

Определение цифрового портрета аудитории в мобильной среде

Проблематика

Глобальные игроки начинают ограничивать доступ к идентификатору мобильного устройства, а значит — и данным аудитории.

Необходимо создать решение, которое позволило бы максимально точно определить профиль аудитории в мобильной среде на основе различных косвенных и исторических аудиторных данных. Snap, Facebook, Twitter u
YouTube потеряли \$10 млрд
выручки после изменения
настроек приватности на
iPhone"

Financial Times, 31 октября 2021

Решение

Создана и обучена **модель машинного обучения**, которая не используя идентификатор устройства, на основании данных строки bundle приложения, времени и региона делает предсказание, к какому сегменту отнести пользователя.

Для демонстрации работы модели создан **веб-интерфейс**, который позволяет интерпретировать, на основании каких признаков пользователь был отнесен к тому или иному сегменту.

Модель классификации. Метрика

AUC 0.89

на тестовой выборке, очень близок к валидации

Модель классификации. Признаки

Признаки, сгенерированные из данных, которые дали хороший сигнал для модели:

- hour, weekday час и день недели использования приложения, может отражать разную занятость сегментов (например, кто-то на работе, кто-то учится)
- **nexters, art, water, color** признаки tf-idf из bundle, может отражать, что определенные сегменты выбирают определенный тип приложения или игры определенного разработчика
- salary_rank место города в топ 100 городов России по зарплате

Признаки tf-idf из bundle по сегментам

Ж 25-34,35-41

М Пиво 25-34,35-42

Особенности данных для обучения

Возникла гипотеза, что высокий скор связан со спецификой конкретной выгрузки данных для обучения (такая же специфика есть и у предоставленных тестовых данных), чтобы при практическом применении не случилось снижение качества модели, этот признак лучше не использовать, без него AUC 0.78. Перепроверено на тестовом наборе данных.

Модель классификации. Метрика

Без признака дня, дающего неоправданно большой скор

AUC 0.78

на тестовой выборке, совпадает с валидацией

Модель классификации. Признаки

Предсказанные сегменты (test.csv)

Демо модели классификации

https://clck.ru/ZAfvj

Модель кластеризации

KMeans, 11 кластеров на признаках hour, dayofweek, day, oblast

Результат кластеризации показывает корреляцию Phi_K > 0.39 с размеченными сегментами.

Есть смысл исследовать дальше и попробовать использовать результаты кластеризации как дополнительный признак модели классификации

* Phi_K is a new and practical correlation coefficient based on several refinements to Pearson's hypothesis test of independence of two variables. https://phik.readthedocs.io/en/latest/

Визуализация кластеров и сегментов

Процент охвата по сегментам

Процент каждого сегмента в				выявленных кластерах		
Segment	1	2	3	4	5	sum_row
cluster						
0	2.09	0.02	28.77	27.67	41.44	38898.0
1	2.25	0.00	27.51	28.54	41.70	45972.0
2	2.69	0.00	31.31	32.46	33.54	40773.0
3	2.17	0.00	29.87	31.84	36.12	36392.0
4	2.45	0.05	39.75	33.09	24.67	46486.0
5	1.28	8.96	28.35	11.75	49.66	54989.0
6	2.48	0.41	33.50	29.81	33.80	37277.0
7	1.48	9.22	28.91	11.90	48.48	50382.0
8	1.80	9.42	29.82	12.79	46.17	21705.0
9	1.46	9.53	29.75	11.46	47.80	22314.0
10	2.52	0.00	37.49	34.05	25.94	53357.0

Процентное распределение сегментов в кластерах и доли каждого кластера

Стек технологий

Программные инструменты

- Jupyter notebook, Python, Scikit-learn

Машинное обучение

- Shap (отбор значимых признаков)
- CatBoost (модель классификации)

Веб-интерфейс для демонстрации:

- Streamlit

Дальнейшее развитие

Для промышленного использование предлагается

- 1. провалидировать модель на других наборах данных (чтобы исключить переобучение на специфику выборки, на которой обучались),
- 2. попробовать ещё улучшить её качество признаками полученными unsupervised обучением (кластеризация)
- 3. "упаковать" обученную модель в веб-сервис, который будет по входящим данным возвращать предсказания.

Стек: Docker + FastApi + Catboost

Оценка реализации:

4 месяца,

1 млн 200 тыс. руб

Команда

Пермь

Data Science

Олег Черемисин

Москва

Data Science

Альбина Ахметгареева

Москва

Data Science

Дима Васькин