

Circuiti Elettrici

Capitolo 6 Circuiti del primo ordine

Prof. Cesare Svelto

Circuiti del primo ordine – Cap. 6

- 6.0 Introduzione
- 6.1 Circuiti RC e RL in evoluzione libera Transitorio e andamento di regime
- 6.2 Circuiti RC e RL con un generatore costante
- 6.3 Circuiti del primo ordine autonomi Metodo sistematico per circ. 1° ord. autonomi
- 6.X Sommario

6.0 Introduzione

- Un circuito dinamico (con bipoli dinamici e.g. come condensatori e induttori) è descritto da equazioni differenziali che regolano l'andamento nel tempo delle grandezze elettriche i(t) e v(t)
- Se il circuito contiene un solo elemento dinamico (un condensatore o un induttore) si dice circuito del primo ordine perchè è descritto da una equazione differenziale del primo ordine
- Impareremo a ricavare la **risposta del circuito** senza o con generatori indipendenti ("forzanti"). Mediante analisi dei circuiti resistivi otterremo la risposta del circuito senza scrivere e risolvere equazioni differenziali

6.0 Introduzione

- In ogni circuito dinamico lineare si può scomporre la **risposta** [andamento v(t) o i(t)] in una parte transitoria (**transitorio**) e una parte permanente (**regime**) e si potrà applicare la **sovrapposizione** degli effetti
- Il comportamento di molti sistemi dinamici lineari (meccanici, termici, economici, ...) può essere visto come quello di un circuito del primo ordine, che in gergo viene spesso chiamato <u>"sistema tipo RC"</u>, caratterizzato da una tipica <u>risposta in transitorio</u> e una semplice <u>risposta di regime</u> (o a transitorio esaurito)

6.1 Circuiti RC e RL in evoluzione libera

 Consideriamo due circuiti elettrici con proprietà duali che saranno descritti dalla stessa equazione differenziale del primo ordine (coeff.cost. e omogenea):

 Parametro τ[s] è la costante di tempo del circuito e il suo valore rappresenta la rapidità di risposta del circuito ("τ piccolo" ⇒ circuito rapido e "banda larga" oppure, al contrario, "τ grande" ⇒ circuito lento e "banda stretta")

6.1 Circuiti RC e RL (analisi)

Risolviamo i circuiti (KVL, KCL, ed eq. caratteristiche R, C, L)

$$Ri(t) + v_C(t) = 0$$

$$RC\frac{\mathrm{d}v_{\mathrm{C}}(t)}{\mathrm{d}t} + v_{\mathrm{C}}(t) = 0$$

$$\frac{\mathrm{d}v_{\mathrm{C}}(t)}{\mathrm{d}t} + \frac{1}{RC}v_{\mathrm{C}}(t) = 0$$

$$\tau = RC$$

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} + \frac{1}{\tau}x(t) = 0$$

$$v(t)/R+i_{\rm L}(t)=0$$

$$\frac{L}{R}\frac{\mathrm{d}i_{\mathrm{L}}(t)}{\mathrm{d}t} + i_{\mathrm{L}}(t) = 0$$

$$\frac{\mathrm{d}i_{\mathrm{L}}(t)}{\mathrm{d}t} + \frac{R}{L}i_{\mathrm{L}}(t) = 0$$

$$\tau = \frac{L}{R}$$

6.1 Circuiti RC e RL (soluzione)

Equazione differenziale del primo ordine, lineare, a coefficienti costanti e omogena nell'incognita x(t)

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} + \frac{1}{\tau}x(t) = 0$$

soluzione
$$x(t) = Ke^{\alpha t} = x(0)e^{-t/\tau}$$
 costante di tempo valore iniziale

Risposta del circuito RC o RL in evoluzione libera:

$$v_{C}(t) = v_{C}(0)e^{-t/RC}$$

$$i_{L}(t) = i_{L}(0)e^{-t/(L/R)}$$

$$R \begin{cases} i(t) \\ v_{C}(t) \\ -i_{L}(t) \end{cases}$$

$$R \begin{cases} i(t) \\ v(t) \\ -i_{L}(t) \end{cases}$$

6.1 Andamenti transitorio RC e RL

La tangente alla curva in x(0), ovvero al tempo t=0, incrocia l'asse dei tempi per $t=\tau$

Si noti che x(t) parte dal **valore iniziale** x(0) e poi tende asintoticamente a zero come valore finale

In generale, per $t\to\infty$ chiameremo $x(\infty)$ valore di regime o a transitorio esaurito

Al tempo $t=\tau$ l'ampiezza si è ridotta al 37 % (e^{-1}) del valore iniziale

6.1 Rapidità di risposta transitorio

Il transitorio evolve, e si esaurisce arrivando a **regime**, più o meno rapidamente a seconda del valore di τ (per τ breve occorre meno tempo per "arrivare a regime") La rapidità di risposta va come $1/\tau$

6.1 Esempio sui transitori RC e RL

Esempio 7.2

Ricavare l'espressione della corrente i(t) nel circuito RC e della tensione v(t) nel circuito RL.

Soluzione

Nel circuito RC la tensione $v_C(t)$ ha l'espressione (7.7a). La corrente i(t) è

$$i(t) = C \frac{dv_C(t)}{dt} = -\frac{v_C(0)}{R} e^{-t/RC}$$

Anche i(t) ha un andamento esponenziale con la stessa costante di tempo RC.

Nel circuito RL la corrente $i_L(t)$ ha l'espressione (7.7b). La tensione v(t) è

$$v(t) = L\frac{di_L(t)}{dt} = -Ri_L(0)e^{-tR/L}$$

Anche v(t) ha un andamento esponenziale con la stessa costante di tempo L/R.

 $i_{\rm R,RC}$ e $v_{\rm R,RL}$ hanno segno opposto a $v_{\rm C}$ e a $i_{\rm R}$ ma anche verso opposto rispetto a conv. utilizz. $\Rightarrow p_{\rm ASS} > 0$ su R (dissipata)

L'evoluzione libera dei circuiti del primo ordine prevede correnti e tensioni che decadono esponenzialmente a zero (sia nel circuito RC che RL) [anche p decade esponenzialmente]

A regime (per $t\rightarrow\infty$) correnti e tensioni si annullano quando l'energia originariamente immagazzinata nel bipolo dinamico (C o L) è stata interamente dissipata nel bipolo adinamico (R)

6.2 RC e RL con generatore cost.

 Inserendo un generatore costante (circuito autonomo) nel circuito RC o RL si ha equazione differenziale del primo ordine (coeff.cost. NON OMOGENEA):

coeff.cost. dal termine forzante (generatore)

$$x(t) = v_{C}(t)$$

$$\tau = RC$$

$$x_{p} = V_{s}$$

costante di tempo soluzione particolare (valore di regime)

$$x(t) = i_{L}(t)$$

$$\tau = L/R$$

$$x_{p} = I_{s}$$

6.2 Circuiti RC e RL +gen. (analisi)

Risolviamo i circuiti (KVL, KCL, ed eq. caratteristiche R, C, L)

$$Ri(t) + v_{\rm C}(t) = V_{\rm s}$$

$$RC\frac{dv_{c}(t)}{dt} + v_{c}(t) = V_{s}$$

$$\frac{\mathrm{d}v_{\mathrm{C}}(t)}{\mathrm{d}t} + \frac{1}{RC}v_{\mathrm{C}}(t) = \frac{V_{\mathrm{s}}}{RC}$$

$$\tau = RC$$

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} + \frac{1}{\tau}x(t) = \frac{x_{\mathrm{p}}}{\tau}$$

$$\tau = \frac{L}{R}$$

$$v(t)/R + i_{\rm L}(t) = I_{\rm s}$$

$$\frac{L}{R} \frac{\mathrm{d}i_{\mathrm{L}}(t)}{\mathrm{d}t} + i_{\mathrm{L}}(t) = I_{\mathrm{s}}$$

$$\frac{\mathrm{d}i_{\mathrm{L}}(t)}{\mathrm{d}t} + \frac{R}{L}i_{\mathrm{L}}(t) = \frac{R}{L}I_{\mathrm{s}}$$

$$\tau = \frac{L}{R}$$

6.2 Circuiti RC e RL +gen. (soluzione)

Equazione differenziale del primo ordine, lineare, a coefficienti costanti, non omogena, nell'incognita x(t)

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} + \frac{1}{\tau}x(t) = \frac{x_{\mathrm{p}}}{\tau}$$

amp. transitorio valore finale soluzione
$$x(t) = [x(0) - x_p] e^{-t/\tau} + x_p$$
 (o di regime) valore iniziale

Risposta del circuito RC o RL con generatore forzante:

6.2 RC e RL autonomi (grafici risposta)

6.2 Esempio di circuito RC +gen.

Esempio 7.4

Nel circuito in Figura 7.8, in t = 0 il condensatore è carico ad una tensione v(0) = 1 V. Ricavare il valore della tensione v per t = 1 ms.

Figura 7.8

Soluzione

Per il circuito RC la soluzione è:

$$v(t) = [v(0) - V_s]e^{-t/\tau} + V_s$$

Il valore finale di v(t) coincide con la tensione del generatore, cioè 10 V. Il valore iniziale è v(0) = 1 V. La costante di tempo del circuito è

$$\tau = RC = 10^3 \times 10^{-6} = 10^{-3} \text{ s} =$$

$$= 1 \text{ ms}$$

Dopo una costante di tempo la differenza dal valore finale è

$$0,368(V_s - v(0)) = 0,368(10 - 1) = 3,312 \text{ V}$$

Quindi la tensione cercata vale:

$$v(1 \text{ ms}) = 10 - 3,312 = 6,688 \text{ V}$$

6.3 Circuiti del primo ordine autonomi

Le soluzioni ottenute per i circuiti RL e RC con un generatore costante possono essere estese a tutti i circuiti del primo ordine <u>autonomi</u>, ovvero con più generatori indipendenti di valore costante

Consideriamo nel seguito due ampie casistiche di circuiti RC ed RL autonomi e del primo ordine: RC autonomo con un condensatore (un valore C dopo eventuali combinazioni serie e parallelo), un arbitrario numero di resistori, un numero arbitrario di generatori indipendenti di valore costante RL autonomo con un induttore (un valore L dopo eventuali combinazioni serie e parallelo), un arbitrario numero di resistori, un numero arbitrario di generatori indipendenti di valore costante

6.3 Circuiti RC primo ordine autonomi

Si sostituisce la rete resistiva \Re (resistori e generatori) ai capi del condensatore con il bipolo di Thevenin equivalente ($v_{\rm T}$ e $R_{\rm eq}$):

$$v_{\rm C}(t) = [v_{\rm C}(0) - v_{\rm C}(\infty)] e^{-t/\tau} + v_{\rm C}(\infty) = [v_{\rm C}(0) - v_{\rm T}] e^{-t/(R_{\rm eq}C)} + v_{\rm T}$$

Per determinare $v_{\underline{C}}(t)$ basta conoscere il valore iniziale, il valore finale $(v_{\underline{T}})$, la costante di tempo $(\tau = R_{\underline{eq}}C)$

Data la continuità della variabile di stato tensione ai capi del condensatore, il valore iniziale è $v_{\rm C}(0)=v_{\rm C}(0^+)=v_{\rm C}(0^-)$

6.3 Circuiti RL primo ordine autonomi

Si sostituisce la parte resistiva \Re (resistori e generatori) ai capi del condensatore con il bipolo di Norton equivalente (i_N e R_{eq}):

$$i_{\rm L}(t) = [i_{\rm L}(0) - i_{\rm L}(\infty)] e^{-t/\tau} + i_{\rm L}(\infty) = [i_{\rm L}(0) - i_{\rm N}] e^{-t/(L/R_{\rm eq})} + i_{\rm N}$$

Per determinare $i_{\underline{L}}(t)$ basta conoscere il valore iniziale, il valore finale $(i_{\underline{N}})$, la costante di tempo $(\tau = L/R_{\underline{eq}})$

Data la continuità della variabile di stato corrente nell'induttore, il valore iniziale è $i_{\rm L}(0)=i_{\rm L}(0^+)=i_{\rm L}(0^-)$

Abbiamo ricavato $v_{\rm C}(t)$ e $i_{\rm L}(t)$ nel circuito del primo ordine autonomo di tipo RC o RL

Per risolvere il circuito procediamo come segue:

RC: sostituiamo il condensatore con un generatore indipendente di tensione di valore $v_{\rm C}(t)$ oppure con un generatore di corrente $i_{\rm C}(t)$ = $C{\rm d}v_{\rm C}/{\rm d}t$

RL: sostituiamo l'induttore con un generatore indipendente di corrente di valore $i_{\rm L}(t)$ oppure con un generatore di tensione $v_{\rm L}(t)$ = $L{\rm d}i_{\rm L}/{\rm d}t$

Risolviamo il circuito resistivo ottenuto, senza dover scrivere e risolvere equazioni differenziali

In un circuito autonomo del primo ordine, con $R_{eq}>0$, **qualunque tensione o corrente** x(t) **per** t>0 **è**:

$$x(t) = \left[x(0^+) - x(\infty) \right] e^{-t/\tau} + x(\infty)$$

Tutte le grandezze del circuito autonomo del primo ordine hanno la stessa costante di tempo $\tau > 0$ che vale $R_{\rm eq}C$, oppure $L/R_{\rm eq}$

circuito RC

- 1. Se $v_C(0)$ non è nota ricavare $v_C(0^-)$ dal circuito precedente in regime costante. Si ha $v_C(0^-) = v_C(0^+) = v_C(0)$.
- 2. Sostituire il condensatore con un circuito aperto, calcolando $v_C(\infty)$.
- 3. Ricavare la resistenza equivalente R_{eq} "vista" dal condensatore.
- 4. La tensione $v_C(t)$ si ottiene sostituendo nella (7.15) i valori di $v_C(0)$, $v_C(\infty)$ e $\tau = R_{eq}C$.
- 5. Sostituire il condensatore con un generatore indipendente di tensione di valore $v_C(t)$ oppure con un generatore indipendente di corrente di valore $i_C(t) = C dv_C/dt$; quindi ricavare la grandezza desiderata x(t).

circuito RL

- 1. Se $i_L(0)$ non è nota ricavare $i_L(0^-)$ dal circuito precedente in regime costante. Si ha $i_L(0^-) = i_L(0^+) = i_L(0)$.
- 2. Sostituire l'induttore con un corto circuito, calcolando $i_L(\infty)$.
- 3. Ricavare la resistenza equivalente R_{eq} "vista" dall'induttore.
- 4. La corrente $i_L(t)$ si ottiene sostituendo nella (7.17) i valori di $i_L(0)$, $i_L(\infty)$ e $\tau = L/R_{eq}$.
- 5. Sostituire l'induttore con un generatore indipendente di *corrente* di valore $i_L(t)$ oppure con un generatore indipendente di *tensione* di valore $v_L(t) = Ldi_L/dt$; quindi ricavare la grandezza desiderata x(t).

Il <u>transitorio</u> di qualunque grandezza x(t) è <u>ricavato</u> <u>risolvendo il circuito</u> [e ottenendo il valore iniziale, pre-sost., e il valore finale, post-sost.] ma senza equazioni differenziali

Di fatto si risolvono due circuiti:

- 1. un primo circuito con l'elemento reattivo sostituito da c.a. o da c.c. (C sostituito da c.a. nell'RC e L da c.c. nel RL, in quanto a regime prima del transitorio) circ. in $t=0^ \rightarrow$ si ricava il **valore iniziale** della variabile di stato e di qualsiasi altra variabile del circuito
- 2. un secondo circuito con l'elemento reattivo sostituito dal generatore corrispondente (C sostituito da gen.tens. nell'RC e L da gen.corr. nel RL) circ. per *t*>0
- → si ricava il valore finale della variabile di stato e di qualsiasi altra variabile del circuito

Grandezze y(t) diverse da v_C e i_L possono essere discontinue in t=0: $y(0^-)\neq y(0^+)$ e il loro valori si ottengono dalla soluzione dei due diversi circuiti in $t=0^-$ e $t=0^+$

Il transitorio, di qualunque variabile del circuito, evolve esponenzialmente dal suo valore iniziale al suo valore finale con costante di tempo τ

6.3 Circuiti instabili RC e RL (1° ord.)

In un circuito autonomo del primo ordine, la resistenza equivalente ottenuta dalla sostituzione di Tehevenin o di Norton può anche risultare $R_{\rm eq}$ <0 (se ci sono bipoli attivi quali gen.dip. o OP-AMP)

In questo caso si ha un **circuito instabile** nel quale la grandezza x(t) considerata diverge per $t\rightarrow\infty$

$$v_{\rm C}(t) = [v_{\rm C}(0) - v_{\rm T}] e^{-t/(R_{\rm eq}C)} + v_{\rm T}$$
 $\tau < 0$ l'esponenziale diverge

6.3 Linearità e sovrapposizione effetti nei circuiti RC e RL del 1º ordine

I circuiti con resistori, generatori, condensatori, e induttori, tutti elementi lineari (almeno per ipotesi e nel modello ideale) sono circuiti dinamici lineari

Per tali circuiti lineari vale il principio di sovrapposizione degli effetti ⇒ una qualunque grandezza si può ottenere sommando i contributi dei generatori indipendenti

Nel circuito del 1° ordine, una grandezza x(t) si ottiene sommando il contributo della condizione iniziale (a generatori spenti detta "risposta libera") con il contributo dei singoli generatori (a condizione iniziale nulla: $v_{\rm C}(0)$ =0 o $i_{\rm L}(0)$ =0 detta "risposta forzata"... si 'spegne' l'elemento dinamico)

Sommario

- Un **circuito dinamico** è costituito da elementi dinamici (condensatori e induttori) ed è descritto da equazioni differenziali che forniscono l'andamento di una grandezza x(t) (tensione $v_{\rm C}(t)$ o corrente $i_{\rm L}(t)$) a seconda della condizione iniziale ($v_{\rm C}(0)$ o $i_{\rm L}(0)$) e dei termini forzanti (generatori indipendenti costanti).
- Un circuito dinamico del primo ordine è equivalente a un circuito RC o RL (con un solo condensatore o un solo induttore).
- La rapidità di risposta del circuito dinamico RC o RL è determinata dalla sua costante di tempo τ pari a $R_{\rm eq}C$ oppure $L/R_{\rm eq}$, in secondi (s), che comporta un andamento esponenziale smorzato (se $R_{\rm eq}>0$) all'aumentare del tempo.

Sommario

La **risposta del circuito** (transitorio) è individuate da un valore iniziale, un valore finale (o di regime) e dalla costante di tempo:

- > Se $R_{\rm eq}$ <0 \Rightarrow τ <0 il circuito è instabile e la sua uscita diverge per $t\to\infty$.
- Per i circuiti dinamici lineari vale la sovrapposizione degli effetti e qualunque grandezza x(t) è la somma della condizione iniziale e dei contributi dei singoli generatori (risposta libera + risposta forzata).

