PATIENT READMITTANCE ANALYSIS

Team Members: Advaith Kamath. Amit Jadhav. Manan Dedhia. Simaant Patil

Problem and Objective

Diabetes is the underlying cause of many health issues. Our main objective is to determine if a patient will be readmitted or not by 2 0.100 considering the medicines, diagnosis and various other features. 20075 To accomplish this we have decided to use two algorithms: Logistic Regression and Random Forest. This system can be used by healthcare providers to determine if a patient needs a followup appointment in the immediate future.

Goals

- 1. Predict if a patient will be readmitted or not.
- 2. Predict if a patient will be readmitted in less than 30 days or more than 30 days.

Data Description

This data consists of 49 columns that can be used to determine the readmittance of the patient, twenty-four of which are various diabetic medicines and the remaining are the tests and columns containing demographic data. The data is in csv format and consists of 101,767 records.

Logistic Regression Coefficient

Model Evaluation

Distribution

Random Forest Feature

est Models

Logistic Models	AUC	Random Forest Mod
LR with all features	0.654	RF with all features
LR with all features & reg.	0.652	Multiclass RF
parameters		RF with important
LR with important features	0.64	features

Best Models	Precision	Recall	AUC
Random Forest	0.62	0.36	0.660
Logistic Regression	0.63	0.31	0.654

We found that the Random Forest with all features included was the best model.

Top 10 Features of Both Models

Logistic Regression

Features	Coefficient
number_inpatient	0.466
number_emergency	0.196
number_diagnosis 0.151	
diabetesMed	0.126
number_outpatient	0.103
Diabetes	0.084
Circulatory	0.054
Diabetes3	0.050
time_in_hospital	0.048
Diabetes2	0.042

Ra	nd	om	Fo	rest
Ma	Hu	UIII	10	CSU

Features	Importance	
number_inpatient	0.167	
num_medications	0.078	
num_lab_procedures	0.075	
number_diagnosis	0.056	
time_in_hospital	0.055	
age	0.053	
number_emergency	0.049	
number_outpatient	0.041	
num_procedures	0.039	
insulin	0.022	

Conclusion

AUC

0.660

0.572

0.642

From the models used and feature importance that was obtained, the top features were found to be number of in patient visit, number of emergency visits, number of medications and number of diagnosis on which the readmission of a patient depends. From both the models, number of in patients was the most important one and it makes sense as patients administered by a doctor for a certain disease have a greater chance of revisiting and thus, readmission in a hospital.

We can also infer that higher number of diagnosis results in a higher chance of readmittance.

Data Source

https://archive.ics.uci.edu/ml/datasets/diabetes