AlignMamba: Enhancing Multimodal Mamba with Local and Global Cross-modal Alignment

利用局部和全局跨模态对齐增强多模态Mamba

汇报人: 方文熙

2025年3月11日

问题背景: 多模态表示融合(如音频、视频、文本)是跨模态信息整合和理解的关键技术,但由于不同模态之间的异质性(如统计特性和特征分布的差异),实现有效的跨模态对齐和融合仍然是一个重大挑战。

现有方法的局限性:基于Transformer的方法虽然有效,但其二次计算复杂度使其在处理长序列或大规模数据时效率低下。基于Mamba的方法虽然计算效率高,但由于其顺序扫描机制,难以全面建模跨模态关系。

解决方案:提出了AlignMamba,通过引入局部和全局跨模态对齐来增强多模态融合:

- 局部对齐: 基于最优传输(Optimal Transport, OT)显式学习不同模态之间的细粒度对应关系。
- **全局对齐**:基于最大均值差异(Maximum Mean Discrepancy, MMD)隐式地对齐不同模态的分布。

Figure 2. AlignMamba enhances multimodal Mamba by incorporating token-level alignment and distribution-level alignment, enabling more effective multimodal fusion.

·局部对齐(基于OT):

- 将特征序列视为离散分布,通过学习传输矩阵来对齐不同模态的特征。
- 使用余弦距离作为成本矩阵,最小化特征传输成本。
- 采用松弛的OT公式以降低计算复杂度。

 M_{v2l}

在这个模块,我们需要做局部特征融合,局部对齐(基于OT),以音频和视频空间的信号,跟语言空间信号的序列长度对齐为例,

通过以下最优化问题:

Encoder ___

 C_{v2l}

通过此最优化矩阵,求出M矩阵(传输矩阵),M(i, j)表示视频模态时刻i(第i行)对语言模态时刻j(第j行)的权重

$$\min_{T_{v2l}} \sum_{i=1}^{T_v} \sum_{j=1}^{T_l} M_{v2l}(i,j) C_{v2l}(i,j).$$

其中C为开销矩阵,对应元素相乘,和为0,即总开销最小

$$\begin{cases} \sum_{j=1}^{T_l} M_{v2l}(i,j) = \frac{1}{T_v}, & \forall i \in [1, T_v] & \text{行归-, 多对-} \\ \sum_{i=1}^{T_v} M_{v2l}(i,j) = \frac{1}{T_l}, & \forall j \in [1, T_l] & \text{列归-, 一对多} \\ M_{v2l}(i,j) \ge 0, & \forall i, j & \text{权重必须大于0} \end{cases}$$

$$\min_{T_{v2l}} \sum_{i=1}^{T_v} \sum_{j=1}^{T_l} M_{v2l}(i,j) C_{v2l}(i,j).$$

$$\begin{cases} \sum_{j=1}^{T_l} M_{v2l}(i,j) = \frac{1}{T_v}, & \forall i \in [1, T_v] \\ \sum_{i=1}^{T_v} M_{v2l}(i,j) = \frac{1}{T_l}, & \forall j \in [1, T_l] \\ M_{v2l}(i,j) \ge 0, & \forall i, j \end{cases}$$

$$C_{v2l}(i,j) = 1 - \frac{X_v^i \cdot X_l^j}{||X_v^i||_2 ||X_l^j||_2}.$$

开销矩阵,初始化为1-余弦相似度

解决以上优化问题太复杂了,可用更宽松的OT,减少一个约束条件,允许一对多

$$\begin{cases} \sum_{j=1}^{T_l} M_{v2l}(i,j) = \frac{1}{T_v}, & \forall i \in [1, T_v] \\ M_{v2l}(i,j) \ge 0, & \forall i, j \end{cases}$$

$$\min_{T_{v2l}} \sum_{i=1}^{T_v} \sum_{j=1}^{T_l} M_{v2l}(i,j) C_{v2l}(i,j).$$

$$\begin{cases} \sum_{j=1}^{T_l} M_{v2l}(i,j) = \frac{1}{T_v}, & \forall i \in [1, T_v] \\ M_{v2l}(i,j) \ge 0, & \forall i, j \end{cases}$$

M的最优解,每行只有一个非0

简化版的OT, 非常好解, 显然, 最优解为: $M_{v2l}(i,j) = \begin{cases} \frac{1}{T_v}, & j = \arg\min_j C_{v2l}(i,j), \\ 0, & j \neq \arg\min_j C_{v2l}(i,j). \end{cases}$

M(i, j)表示, video空间, i时刻, 对, language空间, j时刻的影响权重, 此最优解表示, 对video空间i时刻, 将余弦相似度最高的, 即最相似的, 权重设置为非0, 其余时刻均设置为0

同理,可求出音频空间对语言空间的传输矩阵,根据传输矩阵,将音频空间和视频空间都映射到语

$$\begin{cases} \tilde{X}_v = M_{v2l}^\top X_v \in \mathbb{R}^{T_l \times d}, \\ \tilde{X}_a = M_{a2l}^\top X_a \in \mathbb{R}^{T_l \times d}. \end{cases}$$

•全局对齐(基于MMD):

- 在高维再生核希尔伯特空间(RKHS)中测量不同模态之间的统计差异。
- 使用高斯核计算MMD距离,确保模态分布的一致性。

在Hillant空间中追义经高,MMD2

$$MMD^{2}(X,Y) \triangleq \left\| \frac{1}{1} \sum_{i=1}^{J} \phi(x_{i}) - \frac{1}{1} \sum_{j=1}^{J} \phi(y_{j}) \right\|_{\mathcal{H}}^{2}$$

$$x \xrightarrow{\phi} \overline{z} \phi(x)$$

和用高新核计算

$$MMD^{2}(X,Y) = \frac{1}{T^{2}} \left(\sum_{i=1}^{J} \sum_{i'=1}^{J} k(x_{i},x_{i}') + \sum_{j=1}^{J} \sum_{j'=1}^{J} k(y_{j},y_{j'}) - 2 \sum_{i=1}^{J} \sum_{j'=1}^{J} k(x_{i},y_{j}) \right)$$

$$K(x,y) \stackrel{\geq}{=} exp(-\frac{||x-y||_2^2}{2\sigma^2})$$

$$\mathcal{L}_{align} = mmD^{2}(\mathring{X}_{v}, \chi_{c}) + mmD^{2}(\mathring{X}_{a}, \chi_{c})$$

MMD2(Xi)希望同模态和财务配为大

$$\mathbf{h}'(t) = \mathbf{A}\mathbf{h}(t) + \mathbf{B}\mathbf{x}(t)$$
 $h_t = \overline{A}h_{t-1} + \overline{B}x_t$
 $\mathbf{y}(t) = \mathbf{C}\mathbf{h}(t) + \mathbf{D}\mathbf{x}(t)$ $y_t = Ch_t$

SSM

$$h_t = \overline{A}h_{t-1} + \overline{B}x_t$$
$$y_t = Ch_t$$

Mamba-based Fusion and Optimization 基于Mamba 的 总合体化 将
$$\hat{X}_a$$
, \hat{X}_v , \hat{X}_t 拼成 — 1 壽行的 序列 $X_{nm} = [\hat{X}_a, \hat{X}_v], \hat{X}_t', \hat{X}_a', \hat{X}_v', \hat{X}_a', \hat{X$

实验部分

- 数据集: CMU-MOSI和CMU-MOSEI, 包含带有视觉、声学和文本模态的视频片段,并标注了情感分数。
- **任务**: 完整多模态融合 (所有模态可用) 和不完整多模态融合 (推理时某些模态缺失)。
- 结果:
 - **完整融合**: AlignMamba在CMU-MOSI数据集上实现了最先进的性能,分类准确率提高了0.9%。
 - **不完整融合**: AlignMamba在模态缺失的情况下表现出更强的鲁棒性,优于现有方法。
- 效率:与基于Transformer的方法相比, AlignMamba显著减少了GPU内存使用(减少20.3%)和推理时间(减少83.3%)。

Dataset	Missing	DCCA [1]	DCCAE [33]	MCTN [25]	MMIN [43]	GCNet [18]	IMDer [34]	AlignMamba
MOSI	10%	72.1 / 72.2	74.5 / 74.7	78.4 / 78.5	81.8 / 81.8	82.3 / 82.3	84.9 / 84.8	85.7 / 85.6
	20%	69.3 / 69.1	71.8 / 71.9	75.6 / 75.7	79.0 / 79.1	79.4 / 79.5	83.5 / 83.4	84.3 / 84.1
	30%	65.4 / 65.2	67.0 / 66.7	71.3 / 71.2	76.1 / 76.2	77.2 / 77.2	81.2 / 81.0	82.2 / 82.2
	40%	62.8 / 62.0	63.6 / 62.8	68.0 / 67.6	71.7 / 71.6	74.3 / 74.4	78.6 / 78.5	80.0 / 79.6
	50%	60.9 / 59.9	62.0 / 61.3	65.4 / 64.8	67.2 / 66.5	70.0 / 69.8	76.2 / 75.9	77.6 / 77.3
	60%	58.6 / 57.3	59.6 / 58.5	63.8 / 62.5	64.9 / 64.0	67.7 / 66.7	74.7 / 74.0	75.8 / 75.1
	70%	57.4 / 56.0	58.1 / 57.4	61.2 / 59.0	62.8 / 61.0	65.7 / 65.4	71.9 / 71.2	73.8 / 73.2
	Avg.	63.8 / 63.1	65.2 / 64.8	69.1 / 68.5	71.9 / 71.5	73.8 / 73.6	78.7 / 78.4	79.9 / 79.6
	Δ	14.7 / 16.2	16.4 / 17.3	17.2 / 19.5	19.0 / 20.8	16.6 / 16.9	13.0 / 13.6	11.9 / 12.4
MOSEI	10%	77.4 / 77.3	78.4 / 78.3	81.8 / 81.6	81.9 / 81.3	82.3 / 82.1	84.8 / 84.6	85.4 / 85.4
	20%	73.8 / 74.0	75.5 / 75.4	79.0 / 78.7	79.8 / 78.8	80.3 / 79.9	82.7 / 82.4	83.6 / 83.3
	30%	71.1 / 71.2	72.3 / 72.2	76.9 / 76.2	77.2 / 75.5	77.5 / 76.8	81.3 / 80.7	82.5 / 81.0
	40%	69.5 / 69.4	70.3 / 70.0	74.3 / 74.1	75.2 / 72.6	76.0 / 74.9	79.3 / 78.1	81.7 / 80.5
	50%	67.5 / 65.4	69.2 / 66.4	73.6 / 72.6	73.9 / 70.7	74.9 / 73.2	79.0 / 77.4	80.1 / 78.7
	60%	66.2 / 63.1	67.6 / 63.2	73.2 / 71.1	73.2 / 70.3	74.1 / 72.1	78.0 / 75.5	79.4 / 78.2
	70%	65.6 / 61.0	66.6 / 62.6	72.7 / 70.5	73.1 / 69.5	73.2 / 70.4	77.3 / 74.6	78.8 / 76.9
	Avg.	70.2 / 68.8	71.4 / 69.7	75.9 / 75.0	76.3 / 74.1	76.9 / 75.6	80.3 / 79.0	81.6 / 80.6
	Δ	11.8 / 16.3	11.8 / 15.7	9.1 / 11.1	8.8 / 11.8	9.1 / 11.7	7.5 / 10.0	6.6 / 8.5

Table 1. Performance comparison on CMU-MOSI and CMU-MOSEI datasets. Results are reported as Accuracy / F_1 (%). Δ : performance drop from 10% to 70% missing rate (lower is better).

	CMU-MOSI	CMU-MOSEI		
AlignMamba	86.9 / 86.9	86.6 / 86.5		
	Alignment			
w/o Local	84.6 / 84.4	84.1 / 84.0		
w/o Global	85.8 / 85.7	85.7 / 85.5		
	Fusion			
Single-stream	82.3 / 82.1	81.8 / 81.4		
Multi-stream	83.7 / 83.5	83.5 / 83.2		
	Modality			
w/o Audio	84.4 / 84.6	83.9 / 83.5		
w/o Video	83.7 / 83.8	83.3 / 82.8		
w/o Language	65.3 / 63.4	64.6 / 62.2		

OT 局部对齐模块 和 MMD 全局对齐损失 都对模型性能有显著贡献,其中 OT 局部对齐模块的影响更大。

单纯的 Mamba 架构(单流或多流)无法有效实现多模态融合,凸显了跨模态对齐的必要性。

语言模态 对模型性能的影响最大,其次是视频模态和音频模态。

Table 3. Ablation studies on CMU-MOSI and CMU-MOSEI datasets. Results are reported as Accuracy / F_1 (%).

时间和空间的开销

Figure 3. GPU memory usage comparison with varying lengths.

Figure 4. Inference time comparison with varying lengths.

END