Exploratory Data Analysis

In [1]: import pandas as pd import numpy as np

import seaborn as sns from sklearn.preprocessing import Imputer

In [2]: df = pd.read csv("http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequalityred.csv", sep = ';')

In [3]: df.head()

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

Describe() function in Order to Analyze Total Count , mean , standard deviation minimum , maximum and percentile values along the rows

In [4]: df.describe()

#sns.heatmap(df.isnull())

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010

In order to do some analysis regarding null values we purposely make some values with np.NaN

In [18]: df.replace (2.3, np.NaN, inplace = True)

In [19]: df.head()

Out[19]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	NaN	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	

HeatMap Analysis of Null values

In this heatmap we could provide different colors by using argument cmap and its various options such as icefire, inferno, pastel1, viridis etc

In [20]: sns.heatmap(df.isnull()) Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x252ad7b7390>

isnull().sum() gives the total count of Null values along particular coulmns

0

In [30]: df.isnull().sum() Out[30]: fixed acidity

volatile acidity 0 0 citric acid 109 residual sugar chlorides free sulfur dioxide total sulfur dioxide density sulphates alcohol quality dtype: int64

Using Replace function to handle null values

0

0

0

0

0

265

In [31]: df.replace(np.NaN , 2 , inplace = True) In [32]: df.isnull().sum()

Out[32]: fixed acidity

volatile acidity 0 citric acid 0 residual sugar chlorides free sulfur dioxide total sulfur dioxide density sulphates alcohol 0 0 quality dtype: int64 In [34]: df.replace (2, np.NaN, inplace = True)

In [35]: df.isnull().sum()

Out[35]: fixed acidity volatile acidity

citric acid residual sugar chlorides free sulfur dioxide density sulphates alcohol

total sulfur dioxide 0 quality dtype: int64 In [55]: df[df['residual sugar'].isnull()].head()

Out[55]: volatile fixed citric residual chlorides acidity acidity acid sugar

2 5 7.8 0.760 0.04 0.092 15.0 54.0 0.9970 3.26 NaN 0.65 9.8 8 7.8 0.580 0.02 NaN 0.073 9.0 18.0 0.9968 3.36 0.57 9.5 7 21 7.6 0.390 0.31 NaN 0.082 23.0 71.0 0.9982 3.52 0.65 9.7 5 23 8.5 0.490 0.11 NaN 0.084 9.0 0.9968 3.17 0.53 9.4 5 29 8.0 6 0.00 0.082 16.0 0.9964 3.38 7.8 0.645 NaN 0.59 9.8 In [53]: sns.heatmap(df.isnull(), cmap = 'viridis') Out[53]: <matplotlib.axes._subplots.AxesSubplot at 0x252baba7eb8>

free sulfur

dioxide

density

density

dioxide

pH sulphates alcohol quality

dioxide

pH sulphates alcohol quality

77 154 231 308 385 462 539 616 693 770 847 924 1001 1078 1155 1232 1309 1386 1463 1540 0.8 - 0.6 0.4 citric acid. pH -sulphates chlorides free sulfur dioxide total sulfur dioxide density

citric

acidity

In [77]: df.head()

Out[77]:

0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978 3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968 3.20	0.68	9.8	5
2	7.8	0.76	0.04	NaN	0.092	15.0	54.0	0.9970 3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980 3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978 3.51	0.56	9.4	5
Using	dropna()	function to	handle n	nissing valu	es						

free sulfur

dioxide

chlorides

volatile

acidity

In [93]: df.dropna(how = 'any' , axis = 0 , inplace = True)

0

0 0

0

0

0

In [95]: df.isnull().sum()

Out[94]: (1332, 12)

In [94]: df.shape

Out[95]: fixed acidity volatile acidity

citric acid residual sugar chlorides free sulfur dioxide

total sulfur dioxide