Sanjana Das

Mentor: Adam Sheffer

July 30, 2024

# The distinct distances problem

Distinct distances

•00

Imagine we've got a set of points  $\mathcal{P}\subseteq\mathbb{R}^2$ . We're interested in the number of distinct distances between two points in  $\mathcal{P}$ .





3 distinct distances  $(1, \sqrt{3}, \text{ and } 2)$ 

# The distinct distances problem

Distinct distances

Imagine we've got a set of points  $\mathcal{P} \subseteq \mathbb{R}^2$ . We're interested in the number of distinct distances between two points in  $\mathcal{P}$ .



 $\rightsquigarrow$ 

3 distinct distances  $(1, \sqrt{3}, \text{ and } 2)$ 

## Question (Erdős 1946)

What's the minimum number of distinct distances in a set of n points?

000

▶ n equally spaced points on a line have n-1 distinct distances.



000

 $\blacktriangleright$  *n* equally spaced points on a line have n-1 distinct distances.



▶ n equally spaced points on a circle have  $\lfloor n/2 \rfloor$  distinct distances.



 $\blacktriangleright$  *n* equally spaced points on a line have n-1 distinct distances.



▶ n equally spaced points on a circle have  $\lfloor n/2 \rfloor$  distinct distances.



► (Erdős 1946) A  $\sqrt{n} \times \sqrt{n}$  lattice has  $O(n/\sqrt{\log n})$  distinct distances.



The idea is that  $a, b \le \sqrt{n}$ , so  $a^2 + b^2 \in \{1, ..., 2n\}$ ; and only a  $1/\sqrt{\log n}$  fraction of integers in this range are a sum of squares.

000

| Lower bound              | Authors                      |
|--------------------------|------------------------------|
| $\Omega(n^{1/2})$        | Erdős 1946                   |
| $\Omega(n^{2/3})$        | Moser 1952                   |
| $\Omega(n^{5/7})$        | Chung 1984                   |
| $\Omega(n^{4/5}/\log n)$ | Chung–Szemerédi–Trotter 1992 |
| $\Omega(n^{4/5})$        | Székely 1997                 |
| $\Omega(n^{6/7})$        | Solymosi–Tóth 2001           |
| $\Omega(n^{0.8634})$     | Tardos 2001                  |
| $\Omega(n^{0.8641})$     | Katz–Tardos 2004             |
| $\Omega(n/\log n)$       | Guth–Katz 2010               |

The Guth–Katz result solves the problem up to a factor of  $\sqrt{\log n}$ .

#### Question

Distinct distances

Suppose we have two lines  $\ell_1$  and  $\ell_2$ , and two sets of points  $\mathcal{P}_1 \subseteq \ell_1$  and  $\mathcal{P}_2 \subseteq \ell_2$  (with *n* points each). What's the minimum number of distinct distances between  $\mathcal{P}_1$  and  $\mathcal{P}_2$ ?



# A simple lower bound

### Claim

 $\#(distinct \ distances) = \Omega(n).$ 

# A simple lower bound

### Claim

 $\#(distinct\ distances) = \Omega(n).$ 



#### Proof

- ▶ Fix  $p \in \mathcal{P}_2$ ; we'll consider only distances between  $\mathcal{P}_1$  and p.
- ► Each distance from *p* is repeated at most twice.
- ▶ There are *n* points in  $\mathcal{P}_1$ , so at least n/2 distinct distances.

▶ If  $\ell_1 \parallel \ell_2$ , there are constructions with O(n) distinct distances.



▶ If  $\ell_1 \parallel \ell_2$ , there are constructions with O(n) distinct distances.



▶ The same is true if  $\ell_1 \perp \ell_2$ .



# Upper bounds

Distinct distances

Otherwise, the best construction we know of has  $O(n^2/\sqrt{\log n})$  distinct distances (the factor of  $\sqrt{\log n}$  comes from the same number-theoretic fact about sums of squares).



# Upper bounds

Otherwise, the best construction we know of has  $O(n^2/\sqrt{\log n})$  distinct distances (the factor of  $\sqrt{\log n}$  comes from the same number-theoretic fact about sums of squares).



### Question

If we assume  $\ell_1$  and  $\ell_2$  are not parallel or perpendicular, can we get a better lower bound than  $\Omega(n)$ ?

#(distinct distances) =  $\Omega(n^{4/3})$ .

## Theorem (Solvmosi–Zahl 2024

 $\#(distinct\ distances) = \Omega(n^{3/2}).$ 



# Distances between a line and strip

#### Question

What if instead of lying on a line,  $\mathcal{P}_2$  lies on a strip?



# Distances between a line and strip

#### Question

Distinct distances

What if instead of lying on a line,  $\mathcal{P}_2$  lies on a strip?



For this to be meaningful, we need to put a spacing condition on the points — otherwise we could squeeze a configuration with arbitrary  $\mathcal{P}_2$  into the center of the picture.

## Theorem (D –Sheffer $2024\pm\pm$ )

Suppose that  $\mathcal{P}_1$  lies on the line y=0 and  $\mathcal{P}_2$  on the strip  $|y-sx|\leq \varepsilon$ , and both have x-coordinates spaced out by at least  $\varepsilon/s$ . Then

$$\#(\text{distinct distances}) \gtrsim n^{22/15-o(1)} \approx n^{1.46}$$
.



Theorem (Sharir-Sheffer-Solymosi 2013

 $\#(\text{distinct distances}) = \Omega(n^{4/3}).$ 

## Theorem (Sharir-Sheffer-Solymosi 2013)

#(distinct distances) =  $\Omega(n^{4/3})$ .

The idea of the proof is to consider the distance energy

$$E(\mathcal{P}_1, \mathcal{P}_2) = \#\{(a, p, b, q) \in (\mathcal{P}_1 \times \mathcal{P}_2)^2 \mid |ap| = |bq|\}.$$



If the number of distinct distances is small, then  $E(\mathcal{P}_1, \mathcal{P}_2)$  is large — intuitively, few possible values of |ap| means lots of collisions.

#### Definition

Distinct distances

Given a set of points  $\mathcal{P}$  and curves  $\mathcal{C}$ , their number of incidences is

$$I(\mathcal{P},\mathcal{C}) = \#\{(p,c) \in \mathcal{P} \times \mathcal{C} \mid \text{point } p \text{ lies on curve } c\}.$$



## SSS13 — incidences

#### Definition

Given a set of points  $\mathcal{P}$  and curves  $\mathcal{C}$ , their number of incidences is

$$I(\mathcal{P}, \mathcal{C}) = \#\{(p, c) \in \mathcal{P} \times \mathcal{C} \mid \text{point } p \text{ lies on curve } c\}.$$



There are tools for upper-bounding  $I(\mathcal{P}, \mathcal{C})$  under certain conditions on  $\mathcal{P}$  and  $\mathcal{C}$  ('incidence bounds').

We want to upper-bound  $E(\mathcal{P}_1, \mathcal{P}_2) = \#\{(a, p, b, q) \mid |ap| = |bq|\}.$ 

# SSS13 — from distance energy to incidences

We want to upper-bound  $E(\mathcal{P}_1, \mathcal{P}_2) = \#\{(a, p, b, q) \mid |ap| = |bq|\}.$ 

Let  $\ell_1$  be the x-axis and  $\ell_2$  the line y=sx, so that  $a=(a_1,0)$ ,  $p=(p_1,sp_1)$ , and so on. Then |ap|=|bq| means

$$(a_1-p_1)^2+(sp_1)^2=(b_1-q_1)^2+(sq_1)^2.$$

## SSS13 — from distance energy to incidences

We want to upper-bound  $E(\mathcal{P}_1, \mathcal{P}_2) = \#\{(a, p, b, q) \mid |ap| = |bq|\}.$ 

▶ Let  $\ell_1$  be the x-axis and  $\ell_2$  the line y = sx, so that  $a = (a_1, 0)$ ,  $p = (p_1, sp_1)$ , and so on. Then |ap| = |bq| means

$$(a_1 - p_1)^2 + (sp_1)^2 = (b_1 - q_1)^2 + (sq_1)^2.$$

- We can turn this into an incidence problem in  $\mathbb{R}^2$  by letting a and b define a point, and p and q a hyperbola:
  - ▶  $\mathcal{P} = \{(a_1, b_1) \mid a, b \in \mathcal{P}_1\}.$
  - $\mathcal{H} = \{(x p_1)^2 + (sp_1)^2 = (y q_1)^2 + (sq_1)^2 \mid p, q \in \mathcal{P}_2\}.$



# SSS13 — applying an incidence bound

We've made sets of  $n^2$  points  $\mathcal{P}$  (one for each  $a, b \in \mathcal{P}_1$ ) and hyperbolas  $\mathcal{H}$  (one for each  $p, q \in \mathcal{P}_2$ ) such that |ap| = |bq| means the point defined by (a, b) lies on the hyperbola defined by (p, q).



Then  $E(\mathcal{P}_1, \mathcal{P}_2)$  is the number of incidences between these points and hyperbolas, and an incidence bound gives

$$E(\mathcal{P}_1, \mathcal{P}_2) = I(\mathcal{P}, \mathcal{H}) \lesssim |\mathcal{P}|^{2/3} |\mathcal{H}|^{2/3} = n^{8/3}.$$

# SZ22 — proximal distance energy

 $\#(\text{distinct distances}) = \Omega(n^{3/2}).$ 

Distinct distances

# Theorem (Solymosi-Zahl 2024)

#(distinct distances) =  $\Omega(n^{3/2})$ .

Previously, we considered the distance energy

$$E(\mathcal{P}_1,\mathcal{P}_2) = \{(a,p,b,q) \in (\mathcal{P}_1 \times \mathcal{P}_2)^2 \mid |ap| = |bq|\}.$$

Now we consider the t-proximal distance energy  $E_t(\mathcal{P}_1,\mathcal{P}_2)$  (for some  $t\in(0,1]$ ), where we also require that b is one of the tn closest points to a, and q is one of the tn closest points to p.



# SZ22 — proximal distance energy

## Theorem (Solymosi-Zahl 2024)

 $\#(\text{distinct distances}) = \Omega(n^{3/2}).$ 

Previously, we considered the distance energy

$$E(\mathcal{P}_1, \mathcal{P}_2) = \{(a, p, b, q) \in (\mathcal{P}_1 \times \mathcal{P}_2)^2 \mid |ap| = |bq|\}.$$

Now we consider the *t*-proximal distance energy  $E_t(\mathcal{P}_1, \mathcal{P}_2)$  (for some  $t \in (0,1]$ ), where we also require that b is one of the tn closest points to a, and q is one of the tn closest points to p.



# Theorem (Solymosi–Zahl 2024)

#(distinct distances) =  $\Omega(n^{3/2})$ .

Previously, we considered the distance energy

$$E(\mathcal{P}_1,\mathcal{P}_2) = \{(a,p,b,q) \in (\mathcal{P}_1 \times \mathcal{P}_2)^2 \mid |ap| = |bq|\}.$$

Now we consider the t-proximal distance energy  $E_t(\mathcal{P}_1,\mathcal{P}_2)$  (for some  $t\in(0,1]$ ), where we also require that b is one of the tn closest points to a, and q is one of the tn closest points to p.



▶ We only allow a t-fraction of possible pairs (a, b) and (p, q) in our quadruples (a, p, b, q). So our incidence problem has  $tn^2$  points and hyperbolas (instead of  $n^2$ ), and

$$E_t(\mathcal{P}_1, \mathcal{P}_2) = I(\mathcal{P}_t, \mathcal{H}_t) \lesssim (tn^2)^{2/3} (tn^2)^{2/3} = t^{4/3} n^{8/3}.$$



We only allow a t-fraction of possible pairs (a, b) and (p, q) in our quadruples (a, p, b, q). So our incidence problem has  $tn^2$  points and hyperbolas (instead of  $n^2$ ), and

$$E_t(\mathcal{P}_1, \mathcal{P}_2) = I(\mathcal{P}_t, \mathcal{H}_t) \lesssim (tn^2)^{2/3} (tn^2)^{2/3} = t^{4/3} n^{8/3}.$$



▶ We might expect that  $E_t(\mathcal{P}_1, \mathcal{P}_2) \approx t^2 E(\mathcal{P}_1, \mathcal{P}_2)$ . Then we'd get

$$t^2 E(\mathcal{P}_1, \mathcal{P}_2) \lesssim t^{4/3} n^{8/3} \implies E(\mathcal{P}_1, \mathcal{P}_2) \lesssim t^{-2/3} n^{8/3}$$

which would mean proximity doesn't help.

▶ If p and q are close to each other and |ap| = |bq|, then we'd expect a and b to also be close to each other.



▶ If p and q are close to each other and |ap| = |bq|, then we'd expect a and b to also be close to each other



▶ We can show  $E_t(\mathcal{P}_1, \mathcal{P}_2) \gtrsim tE(\mathcal{P}_1, \mathcal{P}_2)$  — shrinking the possibilities for *each* of *b* and *q* by a *t*-fraction only shrinks the number of quadruples with |ap| = |bq| by *one* factor of *t*, not two.

# SZ22 — intuition behind proximity

▶ If p and q are close to each other and |ap| = |bq|, then we'd expect a and b to also be close to each other.



- ▶ We can show  $E_t(\mathcal{P}_1, \mathcal{P}_2) \gtrsim tE(\mathcal{P}_1, \mathcal{P}_2)$  shrinking the possibilities for *each* of *b* and *q* by a *t*-fraction only shrinks the number of quadruples with |ap| = |bq| by *one* factor of *t*, not two.
- ▶ Since  $E_t(\mathcal{P}_1, \mathcal{P}_2) \lesssim t^{4/3} n^{8/3}$  from the incidence bounds, we get

$$tE(\mathcal{P}_1, \mathcal{P}_2) \lesssim t^{4/3} n^{8/3} \implies E(\mathcal{P}_1, \mathcal{P}_2) \lesssim t^{1/3} n^{8/3},$$

so making t small gives a better bound.

### - ------

#### Theorem

For well-spaced  $\mathcal{P}_1$  on a line and  $\mathcal{P}_2$  on a strip,

$$\#(\text{distinct distances}) \gtrsim n^{22/15-o(1)}$$
.

### Theorem

For well-spaced  $\mathcal{P}_1$  on a line and  $\mathcal{P}_2$  on a strip,

$$\#(\text{distinct distances}) \gtrsim n^{22/15-o(1)}$$
.

▶ We also consider the proximal distance energy  $E_t(\mathcal{P}_1, \mathcal{P}_2)$ .



- ▶ We upper-bound  $E_t(\mathcal{P}_1, \mathcal{P}_2)$  using another incidence bound.
- ▶ We again show  $E_t(\mathcal{P}_1, \mathcal{P}_2) \gtrsim tE(\mathcal{P}_1, \mathcal{P}_2)$  the intuition is the same, though there are a few more details involved.

Thanks to Adam Sheffer and Pablo Soberón for organizing this REU, and to Adam Sheffer for his mentorship.

Thanks for listening!