- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap

Week 7

Randomised algorithms

Deterministic algorithms

- $init_d(...)$: state
- $send_d(...)$: message vector
- receive_d(...): state

Randomised algorithms

- $init_d(...)$: probability distribution over states
- $send_d(...)$: message vector
- $receive_d(...)$: probability distribution over states

Randomised algorithms

 You can always toss coins when you pick the new state

Randomised algorithms

- Randomised algorithm in PN model
- Randomised algorithm in LOCAL model
- Randomised algorithm in CONGEST model

Uses of randomness

- Break symmetry
- Similar to unique identifiers

Uses of randomness

 Better than unique identifiers: worst-case inputs unlikely?

Guarantees

- Monte Carlo: always fast
 - running time deterministic
 - quality of output probabilistic
- Las Vegas: always correct
 - running time probabilistic
 - quality of output deterministic

Monte Carlo

- Example: large independent set
- Pick random values, local maxima join

Monte Carlo

- Running time always O(1)
- Size of the set depends on random values

Las Vegas

Pick random values, local maxima join,

• • •

Las Vegas

 Pick random values, local maxima join, repeat until maximal

Las Vegas

 Output is always maximal independent set, running time probabilistic

With high probability

- Success probability 1 − 1/n^c
 - I can choose any constant c
- "algorithm A stops in time O(log n) with high probability"
- "running time is O(log n) w.h.p."

Example: Graph colouring

- Chapter 5: deterministic algorithm, $(\Delta + 1)$ -colouring in $O(\Delta^2 + \log^* n)$ rounds
- Today: randomised algorithm, $(\Delta + 1)$ -colouring in $O(\log n)$ rounds w.h.p.

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random colour
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Pick a random free colour
 - not used by any neighbour that has stopped
- Try again if conflicts...

- Colour palette: $\{1, 2, ..., \Delta + 1\}$
- Active with probability 1/2
- If active, pick a random free colour
 - not used by any neighbour that has stopped
- Try again if conflicts...

Active with probability 1/2

Intuition:

- assume: d neighbours still running
- roughly d/2 of them active
- at least d + 1 colours in my palette
- easy to pick a colour without conflicts (?)

•
$$s = 1, c \neq \bot$$
:

stopping state; output c

•
$$s = 1, c = \bot$$
:

- probability 1/2: c ← ⊥
- probability 1/2: c ← random free colour
- *s* ← 0
- s = 0:
 - if conflicts: $c \leftarrow \bot$
 - *s* ← 1

Algorithm DBRand: Randomised colouring

 Lemma 1: A running node succeeds with probability 1/4

Algorithm DBRand: Randomised colouring

- **Lemma 1:** A running node succeeds with probability 1/4
- $T(n) = 2(c + 1) \log_{4/3} n = O(\log n)$
- **Lemma 2:** For any v, node v stops in time T(n) with probability $1 1/n^{c+1}$

Algorithm DBRand: Randomised colouring

- $T(n) = 2(c + 1) \log_{4/3} n = O(\log n)$
- **Lemma 2:** For any v, node v stops in time T(n) with probability $1 1/n^{c+1}$
- Theorem 3: All nodes stop in time T(n) with probability $1 1/n^c$

Summary

- Randomness may help
- Common idea: each node makes random trials until successful
- Typical running time: O(log n) w.h.p.
 - proof technique: in each round, each node successful with some constant probability

- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap