Lesson 24: Practice Problems - Special Integrating Factors

ODE 1 - Prof. Adi Ditkowski

Part A: Testing for $\mu(xy)$ (Problems 1-5)

- 1. For $(y^2 + 2xy)dx + (x^2 xy)dy = 0$:
 - (a) Verify that neither $\mu(x)$ nor $\mu(y)$ exists
 - (b) Test for $\mu(xy)$
 - (c) Find the integrating factor if it exists
- 2. Test for $\mu(xy)$: $(3xy + y^2)dx + (3xy + x^2)dy = 0$
- 3. Determine if $\mu(xy)$ exists: $(2y + xy^2)dx + (2x x^2y)dy = 0$
- 4. For $(y + x^2y^2)dx + (x + x^2y^2)dy = 0$, find $\mu(xy)$ if it exists.
- 5. Show that $(xy^2 y)dx + (x^2y x)dy = 0$ has $\mu = 1/(xy)$

Part B: Testing for $\mu(x^2 + y^2)$ (Problems 6-10)

- 6. Test for $\mu(x^2 + y^2)$: $(x^2 + y^2 + x)dx + ydy = 0$
- 7. For (x+y)dx + (x-y)dy = 0 on the punctured plane:
 - (a) Show standard integrating factors don't exist
 - (b) Find $\mu(x^2 + y^2)$
- 8. Verify that $\mu = 1/(x^2 + y^2)$ works for: -ydx + xdy = 0
- 9. Find $\mu(x^2 + y^2)$ for: $(x^3 + xy^2 + y)dx + (x^2y + y^3 x)dy = 0$
- 10. Test whether $(2xy)dx + (x^2 + y^2)dy = 0$ has an integrating factor of the form $\mu(x^2 + y^2)$.

Part C: Power Form $\mu = x^a y^b$ (Problems 11-15)

- 11. Find values of a and b such that $\mu = x^a y^b$ is an integrating factor for: ydx + 2xdy = 0
- 12. Find $\mu = x^a y^b$ for: $(2y^2 + xy)dx + xydy = 0$
- 13. Determine all integrating factors of the form $x^a y^b$ for: 3y dx + 2x dy = 0
- 14. For what values of a, b is $x^a y^b$ an integrating factor for: $(x^2 + y^2)dx + 2xydy = 0$?
- 15. Given that $(3x^2y + ay^3)dx + (x^3 + 3bxy^2)dy = 0$ has an integrating factor $\mu = x^2y$, find a and b.

Part D: Homogeneous Equations (Problems 16-20)

- 16. Verify homogeneity and find the integrating factor: $(x^2 + y^2)dx + 2xydy = 0$
- 17. Use the homogeneous property to solve: $(x^2 2y^2)dx + xydy = 0$
- 18. Show that $(x^3 + xy^2)dx + (x^2y + y^3)dy = 0$ is homogeneous and find μ .
- 19. For the homogeneous equation $(2xy + y^2)dx + (x^2 + 2xy)dy = 0$:
 - (a) Find $\mu = 1/(xM + yN)$
 - (b) Solve the equation
- 20. Explain why $\mu = 1/(xM + yN)$ works for all homogeneous equations of the same degree.

Part E: Mixed Special Forms (Problems 21-25)

- 21. For $(y^2 xy + 1)dx + (xy x^2 + 1)dy = 0$:
 - (a) Test all standard forms $(\mu(x), \mu(y), \mu(xy))$
 - (b) Find an appropriate integrating factor
- 22. The equation (f(y) + xy)dx + (g(x) + xy)dy = 0 has $\mu(xy)$. What can you conclude about f and g?
- 23. Find the most appropriate integrating factor for: $(x^2y^3 + y)dx + (x^3y^2 + x)dy = 0$
- 24. Given (P(x)y+Q(y))dx+(R(x)+S(y)x)dy=0 has $\mu=x^ay^b$, find relationships among P,Q,R,S.
- 25. For equations with integrating factor $\mu = e^{xy}$, what condition $must(M_y N_x)/(xN yM)$ satisfy?

Part F: Exam-Style Problems (Problems 26-30)

- 26. (Prof. Ditkowski 2022) Show that $(2xy^3 + y)dx + (3x^2y^2 + x)dy = 0$ becomes exact when multiplied by $\mu = xy$.
- 27. Find all integrating factors of the form $\mu = f(xy)$ for: ydx xdy = 0
- 28. Given that an equation has both $\mu_1 = x$ and $\mu_2 = y$ as integrating factors:
 - (a) What can you conclude about the equation?
 - (b) Give an example of such an equation
- 29. For $(ax^2 + bxy + cy^2)dx + (dx^2 + exy + fy^2)dy = 0$ to have $\mu = 1/(x^2 + y^2)$, find the relationship between the coefficients.
- 30. A differential equation has the form Mdx + Ndy = 0 where M and N are polynomials of degree 3.
 - (a) Under what conditions will it have $\mu = x^a y^b$?
 - (b) Can it have $\mu(xy)$? Explain.
 - (c) What about $\mu = 1/(xM + yN)$?

Solutions and Key Insights

Problem 1: (a) $\mu(x)$: $(M_y - N_x)/N = (2y + 2x - 2x + y)/(x^2 - xy) = 3y/(x^2 - xy)$ - has y, no $\mu(x)$ $\mu(y)$: $(N_x - M_y)/M = (2x - y - 2y - 2x)/(y^2 + 2xy) = -3y/(y^2 + 2xy) = -3/(y + 2x)$ - has x, no $\mu(y)$

(b) $\mu(xy)$: $(M_y - N_x)/(xN - yM) = 3y/(x(x^2 - xy) - y(y^2 + 2xy)) = 3y/(x^3 - x^2y - y^3 - 2xy^2)$

Problem 8: -ydx + xdy = 0 has $M_y = -1$, $N_x = 1$, so $(M_y - N_x) = -2$ xM + yN = x(-y) + y(x) = 0 - Division by zero issue! But note: $d(\arctan(y/x)) = \frac{xdy - ydx}{x^2 + y^2}$, so $\mu = 1/(x^2 + y^2)$ works!

Problem 11: ydx + 2xdy = 0 with $\mu = x^ay^b$ gives: $x^ay^{b+1}dx + 2x^{a+1}y^bdy = 0$ Exactness: $(b+1)x^ay^b = 2(a+1)x^ay^b$ So b+1=2(a+1), giving b=2a+1 Family of solutions: $\mu = x^ay^{2a+1}$ for any a

Problem 16: $(x^2 + y^2)dx + 2xydy = 0$ Both M and N are homogeneous of degree 2. $xM + yN = x(x^2 + y^2) + y(2xy) = x^3 + xy^2 + 2xy^2 = x^3 + 3xy^2$ So $\mu = 1/(x^3 + 3xy^2)$

Key Strategy: For Problem 23, notice the symmetry in x and y - this suggests $\mu = xy$ or $\mu = 1/(xy)$.

Warning: Problem 28 - If two different integrating factors exist, their ratio must be a function that makes the original equation exact when used as an integrating factor.