# Enhancing Materials Property Prediction: A Multimodal Learning via Image Mapping of Material Compositions

上海大学SHANGHAIUNIVERSIT

Yu Yeyong a, Wu Xing a,c, Zhang Huiran a,c, Qian Quan a,b,c,\*

- a. School of Computer Engineering and Science, Shanghai University
- b. Materials Genome Institute, Shanghai University, Shanghai
- <sup>C</sup>. Zhejiang Laboratory, Hangzhou

7<sup>th</sup> Forum of Materials Genome Engineering qqian@shu.edu.cn

### Introduction

- Complex material datasets challenge machine learning due to sparse features.
- Composition crucial: composition proportions one overlooked.
- **Compositional features present**: Atomic info missing.
- Image mapping: Using XenonPy expand 58 elemental points, 406 extended dimensions.
- □ Grayscale images for CNN extraction.

## Methods

**Densification and Prediction**: Atomic features for 2D grayscale images; MCVN predicts steel properties, classifies amorphous alloys. [See Figure A]

- **Expert-based visualization**: Enhances compositional features in material ML tasks.
- Multimodal deep-network model: Integrates visualization images & raw features, improves accuracy. [See Figure B]



**Figure A.** Better utilization of composition for material property prediction using the MCVN.

## **Modal Translation**



Process Flow: Feature Enhancement with Xenonpy.



**Arrangement:** Template of compositional features.



Grayscale Image: Element-level description of features

## Results

#### Regression Task



Figure B. Material composition visualization network architecture.



Self-attention
Mechanism: Reduces
external info reliance,
captures internal
relevance effectively.



NIMS's steel dataset: 4% R<sup>2</sup> improvement (0.92 avg. R<sup>2</sup>)

#### **Regression Task**



**SRIM's steel dataset:**  $R^2 = 0.835$  on EL (vs 0.64 avg.  $R^2$ ).

#### **Classification Task**

| Algorithm                                | Category |                  | Precision | Recall  | F1-score                | Suppor |
|------------------------------------------|----------|------------------|-----------|---------|-------------------------|--------|
| RF (Breiman, 2015)                       |          | 0                | 0.83      | 0.94    | 0.87                    |        |
|                                          | BMG      | $\boldsymbol{E}$ | 0.72      | 0.93    | 0.82                    | 208    |
|                                          |          | E&P              | 0.77      | 0.92    | 0.84                    |        |
|                                          | RMG      | 0                | 0.82      | 0.94    | 0.87                    | 1241   |
|                                          |          | $\boldsymbol{E}$ | 0.83      | 0.92    | 0.87                    |        |
|                                          |          | E&P              | 0.81      | 0.92    | 0.86                    |        |
|                                          |          | 0                | 0.86      | 0.52    | 0.65                    |        |
|                                          | CRA      | $\boldsymbol{E}$ | 0.88      | 0.54    | 0.67                    | 510    |
|                                          |          | E&P              | 0.83      | 0.50    | 0.62                    |        |
| XGBoost (Chen and Guestrin, 2016)        | BMG      | 0                | 0.92      | 0.85    | 0.89                    | 208    |
|                                          |          | $\boldsymbol{E}$ | 0.92      | 0.87    | 0.90                    |        |
|                                          |          | E&P              | 0.92      | 0.80    | 0.86                    |        |
|                                          | RMG      | 0                | 0.83      | 0.95    | 0.89                    | 1241   |
|                                          |          | $\boldsymbol{E}$ | 0.86      | 0.94    | 0.90                    |        |
|                                          |          | E&P              | 0.81      | 0.95    | 0.87                    |        |
|                                          | CRA      | 0                | 0.83      | 0.57    | 0.68                    | 510    |
|                                          |          | $\boldsymbol{E}$ | 0.84      | 0.67    | 0.75                    |        |
|                                          |          | E&P              | 0.83      | 0.54    | 0.66                    |        |
| Attention Network (Vaswani et al., 2017) |          | 0                | 0.842     | 0.875   | 0.858                   |        |
|                                          | BMG      | $\boldsymbol{E}$ | 0.895     | 0.860   | 0.877                   | 208    |
|                                          |          | E&P              | 0.899     | 0.861   | 0.879                   |        |
|                                          |          | 0                | 0.871     | 0.905   | 0.888                   |        |
|                                          | RMG      | $\boldsymbol{E}$ | 0.890     | 0.905   | 0.898                   | 1241   |
|                                          |          | E&P              | 0.885     | 0.913   | 0.899                   |        |
|                                          | CRA      | 0                | 0.786     | 0.583   | 0.684                   | 510    |
|                                          |          | $\boldsymbol{E}$ | 0.794     | 0.562   | 0.678                   |        |
|                                          |          | E&P              | 0.806     | 0.596   | 0.70                    |        |
| edRVFL_N (Shi et al., 2022)              | BMG      | 0                | 0.936     | 0.567   | 0.706                   | 208    |
|                                          |          | $\boldsymbol{E}$ | 0.967     | 0.860   | 0.910                   |        |
|                                          |          | E&P              | 0.937     | 0.581   | 0.718                   |        |
|                                          | RMG      | 0                | 0.770     | 0.923   | 0.840                   | 1241   |
|                                          |          | $\boldsymbol{E}$ | 0.847     | 0.930   | 0.887                   |        |
|                                          |          | E&P              | 0.785     | 0.930   | 0.851                   |        |
|                                          |          | 0                | 0.742     | 0.503   | 0.600                   |        |
|                                          | CRA      | E                | 0.798     | 0.643   | 0.712                   | 510    |
|                                          |          | E&P              | 0.777     | 0.547   | 0.642                   |        |
| MCVN                                     | BMG      |                  | 0.931     | 0.904   | 0.917                   | 208    |
|                                          | DMC      |                  | 0.901     | 0.941   | 0.921                   | 1241   |
| MCVN                                     | RMG      |                  | W. DW.    | O-27 T. | And the last section in |        |

<u>Unbalanced amorphous alloy dataset</u>: Increased avg. *Recall* (CRA small-class) from 0.58 to 0.78.

#### Conclusion

This approach enhances model performances on small sparse matrix samples by expanding material composition data, offering a universal paradigm for predicting material properties.

- **Feature Enhancement:** Densifies sparse composition, boosts generalization.
- **Modal Translation:** XenonPy, element-level features, multimodal grayscale dataset.
- Multimodal Learning: MCVN enhances material property predictions.

#### Reference

- 1. Better utilization of materials' compositions for predicting their properties: Material composition visualization network[J]. Engineering Applications of Artificial Intelligence
- 2. FTAP: Feature transferring autonomous machine learning pipeline[J]. Information Sciences



