Management and Processing of Big Data Level-I session-1

$$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{OH} \end{array} \begin{array}{c} \text{H}_{3}\text{C} \\ \text{OH} \end{array}$$

morphine

dihydrocodeinone

Know your classmates

Data vs Information

• Data :

Simply fact or figure

For example: a number 15

• Information:

Context + data

For example: 15 degree centigrade is the temperature of Montreal on 07th Sept 2019 at 09:35 AM.

Evolution in Data management

Page [

What's Big Data?

- International Data Corporation (IDC) has measured data footprint in 2013: 4.4 zettabytes
- 1 zettabyte = 1 billion terabytes
- Forecast is to have 44 zettabytes by 2020
- Where does this data come from?

Characteristics of Big Data

• Volume

Velocity

Variety

Value

Volume

 Any guess how much amount of data we are producing within this room?

 Connected smart cars will generate 25GB data per hour

Ref: https://qz.com/344466/connected-cars-will-send-25-gigabytes-of-data-to-the-cloud-every-hour/

Velocity

- What happens in an internet second
 - 54,907 Google searches
 - 7,252 tweets
 - 125,406 YouTube videos
 - 2,501,018 emails sent

Ref: http://www.dailymail.co.uk/sciencetech/article-3662925/What-happens-internet-second-54-907-Google-searches-7-252-tweets-125-406-YouTube-video-views-2-501-018-emails-sent.html#ixzz4sNJmz06e

Tage 1(

Value

Page 11

Applications

- Finance
- Pharma
- Retail
- Manufacturing
- Insurance
- Travel industry

What is next?

The good news is "We have big data to analyze"

But the challenge is "How to store and process it"

Build a bigger system with increased computing power

 "In pioneer days they used oxen for heavy pulling, and when one ox couldn't budge a log, they didn't try to grow a larger ox. We shouldn't be trying for bigger computers, but for more systems of computers" – Grace Hopper

Storage Technology

1990 1370 MB data 4.4 MB/s Today
TB is the norm
100 MB/s

System is highly compute intensive

Small amount of data on remote machine

Low bandwidth

Based on Internet

Based on Message Passing Interface (MPI)

Uses shared filesystem

 Programmer has to think at task level as opposed to data level

Missing abstraction of fault tolerance

Distributed Computing

Page 18

Major Vendors

- Cloudera
- Hortonworks
- MapR
- Amazon cloud
- Databricks
- Microsoft cloud

- Map Reduce
- YARN
- Pig
- Hive
- Impala
- Sqoop
- Spark

- Shell scripting
- SQL
- Git
- Intellij Idea
- Java
- Scala
- Python

Content repository
 https://github.com/shyam-kantesariya/big_data_course

 Email: kantesariyashyam@gmail.com

• LinkedIn:

https://www.linkedin.com/in/kantesariyashyam/

Environment Setup

• Git Bash

• Intellij IDEA

Cloudera VM

Exercise 1: Unix shell

• Please refer to Exercise 1 document

Brain Teaser

- A[n] is an array of n integers. Function sum_array does summation of all elements. But for a bigger array it runs out of heap memory and program crashes.
- Help me rewrite the same recursive function so that it runs for any array size

```
def sum_array(n):
    if n==0:
        return A[n]
    else:
        return A[n] + sum_array(n-1)
```

Recap

- Data processing trend
- Big Data and its characteristics
- Applications of big data
- Various computing technologies
- History of Hadoop
- Unix commands

Hadoop Components

HDFS: Storage

Namenode: Master node

Datanode: Worker node

Job Tracker: Master Coordinator Process

Task Tracker: Worker Coordinator Process

Exercise 2: HDFS Commands

• Please refer to Exercise 2 document

HDFS

 HDFS is a file system designed for storing very large files with streaming data access patterns, running on clusters of commodity hardware

Large Files

Streaming data access

Commodity hardware

HDFS Blocks

Single unit of storage

Default block size is 128MB

 Size of block will drive the ratio of time to read a block to the seek for a block

Exercise

- What should be the block size to make seek time
 1% of read time for given hardware configuration
 - Seek time: 10 ms
 - Data read rate: 100MB/s

Solution:

- Let say x MB is the block size then read time = x/100 seconds
- To fulfill the given condition 1% of x/100 = 10 ms
- Hence x=100 MB

Benefits of blocks

Files can be larger than a single disk

 Simplicity at storage level as data node doesn't store any metadata

Fault tolerance by replicating blocks

Filesystem metadata

Network Topology

Rack awareness

HDFS CLI Read Commands

 Copy a file from local local file system to HDFS hadoop fs –copyFromLocal <source> <target>

- Get merged file from HDFS to local file system hadoop fs –getmerge <source> <target>
- Cat a file from HDFS hadoop fs –cat <filename>

HDFS Read operation

HDFS CLI Write Commands

 Write a file from local file system to HDFS hadoop fs -copyFromLocal <source> <target> hadoop fs -put <source> <target>

HDFS Write operation

HDFS not made for

Low-latency data access

- Lots of small files
 - Each file|block|directory stores around 150 bytes of metadata.
 Hence 1 million files each of one block will consume 300 MB of storage on Namenode

Multiple writers, arbitrary file modifications

Exercise

- Calculate the memory(RAM) requirement on Namenode for given cluster configurations
 - Cluster size: 200 nodes
 - Storage capacity of each node: 24 TB
 - Block size: 128MB
 - Replication factor: 3
 - Metadata storage size for each block: 150 bytes
- Solution
 - **(200*24*10^12*150)/(128*10^6*3)**

RDBMS vs Hadoop

Attribute	RDBMS	Hadoop
Data Size	Gigabytes	Petabytes
Access	Interactive & Batch	Batch
Updates	Multiple Read/Write	Write once, Read multiple times
Transaction	ACID	None
Structure	Schema-on-write	Schema-on-read
Integrity	High	Low
Scaling	Nonlinear	Linear

Reference

Apache Hadoop

https://hadoop.apache.org/

Reference book: Hadoop definitive guide by Tom White

https://www.oreilly.com/library/view/hadoop-the-definitive/9781491901687/index.html

Cloudera VM

https://www.cloudera.com/downloads/quickstart vms/5-13.html

Intellij Idea

https://www.jetbrains.com/idea/download/#section=windows

Git bash

https://git-scm.com/downloads

• Unix

http://www.ee.surrey.ac.uk/Teaching/Unix/