Part 1: "The mody ramic limit?"
Part 2: The closed system degree of freedom As N-30, \$\frac{5}{\times } \tag{ (std devicts)} \\ \frac{\pi}{\pi} \tag{ areage} \\ \tag{ The closed system interel expres: U₀ = U₁ + U₂

V₁ = V₁ + V₂

V₂ = V₁ - V₁

(paride n⁻) Allow the exclose of energy, volume, ptdes bottom subsystems (weeks) Entropy

-> The no dynamics: $dS = \frac{SQ}{T}$ -> Stel Help consider Det weight W, IV, V, P,) in the June cast esters

grandy size system W_{i} (V_{2} , V_{2} , V_{2}) 5 = S, +S; sysystms Stat weight & size sypt Int not 2 sylogotens

Or they multipy

HOT extensive $W_0 = W_1 \times W_2$ $I_{n}(W_{0})=I_{n}(W_{1})+I_{n}(W_{2})$ Intensive we look at this extensive growthy I we need to work with expensive great Botzmenh ent S = S, + Sz $\ln(\omega_0) = \ln(\omega_1) + \ln(\omega_2)$ 15 = UB In (W) enthopy of stat weight -> In W is extensive In w is green nearly por closed system in extension $\frac{\partial w}{\partial x} = 0 \approx 3 \ln w = \frac{1}{w} \frac{\partial w}{\partial x} = 0$ Thermodynamic principles: den (Wo) = 0 8 = V2, V2, V2 for subsystem (i) $\chi = U_2$ $\left(\frac{\partial \ln(W_0)}{\partial U^2}\right) = 0$

$$\frac{\ln(W_0)}{\log w_1} = \ln(W_1) + \ln(w_2)$$

$$\frac{\partial \ln(W_1)}{\partial (V_2)} + \frac{\partial \ln(W_2)}{\partial (V_2)}$$

$$\frac{\partial \ln(W_1)}{\partial (V_2)} = -\frac{\partial \ln(W_1)}{\partial (V_2)}$$

$$\frac{\partial \ln(W_1)}{\partial (V_2)} = -\frac{\partial \ln(W_1)}{\partial (V_2)}$$

$$\frac{\partial \ln(W_1)}{\partial (V_2)} = -\frac{\partial \ln(W_1)}{\partial (V_2)}$$

$$D = -\frac{3 \ln w}{3 U_1} + \frac{3 \ln wz}{3 U_2}$$

$$\int \frac{\partial \ln w}{\partial u} = \frac{3 \ln w}{3 \ln wz}$$

$$\int \frac{\partial \ln w}{\partial u} = \frac{3 \ln wz}{3 \ln wz}$$

$$\int \frac{\partial \ln w}{\partial u} = \frac{3 \ln wz}{3 \ln wz}$$

$$\beta = \frac{1}{\mu_{g,T}} = \frac{\partial \ln(\omega)}{\partial U} \qquad \frac{1}{T} = \frac{\partial s}{\partial U} = \frac{\partial \mu_{g,lm}}{\partial U}$$

$$\frac{\partial \ln W}{\partial V_2} = \frac{\partial \ln W}{\partial V_i} \quad (same as softe)$$

$$P = T\left(\frac{ds}{dv}\right)_{v,r}$$

$$\frac{3}{3} \approx - \nu_2 \quad \frac{\partial \ln(\omega)}{\partial \nu_2} = 0 \quad \frac{\partial \ln(\omega_1)}{\partial \nu_2} = \frac{\partial \ln(\omega_1)}{\partial \nu_1}$$

$$p = -T(\frac{\partial P}{\partial P})_{V,V} = -\alpha_B \int_{V,V} (\frac{\partial P}{\partial P})_{V,V}$$

If
$$\mu$$
, = μ_2 => difusive eq =

