

Figure 1. Immunogenicity of HIV- and HCV-derived minigenes in HLA transgenic animals.

Magnitude of CTL responses are stored as follows + up to 2 LU (lytic units) or 10 SU (cytotoxic units). + + more than 200 LU or 1000 SU. Magnitude + represents number of independent cultures yielding positive responses.

FIGURE 1

Figure 2a. Synthetic polypeptides encoding HIV-derived HTL epitopes

* junctional peptides comprise either 10 amino acids from the N-terminal epitope and 5 amino acids from the C-terminal epitope or 5 amino acids from the N-terminal epitope and 10 amino acids from the C-terminal epitope.

Figure 2b. Proliferative responses to synthetic polypeptides encoding HIV-derived HTL

FIGURE 2

a : HIV-FT

b : HBV-specific multiepitope constructs

HBV.1

HBV.2

HBV.1X

C₁= either W, Y, L, K, R, C, N or G

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

<u>Sequence</u>	<u>Length</u>	<u>Code</u>
VLAEAMSQV	9	A
ILKEPVHGV	9	B
TLNFPISPI	9	C
SLLNATDIAV	10	D
QMAVFIHNFK	10	E
VTVYYGVPVWK	11	F
FPVRPQVPL	9	G
YPLASLRSLF	10	H
VIYQYMDDLY	10	I
IYQEPMKNL	9	J
IWGCSGKLI	9	K

200

<u>AA</u>	<u>C+1 ranking</u>	<u>N-1 ranking</u>
K	2.20	0.64
C	2.00	1.00
N	2.00	0.00
G	1.80	1.33
T	1.50	0.00
A	1.33	1.21
F	1.33	1.00
S	1.33	0.00
W	1.20	0.00
Q	1.20	0.00
R	1.17	1.57
M	1.00	0.00
Y	1.00	0.75
I	0.86	0.50
L	0.75	2.20
V	0.00	1.19
D	0.00	0.00
H	0.00	0.00
E	0.00	0.00
P	0.00	0.00

202

Motif Specification

XXXX(FY)XX(LIMV)
 XXXX(FY)XXX(LIMV)
 XXXXNXXXX(LIMV)
 XXXXNXXXX(LIMV)
 X(LM)XXXXXXV
 X(LM)XXXXXXXV
 X(LMVT)XXXXXX(KRY)
 X(LMVT)XXXXXXX(KRY)
 XPXXXXXX(LIMVF)
 XPXXXXXXX(LIMVF)

206

FIGURE 11A

MaxInsertions={enter value here} 208
OutputToScreen=yes/no 210
OutputToFile=yes/no 212
MinimumAccepted={enter value here} 214
MaxDuplicateFunctionValues={enter value here} 216
MaxSearchTime (min.)={enter value here} 218
Exhaustive=yes/no 220
NumStochasticProbes={enter value here} 222
MaxHitsPerProbe={enter value here} 224
RandomProbeStart=yes/no 226

FIGURE 11B

FIGURE 12

Junctional Analyzer run on Saturday, February 26, 2000 09:06:23 pm.

The following non-zero AA weights will be used.

AA	N-1 ranking	C+1 ranking
A	1.21	1.33
C	1.00	2.00
F	1.00	1.33
G	1.33	1.80
I	0.50	0.86
K	0.64	2.20
L	2.20	0.75
M	0.00	1.00
N	0.00	2.00
Q	0.00	1.20
R	1.57	1.17
S	0.00	1.33
T	0.00	1.50
V	1.19	0.00
W	0.00	1.20
Y	0.75	1.00

204

The following 10 motif specifications will be used to search for junctionals.

Count	Motif Specification
1	XXXX(FY)XX(LIMV)
2	XXXX(FY)XXX(LIMV)
3	XXXXNXXX(LIMV)
4	XXXXNXXXX(LIMV)
5	X(LM)XXXXXXV
6	X(LM)XXXXXXXXV
7	X(LMVT)XXXXXX(KRY)
8	X(LMVT)XXXXXXX(KRY)
9	XPXXXXXX(LIMVF)
10	XPXXXXXX(LIMVF)

206

Code	Peptide	Length
A	VLAEAMSQV	9
B	ILKEPVHGV	9
C	TLNFPISPI	9
D	SLLNATDIAV	10
E	QMAVFIHNFK	10
F	VTVYYGVPWK	11
G	FPVRPQVPL	9
H	YPLASLRSLF	10
I	VIYQYMDDLY	10
J	IYQEPFKNL	9
K	IWGCSGKLI	9

202

MaxInsertions = 4 (208)

FIGURE 13A

OutputToScreen = No

OutputToFile = Yes

MinimumValueAccepted = 0

MaxDuplicateFunctionValues = 50

SearchTime = 5

NumStochasticProbes = 10

MaxHitsPerProbe = 25

RandomProbeStart = Yes

Col. 1 Code 1	Col. 2 I1	Col. 3 I2	Col. 4 I3	Col. 5 I4	Col. 6 Code 2	Col. 7 C	Col. 8 N	Col. 9 C+N	Col. 10 J	Col. 11 MaxFunc.
A	C	A		L	B	2.00	2.20	4.40	0	8.80
A	C			L	C	2.00	2.20	4.40	0	8.80
A	C			L	D	2.00	2.20	4.40	0	8.80
A	C			L	E	2.00	2.20	4.40	0	8.80
A	C			R	F	2.00	1.57	3.14	2	1.57
A	C			R	G	2.00	1.57	3.14	1	3.14
A	C			R	H	2.00	1.57	3.14	0	6.28
A	G			R	I	1.80	1.33	2.39	1	2.39
A	C	A	A	G	J	2.00	1.33	2.66	0	5.32
A	C			R	K	2.00	1.57	3.14	0	6.28
B	C	A	A	G	A	2.00	1.33	2.66	0	5.32
B	C	A		R	C	2.00	1.57	3.14	0	6.28
B	C	A		R	D	2.00	1.57	3.14	0	6.28
B	C	A	A	R	E	2.00	1.57	3.14	0	6.28
B	C	A	A	G	F	2.00	1.33	2.66	1	2.66
B	C			R	G	2.00	1.57	3.14	1	3.14
B	C			R	H	2.00	1.57	3.14	0	6.28
B	C	A	A	G	I	2.00	1.33	2.66	1	2.66
B	C	A	A	G	J	2.00	1.33	2.66	0	5.32
B	C	A	A	G	K	2.00	1.33	2.66	0	5.32
C	C	A		R	A	2.00	1.57	3.14	1	3.14
C	C	A		R	B	2.00	1.57	3.14	1	3.14
C	C	A		L	D	2.00	2.20	4.40	1	4.40
C	C	A		R	E	2.00	1.57	3.14	1	3.14
C	C			R	F	2.00	1.57	3.14	1	3.14
C	C			R	G	2.00	1.57	3.14	1	3.14
C	C			R	H	2.00	1.57	3.14	0	6.28
C	C	A	A	R	I	2.00	1.57	3.14	1	3.14
C	C	A	A	R	J	2.00	1.57	3.14	0	6.28
C	C	A	A	R	K	2.00	1.57	3.14	0	6.28

FIGURE 13B

Code 1	I1	I2	I3	I4	Code 2	C	N	C+N	J	MaxFunc
D	C			L	A	2.00	2.20	4.40	0	8.80
D	C			L	B	2.00	2.20	4.40	0	8.80
D	C			L	C	2.00	2.20	4.40	0	8.80
D	C			L	E	2.00	2.20	4.40	0	8.80
D	G			R	F	1.80	1.33	2.39	0	4.79
D	G			G	G	2.00	1.57	3.14	0	6.28
D	C	A	A	H	H	2.00	1.33	2.66	0	5.32
D	C	A	A	I	I	2.00	2.20	4.40	1	4.40
D	C	A	A	J	J	2.00	1.33	2.66	0	5.32
D	C	A	A	K	K	2.00	1.57	3.14	0	6.28
D	C	A	A	A	A	2.00	2.20	4.40	0	8.80
D	C	A	A	B	B	2.00	2.20	4.40	0	8.80
D	C	A	A	C	C	2.00	2.20	4.40	0	8.80
D	C	A	A	D	F	2.00	2.20	4.40	0	8.80
D	C	A	A	G	G	2.00	1.57	3.14	0	6.28
D	C	A	A	H	H	2.00	1.57	3.14	0	6.28
D	C	A	A	I	I	2.00	1.57	3.14	0	6.28
D	C	A	A	J	J	2.00	1.57	3.14	0	6.28
D	C	A	A	K	K	2.00	2.20	4.40	0	8.80
D	C	A	A	A	A	2.00	1.57	3.14	0	6.28
D	C	A	A	B	B	2.00	1.57	3.14	0	6.28
D	C	A	A	C	C	2.00	1.57	3.14	0	6.28
D	C	A	A	D	E	2.20	2.20	4.84	1	4.84
D	C	A	A	G	G	2.20	1.33	2.93	1	2.93
D	C	A	A	H	H	2.20	1.33	2.93	0	5.85
D	C	A	A	I	I	2.20	1.33	2.93	0	5.85
D	C	A	A	J	J	2.20	1.33	2.93	0	5.85
D	C	A	A	K	K	2.20	1.33	2.93	1	2.93
D	C	A	A	A	A	2.20	1.57	3.45	1	3.45
D	C	A	A	B	B	2.20	1.57	3.45	0	6.91
D	C	A	A	C	C	2.20	1.57	3.14	1	3.14
D	C	A	A	D	D	2.20	1.57	3.14	2	1.57
D	C	A	A	G	E	2.00	2.20	4.40	1	4.40
D	C	A	A	H	F	2.00	1.57	3.14	2	1.57
D	C	A	A	I	H	2.00	2.20	4.40	4	1.10
D	C	A	A	J	I	2.00	1.33	2.66	0	5.32
D	C	A	A	K	J	2.00	1.57	3.14	2	1.57
D	C	A	A	A	K	2.00	1.57	3.14	1	3.14
D	C	A	A	B	A	2.00	1.57	3.14	0	6.28
D	C	A	A	C	B	2.00	1.57	3.14	0	5.32
D	C	A	A	D	C	2.00	1.57	3.14	0	5.32
D	C	A	A	G	D	2.00	2.20	4.40	1	4.40
D	C	A	A	H	E	2.00	1.57	3.14	2	1.57
D	C	A	A	I	F	2.00	2.20	4.40	4	1.10
D	C	A	A	J	H	2.00	1.33	2.66	0	5.32
D	C	A	A	K	I	2.00	1.33	2.66	0	5.32
D	C	A	A	A	K	2.00	1.57	3.14	1	3.14
D	C	A	A	B	A	2.00	1.57	3.14	0	6.28
D	C	A	A	C	B	2.00	1.57	3.14	0	5.32
D	C	A	A	D	C	2.00	1.57	3.14	0	5.32
D	C	A	A	G	D	2.00	1.33	2.66	0	5.32
D	C	A	A	H	E	2.00	1.33	2.66	0	5.32
D	C	A	A	I	F	2.00	1.57	3.14	1	3.14
D	C	A	A	J	H	2.00	1.33	2.66	1	2.66
D	C	A	A	K	I	2.00	1.33	2.66	1	2.66
D	C	A	A	A	K	2.00	1.33	2.66	0	5.32

FIGURE 13C

Code 1	I1	I2	I3	I4	Code 2	C	N	C+N	J	MaxFunc
I	K	A	A	G	A	2.20	1.33	2.93	0	5.85
I	K	A	A	G	B	2.20	1.33	2.93	1	2.93
I	K	A	A	G	C	2.20	1.33	2.93	0	5.85
I	K	A	A	G	D	2.20	1.33	2.93	0	5.85
I	K	A	A	G	E	2.20	1.33	2.93	0	5.85
I	K	A	A	G	F	2.20	1.33	2.93	0	5.85
I	K	A	A	G	G	2.20	1.33	2.93	1	2.93
I	K	A	A	R	H	2.20	1.57	3.45	1	3.45
I	K	A	A	G	J	2.20	1.33	2.93	0	5.85
I	K	A	A	G	K	2.20	1.33	2.93	1	2.93
I	K	A	A	R	A	2.20	1.57	3.45	0	5.85
I	K	A	A	R	B	2.20	1.57	3.45	0	6.91
I	K	A	A	R	C	2.20	1.57	3.45	1	3.45
I	K	A	A	R	D	2.20	1.57	3.45	0	6.91
I	K	A	A	R	E	2.20	1.57	3.45	1	3.45
I	K	A	A	R	F	2.20	1.57	3.45	2	1.73
I	K	A	A	R	G	2.20	1.57	3.45	1	3.45
I	K	A	A	R	H	2.20	1.57	3.45	0	6.91
I	K	A	A	R	I	2.20	1.57	3.45	1	3.45
I	K	A	A	R	K	2.20	1.57	3.45	0	6.91
I	K	A	A	R	A	2.20	2.20	4.84	0	9.68
I	K	A	A	R	B	2.20	2.20	4.84	0	9.68
I	K	A	A	R	C	2.20	2.20	4.84	0	9.68
I	K	A	A	R	D	2.20	2.20	4.84	0	9.68
I	K	A	A	R	E	2.20	2.20	4.84	0	9.68
I	K	A	A	R	F	2.20	1.57	3.45	1	3.45
I	K	A	A	R	G	1.80	1.33	2.39	0	4.79
I	K	A	A	R	H	2.20	1.57	3.45	0	6.91
I	K	A	A	R	I	2.20	2.20	4.84	1	4.84
I	K	A	A	R	J	2.20	1.57	3.45	0	6.91

Junctional Analyzer took 142.77 seconds.

FIGURE 13D

Figure 3a: CTL responses induced by EP HIV-1090 relative to individual peptides in IFA

FIGURE 14A

Responses to PfCTL 1

Responses to PfCTL 2

Responses to PfCTL 3

■ peptide/IFA
▨ DNA

FIGURE 14B

FIGURE 15

FIGURE 16

FIGURE 17

EP-HIV-1090

MGMQVQIQSLFLLLLWVPGSRGKLVGKLNWAGAAILKEPVHGVNAACPVSFEPIKIPHYCAPA
KAKFVAAWTLKAAAACKAFPVRPQVPLGAALKTLCVTLGAAAALAEAMSQVKVYLAWVPAHKG
AAAAIFQSSMTKKTTLFCASDAKNIPYNPQSQGVVKHPVHAGPIANVTYYGVPVWKAAAQMA
VFIHNFKAAAAYPLASLRSLFNLTFGWCFKLNRLQQLFINAKIQNF瑞VYRKAATIKIGGQLKK
VPLQLPPLKAMTNPPIPV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCCTGTGGGTGCCCGATCCAGA
GGAAAGCTGGTGGGCAAACCTCAACTGGGCCGGAGCTGCAATCCTGAAGGAGCCCGTCCACGG
GGTGAATGCCGCTTGCCCTAAAGTCAGCTCGAACCAATTAAAGATCCCCATTCAATTACTGTGC
ACCTGCCAAAGCTAAGTGTGGCCGCTGGACCCCTAACGGCCGCTGCAAAGCCTTCCCAGT
GAGGCCCGAGGTGCCTCTGGCGCCGCTAAACACTCACACCAACTGTGCGTCACTCTGGAGCCGC
TGCAGTGTGGCAGAGGCCATGTCCAAGTGAAGGTGTATCTGGCTTGGGTGCCCGCCACAA
GGGGGCCGCTGCAGCCATCTTCAGTCAGTGCATGACCAAGAAAACAACCTGTGTTCTGTGCCTC
CGACGCTAAGAACATCCCATAATCCACAGTCAGGGCGTGGTCAAGCATCCCCTGCACGC
CGGACCTATTGCTAACGTGACCGTGTACTATGGGGTCCCAGTGTGGAAGAAAGCCGCTGCACA
GATGGCCGTGTTATTACAATTCAAAAACGCCGCTGCATACCCCTGCCAGCCTGAGATC
CCTCTCAACCTGACATTGGCTGGTGTAAAGCTGAACCGGATCCTGCAGCAACTGCTCTT
ATCAATGCTAAAATCCAGAACCTCCGCGTCTACTATAGGAAGGCTGCAGTGAATGACTATCAAATT
GGCGGACAACCTGAAGAAAGTGCCTCTCCAGCTGCCCTCTCAAGGCAATGACCAACAATCC
CCCTATCCCAGTGTGA

HIV-CPT

MGMQVQIQSLFLLLLWVPGSRGIPHYCAPAKAAKIQNFRVYRKAATIKIGGQLKKAKFVAAW
TLKAAAKVPLQLPPLKAIFQSSMTKKLTLPLCVTLGAQMAVF瑞HNFKGAKVYLAWVPAHKNAPY
PQSQGVVKAILKEPVHGVAAALTFGWCFKLNALAEAMSQVNRLQQLFINAAACPVSFEPI
KVTVYYGVPVWKAAAHPVHAGPIANAAAYPLASLRSLFNAAATLFCASDAKNKLVGKLNWAN
AAAFPVRPQVPLNMTNNPPIPV

ATGGGGATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCCTGTGGGTGCCCGATCCAGA
GGAATCCCCATTCACTACTGCGCCCTGCTAACGGCAGCCAAATCCAGAACCTCAGGGTGTAT
TACAGAAAGGCTGCAGTCACCATTAAATCGGCGGACAACACTGAAGAAAGCCAAGTTGTGGC
CGCTTGGACACTCAAGGCCGCTGCAAAGGTCCCAGTGCAGCTCCCCCTCTGAAGGCCATCTT
CCAGAGCTCCATGACTAAGAAACTGACCCACTGTGTGACACTCGGGGCCAGATGGCTGT
GTTCATCCATAATTAAAGGCCAAGGTCTACCTGGCTGGGTGCCGCACACAAGAACGC
CATTCCTACAATCCACAGTCTCAAGGAGTGGTCAAAGCTATTCTGAAGGAGCCGTGCACGG
GGTGGGCGCCGCTGCACTCACTTCGGATGGTGTAAACTGAACGCCGTGCTGGCTGAAGC
CATGAGCCAGGTCAATCGGATCCTGCAGCAACTGCTCTTCATTAACGCCGTGCATGTCTAA
GGTGTCTTCAGCCAATCAAAGTGACCGTGTATTACGGGGTCCCCGTGTTGAAGAAAGCCGC
TCATCCTGTCCACGCAGGCCAATGCCAACGCCGTGCATATCCCTGCCCTCTGCGCAG
CCTGTTAACGCCGCTGCAACAAACCCCTTTGCGCCTCCGACGCTAAGAATAAAACTGGTGGG
AAAGCTGAACGGCCAACGCCAGCTGCATTCCCTGTGAGGCCACAGGTCCCCCTCAATATGAC
TAACAATCCCCCTATCCCAGTGTGA

FIGURE 18A

HIV-FT

MQVQIQSLLLLLWVPGSRGKLVGKLNWAMASDFNLPPVAIFQSSMTKVTIKIGGQLKRILQQLLF
IMAVFIHNFKIPYNPQSQGVVTLFCASDAKILKEPVHGQMAVFIHNFKGAAVFIHNFKRCPKVSF
EPIKIQNFRVYYRLTFGWCFKLQVPLRPMTYKMTNNPIPVTVYYGVPVWKVLAEAMSQVIPHY
CAPAKLTPLCVTL

ATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCTGTGGGTGCCCGGATCCAGAGGAAAG
CTGGTGGGAAGCTGAACCTGGCCATGGCCAGCGATTCAACCTGCCCGGTGCCATCTTC
CAGAGCAGCATGACCAAGGTGACCATCAAGATCGGGGGCAGCTGAAGAGGATCCTGCAGCA
GCTGCTGTTCATCATGGCGTGTTCATCCACAACCTCAAGATCCCCTACAACCCCCAGAGCCA
GGGGGTGGTGACCACCCCTGTTCTGCGCCAGCGATGCCAAGATCCTGAAGGAGCCCGTGCACG
GGGTGCAGATGGCCGTGTTCATCCACAACCTCAAGGGCGCCGTGTTCATCCACAACCTCA
AGAGGTGCCCAAGGTGAGCTCGAGCCCATCAAGATCCAGAACTTCAGGGTGTACTACAGG
CTGACCTCGGGTGGTGCTCAAGCTGCAGGTGCCCTGAGGCCATGACCTACAAGATGACC
AACAAACCCCCCATCCCCGTGACCGTGTACTACGGGGTGCCGTGGAAGGTGCTGCCGAG
GCCATGAGCCAGGTGATCCCCATCCACTACTGCAGCCCCGCCAAGCTGACCCCCCTGCGTG
ACCTG

FIGURE 18B

HIV-TC

MGMQVQIQLFLLLLWVPGSRGYWQATWIPEWKAIFQSSMTKKVYLAWVPAHKNAACPVSFE-
PIKHPVHAGPIANLTGWCFLNKMIGGIGGFIKFRDYVDRFYKAAARILQQLLINTTLFCASDAK
NQMVKHQAIISPRGAKLVGKLNWAGAAIYETYGDTWKAAQVPLRPMTYKGAAAVTLDVGDAY
NAAARYLKDQQLNNTNFPISPINMTNNPPIPVNAPYNTPVFAIKAAAVPLQLPPLKAAIPYNPQSQ
GVVKALLQLTVWGIGAAILKEPVHGVAACAFPIETVKVWKEATTLFKAAAVTIKIGGQLKKI
YQEPFKNLKAAAVLAEAMSQNVNLGVPTPVNIGAAAEVNIVTDSQYKAAIPIHYCAPAKAVIYQY
MDDLYKAAAQMAVFIHNFKNAATYQIYQEPFKPYNEWTLELAKAKIQNFRVYYRKAFPVRPQVPL
GAAAIWGCSGKLIKVMIVWQVDRNAAKAACWWAGIKAKFVAAWTLKAAAKLPLCVTLNAAM
ASDFNLPPVKSLLNATDIAVNVTVYYGPVWKAAAIIRLQQLKRAMASDFNLNAAAYPLASL
RSLF

ATGGGGATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCCTGTGGGTGCCCGATCTAGA
GGATACTGGCAAGCTACTTGGATTCCAGAACAGTATCTTCATCCTCAATGACGAAG
AAGGTATAACCTGGCATGGTCCCAGCACACAAGAACGCCGCTTGCCAAAGGTGTCCITTGAA
CCCATTAACACCCAGTCACGCAGGCCAATAGCGAATTGACATTGGGGTGTGCTTCAAA
CTAAACAAAATGATCGCGGGATTGGAGGTTATCAAGTTAGAGATTACGTGGACCGATTC
TATAAAGCCGCTGCCGTATACTCCAGCAGCTACTATTCAACACACTCTCTCGCGTT
CAGACGCTAAGAACCAAATGGTACACCAAGCCATAAGCCTAGAGGAGCCAAGCTCGTAGGG
AAATTAAATTGGGCGGGTGCAGCAGCAATCTACGAGACTTACGGCGATACTGGAAAGCAGC
CCAGGTTCCGTTACGCCAATGACCTATAAAGGCGCAGCAGCAGTAACAGTTAGATGTAGG
AGACGCTTACAACCGTGCAGAAGATACTAAAGATCAGCAGTTACTCAACACACTAAATT
CCAATTAGCCGATAAACATGACAATAACCCACCAATTCCGTCATGCTCCCTACAACAC
TCCAGTATTGCAATCAAAGCCGCTGTCGTCCCCCTGCAAGCTCCCTCTGAAAGCTGCGAT
ACCTTACAACCCACAGAGCCAAGGTGTTGTCAAAGCACTGCTTCACTAACAGTTGGGAAT
TGGTGTGCAATTCTAAAAGAGCCAGTTACGGGTTAACGCCGCCCTCCCAATCAGTCC
TATTGAGACTGTGAAAGTATGGAAAGAAGCCACAACCACACTTTTAAGGCAGCCGAGTTA
CAATTAAAATAGGGGCCAACTTAAGAAAATATACCAGGAACCTTCAAGAATCTAAAGCC
GCTGCAGTGTGTCGCCAGGCTATGTACAGGTGAATTGGTCGGACCAACACCGTAAACATC
GGAGCCGAGCCGAAGTGAACATAGTCACCGACTCACAGTACAAAGCCGCTGCAATACCCAT
ACATTATTGTGCTCCGAAAGCCGTGATCTATCAATATATGGACGACCTGTATAAGGCC
CGCGCAGATGGCAGTCTTATCCACAACCTTAAAACGCAGCTACTTATCAGATCTACAGGA
ACCATTCAAACCGTACAATGAGTGGACCTTGGAACTAAAGGCCAAATTCAAGACTTCAGGG
TATATTATAGAAAAGCATTCCAGTGAGGCCAGGTGCCTCTGGGTGCCAGCAATATGGG
GATGTTCTGGAAAAGTCAAGGTGATGATTGTATGGCAAGTGGACAGAAATGCAGCTAAG
GCAGCCTGTTGGTGGCAGGTATAAAAGCAAAGTTCTGGCAGCATGGACGCTTAAAGCAGC
CGCAAAACTCACTCCTCTGCGTGAACACTTAATGCAGCCATGGCCTCTGATTCAACCTCCC
CCTGTAATCCCTGCTTAATGCGACAGATATCGCAGTCACGTAACAGTATATTATGGCGTG
CCAGTCTGGAAAAAGCCGCCGGCCATAATTGGGAACTTCAGCAGCTGAAAAGAGCTAT
GGCAGGTGACTTCAACCTGAATGCGGCCGCTACCCCTGGCATCGTTAAAGTCACTATTTG
A

FIGURE 18C

HCV.1

MGMQVQIQSLFLLLLWVPGSRGLFNILGGWVDLMGYIPLVYLVAYQATVILAGYAGVRLIVFP
DLGVHMWNFISGIYLLPRRGPRLYLVTRHADVVLVGGVLAALLFLLADAFLLADARVWMNRL
IAFACTCGSSDLYLSAFLSHSYGVAGALVAFKLPGCSFSIFKTSERSQPRLFCHSKKKFWAKHMW
NFIPFYGKAIRMYVGGVEHRQLFTFSPRRLGVRATRKVGIYLLPNRAKFVAAWTLKAAA*

GAATTGCCGCCACCATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCCTGTGGGTGCCGGATCCAGAGGACTGC
TGTCAACATCCTGGGGGGTGGGTGGATCTGATGGGTACATCCCCCTGGTGTACCTGGTGGCCTACCAGGCACCGT
GATCCTGGGGGGTACGGGCGGGGTGAGGCTGATCGTGTCTCCGATCTGGGGTGACATGTGGAACCTTCATCAGC
GGGATCTACCTGCTGCCAGGAGAGGACCTAGACTGTACCTGGTACTAGACACGCTGATGTGGTCTGGTGGAGGAG
TGCTGGCTGCTCTGCTGTTCTGCTGCTGGCTGATGCTTCTGCTGCTGGCTGATGCTAGAGTGTGGATGAACAGACT
GATCGCTTCGCTTGTACATGTGGAAGCTCCGATCTGTATCTGAGCGCTTCAGCCTGACAGCTACGGAGTGGCTGGA
GCTCTGGTGGTTTAAGCTGCCTGGATGTAGCTTAGCATCTTAAGACAGCGAAAGAAGCCAGCCTAGACTGATCT
TTTGTCAACAGCAAGAAGAAGTTGGCTAACGACATGTGGAATTATCCTTCTATGGAAAGGCTATCAGAATGTA
TGTGGGAGGAGTGGAACACAGACAGCTGTTACATTAGCCCTAGAAGGAGACTGGGAGTGGAGAGCTACAAGAAAGGTG
GGAATCTATCTGCTGCCAACAGATGAAAGCTTGGG*

HCV.2

MGMQVQIQSLFLLLLWVPGSRGLMGYIPLVAKFVAAWTLKAAALLFLLADALIFCHSKKKQLF
TFSPRRYLVTRHADVYLLPRRGPRLCTCGSSDLYHMWNFISGIFWAKHMWNFAKFVAAWTLKAA
AILAGYAGGVYLVAYQATVGVAGALVAFKIPFYGKAIRMYVGGVEHRVLVGGVLAFLLLADA
RVLPGCSFSIFAKFVAAWTLKAAAKTSERSQPRRLGVRATRKRLIVFPDLGVWMNRLIAFALSAFS
LHSYLLFNILGGWVVGIVYLLPNR*

GAATTGCCGCCACCATGGGAATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCCTGTGG
GTGCCCGGATCCAGAGGAGATCTGATGGGATATATCCTCTGGTGGCTAAGTTGTGGCTGCT
TGGACACTGAAGGCTGCTGCTGCTGTTCTGCTGGCTGATGCTCTGATCTTCTGTCACA
GCAAGAAGAAGCAGCTGTTACATTAGCCAAGAAGATATCTGGTACAAGACACGCTGAT
GTGTATCTGCTGCCTAGACCGCGGACCTAGACTGTGTACATGTGGAAGCTCCGATCTGTATCAC
ATGTGGAACCTTATCAGCGGAATCTTGGCTAAGCACATGTGGAATTCTATCCTGGCTGGA
TATGGAGCTGGAGTGTATCTGGTGGCTTACAGGCTACAGTGGAGTGGCTGGAGCTCTGGT
GCTTCAAGATCCCATTCTATGGAAAGGCTATCAGAAATGTATGTGGAGGAGTGGAAACACAG
AGTGTGGTGGAGGAGTGTGGCTGCTGCTGCTGGCTGATGCTAGAGTGTGCTGCCAGG
ATGTAGCTTAGCATCTCAAGACTTCCGAACGCTCCAGCCTAGAAGACTGGGAGTGGAGAGC
TACAAGGAAGAGAGACTGATCGTGTITCCAGATCTGGGAGTGTGGATGAATAGACTGATCGCTT
CGCTCTGAGCGCTTCAGCTGCACAGCTATCTGCTGTTCAACATCCTGGAGGATGGGTGGT
GGGAATCTATCTGCTGCCAACAGATGAAAGCTT

HCV.3s1

MGMQVQIQSLFLLLLWVPGSRGLVAYQATVAKFVAAWTLKAAALLFLLADALIFCHSKKKYL
VTRHADVLGFAYMSKCTCGSSDLYHMWNFISGIFWAKHMWNF*

GAATTGCCGCCACCATGGGAATGCAGGTGCAGATCCAAGCCTGTTCTGCTCCTCCTGTGG
GTGCCCGGATCCAGAGGATACTCGTGCCTACCAAGGCCACTGTGGCTAAATTCTGTCAGCC
TGGACACTGAAAGCTGCAGCTGCTCTGCTCTCCTGCTGGCCATGCACTCATCTGCCATT
CCAAGAAAAAGTATCTGGTCACCAGACATGCTGACGTGCTGGGTTGGCGCCTACATGAGC
AAGTGCACCTGTGGCAGCTCCGACCTGTATCACATGTGGAACCTTATTCTGGAATCTTGGG
CCAAGCACATGTGGAATTCTGAAAGCTT

FIGURE 18D

HCV.3s2

MGMQVQIQSLFLLLWVPGSRGVLVGGVLAAAKFVAAWTLKAAAFLLADARVLSAFSLHSYIL-
AGYGAGVWMNRЛИАFAIPFYGKAIVAGALVAFKVGИYLLPNR*

GAATTGCCGCCACCATGGGAATGCAGGTGCAGATCCAAGCCTGTTCTGCTCCTCTGTGG
GTGCCCGGATCCAGAGGGACTCCTGGTGGCGGCGTCCTGCCGCTGCTAAGTTGTCGCTGCT
TGGACACTGAAGGCAGCCGCTTCCTGCTCCTGCCAGACGCCAGGGTGTCTGCCCTCAGC
CTCCACTCCTACATCCTCGCAGGGTATGGCGCAGGCCTGGATGAATCGGCTGATGCCCTT
GCCATTCCATTCTATGGGAAAGCCATTGTGGCTGGCGCCCTGGCATTCAAGGTCGGGATC
TACCTCCTGCCTAACCGCTGAAAGCTT

HCV.3s2(-3)

MGMQVQIQSLFLLLWVPGSRGVLVGGVLAAAKFVAAWTLKAAAFLLADARVLSAFSLHSYIL
AGYGAGVWMNRЛИАFA*

GAATTGCCGCCACCATGGGAATGCAGGTGCAGATCCAAGCCTGTTCTGCTCCTCTGTGG
GTGCCCGGATCCAGAGGGACTCCTGGTGGCGGCGTCCTGCCGCTGCTAAGTTGTCGCTGCT
TGGACACTGAAGGCAGCCGCTTCCTGCTCCTGCCAGACGCCAGGGTGTCTGCCCTCAGC
CTCCACTCCTACATCCTCGCAGGGTATGGCGCAGGCCTGGATGAATCGGCTGATGCCCTT
GCCTGAGGATCC

HCV.3s3

MGMQVQIQSLFLLLWVPGSRGDLMGYIPLVAKFVAAWTLKAAARLGVRATRKLLFNILGGWV
RMYVGGVEHRRLIVFPDLGVGVAGALVAFKLPGCSFSIFKTTERSQRQLFTFSPRRYLLPREGPRL

GAATTGCCGCCACCATGGGAATGCAGGTGCAGATCCAAGCCTGTTCTGCTCCTCTGTGG
GTGCCCGGATCCAGAGGGACTGATGGGCTACATCCCTCTCGTGGCCAAGTTGTCGCTGCT
TGGACCCCTGAAGGCCGCTGCCAGACTGGGAGTGCGCGCTACACGAAAACCTCTGTTAACATC
CTGGGAGGGTGGGTGCGGATGTACGTCCGGAGGCCTGAGCACAGAAGGCTCATGTCTTCC
AGATCTCGCGTGGCGTCACTCGTGGCCTCAAACGTCCAGACAGCTGTTCACTTCTCCTCGGAGGTAT
CTGCTGCCAGACGCCAGGCTGTGAAAGCTT

HCV.PC3

MGMQVQIQSLFLLLWVPGSRGLFNILGGWVKAKFVAAWTLKAAALADGGCSGGAYRLIVFPD
LGVKFWAKHMWNFIGVAGALVAFKKQLFTFSPRR*

GAATTGCCGCCACCATGGGAATGCAGGTGCAGATCCAAGCCTGTTCTGCTCCTCTGTGG
GTGCCCGGATCCAGAGGGACTGCTCTCAACATCCTGGCGGATGGGTGAAGGCCAAGTTGTCGCT
GCTGCCTGGACCCCTGAAGGCTGCCGCTCTGCCGACGGGGATGCAAGCGGCGGAGCTTACAG
GCTCATTGTCCTTCCGATCTGGAGTCAAATTGGCAAAGCACATGTGGAATTTCATCGG
GGTGGCCGGAGCCCTGGTCGCTTAAAAAGCAGCTTCACTTCTCCCCAAGACGGTGAGG
TACC

FIGURE 18E

HCV.PC4

MGMQVQIQLFLLLWVPGSRGRLGVRATRKAKFVAAWTLKAAAKTSERSQPRNLPGCSFSIFN
DLMGYIPLVKYLLPRRGPRLNTLCGFADLMGYRMYVGGVEHR*

GAATTGCCGCCACCATGGGAATGCAGGTGCAGATCCAAGCCTGTTCTGCTCCTCTGTGG
GTGCCCGGATCCAGAGGAAGGCTGGCGTGAGAGCCACCCGGAAGAAGGCCAAGTTCGTGGC
TGCCTGGACCCTGAAGGCTGCCGCTAAAACAAGCGAGCGCTCCCAGCCCAGGAACCTGCCTG
GATGCTCTTCAGCATTTAATGACCTCATGGGTACATTCCACTGGTGAAGTATCTGCTCCC
CAGACGGGGCCCTGCCCTGAACACTCTGTGGATTGCTGATCTGATGGGTACAGGATGTA
TGTGGCGGAGTCGAACACAGATGAGGTACC

HCV.243(1P)

MGMQVQIQLFLLLWVPGSRGVLVGGVLAAAFLLADARVLSAFSLHSYILAGYGAGVWMNRL
IAFAGAAARLGVRATRKAAAKTSERSQPRNLPGCSFSIFNDLMGYIPLVKYLLPRRGPRLNTLCG
FADLMGYRMYVGGVEHRKLLFNILGGWVKAALADGGCGGAYRLIVFPDLGVKFWAKHMWN
FIGVAGALVAFKKQLFTSPRRNGYLVAYQATVAAALLFLLADALIFCHSKKKYLVTRHADVLG
FGAYMSKCTCGSSDLYHMWNFISGFWAKHMWNKAAAACKVAAWTLKAAA

GAATTGCCGCCACCATGGGAATGCAGGTGCAGATCCAAGCCTGTTCTGCTCCTCTGTGG
GTGCCCGGCTCCAGAGGAGTCTGGTGGCGCGCTGGCAGCCCTTCCCTGCTCCTGGCA
GACGCCAGGGTGTCTGCCTTCAGCCTCACTCCTACATCCTCGCAGGGTATGGCGCAGGC
GTGTGGATGAATCGGCTGATCGCTTGCCTGGCGCTGCCGCAAGGCTGGCGTGAGAGCCACC
CGGAAGAAGGCTGCCGCTAAAACAAGCGAGCGCTCCCAGCCAGGAACCTGCCCTGGATGCTC
TTTCAGCATTTAATGACCTCATGGGTACATTCCACTGGTGAAGTATCTGCTCCCCAGACGG
GGCCCTCGCCTGAACACTCTCTGTGGATTGCTGATCTGATGGGTACAGGATGTATGTCGGC
GGAGTCGAACACAGAAAAGTCTCTCAACATCTGGCGGATGGGTGAAGGCTGCCGCTCT
GGCCGACGGGGATGCAGCGCGGAGCTACAGGCTCATGCTCTTCCGATCTCGGAGTC
ATTGGCAAAGCACATGTGGAATTCTACGGGGTGGCCGGAGCCCTGGTCGTTAAAAAA
GCAGCTCTCACCTCTCCCCAAGACGGAACGGATACCTCGTCGCCCTACAGGCCACTGTGGC
TGCAGCTCTGCTCTCTGCTCTGGCGATGCACTCATCTGCTGCCATTCAAGAAAAAGTAT
CTGGTCACCAGACATGCTGACGTGCTGGGTTGGCGCCTACATGAGCAAGTGCACCTGTGGC
AGCTCCGACCTGTATCACATGTGGAACATTCTGGAACTCTTGGTCGTTGGCAAGCACATGTGG
AATTGAAAGGCCGACAGCTAAATTGCTGGCAGCCTGGACACTGAAAGCAGCTGCATGAGG
ATCC

FIGURE 18F

HCV.4312(1P)

MGMQVQIQSLFLLLWVPGSRGLGVRATRKAAAKTSERSQPRNLPGCSFSIFNDLMGYIPLVK-YLLPRRGPRLNTLCGFADLMGYRMYVGGVEHRKLLFNILGGWVKAAALADGGCSGGAYRLIVFP-DLGVKFWAKHMWNFIGVAGALVAFKKQLFTFSPPRNRNGYLVAYQATVAAALLFLLADALIFCHSKKKYLVTRHADVLGFGAYMSKCTCGSSDLYHMWNFISGFWAKHMWNFKAAAVLVGGVLAAAFLLLADARVLSAFSLHSYILAGYGAGVWMNRLIAFANAAAKFVAAWTLKAAA*

GAATTGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTCTGCTCCTCTGTGGGTGCCCCGGTCAAAAC
GTGCCCCGGCTCCAGAGGAAGGCTGGCGTGAGAGCCACCCGGAAGAAGGCTGCCGCTAAAC
AAGCGAGCGCTCCCAGCCAGGAACCTGCCTGGATGCTCTTCAGCATCTTAATGACCTCAT
GGGGTACATTCCACTGGTGAAGTATCTGCTCCCCAGACGGGGCCCTGCCCTGAACACTCTG
TGGATTGCTGATCTGATGGGTACAGGATGTATGTCGGCGAGTCGAACACAGAAAAGTCT
CTTCAACATCCTGGCGGATGGGTGAAGGCTGCCCTGGCCGACGGGGATGCAGCGCG
GAGCTTACAGGCTCATTGCTTCCCAGTCGGAGTCAAATTGGCAAAGCACATGTGGA
ATTTCATCGGGTGGCCGGAGCCCTGGTCGCTTTAAAAAGCAGCTCTCACCTCTCCCCAA
GACGGAACGGATACCTCGTCGCCTACCAGGCCACTGTGGCTGCAGCTCTGCTCTGCC
TGGCCGATGCACTCATCTTCTGCCATTCAAGAAAAAGTATCTGGTACCCAGACATGTCAG
TGCTGGGGTTGGCCCTACATGAGCAAGTGCACCTGTGGCAGCTCCGACCTGTATCACATGT
GGAACTTATTCCTGGAATCTTGGCCAAGCACATGTGGAATTAAAGAAAGCCGCTGCAG
TCCTGGTGGCGGCGTCTGGCAGCCCTTCCCTGCTCTGGCAGACGCCAGGGTGTCTG
CCTCAGCCTCCACTCCTACATCCTCGCAGGGTATGGCAGGGCTGTGGATGAATCGGCTGA
TCGCCTTGCCAATGCTGCAGCTAAATTGCTGGCAGCCTGGACACTGAAAGCAGCTGCATGAG
GATCC

AOS.I.K

MGMQVQIQSLFLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAFLPSDFPSVKFLSLGIH
LYMDDVVLGVGLSRYVARLFLTRLTISTLPETTVVRRQAFTFSPTYKWLSSLVPFV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGA
GGACACACCCCTGTGGAAGGCCCGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCCTGGACCC
AAGGCTGCCGCTTCTGCCTAGCGATTCTTCTAGCGTGAAGTTCTGCTGTCCCTGGAA
TCCACCTGTATATGGATGACGTGGTGTGGAGTGGACTGTCCAGGTACGTGGCTAGGCTGT
TCCGTGACCAGAACCTGACCATCTCCACCCGCCAGAGACCACCGTGGTAGGGAGGCAGG
CCTCACCTTAGCCCTACCTATAAGTGGCTGAGCCTGCTGGTGCCTTGTGTGA

HBV.1

MGMQVQIQSLFLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAFLPSDFPSVFLLSLGIHL
YMDDVVLGVGLSRYVARLFLTRLTISTLPETTVVRRQAFTFSPTYKWLSSLVPFVIPISSWAFTP
ARVTGGVFVGNFTGLYLPSDFFPSVTLWKAGILYKNVSIPWTHKLVVDFSQFSRSAICSVVR
RALMPLYACI

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGA
GGACACACCCCTGTGGAAGGCCCGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCCTGGACCC
AAGGCTGCCGCTTCTGCCTAGCGATTCTTCTAGCGTGTGGACTGTCCAGGTACGTGGCTAGGCTGT
ACCTGTATATGGATGACGTGGTGTGGAGTGGACTGTCCAGGTACGTGGCTAGGCTGT
TGCTGACCAGAACCTGACCATCTCCACCCGCCAGAGACCACCGTGGTAGGGAGGCAGGC
TCACCTTAGCCCTACCTATAAGTGGCTGAGCCTGCTGGTGCCTTGTGATCCCTATCCCTAG
CTCCTGGCTTACCCCGAGCCAGGGTGACCGGAGGAGTGTGTTAAAGGTGGAAACTTCACCG
CCTGTATCTGCCAGCGATTCTTCTAGCGTACCCGTGGAGGCGGGATCCTGTACAA
GAATGTGTCCATCCCTGGACCCACAAGCTGGTGGACTTTCCAGTTCACTGAGCAGATCCGC
TATCTGCTCCGTGGTGAGGAGAGCTGTGATGCCACTGTATGCCTGTATCTGA

FIGURE 18G

HB.V.2

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFPLSDFFPSVNFLSLGIHLYMDDVVVLGVGLSRYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIPSSWAFKTPARVTGGVFVKVGNFTGLYNLPSDFPSVKTLWKAGILYKNVSIPWTHKGAAJVVDHSQFSRNSAICSVVRRALMPLYACI

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCCTGTGGGTGCCCGGTCCAGA
GGACACACCTGTGGAAGGCCGGAATCCTGTATAAGGCCAAGTCGTGGCTGCCCTGGACCCCTG
AAGGCTGCCGCTTCTGCCTAGCGATTCTTCCTAGCGTAACCTCTGCTGTCCCTGGAA
TCCACCTGTATATGGATGACGTGGTCTGGGACTGGTCCAGGTACGTGGCTAGGCTGT
TCTGCTGACCAGAACCTGACCATCTCCACCCGCCAGAGACCACCGTGGTGAGGAGGCAGG
CCTCACCTTAGCCCTACCTATAAGGGAGCCGCTGCCCTGGCTGAGCCTGCTGGTCCCTTGT
GAATATCCCTATCCCTAGCTCCTGGGCTTCAAGACCCCCAGCCAGGGTGACCCGAGGAGTGT
TAAGGTGGAAACTTCACCAGCCTGTATAACCTGCCAGCGATTCTTCCTAGCGTAAGAC
CCTGTGGAAGGCCGGAATCCTGTACAAGAATGTGTCATCCCTGGACCCACAAGGGAGCCG
CTCTGGTGGTGGACTTTCCAGTTCAAGCAGAAATTCCGCTATCTGCTCCGTGGTGAGGAGAG
CTCTGATGCCACTGTATGCCCTGTATCTGA

PfCTL.1

MQVQIQSLFLLLLWVPGSRGILSVSSFLFVNAAAQTNFKSLLRNLPSENERGYKAAALLACAGLAY
KKAACAKFVAAWTLKAAAKAFMKAVCDEVNAASFLFVEALFNATPYAGEPAPFKAAKYKLA
TSVLKAGVSENIFLKNAAYFILVNLLIKAGLLGVVSTV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCCTGTGGGTGCCCGATCCAGA
GGAATCCTGAGCGTGTCCCTTCTGTTGTCAACGCCGCTGCACAGACCAATTCAAGAGC
CTCCTGAGGAACCTCCCTCCGAGAACGAAAGAGGGCTACAAAGCCGCTGCACTGCTGCCCTGC
GCTGGACTGGCTATAAGAAAGCCGCTGCAGCCAAGTCGTGGCCGCTGGACACTGAAGGC
CGCTGCAAAGCCTTATGAAGGCTGTGTGGAGGTCAATGCCGCTGCATCTTCTGT
GTGGAGGCCCTTTAACGCTACTCCTACGCAGGGGAACCAGCCCCCTCAAGGCCGCTGCA
AAATATAAGCTGGCAACCAGCGTGTGAAGGCTGGCGTCCGAGAATATTTCTGAAAAAC
GCCGCTGCATACTCATCCTGGTGAATCTGCTCATTAAGGCCGACTCCTGGGGTGGTCTCT
ACAGTGTGA

PfCTL.2

MQVQIQSLFLLLLWVPGSRGFVEALFQEYNAAKYLIVFLINALACAGLAYKKFYFILVNLLKA
ALFFIIFNKNAAKFVAAWTLKAAAKFILVNLLIFHNFQDEENIGTYKLPYGRNLKAAAVLLGGV
GLVLNFLIFFDLFLVKAVLAGLLGVV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCCTGTGGGTGCCCGATCCAGA
GGATTCTGGAGGCCCTGTTCAAGGAATACAACGCCGCTGCAAAGTATCTCGTCATCGTGTTC
CTGATCAATGCTGGCATGCCGCCCTCGCTTACAAAAAGTTTACTTCATTCTGGTCAACC
TGCTCAAGGCCGCTGTTCTTATCATTTCAATAAAACGCCGCTGCAAAGTTGTGGCCGC
ATGGACCTGAAGGCCGCTGCAAATTCATCCTCGTGAATCTGCTCATTTCAACAATTCCAA
GACGAGGAAAATACCGAATTATAAGCTGCCCTACGGGAGGACAAACCTGAAAGCCGCTGC
AGTCCTGCTGGCGAGTGGGGCTGGTGTCAATTCTGATCTTCTTGATCTGTTCTGGTGA
AAGGCCGCTGGCCGGCTGCTGGAGTCGTGTGA

FIGURE 18H

PfCTL.3

MQVQIQSLFLLLLWVPGSRGVFLIFFDLFLNAAAPSDGKCNLYKAAAATCGNGIQVRKLHFIFDGD
NEIKAHVLSHNSYEKNEYGKQENWYSLKKILSVFLANAAAKFIKSLFHIFKAAALYISFYFIKAKF
VAAWTLKAAAKAAAYYIPHQSSLKAAAGLIMVLSFL

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCTGTGGGTGCCGGATCCAGA
GGAGTGTCTGATCTTCTTGACCTGTCGAACGCCGTGCACCCAGCGATGGCAAGTGC
AATCTCTACAAGGCCGTGCAGTGACCTGTGGAAACGGGATTAGGTCAAGGAAACTCTTCAC
ATCTCGACGGCGATAACGAGATCAAGGCCATGTGCTGCCCACAATTCTATGAAAAAAAC
TACTATGGAAAGCAAGAGAATTGGTACAGCCTGAAGAAAATTCTGTCCGTGTTCTTCGCC
AACGCCGTGCAAAGTTATCAAGTCTGTTCCATATTCAAGGCCGTGCACTCATACATCA
GCTTCTATTATTAAGCAAATTGTGGCCGTTGGACACTGAAGGCCGTGCAAAGCCG
CTGCATACTATATCCCTCACCAAGAGCTCCCTGAAGGCCGTGCAAGGGTGTGATCATGGT
CTTCCCTGTGA

PfCTL/HTL(N)

MQVQIQSLFLLLLWVPGSRGVNVVNSSIGLIMVLSFLGPGLYISFYFILVNLLIFHINGKIIKN
SEGPGPGPDSIQDSLKESRKLSPGPGLVLAGLLGVSTVLLGGVGLVLPGPGLPSENERGYYIPHQ
SSLGPGPGQTNFKSLLRNLGVSENIFLKGPGPQFQDEENIGIYGPGPGLYKLVIVFLIFFDLFLVPGP
GKFIKSLFHIFDGDNIEGPGPDKSKYKLATSVLAGLLGPGPGLPYGKTNLGPGRHNWVNHA
VPLAMKLIGPGPGMRKLAISVSSFLFVEALFQEYGPGPVTGNGIQVRGPGPGMNYYGKQENWYSL
KKGPGPBSDGKCNLYADSAWENVKNIGPFMKA
VCVEVGPGPKILSVFFLAFFIIFNKGPGPG
HVLSHNSYEKGPGPKYKIAGGIAGGLALLACAGLAYKFVVPGAATPYAGEPAPF

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCTGTGGGTGCCGGATCCAGA
GGAAGTAGTGTGTTCAATGTTGAACTCATCAATTGGTCTGATCATGGTCTGAGCTTCTCG
GGCCAGGGCCAGGATTATATATTCTTCACTTCATCCTGTCACCTGTTAATATTCCACAT
TAACGGAAAATAAAAGAACAGTGAAGGCCCTGGGCTGGGCTGACTCGATCCAGGATT
CTCTAAAAGAACATCGAGGAAGCTCTCCGGACCAGGCCCTGGTGTACTCGCCGGGTTGCTGGGA
GTAGTTAGCACAGTGTGTTAGGAGGCGTCGGCCTCGTCTAGGACCTGGACCAGGTCTGCCG
TCCGAAAACGAAAGAGGATACTACATACCTCACCAAGAGCAGCCTCGGCCAGGCCCGGACA
AACCAATTCAAATCCCTCTTGC
AAATCTAGGAGT GAGCGAGAACATATTCTAAAGGACC
CGTCCCGCTTCAAGGACGAGGAGAATATAGGTATTACGGTCCAGGACCTGGAAAATACCT
AGTATCGTATTCTTAATTITGACCTATTCTGGTGGGCCAGGTCCCAGGAAAGTCATT
AAATCACTCTTCCACATTITGACGGAGATAACGAGATAGGACCCGGTCCCAGGAAATCAA
GTACAAACTAGCCACTTCAGTGCTGGCCGGCTCTAGGCCGGGCCAGGGCTCCCATTGG
AAAGACAAATCTTGGCCCCGGTCCAGGACGGCACAAGTGGTGAATCATGGGTTCCATTGG
CCATGAAACTAATCGGGCCCGGTCCAGGCATGCGCAAATTGCAATTCAAGCGTAAGTCAT
TTCTGTTCTAGAGGCAGTGTTCAGAAATATGCCAGGACCTGGTGTACATGTGGGAATG
GGATCCAGGTGAGAGGACCGGGACCTGGTATGAACTATTACGGTAAACAGGAAAATTGGTAC
TCCCTGAAAAGGGTCCAGGCCGGCCCTCAGATGGTAAGTGCACCTGTATGCTGACTCA
GCATGGGAGAACGTAaaaaATGTAATAGGCCATTGATGAAGGCAGTTGTCGAAGTCGG
ACCAGGCCAGGAAAATACTTCTGTTCTCCTAGCTCTTCACTCATCTCAACAAG
GGACCAGGGCCAGGTACGTGTTATCCCATAACTCTTATGAAAAGGGCCAGGACCTGGAA
ATACAAAATCGCAGGAGGGATGCCGGCTAGCGCTCCTGCCTGCGCAGGCTGGCTTA
CAAATTCTGTACCAGGAGCTGCAACACCCATTGCAAGGAGAACCTGCCCAATTGAAGATC
TGC

FIGURE 18I

Pf33

MGMQVQIQSLFLLLLWVPGSRGMKAVCVEVNVTGNGIQVRKGLIMVLSFLNAALFHIFDGDN
EIKAALLACAGLAYKKSFLVEAFLNAAPSDGKCNLYKAAQTNFKSLRNLPSENERGYKAAGVS
ENIFLKNAAYFILVNLLIKAAAILSVSSFLFVNTPYAGEPAPFKAAAKYKLATSVLKAAVFLIFFDL
FLNYYIPHQSSLKAAGLLGVSTVGAVLGGVGLVNLACAGLAYKAKFIKSLHIFKAAFYFIL
VNLLKAFLIFFDLFLVKALFFIIFNKNYYGQENWYSLKVEALFQEYNAAAKFVAAWTLKAAAK
ILSVFFLANAVLAGLLGVNFQDEENIGIYKAAALYISFYFIKAFILVNLLIFHNAALPYGRTNLKAA
HVLSHNSYEKNAAKYLVIVFLI

GCCGCCACCAGGGAAATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCTGTGGGTGCC
GGATCCAGAGGATTATGAAAGCTGTCTGTAGAGGTGAATGTAACATGCGGTAAACGGAAT
TCAGGTGAGAAAGGGACTCATGGTACTCAGCTTCTGAACGCAGCCCTGTCACATCTT
TGACGGAGACAATGAAATCAAAGCCGCATTGCTCGCCTGTGCCGGACTAGCCTATAAAAAGA
GTTTCCTTTCGTTGAAGCACTATTAAACGCAGCACCCAGTGACGGTAAATGCAACCTATATA
AACGAGCTCAGACTAATTCAAAGCCTGTTAAGAAATCTGCCCTCAGAGAAATGAAAGGGT
TACAAAGCCGCCGGCGTGTCCGAGAATATTTCTGAAGAACGCCGCTGCTTATTTACTC
GTGAATCTACTCATAAAGGCAGCCGCAATCCTTCAGTGCCAGCTTCTGTTAACACAC
CATATGCGGGCGAGCCGGCTCTTCAAGGCTGCAGCAAAATACAAGCTTGCACATCAGTAT
TGAAAGCAGCTGTTTGTATATTCTTGTATCTTTAAACTACTACATACTCATCAGTCT
AGTCTTAAAGCAGCCGGCTACTGGGAACGCTCTACTGTTGGGGCCGTCTACTGGAGGA
GTTGGCCTCGTGTGAACCTCGCGTGCAGGCTGTCCTACAAAAAAAGCGAAATTCAAG
TCTCTGTTCCACATTAAAGCCGCATTCTATTCTACATACTAGTGAAACCTCTCAAAGCTTCC
GATCTCTCGATCTATTCTCGTAAAGCGCTATTCTCATTATCTTAAACAAAAATTATTAC
GGCAAGCAAGAAAATTGGTACTCACTCAAGTTGTTAGAAGCTCTGTTCCAGGAATACAACGCC
GCTGCTAAATTGTTGAGCTTGACCTGAAAGCAGCTGCAAAGATCCTATCGGTCTCTTC
TCGCTAATGCCGTATTAGCAGGACTCTAGGCAACGTGAACITTCAGACGAAGAGAAATATAG
GCATCTACAAAGCCGAGCACTGTACATTCTACTTCATCAAGGCCTTACTGGTCAA
CCTTCTGATATTCTACATGCAGCACTGCCATTGGAGAACCAACTGAAAGCGGCCACGT
GTTGAGCCACAACCTCTACGAGAAGAACGCCGCCGAAATATCTGTCATTGTCTCTGAT
TTGA

TB.1

MQVQIQSLFLLLLWVPGSRGRMSRVTTFTVKALVLLMLPVNVLMIGTAAAVVKALVLLMLPVGA
GLMTAVLVGAAAMALLRLPVKRMFAANLGVNLSYFGGICVGRPLVLPNAVAAAACKVAAWT
LKAAAKAAARLMIGTAAAGFVVALIPLVNAMTYAAPLFVGAAAAMALLRLPLV

ATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCTGTGGGTGCCGGATCCAGAGGAAGG
ATGAGCAGAGTGACCACATTCACTGTCAAGGCCCTGGTCTCTGATGCTCCCCGTGTAAC
CTGATGATCGGCACCGCTGCAGCGCTGTGAAAGCTCTGTCCTGCTCATGCTCCCTGTGGGA
GCAGGGCTGATGACAGCGTGTACCTGGTGGCGCTGCAGCCATGGCCCTCTGCCGGCTGCCA
GTGAAGCGCATGTTGCTGCAAATCTGGGAGTCAACTCCCTCTATTGCGGGCATTGCGTG
GGAAGGCTGCCCTCGTGTGCTGTGAAATGCAAGACTGATCGGACCGCCCTGCCCCTGG
ACTCTGAAGGCAGCCGTAAGGCCGCTGCAAGACTGATCGGACCGCCCTGCCCCTGG
CGTGGTCGCCCTGATTCCCTGGTGAACGCCATGACATACGCAGCTCCTCTGTTGTGGAGC
CGCTGCAGCCATGGCTCTCCTGCCGGCTGCCACTGGTGTGA

FIGURE 18J

BCL A2 #90

MQVQIQSLFLLLWVPGSRGIMIGHLVGVNRLQETELVNAKVAEIVHFLNAKVFGSLAFVNAYL-SGANLNVGAAYLQLVFGIEVNAAAKFVAAWTLKAAAKAAAVVLGVVFGINSMPPPGRVNAAAATVGIMIGVNAKLCPVQLWV

ATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGAATT
ATGATCGGCCATCTGGTGGCGTCACAGACTGTCAGGAAACCGAGCTGGTGAATGCCAA
GGTGGCCGAAATTGTGCACTTCTCAACGCAAAGGTGTTGGTCCCTGGCTTGTCAATGCC
TATCTGAGCGCGCTAACCTCAACGTCGGAGCCGCTACCTCCAGCTGGTCTCGGCATCGAG
GTCAACGCTGCTGAAAATTCTGTCAGCTGGACCCCTAAGGCTGCAGCAAAGGCTGCCGCC
GTCGTGCTCGGAGTGGTGTGGGATCAACTATGCCACCTCCCAGGACTAGGGTCAATGCT
GCCGCCAACAGTGGAAATCATGATTGGGTGAATGCCAAACTGTGCCAGTGCAACTGTG
GGTGTGA

BCL A2 #88

MQVQIQSLFLLLWVPGSRGVVLGVVFGINAAAASFVAAWTLKAAAKVAEIVHFLNAYLSANLN
NVGAAYLQLVFGIEVNIMIGHLVGVNRLQETELVNAKVFGLAFVNNAKLCPVQLWVNAAAATV
GIMIGVNSMPPPGRV

ATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGAGTC
GTGCTGGGAGTCGTCTCGGCATTAATGCCGCCGTGCAAAGTTCGTGGCTGCCCTGGACCCCTG
AAGGCCGAGCTAAAGTGGCAGAGATCGTCACTTCTGAACGCCAACCTGAGCGGAGCAA
TCTGAACGTCGGCGCTGCCTATCTGCACTCGTGTGGATTGAAGTGAACATCATGATTGG
ACATCTGGTGGCGTGAACAGGCTGCTCCAGGAAACTGAGCTGGTCAACGCTAAAGTGTG
GGTCTCTCGCCTTGTAACGCTAACGCTCTGCCCGTCCAACCTGGGTCAATGCCAGCCG
CTACAGTGGGATCATGATCGCGTGAACCTCCATGCCCTACCAGGGACCAGAGTGTGA

BCL A2 #63

MQVQIQSLFLLLWVPGSRGKLCPVQLWVNAAAATVGIMIGVNMIGHLVGVNRLQETELVNA
KVAEIVHFLNAKVFGSLAFVNAYLSANLNVGAAYLQLVFGIEVNAAAKFVAAWTLKAAAKAA
AVVLGVVFGINSMPPPGRV

ATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGAAAG
CTCTGCCCCGTGCAACTGTGGGTCAACGCCGCCGCAACCGTCGGCATTATGATCGGGGTG
AACATCATGATCGGACACCTGGTCGGCGTGAACAGGCTGTCAGGGAGACAGAACTGGTCAA
TGCCAAGGTGGCTGAAATTGTCCTTGTAATGCCAAAGTGTTCGGCTCTCGCTTGTG
AACGCTATCTGAGCGGAGCTAACCTCACGTGGGGCCGACATACCTCCAGCTCGTCTTGGG
ATTGAGGTGAATGCCGAGCTAAATTGTCGCTGCCTGGACCCCTGAAGGCAGCAGCCAAGGCT
GCCGCAGTGGTGTGGAGTGGTGTGGATTCAATTCCATGCCCTACCAGGCAGTAGAGTG
TGAGGATCC

FIGURE 18K

Prostate 1

LTFWLDRSVKAALVLPQWVLTVKAAALLQERGVAYIKAALLSIALSVNPLVCNGVLQGVK
AAIMYSAHDTTVKAAFLTPKKLQCVNAMMNDQLMFLNAGLPSIPVHPVKAALGTTCYVGAAI
LLWQPIPVNFLRPRSLQCVKAFLTSVTWIGVNALLYSLVHNLGAATLMSAMTNL

ATGCAGGTGCAGATCCAGAGCCTGTTCTGCTCCTCTGGGTGCCCGGGTCCAGAGGATTG
ACATTTTTGGCTGGATAGATCGGTAAGGCTGCAGCCGTGCTTCACTACATCCCCAGTGGTCT
TGACCGTAAAGGCTGCCGCCTGCTACAAGAAAGAGGGTCGCATACATCAAAGCTGCTCTC
CTCTTGAGTATTGCGCTAAGTGTAAACCCGCTAGTTGTAATGGGGTGTACAAGGTGTGAAA
GCGGCAGATTATGTACAGTCCCACGACACTACCGTAAAGCAGCCGCTTCTGACCCAAAA
AAACTCCAATGCGTGAACGCAATGATGAATGATCAGCTGATGTTAAACGCTGGCTTACCT
TCTATAACGGTTCATCCAGTCAGGCGCGCATGGGTACGACGTGTATGGAGCAGCG
ATACTCTTGGCAGCCATACCAAGTAAATTAAAGACCTAGATCCTACAATGCGTCAAAG
CATTCCCTACACTCTCAGTAACGGATCGGAGTCAATGCTCTGCTATAGCCTCGTACACAA
CTTGGCGCGGCCACACTTATGAGTGAATGACGAATTAGCTAAGTCGTGGCGGCCTGGAC
TCTAAAGGCCGAGCA

HIV-1043

MEKVYLAWPAHKIGGGPGPGQKQITKIQNFRVYYRGPGPGWEFVNTPPLVWLWYQGPGPGR
KILRQRKIDRLIDGPGPGQHLLQLTVWGIKQLQGPQPGGEIYKRWIILGLNIVRMYGPGPGQQQM
VHQAIISRTLNGPGPGIKQFNMWQEVGKAMYGPQPGWAGIKQEFGIPYNPQGPQPGKTAVQMA
VFIHNFKRGPQPGSPAIFQSSMTKILEPGPGPGEVNIVTDSQYALGIIGPQPGHSNWRAMASDFNLPP
GPGPAETFYVDGAANRETKGPQPGGAVVIQDNSDIKVVPQPGPGFRKYTAFTIPSINNE

ATGGAGAACGGTGTACCTGGCCTGGGTTCCAGCCCACAAAGGCATGGGGAGGGCCGGACC
TGGGAGAACAGATACCAAGATCCAGAACTCCGGTATACTACCGGGGACCTGGTCCAG
GTTGGGAGTTGTGAACACACCACCTTAGTAAAGCTCTGGTACCGAGGGCCCGTCCGGAT
ACCGTAAAATCCTGAGGCAAAGAAAGATAGATCGCCTCATTGATGGCCCGGGCCAGGCCAG
CACCTCTGCAGCTACAGTGTGGGAATTAAACAGCTGCAGGGGCCGGGCCCCGGGGGGA
AATTATAAAAGGTGGATCATTCTGGTCTGAACAGATCGCCGCATGTATGGCCCTGGACC
CGGACAGGGCAGATGGTCCACCAAGCAATCAGCCCTCGAACCTTGAATGGACCGGGCCAG
GAATCAAGCAATTCTTAACATGTGGCAAGAAGTTGTAAGGCTATGTACGGTCCCGGCCCTG
GATGGGCAGGGATAAAACAGGAGTTGGAATCCCTAACATCCCAGGGTCTGGGCCAGGT
AAAACGGCAGTGCAGATGGCGTGTTCATTCAATTAAAGCGGGGCCCTGGACCTGGCAGC
CCAGCTATATTCAAAGTTCGATGACCAAAATCTGGAGCCCGGCCAGGGCCGGCGAAGT
GAACATTGTACAGATTCTCAGTATGCCCTCGGCATCATAGGGCCGGACCAGGGCATTCAA
TTGGCGGCCATGGCGTGTACTTAATCTACCTCCTGGGCCAGGGCCCTGGCGCGGAAACTTT
CTATGTGGACGGCGCTGCAAACAGGGAGACTAAGGGACCCGGACCCGGCGCGCTGTAGTCA
TTCAGGACAACCTCAGACATCAAGGTGGTCCCGGTCCAGGCCCGGGTTAGAAAGTATACCG
CCTTCACTATTCCGTCCATCAACAATGAGTGA

FIGURE 18L

HIV-1043 PADRE

MEKVYLAWVPAHKIGGGPGPGQKQITKIQNFRVYYRGPGPGWEFVNTPPLVKLWYQGPGPGYR
KILRQRKIDRLIDGPGPQHLLQLTVWGIKQLQGPQGEIYKRWIILGLNKIVRMYGPGPGQGM
VHQAISPRTLNGPGPKQFINMWQEVGKAMYGPGPGWAGIKQEFGIPYNPQGPQPKTAVQMA
VFIHNFKRGPGSPAIFQSSMTKILEPGPGPEVNIVTDSQYALGIIGPGPGHSNWRAMASDFNLPP
GPGGAETFYVDGAANRETKGPGPGAVVIQDNDIKA
KFVAATLKAAA

ATGGAGAAGGTGTACCTGGCTGGTCCAGCCCACAAAGGCATCGGGGGAGGGCCCGGACC
TGGGCAGAACACAGATCACCAAGATCCAGAACTTCCGGGTATACTACCGGGGACCTGGTCCAG
GTTGGGAGTTGTGAACACACACCCTAGTAAAGCTCTGGTACCAAGGGCCCCGGTCCGGAT
ACCGTAAAATCTGAGGCAAAGAAAGATAGATGCCCTATTGATGCCCGGGCCCCAGGCCAG
CACCTTCTGCAGCTTACAGTGTGGGAATTAAACAGCTGCAGGGGCCGGCCCCGGGGGA
AATTATAAAAGGTGGATCATCTGGGCTGAACAAGATCGTCCGCATGTATGCCCTGGACC
CGGACAGGGCAGATGGTCCACCAAGCAATCAGCCCTCGAACCTTGAATGGACCGGGCCCAG
GAATCAAGCAATTATTAACATGTGGCAAGAAGTTGGTAAGGCTATGTACGGTCCCAGGT
GATGGCAGGGATAAAACAGGAGTTGGAATCCCTACAATCCCCAGGGTCTGGGCCAGGT
AAAACGGCAGTCAGATGGCCGTGTTCATCATAATTAAAGCGGGGCCCTGGACCTGGCAGC
CCAGCTATATTCAAAGTCGATGACCAAAATCTGGAGGCCGCCAGGGCCGGCGAAGT
GAACATTGTCACAGATTCTCAGTATGCCCTCGGCATCATAGGGCCGGACCAGGGCATTCAA
TTGGCGGCCATGGCGTCTGACTTAATCTACCTCTGGGCCAGGCCCTGGCGCGAAACTTT
CTATGTGGACGGCGCTGCAAACAGGGAGACTAAAGGACCCGGACCCGGCGCTGTAGTCA
TTCAGGACAACACTCAGACATCAAGGTGGTCCCGTCCAGGGCCGGTTCAAGAAAGTACCG
CCTCACTATTCCGTCCATCAACAATGAGGGCCCCGGCCAGGTGCCAAGTTCGTGGCTGCCT
GGACCTGAAGGCTGCCGTTGA

HIV 75mer

EKVYLAWVPAHKIGGGPGPGQGMVHQAISPRTLNGPGSPAIFQSSMTKILEPGPGFRKYTA
FTIPSINNE

GAGAAGGTGTACCTGGCTGGTGCCTGCCACAAGGAATCGGAGGGACCTGGCCCTGGACA
GGGACAGATGGTGCAACCAGGCCATCAGCCCTAGGACCTGAACGGACCTGGACCTGGAAAGCC
CTGCCATCTCCAGAGCAGCATGACCAAGATCCTGGAGCCGGACCTGGACCTGGATTCAAGGA
AGTACACCGCCTCACCATCCCCAGCATCAACAACGAGTGA

FIGURE 18M

PfHTL

MQVQIQSLFLLLWVPGSRGRHNWVNHAVPLAMKLIGPGPKCNLYADSAWENVKNGPGPGKS-KYKLATSVLAGLLGPGPGQTNFKSLLRNLGSEGPGPGSSVFNVVNSSIGLIMGPGPVKNVIGPFMKAVCVEGPGPGMNYYGKQEWNWYSLKGPGPGLAYKFVVPGAATPYGPGPDSIQDSLKESRKLNPGPGLIFHINGKIIKNSEGPGPAGLLGNVSTVLLGGVGPGPKYKIAGGIAGGLALLGPGP
GMRKLAILSVSSFLV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTCTGTCCTCCTGTGGGTGCCGGATCCAGA
GGAAGGCACAACACTGGGTGAATCATGCTGTGCCCTGGCTATGAAGCTGATCGGCCCTGGACC
AGGGAAATGCAACCTCTACGCAGACAGCGCCTGGGAGAACGTCAAGAATGGCCCCGGACCTG
GGAATCCAAGTATAAGCTCGCTACCTCTGTGCTGGCAGGCCTGCTGGACCAGGCCCCGGAC
AGACAAATTCAAAGCCTGCTCAGAAACCTGGGAGTGTCCGAGGGGCTGCCAGGATCT
AGCGTCTTAATGTGGTCAACTCCTCTATTGGGCTCATCATGGGACCCGGACCTGGGGTGAAA
AATGTCATTGGCCCATTCATGAAGGCCGTGTGTCGAAGGACCCGGCCTGGCATGAACCTAC
TATGGAAAGCAAGAAAATTGGTACAGCCTGAAGAAAGGCCCTGGGCCAGGCCAGTGGCTTA
CAAGTTGTGGTCCCAGGGGCAGCCACTCCCTATGGGCTGGGCCAGGCCAGTGGCTATTCCATCCA
GGACTCTCTCAAAGAGAGGCCGGAAACTGAACGGACCCGGCCTGGACTGCTCATTTCCACAT
CAATGGCAAATTATCAAGAACAGCGAGGGACCTGGGCCAGGCCAGTGGCTGGAGGG
TGTCCACCGTCCTGCTCGCGGAGTGGGCCCTGGGAAGTACAAGATCGCTGGAGGG
ATCGCAGGCCGGACTGGCCCTCTGGGCCAGGACCAGGGATCGCAAACGGCTATTCTCT
GTCTCCAGCTTCTGTTGTGA

FIGURE 18N

Protein	Sequence	Restriction
HIV gag 386	VLAEAMSQV	HLA-A2
HIV gag 271	MTNNPPIPV	HLA-A2
HIV pol 774	MASDFNLPPV	HLA-A2
HIV pol 448	KLVGKLNWA	HLA-A2
HIV pol 163	LVGPTPVNI	HLA-A2
HIV pol 498	ILKEPVHGV	HLA-A2
HIV pol 879	KAACWWAGI	HLA-A2
HIV pol 132	KMIGGIGGFI	HLA-A2
HIV pol 772	RAMASDFNL	HLA-A2
HIV pol 183	TLNFPISPI	HLA-A2
HIV env 134	KLTPLCVTL	HLA-A2
HIV env 651	LLQLTVWGI	HLA-A2
HIV env 163	SLLNATDIAV	HLA-A2
HIV nef 221	LTFGWCFKL	HLA-A2
HIV vpr 59	AIIIRILQQL	HLA-A2
HIV vpr 62	RILQQLLFI	HLA-A2
HIV pol 929	QMAVFIHNFK	HLA-A3
HIV pol 722	KVYLAWVPAHK	HLA-A3
HIV pol 971	KIQNFRVYYR	HLA-A3
HIV pol 347	AIFQSSMTK	HLA-A3
HIV pol 98	VTIKIGGQLK	HLA-A3
HIV env 61	TTLFCASDAK	HLA-A3
HIV env 47	VTVYYGVPVWK	HLA-A3
HIV nef 100	QVPLRPMTYK	HLA-A3
HIV vif 7	VMIVWQVDR	HLA-A3
HIV gag 162	QMVKHQAISSPR	HLA-A3
HIV gag 545	YPLASLRSLF	HLA-B7
HIV gag 237	HPVHAGPIA	HLA-B7
HIV pol 186	FPISPIETV	HLA-B7
HIV pol 893	IPYNPQSQGVV	HLA-B7
HIV env 259	IPIHYCAPA	HLA-B7
HIV env 250	CPKVSFEPI	HLA-B7
HIV nef 94	FPVRPQVPL	HLA-B7
HIV rev 75	VPLQLPPL	HLA-B7
HIV pol 684	EVNIVTDSQY	HLA-A1
HIV gag 317	FRDYVDRFY	HLA-A1
HIV pol 368	VIYQYMDDLY	HLA-A1
HIV pol 295	TVVLVDVGDAY	HLA-A1
HIV pol 533	IYQEPFKNL	HLA-A24
HIV pol 244	PYNTPVFAI	HLA-A24
HIV pol 530	TYQIYQEPEF	HLA-A24
HIV pol 597	YWQATWIPEW	HLA-A24
HIV env 681	IWGCSGKLI	HLA-A24
HIV env 671	RYLKDDQQL	HLA-A24

FIGURE 19A

Protein	Sequence	Restriction
HIV env 55	VWKEATTTLF	HLA-A24
HIV vpr 46	IYETYGDTW	HLA-A24
HIV vpr 14	PYNEWTLEL	HLA-A24
HIV gag 298	KRWIILGLNKIVRMY	HLA-DR
HIV pol 596	WEFVNTPPLVKLWYQ	HLA-DR
HIV pol 956	QKQITKIQNFRVYYR	HLA-DR
HIV pol 712	KVYLAWVPAHKGIGG	HLA-DR
HIV gag 294	GEIYKRWIILGLNKI	HLA-DR
HIV pol 711	EKVYLAWVPAHKGIG	HLA-DR
HIV env 729	QHLLQLTVWGKQLQ	HLA-DR
HIV gag 171	QGQMVFHQASPRTLN	HLA-DR
HIV pol 335	SPAIFQSSMTKILEP	HLA-DR
HIV env 566	IKQFINMWQEVGKAMY	HLA-DR
HIV pol 303	FRKYTAFTIPSINNE	HLA-DR
HIV pol 758	HSNWRAMASDFNLPP	HLA-DR
HIV pol 915	KTAVQMAVFIFHNFKR	HLA-DR
HIV vpu 31	YRKILRQRKIDRLID	HLA-DR3
HIV pol 874	WAGIKQEFGIPYNPQ	HLA-DR3
HIV pol 674	EVNIVTDSQYALGII	HLA-DR3
HIV pol 619	AETFYVDGAANRETK	HLA-DR3
HIV pol 989	GAVVIQDNSDIKVVP	HLA-DR3
HCV NS4 1812	LLFNILGGWWV	HLA-A2
HCV NS1/E2 728	FLLLADARV	HLA-A2
HCV NS4 1590	YLVAYQATV	HLA-A2
HCV NS5 2611	RLIVFPDLGV	HLA-A2
HCV CORE 132	DLMGYIPLV	HLA-A2
HCV NS4 1920	WMNRLIAFA	HLA-A2
HCV NS4 1666	VLVGGVLAA	HLA-A2
HCV NS4 1769	HMWNFISGI	HLA-A2
HCV NS4 1851	ILAGYGAGV	HLA-A2
HCV CORE 35	YLLPRRGPRL	HLA-A2
HCV NS1/E2 726	LLFLLLADA	HLA-A2
HCV LORF 1131	YLVTRHADV	HLA-A2
HCV CORE 51	KTSERSQPR	HLA-A3
HCV CORE 43	RLGVRATRK	HLA-A3
HCV ENV1 290	QLFTFSPRR	HLA-A3
HCV NS1/E2 632	RMYVGGVEHR	HLA-A3
HCV NS3 1396	LIFCHSKKK	HLA-A3
HCV NS4 1863	GVAGALVAFK	HLA-A3
HCV NS4 1864	VAGALVAFK	HLA-A3
HCV NS3 1262	LGF GayMSK	HLA-A3
HCV Core 169	LPGCSFSIF	HLA-B7
HCV NS5 2922	LSAFLSHSY	HLA-A1
HCV NS3 1128	CTCGSSDLY	HLA-A1
HCV NS5 2180	LTDPSHITA	HLA-A1

FIGURE 19B

Protein	Sequence	Restriction
HCV Core 126	LTCGFADLMGY	HLA-A1
HCV NS3 1305	LADGGCSGGAY	HLA-A1
HCV NS4 1765	FWAKHMWNF	HLA-A24
HCV NS5 2875	RMILMTHFF	HLA-A24
HCV NS5 2639	VMGSSYGF	HLA-A24
HCV NS4 1765	FWAKHMWNFI	HLA-A24
P. falciparum SSP2-230	FMKAVCVEV	HLA-A2
P. falciparum EXP1-83	GLLGVVSTV	HLA-A2
P. falciparum CSP-7	ILSVSSFLFV	HLA-A2
P. falciparum LSA1-94	QTNFKSLLR	HLA-A3
P. falciparum LSA1-105	GVSENIFLK	HLA-A3
P. falciparum SSP2-522	LLACAGLAYK	HLA-A3
P. falciparum SSP2-539	TPYAGEPAPF	HLA-B7
P. falciparum LSA1-1663	LPSENERGY	HLA-A1
P. falciparum EXP1-73	KYKLATSVL	HLA-A24
P. falciparum CSP-12	SFLFVEALF	HLA-A24
P. falciparum LSA1-10	YFILVNLLI	HLA-A24
P. falciparum SSP2-14	FLIFFDLFLV	HLA-A2
P. falciparum EXP1-80	VLAGLLGVV	HLA-A2
P. falciparum EXP1-91	VLLGGVGLVL	HLA-A2
P. falciparum SSP2-523	LACAGLAYK	HLA-A3
P. falciparum EXP1-10	ALFFIIFNK	HLA-A3
P. falciparum LSA1-11	FILVNLLIFH	HLA-A3
P. falciparum SSP2-126	LPYGRTNL	HLA-B7
P. falciparum CSP-15	FVEALFQEY	HLA-A1
P. falciparum LSA1-1794	FQDEENIGIY	HLA-A1
P. falciparum LSA1-9	FYFILVNLL	HLA-A24
P. falciparum SSP2-8	KYLVIVFLI	HLA-A24
P. falciparum CSP-394	GLIMVLSFL	HLA-A2
P. falciparum EXP1-2	KILSVFFLA	HLA-A2
P. falciparum CSP-344	VTCGNGIQVR	HLA-A3
P. falciparum LSA1-59	HVLSHNSYEK	HLA-A3
P. falciparum SSP2-207	PSDGKCNLY	HLA-A1
P. falciparum LSA1-1671	YYIPHQSSL	HLA-A24
P. falciparum LSA1-1876	KFIKSLFHIF	HLA-A24
P. falciparum SSP2-13	VFLIFFDLFL	HLA-A24
P. falciparum LSA1-1881	LFHFIDGDNEI	HLA-A24
P. falciparum CSP-55	YYGKQENWYSL	HLA-A24
P. falciparum LSA1-5	LYISFYFI	HLA-A24
P. falciparum CSP-2	MRKLAILSVSSFLFV	HLA-DR
P. falciparum CSP-53	MNYYGKQENWYSLKK	HLA-DR
P. falciparum CSP-375	SSVFNVVNSSIGLIM	HLA-DR
P. falciparum SSP2-61	RHNWVNHAVPLAMKLI	HLA-DR
P. falciparum SSP2-165	PDSIQDSLKESRKLN	HLA-DR3
P. falciparum SSP2-211	KCNLYADSAWENVKN	HLA-DR3

FIGURE 19C

Protein	Sequence	Restriction
P. falciparum SSP2-223	VKNVIGPFMKAVCVE	HLA-DR
P. falciparum SSP2-509	KYKIAGGIAGGLALL	HLA-DR
P. falciparum SSP2-527	GLAYKFVVPGAAATPY	HLA-DR
P. falciparum EXP1-71	KSKYKLATSVLAGLL	HLA-DR
P. falciparum EXP1-82	AGLLGNVSTVLLGGV	HLA-DR
P. falciparum LSA1-16	LLIFHINGKIIKNSE	HLA-DR
P. falciparum LSA1-94	QTNFKSLLRNLLGVSE	HLA-DR
HBV core 18	FLPSDFFPSV	HLA-A2
HBV env 183	FLLTRILTI	HLA-A2
HBV env 335	WLSLLVPFV	HLA-A2
HBV pol 455	GLSRYVARL	HLA-A2
HBV pol 538	YMDDVVLGV	HLA-A2/A1
HBV pol 773	ILRGTSFVYV	HLA-A2
HBV pol 562	FLLSLGIHL	HLA-A2
HBV pol 642	ALMPPLYACI	HLA-A2
HBV env 338	GLSPTVWLSV	HLA-A2
HBV core 141	STLPETTVVRR	HLA-A3
HBV pol 149	HTLWKAGILYK	HLA-A3/A1
HBV pol 150	TLWKAGILYK	HLA-A3
HBV pol 388	LVVDFSQFSR	HLA-A3
HBV pol 47	NVSIPWTHK	HLA-A3
HBV pol 531	SAICSVVRR	HLA-A3
HBV pol 629	KVGNFTGLY	HLA-A3/A1
HBV pol 665	QAFTFSPTYK	HLA-A3
HBV core 19	LPSDFFPSV	HLA-B7
HBV env 313	IPIPSSWAF	HLA-B7
HBV pol 354	TPARVTGGVF	HLA-B7
TB	RMSRVTTFTV	HLA-A2
TB	ALVLLMLPVV	HLA-A2
TB	LMIGTAAAVV	HLA-A2
TB	ALVLLMLPV	HLA-A2
TB	GLMTAVYLV	HLA-A2
TB	MALLRLPV	HLA-A2
TB	RMFAANLGV	HLA-A2
TB	SLYFGGICV	HLA-A2
TB	RLPLVLPAV	HLA-A2
TB	RLMIGTAAA	HLA-A2
TB	FVVALIPLV	HLA-A2
TB	MTYAAPLFV	HLA-A2
TB	AMALLRLPLV	HLA-A2
p53 139	KLCPVQLWV	HLA-A2
CEA 687	ATVGIMIGV	HLA-A2
CEA 691	IMIGHLVGV	HLA-A2
Her2/neu 689	RLLQTELV	HLA-A2
MAGE3 112	KVAEIVHFL	HLA-A2

FIGURE 19D

Protein	Sequence	Restriction
Her2/neu 369	KVFGSLAFV	HLA-A2
CEA 605	YLSGANLNV	HLA-A2
MAGE2 157	YLQLVFGIEV	HLA-A2
Her2/neu 665	VVLGVVFGL	HLA-A2
p53 149	SMPPPGTRV	HLA-A2
PAP.21.T2	LTFFWLDRSV	HLA-A2
PAP.112	TLMSAMTNL	HLA-A2
PAP.284	IMYSAHDTTV	HLA-A2
PSM.288.V10	GLPSIPVHPV	HLA-A2
PSM.441	LLQERGVAYI	HLA-A2
PSM.469L2	LLYSLVHNL	HLA-A2
PSM.663	MMNDQLMFL	HLA-A2
PSA.3.V11	FLTLSVTWIGV	HLA-A2
PSA.143.V8	ALGTTCYV	HLA-A2
PSA.161	FLTPKKLQCV	HLA-A2
HuK2.4.L2	LLLSIALSV	HLA-A2
HuK2.53.V11	VLVHPQWVLTW	HLA-A2
HuK2.165	FLRPRSLQCV	HLA-A2
HuK2.216.V11	PLVCNGVLQGV	HLA-A2

FIGURE 19E