Package 'simStateSpace'

November 28, 2023					
Title Simulate Data from State Space Models					
Version 1.0.1.9000					
Description Provides a streamlined and user-friendly framework for simulating data in state space models, particularly when the number of subjects/units (n) exceeds one, a scenario commonly encountered in social and behavioral sciences. For an introduction to state space models in social and behavioral sciences, refer to Chow, Ho, Hamaker, and Dolan (2010) <doi:10.1080 10705511003661553="">.</doi:10.1080>					
<pre>URL https://github.com/jeksterslab/simStateSpace,</pre>					
https://jeksterslab.github.io/simStateSpace/					
<pre>BugReports https://github.com/jeksterslab/simStateSpace/issues</pre>					
License GPL (>= 3)					
Encoding UTF-8					
Roxygen list(markdown = TRUE)					
Depends R (>= 3.0.0)					
LinkingTo Rcpp, RcppArmadillo					
Imports Rcpp					
Suggests knitr, rmarkdown, testthat, Matrix					
RoxygenNote 7.2.3					
NeedsCompilation yes					
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)					
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>					
R topics documented:					
OU2SSM Sim2Matrix SimSSM SimSSMFixed					

2 OU2SSM

0U2S	SM		onve					,			Oi	rn.	ste	in-	–L	Ihl	en	be	eck	: 1	Мо	de	l 1	to	Sta	te
Index																										43
	SimSSMVary			 	•		•		•	•		•	•	•			•	•	•		•	•		•		39
	SimSSMVARVary																									
	SimSSMVARFixed	l .		 																						33
	SimSSMVAR			 																						30
	SimSSMOUVary			 																						26
	SimSSMOUFixed			 																						22
	SimSSMOU			 																						17
	SimSSMLinGrowth																									

Description

This function converts parameters from the Ornstein–Uhlenbeck model to state space model parameterization. See details for more information.

Usage

```
OU2SSM(mu, phi, sigma_sqrt, delta_t)
```

Arguments

mu	Numeric vector. The long-term mean or equilibrium level (μ) .
phi	Numeric matrix. The rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma_sqrt	Numeric matrix. Cholesky decomposition of the matrix of volatility or randomness in the process (Σ) .
delta_t	Numeric. Time interval (δ_t) .

Details

The state space parameters as a function of the Ornstein-Uhlenbeck model parameters are given by

$$\boldsymbol{\beta} = \exp\left(-\boldsymbol{\Phi}\Delta_t\right)$$

$$oldsymbol{lpha} = -oldsymbol{\Phi}^{-1} \left(oldsymbol{eta} - \mathbf{I}_p
ight)$$

$$\operatorname{vec}\left(\boldsymbol{\Psi}\right) = \left\{ \left[\left(-\boldsymbol{\Phi} \otimes \mathbf{I}_{p} \right) + \left(\mathbf{I}_{p} \otimes -\boldsymbol{\Phi} \right) \right] \left[\exp\left(\left[\left(-\boldsymbol{\Phi} \otimes \mathbf{I}_{p} \right) + \left(\mathbf{I}_{p} \otimes -\boldsymbol{\Phi} \right) \right] \Delta_{t} \right) - \mathbf{I}_{p \times p} \right] \operatorname{vec}\left(\boldsymbol{\Sigma}\right) \right\}$$

Sim2Matrix 3

Value

Returns a list of state space parameters:

- alpha: Numeric vector. Vector of intercepts for the dynamic model (α) .
- beta: Numeric matrix. Transition matrix relating the values of the latent variables at time t 1 to those at time t (β).
- psi: Numeric matrix. The process noise covariance matrix (Ψ) .

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: Sim2Matrix(), SimSSMFixed(), SimSSMLinGrowth(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMOU(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR(), SimSSMVary(), Si

Examples

```
p <- k <- 2
mu <- c(5.76, 5.18)
phi <- matrix(data = c(0.10, -0.05, -0.05, 0.10), nrow = p)
sigma_sqrt <- chol(
    matrix(data = c(2.79, 0.06, 0.06, 3.27), nrow = p)
)
delta_t <- 0.10

OU2SSM(
    mu = mu,
    phi = phi,
    sigma_sqrt = sigma_sqrt,
    delta_t = delta_t
)</pre>
```

Sim2Matrix

Simulation Output to Matrix

Description

This function converts the output of SimSSM(), SimSSMOU(), SimSSMVAR(), SimSSMFixed(), SimSSMOUFixed(), SimSSMVARFixed(), SimSSMVARY(), or SimSSMVARVary() to a matrix.

Usage

```
Sim2Matrix(x, eta = FALSE, long = TRUE)
```

4 Sim2Matrix

Arguments

X	R object. Output of SimSSM(), SimSSMOU(), SimSSMVAR(), SimSSMFixed(),
	<pre>SimSSMOUFixed(), SimSSMVARFixed(), SimSSMVary(), SimSSMOUVary(), or SimSSMVARVary().</pre>
eta	Logical. If eta = TRUE, include eta. If eta = FALSE, exclude eta.
long	Logical. If long = TRUE, use long format. If long = FALSE, use wide format.

Value

Returns a matrix of simulated data.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), SimSSMFixed(), SimSSMLinGrowth(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMOU(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR(), SimSSMVary(), SimSSM

```
# prepare parameters
set.seed(42)
k < -p < -3
iden <- diag(k)</pre>
iden_sqrt <- chol(iden)</pre>
null_vec <- rep(x = 0, times = k)
n <- 5
mu0 <- null_vec
sigma0_sqrt <- iden_sqrt</pre>
alpha <- null_vec</pre>
beta \leftarrow diag(x = 0.50, nrow = k)
psi_sqrt <- iden_sqrt</pre>
nu <- null_vec
lambda <- iden
theta_sqrt <- chol(diag(x = 0.50, nrow = k))
time <- 50
burn_in <- 0
# generate data
ssm <- SimSSM(
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
```

```
type = 0,
  time = time,
  burn_in = burn_in
)
# list to matrix
mat <- Sim2Matrix(ssm, long = TRUE)</pre>
str(mat)
head(mat)
mat <- Sim2Matrix(ssm, long = FALSE)</pre>
str(mat)
head(mat)
# generate data
ssm <- SimSSMFixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  type = 0,
  time = time,
  burn_in = burn_in
)
# list to matrix
mat <- Sim2Matrix(ssm, long = TRUE)</pre>
str(mat)
head(mat)
mat <- Sim2Matrix(ssm, long = FALSE)</pre>
str(mat)
head(mat)
```

SimSSM

Simulate Data from a State Space Model (n = 1)

Description

This function simulates data from a state space model. See details for more information.

Usage

```
SimSSM(
  mu0,
  sigma0_sqrt,
```

```
alpha,
beta,
psi_sqrt,
nu,
lambda,
theta_sqrt,
gamma_y = NULL,
gamma_eta = NULL,
type = 0,
time,
burn_in = 0
)
```

Arguments

mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0_sqrt	Numeric matrix. Cholesky decomposition of the covariance matrix of initial latent variable values ($\Sigma_{\eta 0}$).
alpha	Numeric vector. Vector of intercepts for the dynamic model (α) .
beta	Numeric matrix. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi_sqrt	Numeric matrix. Cholesky decomposition of the process noise covariance matrix (Ψ) .
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .
lambda	Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (Λ) .
theta_sqrt	Numeric matrix. Cholesky decomposition of the measurement error covariance matrix (Θ) .
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the observed variables at time t (Γ_y) .
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}).
Х	Numeric matrix. The matrix of observed covariates in type = 1 or type = 2. The number of rows should be equal to time + burn_in.
type	Integer. State space model type.
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Type 0:

The measurement model is given by

$$\mathbf{y}_{t} = oldsymbol{
u} + oldsymbol{\Lambda} oldsymbol{\eta}_{t} + oldsymbol{arepsilon}_{t} \quad ext{with} \quad oldsymbol{arepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Theta}
ight)$$

where \mathbf{y}_t , $\boldsymbol{\eta}_t$, and $\boldsymbol{\varepsilon}_t$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. \mathbf{y}_t is a vector of observed random variables, $\boldsymbol{\eta}_t$ is a vector of latent random variables, and $\boldsymbol{\varepsilon}_t$ is a vector of random measurement errors, at time t. $\boldsymbol{\nu}$ is a vector of intercepts, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of $\boldsymbol{\varepsilon}$.

The dynamic structure is given by

$$oldsymbol{\eta}_t = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{t-1} + oldsymbol{\zeta}_t \quad ext{with} \quad oldsymbol{\zeta}_t \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Psi}
ight)$$

where η_t , η_{t-1} , and ζ_t are random variables, and α , β , and Ψ are model parameters. η_t is a vector of latent variables at time t, η_{t-1} is a vector of latent variables at time t-1, and ζ_t is a vector of dynamic noise at time t. α is a vector of intercepts, β is a matrix of autoregression and cross regression coefficients, and Ψ is the covariance matrix of ζ_t .

Type 1:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\varepsilon}_{t} \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right).$$

The dynamic structure is given by

$$oldsymbol{\eta}_t = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{t-1} + oldsymbol{\Gamma}_{oldsymbol{\eta}} \mathbf{x}_t + oldsymbol{\zeta}_t \quad ext{with} \quad oldsymbol{\zeta}_t \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Psi}
ight)$$

where \mathbf{x}_t is a vector of covariates at time t, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Type 2:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\Gamma}_{\mathbf{v}} \mathbf{x}_{t} + \boldsymbol{\varepsilon}_{t} \quad \text{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\Gamma_{\mathbf{v}}$ is the coefficient matrix linking the covariates to the observed variables.

The dynamic structure is given by

$$\boldsymbol{\eta}_{t} = \boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{\eta}_{t-1} + \boldsymbol{\Gamma}_{\boldsymbol{\eta}} \mathbf{x}_{t} + \boldsymbol{\zeta}_{t} \quad \text{with} \quad \boldsymbol{\zeta}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Psi}\right).$$

Value

Returns a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- time: A vector of discrete time points from 0 to t 1.
- id: A vector of ones.

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSMFixed(), SimSSMLinGrowth(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR(), SimSSMVAry()

```
# prepare parameters
set.seed(42)
k <- p <- 3
iden <- diag(k)</pre>
iden_sqrt <- chol(iden)</pre>
null\_vec \leftarrow rep(x = 0, times = k)
mu0 <- null_vec
sigma0_sqrt <- iden_sqrt</pre>
alpha <- null_vec</pre>
beta <- diag(x = 0.50, nrow = k)
psi_sqrt <- iden_sqrt</pre>
nu <- null_vec</pre>
lambda <- iden
theta_sqrt <- chol(diag(x = 0.50, nrow = k))
time <- 50
burn_in <- 0
gamma_y <- gamma_eta <- 0.10 * diag(k)</pre>
x <- matrix(</pre>
 data = rnorm(n = k * (time + burn_in)),
  ncol = k
)
# Type 0
ssm <- SimSSM(
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  type = 0,
  time = time,
  burn_in = burn_in
)
str(ssm)
# Type 1
ssm <- SimSSM(
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
```

```
psi_sqrt = psi_sqrt,
 nu = nu,
 lambda = lambda,
 theta_sqrt = theta_sqrt,
 gamma_eta = gamma_eta,
 x = x,
 type = 1,
 time = time,
 burn_in = burn_in
)
str(ssm)
# Type 2
ssm <- SimSSM(
 mu0 = mu0,
 sigma0_sqrt = sigma0_sqrt,
 alpha = alpha,
 beta = beta,
 psi_sqrt = psi_sqrt,
 nu = nu,
 lambda = lambda,
 theta_sqrt = theta_sqrt,
 gamma_y = gamma_y,
 gamma_eta = gamma_eta,
 x = x,
 type = 2,
 time = time,
 burn_in = burn_in
)
str(ssm)
```

SimSSMFixed

Simulate Data using a State Space Model Parameterization for n > 1 Individuals (Fixed Parameters)

Description

This function simulates data using a state space model parameterization for n > 1 individuals. In this model, the parameters are invariant across individuals.

Usage

```
SimSSMFixed(
   n,
   mu0,
   sigma0_sqrt,
   alpha,
```

```
beta,
psi_sqrt,
nu,
lambda,
theta_sqrt,
gamma_y = NULL,
gamma_eta = NULL,
x = NULL,
type = 0,
time,
burn_in = 0
)
```

Arguments

n

mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0_sqrt	Numeric matrix. Cholesky decomposition of the covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	Numeric vector. Vector of intercepts for the dynamic model (α) .

Positive integer. Number of individuals.

beta Numeric matrix. Transition matrix relating the values of the latent variables at

time t - 1 to those at time t (β) .

psi_sqrt Numeric matrix. Cholesky decomposition of the process noise covariance ma-

trix (Ψ) .

nu Numeric vector. Vector of intercepts for the measurement model (ν) .

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-

served variables (Λ) .

theta_sqrt Numeric matrix. Cholesky decomposition of the measurement error covariance

matrix (Θ) .

gamma_y Numeric matrix. Matrix relating the values of the covariate matrix at time t to

the observed variables at time t ($\Gamma_{\rm v}$).

gamma_eta Numeric matrix. Matrix relating the values of the covariate matrix at time t to

the latent variables at time t (Γ_n) .

x A list of length n of numeric matrices. Each element of the list is a matrix of

observed covariates in type = 1 or type = 2. The number of rows in each matrix

should be equal to time + burn_in.

type Integer. State space model type.

time Positive integer. Number of time points to simulate.

burn_in Positive integer. Number of burn-in points to exclude before returning the re-

sults.

Details

Type 0:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t} \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and ν , Λ , and Θ are model parameters. $\mathbf{y}_{i,t}$ is a vector of observed random variables, $\eta_{i,t}$ is a vector of latent random variables, and $\varepsilon_{i,t}$ is a vector of random measurement errors, at time t and individual i. ν is a vector of intercepts, Λ is a matrix of factor loadings, and Θ is the covariance matrix of ε .

The dynamic structure is given by

$$oldsymbol{\eta}_{i,t} = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{i,t-1} + oldsymbol{\zeta}_{i,t} \quad ext{with} \quad oldsymbol{\zeta}_{i,t} \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Psi}
ight)$$

where $\eta_{i,t}$, $\eta_{i,t-1}$, and $\zeta_{i,t}$ are random variables, and α , β , and Ψ are model parameters. $\eta_{i,t}$ is a vector of latent variables at time t and individual i, $\eta_{i,t-1}$ is a vector of latent variables at time t-1 and individual i, and $\zeta_{i,t}$ is a vector of dynamic noise at time t and individual i. α is a vector of intercepts, β is a matrix of autoregression and cross regression coefficients, and Ψ is the covariance matrix of $\zeta_{i,t}$.

Type 1:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t} \quad \text{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right).$$

The dynamic structure is given by

$$oldsymbol{\eta}_{i,t} = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{i,t-1} + oldsymbol{\Gamma}_{oldsymbol{\eta}} \mathbf{x}_{i,t} + oldsymbol{\zeta}_{i,t} \quad ext{with} \quad oldsymbol{\zeta}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Psi}
ight)$$

where $\mathbf{x}_{i,t}$ is a vector of covariates at time t and individual i, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Type 2:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\Gamma}_{\mathbf{v}} \mathbf{x}_{i,t} + \boldsymbol{\varepsilon}_{i,t} \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\Gamma_{\mathbf{y}}$ is the coefficient matrix linking the covariates to the observed variables.

The dynamic structure is given by

$$oldsymbol{\eta}_{i,t} = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{i,t-1} + oldsymbol{\Gamma}_{oldsymbol{\eta}} \mathbf{x}_{i,t} + oldsymbol{\zeta}_{i,t} \quad ext{with} \quad oldsymbol{\zeta}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Psi}
ight).$$

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- time: A vector of discrete time points from 1 to t.
- id: A vector of ID numbers of length t.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSMLinGrowth(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMOU(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR(), SimSSMVary(), SimSSM()

```
# prepare parameters
set.seed(42)
k < -p < -3
iden <- diag(k)</pre>
iden_sqrt <- chol(iden)</pre>
null_vec <- rep(x = 0, times = k)
n <- 5
mu0 <- null_vec
sigma0_sqrt <- iden_sqrt</pre>
alpha <- null_vec</pre>
beta \leftarrow diag(x = 0.50, nrow = k)
psi_sqrt <- iden_sqrt</pre>
nu <- null_vec
lambda <- iden
theta_sqrt <- chol(diag(x = 0.50, nrow = k))
time <- 50
burn_in <- 0</pre>
gamma_y \leftarrow gamma_eta \leftarrow 0.10 * diag(k)
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
      matrix(
         data = rnorm(n = k * (time + burn_in)),
         ncol = k
  }
# Type 0
ssm <- SimSSMFixed(</pre>
  n = n,
  mu0 = mu0,
```

```
sigma0_sqrt = sigma0_sqrt,
 alpha = alpha,
 beta = beta,
 psi_sqrt = psi_sqrt,
 nu = nu,
 lambda = lambda,
 theta_sqrt = theta_sqrt,
 type = 0,
 time = time,
 burn_in = burn_in
)
str(ssm)
# Type 1
ssm <- SimSSMFixed(</pre>
 n = n,
 mu0 = mu0,
 sigma0_sqrt = sigma0_sqrt,
 alpha = alpha,
 beta = beta,
 psi_sqrt = psi_sqrt,
 nu = nu,
 lambda = lambda,
 theta_sqrt = theta_sqrt,
 gamma_eta = gamma_eta,
 x = x,
 type = 1,
 time = time,
 burn_in = burn_in
)
str(ssm)
# Type 2
ssm <- SimSSMFixed(</pre>
 n = n,
 mu0 = mu0,
 sigma0_sqrt = sigma0_sqrt,
 alpha = alpha,
 beta = beta,
 psi_sqrt = psi_sqrt,
 nu = nu,
 lambda = lambda,
 theta_sqrt = theta_sqrt,
 gamma_y = gamma_y,
 gamma_eta = gamma_eta,
 x = x,
 type = 2,
 time = time,
 burn_in = burn_in
)
```

14 SimSSMLinGrowth

str(ssm)

 ${\tt SimSSMLinGrowth}$

Simulate Data from a Linear Growth Curve Model

Description

This function simulates data from a linear growth curve model.

Usage

```
SimSSMLinGrowth(
    n,
    mu0,
    sigma0_sqrt,
    theta_sqrt,
    gamma_y = NULL,
    gamma_eta = NULL,
    x = NULL,
    type = 0,
    time
)
```

Arguments

n	Positive integer. Number of individuals.
mu0	Numeric vector. A vector of length two. The first element is the mean of the intercept, and the second element is the mean of the slope.
sigma0_sqrt	Numeric matrix. Cholesky decomposition of the covariance matrix of the intercept and the slope.
theta_sqrt	Numeric. Square root of the common measurement error variance.
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to y at time t $(\Gamma_{\mathbf{y}}).$
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables (intercept and slope) at time t (Γ_{η}) .
х	A list of length n of numeric matrices. Each element of the list is a matrix of observed covariates in type = 1 or type = 2. The number of rows in each matrix should be equal to time.
type	Integer. State space model type.
time	Positive integer. Number of time points to simulate.

SimSSMLinGrowth 15

Details

Type 0:

The measurement model is given by

$$y_{i,t} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \eta_{0_{i,t}} \\ \eta_{1_{i,t}} \end{pmatrix} + \boldsymbol{\varepsilon}_{i,t} \quad \text{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(0, \theta^2\right)$$

where $y_{i,t}$, $\eta_{0_{i,t}}$, $\eta_{1_{i,t}}$, and $\varepsilon_{i,t}$ are random variables and and θ^2 is a model parameter. $y_{i,t}$ is a vector of observed random variables at time t and individual i, $\eta_{0_{i,t}}$ and $\eta_{1_{i,t}}$ form a vector of latent random variables at time t and individual i, and $\varepsilon_{i,t}$ is a vector of random measurement errors at time t and individual i, and θ^2 is the variance of ε .

The dynamic structure is given by

$$\left(\begin{array}{c}\eta_{0_{i,t}}\\\eta_{1_{i,t}}\end{array}\right)=\left(\begin{array}{cc}1&1\\0&1\end{array}\right)\left(\begin{array}{c}\eta_{0_{i,t-1}}\\\eta_{1_{i,t-1}}\end{array}\right).$$

The mean vector and covariance matrix of the intercept and slope are captured in the mean vector and covariance matrix of the initial condition given by

$$\mu_{\eta|0} = \begin{pmatrix} \mu_{\eta_0} \\ \mu_{\eta_1} \end{pmatrix}$$
 and,

$$\boldsymbol{\Sigma_{\eta|0}} = \left(\begin{array}{cc} \sigma_{\eta_0}^2 & \sigma_{\eta_0,\eta_1} \\ \sigma_{\eta_1,\eta_0} & \sigma_{\eta_1}^2 \end{array} \right).$$

Type 1:

The measurement model is given by

$$y_{i,t} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \eta_{0_{i,t}} \\ \eta_{1_{i,t}} \end{pmatrix} + \boldsymbol{\varepsilon}_{i,t} \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(0, \theta^2\right).$$

The dynamic structure is given by

$$\begin{pmatrix} \eta_{0_{i,t}} \\ \eta_{1_{i,t}} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \eta_{0_{i,t-1}} \\ \eta_{1_{i,t-1}} \end{pmatrix} + \mathbf{\Gamma}_{\boldsymbol{\eta}} \mathbf{x}_{i,t}$$

where $\mathbf{x}_{i,t}$ is a vector of covariates at time t and individual i, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Type 2:

The measurement model is given by

$$y_{i,t} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \eta_{0_{i,t}} \\ \eta_{1_{i,t}} \end{pmatrix} + \mathbf{\Gamma}_{\mathbf{y}} \mathbf{x}_{i,t} + \boldsymbol{\varepsilon}_{i,t} \quad \text{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(0, \theta^2\right)$$

where Γ_y is the coefficient matrix linking the covariates to the observed variables. The dynamic structure is given by

$$\left(\begin{array}{c} \eta_{0_{i,t}} \\ \eta_{1_{i,t}} \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} \eta_{0_{i,t-1}} \\ \eta_{1_{i,t-1}} \end{array}\right) + \mathbf{\Gamma}_{\boldsymbol{\eta}} \mathbf{x}_{i,t}.$$

16 SimSSMLinGrowth

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- time: A vector of discrete time points from 1 to t.
- id: A vector of ID numbers of length t.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSMFixed(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMOU(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVARVary(), SimSSMVARVary(), SimSSMVary(), SimS

```
# prepare parameters
set.seed(42)
n <- 5
mu0 < -c(0.615, 1.006)
sigma0 <- matrix(</pre>
  data = c(
    1.932,
    0.618,
    0.618,
    0.587
  ),
  nrow = 2
sigma0_sqrt <- chol(sigma0)</pre>
theta <- 0.6
theta_sqrt <- sqrt(theta)</pre>
time <- 10
gamma_y \leftarrow matrix(data = 0.10, nrow = 1, ncol = 2)
gamma_eta <- matrix(data = 0.10, nrow = 2, ncol = 2)</pre>
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
```

```
matrix(
        data = rnorm(n = 2 * time),
        ncol = 2
     )
   )
}
)
# Type 0
ssm <- SimSSMLinGrowth(</pre>
 n = n,
 mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  theta_sqrt = theta_sqrt,
 type = 0,
 time = time
)
str(ssm)
# Type 1
ssm <- SimSSMLinGrowth(</pre>
 n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  theta_sqrt = theta_sqrt,
  gamma_eta = gamma_eta,
  x = x,
  type = 1,
  time = time
)
str(ssm)
# Type 2
ssm <- SimSSMLinGrowth(</pre>
 n = n,
 mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  theta_sqrt = theta_sqrt,
  gamma_y = gamma_y,
  gamma_eta = gamma_eta,
  x = x,
  type = 2,
  time = time
)
str(ssm)
```

SimSSMOU

Simulate Data from the Ornstein-Uhlenbeck Model using a State Space Model Parameterization (n = 1)

Description

This function simulates data from the Ornstein–Uhlenbeck model using a state space model parameterization. See details for more information.

Usage

```
SimSSMOU(
 mu0,
  sigma0_sqrt,
 mu,
 phi,
  sigma_sqrt,
 nu,
 lambda,
  theta_sqrt,
  gamma_y = NULL,
  gamma_eta = NULL,
  x = NULL,
  type = 0,
  delta_t,
  time,
 burn_in = 0
```

Arguments

mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0_sqrt	Numeric matrix. Cholesky decomposition of the covariance matrix of initial latent variable values ($\Sigma_{\eta 0}$).
mu	Numeric vector. The long-term mean or equilibrium level (μ) .
phi	Numeric matrix. The rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma_sqrt	Numeric matrix. Cholesky decomposition of the matrix of volatility or randomness in the process (Σ) .
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .
lambda	Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (Λ) .
theta_sqrt	Numeric matrix. Cholesky decomposition of the measurement error covariance matrix (Θ) .
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the observed variables at time t (Γ_y).

gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}) .
X	Numeric matrix. The matrix of observed covariates in type = 1 or type = 2. The number of rows should be equal to time + burn_in.
type	Integer. State space model type.
delta_t	Numeric. Time interval (δ_t) .
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Type 0:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\varepsilon}_{t} \quad ext{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where \mathbf{y}_t , $\boldsymbol{\eta}_t$, and $\boldsymbol{\varepsilon}_t$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. \mathbf{y}_t is a vector of observed random variables, $\boldsymbol{\eta}_t$ is a vector of latent random variables, and $\boldsymbol{\varepsilon}_t$ is a vector of random measurement errors, at time t. $\boldsymbol{\nu}$ is a vector of intercepts, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of $\boldsymbol{\varepsilon}$.

The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_t = \boldsymbol{\Phi} \left(\boldsymbol{\mu} - \boldsymbol{\eta}_t \right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_t$$

where μ is the long-term mean or equilibrium level, Φ is the rate of mean reversion, determining how quickly the variable returns to its mean, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d}W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Type 1:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\varepsilon}_{t} \quad ext{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right).$$

The dynamic structure is given by

$$\mathrm{d} \boldsymbol{\eta}_t = \boldsymbol{\Phi} \left(\boldsymbol{\mu} - \boldsymbol{\eta}_t \right) \mathrm{d}t + \boldsymbol{\Gamma}_{\boldsymbol{\eta}} \mathbf{x}_t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_t$$

where \mathbf{x}_t is a vector of covariates at time t, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Type 2:

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\Gamma}_{\mathbf{y}} \mathbf{x}_{t} + \boldsymbol{\varepsilon}_{t} \quad ext{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\Gamma_{\mathbf{y}}$ is the coefficient matrix linking the covariates to the observed variables.

The dynamic structure is given by

$$d\boldsymbol{\eta}_t = \boldsymbol{\Phi} \left(\boldsymbol{\mu} - \boldsymbol{\eta}_t \right) dt + \boldsymbol{\Gamma}_n \mathbf{x}_t + \boldsymbol{\Sigma}^{\frac{1}{2}} d\mathbf{W}_t.$$

Value

Returns a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- time: A vector of continuous time points of length t starting from 0 with delta_t increments.
- id: A vector of ones.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. *Physical Review*, 36(5), 823–841. doi:10.1103/physrev.36.823

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSMFixed(), SimSSMLinGrowth(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR(), SimSSMVAry(), SimS

```
# prepare parameters
set.seed(42)
p <- k <- 2
iden <- diag(p)</pre>
iden_sqrt <- chol(iden)</pre>
mu0 < -c(-3.0, 1.5)
sigma0_sqrt <- iden_sqrt</pre>
mu < -c(5.76, 5.18)
phi <- matrix(data = c(0.10, -0.05, -0.05, 0.10), nrow = p)
sigma_sqrt <- chol(</pre>
  matrix(data = c(2.79, 0.06, 0.06, 3.27), nrow = p)
)
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta_sqrt <- chol(diag(x = 0.50, nrow = k))
delta_t <- 0.10
time <- 50
burn_in <- 0
gamma_y <- gamma_eta <- 0.10 * diag(k)</pre>
x <- matrix(</pre>
  data = rnorm(n = k * (time + burn_in)),
  ncol = k
```

```
)
# Type 0
ssm <- SimSSMOU(
 mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  mu = mu,
  phi = phi,
  sigma_sqrt = sigma_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  type = 0,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
str(ssm)
# Type 1
ssm <- SimSSMOU(
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  mu = mu,
  phi = phi,
  sigma_sqrt = sigma_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  gamma_eta = gamma_eta,
  x = x,
  type = 1,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
str(ssm)
# Type 2
ssm <- SimSSMOU(
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  mu = mu,
  phi = phi,
  sigma_sqrt = sigma_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  gamma_y = gamma_y,
  gamma_eta = gamma_eta,
  x = x,
```

```
type = 2,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
str(ssm)
```

SimSSMOUFixed

Simulate Data from an Ornstein-Uhlenbeck Model using a State Space Model Parameterization for n > 1 Individuals (Fixed Parameters)

Description

This function simulates data from an Ornstein–Uhlenbeck model using a state space model parameterization for n > 1 individuals. In this model, the parameters are invariant across individuals. See details for more information.

Usage

```
SimSSMOUFixed(
 n,
 mu0,
  sigma0_sqrt,
 mu,
 phi,
  sigma_sqrt,
  nu,
  lambda,
  theta_sqrt,
 gamma_y = NULL,
 gamma_eta = NULL,
 x = NULL
  type = 0,
  delta_t,
  time,
 burn_in = 0
)
```

Arguments

n Positive integer. Number of individuals. mu0 Numeric vector. Mean of initial latent variable values $(\mu_{\eta|0})$. sigma0_sqrt Numeric matrix. Cholesky decomposition of the covariance matrix of initial latent variable values $(\Sigma_{\eta|0})$. mu Numeric vector. The long-term mean or equilibrium level (μ) .

phi	Numeric matrix. The rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma_sqrt	Numeric matrix. Cholesky decomposition of the matrix of volatility or randomness in the process (Σ) .
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .
lambda	Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (Λ) .
theta_sqrt	Numeric matrix. Cholesky decomposition of the measurement error covariance matrix (Θ) .
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the observed variables at time t (Γ_y) .
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}).
X	Numeric matrix. The matrix of observed covariates in type = 1 or type = 2. The number of rows should be equal to time + burn_in.
type	Integer. State space model type.
delta_t	Numeric. Time interval (δ_t) .
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Type 0:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t} \quad \text{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ is a vector of observed random variables, $\eta_{i,t}$ is a vector of latent random variables, and $\varepsilon_{i,t}$ is a vector of random measurement errors, at time t and individual i. $\boldsymbol{\nu}$ is a vector of intercepts, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of ε .

The dynamic structure is given by

$$\mathrm{d} oldsymbol{\eta}_{i,t} = oldsymbol{\Phi} \left(oldsymbol{\mu} - oldsymbol{\eta}_{i,t}
ight) \mathrm{d} t + oldsymbol{\Sigma}^{rac{1}{2}} \mathrm{d} \mathbf{W}_{i,t}$$

where μ is the long-term mean or equilibrium level, Φ is the rate of mean reversion, determining how quickly the variable returns to its mean, Σ is the matrix of volatility or randomness in the process, and dW is a Wiener process or Brownian motion, which represents random fluctuations.

Type 1:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{\nu} + \mathbf{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{arepsilon}_{i,t} \quad ext{with} \quad oldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Theta}
ight).$$

The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_{i,t} = \boldsymbol{\Phi}\left(\boldsymbol{\mu} - \boldsymbol{\eta}_{i,t}\right)\mathrm{d}t + \boldsymbol{\Gamma}_{\boldsymbol{\eta}}\mathbf{x}_{i,t} + \boldsymbol{\Sigma}^{\frac{1}{2}}\mathrm{d}\mathbf{W}_{i,t}$$

where $\mathbf{x}_{i,t}$ is a vector of covariates at time t and individual i, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

Type 2:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\Gamma}_{\mathbf{y}} \mathbf{x}_{i,t} + \boldsymbol{\varepsilon}_{i,t} \quad \text{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\Gamma_{\mathbf{y}}$ is the coefficient matrix linking the covariates to the observed variables.

The dynamic structure is given by

$$d\boldsymbol{\eta}_{i,t} = \boldsymbol{\Phi} \left(\boldsymbol{\mu} - \boldsymbol{\eta}_{i,t} \right) dt + \boldsymbol{\Gamma}_{\boldsymbol{\eta}} \mathbf{x}_{i,t} + \boldsymbol{\Sigma}^{\frac{1}{2}} d\mathbf{W}_{i,t}.$$

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- time: A vector of continuous time points of length t starting from 0 with delta_t increments.
- id: A vector of ID numbers of length t.
- n: Number of individuals.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. *Physical Review*, 36(5), 823–841. doi:10.1103/physrev.36.823

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSMFixed(), SimSSMLinGrowth(), SimSSMOUVary(), SimSSMOU(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR(), SimSSMVary(), SimSSM()

```
# prepare parameters
set.seed(42)
p <- k <- 2
iden <- diag(p)
iden_sqrt <- chol(iden)</pre>
```

```
n <- 5
mu0 < -c(-3.0, 1.5)
sigma0_sqrt <- iden_sqrt</pre>
mu < -c(5.76, 5.18)
phi <- matrix(data = c(0.10, -0.05, -0.05, 0.10), nrow = p)
sigma_sqrt <- chol(</pre>
  matrix(data = c(2.79, 0.06, 0.06, 3.27), nrow = p)
)
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta_sqrt <- chol(diag(x = 0.50, nrow = k))
delta_t <- 0.10
time <- 50
burn_in <- 0
gamma_y \leftarrow gamma_eta \leftarrow 0.10 * diag(k)
x \leftarrow lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
      )
    )
  }
)
# Type 0
ssm <- SimSSMOUFixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  mu = mu,
  phi = phi,
  sigma_sqrt = sigma_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  type = 0,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
str(ssm)
# Type 1
ssm <- SimSSMOUFixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  mu = mu,
  phi = phi,
```

```
sigma_sqrt = sigma_sqrt,
 nu = nu,
 lambda = lambda,
 theta_sqrt = theta_sqrt,
 gamma_eta = gamma_eta,
 x = x,
 type = 1,
 delta_t = delta_t,
 time = time,
 burn_in = burn_in
)
str(ssm)
# Type 2
ssm <- SimSSMOUFixed(</pre>
 n = n,
 mu0 = mu0,
 sigma0_sqrt = sigma0_sqrt,
 mu = mu,
 phi = phi,
 sigma_sqrt = sigma_sqrt,
 nu = nu,
 lambda = lambda,
 theta_sqrt = theta_sqrt,
 gamma_y = gamma_y,
 gamma_eta = gamma_eta,
 x = x,
 type = 2,
 delta_t = delta_t,
 time = time,
 burn_in = burn_in
)
str(ssm)
```

SimSSMOUVary

Simulate Data from an Ornstein-Uhlenbeck Model using a State Space Model Parameterization for n > 1 Individuals (Varying Parameters)

Description

This function simulates data from an Ornstein–Uhlenbeck model using a state space model parameterization for n > 1 individuals. In this model, the parameters can vary across individuals.

Usage

```
SimSSMOUVary(
   n,
```

```
mu0,
  sigma0_sqrt,
 mu,
  phi,
  sigma_sqrt,
  nu,
  lambda,
  theta_sqrt,
  gamma_y = NULL,
  gamma_eta = NULL,
  x = NULL
  type = 0,
  delta_t,
  time,
 burn_in = 0
)
```

Arguments

n Positive integer. Number of individuals.

mu0 Numeric vector. Mean of initial latent variable values $(\mu_{\eta|0})$.

sigma@_sqrt Numeric matrix. Cholesky decomposition of the covariance matrix of initial

latent variable values $(\Sigma_{\eta|0})$.

mu List of numeric vectors. The long-term mean or equilibrium level (μ) .

phi List of numeric matrices. The rate of mean reversion, determining how quickly

the variable returns to its mean (Φ) .

sigma_sqrt List of numeric matrices. Cholesky decomposition of the matrix of volatility or

randomness in the process (Σ) .

nu Numeric vector. Vector of intercepts for the measurement model (ν) .

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-

served variables (Λ) .

theta_sqrt Numeric matrix. Cholesky decomposition of the measurement error covariance

matrix (Θ) .

gamma_y Numeric matrix. Matrix relating the values of the covariate matrix at time t to

the observed variables at time t $(\Gamma_{\mathbf{v}})$.

gamma_eta Numeric matrix. Matrix relating the values of the covariate matrix at time t to

the latent variables at time t (Γ_{η}) .

x Numeric matrix. The matrix of observed covariates in type = 1 or type = 2.

The number of rows should be equal to time + burn_in.

type Integer. State space model type.

delta_t Numeric. Time interval (δ_t) .

time Positive integer. Number of time points to simulate.

burn_in Positive integer. Number of burn-in points to exclude before returning the re-

sults.

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any of the parameters (mu0, sigma0_sqrt, mu, phi, sigma_sqrt, nu, lambda, theta_sqrt, gamma_y, or gamma_eta) is less the n, the function will cycle through the available values.

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- time: A vector of discrete time points from 1 to t.
- id: A vector of ID numbers of length t.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. *Physical Review*, *36*(5), 823–841. doi:10.1103/physrev.36.823

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSMFixed(), SimSSMLinGrowth(), SimSSMOUFixed(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR(), SimSSMVAry(), SimSSM

```
# prepare parameters
# In this example, phi varies across individuals
set.seed(42)
p <- k <- 2
iden <- diag(p)
iden_sqrt <- chol(iden)
n <- 5
mu0 <- list(c(-3.0, 1.5))
sigma0_sqrt <- list(iden_sqrt)
mu <- list(c(5.76, 5.18))
phi <- list(
    as.matrix(Matrix::expm(diag(x = -0.1, nrow = k))),
    as.matrix(Matrix::expm(diag(x = -0.2, nrow = k))),
    as.matrix(Matrix::expm(diag(x = -0.3, nrow = k))),</pre>
```

```
as.matrix(Matrix::expm(diag(x = -0.4, nrow = k))),
  as.matrix(Matrix::expm(diag(x = -0.5, nrow = k)))
)
sigma_sqrt <- list(</pre>
  chol(
    matrix(data = c(2.79, 0.06, 0.06, 3.27), nrow = p)
  )
)
nu \leftarrow list(rep(x = 0, times = k))
lambda <- list(diag(k))</pre>
theta_sqrt <- list(chol(diag(x = 0.50, nrow = k)))
delta_t <- 0.10
time <- 50
burn_in <- 0
gamma_y \leftarrow gamma_eta \leftarrow list(0.10 * diag(k))
x \leftarrow lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
      )
    )
 }
)
# Type 0
ssm <- SimSSMOUVary(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  mu = mu,
  phi = phi,
  sigma_sqrt = sigma_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  type = 0,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
str(ssm)
# Type 1
ssm <- SimSSMOUVary(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  mu = mu,
  phi = phi,
```

30 SimSSMVAR

```
sigma_sqrt = sigma_sqrt,
 nu = nu,
 lambda = lambda,
 theta_sqrt = theta_sqrt,
 gamma_eta = gamma_eta,
 x = x,
 type = 1,
 delta_t = delta_t,
 time = time,
 burn_in = burn_in
)
str(ssm)
# Type 2
ssm <- SimSSMOUVary(</pre>
 n = n,
 mu0 = mu0,
 sigma0_sqrt = sigma0_sqrt,
 mu = mu,
 phi = phi,
 sigma_sqrt = sigma_sqrt,
 nu = nu,
 lambda = lambda,
 theta_sqrt = theta_sqrt,
 gamma_y = gamma_y,
 gamma_eta = gamma_eta,
 x = x,
 type = 2,
 delta_t = delta_t,
 time = time,
 burn_in = burn_in
str(ssm)
```

SimSSMVAR

Simulate Data from the Vector Autoregressive Model using a State Space Model Parameterization (n = 1)

Description

This function simulates data from the vector autoregressive model using a state space model parameterization. See details for more information.

Usage

```
SimSSMVAR(
   mu0,
```

SimSSMVAR 31

```
sigma0_sqrt,
alpha,
beta,
psi_sqrt,
gamma_eta = NULL,
x = NULL,
time = 0,
burn_in = 0
)
```

Arguments

mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0_sqrt	Numeric matrix. Cholesky decomposition of the covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	Numeric vector. Vector of intercepts for the dynamic model (α) .
beta	Numeric matrix. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi_sqrt	Numeric matrix. Cholesky decomposition of the process noise covariance matrix (Ψ) .
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}).
х	Numeric matrix. The matrix of observed covariates in type = 1 or type = 2. The number of rows should be equal to time + burn_in.
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

The measurement model is given by

$$\mathbf{y}_t = \boldsymbol{\eta}_t$$
.

The dynamic structure is given by

$$oldsymbol{\eta}_t = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{t-1} + oldsymbol{\zeta}_t \quad ext{with} \quad oldsymbol{\zeta}_t \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Psi}
ight)$$

where η_t , η_{t-1} , and ζ_t are random variables, and α , β , and Ψ are model parameters. η_t is a vector of latent variables at time t, η_{t-1} is a vector of latent variables at time t-1, and ζ_t is a vector of dynamic noise at time t. α is a vector of intercepts, β is a matrix of autoregression and cross regression coefficients, and Ψ is the covariance matrix of ζ_t .

Note that when gamma_eta and x are not NULL, the dynamic structure is given by

$$oldsymbol{\eta}_t = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{t-1} + oldsymbol{\Gamma}_{oldsymbol{\eta}} \mathbf{x}_t + oldsymbol{\zeta}_t \quad ext{with} \quad oldsymbol{\zeta}_t \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Psi}
ight)$$

where \mathbf{x}_t is a vector of covariates at time t, and Γ_{η} is the coefficient matrix linking the covariates to the latent variables.

32 SimSSMVAR

Value

Returns a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- time: A vector of discrete time points from 0 to t 1.
- id: A vector of ones.

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSMFixed(), SimSSMLinGrowth(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMOU(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVary(), SimSS

```
# prepare parameters
set.seed(42)
k <- 3
iden <- diag(k)</pre>
iden_sqrt <- chol(iden)</pre>
null_vec <- rep(x = 0, times = k)
mu0 <- null_vec
sigma0_sqrt <- iden_sqrt</pre>
alpha <- null_vec
beta \leftarrow diag(x = 0.5, nrow = k)
psi_sqrt <- iden_sqrt</pre>
time <- 50
burn_in <- 0
gamma_eta <- 0.10 * diag(k)
x <- matrix(
  data = rnorm(n = k * (time + burn_in)),
  ncol = k
)
# No covariates
ssm <- SimSSMVAR(</pre>
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  time = time,
```

SimSSMVARFixed 33

```
burn_in = burn_in
)
str(ssm)

# With covariates
ssm <- SimSSMVAR(
   mu0 = mu0,
   sigma0_sqrt = sigma0_sqrt,
   alpha = alpha,
   beta = beta,
   psi_sqrt = psi_sqrt,
   gamma_eta = gamma_eta,
   x = x,
   time = time,
   burn_in = burn_in
)
str(ssm)</pre>
```

SimSSMVARFixed

Simulate Data from a Vector Autoregressive Model using a State Space Model Parameterization for n > 1 Individuals (Fixed Parameters)

Description

This function simulates data from a vector autoregressive model using a state space model parameterization for n > 1 individuals. In this model, the parameters are invariant across individuals.

Usage

```
SimSSMVARFixed(
    n,
    mu0,
    sigma0_sqrt,
    alpha,
    beta,
    psi_sqrt,
    gamma_eta = NULL,
    x = NULL,
    time = 0,
    burn_in = 0
)
```

Arguments

n Positive integer. Number of individuals. mu0 Numeric vector. Mean of initial latent variable values $(\mu_{\eta|0})$.

34 SimSSMVARFixed

sigma0_sqrt	Numeric matrix. Cholesky decomposition of the covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	Numeric vector. Vector of intercepts for the dynamic model (α) .
beta	Numeric matrix. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi_sqrt	Numeric matrix. Cholesky decomposition of the process noise covariance matrix (Ψ) .
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}) .
x	A list of length n of numeric matrices. Each element of the list is a matrix of observed covariates in type = 1 or type = 2. The number of rows in each matrix should be equal to time + burn_in.
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- time: A vector of discrete time points from 1 to t.
- id: A vector of ID numbers of length t.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSMFixed(), SimSSMLinGrowth(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMVARVary(), SimSSMVARVary(), SimSSMVARVary(), SimSSMVARVary(), SimSSMVARVary(), SimSSMVARVary(), SimSSMVary(), SimSMVary(), SimS

SimSSMVARFixed 35

```
# prepare parameters
set.seed(42)
k <- 3
iden <- diag(k)</pre>
iden_sqrt <- chol(iden)</pre>
null_vec \leftarrow rep(x = 0, times = k)
n <- 5
mu0 <- null_vec
sigma0_sqrt <- iden_sqrt</pre>
alpha <- null_vec</pre>
beta <- diag(x = 0.5, nrow = k)
psi_sqrt <- iden_sqrt</pre>
time <- 50
burn_in <- 0</pre>
gamma_eta <- 0.10 * diag(k)
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
      )
    )
 }
)
# No covariates
ssm <- SimSSMVARFixed(</pre>
 n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  time = time,
  burn_in = burn_in
)
str(ssm)
# With covariates
ssm <- SimSSMVARFixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  gamma_eta = gamma_eta,
  x = x,
```

36 SimSSMVARVary

```
time = time,
burn_in = burn_in
)
str(ssm)
```

SimSSMVARVary

Simulate Data from a Vector Autoregressive Model using a State Space Model Parameterization for n > 1 Individuals (Varying Parameters)

Description

This function simulates data from a vector autoregressive model using a state space model parameterization for n > 1 individuals. In this model, the parameters can vary across individuals.

Usage

```
SimSSMVARVary(
    n,
    mu0,
    sigma0_sqrt,
    alpha,
    beta,
    psi_sqrt,
    gamma_eta = NULL,
    x = NULL,
    time = 0,
    burn_in = 0
)
```

Arguments

n	Positive integer. Number of individuals.
mu0	List of numeric vectors. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0_sqrt	List of numeric matrices. Cholesky decomposition of the covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	List of numeric vectors. Vector of intercepts for the dynamic model (α) .
beta	List of numeric matrices. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi_sqrt	List of numeric matrices. Cholesky decomposition of the process noise covariance matrix (Ψ) .
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_n) .

SimSSMVARVary 37

x	A list of length n of numeric matrices. Each element of the list is a matrix of observed covariates in type = 1 or type = 2. The number of rows in each matrix should be equal to time + burn_in.
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any of the parameters (mu0, sigma0_sqrt, alpha, beta, psi_sqrt, or gamma_eta) is less the n, the function will cycle through the available values.

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- time: A vector of discrete time points from 1 to t.
- id: A vector of ID numbers of length t.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSMFixed(), SimSSMLinGrowth(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMOU(), SimSSMVARFixed(), SimSSMVAR(), SimSSMVary(), SimSSM()

```
# prepare parameters
# In this example, beta varies across individuals
set.seed(42)
k <- 3
iden <- diag(k)
iden_sqrt <- chol(iden)
null_vec <- rep(x = 0, times = k)
n <- 5</pre>
```

38 SimSSMVARVary

```
mu0 <- list(null_vec)</pre>
sigma0_sqrt <- list(iden_sqrt)</pre>
alpha <- list(null_vec)</pre>
beta <- list(</pre>
  diag(x = 0.1, nrow = k),
  diag(x = 0.2, nrow = k),
  diag(x = 0.3, nrow = k),
  diag(x = 0.4, nrow = k),
  diag(x = 0.5, nrow = k)
)
psi_sqrt <- list(iden_sqrt)</pre>
time <- 50
burn_in <- 0</pre>
gamma_eta \leftarrow list(0.10 * diag(k))
x <- lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
      )
    )
  }
)
# No covariates
ssm <- SimSSMVARVary(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  time = time,
  burn_in = burn_in
)
str(ssm)
# With covariates
ssm <- SimSSMVARVary(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  gamma_eta = gamma_eta,
  x = x,
  time = time,
  burn_in = burn_in
)
```

str(ssm)

SimSSMVary Simulate Data using a State Space Model Parameterization for n > 1Individuals (Varying Parameters)

Description

This function simulates data using a state space model parameterization for n > 1 individuals. In this model, the parameters can vary across individuals.

Usage

```
SimSSMVary(
  n,
  type,
 mu0,
  sigma0_sqrt,
  alpha,
 beta,
  psi_sqrt,
  nu,
  lambda,
  theta_sqrt,
  gamma_y = NULL,
  gamma_eta = NULL,
 x = NULL
  time = 0,
  burn_in = 0
)
```

Arguments n

type	Integer. State space model type.
mu0	List of numeric vectors. Mean of initial latent variable values $(\mu_{n 0})$.

Positive integer. Number of individuals.

sigma@_sqrt List of numeric matrices. Cholesky decomposition of the covariance matrix of

initial latent variable values $(\Sigma_{\eta|0})$.

alpha List of numeric vectors. Vector of intercepts for the dynamic model (α) .

beta List of numeric matrices. Transition matrix relating the values of the latent

variables at time t - 1 to those at time $t (\beta)$.

psi_sqrt List of numeric matrices. Cholesky decomposition of the process noise covari-

ance matrix (Ψ) .

nu	List of numeric vectors. Vector of intercepts for the measurement model (ν) .
lambda	List of numeric matrices. Factor loading matrix linking the latent variables to the observed variables (Λ) .
theta_sqrt	List of numeric matrices. Cholesky decomposition of the measurement error covariance matrix (Θ) .
gamma_y	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the observed variables at time t (Γ_y) .
gamma_eta	Numeric matrix. Matrix relating the values of the covariate matrix at time t to the latent variables at time t (Γ_{η}).
х	A list of length n of numeric matrices. Each element of the list is a matrix of observed covariates in type = 1 or type = 2. The number of rows in each matrix should be equal to time + burn_in.
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any of the parameters (mu0, sigma0_sqrt, alpha, beta, psi_sqrt, nu, lambda, theta_sqrt, gamma_y, or gamma_eta) is less the n, the function will cycle through the available values.

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- x: A t by j matrix of values for the covariates.
- time: A vector of discrete time points from 1 to t.
- id: A vector of ID numbers of length t.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. *Structural Equation Modeling: A Multidisciplinary Journal*, 17(2), 303–332. doi:10.1080/10705511003661553

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSMFixed(), SimSSMLinGrowth(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMOU(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR(), SimSSM()

```
# prepare parameters
# In this example, beta varies across individuals
set.seed(42)
k <- p <- 3
iden <- diag(k)</pre>
iden_sqrt <- chol(iden)</pre>
null\_vec \leftarrow rep(x = 0, times = k)
n <- 5
mu0 <- list(null_vec)</pre>
sigma0_sqrt <- list(iden_sqrt)</pre>
alpha <- list(null_vec)</pre>
beta <- list(</pre>
  diag(x = 0.1, nrow = k),
  diag(x = 0.2, nrow = k),
  diag(x = 0.3, nrow = k),
  diag(x = 0.4, nrow = k),
  diag(x = 0.5, nrow = k)
psi_sqrt <- list(iden_sqrt)</pre>
nu <- list(null_vec)</pre>
lambda <- list(iden)</pre>
theta_sqrt <- list(chol(diag(x = 0.50, nrow = k)))
time <- 50
burn_in <- 0
gamma_y <- gamma_eta <- list(0.10 * diag(k))</pre>
x \leftarrow lapply(
  X = seq_len(n),
  FUN = function(i) {
    return(
      matrix(
        data = rnorm(n = k * (time + burn_in)),
        ncol = k
    )
 }
)
# Type 0
ssm <- SimSSMVary(</pre>
  n = n,
  type = 0,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  time = time,
  burn_in = burn_in
```

```
)
str(ssm)
# Type 1
ssm <- SimSSMVary(
 n = n,
  type = 1,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  gamma_eta = gamma_eta,
 x = x,
 time = time,
  burn_in = burn_in
)
str(ssm)
# Type 2
ssm <- SimSSMVary(</pre>
 n = n,
  type = 2,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  gamma_y = gamma_y,
  gamma_eta = gamma_eta,
  x = x,
  time = time,
  burn_in = burn_in
)
str(ssm)
```

Index

* Simulation of State Space Models Data	SimSSMFixed, 9
Functions	SimSSMLinGrowth, 14
0U2SSM, 2	SimSSMOU, 18
Sim2Matrix, 3	SimSSMOUFixed, 22
SimSSM, 5	SimSSMOUVary, 26
SimSSMFixed, 9	SimSSMVAR, 30
SimSSMLinGrowth, 14	SimSSMVARFixed, 33
SimSSMOU, 18	SimSSMVARVary, 36
SimSSMOUFixed, 22	SimSSMVary, 39
SimSSMOUVary, 26	* SSM
SimSSMVAR, 30	SimSSM, 5
SimSSMVARFixed, 33	SimSSMFixed, 9
SimSSMVARVary, 36	SimSSMVary, 39
SimSSMVary, 39	* var
* growth	SimSSMVAR, 30
SimSSMLinGrowth, 14	SimSSMVARFixed, 33
* misc	SimSSMVARVary, 36
Sim2Matrix, 3	
* 0u	OU2SSM, 2, 4, 8, 12, 16, 20, 24, 28, 32, 34, 37,
OU2SSM, 2	40
SimSSMOU, 18	Cim2Naturia 2 2 0 12 16 20 24 20 22 24
SimSSMOUFixed, 22	Sim2Matrix, 3, 3, 8, 12, 16, 20, 24, 28, 32, 34,
SimSSMOUVary, 26	37, 40
* simStateSpace	SimSSM, 3, 4, 5, 12, 16, 20, 24, 28, 32, 34, 37,
OU2SSM, 2	40
Sim2Matrix, 3	SimSSM(), 3, 4 SimSSMFixed 2, 4, 8, 0, 16, 20, 24, 28, 22, 24
SimSSM, 5	SimSSMFixed, 3, 4, 8, 9, 16, 20, 24, 28, 32, 34,
SimSSMFixed, 9	37, 40
SimSSMLinGrowth, 14	SimSSMFixed(), 3, 4 SimSSMLinGrowth, 3, 4, 8, 12, 14, 20, 24, 28,
SimSSMOU, 18	32, 34, 37, 40
SimSSMOUFixed, 22	SimSSMOU, 3, 4, 8, 12, 16, 17, 24, 28, 32, 34,
SimSSMOUVary, 26	37, 40
SimSSMVAR, 30	SimSSMOU(), 3, 4
SimSSMVARFixed, 33	SimSSMOUFixed, 3, 4, 8, 12, 16, 20, 22, 28, 32,
SimSSMVARVary, 36	34, 37, 40
SimSSMVary, 39	SimSSMOUFixed(), 3, 4
* sim	SimSSMOUVary, 3, 4, 8, 12, 16, 20, 24, 26, 32,
OU2SSM, 2	34, 37, 40
SimSSM, 5	SimSSMOUVary(), 3, 4
J ± 111 J J 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jimoorioo var y (), J, T

INDEX

```
\begin{array}{l} {\rm SimSSMVAR}, 3, 4, 8, 12, 16, 20, 24, 28, 30, 34, \\ 37, 40 \\ {\rm SimSSMVAR}(), 3, 4 \\ {\rm SimSSMVARFixed}, 3, 4, 8, 12, 16, 20, 24, 28, \\ 32, 33, 37, 40 \\ {\rm SimSSMVARFixed}(), 3, 4 \\ {\rm SimSSMVARVary}, 3, 4, 8, 12, 16, 20, 24, 28, 32, \\ 34, 36, 40 \\ {\rm SimSSMVARVary}(), 3, 4 \\ {\rm SimSSMVARVary}, 3, 4, 8, 12, 16, 20, 24, 28, 32, 34, \\ 37, 39 \\ {\rm SimSSMVary}(), 3, 4 \\ \\ {\rm SimSMVary}(), 3, 4 \\ \\ {\rm SimSMVary}(),
```