DEVOIR À LA MAISON N°10

- ▶ Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1.★

Soit E un \mathbb{R} -espace vectoriel de dimension $n \geqslant 2$. On dit qu'un sous-espace vectoriel F de E est *stable* par un endomorphisme f de E si $f(F) \subset F$.

- **1.** Soit $f \in \mathcal{L}(E)$ tel que $f^{n-1} \neq \mathbf{0}$ et $f^n = \mathbf{0}$ où $\mathbf{0}$ désigne l'endomorphisme nul de E.
 - **a.** Montrer qu'il existe $x \in E$ tel que $f^{n-1}(x) \neq 0$.
 - **b.** Montrer que, pour un tel vecteur x, la famille $(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$ est une base de E.

Dans toute la suite de l'exercice, f est un endomorphisme de E tel que $f^{n-1} \neq \mathbf{0}$ et $f^n = \mathbf{0}$ et x un vecteur de E tel que $f^{n-1}(x) \neq \mathbf{0}$.

- 2. Pour k un entier tel que $1\leqslant k\leqslant n,$ on pose $F_k=\text{vect}\left((f^{n-i}(x))_{1\leqslant i\leqslant k}\right)$.
 - **a.** Déterminer la dimension de F_k.
 - **b.** Montrer que $F_k = Ker(f^k) = Im(f^{n-k})$.
 - **c.** Montrer que F_k est stable par f.
- 3. Soit F un sous-espace vectoriel stable par f. On suppose que F est de dimension k avec $1 \le k \le n-1$. On note \tilde{f} l'endomorphisme de F défini par : $\forall y \in F$, $\tilde{f}(y) = f(y)$.
 - **a.** Montrer qu'il existe un entier $p\geqslant 1$ tel que $\tilde{f}^{p-1}\neq \tilde{\mathbf{0}}$ et $\tilde{f}^p=\tilde{\mathbf{0}}$ où $\tilde{\mathbf{0}}$ désigne l'endomorphisme nul de F.
 - **b.** Soit $y \in F$ tel que $\tilde{f}^{p-1}(y) \neq 0$. Que peut-on dire de la famille $(y, \tilde{f}(y), \dots, \tilde{f}^{p-1}(y))$? En déduire que $\tilde{f}^k = \tilde{\mathbf{0}}$.
 - **c.** Montrer que $F = \text{Ker } f^k$.
 - d. Déterminer tous les sous-espaces vectoriels stables par f.
- **4.** On veut déterminer tous les endomorphismes g de E qui commutent avec f, c'est-à-dire tels que $f \circ g = g \circ f$.
 - a. Soit g un endomorphisme de E. Montrer qu'il existe un unique n-uplet de nombres réels $(\alpha_0, \alpha_1, \dots, \alpha_{n-1})$ tel que :

$$g(x) = \alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{n-1} f^{n-1}(x)$$

b. En déduire que si g commute avec f alors,

$$g = \alpha_0 \operatorname{Id}_E + \alpha_1 f + \dots + \alpha_{n-1} f^{n-1}$$

où $\alpha_0, \alpha_1, \dots, \alpha_{n-1}$ sont les réels définis à la question précédente.

c. Montrer que l'ensemble des endomorphismes qui commutent avec f est un sous-espace vectoriel de $\mathcal{L}(\mathsf{E})$ et préciser sa dimension.

Problème 1 -

On donne $e \approx 2,72, \frac{1}{\sqrt{e}} \approx 0,61, \sqrt{2} \approx 1,41 \text{ et } \ln(3) \approx 1,10.$

Partie I - Étude d'une fonction

Soit f la fonction définie sur \mathbb{R}

$$\forall x \in \mathbb{R}, f(x) = 3xe^{-x^2} - 1$$

- 1. Étudier les variations de f sur $\mathbb R$ ainsi que les limites aux bornes du domaine de définition. Donner le tableau de variations de f. Préciser les branches infinies de la courbe représentative $\mathcal C_f$ de f ainsi qu'une symétrie de celle-ci.
- **2.** Donner l'équation de la tangente à C_f au point d'abscisse 0. Etudier la position de la courbe de C_f par rapport à cette tangente.
- 3. Donner l'allure de la courbe C_f . On fera également figurer les asymptotes et la tangente des questions précédentes.
- **a.** Justifier que f admet un développement limité en 0 à tout ordre.
 - **b.** Donner le développement limité de f en 0 à l'ordre 5.

Partie II - Étude d'une équation différentielle

Soient $n \in \mathbb{N}^*$ et E_n l'équation différentielle $xy' - (n-2x^2)y = n-2x^2$. On note H_n l'équation différentielle homogène associée à E_n .

- **1.** Résoudre H_n sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- 2. En déduire les solutions de E_n sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- **3.** Donner toutes les fonctions de classe \mathcal{C}^1 sur \mathbb{R} solutions de E_n sur \mathbb{R} . On distinguera les cas n=1 et $n\geqslant 2$.

Partie III - Étude de deux suites

On suppose désormais dans cette partie que $n \ge 2$. Soit f_n la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, f_n(x) = 3x^n e^{-x^2} - 1$$

- **1.** Quel est le signe de $f_n(0)$ et de $f_n(1)$?
- 2. Étudier les variations de f_n sur \mathbb{R}_+ . Donner la limite de f_n en $+\infty$. En déduire que f_n s'annule exactement deux fois sur \mathbb{R}_+ en deux réels notés \mathfrak{u}_n et \mathfrak{v}_n vérifiant $\mathfrak{u}_n < 1 < \mathfrak{v}_n$.
- **3.** Quelle est la limite de $(v_n)_{n\geqslant 2}$?
- **4. a.** Exprimer $e^{-u_n^2}$ en fonction de u_n^n .
 - **b.** En déduire le signe de $f_{n+1}(u_n)$.
 - **c.** Déduire de ce qui précède la monotonie de $(u_n)_{n \ge 2}$.
 - **d.** Montrer que la suite $(u_n)_{n\geqslant 2}$ est convergente. On note l sa limite.
- **5.** Soit g_n définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, \ g_n(x) = \ln(3) + n \ln(x) - x^2$$

- a. Soit $t\in\mathbb{R}_+^*.$ Montrer que $g_{\mathfrak{n}}(t)=0$ si et seulement si $f_{\mathfrak{n}}(t)=0.$
- **b.** On suppose $l \neq 1$. Trouver une contradiction en utilisant ce qui précède. Conclusion ?
- **c.** Soit la suite $(w_n)_{n\geqslant 2}$ définie par

$$\forall n \geqslant 2, \ w_n = u_n - 1$$

Trouver en utilisant un développement limité de $g_n(1+w_n)=g_n(u_n)$ un équivalent simple de w_n .