

MIXED SIGNAL MICROCONTROLLER

FEATURES

- Embedded Microcontroller
 - 16-Bit RISC Architecture up to 24-MHz Clock
 - Wide Supply Voltage Range (2 V to 3.6 V)
 - -40°C to 85°C Operation
- Optimized Ultra-Low Power Modes

Mode	Consumption (Typical)
Active Mode	81.4 μA/MHz
Standby (LPM3 With VLO)	6.3 µA
Real-Time Clock (LPM3.5 With Crystal)	1.5 μΑ
Shutdown (LPM4.5)	0.32 μΑ

- Ultra-Low Power Ferroelectric RAM
 - Up to 16KB Nonvolatile Memory
 - Ultra-Low Power Writes
 - Fast Write at 125 ns per Word (16KB in 1 ms)
 - Built in Error Coding and Correction (ECC) and Memory Protection Unit (MPU)
 - Designed to Support Energy-Harvesting Applications
 - Universal Memory = Program + Data + Storage
 - 10¹⁵ Write Cycle Endurance
 - Radiation Resistant and Nonmagnetic
- Intelligent Digital Peripherals
 - 32-Bit Hardware Multiplier (MPY)
 - Three-Channel Internal DMA
 - Real-Time Clock With Calendar and Alarm Functions
 - Five 16-Bit Timers With up to Three Capture/Compare
 - 16-Bit Cyclic Redundancy Checker (CRC)
- High-Performance Analog
 - 16-Channel Analog Comparator With Voltage Reference and Programmable Hysteresis
 - 14-Channel 10-Bit Analog-to-Digital Converter (ADC) With Internal Reference and Sample-and-Hold
 - 200 ksps at 100-μA Consumption

- Enhanced Serial Communication
 - eUSCI A0 and eUSCI A1 Support:
 - UART With Automatic Baud-Rate Detection
 - IrDA Encode and Decode
 - SPI at Rates up to 10 Mbps
 - eUSCI B0 Supports:
 - I²C With Multi-Slave Addressing
 - SPI at Rates up to 10 Mbps
- Power Management System
 - Fully Integrated LDO
 - Supply Voltage Supervisor for Core and Supply Voltages With Reset Capability
 - Always-On Zero-Power Brownout Detection
 - Serial On-Board Programming With No External Voltage Needed
- Flexible Clock System
 - Fixed-Frequency DCO With Six Selectable Factory-Trimmed Frequencies (Device Dependent)
 - Low-Power Low-Frequency Internal Clock Source (VLO)
 - 32-kHz Crystals (LFXT)
 - High-Frequency Crystals (HFXT)
- Development Tools and Software
 - Free Professional Development Environments
 - Low-Cost Full-Featured Kit (MSP-EXP430FR5739)
 - Full Development Kit (MSP-FET430U40A)
 - Target Board (MSP-TS430RHA40A)
- Family Members
 - 20 Different Variants and 4 Available Packages Summarized in Table 1 and Table 2
 - For Complete Module Descriptions, See the MSP430FR57xx Family User's Guide (SLAU272)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLAS639C - JULY 2011-REVISED MARCH 2012

www.ti.com

CAUTION

These products use FRAM nonvolatile memory technology. FRAM retention is sensitive to extreme temperatures, such as those experienced during reflow or hand soldering. See Absolute Maximum Ratings for more information.

CAUTION

System-level ESD protection must be applied in compliance with the device-level ESD specification to prevent electrical overstress or disturb of data or code memory. See the application report *MSP430 System-Level ESD Considerations* (SLAA530) for more information.

DESCRIPTION

The Texas Instruments MSP430FR57xx family of ultralow-power microcontrollers consists of multiple devices featuring embedded FRAM nonvolatile memory, ultralow power 16-bit MSP430 CPU, and different peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption. Peripherals include 10-bit A/D converter, 16-channel comparator with voltage reference generation and hysteresis capabilities, three enhanced serial channels capable of I²C, SPI, or UART protocols, internal DMA, hardware multiplier, real-time clock, five 16-bit timers, and more. The family members that are available are summarized in Table 1.

Table 1. Family Members

								eU	SCI		
Device	FRAM (KB) SRAM Clock (MHz) ADC10_B Comp_D Timer_A ⁽¹⁾ Timer_	Timer_B ⁽²⁾	Channel A: UART/ IrDA/SPI	Channel B: SPI/I ² C	I/O	Package Type					
MSP430FR5739	16	1	24	12 ext,	16 ch.	3, 3	3, 3, 3	2	1	32	RHA
WOI 4301 NO733	10	'	24	2 int ch.	10 011.	3, 3	3, 3, 3		'	30	DA
MSP430FR5738	16	1	24	6 ext, 2 int ch.	10 ch.	3, 3	3	1	1	17	RGE
1001 4301 10730	10	'	24	8 ext, 2 int ch.	12 ch.	3, 3	3	·	'	21	PW ⁽³⁾
MSP430FR5737	16	1	24		16 ch.	3, 3	3, 3, 3	2	1	32	RHA
WISF430FK3737	16	1	24		TO CIT.	3, 3	3, 3, 3		ı ı	30	DA
MSP430FR5736	16	1	24		10 ch.	3, 3	3	1	1	17	RGE
W3F430I K3730	10	'	24		12 ch.	3, 3	3	'	'	21	PW ⁽³⁾
MSP430FR5735	8	1	24	12 ext,	16 ch.	3, 3	3, 3, 3	2	1	32	RHA
WOI 400I NO700	O	'	24	2 int ch.	10 011.	3, 3	3, 3, 3		'	30	DA
MSP430FR5734	8	1	24	6 ext, 2 int ch.	10 ch.	3, 3	3	1	1	17	RGE
10101 4301 10734		'	24	8 ext, 2 int ch.	12 ch.	3, 3	3	·	1	21	PW ⁽³⁾
MSP430FR5733	8	1	24		16 ch.	3, 3	3, 3, 3	2	1	32	RHA
W3F430I K3733	0	'	24		10 (11.	3, 3	3, 3, 3	2	ı	30	DA
MSP430FR5732	8	1	24		10 ch.	3, 3	3	1	1	17	RGE
WOI 4001 NO7 02	O	'	24		12 ch.	3, 3	3	'	'	21	PW ⁽³⁾
MSP430FR5731	4	1	24	12 ext,	16 ch.	3, 3	3, 3, 3	2	1	32	RHA
WOI 4001 1107 01	7		24	2 int ch.	10 011.	5, 5	0, 0, 0		'	30	DA
MSP430FR5730	MODAGOEDEZGO	1	24	6 ext, 2 int ch.	10 ch.	3, 3	3	1	1	17	RGE
WIOF 4301 No7 30	4	4 1	24	8 ext, 2 int ch.	12 ch.	3, 3	3	'		21	PW ⁽³⁾
MSP430FR5729	16	1	8	12 ext,	16 ch.	3, 3	2 2 2	2	1	32	RHA
IVISP43UFK3129	סו	'	0	2 int ch.	10 011.	ა, ა	3, 3, 3	2	'	30	DA

⁽¹⁾ Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.

⁽²⁾ Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.

⁽³⁾ Product Preview

Table 1. Family Members (continued)

								eU	SCI							
Device	Device FRAM (KB) SRAM (KB) System Clock (MHz) ADC10_B	Comp_D	Timer_A ⁽¹⁾	Timer_B ⁽²⁾	Channel A: UART/ IrDA/SPI	Channel B: SPI/I ² C	I/O	Package Type								
MODAQOEDEZOO	16	4	8	6 ext, 2 int ch.	10 ch.		2	1	4	17	RGE					
MSP430FR5728	16	1	8	8 ext, 2 int ch.	12 ch.	3, 3	3	1	1	21	PW ⁽³⁾					
MSP430FR5727	16	1	8		16 ch.	3, 3	3, 3, 3	2	1	32	RHA					
W3P430FR3727	16	'	0		16 CH.	3, 3	3, 3, 3	2	ı	30	DA					
MSP430FR5726	16	1	8	1	10 ch.	3, 3	3	1	1	17	RGE					
W3F4301 N3720	W3F430FR3720 10		0		12 ch.	3, 3		'		21	PW ⁽³⁾					
MSP430FR5725	SP430FR5725 8	1	1	1	1	1	1	8	12 ext,	16 ch. 3, 3	3 3	3, 3, 3	2	1	32	RHA
WOI 4301 N3723	· ·	'	· ·	2 int ch.	.5 611.	0, 0	0, 0, 0	-	'	30	DA					
MODAGOEDEZOA			8	6 ext, 2 int ch.	10 ch.	3, 3	2	1	4	17	RGE					
MSP430FR5724	8	1	8	8 ext, 2 int ch.	12 ch.		'	1	21	PW ⁽³⁾						
MSP430FR5723	8	1	8		16 ch.	2.2	2.2.2		1	32	RHA					
W3P43UFR3723	0	'	0		16 CH.	3, 3	3, 3, 3	2	ı	30	DA					
MSP430FR5722	8	1	8		10 ch.	3, 3	3	1	1	17	RGE					
W3P430FR3722	0	'	0		12 ch.	3, 3	3	ı	ı	21	PW ⁽³⁾					
MSP430FR5721	4	1	8	12 ext,	16 ch.	3, 3	3, 3, 3	2	1	32	RHA					
IVIOF43UFR3/21	4	ı	0	2 int ch.	TO CIT.	ა, ა	٥, ٥, ٥	2	ı	30	DA					
MSP430FR5720	4	4 1 8 6 ext, 2 int ch. 10 ch. 3, 3 3 3 8 ext, 2 int ch. 12 ch.			10 ch.	0.0	2		1	17	RGE					
WISF430FK3120	4		3	1	1	21	PW ⁽⁴⁾									

(4) Product Preview

Table 2. Ordering Information⁽¹⁾

	PACKAGED DEVICES ⁽²⁾										
T _A	PLASTIC 40-PIN VQFN (RHA)	PLASTIC 24-PIN VQFN (RGE)	PLASTIC 38-PIN TSSOP (DA)	PLASTIC 28-PIN TSSOP (PW)							
	MSP430FR5721IRHA	MSP430FR5720IRGE	MSP430FR5721IDA	MSP430FR5720IPW ⁽³⁾							
	MSP430FR5723IRHA	MSP430FR5722IRGE	MSP430FR5723IDA	MSP430FR5722IPW ⁽³⁾							
	MSP430FR5725IRHA	MSP430FR5724IRGE	MSP430FR5725IDA	MSP430FR5724IPW ⁽³⁾							
	MSP430FR5727IRHA	MSP430FR5726IRGE	MSP430FR5727IDA	MSP430FR5726IPW ⁽³⁾							
4000 to 0500	MSP430FR5729IRHA	MSP430FR5728IRGE	MSP430FR5729IDA	MSP430FR5728IPW ⁽³⁾							
–40°C to 85°C	MSP430FR5731IRHA	MSP430FR5730IRGE	MSP430FR5731IDA	MSP430FR5730IPW ⁽³⁾							
	MSP430FR5733IRHA	MSP430FR5732IRGE	MSP430FR5733IDA	MSP430FR5732IPW ⁽³⁾							
	MSP430FR5735IRHA	MSP430FR5734IRGE	MSP430FR5735IDA	MSP430FR5734IPW ⁽³⁾							
	MSP430FR5737IRHA	MSP430FR5736IRGE	MSP430FR5737IDA	MSP430FR5736IPW ⁽³⁾							
	MSP430FR5739IRHA	MSP430FR5738IRGE	MSP430FR5739IDA	MSP430FR5738IPW ⁽³⁾							

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

⁽²⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.

⁽³⁾ Product Preview

Functional Block Diagram – MSP430FR5721IRHA, MSP430FR5729IRHA, MSP430FR5731IRHA, MSP430FR5735IRHA, MSP430FR5739IRHA

Functional Block Diagram – MSP430FR5723IRHA, MSP430FR5727IRHA, MSP430FR5737IRHA

Pin Designation – MSP430FR5723IRHA, MSP430FR5725IRHA, MSP430FR5727IRHA, MSP430FR5729IRHA, MSP430FR5729IRHA, MSP430FR5731IRHA, MSP430FR5733IRHA, MSP430FR5735IRHA, MSP430FR5737IRHA, MSP430FR5739IRHA

RHA PACKAGE (TOP VIEW)

^{*} Not available on MSP430FR5737, MSP430FR5733, MSP430FR5727, MSP430FR5723 Note: Power Pad connection to $\rm V_{ss}$ recommended.

Functional Block Diagram – MSP430FR5721IDA, MSP430FR5729IDA, MSP430FR5731IDA, MSP430FR5735IDA, MSP430FR5739IDA

Functional Block Diagram – MSP430FR5723IDA, MSP430FR5727IDA, MSP430FR5733IDA, MSP430FR5737IDA

www.ti.com

Pin Designation – MSP430FR5723IDA, MSP430FR5725IDA, MSP430FR5727IDA, MSP430FR5729IDA, MSP430FR5729IDA, MSP430FR5731IDA, MSP430FR5733IDA, MSP430FR5735IDA, MSP430FR5737IDA, MSP430FR5739IDA

DA PACKAGE (TOP VIEW)

^{*} Not available on MSP430FR5737, MSP430FR5733, MSP430FR5727, MSP430FR5723

Functional Block Diagram – MSP430FR5720IRGE, MSP430FR5728IRGE, MSP430FR5730IRGE, MSP430FR5734IRGE, MSP430FR5738IRGE

Functional Block Diagram – MSP430FR5722IRGE, MSP430FR5732IRGE, MSP430FR5736IRGE

www.ti.com

Pin Designation – MSP430FR5720IRGE, MSP430FR5722IRGE, MSP430FR5724IRGE, MSP430FR5726IRGE, MSP430FR5728IRGE, MSP430FR5730IRGE, MSP430FR5732IRGE, MSP430FR5734IRGE, MSP430FR5736IRGE, MSP430FR5738IRGE

RGE PACKAGE (TOP VIEW)

 $^{^{\}star}$ Not available on MSP430FR5736, MSP430FR5732, MSP430FR5726, MSP430FR5722 Note: Power Pad connection to V $_{\rm ss}$ recommended.

Functional Block Diagram – MSP430FR5720IPW, MSP430FR5724IPW, MSP430FR5728IPW, MSP430FR5730IPW, MSP430FR5734IPW, MSP430FR5738IPW

Functional Block Diagram – MSP430FR5722IPW, MSP430FR5726IPW, MSP430FR5736IPW

Pin Designation – MSP430FR5720IPW, MSP430FR5724IPW, MSP430FR5726IPW, MSP430FR5728IPW, MSP430FR5730IPW, MSP430FR5732IPW, MSP430FR5734IPW, MSP430FR5736IPW, MSP430FR5738IPW

PW PACKAGE (TOP VIEW)

^{*} Not available on MSP430FR5736, MSP430FR5732, MSP430FR5726, MSP430FR5722

Table 3. Terminal Functions

TE	TERMINAL							
NAME		N		T	I/O ⁽¹⁾	DESCRIPTION		
	RHA	RGE	DA	PW				
P1.0/TA0.1/DMAE0/ RTCCLK/A0/CD0/VeREF-	1	1	5	5	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA0 CCR1 capture: CCI1A input, compare: Out1 External DMA trigger RTC clock calibration output Analog input A0 – ADC (not available on devices without ADC) Comparator_D input CD0 External applied reference voltage (not available on devices without ADC)		
P1.1/TA0.2/TA1CLK/ CDOUT/A1/CD1/VeREF+	2	2	6	6	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA0 CCR2 capture: CCI2A input, compare: Out2 TA1 input clock Comparator_D output Analog input A1 – ADC (not available on devices without ADC) Comparator_D input CD1 Input for an external reference voltage to the ADC (not available on devices without ADC)		
P1.2/TA1.1/TA0CLK/ CDOUT/A2/CD2	3	3	7	7	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA1 CCR1 capture: CCl1A input, compare: Out1 TA0 input clock Comparator_D output Analog input A2 – ADC (not available on devices without ADC) Comparator_D input CD2		
P3.0/A12/CD12	4	N/A	8	N/A	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) Analog input A12 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD12 (not available on package options PW, RGE)		
P3.1/A13/CD13	5	N/A	9	N/A	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) Analog input A13 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD13 (not available on package options PW, RGE)		
P3.2/A14/CD14	6	N/A	10	N/A	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) Analog input A14 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD14 (not available on package options PW, RGE)		
P3.3/A15/CD15	7	N/A	11	N/A	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) Analog input A15 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD15 (not available on package options PW, RGE)		

TERMINAL						
NAME		N(I/O ⁽¹⁾	DESCRIPTION
	RHA	RGE	DA	PW		
P1.3/TA1.2/UCB0STE/ A3/CD3	8	4	12	8	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA1 CCR2 capture: CCI2A input, compare: Out2 Slave transmit enable – eUSCI_B0 SPI mode Analog input A3 – ADC (not available on devices without ADC) Comparator_D input CD3
P1.4/TB0.1/UCA0STE/ A4/CD4	9	5	13	9	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB0 CCR1 capture: CCI1A input, compare: Out1 Slave transmit enable – eUSCI_A0 SPI mode Analog input A4 – ADC (not available on devices without ADC) Comparator_D input CD4
P1.5/TB0.2/UCA0CLK/ A5/CD5	10	6	14	10	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB0 CCR2 capture: CCI2A input, compare: Out2 Clock signal input – eUSCI_B0 SPI slave mode, Clock signal output – eUSCI_B0 SPI master mode Analog input A5 – ADC (not available on devices without ADC) Comparator_D input CD5
PJ.0/TDO/TB0OUTH/ SMCLK/CD6 ⁽²⁾	11	7	15	11	I/O	General-purpose digital I/O Test data output port Switch all PWM outputs high impedance input – TB0 SMCLK output Comparator_D input CD6
PJ.1/TDI/TCLK/TB1OUTH/ MCLK/CD7 ⁽²⁾	12	8	16	12	I/O	General-purpose digital I/O Test data input or test clock input Switch all PWM outputs high impedance input – TB1 (not available on devices without TB1) MCLK output Comparator_D input CD7
PJ.2/TMS/TB2OUTH/ ACLK/CD8 ⁽²⁾	13	9	17	13	I/O	General-purpose digital I/O Test mode select Switch all PWM outputs high impedance input – TB2 (not available on devices without TB2) ACLK output Comparator_D input CD8
PJ.3/TCK/CD9 ⁽²⁾	14	10	18	14	I/O	General-purpose digital I/O Test clock Comparator_D input CD9
P4.0/TB2.0	15	N/A	N/A	N/A	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) TB2 CCR0 capture: CCI0B input, compare: Out0 (not available on devices without TB2 or package options DA, PW, RGE)
P4.1	16	N/A	N/A	N/A	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options DA, PW, RGE)

TE	RMINAL					
NAME		N	0.		I/O ⁽¹⁾	DESCRIPTION
NAME	RHA	RGE	DA	PW		
P2.5/TB0.0/UCA1TXD/ UCA1SIMO	17	N/A	19	15	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB0 CCR0 capture: CCl0A input, compare: Out0 Transmit data – eUSCI_A1 UART mode (not available on devices without UCSI_A1) Slave in, master out – eUSCI_A1 SPI mode (not available on devices without UCSI_A1)
P2.6/TB1.0/UCA1RXD/ UCA1SOMI	18	N/A	20	16	General-purpose digital I/O with port interrupt and wake LPMx.5 TB1 CCR0 capture: CCI0A input, compare: Out0 (not avail devices without TR1)	
TEST/SBWTCK ⁽²⁾⁽³⁾	19	11	21	17	I	Test mode pin – enable JTAG pins Spy-Bi-Wire input clock
RST/NMI/SBWTDIO ⁽²⁾⁽³⁾	20	12	22	18	I/O	Reset input active low Non-maskable interrupt input Spy-Bi-Wire data input/output
P2.0/TB2.0/UCA0TXD/ UCA0SIMO/TB0CLK/ACLK (4)	21	13	23	19	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB2 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB2) Transmit data – eUSCI_A0 UART mode Slave in, master out – eUSCI_A0 SPI mode TB0 clock input ACLK output
P2.1/TB2.1/UCA0RXD/ UCA0SOMI/TB0.0 ⁽⁴⁾	22	14	24	20	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB2 CCR1 capture: CCI1A input, compare: Out1 (not available on devices without TB2) Receive data – eUSCI_A0 UART mode Slave out, master in – eUSCI_A0 SPI mode TB0 CCR0 capture: CCI0A input, compare: Out0
P2.2/TB2.2/UCB0CLK/ TB1.0	23	15	25	21	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB2 CCR2 capture: CCI2A input, compare: Out2 (not available on devices without TB2) Clock signal input – eUSCI_B0 SPI slave mode Clock signal output – eUSCI_B0 SPI master mode TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB1)

 ⁽³⁾ See Bootstrap Loader (BSL) and JTAG Operation for use with BSL and JTAG functions.
 (4) See Bootstrap Loader (BSL) and JTAG Operation for use with BSL and JTAG functions.

TE	ERMINAL					, ,
NAME		N	0.		I/O ⁽¹⁾	DESCRIPTION
IVAIVIE	RHA	RGE	DA	PW		
						General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE)
P3.4/TB1.1/TB2CLK/ SMCLK	24	N/A	26	N/A	I/O	TB1 CCR1 capture: CCI1B input, compare: Out1 (not available on devices without TB1)
SWEEK						TB2 clock input (not available on devices without TB2 or package options PW, RGE)
						SMCLK output (not available on package options PW, RGE)
						General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE)
P3.5/TB1.2/CDOUT	25	N/A	27	N/A	I/O	TB1 CCR2 capture: CCl2B input, compare: Out2 (not available on devices without TB1)
						Comparator_D output (not available on package options PW, RGE)
						General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE)
P3.6/TB2.1/TB1CLK	26	N/A	28	N/A	I/O	TB2 CCR1 capture: CCl1B input, compare: Out1 (not available on devices without TB2)
						TB1 clock input (not available on devices without TB1 or package options PW, RGE)
P3.7/TB2.2	27	N/A	29	N/A	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE)
F3.7/102.2	21	IN/A	29	IN/A	1/0	TB2 CCR2 capture: CCl2B input, compare: Out2 (not available on devices without TB2 or package options PW, RGE)
						General-purpose digital I/O with port interrupt and wake up from LPMx.5
P1.6/TB1.1/UCB0SIMO/	28	16	30	22	I/O	TB1 CCR1 capture: CCl1A input, compare: Out1 (not available on devices without TB1)
UCB0SDA/TA0.0	20	10	00		., 0	Slave in, master out – eUSCI_B0 SPI mode
						I2C data – eUSCI_B0 I2C mode
						TA0 CCR0 capture: CCI0A input, compare: Out0
						General-purpose digital I/O with port interrupt and wake up from LPMx.5
P1.7/TB1.2/UCB0SOMI/ UCB0SCL/TA1.0	29	17	31	23	I/O	TB1 CCR2 capture: CCI2A input, compare: Out2 (not available on devices without TB1)
OCBOSCL/TAT.0						Slave out, master in – eUSCI_B0 SPI mode
						I2C clock – eUSCI_B0 I2C mode
						TA1 CCR0 capture: CCI0A input, compare: Out0
VCORE (5)	30	18	32	24		Regulated core power supply (internal use only, no external current loading)
DVSS	31	19	33	25		Digital ground supply
DVCC	32	20	34	26		Digital power supply
P2.7	33	N/A	35	N/A	I/O	General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE)
						General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options RGE)
P2.3/TA0.0/UCA1STE/			_	27	I/O	TA0 CCR0 capture: CCI0B input, compare: Out0 (not available on package options RGE)
A6/CD10	34	N/A	36			Slave transmit enable – eUSCI_A1 SPI mode (not available on devices without eUSCI_A1)
						Analog input A6 – ADC (not available on devices without ADC)
						Comparator_D input CD10 (not available on package options RGE)

⁽⁵⁾ VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, C_{VCORE}.

TE	RMINAL					DESCRIPTION	
NAME		N	0.		I/O ⁽¹⁾		
NAIVIE	RHA	RGE	DA	PW			
						General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options RGE)	
						TA1 CCR0 capture: CCl0B input, compare: Out0 (not available on package options RGE)	
P2.4/TA1.0/UCA1CLK/ A7/CD11	35	N/A	37	28	I/O	Clock signal input – eUSCI_A1 SPI slave mode (not available on devices without eUSCI_A1)	
						Clock signal output – eUSCI_A1 SPI master mode (not available on devices without eUSCI_A1)	
						Analog input A7 – ADC (not available on devices without ADC)	
						Comparator_D input CD11 (not available on package options RGE)	
AVSS	36	N/A	38	N/A		Analog ground supply	
D L 4/VIN	37	21		4	I/O	General-purpose digital I/O	
PJ.4/XIN	37	21	1	1	1/0	Input terminal for crystal oscillator XT1	
D.L. F.WOLLT	00	00		0	I/O	General-purpose digital I/O	
PJ.5/XOUT	38	22	2	2	1/0	Output terminal of crystal oscillator XT1	
AVSS	39	23	3	3		Analog ground supply	
AVCC	40	24	4	4		Analog power supply	
QFN Pad	Pad	Pad	N/A	N/A		QFN package pad. Connection to VSS recommended.	

SHORT-FORM DESCRIPTION

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data.

Operating Modes

The MSP430 has one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from low-power modes LPM0 through LPM4, service the request, and restore back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.

The following eight operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK active, MCLK disabled, SMCLK optionally active
 - Complete data retention
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - ACLK active, MCLK disabled, SMCLK optionally active
 - DCO disabled
 - Complete data retention
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - ACLK active, MCLK disabled, SMCLK optionally active
 - DCO disabled
 - Complete data retention
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - ACLK active, MCLK and SMCLK disabled
 - DCO disabled
 - Complete data retention
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK, MCLK, SMCLK disabled
 - Complete data retention
- Low-power mode 3.5 (LPM3.5)
 - RTC operation
 - Internal regulator disabled
 - No data retention
 - I/O pad state retention
 - Wake up from RST, general-purpose I/O, RTC events
- Low-power mode 4.5 (LPM4.5)
 - Internal regulator disabled
 - No data retention
 - I/O pad state retention
 - Wake up from RST and general-purpose I/O

Interrupt Vector Addresses

The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 4. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power-Up, Brownout, Supply Supervisors External Reset RST Watchdog Timeout (Watchdog mode) WDT, FRCTL MPU, CS, PMM Password Violation FRAM double bit error detection MPU segment violation Software POR, BOR	SVSLIFG, SVSHIFG PMMRSTIFG WDTIFG WDTIFG WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW DBDIFG MPUSEGIIFG, MPUSEG2IFG, MPUSEG3IFG PMMPORIFG, PMMBORIFG (SYSRSTIV) ⁽¹⁾ (2)	Reset	OFFFEh	63, highest
System NMI Vacant Memory Access JTAG Mailbox FRAM access time error Access violation FRAM single, double bit error detection	VMAIFG JMBNIFG, JMBOUTIFG ACCTIMIFG ACCVIFG SBDIFG, DBDIFG (SYSSNIV) ⁽¹⁾	(Non)maskable	0FFFCh	62
User NMI External NMI Oscillator Fault	NMIIFG, OFIFG (SYSUNIV) ⁽¹⁾ (2)	(Non)maskable	0FFFAh	61
Comparator_D	Comparator_D interrupt flags (CBIV) ⁽¹⁾ (3)	Maskable	0FFF8h	60
TB0	TB0CCR0 CCIFG0 (3)	Maskable	0FFF6h	59
TB0	TB0CCR1 CCIFG1 to TB0CCR2 CCIFG2, TB0IFG (TB0IV) ⁽¹⁾ (3)	Maskable	0FFF4h	58
Watchdog Timer (Interval Timer Mode)	WDTIFG	Maskable	0FFF2h	57
eUSCI_A0 Receive and Transmit	UCA0RXIFG, UCA0TXIFG (SPI mode) UCA0STTIFG, UCA0TXCPTIFG, UCA0RXIFG, UXA0TXIFG (UART mode) (UCA0IV) ⁽¹⁾ (3)	Maskable	0FFF0h	56
eUSCI_B0 Receive and Transmit	UCB0STTIFG, UCB0TXCPTIFG, UCB0RXIFG, UCB0TXIFG (SPI mode) UCB0ALIFG, UCB0NACKIFG, UCB0STTIFG, UCB0STPIFG, UCB0RXIFG0, UCB0TXIFG0, UCB0RXIFG1, UCB0TXIFG2, UCB0TXIFG2, UCB0TXIFG2, UCB0TXIFG3, UCB0CNTIFG, UCB0BIT9IFG (I2C mode) (UCB0IV) ⁽¹⁾ (3)	Maskable	OFFEEh	55
ADC10_B	ADC10OVIFG, ADC10TOVIFG, ADC10HIIFG, ADC10LOIFG ADC10INIFG, ADC10IFG0 (ADC10IV) ⁽¹⁾ (3) (4)	Maskable	0FFECh	54
TA0	TA0CCR0 CCIFG0 ⁽³⁾	Maskable	0FFEAh	53
TA0	TA0CCR1 CCIFG1 to TA0CCR2 CCIFG2, TA0IFG (TA0IV) ⁽¹⁾ (3)	Maskable	0FFE8h	52

⁽¹⁾ Multiple source flags

⁽²⁾ A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.

(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

⁽³⁾ Interrupt flags are located in the module.

⁽⁴⁾ Only on devices with ADC, otherwise reserved.

Table 4. Interrupt Sources, Flags, and Vectors (continued)

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
eUSCI_A1 Receive and Transmit	UCA1RXIFG, UCA1TXIFG (SPI mode) UCA1STTIFG, UCA1TXCPTIFG, UCA1RXIFG, UXA1TXIFG (UART mode) (UCA1IV) ⁽¹⁾ (³⁾	Maskable	0FFE6h	51
DMA	DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) ^{(1) (3)}	Maskable	0FFE4h	50
TA1	TA1CCR0 CCIFG0 ⁽³⁾	Maskable	0FFE2h	49
TA1	TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) ⁽¹⁾ (3)	Maskable	0FFE0h	48
I/O Port P1	P1IFG.0 to P1IFG.7 (P1IV) ⁽¹⁾ (3)	Maskable	0FFDEh	47
TB1	TB1CCR0 CCIFG0 (3)	Maskable	0FFDCh	46
TB1	TB1CCR1 CCIFG1 to TB1CCR2 CCIFG2, TB1IFG (TB1IV) ⁽¹⁾ (3)	Maskable	0FFDAh	45
I/O Port P2	P2IFG.0 to P2IFG.7 (P2IV) ⁽¹⁾ (3)	Maskable	0FFD8h	44
TB2	TB2CCR0 CCIFG0 (3)	Maskable	0FFD6h	43
TB2	TB2CCR1 CCIFG1 to TB2CCR2 CCIFG2, TB2IFG (TB2IV) ^{(1) (3)}	Maskable	0FFD4h	42
I/O Port P3	P3IFG.0 to P3IFG.7 (P3IV) ⁽⁵⁾ (6)	Maskable	0FFD2h	41
I/O Port P4	P4IFG.0 to P4IFG.2 (P4IV) ⁽⁵⁾ (6)	Maskable	0FFD0h	40
RTC_B	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) ⁽⁵⁾ (6)	Maskable	0FFCEh	39
			0FFCCh	38
Reserved	Reserved ⁽⁷⁾		:	:
			0FF80h	0, lowest

⁽⁵⁾ Multiple source flags

⁽⁶⁾ Interrupt flags are located in the module.

⁽⁷⁾ Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, it is recommended to reserve these locations.

Memory Organization

Table 5. Memory Organization (1) (2)

			•	
		MSP430FR5726 MSP430FR5727 MSP430FR5728 MSP430FR5729 MSP430FR5736 MSP430FR5737 MSP430FR5738 MSP430FR5739	MSP430FR5722 MSP430FR5723 MSP430FR5724 MSP430FR5725 MSP430FR5732 MSP430FR5733 MSP430FR5734 MSP430FR5735	MSP430FR5720 MSP430FR5721 MSP430FR5730 MSP430FR5731
Memory (FRAM) Main: interrupt vectors Main: code memory	Total Size	15.5 KB 00FFFFh-00FF80h 00FF7Fh-00C200h	8.0 KB 00FFFFh-00FF80h 00FF7Fh-00E000h	4 KB 00FFFFh-00FF80h 00FF7Fh-00F000h
RAM		1 KB 001FFFh-001C00h	1 KB 001FFFh-001C00h	1 KB 001FFFh-001C00h
Device Descriptor Info (TLV) (FRAM)		128 B 001A7Fh-001A00h	128 B 001A7Fh-001A00h	128 B 001A7Fh-001A00h
	N/A	0019FFh-001980h Address space mirrored to Info A	0019FFh-001980h Address space mirrored to Info A	0019FFh-001980h Address space mirrored to Info A
Information memory (FRAM)	N/A	00197Fh-001900h Address space mirrored to Info B	00197Fh-001900h Address space mirrored to Info B	00197Fh-001900h Address space mirrored to Info B
,	Info A	128 B 0018FFh-001880h	128 B 0018FFh–001880h	128 B 0018FFh–001880h
	Info B	128 B 00187Fh–001800h	128 B 00187Fh–001800h	128 B 00187Fh–001800h
	BSL 3	512 B 0017FFh-001600h	512 B 0017FFh–001600h	512 B 0017FFh–001600h
Bootstrap loader (BSL)	BSL 2	512 B 0015FFh-001400h	512 B 0015FFh–001400h	512 B 0015FFh–001400h
memory (ROM)	BSL 1	512 B 0013FFh-001200h	512 B 0013FFh-001200h	512 B 0013FFh-001200h
	BSL 0	512 B 0011FFh-001000h	512 B 0011FFh-001000h	512 B 0011FFh-001000h
Peripherals	Size	4 KB 000FFFh–0h	4 KB 000FFFh–0h	4 KB 000FFFh–0h

⁽¹⁾ N/A = Not available

⁽²⁾ All address space not listed in this table is considered vacant memory.

Bootstrap Loader (BSL)

The BSL enables users to program the FRAM or RAM using a UART serial interface. Access to the device memory by the BSL is protected by an user-defined password. Use of the BSL requires four pins as shown in Table 6. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the BSL and its implementation, see the *MSP430 Memory Programming User's Guide* (SLAU265).

Table 6. BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION			
RST/NMI/SBWTDIO	Entry sequence signal			
TEST/SBWTCK	Entry sequence signal			
P2.0	Data transmit			
P2.1	Data receive			
VCC	Power supply			
VSS	Ground supply			

JTAG Operation

JTAG Standard Interface

The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. The JTAG pin requirements are shown in Table 7. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278).

Table 7. JTAG Pin Requirements and Functions

DEVICE SIGNAL	Direction	FUNCTION
PJ.3/TCK	IN	JTAG clock input
PJ.2/TMS	IN	JTAG state control
PJ.1/TDI/TCLK	IN	JTAG data input, TCLK input
PJ.0/TDO	OUT	JTAG data output
TEST/SBWTCK	IN	Enable JTAG pins
RST/NMI/SBWTDIO	IN	External reset
VCC		Power supply
VSS		Ground supply

Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire interface pin requirements are shown in Table 8. For further details on interfacing to development tools and device programmers, see the *MSP430 Hardware Tools User's Guide* (SLAU278).

Table 8. Spy-Bi-Wire Pin Requirements and Functions

DEVICE SIGNAL	Direction	FUNCTION
TEST/SBWTCK	IN	Spy-Bi-Wire clock input
RST/NMI/SBWTDIO	IN, OUT	Spy-Bi-Wire data input and output
VCC		Power supply
VSS		Ground supply

www.ti.com

FRAM

The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. Features of the FRAM include:

- · Low-power ultrafast write nonvolatile memory
- · Byte and word access capability
- Programmable and automated wait state generation
- Error Correction Coding (ECC) with single bit detection and correction, double bit detection

Memory Protection Unit (MPU)

The FRAM can be protected from inadvertent CPU execution or write access by the MPU. Features of the MPU include:

- Main memory partitioning programmable up to three segments
- Each segment's (main and information memory) access rights can be individually selected
- Access violation flags with interrupt capability for easy servicing of access violations

Peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430FR57xx Family User's Guide (SLAU272).

Digital I/O

There are up to four 8-bit I/O ports implemented:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Programmable pullup or pulldown on all ports.
- Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all ports.
- Read/write access to port-control registers is supported by all instructions.
- Ports can be accessed byte-wise or word-wise in pairs.

Oscillator and Clock System (CS)

The clock system includes support for a 32-kHz watch crystal oscillator XT1 (LF mode), an internal very-low-power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT1 (HF mode). The clock system module is designed to meet the requirements of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The clock system module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1 LF mode), a high-frequency crystal (XT1 HF mode), the internal VLO, or the internal DCO.
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by the same sources made available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by the same sources made available to ACLK.

Power Management Module (PMM)

The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the primary and core supplies.

Hardware Multiplier (MPY)

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations.

SLAS639C - JULY 2011-REVISED MARCH 2012

www.ti.com

Real-Time Clock (RTC_B)

The RTC_B module contains an integrated real-time clock (RTC) (calendar mode). Calendar mode integrates an internal calendar which compensates for months with fewer than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. RTC operation is available in LPM3.5 mode to minimize power consumption.

Watchdog Timer (WDT A)

The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

System Module (SYS)

The SYS module handles many of the system functions within the device. These include power-on reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators, bootstrap loader entry mechanisms, and configuration management (device descriptors). It also includes a data exchange mechanism using JTAG called a JTAG mailbox that can be used in the application.

Table 9. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	ADDRESS	INTERRUPT EVENT	VALUE	PRIORITY
SYSRSTIV,	019Eh	No interrupt pending	00h	
System Reset		Brownout (BOR)	02h	Highest
		RSTIFG RST/NMI (BOR)	04h	
		PMMSWBOR software BOR (BOR)	06h	
		LPMx.5 wake up (BOR)	08h	
		Security violation (BOR)	0Ah	
		SVSLIFG SVSL event (BOR)	0Ch	
		SVSHIFG SVSH event (BOR)	0Eh	
		Reserved	10h	
		Reserved	12h	
		PMMSWPOR software POR (POR)	14h	
		WDTIFG watchdog timeout (PUC)	16h	
		WDTPW password violation (PUC)	18h	
		FRCTLPW password violation (PUC)	1Ah	
		DBDIFG FRAM double bit error (PUC)	1Ch	
		Peripheral area fetch (PUC)	1Eh	
		PMMPW PMM password violation (PUC)	20h	
		MPUPW MPU password violation (PUC)	22h	
		CSPW CS password violation (PUC)	24h	
		MPUSEGIIFG information memory segment violation (PUC)	26h	
		MPUSEG1IFG segment 1 memory violation (PUC)	28h	
		MPUSEG2IFG segment 2 memory violation (PUC)	2Ah	
		MPUSEG3IFG segment 3 memory violation (PUC)	2Ch	
		Reserved	2Eh	
		Reserved	30h to 3Eh	Lowest
SYSSNIV, System NMI	019Ch	No interrupt pending	00h	
		DBDIFG FRAM double bit error	02h	Highest
		ACCTIMIFG access time error	04h	
		MPUSEGIIFG information memory segment violation	06h	
		MPUSEG1IFG segment 1 memory violation	08h	
		MPUSEG2IFG segment 2 memory violation	0Ah	
		MPUSEG3IFG segment 3 memory violation	0Ch	
		ACCVIFG access violation	0Eh	
		VMAIFG Vacant memory access	10h	
		JMBINIFG JTAG mailbox input	12h	
		JMBOUTIFG JTAG mailbox output	14h	
		SBDIFG FRAM single bit error	16h	
		Reserved	18h to 1Eh	Lowest
SYSUNIV, User NMI	019Ah	No interrupt pending	00h	
,		NMIFG NMI pin	02h	Highest
		OFIFG oscillator fault	04h	J
		Reserved	06h	
		Reserved	08h	
		Reserved	0Ah to 1Eh	Lowest

DMA Controller

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC10_B conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral.

Table 10. DMA Trigger Assignments⁽¹⁾

Trigger	Channel 0	Channel 1	Channel 2
0	DMAREQ	DMAREQ	DMAREQ
1	TA0CCR0 CCIFG	TA0CCR0 CCIFG	TA0CCR0 CCIFG
2	TA0CCR2 CCIFG	TA0CCR2 CCIFG	TA0CCR2 CCIFG
3	TA1CCR0 CCIFG	TA1CCR0 CCIFG	TA1CCR0 CCIFG
4	TA1CCR2 CCIFG	TA1CCR2 CCIFG	TA1CCR2 CCIFG
5	Reserved	Reserved	Reserved
6	Reserved	Reserved	Reserved
7	TB0CCR0 CCIFG	TB0CCR0 CCIFG	TB0CCR0 CCIFG
8	TB0CCR2 CCIFG	TB0CCR2 CCIFG	TB0CCR2 CCIFG
9	TB1CCR0 CCIFG ⁽²⁾	TB1CCR0 CCIFG ⁽²⁾	TB1CCR0 CCIFG (2)
10	TB1CCR2 CCIFG ⁽²⁾	TB1CCR2 CCIFG ⁽²⁾	TB1CCR2 CCIFG ⁽²⁾
11	TB2CCR0 CCIFG (3)	TB2CCR0 CCIFG ⁽³⁾	TB2CCR0 CCIFG (3)
12	TB2CCR2 CCIFG (3)	TB2CCR2 CCIFG ⁽³⁾	TB2CCR2 CCIFG (3)
13	Reserved	Reserved	Reserved
14	UCA0RXIFG	UCAORXIFG	UCA0RXIFG
15	UCA0TXIFG	UCA0TXIFG	UCA0TXIFG
16	UCA1RXIFG ⁽⁴⁾	UCA1RXIFG ⁽⁴⁾	UCA1RXIFG ⁽⁴⁾
17	UCA1TXIFG ⁽⁴⁾	UCA1TXIFG ⁽⁴⁾	UCA1TXIFG ⁽⁴⁾
18	UCB0RXIFG0	UCB0RXIFG0	UCB0RXIFG0
19	UCB0TXIFG0	UCB0TXIFG0	UCB0TXIFG0
20	UCB0RXIFG1	UCB0RXIFG1	UCB0RXIFG1
21	UCB0TXIFG1	UCB0TXIFG1	UCB0TXIFG1
22	UCB0RXIFG2	UCB0RXIFG2	UCB0RXIFG2
23	UCB0TXIFG2	UCB0TXIFG2	UCB0TXIFG2
24	UCB0RXIFG3	UCB0RXIFG3	UCB0RXIFG3
25	UCB0TXIFG3	UCB0TXIFG3	UCB0TXIFG3
26	ADC10IFGx ⁽⁵⁾	ADC10IFGx ⁽⁵⁾	ADC10IFGx ⁽⁵⁾
27	Reserved	Reserved	Reserved
28	Reserved	Reserved	Reserved
29	MPY ready	MPY ready	MPY ready
30	DMA2IFG	DMA0IFG	DMA1IFG
31	DMAE0	DMAE0	DMAE0

⁽¹⁾ If a reserved trigger source is selected, no trigger is generated.

Only on devices with TB1, otherwise reserved

Only on devices with TB2, otherwise reserved

Only on devices with eUSCI_A1, otherwise reserved

⁽⁵⁾ Only on devices with ADC, otherwise reserved

Enhanced Universal Serial Communication Interface (eUSCI)

The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I^2C , and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each eUSCI module contains two portions, A and B.

The eUSCI An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, or IrDA.

The eUSCI_Bn module provides support for SPI (3 pin or 4 pin) or I2C.

The MSP430FR572x and MSP430FR573x series include one or two eUSCI_An modules (eUSCI_A0, eUSCI_A1) and one eUSCI_Bn module (eUSCI_B).

TA0, TA1

TA0 and TA1 are 16-bit timers/counters (Timer_A type) with three capture/compare registers each. Each can support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 11. TA0 Signal Connections

| Table 11. TA0 Signal Connections | MODULE | MODULE | DEVICE | DEVI

	INPUT PIN	NUMBER		DEVICE	MODULE	MODULE	MODULE	DEVICE		OUTPUT P	N NUMBER	
RHA	RGE	DA	PW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	RHA	RGE	DA	PW
3-P1.2	3-P1.2	7-P1.2	7-P1.2	TA0CLK	TACLK							
				ACLK (internal)	ACLK	Timer	N/A	N/A				
				SMCLK (internal)	SMCLK	Timer	IN/A	IN/A				
3-P1.2	3-P1.2	7-P1.2	7-P1.2	TA0CLK	TACLK							
28-P1.6	16-P1.6	30-P1.6	22-P1.6	TA0.0	CCI0A				28-P1.6	16-P1.6	30-P1.6	22-P1.6
34-P2.3	N/A	36-P2.3	27-P2.3	TA0.0	CCI0B	CCR0	TA0	T400	34-P2.3	N/A	36-P2.3	27-P2.3
				DV _{SS}	GND	CCRU	TAU	TA0.0				
				DV _{cc}	V _{cc}							
1-P1.0	1-P1.0	5-P1.0	5-P1.0	TA0.1	CCI1A				1-P1.0	1-P1.0	5-P1.0	5-P1.0
				CDOUT (internal)	CCI1B	CCR1	TA1	TA0.1	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {1}	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {1}	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {1}	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {1}
				DV _{SS}	GND							
				DV _{cc}	V _{cc}							
2-P1.1	2-P1.1	6-P1.1	6-P1.1	TA0.2	CCI2A				2-P1.1	2-P1.1	6-P1.1	6-P1.1
				ACLK (internal)	CCI2B	CCR2	TA2	TA0.2				
				DV _{SS}	GND	1						
				DV _{CC}	V _{cc}							

⁽¹⁾ Only on devices with ADC.

Table 12. TA1 Signal Connections

	INPUT PIN	NUMBER		DEVICE	MODULE	MODULE	MODULE			OUTPUT P	IN NUMBER	
RHA	RGE	DA	PW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	RHA	RGE	DA	PW
2-P1.1	2-P1.1	6-P1.1	6-P1.1	TA1CLK	TACLK							
				ACLK (internal)	ACLK		N/A	N/A				
				SMCLK (internal)	SMCLK	Timer	IN/A	IN/A				
2-P1.1	2-P1.1	6-P1.1	6-P1.1	TA1CLK	TACLK							
29-P1.7	17-P1.7	31-P1.7	23-P1.7	TA1.0	CCI0A				29-P1.7	17-P1.7	31-P1.7	23-P1.7
35-P2.4	N/A	37-P2.4	28-P2.4	TA1.0	CCI0B	0000	TA0	T44.0	35-P2.4	N/A	37-P2.4	28-P2.4
				DV _{SS}	GND	CCR0	TA0	TA1.0				
				DV _{CC}	V _{cc}							
3-P1.2	3-P1.2	7-P1.2	7-P1.2	TA1.1	CCI1A				3-P1.2	3-P1.2	7-P1.2	7-P1.2
				CDOUT (internal)	CCI1B	CCR1	TA1	TA1.1				
				DV _{SS}	GND							
				DV _{CC}	V _{cc}							
8-P1.3	4-P1.3	12-P1.3	8-P1.3	TA1.2	CCI2A				8-P1.3	4-P1.3	12-P1.3	8-P1.3
				ACLK (internal)	CCI2B	CCR2	TA2	TA1.2				
				DV _{SS}	GND							
				DV _{CC}	V _{cc}							

TB0, TB1, TB2

TB0, TB1, and TB2 are 16-bit timers/counters (Timer_B type) with three capture/compare registers each. Each can support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 13. TB0 Signal Connections

	INPUT PIN	NUMBER		DEVICE	MODULE	MODULE	MODULE	DEVICE		OUTPUT PI	N NUMBER	
RHA	RGE	DA	PW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	RHA	RGE	DA	PW
21-P2.0	13-P2.0	23-P2.0	19-P2.0	TB0CLK	TBCLK							
				ACLK (internal)	ACLK	Timer	N/A	N/A				
				SMCLK (internal)	SMCLK	Timer	IN/A	IN/A				
21-P2.0	13-P2.0	23-P2.0	19-P2.0	TB0CLK	TBCLK							
22-P2.1	14-P2.1	24-P2.1	20-P2.1	TB0.0	CCI0A				22-P2.1	14-P2.1	24-P2.1	20-P2.1
17-P2.5	N/A	19-P2.5	15-P2.5	TB0.0	CCI0B				17-P2.5	N/A	19-P2.5	15-P2.5
				DV _{SS}	GND	CCR0	ТВ0	TB0.0	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {2}	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {2}	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {2}	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {2}
				DV _{CC}	V _{cc}							
9-P1.4	5-P1.4	13-P1.4	9-P1.4	TB0.1	CCI1A				9-P1.4	5-P1.4	13-P1.4	9-P1.4
				CDOUT (internal)	CCI1B	CCR1	TB1	TB0.1	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {3}	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {3}	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {3}	ADC10 (internal) ⁽¹⁾ ADC10SHSx = {3}
				DV _{SS}	GND							
				DV _{CC}	V _{cc}							
10-P1.5	6-P1.5	14-P1.5	19-P1.5	TB0.2	CCI2A				10-P1.5	6-P1.5	14-P1.5	19-P1.5
				ACLK (internal)	CCI2B	CCR2	TB2	TB0.2				
				DV _{SS}	GND	1		150.2				
				DV _{CC}	V _{cc}	1						

⁽¹⁾ Only on devices with ADC.

Table 14. TB1 Signal Connections⁽¹⁾

	INPUT PIN	NUMBER		DEVICE	MODULE	MODULE	MODULE	DEVICE		OUTPUT P	IN NUMBER	
RHA	RGE	DA	PW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	RHA	RGE	DA	PW
26-P3.6	N/A (DV _{SS})	28-P3.6	N/A (DV _{SS})	TB1CLK	TBCLK							
				ACLK (internal)	ACLK	T :	N/A	N1/A				
				SMCLK (internal)	SMCLK	Timer	N/A	N/A				
26-P3.6	N/A (DV _{SS})	28-P3.6	N/A (DV _{SS})	TB1CLK	TBCLK							
23-P2.2	N/A (DV _{SS})	25-P2.2	N/A (DV _{SS})	TB1.0	CCI0A		TB0		23-P2.2	N/A	25-P2.2	N/A
18-P2.6	N/A (DV _{SS})	20-P2.6	N/A (DV _{SS})	TB1.0	CCI0B	CCR0		TB1.0	18-P2.6	N/A	20-P2.6	N/A
				DV _{SS}	GND	CCRU	160	161.0				
				DV _{CC}	V _{CC}							
28-P1.6	N/A (DV _{SS})	30-P1.6	N/A (DV _{SS})	TB1.1	CCI1A				28-P1.6	N/A	30-P1.6	N/A
24-P3.4	N/A (DV _{SS})	26-P3.4	N/A (DV _{SS})	TB1.1	CCI1B	0004	TB1		24-P3.4	N/A	26-P3.4	N/A
				DV _{SS}	GND	CCR1	IDI	TB1.1				
				DV _{CC}	V _{CC}							
29-P1.7	N/A (DV _{SS})	31-P1.7	N/A (DV _{SS})	TB1.2	CCI2A				29-P1.7	N/A	31-P1.7	N/A
25-P3.5	N/A (DV _{SS})	27-P3.5	N/A (DV _{SS})	TB1.2	CCI2B	0000	TDO	TD4.0	25-P3.5	N/A	27-P3.5	N/A
				DV _{SS}	GND	CCR2	TB2	TB1.2				
				DV _{CC}	V _{cc}							

⁽¹⁾ TB1 is not present on all device types.

Table 15. TB2 Signal Connections⁽¹⁾

	INPUT PIN	NUMBER		DEVICE	MODULE	MODULE	MODULE			OUTPUT P	IN NUMBER	
RHA	RGE	DA	PW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	RHA	RGE	DA	PW
24-P3.4	N/A (DV _{SS})	26-P3.4	N/A (DV _{SS})	TB2CLK	TBCLK							
				ACLK (internal)	ACLK	Timer	N/A	N/A				
				SMCLK (internal)	SMCLK	Timer		IN/A				
24-P3.4	N/A (DV _{SS})	26-P3.4	N/A (DV _{SS})	TB2CLK	TBCLK							
21-P2.0	N/A (DV _{SS})	23-P2.0	N/A (DV _{SS})	TB2.0	CCI0A				21-P2.0	N/A	23-P2.0	N/A
15-P4.0	N/A (DV _{SS})	N/A (DV _{SS})	N/A (DV _{SS})	TB2.0	CCI0B	CCR0	TB0	TB2.0	15-P4.0	N/A	36-P4.0	N/A
				DV _{SS}	GND	CCRU	100					
				DV _{cc}	V _{cc}							
22-P2.1	N/A (DV _{SS})	24-P2.1	N/A (DV _{SS})	TB2.1	CCI1A				22-P2.1	N/A	24-P2.1	N/A
26-P3.6	N/A (DV _{SS})	28-P3.6	N/A (DV _{SS})	TB2.1	CCI1B	CCR1	TB1	TB2.1	26-P3.6	N/A	28-P3.6	N/A
				DV _{SS}	GND	CCKI	IDI	102.1				
				DV _{cc}	V _{cc}							
23-P2.2	N/A (DV _{SS})	25-P2.2	N/A (DV _{SS})	TB2.2	CCI2A				23-P2.2	N/A	25-P2.2	N/A
27-P3.7	N/A (DV _{SS})	29-P3.7	N/A (DV _{SS})	TB2.2	CCI2B	CCR2	TB2	TB2.2	27-P3.7	N/A	29-P3.7	N/A
				DV _{SS}	GND	CURZ	102	IDZ.Z				
				DV _{cc}	V _{cc}							

⁽¹⁾ TB2 is not present on all device types.

ADC10 B

The ADC10_B module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and a conversion result buffer. A window comparator with a lower limit and an upper limit allows CPU-independent result monitoring with three window comparator interrupt flags.

Comparator D

The primary function of the Comparator_D module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals.

CRC16

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.

Shared Reference (REF)

The reference module (REF) is responsible for generation of all critical reference voltages that can be used by the various analog peripherals in the device.

Embedded Emulation Module (EEM)

The EEM supports real-time in-system debugging. The S version of the EEM implemented on all devices has the following features:

- · Three hardware triggers or breakpoints on memory access
- · One hardware trigger or breakpoint on CPU register write access
- Up to four hardware triggers can be combined to form complex triggers or breakpoints
- One cycle counter
- · Clock control on module level

Peripheral File Map

Table 16. Peripherals

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE
Special Functions (see Table 17)	0100h	000h - 01Fh
PMM (see Table 18)	0120h	000h - 010h
FRAM Control (see Table 19)	0140h	000h - 00Fh
CRC16 (see Table 20)	0150h	000h - 007h
Watchdog (see Table 21)	015Ch	000h - 001h
CS (see Table 22)	0160h	000h - 00Fh
SYS (see Table 23)	0180h	000h - 01Fh
Shared Reference (see Table 24)	01B0h	000h - 001h
Port P1/P2 (see Table 25)	0200h	000h - 01Fh
Port P3/P4 (see Table 26)	0220h	000h - 01Fh
Port PJ (see Table 27)	0320h	000h - 01Fh
TA0 (see Table 28)	0340h	000h - 02Fh
TA1 (see Table 29)	0380h	000h - 02Fh
TB0 (see Table 30)	03C0h	000h - 02Fh
TB1 (see Table 31)	0400h	000h - 02Fh
TB2 (see Table 32)	0440h	000h - 02Fh
Real Timer Clock (RTC_B) (see Table 33)	04A0h	000h - 01Fh
32-bit Hardware Multiplier (see Table 34)	04C0h	000h - 02Fh
DMA General Control (see Table 35)	0500h	000h - 00Fh
DMA Channel 0 (see Table 35)	0510h	000h - 00Ah
DMA Channel 1 (see Table 35)	0520h	000h - 00Ah
DMA Channel 2 (see Table 35)	0530h	000h - 00Ah
MPU Control (see Table 36)	05A0h	000h - 00Fh
eUSCI_A0 (see Table 37)	05C0h	000h - 01Fh
eUSCI_A1 (see Table 38)	05E0h	000h - 01Fh
eUSCI_B0 (see Table 39)	0640h	000h - 02Fh
ADC10_B (see Table 40)	0700h	000h - 03Fh
Comparator_D (see Table 41)	08C0h	000h - 00Fh

Table 17. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 18. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM Control 0	PMMCTL0	00h
PMM interrupt flags	PMMIFG	0Ah
PM5 Control 0	PM5CTL0	10h

Table 19. FRAM Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
FRAM control 0	FRCTLCTL0	00h
General control 0	GCCTL0	04h
General control 1	GCCTL1	06h

Table 20. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC data input reverse byte	CRCDIRB	02h
CRC initialization and result	CRCINIRES	04h
CRC result reverse byte	CRCRESR	06h

Table 21. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

Table 22. CS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CS control 0	CSCTL0	00h
CS control 1	CSCTL1	02h
CS control 2	CSCTL2	04h
CS control 3	CSCTL3	06h
CS control 4	CSCTL4	08h
CS control 5	CSCTL5	0Ah
CS control 6	CSCTL6	0Ch

Table 23. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh
Bus Error vector generator	SYSBERRIV	18h
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

Table 24. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Shared reference control	REFCTL	00h

Table 25. Port P1/P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 pullup/pulldown enable	P1REN	06h
Port P1 selection 0	P1SEL0	0Ah
Port P1 selection 1	P1SEL1	0Ch
Port P1 interrupt vector word	P1IV	0Eh
Port P1 complement selection	P1SELC	10h
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 pullup/pulldown enable	P2REN	07h
Port P2 selection 0	P2SEL0	0Bh
Port P2 selection 1	P2SEL1	0Dh
Port P2 complement selection	P2SELC	11h
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 26. Port P3/P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 pullup/pulldown enable	P3REN	06h
Port P3 selection 0	P3SEL0	0Ah
Port P3 selection 1	P3SEL1	0Ch
Port P3 interrupt vector word	P3IV	0Eh
Port P3 complement selection	P3SELC	10h
Port P3 interrupt edge select	P3IES	18h
Port P3 interrupt enable	P3IE	1Ah
Port P3 interrupt flag	P3IFG	1Ch
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 pullup/pulldown enable	P4REN	07h
Port P4 selection 0	P4SEL0	0Bh
Port P4 selection 1	P4SEL1	0Dh
Port P4 complement selection	P4SELC	11h
Port P4 interrupt vector word	P4IV	1Eh
Port P4 interrupt edge select	P4IES	19h
Port P4 interrupt enable	P4IE	1Bh
Port P4 interrupt flag	P4IFG	1Dh

Table 27. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ pullup/pulldown enable	PJREN	06h
Port PJ selection 0	PJSEL0	0Ah
Port PJ selection 1	PJSEL1	0Ch

Table 28. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
Capture/compare control 3	TA0CCTL3	08h
Capture/compare control 4	TA0CCTL4	0Ah
TA0 counter register	TAOR	10h
Capture/compare register 0	TA0CCR0	12h
Capture/compare register 1	TA0CCR1	14h
Capture/compare register 2	TA0CCR2	16h
Capture/compare register 3	TA0CCR3	18h
Capture/compare register 4	TA0CCR4	1Ah
TA0 expansion register 0	TA0EX0	20h
TA0 interrupt vector	TAOIV	2Eh

Table 29. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter register	TA1R	10h
Capture/compare register 0	TA1CCR0	12h
Capture/compare register 1	TA1CCR1	14h
Capture/compare register 2	TA1CCR2	16h
TA1 expansion register 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

Table 30. TB0 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
TB0 register	TB0R	10h
Capture/compare register 0	TB0CCR0	12h
Capture/compare register 1	TB0CCR1	14h
Capture/compare register 2	TB0CCR2	16h
TB0 expansion register 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

Table 31. TB1 Registers (Base Address: 0400h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB1 control	TB1CTL	00h
Capture/compare control 0	TB1CCTL0	02h
Capture/compare control 1	TB1CCTL1	04h
Capture/compare control 2	TB1CCTL2	06h
TB1 register	TB1R	10h
Capture/compare register 0	TB1CCR0	12h
Capture/compare register 1	TB1CCR1	14h
Capture/compare register 2	TB1CCR2	16h
TB1 expansion register 0	TB1EX0	20h
TB1 interrupt vector	TB1IV	2Eh

Table 32. TB2 Registers (Base Address: 0440h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB2 control	TB2CTL	00h
Capture/compare control 0	TB2CCTL0	02h
Capture/compare control 1	TB2CCTL1	04h
Capture/compare control 2	TB2CCTL2	06h
TB2 register	TB2R	10h
Capture/compare register 0	TB2CCR0	12h
Capture/compare register 1	TB2CCR1	14h
Capture/compare register 2	TB2CCR2	16h
TB2 expansion register 0	TB2EX0	20h
TB2 interrupt vector	TB2IV	2Eh

Table 33. Real-Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control 0	RTCCTL0	00h
RTC control 1	RTCCTL1	01h
RTC control 2	RTCCTL2	02h
RTC control 3	RTCCTL3	03h
RTC prescaler 0 control	RTCPS0CTL	08h
RTC prescaler 1 control	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds, RTC counter register 1	RTCSEC, RTCNT1	10h
RTC minutes, RTC counter register 2	RTCMIN, RTCNT2	11h
RTC hours, RTC counter register 3	RTCHOUR, RTCNT3	12h
RTC day of week, RTC counter register 4	RTCDOW, RTCNT4	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh
Binary-to-BCD conversion register	BIN2BCD	1Ch
BCD-to-binary conversion register	BCD2BIN	1Eh

Table 34. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 x 16 result low word	RESLO	0Ah
16 x 16 result high word	RESHI	0Ch
16 x 16 sum extension register	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 x 32 result 0 – least significant word	RES0	24h
32 x 32 result 1	RES1	26h
32 x 32 result 2	RES2	28h
32 × 32 result 3 – most significant word	RES3	2Ah
MPY32 control register 0	MPY32CTL0	2Ch

Table 35. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA channel 0 control	DMA0CTL	00h
DMA channel 0 source address low	DMA0SAL	02h
DMA channel 0 source address high	DMA0SAH	04h
DMA channel 0 destination address low	DMA0DAL	06h
DMA channel 0 destination address high	DMA0DAH	08h
DMA channel 0 transfer size	DMA0SZ	0Ah
DMA channel 1 control	DMA1CTL	00h
DMA channel 1 source address low	DMA1SAL	02h
DMA channel 1 source address high	DMA1SAH	04h
DMA channel 1 destination address low	DMA1DAL	06h
DMA channel 1 destination address high	DMA1DAH	08h
DMA channel 1 transfer size	DMA1SZ	0Ah
DMA channel 2 control	DMA2CTL	00h
DMA channel 2 source address low	DMA2SAL	02h
DMA channel 2 source address high	DMA2SAH	04h
DMA channel 2 destination address low	DMA2DAL	06h
DMA channel 2 destination address high	DMA2DAH	08h
DMA channel 2 transfer size	DMA2SZ	0Ah
DMA module control 0	DMACTL0	00h
DMA module control 1	DMACTL1	02h
DMA module control 2	DMACTL2	04h
DMA module control 3	DMACTL3	06h
DMA module control 4	DMACTL4	08h
DMA interrupt vector	DMAIV	0Ah

Table 36. MPU Control Registers (Base Address: 05A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
MPU control 0	MPUCTL0	00h
MPU control 1	MPUCTL1	02h
MPU Segmentation Register	MPUSEG	04h
MPU access management	MPUSAM	06h

Table 37. eUSCI_A0 Registers (Base Address: 05C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_A control word 0	UCA0CTLW0	00h
eUSCI _A control word 1	UCA0CTLW1	03h
eUSCI_A baud rate 0	UCA0BR0	06h
eUSCI_A baud rate 1	UCA0BR1	07h
eUSCI_A modulation control	UCA0MCTLW	08h
eUSCI_A status	UCA0STAT	0Ah
eUSCI_A receive buffer	UCA0RXBUF	0Ch
eUSCI_A transmit buffer	UCA0TXBUF	0Eh
eUSCI_A LIN control	UCA0ABCTL	10h
eUSCI_A IrDA transmit control	UCA0IRTCTL	12h
eUSCI_A IrDA receive control	UCA0IRRCTL	13h
eUSCI_A interrupt enable	UCA0IE	1Ah
eUSCI_A interrupt flags	UCA0IFG	1Ch
eUSCI_A interrupt vector word	UCA0IV	1Eh

Table 38. eUSCI_A1 Registers (Base Address: 05E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_A control word 0	UCA1CTLW0	00h
eUSCI _A control word 1	UCA1CTLW1	03h
eUSCI_A baud rate 0	UCA1BR0	06h
eUSCI_A baud rate 1	UCA1BR1	07h
eUSCI_A modulation control	UCA1MCTLW	08h
eUSCI_A status	UCA1STAT	0Ah
eUSCI_A receive buffer	UCA1RXBUF	0Ch
eUSCI_A transmit buffer	UCA1TXBUF	0Eh
eUSCI_A LIN control	UCA1ABCTL	10h
eUSCI_A IrDA transmit control	UCA1IRTCTL	12h
eUSCI_A IrDA receive control	UCA1IRRCTL	13h
eUSCI_A interrupt enable	UCA1IE	1Ah
eUSCI_A interrupt flags	UCA1IFG	1Ch
eUSCI_A interrupt vector word	UCA1IV	1Eh

Table 39. eUSCI_B0 Registers (Base Address: 0640h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_B control word 0	UCB0CTLW0	00h
eUSCI_B control word 1	UCB0CTLW1	02h
eUSCI_B bit rate 0	UCB0BR0	06h
eUSCI_B bit rate 1	UCB0BR1	07h
eUSCI_B status word	UCB0STATW	08h
eUSCI_B byte counter threshold	UCB0TBCNT	0Ah
eUSCI_B receive buffer	UCB0RXBUF	0Ch
eUSCI_B transmit buffer	UCB0TXBUF	0Eh
eUSCI_B I2C own address 0	UCB0I2COA0	14h
eUSCI_B I2C own address 1	UCB0I2COA1	16h
eUSCI_B I2C own address 2	UCB0I2COA2	18h
eUSCI_B I2C own address 3	UCB0I2COA3	1Ah
eUSCI_B received address	UCB0ADDRX	1Ch
eUSCI_B address mask	UCB0ADDMASK	1Eh
eUSCI I2C slave address	UCB0I2CSA	20h
eUSCI interrupt enable	UCB0IE	2Ah
eUSCI interrupt flags	UCB0IFG	2Ch
eUSCI interrupt vector word	UCB0IV	2Eh

Table 40. ADC10_B Registers (Base Address: 0700h)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC10_B Control register 0	ADC10CTL0	00h
ADC10_B Control register 1	ADC10CTL1	02h
ADC10_B Control register 2	ADC10CTL2	04h
ADC10_B Window Comparator Low Threshold	ADC10LO	06h
ADC10_B Window Comparator High Threshold	ADC10HI	08h
ADC10_B Memory Control Register 0	ADC10MCTL0	0Ah
ADC10_B Conversion Memory Register	ADC10MEM0	12h
ADC10_B Interrupt Enable	ADC10IE	1Ah
ADC10_B Interrupt Flags	ADC10IGH	1Ch
ADC10_B Interrupt Vector Word	ADC10IV	1Eh

Table 41. Comparator_D Registers (Base Address: 08C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Comparator_D control register 0	CDCTL0	00h
Comparator_D control register 1	CDCTL1	02h
Comparator_D control register 2	CDCTL2	04h
Comparator_D control register 3	CDCTL3	06h
Comparator_D interrupt register	CDINT	0Ch
Comparator_D interrupt vector word	CDIV	0Eh

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

Voltage applied at V _{CC} to V _{SS}	-0.3 V to 4.1 V
Voltage applied to any pin (excluding VCORE) (2)	-0.3 V to V _{CC} + 0.3 V
Diode current at any device pin	±2 mA
Storage temperature range, T _{stg} ⁽³⁾ (4)(5)	-40°C to 125°C
Maximum junction temperature, T _J	95°C

- Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- All voltages referenced to V_{SS}. V_{CORE} is for internal device use only. No external DC loading or voltage should be applied.
- Data retention on FRAM memory cannot be ensured when exceeding the specified maximum storage temperature, T_{stg}. For soldering during board manufacturing, it is required to follow the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.
- Programming of devices with user application code should only be performed after reflow or hand soldering. Factory programmed information, such as calibration values, are designed to withstand the temperatures reached in the current JEDEC J-STD-020 specification.

Recommended Operating Conditions

		MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage during program execution and FRAM prog	ramming (AVCC = DVCC) ⁽¹⁾	2.0		3.6	V
V _{SS}	Supply voltage (AVSS = DVSS)			0		V
T _A	Operating free-air temperature	I version	-40		85	°C
TJ	Operating junction temperature	-40		85	°C	
C _{VCORE}	Required capacitor at VCORE		470		nF	
C _{VCC} / C _{VCORE}	Capacitor ratio of VCC to VCORE					ı
		No FRAM wait states ⁽³⁾ , 2 V \leq V _{CC} \leq 3.6 V	0		8.0	
f _{SYSTEM}	Processor frequency (maximum MCLK frequency) (2)	With FRAM wait states $^{(3)}$, NACCESS = $\{2\}$, NPRECHG = $\{1\}$, $2 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$	0		24.0	MHz

⁽¹⁾ It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation.

Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.

When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common system frequencies.

Electrical Characteristics

Active Mode Supply Current Into V_{CC} Excluding External Current

over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3)

							Freque	ency (f _M	_{CLK} = f _{SN}	ICLK) ⁽⁴⁾					
PARAMETER	EXECUTION MEMORY	v_{cc}	1 M	Hz	4 N	lHz	8 N	lHz	16 M	Hz ⁽⁵⁾	20 M	20 MHz ⁽⁵⁾ 24 MHz ⁽⁵⁾	Hz ⁽⁵⁾	UNIT	
			TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
I _{AM, FRAM_UNI} (6)	FRAM	3 V	0.27		0.58		1.0		1.53		1.9		2.2		mA
I _{AM,0%} (7)	FRAM 0% cache hit ratio	3 V	0.42	0.73	1.2	1.6	2.2	2.8	2.3	2.9	2.8	3.6	3.45	4.3	
I _{AM,50%} (7) (8)	FRAM 50% cache hit ratio	3 V	0.31		0.73		1.3		1.75		2.1		2.5		
I _{AM,66%} ⁽⁷⁾ (8)	FRAM 66% cache hit ratio	3 V	0.27		0.58		1.0		1.55		1.9		2.2		mA
I _{AM,75%} ⁽⁷⁾ (8)	FRAM 75% cache hit ratio	3 V	0.25		0.5		0.82		1.3		1.6		1.8		
I _{AM,100%} ^{(7) (8)}	FRAM 100% cache hit ratio	3 V	0.2	0.43	0.3	0.55	0.42	0.8	0.73	1.15	0.88	1.3	1.0	1.5	
I _{AM, RAM} (8) (9)	RAM	3 V	0.2	0.4	0.35	0.55	0.55	0.75	1.0	1.25	1.20	1.45	1.45	1.75	mA

- All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
- The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.
- Characterized with program executing typical data processing.
- At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency, f_{MCLK.eff}, decreases. The effective MCLK frequency is also dependent on the cache hit ratio. SMCLK is not affected by the number of wait states or the cache hit ratio. The following equation can be used to compute $f_{MCLK,eff,MHZ} = f_{MCLK,MHZ} \times 1 / [\# of wait states <math>\times ((1 - \text{cache hit ratio percent/100})) + 1]$
- MSP430FR573x series only
- Program and data reside entirely in FRAM. No wait states enabled. DCORSEL = 0, DCOFSELx = 3 (f_{DCO} = 8 MHz). MCLK = SMCLK.
- Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 25% ratio implies one of every four accesses is from cache, the remaining are FRAM accesses.
 - For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (f_{DCO} = 8 MHz). MCLK = SMCLK. No wait states enabled. For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (f_{DCO} = 16 MHz).MCLK = SMCLK. One wait state enabled.

 - For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (f_{DCO} = 20 MHz).MCLK = SMCLK. Three wait states enabled.
 - For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (f_{DCO} = 24 MHz).MCLK = SMCLK. Three wait states enabled.
- See Figure 1 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best linear fit using the typical data shown in Active Mode Supply Current Into V_{CC} Excluding External Current. f_{ACLK} = 32786 Hz, f_{MCLK} = f_{SMCLK} at specified frequency. No peripherals active. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.
- All execution is from RAM.
 - For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (f_{DCO} = 8 MHz). MCLK = SMCLK.

 - For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (f_{DCO} = 16 MHz). MCLK = SMCLK. For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (f_{DCO} = 20 MHz). MCLK = SMCLK.
 - For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (f_{DCO} = 24 MHz). MCLK = SMCLK.

Figure 1. Typical Active Mode Supply Currents, No Wait States

Low-Power Mode Supply Currents (Into V_{cc}) Excluding External Current

	DADAMETED	V	-40	°C	25°	C	60°	°C	85°	C	
	PARAMETER	V _{CC}	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNIT
I _{LPM0,1MHz}	Low-power mode 0 ⁽³⁾ (4)	2 V, 3 V	166		175		190		225		μΑ
LPM0,8MHz	Low-power mode 0 ⁽⁵⁾ (4)	2 V, 3 V	170		177	244	195		225	360	μΑ
LPM0,24MHz	Low-power mode 0 ⁽⁶⁾ (4)	2 V, 3 V	274		285	340	315		340	455	μΑ
I _{LPM2}	Low-power mode 2 ⁽⁷⁾ (8)	2 V, 3 V	56		61	80	75		110	210	μA
I _{LPM3,XT1LF}	Low-power mode 3, crystal mode (9) (8)	2 V, 3 V	3.4		6.4	15	18		48	150	μΑ
I _{LPM3,VLO}	Low-power mode 3, VLO mode ⁽¹⁰⁾ ⁽⁸⁾	2 V, 3 V	3.3		6.3	15	18		48	150	μΑ
I _{LPM4}	Low-power mode 4 ⁽¹¹⁾ ⁽⁸⁾	2 V, 3 V	2.9		5.9	15	18		48	150	μΑ
I _{LPM3.5}	Low-power mode 3.5 ⁽¹²⁾	2 V, 3 V	1.3		1.5	2.2	1.9		2.8	5.0	μA
I _{LPM4.5}	Low-power mode 4.5 ⁽¹³⁾	2 V, 3 V	0.3		0.32	0.66	0.38		0.57	2.55	μΑ

- (1) All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
- (2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.
- (3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = 1 MHz. DCORSEL = 0, DCOFSELx = 3 (f_{DCO} = 8 MHz)
- (4) Current for brownout, high-side supervisor (SVS_H) and low-side supervisor (SVS_L) included.
- (5) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = 8 MHz. DCORSEL = 0, DCOFSELx = 3 (f_{DCO} = 8 MHz)
- (6) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = 24 MHz. DCORSEL = 1, DCOFSELx = 3 (f_{DCO} = 24 MHz)
- (7) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 0 MHz, DCORSEL = 0, DCOFSELx = 3, DCO bias generator enabled.
- (8) Current for brownout, high-side supervisor (SVS_H) included. Low-side supervisor disabled (SVS_L).
- (9) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f_{ACLK} = 32768 Hz, f_{MCLK} = f_{DCO} = 0 MHz
- (10) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.
- $\mathsf{CPUOFF} = \mathsf{1}, \, \mathsf{SCG0} = \mathsf{1}, \, \mathsf{SCG1} = \mathsf{1}, \, \mathsf{OSCOFF} = \mathsf{0} \, (\mathsf{LPM3}), \, \mathsf{f}_{\mathsf{ACLK}} = \mathsf{f}_{\mathsf{VLO}}, \, \mathsf{f}_{\mathsf{MCLK}} = \mathsf{f}_{\mathsf{SMCLK}} = \mathsf{f}_{\mathsf{DCO}} = \mathsf{0} \, \, \mathsf{MHz}$
- (11) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), $f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0$ MHz
- (12) Internal regulator disabled. No data retention. RTC active.
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM3.5), f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0 MHz
- (13) Internal regulator disabled. No data retention.
 - CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz

Schmitt-Trigger Inputs – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V	Desitive gains input threehold valtage		2 V	0.80		1.40	V
V _{IT+}	Positive-going input threshold voltage		3 V	1.50		2.10	V
V	Negative going input threshold voltage		2 V	0.45		1.10	V
V_{IT-}	Negative-going input threshold voltage		3 V	0.75		1.65	V
\/	Input voltage bystoregic (V V V		2 V	0.25		0.8	V
V _{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})		3 V	0.30		1.0	V
R _{Pull}	Pullup or pulldown resistor	For pullup: $V_{IN} = V_{SS}$ For pulldown: $V_{IN} = V_{CC}$		20	35	50	kΩ
C _I	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		pF

Inputs – Ports P1 and P2⁽¹⁾ (P1.0 to P1.7, P2.0 to P2.7)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN MA	X UN
t _(int)	External interrupt timing (2)	External trigger pulse duration to set interrupt flag	2 V, 3 V	20	ns

⁽¹⁾ Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.

Leakage Current – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
I _{lkg(Px.x)}	High-impedance leakage current	(1) (2)	2 V, 3 V	-50	50	nA

- (1) The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted.
- (2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled.

⁽²⁾ An external signal sets the interrupt flag every time the minimum interrupt pulse duration t_(int) is met. It may be set by trigger signals shorter than t_(int).

Outputs – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT	
		$I_{(OHmax)} = -1 \text{ mA}^{(1)}$	2 V	V _{CC} - 0.25	V_{CC}		
V	Lligh lovel output valtage	$I_{(OHmax)} = -3 \text{ mA}^{(2)}$	2 V	$V_{CC} - 0.60$	V_{CC}	V	
VOH	V _{OH} High-level output voltage	$I_{(OHmax)} = -2 \text{ mA}^{(1)}$	2.1/	V _{CC} - 0.25	V^{CC}		
		$I_{(OHmax)} = -6 \text{ mA}^{(2)}$	3 V	V _{CC} - 0.60	V_{CC}		
		$I_{(OLmax)} = 1 \text{ mA}^{(1)}$	0.17	V _{SS}	$V_{SS} + 0.25$		
.,		I _(OLmax) = 3 mA ⁽²⁾	2 V	V _{SS}	V _{SS} + 0.60	.,	
V _{OL}	Low-level output voltage	I _(OLmax) = 2 mA ⁽¹⁾	2.1/	V _{SS}	V _{SS} + 0.25	V	
		I _(OLmax) = 6 mA ⁽²⁾	3 V	V _{SS}	V _{SS} + 0.60		

The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop

Output Frequency – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN M	XX UNIT
4	Port output frequency	Px.v ⁽¹⁾ ⁽²⁾	2 V		16 MHz
T _{Px.y}	(with load)	Px.y (**/ (=*/	3 V		24
f _{Port_CLK} Clock output frequency	Clock output from one	ACLK, SMCLK, or MCLK at configured output port,	2 V		16
	Clock output frequency	$C_L = 20 \text{ pF}, \text{ no DC loading}^{(2)}$	3 V		MHz

 ⁽¹⁾ A resistive divider with 2 x 1.6 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider. C_L = 20 pF is connected from the output to V_{SS}.
 (2) The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified.

Typical Characteristics – Outputs

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE

TYPICAL LOW-LEVEL OUTPUT CURRENT

vs LOW-LEVEL OUTPUT VOLTAGE

Figure 3.

Typical Characteristics - Outputs (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TYPICAL HIGH-LEVEL OUTPUT CURRENT

vs HIGH-LEVEL OUTPUT VOLTAGE

Figure 4.

TYPICAL HIGH-LEVEL OUTPUT CURRENT

vs HIGH-LEVEL OUTPUT VOLTAGE

Figure 5.

Crystal Oscillator, XT1, Low-Frequency (LF) Mode⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		$ \begin{cases} f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ \text{XT1BYPASS} = 0, \text{XT1DRIVE} = \{1\}, \\ C_{L,eff} = 9 \text{ pF, } T_A = 25^{\circ}\text{C}, \end{cases} $	3 V		60		
ΔI _{VCC.LF}	Additional current consumption XT1 LF mode from lowest drive setting	$\begin{split} f_{OSC} &= 32768 \text{ Hz, XTS} = 0,\\ \text{XT1BYPASS} &= 0, \text{XT1DRIVE} = \{2\},\\ \text{T}_{A} &= 25^{\circ}\text{C, C}_{L,\text{eff}} = 9 \text{ pF} \end{split}$	3 V		90		nA
		$f_{OSC} = 32768 \text{ Hz}, \text{ XTS} = 0, \\ \text{XT1BYPASS} = 0, \text{ XT1DRIVE} = \{3\}, \\ T_{A} = 25^{\circ}\text{C}, C_{L,eff} = 12 \text{ pF}$	3 V		140		
f _{XT1,LF0}	XT1 oscillator crystal frequency, LF mode	XTS = 0, XT1BYPASS = 0			32768		Hz
f _{XT1,LF,SW}	XT1 oscillator logic-level square- wave input frequency, LF mode	XTS = 0, XT1BYPASS = 1 ⁽²⁾ (3)		10	32.768	50	kHz
0.4	Oscillation allowance for	$ \begin{array}{l} XTS = 0, \\ XT1BYPASS = 0, XT1DRIVE = \{0\}, \\ f_{XT1,LF} = 32768 \; Hz, C_{L,eff} = 6 \; pF \end{array} $		300			kΩ
OA _{LF}	LF crystals ⁽⁴⁾	$\begin{split} &XTS = 0,\\ &XT1BYPASS = 0, XT1DRIVE = \{3\},\\ &f_{XT1,LF} = 32768\;Hz, C_{L,eff} = 12\;pF \end{split}$					K12
	Duty cycle, LF mode	XTS = 0, Measured at ACLK, f _{XT1,LF} = 32768 Hz		30		70	%
f _{Fault,LF}	Oscillator fault frequency, LF mode ⁽⁵⁾	XTS = 0 ⁽⁶⁾		10		10000	Hz
	Startup time LE mode(7)	$f_{OSC} = 32768 \text{ Hz}, \text{ XTS} = 0, \\ \text{XT1BYPASS} = 0, \text{ XT1DRIVE} = \{0\}, \\ T_{A} = 25^{\circ}\text{C}, C_{L,eff} = 6 \text{ pF}$	3 V	1000		ma	
t _{START,L} F	Startup time, LF mode ⁽⁷⁾	$f_{OSC} = 32768 \text{ Hz}, \text{ XTS} = 0, \\ \text{XT1BYPASS} = 0, \text{ XT1DRIVE} = \{3\}, \\ T_{A} = 25^{\circ}\text{C}, C_{L,eff} = 12 \text{ pF}$	3 V	1000			ms
$C_{L,eff}$	Integrated effective load capacitance, LF mode ⁽⁸⁾	XTS = 0			1		pF

- (1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - (a) Keep the trace between the device and the crystal as short as possible.
 - (b) Design a good ground plane around the oscillator pins.
 - (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
 - (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
- When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet.
- Maximum frequency of operation of the entire device cannot be exceeded.
- Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:

 - (a) For XT1DRIVE = {0}, $C_{L,ef} \neq 6$ pF. (b) For XT1DRIVE = {1}, 6 pF $\leq C_{L,ef} \neq 9$ pF. (c) For XT1DRIVE = {2}, 6 pF $\leq C_{L,ef} \neq 10$ pF.
 - (d) For XT1DRIVE = {3}, 6 pF \leq C_{L,ef f} \leq 12 pF.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- Measured with logic-level input frequency but also applies to operation with crystals.
- Includes startup counter of 4096 clock cycles.
- Requires external capacitors at both terminals.
- Values are specified by crystal manufacturers. Include parasitic bond and package capacitance (approximately 2 pF per pin). Recommended values supported are 6 pF, 9 pF, and 12 pF. Maximum shunt capacitance of 1.6 pF.

Crystal Oscillator, XT1, High-Frequency (HF) Mode⁽¹⁾

	PARAMETER	TEST CONDITIONS	v_{cc}	MIN	TYP	MAX	UNIT
		$ \begin{aligned} &f_{OSC} = 4 \text{ MHz}, \\ &XTS = 1, \text{ XOSCOFF} = 0, \\ &XT1BYPASS = 0, \text{ XT1DRIVE} = \{0\}, \\ &T_A = 25^{\circ}\text{C}, \text{ $C_{L,eff}$} = 16 \text{ pF} \end{aligned} $			175		
1	XT1 oscillator crystal current HF	$\begin{split} f_{OSC} &= 8 \text{ MHz}, \\ \text{XTS} &= 1, \text{ XOSCOFF} = 0, \\ \text{XT1BYPASS} &= 0, \text{ XT1DRIVE} = \{1\}, \\ T_A &= 25^{\circ}\text{C}, \text{ $C_{L,eff}$} = 16 \text{ pF} \end{split}$	3 V		300		μA
VCC,HF	mode	$\begin{split} f_{OSC} &= 16 \text{ MHz}, \\ \text{XTS} &= 1, \text{ XOSCOFF} = 0, \\ \text{XT1BYPASS} &= 0, \text{ XT1DRIVE} = \{2\}, \\ T_A &= 25^{\circ}\text{C}, \text{ $C_{L,eff}$} = 16 \text{ pF} \end{split}$	- V		350		μΑ
		$\begin{split} f_{OSC} &= 24 \text{ MHz}, \\ \text{XTS} &= 1, \text{ XOSCOFF} = 0, \\ \text{XT1BYPASS} &= 0, \text{ XT1DRIVE} = \{3\}, \\ T_{A} &= 25^{\circ}\text{C}, \text{ C}_{\text{L,eff}} = 16 \text{ pF} \end{split}$			550		<u> </u>
f _{XT1,HF0}	XT1 oscillator crystal frequency, HF mode 0	XTS = 1, XT1BYPASS = 0, XT1DRIVE = $\{0\}^{(2)}$		4		6	MHz
f _{XT1,HF1}	XT1 oscillator crystal frequency, HF mode 1	XTS = 1, XT1BYPASS = 0, XT1DRIVE = {1} ⁽³⁾		6		10	MHz
f _{XT1,HF2}	XT1 oscillator crystal frequency, HF mode 2	XTS = 1, XT1BYPASS = 0, XT1DRIVE = {2} ⁽³⁾		10		16	MHz
f _{XT1,HF3}	XT1 oscillator crystal frequency, HF mode 3	XTS = 1, XT1BYPASS = 0, XT1DRIVE = {3} ⁽³⁾		16		24	MHz
f _{XT1,HF,SW}	XT1 oscillator logic-level square- wave input frequency, HF mode	XTS = 1, XT1BYPASS = 1 (4) (3)		1		24	MHz
		$ \begin{split} &XTS = 1, \\ &XT1BYPASS = 0, XT1DRIVE = \{0\}, \\ &f_{XT1,HF} = 4 \; MHz, C_{L,eff} = 16 \; pF \end{split} $			450		
OA _{HF}	Oscillation allowance for	$ \begin{split} &XTS = 1, \\ &XT1BYPASS = 0, XT1DRIVE = \{1\}, \\ &f_{XT1,HF} = 8 \; MHz, C_{L,eff} = 16 \; pF \end{split} $			320		Ω
OAHF	HF crystals ⁽⁵⁾	$ \begin{split} &\text{XTS} = 1, \\ &\text{XT1BYPASS} = 0, \text{XT1DRIVE} = \{2\}, \\ &f_{\text{XT1,HF}} = 16 \text{ MHz}, C_{\text{L,eff}} = 16 \text{ pF} \end{split} $			200		
		$ \begin{array}{l} XTS = 1, \\ XT1BYPASS = 0, \ XT1DRIVE = \{3\}, \\ f_{XT1,HF} = 24 \ MHz, \ C_{L,eff} = 16 \ pF \end{array} $			200		
	(6)	$\begin{split} f_{OSC} &= 4 \text{ MHz, XTS} = 1, \\ \text{XT2BYPASS} &= 0, \text{XT2DRIVE} = \{0\}, \\ T_{A} &= 25^{\circ}\text{C, C}_{L,\text{eff}} = 16 \text{ pF} \end{split}$	3 V		8		ma
t _{START,} HF	Startup time, HF mode (6)	$ \begin{aligned} &f_{OSC} = 24 \text{ MHz, XTS} = 1, \\ &\text{XT2BYPASS} = 0, \text{XT2DRIVE} = \{3\}, \\ &T_{A} = 25^{\circ}\text{C, C}_{L,\text{eff}} = 16 \text{ pF} \end{aligned} $	3 V		2		ms

- (1) To improve EMI on the XT1 oscillator the following guidelines should be observed.
 - (a) Keep the traces between the device and the crystal as short as possible.
 - (b) Design a good ground plane around the oscillator pins.
 - (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
- (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
- (2) Maximum frequency of operation of the entire device cannot be exceeded.
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- (4) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet.
- 5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.
- (6) Includes startup counter of 4096 clock cycles.

Crystal Oscillator, XT1, High-Frequency (HF) Mode⁽¹⁾ (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
$C_{L,eff}$	Integrated effective load capacitance (7) (8)	XTS = 1			1		pF
	Duty cycle, HF mode	XTS = 1, Measured at ACLK, $f_{XT1,HF2}$ = 24 MHz		40	50	60	%
f _{Fault,HF}	Oscillator fault frequency, HF mode ⁽⁹⁾	XTS = 1 (10)		145		900	kHz

- Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- (10) Measured with logic-level input frequency but also applies to operation with crystals.

Internal Very-Low-Power Low-Frequency Oscillator (VLO)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f_{VLO}	VLO frequency	Measured at ACLK	2 V to 3.6 V	5	8.3	13	kHz
df _{VLO} /d _T	VLO frequency temperature drift	Measured at ACLK ⁽¹⁾	2 V to 3.6 V		0.5		%/°C
df _{VLO} /dV _{CC}	VLO frequency supply voltage drift	Measured at ACLK ⁽²⁾	2 V to 3.6 V		4		%/V
$f_{VLO,DC}$	Duty cycle	Measured at ACLK	2 V to 3.6 V	40	50	60	%

- Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C (-40°C)) Calculated using the box method: (MAX(2.0 to 3.6 V) MIN(2.0 to 3.6 V)) / MIN(2.0 to 3.6 V) / (3.6 V 2 V)

DCO Frequencies

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC} T _A	MIN TYP	MAX	UNIT
		Measured at ACLK,	2 V to 3.6 V -40°C to 85°C	5.37	±3.5%	MHz
f	DCO frequency low, trimmed	DCORSEL = 0	2 V to 3.6 V 0°C to 50°C	5.37	±2.0%	IVIIIZ
f _{DCO,LO}	DCO frequency low, trimmed	Measured at ACLK,	2 V to 3.6 V -40°C to 85°C	16.2	±3.5%	MHz
		DCORSEL = 1 ⁽¹⁾	2 V to 3.6 V 0°C to 50°C	16.2	±2.0%	IVI⊓Z
	DCO frequency mid, trimmed	Measured at ACLK,	2 V to 3.6 V -40°C to 85°C	6.67	±3.5%	MHz
		DCORSEL = 0	2 V to 3.6 V 0°C to 50°C	6.67	±2.0%	IVI□Z
f _{DCO,MID}		Measured at ACLK,	2 V to 3.6 V -40°C to 85°C	20	±3.5%	MHz
		DCORSEL = 1 ⁽¹⁾	2 V to 3.6 V 0°C to 50°C	20	±2.0%	IVITZ
		Measured at ACLK,	2 V to 3.6 V -40°C to 85°C	8	±3.5%	MHz
f	DCO fraguency high trimmed	DCORSEL = 0	2 V to 3.6 V 0°C to 50°C	8	±2.0%	IVITZ
f _{DCO,HI}	DCO frequency high, trimmed	Measured at ACLK,	2 V to 3.6 V -40°C to 85°C	23.8	±3.5%	MHz
		DCORSEL = 1 ⁽¹⁾	2 V to 3.6 V 0°C to 50°C	23.8	±2.0%	IVI⊓∠
f _{DCO,DC}	Duty cycle	Measured at ACLK, divide by 1, No external divide, all DCO settings	2 V to 3.6 V -40°C to 85°C	40 50	60	%

⁽¹⁾ MSP40FR573x devices only

MODOSC

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
I _{MODOSC}	Current consumption	Enabled	2 V to 3.6 V		44	80	μΑ
f _{MODOSC}	MODOSC frequency		2 V to 3.6 V	4.5	5.0	5.5	MHz
f _{MODOSC,DC}	Duty cycle	Measured at ACLK, divide by 1	2 V to 3.6 V	40	50	60	%

PMM, Core Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CORE} (AM)	Core voltage, active mode	2 V ≤ DV _{CC} ≤ 3.6 V		1.5		V
V _{CORE} (LPM)	Core voltage, low-current mode	2 V ≤ DV _{CC} ≤ 3.6 V		1.5		V

PMM, SVS, BOR

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{SVSH,AM}	SVS _H current consumption, active mode	V _{CC} = 3.6 V		5		μΑ
I _{SVSH,LPM}	SVS _H current consumption, low power modes	V _{CC} = 3.6 V		0.8	1.5	μΑ
V _{SVSH} -	SVS _H on voltage level, falling supply voltage		1.83	1.88	1.93	V
V _{SVSH+}	SVS _H off voltage level, rising supply voltage		1.88	1.93	1.98	V
t _{PD,SVSH, AM}	SVS _H propagation delay, active mode	$dV_{CC}/dt = 10 \text{ mV/}\mu\text{s}$		10		μs
t _{PD,SVSH, LPM}	SVS _H propagation delay, low power modes	$dV_{CC}/dt = 1 \text{ mV/}\mu\text{s}$		30		μs
I _{SVSL}	SVS _L current consumption			0.3	0.5	μΑ

Wake-Up from Low Power Modes

	PARAMETER	TEST CONDITIONS	V _{CC} T _A	MIN TYP	MAX	UNIT
t _{WAKE-UP} LPM0	Wake-up time from LPM0 to active mode ⁽¹⁾		2 V, 3 V -40°C to 85°C	0.58	1	μs
t _{WAKE-UP} LPM12	Wake-up time from LPM1, LPM2 to active mode ⁽¹⁾		2 V, 3 V -40°C to 85°C	12	25	μs
t _{WAKE-UP} LPM34	Wake-up time from LPM3 or LPM4 to active mode ⁽¹⁾		2 V, 3 V -40°C to 85°C	78	120	μs
	Wake-up time from LPM3.5 or		2 V, 3 V 0°C to 85°C	310	575	μs
twake-up lpmx.5	LPM4.5 to active mode ⁽¹⁾		2 V, 3 V -40°C to 85°C	310	1100	μs
twake-up reset	Wake-up time from RST to active mode ⁽²⁾	V _{CC} stable	2 V, 3 V -40°C to 85°C	170	210	μs
t _{WAKE-UP} BOR	Wake-up time from BOR or power-up to active mode	dV _{CC} /dt = 2400 V/s	2 V, 3 V -40°C to 85°C	1.6		ms

⁽¹⁾ The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is executed.

⁽²⁾ The wake-up time is measured from the rising edge of the RST signal until the first instruction of the user program is executed.

Timer_A

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		Internal: SMCLK, ACLK				8	
† _{TA}	Timer_A input clock frequency	External: TACLK Duty cycle = 50% ± 10%	2 V, 3 V	2 V, 3 V 24 ⁽¹⁾	MHz		
t _{TA,cap}	Timer_A capture timing	All capture inputs, Minimum pulse duration required for capture	2 V, 3 V	20			ns

⁽¹⁾ MSP430FR573x devices only

Timer_B

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{TB}	Timer_B input clock frequency	Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ± 10%	2 V, 3 V			24 ⁽¹⁾	MHz
t _{TB,cap}	Timer_B capture timing	All capture inputs, Minimum pulse duration required for capture	2 V, 3 V	20			ns

⁽¹⁾ MSP430FR573x devices only

eUSCI (UART Mode) Recommended Operating Conditions

	PARAMETER	CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{eUSCI}	eUSCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10%				f _{SYSTEM}	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)					5	MHz

eUSCI (UART Mode)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		UCGLITx = 0		5	15	20	
	LIADT receive de alitab time (1)	UCGLITx = 1	21/ 21/	20	45	60	
t _t UART receive deglitch time ⁽¹⁾	UCGLITx = 2	2 V, 3 V	35	80	120	ns	
		UCGLITx = 3		50	110	180	

⁽¹⁾ Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time.

eUSCI (SPI Master Mode) Recommended Operating Conditions

PARAMETER	CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
t upor ALISCI input clock frequency	Internal: SMCLK, ACLK Duty cycle = 50% ± 10%				f _{SYSTEM}	MHz	

eUSCI (SPI Master Mode)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
	CTE load time CTE active to sleet	UCSTEM = 0, UCMODEx = 01 or 10	2 V, 3 V	1			UCxCLK
t _{STE,LEAD}	STE lead time, STE active to clock	UCSTEM = 1, UCMODEx = 01 or 10	2 V, 3 V	1			cycles
	STE lag time, Last clock to STE	UCSTEM = 0, UCMODEx = 01 or 10	2 V, 3 V	1			UCxCLK
t _{STE,LAG}	inactive	UCSTEM = 1, UCMODEx = 01 or 10	2 V, 3 V	1			cycles
	STE access time, STE active to SIMO	UCSTEM = 0, UCMODEx = 01 or 10	2 V, 3 V			55	20
t _{STE,ACC}	data out	UCSTEM = 1, UCMODEx = 01 or 10	2 V, 3 V			35	ns
	STE disable time, STE inactive to	UCSTEM = 0, UCMODEx = 01 or 10	2 V, 3 V			40	20
t _{STE,DIS}	SIMO high impedance	UCSTEM = 1, UCMODEx = 01 or 10	2 V, 3 V			30	ns
	COM input data actua tima		2 V	35			
t _{SU,MI}	SOMI input data setup time		3 V	35			ns
	OOM input data hald time		2 V	0			
t _{HD,MI}	SOMI input data hold time		3 V	0			ns
	01140	UCLK edge to SIMO valid,	2 V			30	
t _{VALID,MO}	SIMO output data valid time ⁽²⁾	$C_L = 20 \text{ pF}$	3 V			30	ns
	CIMO system to data in add time (3)	0 00 - 5	2 V	0			
t _{HD,MO}	SIMO output data hold time ⁽³⁾	C _L = 20 pF	3 V	0			ns

 ⁽¹⁾ f_{UCXCLK} = 1/2t_{LO/HI} with t_{LO/HI} = max(t_{VALID,MO(eUSCI)} + t_{SU,SI(Slave)}, t_{SU,MI(eUSCI)} + t_{VALID,SO(Slave)}).
 For the slave's parameters t_{SU,SI(Slave)} and t_{VALID,SO(Slave)} see the SPI parameters of the attached slave.
 (2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams

in Figure 6 and Figure 7.

Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 6 and Figure 7.

Figure 6. SPI Master Mode, CKPH = 0

Figure 7. SPI Master Mode, CKPH = 1

eUSCI (SPI Slave Mode)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
4	STE lead time, STE active to clock		2 V	7			no
t _{STE,LEAD}	STE lead time, STE active to clock		3 V	7			ns
	CTF log time. Lost clock to CTF inactive		2 V	0			
t _{STE,LAG}	STE lag time, Last clock to STE inactive		3 V	0			ns
	CTF access time. CTF active to COMI data out		2 V			65	
t _{STE,ACC}	STE access time, STE active to SOMI data out		3 V			40	ns
	STE disable time, STE inactive to SOMI high		2 V			40	
t _{STE,DIS}	impedance		3 V			35	ns
4	CIMO insult data action time		2 V	2			
t _{SU,SI}	SIMO input data setup time		3 V	2			ns
4	CIMO input data hald time		2 V	5			
t _{HD,SI}	SIMO input data hold time		3 V	5			ns
	2014	UCLK edge to SOMI valid,	2 V			30	
t _{VALID,SO}	SOMI output data valid time ⁽²⁾	C _L = 20 pF	3 V			30	ns
	COMI sustant data hald time (3)	0 20 = 5	2 V	4			
t _{HD,SO}	SOMI output data hold time (3)	$C_L = 20 \text{ pF}$	3 V	4			ns

⁽¹⁾

in Figure 8 and Figure 9.

Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 8 and Figure 9.

Figure 8. SPI Slave Mode, CKPH = 0

Figure 9. SPI Slave Mode, CKPH = 1

eUSCI (I2C Mode)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{eUSCI}	eUSCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10%				f _{SYSTEM}	MHz
f _{SCL}	SCL clock frequency		2 V, 3 V	0		400	kHz
	Hold time (non-cated) CTART	f _{SCL} = 100 kHz	2.1/. 2.1/	4.0			
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2 V, 3 V	0.6			μs
	Cohen time for a name at all CTART	f _{SCL} = 100 kHz	2.1/. 2.1/	4.7			
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2 V, 3 V	0.6			μs
t _{HD,DAT}	Data hold time		2 V, 3 V	0			ns
t _{SU,DAT}	Data setup time		2 V, 3 V	250			ns
	Cotive time of the CTOR	f _{SCL} = 100 kHz	2.1/. 2.1/	4.0			
t _{SU,STO}	Setup time for STOP	f _{SCL} > 100 kHz	2 V, 3 V	0.6			μs
		UCGLITx = 0		50		600	ns
	Pulse duration of spikes suppressed by	UCGLITx = 1	2.1/.2.1/	25		300	ns
t _{SP}	input filter	UCGLITx = 2	2 V, 3 V	12.5		150	ns
		UCGLITx = 3		6.25		75	ns
		UCCLTOx = 1			27		ms
t _{TIMEOUT}	Clock low timeout	UCCLTOx = 2	2 V, 3 V		30		ms
		UCCLTOx = 3			33		ms

Figure 10. I2C Mode Timing

10-Bit ADC, Power Supply and Input Range Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
AV_{CC}	Analog supply voltage	AV_{CC} and DV_{CC} are connected together, AV_{SS} and DV_{SS} are connected together, $V_{(AVSS)} = V_{(DVSS)} = 0 \text{ V}$		2.0		3.6	V
V _(Ax)	Analog input voltage range	All ADC10 pins		0		AV_{CC}	V
	Operating supply current into	f _{ADC10CLK} = 5 MHz, ADC10ON = 1,	2 V		90	140	
I _{ADC10_} A	AV _{CC} terminal, reference current not included	REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0	3 V		100	160	μΑ
C _I	Input capacitance	Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad.	2.2 V		6	8	рF
R _I	Input MUX ON resistance	$AV_{CC} \ge 2 \text{ V}, 0 \text{ V} \le V_{Ax} \le AV_{CC}$				36	kΩ

10-Bit ADC, Timing Parameters

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{ADC10CLK}		For specified performance of ADC10 linearity parameters	2 V to 3.6 V	0.45	5	5.5	MHz
f _{ADC10OSC}	Internal ADC10 oscillator (MODOSC)	ADC10DIV = 0, f _{ADC10CLK} = f _{ADC10OSC}	2 V to 3.6 V	4.5	4.5	5.5	MHz
t _{CONVERT} Conversion time	REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode, f _{ADC10OSC} = 4.5 MHz to 5.5 MHz	2 V to 3.6 V	2.18		2.67	μs	
		External $f_{ADC10CLK}$ from ACLK, MCLK, or SMCLK, ADC10SSEL $\neq 0$	2 V to 3.6 V		(1)		•
t _{ADC10ON}	Turn on settling time of the ADC	The error in a conversion started after t _{ADC10ON} is less than ±0.5 LSB, Reference and input signal already settled				100	ns
t _{Sample} Sampling time		$R_S = 1000 \ \Omega, \ R_I = 36000 \ \Omega, \ C_I = 3.5 \ pF,$	2 V	1.5			
		Approximately eight Tau (τ) are required to get an error of less than ±0.5 LSB	3 V	2.0			μs

⁽¹⁾ $12 \times ADC10DIV \times 1/f_{ADC10CLK}$

10-Bit ADC, Linearity Parameters

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MA	UNIT
_	Integral	1.4 V ≤ (V _{eREF+} − V _{REF−} /V _{eREF−})min ≤ 1.6 V	2 V to	-1.4	1.	1 LSB
EI	linearity error	$1.6 \text{ V} < (\text{V}_{\text{eREF+}} - \text{V}_{\text{REF-}}/\text{V}_{\text{eREF-}}) \text{min} \le \text{V}_{\text{AVCC}}$	3.6 V	-1.1	1.	LSB
E _D	Differential linearity error	$(V_{eREF+} - V_{REF-}/V_{eREF-})$ min $\leq (V_{eREF+} - V_{REF-}/V_{eREF-})$	2 V to 3.6 V	-1		LSB
Eo	Offset error	$(V_{eREF+} - V_{REF-}/V_{eREF-})$ min $\leq (V_{eREF+} - V_{REF-}/V_{eREF-})$	2 V to 3.6 V	-6.5	6.	5 mV
_	Gain error, external reference	$(V_{eREF+} - V_{REF-}/V_{eREF-})$ min $\leq (V_{eREF+} - V_{REF-}/V_{eREF-})$	2 V to 3.6 V	-1.2	1.	2 LSB
E _G	Gain error, internal reference ⁽¹⁾			-4		1 %
_	Total unadjusted error, external reference	$(V_{eREF+} - V_{REF-}/V_{eREF-})$ min $\leq (V_{eREF+} - V_{REF-}/V_{eREF-})$	2 V to 3.6 V	-2		2 LSB
E _T	Total unadjusted error, internal reference ⁽¹⁾			-4		1 %

⁽¹⁾ Error is dominated by the internal reference.

REF, External Reference

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	UNIT
V_{eREF+}	Positive external reference voltage input	$V_{eREF+} > V_{eREF-}$ (2)		1.4	AV_{CC}	V
V_{eREF-}	Negative external reference voltage input	$V_{eREF+} > V_{eREF-}$ (3)		0	1.2	V
(V _{eREF+} – V _{REF-} /V _{eREF-})	Differential external reference voltage input	V _{eREF+} > V _{eREF} (4)		1.4	AV _{CC}	V
I _{VeREF+} ,	Chatia input august	$ \begin{array}{l} 1.4 \text{ V} \leq \text{V}_{\text{eREF+}} \leq \text{V}_{\text{AVCC}}, \\ \text{V}_{\text{eREF-}} = 0 \text{ V}, \\ \text{f}_{\text{ADC10CLK}} = 5 \text{ MHz}, \\ \text{ADC10SHTx} = 1\text{h}, \\ \text{Conversion rate 200 ksps} \end{array} $	2.2 V, 3 V	-6	6	μА
IVeREF+, I _{VeREF} -	Static input current	$ \begin{array}{c} 1.4 \text{ V} \leq \text{V}_{\text{eREF+}} \leq \text{V}_{\text{AVCC}}, \\ \text{V}_{\text{eREF-}} = 0 \text{ V}, \\ \text{f}_{\text{ADC10CLK}} = 5 \text{ MHz}, \\ \text{ADC10SHTx} = 8\text{h}, \\ \text{Conversion rate 20 ksps} \end{array} $	2.2 V, 3 V	-1	1	μА
C _{VREF+} , C _{VREF-}	Capacitance at VREF+ or VREF- terminal			⁽⁵⁾ 10		μF

- (1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, C_i, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
- (2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
- (3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
- (4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.
- (5) Two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_B. Also see the MSP430FR57xx Family User's Guide (SLAU272)

REF, Built-In Reference

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		REFVSEL = {2} for 2.5 V, REFON = 1	3 V	2.4	2.5	2.6	
V_{REF+}	Positive built-in reference voltage output	REFVSEL = {1} for 2 V, REFON = 1	3 V	1.92	2.0	2.08	V
	voltago output	REFVSEL = {0} for 1.5 V, REFON = 1	3 V	1.44	1.5	1.56	
	AV _{CC} minimum voltage,	REFVSEL = {0} for 1.5 V		2.0			
$AV_{CC(min)}$	Positive built-in reference	EFVSEL = {1} for 2 V		2.2			V
	active	REFVSEL = {2} for 2.5 V		2.7			
I _{REF+}	Operating supply current into AV _{CC} terminal ⁽¹⁾	f _{ADC10CLK} = 5 MHz, REFON = 1, REFBURST = 0	3 V		33	45	μΑ
T _{REF+}	Temperature coefficient of built-in reference	REFVSEL = (0, 1, 2}, REFON = 1			±35		°C
		$\begin{array}{l} AV_{CC} = AV_{CC~(min)} - AV_{CC(max)}, \\ T_A = 25^{\circ}C, \ REFON = 1, \\ REFVSEL = (0) \ for \ 1.5 \ V \end{array}$			1600		
PSRR_DC	Power supply rejection ratio (DC)	$\begin{array}{l} \text{AV}_{\text{CC}} = \text{AV}_{\text{CC (min)}} \text{ - AV}_{\text{CC(max)}}, \\ \text{T}_{\text{A}} = 25^{\circ}\text{C}, \text{REFON} = 1, \\ \text{REFVSEL} = (1) \text{for 2 V} \end{array}$			1900		μV/V
		$\begin{aligned} &AV_{CC} = AV_{CC}_{(min)} \text{-} AV_{CC}_{(max)}, \\ &T_{A} = 25^{\circ}C, REFON = 1, \\ &REFVSEL = (2) for 2.5 V \end{aligned}$			3600		
t _{SETTLE}	Settling time of reference voltage ⁽²⁾				30		μs

⁽¹⁾ The internal reference current is supplied by terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.

²⁾ The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB.

REF, Temperature Sensor and Built-In V_{MID}

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V _{SENSOR}	See ⁽¹⁾	ADC10ON = 1, INCH = 0Ah, $T_A = 0$ °C	2 V, 3 V		790		mV
TC _{SENSOR}		ADC10ON = 1, INCH = 0Ah	2 V, 3 V		2.55		mV/°C
	Sample time required if channel 10 is selected (2)	ADC10ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB	2 V	30			
tSENSOR(sample)			3 V	30			μs
V	AV divider et channel 11	ADC10ON = 1, INCH = 0Bh,	2 V	0.97	1.0	1.03	V
V _{MID}	AV _{CC} divider at channel 11	V_{MID} is ~0.5 × V_{AVCC}	3 V	1.46	1.5	1.54	
t _{VMID} (sample)	Sample time required if channel 11 is selected (3)	ADC10ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB	2 V, 3 V	1000			ns

⁽¹⁾ The temperature sensor offset can vary significantly. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor.

⁽³⁾ The on-time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}; no additional on time is needed.

Figure 11. Typical Temperature Sensor Voltage

⁽²⁾ The typical equivalent impedance of the sensor is 51 k Ω . The sample time required includes the sensor-on time $t_{SENSOR(on)}$.

Comparator_D

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Overdrive = 10 mV, VIN- = (VIN+ - 400 mV) to (VIN+ + 10 mV)	50	100	200	ns
t _{pd}	Propagation delay, AVCC = 2 V to 3.6 V	Overdrive = 100 mV, VIN- = (VIN+ - 400 mV) to (VIN+ + 100 mV)		80		ns
		Overdrive = 250 mV, (VIN+ - 400 mV) to (VIN+ + 250 mV)		50		ns
		CDF = 1, CDFDLY = 00	0.3	0.5	0.9	μs
	Filter timer added to the	CDF = 1, CDFDLY = 01	0.5	0.9	1.5	μs
t _{filter}	propagation delay of the comparator	CDF = 1, CDFDLY = 10	0.9	1.6	2.8	μs
	•	CDF = 1, CDFDLY = 11	1.6	3.0	5.5	μs
V _{offset}	Input offset	AVCC = 2 V to 3.6 V	-20		20	mV
V _{ic}	Common mode input range	AVCC = 2 V to 3.6 V	0		AVCC - 1	V
I _{comp(AVCC)}	Comparator only	CDON = 1, AVCC = 2 V to 3.6 V		29	34	μΑ
I _{ref(AVCC)}	Reference buffer and R- ladder	CDREFLx = 01, AVCC = 2 V to 3.6 V		20	24	μΑ
t _{enable,comp}	Comparator enable time	CDON = 0 to CDON = 1, AVCC = 2 V to 3.6 V		1.1	2.0	μs
t _{enable,rladder}	Resistor ladder enable time	CDON = 0 to CDON = 1, AVCC = 2 V to 3.6 V		1.1	2.0	μs
V _{CB_REF}	Reference voltage for a tap	VIN = voltage input to the R-ladder, n = 0 to 31	VIN × (n + 0.5) / 32	VIN x (n + 1) / 32	VIN × (n + 1.5) / 32	V

FRAM

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DV _{CC(WRITE)}	Write supply voltage		2.0		3.6	V
t _{WRITE}	Word or byte write time				120	ns
t _{ACCESS}	Read access time ⁽¹⁾				60	ns
t _{PRECHARGE}	Precharge time ⁽¹⁾				60	ns
t _{CYCLE}	Cycle time, read or write operation ⁽¹⁾		120			ns
	Read/write endurance		10 ¹⁵			cycles
t _{Retention}	Data retention duration	T _J = 85°C	10			years

⁽¹⁾ When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common system frequencies.

JTAG and Spy-Bi-Wire Interface

	PARAMETER	V _{cc}	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency	2 V, 3 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse length	2 V, 3 V	0.025		15	μs
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1)	2 V, 3 V			1	μs
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time		19		35	μs
£	TOV input fragments A mine ITA C (2)	2 V	0		5	MHz
† _{TCK}	TCK input frequency, 4-wire JTAG (2)	3 V	0		10	MHz
R _{internal}	Internal pulldown resistance on TEST	2 V, 3 V	20	35	50	kΩ

⁽¹⁾ Tools accessing the Spy-Bi-Wire interface must wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

INPUT/OUTPUT SCHEMATICS

Port P1, P1.0 to P1.2, Input/Output With Schmitt Trigger

Table 42. Port P1 (P1.0 to P1.2) Pin Functions

DIM MARIE (D4)		FUNCTION	CONT	ROL BITS/SIG	SNALS
PIN NAME (P1.x)	X	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x
P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREF-	0	P1.0 (I/O)	I: 0; O: 1	0	0
		TA0.CCI1A	0	•	_
		TA0.1	1	0	1
		DMAE0	0	_	_
		RTCCLK	1	1	0
		A0 ⁽¹⁾⁽²⁾ CD0 ⁽¹⁾⁽³⁾ VeREF- ⁽¹⁾⁽²⁾	Х	1	1
P1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+	1	P1.1 (I/O)	I: 0; O: 1	0	0
		TA0.CCI2A	0	•	_
		TA0.2	1	0	1
		TA1CLK	0	1	
		CDOUT	1		0
		A1 ⁽¹⁾⁽²⁾ CD1 ⁽¹⁾⁽³⁾ VeREF+ ⁽¹⁾⁽²⁾	Х	1	1
P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2	2	P1.2 (I/O)	I: 0; O: 1	0	0
		TA1.CCI1A	0	0	4
		TA1.1	1	0	1
		TA0CLK	0		0
		CDOUT	1	1	
		A2 ⁽¹⁾ (2) CD2 ⁽¹⁾ (3)	Х	1	1

Setting P1SEL1.x and P1SEL0.x disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

Not available on all devices and package types.

Setting the CDPD.x bit of the comparator disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.

Port P1, P1.3 to P1.5, Input/Output With Schmitt Trigger

Table 43. Port P1 (P1.3 to P1.5) Pin Functions

DIN NAME (D4)		FUNCTION	CONT	ROL BITS/SIG	SNALS
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x
P1.3/TA1.2/UCB0STE/A3/CD3	3	P1.3 (I/O)	I: 0; O: 1	0	0
		TA1.CCI2A	0	0	4
		TA1.2	1	0	1
		UCB0STE	X ⁽¹⁾	1	0
		A3 ⁽²⁾⁽³⁾ CD3 ⁽²⁾⁽⁴⁾	Х	1	1
P1.4/TB0.1/UCA0STE/A4/CD4	4	P1.4 (I/O)	I: 0; O: 1	0	0
		TB0.CCI1A	0	0	4
		TB0.1	1		1
		UCA0STE	X ⁽⁵⁾	1	0
		A4 ⁽²⁾⁽³⁾ CD4 ⁽²⁾⁽⁴⁾	Х	1	1
P1.5/TB0.2/UCA0CLK/A5/CD5	5	P1.5(I/O)	I: 0; O: 1	0	0
		TB0.CCI2A	0	0	1
		TB0.2	1	0	1
		UCA0CLK	X ⁽⁵⁾	1	0
		A5 ⁽²⁾⁽³⁾ CD5 ⁽²⁾⁽⁴⁾	Х	1	1

⁽¹⁾ Direction controlled by eUSCI_B0 module.

Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

Not available on all devices and package types.

Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit

Direction controlled by eUSCI_A0 module.

Port P1, P1.6 to P1.7, Input/Output With Schmitt Trigger

Table 44. Port P1 (P1.6 to P1.7) Pin Functions

DIN NAME (D4 v)		FUNCTION	CONT	ROL BITS/SIG	NALS
PIN NAME (P1.x)	Х	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0	6	P1.6 (I/O)	I: 0; O: 1	0	0
		TB1.CCI1A ⁽¹⁾	0	0	4
		TB1.1 ⁽¹⁾	1	0	1
		UCB0SIMO/UCB0SDA	X ⁽²⁾	1	0
		TA0.CCI0A	0	1	4
		TA0.0	1		1
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0	7	P1.7 (I/O)	I: 0; O: 1	0	0
		TB1.CCI2A ⁽¹⁾	0	0	4
		TB1.2 ⁽¹⁾	1	0	1
		UCB0SOMI/UCB0SCL	X ⁽³⁾	1	0
		TA1.CCI0A	0		4
		TA1.0	1	1	Т

- (1) Not available on all devices and package types.
- (2) Direction controlled by eUSCI_B0 module.
- (3) Direction controlled by eUSCI_A0 module.

Port P2, P2.0 to P2.2, Input/Output With Schmitt Trigger

Table 45. Port P2 (P2.0 to P2.2) Pin Functions

DIN NAME (DO)		FUNCTION	CONT	ROL BITS/SIG	SNALS
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK	0	P2.0 (I/O)	I: 0; O: 1	0	0
		TB2.CCI0A ⁽¹⁾	0	0	4
		TB2.0 ⁽¹⁾	1	0	1
		UCA0TXD/UCA0SIMO	X ⁽²⁾	1	0
		TB0CLK	0	4	4
		ACLK	1	1	1
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0	1	P2.1 (I/O)	I: 0; O: 1	0	0
		TB2.CCI1A ⁽¹⁾	0	0	4
		TB2.1 ⁽¹⁾	1		1
		UCA0RXD/UCA0SOMI	X ⁽²⁾	1	0
		TB0.CCI0A	0		4
		TB0.0	1	1	1
P2.2/TB2.2/UCB0CLK/TB1.0	2	P2.2 (I/O)	I: 0; O: 1	0	0
		TB2.CCI2A ⁽¹⁾	0		
		TB2.2 ⁽¹⁾	1	0	1
		UCB0CLK	X (3)	1	0
		TB1.CCI0A ⁽¹⁾	0	4	
		TB1.0 ⁽¹⁾	1	1	1

⁽¹⁾ Not available on all devices and package types.

²⁾ Direction controlled by eUSCI_A0 module.

⁽³⁾ Direction controlled by eUSCI_B0 module.

Port P2, P2.3 to P2.4, Input/Output With Schmitt Trigger

Table 46. Port P2 (P2.3 to P2.4) Pin Functions

DIN NAME (DO -)		FUNCTION	CONT	ROL BITS/SIG	SNALS
PIN NAME (P2.x)	Х	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x
P2.3/TA0.0/UCA1STE/A6/CD10	3	P2.3 (I/O)	I: 0; O: 1	0	0
		TA0.CCI0B	0	- 0	4
		TA0.0	1	0	1
		UCA1STE	X ⁽¹⁾	1	0
		A6 ⁽²⁾⁽³⁾ CD10 ⁽²⁾⁽⁴⁾	Х	1	1
P2.4/TA1.0/UCA1CLK/A7/CD11	4	P2.4 (I/O)	I: 0; O: 1	0	0
		TA1.CCI0B	0	0	4
		TA1.0	1	0	1
		UCA1CLK	X ⁽¹⁾	1	0
		A7 ⁽²⁾⁽³⁾ CD11 ⁽²⁾⁽⁴⁾	Х	1	1

Direction controlled by eUSCI_A1 module.
Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when (2) applying analog signals.

Not available on all devices and package types.

Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.

Port P2, P2.5 to P2.6, Input/Output With Schmitt Trigger

Table 47. Port P2 (P2.5 to P2.6) Pin Functions

DINI NIAME (DO 11)		FUNCTION	CONTROL BITS/SIGNALS				
PIN NAME (P2.x)	Х	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x		
P2.5/TB0.0/UCA1TXD/UCA1SIMO	5	P2.5(I/O) ⁽¹⁾	I: 0; O: 1	0	0		
		TB0.CCI0B ⁽¹⁾	0	0	1		
		TB0.0 ⁽¹⁾	1	0			
		UCA1TXD/UCA1SIMO(1)	X ⁽²⁾	1	0		
P2.6/TB1.0/UCA1RXD/UCA1SOMI	6	P2.6(I/O) ⁽¹⁾	I: 0; O: 1	0	0		
		TB1.CCI0B ⁽¹⁾	0	0	4		
		TB1.0 ⁽¹⁾	1	0	1		
		UCA1RXD/UCA1SOMI(1)	X ⁽²⁾	1	0		

⁽¹⁾ Not available on all devices and package types.

⁽²⁾ Direction controlled by eUSCI_A1 module.

Port P2, P2.7, Input/Output With Schmitt Trigger

Table 48. Port P2 (P2.7) Pin Functions

DINI NI AME (D2 v)		FUNCTION	CONTROL BITS/SIGNALS			
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x	
P2.7	7	P2.7(I/O) ⁽¹⁾	I: 0; O: 1	0	0	

Port P3, P3.0 to P3.3, Input/Output With Schmitt Trigger

Table 49. Port P3 (P3.0 to P3.3) Pin Functions

DIN NAME (D2 v)		FUNCTION	CONT	CONTROL BITS/SIGNALS				
PIN NAME (P3.x)	X	FUNCTION	P3DIR.x	P3DIR.x P3SEL1.x P3				
P3.0/A12/CD12	0	P3.0 (I/O)	I: 0; O: 1	0	0			
		A12 ⁽¹⁾⁽²⁾ CD12 ⁽¹⁾⁽³⁾	Х	1	1			
P3.1/A13/CD13	1	P3.1 (I/O)	I: 0; O: 1	0	0			
		A13 ⁽¹⁾⁽²⁾ CD13 ⁽¹⁾⁽³⁾	Х	1	1			
P3.2/A14/CD14	2	P3.2 (I/O)	I: 0; O: 1	0	0			
		A14 ⁽¹⁾⁽²⁾ CD14 ⁽¹⁾⁽³⁾	Х	1	1			
P3.3/A15/CD15	3	P3.3 (I/O)	I: 0; O: 1	0	0			
		A15 ⁽¹⁾⁽²⁾ CD15 ⁽¹⁾⁽³⁾	Х	1	1			

⁽¹⁾ Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

Not available on all devices and package types.

Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.

Port P3, P3.4 to P3.6, Input/Output With Schmitt Trigger

Table 50. Port P3 (P3.4 to P3.6) Pin Functions

DIN NAME (DO)		FUNCTION	CONTI	CONTROL BITS/SIGI	
PIN NAME (P3.x)	X	FUNCTION	P3DIR.x	P3SEL1.x	P3SEL0.x
P3.4/TB1.1/TB2CLK/SMCLK	4	P3.4 (I/O) ⁽¹⁾	I: 0; O: 1	0	0
		TB1.CCI1B ⁽¹⁾	0		4
		TB1.1 ⁽¹⁾	1	0	1
		TB2CLK ⁽¹⁾	0	4	1
		SMCLK ⁽¹⁾	1	1	
P3.5/TB1.2/CDOUT	5	P3.5 (I/O) ⁽¹⁾	I: 0; O: 1	0	0
		TB1.CCI2B ⁽¹⁾	0	0	1
		TB1.2 ⁽¹⁾	1	0	
		CDOUT ⁽¹⁾	1	1	1
P3.6/TB2.1/TB1CLK	6	P3.6 (I/O) ⁽¹⁾	I: 0; O: 1	0	0
		TB2.CCI1B ⁽¹⁾	0	0	1
		TB2.1 ⁽¹⁾	1	0	
		TB1CLK ⁽¹⁾	0	1	1

⁽¹⁾ Not available on all devices and package types.

Port P3, P3.7, Input/Output With Schmitt Trigger

Table 51. Port P3 (P3.7) Pin Functions

PIN NAME (P3.x)		FUNCTION	CONTROL BITS/SIGNALS				
PIN NAME (P3.x)		FUNCTION	P3DIR.x	P3SEL1.x	P3SEL0.x		
P3.7/TB2.2	7	P3.7 (I/O) ⁽¹⁾	I: 0; O: 1	0	0		
		TB2.CCI2B ⁽¹⁾	0	0	4		
		TB2.2 ⁽¹⁾	1	U	T T		

Port P4, P4.0, Input/Output With Schmitt Trigger

Table 52. Port P4 (P4.0) Pin Functions

PIN NAME (P4.x)	.,	FUNCTION	CONTROL BITS/SIG		GNALS	
	X	FUNCTION	P4DIR.x	DIR.x P4SEL1.x P		
P4.0/TB2.0	0	P4.0 (I/O) ⁽¹⁾	I: 0; O: 1	0	0	
		TB2.CCI0B ⁽¹⁾	0	0	_	
		TB2.0 ⁽¹⁾	1	U	1	

Port P4, P4.1, Input/Output With Schmitt Trigger

Table 53. Port P4 (P4.1) Pin Functions

PIN NAME (P4.x)		FUNCTION	CONTR	ROL BITS/SI	GNALS
PIN NAME (P4.X)	X	FUNCTION	P4DIR.x	P4SEL1.x	P4SEL0.x
P4.1	1	P4.1 (I/O) ⁽¹⁾	I: 0; O: 1	0	0

Port J, J.0 to J.3 JTAG pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output

Table 54. Port PJ (PJ.0 to PJ.3) Pin Functions

DIN MAME (D.L.)		FUNCTION	CONTROL BITS/ SIGNALS ⁽¹⁾			
PIN NAME (PJ.x)	Х	FUNCTION	PJDIR.x	PJSEL1.x	PJSEL0.x	
PJ.0/TDO/TB0OUTH/SMCLK/CD6		PJ.0 (I/O) ⁽²⁾	I: 0; O: 1	0	0	
		TDO ⁽³⁾	Х	Х	Х	
		TB0OUTH	0	0	4	
		SMCLK	1	0	1	
		CD6	Х	1	1	
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7	1	PJ.1 (I/O) ⁽²⁾	I: 0; O: 1	0	0	
		TDI/TCLK ⁽³⁾ (4)	Х	Х	Х	
		TB10UTH	0	0	1	
		MCLK	1			
		CD7	Х	1	1	
PJ.2/TMS/TB2OUTH/ACLK/CD8	2	PJ.2 (I/O) ⁽²⁾	I: 0; O: 1	0	0	
		TMS ^{(3) (4)}	Х	Х	Х	
		TB2OUTH	0	0	4	
		ACLK	1	U	l	
		CD8	Х	1	1	
PJ.3/TCK/CD9	3	PJ.3 (I/O) ⁽²⁾	I: 0; O: 1	0	0	
		TCK ⁽³⁾ (4)	Х	Х	Х	
		CD9	Х	1	1	

⁽¹⁾ X = Don't care

Default condition

The pin direction is controlled by the JTAG module. JTAG mode selection is made by the SYS module or by the Spy-Bi-Wire four-wire entry sequence. PJSEL1.x and PJSEL0.x have no effect in these cases.

In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.

Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt Trigger

Table 55. Port PJ (PJ.4 and PJ.5) Pin Functions

			CONTROL BITS/SIGNALS ⁽¹⁾						
PIN NAME (P7.x)		FUNCTION	PJDIR.x		PJSEL0.4	XT1 BYPASS			
PJ.4/XIN	4	PJ.4 (I/O)	I: 0; O: 1	Х	Х	0	0	Χ	
		XIN crystal mode ⁽²⁾	Х	Х	Х	0	1	0	
		XIN bypass mode ⁽²⁾	Х	Х	Х	0	1	1	
PJ.5/XOUT	5	PJ.5 (I/O)	I: 0; O: 1	0	0	0	0	Χ	
		XOUT crystal mode (3)	Х	Х	Х	0	1	0	
		PJ.5 (I/O) ⁽⁴⁾	I: 0; O: 1	Х	Х	0	1	1	

⁽¹⁾ X = Don't care

⁽²⁾ Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass operation and PJ.5 is configured as general-purpose I/O.

⁽³⁾ Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass operation and PJ.5 is configured as general-purpose I/O.

⁽⁴⁾ When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.

DEVICE DESCRIPTORS (TLV)

The following tables list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type.

Table 56. Device Descriptor Table (1)

	Description	A ddroos	FR5739	FR5738	FR5737	FR5736	FR5735
	Description	Address	Value	Value	Value	Value	Value
Info Block	Info length	01A00h	05h	05h	05h	05h	05h
	CRC length	01A01h	05h	05h	05h	05h	05h
	000	01A02h	per unit				
	CRC value	01A03h	per unit				
	Device ID	01A04h	03h	02h	01h	77h	76h
	Device ID	01A05h	81h	81h	81h	81h	81h
	Hardware revision	01A06h	per unit				
	Firmware revision	01A07h	per unit				
ie Record	Die Record Tag	01A08h	08h	08h	08h	08h	08h
	Die Record length	01A09h	0Ah	0Ah	0Ah	0Ah	0Ah
		01A0Ah	per unit				
	Lot/Wafer ID	01A0Bh	per unit				
	Lot/water ID	01A0Ch	per unit	per unit	per unit	per unit	per uni
		01A0Dh	per unit				
	Die V meeitien	01A0Eh	per unit	per unit	per unit	per unit	per uni
	Die X position	01A0Fh	per unit	per unit	per unit	per unit	per uni
	Die V position	01A10h	per unit	per unit	per unit	per unit	per uni
	Die Y position	01A11h	per unit	per unit	per unit	per unit	per uni
	Toot regulte	01A12h	per unit	per unit	per unit	per unit	per uni
	Test results	01A13h	per unit	per unit	per unit	per unit	per uni
ADC10 Calibration	ADC10 Calibration Tag	01A14h	13h	13h	13h	05h	13h
	ADC10 Calibration length	01A15h	10h	10h	10h	10h	10h
	ADC Gain Factor	01A16h	per unit	per unit	NA	NA	per unit
	ADC Gain Factor	01A17h	per unit	per unit	NA	NA	per unit
	ADC Offset	01A18h	per unit	per unit	NA	NA	per uni
	ADC Offset	01A19h	per unit	per unit	NA	NA	per uni
	ADC 1.5-V	01A1Ah	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 30°C	01A1Bh	per unit	per unit	NA	NA	per unit
	ADC 1.5-V	01A1Ch	per unit	per unit	NA	NA	per uni
	Reference Temp. Sensor 85°C	01A1Dh	per unit	per unit	NA	NA	per unit
	ADC 2.0-V	01A1Eh	per unit	per unit	NA	NA	per uni
	Reference Temp. Sensor 30°C	01A1Fh	per unit	per unit	NA	NA	per unit
	ADC 2.0-V	01A20h	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 85°C	01A21h	per unit	per unit	NA	NA	per unit
	ADC 2.5-V	01A22h	per unit	per unit	NA	NA	per unit
	ADC 2.5-V Reference Temp. Sensor 30°C						

Table 56. Device Descriptor Table⁽¹⁾ (continued)

	Description	A -1 -1	FR5739	FR5738	FR5737	FR5736	FR5735
	Description	Address	Value	Value	Value	Value	Value
	ADC 2.5-V	01A24h	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 85°C	01A25h	per unit	per unit	NA	NA	per unit
REF Calibration	REF Calibration Tag	01A26h	12h	12h	12h	12h	12h
	REF Calibration length	01A27h	06h	06h	06h	06h	06h
	REF 1.5-V	01A28h	per unit				
	Reference	01A29h	per unit				
	REF 2.0-V	01A2Ah	per unit				
	Reference	01A2Bh	per unit				
	REF 2.5-V	01A2Ch	per unit				
	Reference	01A2Dh	per unit				

Table 57. Device Descriptor Table (1)

	Description	Address	FR5734	FR5733	FR5732	FR5731	FR5730
	Description	Address	Value	Value	Value	Value	Value
Info Block	Info length	01A00h	05h	05h	05h	05h	05h
	CRC length	01A01h	05h	05h	05h	05h	05h
	CDCl	01A02h	per unit				
	CRC value	01A03h	per unit				
	Device ID	01A04h	00h	7Fh	75h	7Eh	7Ch
	Device ID	01A05h	81h	80h	81h	80h	80h
	Hardware revision	01A06h	per unit				
	Firmware revision	01A07h	per unit				
Die Record	Die Record Tag	01A08h	08h	08h	08h	08h	08h
	Die Record length	01A09h	0Ah	0Ah	0Ah	0Ah	0Ah
		01A0Ah	per unit				
	Lot/Wafer ID	01A0Bh	per unit				
	Lot/vvater ID	01A0Ch	per unit				
		01A0Dh	per unit				
	D'a Vanatiina	01A0Eh	per unit				
	Die X position	01A0Fh	per unit				
	Die Verseitier	01A10h	per unit				
	Die Y position	01A11h	per unit				
	Toot requite	01A12h	per unit				
	Test results	01A13h	per unit				
ADC10 Calibration	ADC10 Calibration Tag	01A14h	13h	13h	13h	05h	13h
	ADC10 Calibration length	01A15h	10h	10h	10h	10h	10h
	1000:5	01A16h	per unit	NA	NA	per unit	per unit
	ADC Gain Factor	01A17h	per unit	NA	NA	per unit	per unit
	ADO 6" :	01A18h	per unit	NA	NA	per unit	per unit
	ADC Offset	01A19h	per unit	NA	NA	per unit	per unit
	ADC 1.5-V	01A1Ah	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 30°C	01A1Bh	per unit	NA	NA	per unit	per unit

Table 57. Device Descriptor Table⁽¹⁾ (continued)

	D	A.I.I.	FR5734	FR5733	FR5732	FR5731	FR5730
	Description	Address	Value	Value	Value	Value	Value
	ADC 1.5-V	01A1Ch	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 85°C	01A1Dh	per unit	NA	NA	per unit	per unit
	ADC 2.0-V	01A1Eh	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 30°C	01A1Fh	per unit	NA	NA	per unit	per unit
	ADC 2.0-V	01A20h	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 85°C	01A21h	per unit	NA	NA	per unit	per unit
	ADC 2.5-V Reference Temp. Sensor 30°C	01A22h	per unit	NA	NA	per unit	per unit
		01A23h	per unit	NA	NA	per unit	per unit
	ADC 2.5-V	01A24h	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 85°C	01A25h	per unit	NA	NA	per unit	per unit
REF Calibration	REF Calibration Tag	01A26h	12h	12h	12h	12h	12h
	REF Calibration length	01A27h	06h	06h	06h	06h	06h
	REF 1.5-V	01A28h	per unit				
	Reference	01A29h	per unit				
	REF 2.0-V	01A2Ah	per unit				
	Reference	01A2Bh	per unit				
	REF 2.5-V	01A2Ch	per unit				
	Reference	01A2Dh	per unit				

Table 58. Device Descriptor Table (1)

	D i - ti	A .l.l	FR5729	FR5728	FR5727	FR5726	FR5725
	Description	Address	Value	Value	Value	Value	Value
Info Block	Info length	01A00h	05h	05h	05h	05h	05h
	CRC length	01A01h	05h	05h	05h	05h	05h
	CRC value	01A02h	per unit				
	CRC value	01A03h	per unit				
	Device ID	01A04h	7Bh	7Ah	79h	74h	78h
	Device ID	01A05h	80h	80h	80h	81h	80h
	Hardware revision	01A06h	per unit				
	Firmware revision	01A07h	per unit				
Die Record	Die Record Tag	01A08h	08h	08h	08h	08h	08h
	Die Record length	01A09h	0Ah	0Ah	0Ah	0Ah	0Ah
	<u> </u>	01A0Ah	per unit				
	1 - (AM- (ID	01A0Bh	per unit				
	Lot/Wafer ID	01A0Ch	per unit				
		01A0Dh	per unit				
	Die V meekien	01A0Eh	per unit				
	Die X position	01A0Fh	per unit				
	Die V maskie	01A10h	per unit				
	Die Y position	01A11h	per unit				
	Took was with	01A12h	per unit				
	Test results	01A13h	per unit				

(1) NA = Not applicable

Table 58. Device Descriptor Table⁽¹⁾ (continued)

			FR5729	FR5728	FR5727	FR5726	FR5725
	Description	Address	Value	Value	Value	Value	Value
ADC10 Calibration	ADC10 Calibration Tag	01A14h	13h	13h	13h	05h	13h
	ADC10 Calibration length	01A15h	10h	10h	10h	10h	10h
	ADC Gain Factor	01A16h	per unit	per unit	NA	NA	per unit
	ADC Gain Factor	01A17h	per unit	per unit	NA	NA	per unit
	ADC Offset	01A18h	per unit	per unit	NA	NA	per unit
	ADC Offset	01A19h	per unit	per unit	NA	NA	per unit
	ADC 1.5-V	01A1Ah	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 30°C	01A1Bh	per unit	per unit	NA	NA	per unit
	ADC 1.5-V	01A1Ch	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 85°C	01A1Dh	per unit	per unit	NA	NA	per unit
	ADC 2.0-V	01A1Eh	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 30°C	01A1Fh	per unit	per unit	NA	NA	per unit
	ADC 2.0-V	01A20h	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 85°C	01A21h	per unit	per unit	NA	NA	per unit
	ADC 2.5-V	01A22h	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 30°C	01A23h	per unit	per unit	NA	NA	per unit
	ADC 2.5-V	01A24h	per unit	per unit	NA	NA	per unit
	Reference Temp. Sensor 85°C	01A25h	per unit	per unit	NA	NA	per unit
REF Calibration	REF Calibration Tag	01A26h	12h	12h	12h	12h	12h
	REF Calibration length	01A27h	06h	06h	06h	06h	06h
	REF 1.5-V	01A28h	per unit				
	Reference	01A29h	per unit				
	REF 2.0-V	01A2Ah	per unit				
	Reference	01A2Bh	per unit				
	REF 2.5-V	01A2Ch	per unit				
	Reference	01A2Dh	per unit				

Table 59. Device Descriptor Table (1)

					_		
	Description	A al alma a a	FR5724	FR5723	FR5722	FR5721	FR5720
	Description	Address	Value	Value	Value	Value	Value
Info Block	Info length	01A00h	05h	05h	05h	05h	05h
	CRC length	01A01h	05h	05h	05h	05h	05h
	CRC value	01A02h	per unit				
		01A03h	per unit				
	Device ID	01A04h	73h	72h	71h	77h	70h
	Device ID	01A05h	81h	81h	81h	80h	81h
	Hardware revision	01A06h	per unit				
	Firmware revision	01A07h	per unit				
Die Record	Die Record Tag	01A08h	08h	08h	08h	08h	08h
	Die Record length	01A09h	0Ah	0Ah	0Ah	0Ah	0Ah

Table 59. Device Descriptor Table⁽¹⁾ (continued)

	5	A 1.1	FR5724	FR5723	FR5722	FR5721	FR5720
	Description	Address	Value	Value	Value	Value	Value
		01A0Ah	per unit				
	Lot/Wafer ID	01A0Bh	per unit				
	Lot/Water ID	01A0Ch	per unit				
		01A0Dh	per unit				
	Die X position	01A0Eh	per unit				
	Die X position	01A0Fh	per unit				
	Die Y position	01A10h	per unit				
	Die i position	01A11h	per unit				
	Test results	01A12h	per unit				
	Tool Toodilo	01A13h	per unit				
ADC10 Calibration	ADC10 Calibration Tag	01A14h	13h	13h	13h	05h	13h
	ADC10 Calibration length	01A15h	10h	10h	10h	10h	10h
	ADC Gain Factor	01A16h	per unit	NA	NA	per unit	per unit
	ADC Gaill Lactor	01A17h	per unit	NA	NA	per unit	per unit
	ADC Offset	01A18h	per unit	NA	NA	per unit	per unit
	ADC Oliset	01A19h	per unit	NA	NA	per unit	per unit
	ADC 1.5-V	01A1Ah	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 30°C	01A1Bh	per unit	NA	NA	per unit	per unit
	ADC 1.5-V	01A1Ch	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 85°C	01A1Dh	per unit	NA	NA	per unit	per unit
	ADC 2.0-V	01A1Eh	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 30°C	01A1Fh	per unit	NA	NA	per unit	per unit
	ADC 2.0-V	01A20h	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 85°C	01A21h	per unit	NA	NA	per unit	per unit
	ADC 2.5-V	01A22h	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 30°C	01A23h	per unit	NA	NA	per unit	per unit
	ADC 2.5-V	01A24h	per unit	NA	NA	per unit	per unit
	Reference Temp. Sensor 85°C	01A25h	per unit	NA	NA	per unit	per unit
REF Calibration	REF Calibration Tag	01A26h	12h	12h	12h	12h	12h
	REF Calibration length	01A27h	06h	06h	06h	06h	06h
	REF 1.5-V	01A28h	per unit				
	Reference	01A29h	per unit				
	REF 2.0-V	01A2Ah	per unit				
	Reference	01A2Bh	per unit				
	REF 2.5-V	01A2Ch	per unit				
	Reference	01A2Dh	per unit				

www.ti.com

REVISION HISTORY

REVISION	COMMENTS
SLAS639	Product Preview release
SLAS639A	Updated Product Preview release including preliminary electrical specifications
SLAS639B	Changes throughout for updated Product Preview
SLAS639C	Production Data release

7-Apr-2012

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
MSP430FR5720IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5720IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5721IDA	PREVIEW	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5721IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5721IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5721IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5722IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5722IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5723IDA	PREVIEW	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5723IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5723IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5723IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5724IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5724IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5725IDA	PREVIEW	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5725IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5725IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	

7-Apr-2012

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
MSP430FR5726IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5726IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5727IDA	PREVIEW	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5727IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5727IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5727IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5728IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5728IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5729IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5729IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5729IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5730IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5730IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5731IDA	PREVIEW	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5731IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5731IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5731IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5732IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	

7-Apr-2012

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
MSP430FR5732IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5733IDA	PREVIEW	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5733IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5733IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5733IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5734IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5734IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5735IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5735IDAR	PREVIEW	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5735IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5736IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5736IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5737IDA	PREVIEW	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5737IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5737IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5737IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5738IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5738IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	

PACKAGE OPTION ADDENDUM

7-Apr-2012

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
MSP430FR5739IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5739IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
MSP430FR5739IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
MSP430FR5739IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RGE (S-PVQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions

4206344-6/Z 01/12

NOTES: A. All linear dimensions are in millimeters

RGE (S-PVQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

- S: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) Package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 - F. Package complies to JEDEC MO-220 variation VJJD-2.

RHA (S-PVQFN-N40)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

4206355-3/P 08/11

NOTES: A. All linear dimensions are in millimeters

RHA (S-PVQFN-N40)

PLASTIC QUAD FLATPACK NO-LEAD

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

DA (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

38 PIN SHOWN

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- ⚠ Falls within JEDEC MO−153, except 30 pin body length.

DA (R-PDSO-G38)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- D. Contact the board fabrication site for recommended soldermask tolerances.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Wireless Connectivity

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications dataconverter.ti.com Computers and Peripherals www.ti.com/computers **Data Converters DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt www.ti.com/space-avionics-defense power.ti.com Space, Avionics and Defense Microcontrollers Video and Imaging microcontroller.ti.com www.ti.com/video www.ti-rfid.com **OMAP Mobile Processors**

TI E2E Community Home Page

www.ti.com/omap

www.ti.com/wirelessconnectivity

e2e.ti.com