Introduction to Machine Learning

Fall 2021

University of Science and Technology of China

Lecturer: Jie Wang

Posted: Oct. 1, 2021

Homework 2

Due: Oct. 18, 2021

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Conditional Expectations

Recall that, for supervised learning problems, each data instance consists of a D-dimensional input feature vector $X \in \mathbb{R}^D$ and the corresponding output $Y \in \mathbb{R}$. We would like to find a mapping f(X) to estimate the value of Y given a sample of X. Let

$$\ell(y, f(\mathbf{x})) = (f(\mathbf{x}) - y)^2$$

be the square loss. We choose the function f(X) by minimizing the expectation of the square loss:

$$J[f] := \mathbb{E}[\ell(Y, f(X))] = \iint (y - f(\mathbf{x}))^2 p(\mathbf{x}, y) d\mathbf{x} dy,$$

where $p(\mathbf{x}, y)$ is the joint PDF.

- 1. Let h be a function of X and $\epsilon > 0$. Please calculate $J[f + \epsilon h] J[f]$.
- 2. Prove that $J[f + \epsilon h] J[f] \ge 0$ for any $\epsilon > 0$ if and only if

$$\int h(\mathbf{x}) \left\{ \int -2 \left(y - f(\mathbf{x}) \right) p(\mathbf{x}, y) dy \right\} d\mathbf{x} \ge 0.$$

3. Please show that $f^*(\mathbf{x}) = \mathbb{E}[Y|\mathbf{x}]$ is a solution to

$$J[f^*] = \min_f \{J[f]\}.$$

4. Please deduce that

$$\mathbb{E}[\ell(Y, f(X))] = \int \{f(\mathbf{x}) - \mathbb{E}[y|\mathbf{x}]\}^2 p(\mathbf{x}) d\mathbf{x} + \iint \{\mathbb{E}[y|\mathbf{x}] - y\}^2 p(\mathbf{x}, y) d\mathbf{x} dy.$$

Exercise 2: Bias-Variance Trade-off (Programming Exercise. You are required to finish at least one of Exercises 2 and 3.)

We provide you with L=100 data sets, each having N=25 points:

$$\mathcal{D}^{(l)} = \{(x_n, y_n^{(l)})\}_{n=1}^N, \quad l = 1, 2, \dots, L,$$

where x_n are uniformly taken from [-1,1], and all points $(x_n, y_n^{(l)})$ are independently from the sinusoidal curve $h(x) = \sin(\pi x)$ with an additional disturbance.

1. For each data set $\mathcal{D}^{(l)}$, consider fitting a model with 24 Gaussian basis functions

$$\phi_j(x) = e^{-(x-\mu_j)^2}, \quad \mu_j = 0.2 \cdot (j-12.5), \quad j = 1, \dots 24$$

by minimizing the regularized error function

$$L^{(l)}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y_n^{(l)} - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(x_n))^2 + \frac{\lambda}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w},$$

where $\mathbf{w} \in \mathbb{R}^{25}$ is the parameter, $\phi(x) = (1, \phi_1(x), \dots, \phi_{24}(x))^{\top}$ and λ is the regular coefficient. What's the closed form of the parameter estimator $\hat{\mathbf{w}}^{(l)}$ for the data set $\mathcal{D}^{(l)}$?

- 2. For $\log_{10} \lambda = -10, -5, -1, 1$, plot the prediction functions $y^{(l)}(x) = f_{\mathcal{D}^{(l)}}(x)$ on [-1, 1] respectively. For clarity, show only the first 25 fits in the figure for each λ .
- 3. For $\log_{10} \lambda \in [-3, 1]$, calculate the followings:

$$\bar{y}(x) = \mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(x)] = \frac{1}{L} \sum_{l=1}^{L} y^{(l)}(x)$$

$$(\text{bias})^2 = \mathbb{E}_X[(\mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(X)] - h(X))^2] = \frac{1}{N} \sum_{n=1}^{N} (\bar{y}(x_n) - h(x_n))^2$$

$$\text{variance} = \mathbb{E}_X[\mathbb{E}_{\mathcal{D}}[(f_{\mathcal{D}}(\mathbf{x}) - \mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(\mathbf{x})])^2]] = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{l=1}^{L} (y^{(l)}(x_n) - \bar{y}(x_n))^2$$

Plot the three quantities, $(bias)^2$, variance and $(bias)^2$ + variance in one figure, as the functions of $\log_{10} \lambda$. (**Hint:** see [1] for an example.)

Exercise 3: Bayesian Linear Regression (Programming Exercise. You are required to finish at least one of Exercises 2 and 3.)

Consider a single input variable \mathbf{x} , a single output variable \mathbf{y} and a linear model of the form $\mathbf{y} = w_0 + w_1 \mathbf{x} + \epsilon$, where ϵ is Gaussian distributed with mean of 0 and standard deviation of 0.25.

1. Suppose that, the model parameter $\mathbf{w} = (w_0, w_1)^T \in \mathbb{R}^2$ has a Gaussian prior of the form

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu_0, \Sigma_0) = \frac{1}{2\pi} \frac{1}{|\Sigma_0|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{w} - \mu_0)^T \Sigma_0^{-1} (\mathbf{w} - \mu_0)\right\}$$

where $\mu_0 = \mathbf{0}$ and $\Sigma_0 = \frac{1}{2}\mathbf{I}$. Please plot this Gaussian distribution in the form of heat map.

- 2. Sample six times independently from the prior Gaussian distribution defined above. Please plot the six straight lines $y = w_0 + w_1 x$ using these samples.
- 3. Now, suppose that we have observed a single data point $(x_1, y_1) = (0.6, 0)$. Please plot the likelihood function $p(y_1|x_1, \mathbf{w})$ for this data point as the function of \mathbf{w} , still in the form of heat map.
- 4. Calculate the posterior distribution of \mathbf{w} , denoted by $p(\mathbf{w}|y_1, x_1)$. Please plot the posterior distribution.
- 5. Sample six times independently from this posterior distribution of **w** and plot the six straight lines $y = w_0 + w_1 x$.
- 6. Then, suppose we observe a new single data point $(x_2, y_2) = (-0.5, 0.6)$. Please plot the corresponding likelihood function $p(y_2|x_2, \mathbf{w})$ of this second point alone, the posterior distribution of \mathbf{w} , denote by $p(\mathbf{w}|y_1, y_2, x_1, x_2)$, and six samples drawn from the current posterior function.
- 7. If we can observe new data points continuously, and then observe the posterior distributions and their sampled linear regression models sequentially. What will you infer from them? Please write down your conclusions.

(**Hint:** see [1] for an example.)

Exercise 4: Covariance Matrix and Gaussian Distribution

Let $\mathbf{X} = (X_1, X_2, \dots, X_D)^{\mathrm{T}} \in \mathbb{R}^D$ be a *D*-dimensional random vector. The covariance matrix of \mathbf{X} , denoted by $\Sigma_{\mathbf{X}}$, is defined as

$$Cov[\mathbf{X}] = \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{\mathrm{T}}].$$

- 1. Please show that $\Sigma_{\mathbf{X}}$ is positive semi-definite.
- 2. Please show that $\Sigma_{\mathbf{X}}$ doesn't have full rank if and only if $\{X_i \mathbb{E}[X_i]\}_{i=1}^D$ are linearly dependent.
- 3. Suppose that, the random vector \mathbf{X} has a multivariate Gaussian distribution with the mean vector being $\boldsymbol{\mu}$ and the covariance matrix being $\boldsymbol{\Sigma}$, respectively. The probability density function of \mathbf{X} is

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\},$$

where \mathbf{x} is a realization of the random vector \mathbf{X} . For notational simplicity, let

$$c = (2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}.$$
 (1)

Clearly, we must have

$$\int_{\mathbb{R}^D} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\} d\mathbf{x} = c.$$
 (2)

Now, let us denote the first M components of \mathbf{X} by \mathbf{X}_a , and the remaining D-M ones by \mathbf{X}_b , so that

$$\mathbf{X} = egin{pmatrix} \mathbf{X}_a \ \mathbf{X}_b \end{pmatrix}.$$

We denote the corresponding partitions of the mean vector by

$$oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix}$$

and the covariance matrix by

$$oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix}.$$

Please show that \mathbf{X}_a has a Gaussian distribution with its mean vector being $\boldsymbol{\mu}_a$ and the covariance matrix being $\boldsymbol{\Sigma}_{aa}$. In other words, please show that

$$p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) d\mathbf{x}_b = \frac{1}{(2\pi)^{M/2}} \frac{1}{|\mathbf{\Sigma}_{aa}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}_a - \boldsymbol{\mu}_a)^{\top} \mathbf{\Sigma}_{aa}^{-1} (\mathbf{x}_a - \boldsymbol{\mu}_a)\right\}.$$

(Hint:

- (a) you can make use identities similar to (1) and (2) to integrate out \mathbf{x}_b .
- (b) you may find the following identity useful:

$$|\Sigma| = |\Sigma_{aa}||\Sigma_{bb} - \Sigma_{ba}\Sigma_{aa}^{-1}\Sigma_{ab}| = |\Sigma_{bb}||\Sigma_{aa} - \Sigma_{ab}\Sigma_{bb}^{-1}\Sigma_{ba}|.)$$

Homework2

Exercise 5: Limit and Limit Points (Optional)

- 1. Show that $\{\mathbf{x}_n\}$ in \mathbb{R}^n converges to $\mathbf{x} \in \mathbb{R}^n$ if and only if $\{\mathbf{x}_n\}$ is bounded and has a unique limit point \mathbf{x} .
- 2. (Limit Points of a Set). Let C be a subset of \mathbb{R}^n . A point $\mathbf{x} \in \mathbb{R}^n$ is called a limit point of C if there is a sequence $\{\mathbf{x}_n\}$ in C such that $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{x}_n \neq \mathbf{x}$ for all positive integers n. If $\mathbf{x} \in C$ and \mathbf{x} is not a limit point of C, then \mathbf{x} is called an isolated point of C. Let C' be the set of limit points of the set C. Please show the following statements.
 - (a) If $C = (0,1) \cup \{2\} \subset \mathbb{R}$, then C' = [0,1] and x = 2 is an isolated point of C.
 - (b) The set C' is closed.
 - (c) The closure of C is the union of C' and C; that is $\operatorname{cl} C = C' \cup C$. Moreover, $C' \subset C$ if and only if C is closed.

Homework2

Exercise 6: Open and Closed Sets (Optional)

The norm ball $\{\mathbf{y} \in \mathbb{R}^n : \|\mathbf{y} - \mathbf{x}\|_2 < r, \mathbf{x} \in \mathbb{R}^n\}$ is denoted by $B_r(\mathbf{x})$.

- 1. Given a set $C \subset \mathbb{R}^n$, please show the following are equivalent.
 - (a) The set C is closed; that is $\mathbf{cl}\ C = C$.
 - (b) The complement of C is open.
 - (c) If $B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset$ for every $\epsilon > 0$, then $\mathbf{x} \in C$.
- 2. Given $A \subset \mathbb{R}^n$, a set $C \subset A$ is called open in A if

$$C = \{ \mathbf{x} \in C : B_{\epsilon}(\mathbf{x}) \cap A \subset C \text{ for some } \epsilon > 0 \}.$$

A set C is said to be closed in A if $A \setminus C$ is open in A.

- (a) Let $B = [0,1] \cup \{2\}$. Please show that [0,1] is not an open set in \mathbb{R} , while it is both open and closed in B.
- (b) Please show that a set $C \subset A$ is open in A if and only if $C = A \cap U$, where U is open in \mathbb{R}^n .

Exercise 7: Bolzano-Weierstrass Theorem

The Least Upper Bound Axiom

Any nonempty set of real numbers with an upper bound has a least upper bound. That is, $\sup C$ always exists for a nonempty bounded above set $C \subset \mathbb{R}$.

Please show the following statements from the least upper bound axiom.

1. Let C be a nonempty subset of \mathbb{R} that is bounded above. Prove that $u = \sup C$ if and only if u is an upper bound of C and

$$\forall \epsilon > 0, \exists a \in C \text{ such that } a > u - \epsilon.$$

- 2. Every bounded sequence in \mathbb{R} has at least one limit point.
- 3. Every bounded sequence in \mathbb{R}^n has at least one limit point.

Homework2

Exercise 8: Extreme Value Theorem

- 1. Show that a set $C \subset \mathbb{R}^n$ is compact if and only if C is closed and bounded.
- 2. Let C be a compact subset of \mathbb{R}^n and $f: C \to \mathbb{R}$ be continuous. Please show that there exist $\mathbf{a}, \mathbf{b} \in C$ such that

$$f(\mathbf{a}) \le f(\mathbf{x}) \le f(\mathbf{b}), \, \forall \, \mathbf{x} \in C.$$

(**Hint:** first prove that f(C) is compact, in \mathbb{R} .)

References

 $[1]\ {\rm C.\ M.\ Bishop.}\ Pattern\ Recognition\ and\ Machine\ Learning.}\ {\rm Springer},\ 2006.$