Computational Intelligence

Master in Artificial Intelligence

Lluís A. Belanche and René Alquézar belanche@cs.upc.edu, alquezar@cs.upc.edu

Soft Computing Research Group
Dept. de Ciències de la Computació (Computer Science)
Universitat Politècnica de Catalunya

2019-2020

Artificial Neural Networks: the RBFNN

A continuous d-variate random vector $\mathbf{X} = (X_1, \dots, X_d)^{\mathsf{T}}$ is **normally distributed**, written $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, when its joint pdf is:

$$p(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(x-\mu)^{\mathsf{T}} \Sigma^{-1}(x-\mu)\right\}$$

where μ is the *mean vector* and $\Sigma_{d\times d}=(\sigma_{ij}^2)$ is the (real symmetric and PD) covariance matrix.

- $\mathbb{E}[X] = \mu$ and $\mathbb{E}[(X \mu)(X \mu)^{\mathsf{T}}] = \Sigma$.
- $CoVar[X_i, X_j] = \sigma_{ij}^2$ and $Var[X_i] = \sigma_{ii}^2$

if $X \sim N(\mu, \Sigma)$, then X_i, X_j are independent $\iff CoVar[X_i, X_j] = 0$ (in general, only the left-to-right implication holds)

The Gaussian Distribution (d = 2)

Multivariate Normal Distribution

The Gaussian Distribution (d = 2)

Observations from a bivariate normal distribution, a contour ellipsoid, the two marginal distributions, and their histograms (images from the Wikipedia)

The Gaussian Distribution (d = 2)

- The principal directions (a.k.a. PCs) of the hyperellipsoids are given by the eigenvectors u_i of Σ , which satisfy $\Sigma u_i = \lambda_i u_i$.
- The lengths of the hyperellipsoids along these axes are proportional to $\sqrt{\lambda_i}$ (note $\lambda_i > 0$)

Conceptual view

What is behind the choice of a multivariate Gaussian?

Examples from a class are noisy versions of an ideal class member (a prototype):

- Prototype: modeled by the mean vector
- Noise: modeled by the covariance matrix
- The quantity

$$d(x) := \sqrt{(x-\mu)^{\mathsf{T}} \Sigma^{-1} (x-\mu)}$$

is called the **Mahalanobis distance** for x

• Very important! the number of parameters is $\frac{d(d+1)}{2} + d$

Mathematical view

Positive definiteness: for a Gaussian distribution to be well-defined, Σ has to be real symmetric and positive definite (PD): for all non-null vectors $\boldsymbol{x} \in \mathbb{R}^d, \ \boldsymbol{x}^\mathsf{T} \Sigma \boldsymbol{x} > 0$ must hold true.

Examples: are these matrices PD in d = 2?

$$a. \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \qquad b. \left(\begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array}\right)$$

$$c. \left(\begin{array}{cc} 3 & -1 \\ -1 & 2 \end{array}\right) \qquad d. \left(\begin{array}{cc} 1 & 4 \\ \frac{1}{2} & 1 \end{array}\right)$$

- a. YES; b. YES
- c. YES; d. NO

Mathematical view

$$a. x_1^2 + x_2^2;$$

$$b. \ x_1^2 + x_1 x_2 + x_2^2$$

b.
$$x_1^2 + x_1x_2 + x_2^2$$
; d. $x_1^2 + \frac{9}{2}x_1x_2 + x_2^2$

Introduction

- Radial Basis Funtion (RBF) neural networks have their roots at exact function interpolation (the formulation as a neural network came later)
- The output of a hidden neuron is determined by the **distance** between the input and the neuron's center (seen as a **prototype**)
- This latter fact has two important consequences:
 - 1. It allows to give a precise interpretation to the network output
 - 2. It allows to design de-coupled training algorithms

Introduction

• Exact function interpolation:

$$h(\boldsymbol{x}_n) = t_n$$
 $\boldsymbol{x}_n \in \mathbb{R}^d, t_n \in \mathbb{R}, \ n = 1, ..., N$

ullet The function h is expressed as a combination of **basis functions**:

$$\phi_n(x) := \phi(\|x - x_n\|)$$

Introduction

• The combination is linear w.r.t. the basis functions:

$$h(x) = \sum_{n=1}^{N} w_n \phi_n(x) = \sum_{n=1}^{N} w_n \phi(||x - x_n||)$$

which we will force to be exact for all the data points: $h(x_n) = t_n$

- ullet The function $\|\cdot\|$ is any norm in \mathbb{R}^d (most often an **Euclidean norm**)
- Because of the norm, the ϕ_n are functions that exhibit **radial** contours of constant value **centered** at the data points x_n

Introduction

In matrix notation:

$$\begin{pmatrix} \phi_{1}(x_{1}) & \phi_{2}(x_{1}) & \cdots & \phi_{N}(x_{1}) \\ \phi_{1}(x_{2}) & \phi_{2}(x_{2}) & \cdots & \phi_{N}(x_{2}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \phi_{1}(x_{N}) & \phi_{2}(x_{N}) & \cdots & \phi_{N}(x_{N}) \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{N} \end{pmatrix} = \begin{pmatrix} t_{1} \\ t_{2} \\ \vdots \\ t_{N} \end{pmatrix}$$

$$\Phi w = t$$

Note that the matrix Φ is $N \times N$ and symmetric (if all ϕ_i have a single common width parameter).

Introduction

- Assuming that Φ is non-singular, w can be found as $w=\Phi^{-1}t$ (e.g., using LU decomposition: $\Phi=LU$ where L is lower triangular and U is upper triangular)
- It can be shown that indeed Φ is non-singular for various choices of the basis functions (Micchelli's theorem), including:

1.
$$\phi(z) = \exp(-z^2/\sigma^2)$$

2.
$$\phi(z) = (z^2 + \sigma^2)^{\alpha}, \ \alpha \in (-\infty, 0) \cup (0, 1)$$

3.
$$\phi(z) = z^3$$

4.
$$\phi(z) = z^2 \ln z$$

Introduction

• If the interpolation problem has codomain in \mathbb{R}^m (i.e., $t_n \in \mathbb{R}^m$), the generalization is straightforward:

$$h_k(x) = \sum_{n=1}^{N} w_{kn} \phi_n(x) = \sum_{n=1}^{N} w_{kn} \phi(\|x - x_n\|), \ 1 \le k \le m$$

that we will force to be exact for all the data points: $h_k(x_n) = t_{nk}$

• This problem leads to $\Phi W = T$, solved again by simple matrix inversion as $W = \Phi^{-1}T$

Note the dimensions: Φ is $N \times N$, but W, T are $N \times m$

Regularization

- Very often, in ML, the exact function interpolation setting is not attractive at all!
 - 1. High number (N) of interpolation points \rightarrow complex and unstable solutions
 - 2. The outputs t_n depend stochastically on the inputs $x_n o$ overfit solutions
 - 3. The interpolation matrix Φ can be singular or ill-conditioned
 - 4. The inversion of Φ grows as $O(N^3)$ (for symmetric PD matrices, Cholesky decomposition takes some $N^3/3$ steps)
- We are in need of a tighter control of complexity of the solution

Regularization

• In one-hidden-layer neural networks, **regularization** penalizes the size of the weight matrix:

$$E_{emp}(W) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{m} (t_{nk} - h_k(x_n))^2 + \frac{\lambda}{2} \sum_{k=1}^{m} ||w_k||^2$$

which results in $W = (\Phi + \lambda I_N)^{-1}T$; the value of $\lambda > 0$ is proportional to the amount of noise in the data

• Another way of obtaining much simpler solutions is to use a **subset** of the data points to center the basis functions; more generally, they can be centered at a carefully selected set of points in \mathbb{R}^d

RBF networks

With these modifications, we obtain the so-called RBF network:

$$h_k(x) = \sum_{i=0}^{H} w_{ki} \phi_i(x) = w_{k0} + \sum_{i=1}^{H} w_{ki} \phi(||x - c_i||), \ 1 \le k \le m$$

which is a two-layer neural network:

- 1. The first (hidden) layer of $H \ll N$ neurons computes the basis functions $\phi_i(x)$, centered at the vectors c_i
- 2. A constant basis function $\phi_0(x) = 1$ is included to be associated with the bias weights w_{k0} in the output layer
- 3. The second (output) layer implements the linear combinations of basis functions

RBF networks

A very popular choice for the ϕ_i is a simple Gaussian:

$$\phi_i(x) = \exp\left(-\frac{\|x - c_i\|^2}{\sigma_i^2}\right)$$

- The new matrix $\Phi_{N\times (H+1)}$, is sometimes known as the **design** matrix; now the weight matrix is $W=(\Phi^T\Phi)^{-1}\Phi^TT$
- If the original $\Phi_{N\times N}$ matrix was non-singular, then the matrix $\Phi_{N\times (H+1)}$ is also non-singular (very important result!)

If we also regularize the solution, then $W = (\Phi^T \Phi + \lambda I_{H+1})^{-1} \Phi^T T$

Artificial neural networks: the RBFNN In summary

RBF network training is typically performed in a decoupled way:

- 1. The first stage finds $H, \{c_i\}, \{\sigma_i^2\}$ using a **clustering** algorithm
- 2. The second stage finds W by any of the usual (linear) methods:
 - Using the pseudo-inverse (via the SVD), for regression (linear output activations)
 - Using logistic regression, for binary classification (logistic output activations)
 - Using multinomial regression, for **multiclass classification** (soft-max output activations)

Artificial neural networks: the RBFNN Comparison to the MLP (I)

- MLPs perform a global and distributed approximation of the underlying function, whereas RBFNN perform a local and non-distributed one
- The distributed representation of MLPs causes the error surface to have multiple local minima
- Training times for MLPs are usually orders of magnitude larger than those for RBFNNs
- MLPs generalize better than RBFNNs in regions of input space outside of the local neighborhoods defined by the training set*

^{*}On the other hand, extrapolation far from training data is oftentimes unjustified and risky.

Artificial neural networks: the RBFNN Comparison to the MLP (II)

- MLPs typically require fewer neurons than RBFNNs to approximate a non-linear function with the same accuracy
- All the parameters in an MLP are trained simultaneously; parameters in the hidden and output layers of an RBFNN network are typically trained separately using very efficient hybrid algorithms
- MLPs may have multiple hidden layers with complex connectivity, whereas RBFNNs typically have only one hidden layer and full connectivity

Comparison to the MLP (III)

- The hidden neurons of an MLP compute the inner product between an input vector and their weight vector; RBFNNs compute the Euclidean distance between an input vector and the RBF centers
- MLP partition feature space with hyper-planes; in RBFNN, constant activation boundaries of hidden units are hyper-ellipsoids (usually hyper-spheres)

An example

a: Deterministic function

b: Uniform distribution of data points

c: The data sample with noise d: The U(-1,1) noise component

Example

e: Exact fit to data points in (c) f: (e)-(a), i.e., exactly fitting the data in (d)

h: (g)-(a)