Lecture Summary: Bounds on Probabilities Using Mean and Variance

Source: Lecture 3.7.pdf

Key Points

• Overview:

- The lecture explores the relationship between a random variable's mean (μ) and variance (σ^2) and the probabilities associated with its values.
- Mean represents the "center" of a distribution, while variance measures the "spread."
- Using μ and σ^2 , we can establish bounds on probabilities without knowing the exact distribution.

• Standard Units:

- A random variable X can be expressed in terms of standard deviations from the mean:

$$Z = \frac{X - \mu}{\sigma}.$$

- Standard units help assess how extreme a value of X is relative to its distribution.
- Example: Z=10 indicates X is 10 standard deviations away from μ , typically an outlier.

• Markov's Inequality:

– For a non-negative random variable X with finite mean μ :

$$P(X \ge c) \le \frac{\mu}{c}$$
.

- Interpretation: The probability that X exceeds c is bounded by μ/c .
- Example: If $\mu = 100$, then $P(X \ge 200) \le 0.5$.
- Limitation: Requires $X \geq 0$.

• Chebyshev's Inequality:

- Applies to any random variable with finite mean μ and variance σ^2 :

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}.$$

- Interpretation: The probability that X deviates from μ by $k\sigma$ decreases as k increases.
- Complementary form:

$$P(|X - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}.$$

– Example: For k = 2, $P(|X - \mu| \ge 2\sigma) \le 0.25$.

• Examples of Markov and Chebyshev Inequalities:

- Sum of Two Dice Rolls:
 - * $\mu = 7, \, \sigma = 2.42.$
 - * $P(|X \mu| \ge 2\sigma) \le 0.25$, but actual calculation yields $P(|X \mu| \ge 2\sigma) = 0.056$.
- Uniform Distribution on [1, 100]:
 - * $\mu = 50.5, \, \sigma \approx 28.9.$
 - * $P(|X \mu| \ge 2\sigma) = 0$, satisfying Chebyshev's bound.

• Applications:

- Assessing significance: Evaluate whether changes (e.g., reduction in accidents) are meaningful based on standard deviation.
- Bounding probabilities in practical scenarios where distributions are unknown.

Simplified Explanation

Key Inequalities: - **Markov's Inequality: ** Provides a bound for non-negative variables:

$$P(X \ge c) \le \frac{\mu}{c}.$$

- **Chebyshev's Inequality:** Applies to all variables with finite variance:

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}.$$

Why It Matters: - These bounds help estimate probabilities without requiring the exact distribution. **Example:** For dice rolls ($\mu = 7$, $\sigma = 2.42$):

$$P(|X - 7| \ge 2 \cdot 2.42) \le 0.25.$$

Conclusion

In this lecture, we:

- Discussed bounds on probabilities using mean and variance.
- $\bullet\,$ Introduced Markov's and Chebyshev's inequalities.
- Applied these concepts to practical examples.

These inequalities are fundamental tools in probability, providing insights into random variable behavior with minimal assumptions.