Array Expansion

About Arrays Random Access

- Arrays are a proxy for RAM
 - RAM: "Random Access Memory" in the computer
 - Any (random) location be read/written in uniform time
- Metaphor: Well-staffed Library (staffed by pitchers!)

About Arrays Array Limits & Management

- Size is "fixed" when they're created
 - This is due to how memory is managed...

About Arrays Array Limits & Management

- Overcoming Fixed Size: Managed Arrays
 - Common approach
 - Use a class (Ex: ArrayList)
 - Methods manage an array
 - Allow array-like operations
 get() => x=A[i]; set() =>A[i]=x; append()/add(); size())
 - Separate notion of "capacity" (.length) and "currently holding" (n)

About ArraysResizing Strategies

- "Perfect size": Add exactly 1 space each time an item is added (capacity == n always)
- "Doubling": When space is needed double the capacity

Java Debugger Tips

- Running in the debugger
- Setting breakpoints
- Controlling execution: Resume, Step into, Step over, & Terminate
- The variables tab: inspecting values
- The breakpoints tab: adding counts and conditions
- Returning to the Java perspective

Credits!

The following are based on work of Prof. Buehler, Cole, and Cytron

Studio 0 Summary Empirical Estimates of Performance

- "Ticks" are a useful way to measure operations empirically
- Ticks represent the "constant time operations"
 - If placed correctly, they are proportional to time

Studio 0 Summary

Limits of Empirical Approaches

- The empirical approach requires
 - Creating code,
 - Setting up experiments,
 - How do you choose the data/experiment?
 - Running experiments,
 - Analyzing results, and
 - Possibly repeating all that if there are errors in the process

The Analytical Approach

The Analytical Approach

vs. Empirical

- No code needed!
 - Can be used to decide which version of code is worth creating!
- Easier to focus on worst case
 - Can estimate operations needed in the worst case without knowing the precise worst case

Review of Ticks

How many times do we call tick()?

```
@Override
public void run() {
  for (int i=0; i < n; ++i) {
      //
      // Statement below is deemed to take one operation
      //
      this.value = this.value + i;
      ticker.tick();
   }
}</pre>
```

Ticks Accounting

Loop counter stop value

 $\sum_{n=1}^{m-1} 1$

Loop counter start value

Ticks

Accounting & Algebra

- One tick per iteration
- Total

$$= \sum_{i=0}^{n-1} 1$$
= (n-1) - 0 + 1
= n

Accounting

Rule 1: Counting Loop Iterations

A loop from i=LO to i=HI (inclusive) runs:

HI-LO+1 times

Examples:

Loop from -2 to 5: 8 total iterations! (-2, -1, 0, 1, 2, 3, 4, 5)

Nested Loops

How many times do we call tick()?

```
@Override
public void run() {
    for (int i=0; i < n; ++i) {
        for (int j=0; j<i; ++j) {
            // Statement below is deemed to take one operation
            this.value = this.value + i;
            ticker.tick();
        }
    }
}</pre>
```

Nested Loops

How many times do we call tick()?

Nested Loops

How many times do we call tick()?

The "i ticks" part will run:

$$=\sum_{i=0}^{n-1}$$
 times

Each time it will do "i" ticks

Total ticks =
$$\sum_{i=0}^{n-1} i$$

Accounting

Rule 2: Counting *Nested* Loop Iterations

Work inside-out and form a summation!

More Abstract: Pseudocode

- Concepts covered here are not specific to programming language
- Pseudocode
 - Code-like (loops, logic)
 - Math expressions
 - Precise to people, but not runnable code

```
for j in 1 ... n

tick()

for k in 0 ... j

3(j+1) ticks
```


Practice Problem

for j in 1 ... n

1+3j+3

Accounting

Accounting & Algebra!

$$\sum_{j=1}^{n} (3j+4) = \sum_{j=1}^{n} 3j + \sum_{j=1}^{n} 4 = 3 \sum_{j=1}^{n} j + 4 \sum_{j=1}^{n} 1$$

$$= 3\frac{n(n+1)}{2} + 4n \qquad = \frac{3n^2 + 11n}{2}$$

Ugh.

Do we care? Do we need this much detail?

Detail: How much is enough?

How do we <u>use</u> this information?

- Prediction: Predict exact time for an algorithm
 - Needs precise details
- Comparing two different algorithms

Ex 1: Alg. A is $1000 \cdot n \cdot \log n$ Alg. B is n^2

Ex 2: Alg. B is n^2 Alg. C is $3 \cdot n^2$

Comparing

A: $1000 \cdot n \cdot \log n$ **B:** n^2

Comparing B: n^2 C: $3 \cdot n^2$

Moore's "Law" Computers get better, faster

- Gordon Moore: Co-founder of intel
- Roughly: Improvements double transistors on chip every two years
 - Implications
 - More memory!
 - More complex chips!
 - Typically also more speed!

Moore's "Law" Computers get better, faster

- Historically: Computation speed doubles every ~2 years!
 - This is slowing down. Past history may not indicate future performance!

Comparing B: n^2 C: $3 \cdot n^2$

Comparing: Again

A: $1000 \cdot n \cdot \log n$ **B:** n^2

Comparing: Again A: $1000 \cdot n \cdot \log n$ B: n^2

Comparing: Again

A: $1000 \cdot n \cdot \log n$ **B:** n^2

Run Time: Thinking Theoretically (The Big-O notation)

Run Time

What are useful goals?

- 1. Distinguish between
 - Clear, significant differences in choices ($1000 \cdot n \cdot \log n$ vs. n^2)
 - That is, differences in the order of growth
 - "Close" cases that may merit looking at more precise details
- 2. Ignore small, transient cases

Run Time What are useful goals?

Assumptions

- We'll ignore the transient issues
- We care about "growth"
 - That is asymptotic behavior

 asymptotic: adjective. "2. (of a function) approaching a given value as an expression containing a variable tends to infinity." (dictionary.com)

Definition of Big-O notation

"O" for "Order" (like order of magnitude)

- Let f(n) and g(n) be non-negative functions for n > 0
 - For our purposes, they are both measure of time (or memory) used
- We say: f(n) = O(g(n)) if there exists constants c > 0 and $n_0 > 0$ such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$
 - Clarification: $O(\cdots)$ defines a set of functions that are bounded above!
 - Often f(n) is in O(g(n)) (f is in big-O of g)

Definition of Big-O Notation

What?

1. Let f(n) and g(n) be non-negative functions for n > 0

2.
$$f(n) = O(g(n))$$
 if

For c > 0 and $n_0 > 0$

such that

for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

Run Time

Does Big-O meet our goals?

- 1. Distinguish between
 - Clear, significant differences in choices ($1000 \cdot n \cdot \log n$ vs. n^2)
 - We can see if things are "equal" in their O()
 - "Close" cases that may merit looking at more precise details
 - The c constant => Similar orders of growth all in same O()
- 2. Ignore small, transient cases
 - The $n \ge n_0$ part!

Big-O Ignores Constants

As desired

- Lemma: If f(n) =
- Proof:
 - f(n) = O(
 - But then for

Never write a constant inside the $O(\cdots)$

It's unnecessary

Quod Erat
Demonstrandum:
That which was
demonstrated

• Conclude that: $f(n) = O(a \cdot g(n))$ QED

Does Big-O Match Intuition?

- Q: Which function grows faster, n or n^2
- So does $n = O(n^2)$
 - Set c = ??? and $n_0 = ???$
 - Ex: When $n \ge 1$ is $n^2 \ge n$?
 - YES: Multiply both sides by n: $n \cdot n \ge 1 \cdot n = n^2 \ge n$. QED

Proving f(n) = O(g(n))General Strategy

- 1. Pick c > 0 and $n_0 > 0$ (Consider choices that will make the next steps easier)
- 2. Write down the desired inequality: $f(n) \le c \cdot g(n)$
- 3. Prove that the inequality holds whenever $n \ge n_0$

Example: Does $3n^2 + 11n = O(n^2)$

- Does $3n^2 + 11n = O(n^2)$
 - Guess???

Example: Does $3n^2 + 11n = O(n^2)$ Proof

1.Pick
$$c > 0$$
 and $n_0 > 0$

$$c = 33$$
 and $n_0 = 1$

2. Write down the desired inequality: $f(n) \le c \cdot g(n)$

$$3n^2 + 11n \le 33 \cdot n^2$$

3. Prove that the inequality holds whenever $n \ge n_0$

. . .

Example: Does $3n^2 + 11n = O(n^2)$

Proof (using c = 33 and $n_0 = 1$)

3. Prove that the inequality holds whenever $n \ge n_0$

$$3n^{2} + 11n \le 33 \cdot n^{2}$$

$$= (3n^{2} + 11n) - (3n^{2} + 11n) \le 33 \cdot n^{2} - (3n^{2} + 11n)$$

$$= 0 \le 33 \cdot n^{2} - 3n^{2} + 11n$$

$$= 0 \le 30 \cdot n^{2} + 11n$$

When $n \ge n_0 = n \ge 1$, then $30 \cdot n^2 + 11n \ge 0$. QED

Generalization of Proof

Theorem: A

(In simple po

Proof: Pic

Write $c \cdot n$

Never write lower order terms inside the $O(\cdots)$ It's unnecessary

ponent)

 $k n_0 = 1$

• Each term is ≥ 0 for $n \geq 1$. QED

Does $1000 \cdot n \cdot log(n) = O(n^2)$?

Does
$$1000 \cdot n \cdot log(n) = O(n^2)$$
?

- 1. Set c = ??? and $n_0 = ???$
 - Set c = 1000 and $n_0 = 1$
- 2. Show that $1000 \cdot n \cdot log(n) \le 1000 \cdot n^2$ when $n \ge 1$ $0 \le 1000 \cdot n^2 1000 \cdot n \cdot log(n) = 1000 \cdot n^2 1000 \cdot n \cdot log(n) \ge 0$
- 3. When n=1, $1000 \cdot n^2 1000 \cdot n \cdot log(n) > 0$. QED Moreover, the difference grows as n increases!

3. When n=1, $1000 \cdot n^2 - 1000 \cdot n \cdot log(n) > 0$. QED Moreover, the difference grows as n increases!

Prove it!

Consider the derivative of the difference:

$$= \frac{d}{dn} 1000 \cdot n^2 - 1000 \cdot n \cdot log(n)$$

$$= 2000 \cdot n - 1000 - 1000 \cdot log(n), \text{ which is } > 0 \text{ for } n = 1...$$

$$= 2000 \cdot n - 1000 - 1000 \cdot log(n)$$
, which is > 0 for $n = 1...$

But does it stay > 0?

Consider the second derivative:

$$= \frac{d^2}{dn^2} 1000 \cdot n^2 - 1000 \cdot n \cdot \log(n)$$

$$= 2000 - \frac{1000}{n}, \text{ which is } > 0 \text{ for } n \ge 1.$$

Hence is remains positive and the difference increases.

Summary

- You can use calculus to show that one function remains greater than another past a certain point, even if the functions are not algebraic.
- This is often the crucial step in proving f(n) = O(g(n))
- Big-O makes our intuition about one function being an "upper bound" for another precise, ignoring constant factors and small input sizes.
 - Big-O matches our (current) goals to be a tool to compare algorithms!

Extensions of Big-O: $\Omega()$ and $\Theta()$

More Precise Boundaries

- Currently we can express the concept of an upper bound:
 - f() is below or at $(\leq) g()$
 - It could be more specific.
 - With numbers we'd be pretty limited with just $x \le y$, but not also $x \ge y$ or x = y
 - We'd like more precise statements, like ≥ and =

Definition of Ω (\geq)

- Let f(n) and g(n) be non-negative functions for n > 0
 - Again, running times or memory
- $f(n) = \Omega(g(n))$ if there exists constants c>0 and $n_0>0$ such that for all $n\geq n_0$

$$f(n) \ge c \cdot g(n)$$

Definition of Ω (\geq)

- Let f(n) and g(n) be non-negative functions for n > 0
- $f(n)=\Omega(g(n))$ if there exists constants c>0 and $n_0>0$ such that for all $n\geq n_0$

$$f(n) \ge c \cdot g(n)$$

Proving $f(n) = \Omega(g(n))$

- Lemma: f(n) = O(g(n)) iff $g(n) = \Omega(f(n))$
- So, if we want to prove: $n^2 = \Omega(n \cdot \log(n))$
 - We prove $n \cdot \log(n) = O(n^2)$

Proof of Lemma

$$f(n) = O(g(n))$$
 iff $g(n) = \Omega(f(n))$

- if f(n) = O(g(n)), there are c > 0 and $n_0 > 0$ such that for $n \ge n_0$, $f(n) \le c \cdot g(n)$
- Set $d = \frac{1}{c}$. Then for $n \ge n_0$, $g(n) \ge d \cdot f(n)$
- Conclude that with constants d and n_0 we have proved that $g(n) = \Omega(f(n))$
 - A similar argument works to prove the other direction of the iff. QED.

Definition of Θ (=)

- Let f(n) and g(n) be non-negative functions for n > 0
 - Again, running times or memory
- $f(n)=\Theta(g(n))$ if there exists constants $c_1>0$, $c_2>0$, and $n_0>0$ such that for all $n\geq n_0$

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

Definition of Θ (=)

- Let f(n) and g(n) be non-negative functions for n > 0
- $f(n)=\Theta(g(n))$ if there exists constants $c_1>0$, $c_2>0$, and $n_0>0$ such that for all $n\geq n_0$

$$c_1 \cdot g(n) \le f(n) \le c_1 \cdot g(n)$$

Proving $f(n) = \Theta(g(n))$

- Lemma: $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- So, we want to prove: $3n^2 + 11n = \Theta(n^2)$

You should be able to prove this from definitions of O, Ω , and Θ

Conclusions

- We have a <u>precise</u> way to bound behaviors of functions when *n*gets large, ignoring constant factors.
- We can replace ugly precise running times by much simpler expressions with the same asymptotic behavior!
- You will see O, Ω , and Θ frequently this semester!