Lesson	Breakout File	Learning Object
1	Introduction.Rmd (L1B1)	Introduction to R for Finance
2	ComputeReturns_Breakout1.Rmd (L2B1)	Compute simple daily returns(Rt) using AAPL price data from yahoo finance. Plot simple daily returns over time Compute multi-period simple return
	ComputeReturns_Breakout2.Rmd (L2B2)	Adjust simple return for inflation
	ComputeReturns_Breakout3.Rmd (L2B3)	Adjust simple return for currency
	ComputeReturns_Breakout4.Rmd (L2B4)	Compute log returns(rt) Compare simple return(Rt) vs log returns(rt) Covert simple and log returns to different frequency
3	ConstructingPortfolios_Breakout1.Rmd (L3B1)	Form buy and hold portfolio Given each asset's initial position (share) Given each asset's initial value weight Compute the simple return of portfolio Method 1 - Using portfolio value Method 2 - Using the asset returns and their (last period's) value weights Compare results of method 1 and 2 Compute the continuous return (log return) of portfolio Method 1 - Using portfolio value Method 2 - Using the asset returns and their (last period's) value weights Compare results of method 1 and 2 Portfolio performance visualization Plot the portfolio Profit and loss (PnL) over time Plot the portfolio returns over time
	ConstructingPortfolios_Breakout2.Rmd (L3B2)	Rebalancing portfolio given the optimal weights(ignore transaction cost) Constantly rebalance, then infer the share counts and buys/sells Weekly/monthly rebalance, then infer the share counts and buys/sells Consider transaction costs K when rebalance subtract a fixed amount (trading cost) from portfolio value and then reallocate what remains Constantly rebalance, then infer the share counts and buys/sells Weekly/monthly rebalance, then infer the share counts and buys/sells
	ConstructingPortfolios_Breakout3.Rmd (L3B3)	Form long and short portfolio(without rebalance) • Equity position • Long position value overtime • Short position value overtime • Short position value overtime: • Portfolio equity value overtime
	ConstructingPortfolios_Breakout4.Rmd (L3B4)	Indexing Price Series Index asset Plot index price

4	DecribingReturnEDA_Breakout1.Rmd	Visualize the price and simple returns
	(L4B1)	Run basic EDA and interpret
		Statistics table
		Histogram and Relative frequency histograms
		Percent Ranks
		Quantile:
		Calculate quantile for history returns
		Given specific quantile, find corresponding return
		Given specific return, find corresponding return
	DecribingReturnEDA_Breakout2.Rmd	Hunt for outliers
	(L4B2)	Via simple visual tools
		Via statistical techniques
		Deal with outliers and rerun EDA with clean data
		Deal with outliers: Drop, keep or replace outliers with other values
		Rerun EDA for clean data
	DecribingReturnEDA_Breakout3.Rmd	Rolling Moments
	(L4B3)	Compute 250day trailing returns and plot
		Compute standard deviation over trailing 250day window and plot
		Compute Skewness over trailing 250day window and plot
		Compute kurtosis over trailing 250day window and plot
5	DescribingPortfolioReturn_Breakout1.Rm	Correlations
	d (L5B1)	• Correlations
		Visualize correlations
		Correlation overtime
	DescribingPortfolioReturn_Breakout2.Rm	Portfolio Analytics: construct buy & hold portfolio consisting of 4 assets
	d (L5B2)	Chart the weights evolving over time
		Pie chart of the avg weights.
		Time series plot of portfolio daily returns.
		Time series plot of portfolio cumulative return.
		Time series plot of drawdown and underwater.
	DescribingPortfolioReturn_Breakout3.Rm	Return Distribution
	d (L5B3)	Visualize return distribution via histogram plot
		Calculate Statistical data for asset's history return distribution
		Compare it with Normal distribution
		Describing Risk and Return with Distribution Probability
		Application of Distribution Function
		 What is the chance of getting a return larger than xx?
		O What is the chance of getting a return smaller than xx?
		O What is the chance of getting a return between xx and yy?
		Application of Quantile Function (Inverse CDF)
		o If we have a pp probability of getting a return smaller than yy. What is yy?
		o If we have a pp probability of getting a return larger than yy. What is yy?
		o If we have a pp probability of getting a return between xx(known) and yy. What is yy?

6	Simulation_Breakout1.Rmd (L6B1)	Generating Random Numbers from A Specific Distribution
		Compare Sample and Population Statistics
		Draw N sample observations from population and calculate sample statistics
		Increase N and recalculate sample statistics
	Simulation_Breakout2.Rmd (L6B2)	Simulation Prices
		Simulate random walks prices and plot the implied price process
		 Repeat simulation for thousands of paths, draw the histogram of ending portfolio values
		Repeat above with altered drift
		Repeat above with altered noise variance
	Simulation_Breakout3.Rmd (L6B3)	Resampling Time Series Data - Block Bootstrap
		Sampling from history data
		Calculate sample statistics
		Repeat for hundreds of times and summary all samples
7	Regression_Breakout1.Rmd (L7B1)	Ordinary Least Squares (OLS) Regression: explain the relation between consumer sentiment index and the
		unemployment rate
		• Load (1) unemployment (UNRATE) and (2) University of Michigan consumer sentiment
		index(UMCSENT) data from FRED
		• EDA
		Run simple regression, using UMCSENT as dependent Variable and UNRATE as independent Variable
		Summarize regression and interpret regression coefficient(s)
		Predict UMCSENT given UNRATE
	Regression_Breakout2.Rmd (L7B2)	Ordinary Least Squares (OLS) Regression: running a log-to-log form regression to explain the relation (can be
		interpretation to elasticity) between consumer sentiment index and the unemployment rate
		Load (1) unemployment (UNRATE) and (2) University of Michigan consumer sentiment index (UMCSENT) data from EPED.
		index(UMCSENT) data from FREDEDA: log(UMCSENT) and log(UNRATE)
		Run simple regression, using log(UMCSENT) as dependent Variable and log(UNRATE) as independent
		Variable Variable
		Summarize regression and interpret regression coefficient(s)
		Predict log(UMCSENT) given log(UNRATE)
8	CAPM_Breakout1.Rmd (L8B1)	Capital Asset Pricing Model: $(R_i - R_f) = \alpha + \beta(R_m - R_f)$
	er in in (2021)	• Estimate CAPM on single asset
		• Test hypothesis H_0 : $\alpha = 0$
		• Test hypothesis H_0 : $\alpha = 0$ • Test hypothesis H_0 : $\beta > 1$ (stock i is risker than benchmark)
		 Diagnose of CAPM (apply to other OLS models)
		Linearity: residual with predictor(s)
		o Independence & Equal variance: residual against fitted values and predictor(s)
		Normality: qq-plot
	CAPM_Breakout2.Rmd (L8B2)	Capital Asset Pricing Model: $(R_i - R_f) = \alpha + \beta(R_m - R_f)$
		Estimate CAPM for multiple assets
		• Rolling CAPM through time (window size = 2 years)
		Plot return vs. beta to get a sense of the Security Market Line

9	Seasonality.Rmd (L9B0)	Illustrate basic univariate filtering via moving averages and time series decomposition.
	CAPMSeasonality_Breakout1.Rmd (L9B1)	 CAPM with Seasonality Estimate CAPM for ONEOK Inc (OKE) and interpret beta and test significance Suppose you thought there might be seasonality for OKE, adjust the seasonality problem using dummy variable Augment the CAPM model to accommodate for seasonality in the intercept. Estimate, interpret and test the new coefficients Augment the CAPM model to accommodate for seasonality in the β. Estimate, interpret and test the new coefficients Augment the CAPM model to accommodate for seasonality in the intercept and β. Estimate, interpret and test the new coefficients
10	PriceofRisk_Breakout1.Rmd (L10B1)	Fama-French Three Factor (FF3) Model: $(R_i - R_f) = \alpha + \beta_m (R_m - R_f) + \beta_s SMB + \beta_v HML$ • Load factor data from Ken French website via FTP • Apply FF3 model to single stock
	PriceofRisk_Breakout2.Rmd (L10B2)	 Interpret the statistical significance and financial meaning of the FF3 Apply FF3 to another small-cap stock and compare the factor exposures Fama MacBeth Regression
		 First-pass regression: Fama-French Five Factor (FF3) (R_i - R_f) = α + β_m(R_m - R_f) + β_sSMB + β_vHML Obtain betas (β_m, β_s, β_v) from first-pass regressions Second-pass regression: Re-run the FF3 using betas as independent variables (R_i - R_f) = α + λ_{mkt}b_m + λ_{SMB}b_s + λ_{HML}b_v Estimate risk premium lambdas (λ_{mkt}, λ_{SMB}, λ_{HML}) Hypothesis test for lambdas Test individual significance Test if two lambdas are equal Test joint significance
11	EventStudy_breakout1.Rmd (L11B1)	 Even study: Biden Election and Bonds (Single asset, Single Event) Asset: 10Yr Yield Event: Biden Election Model: local mean of returns Statistical test
	EventStudy_breakout2.Rmd (L11B2)	 Event study: Biden Election and Bonds (Multiple assets, Single Event) Asset: Dow 30 Constituents Event: Biden Election Model: CAPM market model Statistical test
12	ReturnForecasts_Breakout1.Rmd (L12B1)	 Forecasting with linear time trends: RGDP = α₀ + α₁Time Train a simple linear time trend model on pre-Covid RGDP (1947->2019) Static forecast post-Covid RGDP (2020->today) Draw a graph that overlays actual RGDP with the forecasted RGDP
	ReturnForecasts_Breakout2.Rmd (L12B2)	Estimating an ARIMA for RGDP: $\widehat{RGDP_t} = c + \varphi_1 RGDP_{d,t-1} + \dots + \varphi_p RGDP_{d,t-p} + \dots + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t$

		Prior to estimation, you will be checking the RGDP for stationarity and correcting
		 For unit roots so that the GDP fits the necessary assumptions for an ARIMA.
	ReturnForecasts_Breakout3.Rmd (L12B3)	Forecasting RGDP with ARIMA:
	Return orceasis_breakouts.Rind (E12b3)	Use an ARIMA and create a series of dynamic forecasts
		o Fixed Window: Estimate on the training sample. Use the fitted model to do multiquarter forecasts
		 Expanding Window: Estimate on the training sample. Forecast 1 quarter ahead. Use that forecast and forecast another quarter ahead
		o Rolling Window: Set the training sample. Forecast 1 quarter ahead. Roll the training window forward. Forecast another quarter ahead
13	PortfolioAnalytics_PackageIntroduction.R md (L13B0)	Introduce the usage of PortfolioAnalytics package
	PortfolioOptimalization_Breakout1.Rmd	Construct Portfolio with Minimal Variance (given target return)
	(L13B1)	 Asset pool: Dow 30 Constituents, use historic sample statistics as inputs
		Object: Minimize variance subject to target return (compound annual return = 0.15)
		Constrain: Full invested, long only, no leverage
		Portfolio performance evaluation
		Display standard performance data
		Total Return, Return Stdev
		o Price chart
	PortfolioOptimalization_Breakout2.Rmd	Construct Portfolio with Maximum Sharpe Ratio
	(L13B2)	 Asset pool: Dow 30 Constituents, use historic sample statistics as inputs
	` ,	Object: Maximize Sharpe Ratio
		• Constrain
		Full invested, long/short, no leverage
		o Portfolio position number, upper/lower bound of weights
		Portfolio performance evaluation
		Display standard performance data
		Total Return, Return Stdev
		o Price chart
14	AssessPortfolioRisk_Breakout1.Rmd	Portfolio: Rebalancing vs Re-optimizing
14	(L14B1)	Construct Portfolio with Maximal Sharpe Ratio
	(== := =)	Asset pool: Dow 30 Constituents, use historic sample statistics as inputs
		Object: Maximize Sharpe Ratio
		 Constrain: Full invested, long only, no leverage
		Compare the Following Investment Strategy
		Buy and Hold
		 Monthly Rebalance
		 Monthly Rebalance + Monthly Re-optimize
	AssessPortfolioRisk_Breakout2.Rmd	Construct Risk Parity Portfolio
	(L14B2)	Asset pool: Dow 30 Constituents, use historic sample statistics as inputs
	(/	Object: Risk Parity
		Constrain: Full invested, long only, no leverage
		Constrain. I an invested, long only, no leverage