COHESION

FOUCHE

1. Introduction

Definition 1.1.

Definition 1.2. Let (X, τ) be a topological space; a sheaf on X is a functor $F: \tau^{op} \to \mathsf{Set}$ such that for every $u \in \tau$ and every covering $\{U_i\}$ of U one has

Definition 1.3. A sieve on an object X of a category \mathcal{C} is a subobject of the hom functor $yX = \mathcal{C}(-,X)$; a Grothendieck topology on a category amounts to the choice of a family of covering sieve for every object $X \in \mathcal{C}$; this family is chosen in such a way that

• if $S \Rightarrow yX$ is a covering sieve and $fY \to X$ is a morphism of \mathcal{C} , then the morphism $f^S \Rightarrow Y$ obtained in

$$f^*S$$
 RS

$$Y \xrightarrow{f} X$$

is again a covering sieve.

• Let $S \Rightarrow yX$ be a covering sieve on X, and let T be any sieve on X. If for each object Y of C and each arrow $f: Y \to X$ in SY the pullback sieve f^*T is a covering sieve on Y. Then T is a covering sieve on X.

Definition 1.4. A sheaf on a small site \mathcal{C} is a functor $F:\mathcal{C}^{\mathrm{op}}\to\mathsf{Set}$ such that for every covering sieve $R \to y(U)$ and every diagram

there is a unique dotted extension $y(U) \Rightarrow F$ (by the Yoneda lemma, this consists of a unique element $s \in FU$). The full subcategory of sheaves on a site (\mathcal{C}, j) is denoted $Sh(\mathcal{C}, j)$.

By general facts on locally presentable categories, the subcategory of sheaves on a site is reflective via a functor

$$r: \mathsf{Cat}(\mathcal{C}^{\mathrm{op}}, \mathsf{Set}) o \mathrm{Sh}(\mathcal{C}, j)$$

2 FOUCHE

called *sheafification* of a presheaf $F: \mathcal{C}^{\mathrm{op}} \to \mathsf{Set}$.

Grothendieck was the first to note that in every topos of sheaves the internal language is sufficiently expressive to concoct higher-order logic and he strived to advertise his intuitions to an audience of logicians. But it wasn't until Lawvere devised the notion of *elementary topos* that the community agreed on the potential of this theory.

Definition 1.5. An elementary topos is a category \mathcal{E} that

- is finitely complete (i.e. it admits finite products and equalizers, or a terminal object and pullbacks, or all limits of diagrams $D: \mathcal{J} \to \mathcal{E}$ where \mathcal{J} is a finite category);
- is cartesian closed, i.e. the functor $A \times _$ has a right adjoint $[A, _]$ for every object $A \in \mathcal{E}$
- has a subobject classifier, i.e. an object $\Omega \in \mathcal{E}$ such that the functor Sub : $\mathcal{E}^{\text{op}} \to \text{Set}$ sending A into the set of isomorphism classes of monomorphisms $\begin{bmatrix} U \\ A \end{bmatrix}$ is representable by the object Ω .

The natural bijection $\mathcal{E}(A,\Omega) \cong \operatorname{Sub}(A)$ is obtained pulling back the monomorphism $U \subseteq A$ along a universal arrow $t: 1 \to \Omega$, as in the diagram

$$U \longrightarrow 1$$

$$\downarrow t$$

$$A \xrightarrow{\chi_U} \Omega$$

so, the bijection is induced by the map $m \mapsto \chi_U$.

Definition 1.6. copincolla da nLab

2. Cohesion

intuition for Cohesion cohesive topos properties and thms classes of cohesive toposes "moments of opposition" cohesion in smooth homotopy de Rham in a cohesive topos