EGZAMIN Z PROBABILISTYKI

Imię i nazwisko	 GRUPA	SUMA	PUNKTÓW	

Test składa się z 12 zadań. W każdym zadaniu jest 5 pytań, na które należy odpowiedzieć TAK (wpisując w kratce obok T) lub NIE (wpisując N).

Za każdą poprawną odpowiedź otrzymuje się 2 punkty, za złą odejmowany jest 1 punkt (za zadanie nie można otrzymać jednak mniej niż 0 punktów).

- 1. Dystrybuanta zmiennej losowej (X,Y)ma postać $F_{XY}(x,y)=\left\{\begin{array}{ll} 0 &, & x\leqslant 0 \lor y\leqslant 0 \\ x &, & 0< x\leqslant 1 \land y>0 \\ 1 &, & x>1 \land y>0 \end{array}\right.$. Wtedy:
 - $\bigcap (X,Y)$ nie ma rozkładu ciągłego
 - X ma rozkład jednostajny na przedziale [0;1]

 - VY=0
- 2. Rzucamy jednocześnie kostką sześcienną i symetryczną monetą. Niech A i B oznaczają zdarzenia: A wypadła reszka lub nie więcej niż 5 oczek; B wypadł orzeł i nie więcej niż 3 oczka. Wtedy:
 - \square A i B są zdarzeniami niezależnymi
 - P(B-A) = 0
 - $P(B|A') = \frac{8}{11}$
 - $\bigcap P(A|B) = 1$
 - $\bigcap P(A \cap B) = P(B)$
- 3. Dwuwymiarowa zmienna losowa (X,Y) ma rozkład dyskretny dany tabelą:

		-	
$X \setminus Y$	-1	0	1
-2	1/6	2q	q
2	q	p	q

Wiadomo, że P(Y = -1) = P(Y = 0) = P(Y = 1). Wtedy:

- X i Y są nieskorelowane
- $\prod F_{XY}(2,0) = \frac{2}{3}$
- $\square E(X|Y=1) = E(X|Y=-1)$
- \square Rozkład warunkowy X pod warunkiem $\{Y=0\}$ jest rozkładem 1 punktowym
- 4. Funkcja $F:\mathbb{R}^2 \to \mathbb{R}$ jest dystrybuantą pewnej dwuwymiarowej zmiennej losowej (X,Y). Wtedy:
 - Istnieje punkt (x_0, y_0) taki, że $F(x_0, y_0) = 1$
 - $\prod_{n \to +\infty} F(-n,y) = 0$ dla każdego $y \in \mathbb{R}$

 - Jeśli $x \leq x_0$ i $y \leq y_0$, to $F(x,y) \leq F(x_0,y_0)$
 - Funkcja $h(x) = F(x, y_0)$, gdzie y_0 jest ustaloną liczbą rzeczywistą, jest ściśle rosnąca i lewostronnie ciągła w \mathbb{R}

5.	Zmienna losowa (X,Y) ma rozkład normalny o gęstości
	$f(x,y) = \frac{1}{2\pi\sqrt{3}} \exp\left\{-\frac{1}{12} \left(8(x-2)^2 - 4(x-2)(y+3) + 2(y+3)^2\right)\right\}.$ Wtedy:
	Y ma rozkład normalny $N(-3,4)$
	Zmienne losowe $X + 2Y$ i $X - Y$ są niezależne $ P(X - Y > 5) = 0,5 $
	$\bigcap \rho_{X+2Y,X-Y} = -1$
6.	Funkcja gęstości pewnej jednowymiarowej zmiennej losowej \boldsymbol{X} ma postać
	$f_X(x) = \frac{1}{b(x^2+1)} \text{ dla } x \in \mathbb{R}. \text{ Wtedy:}$
	$oxed{b} b = rac{1}{\pi}$
	$\prod F_X(x) = \frac{1}{\pi} arc tgx + \frac{1}{2} dla x \in \mathbb{R}$
	Nie istnieje EX
	$\overline{}$ X jest zmienną losową rzędu drugiego
7.	Funkcja $F: \mathbb{R} \to \mathbb{R}$ określona jest następująco: $F(x) = \left\{ \begin{array}{ll} 0 & , & x \leqslant 0 \\ cx^2+d & , & 0 < x \leqslant 1 \\ 1 & , & x>1 \end{array} \right.$ Wtedy:
	Deśli $d=\frac{1}{2}$ oraz c jest dowolną liczbą z przedziału $\left[0;\frac{1}{2}\right]$, to F jest dystrybuantą pewnej jednowymiarowej zmiennej losowej
	Jeśli c i d są dowolnymi liczbami takimi, że $d\geqslant 0$ i $c+d\leqslant 1$, to F jest dystrybuantą pewnej jednowymiarowej zmiennej losowej
	$\hfill \hfill $ Jeśli $c=0$ i d jest dowolną liczbą z przedziału [0;1], to F jest dystrybuantą pewnej jednowymiarowej zmiennej losowej o rozkładzie skokowym
	$\hfill \Box$ Jeśli $c=0$ i d jest dowolną liczbą z przedziału $(0;1),$ to F jest dystrybuantą pewnej jednowymiarowej zmiennej losowej o rozkładzie 2-punktowym
8.	Xi Y są niezależnymi zmiennymi losowymi rzędu drugiego, określonymi na tej samej przestrzeni probabilistycznej. Wtedy:
	$\hfill \Box$ Jeśli X ma rozkład ciągły, to $X+Y$ ma rozkład ciągły
	V(X - Y) = V(X) - V(Y)
	$ P(\min(X,Y) > 1) = (1 - F_X(1))(1 - F_Y(1)) $
	$P(\min(X,Y) < 1) = F_X(1) + F_Y(1) - F_X(1) \cdot F_Y(1)$

9.	Zmienna losowa (X,Y) ma rozkład jednostajny na prostokącie $[0;2] \times [0;1]$. Niech $Z=X+Y$. Wtedy:
	$oxed{Z}$ nie ma rozkładu ciągłego
	$\Box EX = 1$
	Xi Y są skorelowane
10.	Rzucamy niesymetryczną monetą $\left(P(O)=\frac{1}{3}\right)$, dopóki nie pojawi się orzeł. Niech X oznacza liczbę wykonanych rzutów. Wtedy:
	$\square X$ ma rozkład geometryczny z parametrem $\frac{1}{3}$
	· · · · · · · · · · · · · · · · · · ·
	$\square X$ ma rozkład geometryczny z parametrem $\frac{2}{3}$
	$\Box EX = \frac{3}{2}$
	P(X > 15 X > 10) = P(X > 5)
	$P(X \le 30) = 1 - \left(\frac{2}{3}\right)^{30}$
	$\square^{1}(\Lambda \leqslant 00) = 1 (3)$
	$(X_k)_{k\in\mathbb{N}}$ jest ciągiem niezależnych zmiennych losowych o tym samym rozkładzie, takim, że dla każdego $k\in\mathbb{N},\ EX_k=1,\ VX_k=4.$ Wtedy:
	$\square P\left(\sum_{i=1}^{100} X_i < 160\right) > \frac{1}{2}$
	$\square P\left(\left \sum_{i=1}^{100} X_i\right < 160\right) > 2\Phi(3)$
	Zmienna losowa $\sum_{i=1}^{64} X_i$ ma rozkład normalny $N(64,16)$
	$ P\left(\sum_{i=1}^{64} X_i < 80\right) + P\left(\sum_{i=1}^{64} X_i < 48\right) = 1 $
	Zmienna losowa $\frac{\sum_{i=1}^{100} X_i - 100}{20}$ ma rozkład normalny $N(0,1)$
12.	X i Y są niezależnymi zmiennymi losowymi o rozkładach Bernoulliego z parametrami odpowiednio $\left(3,\frac{1}{2}\right)$ i $\left(6,\frac{1}{2}\right)$. Wtedy:
	$X + Y$ ma rozkład Bernoulliego z parametrami $\left(9, \frac{1}{2}\right)$
	$\Box EY = 3$
	$\prod F_Y(2) = 7\left(\frac{1}{2}\right)^6$