➤ It is possible to build a nonrecursive predictive parser by maintaining a stack explicitly, rather than implicitly via recursive calls. The key problem during predictive parsing is that of determining the production to be applied for a nonterminal. The nonrecursive parser looks up the production to be applied in a parsing table.

➤ This parser scan over the input stream using a prefix of tokens to identify the production applied. This parser is also called LL(k) parser, where k is the length of the prefix. "LL" stands for left-to-right scanning of the input stream and left-most derivation respectively.

- A table-driven predictive parser has an input buffer, a stack, a parsing table, and an output stream.
- ➤ The input buffer contains the string to be parsed, followed by \$, a symbol used as a right endmarker to indicate the end of the input string.
- ➤ The stack contains a sequence of grammar symbols with \$ on the bottom, indicating the bottom of the stack.
- > Initially, the stack contains the start symbol of the grammar on top of \$.
- The parsing table is a two dimensional array M[A, a], where A is a nonterminal, and a is a terminal or the symbol \$.

Why FIRST and FOLLOW in Compiler Design?

- ➤ The need of backtracking is really a complex process to implement a parser.
- ➤ If the compiler would have come to know in advance, that what is the "**first** character of the string produced when a production rule is applied", and comparing it to the current character or token in the input string, it can wisely take decision on which production rule to apply.

S -> cAd

A -> bc|a

And the input string is "cad".

➤ After reading character 'c' in the input string and applying S->cAd, next character in the input string is 'a', then it would directly use the production rule A->a.

Why FIRST and FOLLOW in Compiler Design?

➤ The parser faces one more problem. Let us consider below grammar to understand this problem.

A -> aBb B -> $c \mid \epsilon$

And suppose the input string is "ab" to parse.

- As the first character in the input is a, the parser applies the rule A->aBb. Now the parser checks for the second character of the input string which is b, and the Non-Terminal to derive is B, but the parser can't get any string derivable from B that contains b as first character.
- > But the Grammar does contain a production rule B -> ε, if that is applied then B will vanish. But the parser can apply it only when it knows that the character that follows B in the production rule is same as the current character in the input.

Rules to Calculate First(X)

To compute First(X) for all grammar symbols X, apply the following rules:

- 1. If X is a terminal, then First(X) is {X}.
- 2. If $X \rightarrow \epsilon$ is a production, then add ϵ to First(X).
- 3. If X is nonterminal and X->Y₁ Y₂ ... Y_k is a production, then place a in First(X) if for some i, a is in First(Y_i), and ϵ is in all of First(Y₁), . . . First(Y_{i-1}); that is, Y₁...Y_{i-1}≈ ϵ . If ϵ is in First(Y_j) for all j = 1, 2, ..., k, then add ϵ to First(X).

Rules to Calculate First(X)

To compute First(X) for all grammar symbols X, apply the following rules:

- 1. If X is a terminal, then First(X) is {X}.
- 2. If X-> ϵ is a production, then add ϵ to First(X).
- 3. If X is nonterminal and X->Y₁ Y₂ ... Y_k is a production, then place a in First(X) if for some i, a is in First(Y_i), and ϵ is in all of First(Y₁), . . . First(Y_{i-1}); that is, Y₁...Y_{i-1}≈ ϵ . If ϵ is in First(Y_j) for all j = 1, 2, ..., k, then add ϵ to First(X).

Example:

	First
Е	{(,id}
E'	{+,ε}
Т	{(,id}
T'	{*,e}
F	{(,id}

Rules to Calculate First(X)

To compute First(X) for all grammar symbols X, apply the following rules:

- 1. If X is a terminal, then First(X) is {X}.
- 2. If X-> ϵ is a production, then add ϵ to First(X).
- 3. If X is nonterminal and X->Y₁ Y₂ ... Y_k is a production, then place a in First(X) if for some i, a is in First(Y_i), and ϵ is in all of First(Y₁), . . . First(Y_{i-1}); that is, Y₁...Y_{i-1}≈ ϵ . If ϵ is in First(Y_j) for all j = 1, 2, ..., k, then add ϵ to First(X).

Consider the grammar

$$S \rightarrow aABe \quad A \rightarrow Abc \mid b \quad B \rightarrow d$$

Show the First sets for each nonterminal symbol.

$$First(B) = \{First(d)\} = \{d\}$$

$$First(A) = \{First(Abc), First(b)\} = \{First(A), b\} = \{b\}$$

	First
S	{a}
A	{b}
В	{d}

Rules to Calculate First(X)

To compute First(X) for all grammar symbols X, apply the following rules:

- If X is a terminal, then First(X) is {X}.
- 2. If X-> ϵ is a production, then add ϵ to First(X).
- 3. If X is nonterminal and X->Y₁ Y₂ ... Y_k is a production, then place a in First(X) if for some i, a is in First(Y_i), and ϵ is in all of First(Y₁), . . . First(Y_{i-1}); that is, Y₁...Y_{i-1}≈ ϵ . If ϵ is in First(Y_j) for all j = 1, 2, ..., k, then add ϵ to First(X).

Consider the grammar

$$S -> A \mid B$$
, $A -> cA + b \mid a$, $B -> cB + a \mid b$

Show the First sets for each nonterminal symbol.

$$First(B)=\{c, b\}$$

$$First(A) = \{c, a\}$$

$$First(S) = {First(A), First(B)} = {a, b, c}$$

	First
S	{a,b,c}
A	{a, c}
В	{b, c}

Rules to Calculate First(X)

To compute First(X) for all grammar symbols X, apply the following rules:

- 1. If X is a terminal, then First(X) is {X}.
- 2. If X-> ϵ is a production, then add ϵ to First(X).
- 3. If X is nonterminal and X->Y₁ Y₂ ... Y_k is a production, then place a in First(X) if for some i, a is in First(Y_i), and ϵ is in all of First(Y₁), . . . First(Y_{i-1}); that is, Y₁...Y_{i-1}≈ ϵ . If ϵ is in First(Y_j) for all j = 1, 2, ..., k, then add ϵ to First(X).

Consider the grammar
$$S \rightarrow iEiSS' \mid a$$

$$S \rightarrow iEiSS' \mid a$$

 $S' \rightarrow eS \mid \epsilon$
 $E \rightarrow b$

Show the First sets for each nonterminal symbol.

	First
S	{i, a}
S'	{e, ε}
E	{b}

Rules to Calculate Follow(A)

To compute Follow(X) for all grammar symbols X, apply the following rules:

- 1. Place \$ in Follow(S), where S is the start symbol and \$ is the input right endmarker.
- 2. If there is a production, A-> α B β , then everything in First(β) except for ϵ is placed in Follow(B).
- 3. If there is a production, A-> α B, or a production A-> α B β where First(β) contains ϵ (i.e. $\beta \approx \epsilon$), then everything in Follow(A) is in Follow(B).

Rules to Calculate Follow(A)

To compute Follow(X) for all grammar symbols X, apply the following rules:

- 1. Place \$ in Follow(S), where S is the start symbol and \$ is the input right endmarker.
- 2. If there is a production, A->αBβ, then everything in First(β) except for ε is placed in Follow(B).
- 3. If there is a production, A-> α B, or a production A-> α B β where First(β) contains ϵ (i.e. $\beta \approx \epsilon$), then everything in Follow(A) is in Follow(B).

Example:

Follow(E)={\$, First())}
Follow(E')={Follow(E)}
Follow(T)={First(E'), Follow(E)}
Follow(T')={Follow(T)}
Follow(F)={First(T'), Follow(T))

	First	Follow
E	{(,id}	{), \$}
E'	{+,ε}	{), \$}
т	{(,id}	{+ ,) , \$ }
T'	{*,ε}	{+ ,), \$ }
F	{(,id}	{+, *,), \$}

Rules to Calculate Follow(A)

To compute Follow(X) for all grammar symbols X, apply the following rules:

- 1. Place \$ in Follow(S), where S is the start symbol and \$ is the input right endmarker.
- 2. If there is a production, A-> α B β , then everything in First(β) except for ϵ is placed in Follow(B).
- If there is a production, A-> α B, or a production A-> α B β where First(β) contains ϵ (i.e. $\beta \approx \epsilon$), then everything in Follow(A) is in Follow(B).

Consider the grammar S -> aABe A -> Abc | b

 $B \rightarrow d$

Show the First and Follow sets for each nonterminal symbol.

$$Follow(S) = \{\$\}$$

$$Follow(A) = \{First(B), First(b)\} = \{d, b\}$$

$$Follow(B) = {First(e)} = {e}$$

	First	Follow
S	{a}	{\$}
A	{b}	{b, d}
В	{d}	{e}

Rules to Calculate Follow(A)

To compute Follow(X) for all grammar symbols X, apply the following rules:

- 1. Place \$ in Follow(S), where S is the start symbol and \$ is the input right endmarker.
- If there is a production, A->αBβ, then everything in First(β) except for ε is placed in Follow(B).
- 3. If there is a production, A-> α B, or a production A-> α B β where First(β) contains ϵ (i.e. $\beta \approx \epsilon$), then everything in Follow(A) is in Follow(B).

Consider the grammar S -> A | B, A -> cA+b | a, B -> cB + a | b

Show the First and Follow sets for each nonterminal symbol.

	First	Follow
S	{a,b,c}	{\$}
A	{a, c}	{+, \$}
В	{b, c}	{+, \$}

LL(1) Grammar

A grammar is an LL(1) if all productions conform to the following LL(1) conditions:

- 1. For each production A-> $\alpha_1 | \alpha_2 | \ldots | \alpha_n$, First(α_i) \cap First(α_i)= Φ , $\forall i \neq j$
- 2. If nonterminal X can derive ϵ , then First(X) \cap Follow(X) = Φ

Check the grammar $S \rightarrow A \mid B$, $A \rightarrow cA+b \mid a$, $B \rightarrow cB+a \mid b$ is LL(1) or not.

$$First(B)=\{c, b\}$$

$$First(A) = \{c, a\}$$

$$First(S) = {First(A), First(B)} = {a, b, c}$$

$$Follow(S)=\{\$\}$$

	First	Follow
S	{a, b, c}	{\$}
A	{a, c}	{+, \$}
В	{b, c}	{+, \$}

First(A) \cap First(B) = {c} So, this is not LL(1).