

Faculty of Engineering and Technology Electrical and Computer Engineering Department OPERATING SYSTEMS ENCS3390

Answers of assignment 2

Student Name: Raghad Murad Buzia

Student #: 1212214

Instructor: Abdel Salam Sayyad

Section: 1

Date: 7/11/2023

Table of Contents

TABLE OF CONTENTS	- I
PROBLEM	· 1
Part One: First Come First Served Scheduling	2
Part Two: Shortest Job First Scheduling	3
Part Three: Shortest Remaining Time First Scheduling	4
Part Four: Round Robin Scheduling	6
Part Five: Non-preemptive Priority Scheduling	Q

Problem

Consider the following set of processes:

Process	Arrival Time	Arrival Time Burst Time	
P1	0	10	3
P2	P2 1 8		2
Р3	3	14	3
P4	4	7	1
P5	6	5	0
P6	7	4	1
P7	8	6	2

For each of the following scheduling algorithms, show the Gantt chart, average waiting time, and average turnaround time.

- 1- First Come First Served.
- 2- Shortest Job First.
- 3- Shortest Remaining Time First.
- 4- Round Robin, with q = 5
- 5- Priority Scheduling, with aging; where priority is decremented by 1 if the process remains in the ready queue for 5 time units.

Part One: First Come First Served Scheduling.

First, we need to build the **Gantt chart** according to the above table:

Gantt chart:

	P1	P2	Р3	P4	P5	P6	P7
0	1	0 1	18 3	2 3	9 4	4 4	8 54

Now we need to calculate **The Turn Around time** and **The Waiting time** for each process:

- ⇒ To calculate **The Turn Around time**, we use the following formula: **Turn Around time** = **Completion time Arrival time**
- ⇒ To calculate **The Waiting time**, we use the following formula:

 Waiting time = Turn Around time Burst time

Process	Arrival Time	Burst Time	Completion Time	Turn Around Time	Waiting Time
P1	0	10	10	10 - 0 = 10	10 - 10 = 0
P2	1	8	18	18 – 1 = 17	17 – 8 = 9
Р3	3	14	32	32 - 3 = 29	29 – 14 = 15
P4	4	7	39	39 – 4 = 35	35 - 7 = 28
P5	6	5	44	44 - 6 = 38	38 - 5 = 33
P6	7	4	48	48 - 7 = 41	41 - 4 = 37
P7	8	6	54	54 - 8 = 46	46 - 6 = 40

- \Rightarrow Average Waiting time = (0+9+15+28+33+37+40)/7 = 162/7 = 23.14 units
- \Rightarrow Average Turnaround time = (10+17+29+35+38+41+46)/7 = 216/7 = 30.85 units

Part Two: Shortest Job First Scheduling.

First, we need to build the **Gantt chart** according to the above table:

Gantt chart:

Now we need to calculate **The Turn Around time** and **The Waiting time** for each process:

- ⇒ To calculate **The Turn Around time**, we use the following formula: **Turn Around time** = **Completion time Arrival time**
- ⇒ To calculate **The Waiting time**, we use the following formula:

Waiting time = Turn Around time – Burst time

Process	Arrival Time	Burst Time	Completion Time	Turn Around Time	Waiting Time
P1	0	10	10	10 - 0 = 10	10 - 10 = 0
P2	1	8	40	40 – 1 = 39	39 – 8 = 31
Р3	3	14	54	54 – 3 = 51	51 – 14 = 37
P4	4	7	32	32 - 4 = 28	28 - 7 = 21
P5	6	5	19	19 – 6 = 13	13 - 5 = 8
P6	7	4	14	14 – 7 = 7	7 - 4 = 3
P7	8	6	25	25 – 8 = 17	17 – 6 = 11

- \Rightarrow Average Waiting time = (0+31+37+21+8+3+11)/7 = 111/7 = 15.85 units
- \Rightarrow Average Turnaround time = (10+39+51+28+13+7+17)/7 = 165/7 = 23.57 units

Part Three: Shortest Remaining Time First Scheduling.

First, we need to build the **Gantt chart** according to the above table:

Gantt chart:

Now we need to calculate **The Turn Around time** and **The Waiting time** for each process:

- ⇒ To calculate **The Turn Around time**, we use the following formula: **Turn Around time** = **Waiting time** + **Burst Time**
- ⇒ To calculate **The Waiting time**, we use the following formula:

Waiting time = Total waiting time - No. of units process executed - Arrival time

Process	Arrival Time	Burst Time	Total waiting time	No. of units process executed	Waiting Time
P1	0	10	31	1	31 - 1 - 0 = 30
P2	1	8	1	0	1 - 0 - 1 = 0
Р3	3	14	40	0	40 - 0 - 3 = 37
P4	4	7	24	0	24 - 0 - 4 = 20
P5	6	5	13	0	13 - 0 - 6 = 7
P6	7	4	9	0	9 - 0 - 7 = 2
P7	8	6	18	0	18 - 0 - 8 = 10

Process	Arrival Time	Burst Time	Waiting Time	Turn Around Time
P1	0	10	30	30 + 10 = 40
P2	1	8	0	0 + 8 = 8
Р3	3	14	37	37 + 14 = 51
P4	4	7	20	20 + 7 = 27
P5	6	5	7	7 + 5 = 12
P6	7	4	2	2 + 4 = 6
P7	8	6	10	10 + 6 = 16

- \Rightarrow Average Waiting time = (30+0+37+20+7+2+10)/7 = 106/7 = 15.14 units
- \Rightarrow Average Turnaround time = (40+8+51+24+13+9+18)/7 = 160/7 = 22.85 units

Part Four: Round Robin Scheduling.

Note: q "Time Quantum" = 5 units.

First, we need to build the **Gantt chart** according to the above table:

Gantt chart:

Now we need to calculate The Turn Around time and The Waiting time for each process:

- ⇒ To calculate **The Turn Around time**, we use the following formula: **Turn Around time** = **Waiting time** + **Burst Time**
- ⇒ To calculate **The Waiting time**, we use the following formula:

 Waiting time = Total waiting time No. of units process executed Arrival time

Process	Arrival Time	Burst Time	Total waiting time	No. of units process executed	Waiting Time
P1	0	10	20	5	20-5-0=15
P2	1	8	39	5	39 - 5 - 1 = 33
Р3	3	14	50	10	50 - 10 - 3 = 37
P4	4	7	47	5	47 - 5 - 4 = 38
P5	6	5	25	0	25 - 0 - 6 = 19
P6	7	4	30	0	30 - 0 - 7 = 23
P7	8	6	49	5	49 - 5 - 8 = 36

Process	Arrival Time	Burst Time	Waiting Time	Turn Around Time
P1	0	10	15	15 + 10 = 25
P2	1	8	33	33 + 8 = 41
Р3	3	14	37	37 + 14 = 51
P4	4	7	38	38 + 7 = 45
P5	6	5	19	19 + 5 = 24
P6	7	4	23	23 + 4 = 27
P7	8	6	36	36 + 6 = 42

- \Rightarrow Average Waiting time = (15+33+37+38+19+23+36)/7 = 201/7 = 28.71 units
- \Rightarrow Average Turnaround time = (25+41+51+45+24+27+42)/7 = 255/7 = 36.42 units

Part Five: Non-preemptive Priority Scheduling.

Note: priority is decremented by 1 if the process remains in the ready queue for 5 time units.

First, we need to build the **Gantt chart** according to the above table:

Gantt chart:

Now we need to calculate **The Turn Around time** and **The Waiting time** for each process:

- ⇒ To calculate **The Turn Around time**, we use the following formula: **Turn Around time** = **Completion time Arrival time**
- \Rightarrow To calculate **The Waiting time**, we use the following formula:

Waiting time = Turn Around time – Burst time

Process	Arrival Time	Burst Time	Priority	Completion Time	Turn Around Time	Waiting Time
P1	0	10	3	10	10 - 0 = 10	10 - 10 = 0
P2	1	8	2	25	25 – 1 = 24	24 – 8 = 16
Р3	3	14	3	39	39 - 3 = 36	36 – 14 = 22
P4	4	7	1	17	17 – 4 = 13	13 - 7 = 6
P5	6	5	0	44	44 - 6 = 38	38 – 5 = 33
P6	7	4	1	48	48 – 7 = 41	41 - 4 = 37
P7	8	6	2	54	54 - 8 = 46	46 – 6 = 40

- \Rightarrow Average Waiting time = (0+16+22+6+33+37+40)/7 = 154/7 = 22 units
- \Rightarrow Average Turnaround time = (10+25+39+17+44+48+54)/7 = 208/7 = 29.71 units