MODELAGEM E INFERÊNCIA ESTATÍSTICA

Teste de hipótese e Previsão da resposta

O QUE VOU ESTUDAR HOJE?

Lembrar o conceito e aplicação do teste e hipótese

• Aplicar no teste de utilidade o modelo β_0 e β_1 .

Inferências sobre µ_{y, x*}

Previsão de valores da variável Y.

TESTE HIPÓTESE

Teste de utilidade do modelo, isto é, confirmar ou rejeitar sua utilidade.

Hipótese nula: H_0 : $\beta_1 = \beta_{10}$

Valor da estatística do teste: $t = \frac{\hat{\beta}_l - \beta_{l0}}{1}$

Hipótese alternativa Determinação do valor-p

 $H_a: \beta_1 > \beta_{10}$ Área sob a curva t_{n-2} à direita de t $H_a: \beta_1 < \beta_{10}$ Área sob a curva t_{n-2} à esquerda de t $H_a: \beta_1 \neq \beta_{10}$ 2 · (Área sob a curva t_{n-2} à direita de |t|)

O teste de utilidade do modelo é o teste de H_0 : $\beta_1 = 0$ versus H_2 : $\beta_1 \neq 0$, sendo o valor da estatística de teste a razão $t = \hat{\beta}_1/s_{\hat{\beta}_1}$.

Fonte: (DEVORE, 2018, p. 482)

TESTE HIPÓTESE

Fonte: (DEVORE, 2018, p. 315)

POR QUE REALIZAR O TESTE DE HIPÓTESE?

PROCEDIMENTOS PARA O TESTE DE HIPÓTESE

- 1. Obter a reta de regressão $y = \beta_0 + \beta_1 x$
- 2. Definir o valor de n (número de amostras).
- 3. Definir o valor de k (número de variáveis).
- 4. Calcular os graus de liberdade gl = n-k.
- 5. Se a intenção é testar a utilidade do modelo iniciar testando H_0 : $\beta_1=0$ frente a H_a : $\beta_1\neq 0$ depois testar H_0 : $\beta_0=0$ frente a H_a : $\beta_0\neq 0$

PROCEDIMENTOS PARA O TESTE DE HIPÓTESE β₁

- 1. Definir a hipótese nula H_0 : $\beta_{10} = 0$ frente a H_a : $\beta_{10} \neq 0$.
- 2. Definir o intervalo de confiança α se conhecido.
- 3. Definir o intervalo crítico (t_{crit}) na tabela t-student para um determinado α e gl.
- 4. Definir a estatística de teste $t = \frac{\hat{\beta}_1 \beta_{10}}{s_{\hat{\beta}_1}}$.

Como
$$H_0$$
: $\beta_{10} = 0 \rightarrow t = \frac{\widehat{\beta}_1}{s_{\widehat{\beta}_1}}$.

- 5. Se $|t| \ge t_{crit}$ rejeitar H_0 em favor de H_a : $\beta_{10} \ne 0$.
- 6. Caso contrário comparar se p-valor < α.

PROCEDIMENTOS PARA O TESTE DE HIPÓTESE β₀

- 1. Definir a hipótese nula H_0 : $\beta_{00} = 0$ frente a H_a : $\beta_{00} \neq 0$.
- 2. Dos dados do problema 1- α = 0,95 \rightarrow α =0,05 e α /2=0,025
- 3. Definir o intervalo crítico (t_{crit}) na tabela t-student para um determinado α e gl.
- 4. Definir a estatística de teste $t = \frac{\beta_0 \beta_{00}}{s\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{s_{\chi\chi}}}}$.

Como
$$H_0: \beta_{00} = 0 \rightarrow t = \frac{\widehat{\beta}_0}{s\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{s_{xx}}}}.$$

- 5. Se $|t| \ge t_{crit}$ rejeitar $\underline{H_0}$ em favor de $\underline{H_a: \beta_{00}} \ne 0$.
- 6. Caso contrário comparar se $2(p\text{-valor}) < \alpha$ se sim, rejeitar H_0 em favor de H_a : $\beta_{00} \neq 0$

INFERÊNCIAS SOBRE µ_{y,x*}

Seja $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x^*$, em que x^* é algum valor fixo de x. Então

O valor médio de Ŷ é

$$E(\hat{Y}) = E(\hat{\beta}_0 + \hat{\beta}_1 x^*) = \mu_{\hat{\beta}_0 + \hat{\beta}_1 x^*} = \beta_0 + \beta_1 x^*$$

Assim, $\hat{\beta}_0 + \hat{\beta}_1 x^*$ é um estimador não viciado para $\beta_0 + \beta_1 x^*$ (isto é, para $\mu_{y \cdot x^*}$).

2. A variância de \hat{Y} é

$$V(\hat{Y}) = \sigma_{\hat{Y}}^2 = \sigma^2 \left[\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum x_i^2 - (\sum x_i)^2 / n} \right] = \sigma^2 \left[\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}} \right]$$

e o desvio padrão $\sigma_{\hat{\gamma}}$ é a raiz quadrada dessa expressão. O desvio padrão estimado de $\hat{\beta}_0 + \hat{\beta}_1 x^*$, representado por $s_{\hat{\gamma}}$ ou $s_{\hat{\beta}_0 + \hat{\beta}_1 x^*}$, resulta da substituição de σ por sua estimativa s:

$$s_{\hat{Y}} = s_{\hat{\beta}_0 + \hat{\beta}_1 x^{\bullet}} = s \sqrt{\frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}}}$$

3. Ŷ tem uma distribuição normal.

Fonte: (DEVORE, 2018, p. 488)

INFERÊNCIAS SOBRE µ_{y,x*}

Definir uma variável T para obter a estatística de teste para reta

$$T = \frac{\widehat{\beta}_0 + \widehat{\beta}_1 x^* - \beta_0 + \beta_1 x^*}{s_{\widehat{\beta}_0 + \widehat{\beta}_1 x^*}}$$

$$T = \frac{\widehat{Y} - \beta_0 + \beta_1 x^*}{s_{\widehat{\beta}_0 + \widehat{\beta}_1 x^*}}$$

Considerando gl=n-2

Da mesma forma que foi calculado o intervalo de confiança para $\beta 0$ e $\beta 1$ produzir um IC de $100(1-\alpha)\%$ para μ_{y,x^*} , o valor esperado de Y quando $x=x^*$

$$\widehat{\beta}_0 + \widehat{\beta}_1 x^* \pm t_{\frac{\alpha}{2}, n-2} s_{\widehat{\beta}_0 + \widehat{\beta}_1 x^*} = \widehat{y} \pm t_{\frac{\alpha}{2}, n-2} s_{\widehat{y}}$$

INTERVALO DE PREVISÃO PARA UM VALOR FUTURO DE Y

- Intervalo de confiança (IC).
- ✓ Referido a um parâmetro ou população com valor fixo.
- √ Valor desconhecido para o pesquisador.

- Intervalo de previsão (IP).
- √ Valor futuro de Y.
- ✓ Variável aleatória.

INTERVALO DE PREVISÃO PARA UM VALOR FUTURO DE Y

$$V[Y - (\hat{\beta}_0 + \hat{\beta}_1 x^*)] = \text{variancia do erro de previsão}$$

$$= V(Y) + V(\hat{\beta}_0 + \hat{\beta}_1 x^*)$$

$$= \sigma^2 + \sigma^2 \left[\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}} \right]$$

$$= \sigma^2 \left[1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}} \right]$$

$$T = \frac{Y - (\hat{\beta}_0 + \hat{\beta}_1 x^*)}{S\sqrt{1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}}}}$$

Um IP de $100(1-\alpha)$ % para uma observação Y futura a ser feita quando $x=x^*$ é

$$\hat{\beta}_{0} + \hat{\beta}_{1}x * \pm t_{\alpha/2, n-2} \cdot s \sqrt{1 + \frac{1}{n} + \frac{(x^{*} - \overline{x})^{2}}{S_{xx}}}$$

$$= \hat{\beta}_{0} + \hat{\beta}_{1}x * \pm t_{\alpha/2, n-2} \cdot \sqrt{s^{2} + s_{\hat{\beta}_{0} + \hat{\beta}_{1}x^{*}}}$$

$$= \hat{y} \pm t_{\alpha/2, n-2} \cdot \sqrt{s^{2} + s_{\hat{Y}}^{2}}$$
(12.7)

Fonte: (DEVORE, 2018, p. 491-492)

EXEMPLO 1: TESTE DE HIPÓTESE β₁

Observe na seguinte tabela os dados de 28 carros disponíveis na loja GT Auto, a capacidade volumétrica (cc) como variável preditora e o consumo (km/l) como variável resposta. Calcule o valor da estatística do teste, ao nível de confiança de 95%, e realize o teste de utilidade do modelo, se a reta é:

Consumo de combustível =
$$12,14401-0,00135$$
 Capacidade volumétrica $y=12,14401-0,00135x$

E o erro padrão é
$$s_{\widehat{\beta}_1} = \frac{s}{\sqrt{s_{xx}}} = 0$$
, 0001177

Consumo	12	10,4	12,8	10,3	10,5	8,5	9,5
Cap vol.	792	994	1000	1368	1598	1796	1997
Consumo	9,2	6,5	7,1	6,6	4,2	6,4	3
Cap vol.	1999	2996	3197	3498	5461	6162	7291
Consumo	11,4	11,2	11	11	10,6	8,7	10,5
Cap vol.	999	1199	1399	1498	1598	1798	1998
Consumo	7,8	7	5	6,1	2,6	3	3,8
Cap vol.	2995	3493	3799	3982	5204	5980	7993

EXEMPLO 1: TESTE DE HIPÓTESE β₁

O teste de utilidade do modelo é verificar H_0 : $\beta_{10}=0$ frente a H_a : $\beta_{10}\neq0$. Seguir o passo a passo para n=28, k=2, gl= 28-2=26

- 1. Verificar H_0 : $\beta_{10}=0$ frente a H_a : $\beta_{10}\neq 0$ em y=12,14401-0,00135x
- 2. Dos dados do problema 1- α = 0,95 \rightarrow α =0,05 e α /2=0,025
- 3. Da tabela t-student obter $t_{crit} = t_{(\alpha/2,gl)} = t_{(0,025,26)} \rightarrow t_{crit} = 2,0555$

	Distribuição t de Student										
	Teste Unilateral										
gl	15%	10%	5%	2,5%	2%	1%	0,5%	0,1%	0,05%		
gı					Teste Bilateral						
	30%	20%	10%	5%	4%	2%	1%	0,2%	0,1%		
1	1,9626	3,0777	6,3137	12,7062	15,8945	31,8210	63,6559	318, 2888	636,5776		
2	1,3862	1,8856	2,9200	4,3027	4,8487	6,9645	9,9250	22,3285	31,5998		
3	1,2498	1,6377	2,3534	3,1824	3,4819	4,5407	5,8408	10,2143	12,9244		
					- 000-				0 /404		
24	1,0593	1,3178	1,7109	2,0639	2, 1715	2,4922	2,7970	3,4668	3,7454		
25	1,0584	1,3163	1,7081	2,0595	2, 1666	2,4851	2,7874	3,4502	3,7251		
26	1,0575	1,3150	1,7056	2,0555	2, 1620	2,4786	2,7787	3,4350	3,7067		
27	1,0567	1,3137	1,7033	2,0518	2, 1578	2,4727	2,7707	3,4210	3,6895		

EXEMPLO 1: TESTE DE HIPÓTESE β₁

O teste de utilidade do modelo é verificar H_0 : $\beta_{10}=0$ frente a H_a : $\beta_{10}\neq0$. Seguir o passo a passo para n=28, k=2, gl= 28-2=26

- 1. Verificar H_0 : $\beta_{10}=0$ frente a H_a : $\beta_{10}\neq 0$ em y=12,14401-0,00135x
- 2. Dos dados do problema 1- α = 0,95 \rightarrow α =0,05 e α /2=0,025
- 3. Da tabela t-student $t_{crit} = t_{(\alpha/2,gl)} = t_{(0,025,26)} \rightarrow t_{crit} = 2,0555$.
- 4. Definir a estatística de teste. Como H_0 : $\beta_{10} = 0 \rightarrow t = \frac{\widehat{\beta}_1}{s_{\widehat{\beta}_1}}$.

E o erro padrão é
$$s_{\widehat{\beta}_1}=\frac{s}{\sqrt{s_{xx}}}=0,0001177$$
 e $\widehat{\beta}_1=-0,00135$
$$t=\frac{\widehat{\beta}_1}{s_{\widehat{\beta}_1}}=\frac{-0,00135}{0,0001177}=-11,469$$

5. Se $|t| \ge t_{crit}$ rejeitar H_0 em favor de H_a : $\beta_{10} \ne 0$. $|-11,469| \ge 2,0555$

Não há evidência suficiente de que H_0 : $\beta_{10}=0$. No nível de significância do 5% β_1 é significantemente $\neq 0$.

EXEMPLO 1 VERIFICANDO RESULTADO NO PYTHON COM O RESULTADO MANUAL

modelo = sm.OLS(y, x).fit()
print(modelo.summary())

	 coef 	std err	t	P> t	[0.025	0.975]
const cap_vol	12.1440 -0.0013	0.427	28.435 -11.398	0.000	11.266 -0.002	13.022 -0.001

Valor da estatística do teste $t = \frac{\beta_1 - \beta_{10}}{s_{\hat{\beta}_1}}$

Valor-p

Com a hipótese nula $H_0: \beta_1=0$

$$t = \frac{\widehat{\beta}_1}{s_{\widehat{\beta}_1}} = \frac{-0,00135}{0,0001177} = -11,469$$

EXEMPLO 1 VERIFICANDO RESULTADO NO PYTHON COM O RESULTADO MANUAL

O Python mediante o sm. OLS confirma a rejeição apresentando o valor-p = 0,000

OLS Regression Results									
Dep. Variable:	consumo		R-squ	uared:		0.833			
Model:		OLS		Adj.	R-squared:		0.827		
Method:		Least Squares					129.9		
Date:	1	Thu, 13 Jan 2022		Prob (F-statistic):			1.30e-11		
Time:		04:46:18		Log-L	ikelihood:		-45.064		
No. Observations:		28		AIC:			94.13		
Df Residuals:		26		BIC:			96.79		
Df Model:			1						
Covariance Type:		попго	bust						
	coef	std err		t	P> t	[0.025	0.975]		
const 12	.1440	0.427	28	. 435	0.000	11.266	13.022		
cap_vol -0	.0013	0.000	-11	. 398	0.000	-0.002	-0.001		
Omnibus:		(268	Durbi	in-Watson:		1.555		
Prob(Omnibus):		(.875	Jarqu	ue-Bera (JB):		0.200		
Skew:		(.181	Prob((JB):		0.905		
Kurtosis:			2.798	Cond.			6.50e+03		

EXEMPLO 2: TESTE DE HIPÓTESE β_0

Realize o teste de funcionalidade do modelo para intercepto, lembrando que a reta de regressão é y=12,14401-0,00135x, s=1,25, $\bar{x}=3003$ e $S_{XX}=112735060$.

Após calcule o intervalo de confiança do intercepto da reta.

Intercepto $\rightarrow \beta_0$

Teste de funcionalidade do modelo

$$H_0: \beta_{00} = 0$$

$$H_a$$
: $\beta_{00} \neq 0$.

EXEMPLO 2: TESTE DE HIPÓTESE β_0

Dados n=28, k=2, gl= 28-2,, s=1,25, $\bar{x} = 3003$ e $S_{XX} = 112735060$

- 1. Verificar H_0 : $\beta_{00} = 0$ frente a H_a : $\beta_{00} \neq 0$ em y = 12,144010 0,00135x
- 2. Definir o intervalo de confiança α se conhecido.
- 3. Do exemplo 1 $t_{crit} = t_{(\alpha/2,gl)} = t_{(0,025,26)} \rightarrow t_{crit} = 2,0555$
- 4. Definir a estatística de teste $t = \frac{\hat{\beta}_0}{s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{s_{xx}}}}$.

$$t = \frac{12,14401}{(1,25)\sqrt{\frac{1}{26} + \frac{(3003)^2}{112735060}}}$$

$$t = 28,56089$$

EXEMPLO 2: TESTE DE HIPÓTESE β_0

- Dados n=28, k=2, gl= 28-2,, s=1,25, $\bar{x} = 3003$ e $S_{XX} = 112735060$
- 1. Verificar H_0 : $\beta_{00} = 0$ frente a H_a : $\beta_{00} \neq 0$ em y = 12, 14401 0, 00135x
- 2. Definir o intervalo de confiança α se conhecido.
- 3. Do exemplo 1 $t_{crit} = t_{(\alpha/2,gl)} = t_{(0,025,26)} \rightarrow t_{crit} = 2,0555$
- 4. Definir a estatística de teste $t = \frac{\widehat{\beta}_0}{s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{s_{xx}}}} \rightarrow t = 28,56089$
- 5. Se $|t| \ge t_{crit}$ rejeitar H_0 em favor de H_a : $\beta_{00} \ne 0$. $|28,56089| \ge 2,055$
- H_0 : $\beta_{00} = 0$ é rejeitada validando H_a : $\beta_{00} \neq 0$

EXEMPLO 2: TESTE DE HIPÓTESE β₀

Dados n=28, k=2, gl= 28-2,, s=1,25,
$$\bar{x}=3003$$
, $S_{XX}=112735060$ e $y=12,14401-0,00135x$

Da etapa anterior
$$s_{\widehat{\beta}_0} = s \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{s_{xx}}} = (1, 25) \sqrt{\frac{1}{28} + \frac{\overline{(3003)}^2}{112735060}} =$$

$$s_{\widehat{\boldsymbol{\beta}}_0} =$$
 0,43022

$$\widehat{\beta}_0 = \beta_0 \pm t_{\alpha/2,n-2} s_{\widehat{\beta}_0}$$

$$t_{0,025,26} = 2,0555$$

$$\widehat{\beta}_0 = 12,14401 \pm (2,055)(0,4252)$$
 IC para o nível do 95% $\widehat{\beta}_0 = (11,27022,13,0178)$

EXEMPLO 2 VERIFICANDO RESULTADO NO PYTHON COM O RESULTADO MANUAL

O Python mediante o sm.OLS confirma a rejeição de H₀ apresentando o valor-p = 0,000

OLS Regression Results								
		=======	====	======				
Dep. Variable:		consu	mo	R-squar	ed:		0.833	
Model:		0	LS	Adj. R-	squared:		0.827	
Method:	L	east Squar	es	F-stati	stic:		129.9	
Date:	Thu,	13 Jan 20	22	Prob (F	-statistic):	1.30e-11	
Time:		04:46:	18	Log-Lik	elihood:		-45.064	
No. Observations	::		28	Â	;		94.13	
Df Residuals:	0.40	0000	2($t = \frac{\rho}{2}$	$\frac{\partial}{\partial t} \rightarrow t = 2$	28.2278	96.79	
Df Model:	$\hat{\beta}_0 = 0.43$	3022		$S_{\hat{I}}$	ĝ.	10,111		
Covariance Type:		nonrobu	st	ŀ				
			====	======	/			
	coef	std err		t	P> t	[0.025	0.975]	
const 12	.1440	0.427	28	.435	0.000	11.266	13.022	
cap_vol -0	.0013	0.000	-11	. 398	0.000	-0.002	-0.001	
Omnibus:	=======	 0.2	==== 68	Durbin-	Watson:	=======	1.555	
Prob(Omnibus):		0.8	75		Bera (JB):		0.200	
Skew:		0.1		Prob(JB			0.905	
Kurtosis:		2.7		Cond. N			6.50e+03	

Considerando os dados da GT Auto, cuja reta de regressão é y = 12,14401 - 0,00135x

Calcule o intervalo de confiança para o nível de confiança de 95% para uma capacidade volumétrica média de 3500.

Seguem alguns valores calculados nos exemplos anteriores:

```
\begin{split} r^2 &= 0,8346, \Sigma x_i \text{=}84084, \ \Sigma y_i \text{=}\ 226,7, \ \Sigma x_i^2 \text{=}365239312, \\ \Sigma x_i y_i \text{=}528830,6 \ \Sigma y_i^2 \text{=}2081,25, \ \bar{x} = 3003, \ \bar{y} = 226,7, \\ S_{xx} &= 112735060, S_{xy} = -151950, \ S_{yy} = 245,7896, \\ s^2 &= 1,563, \ s = 1,250, \text{SQE=40,6571, SQT} = 245,7896 \\ e \ t_{(0,025,26)} &= 2,0555. \end{split}
```

Dados necessários y = 12,14401 - 0,00135, x*=3500, n=28, \bar{x} = 3003, S_{xx} = 112735060, $t_{(0,025,26)}$ = 2,0555 e s = 1,250

O intervalo está centralizado em:

$$\begin{split} \widehat{Y} &= \widehat{\beta}_0 + \widehat{\beta}_1 x^* = \widehat{\beta}_0 + \widehat{\beta}_1 (3500) \\ \widehat{Y} &= \widehat{\beta}_0 + \widehat{\beta}_1 x^* = 12,14401 - 0,00135(3500) \\ \widehat{Y} &= \widehat{\beta}_0 + \widehat{\beta}_1 x^* = 7,419 \end{split}$$

O desvio padrão estimado é:

$$\mathbf{s}_{\hat{\mathbf{Y}}} = \mathbf{s} \sqrt{\frac{1}{\mathbf{n}} + \frac{(\mathbf{x}^* - \overline{\mathbf{x}})^2}{\mathbf{s}_{\mathbf{x}\mathbf{x}}}}$$

$$s_{\hat{Y}} = (1,250)\sqrt{\frac{1}{28} + \frac{(3500 - 3003)^2}{1127350600}} = 0,24337$$

Assim $\hat{y} \pm t_{\frac{\alpha}{2},n-2} s_{\hat{y}}$ pode ser construída mediante:

$$\begin{split} \widehat{Y} &= \widehat{\beta}_0 + \widehat{\beta}_1 x^* = 7,419 \\ s_{\widehat{Y}} &= 0,24337 \text{ e} \end{split}$$

$$t_{(0,025,26)} = 2,0555$$

O intervalo de confiança será:

$$\widehat{\mu}_{Y,3500}$$
=7,419 ± (2,0555)(0,24337) $\widehat{\mu}_{Y,3500}$ =(6,9188, 7,9192)

 $\widehat{\mu}_{Y,3500}$ =(6,9188, 7,9192) 6,9188< $\widehat{\mu}_{Y,3500}$ < 7,9192

EXEMPLO 4: IP

Finalmente calcular o intervalo de previsão para o nível de confiança de 95% para uma capacidade volumétrica média de 3500.

Considerando os dados da GT Auto, cuja reta de regressão é

$$y=12,14401-0,00135x$$

$$\bar{y}=226,7,t_{(0,025,26)}=\textbf{2,0555},s=1,250~e~s_{\widehat{Y}}=\textbf{0,24337}$$

A equação do IP

$$\hat{y} \pm t_{\frac{\alpha}{2}, n-2} \sqrt{s^2 - s_{\hat{y}}^2}$$

$$\hat{y} \pm t_{\frac{\alpha}{2},n-2} \sqrt{s^2 - s_{\hat{y}}^2} = 7,419 \pm (2,0555) \sqrt{1,250^2 - 0,24337^2}$$
 IP: $\hat{Y} = (4,8988,9,9392)$ 4,8988 $<\hat{Y} < 9,9392$

EXEMPLO 3

IC $\widehat{\mu}_{Y,3500} = (6,9188, 7,9192)$ $6,9188 < \widehat{\mu}_{Y,3500} < 7,9192$ IP $\widehat{Y} = (4,8988, 9,9392)$ $4,8988 < \widehat{Y} < 9,9392$