PCS 125 W2021 – Course Content & Suggested Problems

Unit	Content	Learning goals	Readings and Problems
Unit 1	Harmonic Motion	To understand and describe the	Reading: Review:
5-hour	 Mass Attached to a Spring 	characteristics of oscillatory motion	1.1 – 1.6; 15.1-15.4, 15.5,
periods	 Simple Harmonic Motion 	and to differentiate it from uniform or	15.6, 15.7
	 Energy of the Simple Harmonic Oscillator 	uniformly accelerated motion	(skip torsional pendulum in
	• Simple Harmonic Motion and Circular Motion	To describe SHM and understand the	15.5)
	• Pendulum	conditions when this approximation is	Suggested Problems:
	 Damped Oscillations 	valid.	<u>Ch15</u> : 1, 2, 3, 4, 5, 7, 10, 11,
	 Forced Oscillations and Resonance 	To solve application problems that	13, 14, 15, 17, 18, 24, 27, 31,
Unit 2	N. 1	involve oscillatory motion	33, 35, 39, 40, 47.
9-hour	Mechanical Waves	To distinguish oscillatory motion	Reading: 16.1 - 16.4,
periods	• Wave Motion	from wave motion. To classify waves and to understand	16.6 – 16.9 17.1 – 17.6, 17.7
perious	• Speed of Waves on Strings	and describe the special	Suggested Problems:
	• Reflection and Transmission of Waves	characteristics of wave motion.	Ch 16: 1, 5, 7, 8, 9, 11, 13,
	• Sound Waves	To describe sound wave properties	14, 15, 23, 24, 25, 28, 31, 32,
	• Doppler Effect	To solve application problems that	33, 35, 37, 41, 42, 43, 47, 52.
	• Superposition and Interference of Waves	involve mechanical waves	33, 33, 37, 11, 12, 13, 17, 32.
	• Standing Waves	involve meenumeur waves	<u>Ch 17</u> : 1,2, 7, 9, 11, 12, 13,
	• Resonance in waves		14, 15, 16, 17, 26, 28, 31, 32,
	• Beats		34, 35, 36, 42, 43, 47, 48, 49.
Unit 3	Gravitational Field	To be familiar with the concepts of	Reading: 13.1 –
3 hour	 Newton's Law of Universal Gravitation 	gravitational force and field and	13.3, 13.5 – 13.6
periods	• Free-Fall Acceleration	distinguish them	Example 13.5(A) on
	 The Gravitational Field 		geosynchronous orbits
	 Gravitational Potential Energy 	To extract energy information for a	Escape speed in 13.6 is self-
	 Planetary and Satellite Motion 	body in a gravitational field	study
		T 1 (14)	Suggested Problems:
		To understand the consequences of	Ch 13: 1, 2, 3, 5, 6, 7, 15, 17, 19
		the gravitational field for planetary and satellite motion	19
Unit 4	Electric Field and Electric Current	To understand the concepts of electric	Reading : 22.1 – 22.6
13-	• Coulomb's Law of Electric Force	force versus electric field, electric	23.2 – 23.4
hour	• The Electric Field	field lines and energy stored in an	24.1 – 24.4, 24.6
periods	• Electric Field Lines	electric field	Figure 24.22
	• Gauss' Law	Be able to calculate electric field for	26.1-2, 26.6
	Motion of Charged Particles in an Electric	different charges configurations	27 (Self-study)
	Field	To be able to solve application	Suggested Problems:
	Potential Difference and Electric Potential	problems of charges moving in	<u>Ch22:</u>
	Potential Difference in a Uniform Electric	electric fields and calculating their	7, 10, 15, 17, 19, 23, 24, 25,
	Field	total energy	33, 48
	• Electric Potential Energy	To comprehend the phenomenon of	Ch 23: 11, 12, 15, 19, 42
	•Electric Current, resistance	electric current	<u>Ch 24</u> : 1, 2, 3, 6, 8, 22, 24, 33
	•DC Circuits (self-study)		<u>Ch 26</u> : 1, 2,5, 10, 13, 14, 26, 27, 29
	Magnetic Field	To understand the origin of magnetic	Reading:
	Magnetic Fields and Forces	fields	28.1 – 28.4, 28.6
	Motion of a Charged Particle in a Magnetic	To describe and manipulate the	29.1 – 29.2
Unit 5	Field	appropriate equations that govern the	Fig. 34.4 (self-study)
6-hour	• Applications: Velocity Selector and Mass	motion of charges in magnetic fields	Suggested Problems:
periods	Spectrometer	and in regions where magnetic and	<u>Ch 28</u> :
	Magnetic Force on a Current-carrying	electric fields co-exist.	1, 3, 5, 7, 9, 11, 13, 15, 17, 21,
	Conductor	To calculate the magnetic force	25, 27, 43, 47, 51
	• The Biot-Savart Law	between carrying current conductors.	<u>Ch 29</u> : 1, 5, 7, 9, 11, 13, 15,
	Magnetic Force between parallel conductors		17, 39
	magnetic Porce between parallel colluctors		