Internship Program: Soulvibe.Tech

"Farmer & Market Insights Using SQL"

Batch Name: SVT/DAINT/2025/07-B11

Introduction

Overview of the main objectives

In this task, I was assigned to analyze agricultural data using SQL with a focus on two key tables: FarmerAdvisor and MarketResearcher. The objective was to extract meaningful insights related to crop performance, farmer behavior, and market dynamics. Using SQL, I performed various operations such as filtering, grouping, joining tables, and applying window functions to answer specific business questions. These included identifying high-growth crops, ranking profitability, tracking market price changes, and understanding patterns in farmer-crop relationships. The goal was to simulate real-world data analysis scenarios to support better decision-making in agriculture and advisory services by leveraging structured query logic and analytical thinking.

Top 5 locations where the maximum number of farmers with advisors.

The average market price and sort in descending order.

Count how many unique crops each farmer is associated with.

Farmers who are growing more than 3 different types of crops.

Crops where the max and min market prices differ by more than ₹10 per kg.

All advisors who guide farmers growing the same crop in different districts.

Rank crops by profit per unit using RANK().

Locations where the current market price of a crop is more than 20% above the average price of that crop across all locations.

Farmers who have been assigned the same advisor for all their crops.

CTE showing average profit per crop type by farmer and use it to list farmers making below-average profits on any crop.

Use a window function to find the price change of each crop over the last 3 entries

Create a new column that classifies crop growth Count the number of crops in each category.

Join the tables and display all farmers whose crop is sold in the same district at the highest price.

Count how many of their farmers grow crops that fall under the "High" growth classification

Identify if any farmer has duplicate crop entries.

All crops grown by farmers that are not listed in the MarketResearcher table.

Determine which location has the highest average profit margin.

Use window functions to find the second-highest market price crop per district.

All advisors associated with more than 5 distinct crop types.

Farmers who consistently grow the same crop type for all seasons

Conclusion

Through this SQL-based exploration of the agricultural dataset involving the *FarmerAdvisor* and *MarketResearcher* tables, I gained practical experience in writing queries to extract, join, filter, group, and summarize data efficiently. By solving multiple scenario-based questions, I was able to:

- Identify crop growth and profitability patterns
- Analyze farmer-advisor relationships
- Track market price trends across crops
- Derive insights from regional and crop-specific data

Key Takeaways:

- SQL enables powerful data analysis and insight generation directly from relational databases.
- Writing diverse queries improved my understanding of database structure, keys, and data relationships.
- The insights obtained can support better decisions in agriculture, such as advisor assignments, market pricing strategy, and crop planning.
- This exercise also forms a strong base for integrating SQL findings with data visualization tools like Power BI or Tableau for more intuitive presentations.

Thank You