1

Assignment 11

Adarsh Srivastava

The link to the solution is

https://github.com/Adarsh1310/EE5609

Abstract—This documents show a method to perform row exchange using elementary row operations.

1 PROBLEM

Prove that the interchange of two rows of a matrix can be accomplished by a finite sequence of elementary row operations of the other two types.

2 Solution

Let A be a 3×3 matrix with having row vectors $\mathbf{a}_1, \mathbf{a}_2$ and \mathbf{a}_3 .

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} \tag{2.0.1}$$

Let's exchange row \mathbf{a}_1 and \mathbf{a}_2 . Let's call this elementary operation \mathbf{E}_1 .

$$\begin{pmatrix} \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} \tag{2.0.2}$$

Now, to prove that same matrix can be obtained by elementary operations let's call them E_2 and E_3 . We will first perform elementary operation E_2 by adding row 1 to row 2.

$$\begin{pmatrix} \mathbf{a}_1 + \mathbf{a}_2 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} \tag{2.0.3}$$

Using elementary operation E_2 we will subtract row 1 from row 2.

$$\begin{pmatrix} \mathbf{a}_1 + \mathbf{a}_2 \\ -\mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} \tag{2.0.4}$$

Using elementary operation E_2 we will add row 2 to row 1.

$$\begin{pmatrix} \mathbf{a}_2 \\ -\mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} \tag{2.0.5}$$

Using elementary operation E_3 we will multiply row 2 by -1.

$$\begin{pmatrix} \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} \tag{2.0.6}$$

Hence (2.0.2) is obtained using E_2 and E_3 .

3 Example

Let us assume an elementary matrix A

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{3.0.1}$$

Let's exchange row \mathbf{a}_1 and \mathbf{a}_2 by applying operation \mathbf{E}_1 .

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{3.0.2}$$

We will first perform elementary operation E_2 by adding row 1 to row 2.

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{3.0.3}$$

Using elementary operation $\mathbf{E_2}$ we will subtract row 1 from row 2.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{3.0.4}$$

Using elementary operation E_2 we will add row 2 to row 1.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{3.0.5}$$

Using elementary operation E_3 we will multiply row 2 by -1.

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$
(3.0.6)

Hence, (3.0.2) was obtained from other two operations.