Predicting Weather Variations For ClimateWins

Kimberly Mizrahi
January 2025

Project Objectives

- Identify weather patterns outside the regional norm in Europe.
- Determine if unusual weather patterns are increasing.
- Generate possibilities for future weather conditions over the next 25 to 50 years based on current trends.
- Determine the safest places for people to live in Europe over the next 25 to 50 years.

Overview of Thought Experiments

1. Detecting Out-of-Pattern Weather Events:

Use Random Forest to identify weather conditions that deviate from historical norms. This could help predict increasing weather anomalies like sudden heatwaves or unexpected storms.

2. Climate Trend Projection:

Apply CNNs to analyze satellite images and radar data to identify long-term trends, like temperature rise or shifting rainfall patterns. These insights would help ClimateWins forecast future climate changes over decades.

3. **Geographic Safety Index:**

Use GANs to generate synthetic future weather scenarios and create a safety index for different European regions. This index would project areas likely to remain safe for living based on future climate risks.

Machine Learning Approaches

Random Forest Model: An ensemble learning method used to classify weather conditions, predict safe flight conditions, and analyze variable importance.

Results:

- Achieved high accuracy in classifying weather conditions, with the best-performing model reaching 97% accuracy.
- Detected significant weather anomalies that deviate from historical norms.

Key Features:

- Feature Importance Analysis: Highlights which weather variables (e.g., temperature, humidity) are most significant in predicting anomalies.
- Robust to Noise: Performs well even with noisy data, reducing the risk of overfitting.
- Scalable: Can handle large datasets efficiently.

															Classification	Poporti			
. #	Eval	uating	the	model											Classification	precision	recall	f1-score	support
pr	int("Confi	sion	Matri	x:\n'	, cor	fusi	on_mat	rix(, axis y_test tion_r	, y_p		st, y	_pred))	0	0.92 0.83	0.95 0.84	0.93 0.83	3682 1092
180	/180					- 0s 3	69us,	step							2	0.68 0.56	0.42	0.52 0.52	214 82
		on Mat													4	0.17	0.49	0.20	29
	3481		13	13	10	14	4	3	1	33	1	0	0	0]	5	0.39	0.57	0.47	82
Ļ	143	914	6	3	2	6	2	3	0	11	0	2	0	0]	6	0.14	0.18	0.16	11
L	33 17	47 6	90	8 40	5	15 8	3	3	0	11	0	0	0	0] 0]	7	0.59	0.38	0.46	61
,	5	2	2	3	7	7	9	0	0	3	0	0	0	01	8	0.50	0.11	0.18	9
í	11	3	3	1	3	47	9	0	0	13	0	1	n	01	9	0.81	0.76	0.78	458
í	3	1	1	1	2	0	2	0	0	1	0	0	0	0]	10	0.00	0.00	0.00	8
[17	3	3	0	2	2	1	23	0	9	0	1	0	0]	11	0.33	0.40	0.36	5
[6	0	0	1	0	0	0	0	1	1	0	0	0	0]	13	0.00	0.00	0.00	4
[52	17	10	0	4	21	0	7	0	347	0	0	0	0]	14	0.00	0.00	0.00	1
[7	1	0	0	0	0	0	0	0	0	0	0	0	0]					
Ļ	1	0	0	0	1	0	0	0	0	0	0	2	1	0]	accuracy			0.86	5738
L	1	0	1	9	0	0	0 0	0	0	9	9	0	0 0	0] 011	macro avg	0.42	0.38	0.39	5738
L	1	0	9	v	0	0	в	0	Ø	ø	6	e)	v	611	weighted avg	0.86	0.86	0.86	5738

<u>Deep Learning with CNNs</u>: CNNs were applied to classify weather conditions based on radar and satellite imagery.

Results:

- Achieved over 90% accuracy after 45 epochs of training.
- Demonstrated the ability to detect complex patterns in visual weather data, improving weather condition classification.

Key Features:

- Automated Feature Extraction: CNNs automatically learn relevant features from radar and satellite images, eliminating the need for manual feature selection.
- Generalization: The model generalized well to unseen data, indicating strong performance across various weather patterns.
- Adaptable: Can be fine-tuned for different types of weather data, including satellite images, radar scans, and time-series data.

Data Requirements

- Satellite and Radar Imagery: To provide a visual context of changing weather patterns, enabling deep learning models like CNNs to extract meaningful patterns, like cloud formations and storm systems.
- Real-time Weather Station Data: Allows for immediate updates to models improving the accuracy of forecasts.
- 3. Topographical and Climate Zone Data: Essential for understanding how physical geography impacts regional weather patterns.

Thought Experiment 1: Detecting "Out-of-Pattern" Weather Events

Using Anomaly Detection

Objective: Identify unusual weather events deviating from historical patterns.

Approach:

- Use Random Forest models to detect anomalies based on historical data.
- Focus on parameters like temperature spikes, rainfall changes, and unexpected snow events.

Key Questions:

- 1. What defines an "out-of-pattern" weather event?
- How early can anomalies be detected?
- 3. How can these insights improve disaster response?

Impact: Helps predict and prepare for unusual weather events, reducing damage and improving safety measures.

Thought Experiment 2: Climate Trend Projection

Objective: Identify long-term climate trends using large datasets.

Approach:

- Apply Convolutional Neural Networks (CNNs) to analyze satellite images and radar data.
- Detect gradual changes in temperature, precipitation, and vegetation zones.

Key Questions:

- 1. What patterns are visible in satellite data that traditional datasets miss?
- 2. How accurate are CNN-based projections?
- 3. What thresholds indicate significant climate shifts?

Impact: Provides actionable insights for policymakers to address climate risks and adapt strategies.

Layer (type)	Output Shape	Param #
conv1d_5 (Conv1D)	(None, 14, 4)	76
dense_10 (Dense)	(None, 14, 16)	80
max_pooling1d_5 (MaxPooling1D)	(None, 7, 16)	0
flatten_5 (Flatten)	(None, 112)	0
dense_11 (Dense)	(None, 15)	1,695

Total params: 1,851 (7.23 KB)

Trainable params: 1,851 (7.23 KB)

Non-trainable params: 0 (0.00 B)

Thought Experiment 3: Geographic Safety Index

Objective: Create an index predicting safe and habitable regions in Europe based on climate risks.

Approach:

- Use Generative Adversarial Networks (GANs) to simulate future climate scenarios.
- Incorporate variables like sea-level rise, temperature increases, and extreme weather events.

Key Questions:

- 1. How can GAN-generated scenarios be validated?
- 2. What criteria should be included in a Geographic Safety Index?
- 3. How often should the index be updated?

Impact: Guides decision-making for relocation, investment, and infrastructure planning.

Correct Prediction - class: Sunrise - predicted: Sunrise(1.0047633e-05 1.1412430e-05 3.0133067e-04 9.9967712e-01

Model Performance Evaluation Using CNN

Objective: Evaluate the effectiveness of Convolutional Neural Networks (CNNs) in predicting weather patterns from large datasets, including satellite images and radar data.

Accuracy: The model showed fluctuating accuracy early in training but improved to around 90% after 45 epochs using the ReLU activation function.

Loss: The model's training loss steadily decreased over 45 epochs, while validation loss showed more fluctuations. Adjustments to batch size and activation functions contributed to more stable loss trends

Confusion Matrix: The model's confusion matrix illustrates how accurately it predicted different weather conditions, showing both correct classifications and misclassifications between weather categories.

Recommendations & Next Steps

Thought Experiment Applications

Geographic Safety Index

- Create a **Geographic Safety Index** for Europe using GANs to predict **safe regions for living** over the next 25-50 years based on climate risks.
- Update the index regularly as new weather patterns emerge.

Out-of-Pattern Weather Event Detection

- Use Random Forest models to monitor weather data in real time and flag unusual weather events.
- This can improve disaster preparedness and reduce the impact of extreme weather conditions.

Climate Trend Projection

- Use CNN models to identify long-term climate trends by analyzing satellite and radar images.
- This insight can help policymakers plan for **future climate risks**, such as rising sea levels or shifting weather patterns.

Next Steps

1. Deploy Models in Production:

Integrate the **Random Forest and CNN models** into ClimateWins' platform to start monitoring weather patterns in real time.

2. Collect More Data:

Collaborate with weather agencies to obtain **satellite**, **radar**, **and historical weather data** for Europe.

3. Monitor and Update Models:

Establish a process for **regular model retraining** to ensure predictions remain accurate over time as weather patterns change.

Thank You

Kimberly Mizrahi

