(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公閱番号

特開平11-255093

(43)公開日 平成11年(1999)9月21日

(51) Int.CL*

識別記号

FI

B60T 8/24

B60T 8/24

審査請求 未請求 請求項の数6 FD (全 10 頁)

(21)出廢番号 (22)出廢日 **特願平10-78424**

平成10年(1998) 3月11日

(71)出題人 000003207

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

(72)発明者 深田 善樹

受知県登田市トヨタ町1番地トヨタ自動車

株式会社内

(74)代理人 弁理士 明石 昌毅

(54) 【発明の名称】 車体ロール抑制制御装置

(57)【要約】

【課題】 車体の過大なロールを適切に抑制する。
【解決手段】 車体のロールの程度及び方向を示す評価 値比 V が演算され(S 2 0)、評価値配 V に基づき制動 制御量 B が演算され(S 1 7 0)、制動制御量 B に応じて旋回外側前輪に制動力が与えられ、車輌が減速されると共に旋回方向とは逆方向のヨーモーメントが車輌に与えられることにより車体の過大なロールが抑制される(S 1 8 0)。車体の横加速度 Gy に基づく指係 値 G 9c 及び車輌のヨーレート アに基づく指標 値 G v に基づく指係 値 で はロール抑制制御の許可判定が行われ(S 4 0 ~ 1 2 0)、許可判定の場合に軍体ロール抑制制御の実行が許可される。指係値を演算するための状態量及びカウンタの設定により、一旦許可判定が行われると許可解除され難い状態に維持される(S 4 0 ~ 6 0、S 8 0 ~ 1 0 0、S 1 1 0 ~ 1 5 0)。

【特許請求の範囲】

【請求項1】車体のロールが過大であるときには車輪に 制動力を与えて車体の過大ロールを抑制する車体ロール 抑制制御装置にして、旋回外輪の制動力が旋回内輪に比 して高くなるよう車輪に制動力を与えて車体ロール抑制 制御を行うことを特徴とする車体ロール抑制制餌装置。

【請求項2】互いに異なる車輌状限量に基づく二つの車 体ロール抑制制御許可判定系を有し、前記二つの判定系 の判定が何れも許可判定であるときに前記車体ロール抑 制制御が許可されることを特徴とする請求項1に記載の 車体ロール抑制制御装置。

【請求項3】一旦車体ロール抑制制御が許可されると車 体ロール抑制制御の許可が解除され難いことを特徴とす る請求項2に記載の車体ロール抑制制御装置。

【請求項4】車体ロール抑制制御の許可判定に使用される車輌状態量の大きさの減少率が制限されることにより 車体ロール抑制制御の許可が解除され難いことを特徴と する請求項3に記載の車体ロール抑制制御鉄置。

【請求項5】前記二つの判定系の判定が何れも許可判定であるときに初期値に設定され、前記二つの判定系の少なくとも一方の判定が不許可の判定であるときにデクリメントされるカウンタを有し、前記カウンタが基準値を越えているときに車体ロール抑制制御が許可され、前記カウンタが前記基準値以下になると車体ロール抑制制御の許可が解除されることを特徴とする請求項3に記載の車体ロール抑制制御装置。

【請求項6】車輪に制動力を与えるための制動力供給源と、車体ロール抑制制御の開始を予選する手段と、車体ロール抑制制御の開始が予測されると前記制動力供給源を起動する手段とを有することを特徴とする請求項1に記載の車体ロール抑制制御装置。

【発明の詳細な説明】

[0001]

【発明の**属する技術分野】本発明は、自動車等の車輌の** ための車体ロール抑制制御装置に係り、更に詳細には車 輪に制動力を与えて車体の過大ロールを抑制する車体ロ ール抑制制御装置に係る。

[0002]

【従来の技術】自動車等の車輌のロール制御装置の一つとして、例えば特開昭63-116918号公報に記載されている如く、ロール予測センサ及びロール窓知センサよりの信号を処理し、車体のロール状況がロール限界に達する前に車速を低減するよう構成されたロール制御装置が従来より知られている。

【0003】かかるロール制御装置によれば、車輌の旋回時に車体のロールが過大になっても、車体のロール状況がロール保界に達する前に車速が自動的に低減されるので、運転者によるロール状況の判断や減速操作を要することなく車輌の旋回時の安全性を向上させることができる。

[0004]

【発明が解決しようとする課題】しかし上述の如き従来のロール制御装置に於いては、車輌の状態量に基づきロール評価値が演算され、ロール評価値が基準値を越えたときにただ単に全ての車輪に制動力を与えるようになっているため、車体ロール抑制制御の信頼性及び実行性が不十分であり、車体の過大なロールを必ずしも適切に抑制することができないという問題がある。

【0005】本発明は、車体のロールが過大になると単純に全ての車輪に制動力を与えるよう構成された従来のロール制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、車体のロールが過大になったときに車輪に適切に制動力を与えることにより、車体の過大なロールを適切に抑制することである。

[0006]

【課題を解決するための手段】上述の主要な課題は、本 発明によれば、請求項1の構成、即ち単体のロールが過 大であるときには車輪に制動力を与えて車体の過大ロー ルを抑制する車体ロール抑制制御装置にして、旋回外輪 の制動力が旋回内輪に比して高くなるよう車輪に制動力 を与えて車体ロール抑制制御を行うことを特徴とする車 体ロール抑制制御装置によって達成される。

【0007】上記請求項1の構成によれば、車体のロールが過大であるときには旋回外輪の制動力が旋回内輪に比して高くなるよう車輪に制動力が与えられ、これにより車輌が減速され車輌の運動量が低減されることによって車件に作用する遠心力が低減されるだけでなく、車輌に旋回方向とは逆方向のヨーモーメントが与えられ旋回半径が増大されることによっても車体に作用する遠心力が低減されるので、ただ単に全ての車輪に制動力が与えられる場合に比して車体の過大なロールが適切に抑制される。

【0008】また本発明によれば、上述の主要な課題を 効果的に達成すべく、上記請求項1の構成に於いて、互 いに異なる車輌状態量に基づく二つの車体ロール抑制制 御許可判定系を有し、前配二つの判定系の判定が何れも 許可判定であるときに前記車体ロール抑制制御が許可さ れるよう構成される(請求項2の構成)。

【0009】 請求項2の構成によれば、互いに異なる車 柄状配量に基づく二つの車体ロール抑制制御許可判定系 により車体ロール抑制制御の許可判定が行われ、二つの 判定系の判定が何れも許可判定であるときに車体ロール 抑制制御が許可されるので、車体ロール抑制制御の許可 判定が行われない場合や一つの車体ロール抑制制御 対定系によってのみ車体ロール抑制制御の許可判定が行 われる場合に比して、車体ロール抑制制御を許可すべき か否かの判定が適切に行われる。

【0010】また本発明によれば、上述の主要な課題を 効果的に達成すべく、上記論求項2の構成に於いて、一 且単体ロール抑制制御が許可されると車体ロール抑制制 御の許可が解除され難いよう構成される(請求項3の構成)。

【0011】請求項3の構成によれば、一旦車体ロール 抑制制御が許可されると車体ロール抑制制御の許可が解除され起いので、車体のロールが繰返し断続的に過大になるような状況に於いても車体ロール抑制制御が遅れなく開始されることにより、車体の過大なロールが適切に抑制される。

【0012】また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項3の構成に於いて、車体ロール抑制制御の許可判定に使用される車輌状態量の大きさの減少率が制限されることにより車体ロール抑制制御の許可が解除され程いよう構成される(請求項4の構成).

【0013】 請求項4の構成によれば、車体ロール抑制 制御の許可判定に使用される車輌状態量の大きさの減少 率が制限されるので、一旦車体ロール抑制制御が許可さ れると車体ロール抑制制御の許可が解除され難い状態が 確実に維持される。

【0014】また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記二つの判定系の判定が何れも許可判定であるときに初期値に設定され、前記二つの判定系の少なくとも一方の判定が不許可の判定であるときにデクリメントされるカウンタを有し、前記カウンタが基準値を超えているときに車体ロール抑制制御が許可され、前記カウンタが前記基準値以下になると車体ロール抑制制備の許可が解除されるよう構成される(請求項5の構成)。

【0015】請求項5の構成によれば、二つの判定系の判定が何れも許可判定であるときに初期値に役定され、二つの判定系の少なくとも一方の判定が不許可の判定であるときにデクリメントされるカウンタを有し、カウンクが基準値を越えているときに車体ロール抑制制御が許可され、カウンタが基準値以下になると車体ロール抑制制御の許可が解除されるので、一旦車体ロール抑制制御が許可されると車体ロール抑制制御の許可が確実に解除され難い状態に維持される。

【0016】また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、車輪に制動力を与えるための制動力供給源と、車体ロール抑制制御の開始を予測されると前記制動力供給源を起動する手段とを有するよう構成される(請求項6の構成)。

【0017】 請求項6の構成によれば、車体ロール抑制 制御の開始が予測され、車体ロール抑制制御の開始が予 測されると制動力供給測が起動されるので、定容遅れな く確実に車輪に制動力が与えられる。

[0018]

【課題解決手段の好ましい感様】本発明の一つの好まし

い慰様によれば、上記請求項1の構成に於いて、制動入力に応じた制動力を車輪に与える制動装置を含み、車体のロールが過大であるときには疑回外輪に射動力を引動入力が旋回内輪よりも高くなるよう車輪に削動力を与えるよう構成される(好ましい感像1)。

【0019】本発明の他の一つの好ましい壁様によれば、上配請求項1の構成に於いて、車体のロールが過大であるときには旋回外側面輪に制動力を与えるよう構成される(好ましい態様2)。

【0020】本発明の他の一つの好ましい服様によれば、上配請求項1の構成に於いて、車体のロールが過火であるときには旋回外関前接輪に制動力を与えるよう構成される(好ましい態様3)。

【0021】本発明の他の一つの好ましい飛機によれば、上記好ましい懸機1の構成に於いて、旋回外関前輪に対する制動力が旋回内関前輪よりも高くなるよう左右の前輪に制動力を与えるよう構成される(好ましい懸機4)。

【0022】本発明の他の一つの好ましい態様によれば、上記請求項2の構成に於いて、車体の機加速度に基づく判定系と車輌のヨーレート若しくは前輪機力に基づく判定系とを有するよう構成される(好ましい態度 5)

【0023】本発明の他の一つの好ましい懸様によれば、上記請求項4の構成に於いて、二つの判定系に使用される各車輌状態量の大きさの減少率を制限する手段と、二つの判定系の判定が何れも許可判定であるときに切別庭に設定され、二つの判定系の少なくとも一方の判定が不許可の判定であるときにデクリンメントされるカウンタが基準値を超えているときに車体ロール抑制制御が許可され、カウンタが基準値以下になると車体ロール抑制制御の許可が解除されるよう構成される(好ましい態様6)。

【0024】本発明の他の一つの好ましい敬傑によれば、上記請求項6の構成に於いて、制動圧に応じた制動力を発生する制動装置を含み、制動力供給源は制動装置へ制動圧を供給するボンブを含み、制動力供給源を起動する手段はボンブを起動するよう構成される(好ましい職物7)

[0025]

【発明の実施の形態】以下に添付の図を参照しつつ、本 発明を好ましい実施形態について詳細に説明する。

【0026】図1は本発明による車体ロール抑制制度装置が適用された車輌の制動装置の油圧回路及び電気式制御装置を示す観略構成図である。尚図1に於いては、電磁的に駆動される各弁のソレノイドの図示は省略されている。

【0027】図1に於て、10はハイドロブースタ式の ブレーキ装置を示しており、ブレーキ装置10は運転者 によるブレーキペダル12の踏み込み操作に応答してブ レーキフルードとしてのオイルを圧送するマスタシリンダ14と、マスタシリンダ内のオイル圧力に対応する圧力(レギュレータ圧力)にブレーキオイルを増圧するハイドロブースタ16とを有している。マスタシリンダ14には前輪用のブレーキ油圧制即導管18の心端には左前輪用のブレーキ油圧制即導管20FL及び右前輪用のブレーキ油圧制即導管20FL及び20FRの途中にはそれぞれ3ボート2位置切損之型の環磁式の再答の心端にはそれぞれ3ボート2位置切損之型の環磁式の再答の心端にはそれぞれを前輪及び右前輪の制動力を制御するホイールシリンダ24FL及び24FRが接続されている。

【0028】ハイドロブースタ16には途中に制御弁26を有するレギュレータ圧力供給導管28の一端が接続されており、導管28の他端には左接輪用のブレーキ油圧制即導管30RL及び右接輪用のブレーキ油圧制即導管30RL及び30RRの他端にはそれぞれ左接輪及び右接輪の制動力を制御するホイールシリンダ24R及び24Rが接続されている。制御弁26近傍の導管28にはハイドロブースタ16より導管30RL及び30RRへ向かうオイルの流れのみを許す逆止バイバス導管32が接続されている。

【0029】レギュレータ圧力供給導管28には途中に 制御弁34を有する高圧導管36の一端が接続されてお り、高圧導管36の他端は電動機38Aにより駆動され るオイルボンプ38に接続されている。尚図示のプレー キ装置に於いては、制御弁26は常開型の電磁開閉弁であ あり、制御弁34は常閉型の電磁開閉弁である。また制 御弁26が開弁され閉弁されるときには、実質的にこれ と同時に制御弁34がそれぞれ閉弁され開弁される。

【0030】オイルボンプ38はリザーバ40に貯容されたブレーキオイルを汲み上げ高圧のオイルとして高圧等す36は導酵42によりハイドロブースタ16に接続されており、また途中にリリーフ弁44を有するリリーフ導管46によりリザーバ40に接続されている。従ってオイルボンプ38の駆動により高圧導管36及び導管42内の圧力が所定値以上になると、オイルがリリーフ弁44を経てリザーバ40へ戻されることにより、高圧導管36及び導管42内の圧力が過剰に高くなることが防止される。

【0031】 簿管20FL及び20FRの途中にはそれぞれ 常開型の電磁開閉弁(増圧弁)50FL及び50FRが設けられている。リザーバ40に接続されたリターン導管52と導管20FL及び20FRとの間にはそれぞれ左前輪用の接続導管54FR及び右前輪用の接続導管54FRが接続されている。接続導管54FL及び54FRの途中にはそれたれ常同型の電磁開閉弁(減圧弁)56FL及び50FR近傍の遊行20FL及び50FR近傍の薄管20FL及び20FRには、それぞれボイールシリング2

4凡及び24FBよりマスタシリンダ14の側へ向かうオイルの流れのみを許す逆止バイバス等管58凡及び58 Rが特続されている。

【0032】同様に導管30凡及び30船の途中には常原型の電磁開閉弁(増圧弁)50凡及び50船が設けられている。リターン導管52と導管30凡及び30船との間にはそれぞれ左接輪用の接続導管54R及び右接輪用の接続導管54Rが接続されている。接続導管54R及び54Rの途中にはそれぞれ常閉型の電磁開閉弁(減圧弁)56R及び56Rが設けられている。電磁開閉弁50R及び50Rが6の導管30凡及び30席には、それぞれホイールシリンダ24R及び24Rよりハイドロブースタ16の個へ向かうオイルの流れのみを許す逆止バイパス導管58R及び58Rが接続されている。

【0033】図1に示されている如く、制御弁22FL及び22FRはそれぞれブレーキ油圧制即導管20FL及び20FRの連通を許す第一の位置と、ブレーキ油圧制即導管20FL及び20FRの連通を遮断すると共に導管36F、36FL、36FRを経てレギュレータ圧力供給導管28とホイールシリンダ24FL及び24FRとを連通接続する第二の位置とに切り替わるようになっている。

【0034】特に図示のブレーキ装置に於いては、切換え弁22FL及び22FRは対応するソレノイドに駆動電流が適電されていないときには、換音すれば通常時には第一の位置に設定され、これによりホイールシリンダ24 FL及び24FRにはマスタシリンダ圧力が供給される。同様に制御弁26及び34も通常時には図1に示された第一の位置にあり、ホイールシリンダ24FL及び24FRにはレギュレータ圧力が供給される。使って通常時には各輪のホイールシリンダ内の圧力、即ち制動力はブレーキベダル12の踏力に応じて増減される。

【0035】また切換え弁22FL及び22FRが第二の位置に切り換えられ、制御弁26及び34が第一の位置にあり、各輪の開閉弁が図1に示された位置にあるとさには、ホイールシリンダ24FL、24FR、24FR、24FR、24FR にはレギュレータ圧力が供給される。従ってこの場合にも各輪の制動力は実質的にブレーキペダルの路力に応じて増減される。

【0036】これに対し切換え弁22FL、22FR及び制 御弁26、34が第二の位置に切り換えられ、各輪の開 開弁が図1に示された位置にあるときには、ホイールシ リンダ24FL、24FR、24RL、24RRにはボンプ供給 圧力が供給されるようになるので、各輪の制動力はプレ ーキペダルの踏力に関係なく各輪の開閉弁の開闭により 増減される。

【0037】特にホイールシリング内の圧力は原閉弁5 OFL、50FR、50RL、50RR及び開閉弁56FL、56 FR、56RL、56RRが図1に示された第一の位置にある ときには増圧され(増圧モード)、原閉弁50FL、50 FR、50RL、50RRが第二の位置に切り換えられ且つ閉 閉弁56凡、56FR、56FL、56RRが図1に示された 第一の位置にあるときには保持され(保持モード)、開 閉弁50凡、50FR、50RL、50RR及び開閉弁56F L、56FR、56PL、56RRが第二の位置に切り換えら れると波圧される(減圧モード)。

【0038】かくして制御弁26及び34は互いに共働して制御元油圧としての圧力源をレギュレータ圧力とポンプ供給圧力との間に切り換える圧力源制御弁を構成している。また開閉弁50日~50R及び開弁56日~56Rはそれぞれ互いに共働して対応するホイールシリング内の圧力を増圧し保持し減圧する増減圧制即がた構成している。尚これらの開閉弁はそれぞれ上記増圧モード、保持モード、減圧モードに対応する増圧位置、保持位置、減圧位置を有する一つの切換え弁に置き換えられてもよい。

【0039】切換え弁22FL及び22FR、制御弁26及び34、電動機38A、開閉弁50FL、50FR、50RL、50RR及び開閉弁56FL、56FR、56RL、56RRは、後に詳細に説明する如く電気式制御装置70により制御される。電気式制御装置70はマイクロコンビュータ72と駆動回路74とよりなっており、マイクロコンビュータ72は図1には詳細に示されていないが例えば中央処理ユニット(CPU)と、リードオンリメモリ(RAM)と、入出力ボート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のものであってよい。

【0040】マイクロコンピュータ72の入出力ボート 装置には横加速度センサ76より車体の横加速度Gyを示す信号、ヨーレートセンサ78より車輌のヨーレート アを示す信号、車速センサ80より車速Vを示す信号、 接舵角センサ82より操舵角のを示す信号がそれぞれ入 力されるようになっている。尚横加速度センサ76、ヨーレートセンサ78、操舵角センサ82は車輌の左軟回 時を正としてそれぞれ車体の横加速度Gy、車輌のヨーレードア、操舵角のを検出する。

【0041】マイクロコンピュータ72は図には示されていないイグニッションスイッチが閉成されると、後述の如く車体の横加速度Gyに基づき車体のロールの程度及び方向を示すロール評価値RVを演算し、評価値RVの大きさが基準値以上であるときには評価値RVの大きさに応じて旋回外傾前輪に対する制動制御量Bを演算する。

【0042】またマイクロコンピュータ72は車体の横加速度Gy に基づき車体ロール抑制制御許可判定の指標値Gycを演算すると共に、車輌のヨーレートャに基づき車体ロール抑制制卸計可判定の指標値Gycを模算し、これらの指標値がそれぞれ対応する基準値Gyco(正の定数)、Gyco(正の定数)以上であるか否かの判定により、単体ロール抑制制御を許可すべきか否かの判定を行

20043] また電気式制御装置70はロール評価値R Vの大きさが基準値以上であり、車体ロール抑制制御を 許可すべき旨の判定が行われているときには、旋回外関 前輪の制動圧、即ちホイールシリンダ24FL又は24FR 内の圧力を制動制御量Bに対応する値に制御し、これに より旋回外関前輪に制動力を与えて車体のロールを抑制

【0044】更に電気式制御装置70は車体の横加速度 Gy 等に基づき車体ロール抑制制御の開始を予測し、車 体ロール抑制制御の開始が予測されるときには堪動機3 8Aを作動させてボンプ38を駆動し、これにより高圧 導管36及び導管42内の圧力を予め昇圧する。

【0045】尚電気式制御装置70は例えば各車輪の車輪速度に基づき制動スリップ率を演算し、制動スリップ率が過剰であるときには当該車輪の制動スリップ率が適正値になるようその車輪の制動圧をレギュレータ圧力により制御するABS制御の如き他の制御をも行うようになっていてもよい。

【0046】次に図2に示されたフローチャートを参照して図示の実施形態に於ける車体ロール抑制制御について説明する。尚図2に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。【0047】まずステップ10に於いては検加速度センサ76により検出された車体の検加速度Gyを示す信号等の読み込みが行われ、ステップ20に於いては図3に示されたフローチャートに従って車体ロール抑制制御を実行するために必要な準備が行われる。

【0048】尚図2に示されたフローチャートによる制 脚の開始時には、ステップ10に先立ち車体ロール抑制 制御計可判定の指標値Gyc及びGyc、後述のカウンタの カウント値Cc及びCp、ロール角速度推定値Rr、ロール角推定値R、ロール評価値R Vは制御開始時の初期 値として0にリセットされる。

 $\{0049\}$ ステップ40に於いては Δ Gyを比較的小さい正の定数として車体の機加速度Gyの絶対値がGyc Δ Gyよりも小さいか否かの判別が行われ、否定判別が行われたときにはステップ50に於いて指係値Gycが車体の横加速度Gyの絶対値に設定され、肯定判別が行われたときにはステップ60に於いて指係値GycがGyc Δ Gy に設定される。

【0050】ステップ70に於いては車輌のヨーレート アに基づく推定機加速度の大きさGv が車輌のヨーレート アと車速 V との積の絶対値に設定され、ステップ80に於いては A Gv を比較的小さい正の定数として推定検加速度の大きさ Gv が Gvc - A Gv よりも小さいか Gかの判別が行われ、否定判別が行われたときにはステップ90に於いて指標値 Gvcが推定機加速度の大きさ Gv に設定され、 肯定判別が行われたときにはステップ100

に於いて指領値GveがGve-AGv に設定される。

【0051】ステップ110に於いては指領値Gycが基準値Gyco以上であるか否かの判別が行われ、肯定判別が行われたときにはステップ120に於いて指標値Gycが基準値Gyco以上であるか否かの判別が行われ、肯定判別が行われたときにはステップ130に於いてカウンクのカウント値Ccが制御の初期値Cco(正の定数)に設定され、ステップ110又は120に於いて否定判別が行われたときにはステップ140に於いて△Ccを比較的小さい正の定数としてカウンタのカウント値Ccが△Ccデッソメントされる。

【0052】ステップ150に於いてはカウント値Ccが正であるか否かの判別、即ち車体ロール抑制制質を許可し得るか否かの判別が行われ、否定判別が行われたときにはステップ160に於いてカウント値Ccが0にリセットされた後ステップ10へ戻り、肯定判別が行われたときにはロール評価値RVの絶対値に基づき図4に示されたグラフに対応するマップより制動制御量Bが済算され、ステップ180に於いて車体の模加速度Gy 又は車辆のヨーレートッの符号に基づき車の錠回方向が判定されると共に、旋回外関前輪の制動圧が制動制御量Bに対応する値になるよう旋回外関前輪の制動力が制御され、しかる後ステップ10へ戻る。

【0053】またステップ20の制御準備ルーチン(図3)のステップ21に於いてはKhをスタビリティファクタとし、Rgをステアリングギヤ比とし、Hをホイールベースとして下記の数1に従って扱舵角のに基づく車輌の横加速度Gysが演算される。

[47 1]

 $Gys=V^2 \cdot \theta / [(1+Kh \cdot V^2)Rg \cdot H]$

【0054】ステップ22に於いてはRげをロール角速度推定値Rrの前回値とし、ωο を車体の固有援動数とし、Gy を車体の機加速度とし、φο を単位重力加速度当りの定常ロール角とし、€をロール被表保数とし、Δ Tを図2に示されたフローチャートのサイクルタイムとして、下記の数2に従ってロール角速度推定値Rr が演算される。

【数2】Rr =Rrf+{(ωο² (Gy ·φο -R) -2ωο ·ε·Rrf) ΔΤ

【0055】ステップ23に於いてはRf をロール角推 定値Rの前回値として下記の数3に従ってロール角推定 値Rが消算される。

【数3】R=Rf +Rr · △T

【0056】ステップ24に於いてはGylinを検加速度の許容限界値とし、Rrlinをロール角速度の許容限界値として下記の数4に従って車輌の模加速度Gy に基づきロール評価値RVが演算される。尚許容限界値Gylin及びRrlinは正の定数であってよいが、例えば車速V等に基づき可変設定されてもよい。

【数4】RV=Gy /Gylin+Rr /Rrlin

【0057】ステッア25に於いては操舵角に基づく車体の機加速度Gysの絶対値が基準値Gyso(正の定数)を超えているか否かの判別が行われ、否定判別が行われたときにはステップ26に於いて車体の構加速度Gyの絶対値が基準値Gyo(正の定数)を超えているか否かの判別が行われ、否定判別が行われたときにはステップ27に於いてヨーレートァと車速Vとの積の絶対値が基準値Gvo(正の定数)を超えているか否かの判別が行われ、否定判別が行われたときにはステップ28へ進み、ステップ25~27の何れかに於いて肯定判別が行われたときにはステップ30へ進ひ。

【0058】ステップ28に於いてはロール評価値RVの絶対値が基準値RVo(正の定数)を越えているか否かの判別が行われ、否定判別が行われたときにはステップ29に於いてΔCpを比較的小さい正の定数としてカウンタのカウント値CpがΔCpデクリメントされ、肯定判別が行われたときにはステップ30に於いてカウント値Cpがその制御の初期値Cp(正の定数)に設定される

【0059】ステップ31に於いてはカウント値Cp が基準値Cpc (正の定数)を越えているか否かの判別が行われ、否定判別が行われたときにはステップ32に於いて運動機38Aへの通電が停止されることによりボンプ38が停止され又は停止状態に維持され、肯定判別が行われたときにはステップ33に於いてボンプ38が限動される。

【0060】かくして図示の実施形態によれば、ステップ22~24に於いて車体のロールの程度及び方向を示すロール評価値RVが演算され、ステップ170に於いて評価値RVの絶対値に基づき制動制御量Bが演算され、ステップ180に於いて制動制御量Bに応じた制動力が旋回外側前輪に与えられることによってロール抑制制御が実行される。

【0061】従って車体のロールが過大であるときにきは車体のロールの程度に応じて旋回外関前輪に制動力が与えられるので、車輌を減速し車輌の運動量を低減することによって車体に作用する速心力を低減すると共に、車輌に旋回方向とは逆方向のヨーモーメントを与えて旋回半径を増大させることによっても車体に作用する速心力を低減することができるので、ただ単に全ての車輪に制動力を与える場合に比して車体の過大なロールを適切に抑制することができる。

【0062】また図示の実施形態によれば、ステップ40~60に於いて車体の機加速度Gy に基づく車体ロール抑制制御許可判定の指額値Gycが演算され、ステップ70~100に於いて車輌のヨーレートァに基づく車体ロール抑制制御計可判定の指領値Gycが演算され、ステップ100~140に於いて二つの指領値がそれぞれ対応する基準値以上であるときにはカウンタのカウント値Cc が制御の初期値Ccoに設定され、何れかの指領値が

基準値未満であるときにはカウント値が△Ccデクリメントされ、カウント値Cc が正の値である場合にのみステップ170及び180によるロール抑制制御が実行される。

【0063】従って車体ロール抑制制御の許可判定が行われない場合や例えばGycの如き一つの車体ロール抑制制助許可判定の指領値によってのみ車体ロール抑制制御の許可判定が行われる場合に比して、車輌が車体ロール抑制制御を許可すべき状況にあるか否かの判定を適切に行うことができ、これにより車体ロール抑制制御が不要である状況に於いて該制御が実行されることを防止すると共に車体ロール抑制制御が真に必要であるときには該制制が確実に実行されることを確保して車体ロール抑制制御を適切に行うことができる。

【0064】また図示の実施形態によれば、ステップ2 1~28に於いて車体のロールが過大になる関れがあ

り、従って車体ロール抑制制御が実行される可能性が高いか否かの判別が行われ、車体ロール抑制制御が行われる可能性が高いときにはステップ32に於いてボンブが起動されることにより高圧導管36及び導管42内の圧力が予め昇圧されるので、車体ロール抑制制御が開始される際に於ける制御元油圧を十分に高い圧力にすることができ、これにより油圧回路にアキュムレータを設けなくても鉄回内関前輪に応答性よく必要な制動力を与えることができる。

【0065】特に図示の実施形態によれば、ロール評価 塩R.Vは上型数4に従って車体ロールの定常成分Gy / Gylinと車体ロールの過渡成分Rr / Rrlinとの和とし て演算されるので、車体ロールの過渡成分が考慮されない場合に比して車体の過大なロールを適切に抑制するこ とができる。

【0066】また図示の東達形態によれば、車体の横加速度Gyに基づく車体ロール抑制制御許可判定の指標値Gycはステップ40~60に於いて、横加速度Gyの大きさが減少する際には漸減され、また車輌のヨーレートでに基づく車体ロール抑制制御許可判定の指標値Gvcもステップ80~100に於いて車輌のヨーレートでに基づく推定検加速度の大きさGvの減少時には漸減され、更にカウンタのカウント値Ccは指標値Gyc又はGvcが対応する基準値表示をある場合にステップ140に於いて漸減されるので、一旦車件ロール抑制制御許可判定が行われると許可の解除がされ難い状態を確実に確保下されたよりロール理制をでき、これによりロール理解をでき、これによりロール理解をできるできる。

【0067】例えば図5に示されている如く、車輌がス ラローム走行し、時点t1 に於いて車輌のヨーレートに 基づく推定機加速度の大きさ、即ちヨーレートァと車速 Vとの積の絶対値が基準値Gwを越え、時点t2 に於い て車体の機加速度Gy の絶対値が基準値Gwを越えたと すると、時点t2 に於いてカウンタのカウント値Ccが 制閉の基準値Ccoに設定されると共に、この時点に於い て車体ロール抑制制御許可判定が許可の判定になる。

【0069】また図5より解る如く、指領値Gvc、Gycの漸減及びカウント値Ccの漸減が行われない場合には、指係値Gvcが基準値Gvco未満になる時点t3より二つの指標値Gvc及びGycが共にそれぞれ対応する基準値以上になる時点t6まで車体ロール抑制制御許可判定が不許可の判定になり、時点t6になって始めて車体ロール抑制制御許可判定が再度許可の判定になるのに対し、図示の実施形態によれば許可の判定が継続されるので、操舵方向が反転された。は許可の判定が継続されるので、操舵方向が反転された。は許可の判定が継続されるので、操舵方向が反転された。以前であるとができる。【0070】尚時点t7に於いて指標値Gvcが基準値Gvco未満になっ、時点t8に於いて指環値Gycが基準値Gyco未満になっても、カウント値Ccが0になる時点は9まで車体ロール抑制制御許可判定は許可の判定に推接される。

【0071】以上に於ては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。

【0072】例えば上述の実施形態に於いては、車体ロール抑制制御計可判定の指標値Gycが新級されると共に、カウンタのカウント値Cc も漸減されるようになっているが、ステップ130~150及びステップ60が省略され、ステップ120に於いて肯定判別が行われたときには車体ロール抑制制御計可判定が許可の判定であるとしてステップ170へ混み、ステップ110又は120に於いて否定判別が行われたときにはステップ40、尺のよう修正されてもよい。また逆にステップ40、60、80~100が省略されることにより指標値Gyc及びGycの海減処理が省略されてもよい。

【0073】また上述の実施形態に於いては、車体ロール抑制制御計可判定は車体の横加速度Gy に基づく指額値Gyc及び車輌のヨーレートァに基づく指額値Gv の両者について行われるようになっているが、指原値Vvcは例えば左右前輪の横力に基づく指額値に置き換えられてもよく、また指額値Vyc又はVvcの一方が省略されてもよい。

【0074】また上述の実施形態に於いては、ロール評価値RVは上記数4に従って車体ロールの定常成分と過渡成分との和として演算されるようになっているが、ロール評価値RVは車体のロールの程度及び方向を示す値である限り、当技術分野に於いて公知の任意の要領にて演算されてよい。

【0075】更に上述の実施形態に於いては、制動装置の油圧回路にはアキュムレータが設けられておらず、ボンア38により制動油圧が供給されるようになっているが、例えば導管36又は42にアキュムレータが設けられてよく、その場合にはステップ21、ステップ25~33が省略されてよい。また図示の実施形態に於ける制動装置は油圧式の制動装置であるが、制動装置は例えば電気式の制動装置の如く当技術分野に於いて公知の任意の型式のものであってよい。

[0076]

【発明の効果】以上の説明より明らかである如く、譲求項1の構成によれば、車体のロールが過大であるときには旋回外輪の制動力が旋回内輪に比して高くなるよう車輪に割動力が与えられ、これにより車輌が減速され車輌の運動量が低減されることによって車体に作用する違心力が低減されるだけでなく、車輌に旋回方向とは逆方向のヨーモーメントが与えられ旋回半径が増大されることによっても車体に作用する遠心力が低減されるので、ただ単に全ての車輪に制動力が与えられる場合に比して車体の過大なロールを適切に且つ効果的に抑制することができる。

【0077】また請求項2の構成によれば、互いに異なる車輌状態量に基づく二つの車体ロール抑制制御許可判定系により車体ロール抑制制御の許可判定が行われ、二つの判定系の料定が何れも許可判定であるときに車体ロール抑制制御が許可されるので、車体ロール抑制制御が許可判定が行われない場合や一つの車体ロール抑制制計可判定系によってのみ事体ロール抑制制御の許可判定が行われる場合に比して、車体ロール抑制制御を許可対できか否かの判定が適切に行うことができ、これにより車体の過大なロールを適切に抑制すると共に車体ロール抑制制御の信頼性を向上させることができる。

【0078】また請求項3の構成によれば、一旦軍体ロ

ール抑制制御が許可されると車体ロール抑制制御の許可が解除され難いので、車体のロールが緩返し断続的に過 大になるような状況に於いても車体ロール抑制制御を遅 れなく開始させ、これにより車体の過大なロールを適切 に且つ効果的に抑制することができる。

【0079】また請求項4及び5の構成によれば、一旦 車体ロール抑制制御が許可されると車体ロール抑制制御 の許可が解除され難い状態、即ち車体の過大なロールを 適切に且つ効果的に抑制することが可能な状態を確実に 維持することができる。

【0080】また諸東項6の構成によれば、車体ロール 抑制制御の開始が予測され、車体ロール抑制制御の開始 が予測されると制動力供給源が起動されるので、応答遅れなく確実に車輪に制動力を与ることができ、これにより車体の過大なロールを適切に且つ効果的に抑制することができる。

【図面の簡単な説明】

【図1】本発明による単体ロール抑制制御装置が適用された車輌の制動装置の油圧回路及び電気式制御装置を示す機略構成図である。

【図2】実施形態の車体ロール抑制制御ルーチンを示す フローチャートである。

【図3】図2示されたステップ20に於ける制御準備ルーチンを示すフローチャートである。

【図4】車輌のスラローム走行時に於ける実施形態の作動の一例を示すタイムチャートである。

【符号の説明】

10…制動装置

14…マスタシリンダ

16…ハイドロブースタ

22FL、22FR、26、34…制御弁

24FL、24FR、24RL、24RR…ホイールシリンダ

38…オイルポンプ

48…アキュムレータ

70…電気式制御装置

76…横加速度センザ

78…ヨーレートセンサ

80…車速センサ

82…操舵角センサ

[図4]

【手続補正書】 【提出日】平成10年8月19日 (手続補正1) 【補正対象書類名】明細書 【補正対象項目名】図面の簡単な説明 【補正方法】交更 (補正内容) 【凶面の簡単な説明】

【図1】本発明による車体ロール抑制制御装置が適用さ れた車輌の制動装置の油圧回路及び電気式制御装置を示 す損略構成図である。

【図2】実施形態の車体ロール抑制制御ルーチンを示す フローチャートである。

【図3】図2に示されたステップ20に於ける制御準備 ルーチンを示すフローチャートである。 【図4】ロール評価値RVの絶対値と制動制御量Bとの

間の関係を示すグラフである。

\$...

【図5】車輌のスラローム走行時に於ける実施形態の作 動の一例を示すタイムチャートである。

【符号の説明】

10…制動装置

14…マスタシリンダ

16…ハイドロブースタ

22FL、22FR、26、34…制御弁

24FL、24FR、24FL、24FR…ホイールシリンダ

38…オイルポンプ

48…アキュムレータ

70…電気式制御装置

76…横加速度センサ

78…ヨーレートセンサ

80…車速センサ

82…操舵角センサ