89905

SYSTEM FOR EXTENDING THE DYNAMIC GAIN OF AN X-RAY DETECTOR

Field of the Invention

[0001] The field of the invention relates to X-ray imaging and more particularly to the detection of X-rays for imaging.

Background of the Invention

[0002] The use of X-rays for imaging is well known. Typically an X-ray source and detector are placed on opposing sides of the object to be imaged and the X-ray source is activated. X-rays passing through the object are detected and formed into an image.

[0003] The detection of X-rays may be accomplished using any of a number of methods. Under one method, X-ray film may be used as the X-ray detection device. In this case, a two-dimensional image may be formed by simply developing the image formed on the film by the X-rays passing through the object of interest.

[0004] Alternatively, the detection of X-rays may be accomplished with a one- or two-dimensional array of scintillating elements. As is known, a scintillating element functions to absorb X-ray energy and re-emit the energy in the form of lower-energy photons, typically in the visible light range. A photodetector is usually attached to an outer surface of the scintillator to detect the light produced by the interaction of the X-rays with the scintillator. The magnitude of the electrical signal from the photodetector (which is a function of the flux of

X-rays that hit the detector element) is used to represent the detected X-ray signal.

[0005] The use of portable X-ray inspection systems for trucks is generally known. Such systems are typically used to perform non-invasive inspection of trucks for contraband (e.g., explosives, drugs, etc.). Often an X-ray beam is directed through the truck to a set of detectors on an opposing side.

[0006] As the radiation of the X-ray beam passes through the truck, the contents of the truck attenuate the beam based upon the density of the contents. Based upon the attenuation, an image may be formed of the truck's contents. By comparing a truck's manifest with the X-ray image, law-enforcement personnel may make a determination of whether on not they have probable cause to believe that any laws have been broken.

While portable X-ray imaging systems for trucks [0007] work well, they are difficult to use in some cases. example, vehicle imaging systems are subject to a great deal of variation in signal levels. If the output of the X-ray source is adjusted to keep the signal passing through low density areas (e.g., air paths or with negligible material in the path of the beam) below the maximum level that the detector system is able to process, then the signal passing through other regions of the object (with a high density) may be too low to measure variations in that low-level signal. Without prior knowledge of the distribution of material in the object to be imaged, the power level setting of the X-ray source (and the detector full-scale level) is chosen based upon experience. If that setting is wrong, the process may need to be repeated. Because of the importance of vehicle inspection, a need

exists for a better method of producing images from X-rays passing through vehicles.

Summary

[0008] A method and apparatus are provided for extending a dynamic range of an X-ray imaging system. The method includes the steps of detecting a plurality of X-ray beams, amplifying each of the plurality of detected X-ray beams using a first gain value and amplifying each of the plurality of detected X-ray beams using a second gain value. The two signals amplified from each of the plurality of X-ray beams are measured at the same location. The method also includes the step of forming an X-ray image from the detected X-ray beams amplified by the first gain value and from the detected X-ray beams amplified by the second gain value.

Brief Description of the Drawings

[0009] FIG. 1 is a block diagram of a vehicle imaging system in accordance with an illustrated embodiment of the invention;

[0010] FIG. 2 is a side view of the imaging system of FIG. 1; and

[0011] FIG. 3 is a block diagram of the imaging system of FIG. 1.

Detailed Description of an Illustrated Embodiment

[0012] FIG. 1 is a block diagram of an X-ray vehicle imaging system 10 shown in a context of use, generally in accordance with an illustrated embodiment of the invention. The imaging system 10 may be used for digital radiography (DR) in the non-invasive inspection of trucks 16 for

```
contraband (e.g., explosives, drugs, etc.). While the
                             imaging system 10 will be described in the context of
                            radiography, it should be understood the concepts described
                           herein are also intended to cover computed tomography and
                          laminography.
                          [0013]
                        the context of truck inspection, it should be understood
                                  While the imaging system 10 will be described in
                       that the system 10 may also be used for the non-invasive
                      inspection of many other things. For example, the features
                     of the system 10 that are described below also allow the
                    System 10 to be easily used for the inspection of
                   automobiles, railcars, barges, shipping containers or even
                   l_{uggage}.
                  [0014]
                through the truck, the contents of the truck attenuate the
               beam based upon the density of the truck's contents. The
              attenuated X-ray beams may then be measured and used to
              form an image of the content of the truck 16.
           systems is that trucks typically carry loads with a wide
                      One difficulty with prior art truck inspection
           Variety of densities. For example one truck may be
         carrying ping-pong balls whereas another truck may be a
        tanker carrying water or fuel. However, in either case,
        the truck carrying ping-pong balls, water or fuel could
      also be carrying explosives or other contraband. Because
     of this possibility, a vehicle imaging system must be
     Capable of working equally well with ping-pong balls as
    with water.
   [00]6]
 may pass through air or through only very thin walls of the
            Also, in any given truck, some of the X-ray beams
 truck's trailer, which have negligible attenuation and the
detected signals are very high, while other X-ray beams may
```

pass through very dense portions of the trailer's load. Therefore, on a given truck the range of detected signals from maximum to minimum can be very high if the truck includes regions of high attenuation.

[0017] Because of the wide variability in density, the imaging system 10 is capable of operating automatically over a wide dynamic range. More to the point, the truck imaging system 10 may be capable of operating without (or with only minimal) saturation of the detection system in the case of an empty truck where a detector array 14 of the imaging system 10 is subject to virtually the full power of the X-ray source 12.

[0018] Alternatively, the imaging system 10 may also be capable of providing discernable images through an appropriate thickness of water or fuel (e.g., 8 foot). In these cases, the dynamic range could be expected to be relatively large (e.g., 1:30,000). The imaging system 10 may also be capable of providing discernable images of objects obscured by thick metal objects that overlap the objects of interest in the image. In this case, as well as in the liquid case above, the required information is represented by small variations in an already small signal level.

[0019] In order to form an effective image of the truck's content, the source 12 and detector 14 may be provided with an effective coverage area that envelopes a height of the truck 16. The detector 14 may include an array of detector elements 20 in the vertical direction appropriate for the resolution and height desired. In effect, the X-ray source 12 may be thought of as simultaneously generating a number of X-ray beams detected by respective X-ray detectors 20. In one particular

embodiment, the detector elements 20 may be provided with a pitch (center to center spacing) of 4.6 mm in the vertical direction.

[0020] The detector 14 may be provided with a single vertical column of detector elements 20 or with an appropriate number of columns (e.g., 2, 3, etc.). The collection of information in the horizontal direction may be aided by either allowing the truck 16 to slowly drive through an imaging field of the imaging system 10 or by moving the imaging system 10 along the length of the parked truck.

[0021] The X-ray source 12 may include a number of X-ray sources to provide a substantially parallel imaging path through the truck (as suggested by FIG. 2) or may be a single X-ray source. Where a single X-ray source is involved, it would be expected that the X-ray beam would be of the fan-beam variety with sufficient spacing between the source 12 and detector 14 to allow full coverage of the height of the truck 16. Alternatively, two X-ray sources could be mounted with the center of their emission beams approximately perpendicular, to see simultaneous images of the top view and side view of the truck. In this case, each X-ray source would have its own detector array, and each array produces an image from different points of view. Alternatively, smaller sources 12 and detectors 14 may be used. In this case, the area of the truck that can be seen in any one instant with the smaller system is smaller than the required region. In the limiting case, the pencil beam defined by a single source and one small detector could be scanned in two dimensions to cover the entire region in a longer time than taken with a one- or two-dimensional array of detectors. In the case of smaller

```
X-ray systems, it would be expected that the source and
                                                                  detector would scan in the vertical as well as the
                                                                horizontal direction in order to form images of the entire
                                                               volume of the truck 16.
                                                             [0023]
                                                         FIG. 3 is a block diagram that shows additional details of
                                                                                 Turning now to the imaging system 10 in specific,
                                                       the imaging system 10. As shown, a processor 22 may be
                                                    provided for purposes of controlling the system 10. A man-
                                                  machine interface (MMI) (e.g., a keyboard) 24 may be
                                                provided for entry of commands or operating parameters into
                                              the processor 22. A display 26 may be provided for image
                                              display.
                                            [0024]
                                        scintillating element 28 and a pair of associated
                                     Photodetectors 30, 32. The scintillating elements 28 may
                                   be of an appropriate material (e.g., a single crystal,
                                 Polycrystalline, ceramic, plastic, etc.) with a depth
                               appropriate for the energy level of the source 12 (e.g., 6
                              MV).
                            [0025]
                        Convert impinging X-rays (i.e., an X-ray beam) into visible
                      or near-visible light. For convenience, the visible or
                    near-visible light will be referred to as the converted X-
                 ray beam. The converted X-ray beam may then be detected
                within the pair of detectors 30, 32.
           to an associated amplifier 34, 36 and function to collect
                                   The pair of photodetectors 30, 32 may be coupled
         substantially identical samples of the same X-ray beam.
      Under one illustrated embodiment, a first amplifier 34 of
    each detector element 20 provides a first gain value, KI,
  and the second amplifier 36 provides a second gain value, in seach decrease the second second
K2. Under the embodiment, the gain of the first amplifier
```

34 may be eight times the gain of the second amplifier 34, 34 of each element 20.

In use, an image processor 40 may periodically [0027] collect samples from the first and second amplifiers 34, 36 of each element 20. To collect a reading, the processor 40 may activate the source 12 and instruct the detector 14 to collect readings. A digitization system 38 may sequentially connect each of the amplifiers 34, 36 to an analog to digital converter (ADC) 44 via a multiplexer 42. The converted samples may be saved in a respective file 46, 48 along with vertical and horizontal position information. The vertical position information may include an identifier of the element 20 providing the reading and possibly a vertical position of the detector array 14. Normally, all detectors acquire X-ray signal at the same time, to avoid differences in imaged subject matter caused by motion of In this case, both readings from each detector the truck. are acquired during the same time interval, which is the same time interval for the readings from all other detectors. Alternatively, the readings from the pairs of detectors may be staggered in time, so that the start and end times of the collection cycle start and end later for each detector pair as they are read out. In that case, the two readings from each detector can be read simultaneously, or slightly offset in time by being read out in adjacent time slots to minimize the position difference between the two readings.

[0028] The horizontal position information may be provided by a position sensor 50. Alternatively, the relative position of the truck with respect to the scanner may be determined by relying on a constant velocity of the truck with respect to the scanner, and collecting the

detector data at constant time intervals, which correspond to constant position intervals.

[0029] The position sensor 50 may provide an indication of the position of the truck 16 relative to the system 10. The position sensor 50 may be calibrated in feet and inches and may be an optical encoding device that provides information about the location on the truck 16 (i.e., along the length of the truck) where each sample was obtained. The position sensor 50 may also be used as a source to provide information on elevation in the case where the source 12 and detector 14 scan the truck 16 in a vertical direction.

[0030] In the case where the imaging system 10 moves along a stationary truck, the position sensor 50 may be coupled to the drive system that moves the source 12 and detector 14 along the length of the truck. In the case where the truck 16 moves, the position sensor 50 may be a radar or acoustic ranging device that measures truck position relative to the imaging system 10.

[0031] The processor 40 may display images of the truck 16 in real-time as the truck 16 moves through the imaging system 10. Alternatively, the processor 40 may store the samples for later viewing or as evidence. Where stored, samples from the lower gain amplifiers 36 may be stored in a low-gain file 46 and the samples from the high-gain amplifiers 34 may be stored in a high-gain file 48.

[0032] In use, the processor 38 may display two images 52, 54 on a display 26. The images 52, 54 may be reconstructed from the sample values based upon the vertical position of the element 20 within the array 14 (and the elevation of the array 14 in the case where the

```
array 14 is moveable) and from the longitudinal information
                             provided by the position sensor 50.
                           the low-gain amplifiers 36 and the second image 54 may be
                                     The first image 52 may be limited to samples from
                          limited to corresponding samples from the high gain
                         amplifiers 34. Each set of images 52, 54 may be formed
                        from a single imaging location of the truck showing the
                       same View (albeit with different levels of amplification).
                     amplifiers 34, 36 may be integrated into the same image
                               Alternatively, samples from the low and high-gain
                    based upon a color-coding arrangement. For example, pixels
                   that display samples from the low-gain amplifiers 36 may be
                  displayed as a gray-scale image where intensity of the
                 detected X-rays is indicated by the brightness of the
                pixel. In contrast, pixels that display samples from the
               high-gain amplifiers 34 may be displayed with a blue
              background where intensity is again indicated by color
              intensity.
             [0035]
           38 may compare each sample from the amplifiers 34, 36 of
                      To select the appropriate sample, the processor
          each detector element 20 With a set of threshold values.
         An upper threshold for the high-gain amplifiers 34 may be
        set at a saturation value for that amplifier.
       processor 40 detects saturation of the high-gain amplifier,
      the processor 40 may simply substitute a value from the
     low-gain amplifier in the appropriate pixel position along
    With a gain indicator (gray-scale brightness) indicating
   the amplification level. Alternatively, a single grey-
  scale image can be formed by normalizing the values from
  the high and low-gain amplifiers. The values may be
normalized against a predetermined pixel display range by a
normalizing processor 56 using a suitable algorithm to
```

combine the high-gain and low-gain values for each detector sample into a single value for that pixel in the image. At high signal values, the high-gain value is not valid, due to saturation, and the algorithm does not use the high-gain value for signal values above a certain threshold. At high signal values, the algorithm output value is only a function of the low-gain value. At very low signal values, the low-gain value is still valid, but the high-gain value is a better measure of the low signal value, and the algorithm output value is only a function of the high-gain value. At intermediate values, the algorithm can abruptly switch from the high-gain value to a multiple of the low gain value as the signal value increases, or a more smooth transition can be made using a weighted sum of the two values.

[0036] Where the signal level from the high-gain amplifier 34 falls below the saturation threshold, the high-gain pixel may be, again, substituted into the image. In each case, the operator is alerted to the gain based upon the background color or the pixel.

[0037] The use of the dual amplification system allows a operator to automatically see images under conditions that would not have been possible under the prior art. In cases of a vehicle with a low-density material, the low gain image would provide complete imaging information of the vehicle. Similarly, the high gain image would provide complete imaging information of vehicles with dense loads.

[0038] Further, the presence of two images would allow the operator to easily examine dense areas adjacent to non-dense areas without adjusting an overall system gain. For example, it would be well recognized in the art that even if the overall gain of the detectors 14 could be easily

controlled, the result would either be a good image of dense areas or a good picture of non-dense areas. The difficulty for the operator, of course, is that if a weapon were to extend from a dense area into a non-dense area, the operator would not be able to see the entire weapon at the same time and would be more likely to miss important details.

[0039] The presence of two images allows the operator to compare images to look for an indication of any contraband. Further, the operator may combine the images (using the color coding arrangement discussed above) to further correlate the outlines and appearance of potential contraband.

[0040] A specific embodiment of a method and apparatus for expanding a dynamic range of an X-ray imaging system has been described for the purpose of illustrating the manner in which the invention is made and used. It should be understood that the implementation of other variations and modifications of the invention and its various aspects will be apparent to one skilled in the art, and that the invention is not limited by the specific embodiments described. Therefore, it is contemplated to cover the present invention, any and all modifications, variations, or equivalents that fall within the true spirit and scope of the basic underlying principles disclosed and claimed herein.