Sistema de controle de mesa de som - Sistemas digitais e microcontrolados

Giovanna Bughi¹, Gustavo Ratier Cardoso², João Vitor Medeiros³, and Luís Spengler⁴

1,2,3,4 Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso do Sul

Conteúdo

1	Pro	blema proposto	2				
2	Solução do problema proposto						
	2.1	Identificação das variáveis de entrada e saída	3				
	2.2	Identificação dos estados das variáveis de entrada e saída	3				
	2.3	Montagem da tabela verdade	3				
	2.4	Obtenção da expressão de saída	4				
	2.5	Mapa de Karnaugh	4				
	2.6	Simplificação da expressão através do mapa de Karnaugh	5				
	2.7	Circuito lógico	5				
	2.8	Componentes utilizados no circuito	6				
3	Con	nclusão	6				

1 Problema proposto

Para a mesa de som são conectados três microfones em uma única caixa de som amplificada, que são: ChP, ChD e ChC. A sigla "Ch" vem da palavra derivada do inglês, Channel (Canal), já as letras que à acompanham são do Presidente, Diretor e Coordenador, respectivamente. Foi identificado o nível de prioridade entre os microfones conforme sua transmissão e elaborado o circuito lógico combinacional que permitirá ligar os microfones segundo sua ordem de prioridade conforme a relação abaixo:

Prioridade 1: Presidente;

Prioridade 2: Diretor;

Prioridade 3: Coordenador.

Seu acionamento é simples, cada microfone é acionado pelo usuário através de um interruptor (liga-desliga) que nesse caso, serão também as entradas. Os microfones quando acionados comutam em sua saída 0 ou 1, informando ao circuito lógico que, por sua vez, aciona uma das saídas (SP, SD, SC) na caixa amplificada. Então, quando o Presidente ligar seu microfone, terá prioridade sobre os demais. Quando o Diretor ligar seu microfone, só terá prioridade sobre o Coordenador. E por fim, o Coordenador só falará quando os demais microfones não estiverem ligados.

2 Solução do problema proposto

2.1 Identificação das variáveis de entrada e saída

Identificado o problema proposto, foram denominadas as entradas e saídas que serão utilizadas para a ativação dos microfones no circuito lógico. A sigla "Ch" é originada do inglês Channel, em que canal é a sua tradução; a entrada será referente ao canal de seus utilizadores conforme sua prioridade; a letra S nas expressões lógicas é representada por saída e será utilizada para denominar a saída do utilizador. Então ChP; ChD; ChC; SP; SD e SC serão os canais de entrada e expressão de saída do Presidente, Diretor e Coordenador respectivamente, de acordo com suas siglas e letras.

2.2 Identificação dos estados das variáveis de entrada e saída

Nas entradas ChP, ChD e ChC terão nível lógico alto (1), somente quando os usuários tiverem seus microfones ligados; se todos tiverem seus microfones ligados: ChP = 1, ChD = 1 e ChC = 1; em estado inicial todas as inicias serão iguais a zero (0), então: ChP = 0, ChD = 0, ChC = 0. Conforme a conversa prossegue e os usuários ativam o microfone, são alteradas as variáveis de saída para estado lógico alto (1).

2.3 Montagem da tabela verdade

Reunidas as variáveis de entrada e saída, uma tabela verdade foi feita a fim de determinar os estados de atuação em cada uma das entradas e saídas, obedecendo a ordem de prioridade em cada falante de acordo com os valores da tabela abaixo:

INPUT			OUTPUT		
ChP	ChD	ChC	SP	SD	SC
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

2.4 Obtenção da expressão de saída

A partir da tabela verdade, foram equacionadas as expressões de saída referente ao seu proprietário.

1. SP (Saída do Presidente) em Função de ChP (Canal do Presidente);

$$SP = ChP \cdot ChC' + ChP \cdot ChC$$

$$SP = ChP \cdot (ChC' + ChC)$$

$$SP = ChP$$

2. SD (Saída do Diretor) em Função de ChD (Canal do Diretor);

$$SD = ChP' \cdot ChD$$

3. SC (Saída do Coordenador) em Função de ChC (Canal do Coordenador).

$$SC = (ChP' \cdot ChD') \cdot ChC$$

2.5 Mapa de Karnaugh

Mapa de Karnaugh para a saída do presidente (SP)

Mapa de Karnaugh para a saída do diretor (SD)

Mapa de Karnaugh para a saída do coordenador (SC)

		ChP/ChD			
		00	01	11	10
al a	0	0	0	0	0
ChC	1		0	0	0

2.6 Simplificação da expressão através do mapa de Karnaugh

Analisando o mapa de Karnaugh é possível identificar que, apenas a expressão referente ao Presidente (SP em função de ChP) será simplificada por ser a única com alguma propriedade de simplificação.

		ChP/ChD			
		00	01	11	10
C	0	0	0	1	1
ChC	1	0	0	1	1

2.7 Circuito lógico

2.8 Componentes utilizados no circuito

- 1. Board de instrumentação e controle possuindo suporte para as protoboards;
- 2. CI (AND) SN7408N e CI (NOT) SN7404N;
- 3. Jumper de ligação (macho-macho) e Jumper de ligação (macho-fêmea);
- 4. Fios de conexão para alimentação do circuito ligados no GND de cada CI;
- 5. Fios de conexão para alimentação do circuito ligados no VCC de cada CI.
- 6. Chaves de acionamento para cada lógica no circuito.

3 Conclusão

Com o circuito montado, programado e funcionando conforme os parâmetros apresentados, ao acionar as chaves, cada uma delas são executadas conforme o grau de prioridade no alto falante determinado pelos Cis. O Presidente ao solicitar a transmissão no alto falante o somente seu canal será reproduzido e impossibilitando os demais serem de serem reproduzidos; ao Diretor solicitar reprodução do seu microfone no alto falante, somente ele fará. A menos que o Presidente reproduza seu microfone uma outra vez; e o Coordenador só falará quando os microfones do Presidente e do Diretor não forem reproduzidos, respectivamente. Através dessas relações, se vê na prática a aplicação da ordem de prioridade conforme demonstrada no tópico "Problema Proposto". O circuito e seu funcionamento são um sucesso e atuam conforme o solicitado.