Tres enfoques para un problema Partícula Cargada en un Campo Magnético

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

29 de mayo de 2025

Agenda

- El problema
- Pormalismo Hamiltoniano
- Formalismo de Hamilton-Jacobi
- Recapitulando

El problema y el enfoque Lagrangeano

Sistema físico

- Masa m, carga q, movimiento en plano xy
- Campo magnético uniforme: $\mathbf{B} = B\hat{z}$, sin campo eléctrico: $\mathbf{E} = 0$
- Potencial vectorial $\mathbf{B} = \nabla \times \mathbf{A}$ en el calibre de Landau tenemos $\mathbf{A} = (0, Bx, 0)$ y además $\mathbf{A} \cdot \dot{\mathbf{r}} = Bx\dot{y}$

El problema y el enfoque Lagrangeano

Sistema físico

- Masa m, carga q, movimiento en plano xy
- Campo magnético uniforme: $\mathbf{B} = B\hat{z}$, sin campo eléctrico: $\mathbf{E} = 0$
- Potencial vectorial $\mathbf{B} = \nabla \times \mathbf{A}$ en el calibre de Landau tenemos $\mathbf{A} = (0, Bx, 0)$ y además $\mathbf{A} \cdot \dot{\mathbf{r}} = Bx\dot{y}$

• El lagrangiano del sistema

$$\mathcal{L} = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + q\mathbf{A} \cdot \dot{\mathbf{r}} \equiv \mathcal{L}(x, y, \dot{x}, \dot{y}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + qBx\dot{y}$$

El problema y el enfoque Lagrangeano

Sistema físico

- Masa m, carga q, movimiento en plano xy
- Campo magnético uniforme: $\mathbf{B} = B\hat{z}$, sin campo eléctrico: $\mathbf{E} = 0$
- Potencial vectorial $\mathbf{B} = \nabla \times \mathbf{A}$ en el calibre de Landau tenemos $\mathbf{A} = (0, Bx, 0)$ y además $\mathbf{A} \cdot \dot{\mathbf{r}} = Bx\dot{y}$

• El lagrangiano del sistema

$$\mathcal{L} = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + q\mathbf{A} \cdot \dot{\mathbf{r}} \equiv \mathcal{L}(x, y, \dot{x}, \dot{y}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + qBx\dot{y}$$

Ecuaciones de Euler-Lagrange

- Para x: $\frac{d}{d\dot{t}}(m\dot{x}) qB\dot{y} = 0 \Rightarrow m\ddot{x} = qB\dot{y}$
- Para y: $\frac{d}{dt}(m\dot{y} + qBx) = 0 \Rightarrow m\ddot{y} = -qB\dot{x}$
- Sistema resultante: $\ddot{x} = \omega_c \dot{y}, \quad \ddot{y} = -\omega_c \dot{x}$ Dos ecuaciones acopladas, donde $\omega_c = \frac{qB}{m}$ es frecuencia de ciclotrón
- Derivando: $\ddot{x} = \omega_c \ddot{y} = -\omega_c^2 \dot{x} \Rightarrow \ddot{x} + \omega_c^2 x = 0$, también $\ddot{y} + \omega_c^2 y = 0$
- Ecuaciones de oscilador armónico para x(t) y y(t) con solución
- $x(t) = A\cos(\omega_c t) + B\sin(\omega_c t)$ y $y(t) = C\cos(\omega_c t) + D\sin(\omega_c t)$
- La partícula describe una órbita circular con $|\mathbf{v}|=$ cte y $R=\frac{v_0}{\omega_c}$

• El hamiltoniano se define por: $\mathcal{H} = p_x \dot{x} + p_y \dot{y} - \mathcal{L}$

- El hamiltoniano se define por: $\mathcal{H} = p_x \dot{x} + p_y \dot{y} \mathcal{L}$
- Como $\mathcal{L} = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + qBx\dot{y}$ tenemos $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$ y $p_y = \frac{\partial \mathcal{L}}{\partial \dot{y}} = m\dot{y} + qBx$

- El hamiltoniano se define por: $\mathcal{H} = p_x \dot{x} + p_y \dot{y} \mathcal{L}$
- Como $\mathcal{L} = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + qBx\dot{y}$ tenemos $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$ y $p_y = \frac{\partial \mathcal{L}}{\partial \dot{y}} = m\dot{y} + qBx$
- Entonces $\mathcal{H} = \frac{p_x^2}{2m} + \frac{1}{2m}(p_y qBx)^2$

- El hamiltoniano se define por: $\mathcal{H} = p_x \dot{x} + p_y \dot{y} \mathcal{L}$
- Como $\mathcal{L} = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + qBx\dot{y}$ tenemos $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$ y $p_y = \frac{\partial \mathcal{L}}{\partial \dot{y}} = m\dot{y} + qBx$
- Entonces $\mathcal{H} = \frac{p_x^2}{2m} + \frac{1}{2m}(p_y qBx)^2$
- Las Ecuaciones de Hamilton $\dot{x} = \frac{\partial \mathcal{H}}{\partial p_x} = \frac{p_x}{m} \quad \Rightarrow \ddot{x} = \frac{\dot{p_x}}{m}$ $\dot{p}_x = -\frac{\partial \mathcal{H}}{\partial x} = -\frac{qB}{m}(p_y qBx); \quad \Rightarrow \ddot{x} = -\frac{qB}{m}(p_y qBx)$ $\dot{y} = \frac{\partial \mathcal{H}}{\partial p_y} = \frac{p_y qBx}{m} \quad \Rightarrow \ddot{y} = \frac{\dot{p}_y qB\dot{x}}{m} \quad \Rightarrow \ddot{y} = -\frac{qB\dot{x}}{m};$ finalmente $\dot{p}_y = -\frac{\partial \mathcal{H}}{\partial y} = 0 \quad \Rightarrow \quad p_y = \text{cte} \quad \Rightarrow \ddot{y} = -\frac{qB\dot{x}}{m}$

- El hamiltoniano se define por: $\mathcal{H} = p_x \dot{x} + p_y \dot{y} \mathcal{L}$
- Como $\mathcal{L} = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + qBx\dot{y}$ tenemos $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}$ y $p_y = \frac{\partial \mathcal{L}}{\partial \dot{y}} = m\dot{y} + qBx$
- Entonces $\mathcal{H} = \frac{p_x^2}{2m} + \frac{1}{2m}(p_y qBx)^2$
- Las Ecuaciones de Hamilton $\dot{x} = \frac{\partial \mathcal{H}}{\partial p_x} = \frac{p_x}{m} \quad \Rightarrow \ddot{x} = \frac{\dot{p}_x}{m}$ $\dot{p}_x = -\frac{\partial \mathcal{H}}{\partial x} = -\frac{qB}{m}(p_y qBx); \quad \Rightarrow \ddot{x} = -\frac{qB}{m}(p_y qBx)$ $\dot{y} = \frac{\partial \mathcal{H}}{\partial p_y} = \frac{p_y qBx}{m} \quad \Rightarrow \ddot{y} = \frac{\dot{p}_y qB\dot{x}}{m} \quad \Rightarrow \ddot{y} = -\frac{qB\dot{x}}{m};$ finalmente $\dot{p}_y = -\frac{\partial \mathcal{H}}{\partial y} = 0 \quad \Rightarrow \quad p_y = \text{cte} \quad \Rightarrow \ddot{y} = -\frac{qB\dot{x}}{m}$
- Como p_y es constante: $X = x \frac{p_y}{qB} \Rightarrow \ddot{X} = -\omega_c^2 X$, con $\omega_c = \frac{qB}{m}$, y otra vez se obtienen las mismas ecuaciones movimiento

• La función de acción S(x,y,t) será tal que $\mathcal{H}\left(x,\frac{\partial S}{\partial x},\frac{\partial S}{\partial y}\right)+\frac{\partial S}{\partial t}=0$

- La función de acción S(x, y, t) será tal que $\mathcal{H}\left(x, \frac{\partial S}{\partial x}, \frac{\partial S}{\partial y}\right) + \frac{\partial S}{\partial t} = 0$
- Con lo cual Hamilton-Jacobi $\frac{1}{2m}\left[\left(\frac{\partial S}{\partial x}\right)^2 + \left(\frac{\partial S}{\partial y} qBx\right)^2\right] + \frac{\partial S}{\partial t} = 0$

- La función de acción S(x, y, t) será tal que $\mathcal{H}\left(x, \frac{\partial S}{\partial x}, \frac{\partial S}{\partial y}\right) + \frac{\partial S}{\partial t} = 0$
- Con lo cual Hamilton-Jacobi $\frac{1}{2m} \left[\left(\frac{\partial S}{\partial x} \right)^2 + \left(\frac{\partial S}{\partial y} qBx \right)^2 \right] + \frac{\partial S}{\partial t} = 0$
- Intentamos la separabilidad como: $S(x,y,t) = \mathcal{W}(x) + p_y y \mathcal{E} t$

- La función de acción S(x,y,t) será tal que $\mathcal{H}\left(x,\frac{\partial S}{\partial x},\frac{\partial S}{\partial y}\right)+\frac{\partial S}{\partial t}=0$
- Con lo cual Hamilton-Jacobi $\frac{1}{2m} \left[\left(\frac{\partial S}{\partial x} \right)^2 + \left(\frac{\partial S}{\partial y} qBx \right)^2 \right] + \frac{\partial S}{\partial t} = 0$
- Intentamos la separabilidad como: $S(x,y,t) = \mathcal{W}(x) + p_y y \mathcal{E} t$
- Entonces: $\frac{\partial S}{\partial x} = \frac{dW}{dx}$, $\frac{\partial S}{\partial y} = p_y$, $\frac{\partial S}{\partial t} = -\mathcal{E}$

- La función de acción S(x,y,t) será tal que $\mathcal{H}\left(x,\frac{\partial S}{\partial x},\frac{\partial S}{\partial y}\right)+\frac{\partial S}{\partial t}=0$
- Con lo cual Hamilton-Jacobi $\frac{1}{2m} \left[\left(\frac{\partial S}{\partial x} \right)^2 + \left(\frac{\partial S}{\partial y} qBx \right)^2 \right] + \frac{\partial S}{\partial t} = 0$
- Intentamos la separabilidad como: $S(x,y,t) = \mathcal{W}(x) + p_y y \mathcal{E} t$
- Entonces: $\frac{\partial S}{\partial x} = \frac{dW}{dx}$, $\frac{\partial S}{\partial y} = p_y$, $\frac{\partial S}{\partial t} = -\mathcal{E}$
- Con lo cual: $\frac{1}{2m}\left[\left(\frac{d\mathcal{W}}{dx}\right)^2+(p_y-qBx)^2\right]=\mathcal{E}.$ Entonces

- La función de acción S(x,y,t) será tal que $\mathcal{H}\left(x,\frac{\partial S}{\partial x},\frac{\partial S}{\partial y}\right)+\frac{\partial S}{\partial t}=0$
- Con lo cual Hamilton-Jacobi $\frac{1}{2m} \left[\left(\frac{\partial S}{\partial x} \right)^2 + \left(\frac{\partial S}{\partial y} qBx \right)^2 \right] + \frac{\partial S}{\partial t} = 0$
- Intentamos la separabilidad como: $S(x,y,t) = \mathcal{W}(x) + p_y y \mathcal{E} t$
- Entonces: $\frac{\partial S}{\partial x} = \frac{dW}{dx}$, $\frac{\partial S}{\partial y} = p_y$, $\frac{\partial S}{\partial t} = -\mathcal{E}$
- Con lo cual: $\frac{1}{2m}\left[\left(\frac{d\mathcal{W}}{dx}\right)^2+(p_y-qBx)^2\right]=\mathcal{E}.$ Entonces
- $\left(\frac{dW}{dx}\right)^2 = 2m\mathcal{E} (p_y qBx)^2 \Rightarrow \mathcal{W}(x) = \int \sqrt{2m\mathcal{E} (p_y qBx)^2} \, dx$

- La función de acción S(x,y,t) será tal que $\mathcal{H}\left(x,\frac{\partial S}{\partial x},\frac{\partial S}{\partial y}\right)+\frac{\partial S}{\partial t}=0$
- Con lo cual Hamilton-Jacobi $\frac{1}{2m} \left[\left(\frac{\partial S}{\partial x} \right)^2 + \left(\frac{\partial S}{\partial y} qBx \right)^2 \right] + \frac{\partial S}{\partial t} = 0$
- Intentamos la separabilidad como: $S(x,y,t) = \mathcal{W}(x) + p_y y \mathcal{E} t$
- Entonces: $\frac{\partial S}{\partial x} = \frac{dW}{dx}$, $\frac{\partial S}{\partial y} = p_y$, $\frac{\partial S}{\partial t} = -\mathcal{E}$
- Con lo cual: $\frac{1}{2m}\left[\left(\frac{d\mathcal{W}}{dx}\right)^2+(p_y-qBx)^2\right]=\mathcal{E}.$ Entonces
- $\left(\frac{dW}{dx}\right)^2 = 2m\mathcal{E} (p_y qBx)^2 \Rightarrow \mathcal{W}(x) = \int \sqrt{2m\mathcal{E} (p_y qBx)^2} \, dx$
- Las ecuaciones $p_x = \frac{\partial S}{\partial x} = \frac{dW}{dx}$, $p_y = \text{cte}$, $Q_y = \frac{\partial S}{\partial p_y} = y + \frac{\partial W}{\partial p_y}$

- La función de acción S(x,y,t) será tal que $\mathcal{H}\left(x,\frac{\partial S}{\partial x},\frac{\partial S}{\partial y}\right)+\frac{\partial S}{\partial t}=0$
- Con lo cual Hamilton-Jacobi $\frac{1}{2m} \left[\left(\frac{\partial S}{\partial x} \right)^2 + \left(\frac{\partial S}{\partial y} qBx \right)^2 \right] + \frac{\partial S}{\partial t} = 0$
- Intentamos la separabilidad como: $S(x,y,t) = \mathcal{W}(x) + p_y y \mathcal{E} t$
- Entonces: $\frac{\partial S}{\partial x} = \frac{dW}{dx}$, $\frac{\partial S}{\partial y} = p_y$, $\frac{\partial S}{\partial t} = -\mathcal{E}$
- Con lo cual: $\frac{1}{2m}\left[\left(\frac{d\mathcal{W}}{dx}\right)^2+(p_y-qBx)^2\right]=\mathcal{E}.$ Entonces
- $\left(\frac{dW}{dx}\right)^2 = 2m\mathcal{E} (p_y qBx)^2 \Rightarrow \mathcal{W}(x) = \int \sqrt{2m\mathcal{E} (p_y qBx)^2} \, dx$
- Las ecuaciones $p_x = \frac{\partial S}{\partial x} = \frac{dW}{dx}$, $p_y = \text{cte}$, $Q_y = \frac{\partial S}{\partial p_y} = y + \frac{\partial W}{\partial p_y}$
- La dependencia de x(t) se obtiene: $\frac{dx}{dt} = \frac{\partial H}{\partial p_x} = \frac{p_x}{m}$

- La función de acción S(x,y,t) será tal que $\mathcal{H}\left(x,\frac{\partial S}{\partial x},\frac{\partial S}{\partial y}\right)+\frac{\partial S}{\partial t}=0$
- Con lo cual Hamilton-Jacobi $\frac{1}{2m} \left[\left(\frac{\partial S}{\partial x} \right)^2 + \left(\frac{\partial S}{\partial y} qBx \right)^2 \right] + \frac{\partial S}{\partial t} = 0$
- Intentamos la separabilidad como: $S(x,y,t) = \mathcal{W}(x) + p_y y \mathcal{E} t$
- Entonces: $\frac{\partial S}{\partial x} = \frac{dW}{dx}$, $\frac{\partial S}{\partial y} = p_y$, $\frac{\partial S}{\partial t} = -\mathcal{E}$
- Con lo cual: $\frac{1}{2m}\left[\left(\frac{d\mathcal{W}}{dx}\right)^2+(p_y-qBx)^2\right]=\mathcal{E}.$ Entonces
- $\left(\frac{dW}{dx}\right)^2 = 2m\mathcal{E} (p_y qBx)^2 \Rightarrow \mathcal{W}(x) = \int \sqrt{2m\mathcal{E} (p_y qBx)^2} \, dx$
- Las ecuaciones $p_x = \frac{\partial S}{\partial x} = \frac{dW}{dx}$, $p_y = \text{cte}$, $Q_y = \frac{\partial S}{\partial p_y} = y + \frac{\partial W}{\partial p_y}$
- La dependencia de x(t) se obtiene: $\frac{dx}{dt} = \frac{\partial H}{\partial p_x} = \frac{p_x}{m}$
- Pero como $p_x = \frac{dW}{dx}$, tenemos: $\frac{dx}{dt} = \frac{1}{m}\sqrt{2mE (p_y qBx)^2}$

Recapitulando

En presentación consideramos

