- $\bullet 1 + 1 = 1$, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0
- •The **Boolean product**, denoted by · or by AND, has the following values:
- •1 · 1 = 1, $1 \cdot 0 = 0$, $0 \cdot 1 = 0$, $0 \cdot 0 = 0$

Laws of Boolean Algebra

	AND Form	OR Form	
Identify Law	A.1 = A	A + 0 = A	
Zero and One Law	A.0 = 0	A + 1=1	
Inverse Law	$A.\overline{A} = 0$	$A + \overline{A} = 1$	
Idempotent Law	A.A = A	A + A = A	
Commutative Law	A.B = B.A	A + B = B + A	
Associative Law	A.(B.C) = (A.B).C	A + (B+C) =	
		(A +B) + C	
Distributive Law	A+(B.C)=(A+B).	A.(B+C)=(A.B) +	
	(A+C)	(A.C)	
Absorption Law	A(A+B) = A	A + AB = A	
		A + A'B = A + B	
DeMorgan's Law			
	$\overline{(A.B)} = \overline{A} + \overline{B}$	(A+B) = A.B	
Double	_		
Complement	$\overline{X}=X$		
Law			

Laws of Boolean Algebra

Commutative Law

the order of literals does not matter

$$A + B = B + A$$

$$AB = BA$$

Laws of Boolean Algebra

Associative Law

the grouping of literals does not matter

$$A + (B + C) = (A + B) + C (=A+B+C)$$

$$A(BC) = (AB)C (=ABC)$$

Rules of Boolean Algebra

Rule Num ber	Boolean Expression
1	A + 0 = A
2	A + 1 = 1
3	A • 0 = 0
4	A • 1 = A
5	A + A = A
6	A + A' = 1
7	A • A = A
8	A • A' = 0
9	A + AB = A
10	A + A'B = A + B

Why codes are used?

Codes are used to represent the letters(A –Z, a-z) and special characters (such as +,-,*,\$,&) in terms of 0's and 1's

Every character can be represented by a combination of bits that is different from any other combination.

fppt.com

Coding Systems

- ➤ BCD Binary Coded Decimal
- ASCII American Standard Code for Information Interchange
- EBCDIC Extended Binary Coded Decimal Interchange Code

Decimal and BCD

The BCD is simply the 4 bit representation of the decimal digit.

For multiple digit base 10
numbers, each symbol is
represented by its BCD digit

	1	/	
		/	

5	3	1	9
0101	0011	0001	1001

Decimal	BCD
Symbol	Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

- BCD is fastest way to convert numbers from decimal to binary.
- However, it can represent only 16,(2^4) symbols.
- The later version of BCD used a 6-bit code, which allows representing a max. of 64 that is 2^6 symbols.
- However, it is also not sufficient for modern computers.

ASCII

- It stands for American Standard Code for Information Interchange
- > It is widely used in micro computers, data transmission.
- ➤ Code was originally designed as 7 bit code
- ➤ Later on, IBM developed a new version of ASCII called as ASCII-8.
 - They use of all 8 bits providing 256 symbols

ASCII

						/ \									
0	<nul></nul>	32	<spc></spc>	64	@	96	`	128	Ä	160	+	192	خ	224	‡
1	<soh></soh>	33	!	65	Α	97	a	129	Å	161	o	193	i	225	
2	<stx></stx>	34	"	66	В	98	b	130	Ç É	162	¢	194	\neg	226	,
3	<etx></etx>	35	#	67	С	99	С	131	É	163	£	195	\checkmark	227	"
4	<eot></eot>	36	\$	68	D	100	d	132	Ñ	164	§	196	f	228	‰
5	<enq></enq>	37	%	69	Е	101	e	133	Ö	165	•	197	≈	229	Â
6	<ack></ack>	38	&	70	F	102	f	134	Ü	166	¶	198	Δ	230	Ê
7	<bel></bel>	39	'	71	G	103	g	135	á	167	ß	199	«	231	Á
8	<bs></bs>	40	(72	Н	104	h	136	à	168	R	200	>>	232	Ë
9	<tab></tab>	41)	73	I	105	i	137	â	169	©	201		233	È
10	<lf></lf>	42	*	74	J	106	j	138	ä	170	TM	202		234	Í
11	<vt></vt>	43	+	75	K	107	k	139	ã	171	,	203	À	235	Î
12	<ff></ff>	44	,	76	L	108	1	140	å	172		204	Ã	236	Ë É Í Î Ì
13	<cr></cr>	45	-	77	М	109	m	141	Ç	173	≠	205	Õ	237	
14	<so></so>	46		78	N	110	n	142	é	174	Æ	206	Œ	238	Ó
15	<\$I>	47	/	79	Ο	111	0	143	è	175	Ø	207	œ	239	Ô
16	<dle></dle>	48	0	80	Р	112	р	144	ê	176	∞	208	-	240	
17	<dc1></dc1>	49	1	81	Q	113	q	145	ë	177	±	209	_	241	Ò
18	<dc2></dc2>	50	2	82	R	114	r	146	ĺ	178	≤	210	"	242	Ú
19	<dc3></dc3>	51	3	83	S	115	S	147	ì	179	≥	211	"	243	Û
20	<dc4></dc4>	52	4	84	Т	116	t	148	î	180	¥	212	•	244	Ù
21	<nak></nak>	53	5	85	U	117	u	149	Ϊ	181	μ	213	,	245	1
22	<syn< td=""><td>54</td><td>6</td><td>86</td><td>V</td><td>118</td><td>٧</td><td>150</td><td>ñ</td><td>182</td><td>9</td><td>214</td><td>÷</td><td>246</td><td>^</td></syn<>	54	6	86	V	118	٧	150	ñ	182	9	214	÷	246	^
23	<etb></etb>	55	7	87	W	119	W	151	Ó	183	Σ	215	♦	247	~
24	<can></can>	56	8	88	Χ	120	X	152	Ò	184	Π	216	ÿ	248	
25		57	9	89	Υ	121	У	153	ô	185	П	217	Ÿ	249	0
26		58	:	90	Z	122	Z	154	Ö	186	ſ	218	1 =	250	1.
27	<esc></esc>	59	;	91	[123	{	155	õ	187	a	219	€ (251	
28	<fs></fs>	60	<	92	\	124		156	ú	188	0	220	(-	252	
29	<gs></gs>	61	=	93]	125	}	157	ù	189	Ω	221	>	253	"
30	<rs></rs>	62	>	94	^	126	~	158	û	190	æ	222	fi //iE	254	
31	<us></us>	63	?	95		127		159	ü	191	Ø	223	fl//	255	Y

Determine the binary code of 'word' in the ASCII form.

W	0	r	d
119	111	114	100
01110111	01101111	01110010	01100110

EBCDIC

- Extended Binary Coded Decimal Interchange Code uses 8 bits for each character.
 - Provides 256 different unique code

Character	Zone bits
A – I	1100
J-R	1101
S-Z	1110
0 - 9	1111
a – i	1000
j — r	1001
S-Z	1010

ALPHABETIC CHARACTERS								
	UPPERCASE		LOWERCASE					
	EBC	DIC		EBCDIC				
PRINTS AS	IN BINARY	N HEXA- DE CIMAL	PRINTS AS	IN BINATYY	IN HEXA- DECIMAL			
	ZZZZ 8421			ZZZZ 8421				
≼вОош⊧Юн− јк	1100 0001 1100 0010 1100 0011 1100 0100 1100 0101 1100 0111 1100 1000 1100 1001	00000000000000000000000000000000000000	a 70 a 00 a 00 d a ° ' ' *	1000 0001 1000 0010 1000 0011 1000 0100 1000 0101 1000 0110 1000 1000 1000 1001	8 1 8 2 8 8 8 4 8 8 8 7 8 8 8 9 9 1 9 2			
2000c	1101 0011 1101 0100 1101 0101 1101 0110 1101 0111 1101 1000	D 5 D 4 D 6 D 7 D 8 D 9	Б С С С	1001 0011 1001 0100 1001 0101 1001 0110 1001 0111 1001 1000	9 5 9 4 9 8 9 7 9 8 9 9			
* 9 T U V 3 X Y Z	1110 0010 1110 0011 1110 0100 1110 0101 1110 0110 1110 1000 1110 1001	E 2 E 3 E 4 E 6 E 7 E 8 E 9	1 Մ Մ Մ Մ Մ Ծ ۲	1010 0010 1010 0011 1010 0100 1010 0101 1010 0110 1010 0111 1010 1000	A 2 A 3 A 4 A 8 A 8 A 8 A 8 A 9			
NUMERIC CHARACTERS								
0 1 2 3 4	1111 0000 1111 0001 1111 0010 1111 0011 1111 0100	F 0 F 1 F 2 F 3 F 4	6 8 7 8 9	1111 0101 1111 0110 1111 0111 1111 1000 1111 1001	F & F & F & F & F & F & F & F & F & F &			

EBCDIC vs. ASCII

Character	D	Р	3
EBCDIC	1100 0100	1101 0111	1111 0011
ASCII	0100 0100	0101 0000	0011 0011

