Excess Demand Function

Table of Contents

Description	1
nput arguments:	. 1
Output arguments:	
Notes:	
Preliminaries	. 2
Calculate	2

· Filename: xdemand.m

· Authors: Matt Reimer

• Created: 07/08/17

• Purpose: Function that returns the fleet-wide annual excess demand for species-specific quota.

Description

The function xdemand computes the fleet-wide annual excess demand for quota, defined as the sum of all annual catches minus the sum of all quota allocations.

Specifically, $e_{i,s}(\mathbf{w}) = q_{i,s}(\mathbf{w}) - \omega_{i,s}$ is individual *i*'s excess-demand function for species *s* for a given quota-price vector \mathbf{w} , which is comprised of $q_{i,s}$ and $\omega_{i,s}$: *i*'s annual catch and allocation, respectively. Annual catch is calculated as

$$q_{i,s} = \sum_{t \in T} C_{i,t}(a_{i,t}^*(\mathbf{w}))$$

where $C_{i,t}(a)$ is *i*'s catch in period *t* for fishery *a*, and $a_{i,t}^*(\mathbf{w})$ is *i*'s optimal fishery choice given quota price \mathbf{w} .

function [out1,out2] = xdemand(eta,I0,m)

Input arguments:

- eta = a $NS \times 1$ vector of collocation coefficients;
- $I0 = a NS \times d$ matrix of collocation nodes;
- m = a structural array containing parameter values

Output arguments:

- out $1 = a S \times 1$ vector of average excess demand values.
- out 2 = a vector of average end-of-season quota prices

Notes:

The vector η will be provided by a Matlab solver (e.g., fsolve).

Preliminaries

Calculate

```
for k = 1:m.model.shocks
        % Initial vector of information
        I = I0;
        for t=t0:m.model.T
            % Forecast of quota prices $w$ given $I$
            w = qlease(eta,I,m);
            % Obtain annual catch for each individual
            for i=1:m.model.N
                % Find optimal fishery
                fstar = vmax(t,i,w,m);
                % Obtain catch associated with optimal fishery choice
                c(i,:) = func('g',fstar,t,i,k,[],m);
            end
            % Update next period's I:
            I = I + [(sum(c(:,:),1)),1];
        end
        out1 = I(:,1:end-1) + out1;
        out2 = qlease(eta,I,m) + out2;
   end
    % Average excess demand: catch minus allocation
   out1 = (out1/m.model.shocks) - m.state.TAC;
    % Average end-of-season quota prices
   out2 = out2/m.model.shocks;
end
```

Published with MATLAB® R2016b