Jegyzőkönyv

а

Termoelektromos hűtőelemek vizsgálatáról (4)

Készítette: Tüzes Dániel

Mérés ideje: 2008-11-26, szerda 14-18 óra

Jegyzőkönyv elkészülte: 2008-12-10

A mérés célja

A termoelektromos hűtőelemek vizsgálatával kicsit közelebbről megismerkedhetünk a termikus és elektromos jelenségek kapcsolatával.

Elvi alapok

A mérés során több hatás együttes vizsgálatára lesz szükségünk, ezért előjáróként ismertetem a mérés során fellépő jelenségeket.

Elsőként a közismert Joule-hőt. Ha adott egy lineáris R ellenállású áramkör, melyen I áramerősséget folyatunk, akkor az áramkörön keletkező ΔQ hőre $\Delta Q = RI^2 \Delta t$.

Másodikként a hővezetés egyenletét ismertetném. Ha egy homogén anyagi minőségű mintának két, egymástól Δx távolságú részei között ΔT hőmérsékletkülönbség van, akkor a hidegebbtől a melegebb rész felé áramló hőmennyiség Δt idő alatt, ha a szóban forgó mennyiségek kellően kicsik: $\Delta Q = \lambda \Delta T \cdot \Delta t \cdot A/\Delta x \text{ , ahol } A \text{ a minta keresztmetszete, } \lambda \text{ az anyagra jellemző állandó. Deriválás segítségével ezt így is írhatjuk: } \frac{1}{A} \frac{dQ}{dt} = \lambda \frac{dT}{dx} \text{ . Ha a vezető hossza } \textit{l,} \text{ és végei között } \Delta T$

hőmérsékletkülönbség van, akkor lineáris közelítésben a hőátadás sebessége, azaz az időegység alatt átáramló hőmennyiség $\frac{dQ}{dt} = \frac{\lambda A}{I} \Delta T$.

Továbbiakban használjuk a $\Lambda=\lambda A/I$ rövidítést! A hőmérséklet időfüggését a Newton-féle hűlési törvény adja meg, mely szerint a test T hőmérsékletére az alábbi összefüggés áll fenn: $T(t)=A^{-\frac{t}{\tau}}+T_{\infty}$ ahol τ a test-környezet rendszerre jellemző állandó és T_{∞} pedig a környezet hőmérséklete.

A mérés során tapasztalt egyik termoelektromos jelenség a Seebeck-effektus. Ennek ismertetéséhez tekintsük az ábrát! Az ábrán a és b különböző anyagi minőségű fémek. Ha a fémek érintkezési pontjainak hőmérsékletére $T_m \neq T_h$ áll fenn, akkor csupán ezen jelenség miatt feszültséget mérhetünk az 1-es és 2-es pontok között. A mért feszültség függ az érintkezési pontok hőmérséklet gradiensétől és a két anyagra jellemző ún. Seebeck-együtthatótól. Az együtthatót az alábbi összefüggés

definiálja:
$$S_{ab}(T) = \left(\frac{\partial U_{ab}}{\partial T_m}\right)_{T_b = all}$$

Végül a Peltier-effektust említeném. Ez egyfajta megfordítottja a Seebeck-effektusnak, vagyis amennyiben az eredetileg homogén hőmérsékletű rendszerre feszültséget kapcsolok, akkor azon (nem a Joule hő egyenetlen fejlődéséből következően) az illesztési pontoknál hőmérséklet gradiens fog megjelenni. Az érintkezési pontokon fejlődő vagy elnyelődő hő leírására az $\frac{dQ}{dt} = P_{ab}I$ egyenlet szolgál, melyben a P_{ab} a két fémre jellemző ún. Peltier együttható.

Elméleti levezetésekből tudható, hogy P(T) = TS(T).

Méréseink során meghatározzuk a hőmérsékletkülönbség-feszültség kapcsolatot (Seebeck effektus) illetve a hűtés során egy egyensúlyi hőmérséklet-áramerősség kapcsolatot (Peltier effektus). Ez utóbbihoz az 2. ábra szerinti adatsort várunk. A mérés során lejegyezzük az egyes áramerősségekhez tartozó, Peltier elemen mérhető feszültséget, így ezekből a Seebeck-együttható így adható meg: $S_{ab} = \frac{U_{\min}}{T_o}$, ahol T_0 a környezet hőmérséklete, U_{\min} pedig a minimális hőmérséklethez tartozó feszültség. A már ismertetett formulák szerint ebből $P_{ab}\left(T_0\right) = U_{\min}$, továbbá ismert I_{\min} értéke esetén abból kiszámolható a hűtőelem R_{ab} összeellenállása $R_{ab} = S_{ab}T_{\min} / I_{\min}$.

Ha a már említett rendszeren áramot vezetünk, akkor a már említett effektusok együttes hatását kell tekinteni, vagyis $\frac{dQ}{dt} = P_{ab}I - \frac{1}{2}R_{ab}I^2 - \Lambda_{ab}(T_0 - T) - \frac{dq}{dt}$, ahol $\frac{dq}{dt}$ a környezetből a rendszerbe áramló hűtőteljesítmény. Egyensúlyban látható, hogy ez utóbbi 0. Így a hőmérsékletet így is megadhatjuk:

hűtőteljesítmény. Egyensúlyban látható, hogy ez utóbbi 0. Igy a hőmérsékletet így is megadhatjuk:
$$T(I) = \frac{\frac{R_{ab}}{2\Lambda_{ab}}I^2 + T(0)}{\frac{S_{ab}}{\Lambda_{ab}}I + 1}.$$
 Ha kimérjük továbbá a $T(I)$ függvényt, abból megkapható a $T_{\min} = \frac{R_{ab}I_{\min}}{S_{ab}}$ formula.

Definiálhatunk továbbá egy $z=\frac{S_{ab}^2}{\Lambda_{ab}R_{ab}}=\frac{2\left(T(0)-T_{\min}\right)}{T_{\min}^2}$ mennyiséget, az ún. Peltier-elem jóségi számát. Az utóbbit mérésből is közvetlen meg tudjuk adni. Ezen definíciókból adódik egy másik lehetőség R_{ab} , S_{ab} és Λ_{ab} mérésére: $\frac{T}{I}=\frac{R_{ab}}{2S_{ab}}+\frac{\Lambda_{ab}}{S_{ab}}\frac{T(0)-T}{I^2}$.

A mérési módszer ismertetése

A mérési elrendezés vázlatához tekintsük az ábrát! A Peltierelem egy, a környezeti levegőtől elzárt blokkban foglal helyet. Az egységbe termoelem is építve van, mely a Peltier-elem hűtő oldalára van helyezve. A Peltier-elemet alkotó fémek úgy lettek megválasztva, hogy a fellépő jelenségek ezen egyszerű berendezéssel is kimutathatóak legyenek, ehhez két, n és p típusú félvezetőt lett az egységbe építve. A gyakorlati megvalósítás megköveteli, hogy egyszerre több (10-40) Peltier-elemet használjunk, mint azt ahogy a 2. ábráról láthatjuk. A berendezés hűtését vízzel oldjuk meg (lsd. 2. ábra).

Az áramkörön folyó áram erősségét egy digitálisan vezérelhető áramgenerátor szolgáltatja, a Peltier-elem hűtött felületének hőmérsékletét a termoelem feszültségéből számolja ki egy műszer, és a számolt hőmérsékletet közli. A Peltier-elemen levő feszültséget egy feszültségmérő eszközről olvashatjuk le, időmérésre stopper szolgál.

Először a T_0 értékét határozom meg, majd a lehűtött rendszer visszamelegedését vizsgálom. Ez utóbbiból tudható meg ugyanis, hogy mennyi időt érdemes várni a Peltier-együttható mérésénél, mikor adott áramerősség mellett vizsgáljuk a kialakuló közös hőmérsékletet. A többi mérést ezek után végzem.

Mérési eredmények, hibaszámítás

a hőmérséklet időfüggése

A mérés során lehűtöttem a mintát, majd hagytam felmelegedni. Eközben lejegyeztem az egymáshoz tartozó hőmérséklet-idő adatpárokat:

idő (s)	hőmérséklet ($^{\circ}\!\mathcal{C}$)	idő (<i>s</i>)	hőmérséklet (${}^{{}^{\circ}\!{}}{\mathcal{C}}$)	idő (<i>s</i>)	hőmérséklet (${}^{{}^{\circ}\!$
0	5,5	70	10,3	140	12,4
5	6	75	10,6	145	12,5
10	6,5	80	10,7	150	12,6
15	7	85	10,9	160	12,7
20	7,4	90	11,1	165	12,8
25	7,8	95	11,3	170	12,9
30	8,1	100	11,4	175	12,9
35	8,5	105	11,6	180	13,0
40	8,8	110	11,7	190	13,1
45	9,1	115	11,8	200	13,2
50	9,4	120	12,0	210	13,3
55	9,6	125	12,1	220	13,4
60	9,9	130	12,2	235	13,5
65	10,1	135	12,3	255	13,6

A mért adatokat logaritmizálva grafikonon ábrázoltam a mellékletben. A grafikonra illesztett egyenes meredekségéből $\tau=84,5s$. Az adatokból továbbá megtudható $T(0)=17,9^{\circ}\mathcal{C}$.

A hűtővíz hőmérsékletének meghatározásához a mintát kicsit lehűtöttem, majd hagytam visszamelegedni. Ekkor volt egy olyan pillanat, mikor a Peltier-elemen levő feszültség épp 0 volt. Az ehhez tartozó hőmérsékletek: $T = \{13,0^{\circ}C;\ 13,0^{\circ}C;\ 13,1^{\circ}C;\ 13,0^{\circ}C;\ 12,9^{\circ}C;\ 12,9^{\circ}C;\ 12,9^{\circ}C;\}$, melyből az átlaghőmérséklet jó közelítéssel $T_0 = (13,0\pm0,03)^{\circ}C$. A mért eredmény azonban csak a mérés kezdő időpillanatában volt igaz. A hálózati víz hőmérséklet ingadozásából a hőmérséklet reális értéke $T_0 = (13,0\pm0,3)^{\circ}C$.

különböző áramerősség mellet mért állandósult hőmérséklet

Különböző áramerősségeket alkalmazva megmértem a már állandósul Peltier-elem hőmérsékletét, és az ekkor mérhető feszültséget:

áramerősség (A)	hőmérséklet (${}^{\circ}\!\mathcal{C}$)	feszültség (<i>V</i>)		
0,998	0,7	1,66		
1,996	-8,9	2,5		
2,998	-15,1	3,27		
4,000	-18,8	4,06		
4,998	-20,4	4,78		
6,000	-19,8	5,37		
5,499	-20,5	5,1		
7,002	-17,2	6,13		
4,497	-20,1	4,42		

A mért *I-T* eredményeket grafikonon is ábrázoltam, arra harmadfokú polinomot illesztettem:

A kapott harmadfokú polinom deriváltja a I=5,2A áramerősség mellett volt 0, tehát $I_{\min}=5,2A$, $T_{\min}=-20,5^{\circ}\mathcal{C}$. Az ábráról érezhető, hogy a minimális hőmérséklethez tartozó áramerősség hibája számottevő lehet.

Az illesztett egyenest az origóba tolva, abból $U_{\min}=(3.8\pm0.4)V$, így a rendszer számos paraméterét meghatározhatjuk: $S=\frac{U_{\min}}{T_0}=(13\pm2)\,mV/K$, $P=(2.1\pm0.3)V$, $R=T_{\min}S/I_{\min}=(640\pm90)\Omega$. A nagy hibákból látható, hogy pontosabb mérés is szükséges volna. Ekkora hibánál a hibaszámítás képletei sem helyesek.

Megadható továbbá a jósági szám is, melyre $z=(1,20\pm0,01)K$, ennek ismeretében hővezetési állandó is kiszámolható: $\Lambda=\frac{S^2}{z\cdot R}=(220\pm40)\,mW/K$.

• hőmérséklet – feszültség mérése melegedés közben

A mérés során az alábbi adatokat mértem:

hőmérséklet (°C)	feszültség (<i>mV</i>)	hőmérséklet (${}^{\circ}\!\mathcal{C}$)	feszültség (<i>mV</i>)	hőmérséklet (${}^{{\mathscr C}}$)	feszültség (<i>mV</i>)	hőmérséklet (${}^{{\mathscr C}}$)	feszültség (<i>mV</i>)	hőmérséklet (${}^{{\mathscr C}}$)	feszültség (<i>mV</i>)
1,0	116	10,6	24,2	4	88,7	8,4	46,0	11,6	14,3
9,7	33,1	10,8	22,2	5	78,9	9,3	37,1	11,7	13,2
9,9	31,1	11,0	20,2	6	68,9	9,5	34,9	12,2	8,2
10,2	28,2	11,4	16,3	6,5	64,5	11,8	12,2	12,3	7,3
11,2	18,3	2,0	107	7	59	11,9	11,1	12,4	6,4
10,4	26,2	3	98,1	7,3	56,6	11,5	15,2		

A kapott mérési eredményeket grafikusan is ábrázoltam, melyre egyenest is illesztettem:

A mért eredményből már jól kiszámolható a Seebeck-együttható: $S=(9,74\pm0,04)\,mV$ / K . Ezen adat ismeretében újra megadhatjuk a rendszerre jellemző paramétereket: $P(T_{\min})=(2,46\pm0,01)V$, $I_{\min}=5,2A$ értéket elfogadva pedig $R=(473\pm27)\Omega$, illetve $\Lambda=S^2$ / $(z\cdot R)=(167\pm10)\,mW$ / K .

• különböző áramerősség mellet mért állandó hőmérséklet - átparaméterezve

Az "különböző áramerősség mellet mért állandó hőmérséklet" részben mért eredményből, ábrázolva a $x = \frac{T(0) - T}{I^2} \text{ függvényében a } y = \frac{T}{I} \text{-t, annak meredekségéből } m = \Lambda / S \text{ illetve tengelymetszetéből } b = \frac{R}{2S}.$

Kiszámolva ezen értékeket a korábban mértekből láthatjuk a számottevő eltérést. Ezen mérésből $\Lambda = S \cdot m = (139, 8 \pm 3) \, mW \, / \, K$, illetve $R = (570 \pm 20) \, m\Omega$.

teljesítmény-egyenlet

A már meghatározott értékekből a teljesítmény-egyenleg: $Q_p = (12,8\pm0,9)W$, $Q_j = RI^2 = (12,8\pm2,2)W$, $Q_V = \Lambda(T_0 - T) = (5,6\pm0,2)W$ illetve $q = \Lambda(T(0) - T_0) = (0,69\pm0,03)W$. Látható, hogy legutóbbi értéke majd' egy nagyságrenddel kisebb, minta a többi, vagyis a hőszigetelés jól meg van oldva a mérés során.

Melléklet

Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE Eötvös Kiadó, Budapest, 2003.

A Peltier elemet a PC tunningolók is szeretettel használják, több-kevesebb sikerrel. Azonban mindenki hasonló sorsra juthat, aki szakértelem nélkül vág hozzá: www.hwsw.hu/oldal.php3?cikkid=90&oldal=1