CORRIGÉ: Suites convexes et quasi-convexes (d'après CENTRALE 1979)

PRÉLIMINAIRES

- **0.1** Si (a_n) est à variations bornés alors la série $\sum b_n$ est absolument convergente, donc convergente; or $\sum_{n=1}^{N} b_n = a_N a_0$ donc la suite (a_n) est convergente.
- **0.2** On peut faire la démonstration par récurrence sur N ou, directement, en faisant apparaître des sommes télescopiques (*c'est le principe de la transformation d'Abel!*) :

$$\sum_{n=1}^{N} n d_n = \sum_{n=1}^{N} n(b_n - b_{n+1}) = \sum_{n=1}^{N} n b_n - \sum_{n=2}^{N+1} (n-1) b_n$$

$$= \sum_{n=1}^{N} b_n + \sum_{n=1}^{N} (n-1) b_n - \sum_{n=1}^{N} (n-1) b_n - N b_{N+1} = \sum_{n=1}^{N} b_n - N b_{N+1}.$$

PARTIE I

- **I.1** On a, pour tout entier $n \in \mathbb{N}$, $d_n = b_n b_{n+1}$ ce qui montre que (a_n) est convexe si et seulement si (b_n) est décroissante.
- **I.2** $d_n = f(n-1) + f(n+1) 2f(n)$ puis, on utilise l'égalité $n = \frac{1}{2} \left((n+1) + (n-1) \right)$ et le fait que f est convexe f , d'où, avec $\lambda = \frac{1}{2}$:

$$f(n) \le \frac{1}{2} \Big(f(n+1) + f(n-1) \Big).$$

Conclusion : (a_n) est convexe.

I.3 On a donc (b_n) et $(-b_n)_{n\in\mathbb{N}}$ croissantes donc (b_n) est une suite constante; ainsi, pour tout $n\in\mathbb{N}$, on a $a_{n-1}-a_n=b_0$ d'où on en déduit, par une récurrence immédiate, que

$$\forall n \in \mathbb{N}$$
 $a_n = a_0 - nb_0$.

La réciproque est immédiate.

Conclusion : les suites convexes et d'opposé convexe sont les suites arithmétiques.

I.4 Si $\alpha \ge 1$ alors, comme $f: x \mapsto x^{\alpha}$ est convexe, $a_n = n^{\alpha}$ est convexe.

Cela ne suffit bien sûr pas pour établir la réciproque; en revanche, si $0 < \alpha < 1$ alors $f : x \mapsto x^{\alpha}$ est strictement concave (son opposé est strictement convexe) donc $d_n < 0$ pour tout $n \in \mathbb{N}$.

Conclusion : $(n^{\alpha})_{n \in \mathbb{N}}$ est convexe si et seulement si $\alpha \ge 1$.

I.5 a) Avec la calculatrice, pour n = 9, on calcule

$$a_9 = 27$$
 $a_8 = \lfloor 8^{3/2} \rfloor = \lfloor 22, 63.... \rfloor = 22$ $a_{10} = \lfloor 10^{3/2} \rfloor = \lfloor 31, 62... \rfloor = 31$

d'où $d_9 = -1$.

Il fallait cependant *prouver* les valeurs de a_8 et a_9 .

On part donc de l'égalité entre entiers :

$$\underbrace{22^2}_{484} < \underbrace{8^3}_{512} < \underbrace{23^2}_{529}$$

qui nous permet d'écrire que $22 < 8^{\frac{3}{2}} < 23$, et donc de conclure que $a_8 = 22$.

De même,
$$31^2 < 10^3 < 32^2$$

qui nous permet d'écrire que $31 < 10^{\frac{3}{2}} < 32$, et donc de conclure que $a_{10} = 31$.

Conclusion : $d_9 = -1 < 0$ donc la suite (a_n) n'est pas convexe.

1. C'est-à-dire que, pour tout x et y dans le domaine de définition de f, et pour tout $\lambda \in [0,1]$, on a

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
.

b) On a

$$(n+1)^{\alpha} - 1 < \lfloor (n+1)^{\alpha} \rfloor$$
$$(n-1)^{\alpha} - 1 < \lfloor (n-1)^{\alpha} \rfloor$$
$$-2n^{\alpha} \le -2 \lfloor n^{\alpha} \rfloor$$

d'où, en additionnant ces inégalités, on trouve $d_n \ge (n+1)^{\alpha} + (n-1)^{\alpha} - 2n^{\alpha} - 2$.

Soit $f: x \mapsto (x+1)^{\alpha} + (x-1)^{\alpha} - 2x^{\alpha} - 2$;

alors $f(1) = 2^{\alpha} - 4 \ge 0$ (car $\alpha \ge 2$) puis $f' : x \mapsto \alpha\{(x+1)^{\alpha-1} + (x-1)^{\alpha-1} - 2x^{\alpha-1}\}$ est à valeurs positives car $g : x \mapsto x^{\alpha-1}$ est convexe. Donc f est croissante et, de la propriété $f(1) \ge 0$, on tire que f(n) est positif pour $n \ge 1$.

Conclusion : Pour $\alpha \ge 2$, la suite $(\lfloor n^{\alpha} \rfloor)_{n \in \mathbb{N}}$ est convexe.

PARTIE II

- **II.1** \blacktriangleright (b_n) décroît et, puisque pour tout $n \in \mathbb{N}$, $-A \le a_n \le A$, on a : $b_n \ge -2A$. Toute suite décroissante et minorée converge dans \mathbb{R} , donc (b_n) converge.
 - ▶ Supposons $\lim_{n\to\infty} b_n \neq 0$, alors (a_n) ne serait pas bornée; en effet, en supposant par exemple $b = \lim_{n\to\infty} b_n > 0$,

il existe un entier n_0 tel que, pour tout $n\geqslant n_0$, on a $b_n\geqslant \frac{b}{2}>0$, d'où par une récurrence immédiate,

 $\forall n\geqslant n_0,\ a_n\leqslant a_{n_0}-rac{n-n_0}{2}b$, ce qui montre que $\lim_{n\to-\infty}a_n=-\infty$: contradiction. \blacktriangleleft

(*Rem*: Plus rapidement, on pouvait utiliser le lemme de l'escalier, si $b_n = a_{n-1} - a_n$ converge vers b non nul, alors a_n est équivalent, quand n tend vers $+\infty$ à -nb...)

Conclusion:
$$\lim_{n\to\infty}b_n=0$$
.

On remarquera que, la suite (b_n) étant décroissante, on a également établi que : $\forall n \in \mathbb{N}$ $b_n \ge 0$.

II.2 On a $\sum_{n=1}^{N} b_n = a_0 - a_N$ et comme (a_n) est bornée, que $b_n \ge 0$, on en déduit que la série positive $\sum b_n$, ayant ses sommes partielles majorées, converge; par conséquent, la suite (a_n) est convergente.

Autre solution : puisque $b_n \ge 0$ pour tout $n \in \mathbb{N}$, la suite (a_n) est décroissante ; puisqu'elle est minorée, elle converge donc.

II.3 On écrit

$$a_p - a_n = \sum_{k=p+1}^n b_k$$

$$\ge (n-p)b_n(\operatorname{car}(b_n) \operatorname{décroît})$$

$$\ge \frac{n}{2}b_n(\operatorname{car}-p \ge -\frac{n}{2} \quad \text{et} \quad b_n \ge 0)$$

donc
$$0 \le n b_n \le 2(a_p - a_n)$$
.

Notamment, pour tout $n \in \mathbb{N}$, on a

$$0 \le 2n b_{2n} \le 2(a_{2n} - a_n)$$
 et $0 \le (2n+1)b_{2n+1} \le 2(a_{2n+1} - a_n)$

et ce deuxième membre tend vers 0 quand n tend vers l'infini.

On a donc montré $\lim_{n\to\infty} n b_n = 0$.

L'inégalité $\forall n \in \mathbb{N}$ $0 \le n \, b_{n+1} \le (n+1) b_{n+1}$ suffit alors pour conclure que $\lim_{n \to \infty} n \, b_{n+1} = 0$.

II.4 Tout d'abord, notons que, puisque (a_n) converge, la série $\sum b_n$ converge. On utilise l'égalité de la question O.2 et comme $\lim_{N\to\infty} N \, b_{N+1} = 0$, la série $\sum n \, d_n$ converge puis, par passage à la limite, on obtient la relation $\sum_{n=1}^{+\infty} n \, d_n = \sum_{n=1}^{+\infty} b_n$

PARTIE III

2/5

III.1 En utilisant l'inégalité de l'indication et l'inégalité triangulaire, et on fait la somme sur n, on obtient

$$\begin{split} \sum_{n=1}^{N} |b_{n}| & \leq \left| \sum_{n=1}^{N} b_{n} \right| + \sum_{n=1}^{N} \mathbf{a} \right) \sum_{p=1}^{n-1} \frac{p}{N} \left| b_{p} - b_{p+1} \right| + \sum_{p=n}^{N-1} \frac{N-p}{N} \left| b_{p} - b_{p+1} \right| \\ & \leq \left| \sum_{n=1}^{N} b_{n} \right| + \sum_{p=1}^{N-1} \frac{1}{N} \left| b_{p} - b_{p+1} \right| \cdot \left(p(N-p) + (N-p)p \right) \end{split}$$

où on a utilisé le fait que $|b_p - b_{p+1}|$ intervient N - p fois dans la première somme, p fois dans la deuxième, d'où

$$\sum_{n=1}^{N} |b_n| \le \left| \sum_{n=1}^{N} b_n \right| + \sum_{p=1}^{N-1} 2p \left| b_p - b_{p+1} \right| \text{ (en majorant N} - p \text{ par N)}$$

On a donc l'inégalité demandée (p et n sont des variables muettes); on en déduit que $\sum_{n=1}^{N} |b_n|$ est majorée donc la série $\sum b_n$ est absolument convergente :

Conclusion : (a_n) est à variations bornées. (et donc convergente.)

- III.2 La première inégalité est évidente car la série $\sum b_n$ est convergente. La deuxième est tout aussi évidente car $a_0 a_N = \sum_{n=1}^N b_n$ et en passant à la limite dans l'inégalité précédente, on peut conclure.
- III.3 En utilisant l'égalité de la question O.2, on a

$$Nb_{N+1} = \sum_{n=1}^{N} b_n - \sum_{n=1}^{N-1} n d_n$$

 $\underline{\mathrm{donc}\ (\mathrm{N}\,b_{\mathrm{N}+1})_{\mathrm{N}\in\mathbb{N}}}$ a une limite et cette limite ne peut être que 0 (sinon $\sum b_n$ divergerait) d'où, quand $\mathrm{N}\to+\infty$

$$\sum_{n=1}^{+\infty} n d_n = \sum_{n=1}^{+\infty} b_n.$$

PARTIE IV

IV.1 On sait (question O.2) que $\sum_{m=1}^{n} m(a_m - a_{m+1}) = \sum_{m=1}^{n} a_m - na_{m+1}$ (en remplaçant *b* par *a* et N par *n*). Or

$$n(n+1)(c_n-c_{n+1}) = (n+1)\sum_{m=1}^n a_m - n\sum_{m=1}^{n+1} a_m = \sum_{m=1}^n a_m - na_{n+1}$$

ďoù

 $c_n - c_{n+1} = \left(\frac{1}{n} - \frac{1}{n+1}\right) \sum_{m=1}^n m(a_m - a_{m+1}) \text{ en divisant par } n(n+1) \text{ et en remarquant que } \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.$ Ensuite

$$\begin{split} \sum_{n=1}^{N} |c_n - c_{n+1}| & \leq \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) \sum_{m=1}^{n} m \, |a_m - a_{m+1}| \\ & \leq \sum_{m=1}^{N} m \, |a_m - a_{m+1}| \underbrace{\sum_{n=m}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right)}_{=\frac{1}{m} - \frac{1}{N+1} \leq \frac{1}{m}} \end{split} \text{ (en permutant les sommes)}$$

et donc
$$\sum_{n=1}^{N} |c_n - c_{n+1}| \le \sum_{m=1}^{N} |a_m - a_{m+1}|.$$

IV.2 On écrit

$$n(n+1)(c_{n+1}-c_n) = -\sum_{m=1}^{n} m(a_m - a_{m+1}) = -n(a_n - a_{n+1}) - \sum_{m=1}^{n-1} m(a_m - a_{m+1})$$
$$= -n(a_n - a_{n+1}) + n(n-1)(c_n - c_{n-1})$$

d'où, en écrivant que $c_{n-1} + c_{n+1} - 2c_n = -(c_n - c_{n-1}) + (c_{n+1} - c_n)$,

$$c_{n-1}+c_{n+1}-2c_n=\frac{1}{n+1}((a_{n+1}-a_n)-2(c_n-c_{n-1})).$$

On a alors

$$\sum_{n=2}^{N} n |c_{n-1} + c_{n+1} - 2c_n| \leq \sum_{n=2}^{N} \frac{n}{n+1} (|a_{n+1} - a_n| + 2|c_n - c_{n-1}|)$$

$$\leq \sum_{n=2}^{N} |a_{n+1} - a_n| + 2\sum_{n=1}^{N-1} |a_{n+1} - a_n| \text{ (relation du IV.1)}$$

$$\leq 3\sum_{n=1}^{N} |a_{n+1} - a_n|$$

donc, la série $\sum n|c_{n-1}+c_{n+1}-2c_n|$ converge, (c_n) est quasi-convexe et, par passage à la limite, on a

$$\sum_{n=2}^{+\infty} n |c_{n-1} + c_{n+1} - 2c_n| \le 3 \sum_{n=1}^{+\infty} |a_{n+1} - a_n|.$$

IV.3 Comme (a_n) est bornée, (c_n) est bornée, or, dans la partie III, on a vu qu'une suite quasi-convexe et bornée était à variations bornées donc (c_n) est à variations bornées. On utilise ensuite la relation de la question IV.2 :

$$(n+1)(c_{n-1}+c_{n+1}-2c_n)+2(c_n-c_{n-1})=a_{n+1}-a_n$$

d'où $|a_{n+1}-a_n| \le (n+1)|c_{n-1}+c_{n+1}-2c_n|+2|c_n-c_{n-1}|$, et par conséquent (a_n) est à variations bornées et convergente.

IV.4 On a $b_n \ge 0$, $\sum b_n$ peut être considéré comme la somme de deux séries $\sum_{n \ne 2^p} \frac{1}{n^2}$ et $\sum_p \frac{1}{2^p}$, qui convergent toutes deux.

La suite (a_n) est donc à variations bornées. Vu la question IV.2, la suite (c_n) est quasi-convexe.

On utilise à nouveau l'égalité préliminaire O.2 ; comme $(Nb_{N+1})_{N\in\mathbb{N}}$ n'a pas de limite, $\sum n\,d_n$ diverge :

On ne peut donc avoir l'égalité proposée.

IV.5 (i) \Longrightarrow (ii) Supposons que la série $\sum \frac{a_{n+1}}{n+1}$ est absolument convergente, alors

$$\frac{|c_n|}{n+1} = \left(\frac{1}{n} - \frac{1}{n+1}\right)|a_1 + \dots + a_n| \le \left(\frac{1}{n} - \frac{1}{n+1}\right)(|a_1| + \dots + |a_n|)$$

ďoù

$$\begin{split} \sum_{n=1}^{N} \frac{|c_n|}{n+1} &\leqslant \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1}\right) \sum_{p=1}^{n} |a_p| \\ &= \sum_{p=1}^{N} |a_p| \sum_{n=p}^{N} \left(\frac{1}{n} - \frac{1}{n+1}\right) \text{ (en permutant les sommes)} \\ &\leqslant \sum_{p=1}^{N} |a_p| \left(\frac{1}{p} - \frac{1}{N+1}\right) \leqslant \sum_{p=1}^{N} \frac{|a_p|}{p} \end{split}$$

donc $\sum \frac{c_n}{n+1}$ est absolument convergente.

 $(ii) \Longrightarrow (i)$ Étudions maintenant le cas où la série $\sum \frac{c_n}{n+1}$ est absolument convergente.

Comme $a_{n+1} = (n+1)c_{n+1} - nc_n = (n+1)(c_{n+1} - c_n) + c_n$ alors

$$\frac{|a_{n+1}|}{n+1} \le |c_{n+1} - c_n| + \frac{|c_n|}{n+1}$$

et, vu que (c_n) est à variations bornées, on en déduit que $\sum \frac{a_{n+1}}{n+1}$ est absolument convergente.

PARTIE V

V.1 On compare une somme et une intégrale par les techniques habituelles de monotonie :

$$\sum_{m=2}^{p} \frac{1}{m} \leqslant \int_{1}^{p} \frac{\mathrm{d}t}{t} = \ln p,$$

ce qui donne $\sum_{m=1}^{p} \frac{1}{m} \le 1 + \ln p.$

Ensuite, grâce à $||a| - |b|| \le |a - b|$ on a

$$\left| |a_p \ln p - a_{p+1} \ln(p+1)| - |a_p - a_{p+1}| \ln p \right| \le |a_{p+1}| \ln \left(1 + \frac{1}{p}\right) \le \frac{|a_{p+1}|}{p}.$$

V.2 $(i) \Longrightarrow (ii)$ On suppose que la suite $(a_n \ln n)_{n \in \mathbb{N}^*}$ converge vers 0 et que la série $\sum (a_{n+1} - a_{n+2}) \ln(n+1)$ est absolument convergente. On a alors

$$\begin{split} \sum_{n=1}^{N} \frac{|a_n|}{n} & \leq \sum_{n=1}^{N} \frac{1}{n} \left(\sum_{p=n}^{N-1} |a_p - a_{p+1}| + |a_N| \right) \\ & \leq \sum_{p=1}^{N-1} |a_p - a_{p+1}| \sum_{n=1}^{p} \frac{1}{n} + |a_n| \sum_{n=1}^{N} \frac{1}{n} \\ & \leq \sum_{p=1}^{N-1} |a_p - a_{p+1}| (1 + \ln p) + |a_N| (1 + \ln N) \end{split}$$

ce qui permet de dire que $\sum \frac{|a_n|}{n}$ converge, et il en est de même de $\sum \frac{|a_{n+1}|}{n}$. On utilise alors la deuxième relation de la partie V qui donne

$$|a_p \ln p - a_{p+1} \ln(p+1)| \le |a_p - a_{p+1}| \ln p + \frac{|a_{p+1}|}{p}$$

et on peut conclure que $\sum a_p \ln p - a_{p+1} \ln(p+1)$ converge.

 $(ii)\Longrightarrow (i)$ Supposons que les séries $\sum \frac{a_n}{n}$ et $\sum (a_n \ln n - a_{n+1} \ln (n+1))$ sont absolument convergentes. Alors, en utilisant la deuxième inégalité ci-dessus, on a

$$|a_p - a_{p+1}| \ln p \le \frac{|a_{p+1}|}{p} + |a_p \ln p - a_{p+1} \ln(p+1)|$$

donc $\sum (a_p - a_{p+1}) \ln p$ est absolument convergente.

Puis, la convergence de $\sum (a_p \ln p - a_{p+1} \ln(p+1))$ entraı̂ne la convergence de la suite $(a_n \ln n)$. Si cette limite ℓ est non nulle alors $\sum \frac{a_p}{p}$ diverge $(a_n \sim \frac{\ell}{n \ln n})$, ce qui est impossible.

Conclusion : $\sum (a_p - a_{p+1}) \ln p$ est absolument convergente et $\lim_{n \to \infty} a_n \ln n = 0$.

V.3 $a_0 = 0$ et $a_n = \frac{1}{n}$. (ou bien $a_n = 0$ pour tout $n \in \mathbb{N}$, mais ce n'est pas un exemple intéressant!)

