## Water filling example

Demonstration of how KKT conditions help us understand the problem better

Equalization of communication channels

(no 101)

affine constraints (Slater's not needed) => P=D

feasible (e.g. p:=0 4:)

not unbounded below

$$\min_{p \geqslant 0} - \sum_{i=1}^{n} log(i+p_{i}Y_{i}) = \min_{f(p)} f(p)$$

$$\sum_{i=1}^{n} p_{i} \leq p$$

$$\sum_{i=1}^{n} p_{i} \leq p$$

objective 
$$f(p) = -\sum_{i=1}^{n} log(1+p_i \delta_i)$$
  
 $dom f = \mathbb{R}_{+}^{n}$ 

<u>KKT</u>

$$p^* = \underset{p \geqslant 0}{\text{arg min}} L(p, \lambda) = -\sum_{log} (1+p_i \gamma_i) + \lambda(\sum_{i=1}^{n} p_i)$$

$$p^* = \underset{p \geqslant 0}{\text{arg min}} \sum_{i=1}^{n} \left[ -\log(1+p_i \gamma_i) + \lambda p_i \right]$$

$$\Rightarrow p^* = \underset{p_i \geqslant 0}{\text{arg min}} - \log(1+p_i \gamma_i) + \lambda p_i$$

$$\Rightarrow p^* = \underset{p_i \geqslant 0}{\text{arg min}} - \log(1+p_i \gamma_i) + \lambda p_i$$

$$\Rightarrow p^* = \underset{p_i \geqslant 0}{\text{arg min}} - \log(1+p_i \gamma_i) + \lambda p_i$$

(a) suppose 
$$\lambda^* = 0$$
 then
$$p_i^* = \underset{p_i \ge 0}{\text{arg min }} - \log(1+p_i \gamma_i)$$

$$p_i \ge 0$$

$$p_i \ge 0$$

$$p_i \ge 0$$

$$p_i \Rightarrow \infty$$
So unbounded below so  $\sum p_i^* > P \times \infty$ 

$$\Rightarrow \lambda^* > 0$$

b(i) suppose: 
$$p_i^*>0$$
  $\frac{d}{dp_i}(-log(1+p_i r_i)+xp_i)=0$ 

or  $x^* = \frac{r_i}{1+p_i^* r_i}$   $p_i^* = \frac{1}{x^*} - \frac{1}{r_i} > 0$ 

$$b(ii)$$
 in case  $\frac{1}{\lambda^{+}} - \frac{1}{r_{i}} \leq 0$  then  $p_{i}^{+} = D$ 

(a) 
$$p_i^* = \max \{0, \frac{1}{\lambda^*} - \frac{1}{p_i^*}\} = \left[\frac{1}{\lambda^*} - \frac{1}{Y_i}\right]_+$$

KKT

(b) 
$$p^* \ge 0$$
 ,  $\sum p_i^* \le P$ 

$$(c)$$
  $\lambda^* > 0$ 

(b) 
$$p^* \ge 0$$
,  $\ge p_i^* \le P$   
(c)  $\lambda^* > 0$   
(d)  $\lambda^* \left( \sum_{i=1}^{N} p_i^* - P \right) = 0 \Rightarrow \ge p_i^* = P$ 

Solve 
$$KKT$$
?

$$\gamma(\lambda) = \sum_{i=1}^{n} \left[ \frac{1}{\lambda} - \frac{1}{\gamma_{i}^{*}} \right]_{+}^{-} - \rho = 0$$

I'm hoof of  $\gamma(\lambda)$ 

## Intuition:

$$\lambda \in \mathcal{N}$$
 small  $\Rightarrow \mathcal{N}(\lambda) > 0$  |  $\lambda \in \mathcal{N}(\lambda) < 0$  eg.  $\lambda = \max_{i} \mathcal{N}_{i}$ 



 $\gamma(\lambda)$  decreasing

## Bisection

B= max-min

while 
$$\lambda_{\text{max}} - \lambda_{\text{min}} > \epsilon$$
  
 $\lambda_{\text{mid}} = \underline{\lambda_{\text{min}} + \lambda_{\text{mid}}}$ 

if 
$$r(\lambda_{mid}) > 0$$
  $\lambda_{min} = \lambda_{mid}$   
else  $\lambda_{max} = \lambda_{mid}$ 

$$\lambda \max - \lambda \min \sqrt{\frac{B}{2k}} = \epsilon$$

$$K = \log_2(B/\epsilon)$$

iteration complexity