Exercici 8.

- (a) Siguin a, m, n nombres naturals, $m \neq n$. Calculeu $\operatorname{mcd}(a^{2^m} + 1, a^{2^n} + 1)$.
- (b) Siguin m, n nombres naturals i d := mcd(m, n). Demostreu que $mcd(2^m 1, 2^n 1) = 2^d 1$.

Solució 8.

(a) Provarem que

$$\operatorname{mcd}(a^{2^m} + 1, a^{2^n} + 1) = \begin{cases} 1, & \text{si } a \text{ és parell i } m \neq n, \\ 2, & \text{si } a \text{ és senar i } m \neq n, \\ a^{2^m} + 1, & \text{si } m = n. \end{cases}$$

Clarament, si m = n, llavors $mcd(a^{2^m} + 1, a^{2^n} + 1) = a^{2^m} + 1$ i ja hem acabat. Per tant, podem suposar, i ho fem, que m > n.

Notem que, en general, per a $r > 2^n$, tenim que

$$a^{r} + 1 - (a^{2^{n}} + 1) = a^{r} - a^{2^{n}} = a^{2^{n}} (a^{r-2^{n}} - 1)$$

i, com que $mcd(a^{2^n}, a^{2^n} + 1) = 1$, és

$$\operatorname{mcd}(a^{r} + 1, a^{2^{n}} + 1) = \operatorname{mcd}(a^{r} + 1 - (a^{2^{n}} + 1), a^{2^{n}} + 1)$$
$$= \operatorname{mcd}(a^{2^{n}}(a^{r-2^{n}} - 1), a^{2^{n}} + 1)$$
$$= \operatorname{mcd}(a^{r-2^{n}} - 1, a^{2^{n}} + 1).$$

Anàlogament, i també per a $s > 2^n$, tenim que

$$a^{s} - 1 + (a^{2^{n}} + 1) = a^{s} + a^{2^{n}} = a^{2^{n}}(a^{s-2^{n}} + 1)$$

i, com que $mcd(a^{2^n}, a^{2^n} + 1) = 1$, és

$$\operatorname{mcd}(a^{s} - 1, a^{2^{n}} + 1) = \operatorname{mcd}(a^{s} - 1 + (a^{2^{n}} + 1), a^{2^{n}} + 1)$$
$$= \operatorname{mcd}(a^{2^{n}}(a^{s-2^{n}} + 1), a^{2^{n}} + 1)$$
$$= \operatorname{mcd}(a^{s-2^{n}} + 1, a^{2^{n}} + 1).$$

Ara, notem que $2^m = 2^{m-n}2^n$, de manera que, per a m > n, podem restar 2^n de 2^m una quantitat parella de vegades $(2^{m-n}$ és parell, perquè m > n). Així, obtenim que

$$mcd(a^{2^m} + 1, a^{2^n} + 1) = mcd(a^0 + 1, a^{2^n} + 1) = mcd(2, a^{2^n} + 1),$$

que proporciona el càlcul desitjat,

$$\operatorname{mcd}(a^{2^m} + 1, a^{2^n} + 1) = \begin{cases} 1, & \text{si } a \text{ \'es parell,} \\ 2, & \text{si } a \text{ \'es senar.} \end{cases}$$

(b) El resultat és clar si m = n. Suposem, doncs, que és m > n.

Ara, tenim que

$$2^{m} - 1 - (2^{n} - 1) = 2^{m} - 2^{n} = 2^{n}(2^{m-n} - 1)$$

i, com que $mcd(2^n, 2^n - 1) = 1$, és

$$mcd(2^m - 1, 2^n - 1) = mcd(2^n(2^{m-n} - 1), 2^n - 1) = mcd(2^{m-n} - 1, 2^n - 1);$$

és a dir, podem restar n de m en l'exponent del primer dels dos nombres i el màxim comú divisor no canvia.

Sigui m = nq + r, amb $0 \le r \le n$, la divisió entera de m entre n. Com que m > n, resulta que és $q \ge 1$, i podem iterar q vegades el càlcul anterior; obtenim que

$$mcd(2^m-1, 2^n-1) = mcd(2^{m-qn}-1, 2^n-1) = mcd(2^r-1, 2^n-1) = mcd(2^n-1, 2^r-1).$$

Apliquem successivament aquest fet d'acord amb l'algoritme d'Euclides per al càlcul del màxim comú divisor de m i n. Obtenim exactament allò que hi ha enunciat:

$$mcd(2^m - 1, 2^n - 1) = mcd(2^d - 1, 2^0 - 1) = mcd(2^d - 1, 0) = 2^d - 1.$$