

TYPES OF MACHINE LEARNING

SUPERVISED

Data points have known outcome

UNSUPERVISED

Data points have unknown outcome

TYPES OF MACHINE LEARNING

SUPERVISED

Data points have known outcome

UNSUPERVISED

Data points have unknown outcome

TYPES OF UNSUPERVISED LEARNING

CLUSTERING

Identify unknown structure in data

TYPES OF UNSUPERVISED LEARNING

CLUSTERING

Identify unknown structure in data

DIMENSIONALITY REDUCTION

Use structural characteristics to simplify data

UNSUPERVISED LEARNING OVERVIEW

CLUSTERING: FINDING DISTINCT GROUPS

DIMENSIONALITY REDUCTION: SIMPLIFYING STRUCTURE

Users of a web application:

One feature (age)

Users of a web application:

- One feature (age)
- Two clusters

Users of a web application:

- One feature (age)
- Three clusters

Users of a web application:

- One feature (age)
- Five clusters

K = 2 (find two clusters).

Income

K = 2, Randomly assign cluster centers.

Income

K = 2, Each point belongs to closest center.

Income

K = 2, Move each center to cluster's mean.

Income

K = 2, Each point belongs to closest center.

Income

K = 2, Move each center to cluster's mean.

Income

K = 2, Points don't change→ Converged.

Income

K = 2, Each point belongs to closest center.

Income

K = 3

Income

K = 3, Results depend on initial cluster assignment.

Income

Income

• Inertia: sum of squared distance from each point (x_i) to its cluster (C_k)

$$\sum_{i=1}^{n} (x_i - C_k)^2$$

- Smaller value corresponds to tighter clusters
- Other metrics can also be used

Initiate multiple times, take model with the best score.

Income

Inertia = 12.645

Income

Inertia = 12.943

Income

Inertia = 13.112

Income

Pick one point at random as initial point.

Income

Pick next point with 1/distance² probability.

Income

Pick next point with 1/distance² probability.

Income

Pick next point with 1/distance² probability.

Income

Assign clusters.

Income

CHOOSING THE RIGHT NUMBER OF CLUSTERS

CHOOSING THE RIGHT NUMBER OF CLUSTERS

Sometimes the question has a K

- Sometimes the question has a K
- Clustering similar jobs on 4 CPU cores (K=4)

- Sometimes the question has a K
- Clustering similar jobs on 4 CPU cores (K=4)
- A clothing design in 10 different sizes to cover most people (K=10)

- Sometimes the question has a K
- Clustering similar jobs on 4 CPU cores (K=4)
- A clothing design in 10 different sizes to cover most people (K=10)
- A navigation interface for browsing scientific papers with 20 disciplines (K=20)

Inertia measures distance of point to cluster

- Inertia measures distance of point to cluster
- Value decreases with increasing K as long as cluster density increases

Import the class containing the clustering method.

from sklearn.cluster import KMeans

Import the class containing the clustering method.

```
from sklearn.cluster import KMeans
```

Create an instance of the class.

Import the class containing the clustering method.

from sklearn.cluster import KMeans

Create an instance of the class.

Import the class containing the clustering method.

```
from sklearn.cluster import KMeans
```

Create an instance of the class.

Import the class containing the clustering method.

```
from sklearn.cluster import KMeans
```

Create an instance of the class.

Fit the instance on the data and then predict clusters for new data.

```
kmeans = kmeans.predict(X1)
y_predict = kmeans.predict(X2)
```

Import the class containing the clustering method.

```
from sklearn.cluster import KMeans
```

Create an instance of the class.

Fit the instance on the data and then predict clusters for new data.

```
kmeans = kmeans.predict(X1)
y_predict = kmeans.predict(X2)
```

Can also be used in batch mode with MiniBatchKMeans.

DISTANCE METRIC CHOICE

- Choice of distance metric is extremely important to clustering success
- Each metric has strengths and most appropriate use-cases...
- ...but sometimes choice of distance metric is also based on empirical evaluation

EUCLIDEAN DISTANCE

EUCLIDEAN EUCLIDEAN DISTANCE (L2 DISTANCE)

MANHATTAN DISTANCE (L1 OR CITY BLOCK DISTANCE)

COSINE DISTANCE

COSINE DISTANCE

EUCLIDEAN VS COSINE DISTANCE

Euclidean is useful for coordinate based measurements

EUCLIDEAN VS COSINE DISTANCE

- Euclidean is useful for coordinate based measurements
- Cosine is better for data such as text where location of occurrence is less important

EUCLIDEAN VS COSINE DISTANCE

- Euclidean is useful for coordinate based measurements
- Cosine is better for data such as text where location of occurrence is less important
- Euclidean distance is more sensitive to curse of dimensionality (see lesson 12)

JACCARD DISTANCE

Applies to sets (like word occurrence)

- Sentence A: "I like chocolate ice cream."
- set A = {I, like, chocolate, ice, cream}
- Sentence B: "Do I want chocolate cream or vanilla cream?"
- set B = {Do, I, want, chocolate, cream, or, vanilla}

$$1 - \frac{A \cap B}{A \cup B} = 1 - \frac{len(shared)}{len(unique)}$$

JACCARD DISTANCE

Applies to sets (like word occurrence)

- Sentence A: "I like chocolate ice cream."
- set A = {I, like, chocolate, ice, cream}
- Sentence B: "Do I want chocolate cream or vanilla cream?"
- set B = {Do, I, want, chocolate, cream, or, vanilla}

$$1 - \frac{A \cap B}{A \cup B} = 1 - \frac{3}{9}$$

Import the general pairwise distance function.

from sklearn.metrics import pairwise_distances

Import the general pairwise distance function.

```
from sklearn.metrics import pairwise_distances
```

Calculate the distances.

Import the general pairwise distance function.

from sklearn.metrics import pairwise_distances

Calculate the distances.

Import the general pairwise distance function.

from sklearn.metrics import pairwise_distances

Calculate the distances.

Other distance metric choices are: cosine, manhattan, jaccard, etc.

Import the general pairwise distance function.

from sklearn.metrics import pairwise_distances

Calculate the distances.

Other distance metric choices are: cosine, manhattan, jaccard, etc.

Distance metric methods can also be imported specifically, e.g.:

from sklearn.metrics import euclidean_distances

(intel) Nervana Al Academy

Find closest pair, merge into a cluster.

Income

Find next closest pair and merge.

Income

Find next closest pair and merge.

Income

Keep merging closest pairs.

Income

If the closest pair is two clusters, merge them.

Income

Keep merging closest pairs and clusters.

Income

Keep merging closest pairs and clusters.

Income

Current number of clusters = 6.

Income

Current number of clusters = 5.

Income

Current number of clusters = 4.

Income

Current number of clusters = 3.

Income

Current number of clusters = 2.

Income

Current number of clusters = 1.

Income

AGGLOMERATIVE CLUSTERING STOPPING CONDITIONS

CONDITION 1

The correct number of clusters is reached

AGGLOMERATIVE CLUSTERING STOPPING CONDITIONS

CONDITION 1

The correct number of clusters is reached

CONDITION 2

Minimum average cluster distance reaches a set value

Current number of clusters = 5.

Income

Current number of clusters = 5. Cluster distance

Current number of clusters = 4.

Income

Current number of clusters = 4. Cluster distance

Current number of clusters = 3.

Income

Current number of clusters = 3. Cluster distance

Current number of clusters = 2.

Income

Current number of clusters = 2. Cluster distance

Single linkage: minimum pairwise distance between clusters.

Income

Single linkage: minimum pairwise distance between clusters.

Income

Complete linkage: maximum pairwise distance between clusters.

Income

Complete linkage: maximum pairwise distance between clusters.

Income

Average linkage: average pairwise distance between clusters.

Income

Average linkage: average pairwise distance between clusters.

Income

Ward linkage: merge based on best inertia.

Income

Ward linkage: merge based on best inertia.

Income

AGGLOMERATIVE CLUSTERING: THE SYNTAX

Import the class containing the clustering method.

```
from sklearn.cluster import AgglomerativeClustering
```

Create an instance of the class.

Fit the instance on the data and then predict clusters for new data.

```
agg = agg.fit(X1)

y predict = agg.predict(X2)
```

AGGLOMERATIVE CLUSTERING: THE SYNTAX

Import the class containing the clustering method.

```
from sklearn.cluster import AgglomerativeClustering
```

Create an instance of the class.

Fit the instance on the data and then predict clusters for new data.

```
agg = agg.fit(X1)

y_predict = agg.predict(X2)
```

AGGLOMERATIVE CLUSTERING: THE SYNTAX

Import the class containing the clustering method.

```
from sklearn.cluster import AgglomerativeClustering
```

Create an instance of the class.

Fit the instance on the data and then predict clusters for new data.

```
agg = agg.fit(X1)

y_predict = agg.predict(X2)
```

OTHER TYPES OF CLUSTERING

Reference: http://scikitlearn.org/stable/auto_examples/cluster/p lot_cluster_comparison.html

