UNIVERSIDAD NACIONAL DE TRUJILLO FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INFORMATICA

SILABUS DE INTELIGENCIA ARTIFICIAL

I. IDENTIFICACION

1. Experiencia Curricular : Inteligencia Artificial

2. Para estudiantes de : Informática

3. Ciclo de estudios : IX4. Calendario Académico : 2008-I

5. Extensión Horaria

5.1. Total hs semanales : 6 horas semanales Hs. Teoría : 4 horas semanales Hs Laboratorio : 2 horas semanales

5.2 Total horas semestre : 96
6. Créditos : 4
7. Organización del tiempo anual semestral

Tipo Actividades	Total Horas	Unidades		
		ı	II	III
Clases de enseñanza-aprendizaje	84	30	30	24
Sesiones de evaluación sumativa	12	4	4	4
Total horas	96	34	34	28

8. Departamento Académico y Faculatad : Informática – Ciencias Físicas y Matemáticas

9. Prerrequisitos : Prolog

 10. Duración
 : 05/05/2008 22/08/08

 11. Docente
 : Ing. Jorge Luis Guevara Díaz

II. FUNDAMENTACION Y DESCRIPCION

El presente curso introduce al estudiante a una de las áreas mas importantes e interesantes de la ciencia de la computación, el presente curso brinda al estudiante nociones básicas sobre representación del conocimiento, resolución de problemas, y métodos de aprendizaje en la inteligencia artificial; el curso es de naturaleza teórico-práctico, y es importante en la formación del profesional de Informática, para tratar la solución de problemas para los cuales no es posible o es muy costoso computacionalmente encontrar la solución exacta, así como también pretende brindar el conocimiento básico de cómo hacer que las computadoras, actúen como agentes racionales

III. APRENDIZAJES ESPERADOS

- Comprender el fundamento teórico de la Inteligencia Artificial
- Aplicar diversas técnicas de la inteligencia artificial en la construcción de software inteligente
- Comprender la representación básica del conocimiento en un computador, resolución de problemas y métodos de aprendizaje de la inteligencia artificial
- Desarrollar interés en esta área para poder realizar posteriormente investigaciones en este campo
- Aplican adecuadamente la representación de conocimiento a casos reales
- Analizan situaciones reales y su posible solución con técnicas de inteligencia artificial
- Explican como el la inteligencia humana ha inspirado a la creación de métodos basados en esta para solucionar problemas utilizando la computadora
- Aplican estrategias de búsqueda para problemas en particular
- Desarrollan aplicaciones basadas en técnicas de inteligencia artificial para representar un agente en un entorno bajo incertidumbre
- Desarrollan aplicaciones utilizando algoritmos bioinspirados como las redes neuronales artificiales y los algoritmos genéticos

IV. PROGRAMACIÓN

UNIDAD I

Denominación : Introducción a la Inteligencia Artificial y Algoritmos de

búsquedas

Duración : Inicio: 05/05/08 al 16/06/08 nro semanas 6

Objetivos :

• Entiende el campo de estudio de la inteligencia artificial

- Diferencia los programas de IA de los programas comunes
- Explica adecuadamente que es un agente inteligente
- Explica adecuadamente los algoritmos y estrategias de búsquedas no informada e informada
- Entiende el concepto de heurística, sabe como diseñarla y utilizarla
- Entiende como programar un juego simple en una computadora
- Analiza la complejidad computacional de varios algoritmos de búsquedas

DESARROLLO DE ENSEÑANZA APRENDIZAJE

Semana	Actividades y/o contenidos	Medios y Materiales
1	Qué es IA?: Prueba de Turing, modelo cognitivo, leyes del pensamiento, agentes racionales Fundamentos de la Inteligencia Artificial: filosofía, matemática, sicología, ingeniería de computadoras, lingüística Historia de la IA: periodos iniciales hasta eventos recientes Estado del arte Agentes Inteligentes: Introducción, Como los agentes deberían actuar: percepciones, acciones, autonomía Estructura de agentes inteligentes: programas agentes, tipos de agentes Entornos: Propiedades, Tipos	Laboratorio de Computo Ejercicios Prácticos resueltos y propuestos Artículos científicos para lectura
2	Agentes Solucionadores de Problemas: Pasos generales para solucionar problemas, Agente-simple solucionador de problemas Tipos de Problemas: Determinísticos problemas de estado simple, No Observables problemas de falta de sensor, No Determinísticos problemas de contingencia, Espacio de estados desconocido problemas de exploración Formulación de problemas: espacio de estados, estado, función sucesor, test meta, costo del camino, abstracción Ejemplo de Problemas: aspiradora, 8 puzzle, 8 reynas, caníbales y misioneros, Traveling salesman problem, etc Algoritmos de búsqueda en árboles: algoritmo, ejemplo, nodos vs estados Evaluación de algoritmos: Completitud, Complejidad del Tiempo, Complejidad de Espacio, Optimalidad, Estructuras de datos: Arreglos, Listas, Pilas, Colas, Colas de Prioridad, Tablas Hash, Arboles y Grafos Estrategias de búsqueda no informada Búsqueda primero en amplitud, Búsqueda de costo uniforme, Búsqueda primero en profundidad, Búsqueda de	

	profundidad iterativa, Búsqueda Bidireccional, Estados repetidos : Búsqueda en grafos, Lista de nodos Visitados, Tablas Hash de nodos Visitados	
3	Estrategias de Búsqueda Informada I Búsqueda primero el mejor : Búsqueda primero el mejor, Búsqueda Greedy primero el mejor, Búsqueda A*, Búsqueda Heurística de memoria Limitada : IDA* Búsqueda recursiva primero el mejor RBFS, SMA* Heurísticas : Admisibilidad, Dominación, Relajando problemas, Inventando Heurísticas	
	Estrategias de Búsqueda Informada II Algoritmos de Búsqueda local y Optimizacion: Hill Climbing, simulated annealing, local beam, algoritmos genéticos Búsqueda Local en Espacios Continuos: Método de gradiente Búsqueda online en entornos desconocidos: Problemas de búsqueda online, agentes de búsqueda online, búsqueda loca online, aprendizaje en búsqueda local online	
4	Problemas de satisfacción de restricciones Algoritmos genéticos	
5	Búsqueda entre adversarios: juegos, desciciones óptimas en juegos, algoritmo mínimas, poda alfabeto, funciones de evaluacion	
6	Presententacion de proyectos I unidad, presentacion de posters	
	FUENTES BIBLIOGRÁFICAS: [1] Capítulos 1, 2, 3, 4, 5, 6 [4] Capítulos 1, 2 y 3	

EVALUACIÓN SUMATIVA DEL APRENDIZAJE

Semana	Técnica	Instrumentos
3 5	De análisis	Trabajo practico: ensayo,
		laboratorios trabajos
		programados
5	De pruebas	Examen parcial

UNIDAD II

Razonamiento probabilístico Denominación

Duración Inicio: 16/06/08 al 14/07/08 nro semanas 5

Objetivos

- Formula problemas y diseña agentes que operan bajo incertidumbre Modela la solucion de problemas de razonamiento probabilística usando redes bayesianas
- Implementa clasificadores utilizando Nayve Bayes

- Utiliza Lógica Difusa para solucionar problemas
- Entiende la importancia de los modelos espacio temporales probabilísticas, como Cadenas de Harkov, y los Modelos Ocultos de Markov

DESARROLLO DE ENSEÑANZA APRENDIZAJE

Semana	Actividades y/o contenidos	Medios y Materiales
7	Incertidumbre Actuando bajo incertidumbre, Probabilidades: notacion básica axiomas, Inferencia usando distribución conjunta completa,	Lecturas de clase
	Independencia, Teorema de Bayes, Clasificación de texto usando nayve bayes	Laboratorio de Computo con c++
8	Razonamiento Probabilísitico Representación del conocimiento de dominios inciertos, semántica de Redes Bayesianas, representación eficiente de distribuciones condicionales, inferencia exacta en	Ejercicios Prácticos resueltos y propuestos
	redes bayesianas, Inferencia aproximada en redes bayesianas	Artículos científicos para lectura
9	Lógica Difusa Cadenas de Harkov Modelos Ocultos de Markov	
10		
	Presententacion de proyectos II unidad, presentacion de posters	
	FUENTES BIBLIOGRÁFICAS: [1] Capítulos 13,14 [4] Capítulos 7,8,9	

EVALUACIÓN SUMATIVA DEL APRENDIZAJE

Semana	Técnica	Instrumentos
8,9	De análisis	Trabajo practico: ensayo,
		laboratorios trabajos
		programados
10	De pruebas	
		Examen parcial

UNIDAD III

Denominación : Redes neuronales artificiales

Duración : Inicio: 14/07/08 al 22/08/08 nro semanas 5

Objetivos :

- Explica el concepto de aprendizaje de máquinas
- Estudia los principales algoritmos de aprendizaje estadístico
- Explica que es una red neuronal artificial
- Entiende el campo de aplicación de las redes neuronales
- Implementa algoritmos de aprendizaje utilizando la teoría de las redes neuronales

DESARROLLO DE ENSEÑANZA APRENDIZAJE

Semana	Actividades y/o contenidos	Medios y Materiales
11	Aprendizaje: Formas de aprendizaje, aprendizaje	Lecturas de clase

	inductivo, aprendizaje por medio de árboles de decisión, aprendizaje estadístico: Algoritmo ML discreto y continuo, algoritmo EM, algoritmo NN	Laboratorio de Computo con c++
12	Redes Neuronales Artificiales : Introducción, importancia, historia, modelo biológico, modelo	Ejercicios Prácticos resueltos y propuestos
	computacional, maquinas de aprendizaje lineales, aplicaciones, estado del arte, Algoritmo primal del perceptrón, algoritmo dual del perceptrón, prueba de convergencia, ejemplos	Artículos científicos para lectura
13	Red neuronal MLP: algoritmo backpropagation, gradiente descendente, reconocimiento de dígitos usando una red MLP	
14	El modelo discreto de la memoria asociativa de Hopfield: Memoria asociativa, minización de la energía, red neuronal de hopfield, reconocimiento de rostros usando una red neuronal de Hopfield	
	Mapas autoorganizativos de Kohonen : red LVQ Mapas autoorganizativos, rede neuronal LVQ, red neuronal SOM, solución al problema del agente viajero usando LVQ , reconocimiento de huellas dactilares usando una SOM	
15	Presententacion de proyectos finales, presentacion de posters	
	FUENTES BIBLIOGRÁFICAS: [2] Capítulos 1,2,4 [3] Capítulos 1,2,3,4,5,6,7	

EVALUACIÓN SUMATIVA DEL APRENDIZAJE

Semana	Técnica	Instrumentos
11, 12, 13, 14	De análisis	Trabajo practico: ensayo,
		laboratorios trabajos
		programados
15.16	De pruebas	Examen parcial

V. NORMAS DE EVALUACION

Se evaluara de acuerdo al Reglamento de Normas Generales del Sistema de Evaluación del Aprendizaje de los Estudiantes de la Universidad Nacional de Trujillo.

- Haber asistido al 70% del curso. Participación activa en el desarrollo de la asignatura. Se tomaran 3 examenes
 parciales y se asignaran trabajos monográficos y practicos, la inasistencia a las evaluaciones o la no
 presentación de tareas asignadas en las fechas indicadas será calificada como CERO, si se entrega a destiempo
 (uno o dos dias despúes) se le quitará el 25% de la nota que se le ponga en dicho trabajo, mas dias será
 calificado como inasistencia
- En la evaluación sumativa del aprendizaje se usarán os siguientes instrumentos de evaluación:

EP1: 1er examen parcial TP: trabajo practico

EP2: 2do examen parcial EP3: 3er examen parcial

- La evaluación de examen de rezagados se hará en la semana 16
- La evaluación del examen de aplazados se realizará en la semana 17

- La presentación y evaluación de trabajos prácticos se harán según la programación
- El estudiante que a participado por lo menos en dos(2) tercios de las evaluaciones tienen derecho a rendir un examen de aplazado que corresponderá a todo el curso: las lecturas, trabajos y ejercicios desarrollados, con su recibo correspondiente y en las fechas programadas y publicadas por el profesor
- Lanota aprobatoria es 11, y solo en la nota promocional se redondeará al entero próximo a favor del estudiante.
- La nota promocional NP se obtendra de la siguiente manera:

NP = ((U1 + U2 + U3)*7 + PF*3)/10

Donde:

U1 = Lab*60% + PI*30% + PS*10% U2 = Lab*60% + PI*30% + PS*10%U3 = Lab*60% + PI*30% + PS*10%

PF = Proyecto Final

Lab = Promedio de laboratorios PI = Proyecto de implementacion PS = Presentacion de Posters

VI. BIBLIOGRAFÍA OBLIGATORIA

#	CÓDIGO	AUTOR	TITULO				
1		RUSSELL, Stuart and NORVIG,	2003	Artificial	Intelligence	а	Modern
		Peter	Aproa	ch, second	edition		
2		FREEMAN, James and	1997	Neural	Networks,	al	gorithms,
		SKAPURA David	applications and practice, Adison-Wesley				
3		KOHONEN, Teuvo	2001	Self Orga	nization Maps,	thir	d edition,
		KOHONEN, Teuvo	Spring	jer	-		

VII.BIBLIOGRAFÍA COMPLEMENTARIA

#	AUTOR	TITULO		
4	BARR, A; FEIGENBAUM, A	The Handbook of Artificial Intelligence, Kaufman, Los Altos, Calif., 1981		
5	AAAI	http://www.aaai.org/. Sitio web de la asociación para el avance de la inteligencia artificial		

ADDENDA		RECEPCION				
	PRESENTACION	1. Nombres y Apellidos				
1.Docente2 Fecha	: Jorge Luis Guevara Díaz :					
		2. Cargo				
3.Firma SUPERVICIO	N POR JEFATURA DE DEPARTAMEN	3 Fecha				
LOGROS		SUGERENCIAS PARA LA MEJORA				
		•				
Jefe:		Fecha				
Firma						