Question Number	Answer		Mark
13	m	(1)	
	Use of $\rho = \frac{m}{v}$	(1)	
	Use of $\Delta E = mc\Delta\theta$	(1)	
	Use of $\Delta E = L\Delta m$	(1)	
	Use of $P = \frac{\Delta E}{\Delta t}$ [to calculate time to melt completely]		
	Or use of $P = \frac{\Delta E}{\Delta t}$ to calculate energy received from the Sun in 1 day	(1)	
	$t = 1.21 \times 10^5 \mathrm{s}$ or		
	$\mathbf{Or} \ \Delta E = 7.47 \times 10^{10} \mathrm{J}$	(1)	
	t = 33.7 hours, so palace would not melt completely in a day \mathbf{Or} energy required is $9.09 \times 10^{10} J$, so more energy required than would be transferred in 1 day, so palace would not melt completely.	(1)	6
	(Allow full credit for responses in which 1 day is 12 hours)		
	Example of calculation		
	$m = \rho V = 1325 \text{ kg m}^{-3} \times 1250 \text{ m}^3 = 1.66 \times 10^6 \text{ kg}$		
	$\Delta E = 1.66 \times 10^6 \times 1.30 \times 10^3 \text{J kg}^{-1} \text{K}^{-1} \times (36.0 - 28.5) \text{ K} = 1.62 \times 10^{10} \text{ J}$		
	$\Delta E = 4.5 \times 10^4 \text{ J kg}^{-1} \times 1.66 \times 10^6 \text{ kg} = 7.47 \times 10^{10} \text{ J}$		
	Energy required = $1.62 \times 10^{10} \text{ J} + 7.47 \times 10^{10} \text{ J} = 9.09 \times 10^{10} \text{ J}$		
	$t = \frac{(1.62 + 7.47) \times 10^{10} \text{J}}{7.5 \times 10^5 \text{ W}} = 1.21 \times 10^5 \text{ s}$		
	$t = \frac{1.21 \times 10^5 \text{ s}}{3600 \text{ s hour}^{-1}} = 33.7 \text{ hour}$		
	In 1 day, $\Delta E = 7.5 \times 10^5 \text{ W} \times 24 \times 3600 \text{ s} = 6.48 \times 10^{10} J$		
	Total for question 13		6