

2019 Advanced Institute on Health Investigation and Air Sensing for Asian Pollution (AI on Hi-ASAP) September 2 – 6, 2019 Academia Sinica, Taipei, Taiwan

### **Community Source Identification**

### Shih-Chun Candice LUNG 龍世俊

- •Research Center for Environmental Changes, Academia Sinica, Taiwan
- Center for Sustainability Science, Academia Sinica, Taiwan

### Objectives of Community Monitoring in Hi-ASAP

- (1) applying low-cost sensing devices to assess ambient PM<sub>2.5</sub> levels for comparison with exposure levels
- (2) applying low-cost sensing devices in communities to quantify community/local source contribution

### Background for Hi-ASAP

- Taking advantages of high spatiotemporal resolutions of new low-cost PM<sub>2.5</sub> sensors to answer the following questions:
- Prerequisites: sensors providing research-grade data
- Community sources (restaurants, temples, traffic within communities, home factories, biomass burning, garbage burning, etc)
  - PM<sub>2.5</sub> increments due to community sources? Unknown sources?

## Required Tasks in Community Monitoring in Hi-ASAP

- at least one environmental sensor should be setup to assess PM<sub>2.5</sub> levels in the ambient environment close to (within 10km radius) the subjects' community. It is crucial for later data analysis for exposure and health evaluation for the above objective (1)
- Measurements from a sensor set-up at a 10-meter height location or at a ground location without obvious PM<sub>2.5</sub> source can be used as reference sites for comparison



■ Community Culture-related Air-Pollutant Sources in Asian Cities

# Asian style restaurant



Night market











**Temple** 

SO<sub>2</sub> many others

PM<sub>2.5</sub>(WHO classified as a human carcinogen)

PAHs



Car salon



## Spatial Variability of PM<sub>2.5</sub> levels within a Taiwanese community



### Community Culture-related PM<sub>2.5</sub> Sources in Asia

#### **Different Vehicles in Asia**

(Cambodia, Sri Lanka, the Philippines)









**Street Vendors in Asia** (China, Sri Lanka, Thailand)









#### Other sources:

rice-straw burning, garbage open-burning, etc.

### Variability of intra-urban exposure

# to particulate matter and CO from Asian-type community pollution sources

[Lung et al., Atmospheric Environment, 83:6-13, 2014]

### • Study aims:

- assess the actual PM and CO levels and variability within Taiwanese communities
- evaluate the contribution of various community pollution sources to community
  PM and CO levels

Fig.1: Local store



Fig.2: Background



Fig.3: Traffic



Fig.4: Restaurant



Fig.5: Temple



Fig.6: Construction site



Table 3 Coefficient estimates of PM and CO in final multiple regression models

|                         | $PM_1 (\mu g/m^3)$ | $PM_{2.5} (\mu g/m^3)$ | $PM_{10} (\mu g/m^3)$ | CO (ppm)        |
|-------------------------|--------------------|------------------------|-----------------------|-----------------|
| Intercept               | 5.10 (2.67)+       | 4.81 (3.14)            | 6.46 (5.86)           | 3.11 (0.34)***  |
| Background              | 0.99 (0.061)***    | 1.06 (0.066)***        | 1.22 (0.10)***        | 0.29 (0.057)*** |
| Restaurant              | 6.18 (2.17)*       | 6.33 (2.46)*           | 7.27 (3.90)+          | 1.64 (0.29)***  |
| Temple                  | 13.2 (3.09)***     | 15.1 (3.50)***         | 17.2 (5.54)*          | -0.17 (0.40)    |
| Construction            | 0.93 (3.10)        | 1.69 (3.52)            | 14.2 (5.59)*          | 0.48 (0.45)     |
| Factory                 | 2.45 (3.43)        | 2.82 (3.89)            | 5.90 (6.17)           | -0.030 (0.45)   |
| Store                   | 1.39 (2.08)        | 1.74 (2.35)            | 3.10 (3.72)           | -0.66 (0.28)*   |
| Traffic                 | 4.93 (2.78)+       | 5.26 (3.15)+           | 7.41 (5.00)           | 0.31 (0.37)     |
| Vehicle/min             | -0.10 (0.062)      | -0.12 (0.071)+         | -0.20 (0.11)+         | 0.026 (0.0079)* |
| Wind Speed              | -6.63 (2.34)*      | -7.27 (2.65)*          | -16.8 (4.18)***       | -1.26***        |
| Adjusted R <sup>2</sup> | 0.60               | 0.60                   | 0.47                  | 0.26            |
| N                       | 237                | 237                    | 237                   | 288             |

<sup>\*: 0.05&</sup>lt;p<0.1, \*: 0.001<p<0.05, \*\*: 0.0001<p<0.001, \*\*\*: p<0.0001

### Summary of a series of community campaigns in Taiwan with GRIMM instrument

#### Table: PM<sub>2.5</sub> difference between ground and high levels in communities

| Characteristics of communities                                                       | Ground level-high<br>level<br>μg/m <sup>3</sup> | Correlation coefficient of PM <sub>2.5</sub> in ground level and high level | Main exposure source to humans                                   |
|--------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|
| Very Few pollution sources                                                           | s -2.3 <sup>~</sup> -5.7                        | r = 0.75~0.98                                                               | Ambient environment (long-range transport or far-away factories) |
| Only traffic source                                                                  | 3.7 ~ 4.3                                       | r = 0.78~0.8                                                                | Ambient environment + traffic                                    |
| Complicated and mixed sources (traffic, restaurants, temples and construction sites) | 8.8 ~ 9.5                                       | r = 0.24~0.43                                                               | Ambient environment + community sources                          |



# Application of PM sensors in assessing ambient and community levels

- ■High-level monitoring system
- ■Central site (sensors and other instruments)

■Street-level monitoring system (AS-LUNG-O)





- •Research-grade
- •Water-proof
- Wireless transmission
- •High time resolution
- •PM<sub>2.5</sub>, Temperature, RH% and CO<sub>2</sub>
- •Less than US\$700 per set
- •In the future, other chemical sensors can be deployed

### Monitoring Strategy for Hi-ASAP (1)

- Select one central site at a location higher than 10 meters above ground (high level) and another location at street level without any near-by sources (street-level background site) for ambient PM<sub>2.5</sub> levels (not near any sources)
  - locations have to be within 10km radius of the subjects' community
  - definition of a "community"
  - data will be compared with those from monitoring sites near the sources
- Select monitoring sites near the targeted community sources
  - the availability of the sensors and your monitoring strategy determine the number of the monitoring sites
- Set-up sensing devices about 3-5 meters from the sources in light poles or any fixed structures
  - Apply for permits
- If you set up sensing devices close to two sources, you need to collect more information about the source activities to differentiate their contributions

### Monitoring Strategy for Hi-ASAP (2)

- Prepare for long-term monitoring (one month, one year or longer)
  - Power supply: solar panels (enough sunlight), batteries, or sockets
  - Advantages: (1) quantify source emission on PM<sub>2.5</sub> for the overall emission with diurnal, weekly, monthly, and seasonal variations; (2) be able to catch the irregular source emissions; (3) collect large sample size
  - Disadvantages: require manpower and resources for routine checking and maintenance
- Prepare for short-term monitoring (ex. 3 days or one week)
  - Record the activities of those targeted sources
    - Traffic counts for different types of vehicles for traffic emission
    - Active burning activities for cooking, temple, biomass burning, garbage burning, and other emission sources
  - Advantages: (1) detailed activity records (on, off, or different types of emissions) to quantify the contribution of source emissions on  $PM_{2.5}$ ; (2) intensive manpower needed for a short time
  - Disadvantages: (1) need good luck to catch the irregular emission; (2) small sample sizes

### Monitoring Strategy for Hi-ASAP (3)

- Need to check on data regularly
  - Check every day (wireless) or download data every week or every month (SD cards)
  - Zeros? Numbers too high? Ghost peaks?
- Convert observations to research-grade data based on side-by-side comparison with research instruments such as GRIMM or nearby EPA monitoring stations
- Average observations (1-min resolution) to 5-min means for data analysis
- Maintain sensing devices with regular cleaning and annual evaluation

### Case Study with AS-LUNG-O

(manuscript under review)

- Motivation: (1) Higher intra-urban variability in Asian residential communities than those in western countries
  - various PM<sub>2.5</sub> sources, such as restaurants and home factories
- (2) High exposure levels to residents due to community sources
- Objectives:
  - to quantify PM<sub>2.5</sub> contributions from the community sources

# Set-up of AS-LUNG-O for PM<sub>2.5</sub> Community Source Quantification

■Street-level monitoring system (solar panel facing the south)



### **Monitoring Strategy**

- 10 AS-LUNG-O devices were placed at 2.5 meters above ground near certain community sources
  - PM<sub>1</sub>, PM<sub>2.5</sub>, CO<sub>2</sub>, temperature, and relative humidity with 1-min resolution
  - Wireless transmission plus SD-card to avoid data loss
- One AS-LUNG(O) at 10 meters above ground to assess ambient levels (high-level site)
- July 1-28 and December 1-31, 2017
- Data were converted to GRIMM comparable measurements with 1-min resolution
- 5-min averages used for data analysis



| Date     | High-level | C1 – C10  |
|----------|------------|-----------|
| July     | 17.5±8.6   | 18.0±9.3  |
| December | 29.3±10.8  | 37.4±17.3 |



Note: ratio: 5-min community levels/ 5-min high levels;

Summer: 1.05-1.29 (max: 35.5); Winter: 1.08-1.63 (max: 21.6)

C7: street-level background site

## Tempo-spatial variation of PM<sub>2.5</sub> at community sites (5-min averages)



PM<sub>2.5</sub> Increments from Community Sources with Multiple Regression

| Variable                                   | Coefficient                                | Std. Error | Partial R <sup>2</sup> |
|--------------------------------------------|--------------------------------------------|------------|------------------------|
|                                            | Estimate <sup>a</sup> (µg/m <sup>3</sup> ) |            |                        |
| Intercept (street-background) <sup>b</sup> | -1.718                                     | 1.161      | 0.542                  |
| High-level site                            | 1.205 0.005                                |            | <b>—</b> 0.543         |
| Season                                     | 5.377                                      | 0.280      | 0.016                  |
| Temple                                     | 2.724                                      | 0.156      | 0.006                  |
| Market                                     | 3.904                                      | 0.173      | 0.004                  |
| Traffic with passing-by vehicles           | 3.307                                      | 0.168      | 0.001                  |
| Stop-and-go traffic                        | 4.384                                      | 0.191      | 0.002                  |
| Wind speed                                 | -1.001                                     | 0.084      | 0.001                  |
| School                                     | 1.566                                      | 0.188      | 0.0003                 |
| Vendor (fried chicken)                     | 1.796                                      | 0.249      | 0.0002                 |
| Gas station                                | 0.739                                      | 0.172      | 0.0001                 |
| Relative humidity                          | -0.027                                     | 0.007      | 0.00002                |
| Temperature                                | -0.090                                     | 0.025      | 0.00006                |

a: most of estimates with significant level p < 0.0001, except b: insignificant



### **Summary and Recommendations**

- Applications of sensors in environmental health researches
  - complementary to the regular samplers and expensive monitors
  - combined with chemical analysis: EC/OC, sulfate, nitrate, PAHs, organic acids, etc.
- Issues using low-cost sensors
  - Side-by-side comparison with research-grade instruments to obtain correction equations (accuracy adjustment)
  - Data Transmission
  - Stability
  - Maintenance (power supply, cleaning)

### Other Consideration for Hi-ASAP

- Take photos for the targeted sources (ex. different types of activities), the sensing devices, and the surrounding environments for result explanation and presentations
- Write down any suspicious activities and environmental conditions in order to explain your data afterwards
- Better to have access to meteorological measurements (ex. T, RH%, wind speed, wind direction, and rain) from the nearby weather agencies; if not available, record any raining days which may need to be excluded from the datasets
- Access to EPA data for comparison (ex. convert EPA data to GRIMM-comparable data)
- Insurance for the sensing devices
  - depends on the decisions of individual research groups
  - in case the devices harm people (ex. under Typhoon)
- Do not offend the neighbors

### **Acknowledgement**

Academia Sinica and Ministry of Science and Technology, Executive Yuan, Taiwan for funding support!

Students, research assistants, post-docs, and collaborators for conducting these studies!



### **Community Source Identification**

### Thank you very much for your attention!

### Shih-Chun Candice LUNG 龍世俊

Research Center for Environmental Changes, Academia Sinica Center for Sustainability Science, Academia Sinica Sc.D, Harvard University, School of Public Health