# Sampling

Lecture 30

#### Continuous to Discrete-Time Signal Converter



# C/D System











#### First focus

$$x_c(t) \longrightarrow x_p(t) \longrightarrow x_c(t)$$

# C/D System



$$x[n] = x_c(nT)$$

$$x_{p}(t) = x_{c}(t) p(t)$$

$$= x_{c}(t) \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$=\sum_{n=-\infty}^{n=\infty}x_c(nT)\delta(t-nT)$$

$$X_p(\omega) = \frac{1}{2\pi} X_c(\omega) * P(\omega)$$

$$P(\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s), \ \omega_s = \frac{2\pi}{T}$$

$$X_{p}(\omega) = \frac{1}{2\pi} X_{c}(\omega) * \left( \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_{s}) \right)$$

# C/D System



$$x_{p}(t) = x_{c}(t)p(t)$$

$$= x_{c}(t)\sum_{n=-\infty}^{n=\infty} \delta(t - nT)$$

$$= \sum_{n=-\infty}^{n=\infty} x_{c}(nT)\delta(t - nT)$$

$$X_{p}(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(\omega - k\omega_{s})$$

 $\omega_s$ : Sampling Frequency

# Band-Limited Signals





Case 1: 
$$\omega_s > 2\omega_N$$

$$X_{p}(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(\omega - k\omega_{s}), \quad \omega_{s} = \frac{2\pi}{T}$$



# Case 1: $\omega_s > 2\omega_N$

$$X_{p}(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(\omega - k\omega_{s}), \quad \omega_{s} = \frac{2\pi}{T}$$



Case 2: 
$$\omega_s < 2\omega_N$$

$$X_p(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(\omega - k\omega_s), \quad \omega_s = \frac{2\pi}{T}$$



# Case 2: $\omega_s < 2\omega_N$

$$X_p(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(\omega - k\omega_s), \quad \omega_s = \frac{2\pi}{T}$$



#### Nyquist Rate



Nyquist frequency  $(\omega_N)$ 

The highest frequency of a band-limited signal

Nyquist rate =  $2\omega_N$ 

# Sampling Theorem

Aliasing --Nyquist Rate

#### Nyquist Sampling Theorem



$$\omega_s > 2\omega_N$$
 Recoverable

$$\omega_s < 2\omega_N$$
 Aliasing

- Music sampled at 44.1 KHz
- Music sampled at 22 KHz
- Music sampled at 11 KHz
- Music sampled at 5.5 KHz
- Music sampled at 2.8 KHz

• Music sampled at 44.1 KHz



- Music sampled at 22 KHz
- Music sampled at 11 KHz
- Music sampled at 5.5 KHz
- Music sampled at 2.8 KHz

Music sampled at 44.1 KHz

Music sampled at 22 KHz



Music sampled at 11 KHz

Music sampled at 5.5 KHz

Music sampled at 2.8 KHz

- Music sampled at 44.1 KHz
- Music sampled at 22 KHz
- Music sampled at 11 KHz



- Music sampled at 5.5 KHz
- Music sampled at 2.8 KHz

- Music sampled at 44.1 KHz
- Music sampled at 22 KHz
- Music sampled at 11 KHz
- Music sampled at 5.5 KHz



Music sampled at 2.8 KHz

- Music sampled at 44.1 KHz
- Music sampled at 22 KHz
- Music sampled at 11 KHz
- Music sampled at 5.5 KHz
- Music sampled at 2.8 KHz











Input frequency  $X(\omega)$ 

Output frequency

The effect of aliasing is to wrap frequencies.







#### Think

A periodic signal with period 0.2 ms is sampled at 44 KHz. To what frequency, the 7 harmonic aliases?

| i) 9 KHz    | ii) 13 KHz |
|-------------|------------|
| iii) 35 KHz | iv) 19 KHz |

$$f_0 = 0 \text{ KHz}$$
  $f_0 = 0 \text{ KHz}$   
 $f_1 = 5 \text{ KHz}$   $f_1 = 5 \text{ KHz}$   
 $f_2 = 10 \text{ KHz}$   $f_2 = 10 \text{ KHz}$   
 $f_3 = 15 \text{ KHz}$   $f_3 = 15 \text{ KHz}$   
 $f_4 = 20 \text{ KHz}$   $f_4 = 20 \text{ KHz}$   
 $f_5 = 25 \text{ KHz}$   $f_5 = 44-25 \text{ KHz} = 19 \text{ KHz}$   
 $f_6 = 30 \text{ KHz}$   $f_6 = 44-30 \text{ KHz} = 14 \text{ KHz}$   
 $f_7 = 35 \text{ KHz}$   $f_7 = 44-35 \text{ KHz} = 9 \text{ KHz}$ 

 $f_n = 135 \text{ KHz}$   $f_n = 135-44 \times 3=3 \text{ KHz}$ 













#### Stroboscope



Flashes light at a desired frequency





Music sampled at 2.8 KHz (without anti-aliasing)

Music sampled at 2.8 KHz (with anti-aliasing)

Music sampled at 2.8 KHz (without anti-aliasing)



Music sampled at 2.8 KHz (with anti-aliasing)

Music sampled at 2.8 KHz (without anti-aliasing)

Music sampled at 2.8 KHz (with anti-aliasing)

