Álgebra Linear I – Prof. José Luiz Neto – Resumo_A21

Livro de preparação do resumo: Álgebra Linear → Boldrine/Costa e Figueiredo/Wetzler (BOLDRINI, J. L. et al. Álgebra Linear. 3 ed. São Paulo: Harbra, 1986)

Autovalores e Autovetores de um Operador Linear

Motivação

Dada uma transformação linear de um espaço vetorial nele mesmo, $T: V \to V$ gostaríamos de saber que vetores seriam levados neles mesmos por esta transformação. Isto é, dada $T: V \to V$, quais são os vetores $v \in V$ tais que T(v) = v? (v é chamado vetor fixo).

Seja
$$T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$$
 definido por $T(x,y) = (-3x + 4y, -x + 2y)$.

Note que: T(4,1) = (1,1) = 1(1,1) T(4,1) = (1,1) = 1(1,1) T(2,1) = (2,1) = 1(2,1) T(2,1) = (2,1) = 1(2,1)

O que queremos:

Dada uma transformação linear de um espaço vetorial $T: V \to V$, estamos interessados em saber quais vetores são levados em um múltiplo de si mesmo; isto é, procuramos um vetor $\mathbf{v} \in V$ e um escalar $\lambda \in \mathbf{R}$ tais que

$$T(\mathbf{v}) = \lambda \mathbf{v}$$

Definição: Seja $T: V \to V$ um operador linear. Se existirem $v \in V$, $v \neq 0$, $e \lambda \in R$ tais que $Tv = \lambda v$, λ é um autovalor de T e v um autovetor de T associado a λ .

Observe que λ pode ser o número 0, embora v não possa ser o vetor nulo.

Muito Importante!

Dada uma transformação $T: V \to V$ e um autovetor v associado a um autovalor λ , qualquer vetor $w = \alpha v$ ($\alpha \neq 0$) também é autovetor de T associado a λ .

Seja T: $\mathbb{R}^2 \to \mathbb{R}^2$ tal que $T(v) = 8v \Leftrightarrow T(n_1y) = 8(x_1y)$. Noste coso, 8 e' um autovalor de T e qualquer veter $v = (x_1y); v \neq (0_10)$ e' um autoveter de Tassociado ao autovalor $\lambda = 8$.

Definição: O subespaço $V_{\lambda} = \{ \mathbf{v} \in V : T(\mathbf{v}) = \lambda \mathbf{v} \}$ é chamado o subespaço associado ao autovalor λ .

No Resumo_A22 vamos ver como encontrar os autovalores e os respectivos autovetores de um operador linear (de uma matriz).