Wykład - Analiza matematyczna II

Skrypt wykładu Krzysztofa Michalika

2 kwietnia 2023

Spis treści

1	Całki niewłaściwe I rodzaju
	Twierdzenie(kryterium porównawcze)
	Twierdzenie(kryterium ilorazowe)
	Wartość główna całki niewłaściwej I rodzaju
2	Całki niewłaściwe II rodzaju
	Zbieżność bezwględna całek niewłaściwych
3	Szeregi liczbowe
	Obliczanie sum szeregów
	Własności szeregów zbieżnych
	Popularne kryteria zbieżności szeregów
	Twierdzenie (kryterium porównawcze)
	Twierdzenie (kryterium ilorazowe)
	Twierdzenie (kryterium Cauchy'ego)
	Twierdzenie (kryterium d'Alemberta)
	Twierdzenie (kryterium całkowe)

1 Całki niewłaściwe I rodzaju

Ustalamy liczbę $a\in\mathbb{R}$. Niech f będzie funkcją całkowalną na każdym przedziale w postaci [a,T] gdzie T>a. Definiujemy całkę niewłaściwą pierwszego rodzaju z f na półprostej $[a,\infty]$ jako

$$\int\limits_a^\infty f(x)\,dx=\lim\limits_{T\to\infty}\int\limits_a^T f(x)\,dx\;,\;\mathrm{gdy\;granica\;po\;prawej\;stronie\;istnieje}$$

Analogicznie, gdy f jest całkowalna na każdym przedziale postaci [T, b], gdzie T < b. Definiujemy całkę niewłaściwą pierwszego rodzaju z f na półprostej $[-\infty, b]$ jako

$$\int\limits_{-\infty}^b f(x)\,dx = \lim_{T\to -\infty}\int\limits_T^b f(x)\,dx$$
, gdy granica po prawej stronie istnieje

Terminologia dotycząca takich całek jest taka, jak dla ciągów. Są 3 przypadki :

- 1. Granica z prawej strony jest liczbą. Wtedy mówimy, że całka jest zbieżna.
- 2. Granica z prawej strony jest równa ∞ lub $-\infty$. Wtedy mówimy, że całka jest <u>rozbieżna</u> (odpowiednio do ∞ lub $-\infty$).
- 3. Granica z prawej strony nie istnieje. Wtedy mówimy, że całka jest <u>rozbieżna</u>.

Analogicznie dla $\int_{-\infty}^{b} f(x) dx$

Przykłady:

$$\int_{0}^{\infty} \sin x \, dx = \lim_{T \to \infty} \int_{0}^{T} \sin x \, dx = \lim_{T \to \infty} [-\cos x]_{0}^{T} = \lim_{T \to \infty} (-\cos T - (-\cos 0)) = \lim_{T \to \infty} (1 - \cos T)$$

Granica ta nie istnieje więc całka jest rozbieżna.

$$\int_{-\infty}^{0} 2^x \, dx = \lim_{T \to -\infty} \int_{T}^{0} 2^x \, dx = \lim_{T \to -\infty} \left[\frac{2^x}{\ln 2} \right]_{T}^{0} = \lim_{T \to -\infty} \left(\frac{1}{\ln 2} - \frac{2^T}{\ln 2} \right) = \frac{1}{\ln 2}$$

Całka jest zbieżna do $\frac{1}{\ln 2}$.

Pozostaje przypadek p=1. Wtedy

$$\int \frac{1}{x} \, dx = \ln|x| + C, \quad \int_{a}^{T} \frac{1}{x} \, dx = [\ln|x|]_{a}^{T} = \ln|T| - \ln|a|, \quad \int_{a}^{\infty} \frac{1}{x} \, dx = \lim_{T \to \infty} (\ln|T| - \ln|a|) = \infty$$

Udowodniliśmy zatem ważny wynik

Twierdzenie

Gdy a>0 to całka $\int\limits_{a}^{\infty}\frac{1}{x^{p}}\,dx$ jest skończona dla p>1 oraz nieskończona dla $p\leqslant 1$.

Podobnie można łatwo pokazać poniższy wynik

Twierdzenie

Gdy $a \in \mathbb{R}$ i A > 0 to całka $\int\limits_a^\infty A^x \, dx$ jest skończona dla 0 < A < 1 oraz nieskończona dla $A \geqslant 1$

Gdy
$$\int f(x) dx = F(x) + C$$
 to

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} F(T) - \lim_{S \to \infty} F(S)$$

przy czym przynajmniej jedna z granic z prawej strony nie istnieje lub zachodzi przypadek $\infty - \infty$ to $\int_{-\infty}^{\infty} f(x) \, dx$ jest rozbieżna, a w pozostałych przypadkach całka ma wartość wynikającą z arytmetyki granic.

W przypadku kiedy całki nie da się obliczyć w sposób dokładny można to zrobić w sposób przybliżony, pod warunkiem , że wiemy, że jest zbieżna.

Kryteria zbieżności to twierdzenia opisujące warunki dostateczne zbieżności lub rozbieżności danej klasy całek. Najczęściej mają postać implikacji ale NIE równoważności.

Oznacza to zwykle własności postaci

warunek zachodzi ⇒ całka jest zbieżna/rozbieżna

warunek nie zachodzi ⇒ nic nie wiemy o zbieżności/rozbieżności całki

Popularne kryteria zbieżności całek z ∞

0. Warunek konieczny zbieżności całki

Jeżeli całka $\int_{-\infty}^{\infty} f(x) dx$ jest zbieżna to $\lim_{x \to \infty} f(x)$ jest równa 0 lub nie istnieje.

Transpozycja twierdzenia daje następujący wynik:

Jeżeli $\lim_{x\to\infty} f(x)$ istnieje i jest różna od 0 to całka $\int\limits_a^\infty f(x)\,dx$ nie jest zbieżna, przy czym

• gdy
$$\lim_{x \to \infty} f(x) > 0$$
 to $\int_{a}^{\infty} f(x) dx = \infty$,

• gdy
$$\lim_{x \to \infty} f(x) < 0$$
 to $\int_{a}^{\infty} f(x) dx = -\infty$,

Uwaga. Warunek konieczny to tylko implikacja!

Jeżeli $\lim_{x\to\infty} f(x)$ jest równa 0 lub nie istnieje to jeszcze NIC NIE WIEMY o całce,

Na przykład całki $\int\limits_a^\infty \frac{1}{x^p}\,dx,\ a>0,$ mają $\lim\limits_{x\to\infty}\frac{1}{x^p}=0$ dla wszystkich p>0 ale niektóre z tych całek są zbieżne, a niektóre rozbieżne

Ważna klasa całek - całki z funkcji nieujemnych

$$\int_{a}^{\infty} f(x) \, dx, \ f \geqslant 0$$

Wtedy $\int_a^T f(x) dx = F(T) - F(a)$ jest funkcją niemalejącą zmiennej T zatem całka $\int_a^\infty f(x) dx = \lim_{T \to \infty} \int_a^T f(x) dx$ zawsze istnieje. Może być to liczba lub ∞ .

Dla całek z funkcji nieujemnych mamy dwa kolejne kryteria zbieżności.

- 1. Kryterium porównawcze
- 2. Kryterium ilorazowe

Twierdzenie(kryterium porównawcze)

Dane są dwie całki $\int_{a}^{\infty} f(x) dx$ oraz $\int_{a}^{\infty} g(x) dx$. Wtedy zachodzą następujące własności

- 1. (Przypadek zbieżności). Gdy $\forall x \geqslant x_0 \geqslant a \ 0 \leqslant f(x) \leqslant g(x)$ i $\int\limits_a^\infty g(x)\,dx$ jest zbieżna to $\int\limits_a^\infty f(x)\,dx$ też jest zbieżna. Ponadto $0 \leqslant \int\limits_a^\infty f(x)\,dx \leqslant \int\limits_a^\infty g(x)\,dx$
- 2. (Przypadek rozbieżności) Gdy $\forall x \geqslant x_0 \geqslant a \ 0 \leqslant g(x) \leqslant f(x)$ i $\int_a^\infty g(x) \, dx$ jest rozbieżna (więc równa ∞) to $\int_a^\infty f(x) \, dx$ też jest rozbieżna (do ∞).
- 3. (Przypadek wątpliwy) Gdy $\forall x \ge x_0 \ge a \ 0 \le f(x) \le g(x)$ ale $\int_a^\infty g(x) \, dx$ jest rozbieżna to NIC NIE WIEMY o zbieżności $\int_a^\infty f(x) \, dx$.
- 4. (Przypadek wątpliwy) Gdy $\forall x \ge x_0 \ge a \ 0 \le g(x) \le f(x)$ ale $\int_a^\infty g(x) \, dx$ jest zbieżna to NIC NIE WIEMY o zbieżności $\int_a^\infty f(x) \, dx$.

Uwagi:

•
$$\int_{a}^{\infty} f(x) dx$$
 jest całką z zadania, $\int_{a}^{\infty} g(x) dx$ tworzymy sami.

- Porównujemy najczęściej z całkami $\int_a^\infty A^x dx$ lub $\int_a^\infty \frac{1}{x^p} dx$. Wtedy f często ma postać ułamków i możemy spróbować wziąć g jako :
 - C iloraz najwyższych potęg z licznika i mianownika f
- Trzeba uważać aby nierówność między f i g była prawdziwa i nie zapomnieć przypadku wątpliwego, bo wtedy trzeba zaczynać od nowa.
- ullet Warto sprawdzić opisany wyżej iloraz najwyższych potęg i na tej podstawie przewidzieć czy chcemy udowodnić zbieżność czy rozbieżność. To pomaga skonstruować odpowiednią nierówność między f i g.

Popularny błąd - odpowiedź na podstawie przypadku wątpliwego

Na przykład dla całki $\int\limits_{1}^{\infty} \frac{1}{x+\sqrt{x}}\,dx$:

"Mamy $0 \leqslant \frac{1}{x+\sqrt{x}} \leqslant \frac{1}{x}$ i całka $\int\limits_{1}^{\infty} \frac{1}{x} \, dx$ jest rozbieżna zatem całka $\int\limits_{1}^{\infty} \frac{1}{x+\sqrt{x}} \, dx$ jest rozbieżna."

GAME OVER... To jest przypadek nr 3 (wątpliwy)

Przykład

$$\int_{4}^{\infty} \frac{2x-3}{x^3-1} \, dx$$

Przewidywanie zbieżności/rozbieżności Najwyższe potęgi sugerują, że mając

$$\frac{x}{x^3} = \frac{1}{x^2}$$
, a $\int_{1}^{\infty} \frac{1}{x^2} dx < \infty$, bo $2 > 1$

Dowodzimy zbieżność. Trzeba mieć

$$0 \leqslant \frac{2x-3}{x^3-1} \leqslant g(x) = C \cdot \frac{x}{x^3}$$

Jak w twierdzeniu o 3 ciągach

$$0 \leqslant \frac{2x}{x^3 - \frac{1}{2}x^3} = 4 \cdot \frac{x}{x^3} = 4 \cdot \frac{1}{x^2}$$
$$\int_{-\frac{\pi}{2}}^{\infty} \frac{4}{x^2} dx = 4 \int_{-\frac{\pi}{2}}^{\infty} \frac{1}{x^2} dx < \infty \quad \left(\frac{1}{2}x^3 > 1 \text{ dla } x \geqslant 4\right)$$

Twierdzenie(kryterium ilorazowe)

Dane są dwie całki $\int\limits_a^\infty f(x)\,dx$ oraz $\int\limits_a^\infty g(x)\,dx$. Ponadto $\forall x\geqslant x_0\geqslant a\quad f(x),g(x)>0$

Jeżeli istnieje granica $\lim_{x\to\infty}\frac{f(x)}{g(x)}$ i jest <u>liczbą dodatnią</u> to wtedy obie całki są zbieżne albo obie rozbieżne do ∞ .

Uwagi

- \bullet Funkcję g tworzymy podobnie jak dla kryterium porównawczego
- Nie ma problemu z nierównościami :) ale za to trzeba umieć liczyć granice
- Granica nie może być ani 0 ani ∞ : $\lim_{x\to\infty} \frac{f(x)}{g(x)} \in (0,\infty)$
- Rozwiązanie musi zawierać wniosek "granica ilorazu jest liczbą dodatnią więc obie całki są zbieżne lub obie rozbieżne" bez tego będzie niepełne.
- Kryterium zwykle jest wygodniejsze niż porównawcze ale są przykłady, które "idą" z porównawczego ale nie z ilorazowego, bo granica ilorazu nie istnieje

Np.
$$\int_{1}^{\infty} \frac{2 + \sin x}{x} \, dx$$

Przykłady

Poprzedni przykład raz jeszcze

$$\int_{4}^{\infty} \frac{2x - 3}{x^3 - 1} dx$$

$$f(x) = \frac{2x - 3}{x^3 - 1}, \quad x \geqslant 4$$

$$g(x) = \frac{x}{x^3} = \frac{1}{x^2} > 0$$

$$\lim_{x \to \infty} = \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^2(2x - 3)}{x^3 - 1} = 2$$

Obie całki zbieżne lub obie rozbieżne do ∞

Przykłady o postaci funkcji złożonej $\int\limits_a^\infty f(g(x))\,dx$ gdzie $\lim\limits_{x\to\infty}g(x)=0^+$ oraz $\lim\limits_{x\to0^+}f(x)=0^+$ Nową całką jest całka z funkcji wewnętrznej $\int\limits_a^\infty g(x)\,dx$

Liczymy granicę

$$\lim_{x \to \infty} \frac{f(g(x))}{g(x)} = \lim_{t = g(x) \to 0^+} \frac{f(t)}{t} \begin{bmatrix} 0\\0 \end{bmatrix}$$

przy użyciu granic podstawowych lub reguły de l'Hospitala.

Na przykład
$$\int_1^\infty \left(2^{\frac{1}{\sqrt{x}}}-1\right)\,dx$$

$$\int_1^\infty \left(2^{\frac{1}{\sqrt{x}}}-1\right)\,dx$$

$$g(x)=\frac{1}{\sqrt{x}}>0$$

$$f(x)=2^x-1>0$$

$$\lim_{x \to \infty} \frac{2^{\frac{1}{\sqrt{x}}} - 1}{\frac{1}{\sqrt{x}}} = \lim_{t \to 0^+} \frac{2^t - 1}{t} \left[\frac{0}{0} \right] = \ln 2 \in (0, \infty)$$

Obie całki zbieżne lub obie rozbieżne

$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx = \int_{1}^{\infty} \frac{1}{x^{\frac{1}{2}}} dx = \infty \quad \text{bo} \quad \frac{1}{2} \leqslant 1$$

Wartość główna całki niewłaściwej I rodzaju

Całka $\int_{-\infty}^{\infty} x \, dx$ jest rozbiezna, gdyż jako suma całek prowadzi do symbolu $\infty - \infty$:

$$\int_{-\infty}^{\infty} x \, dx = \int_{-\infty}^{0} x \, dx + \int_{0}^{\infty} x \, dx = -\infty + \infty$$

Intuicyjnie oczekwialibyśmy jednak, że jest ona równa 0 - funkcja podcałkowa jest nieparzysta czyli mamy "tyle funkcji na + co na -", a więc wszystko powinno się wzajemnie zrównoważyć. Aby taka całka miała sens trzeba nieco zmodyfikować jej definicję i wprowadzić pojęcie wartości głównej całki niewłaściwej (obustronnej).

Definicja. Wartość główna całki $\int_{-\infty}^{\infty} f(x) dx$ to wielkość

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} \int_{-T}^{T} f(x) dx$$

o ile powyższa granica istnieje.

Oznacza to, że przybliżamy całkę po $\mathbb R$ całkami po przedziale symetrycznym względem 0.

P.V. jest skrótem od angielskiego "Principal Value".

Na przykład

tej całce.

P.V.
$$\int_{-\infty}^{\infty} x \, dx = \lim_{T \to \infty} \int_{-T}^{T} x \, dx = \lim_{T \to \infty} 0 = 0$$

Zauważmy, że gdy $\int f(x) dx = F(x) + C$ to

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} \int_{-T}^{T} f(x) dx = \lim_{T \to \infty} (F(T) - F(-T))$$

Jeżeli teraz ma sens wyrażenie $\lim_{T\to\infty}F(T)-\lim_{T\to\infty}F(-T)$ to biorąc $S=-T\to-\infty$ dostajemy

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} (F(T) - F(-T)) = \lim_{T \to \infty} F(T) - \lim_{T \to \infty} F(-T) =$$
$$= \lim_{T \to \infty} F(T) - \lim_{S \to -\infty} F(S) = \int_{-\infty}^{\infty} f(x) dx$$

Udowodniliśmy zatem poniższe twierdzenie.

Jeżeli całka $\int\limits_{-\infty}^{\infty} f(x)\,dx$ istnieje w zwykłym sensie (jako suma odpowiednich całek jednostronnych jest liczbą lub jedną z nieskończoności) to również jej wartość główna istnieje i jest równa

Natomiast może się zdarzyć, że wartość główna całki istnieje ale sama całka jest rozbieżna (był przykład).

W szczególności gdy funkcja jest na \mathbb{R} ciągła i nieparzysta to wartość główna całki z tej funkcji jest zawsze 0 niezależnie od zbieżności samej całki.

2 Całki niewłaściwe II rodzaju

Ustalamy liczby $a, b \in \mathbb{R}$, a < b. Niech f będzie funkcją całkowalną na każdym przedziale postaci [a, T], gdzie a < T < b. Definiujemy całkę niewłaściwą drugiego rodzaju z f na przedziale [a, b) jako

$$\int_{a}^{b} f(x) dx = \lim_{T \to b^{+}} \int_{a}^{T} f(x) dx, \quad \text{gdy granica po prawej stronie istnieje.}$$

Analogicznie, gdy f jest całkowalna na każdym przedziale postaci [T,b], gdzie a < T < b. to definiujemy całkę niewłaściwą pierwszego rodzaju z f na przedziale (a,b] jako

$$\int\limits_a^b f(x)\,dx = \lim_{T\to a^+} \int\limits_T^b f(x)\,dx, \quad \text{gdy granica po prawej stronie istnieje}.$$

Terminologia dotycząca takich całek jest taka, jak dla całek niewłaściwych 1 rodzaju. Są 3 przypadki :

- 1. Granica z prawej strony jest liczba. Wtedy całka jest zbieżna (do tej granicy).
- 2. Granica z prawej strony jest równa ∞ lub $-\infty$. Wtedy całka jest <u>rozbieżna</u> do ∞ lub $-\infty$.
- 3. Granica z prawej strony nie istnieje. Wtedy mówimy, że całka jest <u>rozbieżna</u>.

Interpretacja geometryczna.

Podobnie jak dla zwykłej całki oznaczonej, jeżeli $f \geqslant 0$ na (a,b] lub [a,b) to całka niewłaściwa 2 rodzaju $\int\limits_a^b f(x)\,dx$ daje pole obszaru ograniczonego osią X, wykresem f oraz prostymi x=a oraz x=b.

Najczęściej definiujemy tego typu całkę w przypadku gdy f ma asymptotę pionową x=a lub x=b. Wtedy ten obszar nie jest ograniczony z góry bądź z dołu.

Na przykład

$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx = \lim_{T \to 0^{+}} \int_{T}^{1} \frac{1}{\sqrt{x}} dx \lim_{T \to 0^{+}} [2\sqrt{x}]_{T}^{1} = \lim_{T \to 0^{+}} (2 - 2\sqrt{T}) = 2$$

Całka jest zbieżna do 2.

Wersja całki obustronnej

Ustalamy liczby $a, b, c \in \mathbb{R}$, a < c < b. Niech f będzie funkcją całkowalną na każdym przedziale postaci [a, T], T < c, oraz [T, b], T > c. Definiujemy całkę niewłaściwą 2 rodzaju z f na zbiorze $[a, c) \cup (c, b]$ jako sumę dwóch całek niewłaściwych. tzn.

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

przy czym gdy przynajmniej jedna z całek z prawej strony nie istnieje lub zachodzi przypadek $\infty-\infty$ to $\int\limits_a^b f(x)\,dx$ jest rozbieżna, a w pozostałych przypadkach całka ma wartość wynikającą z arytmetyki granic.

Najczęściej takie całki pojawiają się, gdy f ma asymptotę w x=c.

Twierdzenie

Istnieją podstawienia, które każdą całkę niewłaściwą 2 rodzaju sprowadzają do przypadku całki niewłaściwej 1 rodzaju.

W szczególności

 \bullet dla całki (a,b]możemy wziąć $t=\frac{1}{x-a}$ co daje $x=a+\frac{1}{t}$ oraz

$$\int_{a}^{b} f(x) dx = \int_{C}^{\infty} \frac{1}{t^{2}} f\left(a + \frac{1}{t}\right) dt \quad , \text{ gdzie} \quad C = \frac{1}{b - a}$$

 \bullet dla całki na [a,b)możemy wziąć $t=\frac{1}{b-x}$ co daje $t=b-\frac{1}{t}$ oraz

$$\int_{a}^{b} f(x) dx = \int_{C}^{\infty} \frac{1}{t^{2}} f\left(b - \frac{1}{t}\right) dt \quad , \text{ gdzie} \quad C = \frac{1}{b - a}$$

Na przykład dla p > 0 biorąc $t = \frac{1}{x}$ mamy

$$\int_{0}^{b} \frac{1}{x^{p}} dx = \int_{\frac{1}{t}}^{\infty} \frac{1}{t^{2}} \cdot \frac{1}{\left(\frac{1}{t}\right)^{p}} dt = \int_{\frac{1}{t}}^{\infty} \frac{1}{t^{2-p}} dt$$

Podstawienie to oznacza też, że mamy analogiczne kryteria zbieżności dla całek 2 rodzaju - porównawcze i ilorazowe, przy czym dla kryterium ilorazowego liczymy granicę ilorazu funkcji w odpowiednim końcu zadanego przedziału.

Na koniec, wartość główna całki $\int\limits_a^b f(x)\,dx$ na $[a,c)\cup(c,b]$ to wielkość

P.V.
$$\int_{a}^{b} f(x) dx = \lim_{T \to 0^{+}} \left(\int_{a}^{c-T} f(x) dx + \int_{c+T}^{b} f(x) dx \right)$$

o ile powyższa granica istnieje.

Oznacza to, że odpowiednie końce przedziałów całkowania są w jednakowej odległości od c i zbiegają do c.

Zbieżność bezwględna całek niewłaściwych

Definicja. Całka $\int_a^\infty f(x) dx$ jest zbieżna bezwględnie, gdy zbieżna jest całka $\int_a^\infty |f(x)| dx$. Analogiczne definicje mamy dla pozostałych całek 1 rodzaju oraz dla całek 2 rodzaju.

Uwagi

• Gdy f jest nieujemna to mamy $\int_{a}^{\infty} f(x) dx = \int_{a}^{\infty} |f(x)| dx$ i definicja nie wnosi nic nowego. Sytuacja się zmienia, gdy są przedziały na którym f ma różne znaki.

• Nierówność
$$\left|\int\limits_a^T f(x)\,dx\right| \leqslant \int\limits_a^T |f(x)|\,dx$$
 daje $\left|\int\limits_a^\infty f(x)\,dx\right| \leqslant \int\limits_a^\infty |f(x)|dx$ ale gdy są przedziały na którym f ma różne znaki to równość nie zachodzi. Zatem, ogólnie, $\left|\int\limits_a^\infty f(x)\,dx\right|$ i $\int\limits_a^\infty |f(x)|\,dx$ to nie to samo .

Twierdzenie

Jeżeli całka niewłaściwa jest bezwględnie zbieżna to jest zbieżna (w zwykłym sensie). Transpozycja tego twierdzenia daje warunek równoważny :

Jeżeli całka
$$\int_a^\infty f(x) dx$$
 nie jest zbieżna to również nie jest zbieżna bezwględnie, co oznacza $\int_a^\infty |f(x)| dx = \infty$.

Analogicznie dla pozostałych typów całek niewłaściwych.

Twierdzenie odwrotne nie jest prawdziwe. Są całki zbieżne ale nie bezwględnie, np. $\int_{1}^{\infty} \frac{\sin x}{x} dx$. Takie całki to tzw. całki <u>zbieżne warunkowo</u>. Są więc 3 możliwe sytuacje - 3 rozłączne podzbiory całek niewłaściwych:

Przykład Całka $\int_{1}^{\infty} \frac{\sin x}{\sqrt[3]{x^4}} dx$ jest zbieżna bezwględnie, bo biorąc $\int_{1}^{\infty} \left| \frac{\sin x}{\sqrt[3]{x^4}} \right| dx$ i używając kryterium porównawczego mamy

$$0 \leqslant \left| \frac{\sin x}{\sqrt[3]{x^4}} \right| = \frac{|\sin x|}{x^{\frac{4}{3}}} \leqslant \frac{1}{x^{\frac{4}{3}}}$$

a całka $\int\limits_{1}^{\infty} \frac{1}{x^{\frac{4}{3}}} \, dx$ jest zbieżna bo $\frac{4}{3} > 1$. Zatem $\int\limits_{1}^{\infty} \left| \frac{\sin x}{\sqrt[3]{x^4}} \right| \, dx$ jest zbieżna, a stąd $\int\limits_{1}^{\infty} \frac{\sin x}{\sqrt[3]{x^4}} \, dx$ też jest zbieżna.

3 Szeregi liczbowe

Dany jest ciąg liczbowy $a_1, a_2, ..., a_n, ...$ Tworzymy jego ciąg sum częściowych:

$$S_1 = a_1, \quad S_2 = a_1 + a_2, \quad S_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^{n} a_k$$

Jeżeli istnieje granica $S=\lim_{n\to\infty}S_n$ (skończona lub nieskończona) to oznaczamy ją symbolem $\sum_{k=1}^\infty a_k.$

W ogólnym przypadku możemy wziąć ciąg, który zaczyna się od dowolnej liczby całkowitej $n_0:a_{n_0},a_{n_0+1},...,a_n,...$ i jego sum częściowych

$$S_n = a_{n_0}, \quad S_{n_0+1} = a_{n_0} + a_{n_0+1}, \quad S_n = a_{n_0} + a_{n_0+1} + \dots + a_n = \sum_{k=n_0}^n a_k, \quad n \geqslant n_0$$

$$S = \lim_{n \to \infty} S_n$$
 jest oznaczana przez $\sum_{k=n_0}^{\infty} a_k$.

Definicja. Dla ustalonego $n_0 \in \mathbb{Z}$ obiekt $\sum_{k=n_0}^{\infty} a_k$ nazywamy <u>szeregiem liczbowym</u>, a wartość S (gdy istnieje) jego <u>sumą</u>, oznaczaną także przez $\sum_{k=n_0}^{\infty} a_k$. Mamy wtedy

$$S_n = a_{n_0}, \ S_{n_0+1} = a_{n_0} + a_{n_0+1}. \ S_n = a_{n_0} + a_{n_0+1} + \dots + a_n + \dots = \sum_{k=n_0}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=n_0}^n a_k = \lim_{n \to \infty} S_n$$
gdzie

- S_n to n ta suma szeregu,
- a_n to n ty wyraz szeregu.

Terminologia dotycząca sumy S jest taka, jak dla ciągów. Są 3 przypadki :

- 1. S jest liczbą. Wtedy dany szereg jest zbieżny (do S).
- 2. $S = \infty$ lub $S = -\infty$. Wtedy dany szereg jest <u>rozbieżny</u> (do ∞ lub $-\infty$).
- 3. $S = \lim_{n \to \infty} S_n$ nie istnieje. Wtedy dany szereg jest <u>rozbieżny</u>.

Przykłady

$$\frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n}} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^{n}} - \text{szereg zbieżny do } 1$$

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots = \sum_{n=2}^{\infty} \frac{1}{n} - \text{szereg rozbieżny do } \infty$$

$$1 - 1 + 1 - 1 + 1 - 1 + \dots = \sum_{n=0}^{\infty} (-1)^{n} - \text{szereg rozbieżny}$$

Uwaga. Każdy szereg zaczynający się od indeksu $n_0 \in \mathbb{Z}$ można przekształcić tak, by zaczynał się od indeksu 1. Wynika to z równości

$$\sum_{n=n_0}^{\infty} a_n = \sum_{n=1}^{\infty} a_{n+n_0-1}$$

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots = \sum_{n=2}^{\infty} \frac{1}{n} = \sum_{n=2}^{\infty} a_n = \sum_{n=1}^{\infty} a_{n+1} = \sum_{n=1}^{\infty} \frac{1}{n+1}$$

Obliczanie sum szeregów

Jest to zadanie trudne, a najczęściej niemożliwe, gdyż trudno jest znaleźć bezpośredni wzór na sumy częściowe S_n .

Niektóre przypadki szczególne.

- 1. Ciąg geometryczny i szereg geometryczny.
 - $a_n = a_1 \cdot q^{n-1}$, gdzie q jest ilorazem ciągu (czyli $a_{n+1} = a_n \cdot q, \ n \geqslant 1$). Wtedy

$$S_n = a_1 + a_2 + \dots + a_n = a_1 \cdot \frac{1 - q^n}{1 - q}, q \neq 1 \text{ oraz } S_n = na_1, q = 1$$

To oznacza, że dla $a_1 \neq 0$,

- szereg jest zbieżny dla -1 < q < 1 i jego suma jest $S = \frac{a_1}{1-q}$,
- szereg jest rozbieżny do ∞ lub $-\infty$ dla $q \ge 1$, znak zależy od znaku a_1 ,
- szereg jest rozbieżny (suma nie istnieje) dla $q \leq -1$

Stąd np.

$$\frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1 \text{ , bo tutaj } a_1 = q = \frac{1}{2}$$

2. Szeregi o wyrazie ogólnym postaci $a_n = f(n+1) - f(n)$ lub $a_n = f(n) - f(n+1)$, gdzie f jest pewną funkcją.

W bardziej ogólnej postaci

$$a_n = f(n+k) - f(n)$$
 lub $a_n = f(n) - f(n+k)$, gdzie $k \in \mathbb{N}^+$ to tzw. krok.

Takie szeregi to tzw. szeregi $\underline{\text{teleskopowe}}$ (telescoping series).

Przykłady

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
 - tutaj $f(x) = \frac{1}{x}$

$$\sum_{n=1}^{\infty} \left(\sqrt{n+1} - \sqrt{n} \right) - \text{tutaj } f(x) = \sqrt{x}$$

$$\sum_{n=1}^{\infty} (\operatorname{arctg}(n) - \operatorname{arctg}(n+2)) - \operatorname{tutaj} f(x) = \operatorname{arctg} x$$

Dla takich szeregów łatwo wyznacza się wzór na S_n . Wyrazy wewnętrzne się upraszczają i zostaje:

suma k pierwszych wartości, f suma k ostatnich wartości f (lub na odwrót)

Na przykład dla $\sum_{n=1}^{\infty} (f(n) - f(n+1)))$ mamy

$$S_n = f(1) - \frac{f(2)}{f(2)} + \frac{f(2)}{f(2)} - \frac{f(3)}{f(3)} + \frac{f(3)}{f(4)} + \dots + \frac{f(n)}{f(n+1)} - \frac{f(n+1)}{f(n+1)} = f(1) - \frac{f(n+1)}{f(n+1)} + \dots + \frac{f(n)}{f(n+1)} = f(n) - \frac{f(n+1)}{f(n+1)} = f(n) - \frac{f(n)}{f(n+1)} = f(n) - \frac{f(n)}{f(n)} = f(n) - \frac{f(n)}{f($$

Jeżeli istnieje granica $G = \lim_{x \to \infty} f(x)$ to mamy

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} (f(1) - f(n+1)) = f(1) - G$$

Przykład. Wyznaczyć sumę $\sum_{n=1}^{\infty} \frac{1}{n^2+n}$

Wyraz ogólny nie ma postaci różnicy więc trzeba ją stworzyć.

Używając rozkładu na ułamki proste dostajemy

$$\frac{1}{n^2+n} = \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} = \dots = \frac{1}{n} - \frac{1}{n+1}$$

Zatem

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

I to daje

$$S_n = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = \frac{1}{1} - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = 1 = \sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

Własności szeregów zbieżnych

Twierdzenie

Jeżeli szeregi $\sum_{n=n_0}^{\infty} a_n$ oraz $\sum_{n=n_0}^{\infty} b_n$ są zbieżne to zbieżne są szeregi $\sum_{n=n_0}^{\infty} (a_n + b_n)$ oraz $\sum_{n=n_0}^{\infty} (c \cdot a_n), c \in \mathbb{R}$.

Ponadto

•
$$\sum_{n=n_0}^{\infty} (a_n \pm b_n) = \sum_{n=n_0}^{\infty} a_n \pm \sum_{n=n_0}^{\infty} b_n$$

$$\bullet \sum_{n=n_0}^{\infty} (c \cdot a_n) = c \sum_{n=n_0}^{\infty} a_n$$

Prawdziwe są także analogiczne twierdzenia prowadzące do arytmetyki granic nieskończonych, gdy nie pojawiają się symbole nieoznaczone. Na przykład gdy $\sum_{n=n_0}^{\infty}a_n=\infty$ oraz $\sum_{n=n_0}^{\infty}b_n=b\in\mathbb{R}$ to

$$\sum_{n=n_0}^{\infty} (a_n \pm b_n) = \sum_{n=n_0}^{\infty} a_n \pm \sum_{n=n_0}^{\infty} b_n = \infty$$

Natomiast gdy $\sum_{n=n_0}^{\infty} a_n = \sum_{n=n_0}^{\infty} b_n = \infty$ to $\sum_{n=n_0}^{\infty} (a_n - b_n)$ może być zarówno zbieżny jak i rozbieżny i nie ma sensu równość

$$\sum_{n=n_0}^{\infty} (a_n - b_n) = \sum_{n=n_0}^{\infty} a_n - \sum_{n=n_0}^{\infty} b_n$$

Twierdzenie

Zmiana wartości n_0 nie wpływa na zbieżność/rozbieżność szeregu $\sum_{n=n_0}^{\infty} a_n$. Może mieć wpływ na wartość jego sumy.

Stąd wynika np., że szeregi $\sum_{n=1}^{\infty} a_n$ i $\sum_{n=100}^{\infty} a_n$ są albo oba zbieżne albo oba rozbieżne do ∞ lub $-\infty$ albo oba rozbieżne.

To też oznacza, że na podstawie kilku pierwszych wyrazów ciągu/szeregu

NIC NIE MOŻNA POWIEDZIEĆ o jego zbieżności

Popularny błąd

"Liczymy wartości a_1, a_2, a_3, a_4, a_5 . Wychodzi ciąg malejący i dodatni. Zatem szereg jest zbieżny". GAME OVER...

Twierdzenie

Dla ustalonego $n_0 \in \mathbb{N}^+$ i $p \in \mathbb{R}$ szereg $\sum_{n=0}^{\infty} \frac{1}{n^p}$ jest zbieżny dla p > 1 i rozbieżny do ∞ dla $p \leq 1$.

W przypadku kiedy sumy szeregu nie da się wyznaczyć w sposób dokładny można to zrobić w sposób przybliżony, pod warunkiem, że wiemy, że szereg jest zbiezny.

Kryteria zbieżności to twierdzenia opisujące warunki dostateczne zbieżności lub rozbieżności danej klasy szeregów. Najczęściej mają postać implikacji ale **NIE** równoważności.

Oznacza to zwykle własności postaci

warunek zachodzi ⇒ szereg jest zbieżny/rozbieżny, warunek nie zachodzi ⇒ nic nie wiemy o zbieżności/rozbieżności szeregu

Popularne kryteria zbieżności szeregów

0. Warunek konieczny zbieżności szeregów

Twierdzenie
 Jeżeli szereg
$$\sum_{n=n_0}^{\infty} a_n$$
 jest zbieżny to $\lim_{n\to\infty} a_n = 0$.

Dla $n \ge n_0 + 1$ mamy $S_n = a_{n_0} + a_{n_0+1} + \dots + a_{n-1} + a_n$ oraz $S_{n-1} = a_{n_0} + a_{n_0+1} + \dots + a_{n-1}$, Stad

$$S_n - S_{n-1} = a_n$$

Jeżeli szereg
$$\sum_{n=n_0}^{\infty} a_n$$
 jest zbieżny to $\lim_{n\to\infty} S_n = \lim_{n\to\infty} S_{n-1} = S \in \mathbb{R}$. To daje $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (S_n - S_{n-1}) = \lim_{n\to\infty} S_n - \lim_{n\to\infty} S_{n-1} = S - S = 0$

Transpozycja tego twierdzenia daje warunek równoważny do zastosowania praktycznego: Jeżeli $\lim_{n\to\infty} a_n \neq 0$ to szereg $\sum_{n=0}^{\infty} a_n$ nie jest zbiezny przy czym

• gdy
$$\lim_{n\to\infty} a_n > 0$$
 to $\sum_{n=n_0}^{\infty} a_n = \infty$

• gdy
$$\lim_{n\to\infty} a_n < 0$$
 to $\sum_{n=n_0}^{\infty} a_n = -\infty$

Uwaga. To jest tylko implikacja!

Jeżeli $\lim_{n\to\infty} a_n = 0$ to jeszcze NIC NIE WIEMY o szeregu.

Na przykład szeregi $\sum_{n=n_0}^{\infty}\frac{1}{n^p}$ mają $\lim_{n\to\infty}\frac{1}{n^p}=0$ dla wszystkich p>0ale niektóre z tych szeregów są zbieżne, a niektóre rozbieżne.

Popularny błąd

" $\lim_{n\to\infty}a_n=0$ zatem szereg jest zbieżny". GAME OVER...

Szeregi o wyrazach nieujemnych

$$\sum_{n=n_0}^{\infty} a_n, \ a_n \geqslant 0$$

Wtedy $S_n = a_{n_0} + a_{n_0+1} + ... + a_{n-1} + a_n$ jest ciągiem niemalejącym zatem suma szeregu $\sum_{n=n_0}^{\infty} a_n = \lim_{n\to\infty} S_n$ zawsze istnieje. Może być to liczba lub ∞ .

Podobnie dla szeregów o wyrazach niedodatnich $\sum_{n=n_0}^{\infty} a_n$, $a_n \leq 0$, suma zawsze istnieje i rozbieżność oznacza rozbieżność do $-\infty$.

Przykład. Następujące szeregi nie są zbieżne

$$\sum_{n=1}^{\infty} 1, \quad \sum_{n=1}^{\infty} (n^2 + 2n), \quad \sum_{n=1}^{\infty} \frac{n+1}{n+2}, \quad \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n, \quad \sum_{n=1}^{\infty} (-1)^n, \quad \sum_{n=1}^{\infty} \sin n$$

Dla szeregów o wyrazach nieujemnych mamy dwa kolejne kryteria zbieżności.

- 1. Kryterium porównawcze
- 2. Kryterium ilorazowe

Twierdzenie (kryterium porównawcze)

Dane są dwa szeregi $\sum_{n=n_0}^{\infty} a_n$ oraz $\sum_{n=n_0}^{\infty} b_n$. Wtedy zachodzą nastepujące własności.

1. (Przypadek zbieżności) Gdy $\forall n \geqslant k \geqslant n_0 \quad 0 \leqslant a_n \leqslant b_n$ i $\sum_{n=n_0}^{\infty} b_n$ jest zbieżny to $\sum_{n=n_0}^{\infty} a_n$ też jest zbieżny. Ponadto $0 \leqslant \sum_{n=n_0}^{\infty} a_n \leqslant \sum_{n=n_0}^{\infty} b_n$

- 2. (Przypadek rozbieżności) Gdy $\forall n \geqslant k \geqslant n_0 \quad 0 \leqslant b_n \leqslant a_n$ i $\sum_{n=n_0}^{\infty} b_n$ jest rozbieżny to $\sum_{n=n_0}^{\infty} a_n$ też jest rozbieżny. Ponadto $\sum_{n=n_0}^{\infty} a_n = \sum_{n=n_0}^{\infty} b_n = \infty$
- 3. (Przypadek wątpliwy). Gdy $\forall n \ge k \ge n_0$ $0 \le a_n \le b_n$ ale $\sum_{n=n_0}^{\infty} b_n$ jest rozbieżny to **NIC NIE WIEMY** o zbieżności $\sum_{n=n_0}^{\infty} a_n$
- 4. (Przypadek wątpliwy). Gdy $\forall n \geqslant k \geqslant n_0 \quad 0 \leqslant b_n \leqslant a_n$ ale $\sum_{n=n_0}^{\infty} b_n$ jest zbieżny to **NIC NIE WIEMY** o zbieżności $\sum_{n=n_0}^{\infty} a_n$

Uwagi

- $\sum_{n=n_0}^{\infty} a_n$ jest szeregiem z zadania, $\sum_{n=n_0}^{\infty} b_n$ tworzymy sami
- Porównujemy najczęściej z szeregiem geometrycznym $\sum_{n=n_0}^{\infty} q^n$ lub z szeregami $\sum_{n=n_0}^{\infty} \frac{1}{n^p}$. Wtedy a_n często ma postać ułamków i możemy spróbować wziąć b_n jako

 $\mathbf{C}\cdot$ iloraz najwyższych potęg z licznika i mianownika a_n

- Trzeba uważać aby nierówność między a_n i b_n była prawdziwa i nie zapomnieć o dolnym ograniczeniu (0). Ma być tak jak w twierdzeniu o trzech ciągach
- Kryterium nie zawsze jest wygodne w użyciu i trzeba uważać, by nie dostać przypadku wątpliwego, bo wtedy trzeba zaczynać od nowa
- Warto sprawdzić opisany wyżej iloraz najwyższych potęg i na tej podstawie przewidzieć czy chcemy udowodnić zbieżność czy rozbieżność. To pomaga skonstruować odpowiednią nierówność między a_n i b_n .

Popularny błąd: odpowiedź na podstawie przypadku wątpliwego

Na przykład dla szeregu $\sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}}$:

"Mamy $0 \le \frac{1}{n+\sqrt{n}} \le \frac{1}{n}$ i szereg $\sum_{n=1}^{\infty} \frac{1}{n}$ jest rozbieżny zatem szereg $\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$ jest rozbieżny".

GAME OVER... To jest przypadek nr 3 (watpliwy)

Przykład

$$\sum_{n=4}^{\infty} \frac{2n-3}{n^3-1}$$

Przewidywanie zbieżności/rozbieżności:

Iloraz najwyższych potęg licznika i mianownika to $\frac{n}{n^3} = \frac{1}{n^2}$, a szereg $\sum_{n=4}^{\infty} \frac{1}{n^2}$ jest zbieżny, bo

2 > 1. Zatem chcemy udowodnić zbieżność (przypadek 1).

Potrzebujemy więc
$$\sum_{n=4}^{\infty} b_n$$
 i nierówności $0 \leqslant \frac{2n-3}{n^3-1} \leqslant b_n$.

Chcemy zwiększyć wyrażenie $\frac{2n-3}{n^3-1}$ ale tak, by zostały najwyższe potęgi .

Można zwiększyć <u>licznik</u> oraz zmniejszyć mianownik.

Zwiększamy licznik poprzez wyrzucenie 3.

Zmniejszamy mianownik poprzez zastąpienie 1 czymś większym : wyrażeniem z najwyższą potęgą. Nie można jednak wziąć całego n^3 , bo będzie 0 w mianowniku.

Wygrywa wzięcie $C \cdot n^3$ np. $\frac{1}{2}n^3$, bo dla $n \ge 4$ mamy $\frac{1}{2}n^3 \ge 1$.

To wszystko daje dla $n \ge 4$

$$0 \leqslant \frac{2n-3}{n^3-1} \leqslant \frac{2n}{n^3 - \frac{1}{2}n^3}$$

Czyli

$$b_n = \frac{2n}{n^3 - \frac{1}{2}n^3} = 4 \cdot \frac{1}{n^2}$$

DZIURA W SKRYPCIE

Twierdzenie (kryterium ilorazowe)

Dane są dwa szeregi $\sum_{n=n_0}^\infty a_n$ oraz $\sum_{n=n_0}^\infty b_n.$ Ponadto $\forall n\geqslant n_0\ a_n,b_n>0.$

Jeżeli istnieje granica $\lim_{n\to\infty} \frac{a_n}{b_n}$ i jest liczbą dodatnią to wtedy oba szeregi są zbieżne albo oba rozbieżne do ∞ .

Uwagi

- \bullet Ciąg b_n tworzymy podobnie jak dla kryterium porównawczego.
- Nie ma problemu z nierównościami :) ale za to trzeba umieć liczyć granice.
- Granica nie może być ani 0 ani ∞ : $\lim_{n\to\infty}\frac{a_n}{b_n}=L\in(0,\infty)$.

Nie wystarczy warunek L>0 bo ∞ także jest >0.

- Rozwiązanie musi zawierać wniosek "granica ilorazu jest liczbą dodatnią więc oba szeregi są zbieżne lub oba rozbieżne" bez tego będzie niepełne
- Kryterium zwykle jest wygodniejsze niż porównawcze ale są przykłady, które pójdą z porównawczego ale nie z ilorazowego, bo granica ilorazu nie istnieje

Np.
$$\sum_{n=1}^{\infty} \frac{2 + \sin n}{n}.$$

Przykłady

Poprzedni przykład raz jeszcze

$$\sum_{n=4}^{\infty} \frac{2n-3}{n^3-1}$$

Bierzemy $b_n = \frac{n}{n^3} = \frac{1}{n^2}$

$$\frac{a_n}{b_n} = \frac{\frac{2n-3}{n^3-1}}{\frac{1}{n^2}} = \frac{2n^3-3n^2}{n^3-1} = \frac{2-\frac{3}{n}}{1-\frac{1}{n^3}}$$

Stąd $\lim_{n\to\infty}\frac{a_n}{b_n}=2$ - liczba dodatnia. Zatem oba szeregi są zbieżne lub oba są rozbieżne.

Dalej już analiza $\sum_{n=4}^{\infty}\frac{1}{n^2}$ i wniosek jak w kryterium porównawczym :

$$\sum_{n=4}^{\infty} b_n = \sum_{n=4}^{\infty} \frac{1}{n^2} \text{ jest zbieżny bo } 2 > 1. \text{ Zatem } \sum_{n=4}^{\infty} \frac{2n-3}{n^3-1} \text{ też jest zbieżny.}$$

Przykłady o postaci funkcji złożonej $\sum_{n=n_0}^{\infty} f(b_n)$,

gdzie
$$\lim_{n \to \infty} b_n = 0^+ \text{ oraz } \lim_{x \to 0^+} f(x) = 0^+.$$

Nowym szeregiem jest szereg z funkcji wewnętrznej $\sum_{n=0}^{\infty} b_n$.

Liczymy granicę

$$\lim_{n \to \infty} \frac{f(b_n)}{b_n} = \lim_{x = b \to 0^+} \frac{f(x)}{x} \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

przy użyciu granic podstawowych lub reguły de l'Hospitala.

Na przykład

$$\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right)$$

Mamy

$$\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right) = \sum_{n=1}^{\infty} \left(2^{\frac{1}{n}} - 1 \right)$$

Wiec bierzemy $b_n = \frac{1}{n} > 0$. Liczymy granicę

$$\lim_{n \to \infty} \frac{2^{\frac{1}{n}} - 1}{\frac{1}{n}} = \lim_{x = \frac{1}{n} \to 0^+} \frac{2^x - 1}{x} = \ln 2$$

Jest to liczba dodatnia więc oba szeregi są zbieżne lub oba są rozbieżne.

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty \text{ wiec } \sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right) = \infty.$$

- 3. Kryterium Cauchy'ego.
- 4. Kryterium d'Alemberta

Działają dla szeregów o dowolnych wyrazach. Teza obu kryteriów jest taka sama ale liczymy granice innych wyrażeń.

Twierdzenie (kryterium Cauchy'ego)

Dany jest szereg $\sum_{n=n_0}^{\infty} a_n$ taki, że istnieje granica $q = \lim_{n \to \infty} \sqrt[n]{|a_n|}$. Wtedy

- 1. Gdy $0 \le q < 1$ to szereg jest zbieżny.
- 2. Gdy q > 1 to szereg jest rozbieżny
- 3. (Przypadek wątpliwy). Gdy q = 1 to NIC NIE WIEMY o zbieżności szeregu.

Uwagi

- Do wyznaczenia q przydają się następujące właśności granic
 - a) Gdy $\lim_{n\to\infty} a_n$ jest liczbą dodatnią to $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$.
 - b) $\forall p \in \mathbb{R} \lim_{n \to \infty} \sqrt[n]{n^p} = 1.$
- q nie może być ujemne. q ujemne zwykle oznacza brak modułu na a_n .

Twierdzenie (kryterium d'Alemberta)

Dany jest szereg $\sum_{n=n_0}^{\infty} a_n$, $a_n \neq 0$, taki, że istnieje granica $q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. Wtedy

- 1. Gdy $0 \le q < 1$ to szereg jest zbieżny.
- 2. Gdy q > 1 to szereg jest rozbieżny
- 3. (Przypadek wątpliwy). Gdy q = 1 to NIC NIE WIEMY o zbieżności szeregu.
- q nie może być ujemne. q ujemne zwykle oznacza brak modułu na a_n .
- \bullet W obu kryteriach szerergi $\sum_{n=n_0}^{\infty}\frac{1}{n^p}$ pokazują, że q=1nic nie daje.

Przykłady

$$\sum_{n=1}^{\infty} \frac{20^n}{n!}$$

Tutaj $a_n = \frac{20^n}{n!} > 0$ oraz $a_{n+1} = \frac{20^{n+1}}{(n+1)!}$. Zatem z kryterium d'Alemberta

$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{20^{n+1}}{(n+1)!}}{\frac{20^n}{n!}}$$

$$\sum_{n=1}^{\infty} \left(2 \arcsin \frac{1-n}{2n+1} \right)^n$$

Tutaj chcemy użyć kryterium Cauchy'ego.

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left(2 \arcsin \frac{1-n}{2n+1}\right)^n} = \sqrt[n]{\left[2 \arcsin \frac{1-n}{2n+1}\right]^n} = \left|2 \arcsin \frac{1-n}{2n+1}\right| = \left|2 \arcsin \frac{\frac{1}{n}-1}{2+\frac{1}{n}}\right|$$

Stąd

$$q = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \left| 2\arcsin\left(-\frac{1}{2}\right) \right| = \left| 2\left(-\frac{\pi}{6}\right) \right| = \frac{\pi}{3}$$

q > 1 więc szereg jest rozbieżny.

Twierdzenie (kryterium całkowe)

Dany jest szereg $\sum_{n=n_0}^{\infty} a_n$. Jeżeli na $[x_0,\infty),\ x_0\geqslant n_0$ istnieje funkcja f taka, że

- $f(n) = a_n, n \geqslant x_0,$
- f jest nieujemna na $[x_0, \infty)$,
- f jest nierosnąca na $[x_0, \infty)$,

to całka niewłaściwa $\int_{x_0}^{\infty} f(x) dx$ i szereg $\sum_{n=n_0}^{\infty} a_n$ są jednocześnie skończone lub jednocześnie rozbieżne do ∞ .

Uwagi do kryterium

• Najczęściej $x_0 = n_0$.

• Kryterium jest ważne z punktu widzenia teorii, gdyż wiele innych własności szeregów z niego wynika. Na przykład, gdy $x_0 = n_0$ to

$$\int_{n_0}^{\infty} f(x) dx \leqslant \sum_{n=n_0}^{\infty} a_n \leqslant a_{n_0} + \int_{n_0}^{\infty} f(x) dx$$

To pozwala oszacować sumę szeregu.

- Sens użycia kryterium: nie umiemy policzyć sumy szeregu ale umiemy **obliczyć** całkę $\int\limits_{x_0}^{\infty} f(x)\,dx = \lim\limits_{T \to \infty} \int\limits_{x_0}^{T} f(x)\,dx.$ Stosujemy to kryterium tylko wtedy, gdy zamierzamy liczyć tę całkę.
- Z praktycznego punktu widzenia kryterium jest najczęściej najmniej wygodnie do zastosowania. Opłaca się je stosować głównie wtedy, gdy szereg zawiera wyrażenie $\ln n$.

Przykład

Dla ustalonego $n_0 \in \mathbb{N}^+$ i p > 0 dowodzimy znany już wynik dla szeregu $\sum_{n=n_0}^{\infty} \frac{1}{n^p}$ zbieżny dla p > 1 oraz rozbieżny do ∞ dla $p \le 1$.

Tutaj bierzemy po prostu $f(x) = \frac{1}{x^p}, x \in [n_0, \infty).$

Dla p > 0f jest malejąca i nieujemna oraz $f(n) = \frac{1}{n^p}$

Spełnione są wiec warunki użycia kryterium. Liczymy całkę $\int_{x_0}^{\infty} \frac{1}{x^p} dx$.

Było to już robione wcześniej i wiemy, że dla p > 1 jest liczbą, a dla $p \le 1$ jest równa ∞ . Stąd szereg jest zbieżny dla p > 1 oraz rozbieżny do ∞ dla $0 . Dla <math>p \le 0$ szereg jest rozbieżny, bo nie spełnia warunku koniecznego zbieżności.