

# 머신러님시작하기

01 자료 형태의 이해





- 01. 자료의 형태
- 02. 범주형 자료의 요약
- 03. 수치형 자료의 요약

# 자료의 형태



Confidential all rights reserved

❷ 자료의 형태를 알아야 하는 이유

머신러닝은 데이터라는 디지털 자료를 바탕으로 수행하는 분석방식 자료의 형태를 파악함은 머신러닝 사용하기 위한 필수 과정으로 아래 물음의 답을 얻을 수 있음

- 데이터가 어떻게 구성되어 있을까?
- 어떤 머신러닝 모델을 사용해야 할까?
- 데이터 전 처리를 어떻게 해야 할까?
- • •

☑ 자료 형태 구분



❷ 자료 형태 구분

### 자료

## 수치형 자료

(Numerical data)

= 양적 자료(Quantitative data)

수치로 측정이 가능한 자료

예) 키, 몸무게, 시험 점수, 나이 등

## 범주형 자료

(Categorical data)

= 질적 자료(Qualitative data)

수치로 측정이 불가능한 자료

예) 성별, 지역, 혈액형 등

♥ 자료의 형태 구분 시, 주의점

범주형 자료와 수치 자료의 구분



자료의 숫자 표현 가능 여부

# 범주형 자료가 숫자로 표현되는 경우

남녀 성별 구분 시, 남자를 1, 여자를 0 으로 표현하는 경우, 숫자로 표현 되었 으나 범주형 자료

# 수치형 자료를 범주형 자료 로 변환하는 경우

나이 구분 시, 나이 값은 수치형 자료지만 10~19세, 20~29세 등 나이 대에 따라 구간화 하면 범주형 자료

01 자료의 형태

❷ 범주형 자료 구분



♥ 수치형 자료 구분



# 연속형 자료

(Continuous data)

연속적인 관측값을 가짐

예) 원주율(3.1415923878···.), 시간(09:12:23.21···) 등

## 이산형 자료

(Discrete data)

셀 수 있는 관측값을 가짐

예) 뉴스 글자 수, 주문 상품 개수

# 범주형자료의요약



Confidential all rights reserved

다수의 범주가 반복해서 관측

관측값의 크기보다 포함되는 범주에 관심 범주형 자료 요약 필요

각 범주에 속하는 관측값의 개수를 측정 전체에서 차지하는 각 범주의 비율 파악

효율적으로 범주 간의 차이점을 비교 가능



# 강의 만족도 설문 (100명 조사)

| No.   | ID    | 만족도   |
|-------|-------|-------|
| 1     | 23512 | 매우 만족 |
| 2     | 12351 | 보통    |
| 3     | 12532 | 만족    |
| 4     | 25432 | 불만족   |
| • • • | • • • | • • • |
| 100   | 21353 | 보통    |



# 강의 만족도 설문 (100명 조사)

| 범주     | 도수 | 상대도수 | 누적 상대도수 |
|--------|----|------|---------|
| 매우 만족  | 30 | 0.3  | 0.3     |
| 만족     | 10 | 0.1  | 0.4     |
| 보통     | 30 | 0.3  | 0.7     |
| 불만족    | 15 | 0.15 | 0.85    |
| 매우 불만족 | 15 | 0.15 | 1.00    |

#### ☑ 도수분포표 정의

### 도수

(Frequency)

각 범주에 속하는 관측값의 개수

value\_counts()

### 상대도수

(Relative Frequency)

도수를 자료의 전체 개수로 나눈 비율

value\_counts(normalize=True)

## 도수분포표

(Frequency Table)

범주형 자료에서 범주와 그 범주에 대응하는 도수, 상대도수를 나열해 표로 만든 것

### ● 막대그래프 (Bar Chart)

# 강의 만족도 설문 (100명 조사)

| 범주     | 도수 |  |
|--------|----|--|
| 매우 만족  | 30 |  |
| 만족     | 10 |  |
| 보통     | 30 |  |
| 불만족    | 15 |  |
| 매우 불만족 | 15 |  |

각 범주 들의 크기 차이를 잘 보여줄 수 있는 방법이 있을까? 02 범주형 자료의 요약

● 막대그래프 (Bar Chart)





## 각 범주에서 도수의 크기를 막대로 그림

그래프의 y축: 도수에 대한 눈금

그래프의 x축 : 범주를 나열

## 장점

각 범주가 가지는 도수의 크기 차이를 비교하기 쉬움

### 단점

각 범주가 차지하는 비율의 비교는 어려움

# 수치형 자료의 요약



Confidential all rights reserved

#### ● 수치를 통한 자료 요약

## 수치형 자료의 특징

- 범주형 자료와 달리 수치로 구성되어 있기에 통계값을 사용한 요약이 가능함
- 시각적 자료로는 이론적 근거 제시가 쉽지 않은 단점을 보완함



많은 양의 자료를 의미 있는 수치로 요약하여 대략적인 분포상태를 파악 가능 ❷ 평균(Mean)

np.mean()

관측값들을 대표할 수 있는 통계값

수치형 자료의 통계값 중 가장 많이 사용되는 방법

모든 관측값의 합을 자료의 개수로 나눈 것

자료  $x_1, x_2, ..., x_n$  의 평균을  $\bar{x}$  로 표기

$$\bar{x} = \frac{\text{모든 관측값의 합계}}{\text{총 자료의 개수}} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

- 관측값의 산술평균으로 사용
- 통계에서 기초적인 통계 수치로 가장 많이 사용
- 극단적으로 큰 값이나 작은 값의 영향을 많이 받음

☑ 퍼진 정도의 측도





평균 외에 분포가 퍼진 정도를 측도할 수치가 필요



분산, 표준편차 등을 퍼진 정도의 측도로 사용

### ❷ 퍼진 정도의 측도



A : 평균 0, 분산 10

B : 평균 0, 분산 20

C: 평균 0, 분산 30



from statistics import variance
variance()

자료가 얼마나 흩어졌는지 숫자로 표현

각 관측값이 자료의 평균으로부터 떨어진 정도







☑ 표준편차

from statistics import stdev
stdev()

분산의 단위 = 관측값의 단위의 제곱

관측값의 단위와 불일치

분산의 양의 제곱근은 관측값과 단위가 일치

분산의 양의 제곱근을 표준편차라 하고 s로 표기

$$s = +\sqrt{s^2}$$

♥ 히스토그램(Histogram)

plt.hist()

수치형 자료를 일정한 범위를 갖는 범주로 나누고 막대그래프와 같은 방식으로 그림



03 수치형 자료의 요약

♥ 히스토그램(Histogram)



❷ 히스토그램의 특징

- 자료의 분포를 알 수 있음
- 계급구간과 막대의 높이로 그림
- 도수, 상대도수를 막대 높이로 사용

# 크레딧

/\* elice \*/

코스 매니저 이해솔

콘텐츠 제작자 이해솔

강사 이해솔

감수자

\_

디자이너 강혜정

# 연락처

#### TEL

070-4633-2015

#### WEB

https://elice.io

#### E-MAIL

contact@elice.io

