Numerical Representation of the Amazon River Flood Cycle 1939-1998

Michael T. Coe¹, Marcos Heil Costa², Erica A Howard³

- ¹ The Woods Hole Research Center, Woods Hole, MA
- ² Universidade Federal de Viçosa, Viçosa Brasil
- ³ Center for Sustainability and the Global Environment, University of Wisconsin-Madison

Introduction

Flood pulse is important for all species in Amazonia providing food, habitat, commerce, etc...

Introduction

It is also highly variable

- Would like to address questions about largescale hydrology of Amazonia such as:
 - How much water, and of what quality, is in the soils, rivers, and floodplains?
 - How variable is it in time and space?
 - How is it linked to atmosphere, vegetation and soil characteristics?
 - How might physical changes in the basin influence the quantity and quality of the surface waters?
 - What are the roles of the river in biochemical cycling?

Introduction

- Scale of basin makes it difficult to answer questions with observations alone.
- These questions can help us understand the regional and global importance of basin
- Numerical models provide spatially and temporally consistent estimates of ecosystem function from simple climatological data

Goal

- Develop mechanistic models to simulate hydrology and biochemistry of Amazon River and floodplain system
 - Simple enough to apply to entire basin, source to sink
 - Complex enough to represent physical processes and sensitivity to change
 - Capable of working at high and low spatial resolution
 - Capable of expansion to model C and nutrients cycling

IBIS-THMB models

- Mechanistic models of plant and soil functioning
- Partitions incoming precipitation and radiation
- Routes runoff across landscape to simulate rivers, lakes, and wetlands

IBIS-THMB models

- Use climate (precipitation, temperature, solar radiation, humidity, and wind speed), land cover, and land use data to derive:
 - a temporally and spatially varying representation of aquatic ecosystems.

THMB

Model represents the river system as series of boxes connected by prescribed river flow directions

- At 5-minute (9km)
 resolution entire basin is
 represented by about
 87000 boxes
- 90m and 500m resolution data now available from WWF for all of South America

THMB

The water volume in each box and the flow from one box to the next in rivers is represented by a simple set of equations

- Calculates river volume and discharge at all 87000 boxes as a function of local runoff and discharge from upstream at 30 minute timestep
- Conserves mass all water that enters river either evaporates or is discharged to the ocean

THMB

Water floods surrounding land as river exceeds banks

 Calculates area of each grid cell flooded and the depth of the water

Improvements from Coe et al., 2002

- River length added representation of river sinuosity to calculation of stream length, from: Costa et al., 2002.
- River velocity restructured velocity calculation based on the Chezy formula
- Water budget include precipitation minus evaporation over wetlands and river in water balance
- Flood initiation use empirical relationships to derive river volume at flood initiation
- Topography incorporate information from SRTM DEM.

• River length - Sinuosity of river derived from charts.

Provides better estimate of flow path length.

• River velocity - Velocity now follows Chezy formula. Velocity (u) is a function of the slope of the water surface and its momentum.

$$u = u_{o1} \times (R \times S)^{0.5}$$

S = energy slope of river

R = hydraulic radius

- Velocity increases with increasing water slope and increasing discharge volume
- Accounts for increasing velocity of flat downstream sections of river

- River velocity Velocity now follows Chezy formula. Velocity (u) is a function of the slope of the water surface and its momentum.
 - Velocity increases with increasing water slope and increasing discharge volume
 - Accounts for increasing velocity of flat downstream sections of river

- River velocity Velocity now follows Chezy formula. Velocity (u) is a function of the slope of the water surface and its momentum.
 - Velocity increases with increasing water slope and increasing discharge volume
 - Accounts for increasing velocity of flat downstream sections of river

Discharge

Discharge - Ji-Paraná

Discharge - Ji-Paraná

 Water budget - explicitly include precipitation and potential evaporation over wetlands and river in the water budget equations

 This has relatively small impact on water balance; less than 5% decrease in discharge at Óbidos compared to simulation without P-E over wetlands and river

- Flood initiation relationships relating river geometry at bankfull volume were derived from ANA data.
 - Calculate height, width, and length of river at flood initiation (bankfull)
 - Therefore, know volume of river at bankfull (LxWxH)
 - Any volume in river reservoir in excess of bankfull volume is added to floodplain reservoir

 Topography - 5-minute horizontal resolution topography represented by GTOPO30 DEM

Topography - Shuttle RADAR Topography
 Mission (SRTM) data averaged to 5 minute horizontal resolution clearly provides more information

• Topography - in part determines the flooded area

• Topography - GTOPO30 alone

• Topography - SRTM alone

Topography - GTOPO30 with probability distribution of SRTM

Water height

Comparison of relative water height measured by TOPEX/Poseidon radar altimeter and simulated by model. r = 0.75

Water height

Comparison of relative water height measured by TOPEX/Poseidon radar altimeter and simulated by model. r = 0.67

Flooding

Conclusions

- Improvements to model provide better representation of seasonal and inter-annual behavior of the River system
- Work remains to be done on the surface topography data but physical characteristics of floodplain are improved.
- Model is being used to analyze hydrologic variability and sensitivity to change within the basin
- Can incorporate C and nutrient cycling within model structure
- With new high resolution river products can be run at numerous resolutions (90m, 500m, and 5-minute).

Flooding

Flooding

