

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: V215H1 SUFFIX: LE2

Customer:	0,
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your cor signature and comments.	nfirmation with your

Approved By	Checked By	Prepared By
Chao-Chun Chung	Roger Huang	Vita Wu

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	
2.2 PACKAGE STORAGE	
2.3 ELECTRICAL ABSOLUTE RATINGS	
2.3.1 TFT LCD MODULE	7
3. ELECTRICAL CHARACTERISTICS	8
3.1 TFT LCD MODULE	8
3.2 BACKLIGHT CONNECTOR PIN CONFIGURATION	
3.2.1 LIGHTBAR Connector Pin Assignment	
3.3 LVDS INPUT SIGNAL SPECIFICATIONS	
3.3.1 LVDS DATA MAPPING TABLE	12
4. BLOCK DIAGRAM OF INTERFACE	
4.1 TFT LCD MODULE	
5. INPUT TERMINAL PIN ASSIGNMENT	
5.1 TFT LCD Module Input	
5.2 BLOCK DIAGRAM OF INTERFACE	
5.3 LVDS INTERFACE	16
5.4 COLOR DATA INPUT ASSIGNMENT	17
6. INTERFACE TIMING	18
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	18
6.2 POWER ON/OFF SEQUENCE	20
7. OPTICAL CHARACTERISTICS	91
7.1 TEST CONDITIONS	
7.2 OPTICAL SPECIFICATIONS	
0. 110, 12 0. 201 10, 110110	

Version 1.0

Date: 12 Jul 2010

0.1 RE-10 1010	•••••	20
8.1 ASSEMBLY AND HANDLING PRECAUTIONS		. 25
8.2 SAFETY PRECAUTIONS		. 25
9. DEFINITION OF LABELS		26
9.1 CMI MODULE LABEL		
10. PACKAGING		27
10.1 PACKAGING SPECIFICATIONS		27
10.2 PACKAGING METHOD		.27
11 MECHANICAL CHARACTERISTIC		20

REVISION HISTORY

Version 1.0 4 Date: 12 Jul 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V215H1-LE2 is a 21.5" TFT Liquid Crystal Display module with WLED Backlight unit and 30 pins 2ch-LVDS interface. This module supports 1920 x 1080 Full HDTV format and can display up to 16.7M colors. The converter module for Backlight is not built in.

1.2 FEATURES

- Extra-wide viewing angle.
- High contrast ratio.
- Fast response time.
- High color saturation.
- Full HD (1920 x 1080 pixels) resolution.
- DE (Data Enable) only mode.
- LVDS (Low Voltage Differential Signaling) interface.
- RoHS compliance.

1.3 APPLICATION

- Standard Living Room TVs
- MFM Application

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	476.64(H) x 268.11(V) (21.53" diagonal)	mm	(1)
Bezel Opening Area	479.8 (H) x 271.3 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.083(H) x 0.248(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Power consumption	15.28W (LVDS input Power 5.3W + LED Backlight Power 9.98 W)	Watt	(2)
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally white	-	-
Surface Treatment	Anti-Glare coating (Haze 25%)	-	(3)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) Please refer sec 3.1 and 3.2 for more information of Power consumption

Note (3) The spec. of the surface treatment is temporarily for this phase. CMI reserves the rights to change this feature.

PRODUCT SPECIFICATION

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	495.1	495.6	496.1	mm	(1)
Module Size	Vertical (V)	291.7	292.2	292.7	mm	(1)
	Depth (D)	11.0	11.5	12.0	mm	(1)
Weight		-	2010	2060	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	TST	-20	+60	°C	(1)	
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)	
Shock (Non-Operating)	SNOP		50	G	(3), (5)	
Vibration (Non-Operating)	VNOP		1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.

Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.

Note (4) 10 ~ 300 Hz, 10 min, 1 time each X, Y, Z.

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that

Temperature (°C)√

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Val	lue	Unit	Note
nem	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	VCC	-0.3	13.5	V	(1)
Logic Input Voltage	VIN	-0.3	3.6	V	(1)

PRODUCT SPECIFICATION

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

Parameter			Symbol	Value			Unit	Noto		
	Parameter			Min.	Тур.	Max.	Unit	Note		
Power Su	pply Voltage		V _{CC}	4.5	5.0	5.5	V	(1)		
Power Su	pply ripple vol	tage	V_{RP}	_	_	300	mV	Peak to Peak		
Rush Curr	ent		I _{RUSH}	_		3	Α	(2)		
Power consumption			P _T	_	5.3	6.3		(3)		
	White Pattern		White Pattern		_	-	0.51	0.61	Α	
Power Su	pply Current	Vertical Strip(MNT)	_	-	1.06	1.26	Α	(4)		
		Black Pattern	_	-	1.05	1.26	Α			
Differential Input High Threshold Voltage		V_{LVTH}	+100			mV				
LVDS interface	Differential Input Low Threshold Voltage Common Input Voltage		V _{LVTL}	F		-100	mV	(5)		
			V _{CM}	1.0	1.2	1.4	V	(3)		
	Differential in (single-end)	nput voltage	V _{ID}	200	_	600	mV			

Note (1) The module should be always operated within the above ranges.

Note (2) Even though Inrush current is over the specified value, there is no problem if I2T of fuse Spec is satisfied. The measurement condition is shown as bellowing.

Vcc rising time is 470us

- Note (3) The Specified Power consumption is under Vertical Stripe pattern.
- Note (4) The specified power supply current is under the conditions at Vcc=5.0V, Ta = 25 ± 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

PRODUCT SPECIFICATION

Note (5) The LVDS input characteristics are as follows:

3.2 BACKLIGHT CONNECTOR PIN CONFIGURATION

3.2.1 LED LIGHT BAR CHARACTERISTICS

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

. LLD LIGITI DATE OIL		(14 Z0 Z Z O)				
Parameter	Symbol		Value			Note
Farameter	Symbol	Min.	Тур.	Max.	Unit	Note
Light Bar Voltage	V _W	-	40.3	44.2	V	(1), Duty=100%, I _L =40mA
Forward Voltage	V_{f}	-	3.1	3.4	V	I _L =40mA
LED Current	IL		40	50	mA	(1), (2) Duty=100%
Power consumption	P _{BL}		9.7	13.3	W	(1) Duty=100%, I _L =40mA
Life time	-	30,000	-	-	Hrs	(3)

Note (1)LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:

Note (2) $P_{BL} = I_{PIN} \times V_{PIN} \times (6)$ input pins, LED light bar circuit is (13)Series, (6)Parallel.

Note (3)The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at Ta = 25 ±2 °C and I= (20)mA (per chip) until the brightness becomes ≤ 50% of its original value.

Date: 12 Jul 2010 Version 1.0 10

3.2.1 LIGHTBAR Connector Pin Assignment

Connector: B-F,7083K-F12N-00L,ENTERY(恩得利), or Compatible

(1) Input connector pin assignment: CN1

Input connector CN1		Comments					
Pin	Function	Comments					
1	NC	No connect					
2	LED1	LED1 negative polarity					
3	LED2	LED2 negative polarity					
4	LED3	LED3 negative polarity					
5	NC	No connect					
6	VLED (41.6V)	Input voltage Power Supply + (41.6V.typ)					
7	VLED (41.6V)	Input voltage Power Supply + (41.6V.typ)					
8	NC	No connect					
9	LED4	LED4 negative polarity					
10	LED5	LED5 negative polarity					
11	LED6	LED6 negative polarity					
12	NC	No connect					

3.3 LVDS INPUT SIGNAL SPECIFICATIONS

3.3.1 LVDS DATA MAPPING TABLE

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Charmer 00	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Charmer E0	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel E1	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Challiel E2	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Channel E3	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

PRODUCT SPECIFICATION

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	Not connection, this pin should be open.
26	NC	CMI internal test, this pin should connect to ground.
27	NC	Not connection, this pin should be open.
28	VCC	+5.0V power supply
29	VCC	+5.0V power supply
30	VCC	+5.0V power supply

Note (1) Connector Part No.: 093G30-B2001A-M4(STARCONN) or MSCKT2407P30H,STM(信盛)

Note (2) Mating Wire Cable Connector Part No.: FI-X30H(JAE) or FI-X30HL(JAE)

Note (3) Mating FFC Cable Connector Part No.: B-F,7083K-F12N-00L ,ENTERY(恩得利)

Note (4) The first pixel is odd.

Note (5) Input signal of even and odd clock should be the same timing.

PRODUCT SPECIFICATION

5.2 BLOCK DIAGRAM OF INTERFACE

PRODUCT SPECIFICATION

ER0~ER7	Even pixel R data	OR0~OR7	Odd pixel R data
EG0~EG7	Even pixel G data	OG0~OG7	Odd pixel G data
EB0~EB7	Even pixel B data	OB0~OB7	Odd pixel B data
		DE	Data enable signal
		DCLK	Data clock signal

Note (1) The system must have the transmitter to drive the module.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Note (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

5.3 LVDS INTERFACE

VESA Format : SELLVDS = L or Open

AR0~AR9: First Pixel R Data (9; MSB, 0; LSB) AG0~AG9: First Pixel G Data (9; MSB, 0; LSB) AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

RSVD: Reserved

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Di		Sigr				•							
Color					Re									reer							Blu				
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4		B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:		:	:	:		:		:	:	:	:					:	:	:	:		:	:	
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(253)	1	1	1	1	1	1	1	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IXeu	Red(254)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1 (Eu(233)	'	'	'	'	'	'	'	'	١	0	U	J	0	٦	U	U	0	١	U	0		U	١	
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	4			:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale Of	:	:	:	:	:	:	:	: \		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:		:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	\.	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
) Jude	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

PRODUCT SPECIFICATION

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram. (Ta = 25 ± 2 °C)

							/
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	58.54	74.25	97.98	MHz	
LVDS	Input cycle to cycle jitter	T _{rcl}	_	_	200	ps	(2)
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	_	F _{clkin} +2%	MHz	
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	(3)
LVDS Receiver	Setup Time	Tlvsu	600			ps	
Data	Hold Time	Tlvhd	600	_	- (ps	
	Frame Rate	F _r	50	60	75	Hz	
Vertical Active	Total	Tv	1115	1125	1136	Th	Tv=Tvd+Tv
Display Term	Display	Tvd	1080	1080	1080	Th	
	Blank	Tvb	Tv-Tvd	45	Tv-Tvd	Th	
Horizontal	Total	Th	1050	1100	1150	Тс	Th=Thd+Th
Active Display Term	Display	Thd	960	960	960	Тс	
	Blank	Thb	Th-Thd	140	Th-Thd	Тс	

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

INPUT SIGNAL TIMING DIAGRAM

Note (1) Please make sure the range of frame rate has follow the below equation :

$$\mathsf{Fr}(\mathsf{max}) \geqq \mathsf{Fclkin} \ / \ \mathsf{Tv}{\boldsymbol{\times}}\mathsf{Th} \leqq \mathsf{Fr}(\mathsf{min})$$

Note (2) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I $T_1 - TI$

Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Timing Specifications:

	-				
0.5	<	t1	\leq	10	msec
0	<	t2	\leq	50	msec
0	<	t3	\leq	50	msec
		t4	\geq	500	msec
		t5	\geq	450	msec
		t6	\geq	90	msec
5	\leq	t7	≦	100	msec

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of Vcc = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) t4 should be measured after the module has been fully discharged between power of and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) CMO won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "t7 spec".

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	оС		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	VCC	5	V		
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"		
LED Current	IL	40 ± 0.6	mA		

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio	Contrast Ratio			700	1000	-	-	Note (2)
Response Time		T _R		-	1.3	2.2		Note (2)
		T _F		-	3.7	5.8	ms	Note (3)
Center Lumina	nce of White	LC		200	250	-	cd/m ²	Note (5)
White Variation	1	δW		-	-	1.3	-	Note (7)
Cross Talk		СТ		-	-	2	%	Note (6)
	D-4	Rx			0.641		-	
	Red	Ry	θ x=0°, θ y =0° Viewing angle		0.337		-	
	Green	Gx	at normal direction		0.308		-	
		Gy		Typ. -0.03	0.614	Тур.	-	(4)(4)
Color Chromaticity	Blue	Вх			0.154	+0.03	-	(1)(4)
		Ву			0.053		-	
	\A/I=:4 =	Wx			0.285		-	
	White	Wy			0.293		-	
	Color Gamut	C.G		-	70	-	%	NTSC
	Horizontal	$\theta_x + + \theta_x$	CR ≧ 10	150	170	-		
No contract According	Vertical	θ_Y ++ θ_Y -	USB2000	140	160	-	1	(4)(4)
Viewing Angle	Horizontal	$\theta_x + + \theta_x$	CR ≧ 5	160	178	-	Deg.	(1)(4)
	Vertical	θ_{Y} ++ θ_{Y} -	USB2000	150	170	-		

PRODUCT SPECIFICATION

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Surface Luminance with all white pixels Contrast Ratio (CR) = Surface Luminance with all black pixels

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note(6).

Note (3) Definition of Response Time (T_R, T_F):

Version 1.0 Date: 12 Jul 2010 23

The copyright belongs to C

Normal $\theta x = \theta y = 0^{\circ}$ c. Any unauthorized use is prohibited

PRODUCT SPECIFICATION

Note (4) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (5) Definition of Luminance of White (L_C, L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

 $L_C = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (6).

Note (6) Definition of Cross Talk (CT):

$$CT = | YB - YA | / YA \times 100 (\%)$$

Where:

YA = Luminance of measured location without gray level 0 pattern (cd/m2)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

PRODUCT SPECIFICATION

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight. [3]
- Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMIS LSI chips.
- [5] Bezel of Set can not press or touch the panel surface. It will make light leakage or scrape.
- Do not plug in or pull out the I/F connector while the module is in operation.
- Do not disassemble the module.
- [8] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [9] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [10] When storing modules as spares for a long time, the following precaution is necessary.
 - [10.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
 - [10.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [11] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.

PRODUCT SPECIFICATION

9. DEFINITION OF LABELS

9.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V215H1 –LE2

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1, 2002=2, 2003=3, 2004=4...2010=0, 2011=1, 2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code : Cover all the change

Serial No. : Manufacturing sequence of product Product Line : $1 \rightarrow \text{Line1}$, $2 \rightarrow \text{Line 2}$, ...etc.

PRODUCT SPECIFICATION

10. PACKAGING

10.1 PACKAGING SPECIFICATIONS

- (1) 13 LCD modules / 1 Box
- (2) Box dimensions: 567(L) X 301(W) X 376(H) mm
- (3) Weight: 27.525kg (13 modules per box)

10.2 PACKAGING METHOD

Figures 10-1 and 10-2 are the packing method

Figure 10-1 packing method

Air Transportation

Figure 10-2 packing method

11. MECHANICAL CHARACTERISTIC

Version 1.0 Date: 12 Jul 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

Version 1.0 30 Date: 12 Jul 2010

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited