Podstawy uczenia maszynowego Część 3

Dr Mateusz Radzimski

Regresja wielowymiarowa

(Multivariate linear regression)

Przypomnienie dotychczasowych metod

Features & Label Samples	F1	F2	F3	F4	Label
Sample_1	V _{1,1}	V _{1,2}	V _{1,3}	V _{1,4}	L_1
Sample_2	V _{2,1}	$V_{2,2}$	V _{2,3}	V _{2,4}	L_2
Sample_3	V _{3,1}	V _{3,2}	V _{3,3}	V _{3,4}	L_3

Sample_n $V_{n,1}$ $V_{n,2}$ $V_{n,3}$ $V_{n,4}$ L_n

Przypomnienie dotychczasowych metod

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

W przykładzie ze zbiorem danych "Advertisment" tworzyliśmy model regresji liniowej na podstawie jednej zmiennej niezależnej: np. Sales ~ TV.

Jest to tzw. prosta regresja liniowa (simple linear regression).

Co zrobić w przypadku gdy mamy więcej zmiennych niezależnych?

Regresja wielowymiarowa

 Regresję możemy stosować również w przypadku, gdy mamy do czynienia z wieloma zmiennymi niezależnymi

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	Price
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

Regresja wielowymiarowa - model

Model wielowymiarowej regresji liniowej przyjmuje postać:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \epsilon$$

- Parametry $\beta_1 \dots \beta_p$ określają w jaki sposób zmienne niezależne X_j wpływają na zmienną zależną Y.
- Wracając do przykładu ze zbioru danych "Advertising":

Sales =
$$\beta_0 + \beta_1 \cdot TV + \beta_2 \cdot Radio + \beta_3 \cdot Newspaper + \epsilon$$

Regresja wielomianowa - estymacja parametrów

- Podobnie jak w przypadku regresji prostej, używamy metody najmniejszych kwadratów.
- Suma kwadratów odległości naszych obserwacji od *płaszczyzny* (hyperplane) definiującą naszą regresję.

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})$$

Ewaluacja parametrów

- Podobnie jak w przypadku regresji prostej, chcemy odpowiedzieć na pytanie: czy jest (istotna statystycznie) zależność między zmiennymi niezależnymi a zmienną zależną
 - Hipoteza zerowa: H_0 : $\beta_1=\beta_2=\ldots=\beta_p=0$
 - Hipoteza alternatywna: H_1 : conajmniej jeden parametr eta_i jest różny od zera
- Wciąż moglibyśmy użyć p-value pojedynczych parametrów, tak jak w przypadku regresji prostej, jednakże może być to problematyczne dla dużej ilości zmiennych
- Do odrzucenia hipotezy zerowej używamy więc testu F, a w szczególności statystyki F (F-statistics)
 - Test F bada łączną istotność parametrów dla całego modelu
 - Wartość *F-statistics* powinna być dużo większa od 1

Ewaluacja parametrów

```
X_train = df[["TV", "Radio", "Newspaper"]]
                               y_train = df["Sales"]
                               X2 = sm.add_constant(X_train)
                               est = sm.OLS(y_train, X2)
                               regression_model = est.fit()
                               print(regression_model.summary())
                                                            OLS Regression Results
                           C→
                                                                                                          0.903
                               Dep. Variable:
                                                                        R-squared:
                                                                        Adj. R-squared:
                                                                                                          0.901
                               Model:
                                                                  0LS
                                                       Least Squares
                                                                                                          605.4
                                                                        F-statistic:
                               Method:
                                                                        Prob (F-statistic):
                                                                                                       8.13e-99
                                                    Fri, 12 May 2023
                               Date:
                                                                                                        -383.34
                                                                        Log-Likelihood:
                                                             21:25:35
                               Time:
Współczynniki \beta
                                                                                                          774.7
                               No. Observations:
                                                                  200
                                                                        AIC:
                               Df Residuals:
                                                                  196
                                                                                                          787.9
                                                                        BIC:
                               Df Model:
                               Covariance Type:
                                                            nonrobust
                                                         std err
                                                                                 P>|t|
                                                                                             [0.025
                                                                                                         0.975]
                                                 coef
                                              4.6251
                                                                     15.041
                                                                                 0.000
                                                                                              4.019
                               const
                                                           0.308
                                                                                                          5.232
                                              0.0544
                                                                     39.592
                                                                                 0.000
                                                                                              0.052
                                                                                                          0.057
                               TV
                                                           0.001
                                              0.1070
                                                                                              0.090
                                                                                                          0.124
                               Radio
                                                           0.008
                                                                     12.604
                                                                                 0.000
                                              0.0003
                                                                      0.058
                                                                                 0.954
                               Newspaper
                                                           0.006
                                                                                             -0.011
                                                                                                          0.012
                               Omnibus:
                                                                        Durbin-Watson:
                                                                                                          2.251
                                                               16.081
                               Prob(Omnibus):
                                                                        Jarque-Bera (JB):
                                                                                                         27.655
                                                                0.000
                                                                       Prob(JB):
                               Skew:
                                                               -0.431
                                                                                                       9.88e-07
                                                                4.605 Cond. No.
                               Kurtosis:
                               Notes:
                               [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
```

 R^2

Wartość statystyki F

P-value dla hipotezy H0
(Niska wartość -> odrzucamy H0)

04 - Intro to multivariate regression

Wybór zmiennych

- Na poprzednim przykładzie widzieliśmy, że nie zawsze warto "wrzucać" wszystkie zmienne do regresji liniowej
- Strategie wyboru zmiennych:
 - ullet Forward selection najpierw robimy p prostych regresji, patrzymy która zmienna ma największy współczynnik R^2 (lub najmniejszy RSS) i wybieramy ją do modelu, kontynuujemy aż do ustalonego momentu
 - Backward selection budujemy model regresji liniowej ze wszystkich zmiennych, a następnie usuwamy zmienną o największym parametrze p-value, kontynuujemy aż do ustalonego momentu (np. Wszystkie zmienne mają p-value poniżej ustalonego progu)
 - Mixed selection kombinacja powyższych: zaczynamy tak jak przy strategii forward selection, ale gdy dla którejkolwiek zmiennej parametr p-value wzrośnie powyżej pewnej wartości, wtedy taką zmienną usuwamy.

Efekt "synergii"

- Regresja liniowa zakłada, że zależność między zmiennymi niezależnymi a zmienną zależną jest liniowa i *addytywna*, tj. Zależność między $Y \sim X_j$ nie zależy od innych zmiennych.
- W przypadku zbioru "advertising" nasza regresja niedoszacowuje sytuacji, w których wydajemy budżet na dwa kanały: radio i telewizję.
- Pojawia się nieliniowość sugerująca pewien rodzaj synergii lub interakcji między obiema kanałami reklamy, skutkującym większą sprzedażą niż gdyby użyć tych kanałów odzielnie.

Efekt "synergii"

Można taką sytuację zapisać:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

Albo:

Sales =
$$\beta_0 + \beta_1 \cdot TV + \beta_2 \cdot Radio + \beta_3 \cdot TV \cdot Radio + \epsilon$$

Taki model znów staje się liniowy

04 - Intro to multivariate regression

Kiedy stosować regresję liniową

- Zależność między zmiennymi niezależnymi a zmienną zależną jest liniowa
 - Eksploracja danych: wykresy punktowe (scatterplot)
- Regresja liniowa jest mało odporna na dane odstające (outliers)
 - Rozważyć odrzucenie outlierów
- Zmienne niezależne nie są skorelowane ze sobą
 - Odrzucić "nadmiarowe" zmienne
- Jednorodność wariancji, homoskedastyczność (homoscedasticity) błędy wartości przewidywanej są w miarę stałe i np. nie rosną wraz ze wzrostem wartości przewidywanej

Kiedy stosować regresję liniową

"No one ever made a decision because of a number. They need a story."

Daniel Kahneman

Follow up

- Nie damy rady omówić wszystkich matematycznych i technicznych aspektów regresji
- Dla zainteresowanych polecam zgłębić problemy:
 - Regularyzacji (regularisation)
 - Metoda gradientu prostego (gradient descent) w znajdowaniu minimum funkcji celu
 - Jak w praktyce wygląda trenowanie regresji liniowej
- Materialy:
 - Andrew Ng videos on YouTube: "Lecture 4.2 Linear Regression With Multiple Variables"
 - Książka: "The Elements of Statistical Learning" Jerome H. Friedman, Robert Tibshirani i Trevor Hastie

Rodzaje danych wejściowych

Rzut oka na przykłady

Titanic dataset

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Rodzaje danych wejściowych

- Wartości liczbowe
- Wartości skategoryzowane
- Wartości tekstowe (strings)
- Daty
- Dźwięk
- Obrazy

•

Wartości skategoryzowane

• Zamiana na tzw. "Dummy variables" albo "1 z n" (one hot encoding)

Przykład

	Person	Education	Salary(annum)
0	amit	Under-Graduate	\$90k
1	vishal	Diploma	\$80k
2	john	Under-Graduate	\$90k
3	marry	Diploma	\$60k
4	sherin	Under-Graduate	\$90k
5	komal	Under-Graduate	\$100k
6	jay	Under-Graduate	\$60k
7	shree	Under-Graduate	\$100k
8	kishore	Diploma	\$90k
9	geetha	Diploma	\$70k
10	savitha	Under-Graduate	\$50k
11	vinith	Under-Graduate	\$90k

	Diploma	Master's	Under-Graduate
0	0	0	1
1	1	0	0
2	0	1	0
3	0	1	0
4	0	0	1
5	1	0	0
6	0	0	1
7	0	0	1
8	0	0	1
9	0	0	1
10	1	0	0
11	1	0	0
12	0	0	1
13	0	0	1

Brakujące dane

Przykłady

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

NaN - Not a Number
NA - Not Available
"" - puste pole

Reprezentacja brakujących danych

- Strategie traktowania brakujących danych:
 - Usunięcie (wiersza danej obserwacji, kolumny odrzucenie zmiennej niezależnej)
 - Uzupełnienie danych
 - Wartości liczbowe: interpolacją wartości, średnia, taka sama jak poprzednia, inne bardziej zaawansowane metody
 - Wartości skategoryzowane: dodanie nowej klasy

05 - Handling data

Zasady zaliczenia

- Zaliczeniem będzie projekt robiony w grupie 3-4 osobowej (max 5).
- Projekt polega na zastosowaniu regresji liniowej lub klasyfikacji (regresji logistycznej) na wybranym zbiorze danych
 - Zaproponuje 2 zbiory danych do wyboru: jeden na klasyfikacje, drugi na regresje
 - Każdy może tez przyjść ze swoim zbiorem danych (wtedy zalecam konsultacje ze mną, żeby określić zakres)
- Rezultatem projektu powinien być notebook (collab), który może zawierać elementy omawiane na wykładzie:
 - Wczytanie danych, może jakaś wizualizacja zbioru
 - Zastosowanie algorytmu uczenia maszynowego
 - Ewaluacja: stworzenie macierzy błędów/metryk modelu/współczynnik R2 regresji itd.
- Zachęcam do wzorowania się na notebookach prezentowanych na wykładzie
- Projekt (notebook) najlepiej wysłać mi mejlem
- Termin do 18 czerwca

Zbiory danych

- Titanic dataset (klasyfikacja)
- Mtcars (regresja)
- Penguins (klasyfikacja)
- Boston housing (regresja)
- Credit (klasyfikacja, regresja)

MTCARS

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

description
Miles/(US) gallon
Number of cylinders
Displacement (cu.in.)
Gross horsepower
Rear axle ratio
Weight (lb/1000)
1/4 mile time
V/S
Transmission (0 = automatic, 1 = manual)
Number of forward gears
Number of carburetors

Inne materialy

- Materialy:
 - "Machine Learning With PyTorch and Scikit-Learn" Sebastian Raschka, Yuxi Liu
 - Książka: "The Elements of Statistical Learning" Jerome H. Friedman,
 Robert Tibshirani i Trevor Hastie