

INSITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE FISICA Y MATEMATICAS INGENIERIA MATEMATICA

Nombre: Rosas Hernández Ariel Jesús

MODELOS DISCRETOS DE PROBABILIDAD

Nombre	Parámetros	Grafica	Modelo	Esperanza	Varianza
Uniforme	X		Lanzamiento de un dado	$\frac{1}{n} \sum_{k=1}^{n} x_k$	$\frac{1}{n} \sum_{k=1}^{n} x_k^2 - E^2(X)$
Bernoulli/Binomial	p,q	BINOMIAL Normal p. at. 12 12 13 14 15 15 15 15 15 15 15 15 15	Revisar a una persona en el aeropuerto	np	npq
Geométrico	p, q (termina en el primer éxito)	Gráfica de distribución Generalizado, p-43 de	Encontrar un articulo defectuoso	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Pascal	p, q	BINOMIAL NEGATIVA (0,5:10) 0.06 0.06 0.07 0.09 0.00 0.00 0.00 0.00 0.00 0.00	Entrevista de trabajo	$\frac{n}{p}$	$\frac{n(1-p)}{p^2}$
Hipergeométrico	N, m, n	To Superposentis distribution or di 1-28 r-28	Cantidad de autos descompuestos	$n\left(\frac{m}{N}\right)$	$n\left(\frac{m}{N}\right)\left(1-\frac{m}{N}\right)\frac{N-n}{N-1}$
Poisson	λ	0.32 0.33 0.35 0.35 0.35 0.35 0.35 0.35 0.35	Líneas de espera o teoría de colas	$\mu = \lambda t$	$\sigma^2 = \lambda t$

MODELOS CONTINUOS DE PROBABILIDAD

Nombre	Parámetro s	Grafica	Modelo	Esperanza	Varianza
Uniforme	a,b	b-a a b	Probabilidad que un proceso cumpla con cierta longitud	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Triangular	a, b, c	Pro a x c b	Inventarios	$\frac{a+b+c}{3}$	$\frac{a^2+b^2+c^2-ab-ac-bc}{18}$
Exponencia I	λ ∈ [0,∞)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tiempos de Ilegada y espera	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normal	μ, σ	0.0	Calcular costos de reparación anual de alguna maquina	μ	σ^2
Gamma	α,λ	0.3	La duración de la vida útil de algún componente	$\frac{lpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$
Erlang	$n \in \mathbb{Z}^+$ $\lambda > 0$	0.4	El tiempo de espera de una llamada antes de la n-esima llamada	$\frac{n}{\lambda}$	$\frac{n}{\lambda^2}$
Weibull	$lpha,\lambda$	2 2 3 0 0 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	El tiempo de duración de un televisor	$\frac{1}{\lambda}\Gamma\left(1+\frac{1}{\alpha}\right)$	$\left(\frac{1}{\lambda}\right)^2 \left[\Gamma\left(1 + \frac{2}{\alpha}\right) - \Gamma^2\left(1 + \frac{1}{\alpha}\right)\right]$

Nombre	Parámetros	Grafica	Modelo	Esperanza	Varianza
Lognormal	$\mu \in \mathbb{R}$ $\sigma > 0$	31	Cambios de voltaje	$e^{\left(\mu+rac{\sigma^2}{2} ight)}$	$e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$
Beta	$\alpha > 0$ $\beta > 0$	24 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Modelar estadisticos de orden	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Ji cuadrada	ν <i>ε</i> Ν	64	Pruebas de hipótesis por distribuciones de frecuencias	υ	2v
t-Student	v > 0	10	Aproximar el momento de primer orden de una población	0 para $v > 1$ Indefinido en otro caso	$\frac{v}{v-2}$ para $v > 2$ } Indefinido en otro caso
F	m, n > 0	2.5	Analizar la varianza	$\frac{n}{n-2}$, $n > 2$	$\frac{2n^{2}(m+n-2)}{m(n-2)^{2}(n-4)} \cdot, n > 4$