# Formale Semantik 04. Aussagenlogik

#### Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

Achtung: Folien in Überarbeitung. Englische Teile sind noch von 2007! Stets aktuelle Fassungen: https://github.com/rsling/VL-Semantik

#### Inhalt

- What logic is about
  - On reasoning
- Where we need logic
- 2 Statement calculus

- Formalization: Recursive Syntax
- Interpretation
- Laws of the PropC
- Rules of Inference
- Proof

The book (PMW:87-246) deals with logic far more in-depth than we do. Only what is mentioned on the slides is relevant for the test. Reading the whole chapter from PMW will do you no harm, though.



• a collection of statements (propositions)

- a collection of statements (propositions)
- axioms (statements accepted to be true)

- a collection of statements (propositions)
- axioms (statements accepted to be true)
- maybe based on observations (induction)

- a collection of statements (propositions)
- axioms (statements accepted to be true)
- maybe based on observations (induction)
- statements that follow from the axioms (deduction)

- a collection of statements (propositions)
- axioms (statements accepted to be true)
- maybe based on observations (induction)
- statements that follow from the axioms (deduction)
- predictions beyond the axioms

- a collection of statements (propositions)
- axioms (statements accepted to be true)
- maybe based on observations (induction)
- statements that follow from the axioms (deduction)
- predictions beyond the axioms
- rechecking for usability: e.g., Russell's paradox

• axioms: atomic truths of your theory

- axioms: atomic truths of your theory
- theorem: a proposition you want to prove

- axioms: atomic truths of your theory
- theorem: a proposition you want to prove
- lemma: subsidiary propositions (used to prove the theorem)

- axioms: atomic truths of your theory
- theorem: a proposition you want to prove
- lemma: subsidiary propositions (used to prove the theorem)
- corollary: propositions proved while proving some axiom

• logic does not generate truths

- logic does not generate truths
- formalizing statements, predications etc.

- logic does not generate truths
- formalizing statements, predications etc.
- rules of deduction from axioms to theorems

- logic does not generate truths
- formalizing statements, predications etc.
- rules of deduction from axioms to theorems
- empirical (induction) and exact (deduction) science

- logic does not generate truths
- formalizing statements, predications etc.
- rules of deduction from axioms to theorems
- empirical (induction) and exact (deduction) science
- aiming at an adequate model of the world (e.g., heliocentric universe)

• truth-conditional

- truth-conditional
- compositional behavior of propositions and connectives

- truth-conditional
- compositional behavior of propositions and connectives
- a logic for entailments

- truth-conditional
- compositional behavior of propositions and connectives
- a logic for entailments
- ullet why, e.g.: It is not the case that someone is happy. o Nobody is happy.



• statements/propositions = the atoms

- statements/propositions = the atoms
- a propositional symbol p: a well-formed formula (wff)

- statements/propositions = the atoms
- a propositional symbol p: a well-formed formula (wff)
- ex.: Herr <u>K</u>eydana is a passionate cyclist.: k

- statements/propositions = the atoms
- a propositional symbol p: a well-formed formula (wff)
- ex.: Herr Keydana is a passionate cyclist.: k
- [k]=1 or o (depending on corresponding **model**)

• syntax: restricts the forms of wff's to make them interpretable

- syntax: restricts the forms of wff's to make them interpretable
- define functors: functions in  $\{0,1\}$

- syntax: restricts the forms of wff's to make them interpretable
- define functors: functions in  $\{0,1\}$
- If p and q are wff's, then

- syntax: restricts the forms of wff's to make them interpretable
- define functors: functions in  $\{0,1\}$
- If p and q are wff's, then
  - → ¬p

- syntax: restricts the forms of wff's to make them interpretable
- define functors: functions in  $\{0,1\}$
- If p and q are wff's, then
  - → ¬p
  - ▶ p∨q

- syntax: restricts the forms of wff's to make them interpretable
- define functors: functions in  $\{0,1\}$
- If p and q are wff's, then
  - → ¬p
  - p∨q
  - p∧q

- syntax: restricts the forms of wff's to make them interpretable
- define functors: functions in  $\{0,1\}$
- If p and q are wff's, then
  - → ¬p
  - ▶ p∨q
  - ▶ p∧q
  - p → q

- syntax: restricts the forms of wff's to make them interpretable
- define functors: functions in  $\{0,1\}$
- If p and q are wff's, then
  - ¬p
  - ▶ p∨q
  - ▶ p/q
  - p → q
  - p ⇔ q

# Complex (molecular) formulas

- syntax: restricts forms of wff's to make them interpretable
- define functors: functions in  $\{\langle 0,1\rangle, \langle 1,0\rangle, 0,1\}$
- If p and q are wff's, then
  - → ¬p (negation)
  - ▶ p ∨ q (disjunction)
  - ▶ p∧q (conjunction)
  - ▶  $p \rightarrow q$  (conditional)
  - $ightharpoonup p \leftrightarrow q$  (biconditional)

is also a wff.

# Complex (molecular) formulas

- syntax: restricts forms of wff's to make them interpretable
- define functors: functions in  $\{\langle 0,1\rangle, \langle 1,0\rangle, 0,1\}$
- If p and q are wff's, then
  - → ¬p (negation 'not')
  - ▶ p∨q (disjunction 'or')
  - p∧q (conjunction 'and')
  - ightharpoonup p 
    ightharpoonup q (conditional 'if')
  - $ightharpoonup p \leftrightarrow q$  (biconditional 'iff')

is also a wff.

#### Functions and truth tables

• standard defintion:

$$\llbracket \neg \rrbracket = \left[ \begin{array}{c} 1 \to 0 \\ 0 \to 1 \end{array} \right]$$

#### Functions and truth tables

• standard defintion:

$$\llbracket \neg \rrbracket = \left[ \begin{array}{c} 1 \to 0 \\ 0 \to 1 \end{array} \right]$$

but most widely used: truth tables

# Disjunction

| р | V | q |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 0 |
| 0 | 1 | 1 |
| 0 | 0 | 0 |

# Disjunction

| р | V | q |
|---|---|---|
| 1 | 1 | 1 |
| 1 |   | 0 |
| 0 |   | 1 |
| 0 |   | 0 |

• Herr Keydana is a passionate cyclist **or** we all love logic.

# Disjunction

- Herr Keydana is a passionate cyclist **or** we all love logic.
- K∨L

# Conjunction

| р | $\land$ | q |
|---|---------|---|
| 1 | 1       | 1 |
| 1 | 0       | 0 |
| 0 | 0       | 1 |
| 0 | 0       | 0 |

# Conjunction

| р | $\land$ | q |
|---|---------|---|
| 1 |         | 1 |
| 1 |         | 0 |
| 0 |         | 1 |
| 0 |         | 0 |

• Herr <u>K</u>eydana is a passionate cyclist **and** we all <u>l</u>ove logic.

# Conjunction

- Herr Keydana is a passionate cyclist **and** we all love logic.
- K∧L

# Conditional

| р | $\rightarrow$ | q |
|---|---------------|---|
| 1 | 1             | 1 |
| 1 |               | 0 |
| 0 |               | 1 |
| 0 |               | 0 |

### Conditional

$$\begin{array}{c|cccc} p & \to & q \\ \hline 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ \hline \end{array}$$

• *If* it <u>rains</u>, **then** the <u>s</u>treets get wet.

### Conditional

$$\begin{array}{c|cccc} p & \to & q \\ \hline 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ \hline \end{array}$$

- *If* it <u>rains</u>, **then** the <u>s</u>treets get wet.
- $R \rightarrow S$

#### If it rains, the streets get wet.

• it is raining (1), the streets are wet 1:1

- it is raining (1), the streets are wet 1:1
- it is raining (1), the streets are dry o: o

- it is raining (1), the streets are wet 1:1
- it is raining (1), the streets are dry 0:0
- it is not raining (o), the streets are wet 1:1

- it is raining (1), the streets are wet 1:1
- it is raining (1), the streets are dry 0:0
- it is not raining (o), the streets are wet 1:1
- it is not raining (o), the streets are dry o: 1

- it is raining (1), the streets are wet 1:1
- it is raining (1), the streets are dry o: o
- it is not raining (o), the streets are wet 1:1
- it is not raining (o), the streets are dry o:1
- ex vero non sequitur falsum

# **Biconditional**

| p | $\leftrightarrow$ | q |
|---|-------------------|---|
| 1 |                   | 1 |
| 1 |                   | 0 |
| 0 |                   | 1 |
| 0 |                   | 0 |

### **Biconditional**

| р | $\leftrightarrow$ | q |
|---|-------------------|---|
| 1 |                   | 1 |
| 1 |                   | 0 |
| 0 |                   | 1 |
| 0 |                   | 0 |

• If and only if your score is above 50, then you pass the semantics exam.

### **Biconditional**

$$\begin{array}{c|cccc} p & \leftrightarrow & q \\ \hline 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \hline \end{array}$$

- If and only if your score is above 50, then you pass the semantics exam.
- S ↔P

## Scope of functors

• brackets are facultative

### Scope of functors

- brackets are facultative
- or set non-default functor scope

### Scope of functors

- brackets are facultative
- or set non-default functor scope
- default scope



•  $p \land \neg q \lor r \rightarrow \neg s$ 

- $\bullet \hspace{0.1cm} p \wedge \neg q \vee r \rightarrow \neg s$
- $p \wedge (\neg q) \vee r \rightarrow (\neg s)$

- $p \land \neg q \lor r \rightarrow \neg s$
- $p \wedge (\neg q) \vee r \rightarrow (\neg s)$
- $(p \land (\neg q)) \lor r \to (\neg s)$

- $p \land \neg q \lor r \rightarrow \neg s$
- $p \wedge (\neg q) \vee r \rightarrow (\neg s)$
- $(p \land (\neg q)) \lor r \to (\neg s)$
- $((p \land (\neg q)) \lor r) \rightarrow (\neg s)$

- $p \land \neg q \lor r \rightarrow \neg s$
- $p \wedge (-q) \vee r \rightarrow (-s)$
- $(p \land (\neg q)) \lor r \rightarrow (\neg s)$
- $((p \land (\neg q)) \lor r) \rightarrow (\neg s)$
- $(((p \land (\neg q)) \lor r) \rightarrow (\neg s))$

• for n atoms in the term:  $2^n$  lines

- for n atoms in the term:  $2^n$  lines
- alternating blocks of 1's and 0's under every atom

- for n atoms in the term:  $2^n$  lines
- alternating blocks of 1's and 0's under every atom
- $2^{(m-1)}$  times '1' followed by  $2^{(m-1)}$  times '0' for the m-th atom from the right

- for n atoms in the term:  $2^n$  lines
- alternating blocks of 1's and 0's under every atom
- $2^{(m-1)}$  times '1' followed by  $2^{(m-1)}$  times '0' for the m-th atom from the right
- until  $2^n$  lines are reached

| р                                              | ^ |  | q                               | V | r      | $  \rightarrow  $ | _ | s |
|------------------------------------------------|---|--|---------------------------------|---|--------|-------------------|---|---|
| 1                                              |   |  | 1                               |   | 1      |                   |   | 1 |
| 1                                              |   |  | 1                               |   | 1      |                   |   | 0 |
| 1                                              |   |  | 1                               |   | 0      |                   |   | 1 |
| 1                                              |   |  | 1<br>1<br>1<br>1<br>0           |   | 0      |                   |   | 0 |
| 1                                              |   |  | 0                               |   | 1<br>1 |                   |   | 1 |
| 1                                              |   |  | 0                               |   | 1      |                   |   | 0 |
| 1                                              |   |  | 0<br>0<br>0<br>1<br>1<br>1<br>1 |   | 0      |                   |   | 1 |
| 1                                              |   |  | 0                               |   | 0      |                   |   | 0 |
| 0                                              |   |  | 1                               |   | 1      |                   |   | 1 |
| 0                                              |   |  | 1                               |   | 1<br>1 |                   |   | 0 |
| 0                                              |   |  | 1                               |   | 0      |                   |   | 1 |
| 0                                              |   |  | 1                               |   | 0      |                   |   | 0 |
| 0                                              |   |  | 0                               |   | 1<br>1 |                   |   | 1 |
| 0                                              |   |  | 0                               |   | 1      |                   |   | 0 |
| 1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0 |   |  | 0                               |   | 0      |                   |   | 1 |
| 0                                              |   |  | 0                               |   | 0      |                   |   | 0 |

| р                                              | Λ | _                                                                  | q                                                             | V | r                                                   | $\rightarrow$ | _                                                                  | S                                              |
|------------------------------------------------|---|--------------------------------------------------------------------|---------------------------------------------------------------|---|-----------------------------------------------------|---------------|--------------------------------------------------------------------|------------------------------------------------|
| 1                                              |   | 0                                                                  | 1                                                             |   | 1                                                   |               | 0                                                                  | 1                                              |
|                                                |   | 0                                                                  | 1                                                             |   | 1                                                   |               | 1                                                                  | 0                                              |
|                                                |   | 0                                                                  | 1                                                             |   | 0                                                   |               | 0                                                                  | 1                                              |
|                                                |   | 0                                                                  | 1                                                             |   | 0                                                   |               | 1                                                                  | 0                                              |
|                                                |   | 1                                                                  | 0                                                             |   | 1                                                   |               | 0                                                                  | 1                                              |
|                                                |   | 1                                                                  | 0                                                             |   | 1<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>1 |               | 1                                                                  | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 |
|                                                |   | 1                                                                  | 0                                                             |   | 0                                                   |               | 0                                                                  | 1                                              |
|                                                |   | 1                                                                  | 0                                                             |   | 0                                                   |               | 1                                                                  | 0                                              |
| 0                                              |   | 0                                                                  | 1                                                             |   | 1                                                   |               | 0                                                                  | 1                                              |
| 0                                              |   | 0                                                                  | 1                                                             |   | 1                                                   |               | 1                                                                  | 0                                              |
| 0                                              |   | 0                                                                  | 1                                                             |   | 0                                                   |               | 0                                                                  | 1                                              |
| 0                                              |   | 0                                                                  | 1                                                             |   | 0                                                   |               | 1                                                                  | 0                                              |
| 0                                              |   | 1                                                                  | 0                                                             |   | 1                                                   |               | 0                                                                  | 1                                              |
| 0                                              |   | 1                                                                  | 0                                                             |   | 1                                                   |               | 1                                                                  | 0                                              |
| 1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0 |   | 0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0 |   | 0                                                   |               | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 0<br>1<br>0                                    |
| 0                                              |   | 1                                                                  | 0                                                             |   | 0                                                   |               | 1                                                                  | 0                                              |

| р                                                   | ^                         | _                | q      | V | r                | $  \rightarrow$ | _      | s      |
|-----------------------------------------------------|---------------------------|------------------|--------|---|------------------|-----------------|--------|--------|
| 1                                                   | 0                         | 0                | 1      |   | 1                |                 | 0      | 1      |
| 1                                                   | 0                         | 0                | 1      |   | 1                |                 | 1      | 0      |
| 1                                                   | 0                         | 0                | 1      |   | 1<br>1<br>0      |                 | 0      | 1      |
| 1                                                   | 0                         | 0<br>0<br>1<br>1 | 1<br>1 |   | 0                |                 | 0<br>1 | 0      |
| 1                                                   | 1                         | 1                | 0      |   | 0<br>1<br>1      |                 | 0<br>1 | 1      |
| 1                                                   | 1                         | 1                | 0      |   | 1                |                 | 1      | 0      |
| 1                                                   | 1                         | 1                | 0      |   | 0                |                 | 0      | 1      |
| 1                                                   | 1                         | 1                | 0      |   | 0                |                 | 1      |        |
| 0                                                   | 0                         | 1<br>1<br>0<br>0 | 1<br>1 |   | 0<br>1<br>1<br>0 |                 | 0      | 0      |
| 0                                                   | 0                         | 0                | 1      |   | 1                |                 | 0<br>1 | 0<br>1 |
| 0                                                   | 0                         | 0                | 1      |   | 0                |                 |        | 1      |
| 0                                                   | 0                         |                  | 1      |   |                  |                 | 0<br>1 | 0      |
| 0                                                   | 0                         | 0<br>1<br>1      | 0      |   | 0<br>1<br>1      |                 | 0<br>1 | 1      |
| 0                                                   | 0                         | 1                | 0      |   | 1                |                 | 1      | 0      |
| 1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0 | 0 0 0 1 1 1 1 0 0 0 0 0 0 | 1                | 0      |   | 0                |                 | 0      | 1      |
| 0                                                   | 0                         | 1                | 0      |   | 0                |                 | 1      | 0      |

# An example

| р                                              | ^                               | _                                              | q                     | V                         | r           | $  \rightarrow$ | _                                                                  | s      |
|------------------------------------------------|---------------------------------|------------------------------------------------|-----------------------|---------------------------|-------------|-----------------|--------------------------------------------------------------------|--------|
|                                                | 0                               | 0                                              | 1                     | 1                         | 1           |                 | 0                                                                  | 1      |
| 1                                              | 0                               |                                                | 1                     | 1                         | 1<br>1      |                 | 1                                                                  | 0      |
| 1                                              | 0                               | 0                                              | 1                     | 0                         | 0           |                 | 0                                                                  | 1      |
| 1                                              | 0<br>0<br>1<br>1<br>1<br>0<br>0 | 0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1 | 1<br>1<br>1<br>1      | 0                         |             |                 | 1                                                                  | 0      |
| 1                                              | 1                               | 1                                              | 0                     | 1                         | 0<br>1<br>1 |                 | 0                                                                  | 1      |
| 1                                              | 1                               | 1                                              | 0                     | 1                         | 1           |                 | 1                                                                  | 0      |
| 1                                              | 1                               | 1                                              | 0                     | 1                         | 0           |                 | 0                                                                  | 1      |
| 1                                              | 1                               | 1                                              | 0                     | 1                         | 0           |                 | 1                                                                  |        |
| 0                                              | 0                               | 0                                              | 0<br>0<br>1<br>1<br>1 | 1                         | 0<br>1<br>1 |                 | 0                                                                  | 0<br>1 |
| 0                                              | 0                               | 0                                              | 1                     | 1                         | 1           |                 | 1                                                                  | 0<br>1 |
| 0                                              | 0                               | 0                                              | 1                     | 0                         | 0           |                 | 0                                                                  | 1      |
| 0                                              |                                 | 0                                              | 1                     | 0                         |             |                 | 1                                                                  | 0      |
| 0                                              | 0                               | 1                                              | 0                     | 1                         | 0<br>1<br>1 |                 | 0                                                                  | 1      |
| 0                                              | 0                               | 1                                              | 0                     | 1                         | 1           |                 | 1                                                                  | 0      |
| 1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0 | 0 0 0 0                         | 1                                              | 0                     | 1 1 0 0 1 1 1 0 0 1 1 0 0 | 0           |                 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 1      |
| 0                                              | 0                               | 1                                              | 0                     |                           | 0           |                 | 1                                                                  | 0      |

# An example

| р                                              | ^                       | <b>-</b>                                                 | q                                                             | V                                                             | r                                                                            | $\rightarrow$                                                           | _                                                                  | s                       |
|------------------------------------------------|-------------------------|----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|
| 1                                              | 0                       | 0                                                        | 1                                                             | 1                                                             | 1                                                                            | 0                                                                       | 0                                                                  | 1                       |
| 1                                              | 0                       | 0                                                        | 1                                                             | 1                                                             | 1                                                                            | 1                                                                       | 1                                                                  | 0                       |
| 1                                              | 0                       | 0                                                        | 1                                                             | 0                                                             | 0                                                                            | 1                                                                       | 0                                                                  | 1                       |
| 1                                              | 0                       | 0                                                        | 1                                                             | 0                                                             | 0                                                                            | 1                                                                       | 1                                                                  | 0                       |
| 1                                              | 1                       | 1                                                        | 0                                                             | 1                                                             | 1                                                                            | 0                                                                       | 0                                                                  | 1                       |
| 1                                              | 1                       | 1                                                        | 0                                                             | 1                                                             | 1                                                                            | 1                                                                       | 1                                                                  | 0                       |
| 1                                              | 1                       | 1                                                        | 0                                                             | 1                                                             | 0                                                                            | 0                                                                       | 0                                                                  | 1                       |
| 1                                              | 1                       | 1                                                        | 0                                                             | 1                                                             | 0                                                                            | 1                                                                       | 1                                                                  | 0                       |
| 0                                              | 0                       | 0                                                        | 1                                                             | 1                                                             | 1                                                                            | 0                                                                       | 0                                                                  | 1                       |
| 0                                              | 0                       | 0                                                        | 1                                                             | 1                                                             | 1                                                                            | 1                                                                       | 1                                                                  | 0                       |
| 0                                              | 0                       | 0                                                        | 1                                                             | 0                                                             | 0                                                                            | 1                                                                       | 0                                                                  | 1                       |
| 0                                              | 0                       | 0                                                        | 1                                                             | 0                                                             | 0                                                                            | 1                                                                       | 1                                                                  | 0                       |
| 0                                              | 0                       | 1                                                        | 0                                                             | 1                                                             | 1                                                                            | 0                                                                       | 0                                                                  | 1                       |
| 0                                              | 0                       | 1                                                        | 0                                                             | 1                                                             | 1                                                                            | 1                                                                       | 1                                                                  | 0                       |
| 1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0 | 0 0 0 1 1 1 0 0 0 0 0 0 | 0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1 | 1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0 | 1<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0 | 1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0 | 1                                                                       | 0                                                                  | 1 0 1 0 1 0 1 0 1 0 1 0 |
| 0                                              | 0                       | 1                                                        | 0                                                             | 0                                                             | 0                                                                            | 0<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 0                       |

# An example

| р                                              | Λ                          |                                 | q                          | V                               | r                | $  \rightarrow$                                     | ¬                     | s                          |
|------------------------------------------------|----------------------------|---------------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------|-----------------------|----------------------------|
| 1                                              | 0                          | 0                               | 1                          | 1                               | 1                | 0                                                   | 0                     | 1                          |
| 1                                              | 0                          | 0                               | 1                          | 1                               | 1<br>1           | 1                                                   | 1                     | 0                          |
| 1                                              | 0                          | 0                               | 1                          | 1<br>1<br>0                     | 0                | 1                                                   | 0                     | 1                          |
| 1                                              | 0                          | 0                               | 1                          | 0                               | 0                | 1                                                   | 1                     | 0                          |
| 1                                              | 1                          | 1                               | 0                          | 1                               | 1                | 0                                                   | 0                     | 1                          |
| 1                                              | 1                          | 1                               | 1<br>1<br>1<br>0<br>0      | 1                               | 0<br>1<br>1      | 1                                                   | 1                     | 0                          |
| 1                                              | 0<br>0<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>1<br>1<br>1<br>1 | 0                          | 0<br>1<br>1<br>1<br>1<br>1<br>1 | 0                | 0                                                   | 0                     | 1<br>0<br>1<br>0<br>1<br>0 |
| 1                                              | 1                          | 1                               | 0                          | 1                               | 0                | 1                                                   | 1                     | 0                          |
| 0                                              | 0                          | 0                               | 0<br>1<br>1<br>1<br>1<br>0 | 1                               | 0<br>1<br>1<br>0 | 0                                                   | 0                     | 1                          |
| 0                                              | 0                          | 0                               | 1                          | 1                               | 1                | 1                                                   | 1                     | 0                          |
| 0                                              | 0 0 0                      | 0                               | 1                          | 0                               | 0                | 1                                                   | 0                     | 1<br>0<br>1                |
| 0                                              | 0                          | 0                               | 1                          |                                 |                  | 1                                                   | 1                     | 0                          |
| 0                                              | 0                          | 1                               | 0                          | 1                               | 0<br>1<br>1      | 0                                                   | 0                     | 1                          |
| 0                                              |                            | 1                               | 0                          | 0<br>1<br>1                     | 1                | 1                                                   | 1                     | 0                          |
| 1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0 | 0 0                        | 0<br>0<br>0<br>1<br>1<br>1      | 0                          | 0                               | 0                | 0<br>1<br>1<br>0<br>1<br>0<br>1<br>1<br>1<br>0<br>1 | 1 0 1 0 1 0 1 0 1 0 1 | 0<br>1<br>0                |
| 0                                              | 0                          | 1                               | 0                          | 0                               | 0                | 1                                                   | 1                     | 0                          |

# Assignments: a contingent example

| р                                                   | Λ                       | _                                                             | q                                                                                                | V                           | r                       | $\rightarrow$                             | _                                                                  | S                       |
|-----------------------------------------------------|-------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|-------------------------------------------|--------------------------------------------------------------------|-------------------------|
|                                                     | 0                       |                                                               | 1                                                                                                | 1                           | 1                       |                                           | 0                                                                  | 1                       |
|                                                     | 0                       | 0                                                             | 1                                                                                                | 1                           | 1                       |                                           | 1                                                                  | 0                       |
|                                                     | 0                       | 0                                                             | 1                                                                                                | 0                           | 0                       |                                           | 0                                                                  | 1                       |
|                                                     | 0                       | 0                                                             | 1                                                                                                | 0                           | 0                       |                                           | 1                                                                  | 0                       |
|                                                     | 1                       | 1                                                             | 0                                                                                                | 1                           | 1                       |                                           | 0                                                                  | 1                       |
|                                                     | 1                       | 1                                                             | 0                                                                                                | 1                           | 1                       |                                           | 1                                                                  | 0                       |
|                                                     | 1                       | 1                                                             | 0                                                                                                | 1                           | 0                       |                                           | 0                                                                  | 1                       |
|                                                     | 1                       | 1                                                             | 0                                                                                                | 1                           | 0                       |                                           | 1                                                                  | 0                       |
| 0                                                   | 0                       | 0                                                             | 1                                                                                                | 1                           | 1                       |                                           | 0                                                                  | 1                       |
| 0                                                   | 0                       | 0                                                             | 1                                                                                                | 1                           | 1                       |                                           | 1                                                                  | 0                       |
| 0                                                   | 0                       | 0                                                             | 1                                                                                                | 0                           | 0                       |                                           | 0                                                                  | 1                       |
| 0                                                   | 0                       | 0                                                             | 1                                                                                                | 0                           | 0                       |                                           | 1                                                                  | 0                       |
| 0                                                   | 0                       | 1                                                             | 0                                                                                                | 1                           | 1                       |                                           | 0                                                                  | 1                       |
| 0                                                   | 0                       | 1                                                             | 0                                                                                                | 1                           | 1                       |                                           | 1                                                                  | 0                       |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0 | 0 0 0 1 1 1 0 0 0 0 0 0 | 1                                                             | 9<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0 | 1 1 0 0 1 1 1 1 0 0 1 1 0 0 | 1 1 0 0 1 1 0 0 1 1 0 0 |                                           | 0                                                                  | 1 0 1 0 1 0 1 0 1 0 1 0 |
| 0                                                   | 0                       | 0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1 | 0                                                                                                | 0                           | 0                       | → 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 0                       |

• take  $p \vee \neg p$ 

• take  $p \vee \neg p$ 

|   |              | р | V |   | p |
|---|--------------|---|---|---|---|
| • | truth-table: | 1 | 1 | 0 | 1 |
|   |              | 0 | 1 | 1 | 0 |

- take  $p \vee \neg p$
- truth-table:  $\begin{array}{c|cccc} p & \lor & \neg & p \\ \hline 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ \end{array}$
- true under every assignment, it is valid

- take  $p \vee \neg p$
- truth-table:  $\begin{array}{c|cccc} p & \lor & \neg & p \\ \hline 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ \end{array}$
- true under every assignment, it is valid
- by law of excluded middle: for every P, P  $\lor \neg$ P is true

### Contradiction

• take  $p \wedge \neg p$ 

#### Contradiction

• take  $p \wedge \neg p$ 

#### Contradiction

- take  $p \wedge \neg p$
- truth-table:  $\begin{array}{c|cccc} p & \land & \neg & p \\ \hline 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}$
- false under every assignment, called contradictory

# Contingency

• take  $p \wedge p$ 

# Contingency

• take  $p \wedge p$ 

|   |              | р | Λ | р |
|---|--------------|---|---|---|
| • | truth-table: | 1 | 1 | 1 |
|   |              | 0 |   | 0 |

### Contingency

- take  $p \wedge p$
- truth-table:  $\begin{array}{c|ccc} p & \land & p \\ \hline 1 & 1 & 1 \\ \hline 0 & 0 & 0 \end{array}$
- the truth value depends on the assignemt

• notice: similarities of set theory and logic

- notice: similarities of set theory and logic
- non-trivial exact nature of their equivalence

- notice: similarities of set theory and logic
- non-trivial exact nature of their equivalence
- laws state equivalences of (types of) wff

- notice: similarities of set theory and logic
- non-trivial exact nature of their equivalence
- laws state equivalences of (types of) wff
- truth-conservative rewriting of wff's

- notice: similarities of set theory and logic
- non-trivial exact nature of their equivalence
- laws state equivalences of (types of) wff
- truth-conservative rewriting of wff's
- any subformula which is a tautology (T) or contradiction (F):
   ignore by Identity Laws (Id.):

- notice: similarities of set theory and logic
- non-trivial exact nature of their equivalence
- laws state equivalences of (types of) wff
- truth-conservative rewriting of wff's
- any subformula which is a tautology (T) or contradiction (F):

ignore by Identity Laws (Id.):

 $P \lor F) \Leftrightarrow P, (P \lor T) \Leftrightarrow T$ 

- notice: similarities of set theory and logic
- non-trivial exact nature of their equivalence
- laws state equivalences of (types of) wff
- truth-conservative rewriting of wff's
- any subformula which is a tautology (T) or contradiction (F):

ignore by Identity Laws (Id.):

- $\triangleright$   $(P \lor F) \Leftrightarrow P, (P \lor T) \Leftrightarrow T$
- $P \land F) \Leftrightarrow F, (P \land T) \Leftrightarrow P$

• X ⇔ Y: X has the same truth-conditions as Y

- X ⇔ Y: X has the same truth-conditions as Y
- derivability of laws and rules (convenient redundancies)

- X ⇔ Y: X has the same truth-conditions as Y
- derivability of laws and rules (convenient redundancies)
- Idempotency (Idemp.):

- X ⇔ Y: X has the same truth-conditions as Y
- derivability of laws and rules (convenient redundancies)
- Idempotency (Idemp.):
  - $\triangleright (P \lor P) \Leftrightarrow P$

- X ⇔ Y: X has the same truth-conditions as Y
- derivability of laws and rules (convenient redundancies)
- Idempotency (Idemp.):
  - $\triangleright (P \lor P) \Leftrightarrow P$
  - $\triangleright (P \land P) \Leftrightarrow P$

- X ⇔ Y: X has the same truth-conditions as Y
- derivability of laws and rules (convenient redundancies)
- Idempotency (Idemp.):
  - $\triangleright (P \lor P) \Leftrightarrow P$
  - $\triangleright$   $(P \land P) \Leftrightarrow P$
  - ▶ Peter walks and Peter walks. ⇔ Peter walks.

Associative Laws for ∨ and ∧ (Assoc.)

- Associative Laws for ∨ and ∧ (Assoc.)
  - $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$

- Associative Laws for ∨ and ∧ (Assoc.)
  - $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$
  - ► ((He walks or she talks) or we walk.) ⇔ (He walks or (she talks or we walk.))

- Associative Laws for ∨ and ∧ (Assoc.)
  - $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$
  - ► ((He walks or she talks) or we walk.) ⇔ (He walks or (she talks or we walk.))
- Commutative Laws for ∨ and ∧ (Comm.):

- Associative Laws for ∨ and ∧ (Assoc.)
  - $\blacktriangleright$   $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$
  - ► ((He walks or she talks) or we walk.) ⇔
    (He walks or (she talks or we walk.))
- Commutative Laws for ∨ and ∧ (Comm.):
  - $\blacktriangleright (P \lor Q) \Leftrightarrow (Q \lor P)$

- Associative Laws for ∨ and ∧ (Assoc.):
  - $\blacktriangleright$   $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$
  - ► ((He walks or she talks) or we walk.) ⇔
    (He walks or (she talks or we walk.))
- Commutative Laws for ∨ and ∧ (Comm.):
  - $ightharpoonup (P \lor Q) \Leftrightarrow (Q \lor P)$
  - ▶ Peter walks or Sue snores. ⇔ Sue snores or Peter walks.

- Associative Laws for ∨ and ∧ (Assoc.)
  - $\blacktriangleright$   $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$
  - ► ((He walks or she talks) or we walk.) ⇔
    (He walks or (she talks or we walk.))
- Commutative Laws for ∨ and ∧ (Comm.)
  - $ightharpoonup (P \lor Q) \Leftrightarrow (Q \lor P)$
  - ▶ Peter walks or Sue snores. ⇔ Sue snores or Peter walks.
- Distributive Laws for ∨∧ and ∧∨ (Distr.):

- Associative Laws for ∨ and ∧ (Assoc.):
  - $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$
  - ► ((He walks or she talks) or we walk.) ⇔ (He walks or (she talks or we walk.))
- Commutative Laws for ∨ and ∧ (Comm.)
  - $ightharpoonup (P \lor Q) \Leftrightarrow (Q \lor P)$
  - ▶ Peter walks or Sue snores. ⇔ Sue snores or Peter walks.
- Distributive Laws for VA and AV (Distr.):
  - $\blacktriangleright (P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$

- Associative Laws for ∨ and ∧ (Assoc.):
  - $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$
  - ► ((He walks or she talks) or we walk.) ⇔ (He walks or (she talks or we walk.))
- Commutative Laws for ∨ and ∧ (Comm.):
  - $ightharpoonup (P \lor Q) \Leftrightarrow (Q \lor P)$
  - ▶ Peter walks or Sue snores. ⇔ Sue snores or Peter walks.
- Distributive Laws for ∨∧ and ∧∨ (Distr.):
  - $(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$
  - ► (Sue snores) and (Peter walks or we talk).
    - $\Leftrightarrow$  (Sue snores and Peter walks) or (Sue snores and we talk).

Complement Laws:

Roland Schäfer Semantik | 04. Aussagenlogik 33 / 43

- Complement Laws:
  - ► Tautology (T):  $(P \lor \neg P) \Leftrightarrow \mathbf{T}$

- Complement Laws:
  - ► Tautology (T):  $(P \lor \neg P) \Leftrightarrow \mathbf{T}$
  - ▶ Contradiction (F):  $(P \land \neg P) \Leftrightarrow \blacksquare$

- Complement Laws:
  - ► Tautology (T):  $(P \lor \neg P) \Leftrightarrow \mathbf{T}$
  - ▶ Contradiction (F):  $(P \land \neg P) \Leftrightarrow \mathbf{F}$
  - ▶ Double Negation (DN):  $(\neg \neg P) \Leftrightarrow P$

- Complement Laws:
  - ► Tautology (T):  $(P \lor \neg P) \Leftrightarrow \mathbf{T}$
  - ► Contradiction (F):  $(P \land \neg P) \Leftrightarrow \mathbf{F}$
  - ▶ Double Negation (DN):  $(\neg \neg P) \Leftrightarrow P$
  - ► It is not the case that Sandy is not walking.
    ⇔ Sandy is walking.

### Conditionals Laws

Implication (Impl.):

| Р | $\rightarrow$ | Q | $\Leftrightarrow$ | ¬ | Ρ | V | Q |
|---|---------------|---|-------------------|---|---|---|---|
| 1 |               | 1 |                   | 0 | 1 |   | 1 |
| 1 |               | 0 |                   | 0 |   |   | О |
| 0 |               | 1 |                   | 1 | 0 |   | 1 |
| 0 |               | 0 |                   | 1 | 0 |   | 0 |

### **Conditionals Laws**

Implication (Impl.):

|   |   | $\Leftrightarrow$ |   |   |   |
|---|---|-------------------|---|---|---|
| 1 | 1 |                   |   |   |   |
| 1 | 0 |                   | 0 |   | 0 |
| 0 | 1 |                   |   |   |   |
| 0 | 0 |                   | 1 | О | 0 |

Contraposition (Contr.)

| Ρ | $\rightarrow$ | Q | $\Leftrightarrow$ |   | Q | $\rightarrow$ |   | Ρ |
|---|---------------|---|-------------------|---|---|---------------|---|---|
| 1 | 1             | 1 |                   | 0 | 1 | 1             | 0 | 1 |
| 1 |               | 0 |                   | 1 | 0 |               | 0 |   |
| 0 |               | 1 |                   | 0 |   |               | 1 | 0 |
| 0 |               | 0 |                   | 1 | 0 |               | 1 | 0 |

DeMorgan's Laws

Roland Schäfer Semantik | 04. Aussagenlogik 35 / 43

- DeMorgan's Laws:

- - ►  $\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$ ► alternatively:  $\overline{P} \lor \overline{Q} \Leftrightarrow \overline{P} \land \overline{Q}$

- DeMorgan's Laws:

  - ▶ alternatively:  $\overline{P \lor Q} \Leftrightarrow \overline{P} \land \overline{Q}$
  - $ightharpoonup \neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$

- DeMorgan's Laws:

  - ▶ alternatively:  $\overline{P \lor Q} \Leftrightarrow \overline{P} \land \overline{Q}$
  - $ightharpoonup \neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$
  - ▶ consequently:  $\overline{P} \lor \overline{Q} \Leftrightarrow \overline{P} \land \overline{\overline{Q}} \Leftrightarrow P \land Q$

# The Modus Ponens (MP)

Definition:

| $P \rightarrow$ | · Q | premise 1  |
|-----------------|-----|------------|
| P               |     | premise 2  |
|                 | Q   | conclusion |

### The Modus Ponens (MP)

• Definition:

| P | $\rightarrow$ | Q | premise 1  |
|---|---------------|---|------------|
| Р |               |   | premise 2  |
|   |               | Q | conclusion |

• or:  $\overline{(P \to Q) \land (P)} \to \overline{(Q)}$ 

### The Modus Ponens (MP)

• Definition:

| <u> </u> |               |   |            |  |  |  |
|----------|---------------|---|------------|--|--|--|
| Р        | $\rightarrow$ | Q | premise 1  |  |  |  |
| Р        |               |   | premise 2  |  |  |  |
|          |               | Q | conclusion |  |  |  |

- or:  $(P \rightarrow Q) \land (P) \rightarrow (Q)$
- (1) If It rains, the streets get wet. (2) It is raining.
  - $\rightarrow$  The streets are getting wet.

• Premises are always set to be true!

- Premises are always set to be true!
- the table:

```
egin{array}{cccc} P & 
ightarrow & Q \ 1 & 1 & 1 \ 1 & 0 & 0 \ \end{array}
```

- 0 1 1
- 0 1 0

- The conditional must be true.
- cancel the 'false' row

- P must be true.
- cancel the 'false' rows, Q can only be true:

```
\mathsf{P} \; 	o \; \mathsf{C}
```

# The Modus Tollens (MT)

Definition:



### The Modus Tollens (MT)

Definition:



• the table illustration:

```
P → Q

1 1 1 (by premise 2)

1 0 0 (by premise 1)

0 1 1 (by premise 2)

0 1 0
```

## The Syllogisms

- Hypothetical Syllogism (HS):
  - $((P \to Q) \land (Q \to R)) \to (P \to R)$
  - (1) If it rains, the streets get wet. (2) If the streets get wet, it smells nice. → If it rains, it smells nice.

### The Syllogisms

- Hypothetical Syllogism (HS):
  - $((P \to Q) \land (Q \to R)) \to (P \to R)$
  - (1) If it rains, the streets get wet. (2) If the streets get wet, it smells nice. → If it rains, it smells nice.
- Disjunctive Syllogism (DS):
  - $((P \lor Q) \land (\neg P)) \to (Q)$
  - ▶ (1) Either Peter sleeps or Peter is awake. (2) Peter isn't awake.
    - ightarrow Peter sleeps.

### Trivial rules

- Simplification (Simp.):
  - $\triangleright$   $(P \land Q) \rightarrow P$
  - lacksquare (1) It is raining and the sun is shining. ightarrow It is raining.

### Trivial rules

- Simplification (Simp.)
  - $\triangleright (P \land Q) \rightarrow P$
  - ightharpoonup (1) It is raining and the sun is shining. ightharpoonup It is raining.
- Conjunction (Conj.):
  - $\blacktriangleright (P) \land (Q) \rightarrow (P \land Q)$
  - $\blacktriangleright$  (1) It is raining. (2) The sun is shining.  $\rightarrow$  It is raining and the sun is shining.

### Trivial rules

- Simplification (Simp.)
  - $ightharpoonup (P \land Q) \rightarrow P$
  - (1) It is raining and the sun is shining.  $\rightarrow$  It is raining.
- Conjunction (Conj.)
  - $\blacktriangleright (P) \land (Q) \rightarrow (P \land Q)$
  - lacksquare (1) It is raining. (2) The sun is shining. ightarrow It is raining and the sun is shining.
- Addition (Add.)
  - $ightharpoonup (P \wedge Q)$
  - ightharpoonup (1) It is raining or the sun is shining.
  - What if Q is instantiated as true or false by another premise?

## A sample proof

• Prove  $p \lor q$  from  $(p \lor q) \to \neg (r \land \neg s)$  and  $r \land \neg s$ 

## A sample proof

- Prove  $p \vee q$  from  $(p \vee q) \rightarrow \neg (r \wedge \neg s)$  and  $r \wedge \neg s$
- The proof:

$$\begin{array}{ccc} & & & p \lor q \\ 1 & (p \lor q) \to \neg (r \land \neg s) \\ \hline 2 & r \land \neg s \\ \hline & p \lor q & \text{1,2,MT} \end{array}$$

# Literatur I

Roland Schäfer Semantik | 04. Aussagenlogik 44 / 43

#### Autor

#### Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

### Lizenz

#### Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.