코딩으로 공부하는 과학이야기 2차시: 기초 수학 및 물체의 운동

서지범 (서울대학교 과학교육과 물리전공) *jabam1264@snu.ac.kr

수업 안내 및 학습 목표

- 수업 자료(코드 및 PPT)는 아래 링크 및 QR 코드 참고!
- 또는 구글에 jabamseo github 검색 → 좌측 상단 jabamseo 클릭 → SNUcourse 클릭

https://github.com/jabamseo/SNUcourse

Python 변수 (Variables)

변수 (Variable)는 메모리에 데이터를 저장하는데 사용되는 공간의 이름입니다.


```
명한 이름 age = 10 sold_out = False 할당 연산자
```

Python 변수 (Variables)

변수 (Variable)는 메모리에 데이터를 저장하는데 사용되는 공간의 이름입니다.

① 반복 대상에서 변수로 값 가져오기

for 변수 in 반복 대상:

실행할 명령1

실행할 명령2 ② 실행

③ 반복 대상으로 돌아가기

Copyright @ Gilbut, Inc. All rights reserved

복습 – 몬테카를로 방법

몬테카를로 방법(Monte Carlo method) 또는 몬테카를로 실험은 반복된 <mark>무작위 추출(repeated random sampling)을 이용하여 함</mark> 수의 값을 수리적으로 근사하는 알고리즘을 부르는 용어이다.

수학이나 물리학 등에 자주 사용되며, 계산하려는 값이 닫힌 형식으로 표현되지 않거나 <mark>복잡한 경우에 근사적으로 계산할 때 사용</mark>된다.

넓은 의미의 몬테카를로 방법이란? 매번 다른 결과가 얻어지도록 random number를 이용해 결과를 얻는 것!

복습 - 몬테카를로 방법

몬테카를로 방법은 다양하지만, 특정한 패턴을 따르는 경향이 있다.

- 1. 표본 공간의 값으로 가능한 범위를 정의한다.
- 2. 표본 공간의 확률 분포에서 임의로 표본을 뽑는다. (표집한다.)
- 3. 표본에 대한 결정론적인 계산을 수행한다.
- 4. 결과를 집계한다.

예를 들어 단위 정사각형에 새겨진 사분원(원형 부분)을 생각해 보자. 몬테카를로 방법을 사용해서 π 의 값을 근사치로 추정할 수 있다. $^{[13]}$

- 1. 정사각형을 그린 다음, 그 안에 사분원을 삽입한다.
- 2. 정사각형 위에 일정한 개수의 점을 균일하게 분포한다.
- 3. 사분원 내부의 점(즉, 원점으로부터 1 미만)의 개수를 센다.
- 4. 내부의 개수와 전체 개수의 비율은 두 영역의 비율을 나타낸다. 그 값에 4를 곱하여 π 를 만든다.

여기서 두 가지의 중요한 점이 있다.

- 1. 점이 균일하게 분포되지 않으면 근사치가 떨어진다.
- 2. 평균적으로 더 많은 점을 배치할수록 근사치가 개선된다.

복습 - 몬테카를로 방법

복습 – 몬테카를로 방법

Solutions of the Thomson Problem

0. 수학

0. 미분

어떤 곡선의 서로 다른 두 점의 연결선(할선)의 기울기는 다음과 같다:

$$rac{\Delta y}{\Delta x} = rac{f(x) - f(a)}{x - a}.$$

점 (x,f(x))가 점 (a,f(a))에 매우 가까워지면(즉, $\Delta x \to 0$ 일 때) 연결선은 접선이 된다. 이 때 점 (a,f(a))에서의 기울기 k는 다음과 같이 표현할 수 있다:

$$k = \lim_{\Delta x o 0} rac{\Delta y}{\Delta x} = \lim_{x o a} rac{f(x) - f(a)}{x - a}.$$

이는 어떤 함수의 순간 변화율과 같은데, 이를 미분계수라고 말할 수 있다. 접선의 기울기(순간 변화율, 미분계수)를 **함수의 미분**이라고 말할 수 있으며 표기법은 다음과 같다:

$$k=f'(a)=rac{dy}{dx}|_{x=a}.$$

일반화하자면 미분 또는 미분 계수 또는 순간 변화율은 평균 변화율의 극한을 의미하는 용어로 다음과 같이 표기할 수 있다:

$$f'(x) = rac{dy}{dx} = \lim_{\Delta x o 0} rac{\Delta y}{\Delta x} = \lim_{x o 0} rac{f(x + \Delta x) - f(x)}{\Delta x}.$$

0. 미분

$$rac{\Delta y}{\Delta x} = rac{f(x) - f(a)}{x - a}$$

$$f'(x) = rac{dy}{dx} = \lim_{\Delta x o 0} rac{\Delta y}{\Delta x} = \lim_{x o 0} rac{f(x + \Delta x) - f(x)}{\Delta x}$$

- $(\forall \land \Rightarrow \land) (C)' = 0$
- (멱함수) $(x^{lpha})' = lpha x^{lpha-1}$ $(lpha \in \mathbb{R})$
- ullet (지수 함수) $(e^x)'=e^x$
- (지수 함수) $(a^x)' = a^x \ln a$ (a > 0)
- (로그 함수) $(\ln x)' = \frac{1}{x}$
- (로그 함수) $(\log_a x)' = \frac{1}{x \ln a}$ $(a > 0, a \neq 1)$
- (삼각 함수) $(\sin x)' = \cos x$
- (삼각 함수) $(\cos x)' = -\sin x$
- (삼각 함수) $(\tan x)' = \sec^2 x$

0. 테일러 급수

테일러 급수는 어떤 함수를 다항식으로 나타낼 때 사용하는 표현 방법이다. a에서 함수 f를 다음과 같이 표현할 수 있다:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \cdots$$

언제 쓰이냐? 수치적인 계산을 할 때 사용된다! 쉽게 설명하자면 엄밀한 수학적인 계산을 하는 것이 어려울 수 있는데, 그때 사용한다.

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots \qquad (|x| < 1)$$

$$\exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots \qquad \forall x$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \qquad \forall x$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots \qquad \forall x$$

옆의 예시들은 a=0일 때의 테일러 급수이며, 특별히 매클로린 급수라고 한다.

O. 테일러 급수

증명) f를 다음과 같이 급수로 표현되는 함수라 한다.

$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

f(x)에서 x = a를 대입하면, $f(a) = c_0$ 을 얻을 수 있고, f'(x)에서 x = a를 대입하면, $f'(a) = c_1$ 을 얻을 수 있고 f''(x)에서 x = a를 대입하면, $f''(a) = 2c_2$ 을 얻을 수 있다 f'''(x)에서 x = a를 대입하면, $f'''(a) = 2 \cdot 3c_3$ 을 얻을 수 있다

일반화하자면,
$$f^{(n)}(a) = 2 \cdot 3 \cdots nc_n = n! c_n$$
, $c_n = \frac{f^{(n)}(a)}{n!}$

1. 등속운동

1. 등속운동

물체가 계속 일정한 속력으로 운동하는 것

2. 자유낙하운동

2. 자유낙하운동

어떠한 물체가 힘을 중력만 받아 일정한 가속도로 운동하는 것

시간에 따른 힘의 크기	시간에 따른 이동거리	시간에 따른 속력
함의 ^ 크기 (N)	이동 거리 (m)	숙력 (m/s)
시간(s) 물체의 운동방향으로 일정 한 크기의 힘(중력)이 계속 작용함	시간에 따라 이동 거리가 증가함	시간에 따라 속력이 일정하게 증가함

2. 자유낙하운동

어떠한 물체가 힘을 중력만 받아 일정한 가속도로 운동하는 것

$$a = g \approx 9.8m/s^2$$
$$v = v_0 + at$$

$$s = s_0 + v_0 t + \frac{1}{2} a t^2$$

2. 종단속도

물체의 속도가 외부의 다른 힘 (공기나 물 또는 물체가 움직일 때 통과 하는 다른 액체) 때문에 일정하다면 그 물체가 일정한 속도로 이동

$$D - F_g = ma$$
, where $D = \frac{1}{2}C\rho Av^2$
$$\frac{1}{2}C\rho Av_t^2 - F_g = 0$$

Terminal Velocity of a Skydiver

A skydiver /

Air offers resistance resulting in an upward drag force

Science Facts ...

3. 포물선운동

3. 포물선운동

포물선운동

$$x(t) = v_0 t \cos \theta$$

$$y(t) = v_0 t \sin heta - rac{1}{2} g t^2$$

• 수평 도달 거리:
$$R=\dfrac{v_0^2\sin2\theta}{g}$$
• 최고점 높이: $H=\dfrac{v_0^2\sin^2\theta}{2g}$

$$ullet$$
 최고점 높이: $H=rac{v_0^2\sin^2 heta}{2g}$

ullet 레도 방정식: $y(x) = x an heta - rac{gx^2}{2v_0^2 \cos^2 heta}$

4. 조화진동

조화진동

평형점을 기준으로 물체의 변위에 비례한 복원력이 작용하게 되어 일정한 주기 운동을 하는 계

운동 방정식 [편집]

단순 조화 진동의 운동 방정식은 다음과 같이 주어진다.

$$m\ddot{x} + kx = 0$$

보통 여기서 ω_0 를 다음과 같이 정의하여

$$\omega_0^2=rac{k}{m}$$

운동 방정식을 다음과 같이 쓴다.

$$\ddot{x} + \omega_0^2 x = 0$$

이 방정식의 해는 다음과 같다.[1]

$$x(t) = C_1 \sin \omega_0 t + C_2 \cos \omega_0 t$$

여기서 C_1 와 C_2 는 상수로 초기 조건에 따라 결정되는 값이다. 좀 더 식에 물리학적 의미를 부여하기 위해 다음과 해를

$$x(t) = A\cos(\omega_0 t + \phi)$$

(또는 $x(t) = A\sin(\omega_0 t + \phi)$)

4. 조화진동

평형점을 기준으로 물체의 변위에 비례한 복원력이 작용하게 되어 일정한 주기 운동을 하는 계

5. 감쇠진동

5. 감쇠진동

속도에 비례하는 마찰력이 존재할 경우, 이러한 조건에서의 진동을 감쇠 진동

운동 방정식 [편집]

감쇠 진동의 경우, 다음과 같은 속도에 비례하는 마찰력

$$F = -b\dot{x}$$

가 있기 때문에, 운동 방정식은 이를 포함하는 방정식이 된다.

$$m\ddot{x} + b\dot{x} + kx = 0$$

이 식을 질량 m으로 나누고, $2\lambda=rac{b}{m}$, $\omega_0^2=rac{k}{m}$ 라 놓으면 위 식은 다음과 같은 식이 된다.

$$\ddot{x}+2\lambda\dot{x}+\omega_0^2x=0$$

위의 미분 방정식은 e^{ct} 꼴의 해가 항상 존재하는 것으로 알려졌다. 이를 위에 대입하면 가능한 상수 c의 값은

$$c=-\lambda\pm\sqrt{\lambda^2-\omega_0^2}$$

이 된다. 여기서 λ 와 ω_0 의 값에 따라 위 근이 두 개의 실근, 중근, 두 개의 복소수근이 되는가가 결정된다. 여기서 두 개의 복소수근을 갖는 경우는 저감쇠 진동(underdamped oscillation), 두 개의 실근을 갖는 경우를 과감쇠 진동 (overdamped oscillation), 마지막으로 중근을 갖는 경우를 임계 감쇠 진동(critically damped oscillation)이라 한다.

5. 감쇠진동

속도에 비례하는 마찰력이 존재할 경우, 이러한 조건에서의 진동을 감쇠 진동

6. 단진자운동

단진자 운동

$$\frac{d^2\theta}{dt^2} + \frac{g}{\ell}\sin\theta = 0$$

$$heta(t) = heta_0 \cos\!\left(\sqrt{rac{g}{\ell}}\,t
ight)$$

$$Tpprox 2\pi\sqrt{rac{L}{g}}$$

$$heta_0 \ll 1$$
.

단진자 운동?

고전역학에서의 라그랑지언은 계의 운동에너지 T에서 위치에너지 V를 뺀 것으로 정의된다.

$$L = T - V$$

라그랑지언을 알면 이를 오일러-라그랑주 방정식에 대입하여 운동방정식을 얻을 수 있다.

$$\begin{split} \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) &= \frac{\partial \mathcal{L}}{\partial q_j}. \\ x &= \ell \sin \theta, \\ y &= -\ell \cos \theta, \quad \dot{y} = \ell \dot{\theta} \sin \theta. \end{split} \qquad \begin{aligned} \mathcal{L} &= E_k - E_p \\ &= \frac{1}{2} m v^2 - mgh \\ &= \frac{1}{2} m (\dot{x}^2 + \dot{y}^2) - mg\ell (1 - \cos \theta) \\ &= \frac{1}{2} m \ell^2 \dot{\theta}^2 - mg\ell + mg\ell \cos \theta. \end{aligned}$$

1. 활용

Thank you