Sous épreuve E52

EPREUVE E5 -ETUDE DE PRODUITS INDUSTRIELS Sous epreuve E52 ANALYSE ET SPECIFICATION DE PRODUITS Durée 4 heures

Cabestan de tirage et d'assemblage

Sommaire

Dossier technique (lecture 15mn)

Présentation	Pages 1 et 2			
Documents	DT01 : FAST partiel cabestan de tirage et d'assemblage			
	DT02 : mise en plan du module de guidage en rotation du Fût de cabestan			
	DT03 : nomenclature du module de guidage en rotation du Fût de cabestan.			
	DT04 : Graphe de contact Palier de sortie (500-0500)			
	DT05 : Mise en plan Fût de cabestan			
	DT06 : Mise en plan Arbre d'appui droit			
	DT07 : Analyse des contraintes – Graphe 1, choix des matériaux			
DT08 : Guidage en rotation de la poulie motrice				

Dossier travail demandé

Présentation F	Pages 1 et 7
----------------	--------------

Dossier réponse

Documents	DRep01 : Graphe de contact hiérarchisé
	DRep02 : Analyse des antériorités fonctionnelles de l'Arbre moteur, d'appui gauche (500-0508)
	DRep03 : Dessin de détail de l'Arbre moteur, d'appui gauche (500-0508)
	DRep04 : Tolérancement normalisé, analyse d'une spécification
	DRep05 : Répartition de l'intervalle de la condition JA
	DRep06 : Comparaison de solutions

Sujet Zéro

Sous épreuve E52

EPREUVE E5 -ETUDE DE PRODUITS INDUSTRIELS Sous epreuve E52 Analyse et specification de produits DOSSIER TECHNIQUE

Cabestan de tirage et d'assemblage

1 PRESENTATION

La société **SETIC** est spécialisée dans la conception et la réalisation de machines destinées à la fabrication de *câbles hautes performances* utilisés dans le domaine des réseaux de transmission (télécommunication et informatique).

La forte demande sur le marché mondial et une concurrence sévère conduisent au développement de machines de câblerie toujours plus rapides mais qui doivent rester capables de maîtriser les paramètres fonctionnels du câble.

La réalisation des câbles demande deux opérations :

- ✓ les fils (ou brins), à l'origine enroulés individuellement sur des bobines, sont d'abord assemblés en hélice par paire : c'est la phase de *pairage* ;
- ✓ différentes paires sont ensuite réunies : c'est la phase *d'assemblage* (Figure 1).

Figure 1

L'assemblage des paires en hélice présente les particularités suivantes :

- ✓ Le sens d'hélice peut varier :
 - si l'hélice est orientée à droite, on parle d'enroulement en Z;
 - si l'hélice est orientée à gauche, on parle d'enroulement en S;
- Les paires de brins sont toujours de pas différents afin d'éviter, à l'utilisation, des interférences électriques entre paires (phénomène de para-diaphonie).

Les Cahiers des Charges client imposent notamment au fabricant trois paramètres fondamentaux :

- ✓ nombre de paires à assembler ;
- ✓ pas de pairage pour chaque paire ;
- ✓ pas d'assemblage.

La Figure 1 présente une ligne de fabrication de câbles à 4 paires de 2 brins :

- ✓ le pairage est réalisé par 4 groupes Twinner (Modules GT) fonctionnant en parallèle. Les vitesses de rotation de chaque groupe (donc les vitesses de pairage) sont différentes puisque les pas doivent être différents pour chaque paire;
- ✓ réalisé par un cabestan CRT 350 R, l'assemblage des paires débute au point de commettage (point d'entrée dans le Cabestan).
- ✓ le câble réalisé est enroulé sur une bobine de dépose (recevant 30 à 40 km de câble).
- ✓ Différents dispositifs non représentés permettent la régulation de la tension du câble.

Lors de l'assemblage, le cabestan tournant doit réaliser simultanément deux opérations :

- ✓ un tirage du câble, pour l'amener vers l'enrouleuse ;
- ✓ un enroulement en hélice des brins du câble ;

Il est donc nécessaire à la fois de produire le mouvement hélicoïdal (*FT111 + FT113*) et de le transmettre sous tension, au câble (*FT21 + FT1132*) (*FAST Partiel, Document DT01*).

Les Figure 2 et Figure 3 présentent le cheminement du produit dans le cabestan de tirage et d'assemblage ainsi que l'environnement support. Les deux fonctions techniques FT 11 et FT 12 sont principalement réalisées par deux actionneurs (Moteur M1, Moteur M2) et des transmissions poulies-courroies crantées.

Figure 2

Figure 3

		Nomencia	ature	
Réf.	Nbre	Ι	Matière	Observations
500-0200	1	Fût de cabestan	S235	
500-0401	1	Poulie motrice principale	EN AC-AI Si 5 Cu	
500-0402	2	Flasque de poulie rotation fût	S235	
500-0403	1	Disque d'inertie	S235	
500-0501	2	Corps de palier	S235	
500-0508	1	Arbre moteur, d'appui gauche	34 Cr Mo 4	
500-0509	2	Chapeau avant palier	S235	
500-0510	2	Entretoise centrale palier	S235	
500-0511	2	Chapeau arrière palier	S235	
500-0512	1	Bague d'appui	S235	
500-0513	1	Entretoise de serrage palier gauche	S235	
500-0514	1	Arbre d'appui droit	34 Cr Mo 4	
500-0515	2	Tige de manutention	34 Cr Mo 4	
500-0516	1	Entretoise de serrage palier droit	S235	
500-0601	1	Entretoise centrale de poulie double	S235	
500-0602	1	Entretoise de serrage poulie double	S235	
500-0603	1	Tube de lubrification	S235	
500-0604	1	Bague corps de poulie double	EN AW-2014 (AlCu4SiMg)	
500-0605	1	Bague de séparation	EN AW-2014 (AlCu4SiMg)	
500-0606	1	Bague crantée, poulie double Z 116	EN AW-2014 (AlCu4SiMg)	
500-0607	2	Flasque de poulie double	S235	
500-0616	1	Bague crantée, poulie double Z 72	EN AW-2014 (AlCu4SiMg)	
ST501	3	Roulement rigide à une rangée de billes	LIV AVV-2014 (Alcu45livig)	
31301		- 6218-RS1 Ø90		
ST502	2	Roulement rigide à une rangée de billes		
OTFOO	_	- 6220-RS1 - Ø100		
ST503	2	Roulement rigide à une rangée de billes - 6020 RS1 Ø100		
ST801	2	Anneau élastique pour alésage Ø150-	-	
		(UNI 7437 - 150)		
ST807	1	Clavette parallèle UNI6604, C 22 x 14 x	-	
		70 mm - UNI 6604		
ST914	2	Graisseur standard droit - M6 x 100 - 9	-	
		20 00 01		
ST915	1	Graisseur standard droit - M8 x 125 - 9	-	
		20 00 22		
ST916	12	Rondelle W - UNI 1751 - 10x2.2	-	
ST950	12	Vis FHc-90 M4x14	-	
ST956	12	Vis FHC M3-10 - 8,8 - UNI 5933	-	
ST961	20	Vis CHc DIN 912-M8x1.25-20-8,8	-	
ST962	1	Rondelle frein type A Ø80- MB 16	-	
ST962 ST963	1	Ecrou à encoches M80 x 2 - KM 16	-	
ST964	1	Rondelle frein type A Ø90 - MB 18	-	
ST965	1	Ecrou à encoches M90 x 2- KM 18	-	
ST966	+ -		-	
31300	18	Vis CHC DIN 912-M10x1.25-30-8,8		

Sujet zéro AutoDESK Inventor 10 Pro **DOCUMENT DT03**

Sujet zéro

Graphe N° 1

Graphe N° 2

BTS Conception de Produits Industriels Sous épreuve E52

EPREUVE E5 -ETUDE DE PRODUITS INDUSTRIELS Sous epreuve E52 ANALYSE ET SPECIFICATION DE PRODUITS DOSSIER TRAVAIL DEMANDE

Cabestan de tirage et d'assemblage

Sujet Zéro

1 PROBLEMATIQUE

Les cabestans de tirage et d'assemblage sont fabriqués à raison d'une quarantaine d'ensembles par an.

L'utilisation intensive des matériels (24h/24h) nécessite une fiabilité à toute épreuve.

Suite à une démarche AMDEC produit, consécutive à des défauts et défaillances constatés ou envisagés en clientèle, deux éléments de définition du produit doivent être repris :

- Le guidage en rotation du fût de cabestan (destruction prématurée des roulements),
- Le montage des poulies motrice et folle (temps d'immobilisation de la ligne de fabrication trop important lors du remplacement des poulies).

2 REPRISE DU GUIDAGE EN ROTATION DU FUT DE CABESTAN

2.1 PRESENTATION DU GUIDAGE EN ROTATION DU FUT DE CABESTAN

La fonction *FT1112 Guider en rotation* le fût de cabestan (FAST partiel, Dossier technique, *Document DT01*) est réalisée de façon hyperstatique, par deux paliers doubles. Le *Palier de sortie (500-0500)* du câble définit la position du *fût de cabestan (500-0200)* et reprend l'ensemble des efforts moteurs.

Figure 1

Le *Palier d'entrée (500-0700)* des paires de fils est quant à lui, positionné au montage de façon à garantir un jeu axial bidirectionnel. Ce dernier autorise ainsi les dilatations du mécanisme lors des variations de température, et accepte les déformations axiales sous l'effet des actions mécaniques.

<u>Défaut constaté</u>: Usure prématurée des roulements des *Paliers gauche (500-0500)* et

droit (500-0700).

<u>Source identifiée :</u> Défaut d'alignement des axes des *Arbre moteur, d'appui gauche (500-0508)* et *Arbre d'appui droit (500-0514)*.

Figure 2

Actions correctives:

- a Redéfinir le schéma de cotation fonctionnel et les tolérances géométriques et dimensionnelles des composants du sous ensemble tournant : Arbre moteur, d'appui gauche (500-0508) +Arbre d'appui droit (500-0514) + Fût de cabestan (500-0200) (sous ensemble matérialisé en bleu sur la Figure 1).
- **b** Choisir un matériau pour le *Fût de cabestan (500-0200)* qui limite les déformations sous l'effet des sollicitations dynamiques.

2.2 PREMIERE ACTION CORRECTIVE: REDEFINITION DE LA CONCEPTION DETAILLEE DU GUIDAGE EN ROTATION DU FUT DE CABESTAN (500-0200) [Temps: 2 heures]

La conception détaillée du guidage en rotation du *fût de cabestan (500-0200)* résulte de la mise en œuvre d'une démarche fractionnée en 5 étapes (Figure 3).

Figure 3

Le travail de redéfinition proposé pour remédier aux défauts constatés, conduit à examiner une fraction de cette démarche.

Le sujet abordera seulement certains points relatifs aux étapes 1, 2, 4 et 5.

Hors précision sur le document réponse à utiliser, répondre aux questions sur une feuille de copie.

2.2.1 <u>Définition hiérarchisée des contacts</u>

L'analyse des contacts entre les éléments de guidage en rotation du *Fût de cabestan* conduit à la proposition de schéma technologique ci-dessous.

Figure 4

Question 1 :

DT02, DT03 Feuille de copie Préciser le rôle de la **Bague d'appui** (500-0512). En comparant le montage des roulements du **Palier de sortie** (500-0500) et du **Palier d'entrée** (500-0700), préciser l'intention du concepteur en justifiant l'existence de la **Bague d'appui** (500-0512).

Question 2 : Feuille de copie

Justifier le positionnement des arrêts axiaux sur le schéma technologique de la Figure 4.

Pour les questions 3 à 8 le centre d'intérêt va être réduit à l'*Arbre moteur, d'appui gauche* (500-0508) et au sous ensemble *Palier de sortie* (500-0500) qui le positionne.

Question 3:

DT04, DRep01, (Etape 1)

Le **document DT04** présente le graphe de contact entre les composants de premier niveau du sous ensemble **Palier de sortie** (500-0500) et le **Fût de cabestan** (500-0200). Afin de procéder à l'analyse détaillée de la spécification de

l'Arbre moteur, d'appui gauche (500-0508) compléter le document DRep01 :

- ✓ par la définition des composants parents et enfants de l'arbre,
- ✓ par l'indication des types de contacts associés, selon la terminologie définie au bas du document DRep01.

Rappel de définitions :

- Composants parents : composants qui participent directement à la mise en position du composant étudié (ils l'orientent et le positionnent dans le mécanisme).
- Composants enfants : composants positionnés et/ou orientés directement par le composant étudié.

Question 4:

DT04, DRep01, DRep03 (Etape 4) Le positionnement de l'arbre est réalisé par deux roulements rigides à une rangée de billes (Matérialisation de la liaison pivot gauche entre le *palier gauche* [500-0500] et l'Arbre moteur, d'appui gauche [500-0508]).

En utilisant la terminologie précisée au bas du *document DRep01*, définir le contact entre le groupe d'objets constitué des deux roulements *ST501* et *ST502*, et l'*Arbre moteur, d'appui gauche (500-0508)*. Quelles sont les spécifications portées sur le *Document DRep03* qui correspondent à ces contacts (les entourer sur le *Document DRep03*)?

2.2.2 <u>Fonctions techniques et antériorités fonctionnelles associées à l'Arbre moteur (500-0508)</u>

Question 5:

DRep04

Sur le Document DRep04 interpréter la spécification

Afin d'assurer la traçabilité de la spécification de l'*Arbre moteur, d'appui gauche* (500-0508), les éléments d'analyse des antériorités fonctionnelles ont été consignés dans un tableau (*Document DRep02*).

Question 6:

DRep02, Drep03 (Etapes 2 et 4)

Mettre en évidence les renseignements liés à la fonction technique « Garantir serrage ligne de guidage » en reportant le(s) repère(s) de la feuille d'analyse (Document DRep02) sur la ou les cotes et sur le(s) tolérancement(s) géométrique(s) associés (Document DRep03). Prendre modèle sur l'exemple Figure 5 qui illustre la fonction « MIP (MIse en Position) 500-0508 ».

Figure 5

Question 7: DRep02, Drep03 (Etapes 2 et 4)

Identifier la fonction technique illustrée par les renseignements présentés sur la Figure 6 (extrait du **Document DRep03**), en entourant les repères (X..) des lignes correspondantes sur le **Document DRep02**.

Question 8 : Feuille de copie (Etapes 4 et 5)

Proposer une spécification géométrique unique qui pourrait remplacer les deux spécifications de coaxialité et de perpendicularité associées au Ø60g6, tout en respectant l'intention du concepteur (centrage court perpendiculaire à l'appui plan [surface E] et simultanément coaxial à l'axe de guidage en rotation de l'arbre [axe A])

2.2.3 <u>Exploitation de résultats de la simulation numérique de tolérancement du guidage en rotation (Etape 5)</u>

Les questions 9 à 14 sont associées à l'étape 5 de la démarche de spécification utilisée.

La Figure 7 présente le modèle utilisé pour la simulation, dans laquelle le bâti est supposé indéformable et sans défaut.

A partir d'hypothèses numériques de travail, les valeurs des tolérances associées aux spécifications dimensionnelles et géométriques ont été placées sur chacune des liaisons.

La simulation permet d'obtenir la valeur du défaut de coaxialité Ø0,8 entre les droites associées à l'axe réel de guidage en rotation, gauche et droit.

En posant l'hypothèse de la non dépendance entre les défauts angulaires et radiaux, la simulation met en évidence la compatibilité de l'angle de rotulage des roulements avec le défaut angulaire calculé ($\alpha = 6,033\ 10^{-4}\ rd$, distance $DI = 1326\ mm$).

Validation radiale:

Question 9:

L'angle α calculé permet d'affirmer que l'axe de l'*Arbre d'appui droit (500-0514)* matérialise à chaque instant une génératrice de cône d'angle au sommet 2α .

Feuille de copie

Figure 7

La distance HI entre les deux roulements **\$7502** et **\$7501** de guidage de ce même arbre est de **100mm**. Calculer l'amplitude totale du déplacement radial relatif entre les points H et I.

Question 10:

Le jeu radial dans les roulements de série normale, varie de 20 à 40µm.

Feuille de copie

Dans l'hypothèse où les roulements sont dans un état de jeu mini, préciser si le défaut de coaxialité engendre un état de fonctionnement précontraint ou libre (justifier la réponse).

Conclure.

2.2.4 Garantir l'arrêt axial de l'arbre d'appui gauche (500-0508)

Travail à effectuer sur le document DRep05.

L'arrêt en translation de l'*Arbre moteur, d'appui gauche (500-0508)* est assuré par le *Corps de palier (500-0501)* et le *Chapeau (500-0509)*. Afin de garantir le serrage, un jeu *JA* est à prévoir.

Question 11:

Tracer la chaîne unidimensionnelle, de cotes correspondant à la condition JA.

DRep05

Question 12: Ecrire les équations qui définissent les valeurs mini et maxi du jeu JA.

Drep05

Donnée complémentaire :

tolérance sur la largeur des bagues intérieures et extérieures 0,2 mm.

Question 13:

DRep05

donner la valeur de l'intervalle de tolérance restant à répartir hors des composants standard. Proposer et justifier alors une valeur d'intervalle de tolérance pour chacune des cotes composantes.

Question 14:

DRep05

Reporter sur la vue en coupe partielle du *Corps de palier (500-0501)*, sa cote composante et sa tolérance en respectant la norme en vigueur et l'intention première du concepteur qui impose que les surfaces radiales de positionnement des éléments de guidage soient prioritairement perpendiculaires à l'axe A.

2.3 <u>DEUXIEME ACTION CORRECTIVE</u>: <u>CHOIX D'UN MATERIAU POUR LE FUT DE CABESTAN</u> (500-0200) [Temps 45mn]

Le *Fût de cabestan (500-0200)* est réalisé en S235 (87kg) avec un coefficient de sécurité de 2.

Ce choix a été dicté essentiellement par le procédé d'obtention : assemblage par mécano soudure, recuit de détente puis usinage.

Dans le cadre de la démarche d'amélioration du produit on envisage de le remplacer ou de conforter ce choix en s'assurant de ses performances d'un point de vue fonctionnel.

Soumis à des efforts dynamiques importants, le cahier des charges pour le choix du matériau prend en compte les objectifs fonctionnels suivants :

- objectif 1, limiter la déformation du fût dû aux effets dynamique (la déformation du fût est due au couple masse en rotation – rigidité),
- objectif 2, choisir un procédé adapté à la forme de la pièce,
- objectif 3, minimiser le coût (au travers du prix matière).

Figure 8

Le choix du matériau est établi à partir de renseignements stockés dans des bases de données. Combinées, elles permettent la réalisation de graphes à double entrée qui mettent en évidence des domaines par famille de matériaux. Chaque entrée correspond à une propriété particulière des matériaux répondant aux besoins fonctionnels objectifs. Chaque famille est repérée par un code de couleur (cf. Figure 8).

Sur feuille de copie :

Question 15 : Feuille de copie Interpréter la désignation normalisée du matériau utilisé pour réaliser le *Fût de cabestan*.

Question 16:

DT07, Feuille de copie Compte tenu de l'objectif 1 du cahier des charges, la première étape du choix de famille de matériaux s'appuie sur le graphe N°1 (DT07). Justifier l'utilisation des deux paramètres de construction de ce graphe.

Les graphes reprennent des caractéristiques des matériaux suivant deux axes x et y. Ils comportent des droites de décision dits « à critère d'égale importance » pour un même

rapport $\frac{valeur\ du\ critère\ de\ l'\ ordonn\'ee}{valeur\ du\ critère\ abscisse}$ illustré sur les graphes par des droites parallèles

aux droites en pointillés.

Question 17:

Proposer un classement d'une dizaine de matériaux parmi les plus performants classés par ordre décroissant de performance.

Figure 8 Feuille de copie

DT08.

Question 18 : Commenter la position du matériau actuellement utilisé.

Feuille de copie

3 REPRISE DU MONTAGE DES POULIES MOTRICE ET FOLLE [Temps : 45minutes]

Les poulies motrices et folles doivent être remplacées trois fois par an. Le montage (*DT10*) privilégie lors de l'assemblage, une mobilité axiale totale. Le bon positionnement des éléments est donc assuré par tâtonnement entraînant ainsi une longue immobilisation de la ligne de production.

Question 19 : DRep06

Le cahier des charges associé à la reconception du cabestan met en évidence deux fonctions contraintes :

- ✓ Faciliter le montage,
- ✓ Faciliter le réglage (position médiane de la poulie, et équilibrage de la masse du réducteur à renvoi d'angle **ST601**).

Pour chacune de ces fonctions proposer les critères qui permettent d'évaluer et comparer les solutions constructives.

Figure 9

Question 20 : DRep06, DT08

Evaluer et comparer la solution existante et la nouvelle solution présentée sur le croquis légendé (Figure 9), au regard des critères proposés en réponse à la *question 19*.

Conclure.

BTS Conception de Produits Industriels Sous épreuve E52

EPREUVE E5 -ETUDE DE PRODUITS INDUSTRIELS Sous epreuve E52 ANALYSE ET SPECIFICATION DE PRODUITS DOSSIER REPONSE

Cabestan de tirage et d'assemblage

Sujet Zéro

Graphe de contact hiérarchisé : Arbre moteur, d'appui gauche 500-0508

Question 3				
Référence(s) composant(s) parent(s)	Types de contact	Composant étudié	Référence(s) composant(s) enfant(s)	Types de contact
		500-0508		
		(0508)		
Question 4				
(ST501+ 0510 +ST502)				

 $APP: appui\ plan-CL: centrage\ long-CC: centrage\ court-AL: alignement-BU: but\'ee-LH: liaison\ h\'elico\"idale$

Extrait de l'analyse des antériorités fonctionnelles et/ou de position – Définition du modèle réf. : 500-0508			Repères.	
IDENTIFICATION DES SURFACES DU MODELE	Fonction Technique Assurée Surf aces ou groupes de surfaces fonctionnels			
Première vue isométrique du modèle	MIP 500-0508 : -CL (guidage en rotation)	GC1	Portée de centrage	X1
	-BU (arrêt axial)	SC7	Arrêt axial	X2
/ SC6	Garantir contact 0510-ST502	S7	Surface de dégagement	Х3
SC5 GC1	MIP Poulie 0600 : -CL	SC1	Portée de centrage poulie double	X4
	- BU	SC2	Arrêt axial poulie double	X5
S1 SC2	MIP Fût 0200 + Garantir l'APP 0200-0508 - APP	SC3	Appui flasque sortie de fût	X6
SC1 SC3	- CC	SC4	Centrage flasque sortie de fût	X7
	- garantir le CC	S3	Extrémité 1 arbre	X8
GC2	MAP Fût 0200	GC2	Fixation fût	Х9
SC4	MIP s/ens.0400 -CL	SC5	Centrage poulie 0401	X10
S3 S2		S8	Dégagement appui poulie	X11
Deuxième vue isométrique du modèle	Garantir serrage ligne de guidage	S5	Ligne de fin de filetage	X12
/ \$6 / \$5		SC8	Portée filetée	X13
GC3	Garantir longueur prise écrou ST963	S4	Extrémité 2 arbre	X14
	Entraîner en rotation 0400 - APP ST807	SC6	Fond de rainure	X15
	- AI ST807	GC4	Flancs de rainure	X16
S10 SC7	Arrêter écrou ST963	GC3	Flancs de rainure d'arrêt	X17
	Garantir passage languette rondelle frein	S10	Fond de rainure	X18
GC4 S7	ST962	S6	Arrière rainure	X19
	Garantir passage câble	S9	Orifice passage câble	X20
\$8	Préserver l'intégrité du câble	S2	Congé d'entrée du câble dans l'arbre	X21
S9 S4 SC8				

TOLERANCEMENT NORMALISE							correspondant de la feuille d'analyse document DRep02 : <u>X6</u>	
Symbole de spé	cification							
	Orientation		FI EMENTS I	NON IDEAUX		ELEMENTS IDEAU	IX	
☐ Position ☐	Battement		(points, lignes ou			(points, droites ou plans		
// <u> </u>		0	(points, iighos ou					
ф 2A A N	0 _		Elément(s) Tolérancé(s)	Elément(s) de référence	Référence(s) Spécifiée(s)	Zon	e de tolérance	
Condition de conformité : L'élément tolérancé doit être er dans la zone de tolérance.	ntièrement com	pris	Unique-Groupe	Unique-Multiples	Simple Commune Système	Simple Composée	Contrainte Orientation – Position Par rapport à la référence spécifiée	
L'élément tolérancé doit être entièrement compris								

Question 19				
FT	Critères			
Faciliter le montage				
Faciliter le réglage				

Question 20		
Solution existante (1) document DT08	Solution envisagée (2) figure 9, page 7/7 (dossier travail demandé)	choix 1 ou 2