

Machine Learning with Graphs (MLG)

HW3: Model Design & Comparison for Recommendation Models

Deadline: **2020.05.31 (Sat.)** 23:59

Submission: Code (.py/.ipynb) and Report (PDF)

標題	觀看次數	觀看小時	
MLG-2020 01-5 Centrality Prediction	127	28.5079	HW1
MLG-2020 00 Course Intro	97	8.7164	
MLG-2020 01 Graph Structure	86	15.6874	HW1
MLG-2020 01-3 Centrality Analysis	83	15.4437	HW1
MLG-2020 02-1 Network Properties	61	16.1875	HW1
MLG-2020 03-1 Link Prediction	60	18.5091	HW2
MLG-2020 HW2	60	4.3949	HW2
MLG-2020 01-4 Eigenvector Centrality	59	7.7755	HW1
MLG-2020 04-1 High-Order Link Prediction	56	8.4266	HW2
MLG-2020 01-2 Graph Search	55	6.9471	HW1
MLG-2020 03-2 LP on Attributed Graphs	48	10.7277	HW2
MLG-2020 02-2 Graph Generation: ER Model	47	10.8395	noHW
MLG-2020 02-3 Graph Generation: BA Model	46	5.2461	noHW
MLG-2020 02-4 Graph Generation: WS Model	40	4.3228	noHW
MLG-2020 05-1 Community Detection: Basic	38	6.9724	noHW
MLG-2020 04-2 Signed Link Prediction	36	2.7258	noHW
MLG-2020 06-1 RecSys: Collaborative Filtering	25	4.7612	
MLG-2020 05-3 Community Detection: Louvain & LPA	21	3.3071	noHW
MLG-2020 05-2 Community Detection: Edge-Removal	21	6.0457	noHW
MLG-2020 04-3 Dynamic Link Prediction	17	1.478	noHW
MLG-2020 04-4 Link Prediction on Knowledge Graphs	15	4.2244	noHW
MLG-2020 06-2 RecSys: Matrix Factorization	14	3.364	
MLG-2020 07-1 RecSys: BPR Bayesian Personalized Ranking	9	2.3756	
MLG-2020 06-3 RecSys: Factorization Machine	7	1.5435	

The Main Expected Performance Table

	LON-A		LYC-R			
	LogLoss	AUC	NDCG@5	LogLoss	AUC	NDCG@5
UCF-s						
UCF-p						
ICF-s						
ICF-p						
MF		l 10 Tyr	oical Re	cSys Me	ethods	
FM						
BPR-MF						
BPR-FM						
GBDT+LR						
XGB+LR						
FNN						
IPNN						
OPNN						
PIN						
ССРМ		LO NN-I	based R	ecsys IN	/lethod	S
NeuMF						
WD						
DeepCross						
NFM		3 Paca	nt NN-b	asad M	lethode	
DeepFM		3 Nece	UC IAIA-D	aseu iv	retirous	
5選3 (自行加rows)		你产	己設計	- 白勺 N I N I	古法	
Your own NN model				HAIAIA	7114	

RecSys Models to be Compared

- **10** Typical Approaches
- 1) User-based CF [UCF-s] (cosine as similarity)
- 2) User-based CF [**UCF-p**] (Pearson correlation as similarity)
- 3) Item-based CF [ICF-s] (cosine as similarity)

Lecture 6

- 4) Item-based CF [ICF-p] (Pearson correlation as similarity)
- 5) Matrix Factorization [MF] (varying k-dim latent factor)
- 6) Factorization Machine [FM] (varying k-dim latent factor)
- 7) Matrix Factorization with BPR [BPR-MF]
- 8) Factorization Machine with BPR [BPR-FM]
- 9) Pre-training via GBDT for LR [GBDT-LR]
- 10) Pre-training via XGBoost for LR [XGB-LR]

Lecture 7

RecSys Models to be Compared

- 10 NN-based approaches
- 1) FM-supported Neural Networks [FNN]
- 2) Product-based Neural Networks
 - Inner-Product NN [IPNN]
 - Outer-Product NN [OPNN]
 - Product-network in Network [PIN]
- 3) Convolutional Click Prediction Model [CCPM]
- 4) NCF Neural Matrix Factorization [NeuMF]
- 5) Wide&Deep [**WD**]
- Deep Crossing [DeepCross]
- 7) Neural Factorization Machine [**NFM**]
- 8) Deep Factorization Machine [DeepFM]

Lecture 8

RecSys Models to be Compared

Select 3 from 5 Recent NN-based approaches:

- 1) Attentional Factorization Machines (AFM)
 Learning the Weight of Feature Interactions via Attention Networks (IJCAI 2017)
- 2) Collaborative Memory Networks (CMN)

 Collaborative Memory Network for Recommendation Systems (SIGIR 2018)
- 3) xDeepFM Combining Explicit and Implicit Feature Interactions for RecSys (KDD 2018)
- 4) Deep Interest Network (DIN)

 Deep Interest Network for Click-Through Rate Prediction (AAAI 2019)

5) DeepGBM

A Deep Learning Framework Distilled by GBDT for Online Prediction Tasks (KDD 2019)

6

Evaluation Metrics & Datasets

- TripAdvisor Datasets:
 - LON-A: tourist attractions in London
 - NYC-R: restaurants in New York City
- Evaluation metrics:

(1) avg of AUC, (2) avg of LogLoss, (3) avg of NDCG@5

Dataset	User#	User Feature#	Item#	Item Feature#	Interaction#
LON-A	16, 315	3, 230	953	4, 731	136, 978
NYC-R	15, 232	3, 230	6, 258	10, 411	129, 964

Side Information	Features (Category#)
LON-A/NYC-R User Feature	Age (6), Gender (2), Expert Level (6), Traveler Styles (18), Country (126), City (3, 072)
LON-A Attraction Feature	Attributes (89), Tags (4, 635), Rating (7)
NYC-R Restaurant Feature	Attributes (100), Tags (10, 301), Price (3), Rating (7)

Data Columns

- Column = Unnamed:0 = row ID
- Rating
 - rtime: rating time
 - rquote: comments along with rating
 - rrate: rating score
 - rid: rating ID

Item

- iid: item ID
- iattribute: item attributes
- iprice: item price (for only NYC-R)
- irating: item avg rating
- itag: item's tags

User

- uage: user age
- ugender: user gender
- ucity: user's located city
- ucountry: user's located country
- uid_index: user ID
- ulevel: user's expert level at TripAdvisor
- ustype: user's traveler style

Please ignore all of the remaining columns that do not list here

Evaluation Settings

- Data preprocessing
 - Retain users/items with at least five ratings only
- Data splitting
 - Test data: **the latest 20%** interactions (by time) of each user
 - Randomly split the remaining data into training (70%) and validation (10%) sets
 - Validation set is for hyperparameter tuning
- Transform the ratings into binary implicit feedback as ground truth, indicating whether the user has interacted with the specific item
- [Important!!] Be sure to fairly do all comparisons under the same experimental settings

Task Requirements

- Q1: Compared with the typical methods, can our NN-based approaches achieve comparable accuracy? Why?
 - Are recent NN-based methods even better? Why?
- Q2: Are there any hyperparameters in each model that significantly affect the performance?
 - You need to conduct hyperparameter studies for some modes, find the best hyperparamters, and explain why such settings are good
- Q3: Can you create a new end-to-end NN that combine the advantages of nicely-performed methods to beat all methods?
 - You MUST at least devise one novel NN-based method by yourself, and have it compared with all methods
 - No matter you beat them or fail, explain the possible reasons
- Q4: What if I cannot successfully complete some (e.g., 8, 7, 2) of 10 typical, 10 NN-based, 3/5 recent method?
 - Just try your best to have 13 compared method. Do as many as you can.
 - You own method is definitely required

Reference Packages (but not limited)

- Surprise https://github.com/NicolasHug/Surprise
- Spotlight https://github.com/maciejkula/spotlight
- LightFM https://github.com/lyst/lightfm/
- DeepCTR https://github.com/shenweichen/DeepCTR
- NeuRec https://github.com/wubinzzu/NeuRec
- RecQ https://github.com/Coder-Yu/RecQ
- Bonus: implement all required models by yourself using PyTorch
- We recommend you to read the original papers of all required models so that you can understand to come up with your own method, and make systematic and correct comparison
 - At least you can find the key hyperparameters in the papers

HW3 Submission

- HW3 Report + Code submission via Moodle
 - Deadline: May 31, (Sat) 2020, 23:59
 - Submit your code: .py or .ipynb (preferred)
 - Submit report (PDF): \geq 15 pages (you cannot include code in report)
- Content in the report
 - 1) Introduction
 - 2) Methodology: briefly describe all of the compared methods, and describe the details of your own method
 - 3) Experimental analysis, along with analysis and insights
 - Report your experimental settings, hyperparameter setting of each method
 - Compare and report the required methods and your own method
 - Explain WHY your prediction is so GOOD or so BAD!
 - Present any insights based on your results
 - Do hyperparameter analysis
 - Refer to the slide "Task Requirements"
 - 4) Conclusions
 - Explain the novelty of your method, summarize your findings
 - Point out how to improve in the future
 - 5) Citations (if you use any methods or papers)