ИІТМО

НИУ ИТМО

Отчет по лабораторной работе $\mathbb{N}_{2}1$

По дисциплине "Теория автоматического управления"

"Управляемость и наюлюдаемость"

Вариант 30

Выполнил:

Александр Иванов, R3338

Преподаватели:

Перегудин А.А.

Пашенко А.В.

Санкт-Петербург, 2025

Содержание

1.	Исс	ледование управляемости	4
	1.1.	Управляемость системы	4
		1.1.1. Матрица управляемости	4
		1.1.2. Управляемость собственных значений	4
		1.1.3. Диагональная форма системы	5
	1.2.	Грамиан управляемости	6
	1.3.	Управление системой	6
	1.4.	Вывод	7
2.	Упр	равляемое подпространство	8
	2.1.	Управляемость системы	8
		2.1.1. Матрица управляемости	8
		2.1.2. Управляемость собственных значений	9
		2.1.3. Диагональная форма системы	9
	2.2.	Грамиан управляемости	10
	2.3.	Управляемое подпространство	10
	2.4.	Управление системой	11
	2.5.	Вывод	11
3.	Исс	ледование наблюдаемости	13
	3.1.	Наблюдаемость системы	13
		3.1.1. Матрица наблюдаемости	13
		3.1.2. Наблюдаемость собственных значений	14
		3.1.3. Диагональная форма системы	14

	3.2.	Грамиан наблюдаемости	15
	3.3.	Наблюдение системы	16
	3.4.	Вывод	16
4.	Наб	людаемое подпространство	18
	4.1.	Наблюдаемость системы	19
		4.1.1. Матрица наблюдаемости	19
		4.1.2. Наблюдаемость собственных значений	19
		4.1.3. Диагональная форма системы	20
	4.2.	Грамиан наблюдаемости	20
	4.3.	Наблюдение системы	20
	4.4.	Альтернативные начальные условия	23
5.	Исс	ледование управляемости по выходу	27
	5.1.	Диагональная форма системы	27
	5.2.	Управляемость по выходу	28
	5.3.	Вывод	29
6.	Выя	воды	29

1. Исследование управляемости

Рассмотрим систему $\dot{x} = Ax + Bu$, где

$$A = \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix}, \quad B = \begin{bmatrix} -7 \\ -5 \\ 7 \end{bmatrix}$$
 (1)

1.1. Управляемость системы

1.1.1. Матрица управляемости

Найдем матрицу управляемости $U = [B, AB, A^2B]$:

$$U = \begin{bmatrix} \begin{bmatrix} -7 \\ -5 \\ 7 \end{bmatrix} & \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix} \times \begin{bmatrix} -7 \\ -5 \\ 7 \end{bmatrix} & \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix}^{2} \times \begin{bmatrix} -7 \\ -5 \\ 7 \end{bmatrix}$$
 (2)

$$U = \begin{bmatrix} -7 & 31 & -43 \\ -5 & 15 & -5 \\ 7 & -21 & 23 \end{bmatrix}$$
 (3)

Определим ранг матрицы управляемости:

$$rank(U) = 3 (4)$$

Так как ранг матрицы управляемости равен порядку системы, то система является полностью управляемой согласно критерию Калмана.

1.1.2. Управляемость собственных значений

Найдем спектр матрицы A:

$$\sigma(A) = \{-3, -1 - 2j, -1 + 2j\} \tag{5}$$

Для каждого собственного значения найдем матрицу Хаутуса $H_i = \begin{bmatrix} A - \lambda_i I & B \end{bmatrix}$ и определим ее ранг:

1.
$$\lambda_1=-3$$
: $H_1=\begin{bmatrix} 8 & -2 & 8 & -7 \\ 4 & 0 & 4 & -5 \\ -4 & 0 & -4 & 7 \end{bmatrix}$, $\mathrm{rank}(H_1)=3$, собственное значение управляемо.

2.
$$\lambda_2=-1-2j$$
: $H_2=\begin{bmatrix} 6+2j&-2&8&-7\\ 4&-2+2j&4&-5\\ -4&0&-6+2j&7 \end{bmatrix}$, $\mathrm{rank}(H_2)=3$, собственное значение управляемо.

управляемо.
$$3. \ \lambda_3 = -1 + 2j \colon H_3 = \begin{bmatrix} 6-2j & -2 & 8 & -7 \\ 4 & -2-2j & 4 & -5 \\ -4 & 0 & -6-2j & 7 \end{bmatrix}, \ \mathrm{rank}(H_3) = 3, \ \mathrm{coбcтвенноe} \ \mathrm{значениe}$$
 управляемо.

Так как выше было показано, что система является полностью управляемой, то каждое собственное значение матрицы A является управляемым.

1.1.3. Диагональная форма системы

Найдем диагональную форму системы, заменив базис на базис из собственных векторов матрицы A:

$$\dot{\hat{x}} = P^{-1}AP\hat{x} + P^{-1}Bu \tag{6}$$

 Γ де P — матрица собственных векторов матрицы A. Найдем собственные векторы матрицы A:

$$v_{1} = \begin{bmatrix} -1\\0\\1 \end{bmatrix} \quad v_{2} = \begin{bmatrix} -3+j\\-2\\2 \end{bmatrix} \quad v_{3} = \begin{bmatrix} -3-j\\-2\\2 \end{bmatrix}$$
 (7)

Тогда матрица P:

$$P = \begin{vmatrix} -1 & -3+j & -3-j \\ 0 & -2 & -2 \\ 1 & 2 & 2 \end{vmatrix}$$
 (8)

Система преобразуется к виду:

$$\dot{\hat{x}} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -1 - 2j & 0 \\ 0 & 0 & -1 + 2j \end{bmatrix} \hat{x} + \begin{bmatrix} 2 \\ \frac{5 - 5j}{4} \\ \frac{5 + 5j}{4} \end{bmatrix} u \tag{9}$$

Так как все элементы $P^{-1}B$ не равны нулю, то система является полностью управляемой, каждая мода системы управляема.

1.2. Грамиан управляемости

Найдем грамиан управляемости $P(t_1)$:

$$P(t_1) = \int_0^{t_1} e^{At} B B^T e^{A^T t} dt$$
 (10)

Вычислим грамиан управляемости для $t_1=3$ с помощью функции $\operatorname{\mathsf{gram}}$:

$$P(3) = \begin{bmatrix} 18.12 & 10.97 & -11.64 \\ 10.97 & 7.48 & -8.48 \\ -11.64 & -8.48 & 10.14 \end{bmatrix}$$
(11)

Найдем собственные числа Грамиана управляемости:

$$\sigma(P(3)) = \{0.05, 1.94, 33.74\} \tag{12}$$

Все собственные числа Грамиана управляемости положительны, что говорит о том, что система является управляемой.

1.3. Управление системой

Найдем управление u(t), которое будет переводить систему из состояния x(0)=0 в состояние $x_1=x(t_1)=\begin{bmatrix} -2 & -3 & 3 \end{bmatrix}^T$.

$$u(t) = B^T e^{A^T(t_1 - t)} P(t_1)^{-1} x_1$$
(13)

Рис. 1: Управление системой

Реализуем данное управление в MATLAB и проведем моделирование системы. На рисунке 1 изображено управление системой. На рисунке 2 изображено состояние системы.

Видно, что система управляемая в соответствии с заданным управлением и переходит в заданное состояние.

1.4. Вывод

При исследовании системы, рассматриваемой в этом заднии, удалось показать, что она является полностью управляемой. Это было продемонстрировано с помощью критерия Калмана, через управляемость собственных значений и диагональную форму системы. Также был найден грамиан управляемости и проверены его собственные числа. Проведено моделирование системы с управлением, которое переводит систему в заданное состояние. Результаты моделирования показали, что система управляема и управление работает корректно.

Рис. 2: Состояние системы

2. Управляемое подпространство

Рассмотрим систему $\dot{x} = Ax + Bu$, где

$$A = \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}$$
 (14)

2.1. Управляемость системы

2.1.1. Матрица управляемости

Найдем матрицу управляемости $U = [B, AB, A^2B]$:

$$U = \begin{bmatrix} \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix} & \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix} \times \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix} & \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix}^{2} \times \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}$$
(15)

$$U = \begin{bmatrix} -1 & 25 & -45 \\ -3 & 17 & -19 \\ 3 & -17 & 19 \end{bmatrix}$$
 (16)

Определим ранг матрицы управляемости:

$$rank(U) = 2 (17)$$

Так как ранг матрицы управляемости меньше размерности матрицы A, система не является полностью управляемой.

2.1.2. Управляемость собственных значений

Определим управляемость собственных значений матрицы A. Для каждого собственного значения найдем матрицу Хаутуса $H_i = \begin{bmatrix} A - \lambda_i I & B \end{bmatrix}$ и определим ее ранг:

1.
$$\lambda_1=-3$$
: $H_1=\begin{bmatrix} 8 & -2 & 8 & -1 \\ 4 & 0 & 4 & -3 \\ -4 & 0 & -4 & 3 \end{bmatrix}$, $\mathrm{rank}(H_1)=2$, собственное значение не управляемо.

$$2. \ \, \lambda_2 = -1 - 2j \colon H_2 = \begin{bmatrix} 6 + 2j & -2 & 8 & -1 \\ 4 & -2 + 2j & 4 & -3 \\ -4 & 0 & -6 + 2j & 3 \end{bmatrix}, \, \mathrm{rank}(H_2) = 3, \, \mathrm{coбcтвенноe} \, \, \mathrm{значениe}$$
 управляемо.

3.
$$\lambda_3=-1+2j$$
: $H_3=\begin{bmatrix} 6-2j & -2 & 8 & -1 \\ 4 & -2-2j & 4 & -3 \\ -4 & 0 & -6-2j & 3 \end{bmatrix}$, $\mathrm{rank}(H_3)=3$, собственное значение управляемо.

2.1.3. Диагональная форма системы

$$\dot{\hat{x}} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -1 - 2j & 0 \\ 0 & 0 & -1 + 2j \end{bmatrix} \hat{x} + \begin{bmatrix} 0 \\ \frac{3 - 7j}{4} \\ \frac{3 + 7j}{4} \end{bmatrix} u \tag{18}$$

Первое число в векторе $P^{-1}B$ равно нулю, значит, что первое состояние системы не является

управляемым. Результаты совпали с результатами, полученными при анализе управляемости собственных значений через матрицу Хаутуса.

2.2. Грамиан управляемости

Найдем грамиан управляемости $P(t_1)$:

$$P(t_1) = \int_0^{t_1} e^{At} B B^T e^{A^T t} dt \tag{19}$$

Вычислим грамиан управляемости для $t_1=3$ с помощью функции gram:

$$P(3) = \begin{bmatrix} 26.65 & 13.37 & -13.37 \\ 13.37 & 8.28 & -8.28 \\ -13.37 & -8.28 & 8.28 \end{bmatrix}$$
 (20)

Найдем собственные числа Грамиана управляемости:

$$\sigma(P(3)) = \{0, 2.03, 41.17\} \tag{21}$$

Первое собственное число равно нулю, что говорит о том, что Грамиан является вырожденным и система не является полностью управляемой. Таким образом, для дальнейшего нахождения управления необходимо использовать псведообратную матрицу.

2.3. Управляемое подпространство

Выясним, принадлежат ли точки x_1' и x_1'' управляемому подпространству:

$$x_{1}' = \begin{bmatrix} -2 \\ -3 \\ 3 \end{bmatrix}, \quad x_{1}'' = \begin{bmatrix} -3 \\ -3 \\ 4 \end{bmatrix}$$
 (22)

Для этого можно записать расширенную матрицу управляемости U^\prime и найти ранг этой

матрицы:

$$U' = \begin{bmatrix} -1 & 25 & -45 & -2 \\ -3 & 17 & -19 & -3 \\ 3 & -17 & 19 & 3 \end{bmatrix}$$
 (23)

$$rank(U') = 2 (24)$$

$$U'' = \begin{bmatrix} -1 & 25 & -45 & -3 \\ -3 & 17 & -19 & -3 \\ 3 & -17 & 19 & 4 \end{bmatrix}$$
 (25)

$$rank(U'') = 3 (26)$$

Таким образом, можно сделать вывод, что точка x_1' принадлежит управляемому подпространству, а точка x_1'' не принадлежит. В дальнейшем будем обозначать x_1' как x_1 .

2.4. Управление системой

Найдем управление u(t), которое будет переводить систему из состояния x(0)=0 в состояние $x_1=x(t_1)=\begin{bmatrix} -2 & -3 & 3 \end{bmatrix}^T$.

$$u(t) = B^{T} e^{A^{T}(t_{1}-t)} P(t_{1})^{-1} x_{1}$$
(27)

Реализуем данное управление в MATLAB и проведем моделирование системы. На рисунке 1 изображено управление системой. На рисунке 2 изображено состояние системы.

Видно, что система управляемая в соответствии с заданным управлением и переходит в заданное состояние.

2.5. Вывод

При исследовании системы, рассматриваемой в этом задании, получилось доказать, что она не является полностью управляемой. Это было продемонстрировано с помощью критерия Калмана, через управляемость собственных значений и диагональную форму системы. При

Рис. 3: Управление системой

Рис. 4: Состояние системы

этом оказалось, что собственное число $\lambda_1 = -3$ не является управляемым. Также был найден грамиан управляемости и проверены его собственные числа. Одно из собственных чисел равно нулю, что говорит о том, что система не является полностью управляемой.

Были рассмотрены две точки x'_1 и x''_1 и проверена их принадлежность управляемому подпространству. Точка x'_1 принадлежит управляемому подпространству, а точка x''_1 не принадлежит. Проведено моделирование системы с управлением, которое переводит систему в заданное состояние. Результаты моделирования показали, что система управляема и управление работает корректно.

3. Исследование наблюдаемости

Рассмотрим систему:

$$\begin{cases} \dot{x} = Ax \\ y = Cx, \end{cases} \tag{28}$$

где

$$A = \begin{bmatrix} -10 & -7 & -18 \\ -3 & -4 & -8 \\ 8 & 2 & 11 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & -3 & 1 \end{bmatrix}$$
 (29)

3.1. Наблюдаемость системы

3.1.1. Матрица наблюдаемости

Найдем матрицу наблюдаемости $W = [C, CA, CA^2]^T$:

$$W = \begin{bmatrix} 2 & -3 & 1 \\ -3 & 0 & -1 \\ 22 & 19 & 43 \end{bmatrix} \tag{30}$$

Определим ранг матрицы наблюдаемости:

$$rank(W) = 3 (31)$$

Таким образом, система является полностью наблюдаемой.

3.1.2. Наблюдаемость собственных значений

Найдем спектр матрицы A:

$$\sigma(A) = \{1, -2 - 5j, -2 + 5j\} \tag{32}$$

Для каждого собственного значения найдем матрицу Хаутуса $H_i = [A - \lambda_i, C]^T$:

1.
$$\lambda_1=1$$
: $H_1=\begin{bmatrix} -11 & -7 & -18\\ -3 & -5 & -8\\ 8 & 2 & 10\\ 2 & -3 & 1 \end{bmatrix}$, $\mathrm{rank}(H_1)=3$, собственное значение наблюдаемо.

2.
$$\lambda_2=-2-5j$$
: $H_2=\begin{bmatrix} -8+5j&-7&-18\\ -3&-2+5j&-8\\ 8&2&13+5j\\ 2&-3&1 \end{bmatrix}$, $\mathrm{rank}(H_2)=3$, собственное значение

наблюдаемо.

3.
$$\lambda_3=-2+5j$$
: $H_3=\begin{bmatrix} -8-5j&-7&-18\\ -3&-2-5j&-8\\ 8&2&13-5j\\ 2&-3&1 \end{bmatrix}$, $\mathrm{rank}(H_3)=3$, собственное значение

наблюдаемо.

Все собственные значения наблюдаемы, что сходится с результатом, полученным при анализе матрицы наблюдаемости.

3.1.3. Диагональная форма системы

Найдем диагональную форму системы:

$$\begin{cases} \dot{\hat{x}} = P^{-1}AP\hat{x} \\ y = CP\hat{x}, \end{cases}$$
 (33)

где P — матрица собственных векторов матрицы A. Найдем собственные векторы матрицы A:

$$v_{1} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, \quad v_{2} = \begin{bmatrix} -1.5 - 0.5j \\ -1.5 - 0.5j \\ 1 \end{bmatrix}, \quad v_{2} = \begin{bmatrix} -1.5 + 0.5j \\ -1.5 + 0.5j \\ 1 \end{bmatrix}$$

$$(34)$$

Тогда матрица P:

$$P = \begin{bmatrix} -1 & -1.5 - 0.5j & -1.5 + 0.5j \\ -1 & -1.5 - 0.5j & -1.5 + 0.5j \\ 1 & 1 & 1 \end{bmatrix}$$
(35)

Система преобразуется к виду:

$$\begin{cases} \dot{\hat{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 - 5j & 0 \\ 0 & 0 & -2 + 5j \end{bmatrix} \hat{x} \\ y = \begin{bmatrix} 2 & -0.5 + 0.5j & -0.5 - 0.5j \end{bmatrix} \hat{x} \end{cases}$$
(36)

Так как все элементы матрицы CP не равны нулю, система является полностью наблюдаемой.

3.2. Грамиан наблюдаемости

Найдем грамиан наблюдаемости $Q(t_1)$:

$$Q(t_1) = \int_0^{t_1} e^{A^T t} C^T C e^{At} dt$$
 (37)

Вычислим грамиан наблюдаемости для $t_1 = 3$:

$$Q(3) = \begin{bmatrix} 804.17 & -804.51 & 804.12 \\ -804.51 & 805.18 & -804.28 \\ 804.12 & -804.28 & 804.22 \end{bmatrix}$$
(38)

Найдем собственные числа грамиана наблюдаемости:

$$\sigma(Q(3)) = \{0.013, 0.42, 2413.13\} \tag{39}$$

Все собственные числа грамиана наблюдаемости положительны, что говорит о том, что система является наблюдаемой.

3.3. Наблюдение системы

Будем считать, что выход системы соответствует функции y(t):

$$y(t) = e^{-2t}\cos(5t) - 2e^{-2t}\sin(5t) \tag{40}$$

Найдем начальные условия x(0) такие, чтобы выход системы совпадал с функцией y(t):

$$x(0) = Q(t_1)^{-1} \int_0^{t_1} e^{A^T t} C^T y(t) dt$$
(41)

Получаем вектор начальных условий:

$$x(0) = \begin{bmatrix} 3 & 1 & -2 \end{bmatrix}^T \tag{42}$$

Проведем моделирование системы с начальными условиями x(0) и входом u(t)=0: На рисунке 5 изображены состояния системы. На рисунке 6 изображен выход системы. Видно, что выход системы совпадает с функцией y(t). На рисунке 7 изображена ошибка наблюдения. Видно, что ошибка наблюдения стремится к нулю и не превышает 10^{-11} .

3.4. Вывод

При исследовании системы, рассматриваемой в этом задании, удалось показать, что она является полностью наблюдаемой. Это было продемонстрировано с помощью матрицы наблюдаемости, через наблюдаемость собственных значений и диагональную форму системы. Также был найден грамиан наблюдаемости и проверены его собственные числа. Проведено моделирование системы с начальными условиями, при которых выход системы совпадает с заданной функцией. Результаты моделирования показали, что система наблюдаема и наблюдение работает корректно.

Рис. 5: Состояния системы

Рис. 6: Выход системы

Рис. 7: Ошибка наблюдения

4. Наблюдаемое подпространство

Рассмотрим систему:

$$\begin{cases} \dot{x} = Ax \\ y = Cx, \end{cases} \tag{43}$$

где

$$A = \begin{bmatrix} -10 & -7 & -18 \\ -3 & -4 & -8 \\ 8 & 2 & 11 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & -1 & -1 \end{bmatrix}$$

$$(44)$$

4.1. Наблюдаемость системы

4.1.1. Матрица наблюдаемости

$$W = \begin{bmatrix} 0 & -1 & -1 \\ -5 & 2 & -3 \\ 20 & 21 & 41 \end{bmatrix} \tag{45}$$

Определим ранг матрицы наблюдаемости:

$$rank(W) = 2 (46)$$

Так как ранг матрицы наблюдаемости меньше порядка системы, то система не является полностью наблюдаемой.

4.1.2. Наблюдаемость собственных значений

Для каждого собственного значения найдем матрицу Хаутуса $H_i = [A - \lambda_i, C]^T$:

1.
$$\lambda_1 = -2 + 5j$$
 :
$$\begin{bmatrix} -8 - 5j & -7 & -18 \\ -3 & -2 - 5j & -8 \\ 8 & 2 & 13 - 5j \\ 0 & -1 & -1 \end{bmatrix}$$
, rank $(H_1) = 3$, собственное значение

наблюдаемо

2.
$$\lambda_2 = -2 - 5j$$
 :
$$\begin{bmatrix} -8 + 5j & -7 & -18 \\ -3 & -2 + 5j & -8 \\ 8 & 2 & 13 + 5j \\ 0 & -1 & -1 \end{bmatrix}$$
, rank $(H_2) = 3$, собственное значение

наблюдаемо

3.
$$\lambda_3=1:\begin{bmatrix} -11 & -7 & -18\\ -3 & -5 & -8\\ 8 & 2 & 10\\ 0 & -1 & -1 \end{bmatrix}$$
, rank $(H_3)=2$, собственное значение не наблюдаемо

Как и было показано ранее, система не является полностью наблюдаемой. Таким образом, наблюдаемое подпространство системы состоит из двух векторов.

4.1.3. Диагональная форма системы

Диагональная форма системы:

$$\begin{cases} \dot{\hat{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 - 5j & 0 \\ 0 & 0 & -2 + 5j \end{bmatrix} \hat{x} \\ y = \begin{bmatrix} 0 & -0.5 + 0.5j & -0.5 - 0.5j \end{bmatrix} \hat{x} \end{cases}$$
(47)

Первый элемент вектора CP равен нулю, откуда можно сделать вывод, что первая мода системы не является наблюдаемой.

4.2. Грамиан наблюдаемости

Найдем грамиан наблюдаемости Q(3):

$$Q(3) = \begin{bmatrix} 0.11 & 0.04 & 0.15 \\ 0.04 & 0.14 & 0.19 \\ 0.15 & 0.19 & 0.34 \end{bmatrix}$$

$$(48)$$

Собственные числа грамиана наблюдаемости:

$$\sigma(Q(3)) = \{0, 0.083, 0.51\} \tag{49}$$

Есть одно нулевое собственное число, что говорит о том, что система не является полностью наблюдаемой.

4.3. Наблюдение системы

Будем считать, что выход системы соответствует функции y(t):

$$y(t) = e^{-2t}\cos(5t) - 2e^{-2t}\sin(5t)$$
(50)

Рис. 8: Состояния системы

Найдем начальные условия x(0) такие, чтобы выход системы совпадал с функцией y(t):

$$x(0) = Q(t_1)^{-1} \int_0^{t_1} e^{A^T t} C^T y(t) dt$$
 (51)

Получаем вектор начальных условий:

$$x(0) = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^T \tag{52}$$

Проведем моделирование системы с начальными условиями x(0) и входом u(t)=0: На рисунке 5 изображены состояния системы. На рисунке 6 изображен выход системы. Видно, что выход системы совпадает с функцией y(t).

Рис. 9: Выход системы

Рис. 10: Ошибка наблюдения

4.4. Альтернативные начальные условия

Так как система не является полностью наблюдаемой, то существует бесконечное множество начальных условий, при которых выход системы совпадает с функцией y(t). Для того, чтобы найти такие начальные условия, необходимо рассмотреть ядро матрицы наблюдаемости.

$$\operatorname{Nullspace}(W) = \operatorname{Nullspace} \left\{ \begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix} \right\} \tag{53}$$

Таким образом, начальные условия могут быть представлены в виде:

$$x(0) = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \tag{54}$$

где $\alpha \in R$ - произвольное число.

Приведем примеры таких начальных условий:

$$\hat{x}_1(0) = \begin{bmatrix} 0 & -2 & 1 \end{bmatrix}^T,
\hat{x}_2(0) = \begin{bmatrix} -19 & -21 & 20 \end{bmatrix}^T,
\hat{x}_3(0) = \begin{bmatrix} -299 & -301 & 300.00 \end{bmatrix}^T,$$
(55)

Проведем моделирование системы с этими начальными условиями:

- 1. $\hat{x}_1(0) = \begin{bmatrix} 0 & -2 & 1 \end{bmatrix}^T$; графики состояний и выхода системы представлены на рисунках 11 и 12 соответственно.
- 2. $\hat{x}_2(0) = \begin{bmatrix} -19 & -21 & 20 \end{bmatrix}^T$; графики состояний и выхода системы представлены на рисунках 13 и 14 соответственно.
- 3. $\hat{x}_3(0) = \begin{bmatrix} -299 & -301 & 300 \end{bmatrix}^T$; графики состояний и выхода системы представлены на рисунках 15 и 16 соответственно.

Видно, что при всех этих начальных условиях выход системы совпадает с функцией y(t).

Рис. 11: Состояния системы с начальными условиями $\hat{x}_1(0)$

Рис. 12: Выход системы с начальными условиями $\hat{x}_1(0)$

Рис. 13: Состояния системы с начальными условиями $\hat{x}_2(0)$

Рис. 14: Выход системы с начальными условиями $\hat{x}_2(0)$

Рис. 15: Состояния системы с начальными условиями $\hat{x}_3(0)$

Рис. 16: Выход системы с начальными условиями $\hat{x}_3(0)$

5. Исследование управляемости по выходу

Рассмотрим систему

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$
 (56)

где

$$A = \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 3 & 5 \\ 0 & 14 & 9 \end{bmatrix}$$
 (57)

5.1. Диагональная форма системы

Диагональную форму системы можно найти согласно следующим формулам:

$$\begin{cases} \dot{\hat{x}} = P^{-1}AP\hat{x} + P^{-1}Bu \\ y = CP\hat{x} + Du \end{cases}$$
 (58)

где P – матрица собственных векторов матрицы A.

$$P = \begin{bmatrix} -1 & -3+j & -3-j \\ 0 & -2 & -2 \\ 1 & 2 & 2 \end{bmatrix}$$
 (59)

Тогда система примет вид:

$$\begin{cases} \dot{\hat{x}} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -1 - 2j & 0 \\ 0 & 0 & -1 + 2j \end{bmatrix} + \begin{bmatrix} 0 \\ 0.75 - 1.75j \\ 0.75 + 1.75j \end{bmatrix} u \\ y = \begin{bmatrix} 5 & 4 & 4 \\ 9 & -10 & -10 \end{bmatrix} \hat{x} + Du \end{cases}$$
(60)

По системе в диагональной форме можно понять, что первое собственное число не является управляемым, так как первый компонент вектора $P^{-1}B$ равен нулю.

При этом каждое из собственных чисел является наблюдаемым, так как все компоненты вектора CP не равны нулю.

5.2. Управляемость по выходу

Для того, чтобы определить, является ои система управляемой по выходу, необходимо посмотреть на матрицу управляемости по выходу W_v :

$$U_y = \begin{bmatrix} CU & D \end{bmatrix} \quad U = \begin{bmatrix} A, & AB, & A^2B \end{bmatrix} \tag{61}$$

Для данной системы при $D=0_{2\times 2}$ матрица управляемости по выходу равна:

$$U = \begin{bmatrix} -1 & 25 & -45 \\ -3 & 17 & -19 \\ 3 & -17 & 19 \end{bmatrix} \quad U_y = \begin{bmatrix} 6 & -34 & 38 & 0 & 0 \\ -15 & 85 & -95 & 0 & 0 \end{bmatrix}$$
(62)

Определим ранг матрицы U_y :

$$rank(U_y) = 1 (63)$$

Так как размерность выхода равна 2, то система не является управляемой по выходу.

Данная система не является полностью управляемой по выходу из-за того, что одно из собственных чисел не является управляемым, при этом входит в выход, согласно диагональной форме системы (см. систему (60)).

Для того, чтобы сделать систему управляемой по выходу, необходимо изменить матрицу D таким образом, чтобы выполнялся критерий управляемости по выходу, то есть, ранг матрицы U_y должен быть равен 2.

В данном случае подойдет любая ненулевая матрица D размера 2×2 , например:

$$D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{64}$$

Тогда матрица управляемости по выходу будет равна:

$$\hat{U}_y = \begin{bmatrix} 6 & -34 & 38 & 1 & 0 \\ -15 & 85 & -95 & 0 & 1 \end{bmatrix} \tag{65}$$

и ее ранг будет равен 2.

5.3. Вывод

В данном задании была рассмотрена *полная* линейная система в форме В-С-В. Была найдена диагональная форма системы, исследована управляемость по выходу и сделан вывод о том, что система не является управляемой по выходу. При этом, данную систему можно сделать полностью управляемой по выходу, добавив ненулевую матрицу D размера 2×2 .

6. Выводы

В ходе работы были рассмотрены различные линейные системы а также аспекты их управляемости и наблюдаемости. На практике были проверены теоретические положения об управляемости и наблюдаемости систем путем нахождения подходящего управления или начального состояния, удовлетворяющих заданным условиям.