Kokeessa saa käyttää laskinta sekä MAOL-taulukoita.

1. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

$$f(x, y) = c xy$$
, kun $0 < y < x < 1$,

ja nolla muualla.

- a) Ratkaise vakion c arvo.
- b) Laske todennäköisyys $P(0 < X < \frac{1}{2} \text{ ja } 0 < Y < \frac{1}{2}).$

Ratkaisu:

a) (3 pistettä)

$$1 = \iint f(x,y) \, dx \, dy = \int_0^1 dx \int_0^x c \, xy \, dy = c \int_0^1 x \, \frac{1}{2} x^2 \, dx = \frac{c}{8},$$

joten c = 8.

b) (3 pistettä)

$$P(0 < X < \frac{1}{2}, 0 < Y < \frac{1}{2}) = \int_0^{\frac{1}{2}} dx \int_0^{\frac{1}{2}} f(x, y) dy = \int_0^{\frac{1}{2}} dx \int_0^x 8xy dy$$
$$= \int_0^{\frac{1}{2}} 8x \frac{1}{2}x^2 dx = \frac{1}{16}.$$

2. Tarkastellaan hierarkkista mallia

$$Y|X \sim N(X, X^2)$$
$$X \sim N(2, 1),$$

jossa $N(\mu, \sigma^2)$ tarkottaa normaalijakaumaa odotusarvolla μ ja varianssilla σ^2 . Laske EY ja varY.

Ratkaisu: Odotusarvo kannatta laskea iteroituna odotusarvona,

$$EY = EE(Y|X) = EX = 2.$$

Varianssin saa laskettua esim. seuraavasti,

$$var Y = var E(Y|X) + E var(Y|X) = var X + EX^{2}$$
$$= 1 + (var X + (EX)^{2}) = 1 + 1 + 4 = 6.$$

Toinen reitti varianssille: käytetään kaavaa var $Y = EY^2 - (EY)^2$, jossa

$$EY^{2} = EE(Y^{2}|X) = E[var(Y|X) + (E(Y|X))^{2}]$$

= $E(X^{2} + X^{2}) = 2(var X + (EX)^{2}) = 2(1 + 4)$

Arvostelu: odotusarvon laskemisesta 2 pistettä ja varianssin laskemisesta 4 pistettä. Tässä tehtävässä joutuu vaikeuksiin, jos ensin yrittää johtaa Y:n reunajakauman tiheysfunktion.

3. Olkoot X ja Y riippumattomia satunnaismuuttujia, joilla on kummallakin eksponenttijakauma parametrilla $\lambda > 0$. (Muistanet, että eksponenttijakauman tiheysfunktio on $\lambda \exp(-\lambda z)$ kun z > 0). Määritellään muuttujat S ja U kaavoilla

$$S = X + Y$$
, $U = X$.

Johda muuttujien S ja U yhteistiheysfunktion $f_{S,U}$ kaava. Johda lisäksi muuttujan U ehdollinen tiheysfunktio ehdolla S = s, sekä tunnista kyseinen (tuttu) jakauma.

Ratkaisu: Nyt

$$f_{S,U}(s,u) = f_{X,Y}(x,y) \left| \frac{\partial(x,y)}{\partial(s,u)} \right|,$$

jossa muuttujien (x, y) ja (s, u) välillä on bijektiivinen vastaavuus

$$\begin{cases} s = x + y \\ u = x \end{cases} \Leftrightarrow \begin{cases} x = u \\ y = s - u \end{cases}$$

Tässä jacobiaani on

$$\frac{\partial(x,y)}{\partial(s,u)} = \det\begin{bmatrix} 0 & 1\\ 1 & -1 \end{bmatrix} = -1,$$

joten

$$f_{S,U}(s,u) = f_{X,Y}(u,s-u)$$

Koska $X \perp \!\!\!\perp Y$ ja niillä on molemmilla eksponenttijakauma parametrilla λ , on edelleen

$$f_{S,U}(s,u) = f_X(u) f_Y(s-u)$$

= $\lambda e^{-\lambda u} 1(u > 0) \lambda e^{-\lambda(s-u)} 1(s-u > 0) = \lambda^2 e^{-\lambda s} 1(0 < u < s).$

Ehdollisen jakauman $U \mid S = s$ voi tunnistaa tarkastelemalla yhteistiheyttä $f_{S,U}(s,u)$ muuttujan u funktiona kiinteällä s: $f_{S,U}(s,u)$ on nollasta poikkeava vakio välillä 0 < u < s ja nolla muualla, joten kysessä on välin (0,s) tasajakauma, kun s > 0. Toinen mahdollisuus on laskea integroimalla reunatiheys $f_S(s) = \lambda^2 s e^{-\lambda s} 1(s > 0)$, ja päätellä ehdollinen jakauma jakolaskun tuloksen

$$f_{U|S}(u \mid s) = \frac{f_{S,U}(s, u)}{f_{S}(s)} = \frac{1}{s}, \quad 0 < u < s$$

perusteella.

4. Olkoon n-ulotteisella satunnaisvektorilla \mathbf{X} standardinormaalijakauma $N_n(\mathbf{0}, \mathbf{I})$. Olkoon $\mathbf{Q} \in \mathbb{R}^{n \times n}$ ortogonaalinen (eli $\mathbf{Q}^{-1} = \mathbf{Q}^T$). Määritellään $\mathbf{Y} = \mathbf{Q}\mathbf{X}$.

Jaetaan $\mathbf{Y} = (Y_1, \dots, Y_n)$ kahtia siten, että $\mathbf{U} = (Y_1, \dots, Y_k)$ koostuu sen k ensimmäisestä komponentista (jossa $1 \le k < n$) ja $\mathbf{V} = (Y_{k+1}, \dots, Y_n)$ sen lopuista komponenteista. Määritellään vielä satunnaismuuttujat Z_1 ja Z_2 kaavoilla

$$Z_1 = \mathbf{U}^T \mathbf{U}, \qquad Z_2 = \mathbf{V}^T \mathbf{V}.$$

- a) Mikä on satunnaisvektorin Y jakauma?
- b) Perustele, miksi Z_1 ja Z_2 ovat riippumattomia.
- c) Mitkä ovat satunnaismuuttujien Z_1 ja Z_2 jakaumat?

Ratkaisu:

a) Koska $\mathbf Y$ on satunnaisvektorin $\mathbf X$ lineaarimuunnos, sillä on multinormaalijakauma, jonka parametrit ovat

$$E\mathbf{Y} = E(\mathbf{Q} \mathbf{X}) = \mathbf{Q} E\mathbf{X} = \mathbf{Q} \mathbf{0} = \mathbf{0},$$

 $Cov \mathbf{Y} = \mathbf{Q} Cov(\mathbf{X}) \mathbf{Q}^T = \mathbf{Q} \mathbf{I} \mathbf{Q}^T = \mathbf{I}$

Siis $\mathbf{Y} \sim N_n(\mathbf{0}, \mathbf{I})$ ts. \mathbf{Y} :n komponentit ovat riippumattomia ja noudattavat standardinormaalijakaumaa.

b) a-kohdan perusteella $U_i \perp V_j$ kaikilla i ja j, minkä takia $\mathbf{U} \perp \mathbf{V}$. Z_1 on funktio satunnaisvektorista \mathbf{U} ja Z_2 on funktio satunnaisvektorista \mathbf{V} , joten $Z_1 \perp Z_2$.

Toinen tapa perustella vektorien riippumattomuus on todeta, että yhdistetyllä vektorilla $\mathbf{Y} = (\mathbf{U}, \mathbf{V})$ on normaalijakauma, ja

$$cov(\mathbf{U}, \mathbf{V}) = \mathbf{0}$$

(sillä $U_i \perp \!\!\!\perp V_j$ kaikilla i, j), joten $\mathbf{U} \perp \!\!\!\!\perp \mathbf{V}$.

Sen sijaan on virheellistä väittää, että (sinänsä todesta) tuloksesta $cov(Z_1, Z_2) = 0$ seuraisi, että Z_1 ja Z_2 olisivat riippumattomia, sillä nyt vektorilla (Z_1, Z_2) ei ole multinormaalijakauma.

c) $Z_1 = \mathbf{U}^T \mathbf{U} = U_1^2 + \dots + U_k^2$, jossa $\mathbf{U} \sim N_k(\mathbf{0}, \mathbf{I})$, joten $Z_1 \sim \chi_k^2$. Vastaavasti $Z_2 = \mathbf{V}^T \mathbf{V}$, jossa $\mathbf{V} \sim N_{n-k}(\mathbf{0}, \mathbf{I})$, joten $Z_2 \sim \chi_{n-k}^2$.