SOLUTION The graph of the square root function $y = \sqrt{x}$, obtained from Figure 13(a) in Section 1.2, is shown in Figure 4(a). In the other parts of the figure we sketch $y = \sqrt{x} - 2$ by shifting 2 units downward, $y = \sqrt{x} - 2$ by shifting 2 units to the right, $y = -\sqrt{x}$ by reflecting about the x-axis, $y = 2\sqrt{x}$ by stretching vertically by a factor of 2, and $y = \sqrt{-x}$ by reflecting about the y-axis.

(d)
$$y = -\sqrt{x}$$

(e)
$$v = 2\sqrt{x}$$

(f) $y = \sqrt{-x}$

FIGURE 4

EXAMPLE 2 Sketch the graph of the function $f(x) = x^2 + 6x + 10$.

SOLUTION Completing the square, we write the equation of the graph as

$$y = x^2 + 6x + 10 = (x + 3)^2 + 1$$

This means we obtain the desired graph by starting with the parabola $y = x^2$ and shifting 3 units to the left and then 1 unit upward (see Figure 5).

FIGURE 5

EXAMPLE 3 Sketch the graphs of the following functions.

(a)
$$y = \sin 2x$$

(b)
$$y = 1 - \sin x$$

SOLUTION

(a) We obtain the graph of $y = \sin 2x$ from that of $y = \sin x$ by compressing horizontally by a factor of 2 (see Figures 6 and 7). Thus, whereas the period of $y = \sin x$ is 2π , the period of $y = \sin 2x$ is $2\pi/2 = \pi$.

FIGURE 6 FIGURE 7