

Solving Optimal Control Problems with ACADO Toolkit

Boris Houska, Hans Joachim Ferreau, Moritz Diehl

Electrical Engineering Department K.U. Leuven

OPTEC Seminar, 2/9/2009

Overview

Part 1:

- Scope of ACADO Toolkit
- An Optimal Control Tutorial Example (with Software Demo)
- Algorithms and Modules in ACADO

Part 1:

- Scope of ACADO Toolkit
- An Optimal Control Tutorial Example (with Software Demo)
- Algorithms and Modules in ACADO

Part 2:

- A Parameter Estimation Tutorial Example
- A Simple Model Predictive Control Simulation (with Software Demo)
- Outlook

Part 1:

- Scope of ACADO Toolkit
- An Optimal Control Tutorial Example (with Software Demo)
- Algorithms and Modules in ACADO

Part 2:

- A Parameter Estimation Tutorial Example
- A Simple Model Predictive Control Simulation (with Software Demo)
- Outlook

Motivation: Optimal Control and Engineering Applications

Optimal Control Applications in OPTEC:

- Optimal Robot Control, Kite Control, Solar Power Plants
- Batch Distallation Processes, Bio-chemical reactions...

Motivation: Optimal Control and Engineering Applications

Optimal Control Applications in OPTEC:

- Optimal Robot Control, Kite Control, Solar Power Plants
- Batch Distallation Processes, Bio-chemical reactions...

Umbiquos Need for Nonlinear Optimal Control Software

Existing Packages:

- IPOPT (C++,open source, collocation, interior point method)
- MUSCOD (Fortran/C, proprietary, Multiple Shooting, SQP)
- PROPT (commercial Matlab software, collocation, SQP)
- DSOA (C/C++, open-source, single shooting, SQP)
- ...

Motivation: Optimal Control and Engineering Applications

Optimal Control Applications in OPTEC:

- Optimal Robot Control, Kite Control, Solar Power Plants
- Batch Distallation Processes, Bio-chemical reactions...

Umbiquos Need for Nonlinear Optimal Control Software

Existing Packages:

- IPOPT (C++,open source, collocation, interior point method)
- MUSCOD (Fortran/C, proprietary, Multiple Shooting, SQP)
- PROPT (commercial Matlab software, collocation, SQP)
- DSOA (C/C++, open-source, single shooting, SQP)
- ...

All packages have their particular strengths in a specific range of applications, but ...

Motivation for ACADO Toolkit

Most of the existing Packages are ...

- either not open-source or limited in their user-friendliness
- difficult to install especially on embedded hardware
- not designed for closed loop MPC applications
- hard to extend with specialized algorithms

Motivation for ACADO Toolkit

Most of the existing Packages are ...

- either not open-source or limited in their user-friendliness
- difficult to install especially on embedded hardware
- not designed for closed loop MPC applications
- hard to extend with specialized algorithms

Key Propeties of ACADO Toolkit

- Open Source (LGPL) www.acadotoolkit.org
- user friendly interfaces close to mathematical syntax
- Code extensibility: use C++ capabilities
- Self-containedness: only need C++ compiler

Problem Classes and the Scope of ACADO

Optimal Control of Dynamic Systems

- Objectives: Mayer and/or Lagrange terms.
- Differential and algebraic equations.
- Initial value-, terminal-, path- and boundary constraints.

Problem Classes and the Scope of ACADO

Optimal Control of Dynamic Systems

- Objectives: Mayer and/or Lagrange terms.
- Differential and algebraic equations.
- Initial value-, terminal-, path- and boundary constraints.

State and Parameter Estimation

- Estimatation of model parameters of DAE's.
- A posteriori analysis: Computation of variance-covariances.

Problem Classes and the Scope of ACADO

Optimal Control of Dynamic Systems

- Objectives: Mayer and/or Lagrange terms.
- Differential and algebraic equations.
- Initial value-, terminal-, path- and boundary constraints.

State and Parameter Estimation

- Estimatation of model parameters of DAE's.
- A posteriori analysis: Computation of variance-covariances.

Feedback control based on real-time optimization (MPC/MHE)

- Coputation of current process state using measurements.
- Comptation of optimal control action in real-time.

Part 1:

- Scope of ACADO Toolkit
- An Optimal Control Tutorial Example (with Software Demo)
- Algorithms and Modules in ACADO

Part 2:

- A Parameter Estimation Tutorial Example
- A Simple Model Predictive Control Simulation (with Software Demo)
- Outlook

A simple rocket model

- Three differential states: s, v, and m.
- Control input: *u*
- Dynamic equations (model):

$$\dot{s}(t) = v(t)$$

 $\dot{v}(t) = \left[u(t) - 0.2 v(t)^2\right] / m(t)$
 $\dot{m}(t) = -0.01 u(t)^2$.

A simple rocket model

- Three differential states: s, v, and m.
- Control input: *u*
- Dynamic equations (model):

$$\dot{s}(t) = v(t)$$

 $\dot{v}(t) = \left[u(t) - 0.2 v(t)^2\right] / m(t)$
 $\dot{m}(t) = -0.01 u(t)^2$.

Aim:

- Fly in mimimum time T from s(0) = 0 to s(T) = 10.
- Start/land at rest: v(0) = 0, v(T) = 0.
- Start with m(0) = 1 and satisfy $v(t) \le 1.7$.
- Satisfy control constraints: $-1.1 \le u(t) \le 1.1$.

Mathematical Formulation:

minimize
$$s(\cdot), v(\cdot), m(\cdot), u(\cdot)$$

subject to

$$\dot{s}(t) = v(t)$$

$$\dot{v}(t) = \frac{u(t) - 0.2 \, v(t)^2}{m(t)}$$

$$\dot{m}(t) = -0.01 \, u(t)^2$$

$$s(0) = 0 \quad s(T) = 10$$

$$v(0) = 0 \quad v(T) = 0$$

$$m(0) = 1$$

$$-0.1 \leq v(t) \leq 1.7$$

$$-1.1 \leq u(t) \leq 1.1$$

$$5 \leq T \leq 15$$

Mathematical Formulation:

$$\begin{array}{ll}
\text{minimize} & T \\
s(\cdot), v(\cdot), m(\cdot), u(\cdot)
\end{array}$$

$$\dot{s}(t) = v(t)$$

 $\dot{v}(t) = \frac{u(t) - 0.2 \, v(t)^2}{m(t)}$
 $\dot{m}(t) = -0.01 \, u(t)^2$

$$s(0) = 0$$
 $s(T) = 10$
 $v(0) = 0$ $v(T) = 0$
 $m(0) = 1$

$$-0.1 \le v(t) \le 1.7$$

 $-1.1 \le u(t) \le 1.1$
 $5 < T < 15$

```
DifferentialState s,v,m;
Control u;
Parameter T;
DifferentialEquation f(0.0, T);
OCP ocp(0.0, T);
ocp.minimizeMayerTerm(T);
```

Mathematical Formulation:

$$\begin{array}{ll}
\text{minimize} & T \\
s(\cdot), v(\cdot), m(\cdot), u(\cdot)
\end{array}$$

$$\dot{s}(t) = v(t)$$

 $\dot{v}(t) = \frac{u(t) - 0.2 \, v(t)^2}{m(t)}$
 $\dot{m}(t) = -0.01 \, u(t)^2$

$$s(0) = 0$$
 $s(T) = 10$
 $v(0) = 0$ $v(T) = 0$
 $m(0) = 1$

$$-0.1 \le v(t) \le 1.7$$

 $-1.1 \le u(t) \le 1.1$
 $5 < T < 15$

```
DifferentialState s,v,m;
Control u;
Parameter T;
DifferentialEquation f(0.0, T);
OCP ocp(0.0, T);
ocp.minimizeMayerTerm(T);

f << dot(s) == v;
f << dot(v) == (u-0.2*v*v)/m;
f << dot(m) == -0.01*u*u;
ocp.subjectTo(f);
```

Mathematical Formulation:

$$\begin{array}{ll}
\text{minimize} & T \\
s(\cdot), v(\cdot), m(\cdot), u(\cdot)
\end{array}$$

$$\dot{s}(t) = v(t)$$

 $\dot{v}(t) = \frac{u(t) - 0.2 \, v(t)^2}{m(t)}$
 $\dot{m}(t) = -0.01 \, u(t)^2$

$$s(0) = 0$$
 $s(T) = 10$
 $v(0) = 0$ $v(T) = 0$
 $m(0) = 1$

$$-0.1 \le v(t) \le 1.7$$

 $-1.1 \le u(t) \le 1.1$
 $5 < T < 15$

```
DifferentialState
                               s,v,m;
Control
                                   u;
Parameter
                                   T;
DifferentialEquation f(0.0, T);
OCP ocp( 0.0, T );
ocp.minimizeMayerTerm( T );
f \ll dot(s) == v:
f << dot(v) == (u-0.2*v*v)/m:
f << dot(m) == -0.01*u*u;
ocp.subjectTo( f
                                   );
ocp.subjectTo( AT_START, s == 0.0);
ocp.subjectTo( AT_START, v == 0.0 );
ocp.subjectTo( AT_START, m == 1.0 );
ocp.subjectTo( AT_END , s == 10.0 );
ocp.subjectTo( AT_END , v == 0.0);
```

Mathematical Formulation:

$$\begin{array}{ll}
\text{minimize} & T \\
s(\cdot), v(\cdot), m(\cdot), u(\cdot)
\end{array}$$

$$\dot{s}(t) = v(t)$$

 $\dot{v}(t) = \frac{u(t) - 0.2 \, v(t)^2}{m(t)}$
 $\dot{m}(t) = -0.01 \, u(t)^2$

$$s(0) = 0$$
 $s(T) = 10$
 $v(0) = 0$ $v(T) = 0$
 $m(0) = 1$

$$-0.1 \le v(t) \le 1.7$$

 $-1.1 \le u(t) \le 1.1$

$$5 \leq T \leq 15$$

```
DifferentialState
                               s,v,m;
Control
                                   u;
Parameter
                                   T;
DifferentialEquation f(0.0, T);
OCP ocp( 0.0, T );
ocp.minimizeMayerTerm( T );
f \ll dot(s) == v:
f \ll dot(v) == (u-0.2*v*v)/m;
f << dot(m) == -0.01*u*u;
ocp.subjectTo( f
                                   );
ocp.subjectTo( AT_START, s == 0.0 );
ocp.subjectTo( AT_START, v == 0.0 );
ocp.subjectTo( AT_START, m == 1.0 );
ocp.subjectTo( AT_END , s == 10.0 );
ocp.subjectTo( AT_END , v == 0.0);
ocp.subjectTo( -0.1 \le v \le 1.7
ocp.subjectTo( -1.1 \le u \le 1.1
                                   ):
ocp.subjectTo( 5.0 <= T <= 15.0
OptimizationAlgorithm algorithm(ocp);
algorithm.solve();
```

Graphical Output:

On the terminal:

#:	KKT tol.	Obj. Value
1:	1.001e+03	1.000e+01
2:	5.766e+00	9.950e+00
3:	2.946e-02	9.932e+00
4:	7.481e - 02	9.906e+00
12:	8.740e - 04	7.442e+00
13:	3.308e - 07	7.442e+00

convergence achieved.

Part 1:

- Scope of ACADO Toolkit
- An Optimal Control Tutorial Example (with Software Demo)
- Algorithms and Modules in ACADO

Part 2:

- A Parameter Estimation Tutorial Example
- A Simple Model Predictive Control Simulation (with Software Demo)
- Outlook

The Power of Symbolic Functions

Symbolic Functions allow:

- Dependency/Sparsity Detection
- Automatic Differentiation
- Symbolic Differentiation
- Convexity Detection
- Code Optimization
- C-code Generation

Symbolic Functions allow:

- Dependency/Sparsity Detection
- Automatic Differentiation
- Symbolic Differentiation
- Convexity Detection
- Code Optimization
- C-code Generation

Example 1:

Example 2 (code optimization):

```
Matrix A(3,3);
Vector b(3);
DifferentialStateVector x(3);
Function f;
A.setZero();
A(0,0) = 1.0; A(1,1) = 2.0; A(2,2) = 3.0;
b(0) = 1.0; b(1) = 1.0; b(2) = 1.0;
f << A*x + b;</pre>
```

- We would expect 12 flops to evaluate f.
- ACADO Toolkit needs only 6 flops.

Integration Algorithms

DAE simulation and sensitivity generation

- ACADO provides several Runge Kutta and a BDF integrator.
- All integrators provide first and second order numeric and automatic internal numerical differentiation.

Integration Algorithms

DAE simulation and sensitivity generation

- ACADO provides several Runge Kutta and a BDF integrator.
- All integrators provide first and second order numeric and automatic internal numerical differentiation.
- BDF integrator uses diagonal implicit Runge Kutta starter
- The BDF routine can deal with fully implicit index 1 DAE's:

$$\forall t \in [0, T]: F(\dot{y}(t), y(t), u(t), p, T) = 0.$$

Integration Algorithms

DAE simulation and sensitivity generation

- ACADO provides several Runge Kutta and a BDF integrator.
- All integrators provide first and second order numeric and automatic internal numerical differentiation.
- BDF integrator uses diagonal implicit Runge Kutta starter
- The BDF routine can deal with fully implicit index 1 DAE's:

$$\forall t \in [0,T]: \quad F(\dot{y}(t),y(t),u(t),p,T) = 0.$$

- The Integrators are also available as a stand alone package.
- Sparse LA solvers can be linked.

Nonlinear Optimization Algorithms

Nonlinear Optimal Control Problem

ACADO solves problem of the general form:

$$\underset{y(\cdot), u(\cdot), p, T}{\text{minimize}} \qquad \qquad \int_0^T L(\tau, y(\tau), u(\tau), p) \, d\tau \, + \, M(y(T), p)$$

$$\forall t \in [0, T]: \quad 0 \quad = \quad f(t, \dot{y}(t), y(t), u(t), p)$$

$$0 = r(y(0), y(T), p)$$

$$\forall t \in [0, T]: 0 \geq s(t, y(t), u(t), p)$$

Nonlinear Optimization Algorithms

Implemented Soultion Methods

- Discretization: Single- or Multiple Shooting
- NLP solution: several SQP type methods e.g. with
 - BFGS Hessian approximations or
 - Gauss-Newton Hessian approximations
- Globalization: based on line search
- QP solution: active set methods (qpOASES)

Nonlinear Optimization Algorithms

Implemented Soultion Methods

- Discretization: Single- or Multiple Shooting
- NLP solution: several SQP type methods e.g. with
 - BFGS Hessian approximations or
 - Gauss-Newton Hessian approximations
- Globalization: based on line search
- QP solution: active set methods (qpOASES)

Currently under development

- Collocation methods
- Interior point methods
- Sequential convex optimization techniques
- Lifted Newton methods
- ...

Using ACADO Toolkit for Parameter Estimation and Model Predictive Control

Boris Houska, Hans Joachim Ferreau, Moritz Diehl

Electrical Engineering Department K.U. Leuven

OPTEC Seminar, 2/9/2009

Part 1:

- Scope of ACADO Toolkit
- An Optimal Control Tutorial Example (with Software Demo)
- Algorithms and Modules in ACADO

Part 2:

- A Parameter Estimation Tutorial Example
- A Simple Model Predictive Control Simulation (with Software Demo)
- Outlook

Parameter Estimation with ACADO

 ACADO Toolkit can solve parameter estimation problems of the following form:

Tutorial Example: A Simple Pendulum

• Simple pendulum model describing the exctitation angle ϕ governed by the following ODE:

$$\ddot{\phi}(t) = -\frac{g}{l}\phi(t) - \alpha\dot{\phi}(t)$$

where $\it I$ is the length of the line, $\it \alpha$ the friction coefficient and $\it g$ the gravitational constant

Tutorial Example: A Simple Pendulum

• Simple pendulum model describing the exctitation angle ϕ governed by the following ODE:

$$\ddot{\phi}(t) = -\frac{g}{I}\phi(t) - \alpha\dot{\phi}(t)$$

where \it{I} is the length of the line, α the friction coefficient and \it{g} the gravitational constant

 \bullet ${\bf Aim}$ is to estimate / and α from ten measurements of the state ϕ

Tutorial Example: A Simple Pendulum

Mathematical Formulation:

$$\begin{array}{ll} \underset{\phi(\cdot),\alpha,l}{\mathsf{minimize}} & \sum_{i=1}^{10} \left(\phi(t_i) - \eta_i\right)^2 \end{array}$$

subject to:

$$\begin{aligned} \forall t \in [0,2]: \quad \ddot{\phi}(t) &= -\frac{g}{l}\phi(t) - \alpha\dot{\phi}(t) \\ &0 \leq \alpha \leq 4 \\ &0 \leq l \leq 2 \end{aligned}$$

```
\begin{aligned} & \underset{\phi(\cdot),\alpha,I}{\text{minimize}} & & \sum_{i=1}^{10} \left(\phi(t_i) - \eta_i\right)^2 \\ & \text{subject to:} \\ & \forall t \in [0,2]: & & \ddot{\phi}(t) = -\frac{g}{l}\phi(t) - \alpha\dot{\phi}(t) \\ & & & 0 \leq \alpha \leq 4 \\ & & & 0 \leq l \leq 2 \end{aligned}
```

```
DifferentialState
                      phi, dphi;
Parameter
                      1, alpha;
                      g = 9.81;
const double
DifferentialEquation
                      f:
Function
                      h:
OCP ocp( 0.0, 2.0 );
h << phi;
ocp.minimizeLSQ( h, "data.txt" );
f << dot(phi ) == dphi;
f \ll dot(dphi) == -(g/l) * sin(phi)
                  -alpha * dphi;
ocp.subjectTo( f );
ocp.subjectTo( 0.0 <= alpha <= 4.0 );
ocp.subjectTo( 0.0 <= 1 <= 2.0 );
ParameterEstimationAlgorithm alg(ocp);
alg.solve();
```

$\begin{array}{ll} \underset{\phi(\cdot),\alpha,l}{\text{minimize}} & \sum_{i=1}^{10} \left(\phi(t_i) - \eta_i\right)^2 \\ \\ \text{subject to:} \\ \\ \forall t \in [0,2]: & \ddot{\phi}(t) = -\frac{g}{l}\phi(t) - \alpha\dot{\phi}(t) \\ \\ & 0 \leq \alpha \leq 4 \\ \\ & 0 \leq l \leq 2 \end{array}$

```
DifferentialState
                      phi, dphi;
Parameter
                      1, alpha;
const double
                      g = 9.81;
DifferentialEquation
                      f:
Function
                      h:
OCP ocp( 0.0, 2.0 );
h << phi;
ocp.minimizeLSQ( h, "data.txt" );
f << dot(phi ) == dphi;
f \ll dot(dphi) == -(g/l) * sin(phi)
                  -alpha * dphi;
ocp.subjectTo( f );
ocp.subjectTo( 0.0 <= alpha <= 4.0 );
ocp.subjectTo( 0.0 <= 1 <= 2.0 );
ParameterEstimationAlgorithm alg(ocp);
alg.solve();
```

$\begin{array}{ll} \underset{\phi(\cdot),\alpha,I}{\mathsf{minimize}} & \sum_{i=1}^{10} \left(\phi(t_i) - \eta_i\right)^2 \\ \\ \mathsf{subject to:} \\ \\ \forall t \in [0,2]: & \ddot{\phi}(t) = -\frac{g}{l}\phi(t) - \alpha\dot{\phi}(t) \\ \\ & 0 \leq \alpha \leq 4 \\ \\ & 0 \leq l \leq 2 \end{array}$

```
DifferentialState
                      phi, dphi;
Parameter
                       1, alpha;
const double
                       g = 9.81;
DifferentialEquation
                       f:
Function
                       h:
OCP ocp( 0.0, 2.0 );
h << phi;
ocp.minimizeLSQ( h, "data.txt" );
f << dot(phi ) == dphi;
f \ll dot(dphi) == -(g/1) * sin(phi)
                  -alpha * dphi;
ocp.subjectTo( f );
ocp.subjectTo( 0.0 <= alpha <= 4.0 );
ocp.subjectTo( 0.0 <= 1 <= 2.0 );
ParameterEstimationAlgorithm alg(ocp);
alg.solve();
```

Parameter Estimation with ACADO

- Parameter estimation problems are (nonlinear) least-square problems with objective function $\frac{1}{2} \|F(x)\|_2^2$
- Parameter estimation problems are solved using the constrained Gauss-Newton method
- Newton-type method where the Hessian matrix is approximated by $\left(\frac{\partial F(x)}{\partial x}\right)^T \left(\frac{\partial F(x)}{\partial x}\right)$
- The constrained Gauss-Newton method works well for:
 - small residual problems
 - almost linear problems

Tutorial Example: A Simple Pendulum

Data file data.txt:

```
TIME POINTS MEASUREMENTS
------
0.00000e+00 1.00000e+00
2.72321e-01 nan
3.72821e-01 5.75146e-01
7.25752e-01 -5.91794e-02
9.06107e-01 -3.54347e-01
1.23651e+00 -3.03056e-01
1.42619e+00 nan
1.59469e+00 -9.64208e-02
1.72029e+00 -1.97671e-02
2.00000e+00 9.35138e-02
```

Fitting Results:

$$1 = 1.001e+00 +/- 1.734e-01$$

alpha = $1.847e+00 +/- 4.059e-01$

Part 1:

- Scope of ACADO Toolkit
- An Optimal Control Tutorial Example (with Software Demo)
- Algorithms and Modules in ACADO

Part 2:

- A Parameter Estimation Tutorial Example
- A Simple Model Predictive Control Simulation (with Software Demo)
- Outlook

Simulation Environment of ACADO Toolkit

Simulation Environment of ACADO Toolkit

Simulation Environment of ACADO Toolkit

Model Based Feedback Control

 ACADO Toolkit can solve model predictive control problems of the following form:

$$\begin{array}{lll} & \underset{x(\cdot),z(\cdot),u(\cdot),p}{\text{minimize}} & \int\limits_{0}^{T} \|y(t)-y_{\mathrm{ref}}(t)\|_{Q}^{2} + \|u(t)-u_{\mathrm{ref}}(t)\|_{R}^{2} \, \mathrm{d}\tau \\ & + \|y(T)-y_{\mathrm{ref}}(T)\|_{P}^{2} \\ & \text{subject to:} & x(0) & = x_{0} \\ & \forall t \in [0,T]: & \dot{x}(t) & = f(t,x(t),z(t),u(t),p) \\ & \forall t \in [0,T]: & 0 & = g(t,x(t),z(t),u(t),p) \\ & \forall t \in [0,T]: & y(t) & = h(t,x(t),z(t),u(t),p) \\ & \forall t \in [0,T]: & 0 & \geq s(t,x(t),z(t),u(t),p) \end{array}$$

Model Based Feedback Control

- Each MPC problem might be solved till convergence
- Preferably, the real-time iteration scheme is employed:
 - Only one real-time SQP step per MPC loop
 - Initial value embedding
 - Division into feedback and preparation phase

Model Based Feedback Control

- Each MPC problem might be solved till convergence
- Preferably, the real-time iteration scheme is employed:
 - Only one real-time SQP step per MPC loop
 - Initial value embedding
 - Division into feedback and preparation phase
- Model based feedback control often requires an online state estimator
- Moving Horizon Estimation (MHE) and Kalman filters will be implemented

- First principle **quarter car** model **with active suspension**, four states x_b, x_w, v_b, v_w describing vertical position/velocity of body/wheel
- Control input: limited damping force F to act between body and wheel
- External disturbance: road excitation R

- First principle **quarter car** model **with active suspension**, four states x_b, x_w, v_b, v_w describing vertical position/velocity of body/wheel
- Control input: limited damping force F to act between body and wheel
- External disturbance: road excitation R
- Simulation scenario: road excitation set to zero, body has initial displacement of 1 cm
- Aim: Bring body and wheel back to rest with zero displacement

Mathematical Formulation:

```
DifferentialState xB, xW, vB, vW;
                                                            Control F:
                                                            Disturbance R;

\underset{x_b, x_w, v_b, v_w, F}{\text{minimize}} \quad \int\limits_{0}^{1} \|y(t)\|_{Q}^{2} d\tau

                                                            DifferentialEquation f;
                                                            //...
subject to:
                                                            Function y;
\forall t \in [0,1]: \dot{x}_b(t) = v_b(t)
                                                            y \ll xB;
                                                            v \ll xW;
\forall t \in [0,1]: \dot{x}_w(t) = v_w(t)
                                                            v << vB:
\forall t \in [0,1]: \dot{v}_b(t) = f_1(x_b(t), x_w(t), F(t))
                                                            v << vW:
\forall t \in [0,1]: \dot{v}_w(t) = f_2(x_b(t), x_w(t), F(t), R(t))
                                                            Matrix Q(4,4);
                                                            Q.setIdentity();
\forall t \in [0,1]: \quad y(t) = (x_b(t), x_w(t), v_b(t), v_w(t))^T
                                                            OCP ocp( 0.0,1.0, 20 );
\forall t \in [0,1]: -500 < u(t) < 500
                                                            ocp.minimizeLSQ( Q, y );
                                                            ocp.subjectTo(f);
                                                            ocp.subjectTo(-500 \le F \le 500);
                                                            ocp.subjectTo( R == 0.0 );
```

```
DifferentialState xB, xW, vB, vW;
                                                            Control F:
                                                            Disturbance R;

\underset{x_b, x_w, v_b, v_w, F}{\text{minimize}} \quad \int\limits_{0}^{1} \|y(t)\|_{Q}^{2} d\tau

                                                            DifferentialEquation f;
                                                            //...
                                                            Function y;
subject to:
\forall t \in [0,1]: \dot{x}_b(t) = v_b(t)
                                                            y \ll xB;
                                                            v \ll xW;
\forall t \in [0,1]: \dot{x}_w(t) = v_w(t)
                                                            v << vB:
\forall t \in [0,1]: \dot{v}_b(t) = f_1(x_b(t), x_w(t), F(t))
                                                            v << vW:
\forall t \in [0,1]: \dot{v}_w(t) = f_2(x_b(t), x_w(t), F(t), R(t))
                                                            Matrix Q(4,4);
                                                            Q.setIdentity();
\forall t \in [0,1]: \quad y(t) = (x_h(t), x_w(t), v_h(t), v_w(t))^T
                                                            OCP ocp( 0.0,1.0, 20 );
\forall t \in [0,1]: -500 < u(t) < 500
                                                            ocp.minimizeLSQ( Q, y );
                                                            ocp.subjectTo(f);
                                                            ocp.subjectTo(-500 \le F \le 500);
                                                            ocp.subjectTo( R == 0.0 );
```

```
DifferentialState xB, xW, vB, vW;
                                                            Control F:
                                                            Disturbance R;

\underset{x_h, x_w, v_h, v_w, F}{\mathsf{minimize}} \quad \int\limits_{0}^{1} \|y(t)\|_{Q}^{2} d\tau

                                                            DifferentialEquation f;
                                                            //...
subject to:
                                                            Function y;
\forall t \in [0,1]: \dot{x}_b(t) = v_b(t)
                                                            y \ll xB;
                                                            v \ll xW;
\forall t \in [0,1]: \dot{x}_w(t) = v_w(t)
                                                            v << vB:
\forall t \in [0,1]: \dot{v}_b(t) = f_1(x_b(t), x_w(t), F(t))
                                                            v << vW:
\forall t \in [0,1]: \dot{v}_w(t) = f_2(x_b(t), x_w(t), F(t), R(t))
                                                            Matrix Q(4,4);
                                                            Q.setIdentity();
\forall t \in [0,1]: \quad y(t) = (x_b(t), x_w(t), v_b(t), v_w(t))^T
                                                            OCP ocp(0.0,1.0,20);
\forall t \in [0,1]: -500 < u(t) < 500
                                                            ocp.minimizeLSQ( Q, y );
                                                            ocp.subjectTo(f);
                                                            ocp.subjectTo(-500 \le F \le 500);
                                                            ocp.subjectTo( R == 0.0 );
```

Simulation Setup:


```
OutputFcn identity;
DynamicSystem dynamicSystem( f,identity );
Process process( dynamicSystem,INT_RK45 );
```

Simulation Setup:


```
OutputFcn identity;
DynamicSystem dynamicSystem(f,identity);
Process process(dynamicSystem,INT_RK45);

RealTimeAlgorithm alg(ocp);
DynamicFeedbackLaw feedbackLaw(alg,0.05);
Estimator trivialEstimator;
StaticReferenceTrajectory zeroReference;
Controller controller(feedbackLaw,trivialEstimator,zeroReference);
```

Simulation Setup:


```
OutputFcn identity;
DynamicSystem dynamicSystem( f,identity );
Process process( dynamicSystem,INT_RK45 );
RealTimeAlgorithm alg( ocp );
DynamicFeedbackLaw feedbackLaw( alg,0.05 );
Estimator trivialEstimator:
StaticReferenceTrajectory zeroReference;
Controller controller(
feedbackLaw,trivialEstimator,zeroReference );
SimulationEnvironment sim(
0.0,3.0,process,controller);
Vector x0(4):
x0(0) = 0.01:
sim.init(x0):
sim.run();
```

Part 1:

- Scope of ACADO Toolkit
- An Optimal Control Tutorial Example (with Software Demo)
- Algorithms and Modules in ACADO

Part 2:

- A Parameter Estimation Tutorial Example
- A Simple Model Predictive Control Simulation (with Software Demo)
- Outlook

- **Algorithmic extensions** currently under development:
 - Collocation schemes
 - Convex optimization algorithms
 - Nonlinear interior point solver for solving NLPs
 - Sequential convex programming algorithms
 - State estimators for feedback control (MHE/Kalman)

- **Algorithmic extensions** currently under development:
 - Collocation schemes
 - Convex optimization algorithms
 - Nonlinear interior point solver for solving NLPs
 - Sequential convex programming algorithms
 - State estimators for feedback control (MHE/Kalman)
- Matlab interfaces for Integrators and Optimal Control Problems

Outlook

- Additional problem classes:
 - Multi-stage formulations
 - Robust optimization
 - Multi-objective problems
 - Optimum experimental design
- Modular design of ACADO Toolkit allows for easy combination of different algorithmic features