# Images In Model Out

Abdelrahman Mansour, Ali Elganzory, Donat Sinani One More Epoch

Modality 2/2

### Introduction

This work is conducted for Automated Machine Learning (AutoML) to image classification using NEPS for Hyperparameter Optimization(HPO) with PriorBand Bayesian Optimization algorithm. Leveraging ResNet-50 with pretrained weights, our pipeline was evaluated on four datasets: Skin Cancer and Flowers (RGB images) and Fashion and Emotions (grayscale images). This one-click optimization solution, when given a dataset, automatically delivers the model with the lowest validation loss.



## Quantitative Results

Trainer

of class in mini-batch

Figure 1 - Training Curves of Final Models

**Model Architecture** 



|                              | - Lpoeli                                                |                      | <u> гросп</u>       |  |
|------------------------------|---------------------------------------------------------|----------------------|---------------------|--|
|                              | Qualitativ                                              | ve Results           | (Actual, Predicted) |  |
| (5, 5)<br>(melanocytic nevi) | (5, <mark>4</mark> )<br>(melanocytic nevi,<br>melanoma) | (4, 4)<br>(melanoma) | (40, 40)            |  |
|                              |                                                         |                      |                     |  |
|                              |                                                         |                      |                     |  |

#### F1 Score Loss Dataset Accuracy 0.9264Fashion 0.20920.82270.09440.98320.9848Flowers Emotions 1.0858 0.60540.4297Skin Cancer 0.85360.7762

Table 1: Metrics for Datasets

γ: [1e-2, 0.99] / [1, 1500] steps

**HPO** 

Figure 2 - Incumbent Curves



Table 2: Greedy Ablation Study on Skin Cancer Dataset using Surrogate Model

| Step | Configuration                                                                  | Loss  |
|------|--------------------------------------------------------------------------------|-------|
| 1    | {'bs': 64, 'opt': 'adamw', 'lr': 0.001, 'wd': 0.00013, 'ss': 1000, 'sg': 0.1}  | 0.577 |
| 2    | {'bs': 64, 'opt': 'adamw', 'lr': 0.001, 'wd': 0.00013, 'ss': 1000, 'sg': 0.54} | 0.523 |
| 3    | {'bs': 64, 'opt': 'adamw', 'lr': 0.001, 'wd': 0.00013, 'ss': 418, 'sg': 0.54}  | 0.511 |
| 4    | {'bs': 46, 'opt': 'adamw', 'lr': 0.001, 'wd': 0.00013, 'ss': 418, 'sg': 0.54}  | 0.494 |
| 5    | {'bs': 46, 'opt': 'adamw', 'lr': 0.0064, 'wd': 0.00013, 'ss': 418, 'sg': 0.54} | 0.489 |
| 6    | {'bs': 46, 'opt': 'adam', 'lr': 0.0064, 'wd': 0.00013, 'ss': 418, 'sg': 0.54}  | 0.495 |

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Bonus

Literature

#### Resources Used

For development:

- 4 Tesla V100 **GPU**
- 3 P100 GPU (Kaggle)
- Total compute estimate: 170 GPU-h

For AutoML:

- 1 Tesla V100
  - 23h

Workforce:

- 1 full week on average

Number of queries for test score generation: 1



