SHA-1 is a Shambles

First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust

Gaëtan Leurent Thomas Peyrin

Inria, France

NTU, Singapore

Real World Crypto 2020

https://sha-mbles.github.io

SHA-1

- Hash function designed by NSA in 1995
- Standardized by NIST, ISO, IETF, ...
- Widely used untill 2015

Introduction

```
Cryptanalysis of SHA-1
2005-02 Theoretical collision with 2<sup>69</sup> op.
                                                                              [Wang & al., Crypto'05]
      ... Several unpublished collision attacks in the range 2^{51} - 2^{63}
2010-11 Theoretical collision with 2<sup>61</sup> op.
                                                                                       [Stevens, EC'13]
```

2015-10 Practical freestart collision (on GPU) 2017-02 Practical collision with 2^{64.7} op. (GPU) [Stevens, Karpman & Peyrin, Crypto'15]

[Stevens & al., Crypto'17]

▶ Levchin prize awarded yesterday to Wang and Stevens for breaking SHA-1 in practice

SHA-1 Usage in the Real World

- ► SHA-1 certificates (X.509) still exists
 - CAs sell legacy SHA-1 certificates for legacy clients
 - Accepted by many non-web modern clients
 - ► ICSI Certificate Notary: 1.3% SHA-1 certificates
- ▶ PGP signatures with SHA-1 are still trusted
 - Default hash for key certification in GnuPGv1 (legacy branch)
 - ▶ 1% of public certifications (Web-of-Trust) in 2019 use SHA-1
- ► SHA-1 still allowed for in-protocol signatures in TLS, SSH
 - Used by 3% of Alexa top 1M servers
- ► HMAC-SHA-1 ciphersuites (TLS) are still used by 8% of Alexa top 1M servers
- Probably a lot of more obscure protocols...
 - ► EMV credit cards use weird SHA-1 signatures
 - **.**.

Chosen-Prefix Collisions

[Stevens, Lenstra & de Weger, EC'07]

Collisions are hard to exploit: garbage collision blocks C_i

Identical-prefix collision

Introduction 0000

> ▶ Given IV, find $M_1 \neq M_2$ s. t. $H(M_1) = H(M_2)$

- Arbitrary common prefix/suffix, random collision blocks
- Breaks integrity verification
- Colliding PDFs (breaks signature?)

▶ Given P_1 , P_2 , find $M_1 \neq M_2$ s. t.

- Breaks certificates
- Breaks TLS, SSH

Chosen-Prefix Collisions

[Stevens, Lenstra & de Weger, EC'07]

Collisions are hard to exploit: garbage collision blocks C_i

Identical-prefix collision

Introduction 0000

> ▶ Given IV, find $M_1 \neq M_2$ s. t. $H(M_1) = H(M_2)$

- Arbitrary common prefix/suffix, random collision blocks
- Breaks integrity verification
- Colliding PDFs (breaks signature?)

Chosen-prefix collision

▶ Given P_1 , P_2 , find $M_1 \neq M_2$ s. t. $H(P_1 || M_1) = H(P_2 || M_2)$

- Breaks certificates [Stevens & al, Crypto'09] Rogue CA
- Breaks TLS, SSH [Bhargavan & L, NDSS'16] SLOTH

Our results

Chosen-prefix collision attack on SHA-1

- Theoretical attack at Eurocrypt 2019
- Practical attack today

Introduction 000

> 1 Complexity improvements (factor 8 \sim 10) identical-prefix collision from 2^{64.7} to 2^{61.2} chosen-prefix collision from 2^{67.1} to 2^{63.4}

(11 kUS\$ in GPU rental) (45 kUS\$ in GPU rental)

- Record computation
 - Implementation of the full CPC attack
 - 2 months using 900 GPU (GTX 1060)
- 3 PGP Web-of-Trust impersonation
 - 2 keys with different IDs and colliding certificates
 - Certification signature can be copied to the second key

Chosen-prefix collision attack on SHA-1

[L. & P., EC'19]

Find a set of "nice" chaining value differences \mathcal{S} 1 Setup:

Find m_1, m_1' such that $H(P_1 \parallel m_1) - H(P_2 \parallel m_1') \in \mathcal{S}$ Birthday phase:

3 Near-collision phase: Erase the state difference, using near-collision blocks

• Expected complexity $\approx 2^{67}$

[EC'19]

 \blacktriangleright After improvements $2^{63}\sim 2^{64}$

Running a 2⁶⁴ computation on a budget

- Running the attack on Amazon/Google cloud GPU is estimated to cost 160 kUS\$ (spot/preemptible instances)
- After cryptocurrency crash in 2018, cheap GPU farms to rent!
 - 45 kUS\$ with current public prices on gpuserversrental.com
 - Gaming or mining-grade GTX cards (rather than Tesla)
 - Low-end CPUs
 - Slow internet link
 - No cluster management
 - Pay by month, not on-demand
 - Pricing fluctuates together with cryptocurrencies prices
 - We didn't get optimal prices...

Running a 2⁶⁴ computation on a budget

Bitcoin price history

- Pricing fluctuates together with cryptocurrencies prices
- We didn't get optimal prices...

00000

Birthday phase

Find
$$m_1, m_1'$$
 such that $H(P_1 \parallel m_1) - H(P_2 \parallel m_1') \in \mathcal{S}$

- ▶ Set S of 2^{38} "nice" chaining value differences
- ▶ Birthday paradox: complexity about $\sqrt{2^n/|\mathcal{S}|} = 2^{61}$
- Chains of iterations to reduce the memory [van Oorschot & Wiener, CCS'94]
 - ightharpoonup Truncate SHA-1 to 96 bits, partial collision likely to be in ${\cal S}$
 - About 500GB of storage
 - Easy to parallelize on GPU
 - Expected complexity $\approx 2^{62}$, ($2^{26.4}$ truncated collisions)

- Success after one month
 - ▶ 2^{62.9} computations (2^{27.7} truncated collisions)
 - ▶ Bad luck! ⊗

Near-collision phase

Erase the state difference, using near-collision blocks

- Very technical part of the attack: each block similar to a collision attack
 - \triangleright Find the useful output differences for the next block by exploring $\mathcal S$
 - Build a differential trail with specific input/output conditions
 - ▶ Build GPU code dedicated to the trail: neutral bits, boomerangs, ...
- For simplicity, we use variants of the core trail of Stevens for all blocks
 - Reuse most neutral bits / boomerang analysis
 - Reuse most GPU code [Stevens, Bursztein, Karpman, Albertini & Markov, C'17]
- Aim for 10 blocks, expected complexity: 2^{62.8}
 - ► Last block: 2^{61.6} (equivalent to collision attack)
 - ► Intermediate blocks: 2^{62.1} in total (each block is cheap)
- Success after one month
 - computations (time lost when preparing the trails and GPU code)
 - ▶ Good luck! ⁽³⁾

Message A

Message B

September 27: The First SHA-1 Chosen-prefix Collision

416-bit prefix

96 birthday bits

9 near-collision blocks

iviessage A	Message D		
99040d047fe81780012000ff4b65792069732070617274206f66206120636f6c 6c6973696f6e2120497427732061207472617021 <mark>79c61af0afcc054515d9274e</mark>			
7307624b1dc7fb23988bb8de8b575dba7b9eab31c1674b6d974378a827732ff5	7f076249ddc7fb332c8bb8c2b7575dbec79eab2be1674b7db34378b4cb732fe1		
851c76a2e60772b5a47ce1eac40bb993c12d8c70e24a4f8d5fcdedc1b32c9cf1	891c76a0260772a5107ce1f6e80bb9977d2d8c68524a4f9d5fcdedcd0b2c9ce1		
9e31af2429759d42e4dfdb31719f587623ee552939b6dcdc459fca53553b70f8	9231af26e9759d5250dfdb2d4d9f58729fee553319b6dccc619fca4fb93b70ec		
7ede30a247ea3af6c759a2f20b320d760db64ff479084fd3ccb3cdd48362d96a	72de30a087ea3ae67359a2ee27320d72b1b64fecc9084fc3ccb3cdd83b62d97a		
9c430617caff6c36c637e53fde28417f626fec54ed7943a46e5f5730f2bb38fb 1df6e0090010d00e24ad78bf92641993608e8d158a789f34c46fe1e6027f35a4			
cbfb827076c50eca0e8b7cca69bb2c2b790259f9bf9570dd8d4437a3115faff7	c7fb8272b6c50edaba8b7cd655bb2c2fc50259e39f9570cda94437bffd5fafe3		
c3cac09ad25266055c27104755178eaeff825a2caa2acfb5de64ce7641dc59a5	cfcac09812526615e827105b79178eaa43825a341a2acfa5de64ce7af9dc59b5		
41a9fc9c756756e2e23dc713c8c24c9790aa6b0e38a7f55f14452a1ca2850ddd	4da9fc9eb56756f2563dc70ff4c24c932caa6b1418a7f54f30452a004e850dc9		
9562fd9a18ad42496aa97008f74672f68ef461eb88b09933d626b4f918749cc0	9962fd98d8ad4259dea97014db4672f232f461f338b09923d626b4f5a0749cd0		
27fddd6c425fc4216835d0134d15285bab2cb784a4f7cbb4fb514d4bf0f6237c f00a9e9f132b9a066e6fd17f6c42987478586ff651af96747fb426b9872b9a88			
e4063f59bb334cc00650f83a80c42751b71974d300fc2819a2e8f1e32c1b51cb	e8063f5b7b334cd0b250f826bcc427550b1974c920fc280986e8f1ffc01b51df		
18e6bfc4db9baef675d4aaf5b1574a047f8f6dd2ec153a93412293974d928f88	14e6bfc61b9baee6c1d4aae99d574a00c38f6dca5c153a834122939bf5928f98		
ced9363cfef97ce2e742bf34c96b8ef3875676fea5cca8e5f7dea0bab2413d4de00ee71ee01f162bdb6d1eafd925e6aebaae6a354ef17cf205a404fbdb12fc45			
4d41fdd95cf2459664a2ad032d1da60a73264075d7f1e0d6c1403ae7a0d861df	4141fddb9cf24586d0a2ad1f111da60ecf26406ff7f1e0c6e5403afb4cd861cb		
3fe5707188dd5e07d1589b9f8b6630553f8fc352b3e0c27da80bddba4c64020d	33e5707348dd5e1765589b83a7663051838fc34a03e0c26da80bddb6f464021d		

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure

- Alice generates key
- Asks CA to sign
- Certificate proves ID

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure

- Alice generates key
- Asks CA to sign
- Certificate proves ID

- Bob creates keys s.t. $H(Alice||k_A) = H(Bob||k_B)$

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure

- Alice generates key
- Asks CA to sign
- Certificate proves ID

- Bob creates keys s.t. $H(Alice||k_A) = H(Bob||k_B)$
- Bob asks CA to certify his key k_B

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure

- Alice generates key
- Asks CA to sign
- Certificate proves ID

- Bob creates keys s.t. $H(Alice||k_A) = H(Bob||k_B)$
- Bob asks CA to certify his key k_B
- Bob copies the signature to k_A , impersonates Alice

PGP identity certificates

- PGP identity certificate has public key first, UserID next
 - Each blob prefixed by length
 - Cannot just use the ID a prefix as with X.509 certificates
 - Quite rigid format (weird extensions not signed)
- - ▶ JPEG readers ignore garbage after End of Image marker
- - ▶ Need very small JPEG: example 181-byte JPEG (almost compliant)

PGP identity certificates

- PGP identity certificate has public key first, UserID next
 - Each blob prefixed by length
 - Cannot just use the ID a prefix as with X.509 certificates
 - Quite rigid format (weird extensions not signed)
- Use keys of different length, fields misaligned
- ▶ PGP format supports for JPEG picture in key, and picture can be signed
 - JPEG readers ignore garbage after End of Image marker
- Certificate A has RSA-8192 public key, with victim ID
- Certificate B has RSA-6144 public key, and attacker's picture
 - Stuff JPEG in key A, and ID B in JPEG
 - Need very small JPEG: example 181-byte JPEG (almost compliant)

Certificate structure

- Build CP collision with prefixes "99040d04*012000"/"99030d04*011800"
- Choose JPEG image to include in B, UserID to include in A
- 3 Select "!!" bytes to make RSA modulus.
- Ask for a signature of key B.
- Copy the signature to key A.
- Single chosen-prefix collision can be used to target many victims
- Example keys on https://sha-mbles.github.io
 - Key creation date of our CPC in 2038 to avoid malicious usage
- Reported in May, GnuPG does not trust SHA-1 signatures anymore (CVE-2019-14855)

Conclusion

SHA-1 signatures can now be abused in practice

- ► SHA-1 must be deprecated (same attacks as on MD5 in 2007)
 - ► As long as SHA-1 is supported, downgrade attacks are possible
 - Urgent for SHA-1 signatures
 - SLOTH attack as long as SHA-1 is supported in TLS, SSH
 - Rogue CA using SHA-1 X.509 certificates

[Bhargavan & L., NDSS'16] [Stevens & al., C'09]

▶ We recommend deprecation everywhere (even HMAC-SHA-1)

```
$ openssl s_client -connect msn.com:443 2>&1 | fgrep 'digest'
Peer signing digest:
                      SHA1
```

- If you are involved in a project that still supports SHA-1, please take action!
- Side result: breaking 64-bit crypto now costs less than 100 kUS\$

Resources used

- ► Cluster of 150 nodes / 900 GPUs (GTX 1060)
- ▶ 2TB hard drive on master node to store chains for the birthday phase
- **External** machine with huge RAM for operations in S (Grid 5000: 1TB, rioc: 3TB)

Phase	Step	Main resource	Repetitions	Wall time
Setup	Preparation of the graph	CPU and RAM		pprox 1 month
Birthday	Computing chains Sorting chains Locating collisions Searching in graph	GPU Hard drive GPU RAM	4 × 4 × 4 ×	$34 ext{ days}$ $pprox 1 ext{ day}$ $< 1/2 ext{ day}$ $< 1/2 ext{ day}$
Blocks	Building trail & code Finding intermediate block Checking results in graph Finding last block	Human Time GPU RAM GPU	9 × 8 × 8 × 1 ×	pprox 1 day 3 hours – 3 days $<$ $^{1}/_{2}$ hour 6 days

Current GPU prices

PRICING

Compare our servers performance and price with major companies such as GPU instances from AWS, GPU instances from google and azure and GPU servers from small competitors.

You'll be surprised!

GPU Instance	GPU RAM	CUDA Cores	Pricing
6 x GTX 1050 2GB	12 GB (6 x 2 GB)	3840 (6 × 640)	\$99/mo minimum rental period is 1 month
6 x GTX 1060 3GB	18 GB (6 x 3 GB)	6912 (6 x 1152)	\$209/mo minimum rental period is 1 month
6 x GTX 1060 6GB	36 GB (6 x 6 GB)	7680 (6 x 1280)	\$249/mo minimum rental period is 1 month
5 x GTX 1080 8GB	40 GB (5 x 8 GB)	12800 (5 x 2560)	\$359/mo minimum rental period is 1

Discounts up to 50% available

please contact sales for more information

https://www.gpuserversrental.com/

SHA-1 Cryptanalysis

- 2005-02 Theoretical collision with 2⁶⁹ op. [Wang & al., Crypto'05]
 - ... Several unpublished collision attacks in the range $2^{51} 2^{63}$
- 2010-11 Theoretical collision with 2⁶¹ op. [Stevens, EC'13]
- 2015-10 Practical freestart collision (on GPU) [Stevens, Karpman & Peyrin, Crypto'15]
- 2017-02 Practical collision with 2^{64.7} op. (GPU) [Stevens & al., Crypto'17]
- 2019-05 Theoretical chosen-prefix collision with 2^{67.1} op. (GPU) [L.&P., Eurocrypt'19]
- 2020-01 Practical chosen-prefix collision with 2^{63.4} op. (GPU)

 New!

SHAttered attack: Colliding PDFs

Pierre Karpman

SHA-1 = 38762cf7f55934b34d17 9ae6a4c80cadccbb7f0a

Yarik Markov

SHA-1 depreciation

2006-03 NIST Policy on Hash Functions

Federal agencies should stop using SHA-1 for digital signatures, digital time stamping and other applications that require collision resistance as soon as practical, and must use the SHA-2 family of hash functions for these applications after 2010.

2011-11 CA/Browser Forum:

"SHA-1 MAY be used until SHA-256 is supported widely by browsers"

2014-09 CA/Browser Forum depreciation plan

- Stop issuing SHA-1 certificates on 2016-01-01
- Do not trust SHA-1 certificates after 2017-01-01
- 2015-10 Browsers consider moving deadline to 2016-07
- 2017-0x Modern browsers reject SHA-1 certificates