科 目	担 当 者	科	学年	番 号	氏	名	評 点
基礎数学	高遠	生産技術	1				

- $\mathbf{1}$ 上の図は $y = \cos x$ と $y = \cos \frac{1}{2}x$ のグラフである.
 - (1) $y = \cos x$ の振幅は , 周期は である.
 - (2) $y = \cos \frac{1}{2} x$ の振幅は , 周期は である.
 - (3) $y = 2\cos x$ の振幅は , 周期は るる.
 - (4) $y = 2\cos x$ のグラフをかき入れよ.
- - (1) 右のグラフのうち $y = 2^x$ は $y = \log_2 x$ は y
 - $(3) \log_a 1 = \boxed{}, \log_a a^2 = \boxed{}$
 - $(4) \ 5^{1.4} \times 5^{0.6} = 5 \square = \boxed{}$
 - $(5) \log_2 3 \log_2 6 = \log_2 \boxed{} = \boxed{}$

- **3** (1) 数列 -1, 1, -1, 1, \cdots の一般項(第 n 項)は
 - (2) 等差数列 1, 3, 5, … の一般項(第 n 項)は
 - (3) 等比数列 1, 3, 9, … の一般項 (第 n 項) は
 - (4) 数列 $\frac{3}{2}$, $\frac{9}{3}$, $\frac{27}{4}$, \cdots の第 n 項までの和を \sum で表せ.
- **4** (1) $x^2 + 4x + 1 = 0$ の解は x =
 - (2) $x^2 + 4x + 5 = 0$ の解は x =
 - (3) $\sqrt{-8}$ を i で表すと x =
 - (4) (1+2i)(2+3i) を計算せよ.
 - (5) $\frac{2+3i}{1+2i}$ を計算せよ.