Masterarbeit

Lukas Schulth lukas.schulth@uni.kn

27. April 2021

Zusammenfassung

abstract

 ${\it Keywords}$ — one, two, three, four

${\bf Abbildungs verzeichn is}$

Tabellenverzeichnis

Listings

1	Verfügbare Schichten und Aktivierungsfunktionen
2	Implementierte Regeln fhvilshoj
3	Kleines Netzwerk

Inhaltsverzeichnis

1	Einführung	5
	1.1 Neuronale Netzwerke	5
	1.1.1 CNNS	5
	1.2 Poisoning-Angriffe	5
2	Erklärbare KI	5
	2.1 Lokale Methoden	5
	2.2 Globale Methoden	5
3	Layer-wise Relevance Propagation	5
	3.1 Idee	5
	3.2 Deep Taylor Decomposition	5
	3.3 Verschiedene Verfahren	5
	3.4 LRP als DTD	5
	3.5 Eigenschaften	6
	3.6 Implementierung	6
	3.6.1 Tensorflow	6
	3.6.2 pytorch	6
4	Detektion von Poisoning-Angriffen basierend auf LRP	7
	4.1 Idee	7
	4.2 Verwendete Distanzen	8
	4.2.1 Euklidische Distanz	8
	4.2.2 Gromov-Wasserstein-Distanz	8
	4.3 Anwendung auf unterschiedliche Poisoning-Angriffe	8
	4.3.1 Standard Poisoning-Angriffe	8
	4.3.2 Label-konsistente Poisoning-Angriffe	8
5	Vergleich mit anderen Verfahren	8
	5.1 Activation Clustering	8
	5.2 Räumliche Transformationen	8
6	Weitere mögliche Schritte	8
A	Verwendete Netzwerke	9
	A.1 Net	9
В	Parameter für Training und Einlesen der Daten	9
\mathbf{C}	Datensätze	9
D	Programmcode	9

1 Einführung

A Complete List of All (arXiv) Adversarial Example Papers ¹ In sicherheitskritischen Anwendungsgebieten ist die Interpretation einer Entscheidung genauso wichtig wie die Entscheidung selbst[1].

1.1 Neuronale Netzwerke

1.1.1 CNNS

Idee, Abstraktion, high level, low level features, bekannte Netzwerke

1.2 Poisoning-Angriffe

2 Erklärbare KI

2.1 Lokale Methoden

2.2 Globale Methoden

3 Layer-wise Relevance Propagation

3.1 Idee

In [4] wird die Layer-wise Relevance Propagation erstmalig vorgestellt. Zudem wird eine Taylor Zerlegung präsentiert, die eine Approximation der LRP darstellt.

3.2 Deep Taylor Decomposition

Laut [3] ist die in [4] vorgestellte Layer-wise Relevance Propagation eher heuristisch. In diesem Paper wird nun eine solide theoretische Grundlage geliefert.

LRP in verschiedenen Anwendungsgebieten [9], 10.2. In diesem Paper:LRP-0 schlechter als LRP- ε schlechter als Composite-LRP.

3.3 Verschiedene Verfahren

- LRP-0
- LRP-ε
- LRP- γ

3.4 LRP als DTD

siehe [8], Kapitel 10.

 $^{^{\}mathrm{l}}$ https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.ntml

3.5 Eigenschaften

- Numerische Stabilität
- Konsistenz (mit Linearer Abbildung)
- Erhaltung der Relevanz

3.6 Implementierung

3.6.1 Tensorflow

3.6.2 pytorch

Allgemeines Tutorial:2

pytorch-LRP für VGG16 wird vorgestellt.

GiorgioML³:

Alternative pytorch-Implementierung basierend auf Tensorflow paper.

moboehle⁴:

Unterstützte Netzwerkschickten⁵:

```
torch.nn.BatchNorm1d,
    torch.nn.BatchNorm2d
    torch.nn.BatchNorm3d,
    torch.nn.ReLU,
    torch.nn.ELU,
    Flatten,
    torch . nn . Dropout ,
    torch.nn.Dropout2d,
    torch.nn.Dropout3d,
9
    torch.nn.Softmax,
10
11
    torch.nn.LogSoftmax,
    torch.nn.Sigmoid
12
13
14
```

Listing 1: Verfügbare Schichten und Aktivierungsfunktionen

fhvilshoj⁶:

LRP für linear und Convolutional layers

- Die Klassen torch.nn.Sequential, torch.nn.Linear und torch.nn.Conv2d werden erweitert, um autograd für die Berechnung der Relevanzen zu berechnen.
- Ausgabe der Relevanzen von Zwischenschichten ist möglich

```
^2 \\ \text{https://git.tu-berlin.de/gmontavon/lrp-tutorial} \\ ^3 \\ \text{https://giorgiomorales.github.io/Layer-wise-Relevance-Propagation-in-Pytorch/} \\ ^4 \\ \text{https://github.com/moboehle/Pytorch-LRP} \\ ^5 \\ \text{https://github.com/moboehle/Pytorch-LRP/blob/master/inverter\_util.py} \\ ^6 \\ \text{https://github.com/fhvilshoj/TorchLRP} \\ \end{aligned}
```

- : Implementierte Regeln: epsilon Regeln mit epsilon=1e-1, gamma-regel mit gamma=1e-1. alphabeta-Reagel mit a1b0 und a2b1
- Netz muss hier umgeschrieben werden, sodass die Anwendung des Algorithmus möglich wird.

Listing 2: Implementierte Regeln fhvilshoj

Zennit: Zennit (Zennit explains neural networks in torch)

- Modell wird mithilfe eines Canonizers so aufbereitet, dass LRP möglich wird
- Backward pass wird modifiziert, um Heatmaps zu erhalten.
- VGG- und ResNet-Beispiel

4 Detektion von Poisoning-Angriffen basierend auf LRP

4.1 Idee

Die Idee zur Detektion von Poisoning-Angriffen besteht aus den folgenden Schritten:

- Berechnung der Heatmaps mit Hilfe der LRP
- \bullet Berechnung einer Distanzmatrix basierend auf L- oder GMW-Distanz
- Spektrale Relevanzanalyse (Bestimmung der verschiedenen Cluster innerhalb einer Klasse)

Bemerkung: Anstatt das Clustering nur auf den Heatmaps durchzuführen, könnten die LRP-Ausgaben und/oder Aktivierungen bestimmer NEtzwerkschichten hinzugenommen werden.

⁷https://github.com/chr5tphr/zennit

4.2 Verwendete Distanzen

- 4.2.1 Euklidische Distanz
- 4.2.2 Gromov-Wasserstein-Distanz
- 4.3 Anwendung auf unterschiedliche Poisoning-Angriffe
- 4.3.1 Standard Poisoning-Angriffe
- 4.3.2 Label-konsistente Poisoning-Angriffe

5 Vergleich mit anderen Verfahren

5.1 Activation Clustering

5.2 Räumliche Transformationen

- ASR ist sehr stark vom Ort des Triggers abhängig.
- Ort des Triggers kann nicht direkt geändert werden.
- Benutze Transformationen(Flipping, Scaling), um den Trigger wirkungslos zu machen.
- Somit kann die ASR während der Inferenz verringert werden. Es lässt sich aber keine Auussage darüber treffen, ob ein Angriff vorliegt

6 Weitere mögliche Schritte

- Automatische Platzierung des Auslösers an fest gewählter Position auf dem Verkehrsschild anstatt zufälligem Platzierem in einem Fenster mit vorher festgelegter Größe. In [7] wird Faster-RCNN (F-RCNN) zur Klassifikation des LISA-Datensatzes⁸ benutzt. Es ist die Aufgabe, die Verkehrsschilder in die 3 Superklassen Stoppschild, Geschwindigkeitsbegrenzung und Warnschild einzuteilen. Der Datensatz enthält zudem die BoundingBoxen, sodass der Auslöser genauer angebracht werden kann.
- Verbesserte Version der Layer-wise Relevance Propagation
- \bullet Untersuchung anderer Verfahren, die die Interpretierbarkeit ermöglichen, beispielsweise: VisualBackProp: efficient visualization of ${\rm CNNs}^9$
- Vergleich mit Cifar-10/Cifar-100 Datensatz¹⁰¹¹

⁸ http://cvrr.ucsd.edu/LISA/lisa-traffic-sign-dataset.html

⁹https://arxiv.org/abs/1611.05418

¹⁰ https://www.cs.toronto.edu/~kriz/cifar.html

¹¹ https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

A Verwendete Netzwerke

A.1 Net

```
class Net(nn.Module):
      def __init__(self, ):
        super(Net, self).__init__()
        self.size = 64 * 4 * 4
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12,
      kernel_size=5, padding=2)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
         self.conv1_in = nn.InstanceNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=32,
      kernel_size=5, padding=2)
        self.conv2_bn = nn.BatchNorm2d(32)
        self.conv3 = nn.Conv2d(in_channels=32, out_channels=64,
14
      kernel_size=5, padding=2)
        self.fc1 = nn.Linear(self.size, 256)
17
        self.fc1_bn = nn.BatchNorm1d(256)
        self.fc2 = nn.Linear(256, 128)
18
        self.fc3 = nn.Linear(128, 43)
19
2.0
21
      def forward(self, x):
22
        x = self.pool(F.relu(self.conv1_in(self.conv1(x))))
23
24
        x = self.pool(F.relu(self.conv2_bn(self.conv2(x))))
        x = self.pool(F.relu(self.conv3(x)))
25
        x = x.view(-1, self.size)
26
        x = F.relu(self.fc1_bn(self.fc1(x)))
27
        x = F.dropout(x)
28
29
        xx = F.relu(self.fc2(x))
        x = F.dropout(xx)
30
31
        x = self.fc3(x)
32
        return x, xx
33
34
```

Listing 3: Kleines Netzwerk

B Parameter für Training und Einlesen der Daten

Die in [2] gewählten Parameter wären ein guter Ausgangspunkt.

C Datensätze

D Programmcode

Literatur

- [1] Layer-wise Relevance Propagation for Deep Neural Network Architectures. Alexander Binder, Sebastian Bach, Gregoire Montavon, Klaus-Robert Müller und Wojciech Samek
- [2] Finding and Removing Clever Hans: Using Explanation Methods to Debug and Improve Deep Models
- [3] Explaining nonlinear classification decisions with deep Taylor decomposition
- [4] On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
- [5] S. Bazen, X. Joutard, The Taylor decomposition: a unified generalization of the Oaxaca method to nonlinear models, Technical Report 2013-32, Aix-Marseille University, 2013.
- [6] R. Oaxaca, Male-female wage differentials in urban labor markets, Int. Econ. Rev. 14 (3) (1973) 693-709
- [7] BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
- [8] Montavon G., Binder A., Lapuschkin S., Samek W., Müller KR. (2019) Layer-Wise Relevance Propagation: An Overview. In: Samek W., Montavon G., Vedaldi A., Hansen L., Müller KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science, vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6 10
- [9] Layer-Wise Relevance Propagation: An Overview Grégoire Montavon 1 , Alexander Binder 2 , Sebastian Lapuschkin 3 , Wojciech Samek 3 , and Klaus-Robert Müller 1,4,5