Referência

SEL-EESC-USP

Eletrônica Básica -Amplificadores Analógicos BJT

Exercícios

P. R. Veronese 2014

Exercício	Assunto	Pg.	Análise DC	Pg.	Análise AC	Pg.
1	Parâmetros de Modelagem		não		não	
2	Polarização por Divisor de Tensão		sim	3-6	não	
3	Amplificador Emissão Comum	6-9	sim	3-6	sim	7-9
4	Amplificador Base Comum	9-14	sim	9-12	sim	12-14
5	Amplificador Coletor Comum	14-18	sim	14-16	sim	16-18
6	Amplificador Separador de Fase	18-22	sim	19-20	sim	20-22
7	Amplificadores em Cascata com Acoplamento DC	22-28	sim	23-26	sim	26-28
8	Amplificadores em Cascata com Acoplamento DC	28-35	sim	29-32	sim	32-35
9	Amplificadores em Cascata com Realimentação DC	35-41	sim	35-38	sim	38-41
10	Amplificadores em Cascata com Bootstrap	41-48	sim	41-42	sim	42-48
11	Amplificadores em Cascata com Realimentação Negativa	48-56	sim	41-42	sim	48-56
12	Amplificador Coletor-Comum com Bootstrap	55-62	sim	56-57	sim	57-62
13	Amplificador Cascode	62-69	sim	62-66	sim	66-69
14	Amplificador Emissor-Comum com Alimentação Flutuante	69-73	sim	69-70	sim	70-73

Exercício	Assunto	Pg.	Análise DC	Pg.	Análise AC	Pg.
15	Estabilidade de Pontos Quiescentes (comparação)	75-81	sim	74-75	não	
	Topologia 1			75-76		
				77		
				79		
15	Estabilidade de Pontos Quiescentes (comparação)	75-81	sim	75	não	
	Topologia 2			76		
				77-78		
				79-80		
15	Estabilidade de Pontos Quiescentes (comparação)	75-81	sim	75	não	
	Topologia 3			76-77		
				78-79		
				80		
16	Amplificadores EC com Várias Topologias de Polarização	81-89	não		sim	82-85
	Topologia 1					
16	Amplificadores EC com Várias Topologias de Polarização	81-89	não		sim	82-85
	Topologia 3					
16	Amplificadores EC com Várias Topologias de Polarização	85-88	não		sim	88-89
	Topologia 1					

Exercício	Assunto	Pg.	Análise DC	Pg.	Análise AC	Pg.
17	Amplificador DC com Realimentação Negativa	89-93	não		não	
18	Amplificador EC Genérico	93-98	sim	94-95	sim	95-98
19	Amplificador EC com Carga Ativa e Realimentação de Coletor	98-102		99		99-101
20	Amplificador Isolador com Alto Desempenho	102-107	sim	102-103	sim	103-107
21	Amplificador Operacional Idealizado	107-114	sim	108-109	sim	109-114
22	Estabilizador de Tensão	114-121	não		não	
23	Amplificador Diferencial com Cargas Passivas	121-124	sim	122-123	sim	123-124

1. Parâmetros de Modelagem

1.1. Proposição:

Deseja-se polarizar um transistor do tipo QnB com I_{CQ} =100 μA e V_{CEQ} =5,4 V @ 25 ^{o}C . Calcular:

- 1.a As grandezas estáticas β e V_{BE} do transistor para o ponto de polarização estipulado.
- **1.b** As grandezas incrementais g_m , r_π , r_o , C_μ e C_π , do transistor, para esse ponto de polarização.

Exercício 2

2. Polarização

2.1. Proposição:

- **2.a** Polarizar o transistor do circuito da Figura I de modo que, para o caso típico, as seguintes condições sejam satisfeitas: $I_{CQ} = 100~\mu\text{A} \pm 2\%$; $V_{CEQ} = 5.4~V \pm 2\%$; $S = 9.5 \pm 10\%$ e $R_{B1a} \le 0.2R_{B1}$ @ 25 ^{o}C .
- **2.b** Calcular o espalhamento do ponto quiescente calculado no item 2.*a*, sabendo-se que, na fabricação em série, o transistor QnB pode apresentar o seguinte espalhamento de parâmetros @ 25 °C: $180 \le \beta \le 525$; $0.57 \ V \le V_{BE} \le 0.59 \ V$ e $33 \ V \le V_{AF} \le 110 \ V$.

Figura 1- Amplificador Emissor-Comum, Usado nos Exercícios 2 e 3.

3. Amplificador Emissor-Comum

3.1. Proposição:

Usando os resistores de polarização computados no Exercício 2, calcular em 25 °C:

- **3.a.** O ganho de tensão, a resistência de entrada e a resistência de saída do amplificador da Figura 1, em vazio.
- **3.b.** As frequências de corte, nas baixas e nas altas, da função de transferência do módulo do ganho de tensão do amplificador, para $R_{ger} = 52 \, k\Omega$ e $R_L = 43 \, k\Omega$.

Figura 1- Amplificador Emissor-Comum, Usado nos Exercícios 2 e 3.

4. Amplificador Base-Comum

4.1. Proposição:

O amplificador da Figura 2 é do tipo base-comum. Calcular para esse circuito:

4.a. - Os resistores de polarização de modo que as seguintes condições sejam satisfeitas @ 25~%: $R_i = 75~\Omega \pm 5\%$ e $S = 9,5 \pm 5\%$.

4.b. - Os parâmetros elétricos do amplificador em vazio, isto é: A_v ; R_i ; R_o ; f_{CA} e f_{CB} @ 25 °C.

Dados: $\beta = 291$; $V_{BE} = 0.616 \text{ V}$; $C_{\pi} = 40.2 \text{ pF e } C_{\mu} = 3.15 \text{ pF}$.

Figura 2 - Amplificador Base-Comum, Usado no Exercício 4.

5. Amplificador Coletor-Comum

5.1. Proposição:

Usando os resistores de polarização do circuito da Figura 3, calcular para esse amplificador @ $25 \, ^{\circ}$ C:

5.a. - O ganho de tensão, a resistência de entrada e a resistência de saída, em vazio e com $R_{ger} = 0$.

5.b. - As frequências de corte, nas baixas e nas altas, da função de transferência do módulo do ganho de tensão do amplificador, para $R_{ger} = 52 \ k\Omega$ e $R_L = 1 \ k\Omega$.

Dados do transistor QnC: $\beta = 534$; $V_{BE} = 0.628$ V; $C_{\pi} = 48.3$ pF e $C_{\mu} = 3.03$ pF @ 25 °C.

Figura 3 – Amplificador Coletor-Comum, Usado no Exercício 5.

6. Amplificador Separador de Fase

6.1. Proposição:

Amplificadores separadores de fase (*Phase-Splitter*) são circuitos constituídos de duas saídas que, teoricamente, apresentam ganhos de tensão idênticos e unitários em relação a uma entrada, mas com fases opostas entre si (180°). A principal utilidade desse circuito é trabalhar como excitador em contrafase de estágios de saída de potência na configuração *push-pull*. A Figura 4 apresenta um circuito desse tipo.

Para esse circuito, calcular, com $R_{ger} = 600 \Omega$ e $R_{L1} = R_{L2} = 10 k\Omega$ @ 25 °C:

6.a. - O ganho de tensão, a resistência de entrada e a resistência de saída do amplificador $EC: A_{vl} = v_{ol} / v_i; R_i e R_{ol}$.

6.b. - O ganho de tensão, a resistência de entrada e a resistência de saída do amplificador CC: $A_{\nu 2} = \nu_{o2}/\nu_i$; R_i e R_{o2} .

Dados do transistor *QnC*: $\beta = 534$; $V_{BE} = 0.670 \text{ V}$; $C_{\pi} = 127 \text{ pF e } C_{\mu} = 3.04 \text{ pF } @ 25 \text{ °C}$.

Figura 4 – Amplificador Separador de Fase Usado no Exercício 6.

7. Amplificadores em Cascata com Acoplamento DC

7.1. Proposição:

Para o circuito da Figura 5, calcular @ 25 °C, com $R_{ger} = 600 \Omega e R_L \rightarrow \infty$:

7.a. - O ponto de polarização.

7.b. - O ganho de tensão, a resistência de entrada e a resistência de saída do amplificador.

Figura 5 - Amplificadores em Cascata com Acoplamento DC.

8. Amplificadores em Cascata com Acoplamento DC

8.1. Proposição:

8.a. - O ponto de polarização.

8.b. - O ganho de tensão, a resistência de entrada e a resistência de saída do amplificador.

Dados: Os transistores são do tipo BC548B ($N_F = 1,0022$ e $V_{AF} = 66,4$ V).

Figura 6 - Amplificadores em Cascata com Acoplamento DC.

9. Amplificadores em Cascata com Realimentação DC

9.1. Proposição:

Para o circuito da Figura 7, calcular @ 25 °C:

9.a. - O ponto de polarização.

9.b. - O ganho de tensão, a resistência de entrada e a resistência de saída do amplificador, para pequenos sinais e baix as frequências.

Dados @ 25 °C:
$$Q_1 = \beta = 333,284$$
; $V_{BE} = 0,5986$ V; $N_F = 1,0022$ e $V_{AF} = 66,40$ V. $Q_2 = \beta = 660,108$; $V_{BE} = 0,6403$ V; $N_F = 1,0022$ e $V_{AF} = 33,38$ V.

Figura 7 – Amplificador em Cascata com Realimentação DC.

10. Amplificadores em Cascata com *Bootstrap*

10.1. Proposição:

Para o circuito da Figura 10, calcular @ 25 °C:

10.a. - O ponto de polarização.

10.b. - O ganho de tensão, a resistência de entrada e a resistência de saída do amplificador, para pequenos sinais e baixas frequências.

Dados @ 25 °C:
$$Q_1 = \beta = 333,284$$
; $V_{BE} = 0,5986 \text{ V}$; $N_F = 1,0022 \text{ e } V_{AF} = 66,40 \text{ V}$. $Q_2 = \beta = 660,108$; $V_{BE} = 0,6403 \text{ V}$; $N_F = 1,0022 \text{ e } V_{AF} = 33,38 \text{ V}$.

Figura 10 - Amplificador em Cascata com Realimentação DC e Bootstrap.

11. Amplificadores em Cascata com Realimentação Negativa

11.1. Proposição:

11.a. - Adicionar uma realimentação negativa ao circuito da Figura *10*, como mostra a Figura *15*, calcular o ganho de tensão, a resistência de entrada e a resistência de saída do amplificador, para pequenos sinais e baixas frequências.

Dados @ 25 °C:
$$Q_1 = \beta = 333,284$$
; $V_{BE} = 0,5986$ V; $N_F = 1,0022$ e $V_{AF} = 66,40$ V. $Q_2 = \beta = 660,108$; $V_{BE} = 0,6403$ V; $N_F = 1,0022$ e $V_{AF} = 33,38$ V.

Figura 15 - Amplificador com Realimentação Negativa AC e DC e com Bootstrap.

12. Amplificador Coletor-Comum com *Bootstrap*

12.1. Proposição:

Para o amplificador da Figura 17a, calcular @ 25 °C:

12.a. - O ponto de polarização.

12.b. - O ganho de tensão, a resistência de entrada e a resistência de saída do amplificador, para pequenos sinais e baix as frequências, em vazio.

Para o amplificador da Figura 19a, calcular @ 25 °C:

12.c. - O ponto de polarização.

12.d. - O ganho de tensão, a resistência de entrada e a resistência de saída do amplificador, para pequenos sinais e baix as frequências, em vazio.

Dados @ 25 °C: $Q = \beta = 535,94243$; $V_{BE} = 0,62385 \text{ V}$; $N_F = 1,0022 \text{ e } V_{AF} = 33,38 \text{ V}$.

Figura 17 – Amplificador Coletor-Comum. a.) Circuito. b.) Circuito Equivalente DC.

13. Amplificador Cascode

13.1. Proposição:

Para o amplificador da Figura 21, @ 25 $\,^{\circ}$ C:

13.a. - Deduzir as equações de cálculo do ponto de polarização do circuito da Figura 21.

13.b. - Calcular o ponto de polarização se: $V_{CC} = 24 V$; $R_{B1a} = 390 kΩ$; $R_{B1b} = 220 kΩ$; $R_{B2a} = R_{B2b} = 33 kΩ$; $R_C = 22 kΩ$ e $R_E = 2,2 kΩ$.

13.c. - Calcular o ganho de tensão, a resistência de entrada e a resistência de saída do amplificador, para pequenos sinais e baixas frequências, em vazio.

Dados @ 25 ℃:

 $\beta_I = 174$; $V_{BEI} = 0.626 \text{ V}$; $N_{FI} = 1.0022$; $V_{AFI} = 110.4 \text{ V}$; $C_{\pi l} = 45.4 \text{ pF}$ e $C_{\mu l} = 5.11 \text{ pF}$.

Importante!

Figura 21 - Amplificador Cascode.

14. Amplificador Emissor-Comum com Alimentação Flutuante

14.1. Proposição:

Dado o circuito da Figura 23, calcular @ 27 °C:

14.a. - O ponto de polarização.

14.b. - O ganho de tensão, a resistência de entrada e a resistência de saída, em pequenos sinais e baixas frequências.

Dados dos transistores @ 27 °C:

- QnB: $\beta_I = 291$; $V_{BEI} = 0.583 \text{ V}$; $N_{FI} = 1.0022 \text{ e } V_{AFI} = 66.4 \text{ V}$.
- QpB: $\beta_2 = 292$; $|V_{BE2}| = 0.573 \text{ V}$; $N_{F2} = 1.000 \text{ e } V_{AF2} = 30.9 \text{ V}$.

Figura 23 - Amplificador Emissor-Comum com Alimentação Flutuante.

15. Estabilidade de Pontos Quiescentes

15.1. Proposição:

Os transistores da Figura 26 foram polarizados no mesmo ponto quiescente e, por isso, alguns resistores foram colocados com valores quebrados e com precisão de seis casas decimais. Estudar a estabilidade desses pontos quiescentes em três situações:

15.a. - Variações de I_{CQ} em função dos ganhos de corrente dos transistores $(\Delta I_{CQ}/\Delta\beta)$.

15.b. - Variações de I_{CQ} em função da temperatura $(\Delta I_{CQ}/\Delta\theta)$.

15.c. - Variações de I_{CQ} em função das tensões de alimentação ($\Delta I_{CQ}/\Delta V_{CC}$).

15.d. - Concluir qual dos três circuitos é, em linhas gerais, mais estável estaticamente.

Considerar $\Delta\theta = 50$ °C (0 ~ 50 °C), $\Delta V_{CC} = \pm 0.5$ V e $\Delta\beta = \beta_{max} - \beta_{min}$.

Dados:

Transistor **QnB** = β_{tip} = 310,2984 e V_{BEtip} = 0,63685 V @ 27 °C.

- Espalhamento de fabricação = $\beta_{min} = 188,554$ c/ $V_{BEmax} = 0,637$ V e $\beta_{max} = 583,85$ c/ $V_{BEmin} = 0,63615$ V @ 27 °C.
- Espalhamento térmico: $\beta_{(50\,^\circ\!\!C)}=316,7076;\ \beta_{(0\,^\circ\!\!C)}=302,243;\ V_{BE(50\,^\circ\!\!C)}=0,58848\ V\ ;\ V_{BE(0\,^\circ\!\!C)}=0,69254\ V.$

Figura 26 - Três Transistores *npn* Polarizados no Mesmo Ponto Quiescente. *a.*) Com Divisor de Base e Com Realimentação Negativa de Emissor. *b.*) Com Realimentação Negativa de Coletor. *c.*) Com Realimentação Negativa de Coletor e de Emissor.

16. Amplificadores EC com Várias Topologias de Polarização

16.1. Proposição:

16.a. - Estudar o comportamento do circuito da Figura 26a em AC, na configuração EC, com R_E desacoplado e não desacoplado.

16.b. - Estudar o comportamento do circuito da Figura 26c em AC, na configuração EC, com R_E desacoplado e não desacoplado.

16.c. - Estudar o comportamento do circuito da Figura 26b em AC, na configuração EC.

Figura 26 - Três Transistores *npn* Polarizados no Mesmo Ponto Quiescente. *a.*) Com Divisor de Base e Com Realimentação Negativa de Emissor. *b.*) Com Realimentação Negativa de Coletor. *c.*) Com Realimentação Negativa de Coletor e de Emissor.

17. Amplificador DC com Realimentação Negativa

17.1. Proposição:

Dado o circuito da Figura 32, calcular @ 27 ℃:

17.a. - A equação de V_o em função de todos os parâmetros elétricos do circuito.

17.b. - O valor numérico de V_o no caso típico e nos casos extremos.

Dados @ 27 °C:

- V_{CC(tip)} = 17 V; 15 V ≤ V_{CC} ≤ 19 V.
- $V_{Z(tip)} = 5,556 \text{ V}; 5,455 \text{ V} \le V_Z \le 5,598 \text{ V}.$
- $R_{L(tip)} = 24 \Omega$; $12 \Omega \le R_L \le \infty$.
- $\beta_{2(tip)} = 1500; 750 \le \beta_2 \le 1200.$
- $\beta_{I(tip)} = 400; 300 \le \beta_1 \le 380.$
- $V_{BE2(tip)} = 1,382 \text{ V}; 1,224 \text{ V} \le V_{BE2} \le 1,40 \text{ V}.$
- $V_{BEI(tip)} = 0.5915 \text{ V}; 0.5587 \text{ V} \le V_{BEI} \le 0.606 \text{ V}.$

Figura 32 - Circuito Estabilizador de Tensão.

18. Amplificador EC Genérico

18.1. Proposição:

Para o circuito da Figura 33, calcular:

- a.) O ponto de polarização.
- **b.**) As grandezas elétricas $(A_v; R_i e R_o)$ do amplificador em vazio e com $R_X = 0$.
- c.) O valor comercial do resistor R_X para que o ganho de tensão do amplificador tornese igual a 10 V/V \pm 1%, em módulo, com $R_L = 69,23 \, k\Omega$.
- **d.**) As grandezas elétricas (A_v ; R_i e R_o) do amplificador em vazio, com R_X igual ao calculado no item c.

Obs: $\beta = 524,373$; $V_{BE} = 637,81 \text{ mV}$; $V_{AF} = 33,38 \text{ V}$; $N_F = 1,0022 \text{ e } V_t = 25,86495247 \text{ mV}$.

Figura 33 - Amplificador EC Genérico.

19. Amplificador *EC* com Carga Ativa e Realimentação de Coletor.

19.1. Proposição:

Para o circuito da Figura 34, calcular:

- a.) O ponto de polarização.
- **b.**) As grandezas elétricas (A_v ; R_i e R_o) do amplificador em vazio.

Obs: $\beta = 297,52$; $V_{BE} = 637,28 \text{ mV}$; $V_{AF} = 66,4 \text{ V}$; $N_F = 1,0022 \text{ e } V_t = 25,86495247 \text{ mV}$. A fonte de corrente I_I deve ser considerada ideal, isto é, $R_{f(interna)} \rightarrow \infty$ para AC.

Figura 34 - Amplificador EC com Carga Ativa e Realimentação de Coletor.

20. Amplificador Isolador com Alto Desempenho.

20.1. Proposição:

Para o circuito da Figura 36, calcular @ 27 °C:

- a.) O ponto quiescente e os parâmetros incrementais dos transistores.
- **b.**) O ganho de tensão, $A_v = v_{out} / v_{in}$.
- c.) Dizer qual é o nome técnico desse circuito.

Dados:

	Q_1	Q_2
β	349,00	321,66
V_{BE} [V]	-0,4979	0,5933
V_{AF} [V]	30,9	66,4
N_F	1,0	1,0022

Figura 36 - Amplificador Isolador com Alto Desempenho.

21. Amplificador Operacional Idealizado.

21.1. Proposição:

O circuito da Figura 39 teve suas fontes de corrente otimizadas para que $V_{out(DC)} = 0 \ V \pm 10$ $\mu V @ 27 \ \mathcal{C}$. Calcular:

- a.) As grandezas quiescentes e os parâmetros incrementais dos transistores: I_{CQ} ; V_{CEQ} ; g_m ; r_{π} e r_o .
- **b.**) Os parâmetros elétricos do amplificador, para pequenos sinais e baixas frequências: $A_v(v_{out}/v_{in})$; R_i e R_o .
- c.) Avaliar o valor da máxima excursão do sinal de saída, para $R_L = 28 \text{ k}\Omega$.

Dados:

	Q _{1a}	Q _{1b}	Q_2	Q_3
β	332	334,370	701,692	659,815
$V_{BE}\left(\mathbf{V}\right)$	0,5567	0,5567	-0,5783	0,6139
$V_{AF}\left(\mathbf{V}\right)$	66,40	66,40	23,00	33,38
N_F	1,0022	1,0022	1,010	1,0022

Figura 39 - Amplificador Operacional Idealizado.

22. Estabilizador de Tensão.

22.1. Proposição:

Usando as leis de Ohm e de Kirchhoff, deduzir as equações que calculam os valores da tensão de saída (V_o) e da corrente no diodo Zener (I_z), no circuito da Figura 41. Usar, para o diodo Zener, um modelo linearizado com os parâmetros V_{rev} e R_{rev} e considerar: $I_2 >>> I_{B1}$.

Figura 41 - Estabilizador de Tensão.

23. Amplificador Diferencial com Cargas Passivas

23.1. Proposição:

O circuito da Figura 44 é um amplificador diferencial básico, carregado com cargas passivas. Calcular, em 27 °C, o ponto quiescente do circuito da Figura 44 e, posteriormente, calcular os parâmetros AC do amplificador, isto é: $A_{vl} = v_o/v_{il}$ e $A_{v2} = v_o/v_{i2}$. O circuito está alimentado com $V_{CC} = \pm 30 \ V$.

Figura 44 - Amplificador Diferencial Básico.