Nishant Chandgotia

September, 2015

Four-Cycle Free Graphs and Entropy Minimality

Outline

- Shifts of Finite Type
- Entropy
- Entropy Minimality
- The 3-coloured Chessboard.
- Universal Covers

• Let \mathfrak{A} be a finite set (with the discrete topology). We will call it the alphabet.

- Let \mathfrak{A} be a finite set (with the discrete topology). We will call it the alphabet.
- The space $\mathfrak{A}^{\mathbb{Z}^d}$ is the set of all configurations on \mathbb{Z}^d . It is called the full shift.

- Let \mathfrak{A} be a finite set (with the discrete topology). We will call it the alphabet.
- The space $\mathfrak{A}^{\mathbb{Z}^d}$ is the set of all configurations on \mathbb{Z}^d . It is called the full shift.
- It is a compact space under the product topology with a natural \mathbb{Z}^d -action given by translations (also called shifts) of configurations.

• Given a finite subset $A \subset \mathbb{Z}^d$, a pattern on A is a function $a: A \longrightarrow \mathfrak{A}$.

- Given a finite subset $A \subset \mathbb{Z}^d$, a pattern on A is a function $a: A \longrightarrow \mathfrak{A}$.
- Let \mathcal{F} be a set of patterns (referred to as a forbidden list).

- Given a finite subset $A \subset \mathbb{Z}^d$, a pattern on A is a function $a: A \longrightarrow \mathfrak{A}$.
- Let \mathcal{F} be a set of patterns (referred to as a forbidden list).
- Denote

 $X_{\mathcal{F}}:=\{x\in\mathfrak{A}^{\mathbb{Z}^d}\,|\, \mathrm{translates} \ \mathrm{of} \ \mathrm{patterns} \ \mathrm{from} \ \mathcal{F} \ \mathrm{do} \ \mathrm{not} \ \mathrm{occur} \ \mathrm{in} \ x\}.$

- Given a finite subset $A \subset \mathbb{Z}^d$, a pattern on A is a function $a: A \longrightarrow \mathfrak{A}$.
- Let \mathcal{F} be a set of patterns (referred to as a forbidden list).
- Denote

$$X_{\mathcal{F}}:=\{x\in\mathfrak{A}^{\mathbb{Z}^d}\,|\, \mathrm{translates} \ \mathrm{of} \ \mathrm{patterns} \ \mathrm{from} \ \mathcal{F} \ \mathrm{do} \ \mathrm{not} \ \mathrm{occur} \ \mathrm{in} \ x\}.$$

• A shift space is a subset $X \subset \mathfrak{A}^{\mathbb{Z}^d}$ such that there exists a forbidden list \mathcal{F} satisfying $X = X_{\mathcal{F}}$.

Examples: Full Shift

Examples: Full Shift

$$\bullet \ \mathfrak{A} = \{0,1\}, \ \mathcal{F} = \emptyset. \ X_{\mathcal{F}} = \{0,1\}^{\mathbb{Z}^d}.$$

• d = 2

- d = 2
- $\mathfrak{A} = \{0, 1\}$

- d = 2
- $\bullet \ \mathfrak{A} = \{ \mathtt{0}, \mathtt{1} \}$
- $\mathcal{F} = \{11, \frac{1}{1}\}$

- d = 2
- $\mathfrak{A} = \{0, 1\}$
- $\mathcal{F} = \{11, \frac{1}{1}\}$
- By \mathbb{Z}^d , we will refer to the Cayley graph of \mathbb{Z}^d with standard generators. Thus \mathbb{Z}^2 is the grid.

- d = 2
- $\mathfrak{A} = \{0, 1\}$
- $\mathcal{F} = \{11, \frac{1}{1}\}$
- By \mathbb{Z}^d , we will refer to the Cayley graph of \mathbb{Z}^d with standard generators. Thus \mathbb{Z}^2 is the grid.
- $X_{\mathcal{F}} = \{ \text{configurations in 0 and 1 where two 1}'s \text{ cannot be adjacent} \}.$

0000100001001100000010000000100000

0000100001001100000010000000100000

• d = 1

- od d = 1
- $\bullet \ \mathfrak{A} = \{0,1\}$

- d = 1
- $\bullet \ \mathfrak{A} = \{ \mathtt{0}, \mathtt{1} \}$
- $\bullet \ \mathcal{F} = \{10^{2i-1}1 \mid i \in \mathbb{N}\}$

```
• d=1

• \mathfrak{A}=\{0,1\}

• \mathcal{F}=\{10^{2i-1}1\mid i\in\mathbb{N}\}

• X_{\mathcal{F}}=\{0,1 sequences such that the gap between any two 1's is even\}.
```

- d = 1
- $\mathfrak{A} = \{0, 1\}$
- $\mathcal{F} = \{10^{2i-1}1 \mid i \in \mathbb{N}\}$
- $\bullet X_{\mathcal{F}} =$
 - $\big\{0,1 \text{ sequences such that the gap between any two } 1's \text{ is even}\big\}.$
- ullet Note that ${\mathcal F}$ is infinite.

- d = 1
- $\mathfrak{A} = \{0, 1\}$
- $\mathcal{F} = \{10^{2i-1}1 \mid i \in \mathbb{N}\}$
- $\bullet X_{\mathcal{F}} =$
 - $\{\overset{\circ}{0},1\text{ sequences such that the gap between any two }1's\text{ is even}\}.$
- ullet Note that ${\mathcal F}$ is infinite.
- ullet It can be proved that ${\mathcal F}$ cannot be chosen to finite!

• A shift space X is called a shift of finite type if there exists a finite set \mathcal{F} such that $X = X_{\mathcal{F}}$.

- A shift space X is called a shift of finite type if there exists a finite set \mathcal{F} such that $X = X_{\mathcal{F}}$.
- Both the hard square model and the full shift are shifts of finite type.

- A shift space X is called a shift of finite type if there exists a finite set \mathcal{F} such that $X = X_{\mathcal{F}}$.
- Both the hard square model and the full shift are shifts of finite type.
- The even shift is not a shift of finite type.

• A shift space X is called a nearest neighbour shift of finite type if there exists a set of patterns $\mathcal F$ such that

 \bullet A shift space X is called a nearest neighbour shift of finite type if there exists a set of patterns ${\mathcal F}$ such that

 $\bullet X = X_{\mathcal{F}}.$

- A shift space X is called a nearest neighbour shift of finite type if there exists a set of patterns $\mathcal F$ such that
 - $\bullet X = X_{\mathcal{F}}.$
 - \mathcal{F} consists of patterns on edges of \mathbb{Z}^d .

- ullet A shift space X is called a nearest neighbour shift of finite type if there exists a set of patterns ${\mathcal F}$ such that
 - $\bullet X = X_{\mathcal{F}}.$
 - \mathcal{F} consists of patterns on edges of \mathbb{Z}^d .
- The hard square model is a nearest neighbour shift of finite type.

Examples: Non-Attacking Kings

1	0	1	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	0	1	0	0	1
0	0	0	0	0	0
0	0	0	0	1	0

Examples: Non-Attacking Kings

•
$$d = 2$$
, $\mathfrak{A} = \{0, 1\}$, $\mathcal{F} = \{11, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}\}$

Examples: Non-Attacking Kings

1	0	1	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	0	1	0	0	1
0	0	0	0	0	0
0	0	0	0	1	0

- d = 2, $\mathfrak{A} = \{0, 1\}$, $\mathcal{F} = \{11, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}\}$
- $X_{\mathcal{F}}$ is a shift of finite type but not at a nearest neighbour shift of finite type.

Examples: Non-Attacking Kings

0	1	0	0	0
0	0	0	1	0
0	0	0	0	0
0	1	0	0	1
0	0	0	0	0
0	0	0	1	0
	0 0 0	0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 1 0 0 0 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0

- d = 2, $\mathfrak{A} = \{0, 1\}$, $\mathcal{F} = \{11, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}\}$
- $X_{\mathcal{F}}$ is a shift of finite type but not at a nearest neighbour shift of finite type.
- Any shift of finite type can be recoded into a nearest neighbour shift of finite type (for a different alphabet).

When is a Nearest Neighbour Shift of Finite Type

Non-Empty?

• Let d = 1.

- Let d = 1.
- ullet ${\cal F}$ tells us what letter can sit next to another letter.

- Let d = 1.
- ullet ${\cal F}$ tells us what letter can sit next to another letter.
- ullet Given ${\mathcal F}$ we can build a directed graph ${\mathcal G}$:

- Let d = 1.
- ullet ${\cal F}$ tells us what letter can sit next to another letter.
- Given \mathcal{F} we can build a directed graph \mathcal{G} :
 - ullet The vertices are the elements of ${\mathfrak A}$

- Let d = 1.
- ullet ${\cal F}$ tells us what letter can sit next to another letter.
- Given \mathcal{F} we can build a directed graph \mathcal{G} :
 - ullet The vertices are the elements of ${\mathfrak A}$
 - There is an edge from $v \in \mathfrak{A}$ to $w \in \mathfrak{A}$ if and only if $vw \notin \mathcal{F}$.

- Let d = 1.
- ullet ${\cal F}$ tells us what letter can sit next to another letter.
- Given \mathcal{F} we can build a directed graph \mathcal{G} :
 - ullet The vertices are the elements of ${\mathfrak A}$
 - There is an edge from $v \in \mathfrak{A}$ to $w \in \mathfrak{A}$ if and only if $vw \notin \mathcal{F}$.
- $X_{\mathcal{F}}$ is non-empty if and only if there is an infinite path in \mathcal{G} .

- Let d = 1.
- ullet ${\cal F}$ tells us what letter can sit next to another letter.
- Given \mathcal{F} we can build a directed graph \mathcal{G} :
 - ullet The vertices are the elements of ${\mathfrak A}$
 - There is an edge from $v \in \mathfrak{A}$ to $w \in \mathfrak{A}$ if and only if $vw \notin \mathcal{F}$.
- $X_{\mathcal{F}}$ is non-empty if and only if there is an infinite path in \mathcal{G} .
- It is decidable.

When is a Nearest Neighbour Shift of Finite Type

Non-Empty?

• Let $d \geq 2$.

- Let d > 2.
- Given ${\mathcal F}$ there exists no algorithm to decide when $X_{\mathcal F}$ is non-empty.

- Let d > 2.
- ullet Given ${\mathcal F}$ there exists no algorithm to decide when $X_{\mathcal F}$ is non-empty.
- So we deal with a more restricted class of shift spaces.

ullet Let ${\cal H}$ be a finite undirected graph without multiple edges.

- ullet Let ${\cal H}$ be a finite undirected graph without multiple edges.
- Consider a shift space $X_{\mathcal{H}} := Hom(\mathbb{Z}^d, \mathcal{H})$; symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .

- ullet Let ${\cal H}$ be a finite undirected graph without multiple edges.
- Consider a shift space $X_{\mathcal{H}} := Hom(\mathbb{Z}^d, \mathcal{H})$; symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .
- A hom-shift is a shift space X for which there exists a graph \mathcal{H} such that $X = X_{\mathcal{H}}$.

- ullet Let ${\cal H}$ be a finite undirected graph without multiple edges.
- Consider a shift space $X_{\mathcal{H}} := Hom(\mathbb{Z}^d, \mathcal{H})$; symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .
- A hom-shift is a shift space X for which there exists a graph \mathcal{H} such that $X = X_{\mathcal{H}}$.

Examples: (Hard Square model)

Graph H

A Pattern

- ullet Let ${\cal H}$ be a finite undirected graph without multiple edges.
- Consider a shift space $X_{\mathcal{H}} := Hom(\mathbb{Z}^d, \mathcal{H})$; symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .
- A hom-shift is a shift space X for which there exists a graph \mathcal{H} such that $X = X_{\mathcal{H}}$.

Examples: (3-colourings)

A Pattern

• Let
$$d = 2$$

- Let d = 2
- \bullet Let ${\cal H}$ be a finite undirected graph.

- Let *d* = 2
- ullet Let ${\cal H}$ be a finite undirected graph.
- \bullet $\mathfrak{A}=$ vertex set of $\mathcal{H}.$

- Let d = 2
- ullet Let ${\cal H}$ be a finite undirected graph.
- $\mathfrak{A} = \text{vertex set of } \mathcal{H}$.
- $\mathcal{F} = \{vw, \frac{v}{w} \mid v, w \in$

 \mathfrak{A} and (v, w) does not form an edge in \mathcal{H} .

- Let d = 2
- ullet Let ${\cal H}$ be a finite undirected graph.
- $\mathfrak{A} = \text{vertex set of } \mathcal{H}$.
- $\mathcal{F} = \{ vw, \frac{v}{w} \mid v, w \in$
 - \mathfrak{A} and (v, w) does not form an edge in \mathcal{H} }.
- Then $X_{\mathcal{H}} = X_{\mathcal{F}}$

- Let d = 2
- ullet Let ${\cal H}$ be a finite undirected graph.
- $\mathfrak{A} = \text{vertex set of } \mathcal{H}$.
- $\mathcal{F} = \{vw, \frac{v}{w} \mid v, w \in$
 - \mathfrak{A} and (v, w) does not form an edge in \mathcal{H} .
- Then $X_{\mathcal{H}} = X_{\mathcal{F}}$
- This is a nearest neighbour shift of finite type for which every direction has the same constraint.

- Let d = 2
- ullet Let ${\cal H}$ be a finite undirected graph.
- $\mathfrak{A} = \text{vertex set of } \mathcal{H}$.
- $\bullet \ \mathcal{F} = \{ vw, \begin{smallmatrix} v \\ w \end{smallmatrix} \mid v, w \in$
 - \mathfrak{A} and (v, w) does not form an edge in \mathcal{H} .
- Then $X_{\mathcal{H}} = X_{\mathcal{F}}$
- This is a nearest neighbour shift of finite type for which every direction has the same constraint.
- $X_{\mathcal{H}}$ is non-empty if and only if \mathcal{H} has an edge.

• What is the alphabet?

L	R	U	L	R	
L	R	D	U	U	
U	L	R	D	D	
D	U	U	L	R	
U	D	D	U	C	
U D	L	R	D	D	

- $\mathfrak{A} = \{U, D, L, R\}.$
- $\bullet \ \mathcal{F} = \{\mathit{UR}, \mathit{DR}, \mathit{RR}, \mathit{LL}, \mathit{LU}, \mathit{LD}, \ _{\mathit{U}}^{\mathit{U}}, \ _{\mathit{D}}^{\mathit{D}}, \ _{\mathit{L}}^{\mathit{U}}, \ _{\mathit{R}}^{\mathit{U}}, \ _{\mathit{D}}^{\mathit{R}}, \ _{\mathit{D}}^{\mathit{R}}, \ _{\mathit{D}}^{\mathit{R}}\}$

- $\mathfrak{A} = \{U, D, L, R\}.$
- $\mathcal{F} = \{UR, DR, RR, LL, LU, LD, \bigcup_{U}, \bigcup_{D}, \bigcup_{L}, \bigcup_{R}, \bigcup_{D}, \bigcup_{D}\}$
- The constraints in different directions are different. It is not a hom-shift.

Shift Spaces Schematic

The language $\mathcal{L}(X)$ of a shift space is the set of patterns appearing in elements of X.

The language $\mathcal{L}(X)$ of a shift space is the set of patterns appearing in elements of X.

 $\{1, 2, \dots, n\}^d$ is an *n*-sided square box in \mathbb{Z}^d .

The language $\mathcal{L}(X)$ of a shift space is the set of patterns appearing in elements of X.

 $\{1, 2, \dots, n\}^d$ is an *n*-sided square box in \mathbb{Z}^d .

Let $\mathcal{L}_n(X):=\mathcal{L}(X)\cap\mathfrak{A}^{\{1,2,\dots,n\}^d}$ be patterns which appear on an n-sided square box.

The language $\mathcal{L}(X)$ of a shift space is the set of patterns appearing in elements of X.

 $\{1, 2, \dots, n\}^d$ is an *n*-sided square box in \mathbb{Z}^d .

Let $\mathcal{L}_n(X):=\mathcal{L}(X)\cap\mathfrak{A}^{\{1,2,\dots,n\}^d}$ be patterns which appear on an n-sided square box.

The topological entropy of X is defined as

The language $\mathcal{L}(X)$ of a shift space is the set of patterns appearing in elements of X.

 $\{1, 2, \ldots, n\}^d$ is an *n*-sided square box in \mathbb{Z}^d .

Let $\mathcal{L}_n(X) := \mathcal{L}(X) \cap \mathfrak{A}^{\{1,2,\ldots,n\}^d}$ be patterns which appear on an n-sided square box.

The topological entropy of X is defined as

$$h_{top}(X) := \lim_{n \to \infty} \frac{\log |\mathcal{L}_n(X)|}{n^d}.$$

The language $\mathcal{L}(X)$ of a shift space is the set of patterns appearing in elements of X.

 $\{1, 2, ..., n\}^d$ is an *n*-sided square box in \mathbb{Z}^d .

Let $\mathcal{L}_n(X) := \mathcal{L}(X) \cap \mathfrak{A}^{\{1,2,\dots,n\}^d}$ be patterns which appear on an n-sided square box.

The topological entropy of X is defined as

$$h_{top}(X) := \lim_{n \to \infty} \frac{\log |\mathcal{L}_n(X)|}{n^d}.$$

(The limit always exists.)

• Let
$$X = \mathfrak{A}^{\mathbb{Z}^d}$$
.

- Let $X = \mathfrak{A}^{\mathbb{Z}^d}$.
- $\bullet |\mathcal{L}_n(X)| = |\mathfrak{A}^{\{1,2,\ldots,n\}^d}|$

• Let
$$X = \mathfrak{A}^{\mathbb{Z}^d}$$
.

$$\bullet |\mathcal{L}_n(X)| = |\mathfrak{A}^{\{1,2,\ldots,n\}^d}|$$

•
$$h_{top}(X) := \lim_{n \longrightarrow \infty} \frac{\log |\mathcal{L}_n(X)|}{n^d} = \lim_{n \longrightarrow \infty} \frac{\log |\mathfrak{A}^{\{1,2,\dots,n\}^d}|}{n^d} = \log |\mathfrak{A}|.$$

 The entropy of a nearest neighbour shift of finite type is the logarithm of the greatest eigenvalue of a non-negative matrix.

- The entropy of a nearest neighbour shift of finite type is the logarithm of the greatest eigenvalue of a non-negative matrix.
- For instance, if \mathcal{H} is a finite undirected graph and $\lambda_{\mathcal{H}}$ is the greatest eigenvalue of its adjacency matrix then

$$h_{top}(X_{\mathcal{H}}) = \log \lambda_{\mathcal{H}}.$$

- The entropy of a nearest neighbour shift of finite type is the logarithm of the greatest eigenvalue of a non-negative matrix.
- ullet For instance, if ${\cal H}$ is a finite undirected graph and $\lambda_{\cal H}$ is the greatest eigenvalue of its adjacency matrix then

$$h_{top}(X_{\mathcal{H}}) = \log \lambda_{\mathcal{H}}.$$

• The entropy of the hard square model is $\log\left(\frac{\sqrt{5}+1}{2}\right)$. Hence it is also called the golden mean shift.

- The entropy of a nearest neighbour shift of finite type is the logarithm of the greatest eigenvalue of a non-negative matrix.
- ullet For instance, if ${\mathcal H}$ is a finite undirected graph and $\lambda_{{\mathcal H}}$ is the greatest eigenvalue of its adjacency matrix then

$$h_{top}(X_{\mathcal{H}}) = \log \lambda_{\mathcal{H}}.$$

- The entropy of the hard square model is $\log\left(\frac{\sqrt{5}+1}{2}\right)$. Hence it is also called the golden mean shift.
- The entropy of the space of 3-colourings is log(2).

Dimensions

• For $d \ge 2$ even finding good approximations of the entropy of nearest neighbour shifts of finite type can be difficult.

- For $d \ge 2$ even finding good approximations of the entropy of nearest neighbour shifts of finite type can be difficult.
- (Hochman and Meyerovitch, '07) The set of entropies of nearest neighbour shifts of finite type for d>1 is the set of non-negative right recursively ennumerable numbers: those numbers for which there is an algorithm to generate rational numbers approximating it from above.

- For $d \ge 2$ even finding good approximations of the entropy of nearest neighbour shifts of finite type can be difficult.
- (Hochman and Meyerovitch, '07) The set of entropies of nearest neighbour shifts of finite type for d > 1 is the set of non-negative right recursively ennumerable numbers: those numbers for which there is an algorithm to generate rational numbers approximating it from above.
- Thus for most general shifts of finite type there is no hope of obtaining a 'reasonable' closed-form expression for the entropy.

- For $d \ge 2$ even finding good approximations of the entropy of nearest neighbour shifts of finite type can be difficult.
- (Hochman and Meyerovitch, '07) The set of entropies of nearest neighbour shifts of finite type for d > 1 is the set of non-negative right recursively ennumerable numbers: those numbers for which there is an algorithm to generate rational numbers approximating it from above.
- Thus for most general shifts of finite type there is no hope of obtaining a 'reasonable' closed-form expression for the entropy.
- Closed forms are known for very few examples.

Entropy for Hom-Shifts

Entropy for Hom-Shifts

• (Friedlander, 1997) There are approximating upper and lower bounds for the entropy of hom-shifts.

• If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

• If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

• A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$, $h_{top}(Y) < h_{top}(X)$.

• If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

- A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$, $h_{top}(Y) < h_{top}(X)$.
- That is, if we forbid any pattern from the language $\mathcal{L}(X)$ the entropy will drop.

$$h_{top}(Y) \leq h_{top}(X)$$

$$h_{top}(Y) \le h_{top}(X)$$

$$= \lim_{n \to \infty} \frac{\log |\mathcal{L}_n(X)|}{n^d}$$

$$\begin{array}{lcl} h_{top}(Y) & \leq & h_{top}(X) \\ & = & \lim_{n \to \infty} \frac{\log |\mathcal{L}_n(X)|}{n^d} \\ & \leq & \lim_{n \to \infty} \frac{\log(|\mathcal{L}_n(Y)| + |\mathcal{L}_n(Z)|)}{n^d} \end{array}$$

$$\begin{array}{ll} h_{top}(Y) & \leq & h_{top}(X) \\ & = & \lim_{n \longrightarrow \infty} \frac{\log |\mathcal{L}_n(X)|}{n^d} \\ & \leq & \lim_{n \longrightarrow \infty} \frac{\log(|\mathcal{L}_n(Y)| + |\mathcal{L}_n(Z)|)}{n^d} \\ & \leq & \lim_{n \longrightarrow \infty} \frac{\log(2\max(|\mathcal{L}_n(Y)|, |\mathcal{L}_n(Z)|))}{n^d} \end{array}$$

$$\begin{array}{ll} h_{top}(Y) & \leq & h_{top}(X) \\ & = & \lim_{n \to \infty} \frac{\log |\mathcal{L}_n(X)|}{n^d} \\ & \leq & \lim_{n \to \infty} \frac{\log(|\mathcal{L}_n(Y)| + |\mathcal{L}_n(Z)|)}{n^d} \\ & \leq & \lim_{n \to \infty} \frac{\log(2\max(|\mathcal{L}_n(Y)|, |\mathcal{L}_n(Z)|))}{n^d} \\ & \leq & h_{top}(Y). \end{array}$$

Let $X = Y \cup Z$ where Y and Z are disjoint nearest neighbour shifts of finite type such that $h_{top}(Y) \ge h_{top}(Z)$.

$$\begin{array}{ll} h_{top}(Y) & \leq & h_{top}(X) \\ & = & \lim_{n \to \infty} \frac{\log |\mathcal{L}_n(X)|}{n^d} \\ & \leq & \lim_{n \to \infty} \frac{\log(|\mathcal{L}_n(Y)| + |\mathcal{L}_n(Z)|)}{n^d} \\ & \leq & \lim_{n \to \infty} \frac{\log(2\max(|\mathcal{L}_n(Y)|, |\mathcal{L}_n(Z)|))}{n^d} \\ & \leq & h_{top}(Y). \end{array}$$

Thus $h_{top}(X) = h_{top}(Y)$.

• Fix d = 1.

- Fix d = 1.
- We say that a nearest neighbour shift space X is called irreducible if $X \neq Y \cup Z$ for some disjoint shift spaces Y and Z.

- Fix d = 1.
- We say that a nearest neighbour shift space X is called irreducible if $X \neq Y \cup Z$ for some disjoint shift spaces Y and Z.
- We just proved that if a shift space X which is not irreducible, then it is not entropy minimal.

- Fix d = 1.
- We say that a nearest neighbour shift space X is called irreducible if $X \neq Y \cup Z$ for some disjoint shift spaces Y and Z.
- We just proved that if a shift space X which is not irreducible, then it is not entropy minimal.
- In fact it can be proved that a shift space is irreducible if and only if it is entropy minimal.

Entropy Minimality in Higher Dimensions

It is undecidable whether or not a nearest neighbour shift of finite type is entropy minimal.

Theorem (Chandgotia, Meyerovitch '13) Let C_n be an n-cycle. Then X_{C_n} is entropy minimal.

Theorem (Chandgotia, Meyerovitch '13) Let C_n be an n-cycle. Then X_{C_n} is entropy minimal.

A connected, finite graph \mathcal{H} is called four-cycle free if it has no self-loops and C_4 is not a subgraph of \mathcal{H} .

Theorem (Chandgotia, Meyerovitch '13) Let C_n be an n-cycle. Then X_{C_n} is entropy minimal.

A connected, finite graph \mathcal{H} is called four-cycle free if it has no self-loops and C_4 is not a subgraph of \mathcal{H} .

Theorem (Chandgotia '14)

If \mathcal{H} is a four-cycle free graph then $X_{\mathcal{H}}$ is entropy minimal.

• $A \subset \mathbb{Z}^d$ is a finite subset.

• -Elements of A

- $A \subset \mathbb{Z}^d$ is a finite subset.
- X is a shift space.

• -Elements of A

- $A \subset \mathbb{Z}^d$ is a finite subset.
- X is a shift space.
- For a pattern $a \in \mathcal{L}(X) \cap \mathfrak{A}^A$ consider

• -Elements of A

- $A \subset \mathbb{Z}^d$ is a finite subset.
- X is a shift space.
- For a pattern $a \in \mathcal{L}(X) \cap \mathfrak{A}^A$ consider

$$[a]_A := \{x \in X \mid x|_A = a\}$$
 (Cylinder set).

• -Elements of A

Cylinder set [4,3,1] A

• As with topological entropy, for a given shift-invariant Borel probability measure μ on a shift space we denote its measure-theoretic entropy by h_{μ} .

- As with topological entropy, for a given shift-invariant Borel probability measure μ on a shift space we denote its measure-theoretic entropy by h_{μ} .
- (Variational Principle) Given a shift space X

$$\sup_{supp(\mu)\subset X}h_{\mu}=h_{top}(X).$$

- As with topological entropy, for a given shift-invariant Borel probability measure μ on a shift space we denote its measure-theoretic entropy by h_{μ} .
- (Variational Principle) Given a shift space X

$$\sup_{supp(\mu)\subset X}h_{\mu}=h_{top}(X).$$

 The supremum is achieved; such measures are called measures of maximal entropy.

- As with topological entropy, for a given shift-invariant Borel probability measure μ on a shift space we denote its measure-theoretic entropy by h_{μ} .
- (Variational Principle) Given a shift space X

$$\sup_{supp(\mu)\subset X}h_{\mu}=h_{top}(X).$$

- The supremum is achieved; such measures are called measures of maximal entropy.
- If μ is a measure of maximal entropy for X then $h_{\mu} = h_{top}(X)$.

- As with topological entropy, for a given shift-invariant Borel probability measure μ on a shift space we denote its measure-theoretic entropy by h_{μ} .
- (Variational Principle) Given a shift space X

$$\sup_{supp(\mu)\subset X}h_{\mu}=h_{top}(X).$$

- The supremum is achieved; such measures are called measures of maximal entropy.
- If μ is a measure of maximal entropy for X then $h_{\mu} = h_{top}(X)$.

Theorem

A shift space X is entropy minimal if and only if for every measure of maximal entropy μ , supp $(\mu) = X$.

(Lanford and Ruelle '69-Special case):

(Lanford and Ruelle '69-Special case): If X is a shift of finite type then for any measure of maximal entropy μ ,

(Lanford and Ruelle '69-Special case): If X is a shift of finite type then for any measure of maximal entropy μ , finite set A, $\partial A \subset B \subset A^c$

(Lanford and Ruelle '69-Special case): If X is a shift of finite type then for any measure of maximal entropy μ , finite set A, $\partial A \subset B \subset A^c$ and $[b]_B$ of positive measure

(Lanford and Ruelle '69-Special case): If X is a shift of finite type then for any measure of maximal entropy μ , finite set A, $\partial A \subset B \subset A^c$ and $[b]_B$ of positive measure

$$\mu([a]_A \mid [b]_B)$$

is uniform over all patterns $a \in \mathcal{L}(X) \cap \mathfrak{A}^A$ satisfying $ab \in \mathcal{L}(X)$.

(Lanford and Ruelle '69-Special case): If X is a shift of finite type then for any measure of maximal entropy μ , finite set A, $\partial A \subset B \subset A^c$ and $[b]_B$ of positive measure

$$\mu([a]_A \mid [b]_B)$$

is uniform over all patterns $a \in \mathcal{L}(X) \cap \mathfrak{A}^A$ satisfying $ab \in \mathcal{L}(X)$.

Such measures are called uniform Gibbs measures.

(Lanford and Ruelle '69-Special case): If X is a shift of finite type then for any measure of maximal entropy μ , finite set A, $\partial A \subset B \subset A^c$ and $[b]_B$ of positive measure

$$\mu([a]_A \mid [b]_B)$$

is uniform over all patterns $a \in \mathcal{L}(X) \cap \mathfrak{A}^A$ satisfying $ab \in \mathcal{L}(X)$.

Such measures are called uniform Gibbs measures.

For example, if $\boldsymbol{\mu}$ is the measure of maximal entropy in the hard square model then

(Lanford and Ruelle '69-Special case): If X is a shift of finite type then for any measure of maximal entropy μ , finite set A, $\partial A \subset B \subset A^c$ and $[b]_B$ of positive measure

$$\mu([a]_A \mid [b]_B)$$

is uniform over all patterns $a \in \mathcal{L}(X) \cap \mathfrak{A}^A$ satisfying $ab \in \mathcal{L}(X)$.

Such measures are called uniform Gibbs measures.

For example, if μ is the measure of maximal entropy in the hard square model then

$$\mu([0]_0 \mid [0 \ 0 \ 0]_{\partial 0}) = \mu([1]_0 \mid [0 \ 0 \ 0]_{\partial 0}) = \frac{1}{2}.$$

Entropy Minimality of X_{C_3}

The Cayley graph of $\mathbb{Z}/3\mathbb{Z}$ is C_3 .

Let us see why X_{C_3} is entropy minimal.

• A height function is an element of $X_{\mathbb{Z}}$.

- A height function is an element of $X_{\mathbb{Z}}$.
- For all $h \in X_{\mathbb{Z}}$, $h \mod 3 \in X_{C_3}$.

- A height function is an element of $X_{\mathbb{Z}}$.
- For all $h \in X_{\mathbb{Z}}$, $h \mod 3 \in X_{C_3}$.
- Conversely, given a configuration in X_{C_3} there exists a unique (up to an additive constant) height function corresponding to it.

- A height function is an element of $X_{\mathbb{Z}}$.
- For all $h \in X_{\mathbb{Z}}$, $h \mod 3 \in X_{C_3}$.
- Conversely, given a configuration in X_{C_3} there exists a unique (up to an additive constant) height function corresponding to it.

Height Function

• A height function is an element of $X_{\mathbb{Z}}$.

Height Function

- For all $h \in X_{\mathbb{Z}}$, $h \mod 3 \in X_{C_3}$.
- Conversely, given a configuration in X_{C_3} there exists a unique (up to an additive constant) height function corresponding to it.

• Given a height function h the slope in the direction e_i is given by

$$sl_{e_i}(h) := \lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

• Given a height function h the slope in the direction e_i is given by

$$sl_{e_i}(h) := \lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

• It follows that $|sl_{e_i}(h)| \leq 1$ whenever it exists.

• Given a height function h the slope in the direction e_i is given by

$$sl_{e_i}(h) := \lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

- It follows that $|sl_{e_i}(h)| \leq 1$ whenever it exists.
- Given a \mathbb{Z}^d -ergodic measure μ on X_{C_3} , the ergodic theorem implies that in every direction the slope exists and is a constant μ -almost everywhere.

• Given a height function h the slope in the direction e_i is given by

$$sl_{e_i}(h) := \lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

- It follows that $|sl_{e_i}(h)| \leq 1$ whenever it exists.
- Given a \mathbb{Z}^d -ergodic measure μ on X_{C_3} , the ergodic theorem implies that in every direction the slope exists and is a constant μ -almost everywhere.
- The slope may be different in different directions.

• Suppose μ is a \mathbb{Z}^d -ergodic measure on X_{C_3} such that $|sl_{e_i}(h)|=1$ almost everywhere.

- Suppose μ is a \mathbb{Z}^d -ergodic measure on X_{C_3} such that $|sl_{e_i}(h)| = 1$ almost everywhere.
- Then

$$|h(j + ne_i) - h(j)| = n$$

almost everywhere for all $j \in \mathbb{Z}^d$.

- Suppose μ is a \mathbb{Z}^d -ergodic measure on X_{C_3} such that $|sl_{e_i}(h)| = 1$ almost everywhere.
- Then

$$|h(j + ne_i) - h(j)| = n$$

almost everywhere for all $j \in \mathbb{Z}^d$.

• Thus for a height function h in the support of the measure, $h(j + ne_i)$ and h(j) determine the values $h(j + te_1)$ for all 1 < t < n - 1.

- Suppose μ is a \mathbb{Z}^d -ergodic measure on X_{C_3} such that $|sl_{e_i}(h)| = 1$ almost everywhere.
- Then

$$|h(j + ne_i) - h(j)| = n$$

almost everywhere for all $j \in \mathbb{Z}^d$.

- Thus for a height function h in the support of the measure, $h(j+ne_i)$ and h(j) determine the values $h(j+te_1)$ for all 1 < t < n-1.
- Let $X_{frozen} \subset X_{C_3}$ be the space of such configurations. Then $h_{top}(X_{frozen}) = 0$.

- Suppose μ is a \mathbb{Z}^d -ergodic measure on X_{C_3} such that $|sl_{e_i}(h)| = 1$ almost everywhere.
- Then

$$|h(j + ne_i) - h(j)| = n$$

almost everywhere for all $j \in \mathbb{Z}^d$.

- Thus for a height function h in the support of the measure, $h(j+ne_i)$ and h(j) determine the values $h(j+te_1)$ for all 1 < t < n-1.
- Let $X_{frozen} \subset X_{C_3}$ be the space of such configurations. Then $h_{top}(X_{frozen}) = 0$.
- Thus slope 1 or -1 is 'improbable'.

• Let h_1 be a height function on a ball D_n and

- Let h_1 be a height function on a ball D_n and
- h_2 be a height function on \mathbb{Z}^d with slope s strictly between 1 and -1 in all directions.

- Let h_1 be a height function on a ball D_n and
- h_2 be a height function on \mathbb{Z}^d with slope s strictly between 1 and -1 in all directions.
- Then we can choose an $N_n^s \in \mathbb{N}$ and a height function h which is equal to h_1 on D_n and h_2 on $D_{N^s}^c$.

- Let h_1 be a height function on a ball D_n and
- h_2 be a height function on \mathbb{Z}^d with slope s strictly between 1 and -1 in all directions.
- Then we can choose an $N_n^s \in \mathbb{N}$ and a height function h which is equal to h_1 on D_n and h_2 on $D_{N^s}^c$.

- Let h_1 be a height function on a ball D_n and
- h_2 be a height function on \mathbb{Z}^d with slope s strictly between 1 and -1 in all directions.
- Then we can choose an $N_n^s \in \mathbb{N}$ and a height function h which is equal to h_1 on D_n and h_2 on $D_{N^s}^c$.

- Let h_1 be a height function on a ball D_n and
- h_2 be a height function on \mathbb{Z}^d with slope s strictly between 1 and -1 in all directions.
- Then we can choose an $N_n^s \in \mathbb{N}$ and a height function h which is equal to h_1 on D_n and h_2 on $D_{N^s}^c$.

- Let h_1 be a height function on a ball D_n and
- h_2 be a height function on \mathbb{Z}^d with slope s strictly between 1 and -1 in all directions.
- Then we can choose an $N_n^s \in \mathbb{N}$ and a height function h which is equal to h_1 on D_n and h_2 on $D_{N^s}^c$.

Thus if μ is a uniform Gibbs measure with slope between -1 and 1 then $supp(\mu) = X_{C_3}$.

ullet Since slopes 1 or -1 are 'improbable', the slope for any measure of maximal entropy is strictly between -1 and 1.

- Since slopes 1 or -1 are 'improbable', the slope for any measure of maximal entropy is strictly between -1 and 1.
- For such 'gentle' slopes we just proved that these measures are fully supported.

- Since slopes 1 or -1 are 'improbable', the slope for any measure of maximal entropy is strictly between -1 and 1.
- For such 'gentle' slopes we just proved that these measures are fully supported.
- A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported.

- Since slopes 1 or -1 are 'improbable', the slope for any measure of maximal entropy is strictly between -1 and 1.
- For such 'gentle' slopes we just proved that these measures are fully supported.
- A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported.
- Therefore X_{C_3} is entropy minimal.

- Since slopes 1 or -1 are 'improbable', the slope for any measure of maximal entropy is strictly between -1 and 1.
- For such 'gentle' slopes we just proved that these measures are fully supported.
- A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported.
- Therefore X_{C_3} is entropy minimal.
- What if C_3 is replaced by some other four-cycle free graph \mathcal{H} ?

Notice that we were using the following commutative diagram:

Notice that we were using the following commutative diagram:

Notice that we were using the following commutative diagram:

If C_3 is replaced by a connected four-cycle free graph ${\mathcal H}$

Notice that we were using the following commutative diagram:

If C_3 is replaced by a connected four-cycle free graph \mathcal{H} then \mathbb{Z} is replaced by the universal cover of \mathcal{H} .

Notice that we were using the following commutative diagram:

If C_3 is replaced by a connected four-cycle free graph $\mathcal H$ then $\mathbb Z$ is replaced by the universal cover of $\mathcal H$.

Conjecture: For d = 2, X_H is entropy minimal for all connected graphs H.

Thank You!