תורת הגרפים - תרגילים

בסיסי

- 1. האם קיים גרף עם סדרת הדרגות הבאה:
 - 3,3,3,3,3,3 .א
 - ב. 3,3,3,3,3
 - 1,1,2,3,4,5 ...
- 2. האם ייתכן כי בגרף G בו דרגת כל קודקוד שווה ל 3 יהיו 100 צלעות?
- 3. יהי G גרף פשוט מסדר גדול מ 1. הוכח: קיימים 2 קודקודים ב G עם דרגה זהה.
 - 4. תן דוגמא לגרף פשוט בו יש <u>בדיוק</u> 2 קודקודים עם דרגה זהה.
 - .ש משולש אז ב $ar{G}$ יש משולש. G גרף על 6 קודקודים. הוכח: אם אין בG משולש אז ב G
 - ! אלעות בהכרח ש מעגל ממק! מעגל? נמק! 6.
- $n \geq 8$ יש G יש קודקודים, n + 4 קשתות וכל הדרגות לפחות G, אז $n \geq 8$.
- אז: 4 אז: מעגל באורך לכל היותר אז: 8. הוכח כי אם בגרף n קודקודים שדרגת כולם לפחות n אז: $n \geq 10$
 - .9 הוכח כי אם בגרף פשוט עם n קודקודים אין משולש אז יש בו לכל היותר.
- לא קודקודים או $u,v\in V$ גרף פשוט עם n קודקודים. או מספר מספר G=(V,E) הרי היי .10 גרף פשוט עם G=(V,E) הוכח: לu לפחות: שהיא לפחות: שהיא לפחות: $\frac{n+k}{2}$ הוכח: ל
- 11. הוכיחו כי בכל קבוצה בת מספר זוגי של אנשים יש לפחות 2 אנשים שמספר המכרים המשותף שלהם זוגי.
 - 21. כמה מעגלים פשוטים שונים ייתכנו לכל היותר בגרף בעל n קודקודים?
 - . אז ב G יש מעגל $|E| \geq |V|$ מתקיים: $|V| \geq 3$ אז ב G = (V, E) אז ב 13
 - . מעגלים |E| |V| + 1 מריל לפחות: G = (V, E) מעגלים. 14
- כי ב k הוכיחו היא לפחות k. הרף שבו אורך המעגל המינימאלי הוא 5, והדרגה המינימאלית היא לפחות k^2+1 קודקודים. G

קשירות

?הו הקוטר המרבי של גרף קשיר עם n קודקודים 16.

- . קשיר G מתקיים: G קשיר או הגרף המשלים של G קשיר.
- G גרף לא מכוון ולא קשיר עם 2 רכיבי קשירות. הוכח כי הקוטר של הגרף המשלים של G. יהי G גרף לא מכוון ולא קשיר עם 2 רכיבי השירות. הוא לכל היותר 2.
 - . אינו איחוד זר של גרפים G קשיר אם ורק אם G קשיר אם ורק אם 19
 - 20. הוכח שהגרף עם 100 קודקודים שדרגת כולם היא לפחות 50 הוא גרף קשיר.
- קשיר G קודקוד היא לפחות $\frac{n-1}{2}$. הוכח ש G קשיר פון עם n קודקודים שבו דרגת כל קודקוד היא לפחות G ארף לא מכוון עם G ושהקוטר של G ושהקוטר של G הוא לכל היותר C.
- G אז יש ב m < n-1 הוכח: אם $(m,n \in N^+)$ ו ו|V| = m אז יש ב m < n-1 הוכח: אם m < n-1 רכיבי קשירות.
- Sב, שיש ל $v \notin S$ ביף קיים $v \notin S$ הוכח כי קיים $v \notin S$ ברף קשיר, ותהא $v \notin S$ ברף קשיר, ותהא א
- 24. הוכח: גרף קשיר אם ורק אם עבור כל חלוקה של קודקודי הגרף ל 2 קבוצות לא ריקות, קיימת צלע עם קצוות ב 2 הקבוצות.

מעגל אוילר/המילטון

- עם חלוקה ל B עם חלוקה ל G=(V,E) עם הגרף הדו צדדי: G=(V,E) עם הגרף הדו צדדי: |B|=|A|
 - מכיל מכיל הוא קיים רכיב קשירות שאינו מכיל $|V| \geq 2$ קודקודים. אם ב G = (V, E) היהא מעגל אוילר, ניתן להוסיף לו קודקוד ומספר כלשהו של צלעות המחוברות אליו כך שבגרף שיתקבל, כל רכיב קשירות יכיל מעגל אוילר.
- 27. 20 סטודנטים פותרים 20 שאלות. כל סטודנט הצליח לפתור בדיוק 2 שאלות. הוכח כי ניתן לכתוב את הפתרונות לכל השאלות כך שכל סטודנט יכתוב פתרון לבדיוק אחת מהשאלות שהוא פתר ולכל שאלה ייכתב בדיוק פתרון אחד.

משפחות של גרפים

- . גרף מקסימאלי ללא מעגלים. G(2) עץ. G(1) גרף מקסימאלי ללא מעגלים.
 - .29 מכיל עץ בעל n סופי) קודקודים מכיל עלה. 29
 - n-1 הוכח שמספר הצלעות בעץ בעל n קודקודים הוא
 - .31 הוכח כי אם משמיטים עלה מעץ מקבלים גרף שהוא עץ.
- .32 יהא T עץ. הוכח כי לאחר הוספה של קודקוד וחיבורו בדיוק לקודקוד אחד בT נקבל עץ.

- . הוא עץ, אז G הוא עץ, אז G הוא עץ, אז G הורף: G הוא עץ, אז G הוא מעגל. 33. יהא
 - .34 הוכח כי בעץ יש יותר עלים מאשר קודקודים מדרגה שהיא לפחות
 - 135. יהיו הוכח כי קיים קודקודים. הוכח על אותה קבוצת 2 $T_2=(V,E_2)$, $T_1=(V,E_1)$ יהיו על יהיות 2. שסכום דרגותיו ב 2 העצים הוא לכל היותר $v\in V$
 - . אם ורק אם ורק אם וגי. הוכח: קיים ארף ארולרי מסדר אם ורק אם ורק אם 18. א. יהא אk
 - ב. תן 3 דוגמאות לגרפים 3 רגולריים מסדר 10.
 - כך שכל צבע מופיע לפחות פעם אחת. הוכיחו כי K_n כך את קשתות הגרף אוכיחו כי R בהכרח קיים:
 - א. מעגל פשוט שכל קשת בו צבועה בצבע אחר.
 - ב. משולש שכל קשת בו צבועה בצבע אחר.
 - .38 גרף דו צדדי אם ורק אם כל המעגלים בו הם באורך זוגי.

גרפים מישוריים

- 39. קבע האם הגרפים הבאים מישוריים:
 - K_7 .א
 - \mathcal{C}_n .ء
 - $K_{2,7}$.
 - .40 אינו מישורי k_{5} אונו מישורי
- :סי מתקיים, F גרף הוכח ועם קבוצת קשירות עם אות רכיבי מתקיים אורף מישורי עם גרף מישורי עם אות k

$$|V| - |E| + |F| = 1 + k$$

- 42. הוכח: כל גרף מישורי הוא 6-צביע.
- . אינם מישוריים, $ar{G}$ או G או צ"ל: שn אונם מישוריים, n אינם מישוריים. 43

צביעה של גרפים

- .44 הוכח: גרף חסר מעגלים הוא 2-צביע
- . צלעות שבגרף $\binom{k}{2}$ שמספר הצביעה שלו הוא $\chi(G)=k$ שמספר הצביעה שלו שמספר 3.45
- 46. נסמן: $\omega(G)$ גודל הקליקה המקסימאלית בגרף .G קבע האם הטענות הבאות נכונות או לא נכונות ונמק:
 - $\omega(G) \leq \chi(G)$.א
 - $\chi(G) \leq \omega(G)$.2

- ברגתם k קודקודים שיש ב G לפחות גרף פשוט בעל מספר צביעה אביעה $\chi(\mathsf{G})=\mathsf{k}$ הוכח שיש ב K לפחות k-1
- יה כי הוכח כי הוכח קבוצת קודקודים. אותה קבוצת 3 גרפים $G_2=(V,E_2)$, $G_1=(V,E_1)$ יהיו .48 $G=(V,E_1\cup E_2)$
 - גרפים מישוריים על אותה קבוצת קודקודים. הוכח כי הגרף $G_2=(V,E_2)$, $G_1=(V,E_1)$ יהיו .49 .49 הוא $G=(V,E_1\cup E_2)$
 - $\chi(K_{n,m}) = \max(n,m)$ מתקיים: $K_{n,m}$ מתקיים. 50

דיווגים ומשפט HALL

- .51 הוכח: יהי G גרף דו צדדי d רגולרי, אז יש בG זיווג מושלם.
 - $K_{n,n}$ ב את מספר הזיווגים המושלמים ב.52
 - K_{2n} חשב את מספר הזיווגים המושלמים ב.53
 - .54 הוכח: בעץ יש לכל היותר זיווג מושלם אחד.

בסיסי

 $\sum_{v \in V} degree(v) = 2|E|$ ב. לא כי סכום הדרגות הוא אי זוגי בסתירה למשפט: 2 האחרים ולכן לא ייתכן שקיימים 2 ג. לא. כי יש 2 קודקודים המחוברים לפחות ל 4 מתוך ה 5 האחרים ולכן לא ייתכן שקיימים קודקודים בעלי דרגה 1.

- 2. לא, כי לפי משפט סכום הדרגות נקבל: $|V| = 2 \cdot 100$ אבל 200 לא מתחלק ב 3.
- היה G גרף מסדר n, מספר האפשרויות לדרגות בגרף הוא n-1, כי כל קודקוד יכול להיות מחובר ל n-1 עד n-1 קודקודים, אבל אם יש קודקוד מדרגה n אז בהכרח אין קודקוד מדרגה n-1 וכן להיפך. קיבלנו שיש n קודקודים וn-1 דרגות שונות אפשריות ולכן לפי עיקרון שובך n-1 היונים קיימים לפחות n-1 קודקודים בעלי דרגה זהה.
 - 4. → דרגת כל קודקוד היא 1.
- , v גרף על 6 קודקודים. ויהא v קודקוד ב G, נגדיר: A קבוצת הקודקודים השכנים של v או לא v אזי לפי עיקרון שובך היונים, קיימים v קודקודים השייכים ל v או לפי עיקרון שובך היונים, קיימים v קודקודים השייכים ל v או v או v אזי לפי עיקרון שובך היונים, קיימים v קודקודים השייכים ל v או v קודקודים שייכים ל v אם v הקודקודים שייכים ל v בעבונן בקודקודים אלו: אם לפחות v מהם מחוברים בצלע v סיימנו כי ביחד עם v קיבלנו משולש ב v אחרת, אין צלע בין אף אחד מ v הקודקודים ולכן ב v מהם הם מהווים משולש. אם v הקודקודים שייכים ל v קיבלנו משולש ב v היימנו כי ביחד עם v קיבלנו משולש ב v קיבלנו משולש ב v הקודקודים ולכן קיבלנו משולש ב v היימנו כי ביחד עם v
 - לא, בגרף

יש 3 צלעות: $\binom{3}{2}$. אבל אין מעגל בגרף.

- $n \ge 8$ ומכאן: $3n \ge 2(n+4)$ לפי משפט סכום הדרגות, נקבל: $3n \ge 3$
- .8. יהא G גרף על n קודקודים כך ש $10 \ge 0$ לכל $10 \ge 0$ לכל $10 \ge 0$ ואין בו מעגל עם פחות מ $10 \ge 0$ צלעות. $10 \ge 0$ בינים $10 \ge 0$ יהא $10 \ge 0$ כלשהו, לפי הנתונים, $10 \ge 0$ כלשהו, ל $10 \ge 0$ כלשהו, לפי הנתונים, $10 \ge 0$ כלשר אין קשת בין $10 \ge 0$ שונים. לכל אחד מהשכנים יש לפחות $10 \ge 0$ שכנים ייחודיים (מלבד $10 \ge 0$ כאשר אין קשת בין $10 \ge 0$ השכנים של $10 \ge 0$ כאחרת נקבל מעגל באורך $10 \ge 0$ ואין שכן משותף ל $10 \ge 0$ בהכרח קיימים לפחות: $10 \ge 0$ באורך $10 \ge 0$ השכנים שלו ועוד $10 \ge 0$ שכנים עבור כל שכן של $10 \ge 0$
- .9 פוכיח באינדוקציה על n: 2 בסיס: n=1 בגרף הריק עם קודקוד אחת יש n=1 קשתות. פשוט על G נוכיח שהטענה נכונה לכל $1\le k < n$. צ"ל: נכונות הטענה עבור 1 יהא $1\le k < n$ גרף פשוט על $1\le n$ קודקודים ללא משולש. אם $1\ge n$ ללא קשתות סיימנו. נניח כי יש ב $1\ge n$ לפחות קשת אחת:

קיבלנו $(u,v)\in E$ אם כך, נוריד את 2 הקודקודים (ואת הקשתות החלות בהם), קיבלנו $u,v\in V$ אם כך, נוריד את 2 הקודקודים (ואת הקשתות בגרף בער היותר: n-2 אולט עם n-2 קודקודים וללא משולש ולכן לפי הנחת האינדוקציה, יש בגרף זה לכל היותר: $\left[\frac{(n-2)^2}{4}\right]$ קשתות. נמצא את מספר הקשתות שהורדנו ונוסיף למספר הקשתות בגרף שקיבלנו. u,v שיש להם שכן נוסיף את מספר השכנים של u,v בין u,v ל u יש קשת לפי ההנחה ולכן לא ייתכן שיש להם שכן משותף ולכן מספר השכנים (של u ו u) בסה"כ הוא לכל היותר u. ולכן:

$$|E| \le \left\lfloor \frac{(n-2)^2}{4} \right\rfloor + n - 1 = \left\lfloor \frac{n^2 - 4n + 4 + 4n - 4}{4} \right\rfloor = \left\lfloor \frac{n^2}{4} \right\rfloor$$

- 10. נסמן ב: M את קבוצת הקודקודים בגרף שאינם שכנים של u,v מספר הקודקודים בגרף הוא: N את קבוצת הקודקודים בגרף שאינם שכנים של N (נציב את הנתונים: V | V
- 11. נמיר את הבעיה לגרף שבו כל קודקוד מייצג אדם וכל צלע מייצגת היכרות. נשתמש בטענה: אם מספר הקודקודים בגרף הוא אי זוגי אז בהכרח קיים קודקוד אחד לפחות שדרגתו זוגית כי אחרת, סך כל הדרגות יהיה אי זוגי. נפרק למספר מקרים:
- א. קיים אדם y עם מספר מכרים אי זוגי. לפי הטענה, קיים אדם y עם מספר מכרים זוגי מתוך א. קיים אדם x עם מספר מכרים זוגי מתוך השכנים של x (ייתכן גם x) ולכן מספר המכרים המשותפים שלהם הוא זוגי.
- ב. לכולם מספר מכרים זוגי. נבחר אדם x כלשהו, מספר האנשים ש x לא מכיר הוא אי זוגי כי סה"כ יש מספר זוגי של אנשים פחות מספר זוגי ופחות x נקבל מספר אי זוגי. לפי הטענה, בקבוצה ש x לא מכיר קיים y המכיר בקבוצה זו מספר זוגי של אנשים. ומכיוון שסה"כ מספר האנשים ש y מכיר הוא זוגי אז גם מספר האנשים ש y מכיר מתוך השכנים של x הוא זוגי ולכן מספר השכנים המשותפים של x ו y בהכרח זוגי.
 - ייר שירכיבו שירכיבו את הקודקודים את בחר מתוך ח $-\sum_{k=3}^n \binom{n}{k}=2^n-\frac{n(n-1)}{2}-n-1$.12 מעגל באורך 3, 4, וכו'.
- אם כל הקודקודים בG הם מדרגה 2 או יותר אזי יהא v קודקוד בG, נצא מקודקוד זה ונטייל בG. מכיוון שכל קודקוד בדרגה לפחות 2 נוכל להמשיך את המסלול ולא לחזור לצלע שממנה G. מכיוון שG סופי, בהכרח קיים שלב שבו נחזור לקודקוד שכבר ביקרנו בו ולכן סגרנו מעגל.
 - |W| = n, |E| = m. נוכיח באינדוקציה על 14.

אם m>m הטענה נכונה באופן טריוויאלי כי לכל גרף יש לפחות m>m-1 הטענה נכונה באופן טריוויאלי כי לכל גרף יש לפחים מעגל המשפט: בכל גרף עם $m\geq m$ צלעות יש מעגל הטענה מתקיימת ולכן יש לפחות מעגל אחד. m-n+1=1

צעד: נניח שהטענה נכונה לכל הגרפים עם m-1 צלעות ונוכיח עבור גרפים עם m צלעות. מרך עם $m\geq n$ צלעות ארף על m>n בלעות כאשר m>n בלעות כאשר m>n בהכרח קיים לפחות מעגל אחד ב m, יהי m מעגל כזה, נוריד מ m צלע אחת ונקבל יש מעגל m עם m קודקודים ו m צלעות ולפי הנחת האינדוקציה, קיימים ב m

- לפחות G מעגל נוסף G מעגלים. נוסיף את הצלע בחזרה ונקבל שיש ב m-1-n+1 מעגלים. מעגלים. מיים ב m-n+1 (כי הורדנו צלע ממעגל זה) ולכן ב m-n+1
- 15. יהי p גרף שבו אורך המעגל המינימאלי הוא 5 והדרגה המינימאלית היא לפחות p. יהי p קודקוד ב p. לפי ההנחה, יש ל p לפחות p שכנים שונים שאינם מחוברים בצלע כי אחרת נקבל מעגל באורך p. לכל אחד מ p השכנים יש לפחות p שכנים שונים שאינם מחוברים בצלע כי אחרת נסגור מעגל באורך p. מכאן, יש ב p לפחות p לפחות p לפחות p השכנים של p והשכנים של p השכנים של השכנים.