Decision Trees For Classification and Regression

Jose Luis Paniagua Jaramillo jlpaniagua@uao.edu.co

Decision Trees For Classification

Decision Tree

We can think of this model as breaking down our data by making a decision based on asking a series of questions.

Decision Tree

Tests on continuous data are of the form "Is feature i larger than value a?"

Building DTs

To build a tree: The algorithm searches over all possible tests and finds the one that is most informative about the target variable

Building DTs

- node's samples attribute counts how many training instances it applies to.
- node's value attribute tells you how many training instances of each class this node applies to.
- node's gini attribute measures its impurity: a node is "pure" (gini=0) if all training instances it applies to belong to the same class.

Building DTs

Gini impurity

$$G_i = 1 - \sum_{k=1}^{n} p_{i,k}^2$$

pi,k is the ratio of class k instances among the training instances in the i-th node.

what is the gini score in the depth-2 left node?

DTs: Model Interpretation

Decision tree classifiers are attractive models if we care about interpretability

DTs: Training Algorithm

The algorithm works by first splitting the training set into two subsets using a single feature k and a threshold tk. How does it choose k and tk?

DTs: Training Algorithm

$$J(k, t_k) = \frac{m_{\text{left}}}{m} G_{\text{left}} + \frac{m_{\text{right}}}{m} G_{\text{right}}$$
 where
$$\begin{cases} G_{\text{left/right}} \text{ measures the impurity of the left/right subset,} \\ m_{\text{left/right}} \text{ is the number of instances in the left/right subset.} \end{cases}$$

Predicting with DTs

A prediction on a new data point is made by checking which region of the partition of the feature space the point lies in , and then predicting the majority target or the single target in the case of pure leaves) in that region

DTs: Complexity

Building a tree as described before, continuing until all leaves are pure leads to models that are very complex (overfitting)

Comparing all features on all samples at each node results in a training complexity of

$$-O(n \times m \log_2(m))$$

DTs: Controlling Complexity of DTs

- Stopping the creation of the tree early pre pruning
 - a. Limiting the maximum depth of the tree (max_depth)
 - b. Limiting the maximum number of leaves (max_leaf_nodes)
 - Requiring a minimum number of points in a node to keep splitting it
 (min_samples_leaf)
- Building the tree but then removing or collapsing nodes that contain little information post pruning or pruning

DTs: Controlling Complexity of DTs

class = virginica

class = versicolor

Decision Trees For Regression

- Usage and analysis similar to classification DTs.
- DTs splits the data into groups and predicts a fixed value for each of the groups.

• The way to split the data is by using the features, exactly like we did for classification problems.

•

• Consider the following problem: we have an app, and we want to predict the level of engagement of the users in terms of how many days per week they used it.

Age	Engagement	
10	7	
20	5	
30	7	
40	1	
50	2	
60	1	
70	5	
80	4	

How to split the data?

How to split the data?

- If the user is 34 years old or younger, the engagement is 6 days per week.
- If the user is between 35 and 64, the engagement is 1 day per week.
- If the user is 65 or older, the engagement is 3.5 days per week.

 Now, we have to fit a horizontal line as close as possible to the dataset.
 Where should we fit this horizontal line?

 Now, we have to fit a horizontal line as close as possible to the dataset.
 Where should we fit this horizontal line?

 A reasonable answer is: at a height equal to the average of the target.

- What If we had to use two horizontal segments, how should we fit them as close as possible to the data?
- We can continue following this process until we have broken down the data into several groups in which their targets are very similar.

- The algorithm used for training a regression decision tree is very similar to the one we used for training a classification decision tree.
- The only difference is that for classification trees, Gini index, and for regression trees, we use the mean square error (MSE).

- For training, we carry out the following steps:
- For each of the smaller datasets, we predict the average value of the labels.
- We calculate the mean square error of the prediction.
- We select the cutoff that gives us the smallest square error.

- Recall that when a feature is numerical, we consider all the possible ways to split it.
- The split gives us two smaller datasets, which we call the left dataset and the right dataset.

Example:

- Consider a cutoff equal to 65.
- Calculate the two smaller datasets.
- Predict the average of the targets.
- Calculate the MSE.

Example:

• 65 is the best cutoff?

Cutoff	Labels left set	Labels right set	Prediction left set	Prediction right set	MSE
0	8	{7,5,7,1,2,1,5,4}	None	4.0	5.25
15	{7}	{5,7,1,2,1,5,4}	7.0	3.571	3.964
25	{7,5}	{7,1,2,1,5,4}	6.0	3.333	3.917
35	{7,5,7}	{1,2,1,5,4}	6.333	2.6	1.983
45	{7,5,7,1}	{2,1,5,4}	5.0	3.0	4.25
55	{7,5,7,1,2}	{1,5,4}	4.4	3.333	4.983
65	{7,5,7,1,2,1}	{5,4}	3.833	4.5	5.167
75	{7,5,7,1,2,1,5}	{4}	4.0	4.0	5.25
100	{7,5,7,1,2,1,5,4}	8	4.0	none	5.25

The next steps are to continue splitting the left and right datasets recursively in the same fashion.

Parameters and strengths

- Setting either max_depth , max_leaf_nodes , or min_samples_leaf is sufficient to prevent overfitting
- The resulting model can easily be visualised and understood by non experts
- Algorithms are completely invariant to scaling of the data
- Features on different scales, or a mix of binary and continuous features

Weaknesses

- Even with the use of of pre pruning, DTs tend to overfit and provide poor generalisation performance.
- In most applications ensemble methods are usually used in place of a single DT.