Computer Visions Generative Machine Learning Tools

MAS.S68 F'19 Roy Shilkrot, Fluid Interfaces

Class 6: 3D

Today

Catch up

- HW 3+4 update

Content

- Representing 3D models
- ML for 3D data
- Generative ML for 3D

Application

- Sketch to 3D, Photo to 3D
- 3D Latent space learning
- 3D GANs

Representing 3D Models

Mesh

Graph

Volume

Parametric Design

Generative / Procedural Design

3D Model as Mesh

3D Model as Mesh

Face-Vertex Meshes

ply format ascii 1.0 element vertex 867 property float32 x property float32 y property float32 z element face 1704 property list uint8 int32 vertex indices end header 0.00472708 0.0012 -0.000833515 0.0048 0.0012 0 0 0 0 0.00451052 0.0012 -0.0016417 0.00415692 0.0012 -0.00240001 0.00367701 0.0012 -0.00308539 0.00308537 0.0012 -0.00367702 $0.00239999 \ 0.0012 \ -0.00415693$ 0.00164168 0.0012 -0.00451053 3 0 1 2 3 3 0 2 3 4 3 2 3 5 4 2 3 7 6 2 3 8 7 2 3 9 8 2 3 10 9 2

Face List v0 v4 v5 v0 v5 v1 V1 V5 V6 v1 v6 v2 V2 V6 V7 V2 V7 V3 v3 v7 v4 v3 v4 v0 v8 v5 v4 v8 v6 v5 v8 v7 v6 v8 v4 v7 v9 v5 v4 v9 v6 v5 v9 v7 v6

3D Model as Solid

Parametric 3D Modeling

3D Model as Volume

Mesh to Volume (Voxelization)

3D Volume: Model as Distance Function

Deep Learning for 3D Models

3D Deep Learning Tasks 3D Mesh as Graph Graphs Learning

OctNet Pooling

Input

Fan et al. (2017)

Edge Centric 3D Model

Face List 48 9

7 14 15 3 8 15 4 16 19 5 17 16

6 18 17 7 19 18 0 23 20

1 20 21 2 21 22 3 22 23

Edge List

	3.70		
e0	v0 v1	f1 f12	9 23 10 20
e1	v1 v2	f3 f13	11 20 12 21
e2	v2 v3	f5 f14	13 21 14 22
e3	v3 v0	f7 f15	15 22 8 23
e4	v4 v5	f0 f8	19 8 16 9
e5	v5 v6	f2 f9	16 10 17 11
e6	v6 v7	f4 f10	17 12 18 13
e7	v7 v4	f6 f11	18 14 19 15
e8	v0 v4	f7 f0	3 9 7 4
e9	v0 v5	f0 f1	8 0 4 10
e10	v1 v5	f1 f2	0 11 9 5
e11	v1 v6	f2 f3	10 1 5 12
e12	v2 v6	f3 f4	1 13 11 6
e13	v2 v7	f4 f5	12 2 6 14
e14	V3 V7	f5 f6	2 15 13 7
e15	v3 v4	f6 f7	14 3 7 15
e16	v5 v8	f8 f9	4 5 19 17
e17	v6 v8	f9 f10	5 6 16 18
e18	v7 v8	f10 f11	6 7 17 19
e19	v4 v8	f11 f8	7 4 18 16
e20	v1 v9	f12 f13	0 1 23 21
e21	v2 v9	f13 f14	1 2 20 22
e22	v3 v9	f14 f15	2 3 21 23
e23	v0 v9	f15f12	3 0 22 20

Vertex List

v0	0,0,0	8 9 0 23 3
V1	1,0,0	10 11 1 20 0
v2	1,1,0	12 13 2 21 1
v3	0,1,0	14 15 3 22 2
٧4	0,0,1	8 15 7 19 4
v5	1,0,1	10 9 4 16 5
v6	1,1,1	12 11 5 17 6
٧7	0,1,1	14 13 6 18 7
v8	.5,.5,0	16 17 18 19
v9	.5,.5,1	20 21 22 23

Graphs for the Deep Learning Era

Graph Neural N
$$\mathbf{h}_v = f(\mathbf{x}_v, \mathbf{x}_{co[v]}, \mathbf{h}_{ne[v]}, \mathbf{x}_{ne[v]})$$

Hidden state: $\mathbf{H}^{t+1} = F(\mathbf{H}^t, \mathbf{X})$

$$\mathbf{o}_v = g(\mathbf{h}_v, \mathbf{x}_v)$$

Output:

$$loss = \sum_{i=1}^p (\mathbf{t}_i - \mathbf{o}_i)$$
 Node labeling

Loss:

[Scarselli '09]

Fig. 2. Graph and the neighborhood of a node. The state x_1 of the node 1 depends on the information contained in its neighborhood.

Fig. 2. An overview of variants of graph neural networks.

[Zhou '18]

Graph Convolutional Networks

Popularized by: <u>Kipf and Welling '16</u>, ICLR '17 But it existed long before...

Graph Convolution Layer:

hidden activation adjacency weights
$$H^{(l+1)} = \sigma \Big(ilde{D}^{-rac{1}{2}} ilde{A} ilde{D}^{-rac{1}{2}} H^{(l)} W^{(l)} \Big)$$
 $ilde{A} = A + I_N \qquad ilde{D}_{ii} = \sum_j ilde{A}_{ij}$

Learn linear transformation of node features (embeddings), add non-linear activation.

Why "Convolution"?

(a) Graph Convolutional Network

Symmetric normalized graph Laplacian:

$$\mathbf{L} = \mathbf{I_n} - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$

A (adjacency) 1s or 0s, its diagonal is all 0s D degree matrix.

What is it useful for??

Well, it's actually useful for Segmentation! [Shi, Jianbo, Malik '00] **Normalized Cuts**

Taking the second smallest eigenvector from:

$$\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T \ \mathbf{\Lambda}_{ii} = \lambda_i$$

(In norm-cuts the non-sym Lap. is L = D - A)

Graph Laplacian spectral analysis (e.g. eigen decomposition) exposes structure.

Figure: Eigenfunctions corresponding to the first six nonzero eigenvalues.

Minnesota road graph (2642 vertices)

Figure: Eigenfunctions corresponding to the first six nonzero eigenvalues. Level-8 graph approximation to Sierpinski gasket (9843 vertices)

Graph Fourier Transform: (spectral / eigen linear basis transform)

$$egin{aligned} \mathbf{L} &= \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T \ \mathscr{F}(\mathbf{x}) &= \mathbf{U}^T \mathbf{x} & \mathscr{F}^{-1}(\mathbf{\hat{x}}) &= \mathbf{U} \mathbf{\hat{x}} \ \mathbf{x} &= \sum_i \mathbf{\hat{x}}_i \mathbf{u}_i \end{aligned}$$

Graph filter, via convolution theorem:

$$\mathbf{x} *_{G} \mathbf{g} = \mathscr{F}^{-1}(\mathscr{F}(\mathbf{x}) \odot \mathscr{F}(\mathbf{g}))$$

= $\mathbf{U}(\mathbf{U}^{T}\mathbf{x} \odot \mathbf{U}^{T}\mathbf{g})$

 $\mathbf{g} \in \mathbf{R}^N$

Linear simplification: $\mathbf{g}_{ heta} = diag(\mathbf{U}^T\mathbf{g}) \longrightarrow \mathbf{x} *_G \mathbf{g}_{ heta} = \mathbf{U}\mathbf{g}_{ heta}\mathbf{U}^T\mathbf{x}$

Wu '19

Generalized convolution:

$$\mathbf{x} *_{G} \mathbf{g}_{\theta} = \mathbf{U} \mathbf{g}_{\theta} \mathbf{U}^{T} \mathbf{x}$$

Kipf '16

Solving for g_{θ} requires K-th order polynomials in the Laplacian, and depends on nodes that are K steps away from the central node (K-th-order neighborhood).

[Kipf & Welling '16] suggest taking K = 1, and end up with the simpler linear transformation:

$$g_{\theta} \star x \approx \theta \left(I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x$$

$$Z = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta$$
 $X \in \mathbb{R}^{N \times C}$

It is **differentiable** in Θ , and **fast to compute** both FF and Backprop.

And the beauty is that it follows CNN paradigm: **Stack layers**!

Receptive Field Propagation

By stacking GC layers we increase the receptive field of higher-level neurons.

However there's one big problem ---

Receptive Field Propagation

By stacking GC layers we increase the receptive field of higher-level neurons.

However there's one big problem ---

Graph *layout* stays the same layer-to-layer. We have the *same amount of features* to learn in each layer === it doesn't scale.

It's essentially a MLP.

(Quick to overfit, bloated, data hungry models)

DiffPool and conv-pool

Figure 1: High-level illustration of our proposed method DIFFPOOL. At each hierarchical layer, we run a GNN model to obtain embeddings of nodes. We then use these learned embeddings to cluster nodes together and run another GNN layer on this coarsened graph. This whole process is repeated for L layers and we use the final output representation to classify the graph.

Ying '18

Learning How to "Pool" a Graph

Select the nodes (via indicator matrix) that will go to the next cluster.

Learn this as a parametric assignment.

E.g. the assignment is dependant on the node features + neighbor features.

$$A^{(i+1)} = S^{(i)\top} A^{(i)} S^{(i)}$$

$$S^{(i)} = \operatorname{softmax} \left(\operatorname{GNN}_{\text{pool}} \left(A^{(i)}, F^{(i)} \right) \right)$$
[Kinf et all

Encourage neighbors to stick together:

$$L_{\text{LP}} = ||A^{(l)}, S^{(l)}S^{(l)^T}||_F$$

Enforce singular assignment via entropy:

$$L_{\rm E} = \frac{1}{n} \sum_{i=1}^{n} H(S_i)$$

Generative 3D Models

3DGAN
Caricature to 3D
Image to 3D
HoloGAN

Our Synthesized 3D Shapes

In this work, we build a model to generate 3D shapes from latent vectors.

Given a mesh of a car, we first compute depth maps from different viewpoints.

HoloGAN

Unsupervised learning of 3D representations from natural images

Thu Nguyen-Phuoc Chuan Li Lucas Theis Christian Richardt Yong-Liang Yang

ICCV 2019

