

The Grammar of Graphics

Homicides per 100,000 population, 50 worst cities*, 2015 or latest available (Number of cities listed per country)

Sources: Igarapé Institute; press reports; The Economist

Homicides per 100,000 population, 50 worst cities*, 2015 or latest available (Number of cities listed per country)

Sources: Igarapé Institute; press reports; The Economist

Homicides per 100,000 population, 50 worst cities*, 2015 or latest available (Number of cities listed per country)

Sources: Igarapé Institute; press reports; The Economist

Homicides per 100,000 population, 50 worst cities*, 2015 or latest available (Number of cities listed per country)

Sources: Igarapé Institute; press reports; The Economist

Homicides per 100,000 population, 50 worst cities*, 2015 or latest available (Number of cities listed per country)

Sources: Igarapé Institute; press reports; The Economist

Homicides per 100,000 population, 50 worst cities*, 2015 or latest available (Number of cities listed per country)

Sources: Igarapé Institute; press reports; The Economist

Homicides per 100,000 population, 50 worst cities*, 2015 or latest available (Number of cities listed per country)

Sources: Igarapé Institute; press reports; *The Economist*

1. Data

what you find in your data table, your columns, what's varying

1. Data

what you find in your data table, your columns, what's varying

2. Representation type

points, lines, boxplot, barplot, ...

1. Data what you find in your data table, your columns, what's varying

2. Representation type points, lines, boxplot, barplot, ...

3. Representation attributes size, color, shape, transparency, ...

1. Data what you find in your data table, your columns, what's varying

2. Representation type points, lines, boxplot, barplot, ...

3. Representation attributes size, color, shape, transparency, ...

4. Scales / legends breaks, labels, transformation, ...

1. Data what you find in your data table, your columns, what's varying

2. Representation type points, lines, boxplot, barplot, ...

3. Representation attributes size, color, shape, transparency, ...

4. Scales / legends breaks, labels, transformation, ...

5. Global customizing borders, background, themes, ...

how to write it with ggplot

```
ggplot(data = TAB, ...) + → your dataset (1.)
.....+
....+
....+
```

1. Data

- 2. Representation type
- 3. Representation attributes
- 4. Scales / legends
- 5. Global aesthetics

how to write it with ggplot

```
ggplot(data = TAB, ...) +
    geom_...( .... ) +
    .... +
    .... +
```

```
    → your dataset (1.)
    → at least one geom_ to represent the elements of your dataset (2.)
```

- 1. Data
- 2. Representation type
- 3. Representation attributes
- 4. Scales / legends
- 5. Global aesthetics

how to write it with ggplot

```
1. Data
```

- 2. Representation type
- 3. Representation attributes
- 4. Scales / legends
- 5. Global aesthetics

```
ggplot(data = TAB, ...) +
    geom_...( .... ) +
    ..... +
    scale_color_...( .. ) +
    theme( ..... )
```

```
    → your dataset (1.)
    → at least one geom_ to represent the elements of your dataset (2.)
    → potentially some other elements for
```

representation (3. 4. and 5.)

aesthetics

Visual properties of the geom

What you find in your data table, your columns, what's varying

aesthetics

```
ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Production))
```

Visual properties of the geom

What you find in your data table, your columns, what's varying

aesthetics

```
ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Production))
```

Visual properties of the geom

What you find in your data table, your columns, what's varying

```
Aesthetics
geom point() understands the following aesthetics (required aesthetics are in bold):
    . X
    · y

    alpha

    colour

                                                ?geom_point()

    fill

    group

    shape

    size

    stroke
```

aesthetics

```
ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Production))
```

Visual properties of the geom

What you find in your data table, your columns, what's varying

aesthetics

```
ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Production))
```

Visual properties of the geom

What you find in your data table, your columns, what's varying

```
Aesthetics

geom_path() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha
• colour
• group
• linetype
• size
```

aesthetics

```
Visual properties of the geom
```

What you find in your data table, your columns, what's varying

```
ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Production))

ggplot(data = TAB, aes(x = Year, y = Production)) +
    geom_point()
```

aesthetics

what's varying

aesthetics

```
Visual properties of the geom
```

What you find in your data table, your columns, what's varying

```
ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Production))

ggplot(data = TAB, aes(x = Year, y = Production)) +
    geom_point()

ggplot(data = TAB, aes(x = Year, y = Production)) +
    geom_point() +
    geom_line()

ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Production)) +
    geom_point(aes(x = Year, y = Production)) +
    geom_line() +
```

aesthetics

```
Visual properties of the geom
```

What you find in your data table, your columns, what's varying

```
ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Production))

ggplot(data = TAB, aes(x = Year, y = Production)) +
    geom_point()

ggplot(data = TAB, aes(x = Year, y = Production)) +
    geom_point() +
    geom_line()

ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Production)) +
    geom_line() +
```

aesthetics

```
ggplot(data = TAB) +
                                geom point(aes(x = Year, y = Production))
Visual properties
                           ggplot(data = TAB, aes(x = Year, y = Production)) +
  of the geom
                                geom_point()
                           ggplot(data = TAB, aes(x = Year, y = Production)) +
What you find in
your data table,
                                geom_point() +
 your columns,
                                geom_line()
 what's varying
                           ggplot(data = TAB) +
                                geom_point(aes(x = Year, y = Production)) +
                                geom_line() +
                           ggplot(data = TAB, aes(x = Year, y = Production)) +
                                geom point() +
```

geom line(aes(y = Density))

aesthetics, melt

Fictitious example:

Year	Murder_rate	Suicide_rate	
1992 1995 1996 2000 2003	1,30 1,20 0,67	7,6 12,1 13,8 5,5 11,5	

aesthetics, melt

Fictitious example:

```
ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Murder_rate))
```

Year	Murder_rate	Suicide_rate	
1992 1995 1996 2000 2003	1,30 1,20 0,67	7,6 12,1 13,8 5,5 11,5	

aesthetics, melt

Fictitious example:

```
ggplot(data = TAB) +

geom_point(aes(x = Year, y = Murder_rate))

Year Murder_rate Suicide_rate

1992 1,10 7,6
1995 1,30 12,1
1996 1,20 13,8
2000 0,67 5,5
2003 1,10 11,5
```

aesthetics, melt

<u>Fictitious example :</u>

Year	Murder_rate	Suicide_rate	_
1992 1995 1996 2000 2003	1,30 1,20 0,67	7,6 12,1 13,8 5,5 11,5	-

```
ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Murder_rate))

ggplot(data = TAB, aes(x = Year, y = Murder_rate)) +
    geom_point()

ggplot(data = TAB, aes(x = Year)) +
    geom_point(aes(y = Murder_rate), color = 'blue') +
    geom_point(aes(y = Suicide_rate), color = 'orange')
```

aesthetics, melt

Fictitious example:

Year	Murder_rate	Suicide_rate	
1992 1995 1996 2000 2003	1,30 1,20 0,67	7,6 12,1 13,8 5,5 11,5	

↓ melt

Year	event	rate	
1992	murder	1,10	
1992	suicide	7,6	
1995	murder	1,30	
1995	suicide	12,1	
1996	murder	1,20	
1996	suicide	13,8	
2000	murder	0,67	
2000	suicide	5,5	
2003	murder	1,10	
2003	suicide	11,5	

```
ggplot(data = TAB) +
    geom_point(aes(x = Year, y = Murder_rate))

ggplot(data = TAB, aes(x = Year, y = Murder_rate)) +
    geom_point()

ggplot(data = TAB, aes(x = Year)) +
    geom_point(aes(y = Murder_rate), color = 'blue') +
    geom_point(aes(y = Suicide_rate), color = 'orange')
```

aesthetics, melt

Fictitious example:

```
ggplot(data = TAB) +
                                        geom_point(aes(x = Year, y = Murder_rate))
    Murder rate Suicide rate
Year
                                   ggplot(data = TAB, aes(x = Year, y = Murder_rate)) +
1992 1,10
               7,6
1995
    1,30
                12.1
                                        geom_point()
1996
     1.20
                13,8
                5,5
2000
    0.67
2003
    1.10
                11,5
                                   ggplot(data = TAB, aes(x = Year)) +
                                        geom_point(aes(y = Murder_rate), color = 'blue') +
            SAME SCALES
                                        geom_point(aes(y = Suicide_rate), color = 'orange')
```

Year event rate 1992 murder 1,10 1992 suicide 7,6 1.30 1995 murder 1995 suicide 12,1 1996 murder 1,20 13,8 1996 suicide 2000 murder 0,67 5,5 2000 suicide 1,10 2003 murder 11.5 2003 suicide

aesthetics, melt

Fictitious example:

suicide

11.5

```
ggplot(data = TAB) +
                                            geom point(aes(x = Year, y = Murder rate))
     Murder rate Suicide rate
Year
                                      ggplot(data = TAB, aes(x = Year, y = Murder rate)) +
1992 1.10
                 7,6
1995 1.30
                 12.1
                                            geom_point()
1996 1.20
                 13,8
                 5,5
11,5
2000 0.67
2003
     1.10
                                      ggplot(data = TAB, aes(x = Year)) +
                                            geom_point(aes(y = Murder_rate), color = 'blue') +
             ↓ melt
                         column names
                                            geom_point(aes(y = Suicide_rate), color = 'orange')
                        = new factor
Year
     event
                 rate
1992 murder
                 1,10
1992
     suicide
                 7,6
1995
     murder
                 1.30
1995
     suicide
                 12,1
1996
     murder
                 1,20
1996
     suicide
                 13,8
2000
     murder
                 0,67
                 5,5
2000
     suicide
     murder
                 1.10
```

aesthetics, melt

```
Fictitious example:
```

```
ggplot(data = TAB) +
                                            geom point(aes(x = Year, y = Murder rate))
     Murder_rate Suicide_rate
Year
                                      ggplot(data = TAB, aes(x = Year, y = Murder rate)) +
1992 1.10
                 7,6
1995 1.30
                 12.1
                                            geom_point()
1996 1.20
                 13,8
                 5,5
11,5
2000 0.67
2003 1.10
                                      ggplot(data = TAB, aes(x = Year)) +
                                            geom_point(aes(y = Murder_rate), color = 'blue') +
                         multiplication
             ↓ melt
                         of rows
                                            geom_point(aes(y = Suicide_rate), color = 'orange')
                         (* nb of columns)
Year
     event
                 rate
1992 murder
                 1,10
1992
     suicide
                 7,6
1995
     murder
                 1.30
1995
     suicide
                 12,1
1996
     murder
                 1,20
                 13,8
1996
    suicide
2000
     murder
                 0,67
                 5,5
2000
     suicide
                 1.10
2003
     murder
2003
     suicide
                 11.5
```

aesthetics, melt

Fictitious example:

2003 suicide

11.5

```
geom point(aes(x = Year, y = Murder rate))
Year Murder rate Suicide rate
                                     ggplot(data = TAB, aes(x = Year, y = Murder rate)) +
1992 1.10
                7,6
1995 1.30
                12.1
                                           geom point()
                13.8
1996 1.20
                5,5
11,5
2000 0.67
2003 1.10
                                     ggplot(data = TAB, aes(x = Year)) +
                                           geom_point(aes(y = Murder_rate), color = 'blue') +
             ↓ melt
                                           geom_point(aes(y = Suicide_rate), color = 'orange')
Year event
                rate
1992 murder
                1,10
1992 suicide
                 7,6
1995 murder
                 1.30
                                     ggplot(data = TAB) +
1995 suicide
                 12,1
                 1,20
                                           geom point(aes(x = Year, y = rate, color = event))
1996 murder
1996 suicide
                 13,8
2000 murder
                0,67
2000 suicide
                 5,5
                                     ggplot(data = TAB, aes(x = Year, y = rate, color = event)) +
     murder
                 1.10
```

geom_point()

ggplot(data = TAB) +

aesthetics, melt

geom_point()

Fictitious example:

```
Year Murder_rate Suicide_rate

1992 1,10 7,6
1995 1,30 12,1
1996 1,20 13,8
2000 0,67 5,5
2003 1,10 11,5
```

Year	event	rate	
1992 1992 1995 1995 1996 1996 2000 2000 2003 2003	murder suicide murder suicide murder suicide murder suicide murder suicide	1,10 7,6 1,30 12,1 1,20 13,8 0,67 5,5 1,10 11,5	
		,-	

```
ggplot(data = TAB) +
     geom point(aes(x = Year, y = Murder rate))
ggplot(data = TAB, aes(x = Year, y = Murder rate)) +
     geom_point()
ggplot(data = TAB, aes(x = Year)) +
     geom_point(aes(y = Murder_rate), color = 'blue') +
     geom_point(aes(y = Suicide_rate), color = 'orange')
ggplot(data = TAB) +
     geom point(aes(x = Year, y = rate, color = event))
ggplot(data = TAB, aes(x = Year, y = rate, color = event)) +
```

aesthetics, melt

Fictitious example:

1996 murder

1996 suicide

2000 suicide

murder

murder

suicide

2000

2003

```
Year Murder_rate Suicide_rate

1992 1,10 7,6
1995 1,30 12,1
1996 1,20 13,8
2000 0,67 5,5
2003 1,10 11,5

melt
```

```
        Year
        event
        rate

        1992
        murder
        1,10

        1992
        suicide
        7,6

        1995
        murder
        1,30

        1995
        suicide
        12,1
```

1,20

13,8

0.67

5,5

1.10

11.5

```
ggplot(data = TAB) +
     geom point(aes(x = Year, y = Murder rate))
ggplot(data = TAB, aes(x = Year, y = Murder rate)) +
     geom point()
ggplot(data = TAB, aes(x = Year)) +
     geom_point(aes(y = Murder_rate), color = 'blue') +
     geom point(aes(y = Suicide_rate), color = 'orange')
ggplot(data = TAB) +
     geom_point(aes(x = Year, y = rate, color = event))
ggplot(data = TAB, aes(x = Year, y = rate, color = event)) +
     geom_point()
```

aesthetics, melt

Fictitious example:

Year	Murder_rate	Suicide_rate
1992 1995 1996 2000 2003	1,30 1,20 0,67	7,6 12,1 13,8 5,5 11,5

Year	event	rate	
1992 1992 1995 1995 1996 1996 2000 2000 2003	murder suicide murder suicide murder suicide murder suicide murder	1,10 7,6 1,30 12,1 1,20 13,8 0,67 5,5 1,10	
2003	suicide	11,5	

```
What about ??
ggplot(data = TAB, aes(x = Year, y = rate, color = 'blue')) +
   geom_point()
```

```
ggplot(data = TAB, aes(x = Year)) +
    geom_point(aes(y = Murder_rate), color = 'blue') +
    geom_point(aes(y = Suicide_rate), color = 'orange')

dgplot(data = TAB) +
    geom_point(aes(x = Year, y = rate, color = event))

ggplot(data = TAB, aes(x = Year, y = rate, color = event)) +
    geom_point()
```

aesthetics, melt

Fictitious example:

Year	Murder_rate	Suicide_rate
1992 1995 1996 2000 2003	1,30 1,20 0,67	7,6 12,1 13,8 5,5 11,5

Year	event	rate	
1992 1992 1995 1995 1996 1996 2000 2000 2003 2003		1,10 7,6 1,30 12,1 1,20 13,8 0,67 5,5 1,10 11,5	

```
ggplot(data = TAB) +
     geom_point(aes(x = Year, y = Murder_rate))
ggplot(data = TAB, aes(x = Year, y = Murder_rate)) +
     geom point()
ggplot(data = TAB, aes(x = Year)) +
     geom_point(aes(y = Murder_rate), color = 'blue') +
     geom_point(aes(y = Suicide_rate), color = 'orange')
ggplot(data = TAB) +
     geom_point(aes(x = Year, y = rate, color = event))
ggplot(data = TAB, aes(x = Year, y = rate, color = event)) +
     geom_point()
```

EXERCISE 1

FILE: EX1_TAB_homicide.csv

Create a simple ggplot graphic with one geometry.

The world's most murderous metropolises (re-ranked)

Homicides per 100,000 population, 50 worst cities*, 2015 or latest available (Number of cities listed per country)

Sources: Igarapé Institute; press reports; The Economist

*With populations of 250,000 or more

Economist.com

geom ...

« Basic » geometries :

- point
- line
- boxplot
- histogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

geom ...

« Basic » geometries :

- point
- line
- boxplot
- histogram

Other geometries:

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

The world's most murderous metropolises (re-ranked)

Homicides per 100,000 population, 50 worst cities*, 2015 or latest available (Number of cities listed per country)

Sources: Igarapé Institute; press reports; The Economist

*With populations of 250,000 or more

Economist.com

geom ...

« Basic » geometries :

- point
- line
- boxplot
- histogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

geom ...

« Basic » geometries :

- point
- line
- boxplot
- histogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

geom_ ...

« Basic » geometries :

- point
- line
- boxplot
- histogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

geom_ ...

« Basic » geometries :

- point
- lineboxplot
- histogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

geom_ ...

« Basic » geometries :

- point
- line
- boxplot
- histogram

```
ggplot(data = TAB
    , aes( x = Ozone )) +
  geom_histogram(aes( fill = ..count.. ))
```

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

geom ...

« Basic » geometries :

- point
- lineboxplot
- histogram

Other geometries:

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

```
12.5
10.0
7.5
5.0
2.5
0.0
Sepal.Length
```

setosa

versicolor

virginica

Species

geom ...

« Basic » geometries :

- point
- line
- boxplot
- histogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

geom_ ...

« Basic » geometries :

- point
- lineboxplot
- histogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

geom_ ...

0.5 1 2 dose

« Basic » geometries :

- point
- lineboxplot
- histogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

geom ...

« Basic » geometries :

- point
- line
- boxplothistogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

geom_ ...

« Basic » geometries :

- point
- line
- boxplot
- histogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

```
ggplot(data = TAB) +
  geom point(aes( x = Country, y = Size cities )
           , position = jitter)
ggplot(data = TAB) +
  geom point(aes( x = Country, y = Size cities )
           , position = position_jitter(width = 0.1
                                         , height = 0.1)
ggplot(data = TAB) +
  geom jitter(aes( x = Country, y
ggplot(data = TAB) +
  geom_abline(slope = 1, intercept = 0) +
  geom hline(yintercept = 10, lty = 2) +
  geom_vline(xintercept = seq(0,5,1))
```

geom_ ...

« Basic » geometries :

- point
- line
- boxplothistogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- **•** ...

```
ggplot(dat
ggplot(data = TAB) +
  geom bar(aes( x = Country ))
                                                                                   y = Size cities )
                                                     geom poi
                        ggplot(data = TAB) +
                          geom errorbar(aes( x = Country
                                                                       = Country, y = Size cities )
ggplot(data = TAB) +
                                             , y = Size mean
 geom bar(aes(x = Cd
                                                                       n = position_jitter(width = 0.1
                                             , vmin = Size min
           . stat = ':
                                                                                            , height = 0.1)
                                             , ymax = Size max ))
ggplot(data = TAB) +
                                                   ggplot(data = TAB) +
  geom col(aes( x = Country, y = Nb cities )) !
                                                     geom jitter(aes( x = Country, y = Size cities ))
```

```
ggplot(data = TAB) +
  geom_abline(slope = 1, intercept = 0) +
  geom_hline(yintercept = 10, lty = 2) +
  geom_vline(xintercept = seq(0,5,1))
```

geom_ ...

« Basic » geometries :

- point
- lineboxplot
- histogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

```
ggplot(data = TAB) +
                                                  ggplot(data = TAB) +
                                                    geom_point(aes( x = Country, y = Size_cities )
  geom bar(aes( x = Country ))
                                                                      n = jitter)
                       ggplot(data = TAB) +
                         geom errorbar(aes( x = Country
ggplot(data = TAB) +
                                                                      != Country, y = Size cities )
                                            v = Size mean
  geom bar(aes(x = C&
                                                                      n = position_jitter(width = 0.1
                                            , vmin = Size min
           . stat = ':
                                                                                           , height = 0.1)
                                            , ymax = Size max ))
                                              ggplot(data = TAP)
ggplot(data = TAB) +
                                                                                              ties ))
  geom co
           ggplot(data = TAB, aes(x = x
                                  , y = y
                                  , fill = Correlation )) +
ggplot(da
             geom_raster() +
  geom_se
             geom contour()
                   , yend = Production max ))
```

geom_ ...

« Basic » geometries :

- point
- lineboxplot
- histogram

- bar / col
- point / jitter
- segment
- boxplot / violin
- abline / hline / vline
- raster / tile
- contour / density
- errorbar
- label
- ٠...

```
ggplot(data = TAB) +
                                                ggplot(data = TAB) +
                                                  geom_point(aes( x = Country, y = Size_cities )
 geom bar(aes( x = Country ))
                                                                  n = jitter)
                      ggplot(data = TAB) +
                        geom_errorbar(aes( x = Country
ggplot(data = TAB) +
                                                                  != Country, y = Size cities )
                                          , y = Size mean
 geom bar(aes(x = C&
                                                                  on = position jitter(width = 0.1
                                          , vmin = Size min
          . stat = ':
                                                                                      , height = 0.1)
                                                       + others...
ggplot(data = TAB) +
 geom co
                                                                                   ize cities ))
                                                    + extensions !!
          ggplot(data = TAB, aes(x = x
                                , fill = Correlation )) +
                                                           i= TAB) +
ggplot(da
            geom raster() +
                                                           le(slope = 1, intercept = 0) +
 geom_se
            geom contour()
                                                           (vintercept = 10, lty = 2) +
                                               -- zeour_vane (xintercept = seq(0,5,1))
                 , yend = Production max ))
```

EXERCISE 2

FILE: EX1_TAB_homicide.csv

Try a new geometry (boxplot). Use several geometries.

FILE: EX2_TAB_countries.csv

Understand geom_bar / geom_col and that ggplot can manipulate and extract information from your data.

facet, melt

Fictitious example:

Year	Murder_rate	Suicide_rate	
1992 1995 1996 2000 2003	1,30 1,20 0,67	7,6 12,1 13,8 5,5 11,5	

V			
Year	event	rate	
1992	murder	1,10	
1992	suicide	7,6	
1995	murder	1,30	
1995	suicide	12,1	
1996	murder	1,20	
1996	suicide	13,8	
2000	murder	0,67	
2000	suicide	5,5	
2003	murder	1,10	
2003	suicide	11,5	

facet, melt

Fictitious example:

```
ggplot(data = TAB, aes(x = Year, y = rate, color = event)) +
    geom_point()
```

Year	Murder_rate	Suicide_rate
1992 1995 1996 2000 2003	1,30 1,20 0,67	7,6 12,1 13,8 5,5 11,5

Year	event	rate	
1992	murder	1,10	
1992	suicide	7,6	
1995	murder	1,30	
1995	suicide	12,1	
1996	murder	1,20	
1996	suicide	13,8	
2000	murder	0,67	
2000	suicide	5,5	
2003	murder	1,10	
2003	suicide	11,5	

facet, melt

<u>Fictitious example :</u>

Year	Murder_rate	Suicide_rate
1992 1995 1996 2000 2003	1,30 1,20 0,67	7,6 12,1 13,8 5,5 11,5

Year	event	rate	
1992 1992 1995 1995 1996 1996 2000 2000 2003 2003	murder suicide murder suicide murder suicide murder suicide murder suicide	1,10 7,6 1,30 12,1 1,20 13,8 0,67 5,5 1,10 11,5	-
	50.5.00	,-	

```
ggplot(data = TAB, aes(x = Year, y = rate, color = event)) +
    geom_point()

ggplot(data = TAB, aes(x = Year, y = rate)) +
    geom_point() +
    facet_wrap(~ event)
```

facet, melt

Fictitious example:

Year	Murder_rate	Suicide_rate
1992 1995 1996 2000 2003	1,30 1,20 0,67	7,6 12,1 13,8 5,5 11,5

ggplot(data = TAB,	aes(x =	Year,	у =	rate,	color	=	event))	+
<pre>geom_point()</pre>								
ggplot(data = TAB,	aes(x =	Year,	у =	rate))	+			
<pre>geom_point() +</pre>	-							

↓ melt

Year	event	rate	
1992	murder	1,10	
1992	suicide	7,6	
1995	murder	1,30	
1995	suicide	12,1	
1996	murder	1,20	
1996	suicide	13,8	
2000	murder	0,67	
2000	suicide	5,5	
2003	murder	1,10	
2003	suicide	11,5	

facet_wrap(~ event)

facet, melt

Fictitious example:

Year	Murder_rate	Suicide_rate
1992 1995 1996 2000 2003	1,30 1,20 0,67	7,6 12,1 13,8 5,5 11,5

ggplot(data = TAB, aes(x = Year, y = rate, color = event)) +
 geom_point()

ggplot(data = TAB, aes(x = Year, y = rate)) +
 geom_point() +

facet_wrap(~ event)

Year	event	rate	
1992	murder	1,10	
1992	suicide	7,6	
1995	murder	1,30	
1995	suicide	12,1	
1996	murder	1,20	
1996	suicide	13,8	
2000	murder	0,67	
2000	suicide	5,5	
2003	murder	1,10	
2003	suicide	11,5	

facet, melt

```
facet_wrap( ... )
```

- ~ 1 or 2 discrete values (factors)
- one after another, minimizing the number of rows and columns
- scales can be changed on both axes

- ~ 1 or 2 discrete values (factors)
- each factor is either displayed on rows or on columns
- scales can be changed on same axes than facets

facet, melt

facet_wrap(...)

- ~ 1 or 2 discrete values (factors)
- one after another, minimizing the number of rows and columns
- scales can be changed on both axes

- ~ 1 or 2 discrete values (factors)
- each factor is either displayed on rows or on columns
- scales can be changed on same axes than facets

facet, melt

facet_wrap(...)

- ~ 1 or 2 discrete values (factors)
- one after another, minimizing the number of rows and columns
- scales can be changed on both axes

- ~ 1 or 2 discrete values (factors)
- each factor is either displayed on rows or on columns
- scales can be changed on same axes than facets

facet, melt

facet_wrap(...)

- ~ 1 or 2 discrete values (factors)
- one after another, minimizing the number of rows and columns
- scales can be changed on both axes

- ~ 1 or 2 discrete values (factors)
- each factor is either displayed on rows or on columns
- scales can be changed on same axes than facets

facet, melt

facet_wrap(...)

- ~ 1 or 2 discrete values (factors)
- one after another, minimizing the number of rows and columns
- scales can be changed on both axes

- ~ 1 or 2 discrete values (factors)
- each factor is either displayed on rows or on columns
- scales can be changed on same axes than facets

facet, melt

facet_wrap(...)

- ~ 1 or 2 discrete values (factors)
- one after another, minimizing the number of rows and columns
- scales can be changed on both axes

- ~ 1 or 2 discrete values (factors)
- each factor is either displayed on rows or on columns
- scales can be changed on same axes than facets

facet, melt

facet_wrap(...)

- ~ 1 or 2 discrete values (factors)
- one after another, minimizing the number of rows and columns
- scales can be changed on both axes

facet_grid(...)

- ~ 1 or 2 discrete values (factors)
- each factor is either displayed on rows or on columns
- scales can be changed on same axes than facets

EXERCISE 3

FILE: EX3_TAB_lifeExpectancy.csv

Manipulate your data with melt to optimize your graphic potentialities. Play with columns, facet, geometries to find what information you can extract from your data.

cosmetics

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

One scale for each aesthetic element ...

- **♦** X
- ♦ y
- ◆ size
- color
- ♦ fill
- shape
- ◆ linetype
- ◆ alpha

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

One scale for each aesthetic element ...

- ♦ x
- ◆ y
- ◆ size
- ◆ color
- ♦ fill
- shape
- linetype
- alpha

- ... directly adapted to the data type ...
- discrete
- continuous

... or defined by the user...

◆ manual

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

One scale for each aesthetic element ...

- **♦** x
- ♦ y
- size
- ◆ color
- ♦ fill
- shape
- linetype
- ◆ alpha

... directly adapted to the data type ...

- discrete
- continuous

... or defined by the user...

◆ manual

 \rightarrow scale_aesthetic_datatype()

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

```
limits ?
```

```
scale_aesthetic_discrete()
scale_aesthetic_continuous()
```

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

scale_aesthetic_discrete()
scale_aesthetic_continuous()

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

scale_aesthetic_discrete()
scale_aesthetic_continuous()

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

scale_aesthetic_discrete()
scale_aesthetic_continuous()

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

scale_aesthetic_discrete()
scale_aesthetic_continuous()

х, у

cosmetics : scales, legends

Each type of variation related to the data (i.e. aesthetic) is represented according to a specific scale which is detailed through a legend.

scale_aesthetic_continuous()

х, у

color, fill

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

scale_aesthetic_discrete()
scale_aesthetic_continuous()

x, y size color, fill

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

scale_aesthetic_discrete()
scale_aesthetic_continuous()

x, y size color, fill (alpha, shape, linetype)

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

cosmetics : scales, legends

Each type of variation related to the data (i.e. *aesthetic*) is represented according to a specific scale which is detailed through a legend.

to fix specific colors to color, fill discrete/categorical values

cosmetics : theme

Each element of the graph that is not directly linked to the data can be set / modified within the theme layer.

cosmetics : theme

Each element of the graph that is not directly linked to the data can be set / modified within the theme layer.

All the elements related to ...

- axis
- legend
- panel
- plot
- strip

cosmetics : theme

Each element of the graph that is not directly linked to the data can be set / modified within the theme layer.

All the elements related to ...

- axis
- ◆ legend
- panel
- ◆ plot
- ◆ strip

... and that correspond to a specific type of object ...

- unit
- ◆ margin
- element_text
- element line
- element rect
- element_blank

cosmetics : theme

Each element of the graph that is not directly linked to the data can be set / modified within the theme layer.

All the elements related to ...

- axis
- legend
- panel
- ◆ plot
- strip

... and that correspond to a specific type of object ...

- unit
- margin
- element text
- element_line
- element_rect
- element_blank

```
theme(axis.text.x = element_text(angle = 45, hjust = 1)
    , axis.ticks.length = unit(0,1, 'cm')
    , legend.position = 'bottom'
    , plot.background = element_rect(fill = NA)
    , title = element_blank())
```

cosmetics : ggthemes

Package containing pre-defined themes!

cosmetics : ggthemes

Package containing pre-defined themes!

cosmetics : ggthemes

Package containing pre-defined themes!

cosmetics : ggthemes

Package containing pre-defined themes!

cosmetics : ggthemes

Package containing pre-defined themes!

(but you can still modify them with the theme function) (and there is also basic themes defined in the ggplot2 package)

Data from the 1974 Motor Trend US magazine

EXERCISE 4

FILE: EX1_TAB_homicide.csv

Perfect your graph to match with the example!

The world's most murderous metropolises (re-ranked)

Homicides per 100,000 population, 50 worst cities*, 2015 or latest available (Number of cities listed per country)

Sources: Igarapé Institute; press reports; The Economist

*With populations of 250,000 or more

Economist.com

extensions

https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf

https://www.data-to-viz.com/

http://colorbrewer2.org/

https://personal.sron.nl/~pault/

https://plot.ly/ggplot2/

http://www.ggplot2-exts.org/gallery/

https://www.ggplot2-exts.org/ggiraph.html