HW8

范潇 2254298

2024年4月22日

题目 1. (6.5.2) 设 W_1 与 W_2 分别是齐次线性方程组 $x_1 + x_2 + \cdots + x_n = 0$ 与 $x_1 = x_2 = \cdots = x_n$ 的解空间。证明 $\mathbb{R}^n = W_1 \oplus W_2$ 解答. 显然 $W_1 + W_2 \subseteq \mathbb{R}^n$ 。任取 $\mathbf{x} = (x_1, \cdots, x_n) \in \mathbb{R}^n$,有

$$\mathbf{x} = \bar{\mathbf{x}} + \mathbf{x}'$$

其中 $\bar{\mathbf{x}} = (\bar{x}, \dots, \bar{x}) \in W_2, \bar{x} = \frac{1}{n} \sum_i x_i, \mathbf{x}' = (x_1 - \bar{x}, \dots, x_n - \bar{x}) \in W_1.$ 所以 $\mathbb{R}^n \subseteq W_1 + W_2$,从而 $\mathbb{R}^n = W_1 + W_2$ 。 任取 $\mathbf{x} = (x_1, \dots, x_n) \in W_1 \cap W_2$,则

$$x_1 + x_2 + \dots + x_n = 0$$

$$x_1 = x_2 = \dots = x_n$$

易得

$$x_1 = x_2 = \dots = x_n = 0$$

即 $W_1 \cap W_2 = \{\mathbf{0}\}$ 。因此和为直和,从而 $\mathbb{R}^n = W_1 \oplus W_2$ 。