Curso de Ciência da Computação Pontifícia Universidade Católica de Minas Gerais

Sistemas Operacionais

Capítulo XII - Sistemas de I/O

Hardware de I/O

- Variedade de dispositivos de I/O
- Conceitos básicos
 - Porta: comunicação do dispositivo com a máquina
 - Barramento
 - Driver e Controladora
- Instruções de I/O controlam dispositivos
- Dispositivos têm endereços, usados por
 - Instruções diretas de I/O
 - I/O mapeado por memória

Hardware de I/O

Drivers

- Programas que fazem a comunicação entre o Sistema Operacional e o Hardware
 - impressora, mouse, placas de vídeo e rede,som, monitor, pen-drives, etc...
- SO recebe as instruções contidas no driver e as processa
 - a partir daí, sabe como fazer para se comunicar com o Hardware.
- Exemplo: impressora, ao instalar o Driver o SO agora sabe:
 - em que porta ela se localiza
 - se ela está ou não ligada
 - se possui papel
 - como os dados a serem impressos chegarão até ela
 - se a impressão é em preto ou colorida, etc.

Drivers

- Nota: no SO já existe uma biblioteca de drivers genéricos:
 - para que os itens básicos funcionem (como mouse, teclado e monitor)
 - componentes de hardware mais avançados precisam de drivers específicos
 - distribuídos pela fabricante do hardware (placa de video)
- Por que atualizar?
 - drivers podem conter erros que comprometem a estabilidade do SO
 - o fabricante irá liberar atualizações posteriores
 - seja por melhorias (renderizar imagens gráficas)
 - corrigir falhas dos primeiros drivers
 - logo,para melhor desempenho e estabilidade, mantenha seus drivers atualizados.

Controladora

- ◆ É o dispositivo de hardware
 - faz a interface entre o exterior de um dispositivo e o seu funcionamento interno.

Exemplo:

- Microprocessador enviar o endereço físico de dados para o disco rígido
- o controlador (circuito):
 - traduz o endereço
 - aciona os dispositivos mecânicos específicos do disco para que os dados possam ser enviados para o processador

Interrupções

- ◆ Linha de solicitação de interrupção usada por dispositivos de I/O
- Controladora de interrupções recebe pedidos
 - Baseadas em prioridade
- Vetor de Interrupções desvia a execução para a rotina de tratamento
 - É uma tabela de endereços de memória que apontam para as rotinas de tratamento de interrupção.
 - Em muitas arquiteturas, o vetor de interrupção fica localizado no início do espaço de memória, a partir do endereço 0.
 - Nos PCs, o vetor de interrupções ocupa os primeiros 1024 bytes.

DMA

- Usado para evitar I/O programada (PIO) para grandes movimentações de dados
- ◆ Requer controladora de DMA
- Não usa CPU para transferir dados entre dispositivos de I/O e memória

Etapas de uma Transferência DMA

Interface de I/O

- Chamadas ao sistema para I/O encapsula o comportamento dos dispositivos em classes genéricas
- camada de driver esconde, do kernel, as diferenças entre os controladores de I/O
- Dispositivos variam em várias dimensões
 - Fluxo de caracteres ou blocos
 - Acesso seqüencial ou randômico
 - Compartilhados ou dedicados
 - Velocidade da operação
 - permissões de escrita e leitura

Estrutura de I/O do Kernel

Dispositivos de Blocos e de Caracteres

- Dispositivos de blocos incluem drivers de disco
 - Comandos de leitura, escrita e posicionamento
 - read, write, seek
- Dispositivos de caracteres incluem teclados, mouse, portas seriais
 - serviços de buffering

Clocks e Timers

- Provêem hora atual, tempo decorrido e cronômetros
- temporizador de intervalo programável usado para interrupções periódicas

I/O Bloqueante e Não-Bloqueante

- Bloqueante processo suspenso até que I/O se complete
 - Fácil de usar e entender
 - Insuficiente para algumas aplicações
 - Vídeo
- ◆ Não-bloqueante chamadas de I/O retornam o quanto antes
 - Implementado por multi-threading
 - Retorna rapidamente quaisquer dados disponíveis

Subsistema de I/O do Kernel

- Escalonamento
 - Requisições de I/O ordenadas pela fila do dispositivo
 - P1 fim do disco
 - P2 meio do disco
 - P3 início do disco
 - Ordem: P3, P2, P1
- Buffering armazenar dados na memória enquanto são transferidos entre dispositivos
 - Para lidar com diferenças de velocidades dos dispositivos
 - modem X disco
 - Para lidar com diferenças de tamanho de blocos de dados:
 - mensagens (rede)

Subsistema de I/O do Kernel

- Caching cópia de dados em memória rápida
 - Sempre uma cópia que está em outro lugar
 - Aumento de performance
- Spooling reter a saída de um dispositivo
 - Quando o dispositivo só pode atender uma requisição por vez
 - Ex.: impressão

Tratamento de Pedidos de I/O

- Considere a leitura de um arquivo em disco para um processo
 - Determinar o dispositivo que guarda o arquivo
 - Traduzir nome para representação do dispositivo
 - Ler dados do disco para buffer
 - Disponibilizar dados para o processo solicitante
 - Retornar controle para o processo