CS60010: Deep Learning Recurrent Neural Network

Sudeshna Sarkar

Spring 2019

27 Feb 19

WORD EMBEDDING

NLP

- A way for computers to analyze, understand, and derive meaning from human language.
 - text mining
 - machine translation
 - automated question answering
 - automatic text summarization
 - and many more...

Word embeddings

- For the computer to be able to "understand" a vector representation of a word is required.
- Examples of early approaches:
 - One-hot vector
 - Joint distribution

1. I enjoy flying.

2. I like NLP.

3. I like deep learning.

		1	like	enjoy	deep	learning	NLP	flying	12
<i>X</i> =	1	0	2	1	0	0	0	0	0
	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1	0
	deep	0	1	0	0	1	0	0	0
	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
	1	0	0	0	0	1	1	1	0

Curse of Dimensionality

Mock example:

- Vocabulary size: 100,000 unique words.
- Window size: 10 context words (unidirectional).
- 1. One-hot vector: 100,000 free parameters, and no knowledge of words semantic or syntactic relations.
- 2. Joint distribution: $100,000^{10} 1 = 10^{50} 1$ free parameters.

"A word is known by the company it keeps"

Curse of Dimensionality

- Similar words should be close to each other in the hyper dimensional space.
- Non-similar words should be far apart from each other in the hyper dimensional space.
- One-Hot vector example:
 - Apple = [1, 0, 0]
 - Orange = [0, 1, 0]
 - Plane = [0, 0, 1]

- Many to many representation of words.
- All vector cells participate in representing each word.
- Words are represented by real valued dense vectors of significantly smaller dimensions (e.g. 100 – 1000).
- Intuition: consider each vector cell as a representative of some feature.

<u>Distributed vectors motivation</u>

The amazing power of word vectors, Th morning paper blog, Adrian Colyer

The Power of Word Vectors

They provide a fresh perspective to ALL problems in NLP.

Male-Female

Verb tense

Country-Capital

vector[Queen] = vector[King] - vector[Man] + vector[Woman]

Applications of Word Vectors

- Word Similarity
- Machine Translation
- 3. Part-of-Speech and Named Entity Recognition
- 4. Relation Extraction
- 5. Sentiment Analysis
- Co-reference Resolution: Chaining entity mentions across multiple documents
- 7. Clustering
- 8. Semantic Analysis of Documents
- 9. Build word distributions for various topics

Building these magical vectors . . .

- How do we actually build these super-intelligent vectors, that seem to have such magical powers?
- The most famous methods to build such lower-dimension vector representations for words based on their context $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^\intercal$
 - Co-occurrence Matrix with SVD

- word2vec (Google)
- 3. Global Vector Representations (GloVe) (Stanford)

Word vectors

Build a dense vector for each word, chosen so that it is similar to vectors of words that appear in similar contexts.

2. Word2vec: Overview

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors. Idea:

- We have a large corpus of text
- Every word in a fixed vocabulary is represented by a vector
- Go through each position t in the text, which has a center word
 c and context ("outside") words o
- Use the similarity of the word vectors for c and o to calculate the probability of o given c (or vice versa)
- Keep adjusting the word vectors to maximize this probability

Word2Vec Overview

• Example windows and process for computing $P(w_{789} | w_7)$

Word2Vec Overview

• Example windows and process for computing $P(w_{789} | w_7)$

Word2vec: objective function

For each position t = 1, ..., T, predict context words within a window of fixed size m, given center word w_j . The objective function is the (average) negative log likelihood:

$$= -\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

The basic Skip-Gram utilizes the SoftMax function:

$$p(c|w) = \frac{\exp(v'_c{}^T v_w)}{\sum_{i=1}^{W} \exp(v'_i{}^T v_w)}$$

Hierarchical SoftMax

- SoftMax is impractical because the cost of computing $\nabla \log p(c|w)$ is proportional to T, which is often large (10⁵–10⁷ terms).
- H-SoftMax can yield speedups of word prediction tasks of 50X and more.
- Computing the normalized probability of a context word as a path in binary tree
 instead of going over all examples in the corpus.

Distributed Representations of Words and Phrases and their Compositionality. Mikolov at al., 2013

How do we choose negative samples?

- For each positive example we draw K negative examples.
- The negative examples are drawn according to the unigram distribution of the data

$$P_D(c) = \frac{\#(c)}{|D|}$$

Represent the meaning of word – word2vec

- 2 basic neural network models:
 - Continuous Bag of Word (CBOW): use a window of word to predict the middle word
 - Skip-gram (SG): use a word to predict the surrounding ones in window.

