

Санкт-Петербургский Государственный Политехнический Университет

Факультет Технической Кибернетики

Кафедра Компьютерные Системы и Программные Технологии

ОТЧЁТ

о лабораторной работе №7

«Настройка алгоритмов диагностирования» $Bapuahm \, \mathcal{N}\!\!\!\! = \! 12$

Выполнил: гр. 5081/10 Туркин Е.А

Преподаватель: Сабонис С.С.

Система диагностирования: система с использованием фильтра Калмана, процесс авторегрессии 2 порядка (лабораторная работа №4).

Алгоритмы: Интервальный, АНОМ.

Вероятность ложного обнаружения: 0.01, 0.02.

1. СОСТАВИТЬ ПЛАН ЭКСПЕРИМЕНТОВ (ИНТЕРВАЛЬНЫЙ АЛГОРИТМ).

Рло = 0.01 => $\gamma = 0.4$, $\delta = 0.5$, M = 100, Объём выборки N = 1000, кол-во экспериментов 10.

2. ДЛЯ БАЗОВЫХ УРОВНЕЙ ДЕФЕКТОВ (ДЛЯ КАЖДОГО ТИПА ДЕФЕКТА) ОПРЕДЕЛИТЬ СРЕДНЕЕ ВРЕМЯ ОБНАРУЖЕНИЯ.

2.1 Постоянное смещение уровня шумов в канале возмущения на 2

	gamma						
		0,1	0,3	0,5	0,7	0,9	
	0,1	30	31	31	28	43	
delta	0,3	30	39	40	48	52	
de	0,5	54	55	62	61	67	
	0,7	77	77	82	82	91	
	0,9	-	-	-	-	-	

2.2 Постоянное смещение уровня шумов в канале измерения на 4

Данный дефект обнаруживается достаточно плохо для большинства параметров.

	gamma						
		0,1	0,3	0,5	0,7	0,9	
ಡ	0,1	25	38	48	100	1	
delta	0,3	89	-	-	-	-	
Р	0,5	-	-	-	-	-	
	0,7	-	-	1	-	-	

На рисунке представлена работа алгоритма для параметров $\gamma = 0.3, \, \delta = 0.3$

2.3 Увеличение дисперсии шумов в канале возмущения в 4 раза

Данный алгоритм не справляется с обнаружением дефектов данного типа

3. ДЛЯ ВЫБРАННОГО НАБОРА ПАРАМЕТРОВ АЛГОРИТМА ОПРЕДЕЛИТЬ СРЕДНЕЕ ВРЕМЯ ОБНАРУЖЕНИЯ, РАССМОТРЕТЬ МАЛЫЙ, СРЕДНИЙ И БОЛЬШОЙ УРОВНИ ДЕФЕКТОВ (ДЛЯ КАЖДОГО ТИПА ДЕФЕКТА). ПОСТРОИТЬ ЗАВИСИМОСТЕЙ СРЕДНЕГО **ВРЕМЕНИ** ГРАФИКИ ОБНАРУЖЕНИЯ \mathbf{OT} ВЕЛИЧИН ДЕФЕКТА, **ДОВЕРИТЕЛЬНЫЕ** ПРОИЛЛЮСТРИРОВАТЬ ПРИ **ЭТОМ** ИНТЕРВАЛЫ ВРЕМЕНИ ОБНАРУЖЕНИЯ.

Тип дефекта	Значение	Тобн ср.	Тобн интервальная оценка	
Постоянное смещение	малый (1)	88,8	76,7	100,8
уровня шумов в	средний (2)	58,6	47,4	66,1
канале возмущения	большой (4)	36	29,7	42,2

Рис. Доверительные интервалы времени обнаружения

1. СОСТАВИТЬ ПЛАН ЭКСПЕРИМЕНТОВ (АНОМ).

 ${
m P}$ ло = 0.02 => ${
m M}$ = 40, ${
m R}$ = 40, Объём выборки ${
m N}$ = 1000, кол-во экспериментов 10.

2. ДЛЯ БАЗОВЫХ УРОВНЕЙ ДЕФЕКТОВ (ДЛЯ КАЖДОГО ТИПА ДЕФЕКТА) ОПРЕДЕЛИТЬ СРЕДНЕЕ ВРЕМЯ ОБНАРУЖЕНИЯ.

2.1 Постоянное смещение уровня шумов в канале возмущения на 2.

	M						
		10	30	50	70	90	
	10	8	12	16	22	27	
N N	30	12	21	34	34	41	
	50	14	30	36	42	53	
	70	25	31	35	51	55	
	90	30	40	45	53	61	

Рис. Зависимость времени обнаружения от параметров алгоритма

2.2 Постоянное смещение уровня шумов в канале измерения на 4

	M						
		10	30	50	70	90	
	10	5	9	24	36	45	
~	30	10	19	35	45	60	
	50	16	25	38	56	63	
	70	22	37	51	60	65	
	90	26	45	54	64	74	

Рис. Зависимость времени обнаружения от параметров алгоритма

2.3 Увеличение дисперсии шумов в канале возмущения в 4 раза

	M						
		10	30	50	70	90	
	10	6	19	38	47	60	
R	30	17	31	46	49	68	
Н	50	22	39	41	59	79	
	70	32	48	63	71	92	
	90	52	53	64	74	79	

Рис. Зависимость времени обнаружения от параметров алгоритма

2.4 Увеличение дисперсии шумов в канале измерения в 4 раза

	M						
		10	30	50	70	90	
	10	9	15	16	18	27	
R	30	15	24	22	33	35	
1	50	11	22	27	37	40	
	70	16	27	36	46	52	
	90	24	33	41	54	61	

Рис. Зависимость времени обнаружения от параметров алгоритма

Данный алгоритм хорошо справляется с обнаружением дефектов, представленных выше. Стоит отметить, что при уменьшении параметров R и M увеличивается скорость обнаружения, но в то же время качество обнаружения может ухудшится.

ВЫБРАННОГО НАБОРА ПАРАМЕТРОВ АЛГОРИТМА ДЛЯ ОПРЕДЕЛИТЬ СРЕДНЕЕ ВРЕМЯ ОБНАРУЖЕНИЯ, РАССМОТРЕТЬ МАЛЫЙ, СРЕДНИЙ И БОЛЬШОЙ УРОВНИ ДЕФЕКТОВ (ДЛЯ КАЖДОГО ТИПА ДЕФЕКТА). ПОСТРОИТЬ ЗАВИСИМОСТЕЙ СРЕДНЕГО ГРАФИКИ **ВРЕМЕНИ** ОБНАРУЖЕНИЯ ВЕЛИЧИН OT ДЕФЕКТА, ПРОИЛЛЮСТРИРОВАТЬ ПРИ ЭТОМ **ДОВЕРИТЕЛЬНЫЕ** ИНТЕРВАЛЫ ВРЕМЕНИ ОБНАРУЖЕНИЯ.

Тип дефекта	Значение	Тобн ср.		ервальная енка
Постоянное смещение	малый (1)	53,4	43,5	63,2
уровня шумов в	средний (2)	20	27,1	32,9
канале возмущения	большой (4)	17,6	15,9	19,2

Рис. Интервальная оценка времени обнаружения

Тип дефекта	Значение	Тобн ср.		ервальная нка
Постоянное смещение	малый (2)	38	24	43,5
уровня шумов в	средний (4)	23,6	20,3	26,8
канале измерения	большой (8)	14,4	11,6	17,1

Рис. Интервальная оценка времени обнаружения

Тип дефекта	Значение	Тобн ср.	Тобн интервальная оценка	
Увеличение	малый (2)	Дефект обнаруживается плохо		
дисперсии шумов в	средний (4)	38	31,4	44,5
канале возмущения	большой (8)	26	22	30

Рис. Интервальная оценка времени обнаружения

Тип дефекта	Значение	Тобн ср.	Тобн интервальная оценка	
Увеличение	малый (2)	56	40	63,1
дисперсии шумов в	средний (4)	24,6	16,7	32,4
канале измерения	большой (8)	14,6	11,8	17,3

Рис. Интервальная оценка времени обнаружения

4. ВЫВОДЫ

В данной работе исследовались два алгоритма диагностирования. Интервальный алгоритм не смог адекватно определить некоторые дефекты.

Алгоритм АНОМ определил представленные типы дефектов, скорость определения оказалась выше, чем у интервального. Стоит отметить, что при малых объемах параметрах R и M алгоритм может некорректно реагировать на дефект. При выборе параметров в первую очередь стоит обратить внимание на вероятность ложного обнаружения, а затем на скорость обнаружения. Так же при более выраженных дефектах скорость обнаружения становится выше.