EE2100: Matrix Theory Quiz - 4

1. (3 points) Compute the value if
$$x$$
 such that $\mathbf{Det}(\mathbf{A}) = c$ where $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & x \\ 2 & 3 & 4 \end{bmatrix}$

2. (3 points) Let x be such that $\mathbf{Det}(\mathbf{A}) = c$ where $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 4 & 5 & x \end{bmatrix}$. Compute the determinant of matrix \mathbf{B} given

$$\mathbf{by} \; \mathbf{B} = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 13 & 18 \\ 4 & 5 & x \end{bmatrix}$$

3. (3 points) Let x and y be such that the maximum eigen value of $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 4 & y & x \end{bmatrix}$ is c. Compute the maximum

eigen value of matrix
$${f B}$$
 given by ${f B}=\left[egin{array}{cccc} -1 & 2 & 3 \\ 2 & 1 & 4 \\ 4 & y & x-2 \end{array} \right].$

- 4. (3 points) Let $\mathbf{A} \in \mathcal{R}^{3\times3}$ and $\mathbf{B} \in \mathcal{R}^{3\times3}$ be full rank matrices such that the eigen values of \mathbf{AB} are 1, 2 and 3. If $\mathbf{Tr}(\mathbf{B}^T\mathbf{B}) = c$ and $\mathbf{Tr}(\mathbf{A}^T\mathbf{A}) = \frac{14}{c}$, the minimum eigen value of \mathbf{BA} is
- 5. (3 points) Let $\mathbf{A}^{3\times3}$ be a skew symmetric matrix whose eigen values are 0, -cj. The imaginary part of the other eigen value of \mathbf{A} is