

5 What is claimed:

wherein:

10 R_1 and R_1' are independently selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, $-S-C_1-C_{10}$ alkyl, $/C_1-C_{10}$ alkoxy, $-CN$, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, $-O$ -phenyl, $-S$ -phenyl, benzyl, $-O$ -benzyl, $-S$ -benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$, or $-OH$;

15 or a moiety of the formulae:

R₆ is selected from H, C₁-C₆ alkyl, C₁-C₆ alkoxy, -C(O)CH₃, phenyl, -O-phenyl, 10 benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH;

R₇ is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), -CF₃, C₁-C₆ alkyl, C₃-C₅ cycloalkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N-(C₁-C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, (CH₂)_nphenyl, phenyl-O-phenyl, benzyl, -O-benzyl, adamantlyl, or morpholinyl, -(CH₂)_n-phenyl-O-phenyl, -(CH₂)_n-phenyl-CH₂-phenyl, -(CH₂)_n-O-phenyl-CH₂-phenyl, -(CH₂)_n-phenyl-(O-CH₂-phenyl)₂, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂, -CF₃, CO₂H, or -OH; 15 20

R₂ is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, preferably -C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -CN, -NO₂, -NH₂, -NH-C₁-C₆ alkyl, -N(C₁-C₆ alkyl)₂, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;

R₃ is selected from H, -CF₃, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl, -C₃-C₁₀ cycloalkyl, -CHO, halogen, (CH₂)_nC(O)NH₂ or a moiety of the formula -L¹-M¹: 25

5 L¹ indicates a linking or bridging group of the formulae -(CH₂)_n-, -S-, -O-,
-C(O)-, -(CH₂)_n-C(O)-, -(CH₂)_n-C(O)-(CH₂)_n-, -(CH₂)_n-O-(CH₂)_n-, or -(CH₂)_n-S-(CH₂)_n-,
C(O)C(O)X, -(CH₂)_n-N-(CH₂)_n;

10 M¹ is selected from:

15 a) H, the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl,
phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted
by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl,
C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

20 b) a five-membered heterocyclic ring containing one or two ring
heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole,
thiophene, imidazole, pyrazole, isothiazole, isoxazole, pyrrolidine, pyrrolidine,
imidazolidine, pyrazolidine, pyrazole, pyrazoline, imidazole, tetrazole, oxathiazole,
the five-membered heterocyclic ring being optionally substituted by from 1 to 3
25 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy,
preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

30 c) a six-membered heterocyclic ring containing one, two or three ring
heteroatoms selected from N, S or O including, but not limited to, pyran, pyridine,
pyrazine, pyrimidine, pyridazine, piperidine, piperazine, tetrazine, thiazine,
thiadiazine, oxazine, or morpholine, the six-membered heterocyclic ring being
optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl,
preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -
CN, -CF₃ or -OH; or

5 d) a bicyclic ring moiety containing from 8 to 10 ring atoms and
optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including,
but not limited to benzofuran, chromene, indole, isoindole, indoline, isoindoline,
naphthalene, purine, indolizine, indazole, quinoline, isoquinoline, quinolizine,
quinazoline, cinnoline, phthalazine, or naphthyridine, the bicyclic ring moiety being
optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl,
preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -
CN, -CF₃ or -OH;

10 R₄ is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, -
15 (CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-S-(CH₂)_n-C₃-C₅ cycloalkyl, -(CH₂)_n-O-(CH₂)_n-C₃-C₅
cycloalkyl, or the groups of:

20 a) -(CH₂)_n-phenyl-O-phenyl, -(CH₂)_n-phenyl-CH₂-phenyl, -(CH₂)_n-O-
phenyl-CH₂-phenyl, -(CH₂)_n-phenyl-(O-CH₂-phenyl)₂, or a moiety of the formulae:

25 wherein n is independently selected in each appearance as an integer from 0 to 3,
preferably 0 to 2, more preferably 0 to 1, Y is C₃-C₅ cycloalkyl, phenyl, benzyl,
naphthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these groups being
optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -

- 140 -

5 OH, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, $-NH_2$, $-NO_2$ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or

Sabat
10 b) a moiety of the formulae $-(CH_2)_n-A$, $-(CH_2)_n-S-A$, or $-(CH_2)_n-O-A$,
wherein A is the moiety:

10 wherein

D is H, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, or $-CF_3$;

15 B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$; or

c) a moiety of the formulae:

20

- 141 -

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, $-CF_3$, $-OH$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, $-NH_2$, or $-NO_2$;

10

d) a moiety of the formula $-L^2-M^2$, wherein:

15 L^2 indicates a linking or bridging group of the formulae $-(CH_2)_n-$, $-S-$, $-O-$, $-SO_2-$, $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, or $-(CH_2)_n-S-$ $(CH_2)_n-$, $-C(O)C(\emptyset)X$;
where $X = O, N$

M^2 is selected from the group of C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being

5 optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

10 i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

15 ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to pyridine, pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; or

20 iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, indole, indoline, napthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;

25 30 n is an integer from 0 to 3;

006260-T2024960

Sub
A/

5 R_s is selected from $-\text{COOH}$, $-\text{C}(\text{O})\text{-COOH}$, $-(\text{CH}_2)_n\text{-C}(\text{O})\text{-COOH}$, $-(\text{CH}_2)_n\text{-COOH}$, $(\text{CH}_2)_n\text{-CH=CH-COOH}$, $-(\text{CH}_2)_n\text{-tetrazole}$, $-\text{CH}_2\text{-phenyl-C}(\text{O})\text{-benzothiazole}$, or

or a moiety selected from the formulae $-\text{L}^3\text{-M}^3$;

wherein L^3 is a bridging or linking moiety selected from a chemical bond, $-(\text{CH}_2)_n\text{-}$, $-\text{S-}$, $-\text{O-}$, $-\text{SO}_2\text{-}$, $-\text{C}(\text{O})\text{-}$, $-(\text{CH}_2)_n\text{-C}(\text{O})\text{-}$, $-(\text{CH}_2)_n\text{-C}(\text{O})\text{-}(\text{CH}_2)_n\text{-}$, $-(\text{CH}_2)_n\text{-O-}(\text{CH}_2)_n\text{-}$, $-(\text{CH}_2)_n\text{-S-}(\text{CH}_2)_n\text{-}$, $-\text{C}(\text{Z})\text{-N}(\text{R}_6)\text{-}$, $-\text{C}(\text{Z})\text{-N}(\text{R}_6)\text{-}(\text{CH}_2)_n\text{-}$, $-\text{C}(\text{O})\text{-C}(\text{Z})\text{-N}(\text{R}_6)\text{-}$, $-\text{C}(\text{O})\text{-C}(\text{Z})\text{-N}(\text{R}_6)\text{-}(\text{CH}_2)_n\text{-}$, $-\text{C}(\text{Z})\text{-NH-SO}_2\text{-}$, $-\text{C}(\text{Z})\text{-NH-SO}_2\text{-}(\text{CH}_2)_n\text{-}$, $-(\text{CH}_2)_n\text{-S-}(\text{CH}_2)_n\text{-}$, $-(\text{CH}_2)_n\text{-SO-}(\text{CH}_2)_n\text{-}$, $-(\text{CH}_2)_n\text{-SO}_2\text{-}(\text{CH}_2)_n\text{-}$, or $-(\text{CH}_2)_n\text{-CH=CH-}(\text{CH}_2)_n\text{-O-}$;

M^3 is selected from the group of $-\text{COOH}$, $-(\text{CH}_2)_n\text{-COOH}$, $-(\text{CH}_2)_n\text{-C}(\text{O})\text{-COOH}$, tetrazole,

- 144 -

5

Sub A1

10

where R₈, R₉ or R₁₀ can be attached anywhere in the cyclic or bicyclic system,
n is an integer from 0 to 3;

15

R₈, in each appearance, is independently selected from H, -COOH, -(CH₂)_n-

COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

- 145 -

n is an integer from 0 to 3;

Sub A 10 R₉ is selected from H, halogen, -CF₃, -OH, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), or -N(C₁-C₆ alkyl)₂;

n is an integer from 0 to 3;

R₁₀ is selected from the group of H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂,

15

006260-T2024960

- 146 -

R_{11} is selected from H, C₁-C₆ lower alkyl, C₁-C₆ cycloalkyl, -CF₃, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH,

- 147 -

*Sub
P1
cm*
5

10 with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R₅, R₈, R₉, R₁₀, and/or R₁₁ shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of

the formulae: -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

15 n is an integer from 0 to 3;
or a pharmaceutically acceptable salt thereof.

2. A compound of Claim 1 of the formula:

wherein:

000260251-2002000

5 R_1 and R_1' are independently selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, $-S-C_1-C_{10}$ alkyl, C_1-C_{10} alkoxy, $-CN$, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, $-O$ -phenyl, $-S$ -phenyl, benzyl, $-O$ -benzyl, or $-S$ -benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$, or $-OH$;

10 R_2 is selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, preferably $-C_1-C_6$ alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-CHO$, $-CN$, $-NO_2$, $-NH_2$, $-NH-C_1-C_6$ alkyl, $-N(C_1-C_6)$ alkyl, $-N(SO_2-C_1-C_6)$ alkyl, or $-SO_2-C_1-C_6$ alkyl;

15 R_3 is selected from H, $-CF_3$, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, $-C_1-C_6$ alkyl, $-C_3-C_{10}$ cycloalkyl, $-CHO$, halogen, or $(CH_2)_nC(O)NH_2$ or a moiety of the formula $-L^1-M^1$:

20 L^1 indicates a linking or bridging group of the formulae $-(CH_2)_n-$, $-S-$, $-O-$, $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, or $-(CH_2)_n-S-(CH_2)_n-$, $C(O)C(O)X$, $-(CH_2)_n-N-(CH_2)_n-$,

25 M^1 is selected from: H, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl, preferably C_1-C_6 alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$;

30 R_4 is a moiety of the formulae $-(CH_2)_n-A$, $-(CH_2)_n-S-A$, or $-(CH_2)_n-O-A$, wherein A is the moiety:

- 149 -

wherein

10 D is H, C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, or $-CF_3$;
B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3 substituents selected from H, halogen, $-CF_3$, $-OH$, $-C_1$ - C_6 alkyl, C_1 - C_6 alkoxy, or $-NO_2$;
or a pharmaceutically acceptable salt thereof.

15 3. A compound of Claim 2 wherein R_4 is the moiety:

B and C are phenyl optionally substituted by from 1 to 3 substituents selected from H, halogen, $-CF_3$, $-OH$, $-C_1$ - C_6 alkyl, C_1 - C_6 alkoxy, or $-NO_2$; and R_1 , R_1' , R_2 , R_3 , R_5 , L^1 , M^1 and D are as defined in Claim 2; or a pharmaceutically acceptable salt thereof.

20

4. A compound of Claim 1 having the formulae:

- 150 -

wherein:

10 R_i and $R_{i'}$ are independently selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, preferably $-C_1-C_6$ alkyl, $-S-C_1-C_{10}$ alkyl, preferably $-S-C_1-C_6$ alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-CN$, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)_2$, $-N(C_1-C_6)_2$, phenyl, $-O$ -phenyl, $-S$ -phenyl, benzyl, $-O$ -benzyl, $-S$ -benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$, or $-OH$;
or R_i and $R_{i'}$ are independently a moiety of the formulae:

15

- 151 -

Sub A
10 R_6 is selected from H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, $-C(O)CH_3$, phenyl, $-O$ -phenyl, benzyl, $-O$ -benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$, or $-OH$;

15 R_7 is selected from $-(CH_2)_n-COOH$, $-(CH_2)_n-N-(C_1-C_6\text{ alkyl})_2$, $-(CH_2)_n-NH-(C_1-C_6\text{ alkyl})$, $-CF_3$, C_1-C_6 alkyl, C_3-C_5 cycloalkyl, C_1-C_6 alkoxy, $-NH-(C_1-C_6\text{ alkyl})$, $-N-(C_1-C_6\text{ alkyl})_2$, pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, $(CH_2)_n$ phenyl, phenyl- O -phenyl, benzyl, $-O$ -benzyl, adamantyl, or morpholinyl, $-(CH_2)_n$ -phenyl- O -phenyl, $-(CH_2)_n$ -phenyl- CH_2 -phenyl, $-(CH_2)_n$ - O -phenyl- CH_2 -phenyl, $-(CH_2)_n$ -phenyl-(O - CH_2 -phenyl)₂, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NH_2$, $-NO_2$, $-CF_3$, CO_2H , or $-OH$;

20

R_2 is selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, preferably $-C_1-C_6$ alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-CHO$, $-CN$, $-NO_2$, $-NH_2$, $-NH-C_1-C_6$ alkyl, $-N(C_1-C_6\text{ alkyl})_2$, $-N-SO_2-C_1-C_6$ alkyl, or $-SO_2-C_1-C_6$ alkyl;

25 R_3 is selected from H, $-CF_3$, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, $-C_1-C_6$ alkyl, $-C_3-C_{10}$ cycloalkyl, $-CHO$, halogen, $(CH_2)_nC(O)NH_2$ or a moiety of the formula $-L^1-M^1$:

SEARCHED
INDEXED
MAILED
OCT 2000

5 L^1 indicates a linking or bridging group of the formulae $-(CH_2)_n-$, $-S-$, $-O-$,
 $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, or $-(CH_2)_n-S-(CH_2)_n-$,
 $C(O)C(O)X$, $-(CH_2)_n-N-(CH_2)_n$

M^1 is selected from:

10 a) H, the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, C_3 - C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$; or

b) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, isothiazole, isoxazole, pyrrolidine, pyrroline, imidazolidine, pyrazolidine, pyrazole, pyrazoline, imidazole, tetrazole, oxathiazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

c) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to, pyran, pyridine, pyrazine, pyrimidine, pyridazine, piperidine, piperazine, tetrazine, thiazine, thiadizine, oxazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; or

5 d) a bicyclic ring moiety containing from 8 to 10 ring atoms and
optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including,
but not limited to benzofuran, chromene, indole, isoindole, indoline, isoindoline,
naphthalene, purine, indolizine, indazole, quinoline, isoquinoline, quinolizine,
quinazoline, cinnoline, phthalazine, or naphthyridine, the bicyclic ring moiety being
optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl,
preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -
CN, -CF₃ or -OH;

10 *Sub A*
15 R₄ is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, -
(CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-S-(CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-O-(CH₂)_n-C₃-C₆
cycloalkyl, or the groups of:

20 a) a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A,
wherein A is the moiety:

25 wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thieryl,
pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably

1 to 2, substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy,
or -NO₂; or

b) a moiety of the formula -L²-M², wherein:

5 L^2 indicates a linking or bridging group of the formulae $-(CH_2)_n-$, $-S-$, $-O-$,
- SO_2- , $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, or $-(CH_2)_n-S-$
 $(CH_2)_n-$, $-C(O)C(O)X$;
where $X = O, N$

10 M^2 is selected from the group of C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being
optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl,
preferably C_1-C_6 alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, or
 $-CF_3$; or

15 i) a five-membered heterocyclic ring containing one or two ring
heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole,
thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered
heterocyclic ring being optionally substituted by from 1 to 3 substituents selected
from halogen, C_1-C_{10} alkyl, preferably C_1-C_6 alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6
alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$; or

20 ii) a six-membered heterocyclic ring containing one, two or three ring
heteroatoms selected from N, S or O including, but not limited to pyridine,
pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring
being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10}
alkyl, preferably C_1-C_6 alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-CHO$, $-NO_2$,
 $-NH_2$, $-CN$, $-CF_3$ or $-OH$; or

25 iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and
optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including,

Sub
PA
JMK
15

5 but not limited to benzofuran, indole, indoline, naphthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;

10 n is an integer from 0 to 3;

Sub A
R₅ is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, (CH₂)_n-CH=CH-COOH, -(CH₂)_n-tetrazole, -CH₂-phenyl-C(O)-benzothiazole, or

15

or a moiety selected from the formulae -L³-M³;

wherein L³ is a bridging or linking moiety selected from a chemical bond, -(CH₂)_n-, -S-, -O-, -SO₂-, -C(O)-, -(CH₂)_n-C(O)-, -(CH₂)_n-C(O)-(CH₂)_n-, -(CH₂)_n-O-(CH₂)_n-, -(CH₂)_n-S-(CH₂)_n-, -C(Z)-N(R₆)-, -C(Z)-N(R₆)-(CH₂)_n-, -C(O)-C(Z)-N(R₆)-, -C(O)-C(Z)-N(R₆)-(CH₂)_n-, -C(Z)-NH-SO₂-, -C(Z)-NH-SO₂-(CH₂)_n-, -(CH₂)_n-S-(CH₂)_n-, -(CH₂)_n-SO-(CH₂)_n-, -(CH₂)_n-SO₂-(CH₂)_n-, or -(CH₂)_n-CH=CH-(CH₂)_n-O-;

5 M^3 is selected from the group of $-\text{COOH}$, $-(\text{CH}_2)_n\text{-COOH}$, $-(\text{CH}_2)_n\text{-C(O)-COOH}$, tetrazole,

where R_8 , R_9 or R_{10} can be attached anywhere in the cyclic or bicyclic system,
 n is an integer from 0 to 3;

15

R_8 , in each appearance, is independently selected from H , $-\text{COOH}$, $-(\text{CH}_2)_n\text{-COOH}$, $-(\text{CH}_2)_n\text{-C(O)-COOH}$, tetrazole, $-\text{C(O)-NH}_2$, $-(\text{CH}_2)_n\text{-C(O)-NH}_2$,

- 157 -

5

n is an integer from 0 to 3;

R₉ is selected from H, halogen, -CF₃, -OH, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), or -N(C₁-C₆ alkyl)₂;

n is an integer from 0 to 3;

R₁₀ is selected from the group of H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, 15 -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂,

006260-T202400

- 158 -

- 159 -

5 R_{11} is selected from H, C_1-C_6 lower alkyl, C_1-C_6 cycloalkyl, $-CF_3$, $-COOH$, $-(CH_2)_n-COOH$, $-(CH_2)_n-C(O)-COOH$,

10 with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{11} shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

15 n is an integer from 0 to 3;
or a pharmaceutically acceptable salt thereof.

5. A compound of Claim 1 having the formulae:

wherein:

5 R_1 is selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, preferably $-C_1-C_6$ alkyl, $-S-C_1-C_{10}$ alkyl, preferably $-S-C_1-C_6$ alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-CN$, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, $-O$ -phenyl, $-S$ -phenyl, benzyl, $-O$ -benzyl, $-S$ -benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$, or $-OH$;
10 or R_1 and R_1' are independently a moiety of the formulae:

20 R_6 is selected from H, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-C(O)CH_3$, phenyl, $-O$ -phenyl, benzyl, $-O$ -benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$, or $-OH$;

5 *R₁* is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), -CF₃, C₁-C₆ alkyl, C₃-C₅ cycloalkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N-(C₁-C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, (CH₂)_nphenyl, phenyl-O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, -(CH₂)_n-phenyl-O-phenyl, -(CH₂)_n-phenyl-CH₂-phenyl, -(CH₂)_n-O-phenyl-CH₂-phenyl, -(CH₂)_n-phenyl-(O-CH₂-phenyl)₂, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂, -CF₃, CO₂H, or -OH;

Sub A/C

10 *R₂* is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, preferably -C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -CN, -NO₂, -NH₂, -NH-C₁-C₆ alkyl, -N(C₁-C₆ alkyl)₂, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;

15 *R₃* is selected from H, -CF₃, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl, -C₃-C₁₀ cycloalkyl, -CHO, halogen, -(CH₂)_nC(O)NH₂ or a moiety of the formula -L¹-M¹:

20 L¹ indicates a linking or bridging group of the formulae -(CH₂)_n-, -S-, -O-, -C(O)-, -(CH₂)_n-C(O)-, -(CH₂)_n-C(O)-(CH₂)_n-, -(CH₂)_n-O-(CH₂)_n-, or -(CH₂)_n-S-(CH₂)_n-, C(O)C(O)X, or -(CH₂)_n-N-(CH₂)_n;

25 where X is O or N

M¹ is selected from:

30 a) H, the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted

Sub A1 X 10

5 by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$; or

15 b) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, isothiazole, isoxazole, pyrrolidine, pyrroline, imidazolidine, pyrazolidine, pyrazole, pyrazoline, imidazole, tetrazole, oxathiazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$; or

20 c) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to, pyran, pyridine, pyrazine, pyrimidine, pyridazine, piperidine, piperazine, tetrazine, thiazine, thiadizine, oxazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, $-CHO$, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$ or $-OH$; or

25 d) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, chromene, indole, isoindole, indoline, isoindoline, naphthalene, purine, indolizine, indazole, quinoline, isoquinoline, quinolizine, quinazoline, cinnoline, phthalazine, or napthyridine, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, $-CHO$, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$ or $-OH$;

- 163 -

5

Sub A
 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, $-(CH_2)_n$ - C_3 - C_6 cycloalkyl, $-(CH_2)_n$ -S-($CH_2)_n$ - C_3 - C_5 cycloalkyl, $-(CH_2)_n$ -O-($CH_2)_n$ - C_3 - C_5 cycloalkyl, or the groups of:

10

a) a moiety of the formulae $-(CH_2)_n$ -A, $-(CH_2)_n$ -S-A, or $-(CH_2)_n$ -O-A, wherein A is the moiety:

wherein

15

B and C are independently selected from phenyl, pyridinyl, furyl, thieryl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, $-CF_3$, $-OH$, $-C_1$ - C_6 alkyl, C_1 - C_6 alkoxy, or $-NO_2$;

20

R_s is selected from $-COOH$, $-C(O)-COOH$, $-(CH_2)_n-C(O)-COOH$, $-(CH_2)_n-COOH$, $(CH_2)_n-CH=CH-COOH$, $-(CH_2)_n$ -tetrazole, or

or a moiety selected from the formulae $-L^3-M^3$;

25

5 wherein L^3 is a bridging or linking moiety selected from a chemical bond, $-(CH_2)_n-$, $-SO_2-$, $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, $-(CH_2)_n-S-(CH_2)_n-$, $-(CH_2)_n-SO-(CH_2)_n-$, $-(CH_2)_n-SO_2-(CH_2)_n-$, or $-(CH_2)_n-CH=CH-(CH_2)_n-O-$;

*Sud
H
Cmt*
M³ is selected from the group of $-COOH$, $-(CH_2)_n-COOH$, $-(CH_2)_n-C(O)-COOH$, tetrazole,

10

where R_8 , R_9 can be attached anywhere in the cyclic or bicyclic system,
n is an integer from 0 to 3;

15

R_8 , in each appearance, is independently selected from H, $-COOH$, $-(CH_2)_n-COOH$, $-(CH_2)_n-C(O)-COOH$, tetrazole, $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

006260 "TAC22000

- 165 -

5 *Sulf*
at 1/2
May
1/2
n is an integer from 0 to 3;

10 R_9 is selected from H, halogen, $-CF_3$, $-OH$, $-COOH$, $-(CH_2)_n-COOH$,
 $-(CH_2)_n-C(O)-COOH$, $-C_1-C_6$ alkyl, $-O-C_1-C_6$ alkyl, $-NH(C_1-C_6$ alkyl), or $-N(C_1-C_6$ alkyl) $_2$;

15 n is an integer from 0 to 3;

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , shall contain at least one acidic
15 moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the
formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

20 n is an integer from 0 to 3;
or a pharmaceutically acceptable salt thereof.

6. A compound of Claim 1 having the formulae:

09522000-09522000

- 166 -

wherein:

10 R_1 is selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, preferably $-C_1-C_6$ alkyl, $-S-C_1-C_{10}$ alkyl, preferably $-S-C_1-C_6$ alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-CN$, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, $-O-phenyl$, $-S-phenyl$, benzyl, $-O-benzyl$, $-S-benzyl$, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$, or $-OH$;
or R_1 and R_1' are independently a moiety of the formulae:
or a moiety of the formulae:

15

- 167 -

5

R_6 is selected from H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, $-C(O)CH_3$, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$, or $-OH$;

10

R_7 is selected from $-(CH_2)_n-COOH$, $-(CH_2)_n-N-(C_1-C_6\text{ alkyl})_2$, $-(CH_2)_n-NH-(C_1-C_6\text{ alkyl})$, $-CF_3$, $C_1-C_6\text{ alkyl}$, $C_3-C_5\text{ cycloalkyl}$, $C_1-C_6\text{ alkoxy}$, $-NH-(C_1-C_6\text{ alkyl})$, $-N-(C_1-C_6\text{ alkyl})_2$, pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, $(CH_2)_n$ phenyl, phenyl-O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, $-(CH_2)_n$ -phenyl-O-phenyl, $-(CH_2)_n$ -phenyl-CH₂-phenyl, $-(CH_2)_n$ -O-phenyl-CH₂-phenyl, $-(CH_2)_n$ -phenyl-(O-CH₂-phenyl)₂, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, $C_1-C_6\text{ alkyl}$, $C_1-C_6\text{ alkoxy}$, $-NH_2$, $-NO_2$, $-CF_3$, CO_2H , or $-OH$;

20

R_2 is selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, preferably $-C_1-C_6$ alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-CHO$, $-CN$, $-NO_2$, $-NH_2$, $-NH-C_1-C_6$ alkyl, $-N(C_1-C_6\text{ alkyl})_2$, $-N(SO_2-C_1-C_6\text{ alkyl})$, or $-SO_2-C_1-C_6\text{ alkyl}$;

R_3 is selected from H, $-CF_3$, C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, C_3 - C_{10} cycloalkyl, $-C_1$ - C_6 alkyl, $-C_3$ - C_{10} cycloalkyl, -CHO, halogen, $(CH_2)_nC(O)NH_2$ or a moiety of the formula $-L^1-M^1$:

30

L' indicates a linking or bridging group of the formulae $-(CH_2)_n-$, $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, or $-(CH_2)_n-S-(CH_2)_n-$, $C(O)C(O)X$, $-(CH_2)_n-N-(CH_2)_n$;

- 168 -

5 M^1 is selected from:

10 a) H, the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, C_3 - C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$; or

15 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, $-(CH_2)_n-C_3-C_6$ cycloalkyl, $-(CH_2)_n-S-(CH_2)_n-C_3-C_5$ cycloalkyl, $-(CH_2)_n-O-(CH_2)_n-C_3-C_5$ cycloalkyl, or the groups of:

15 a) a moiety of the formulae $-(CH_2)_n-A$, $-(CH_2)_n-S-A$, or $-(CH_2)_n-O-A$, wherein A is the moiety:

wherein

20 D is H, C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, or $-CF_3$;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$;

25 R_5 is selected from $-COOH$, $-C(O)-COOH$, $-(CH_2)_n-C(O)-COOH$, $-(CH_2)_n-COOH$, $(CH_2)_n-CH=CH-COOH$, $-(CH_2)_n$ -tetrazole, or a moiety selected from the formulae $-L^3-M^3$;

- 169 -

5 wherein L^3 is a bridging or linking moiety selected from a chemical bond, $-(CH_2)_n-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, $-(CH_2)_n-S-(CH_2)_n-$, $-(CH_2)_n-SO-(CH_2)_n-$, $-(CH_2)_n-SO_2-(CH_2)_n-$, or $-(CH_2)_n-CH=CH-(CH_2)_n-O-$;

M^3 is selected from the group of $-COOH$, $-(CH_2)_n-COOH$, $-(CH_2)_n-C(O)-COOH$, tetrazole,

10

where R_8, R_9 can be attached anywhere in the cyclic or bicyclic system, n is an integer from 0 to 3;

15

R_8 , in each appearance, is independently selected from H, -COOH, $-(CH_2)_n-$ COOH, $-(CH_2)_n-C(O)-COOH$, tetrazole, $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

- 170 -

5

n is an integer from 0 to 3;

10

*R*₉ is selected from H, halogen, -CF₃, -OH, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), or -N(C₁-C₆ alkyl)₂;

n is an integer from 0 to 3;

15

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R₅, R₈, R₉, shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;

or a pharmaceutically acceptable salt thereof.

20

- 171 -

5 7. A compound of Claim 1 having the formulae:

wherein:

10 R_1 and R_1' are independently selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, preferably $-C_1-C_6$ alkyl, $-S-C_1-C_{10}$ alkyl, preferably $-S-C_1-C_6$ alkyl, C_1-C_{10} alkoxy, preferably C_1-C_6 alkoxy, $-CN$, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, $-O-phenyl$, $-S-phenyl$, benzyl, $-O-benzyl$, $-S-benzyl$, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$, or $-OH$;

15 or R_1 and R_1' are independently a moiety of the formulae:

- 172 -

Sub A
10 R_6 is selected from H, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH;

15 R_7 is selected from -OH, -CF₃, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N-(C₁-C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, -CN, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CF₃, or -OH;

20 R_2 is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, preferably -C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -CN, -NO₂, -NH₂, -NH-C₁-C₆ alkyl, -N(C₁-C₆ alkyl)₂, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;

25 R_3 is selected from H, -C₁-C₁₀ alkyl, preferably -C₁-C₆ alkyl, -(CH₂)-OH, (CH₂)_nC(O)NH₂, -CH₂-O-(C₁-C₆ alkyl), -CH₂-O-CH₂-phenyl, -CH₂-N-(C₁-C₆ alkyl), -CH₂-N-CH₂-phenyl, the phenyl rings of which are optionally substituted by 1 or 2 groups selected from H, halogen, -CF₃ or -C₁-C₆ alkyl;

X is O or N
n = 0 or 1;

- 173 -

5

Sub A1
R₄ is a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A, wherein
A is the moiety:

wherein

10

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂;

15

R₅ is a moiety selected from the groups of:

20

5 wherein L¹ is a bridging or linking moiety selected from a chemical bond, -(CH₂)_n-, -(CH₂)_n-C(O)-(CH₂)_n-, -(CH₂)_n-O-(CH₂)_n-, -(CH₂)_n-S-(CH₂)_n-, -(CH₂)_n-SO-(CH₂)_n-, -(CH₂)_n-SO₂-(CH₂)_n-, or -(CH₂)_n-CH=CH-(CH₂)_n-O-;

where n' is an integer from 0 to 5;

10 R₉ is selected from -CF₃, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH(C₁-C₆ alkyl), or -N(C₁-C₆ alkyl)₂,
n in each instance is independently selected as an integer from 0 to 3;
or a pharmaceutically acceptable salt thereof.

8. A compound of Claim 1 having the formulae:

wherein:

R₁ is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, preferably -C₁-C₆ alkyl, -S-C₁-C₁₀ alkyl, preferably -S-C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -ON, -NO₂, -NH₂, -HN(C₁-C₆), -N(C₁-C₆)₂, phenyl, -O-phenyl, -S-phenyl,

5 benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being
optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl,
C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH;

10 R₂ is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, preferably -C₁-C₆
alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -CN, -NO₂, -NH₂, -NH-C₁-C₆
alkyl, -N(C₁-C₆ alkyl)₂, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;

15 R₃ is selected from H, -C₁-C₁₀ alkyl, preferably -C₁-C₆ alkyl, -(CH₂)-OH,
(CH₂)_nC(O)NH₂, -CH₂-O-(C₁-C₆ alkyl), -CH₂-O-CH₂-phenyl, -CH₂-N-(C₁-C₆ alkyl), -
CH₂-N-CH₂-phenyl, the phenyl rings of which are optionally substituted by 1 or 2
groups selected from H, halogen, -CF₃ or -C₁-C₆ alkyl;

n = 0 or 1.

20 R₄ is a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A, wherein
A is the moiety:

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

25 B and C are independently selected from phenyl, pyridinyl, furyl, thienyl or
pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2,
substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -
NO₂;

- 176 -

5

R₅ is a moiety selected from the groups of:

*Sub
mt
mt*

10

wherein L¹ is a bridging or linking moiety selected from a chemical bond, -(CH₂)_n-, -(CH₂)_n-C(O)-(CH₂)_n-, -(CH₂)_n-O-(CH₂)_n-, -(CH₂)_n-S-(CH₂)_n-, -(CH₂)_n-SO-(CH₂)_n-, -(CH₂)_n-SO₂-(CH₂)_n-, or -(CH₂)_n-CH=CH-(CH₂)_n-O-;

where n = 0-5

15

R₉ is selected from -CF₃, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH(C₁-C₆ alkyl), or -N(C₁-C₆ alkyl)₂,

20

n in each instance is independently selected as an integer from 0 to 3
or a pharmaceutically acceptable salt thereof

- 177 -

5 9. A compound of Claim 1 having the formulae:

wherein:

10 R_1 is selected from H, halogen, $-CF_3$, $-OH$, $-CN$, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, $-N-SO_2-C_1-C_6$ alkyl, or $-SO_2-C_1-C_6$ alkyl;

15 R_2 is selected from H, halogen, $-CF_3$, $-OH$, $-CN$, $-NO_2$, $-NH_2$, $-NH-C_1-C_6$ alkyl, $-N(C_1-C_6)_2$, $-N-SO_2-C_1-C_6$ alkyl, or $-SO_2-C_1-C_6$ alkyl;

20 R_3 is selected from H, $-C_1-C_{10}$ alkyl, preferably $-C_1-C_6$ alkyl, $-(CH_2)_2-OH$, $(CH_2)_nC(O)NH_2$, $-CH_2-O-(C_1-C_6$ alkyl), $-CH_2-O-CH_2$ -phenyl, $-CH_2-N-(C_1-C_6$ alkyl), $-CH_2-N-CH_2$ -phenyl, the phenyl rings of which are optionally substituted by 1 or 2 groups selected from H, halogen, $-CF_3$ or $-C_1-C_6$ alkyl;

$n = 0$ or 1.

R_5 is a moiety selected from the groups of:

- 178 -

*Sub A1
Cmt*

5

or

wherein L^1 is a bridging or linking moiety selected from a chemical bond, $-(\text{CH}_2)_n-$, $-(\text{CH}_2)_n-\text{C}(\text{O})-(\text{CH}_2)_n-$, $-(\text{CH}_2)_n-\text{O}-(\text{CH}_2)_n-$, $-(\text{CH}_2)_n-\text{S}-(\text{CH}_2)_n-$, $-(\text{CH}_2)_n-\text{SO}-(\text{CH}_2)_n-$, $-(\text{CH}_2)_n-\text{SO}_2-(\text{CH}_2)_n-$, or $-(\text{CH}_2)_n-\text{CH}=\text{CH}-(\text{CH}_2)_n-\text{O}-$;

10 n' in each instance is independently selected as an integer from 0 to 5;
or a pharmaceutically acceptable salt thereof.

10. A compound of Claim 1 which is 4-{[(E)-4-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)-2-butenyl]oxy}benzoic acid or a pharmaceutically acceptable salt thereof.

11. A compound of Claim 1 which is 4-[2-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)ethoxy]benzoic acid or a pharmaceutically acceptable salt thereof.

20

00000000000000000000000000000000

5 12. A compound of Claim 1 which is 3-{4-[2-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)ethoxy]phenyl}propanoic acid or a pharmaceutically acceptable salt thereof.

10 13. A compound of Claim 1 which is 3-(4-{{2-(3-benzhydryl-6-chloro-1H-indol-1-yl)ethyl}sulfonyl}phenyl)propanoic acid or a pharmaceutically acceptable salt thereof.

15 14. A compound of Claim 1 which is 4-{{2-(3-benzhydryl-6-chloro-1H-indol-1-yl)ethyl}sulfonyl}benzoic acid or a pharmaceutically acceptable salt thereof.

15 15. A compound of Claim 1 which is 4-[2-(3-benzhydryl-2-methyl-1H-indol-1-yl)ethoxy]benzoic acid or a pharmaceutically acceptable salt thereof.

20 16. A method of inhibiting the phospholipase activity of an enzyme in a mammal in need thereof comprising administering to said mammal a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.

25 17. A method of treating or preventing an inflammatory response in a mammal in need thereof, the method comprising administering to said mammal a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.

30 18. The method of Claim 17 wherein the inflammatory response is associated with inflammatory bowel disease.

- 180 -

5 19. The method of Claim 17 wherein the inflammatory response is
associated with osteoarthritis, psoriatic arthritis or rheumatoid arthritis.

10 20. A pharmaceutical composition comprising a therapeutically effective
amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, and
a pharmaceutically acceptable carrier.

00062600-0002001-00000000