

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

Semester-V

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

CS201/IT201: Discrete Structures and Graph Theory

Department of Computer Engineering

					_						
Course (Category)	Course Name	7	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
(PC)	Theory of Computation	3	0	0	6	9	3	0	0	3	
		Examination Scheme									
		Component ISE			ISE		MSE		SE	Total	
CS301/IT301		The	Theory 75			75		.50	300		
		Laboratory									

Course O	bjective: To give an overview of the theoretical foundations of computer science from the									
perspectiv	re of formal languages which provides the mathematical foundation of formal models of									
computation, and fundamentals of formal grammars and languages that is used in most areas of										
computer science.										
Course Outcomes (CO): At the end of the course students will be able to										
CS301.1	Design finite automaton for a regular expressions and languages.									
CS301.2	Apply the properties of regular languages.									
CS301.3										
CS301.4	Design and Evaluate Pushdown Automata and Turing Machine for a language.									

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS301.1	3	3	2	-	1	-	-	-	1	1	-	-
CS301.2	3	2	-	-	-	-	-	-	1	1	-	-
CS301.3	2	3	-	-	1	-	-	-	1	1	-	-
CS301.4	2	2	2	-	1	-	-	-	1	1	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS301.1	-	-	-	-	-	-	-
CS301.2	-	-	-	-	-	-	-
CS301.3	-	-	-	-	-	-	-
CS301.4	-	-	-	-	-	-	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	✓	Evaluate	Create

Pre-requisite Course Codes, if any.

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

Module	Unit	Topics	Ref.	Hrs.
No.	No.	Topics	Kei.	1115.
1	Title	Sets, Relations and Languages	1,5	3
	1.1	Relations and functions		
	1.2	Alphabets and languages		
	1.3	Types of proof		
2	Title	Finite Automata	1,3,5	7
	2.1	Regular languages and regular expressions		
	2.2	Finite Automata, Nondeterministic Finite Automata,		
		Nondeterministic Finite Automata with ϵ -transitions		
	2.3	Kleene's theorem		
	2.4	NFA to DFA Conversion		
	2.5	Finite Automata with output (Moore and Mealy Machine)		
3	Title	Regular Languages	1,4	6
	3.1	The pumping lemma for regular languages, Applications of the		
		pumping lemma		
	3.2	Closure properties for regular languages		
	3.3	Equivalence and minimization of automata: Testing equivalence		
		of states, Minimization of DFA's		
4	Title	Context-Free Grammars and Languages	1,5	5
	4.1	Context free grammars: Definition of context free grammars,		
		Derivations using a grammar, The language of a grammar,		
		Sentential forms		
	4.2	Parse trees: Constructing parse trees, From inferences to trees,		
		From trees to derivations, From derivations to recursive		
		inferences		
	4.3	Ambiguity in grammars and languages: Ambiguous grammars,		
		Removing ambiguity from grammars		
5	Title	Pushdown Automata	1,2	6
	5.1	Definition of the pushdown automaton: The formal definition of		
		pushdown automata, A graphical notation for PDA's,		
		Instantaneous descriptions of a PDA		
	5.2	The languages of a PDA: Acceptance by final state, Acceptance		
		by empty stack, From empty stack to final state, From final state		
		to empty stack		
	5.3	Equivalence of PDA's and CFG's: From grammars to		
		pushdown automata, From PDA's to Grammar		
	5.4	Deterministic pushdown automata: Definition of a deterministic		
		PDA, Regular languages and deterministic PDA's, DPDA's and		
_		context free languages		
6	Title	Properties of Context-Free Languages	1,2,3	5
	6.1	Eliminating useless symbols, Computing the generating and		
		reachable symbols, Chomsky normal form, Greibach normal		
		form		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

	6.2	The Pumping lemma for context free languages: Applications of the pumping lemma for CFL's		
7	Title	Introduction to Turing Machines	1,2,	6
	7.1	Turing machines: Formal definition of a Turing machine, Examples of Turing machines		
	7.2	Halting Problem, Post Correspondence Problem (PCP)		
	7.3	Variants of Turing machines: Multitape Turing Machines		
	7.4	Church-Turing hypothesis		
8	Title	Recursively Enumerable Languages	3	
	8.1	Recursively Enumerable and recursive		4
	8.2	Enumerating a language		
	8.3	Context sensitive languages and the Chomsky hierarchy		
	Self	Tractable and Intractable Problems: Tractable and Possibly	3	5*
	Study	Intractable Problems: P and NP, Polynomial-Time Reductions and		
		NP-Completeness, Cook's Theorem		
		Total (* Not inc	luded)	42

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Introduction to Automata Theory, Languages, and Computation	Third	John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman	Pearson	2008
2	Introduction to the Theory of computation	Third	Michael Sipser	Cengage	2013

Sr. No	Title	Edition	Authors	Publisher	Year
3	Introduction to Languages and the Theory of Computation	Fourth	John C. Martin	McGraw-Hill	2010
4	Elements of the Theory of Computation	Second	Harry R. Lewis, Christos H. Papadimitriou	Pearson	2015
5	Automata and Computability		Dexter C. Kozen	Springer	1997

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

	D cpui timent	01 001		<u> </u>	8		<u> </u>					
Course (Category)	Course Name		Teaching Scheme (Hrs/week)				Credits Assigned					
Code		L	T	P	0	E	L	T	P	Total		
	Software	3	0	2	5	10	3	0	1	4		
(PC)			Examination Scheme									
		Comp	Component ISE				MSE		SE	Total		
CS302/IT302	Engineering	Theory			50		50		100	200		
		Labo	Laboratory			50			5 0	100		

Pre-requisite Cou	rse Codes, if any.	Object-oriented programming language -CS102, DBMS-					
		IT/CS204					
Course Objective:	To understand the	best practices in software engineering and gain knowledge to					
analyze, design, im	analyze, design, implement and test software project.						
Course Outcomes (CO): At the End of the course students will be able to							
CS302.1/IT302.1 Analyze software requirements.							
CS302.2/IT302.2	Apply UML mode	els for a project.					
CS302.3/IT302.3	Evaluate system as	rchitecture and develop detailed task schedule from the					
	overall estimates a	and planning.					
CS302.4/IT302.4	Illustrate different	coding principles with unit test process.					
CS302.5/IT302.5	Understand the ne	ed for DevOps.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
			3									2
CS302.1	-	3	-	-	-	-	-	-	2	2	-	-
/IT302.1												
CS302.2	_	2			2	-	-	-	2	2	-	-
/IT302.2												
CS302.3	_	3	2	1	2	-	-	-	2	2	2	-
/IT302.3												
CS302.4	_		3	-	2	-	-	-	2	-	-	-
/IT302.4												
CS302.5	_	1	1	_	-	-	-	-	_	-	-	1
/IT302.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS302.1/IT302.1	IT-3/ CS-3		-	-	-	-	-
CS302.2/IT302.2	IT-3/CS-3	IT-2	CS-2	-	-	-	-
CS302.3/IT302.3	IT-3/CS-3	IT-2	CS-2	-	IT-2	CS-2	-
CS302.4/IT302.4	IT-3/CS-3	-	-	-	IT-2	CS-2	-
CS302.5/IT302.5	IT-1/CS-3	CS-2	IT-1	-	-	CS-2	IT-1

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate ✓	Create

Mo dule No.	Unit No.	Topics	Ref.	Hr s.
1		Introduction		06
	1.1	Software Development Challenges, Software Scope, The Human Side of Software Development	1,2	
	1.2	Software Methodologies and Related Process Models with applications, Traditional Life Cycle Models, Waterfall, Incremental, Iterative models, Agile Software Engineering Process Models, SCRUM, Extreme Programming	1,2	
2		Requirements Management and Project Planning		10
	2.1	Requirements Development Methodology, Specifying Requirements, Eliciting Accurate Requirements, Documenting Business Requirements, SRS, Defining User Requirements, Validating Requirements, Achieving Requirements Traceability, Managing Changing Requirements, Agile Requirements Engineering	1,2	
	2.2	Scheduling, Work Breakdown Structure, Gantt Chart, Pert Chart, Critical Path, Earned Value Analysis, Schedule & Cost slippage, Estimation, Decomposition techniques, Empirical estimation models, Software Risk Management: Risk Identification, Risk Projection, Risk Refinement, RMMM Plan	1,2	
3		Software Analysis		08
	3.1	Difference between Structured & Object-Oriented analysis, Structured Analysis, Data Flow Diagrams	4,5	
	3.2	Object Oriented Analysis, Uses Case, Class diagram, Interaction diagrams, Activity diagram, State Chart diagram, Component & Deployment diagram	4,5	
4		Software Design & Development		08
	4.1	Software Architecture, Architectural and Pattern-Based Design, Model Driven Architectures	1,2	
	4.2	Software Development, Component Infrastructures, Refactoring, Test Driven Development (TDD)	1,2	
	4.3	DevOps, Continuous Integration, Continuous Deployment, System Provisioning and Configuration Management	3	
	4.4	Software Change Management, Change Control, Version Control	1,2	
5		Software Quality & Testing		10
	5.1	Software Quality Concepts, Quality Assurance, Quality Control, Formal Technical Reviews	1,2	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

	5.2	Software Metrics, Product Metrics – McCall's Quality Factor, Metrics	1,2	
		for Analysis Model and Design Model, Project Metrics, Process		
		Metrics, Metrics for Source Code		
	5.3	Software Testing, Unit Testing, Integration Testing, System Testing	1,2	
6	Self	Advance Topic in software Engineering		05*
	Study			
		o Design Pattern		
		Total(* Not inc	cluded)	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

<u>Dubol uto</u>	y component, it any. (withintain to Euportatory experiments are expected)
Sr. No	Title of the Experiment
1	Gather requirements and write a project proposal for case study.
	Prepare SRS document. (Use IEEE template)
2	Design UML diagram -Use Case, Class diagram
3	Design UML diagram -Interaction diagrams
4	Design Data flow diagram (level 0 and 1) for the case study.
5	Create work breakdown structure and schedule the activities
6	Develop Risk Mitigation, Monitoring and Management Plan for the case study.
7	Create versions of software using version control tool.
8	Implement any one Module from chosen case study.
9	Prepare test cases and perform Unit Testing (test scenario, test cases, test data)
10	Study on continuous Integration using DevOp

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Software Engineering: A	Ninth	Roger S.	McGraw-	2019
	Practitioner's Approach	Edition	Pressman and	Hill	
			Bruce Maxim		
2	Fundamentals of	Fifth	Rajib Mall	PHI	2018
	Software Engineering	Edition		Learning	
ı					

Sr.	Title	Edition	Authors	Publisher	Year
No					
3	The DevOps Handbook: How to		Gene Kin,	IT	2016
	Create World-Class Agility,		Patrick Debois,	Revolution	
	Reliability, and Security in		John Willis, Jez	Press	
	Technology Organizations		Humble, and		
			John Allspaw		
4	UML for Java Programmers		Robert C. Martin	Pearson	2006
5	UML Distilled: A Brief	Third	Martin Fowler	Addition	2003
	Guide to the Standard	Edition		Wesley	
	Object Modeling Language				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

							0			
Course (Category)	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
Code		L	T	P	О	E	L	T	P	Total
		3	0	2	5	10	3	0	1	4
(PC)					inatio	on Scheme				
,	Distributed Computing	Comp	Component		ISE	I	MSE	E	SE	Total
CS304/IT304	Computing	The	eory		75		75	1	50	300
		Labor	ratory		50				50	100

Pre-requisite Cou	rse Codes, if any.	Operating Systems, Computer Networks and
_	-	Communications
Course Objective:	To familiarize stud	dents with the fundamental concepts, techniques and design of
Distributed System	s and use of distribu	uted computing applications domains.
Course Outcomes	(CO): At the End	of the course students will be able to
CS304.1/IT304.1	Understand the pri	inciples and desired properties of distributed systems.
CS304.2/ T304.2	Apply the various	communication techniques for distributed communication.
CS304.3/IT304.3	Apply the concep	pts of process, naming, consistency, replication and faults
	tolerance in distrib	outed environment.
CS304.4/IT304.4	Apply the algorit	thms such as clock synchronization, election, and mutual
	exclusion in distril	buted applications.
CS304.5/IT304.5	Identify the challe	nges in developing distributed applications.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS304.1/ IT304.1	2	1	-	-	-	-	-	-	-	-	-	2
CS304.2/ IT304.2	2	2	2	1	-	-	-	2	2	1	-	2
CS304.3/ IT304.3	2	2	2	1	-	-	-	2	2	1	-	2
CS304.4/ IT304.4	2	2	2	1	-	-	-	2	2	1	-	2
CS304.5/ IT304.5	2	2	2	1	-	-	-	1	2	1	-	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2
CS304.1/ IT304.1	1	1	1	-	
CS304.2/ IT304.2	1	1	1	-	1
CS304.3/ IT304.3	1	1	1	-	1
CS304.4/ IT304.4	1	1	1	-	1
CS304.5/ IT304.5	1	1	1	-	1

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze√	Evaluate	Create
----------	------------	-------	----------	----------	--------

Module No.	Unit No.	Topics	Ref.	Hrs.
	Title	Introduction to Distributed Systems		
	1.1	Definition, Type, Goals, Distributed Computing Models, Issues in Distributed Systems.	1,2	08
1	1.2	Hardware Concepts, Software Concepts, The Client-Server Model, Positioning Middleware, Models of Middleware, Services offered by Middleware, models of Distributed Algorithms and some fundamental problems.	1,2	
2	Title	Communication In Distributed Systems		12
	2.1	Introduction to Message Passing, Desirable Features of a Good Message-Passing System, Issues in IPC by Message Passing, Synchronization, Buffering, Multi-datagram Messages, Group Communication.	1,2	
	2.2	Remote Procedure Call (RPC): Basic RPC Operations, Parameter Passing, Extended RPC Models. Remote Object Invocation: Distributed Objects, Binding a Client to an Object, Static Vs Dynamic RMI Message Oriented Communication: Persistence and synchronicity in communication, Message Oriented Transient and Persistent Communications	1,2	
3	Title	Process in Distributed Systems		6
	3.1	Introduction to Threads, Threads in Distributed Systems, Clients, Server	1,2	
	3.2	Code Migration: Approaches to Code Migration, Models, Migration and Local Resources, Migration in Heterogeneous Systems	1,2	
4	Title	Synchronization in Distributed Systems		10
	4.1	Clock Synchronization: Physical Clocks, Global Positioning System, Clock Synchronization Algorithms; Logical Clocks: Lamport's Logical Clocks, Vector Clocks	1,2	
	4.2	Election Algorithms: Bully and Ring; Mutual Exclusion: Centralized Algorithm, Decentralized Algorithm, Distributed Algorithm, Token Ring Algorithm, Comparison of Algorithms; Load Balancing: Goals, Types, Strategies.	1,2	
5	Title	Consistency and Replication		6

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

6	Self	Models Continuous Consistency, Consistent Ordering of Operations Naming Entities, Locating Mobile Entities, Distribution Protocols,	1,2	8*
0	Study	Consistency Protocols, Faults Tolerance: Process Resilience, Distributed Commit, Recovery	1,2	8*
		Total(* Not included Committ, Recovery	nded)	42

Laboratory Component

Sr. No	Title of the Experiments
1	Implementation of Client Server Communication using RPC/RMI.
2	Implementation of Clock Synchronization (logical/physical).
3	Implementation of Election algorithm.
4	Implementation of Mutual Exclusion algorithm.
5	Implementation of Client Server based program to check data consistency.
6	Implement Load Balancing Algorithms
7	Mini Project

Text Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Distributed Systems— Principles and Paradigms.	First Edition	Andrew S. Tanenbaum, Maarten Van Steen	PHI	2004
2	Distributed Operating Systems Concepts and Design	Second Edition	P. K. Sinha	PHI	2010

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Distributed Systems –	Fourth	George	Pearson	2010
	Concept and Design	Edition	Coulouris, Jean		
			Dollimore, Tim		
			Kindberg, &		
			Gordon Blair		
2	Distributed VOD Systems	First	Sudhir D. &	Research	2011
		Edition	Bandu B.M	India	
				Publication	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

Course	Course Name		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code			L	T	P	O	E	L	Т	P	Total
	Internet Technology	1	0	2	5	8	1	0	1	2	
SBC					Exam	inatio	n Scheme				
		Comp	onent		ISE]	MSE	E	SE	Total	
CS305/IT305		Lab		eory							
		Laboratory			100			1	00	200	

Pre-requisite Cou	rse Codes, if any. CS208/IT208 Mini Project				
Course Objective: : To impart a knowledge of different Internet Technologies.					
Course Outcomes (CO): At the End of the course students will be able to					
CS305.1/IT305.1	Develop a sophisticated web UX				
CS305.2/IT305.2	Create, integrate and test REST based web services				
CS305.3/IT305.3	Design secured web application/ web services				
CS305.4/IT305.4	Demonstrate behaviour of web crawlers and testing of web application				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS305.1	-	-	1		3	-	-	-	-	-	-	-
/IT305.1												
CS305.2	-	-	-	2	3	-	-	-	-	-	-	-
/IT305.2												
CS305.3	-	-	-	1	3	-	-	-	-	-	-	-
/IT305.3												
CS305.4	-	-	-	1	3	-	-	-	-	-	-	-
/IT305.4												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS305.1/I	-	-	-	-	-	3(CS)	3(IT)
T305.1							
CS305.2/I	-	-	-	-	-	3(CS)	3(IT)
T305.2							
CS305.3/I	-	-	-	-	-	3(CS)	3(IT)
T305.3							
CS305.4/I	-	-	-	-	-	3 (CS)	3 (IT)
T305.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create ✓

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Designing UI		
	1.1	Fundamentals of UX Design, Defining UX Solutions, Design	1	2
		Communication and Visualizing Ideas		
2		Web content management system		1
	2.1	Introduction to Web CMS, different types of Web CMS	2	
3		Web services		2
	3.1	Introduction to web service, REST architecture	3	
4		Web mashups		1
	4.1	Introduction to web mashups, server side mashups, client side	2	
		mashups		
5		Secured Web application		2
	5.1	Introduction to Web Tokens, Auth2.0, OAuth, Access token	2	
6		Integration of web services		2
	6.1	Introduction to Mule ESB, Introduction to Anypoint studio,	4	
		Integrating Web Services using Any point studio		
7		Web crawlers		2
	7.1	Introduction to web crawler, role of crawler in the internet, concept	3	
		of page ranking		
8		Testing web applications		2
	8.1	Introduction to different types of testing, manual testing, automated	2	
		testing, performance testing and functional testing, open source tools		
		used for testing		
				14

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Design web pages using HTML, CSS and javascript
2	Design UX for a given problem definition by using open source UX tools
3	Create a website using web CMS (Node Js/Angular Js/React
	Js/Flask/Django/Wordpress/Joomla etc.)
4	Create a Restful webservice to demonstrate different HTTP methods
5	Testing of restful web service using Postman/ARC
6	Create a web mashup of web services using open source framework
7	Design secured Web application using web token
8	Integration of web services using open source integration tools like Mulesoft
9	Demonstrate the behavior of Web Crawlers/ spiders (use XPATH,CSS PATH),extract
	information and store it in the database.
10	Test the web application using open source testing tools like Selenium, Test runner and
	Junit

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of Computer Engineering

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Sketching the User experiences	Second edition	Bill Buxton	Diane Cerra	2010
2	Rich Internet Application AJAX and Beyond	Third edition	Dana Moore, Raymond Budd, Edward Benson	WROX Publisher	2017
3	Web Technology	Second Edition	Srinivasan	Pearson	2014
4	API Recipes with Mulesoft(r) Anypoint Platform	First Edition	WHISHWOR KS Editorial Board	White falcon	2017

Sr. No	Title	Edition	Authors	Publisher	Year
5	Internet Technology And Web Design	First Edition	R. K. JAIN	Khanna Book Publishing Company	2015
6	Understanding the Internet: A Clear Guide to Internet Technologies	First Edition	Keith Sutherland	A Butterworth- Heinemann Title	2016
7	RESTful Web APIs: Services for a Changing World	Third edition	Leonard Richardson, Mike Amundsen, Sam Ruby	O'REILLY	2013

Course(Category) Code	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	T	P	0	E	L	T	P	Total
		3	0	2	5	10	3	0	1	4
(PC)	Artificial Intelligence and		Examination				Scheme			
		Comp	onent]	ISE	I	MSE	E	SE	Total
CS307B	Machine Learning	Theory Laboratory			75		75	1	50	300
					50			:	50	100

Pre-requisite Course Codes, if any.		CS202/IT202: Data Structures, MA203: Probability and		
		Statistics		
Course Obje	Course Objective: This course covers the fundamental concepts of Artificial Intelligence and			
machine lear	ning.			
Course Outo	Course Outcomes (CO): At the End of the course students will be able to			
CS307B.1 Understand AI building blocks presented in intelligent agents		locks presented in intelligent agents		
CS307B.2	CS307B.2 Solve the problems using suitable searching methods.			
CS307B.3	CS307B.3 Solve the problems using suitable reasoning and knowledge representation methods.			
CS307B.4 Apply suitable machine learning technique for a given problem				
CS307B.5 Design an intelligent system using different AIML techniques for real life problem				

Modul e No.	Unit No.	Topics	Ref.	Hrs.	
1	Title	Introduction to Artificial Intelligence	1	04	
	1.1	Definition of AI, History and Future of AI, Problem solving Approach to Typical AI problem.			
	1.2	Intelligent Agents and Environment What is an Intelligent Systems, Types of Agents, structure of agent.			
	1.3	Environments and Its Properties, PEAS Representation for an Agent			
2	Title	Problem solving by Searching			
	2.1	Searching: characteristics and issues in design of search programs			
	2.2	Uninformed search techniques: State Space Search, Depth First Iterative Deepening			
	2.3	Informed Search methods: Heuristic Search, Hill Climbing.			
	2.4	Adversarial Search: Game playing, Min-Max Search, AlphaBeta Pruning			
3	Title	Knowledge Representation and Reasoning		08	
	3.1	Reasoning: Representing and Reasoning with Uncertain Knowledge			
	3.2	Knowledge representation: A Knowledge-Based Agent, The Wumpus World.			

	3.3	Propositional Logic, First-order predicate logic, Forward and		
4	Title	Backward Chaining Introduction to Machine Learning		12
4		Introduction to Machine Learning		12
	4.1	Introduction: What is Machine Learning, History and overview of	2,3	
		machine learning,		
	4.2	Types of Machine Learning - Supervised, Unsupervised		
		SemiSupervised Learning and Reinforcement Learning, Design a		
		Learning System, The curse of dimensionality		
	4.3	Evaluating a hypothesis: Model selection,	2,3	
		training/validation/testing procedures, diagnosing bias versus		
		variance and vice versa, regularization and bias/variance, learning		
		curves		
5	Title	Linear Models for Regression		8
	5.1	Two Simple Approaches to Prediction: Least Squares and Nearest	4	
		Neighbors		
	5.2	Linear Regression, Multivariate Regression, Subset Selection,		
		Shrinkage Methods		
6	Self	Linear model for Classification: Logistic Regression, Linear	3,4	5*
	Study	Discriminant Analysis, Perceptron, Support Vector Machines, PCA		
	l	Total(* Not inclu	ıded)	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Implement an Intelligent agent.
2	Implement a given problem using the searching technique.
3	Implement a given problem using knowledge representation and reasoning rules
4	To design and implement an intelligent system, incorporating the matching algorithm and the rule language. 1. It should provide a fact base updating function. 2. It should provide a function that checks the rules' LHS and return which rules were matched. 3. It should support firing RHS according to matches. Using SWISH Prolog or Java or Python or any other open-source tool
5	Implement supervised learning algorithms.
6	Implement unsupervised learning algorithms.
7	Implement the regression model
8	Minor project covering the concepts of AIML on the real life problem statements.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Artificial Intelligence: A	Third Edition	Stuart Russell and	Prentice-Hall	2009
	Modern Approach		Peter Norvig		
2	Machine Learning	First Edition	Kevin P. Murphy	Massachusetts	2012
	A Probabilistic			Institute of	
	Perspective			Technology	
3	Machine Learning,	First Edition	Tom.M.Mitchell	McGraw Hill	1997

				International Edition	
4	The Elements of Statistical Learning	Second Edition	Trevor Hastie Robert Tibshirani	Springer	2009
	Statistical Learning	Edition	Jerome Friedman		

Sr. No	Title	Edition	Authors	Publisher	Year
5	Artificial Intelligence: Making a System Intelligent	First Edition	Nilakshi Jain	Wiley Publication	2019
6	Pattern Recognition and Machine Learning,	First Edition	C. M. Bishop	Springer	2013