

Advanced Technical Information

PolarHT[™] Power MOSFET

IXTQ 75N10P IXTA 75N10P IXTP 75N10P $V_{DSS} = 100 V$ $I_{D25} = 75 A$ $R_{DS(op)} = 25 m\Omega$

N-Channel Enhancement Mode

Symbol	Test Conditions	Maximum Ratings		
$\mathbf{V}_{\mathtt{DSS}}$ $\mathbf{V}_{\mathtt{DGR}}$	T_J = 25°C to 175°C T_J = 25°C to 175°C; R_{GS} = 1 M Ω	100 100	V V	
V _{GSM}		±20	V	
I _{D25}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$, pulse width limited by T_{JM}	75 200	A A	
I _{AR}	T _c = 25°C	50	Α	
E _{AR}	$T_{c} = 25^{\circ}C$	30	mJ	
E _{AS}	$T_{c} = 25^{\circ}C$	1.0	J	
dv/dt	$\begin{split} &I_{_{S}} &\leq I_{_{DM}}, di/dt \leq 100 A/\mu s, V_{_{DD}} \leq V_{_{DSS}}, \\ &T_{_{J}} \leq 150^{\circ} C, R_{_{G}} = 10 \Omega \end{split}$	10	V/ns	
P_{D}	T _C = 25°C	300	W	
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C	
T _L	1.6 mm (0.062 in.) from case for 10 s Maximum tab temperature for soldering TO-263 package for 10s	300 260	°C	
M _d	Mounting torque (TO-3P / TO-220)	1.13/10	Nm/lb.in.	
Weight	TO-3P TO-220 TO-263	5.5 4 3	g g	

TO-263 (IXTA)

G = Gate D = Drain S = Source TAB = Drain

Features

- International standard packages
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
 - easy to drive and to protect

Advantages

- Easy to mount
- Space savings
- High power density

PolarHT™DMOS transistors utilize proprietary designs and process. US patent is pending.

Symbo	ol	Test Conditions	Cha $(T_J = 25^{\circ}C, \text{ unless})$ Min.		stic Values se specified) Max.
g _{fs}		$V_{DS} = 10 \text{ V}; I_{D} = 0.5 I_{D25}, \text{ pulse to}$	est 20	28	S
C _{iss})			2250	pF
C _{oss}	}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MH}$	lz	890	pF
\mathbf{C}_{rss}	J			275	pF
t _{d(on)})			27	ns
t _r		$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} =$	I _{D25}	53	ns
t _{d(off)}		$R_{\rm G} = 10 \ \Omega \ (External)$		66	ns
t,)			45	ns
Q _{g(on)})			74	nC
Q _{gs}	}	$V_{gS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} =$	0.5 I _{D25}	18	nC
\mathbf{Q}_{gd}	J			40	nC
R _{thJC}					0.42 K/W
R _{thCK}		(TO-3P) (TO-220)		0.21 0.25	K/W K/W

Source-Drain Diode

Characteristic Values (T₁ = 25°C, unless otherwise specified)

Inches in. Max.

.110

.039

.055

.029

.055

380

.320

.405 .320

BSC

.625

.110

.055

.070

.080

.020

.045

.045

.280

.380

.100

0 .015

Symbol	Test Conditions	Min.	typ.	Max.	
I _s	$V_{GS} = 0 V$			75	Α
I _{SM}	Repetitive			200	Α
V _{SD}	$\begin{split} &I_{_F} = I_{_S}, V_{_{\rm GS}} = 0 V, \\ &\text{Pulse test, } t \leq 300 \mu\text{s, duty cycle d} \leq 2 \% \end{split}$			1.5	٧
t _{rr}	I _F = 25 A -di/dt = 100 A/μs		120		ns
$\mathbf{Q}_{_{\mathrm{RM}}}$	$V_R = 75 \text{ V}$		1.4		μС

TO 3D /IVT	<u> </u>	tlino			
TO-3P (IXTQ) Outline					
E	S D D L1	A1	ØP ØP1	4	
	1 – GATE 2 – DRAI 3 – SOU	E IN (COLLE	TTER)	0	m
SYM	INCH		MILLIM	METERS .	
	MIN	MAX	MIN	MAX	
A	185	.193	4.70	4.90	
A1	.051	.059	1.30	1.50	
A2	.057	.065	1.45	1.65	
1 h					
<u>b</u>	.035	.045	0.90	1.15	
b2	.075	.087	1.90	2.20	
b2 b4	.075 .114	.087 .126	1.90 2.90	2.20 3.20	
b2 b4 c	.075 .114 .022	.087 .126 .031	1.90 2.90 0.55	2.20 3.20 0.80	
b2 b4 c D	.075 .114 .022 .780	.087 .126 .031 .791	1.90 2.90 0.55 19.80	2.20 3.20 0.80 20.10	
b2 b4 c D	.075 .114 .022 .780 .665	.087 .126 .031 .791 .677	1.90 2.90 0.55 19.80 16.90	2.20 3.20 0.80 20.10 17.20	
b2 b4 c D D1 E	.075 .114 .022 .780 .665 .610	.087 .126 .031 .791 .677 .622	1.90 2.90 0.55 19.80 16.90 15.50	2.20 3.20 0.80 20.10 17.20 15.80	
b2 b4 c D D1 E E1	.075 .114 .022 .780 .665 .610	.087 .126 .031 .791 .677 .622 .539	1.90 2.90 0.55 19.80 16.90 15.50 13.50	2.20 3.20 0.80 20.10 17.20 15.80 13.70	
b2 b4 c D D1 E E1	.075 .114 .022 .780 .665 .610 .531	.087 .126 .031 .791 .677 .622 .539	1.90 2.90 0.55 19.80 16.90 15.50 13.50 5.45	2.20 3.20 0.80 20.10 17.20 15.80 13.70 BSC	
b2 b4 c D D1 E E1 e	.075 .114 .022 .780 .665 .610 .531 .215	.087 .126 .031 .791 .677 .622 .539 BSC .795	1.90 2.90 0.55 19.80 16.90 15.50 13.50 5.45 19.80	2.20 3.20 0.80 20.10 17.20 15.80 13.70 BSC 20.20	
b2 b4 c D D1 E E1 e L	.075 .114 .022 .780 .665 .610 .531 .215 .779	.087 .126 .031 .791 .677 .622 .539 BSC .795	1.90 2.90 0.55 19.80 16.90 15.50 13.50 5.45 19.80 3.40	2.20 3.20 0.80 20.10 17.20 15.80 13.70 BSC 20.20 3.60	
b2 b4 c D D1 E E1 e L	.075 .114 .022 .780 .665 .610 .531 .215 .779 .134	.087 .126 .031 .791 .677 .622 .539 BSC .795 .142	1.90 2.90 0.55 19.80 16.90 15.50 13.50 5.45 19.80 3.40 3.20	2.20 3.20 0.80 20.10 17.20 15.80 13.70 BSC 20.20 3.60 3.40	
b2 b4 c c D D1 E E E1 e L L1 ØP	.075 .114 .022 .780 .665 .610 .531 .215 .779 .134 .126	.087 .126 .031 .791 .677 .622 .539 BSC .795 .142 .134	1.90 2.90 0.55 19.80 16.90 15.50 13.50 5.45 19.80 3.40 3.20 6.90	2.20 3.20 0.80 20.10 17.20 15.80 13.70 BSC 20.20 3.60 3.40 7.10	
b2 b4 c c D D1 E E1 e L L1 ØP	.075 .114 .022 .780 .665 .610 .531 .215 .779 .134	.087 .126 .031 .791 .677 .622 .539 BSC .795 .142 .134 .280	1.90 2.90 0.55 19.80 16.90 15.50 13.50 5.45 19.80 3.40 3.20 6.90 4.90	2.20 3.20 0.80 20.10 17.20 15.80 13.70 BSC 20.20 3.60 3.40	

Pins: 1 - Gate 2	2 -	Drain
------------------	-----	-------

MYZ	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.170	.190	4.32	4.83	
b	.025	.040	0.64	1.02	
b1	.045	.065	1.15	1.65	
С	.014	.022	0.35	0.56	
D	.580	.630	14.73	16.00	
E	.390	.420	9.91	10.66	
е	.100 BSC		2.54 BSC		
F	.045	.055	1.14	1.40	
H1	.230	.270	5.85	6.85	
J1	.090	.110	2.29	2.79	
k	0	.015	0	0.38	
L	.500	.550	12.70	13.97	
L1	.110	.230	2.79	5.84	
ØΡ	.139	.161	3.53	4.08	
Q	.100	.125	2.54	3.18	

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics

Fig. 3. Output Characteristics @ 125°C

Fig. 5. $R_{DS(on)}$ Normalized to

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to 0.5 I_{D25} Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case

IXYS reserves the right to change limits, test conditions, and dimensions.

