



# Lista 1, aula 1 em 16/9

# $Henrique\ Ap.\ Laureano\\ laureano@ufpr.br \land www.leg.ufpr.br/^henrique/$

## September 21, 2019

| Contents   |    |
|------------|----|
| Exercise 1 | 1  |
| Exercise 2 | 3  |
| Exercise 3 | 5  |
| Exercise 4 | 6  |
| Exercise 5 | 10 |
| Exercise 6 | 14 |
| Exercise 7 | 17 |
| Exercise 8 | 19 |
| Exercise 9 | 22 |

Determine x<sub>3</sub> pelo método da Bisseção para

$$f(x) = \sqrt{x} - \cos x$$
 em [0,1].

```
f1 <- function(x) { sqrt(x) - cos(x) }

library(ggplot2)

ggplot(data.frame(x = c(0, 1)), aes(x = x)) +
    theme_minimal() +
    stat_function(fun = f1) +
    geom_hline(yintercept = 0, linetype = "dashed") +
    labs(y = "f(x)", title = "Function graph with a dashed line in zero")</pre>
```

## Function graph with a dashed line in zero



```
bisection <- function(f, a, b, kmax = 100, tol = 1e-3) {
    k <- 0
    data <- matrix(NA, nrow = kmax, ncol = 3)
    dimnames(data) <- list(seq(kmax), c("a", "x", "b"))
    fa <- f(a)
    x <- (a + b)/2
    while(b - a > tol & k < kmax) {
        fx <- f(x)
        if(fa * fx < 0) {
            b <- x
            fb <- fx
        }
        else {</pre>
```

```
a <- x
fa <- fx
}
k <- k + 1
x <- (a + b)/2
data[k, ] <- c(a, x, b)
}
return(data[seq(k), ])
}
bisection(f1, a = 0, b = 1, kmax = 3)

a          x     b
1 0.500 0.7500 1.00
2 0.500 0.6250 0.75
3 0.625 0.6875 0.75</pre>
```

Encontrar as soluções para

$$x^3 - 7x^2 + 14x - 6 = 0$$

com precisão de  $10^{-2}$ , utilizando o método da Bisseção nos seguintes intervalos.

## Function graph with intervals in dotted lines



## (a) [0, 1]

## (b) [1, 3.2]

```
4 2.92500 2.993750 3.062500
5 2.99375 3.028125 3.062500
6 2.99375 3.010938 3.028125
7 2.99375 3.002344 3.010938
8 2.99375 2.998047 3.002344

# solucao com precisao maior do que 0.01
ex2_b[nrow(ex2_b), "b"] - ex2_b[nrow(ex2_b), "a"]

[1] 0.00859375
```

## (c) [3.2, 4]

## **Exercise 3**

## (b)

Determinar  $\sqrt{3}$  com precisão  $10^{-4}$ , utilizando o método da Bisseção. Isso implica em solucionar a seguinte função:

$$f(x) = x^2 - 3.$$

f3 <- function(x) {  $x^2 - 3$  } ggplot(data.frame(x = c(0, 3)), aes(x = x)) +

```
theme_minimal() +
stat_function(fun = f3) +
geom_hline(yintercept = 0, linetype = "dashed") +
geom_vline(xintercept = sqrt(3), linetype = "dotted") +
labs(y = "f(x)",
    title = "Function graph with it's zero at sqrt(3) in dotted")
```

## Function graph with it's zero at sqrt(3) in dotted



```
# 14 iteracoes, como calculado na letra (a)
bisection(f3, a = 1, b = 2, tol = 1e-4)
                  Χ
1 1.500000 1.750000 2.000000
2 1.500000 1.625000 1.750000
3 1.625000 1.687500 1.750000
4 1.687500 1.718750 1.750000
5 1.718750 1.734375 1.750000
6 1.718750 1.726562 1.734375
7 1.726562 1.730469 1.734375
8 1.730469 1.732422 1.734375
9 1.730469 1.731445 1.732422
10 1.731445 1.731934 1.732422
11 1.731934 1.732178 1.732422
12 1.731934 1.732056 1.732178
13 1.731934 1.731995 1.732056
14 1.731995 1.732025 1.732056
# 15 iteracoes, como calculado na letra (a)
bisection(f3, a = 0, b = 3, tol = 1e-4)
                            b
          а
```

```
      1
      1.500000
      2.250000
      3.000000

      2
      1.500000
      1.875000
      2.250000

      3
      1.500000
      1.687500
      1.875000

      4
      1.687500
      1.781250
      1.875000

      5
      1.687500
      1.710938
      1.734375

      7
      1.710938
      1.722656
      1.734375

      8
      1.722656
      1.728516
      1.734375

      9
      1.728516
      1.731445
      1.732910
      1.734375

      10
      1.731445
      1.732910
      1.734375

      11
      1.731445
      1.732178
      1.732910

      12
      1.731445
      1.731812
      1.732178

      13
      1.731812
      1.731995
      1.732178

      14
      1.731995
      1.732086
      1.732086

      15
      1.731995
      1.732040
      1.732086
```

Aplique o Algoritmo do método de Newton para todos os exercícios que foram resolvidos pelo método da Bisseção. Compare os resultados.

```
newton <- function(f, fline, init, kmax = 100, tol = 1e-3) {
    xs <- numeric(kmax)
    xs[1] <- init - f(init)/fline(init)
    xs[2] <- xs[1] - f(xs[1])/fline(xs[1])
    k <- 2
    while(abs(diff(xs[(k - 1):k]))/abs(xs[k]) > tol & k < kmax) {
        k <- k + 1
        xs[k] <- xs[k - 1] - f(xs[k - 1])/fline(xs[k - 1])
    }
    return(xs[seq(k)])
}</pre>
```

#### Exercise 1

```
f1line <- function(x) { 1/(2 * sqrt(x)) + sin(x) }

# com uma tolerancia de 0.001, com Newton ja' obtemos convergencia em
# 3 iteracoes
newton(f1, f1line, init = 1)

[1] 0.6573182 0.6417461 0.6417144</pre>
```

```
# com o metodo da Bissecao precisamos de 10 iteracoes bisection(f1, a = 0, b = 1)

a x b

1 0.5000000 0.7500000 1.0000000
2 0.5000000 0.6250000 0.7500000
3 0.6250000 0.6875000 0.7500000
4 0.6250000 0.6562500 0.6875000
5 0.6250000 0.6406250 0.6562500
6 0.6406250 0.6484375 0.6562500
7 0.6406250 0.6445312 0.6484375
8 0.6406250 0.6425781 0.6445312
9 0.6406250 0.6416016 0.6425781
10 0.6416016 0.6420898 0.6425781
```

## Exercise 2. (a) [0, 1]

```
<r code>
f2line <- function(x) \{ 3 * x^2 - 14 * x + 14 \}
# com uma tolerancia de 0.01, com Newton obtemos convergencia em:
# 2 iteracoes, usando um chute inicial em 0.5
newton(f2, f2line, tol = 1e-2, init = .5)
[1] 0.5806452 0.5857663
# 4 iteracoes, usando um chute inicial em 1
newton(f2, f2line, tol = 1e-2, init = 1)
[1] 0.3333333 0.5478927 0.5847302 0.5857856
# com o metodo da Bissecao precisamos de 7 iteracoes
bisection(f2, a = 0, b = 1, tol = 1e-2)
1 0.500000 0.7500000 1.0000000
2 0.500000 0.6250000 0.7500000
3 0.500000 0.5625000 0.6250000
4 0.562500 0.5937500 0.6250000
5 0.562500 0.5781250 0.5937500
6 0.578125 0.5859375 0.5937500
7 0.578125 0.5820312 0.5859375
```

## Exercise 2. (b) [1, 3.2]

```
<r code>
# com uma tolerancia de 0.01, com Newton obtemos convergencia em:
# 10 iteracoes, usando um chute inicial em 1.5
# contudo, com tal chute obtemos um diferente zero da funcao
newton(f2, f2line, tol = 1e-2, init = 1.5)
[1] 12.000000 8.827338 6.733875 5.367206 4.492787 3.953119 3.640792
[8] 3.482097 3.423790 3.414456
# 2 iteracoes, usando um chute inicial em 2
newton(f2, f2line, tol = 1e-2, init = 2)
[1] 3 3
# com o metodo da Bissecao precisamos de 8 iteracoes
bisection(f2, a = 1, b = 3.2, tol = 1e-2)
1 2.10000 2.650000 3.200000
2 2.65000 2.925000 3.200000
3 2.92500 3.062500 3.200000
4 2.92500 2.993750 3.062500
5 2.99375 3.028125 3.062500
6 2.99375 3.010938 3.028125
7 2.99375 3.002344 3.010938
8 2.99375 2.998047 3.002344
ggplot(data.frame(x = c(0, 4)), aes(x = x)) +
    theme_minimal() +
    stat_function(fun = f2) +
    stat_function(fun = function(t) { 3 - t/4 }, linetype = "dashed") +
    geom_hline(yintercept = 0, linetype = "dotted") +
    labs(y = "f(x)",
         title = "Function graph with tangent line to the point 1.5, in dashed")
```





No ponto 1.5, um máximo local, a curvatura é alta, fazendo com que a reta tangente à esse ponto corte o eixo x num ponto muito a frente, x = 12. Ao final da primeira iteração estamos em 12, e assim o algorimo começa a retornar, atingindo o ponto de zero mais próximo, 3.414456.

## Exercise 2. (c) [3.2, 4]

```
<r code>
# com uma tolerancia de 0.01, com Newton obtemos convergencia em:
# 2 iteracoes, usando um chute inicial em 3.5
newton(f2, f2line, tol = 1e-2, init = 3.5)
[1] 3.428571 3.414747
# 4 iteracoes, usando um chute inicial em 4
newton(f2, f2line, tol = 1e-2, init = 4)
[1] 3.666667 3.493827 3.426846 3.414629
# com o metodo da Bissecao precisamos de 7 iteracoes
bisection(f2, a = 3.2, b = 4, tol = 1e-2)
                Х
1 3.2000 3.400000 3.60000
2 3.4000 3.500000 3.60000
3 3.4000 3.450000 3.50000
4 3.4000 3.425000 3.45000
5 3.4000 3.412500 3.42500
6 3.4125 3.418750 3.42500
7 3.4125 3.415625 3.41875
```

```
<r code>
f3line <- function(x) { 2 * x }
# com uma tolerancia de 0.0001, com Newton obtemos convergencia em:
# 4 iteracoes, usando um chute inicial em 1
newton(f3, f3line, tol = 1e-4, init = 1)
[1] 2.000000 1.750000 1.732143 1.732051
# 3 iteracoes, usando um chute inicial em 2
newton(f3, f3line, tol = 1e-4, init = 2)
[1] 1.750000 1.732143 1.732051
# com o metodo da Bissecao precisamos de 14 iteracoes,
# usando o intervalo [1, 2]
bisection(f3, a = 1, b = 2, tol = 1e-4)
1 1.500000 1.750000 2.000000
2 1.500000 1.625000 1.750000
3 1.625000 1.687500 1.750000
4 1.687500 1.718750 1.750000
5 1.718750 1.734375 1.750000
6 1.718750 1.726562 1.734375
7 1.726562 1.730469 1.734375
8 1.730469 1.732422 1.734375
9 1.730469 1.731445 1.732422
10 1.731445 1.731934 1.732422
11 1.731934 1.732178 1.732422
12 1.731934 1.732056 1.732178
13 1.731934 1.731995 1.732056
14 1.731995 1.732025 1.732056
```

## Exercise 5

Aplique o Algoritmo do método Quase-Newton (Secante) para todos os exercícios anteriores. Compare os resultados.

```
secant <- function(f, inits, kmax = 100, tol = 1e-3) {
    a <- inits[1]; fa <- f(a)
    b <- inits[2]; fb <- f(b)
    xs <- numeric(kmax)</pre>
```

```
xs[1] <- (fb * a - b * fa)/(fb - fa) ; f1 <- f(xs[1])
xs[2] <- (f1 * b - xs[1] * fb)/(f1 - fb)
k <- 2
while(abs(diff(xs[(k - 1):k]))/abs(xs[k]) > tol & k < kmax) {
        k <- k + 1
        f1 <- f(xs[k - 1])
        f2 <- f(xs[k - 2])
        xs[k] <- (f1 * xs[k - 2] - xs[k - 1] * f2)/(f1 - f2)
}
return(xs[seq(k)])
}</pre>
```

```
<r code>
# usando diferentes pontos iniciais pra ver como isso impacta o resultado
## diferentes intervalos, mas de mesmo tamanho
secant(f1, inits = c(0, .25))
[1] 0.4707322 0.6423949 0.6417013 0.6417144
secant(f1, inits = c(.25, .5))
[1] 0.6428073 0.6416964 0.6417144
secant(f1, inits = c(.5, .75))
[1] 0.6398203 0.6416871 0.6417144
secant(f1, inits = c(.75, 1))
[1] 0.6467789 0.6419525 0.6417145
## agora, considerando intervalos mais curtos
secant(f1, inits = c(.2, .25))
[1] 0.6166784 0.6422015 0.6417128
secant(f1, inits = c(0, .05))
[1] 0.2223640 0.5424335 0.6424509 0.6417055 0.6417144
### no melhor cenario levamos 3 iteracoes, no pior, levamos 5
# com o metodo de Newton levamos 3 iteracoes
newton(f1, f1line, init = 1)
[1] 0.6573182 0.6417461 0.6417144
```

## Exercise 2. (a)[0, 1]

```
secant(f2, inits = c(.5, .55), tol = 1e-2)

[1] 0.5835841 0.5857272

secant(f2, inits = c(.5, .6), tol = 1e-2)

[1] 0.5866852 0.5857765

secant(f2, inits = c(.5, .75), tol = 1e-2)

[1] 0.5970874 0.5842026 0.5858003

newton(f2, f2line, tol = 1e-2, init = .5)

[1] 0.5806452 0.5857663
```

## Exercise 2. (b)[1, 3.2]

```
<r code>
# para diferentes conjuntos de pontos iniciais, chegamos em diferentes
# zeros, dado os pontos que as retas secantes atingem no eixo x
secant(f2, inits = c(1.2, 1.25), tol = 1e-2)
[7] 0.5857168
secant(f2, inits = c(1.7, 1.75), tol = 1e-2)
[1] 3.731084 4.583585 3.638019 3.578869 3.466785 3.429857 3.416163
secant(f2, inits = c(2, 2.05), tol = 1e-2)
[1] 2.976801 2.988804
secant(f2, inits = c(2, 2.25), tol = 1e-2)
[1] 2.914286 2.963262 2.995205 2.999681
secant(f2, inits = c(2, 2.5), tol = 1e-2)
[1] 2.888889 2.959481 2.993523 2.999531
newton(f2, f2line, tol = 1e-2, init = 2)
[1] 3 3
```

## Exercise 2. (c)[3.2, 4]

```
secant(f2, inits = c(3.25, 3.5), tol = 1e-2)

[1] 3.366667 3.403928 3.415792

secant(f2, inits = c(3.5, 3.75), tol = 1e-2)

[1] 3.453488 3.433182

secant(f2, inits = c(3.45, 3.475), tol = 1e-2)

[1] 3.419083 3.414919

secant(f2, inits = c(3.5, 3.525), tol = 1e-2)

[1] 3.431996 3.418357

newton(f2, f2line, tol = 1e-2, init = 3.5)

[1] 3.428571 3.414747
```

#### Exercise 3

```
secant(f3, inits = c(.25, .5), tol = 1e-4)

[1] 4.166667 1.089286 1.434315 1.807885 1.725087 1.731901 1.732051

secant(f3, inits = c(1, 1.25), tol = 1e-4)

[1] 1.888889 1.707965 1.731001 1.732058 1.732051

secant(f3, inits = c(2.25, 2.5), tol = 1e-4)

[1] 1.815789 1.746951 1.732401 1.732052 1.732051

secant(f3, inits = c(2.95, 3), tol = 1e-4)

[1] 1.991597 1.797980 1.736566 1.732135 1.732051

newton(f3, f3line, tol = 1e-4, init = 2)

[1] 1.750000 1.732143 1.732051
```

A função  $f(x) = \tan(\pi x) - 6$  tem um zero em  $\frac{1}{\pi}$  arctan  $6 \approx 0.447431543$ . Considere  $x_0 = 0$  e  $x_1 = 0.48$ , e use 10 iterações para cada um dos seguintes métodos para calcular um valor aproximado desse zero. Qual dos métodos foi mais sucedido? Por quê?

## (a) Método da Bisseção. (b) Método de Newton. (c) Método Secante.

#### Function graph with a dotted line in it's zero, (1/pi) arctan 6



```
a x b
1 0.2400000 0.3600000 0.480000
2 0.3600000 0.4200000 0.480000
3 0.4200000 0.4500000 0.480000
4 0.4200000 0.4350000 0.450000
```

```
5 0.4350000 0.4425000 0.450000
6 0.4425000 0.4462500 0.450000
7 0.4462500 0.4481250 0.450000
8 0.4462500 0.4471875 0.448125
9 0.4471875 0.4476562 0.448125
bisection(f6, a = .3, b = .45)
                 X
1 0.3750000 0.4125000 0.4500000
2 0.4125000 0.4312500 0.4500000
3 0.4312500 0.4406250 0.4500000
4 0.4406250 0.4453125 0.4500000
5 0.4453125 0.4476562 0.4500000
6 0.4453125 0.4464844 0.4476562
7 0.4464844 0.4470703 0.4476562
8 0.4470703 0.4473633 0.4476562
newton(f6, f6line, init = .48)
[1] 0.4675825 0.4551292 0.4485512 0.4474552 0.4474316
newton(f6, f6line, init = .4)
[1] 0.4888264 0.4800144 0.4676003 0.4551429 0.4485552 0.4474554 0.4474316
newton(f6, f6line, init = .35)
[1] 0.6148770 0.9581745 2.8765939 4.6248962 5.0166148 6.9046908
[7] 8.7380937 9.7803623 11.0726305 12.8146330 14.2929995 14.8396780
[13] 16.4392033 16.4487038
secant(f6, inits = c(0, .48))
 [1] 1.811942e-01 2.861872e-01 1.091986e+00 -3.692297e+00 -2.260065e+01
  [6] -5.722283e+01 3.538758e+00 -1.139444e+02 -1.958939e+02 -2.923540e+03
[11] -2.214725e+03 -2.716996e+03 -1.278719e+02 3.467719e+04 7.343020e+05
[16] -5.260916e+06 3.312104e+06 6.974486e+06 1.586291e+07 -1.155064e+08
[21] 2.245408e+08 8.550972e+08 -1.977882e+09 3.277897e+10 -2.115656e+11
[26] -3.186281e+11 -1.312377e+11 6.374025e+11 -2.380563e+12 -4.137395e+13
[31] 6.308449e+13 1.317103e+14 -1.213713e+14 7.601656e+14 6.227984e+15
[36] 6.154177e+14 7.951176e+14 7.177148e+14 1.808552e+15 -1.080135e+16
[41] -9.485429e+16 2.368874e+18 -8.291690e+18 -4.482692e+20 -2.086653e+21
[46] -1.646282e+21 -1.964709e+21 -8.517763e+21 -2.379764e+22 2.469817e+22
[51] 4.979333e+23 4.226362e+26 -3.569902e+27 -2.787053e+28 -7.614246e+28
[56] 2.357168e+28 -7.442220e+28 -7.266297e+28 -2.004535e+29 1.223068e+30
[61] -2.419707e+30 -6.422299e+30 -1.116669e+31 6.548127e+29 -1.600158e+32
```

```
[66] -2.944007e+32 -7.207910e+31 -6.882463e+32 -6.414169e+32 -6.861985e+32
 [71] -7.107462e+32 -8.064133e+32 -1.312680e+33 1.376409e+33 3.208962e+33
 [76] 2.623495e+32 -2.287125e+34 9.972344e+34 7.111966e+36 -9.675269e+37
 [81] 6.987968e+37 1.303106e+38 -5.326046e+38 4.195466e+39 3.416342e+40
 [86] 7.126923e+40 1.394978e+40 -1.178986e+41 6.420520e+42 2.943265e+43
[91] 2.550461e+43 2.889228e+43 5.001322e+43 9.937317e+43 -3.144715e+43
[96] 1.410598e+45 2.946084e+46 -2.072256e+47 -1.107872e+48 -1.007816e+49
secant(f6, inits = c(.4, .48))
[1] 0.4182404 0.4294442 0.4572304 0.4441121 0.4468177 0.4474699 0.4474311
secant(f6, inits = c(.2, .45))
[1] 0.4359612 0.4468770 0.4475512 0.4474303
secant(f6, inits = c(.1, .3))
  [1] 1.179464e+00 -5.164583e+00 2.953542e+01 -3.236059e+01 -1.062551e+02
  [6] -5.774681e+02 2.660748e+02 7.437958e+02 -2.523894e+03 -1.945938e+04
 [11] 3.135565e+04 8.207334e+05 1.101432e+06 7.415477e+05 -5.710653e+05
 [16] -3.719257e+07 -2.026927e+08 1.381799e+09 4.350706e+09 -6.754052e+09
 [21] 1.650663e+09 3.348514e+08 3.706192e+09 -2.574047e+10 -3.027504e+11
 [26] -4.059512e+11 -2.560586e+11 -1.061744e+12 4.229217e+12 -3.440684e+12
[31] -7.820942e+12 -1.948523e+13 1.988652e+13 1.580199e+14 6.480886e+15
 [36] 2.422249e+16 -3.628661e+15 -2.968985e+16 -3.017213e+17 9.252426e+17
[41] 8.849732e+18 -1.654225e+19 7.729111e+19 5.182338e+19 6.915531e+19
 [46] 1.075834e+20 2.189804e+20 -7.141249e+20 7.410494e+21 4.586360e+22
 [51] 5.440140e+23 -1.305491e+24 -6.087997e+24 1.333473e+25 8.749912e+25
[56] -3.629936e+26 2.137064e+26 3.144346e+26 3.349013e+25 -2.849983e+27
 [61] -1.765960e+27 -2.396448e+27 1.810203e+28 7.625017e+28 -7.550418e+28
 [66] -1.373904e+30 2.061620e+31 2.599481e+32 -1.168391e+33 -6.278245e+33
 [71] 8.480371e+34 2.980663e+34 5.544103e+34 4.928726e+34 5.404930e+34
[76] 6.709925e+34 1.159576e+35 -1.777612e+35 -4.985813e+36 -1.085412e+38
 [81] 6.623672e+38 -3.765887e+39 -1.633604e+40 -2.034519e+41 -1.985436e+41
 [86] -2.033738e+41 -2.167102e+41 -3.726927e+41 7.398304e+42 -9.641041e+42
 [91] -2.546430e+43 1.014599e+44 1.257574e+45 -4.866859e+45 -1.104469e+48
 [96] 1.147852e+49 -5.740759e+48 -1.099387e+49 -4.636645e+49 1.715379e+50
```

Podemos dizer que o método da Bisseção é o mais sucedido, porque dado que o intervalo contém o zero da função, o método irá encontrá-lo, com o intervalo podendo ser maior ou menor. No caso da função tangante tal intervalo não pode ser muito grande, dada a infinidade de zeros que a função apresenta.

Com os métodos de Newton e Secante (Quase-Newton) temos uma dependência muito forte com o chute inicial, o que requer uma examinação cuidadosa da função. Se o(s) ponto(s) for(em) mal escolhido(s), um ponto com derivada próxima de zero neste caso, sua respectiva reta tangente/secante te jogará para muito longe do zero desejado. Como

aconteceu com alguns dos chutes iniciais utilizados.

## Exercise 7

Equação de anuidade devidas:

$$A = \frac{P}{i}[(1+i)^n - 1].$$

Em que

- A = 750.000;
- P = 1.500;
- $n = 20 \times 12 = 240$ ;
- i = ?.

Assim, queremos encontrar a solução de:

$$\frac{1500}{i}[(1+i)^{240}-1]-750000=0.$$

Uso aqui as funções no default, i.e., com tolerância de 1e-3.

```
<r code>
f7 <- function(i) { (1500/i) * ((1 + i)^240 - 1) - 750000 }
# jogando alguns valores para descobrir um bom intervalo
f7(1e-2)
[1] 733883
f7(1e-3)
[1] -343354.9
f7(5e-3)
[1] -56938.66
f7(6e-3)
[1] 50643.51
ggplot(data.frame(i = c(1e-4, 1e-2)), aes(x = i)) +
    theme_minimal() +
    stat_function(fun = f7) +
    geom_hline(yintercept = 0, linetype = "dotted") +
    labs(y = "f(i)", title = "Function graph with a dotted line in zero")
```

#### Function graph with a dotted line in zero



#### 

bisection(f7, a = 1e-4, b = 1e-2)

a x ł

1 0.00505 0.007525000 0.01000000

2 0.00505 0.006287500 0.00752500

3 0.00505 0.005668750 0.00628750

4 0.00505 0.005359375 0.00566875

bisection(f7, a = 1e-5, b = 1e-1)

a x

1 0.000010000 0.025007500 0.050005000

2 0.000010000 0.012508750 0.025007500

 $3\ 0.000010000\ 0.006259375\ 0.012508750$ 

4 0.000010000 0.003134687 0.006259375

5 0.003134687 0.004697031 0.006259375

6 0.004697031 0.005478203 0.006259375

7 0.005478203 0.005868789 0.006259375

bisection(f7, a = 4e-3, b = 6e-3)

a x b 0.0050 0.0055 0.0060

secant(f7, inits = c(.0075, .01))

[1] 0.006193969 0.005768641 0.005562695 0.005551006 0.005550782

secant(f7, inits = c(.001, .0025))

Querendo ter em conta um total de 750.000,00 dinheiros para efetuar retiradas após 20 anos, e podendo dispor de 1.500,00 dinheiros por mês para atingir essa meta, a taxa de juros mínima a que esse valor deve ser investido é de **0.00555**, assumindo que o período de capitalização é mensal.

## **Exercise 8**

Duas locomotivas viajam no mesmo sentido, e trilho, com equações de movimento dadas por

$$x_1(t) = 110 - 80 \exp(-t/2)$$
 e  $x_2(t) = 50t$ ,

respectivamente.

Utilizando argumentos gráficos, verifique se estas locomotivas se chocam, e se isso acontecer, em quanto tempo (approx.) o acidente ocorreria?

labs(y = "f(t)", title = "Motion equations for the two locomotives") +  $scale\_colour\_manual("Locomotives", values = c(paleta[1], paleta[2])))$ 

## Motion equations for the two locomotives



Sim, elas se chocam.

Agora, para encontrar o tempo t em que essas lomotivas colidem, precisamos encontrar a solução de:

$$x_1(t) = x_2(t) \Rightarrow x_1(t) - x_2(t) = 0.$$

i.e.,

$$110 - 80 \exp(-t/2) - 50t = 0.$$

<r code>

```
f8 \leftarrow function(t) \{ 110 - 80 * exp(-t/2) - 50 * t \}
```

bisection(f8, a = .5, b = 2)

```
      a
      x
      b

      1
      1.250000
      1.625000
      2.000000

      2
      1.250000
      1.437500
      1.625000

      3
      1.250000
      1.343750
      1.437500

      4
      1.343750
      1.390625
      1.437500

      5
      1.390625
      1.414062
      1.437500

      6
      1.390625
      1.402344
      1.414062

      7
      1.402344
      1.408203
      1.414062

      8
      1.408203
      1.411133
      1.414062

      9
      1.408203
      1.409668
      1.411133

      10
      1.408203
      1.408936
      1.409668

      11
      1.408936
      1.409302
      1.409668
```

```
bisection(f8, a = 1, b = 1.5)
1 1.250000 1.375000 1.500000
2 1.375000 1.437500 1.500000
3 1.375000 1.406250 1.437500
4 1.406250 1.421875 1.437500
5 1.406250 1.414062 1.421875
6 1.406250 1.410156 1.414062
7 1.406250 1.408203 1.410156
8 1.408203 1.409180 1.410156
9 1.408203 1.408691 1.409180
f8line <- function(t) { 40 * exp(-t/2) - 50 }
newton(f8, f8line, init = .5)
[1] 1.704158 1.420904 1.409074 1.409051
newton(f8, f8line, init = 1.75)
[1] 1.424455 1.409090 1.409051
secant(f8, inits = c(.5, .75))
[1] 1.595558 1.385115 1.408358 1.409054
secant(f8, inits = c(1.75, 2))
[1] 1.433939 1.411045 1.409059 1.409051
p2 \leftarrow ggplot(data.frame(t = c(.5, 2)), aes(x = t)) +
   theme_minimal() +
   stat_function(fun = f8) +
   geom_hline(yintercept = 0, linetype = "dotted") +
   geom_vline(xintercept = 1.409, linetype = "dotted") +
   labs(y = "f(t)", title = "loco1 - loco2")
library(multipanelfigure)
figure <- multi_panel_figure(rows = 1, columns = 3,</pre>
                          panel_label_type = "none")
(figure %<>% fill_panel(p1 + geom_vline(xintercept = 1.409,
                                   linetype = "dotted"),
                    column = 1:2) %<>% fill_panel(p2, column = 3))
```



Supondo que as duas locomotivas viajam no mesmo sentido e trilho, com as equações de movimento dadas, as locomotivas se chocam no tempo t = 1.409.

## Exercise 9. (b)

Encontrar  $\sqrt{2}$  usando a fórmula de recorrência encontrada a partir do método de Newton, usando  $x_0 = 1$ . Também uso aqui uma tolerância bem baixa, 1e-16.

Fórmula de recorrência para  $\sqrt{2}$ :

$$x_{k+1} = \frac{1}{2}(x_k + \frac{2}{x_k}).$$

newton\_recurrence <- function(x0, a, p, kmax = 100, tol = 1e-16) {
 xs <- numeric(kmax)
 recurrence <- function(x) { (1/p) \* ((p - 1) \* x + a/x^(p - 1)) }
 xs[1] <- recurrence(x0)
 xs[2] <- recurrence(xs[1])
 k <- 2
 while(abs(diff(xs[(k - 1):k]))/abs(xs[k]) > tol & k <= kmax) {
 k <- k + 1
 xs[k] <- recurrence(xs[k - 1])
 }
 return(xs[seq(k)])
}
newton\_recurrence(x0 = 1, a = 2, p = 2, kmax = 3)
[1] 1.500000 1.416667 1.414216 1.414214
newton\_recurrence(x0 = 1, a = 2, p = 2)
[1] 1.500000 1.416667 1.414216 1.414214 1.414214 1.414214</pre>

Last modification on ...

[1] "2019-09-21 13:12:48 -03"