Diseño de vigas doblemente reforzadas

Si la sección de una viga se limita a causa de consideraciones arquitectónicas u otras restricciones, puede ocurrir que el concreto no sea capaz de desarrollar la fuerza necesaria de compresión para resistir el momento actuante. En este caso, se adiciona refuerzo en la zona de compresión, dando como resultado una viga que se denomina doblemente reforzada.

Sin embargo, existen situaciones en las que se utiliza el refuerzo a – compresión por razones diferentes de las de resistencia. Se ha encontrado que incluir algún acero en la zona de compresión reduce las deflexiones a largo plazo del elemento.

Las vigas doblemente reforzadas tienen acero a tracción (As) y a compresión (As') junto los bordes superior e inferior de la sección transversal y con ello se incrementa su ductilidad y su capacidad resistente en relación a las vigas simplemente armadas.

Usualmente en las vigas doblemente reforzada se diseña únicamente el acero de refuerzo, ya que sus dimensiones están dadas a priori en el diseño. Para saber si una sección transversal debe estar simple o doblemente armada se debe verificar las siguientes condiciones:

Si una viga posee acero a compresión y la cuantía geométrica de la armadura a tracción (ρ) es menor o igual a la ($\rho_{máx}$), se puede calcular la resistencia de la viga omitiendo el acero a compresión.

Dimensiones de viga restringidas

(b) Sección rectangular con acero en compresión

T=Asfy

c2<c1

As

j1< j2

Figura 5.11. Distribución de esfuerzos en secciones rectangulares con y sin refuerzo en compresión

Acero a tracción y a Compresión, ambos alcanzan el esfuerzo de Cedencia.

Teoría de vigas doblemente reforzadas

Figure 6-13 Strain and Equivalent Stress Distribution of Doubly Reinforced Rectangular Section

The nominal moment strength is:

$$\mathbf{M}_{n} = \left(\mathbf{A}_{s} - \mathbf{A}_{s}'\right) \mathbf{f}_{y} \left(\mathbf{d} - \frac{\mathbf{a}}{2}\right) + \mathbf{A}_{s}' \mathbf{f}_{y} \left(\mathbf{d} - \mathbf{d}'\right)$$

Ejemplo

Diseñe la siguiente viga con los datos proporcionados:

fy	2810.00 kg/cm2
f'c	210.00 kg/cm2

Mu	izquierda	Centro	Derecha
Тор	1056252.00 kg-cm	0.00 kg-cm	1056252.00 kg-cm
Botom	0.00 kg-cm	2079480.00 kg-cm	0.00 kg-cm

Paso 1 refuerzo requerido:

Acero	izquierda	Centro	Derecha	
Тор	11.84 cm2	0.00 cm2	11.84 cm2	
Botom	0.00 cm2	26.94 cm2	0.00 cm2	

Paso 2 verificaciones Asmin y Asmax

Asmin=	4.86 cm2
Asmax=	21.41 cm2

Acero	izquierda	Centro	Derecha	
Тор	11.84 cm2	0.00 cm2	11.84 cm2	
Botom	0.00 cm2	26.94 cm2	0.00 cm2	

El refuerzo requerido supera el acero máximo por lo que es necesario colocar acero a compresión

Paso 3 Proponer un armado cercano al Asmax

Cantidad	Barra	As	Asmax=	21.41 cm2
5	No. 7	19.40 cm2		

Propuesta 5#7 = 19.40 cm^2= As-As'

Paso 4 Calcular la capacidad a momento de la propuesta de acero

$$\emptyset M_n = \emptyset (A_s - A'_s) f_y \left(d - \frac{a}{2} \right)$$

$$\emptyset Mn_{5\#7} = 0.90 * 19.40 * 2810 * \left[39 - \frac{19.40 * 2810}{1.7 * 210 * 25} \right] = 1,613,766.49 \ kg - cm$$

Paso 5 Calcular el momento faltante

$$Mr = 2,079,480 \ kg * cm - 1,613,766.49 \ kg * cm = 465,713.51 \ kg - cm$$

Paso 6 Calculo de área de acero a compresión As'

$$Mr = \emptyset A'_{S}f_{y}(d-d')$$

$$As' = \frac{Mr}{\emptyset Fy(d-d')}$$
As'
As'
As'
As'
As'

$$As' = \frac{465,713.51 \ kg * cm}{0.9 * 2.810(39 - 6)} = 5.58 \ cm^2$$

Propuesta 2#6= 5.70 cm^2

Paso 7 Armado propuesto

As"= incremento de As'*4/3 para garantizar la falla dúctil, en la zona a compresión únicamente

As"=5.58*4/3=7.44 cm^2

Propuesta= 4#5=7.92 cm^2

Paso 8 verificar fluencia del acero a tensión

$$a = \frac{(As - As'')Fy}{0.85 * f'c * b} = \frac{(25.10 - 7.92) * 2810}{0.85 * 210 * 25} = 10.82 cm$$

$$\varepsilon ty = \frac{2810}{2039381}$$

$$\frac{\varepsilon cu}{c} = \frac{\varepsilon s'}{c - \frac{\varepsilon cu}{c}}$$

$$\frac{\varepsilon cu}{c} = \frac{\varepsilon s}{d - \frac{\varepsilon s}{d}}$$

$$= 0.00138 \qquad \varepsilon s'' = \frac{0.003 * (12.73 - 6)}{12.73} = 0.001586 > \varepsilon ty, 0k fluye!!!$$

$$\frac{\varepsilon cu}{c} = \frac{\varepsilon s''}{c - d'}$$

$$\varepsilon s = \frac{0.003(39 - 12.73)}{12.73} = 0.0062 > \varepsilon ty + 0.003, 0k fluye!!!$$

$$\frac{6 \ cm}{12.73 \ cm} < 1 - \frac{2,810/2,039,381.15}{0.003}$$

 $0.4713 < 0.54 \ Ok \ cumple!!!$

As"=4#5=7.92 cm^2

ARMADO FINAL AL CENTRO

As=4#7+ 2#6=21.22 cm^2

As"=4#5=7.92 cm^2 + 2#5=3.96 cm^2 (bastones)=11.88 cm^2

ARMADO FINAL EXTREMOS DE LA VIGA

As=4#7+ 2#6=21.22 cm^2