Lab5: 基于RISC-V流水线CPU的指令执行过程在线仿真与冒险处理方式研究

实验目的

- 1. 理解流水线CPU指令执行过程。
- 2. 理解流水线CPU冒险处理的概念与方法。

实验平台

WebRISCV: RISC_V架构 RV32/64IM 五级流水线CPU模型在线仿真平台(RV32IM模式)。 https://webriscv.dii.unisi.it/index.php

测试代码段1仿真

测试代码段

```
addi x6,x6,2
loop: beq x6,x0,fi
addi x6,x6,-1
addi x5,x5,3
j loop
fi: add x4,x4,x5
nop
```

仿真结果

	EXECUTION TABLE																				
FULL LOOPS 😊		CPU Cycles																			
Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
addi t1, t1, 2	F	D	X	M	W																
beq t1, x0, 32		F	-	D	X	M	W														
addi t1, t1, -1				F	D	X	M	W													
addi t0, t0, 3					F	D	X	M	W												
jal x0, -24						F	D	X	M	W											
add tp, tp, t0							F														
beq t1, x0, 32								F	D	X	M	W									
addi t1, t1, -1									F	D	X	M	W								
addi t0, t0, 3										F	D	X	M	W							
jal x0, -24											F	D	X	M	W						
add tp, tp, t0												F									
beq t1, x0, 32													F	D	X	M	W				
addi t1, t1, -1														F							
add tp, tp, t0															F	D	X	M	W		
addi x0, x0, 0																F	D	X	M	W	
addi x0, x0, 0																	F	D	X	M	W

图1: With forward with flush

	EXECUTION TABLE																					
FULL LOOPS 😊		CPU Cycles																				
Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
addi t1, t1, 2	F	D	X	M	W																	
beq t1, x0, 32		F	-	-	D	X	M	W														
addi t1, t1, -1					F	D	X	M	W													
addi t0, t0, 3						F	D	X	M	W												
jal x0, -24							F	D	X	M	W											
add tp, tp, t0								F														
beq t1, x0, 32									F	D	X	M	W									
addi t1, t1, -1										F	D	X	M	W								
addi t0, t0, 3											F	D	X	M	W							
jal x0, -24												F	D	X	M	W						
add tp, tp, t0													F									
beq t1, x0, 32														F	D	X	M	W				
addi t1, t1, -1															F							
add tp, tp, t0																F	D	X	M	W		
addi x0, x0, 0																	F	D	X	M	W	
addi x0, x0, 0																		F	D	X	M	W

图2: No forward with flush

EXECUTION TABLE																					
FULL LOOPS 😊		CPU Cycles																			
Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
addi t1, t1, 2	F	D	X	M	W																
beq t1, x0, 32		F	-	D	X	M	W														
addi t1, t1, -1				F	D	X	M	W													
addi t0, t0, 3					F	D	X	M	W												
jal x0, -24						F	D	X	M	W											
add tp, tp, t0							F	D	X	M	W										
beq t1, x0, 32								F	D	X	M	W									
addi t1, t1, -1									F	D	X	M	W								
addi t0, t0, 3										F	D	X	M	W							
jal x0, -24											F	D	X	M	W						
add tp, tp, t0												F	D	X	M	W					
beq t1, x0, 32													F	D	X	M	W				
addi t1, t1, -1														F	D	X	M	W			
add tp, tp, t0															F	D	X	M	W		
addi x0, x0, 0																F	D	X	M	W	
addi x0, x0, 0																	F	D	X	M	W

图3: With forward no flush

图4: No forward no flush

填表分析

45 mm mm .	ш. ь .	Luc b a	Luc B	
代码段 1	模式 1:	模式 2:	模式 3:	模式 4:
模式 5 单周期执	with forward	no forward with	with forward	no forward
行周期数为	with flush	flush	no flush	no flush
80				
执行周期数	21	22	21	24
被执行 forward	addi x6, x6, 2		addi x6, x6, 2	
的指令,执行	beq x6, x0, fi		beq x6, x0, fi	
forward 次数和	执行1次。		执行1次。	
原因	原因: beq x6, x0,		原因: beq x6, x0,	
	fi 依赖于 addi x6,	/	fi 依赖于 addi x6,	/
	x6, -1 中对 x6 值		x6, -1 中对 x6 值	
	结果的更改, 执行		结果的更改, 执行	
	beq 时前递了		beq 时前递了	
	addi 的 aluout。		addi 的 aluout。	
被执行 flush 操作	j loop	j loop		
的指令和原因	fi:add x4, x4, x5	fi:add x4, x4, x5		
	原因: 分支默认不	原因: 分支默认不		
	跳转, 而 j loop 发	跳转,而 j loop 发		
	生了控制冒险,需	生了控制冒险,需	/	/
	要将已经在F阶	要将已经在F阶		
	段的 add 指令	段的 add 指令		
	flush.	flush.		
	boays yo fi	boays y0 fi		
	beq x6, x0, fi	beq x6, x0, fi		
	addi x6,x6,-1	addi x6,x6,-1 百日. 公去魁江 不		
	原因: 分支默认不	原因: 分支默认不		
	跳转,而退出循环	跳转, 而退出循环		
	时 beq 发生了控	时 beq 发生了控		
	制冒险,需要将已	制冒险,需要将已		
	经在 F 阶段的	经在F阶段的		
	addi 指令 flush。	addi 指令 flush。		

代码段 1 分析: 单周期 CPU 架构下, 执行需 (80) 个时钟周期,													
	执行后, x6 =(0), x5= (6), x4= (6)									
实际执行仿真	模式 1:	模式 2:	模式 3:	模式 4:									
情况	with forward	no forward	with forward	no forward									
	with flush	with flush	no flush	no flush									
Reg X6=	0	0	-1	-1									
Reg X5=	6	6	6	6									
Reg X4=	6	6	15	15									
执行结果正确	正确	正确	错误	错误									
与否													
若不正确如何			由于未进行 flush	1,导致循环过程									
修改程序可以			中 j loop 后的 ad	d x4, x4, x5 每次									
获得正确结果	١	١	都被错误执行了-	一次, 退出循环时									
			beq 后的 addi x6	6, x6, -1 被错误执									
			行一次, 导致 x4,	x6 错误。可以在									
			j loop 和 beq x6, x0, fi 后各剂										
			条 addi x0, x0, 0(nop)来获得正确										
		结果											

修改后:

```
addi x6,x6,2
loop: beq x6,x0,fi
nop
addi x6,x6,-1
addi x5,x5,3
j loop
nop
fi: add x4,x4,x5
nop
```

结果正确:

图5:添加nop后结果正确

自定义代码段仿真

代码段

```
addi x4, x0, 1
addi x5, x0, 1024
sw x4, 0(x5)
lw x6, 0(x5)
addi x6, x6, 1
```

取消/开启forwarding的执行表如下

图6: No forwarding

图7: With forwarding

sw x4, 0(x5) 发生了数据冒险,无forwarding时需等待 addi x5, x0, 1024 通过WB阶段更新 x5寄存器的值, sw x4, 0(x5) 才能被发射进入EX阶段获取正确的寄存器值。而开启forwarding 后可以直接将addi指令的ALU输出转发给ALU输入,使sw可以直接使用更新后的x5值。

addi x6, x6, 1 发生了数据冒险,无forwarding时需等待 lw x6, 0(x5) 经过WB更新寄存器值,有forwarding时可以直接将Memory阶段lw中数据mem的输出转发给addi指令,使addi无需等待lw经过WB阶段而直接使用x6的值。

测试代码2仿真

测试代码段

```
lui x10, 0
ori x4, x10, 1024
addi x25, x0, 1
addi x26, x0, 2
addi x27, x0, 3
addi x28, x0, 4
sw x25, 0(x4)
sw x26, 4(x4)
sw x27, 8(x4)
sw x28, 12(x4)
addi x5, x0, 4
call: jal sum
sw x12, 0(x4)
lw x19, 0(x4)
sub x18, x19, x12
addi x5, x0, 3
loop2: addi x5, x5, -1
ori x18, x5, -1
xori x18, x18, 1365
addi x19, x0, −1
andi x20, x19, −1
or x16, x20, x19
xor x18, x20, x19
and x17, x20, x16
beq x5, x0, shift
j loop2
shift: addi x5, x0, −1
slli x18, x5, 15
slli x18, x18, 16
srai x18, x18, 16
srli x18, x18, 15
```

fi: j fi
sum: add x18, x0, x0
loop: lw x19, 0(x4)
addi x4, x4, 4
add x18, x18, x19
addi x5, x5, -1
bne x5, x0, loop
slli x12, x18, 0
jr ra

填表分析

表3

PC 值	指令	冒险的种类	执行的操作
04	ori x4, x10, 10	数据冒险	从 00 指令前递 x10 的值
30	sw x12, 0(x4)	控制冒险	flush 清除指令
8c	add x18, x18, x19	数据冒险	从 84 指令前递 x19 的值
94	bne x5, x0, loop	数据冒险	从 90 指令前递 x5 的值,stall 一周期
98	slli x12, x18, 0	控制冒险	flush 清除指令
38	sub x18, x19, x12	数据冒险	从 34 指令前递 x19 的值, stall 一周期
40	loop2: addi x5, x5, -1	数据冒险	从 3c 指令前递 x5 的值
44	ori x18, x5, -1	数据冒险	从 40 指令前递 x5 的值
48	xori x18, x18, 1365	数据冒险	从 44 指令前递 x18 的值
50	addi x20, x19, -1	数据冒险	从 4c 指令前递 x19 的值
54	ori x16, x20, x19	数据冒险	从 50 指令前递 x20 的值
5c	and x17, x20, x16	数据冒险	从 54 指令前递 x
68	shift: addi x5, x0, -1	控制冒险	flush 清除指令
6c	slli x18, x5, 15	数据冒险	从 68 指令前递 x18 的值
70	slli x18, x18, 16	数据冒险	从 6c 指令前递 x18 的值
74	srai x18, x18, 16	数据冒险	从 70 指令前递 x18 的值
78	srli x18, x18, 15	数据冒险	从 74 指令前递 x18 的值
80	sum: add x18, x0, x0	控制冒险	flush 清除指令

执行表截图:

EXECUTION TABLE																	
FULL LOOPS 😊		CPU Cycles															
Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
lui a0, 0	F	D	X	M	W												
ori tp, a0, 1024		F	D	X	M	W											
addi s9, x0, 1			F	D	X	M	W										
addi s10, x0, 2				F	D	X	M	W									
addi s11, x0, 3					F	D	X	M	W								
addi t3, x0, 4						F	D	X	M	W							
sw s9, 0(tp)							F	D	X	M	W						
sw s10, 4(tp)								F	D	X	M	W					
sw s11, 8(tp)									F	D	X	M	W				
sw t3, 12(tp)										F	D	X	M	W			
addi t0, x0, 4											F	D	X	M	W		
jal ra, 168												F	D	X	M	W	
sw a2, 0(tp)													F				

图8: With forwarding

		EXECUTION TABLE																	
FULL LOOPS 😊		CPU Cycles																	
Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
lui a0, 0	F	D	X	M	W														
ori tp, a0, 1024		F	-	-	D	X	M	W											
addi s9, x0, 1					F	D	X	M	W										
addi s10, x0, 2						F	D	X	M	W									
addi s11, x0, 3							F	D	X	M	W								
addi t3, x0, 4								F	D	X	M	W							
sw s9, 0(tp)									F	D	X	M	W						
sw s10, 4(tp)										F	D	X	M	W					
sw s11, 8(tp)											F	D	X	M	W				
sw t3, 12(tp)												F	D	X	M	W			
addi t0, x0, 4													F	D	X	M	W		
jal ra, 168														F	D	X	M	W	
sw a2, 0(tp)															F				

图9: No forwarding

截图举例: ori x4, x10, 1024 指令用到了 lui x10, 0 前递的 x10 的值,故no forwarding时要停顿,此处发生了数据冒险。

sw x12, 0(x4) 被flush, 因为 jal sum 发生了控制冒险。

选做: 各模式执行对比

代码段 1	模式 1 :	模式 2:	模式 3:	模式 4:
模式 5 单周期执	with forward	no forward with	with forward	no forward
行周期数为	with flush	flush	no flush	no flush
365				
执行周期数	91	141	95*	143*

说明:单周期执行周期数使用Ripes仿真软件的单周期模式执行得到执行周期数后x5得到在实际的执行周期数。no flush模式中程序会错误执行如下代码段中 j loop2 后的 addi x5, x0, -1, 退出循环时会错误执行 beq 后的 j loop2 导致程序进入死循环无法跳出,故测量时加入nop来测出no flush时的执行周期数。

```
loop2: addi x5, x5, -1
ori x18, x5, -1
xori x18, x18, 1365
addi x19, x0, -1
andi x20, x19, -1
or x16, x20, x19
xor x18, x20, x19
and x17, x20, x16
beq x5, x0, shift //该指令后添加nop
j loop2 //该指令后添加nop
shift: addi x5, x0, -1
```

可见forwarding可以大幅减少程序执行所需的时钟周期数,将执行效率提升了约1.5倍,而flush能保证程序执行正确。与单周期相比,流水线将执行效率提升了2.6~4倍。

拓展思考

图10: 流水线划分图

问题回答:

- 1. 左侧四选一MUX应算作IF阶段
- 2. 右上方两个加法器中计算branchpc的可以放到ID级。计算jalpc的不能,因为其输入依赖于EX 阶段中ALU的输出。
- 3. 最右侧的二选一MUX必须在最后一级实现,不能在EX阶段实现,因为其输入需等待ME阶段 存储器输出稳定。
- 4. forward操作不能在ID阶段实现,因为ID阶段进行hazard detection后才能决定是否前递EX阶段中ALU的结果。
- 5. stall操作将ID阶段的指令清除,保持IF阶段的指令。实现上可以保持IF/ID段寄存器的内容,将ID/EX段寄存器置零。
- 6. flush操作将ID/EX阶段指令清除(ID/EX段寄存器和EX/ME段寄存器置零),将控制信号均置零。