Feladat

Valósítsuk meg a diagonális mátrixtípust (amelynek négyzetes mátrixai csak a főátlójukban tartalmazhatnak nullától különböző számot)! Ilyenkor elegendő csak a főátló elemeit reprezentálni egy sorozatban. Implementáljuk a mátrix i-edik sorának j-edik elemét megváltoztató illetve azt lekérdező műveletet, valamint az összeadás és szorzás műveleteket! Ne feledkezzünk meg a megfelelő beolvasó és kiíró műveletekről sem!

Diagonális mátrix típus

A feladat lényege egy felhasználói típusnak a diagonális mátrix típusnak a megvalósítása.

Típusérték-halmaz¹

Olyan számokat (ebben az esetben egész számokat: \mathbb{Z}) tartalmazó $n \times n$ -es $(n \in \mathbb{N})$ négyzetes mátrixokkal akarunk dolgozni, amelyek csak a főátlójukban tartalmazhatnak nullától különböző elemeket. Az $n \in \mathbb{N}$ ennek a típusnak egy paramétere, amely a típusérték-halmaz mátrixainak méretét határozza meg.

Formálisan: $Diag(n) = \{ a \in \mathbb{Z}^{n \times n} \mid \forall i,j \in [1..n]: i \neq j \rightarrow a[i,j] = 0 \}$

Típus-műveletek²

1. Lekérdezés

A mátrix *i*-edik sorának *j*-edik pozícióján $(i,j \in [1..n])$ álló érték kiolvasása: e:=a[i,j].

Formálisan: $A: Diag(n) \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ $a \quad i \quad j \quad e$ $Q: (a=a' \land i=i' \land j=j' \land i,j \in [1..n])$ $R: (Q \land e=a[i,j])$

Megjegyezzük, hogy ez a művelet csak i=j esetén igényel tényleges tevékenységet, hiszen egyébként a visszaadott elem nulla.

2. Felülírás

A mátrix *i*-edik sorának *j*-edik pozíciójára $(i,j \in [1..n])$ új érték beírása: a[i,j] := e. A főátlón kívüli elemeket nem szabad felülírni, azaz i=j.

Formálisan: $A: Diag(n) \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ a i j e $Q: (e=e' \land a=a' \land i=i' \land j=j' \land i,j \in [1..n] \land i=j)$ $R: (e=e' \land i=i' \land j=j' \land a[i,j]=e \land \forall k,l \in [1..n]: (k \neq i \lor l \neq j) \rightarrow a[k,l]=a'[k,l])$

Megjegyezzük, hogy ez a művelet csak i=j esetén igényel tényleges tevékenységet; $i\neq j$ esetén hibás, amennyiben egy nemnulla értéket akarunk a mátrixba tenni.

¹ A típusérték-halmazt kétféleképpen is le lehet írni: szövegesen és formálisan. Elég csak az egyik formát használni.

² A típusműveletek leírására is kétféle definíciót használok: egy informálist és egy formálist. Elég csak az egyik formát használni.

3. Összeadás

Két mátrix összeadása: c:=a+b. Az összeadásban szereplő mátrixok azonos méretűek.

Formálisan:
$$A: Diag(n) \times Diag(n) \times Diag(n)$$

 a b c
 $Q: (a=a' \land b=b')$
 $R=(Q \land \forall i,j \in [1..n]: c[i,j]=a[i,j]+b[i,j])$

Diagonális mátrixok esetén a fenti művelet jóval egyszerűbben is megfogalmazható:

$$\forall i \in [1..n]$$
: $c[i,i] = a[i,i] + b[i,i]$ és $\forall i,j \in [1..n]$: $i \neq j \rightarrow c[i,j] = 0$.

4. Szorzás

Két mátrix összeadása: c:=a*b. Az összeadásban szereplő mátrixok azonos méretűek.

Formálisan:
$$A: Diag(n) \times Diag(n) \times Diag(n)$$

 $a \qquad b \qquad c$
 $Q: (a=a' \land b=b')$
 $R: (Q \land \forall i,j \in [1..n]: c[i,j] = \sum_{k=1..n} a[i,k] * b[k,j])$

Diagonális mátrixok esetén a fenti művelet jóval egyszerűbben is megfogalmazható:

$$\forall i \in [1..n]: c[i,i] = a[i,i] * b[i,i] \text{ és } \forall i,j \in [1..n]: i \neq j \rightarrow c[i,j] = 0.$$

Reprezentáció

Egy $n \times n$ -es diagonális mátrixnak csak a főátlóját kell ábrázolni.

$$a_{11} \ 0 \ 0 \ \dots \ 0$$
 $0 \ a_{22} \ 0 \ \dots \ 0$
 $a = \ 0 \ 0 \ a_{33} \ \dots \ 0$
 $0 \ 0 \ 0 \ \dots \ a_{nn}$
 $\longleftrightarrow v = \langle a_{11} \ a_{22} \ a_{33} \ a_{nn} \rangle$

Ehhez egy *0*-tól *n-1*-ig indexelt egydimenziós tömbre (*v*) van szükségünk. Ennek segítségével a diagonális mátrix bármelyik elemét meghatározhatjuk az alábbi képlet alapján:

$$a[i,j] = \begin{cases} v[i] & ha & i = j \\ 0 & ha & i \neq j \end{cases}$$

Implementáció³

1. Lekérdezés

A v tömbbel ábrázolt a mátrix i-edik sorának j-edik elemét visszaadó e:=a[i,j] értékadás az alábbi programmal implementálható feltéve, hogy $1 \le i \le n$, ahol n a mátrix mérete:

	i=j	
e:=v[i-1]	e:=	0

2. Felülírás

A v tömbbel ábrázolt a mátrix i-edik sorának j-edik elemét megváltoztató a[i,j]:=e értékadás az alábbi programmal implementálható feltéve, hogy $1 \le i \le n$, ahol n a mátrix mérete.

	i=j	
v[<i>i</i> -1]:= <i>e</i>	SKIP	•

3. Összeadás

A v tömbbel ábrázolt a mátrix és a t tömbbel ábrázolt b mátrix összege az u tömbbel ábrázolt c mátrixba kerül, ha az alábbi programot végrehajtjuk. A végrehajtás előtt ellenőrizni kell, hogy mindhárom mátrix, pontosabban az őket reprezentáló tömb azonos méretű-e.

$$\forall i \in [0..n-1]: u[i] := v[i] + t[i]$$

4. Szorzás

A v tömbbel ábrázolt a mátrix és a t tömbbel ábrázolt b mátrix szorzata az u tömbbel ábrázolt c mátrixba kerül, ha az alábbi programot végrehajtjuk. A végrehajtás előtt ellenőrizni kell, hogy mindhárom mátrix, pontosabban az őket reprezentáló tömb azonos méretű-e.

$$\forall i \in [0..n-1]: u[i]:=v[i]*t[i]$$

³ A műveletek implementálásához mindig egy programot kell megadni (de nem feltétlenül struktogram alakban).

Osztály

A diagonális mátrixok típusát egy osztály segítségével valósítjuk. A konstruktoron keresztül állítható be a mátrix mérete. A műveleteknél majd ellenőrizni kell, hogy csak azonos méretű mátrixokat lehet összeadni, szorozni, egyébként dobjunk kivételt.

A főátlóbeli elemek tárolására szolgál tömböt ábrázolhatjuk vector<int>-ként (C, D, és E szakirány), de dinamikusan lefoglalt tömbként is (A és B szakirány). Az utóbbi esetben a konstruktor foglalja le a diagonális elemek számára a dinamikus tömböt, a destruktor végzi a felszabadítást, és szükség lesz az értékadás operátor és a másoló konstruktor felüldefiniálására.

A mátrix adott koordinátájú elemének kiolvasására illetve felülírására a () operátor kétféle felüldefiniálását használjuk. Az összeadás, a szorzás műveleteket külső barát függvényként felüldefiniált változataival valósítjuk meg.

Kiegészítjük még az osztályt a mátrix kiírását és a beolvasását végző metódusokkal, amelyek a kiíró és beolvasó operátorok külső barát függvényként felüldefiniált változataival valósítunk meg.

A hibakezelésre az első esetben három, a második esetben kettő kivételt definiálunk. Az OVERINDEXED a helytelenül megadott sor és oszlopindexek esetén váltódik ki a mátrix elemeit lekérdező és felülíró műveletekben. A NULLPART kivétel a főátlón kívüli elemek felülírásakor aktivizálódik. A DIFFERENT kivétel a különböző méretű mátrixok esetén váltódik ki az értékadás, az összeadás és a szorzás műveletekben.

Tesztelési terv

Megvalósított műveletek tesztelése (fekete doboz tesztelés)

- 1) Különféle méretű mátrixok létrehozása, feltöltése és kiírása.
 - a) 0, 1, 2, 5 dimenziójú mátrix
- 2) Mátrix adott pozíciójú értékének lekérdezése és megváltoztatása.
 - a) Diagonálisra eső elem lekérdezése és megváltoztatása
 - b) Diagonálison kívüli elem lekérdezése és megváltoztatása
 - c) Illegális index megadása, 0 dimenziós mátrix indexelése
- 3) A másoló konsruktor kipróbálása.
 - a) A b mátrix létrehozása az a mátrix mintájára, majd a két mátrix tartalmának összehasonlítása, majd az egyik mátrix megváltoztatása és a két mátrix tartalmának összehasonlítása.
- 4) Az értékadás operátor kipróbálása.
 - a) A *b=a* értékadás végrehajtása az *a* és *b* mátrixokra (az *a* és *b* mérete azonos illetve különbözik: egyiknek illetve másik a nagyobb), majd a két mátrix tartalmának összehasonlítása, majd az egyik mátrix megváltoztatása és a két mátrix tartalmának összehasonlítása.
 - b) A c=b=a értékadás végrehajtása az a, b és c mátrixokra (ezek mérete lehet különböző), majd a két mátrix tartalmának összehasonlítása, majd az egyik mátrix megváltoztatása és a mátrixok tartalmának összehasonlítása.
 - c) Az a=a értékadás végrehajtása az a mátrixra, majd az a mátrix kiírása.
- 5) A *c*:=*a*+*b* mátrixösszeadás kipróbálása.
 - a) Eltérő méretű mátrixokkal (az a és b mérete különbözik, a c és a mérete különbözik)
 - b) Kommutatívitás ellenőrzése (a + b == b + a)
 - c) Asszociatívitás ellenőrzése (a + b + c == (a + b) + c == a + (b + c))
 - d) Null elem vizsgálata (a + 0 == a, ahol 0 a null mátrix)
- 6) A c:=a*b mátrixszorzás kipróbálása.
 - a) Eltérő méretű mátrixokkal. (az a és b mérete különbözik, a c és a mérete különbözik)
 - b) Kommutatívitás ellenőrzése (a * b == b * a)
 - c) Asszociatívitás ellenőrzése (a * b * c == (a * b) * c == a * (b * c))
 - d) Null elem vizsgálata (a * 0 == 0, ahol 0 a null mátrix)
 - e) Egység elem vizsgálata (a * 1 == a, ahol 1 az egység mátrix)

Megj: A beolvasó és kiíró operátorok teszteléséhez elég, hogy ezeket a fenti esetek tesztelésénél intenzíven használjuk.

Tesztesetek a kód alapján (fehér doboz tesztelés)

- 1. Extrém méretű (-1, 0, 1, 1000) mátrix létrehozása.
- 2. Kivételek generálása és elkapása.