Porównanie Algorytmów Minimalizacji Stochastycznej

Opracowali: Mateusz Sacha, Łukasz Kluza

Wprowadzenie

Celem tego projektu było porównanie efektywności dwóch z trzech algorytmów minimalizacji stochastycznej: Poszukiwania Przypadkowego (Pure Random Search, PRS), Metody Wielokrotnego Startu (Multi-Start, MS) oraz Algorytmu Genetycznego (GA). Zdecydowaliśmy się na algorytm *Poszukiwania Przypadkowego* oraz *Metodę Wielokrotnego Startu*. Analiza została przeprowadzona na funkcjach *Ackley'a* i *Rastrigina* o różnej liczbie wymiarów: 2, 10 i 20.

Algorytmy

 Poszukiwanie Przypadkowe (PRS) Algorytm PRS polega na losowaniu punktów z rozkładem jednostajnym w określonej dziedzinie poszukiwań. Dla każdej funkcji i wymiaru losowano odpowiednią liczbę punktów.

```
pure_random_search <- function(objective_function, num_points, domain) {
  best_point <- numeric(length(domain))
  best_value <- Inf

for (i in 1:num_points) {
    random_point <- runif(length(domain)/2, min = domain[, 1], max = domain[, 2])
    value <- objective_function(random_point)
    if (value < best_value) {
       best_value <- value
       best_point <- random_point
    }
  }
  return(best_value)
}</pre>
```

 Metoda Wielokrotnego Startu (MS) Algorytm MS polega na losowaniu punktów, a następnie uruchamianiu algorytmu optymalizacji lokalnej (L-BFGS-B) z każdego z tych punktów startowych.
 Wynikiem algorytmu MS jest wartość optymalizowanej funkcji dla punktu, w którym ta wartość jest najmniejsza.

```
multi_start <- function(objective_function, num_points, domain) {
  best_point <- numeric(length(domain))
  best_value <- Inf
  total_calls <- 0

for (i in 1:num_points) {
   start_point <- runif(length(domain)/2, min = domain[, 1], max = domain[, 2])</pre>
```

```
result <- optim(par = start_point, fn = objective_function, method = "L-BFGS-B")
  total_calls <- total_calls + result$counts["function"]

if (result$value < best_value) {
   best_value <- result$value
   best_point <- result$par
  }
}

return(c(best_value,total_calls))
}</pre>
```

Funkcje Minimalizowane

Do analizy wybrano funkcje Ackley'a i Rastrigina. Wybrane funkcje są skalarne (single-objective) i wielomodalne (multimodal), co pozwala na zróżnicowane testowanie algorytmów.

Procedura Porównawcza

Dla każdej funkcji i liczby wymiarów osobno, przeprowadzono 100 uruchomień każdego algorytmu. Średni wynik algorytmu obliczono jako średnią znalezionych minimów. Zastosowano funkcję replicate() do powtarzalnych obliczeń, zachowując wyrównany budżet obliczeniowy porównywanych algorytmów.

Budżet Obliczeniowy

Dla algorytmu MS, liczba punktów startowych wyniosła 100, a średnia liczba wywołań z uruchomień MS była przyjętą wartością budżetu dla algorytmu PRS.

Wyniki

Algorytm	Dim	ackley_function	rastrigin_function	
MS	2	2.625524	0.3183869	
	10	17.847858	29.4905011	
	20	18.697064	91.9736037	
PRS	2 3.778983		1.59390	
	10	18.041181	83.70883	
	20	19.718255	222.17043	

Wykresy

Wykres gęstości i dystrybuant (oraz porównania w rozkładem normalnym)

MS Rastrigin 2 D

PRS Ackley 2 D

PRS Rastrigin 2 D

MS Ackley 10 D

MS Rastrigin 10 D

PRS Ackley 10 D

MS Ackley 20 D

MS Rastrigin 20 D

PRS Ackley 20 D

PRS Rastrigin 20 D

Wykresy pudełkowe

MS Ackley 2 D

Sample

MS Rastrigin 2 D

Sample

PRS Ackley 2 D

2 3 4 5 6 7

PRS Rastrigin 2 D

Sample

Sample

MS Ackley 10 D

MS Rastrigin 10 D

Sample

Sample

PRS Ackley 10 D

Value 15 16 17 18 19

PRS Rastrigin 10 D

Sample

0

Sample

MS Ackley 20 D

MS Rastrigin 20 D

Sample

Sample

PRS Rastrigin 20 D

Sample Sample

Porównanie

Comparison of MS and PRS

Analiza Danych

Poniższa tablea danych przedstawionych wyniki eksperymentu porównawczego pomiędzy algorytmami Poszukiwania Przypadkowego (PRS) a Metodą Wielokrotnego Startu (MS) na funkcjach Ackley'a i Rastrigina, w różnych wymiarach.

Function	Dimension	t	p-value	95 percent confidence interval (from)	95 percent confidence interval (To)	mean difference
Ackley	2	-4.5755	1.38e-05	-2.0062838	-0.7925413	-1.399413
Rastrigin	2	-16.703	< 2.2e- 16	-1.664937	-1.311378	-1.488158
Ackley	10	-3.2216	0.001726	-0.4897477	-0.1164086	-0.3030782
Rastrigin	10	-45.501	< 2.2e- 16	-54.35508	-49.81254	-52.08381
Ackley	20	-30.864	< 2.2e- 16	-1.1266626	-0.9905481	-1.058605
Rastrigin	20	-78.131	< 2.2e- 16	-137.3931	-130.5875	-133.9903

W badaniu porównawczym algorytmów Poszukiwania Przypadkowego (PRS) i Metody Wielokrotnego Startu (MS) na funkcjach Ackley'a i Rastrigina, wyniki wskazują na większą skuteczność algorytmu MS w minimalizacji funkcji w różnych wymiarach. Wymiar 2 i 10 potwierdzają przewagę algorytmu MS, a statystycznie istotne przedziały ufności sugerują rzeczywistą poprawę wyników w porównaniu do PRS. Nawet w wymiarze 20, MS

utrzymuje zadowalającą skuteczność, co potwierdza jego zdolność do radzenia sobie z większą liczbą wymiarów.

Analiza Wykresów:

- **Wymiar 2:** Histogramy pokazują rozkłady wyników dla obu algorytmów. Boxploty przedstawiają rozproszenie wyników w sposób graficzny. Wartości dla MS i PRS mają znaczną nakładającą się część rozkładu, co może wskazywać na podobną skuteczność obu algorytmów.
- **Wymiar 10:** Histogramy dla MS i PRS wskazują na zbliżone rozkłady wyników. Boxploty dla wymiaru 10 pokazują, że mediana i zakres międzykwartylowy są podobne dla obu algorytmów.
- **Wymiar 20:** Histogramy dla wymiaru 20 również wykazują podobieństwo między rozkładami wyników MS i PRS.

Test hipotez zerowych

Test hipotezy zerowej można przeprowadzić, aby ocenić, czy istnieją statystycznie istotne różnice między wynikami algorytmów PRS i MS dla każdej funkcji i wymiaru. W tym kontekście, możemy sformułować następujące hipotezy:

Wymiar 2 dla funkcji Ackley: H0: Średnie wyniki PRS i MS są równe. H1: Średnie wyniki PRS i MS są różne.

Wymiar 2 dla funkcji Rastrigina: H0: Średnie wyniki PRS i MS są równe. H1: Średnie wyniki PRS i MS są różne.

Wymiar 10 dla funkcji Ackley: H0: Średnie wyniki PRS i MS są równe. H1: Średnie wyniki PRS i MS są różne.

Wymiar 10 dla funkcji Rastrigina: H0: Średnie wyniki PRS i MS są równe. H1: Średnie wyniki PRS i MS są różne.

Wymiar 20 dla funkcji Ackley: H0: Średnie wyniki PRS i MS są równe. H1: Średnie wyniki PRS i MS są różne.

Wymiar 20 dla funkcji Rastrigina: H0: Średnie wyniki PRS i MS są równe. H1: Średnie wyniki PRS i MS są różne.

Przeprowadźmy te testy przy założonym poziomie istotności α =0.05.

Wyniki testów hipotez zerowych:

2 wymiary dla funkcji Ackley: p-wartość < 0.05: Odrzucamy H0, istnieje istotna różnica między wynikami PRS i MS.

2 wymiary dla funkcji Rastrigina: p-wartość < 0.05: Odrzucamy H0, istnieje istotna różnica między wynikami PRS i MS.

10 wymiarów dla funkcji Ackley: p-wartość < 0.05: Odrzucamy H0, istnieje istotna różnica między wynikami PRS i MS.

10 wymiarów dla funkcji Rastrigina: p-wartość < 0.05: Odrzucamy H0, istnieje istotna różnica między wynikami PRS i MS.

20 wymiarów dla funkcji Ackley: p-wartość < 0.05: Odrzucamy H0, istnieje istotna różnica między wynikami PRS i MS.

20 wymiarów dla funkcji Rastrigina: p-wartość < 0.05: Odrzucamy H0, istnieje istotna różnica między wynikami PRS i MS.

Na podstawie wyników testów hipotezowych możemy stwierdzić, że istnieją statystycznie istotne różnice między wynikami algorytmów PRS i MS dla badanych przypadków. Natomiast p-value największą wartość (0.001726) usyskaliśmy dla funkcji *Ackleygo* i 10 wymiarów.

Podsumowanie:

W przeprowadzonej analizie porównawczej algorytmów Poszukiwania Przypadkowego (PRS) i Metody Wielokrotnego Startu (MS) na funkcjach Ackley'a i Rastrigina, wykazano, że niezależnie od wymiaru MS wykazuje znacznie większą skuteczność w minimalizacji obu funkcji w porównaniu do PRS. Analiza wykresów, histogramów i boxplotów potwierdza te wyniki, a przeprowadzone testy hipotez zerowych dodatkowo potwierdzają istotne różnice między wynikami obu algorytmów. W związku z tym, Metoda Wielokrotnego Startu (MS) wydaje się być bardziej efektywną opcją w kontekście minimalizacji funkcji Ackley'a i Rastrigina, zwłaszcza w przypadku problemów o większych wymiarach.