커널 트릭

- 비선형 데이터의 변환
 - 비선형 데이터의 특성을 다항식 형태로 변환한다는 것은 더 상위의 차원으로 사상(mapping, projection)시킨다는 의미 이다.
 - 이를 통해, 비선형 데이터를 선형의 결정 경계 상에서 구분할
 수 있게 된다.

• 비선형 데이터의 변환

※ 그림 출처: Support Vector Machines without Tears

- 비선형 데이터에 대한 특성 확장의 문제
 - 비선형 데이터의 특성을 다항식 형태로 명시적으로 변환하여 선형 분류를 수행하는 것은 절차가 명확하고 특정 기법에 종속되지 않는다는 장점이 있다.
 - 그러나 다항식의 차수에 따라 모형의 성능 상의 문제 또는 계산량 증가의 문제가 발생한다.
 - 차수가 낮은 경우, 복잡한 유형의 데이터를 잘 표현하지 못 한다.
 - 차수가 높은 경우, 특성이 많아지므로 분석 수행에 많은 시간이 소요된다.

- 커널 트릭 (Kernel Trick)
 - 일련의 계산을 통해서 실제로는 데이터의 특성을 확장하지 않으면서 특성을 확장한 것과 동일한 효과를 가져오는 기법
 - 즉, 비선형 데이터를 상위 차원으로 사상시키는 연산에서 적용되는 함수 또는 방법을 통칭한다.
 - 커널 트릭(함수)을 적용하여 클래스들 간의 비선형 결정 경계를 유도할 수 있게 된다.
 - 사이킷런 svm 모듈 내의 SVC에는 이러한 커널 트릭들이 이미 구현되어 있다.

- 다항식 커널 (Polynomial Kernel)
 - 데이터가 가지고 있는 원래 특성들 간의 가능한 조합을 특정 차수(degree)까지 모두 계산하는 방식
 - SVC를 이용하여 객체를 생성할 때 kernel에 'poly'를 적용한다.
 - 매개변수 kernel은 커널 트릭의 이름이다. 다항식 커널 적용을 위해서 'poly'를 사용한다.
 - 매개변수 degree는 다항식 커널에서만 사용되는 최대 차수이며, 기본값은 3이다.
 - 매개변수 coef0은 다항식 커널과 시그모이드 커널에서만 사용되는 상수값이며, 기본값은 0이다.
 - 매개변수 gamma는 커널 반경의 민감도를 결정하는 값이다. 기본 설정은 'auto'로서 1÷(특성 수)로 계산된다.

- 다항식 커널
 - SVC를 이용하여 객체를 생성할 때 kernel에 'poly'를 적용한다.

```
import sklearn.datasets as d
from sklearn import svm

X, y = d.make_moons(n_samples=100, noise=0.15, random_state=42)

svm_clf = svm.SVC(C=10, kernel="poly", #
degree=3, #
coef0=1, #
gamma="auto")

clf = svm_clf.fit(X, y)
```

- 다항식 커널
 - 3차 다항식 커널을 적용한 비선형 SVM 분류의 결과이다.

- 다항식 커널에서의 degree의 영향
 - 최대 차수가 높을수록 복잡한 유형에 대한 분류 성능이 좋은 반면, 그만큼 과대적합의 가능성이 있다.
 - 최대 차수가 낮을수록 이와 반대의 결과가 도출된다.

- 다항식 커널에서의 coef0의 영향
 - 상수 coef0는 높은 차수에서의 계산 값의 영향이 지나치게
 크게 적용되는 것을 조절하는 역할을 한다.
 - 계산 결과 값에 대한 일종의 스케일링을 한 것과 유사하다.

- 다항식 커널에서의 gamma의 영향
 - gamma가 커질수록 결정 경계가 데이터 분포에 더욱 민감 해지고, gamma가 작을수록 반경이 커지면서 결정 경계가 부드러운 형태를 띈다.

- RBF 커널 (RBF Kernel)
 - 데이터의 특성을 무한한 모든 차수의 모든 다항식으로 확장하는 방사형 기저 함수(RBF; radical basis function) 방식
 - SVC를 이용하여 객체를 생성할 때 kernel을 'rbf'로 적용한다.
 - 매개변수 kernel은 커널 트릭의 이름이다. RBF 커널을 적용하기 위해서 'rbf'를 사용한다.
 - 매개변수 gamma는 커널 반경의 민감도를 결정하는 값이다. 기본 설정은 'auto'로서, 1÷(특성 수)로 계산된다.

- RBF 커널
 - SVC를 이용하여 객체를 생성할 때 kernel을 'rbf'로 적용한다.

- RBF 커널
 - RBF 커널을 적용한 비선형 SVM 분류의 결과이다.

- RBF 커널에서의 gamma의 영향
 - gamma가 커질수록 결정 경계의 곡률이 커지는 것이므로 과대적합이 되며, gamma가 작을수록 곡률이 작아지므로 과소적합이 된다.

• 주요 커널 트릭에 대한 요약

구분	적 용 커널명	하이퍼 파라미터	개요/설명	
선형 커널	linear	С	커널 트릭이 적용되지 않고 기본적인 소프트 마진 분류를 수행한다.	
다항식 커널	poly	C degree coef0 (gamma)	특성을 지정한 특정 차수까지 변환하여 확장 하는 방식이다. 이미지 처리 등에 주로 사용 된다.	
RBF 커널	rbf	C gamma	무한대 차원의 특성으로 변환하는 방식으로, 가우시안 커널이라고도 한다. 데이터가 너무 크지만 않으면 일반적으로 가장 성능이 좋다.	
시그모이드 커널	sigmoid	C coef0 (gamma)	시그모이드 곡선의 tanh 함수가 적용되며, 신경망 학습에서 사용되는 경우가 많다.	

- 규제 수준의 조절을 위한 C와 gamma 값의 설정
 - 매개변수 C는 "얼마나 여유를 가지고 오류를 허용할 것인지" 결정한다.
 - C 값이 높으면 마진이 좁아지고 오분류가 적어지며 과대 적합이 될 수 있다.
 - C 값이 낮으면 마진이 넓어지고 오분류가 많아지며 <mark>과소</mark> 적합이 될 수 있다.
 - 매개변수 gamma는 "결정 경계를 얼마나 데이터에 민감하게 반응시킬 것인지" 결정한다.
 - gamma 값이 높으면 한 데이터에 영향을 크게 받으며 과대적합이 될 수 있다.
 - gamma 값이 낮으면 한 데이터에 영향을 적게 받으며 과소적합이 될 수 있다.

- 규제 수준의 조절을 위한 C와 gamma 값의 설정
 - 매개변수 C와 gamma의 값은 분류 모형의 성능과 밀접한 연관이 있다.
 - 이들의 값이 클수록, 모형의 복잡도가 증가한다.
 - 이들의 값이 작을수록, 모형의 복잡도가 감소한다.
 - 따라서 학습을 수행할 때 GridSearchCV 등을 이용하여
 모형의 성능을 극대화하는 C와 gamma의 최적값을 찾아 낼 필요가 있다.

• C와 gamma 값의 변화에 따른 모형의 변동 예

SVM

- 서포트 벡터 머신
 - 궁극적인 의미에서의 서포트 벡터 머신이란, 서포트 벡터 분류기(support vector classifier)와 커널 기법을 결합하여 분류를 수행하는 분류기를 의미한다.

분류기	분류 전략	분류 형태	오류 허용	커널 트릭
최대 마진 분류기	하드 마진 분류	선형	X	X
서포트 벡터 분류기	소프트 마진 분류	선형	0	X (선형 커널)
서포트 벡터 머신	소프트 마진 분류	선형 및 비선형	O	Ο