

AREA DE UNA REGIÓN PLANA

EJEMPLO

Calcular el área de la región D limitada por las curvas:

1)
$$x-2y=-1$$
, $y=-(x-2)^3$, $y=-1+\sqrt{8x-24}$

TIPO I

A:
$$X-2y = -1 \implies X = 2y-1$$

A:
$$X-2y=-1 \Rightarrow x=2y-1$$

B: $y=-(x-2)^3 \Rightarrow -y=(x-2)^3$
 $\Rightarrow \sqrt[3]{-y}=x-2$
 $\Rightarrow x=\sqrt[3]{-y}+2 \Rightarrow x=\sqrt[3]{y}+2$

C:
$$y = -1 + \sqrt{8x - 24}$$

 $\Rightarrow y + 1 = \sqrt{8x - 24}$
 $\Rightarrow (y + 1)^2 + 24 = 8x \Rightarrow x = \frac{1}{8}(y + 1)^2 + 3$

i) Region D1
$$A(D_1) = \int_{-1}^{1} \left[\frac{1}{8} (y+1)^2 + 3 - (-y^{1/3} + 2) \right] dy$$

$$= \int_{-1}^{1} \left[\frac{1}{8} (y+1)^{2} + y^{1/3} + 1 \right] dy$$

$$= \left[\frac{1}{8} \cdot \frac{(y+1)^{3}}{3} + \frac{3}{4} y^{4/3} + y \right]_{-1}^{1}$$

$$= \frac{1}{3} + \frac{3}{4} + 1 - \left(0 + \frac{3}{4} - 1 \right)$$

$$A(D_1) = \frac{7}{3}$$

(ii) Región D2
A(D2) =
$$\int_{1}^{3} \left[\frac{1}{8} (y+1)^{2} + 3 - (2y-1) \right] dy$$

$$= \int_{1}^{3} \left[\frac{1}{8} (y+1)^{2} - 2y + 4 \right] dy$$

$$= \left[\frac{1}{8} \cdot (\frac{y+1}{3})^{3} - \frac{2y^{2}}{2} + 4y \right]_{1}^{3}$$

$$= \frac{8}{3} - 9 + 12 - \left(\frac{1}{3} - 1 + 4 \right)$$

$$\left[A\left(D_{2}\right)=\frac{7}{3}\right]$$

Lueyo,
$$A(D) = A(D_1) + A(D_2)$$

= $\frac{1}{3} + \frac{1}{3}$
 $A(D) = \frac{14}{3} \mu^2$

EJEMPLO

Calcular el área de la región D limitada por las curvas:

1)
$$x-2y=-1$$
, $y=-(x-2)^3$, $y=-1+\sqrt{8x-24}$

TIPO I

A:
$$X-2y = -1 \Rightarrow y = \frac{x+1}{2}$$

B: $y = -(x-2)^3$
C: $y = -1 + \sqrt{8x-24}$

B:
$$\Delta = -(x-2)^3$$

c:
$$y = -1 + \sqrt{8}x - 24$$

i) Region 21
$$A(D1) = \int_{1}^{3} \left[\frac{x+1}{2} - (-(x-2)^{3}) \right] dx$$

$$= \int_{1}^{3} \left[\frac{1}{2} (x+1)^{1} + (x-1)^{3} \right] dx = \frac{(ax+b)^{n+1}}{n+1} \cdot \frac{1}{a}$$

$$= \left[\frac{1}{2} \cdot (\frac{x+1}{2})^{2} + (\frac{x-2}{4})^{4} \right]_{1}^{3}$$

$$= 4 + \frac{1}{4} - (1 + \frac{1}{4})$$

$$= 4 + \frac{1}{4} - (1 + \frac{1}{4})$$

$$\frac{Realon D_2}{A(D_2)} = \int_3^5 \left[\frac{x+1}{2} - \left(-1 + \sqrt{8x-24} \right) \right] dx$$

$$= \int_3^5 \left[\frac{1}{2} (x+1)^1 + 1 - \left(8x-24 \right)^{1/2} \right] dx$$

$$= \left[\frac{1}{2} \cdot \frac{(x+1)^2}{2} + x - \frac{1}{2} (8x-24)^{3/2} \cdot \frac{1}{8} \right]_3^5$$

$$= Q + 5 - \frac{1}{12} (64) - \left(4 + 3 - \frac{1}{12} (0) \right)$$

$$A(D_2) = 5/3$$

$$A(D_2) = 5/3$$

Lucyo,
$$A(D) = A(D_1) + A(D_2)$$

= $3 + \frac{5}{3}$
 $A(D) = \frac{14}{3} U^2$

2) Halle el área de la región limitada por las curvas: $y = sen^2\left(\frac{\pi}{4}x\right) + 2$; $y = \sqrt{4-x}$; y = x-2.

501

Tipo I

$$A: Y = Sen^2(\mathbb{T}^{\times}) + 2$$

$$C: y = X - 2$$

$$A = B$$

$$A =$$

$$A(D_{2}) = \int_{3}^{4} \left[\operatorname{Sen}^{2} \left(\frac{\pi}{4} x \right) + 2 - (x-2) \right] dx$$

$$= \int_{3}^{4} \left[\operatorname{Sen}^{2} \left(\frac{\pi x}{4} \right) - x + 4 \right] dx$$

$$= \left[\frac{1}{2} \left(x - \operatorname{Sen} \left(\frac{\pi x}{2} \right) \cdot \frac{2}{\Pi} \right) - \frac{x^{2}}{2} + 4x \right]_{3}^{4}$$

$$= \left[\frac{x}{2} - \frac{1}{\pi} \operatorname{Sen} \left(\frac{\pi x}{2} \right) - \frac{x^{2}}{2} + 4x \right]_{3}^{4}$$

$$= 2 - \frac{1}{\pi} \operatorname{Sen} \left(2\pi \right) - 8 + 16 - \left(\frac{3}{2} - \frac{1}{\pi} \operatorname{Sen} \left(\frac{3\pi}{2} \right) - \frac{9}{2} + 12 \right)$$

$$= 10 - \left(9 - \frac{1}{\Pi} (-1) \right)$$

$$A(D_{2}) = 1 - \frac{1}{\Pi}$$

$$= 1 + 17 + 1 - \frac{1}{4}$$

Lueyo,
$$A(D) = A(D_1) + A(D_2)$$

= $\frac{1}{11} + \frac{17}{6} + 1 - \frac{1}{11}$
 $A(D) = \frac{23}{6} u^2$

3) Halle el área de la región limitada por las curvas:

$$y = \cos^2\left(\frac{\pi}{6}x\right) + 1$$
 , $y = \sqrt{x} - 2$, $y = -x + 4$

$$Y = (cos(\frac{\pi}{4}x))^{2} + 1$$

$$V = cos(\frac{\pi}{4}x)$$

$$V = (cos(\frac{\pi}{4}x))^{2} + 1$$

$$V = cos(\frac{\pi}{4}x)$$

$$A: Y = \cos^2(\#x) + 1$$

$$R: Y = \sqrt{x^{1}-2}$$

i)
$$\frac{\text{Region Dr}}{A(Dr)} =$$

$$\int_{3}^{4} \left[\cos^{2}(\mathbb{I}_{x})+1-\left(-X+4\right) \right] dX$$

$$= \int_{3}^{4} \left[\frac{\cos^{2}\left(\frac{\pi}{6}x\right) + x - 3}{i d \ln d \cdot d \cdot d} \right] \frac{dx}{\cos^{2}x}$$

$$= \int_{3}^{4} \left[\frac{\cos^{2}\left(\frac{\pi}{6}x\right) + x - 3}{i d \ln d \cdot d \cdot d} \right] \frac{dx}{\cos^{2}x}$$

$$= \int_{3}^{4} \left[\frac{\cos^{2}\left(\frac{\pi}{6}x\right) + x - 3}{i d \ln d \cdot d \cdot d} \right] \frac{dx}{\cos^{2}x}$$

$$= \int_{3}^{4} \left[\frac{\cos^{2}\left(\frac{\pi}{6}x\right) + x - 3}{i d \ln d \cdot d \cdot d} \right] \frac{dx}{\cos^{2}x}$$

$$= \int_{3}^{4} \left[\frac{\cos^{2}\left(\frac{\pi}{6}x\right) + x - 3}{i d \ln d \cdot d \cdot d} \right] \frac{dx}{\cos^{2}x}$$

$$= \int_{3}^{4} \left[\frac{\cos^{2}\left(\frac{\pi}{6}x\right) + x - 3}{i d \ln d \cdot d \cdot d} \right] \frac{dx}{\cos^{2}x}$$

$$= \int_{3}^{4} \left[\frac{\cos^{2}\left(\frac{\pi}{6}x\right) + x - 3}{i d \ln d \cdot d \cdot d} \right] \frac{dx}{\cos^{2}x}$$

$$= \int_{3}^{4} \left[\frac{\cos^{2}\left(\frac{\pi}{6}x\right) + x - 3}{i d \ln d \cdot d \cdot d} \right] \frac{dx}{\cos^{2}x}$$

$$= \int_{3}^{4} \left[\frac{\cos^{2}\left(\frac{\pi}{6}x\right) + x - 3}{i d \ln d \cdot d \cdot d} \right] \frac{dx}{\cos^{2}x}$$

$$= \int_{3}^{4} \left[\frac{1}{2} \left(1 + \cos \left(\frac{\pi}{3} x \right) \right) + x - 3 \right] dx$$

$$= \left[\frac{1}{2} \left(X + Sex \left(\frac{\pi}{3} X \right) \cdot \frac{3}{11} \right) + \frac{X^2}{2} - 3X \right]_{3}^{4}$$

$$= \left[\frac{x}{2} + \frac{3}{2\pi} S_{on} \left(\frac{\pi}{3} x \right) + \frac{x^{2}}{2} - 3x \right]_{3}^{4}$$

$$= 2 + \frac{3}{2\pi} S_{on} \left(\frac{4\pi}{3} \right) + 8 - 12 - \left(\frac{3}{2} + \frac{3}{2\pi} S_{on} \left(\pi \right) + \frac{q}{2} - q \right)$$

$$= \frac{3}{2\pi} \left(-\frac{\sqrt{3}}{2} \right) + 1$$

$$A(D1) = \frac{-3\sqrt{3}}{4\pi} + 1$$

$$A = B$$

$$A(D_2) = \int_{4}^{9} \left[\cos^2(\frac{\pi}{6}x) + 1 - (\sqrt{x}x^{-2}) \right] dx$$

$$= \int_{4}^{9} \left[\cos^2(\frac{\pi}{6}x) - x^{1/2} + 3 \right] dx$$

$$= \left[\frac{1}{2} \left(x + \frac{3}{2\pi} \sin(\frac{\pi}{3}x) \cdot \frac{3}{\pi} \right) - \frac{2}{3} x^{3/2} + 3x \right]_{4}^{9}$$

$$= \left[\frac{x}{2} + \frac{3}{2\pi} \sin(\frac{\pi}{3}x) - \frac{2}{3} x^{3/2} + 3x \right]_{4}^{9}$$

$$= \frac{4}{2} + \frac{3}{2\pi} \sin(\frac{3\pi}{3}x) - 18 + 27 - \left(2 + \frac{3}{2\pi} \sin(\frac{4\pi}{3}x) - \frac{16}{3} + 12 \right)$$

$$= \frac{9}{2} + \frac{3}{2\pi} \sin(\frac{3\pi}{3}x) - 18 + 27 - \left(2 + \frac{3}{2\pi} \sin(\frac{4\pi}{3}x) - \frac{16}{3} + 12 \right)$$

$$= -\frac{3}{2\pi} \left(-\frac{\sqrt{3}}{2} \right) + \frac{29}{6}$$

$$A(D_1) = \frac{3\sqrt{3}}{4\pi} + \frac{29}{6}$$

Lucyo,
$$A(D) = A(D_1) + A(D_2)$$

= $-3\sqrt{3} + 1 + 3\sqrt{3} + \frac{29}{4\pi}$
 $A(D) = \frac{35}{6} u^2$ \sim 5,8333

4) Dada la región D limitada por las gráficas:

$$(x-4)^2 = \frac{5}{y} - 1$$
; $(x-4)^2 = 4y$; $2x + 4y = 8$.

$$(X-4)^2 = \frac{5}{9}-1$$

 $X-4=\pm\sqrt{\frac{5}{9}-1} \Rightarrow X=\pm\sqrt{\frac{5}{9}-1}+4$

Calcular el valor de: $Q = A(D) - 10 \arctan(2) + 10$, donde A(D) es el área de la región D.

SOLUCIÓN

a) Hallando A(D)

$$\Rightarrow = (x-4)^2+1$$

$$\Rightarrow \frac{4}{5} = \frac{4}{(x-4)^2+1}$$

$$=>$$
 $y = \frac{5}{(x-4)^2+1}$

•) B:
$$(x-4)^2 = 49$$

 $\Rightarrow y = \frac{1}{4}(x-4)^2$

$$A(D_1) = \int_{1}^{4} \left[A - C \right] dx$$

$$A(D_1) = \int_{1}^{4} \left[\frac{5}{(x-4)^2+1} - \frac{4-x}{2} \right] dx$$

$$A(D1) = \int_{2}^{4} \left[5 \cdot \frac{1}{(x-4)^{2}+1} - 2 + \frac{x}{2} \right] dx$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-4) - 2x + \frac{x^{2}}{4} \right]_{2}^{4}$$

$$= \left[5 \operatorname{arctg}(x-$$

$$A(D_{2}) = \int [A - B] dX$$

$$A(D_{2}) = \int_{4}^{6} \left[\frac{5}{(x - 4)^{2} + 1} - \frac{1}{4} \frac{(x - 4)^{2}}{\text{formula}} \right] dx$$

$$A(D_{2}) = \left[5 \text{ avctg}(x - 4) - \frac{1}{4} \cdot \frac{(x - 4)^{3}}{3} \right]_{4}^{6}$$

$$= 5 \text{ avctg}(2) - \frac{1}{4} \cdot \frac{(8)}{3} - \left(5 \text{ avctg}(0) - \frac{2}{4} \right)^{3}$$

$$A(D_{2}) = 5 \text{ avctg}(2) - \frac{2}{3}$$

Luego,
$$A(D) = A(D_1) + A(D_2)$$

 $A(D) = -1 + savctg(2) + savctg(2) - \frac{2}{3}$
 $A(D) = -\frac{s}{3} + 10avctg(2)$

b) Hallomdo
$$Q = A(D) - 10 \text{ avctg}(2) + 10$$

$$Q = -\frac{5}{3} + 10 \text{ avctg}(2) - 10 \text{ cwctg}(2) + 10$$

$$Q = \frac{25}{3}$$

5) Dada la región D limitada por las gráficas: $(y-3)^2 = \frac{2}{x} - 1$; $y = 3 + \sqrt{x}$; x + y = 3.

Calcular el valor de: $Q = A(D) - \pi - \frac{7}{6}$, donde A(D) es el área de la región D.

.) A:
$$(y-3)^2 = \frac{2}{x}-1$$

$$\Rightarrow (4-3)^2+1=\frac{2}{x}$$

$$\Rightarrow \frac{1}{(y_{-3})^2+1} = \frac{x}{2}$$

$$\Rightarrow \frac{(3-3)^{3+1}}{\chi = \frac{2}{(3-3)^2+1}}$$

•) B:
$$y=3+\sqrt{x}$$

$$\Rightarrow y-3=\sqrt{x}$$

$$\Rightarrow \sqrt{x=(y-3)^2}$$

•)
$$C: X+y=3$$

=> $X=3-4$

i) Kegwin D1
$$A(D1) = \begin{cases} 3 - \frac{2}{(y-3)^2+1} - (3-y) \\ 2 - \frac{2}{(y-3)^2+1} - (3-y) \end{cases}$$

$$= \int_{2}^{3} \left[\frac{2}{(y-3)^{2}+1} - 3 + y \right] dy$$

$$= \int_{2}^{3} \left[\frac{2}{(y-3)^{2}+1} - 3 + y \right] dy$$

$$\int_{u}^{2} \frac{1}{u^{2}+a^{2}} du = \frac{1}{a} \operatorname{orctg}\left(\frac{u}{a}\right)$$

=
$$\left[2. \text{ avety}(y-3) - 3y + \frac{y^2}{2}\right]_{2}^{3}$$

$$= 2 \operatorname{avcts}(0) - 9 + \frac{9}{2} - \left(2 \operatorname{avcts}(-1) - 6 + 2\right) - \frac{\pi}{4}$$

$$=-2\left(-\frac{\Pi}{4}\right)-\frac{1}{2}$$

$$A(D_1) = \frac{17}{2} - \frac{1}{2}$$

ii) Región D2:

$$A(D_2) = \int [A - B] dy$$

$$A(D_2) = \int [\frac{2}{(y-3)^2+1} - (y-3)^2] dy$$

$$A(D_2) = \left[2 \operatorname{arctg}(y-3) - \left(\frac{y-3}{3} \right)^3 \right]_3^4$$

$$A(D_2) = 2 \operatorname{arctg}(1) - \frac{1}{3} - (2 \operatorname{arctg}(0) - \frac{9}{3})$$

$$A(\mathcal{D}_2) = 2\left(\frac{\pi}{4} - \frac{1}{3}\right)$$

$$A(D_2) = \frac{\pi}{2} - \frac{1}{3}$$

Lueso,
$$A(D) = A(D1) + A(D2)$$

 $A(D) = \frac{\pi}{2} - \frac{1}{2} + \frac{\pi}{2} - \frac{1}{3}$
 $A(D) = \pi - \frac{5}{6}$

b) Italiando Q = A(D) - TT -
$$\frac{7}{6}$$

$$Q = -\frac{12}{6}$$

$$\theta = -2$$

6) Dada la región *D* limitada por las gráficas:

$$x = 6 - (y - 2)^2$$
, $y = -\sqrt{x - 2}$, $y + x - 8 = 0$

Determinar el valor de la constante "T" si $6 \cdot \left[A(D) + T^3 \right] = 271$, donde A(D) es el área de la región D.

SOLUCIÓN

TIPO I

•) A:
$$X = 6 - (Y-2)^2$$

•)
$$\beta$$
: $9 = -\sqrt{x-2}$
 $\Rightarrow \qquad y^2 = x-2$
 $\Rightarrow \qquad x = y^2+2$

$$\Rightarrow X = 8 - 7$$

•) C: $7 + x - 8 = 0$

$$A(D_1) = \int_{-3}^{0} \left[8 - y - (y^2 + 2) \right] dy$$

$$A(D_1) = \int_{-3}^{0} \left[-y^2 - y + 6 \right] dy$$

$$A(D_1) = \left[-\frac{y^3}{3} - \frac{y^2}{2} + 6y \right]_{-3}^{0}$$

$$A(D_1) = 0 - \left(-\frac{(-3)^3}{3} - \frac{(-3)^2}{2} + 6(-3) \right)$$

$$A(D_1) = \frac{27}{2}$$

$$H(D_2) = \int_{0}^{2} \left[8-y-\left(6-\left(y-2\right)^2\right) \right] dy$$

$$A(D_2) = \int_0^2 \left[(y-2)^2 - y + 2 \right] dy$$

$$A(D_2) = \left[\frac{(y-2)^3}{3} - \frac{y^2}{2} + 2y \right]_0^2$$

$$A(D_2) = 0 - \frac{1}{2} + 4 - \left(\frac{(-2)^3}{3} \right)$$

$$A(D_2) = \frac{14}{3}$$

$$A(D) = A(D_1) + A(D_2)$$

$$A(D) = \frac{27}{6} + \frac{14}{3}$$

$$A(D) = \frac{109}{6} \mu^2$$

b) Hallando
$$T = ?$$

Si 6 [A(D) + T^3] = 271

 \Rightarrow A(D) + T^3 = $\frac{2+1}{6}$
 \Rightarrow $\frac{109}{6}$ + T^3 = $\frac{2+1}{6}$
 \Rightarrow $T^3 = \frac{2+1}{6}$ - $\frac{109}{6}$
 \Rightarrow $T = \sqrt[3]{2+}$

Luego, $T = 3$