

A Wigner-Eckart theorem for group equivariant convolution kernels

Leon Lang

AMLab, CSL

University of Amsterdam

Maurice Weiler

AMLab, QUVA lab

University of Amsterdam

Rotation Equivariant Feature Maps

Rotation Equivariant Feature Maps

Visualisation by Gabriele Cesa

Rotation Equivariant Feature Maps

Visualisation by Gabriele Cesa

The G-Steerability Constraint

The G-Steerability Constraint

$$K(gx) = \rho_{\text{out}}(g) \circ K(x) \circ \rho_{\text{in}}(g)^{-1}$$

Spherical tensor operators:

Spherical tensor operators:

Spherical tensor operators:

$$2j+1$$
 operators $T_j^m, m=-j,\dots,j$ satisfying symmetry constraint $\sum_{n=-j}^j D_j^{mn}(g)\,T_j^n=U(g)^\dagger T_j^m U(g)$ $\forall g\in {
m SO}(3)$
$$K(gx)=
ho_{
m out}(g)\circ K(x)\circ
ho_{
m in}(g)^{-1}$$

Spherical tensor operators:

$$2j+1$$
 operators $T_j^m, m=-j,\dots,j$ satisfying symmetry constraint $\sum_{n=-j}^j D_j^{mn}(g)\,T_j^n=U(g)^\dagger T_j^m U(g)$ $orall g\in {
m SO}(3)$
$$K(gx)=
ho_{
m out}(g)\circ K(x)\circ
ho_{
m in}(g)^{-1}$$

Wigner-Eckart theorem:

the matrix elements for fixed j, I, J are determined by single dof $\lambda \in \mathbb{C}$: $\langle JM|T_j^m|ln \rangle = \lambda \cdot \langle JM|jm;ln \rangle$

Spherical tensor operators:

$$2j+1$$
 operators $T_j^m, m=-j,\dots,j$ satisfying symmetry constraint $\sum_{n=-j}^j D_j^{mn}(g)\,T_j^n=U(g)^\dagger T_j^m U(g)$ $orall g\in {
m SO}(3)$
$$K(gx)=
ho_{
m out}(g)\circ K(x)\circ
ho_{
m in}(g)^{-1}$$

Wigner-Eckart theorem:

the matrix elements for fixed j, l, J are determined by single dof $\lambda \in \mathbb{C}$: $\langle JM|T_j^m|ln \rangle = \lambda \cdot \langle JM|jm;ln \rangle$

CG-coefficient, algebraically fixed

Spherical tensor operators:

$$2j+1$$
 operators $T_j^m, m=-j,\dots,j$ satisfying symmetry constraint $\sum_{n=-j}^j D_j^{mn}(g)\,T_j^n=U(g)^\dagger T_j^m U(g)$ $orall g\in {
m SO}(3)$
$$K(gx)=
ho_{
m out}(g)\circ K(x)\circ
ho_{
m in}(g)^{-1}$$

Wigner-Eckart theorem:

the matrix elements for fixed j, l, J are determined by single dof $\lambda \in \mathbb{C}$: $\langle JM | T_j^m | ln \rangle = \lambda \cdot \langle JM | jm; ln \rangle$

CG-coefficient, algebraically fixed

can we generalize this result to the matrix elements $\langle JM|K(x)|ln\rangle$ of G-steerable kernels?

$$\langle JM \, | \, K(x) \, | \, ln \rangle \, = \, \sum_{j \in \widehat{G}} \sum_{i=1}^{m_j} \sum_{s=1}^{[J(jl)]} \sum_{m=1}^{[j]} \sum_{M'=1}^{[J]} \, \langle JM \, | \, c_{jis} \, | \, JM' \rangle \cdot \langle s, JM' \, | \, jm; ln \rangle \cdot \langle i, jm \, | \, x \rangle$$
 kernel matrix elements elements endomorphisms Clebsch-Gordan harmonics

Wigner-Eckart for steerable kernels = explain dof's in matrix elements of steerable kernels

$$\langle JM \, | \, K(x) \, | \, ln \rangle \, = \, \sum_{j \in \widehat{G}} \sum_{i=1}^{m_j} \, \sum_{s=1}^{[J(jl)]} \, \sum_{m=1}^{[J]} \, \sum_{M'=1}^{[J]} \, \langle \, JM \, | \, c_{jis} \, | \, JM' \, \rangle \cdot \langle \, s, \, JM' \, | \, jm; \, ln \, \rangle \cdot \langle \, i, \, jm \, | \, x \, \rangle$$
 kernel matrix elements endomorphisms Clebsch-Gordan harmonics

1. Peter-Weyl Theorem

$$\langle JM|K(x)|ln\rangle = \sum_{j\in \widehat{G}} \sum_{i=1}^{m_j} \sum_{s=1}^{[J(jl)]} \sum_{m=1}^{[j]} \sum_{M'=1}^{[J]} \langle JM|c_{jis}|JM'\rangle \cdot \langle s,JM'|jm;ln\rangle \cdot \langle i,jm|x\rangle$$
 kernel matrix elements endomorphisms Clebsch-Gordan harmonics Clebsch-Gordan decomposition

- Peter-Weyl Theorem

$$\langle JM|K(x)|ln\rangle = \sum_{j\in \widehat{G}} \sum_{i=1}^{m_j} \sum_{s=1}^{[J(jl)]} \sum_{m=1}^{[j]} \sum_{M'=1}^{[J]} \langle JM|c_{jis}|JM'\rangle \cdot \langle s,JM'|jm;ln\rangle \cdot \langle i,jm|x\rangle$$
 kernel matrix elements elements endomorphisms Clebsch-Gordan harmonics large endomorphisms

- Clebsch-Gordan decomposition _____
- Peter-Weyl Theorem -

$$\langle JM|K(x)|ln\rangle = \sum_{j\in \widehat{G}} \sum_{i=1}^{m_j} \sum_{s=1}^{[J(jl)]} \sum_{m=1}^{[j]} \sum_{M'=1}^{[J]} \langle JM|c_{jis}|JM'\rangle \cdot \langle s,JM'|jm;ln\rangle \cdot \langle i,jm|x\rangle$$
 kernel matrix elements elements endomorphisms Clebsch-Gordan harmonics

Wigner-Eckart for steerable kernels = explain dof's in matrix elements of steerable kernels

There are steerable basis kernels $\,K_{iisr}\,$ such that:

$$K = \sum_{j \in \widehat{G}} \sum_{i=1}^{m_j} \sum_{s=1}^{[J(jl)]} \sum_{r=1}^{E_J} \lambda_{jisr} \cdot K_{jisr}$$

Wigner-Eckart for steerable kernels = explain dof's in matrix elements of steerable kernels

There are steerable basis kernels $\,K_{jisr}\,$ such that:

$$K = \sum_{j \in \widehat{G}} \sum_{i=1}^{m_j} \sum_{s=1}^{[J(jl)]} \sum_{r=1}^{E_J} \lambda_{jisr} \cdot K_{jisr}$$

Learnable Parameters

SO(2) with complex representations [1]

[1] Daniel E. Worrall et al. (2016). "Harmonic Networks: Deep Rotation and Translation

Equivariance" In: Conference on Computer Vision and Pattern Recognition (CVPR)

- SO(2) with complex representations [1]
- SO(2) with real representations [2]

[1] Daniel E. Worrall et al. (2016). "Harmonic Networks: Deep Rotation and Translation Equivariance" In: Conference on Computer Vision and Pattern Recognition (CVPR)

[2] Maurice Weiler, Gabriele Cesa (2019). "General E(2)-Equivariant Steerable CNNs"

In: Conference on Neural Information Processing Systems (NeuRIPS)

- SO(2) with complex representations [1]
- SO(2) with real representations [2]
- SO(3) with complex and real representations [3, 4]

[1] Daniel E. Worrall et al. (2016). "Harmonic Networks: Deep Rotation and Translation Equivariance" In: Conference on Computer Vision and Pattern Recognition (CVPR)

[2] Maurice Weiler, Gabriele Cesa (2019). "General E(2)-Equivariant Steerable CNNs" In: Conference on Neural Information Processing Systems (NeuRIPS)

[3] Nathaniel Thomas et al. (2018). "Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds" In: arxiv e-Prints

[4] Maurice Weiler et al. (2018). "3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data." In: Conference on Neural Information Processing Systems (NeuRIPS)

- SO(2) with complex representations [1]
- SO(2) with real representations [2]
- SO(3) with complex and real representations [3, 4]
- \mathbb{Z}_2 with real (regular) representations **[5]**

- [1] Daniel E. Worrall et al. (2016). "Harmonic Networks: Deep Rotation and Translation Equivariance" In: Conference on Computer Vision and Pattern Recognition (CVPR)
- [2] Maurice Weiler, Gabriele Cesa (2019). "General E(2)-Equivariant Steerable CNNs" In: Conference on Neural Information Processing Systems (NeuRIPS)
- [3] Nathaniel Thomas et al. (2018). "Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds" In: arxiv e-Prints
- [4] Maurice Weiler et al. (2018). "3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data." In: Conference on Neural Information Processing Systems (NeuRIPS)
- [5] Taco Cohen, Max Welling (2016). "Group Equivariant Convolutional Networks." In International Conference on Machine Learning (ICML)

- SO(2) with complex representations [1]
- SO(2) with real representations [2]
- SO(3) with complex and real representations [3, 4]
- \mathbb{Z}_2 with real (regular) representations **[5]**
- O(3) with both complex and real representations
- [1] Daniel E. Worrall et al. (2016). "Harmonic Networks: Deep Rotation and Translation Equivariance" In: Conference on Computer Vision and Pattern Recognition (CVPR)
- [2] Maurice Weiler, Gabriele Cesa (2019). "General E(2)-Equivariant Steerable CNNs" In: Conference on Neural Information Processing Systems (NeuRIPS)
- [3] Nathaniel Thomas et al. (2018). "Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds" In: arxiv e-Prints
- [4] Maurice Weiler et al. (2018). "3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data." In: Conference on Neural Information Processing Systems (NeuRIPS)
- [5] Taco Cohen, Max Welling (2016). "Group Equivariant Convolutional Networks." In International Conference on Machine Learning (ICML)

- SO(2) with complex representations [1]
- SO(2) with real representations [2]
- SO(3) with complex and real representations [3, 4]
- \mathbb{Z}_2 with real (regular) representations **[5]**
- O(3) with both complex and real representations
- [1] Daniel E. Worrall et al. (2016). "Harmonic Networks: Deep Rotation and Translation Equivariance" In: Conference on Computer Vision and Pattern Recognition (CVPR)
- [2] Maurice Weiler, Gabriele Cesa (2019). "General E(2)-Equivariant Steerable CNNs" In: Conference on Neural Information Processing Systems (NeuRIPS)
- [3] Nathaniel Thomas et al. (2018). "Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds" In: arxiv e-Prints
- [4] Maurice Weiler et al. (2018). "3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data." In: Conference on Neural Information Processing Systems (NeuRIPS)
- [5] Taco Cohen, Max Welling (2016). "Group Equivariant Convolutional Networks." In International Conference on Machine Learning (ICML)

Circular harmonics

Spherical harmonics

A Wigner-Eckart theorem for group equivariant convolution kernels

Leon Lang

AMLab, CSL

University of Amsterdam

Maurice Weiler

AMLab, QUVA lab

University of Amsterdam

