实验报告

实验一、非线性规划、微分方程与插值实验

实验目的

- 1. 掌握非线性规划问题的建模与 MATLAB 求解方法;
- 2. 学习微分方程模型与 MATLAB 求解算法并作图;
- 3. 掌握数据插值方法及其应用

问题1

某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别

记为 A,B), 按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体制分别与原料丙混合生产 A,B,已知原料甲、乙、丙的含硫量分别是 3%,1%,2%,进货价格分别为 6 千元/t,16 千元/t,10 千元/t; 产品 A,B 的含硫量分别不能超过2.5%,1.5%,售价分别为 9 千元/t,15 千元/t,根据市场信息,原料甲、乙、丙的供应量都不能超过500t;产品 A,B 的最大市场需求量分别为100t,200t,

- (1) 应如何安排生产?
- (2) 如果产品 A 的最大市场需求量增长为 600t, 应如何安排生产?
- (3) 如果乙的进货价格下降为 13 千元/t,应如何安排生产? 分别对(1)、(2)两种情况进行讨论.

1.问题分析

设甲、乙、丙的进货量为 x(1),x(2),x(3) (单位为 t); A,B 的产量为 x(4),x(5) (单位为 t); 甲、乙混合物分为两部分,设生产 A、B 的部分分别为 x(6),x(7); 丙分为两部分,生产 A、B 的部分分别为 x(8),x(9)。设公司的利润为 z (单位为千元)。

z=9*x(4)+15*x(5)-6*x(1)-16*x(2)-10*x(3)

约束条件为:

- (1) $(0.03*x(1)+0.01*x(2))/(x(1)+x(2))*x(6)+0.02*x(8) \le 0.025*x(4)$ $\Rightarrow (3*x(1)+x(2))*x(6)+(2*x(8)-2.5*x(4))*(x(1)+x(2)) \le 0$
- (2) $(0.03*x(1)+0.01*x(2))/(x(1)+x(2))*x(7)+0.02*x(9) \le 0.015*x(5)$ $\Rightarrow (3*x(1)+x(2))*x(7)+(2*x(9)-1.5*x(5))*(x(1)+x(2)) \le 0$ (2)
- (3) x(1)+x(2)-x(6)-x(7)=0
- (4) x(3)-x(8)-x(9)=0
- (5) -x(4)+x(6)+x(8)=0
- (6) -x(5)+x(7)+x(9)=0
- (7) $x(i)\geq 0$, i=1,2,3,4,5,6,7,8,9 $x(j)\leq 500$, j=1,2,3
- (8) $x(4),x(6),x(8) \le 100, x(5),x(7),x(9) \le 200$

如果产品 A 的最大市场需求量增长为 600t,则目标函数不变,约束条件的(1)~(7)也不变,

而(8) 要变为: x(j)≤500, j=1,2,3

 $x(4),x(6),x(8) \le 600, x(5),x(7),x(9) \le 200 (8)$

如果乙的进货价格下降为 13 千元/t,则目标函数改变,而约束条件不变。

目标函数变为-z=(9*x(4)+15*x(5)-6*x(1)-13*x(2)-10*x(3))

2.实验原理

x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon, options)

其中 fun 为你要求最小值的函数,可以单写一个文件设置函数,如以上给的例子中。

- 1).如果 fun 中有 N 个变量,如 x,y,z, 或者是 X1,X2,X3,什么的,自己排个顺序,在 fun 中统一都是用 x(1),x(2)x(n) 表示的。
- 2). x0,表示初始的猜测值,大小要与变量数目相同

v2=[500,500,500,100,200,100,200,100,200];

- 3). A、b 为线性不等约束, A*x<=b, A 应为 n*n 阶矩阵, 学过线性代数应不难写出 A 和 b
- 4).Aeq、beq 为线性相等约束,Aeq*x=beq。Aeq,beq 同上可求
- 5).lb、ub 为变量的上下边界,正负无穷用-Inf和 Inf表示,lb,ub 应为 N 阶数组
- 6).nonlcon 为非线性约束,可分为两部分,非线性不等约束 c 和非线性相等约束 ceq

3.实验过程

```
myfun1.m:
function [f,g,H]=ex10fun(x)%编写目标函数的 M 文件;
f=6*x(1)+16*x(2)+10*x(3)-9*x(4)-15*x(5);
if nargout>1 %梯度
g=[6;16;10;-9;-15;0;0;0;0];
end
if nargout>2
H=zeros(9,9);
end
mycon.m:
function [c,ceq,g,geq]=ex10con(x)
% 编写非线性约束的 M 文件;
c = [(3*x(1)+x(2))*x(6)+(2*x(8)-2.5*x(4))*(x(1)+x(2));(3*x(1)+x(2))*x(7)+(2*x(9)-1.5*x(5))*(x(1)+x(2))*x(7)+(2*x(9)-1.5*x(5))*(x(1)+x(2))*x(7)+(2*x(9)-1.5*x(5))*(x(1)+x(2))*x(7)+(2*x(9)-1.5*x(5))*(x(1)+x(2))*x(7)+(2*x(9)-1.5*x(5))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(x(1)+x(2))*(
1)+x(2)];
%不等式约束
ceq=0;
if nargout>2
d1 = [3*x(5) + 2*x(8) - 2.5*x(4);x(6) + 2*x(8) - 2.5*x(4);0; -2.5*(x(1) + x(2));0;3*x(1) + x(2);0;2*(x(1) + x(2)) + x(2);0;2*(x(1) + x(2);0;2*(x(2) + x(2);0;2*(x(2) + x(2);0;2*(x(2) + x(2);0;2*(x(2) + x(2);0;2*(x(2) + x
(2));0];
+x(2))];
g=[d1,d2];
geq=zeros(1,9);
end
myoperation1.m:
clear;
clc;
A2=[1, 1, 0, 0, 0, -1, -1, 0, 0;
0, 0, 1, 0, 0, 0, 0, -1, -1;
0, 0, 0, -1, 0, 1, 0, 1, 0;
0, 0, 0, 0, -1, 0, 1, 0, 1;
b2=zeros(1,4);
v1=zeros(1,9);
```

```
x0=[200,200,200,100,200,200,200,100,100];
opt1=optimset('largescale','off','MaxIter',3000,'MaxFunEvals',5000);
[x1,fv1,ef1,outlag,grad,hess]=fmincon(@ex10fun,x0,[],[],A2,b2,v1,v2,@ex10con,opt1);
[x2,fv2,ef2,outlag,grad,hess]=fmincon(@ex10fun,x1,[],[],A2,b2,v1,v2,@ex10con,opt1);
[x3,fv3,ef3,outlag,grad,hess]=fmincon(@ex10fun,x2,[],[],A2,b2,v1,v2,@ex10con,opt1);
solutions=[x1;x2;x3];
funvalues=[fv1;fv2;fv3];
exitflag=[ef1;ef2;ef3];
[solutions, funvalues, exitflag]
myfun2.m:
              function [f,g,H]=myfun2(x)%编写目标函数的 M 文件;
f=6*x(1)+13*x(2)+10*x(3)-9*x(4)-15*x(5);
if nargout>1 %梯度
g=[6;13;10;-9;-15;0;0;0;0];
end
if nargout>2
H=zeros(9,9);
End
myoperation2.m:
clear;
clc;
A2=[1, 1, 0, 0, 0, -1, -1, 0, 0;
0, 0, 1, 0, 0, 0, 0, -1, -1;
0, 0, 0, -1, 0, 1, 0, 1, 0;
0, 0, 0, 0, -1, 0, 1, 0, 1;
b2=zeros(1,4);
v1=zeros(1,9);
v2=[500,500,500,600,200,600,200,600,200];
x0=[200,200,200,100,200,200,200,100,100];
opt1=optimset('largescale', 'off', 'MaxIter', 3000, 'MaxFunEvals', 5000);
[x1,fv1,ef1,outlag,grad,hess]=fmincon(@myfun1,x0,[],[],A2,b2,v1,v2,@mycon,opt1);
[x2,fv2,ef2,outlag,grad,hess]=fmincon(@myfun1,x1,[],[],A2,b2,v1,v2,@mycon,opt1);
[x3,fv3,ef3,outlag,grad,hess]=fmincon(@myfun1,x2,[],[],A2,b2,v1,v2,@mycon,opt1);
solutions=[x1;x2;x3];
funvalues=[fv1;fv2;fv3];
exitflag=[ef1;ef2;ef3];
[solutions,funvalues,exitflag]
H=zeros(9,9);
end
myoperation31.m:
clear;
clc;
A2=[1, 1, 0, 0, 0, -1, -1, 0, 0;
0, 0, 1, 0, 0, 0, 0, -1, -1;
```

```
0, 0, 0, -1, 0, 1, 0, 1, 0;
0, 0, 0, 0, -1, 0, 1, 0, 1;
b2=zeros(1,4);
v1=zeros(1,9);
v2=[500,500,500,100,200,100,200,100,200];
x0=[200,200,200,100,200,200,200,100,100];
opt1=optimset('largescale','off','MaxIter',3000,'MaxFunEvals',5000);
[x1,fv1,ef1,outlag,grad,hess]=fmincon(@myfun2,x0,[],[],A2,b2,v1,v2,@mycon,opt1);
[x2,fv2,ef2,outlag,grad,hess] = fmincon(@myfun2,x1,[],[],A2,b2,v1,v2,@mycon,opt1);
[x3,fv3,ef3,outlag,grad,hess]=fmincon(@myfun2,x2,[],[],A2,b2,v1,v2,@mycon,opt1);
solutions=[x1;x2;x3];
funvalues=[fv1;fv2;fv3];
exitflag=[ef1;ef2;ef3];
[solutions, funvalues, exitflag]
myoperation32.m:
clear;
clc;
A2=[1, 1, 0, 0, 0, -1, -1, 0, 0;
0, 0, 1, 0, 0, 0, 0, -1, -1;
0, 0, 0, -1, 0, 1, 0, 1, 0;
0, 0, 0, 0, -1, 0, 1, 0, 1;
b2=zeros(1,4);
v1=zeros(1,9);
v2=[500,500,500,600,200,600,200,600,200];
x0=[200,200,200,100,200,200,200,100,100];
opt1=optimset('largescale','off','MaxIter',3000,'MaxFunEvals',5000);
[x1,fv1,ef1,outlag,grad,hess]=fmincon(@myfun2,x0,[],[],A2,b2,v1,v2,@mycon,opt1);
[x2,fv2,ef2,outlag,grad,hess]=fmincon(@myfun2,x1,[],[],A2,b2,v1,v2,@mycon,opt1);
[x3,fv3,ef3,outlag,grad,hess]=fmincon(@myfun2,x2,[],[],A2,b2,v1,v2,@mycon,opt1);
solutions=[x1;x2;x3];
funvalues=[fv1;fv2;fv3];
exitflag=[ef1;ef2;ef3];
[solutions,funvalues,exitflag]
```

4.实验结果与分析

得到最优解为 x=[0,100,100,0,200,0,100,0,100],最优值 f=-400(最大值 z=-f=400),exitflag=1(收敛)。该公司应购进 100t 乙,100t 丙,两者混合生产出 200t B,此时公司利润最大,为 400 千元,即 40 万元。

求得结果为:最优解为 x=[0,100,100,0,200,0,100,0,100],最优值 f=-400(最大值 z=-f=400),exitflag=1(收敛)。

该公司应购进 100t 乙,100t 丙,两者混合生产出 200t B,此时公司利润最大,为 400 千元,即 40 万元。此时的生产安排与(1)中相同。

ans =

Columns 1 through 10

Column 11

- 1.0000
- 1.0000
- 1.0000

Columns 1 through 10

```
449.9854 149.9883 0.0229 599.9965 0.0001 599.9736
                                                 0.0000
                                                          0.0229
                                                                   0.0000 -749.9809
                                                          0.0000
450.0000 150.0000 0.0000 600.0000 0.0000 600.0000
                                                 0.0000
                                                                   0.0000 -750.0000
450.0000 150.0000 0.0000 600.0000 0.0000 600.0000 0.0000
                                                          0.0000 0.0000 -750.0000
```

Column 11

2,0000

1.0000

1.0000

对(1)情况,经求解得:最优解为x = [50,150,0,0,200,0,200,0,0],最优值 f=-750(最 大值 z=-f=750), exitflag=1 (收敛)。

该公司应购进50t 甲,150t 乙,两者混合生产出200tB,此时公司利润最大,为750千元, 即 75 万元。

对(2)情况,经求解得:最优解为 x = [50,150,0,0,200,0,200,0,0],最优值 f=-750(最 大值 z=-f=750), exitflag=1 (收敛)。

该公司应购进50t 甲,150t 乙,两者混合生产出200tB,此时公司利润最大,为750千元, 即 75 万元。

从结果来看,(2)的条件"产品 A 的最大市场需求量增长为 600t",在本题中这个约束 是不起作用的。我们看到, 当产品 A 的最大市场需求量增长为 100t 时, 最优解的生产安排 中并不生产 A 产品, 所以当产品 A 的最大市场需求量增长为 600t 时, 最优解的生产安排不 变,最大利润也不变。这就是(1)和(2)的生产安排、最大利润相同,(3)中两种情况的 生产安排、最大利润也相同的原因。

5. 心得与体会

通过这一次的作业,我学会了利用 MATLAB 求解某个多变量函数的最优解(可能是最小值, 也可能是最大值),深刻体会了非线性规划的解法。最后一题是一道实际问题,与我们生活 息息相关。这些知识能够用在实际生活中,为我们的决策提供参考意见。

而且,通过这一次的作业,我对 MATLAB 的使用方法也更加熟悉了。

完成日期: 2016年4月5日

问题 2 用 ode 函数求解微分方程

实验内容:

$$\begin{cases} x' = x(1 - x - y - 6z) \\ y' = y(1.5x - y - z) \\ z' = z(-1 + 3x + 0.5) \end{cases}$$

 $\begin{cases} x' = x(1-x-y-6z) \\ y' = y(1.5x-y-z) \\ z' = z(-1+3x+0.5) \end{cases}$,并讨论解的变化情况。初值及求解区间 如下:

(1)
$$x(0) = 0.12, y(0) = 0.003, z(0) = 0.01, t \in [20, 233]$$

$$(2)$$
 $x(0) = 0.01, y(0) = 0.00001, z(0) = 0.001, t \in [0,133]$

1.问题分析

我们可以先编写 M 文件 fun.m, 把微分方程存在这个 M 文件里面。 之后再编写一个 M 文件 ode.m, 通过 ode23 函数把这个微分方程解出来。 实验原理

ode 是专门用于解微分方程的功能函数, matlab 提供了 ode23、ode45、等多个函数求解 微分方程的数值解

[t,y]=ode45(h_fun,tspan,y0,options,p1,p2...)

[t,y]=ode45('funname',tspan,y0,options,p1,p2...)

其中 h_fun 是函数句柄,函数以 dx 为输出,以 t,y 为输入量; tspan=[起始值 终止值],表 示积分的起始值和终止值; y0 是初始状态列向量; options 可以定义函数运行时的参数, 可 省略; p1 p2...是函数的输入参数,可省略。

2. 实验过程

```
fun.m:
function dx = fun(t,x)
dx = [x(1)*(1-x(1)-x(2)-6*x(3)); x(2)*(1.5*x(1)-x(2)-x(3)); x(3)*(-1+3*x(1)-0.5*x(2))];
ode.m:
t1=[20\ 233];
x1=[0.12\ 0.003\ 0.01];
[t,x] = ode45(@fun,t1,x1)
subplot(2,1,1)
plot(t,x)
xlabel('t');
ylabel('x/y/z')
t2=[0\ 133];
x2=[0.01 0.00001 0.001];
[tt,xx]=ode45(fun',t2,x2)
subplot(2,1,2)
plot(tt,xx)
xlabel('t');
```

3.实验结果与分析

ylabel('x/y/z')

t =

20.0000 20.0615 20.1230 20.1845 20.2460 231.8204 232.1153 232.4102

232.7051

 $\mathbf{x} =$

0.1200	0.0030	0.0100
0.1200	0.0030	0.0100
0.1262	0.0030	0.0096
0.1326	0.0031	0.0093
0.1394	0.0031	0.0089
0.1464	0.0031	0.0086
0.4001	0.6000	0.0000
0.4001 0.4001	0.6000 0.6002	0.0000
0001	0.0000	0.0000
0.4001	0.6002	0.0000
0.4001 0.4000	0.6002 0.6002	0.0000
0.4001 0.4000 0.4000	0.6002 0.6002 0.6002	0.0000 0.0000 0.0000

tt =

0

0.0511

0.1021

0.1532

0.2042

..... 131.8984

132.1738

132.4492

132.7246

133.0000

xx =

0.0100	0.0000	0.0010
0.0105	0.0000	0.0010
0.0111	0.0000	0.0009
0.0116	0.0000	0.0009
0.0122	0.0000	0.0008
0.4001	0.6000	0.0000
0.4001 0.4001	0.6000 0.6000	0.0000
0.1001	0.0000	
0.4001	0.6000	0.0000
0.4001 0.4001	0.6000 0.6000	0.0000

4. 心得与体会

有了上次的实验作业,我本以为这次的实验会比较容易。可是到了第二个问题就无从下手。ode 函数的用法根本不懂,上网找到的资料也很有限,而且不太能理解。

摸索了好久,程序修改了一遍又一遍,还是有错误。我想起了老师上课的范例。我就边对照着范例 stiff,边看网上的资料,再把程序修改了几遍,终于能弄懂了。

第三个问题本以为会容易的,通过数学方法解出微分方程,再通过 dsolve 函数求解就 OK。 结果 matlab 给我泼了一盆大冷水,运行后显示方程无解。

没办法,我只能退而求数值法。参照问题二的方法,很快就可以做出来。

这一次作业都要使我失去耐心了。不过,在我完成之后,我对这几个函数的熟悉度大大增加了。我觉得,要学好一门东西就要坚持不懈,持之以恒,只有这样才能成功。

完成日期: 2016年4月5日

问题 3 绘制海底曲面图形

实验内容

在某海域测得一些点(x,y)处的水深z由下表 2 给出,在矩形区域(75,200)×(-50,150)内画出海底曲面的图形。

表 2

X	12	140	103.	88	185.	195	105	157.	107.	7	81	162	16	117.
	9		5		5			5	5	7			2	5
у	7.5	141.	23	14	22.5	137.	85.	-6.5	-81	3	56.	-66.	84	-33.
		5		7		5	5				5	5		5
Z	4	8	6	8	6	8	8	9	9	8	8	9	4	9

1.问题分析

要在矩形区域(75,200)×(-50,150) 内画出海底曲面的图形,光靠给的几个点是行不通的。 我们可以通过 griddata 函数(其 method 值为 cubic)来实现以三角形为基础的三次方程内插, 缩小变量的取值间隙,我们可以缩小至 1。最后用 plot 函数和 mesh 函数绘制曲面。

2.实验原理

ZI = griddata(x,y,z,XI,YI),它的 method 值有四个,'linear' 是默认值,表示以三角形为基础的线性内插;'cubic' 表示以三角形为基础的三次方程内插;'nearest' 表示用最邻近的点内插;'v4'表示 MATLAB 4 格点样条函数内插

subplot 是将多个图画到一个平面上的工具,subplot (m,n,p) 的 m 表示是图排成 m 行,n 表示图排成 n 列,也就是整个 figure 中有 n 个图是排成一行的,一共 m 行,如果 m=2 就是表示 2 行图。p 表示图所在的位置,p=1 表示从左到右从上到下的第一个位置。

Mesh 函数可以生成由 X,Y 和 Z 指定的网线面,由 C 指定的颜色的三维网格图。网格图是作为视点由 view(3)设定的 surface 图形对象。曲面的颜色与背景颜色相同(当要动画显示不透明曲面时,这时可用命令 hidden 控制),或者当画一个标准的可透视的网线图时,曲面的颜色就没有(命令 shading 控制渲染模式)。当前的色图决定线的颜色。

3.实验过程

x=[129 140 103.5 88 185.5 195 105 157.5 107.5 77 81 162 162 117.5]; 147 22.5 137.5 85.5 y=[7.5 141.5 23]-6.5 -81 3 56.5 -66.5 -33.5]; 9 9 8 z = -[4]6 8 6 8 8 9];

xi=75:1:200; %定义xi,从75到200,间距为1

yi=-50:1:150; %定义 yi,从-50 到 150,间距为 1

zi=griddata(x,y,z,xi,yi','cubic')%以三角形为基础的三次方程内插

subplot(1,2,1)%设定输出位置

plot(x,y,'*') %绘制散点图

subplot(1,2,2)%设定输出位置

mesh(xi,yi,zi)%绘制(xi,yi,zi)的曲面图

4.实验结果与分析

5.心得与体会

之前前几次课,我只会照着老师的程序再打一遍,理解熟悉。这是我第一次自己运用 matlab 解决实际问题。在以前学习 C++的时候,解决一个问题的代码会很繁琐。相同的问题,在 matlab 中却变得很简单。这就是 matlab 的强大之处,也使我喜欢上了 matlab。

在解决这两个问题的时候也确实遇到了一些问题。比如照着 C++的习惯,一条代码后总会加分号,结果总是没输出东西来。通过查资料,才恍然大悟。

两道题都有绘制图形,我觉得使用 matlab 进行绘图很有趣。几行代码,看上去简简单单,却能绘出各种颜色的图形动画。在学习的过程中还是有很多的问题。还有很多方面的东西不够了解,只能边尝试边查询资料,让自己能够更熟悉 matlab,以便绘出更好的图形。

完成日期: 2016年4月5日

课程学习总结

(写总结之前,首先强调下下面内容绝对自己的感想,绝非百度产品!)

挑选了前几次的实验中的三个,各个实验的小总结也没删,看了一下,回味一下一个学期的数学实验课程,这学期还真学了不少!

一开始开这门课,心中不禁问了一下自己,这是干什么的?这学期也找到了答案,且看下面的小结。

从一开始什么都不会,只是把老师给的指令打到 MATLAB 里,然后运行出结果。然后 到一次次的作业,每一次的调程序,甚至调到出错和蓝屏,直至死机,然后非常崩溃的发了 一条朋友圈。而后又开始想有没有更好的解决方案,找同学分享编码,找网上的资料,各种 问各种找。最后,终于交出了一份份的作业来,实在是辛苦劳动的结晶啊!

当然,这么一系列的付出也是没有白费的,第一次小测试我成功地第二个交卷了!虽然本来还想第二次也前十交卷,拿 10 分的加分,可是还是又调错程序,搞得我又失去了十分,还是有点遗憾的。

总之,这学期收获还是蛮大的,从一开始 MATLAB 和 lingo 什么都不会,到现在的会基本使用这些工具,一学期真的大收获啊!

这么多的空谈看似都是废话,却句句发自肺腑的感言,下面也实际内容的谈一下这学期 学了点什么吧:

首先,我了解了什么是数学建模,它的意义是将实际问题加以抽象和简化,然后得以用数学工具加以解决。然后我又学习了一些 MATLAB 的基本指令和一些基本用法,如矩阵运算等。

而后,又学习了用 MATLAB 来解线性方程组的数值解法,其中包括直接法和迭代法,最小二乘法,然后是 MATLAB 的实现,还有最小二乘的最优拟合,用于解决实际问题中的最优解,十分有用! 然后将这种方法扩充到非线性方程的解,其中非线性方程 f(x)=0 的数值解法有: 迭代方法的基本原理; 牛顿法; 拟牛顿法,还有分岔和混沌现象。最后是 MATLAB的实现。然后学习了十分有用的插值法和插值定理。觉得十分有用,没有插值法,作业全部做不出来额!

后面又学习了常微分方程的数值解,我又能做很多题目了,又可以解决很多实际问题了。 然后,我们还学习了矩阵的解法。然后插入了 lingo 的一些知识的补充学习,让我们有 足够的知识学习后面的约束优化问题,可以用两种方法得以实现。然后可以从线性优化问题 扩充到非线性方程的优化问题

最后是一些综合问题的分析,运用前面的知识,进行数据的统计与分析,有概率计算与 分析,也有回归分析。

其中课程中的很多作业也使我们学习的知识更加实现化和得以运用,感觉到了这门课的实际运用价值!这里就不再重复了。

学了一学期的知识,总结一下还真不少,这学期收获很大!

最后,希望运用这学期的知识参加九月份的数学竞赛,来小试牛刀,希望能有一个不错的成绩!

感谢老师一个学期的教导,使我受益匪浅!

完成日期: 2016年6月9日