CS 5003: Parameterized Algorithms

Lecture 3

Krithika Ramaswamy

IIT Palakkad

Vertex Cover

Vertex cover - set of vertices that has at least one endpoint of each edge

Instance: A graph G on n vertices m edges and integer k Question: Does G have a vertex cover of size at most k?

Parameter: k

f(k) poly(n,m)

Theorem: VC is FPT with respect to the solution size as parameter

Kernelization: A way to get an FPT Algorithm

Compress input so that its size is bounded by a function of k Solving original instance (G,k) is equivalent to solving reduced instance (H,r)

Kernel => FPT

A Quadratic Kernel for Vertex Cover

Reduction Rule 1: Delete isolated vertex v

Resulting Instance: (G-v,k)

(G,k) is an yes-instance iff (G-v,k) is an yes-instance

n <= 2m

Reduction Rule 2: Delete high degree vertices

>= k+1 neighbours

Resulting Instance: (G-v,k-1)

(G,k) is an yes-instance iff (G-v,k-1) is an yes-instance

yes-instance
<= k

<= k²

Theorem: Vertex Cover admits a kernel with $\langle k(k+1) \rangle$ vertices & k^2 edges.

Kernelization: An Equivalent Notion of FPT

A problem parameterized is FPT iff it has a kernel!

How small can a kernel be?

Compress input so that its size is bounded by a polynomial function of k

Solving original instance (G,k) is equivalent to solving reduced instance (H,r)

Not all problems that are FPT have polynomial kernels!

k² edges and 2k²/3 vertices

Reduction Rule 1: Delete isolated vertices

Reduction Rule 2: Add vertices of degree >= k+1 to solution

$$n <= k(k + 1)$$
 and $m <= k^2$

Let v be a deg 1 vertex in G. Then there exist a min v.c. S s.t. v is not in S

Reduction Rule 3: Add neighbours of degree-1 vertices to solution

$$2k^2 > = 2m = \sum deg(v) > = 2n$$

$$n \le k^2$$
 and $m \le k^2$

k² edges and 2k²/3 vertices

Suppose min deg is at least 3

$$2k^2 >= 2m = \sum deg(v) >= 3n$$

Reduction Rule 4: For degree-2 vertices

Case 1: Suppose x, y are adjacent

Any VC has at least 2 from {v,x,y}

Add x and y to solution and the resulting instance is $(G-\{v,x,y\},k-2)$

Ex: Prove Correctness of the rule

k² edges and 2k²/3 vertices

Reduction Rule 4: For degree-2 vertices

Resulting instance is (6',k-1)

(G,k) is an yes-instance iff (G',k-1) is an yes-instance

k² edges and 2k²/3 vertices

Suppose (G,k) is an yes-instance

- S is vertex cover of <= k vertices</p>
- * Not all 3 vertices need to be in a minimal vertex cover
- * Either v is in S or x and y are in S

- Suppose x and y are in SPelete x and y from S
 - Add z to S

- Suppose v is in S
 - Both x and y are not in S
 - N(x), N(y) in S
 - Delete v from S

Vertex cover <= k-1 for G'

 k^2 edges and $2k^2/3$ vertices

Suppose (G',k-1) is an yes-instance

- T is vertex cover of <= k-1 vertices
- Either z in T or z is not in T

- Suppose z is not in T
 - N(x), N(y) in T
 - Add v to I

Vertex cover <= k for G

k² edges and 2k vertices

No $O(k^{2-c})$ edges kernel is likely!

or any c > 0

A Faster FPT Algorithm

An 0*(1.4656k) algorithm

Apply preprocessing rules (reduction rules) at each node

A Faster FPT Algorithm

How many nodes are there?

q leaves => no. of nodes <= 2q-1

Let T(k) denote the no. of leaves in the tree rooted at instance with parameter k

$$c^{k} = c^{k-1} + c^{k-3}$$

$$T(k) \leftarrow T(k-1)+T(k-3)$$
 if $k>=3$
0 therwise

c=1.4656

 $O(n^3+1.4656^k k^3)$ time algorithm

Branching or Depth-Bounded Search Trees