Heterocyclic thioethers as additives for lubricants

Patent number:

DE19834951

Publication date:

1999-02-11

Inventor:

DRATVA ALFRED (CH); HAENGGI PETER (CH);

CAMENZIND HUGO (CH); EVANS SAMUEL (CH)

Applicant:

CIBA GEIGY AG (CH)

Classification:

- international:

C07D285/125; C07D277/74; C10L1/14; C10L1/24;

C10M135/36

- european:

C07D277/74, C07D285/08D, C10L1/24D2, C10L10/04,

C10M135/36

Application number: DE19981034951 19980803 Priority number(s): CH19970001863 19970806

Abstract not available for DE19834951 Abstract of correspondent: **US6150307**

This invention relates to compounds which are suitable as ash-free antiwear additives and antioxidants, to lubricant compositions comprising said compounds as well as to their use. Compounds of formulae are particularly preferred. In the preferred compounds I', R2 is isooctyloxycarbonylmethyl, R3 is isooctyloxycarbonylmethylthiomethyl and R4 is hydrogen; or R2 is tert-nonyl and R3 is tertnonylthiomethyl and R4 is hydrogen; or R2 is isooctyloxycarbonylmethyl, R3 is hydrogen and R4 is isooctyloxycarbonylmethylthiomethyl; or R2 is tert-nonyl, R3 is hydrogen and R4 I is tertnonylthiomethyl. In the preferred compounds II', R2 and R2' are isooctyloxycarbonylmethyl, R3 and R3' are isooctyloxycarbonylmethylthiomethyl and R4 and R4' are hydrogen; or R2 and R2' are tert-nonyl, R3 and R3' are tert-nonylthiomethyl and R4 and R4' are hydrogen; or R2 and R2' are isooctyloxycarbonylmethyl, R3 and R3' are hydrogen and R4 and R4' are isooctyloxycarbonylmethylthio; or R2 and R2' are tert-nonyl, R3 and R3' are hydrogen and R4 and R4' are tert-nonylthiomethyl.

US6150307 (A1)
GB2327944 (A)
FR2767828 (A1)
ES2154162 (A1)
BE1012345 (A5)

more >>

Data supplied from the esp@cenet database - Worldwide

® BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

© Offenlegungsschrift © DE 198 34 951 A 1

(2) Aktenzeichen:

198 34 951.3

Anmeldetag:

3. 8.98

(3) Offenlegungstag:

11. 2.99

⑤ Int. Cl.6:

C 07 D 285/125

C 07 D 277/74 C 10 L 1/14 C 10 L 1/24 C 10 M 135/36

E 198 34 951 A

③ Unionspriorität:

1863/97

06.08.97 CH

(7) Anmelder:

Ciba Specialty Chemicals Holding Inc., Basel, CH

(74) Vertreter:

Zumstein & Klingseisen, 80331 München

1 Erfinder:

Camenzind, Hugo, Bern, CH; Evans, Samuel, Marly, CH; Dratva, Alfred, Bottmingen, CH; Hänggi, Peter, Giffers, CH

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(3) Heterocyclische Thioether als Additive für Schmiermittel

Die Erfindung betrifft Verbindungen, welche sich als aschefreie Verschleißschutzmittel und Antioxidantien eignen, Schmierstoffzusammensetzungen enthaltend diese Verbindungen sowie deren Verwendung. Verbindungen der Formeln

sind besonders bevorzugt.

In den bevorzugten Verbindungen I' bedeuten

R₂ Isooctyloxycarbonylmethyl, R₃ Isooctyloxycarbonylmethylthiomethyl und R₄ Wasserstoff; oder

R₂ tert.-Nonyl und R₃ tert.-Nonylthiomethyl und R₄ Wasserstoff; oder

R₂ Isooctyloxycarbonylmethyl, R₃ Wasserstoff und R₄ Isooctyloxycarbonylmethylthiomethyl; oder

R₂ tert.-Nonyl, R₃ Wasserstoff und R₄ tert.-Nonylthiomethyl

In den bevorzugten Verbindungen II' bedeuten

R₂ und R₂' Isooctyloxycarbonylmethyl, R₃ und R₃' Isooctyloxycarbonylmethylthiomethyl und R₄ und R₄' Wasser-

R₂ und R₂' tert.-Nonyl, R₃ und R₃' tert.-Nonylthiomethyl und R₄ und R₄' Wasserstoff; oder

 R_2 und R_2 ' Isooctyloxycarbonylmethyl, R_3 und R_3 ' Wasserstoff und R_4 und R_4 ' Isooctyloxycarbonylmethylthio; oder

 R_2 und R_2 ' tert.-Nonyl, R_3 und R_3 ' Wasserstoff und R_4 und R_4 ' tert.-Nonylthiomethyl.

Beschreibung

Die Erfindung betrifft Verbindungen der Formeln I und II, welche sich als aschefreie Verschleißschutzmittel und Antioxidantien eignen, Schmierstoffzusammensetzungen enthaltend Verbindungen der Formeln I und II sowie deren Verwendung.

Beim Betrieb von Verbrennungsmotoren ist es erforderlich, metall- und damit aschearme, und im Hinblick auf Abgaskatalysator-Verträglichkeit auch phosphorarme Schmierstoffe zu verwenden. Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, metallfreie und phosphorfreie Additiv- oder Additivkombinationen herzustellen, welche der Antioxidations- und Verschleißschutzwirkung der bisher verwendeten Zinkdialkyldithiophosphate nahekommen.

In der U.S. Patentschrift 3,591,475 ist die Herstellung von asymmetrischen Dithioethern der allgemeinen Formel

15

25

35

durch Addition eines Mercaptans R'SH an ein Allylsulfid (RS-CH₂CH=CH₂) beschrieben. Als definierte Einzelverbindung ist kein Dithioether mit einem heterocyclischen Rest beschrieben. Die Definitionen von R und R' umfassen zahlreiche Substituenten mit unterschiedlichen Strukturen. Benzthiazolyl ist nur im Sinne einer Aufzählung beispielhaft genannt. Die Anwendung der in der U.S. Patentschrift 3,591,475 beschriebenen Verbindungen ist ebenfalls unspezifisch offenbart. So ist dort deren Eignung als Agrochemikalien mit antiparasitären Eigenschaften erwähnt. Sie sollen sich außerdem als Stabilisatoren für Polyolefine und ferner als Additive für Schmiermittel eignen.

In Syntheses on the Basis of 2-Benzothiazolylvinyl Sulfide, Zhurnal Organicheskoi Khimii, Vol. 2, No. 10, pp. 1883-1891, October 1966, ist in der engl. Übersetzung auf S. 1847 die Herstellung von Benzthiazolyldithioethern der Formel

(R = Et, tert.-But., Phenyl, Et₂OH, Acetyl) mit herbizider Wirkung beschrieben.

In der U.S. Patentschrift 5 258 258 sind Prozeß-Lösungen zur Entwicklung von lithographischen Druckplatten beschrieben, die Thiadiazolyl-dithioether der Formel

40 $(n_1, n_2 = 0-2; R_1, R_2 = C_1-C_5-Alkylen)$ enthalten.

In der U.S. Patentschrift 5 051 198 sind Reaktionsprodukte beschrieben, welche durch Umsetzung von Mercaptanen mit β-Thiodialkanolen erhältlich sind. Diese Reaktionsprodukte sind als Antioxidantien verwendbar.

Gegenstand der Erfindung sind Verbindungen der im folgenden beschriebenen Formeln I und II, die als verbesserte asche- und phosphorfreie Verschleißschutz-Additive geeignet sind und zusätzlich eine antioxidative Wirkung haben:

So
$$R_2$$
 (I) und R_3 S R_4 (II)

ss worin

R₁ Wasserstoff oder C₁-C₂₀-Alkyl bedeutet;

R₂ einen Substituenten aus der Gruppe C₁-C₂₀-Alkyl, C₅-C₁₂-Cycloalkyl, C₇-C₁₂-Bicycloalkyl, Phenyl, C₇-C₁₈-Alkylphenyl, Naphthyl und C₇-C₉-Phenylalkyl bedeutet, welcher durch einen oder mehrere Substituenten aus der Gruppe Amino, Carboxy und Hydroxy substituiert und/oder durch ein oder mehrere bivalente Reste aus der Gruppe -O-, -NR₆-, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₆- und -NR₆-C(=O)- unterbrochen sein kann;

R₃ und R₄ Wasserstoff bedeuten oder die Bedeutungen von R₂ haben, mit der Maßgabe, daß R₂ C₄-C₂₀-Alkyl bedeutet, wenn R₃ und R₄ Wasserstoff bedeuten;

R₅ Wasserstoff oder Gruppen der Teilformeln

bedeutet, worin R_2 , R_3 und R_4 die genannten Bedeutungen haben oder die Bedeutung von R_2 hat; und R_6 Wasserstoff oder C_1 - C_4 -Alkyl bedeutet.

Die Verbindungen der Formeln I und II sind als multifunktionale Verschleißschutz-Additive mit zusätzlicher antioxidativer Wirkung für Schmierstoffe, Getriebeöle, Hydraulik- und Metallbearbeitungsflüssigkeiten sowie für Fette besonders geeignet. Sie sind weitgehend asche- und phosphorfrei.

10

45

55

Die im Rahmen der Beschreibung der vorliegenden Erfindung verwendeten Definitionen und Begriffe haben vorzugsweise die folgenden Bedeutungen:

Beispiele für C₁-C₂₀-Alkyl sind Methyl, Ethyl, n- oder Isopropyl oder n-, sek.- oder tert.-Buryl sowie geradkettiges oder verzweigtes Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl oder Dodecyl, z. B. Isooctyl oder tert.-Nonyl. Beispiele für C₅-C₁₂-Cycloalkyl sind Cyclopentyl oder Cyclohexyl. Beispiele für C₇-C₁₂-Bicycloalkyl sind z. B. Bomyl oder Norbomyl. Beispiele für C₇-C₁₈-Alkylphenyl sind durch Mono-, Di- oder Trimethyl substituiertes Phenyl. Beispiele für C₇-C₉-Phenylalkyl sind z. B. Benzyl oder 2-Phenylethyl.

Die Erfindung betrifft ebenfalls Verbindungen der Formeln I und II unter Einschluß sämtlicher Isomeriefälle, z. B. Bindungsisomere oder Stereoisomere, welche sich durch Präsenz eines Chiralitätszentrums ergeben. Diese Isomeriefälle umfassen optisch reine Enantiomere, Diastereomere sowie racemische Mischungen.

Bevorzugt sind Verbindungen der weiter vom beschriebenen Formeln I und II, worin

R₁ Wasserstoff; R₂ einen Substituenten aus der Gruppe C₁-C₂₀-Alkyl, Phenyl, C₇-C₁₈-Alkylphenyl und C₇-C₉-Phenylalkyl bedeutet, welcher durch einen oder mehrere Substituenten aus der Gruppe Amino, Carboxy und Hydroxy substituien und/oder durch ein oder mehrere bivalente Reste aus der Gruppe -O-, -NR₆-, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₆- und -NR₆-C(=O)- unterbrochen sein kann;

 R_3 und R_4 Wasserstoff bedeuten oder die Bedeutungen von R_2 haben, mit der Maßgabe, daß R_2 C_4 - C_{20} -Alkyl bedeutet, wenn R_3 und R_4 Wasserstoff bedeuten;

 R_5 die Bedeutungen von R_2 hat oder Gruppen der Teilformeln (A) und (B) bedeutet, worin R_2 , R_3 und R_4 die genannten Bedeutungen haben; und R_6 Wasserstoff oder Alkyl bedeutet.

Besonders bevorzugt sind Verbindungen der Formeln I und II, worin

R₁ Wasserstoff; R₂ einen Substituenten aus der Gruppe C₁-C₂₀-Alkyl, Phenyl, C₇-C₁₈-Alkylphenyl und C₇-C₉-Phenylalkyl bedeutet, welcher durch ein oder mehrere bivalente Reste aus der Gruppe -O-, -C(=O)-O- und -O-C(=O)- unterbrochen sein kann;

 R_3 und R_4 Wasserstoff bedeuten oder die Bedeutungen von R_2 haben, mit der Maßgabe, daß R_2 C_4 - C_{20} -Alkyl bedeutet, wenn R_3 und R_4 Wasserstoff bedeuten;

R₅ die Bedeutungen von R₂ hat oder Gruppen der Teilformeln (A) und (B) bedeutet, worin R₂, R₃ und R₄ die genannten Bedeutungen haben.

Ganz besonders bevorzugte Erfindungsgegenstände sind Verbindungen der Formeln I und II, worin R_1 Wasserstoff; R_2 C_1 - C_2 0-Alkyl bedeutet, welches durch einen bivalenten Rest aus der Gruppe -O-, -C(=O)-O- und -O-C(=O)- unterbrochen sein kann;

 R_3 und R_4 Wasserstoff bedeuten oder die Bedeutungen von R_2 haben, mit der Maßgabe, daß R_2 C_4 - C_{20} -Alkyl bedeutet, wenn R_3 und R_4 Wasserstoff bedeuten;

 R_3 die Bedeutungen von R_2 hat oder Gruppen der Teilformeln (A) und (B) bedeutet, worin R_2 , R_3 und R_4 die genannten Bedeutungen haben.

Besonders bevorzugt sind Verbindungen der Formel

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

worin R_2 C_4 - C_{18} -Alkoxycarbonylmethyl, R_3 C_4 - C_{18} -Alkoxycarbonylmethylthiomethyl und R_4 Wasserstoff; oder R_2 C_5 - C_{12} -Alkylthiomethyl und R_4 Wasserstoff; oder

R₂ C₄-C₁₈-Alkoxycarbonylmethyl, R₃ Wasserstoff und R₄ C₄-C₁₈-Alkoxycarbonylmethylthiomethyl; oder R₂ C₅-C₁₂-Alkyl, R₃ Wasserstoff und R₄ C₅-C₁₂-Alkylthiomethyl bedeuten, sowie Verbindungen der Formel:

worin R₂ und R₂' C₄-C₁₈-Alkoxycarbonylmethyl, R₃ und R₃' C₄-C₁₈-Alkoxycarbonylmethylthiomethyl und R₄ und R₄' Wasserstoff; oder

 $R_2 \text{ und } R_2 \text{'} C_5 - C_{12} - \text{Alkyl}, \ R_3 \text{ und } R_3 \text{'} C_5 - C_{12} - \text{Alkylthiomethyl und } R_4 \text{ und } R_4 \text{'} \text{ Wasserstoff; oder } R_4 \text{'} = 0$

 R_2 und R_2 ' C_4 - C_{18} -Alkoxycarbonylmethyl, R_3 und R_3 ' Wasserstoff und R_4 und R_4 ' C_4 - C_{18} -Alkoxycarbonylmethylthiomethyl; oder

 R_2 und R_2 ' C_5 - C_{12} -Alkyl, R_3 und R_3 ' Wasserstoff und R_4 und R_4 ' C_5 - C_{12} -Alkylthiomethyl bedeuten.

Vor allem sind Verbindungen der Formel I' bevorzugt,

worin R2 Isooctyloxycarbonylmethyl, R3 Isooctyloxycarbonylmethylthiomethyl und R4 Wasserstoff; oder

R2 tert.-Nonyl, R3 tert.-Nonylthiomethyl und R4 Wasserstoff; oder

R2 Isooctyloxycarbonylmethyl, R3 Wasserstoff und R4 Isooctyloxycarbonylmethylthiomethyl; oder

R2 tert.-Nonyl, R3 Wasserstoff und R4 tert.-Nonylthiomethyl bedeuten, sowie Verbindungen der Formel II',

worin R₂ und R₂' Isooctyloxycarbonylmethyl, R₃ und R₃' Isooctyloxycarbonylmethylthiomethyl und R₄ und R₄' Wasserstoff; oder

R2 und R2' tert.-Nonyl, R3 und R3' tert.-Nonylthiomethyl und R4 und R4' Wasserstoff; oder

 R_2 und R_2 ' C_5 - C_{10} -Isooctyloxycarbonylmethyl, R_3 und R_3 ' Wasserstoff und R_4 und R_4 ' Isooctyloxycarbonylmethyl; oder R_2 und R_2 ' C_5 - C_{10} -tert.-Nonyl, R_3 und R_3 ' Wasserstoff und R_4 und R_4 ' tert.-Nonylthiomethyl bedeuten.

Die Erfindung betrifft außerdem Zusammensetzungen mit Schmierstoffen enthaltend eine Verbindung der Formeln I oder II oder Mischungen davon in Kombination mit einem Grundöl mit schmierender Viskosität oder Kraftstoffen.

Ferner betrifft die Erfindung ein Verfahren zur Verbesserung der Gebrauchseigenschaften von Schmierstoffen oder Schmierfetten, z. B. Motorenöl. Turbinenöl, Getriebeöl, oder Hydraulikflüssigkeit, Metallbearbeitungsflüssigkeiten oder flüssigen Kraftstoffen, z. B. Diesel- oder Ottokraftstoffen, gekennzeichnet durch Zugabe mindestens einer Verbindung der Formel I oder II zur Erzielung einer verschleißmindernden und/oder antioxidativen Wirkung. Gegenstand der Erfindung ist somit auch die Verwendung von Verbindungen der Formeln I oder II als Additive in Schmierstoffen oder Schmierfetten, z. B. Motorenöl, Turbinenöl, Getriebeöl, Hydraulikflüssigkeit oder flüssigen Kraftstoffen.

Ein Grundöl mit schmierender Viskosität ist für die Herstellung von schmierenden Fetten oder Schmierstoffen, Metallbearbeitungs-, Getriebe- oder Hydraulikflüssigkeiten verwendbar.

Solche schmierenden Fette oder Schmierstoffe, Metallbearbeitungs-, Getriebe- und Hydraulikflüssigkeiten basieren beispielsweise auf mineralischen oder synthetischen Schmierstoffen oder Ölen oder Mischungen davon. Diese sind dem Fachmann geläufig und in der einschlägigen Fachliteratur, wie beispielsweise in Chemistry and Technology of Lubricants; Mortier, R.M. and Orszulik, S.T. (Editors); 1992 Blackie and Son Ltd. for GB, VCH-Publishers N. Y. for U.S., ISBN 0-216-92921-0, siehe Seiten 208 ff und 269 ff; in Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition 1969, J. Wiley & Sons, New York, Vol. 13, Seite 533 ff. (Hydraulic Fluids); Performance Testing of Hydraulic Fluids; R. Tourret and E.P. Wright, Hyden & Son Ltd. GB, on behalf of The Institute of Petroleum London, ISBN 0-85501 317 6; Ullmann's Encyclopedia of Ind. Chem., Fifth Completely Revised Edition, Verlag Chemie, DE-Weinheim, VCH-Publishers for U.S., Vol. A 15, Seite 423 ff (lubricants), Vol. A 13, Seite 165 ff (hydraulic fluids) beschrieben.

Die Schmierstoffe sind insbesondere Öle und Fette, beispielsweise basierend auf einem Mineralöl. Bevorzugt sind Öle.

Eine weitere Gruppe von Schmierstoffen, die zur Anwendung gelangen können, sind pflanzliche oder tierische Ole, Fette, Talge und Wachse oder deren Gemische untereinander oder Gemische mit den erwähnten mineralischen oder synthetischen Ölen. Pflanzliche und tierische Öle, Fette, Talge und Wachse sind beispielsweise Palmkernöl, Palmöl, Olivenöl, Rüböl, Rapsöl, Leinöl, Erdnußöl, Sojabohnenöl, Baumwollöl, Sonnenblumenöl, Kürbiskernöl, Kokosnußöl, Maisöl, Rizinusöl, Baumnußöl und Mischungen davon, Fischöle, Talge von Schlachttieren wie Rindertalg, Klauenfett und Knochenöl sowie deren modifizierte, epoxidierte und sulfoxidierte Formen, beispielsweise epoxidiertes Sojabohnenöl.

Beispiele von synthetischen Schmierstoffen umfassen Schmierstoffe auf der Basis aliphatische oder aromatische Carboxylester, polymere Ester, Polyalkylenoxide, Phosphorsäureester, Poly-α-olefine oder Silicone, Diester einer zweiwertigen Säure mit einem einwertigen Alkohol, wie z. B. Dioctylsebacat oder Dinonyladipat, Triester von Trimethylolpropan mit einer einwertigen Säure oder mit einem Gemisch solcher Säuren, wie z. B. Trimethylolpropantripelargonat, Trimethylolpropan-tricaprylat oder Gemische davon, Tetraester von Pentaerythrit mit einer einwertigen Säure oder mit einem Gemisch solcher Säuren, wie z. B. Pentaerythrit-tetracaprylat, oder komplexe Ester von einwertigen und zweiwertigen Säuren mit mehrwertigen Alkoholen, z. B. komplexer Ester von Trimethylolpropan mit Capryl- und Sebacinsäure
oder von einem Gemisch davon. Besonders geeignet sind neben Mineralölen z. B. Poly-α-Olefine, Schmierstoffe auf
Esterbasis, Phosphate, Glycole, Polyglycole und Polyalkylenglycole, sowie deren Mischungen mit Wasser.

Metallbearbeitungsflüssigkeiten und Hydraulikflüssigkeiten können auf der Basis der gleichen Substanzen hergestellt werden wie weiter vom für die Schmierstoffe beschrieben. Häufig handelt es sich dabei auch um Emulsionen solcher Substanzen in Wasser oder anderen Flüssigkeiten.

Erfindungsgemäße Schmierstoffzusammensetzungen finden z.B. Verwendung in Verbrennungsmotoren, z.B. in Kraftfahrzeugen, ausgerüstet z.B. mit Motoren des Otto-, Diesel-, Zweitakt-, Wankel- oder Orbitaltyps.

Die Verbindungen der Formel I oder II sind gut in Schmierstoffen, Metallbearbeitungs- und Hydraulikflüssigkeiten löslich und sind deshalb als Zusätze zu Schmierstoffen, Metallbearbeitungs- und Hydraulikflüssigkeiten besonders geeignet.

Vorteilhafterweise enthalten die Zusammensetzungen 0,005 bis zu 10,0 Gew.-% der Verbindungen der Formel I oder II, bevorzugt 0,01–5,0%, insbesondere 0,01–0,9%.

Die Verbindungen der Formel I oder II können den Schmierstoffen auf an sich bekannte Weise beigemischt werden. Die Verbindungen sind beispielsweise in oleophilen Lösungsmitteln, wie Ölen, gut löslich. Man kann auch mit den Verbindungen der Formel I oder II oder Mischungen davon sowie gegebenenfalls weiteren Additiven ein Konzentrat oder ein sogenanntes Additivpaket herstellen, das man nach Maßgabe des Verbrauchs auf Einsatzkonzentrationen für den entsprechenden Schmierstoff verdünnt.

Die Schmierstoffe, Metallbearbeitungs- und Hydraulikflüssigkeiten können zusätzlich weitere Additive enthalten, die

zugegeben werden, um ihre Grundeigenschaften noch weiter zu verbessern. Dazu gehören: weitere Antioxidantien, Metallpassivatoren, Rostinhibitoren, Viskositätsindex-Verbesserer, Stockpunkterniedriger, Dispergiermittel, Detergentien, weitere Hochdruck-Zusätze, Antiverschleiß-Additive sowie Reibwert-Verminderer. Gegebenenfalls können diese Additive synergistisch miteinander oder zusammen mit den erfindungsgemäßen Verbindungen wirken. Solche Additive gibt man in den jeweils dafür üblichen Mengen im Bereich von je etwa 0,01 bis 10,0 Gew.-% zu. Sollte der Zusatz von phosphor- oder metallhaltigen Additiven weiterhin erforderlich sein, werden diese Additive vorzugsweise in geringen Mengen, z. B. von ca. 0,01 bis 0,5 Gew.-%, zugesetzt.

Beispiele für phenolische Antioxidantien

10

1.1. Alkylicrte Monophenole, z. B. 2,6-Di-tert-butyl-4-methylphenol, 2-Butyl-4,6-dimethylphenol, 2,6-Di-tert-butyl-4-cihylphenol, 2,6-Di-tert-butyl-4-isohutylphenol, 2,6-Di-cyclopentyl-4-methylphenol, 2,6-Di-cyclopentyl-4-methylphenol, 2,6-Di-tert-butyl-4-methylphenol, 2,6-Di-cyclopentyl-4-methylphenol, 2,6-Di-c

1.2. Alkylthiomethylphenole, z. B. 2,4-Di-octylthiomethyl-6-tert-butylphenol, 2,4-Di-octylthiomethyl-6-methylphenol, 2,4-Di-octylthiomethyl-6-ethylphenol, 2,6-Di-dodecylthiomethyl-4-nonylphenol.

1.3. Hydrochinone und alkylierie Hydrochinone, z. B. 2,6-Di-tert-butyl-4-methoxyphenol, 2,5-Di-tert-butyl-hydrochinon, 2,5-Di-tert-butyl-4-ctadecyloxyphenol, 2,6-Di-tert-butyl-hydrochinon, 2,5-Di-tert-butyl-4-hydroxyanisol, 3,5-Di-tert-butyl-4-hydroxyphenyl-stearat, Bis(3,5-di-tert-butyl-4-hydroxyphenyl)adipat.

1.4. Tocopherole, α-, β-, γ-, δ-Tocopherol und Mischungen davon (Vitamin E).

Es folgen Beispiele für weitere Zusatzstoffe:

1.5. Hydroxylicric Thiodiphenylether, z. B. 2,2'-Thio-bis(6-tert-butyl-4-methylphenol), 2,2'-Thio-bis(4-octylphenol), 4,4'-Thio-bis(6-tert-butyl-2-methylphenol), 4,4'-Thio-bis(3,6-di-sec.-amyl-phenol), 4,4'-Bis(2.6-dimethyl-4-hydroxyphenyl)-disulfid.

1.6. Alkyliden-Bisphenole, z. B. 2,2'-Methylen-bis(6-tert-butyl-4-methylphenol), 2,2'-Methylen-bis(6-tert-butyl-4-cthylphenol), 2,2'-Methylen-bis(4-methyl-6-(a-methylcyclohexyl)-phenol), 2,2'-Methylen-bis(4-methyl-6-cyclohexyl-phenol), 2,2'-Methylen-bis(6-nonyl-4-methylphenol), 2,2'-Methylen-bis(4,6-di-tert-butylphenol), 2,2'-Ethyliden-bis(6-di-tert-butylphenol), 2,2'-Methylen-bis[6-(a-methylbenzyl)-4-nonylphenol), 2,2'-Methylen-bis[6-(a-methylbenzyl)-4-nonylphenol), 2,2'-Methylen-bis(6-di-tert-butylphenol), 4,4'-Methylen-bis(6-di-tert-butylphenol), 1,1-Bis(5-tert-butyl-4-hydroxy-2-methylphenol)-butan, 2,6-Bis(3-tert-butyl-5-niethyl-2-liydroxybenzyl)-4-methylphenol, 1,1,3-Tris(5-tert-butyl-4-hydroxy-2-methylphenyl)-butan, 1,1-Bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-butyl-4'-hydroxy-5-methyl-benzyl)-6-tert-butyl-4'-hydroxy-5-methyl-benzyl)-6-tert-butyl-4-hydroxy-5-methyl-benzyl)-6-tert-butyl-4-hydroxy-benzyl)-butan, 2,2-Bis(3,5-di-tert-butyl-4-hydroxyphenyl)-propan, 2,2-Bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-4-n-dodecylmercapto-butan, 1,1,5,5-Tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)-pentan.

1.7. O-, N- und S-Benzylverbindungen, z. B. 3,5,3,5'-Tetra-tert-butyl-4,4'-dihydroxydibenzylether, Octadecyl-4-hydroxy-3,5-dimethylbenzyl-mercaptoacetat, Tris(3,5-di-tert-butyl-4-hydroxybenzyl)-amin, Bis(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-dithioterephthalat, Bis(3,5-di-tert-butyl-4-hydroxybenzyl)-sulfid, Isooctyl-3,5-di-tert-butyl-4-hydroxybenzyl-mercaptoacetat.

1.8. Hydroxybenzylierte Malonate, z. B. Dioctadecyl-2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)-malonat, Di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)-malonat, Di-dodecylmercaptoethyl-2,2-bis(3,5-di-tert-butyl-4-hydroxy-benzyl)-malonat, Di-[4-(1,1,3,3-tetramethylbutyl)-phenyl]-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-malonat.

1.9. Hydroxybenzyl-Aromaten, z. B. 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzol, 1,4-Bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzol, 2,4,6-Tris(3,5-di-tert-butyl-4-hydroxybenzyl)-phenol.

1.10. Triazinverbindungen, z. B. 2,4-Bis-octylmercapto-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazin, 2-Octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazin, 2-Octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3,5-triazin, 2,4,6-Tris(3,5 di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-isocynurat, 1,3,5-Tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-isocynurat, 2,4,6-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionylp

1.11. Benzylphosphonate, z. B. Dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonat, Di-ethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-5-tert-butyl-4-hydroxybenzylphosphonat, Ca-Salz des 3,5-Di-tert-butyl-4-hydroxybenzyl-phosphonsäure-monoethylesters.

1.12. Acylaminophenole, z. B. 4-Hydroxy-laurinsäureanilid, 4-Hydroxystearinsäureanilid, N-(3,5-di-tert-butyl-4-hydroxyphenyl)-carbaminsäureocylester.

1.13. Ester der beta-(3,5-Di-lert-butyl-4-hydroxyphenyl)-propionsäure nut ein- oder mehrwertigen Alkoholen, wie z. B. mit Methanol, Ethanol, n-Octanol, i-Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Tnethylenglycol, Pentaerythrit, Tris(hydroxyethyl)-isocyanurat, N,N'-Bis(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2,2,2]-octan.

1.14. Ester der beta-(5-tert-Butyl-4-hydroxy-3-methylphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z. B. mit Methanol, Ethanol, n-Octanol, i-Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris(hydroxy-

.

ethyl)-isocyanurat, N,N'-Bis(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.

1.15. Ester der beta-(3,5-Dicyclohexyl-4-hydroxyphenyl)-propionsäure mit civi- oder mehrwertigen Alkoholen, wie z. B. mit Methanol, Ethanol, Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonanciol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris(hydroxyethyl)-isocyanurat, N.N-Bis(hydroxyethyl)-oxalsaurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.

1.16. Ester der 3,5-Di-tert-butyl-4-hydroxyphenylessigsäure mit ein- oder mehrwertigen Alkoholen, wie z. B. mit Methanol, Ethanol, Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglylol, Triethylenglycol, Pentaerythrit, Tris(hydroxyethyl)-isocyanurat, N,N-Bis(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.

1.17. Amide der beta-(3,5-Di-tert-butyl-4-hydroxyphenyl)-propionsäure, wie 2. B. N,N-Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylendiamin, N,N-Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)trimethylendiamin, N.N-Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hydrazin.

1.18. Ascorbinsäure (Vitamin C).

1.19. Aminische Antioxidantien, wie z.B. N,N-Di-isopropyl-p-phenylendiamin, N,N-Di-sec-butyl-p-phenylendiamin, N,N-Bis(1,4-dimethyl-pentyl)-p-phenylendiamin, N,N-Bis(1-ethyl-3-methyl-pentyl)-p-phenylendiamin, N,N-Bis(1-methyl-heptyl)-p-phenylendiamin, N,N'-Dicyclohexyl-p-phenylendiamin, N,N'-Diphenyl-p-phenylendiamin, N,N'-Di-(naphthyl-2)-p-phenylendiamin, N-Isopropyl-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenyl-p-phenylendiamin, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-p nyl-p-phenylendiamin, N-(1-Methyl-heptyl)-N-phenyl-p-phenylendiamin, N-Cyclohexyl-N-phenyl-p-phenylendiamin, 4-(p-Toluol-sulfonamido)-diphenylamin, N,N'-Dimethyl-N,N'-di-sec-butyl-p-phenylendiamin, Diphenylamin, N-Allyldiphenylamin, 4-Isopropoxy-diphenylamin, N-Phenyl-1-naphthylamin, N-(4-tert-Octylphenyl)-1-naphthylamin, N-Phenyl-2-naphthylamin, octyliertes Diphenylamin, z. B. p,p'-Di-tert-octyldiphenylamin, 4-n-Butylaminophenol, 4-Butyrylamino-phenol, 4-Nonanoylamino-phenol, 4-Dodecanoylamino-phenol, 4-Octadecanoylamino-phenol, Di-(4-methoxyphenyl)-amin, 2,6-Di-tert-butyl-4-dimethylamino-methyl-phenol, 2,4'-Diamino-diphenylmethan, 4,4'-Diamino-diphenylmethan, N.N.N., N'-Tetramethyl-4,4'-diamino-diphenylmethan, 1,2-Di-[(2-methyl-phenyl)-amino]-ethan, 1,2-Di-(phenylamino)-propan, (o-Tolyl)-biguanid, Di-[4-(1',3'-dimethyl-butyl)-phenyl]amin, tert-octyliertes N-Phenyl-1-naphthylamin, Gemisch aus mono- und dialkylierten tert-Butyl/tert-Octyldiphenylaminen, Gemisch aus mono- und dialkylierten Nonyldiphenylaminen, Gemisch aus mono- und dialkylierten Dodecyldiphenylaminen, Gemisch aus mono- und dialkylierten Isopropyl/Isohexyl-diphenylaminen, Gemische aus mono- und dialkylierten tert-Butyldiphenylaminen, 2,3-Dihydro-3,3-dimethyl-4H-1,4-benzothiazin, Phenothiazin, Gemisch aus mono- und dialkylierten tert-Butyl/tert-Octyl-phenothiazinen, Gemisch aus mono- und dialkylierten tert-Octyl-phenothiazinen, N-Allylphenothiazin, N,N,N,N-,N-Tetraphenyl-1,4-diaminobut-2-en, N,N-Bis-(2,2,6,6-tetramethyl-piperidin-4-yl-hexamethylendiamin, Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-sebacat, 2,2,6,6-Tetramethypiperidin-4-on, 2,2,6,6-Tetramethylpiperidin-4-ol.

Beispiele für weitere Antioxidantien: Aliphatische oder aromatische Phosphite, Ester der Thiodipropionsäure oder der Thiodiessigsäure, oder Salze der Dithiocarbamid- oder Dithiophosphorsäure, 2,2,12,12-Tetramethyl-5,9-dihydroxy-3,7,11-trithiatridecan und 2,2,15,15-Tetramethyl-5,12-dihydroxy-3,7,10,14-tetrathiahexadecan.

Beispiele für Metall-Desaktivatoren, z. B. für Kupfer, sind: 40

- a) Benzotriazole und deren Derivate, z. B. 2-Mercaptobenzotriazol, 2,5-Dimercaptobenzotriazol, 4- oder 5-Alkylbenzotriazole (z. B. Tolutriazol) und deren Derivate, 4,5,6,7-Tetrahydrobenzotriazol, 5,5'-Methylenbis-benzotriazol; Mannich-Basen von Benzotriazol oder Tolutriazol wie 1-(Di(2-ethylhexyl)aminomethyl)-tolutriazol und 1-[Di(2-ethylhexyl)aminomethyl)-benzotriazol; Alkoxyalkylbenzotriazole wie 1-(Nonyloxymethyl)-benzotriazol, 1-(1-Butoxyethyl)-benzotriazol und 1-(1-Cyclohexyloxybutyl)-tolutriazol.
- b) 1,2,4-Triazole und deren Derivate, z. B. 3-Alkyl (oder Aryl)-1,2,4-Triazole, Mannich-Basen von 1,2,4-Triazolen wie 1-[Di(2-ethylhexyl)aminomethyl-1,2,4-triazol; Alkoxyalkyl-1,2,4-triazole wie 1-(1 -Butoxyethyl-1,2,4-triazol; acylierte 3-Amino-1,2,4-triazole.
- c) Imidazolderivate, z. B. 4,4'-Methylenbis(2-undecyl-5-methylimidazol, Bis[(N-methyl)imidazol-2-yl]carbinol
 - d) Schwefelhaltige heterocyclische Verbindungen, z. B. 2-Mercaptobenzothiazol, 2,5-Di-mercapto-1,3,4-thiadiazol, 2.5-Dimercaptobenzothiadiazol und deren Derivate; 3.5-Bis[di-(2-ethylhexyl)aminomethyl]-1,3,4-thiadiazo-
- e) Aminoverbindungen, z. B. Salicyliden-propylendiamin, Salicylaminoguanidin und deren Salze.

Beispiele für Rost-Inhibitoren sind:

- a) Organische Säuren, ihre Ester, Metallsalze, Aminsalze und Anhydride, z. B. Alkyl- und Alkenyl-bernsteinsäuren und deren Partialester mit Alkoholen, Diolen oder Hydroxycarbonsäuren, Partialamide von Alkyl- und Alkenylbernsteinsäuren, 4-Nonylphenoxyessigsäure, Alkoxy- und Alkoxyethoxycarbonsäuren wie Dodecyloxyessigsäure, Dodecyloxy(ethoxy)-essigsäure und deren Aminsalze, femer N-Oleoyl-sarcosin, Sorbitan-mono-oleat, Blei-naphthenat, Alkenylbernsteinsäureanhydride, z. B. Dodecenylbernsteinsäure-anhydrid, 2-(2-Carboxyethyl)-1-dodecyl-3-methylglycerin und dessen Salze, insbesondere Na- und Triethanolaminsalze.
 - b) Stickstoffhaltige Verbindungen, z. B.: i. Primäre, sekundäre oder tertiäre aliphatische oder cycloaliphatische Amine und Amin-Salze von organischen und anorganischen Säuren, z. B. öllösliche Alkylammoniumcarboxylate, ferner 1-[N,N-bis-(2-hydroxyethyl)amino]-3-(4-nonylphenoxy)propan-2-ol.

45

50

55

60

- ii. Heterocyclische Verbindungen, z. B.: Substituierte Imidazoline und Oxazoline, 2-Heptadecenyl-1-(2-hydroxyethyl)-imidazolin.
- c) Phosphorhaltige Verbindungen, z. B.: Aminsalze von Phosphorsäurepartialestern oder Phosphonsäurepartialestern, Zinkdialkyldithiophosphate.
- d) Schwefelhaltige Verbindungen, z. B.: Barium-dinonylnaphthalin-sulfonate, Calciumpetroleum-sulfonate, Alkylthio-substituierte aliphatische Carbonsäuren, Ester von aliphatischen 2-Sulfocarbonsäuren und deren Salze.
- e) Glycerinderivate, z. B.: Glycerin-monooleat, 1-(Alkylphenoxy)-3-(2-hydroxyethyl)-glycerin, 1-(Alkylphenoxy)-3-(2,3-dihydroxypropyl)glycerin, 2-Carboxyalkyl-1,3-dialkylglycerin.

Beispiele für Viskositätsindex-Verbesserer sind: Polyacrylate, Polymethacrylate, Vinylpyrrolidon/Methacrylat-Copolymere, Polyvinylpyrrolidone, Polybutene, Olefin-Copolymere, Styrol/Acrylat-Copolymere, Polyether.

Beispiele für Stockpunkterniedriger sind: Poly(meth)acrylate, Ethylen-Vinylacetat-Copolymer, Alkylpolystyrole, Fumaratcopolymere, alkylierte Naphthalinderivate.

Beispiele für Dispergiermittel/Tenside sind: Polybutenylbernsteinsäureamide oder -imide, Polybutenylphosphonsäurederivate, basische Magnesium-, Calcium-, und Bariumsulfonate und -phenolate.

L5

55

Beispiele für Hochdrück- und Verschleißschutz-Additive sind:
Schwefel- und/oder Phosphor- und/oder halogenhaltige Verbindungen wie z. B. chlorierte Paraffine, sulfurierte Olefine oder pflanzliche Öle (Soja-, Rapsöl), Alkyl- oder Aryl-di- oder -trisulfide, Zinkdialkyldithiophosphate, wie z. B. Zinkbis-(2-ethyl-hexyl)-dithiophosphat, Zinkdithiocarbamate wie z. B. Zinkdiamyldithiocarbamat, Molybdänphosphordithioate, Molybdän Dithiocarbamate, Triarylphosphate wie Tritolylphosphat, Tricresylphosphat, Phenylphosphatisopropylester, Aminsalze von Mono- oder Dialkylphosphorsäuren wie die Aminsalze von Mono/Di-hexylphosphat, Aminsalze von Alkylphosphonsäuren wie das Aminsalz der Methylphosphonsäure, Triarylphosphite wie z. B. Tris-[nonylphenyl]-phosphit, Dialkylphosphite, wie z. B. Dioctylphosphit, Triarylmonthiophosphate wie z. B. Triphenylthionophosphate oder Tris-[isononylphenyl]thionophosphate oder tert-butyliertes Triphenylthionophosphate, substitutierte Trialkylmono- oder -dithiophosphate wie [(Diisopropoxyphosphinothioyl)thio]propionat oder Butylen-1,4-bis[(diisobutoxyphosphinothioyl)propionat], Trithiophosphate wie Trithiophosphorsäure S,S,S-tris(isooctyl-2-acetate), Aminsalze des 3-Hydroxy-1,3-thiaphosphetane-3-oxids, Benzotriazole oder deren Derivate wie bis(2-Ethylhexyl)aminomethyl-tolutriazole, Dithiocarbamate wie Methylen-bis-dibutyldithiocarbamat, Derivate des 2-Mercaptobenzothiazols wie 1-[N,N-bis(2-ethylhexyl)aminomethyl-2-mercapto-1H-1,3-benzothiazol, Derivate des 2,5-dimercapto-1,3,4-thiadiazols wie 2,5-bis(tert.nonyldithio)-1,3,4-thiadiazol.

Beispiele für Reibwertverminderer sind z. B. Öl aus Schmalz, Ölsäure, Talg, Rapsöl, geschwefelte Fette, Amine. Weitere Beispiele sind in EP 565487 genannt.

Beispiele für besondere Additive zur Anwendung in Wasser/Öl-Metallbearbeitungs- und Hydraulikflüssigkeiten sind: Emulgatoren: Petroleumsulfonate, Amine wie polyoxyethylierte Fettamine, nichtionische oberflächenaktive Substanzen; Puffer: Alkanolamine; Biocide: Triazine, Thiazolinone, Tris-Nitromethan, Morpholin, Natriumpyridenethol; Verarbeitungsgeschwindigkeitsverbesserer: Calcium- und Bariumsulfonate.

Beispiele für Treibstoffadditive:

Diese sind in Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 12, 1994, beschrieben. Hier handelt es sich im wesentlichen um Benzin- und Dieseladditive.

Benzin: Antioxidantien, aminisch, besonders para-Phenylendiamine oder phenolisch, z. B. 2,6-Di-tert.-butylphenol (wie weiter vorn beschrieben), Metalldesaktivatoren, besonders N,N'-Disalicyliden-1,2-propan, Benzotriazol, EDTA; Rostinhibitoren, beispielsweise Carbonsäuren, Sulfonate, Amine oder Aminsalze; Dispergatoren, z. B. Ester, Amine mit hohem Molekulargewicht, Mannich-Basen, Succinimide, borierte Succinimide; Detergentien, beispielsweise Fettsäure-amide, nicht-polymere Amine, Polybutensuccinimide, Polyetheramine, niedermolekulare Amine, Sulfonate, Salicylsäurederivate; Demulgatoren, z. B. langkettige Alkohole oder Phenole mit Polyethylen oder -butylengruppen; Antiklopfmittel, z. B. Manganmethylcyclopentadienyltricarbonyl, Sauerstoffverbindungen, z. B. Ester von Pflanzenölen, Ether, Alkohole zur Verbesserung des Brennverhaltens.

Dieselkraftstoff: Zündverbesserer (Cetanverbesserer), z. B. Alkylnitrate, Ethernitrate, Alkyldiglycolnitrate, organische Peroxide; Stabilisatoren, insbesondere für Crackdiesel: Amine und andere N-haltige Verbindungen, die als Radikalfänger wirken; Rostschutzmittel wie weiter vorn beschrieben; Detergentien wie weiter vorn beschrieben; Sauerstoffverbindungen wie weiter vorn beschrieben; Kaltflußverbesserer: Das sind z. B. Stockpunkterniedriger wie weiter vorn beschrieben; Trübpunkterniedriger oder sog. Operability Additives (OA), das sind polymere Mehrkomponentensysteme, welche u. a. das Filterdurchflußverhalten verbessem.

Die Verbindungen der Formeln I und II sind in an sich bekannter Weise erhältlich, z. B. durch Umsetzung eines 2-Mercaptobenzothiazols der Formel

oder einem reaktionsfähigen funktionellen Derivat davon, bzw. eines 2,5-Dimercaptothiadiazols der Formel

10

15

25

30

35

40

45

mit dem Alkohol der obigen Formel bzw. mit einem Alkohol R₅-OH oder einem reaktionsfähigen, funktionellen Derivat davon unter Abspaltung von Wasser, vorzugsweise unter sauren Bedingungen.

Beispiele

Die folgenden Beispiele erläutern die Erfindung näher. Angaben in Teilen oder Prozent sind, sofern nicht anders angegeben, auf das Gewicht bezogen.

Beispiel 1

a) Zu einer Suspension von 105.6 g (0.6 mol) 2-Mercaptobenzothiazol in 800 ml Toluol werden 156.3 g (0.6 mol) Produkt aus Beispiel 1 b) und 1 ml konz. Schwefelsäure zugegeben. Man erhitzt am Wasserabscheider 1 Std. lang unter Rücksluß. Das gelbe Öl wird in 500 ml Hexan gelöst und mit 50 ml 2N Natriumhydroxid-Lösung und Wasser neutral gewaschen (pH 7). Man dampst die organische Phase ein und trocknet das Produkt bei reduziertem Druck (110°C/ca. 0.02 mbar). Man erhält 235 g eines klaren, hellgelben mittelviskosen Öls (96% d.Th.).

n³⁰: 1.5781; Elementaranalyse: 64,16% C (berechnet 64,50); 8,62% H (berechnet 8,61); 4,16% N (berechnet 3,42); ca. 24% S (berechnet 23,48; problematische S-Bestimmung).

b) Das Ausgangsmaterial wird folgendermaßen hergestellt:

1 g Natrium (~50 mmol) werden in 140 g (2.4 Mol) Propylenoxid vorgelegt. Innerhalb ca. 1 Std. läßt man bei 25 30°C 426 g (2 Mol) tert.Dodecylmercaptan zutropfen (exothermer Reaktionsablauf). Bei 55 60°C läßt man 1 Std. lang ausreagieren und desaktiviert das Natrium mit ca. 1 ml Essigsäure. Das klare, hellgelbe Rohprodukt wird bei reduziertem Druck (106–110°C/ca. 0.02 mbar) fraktioniert destilliert. Man erhält 509 g klares, farbloses, mittelviskoses Öl (98% d.Th.); n₂°: 1.4801.

Beispiel 2

Analog Beispiel 1a) werden 16,73 g (0.1 mol) 2-Mercaptobenzothiazol mit 19,03 g (0,1 mol) 2-(Octylthio)-ethanol [3547-33-9, Phillips Petroleum, U.S. Patentschrift 2,863,799] umgesetzt. Man erhält 33 g klares, orangefarbenes Öl (97% d.Th.).

Elementaranalyse: 60,67% C (berechnet 60,13); 7,40% H (berechnet 7,42); 3,93% N (berechnet 4,12), ca. 27% S (berechnet 28,32; problematische S-Bestimmung).

Beispiel 3

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Analog Beispiel 1a) und Beispiel 2 werden 16,73 g (0,1 mol) 2-Mercaptobenzothiazol mit 20,43 g (0,1 mol) 1-Octylthio-2-propanol (18915-86-1, Phillips Petroleum, U.S. Patentschrift 2,863,799) umgesetzt. Man erhält 32,9 g orangebraunes Öl (93% d.Th.).

Elementaranalyse: 61,29% C (berechnet 61,14); 7,74% H (berechnet 7,70); 4,15% N (berechnet 3,96); ca. 27% S (berechnet 27,20; problematische S-Bestimmung).

Beispiel 4

20

35

s

Isomerengemisch

Analog Beispiel 1a) und Beispiel 2 und 3 werden 60,7 g (0.4 mol) 2,5-Dimercapto-1,3,4-thiadiazol mit 208,4 g (0.8 mol) Produkt aus Beispiel 1b umgesetzt. Man erhält 221 g klares, hellgelbes, mittelviskoses Öl (87% d.Th.). n₂°: 1,5488; Elementaranalyse: 60,35% C (berechnet 60,51); 9,81% H (berechnet 9,84); 4,44% N (berechnet 4,41); ca. 40 25% S (berechnet 25,24; problematische S-Bestimmung).

Beispiel 5

a) Analog Beispiel 1a) und Beispiel 2-4 werden 88 g (0,5 mol) 2-Mercaptobenzothiazol mit 188,5 g (0,5 mol) Produkt aus Beispiel 5h) umgesetzt. Man erhält 259,7 g klares, gelbes, mittelviskoses Öl (99% d.Th.).

60 noo: 1,5699; Elementaranalyse: 64,04% C (berechnet 63,95); 9,16% H (berechnet 9,01); 2,70% N (berechnet 2,66); ca. 24,50% S (berechnet 24,38; problematische S-Bestimmung).

b) Das Ausgangsmaterial wird folgendermaßen hergestellt:

337,5 g (2 mol) tert.Nonylmercaptan und 80 g (2 mol) Natriumhydroxid in 700 ml Ethanol und 320 ml Wasser werden durch Erwärmen auf 50°C gelöst und homogenisiert. Bei 25°C läßt man innerhalb 1,5 Std. 93,4 g Epichlorhydrin zutropfen. Bei 60°C läßt man 2 Std. lang ausreagieren und dampft die milchige Emulsion ein. Den Rückstand löst man mit ca. 100 ml Hexan und wäscht mit 100 ml Wasser und 3 ml Essigsäure und nochmals Wasser neutral (pH 6). Man dampft die organische Phase ein und trocknet bei reduziertem Druck (130°C/ca. 0.03 mbar). Man erhält 378 g eines klaren, farblosen, leichtviskosen Öls (ca. 100% d.Th). n₂°: 1,4985. Elementaranalyse: 67,06% C (berechnet 66,96); 11,96% H (berechnet 11,77).

Beispiel 6

15 HS
$$\frac{N-N}{s}$$
 $\frac{N-N}{s}$ $\frac{H_2SO_4}{konz}$ $\frac{konz}{H_2O}$ $\frac{H_2SO_4}{konz}$ $\frac{H_2SO_4}{H_2O}$ $\frac{H$

Analog Beispiel 1a), 2-4 und 5a) werden 105,3 g (0,7 mol) 2,5-Dimercapto-1,3,4-thiadiazol mit 527 g (1.4 mol) Produkt aus Beispiel 5b) umgesetzt. Man erhält 580 g klares, hellgelbes Öl (95% d.Th.). n_0^{20} : 1.5496; Elementaranalyse: 60,39% C (berechnet 60,91); 9,91% H (berechnet 9,99); 3,32% N (berechnet 3,23); ca. 26% S (berechnet 25,87; problematische S-Bestimmung).

Beispiel 7

Analog Beispiel 1a), 2-4, 5a) und 6 werden 16,7 g (0,1 mol) 2-Mercaptobenzothiazol mit 46,1 g (0,1 mol) 1,3-Bis(dodecylthio)-2-propanol [59852-53-8, U.S. Patentschrift 3,954,839] umgesetzt. Man erhält 59,6 g orange-braunes Öl (98% d.Th.). Elementaranalyse: 67,06% C (berechnet 66,94); 9,86% H (berechnet 9,75); 2,10% N (berechnet 2,30); 21% S (berechnet 21,02).

55

5

10

60

Beispiel 8

a) Analog Beispiel 1a), 2-4, 5a), 6 und 7 werden 38 g (0,25 mol) 2,5-Dimercapto-1,3,4-thiadiazol mit 230,45 g (0,5 mol) des Produktes aus Beispiel 8b) umgesetzt. Man erhält 244 g klares, hellgelbes, mittelviskoses Öl (94% d.Th.). no.: 1,5396; Elementaranalyse: 64,04% C (berechnet 64,93); 10,63% H (berechnet 10,70); 2,93% N (berechnet

S-(tert.-Dodecyl)

2,70); ca. 22% S (berechnet 21,66; problematische S-Bestimmung). b) Das Ausgangsmaterial wird folgendermaßen hergestellt:

(tert:-Dodecyl)

Analog Beispiel 8b) werden 426 g (2 mol) tert.Dodecylmercaptan mit 93,5 g (1 mol) Epichlorhydrin und 80 g (2 mol)
Natriumhydroxid umgesetzt. Man erhält 460 g klares, farbloses, mittelviskoses Ol (99% d.Th.). n₀²²: 1,4956.

Beispiel 9

a) Analog Beispiel 1a), 2-4, 5a), 6, 7 und 8a) werden 8,8 g (0,05 mol) 2-Mercaptobenzothiazol mit 23,2 g (0,05 mol) Produkt aus Beispiel 9b) umgesetzt. 26 g Rohprodukt werden säulenchromatographisch über 200 g Silicagel (Toluol-Ethylacetat) gereinigt. Man erhält 10,7 g klares, hellgelbes, mittelviskoses Öl. n₂³⁰: 1,5534. Elementaranalyse: 58,48 C (berechnet 58,69); 7,82% H (berechnet 7,72); 2,44% N (berechnet 2,28); ca. 21% S (berechnet 20.89, problematische S-Bestimmung).
b) Herstellung des Ausgangsmaterials:

2 HS
$$O(\text{iso-Octyl})$$
 $O(\text{iso-Octyl})$ $O(\text{iso-Octyl})$ $O(\text{iso-Octyl})$ $O(\text{iso-Octyl})$

55

Zu 40.8 g (0,2 mol) 2-Mercapto-essigsäure-iso-octylester [Thioglycolsäureester von verzweigtkettigen Octanolen (IOMA)] und 21.2 g (0,211 mol) Triethylamin in 100 ml Toluol werden innerhalb 30 min. 9,4 g (0.1 mol) Epichlorhydrin Zugetropft. Dann wird bei 60-110°C 12 Std. gerührt. Das eingedampfte Produkt wird in 100 ml Ethylacetat gelöst, mit 100 ml Wasser (+ etwas 2N HCl) gewaschen und wieder eingedampft. Etwas (ca. 11 g) nicht umgesetztes Edukt (IOMA) wird bei reduziertem Druck abdestilliert (75-85°C/ca. 0,03 mbar). Als Hauptprodukt verbleiben 34,3 g klares, farbloses, mittelviskoses Öl (74% d.Th).

Elementaranalyse: 57,22% C (berechnet 59,45); 9,31% H (berechnet 9,54); ca. 13% S (berechnet 13,80, problematische S-Bestimmung).

Beispiel 10

Analog Beispiel 1a), 2-4, 5a), 6, 7,8a) und 9a) werden 7,6 g (0,05 mol) 2,5-Dimercapto-1,3,4-thiadiazol mit 46,5 g (0,1 mol) des Produktes aus Beispiel 9b) umgesetzt. 48 g Rohprodukt werden säulenchromatographisch über 300 g Silicagel (Toluol-Ethylacetat) gereinigt. Man erhält 22 g klares, gelbes, mittelviskoses Öl. n₀²⁰: 1,5224; Elementaranalyse: 55,88 C (berechnet 55,24); 8,70% H (berechnet 8,31); 2,32% N (berechnet 2,68); ca. 20% S (berechnet 21,55; problematische S-Bestimmung).

Beispiel 11

35 SH + HO
$$-$$
 S-(tert.-Nonyl) $-$ H₂SO₄ konz.

- H₂O

40 S-(tert.-Nonyl) $-$ H₂O

- N S $-$ O-(n-Butyl) S-(tert.-Nonyl) Isomerengemisch

a) Analog Beispiel 1a) werden 123 g (0,7 mol) 2-Mercaptobenzothiazol mit 203 g (0,7 mol) des Produktes aus Beispiel 11b) umgesetzt. Man erhält 299 g gelbes, mittelviskoses Öl (97% d.Th.).
N20: 1,5682; Elementaranalyse: 62,90% C (berechnet 62,82); 8,57% H (berechnet 8,48); 3,33% N (berechnet 3,19);

21,97% S (berechnet 21,87).

b) Das Ausgangsmaterial wird wie folgt hergestellt:

Zu einer Lösung von 40 g (1 mol) Natriumhydroxid in 3 l n-Butanol werden bei 60-65°C innert 15 Min. 433 g (2 mol) tert.-Nonyl-glycidylthioether [zur Herstellung siehe U.S. Patentschrift 4,931,576] zugetropft. Dann wird noch 4 Std. hei ca. 60°C weitergerührt und das überschüssige n-Butanol abdestilliert. Nach Zugabe von 300 ml Siedegrenzbenzin (Sdp. 60-90°C) wird mit verdünnter Salzsäure neutral gewaschen. Durch Eindampfen der organischen Phase und Trocknen des Produktes bei reduziertem Druck (120°C/0,05 mbar) erhält man 564 g klares, gelbes, mittelviskoses Öl (97% d. Th.).

 n_2^{pc} : 1,4756; Elementaranalyse: 66,15% C (berechnet 66,15); 11,76% H (berechnet 11,80); 11,30% S (berechnet 11,04).

s

30

45

50

55

60

Beispiel 12

Analog Beispiel 1a) werden 60 g (0,4 mol) 2,5-Dimercapto-1,3,4-thiadiazol mit 232 g (0,8 mol) des Produktes aus Beispiel 11b) umgesetzt. Man erhält 265 g klares, gelbes, mittelviskoses Öl (95% d.Th.). n₀°: 1,5364: Elementaranalyse: 58,48% C (berechnet 58,75); 9,75% H (berechnet 9,57); 4,12% N (berechnet 4,03); 23,23% S (berechnet 23,06).

Beispiel 13

Zu einer Lösung von 188 g (0,5 mol) des Produktes aus Beispiel 5b) in 600 ml Toluol werden 75 g (0,5 mol) 2,5-Dimercapto-1,3,4-thiadiazol und 4,8 g (5 Mol%) p-Toluolsulfonsäure zugegeben. Man erhitzt am Wasserabscheider 1 Std. unter Rückfluß. Dann wird das Toluol abdestilliert. Das Rohprodukt wird in 300 ml Siedegrenzbenzin (Sdp. 60 90°C) gelöst, neutral gewaschen, eingedampft und bei reduziertem Druck (110°C/0,05 mbar, 30 min.) getrocknet. Man erhält 244 g klares, gelbes, viskoses, schwach unangenehm riechendes Öl (96% d.Th.).

15.834; Elementaranalyse: 54,33% C (berechnet 54,28); 8,73% H (berechnet 8,71); 5,66% N (berechnet 5,50); 32,32% S (berechnet 31,50).

50

20

25

55

60

Beispiel 14

Zu einer Lösung von 254 g (0,5 mol) Produkt aus Beispiel 13 in 250 ml Aceton wird bei ca. 30°C innert 30 min. eine Lösung von 104 g Wasserstoffperoxid 15% (0,5 mol) zugetropft. Bei 50°C wird eine Stunde nachgerührt. Dann wird bei Raumtemperatur solange mit Natriumhydrogensulfitlösung (39%-ig) versetzt, bis kein Peroxid mehr nachweisbar ist. Dann wird das Aceton abdestilliert, das Rohprodukt in 300 ml Siedegrenzbenzin (Sdp. 60–90°C) gelöst, mit Wasser gewaschen, eingedampft und bei reduziertem Druck (100°C/0.04 mbar, 30 min.) getrocknet. Man erhält 234 g klares, viskoses, gelbes Öl (92% d.Th.).

 n_0^{20} : 1.5810; Elementaranalyse: 54,16% C (berechnet 54,39); 8,49% H (berechnet 8,53); 5,45% N (berechnet 5,52); 31,51% S (berechnet 31,56).

Beispiel 15

Test auf Verschleißschutz: Zur Prüfung auf die Eignung als Verschleißschutzadditiv wird die ASTM-Standardmethode D-2783-81 unter Verwendung des Shell-Vierkugel-Apparates herangezogen. Als Basisöl wird Stock 305 der Fa. Mobil verwendet, dem die in Tabelle 1 angegebene Menge an Verbindung gemäß dem jeweils genannten Beispiel zugegeben wird. Ermittelt werden der mittlere Verschleiß-Narben-Durchmesser WSD (Wear-Scar-Diameter, in mm) bei einer Last von 40 kg und einer Rotationsgeschwindigkeit von 1440 Upm nach 1 Std. Betrieb bei 100°C. Die gemessenen Resultate sind in der Tabelle aufgeführt.

Tabelle

	Verbindung aus Beispiel	Zusatzmenge [Gew.%]	WSD [mm]
45	Basisöl	•	2,32
	1	1,0	0,78
50	4	1,0	0,78
	5	1,0	0,71
	6	1,0	0,83
55	8	1,0	0,77
	9	1,0	0,78
	11	1,0	0,78

Patentansprüche

1. Verbindungen der Formeln

65

60

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_3
 R_4
 R_5
 R_5
 R_5
 R_7
 R_7

worin
R₁ Wasserstoff oder C₁-C₂₀-Alkyl bedeutet;

10

R₂ einen Substituenten aus der Gruppe C₁-C₂₀-Alkyl, C₃-C₁₂-Cycloalkyl, C₇-C₁₂-Bicycloalkyl, Phenyl, C₇-C₁₈-Al-kylphenyl, Naphthyl und C₇-C₉-Phenylalkyl bedeutet, welcher durch einen oder mehrere Substituenten aus der Gruppe Amino, Carboxy und Hydroxy substituiert und/oder durch ein oder mehrere bivalente Reste aus der Gruppe -O-, -NR₆-, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₆- und -NR₆-C(=O)- unterbrochen sein kann;

R₃ und R₄ Wasserstoff bedeuten oder die Bedeutungen von R₂ haben, mit der Maßgabe, daß R₂ C₄-C₂₀-Alkyl bedeutet, wenn R₃ und R₄ Wasserstoff bedeuten;

Rs Wassersioit oder Gruppen der Teilformeln

bedeutet, worin R_2 . R_3 und R_4 die genannten Bedeutungen haben oder die Bedeutung von R_2 hat; und R_6 Wasserstoff oder C_1 - C_4 -Alkyl bedeutet.

2. Verbindungen der Formeln I und II gemäß Anspruch 1, worin

R₁ Wasserstoff;

 R_2 einen Substituenten aus der Gruppe C_1 - C_{20} -Alkyl, Phenyl, C_7 - C_{18} -Alkylphenyl und C_7 - C_9 -Phenylalkyl bedeutet, welcher durch einen oder mehrere Substituenten aus der Gruppe Amino, Carboxy und Hydroxy substituiert und/oder durch ein oder mehrere bivalente Reste aus der Gruppe -O-, -NR₆-, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₆- und -NR₆-C(=O)- unterbrochen sein kann;

R3 und R4 Wasserstoff bedeuten oder die Bedeutungen von R2 haben,

mit der Maßgabe, daß R2 C4-C20-Alkyl bedeutet, wenn R3 und R4 Wasserstoff bedeuten;

 R_5 die Bedeutungen von R_2 hat oder Gruppen der Teilformeln (A) und (B) bedeutet, worin R_2 , R_3 und R_4 die genannten Bedeutungen haben;

und R6 Wasserstoff oder Alkyl bedeutet.

3. Verbindungen der Formeln I und II gemäß Anspruch 1, worin

R₁ Wasserstoff;

40

45

50

R₂ einen Substituenten aus der Gruppe C₁-C₂₀-Alkyl, Phenyl, C₇-C₁₈-Alkylphenyl und C₇-C₉-Phenylalkyl bedeutet, welcher durch ein oder mehrere bivalente Reste aus der Gruppe -O-, -C(=O)-O- und -O-C(=O)- unterbrochen sein kann:

R₃ und R₄ Wasserstoff bedeuten oder die Bedeutungen von R₂ haben,

mit der Maßgabe, daß R2 C4-C20-Alkyl bedeutet, wenn R3 und R4 Wasserstoff bedeuten;

R₅ die Bedeutungen von R₂ hat oder Gruppen der Teilformeln (A) und (B) bedeutet, worin

R₂, R₃ und R₄ die genannten Bedeutungen haben.

4. Verbindungen der Formeln I und II gemäß Anspruch 1, worin R₁ Wasserstoff;

R2 C1-C20-Alkyl bedeutet,

welches durch einen bivalenten Rest aus der Gruppe -O-, -C(=O)-O- und -O-C(=O)- unterbrochen sein kann;

R₃ und R₄ Wasserstoff bedeuten oder die Bedeutungen von R₂ haben,

mit der Maßgabe, daß R2 C4-C20-Alkyl bedeutet, wenn R3 und R4 Wasserstoff bedeuten;

 R_5 die Bedeutungen von R_2 hat oder Gruppen der Teilformeln (A) und (B) bedeutet, worin R_2 , R_3 und R_4 die genannten Bedeutungen haben.

5. Verbindungen der Formel I' gemäß Anspruch 1:

55

65

$$N$$
 S
 R_3
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_6
 R_7
 $R_$

worin R₂ C₄-C₁₈-Alkoxycarbonylmethyl, R₃ C₄-C₁₈-Alkoxycarbonylmethylthiomethyl und R₄ Wasserstoff; oder

R2 C5-C12-Alkyl und R3 C5-C12-Alkylthiomethyl und R4 Wasserstoff; oder

R₂ C₄-C₁₈-Alkoxycarbonylmethyl, R₃ Wasserstoff und R₄ C₄-C₁₈-Alkoxycarbonylmethylthiomethyl; oder

R₂ C₅-C₁₂-Alkyl, R₃ Wasserstoff und R₄ C₅-C₁₂-Alkylthiomethyl bedeuten.

6. Verbindungen der Formel II' gemäß Anspruch 1:

$$R_{2} \xrightarrow{R_{3}} S \xrightarrow{R_{3}} S \xrightarrow{R_{3}} S \xrightarrow{R_{3}} S \xrightarrow{R_{2}} S \xrightarrow{R_{2}} S \xrightarrow{R_{3}} S \xrightarrow{R$$

worin R_2 und R_2 ' C_4 - C_{18} -Alkoxycarbonylmethyl, R_3 und R_3 ' C_4 - C_{18} -Alkoxycarbonylmethylthiomethyl und R_4 und R_4 ' Wasserstoff; oder

R₂ und R₂' C₅-C₁₂-Alkyl, R₃ und R₃' C₅-C₁₂-Alkylthiomethyl und R₄ und R₄' Wasserstoff; oder
R₂ und R₂' C₄-C₁₈-Alkoxycarbonylmethyl, R₃ und R₃' Wasserstoff und R₄ und R₄' C₄-C₁₈-Alkoxycarbonylmethylthiomethyl; oder

R₂ und R₂' C₅-C₁₂-Alkyl, R₃ und R₃' Wasserstoff und R₄ und R₄' C₅-C₁₂-Alkylthiomethyl bedeuten.
7. Verbindungen der Formel I' gemäß Anspruch 5,

worin R₂ Isooctyloxycarbonylmethyl, R₃ Isooctyloxycarbonylmethylthiomethyl und R₄ Wasserstoff; oder R₂ tert.-Nonyl, R₃ tert.-Nonylthiomethyl und R₄Wasserstoff; oder R₂ Isooctyloxycarbonylmethyl, R₃Wasserstoff und R₄ Isooctyloxycarbonylmethylthiomethyl; oder R₂ tert.-Nonyl, R₃ Wasserstoff und R₄ tert.-Nonylthiomethyl bedeuten.

8. Verbindungen der Formel II' gemäß Anspruch 6,

worin R₂ und R₂' Isooctyloxycarbonylmethyl, R₃ und R₃' Isooctyloxycarbonylmethylthiomethyl und R₄ und R₄' Wasserstoff; oder
R₂ und R₂' tert.-Nonyl, R₃ und R₃' tert.-Nonylthiomethyl und R₄ und R₄' Wasserstoff; oder

R₂ und R₂' C₅-C₁₀-Isooctyloxycarbonylmethyl, R₃ und R₃' Wasserstoff und R₄ und R₄' Isooctyloxycarbonylmethylthio; oder

R2 und R2' C5-C10-tert.-Nonyl, R3 und R3' Wasserstoff und R4 und R4' tert.-Nonylthiomethyl bedeuten.
 Zusammensetzungen enthaltend eine Verbindung der Formeln I oder II gemäß Anspruch 1 oder Mischungen davon in Kombination mit einem Grundöl mit schmierender Viskosität oder Kraftstoffen.
 Konzentrate enthaltend ein oleophiles Lösungsmittel und mindestens eine Verbindung der Formel I oder II ge-

mäß Anspruch 1 oder Mischungen davon sowie gegebenenfalls weitere Additive.

11. Verfahren zur Verbesserung der Gebrauchseigenschaften von Schmierstoffen oder Schmierfetten oder Kraft-

stoffen, gekennzeichnet durch die Zugabe mindestens einer Verbindung der Formel I oder II oder Mischungen davon gemäß Anspruch 1.

30

35

40

45

50

55

12. Verwendung von Verbindungen gemäß Anspruch 1 als Additive in Schmierstoffen, Hydraulik- oder Metallbearbeitungsflüssigkeiten sowie Kraftstoffen.

16