Table des matières

1	Préliminaires
	Définition : Fonctions Localement Intégrables
	$Th\'{e}or\`{e}me$: Formule de Leibniz
	$Définition:$ Support de $f \in L^1_{loc}(\Omega)$
	Théorème : Inégalité de Hausdorff-Young
	Théorème : Suites Régularisantes
	$D\acute{e}finition: Convergence \ {\rm dans} \ {\mathcal C}^{\infty}_c(\Omega) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	$Dcute{efinition}: ext{Convergence dans } \mathcal{C}^{\infty}(\Omega) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
2	Distributions
	$D\'{e}finition: Distributions \dots \dots$
	$Th\acute{e}or\grave{e}me$: Plongement de $L^1_{\mathrm{loc}}(\Omega)$ dans $D'(\Omega)$
	Théorème : Continuité à droite du crochet de dualité
	Définition: Distributions Positives
	$D\acute{e}finition$: Convergence dans $D'(\Omega)$
	Théorème : Principe de la borne uniforme
	$D\acute{e}finition:$ Dérivation dans $D'(\Omega)$
	$D\acute{e}finition: ext{Produit externe } \mathcal{C}^{\infty}(\Omega) - D'(\Omega) \ \ldots \ $
	Théorème : Recollement de Distributions
	Théorème : Changement de Variables
	Théorème : Dérivation sous le crochet de dualité
	Théorème : Intégration sous le crochet de dualité
3	Supports de Distributions, Convolution 4
	Définition : Support d'une Distribution
	Définition : Distributions à Support Compact
	$Th\acute{e}or\grave{e}me: ext{Continuit\'e au sens }arepsilon'(\Omega) \ \ \ldots \ \ \ldots \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$D\acute{e}finition: ext{Convolution } \mathcal{C}^{\infty}_{c}(\Omega) * D^{'}(\Omega) \ldots \ldots$
	$D\acute{e}finition: ext{Convolution } arepsilon''(\Omega) * \mathcal{C}^{\infty}(\Omega)' \dots \dots$
	Définition : Produit Tensoriel de Distributions
	$D\acute{e}finition: Convolution \ D'(\Omega)*\varepsilon'(\Omega) \ \ldots \ \ldots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
4	Distributions sur la Classe de Schwartz, Transformée de Fourier
	4.1 Transformée de Fourier sur $\mathcal{S}(\mathbb{R}^N)$
	Définition: Classe de Schwartz
	Théorème : Transformée de Fourier dans $\mathcal{S}(\mathbb{R}^N)$
	4.2 Distributions Tempérées, Transformée de Fourier sur $\mathcal{S}'(\mathbb{R}^N)$
	$D\acute{e}finition:$ Distributions Tempérées
	Théorème : Convolution $\varepsilon'(\mathbb{R}^N) * \mathcal{S}'(\mathbb{R}^N)$
	Théorème : Transformée de Fourier sur $\mathcal{S}'(\mathbb{R}^N)$
	Théorème : Caractérisation des Transformées de Fourier sur $\varepsilon'(\mathbb{R})$
	Théorème : Inversion de Fourier dans $\mathcal{S}'(\mathbb{R}^N)$
	Théorème : Transformée de Fourier et Convolution $\varepsilon'(\mathbb{R}^N) * \mathcal{S}'(\mathbb{R}^N)$
	Théorème : Théorème de Plancherel
	Théorème : Formule de Poisson
	Définition: Distribution Périodiques, Séries de Fourier

On notera aussi souvent que possible φ des fonctions \mathcal{C}^{∞} à support compact, ψ les fonction \mathcal{C}^{∞} , et ϕ les fonctions de la classe de Schwartz.

On note
$$|\alpha| := \sum_{i=1}^{N} \alpha_i$$
 for $\alpha \in \mathbb{N}^N$

On note $\mathcal{C}_c^{\infty}(\Omega)$ les fonctions \mathcal{C}^{∞} à support compact sur Ω , et pour $\varphi \in \mathcal{C}_c^{\infty}(\Omega)$, si supp $\varphi \subset$ K compact, on écrira parfois $\varphi \in \mathcal{C}_K^{\infty}(\Omega)$

Enfin, on note $K \in \Omega$ pour dire que K est un compact inclus dans Ω .

1 **Préliminaires**

Définition 1: Fonctions Localement Intégrables.

$$f\in \mathbb{m}(\mathbb{R}^N) \text{ est dans } L^1(\text{loc}) \text{ si } \forall K \Subset \Omega, \int\limits_K |f| <+\infty, \text{ ou si } \forall \varphi \in \mathcal{C}^\infty_c(\Omega), \int\limits_\Omega |f\varphi| <+\infty$$

Théorème 1: Formule de Leibniz.

Soit
$$\alpha \in \mathbb{R}^N$$
 et $\psi, \chi \in \mathcal{C}^{\infty} : \partial^{\alpha}(\psi \xi) = \sum_{\beta \leq \alpha} C_{\alpha}^{\beta} \partial^{\alpha - \beta} \psi \partial^{\beta} \chi$

$$\begin{array}{ll} \textbf{D\'efinition 2: Support de } f \in L^1_{\mathrm{loc}}(\Omega). \\ \mathrm{supp} \ f := \bigcap_{\substack{\omega \text{ ouvert: } f = 0 \text{ p.p. sur } \omega}} \mathbb{R}^N \setminus \omega \\ \end{array}$$

Théorème 2: Inégalité de Hausdorff-Young.

Soit
$$p, q, r \in [1, +\infty], \frac{1}{p} + \frac{1}{q} = 1 = \frac{1}{r}$$
, et $f \in L^p(\mathbb{R}^N), g \in L^q(\mathbb{R}^N)$.

Alors
$$f*g(x) := \int_{\mathbb{R}^N} f(x-y)g(y)dy$$
 est une fonction de $L^r(\mathbb{R}^N)$, avec $||f*g||_{L^r} \le ||f||_{L^p}||g||_{L^q}$

Soit
$$f, g \in \mathbb{m}(\mathbb{R}^N)$$
 convolables. Alors supp $(f * g) \subset \overline{\text{supp } f + \text{supp } g}$

Théorème 3: Suites Régularisantes.

Soit
$$\varepsilon > 0$$
, et $\zeta \in \mathcal{C}^{\infty}_{\overline{B}(0,1)}(\mathbb{R},\mathbb{R}_{+})$ avec $\int \zeta = 1$. Soit $\zeta_{\varepsilon}(x) := \varepsilon^{-N} \zeta(\frac{x}{\varepsilon})$

Soit
$$f \in \mathcal{C}^{\infty}(\mathbb{R}^N)$$
. Alors $\zeta_{\varepsilon} * f \xrightarrow{\text{CVU}} f$

Définition 3: Convergence dans $C_c^{\infty}(\Omega)$.

On dit que
$$\varphi_n \xrightarrow[n \to +\infty]{\mathcal{C}_c^{\infty}(\Omega)} \varphi$$
 S'il existe $K \in \Omega$ tel que $\forall n \in \mathbb{N}$, supp $\varphi_n \subset K$, et que :

$$\forall \alpha \in \mathbb{N}^N, \partial^{\alpha} \varphi_n \xrightarrow{\text{CVU}} \partial^{\alpha} \varphi$$

Définition 4: Convergence dans $C^{\infty}(\Omega)$.

Soit
$$\psi_n, \psi \in \mathcal{C}^{\infty}(\Omega)$$
. On a $\psi_n \xrightarrow{\mathcal{C}^{\infty}(\Omega)} \psi$ si : $\forall \alpha \in \mathbb{N}^N$, $\partial^{\alpha} \psi_n \xrightarrow{\text{CVU loc.}} \partial^{\alpha} \psi$

Où "CVU loc." dénote la convergence uniforme locale, i.e., la CVU sur tout compact.

$\mathbf{2}$ Distributions

Définition 5: Distributions.

Une distribution $T \in D'(\Omega)$ est une forme \mathbb{R} -linéaire (ou \mathbb{C} -linéaire) sur $\mathcal{C}_c^{\infty}(\Omega)$ continue au sens suivant:

$$\forall K \Subset \Omega, \exists C > 0, \exists p \in \mathbb{N} : \forall \varphi \in \mathcal{C}^{\infty}_{K}(\Omega), \quad |\langle T, \varphi \rangle| \leq C \max_{|\alpha| \leq p} \sup_{x \in K} |\partial^{\alpha} \varphi|$$

S'il existe $p \in \mathbb{N}$ indépendant de K dans la définition plus haut, on dit que T est d'ordre p. Sinon, on dit que T est d'ordre infini.

Théorème 4: Plongement de $L^1_{loc}(\Omega)$ dans $D'(\Omega)$.

L'application
$$\begin{cases} L^1_{\text{loc}}(\Omega) & \longrightarrow & D'(\Omega) \\ f & \longmapsto & T_f(\varphi) = \int_{\Omega} f\varphi & \text{est injective.} \end{cases}$$

Théorème 5: Continuité à droite du crochet de dualité. Si $\varphi_n \xrightarrow{\mathcal{C}_c^\infty(\Omega)} \varphi$, alors $\langle T, \varphi_n \rangle \longrightarrow \langle T, \varphi \rangle$

Si
$$\varphi_n \xrightarrow{\mathcal{C}_c^{\infty}(\Omega)} \varphi$$
, alors $\langle T, \varphi_n \rangle \longrightarrow \langle T, \varphi \rangle$

Définition 6: Distributions Positives.

$$T \in D'(\Omega)$$
 est positive si $\forall \varphi \in \mathcal{C}_c^{\infty}(\Omega), \langle T, \varphi \rangle \geq 0$

Toute distribution positive est d'ordre 0 (le p dans la continuité d'un $T \in D'(\Omega)$).

Définition 7: Convergence dans $D'(\Omega)$.

On a
$$T_n \xrightarrow[D'(\Omega)]{} T$$
, si $\forall \varphi \in \mathcal{C}_c^{\infty}(\Omega), \langle T_n, \varphi \rangle \longrightarrow \langle T, \varphi \rangle$

Théorème 6: Principe de la borne uniforme.

Soit $K \subseteq \Omega, T_n \in D'(\Omega)$ tel que $\forall \varphi \in \mathcal{C}_K^{\infty}(\Omega)$, la suite (T_n, φ) est convergente.

Alors
$$\exists p \in \mathbb{N}, \exists C > 0 : \forall \varphi \in \mathcal{C}_K^{\infty}(\Omega) : |\langle T_n, \varphi \rangle| \leq C \max_{|\alpha| \leq p} \sup_{x \in K} |\partial^{\alpha} \varphi|$$

En particulier, si
$$\forall \varphi \in \mathcal{C}_c^{\infty}(\Omega), (T_n, \varphi)$$
 CV, alors : $\exists T \in D'(\Omega) : T_n \xrightarrow{D'(\Omega)} T$.

Par conséquent, aux sens de continuité respectifs, $\langle \cdot, \cdot \rangle$ est continue.

Définition 8: Dérivation dans $D'(\Omega)$.

On définit
$$\langle \partial^{\alpha} T, \varphi \rangle := (-1)^{|\alpha|} \langle T, \partial^{\alpha} \varphi \rangle$$

Pour f suffisamment régulière pour définir $\partial^{\alpha} f$, on a la compatibilité : $\partial^{\alpha} T_f = T_{\partial^{\alpha} f}$

Si jamais $T \in D'(I \subset \mathbb{R})$ est de dérivée nulle, elle est constante (au sens des distributions).

L'opérateur ∂^{α} est continu sur $D'(\Omega)$

Définition 9: Produit externe $C^{\infty}(\Omega) - D'(\Omega)$.

Soit
$$a \in \mathcal{C}^{\infty}(\Omega), T \in D'(\Omega)$$
. Alors $aT \in D'(\Omega)$, et est défini par $\langle aT, \varphi \rangle := \langle T, a\varphi \rangle$.

L'opérateur de multiplication par a est continu sur $D'(\Omega)$.

Théorème 7: Recollement de Distributions

Soit
$$\omega$$
 un ouvert de Ω . On définit $T|_{\omega} := \begin{cases} \mathcal{C}_c^{\infty}(\omega) & \longrightarrow & \mathbb{R} \\ \varphi & \longmapsto & \langle T, \varphi \rangle \end{cases} \in D'(\omega)$. Si $\Omega = \bigcup_{i \in I} \omega_i$ et que $T_i \in D'(\omega_i)$, avec $\forall i \neq j : \omega_i \cap \omega_j = \varnothing$, $T_i|_{\omega_i \cap \omega_j} = T_j|_{\omega_i \cap \omega_j}$

Alors
$$\exists ! T \in D'(\Omega) : \forall i \in I, T|_{\omega_i} = T_i$$

Théorème 8: Changement de Variables.

On s'inspire de la formule suivante pour $f \in L^1_{loc}(\Omega_1)$, $\varphi \in \mathcal{C}^{\infty}_c(\Omega_2)$ et χ un \mathcal{C}^1 -difféomorphisme de Ω_1 dans Ω_2 :

$$\int_{\Omega_1} f(\chi(x)) \varphi(x) dx = \int_{\Omega_2} f(y) \varphi(\chi^{-1}(y)) |\det J_{\chi}(\chi^{-1}(y))|^{-1} dy$$

On définit $\langle T \circ \chi, \varphi \rangle := \langle T \chi_*(\varphi) \rangle$, où $\chi_*(\varphi)(y) = \varphi(\chi^{-1}(y)) \mid \det J_\chi(\chi^{-1}(y)) \mid^{-1}$

Cela définit bien une distribution, et $T \mapsto T \circ \chi$ est continue sur $D'(\Omega)$.

Théorème 9: Dérivation sous le crochet de dualité.

Soit $T \in D'(\Omega), \varphi \in \mathcal{C}^{\infty}_{K \times \mathbb{R}^n}(\Omega \times \mathbb{R}^n)$.

Alors
$$y \longmapsto \langle T, \varphi(\cdot, y) \rangle \in \mathcal{C}^{\infty}(\mathbb{R})$$
, avec $\partial_{\eta}^{\alpha} \langle T, \varphi(\cdot, y) \rangle = \langle T, \partial_{\eta}^{\alpha} \varphi(\cdot, y) \rangle$

Théorème 10: Intégration sous le crochet de dualité.

Soit
$$T \in D'(\Omega)$$
, $\varphi \in \mathcal{C}_c^{\infty}(\Omega \times \mathbb{R}^n)$. On a $\int_{\mathbb{R}^n} \langle T, \varphi(\cdot, y) \rangle dy = \left\langle T, \int_{\mathbb{R}^n} \varphi(\cdot, y) dy \right\rangle$

3 Supports de Distributions, Convolution

Définition 10: Support d'une Distribution.

Soit $T \in D'(\Omega)$. On définit son support comme le plus petit fermé $F \subset \Omega$ tel que $T|_{\Omega \setminus F} = 0$.

Autrement dit, supp
$$T = \bigcap_{F \text{ ferm\'e: } T|_{\Omega \setminus F} = 0} F$$

- $-T|_{\Omega \setminus \text{supp } T} = 0$
- $\forall \varphi \in \mathcal{C}_c^{\infty}(\Omega) : \text{supp } \varphi \cap \text{supp } T = \emptyset, \quad \langle T, \varphi \rangle = 0$
- supp $(T+S) \subset \text{supp } T + \text{supp } S$
- Pour $a \in \mathcal{C}^{\infty}(\Omega)$, supp $(aT) \subset \text{supp } a \cap \text{supp } T$
- $-\sup (\partial^{\alpha} T) \subset T$

Attention, si $\varphi = 0$ sur supp T, on n'a pas $\langle T, \varphi \rangle = 0$, il faut que φ soit nulle sur un voisinage ouvert de supp T par exemple.

Définition 11: Distributions à Support Compact.

Si $T \in D'(\Omega)$ avec supp T compact, on note $T \in \varepsilon'(\Omega)$.

On peut alors définir $\langle T, \psi \rangle$ pour $\psi \in \mathcal{C}^{\infty}(\Omega)$, par la valeur $\langle T, \chi \psi \rangle$, qui est indépendante de $\chi \in \mathcal{C}^{\infty}_{c}(\Omega)$ telle que $\chi|_{V} = 1$, où V est un ouvert contenant supp T. On peut également prolonger T par 0 hors de son support pour la définir sur \mathbb{R}^{N} , mais cela est sans intérêt pratique.

Ainsi un élément $T \in \varepsilon'(\Omega)$ peut être vu comme une forme linéaire, continue au sens du théorème suivant.

Théorème 11: Continuité au sens $\varepsilon'(\Omega)$.

- Tout $T \in \varepsilon'(\Omega)$ est d'ordre fini.
- $-- \operatorname{Soit} T \in \varepsilon'(\Omega). \ \exists K \in \Omega, \exists p \in \mathbb{N}, \exists C > 0, \forall \psi \in \mathcal{C}^{\infty}(\Omega): \quad |\langle T, \psi \rangle| \leq C \max_{|\alpha| \leq p} \sup_{x \in K} |\partial^{\alpha} \psi|$
- Si $\psi_n \xrightarrow{\mathcal{C}^{\infty}(\Omega)} \psi$, alors $\langle T, \psi_n \rangle \longrightarrow \langle T, \psi \rangle$

Définition 12: Convolution $C_c^{\infty}(\Omega) * D'(\Omega)$. Soit $T \in D'(\mathbb{R}^N), \varphi \in C_c^{\infty}(\mathbb{R}^N)$. On définit $T * \varphi(x) := \langle T, \varphi(x - \cdot) \rangle$

On a supp $(T * \varphi) \subset \text{supp } T + \text{supp } \varphi$.

De plus, $T * \varphi \in \mathcal{C}^{\infty}(\mathbb{R}^N)$, avec $\partial^{\alpha}(T * \varphi) = (\partial^{\alpha}T) * \varphi = T * (\partial^{\alpha}\varphi)$

Si (ζ_{ε}) est régularisante, $T_{\varepsilon} := T * \zeta_{\varepsilon} \xrightarrow{D'(\Omega)} T$, ainsi $\mathcal{C}^{\infty}(\Omega)$ est dense dans $D'(\Omega)$. On peut également montrer que c'est le cas de $\mathcal{C}_c^{\infty}(\Omega)$.

Si
$$T_n \xrightarrow{D'(\Omega)} T$$
 et $\varphi \in \mathcal{C}_c^{\infty}(\Omega)$, alors $T_n * \varphi \xrightarrow{\mathcal{C}^{\infty}(\Omega)} T * \varphi$

Définition 13: Convolution $\varepsilon'(\Omega) * \mathcal{C}^{\infty}(\Omega)$.

Pour $S \in \varepsilon'(\Omega)$ et $\psi \in C^{\infty}(\Omega)$: $S * \psi(x) := \langle S, \psi(x - \cdot) \rangle$ vérifie les mêmes propriétés.

Définition 14: Produit Tensoriel de Distributions.

Soit $T \in D'(\Omega_1)$, $S \in D'(\Omega_2)$. Pour $\varphi \in \mathcal{C}_c^{\infty}(\Omega_1 \times \Omega_2)$, on définit :

$$\langle S \otimes T, \varphi \rangle := \langle S, x_1 \mapsto \langle T, \varphi(x_1, \cdot) \rangle \rangle = \langle T, x_2 \mapsto \langle S, \varphi(\cdot, x_2) \rangle \rangle$$

Définition 15: Convolution $D'(\Omega) * \varepsilon'(\Omega)$.

Pour $T \in D'(\mathbb{R}^N)$, on note $\widetilde{T} := T \circ (-I)$, définie par $\langle \widetilde{T}, \varphi \rangle = \langle T, \varphi(-\cdot) \rangle$.

Pour
$$T \in D'(\mathbb{R}^N)$$
, $S \in \varepsilon'(\mathbb{R}^N)$, $T * S \in D'(\mathbb{R}^N)$ tq $\langle T * S, \varphi \rangle := \langle T, \widetilde{S} * \varphi \rangle = \langle S, \widetilde{T} * \varphi \rangle$

Remarquons que $\widetilde{S} * \varphi$ est bien dans $\mathcal{C}^{\infty}(\Omega)$ comme convolution $\varepsilon'(\mathbb{R}^N) * \mathcal{C}^{\infty}(\mathbb{R}^N)$, puis à support compact car supp $(\tilde{S}*\varphi) \subset \text{supp } \tilde{S} + \text{supp } \varphi$. Comme $D'(\Omega)*\mathcal{C}_c^{\infty}(\Omega), \tilde{T}*\varphi \in \mathcal{C}^{\infty}(\Omega)$.

Un exemple important est $T * \delta_a = T \circ \tau_{-a}$, avec $\tau_a(x) := x + a$

On a T * S = S * T et pour $R \in \varepsilon'(\Omega), R * (S * T) = (R * S) * T$

On a $\partial^{\alpha}(T*S) = \partial^{\alpha}T*S = T*(\partial^{\alpha}S)$

Si $T_n \xrightarrow{D'(\mathbb{R}^N)} T$ et $S_n \xrightarrow{\varepsilon'(\mathbb{R}^N)} S$ avec $\forall n \in \mathbb{N}$, supp $S_n \subset K \subseteq \mathbb{R}^N$, Alors $T_n * S_n \xrightarrow{D'(\mathbb{R}^N)} T * S_$

Distributions sur la Classe de Schwartz, Transformée de 4 **Fourier**

Transformée de Fourier sur $\mathcal{S}(\mathbb{R}^N)$ 4.1

Définition 16: Classe de Schwartz.

$$\mathcal{S}(\mathbb{R}^N) \text{ est l'ensemble des } \phi \in \mathcal{C}^\infty(\mathbb{R}^N) \text{ telles que } \forall \alpha, \beta \in \mathbb{N}^N, \quad \sup_{x \in \mathbb{R}^N} |x^\alpha \partial^\beta \phi(x)| < +\infty$$

$$\mathcal{S}(\mathbb{R}^N)$$
 est muni de la topologie associée aux normes $\mathcal{N}_p(\phi) := \sum_{|\alpha|, |\beta| \le p} \sup_{x \in \mathbb{R}^N} |x^{\alpha} \partial^{\beta} \phi(x)|$

On dit que
$$\phi_n \xrightarrow{\mathcal{S}(\mathbb{R}^N)} \phi$$
 lorsque $\forall p \in \mathbb{N}, \quad \mathcal{N}_p(\phi_n - \phi) \longrightarrow 0$

- $\mathcal{C}_c^{\infty}(\mathbb{R}^N)$ est dense dans $\mathcal{S}(\mathbb{R}^N)$ pour la topologie de $\mathcal{S}(\mathbb{R}^N)$.
- $\phi \in \mathcal{S}(\mathbb{R}^N) \Longrightarrow \partial^{\alpha} \phi \in \mathcal{S}(\mathbb{R}^N)$
- Si $f \in \mathcal{C}^{\infty}(\mathbb{R}^N)$ est à croissance polynomiale : $f(x) = O(\|x\|^n)$, alors $f\phi \in \mathcal{S}(\mathbb{R}^N)$.
- Soit $q \ge 1$. $\exists C > 0 : \forall \phi \in \mathcal{S}(\mathbb{R}^N), \forall \alpha, \beta \in \mathbb{N}^N \text{ avec } p := \max(|\alpha|, |\beta|) :$

$$||x^{\alpha}\partial^{\beta}\phi||_{L^{q}} \le C\mathcal{N}_{p}(\phi)^{1-\frac{1}{q}}\mathcal{N}_{p+N+1}(\phi)^{\frac{1}{q}}$$

— Pour $S \in \varepsilon'(\mathbb{R}^N)$, $S * \phi \in \mathcal{S}(\mathbb{R}^N)$.

Théorème 12: Transformée de Fourier dans $\mathcal{S}(\mathbb{R}^N)$.

$$- \mathcal{F}\phi(\xi) := \int_{\mathbb{R}^N} \phi(x) e^{-ix.\xi} dx \in \mathcal{C}^{\infty}(\mathbb{R}^N)$$

$$--\partial_{\xi_i}\mathcal{F}\phi = \mathcal{F}(-ix_j\phi), \quad \mathcal{F}(\partial_{\xi_i}\phi) = i\xi_j\mathcal{F}\phi$$

$$\mathcal{F}(\phi \circ \tau_a) = e^{-i\xi \cdot a} \mathcal{F}\phi, \quad \mathcal{F}(e^{ia \cdot x}\phi) = \mathcal{F}(\phi(\xi - a))$$

—
$$\forall p \in \mathbb{N}. \ \exists C_p > 0: \forall \phi \in \mathcal{S}(\mathbb{R}^N), \ \mathcal{N}_p(\mathcal{F}\phi) \leq C_p \mathcal{N}_{p+N+1}(\phi), \ \text{ainsi} \ \mathcal{F}(\mathcal{S}(\mathbb{R}^N)) \subset \mathcal{S}(\mathbb{R}^N)$$

$$\mathcal{S}$$
 est un automorphisme de S , d'inverse $\mathcal{F}^{-1}\psi(x) = \frac{1}{(2\pi)^N} \int_{\mathbb{R}^N} \psi(\xi) e^{ix.\xi} d\xi$

Distributions Tempérées, Transformée de Fourier sur $\mathcal{S}'(\mathbb{R}^N)$ 4.2

Définition 17: Distributions Tempérées.

Une distribution tempérée est une forme linéaire continue sur $\mathcal{S}(\mathbb{R}^N)$, avec continuité au sens suivant:

$$T \in \mathcal{S}'(\mathbb{R}^N) \text{ si } \exists C > 0, p \in \mathbb{N} : \forall \phi \in \mathcal{S}(\mathbb{R}^N), \quad |\langle T, \phi \rangle| \leq C \mathcal{N}_p(\phi)$$

On a
$$\varepsilon'(\mathbb{R}^N) \subset \mathcal{S}'(\mathbb{R}^N) \subset D'(\mathbb{R}^N)$$
.

Tout fonction $f \in \mathcal{C}^0(\mathbb{R}^N)$ à croissance polynomiale définit une distribution $T_f \in \mathcal{S}'(\mathbb{R}^N)$

 $\mathcal{S}'(\mathbb{R}^N)$ est stable par ∂^{α} , et par multiplication par toute fonction $f \in \mathcal{C}^{\infty}(\mathbb{R}^N)$ pour laquelle tous les $\partial^{\alpha} f$ sont à croissance polynomiale.

Tout $T \in \mathcal{S}'(\mathbb{R}^N)$ s'écrit de la forme $\partial^{\alpha}((1+||x||^2)^n f))$ avec $f \in \mathcal{C}^0(\mathbb{R}^N)$ bornée.

On dit que
$$T_n \xrightarrow{\mathcal{S}'(\mathbb{R}^N)} T$$
 lorsque $\forall \phi \in \mathcal{S}(\mathbb{R}^N), \quad \langle T_n, \phi \rangle \longrightarrow \langle T, \phi \rangle$

Au sens de la topologie de $\mathcal{S}'(\mathbb{R}^N)$, la dérivation ∂^{α} et la multiplication par $f \in \mathcal{C}^{\infty}(\Omega)$ avec les $\partial^{\alpha} f$ à croissance polynomiale sont continues.

Théorème 13: Convolution
$$\varepsilon'(\mathbb{R}^N) * \mathcal{S}'(\mathbb{R}^N)$$
.
Pour $T \in \varepsilon'(\mathbb{R}^N)$, $S \in \mathcal{S}'(\mathbb{R}^N)$, on a $T * S \in \mathcal{S}'(\mathbb{R}^N)$

Théorème 14: Transformée de Fourier sur $\mathcal{S}'(\mathbb{R}^N)$.

On définit $\mathcal{F}T \in \mathcal{S}'(\mathbb{R}^N)$ par la formule $\langle \mathcal{F}T, \phi \rangle := \langle T, \mathcal{F}\phi \rangle$

$$- \mathcal{F}(\partial_{x_k}T) = i\xi_k \mathcal{F}T, \quad \mathcal{F}(x_kT) = i\partial_{\xi_k} \mathcal{F}T$$

$$\mathcal{F}(T \circ \tau_a) = e^{ia.\xi} \mathcal{F}T, \quad \mathcal{F}(e^{-ia.x}T) = \mathcal{F}T \circ \tau_a)$$

—
$$\mathcal{F}$$
 est continue comme opérateur $\mathcal{S}'(\mathbb{R}^N) \longrightarrow \mathcal{S}'(\mathbb{R}^N)$

Pour $f \in L^p(\mathbb{R}^N)$, la distribution T_f définie par $\langle T_f, \phi \rangle = \int_{\mathbb{R}^N} f \phi$ est dans $\mathcal{S}'(\mathbb{R}^N)$, ainsi on peut définir $\mathcal{F}f := \mathcal{F}T_f$.

Cette définition coïncide avec la définition
$$\hat{f}(\xi) = \int_{\mathbb{R}^N} f(x)e^{-ix.\xi} dx$$
, car on a $\mathcal{F}T_f = T_{\hat{f}}$.

Théorème 15: Caractérisation des Transformées de Fourier sur $\varepsilon'(\mathbb{R})$.

Soit $T \in \varepsilon'(\mathbb{R})$. Sa transformée de fourier $\mathcal{F}T \in \mathcal{S}'(\mathbb{R})$ est définie par la fonction $f: \xi \longmapsto$ $\langle T, e_{-\xi} \rangle$, avec $e_{-\xi}(x) = e^{-i\xi \cdot x}$.

 $f \in \mathcal{C}^{\infty}(\mathbb{R})$, toutes ses dérivées sont à croissance polynomiales, et elle se prolonge par $z = (\xi + i\eta) \longmapsto \langle T, e_{-(\xi + i\eta)} \rangle$ holomorphe sur \mathbb{C} .

 $\mathcal{F}\delta_a$ est la distribution tempérée associée à $\xi \longmapsto \langle \delta_a, e_{-\xi} \rangle = e^{-i\xi \cdot a}$

Théorème 16: Inversion de Fourier dans $\mathcal{S}'(\mathbb{R}^N)$.

 \mathcal{F} est un automorphisme de $\mathcal{S}'(\mathbb{R}^N)$, d'inverse $\mathcal{F}^{-1}T=(2\pi)^{-N}\widetilde{\mathcal{F}}T$

où
$$\widetilde{S} = S \circ (-I),$$
 ie $\langle \widetilde{S}, \phi \rangle = \langle S, \phi(-\cdot) \rangle$

Théorème 17: Transformée de Fourier et Convolution $\varepsilon'(\mathbb{R}^N) * \mathcal{S}'(\mathbb{R}^N)$. Soit $S \in \mathcal{S}'(\mathbb{R}^N), S \in \varepsilon'(\mathbb{R}^N)$. Alors:

- $\mathcal{F}T \in \mathcal{C}^{\infty}(\mathbb{R}^N)$ avec toutes ses dérivées à croissance polynomiale
- $-\mathcal{F}S \in \mathcal{S}'(\mathbb{R}^N)$
- Le produit $\mathcal{F}T.\mathcal{F}S$ est ainsi bien défini dans $\mathcal{S}'(\mathbb{R}^N)$, et l'on a $\mathcal{F}(T*S)=\mathcal{F}T.\mathcal{F}S$

Théorème 18: Théorème de Plancherel.

$$\mathcal{F} \text{ induit un isomorphisme } \left\{ \begin{array}{ccc} L^2(\mathbb{R}^N) & \longrightarrow & L^2(\mathbb{R}^N) \\ f & \longmapsto & \hat{f} \end{array} \right., \text{ avec } (f|g)_{L^2} = (2\pi^N)(\mathcal{F}f|\mathcal{F}g)_{L^2}$$

Théorème 19: Formule de Poisson.

La distribution
$$T := \sum_{k \in \mathbb{Z}} \delta_k$$
 est dans $\mathcal{S}'(\mathbb{R})$, avec $\mathcal{F}T = 2\pi \sum_{k \in \mathbb{Z}} \delta_{2k\pi}$

En particulier, pour $\phi \in \mathcal{S}(\mathbb{R}), x \in \mathbb{R}$, en appliquant l'identité à $\phi(x+\cdot)$, on a

$$\sum_{k \in \mathbb{Z}} \hat{\phi}(k)e^{ik.x} = 2\pi \sum_{k \in \mathbb{Z}} \phi(x + 2k\pi)$$

Définition 18: Distribution Périodiques, Séries de Fourier.

 $T \in D'(\mathbb{R})$ est périodique de période a si $T \circ \tau_a = T$. On rappelle $\langle T \circ \tau_a, \varphi \rangle = \langle T, \varphi(\cdot - a) \rangle$

Tout distribution périodique est tempérée.

Soit
$$u \in D'(\mathbb{R})$$
 1-périodique, et $\phi \in \mathcal{C}_c^{\infty}(\mathbb{R})$ telle que $\sum_{k \in \mathbb{Z}} \varphi(\cdot + k) = 1$.

Alors
$$\mathcal{F}u = 2\pi \sum_{k \in \mathbb{Z}} c_k \delta_{2k\pi}$$
, avec $c_k = \mathcal{F}(\varphi u)(2\pi k)$.

En particulier, si $u \in \mathcal{C}^0(\mathbb{R})$ et est 1-périodique, $c_k = \hat{u}(2k\pi)$ sont ses coefficients de Fourier.

Dans le même cadre, on a au sens des distributions $u(x) = \sum_{k \in \mathbb{Z}} c_k e^{2i\pi kx}$ par \mathcal{F}^{-1} .