Midsem: Probability and Statistics (40 Marks)

Each question: 6 marks

- 1. Consider the following game with a fair die. You repeatedly roll a fair die until you get a six. The game ends, when 6 appears. The reward from each roll is the face value except that a roll of 6 yields reward 0. Find the expected total reward from the game.
- \mathcal{Z} . Suppose X and Y are both Uniform[0,1] random variables. Then prove that P(X < Y) = 0.5.
- Z. Let X, Y and Z be independent exponential random variables with parameters λ_1, λ_2 and λ_3 . Let W = min(X, Y, Z). Find the cdf and pdf of W.
- For two random variables X and Y, prove that Var(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y) where Var denotes variance and Cov denotes covariance.
- 6. Consider a Gaussian random variable X with mean μ and variance σ^2 . Let Z = aX + b where $a, b \in \mathbb{R}$. Derive an expression for the probability density of Z and show that Z is also a Gaussian random variable. What is the mean and variance of Z?

Each question: 10 marks

1. Let the joint probability density function of two continuous random variables X and Y be

$$f_{X,Y}(x,y) = c(x+y), \qquad 0 \le x \le 1, \ 0 \le y \le 1,$$

and $f_{X,Y}(x,y) = 0$ otherwise.

Find the constant c that makes $f_{X,Y}(x,y)$ a valid joint pdf. (2mks)

Find the marginal density functions $f_X(x)$ and $f_Y(y)$. (2mks)

Find the conditional density functions $f_{X|Y}(x|y)$ and $f_{Y|X}(y|x)$. (2mks)

Compute the conditional expectation $\mathbb{E}[X \mid Y = y].(2mks)$

(e) Are X and Y independent? Justify your answer.(2mks)