Week-2, Session-1

Karthik Thiagarajan

Disclaimer: These notes were generated as a part of this <u>live session</u>. It can't be used as a standalone resource or a set of notes for this week.

1. Concepts
Sets
Functions of one variable
Graphs
Limits
Continuity
Differentiability
Product, quotient and chain rules
Taylor series expansion
Linear approximation
Critical points, maxima and minima
Higher order approximation
3D Geometry
Points
Lines
☐ Planes and hyperplanes
Functions of two variables
Contours
Limits
Continuity
Partial derivatives, gradient
☐ Directional derivative
☐ Taylor series expansion
Linear approximation
oxedge Gradient $ o$ steepest ascent, orthogonality to contours
Critical points, maxima and minima

Functions

$$f:X \to \mathbb{R}$$

$$x \to f(x)$$

Limits

$$\lim_{x \to c} f(x)$$

$${x_n} = x_1, x_2, x_3, \dots$$

$$f(x) = x^2 + 2x - 1$$

$$\lim_{x \to 3} f(x) = f(3)$$

$$f(x) = \frac{1}{x}$$

$$\lim_{x \to \infty} f(x) = 0$$

Continuity

A function f is said to be continuous at a point x=a if:

$$\lim_{x \to a} f(x) = f(a)$$

As an example:

$$f(x) = \begin{cases} x^2 + 5, & x > 2\\ m(x+1) + k, & -1 < x \le 2\\ 2x^3 + x + 7, & x \le -1 \end{cases}$$

Is this function continuous?

It is continuous if $k=4, m=\frac{5}{3}$.

$$9 = 3m + k \Longrightarrow k = 4, m = \frac{5}{3}$$

Can you give me an example of a function for which limits exists at x=c but the value of the function is different from the limit?

Consider $f: \mathbb{R} \to \mathbb{R}$.

$$f(x) = \begin{cases} x, & x > 0 \\ -x, & x < 0 \\ a, & x = 0 \end{cases}$$

If $a \neq 0$, then f is not continuous at x = 0.

Functions such as polynomials, trigonometric, exponential, log are continuous.

$$f:(0,\infty)\to\mathbb{R}$$

$$f(x)=\log(x)$$

$$f(x) = \log(x)$$

Differentiability

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

f'(a) is the **slope of the tangent** to the curve (x, f(x)) at x = a. The limiting process is the secant becoming the tangent at the point x = a.

Linear approximations

The idea is the following: you can approximate the behavior of a function at a point with the help of its derivatives.

If you want to know how the function behaves, in an approximate sense, around x=a

$$f(x)$$
 \approx $f(a) + f'(a) \cdot (x - a)$

The linear approximation to f at the point $\overline{x} = a$:

$$L_a[f](x) = f(a) + f'(a) \cdot (x - a)$$

- ullet Linear approximation to f at a point is a function.
- It gives an approximation to the function in and around that point.

If f is already linear, then the linear approximation is the function itself.

$$f(x) = 3x + 4$$

$$L_0[f](x) = f(0) + f'(0). (x - 0) = 4 + 3x = f(x)$$

Linear approximation to $\sin(x)$ at $x = \frac{\pi}{2}$.

$$L_{\pi/2} = \sin\left(\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{2}\right) \cdot \left(x - \frac{\pi}{2}\right) = 1$$

Note that this is a line parallel to the x-axis, namely, y=1.

$$f(x) = \sin x$$

$$L_0(x) = \sin 0 + \cos 0 \cdot (x - 0) = x$$

Second order approximation to f(x)

$$f(x) \approx f(a) + f'(a) \cdot (x - a) + \frac{f^{''}(a)}{2!} \cdot (x - a)^2$$

Taylor polynomial.

$$\sin(0) + \cos(0) \cdot (x - 0) - \frac{\sin(0)}{2!} \cdot (x - 0)^2$$

Third order approximation to f(x)

$$f(x) \approx f(a) + f'(a) \cdot (x - a) + \frac{f^{''}(a)}{2!} \cdot (x - a)^2 + \frac{f^{'''}(a)}{3!} (x - a)^3$$

$$\sin(0) + \cos(0) \cdot (x - 0) - \frac{\sin(0)}{2!} \cdot (x - 0)^2 - \frac{\cos(0)}{3!} (x - 0)^3$$

The third order approximation is the following Taylor polynomial:

$$x-\frac{x^3}{6}$$

In general, one can express $\sin(x)$ as:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

A linear approximation for $f(x) = x^3$ at x = 1 is:

$$L_1[f](x) = f(1) + f'(1) \cdot (x - 1)$$

$$L_1[f](x) = 1 + 3(x - 1) = 3x - 2$$

Visually, this is nothing but the tangent to f at x=1.

Maxima and Minima

- If the function f is differentiable and if it has a local maximum/minimum at x=a, then f'(a)=0
- If the function f is differentiable and if f'(a) = 0, we will call x = a a critical point.

Note that critical points also include points where the function is not differentiable. For example, x=0 is a critical point of f(x)=|x|. But to keep things simple, we shall only look at differentiable functions.

A classic example for a critical point that is not an extremum:

$$f(x) = x^3$$

$$x = 0$$

2D-3D Geometry

- Points
- Lines
- ☐ Planes and hyperplanes

 \mathbb{R}^2

Points:
$$(x, y)$$

Points and vectors are one and the same thing:

$$(1,2) \in \mathbb{R}^2$$

L is a line passing through the origin.

Getting back to the line

$$L = \left\{x : w^T x = 0, w = \beta \cdot (-2, 1), \beta \neq 0\right\}$$

Vectors are represented as column vectors.

$$(1,2) \rightarrow \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$w = \begin{bmatrix} -2 \\ 1 \end{bmatrix}, w^T = \begin{bmatrix} -2 & 1 \end{bmatrix}$$

The dot product is often represented as $w \cdot x = w^T x$. Here, w^T is a row-vector and x is a column vector.

$$w^T x = w \cdot x$$

Geometrically, a line is perfectly determined if we have either of these things with us:

- A line parallel to it and some point on it.
- Two points on the line.

$$\alpha\cdot(1,2)+(-2,3)$$

$$L = \{ \alpha \cdot (1,2) + (-2,3) : \alpha \in \mathbb{R} \}$$

w is going to be perpendicular to L also.

If you have two points x_1, x_2 on a line, then $x_1 - x_2$ is a vector parallel to the line.

$$w^T(x - (-2, 3)) = 0$$

$$b = -w^T(-2, 3)$$

$$L = \left\{ x : w^T x + b = 0 \right\}$$

$$w^T x + b = 0$$

Here, x-u is parallel to the line L. It represents the line segment starting from u and ending on x.

The following image should make the difference between two vectors more clear.

Caution: $w^Tx + b = 0$ notation for a line works only if you are in \mathbb{R}^2 . Lines in \mathbb{R}^3 can't be defined using $w^Tx + b = 0$. You have to go back to the other method: specify a vector parallel to the line and a point on the line.

Planes

First we look at planes passing through the origin:

$$\left\{x : w^T x = 0\right\}$$

$$w_1 x_1 + w_2 x_2 + w_3 x_3 = 0$$

 $P^{\!\!\!/}$ is a plane passing through the origin whose normal is (1,2,3).

$$P = \{(x_1, x_2, x_3) : x_1 + 2x_2 + 3x_3 = 0\}$$

For planes not necessarily passing through the origin. Let x,x_0 be two points on the plane. Then $x-x_0$ lies on the plane. w is perpendicular to the plane

$$w^T(x - x_0) = 0$$

$$w^T x + b = 0$$

where,

$$b = -w^T x_0$$

Plane in \mathbb{R}^3

 $P = \left\{ x : w^T x + b = 0 \right\}$ is in general called a hyperplane, especially, when you are in higher dimensions. Let us call the dimension d:

• If d=2, P is a line

- ullet If d=3, P is a plane
- ullet If d>3, P is a hyperplane

A line has dimension 1

$$\{\alpha \cdot (x,y) : \alpha \in \mathbb{R}\}$$

span of just one vector, namely (x,y).

A plane has dimension 2

$$\{\alpha \cdot (a,b) + \beta \cdot (c,d) : \alpha,\beta \in \mathbb{R}\}\$$

A hyperplane in \mathbb{R}^d has dimension d-1.

Why is this the case? A basis for \mathbb{R}^d has d vectors. If you have a vector $w \in \mathbb{R}^d$. A hyperplane is the collection of all vectors perpendicular to w. You can now form an orthogonal basis with w as the first element.

$$\{w, w_1, \cdots, w_{d-1}\}$$

It follows that span $\{w_1, \dots, w_{d-1}\}$ is the set of all vectors orthogonal to w. This is the hyperplane and its dimension is d-1.

$$\mathsf{span}\{w_1, \ \cdots, w_{d-1}\} \overset{\mathsf{\scriptscriptstyle \perp}}{\rightarrow} d-1$$

Use of hyperplanes in ML

- Linear classifiers
 - supervised learning
 - * classification
 - · spam vs not-spam
 - · dog vs cat
 - * anything that falls on one side of the hyperplane belongs to class spam and the rest belong to not-spam

Functions of two variables

- **✓** Contours
- ✓ Partial derivatives, gradient
- ✓ Directional derivative
- ✓ Taylor series expansion
- ✓ Linear approximation
- \square Gradient \rightarrow steepest ascent, orthogonality to contours

$$f(x,y) = x^2 + y^2$$

A function of two variables can be visualized as a surface in \mathbb{R}^3 :

Function's value is the (signed) height of the surface above the XY plane.

Contours, also called level curves, are obtained by slicing the surface with planes parallel to the XY plane:

$$f(x, y) = 1$$

$$f(x, y) = 2$$

$$f(x, y) = 3$$

What is the value of f(x,y) on any point on the green curve?

Contours for $f(x,y) = \sin(x)\cos(y)$

Partial derivatives and gradients

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

Directional derivatives: the rate of change of f in some direction u, where u is a unit vector. If the function f is differentiable, then the directional derivative is given by:

$$D_u[f] = (\nabla f)^T u$$

$$D_{u}[f] = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}^{T} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}$$

$$D_u[f] = \frac{\partial f}{\partial x} u_1 + \frac{\partial f}{\partial y} u_2$$

You should be able to recover the partial derivatives by setting u=(1,0) and u=(0,1). Partial derivatives are specific directional derivatives.

Linear approximation

Linear approximation to f at (a,b)

$$L_{(a,b)}[f](x) = f(a,b) + (\nabla f)^T \begin{bmatrix} x - a \\ y - b \end{bmatrix}$$

$$f(a,b) + \frac{\partial f}{\partial x}(x-a) + \frac{\partial f}{\partial y}(y-b)$$

Gradient and contours

$$f(x,y) = x^2 + y^2$$

$$\nabla f = (2x, 2y)$$

$$abla f_{\left(1/\sqrt{2},1/\sqrt{2}
ight)} = \left(rac{2}{\sqrt{2}},rac{2}{\sqrt{2}}
ight) = \left(\sqrt{2},\sqrt{2}
ight)$$

The gradient of f at the red point is the green vector.

$$f(x,y) \approx f(a,b) + \nabla f(a,b)^T \left[\begin{matrix} x-a \\ y-b \end{matrix} \right]$$

If you move by a small distance around (a,b) while remaining on the circle, the value of f(x,y) will continue to remain f(a,b).

$$f(a,b) \approx f(a,b) + \nabla f(a,b)^T \left[\begin{array}{c} x-a \\ y-b \end{array} \right]$$

$$\nabla f(a,b)^T \left[\begin{array}{c} x-a \\ y-b \end{array} \right] = 0$$

The vector (x-a,y-b) is parallel to the tangent at (a,b):

$$(x, y) - (a, b)$$

Therefore, we have:

The gradient at a point on the contour is perpendicular to the (tangent to) contour at that point.

Gradient and steepest ascent

If I move away from (a,b), then the function's value will change by the following amount:

$$\boxed{f(x,y) - f(a,b)} \approx \nabla f(a,b)^T \begin{bmatrix} x - a \\ y - b \end{bmatrix}$$

You will get the maximum change when the RHS is maximum.

When will this quantity be maximum?

$$\nabla f(a,b)^T \left[egin{array}{c} x-a \\ y-b \end{array}
ight]$$

When the two vectors are in the same direction, meaning $\theta = 0$.

The direction of steepest ascent is the gradient.