Appendix E

Answers to Odd-Numbered Problems

Chapter 1

1.1 (a)
$$-0.1038$$
 C, (b) -0.19865 C, (c) -3.941 C, (d) -26.08 C

1.3 (a)
$$3t + 1$$
 C, (b) $t^2 + 5t$ mC, (c) $2\sin(10t + \pi/6) + 2\mu$ C, (d) $-e^{-30t}[0.16\cos 40t + 0.12\sin 40t]$ C

1.5 $490 \mu C$

1.7
$$i = \begin{cases} 25 \text{ A}, & 0 < t < 2 \\ -25 \text{ A}, & 2 < t < 6 \\ 25 \text{ A}, & 6 < t < 8 \end{cases}$$

See the sketch in Fig. E.1.

Figure E. For Prob. 1.7.

- **1.9** (a) 10 C, (b) 22.5 C, (c) 30 C
- **1.11** (a) 2.131 C, (b) -8.188 W
- **1.13** 916.7 mJ
- **1.15** $P_1 = -300 \text{ W}, P_2 = 100 \text{ W}, P_3 = 200 \text{ W}, P_4 = -32 \text{ W}, P_5 = -48 \text{ W}$
- **1.17** 18 V
- **1.19** (a) 60 W, 100 W, (b) 4 W, (c) 110 W, (d) 700 W, (h) 350 W
- **1.21** 21.6 cents
- **1.23** (a) 43 kC, (b) 475.2 kJ, (c) 1.188 cents
- 1.25 39.6 cents
- **1.27** 750 ks
- **1.29** (a) 10.4 kWh, (b) 433.3 W/h
- **1.31** (a) 4 A, (b) 1.852 days
- **1.33** $13.43 \times 10^6 \text{ J}$

- **2.1** 3.2 mA
- 2.3 $20.8 \mu S$

- **2.5** n = 9, b = 15, l = 7
- **2.7** 7 branches and 5 nodes
- **2.9** 11 A, 4 A, 1 A
- **2.11** -4 V, -6 V, 4 V, -2 V
- 2.13 14 V, 22 V
- 2.15 4 A, 28 V
- **2.17** 4 A
- **2.19** -4.444 V, 98.75 W
- **2.21** 0.1 A, 2 kV, 0.2 kW
- 2.23 6 V, 18 V
- 2.25 12 V, 3 A, 0 A, 0 V
- 2.27 10 V, 1 A, 4 W
- 2.29 3 V, 6 A
- **2.31** 8 V, 0.2 A
- **2.33** 12 Ω
- **2.35** (a) 0 A, (b) R, (c) R, (d) R, (e) $\frac{6}{11}$ R
- **2.37** 16 Ω
- **2.39** (a) 12 Ω , (b) 16 Ω
- **2.41** (a) 76Ω , (b) 54Ω
- **2.43** (a) $R_a = R_b = R_c = 30 \Omega$, (b) $R_a = 103.3 \Omega$, $R_b = 155 \Omega$, $R_c = 62 \Omega$
- **2.45** 889 Ω
- **2.47** (a) 125 Ω , (b) 275 Ω
- **2.49** 0.9974 A
- **2.51** 12.21 Ω, 1.64 A
- **2.53** 1.2 A
- **2.55** Use R_1 and R_2 bulbs
- **2.57** 11 Ω , 99 Ω
- **2.59** (a) $800 \text{ k}\Omega$, (b) 2 mW
- **2.61** (a) 100 mA, (b) 975.6 mA, (c) 2.44 %
- **2.63** 45 Ω
- **2.65** (a) 19.9 k Ω , (b) 20 k Ω
- **2.67** (a) Four $20-\Omega$ resistors in parallel.
 - (b) One 300- Ω resistor in series with a 1.8- Ω resistor and a parallel combination of two 20- Ω resistor.
 - (c) Two 24-k Ω resistors in parallel connected in series with two 56-k Ω resistors in parallel.
 - (d) A series combination of a 20- Ω resistor, 300- Ω resistor, 24-k Ω resistor and a parallel combination of two 56-k Ω resistors.
- **2.69** 75 Ω
- **2.71** 38 k Ω , 3.33 k Ω
- **2.73** 375 Ω , 257.1 Ω

3.1 9.143 V,
$$-10.286$$
 V, $p_{8\Omega} = 10.45$ W, $p_{4\Omega} = 94.37$ W, $p_{2\Omega} = 52.9$ W

3.27 (a) planar, redrawn as shown in Fig. E.2, (b) nonplanar

Figure E.2 For Prob. 3.27(a).

- 3.29 8.727 V
- 3.31 3.652 V
- **3.33** 1.188 A
- **3.35** −1.733 A
- **3.37** 33.78 V, 10.67 A
- 3.39 20 V
- **3.41** 1.072 A, 2.041 A
- **3.43** 6 V, 6 V
- **3.45** −1.344 kV, −5.6 A
- **3.47** −0.3
- **3.49** −4 V, 2.105 A

3.51
$$\begin{bmatrix} 1.25 & -1 \\ -1 & 1.5 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
$$V_1 = 4 \text{ V}, V_2 = 2 \text{ V}$$

3.53
$$\begin{bmatrix} 1.75 & -0.25 & -1 \\ -0.25 & 1 & -0.25 \\ -1 & -0.25 & 1.25 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 20 \\ 5 \\ 5 \end{bmatrix}$$

3.55
$$\begin{bmatrix} 6 & -2 & -0 \\ -2 & 12 & -2 \\ 0 & -2 & 7 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 12 \\ -8 \\ -20 \end{bmatrix}, 6.52 \text{ W}$$

3.57
$$\begin{bmatrix} 9 & -3 & -4 & 0 \\ -3 & 8 & 0 & 0 \\ -4 & 0 & 6 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 2 \\ -3 \end{bmatrix}$$

- 3.59 -1 A, 0 A, 2 A
- 3.61 -3 A, 0 A, 3 A
- **3.63** 26.667 V, 6.667 V, 173.3 V, -46.67 V
- **3.65** See Fig. E.3; −12.5 V

Figure E.3 For Prob. 3.65.

- **3.67** −0.187 V
- **3.69** −80
- **3.71** 5.23 V
- **3.73** 12.296 μA, 5.791 V

- **4.1** 0.1, 1 A
- **4.3** (a) 0.5 V, 0.5 A, (b) 5 V, 5 A, (c) 5 V, 0.5 A
- **4.5** 4.5 V
- **4.7** -1.32 A, 17.43 W
- **4.9** 3 A
- **4.11** 8 V
- **4.13** 0.1111 A
- **4.15** −0.1176 A
- **4.17** 3 A
- **4.19** 0.555 A
- **4.21** −8.57 V
- **4.23** 0.1111 A
- 4.25 3.652 V

- **4.27** (a) 8 Ω , 16 V, (b) 20 Ω , 50 V
- **4.29** −0.125 V
- **4.31** 2.5 Ω, 6 V
- **4.33** 10 Ω, 10 V
- **4.35** (a) 3.857Ω , 4 V, (b) 3.214Ω , 15 V
- **4.37** (a) 8 Ω , 2 A, (b) 20 Ω , 2.5 A
- **4.39** 28 Ω, 3.286 A
- **4.41** (a) 2 Ω , 7A, (b) 1.5 Ω , 12.67 A
- **4.43** 3 Ω , 1A
- **4.45** 1.875 A

4.47
$$-\frac{R_2[R_1(1+\beta)R_2]}{\beta(R_1+R_2)}$$

- **4.49** $R_{\text{Th}} = R_{\text{N}} = 3.333 \,\Omega, V_{\text{Th}} = 10 \,\text{V}, I_{\text{N}} = 3 \,\text{A}$
- **4.51** 31.73 Ω, 0 V
- **4.53** $-1 \Omega V, 0 V$
- **4.55** 7.2 Ω, 1.25 W
- **4.57** −1.187 kW
- **4.59** (a) 12 Ω , 40 V, (b) 2 A, (c) 12 Ω , (d) 33.33 W
- **4.61** 1 k Ω
- **4.63** (a) 3.8Ω , 4 V, (b) 3.2Ω , 15 V
- **4.65** 10 Ω, 167 V
- **4.67** 3.333 Ω, 10 V
- **4.69** 8 Ω, 12 V
- **4.71** (a) 10 mA, $8 \text{ k}\Omega$, (b) 9.926 A
- **4.73** (a) 100Ω , 20Ω , (b) 100Ω , 200Ω

$$\frac{V_s}{R_s + (1+\beta)R_o}$$

- **4.77** 5.333 V, 66.67 kΩ
- **4.79** 2.4 kΩ, 4.8 V

- **5.1** (a) 1.5 M Ω , (b) 60 Ω , (c) 98.06 dB
- **5.3** 10 V
- **5.5** 0.9999990
- 5.7 -100 nV, -10 mV
- **5.9** (a) 2 V, (b) 2 V
- 5.11 -2 V, -1 mA
- **5.13** 2.7 V, 288 μA
- **5.15** (a) Proof, (b) -35

- **5.17** -11.764
- **5.19** -1.6364
- **5.21** If $R_1 = 10 \text{ k}\Omega$, then $R_f = 150 \text{ k}\Omega$
- **5.23** (a) 10.2, (b) 1.471 cos $120\pi t$
- **5.25** 100 μ A, 2 μ W
- **5.27** 600 nA, 12 mV, 2.4 nW
- **5.29** If $R_1 = 10 \text{ k}\Omega$, then $R_f = 90 \text{ k}\Omega$
- **5.31** −120 mV
- **5.33** 3 kΩ
- **5.35** See Fig. E.4, where $R \leq 100 \text{ k}\Omega$.

Figure E.4 For Prob. 5.35.

- 5.37 -2 V, -2.4 mA
- **5.39** $R_1 = R_3 = 10 \text{ k}\Omega, R_2 = R_4 = 20 \text{ k}\Omega$
- **5.41** See Fig. E.5.

Figure E.5 For Prob. 5.41.

- **5.43** (a) 300, (b) 3.333
- **5.45** (a) $36 \mu A$, (b) $30 \cos 377t \mu A$
- **5.47** −1.333
- $\mathbf{5.49} \qquad \frac{R_2 R_4}{R_1 R_5} v_1 \frac{R_4}{R_5} v_2$
- $5.51 \qquad \frac{R_2R_4/R_1R_3 R_4/R_6}{1 R_2R_4/R_3R_5}$
- 5.53 2.4 V
- **5.55** −17.14 mV
- **5.57** −1 V

- **5.59** 100 μA
- **5.61** $-374.8 \mu A$
- 5.63 0.6677 V
- 5.65 12 V
- 5.67 0.25 V
- **5.69** (a) Proof, (b) 0.825 V, (c) 0.375 V
- **5.71** (a) -3.2 V, (b) 1.8 V
- **5.73** 14.67
- **5.75** 5
- **5.77** 5.5

- **6.1** $10(1-3t)e^{-3t}$ A, $20t(1-3t)e^{-6t}$ W
- **6.3** 0.48 A
- **6.5** $v = \begin{cases} 100t^2 \text{ kV}, & 0 < t < 1\\ 100(4t t^2 2) \text{ kV}, & 1 < t < 2 \end{cases}$
- **6.7** $0.04t^2 + 10 \text{ V}$
- **6.9** See Fig. E.6.

Figure E.6 For Prob. 6.9.

- **6.11** $-0.72\pi \sin 4\pi t \text{ A}, -5.4 \text{ J}$
- **6.13** (a) 120 mF, (b) 7.5 mF
- **6.15** (a) 3 F, (b) 8 F, (c) 1 F
- **6.17** 4 mF
- **6.19** 50 μF
- **6.21** (a) $V_{30} = 90$ V, $V_{60} = 30$ V, $V_{14} = 60$ V, $V_{20} = 48$ V, $V_{80} = 12$ V, (b) $W_{30} = 121.5$ mJ, $W_{60} = 27$ mJ, $W_{14} = 25.2$ mJ, $W_{20} = 23.04$ mJ, $W_{80} = 5.76$ mJ
- **6.23** (a) 35 μ F, (b) 0.75 mF, 1.5 mC, 3 mC, (c) 393.4 J
- **6.25** 22.39 μF
- **6.27** $v_o(t) = \begin{cases} 10t^2 \text{ kV}, & 0 < t < 1\\ 40t 10t^2 20 \text{ kV}, & 1 < t < 2 \end{cases}$

6.29 (a) 8 V, (b)
$$-480e^{-3t} \mu A$$
, $-6 + 8e^{-3t} \mu A$, (c) $-480e^{-3t} \mu A$, $-180e^{-3t} \mu A$, $-300e^{-3t} \mu A$

- **6.31** 0.2 H
- **6.33** 4.8 cos 100t, 96 mJ
- **6.35** 5.977 A, 35.72 J
- **6.37** 144 μJ

6.39
$$i(t) = \begin{cases} 0.25t^2 \text{ kA}, & 0 < t < 1\\ 1 - t + 0.25t^2 \text{ kA}, & 1 < t < 2 \end{cases}$$

- **6.41** 5 Ω
- **6.43** (a) 7 H, (b) 3 H, (c) 2 H
- **6.45** 7.778 H
- **6.47** 7 H
- **6.49** $\frac{5}{8}$ L
- **6.51** See Fig. E.7.

Figure E.7 For Prob. 6.51.

- **6.53** (a) 2 mA, (b) $2.4e^{-2t}$ mA, $3.6e^{-2t}$ mA, (c) $-0.12e^{-2t}$ mV, $-0.144e^{-2t}$ mV, (d) $W_{10}=24.36$ nJ, $W_{30}=11.693$ nJ, $W_{20}=17.54$ nJ
- **6.55** $50(1 \cos 4t) \text{ mA}, 4.8 \sin 4t \text{ mV}$
- **6.57** 6
- **6.59** One possibility is letting R = 100 kΩ, then C = 0.2 μF
- **6.61** 5.625 mV
- **6.63** See Fig. E.8.

Figure E.8 For Prob. 6.63.

6.65 See Fig. E.9.

Figure E.9 For Prob. 6.65.

6.67 See Fig. E.10.

Figure E.10 For Prob. 6.67.

6.69
$$\frac{d^2v_o}{dt^2} + 5\frac{dv_o}{dt} + 2v_o = f(t)$$

- **6.71** 150 nF
- **6.73** (a) 1250 μ F, (b) 400 J

- **7.1** Proof
- **7.3** 6 ms
- **7.5** 1.195 V
- 7.7 (a) 50Ω , 5 mF, (b) 0.25 s, (c) 250 mJ, (d) 86.6 ms
- **7.9** $3e^{-10t}$ A
- **7.11** $4e^{-2t}$ A

7.13
$$2 \mu s$$

7.15
$$-2e^{-16t}$$
 V

7.17
$$2e^{-5t}$$
 A

7.21
$$2e^{-4t}$$
 V, $t > 0$, $0.5e^{-4t}$ V, $t > 0$

7.23 (a)
$$u(t+1) - 2u(t) + u(t-1)$$
,

(b)
$$2u(t-2) - r(t-2) + r(t-4)$$
,

(c)
$$2u(t-2) + 2u(t-4) - 4u(t-6)$$
,

(d)
$$-r(t-1) - u(t-1) + r(t-2) + 2u(t-2)$$

Figure E.11 For Prob. 7.25.

7.27 (a)
$$112 \times 10^{-9}$$
, (b) 7

7.29 (a)
$$-2e^{-5t/3}$$
 V, (b) $5e^{2t/3}$ V

7.31 (a) 4 V,
$$t < 0$$
, $20 - 12e^{-t/8}$, $t > 0$, (b) 4 V, $t < 0$, $12 - 8e^{-t/6}$ V

7.33
$$10(1-e^{-0.2t})$$
 V

7.35 0.8 A,
$$0.8e^{-t/160}$$
 A

7.37 1.25(1 -
$$e^{-t/5}$$
) V, 0.125 $e^{-t/5}$ A

7.39
$$10e^{-t/3}$$
 V, $-\frac{1}{3}e^{-t/3}$ A

7.41
$$7.5(3 - e^{-4t}) \text{ mA, } t > 0$$

7.45 (a) 1 A,
$$\frac{1}{7}(6 - e^{-2t})$$
 A, (b) 2 A, $3 - e^{-9t/4}$ A

7.47
$$-4e^{-20t}$$
 V

7.49
$$15 + 5e^{-16t}$$
 V

7.51
$$16e^{-0.5t}$$
 V

7.53
$$i(t) = \begin{cases} \frac{1}{6} (1 - e^{-t}) \text{ A}, & 0 < t < 1\\ 0.5 - 0.3746e^{-(t-1)} \text{ A}, & t > 1 \end{cases}$$

7.55
$$1.667(1 - e^{-t})$$
 V

7.57
$$0.4e^{-50t}$$
 mA, $t > 0$

7.59
$$8(1 - e^{-4t}) \text{ V}, t > 0$$

7.61
$$20(1+10t)$$
 mV

- 7.63 $0.5e^{-10t}$ mA, t > 0
- **7.65** $0.1(2e^{-10t} 1) \text{ V}$
- **7.67** See Fig. E.12.

Figure E.12 For Prob. 7.67.

7.69 See Fig. E.13.

Figure E.13 For Prob. 7.69.

- **7.71** 30 Ω
- **7.73** $0.2197 < t_0 < 2.197$
- **7.75** (a) 0.6 ms, (b) 6 μ s
- **7.77** $\frac{2}{3}$ M Ω , 25 pF
- **7.79** See Fig. E.14.

Figure E.14 For Prob. 7.79 (not to scale).

8.1 (a) 2 A, 12 V, (b)
$$-4$$
 A/s, -5 V/s, (c) 0 A, 0 V

8.7
$$s^2 + 4s + 4 = 0$$
, $(1+t)e^{-2t}$

8.9
$$(10 + 50t)e^{-5t}$$
 A

8.11
$$10(1+t)e^{-t}$$
 V

8.15 750
$$\Omega$$
, 200 μ F, 25 H

8.19
$$18e^{-t} - 2e^{-9t} \text{ V}$$

8.23
$$(24\cos 1.984t + 3.024\sin 1.984t)e^{-t/4}$$
 V

8.25
$$3 - 3(\cos 2t + \sin 2t)e^{-2t}$$
V

8.27 (a)
$$3 - 3\cos 2t + \sin 2t$$
 V, (b) $2 - 4e^{-t} + 4e^{-4t}$ A, (c) $3 + (2 + 3t)e^{-t}$ V, (d) $2 + 2\cos 2te^{-t}$ A

8.29
$$50 - e^{-3t} (62\cos 4t + 46.5\sin 4t) \text{ V}$$

8.31
$$-10 \sin 8t$$
 A

8.33
$$35 - (15\cos 0.6t + 20\sin 0.67t)e^{-0.8t}$$
 V, $5\sin 0.6te^{-0.8t}$ A

8.35
$$2.46e^{-0.903t} - 0.667e^{-4.3t}$$
 A

8.37
$$(3-9t)e^{-5t}$$
 A

8.39
$$-12 + (4\cos 4t + 3\sin 4t)e^{-3t} \text{ V}$$

8.41
$$6 - 6e^{-50t}(\cos 5000t + 0.01\sin 5000t)$$
 mA

8.43
$$-2(1+t)e^{-2t}$$
 A, $(2+4t)e^{-2t}$ V

8.45
$$9 + 2e^{-10t} - 8e^{-2.5t}$$
 A

8.47
$$R_1C_1R_2C_2\frac{d^2v_o}{dt^2} + (R_1C_1 + R_2C_2 + R_1C_2)\frac{dv_o}{dt} = R_1C_1\frac{dv_s}{dt}$$

8.49
$$7.45 - 3.45e^{-7.25t}$$
 V, $t > 0$

8.51 (a)
$$s^2 + 20s + 36 = 0$$
, (b) $-\frac{3}{4}e^{-2t} - \frac{5}{4}e^{-18t}$ A, $6e^{-2t} + 10e^{-18t}$ V

8.53
$$2.4 - 2.667e^{-2t} + 0.2667e^{-5t} \text{ A}, 9.6 - 16e^{-2t} + 6.4e^{-5t} \text{ V}$$

8.55
$$\frac{d^2v_o}{dt^2} + \left(\frac{1}{R_2} + \frac{1}{R_1C_1}\right)\frac{dv_o}{dt} + \frac{v_o}{R_1R_2C_1C_2} = -\frac{1}{R_1C_2}\frac{dv_s}{dt}$$

8.57
$$\frac{d^2v_o}{dt^2} + \frac{v_o}{R^2C^2} = 0, 2\sin 10t$$

8.59
$$-te^{-t}u(t)$$
 V

8.61 See Fig. E.15.

Figure E.15 For Prob. 8.61.

8.63 See Fig. E.16.

Figure E.16 For Prob. 8.63.

8.65 See Fig. E.17.

Figure E.17 For Prob. 8.65.

8.67 See Fig. E.18.

Figure E.18 For Prob. 8.67.

- **8.69** 14.26- Ω resistor in parallel with a 176- μ F capacitor
- **8.71** 2.5 μ M, 625 μ F

8.73
$$\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{R}{LC}i_D + \frac{1}{C}\frac{di_D}{dt} = \frac{v_s}{LC}$$

- **9.1** (a) 10^3 rad/s, (b) 159.2 Hz, (c) 6.283 ms, (d) $12\cos(10^3t 66^\circ)$ V, (e) 2.65 V
- **9.3** (a) $4\cos(\omega t 120^\circ)$, (b) $2\cos(6t + 90^\circ)$, (c) $10\cos(\omega t + 110^\circ)$
- **9.5** 20° , v_1 lags v_2
- **9.7** Proof
- **9.9** (a) 1.809 + j0.4944, (b) 4.201 j1.392, (c) -0.5042 j2.243
- **9.11** (a) $118.3 / -39.45^{\circ}$, (b) $10.45 / -10.4^{\circ}$, (c) $1.849 / -39.45^{\circ}$
- **9.13** (a) $10/-105^{\circ}$, (b) $5/-100^{\circ}$, (c) $5/-36.87^{\circ}$
- **9.15** (a) $60\cos(t+15^\circ)$, (b) $10\cos(40t+53.13^\circ)$, (c) $2.8\cos(377t-\pi/3)$, (d) $1.3\cos(10^3t+247.4^\circ)$
- **9.17** (a) $40\cos(\omega t 60^\circ)$, (b) $38.36\sin(\omega t + 96.8^\circ)$, (c) $6\cos(\omega t + 80^\circ)$, (d) $11.5\cos(\omega t 52.06^\circ)$
- **9.19** (a) $0.8\cos(2t 98.13^\circ)$, (b) $0.745\cos(2t 4.56^\circ)$
- **9.21** $0.289\cos(377t 92.45^{\circ}) \text{ V}$
- 9.23 $2\sin(10^6t 65^\circ)$
- 9.25 6.5- Ω resistor
- 9.27 69.82 V
- **9.29** $-5 \sin 2t \text{ V}$
- **9.31** (a) $4.472\cos(3t 18.43^\circ)$ A, $17.89\cos(3t 18.43^\circ)$ V, (b) $10\cos(4t + 36.87^\circ)$ A, $41.6\cos(4t + 33.69^\circ)$ V
- **9.33** (a) $1.872 \cos(t 22.05^{\circ})$ A, (b) $0.89 \cos(5t 69.14^{\circ})$ A, (c) $0.4417 \cos(10t 83.66^{\circ})$ A
- **9.35** 17.14 cos 200*t* V
- **9.37** $0.96\cos(200t 7.956^{\circ})$ A
- **9.39** $2.325\cos(10t + 94.46^{\circ})$ A
- **9.41** $25\cos(2t 53.13^{\circ})$ A
- **9.43** 8.485 / 135° A
- **9.45** (a) $0.75 + j0.25 \Omega$, (b) $20 + j30 \Omega$
- **9.47** $1 + j0.5 \Omega$
- **9.49** $17.35/0.9^{\circ} \text{ A}, 6.83 + j1.094 \Omega$
- **9.51** (a) $0.0148 / -20.22^{\circ}$ S, (b) $0.0197 / 74.57^{\circ}$ S
- **9.53** 1.661 + j0.6647 S
- **9.55** $1.058 j2.235 \Omega$
- **9.57** $0.3796 + i1.46 \Omega$

9.59 Can be achieved by the RL circuit shown in Fig. E.19.

Figure E.19 For Prob. 9.59.

- **9.61** (a) 140.2°, (b) leading, (c) 18.43 V
- **9.63** 1.8 k Ω , 0.1 μ F
- **9.65** 104.2 mH
- **9.67** Proof
- **9.69** $38.21/-8.975^{\circ} \Omega$
- **9.71** 2 mH
- **9.73** 235 pF

- **10.1** $15.73\cos(t + 247.9^{\circ}) \text{ V}$
- **10.3** $3.835\cos(4t 35.02^{\circ}) \text{ V}$
- **10.5** 6.154 $\cos(10^3 t + 70.26^\circ)$ V
- **10.7** $35.74 \sin(1000t 116.6^{\circ}) A$
- **10.9** 7.906 /43.49° A
- **10.11** $10.58 / -112.4^{\circ} \text{ A}$
- **10.13** 16.64/56.31° V
- **10.15** (a) 1, 0, $-\frac{j}{R}\sqrt{\frac{L}{C}}$, (b) 0, 1, $\frac{j}{R}\sqrt{\frac{L}{C}}$

10.17
$$\frac{\mathbf{V}_{s}(R+j\omega L+1/j\omega C_{2})}{(1/j\omega C_{1}+1/j\omega C_{2})(R+j\omega L+1/j\omega C_{1})+1/\omega^{2}C_{1}C_{2}},$$

$$\frac{\mathbf{V}_{s}/j\omega C_{2}}{(1/j\omega C_{1}+1/j\omega C_{2})(R+j\omega L+1/j\omega C_{1})+1/\omega^{2}C_{1}C_{2}},$$

- **10.19** 6.154 $\cos(10^3 t + 70.25^\circ)$ V
- **10.21** $4.67 / -20.17^{\circ}$ A, $1.79 / 37.35^{\circ}$ A
- **10.23** 2.179/61.44° A
- **10.25** 7.906/43.49° A
- **10.27** 1.971 / 2.1° A
- **10.29** 3.35/174.3° A
- **10.31** 9.902 $\cos(2t 129.17^{\circ})$ A
- **10.33** $10 + 21.45\sin(2t + 26.56^{\circ}) + 10.73\cos(3t 26.56^{\circ}) \text{ V}$

10.35
$$0.1 + 0.217\cos(2000t + 134.1^{\circ}) - 1.365\sin(4000t + 14.21^{\circ})$$
 A

10.37 3.615
$$\cos(10^5 t - 40.6^\circ)$$
 V

10.41 (a)
$$Z_N = Z_{\text{Th}} = 22.63 / -63.43^{\circ} \Omega$$
, $\mathbf{V}_{\text{Th}} = -50 / 30^{\circ} V$, $\mathbf{I}_N = 2.236 / 273.4^{\circ} A$, (b) $Z_N = Z_{\text{Th}} = 10 / 26^{\circ} \Omega$, $\mathbf{V}_{\text{Th}} = 33.92 / 58^{\circ} V$, $\mathbf{I}_N = 3.392 / 32^{\circ} A$

10.43
$$Z_N = Z_{\text{Th}} = 21.633 / -33.7^{\circ} \Omega$$
, $\mathbf{V}_{\text{Th}} = 107.3 / 146.56^{\circ} V$, $\mathbf{I}_N = 4.961 / -179.7^{\circ} A$

10.45 15.73
$$\cos(t + 247.9^{\circ})$$
 V

10.47
$$3.855\cos(4t - 35.02^{\circ})$$
 V

10.49 1 k
$$\Omega$$
, 5.657 cos(200 t + 75°) A

10.51
$$0.542\cos(2t - 77.47^{\circ})$$
 A

10.53
$$-j\omega RC$$
, $-V_m \cos \omega t$

10.55
$$35.76\cos(10^4t - 26.56^\circ) \mu A$$

10.57
$$\frac{C_1}{C_2} \left(\frac{1 + j\omega R_2 C_2}{1 + j\omega R_1 C_1} \right), \frac{C_1}{C_2}, \frac{R_2}{R_1}, \frac{C_1}{C_2} \left(\frac{1 + jR_2 C_2 / R_1 C_1}{1 + j} \right), \frac{C_1}{C_2} \left(\frac{1 + j}{1 + jR_1 C_1 / R_2 C_2} \right)$$

$$C_2 \left(1 + jR_1C_1/R_2C_2 \right)$$

 $R_2 + R_3 + j\omega C_2R_2R_3$

10.59
$$\frac{R_2 + R_3 + j\omega C_2 R_2 R_3}{(1 + j\omega R_1 C_1)(R_3 + j\omega C_2 R_2 R_3)}$$

10.61
$$35.78\cos(1000t + 26.56^{\circ}) \text{ V}$$

10.71 (a)
$$180 \text{ kHz}$$
, (b) $40 \text{ k}\Omega$

11.1
$$800 + 1600 \cos(100t + 60^{\circ}), 800 \text{ W}$$

11.11 (a)
$$0.471 + j1.882 \Omega$$
, $15.99 W$, (b) $2.5 - j1.167 \Omega$, $1.389 W$

11.13
$$0.5 - j0.5 \Omega, 90 W$$

11.15
$$21.23 - j10.15 \Omega$$

- 11.19 9.574 V
- 11.21 7.906 V
- 11.23 2.92 V, 4.267 W
- 11.25 1.08 V
- 11.27 6.667 A
- 11.29 275.6 VA, 0.1876 (lagging)
- **11.31** (a) 0.5547 (leading), (b) 0.9304 (lagging)
- **11.33** (a) 95.26 j55 VA, 110 VA, 95.26 W, 55 VAR, leading pf
 - (b) 1497.2 + j401.2 VA, 1550 VA, 1497.2 W, 401.2 VAR, lagging pf
 - (c) 278.2 + j74.54 VA, 288 VA, 278.2 W, 74.54 VAR, lagging pf
 - (d) -961.7 j961.7 VA, 1360 V, -961.7 W, -961.7 VAR, leading pf
- **11.35** (a) 269 j150 VA, (b) 4129 j2000 VA, (c) 396.9 + j450 VA, (d) 1000 + j681.2 VA
- **11.37** (a) $30.98 j23.23 \Omega$, (b) $10.42 + j13.89 \Omega$, (c) $0.8 + j1.386 \Omega$
- **11.39** *j* 3.84 VA (capacitor), 5.12 VA (resistor), *j* 6.4 VA (inductor)
- **11.41** 4.543 + j1.396 VA
- 11.43 51.2 mVA
- **11.45** 7.098/32.29°, 0.8454 (lagging)
- **11.47** 120.1 \(\sqrt{0.03145}\) \(\text{V} \)
- **11.49** 80 μW
- 11.51 No power across the capacitors, $S_{10} = 4 \times 10^{-4}$, $S_{20} = 8 \times 10^{-4}$, $S_{40} = 4 \times 10^{-4}$ VA
- **11.53** (a) 0.6402, (b) 295.1 W, (c) 130.4 μ F
- **11.55** (a) 2.734 mF, (b) 6.3 mF
- **11.57** (a) 0.8992, (b) 5.74 mF
- 11.59 9.476 W
- 11.61 4.691 W
- **11.63** \$76.26
- **11.65** $75 i103.55 \Omega$
- **11.67** (a) 126.2 W, (b) 220 VA
- 11.69 968.2 kVAR
- **11.71** (a) 32.91 kVAR, 86.51 kVA, (b) 0.9248, (c) 157.3 A
- **11.73** (a) \$ 14,521.80, (b) \$ 31,579.2, (c) Yes
- **11.75** (a) $40 j8 \Omega$, (b) 66.61 W

- **12.1** (a) $231 / -30^{\circ}$, $231 / -150^{\circ}$, $231 / -270^{\circ}$ V, (b) $231 / 30^{\circ}$, $231 / 150^{\circ}$, $231 / -90^{\circ}$ V
- **12.3** *acb* sequence, $208/250^{\circ}$ V
- 12.5 $242.5/-30^{\circ}, 242.5/-150^{\circ}, 242.5/90^{\circ} \text{ V}$

12.9
$$4.8 / -36.87^{\circ}, 4.8 / -156.9^{\circ}, 4.8 / 83.13^{\circ} \text{ A}$$

12.11
$$127/100^{\circ}$$
 V, $220/130^{\circ}$ V, $17.32/150^{\circ}$ A, $12.7/-80^{\circ}$ Ω

12.23
$$5.081 / -46.87^{\circ}, 5.081 / -166.87^{\circ}, 5.081 / 73.13^{\circ}$$
 A

12.25
$$4.15 - j5.53 \Omega, 5000 - j6667 VA$$

12.29 55.51 A,
$$1.298 - i1.731 \Omega$$

12.47 220.6
$$/$$
 - 34.56°, 214.1 $/$ - 81.49°, 49.91 $/$ - 50.59° V, assuming that *N* is grounded.

12.49
$$11.15/37^{\circ}$$
 A, $230.8/-133.4^{\circ}$ V, assuming N is grounded.

12.51
$$\mathbf{I}_{aA} = 4.71 / 71.38^{\circ}, \mathbf{I}_{bB} = 6.781 / -142.6^{\circ},$$

$$\mathbf{I}_{cC} = 3.898 / -5.076^{\circ}, \mathbf{V}, \mathbf{I}_{AB} = 3.547 / 61.57^{\circ},$$

$$\mathbf{I}_{BC} = 3.831 / -164.9^{\circ}, \mathbf{I}_{AC} = 1.357 / 97.8^{\circ}, \mathbf{V}$$

12.65
$$17.15 / -19.65^{\circ}$$
, $15.14 / -139.6^{\circ}$, $15.14 / 100.3^{\circ}$ A, $196.8 / 2.97^{\circ}$, $196.8 / -117^{\circ}$, $196.82 / 123^{\circ}$ V

12.69
$$\mathbf{Z}_{Y} = 2.133 \ \Omega$$

12.71
$$1.448 / -176.6^{\circ} \text{ A}, 1252 + j711.6 \text{ VA}, 1085 + j721.2 \text{ VA}$$

13.5
$$(R_1 + j\omega L_1)\mathbf{I}_1 - j\omega M\mathbf{I}_2, -j\omega M\mathbf{I}_1 + (R_2 + j\omega L_2)\mathbf{I}_2$$

13.9
$$\frac{jI_m(\omega L - 1/\omega c)}{R + j\omega L + 1/j\omega C}$$

13.11
$$V_{Th} = 5.349/34.11^{\circ} \text{ V}, \mathbf{Z}_{Th} = 2.332/50^{\circ} \Omega$$

13.15
$$3.199 / -175.2^{\circ} A$$

13.17 (a) 0.3535, (b) 0.3217
$$\cos(4t + 57.6^{\circ})$$
 V, (c) 1.168 J

13.19
$$3.755 / -36.34^{\circ} \text{ A}, 3.755 / 143.7^{\circ} \text{ A}$$

13.23 (a)
$$L_a = 10$$
 H, $L_b = 15$ H, $L_c = 5$ H, (b) $L_A = 18.33$ H, $L_B = 27.5$ H, $L_C = 55$ H

13.25
$$12.77 + j7.15 \Omega$$

13.27
$$1.324 / -53.05^{\circ} \text{ k}\Omega$$

13.31
$$\frac{V_m}{nR}\cos\omega t \text{ A}, -\frac{V_m}{n^2R}\cos\omega t$$

13.33
$$2.963/32.9^{\circ}$$
 V, $2.963/-147.1^{\circ}$ V

13.35
$$8 - j1.5 \Omega, 2.95 / 10.62^{\circ} A$$

13.43
$$P_{8\Omega} = 2.778 \text{ W}, P_{2\Omega} = 11.11 \text{ W}, P_{4\Omega} = 5.556 \text{ W}$$

13.49
$$1.245 / -33.76^{\circ}, 0.8893 / -33.76^{\circ}, 0.3557 / 146.2^{\circ} A, 7.51 W$$

13.53 (a)
$$\frac{1}{3}$$
, (b) 1604, 2778 A, (c) 2778, 4812 A

13.59
$$4.253 / - 8.526^{\circ} \text{ A}, 1.564 / 27.49^{\circ} \text{ A}, 4.892 \text{ W}$$

- **13.67** 7.5 kΩ
- 13.69 315 W
- **13.71** (a) 0.1, (b) 25 turns, (c) 1.667 A, 16.67 A
- **13.73** (a) 112 V, (b) 0.2613 A, 11.2 A, (c) 1254 W
- **13.75** (a) 733.4 V, (b) 440 V

14.1
$$\frac{j\omega/\omega_o}{1+j\omega/\omega_o}$$
, $\omega_o = \frac{1}{RC}$

14.3 (a)
$$\frac{1}{s^2R^2C^2 + 3sRC + 1}$$
, (b) -4.787 , -32.712

14.5 (a)
$$\frac{1}{1+j\omega RC-\omega^2 LC}$$
, (b) $\frac{j\omega L-\omega^2 RLC}{R+j\omega L-\omega^2 RLC}$

- **14.7** (a) 1.005773, (b) 0.4898, (c) 1.718×10^5
- **14.9** See Fig. E.20.

Figure E.20 For Prob. 14.9.

14.11 See Fig. E.21.

Figure E.21 For Prob. 14.11.

14.13 See Fig. E.22.

Figure E.22 For Prob. 14.13: (a) magnitude plot, (b) phase plot.

14.15 See Fig. E.23.

Figure E.23 For Prob. 14.15: (a) magnitude plot, (b) phase plot.

14.17 See Fig. E.24.

Figure E.24 For Prob. 14.17.

14.19
$$\frac{10^4(2+j\omega)}{(20+j\omega)(100+j\omega)}$$
14.21
$$\frac{Kj\omega}{(1+j\omega)(100+j\omega)}, K = \text{constant}$$
14.23
$$R = 10 \ \Omega, L = 16 \ \text{H}, C = 25 \ \mu\text{F}, 0.625 \ \text{rad/s}$$
14.25
$$0.7861 \ \text{rad/s}$$
14.27
$$50 \ \text{rad/s}, 5.975 \times 10^6 \ \text{rad/s}, 6.025 \times 10^6 \ \text{rad/s}$$

- **14.29** 2 kΩ, 0.6154 + j0.923 kΩ, 1.471 + j0.8824 kΩ, 1.471 j0.8824 kΩ, 0.6154 j0.923 kΩ
- **14.31** (a) 5 rad/s, 0.625, 8 rad/s, (b) 5 krad/s, 20, 250 rad/s
- **14.33** (a) 3.333 krad/s, (b) $0.9997 / 1.205^{\circ} \Omega$
- **14.35** (a) $\frac{j\omega}{2(1+j\omega)^2}$, (b) 0.25
- 14.37 $\frac{R}{R + j\omega L \omega^2 RLC}$, Proof
- 14.39 Highpass filter, 318.3 Hz
- **14.41** 31.42 kΩ
- **14.43** 1.56 kHz < f < 1.59 kHz, 25
- **14.45** (a) 1 rad/s, 3 rad/s, (b) 1 rad/s, 3 rad/s
- **14.47** 9.6 krad/s, 5 krad/s
- **14.49** (a) 23.53 mV, (b) 107.3 mV, (c) 119.4 mV
- **14.51** $\left(1 + \frac{R_f}{R_i}\right), \frac{1}{RC}$
- **14.53** If $R_f = 20 \text{ k}\Omega$, then $R_i = 80 \text{ k}\Omega$ and C = 31.83 nF.
- **14.55** Let $R = 10 \text{ k}\Omega$, then $R_f = 25 \text{ k}\Omega$, C = 7.96 nF.
- **14.57** $K_f = 2 \times 10^{-4}, K_m = 5 \times 10^{-3}$
- **14.59** 9.6 M Ω , 32 μ H, 0.375 pF
- 14.61 See Fig. E.25.

Figure **E.25** For Prob. 14.61.

14.63 (a) See Fig. E.26, (b) $894.4/26.7^{\circ} \Omega$

Figure **E.26** For Prob. 14.63.

14.65 See Fig. E.27.

Frequency

Figure E.27 For Prob. 14.65.

14.67 See Fig. E.28; high pass filter, $f_0 = 1.2$ Hz.

Figure E.28 For Prob. 14.67.

14.69 See Fig. E.29.

Figure E.29 For Prob. 14.69.

14.71 See Fig. E.30; $f_o = 800 \text{ Hz}$.

Figure E.30 For Prob. 14.71.

14.73 938 kHz, remains the same

14.75
$$\frac{R_L(R_L + sL + s^2R_LLC_2)}{(R_L + sL + s^2R_LC_2L)(sL + R_L + s^2R_LLC_2 + R_i + sR_iR_LC_2 + s^3R_iR_LC_2 + sR_iR_LC_1 + s^3R_iR_LLC_1C_2)}$$

14.77 440 Hz

14.79 15.91 Ω

14.81 (a) 2 kHz, (b) 1.59 kHz

14.83 See Fig. E.31.

Figure E.31 For Prob. 14.83.

15.13 $\frac{1}{s}(5-3e^{-s}+3e^{-3s}-5e^{-4s})$

15.1 (a)
$$\frac{s}{s^2 - a^2}$$
, (b) $\frac{a}{s^2 - a^2}$
15.3 (a) $\frac{s+2}{(s+2)^2 + 9}$, (b) $\frac{4}{(s+2)^2 + 16}$, (c) $\frac{s+3}{(s+3)^2 - 4}$ (d) $\frac{1}{(s+4)^2 - 1}$, (e) $\frac{4(s+1)}{[(s+1)^2 - 4]^4}$
15.5 (a) $2e^{-s}$, (b) $\frac{10}{s}e^{-2s}$, (c) $\frac{1}{s^2} + \frac{1}{s}$, (d) $\frac{2e^{-4s}}{e^4(s+1)}$
15.7 (a) $\frac{3}{2} + \frac{6}{s} + \frac{4}{s+2} - \frac{10}{s+3}$, (b) $\frac{e^{-(s+1)}}{(s+1)^2} + \frac{e^{-(s+1)}}{s+1}$, (c) $\frac{se^{-s}}{s^2 + 4}$, (d) $\frac{4}{s^2 + 16}(1 - e^{-\pi s})$
15.9 (a) $-\frac{(s+2)}{s^2 + 2s + 2}$, (b) $\frac{-(s+2)}{s^2 + 2s + 2}$
15.11 $\frac{5}{s^2}(1 - 2e^{-s} + e^{-2s})$

15.15 (a)
$$\frac{1}{s}(1 + e^{-s} + e^{-2s} - 3e^{-3s})$$
, (b) $\frac{2}{s^2}(1 - e^{-s} - e^{-3s} + e^{-4s})$

15.17
$$\frac{\pi(1+e^{-s})}{(s^2+\pi^2)(1-e^{-2s})}$$

15.19 (a)
$$\frac{2(1-e^{-s}+se^{-s})}{s^2(1-e^{-s})}$$
, (b) $\frac{1}{s}+\frac{2}{s^2}\frac{(1-e^{-s})^2}{(1-e^{-2s})}$

15.21 (a)
$$\infty$$
, 0, (b) $f(0) = 1$, $f(\infty)$ does not exist, (c) 0, 0

15.23 (a) 1, 0, (b)
$$f(0) = 1$$
, $f(\infty)$ does not exist

15.25 (a)
$$-5e^{-t} + 20e^{-2t} - 15e^{-3t}$$
 (b) $-e^{-t} + \left(1 + 3t - \frac{t^2}{2}\right)e^{-2t}$, (c) $e^{-t}(-0.2 + 0.2\cos 2t + 0.4\sin 2t)$

15.27 (a)
$$3 \sin t - \cos t + 3e^{-t}$$
, (b) $\cos(t - \pi)u(t - \pi)$, (c) $8u(t)[1 - e^{-t} - te^{-t} - 0.5t^2e^{-t}]$

15.29 (a)
$$[2e^{-(t-6)} - e^{-2(t-6)}]u(t-6)$$
,

(b)
$$\frac{4}{3}u(t)[e^{-t} - e^{-4t}] - \frac{1}{3}u(t-2)[e^{-(t-2)} - e^{-4(t-2)}],$$

(c)
$$\frac{1}{13}u(t)[-3e^{-3(t-1)} + 3\cos 2(t-1) + 2\sin 2(t-1)]$$

15.31 (a)
$$3[1 - \cos 2(t-2)]u(t-2)$$
,

(b)
$$\frac{1}{4}\cos t + \frac{1}{8}\sin t - \frac{1}{4}\cos 3t - \frac{1}{24}\sin 3t$$
,

(c)
$$4e^{-2t} (-1 + t + \cos 3t - 5\sin 3t)$$

15.33 (a)
$$-3.138e^{-t}\cos 4t - 2.358e^{-t}\sin 4t + 5.138e^{-2t}\cos 4t + 1.142e^{-2t}\sin 4t$$
,

(b)
$$\left[\frac{1}{4} \cos 3t + \frac{1}{12} \sin 4t - \frac{1}{8} e^{-0.551t} + \frac{1}{8} e^{-5.449t} \right] u(t)$$

15.35
$$2e^{-t} - 2e^{-3t}\cos t - 4e^{-3t}\sin t$$
 V

15.37
$$(0.5 + 2.887e^{-t} \sin 1.732t)u(t) \text{ A}, -1.732e^{-t} \sin 1.732tu(t) \text{ A}$$

15.39
$$[2e^{-2t} - e^{-t}]u(t)$$
 A

15.41
$$0.7143e^{-2t} - 1.714e^{-0.5t} \cos 1.118t + 2.3e^{-0.5t} \sin 1.118t$$
 A

15.43
$$-(2+4.333e^{-t/2}+1.333e^{-2t})u(t)$$
 V

15.45
$$(5e^{-4t}\cos 2t + 230e^{-4t}\sin 2t)u(t) \text{ V},$$

 $6u(t) - 6e^{-4t}\cos 2t - 11.37e^{-4t}\sin 2t \text{ A}, t > 0$

15.47
$$(e^{-5t} - e^{-2t})u(t)$$

15.49 2.91
$$(e^{-4.581t} - e^{-0.438t})u(t)$$

15.51
$$12u(t)$$

15.53 (a)
$$[0.6 - 0.6e^{-2t}\cos t - 0.2e^{-2t}\sin t]u(t)$$
,
(b) $[6e^{-2t} + 6te^{-2t} - 6e^{-2t}\cos t - 6e^{-2t}\sin t]u(t)$

$$15.55 \quad \frac{20}{2s^2 + 9s + 30}$$

15.59 (a)
$$\frac{1}{s^3 + 2s^2 + 3s + 2}$$
, (b) $\frac{1}{s^3 + s^2 + 2s + 2}$, (c) $\frac{1}{s^3 + s^2 + 3s + 2}$, (d) $\frac{1}{s^3 + 2s^2 + 3s + 2}$

15.61 (a)
$$\frac{R}{L}e^{-Rt/L}u(t)$$
, (b) $(1 - e^{-Rt/L})u(t)$

15.63
$$0.5e^{-t/2}u(t)$$

15.65 (a)
$$y(t) = \begin{cases} \frac{1}{2}t^2, & 0 < t < 1 \\ -\frac{1}{2}t^2 + 2t - 1, & 1 < t < 2 \\ 1, & t > 2 \\ 0, & \text{otherwise} \end{cases}$$

(b)
$$y(t) = 2(1 - e^{-t}), t > 0$$
,

(c)
$$y(t) = \begin{cases} \frac{1}{2}t^2 + t + \frac{1}{2}, & -1 < t < 0\\ \frac{1}{2}t^2 - 3t + \frac{9}{2}, & 2 < t < 3\\ 0, & \text{otherwise} \end{cases}$$

15.69
$$\frac{1}{2}t\cos t + \frac{1}{2}\sin t$$

15.71
$$\frac{9}{26}\cos 2t + \frac{6}{26}\sin 2t + \frac{17}{26}e^{-t}\cos 3t - \frac{47}{78}e^{-t}\sin 2t$$

15.73
$$\frac{27}{4}e^{-2t} - \frac{75}{13}e^{-3t} + \frac{1}{52}\cos 2t + \frac{5}{52}\sin 2t$$

15.75
$$\left[\frac{1}{10} e^{-2t} - \frac{1}{26} e^{-4t} - \frac{4}{65} e^{-t} \cos 2t - \frac{1}{130} e^{-t} \sin 2t \right] u(t)$$

15.77
$$-0.4 \sin 2t + \cos 3t + 0.6 \sin 3t$$

15.79
$$-6.235e^{-t} + 7.329e^{-1.5t} - 0.0935\cos 4t - 0.06445\sin 4t$$

15.81 (a)
$$(e^{-t} - e^{-4t})u(t)$$
, (b) stable

15.83
$$L = 0.333 \text{ H}, C = 0.5 \text{ F}$$

15.85
$$C_1 = C_2 = 100 \,\mu\text{F}$$

15.87
$$a = -100, b = 400, c = 20,000$$

15.89 Proof

Chapter 16

16.1 (a) periodic, 2, (b) not periodic, (c) periodic, 2, (d) periodic, π , (e) periodic, 10, (f) not periodic, (g) not periodic

16.3
$$a_0 = 3,75, a_n = \begin{cases} -\frac{5}{n\pi} (-1)^{n-1/2}, & n = \text{odd} \\ 0, & n = \text{even} \end{cases}$$
, $b_n = \frac{5}{n\pi} \left[3 - 2\cos n\pi - \cos \frac{n\pi}{2} \right]$

$$16.5 \qquad \frac{2\pi^2}{3} - \sum_{n=1}^{\infty} \frac{4}{n^2} \cos nt$$

16.7
$$2 + \sum_{n=1}^{\infty} \left[\frac{10}{n^3 + 1} \cos \frac{n\pi}{4} \cos n\pi t - \frac{10}{n^3 + 1} \sin \frac{n\pi}{4} \sin 2nt \right]$$

16.9
$$\frac{8}{\pi^2} \left[\sin \frac{\pi t}{2} - \frac{1}{9} \sin \frac{3\pi t}{2} + \frac{1}{25} \sin \frac{5\pi t}{2} + \cdots \right]$$

16.11 (a) π , odd, (b) $2\pi/3$, even, (c) $\pi/2$, even and half-wave symmetric

16.13
$$2 + \frac{24}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\cos \frac{2n\pi}{3} - \cos \frac{n\pi}{3} \right) \cos \frac{n\pi t}{3}, 3.756$$

16.15
$$a_0 = 1, b_n = 0, a_n = \frac{16}{n^2 \pi^2} \left(\cos \frac{n\pi}{2} - 1 \right) + \frac{8}{n\pi} \sin \frac{n\pi}{2}$$

16.17 (a) $a_2 = 0$, $b_2 = -0.3183$, (b) $0.06366 / -90^\circ$, (c) 1.384, which is 8% off the exact value of 1.5, (d) Proof

16.19
$$1 + \sum_{n=1}^{\infty} \frac{4}{n\pi} \left[\left(\sin \frac{3n\pi}{2} - \sin \frac{n\pi}{2} \right) \cos \frac{n\pi t}{2} + (\cos n\pi - 1) \sin \frac{n\pi t}{2} \right]$$

16.21
$$\sum_{k=1}^{\infty} \left[\frac{8}{n^2 \pi^2} \cos n \pi t + \frac{4}{n \pi} \sin n \pi t \right], n = 2k - 1$$

16.23
$$\frac{1}{3} + \sum_{n=1}^{\infty} \frac{1}{3n^2\sqrt{1+4n^2}} \cos(3n - \tan^{-1} 2n) \text{ A}$$

16.25
$$\frac{3}{8} + \sum_{n=\text{odd}}^{\infty} A_n \cos\left(\frac{2\pi n}{3} + \theta_n\right)$$
, where
$$A_n = \frac{\frac{6}{n\pi} \sin\frac{2n\pi}{3}}{\sqrt{9\pi^2 n^2 + (2\pi^2 n^2/3 - 3)^2}}, \theta_n = \frac{\pi}{2} - \tan^{-1}\left(\frac{2n\pi}{9} - \frac{1}{n\pi}\right)$$

16.27
$$\frac{100}{\pi} \sum_{k=1}^{\infty} \frac{\sin(n\pi t - 90^{\circ} + \tan^{-1} 5/n\pi)}{n\sqrt{25 + n^{2}\pi^{2}}}, n = 2k - 1 \text{ V}$$

16.29
$$\frac{3}{4} + \sum_{n=1}^{\infty} V_n \cos(n\pi t + \theta_n) \text{ V, where}$$

$$V_n = \frac{12}{\sqrt{64 + n^2 \pi^2}} \sqrt{\frac{4}{n^2 \pi^2} + \frac{16}{\pi^4 (2n - 1)^4}},$$

$$\theta_n = \tan^{-1} \frac{n\pi}{8} - \tan^{-1} \frac{\pi (2n - 1)^2}{2n}$$

16.35 (a)
$$40 + 0.01431 \cos(10t - 18.43^{\circ}) + 0.05821 \cos(20t - 136^{\circ}) \text{ V}$$
, (b) 800 mW

16.37 (a)
$$\frac{\pi^2}{3} + \sum_{n=-\infty}^{\infty} \sum_{n\neq 0}^{\infty} \frac{2(-1)^n}{n^2} e^{jnt}$$

16.39
$$\sum_{n=-\infty}^{\infty} \frac{0.6321 e^{j2n\pi t}}{1+j2n\pi}$$

16.41
$$\sum_{n=-\infty}^{\infty} \frac{1 + e^{-jn\pi}}{2\pi (1 - n^2)} e^{jnt}$$

16.43
$$-3 + \sum_{n=-\infty, n\neq 0}^{\infty} \frac{3}{n^3 - 2} e^{j50nt}$$

16.45
$$\frac{1}{2} - \sum_{n=-\infty}^{\infty} \frac{j5e^{j(2n+1)\pi t}}{(2n+1)\pi}$$

16.47 (a) $6 + 2.571 \cos t - 3.83 \sin t + 1.638 \cos 2t - 1.147 \sin 2t + 0.906 \cos 3t - 0.423 \sin 3t + 0.47 \cos 4t - 0.171 \sin 4t$, (b) 6.828

16.49 See Fig. E.32.

Figure E.32 For Prob. 16.49.

16.51 DC COMPONENT = 4.950000E-01

HARMONIC	FREQUENCY	FOURIER	NORMALIZED	PHASE	NORMALIZED
NO	(HZ)	COMPONENT	COMPONENT	(DEG)	PHASE (DEG)
1 2	1.667E-01	2.432E+00	1.000E+00	-8.996E+01	0.000E+00
	3.334E-01	6.576E-04	2.705E-04	-8.932E+01	6.467E-01
3	5.001E-01	5.403E-01	2.222E-01	9.011E+01	1.801E+02
4	6.668E+00	3.343E-04	1.375E-04	9.134E+01	1.813E+02
5	8.335E-01	9.716E-02	3.996E-02	-8.982E+01	1.433E-01
6	1.000E+00	7.481E-06	3.076E-06	-9.000E+01	-3.581E-02
7	1.167E+00	4.968E-02	2.043E-01		2.173E-01
8	1.334E+00	1.613E-04	6.634E-05	-8.722E+01	2.748E+00
9	1.500E+00	6.002E-02	2.468E-02	-9.032E+01	1.803E+02

16.53 DC COMPONENT = 7.658051E-01

16.55
$$\frac{20}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(1 - \cos \frac{2n\pi}{5} \right) \sin \frac{2n\pi t}{5}$$

- **16.57** (a) $4 + 10\cos(100\pi t 36.87^{\circ}) 5\cos(200\pi t 36.87^{\circ})$ A, (b) 157 W
- **16.59** (a) π , (b) 2 V, (c) 11.02 V

10

16.61 See below for the program in Fortran and the results.

C FOR PROBLEM 16.16 DIMENSION B(20)

$$\begin{array}{c|cccc} n & b_n \\ \hline 1 & 12.7307 \\ 2 & 4.2430 \\ 3 & 2.5461 \\ 4 & 1.8187 \\ 5 & 1.414 \\ 6 & 1.1573 \\ 7 & 0.9793 \\ 8 & 0.8487 \\ 9 & 0.7488 \\ 10 & 0.6700 \\ \hline \end{array}$$

16.63 (a)
$$\frac{A^2}{2}$$
, (b) $c_1 = \frac{8A^2}{9\pi^2}$, $c_2 = \frac{2A^2}{225\pi^2}$, $c_3 = \frac{8A^2}{1225\pi^2}$, $c_4 = \frac{8A^2}{3969\pi^2}$, (c) 81.1%, (d) 0.72%

$$17.1 \qquad \frac{2(\cos 2\omega - \cos \omega)}{j\omega}$$

17.3
$$\frac{j}{\omega^2}(\sin 2\omega - 2\omega\cos 2\omega)$$

17.5 (a)
$$\frac{1}{j\omega}(2 - e^{-j\omega} - e^{-j2\omega})$$
, (b) $\frac{2}{\omega^2}[e^{-j\omega} + j\omega e^{-j\omega^2} - 1]$

17.7
$$\frac{\pi}{\omega^2 - \pi^2} (e^{-j\omega^2} - 1)$$

17.9 (a)
$$\frac{-(1+j\omega)}{(1+i\omega)^2+9}$$
, (b) $\frac{2j\pi\sin\omega}{\pi^2-\omega^2}$, (c) $\frac{-(2+j\omega)e^{j\omega-2}}{(2+i\omega)^2+\pi^2}$,

(d)
$$\frac{j\omega - 2}{(\omega - 2)^2 + 16}$$
, (e) $\frac{6}{j\omega}e^{-j\omega^2} + 3 - 2\pi\delta(\omega)e^{-j\omega^2}$

17.11 (a)
$$-4\pi |\omega|$$
, (b) $4\pi e^{-2|\omega|}$

17.13
$$\frac{1+j\omega}{2+j2\omega-\omega^2}$$

17.15 (a) Proof, (b)
$$\frac{1}{2}\delta(\omega) - \sum_{\substack{n=-\infty\\n\neq 0\\n\neq odd}}^{\infty} \frac{j}{n\pi}\delta(\omega-n)$$

17.17 (a)
$$\frac{30}{(6-j\omega)(15-j\omega)}$$
, (b) $\frac{20e^{-j\omega/2}}{(4+j\omega)(10+j\omega)}$,

(c)
$$\frac{5}{[2+j(\omega+2)][5+j(\omega+2)]} + \frac{5}{[2+j(\omega-2)][5+j(\omega-2)]}$$
,

(d)
$$\frac{j\omega 10}{(2+j\omega)(5+j\omega)}$$
, (e) $\frac{10}{j\omega(2+j\omega)(5+j\omega)} + \pi\delta(\omega)$

17.19 (a)
$$\frac{5}{2}$$
sgn $(t) - 5e^{-2t}u(t)$, (b) $(-5e^{-t} + 6e^{-2t})u(t)$

17.21 (a) 0.05, (b)
$$\frac{(-2+j)}{2\pi}e^{-j2t}$$
, (c) $\frac{(1-j)}{\pi}e^{jt}$, (d) $u(t) - e^{-5t}$

17.23 (a)
$$e^{(t+1)}u(-t-1)$$
, (b) $\frac{2}{\pi(t^2+1)}$,
(c) $\frac{1}{4}(t+1)e^{-t}u(t) + \frac{1}{4}(t-1)e^{t}u(t)$, (d) $\frac{1}{2\pi}$

17.25
$$\frac{20}{\pi}$$
 sinc $2t + \frac{10}{\pi}$ sinc t

17.27
$$\frac{j\omega}{4+i3\omega}$$

17.29
$$\frac{1}{2}[\operatorname{sgn}(t) + \operatorname{sgn}(t-2) - 2\operatorname{sgn}(t-1)] - e^{-0.5t}u(t)$$
$$-e^{-0.5(t-2)}u(t-2) - 2e^{-0.5(t-1)}u(t-1)$$

17.31
$$4\delta(t) - 8e^{-2t}u(t)$$
 A

17.33
$$-3e^{-2t} + 1.875e^{2t}u(-t) - 1.125e^{-6t}\cos 8tu(t) + 0.375e^{-6t}\sin 8tu(t)$$
 V

17.35
$$\frac{8(2+j\omega)}{2+j\omega 5-3\omega^2}$$

17.37
$$0.542\cos(t+13.64^{\circ})$$
 V

17.39
$$\frac{1}{6}$$

17.47 6.5 <
$$f$$
 < 9.6 kHz, 10.4 < f < 13.5 kHz

18.1
$$\begin{bmatrix} 4 & 1 \\ 1 & 1.667 \end{bmatrix} \Omega$$

18.3 (a)
$$\begin{bmatrix} 1+j & j \\ j & 0 \end{bmatrix} \Omega$$
, (b) $\begin{bmatrix} 1.5+j0.5 & 1.5-j0.5 \\ 1.5-j0.5 & 1.5-j1.5 \end{bmatrix} \Omega$

18.5
$$\begin{bmatrix} \frac{s^2+s+1}{s^3+2s^2+3s+1} & \frac{1}{s^3+2s^2+3s+1} \\ \frac{1}{s^3+2s^2+3s+1} & \frac{s^2+2s+2}{s^3+2s^2+3s+1} \end{bmatrix} \Omega$$

18.7
$$\begin{bmatrix} 1.6667 & 0.2222 \\ -0.6667 & 1.111 \end{bmatrix} \Omega$$

18.9 See Fig. E.33.

Figure E.33 For Prob. 18.9.

18.13
$$\mathbf{Z}_{Th} = 6.4 \,\Omega, \, \mathbf{V}_{Th} = 6 / 90^{\circ} \,V, \, 3.18 \cos(2t + 148^{\circ}) \,V$$

18.15
$$\begin{bmatrix} \frac{1}{8} & -\frac{1}{12} \\ -\frac{1}{12} & \frac{1}{2} \end{bmatrix} S$$

18.17 See Fig. E.34.

Figure E.34 For Prob. 18.17.

18.19 See Fig. E.35.

Figure **E.35** For Prob. 18.19.

18.21
$$\begin{bmatrix} 0.25 & 0.25 \\ 5 & 0.6 \end{bmatrix} \Omega$$

18.23 (a) 8 V, 22 V, (b) same

18.25
$$\begin{bmatrix} 3.8 \Omega & 0.4 \\ -3.6 & 0.2 S \end{bmatrix}$$

18.27
$$\begin{bmatrix} 85 \ \Omega & 0.25 \\ 14.75 & 0.0725 \ S \end{bmatrix}$$
, $\begin{bmatrix} 0.02929 \ S & -0.101 \\ -5.96 & 34.34 \ \Omega \end{bmatrix}$

18.29 (a) 0.2941, (b)
$$-1.6$$
, (c) 7.353×10^{-3} S, (d) 40 Ω

18.31 800 Ω

18.33 Proof

18.35 (a)
$$\begin{bmatrix} 1 & \mathbf{Z} \\ 0 & 1 \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 & 0 \\ \frac{1}{\mathbf{Y}} & 1 \end{bmatrix}$

18.37
$$\begin{bmatrix} -3.5 & \frac{5}{6}\Omega \\ -2.5 \text{ S} & 0.5 \end{bmatrix}$$

18.39
$$\begin{bmatrix} \frac{2}{2s+1} & \frac{1}{s} \\ \frac{(s+1)(3s+1)}{s} & 2 + \frac{1}{s} \end{bmatrix}$$

18.41
$$\begin{bmatrix} 2 & 2+j5 \\ j & -2+j \end{bmatrix}$$

18.43
$$z_{11} = \frac{A}{C}, z_{12} \frac{AD - BC}{C}, z_{21} = \frac{1}{C}, z_{22} = \frac{D}{C}$$

18.45 Proof

18.47 (a)
$$\begin{bmatrix} 1 & -2 \\ -2 & 4.4 \end{bmatrix}$$
 S, (b) $\begin{bmatrix} 2.2 & 0.5 \ \Omega \\ 0.2 \ S & 0.5 \end{bmatrix}$

18.49 (a)
$$\begin{bmatrix} 1.786 & 0.7143 \\ 0.3571 & 2.143 \end{bmatrix} \Omega$$
, (b) $\begin{bmatrix} 1.667 \ \Omega & 0.3333 \\ -0.1667 & 0.4667 \ S \end{bmatrix}$,

(c)
$$\begin{bmatrix} 3 & 5 \Omega \\ 1.4 S & 2.5 \end{bmatrix}$$

18.51
$$\begin{bmatrix} 40 & 0 \\ 105 & 40 \end{bmatrix} k\Omega, \begin{bmatrix} 0.381 & 15.24 k\Omega \\ 9.52 \mu S & 0.381 \end{bmatrix}$$

18.53
$$\begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix} S$$

18.55
$$\begin{bmatrix} 1.25 & 0.75 \ \Omega \\ 0.75 \ S & 1.25 \end{bmatrix}$$

18.57
$$\begin{bmatrix} 0.063 + j0.1954 & -0.103 + j0.144 \\ -0.103 + j0.1446 & 0.183 - j0.205 \end{bmatrix} S$$

18.59
$$\begin{bmatrix} 0.06 \text{ S} & -1.3 \\ 0.7 & 23.5 \text{ } \Omega \end{bmatrix}$$

18.61
$$\begin{bmatrix} 7 & 12 \ \Omega \\ 4 \ S & 7 \end{bmatrix}, \frac{12}{7} \Omega$$

18.63
$$\begin{bmatrix} 0.1269 & 0.01154 \\ 0.01154 & -0.03923 \end{bmatrix} S$$

18.65
$$\begin{bmatrix} 4.669 / - 136.7^{\circ} & 2.53 / -108.4^{\circ} \\ 2.53 / -108.4^{\circ} & 1.789 / -153.4^{\circ} \end{bmatrix} \Omega$$

18.67
$$\begin{bmatrix} 1.5 & -0.5 \\ 3.5 & 1.5 \end{bmatrix} S$$

18.69
$$\begin{bmatrix} 1.4 & -0.8 \Omega \\ 1.4 S & -1.8 \end{bmatrix}$$

18.71
$$\begin{bmatrix} 2.727 & S & 0 \\ 0 & 0 \end{bmatrix}$$

18.73
$$Z_{\text{in}} = \frac{y_{22} + Y_L}{\Delta y + y_{11} Y_L}, Z_{\text{out}} = \frac{y_{11} + Y_s}{\Delta y + y_{22} Y_s}, A_i = \frac{-y_{21} Y_L}{\Delta y + y_{11} Y_L},$$
$$A_v = \frac{-y_{21}}{y_{22} + Y_L}$$

18.75 (a) $250 \text{ k}\Omega$, (b) -3333, 20, $65 \text{ k}\Omega$, (c) -13.33 V

18.77 -17.1, 89.29, 25.63 k Ω , 182.9 k Ω

18.79 $2 \times 10^5, 200 \Omega$

18.81 See Fig. E.36.

Figure E.36 For Prob. 18.81.

18.83 Proof