PRACTICAL- MICROPROCESSORS AND ASSEMBLY LANGUAGE PROGRAMMING

Submitted By

Vaibhay Jain Student **Bachelor of Computer Applications** Swati Jain Institute Of Management Studies. 2001-2004.

182, Jaora Compound, Indore.

Swati Jain Academy (SJA)

Institute Campus

33, Sampat Farms, Bicholi Mardana, Indore

Swati Jain Institute Management Studies (SJIMS)

Acknowledgments

No man is born complete and I am no exception. When the times were tensed and it seemed like I should kick the whole bunch of meaningless symbols and code into the recycle bin, pour some water on my keyboard and throw the book away for good, all that could sustain me was the support of teachers, friends and elders. I was lucky enough to be surrounded by such a people who were helpful and supportive. Without their help this Project File would have probably completed on released on my 75th birthday.

In am greatly thankful to Mr. Suaysh Jain, Teacher as well as Friend with out whose dedicated guidance and support this project would have being non existent.

I am also exceedingly thankful to the member faculty at Swati Jain Institute Of Management Studies as well as Swati Jain Madam who were there when their support and that wonderful sense of humor was badly and eagerly needed. Thanks, I can never forget you all.

And, finally a word of gratitude to my Parents and brother Ronak, who were always there with their support and encouragement, even though I'm a little crazy at times.

Vaibhay Jain

vaibhav@genesisconvent.com 57, Shiv Shahkti Nagar, Kanadia Road, Indore. **May 2004.**

CERTIFICATE

This is to certify that Vaibhav Jain an enrollee of Bachelor of Computer Application and a student Swati Jain Institute of Management Studies has worked on the project "Practical in Microprocessors And Assembly Language Programming". He has put sincere effort in the project and has performed tasks related to the project in the Computer Lab of Swati Jain Institute of Management Studies. This project may be considered as a partial fulfillment for the examinations conducted by Devi Ahilya Vishva Vidyalaya, Indore.

Vidyalaya, Indore.	
Date:	
Mr. Suyash Jain	External

Index..

Topic	Page no.
I. The 8085 Microprocessor	1
What is 8085?	2
Pin Out Diagram & Pin Description	3
Functional Description & Internal Diagram	5
The Register Array	6
Interrupts & Serial I/O	7
Programming The 8085	9
8085 Instruction Set	10
II. Programming With 8085	25
16-Bit Register Left Rotation	26 27
16-Bit Register Right Rotation	28
Discovery I…Simulation of Integer Addition Reversal of an Array	29
Maximum & Minimum of an Array	30
Addition of Two Array	31
Hexadecimal to Binary Conversion	32
16-Bit Register Left Shifting	33
16-Bit Register Right Shifting	34
Uppercase to Lowercase & vice-versa	35
Length of an ASCII-Z String	37
Implementing Strcpy() Function	38
Implementing Strncpy() Function	39
Generation of Fibonacci Series	40
Generation of Multiplication Tables	41
Insertion Sorting	42
Bubble Sorting-I	44
Bubble Sorting-II	45
Selection Sorting	47
8-Bit Division Algorithm	48
16-Bit Multiplication Algorithm	50

Index.

Topic	Page no.
Removal of Duplicates	52
Sorted Array Merging	53
32-Bit Integer Addition	55
32-Bit Integer Subtraction	56
32-Bit Left Shift & Right Shift	57
32-Bit Bitwise Rotation	59
Implementing Auxiliary Stack	61
Implementing Queue Data-Structure	64

1976: The 8085 Microprocessor

What is 8085-Microprocessor?

Introduction

The 8085 is an obsolete 8-bit microprocessor which was built by Intel. The famous company which was founded in 1968 by Gordon E. Moore and Robert Noyce.

8085 was a successor of highly successful 8080 microprocessor which powered the legendry Altair systems. The Intel 8080 was an early 8-bit CPU which was released in April 1974 running at 2 MHz, and is generally considered to be the first truly usable microprocessor CPU design. The 8080 formed the basis of many early computers, such as the MITS Altair 8800 and IMSAI 8080, forming the user base for machines running the CP/M operating system.

8085 was one step ahead of 8080 as because it required less supporting hardware. It integrated an On Chip Clock Generator and an On Chip System Controller. This led to systems with lesser number if IC's and supporting hardware. Infact an 8085 based system could be assembled with just 3 IC's .The five in the name came from the fact that the 8085 required only a 5V power supply rather than the 5V and 12V supplies the Intel 8080. Moreover Its instruction set was completely compatible with Intel-8080.

Below are some of the characteristics of 8085

Intel 8085

Intel 8085			
Year Introduced	March 1976		
Clock Speed	5 MHz		
Fabrication Technology	3 – Micron		
Transistor count	6,5000		
Addressable memory	2 ¹⁶ bytes=64 Kilo Bytes		
Operating Voltage	+5 volts		
Features	 0.8 ms instruction Cycle (VCC = 5V) On-Chip Clock Generator (with External Crystal) On-Chip System Controller; Advanced Cycle Status Information Available for Large System Control Four Vectored interrupt (One is non-maskable) Plus the 8080A-compatible interrupt. Serial, In/Serial Out Port Decimal, Binary and Double Precision Arithmetic Addressing Capability to 64K Bytes of Memory TTL Compatible Full Software Compatibility with Intel-8080 Required Only 5-volt power supply 		
Applications	 Toledo scale. Computed cost from weight and price Traffic Signal Controllers Microprocessor based controller devices 		

Pinout Diagram & Pin Description

Pin Description

The following Table describes the function of each pin:

Symbol	Function
A6 – A15	Address Bus: The most significant 8-bits of the memory address or the 8-bits of the I/O address, 3-stated during Hold and Halt modes and during RESET.
A0 - A7	Multiplexed Address/Data Bus: Lower 8-bits of the memory address (or I/O address) appear on the bus during the first clock cycle (T state) of a machine cycle. It then becomes the data bus during the second and third clock cycles.
ALE	Address Latch Enable: It occurs during the first clock state of a machine cycle and enables address to get latched into the on-chip latch peripherals. The falling edge of ALE is set to guarantee setup and hold times for the address information. The falling edge ALE can also be used to strobe the status information ALE is never 3-state.
S0, S1 & (IO/M#)	Machine cycle status: S1 can be used as an advanced R/W status. IO/M#, S0 and S1 become valid at the beginning of a machine cycle and remain stable throughout the cycle. The falling edge of ALE may be used to latch the state of these lines.
RD#	READ control: A low level on RD indicates the selected memory or I/O device is to be read that the Data Bus is available for the data transfer, 3-stated during Hold and Halt modes and during RESET.
WR#	WRITE control: A low level on WR indicates the data on the Data Bus is to be written into the selected memory or I/O location. Data is set up at the trailing edge of WR, 3-stated during Hold and Halt modes and during RESET.

Symbol	Function			
READY	If READY is high during a read or write cycle, it indicates that the memory or peripheral is ready to send or receive data. If READY is low, the CPU will wait an integral number of clock cycles for READY to go high before completing the read or write cycle READY must conform to specified setup and hold times.			
HOLD	HOLD indicates that another master is requesting the use of the address and data buses. The CPU, upon receiving the hold request, will relinquish the use of the bus as soon as the completion of the current bus transfer. Internal processing can continue. The processor can regain the bus only after the HOLD is removed. When the HOLD is acknowledged, the Address, Data, RD, WR, and IO/M lines are 3-stated. And status of power down is controlled by HOLD.			
HLDA	HOLD ACKNOWLEDGE: Indicates that the cpu has received the HOLD request and that it will relinquish the bus in the next clock cycle. HLDA goes low after the Hold request is removed. The cpu takes the bus one half clock cycle after HLDA goes low.			
INTR	INTERRUPT REQUEST: Is used as a general purpose interrupt. It is sampled on during the next to the last clock cycle of an instruction and during Hold and Halt states. If it is active, the Program Counter (PC) will be inhibited from incrementing and an INTA will be issued. During this cycle a RESTART or CALL instruction can be inserted to jump to the interrupt service routine. The INTR is enabled and disabled by software. It is disabled by Reset and immediately after an interrupt is accepted. Power down mode is reset by INTR.			
INTA#	INTERRUPT ACKNOWLEDGE: Is used instead of (and has the same timing as) RD during the instruction cycle after an INTR is accepted.			
RST 5.5 RST 6.5 RST 7.5	RESTART INTERRUPTS: These three inputs have the same timing as INTR except they cause an internal RESTART to be automatically inserted. The priority of these interrupts is ordered as shown in on the left . These interrupts have a higher priority than INTR. In addition, they may be individually masked out using the SIM instruction. Power down mode is reset by these interrupts.			
TRAP	Trap interrupt is a nonmaskable RESTART interrupt. It is recognized at the same timing as INTR or RST 5.5 - 7.5. It is unaffected by any mask or Interrupt Disable. It has the highest priority of any interrupt. Power down mode is reset by input of TRAP.			
RESET IN#	RESET IN: Sets the Program Counter to zero and resets the Interrupt Enable and HLDA flip-flops and release power down mode. The data and address buses and the control lines are 3-stated during RESET and because of the asynchronous nature of RESET IN, the processor's interna registers and flags may be altered by RESET with unpredictable results. RESET IN is a Schmitt-triggered input, allowing connection to an R-C network for power-on RESET delay. The CPU is held in the reset condition as long as RESET IN is applied.			
RESET OUT	Indicated CPU is being reset. Can be used as a system reset. The signal is synchronized to the processor clock and lasts an integral number of clock periods.			
X1,X2	X1 and X2 are connected to a crystal to drive the internal clock generator. X1 can also be an external clock input from a logic gate. The input frequency is divided by 2 to give the processor's internal operating frequency.			
CLK	Clock Output for use as a system clock. The period of CLK is twice the X1, X2 input period.			
SID	Serial input data line. The data on this line is loaded into accumulator bit 7 whenever a RIM instruction is executed.			
SOD	Serial output data line. The output SOD is set or reset as specified by the SIM instruction.			
Vcc	+ 5 Volt supply			
GND	Ground Reference.			

Functional Description & Internal Architecture

8085 is a complex microprocessor with an equally complex architecture. Like all processors it is also build upon a set of distinct units working and cooperating with each other to perform task assigned to the processor. Internally 8085 consists of a Register Array Accumulator, Control Unit, A Clock Generator, Interrupt Controller and an Instruction Decoder. All these units are connected to each other via a 8 bit internal data bus that carries data between these units, and a control bus that transmits various control signal originating at or meant for the control unit. The 8085 uses a multiplexed Data Bus. The address is spilt between the higher 8-bit Address Bus and the lower 8-bit Address/Data Bus. During the first T state (clock cycle) of a machine cycle the low order address is sent out on the Address/Data Bus. These lower 8-bits may be latched externally by the Address Latch Enable signal (ALE). During the rest of the machine cycle the data bus is used for memory or I/O data. The 8085 provides RD, WR, S0, S1, and IO/M signals for bus control. The external Address Bus is interfaced by an Address and Data Buffer. An Interrupt Acknowledge signal (INTA) is also provided to signal interrupt acceptance to the initiating device. Hold and all Interrupts are synchronized with the processor's internal clock. The 8085 also provides Serial Input Data (SID) and Serial Output Data (SOD) lines for a simple serial interface. In addition to these features, the 8085 has three maskable, vector interrupt pins, one nonmaskable TRAP interrupt and HALT and HOLD.

The Register Array

The 8085 has twelve addressable 8-bit register pairs. Six others can be used interchangeably as 8-bit registers or 16-bit register pairs. The 8085 register set is as follows:

Mnemonic	Register	Contents
ACC or A	Accumulator	8- bit
PC	Program Counter	16- Bit Address
BC, DE,HL	General Purpose Register, Data Pointer (HL)	8 bits x 6 or 16- bits x 3
SP	Stack Pointer	16- bit address
Flags	Flag Register	5 flags (8- bit space)

Register A

This is the Accumulator of 8085. It is the only general purpose register that is connected to the ALU. That is why all arithmetic as well as logical operation is are performed using this register.

Registers B-L

These are the general purpose register provided to store 8-bit or 1-Byte of data or operands. In case 16-bit storage is required than these registers can be paired with the adjacent

register to form a 16 bit general purpose register. These register pairs are usually used for performing operations involving two bytes. 8085 allows only following pairs to be made: B-C, H-L, D-E

Stack Pointer

This register forms the basis of stack mechanism of the 8085. It keeps the track of the top of the in memory stack. Whenever data needs to be pushed on stack than it is

transferred to the memory location pointed by the SP and after transferring SP is updated to point to the new memory location. In case of Pop instruction first the SP is decremented and the data pointed by it is transferred to the specified register.

Program Counter

This register keeps tracks of the address of next instruction to be fetched and executed. At the end of each machine cycle instruction the PC register is updated with the new address

location of instruction and the Opcode from that address. if fetched at the beginning of next instruction cycle.

Flags Register

This is a special purpose register that contains various flip flops to indicate results of arithmetic operations that are executed:

S Flag: This flag is set when the result of an arithmetic is negative. Z Flag: This flag indicates that the result of pervious operation was zero. Ac Flag: This flag is used internally to perform binary to BCD conversion. P Flag: This is indicates that the parity of the data in accumulator is even Cy Flag: This flags indicates overflow or underflow of the result of the operation

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
S	Z	XXX	Ac	XXX	P	XXX	Су	

Flags Register Format

Interrupts & Serial I/O

The 8085 has 5 interrupt inputs: INTR, RST 5.5 RST 6.5, RST 7.5, and TRAP. Each of the three RESTART inputs, 5.5, 6.5, and 7.5, has a programmable mask. TRAP is also a RESTART interrupt but it is nonmaskable.

The three maskable interrupts cause the internal execution of a RST instruction if the interrupts are enabled the interrupt mask is not set. The nonmaskable TRAP causes the internal execution of a RST vector independent of the state of the interrupt enable or masks.

There are two different types of inputs in the restart interrupt. RST 5.5 and RST 6.5 are high level-sensitive like INTR (and INT on the 8080A) and are recognized with the same timing as INTR. RST 7.5 is rising edge-sensitive. For RST 7.5, only a pulse is required to set an internal flip-flop which generates the internal interrupt request. The RST 7.5 request flip-flop remains set until the request is serviced. Then it is reset automatically, This flip-flop may also be reset by using the SIM instruction. The RST 7.5 internal flip-flop will be set by a pulse on the RST 7.5 pin even when the RST 7.5 interrupt is masked out.

Name	Priority	Branch Address	Type Trigger	
TRAP	1	24H	Rising edge and High Level until sampled	
RST 7.5	2	3CH	Rising Edge	
RST 6.5	3	34H	34H High Level until Sampled	
RST 5.5	4	2CH	High Level until Sampled	
INTR	5		High Level until Sampled	

The interrupts are arranged in a fixed priority that determines which interrupt is to be recognized if more than one is pending, as follows: TRAP-highest priority, RST 7.5, RST 6.5, RST 5.5, INTR-lowest priority. The TRAP interrupt is useful for catastrophic evens such as power failure or bus error. The TRAP input is recognized just as any other interrupt but has the highest priority. It is not affected by any flag or mask. The TRAP input is both edge and level sensitive. The TRAP input must go high and remain high until it is acknowledged. It will not be recognized again until it goes low, then high again. This avoids any false triggering due to noise or logic glitches. Note that the servicing of any interrupt (TRAP, RST 7.5, RST 6.5, RST 5.5,INTR) disables all future interrupts (except TRAP) until an El instruction is executed.

The TRAP interrupt is special in that it disables interrupts, but preserves the previous interrupt enable status. Performing the first RIM instruction following a TRAP interrupt allows you to determine whether interrupts were enabled or disabled prior to the TRAP. All subsequent RIM instructions provide current interrupt enable status. Performing a RIM instruction following INTR or RST 5.5-7.5 will provide current interrupt Enable status, revealing that Interrupts are disabled.

SIM Instruction

The execution of the SIM instruction uses the contents of the accumulator to mask interrupts. The data in the accumulator specifies bit flags for various Interrupt masks as well as for outputting serial data to the devices connected to the SOD Pin. The format of the control word is as follows:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SOD	SDE	XXX	R7.5	MSE	M7.5	M6.5	M5.5

SIM Instruction Accumulator Data Format

Bit	Description
SOD (Serial Output Data)	This bit specifies the output level of the SOD pin. If set than SOD pin is latched High else it is latched Low
SDE (Serial Data Enable)	This bit is low than the SOD Bit is ignored. On order to output data to the SOD pin this bit needs to be set.
R7.5 (Reset RST 7.5 Flip-flop)	When this bit is set to 1, the edge detecting flip-flop of RST 7.5 interrupt is reset.
MSE (Mask Set Enable)	When this bit is set to 1, the interrupt mask bits are valid.
M7.5 (Mask RST7.5)	When this bit is set to 1 and MSE bit is set to 1, RST7.5 interrupt is masked.
M6.5 (Mask RST6.5)	When this bit is set to 1 and MSE bit is set to 1, RST6.5 interrupt is masked.
M5.5 (Mask RST5.5)	When this bit is set to 1 and MSE bit is set to 1, RST 5.5 interrupt is masked.

RIM Instruction

When the contents of the accumulator are read out after RIM instruction has been executed, 8085 interrupt status can be known.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SID	17.5	16.5	I 5.5	IE	M7.5	M6.5	M5.5

RIM Instruction Accumulator Data Format

Bit	Description
SID(Serial Input Data)	his bit reflects the status of SID pin. Is the status at SID is high this bit is set, other this bit is reset.
17.5 (Pending RST7.5)	When RST7.5 interrupt is pending, "1" is read out.
I6.5 (Pending RST6.5)	When RST6.5 interrupt is pending, "1" is read out.
I5.5 (Pending RST5.5)	When RST5.5 interrupt is pending, "1" is read out.
IE (Interrupt Enable Flag)	When interrupt is Enable, "1" is read out.
M7.5 (Mask RST7.5)	When RST7.5 interrupt is masked, "1" is read out.
M6.5 (Mask RST6.5)	When RST6.5 interrupt is masked, "1" is read out.
M5.5 (Mask RST5.5)	When RST5.5 interrupt is masked ,"1" is read out.

Programming 8085

Data Format

D ₇ D ₆	D ₅	D_4	D ₃	D_2	D_1	D_0
-------------------------------	----------------	-------	----------------	-------	-------	-------

Intel 8085 is follows small eadiean format of byte representation i.e. in a byte the LSB lies in higher memory and the MSB lies in lower memory.

Instruction Format

The 8085 supports three type of instruction. One byte instructions & Two bytes instruction and

Three Bytes Instructions

One Byte Instruction

Opcode

Two Byte Instruction

Opcode Operand 1

Three Byte Instruction

Opcode Operand 1 Operand 2

Opcode Format

The Opcode byte of every instruction specifies type of operation and objects on which those operations are to be performed.

Code	Source	Dest

The code bits 7-6 specify the operation type required. The bits 5-3 Specify the source register & bits 2-0 usually identify source of data needed to execute the instruction. Internal Registers are identified as follows:-

Binary Code	Register	Binary Code	Register
000	В	110	M
001	С	111	A
010	D	00	В-С
011	E	01	D-E
100	Н	10	H-L
101	L	11	SP or PSW

8085 Instruction Set

	DATA	TRAN	SFER	INST	RUC	TION	S						
MOV R1, R2	Move	Data F	rom S	ourc	e Reg	g. To l	Destir	natio	n Re	g.			
	This instruction register		•					_			he		
	Bytes	1	T Sta	tes	4	Mach	nine Cy	cles		F			
	Flags Effected	S		Z		Ac	Ac P			CY			
	Opcode Format	0	1		D	D	D	S	;	S	S		
	Example	MOV A	.,В										
MOV R, M	Mov	e Data	From	Men	nory	To De	stinat	tion F	Reg.				
	This instruction copies the contents of the memory location pointer to by H-L pair to the register R. The contents of memory is not altered.												
	Bytes	1 T States 7 Machine Cycles F R											
	Flags Effected	S		Z		Ac		Р		CY			
	Opcode Format	0	1		S	S	S	1		1	0		
	Example	MOV B	,М										
MOV M, R2	М	Move Data From Source Reg. To Memory											
	This instruction copies the contents of the source register R2 into the destination register R1. The contents of source register are not altered.												
	Bytes	1 T States 7 Machine Cycles F W											
	Flags Effected	S		Z	_	AC		Р	CY				
	Opcode Format	0	1		1	1	0	S		S	S		
	Example	MOV N	1,B										
MVI R, 8-bit	Mov	e Imm	ediate	Ope	rand	to De	stinat	tion F	Reg.				
	This instru	action co	opies	8-bit c	lata by	yte into	the de	estina	tion r	egister	R.		
	Bytes	2	T Sta	tes	7	Mach	nine Cy	cles		FR			
	Flags Effected	S		Z		Ac		Р		CY			
	Opcode Format	0	0		S	S	S	1		1	0		
	Example	MVI A,	74h										
MVI M, 8-bit		Move I	mme	diate	Ope	rand t	o Men	nory					
	This instrupointed to by H-I					•	into the	e men	nory 1	ocatio	n		
	Bytes	2	T Sta	tes	10	Mach	nine Cy	cles		FRW	1		
	Flags Effected	S		Z		Ac		Р		CY			
	Opcode Format	0	0		1	1	0	1		1	0		
	Example	MVI M	,20h										

LXI RP,16-bit	Load	d Imme	dia	ate V	Nord	d in D	estin	ation	Reg.	Pair			
	This instrudata byte is taken								_			ne first	
	Bytes	3	T	State	es	10	Mach	ine Cy	cles		FR	R	
	Flags Effected	S			Z		Ac		Р	CY		,	
	Opcode Format	0		0		D	D	0	0		0	0	
	Example	LXI SP	XI SP, FFFFh										
LDAX RP		L	oa	d A	ccur	nulat	or Ind	lirect					
	This instruby Reg. Pair B-C		-						-	ation _J	point	ed to	
	Bytes	1 T States 7 Machine Cycles F R											
	Flags Effected	S Z Ac P CY											
	Opcode Format	0		0		D	D	0	0		1	0	
	Example	LDAB B											
LHLD adr	Load H-L Direct												
	Load the H-L Pair with contents of memory location whose address is specified as immediate operand.												
	Bytes	3	T	State	es	16	Mach	ine Cy	cles	F	RR	RR	
	Flags Effected	S			Z		Ac		Р		CY		
	Opcode Format	0		0		1	0	0	0		1	0	
	Example	LHLD 2	2000	0h									
LDA adr		I	Loa	ad A	\ccu	mula	tor Di	rect					
	Loads the immediate operar						ion wh	ose ad	ldress	is giv	en as	the	
	Bytes	3	T	State	es	13	Mach	ine Cy	cles	I	FRR	R	
	Flags Effected	S			Z		Ac		Р		CY		
	Opcode Format	0		0		1	1	0	0		1	0	
	Example	LDA 20)00ŀ	h									
STA adr		9	Sto	re A	Accu	mula	tor Di	irect					
	Stores the address is given a						o the n	nemor	y loca	tion w	hose		
	Bytes	3	T	State	es	13	Mach	ine Cy	cles	F	RR	W	
	Flags Effected	S			Z		Ac		Р		CY		
	Opcode Format	0		1		1	1	1	0		1	0	
	Example	STA 20	000r	h								· 	

STAX RP		S	tore A	ccu	mulat	tor Inc	direct	1					
	This instr							nulator	to the men	nory			
	Bytes	1	T Stat	es	7	Mach	nine Cy	ycles	F W				
	Flags Effected	S		Z		Ac		Р	CY				
	Opcode Format	0	0		D	D	1	0	1	0			
	Example	STAX)										
SHLD adr			S	tore	H-L C	Direct							
		Stores the contents of H-L Pair into the memory location whose address is specified as immediate operand.											
	Bytes	3 T States 16 Machine Cycles FRRWW											
	Flags Effected	S		Z		Ac		Р	CY				
	Opcode Format	0	0		1	0	1	0	1	0			
	Example	SHLD 2000h											
XCHG	Exchange D-E and H-L												
	Exchanges the contents of Reg. D with Reg. H and Reg. E with Reg. L.												
	Bytes	1	T Stat	es	4	Mach	nine Cy	ycles	F				
	Flags Effected	S		Z		Ac		Р	CY				
	Opcode Format	1	1		1	0	1	0	1	1			
	Example	XCHG											
	ARITHME	TIC AN						l					
ADD R						mulat							
	Add the c Accumulator and		•		_			tents o	of the				
	Bytes	1	T Stat	es	4	Mach	nine Cy	ycles	F				
	Flags Effected	S	•	Z	•	Ac	•	Р	• CY	•			
	Opcode Format	1	0		0	0	0	S	S	S			
	Example	ADD B											
ADD M		Ad	ld Mer	nory	To A	ccum	nulato	r					
	This instr Accumulator. The			•		•							
	Bytes	1	T Stat	es	7	Mach	nine Cy	ycles	FR				
	Flags Effected	S	•	Z	•	Ac	•	Р	• CY	•			
	Opcode Format	1	0		0	0	0	1	1	0			
	Example	ADD M											

ADI 8-bit		Add	Т	о Ас	cun	nulato	or, Im	media	te				
	Add the co					-			ntent	s of	the		
	Bytes	2	1	Γ Stat		4		nine Cy	cles		F		
	Flags Effected	S		•	Z	•	Ac	•	Р	•	CY	•	
	Opcode Format	1		1		0	0	0	1		1	0	
	Example	ADI 20	h		II.				11				
ADC R				Α	dd V	Vith C	arry						
		This instruction adds specified Reg. And the carry bit to the Accumulator. The result of addition is stored in the Accumulator.											
	Bytes	1 T States 4 Machine Cycles F											
	Flags Effected	S • Z • Ac • P • CY •											
	Opcode Format	1		0		0	0	1	S	;	S	S	
	Example	ADC C											
ADC M		Add With Carry											
	This instruction adds the carry bit and the memory location pointed to by H-L Pair to the Accumulator and store the result in the Accumulator.												
	Bytes	1	T	「Stat	es	7	Mach	nine Cy	cles		FR		
	Flags Effected	S		•	Z	•	Ac	•	Р	•	CY	•	
	Opcode Format	1		0		0	0	1	1		1	0	
	Example	ADC M											
ACI 8-bit		Δ	۱d	d W	ith C	arry l	mme	diate					
	This instru Accumulator and				•				iate o	pera	nd to th	ie	
	Bytes	2	T	「Stat	es	7	Mach	nine Cy	cles		FR		
	Flags Effected	S		•	Z	•	Ac	•	Р	•	CY	•	
	Opcode Format	1		1		0	0	1	1		1	0	
	Example	ACI 20	h										
SUB R		S	ul	btrac	ct wi	th Ac	cumu	ılator					
	Subtract the Accumulator and								ne coi	nten	ts of the	;	
	Bytes	1	T	Stat	es	4	Mach	nine Cy	cles		F		
	Flags Effected	S		•	Z	•	Ac	•	Р	•	CY	•	
	Opcode Format	1		0		0	1	0	S	;	S	S	
	<u> </u>	SUB B											

SUB M	Subtract with Memory												
	This instru Accumulator. The					-		•	-		the		
	Bytes	1	T	Stat	es	7	Mach	nine Cy	cles	FR			
	Flags Effected	S	•	•	Z	•	Ac	•	Р	•	CY	•	
	Opcode Format	1		0		0	1	0	1		1	0	
	Example	SUB M											
SUI 8-bit	;	Subtract Immediate with Accumulator											
	Subtracts Accumulator and								the co	ntent	s of the	e	
	Bytes	2 T States 7 Machine Cycles F R											
	Flags Effected	S • Z • Ac • P • CY •											
	Opcode Format	1 1 0 0 0 1 1 0											
	Example	SUI B											
SBB R		Subtract With Borrow											
	This instruction subtracts specified Reg. And the carry bit from the contents of Accumulator. The result of addition is stored in the Accumulator.												
	Bytes	1	Т	Stat	es	4	Mach	nine Cy	/cles		F		
	Flags Effected	S	•	•	Z	•	Ac	•	Р	•	CY	•	
	Opcode Format	1		0		0	0	1	S	1	S	S	
	Example	SBB C											
SBI 8-bit		Sub	tra	ict l	mme	diate	and	Borro	W				
	This instru Accumulator and					•			diate (opera	ınd to t	he	
	Bytes	2	Т	Stat	es	7	Mach	nine Cy	/cles		FR		
	Flags Effected	S	•	•	Z	•	Ac	•	Р	•	CY	•	
	Opcode Format	1		0		0	0	1	1		1	0	
	Example	SBI 201	h										
SBB M		Su	btr	ract	Mer	nory	and E	Borrov	N				
	This instrute to by H-L from the					•			•		-	inted	
	Bytes	1	Т	Stat	es	7	Mach	nine Cy	cles		FR		
	Flags Effected	S • Z			•	Ac	•	Р	•	CY	•		
	Opcode Format	1		1		0	0	1	1		1	0	
	Example	SBB M											

INR R				Inc	reme	ent Re	egiste	r					
	This instru	uction in	ncr	eme	nts th	e cont	ents of	f the sp	pecifie	ed re	gister	by	
	Bytes	1	Т	Stat	es	7	Mach	nine Cy	cles		FF	₹	
	Flags Effected	S		•	Z	•	Ac	•	Р	•	C	′	
	Opcode Format	0		0		S	S	S	1		0	0	
	Example	INR L											
INR M		Increment Memory											
		This instruction increments the contents of the memory location ointed by H-L pair by one.											
	Bytes	1 T States 10 Machine Cycles F R W											
	Flags Effected	S		•	Z	•	Ac	•	Р	•	C	/	
	Opcode Format	0		0		1	1	0	1		0	0	
	Example	INR M											
DCR R		Decrement Register											
	This instruction decrements the contents of the specified register by one.												
	Bytes	1	Т	Stat	es	4	Mach	nine Cy	cles		F		
	Flags Effected	S		•	Z	•	Ac	•	Р	•	C	,	
	Opcode Format	0		0		S	S	S	1		0	1	
	Example	DCR A											
DCR M				Dec	rem	ent M	lemor	у					
	This instruction This i				nts th	ne con	tents o	f the m	nemor	y lo	cation		
	Bytes	1	Т	Stat	es	10	Mach	nine Cy	cles		FR	W	
	Flags Effected	S		•	Z	•	Ac	•	Р	•	C	<u> </u>	
	Opcode Format	0		0		1	1	0	1		0	1	
	Example	DCR M	1										
INX RP			ln	crei	ment	Regi	ister F	Pair					
	This instr	uction ir	ıcr	eme	nts th	e spec	ified r	egister	pair v	with	one.		
	Bytes	1	1 T States				Mach	nine Cy	cles		S		
	Flags Effected	S	Z			Ac		Р		C	′		
	Opcode Format	0	0 0 S					0	0		1	1	
	Example	INX H				•							

DCX RP	Decrement Register Pair												
	This instr	action d	ecr	eme	nts th	e spec	cified r	register	pair	with	one.		
	Bytes	1	Т	Stat	es	6	Mach	nine Cyc	cles	S			
	Flags Effected	S			Z		Ac		Р		CY		
	Opcode Format	0		0		S	S	S	1		0	0	
	Example	DCX H	CX H										
ANA R		And	A k	ccu	mul	ator v	with R	Registe	er				
	This instruction performs Bitwise AND of Accumulator with specified Reg. And stores result in Accumulator												
	Bytes	1 T States 7 Machine Cycles F											
	Flags Effected	S • Z • Ac 1 P • CY 0											
	Opcode Format	1 0 1 0 0 S S S											
	Example	ANA B											
ANA M	And Accumulator with Memory												
	Instructs 8085 to perform logical AND operation of Accumulator with that of memory pointer to by H-L pair.												
	Bytes	1 T States 7 Machine Cycles F R											
	Flags Effected	S	,	•	Z	•	Ac	1	Р	•	CY	0	
	Opcode Format	1		0		1	0	0	1		1	0	
	Example	ANA M											
ANI 8-bit		And	Αc	cur	nula	tor w	ith Im	media	te				
	Instructs 8 the immediate op				_							with	
	Bytes	2	Т	Stat	es	7	Mach	nine Cyc	cles		FR		
	Flags Effected	S		•	Z	•	Ac	1	Р	•	CY	0	
	Opcode Format	1		1		1	0	0	1		1	0	
	Example	ANI 08	h										
XRA R		XOF	₹ 4	λοςι	ımul	ator v	with F	Registe	er				
	This instru Reg. And stores r						OR of	Accum	nulato	or wi	th spec	ified	
	Bytes	1	Т	Stat	es	4	Mach	nine Cyc	cles		F		
	Flags Effected	S	6 • Z			•	Ac	0	Р	•	CY	0	
	Opcode Format	1		0		1	0	1	S		S	S	
	Example	XRA B											

XRA M	XOR Accumulator with Memory											
	Instructs 8 that of memory p	_	•		_		OR ope	eration	of Ac	ecum	ulator	with
	Bytes	1	T S	Stat	es	7	Mach	nine Cy	cles		FR	
	Flags Effected	S	•		Z	•	Ac	0	Р	•	CY	0
	Opcode Format	1		0		1	0	1	S		S	S
	Example	XRA M										
XRI 8-bit		XOR	Ac	cui	mula	tor w	ith Im	nmedi	ate			
	Instructs 8 the immediate op				_		-					with
	Bytes	2	T S	Stat	es	7	Mach	nine Cy	/cles		F	
	Flags Effected	S	•		Z	•	Ac	0	Р	•	CY	0
	Opcode Format	1		1		1	0	1	1		1	0
	Example	XRI 901	h									
ORA R		OR	Ac	cu	mula	ator w	vith R	egiste	er			
		struction performs Bitwise OR of Accumulator with specified s result in Accumulator										
	Bytes	1	T S	Stat	es	7	Mach	nine Cy	cles		FR	
	Flags Effected	S	•		Z	•	Ac	0	Р	•	CY	0
	Opcode Format	1		0		1	1	0	S		S	S
	Example	ORA A										
ORA M		OR	Ac	cu	mula	ator v	vith M	lemor	У			
	Instructs 8 that of memory p	_			_		R opera	ation c	of Acc	umu	lator w	ith
	Bytes	1	T S	Stat	es	7	Mach	nine Cy	cles		FR	
	Flags Effected	S	•		Z	•	Ac	0	Р	•	CY	0
	Opcode Format	1		0		1	1	0	S		S	S
	Example	ORA M	1									
ORI 8-bit		OR A	Acc	un	nulat	tor wi	ith Im	media	ate			
		ets 8085 to perform logical OR operation of Accumulator with e operand and to store the result back in Accumulator										
	Bytes	2	TS	Stat	es	4	Mach	nine Cy	cles		F	
	Flags Effected	S	•		Z	•	Ac	0	Р	•	CY	0
	Opcode Format	1		1		1	0	1	1		1	0
	Example	ORI 03	h									

CMP R	Compare Accumulator with Register										
	Subtract ti	he conte	nts of	destir	nation	registe	er from	the A	ccun	nulator	but
	the result is disca					_					
	Bytes	1	T Sta	ites	4	Mach	nine Cy	cles		F	
	Flags Effected	S	•	Z	•	Ac	•	Р	•	CY	•
	Opcode Format	1	0		1	1	1	S		S	S
	Example	CMP B									
CMP M		Comp	are A	ccun	nulat	or wit	h Mer	nory			
	Compares location pointed t				umula	tor wit	h cont	ents o	f mei	mory	
	Bytes	1	T Sta	ites	7	Mach	nine Cy	cles		FR	
	Flags Effected	S	•	Z	•	Ac	•	Р	•	CY	•
	Opcode Format	1	0		1	1	1	1		1	0
	Example	CMP N	1								
CPI 8-bit	(Compa	re Ac	cum	ulato	r with	Imme	ediate	•		
	Instructs 8085 to compare the contents of Accumulator with the immediate operand.										
	Bytes	1	T Sta	ites	7	Mach	nine Cy	cles		FR	
	Flags Effected	S	•	Z	•	Ac	•	Р	•	CY	•
	Opcode Format	1	1		1	1	1	1		1	0
	Example	CPI 08	h								
DAD RP			Doub	ole A	dd To	H-L F	Pair				
	Add the sy	pecified	Reg.	Pair to	the F	I-L Pai	ir and 1	the res	ult is	stored	in
	Bytes	1	T Sta	ites	10	Mach	nine Cy	cles		FBB	
	Flags Effected	S		Z		Ac		Р		CY	
	Opcode Format	0	0		S	S	1	0		0	1
	Example	DAD H									
RAL	F	Rotate /	4ccui	mulat	tor Le	eft Thr	ough	Carr	y		
		fers each bit of Accumulator to its adjacent higher bit. The LSB is entents of Carry Flag and MSB transferred to Carry flag.									
	Bytes	1	T Sta	ites	4	Mach	nine Cy	cles		F	
	Flags Effected	S	•	Z	•	Ac	•	Р	•	CY	•
	Opcode Format	0	0		0	1	0	1		1	1
	Example	RAL	•	ı	•		•	•		•	

RAR	Rotate Accumulator Right Through Carry										
	Transfers filled with conten								bit. The MS y flag.	SB is	
	Bytes	1	T Sta	tes	4	Mach	nine Cy	cles	F		
	Flags Effected	S		Z		Ac		Р	CY	•	
	Opcode Format	0	0		0	1	1	1	1	1	
	Example	RAR	•		•						
RLC		Rotat	е Асс	umu	lator	Left w	vith Ca	arry			
	Transfers filled with conten							_	r bit. The LS	SB is	
	Bytes	1	T Sta	tes	4	Mach	nine Cy	cles	F		
	Flags Effected	S		Z		Ac		Р	CY	•	
	Opcode Format	0	0		0	0	0	1	1	1	
	Example	RLC									
RRC		Rotate	Accı	ımula	ator F	Right	with C	arry			
		Transfers each bit of Accumulator to its adjacent lower bit. The MSB is illed with contents of LSB and LSB copied to Carry flag.									
	Bytes	1	T Sta	tes	4	Mach	nine Cy	cles	F		
	Flags Effected	S		Z		Ac		Р	CY	•	
	Opcode Format	0	0		0	0	1	1	1	1	
	Example	RRC									
JMP adr	BRANC	HCON									
JIVIP AUI	Transfers next instruction is		ents o	f imm	ediate		nd to th	ne PC	register and	the	
	Bytes	3	T Sta	tes	12	Mach	nine Cy	cles	SRR		
	Flags Effected	S		Z		Ac		Р	CY		
	Opcode Format	1	1		0	0	0	0	1	1	
	Example	JMP 20	000h								
J[con] adr.	С	onditio	onal J	ump	to Im	media	ate Ad	ldres	S		
		This instruction tests the flag specified as opcode suffix and if the ed condition is met than the jump is performed.									
	Bytes	3	T Sta	tes	12	Mach	nine Cy	cles	SRR		
	Flags Effected	S		Z		Ac		Р	CY		
	Opcode Format	1	1		С	С	С	0	1	0	
	Example	JPO 20	00h								

	Call Subroutine											
	Pushes the	e conten	ts	of PC	c regi	ster i	nto the	stack a	and tra	ansfe	rs the	
_	immediate operar	d to the	P	C reg	ister.							
	Bytes	3	Т	State	es	18	Mach	nine Cy	cles	S	RRV	V W
	Flags Effected	S			Z		Ac		Р		CY	
_	Opcode Format	1		1		0	0	1	1		0	1
	Example	CALL 2	200	00h								
C[con] adr.		Co	nd	litior	nal C	all to	Subi	routin	е			
	This instru specified condition				_	-		-	suffix	x and	if the	
	Bytes	3	Т	State	es	18	Mach	nine Cy	cles	S	RRV	٧W
	Flags Effected	S			Z		Ac		Р		CY	
	Opcode Format	1		1		С	С	С	1		0	0
	Example	CPO 20	00ľ	า								
RET			Re	eturi	n fro	m Sı	ıbrout	tine				
		Pops the stack in the PC register into the stack and the next operand is etched from the new location.										
	Bytes	1	Т	State	es	12	Mach	nine Cy	cles		SRF	₹
	Flags Effected	S			Z		Ac		Р		CY	
_	Opcode Format	1		1		0	0	1	0		0	1
	Example	RET										
R[con]		Co	nd	litior	nal C	all to	Subi	routin	е			
	This instruspecified condition				_	-		-			if the	
	Bytes	1	Т	State	es	12	Mach	nine Cy	cles		SRF	₹
	Flags Effected	S			Z		Ac		Р		CY	
	Opcode Format	1		1		С	С	С	0		0	0
	Example	RM										
PCHL				Tr	ansi	fer To	o H-L					
	Performs	Performs an Unconditional Jump to the address pointed to by H-L Pair.										
	Bytes	1	T	State	es	6	Mach	nine Cy	cles		S	
	Flags Effected	S			Z		Ac		Р		CY	
	Opcode Format	1		1		1	0	1	0		0	1
	Example	PCHL										

	I/O AND MA	CHINE	CON	TRO	L INS	TRUC	TION	S			
PUSH RP				Push	to S	tack					
	Transfers	the cont	tents s	pecifie	ed pair	to the	top of	the s	tack	and th	e SP is
	decremented by t	wo. SP	cannot	be sp	ecifie	d as the	e opera	nd			
	Bytes	1	T Sta	tes	10	Mach	nine Cy	cles		F W	W
	Flags Effected	S		Z		Ac		Р		CY	,
	Opcode Format	1	1		S	S	0	1		0	1
	Example	PUSH	В								
POP RP			F	op fi	rom S	tack					
	Transfers the con and SP is increme										pair
	Bytes	1	T Sta	tes	10	Mach	nine Cy	cles		FR	R
	Flags Effected	S		Z		Ac		Р		CY	,
	Opcode Format	1	1		S	S	0	0)	0	1
	Example	POP C						•	•		
PUSH PSW	Push Program Status to Stack										
	Pushes contents Accumulator and Flag Reg.'s into the stack.										
	Bytes	1	T Sta	tes	10	Mach	nine Cy	cles		FW	W
	Flags Effected	S		Z		Ac		Р		CY	,
	Opcode Format	1	1		1	1	0	1		0	1
	Example	PUSH	PSW								
POP PSW			F	op fi	rom S	tack					
	Pops the contents	of the s	stack in	nto the	e Accu	mulato	or and 1	the Fl	lag r	egister	S.
	Bytes	1	T Sta	tes	10	Mach	nine Cy	cles		FR	R
	Flags Effected	S		Z		Ac		Р		CY	,
	Opcode Format	1	1		S	S	0	0)	0	1
	Example	POP P	SW								
XTHL		Ex	chan	ge St	ack T	op wi	ith H-L	-			
	Exchanges the contents of the top of the stack with the contents of the H-L pair.										
	Bytes	1	T Sta	tes	16	Mach	nine Cy	cles		FRR	W W
	Flags Effected	S		Z		Ac		Р		CY	,
ļ.	i lago Elicotca										
	Opcode Format	1	1		S	S	0	0)	0	1

SPHL	Transfer H-L To SP										
	Transfers	the cont	ents c	f Reg	. Pair l	H-L to	SP.				
	Bytes	1	T Sta	ates	6	Mach	nine Cy	cles		S	
	Flags Effected	S		Z		Ac		Р		CY	
	Opcode Format	1	1		1	1	1	0		0	1
	Example	SPHL									
OUT 8-bit				Outp	ut To	Port					
	Transfers immediate operar		ents c	of Acc	umula	tor to t	he port	speci	ified	as	
	Bytes	2	T Sta	ates	10	Mach	nine Cy	cles		FRC)
	Flags Effected	S		Z		Ac		Р		CY	
	Opcode Format	1	1		S	S	0	0		0	1
	Example	OUT 20)h								
IN 8-bit			I	nput	From	Port					
	Receives a data b	Receives a data byte from specified port and copies it to the Accumulator.									
	Bytes	2	T Sta	ites	10	Mach	nine Cy	cles		FRI	
	Flags Effected	S		Z		Ac		Р		CY	
	Opcode Format	1	1		0	1	1	0		1	1
	Example	IN 40h									
DI			D	isabl	e Inte	rrupts	5				
	Disables a	ıll the in	terrup	ts exc	ept the	e TRA	P interi	rupt.			
	Bytes	1	T Sta	ates	4	Mach	nine Cy	cles		F	
	Flags Effected	S		Z		Ac		Р		CY	
	Opcode Format	1	1		S	S	0	0		0	1
	Example	DI									
El			E	Enabl	e Inte	rrupt					
	Re-enable specified.	nables the interrupts and reinforces the previous interrupt mask									
	Bytes	1	T Sta	ates	4	Mach	nine Cy	cles		F	
	Flags Effected	S		Z		Ac		Р		CY	
	Opcode Format	1	1		S	S	0	0		0	1
	Example	El					·			<u>'</u>	

NOP	No Operation												
	Inserts a V	Wait Sta	te	in cu	ırrent	Mac	hi	ne Cy	cle.				
	Bytes	1	Т	Stat	es	4		Mach	ine Cy	cles		F	
	Flags Effected	S			Z			Ac		Р		CY	
	Opcode Format	0		0		0		0	0	0		0	0
	Example	NOP											
HLT					H	IAL1	Γ						
	Instructs 8 interrupted extern		ent	ter in	ito ha	lted s	sta	ite wh	ere it	waits ı	ıntil	it is	
	Bytes	1	T	Stat	es	5		Mach	ine Cy	cles		FΒ	
	Flags Effected	S			Z		T	Ac		Р		CY	
	Opcode Format	0		1		1		1	0	1		1	0
	Example	HLT			·								
RIM				Rea	d Int	erru	ıpt	t Mas	k				
	Reads the	Reads the current interrupt mask and stores it into Accumulator.											
	Bytes	1	Т	Stat	es	4		Mach	ine Cy	cles		F	
	Flags Effected	S			Z			Ac		Р		CY	
	Opcode Format	0		0		1		0	0	0		0	0
	Example	RIM											
SIM				Se	t Inte	rrup	ot	Mask	<				
	Sets the ir	nterrupt :	ma	ask to	o that	spec	ifi	ied by	the A	ccumı	ılato	r.	
	Bytes	1	Т	Stat	es	4		Mach	ine Cy	cles		F	
	Flags Effected	S			Z			Ac		Р		CY	
	Opcode Format	0		0		1		1	0	0		0	0
	Example	SIM											
RST [n]					Res	tart /	Αt	: N					
	Performs location determin	ms a software Reset such that the control is transferred to mined as 8*n.											
	Bytes	1	Т	Stat	es	12		Mach	ine Cy	cles		SWV	/
	Flags Effected	S			Z			Ac		Р		CY	
	Opcode Format	1		1		N		N	N	1		1	1
	Example	RST 2			•							•	

DAA	Decimal Adjust Accumulator										
	Changes t Auxiliary Flag is								BCD	digits.	Sets
	Bytes	1	T Sta	tes	4	Mach	ine Cy	cles		F	
	Flags Effected	S	•	Z	•	Ac	•	Р	•	CY	•
	Opcode Format	0	0		1	0	0	1		1	1
	Example	DAA									
CMA		C	Compl	leme	nt Ac	cumu	lator				
	Calculates stores it in the Ac		-	lemei	nt of th	ne cont	ents of	f the A	Accui	nulatoı	and
	Bytes	1	T Sta	tes	4	Mach	ine Cy	cles		F	
	Flags Effected	S		Z		Ac		Р		CY	
	Opcode Format	0	0		1	0	1	1		1	1
	Example	CMA									
STC			•	JEL C	arry	ıay					
	Sets the C	Carry Fla	g in th		gs Reg	ister.					
	Sets the C	Carry Fla	g in th	e Flag	gs Reg		nine Cy	cles		F	
		<u> </u>		e Flag			ine Cy	rcles		F CY	1
	Bytes	1		tes		Mach	nine Cy				1
	Bytes Flags Effected	1 S	T Sta	tes	4	Mach Ac		Р		CY	1
СМС	Bytes Flags Effected Opcode Format	1 S 0	T Sta	tes	1	Mach Ac	0	Р		CY	1
СМС	Bytes Flags Effected Opcode Format	1 S 0 STC	T Sta	tes Z	1 ent C	Mach Ac 1	0 lag	P 1		CY	1
СМС	Bytes Flags Effected Opcode Format Example	1 S 0 STC	T Sta	tes Z plemery Fla	1 ent C	Ac 1 arry F	0 lag	P 1		CY	1
СМС	Bytes Flags Effected Opcode Format Example Inverts the	1 S O STC	T Sta 0 Compose Carr	tes Z plemery Fla	1 ent C	Ac 1 arry F	0 Flag s Regi	P 1		CY 1	1
СМС	Bytes Flags Effected Opcode Format Example Inverts the	1 S O STC	T Sta 0 Compose Carr	tes Z plem ry Fla tes Z	1 ent C	Mach	0 Flag s Regi	P 1		CY 1	1
СМС	Bytes Flags Effected Opcode Format Example Inverts the Bytes Flags Effected	1 S O STC	T Sta 0 Compose Carre	tes Z plem ry Fla tes Z	1 ent C g in th	Mach Ac 1 arry F ae Flag Mach Ac	0 0 S Regi	P 1 1 ster.		CY 1 F CY	1

Macl	nine Cycles	Cod	es (S S S) or (D D D)	Condition	nal Codes (C C C	C)
F	Fetch with 4 T-States	DDI	D: Destination I	Registe	r	NZ	Zero =0	000
S	Fetch with 6 T-States	SSS	: Source Regist	er		Z	Zero =1	001
R	Read With 3 T-States	В	000	Α	111	NC	Carry = 0	010
W	Write with 3 T-States	C	001	BC	00	C	Carry =1	011
I	I/O Read with 3 T-States	D	010	DE	01	PO	Parity =0	100
O	I/O Write with 3 T-States	E	011	HL	10	PE	Parity =1	101
В	Bus Ideal With 3 T-States	Н	100	SP	11	P	Sign =0	110
		L	101			M	Sign =1	111

Honey We Made It...

16-Bit Register Left Rotation

Objective

To implement routines to perform 16-bit rotation to the left and right of H-L Register. Takes input as a 16-bit number in Register Pair H-L and number of times the rotation is to be performed in register C.

Statistics

Code Size	20 Bytes
T-State Count	108
Execution Time	54 x 10 ⁻⁶ sec @ 2.0 MHz

Code	[16bit	rotation.asm	n]	Inp	ut								
0000	21010	0 lxi h,1	;load data in HL	Α			В		D			Н	12
0003	0E22	mvi c,22h	;rotate to left 34 ;times	F			С	01	Е			L	34
0005 0006 0007 000A 000B	0C 0D CA190 7D 37	mov a,I; copy 1stc;	; exit if count is zero I to acc	S		Z		A		P		С	
000C 000D 000E 000F 0010 0011 0012 0014	3F 17 6F 7C 17 67 3E00 8D	ral ;rotate mov l,a ;copy mov a,h;now v ral ;rotate mov h,a;copy mvi a,	vork on contents of h through cary contents back to h										
0015 0016	6F C3060	mov I,a ;mov t		Ou	tpu	t							
0019	76	exit: hlt	- p, , - : , - : - : - : - : -	Α	68	8	В		D			Н	24
				F	4	4	С	00	Е			L	68
				S	0	Z	1	Α	0	Р	1	S	0

16-Bit Register Right Rotation

Objective

To implement routines to perform 16-bit rotation to the right of H-L Register. Takes input as a 16-bit number in Register Pair H-L and number of times the rotation is to be performed in register C.

Statistics

Code Size	27
T-State Count	112
Execution Time	56 x 10 ⁻⁶ sec @ 2.0 MHz

Program [16bitrotationr.asm] Input 12 Α В D Η 0000 213412 lxi h,1234h ;load data in HL F 34 0003 0E01 mvi c,1h;rotate to right 34 times С 01 Ε L S Ζ Α S 0005 0C inr c loop: 0006 0D dcr c

0007 CA1A00	jz exit	; exit if count is zero
000A 7C	mov a,ł	ı; copy I to acc
000B 37	stc;	•
000C 3F	cmc	;set carry flag to zero
000D 1F	rar	rotate acc left 1-bit;
000E 67	mov h,a	a;copy back to I
000F 7D	mov a,l	;now work on contents of h
0010 1F	rar	rotate through cary;
0011 6F	mov I,a	;copy contents back to h
0012 3E00	mvi a,0	
0014 1F	rar	;rotate acc and send cary bit
		;to the MSB
0015 B4	ora h	or I with cary in acc
0016 67	mov h,a	;mov this to I
0017 C30600	jmp loo	p ;cary on the loop
001A 76	exit: hlt	
.***********	******	******
·*************************************	******	*****

Output													
Α	09	9	E	3		D				Н	9		
F	44	4	(2	00	Е			L		1A		
S	0	Z		1	Α	0	Р	1	I	S	0		

Simulation of Integer Addition

Objective

To implement a program to simulate Integer Addition on 8085 using only the logical bitwise and shift innstructions. This program was writtern to implemented this algorithm. The algorithm utilizes recursion to perform the task. So a recursice procedure in also implemented.

Statistics

0015 C9

Code Size	21 Bytes
T-State Count	127
Execution Time	63 x 10 ⁻⁶ sec @ 2.0 MHz

Input Program [vaiadd.asm] В 10 Н Α D ;Addtion Without Add Instruction F С L EE Ε ;implements a new Addition Algorithm S Ζ Ρ S Α ;discovered by Vaibhav Jain ;(c) Vaibhav Jain

0000 0610 mvi b,10h ;add operand1 0002 0EEE mvi c,eeh ;add operand2 0004 CD0800 call AddBC ;addtion result is in B 0007 76 hlt ; result is B=8B AddBC: 0008 79 mov a,c;copy c to acc 0009 B7 ora a ;is c=zero 000A C8 ;is zero than return 000B A0 ana b ;bit wise And to b 000C 07 ;rotate it to left 000D 57 mov d,a;save result in d 000E 79 mov a,c;copy C to a 000F A8 xra b ; bitwise Xor it to B 0010 47 mov b,a;save result in B 0011 4A mov c,d;copy And+Rot result to c 0012 CD0800call AddBC ;call it recursively

Ou	tput	t										
Α	00	0		В	FE	D	00)		Н	(00
F	44	4	(C	00	Е	00	0 L		(00	
S	0	Z	, -	1	Α	0	Р	1	I S			0

Reversal of an Array

Objective

To implement a program to reverse a given array. Input is taken as length of array in Register C and address of array in H-L pair.

Statistics	
Code Size	17 Bytes
T-State Count	636
Execution Time	318 x 10 ⁻⁶ sec @ 2.0 MHz

1-State Count	050					-					
Execution Time	318 x 10 ⁻⁶ sec @ 2.0 MHz										
Program [arrı	reverse.asm]	Inp	ut								
		Α			В		D			Н	20
;program to rever ;input h-l address	s of array	F S		Z	С	16	E	P		L	00
;c: count of no. of				_		Men					
	xi h,2000	2	000		01	02		03	04	1	05
0003 0E08 n	nvi c,8	2	005		06	07	7	08	09)	0A
	nov d,h	2	00A		0B	00	C	0D	01	3	0F
	nov e,l nov b,c	2	00F		10	11		12	13	3	14
0008 7E	oop1: mov a,m		014		15	16	5	17	18	3	19
0009 F5 000A 23	push psw inx h		019		1A	1 E		1C	1I)	1E
000A 23 000B 0D	der e	2	01E		00	00)	00	00)	00
000C C20800	jnz loop1										
		Ou	tput	t							
0010 12	oop2: pop psw stax d	Α	00	0	В	0	D	20	0	Н	20
0011 13 0012 05	inx d dcr b	F	44	4	С	00	Е	10	6	L	16
0013 C20F00 0016 76 h	jnz loop2 nlt	S	0	Z	<u> </u>	Α	0	Р	1	S	0
·*************************************	******					Men	nory		•		
,	***************	2	000		15	14	1	13	12	2	11
		2	005		10	OF	7	0E	01)	0C
			00A		0B	0.4	1	09	08	3	07
			00F		06	05		04	03		02
			014		01	16		17	18		19
			019		1A	1E		1C	11	-	1E
		2	01E		00	00)	00	00)	00

20

Maximum & Minimum of an Array

Objective

To implement a program to reverse a find the maximum and the minimum elements of a given array. Input is taken as length of array in Register C and address of array in H-L pair. The monimum element found is stored in register B and minimum element in register D.

Statistics

Code Size	33 Bytes
T-State Count	1149
Execution Time	574 x 10 ⁻⁶ sec @ 2.0 MHz

Program [arrmaxmin.asm]

;get max & min elements of the given array

0000 21D007 | xi h,2000 ; address of array 0003 0E0F mvi c,F ; no. of elements 0005 AF xra a 0006 B1 ora c 0007 CA2100 | jz exit 000A 7F mov a m

0007 CA2100 jz exit 000A 7E mov a,m 000B 46 mov b,m 000C 23 loop: inx h 000D 0D

 000D 0D
 dcr c

 000E CA2100
 jz exit

 0011 BE
 cmp m

 0012 D21600
 jnc jmp2

 0015 7E
 mov a,m

 0016 57
 jmp2:
 mov d,a

 0017 78
 mov a,b

 0018 BE
 cmp m

 0019 DA1D00
 jc loopout

 001C 46
 mov b,m

001D 7A loopout:mov a,d

001E C30C00 jmp loop 0021 76 exit: hlt

Inp	ut			
Α		В	D	Н

F			(C	0F		Ε				L	00
S		Z			Α			Р			S	
	Memory											

Wichioty													
2000	0F	0E	0D	0C	0B								
2005	0A	09	08	07	06								
200A	05	04	03	02	01								
200F	00	00	00	00	00								
2014	00	00	00	00	00								
2019	00	00	00	00	00								
201E	00	00	00	00	00								

Output

Α	0F			В	01	D		0F	- Н		20
F	44	1		O	00	Е		00		L	
S	0	Z	<u> </u>	1	Α	0	Ρ		1	S	0

Memory												
2000	0F	0E	0D	0C	0B							
2005	0A	09	08	07	06							
200A	05	04	03	02	01							
200F	00	00	00	00	00							
2014	00	00	00	00	00							
2019	00	00	00	00	00							
201E	00	00	00	00	00							

Addition of Two Arrays

Objective

To implement a program to add two bounded arrays element by element into a third bounded array. Input is given as address of first source array in H-L, second source array in D-E and the destination bounded array in B-C.

StatisticsCode Size47 BytesT-State Count551

Execution Time 275x 10 ⁻⁶ sec @ 2.0 MHz														
Program [addarrays.asm] Input														
;adding two arrays element by element into an ;another array				Α			В	20	D	20	H	1	20	
,	xi h,2000;source bounded array1						С	0B	Е	06	L	_	00	
	lxi d,3000	S		Z		Α		Р	<u> </u>	S				
			nation bounded array	3										
	push h ;	Memory												
	mov h,d;	nov n,ɑ; nov l,e ;load address of arr2 in h-l					09	09)	08	07	07 0		
		mov d,b; mov e,c;load add of dest. arr in d-e					05	04		03	02		01	
							04	01		02	03		04	
	mov a,m						00	00		00	00	-	00	
000F E3	xthl	3005												
	mov b,m ;load count of arr1				4000		04	0A	١ (0A	0A		0A	
	cmp m ;				4005		00	00)	00	00		00	
		c condition1					00	00)	00	00		00	
0015 78 0016 4F condition	mov a,b	200	a;load the counter					1						
			count in dest.arr											
0018 13	,	·												
	,	,												
001A E3	xthl ;	Α	0/	4	В	09	D	40	F	1	20			
			nent to storage area	F	44		_	00		0.5			0.5	
	,	,					С	00	Е	05	L	-	05	
		dcr c		S	0	Ζ	1	Α	0	Р	1	S	0	
	jz exit		. ma mainta ta anno	_								_		
	mov a,m	•						Memory						
		m nov	w points to arr1	2000			09	09)	80	07		06	
			element to arr2	2005			05	04		03		02 01		
			oointer to arr1	3000			04	01		02		03 04		
	stax d ;	store t	he sum in d.b array	3005			00	00		00		00 00		
			w p->dest.array					+						
	- ,	,			4000		04	0A	_	0A	0A		0A	
	jmp loop	•		4	4005		00	00)	00	00		00	
	exit: p	oop h	clean the stack	1	400A		00	00		00		00 00		
UUZIJ 70	hlt			-	00/(00	00	'	00	UU			
.********	hlt ******	*****	*****	7	00/1		- 00	1 00		00	00			
	******			4	0071		- 00	1 00		00	00			

20

00

20

Hexadecimal to Binary Conversion

Objective

To implement a program to convert a hex-decimal number to an equivalent Binary ASCII Character string. Input is taken in the form of hex-decimal number in register A and the address of storage in H-L where the string is to be placed.

Statistics

Code Size	23 Bytes
T-State Count	464
Execution Time	232 x 10 ⁻⁶ sec @ 2.0 MHz

Program [hextobin.asm]

;hexa decimal to binary conversion ;converts a given byte in an ascii-z

;binary character string

0000 3E34 mvi a,34h;convert it into binary 0002 210020 lxi h,2000h;store it at address

.*******

0005 47	mov b,a; save j	param in B						
0006 0E08	mvi c,8h	;load counter in C						
0008 78	loop: mov a,b	get rotated number						
0009 07	rlc	;rotate Acc left						
000A 47	mov b,a	;save num in B						
000B 3E00	mvi a,0 ;set Ac	c to zero						
000D CE30	aci 30h ; Ascii '	0'=30h & '1'=31h						
000F 77	mov m,a;save t	the Bit in memory						
0010 23	inx h ;To nex	kt memory location						
0011 0D	dcr c	;decrement count						
0012 C20800	jnz loop;contine	ue loop						
0015 3600 ex	kit: mvi m,0;end s	string with NULL char						
0017 76	hlt							
.*************************************	******	*****						
.********								

Input

34

В

С

S		Z		Α		Р		S	
	Memory								
2	000		00	00)	00	00)	00
2	005		00	00)	00	00)	00
20	00A		00	00)	00	00)	00
2	00F		00	00)	00	00)	00
2	2014		00	00)	00	00)	00
2	019		00	00)	00	00)	00
2	01E		00	00)	00	00)	00

D

Ε

Output

30

F	44		С	;	00	Е	00	00			30	3		
S	0	Z		1	Α	0	Р	P 1		P 1		S	C)
	Memory													
20	000			'0'	,0	,	'1'		' 1	,	'0	,		
20	2005			'0'	'0	,	'0'		00)	00	0		
20	00A			00	00)	00		00	00		0		
20	00F			00	00)	00		00)	00	0		
20	2014			00	00)	00		00)	00	0		
20	019			00	00)	00		00)	00	0		
20)1E			00	00)	00		00		00	0		

D

00

16-Bit Register Left Shifting

Objective

To implement routines to perform 16-bit shift to the left of H-L Register. Takes input as a 16-bit number in Register Pair H-L and number of times the rotation is to be performed in register C.

Statistics								
Code Size	18 Bytes							
T-State Count	111							
Execution Time	55 x 10 ⁻⁶ sec @ 2.0 MHz							

Execution Time	55 x 10 ⁻⁶ sec @ 2.0 MHz											
Program [16b	itshift.asm]	Input										
;16 bit arithmetic	shifting to left	Α			В		D		Н	12		
;shifts register h-l	left by 1 bit a time	F			С	02	Е		L	34		
;(c) Vaibhav Jain ;date:9/4/04		S		Z		Α		Р	S			
	xi h,1234H; load data in H-L pair nvi c,2h; load count in c											
	pop: stc ; set the carry flag											
	mc ; this sets carry it to zero nov a,l; copy lower 8 bits of data											
	al ; rotate accumulator left trough											
;0	carry											
	nov I,a; copy back the contents to I											
	mov a,h;copy upper 8 bits al ; rotate it through carry											
	nov h,a; copy back the contents											
;****Shift is comp		Qu	tou	t								
	lcr c	Output										
	nz loop	Α	4	8	В		D		Н	48		
0011 76 hlt; *** result is 18h ir	n H-L nair	F	4	4	С	00	Е		L	D0		
	*************	_					1					
.************	******	S	0	Z	<u> </u>	Α	0	Р	1 S	0		

16-Bit Register Right Shifting

Objective

To implement routines to perform 16-bit shift to the Right of H-L Register. Takes input as a 16-bit number in Register Pair H-L and number of times the rotation is to be performed in register C.

Statistics									
Code Size	18 Bytes								
T-State Count	111								
Execution Time	55 x 10 ⁻⁶ sec @ 2.0 MHz								

Execution Time		55 x	55 x 10 ⁻⁶ sec @ 2.0 MHz													
Program [16	bi	tshift	r.asm]			Input										
;16 bit arithmetic ;shifts register h-				ime		Α			В		D			Н	12	
;(c) Vaibhav Jair						F			С	02	Е			L	34	
0000 213412 xi h,1234h; load data in H-L pair 0003 0E02 mvi c,2h; load count in c 0005 37 oop: stc; set the carry flag 0006 3F cmc; this sets carry it to zero 0007 7C mov a,h; copy lower 8 bits of data 0008 1F rar; rotate accumulator left trough carry 0009 67 mov h,a; copy back the contents to I 000A 7D mov a,l;copy upper 8 bits 000B 1F rar; rotate it through carry 000C 6F mov l,a; copy back the contents ;****Shift is complete perform loop 00D 0D dcr c 000E C20500 jnz loop					g zero s of data ough carry ontents to I	S		Z		A		P		S		
0011 76 ;*** result is 18h		ո H-L բ		***		Output										
.************	***	*****	******	****		Α	18	0	В		D			Н	04	
						F	44	4	С	00	Ш			L	8D	
						S	0	Z	1	Α	0	Р	1	S	0	

Uppercase to Lowercase & vice-versa

Objective

To perform uppercase to lowercase conversion of an ASCII-Z string by implementing two different procedures for it. Input to these functions is given in the form of address of string in H-L Register pair.

Statistics								
Code Size	66 Bytes							
T-State Count	801							
Execution Time	400 x 10 ⁻⁶ sec @ 2.0 MHz							

Execution	on Time	400 x 10 ⁻⁶ sec @ 2.0 MHz										
Progra	am [u2	lcase.asm]	Input									
		owercase and vice-versa ring ;(c) Vaibhav Jain	Α			В		D			Н	20
;date: 1			F			С		Е			L	00
,0000	210020	lxi h,2000h	S		Z		Α		Р		S	
		call L2Ucase ;convert to lowercase lxi h,200Ah; address second string				(777	1	nory				(0)
0009	CD0D0	call U2Lcase ;convert to lowercase		2000 2005		'H'	'e		'l' 00		0	O,
	76	hlt		2003		'W'	,O		R'		1'	'D'
		case to Lowecase ;	2	200F		00	00)	00	0	0	00
Input : H-L= Address of ASCII-Z string				2014		00	00		00		0	00
U2Lcase 000D E		push h ;save h-l pair	2019 201E		00	00		00		0	00	
000E F5	5	push psw ;save acc and flags U2Lcase1: mov a,m ;get the char		UTE		00	00	<u>' </u>	00	U	0	00
0010 B7 0011 CA		ora a ;check if zero jz U2Lcase2 ;exit if zero		tput								
0014 FE		cpi 41h ;if >='A'(65) jc U2Lcase3	Α			В		D			H	20
			F			С		Е			L	70
0019 FE 001B D2		cpi 5Bh ;if >='['(91) inc U2Lcase3	S	0	Z	0	Α	0	Р	0	S	0
001E C	620	adi 20h ;convert to lcase					Men	nory				
		·		000		'H'	'E		'L'		L',	'O'
0020	77	mov m,a ;save char to memory U2Lcase3:		005 00A		00 'W'	O,		00 'R'		, L',	,D,
	23	inx h; move to next pos		00A 00F			00		00		0	00
0022	C30F00	jmp U2Lcase1;continue loop U2Lcase2:		014		00	00		00		0	00
	F1	pop psw ;restore acc and flags	2	019		00	00)	00		0	00
	E1 C9	pop h ;restore h-l pair ret	2	01E		00	00 00		00		0	00
;code co	ontinues											

Uppercase to Lowercase & vice-versa

```
Program [u2lcase.asm]
;Lowecase to Uppercase
;Input: H-L= Address of ASCII-Z string
L2Ucase:
0028 E5 push h
                       ;save h-l pair
0029 F5
            push psw
                       ;save acc and flags
            L2Ucase1:
002A 7E
            mov a,m
                        get the char
                        ;check if zero
002B B7 ora a
002C CA4000 jz L2Ucase2 ;exit if zero
002F FE61 cpi 61h ;if >='a'(97)
0031 DA3C00 jc L2Ucase3
0034 FE7B cpi 7Bh ;if >='{'(123)
0036 D23C00 jnc L2Ucase3
0039D620sui 20h;convert to Ucase003B77mov m,a;save char to memory003C23L2Ucase3:inx h ;move to next pos
003D C32A00 jmp L2Ucase1;continue loop
0040 F1 L2Ucase2: pop psw ;restore acc and flags
0041 E1
            pop h ;restore h-l pair
0042 C9
            ret
.
**************
,
.*******************
```

Length of an ASCII-Z String

Objective

To determine the length of an ASCII-Z string by implementing two different procedures for it. Input to this functions is given in the form of address of string in H-L Register pair. The length is returned in the Register C.

StatisticsCode Size23 BytesT-State Count837Execution Time418 x 10-6 sec @ 2.0 MHz

LACCUCIO		110 X 10 3CC	<u> </u>	1									
Progra	am [stı	len.asm]		Inp	ut								
;8085 im ;of C sta		ation of strlen()	unction	Α			В		D			Н	20
;date: 15	5/4/04	rary		F			С		Е			L	00
;******* 0000		xi h.2000h :load	address of string	S		Z		Α		Р	S		
0003		call Strlen ;	addition of the second					Men	nory				
0006	76	nlt ;		2	2000		'A'	'B	,	·C'	'D	,	'E'
· .************************************			2	2005		'E'	'F	,	·G'	'H	,	'I'	
Strien:			2	200A		ʻJ'	'K		'L'	'M	['	'N'	
Calculates length of an Ascii-Z string ;Input: H-L: Adress of string				200F		'O'	'P	,	·Q'	'R		00	
;Modifies: C: length of array, Flags				2014		00	00		00	00		00	
0007 F5 Strlen: push psw ;save acc and flags			:save acc and flags	2019		00	00		00		00		
8000		oush h ;save h-l		201E 00 00 00 00 0							00		
0009 0E00 mvi c,0h ;set c to zero													
			a,m ;get the char	Ou	tput	t .							
		ora a ; check if z	eck if zero	Α	00)	В		D			Н	20
000D	CA1500	jz Strlenout; exit if zero	F	00)	С	15	Е			L	00	
		nr c ;incr counte nx h ;to next cha		S	0	Z	0	Α	0	Р	0	S	0
			•					Men	nory				
0012	C30B00	Jmp Strie	enloop; do the loop	2	000		Ϋ́A'	'B	,	·C'	'D	,	'E'
			restore H-L pair		005		'E'	'F		G'	'H	,	ʻI'
		oop psw ;restore et ;Job done By	•		00A		'J'	'K		'L'	'M		'N'
.*******	******	*****	****		00F		,O,	'P		Q'	'R	-	00
**************************************	******	******	*****		014 019		00	00		00	00		00
					019 01E		00 00				00		00
							00	1 00	,	00	00	,	00
				<u> </u>									

20 00

Implementing Strcpy() Function

Objective

Implementation of function strepy in 8085 assembly language. Assuming all strings to be already allocated, and that the strings do not overlap. Address of source array is stored in H-L Pair and Destination is D-E Pair.

Statistics

Code Size	15 Bytes
T-State Count	422
Execution Time	211 x 10 ⁻⁶ sec @ 2.0 MHz

Execut	ion Time		211	x 10 ⁻⁶ se	ec @ 2.	0 MHz												
Progi	ram [st	rc	py.a	sm]				Inp	ut									
	ım to cop			z strings	from			Α			В			D	30		Н	
;(c) Va	e to desti ibhav Ja 9/4/2004	in	tion					F S		Z	С	4		E	P 00) 	L	S
						, .						Me	m	ory				
0000 2	10007	lXI	h,20	00 ;sou	rce asc	ii-z string		2	000		'A'	•	B'	6	C'		'D'	
0003 1			i d,30	00 ;des	tination	ascii-z stri	ng	2	005		'E'	•	F'	•	G'		'H'	
;****** loop:	******	ŧ							000		00		00	_	00		00	L
юф.									005		00	- (00		00		00	_
0006	7E			m ; read					014		00		00	_	00		00	_
0007	12	sta	ax d ;	store it	in dest	nation			019		00		00	_	00		00	_
8000	13	inx	x d ;ir	ncr to ne	ext dest	pos		2	01E		00		00		00		00	
0009	23	inx	x h ;ir	ncr to ne	ext src p	oos												
000A	B7	or	·	heck if	Λ .was -	zoro		Ou	tpu	t								
			aa,c					Α	0	0	В			D	30	0	Н	
000B 000E	C20600 76	hlt		gram ex	cit	nue if not z	zero	F	4	4	С			Ε	08	3	L	
,	************							S	0	Z	1	Α		0	Р	1		S
,												Me	m	ory				
								2	000		'A'		B'	,	C'		ʻD'	
								2	005		'E'	•	F'	•	G'		'H'	
								3	വവ		٠Д,	6	R,		C'	-	'n,	

Ou	Output														
Α	00)		В			I	D		30)		Н		20
F	44	4	(O			ı	E		08	08 L		L		80
S	0	Z	<u> </u>	1	A	4	C)		Р	1		S		0
Memory															
2	000			'A'		'B	,		'(;		ʻD	,		'Е'
2	005			'E'		'F	,		'(3'		'H'		'I'	
3	000			'A'		'B	,		'(;		ʻD	,		'E'
3	005			'Е'		'F	,		'(J'		Ή	,		00
2	014			00		00)		0	0		00	00 (00
2	019			00		00)		0	0		00)	00	
2	01E			00		00)		0	0		00)		00

Implementing Strncpy() Function

Objective

Implementation of function strcpy in 8085 assembly language. Assuming all strings to be already allocated, and that the strings do not overlap. Address of source array is stored in H-L Pair and Destination is D-E Pair and character count in Reg-C .

Statistics

Code Size	19 Bytes
T-State Count	248
Execution Time	124 x 10 ⁻⁶ sec @ 2.0 MHz

Program [strncpy.asm]

;Implement the following variant of the strncpy ;function:

;void strncpy(char * src, char * dest, unsigned char n);Assume all strings to be already allocated, and that :the

;strings do not overlap. In strncpy not more than ;n bytes are copied. If there is no null (0) byte among ;the first n bytes of src, the result will not be null-;terminated.

;Further, in the case where the length of src is less than n, the ;remainder of dest will be padded with ;nulls

;(c) Vaibhav Jain ;Date: 9/4/2004

0000 21D007 lxi h,2000 ;source ascii-z string 0003 11B80B lxi d,3000 ;destination ascii-z string

0006 0C inr c ;protection from zero count loop: dcr c

0007 0D 100p. dci c

000B 7E mov a,m; read src char 000C 12 stax d; store it in destnation 000D 13 inx d; incr to next dest pos

000E 23 inx h ;incr to next src pos 000F B7 ora a ;check if A was zero

0010 C20700 jnz loop ;continue if not zero

0013 76 exit: hlt ;program exit

าput
าриt

Α			В		С)	30)	ı	Н	20
F		(С	4	Е	:	00)		L	00
S	Z			Α			Р			S	

		wemo	ry		
2000	'A'	'B'	'С'	'D'	'E'
2005	'E'	'F'	'G'	'H'	'I'
200A	00	00	00	00	00
200F	00	00	00	00	00
2014	00	00	00	00	00
2019	00	00	00	00	00
201E	00	00	00	00	00

L										
	Α	69	9	В		D	30	0	Н	20
Ī	F	44	4	С		Е	04	4	L	04
	S	0	Z	1	Α	0	Р	1	S	0

		wemo	ry		
2000	'A'	'B'	'C'	ʻD'	00
2005	00	00	00	00	00
200A	00	00	00	00	00
200F	00	00	00	00	00
2014	00	00	00	00	00
2019	00	00	00	00	00
201E	00	00	00	00	00

Generation of Fibonacci Series

Objective

To implement a program to generate fibonacci series. The program takes input as the count of number of terms to be generated in Register C and the address of storage in H-L.

Statistics

Code Size	18 Bytes
T-State Count	718
Execution Time	359 x 10 ⁻⁶ sec @ 2.0 MHz

Program [fibo.asm]

;Fibonacci Series program

;(c) Vaibhav Jain 2004 . **********Input*******

0000 21D007lxi h,2000

0003 0E10 mvi c,10h :************Program*****

0005 AF xra a

0006 0601 mvi b,1

0008 77 loop: mov m,a 0009 80 add b

000A 57 mov d,a mov a,b

000B 78 000C 42 mov b,d 000D 23

inx h 000E 0D dcr c

000F C20800jnz loop

, •*******************

SYMBOL TABLE:

LOOP 8000

In	n	,,	1
,,,,	μ	u	L

Α			В		D			Н	20
F		_	С	10	Ш			L	00
S	Z			Α		Р		S	

		wemo	ry		
2000	00	00	00	00	00
2005	00	00	00	00	00
200A	00	00	00	00	00
200F	00	00	00	00	00
2014	00	00	00	00	00
2019	00	00	00	00	00
201E	00	00	00	00	00

Α	C	C2 B 2F D		2	F		Н	2	0			
F	4	5	(С	00	Е	0	0	L		15	
S	0	Z 1 A		0	Р	1	I	S		0		

		Memo	ry		
2000	00	01	01	02	03
2005	05	08	0D	15	22
200A	37	59	90	E9	79
200F	62	00	00	00	00
2014	00	00	00	00	00
2019	00	00	00	00	00
201E	00	00	00	00	00

Generation of Multiplication Tables

Objective

To implement a program to fill memory with multiples of given number. The program takes input as the number whose table is to be generated in Register B, Count of number of multiples to be generated in Register C and the address of storage in H-L.

Statistics

Code Size	19 Bytes
T-State Count	856
Execution Time	428 x 10 ⁻⁶ sec @ 2.0 MHz

Program [table.asm]

;program to create a table of given number ;from 1 to the given index on a selected

;memory location

;(c) Vaibhav Jain 2004

;date: 9/4/2004

0000	0603	mvi b,3h	;table of 3
0002	0E15	mvi c,15h	;from 0 to 21
0004	21D00	7 lxi h,2000;ad	dress to store table

.**********

0007 AF xra a ;set a to zero

0008 OC inr c ;safety from zero count

loop:

0009 77 mov m,a 000A 0D dcr c

000B CA1300 jz exit

000E 80 add b ;add b to accumulator

000F 23 inx h 0010 C30900jmp loop

0013 76 exit: hlt

SYMBOL TABLE:

LOOP 0009 EXIT 0013

2	2000			00		00)	(00	00		00
					N	len	no	ry				
S		Z			4	Α			Р	S		
F			•	С	1	5		E			L	00
Α				В			l	D		ł	4	20

		IVICIIIO	ıy		
2000	00	00	00	00	00
2005	00	00	00	00	00
200A	00	00	00	00	00
200F	00	00	00	00	00
2014	00	00	00	00	00
2019	00	00	00	00	00
201E	00	00	00	00	00

Α	31	=		В	03	D	00	00		Н	20	
F	44	4	(С	00	Е	00	0		L	15	
S	0	Z	,	1	Α	0	Р	1		S	0	

		Memory											
2000	00	03	06	09	0C								
2005	0F 12 15		18	1B									
200A	1E	21	24	27	2A								
200F	2D 30 33		33	36	39								
2014	3C	3E	00	00	00								
2019	00	00	00	00	00								
201E	00	00	00	00	00								

Insertion Sorting

Objective

To create a routine for simulating Insertion Sort Algorithm on 8085. Takes input as H-L pair containing address of the array to sort and number array elements in C register.

StatisticsCode Size29 BytesT-State Count3260Execution Time1630 x 10-6 sec @ 2.0 MHz

	1630 x 10 ⁻⁶ sec @ 2.0 MHz										
Program [in	sertion.asm]	Inp	out								
SOURCE FILE	NAME: INSERT~1.ASM	Α			В		D			Н	10
	on sort routine	F			С	16	Е			L	00
;vaibha 0000 21D007	v jain 05/04/2004 lxi h,2000 ;load adress of array	S		Z		Α		Р		S	
0003 0E0A	mvi c,Ah ;load no. of elements					Men	nory				•
0005 AF	xra a ; set acc to 0		2000		00	01		02	03	3	0A
0006 OC	inr c		2005		09	08		05	06	5	07
0007 3C	outerloop: inr a ;generate next ;counter		200A		00	00		00	00		00
0008 B9	cmp c ; compare with max counter		200F		00	00		00	00		00
0009 D22D0	, ,		2014		00	00		00	00		00
000C C5 000D F5	push b ;save max counter info push psw; save current counter		2019		00	00		00	00		00
000E E5	push h ;save current base	4	201E		00	00	,	00	00)	00
000F 4F 0010 54	mov c,a;copy new counter to c mov d,h;										
0011 5D	mov e,I ;copy h-I to d-e	Ou	tput	t							
0012 7E	mov e,l ;copy h-l to d-e mov a,m ;get cmp element		_		ъ			20			20
		Α	1	7	В	00	D	20		Н	20
0012 7E 0013 2B 0014 0D	mov a,m ;get cmp element dcx h ;set h-l cmp base innerloop: dcr c ; dcr counter	A	_	7	ВС	00	D E	20		H L	20
0012 7E 0013 2B	mov a,m ;get cmp element dcx h ;set h-l cmp base innerloop: dcr c ; dcr counte jz outerout; exit loop if zero	A	1	7	С						
0012 7E 0013 2B 0014 0D 0015 CA2500 0018 BE 0019 D22500	mov a,m ;get cmp element dcx h ;set h-l cmp base innerloop: dcr c ; dcr counte) jz outerout; exit loop if zero cmp m ; cmp cur element to acc)jnc outerout; exit loop if less than	A F	17	7	С	17	Е	08	3	L	16
0012 7E 0013 2B 0014 0D 0015 CA2500 0018 BE 0019 D22500 001C 47	mov a,m ;get cmp element dcx h ;set h-l cmp base innerloop: dcr c ; dcr counted jz outerout; exit loop if zero cmp m ; cmp cur element to accolinc outerout; exit loop if less than mov b,a;save acc to b	A F S	17	7	С	17	E 0 nory	08	3	L S	16
0012 7E 0013 2B 0014 0D 0015 CA2500 0018 BE 0019 D22500 001C 47 001D 7E 001E 12	mov a,m ;get cmp element dcx h ;set h-l cmp base innerloop: dcr c ; dcr counte) jz outerout; exit loop if zero cmp m ; cmp cur element to acc)jnc outerout; exit loop if less than	A F S	44	7	C 1	17 A Men	E 0 nory	08	1	L S	16
0012 7E 0013 2B 0014 0D 0015 CA2500 0018 BE 0019 D22500 001C 47 001D 7E 001E 12 001F 78	mov a,m ;get cmp element dcx h ;set h-l cmp base innerloop: dcr c ; dcr counte) jz outerout; exit loop if zero cmp m ; cmp cur element to acc)jnc outerout; exit loop if less than mov b,a;save acc to b mov a,m ;copy cur ele to acc stax d ; store it at prebase mov a,b;copy cmpele back to acc	A F S 2 2	1: 44 0	7	C 1	17 A Men	E O O	08 P	3 1 03	L S	16 0
0012 7E 0013 2B 0014 0D 0015 CA2500 0018 BE 0019 D22500 001C 47 001D 7E 001E 12 001F 78 0020 1B	mov a,m ;get cmp element dcx h ;set h-l cmp base innerloop: dcr c ; dcr counte) jz outerout; exit loop if zero cmp m ; cmp cur element to acc)jnc outerout; exit loop if less than mov b,a;save acc to b mov a,m ;copy cur ele to acc stax d ; store it at prebase mov a,b;copy cmpele back to acc dcx d ;dcr d-l	A F S 2 2 2 2	1: 44 0	7	C 1 1 00 06	17 A Men 01 07	E 0 nory	08 P 02 08	03	S S	16 0 05 0A
0012 7E 0013 2B 0014 0D 0015 CA2500 0018 BE 0019 D22500 001C 47 001D 7E 001E 12 001F 78 0020 1B 0021 2B	mov a,m ;get cmp element dcx h ;set h-l cmp base innerloop: dcr c ; dcr counte) jz outerout; exit loop if zero cmp m ; cmp cur element to acc)jnc outerout; exit loop if less than mov b,a;save acc to b mov a,m ;copy cur ele to acc stax d ; store it at prebase mov a,b;copy cmpele back to acc	A F S 2 2 2 2 2	11 44 0 0 000 0005 000A	7	C 1 1 00 06 00	17 A Men 01 07	nory	02 08 00	03	S S	16 0 05 0A 00
0012 7E 0013 2B 0014 0D 0015 CA2500 0018 BE 0019 D22500 001C 47 001D 7E 001E 12 001F 78 0020 1B 0021 2B 0022 C31400	mov a,m ;get cmp element dcx h ;set h-l cmp base innerloop: dcr c ; dcr counte) jz outerout; exit loop if zero cmp m ; cmp cur element to acc)jnc outerout; exit loop if less than mov b,a;save acc to b mov a,m ;copy cur ele to acc stax d ; store it at prebase mov a,b;copy cmpele back to acc dcx d ;dcr d-l dcx h ;dcr h-l)jmp innerloop; jmp back to loop	A F S 2 2 2 2 2 2 2 2 2	000 005 00A 00F 014 019	7	00 06 00 00	17 A Men 01 07 00 00	0 nory	02 08 00 00	03	S S	16 0 05 0A 00 00
0012 7E 0013 2B 0014 0D 0015 CA2500 0018 BE 0019 D22500 001C 47 001D 7E 001E 12 001F 78 0020 1B 0021 2B 0022 C31400	mov a,m ;get cmp element dcx h ;set h-l cmp base innerloop: dcr c ; dcr counte) jz outerout; exit loop if zero cmp m ; cmp cur element to acc)jnc outerout; exit loop if less than mov b,a;save acc to b mov a,m ;copy cur ele to acc stax d ; store it at prebase mov a,b;copy cmpele back to acc dcx d ;dcr d-l dcx h ;dcr h-l	A F S 2 2 2 2 2 2 2 2 2	13 44 0 000 005 00A 00F 014	7	00 06 00 00	17 A Men 01 07 00 00 00	nory	02 08 00 00	03 09 00 00	S S	16 0 05 0A 00 00
0012 7E 0013 2B 0014 0D 0015 CA2500 0018 BE 0019 D22500 001C 47 001D 7E 001E 12 001F 78 0020 1B 0021 2B 0021 2B 0022 C31400	mov a,m ;get cmp element dcx h ;set h-l cmp base innerloop: dcr c ; dcr counte) jz outerout; exit loop if zero cmp m ; cmp cur element to acc)jnc outerout; exit loop if less than mov b,a;save acc to b mov a,m ;copy cur ele to acc stax d ; store it at prebase mov a,b;copy cmpele back to acc dcx d ;dcr d-l dcx h ;dcr h-l)jmp innerloop; jmp back to loop rout: stax d; store acc to curbase	A F S 2 2 2 2 2 2 2 2 2	000 005 00A 00F 014 019	7	C 1 1 00 06 00 00 00 00	17 A Men 01 07 00 00 00 00	nory	02 08 00 00 00	03 09 00 00 00	S S	16 0 05 0A 00 00 00

Insertion Sorting

Program [insertion.asm] 0026 E1 pop h ;retrive saved base 0027 F1 pop psw ;retrive pre counter 0028 C1 pop b ;retrive max counter 0029 23 inx h ; inr h-l to next base 002A C30700jmp outerloop; jmp to next iteration inx h ; inr h-l to next base 002D 76 exit: hlt ;*******code concludes******* SYMBOL TABLE: OUTERLOOP 0007 INNERLOOP 0014 OUTEROUT 0025 EXIT 002D .**********

Bubble Sorting-I

Objective

INNERLOOP

INNEROUT

000D

0018

0022

.***********

To create a routine for simulating Bubble Sort Algorithm on 8085 through simulation on 16-bit subtraction and without using stack space. Takes input as H-L pair containing address of the array to sort and number array elements in C register.

StatisticsCode Size34 BytesT-State Count3708Execution Time1854 x 10-6 sec @ 2.0 MHz

Program [bubblesrt.asm] Input SOURCE FILE NAME: BUBBLE~1.ASM В 20 Α D Н F С 00 ;Bubble sort routine Part 2 0A Ε L S S Ζ Α 0000 21D007lxi h,2000 0003 0E0A mvi c,0Ah **Memory** 0005 AF xra a 2000 00 09 80 07 06 0006 В1 ora c 2005 05 04 03 02 01 0007 CA2200 jz exit 000A 0D dcr c 200A 00 00 00 00 00 000B C5 outerloop: push b 200F 00 00 00 00 00 000C E5 push h 00 2014 00 00 00 00 000D 7E innerloop: mov a,m 000E 23 inx h 2019 00 00 00 00 00 000F BE cmp m 201E 0010 DA1800 jc innerout 0013 46 mov b,m 0014 77 mov m,a **Output** 0015 2B dcx h 0016 70 mov m,b 20 Α 1 В 01 Н 20 0017 23 D inx h 0018 0D dcr c innerout: F 44 C 01 Ε 00 L 00 0019 C20D00 jnz innerloop 001C E1 pop h 1 0 S 0 Ζ Α S 0 001D C1 pop b 001E 0D dcr c **Memory** 001F C20B00 inz outerloop 2000 00 02 03 04 01 exit:: 2005 05 07 08 09 06 0022 76 200A 00 00 00 00 00 SYMBOL TABLE: 200F 00 00 00 00 00 OUTERLOOP 000B

2014

2019

201E

00

00

00

00

00

00

00

00

00

00

00

Bubble Sorting-II

Objective

To create a faster routine for simulating Bubble Sort Algorithm on 8085 by using stack space. Takes input as H-L pair containing address of the array to sort and number array elements in C register.

StatisticsCode Size43 BytesT-State Count3593Execution Time1796 x 10-6 sec @ 2.0 MHz

Progi	ram [b	ubblesrt2.ası	n]	Inp	ut								
	sort Pr			Α			В		D		H	ł	20
	it using s ibhav Ja			F			С	0A	Е		L		00
,(C) Va		put********			1		U	UA					00
0000		7 lxi h,2000	;address of array	S		Ζ		Α		Р		S	
0003	0E16	mvi c,16h	; no. of elements			ı		Men	nory				
		*Program*******	•	2	2000		00	09)	08	07		06
0005	54	mov d,h			2005		05	04		03	02	+	01
0006	5D	mov e,l						_				-	
outerlo				2	00A		00	00)	00	00		00
0007 0008	46 0D	mov b,m dcr c		2	00F		00	00)	00	00		00
0008	78	loop: mov a,	h	2	014		00	00)	00	00		00
0003 000A	23	inx h	D	2	2019		00	00	,	00	00		00
000B	46	mov b,m			01E		00	00	_	00	00		00
000C	В8	cmp b			UIE		00	UC	<u>' </u>	00	00		00
000D	DA150		2										
0010	2B	dcx h											
0011	70	mov m,b		Ou	tput	t							
0012	23	inx h		_	00	$\overline{}$	Ъ	00	_	00		.	20
0013	77	mov m,a		Α	00	J	В	00	D	00	H	1	20
0014 0015	47 0D	mov b,a loop2:dcr c		F	45	5	С	00	Е	00	L	_	00
0013		0 jnz loop							ı				
0019	7C	mov a,h		S	0	Z	1	Α	0	Р	1	S	0
001A	2F	cma						Men	nory				
001B	67	mov h,a		2	000		00	01		02	03		04
001C	7D	mov a,I			005		05	06		07	08	-	09
001D	2F	cma			003 00A		00	00		00	00		00
001E	6F	mov I,a						-	_			-	
	•				00F		00	00		00	00		00
001F	19	dad d		2	014		00	00)	00	00		00
0020	7D	mov a,I		2	019		00	00)	00	00		00
.*****	****code	continues*****	*****	2	01E		00	00)	00	00		00
,	Code	, continues											

Bubble Sort-II

```
Program [bubblesrt2.asm]
0021 2F
         cma
0022 4F
         mov c,a
0023 62 mov h,d
0024 6B mov l,e
0025 FE01 cpi 1
0027 C20700
              jnz outerlop
002A 76 hlt
;********code concludes********
SYMBOL TABLE :
OUTERLOP
         0007
LOOP
         0009
LOOP2
        0015
.**********
```

Selection Sorting

Objective

To create a routine for simulating Selection Sort Algorithm on 8085. Takes input as H-L pair containing address of the array to sort and number array elements in C register.

StatisticsCode Size38 BytesT-State Count3439Execution Time1719 x 10-6 sec @ 2.0 MHz

	ion mine	1/1	.5 X 10 S	SEC @ 2.0 M112								
Program [selsort2.asm]						ut						
0000 0003	21D00 0E0A	7 lxi h,2(mvi c,(Α		В		D		Н	20
0005	AF	xra a)AII		F		С	0A	Е		L	00
0006	B1	ora c					 		1			00
0007	CA260		jz exit		S		<u> </u>	Α		Р	S	
000A	54	outerlo		mov d,h			•	Men	nory			
000B	5D	mov e	,1		2	000	00	09)8	07	06
000C	7E	mov a						* -				
000D	C5	push b				005	05	04	1 ()3	02	01
000E	E5	push h			2	00A	00	00) (00	00	00
000F	BE	innerlo		cmp m	2	00F	00	00) (00	00	00
0010	DA160	0	jc innei			014	00	00) (00	00	00
0013 0014	54 5D	mov e	mov d,	n		019						
0014	3D 7E	mov a					00	00		00	00	00
0016	23	innero		inx h	2	01E	00	00) (00	00	00
0017	0D	dcr c	at.	IIIX II								
0018		0jnz inn	erloop									
001B	E1	pop h	•		Ou	tput						
001C	C1	pop b				1		I		1		
001D	46	mov b	m		Α	09	В	09	D	20	Н	20
001E	77		mov m	,a	F	44	С	00	Е	09	L	0A
001F	78	mov a	,b		Г	44	C	00		09	L	UA
0020	12	stax d			S	0	Z 1	Α	0	Р	1 S	0
0021	23	inx h										
0022 0023	0D C20A0	dcr c	jnz out	orloon				Men	nory			
0023	CZUAU	U	JIIZ Out	епоор	2	000	00	01	1 ()2	03	04
0026	76	exit:	hlt		2	005	05	06	5 ()7	08	09
0020									\ (00	00	00
0020					20	00A	00	00	, , ,	,,		
	OL TABI	-E :				00A 00F	00	00		00	00	00
SYMB		-E: 000A			2			_) (00
SYMBO	OL TABI				2	00F 014	00	00) (00	00	00
SYMBO OUTER INNER INNER	OL TABI RLOOP RLOOP ROUT	000A			2 2	00F	00	00) (00	00	
SYMB(OUTER	OL TABI RLOOP RLOOP	000A 000F			2 2	00F 014 019	00 00 00	00) (00 00 00	00 00 00	00

8-Bit Division Algorithm

Objective

To implement a program to simulating 8-bit division on 8085. Takes input as dividend in Register B and Divisor in Register C. After division Quotient is stored in B and Remainder in C.

Statistics

Code Size	55 Bytes
T-State Count	290
Execution Time	145 x 10 ⁻⁶ sec @ 2.0 MHz

Program [div8bit.asm]

SOURCE FILE NAME: DIV8BIT.ASM

:Division of 8085

;Divides Value of Reg.B with Value of Reg.C

stores Quotient in B and Remainder in C

0000 06FE mvi b,feh

0002 0E10 mvi c,10h

0004 79 mov a,c 0005 0E08 mvi c,8h

loop:

0007 07 rlc

0008 DA1400 jc loopout ;if end reached exit

000B 0D dcr c ;decrement counter

000C C20700jnz loop; do the shift loop

;****there is an overflow*****

000F D1 pop d ;Restore D-E

0010 37 stc ;set CY to show error

0011 06FF mvi b,ffh ;set highest quiotient

0013 76 hlt

loopout:

0014 OF rrc ; move 1bit back to MSB

0015 3F cmc ;set CY to zero

0016 1E00 mvi e,0 ;set Quotient to zero

0018 57 mov d,a;save Divisor in D

0019 3E08 mvi a,8h ;load a with 8h

001B 91 sub c Minus remaing count

001C 3C inr a ;incr count by 1

001D 4F mov c.a; save this count in c

001E 78 mov a,b;restore dividend

;NFE==>No Flags Effected

loopdiv:

001F BA cmp d ;cmp Divident with

;divisor

0020 47 mov b,a;NFE:save dividend ->B

0021 7B mov a,e;NFE:load quotient

;*******code continues********

Input

Α			В	FE	D			Н	
F		(С	10	Е			L	
S	Z			Α		Р		S	

Α	OF	≣	В	0F	D	08	8	Н	
F	44	4	С	0E	Е	OI	=	L	
S	0	Z	1	Α	0	Р	1	S	0

8-Bit Division Algorithm

```
Program [div8bit.asm]
0022 3F
                    ;complement CY
             cmc
       ;quotient<<1 if Divisor<divident
       ;<<0 if Divisor>divident
0023 17
             ral
                    ;insert Cary bit in
0024 OF
             rrc
                    ;restore state of CY
0025 07
             rlc
0026 5F
             mov e,a;save quitoent in E
0027 D22D00
                    jnc skipdivsub ;Divisor>Divident=>Skip
002A 78
002B 92
                           mov a,b;load the dividend
             sub d ;minus the divisor
002C 47
             mov b,a;save new divident
skipdivsub:
002D 7A
             mov a,d;restore divisor<== D
002E 0F
             rrc ;rotate divisor right
002F 57
0030 78
             mov d,a;save divisor in D
             mov a,b;load A with dividend
0031 0D
             dcr c
0032 C21F00jnz loopdiv
0035 48
             mov c,b;save remainder in C
0036 43
             mov b,e;save quotient in B
0037 76
;*********code concludes********
SYMBOL TABLE:
             0007
LOOP
LOOPOUT
             0014
LOOPDIV
             001F
SKIPDIVSUB 002D
·****************
```

16-Bit Multiplication Algorithm

Objective

To implement a program to find a 16-bit product of two 8-bit numbers. Takes input as first operand in Register H and second operand in Register L. After multiplication the 16-bit product is stored in H-L pair with MSB in Register H and MSB in L.

Statistics

Code Size	44 Bytes
T-State Count	1115
Execution Time	557 x 10 ⁻⁶ sec @ 2.0 MHz

16-Bit Multiplication Algorithm

```
Program [mult.asm]
.*********
;****Procedure: Left Shift HL*****
;left shifts contents of HL left one bit
;H-L: Data to be shifted
;Flags Effected: CY
 ***********
LSHL:
LSHL:

0021 47 mov b,a ;copy acc to b

0022 37 stc ; set the carry flag

0023 3F cmc ; this sets carry it to zero

0024 7D mov a,l ;copy lower 8 bits of data

0025 17 ral ; rotate accumulator left trough carry

0026 6F mov l,a ;copy back the contents to l

0027 7C mov a,h ;copy upper 8 bits

0028 17 ral ; rotate it through carry

0029 67 mov h,a ;copy back the contents

002A 78 mov a,b ;copy previous contents of acc

002B C9 ret ;job is one and now return
;*******code concludes*********
SYMBOL TABLE:
LOOP
                           000B
COND1
                           0016
EXIT
                           0020
LSHL
                        0021
.********* ***************
.********* ***************
```

00

00

Removal of Duplicates

LOOP 0008 LOUT 000E EXIT 0015

Objective

To implement a program to perform inline duplicate removal from a sorted array of 8-bit unsigned numbers. Takes input as address of array H-L pair and number of elements in C. After removal of duplicates count of unique elements is stores in B

Statistics

Code Size	34 Bytes
T-State Count	1397
Execution Time	698 x 10 ⁻⁶ sec @ 2.0 MHz

Execution Time	698	698 x 10 ⁻⁶ sec @ 2.0 MHz										
Program [du	p.asn	n]	Inp	ut								
		olicates from a sorted array unique elements in c	Α			В		D			Н	20
	lxi h,20		F			С	16	Е			L	00
		6h; count of no. of elements	S		Z		Α		Р		S	
0005 E5	push h								_			
	mov d,						Men	nory	'			
	mov e,	। ldax d	2	2000		00	01	1	01	(02	02
	loop: cmp m		2	2005		02	03	3	03	(03	04
		if equal skip following steps		00A		04	04	1	04		05	05
	inx d	in equal emp renewing etepe					-					
	lout:	mov a,m		00F		05	05		05		06	06
000F 12	stax d	,	2	2014		06	06	5	00	(00	00
	inx h		2	019		00	00)	00		00	
	dcr c		2	01E		00	00)	00	(00	00
	jnz loop									<u> </u>		
	exit:	pop h										
	xchg	L	<u> </u>	40.11	ı							
	mov a,	n	Ou	tput								
	mov h,	a	Α	06	ŝ	В	00	D	20	0	Н	FF
	mov a,			-								
	cma	•	F	00)	С	07	Ε	0(0	L	F9
001C 6F	mov I,a	1	s	0	Z	2 0	٨	0	Р	0	S	0
001D 19	dad d		0	U	Z	. 0	Α	U	Г	U	0	U
	mov a,	I					Men	nory	,			
	cma		2	000		01	02	2	03		04	05
	mov c,			005		06	03		03		03	04
0021 0C 0022 76	hlt	inr c										
0022 10	THE			00A		04	04		04		05	05
			2	00F		05	05	5	05	(06	06
SYMBOL TABL	.E :		2	014		06	06	5	00	(00	00

2019

201E

00

00

00

Sorted Array Merging

Objective

To implement a program to amalgate two bounded and sorted arrays into a third bounded array. A bounded array is a object having count of number of elements in it present on its top. The program takes input of first source array in H-L , second source array in D-E & the destination array in B-C.

Statistics

Code Size	71 Bytes
T-State Count	1508
Execution Time	754 x 10 ⁻⁶ sec @ 2.0 MHz

Program [arrmerge2.asm]				ut							
	;merging of two sorted arrays into an ;sorted array					В	20	D	20	Н	20
0000 21D007	lxi h,20	00;source bounded array1	F	F		С	0B	Е	06	L	00
0003 11B80B 0006 01A00F	lxi b,40	00;source bounded array2 00;destination bounded array	S		Z		Α		Р	S	
,		******					Men	nory			
0009 1A 000A 86		;load count of arr2 ;add count of arr1 to that of	2	2000		09	01		03	05	07
arr1	auu III	,add count of all 1 to that of	2	2005		09	0B	; ()D	0F	11
000B 02	stax b	store length in dest.	3	000		04	00		02	04	06
bounded array				005		00	00		00	00	00
000C E5	•	;save address of arr1		1000		00	00		00	00	00
000D 62	mov h,										
000E 6B 000F 50	mov i,e mov d,k	;load address of arr2 in h-l		1005		00	00		00	00	00
0001 50		c;load address of dest.arr in	400A		00	00		00	00	00	
d-e		s,ieda dadi ees ei deelaii iii									
0011 4E	mov c,r	n ;load count of arr2 in									
b			Ou	tput	t						
0012 23 0013 E3	inx h	;incr p->arr2 to storage area	Α	11	1	В	06	D	40	Н	20
0013 E3 0014 46	xthl mov b r	;get p->arr1 n;load count of arr1 in b		- '	•	Ь	00		40	- 11	20
**********			F	44	4	С	00	Ε	0E	L	0A
loop: ;m->arr	1		S	0	Z	1	Α	0	Р	1 S	0
0017 AF	xra a	;set a to zero		U		· ·			1	· 3	
0018 B0 0019 CA3600	ora b	;check if b is zero					Men	ory			
0019 CA3600	jz lout xthl		2	000		09	01		03	05	07
;m->arr			2	005		09	0B	; ()D	0F	11
001D AF	xra a	;set a to zero	3	000		04	00		02	04	06
001E B1	ora c	;check if c is zero	3	005		00	00		00	00	00
001F CA3600 ;m->arr	-		4	000		0D	00		01	02	03
0022 7E	∠ mov a,r	m ;m points to arr2		005		04	05	_	06	07	09
0023 0D	dcr c	;assuming that element		00A		0B	0D	_	0F	11	00
0024 23	inx h	;in arr2 i.e acc is least		00/1		UB.	U.D.		01	11	
;/*******conde											
,											

Sorted Array Merging

```
Program [arrmerge2.asm]
0025 E3
                 xthl
                          ;m->arr1
0026 BE
                 cmp m ;m points to arr1
0027 DA3100 jc cond2 ;jmp if assumption is true
002A 7E mov a,m ;rectify the mistake
002B 23 inx h ;incr p->arr1 to new pos
002C 05 dcr b ;set new count of elems in arr1
002D E3
002E 2B
                xthl ;m->arr2
                 dcx h ;decr p->arr2 back
002F 0C
                         inr c ;incr c back
0030 E3
                xthl ;reenforce the previous situation
        ;i.e m->arr1
0031 12
                cond2: stax d ;a contains min element
        ;store it to new dest.
0032 13
                                  inx d ;set new dest pointer
0033 C31700 jmp loop
0036 E1
                 lout: pop h ;get pointer to remaing
        :elements
0037 AF xra a ;set a to 0
0038 B0 ora b ;get count in b
0039 B1 ora c ;get count in c
003A 3C inr a ;increment a for zero safety
003B 4F mov c,a;set generated count in c
        ;***loop to copy remaining elements******
  003C 0D loop2: dcr c
003D CA4700 jz exit
0040 7E mov a,m
0041 12
                 stax d
0042 13 inx d
0043 23 inx h
0044 C33C00 jmp loop2
                 exit: hlt
0047 76
;/*******conde concludes********
SYMBOL TABLE:
LOOP 0017 COND2 0031 LOUT 0036 LOOP2 003C
EXIT 0047
```

32-Bit Integer Addition

Objective

To implement program to perform 32-bit addition. The integers are stores in memory in reverse byte order i.e. LSB lies in lower memory and MSB lies in higher memory.

Statistics

Code Size	24 Bytes
T-State Count	359
Execution Time	179 x 10 ⁻⁶ sec @ 2.0 MHz

Ρ

S

Program [add32bit.asm]

- ;32-bit addition
- ;take address of operand1 in h-l &
- ;& address of operand2 in d-e
- stores result at operand1
- operands are stored in BIG-Edian format

0000 21D007 lxi h,2000

0003 11D407 lxi d,2004

.*******

~~~	$\Delta = \Delta A$	• 4
0006	0E04	mv/i c /i
0000		mvi c,4
0000	0_0.	11171 0, 1

0008 AF xra a; set carry flag to zero

0009 F5 push psw; save flags

loop:

000A F1 pop psw; restore flags

000B 3E00 mvi a,0 000D 1A ldax d

000E 8E adc m

000F 77 mov m,a 0010 13 inx d

0010 13 linx d

0012 F5 push psw; save flags

0013 0D dcr c

0014 C20A00 jnz loop

0017 F1 pop psw

0018 76 hlt

#### SYMBOL TABLE:

LOOP 000A

۳						
Α	В		D	20	Н	20
F	С	04	Е	08	L	04

Α

		Memo	ry		
2000	1	02	03	04	05
2005	06	07	08	00	00
200A	00	00	00	00	00
200F	00	00	00	00	00
2014	00	00	00	00	00
2019	00	00	00	00	00
201E	00	00	00	00	00

## Output

Input

S

Ζ

Α	00		В		D	20	ו	Н	20
F	04	4	С		Е	08	3	L	04
S	0	Z	0	Α	0	Р	1	S	0

		Memo	ry		
2000	06	08	0A	0C	05
2005	06	07	08	00	00
200A	00	00	00	00	00
200F	00	00	00	00	00
2014	00	00	00	00	00
2019	00	00	00	00	00
201E	00	00	00	00	00

# 32-Bit Integer Subtraction

## Objective

To implement program to perform 32-bit subtraction. The integers are stores in memory in reverse byte order i.e. LSB lies in lower memory and MSB lies in higher memory.

Statistics	
Code Size	25 Bytes
T-State Count	363
Execution Time	181 x 10 ⁻⁶ sec @ 2.0 MHz



Excedion Time	101 X 10 3ec @ 2.0 1 112								
Program [sub	32bit.asm]	Inp	ut						
;32-bit subtraction ;take address of o	porand1 in h   9	Α		В		D	20	Н	20
;& address of oper		F		С	04	Е	04	L	00
stores result at op		S	Z		Α		P	S	
;operands are stor 0000 21D007	red in BIG-Edian format lxi h,2000			•	Men		•		
0003 11D407	lxi d,2004	2	000	01	02		)3	04	05
*******	*****		005	06	07		08	00	00
0006 0E04 m	vi c,4		00A	00	00		00	00	00
	a a, set carry flag to zero		00F	00	00		00	00	00
	ush psw; save flags chg;xchange addresses of perands	2	014	00	00	) (	00	00	00
loop:		2	019	00	00	) (	00	00	00
	op psw ; restore flags ax d ;get operand1 byte	2	01E	00	00	) (	00	00	00
	bb m ;subtract with borrow								
000E 12 st	ax d	-	44						
	vi a,0 ush psw ;save flags and acc	Ou	tput	1 1			ı		
0012 13 in:	x d	Α	00	В		D	20	Н	20
	x h er c	F	91	С		Е	04	L	08
0014 0D 00 0015 C20B00	jnz loop	S	1 2	Z 0	Α	1	Р	1 S	
	pp psw	3	1 4	_   0				1 3	
0019 76 hl	[ *******				1	nory			
SYMBOL TABLE			000	FC	FE		FB	FB	05
LOOP 00	00B		005	06	07		)8	00	00
			00A 00F	00	00		00	00	00
			00F 014	00	00		00	00	00
			014	00	00		00	00	00
			015 01E	00	00		00	00	00
			- · <b>-</b>	1	1	1 `	I		

# 32-Bit Left Shift & Right Shift

## Objective

To implement a program to perform Left & right Shift on 32-bit numbers stored in Big –Edian format. The function Shr32 performs Shift to right with carry bit fill in the empty bit. And the function Shl32 performs shift to left with carry bit being places in the empty LSB.

#### **Statistics**

Code Size	91 Bytes
T-State Count	1275
Execution Time	637 x 10 ⁻⁶ sec @ 2.0 MHz



Progr	ram [Si	hift32bit.asm]	Inp	ut									
			Α			В		D		ŀ	1	20	
		nifting*******	F			С		Е		L	_	00	
0000 0003	31FFFI 21D00	1 /	S		Z		Α		Р		s		
0003	CD320	,		Memory									
0009	CD100				- 1	0.1		<u>-</u> _	0.2	0.4	1	0.0	
000C	CD100	0 call Shl32		2000		01	02		03	04		00	
000F	76	hlt	2	2005		00	00	)	00	00		00	
		32-bit*********	2	00A		00	00	)	00	00		00	
		bit number pointed by H-L	2	00F		00	00	)	00	00		00	
	h Cary F nds: H-I	address of number	2	2014		00	00	)	00	00		00	
;modifie	es CY fla	ag	2	019		00	00	)	00	00		00	
, ******	******	Ch120	2	01E		00	00	)	00	00		00	
0010	E5	Shl32: push h					1	·			-		
0010	D5	push d											
0011	C5	push b	Ou	tput	f								
0012	F5	push psw	Ou	фи					_	-			
0014	0600	mvi b,0h ; set B to zero	Α	00	0	В	00	D	00	)   H	1	20	
0016	0E04	mvi c,4h ; set c to count			_								
0018	50	mov d,b; set D to zero	F	00	0	С	00	Е	00	)   [	-	00	
0019	7E	Shlloop: mov a,m	S	0	Ζ	0	Α	0	Р	0	S	0	
0013 001A	17	ral					Men	norv		I.			
001B		0 jnc Shlnc1; if no cary then SKIP	2	000		02	04	<u>-</u>	06	08		00	
001E	14	inr d ; Save present CY in D ShInc1:		005		00	00		00	00		00	
001F	80	add b ;add previous CY to num.		003 00A		00	00		00	00		00	
0020	77	mov m,a ;save it back											
0021	42	mov b,d;save Cy of current Op to b	2	00F		00	00	)	00	00		00	
0022	1600	mvi d,0 ;NFC==> set D to zero	2	014		00	00	)	00	00		00	
0024	23	inx h	2	019		00	00	)	00	00		00	
0025	0D	dcr c	2	01E		00	00	,	00	00		00	
0026	C2190						30						
,******	Code Co	ontinues******											

## 32-Bit Left Shift & Right Shift

```
Program [Shift32bit.asm]
0029 78
             mov a,b; save last carry to Acc
002A C1
             pop b ; pop Acc & psw to B-C
002B 47
             mov b,a; set flags for bit have CY
002C C5
             push b ; push the Acc & new Flags
002D F1
             pop psw ; pop new data to flgs & acc
002E C1
             pop b ; pop old b-c
002F D1
             pop d ; pop old d-e
0030 E1
             pop h ; pop old h-l
0031 C9
             ret
;*****Shift Right 32-bit*******
;Shift Right a 32 bit number pointed by H-L
;through Cary Fill
;operands: H-L address of number
;modifies CY flag
Shr32:
0032 E5
             push h
0033 C5
             push b
0034 F5
             push psw
0035 F5
             push psw
                           ;save flg+CY for operations
             mvi c,4h
0036 0E04
                           ;load count in C
0038 0600
             mvi b,0 ;set b-c pair to count
003A 09
             dad b ;add to h-l pair to get
             dcx h ;bottom of integer
003B 2B
Shr32loop1:
003C F1
                           ;get the previous flags
             pop psw
003D 7E
             mov a,m
                           get the data chuck
003E 1F
             rar ;rotate right through CY
003F F5
0040 77
             push psw
                           ;save any CY generated
             mov m,a
                           ;save data chuck back to mem
0041 2B
             dcx h ;to new data chuck
0042 0D
             dcr c ;decrement counter
0043 C23C00 jnz Shr32loop1
0046 F1
                           ;restore previous flag
             pop psw
0047 3E00
             mvi a,0 ;set acc to zero
0049 CE00 aci 0
                   trap the Cy in Acc
004B C1
             pop b ;pop original psw in b
004C 47
             mov b,a;copy the CY to stacked PSW
004D C5
             push b ; push new PSW
004E F1
             pop psw
                           ;pop original PSW
004F C1
             pop b ;pop original B
0050 E1
             pop h ;pop original h
0051 C9
             ret
SYMBOL TABLE:
             0010
SHL32
SHLLOOP
             0019
SHLNC1
             001F
SHR32
             0032
SHR32LOOP1 003C
```

# 32-Bit Bitwise Rotation

## Objective

To implement a program to perform left & right rotate on 32-bit numbers stored in Big –Edian format. The function ROR32 performs rotation to right with carry bit set if overflow And the function ROL32 performs shift to left with carry bit set in case LSB being set.

#### **Statistics**

Code Size	63 Bytes
T-State Count	1095
Execution Time	547 x 10 ⁻⁶ sec @ 2.0 MHz



										-
Program [Rotate32t.asm]	Inp	out								
;32 bit rotation 0000 21D007lxi h,2000	Α			В		D		H	<b>d</b> 20	,
0003 CD2500 call ROR32	F			С		Е		L	_ 00	7
0006 CD0D00 call ROL32 0009 CD0D00 call ROL32	S		Ζ		Α		Р		S	
000C 76 hlt					Men	nory		1		
;*******ROtate Left 32-bit**********		2000		01	02	,	03	04	00	_
;Rotates Left a 32 bit number pointed by H-L										
;operands: H-L address of number		2005		00	00		00	00	00	-
;modifies CY flag , Acc	2	200A		00	00	)	00	00	00	
, ROL32:	2	200F		00	00	)	00	00	00	
000D E5 push h	2	2014		00	00	)	00	00	00	
000E A7 ana a ;reset CY flag	2	2019		00	00	)	00	00	00	
000F 0E04 mvi c,4	7	201E		00	00	,	00	00	00	_
0011 F5 push psw	_	-0.1_						00		-
loop:										
0012 F1 pop psw 0013 7E mov a,m		tput	4							
0013 7E mov a,m 0014 17 ral	Ou	ιμαι								
0015 77 mov m,a	Α	02	2	В		D		H	H 20	,
0016 23 inx h	_		-					<u> </u>	-	_
0017 F5 push psw	F			С		Е		L	_ 00	1
0018 0D dcr c	S	0	Ζ	0	Α	0	Р	0	S 0	
0019 C21200 jnz loop		L					•			
001C F1 pop psw 001D E1 pop h					Men	nory		1		
001E 7E mov a,m	2	2000		02	04		06	08	00	
001F CE00 aci 0 ; copy the cary bit to LSB	2	2005		00	00	)	00	00	00	
0021 77 mov m,a	2	.00A		00	00	)	00	00	00	
0022 0F rrc	2	00F		00	00	)	00	00	00	
0023 07 rlc		2014		00	00		00	00	00	-
0024 C9 ret										_
; ;*******ROtate Right 32-bit**********		2019		00	00		00	00	00	
;Rotates right a 32 bit number pointed by H-L	2	01E		00	00	)	00	00	00	
;operands: H-L address of number										
;***********code continues******										

## 32-Bit Bitwise Rotation

```
Program [Rotate32t.asm]
;modifies CY flag,Acc
             ROR32:
0025 E5
             push h
0026 A7
             ana a ;reset CY flag
0027 0E04 mvi c,4
0029 23
             inx h;
002A 23
             inx h;
002B 23
             inx h;
002C E5
             push h;save this address for later refrence
002D F5
             push psw
             ROR32loop:
002E F1
             pop psw
002F 7E
0030 1F
             mov a,m
             rar
0031 77
0032 2B
             mov m,a
             dcx h
0033 F5
             push psw
0034 0D
             dcr c
0035 C22E00
                    jnz ROR32loop
0038 F1
             pop psw
0039 E1
             pop h; get address of last byte
             mov a,m
003A 7E
003B 17
             ral
003C 0F
             rrc
003D 77
             mov m,a
003E E1
             pop h
003F C9
             ret
;***********code concludes***********
SYMBOL TABLE:
ROL32
             000D
LOOP
             0012
ROR32
             0025
ROR32LOOP 002E
```

# Implementing Auxiliary Stack

## Objective

To implement an auxiliary byte stack library which provided functionality of a stack apart from main stack. The stack only stores bytes instead of words. It consists of following functions:

- **Stkinit:** Initializes the stack. Set storage area to given location and length of the stack
- **Stkpush:** Pushes the byte present in accumulator to the stack. Sets CY flag on stack overflow.
- **Stkpop:** Pop a byte from the stack and places it in the accumulator. Sets CY flag on stack underflow.



Progr	ram [au	ıxstk.a	nsm]		Inp	ut								
	rry stack		41-		Α			В		D			Н	20
	es byte s		stack n any position in	memory	F			С	09	9 E			L	00
	any leng		, p		-		7		1	_	P	<u> </u>	s	
	bhav Jai	n			S		Z		Α				5	
;date: 1	15/4/04 ******	*****							Men	nory				
,0000	31FFFF	- - lxi sp.f	fffh		<b>2000</b> 01 02 03 04							)4	05	
	•	и. ор,.	;initialize proce	essor stack	2	2005		06	07	7	08	(	19	00
0003	210020	lxi h,Ar			2	200A		00	00	)	00	(	00	00
0006	0E09	mui a O	load stack sto		2	200F		00	00	)	00	(	00	00
0006 0008			9h ;load byte co kinit ;initialize the		2	2014		00	00	)	00	(	00	00
000B	AF	xra a	anne ,maanzo an	o oldon	2	2019		00	00	)	00	(	00	00
000C	4F	mov c,			2	01E		00	00	)	00	(	00	00
000D	3C	loop: in	ır a											
000E 000F	0C CD4F0	inr c	call Stkpush;											
0001	CD4F0	U	;push the data	in stack	Ou	tpu	t							
0012	D20D00		jnc loop			<u> </u>	1			I				I
0045	.=		lata untill stack	overflow	Α	0	0	В	00	D	00	ן ס	Н	20
0015 0017	0E00	mvi c,0 lxi h,Ar			F	4	4	С	0A	Е	0(	0	L	12
0017 001A	210920 2B	dcx h	iay2		_									
			in h		S	0	Z	<u> </u>	A	0	Р	1	S	0
001B 001C	23 0C	loop2: inr c	inx h						Men	nory				
001D	CD3700		call Stkpop		2	000		01	02	2	03	(	)4	05
		; get th	e data back fror	m stack	2	005		06	07	7	08	(	19	09
0020	77 D04D00	mov m			2	00A		08	07	7	06	(	)5	04
0021	D21B00 Inderflow		jnc loop2	;pop untill	2	00F		03	02	2	01	(	00	00
0024	76	hlt			2	014		00	00	)	00	(	00	00
.*****	******	******	*****		2	019		00	00	)	00	(	00	00
		llary Sta	ack Library*****		2	01E		00	00	)	00	(	00	00
;Local		ontinus	S******						1			·	·	
,//	coae c	เงาแทนค	5											

# Implementing Auxiliary Stack

```
Program [auxstk.asm]
relocate to suitable RAM Location
              stkcount: db 00 :count of current data
0026 00
              stklimit: db 00 ;max elements
0027 0000 stkaddress: dw 0000 ;stack address
;********Initialize Stack*******
;initializes the stack
;Input: c= no. of byte of stack
; H-L=address of stack memory
;destroys: nothing
              Stkinit:
0029 F5
              push psw
002A AF
              xra a ;set a to zero
002B 322500 sta stkcount ;store counter in count
002E 79 mov a,c
002F 322600 sta stklimit
0032 222700 shld stkaddress
0035 F1
              pop psw
0036 C9
              ret
:*******Pop Stack data*******
;pop a byte from stack to Accumulator
;Input: nothing
;modifies: Acc with poped data
; CY is set if stack is empty
              Stkpop:
0037 3A2500 Ida stkcount ;load stack counter
003A B7 ora a ;check if zero
003B C24000
                     inz Stkpop c1
003E 37 stc ;set CY to indicate error
003F C9
              ret
              Stkpop_c1:
0040 E5
              push h; save hl pair
0041 2A2700 lhld stkaddress load address of stack
0044 2B dcx h ;decrement stack top address
0045 3D
              dcr a ;decrement stack counter
0046 322500 sta stkcount ;save new stack counter
0049 222700 shid stkaddress ;save new stack top
004C 7E mov a,m ;get data to pop
004D E1
              pop h ;restore h-l pair
004E C9
              ret
; ;*******Push data in Stack*******
;push a byte in stack from Accumulator
;Input: Acc with data
modifies: CY is set if stack is full
     C5
004F
              Stkpush: push b ; save B-C pair
004F C5 Stkpush: push b ; save β-C mov b,a ; save the push data
0051
       3A2500 Ida stkcount ; load stack counter
```

# Implementing Auxiliary Stack

```
Program [auxstk.asm]
0054 4F
              mov c,a; copy it to C
0055
      3A2600 Ida stklimit ; get max limit
0058 B9
             cmp c ; compair it to C i.e counter
0059 C26000 jnz Stkpush_c1; if count != maxlimit jump
005C 78
             mov a,b; restore the data in Acc
005D C1
             pop b; restore B-C pair
005E 37
             stc; Signal Error
005F C9
             ret; return
             Stkpush_c1:
0060 OC
             inr c ;increment counter
0061 79
             mov a,c ;copy it to acc
0062 322500 sta stkcount ;save new counter
0065 E5
             push h ;save h-l pair
0066 78
             mov a,b ;get push data from B
0067 2A2700 lhld stkaddress ;get stack address
006A 77
             mov m,a ;copy the data to stack
006B 23
             inx h ;increment to new stack location
006C 222700 shld stkaddress ;save new stack top
006F E1 pop h ;restore the h-l pop b ;restore the b-c pop b ;restore the b-c ret ; job done OK bye
             pop h ;restore the h-l pair
             pop b ;restore the b-c pair
org 2000h
2000 00
             Array1: db 00h; Storage for stack
2001 00
             db 00h
2002 00
             db 00h
2003 00
             db 00h
2004 00
             db 00h
2005 00
             db 00h
2006 00
             db 00h
2007 00
             db 00h
2008 00
             db 00h
2009 00
             Array2: db 00h; Storage for Array
200A 00
             db 00h
200B 00
             db 00h
200C 00
             db 00h
200D 00
             db 00h
200E 00
             db 00h
200F 00
             db 00h
2010 00
             db 00h
             db 00h
***************
```

## Objective

To implement a Circular Queue which is an FIFO data-structure in 8085 assembly language. The queue will store bytes instead of words, and its size can be set by the user. It consists of following functions:

- Queinit: Initializes the queue. Set storage area to given location and length of the queue
- **Quepush:** Pushes the byte present in accumulator into the queue. Sets CY flag on queue overflow.
- **Quepop:** Pops a byte from the queue and places it in the accumulator. Sets CY flag on queue underflow.



Program [queue.asm]	Inp	ut								
;Queue Library ;Implements a Queue storage a user	Α			В		D			Н	20
;define area and of selected size	F			С	0A	Е			L	00
;(c) Vaibhav Jain :date: 15/4/04	S		Z		Α		Р		S	
,uate. 10/4/04 ;************************************	Memory									
0000 31FFFF lxi sp,ffffh ;init stack	<b>2000</b> 02 04 06 08							8	0A	
0003 210020 lxi h ,2000h ;storage area	<b>2005</b> OC OE 10 12						2	00		
;the storage size will provide only 9	2	00A		00	00	)	00	0	0	00
0008 CD2D00 call Queinit ;Init the queue 000B AF xra a ;set acc to 0	2	200F		00	00	)	00	0	0	00
000C 4F mov c,a	2	2014		00	00	)	00	0	0	00
loop:	2	2019		00	00	)	00	0	0	00
000D 3C inr a 000E 3C inr a	2	01E		00	00	)	00	0	0	00
000F 0C inr c										
0010 CD6B00 call Quepush; push Acc in queue	0	4								
0013 D20D00 jnc loop; loop until error is signalled 0016 AF xra a:	Ou	tput	-			ı				Г
0017 4F mov c,a;	Α	12	:	В	00	D	0	0	Н	20
0018 211020 lxi h,array2; load address of array2 001B CD3E00 loop2: call Quepop	F	44		С	09	Е	0	00 L		19
; fetch data in Acc	S	0	Z		Ι_Λ	0	Р	1	S	0
001E DA2700 jc exit ;if error signalled then exit	5	U		1	A	<u> </u>	-	1	0	U
0021 77 mov m,a ;save it in array2 0022 23 inx h					Men			ı		
0023 0C inr c		000		02	04		06	-	8	0A
0024 C31B00 jmp loop2		005		0C	OF		10		2	00
0027 76 exit: hlt ;exit		00A		00	00		00		0	00
;*******Queue Library******		00F		00	02		04		6	08
;*************************************		014		0A	00		0E		0	12
0028 00 quelimit: db 00h ;max length of queue		019		00	00		00		0	00
0029 00 quetop: db 00h ;top of the queue	2	01E		00	00	)	00	0	0	00
;//*****code continues*******										

```
Program [queue.asm]
002A 00
               quebottom:
                               db 00h; bottom of the queue
002B 0000
                               dw 00h ;address of queue
               queaddress:
;*********Queue Init********
;Initializes the Queue with give data
;Input: H-L: Storage Address
; C : No. of elements
;!!!Caution!!! Actual storage available is 1byte less
;Modifies: Nothing
.*********
       Queinit:
002D F5
               push psw; save Acc and Flags
002E 79 mov a,c ;copy count to Acc 002F 322800 sta quelimit ;copy to memory variable
0032 222B00 shld queaddress ;copy stack address to variable
0035 AF
              xra a ;set Acc to zero
0036 322900 sta quetop ;set top=0
0039 322A00 sta quebottom; set bottom=0;
003C F1 pop psw ;restore acc and flags
003D C9
               ret ;stack is now intialized
:********Queue Pop********
;Pop an element from the Queue
;Input: nothing
;Modifies: Acc: containts poped element
; Cy: in case of Queue Underflow
Quepop:
003E C5
003E C5 push b ;save B-C pair
003F 4F mov c,a ;save contents of A in C
               push b ;save B-C pair
3A2A00 Ida quebottom ;get the Queue Bottom Index47 mov b,a ;copy it to B
0044 3A2900 lda quetop ;get the Queue Top index
0047 B8 cmp b ;compare Top to Bottom
0048 C24F00 jnz Quepopc2 ;Are they Equal?
004B 79 mov a,c ;restore previous contents of A
004C C1
               pop b; this is the underflow error
004D 37
               stc ;set Cy to indicate Error
004E C9
               ret ;Bye-Bye Sweet Heart!!!
Quepopc2:
004F 47
               mov b,a ;save top-count in B
0050 E5
               push h ;save h-l pair
0051 2A2B00 lhld queaddress ;get the storage address in H-L
0054 85
               add I :add this index to Lower Queue Address
0055 6F
               mov I,a ;save this back to L
0056 D25A00 jnc Quepopnc3 ;if nocarry skip these steps
0059 24
               inr h; add this carry bit to H
Quepopnc3:
005A 3A2800 Ida quelimit ;get the queue length
005D 04
               inr b ;increment value of top
005E B8
               cmp b ;Is top=Queue Length
://***********code continues*********
```

```
Program [queue.asm]
005F
              mov a,b; NFC==> new top copied to Acc
       78
0060 C26400 jnz Quepopne3 ;if not skip following steps
0063 AF
              xra a ;set new top to zero
Quepopne3:
0064 322900 sta quetop ;copy new queue top to mem-var
0067 7E
              mov a,m ;get the poped data from memory
0068 E1
              pop h ;restore h-l pair
0069 C1
              pop b ;restore b-c pair
006A C9
              ret ;job is done Have a nice execution
**********Queue Push********
;Pushes an element into the Queue
;Input : Acc: data to push
;Modifies: Cy: in case of Queue Overflow
Quepush:
006B C5
              push b ;save B-C pair
006C E5
              push h ;save H-L pair
006D 4F
              mov c,a ;save push data in C
006E 3A2A00 Ida quebottom ;get the Queue Bottom Index
0071 47
              mov b,a ;copy bottom to B saved
0072 2A2B00 Ihld queaddress ;load the Queue Address
0075 85
              add I;add Bottom index to L
              mov I,a;NFC==>copy this address to L
0076 6F
0077 D27B00 jnc Quepushnc1 ;if no carry from addition SKIP
007A 24
              inr h; add this carry bit to H
Quepushnc1: ;address of bottom is in H-L
007B 04
              inr b ;to new value of bottom
007C 3A2800 Ida quelimit ;get the queue size
007F B8
              cmp b ;if botttom=queuesize
0080 C28500 jnz Quepushne2 ;SKIP if bottom!=size
0083 0600
               mvi b,0 ;set new bottom to 0
Quepushne2:
0085 3A2900 Ida quetop ;get the queue top
0088 B8
              cmp b ;if new bottom=top
0089 C29100 jnz Quepushne3; SKIP if equal
;//The Queue has Over Flown RUN!!!!!
              mov a,c ;restore push data back
008C 79
008D E1
              pop h ;restore H-L pair
008E C1
              pop b ;restore B-C pair
008F 37
              stc ;signal Queue Overflow
0090 C9
              ret; What a bad day- to Home
Quepushne3:
              mov a,b ;copy new bottom to Acc
0091 78
0092 322A00 sta quebottom ;store it to mem-var
0095 79
              mov a,c ;restore push data to acc
0096 77
              mov m,a ;save Quity-Quity to memory
0097 E1
              pop h ;restore H-L pair
0098 C1
              pop b ;restore B-C pair
0099 B7
              ora a ;reset the CY flag
009A C9
              ret :job is done Return home
://***********code continues**************
```

```
Program [queue.asm]
.********
·********************
            org 2000h
2000 0000 array: dw 0000h; Array of 10 bytes for queue
2002 0000 dw 0000h;
2004 0000 dw 0000h;
2006 0000 dw 0000h;
2008 0000 dw 0000h;
            org 2010h
2010 0000 array2: dw 0000; Array of 9 bytes for data
2012 0000 dw 00;
2014 0000 dw 00;
2016 0000 dw 00;
2018 00 db 00;
;//*********code concludes************
SYMBOL TABLE:
LOOP
            000D
LOOP2
            001B
            0027
EXIT
QUELIMIT
            0028
QUETOP
            0029
QUEBOTTOM 002A
QUEADDRESS 002B
QUEINIT
            002D
QUEPOP
            003E
QUEPOPC2 004F
QUEPOPNC3 005A
QUEPOPNE3 0064
QUEPUSH
            006B
QUEPUSHNC1 007B
QUEPUSHNE2 0085
QUEPUSHNE3 0091
ARRAY
            2000
ARRAY2
            2010
```