Tests réalisés pour la détection d'usure.

4 fichiers analisés :

Fraisage\Acier\Contrôled'usure\Aveclubrifiant\40_2022_01_12_134028_75%_75%_L_US.xl sx"

Fraisage\Acier\Avec lubrifiant\19_2022_01_10_155909_75%_75%_L.xlsx"

Fraisage\Acier\Contrôled'usure\Aveclubrifiant\39_2022_01_12_132408_120%_100%_L_US. xlsx"

Fraisage\Acier\Aveclubrifiant\13_2022_01_10_135525_120%_100%_L.xlsx"

Méthod e	Fenêtre s de temps	Models	Parametres	Accuracy	Précisi on	F1 score	Remarqu e
Donné es brutes		Rando m forest	random state=42 n_estimator s=100	0.48			Distributio n de la variable cible équilibrée
		MLP	hidden_lay er_sizes=(100,)	0.47			
Stats: std, min, max, med	w_size = 100	KNN	'n_neighbors ': 25, 'p': 1	0.77	0.79	0.85	jeu de donnée déséquilib ré. Plus de données de classe 1 voir de 2 à 3 fois
		Rando m Forest	max_depth': 5, 'n_estimator s': 50	0.74	0.74	0.85	
		Xgboo st	learning_rat e': 0.01, 'max_depth': None, 'n_estimator	0.78	0.78	0.86	

		s': 50				
w_size = 500	KNN	'n_neighbor s': 27, 'p': 1	0.74	0.75	0.84	
	Rando m Forest	max_depth': 5, 'n_estimator s': 150	0.78	0.77	0.87	
	Xgboo st	learning_rat e': 0.01, 'max_depth': 5, 'n_estimator s': 100	0.79	0.78	0.87	
w_size = 1500	KNN	'n_neighbor s': 25, 'p': 1	0.73	0.73	0.84	
	Rando m Forest	'max_depth': 10, 'n_estimator s': 50	0.79	0.81	0.87	
	Xgboo st	learning_rat e': 0.1, 'max_depth': 4, 'n_estimator s': 200	0.75	0.77	0.84	
w_size = 2000	KNN	n_neighbors ': 27, 'p': 1	0.72	0.72	0.84	
	Rando m Forest	max_depth': 10, 'n_estimator s': 100	0.77	0.78	0.85	

Xgboo learning_rat e': 0.01, 'max_depth': None, 'n_estimator s': 50	0.79	0.79	0.87	
---	------	------	------	--