Automi a pila

National Problem 4 PushDown Automaton (PDA)

Un Automa a Pila è una sestupla $(Q, \Sigma, \Gamma, \delta, q0, F)$:

- Q è l'insieme finito degli stati dell'automa
- Σ è l'alfabeto dell'automa
- Γ è l'alfabeto dello stack (o pila) dell'automa
- $q_0 \in Q$ è lo stato iniziale dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$ è la funzione di transizione dell'automa, dove se $(q,c) \in \delta(p,a,b)$ si ha che:
 - Viene letto il simbolo a dalla stringa in input e, se il simbolo b è in cima allo stack, allora l'automa passa dallo stato p allo stato q e il simbolo b viene sostituito dal simbolo c.
 - L'etichetta della transizione da p a q viene indicata come $a; b \rightarrow c$.

Dato $(q,c) \in \delta(p,a,b)$, dove δ è la funzione di transizione di un PDA, si ha che:

- Se $b, c = \varepsilon$ (dunque $a; \varepsilon \to \varepsilon$), l'automa leggerà a dalla stringa e passerà direttamente dallo stato p allo stato q, senza modificare lo stack.
- Se $b = \varepsilon$ e $c \neq \varepsilon$ (dunque $a; \varepsilon \to c$), l'automa leggerà a dalla stringa, passerà direttamente dallo stato p allo stato q e in cima allo stack viene aggiunto il simbolo c (push).
- Se $b \neq \varepsilon$ e $c = \varepsilon$ (dunque $a; b \to \varepsilon$), l'automa leggerà a e, se in cima allo stack vi è b, l'automa passerà dallo stato p allo stato q e rimuoverà b dalla cima dello stack (**pop**).

Stringa Accettata da un PDA

Sia $P:=(Q,\Sigma,\Gamma,\delta,q_0,F)$ un PDA. Data una stringa $w:=w_0\dots w_k\in\Sigma^*$, dove $w_0,\dots,w_k\in\Sigma_{\varepsilon}$, si dice che w è accettata da P se esiste una sequenza di stati $r_0,r_1,\dots,r_{k+1}\in Q$ ed una sequenza di stringhe $s_0,s_1,\dots,s_n\in\Gamma^*$ tali che:

- $r_0 = q_0$
- $ullet r_{k+1} \in F$
- $s_0 = \varepsilon$ (stack vuoto)
- $\forall i \in [0, k]$ si abbia che:
 - ullet $(r_{i+1},b)\in\delta(r_i,w_i,a)$
 - $s_i = at$
 - $ullet s_{i+1} = bt$

dove $a,b\in\Gamma_{\varepsilon}$ e $t\in\Gamma^*$ è la stringa composta dai caratteri nello stack.

Classe dei linguaggi riconosciuti da un PDA

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ riconosciuti da un PDA il seguente insieme:

$$L(PDA) = \{L \subseteq \Sigma^* \mid \exists \ \mathrm{PDA} \ P \ \mathrm{t.c.} \ L = L(P)\}$$

Scrittura di una stringa sullo stack

Sia $P=(Q,\Sigma,\Gamma,\delta,q_0,F)$ un PDA. Dati $u_1,\ldots,u_k\in\Gamma$, si introduce una notazione per cui δ possa ammettere la scrittura diretta sullo stack della stringa $u:=u_1\ldots u_k$.

Ossia: $(q, u_1 \dots u_k) \in \delta(p, a, b) \Leftrightarrow \exists r_1, \dots, r_{k-1} \in Q$ tali che:

- $\delta(p,a,b)\ni (r_1,u_k)$
- $\delta(r_1, \varepsilon, \varepsilon) = \{(r_2, u_{k-1})\}$
- ...
- $\bullet \ \ \delta(r_{k-1},\varepsilon,\varepsilon)=\{(q,u_1)\}$

TEOREMA

Un linguaggio è acontestuale (generato da una CFG) se e solo se esiste un PDA che lo riconosce. Per rendere più leggibile e chiara la dimostrazione del teorema, essa verrà scomposta in due lemmi, che rappresentano le due implicazioni della dimostrazione.

Ossia, date le due classi dei linguaggi $\mathcal{L}(PDA)$ e CFL, si ha che:

$$\mathcal{L}(PDA) = CFL$$

Prima Inclusione

Date le due classi dei linguaggi CFL e $\mathcal{L}(PDA)$, si ha che:

$$CFL \subseteq \mathcal{L}(PDA)$$

Ossia ogni linguaggio context-free (CFL) può essere riconosciuto da un PDA. L'idea chiave è costruire un PDA a partire da una grammatica libera dal contesto (CFG).

Dimostrazione

Dato $L \in CFL$, sia $G = (V, \Sigma, R, S)$ la CFG tale che L = L(G). Si considera il PDA $P = (Q, \Sigma, \Gamma, \delta, q_{start}, F)$ tale che:

- $Q = \{q_{start}, q_{loop}, q_{accept}\} \cup Q_{\delta}$, dove Q_{δ} sono i minimi stati aggiunti affinché la sua funzione δ sia ben definita.
- $\Gamma = V \cup \Sigma$ (lo stack contiene sia simboli non-terminali che terminali)
- $F = \{q_{accept}\}$ (stato finale)
- Dato $q_{start} \in Q$ si ha che

$$\delta(q_{start}, \varepsilon, \varepsilon) = \{(q_{loop}, S\$)\}$$

Lo stack parte con il simbolo iniziale S della CFG e un simbolo speciale \$ in fondo:

• $\forall A \in V$ si ha che

$$\delta(q_{loop}, arepsilon, A) = \{(q_{loop}, u) \mid (A
ightarrow u) \in R, \ u \in \Gamma^* \}$$

Quando il simbolo in cima allo stack è un non-terminale $A \in V$, il PDA può sostituirlo con qualsiasi destra della produzione $A \to u \in R$. Qui ε significa che il PDA **non legge un simbolo dall'input**, fa solo manipolazioni dello stack.

• $\forall a \in \Sigma$ si ha che

$$\delta(q_{loop}, a, a) = \{(q_{loop}, \varepsilon)\}$$

Quando il simbolo in cima allo stack è un terminale $a \in \Sigma$, il PDA lo confronta con il simbolo corrente in input e lo consuma. Questo è il meccanismo che "legge" la stringa.

• Dato $q_{accept} \in Q$ si ha che

$$\delta(q_{loop}, \varepsilon, \$) = \{(q_{accept}, \varepsilon)\}$$

Una volta che lo stack contiene solo il simbolo \$ speciale, il PDA può passare allo stato di accettazione

• A questo punto, per costruzione stessa di *P* si ha che:

$$w \in L = L(G) \Leftrightarrow w \in L(P)$$

dunque che $L = L(P) \in L(PDA)$.

Seconda Inclusione

Date le due classi dei linguaggi $\mathcal{L}(PDA)$ e CFL, si ha che:

$$\mathcal{L}(PDA) \subseteq CFL$$

1. Partiamo da un linguaggio accettato da un PDA

Sia:
$$L \in L(PDA)$$
, $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ tale che $L = L(P)$
Obiettivo: costruire una CFG G tale che $L = L(G)$.

2. Normalizzazione del PDA

Costruiamo un PDA $P' = (Q', \Sigma, \Gamma, \delta', q_0, \{q_{accept}\})$ con le seguenti proprietà:

1. Transizioni elementari: ogni transizione effettua solo push o pop, mai sostituzioni complesse.

$$(q,c) \in \delta(p,a,b) \implies \exists r \in Q' \text{ t.c. } (r,arepsilon) \in \delta'(p,a,b) \land \delta'(r,arepsilon,arepsilon) = \{(q,c)\}$$

2. Stati aggiuntivi:

$$Q' = Q \cup Q'_{\delta} \cup \{q_{accent}\}$$

- 3. **Accettazione**: unico stato accettante q_{accept_t} con transizioni ε da ogni $q \in F$.
- 4. Stack vuoto all'accettazione: prima di accettare, lo stack deve essere vuoto.

Si ha quindi che per costruzione stessa di P' si ha che:

$$w \in L(P) \iff w \in L(P')$$

3. Costruzione della CFG $G = (V, \Sigma, R, S)$

• Variabili: $V = \{A_{p,q} \mid p,q \in Q'\}$

Dove $A_{p,q}$ genera tutte le stringhe che portano P^\prime dallo stato p allo stato q con stack vuoto.

- Simbolo iniziale: $S=A_{q_0,q_{accept}}$
- Regole di produzione:
 - 1. Stack vuoto: $A_{p,p}
 ightarrow arepsilon$
 - 2. Transizioni push/pop di un simbolo intermedio: Se $(r,u)\in\delta'(p,a,\varepsilon)$ e $(q,\varepsilon)\in\delta'(s,b,u)$, allora:

$$A_{p,q} o a A_{r,s} b$$

Questo descrive che il PDA legge a_i gestisce lo stack tramite u_i e poi legge b_i .

3. Concatenazione di percorsi intermedi: $A_{p,q} \to A_{p,r} A_{r,q}$. Questo permette di dividere il percorso da p a q in due segmenti intermedi.

4. Correttezza della CFG

Affermazione 1: Da derivazioni della CFG a computazioni del PDA

Enunciato:

Siano $p, q \in Q'$ e $x \in \Sigma^*$. Se nella CFG costruita dal PDA P' abbiamo:

$$A_{p,q} \stackrel{*}{\Longrightarrow} x$$

allora la stringa x può essere letta dal PDA P' partendo dallo stato p e arrivando allo stato q, con lo stack completamente vuoto alla fine della computazione.

Spiegazione dettagliata:

- $A_{p,q}$ è una variabile della CFG che rappresenta tutte le stringhe che permettono al PDA di andare da p a q senza lasciare simboli nello stack.
- La notazione $\stackrel{*}{\Longrightarrow}$ indica che x è derivabile da $A_{p,q}$ tramite zero o più produzioni della CFG.
- La costruzione della CFG assicura che ogni regola corrisponde esattamente a una sequenza di transizioni elementari del PDA:
 - 1. Regola $A_{p,q} o a A_{r,s} b$:
 - Il PDA legge a in input, manipola lo stack per arrivare dallo stato r a s, e legge b per arrivare in q.
 - 2. Regola $A_{p,q} o A_{p,r} A_{r,q}$:
 - Il PDA percorre un percorso intermedio passando da p a r e poi da r a q, sempre con stack vuoto alla fine.

Dimostrazione (idea):

- Induzione sul numero di produzioni nella derivazione:
 - Caso base: derivazione di lunghezza $1 \Rightarrow A_{p,p} \to \varepsilon$. La stringa derivata è vuota, quindi il PDA resta nello stato p con stack vuoto.
 - Passo induttivo: derivazioni più lunghe: si divide la derivazione in pezzi corrispondenti alle produzioni CFG; ogni pezzo, per ipotesi induttiva, porta il PDA tra gli stati intermedi con stack vuoto. Combinando i pezzi, otteniamo che l'intera stringa x porta il PDA da p a q con stack vuoto.

Affermazione 2: Da computazioni del PDA a derivazioni della CFG

Enunciato:

Siano $p, q \in Q'$ e $x \in \Sigma^*$.

Se il PDA P' legge la stringa x partendo dallo stato p e arrivando nello stato q con lo stack completamente vuoto alla fine, allora:

$$A_{p,q} \stackrel{*}{\Longrightarrow} x$$

Spiegazione dettagliata:

- La CFG è costruita in modo da "catturare" tutte le possibili sequenze di transizioni del PDA.
- Ogni volta che il PDA legge un simbolo o manipola lo stack, esiste una regola della CFG che lo simula:
 - 1. **Transizione singola con push/pop:** corrisponde a una regola del tipo $A_{p,q} o a A_{r,s} b$.
 - 2. Percorso concatenato tra stati intermedi: corrisponde a una regola del tipo $A_{p,q} o A_{p,r} A_{r,q}$.

Dimostrazione (idea):

- Induzione sul numero di transizioni percorse dal PDA:
 - Caso base: zero transizioni \Rightarrow stringa vuota \Rightarrow $A_{p,p} \rightarrow \varepsilon$.
 - Passo induttivo: dividiamo la computazione del PDA in pezzi più piccoli:
 - Se lo stack viene riempito all'inizio e svuotato alla fine, la stringa si scompone come x=ayb, con $A_{p,q} \to aA_{r,s}b$ e $A_{r,s} \Rightarrow^* y$ per ipotesi induttiva.
 - Se lo stack si svuota durante la computazione, la stringa si scompone come x=yz, con $A_{p,r} \Rightarrow^* y$ e $A_{r,q} \Rightarrow^* z$, quindi $A_{p,q} \to A_{p,r}A_{r,q} \Rightarrow^* yz = x$.

5. Conclusione

Queste due affermazioni dimostrano la corrispondenza biunivoca tra:

- le stringhe generate dalla CFG G_i e
- le stringhe lette dal PDA P' con stack vuoto alla fine.

Quindi:

$$x \in L(G) \iff x \in L(P')$$

Ma L(P') = L(P), quindi:

$$L = L(P) = L(P') = L(G) \in CFL$$

⇒ Ogni linguaggio riconosciuto da un PDA è context-free.