PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-202153

(43) Date of publication of application: 22.07.1994

(51)Int.CI.

G02F 1/136 H01L 29/784

(21)Application number: 04-348260

(71)Applicant: FUJITSU LTD

(22)Date of filing:

28.12.1992

(72)Inventor: TAKIZAWA HIDEAKI

NASU YASUHIRO

WATANABE KAZUHIRO

HIROTA SHIRO **NONAKA KAZUO** SATO KIYOTAKE **ILAWIN AMILAM**

(54) THIN-FILM TRANSISTOR MATRIX DEVICE AND ITS PRODUCTION

(57)Abstract:

PURPOSE: To provide the TFT matrix device which can be reduced in cost by simplifying production process and can be enhanced in performance by preventing the fluctuation in the characteristics of storage capacity. CONSTITUTION: A gate terminal part is constituted of a (b) gate terminal lower electrode 12d and a gate terminal upper electrode 34c which is laminated on this gate terminal lower electrode 12d via an insulating film 14 constituting a common layer with a gate insulating film 14a thereon and a contact hole opened in a passivation film 30 and consists of a transparent electrode of the same material as the material of a pixel electrode 34a. The storage capacity part is constituted of a Cs electrode 12b, a dielectric substance film 24 consisting of an insulating film 14 and i type a-Si layer 16 thereon and a counter electrode 26 consisting of an n+ type a-Si layer 20 and metallic layer 22 thereon. This counter electrode 26 is connected via the contact hole opened in the passivation film 30 to the pixel electrode 34a.

LEGAL STATUS

[Date of request for examination]

03.07.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3098345

[Date of registration]

11.08.2000

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-202153

(43)公開日 平成6年(1994)7月22日

(51)Int.Cl. ⁵		
G 0 2 F	1/136	

識別記号 500 庁内整理番号 9018-2K

FΙ

技術表示箇所

最終頁に続く

G 0 2 F 1/136 H 0 1 L 29/784

2010 211

9056-4M

H01L 29/78

3 1 1 A

審査請求 未請求 請求項の数5 (全26頁)

(21)出願番号	HT FETT 4 0 4000	
(21)山嶼番写	特顧平4-348260	(71)出願人 000005223
	•	富士通株式会社
(22)出願日	平成4年(1992)12月28日	神奈川県川崎市中原区上小田中1015番地
		(72)発明者 滝沢 英明
		神奈川県川崎市中原区上小田中1015番地
		富士通株式会社内
		(72)発明者 那須 安宏
		神奈川県川崎市中原区上小田中1015番地
		富士通株式会社内
		(72)発明者 渡辺 和廣
		神奈川県川崎市中原区上小田中1015番地
		富士通株式会社内
		(74)代理人 弁理士 北野 好人

(54)【発明の名称】 薄膜トランジスタマトリクス装置及びその製造方法

(57)【要約】

【目的】本発明は、製造工程を簡略化して低価格化を実現すると共に、蓄積容量の特性変動を防止して高性能化を実現することができるTFTマトリクス装置及びその製造方法を提供することを目的とする。

【構成】ゲート端子部は、ゲート端子下部電極12dと、その上のゲート絶縁膜14aと共通の層をなす絶縁膜14及びパッシベーション膜30に開口されたコンタクトホール32dを介してゲート端子下部電極12d上に積層され、画素電極34aと同一材料の透明電極からなるゲート端子上部電極34cとから構成され、蓄積容量部は、Cs電極12bと、その上の絶縁膜14及びi型a-Si層16からなる誘電体膜24と、その上のn+型a-Si層20及び金属層22からなる対向電極26とから構成され、この対向電極26はパッシベーション膜30に開口されたコンタクトホール32bを介して画素電極34aに接続する。

【特許請求の範囲】

【請求項1】 透明絶縁基板と、

前記透明絶縁基板上に形成されたゲート電極と、前記ゲート電極上にゲート絶縁膜を介して形成された半導体活性層と、前記半導体活性層上に半導体接合層を介して形成された相対するソース電極及びドレイン電極を覆うパッシベーション膜とを有する薄膜トランジスタ部と、

前記薄膜トランジスタ部の前記ソース電極に接続して形成された画素電極を有する画素部と、

前記画素部の前記画素電極に接続して設けられた蓄積容量部と、

前記薄膜トランジスタ部の前記ゲート電極にゲートバス ラインを介して接続されたゲート端子部と、

前記薄膜トランジスタ部の前記ドレイン電極にドレイン バスラインを介して接続されたドレイン端子部とを備え た薄膜トランジスタマトリクス装置において、

前記蓄積容量部が、前記透明絶縁基板上に形成され、前記ゲート電極と同一材料の金属層からなる蓄積容量電極と、前記蓄積容量電極上に形成され、前記ゲート絶縁膜と共通の層をなす絶縁膜及び前記半導体活性層と同一材料のノンドーブ半導体層からなる誘電体膜と、前記誘電体膜上に形成され、前記半導体接合層と同一材料の不純物半導体層並びに前記ソース電極及びドレイン電極と同一材料の金属層からなる対向電極とを有すると共に、前記対向電極が、前記バッシベーション膜と共通の層をなす保護膜に開口されたコンタクトホールを介して、前記画素電極に接続されていることを特徴とする薄膜トランジスタマトリクス装置。

【請求項2】 透明絶縁基板と、

前記透明絶縁基板上に形成されたゲート電極と、前記ゲート電極上にゲート絶縁膜を介して形成された半導体活性層と、前記半導体活性層上に半導体接合層を介して形成された相対するソース電極及びドレイン電極と、前記ソース電極及びドレイン電極を覆うパッシベーション膜とを有する薄膜トランジスタ部と、

前記薄膜トランジスタ部の前記ソース電極に接続して形成された画素電極を有する画素部と、

前記画素部の前記画素電極に接続して設けられた蓄積容 量部と、

前記薄膜トランジスタ部の前記ゲート電極にゲートバス ラインを介して接続されたゲート端子部と、

前記薄膜トランジスタ部の前記ドレイン電極にドレイン バスラインを介して接続されたドレイン端子部とを備え た薄膜トランジスタマトリクス装置において、

前記蓄積容量部が、前記透明絶縁基板上に形成され、前記ゲート電極と同一材料の金属層からなる蓄積容量電極と、前記蓄積容量電極上に形成され、前記ゲート絶縁膜と共通の層をなす絶縁膜及び前記パッシベーション膜と共通の層をなす保護膜からなる誘葉体質とあると、前記

誘電体膜上に形成された前記画素電極を対向電極とする とを特徴とする薄膜トランジスタマトリクス装置。

【請求項3】 透明絶縁基板と、

前記透明絶縁基板上に形成されたゲート電極と、前記ゲート電極上にゲート絶縁膜を介して形成された半導体活性層と、前記半導体活性層上に半導体接合層を介して形成された相対するソース電極及びドレイン電極と、前記ソース電極及びドレイン電極を覆うパッシベーション膜とを有する薄膜トランジスタ部と、

が記薄膜トランジスタ部の前記ソース電極に接続して形成された画素電極を有する画素部と

前記画素部の前記画素電極に接続して設けられた蓄積容量部と、

前記薄膜トランジスタ部の前記ゲート電極にゲートバス ラインを介して接続されたゲート端子部と、

前記薄膜トランジスタ部の前記ドレイン電極にドレイン バスラインを介して接続されたドレイン端子部とを備え た薄膜トランジスタマトリクス装置において、

前記ゲート端子部が、前記透明絶縁基板上に形成され、 20 前記ゲート電極と共通の層をなす金属層からなるゲート 端子下部電極と、前記ゲート絶縁膜と共通の層をなす絶 縁膜及び前記パッシベーション膜と共通の層をなす保護 膜に開口されたコンタクトホールを介して前記ゲート端 子下部電極上に積層され、前記画素電極と同一材料の透 明導電膜からなるゲート端子上部電極とを有することを 特徴とする薄膜トランジスタマトリクス装置。

【請求項4】 透明絶縁基板上に、第1の金属層を成膜した後、前記第1の金属層を所定の形状にバターニングして、ゲート電極、蓄積容量電極、前記ゲート電極に接 30 続するゲートバスライン、及び前記ゲートバスラインに接続するゲート端子下部電極を形成する工程と、

全面に、絶縁膜及びノンドーブ半導体層を順に成膜して、前記ゲート電極上に前記絶縁膜からなるゲート絶縁 膜を形成する工程と、

全面に、不純物半導体層及び第2の金属層を順に成膜した後、前記第2の金属層、前記不純物半導体層、及び前記ノンドープ半導体層を所定の形状にパターニングして、前記ゲート絶縁膜上に前記ノンドープ半導体層からなる半導体活性層を形成すると共に、前記半導体活性層 上に前記不純物半導体層からなる半導体接合層を介して前記第2の金属層からなるソース電極及びドレイン電極をそれぞれ相対して形成し、前記蓄積容量電極上の前記絶縁膜及び前記ノンドープ半導体層からなる誘電体膜を形成すると共に、前記誘電体膜上に前記不純物半導体層及び前記第2の金属層からなる対向電極を形成し、前記不純物半導体層及び前記第2の金属層からなるドレイン端子下部電極を前記ドレイン電極に接続させて形成する工程と、

と共通の層をなす絶縁膜及び削記パッシベーション膜と 全面に、パッシベーション膜を成膜した後、前記ソース 共通の層をなす保護膜からなる誘電体膜とを有し、前記 50 電極、前記対向電極、及び前記ドレイン端子下部電極上

の前記パッシベーション膜、並びに前記ゲート端子下部 電極上の前記パッシベーション膜及び前記絶縁膜に第 1 乃至第4のコンタクトホールをそれぞれ開口する工程 Ł.

全面に透明導電膜を成膜した後、前記透明導電膜を所定 の形状にパターニングして、前記第1及び第2のコンタ クトホールを介して前記ソース電極及び前記対向電極に 接続する画素電極を形成し、前記第3のコンタクトホー ルを介して前記ドレイン端子下部電極に接続するドレイ ン端子上部電極を形成し、前記第4のコンタクトホール 10 を介して前記ゲート端子下部電極に接続するゲート端子 上部電極を形成する工程とを有することを特徴とする薄 膜トランジスタマトリクス装置の製造方法。

【請求項5】 透明絶縁基板上に、第1の金属層を成膜 した後、前記第1の金属層を所定の形状にパターニング して、ゲート電極、蓄積容量電極、前記ゲート電極に接 続するゲートバスライン、及び前記ゲートバスラインに 接続するゲート端子下部電極を形成する工程と、

全面に、絶縁膜及びノンドープ半導体層を順に成膜し 膜を形成する工程と、

全面に、不純物半導体層及び第2の金属層を順に成膜し た後、前記第2の金属層、前記不純物半導体層、及び前 記ノンドープ半導体層を所定の形状にパターニングし て、前記ゲート絶縁膜上に前記ノンドープ半導体層から なる半導体活性層を形成すると共に、前記半導体活性層 上に前記不純物半導体層からなる半導体接合層を介して 前記第2の金属層からなるソース電極及びドレイン電極 をそれぞれ相対して形成し、前記不純物半導体層及び前 記第2の金属層からなるドレイン端子下部電極を前記ド 30 レイン電極に接続させて形成する工程と、

全面にパッシベーション膜を成膜して、前記蓄積容量電 極上の前記絶縁膜及び前記パッシベーション膜からなる 誘電体膜を形成した後、前記ソース電極及び前記ドレイ ン端子下部電極上の前記パッシベーション膜、並びに前 記ゲート端子下部電極上の前記パッシベーション膜及び 前記絶縁膜に第1乃至第3のコンタクトホールをそれぞ れ開口する工程と、

全面に透明導電膜を成膜した後、前記透明導電膜を所定 の形状にパターニングして、前記第1のコンタクトホー ルを介して前記ソース電極に接続すると共に、前記蓄積 容量電極上の前記誘電体膜を介して対向電極となる画素 電極を形成し、前記第2のコンタクトホールを介して前 記ドレイン端子下部電極に接続するドレイン端子上部電 極を形成し、前記第3のコンタクトホールを介して前記 ゲート端子下部電極に接続するゲート端子上部電極を形 成する工程とを有することを特徴とする薄膜トランジス タマトリクス装置の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はTFT(薄膜トランジス タ)マトリクス装置及びその製造方法に係り、特にラッ プトップパソコンや壁掛けTVとして用いられるTFT - L C D (TFTマトリクス型液晶ディスプレー装置) 及びその製造方法に関する。TFT-LCDは薄型軽 置、低消費電力等の特徴を有し、CRTに代わるディス プレー装置として将来大きな市場をもつことが期待され ている。このため、その高性能化、低価格化を実現する ための製造技術の開発が重要な課題となっている。 [0002]

【従来の技術】従来の逆スタガード型TFTマトリクス 装置を、図17及び図18を用いて説明する。ここで、 図17は従来によるTFTマトリクス装置を示す平面 図、図18(a)、(b)、(c)、(d) はそれぞれ

そのドレイン端子部を示すAA′線断面図、TFT部を 示すBB′線断面図、画素部及び蓄積容量部を示すC C′線断面図、並びにゲート端子部を示すDD′線断面 図である。

【0003】TFTマトリクス装置のTFT部において て、前記ゲート電極上に前記絶縁膜からなるゲート絶縁 20 は、透明絶縁基板50上に、例えばA1(アルミニウ ム) 又はCr (クロム) 等の金属層からなるゲート電極 52 a が形成されている。また、このゲート電極52 a 上にはゲート絶縁膜54aを介して、a-Si(アモル ファスーシリコン)活性層56aが形成されている。そ してこのa-Si活性層56a上には、チャネル保護膜 58 aが形成され、またこのチャネル保護膜58 aの両 側には、n+型a-Si接合層60a、60bを介して それぞれa‐Si活性層56aに接続するソース電極6 2 a 及びドレイン電極62 b が形成されている。更に、 とのように構成されたTFTをパッシベーション膜70 が覆っている。

【0004】また、画素部においては、ソース電極62 aに接続されたITO(インジウム錫酸化物)等の透明 導電膜からなる画素電極68aが形成されており、TF Tを覆うパッシベーション膜70に開口した窓72aを 介して露出している。また、蓄積容量部においては、透 明絶縁基板50上に、ゲート電極52aと同一材料の金 属層からなるC s (蓄積容量)電極52bが形成され、 このCs電極52b上に、ゲート絶縁膜54aと共通の 層をなす絶縁膜54からなる誘電体膜54bが形成さ れ、更にこの誘電体膜54b上に、対向電極として機能 する画素電極68aが形成されている。こうして、誘電 体膜54bを間に挟むCs電極52bと対向電極として の画素電極68aとから蓄積容量部が構成されている。 【0005】また、ドレイン端子部においては、ドレイ ン端子下部電極64が、n+ 型a-Si接合層60b及 びドレイン電極62bと共通の層をなすn+型a-Si 層60及び金属層62から形成されている。そしてこの ドレイン端子下部電極64上には、画素電極68aと同 50 一材料の透明導電膜からなるドレイン端子上部電極68

bが積層されている。このようにドレイン端子上部電極 68bがドレイン端子下部電極64を覆っているのは、 ドレイン端子下部電極64表面のA1又はCr等の金属 層62が酸化することを防止するためである。

【0006】とうして、ドレイン端子部は、ドレイン電 極62bにドレインバスライン74を介して接続するド レイン端子下部電極64と、このドレイン端子下部電極 64上及びパッシベーション膜70上に形成されたドレ イン端子上部電極68bとから構成され、そのドレイン 端子上部電極68 bがパッシベーション膜70 に開口し 10 た窓72bを介して露出している。

【0007】また、ゲート端子部においては、ゲート端 子下部電極52dが、ゲート電極52a及びゲートバス ライン52cと共通の層をなす金属層から形成されてい る。また、画素電極68aと同一材料の透明導電膜から なるゲート端子上部電極68cが、ゲート端子下部電極 52d上に積層されたゲート絶縁膜54aと共通の層を なす絶縁膜54に開口されているコンタクトホール66 を介して、ゲート端子下部電極52 d上に積層されてい る。このようにゲート端子上部電極68cがゲート端子 20 下部電極52dを覆っているのは、A1又はCr等の金 属層からなるゲート端子下部電極52dが酸化すること を防止するためである。

【0008】こうして、ゲート端子部は、ゲート電極5 2 a にゲートバスライン52 c を介して接続するゲート 端子下部電極52dと、このゲート端子下部電極52d 上及び絶縁膜54上に積層されたゲート端子上部電極6 8cとから構成され、そのゲート端子上部電極68cが パッシベーション膜70に開口した窓72cを介して露

【0009】次に、図17及び図18に示すTFTマト リクス装置の製造方法を、図19乃至図28の工程断面 図を用いて説明する。尚、各図の(a)、(b)、

(c)、(d)はそれぞれ図1のAA′線断面、BB′ 線断面、CC、線断面、DD、線断面に対応したドレイ ン端子部、TFT部、画素部及び蓄積容量部、並びにゲ ート端子部を示す。

【0010】透明絶縁基板50上に、例えばA1又はC r等の金属層を成膜した後、所定の形状にパターニング して、ゲート電極52a、Cs電極52b、ゲート電極 40 52aに接続するゲートバスライン52c、及びこのゲ ートバスライン52cに接続するゲート端子下部電極5 2 dをそれぞれ形成する(図19参照)。次いで、全面 に、絶縁膜54を成膜する。尚、ここで、ゲート電極5 2 a 上の絶縁膜5 4 を特にゲート絶縁膜5 4 a と、C s 電極52 b 上の絶縁膜54を特に誘電体膜54 b と呼 ぶ。続いて、この絶縁膜54上に、ノンドープのi型a -Si層56及び保護膜58を順に成膜する(図20参 照)。

ル部を除いて、全てエッチング除去する。即ち、TFT 部のゲート電極52a上方にのみ保護膜58を残存させ て、チャネル保護膜58aを形成する(図21参照)。 次いで、全面に、n+型a-Si層60を成膜した後、 更に例えばA1又はCr等の金属層62を成膜する(図 22参照)。

【0012】次いで、金属層62、n+型a-Si層6 0、及び i 型a - S i 層56を選択的にエッチングし て、TFT部のゲート絶縁膜54a上にi型a-Si層 56からなるa-Si活性層56aを形成すると共に、 チャネル保護膜58aの両側のn+型a-Si層60か らなるn+型a-Si接合層60a、60bを介してそ れぞれa-Si活性層56aに接続する金属層62から なるソース電極62a及びドレイン電極62bを相対し て形成し、TFTを完成させる。

【0013】また同時に、ドレイン端子部において、ド レイン電極62 bにドレインバスラインを介して接続す るn+型a-Si層60及び金属層62からなるドレイ ン端子下部電極64を形成する(図23参照)。次い で、レジストを塗布した後、フォトリソグラフィ法を用 いて、ゲート端子下部電極52 d上に開口部をもつレジ ストパターンを形成する。そしてこのレジストパターン をマスクとして絶縁膜54をエッチングし、コンタクト ホール66を開口する(図24参照)。

【0014】次いで、全面に、1TO等からなる透明導 電膜68を成膜する(図25参照)。次いで、この透明 導電膜68を所定の形状にパターニングし、ソース電極 62aに接続する画素電極68aを形成し、同時に、ド レイン端子下部電極64に接続するドレイン端子上部電 極68bを形成し、コンタクトホール66を介してゲー ト端子下部電極52 dに接続するゲート端子上部電極6 8cを形成する。尚、このとき、ソース電極62aに接 続する画素電極68aは、Cs電極52b上の誘電体膜 54bを覆っている。

【0015】 こうして、Cs電極52b、Cs電極52 bの対向電極として機能する画素電極68a、及びこれ ら両電極間に挟まれた誘電体膜54bからなる蓄積容量 部を完成させる(図26参照)。次いで、全面に、バッ シベーション膜70を成膜し、完成させたTFTを覆う (図27参照)。

【0016】次いで、レジストを塗布した後、フォトリ ソグラフィ法を用いて、画素電極68a、ドレイン端子 上部電極68b、及びゲート端子上部電極68c上にそ れぞれ開口部をもつレジストパターンを形成する。そし てとのレジストパターンをマスクとしてパッシベーショ ン膜70をエッチングし、それぞれ窓72a、72b、 72cを開口して、画素電極68a、ドレイン端子上部 電極68b、及びゲート端子上部電極68cを露出させ

【0011】次いで、この保護膜58を、TFTチャネ 50 【0017】こうして、TFTのソース電極62aに接

続する画素電極68aからなる画素部、TFTのドレイン電極62bにドレインバスラインを介して接続するドレイン端子下部電極64及びドレイン端子上部電極68bからなるドレイン端子部、並びにTFTのゲート電極52aにゲートバスライン52cを介して接続するゲート端子下部電極52d及びゲート端子上部電極68cからなるゲート端子部をそれぞれ完成させる(図28参照)。

[0018]

【0019】即ち、図24に示される、ゲート端子下部電極52d上の絶縁膜54を選択的にエッチングしてコンタクトホール66を開口する工程と、図28に示される、ゲート端子上部電極68c上のパッシベーション膜70を選択的にエッチングして窓72cを開口し、最終的なゲート端子出しをする工程との2回の窓開け工程が必要であった。

【0020】そしてこれら2回の窓開け工程には、それ 30 ぞれレジストパターンを作成するためのフォトリソグラフィ工程と、エッチング工程と、レジスト除去工程とが含まれる。従って、TFT-LCDの低価格化を実現するためには、こうした窓開け工程の数をできるだけ減らして、工程の簡略化を図ることが望ましい。また、図23に示されるように、金属層62、n+型a-Si層60、及びi型a-Si層56の選択的なエッチングにより、TFT部のゲート絶縁膜54a上にa-Si活性層56aを形成し、このa-Si活性層56aにそれぞれn+型a-Si接合層60a、60bを介して接続するソース電極62a及びドレイン電極62bを形成する工程においては、Cs電極52b上の誘電体膜54bの厚さに変化が生じ、蓄積容量が変動するという問題があった。

【0021】更に、とのとき、誘電体膜54bの一部に ピンホール等があると、エッチャントの浸透により誘電 体膜54bの絶縁不良を生じ、Cs電極52bとその対 向電極として機能する画素電極68aとの間に電流リー クやショートを引き起こして表示欠陥を生じるおそれも あった。そこで本発明は、製造工程を簡略化して低価格 化を実現すると共に、蓄積容量の特性変動を防止して高 性能化を実現することができるTFTマトリクス装置及 びその製造方法を提供することを目的とする。

[0022]

【課題を解決するための手段】上記課題は、透明絶縁基 板と、前記透明絶縁基板上に形成されたゲート電極と、 前記ゲート電極上にゲート絶縁膜を介して形成された半 導体活性層と、前記半導体活性層上に半導体接合層を介 して形成された相対するソース電極及びドレイン電極 と、前記ソース電極及びドレイン電極を覆うパッシベー ション膜とを有する薄膜トランジスタ部と、前記薄膜ト ランジスタ部の前記ソース電極に接続して形成された画 素電極を有する画素部と、前記画素部の前記画素電極に 接続して設けられた蓄積容量部と、前記薄膜トランジス タ部の前記ゲート電極にゲートバスラインを介して接続 されたゲート端子部と、前記薄膜トランジスタ部の前記 ドレイン電極にドレインバスラインを介して接続された ドレイン端子部とを備えた薄膜トランジスタマトリクス 装置において、前記蓄積容量部が、前記透明絶縁基板上 に形成され、前記ゲート電極と同一材料の金属層からな る蓄積容量電極と、前記蓄積容量電極上に形成され、前 記ゲート絶縁膜と共通の層をなす絶縁膜及び前記半導体 活性層と同一材料のノンドープ半導体層からなる誘電体 膜と、前記誘電体膜上に形成され、前記半導体接合層と 同一材料の不純物半導体層並びに前記ソース電極及びド レイン電極と同一材料の金属層からなる対向電極とを有 すると共に、前記対向電極が、前記パッシベーション膜 と共通の層をなす保護膜に開口されたコンタクトホール を介して、前記画素電極に接続されていることを特徴と する薄膜トランジスタマトリクス装置によって達成され

【0023】また、透明絶縁基板と、前記透明絶縁基板 上に形成されたゲート電極と、前記ゲート電極上にゲー ト絶縁膜を介して形成された半導体活性層と、前記半導 体活性層上に半導体接合層を介して形成された相対する ソース電極及びドレイン電極と、前記ソース電極及びド レイン電極を覆うバッシベーション膜とを有する薄膜ト ランジスタ部と、前記薄膜トランジスタ部の前記ソース 電極に接続して形成された画素電極を有する画素部と、 前記画素部の前記画素電極に接続して設けられた蓄積容 量部と、前記薄膜トランジスタ部の前記ゲート電極にゲ ートバスラインを介して接続されたゲート端子部と、前 記薄膜トランジスタ部の前記ドレイン電極にドレインバ スラインを介して接続されたドレイン端子部とを備えた 薄膜トランジスタマトリクス装置において、前記蓄積容 **量部が、前記透明絶縁基板上に形成され、前記ゲート電** 極と同一材料の金属層からなる蓄積容量電極と、前記蓄 積容量電極上に形成され、前記ゲート絶縁膜と共通の層 をなす絶縁膜及び前記パッシベーション膜と共通の層を

なす保護膜からなる誘電体膜とを有し、前記誘電体膜上 に形成された前記画素電極を対向電極とすることを特徴 とする薄膜トランジスタマトリクス装置によって達成さ れる。

【0024】また、透明絶縁基板と、前記透明絶縁基板 上に形成されたゲート電極と、前記ゲート電極上にゲー ト絶縁膜を介して形成された半導体活性層と、前記半導 体活性層上に半導体接合層を介して形成された相対する ソース電極及びドレイン電極と、前記ソース電極及びド レイン電極を覆うパッシベーション膜とを有する薄膜ト ランジスタ部と、前記薄膜トランジスタ部の前記ソース 電極に接続して形成された画素電極を有する画素部と、 前記画素部の前記画素電極に接続して設けられた蓄積容 **量部と、前記薄膜トランジスタ部の前記ゲート電極にゲ** ートバスラインを介して接続されたゲート端子部と、前 記薄膜トランジスタ部の前記ドレイン電極にドレインバ スラインを介して接続されたドレイン端子部とを備えた 薄膜トランジスタマトリクス装置において、前記ゲート 端子部が、前記透明絶縁基板上に形成され、前記ゲート 電極と共通の層をなす金属層からなるゲート端子下部電 20 極と、前記ゲート絶縁膜と共通の層をなす絶縁膜及び前 記パッシベーション膜と共通の層をなす保護膜に開口さ れたコンタクトホールを介して前記ゲート端子下部電極 上に積層され、前記画素電極と同一材料の透明導電膜か らなるゲート端子上部電極とを有することを特徴とする 薄膜トランジスタマトリクス装置によって達成される。 【0025】更に、上記課題は、透明絶縁基板上に、第 1の金属層を成膜した後、前記第1の金属層を所定の形 状にバターニングして、ゲート電極、蓄積容量電極、前 記ゲート電極に接続するゲートバスライン、及び前記ゲ ートバスラインに接続するゲート端子下部電極を形成す る工程と、全面に、絶縁膜及びノンドープ半導体層を順 に成膜して、前記ゲート電極上に前記絶縁膜からなるゲ ート絶縁膜を形成する工程と、全面に、不純物半導体層· 及び第2の金属層を順に成膜した後、前記第2の金属 層、前記不純物半導体層、及び前記ノンドープ半導体層 を所定の形状にパターニングして、前記ゲート絶縁膜上 に前記ノンドープ半導体層からなる半導体活性層を形成 すると共に、前記半導体活性層上に前記不純物半導体層 からなる半導体接合層を介して前記第2の金属層からな るソース電極及びドレイン電極をそれぞれ相対して形成 し、前記蓄積容量電極上の前記絶縁膜及び前記ノンドー プ半導体層からなる誘電体膜を形成すると共に、前記誘 電体膜上に前記不純物半導体層及び前記第2の金属層か らなる対向電極を形成し、前記不純物半導体層及び前記 第2の金属層からなるドレイン端子下部電極を前記ドレ イン電極に接続させて形成する工程と、全面に、バッシ ベーション膜を成膜した後、前記ソース電極、前記対向 電極、及び前記ドレイン端子下部電極上の前記パッシベ ーション膜、並びに前記ゲート端子下部電極上の前記パ 50

ッシベーション膜及び前記絶縁膜に第1乃至第4のコン タクトホールをそれぞれ開口する工程と、全面に透明導 電膜を成膜した後、前記透明導電膜を所定の形状にバタ ーニングして、前記第1及び第2のコンタクトホールを 介して前記ソース電極及び前記対向電極に接続する画素 電極を形成し、前記第3のコンタクトホールを介して前 記ドレイン端子下部電極に接続するドレイン端子上部電 極を形成し、前記第4のコンタクトホールを介して前記 ゲート端子下部電極に接続するゲート端子上部電極を形 成する工程とを有することを特徴とする薄膜トランジス

タマトリクス装置の製造方法によって達成される。 【0026】また、透明絶縁基板上に、第1の金属層を 成膜した後、前記第1の金属層を所定の形状にパターニ ングして、ゲート電極、蓄積容量電極、前記ゲート電極 に接続するゲートバスライン、及び前記ゲートバスライ ンに接続するゲート端子下部電極を形成する工程と、全 面に、絶縁膜及びノンドープ半導体層を順に成膜して、 前記ゲート電極上に前記絶縁膜からなるゲート絶縁膜を 形成する工程と、全面に、不純物半導体層及び第2の金 属層を順に成膜した後、前記第2の金属層、前記不純物 半導体層、及び前記ノンドープ半導体層を所定の形状に パターニングして、前記ゲート絶縁膜上に前記ノンドー プ半導体層からなる半導体活性層を形成すると共に、前 記半導体活性層上に前記不純物半導体層からなる半導体 接合層を介して前記第2の金属層からなるソース電極及 びドレイン電極をそれぞれ相対して形成し、前記不純物 半導体層及び前記第2の金属層からなるドレイン端子下 部電極を前記ドレイン電極に接続させて形成する工程 と、全面にパッシベーション膜を成膜して、前記蓄積容 量電極上の前記絶縁膜及び前記バッシベーション膜から なる誘電体膜を形成した後、前記ソース電極及び前記ド レイン端子下部電極上の前記パッシベーション膜、並び に前記ゲート端子下部電極上の前記パッシベーション膜 及び前記絶縁膜に第1乃至第3のコンタクトホールをそ れぞれ開口する工程と、全面に透明導電膜を成膜した ・後、前記透明導電膜を所定の形状にパターニングして、 前記第1のコンタクトホールを介して前記ソース電極に 接続すると共に、前記蓄積容量電極上の前記誘電体膜を 介して対向電極となる画素電極を形成し、前記第2のコ ンタクトホールを介して前記ドレイン端子下部電極に接 続するドレイン端子上部電極を形成し、前記第3のコン タクトホールを介して前記ゲート端子下部電極に接続す るゲート端子上部電極を形成する工程とを有することを 特徴とする薄膜トランジスタマトリクス装置の製造方法 によって達成される。

[0027]

30

【作用】本発明は、ゲート端子部を形成する場合、ゲー ト電極と共通の層をなす金属層からなるゲート端子下部 電極上に、ゲート絶縁膜と共通の層をなす絶縁膜及びパ ッシベーション膜と共通の層をなす保護膜を積層した

20

後、これら絶縁膜及び保護膜に 1 回の窓明けを行ってコ ンタクトホールを開口し、このコンタクトホール内に露 出されたゲート端子下部電極上に、画素電極と同一材料 の透明導電膜からなるゲート端子上部電極を形成する。 即ち、従来の製造方法に比較すると、パッシベーション 膜と共通の層をなす保護膜を成膜する工程と、ゲート端 子上部電極を形成する透明導電膜を成膜する工程の順序 を逆にする。

【0028】これにより、ゲート端子下部電極上の絶縁 膜の窓明けとゲート端子上部電極上の保護膜の窓明けと を別々に行っていた従来の2回の窓明け工程を、積層し た絶縁膜及び保護膜を1回の窓明け工程で済ますことが でき、この開口されたコンタクトホールを介して接続す るゲート端子下部電極及びゲート端子上部電極からなる ゲート端子部を形成することができる。このため、TF Tマトリクス装置の製造工程を簡略化することが可能と なる。

【0029】また、蓄積容量部を形成する場合、蓄積容 量電極上のゲート絶縁膜と共通の層をなす絶縁膜上に、 半導体活性層と同一材料のノンドープ半導体層を成膜し た後、とのノンドープ半導体層を絶縁膜と共に蓄積容量 用の誘電体膜として用い、この誘電体膜上に、半導体接 合層と同一材料の不純物半導体層並びにソース電極及び ドレイン電極と同一材料の金属層からなる対向電極を形 成する。そしてこの対向電極上の保護膜に開口されたコ ンタクトホールを介して、対向電極を画素電極に接続さ せる。

【0030】とれにより、絶縁膜上に成膜されたノンド ープ半導体層は除去されることなく、常に絶縁膜を覆っ ているため、この絶縁膜が直接エッチャントに晒され ず、従って誘電体膜の厚さに変化が生じて蓄積容量が変 動するということもない。また、このとき、絶縁膜の一 部にピンホール等があっても、その上に積層されたノン ドープ半導体層が誘電体膜の絶縁不良を防止し、従って 電流リークやショートによる表示欠陥を生じるおそれも ない。

【0031】しかも、誘電体膜の一部をなすノンドープ 半導体層及びその上の対向電極は、TFTの半導体活性 層、半導体接合層、及びソース・ドレイン電極と同一材 料を用いて同時に形成されるため、また対向電極と画素 40 電極とを接続させるコンタクトホールの開口も、ゲート 端子部の窓明け工程と同時に行われるため、新たに工程 を増加させることはない。

【0032】このため、工程を増加させることなく、蓄 積容量の特性変動を防止し、高歩留まり、高信頼性を実 現することが可能となる。

[0033]

【実施例】以下、本発明を実施例に基づいて具体的に説 明する。図1は本発明の第1の実施例による逆スタガー ド型TFTマトリクス装置を示す平面図、図2(a)、

(b)、(c)、(d)はそれぞれそのドレイン端子部 を示すAA′線断面図、TFT部を示すBB′線断面 図、画素部及び蓄積容量部を示すCC′線断面図、並び にゲート端子部を示す DD′線断面図である。

【0034】TFTマトリクス装置のTFT部において は、透明絶縁基板10上に、例えばA1又はCr等の金 属層からなるゲート電極12aが形成されている。ま た、このゲート電極12a上には、SiN膜又はSiO 、膜とSiN膜との2層膜等からなるゲート絶縁膜14 aを介して、a-Si活性層16aが形成されている。 そしてこのa-Si活性層16a上には、チャネル保護 膜18aが形成されているが、このチャネル保護膜18 aの両側には、n+型a-Si接合層20a、20bを 介してそれぞれa-Si活性層16aに接続するソース 電極22a及びドレイン電極22bが相対して形成され ている。更に、このように構成されたTFTをパッシベ ーション膜30が覆っている。

【0035】また、画素部においては、TFTを覆って いるパッシベーション膜30に開口されたコンタクトホ ール32aを介して、ソース電極22aに接続されたI TO等の透明導電膜からなる画素電極34aが形成され ている。また、蓄積容量部においては、透明絶縁基板1 0上に、ゲート電極12aと同一材料の金属層からなる Cs電極12bが形成されている。このCs電極12b 上には、ゲート絶縁膜14aと共通の層をなす絶縁膜1 4及びa-Si活性層16aと同一材料のノンドープの i型a-Si層16からなる誘電体膜24が形成され、 更にとの誘電体膜24上には、n+型a-Si接合層2 0a、20bと同一材料のn+型a-Si層20及びソ 30 ース・ドレイン電極22a、22bと同一材料の金属層 22からなる対向電極26が形成されている。

【0036】そしてこの対向電極26は、パッシベーシ ョン膜30に開口されたコンタクトホール32bを介し て、画素電極34aに接続されている。こうして、誘電 体膜24を間に挟む対向電極26とCs電極12bとか ら構成される蓄積容量部が、画素電極34aに接続して 形成されている。また、ドレイン端子部においては、ド レイン端子下部電極28が、n+型a-Si接合層20 b及びドレイン電極22bと共通の層をなすn+型a-Si層20及び金属層22から形成されている。そして このドレイン端子下部電極28は、TFTマトリクス装 置の複数のドレイン電極22bにドレインバスライン3 6を介して接続されている。

【0037】また、このドレイン端子下部電極28上に は、TFTを覆っているパッシベーション膜30に開口 されたコンタクトホール32cを介して、画素電極34 a と同一材料の酸化導電膜からなるドレイン端子上部電 極34bが積層され、ドレイン端子下部電極28の酸化 を防止している。こうして、ドレイン端子部は、透明絶 50 縁基板10上のゲート絶縁膜14aと共通の層をなす絶

縁膜14及びa-Si活性層16aと同一材料のノンド

ープのi型a-Si層16上に形成されたドレイン端子

下部電極28と、このドレイン端子下部電極28上及び

パッシベーション膜30上に形成されたドレイン端子上

いで、この保護膜18を、TFTチャネル部を除き、弗酸緩衝液等を用いて全てエッチング除去する。即ち、TFT部のゲート電極12a上方にのみ保護膜18を残存すせて、チャネル保護時10・セルドウス・

部電極34bとから構成され、外部制御回路と接続されるようになっている。

【0038】また、ゲート端子部においては、ゲート端子下部電極12dが、ゲート電極12a及びゲートバスライン12cと共通の層をなす金属層から形成されている。そしてこのゲート端子下部電極12dは、TFTマ 10トリクス装置の複数のゲート電極12aにゲートバスライン12cを介して接続されている。また、このゲート端子下部電極12d上には、ゲート絶縁膜14aと共通の層をなす絶縁膜14及びパッシベーション膜30に開口されたコンタクトホール32dを介して、画素電極34aと同一材料の酸化導電膜からなるゲート端子上部電極34cが積層され、ゲート端子下部電極12dの酸化を防止している。

【0039】こうして、ゲート端子部は、透明絶縁基板 10上に形成されたゲート端子下部電極12dと、この 20 る。 ゲート端子下部電極12d上並びに絶縁膜14及びパッシベーション膜30上に形成されたゲート端子上部電極 14cとから構成され、外部制御回路と接続されるよう 体態になっている。次に、図1及び図2に示す逆スタガード 2カ 型TFTマトリクス装置の製造方法を、図3乃至図11 子部の工程断面図を用いて説明する。尚、各図の(a)、 ン(

(b)、(c)、(d)はそれぞれ図1のAA′線断面、BB′線断面、CC′線断面、DD′線断面に対応したドレイン端子部、TFT部、画素部及び蓄積容量部、並びにゲート端子部を示す。

【0040】ガラス基板等の透明絶縁基板10上に、スパッタ法を用いて、例えばA1又はCr等からなる金属層を成膜する。そしてこの金属層上に、所定のレジストパターンを形成した後、それをマスクとして金属層をエッチングして、ゲート電極12aに接続するゲートバスライン12c、及びこのゲートバスライン12cに接続するゲート端子下部電極12dをそれぞれ形成する。

【0041】尚、この金属層は、次の工程で全面に積層する絶縁膜と十分な選択エッチング性を有するものであ 40 れば、AlやCrに限らず、他の金属材料を使用してもよい(図3参照)。次いで、全面に、プラズマCVD法を用いて、SiN膜又はSiO、膜とSiN膜との2層膜等からなる厚さ約400nmの絶縁膜14を成膜する。尚、ここで、ゲート電極12a上の絶縁膜14を特にゲート絶縁膜14aと呼ぶ。

F T 部のゲート電極 1 2 a 上方にのみ保護膜 1 8 を残存させて、チャネル保護膜 1 8 a を形成する (図 5 参照)。 【0043】次いで、全面に、プラズマC V D 法を用い

【0043】次いで、全面に、プラズマCVD法を用いて、厚さ60nmのn+型a-Si層20を成膜した後、更にスパッタ法を用いて、厚さ200nmの例えばA1又はCr等からなる金属層22を成膜する(図6参照)。次いで、この金属層22上に、所定のレジストパターンを形成した後、それをマスクとして金属層22、n+型a-Si層20、及びi型a-Si層16を順にエッチングする。こうして、TFT部のゲート絶縁膜14a上にi型a-Si層16からなるa-Si活性層16aを形成すると共に、チャネル保護膜18aの両のn+型a-Si層20からなるn+型a-Si接合層20a、20bを介してそれぞれa-Si活性層16aに接続する金属層22からなるソース電極22a及びドレイン電極22bを相対して形成し、TFTを完成させる。

【0044】また同時に、蓄積容量部のCs電極12b上に、絶縁膜14及びi型a-Si層16からなる誘電体膜24を介して、n+型a-Si層20及び金属層22からなる対向電極26を形成する。更に、ドレイン端子部において、ドレイン電極22bにドレインバスライン(図示せず)を介して接続するn+型a-Si層20及び金属層22からなるドレイン端子下部電極28を形成する(図7参照)。

【0045】次いで、全面に、CVD法又はスパッタ法 を用いて、SiN膜、SiOz膜、又はこれらの複合膜 からなる厚さ400nmのパッシベーション膜30を成膜し、完成させたTFTを覆う(図8参照)。次いで、レジストを塗布した後、フォトリソグラフィ法を用いて、ソース電極22a、対向電極26、ドレイン端子下部電極28、及びゲート端子下部電極12d上にそれぞれ開口部をもつレジストパターンを形成する。そしてこのレジストパターンをマスクとしてパッシベーション膜30又はパッシベーション膜30及び絶縁膜14をエッチングし、コンタクトホール32a、32b、32c、40 32dをそれぞれ開口する。

【0046】尚、とのときのエッチングは、パッシベーション膜30又はパッシベーション膜30及び絶縁膜14をテーパエッチングするものであることが望ましい。コンタクトホール32a、32b、32c、32d内に露出したソース電極22a、対向電極26、ドレイン端子下部電極28、及びゲート端子下部電極12dと、次の工程で成膜するITO等からなる透明導電膜とを電気的に接続する必要があるからである。そしてこのテーパエッチングは、弗酸緩衝液によるウエットエッチの他、CE ガスによるPIE(原本サイナンにより

を用いてもよい(図9参照)。

【0047】次いで、全面に、スパッタ法等を用いて、厚さ100nmのITO等からなる透明導電膜34を成膜する(図10参照)。次いで、この透明導電膜34を所定の形状にパターニングし、コンタクトホール32 a、32bを介してソース電極22a及び対向電極26に接続する画素電極34aを形成する。また同時に、コンタクトホール32cを介してドレイン端子下部電極28に接続するドレイン端子上部電極34bを形成し、コンタクトホール32dを介してゲート端子下部電極12dに接続するゲート端子上部電極34cを形成する。

【0048】とうして、TFT部のソース電極22aに接続する画素電極34aからなる画素部、との画素電極34aに接続する対向電極26、Cs電極12b、及びこれら両電極間に挟まれた誘電体膜24からなる蓄積容量部、TFT部のドレイン電極22bにドレインバスラインを介して接続するドレイン端子下部電極28及びドレイン端子上部電極34bからなるドレイン端子部、並びにTFT部のゲート電極12aにゲートバスライン12cを介して接続するゲート端子下部電極12d及びゲート端子上部電極34dからなるゲート端子部をそれぞれ完成させる(図11参照)。

【0049】とのように本実施例によれば、ゲート端子部を形成する場合、透明絶縁基板10上に、A1又はCr等の金属層からなるゲート端子下部電極12dをゲート電極12a及びゲートバスライン12cと同時に形成し(図3参照)、このゲート端子下部電極12d上に、ゲート絶縁膜14aと共通の層をなす絶縁膜14を成膜し(図4参照)、この絶縁膜14上に、TFTを覆うバッシベーション膜30を成膜し(図8参照)、これらバッシベーション膜30及び絶縁膜14をエッチングしてコンタクトホール32dを開口し(図9参照)、このコンタクトホール32dを介してゲート端子下部電極12dに接続する透明導電膜からなるゲート端子上部電極34cを、画素電極34aと同時に形成する(図10及び図11参照)。

【0050】とのような製造工程を、従来の製造工程、即ち、ゲート端子下部電極52d上の絶縁膜54を選択的にエッチングしてコンタクトホール66を開口する工程(図24参照)と、ゲート端子上部電極68c上のパッシベーション膜70を選択的にエッチングして窓72cを開口し、最終的なゲート端子出しをする工程(図28参照)との2回の窓明け工程を必要とする製造工程と比較すると、パッシベーション膜30を成膜する工程とゲート端子上部電極34cを形成する透明導電膜34を成膜する工程の順序を逆にすることにより、ゲート端子下部電極12d上の絶縁膜14及びパッシベーション膜30を1回の窓明け工程によって開口することができ、従来の2回の窓明け工程が1回の窓明け工程で済むことになる。従って、その分だけにTFTマトリクス装置の50

16

製造工程が簡略化され、コストダウンを実現することが 可能となる。

【0051】また、蓄積容量部を形成する場合、AI又はCr等の金属層からなるCs電極12bをゲート電極12a等と同時に形成し(図3参照)、このゲート電極12a上に、絶縁膜14及びノンドープのi型aーSi層16を成膜し(図4参照)、このi型aーSi層16を成膜し(図4参照)、このi型aーSi層16上に、n+型aーSi層20及び金属層22を成膜して(図6参照)、絶縁膜14及びi型aーSi層16からなる誘電体膜24、及びn+型aーSi層20及び金属層22からなる対向電極26を形成する(図7参照)。更に、対向電極26上のパッシベーション膜30にコンタクトホール32bを開口し(図9参照)、このコンタクトホール32bを介して対向電極26に接続する画素電極34aを形成する(図11参照)。

【0052】こうして、ゲート電極12a上の絶縁膜14を覆うi型a-Si層16は、誘電体膜24を構成する一部となると共に、絶縁膜14が直接エッチャントに晒されないように常に保護しているため、誘電体膜24の厚さの変化による蓄積容量の変動を防止することができる。また、このとき、絶縁膜14の一部にピンホールがあっても、絶縁膜14を覆っているi型a-Si層16の存在により誘電体膜24の絶縁不良を防ぎ、電流リークやショートによる表示欠陥の発生を防止することができる。

【0053】尚、絶縁膜14及びi型a-Si層16か らなる誘電体膜24を間に挟む対向電極26とCs電極 12bとから構成される蓄積容量部の蓄積容量は、i型 a-Si層16の厚さが20nmと極めて薄いため、従 来のように絶縁膜14のみを誘電体膜とする蓄積容量部 の場合と殆ど変わらない。しかも、誘電体膜24を構成 するi型a-Si層l6並びにその上のn+型a-Si 層20及び金属層22からなる対向電極26は、それぞ れTFT部のa-Si活性層16a、n+型a-Si接 合層20a、20b及びソース電極22a及びドレイン 電極22bと同一材料を用いて同時に形成される(図4 及び図6参照)。また、対向電極26と画素電極34a とを接続させるコンタクトホール32hの開口も、ゲー ト端子部におけるコンタクトホール32d等の開口と同 時に行われる(図9参照)。このため、新たに工程を増 加させることはない。

【0054】従って、工程を増加させることなく、蓄積容量部における蓄積容量の特性変動や不良の発生を防止し、歩留まり及び信頼性を向上させることが可能となる。次に、本発明の第2の実施例による逆スタガード型TFTマトリクス装置を、図12及び図13を用いて説明する。ここで、図12は第2の実施例によるTFTマトリクス装置を示す平面図、図13(a)、(b)、

促来の2回の窓明け工程が1回の窓明け工程で済むこと (c)、(d)はそれぞれそのドレイン端子部を示すAになる。従って、その分だけにTFTマトリクス装置の 50 A′線断面図、TFT部を示すBB′線断面図、画素部

及び蓄積容量部を示すCC、線断面図、並びにゲート端 子部を示すDD′線断面図である。尚、上記図1及び図 2に示すTFTマトリクス装置と同一の構成要素には同 一の符号を付して説明を省略する。

【0055】本実施例によるTFTマトリクス装置は、 上記図1及び図2に示すTFTマトリクス装置とは、そ のドレイン端子部、TFT部、画素部、及びゲート端子 部においては同様の構成をしているが、蓄積容量部の構 成において異なっている。即ち、透明絶縁基板10上に ゲート電極12aと同一材料の金属層からなるCs電極 12 bが形成されている点は同じであるが、このCs電 極12b上にゲート絶縁膜14aと共通の層をなす絶縁 膜14及びパッシベーション膜30からなる誘電体膜3 8が形成され、更にとの誘電体膜38上に画素電極34 aが形成されている点で異なる。従って、この蓄積容量 部は、画素電極34aが対向電極として機能し、誘電体 膜38を間に挟む対向電極としての画素電極34aとC s電極12bとから構成されている。

【0056】次に、図12及び図13に示すTFTマト 図を用いて説明する。尚、各図の(a)、(b)、

(c)、(d)はそれぞれ図12のAA'線断面、B B′線断面、CC′線断面、DD′線断面に対応したド レイン端子部、TFT部、画素部及び蓄積容量部、並び にゲート端子部を示す断面図である。また、上記図3万 至図11に示すTFTマトリクス装置と同一の構成要素 には同一の符号を付して説明を省略する。

【0057】上記図3乃至図6に示す工程と同様にし て、透明絶縁基板10上に、ゲート電極12a、Cs電 極12b、ゲート電極12aに接続するゲートバスライ ン12c、及びこのゲートバスライン12cに接続する ゲート端子下部電極12dをそれぞれ形成した後、全面 に、絶縁膜14及びノンドープのi型a-Si層16を 順に成膜し、更にゲート電極12a上方のゲート絶縁膜 14 a上にチャネル保護膜18 aを形成する。続いて、 全面に、n+型a-Si層20及び金属層22を順に成 膜する(図14参照)。

【0058】次いで、金属層22、n+型a-Si層2 0及びi型a-Si層16を選択的にエッチングして、 ゲート絶縁膜14a上にa-Si活性層16aを形成す 40 ると共に、チャネル保護膜18aの両側のn+ 型a-S i接合層20a、20bを介してそれぞれa-Si活性 層16aに接続するソース電極22a及びドレイン電極 22bを形成し、TFTを完成させる。

【0059】また、同時に、ドレイン端子部において、 ドレイン電極22bにドレインバスラインを介して接続 するn+型a-Si層20及び金属層22からなるドレ イン端子下部電極28を形成する。但し、上記第1の実 施例と異なり、蓄積容量部のCs電極12b上に、i型 a-Si層16、n+型a-Si層20、及び金属層2

2を残存させず、従って絶縁膜14及びi型a-Si層 16からなる誘電体膜を形成することはなく、またn+ 型a-Si層20及び金属層22からなる対向電極を形 成することもない (図15参照)。

【0060】次いで、上記図8乃至図11に示す工程と 同様にして、全面に、パッシベーション膜30を成膜 し、完成させたTFTを覆った後、このパッシベーショ ン膜30又はパッシベーション膜30及び絶縁膜14を 選択的にエッチングして、ソース電極22a、ドレイン 端子下部電極28、及びゲート端子下部電極12 d上に それぞれコンタクトホールを開口する。但し、上記第1 の実施例と異なり、対向電極がないため、この対向電極 上にコンタクトホールを開口することはない。

【0061】続いて、全面に、透明導電膜34を成膜し た後、この透明導電膜34を所定の形状にパターニング して、ソース電極22aに接続する画素電極34a、ド レイン端子下部電極28に接続するドレイン端子上部電 極34b、及びゲート端子下部電極12dに接続するゲ ート端子上部電極34cをそれぞれ形成する。こうし リクス装置の製造方法を、図14乃至図16の工程断面 20 て、TFT部のソース電極22aに接続する画素電極3 4aからなる画素部、TFT部のドレイン電極22bに ドレインバスラインを介して接続するドレイン端子下部 電極28及びドレイン端子上部電極34bからなるドレ イン端子部、並びにTFT部のゲート電極12aにゲー トバスライン12cを介して接続するゲート端子下部電 極12d及びゲート端子上部電極34dからなるゲート 端子部をそれぞれ完成させる。

> 【0062】また、このとき、Cs電極12b上方に も、絶縁膜14及びパッシベーション膜30からなる誘 電体膜38を介して画素電極34aが形成されるため、 対向電極として機能する画素電極34a、Cs電極12 b及び両電極間に挟まれた誘電体膜38からなる蓄積容 **量部も完成する(図16参照)。このように本実施例に** おいても、パッシベーション膜30を成膜する工程の後 に、ゲート端子上部電極34cを形成する透明導電膜3 4を成膜する工程を設けており、ゲート端子下部電極1 2 d上の絶縁膜14及びパッシベーション膜30を1回 の窓明け工程によって開口するため、上記第1の実施例 の場合と同様に、TFTマトリクス装置の製造工程が簡 略化され、コストダウンを実現することが可能となる。 【0063】但し、本実施例の場合、その蓄積容量部 が、透明絶縁基板10上に形成されたCs電極12b と、このCs電極12b上に成膜された絶縁膜14及び パッシベーション膜30からなる誘電体膜38と、との 誘電体膜38上に形成された対向電極として機能する画 素電極34aから構成されている。即ち、その誘電体膜 38の厚さが上記第1の実施例の場合と比較するとかな り厚くなっている。このため、本実施例は、蓄積容量部 の蓄積容量が比較的小さくてもよい場合に適用すること 50 が望ましい。

[0064]

【発明の効果】以上のように本発明によれば、透明絶縁 基板上に、第1の金属層からなるゲート電極、蓄積容量 電極、及びゲート端子下部電極を形成する主程と、ゲー ト電極上に、ゲート絶縁膜を形成する工程と、このゲー ト絶縁膜上の半導体活性層に半導体接合層を介してそれ ぞれ接続するソース電極及びドレイン電極を形成し、同 時に、蓄積容量電極上に、ゲート絶縁膜と共通の層をな す絶縁膜及び半導体活性層と同一材料のノンドーブ半導 体層からなる誘電体膜を介して、半導体接合層と同一材 10 料の不純物半導体層及びソース電極及びドレイン電極と 同一材料の第2の金属層からなる対向電極を形成する工 程と、ソース電極、対向電極、及びゲート端子下部電極 上のパッシベーション膜又はパッシベーション膜及び絶 縁膜にコンタクトホールを開口する工程と、それぞれの コンタクトホールを介して、ソース電極及び対向電極に 接続する透明導電膜からなる画素電極を形成し、同時 に、ゲート端子下部電極に接続するゲート端子上部電極 を形成する工程とを有することにより、ゲート端子下部 電極上に積層した絶縁膜及び保護膜を1回の窓明け工程 20 で開口し、この開口されたコンタクトホールを介して接 続するゲート端子下部電極及びゲート端子上部電極から なるゲート端子部を形成することができるため、TFT マトリクス装置の製造工程を簡略化することが可能とな

【0065】また、蓄積容量電極上の絶縁膜がノンドー プ半導体層によって常に覆われていることにより、絶縁 膜が直接エッチャントに晒されず、従って絶縁膜及びノ ンドープ半導体層からなる誘電体膜の厚さが変動や絶縁 不良を生じないため、蓄積容量の特性変動や電流リーク 30 等による表示欠陥の発生を防止することができる。これ により、TFTマトリクス装置の製造工程を簡略化し て、コストダウンを実現すると共に、蓄積容量の特性変 動を防止して、歩留まり及び信頼性を向上させることが 可能となる。

【図面の簡単な説明】

【図1】本発明の第1の実施例による逆スタガード型T FTマトリクス装置を示す平面図である。

【図2】図1の逆スタガード型TFTマトリクス装置の ドレイン端子部、TFT部、画素部及び蓄積容量部、並 40 びにゲート端子部を示す断面図である。

【図3】図1及び図2の逆スタガード型TFTマトリク ス装置の製造方法を説明するための工程断面図(その 1) である。

【図4】図1及び図2の逆スタガード型TFTマトリク ス装置の製造方法を説明するための工程断面図(その 2) である。

【図5】図1及び図2の逆スタガード型TFTマトリク ス装置の製造方法を説明するための工程断面図(その 3) である。

【図6】図1及び図2の逆スタガード型TFTマトリク ス装置の製造方法を説明するための工程断面図(その 4)である。

【図7】図1及び図2の逆スタガード型TFTマトリク ス装置の製造方法を説明するための工程断面図(その 5)である。

【図8】図1及び図2の逆スタガード型TFTマトリク ス装置の製造方法を説明するための工程断面図(その である。

【図9】図1及び図2の逆スタガード型TFTマトリク ス装置の製造方法を説明するための工程断面図 (その 7)である。

【図10】図1及び図2の逆スタガード型TFTマトリ クス装置の製造方法を説明するための工程断面図(その 8) である。

【図11】図1及び図2の逆スタガード型TFTマトリ クス装置の製造方法を説明するための工程断面図(その 9) である。

【図12】本発明の第2の実施例による逆スタガード型 TFTマトリクス装置を示す平面図である。

【図13】図12の逆スタガード型TFTマトリクス装 置のドレイン端子部、TFT部、画素部及び蓄積容量 部、並びにゲート端子部を示す断面図である。

【図14】図12及び図13の逆スタガード型TFTマ トリクス装置の製造方法を説明するための工程断面図 (その1)である。

【図15】図12及び図13の逆スタガード型TFTマ トリクス装置の製造方法を説明するための工程断面図 (その2)である。

【図16】図12及び図13の逆スタガード型TFTマ トリクス装置の製造方法を説明するための工程断面図 (その3)である。

【図17】従来の逆スタガード型TFTマトリクス装置 を示す平面図である。

【図18】図17の逆スタガード型TFTマトリクス装 置のドレイン端子部、TFT部、画素部及び蓄積容量 部、並びにゲート端子部を示す断面図である。

【図19】図17及び図18の逆スタガード型TFTマ トリクス装置の製造方法を説明するための工程断面図 **(その1)である。**

【図20】図17及び図18の逆スタガード型TFTマ トリクス装置の製造方法を説明するための工程断面図 (その2) である。

【図21】図17及び図18の逆スタガード型TFTマ トリクス装置の製造方法を説明するための工程断面図 (その3) である。

【図22】図17及び図18の逆スタガード型TFTマ トリクス装置の製造方法を説明するための工程断面図 (その4)である。

【図23】図17及び図18の逆スタガード型TFTマ

トリクス装置の製造方法を説明するための工程断面図 (その5)である。

【図24】図17及び図18の逆スタガード型TFTマトリクス装置の製造方法を説明するための工程断面図(その6)である。

【図25】図17及び図18の逆スタガード型TFTマトリクス装置の製造方法を説明するための工程断面図(その7)である。

【図26】図17及び図18の逆スタガード型TFTマトリクス装置の製造方法を説明するための工程断面図(その8)である。

【図27】図17及び図18の逆スタガード型TFTマトリクス装置の製造方法を説明するための工程断面図(その9)である。

【図28】図17及び図18の逆スタガード型TFTマトリクス装置の製造方法を説明するための工程断面図(その10)である。

【符号の説明】

- 10…透明絶縁基板
- 12a…ゲート電極
- 12b…Cs電極
- 12 c…ゲートバスライン
- 12 d…ゲート端子下部電極
- 14…絶縁膜
- 14a…ゲート絶縁膜
- 16… i型a-Si層
- 16a…a-Si活性層
- 18…保護膜
- 18a…チャネル保護膜
- 20…n+型a-Si層
- 20a、20b…n+型a-Si接合層
- 22…金属層
- 22 a …ソース電極
- 22b…ドレイン電極
- 24…誘電体膜
- 26…対向電極

- 28…ドレイン端子下部電極
- 30…パッシベーション膜
- 32a、32b、32c、32d…コンタクトホール
- 34…透明導電膜
- 3 4 a…画素電極
- 34b…ドレイン端子上部電極
- 34 c…ゲート端子上部電極
- 36…ドレインバスライン
- 38…誘電体膜
- 10 50…透明絶縁基板
 - 52a…ゲート電極
 - 52b…Cs電極
 - 52 c…ゲートバスライン
 - 52 d…ゲート端子下部電極
 - 54…絶縁膜
 - 54a…ゲート絶縁膜
 - 54b…誘電体膜
 - 56… i型a-Si層
 - 56a…a-Si活性層
- 20 58…保護膜
 - 58a…チャネル保護膜
 - 60…n+型a-Si層
 - 60a、60b…n+型a-Si接合層
 - 62…金属層
 - 62a…ソース電極
 - 62b…ドレイン電極
 - 64…ドレイン端子下部電極
 - 66…コンタクトホール
 - 68…透明導電膜
- 30 68a…画素電極
 - 68b…ドレイン端子上部電極
 - 68c…ゲート端子上部電極
 - 70…パッシベーション膜
 - 72a、72b、72c…窓
 - 74…ドレインバスライン

【図1】

【図2】

本発明の第1の実施例による逆スタガード型 TFT マトリクス装置を示す平面図

【図3】

図1及び図2の逆スタガード型 TFT マトリクス装置の 製造方法を説明するための工程断面図(その 1)

(a) ドレイン端子部(AA/練断面)

‡-10

(b) TFT部(BB'線斯面)

(c) 画素部及び蓄積容量部(CC' 練断菌)

(d) ゲート囃子部(DD/練断面)

「20~・し8 整種 12c・・ゲートバスライン 12d・・ゲート学子下統署信

【図4】

図1及び図2の逆スタガード型 TFT マトリクス装置の 製造方法を説明するための工程衡面図 (その2)

(a) ドレイン増子部(AA'練断面)

(b) TFT部(BB'隸斯面)

(c) 画素部及び蓄積容量部(CC'練斯面)

(d) ゲート増子部(DD/美断面)

【図5】

図1及び図2の逆スタガード型TFT マトリクス装置の 製造方法を説明するための工程断面図(その3)

(a) ドレイン端子部(AA'執断面)

(b) TFT部(BB'練斷面)

(c) 画素部及び蓄積容量部(CC'線断面)

(d) ゲート場子部(DD'線断面)

188・・チャネル保護膜

【図6】

図1及び図2の逆スタガード型 TFT マトリクス装置の 製造方法を説明するための工程断面図(その4)

(a) ドレイン端子部(AA'練断面)

(b) TFT部(BB'線版面)

(c) 繭斎部及び蓄積容量部(CC'線斯面)

(d) ゲート端子部(DD/執断面)

20·m+型a一Si層 22···金属庫

【図7】

【図9】

【図10】

【図11】

図 | 及び図2の逆スタガード型TFTマトリクス 装置の製造方法を説明するための工程断面図(その9)

(a) ドレイン輸子部(AA/熱新面) 28

(b) TFT 帮(BB' 練斯面)

(c) 国業部及び書稿容量部(CC 線斯面) 22h 30 -- 30.

(d) ゲート暢子部(DD/熱断面)

34e・ 吾素電優 34b・ドレイン増子上部電視 34c・ゲート増子上部電荷

【図12】

本発明の第2の実施例による逆スタガード型 TFT マトリクス装置を示す平面図

【図13】

図 12 の逆スタガード型 TFT マトリクス装置の ドレイン囃子部、TFT 部、画案部及び警検容量部、 並びにゲート端子部を示す断面図

(a) ドレイン端子部(AA'練断面)

(c) 国素部及び蓄積容量部(CC 終断面)

(d) ゲート端子部(DD/練断面)

22a・・ソース電程 22b・・ドレイン電程

【図14】

図12及び図13の逆スタガード型TFTマトリクス 装置の製造方法を説明するための工程断面図(その1)

(8) ドレイン備子部(AA)輸店面)

(b) TFT 飲(BB'輸販面)

(c) 画楽部及び蓄積容量額(CC製版面)

(d) ゲー・埼子郎(DDT線断面)

【図15】

図12及び図13の逆スタガード型TFT マトリクス 装置の製造方法を説明するための工程断面図(その2)

(a) ドレイン増子部(AA' 緑断面)
28
20 22
(b) TFT 部(BB' 緑断面)
22b
20c
16a
22a
20a
16a
14
12a 14a
10
(c) 國寮部及び書積容量部(CC' 緑断面)

10e・・aーSi活性層 20a, 20b・・n+型aーSi接合層 22a・・ソース電極 22b・ドレイン衛伍 28・ドレイン場子下部電極

【図16】

図12及び図13の逆スタガード型TFTマトリクス 装置の製造方法を説明するための工程断面図その3)

【図17】

【図18】

従来の逆スタガード型 TFT マトリクス装置を示す平面図

図 17 の逆スタガード型 TFT マトリクス装置の ドレイン場子部、TFT 部、資素部及び書種容量部、 並びにゲート端子部を示す断面図

【図19】

図17及び図18の逆スタガード型TFTマトリクス 装置の製造方法を説明するための工程断面図(その1)

(a) ドレイン増了部(AA' 練断面)

(c) 画素部及び蓄積容量部(CC 練断面)

52d

50…透明絶維基板 52a…ゲート電極 52b…Cs 電極 52c…ゲートバスライン 52d…ゲート端子下部電極

【図20】

図17及び図18の逆スタガード型TFTマトリクス 装置の製造方法を説明するための工程断面図(その2)

(a) ドレイン増子畝(AA 被断面)

(b) TFT 畝(BB'練断面)

(c) 画楽部及び著積容量額(CC:線斯面)

(d) ゲー・増子却(DD'赫斯面)

【図21】

図17及び図18の逆スタガード型TFTマトリクス 装置の製造方法を説明するための工程断面図(その3)

(a) ドレイン端子部(AA)練斯面)

(b) TFT部(BB'缺断面)

(c) 面素部及び蓄積容量部(CC'練断面)

(d) ゲー維子部(DO:練筋面)

588・・・チャネル保護膜

【図22】

図17及び図18の逆スタガード型TFTマトリクス 装置の製造方法を説明するための工程断面図(その4)

(a) ドレイン端子部(AA'辞断面)

(b) TFT部(BB'練断面)

(c) 画楽部及び蓄積容量(CC:線版面)

(d) ゲー・柚子哉(DD)絵版面)

60···n+型a-Si層 62···金属層

【図23】

【図24】

【図25】

図17及び図18の逆スタガード型TFTマトリクス 装置の製造方法を説明するための工程断面図(その7)

(a) ドレイン嫡子郎(AA'隸断面)

(c) 國素部及び蓄積容量部(CC'線断面)

(d) ゲート端子部(DD/線断面)

68··透明導電膜

【図26】

図17及び図18の逆スタガード型TFTマトリクス 装置の製造方法を説明するための工程断面図(その8)

(a) ドレイン増子部(AA'練断面)

(c) 国素部及び蓄積容量部(CC'線断面)

(d) ゲート端子部(DD/練販面)

68b・・・西葉電極 68b・・ドレイン様子上部電板 68c・・ゲート様子上部電板

【図27】

図17及び図18の逆スタガード型TFTマトリクス 装置の製造方法を説明するための工程断面図(その9)

【図28】

フロントページの続き

(72)発明者 廣田 四郎

神奈川県川崎市中原区上小田中1015番地

70・パッシペーション膜

富士通株式会社内

(72)発明者 野中 一男

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 佐藤 精威

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 間島 庭司

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内