Electric Charges, Quantization of Charge, and Conservation of Charge

Theoretical Questions

- 1. Which of the following is true about electric charge?
 - a) Charge is a scalar quantity.
 - b) Charge is always conserved.
 - c) Charge can exist without mass.
 - d) Charge is quantized in nature.
- 2. The quantization of charge implies:
 - a) Charge can take any continuous value.
 - b) Charge is always an integral multiple of the elementary charge e.
 - c) Charge is always positive.
 - d) Charge is not conserved.
- 3. Which of the following is NOT a property of electric charge?
 - a) Additivity
 - b) Quantization
 - c) Conservation
 - d) Independence of inertial frame
- 4. The law of conservation of charge states that:
 - a) Charge can be created but not destroyed.
 - b) Charge can be destroyed but not created.
 - c) The total charge in an isolated system remains constant.
 - d) Charge is always neutral.
- 5. Two identical metallic spheres carry charges of $+5\,\mu C$ and $-3\,\mu C$. If they are brought into contact and separated, what will be the charge on each sphere?
 - a) $+1 \mu C$
 - b) $+2 \mu C$
 - c) $-1 \mu C$
 - d) $+4 \mu C$
- 6. Which of the following is true about the elementary charge e?
 - a) $e = 1.6 \times 10^{-19} C$
 - b) $e = 1.6 \times 10^{-19} J$
 - c) $e = 1.6 \times 10^{-19} \, eV$
 - d) $e = 1.6 \times 10^{-19} N$
- 7. The charge on an electron is:
 - a) Positive
 - b) Negative
 - c) Neutral
 - d) Variable
- 8. Which of the following is NOT a method of charging?
 - a) Conduction
 - b) Induction
 - c) Friction
 - d) Radiation

- 9. When a glass rod is rubbed with silk, the rod becomes positively charged because:
 - a) Electrons are transferred from the rod to the silk.
 - b) Protons are transferred from the silk to the rod.
 - c) Electrons are transferred from the silk to the rod.
 - d) Protons are transferred from the rod to the silk.
- 10. The SI unit of charge is:
 - a) Coulomb
 - b) Ampere
 - c) Volt
 - d) Ohm

Numerical Questions

- 11. How many electrons are there in 1C of charge?
 - a) 6.25×10^{18}
 - b) 1.6×10^{19}
 - c) 6.25×10^{19}
 - d) 1.6×10^{18}
- 12. A charge of $3.2 \times 10^{-19} \, C$ is:
 - a) Equal to the charge of one electron.
 - b) Equal to the charge of two electrons.
 - c) Equal to the charge of one proton.
 - d) Not possible as it violates quantization of charge.
- 13. Two charges $+4\,\mu C$ and $-6\,\mu C$ are separated by a distance of $2\,m$. What is the net charge of the system?
 - a) $-2 \mu C$
 - b) $+2 \mu C$
 - c) $-10 \,\mu C$
 - d) $+10 \,\mu C$
- 14. A body has a charge of -6.4×10^{-19} C. How many excess electrons does it have?
 - a) 2
 - b) 4
 - c) 6
 - d) 8
- 15. If 10^{10} electrons are removed from a neutral body, the charge on the body becomes:
 - a) $+1.6 \times 10^{-9} C$
 - b) $-1.6 \times 10^{-9} C$
 - c) $+1.6 \times 10^{-19} C$
 - d) $-1.6 \times 10^{-19} C$
- 16. A charge of $8\mu C$ is divided into two parts such that the force between them is maximum. What is the charge on each part?
 - a) $4 \mu C$ and $4 \mu C$
 - b) $6 \mu C$ and $2 \mu C$
 - c) $5 \mu C$ and $3 \mu C$
 - d) $7 \mu C$ and $1 \mu C$

- 17. A body has a charge of $4.8 \times 10^{-19} \, C$. Is this possible?
 - a) Yes, because it is an integral multiple of e.
 - b) No, because it violates quantization of charge.
 - c) Yes, because it is a fraction of e.
 - d) No, because it is too small.
- 18. Two identical conducting spheres carry charges of $+2\,\mu C$ and $-6\,\mu C$. When they are brought into contact and separated, what is the charge on each sphere?
 - a) $-2\mu C$
 - b) $-4 \mu C$
 - c) $+2 \mu C$
 - d) $+4 \mu C$

Answers and Explanations

1. b) Charge is always conserved.

Explanation: Charge is conserved in all physical processes.

2. b) Charge is always an integral multiple of the elementary charge *e*.

Explanation: Quantization means charge exists in discrete packets of e.

3. d) Independence of inertial frame.

Explanation: Charge is frame-dependent in relativistic scenarios.

4. c) The total charge in an isolated system remains constant.

Explanation: Conservation of charge is a fundamental law.

5. **a)** $+1 \mu C$

Explanation: Charges redistribute equally: $\frac{+5 \,\mu C + (-3 \,\mu C)}{2} = +1 \,\mu C$.

6. a) $e = 1.6 \times 10^{-19} C$

Explanation: Elementary charge is $1.6 \times 10^{-19} C$.

7. b) Negative

Explanation: Electrons carry a negative charge.

8. d) Radiation

Explanation: Radiation is not a method of charging.

9. a) Electrons are transferred from the rod to the silk.

Explanation: Rubbing transfers electrons, leaving the rod positively charged.

- 19. A charge of 1C is equivalent to the charge of how many protons?
 - a) 6.25×10^{18}
 - b) 1.6×10^{19}
 - c) 6.25×10^{19}
 - d) 1.6×10^{18}
- 20. A body has a charge of -3.2×10^{-19} C. How many excess electrons does it have?
 - a) 1
 - b) 2
 - c) 3
 - d) 4
- 10. a) Coulomb

Explanation: SI unit of charge is Coulomb.

11. a) 6.25×10^{18}

Explanation: $1C = 6.25 \times 10^{18}$ electrons.

12. b) Equal to the charge of two electrons.

Explanation: $3.2 \times 10^{-19} C = 2e$.

13. a) $-2 \mu C$

Explanation: Net charge = $+4 \mu C + (-6 \mu C) = -2 \mu C$.

14. **b)** 4

Explanation: $n = \frac{6.4 \times 10^{-19}}{1.6 \times 10^{-19}} = 4.$

15. a) $+1.6 \times 10^{-9} C$

Explanation: Removing electrons leaves a positive charge: $10^{10} \times 1.6 \times 10^{-19} = 1.6 \times 10^{-9} C$.

16. a) $4\mu C$ and $4\mu C$

Explanation: Force is maximum when charges are equal.

- 17. b) No, because it violates quantization of charge. Explanation: $4.8 \times 10^{-19} C$ is not an integral multiple of e.
- 18. **a)** $-2 \mu C$

Explanation: Charges redistribute equally: $\frac{+2\,\mu C + (-6\,\mu C)}{2} = -2\,\mu C$.

19. a) 6.25×10^{18}

Explanation: $1C = 6.25 \times 10^{18}$ protons.

20. **b**) 2

Explanation: $n = \frac{3.2 \times 10^{-19}}{1.6 \times 10^{-19}} = 2$.