Efficient generation of native resolution NO2 a priori profiles for TEMPO retrievals using machine learning

Jennifer Grant

Qindan Zhu

Hannah Kenagy

Ron Cohen

University of California, Berkeley

Accurately interpreting TEMPO NO2 observations requires *a priori* profiles at both high spatial and high temporal resolution

BEHR (BErkeley High spatial resolution OMI satellite NO_2 Retrievals) product uses daily modeled *a priori* profiles at 12 km x 12 km to capture the daily variation in AMF.

NASA OMI operational product v4.0 utilizes 1 deg x 1.25 deg GMI model based monthly *a priori* NO₂ profile shapes.

The *a priori* NO_2 profiles are the largest contributor to uncertainty in satellite retrievals. Incorrect profiles lead to systematic biases in estimating NO_x lifetime and emissions from satellite retrievals.

Schematic from Laughner et al., 2016. (a) Monthly average a priori profiles. (b) A case when the daily wind is similar to the monthly average wind. (c) A case where the daily wind is significantly faster than the average but blows in the same direction. (d) A case where the daily wind direction is different from the monthly average.

Chemical transport model (CTM) is computationally expensive: Machine learning (ML) is an efficient alternative

Back-of-the-envelope estimate of computation time running WRF-Chem on 12 nodes (Skylake processor (2x16 @ 2.1 GHz) 96 GB RAM, 32 cores per node, Berkeley High Performance Computing) for CONUS.

Goal: produce NO₂ a priori profiles at native TEMPO resolution using **machine learning on meteorological forecast/analysis and a high resolution emissions inventory.**

Case Study - Atlanta, GA, USA

Results

Method

Meteorology NO Emissions (anthropogenic & lightening)

surrounding emissions

surrounding flash emissions

pressure - boundary layer

pressure

temp

0.05

0.00

0.10

feature importance

0.15

0.20

local hour emissions

flash emissions

Summary

Machine learning is a computationally efficient method for producing NO2 vertical profiles at native TEMPO resolution in real time.

Our model is generalizable because it can capture variability of urban and rural domain

Future Work/Next Steps

Scale up to CONUS - 13.8 billion observations/year!

Supplement

Random Forest Ensemble

Library

Parameters

Num trees: 100 Criterion for split: MSE Max features: 10 Bootstrap: True

Range of Data

Years.

2005 2007-2009	Vertical Layers: 29 Geo Coordinates Urban Dataset: Lon [-85, -84] Lat [33.3, 34.3]
2011-2014	
Month: July	
Time: 5am - 5pm (SZA < 80°) Hourly	Rural Dataset: Lon [-84, -86] Lat [33, 34]

List of features

Each Observation:

Local Hour Pressure Temperature U, V, W Flash Emissions (CG & IC) Pressure - PBL NO Emissions

Surrounding Features: 35km Flash Emissions (CG & IC) 35km NO Emissions