Търсене и извличане на информация. Приложение на дълбоко машинно обучение

Стоян Михов

Лекция 13: Конволюционни невронни мрежи. Приложения и архитектури

План на лекцията

1. Формалности за курса (5 мин)

- 2. Особености на рекурентните невронни мрежи (5 мин)
- 3. Конволюционни невронни мрежи (30 мин)
- 4. Приложения на КНН (25 мин)
- 5. Пренапасване, недонапасване и регуларизация (20 мин)
- 6. Сравнение между различни архитектури (5 мин)

Формалности

- Продължаваме да провеждаме занятията онлайн всяка сряда от 8:15 до 12:00 часа през платформата Google meet: meet.google.com/hue-frfx-axb
- В Moodle до края на седмицата ще бъдат публикувани оценките за Домашно задание №2..
- Домашно задание №3 ще бъде публикувано до края на седмицата.
- На следващото занятие ще бъде публикувано условието за курсовите работи.
- Лекция 13 се базира на глава 13 от втория учебник.

План на лекцията

1. Формалности за курса (5 мин)

2. Особености на рекурентните невронни мрежи (5 мин)

- 3. Конволюционни невронни мрежи (30 мин)
- 4. Приложения на КНН (25 мин)
- 5. Пренапасване, недонапасване и регуларизация (20 мин)
- 6. Сравнение между различни архитектури (5 мин)

Особености на рекурентните невронни мрежи

- На неограничена по дължина последователност съпоставяме вектор с фиксиран размер.
- Резултатът след прочитане на дадена фраза зависи от думите пред нея по различен начин.
- Резултатният вектор по-силно зависи от последните елементи на последователността.
- Зависимостите от началните елементи "избледняват" с времето.

Идея за конволюционни невронни мрежи

- Нека разгледаме всяка подпоследователност с дадена фиксирана дължина поотделно.
- Да обработим подпоследователностите една по една и да запомним съответните резултати.
- Накрая да обобщим получените резултати във фиксиран по размер вектор
- Например за последователността:
 да запази възможността за решение между двете държави
- Разглеждаме 6-те подпоследователности с дължина 3: да запази възможността | запази възможността за | възможността за решение | за решение между | решение между двете | между двете държави

План на лекцията

- 1. Формалности за курса (5 мин)
- 2. Особености на рекурентните невронни мрежи (5 мин)
- 3. Конволюционни невронни мрежи (30 мин)
- 4. Приложения на КНН (25 мин)
- 5. Пренапасване, недонапасване и регуларизация (20 мин)
- 6. Сравнение между различни архитектури (5 мин)

Конволюция

Конволюцията е интегрална трансформация, която възниква в различни дялове на математиката. Формалната математическа дефиниция е:

Нека $f,g:\mathbb{R}\to\mathbb{R}$ са функции. Тогава конволюцията $f*g:\mathbb{R}\to\mathbb{R}$ е дефинирана като: $(f*g)(t)=\int_{-\infty}^{\infty}f(t-\tau)g(\tau)\;d\tau$

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau) d\tau$$

• Ако f и g са дискретни сигнали и g е дефиниран за $\{0,1,\ldots,M\}$, то конволюцията f*g е:

$$(f * g)[n] = \sum_{m=0}^{M} f[n - m]g[m]$$

• Ако положим m'=M-m, $\tilde{g}[i]=g[M-i]$ и n'=n-M получаваме:

$$(f * g)[n] = \sum_{m'=0}^{M} f[n' + m'] \tilde{g}[m']$$

- Ще наричаме g филтър.
- В цифровата обработката на сигнали и изображния конволюция се използва например за намиране на шаблони.

Изображение

1	1	7	0	0
0	1	1	~	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Филтър

1	0	1
0	1	0
1	0	1

Изображение

1 _{x1}	1 _{x0}	1 _{x1}	0	0
O _{x0}	1 _{x1}	1 _{x0}	1	0
O _{x1}	O _{x0}	1 _{x1}	1	1
0	0	1	1	0
0	1	1	0	0

Филтър

1	0	1
0	1	0
1	0	1

Изображение

1	1 _{x1}	1 _{x0}	O _{x1}	0
0	1 _{x0}	1 _{x1}	1 _{x0}	0
0	O _{x1}	1 ×0	1 _{x1}	1
0	0	1	1	0
0	1	1	0	0

Филтър

1	0	1
0	1	0
1	0	1

Изображение

1	1	1 _{x1}	O _{x0}	O _{x1}
0	1	1 _{x0}	1 _{x1}	O _{x0}
0	0	1 _{x1}	1 _{x0}	1 _{x1}
0	0	1	_	0
0	1	1	0	0

Филтър

1	0	1
0	1	0
1	0	1

4	3	4

Изображение

1	7	7	0	0
O _{x1}	1 _{x0}	1 _{x1}	~	0
O _{x0}	O _{x1}	1 _{x0}	1	1
O _{x1}	O _{x0}	1 _{x1}	1	0
0	1	1	0	0

Филтър

1	0	1
0	1	0
1	0	1

4	3	4
2		

Изображение

1	1	T	0	0
0	1 _{x1}	1 _{x0}	1 _{x1}	0
0	O _{x0}	1 _{x1}	1 _{x0}	1
0	O _{x1}	1 _{x0}	1 _{x1}	0
0	1	1	0	0

Филтър

1	0	1
0	1	0
1	0	1

4	3	4
2	4	

Изображение

1	T	T	0	0
0	1	1 _{x1}	1 _{x0}	O _{x1}
0	0	1 _{x0}	1 _{x1}	1 _{x0}
0	0	1 _{x1}	1 _{x0}	O _{x1}
0	1	1	0	0

Филтър

1	0	1
0	1	0
1	0	1

4	3	4
2	4	3

Изображение

1	1	1	0	0
0	1	1	~	0
O _{x1}	O _{x0}	1 _{x1}	~	1
O _{x0}	O _{x1}	1 _{x0}	1	0
O _{x1}	1 _{x0}	1 _{x1}	0	0

Филтър

1	0	1
0	1	0
1	0	1

4	3	4
2	4	3
2		

Изображение

1	1	T	0	0
0	1	1	~	0
0	O _{x1}	1 _{x0}	1 _{x1}	1
0	O _{x0}	1 _{x1}	1 _{x0}	0
0	1 _{x1}	1 _{x0}	O _{x1}	0

Филтър

1	0	1
0	1	0
1	0	1

4	အ	4
2	4	3
2	3	

Изображение

1	•	1	0	0
0	~	7	1	0
0	0	1 _{x1}	1 _{x0}	1 _{x1}
0	0	1 _{x0}	1 _{x1}	O _{x0}
0	1	1 _{x1}	O _{x0}	O _{x1}

Филтър

1	0	1
0	1	0
1	0	1

4	3	4
2	4	3
2	3	4

да	-0,30
запази	0,43
възможността	0,27
за	-0,08
решение	0,00
между	-0,25
двете	0,09
държави	-0,06

3 -1 1

Едномерна (1D) конволюция върху текст много канали

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

3	1	2	-3
-1	2	1	-3
1	1	-1	1

д, з, в	
3, B, 3	
в, з, р	
з, р, м	
р, м, д	
м, д, д	

-0,30	-0,04	-0,18	0,33	Д, 3, В	-1,
0,43	0,46	-0,40	-0,32	3, B, 3	
0,27	-0,03	0,29	0,15	в, з, р	
-0,08	-0,34	0,10	-0,42	з, р, м	
0,00	-0,06	-0,46	0,27	р, м, д	
-0,25	0,43	-0,05	-0,40	м, д, д	
0,09	-0,26	0,12	0,48	•	
-0,06	-0,39	-0,19	0,29		
	0,43 0,27 -0,08 0,00 -0,25 0,09	0,43 0,46 0,27 -0,03 -0,08 -0,34 0,00 -0,06 -0,25 0,43 0,09 -0,26	0,43 0,46 -0,40 0,27 -0,03 0,29 -0,08 -0,34 0,10 0,00 -0,06 -0,46 -0,25 0,43 -0,05 0,09 -0,26 0,12	0,43 0,46 -0,40 -0,32 0,27 -0,03 0,29 0,15 -0,08 -0,34 0,10 -0,42 0,00 -0,06 -0,46 0,27 -0,25 0,43 -0,05 -0,40 0,09 -0,26 0,12 0,48	0,43 0,46 -0,40 -0,32 0,27 -0,03 0,29 0,15 -0,08 -0,34 0,10 -0,42 0,00 -0,06 -0,46 0,27 -0,25 0,43 -0,05 -0,40 0,09 -0,26 0,12 0,48

3	1	2	-3
-1	2	1	-3
1	1	-1	1

ļa .	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

3	1	2	-3
-1	2	1	-3
1	1	-1	1

ца	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

3	1	2	-3
-1	2	1	-3
1	1	-1	1

да	-0,30	-0,04	-0,18	0,33			д, з, в
запази	0,43	0,46	-0,40	-0,32			3, B, 3
възможността	0,27	-0,03	0,29	0,15			в, з, р
за	-0,08	-0,34	0,10	-0,42		>	з, р, м
решение	0,00	-0,06	-0,46	0,27	-		р, м, д
между	-0,25	0,43	-0,05	-0,40			м, д, д
двете	0,09	-0,26	0,12	0,48			
държави	-0,06	-0,39	-0,19	0,29			

3	1	2	-3
-1	2	1	-3
1	1	-1	1

Едномерна (1D) конволюция върху текст

да	-0,30	-0,04	-0,18	0,33	д, з, в
запази	0,43	0,46	-0,40	-0,32	3, B, 3
възможността	0,27	-0,03	0,29	0,15	в, з, р
за	-0,08	-0,34	0,10	-0,42	з, р, м
решение	0,00	-0,06	-0,46	0,27	р, м, д
между	-0,25	0,43	-0,05	-0,40	м, д, д
двете	0,09	-0,26	0,12	0,48	
държави	-0,06	-0,39	-0,19	0,29	

3	1	2	-3
-1	2	1	-3
1	1	-1	1

Едномерна (1D) конволюция върху текст

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

д, з, в	-1,13
3, B, 3	0,47
в, з, р	2,35
з, р, м	-0,65
р, м, д	0,70
м, д, д	-1,09

3	1	2	-3
-1	2	1	-3
1	1	-1	1

Едномерна (1D) конволюция върху текст

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

3	1	2	-3
-1	2	1	-3
1	1	-1	1

Д, З, В	-1,13
3, B, 3	0,47
в, з, р	2,35
з, р, м	-0,65
р, м, д	0,70
м, д, д	-1,09

Едномерна (1D) конволюция върху текст много филтри

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

д, з, в	-1,13	1,31
3, B, 3	0,47	-0,82
в, з, р	2,35	0,87
з, р, м	-0,65	-0,28
р, м, д	0,70	0,68
м, д, д	-1,09	-1,26

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

Едномерна (1D) конволюция върху текст много филтри

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

3	1	2	-3
-1	2	1	-3
1	1	-1	1

д, з, в	-1,13	1,31	-0,43
3, B, 3	0,47	-0,82	-0,94
в, з, р	2,35	0,87	-1,50
з, р, м	-0,65	-0,28	2,51
р, м, д	0,70	0,68	-2,32
м, д, д	-1,09	-1,26	0,15

1	0	0	1
1	0	ا_	٦
0	1	0	1

1	1	2	7
T	0	٦-	3
0	2	2	1

Едномерна (1D) конволюция върху текст извличане на максимално (max pooling over time)

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	٦-	1
0	1	0	1

1	-1	2	-1
1	0	٦-	3
0	2	2	1

д, з, в	-1,13	1,31	-0,43
3, B, 3	0,47	-0,82	-0,94
в, з, р	2,35	0,87	-1,50
з, р, м	-0,65	-0,28	2,51
р, м, д	0,70	0,68	-2,32
м, д, д	-1,09	-1,26	0,15

max p 2,35 1,31 2,51

Едномерна (1D) конволюция върху текст извличане на k-максимални (k-max pooling over time)

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	٦-	-1
0	1	0	1

1	-1	2	-1
1	0	٦	3
0	2	2	1

д, з, в	-1,13	1,31	-0,43
3, B, 3	0,47	-0,82	-0,94
в, з, р	2,35	0,87	-1,50
з, р, м	-0,65	-0,28	2,51
р, м, д	0,70	0,68	-2,32
м, д, д	-1,09	-1,26	0,15

0	2,35	1,31	2,51
2-max	0,70	0,87	0,15

Едномерна (1D) конволюция върху текст извличане на средно (average pooling over time)

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	1	1
0	1	0	1

1	-1	2	-1
1	0	٦-	3
0	2	2	1

д, з, в	-1,13	1,31	-0,43
3, B, 3	0,47	-0,82	-0,94
в, з, р	2,35	0,87	-1,50
з, р, м	-0,65	-0,28	2,51
р, м, д	0,70	0,68	-2,32
м, д, д	-1,09	-1,26	0,15

Едномерна (1D) конволюция с попълване (padding=1)

\$	0,00	0,00	0,00	0,00
да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29
\$	0,00	0,00	0,00	0,00

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	1	-1
0	1	0	1

1	-1	2	-1
1	0	٦	3
0	2	2	1

\$, д, з	-0,31	0,67	-0,00
Д, З, В	-1,13	1,31	-0,43
3, B, 3	0,47	-0,82	-0,94
в, з, р	2,35	0,87	-1,50
з, р, м	-0,65	-0,28	2,51
р, м, д	0,70	0,68	-2,32
м, д, д	-1,09	-1,26	0,15
д, д, \$	-1,13	0,41	1,10

Едномерна (1D) конволюция върху текст разкрач=2 (stride=2)

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

Д, З, В	-1,13	1,31	-0,43
в, з, р			
р, м, д			

3	7	2	-3
-1	2	1	<mark>-</mark>
1	1	-1	1

1	0	0	1
1	0	1	-1
0	1	0	1

1	1	2	-1
1	0	-1	3
0	2	2	1

Едномерна (1D) конволюция върху текст разкрач=2 (stride=2)

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

Д, З, В	-1,13	1,31	-0,43
в, з, р	2,35	0,87	-1,50
р, м, д			

3	1	2	<u>ვ</u>
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	٦-	-1
0	1	0	1

1	٦-	2	-1
1	0	۲,	ദ
0	2	2	1

Едномерна (1D) конволюция върху текст разкрач=2 (stride=2)

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

Д, З, В	-1,13	1,31	-0,43
в, з, р	2,35	0,87	-1,50
р, м, д	0,70	0,68	-2,32

3	7	2	-3
-1	2	1	-3
1	1	۲-	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	٦-	2	-1
1	0	۲,	ദ
0	2	2	1

да	-0,30	-0,04	-0,18	0,33	1					
запази	0,43	0,46	-0,40	-0,32						
възможността	0,27	-0,03	0,29	0,15		-	д, в, р	-2,14	0,07	-1,28
за	-0,08	-0,34	0,10	-0,42			3, 3, M			
решение	0,00	-0,06	-0,46	0,27			в, р, д			
между	-0,25	0,43	-0,05	-0,40			з, м, д			
двете	0,09	-0,26	0,12	0,48		·				
държави	-0,06	-0,39	-0,19	0,29						

3	1	2	-3
٦	2	1	-3
1	1	1	1

1	0	0	1
1	0	٦-	٦-
0	1	0	1

1	٦-	2	٦-
1	0	۲,	က
0	2	2	1

да	-0,30	-0,04	-0,18	0,33						
запази	0,43	0,46	-0,40	-0,32						
възможността	0,27	-0,03	0,29	0,15			д, в, р	-2,14	0,07	
3a	-0,08	-0,34	0,10	-0,42		-	3, 3, M	2,52	0,37	
решение	0,00	-0,06	-0,46	0,27			в, р, д			
между	-0,25	0,43	-0,05	-0,40			з, м, д			
двете	0,09	-0,26	0,12	0,48		,				
държави	-0,06	-0,39	-0,19	0,29						

3	1	2	-3
-1	2	1	-3
1	1	1	1

1	0	0	1
1	0	٦-	-1
0	1	0	1

1	٦-	2	٦-
1	0	۲,	က
0	2	2	1

да	-0,30	-0,04	-0,18	0,33						
запази	0,43	0,46	-0,40	-0,32						
възможността	0,27	-0,03	0,29	0,15	1		д, в, р	-2,14	0,07	-1
за	-0,08	-0,34	0,10	-0,42			3, 3, M	2,52	0,37	-1
решение	0,00	-0,06	-0,46	0,27		→	в, р, д	-0.28	0,84	2
между	-0,25	0,43	-0,05	-0,40			з, м, д			
двете	0,09	-0,26	0,12	0,48	l	·				
държави	-0,06	-0,39	-0,19	0,29						

3	7	2	-3
-1	2	1	-3
1	1	٦-	1

1	0	0	1
1	0	1	-1
0	1	0	1

1	٦-	2	1
1	0	۲,	ന
0	2	2	1

да	-0,30	-0,04	-0,18	0,33						
запази	0,43	0,46	-0,40	-0,32						
възможността	0,27	-0,03	0,29	0,15			д, в, р	-2,14	0,07	-1,
за	-0,08	-0,34	0,10	-0,42	1		3, 3, M	2,52	0,37	-1,
решение	0,00	-0,06	-0,46	0,27			в, р, д	-0.28	0,84	2,
между	-0,25	0,43	-0,05	-0,40		\	з, м, д	3,21	-0,40	-1,
двете	0,09	-0,26	0,12	0,48		·				
държави	-0,06	-0,39	-0,19	0,29						

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	٦-	٦-
0	1	0	1

1	-1	2	٦-
1	0	-1	ന
0	2	2	1

да	-0,30	-0,04	-0,18	0,33
запази	0,43	0,46	-0,40	-0,32
възможността	0,27	-0,03	0,29	0,15
за	-0,08	-0,34	0,10	-0,42
решение	0,00	-0,06	-0,46	0,27
между	-0,25	0,43	-0,05	-0,40
двете	0,09	-0,26	0,12	0,48
държави	-0,06	-0,39	-0,19	0,29

3	T	2	-3
-1	2	1	-3
1	1	1	1

1	0	0	1
1	0	٦-	٦-
0	1	0	1

1	-1	2	-1
1	0	٦	က
0	2	2	1

д, в, р	-2,14	0,07	-1,28
3, 3, M	2,52	0,37	-1,58
в, р, д	-0.28	0,84	2,18
			-1,39

План на лекцията

- 1. Формалности за курса (5 мин)
- 2. Особености на рекурентните невронни мрежи (5 мин)
- 3. Конволюционни невронни мрежи (30 мин)
- 4. Приложения на КНН (25 мин)
- 5. Пренапасване, недонапасване и регуларизация (20 мин)
- 6. Сравнение между различни архитектури (5 мин)

ImageNet Разпознаване на образи с дълбоки КНН

Krizhevsky, Sutskever, and Hinton (2012). ImageNet classification with deep convolutional neural networks.

http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf

Приложение на КНН за класифициране на документи

Zhang and Wallace
(2015): A Sensitivity
Analysis of (and
Practitioners' Guide to)
Convolutional Neural
Networks for Sentence
Classification

https://arxiv.org/pdf/ 1510.03820.pdf

Приложение на КНН за класифициране на документи

Модел	F1
Наивен Бейсов класификатор	89.9
Логистична регресия върху BOW	92.6
LSTM RNN	94.6
LSTM Bi-RNN	96.7
Конволюционна НМ	97.5

Невронни архитектури с вертикални порти (Highway NN)

- Използването на преки връзки с порти за контрол на пропагирането, което видяхме в LSTM и GRU, е много по-общ метод.
- Този метод има ключово значение при реализирането на невронни мрежи с голяма дълбочина.

Srivastava, Greff and Schmidhuber (2015): Training Very Deep Networks

https://proceedings.neurips.cc/ paper/2015/file/ 215a71a12769b056c3c32e7299f 1c5ed-Paper.pdf

Приложение на многослойни конволюционни НН за класифизиране на документи

- Мрежата обработва текста на ниво символи
- Използва се архитектура от множество слоеве от конволюция и извличане на максимален елемент за влагане на документи
- За да работи тази архитектура е от съществено значение използването на преки връзки

Conneau, Schwenk, Barrault and Yann Lecun (2016): Very Deep Convolutional Networks for Text Classification

https://arxiv.org/abs/1606.01781

Приложение на КНН за посимволов езиков модел

Kim, Jernite, Sontag and Rush (2016): Character-Aware Neural Language Models

https://arxiv.org/abs/ 1508.06615

Приложение на КНН за посимволов езиков модел

Модел	Перплексия
3-грамен с изглаждане	71
Word2Vec CBOW	56
EM на Bengio et al.	39
LSTM	32
Симв влагане + LSTM	23
Bi-LSTM	11***
Симв влагане + Bi-LSTM	8.2***

^{***} Перплексията изчислена при двупосочния модел не е коректна от вероятностна гледна точка и не може директно да се сравнява с перплексията на другите методи.

План на лекцията

- 1. Формалности за курса (5 мин)
- 2. Особености на рекурентните невронни мрежи (5 мин)
- 3. Конволюционни невронни мрежи (30 мин)
- 4. Приложения на КНН (25 мин)
- 5. Пренапасване, недонапасване и регуларизация (20 мин)
- 6. Сравнение между различни архитектури (5 мин)

Проблеми свързани със сложността на модела

Проблеми свързани при недонапасване

- При недонапасване
 - модела не е достатъчно изразителен за да научи от данните функция, която достатъчно добре да описва данните.
 - Решение:
 Използване на поизразителен модел

Проблеми свързани при пренапасване

При пренапасване модела е предостатъчно изразителен но от малкото данни научава грешна функция. В този случай функцията много добре описва тренировачните данни но не се обобщава добре за ненаблюдавани данни.

Проблеми свързани при пренапасване

При пренапасване модела е предостатъчно изразителен но от малкото данни научава грешна функция. В този случай функцията много добре описва тренировачните данни но не се обобщава добре за ненаблюдавани данни.

Проблеми свързани при пренапасване

 При пренапасване — подългото обучение на модела води до увеличаване на грешката върху ненаблюдавани данни.

• Решения:

- Използване на по-прост модел (опасност от недонапасване)
- Осигуряване на повече данни за обучение (скъпо и трудоемко)

Грешка грешка при тестване грешка при трениране

• Регуларизация

Епоха

L_2 Регуларизация

• Досега се стремяхме да минимизираме кросентропията:

$$H_X[\Pr|\Pr_{\theta}] = -\frac{1}{|X|} \sum_{i=1}^{|X|} \log \Pr_{\theta}[\mathbf{x}^{(i)}]$$
, където $\theta \in \mathbb{R}^K$ е векторът от параметрите на модела.

• Към целевата функция добавяме регуларизационен член:

$$J_X(\theta) = H_X[\Pr{\|\Pr_{\theta}\|} + \frac{\lambda \|\theta\|^2}{\|X\|} = -\frac{1}{\|X\|} \sum_{i=1}^{|X|} \log \Pr_{\theta}[\mathbf{x}^{(i)}] + \frac{\lambda}{\lambda} \sum_{k} \frac{\theta_k^2}{\|X\|^2}$$

- Идеята е, да се стремим да използваме възможно най-малко от параметрите.
- Освен L_2 регуларизация често се използва и L_1 , а също и комбинация.
- Параметърът λ е метапараметър и следва да се напасне с валидиране.

Dropout регуларизация

- · Нека кросентропията в точката (наблюдението) i е: $H_i = -\log \operatorname{softmax}(W\mathbf{x}_i + \mathbf{b})_{c_i}$, където $\mathbf{x}_i \in \mathbb{R}^N$
- По време на обучение за случайно избираме вектор $\mathbf{r} \in \{0,1\}^N$ с N-мерно Бернулиево разпределение с вероятност p и използваме поточкова кросентропия: $H_i = -\log \operatorname{softmax}(W\hat{\mathbf{x}}_i + \mathbf{b})_{c_i}$, където $\hat{\mathbf{x}}_i = \mathbf{r} \odot \mathbf{x}_i$.
- Идеята е, че ако по случаен начин изтрием част от входа, моделът няма да разчита твърде много на всеки отделен параметър, а ще трябва да научи пообщи закономерности.
- По време на приложение на модела вместо dropout се скалира: $\hat{\mathbf{x}}_i = p\mathbf{x}_i$.
- \cdot Параметърът p е метапараметър и се напасва с валидиране.
- Dropout регуларизация се използва често и в други слоеве (не само накрая).

План на лекцията

- 1. Формалности за курса (5 мин)
- 2. Особености на рекурентните невронни мрежи (5 мин)
- 3. Конволюционни невронни мрежи (30 мин)
- 4. Приложения на КНН (25 мин)
- 5. Пренапасване, недонапасване и регуларизация (20 мин)
- 6. Сравнение между различни архитектури (5 мин)

Сравнение между различни архитектури

- **CBOW**: Изненадващо добро изходно ниво за прости класификационни проблеми. Особено ако са последвани от няколко слоя перцептрони с ReLU активация.
- Модели с прозорец: Подходящи за класификация на думи при задачи, които не се нуждаят от широк контекст. Например, определяне частите на речта (Part-of-Speech), разпознаване на изрази за названия (Named entity recognition).
- **КНН**: подходящи за класификация, нуждаят се от допълване за по-кратки фрази, трудни за интерпретиране, лесни за паралелизиране на графичните процесори. Ефективни и сравнително универсални.
- **РНН**: Когнитивно правдоподобни (чете се отляво надясно), не са най-доброто за класификация (ако се използва само последно състояние), много по-бавни от КНН, добри за анотиране на последователности, чудесни за езикови модели, може да бъдат невероятно ефективни при допълване с механизми за внимание (ще разгледаме на следващата лекция).