2.8 (5) Теорема Цермело.

Теорема Цермело: Любое множество можно вполне упорядочить, то есть у любого множества есть равномощное ему вполне упорядоченное множество (ВУМ).

▲ Пусть φ - функция из аксиомы выбора для множества A. Назовем корректным фрагментом ВУМ $\langle S, \leq_S \rangle$, где $S \subset A$ и $\forall x \in S \ x = \varphi(\{y | y <_S x\})$

По теореме о сравнении из двух корректных фрагментов один изоморфен начальному отрезку другого (так как они оба ВУМы). Покажем, что он не только изоморфен, но и равен начальному отрезку другого.

Пусть это не так. Тогда пусть x - минимальный элемент, в котором изоморфизм f дал не то значение. Тогда начальный отрезок [0;x) лежит в обоих корректных фрагментах, а значит $x = \varphi([0;x)) = f(x)$ - противоречие.

Легко заметить, что объединение корректных фрагментов - это корректный фрагмент, так как если x лежит в объединении, то x лежит в каком-то из корректных фрагментов, а значит равенство $x = \varphi([0;x))$ сохраняется в объединении.

Объединим все корректные фрагменты (множество всех корректных фрагментов существует так как оно является подмножеством множества упорядоченных подмножеств A). Предположим, что мы получили $B \subset A, B \neq A$. Но тогда мы можем дополнить объединение элементом $\varphi(B)$ и получить корректный фрагмент, больший объединения всех корректных фрагментов - противоречие $\Rightarrow B = A \Rightarrow$ мы смогли вполне упорядочить $A \blacksquare$

2.9 (5) Лемма Цорна.

Лемма Цорна: Пусть Z — частично упорядоченное множество, в котором всякая цепь имеет верхнюю границу. Тогда в этом множестве есть максимальный элемент, и, более того, для любого элемента $a \in Z$ существует элемент $b \geq a$, являющийся максимальным в Z.

 \blacktriangle Пусть дан произвольный элемент a. Предположим, что не существует максимального элемента, большего или равного a. Это значит, что для любого $b \geq a$ найдётся c > b. Тогда c > a и потому найдётся d > c и т. д. Продолжая этот процесс достаточно долго, мы исчерпаем все элементы Z и придём к противоречию.

Проведём рассуждение аккуратно. Возьмём вполне упорядоченное множество I достаточно большой мощности (большей, чем мощность Z, например 2^Z). Построим строго возрастающую функцию $f:I\to Z$ по трансфинитной рекурсии. Её значение на минимальном элементе I будет равно a. Предположим, что мы уже знаем все её значения на всех элементах, меньших некоторого i. В силу монотонности эти значения попарно сравнимы, а значит, образуют цепь. Поэтому существует их верхняя граница s, которая, в частности, больше или равна a. Возьмём какой-то элемент t>s и положим f(i)=t; по построению монотонность сохранится. Тем самым I равномощно части Z, что противоречит его выбору.

В этом рассуждении, формально говоря, есть пробел: мы одновременно определяем функцию по трансфинитной рекурсии и доказываем её монотонность с помощью трансфинитной индукции. Наше рекурсивное определение имеет смысл, лишь если уже построенная часть функции монотонна. Формально говоря, можно считать, что следующее значение не определено, если уже построенный участок не монотонен, и получить функцию, определённую на всём I или на начальном отрезке. Если она определена на некотором начальном отрезке, то она монотонна на нём по построению, поэтому следующее значение тоже определено — противоречие \blacksquare