Ore's Theorem CS 111 Presentation

Youssef Adam Thomas Kang Youssef Koreatam Michael Wong Gabriel Serrano

Department of Computer Science, University of California, Riverside

March 19, 2024

Questions

To understand **Ore's theorem**, we must briefly recapitulate what it means for a graph to be **Hamiltonian**.

To understand **Ore's theorem**, we must briefly recapitulate what it means for a graph to be **Hamiltonian**.

Let G(V, E) be an undirected graph with $|V| \geq 3$ vertices.

To understand **Ore's theorem**, we must briefly recapitulate what it means for a graph to be **Hamiltonian**.

Let G(V, E) be an undirected graph with $|V| \ge 3$ vertices. If we are able to create a cycle T that meets each and every vertex strictly once, then G is considered **Hamiltonian**.

To understand **Ore's theorem**, we must briefly recapitulate what it means for a graph to be **Hamiltonian**.

Let G(V, E) be an undirected graph with $|V| \ge 3$ vertices. If we are able to create a cycle T that meets each and every vertex strictly once, then G is considered **Hamiltonian**.

Example:

To understand **Ore's theorem**, we must briefly recapitulate what it means for a graph to be **Hamiltonian**.

Let G(V, E) be an undirected graph with $|V| \ge 3$ vertices. If we are able to create a cycle T that meets each and every vertex strictly once, then G is considered **Hamiltonian**.

Example:

Introduction: Ore's Theorem Statement

First Case

First Case

 $G_1(V, E)$ satisfies Ore's theorem Ω and has a Hamiltonian cycle T.

$$n \coloneqq |V| = 6 \ge 3 \quad \vdash \quad \Omega_1$$

$$\deg(a) + \deg(e) = 6 \ge n$$

$$\deg(b) + \deg(c) = 6 \ge n$$

$$\deg(b) + \deg(f) = 6 \ge n$$

$$\deg(b) + \deg(f) = 6 \ge n$$

$$\deg(c) + \deg(e) = 6 \ge n$$

$$\vdash \Omega_2$$

This graph satisfies Ω and has a Hamiltonian cycle $T = \{d, a, b, e, f, c, d\}$.

Second Case

Second Case

$$n \coloneqq |V| = 5 \ge 3 \quad \vdash \quad \Omega_1$$

Second Case

$$\frac{\mathbf{n}}{\mathbf{n}} := |V| = 5 \ge 3 \quad \vdash \quad \Omega_1
 \deg(a) + \deg(c) = 4$$

Second Case

$$n := |V| = 5 \ge 3 \quad \vdash \quad \Omega_1$$

 $\deg(a) + \deg(c) = 4 \not\ge n$

Second Case

Second Case

Second Case

 $G_2(V, E)$ does not satisfy Ω and does not have a Hamiltonian cycle T.

$$\begin{array}{c} a \\ b \\ c \\ \end{array}$$

$$\begin{array}{c} n \coloneqq |V| = 5 \ge 3 \quad \vdash \quad \Omega_1 \\ \deg(a) + \deg(c) = 4 \not \ge n \\ \deg(a) + \deg(e) = 4 \not \ge n \\ \deg(b) + \deg(d) = 6 \ge n \\ \deg(c) + \deg(e) = 4 \not \ge n \\ \not \vdash \Omega_2 \end{array}$$

This graph does not satisfy Ω and does not have a Hamiltonian cycle.

Third Case

Third Case

$$n := |V| = 7 \ge 3 \quad \vdash \quad \Omega_1$$

Third Case

$$n := |V| = 7 \ge 3 \quad \vdash \quad \Omega_1$$

$$\deg(a) + \deg(d) = 6 \ngeq \frac{n}{} \quad \deg(a) + \deg(e) = 8 \ge \frac{n}{} \quad \deg(a) + \deg(f) = 8 \ge \frac{n}{}$$

Third Case

$$n := |V| = 7 \ge 3 \quad \vdash \quad \Omega_1$$

Third Case

 $G_3(V, E)$ does not satisfy Ω and has a Hamiltonian cycle T.

$$n := |V| = 7 \ge 3 \quad \vdash \quad \Omega_1$$

This graph does not satisfy Ω but still has a Hamiltonian cycle $T = \{a, b, d, e, g, f, c, a\}$.

Applications

Hamiltonian cycles have a variety of real-world applications.

Network routing:

- finding the most effective and efficient round-trip path between points A to B
- improving network traffic by reducing delays from client to server
- optimizing network runtime

Picture a data packet moving through a network of routers to reach a server, aiming to find a path that visits each router exactly once, and thereby optimizing data transmission efficiency.

Applications

Hamiltonian cycles have a variety of real-world applications.

Navigation systems:

- finding a path that travelers can take to both reach every destination and reduce estimated time of arrival
- development of algorithms to prevent travelers from revisiting destinations and inefficient paths

In some navigation systems, the primary goal is to find an efficient *round-trip* cycle that visits each destination once, ensuring smooth transport without revisiting locations.

Conclusion: Summary

Conclusion: Questions