Definiciones

jueves, 18 de mayo de 2023 11:13

Estimador:

Sea X una variable aleatoria

 $\hat{\mu}$ es un estimador sobre X

$$\Leftrightarrow \operatorname{Img}(X)^* \subseteq \operatorname{Dom}(\hat{\mu}) \land \exists m \in \mathbb{N} : \operatorname{Img}(\hat{\mu}) \subseteq \mathbb{R}^m$$

Un estimador sobre X es una función con dominio superconjunto de $\mathrm{Img}(X)^*$ e imagen $\subseteq \mathbb{R}^m$ para algún

O sea, un estimador toma acepta una n-upla para cualquier n

Propiedades:

Sean:

Sea X una variable aleatoria

$$X_1, X_2, \dots \sim X$$

 $\hat{\mu}, \widehat{\mu'}$ estimadores sobre X

$$\mu \in \mathbb{R}^m$$

 $\hat{\mu}$ es un estimador insesdado de $\mu \Leftrightarrow \forall n \in \mathbb{N} : \mathcal{F}(X_1, X_2, ..., X_n) \neq \mu$

 $\hat{\mu}$ es consistente $\Leftrightarrow \lim_{n \to \infty} V_{\mu}(X_1, X_2, ..., X_n) \neq 0$

 $\hat{\mu}$ es mas eficiente que $\widehat{\mu}'$

$$\begin{split} & \text{ECM}_{X_1, X_2, \dots, X_n}(\hat{\mu}, \mu) = E[\hat{\mu}(X_1, X_2, \dots, X_n) - \mu)^2) \\ & \text{sesgo}_{X_1, X_2, \dots, X_n}(\hat{\mu}, \mu) = E(\hat{\mu}(X_1, X_2, \dots, X_n) - \mu) \end{split}$$

Estimadores que vamos a usar

Sea X una variable aleatoria:

Definimos las siguientes variables aleatorias:

Sean
$$X_1, X_2, \dots, X_n \sim X$$

$$\bar{X}(n) = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S_X^2(n) = \frac{1}{n-1} \sum_{i=1}^n X_i - \bar{X}(n^2)$$
Notar que los X_i de acá son los mismos que los de \bar{X}

$$S_X(n) = \sqrt{S_X^2(n)}$$

Estos claramente no son estimadores, si no variables aleatorias, pero son la aplicación de ciertos estimadores con n muestras

1)
martes, 16 de mayo de 2023 12:38
Ejercicio 1. Genere <i>n</i> valores de una variable aleatoria normal estándar de manera tal que se cumplan las condiciones: $n \ge 30$ y $S/\sqrt{n} < 0.1$, siendo <i>S</i> el estimador de la desviación estándar de los <i>n</i> datos generados.
a) ¿Cuál es el número de datos generados efectivamente?
b) ¿Cuál es la media muestral de los datos generados?
c) ¿Cuál es la varianza muestral de los datos generados?

Ejercicio 2. Estime mediante el método de Monte Carlo la integral

i)
$$\int_0^1 \frac{e^x}{\sqrt{2x}} dx$$

i)
$$\int_0^1 \frac{e^x}{\sqrt{2x}} dx$$
, ii) $\int_{-\infty}^\infty x^2 \exp(-x^2) dx$.

- a) Indique cómo se obtiene mediante simulación el valor de la integral.
- b) Genere al menos 100 valores y deténgase cuando la desviación estándar muestral S del estimador sea menor que 0,01.

$$\int_{0}^{1} g(x) dx$$

$$g(x) = \frac{e^x}{\sqrt{2x}}$$

La integral se calcula como:

$$E\left(\mathcal{G}(0,1)\right)$$

$$\int_{-\infty}^{\infty} g(x) \, \mathrm{d}x$$

$$g(x) = x^2 e^{-x^2}$$

$$\int_{-\infty}^{\infty} g(x) dx = \int_{0}^{1} h(x) dx + \int_{0}^{1} k(x) dx$$

$$h(x) = \frac{g\left(\frac{1}{x} - 1\right)}{x^2}$$
$$k(x) = \frac{g\left(1 - \frac{1}{x}\right)}{x^2}$$

La integral se calcula como:

Ejercicio 4. Para U_1, U_2, \ldots variables aleatorias uniformemente distribuidas en el intervalo (0,1), se define:

$$N = \text{Mínimo}\left\{n : \sum_{i=1}^{n} U_i > 1\right\}$$

Esto es, N es igual a la cantidad de números aleatorios que deben sumarse para exceder a 1.

- a) Observe que E[N] = e por lo cual puede aproximar e con la media muestral \bar{N} .
- b) Derive una expresión de la varianza del estimador \bar{N} y aproxímela con 1000 simulaciones. Dar su estimador de máxima verosimilitud.
- c) Dé el valor obtenido de la varianza muestral de \bar{N} correspondiente a 1000 ejecuciones de la simulación y dar una estimación de e mediante un intervalo de confianza de 95 % con longitud a lo sumo 0.025.

Ejercicio 5. Considere una sucesión de números aleatorios $\{U_i\}_i$ y sea M el primer n tal que la variable U_n es menor que su variable predecesora. Es decir,

$$M = n$$
 tal que $U_1 \le U_2 \le \cdots \le U_{n-1}$ y $U_n < U_{n-1}$

- a) Justifique que $P(M > n) = 1/n!, n \ge 0$.
- b) Utilice la identidad

$$E[M] = \sum_{n=0}^{\infty} P(M > n)$$

para mostrar que E[M] = e.

- c) Utilice el resultado del item anterior para dar un estimador de E[M], calcule el valor de su varianza muestral. Mediante una simulación estime el valor de e deteniéndose cuando la varianza muestral sea menor que 0,01.
- d) Dé una estimación de e mediante un intervalo de ancho menor que 0,1 y con una confianza del 95%

a)

Para que pase que M > n tienen que los primeros n U_i tienen que estar ordenados