

Introdução aos Sistemas de Processos

Sistemas de processos são conjuntos de estruturas físicas que convertem matérias-primas :

- madeira,
- gás natural,
- petróleo bruto

Em produto finais de consumo:

- papel,,
- fertilizantes,
- diesel

Introdução aos Sistemas de Processos

Esses sistemas variam de simples sistemas de aquecimento de água a complexas refinarias de petróleo

A indústria de processos abrange os setores químico, bioprocessos, energia, farmacêutico, siderúrgico, semicondutores e gestão de resíduos.

Figure 1.2: A process flowsheet¹ with typical flow (FI), temperature (TI), pressure (PI), composition (Analyzers), level (LI), power (JI) measurements.

Engenharia de Sistemas de Processos (ESP)

- Otimização da eficiência de produção
- Controle da qualidade do produto
- Monitoramento de processos

Essas tarefas frequentemente requerem um modelo matemático da planta.

Métodos tradicionais usam descrições matemáticas de primeiros princípios, mas podem ser demorados e difíceis para sistemas complexos

Aprendizado de Máquina em ESP

O Aprendizado de Máquina (AM) fornece uma abordagem alternativa:

- Usa dados do processo para construir modelos empíricos da planta
- Pode ser aplicado para otimização, controle e monitoramento
- Impulsionado pela disponibilidade de grandes quantidades de dados de sensores
- Demanda crescente por cientistas de dados de progesso,

Características dos Dados de Processo

Dinâmicos

As plantas raramente operam em estado estacionário perfeito

Variantes no tempo

Correlações entre variáveis mudam ao longo do tempo

Batelada vs. contínuo:

Diferentes tipos de processo com desafios únicos

Operações multimodo

Plantas operam em torno de estados estacionários distintos

Características dos Dados de Processo

Discretos/Descontínuos

Mudanças bruscas no comportamento do processo

Não lineares

Fenômenos físicoquímicos complexos

Alta dimensionalidade

Centenas de medições críticas

Amostragem multitaxa

Diferentes frequências de medição

O que é Aprendizado de Máquina?

Aprendizado de Máquina:

- Usa programas de computador e dados para encontrar relações entre componentes do sistema
- Descobre padrões não evidentes imediatamente
- Extrai conhecimento dos dados sem conhecimento específico explícito do sistema
- Fornece uma alternativa baseada em dados às abordagens de modelagem tradicionais

Fluxo de Trabalho do Aprendizado de Máquina

Fluxo de trabalho típico de um projeto de AM:

- Seleção de amostras e variáveis
- Limpeza de dados
- Treinamento e validação do modelo
- Computações online/em tempo real Aprendizado just-in-time: Uma abordagem alternativa onde a construção do modelo é realizada online

Tipos de Sistemas de Aprendizado de Máquina

- Aprendizado Supervisionado:
 - Dados de treinamento incluem entradas e saídas associadas
 - Aprende relações entrada-saída
 - Usado para problemas de classificação e regressão

Figure 1.7: Supervised learning scheme

Figure 1.6: Classification of machine learning methods

Tipos de Sistemas de Aprendizado de Máquina

- Aprendizado Não Supervisionado:
 - Dados de treinamento não divididos em entradas e saídas
 - Encontra padrões ocultos nos dados
 - Frequentemente usado para agrupamento e redução de dimensionalidade

Figure 1.8: Unsupervised learning scheme

Figure 1.6: Classification of machine learning methods

Tipos de Sistemas de Aprendizado de Máquina

Figure 1.9: Reinforcement learning scheme and simple application setup

- Aprendizado por Reforço:
 - O agente interage continuamente com o ambiente
 - Aprende estratégia ótima para maximizar recompensas a longo prazo
 - Usado para tarefas complexas de tomada de decisão

Figure 1.6: Classification of machine learning methods

Tipos de Sistemas de Aprendizado de Máquina

- Aprendizado Semissupervisionado:
 - Combina aspectos do aprendizado supervisionado e não supervisionado
 - Usado com menos frequência em comparação com outros métodos

Figure 1.6: Classification of machine learning methods

Aplicações de AM na Indústria de Processos

Exemplos:

Shell: Usou redes neurais recorrentes para previsão precoce de falhas em válvulas

Saudi Aramco: Ferramentas de AM para análise de alarmes e manutenção preditiva de turbinas

Fabricação de polímeros: Extrações de características baseadas em AM para solução de problemas de controle de qualidade

Soluções de AM são utilizadas para:

- Controle de qualidade do produto
- Ambiente de trabalho seguro
- Operações ótimas
- Operações sustentáveis

Saudi Aramco: Ferramentas de AM para análise de alarmes e manutenção preditiva de turbinas

Shell: Usou redes neurais recorrentes para previsão precoce de falhas em válvulas

Fabricação de polímeros: Extrações de características baseadas em AM para solução de problemas de controle de qualidade

Figure 1.11: Industrial process control/decision-making hierarchy. Interval ranges in brackets show the timescales at which corresponding decisions are made.

Níveis de Hierarquia de Decisão em uma Planta de Processos

Sensoriamento Soft

Figure 1.13: Soft sensing methodology spectrum

Sensores soft (virtuais/inferenciais):

- Modelos matemáticos que estimam variáveis de processo desconhecidas
- Podem ser baseados em primeiros princípios ou em dados
- Usados quando sensores físicos são caros ou medições em tempo real não são possíveis
- Métodos populares: PLS, PCR, SVR, RNAs

Monitoramento de Processos

Monitoramento de processos/detecção de falhas:

- Sinaliza alarmes quando os dados atuais do processo mostram inconsistência com o comportamento histórico
- Ajuda na detecção precoce de falhas graves no processo
- Métodos populares: PCA, PLS, ICA, SVDD, mapas auto-organizáveis

Classificação de Falhas

Classificação de falhas:

- Identifica causas raiz de perturbações no processo
- Determina falhas específicas com base em dados históricos
- Métodos: RNAs, SVM, LDA

Otimização e Controle de Processos

AM em otimização e controle:

- Modelos substitutos para otimização offline ou na camada RTO
- Usado em MPCs para sistemas altamente não-lineares
- Aprendizado por reforço para ajuste adaptativo de controladores

Agrupamento e Mineração de Dados

Aplicações:

- Gerenciamento de alarmes
- Caracterização de modos de operação
- Reconhecimento de padrões
- Análise de vida útil de equipamentos

Manutenção Preditiva

Modelos de manutenção preditiva:

- Determinam o tempo até a falha de equipamentos
- Detectam padrões que sinalizam falha iminente no processo
- Permitem manutenção planejada e minimizam paradas inesperadas

Previsão

Modelos de previsão de AM:

- Determinam planos ótimos de produção
- Maximizam a utilização de recursos
- Minimizam custos de produção
- Ajudam a gerenciar a demanda de produtos e incertezas de preços de matérias-primas

Escolhendo o Algoritmo de AM Correto

Fatores a considerar:

- Linearidade do sistema
- Distribuição dos dados
- Quantidade de dados de treinamento
- Complexidade do sistema
- Modos de operação

Escolhendo o Algoritmo de AM Correto

Exemplo para monitoramento de processos:

- Sistemas lineares: PCA ou PLS
- Dados não-gaussianos: KDE ou SVDD
- Sistemas não-lineares: PCA/PLS kernelizado, RNA, SVM
- Múltiplos modos de operação:
 GMM

Implantação de Soluções de AM

Arquitetura típica de implantação:

- Servidor de ferramentas: Hospeda a ferramenta de AM e a executa continuamente ou em agenda
- Banco de dados: Armazena resultados de AM
- Servidor web: Serve a interface do usuário e trata requisições
- Interface do usuário: Acessível via navegador web, construída usando software de visualização ou frameworks web personalizados

Figure 1.14: ML solution deployment

Futuro da Ciência de Dados de Processos

- Demanda crescente por produção eficiente e sustentável
- Adoção de princípios da Indústria 4.0
- Interesse crescente em soluções baseadas em AM
- Perspectivas de carreira promissoras para cientistas de dados de processos

Figure 1.3: Computer program using first-principal approach (left) and ML approach (right) for modeling a distillation column

Figure 1.4: Steps involved in a typical ML-based methodology

Figure 1.5: Steps involved in a just-in-time learning methodology

Figure 1.10: Use of machine learning to solve process plant objectives

Figure 1.12: Furnace system with catalyst-filled tubes

Figure 1.13: Soft sensing methodology spectrum

Figure 1.14: ML solution deployment