e书联盟电子书下载www.book118.com

大学力学论坛搜集网络资料整理

力学学习交流,资料分享请点去www.xuelixue.cn

感谢作者的辛勤劳动! 请尊重知识产权 如果感觉本资料不错,请购买正版!

第二章 平面体系的机动分析

思考题 (选答)

- 7. 不正确。原体系显然为几何不变无多余联系的。去二元体时每次都只能从暴露在 最外面的两杆铰结点开始去,而不能从中间任意抽取。
- 8. 不正确。原体系少一联系因而是常变的。在机动分析过程中,每根杆件或作刚片或作链杆,都必须也只能使用一次,不得遗漏也不得重复。原题分析中,杆 2 使用了两次,故错。

习 题

2-1 自下而上加二元体,几何不变 完多余联系。

2-2 两刚片一铰一杆相联,几何不变无 多余联系。

2-3 支杆 3 根只查本身。 去二元体,再按三刚片分 析,几何不变无多余联系。

2-4 按三刚片规则,几 何不变无多余联系。

2-5 符合三刚片规则, 几何不变无多余联系。

2-6 *W* = 0. 左部有一多余 联系,右部少一联系,常变。

2-7 去二元体, 再按三刚 片分析, 三铰不共线, 几何 不变无多余联系。

2-8 去四角之二元体后, W=3×4-8=4>3, 常变,

2-9 支杆 3 根只查本身。 符合三刚片规则。几何不 变无多余联系。

三刚片两两铰 联,三铰共线,辟变。

2-11 按 1, 2, 3, …顺序加二 元体,几何不变无多余联系。

2-12 按三刚片规则, 几何不变无多余联系。

2-13 去二元体, 左边按 三图片规则组成,右边同一 望。几何不变无多余联系, 些平行, 瞬变。

2-14 云二元体, 再按三 刚片, 两铰无穷远, 四杆

2-15 支持 3 根只查本身。三 刚片,三铰均无穷远,三对平 行锭杆各自等长,常变。

3.16 支杆3根只查本身。由左至 台依次加二元体,几何不变,有 个多余联系。

2-17 支杆 3 根只查本身。 曲杆为 刚片, 加二元体, 几何不变, 且有 8 根个多余链杆。

方案之

2-19 方案之

第三章 静定梁与静定刚架

*3-6 将支座 A 的反力沿杆轴方向和横截面方向分解为 \overline{H} 和 \overline{V} ,则不论支杆 B 的

万向如何改变,由 $\Sigma M_B = 0$ 知 Σ 不变,故任一截面的弯矩和剪力不变(由该截面以左来计算);但支杆 B 方向改变时, O 点位置改变,由 $\Sigma M_O = 0$ 知 \overline{H}_A 大小改变,故各截面的轴力大小亦随之而变。

3.

*3-2

3-25 均有岩,正确的如下:

e 书联明由子立下井 1447

第四章 静定拱

思考题(选答)

3. 拱上所有战画的弯矩均为特制的点袖放称为合理拱轴线。原题各图合理拱轴线的 形状见下图中虚线所示。

习 题 (→) 反力易求,如图

$$y = \frac{4f}{l^2}x(l-x) = x(1-\frac{x}{16}), \quad y' = 1-\frac{x}{8}$$

$$y_K = 55/16 = 3.4375, \quad y' = 3/8 = 0.375$$

$$\sin \varphi_K = 0.3511, \quad \cos \varphi_K = 0.9363$$

$$M_K = 55 \times 5 - 50 \times 3.4375 = 103.1 \text{ kN m}$$

$$Q_K = 55 \times 0.9363 - 50 \times 0.3511 = 33.9 \text{ kN}$$

$$Q_K = (55-80)0.9363 - 50 \times 0.3511 = -41.0 \text{ kN}$$

$$N_K = 55 \times 0.3511 + 50 \times 0.9636 = 66.1 \text{ kN}$$

$$N_K = (55-80)0.3511 + 50 \times 0.9636 = 38.0 \text{ kN}$$

6/2/3

♣ 反力及拉杆轴力H见图。

$$M_{K}=-5\times2+(20-5)6-2\times6\times3=44$$
 kN m
$$Q_{K}=-5\times0.6+(20-5-2\times6)0.8=-0.6$$
 kN
$$N_{S}=-5\times0.8-(20-5-2\times6)0.6=-5.8$$
 kN (拉力)

e书联盟申子书下栽城城 6001-440

4-3 取上部,可得较A,B处反力如图。再取下部,得

$$H = Z\cos\alpha = \frac{M_c^0}{f} = \frac{9q \times 12 - \frac{q}{2}12^2}{\frac{8}{3}} = \frac{27}{2}q$$

$$V_A = V_A^0 + H\lg\alpha = 3q - \frac{27}{2}\frac{1}{2}\frac{1}{9} = \frac{2!}{2}q$$

$$M = V_A x - \frac{qx^2}{2} - Hy = q(\frac{2!x}{2} - \frac{x^2}{2} - \frac{27}{2}y) = 0$$

$$y = \frac{x}{27}(2! - x)$$

10

5-5

第五章 静定平面桁架

$$S_1 = -\frac{2.5 \times 15 - 1 \times 10 - 1 \times 5}{6}P = -3.75P$$

$$S_2 = \frac{2.5 \times 10 - 1 \times 5}{6}P = 3.33P$$

$$S_4 = \frac{\sqrt{61}}{6}(2.5P - P - P) = 0.65P$$
$$S_3 = -(2.5P - P - P) = -0.5P$$

5-8

$$S_{s} = -\frac{30 \times 8}{4} = -60 \text{ kN}$$

$$S_{s} = (\frac{30 \times 12 - 40 \times 4}{6}) \frac{\sqrt{5}}{2} = 33.33 \times \frac{\sqrt{5}}{2} = 37.27 \text{ kN}$$

$$S_{c} = (\frac{40 \times 8}{12}) \sqrt{2} = 26.67 \sqrt{2} = 37.71 \text{ kN}$$

$$S_{d} = -\frac{(90 - 40)16}{12} = -66.67 \text{ kN}$$

$$S_2 = (-\frac{\frac{7}{2} \times 2 - 1 \times 1 - 4 \times 2}{2}) P \sqrt{2} = \sqrt{2}P$$

$$S_1 = -P$$
 (结点法)

$$Y_a = -\frac{Pd + P \times 2d}{3d} = -P$$
, $S_a = -\frac{\sqrt{13}}{2}P = -1.803P$
 $S_b = -2Y_a = 2P$ (结点法)

先由截面 I, $\Sigma X = 0$ 讲 $X_b = P$ 再依次用结点法求。

先判契杆,知
$$S_c = 0$$
.
 $X_n = (150 \times 12 - 100 \times 4)/6 = 233.33 \text{ kN}$
 $S_0 = 233.33 (5/4) - 271.07 (2)$
 $Y_a = 233.33 (3/4) = 175 \text{ kN}$
 $S_b = -2Y_a = -350 \text{ kN}$

被面
$$I$$
右, $EM_D = 0$, $S_e = \frac{Pd}{3d} = \frac{P}{3}$
结点 A , $S_e = -\frac{\sqrt{2}}{3}P$
结点 B , $S_s = (-\frac{P}{3})\frac{\sqrt{5}}{1} = -\frac{\sqrt{5}}{3}P$

裁面
$$I$$
左、 $S_a = -P$
裁面 I /左、 $Y_b = 2P - 2P = 0$
 $S_b = 0$

可有不同方法,较简之一为:

截面 I左, $\Sigma M_D = 0$ 得

$$S_c = \frac{-(70 \times 12 - 60 \times 4)}{8} = -75$$
 (单位 kN , 下同)

结点C有

$$X_d = -75_-$$

戴面 II左, $\Sigma M_A = 0$,且将 S_a 在 D 分解, S_a 在 G 分解,有 $Y_a = \frac{75 \times 4}{12} = 25$

$$S_a = 25 (5/3) = 41.67$$

截面 //左, £Y=0, 有

$$Y_b = -(70 - 37.5 - 25) = -7.5$$

$$S_b = -7.5 \frac{\sqrt{73}}{3} = -21.36$$

5-15 先求得反力如图, 再由截面 [左... ΣM_D = 0 得

$$X_a = \frac{-P \times 2.5 - P \times 1.5}{2.5} = -0.4P$$

$$S_a = -0.4\sqrt{2} P = -0.5657P$$

*5-21 F = 2×9 - (13÷5) = 0. 零载时,必全为零杆,几何不变。

 $F=2\times 12-(20+4)=0$. 零载时,设有图示非零内力,得两端竖向反力方向相反,己不能满足 $EM_B=0$,该只能全为零杆,几何不变。

*5-23 $W = 2 \times 6 - (6 + 6) = 0$. 零裁时, 非零內力可平衡, 故为非几何不变。

が 注

ŧ

5-25 7

有向是

*5-24 $W=3\times7-(2\times8+5)=0$. 零载时,设 A 处有向上的非零反力,自左至右依次取隔离体判定各力所需方向(打 V 者为已判定方向),最后取 G / 杆时,已无法满足 $EM_J=0$. 故 A 处反力只能为零,从而所有反力内力均必为零,体系为证何不变。

5-25 $N=3\times17-(2\times22+7)=0$. 零载时,设拱部有非零压力,由结点平衡可推知所有竖杆均为压力;若从铰 C 右侧切开,取 AC 表为隔离体,由 $EM_A=0$ 知 Q 必向下; 再取 C = B 为隔离体, Q 则向上,但这已不能满足 $EM_B=0$ 。因此只能是所有内力反力均为零,体系几何不变。

第六章 影响线及其应用

~~ 大大大大

6-18 S. Y. 易作。

由对称,可得 J.

S。作法:结点法,取结点3,

当P=1不在3时,有

$$S_C = -(Y_b + Y_d)$$

当P=1在3时,有

$$\mathcal{S}_C = -(Y_b + Y_d) + 1$$

= +1

S₂作法: 当 P=1 在 AD 段, 取 II 右, EM_D=0, X₂=-2R_B-S₃ 当 P=1 在 EB 段, 取 II 左, EM_D=0, X₂=-2R_A-S₃ 由此可计算各控制

点的竖标。

求 Q_{firmer} : 判断知, 应以车队向右行驶, 重车第二后轮位于 y_{max} 处 (图 c) 试算:

左移
$$\Sigma R \lg \alpha = (1/16) (130 - 70 + 3 \times 120 - 120 - 60) > 0$$

变号,判别式满足。得一

 $\underline{C'_{3,max}} = 130(1/8) + 70(1/8) + 120(1/2) + 120(1/2)(6.6/8) + 60(1/2)(2.6/8) = 1.44.25 \text{ kin}$

非 Qxian; 车队向左行驶, 重车第二后轮位于 ymia 处(图 d):

变号, 判别式满足。得

$$Q_{k(\text{train})} = 60(1/4)(1.4/4) - 120(1/4)(2.5/4) - 120(1/4) = -44.25 \text{ kN}$$

荷载在图示位置有

$$\frac{40}{3} > \frac{110}{9}$$

$$\frac{0}{3} < \frac{40 + 110}{9}$$

判别式满足,得

$$M_{C(\text{max})} = 40(9/4) + 60(7/4) + 20(5/4) + 30(3/4)$$

= 242.5 kN·m

求 $M_{C(max)}$: 列车向左开行,第三轮位于顶点时,有

$$\frac{440 + 220}{6} > \frac{440 + 92 \times 5.5}{10}$$

$$\frac{440}{6} < \frac{220 + 440 + 92 \times 5.5}{10}$$

故

$$M_{C \text{ (max)}} = 220(1/8)(15+22.5+30+25.5+21)$$

+92(1/2)(16.5/8)5.5
= 3657 kN·m

求
$$Q_{D(max)}$$
: 荷载在图示位置有
$$\frac{220}{1.143} > \frac{880 \div 92 \times 0.5}{8}$$

$$\frac{0}{1.143} < \frac{220 + 880 \div 92 \times 0.5}{8}$$

$$Q_{D(max)} = 1100(5/16) \div 92(1/2)0 \cdot 5(1/32)$$

$$= 344.5 \text{ kN}.$$

求 $Q_{D \text{ (min)}}$: 荷载位置可互观判定如图。 普通活载 $Q_{D \text{ (min)}} = 1100 (-3/16) = -206.2 \text{ kN}$ 特种活载 $Q_{D \text{ (min)}} = 750 (-9/32) = -210.9 \text{ kN}$ 故取 $Q_{D \text{ (min)}} = -210.9 \text{ kN}$

6-25 M_C : l=16 m, $\alpha=3/3$, K=121.0 kN/m

 $M_{C(max)} = 121.9(1/2)16(30/8) = 3657 \text{ kN} \cdot \text{m}$

最大 Q_D : l=9.143 m, $\alpha=1/8$, K=150.7 kN/m

 $Q_{D \text{ (mix)}} = 150.7(1/2)9.143(1/2) = 344.5 \text{ kN}$

最大 Q_D: l=6.857 m, α=1/8, K=164.2 kN/m

 $Q_{D \text{ (mis)}} = 164.2(1/2)6.857(-3/8) = -211.1 \text{ kN}$

中-恶裁。

 $R_{\text{crimes}} = 1100(17/20) \pm 92(1/2)12.5(12.5/20)$ = 1294 kN

 $\widetilde{\mathcal{Q}}_{C \text{ (max)}} = i \, 100(12/20) + 92(1/2)7.5(7.5/20)$ = 789 kN

 $Q_{C(n)} = 30(-1/4)(3.5/5) = -131 \text{ kN}$

汽车-15:

 $R_{4 \text{ (coux)}} = 70 \times 1 + 130(16/20) + 50(11/20) + 100(7/20)$ = 236.5 kN

 $Q_{C \text{(max)}} = 70(-1/20) + 130(3/4) + 50(10/20) + 100(6/20)$ = 149 kN

 $Q_{C \text{ (min)}} = 130(-1/4)+70(-1/20) = -36 \text{ kN}$

6-26

一孔有车:

R = 137.1(1/2)16.26(16.26/16) = 1133 kN

两孔有车:

R = 98.2(1/2)32.52(16.26/16) = 1623 kN

二力在梁上:

$$M_{\text{max}} = \frac{R}{l} \left(\frac{l}{2} - \frac{a}{2} \right)^2 - M_K$$
$$= \frac{180}{12} \left(6 - \frac{2}{3} \right)^2 - 0$$
$$= 426.7 \text{ kN} \cdot \text{m}$$

(a) 一力在梁上 $M_{(1)} = \frac{60 \times 6}{4} = 90 \text{ kN} \cdot \text{m}$ 二力在梁上 $M_{(2)} = \frac{120}{6} \left(\frac{6}{2} - \frac{1.8}{2}\right)^2 = 88.2 \text{ kN} \cdot \text{m}$ 故取 $M_{\text{max}} = 90 \text{ kN} \cdot \text{m}$

(b) 一力在梁上

$$M_{(1)} = \frac{60 \times 6}{4} = 90 \text{ kN} \cdot \text{m}$$

二力在梁上

$$M_{(2)} = \frac{120}{6} \left(\frac{6}{2} - \frac{1.7}{2} \right)^2 = 92.45 \text{ kN} \cdot \text{m}$$

故取 $M_{\text{max}} = 92.45 \text{ kN} \cdot \text{m}$

杆		影	भृद्धे :	线	$S_q =$	V	$S_{\kappa} =$		(1)	S'max
件	加数1	α_	_ω_	Σω	16 Σω	K	Κω'2	1÷μ	(1+μ).S _K	S_{\min}
位	m		m	m	kN	kN/m	kN		- kN	kN
2	48	0.5	÷26 18	÷26.18	÷419	94.5	÷1237	1.318	+1630	+2049 +419
6	,	0.1667 0.1667		,,,40	-79	110.2	+738 -490	1.310	+314 -646	
7	16	0.5	÷\$	÷§	+128	19.4	÷478	1.5	+717	±845_ +128

6 杆 K 值内插计算

加载」	K _{0.125}	$(K_{0.1667})$	K _{0.25}
18	122.8	(122.0)	120.3
(19.2)	(121.3)	120.4	(118.6)
20	120.3	(119.3)	117.4
25	114.7	` (i13.5)	1110
(28.8)	(111.4)	110.2	(107.7)
<u>30</u> ·	110.3	(109.1)	106.6

$$\Delta_{\alpha_x} = \sum \frac{\overline{MM_p as}}{EI}$$

$$= \int_0^1 x \frac{alx}{2} \frac{dx}{EI} + \int_0^1 x (qlx - \frac{qx^2}{2}) \frac{dx}{EI}$$

$$= \frac{q}{EI} (\frac{l^4}{6} + \frac{l^4}{3} - \frac{l^4}{8}) = \frac{3}{8} \frac{ql^4}{EI} \rightarrow$$

$$\Delta_{2x} = \frac{2}{EI} \int_{0}^{\pi/2} R \sin \varphi \frac{P}{2} R (1 - \cos \varphi) R d\varphi = \frac{PR^3}{EI} \int_{0}^{\pi/2} (\sin \varphi - \sin \varphi \cos \varphi) d\varphi$$

$$= \frac{PR^3}{EI} \left[-\cos \varphi - \frac{\sin^2 \varphi}{2} \right]_{0}^{\pi/2} = \frac{PR^3}{EI} \left[1 - \frac{1}{2} \right] = \frac{PR^3}{2EI} \rightarrow$$

$$M_{P} = \int_{0}^{\varphi} -qRd\theta R \sin\theta = -qR^{2} \int_{0}^{\varphi} \sin\theta d\theta = -qR^{2} (1 - \cos\varphi)$$

$$M = R \sin\varphi$$

$$\Delta_{Bx} = \frac{1}{EI} \int_{0}^{\pi/2} R \sin \varphi \left[-qR^{2} (1 - \cos \varphi) \right] R d\varphi = -\frac{qR^{4}}{2EI} \leftarrow$$

以外为新生

$$A_{3} = \frac{1}{EA} \left[(-1)(-3P)2d + 2(1/2)(2P)2d + 2(-\sqrt{2}/2)(-2\sqrt{2}P)\sqrt{2}d + 2(\sqrt{2}/2)(\sqrt{2}P)\sqrt{2}d \right]$$

$$= (10 + 6\sqrt{2}) \frac{Pd}{EA} = (10 + 6\sqrt{2}) \frac{40 \times 10^{3} \times 2}{210 \times 10^{5} \times 2 \times 10^{-3}} = 3.52 \times 10^{-3} \text{ m}$$

$$\Delta \varphi = \frac{1}{EA} \left[(-\frac{1}{d})(2P)2d + \frac{1}{\sqrt{2}d}(-2\sqrt{2}P)\sqrt{2}d + \frac{1}{\sqrt{2}d}(\sqrt{2}P)\sqrt{2}d \right]$$

$$= -(4 \div \sqrt{2}) \frac{P}{EA} = -(4 + \sqrt{2}) \frac{40 \times 10^{3}}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} \text{ rad } (\frac{142}{12})^{2} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3}} = -0.516 \times 10^{-3} + \frac{1}{210 \times 10^{9} \times 2 \times 10^{-3$$

$$y_{\text{max}} = \frac{2}{EI} \left[\left(\frac{1}{2} \frac{PI}{3} \frac{I}{3} \right) \frac{I}{9} + \left(\frac{PI}{3} \frac{I}{6} \right) \frac{5I}{24} \right]$$

$$= \frac{2}{EI} \left[\frac{1}{162} + \frac{5}{432} \right] PI^3$$

$$= \frac{23}{648} \frac{PI^3}{EI} \downarrow$$

$$-20^{10} + \frac{3}{48} \frac{3}{EI} + \frac{3}{48} \frac{3}{48} + \frac{3}{48} \frac{3}{EI} + \frac{3}{48} \frac{3}{$$

$$A_{c_3} = \frac{1}{EI} \left(\frac{160 \times 24}{23} + \frac{40 \times 22}{23} - \frac{2 \times 10 \times 2}{3} \times 1 \right)$$

$$= \frac{1}{EI} \left(\frac{640}{3} + \frac{80}{3} - \frac{40}{3} \right)$$

$$= \frac{680}{3EI} \quad \downarrow$$

$$\varphi_{3} = -\frac{1}{2EI} \left[\frac{qa^{2} \times 2a}{2} \frac{4}{9} + \frac{2}{3} \frac{q(2a)^{2}}{8} \frac{2a}{3} \right]$$

$$-\frac{1}{EI} \left[\frac{qa^{2}a}{2} \frac{7}{9} + \frac{2}{3} \frac{qa^{2}}{8} a \frac{5}{6} \right]$$

$$= -\frac{qa^{3}}{EI} \left[\frac{2}{9} + \frac{1}{9} + \frac{7}{18} + \frac{5}{72} \right]$$

$$= -\frac{19qa^{3}}{24EI} \quad (5)$$

$$A_{7y} = \frac{1}{EI} \left(\frac{12 \times 48}{23} - \frac{2 \times 2 \times 4}{3} \times 2 \right) + \frac{1}{2EI} \left(\frac{12 \times 5}{2} \times 5 + \frac{27 \times 5}{2} \times 6 \right) = \frac{1985}{6EI} = \frac{330.8}{EI} \quad \downarrow$$

$$7-10$$
 qa^{2}
 $0.2a \quad 0.8a \quad 0.4a$
 3
 3
 3

$$\Delta_{Cx} = \frac{1}{EI} \left[\frac{2}{3} \times 9 \times 6 \times \frac{3}{2} + 4 \left(\frac{18 \times 6}{2} \times 2 \right) \right] = \frac{486}{EI} \rightarrow$$

$$\Delta_{Cy} = \frac{1}{EI} \left[-\frac{2}{3} \times 9 \times 6 \times \frac{3}{2} + 0 \right] = -\frac{54}{EI} \uparrow$$

$$\varphi_D = \frac{1}{EI} \left[-\frac{2}{3} \times 9 \times 6 \times \frac{1}{4} + 2 \left(\frac{18 \times 6}{2} \times \frac{1}{3} \right) \right] = \frac{27}{EI} \text{ (Morth)}$$

$$\sqrt{2}a/2$$
 C

$$\Delta \varphi_{C} = \frac{1}{EI} \left[2 \left(\frac{1}{2} \frac{Pa}{2} a \right) \left(\frac{2}{3} - \frac{1}{3} \right) \right] = \frac{Pa^{2}}{6EI} \quad (下边角度增大)$$

$$\Delta_{CD} = \frac{1}{EI} \left(\frac{1}{2} \frac{Pa}{2} a \right) \frac{1}{3} \frac{\sqrt{2}}{2} a = \frac{\sqrt{2}}{24} \frac{Pa^{3}}{EI} \quad (靠拢)$$

$$\Delta_{AB} = \frac{1}{EI} \left[-2 \left(\frac{1}{4} \frac{q \, l^{2}}{24} \frac{l}{2} \right) \frac{2l}{5} + \left(\frac{2}{3} \frac{q \, l^{2}}{8} \, l - \frac{q \, l^{2}}{24} \, l \right) \frac{l}{2} \right]$$
$$= \frac{q \, l^{4}}{EI} \left[-\frac{1}{240} + \frac{1}{48} \right] = \frac{q \, l^{4}}{60EI} \quad (52.2)$$

$$\varphi_A = \frac{1}{EI} \frac{3P \times 6}{2} \frac{1}{3} = \frac{3P}{EI} = 0.001$$

$$\Delta_{C_P} = \frac{1}{EI} \left(\frac{3P \times 3}{2} \times 2 + \frac{3P \times 6}{2} \times 2 \right)$$

$$= \frac{27P}{EI} = 0.009 \text{ m} \downarrow$$

7-13
$$\Delta_{Cy} = (-\frac{\sqrt{5}}{2})\alpha i \frac{\sqrt{5}d}{2} = -\frac{5\alpha id}{4} \hat{1}$$

7-19
$$\Delta_{E3} = \Sigma \overline{N} \Delta l = 2(-8/11)16$$

= -23.27 m m \uparrow

7-20
$$\Delta_{Cs} = -\Sigma \overline{R}c = -(-\frac{H}{l}b)$$

$$= \frac{Hb}{l} \rightarrow$$

7-21
$$\varphi = -\sum \overline{R}c = -\left(-\frac{a}{l} + \frac{2b}{l} - \frac{c}{l}\right)$$

$$= \frac{a - 2b + c}{l} = \frac{40 - 2 \times 100 + 80}{16 \times 1000}$$

$$= -0.005 \text{ rad } (上边角度減小)$$

7-23 由
$$W_{12} = W_{21}$$
 有
$$10\Delta_{H} = \frac{100}{15} (2 \times 0.5 + 3 \times 0.6 + 2 \times 1 + 1.2)$$
得 $\Delta_{H} = 4 \text{ m m } \downarrow$

7-24 略。

*7-25

$$\Delta_{C_{5}} = \frac{1}{EI} \left[\frac{1}{3} \frac{qb^{2}}{2} b \frac{3b}{4} + \frac{qbaa}{2} \frac{2a}{3} \right] + \frac{1}{GI_{1}} \frac{qb^{2}a}{2} b$$

$$= \frac{qb}{EI} \left[\frac{b^{3}}{8} + \frac{a^{3}}{3} \right] + \frac{qb^{3}a}{2GI_{1}}$$

$$= \frac{2 \times 10^{3} \times 0.4}{210 \times 10^{9} \times \frac{\pi}{64} \times 0.03^{4}} \left(\frac{0.4^{3}}{8} + \frac{0.6^{3}}{3} \right) + \frac{2 \times 10^{3} \times 0.4^{3} \times 0.6}{2 \times 80 \times 10^{9} \times \frac{\pi}{32} \times 0.03^{4}}$$

$$= 7.66 \times 10^{-3} + 6.04 \times 10^{-3} = 13.7 \times 10^{-3} \text{ m} \quad \downarrow$$

*7-26
$$M_{0} = -PR \sin\theta$$
, $M_{1P} = -PR (1-\cos\theta)$, $\Leftrightarrow P = 1 = \frac{1}{6}$
 $M = -R \sin\theta$, $M_{1} = -R (1-\cos\theta)$

$$\Delta_{BZ} = \frac{1}{EI} \int_{0}^{\pi/2} (-R \sin\theta) (-PR \sin\theta) R d\theta + \frac{1}{GI_{1}} \int_{0}^{\pi/2} R(1-\cos\theta) PR (1-\cos\theta) R d\theta$$

$$= \frac{PR^{3}}{EI} \int_{0}^{\pi/2} \sin^{2}\theta A^{2} d\theta \frac{PR^{3}}{GI_{1}} \int_{0}^{\pi/2} (1-\cos\theta)^{2} d\theta$$

$$= \frac{PR^{3}}{2EI} \int_{0}^{\pi/2} (1-\cos2\theta) d\theta + \frac{PR^{3}}{GI_{1}} \int_{0}^{\pi/2} (1-2\cos\theta + \frac{1}{2} - \frac{\cos2\theta}{2}) d\theta$$

$$= \frac{PR^{3}}{2EI} \left[\theta - \frac{\sin2\theta}{2} \right]_{0}^{\pi/2} + \frac{PR^{3}}{GI_{1}} \left[\theta - 2\sin\theta + \frac{\theta}{2} + \frac{\sin2\theta}{4} \right]_{0}^{\pi/2}$$

$$= \frac{PR^{3}}{2EI} \left[\frac{\pi}{2} - 0 \right] + \frac{PR^{3}}{GI_{1}} \left[\frac{\pi}{2} - 2 + \frac{\pi}{4} + 0 \right]$$

$$= \frac{\pi PR^{3}}{4EI} + \frac{3\pi - 8}{4} \frac{PR^{3}}{GI_{1}}$$

8-1

8-2

A

R_ 3

 $\frac{13}{22}F$

8-4

او

81

٠.

25 (

第八章 力法

8-2.

8-3 $P = \frac{3}{32}PI = M$ $A = \frac{13}{32}PI = \frac{13}{64}PI = \frac{11}{16}P = \frac{3}{32}P$ 1/2 = 1/2 = 1

8-4

$$EI\delta_{11} = \frac{3^{3}}{3} + \frac{1}{5} \left(\frac{3 \times 6}{5} \times 5 + \frac{9 \times 6}{2} \times 7 \right) = 55.8$$

$$EId_{1P} = -\frac{9 \times 3}{3} \frac{3 \times 3}{4} + \frac{1}{5} \left(-\frac{9 \times 6}{2} \times 5 - \frac{81 \times 6}{2} \times 7 + \frac{2 \times 9 \times 6}{3} \times 6 \right) = -20.25 - 324$$

$$= -344.25$$

$$X_{1} = \frac{344.25}{55.8} = 6.169 \text{ kN} \uparrow$$

71 (2x3x3x2)+ + (6x3x6 + 3y6x6 x7)

$$\delta_{12} = \delta_{21} = 0$$

$$\begin{cases} 144X_1 - 1260 = 0 & X_1 = 8.75 \text{ kN (压力)} \\ 126X_2 + 756 = 0 & X_2 = -6 \text{ kN (负剪力)} \end{cases}$$

111.6
$$X_1$$
 -25.2 X_2 +1721.25=0
-25.2 X_1 +50.4 X_2 +0=0
 X_1 = -17.39 kN
 X_2 = -8.69 kN

e书联盟由子书下栽城城 book440

$$\begin{cases} \frac{3l}{2}X_1 + \frac{l^2}{2}X_2 - \frac{ql^3}{6} = 0 & X_1 = -\frac{ql^2}{36} \\ \frac{l^2}{2}X_1 + \frac{l^3}{3}X_2 - \frac{ql^2}{8} = 0 & X_1 = \frac{3ql}{12} \end{cases}$$

$$X_1 = -\frac{ql^2}{36}$$
$$X_2 = \frac{3ql}{12}$$

8-19 取1/4

$$EI\hat{o}_{11} = \frac{\pi R}{2}$$

$$EI\Delta_{1,9} = -\int_{0}^{\pi/2} \frac{q(R\sin\varphi)^{2}}{2} Rd\varphi = -\frac{qR^{3}}{2} \int_{0}^{\pi/2} \sin^{2}\varphi d\varphi = -\frac{\pi qR^{2}}{2}$$

$$X_{1} = \frac{qR^{2}}{4}$$

$$M = \frac{qR^{2}}{4} - \frac{qR^{2}}{2} \sin^{2}\varphi = \frac{qR^{2}}{4} (1 - 2\sin^{2}\varphi)$$

8-20

8-21 6 次超静定,但反力静定。去掉支座代以反力,则外力对竖直中轴正对称。 将外力分解为对水平中轴为正、反对称的两组,则正对称时弯矩为零,反 对称时(图 a),可取 1/4(图 b),仅为 1 次超静定,解得 X_1 =3P/14, M 如图 c .

$$\Delta_{O_7} = \frac{1}{EI} \left[\frac{18 \times 3}{2} \times 2 + 3 \times 6 \left(\frac{18 - 34.5}{2} \right) \right] = -\frac{94.5}{EI} \uparrow$$

$$\Delta \varphi_O = \frac{1}{EI} \left[\frac{34.5 \times 6}{2} - \frac{97.5 \times 6}{2} + \frac{94 \times 6}{2} \right] = \frac{63.0}{EI} \text{ (上边角度增大)}$$

- 8-25 (a) 左、中结点 $\Sigma M \neq 0$: 被断各柱取上部为隔离体,三柱剪力均同向, $\Sigma X \neq 0$ 。
 - (b) 柱有剪力,截断柱取上部为隔离体, $\Sigma X=0$ 。
 - (c) 左起第二支座处相对转角为零的条件不满足。
 - (d) 左支座处竖向位移为零的条件不满足。

$$\delta_{11} = \frac{2}{3} \frac{l^3}{EI} \qquad \Delta_{1i} = \alpha \frac{25 - 5}{2} \times 2l + \alpha \frac{25 - (-5)}{h} \times 2\frac{l^2}{2} = 20\alpha l + 300\alpha l = 320\alpha l$$

$$480\alpha EI \qquad 1 \quad 480\alpha EI \qquad 25 - 5 \quad 1 \quad 25 - (-5) I$$

$$X_{1} = -\frac{480\alpha EI}{l^{2}} \qquad \varphi_{1} = -\frac{1}{EI} \frac{480\alpha EI}{2l} l \times \frac{1}{3} + \alpha \frac{25 - 5}{2} (-\frac{1}{l}) l + \alpha \frac{25 - (-5)}{h} \frac{l}{2}$$
$$= -80\alpha - 10\alpha + 160\alpha = 60\alpha \text{ (Mi)}$$

8-27

$$\frac{30\alpha EI}{h}$$

$$\delta_{11} = \frac{2}{3} \frac{l}{EI}$$

$$\Delta_{11} = \frac{\alpha(l_2 - l_1)}{h} 2 \frac{1 \times l}{2} = \frac{\alpha(0 - 20)}{h} I = -20 \frac{\alpha l}{h}$$

$$X_1 = 30 \frac{\alpha EI}{h}$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{30\alpha EI/h}{\frac{I}{h/2}} = 15\alpha E$$

 $= .5 \times 10^{-5} \times 210 \times 10^{9} = 31.5 \times 10^{6} \text{ Pa}$

可见。σmax Thi 无关,加大工字钢号码σmax仍不变。

8-28
$$\delta_{11}X_1 + \Delta_{1\Delta} = 0$$

$$\delta_{11} = \frac{12l}{(EA)} \qquad \Delta_{1\Delta} = \sum N_1 \Delta l = -\Delta$$

$$X_1 = \frac{EA\Delta}{12l} \quad (i立力)$$

$$l_{AB} = l - \Delta + \frac{X_1 l}{EA} = l - \Delta + \frac{EA\Delta}{12l} \frac{l}{EA} = l - \frac{11}{12} \Delta$$

8-29 基本结

$$X_1$$

基本结构 2

$$\delta_{11}X_1 + \Delta_{1\Delta} = -\Delta$$

$$(l^3/3EI)X_1 + 0 = -\Delta$$

$$X_1 = -3EI\Delta/l^2 \downarrow$$

$$\delta_{11}X_1 \div \Delta_{1\Delta} = 0$$

$$(I/3EI)X_1 \div \Delta/I = 0$$

$$X_1 = -3EI\Delta/I^2 \left(\pm \frac{1}{2} \right)$$

8-30 $EI = 210 \times 10^9 \times 10^{-3} \times 6400 \times 10^{-8} = 13440 \text{ kN} \cdot \text{m}^2$

$$\delta_{11} = \frac{128}{3EI} \qquad \delta_{12} = \frac{112}{3EI} \qquad \delta_{11} = \delta_{21} = 0$$

$$\Delta_{1\Delta} = -(1 \times 0.03 + 4 \times 0.01) = -0.07 \text{ m}$$

$$\Delta_{2\Delta} = -(1 \times 0.04 - 2 \times 0.01) = -0.02 \text{ m}$$

$$X_1 = \frac{0.07 \times 3 \times 13340}{128} = 22.05 \text{ kN}$$

$$X_2 = \frac{0.02 \times 3 \times 13340}{112} = 7.20 \text{ kN}$$

$$\Delta_{Dy} = \frac{1}{13440} \left[\frac{14.4 \times 2}{2} \times \frac{2 \times 2}{3} + \frac{(14.4 + 1.02.6)4}{2} \times 2 \right]$$

$$= 36.25 \times 10^{-3} \text{ m} \downarrow$$

$$\Delta_{fx} = \frac{1}{13440} \left[\frac{2 \times 2}{2} \left(-\frac{5}{6} \times 73.8 + \frac{14.4}{6} \right) \right]$$

$$-(-1 \times 0.03 - 2 \times 0.01) = 412 \times 10^{-3} \text{ m} \rightarrow$$

8-31
$$\delta_{11}X_{1} + \Delta_{11} + \Delta_{12} = 0$$
 有 $\frac{2l}{3El}X_{1} - \frac{Pl^{2}}{8El} \div \frac{2\Delta}{l} = 0$ 語题总 $X_{1} = \frac{Pl}{4} - \frac{X_{1}}{2}$ 得 $X_{1} = \frac{Pl}{6}$

$$\frac{2l}{3EI}X_1 - \frac{Pl^2}{8El} + \frac{2\Delta}{l} = 0$$

$$\Delta = \frac{Pl^3}{144EI} = \frac{50 \times 10^3 \times 10^3}{144 \times 210 \times 10^9 \times 7144 \times 10^{-8}}$$

$$= 23.2 \times 10^{-3} \text{ m} \downarrow$$

*8-32 虽为一次起静定,但有X_{1.}A及A三个未知量。

由正负弯矩绝对值相等,有 $3X_1 = 30$,得 $X_1 = 10$ kN

可选拉杆直径 d=10 mm, $A=78.54 \text{ mm}^2$.

語
$$\delta_{13}X_1 \div \Delta_{1P} \div \Delta = 0$$

$$\left(\frac{54}{EI} + \frac{4}{EA}\right)X_1 - \frac{430 \times 10^3}{EI} + \Delta = 0$$

$$\Delta = \frac{1}{EI} \left[480 - (54 + 4\frac{I}{A})X_1\right]$$

$$= \frac{480 - \left(54 + 4 \times \frac{2500 \times 10^{-E}}{7854 \times 10^{-6}}\right)10 \times 10^3}{210 \times 10^8 \times 2500 \times 10^{-E}} = -0.01385 \text{ m} \quad (缩短)$$

$$k = \frac{EI}{a^{3}}$$

$$\delta_{11}X_{1} + \Delta_{1P} = -\frac{X_{1}}{k}$$

$$\delta_{11} = \frac{8a^{3}}{3EI} \qquad \Delta_{1P} = -\frac{14 Pa^{3}}{3 EI}$$

$$X_{1} = -\frac{\Delta_{1P}}{\delta_{11} + \frac{1}{k}} = \frac{14}{11}P$$

$$\Delta_{CY} = \frac{1}{EI} \frac{a^{2}}{2} \left(\frac{5}{6} \frac{5Pa}{11} + \frac{Pa}{6} \right)$$

$$V = \frac{3 Pa^{3}}{11 EI} \downarrow$$

8-34

$$k = \frac{3EI}{a^3}$$

$$\delta_{11} = \delta_{22} = \frac{4}{3} \frac{l^3}{EI} \qquad \delta_{12} = \delta_{21} = -\frac{l^3}{EI}$$

$$\Delta_{1P} = -\frac{5}{4} \frac{ql^4}{EI} \qquad \Delta_{2P} = \frac{ql^4}{EI}$$

$$\begin{cases} \frac{4}{3} X_1 - X_2 - \frac{5}{4} ql = -\frac{X_1}{3} \\ -X_1 + \frac{4}{3} X_2 + ql = -\frac{X_2}{3} \end{cases}$$

$$X_1 = \frac{39}{64} ql \uparrow \qquad X_2 = -\frac{15}{64} ql \downarrow$$

第九章 力法应用

9-3 略。

*9-4 取基本结构时, 设长梁在上层,短梁在下层。

*9-5 此结构对水平中轴、竖直中轴和两对角线均对称,故知在结点 5,6,7,8,9 处交

义二梁各承担 P/2: 取基本结构时,设在结点 1,2,3,4 处中梁均在下层而边梁与在上层,这样对水平中轴、竖直中轴和而对角线均保持对称,因而此四结点之多余未知力均 X₁。

$$EI\delta_{11} = 2\left[\left(\frac{l^2}{2}\frac{2l}{3}\right)2 + 2l^2l\right] + 4\left[\left(\frac{2l\cdot l}{2}\frac{2l}{3}\right)2\right] = \frac{32}{3}l^3$$

$$EI\Delta_{1P} = -2\left[\left(\frac{1}{2}\frac{5Pl}{4}l\frac{2l}{3}\right)2 + \frac{1}{2}\left(\frac{5Pl}{4} + \frac{3Pl}{2}\right)l \cdot l \times 2\right] + 4\left[\left(\frac{1}{2}\frac{Pl}{2}l\frac{l}{3}\right)2 + \left(\frac{Pl\cdot l}{2}\frac{3l}{4}\right)2\right]$$

$$= \left(-\frac{43}{6} + \frac{22}{6}\right)Pl^3 = -\frac{7}{2}Pl^3$$

$$X_1 = \frac{21}{64}P$$

*9-6 从杆 BC 中点截开,可判断只有剪力 X_2 和扭矩 X_3 ,而弯矩 $X_1=0$ (因由图 乘法可知 $\delta_{12}=\delta_{13}=\Delta_{1p}=0$)。

$$\begin{cases} 1.375 l^3 X_2 + l^2 X_3 - P l^3 / 3 = 0 \\ l^2 X_2 + 3.25 l X_3 - P l^2 / 2 = 0 \end{cases}$$

$$X_2 = 0.168 P$$

$$X_3 = 0.102 P l$$

*9-7

$$\overline{M}_{1} = R \sin \theta$$

$$\overline{M}_{1} = R(1 - \cos \theta)$$

$$\delta_{11} = \frac{R^{3}}{EI} \int_{0}^{\pi/2} \sin^{2} \theta d\theta + \frac{R^{3}}{GI_{1}} \int_{0}^{\pi/2} (1 - \cos \theta)^{2} d\theta = \frac{\pi R^{3}}{4EI} + \frac{3\pi - 8}{4} \frac{R^{3}}{GI_{1}}$$

$$(积分过程可参见36页习版*7 - 26)$$

$$M_{2} = \int_{0}^{\theta} -qR d\varphi \cdot R \sin \varphi = -qR^{2} \int_{0}^{\pi} \sin \varphi d\varphi = -qR^{2} (1 - \cos \theta)$$

$$M_{2} = \int_{0}^{\theta} -qR d\varphi \cdot R(1 - \cos \varphi) = -qR^{2} \int_{0}^{\theta} (1 - \cos \varphi) d\varphi = -qR^{2} (\theta - \sin \theta)$$

$$\Delta_{12} = -\frac{qR^{4}}{EI} \int_{0}^{\pi/2} \sin \theta (1 - \cos \theta) d\theta - \frac{qR^{4}}{GI_{1}} \int_{0}^{\pi/2} (1 - \cos \theta) (\theta - \sin \theta) d\theta$$

$$= \frac{qR^{4}}{EI} \left[-\cos \theta + \frac{\cos^{2} \theta}{2} \right]_{0}^{\pi/2} - \frac{qR^{4}}{GI_{1}} \left[\frac{\theta^{2}}{2} + \cos^{2} \theta - \cos \theta - \theta \sin \theta + \frac{\sin^{2} \theta}{2} \right]_{0}^{\pi/2}$$

$$= -\frac{qR^{4}}{EI} \left[1 - \frac{1}{2} \right] - \frac{qR^{4}}{GI_{1}} \left[\frac{\pi^{2}}{8} - \frac{\pi}{2} + \frac{1}{2} \right]$$

$$= -\frac{qR^{4}}{2EI} - \frac{qR^{4}}{2GI_{1}} \left(\frac{\pi}{2} - 1 \right)^{2}$$

$$X_{1} = \frac{\frac{1}{2EI} + \frac{(\pi - 1)^{2}}{2GI_{1}}}{\frac{\pi}{4EI} + \frac{3\pi - 8}{4GI_{1}}} qR \right$$

$$y_{s} = \frac{\int y_{1} \frac{ds}{EI}}{\int \frac{ds}{EI}} = \frac{2 \int_{0}^{\pi/2} R(1 - \sin \varphi) R d\varphi}{\int ds} = \frac{2R^{2} \left(\frac{\pi}{2} - 1\right)}{\pi R} = (1 - \frac{2}{\pi})R$$

$$y = y_1 - y_2 = R(1 - \sin \varphi) - (1 - \frac{2}{\pi})R = (\frac{2}{\pi} - \sin \varphi)R$$

$$M_P = -\frac{P}{2}R\cos\varphi$$

$$EI\delta_{11} = \int ds = \pi i R$$

$$EI\delta_{12} = \int y^{2} ds = 2 \int_{0}^{\pi/2} \left(\frac{2}{\pi} - \sin \varphi\right)^{2} R^{2} R d\varphi$$

$$= 2R^{3} \int_{0}^{\pi/2} \left(\frac{4}{\pi^{2}} - \frac{4}{\pi} \sin \varphi + \sin^{2} \varphi\right) d\varphi$$

$$= 2R^{3} \left(\frac{2}{\pi} - \frac{4}{\pi} + \frac{\pi}{4}\right) = \left(\frac{\pi}{2} - \frac{4}{\pi}\right) R^{3}$$

$$EI\Delta_{17} = \int M_{17} ds = 2 \int_{0}^{\pi/2} -\frac{P}{2} R \cos \varphi R d\varphi = -PR^{2}$$

$$EI\Delta_{17} = \int M_{17} ds = 2 \int_{0}^{\pi/2} \left(\frac{2}{\pi} - \sin \varphi\right) R \left(-\frac{P}{2} R \cos \varphi\right) R d\varphi$$

$$= -PR^{3} \int_{0}^{\pi/2} \left(\frac{2}{\pi} \cos \varphi - \sin \varphi \cos \varphi\right) d\varphi$$

$$= -PR^{3} \left(\frac{2}{x} - \frac{1}{2} \right)$$

$$PR$$

$$X_1 = \frac{PR}{\pi} = 0.3183 \ PR$$

$$X_1 = \frac{4 - \pi}{\pi^2 - 8} P = 0.4591 \vec{P}$$

$$M = \frac{PR}{\pi} + \frac{4 - \pi}{\pi^2 - 8} P\left(\frac{2}{\pi} - \sin\varphi\right) R - \frac{PR}{2} \cos\varphi$$

= $PR(2.6106 - 0.4591 \sin\varphi - 0.5 \cos\varphi)$

$$\stackrel{\mathcal{L}}{=} \frac{\mathcal{M}}{d\varphi} = PR(-0.4591\cos\varphi \div 0.5\sin\varphi) = 0$$

有
$$\lg \varphi = \frac{0.4591}{0.5} = 0.9182$$
, $\varphi = 42.56^{\circ}$.

此时
$$M_{min} = -0.0682 PR$$

 $Q = 0.4591P\cos\varphi - 0.5P\sin\varphi$ (右半拱)

 $N = 0.4591 P \sin \varphi + 0.5 P \cos \varphi$

$$\sin \alpha = \frac{16}{20} = 0.8$$

$$\alpha = 53.13^{\circ}$$

$$x = R \sin \varphi$$

$$y_1 = \sum (1 - \cos \varphi)$$

$$y_2 = \frac{\sum \frac{y_1}{EI} \Delta S}{\sum \frac{1}{EI} \Delta S} = \frac{\sum \frac{y_1}{I}}{\sum \frac{1}{I}} = \frac{94.77}{39.40} = 2.41 \text{ m}$$

$$X_1 = -\frac{\sum \frac{M_P}{I}}{\sum \frac{1}{I}} = -\frac{-83372}{39.40} = 2116 \text{ kN} \cdot \text{m}$$

$$X_2 = -\frac{\sum \frac{yM_P}{I}}{\sum \frac{y^2}{I}} = -\frac{-185029}{226.21} = 818.0 \text{ kN}$$

$$M = X_1 + X_2 y + M_P = 2116 + 818 y - 25 x^2$$

$$Q = X_2 \sin \varphi + Q_P = 818 \sin \varphi - 50 x \cos \varphi$$

$$N = X_2 \cos \varphi + N_P = 818 \cos \varphi + 50 x \sin \varphi$$

截回	ç	x	ν ₁	'n	$\frac{1/I = 1}{\frac{12}{h^3}}$	$\frac{y_1}{I}$	$y = y_1 - 2.41$	$\frac{v^2}{I}$	$M_P = -25x^2$	$\frac{M_P}{I}$	$\frac{yM_P}{I}$
.0	0	0	0	1.00	12.00	0	-2.41	69.70	0	0	. 0
ì	13.28°	4.60	0.54	1.02	11.31	6.11	-1.87	39. 55	-529	. –5983	11188
2	26.56°	8.94	2.11	1.06	10.08	21.27	0.30	0.91	-1999	-20150	6045
3	39.\$5°	12.81	4.64	1.12	8.54	39.63	2.23	42.47	-4102	≟35031	-78119
. 4	53.13°	16.00	8.00	1.20	6.94	55.52	5.59	216.86	-6400	-44416	-248285
	特形总和 五 39.44 94.77 226.21 -83372 -185029										

内力列表计算略。

N(kN)

$$\mu = \frac{45}{16} \frac{I_c I}{A_c f^3} \text{ arc } tg\left(\frac{4f}{I}\right) = \frac{45}{16} \frac{\frac{0.6^3}{12} \times 12}{0.6 \times 4^3} \text{ arc } tg\left(\frac{4 \times 4}{12}\right) = 0.01467$$

$$X_1 = \frac{45\alpha t E I_c}{4(1+\mu)f^2} = \frac{45 \times 10^{-3} (-20) 20 \times 10^9 \times \frac{0.6^3}{12}}{4(1+0.01467) 4^1} \times 10^{-3} = -49.9 \text{ kN } (拉力)$$
拱顶 $M_c = 49.9 \times 1.33 = 66.4 \text{ kN} \cdot \text{m}$
拱趾 $M_x = -49.9 \times 2.67 = -133.2 \text{ kN} \cdot \text{m}$

9-11 以左支座为坐标原点,拱轴方程为
$$y = \frac{4f}{l^2}x(l-x)$$
。
$$\delta_{11} = \int y^2 \frac{ds}{EI} + \frac{l}{E_1 A_1} = \frac{1}{EI_C} \int_0^1 \left[\frac{4f}{l^2} x(l-x) \right]^2 dx + \frac{l}{E_1 A_1}$$

$$= \frac{8}{15} \frac{f^2 l}{EI_C} + \frac{l}{E_1 A_1} = \frac{8}{15} \frac{f^2 l}{EI_C} \left(1 + \frac{15}{8} \frac{EI_C}{E_1 A_1 f^2} \right)$$

$$= \frac{8}{15} \frac{f^2 l}{EI_C} \left(1 + \frac{15}{8} \frac{5000}{2 \times 10^5 \times 5^2} \right) = \frac{8}{15} \frac{f^2 l}{EI_C} (1.001875)$$

$$\Delta_{1P} = \int -y M_P \frac{ds}{EI}$$

$$= -\frac{1}{EI_C} \int_0^{1/2} \frac{4f}{l^2} (lx - x^2) \frac{3ql}{8} x - \frac{qx^2}{2} dx - \frac{1}{EI_C} \int_{1/2}^{1} \frac{4f}{l^2} (lx - x^2) \frac{gl}{8} (l - x) dx - \frac{1}{EI_C} \int_{1/2}^{1} \frac{4f}{l^2} (lx - x^2) \frac{gl}{8} (l - x) dx - \frac{fq}{2l^2 EI_C} \int_{1/2}^{1} (l^3 x - 2 l^2 x^2 + lx^3) dx$$

$$= -\frac{fq}{2l^2 EI_C} \left[\frac{1}{8} - \frac{7}{64} + \frac{1}{40} + \frac{3}{8} - \frac{7}{12} + \frac{15}{64} \right] = -\frac{qf l^3}{30 EI_C}$$

$$X_1 = \frac{g l^2}{16f \times 1.001875} = \frac{20 \times 20^2}{16 \times 5 \times 1.001875} = 99.81 \text{ kN}$$

$$y_K = 3.75 \text{ m} \qquad \text{tg} \varphi_K = 0.5 \qquad \sin \varphi_K = 0.4472 \qquad \cos \varphi_K = 0.8944$$

$$M_K = 150 \times 5 - \frac{20 \times 5^2}{2} - 99.81 \times 3.75 = 125.7 \text{ kN} \cdot \text{m}$$

$$Q_K = (150 - 20 \times 5)0.8944 - 99.81 \times 0.4472 = 0.085 \text{ kN}$$

$$N_K = (150 - 20 \times 5)0.4472 + 99.81 \times 0.4472 = 0.085 \text{ kN}$$

$$FIO_{11} = \int y^2 ds = \int R^2 (\cos \varphi - \cos \varphi)^2 Rd\varphi$$

$$= 2\int_0^a R^3 (\cos^2 \varphi - 2\cos \alpha \cos \varphi + \cos^2 \alpha) d\varphi$$

$$= 2R^3 \int_0^a (\frac{1}{2} + \frac{1}{2}\cos 2\varphi - 2\cos \alpha \cos \varphi + \cos^2 \alpha) d\varphi$$

$$= 2R^3 \left(\frac{\alpha}{2} + \frac{1}{4}\sin 2\alpha - 2\cos \alpha \sin \alpha + \alpha \cos^2 \alpha\right)$$

$$\stackrel{\text{def}}{=} \alpha = \frac{\pi}{2} \text{ Fi}, \quad \stackrel{\text{fi}}{=} EIO_{11} = \frac{\pi R^3}{2}$$

$$- EI\Delta_{1F} = \int M_F yds = \int_{\beta}^a PR(\sin \alpha - \sin \varphi) R(\cos \varphi - \cos \alpha) Rd\varphi$$

$$+ \int_3^\beta PR(\sin \alpha - \sin \beta) R(\cos \varphi - \cos \alpha) Rd\varphi$$

$$= PR^3 \left[\sin \alpha (\sin \alpha - \sin \beta) - (\alpha - \beta) \sin \alpha \cos \alpha + \frac{\cos^2 \alpha - \cos^2 \beta}{2} - (\cos \alpha - \cos \beta) \cos \alpha\right] = PR^3 (\sin \alpha - \sin \beta) (\sin \beta - \beta \cos \alpha)$$

$$= PR^3 \left[(\sin \alpha - \sin \beta)(\sin \alpha + \sin \beta - \beta \cos \alpha) - (\alpha - \beta) \sin \alpha \cos \alpha + \frac{\cos^2 \alpha - \cos^2 \beta}{2} - (\cos \alpha - \cos \beta) \cos \alpha\right]$$

$$\stackrel{\text{""" = }}{=} \alpha = \frac{\pi}{2}$$
,有
$$-EI\Delta_P = PR^3 \left[(1 - \sin \beta)(1 \div \sin \beta) - \frac{\cos^2 \beta}{2} \right] = PR^3 \left[1 - \sin^2 \beta - \frac{\cos^2 \beta}{2} \right] = PR^3 \frac{\cos^2 \beta}{2}$$
此时有
$$H = \frac{-\Delta_P}{\delta_{-}} = \frac{P \cos^2 \beta}{2}$$

9-13

$$\delta_{11} = \sum \int \frac{\overline{M_1}^2 ds}{EI} + \sum \int \frac{\overline{M_1}^2 ds}{EA}$$

$$= \int_0^1 \frac{y^2 ds}{EI} + \int_0^1 \cos^2 \varphi \frac{ds}{EA}$$

$$\Delta_{11} = \sum \alpha t \int \overline{N_1} ds = \alpha t \int_0^1 -\cos \varphi ds$$

$$= -\alpha t \int_0^1 dx = -\alpha t I$$

$$X_1 = \frac{\alpha t I}{\int_0^1 \frac{y^2}{L}} + \int_0^1 \cos^2 \varphi \frac{ds}{EI}$$

$$M = -X_1 y = -\frac{\alpha t I y}{\int_0^1 \frac{y^2}{EI}} + \int_0^1 \cos^2 \varphi \frac{ds}{EI}$$

$$M = -X_1 y = -\frac{\alpha t l y}{\int_0^t \frac{v^2 ds}{El} + \int_0^t \cos^2 \varphi \frac{ds}{EA}}$$

第十章 位移法

10-1 略。

10-2 $\overline{M}_1, \overline{M}_2, M_P$ 图略 (下同)。

$$\begin{cases} 12i Z_1 + 4i Z_2 + 0 = 0 \\ 4i Z_1 + 20i Z_2 - \frac{ql^2}{12} = 0 \end{cases}$$

$$Z_1 = -\frac{ql^2}{672i} \qquad Z_2 = \frac{3ql^2}{672i}$$

10-3 $\begin{cases}
16i Z_1 - \frac{6i}{l} Z_2 + 0 = 0 \\
-\frac{6i}{l} Z_1 + \frac{18i}{l^2} Z_2 - \frac{3ql}{8} = 0
\end{cases}$ $Z_1 = \frac{ql^2}{112i} \qquad Z_2 = \frac{ql^3}{42i}$

 $\begin{cases} 14i Z_1 + 0 + 0 = 0 \\ 0 + \frac{27i}{l^2} Z_2 - P = 0 \end{cases}$ $Z_1 = 0 \qquad Z_2 = \frac{Pl^2}{27i}$

10-5

$$\begin{cases} \frac{10i Z_1 - 1.5i Z_2 + 5 = 0}{1.5i Z_1 + \frac{15i}{16} Z_2 - 18 = 0} \\ -1.5i Z_1 + \frac{15i}{16} Z_2 - 18 = 0 \end{cases}$$

$$Z_1 = \frac{3.1316}{i} \qquad Z_2 = \frac{24.2105}{i}$$

 $M(kN \cdot m)$

10-6
$$\frac{25}{3}i Z_{1} + \frac{8}{3}i Z_{2} + 150 = 0$$

$$\frac{8}{3}i Z_{1} + \frac{25}{3}i Z_{2} + 150 = 0$$

$$Z_{1} = \frac{5.08}{i} Z_{2} = \frac{-19.63}{i}$$

10-7 $EI = 42000 \text{ kN} \cdot \text{m}^{2}, \quad i = 7000 \text{ kN} \cdot \text{m}$ $\begin{cases} 7i Z_{1} + 2i Z_{2} - 14 = 0 \\ 2i Z_{1} + 7i Z_{2} + 98 = 0 \end{cases}$ $Z_{1} = \frac{98}{15i} = \frac{6.533}{i} = 0.9333 \times 10^{-3} \text{ rad}$ $Z_{2} = -\frac{238}{15i} = -\frac{15.867}{i} = -2.2667 \times 10^{-3} \text{ red}$

10-8

$$\frac{12i}{l^2} Z_1 - \frac{3ql}{8} = 0$$

$$Z_1 = \frac{ql^3}{32i}$$

10-9 三刚结点均无转角,只有线位移Z₁: $\frac{42EI}{I^3}Z_1 - P = 0, \quad Z_1 = \frac{PI^3}{42EI}$ 先绘各柱弯矩图,再由结点平衡推定模梁弯矩,因反对称,故中间结点处两模梁杆端弯矩条为 $\frac{3}{28}$ PI.

10-10

令
$$i = \frac{EI}{4}$$
取一半 (图略) 有
$$\begin{cases} 8i Z_1 + 2i Z_2 - 60 = 0 \\ 2i Z_1 + 12i Z_2 + 0 = 0 \end{cases}$$

$$Z_1 = \frac{180}{23i} = \frac{7.826}{i}$$

$$Z_2 = -\frac{30}{23i} = -\frac{1.3043}{i}$$

10-11

正对称
$$Z_1 = -\frac{R_{1P}}{r_{11}} = -\frac{12.5}{9i} = -\frac{1.3889}{i}$$

反对称
$$X_1 = -\frac{\Delta_{1P}}{\delta_{11}} = -\frac{-656.25}{108} = 6.0764 \text{ kN}$$

120

8 100X/W

$$r_{11} = \frac{\frac{6i}{l^2} \frac{3l}{4} + \frac{32i}{l}}{\frac{3l}{4}} = \frac{30.8i}{3l^2} \qquad R_{1P} = -\frac{ql\frac{1}{2} + \frac{ql^2}{8}}{\frac{3l}{4}} = -\frac{5ql}{6} \qquad Z_1 = \frac{25ql^3}{308i} = 0.081169 \frac{ql^3}{i}$$

$$\begin{cases} 14.2i Z_1 + 1.4i Z_2 + 0 = 0 \\ 1.4i Z_1 + \frac{7i}{3} Z_2 - \frac{20}{3} = 0 \end{cases} \qquad Z_1 = -\frac{0.2706}{i} \qquad Z_2 = \frac{2.745}{i}$$

*10-15

 $\overline{Z_1}=1$

 $\overline{Z}_1=1$

第十一 渐近法

11-1 不平面为集。《三图篇上的反为是共。为一种

11-2

 $M(kN \cdot m)$

58.9

300

11-6

1	•		-
		-	1
-	•		•

	В				С				D			
A	0.3	0.3	0.4	0.32	0.36	0.32	;	0.4	0.3	0.3	E	
1		·· ·	-12	+12		-7.5	· .	+7.5			Ā	
	+3.60	+3.60	+4.80	-> +2.40		-1.50		-3.00	-2.25	-2.25		
			-0.86	-1.73	-1.94	-1.73	·	-0.86				
	+0.26	+0.26	+0.34	→ +0.17		+0.17	<u></u>	+0.34	+0.26	+0.26		
• •	·,;		-0.06	← -0.11	-0.12	-0.11	->	-0.06				
	+0.02	+0.02	÷0.02	→ +0.01		+0.01		+0.02	+0.02	+0.02		
	+3.88	+3.88	-7.76	-0.01	-0.01	0		+3.94	-1.97	-1.97		
		j	$\langle F \rangle$	+12.73	-2.07	-10.6	6		t t			
		. 4	٠.						$H_{\underline{J}}$	<u> </u>		
					1	G				•		

. 1	В			С			
3/11	4/11	4/11		1/2	1/2		
-100		+300		+300	+200		
		-125	4	-250	-250		
÷61	+82	+82	-	+41			
		-10		-20	-21		
+3	÷3·	+4	>	+2			
-336	+35	+251		1	-1		
				+72	-72		
					¥		
					+400		
,					-125		
					-10		
D	+43			E	+265		
17	775			17/	7.		

		
μ	2:3	1/3
M^{F}	+8]	-96
分配	÷10	÷ 5
M_P	÷91	-91
$\overline{M}_{\delta}^{F}$	$-\frac{3EI}{l^2}$	
分配	$+\frac{2EI}{I^2}$	$+\frac{E!!}{l^2}$
\overline{M}_{A}	$\frac{1}{l^2}$	$+\frac{EI}{I^2}$
	M ^F 分配 M _P 対。 分配	M ^F +81 分配 +10 M _P +91 M' _A -3EI 分配 +2EI l ² 1 ²

最大正负弯矩眾生在哪里。 最大负弯矩显然在 B,C 处。若令中跨中点 E 处之弯矩与 B,C 处的相等,则有

 $M_E = 144/2 = 72 \, \mathrm{kN·m}$ 此时边跨中点之弯矩为 $45 \, \mathrm{kN·m}$, 而其最大正弯矩仅稍大于此 , 显然不会超过 $72 \, \mathrm{kN·m}$, 故全梁最大正弯矩即在 E 处 。

至加:
$$M_{Bs} := 91 - \frac{EI}{I^2} \Delta = 72$$

$$\Delta = \frac{I^2}{EI} (91 - 72)$$

$$= \frac{36}{36000} \times 19 = 0.019 \text{ m} \downarrow$$

用力矩分配法分别算出 M, 及 M, (见图, 详细计算略), 有

$$r_{11} = \frac{(0.519 + 0.634)2 + 0.694 + 0.722}{8} i = 0.46525 i$$

$$R_{1P} = \frac{1.03 + 0.52 - 3.07 - 1.53 + 4.36 + 2.18}{8}$$

$$= 0.43625 \text{ kN}$$

$$Z_{1} = -\frac{R_{1P}}{r_{1;}} = -\frac{0.9377}{i}$$

$$M(EN-iz)$$

(<u>C</u>
1/13	12/13
-80	
+ 6.15	+73.85
-11.87	
+ 0.91	+10.96
- 0.06	
0	+ 0.06
-84.87	+34.87
1	
¥	$ _{\mathcal{B}}$
	
1/14	1/14 12/14
-80	-80
- 6.15	•
+11.87	+11.87 ÷142.41
- 0.91	
÷ 0.06	÷ 0.07 + 0.78
-75.13	-68.06 +143.19
•	<u> </u>
	-80
	-11.87
	- 0.07
$\cdot \cdot A$	-91.94
7/	<i>'</i>

11-12 在 (f) 中,求AB 杆 A 端之转动刚度 S_{AB} 时,注意到 $Q_A=0$,由 $\Sigma Y=0$ 有 $Q_B=0$,而 B 端又为铰支,于是全杆弯矩均为零(不受力),故 $S_{AB}=0$ 。

(10)

11-13 左右正对称,上下反对称时,取 1/4。

7.5 kN 5 kN

$$\begin{vmatrix} 5i \\ 5i \end{vmatrix} \begin{vmatrix} 5i \\ 5i \end{vmatrix} \begin{vmatrix} 5i \\ -18.75 \end{vmatrix} \begin{vmatrix} -18.75 \\ -1.47 \\ + 1.47 \end{vmatrix} + 22.06 \begin{vmatrix} +1.47 \\ +22.06 \end{vmatrix} + 1.47 \\ -1.47 \\ -1.47 \\ -1.47 \end{vmatrix} + 1.11 \begin{vmatrix} +0.08 \\ -0.07 \end{vmatrix} - 1.8.47 \begin{vmatrix} +0.07 \\ +23.17 \end{vmatrix} - 1.80$$

11-14 左右正对称,上下反对称时,取 1/4。

11-15 左右上下均反对称时,取1/4.

正对称 M 为零

反对称 M 图

取 1/4 , 己静定。

第十二章 矩阵位移法

12-1 略。

12-2 随结点、单元编号不同而异,例如对于图示编号,有

	$k_{11}^{()} + k_{11}^{(2)}$	k_{12}^{0}	k ₁₃	0 -	0
K =	k ₂₁	$k_{22}^{(0)}$	0	0.	0
	k ₃₁ .	0	$k_{33}^{\textcircled{3}} + k_{33}^{\textcircled{3}} + k_{33}^{\textcircled{6}}$	K ₃₄	k ₃₅
	0	0	k ₄₃	K3	0
	0	0	k [⊕] 53	0	$\left[\begin{array}{c} k_{55}^{\oplus} \end{array}\right]$

12-3 路。

12-4 A=1000 I/l², 暂设 E=I=l=q=1.

单元②: $\cos \alpha = -0.6$, $\sin \alpha = -0.8$

原始总刚

		1	:		2 .		· ·.	3	• •	
	1367.68	474.24	48	- 1000	0	Ö	367.68	- 474.24.	4.8	
	474.24	656.32 -	2.4	0 .	-12	6	474.24	644.32	÷ 3.6	.1
	4.8	2.4	8	0	-61	.2	-4.8	3.6	2	
· .	-1000	0	Ų.	1000	0	0	0	. 0	0	
<i>ዜ</i> =	Û	-12	-6	. 0	12	-6	0	0	0	2
	0	- 6	2	0	-6	4	. 0	0	0	
	- 367.63	- 474.24	- 4.8	0	0	0	367.68	474.24	- 4.8	
	- 474.24	-644.32	3.6	0	0	0	474.24	644.32	3.6	3
	4.8	- 3.6	. 2	0	0	0	- 4.8	3.6	4	

圆端力

$$\overrightarrow{F}_{F} = \left\{ \begin{array}{c} 0 \\ 1/2 \\ \overline{F}_{F1} \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 1/2 \\ 1/12 \\ 0 \\ 1/2 \\ -1/12 \end{array} \right\}, \quad F_{F} = \left\{ \begin{array}{c} 0 \\ 1/2 \\ \overline{F}_{F1} \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 1/2 \\ 1/12 \\ 0 \\ 1/2 \\ -1/12 \end{array} \right\}, \quad \overrightarrow{F}_{F} = \left\{ \begin{array}{c} 0 \\ 0 \\ \overline{F}_{F1} \\ \overline{F}_{F2} \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \overline{F}_{F3} \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\}, \quad F_{F} = \left\{ \begin{array}{c} F_{F1} \\ \overline{F}_{F3} \\ \overline{F}_{F3} \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\}, \quad F_{F} = \left\{ \begin{array}{c} F_{F1} \\ \overline{F}_{F3} \\ \overline{F}_{F3} \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\}, \quad F_{F} = \left\{ \begin{array}{c} 0 \\ \overline{F}_{F1} \\ \overline{F}_{F3} \\ \overline{F}_{F3} \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\}, \quad F_{F} = \left\{ \begin{array}{c} 0 \\ \overline{F}_{F1} \\ \overline{F}_{F3} \\ \overline{F}_{$$

结点 1 上的综合结点荷载

$$P_{1} = P_{D1} + P_{E1} = P_{D1} - \sum_{i} F_{E1}' = \begin{cases} 0 \\ 0 \\ 0 \end{cases} - \begin{cases} 0 \\ 1/2 \\ 1/12 \end{cases} = \begin{cases} 0 \\ -1/2 \\ -1/12 \end{cases}$$

支承条件为

$$u_2 = 0$$
, $v_2 = 0$, $\varphi_2 = 0$, $u_3 = 0$, $v_3 = 0$, $\varphi_3 = 0$

别去对应的行和列后, 得整体刚度方程为

解得

$$\begin{cases} u_1 \\ v_1 \\ \varphi \end{cases} = 10^{-3} \begin{cases} 0.38342 \ (\times ql^4 / (EI)) \\ -1.00104 \ (\times ql^4 / (EI)) \\ -10.3464! \ (\times ql^3 / (EI)) \end{cases}$$

$$\overline{F}^{0} = \begin{cases} 0 \\ 1/2 \\ 1/12 \\ 0 \\ 1/2 \\ -1/12 \end{cases} + \begin{bmatrix} 1000 & 0 & 0 & -1000 & 0 & 0 \\ 0 & 12 & 6 & 0 & -12 & 6 \\ 0 & 6 & 4 & 0 & -6 & 2 \\ -1000 & 0 & 0 & 1000 & 0 & 0 \\ 0 & -12 & -6 & 0 & 12 & -6 \\ 0 & 6 & 2 & 0 & -6 & 4 \end{bmatrix} = \begin{bmatrix} 0.38342 \\ -1.00104 \\ -10.34641 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 10^{-1} \begin{bmatrix} 383.42 & (\times ql) \\ 42591 & (\times ql) \\ 35.94 & (\times ql) \\ -383.42 & (\times ql) \\ 574.09 & (\times ql) \\ -110.03 & (\times ql) \end{bmatrix}$$

$$\overrightarrow{F} = \begin{cases}
0 \\ 0 \\ 0 \\ 0 \\ 0
\end{cases} + T \begin{bmatrix}
367.68 & 474.24 & 4.8 & -367.68 & -474.24 & 4.8 \\ 474.24 & 644.32 & -3.6 & -474.24 & -644.32 & -3.6 \\ 4.8 & -3.6 & 4 & -4.8 & 3.6 & 2 \\ -474.24 & -644.32 & 3.6 & 474.24 & -4.8 \\ 4.8 & -3.6 & 2 & -4.8 & 3.6 & 4
\end{bmatrix} = \begin{cases}
0.38342 \\ -1.00104 \\ -10.34641 \\ 0 \\ 0 \\ 0
\end{cases}$$

$$=\begin{bmatrix} -3.5 & -0.8 & 0 & 3 & 0 & 0 \\ 0.8 & -0.6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -0.6 & -0.8 & 0 \\ 0 & 0 & 0 & 0.8 & -0.6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} 10^{-3} \begin{cases} -383.42 \\ -425.91 \\ -35.94 \\ 425.91 \\ -15.25 \end{cases} = 10^{-3} \begin{cases} 570.78 (\times ql) \\ -51.19 (\times ql) \\ -35.94 (\times ql) \\ 51.19 (\times ql) \\ 51.19 (\times ql) \\ -15.25 (\times ql)^2 \end{cases}$$

12-5 名单元单图 k^c 均同式(12-5)(见教材上册 241 页),略, 考虑支承条件并不计轴向变形有。

$$u_1 = v_1 = u_2 = v_2 = u_3 = v_3 = u_4 = v_4 = \omega_4 = 0$$

副去相应行列,意图为

$$K = \frac{EI}{I} \begin{bmatrix} 4 & 2 & 0 \\ 2 & 8 & 2 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} \begin{bmatrix} P_2 \\ P_3 \\ P_4 \end{bmatrix} \begin{bmatrix} 2P & 2P \\ 2P & 3 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2P & 2P \\ 3P & 3P \\ 0 & 1 & 3 \end{bmatrix}$$

杆端力只计算杆端弯矩,固端弯矩为

$$\overline{F}_{F}^{\textcircled{0}} = PI \begin{cases} 1/8 \\ -1/8 \end{cases} 2 \qquad \overline{F}_{F}^{\textcircled{0}} = PI \begin{cases} 1/4 \\ -1/4 \end{cases} 3 \qquad \overline{F}_{F}^{\textcircled{0}} = PI \begin{cases} 1/4 \\ -1/4 \end{cases} 3$$

等效结点荷载只计算力偶荷载,有

$$\begin{cases}
P_1 \\
P_2 \\
P_3
\end{cases} = Pi \begin{cases}
-1/8 \\
-1/8 \\
0
\end{cases}$$

总刚度方程为

$$PI \begin{cases} -1/8 \\ -1/8 \\ 0 \end{cases} = \frac{EI}{I} \begin{bmatrix} 4 & 2 & 0 \\ 2 & 8 & 2 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \end{bmatrix}$$

解得

$$\begin{cases} \varphi_1 \\ \varphi_2 \\ \varphi_3 \end{cases} = \frac{Pl^2}{416EI} \begin{cases} -11 \\ -4 \\ 1 \end{cases}$$

杆端弯矩为

$$\overline{F}^{\oplus} = PI \left\{ \frac{1/8}{-1/8} \right\} + \frac{EI}{i} \left[\frac{4}{2} \frac{2}{416EI} \left\{ \frac{-11}{-4} \right\} = \frac{PI}{416} \left\{ \frac{52}{-52} \right\} + \frac{PI}{416} \left\{ \frac{-52}{-38} \right\} = \frac{PI}{208} \left\{ \frac{0}{-45} \right\}$$

$$\overline{F}^{2} = PI \left\{ \frac{1/4}{-1/4} \right\} + \frac{EI}{I} \left[\frac{4}{2} \frac{2}{4} \right] \frac{PI^{2}}{416EI} \left\{ \frac{-4}{1} \right\} = \frac{!7!}{416} \left\{ \frac{104}{-104} \right\} + \frac{P!}{416} \left\{ \frac{-14}{-4} \right\} = \frac{Pi}{208} \left\{ \frac{45}{-54} \right\}$$

$$\overline{F}^{\oplus} = PI \begin{cases} 1/4 \\ -1/4 \end{cases} + \frac{EI}{I} \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \frac{PI^2}{416EI} \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right\} = \frac{PI}{416} \left\{ \begin{array}{c} 104 \\ -104 \end{array} \right\} + \frac{PI}{416} \left\{ \begin{array}{c} 4 \\ 2 \end{array} \right\} = \frac{PI}{208} \left\{ \begin{array}{c} 54 \\ -51 \end{array} \right\}$$

引入支承条件后有

$$\begin{cases}
P \\
0
\end{cases} = \frac{EA}{I} \begin{bmatrix}
0.72855 & 0.57006 \\
0.57006 & 2.47855
\end{bmatrix} \begin{cases}
u_1 \\
v_1
\end{cases}$$

解得

$$\begin{cases} u_1 \\ v_1 \end{cases} = \frac{PI}{EA} \begin{cases} 1.67381 \\ -0.38497 \end{cases}$$

$$\frac{1}{F} = Tk \oplus_{\Delta} = \begin{bmatrix}
\sqrt{3}/2 & 1/2 & 0 & 0 \\
-1/2 & \sqrt{3}/2 & 0 & 0 \\
\hline
0 & 0 & \sqrt{3}/2 & 1/2 \\
0 & 0 & -1/2 & \sqrt{3}/2
\end{bmatrix} k \oplus_{EA} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0$$

$$\overline{F}^{\textcircled{2}} = Tk^{\textcircled{2}} = \begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2 & 0 & 0 \\ -\sqrt{2}/2 & \sqrt{2}/2 & 0 & 0 \\ 0 & 0 & \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} k^{\textcircled{2}} = P \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} k^{\textcircled{2}} = P \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(12)

$$\overline{F}^{\textcircled{3}} = Tk^{\textcircled{3}} \Delta^{\textcircled{3}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix} k^{\textcircled{3}} \frac{Pl}{E \cdot l} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -0.38497 & 0 & 0 & 0 \end{bmatrix} = P \begin{bmatrix} 0.7699 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -0.7699 & 0 & 0 & 0 \end{bmatrix}$$

$$E = k^{\circ} = \frac{E_{1} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ \hline 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \cdot 3 \cdot 1$$

$$k^{\mathfrak{G}} = \underbrace{\frac{EA}{l}}_{l} \underbrace{\frac{1}{0}}_{0} \underbrace{\frac{1}{$$

引入支承条件后有

$$\begin{cases} 0 \\ \frac{0}{0} \\ -P \end{cases} = \frac{E4}{I} \begin{bmatrix} 1.35355 & -0.35355 & 0 & 0 \\ -0.35355 & 1.35355 & 0 & -1 \\ 0 & 0 & 1.35355 & 0.35355 \\ 0 & -1 & 0.35355 & 1.35355 \end{bmatrix} \begin{bmatrix} u_3 \\ v_3 \\ u_4 \\ v_4 \end{bmatrix}$$

解得

$$\begin{cases} u_3 \\ v_3 \\ u_4 \\ v_4 \end{cases} = \frac{PI}{EA} \begin{cases} -0.4422 \\ -1.6931 \\ 0.5578 \\ -2.1353 \end{cases}$$

$$\overline{F}^{(1)} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \underbrace{EA}_{I} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ \hline 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \underbrace{PI}_{EA} \begin{bmatrix} -0.4422 \\ -1.6931 \\ \hline 0.5578 \\ -2.1353 \end{bmatrix} = P \underbrace{\begin{bmatrix} 0.4422 \\ 0 \\ \hline -0.4422 \\ 0 \end{bmatrix}}_{0}$$
 (E.)

$$\overline{F}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \underbrace{EA}_{l} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \underbrace{Pl}_{24} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -2.1353 \end{bmatrix} = P \begin{Bmatrix} -0.5578 \\ 0 \\ 0.5578 \\ -2.1353 \end{Bmatrix} (\frac{1}{2})$$

$$\overline{F}^{(2)} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \underbrace{E.1}_{I} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{I} \underbrace{Pl}_{E.1} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\overline{F}^{\oplus} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \underbrace{E + \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}}_{I} \underbrace{PI}_{E + 1} \underbrace{\begin{bmatrix} 0 \\ 0 \\ -0.4422 \\ -1.6931 \end{bmatrix}}_{I} = P \underbrace{\begin{bmatrix} 0.4.122 \\ 0 \\ -0.4422 \\ 0 \end{bmatrix}}_{I} (E)$$

$$= P \begin{cases} -0.6254 \\ \frac{0}{0.6254} \end{cases}$$
 (12)

第十三章。平面刚架静力分析程序

13-1

M 图绘在受拉边: 绘 Q. N 图时正负号得 按传统规定。

13-2 路.

*13-3 路。

*13-4 码。

第十四章 结构的极限荷载

14-1

(a)
$$M_u = \frac{bh^2}{4}\sigma_s = \frac{5 \times 10^2 \times 10^{-6}}{4} \times 240 \times 10^6 \times 10^{-3} = 30 \text{ kN} \cdot \text{m}$$

(b) 查型钢表有 Ix = 2370, Ix /Sx = 17.2, 故

$$S_x = 2370/17.2 = 137.8 \text{ cm}^3$$
.

$$W_S = 2S_x = 275.6 \text{ cm}^3$$

$$M_u = 275.6 \times 10^{-6} \times 240 \times 10^{6} \times 10^{-3}$$

$$= 66.14 \text{ kN} \cdot \text{m}$$

(c) $80 \times 20 + 20x = 20(100 - x)$

$$x = 10 \text{ mm}$$

$$W_s = 80 \times 20 \times 20 + 20 \times 10 \times 5 + 20 \times 90 \times 45$$

 $=114000 \text{ mm}^3$

$$M_{\rm u} = 114000 \times 10^{-9} \times 240 \times 10^{6} \times 10^{-3} = 27.36 \text{ kN} \cdot \text{m}$$

(单位: mm)

14-2

(a)
$$M_v = \sigma_s \times 2 \times \frac{1}{2} \frac{\pi D^2}{4} \times \frac{2D}{3\pi} = \sigma_s \frac{D^3}{6}$$

(b)
$$M_u = \sigma_s \left[\frac{D^3}{6} \cdot \frac{(D-2t)^3}{6} \right] = \sigma_s \frac{D^3}{6} \left[1 - \left(1 - \frac{2t}{D} \right)^3 \right]$$

14-3

$$\frac{3Pa}{4} = M_{\rm u}.$$

$$P_{\rm u} = \frac{4M_{\rm u}}{3a} = \frac{4 \times 300}{3 \times 2} = 200 \text{ kN}$$

14-4

$$\frac{3}{8}ql^2 = 2M_u$$

$$q_u = \frac{16}{3}\frac{M_v}{l^2}$$

穷举法 此梁为十次超静定,出现两个塑性较即成破坏机构,而塑性铰可能出现在 B.C. D.三处,故共有 3 种可能的机构。

机构 1
$$P \frac{I}{3}\theta + 3P \frac{2I}{3}\theta = M_{u}(3\theta + 2\theta)$$

$$P = \frac{15}{7} \frac{M_{u}}{I}$$
机构 2
$$P \frac{2I}{3}\theta + 3P \frac{I}{3}\theta = M_{u}(3\theta + \theta)$$

$$P = \frac{12}{5} \frac{M_{u}}{I}$$
机构 3
$$P \frac{I}{3}\theta = M_{u}(2\theta + \theta)$$

$$P = 9 \frac{M_{u}}{I}$$
较最小得

 $P_{\rm u} = \frac{15}{7} \frac{M_{\rm u}}{I}$ (机构1)

作 M 图,载面 C 之弯矩由选加法有

$$M_{c} = \frac{M_{u}}{2} + \frac{1}{4} \frac{15}{7} \frac{M_{u}}{l} \frac{2t}{3}$$
$$= \frac{M_{u}}{2} + \frac{5}{14} M_{u} = \frac{6}{7} M_{u} < M_{u}$$

可接受。故
$$P_u = \frac{15}{7} \frac{M_u}{I}$$

机构 I M图

14-6 用静力法。最大正弯矩在。是,古

$$M_x = \frac{ql}{6}x - \frac{x}{2}\frac{xq}{l}\frac{x}{3} - M_u = \frac{qlx}{6} - \frac{qx^3}{6l} - M_u$$

曲
$$Q_{x} = \frac{qI}{6} - \frac{qx^{2}}{2I} = 0$$
 得 $x = \frac{\sqrt{3}}{3}I = 0.577I$ M_{u}

$$M_{\text{max}} = \frac{ql}{6} \frac{\sqrt{3}l}{3} - \frac{q}{6l} \frac{3\sqrt{3}}{27} l^3 - M_u = \frac{\sqrt{3}}{27} q l^2 - M_u$$

由
$$M_{\text{max}} = M_{\text{u}}$$
 有 $\frac{\sqrt{3}}{27}ql^2 - M_{\text{u}} = M_{\text{u}}$

$$q_{\rm u} = 13\sqrt{3} \frac{M_{\rm u}}{I^2}$$

14-7 左跨机构:

$$3q\alpha \times 2a\theta = 2M_{u}\theta + 2M_{u} \times 2\theta + M_{u}\theta$$
$$q = \frac{7}{6} \frac{M_{u}}{a^{2}} = 1.167 \frac{M_{u}}{a^{2}}$$

右跨机构: 引用例 14-2 (见教材下册

6页) 之结果,有

$$q = \frac{11.66M_u}{(3a)^2} = 1.296\frac{M_u}{a^2}$$

取小者
$$q_u = 1.167 \frac{M_u}{a^2}$$

$$M_{\rm u} = \frac{Pl}{6} = \frac{80 \times 8}{6} = 106.7$$

选最大,并考虑安全系数有 $M_u = 1.7 \times 105.7 = 181.4 \,\mathrm{kN \cdot m}$

(b) 设第1,2跨截面小于第3跨。

$$M_{\rm min}$$
, = 1.7 x 75 = 127.5 kN · m

第3跨
$$\frac{Pl}{4} = \frac{M_{u2}}{2} + M_{u1}$$

$$M_{u3} = \frac{80 \times 3}{4} - \frac{75}{2} = 160 - 37.5 = 122.5$$

故
$$M_{\text{u}} = 1.7 \times 122.5 = 208.2 \text{ kN} \cdot \text{m}$$

14-10 1次起静定,出现两个短性较即成为破坏机构,而塑性较可能出现在 A,B,C,D 处,故共需考虑 6 种可能的机构。

选最小得 P₄=4M₄/9=401N (机构 6)

试算法 试选机构 1 ,有 $P=M_c$ (求法同上) ,作其 M 图,不可接受。再试选机构 6 , $P=4M_c/9$,作 M 图,可接受,故得 $P_c=4M_c/9=40$ kN 。

· 构1 M图

机构6 M图

3次超静定。两柱杆身无荷载,故不会各自出现3个塑性较而形成"梁机构",于是只剩下横梁上出现3个塑性较的"梁机构"和出现4个塑性较的"侧移机构"及"联合机构"。今用试算法,取图 b 所示4个塑性铰的"联合机构",横梁中部之塑性铰位置近似取在跨度中点,有

$$P \frac{1}{2}\theta \div \frac{3P}{l} \frac{1}{2} l \frac{l}{2}\theta = M_{u}\theta + 2M_{u} \times 2\theta - M_{u} \times 2\theta \div M_{u}\theta$$

$$P = \frac{32}{5} \frac{M_{u}}{l} = 6.4 \frac{M_{u}}{l}$$

得

作 M 图(见图 c),可见横梁中点稍左处有最大正弯矩,它仅略大于.2 M_a ,故可近似认为 $P_u \approx 6.4\,M_u/I$ 。

精确解(+注): 设横梁中部塑性铰在 x 处(图 a),有 $P\frac{1}{2}\theta \div \frac{3P}{1}\frac{1}{2}x\theta = M_u\theta + 2M_u(\theta + \frac{x}{1-x}\theta) + M_u(\theta + \frac{x}{1-x}\theta) + M_u\theta$ 得 $P = \frac{4 + \frac{6l}{l-x}}{l+3x}M_u$ 由 $\frac{dP}{dx} = \frac{1}{(l+3x)^2} \left[(l+3x)\frac{-6l(-1)}{(l-x)^{2}} - \left(4 + \frac{6l}{l-x}\right) 3 \right] M_u = 0$ 化简有 $x^2 - 5xl + 2l^2 = 0$ 解得 x = 0.43845l 代入得 $P_u = 6.342 M_u/l$

^{*}注:这里所谓"精确"仍未计铀力和剪力对极限弯矩的影响,故仍是近似的。

第十五章 结构弹性稳定

思考题 (选答)

- 5 在各弹性支座的弹簧刚度能较容易地单独确定时才宣于简化。这通常要具备两个条件:一是除所选的一根压杆外,其余用以组成弹性支座的各杆件中无压杆(含对称结构正、反对称失隐取一半后无压杆),否则在计算弹簧刚度时将须考虑压杆上之纵向荷载影响,这使分析复杂(多为非线性函数)。图 15-33a 即属其余杆件中无压杆的情况,图 b则属有压杆。 二是当弹性支座不止一个时,组成各弹性支座的杆件应互不重复,这样各弹性支座的弹簧刚度才便于单独确定,否则它们将相互影响而不能各自独立,处理较为麻烦。具体例子略,可参阅有关资料*。
- 8. 公式 (15-61) 只适用于α<π的情况。

习题

15-1 取上段杆 $\Sigma M_0 = 0$,有 $P\delta - \beta \delta b - P\delta \div P \frac{\delta}{a} b = 0$

得
$$P_{ex} = \frac{b\beta}{2 \div \frac{b}{a}} = \frac{ab}{2a \div b}\beta$$

15-2 $\Sigma M_A = 0$, $2\phi \alpha \delta - \beta \delta \alpha = 0$, $q_{\alpha i} = \beta/2$.

28

15-3 单自由度,只需设一个独立参数 δ 偏高后。取 δC 为隔离体,由 $\Sigma M_B = 0$,有 $P \times 2\delta - R_C \times 2a + \delta \beta L_A = 0$

得
$$R_c = P \frac{\delta}{a} + \frac{\beta_1 \delta}{2}$$

再取整体, $\Sigma M_{\star}=0$ 、有

$$\left(P\frac{\delta}{a} + \frac{\beta \delta}{2}\right) 5a - \delta\beta \approx 4a - \frac{4}{3}\delta\beta \approx 2a = 0 \qquad \text{iff} \qquad P_{ex} = \frac{8}{15}\beta \approx \frac{3}{10}\beta \approx 6a = \frac{3}{10}\beta \approx 6a$$

Tille.

^{*}绥加王. 结构力学的若干问题. 成都科技大学出版社. 1993.146~151 页.

$$Py_1 - \beta \left(\frac{y_1}{a} - \frac{y_2 - y_1}{a} \right) = 0$$

$$Py_2 - \beta \left(\frac{y_2}{a} + \frac{y_1 - y_1}{a} \right) = 0$$

5-4 自由度为 2. 取 BD,
$$\Sigma M_B = 0$$
, 有
$$Py_1 - \beta \left(\frac{y_1}{a} - \frac{y_2 - y_1}{a}\right) = 0$$
再取 CD, $\Sigma M_C = 0$, 有
$$Py_2 - \beta \left(\frac{y_2}{a} + \frac{y_2 - y_1}{a}\right) = 0$$

$$\left(\frac{P - \frac{2\beta}{a}}{a}\right) y_1 + \frac{\beta}{a} y_2 = 0$$

$$\left(\frac{\beta}{a} y_1 + \left(P - \frac{2\beta}{a}\right) y_2 = 0\right)$$

$$\left(\frac{\beta}{a} y_1 + \left(P - \frac{2\beta}{a}\right) y_2 = 0\right)$$

$$\left(\frac{\beta}{a} y_1 + \left(P - \frac{2\beta}{a}\right) y_2 = 0\right)$$

$$\left(\frac{\beta}{a} y_1 + \left(P - \frac{2\beta}{a}\right) y_2 = 0\right)$$

解得
$$P = \frac{2\beta}{a} \pm \frac{\beta}{a} = \begin{cases} \frac{3\beta}{a} & \text{ 较大, 不取, 此时有 } y_1 = -y_2 \\ \frac{\beta}{a} = P_1, & \text{ 此即临界荷载, 此时有 } y_1 = y_2 \end{cases}$$

15-5 无限自由度。为方便、取偏离后杆中点为原点。

$$EIy'' = -P(y + \delta) \qquad (0 \le x \le l)$$

$$EIy'' + Py = -P\delta \qquad \Leftrightarrow \quad n^2 = \frac{P}{FI}$$

 $M = A \cos nx + B \sin nx - \delta$

边界条件 x=0, y=0, 得 1=8

$$x = 0$$
, $y' = \alpha = \frac{\delta}{l}$, $\overline{A} B = \frac{\delta}{l}$

$$-\delta n \sin nl + \frac{\delta}{n!} n \cos nl = 0 \quad \text{If } \delta(-n \sin nl + \frac{1}{l} \cos nl) = 0$$

移定方程
$$tgnl = \frac{1}{nl}$$
 最小正根 $nl = 0.8603$ $P_{er} = \frac{0.7401EI}{l^2}$

15-6
$$EIy'' = -P(y+\delta) + Qx$$

$$EIy'' + Py = -P\delta + \frac{\delta}{I}Px$$

$$\Re y = A\cos nx + B\sin nx - \delta + \frac{\delta}{n}x$$

$$x = 0$$
, $y' = \frac{\delta}{l}$, $nB + \frac{\delta}{l} = \frac{\delta}{l}$, $\beta = 0$

$$x=1$$
, $y=0$, $\delta \cos nl - \delta + \frac{\delta}{l}l = 0$, $\mathbb{I}P$ $\delta \cos nl = 0$

稳定方程
$$\cos nl = 0$$
 $(nl)_{\text{max}} = \frac{\pi}{2}$ $P_{\text{cr}} = \frac{\pi^2 E l}{1 l^2}$

$$EIy'' = -P(y + \delta) + \beta\delta(I - x)$$

 $EIy'' + Py = \beta\delta(I - x) - P\delta$
解为

$$v = A\cos nx + B\sin nx + \frac{\beta\delta}{P}(i-x) - \delta$$

边界条件

$$x = 0$$
, $y = 0$, $A \div (\frac{\beta I}{P} - 1)\delta = 0$

$$x=0$$
, $y'=0$, $Bn-\frac{\beta}{P}\delta=0$

$$x = l$$
, $y = -\delta$, $A\cos nl + B\sin nl = 0$

应有

$$\begin{vmatrix} 1 & 0 & \frac{\beta l}{P} - 1 \\ 0 & n & -\frac{\beta}{P} \\ \cos n & \sin n l & 0 \end{vmatrix} = 0$$

展开

$$\frac{\beta}{P}\sin nl + n\left(1 - \frac{\beta l}{P}\right)\cos nl = 0$$

$$\lg n! = \frac{F}{\beta} n \left(\frac{\beta I}{P} - 1 \right) = \frac{n^2 EI}{\beta} n \left(\frac{\beta I}{n^2 EI} - 1 \right) = nI - \frac{n^3 EI}{\beta}$$

将 $\beta = \frac{3EI}{I^2}$ 代入有

$$tg \, nl = nl - \frac{(nl)^3}{2}$$

最小正根为(可用试算法求得) nl = 2.204

得
$$P_{ct} = n^2 EI = \frac{4.858 EI}{I^2}$$

15-8 简化为单根压杆,上端弹性支座刚度 $\beta = 3\Xi U t^3$

本题可有不同解法,以下为解法之一。假设失稳时上端偏离战同时压杆弯曲。

$$EIy'' = -P(y - \delta) - \beta \delta(l - x)$$

$$EIy'' + Py = P\delta - \beta \delta(l - x)$$

解
$$y = A\cos nx + B\sin nx + \delta - \frac{\beta\delta}{P}(l-x)$$
 (a)

边界条件 x=0, y''=0, 有 A=0 式(a)成为

$$y = B \sin nx + \delta - \frac{\beta \delta}{P} (I - x)$$
 (b)

$$x = 0$$
, $y = 0$, $\delta \left(1 - \frac{\beta I}{P} \right) = 0$ (c)

$$x = l$$
, $y = \delta$, $B \sin nl = 0$ (d)

应有
$$\begin{vmatrix} \frac{\beta l}{P} & 0 \\ 0 & \sin nl \end{vmatrix} = 0$$
. 展开 $\left(1 - \frac{\beta l}{P}\right) \sin nl = 0$ 此即稳定方程。

1. 当
$$\left(1 - \frac{\beta I}{P}\right) = 0$$
 有 $P_1 = \beta I$

此时
$$\sin nl = \sin \sqrt{\frac{P_1}{El}} \, l = \sin \sqrt{\frac{\beta l^3}{El}} \neq 0$$
 (即一般不等于零),故由式(d)应有

$$B=0$$
, 从而式(b)成为 $y=\delta-\frac{\beta\delta}{\beta l}(l-x)=\frac{\delta}{l}x$, 压杆只偏不弯。

2. 当
$$\sin nl = 0$$
, $(nl)_{\min} = \pi$ 有 $P_2 = \frac{\pi^2 E l}{l^2}$

此时
$$\left(1-\frac{\beta I}{P_1}\right)=1-\frac{\beta I^3}{\pi^2EI}\neq 0$$
 (即一般不等于等),故由式(c)应行 $\mathcal{S}=0$,

从而式(b)成为 $y=B\sin nx$, 压杆只弯不偏。

3.取小者: 今
$$\beta = \frac{3EI}{l^3}$$
, 有 $P_1 = \frac{3EI}{l^2} < P_2$, 故 $P_{cr} = P_1 = \frac{3EI}{l^2}$ (只偏不弯)

解
$$y = A\cos nx + B\sin nx + \delta$$

边界条件 $x = 0$, $y = 0$ 得 $A = -\delta$ 从而 $y = -\delta\cos nx + B\sin nx + \delta$
 $x = 0$, $y' = \frac{P\delta}{\beta}$ 有 $B = \frac{P\delta}{n\beta}$ 从而 $y = -\delta\cos nx + \frac{P\delta}{n\beta}\sin nx + \delta$
 $x = l$, $y = \delta$ 有 $-\delta\cos nl + \frac{P\delta}{n\beta}\sin nl = 0$

稳定方程
$$\operatorname{tg} nl = \frac{n\beta}{l'} = \frac{nB}{n^{2}EI} = \frac{6}{nl}$$
. 得 $(nl)_{\min} = 1.3496$, $P_{\text{cr}} = n^{2}EI = \frac{1.8214 \, EI}{l^{2}}$

解法 1 因上下变形亦反对称,故端弯矩各为 P 8/2 ,有

$$EIy'' = P(\delta - y) - \frac{P\delta}{2} = -Py + \frac{P\delta}{2}$$

$$y = A\cos nx + B\sin nx + \frac{\delta}{2}$$

边界条件
$$x=0$$
, $y=0$ 得 $A=-\frac{\delta}{2}$
$$x=0, y'=\frac{P\delta}{2B}$$
 得 $B=\frac{P\delta}{2\pi\delta}$

从而
$$y = -\frac{\delta}{2} \cos nx + \frac{P\delta}{2n\beta} \sin nx + \frac{\delta}{2}$$

$$x = l, \quad y = \delta \quad \bar{\eta} \quad -\frac{\delta}{2} \cos nl + \frac{P\delta}{2n\beta} \sin nl + \frac{\delta}{2} = \delta$$

$$1 + \cos nl = \frac{P}{n\beta} \sin nl = \frac{nEI}{\beta} \sin nl$$

$$\beta = \frac{6EI}{l} \quad \text{代入}, \quad \bar{\eta}$$

$$1 + \cos nl = \frac{nl}{6} \sin nl \qquad (ni)_{man} = 2.385 \qquad P_{cr} = n^2 EI = \frac{5.688 EI}{l^2}$$

解法 2 由于上下变形反对称,第三个边界条件改用

$$x = \frac{l}{2}, \quad y = \frac{\delta}{2} \qquad \overline{f} \qquad -\frac{\delta}{2} \cos \frac{nl}{2} + \frac{P\delta}{2n\beta} \sin \frac{nl}{2} + \frac{\delta}{2} = \frac{\delta}{2}$$

$$tg \frac{nl}{2} = \frac{n\beta}{P} = \frac{\beta}{nEI} = \frac{6EI}{nEIl} = \frac{6}{nl}$$

$$\overline{g} \qquad \frac{nl}{2} tg \frac{nl}{2} = 3 \qquad (\frac{nl}{2})_{man} = 1.1925 \qquad P_{cr} = n^2 EI = \frac{5.633 EI}{l^2}$$

解法 3 利用一般情况之结果即公式(15-6)(见教材下册 22 页):

$$\begin{vmatrix} 1 & 0 & \left(1 - \frac{\beta_3 l}{P}\right) & \frac{\beta_1}{P} \\ \frac{\beta_1}{P} & \frac{\beta_1}{P} & \frac{\beta_1}{P} \\ 0 & n & \left(\frac{\beta_1}{P} - \frac{\beta_1}{\beta_1} l - \frac{P}{\beta_1}\right) - \frac{\beta_1}{\beta_1} \\ -n \sin n l & n \cos n l & \frac{\beta_2}{P} & 1 \end{vmatrix} = 0$$
字有 $\beta_1 = \beta_2 = \beta$, $\beta_3 = 0$ 代入并逐步化简降阶 (过程略)可得

$$\begin{vmatrix} \frac{P}{\beta} & n \\ -n\sin nl - \frac{P}{\beta}\cos nl & n\cos nl - \frac{P}{\beta}\sin nl \end{vmatrix} = 0$$

 $\frac{P}{B}(n\cos nl - \frac{P}{B}\sin nl) + \pi \ln \sin nl + \frac{P}{B}\cos nl) = 0$ $2\frac{nP}{\beta}\cos nl + \left(n^2 - \frac{P^2}{\beta^2}\right)\sin nl = 0, \qquad 2\cos nl + \left(\frac{n\beta}{P} - \frac{P}{n\beta}\right)\sin nl = 0$ $\lg nl = \frac{2}{\frac{nEI}{\beta} - \frac{\beta}{nEI}} = \frac{2}{\frac{nl}{6} - \frac{6}{nl}} \qquad (nl)_{\text{man}} = 2.385 \qquad P_{\text{cr}} = \frac{5.688EI}{l^2}$

15-11
$$EIy'' = -I'y$$
 $(0 \le x \le I)$
 $y = A\cos nx + B\sin nx$

数据数据
$$x=0$$
, $y=0$. 第 $A=0$

$$x = l$$
. $y = \delta - a \frac{P\delta}{\beta}$, $f(B \sin nl - \delta) \left(1 - \frac{aP}{\delta}\right) = 0$

$$x = l$$
. $y' = \frac{P\delta}{\beta}$, f $Bn \cos nl - \frac{P\delta}{\beta} = 0$

$$EI \qquad P$$

$$EI \qquad Y$$

$$EI \qquad Y$$

$$X$$

$$A \qquad P \circ$$

$$\frac{P}{\beta} \sin nl - \left(1 - \frac{aP}{\beta}\right) n \cos nl = 0, \quad \frac{\operatorname{tg} nl}{n} = \frac{\beta}{P} - a = \frac{\beta}{n^2 EI} - a, \quad \frac{\operatorname{tg} nl}{nl} = \frac{\beta l}{(nl)^2 EI} - \frac{a}{l}$$

要给出a对I之相对值及 β 对 $\frac{9}{I}$ 之相对值时方可具体求解。

15-12 用能量法作题 15-1~ 15-4。

$$15-1 \quad U = \frac{1}{2}\beta\delta^2$$

$$V = -P \times \frac{1}{2} \left(\frac{\delta^2}{a} + \frac{\delta^2}{b} + \frac{\delta^2}{b} \right)$$

$$\mathcal{T} = U + V = \frac{\beta}{2} \, \delta^2 - \frac{P}{2} \left(\frac{1}{a} + \frac{2}{b} \right) \delta^2$$

$$\frac{dII}{d\delta} = \left[\beta - P\left(\frac{1}{a} + \frac{2}{b}\right)\right]\delta = 0$$

15-2
$$U = \frac{1}{2}\beta\delta^2$$

均布荷载可用其合力代替,故

$$V = -2qa \times \frac{1}{2} \frac{\delta^2}{a} = -q\delta^2$$

$$\Pi = U + V = \frac{\beta}{2}\delta^2 - q\delta^2$$

$$\frac{d\Pi}{d\delta} = (\beta - 2q)\delta = 0$$

$$\mathbb{E} \quad \delta \neq 0 \quad \cong \quad \beta - 2q = 0 \quad \text{if} \quad q_{ei} = \frac{\beta}{2}$$

$$U = \frac{1}{2}\beta \left(\frac{y_1}{a} - \frac{y_2 - y_1}{a}\right)^2 + \frac{1}{2}\beta \left(\frac{y_2}{a} + \frac{y_2 - y_1}{a}\right)^2 = \frac{\beta}{2a^2} \left[(2y_1 - y_2)^2 + (2y_2 - y_1)^2 \right]$$

$$V = -P \times \frac{1}{2} \left[\frac{y_1^2}{a} + \frac{(y_2 - y_1)^2}{a} + \frac{y_2^2}{a} \right] = -\frac{P}{a} (y_1^2 - y_1 y_2 + y_2^2)$$

$$\Pi = U + V = \frac{\beta}{2a^2} (5y_1^2 - 8y_1 y_2 + 5y_2^2) - \frac{P}{a} (y_1^2 - y_1 y_2 + y_2^2)$$

$$= \frac{1}{a} \left[\left(\frac{5\beta}{2a} - P \right) y_1^2 - \left(\frac{4\beta}{a} - P \right) y_1 y_2 + \left(\frac{5\beta}{2a} - P \right) y_2^2 \right]$$

$$\stackrel{\text{diff}}{\partial y_1} = 0, \qquad \left(\frac{5\beta}{a} - 2P \right) y_1 - \left(\frac{4\beta}{a} - P \right) y_2 = 0$$

$$\frac{\partial \Pi}{\partial y_1} = 0, \qquad -\left(\frac{4\beta}{a} - P \right) y_1 + \left(\frac{5\beta}{a} - 2P \right) y_2 = 0$$

由以上两式系数行列式等于零并展开有

$$\left(\frac{5\beta}{a} - 2P\right)^2 - \left(\frac{4\beta}{a} - P\right)^2 = 0 \qquad \text{if} \quad P = \begin{cases} \frac{3\beta}{a} & (\text{if}, \text{if}) \\ \frac{\beta}{a} = P_{\text{er}} \end{cases}$$

15-13 弹性部分取
$$y = \frac{ax^2}{l^2}$$

$$y' = \frac{2ax}{l^2} \qquad y'_{s=l} = \frac{2a}{l}$$

$$U = \frac{1}{2} \int_0^l EI(y'')^2 dx = \frac{EI}{2} \int_0^l \left(\frac{2a}{l^2}\right)^2 dx = \frac{2EI}{l^3} a^2$$

$$V' = -\frac{P}{2} \left[\int_0^l (y')^2 dx + (y'_{s=l})^2 l \right] = -\frac{P}{2} \left[\int_0^l \left(\frac{2ax}{l^2}\right)^2 dx + \left(\frac{2a}{l}\right)^2 l \right] = -\frac{8P}{3l} a^2$$

$$II = \left(\frac{2EI}{l^3} - \frac{8P}{3l}\right) a^2$$

$$\frac{dII}{da} = 0 \qquad \overline{III} \quad a = 0 \qquad \overline{f} \quad \frac{2EI}{l^3} - \frac{8P}{3l} = 0 \qquad \overline{f} \quad P_{cr} = \frac{3EI}{4l^2}$$
比語興解 $\frac{0.7401EI}{l^2}$ (见题15-5) 大1.3%.

15-14 弹性部分取
$$y = ax \left(1 - \frac{x^2}{l^2}\right)$$

$$y' = \left(1 - \frac{3x^2}{l^2}\right)a \qquad y''_{x=l} = -2a$$

$$y''' = -\frac{6x}{l^2}a$$

$$U = \frac{1}{2} \int_0^l El(y'')^2 dx = \frac{El}{2} \int_0^l \left(-\frac{6x}{l^2}a\right)^2 dx = \frac{6El}{l}a^2$$

$$V = -\frac{P}{2} \left[\int_0^l (y'')^2 dx + (y'_{x=l})^2 l\right] = -\frac{P}{2} \left[\int_0^l \left(1 - \frac{3x^2}{l^2}\right)^2 a^2 dx + (-2a)^2 l\right]$$

$$= -\frac{P}{2} \left[l - 2l + \frac{9}{5}l + 4l\right]a^2 = -\frac{12l}{5}Pa^2$$

$$II = \left(\frac{6El}{l} - \frac{12l}{5}P\right)a^2$$

$$\frac{dII}{da} = 0 \quad \overline{III} \quad a \neq 0 \quad \overline{f} \quad \frac{6El}{l} - \frac{12l}{5}P = 0 \quad \overline{f} \quad P_{er} = \frac{5El}{2l^2}$$
比精确解 $\frac{\pi^2 El}{4l^2}$ (见题15-6) 大!3%.

15-i5
$$y = a \left(1 - \cos \frac{\pi x}{2l} \right)$$

$$y' = \frac{\pi a}{2l} \sin \frac{\pi x}{2l}$$

$$y'' = \frac{\pi^2 a}{4l^2} \cos \frac{\pi x}{2l}$$

$$U = \frac{6El}{2} \int_0^{\frac{13}{2}} \left(\frac{\pi^2 a}{4l^2} \cos \frac{\pi x}{2l} \right)^2 dx - \frac{El}{2} \int_{\frac{13}{2}}^{\frac{13}{2}} \left(\frac{\pi^2 a}{4l^2} \cos \frac{\pi x}{2l} \right)^2 dx$$

$$= \frac{\pi^4 E I a^2}{32 l^4} \left[6 \int_0^{\frac{13}{3}} \cos^2 \frac{\pi x}{2l} dx + \int_{\frac{13}{2}}^{\frac{13}{2}} \cos^2 \frac{\pi x}{2l} dx \right]$$

$$= \frac{\pi^4 E I a^2}{32 l^4} \left[6 \left(\frac{l}{3} + \frac{l}{2\pi} \sin \frac{2\pi}{3} \right) + \left(\frac{l}{2} - \frac{l}{3} - \frac{l}{2\pi} \sin \frac{2\pi}{3} \right) \right]$$

$$= \frac{\pi^4 E I a^2}{32 l^3} \left[\frac{13}{6} l + \frac{5l}{2\pi} \sin \frac{2\pi}{3} \right]$$

$$= \frac{\pi^4 E I a^2}{32 l^3} \left(\frac{13}{6} + \frac{5\sqrt{3}}{4\pi} \right)$$

$$V = -\frac{P}{2} \int_0^{\frac{1}{2}} \left(\frac{\pi a}{2!} \sin \frac{\pi x}{2l} \right)^2 dx - \frac{2P}{2} \int_0^{\frac{13}{2}} \left(\frac{\pi a}{2!} \sin \frac{\pi x}{2!} \right)^2 dx$$

$$= -\frac{P\pi^2 a^2}{3 l^2} \left[\int_0^l \sin^2 \frac{\pi x}{2l} dx + 2 \int_0^{\frac{13}{3}} \sin^2 \frac{\pi x}{2l} dx \right]$$

$$= -\frac{P\pi^2 a^2}{3 l^2} \left[\frac{1}{2} + 2 \left(\frac{l}{3} - \frac{l}{2\pi} \sin \frac{2\pi}{3} \right) \right]$$

$$= -\frac{P\pi^2 a^2}{3 l^2} \left[\frac{7}{6} - \frac{l}{\pi} \sin \frac{2\pi}{3} \right]$$

$$= -\frac{P\pi^2 a^2}{3 l^2} \left[\frac{7}{6} - \frac{1}{\pi} \sin \frac{2\pi}{3} \right]$$

$$= -\frac{P\pi^2 a^2}{3 l^2} \left[\frac{7}{6} - \frac{1}{\pi} \sin \frac{2\pi}{3} \right]$$

$$= -\frac{P\pi^2 a^2}{3 l^2} \left[\frac{7}{6} - \frac{\sqrt{3}}{2\pi} \right]$$

$$II = U + V = \left[\frac{\pi^4 E I}{32 l^3} \left(\frac{13}{6} + \frac{5\sqrt{3}}{4\pi} \right) - \frac{P e^2}{3 l} \left(\frac{7}{6} - \frac{\sqrt{3}}{2\pi} \right) \right]^{-2}$$

$$\frac{dII}{da} = 0$$

$$III = a \neq 0$$

$$IIII = a \neq 0$$

$$III = a \neq 0$$

$$IIII = a \neq 0$$

$$III = a \Rightarrow 0$$

$$III = a \Rightarrow$$

*15-16 w应为8的奇函数,故由公式(15-57)有。

$$w = A_1 \sin \theta + A_2 \sin n\theta$$
 其中 $n^2 = 1 + \frac{qR^3}{EI}$
边界条件 $\theta = 0$ 、有 $w = 0$ 及 $w' = 0$

 $A_1 \sin \alpha + A_2 \sin n\alpha = 0$

 $A_1 \cos \alpha + A_1 n \cos n\alpha = 0$

A, A, 不全为零, 由其系数行列式为零并展开有

$$n\sin\alpha\cos n\alpha - \sin n\alpha\cos\alpha = 0$$

$$\lim_{n \to \infty} n = \frac{\lg n\alpha}{\lg \alpha}$$

$$\underline{\overline{S}} \frac{\lg n\alpha}{n\alpha} = \frac{\lg \alpha}{\alpha}$$

*15-17

反对称失稳临界力较小。当结点 A,B 转动单位角时,横撑端力矩为 $\frac{3EI_1}{B}$ 此时拱端力矩即抗转弹簧刚度由结点力矩平衡知应为 $\beta = \frac{3EI_1}{2R}$,反对称变形时 u M 均为 θ 的奇函数,故白公式 (15-57) 有

$$w = A_2 \sin \theta + A_1 \sin n\theta$$

$$\frac{dw}{ds} = \frac{1}{R} \frac{du}{d\theta} = \frac{1}{R} (A_1 \cos \theta - A_2 n \cos n\theta)$$
 \tilde{R} $M = -\frac{EI}{R^2} A_4 (1-n^2) \sin n\theta$

边界条件
$$\theta = \frac{\pi}{2}$$
, $w = 0$

$$\rho - \frac{\pi}{2}$$
, $M = +\beta \frac{dw}{ds} = \frac{3EI_1}{2R} \frac{dw}{ds}$

有
$$A_1 \sin \frac{\pi}{2} + A_4 n \sin \frac{n\pi}{2} = 0$$

$$-\frac{EI}{R^{2}}A_{2}(1-n^{2})\sin\frac{\pi n}{2} = \frac{3EI_{1}}{2R^{2}}(A_{2}\cos\frac{\pi}{2} + A_{4}n\cos\frac{\pi n}{2})$$

$$\mathbb{E} \rho \qquad A_2 + A_4 n \sin \frac{n\pi}{2} = 0$$

$$0 + A_4 \left[I(1-n^2) \sin \frac{\pi n}{2} + \frac{3I_1}{2} n \cos \frac{\pi n}{2} \right] = 0$$

A₂, A₄不全为零,由上二式系数行列式等于零并展开得

$$I(1-n^2)\sin\frac{\pi n}{2} - \frac{3I_1}{2}n\cos\frac{\pi n}{2} = 0$$
 If $\lg\frac{\pi n}{2} = \frac{3I_1}{2I}\frac{n}{n^2-1}$

Ell
$$\lg \frac{\pi n}{2} = \frac{3I_1}{2I} \frac{n}{r^2 - 1}$$

侧向弯曲和扭转微分方程为

$$EI_{y}\frac{d^{2}w}{dx^{2}} = -M\theta - Pw \tag{a}$$

$$GI_1 \frac{d\theta}{dx} = M \frac{dw}{dx}$$
 (b)

边界条件 x=0, w=0, $\theta=0$ 得 C=0. 代入式(a)有

$$EI_{y}\frac{d^{2}w}{dx^{2}} = -\frac{M^{2}}{GI_{t}}w - Pw$$

$$\frac{d^2w}{dx^2} + \left(\frac{M^2 + GI_1P}{EI_2GI_1}\right)w = 0$$

$$n^2 = \frac{M^2 + GI_*P}{EI_*GI_*} \tag{c}$$

有
$$\frac{d^2w}{dx^2} + n^2 w = 0$$

边界条件 x=0, w=0 得 B=0

$$x=l$$
, $w=0$ \hat{q} $A\sin nl=0$.

因 $A \neq 0$, 故 $\sin nl = 0$, $(nl)_{\min} = \pi$, 代入式(c)得

$$M^2 + GI_1P = \frac{\pi^2 EI_y GI_1}{I^2}$$

讨论: (1) 当
$$e = 0$$
, 则 $M = 0$, 有 $P_{er} = \frac{\pi^2 E I_r}{l^2}$

(2) 当
$$P = 0$$
 且设 $M \neq 0$, 则有 $M_{er} = \frac{\pi}{l} \sqrt{EI_{\gamma}GI_{l}}$

第十六章 结构动力学

思考題 (选签)

6. 单自由度结构在动力荷载作用下,质点处之最大动力位移与静力位移(即将动力荷载之最大值当作静力荷载作用时产生之位移)之比,称为位移动力系数,亦常简称动力系数。简谐荷载作用下动力系数μ的数值与干扰力频率和自频振率之比 θ/ω 及阻尼比 ξ 有关。当干扰力与惯性力作用点重合(即动力荷载作用在质点上)时,内力动力系数与位移动力系数相同。否则将不相同。对此举。简例说明如下。

图 a 为动力荷载作用在原点上。为简明,设不计阻尼,则动力荷载、位移 y 及惯性力 I 均同时达到最大镇 P 、 A 及 I (注意 , $\theta > \omega$ 时前者与后两者反 向),位移动力系数为

$$\mu = \frac{A}{v} = \frac{(P + I^{\circ})\delta_{11}}{P\mathcal{E}_{1}} = \frac{P + I^{\circ}}{P}$$

求内力动力系数时,以截面 K 之弯矩为例, 有

$$\mu_M = \frac{M_{K(max)}}{M_{E(s)}} = \frac{(P + I^0)l}{Pl} = \frac{P + I^0}{P} = \mu$$

不难看出,其他任一截面之内力动力系数 亦均等于µ。实际上,将动力荷载与银性力之 和看作一个力,则结构将只受到一个力作用。 不论此力如何变化,结构的全部位移和内力均 按同一比例增减。

图 b 则为动力荷载不作用在质点上,此时位移动力系数为

$$\mu = \frac{A}{y_{st}} = \frac{P\delta_{1P} + I^{\circ} \delta_{11}}{P\delta_{1P}} = \frac{P + I^{\circ} \frac{\delta_{11}}{\delta_{1P}}}{P}$$

求内力动力系数时,仍以截面K之弯矩阵例,有

$$\mu_{M} = \frac{M_{K(\max)}}{M_{K(\text{st})}} = \frac{Pa + I^{\circ}I}{Pa} = \frac{P + I^{\circ}\frac{I}{a}}{P}$$

显然,一般 $\frac{l}{a} = \frac{\delta_{11}}{\delta_{1p}}$,故 $\mu_M \neq \mu$ 此外,不同截面的内力,其内力动力系数

亦将各不相同,它们当然一般不会等于位移动力系数。

至于有阻尼的情形,上述结论依然适用。只不过此时质点的位移和惯性力符比而敬落后一个相位,前两者与后者以及某截面的某内力均不是同时达到最大值,某内力之最大值及动力系数可用极值条件确定,兹从略。

16-1 略。

16-2 (a)
$$\Sigma M_{A} = 0$$

 $-m_{1}\ddot{y}_{1}\frac{l}{3} - m_{2}\ddot{y}_{2}l - ky_{3}\frac{2l}{3} = 0$
 $-m_{1}\ddot{y}_{1}\frac{l}{3} - m_{2}(3\ddot{y}_{1})l - k(2y_{1})\frac{2l}{3} = 0$
 $(m_{1} + 9m_{2})\ddot{y}_{1} + 4ky_{1} = 0$
 $\ddot{y}_{1} + \frac{4k}{m_{1} + 9m_{2}}y_{1} = 0$

16-3 (a)
$$\delta_{11} = \frac{5}{6} \frac{a^3}{EI}$$
 $\omega = \sqrt{\frac{6EI}{5a^3m}}$

(b)
$$\mathcal{E}_{11} = -\Sigma \overline{R}c = -\left(-\frac{3}{2}\frac{3}{2k}\right) = \frac{9}{4k}$$

$$\omega = \sqrt{\frac{4k}{9m}} = \frac{2}{3}\sqrt{\frac{k}{m}}$$

(c)
$$\delta_{11} = \frac{1}{EI} \frac{lh}{2} \frac{2h}{3} = \frac{lh^2}{3EI}$$
 $\omega = \sqrt{\frac{3EI}{lh^2m}}$

(d)
$$\delta_{11} = \frac{1}{EI} \left(\frac{l^3}{48} - \frac{1}{2} l \frac{l \ 3l}{464} \right)$$

$$= \frac{l^3}{EI} \left(\frac{1}{48} - \frac{3}{512} \right)$$

$$= \frac{23}{1536} \frac{l^3}{EI} = 0.014974 \frac{l^3}{EI}$$

$$\omega = \sqrt{\frac{1536}{23} \frac{EI}{l^3 m}} = \sqrt{66.78 \frac{EI}{l^3 m}} = 8.172 \sqrt{\frac{EI}{l^3 m}}$$

$$16-5 \qquad \delta_{11} = \frac{1}{E \cdot 1} \left[2 \left(\frac{5}{6} \right)^{2} 5 + 2 \left(-\frac{2}{3} \right)^{2} 4 + (-1)^{2} 3 \right]$$

$$= \frac{243}{18EA} = \frac{13.5}{EA}$$

$$\omega = \sqrt{\frac{9.81 \times 210 \times 10^{9} \times 2 \times 10^{-3}}{40 \times 10^{3} \times 13.5}} = 87.3 \text{ 1/s}$$

$$\begin{array}{c|c} & & & 1 \\ \hline 1 & & 1 \\ \hline 2 & & 2/3 \end{array} \begin{array}{c} 1 \\ \hline 1 \\ \hline 2 \end{array}$$

16-6
$$k_{11} = \frac{12EI}{l_1^3} + \frac{12EI}{l_2^3} = 12 \times 5 \times 10^4 \left(\frac{1}{10^3} + \frac{1}{8^3}\right) = 1771.9 \text{ kN/m}$$

$$\omega = \sqrt{\frac{1771.9 \times 9.81}{200}} = 9.32 \text{ 1/s} \qquad T = \frac{2\pi}{\omega} = 0.674 \text{ s}$$

16-7
$$a = \sqrt{0.01^2 + \left(\frac{0.1}{9.32}\right)^2} = 0.01467 \text{ m} = 14.67 \text{ mm}, \quad \varphi = \text{arc tg}\left(\frac{0.01}{0.1/9.32}\right) = 0.75 \text{ rad}$$

 $y_{t=1} = 14.67 \sin(9.32 \times 1 \div 0.75) = -8.82 \text{ mm}$

16-8
$$\omega' = 9.32\sqrt{1 - 0.05^2} = 9.30 \text{ l/s}$$
 $T = \frac{2\pi}{\omega'} = 0.676 \text{ s}$

$$k = \xi \omega = 0.05 \times 9.32 = 0.466 \text{ l/s}$$

$$b = \sqrt{0.01^2 - \left(\frac{0.1 + 0.466 \times 0.01}{9.30}\right)^2} = 0.01505 \text{ m} = 15.05 \text{ m} \text{ m}$$

$$\varphi' = \text{arctg}\left(\frac{9.30 \times 0.01}{0.1 + 0.466 \times 0.01}\right) = 0.726 \text{ rad}$$

$$y_{t=1} = 15.05 e^{-0.466 \times 1} \sin(9.30 \times 1 \div 0.726) = -5.34 \text{ m m}$$

16-9
$$\omega = \sqrt{\frac{3EIg}{Gl^3}} = \sqrt{\frac{3 \times 210 \times 10^9 \times 3.4 \times 10^{-5} \times 9.81}{12 \times 10^3 \times 2^3}} = \sqrt{2189} = 46.79 \text{ 1/s}$$

(1)
$$\theta = \frac{300 \times 2\pi}{60} = 10\pi$$
 (2) $\theta = \frac{600 \times 2\pi}{60} = 20\pi$

$$\mu = \frac{1}{1 - \frac{(10\pi)^2}{2189}} = 1.821$$

$$\Delta_{\text{max}} = \frac{(12 + 5 \times 1.821) \cdot 10^3 \times 2^3}{3 \times 210 \times 10^9 \times 3.4 \times 10^{-3}}$$

$$= 0.00788 \text{ m}$$
(2) $\theta = \frac{600 \times 2\pi}{60} = 20\pi$

$$\mu = \frac{1}{1 - \frac{(20\pi)^2}{2189}} = -1.244$$

$$\Delta_{\text{max}} = \frac{(12 + 5 \times 1.244) \cdot 10^3 \times 2^3}{3 \times 210 \times 10^9 \times 3.4 \times 10^{-3}}$$

$$= 0.00681 \text{ m}$$

(2)
$$\theta = \frac{600 \times 2\pi}{60} = 20\pi$$

$$\mu = \frac{1}{1 - \frac{(20\pi)^2}{2189}} = -1.244$$

$$\Delta_{\text{max}} = \frac{(12 + 5 \times 1.244) \cdot 10^3 \times 2^3}{3 \times 210 \times 10^9 \times 3.4 \times 10^{-5}}$$

$$= 0.00681 \,\text{m}$$

$$M_A = -(12 + 5 \times 1.821) \times 2 = -42.2 \text{ kN m}$$
 $M_A = -(12 + 5 \times 1.244) \times 2 = -36.4 \text{ kN m}$

16-10
$$\ln \frac{1}{0.05} \approx 2\pi \times 10\xi$$
 $\xi \approx \frac{\ln 20}{20\pi} = 0.0477$ 共振时 $\mu \approx \frac{1}{2\xi} = 10.5$

16-11 当 /≤4 时

$$y = \frac{1}{m\omega} \int_{0}^{t} P(1 - \frac{t}{t_{1}}) \sin \omega(t - \tau) d\tau$$

$$= \frac{P}{m\omega} \int_{0}^{t} \left[\sin \omega(t - \tau) - \frac{t}{t_{1}} \sin \omega(t - \tau) \right] d\tau$$

$$= \frac{P}{m\omega} \int_{0}^{t} \left[\sin \omega(t - \tau) - \frac{t}{t_{1}} \sin \omega(t - \tau) \right] d\tau$$

$$= \frac{P}{m\omega^{2}} \left[\cos \omega(t - \tau) - \frac{t}{t_{1}} \cos \omega(t - \tau) - \frac{1}{t_{1}\omega} \sin \omega(t - \tau) \right]_{0}^{t}$$

$$= y_{n} (1 - \cos \omega t + \frac{\sin \omega t}{\omega t_{1}} - \frac{t}{t_{1}})$$

$$= y_{n} (1 - \cos \omega t + \frac{\sin \omega t}{\omega t_{1}} - \frac{t}{t_{1}})$$

$$= \frac{1}{m\omega} \int_{0}^{t_{1}} P(1 - \frac{t}{t_{1}}) \sin \omega(t - \tau) d\tau$$

$$= \frac{P}{m\omega^{2}} \left[\cos \omega(t - \tau) - \frac{t}{t_{1}} \cos \omega(t - \tau) - \frac{1}{t_{1}\omega} \sin \omega(t - \tau) \right]_{0}^{t_{1}} \omega t_{1}$$

$$= \frac{P}{m\omega^{2}} \left[\cos \omega(t - t_{1}) - \cos \omega t - \cos \omega(t - t_{1}) - \frac{\sin \omega(t - t_{1})}{t_{1}\omega} + \frac{\sin \omega t}{t_{1}\omega} \right] \omega t_{2} = \frac{1}{\sqrt{2}}$$

$$= y_{n} \left[-\cos \omega t + \frac{\sin \omega t - \sin \omega(t - t_{1})}{\omega t_{1}} \right]$$

$$= y_{n} \left[-\cos \omega t + \frac{\sin \omega t - \sin \omega(t - t_{1})}{\omega t_{1}} \right]$$

$$16-12 \left\langle \delta_{11} = \frac{a^{3}}{EI} \right\rangle \delta_{22} = \frac{a^{3}}{6EI} \quad \delta_{12} = -\frac{a^{3}}{4EI}$$

$$\left(\frac{1}{\omega^{2}}\right)_{1,2} = \frac{1}{2} \left(\frac{4}{3} \pm \sqrt{\frac{51}{54}}\right) \frac{m \, a^{3}}{EI} = \begin{cases} 1.1526 \\ 0.18075 \end{cases} \frac{ma^{3}}{EI}$$

$$\omega_{1,2} = \begin{cases} 0.931 \\ 2.352 \end{cases} \sqrt{\frac{EI}{ma^{3}}}$$

$$\rho_{1} = \frac{1.1526 - 1}{-\frac{1}{4} \times 2} = -0.305, \quad \rho_{2} = \frac{0.18075 - 1}{-\frac{1}{4} \times 2} = 1.638$$

$$\omega_{1,2} = \begin{cases} 1.928 \\ 3.327 \end{cases} \sqrt{\frac{EI}{ma^3}}$$

$$\rho_1 = \frac{0.2690 - \frac{23}{192} \times 1}{-\frac{3}{64} \times 2} = -1.592$$

$$a_2 = \frac{0.09034 - \frac{23}{192} \times 1}{-\frac{3}{64} \times 2} = 0.314$$

16-14
$$\delta_{11} = \delta_{22} = \frac{11}{1536} \frac{l^3}{EI}$$
 $\delta_{12} = -\frac{3}{1536} \frac{l^3}{EI}$

$$\lambda_{1} = (\delta_{11} - \delta_{12}) m = \frac{14}{1536} \frac{ml^{3}}{EI} \qquad \omega_{1} = 10.47 \sqrt{\frac{EI}{ml^{3}}} \qquad \rho_{1} = \frac{(\delta_{11} - \delta_{12}) m - \delta_{11} m}{\delta_{12} m} = -1$$

$$\lambda_{2} = (\delta_{11} + \delta_{12}) m = \frac{8}{1536} \frac{ml^{3}}{EI} \qquad \omega_{2} = 13.86 \sqrt{\frac{EI}{ml^{3}}} \qquad \rho_{2} = \frac{(\delta_{11} + \delta_{12}) m - \delta_{11} m}{\delta_{12} m} = 1$$

$$16-15 \int k_{11} = \frac{48EI}{l^3} \qquad k_{22} = \frac{24EI}{l^3} \qquad k_{12} = k_{21} = -\frac{24EI}{l^3} \qquad 1.618$$

$$\omega_{1,2}^2 = \frac{24EI}{ml^3} \left(1.5 \mp \sqrt{\frac{5}{4}} \right) = \frac{24EI}{ml^3} \left\{ 0.382 \right\} = \begin{cases} 9.617 \\ 62.83 \end{cases} \frac{EI}{ml^3}$$

$$\omega_{1,2} = \begin{cases} 3.028 \\ 7.927 \end{cases} \sqrt{\frac{EI}{ml^3}}$$

$$\rho_1 = \frac{0.382 - 1}{-1} = 1.618$$
 $\rho_2 = \frac{2.618 - 1}{-1} = -0.618$

16-16
$$\delta_{11} = \frac{9}{EI} \qquad \delta_{22} = \frac{1}{3EI} \qquad \delta_{12} = \frac{4}{3EI}$$

$$\Delta_{1P} = \frac{9P}{EI} \qquad \Delta_{2P} = \frac{4P}{3EI}$$
(1) $n = 300$ 次 / 分, $\theta = 10\pi$
代入式(16-66) 并乘以 EI 有
$$\begin{bmatrix} -7.6985 I_1^0 + 1.3333 I_2^0 + 45 = 0 \end{bmatrix}$$

$$\begin{cases} -7.6985 I_1^0 + 1.3333 I_2^0 + 45 = 0 \\ 1.3333 I_1^0 - 16.3652 I_2^0 + 6.6667 = 0 \end{cases}$$

$$I_1^0 = 6.00 \text{ kN} \qquad I_2^0 = 0.90 \text{ kN}$$

(2)
$$n = 500$$
. 次 / 分, $\theta = \frac{50}{3}\pi = 16.6667\pi$
代入式(16 - 66) 并乘以 EI 有
$$\begin{cases} 2.98353 \, I_1^0 + 1.3333 \, I_2^0 + 45 = 0 \\ 1.3333 \, I_1^c - 5.67814 \, I_2^0 \div 6.6667 = 0 \end{cases}$$
 $I_1^0 = -14.10 \text{ kN}$ $I_2^c = -2.14 \text{ kN}$

16-17

16-18

$$\delta_{11} = \delta_{22} = \frac{11}{1536} \frac{l^3}{EI}, \quad \delta_{12} = \delta_{21} = -\frac{3}{1536} \frac{l^3}{EI}, \quad \Delta_{1P} = \frac{1}{256} \frac{ql^4}{EI}, \quad \Delta_{2P} = -\frac{1}{768} \frac{ql^4}{EI}$$

$$\frac{1}{\theta^2} = \frac{ml^3}{48EI}$$

代入公式 (16 - 66) 并约去 <u>l²</u> 后有

$$\begin{cases} \left(\frac{11}{1536} - \frac{1}{48}\right) I_1^0 - \frac{3}{1536} I_2^0 + \frac{ql}{256} = 0 \\ -\frac{3}{1536} I_1^0 + \left(\frac{11}{1536} - \frac{1}{48}\right) I_2^0 - \frac{ql}{768} = 0 \end{cases}$$

$$\begin{cases} -21 I_1^0 - 3 I_2^0 + 6ql = 0 \\ -3 I_1^0 - 21 I_2^0 - 21ql = 0 \end{cases}$$

解得

$$I_1^0 = \frac{11}{36}ql$$
, $I_2^0 = -\frac{5}{36}ql$

£D;-

动力弯矩幅值图可按选加法

导如图。
$$M^{\circ} = I_{1}^{\circ} \overline{M}_{1} + I_{2}^{\circ} \overline{M}_{2} + M_{p}$$

$$= \frac{q \cdot 7}{48} + \frac{1}{32} \cdot \frac{11}{36} \mathcal{U} - \frac{5}{32} \cdot \frac{5}{36} \mathcal{U}$$

$$= \frac{q \cdot 7}{48} \cdot 9 - \frac{44}{32 \times 36}$$

16-09 / 用刚度法, 由公式 (16-68)

$$(K - \theta^2 M) Y^0 = P$$

求解。今有

$$K = \frac{24EI}{l^3} \begin{bmatrix} 6 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
 (见教材下册84页例16-5)

$$\frac{24EI}{I^3} = \frac{24 \times 5 \times 10^3}{5^3} = 96 \times 10^3 \text{ kN/m}, \qquad \theta = \frac{2\pi \times 240}{60} = 8\pi, \qquad \theta^2 = 64.7^2$$

$$M = 100 \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (\text{$\phi(0)$ if t, $$$} \text{\mathbb{P} 10^3 kg })$$

代入式 (16-68) 有

$$10^{3} \begin{bmatrix} 449.669 & -192 & 0 \\ -192 & 193.252 & -96 \\ 0 & -96 & 32.835 \end{bmatrix} \begin{bmatrix} y_{1}^{0} \\ y_{2}^{0} \\ y_{3}^{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 30 \\ 0 \end{bmatrix}$$

解得

$$y_1^0 = -0.0756 \times 10^{-3} \text{ m}$$

 $y_2^0 = -0.1771 \times 10^{-2} \text{ m}$
 $y_3^0 = -0.5178 \times 10^{-3} \text{ m}$

惯性力幅值为

$$I_1^0 = 200 \times 64 \pi^2 (-0.0756 \times 10^{-3}) = -9.55 \text{ kN}$$

 $I_2^0 = 150 \times 64 \pi^2 (-0.1771 \times 10^{-3}) = -16.78 \text{ kN}$
 $I_3^0 = 100 \times 64 \pi^2 (-0.5178 \times 10^{-3}) = -32.71 \text{ kN}$

本题 微梁 刚 度为 ∞ , 每 层 只 有 两 根 柱 且 截 面 及 高 度 相 等 , 故 每 根 柱 之 柱 端 弯 矩 为

$$M_i = \frac{Q_i h}{A}$$

Q,为该层之总剪力,等于该层以主水平外力(包括惯性力)之代数和; h为该层柱高。横梁之杆端弯矩可由刚结点力矩平衡推求。

一根柱的 M® 图 (kN·m)

$$\begin{array}{lll}
16-20 & EI\delta_{11} = 9 & EI\delta_{22} = 1/3 & EI\delta_{12} = 4/3 \\
\lambda_{13} = \frac{1}{2} \left(\frac{28}{3} \pm \sqrt{\frac{740}{3}} \right) \frac{m}{EI} = \begin{cases} 9.2005 \\ 0.132843 \end{cases} \frac{m}{EI} \\
\omega_{1,2} = \begin{cases} 0.32968 \\ 2.74366 \end{cases} \sqrt{\frac{EI}{m}} = \begin{cases} 42.32 \\ 352.22 \end{cases} \frac{1}{I} & m & m \\
\rho_1 = \frac{9.2005 - 9}{4/3} = 0.1504 \\
\rho_2 = \frac{0.13284 - 9}{4/3} = -6.650 \\
\mathbb{RF} & A = \left[A^{(1)} \quad A^{(2)} \right] = \begin{bmatrix} 1 & 1 \\ 0.1504 & -6.650 \end{bmatrix} \\
\overline{M}_1 = \begin{bmatrix} 1 & 0.1504 \end{bmatrix} \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{cases} 1 \\ 0.1504 \end{cases} = 1.0226m, \ \overline{P}_1 = \begin{bmatrix} 1 & 0.1504 \end{bmatrix} \begin{cases} P\sin\theta t \\ 0 \end{cases} = P\sin\theta t \\
\overline{M}_2 = \begin{bmatrix} 1 - 6.650 \end{bmatrix} \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{cases} 1 \\ -6.650 \end{bmatrix} = 45.22m, \ \overline{P}_2 = \begin{bmatrix} 1 - 5.650 \end{bmatrix} \begin{cases} P\sin\theta t \\ 0 \end{cases} = P\sin\theta t
\end{array}$$

(1)
$$n = 300$$
 次 / 分, $\theta = 10 \pi$ 、因系简谐言载,不订理地,参照式(10-20) 元
$$\alpha_1 = \frac{\overline{P_1}^6}{\overline{M_1}(\omega_1^3 - \theta^2)} \sin \theta t = \frac{P}{1.0226 m (42.32^2 - 100 \pi^2)} \sin \theta t = 1.989 \times 10^{-3} \sin \theta t$$

$$\alpha_2 = \frac{\overline{P_2}^6}{\overline{M_2}(\omega_1^2 - \theta^2)} \sin \theta t = \frac{P}{45.22 m (352.22^2 - 100 \pi^2)} \sin \theta t = 0.294 \times 10^{-6} \sin \theta t$$

$$y_1 = \alpha_1 + \alpha_2 = 1.989 \times 10^{-3} \sin \theta t$$

$$y_2 = 0.1504 \alpha_1 - 6.650 \alpha_2 = 0.297 \times 10^{-3} \sin \theta t$$

惯性力幅值为

$$I_1^0 = m_1 \theta^2 y_1^0 = \frac{30}{9.81} \times 100 \pi^2 \times 1.989 \times 10^{-3} = 6.00 \text{ kN}$$

 $I_2^0 = m_2 \theta^2 y_2^0 = \frac{30}{9.81} \times 100 \pi^2 \times 0.297 \times 10^{-3} = 0.90 \text{ kN}$

M°空同题16-16→

(2)
$$n = 500$$
 次 I 分 I $\theta = \frac{50}{3}\pi$, $\theta^2 = 277.78\pi^2$, 代入按同上步骤可得 $\alpha_1 = -1.682 \times 10^{-3} \sin \theta t$ $\alpha_2 = 0.298 \times 10^{-6} \sin \theta t$ $y_1 = -1.682 \times 10^{-3} \sin \theta t$ $y_2 = -0.255 \times 10^{-3} \sin \theta t$ $I_1^0 = -14.10$ kN $I_2^0 = -2.14$ kN M^c 公同庭16-16.

16-21 由例 16-5 (见数材下册 85 页) 已有

$$\omega_{1} = 19.40 \text{ 1/s} \qquad A^{(1)} = \begin{bmatrix} 1 & 2.608 & 4.290 \end{bmatrix}^{T}$$

$$\omega_{2} = 41.27 \text{ 1/s} \qquad A^{(2)} = \begin{bmatrix} 1 & 1.226 & -1.584 \end{bmatrix}^{T}$$

$$\omega_{3} = 60.67 \text{ 1/s} \qquad A^{(3)} = \begin{bmatrix} 1 & -0.834 & 0.294 \end{bmatrix}^{T}$$

$$M = m \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \diamondsuit \overline{\eta} \qquad P = \begin{cases} 0 \\ P \sin \theta t \\ 0 \end{cases} \qquad \theta = 8\pi \text{ 1/s}$$

可得

$$\overline{M}_1 = A^{(1)T} M A^{(1)} = 30.607 m$$
 $\overline{P}_1 = A^{(1)T} P = 2.608 P \sin \theta t$
 $\overline{M}_2 = A^{(2)T} M A^{(2)} = 6.7637 m$ $\overline{P}_2 = A^{(2)T} P = 1.226 P \sin \theta t$
 $\overline{M}_3 = A^{(3)T} M A^{(3)} = 3.1298 m$ $\overline{P}_3 = A^{(3)T} P = -0.834 P \sin \theta t$

参照式 (16-20) 可算出各正则坐标之幅值为

$$\alpha_1^0 = \frac{2.603 P}{30.607 m (19.40^2 - 64\pi^2)} = -0.10013 \times 10^{-3} \text{ m}$$

$$\alpha_2^0 = \frac{1.226 P}{6.7637 m (41.27^2 - 64\pi^2)} = 0.050747 \times 10^{-3} \text{ m}$$

$$\alpha_3^0 = \frac{-0.834 P}{3.1298 m (60.67^2 - 64\pi^2)} = -0.026217 \times 10^{-3} \text{ m}$$

各质点位移幅值为

$$y_1^0 = [-0.10013 + 0.050747 + (-0.026217)]10^{-3}$$

 $= -0.0756 \times 10^{-3} \text{ m}$
 $y_2^0 = [2.608(-0.10013) + 1.266 \times 0.050747 - 0.834(-0.026217)]10^{-3}$
 $= -0.1771 \times 10^{-3} \text{ m}$
 $y_3^0 = [4.290(-0.10013) - 1.584 \times 0.050747 + 0.294(-0.026217)]10^{-3}$
 $= -0.5176 \times 10^{-3} \text{ m}$
以下计算同题16-19,略。

$$y_0 = 0$$

$$M_0 = 0$$

$$y_1 = 0, \quad \text{if} \quad EI y_0' \frac{1}{k} B_{ii} + Q_0 \frac{1}{k^3} D_{ii} = 0$$

$$M_1 = 0, \quad \text{fi} \quad EI y_0' k D_0 + Q_0 \frac{1}{k} B_{ii} = 0.$$

 y'_{c}, Q_{c} 不全为零,应有

$$\begin{vmatrix} \frac{EI}{k}B_{M} & \frac{1}{k^{3}}D_{M} \\ EIkD_{M} & \frac{1}{k}B_{M} \end{vmatrix} = 0$$

$$B_{M}^{2} - D_{M}^{2} = 0$$

$$(B_{M} + D_{M})(B_{M} - D_{M}) = 0$$

$$\sinh kl \sin kl = 0$$

而 $\operatorname{sh} kl = 0$, 故

 $M_{\rm o}$, $Q_{\rm o}$ 不全为等,则上二式中它们的系数行列式等于零并展开得

$$C_{\mathbf{H}}B_{\mathbf{H}} = A_{\mathbf{H}}D_{\mathbf{H}}$$

用试算法可解得非零最小正根为 $(kl)_1 = 3.927$,次小正根为 $(kl)_2 = 7.069$,由

$$\omega = \frac{(kl)^2}{l^2} \sqrt{\frac{Elg}{q}}$$

$$\omega_1 = \frac{15.42}{l^2} \sqrt{\frac{Elg}{q}} \qquad \omega_2 = \frac{49.97}{l^2} \sqrt{\frac{Elg}{q}}$$

均布自重下的弯矩方程为

$$M_{x} = -\frac{ql^{2}}{8} + \frac{5qlx}{8} - \frac{qx^{2}}{2}$$

$$y = \frac{1}{EI} \left[\frac{ql^2}{8} \frac{x}{2} \frac{2x}{3} - \left(-\frac{ql^2}{8} + \frac{5qlx}{8} - \frac{qx^2}{2} \right) \frac{x}{2} \frac{x}{3} - \frac{2}{3} \frac{qx^2}{8} x \frac{x}{2} \right]$$

日图乘法求挠曲线方程:
$$= \frac{1}{EI} \left[\frac{ql^2}{8} \frac{x \, 2x}{2 \, 3} - \left(-\frac{ql^2}{8} + \frac{5qlx}{8} - \frac{qx^2}{2} \right) \frac{x \, x}{2 \, 3} - \frac{2qx^2}{3 \, 8} x \frac{x}{2} \right]$$

$$= \frac{q}{48EI} \left[3l^2 \, x^2 - 5lx^3 + 2x^4 \right]$$

$$\int_0^1 q \, y \, dx = \frac{q^2}{48EI} \int_0^1 \left(3l^2 \, x^2 - 5l \, x^3 + 2x^4 \right) \, dx$$

$$\frac{5qi}{48EI} \int_0^1 \left(3l^2 \, x^2 - 5l \, x^3 + 2x^4 \right) \, dx$$

$$\int_0^t my^{-1} dx = \frac{mq^2}{(48EI)^2} \int_0^t (3l^2x^2 - 5lx^3 + 2x^4)^2 dx$$

$$= \frac{mq^2}{(48EI)^2} \int_0^t (9l^4x^4 - 25l^2x^6 + 4x^3 - 30l^3x^5 - 20lx^7 + 12l^2x^6) dx$$

 $= \frac{q^{3} l^{3}}{(18EI)^{3}} \left(\frac{3}{3} - \frac{5}{4} + \frac{2}{5} \right) = \frac{q^{3} l^{3}}{320EI} = 3.125 \times 10^{-3} \frac{q^{3} l^{3}}{EI}$

$$= \frac{mq^2 l^9}{(48EI)^2} \left(\frac{9}{5} + \frac{25}{7} + \frac{4}{9} - \frac{30}{6} - \frac{20}{8} + \frac{12}{7} \right) = \frac{mq^2 l^9}{(48EI)^2} \frac{19}{630} = 1309 \times 10^{-5} \frac{mq^2 l^9}{(EI)^2}$$

$$\omega^{2} = \frac{\int_{0}^{l} q y dx}{\int_{0}^{l} m y^{2} dx} = 238.7 \frac{EI}{m l^{4}}$$
 $\omega = \frac{15.45}{l^{2}} \sqrt{\frac{EIg}{q}}$

$$\Delta_{CP} = \frac{2}{EA} \left(56.25 \times \frac{5}{8} \times 5 + 45 \times \frac{3}{4} \times 3 + 33.75 \times \frac{3}{8} \times 6 + 13.75 \times \frac{5}{8} \times 5 \right)$$

$$= \frac{823.125}{EA} = \frac{823.125}{210 \times 10^9 \times 10^{-3} \times 2 \times 10^{-3}} = 1.96 \times 10^{-3} \text{ m}$$

$$\omega = 1.13 \sqrt{\frac{g}{A_{CP}}} = 1.13 \sqrt{\frac{9.81}{1.96 \times 10^{-3}}} = 79.9 \text{ 1/s}$$

第一七章 悬索计算

17-7

$$V_A = V_A^0 = 17 \text{ kN}$$

$$V_E = V_E^0 = 15 \text{ kN}$$

$$H = \frac{M_C^0}{f} = \frac{17 \times 35 - 12 \times 25}{12}$$

$$= 24.6 \text{ kN}$$

各索段内力见图。

17-2

$$\Sigma M_A = 0$$
 $H = 45 \text{ kN}$

(a) 悬链线

$$\beta = \frac{0.135 \times 20}{2 \times 45} = 0.03$$

$$\alpha = \sinh^{-1} \left(\frac{0.03 \times \frac{6}{20}}{\sinh 0.03} \right) + 0.03 = 0.325630$$

$$y = \frac{45}{0.135} \left[\cosh \alpha - \cosh \left(\frac{2\beta}{l} x - \alpha \right) \right] - 351 \cdot 1625 - \frac{45}{0.135} \cosh (0.003 x - \alpha)$$

$$y' = -\sinh (0.003 x - \alpha)$$

$$x = 0, \quad y' = y'_{\text{max}} = -\sinh (-\alpha) = 0.331415$$

$$T_{\text{max}} = H\sqrt{1 + (y'_{\text{max}})^2} = 45\sqrt{1 + (0.331415)^2} = 47.407 \text{ kN}$$

(b) 抛物线

$$q_y = 0.135 \frac{\sqrt{20^2 + 6^2}}{20} = 0.141 \text{ kN/m}$$

$$f = \frac{0.141 \times 20^2}{8 \times 45} = 0.1566 \text{ m}$$

$$y'_{\text{max}} = \frac{c + 4f}{l} = \frac{6 + 4 \times 0.1566}{20} = 0.331321$$

$$T_{\text{max}} = H\sqrt{1 + (y'_{\text{max}})^2} = 45\sqrt{1 + (0.331321)^2} = 47.406 \text{ kN}$$