195. Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de Cauchy tal que x_n es un número entero para todo $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es eventualmente constante.

Solución. Sea $\varepsilon = 1/2$, dado que la sucesión es de Cauchy existirá $N \in \mathbb{N}$ tal que para todo $m \geq N$ se tendrá en particular que $0 \leq |x_m - x_N| \leq 1/2$,

de forma que la distancia entre $x_m \in \mathbb{Z}$ y $x_N \in \mathbb{Z}$ es menor que 1,

luego necesariamente $x_m = x_N$ cualquiera que sea $m \ge N$ (cf. Ej. 69)

Esto quiere decir que la sucesión es eventualmente (a partir de cierto instante $N \in \mathbb{N}$) constante.

196. Demuestra directamente que una sucesión monótona creciente y acotada es una sucesión de Cauchy.

Solución. Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión monótona creciente y acotada. Dado que $\{x_n : n \in \mathbb{N}\}$ es un conjunto acotado superiormente por hipótesis existe el número real $s = \sup\{x_n : n \in \mathbb{N}\}$. Como sabemos, de su definición se deduce que para todo número real $\varepsilon > 0$ existe $N_{\varepsilon} \in \mathbb{N}$ tal que $s - \varepsilon < x_{N_{\varepsilon}}$, de forma que para cualesquiera $m \geq n \geq N_{\varepsilon}$, se deduce al ser la sucesión monótona creciente y acotada por s que $s - \varepsilon < x_n \leq x_m \leq s$, de forma que $|x_m - x_n| \leq \varepsilon$, como queríamos demostrar.

202. La ecuación polinómica $x^3 - 5x + 1 = 0$ tiene una solución $r \in \mathbb{R}$ con 0 < r < 1. Emplea una sucesión contractiva adecuada para calcular r con una precisión de 10^{-4} .

Solución. Bastará emplear:

$$x_1 \in (0,1), \quad x_n := \frac{x_{n-1}^3 + 1}{5},$$

Probemos que $0 < x_n < 1$ para todo $n \in \mathbb{N}$ por inducción, el caso base es trivial, y el inductivo:

$$0 < \frac{1}{5} = \frac{0+1}{5} \le x_{n+1} = \frac{x_n^3 + 1}{5} \le \frac{1^3 + 1}{5} = \frac{2}{5} < 1$$

Veamos que la sucesión es contractiva:

$$|x_{n+2} - x_{n+1}| = \frac{1}{5} \left| (x_{n+1}^3 + 1) - (x_n^3 + 1) \right| = \frac{1}{5} |x_{n+1}^3 - x_n|^3 \le \frac{1}{5} |x_{n+1} - x_n|^3 \le \frac{1}{5} |x_{n+$$

Se puede comprobar que $x_4 = 0,2016406...$ es la aproximación que queremos.

203. Demuestra que toda sucesión no acotada de números reales posee una subsucesión divergente.

Solución. Supongamos que la sucesión $\{x_n\}$ no es acotada superiormente (se hace de manera análoga si no lo es inferiormente).

Sea n_1 tal que $x_{n_1} > 1$.

Dado que $\{x_n\}_{n=1}^{\infty} \setminus \{x_1,...,x_{n_1}\}$ sigue siendo no acotada superiormente,

(si lo fuese, el máximo de una cota superior de ésta y los $x_1, ..., x_{n_1}$ sería una cota superior para la original, que no existe por hipótesis),

sea $n_2 > n_1$ el primer índice tal que $x_{n_2} > \max\{2, x_{n_1}\}$.

Repetimos el proceso obteniendo una subsucesión $\{x_{n_k}\}$ tal que $x_{n_k} \ge k$ y $x_{n_k} > x_{n_{k-1}}$, la cual es monótona creciente y no acotada, por tanto divergente.

204. Proporciona ejemplos de sucesiones $\{x_n : n \in \mathbb{N}\}\$ e $\{y_n : n \in \mathbb{N}\}\$, divergentes, tales que $y_n \neq 0$ para todo $n \in \mathbb{N}$ y satisfaciendo que:

- (1) $\{x_n/y_n : n \in \mathbb{N}\}$ es convergente;
- (2) $\{x_n/y_n : n \in \mathbb{N}\}$ es divergente.

Solución. (1)
$$x_n = y_n = n$$
; (2) $x_n = n^2$, $y_n = n$.

¿Qué deducimos? Deducimos con ello que el comportamiento de la sucesión $\{x_n/y_n\}$ no es suficiente para determinar que $\{x_n\}$ e $\{y_n\}$ sean divergentes.

205. Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales positivos. Demuestra que $\lim_{n\to\infty} x_n = 0$ si y solo si $\lim_{n\to\infty} 1/x_n = \infty$.

Solución. Probemos solo (⇒), la implicación recíproca será clara.

Supongamos que $\forall \varepsilon, \exists N_{\varepsilon}, \forall n \geq N_{\varepsilon}, |x_n - 0| \leq \varepsilon$ $(|x_n| \leq \varepsilon \iff \frac{1}{\varepsilon} \leq |\frac{1}{x_n}|).$

Entonces: $\forall M > 0, \ \exists \tilde{N}_M := N_{1/M}, \ \forall n \geq \tilde{N}_M, \ |\frac{1}{x_n}| \geq M.$

207. ¿Es la sucesión $\{n \operatorname{sen}(n) : n \in \mathbb{N}\}$ propiamente divergente?

Solución. Sabemos que existe subsucesión $\{\operatorname{sen}(n_k): k \in \mathbb{N}\}$ tal que $\operatorname{sen}(n_k) \geq 1/2$.

Entonces $n_k \operatorname{sen}(n_k) \ge n_k/2 \to \infty$ cuando $k \to \infty$ y así hay una subsucesión divergente a $+\infty$.

Sabemos que existe otra subsucesión m_k tal que $sen(m_k) < -1/2$.

De esta forma, tenemos otra subsucesión $m_k \operatorname{sen}(m_k)$, pero divergente a $-\infty$.

Por tanto, la sucesión original no puede ser propiamente divergente.

208. Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales propiamente divergente y sea $\{y_n : n \in \mathbb{N}\}$ una sucesión tal que $\lim_{n\to\infty} x_n y_n$ existe. Demuestra que $\lim_{n\to\infty} y_n = 0$.

 $\textbf{Solución.} \bullet \forall M > 0 \quad \exists N_M \quad \forall n \geq N_M \quad |x_n| \geq M \quad \bullet \ \forall \varepsilon > 0 \quad \exists N_\varepsilon' \quad \forall n \geq N_\varepsilon' \quad |x_n y_n - L| \leq \varepsilon$

Entonces $\{x_ny_n\}_{n=1}^{\infty}$ es acotada y existe C>0 tal que $|x_ny_n|< C$ para todo $n\in\mathbb{N}$.

Con ello,
$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon}'' := N_{C/\varepsilon} \quad \forall n \geq N_{\varepsilon}'' \quad |y_n - 0| = |y_n| = \frac{|x_n y_n|}{|x_n|} \leq \frac{C}{C/\varepsilon} = \varepsilon$$
, luego $y_n \to 0$.

209. Sean $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ dos sucesiones de números reales positivos tales que $\lim_{n \to \infty} x_n/y_n = 0$.

- (1) Demuestra que si $\lim_{n\to\infty} x_n = \infty$, entonces $\lim_{n\to\infty} y_n = \infty$.
- (2) Demuestra que si $\{y_n : n \in \mathbb{N}\}$ es una sucesión acotada, entonces $\lim_{n \to \infty} x_n = 0$.

Solución. (1) Tenemos que

- $\quad \blacksquare \ \, \forall \varepsilon > 0 \quad \exists N_\varepsilon \in \mathbb{N} \quad \forall n \geq N_\varepsilon \quad |\tfrac{x_n}{y_n} 0| \leq \varepsilon$
- \bullet en particular para $\varepsilon=1,\,\forall n\geq \overset{s^n}{N_1},\,-1\leq \frac{x_n}{y_n}\leq 1\implies x_n\leq y_n$
- por otra parte: $\forall M > 0 \quad \exists N_M' \in \mathbb{N} \quad \forall n \geq N_M' \quad M \leq x_n$

Con ello, $\forall K > 0 \quad \exists N_K'' := \max\{N_1, N_K'\} \quad \forall n \ge N_M'' \quad y_n \ge x_n \ge K.$

- (2) Tenemos que
 - $\quad \blacksquare \ \, \forall \varepsilon > 0 \quad \exists N_\varepsilon \in \mathbb{N} \quad \forall n \geq N_\varepsilon \quad |\tfrac{x_n}{y_n} 0| \leq \varepsilon$
 - con lo que $|x_n| \le \varepsilon |y_n|$ para todo $n \ge N_{\varepsilon}$.
 - por otra parte: $\exists M > 0$ tal que $|y_n| \leq M$ para todo $n \in \mathbb{N}$.

Con ello, $\forall \varepsilon > 0 \ \exists N_{\varepsilon}'' \in \mathbb{N} \ \text{tal que} \ \forall n \geq N_{\varepsilon}'' := N_{\varepsilon/M}, \ |x_n| \leq |y_n| \frac{\varepsilon}{M} \leq \varepsilon$

210. Determina si la sucesión $\{x_n : n \in \mathbb{N}\}$ es divergente o no, si:

- (1) $x_n = \sqrt{n^2 + 2}$ para todo $n \in \mathbb{N}$;
- (2) $x_n = \sqrt{n}/(n^2 + 1)$ para todo $n \in \mathbb{N}$;
- (3) $x_n = \sqrt{n^2 + 1}/\sqrt{n}$ para todo $n \in \mathbb{N}$;
- (4) $x_n = \operatorname{sen}(\sqrt{n})$ para todo $n \in \mathbb{N}$.

Solución. (1) Sí, $\sqrt{n^2+2} \ge \sqrt{n^2} = n \to \infty$.

(2) No,
$$0 \le \frac{\sqrt{n}}{n^2 + 1} \le \frac{\sqrt{n}}{n^2} = \frac{1}{n^{3/2}} \to 0$$
.

(3) Sí,
$$\frac{\sqrt{n^2+1}}{\sqrt{n}} \ge \sqrt{\frac{n^2}{n}} = \sqrt{n} \to \infty$$
.

(4) No es convergente. Se deduce de la no-convergencia de su subsucesión $\{\operatorname{sen}(n)\}_{n=1}^{\infty}$.

211. Sean $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ dos sucesiones de números positivos tales que $\lim_{n \to \infty} x_n/y_n = \infty$.

- (1) Demuestra que si $\lim_{n\to\infty} y_n = \infty$, entonces $\lim_{n\to\infty} x_n = \infty$.
- (2) Demuestra que si $\{x_n : n \in \mathbb{N}\}$ es una sucesión acotada, entonces $\lim_{n \to \infty} y_n = 0$.

Solución.

(1)
$$\bullet$$
 $\forall C > 0$ $\exists N_C$ $\forall n \ge N_C$ $|x_n/y_n| \ge C \iff x_n \ge Cy_n$

•
$$\forall D > 0 \quad \exists M_D \quad \forall n \ge M_D \quad y_n \ge D$$

$$\implies \ \, \forall E>0 \quad \exists K_E:=\max\{N_{\sqrt{E}},M_{\sqrt{E}}\} \quad \forall n\geq K_E \quad x_n\geq \sqrt{E}y_n\geq \sqrt{E}\sqrt{E}=E.$$

(2)
$$\bullet$$
 $\forall C > 0$ $\exists N_C$ $\forall n \ge N_C$ $|x_n/y_n| \ge C \iff y_n \le \frac{x_n}{C}$

$$\bullet \quad \exists D > 0 \quad 0 \le x_n \le D$$

$$\implies \forall E > 0 \quad \exists K_E := \max\{N_{D/E}\} \quad \forall n \ge K_E \quad |y_n - 0| = y_n \le x_n \frac{E}{D} \le D \frac{E}{D} = E.$$