

Building Semantic Descriptions of Linked Data

Craig Knoblock
University of Southern California

Joint work with Rahul Parundekar and José Luis Ambite

Linked Open Data and Services

- Vast collection of interlinked information
- Various sources and services with different schemas

Where do the Semantics Come From?

Linked Open Data

- Populated by manually linking or writing procedures that define the links across sources
- But we don't know how the sources are related
- In many cases there is no or very limited semantic descriptions of sources

Linked Open Services

- Manually constructed or built by wrapping existing Web services
- Constructing the lifting and lowering rules that relate the services to existing ontologies is a difficult task
- Even when done, it may only provide a partial description
 - e.g., descriptions of the inputs and outputs, but not the function of a service

Outline of the Talk

- Linked Open Data
 - Building and linking ontologies of linked data
- Linked Open Services
 - Building semantic web services from the Deep Web
- Discussion
 - Remaining challenges

Outline of the Talk

- Linked Open Data
 - Building and linking ontologies of linked data
- Linked Open Services
 - Building semantic web services from the Deep Web
- Discussion
 - Remaining challenges

Building and linking ontologies of linked data [Parundekar et al., ISWC 2010]

Disjoint Schemas

Objective 1: Find Schema Alignments

Ontologies of Linked Data

- Ontologies can be highly specialized
 - e.g. DBpedia has classes for *Educational Institutions*, *Bridges, Airports, etc.*
- Ontologies can be rudimentary
 - e.g. in Geonames all instances only belong to a single class – 'Feature'
 - Derived from RDBMS schemas from which Linked Data was generated
- There might not exist exact equivalences between classes in two sources

Traditional Alignments

 Only subset relations possible with difference in class specializations

Restriction Classes

- A specialized class can be created by restricting the value of one or more properties
- The following Venn diagram explains a restriction class in Geonames with a restriction on the value of the featureCode property as 'S.SCH'

Objective 2: Find Alignments Between Restriction Classes

 Find and model specialized descriptions of classes

Nature of Restriction Classes

- Instances belonging to a restriction class also belong to parent restriction class
 - e.g. restrictions from Geonames below

 This also results in a hierarchy in the alignments, which our algorithm exploits

Extensional Approach to Ontology Alignment

Represents set of instances belonging to Class
Represents set of instances belonging to ClassE

Alignment Hypotheses

- An alignment hypothesis considers aligning
 - a restriction class from ontology O₁
 - another restriction class from ontology O₂
- Find relation between the two restriction classes
 - using extensional comparison on set of instances belonging to each restriction class
 - Use instance pair identifiers from pre-processing step (combination of URIs of linked instances)

Exploration of Hypotheses Search Space

Example Alignments from LinkedGeoData, Geonames, and DBpedia

#	LINKEDGEODATA restriction	DBPEDIA restriction	Relation
1	rdf:type=1gd:node	rdf:type=owl:Thing	$r_1 = r_2$
2	rdf:type=1gd:aerodrome	rdf:type=dbpedia:Airport	$r_1 = r_2$
3	rdf:type=lgd:island	rdf:type=dbpedia:Island	$r_1 = r_2$
4	lgd:gnis_%3AST_alpha=NJ	dbpedia:Place#type=	$r_1 = r_2$
_		http://dbpedia.org/resource/City_(New_Jersey)	$r_1 - r_2$
5	rdf:type=lgd:village	rdf:type=dbpedia:PopulatedPlace	$r_1 \subset r_2$
#	GEONAMES restriction	DBPEDIA restriction	Relation
6	geonames:featureClass=geonames:P	rdf:type=dbpedia:PopulatedPlace	$r_1 = r_2$
7	geonames:featureClass=geonames:H	rdf:type=dbpedia:BodyOfWater	$r_1 = r_2$
8	geonames:parentFeature=http://sws.geonames.org/3174618/	dbpedia:City_region=http://dbpedia.org/resource/Lombardy	$r_1 = r_2$
9	geonames:featureCode=geonames:S.SCH	rdf:type=dbpedia:EducationalInstitution	$r_1 = r_2$
10	geonames:featureCode=geonames:S.SCH &	rdf:type=dbpedia:EducationalInstitution	
10	geonames:inCountry=geonames:US	** *	$r_1 = r_2$
11	geonames:featureCode=geonames:T.MT	rdf:type=dbpedia:Mountain	$r_1 \subset r_2$

Outline of the Talk

- Linked Open Data
 - Building and linking ontologies of linked data
- Linked Open Services
 - Building semantic web services from the Deep Web
- Discussion
 - Remaining challenges

Building semantic web services from the Deep Web [Ambite et al., ISWC 2009]

- Automatically build semantic models for data and services available on the larger Web
- Construct models of these sources that are sufficiently rich to support querying and integration
 - Build models for the vast amount of structured and semistructured data available
 - Not just web services, but also form-based interfaces
 - E.g., Weather forecasts, flight status, stock quotes, currency converters, online stores, etc.
 - Learn models for information-producing web sources and web services

Approach

- Start with an some initial knowledge of a domain
 - Sources and semantic descriptions of those sources
- Automatically
 - Discover related sources
 - Determine how to invoke the sources
 - Learn the syntactic structure of the sources
 - Identify the semantic types of the data
 - Build semantic models of the source
 - Construct semantic web services

USC Viterbi

Seed Source

Automatically Discover and Build Semantic Web Services for Related Sources

For sales information on Unisys weather solutions, contact Robert Benedict at robert.benedict@unisys.com Last modified February 7, 2007

Semantic Typing [Lerman, Plangprasopchok, & Knoblock]

✓ Idea: Learn a model of the content of data and use it to recognize new examples

	Person	Address	Work		:FullName:	:StreetAddress:	:Telephone:
	E Lewis	3518 Hilltop Rd	(419) 531 - 0504		E Lewis	3518 Hilltop Rd	(419) 531 - 0504
	Andrew Lewis	3543 Larchmont Pkwy	(518) 474		drew Lewis	3543 Larchmont Pkwy	(518) 474 - 4799
	C. S. Lewis	555 Willow Run Dr	(612) 578 -	label	Lewis	555 Willow Run Dr	(612) 578 - 5555
	Carmen Jones	355 Morgan Ave N	(612) 522 - 5555		rmen Jones	355 Morgan Ave N	(612) 522 - 5555
	John Jones	3574 Brookside Rd	(555) 531 - 9566		John Jones	3574 Brookside Rd	(555) 531 - 9566
	Location	State_prov	Postal_code		:City:	:State:	:Zipcode:
	Toledo	OH	64325-3000		Toledo	ОН	64325-3000
-	Toledo	OH	64356		Toledo	ОН	64356
١	Seattle	WA	8422		Seattle	WA	8422
ſ	Seattle	WA	8435		Seattle	WA	8435
\	Omaha	NE	52456-6444		Omaha	NE	52456-6444

Inducing Source Definitions

source1(\$zip, lat, long) :- centroid(zip, lat, long).

source2(\$lat1, \$long1, \$lat2, \$long2, dist):greatCircleDist(lat1, long1, lat2, long2, dist).

source3(\$dist1, dist2):convertKm2Mi(dist1, dist2).

Step 1: classify input & output semantic types

Generating Plausible Definition

[Carman & Knoblock, 2007]


```
source1($zip, lat, long) :-
    centroid(zip, lat, long).

source2($lat1, $long1, $lat2, $long2, dist) :-
    greatCircleDist(lat1, long1, lat2, long2, dist).

source3($dist1, dist2) :-
    convertKm2Mi(dist1, dist2).
```

- Step 1: classify input & output semantic types
- Step 2: generate plausible definitions

```
source4($zip1, $zip2, dist):-
source1(zip1, lat1, long1),
source1(zip2, lat2, long2),
source2(lat1, long1, lat2, long2, dist2),
source3(dist2, dist).
```

```
source4($zip1, $zip2, dist):-
centroid(zip1, lat1, long1),
centroid(zip2, lat2, long2),
greatCircleDist(lat1, long1, lat2, long2, dist2),
convertKm2Mi(dist1, dist2).
```


Invoke and Compare the Definition

- Step 1: classify input & output semantic types
- Step 2: generate plausible definitions
- Step 3: invoke service & compare output

```
source4($zip1, $zip2, dist):-
source1(zip1, lat1, long1),
source1(zip2, lat2, long2),
source2(lat1, long1, lat2, long2, dist2),
source3(dist2, dist).
```

```
source4($zip1, $zip2, dist):-
centroid(zip1, lat1, long1),
centroid(zip2, lat2, long2),
greatCircleDist(lat1, long1, lat2, long2,dist2),
convertKm2Mi(dist1, dist2).
```


	\$zip1	\$zip2	dist (actual)	dist (predicted)
	80210	90266	842.37	843.65
	60601	15201	410.31	410.83
	10005	35555	899.50	899.21

USC Viterbi School of Engineering

Constructing Semantic Web Services

Evaluation on Multiple Domains

USC Viterbi School of Engineering

Accuracy of the Models

domain	Precision	Recall	F_1 -measure
weather	0.64	0.29	0.39
geospatial	1.00	0.86	0.92
flights	0.69	0.35	0.46
currency	1.00	1.00	1.00
mutual fund	0.72	0.30	0.42

Outline of the Talk

- Linked Open Data
 - Building and linking ontologies of linked data
- Linked Open Services
 - Building semantic web services from the Deep Web
- Discussion
 - Remaining challenges

Discussion

- Initial work described here just scratches the surface of the problem
 - Goal is to both populate the Web of linked data and have rich semantic models of the data
 - Building semantic descriptions of linked open data will allow us to better understand the available sources and use the sources in a broad range of applications
 - Methods for automatically constructing linked open services will improve the coverage and quality of the sources available

Some Challenges

Linked Open Data

- How do we build build an overall class hierarchy for a source
- How do the relations map across sources
- What do we do about missing and extraneous links

Linked Open Services

- How do we improve the accuracy of the learned semantic descriptions
- How can we learn semantic descriptions that go beyond the current sources
- How do we learn mappings between enumerated types (e.g., "Arrived" vs. "Landed")

