The Moment of Inertia for a Few Shapes

The Monte of Merida for a rew one		
Shape	Mom	ent of inertia
-R-	thin hoop about symmetry axis	MR^2
R	thin hoop about diameter	$\frac{1}{2}MR^2$
R	point mass about axis	MR^2
L _R -	disk or cylinder about symmetry axis	$\frac{1}{2}MR^2$

Shape	Mor	nent of inertia
	thin rod about perpendicular axis through center	$\frac{1}{12}M\ell^2$
	thin rod about perpendicular axis through end	$\frac{1}{3}M\ell^2$
-R-	solid sphere about diameter	$\frac{2}{5}MR^2$
-R-	thin spherical shell about diameter	$\frac{2}{3}MR^2$

Densities of Some Common Substances*

Substance	$ ho$ (kg/m 3)	
hydrogen	0.0899	
helium	0.179	
steam (100°C)	0.598	
air	1.29	
oxygen	1.43	
carbon dioxide	1.98	
ethanol	0.806×10^{3}	
ice	0.917×10^3	
fresh water (4°C)	1.00×10^3	
sea water (15°C)	1.025×10^3	
glycerine	1.26×10^{3}	
aluminum	2.70×10^3	
iron	7.86×10^3	
copper	8.92×10^3	
silver	10.5×10^3	
lead	11.3×10^{3}	
mercury	13.6×10^{3}	
gold	19.3×10^{3}	
*All densities are measured at 0°C and 1 atm unless otherwise noted.		

Specific Heat Capacities

Substance	<i>c_p</i> (J/kg⋅°C)
aluminum	8.99×10^2
copper	3.87×10^2
glass	8.37×10^2
gold	1.29×10^2
ice	2.09×10^{3}
iron	4.48×10^{2}
lead	1.28×10^2
mercury	1.38×10^2
silver	2.34×10^{2}
steam	2.01×10^{3}
water	4.186×10^{3}