Preliminary analysis

Samuel Pawel, Björn Siepe, František Bartoš

11 August 2023

Visualizations

```
## libraries
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
       intersect, setdiff, setequal, union
library(tidyr)
library(ggplot2)
library(colorspace)
library(ggpubr)
library(stringr)
library(forcats)
library(knitr)
library(kableExtra)
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
       group_rows
# devtools::install_github("kupietz/kableExtra")
theme_set(theme_bw() +
          theme(legend.position = "top",
                panel.grid.minor = element_blank()))
pal <- "Harmonic" # change palette here</pre>
## colorspace::hcl_palettes("qualitative", plot = TRUE)
## data
sim_res_fac_full <- readRDS(file = "data/sim_res_fac.RDS")</pre>
sim_res_num_full <- readRDS(file = "data/sim_res_num.RDS")</pre>
```

```
# subset assessment only
sim_res_fac <- sim_res_fac_full %>%
    filter(simstudy_q1 == "yes",
           coding_type == "assessment")
sim_res_num <- sim_res_num_full %>%
    filter(simstudy_q1 == "yes",
           coding_type == "assessment")
## proportion of simulation studies by journal
sim_res_fac_full %>%
    filter(coding_type == "assessment" | is.na(coding_type)) %>%
    group_by(journal) %>%
    summarize(propSim = mean(simstudy_q1 == "yes"),
              n = n()) \% \%
    mutate(journalLab = paste0(journal, " (n = ", n, ")")) %>%
    ggplot(aes(x = journalLab, y = propSim)) +
    geom_bar(stat = "identity") +
    scale_y_continuous(labels = scales::percent, limits = c(0, 1)) +
    labs(x = NULL, title ="Journal", y = "Proportion of simulation studies") +
    theme(panel.grid.major.x = element_blank())
     Journal
 100%
Proportion of simulation studies
                  BRM (n = 210)
                                              MBRM(n = 43)
                                                                          PM (n = 68)
sim res fac full %>%
    filter(coding_type == "assessment" | is.na(coding_type),
           year == 2022) %>%
    summarize(propSim = mean(simstudy_q1 == "yes"),
              sim = sum(simstudy_q1 == "yes"),
              n = n()
## # A tibble: 1 x 3
##
     propSim
               sim
##
       <dbl> <int> <int>
## 1
       0.343
                85
sim_res_fac_full %>%
    filter(coding_type == "assessment" | is.na(coding_type),
```

```
year == 2022) %>%
    group_by(journal) %>%
    summarize(propSim = mean(simstudy_q1 == "yes"),
              sim = sum(simstudy_q1 == "yes"),
              n = n()
## # A tibble: 3 x 4
     journal propSim
##
                       sim
##
     <fct>
               <dbl> <int> <int>
               0.156
## 1 BRM
                        24
                             154
## 2 MBRM
               0.814
                        35
                              43
## 3 PM
               0.510
                        26
                              51
## Morris et al. (2019) find
## "264 articles of which 199 (75\%) included at least one simulation study"
## year
ggplot(data = sim_res_fac, aes(x = factor(year))) +
    geom_bar() +
    labs(x = NULL, title ="Year") +
    theme(panel.grid.major.x = element_blank())
   Year
 80
 60
 20
  0
## journal
ggplot(data = sim_res_fac, aes(x = journal)) +
    geom_bar() +
    labs(x = NULL, title ="Journal") +
    theme(panel.grid.major.x = element_blank())
```

Journal 20 10

MBRM

reviewer ggplot(data = sim_res_fac, aes(x = reviewer)) + geom_bar() + labs(x = NULL, title ="Reviewer") + theme(panel.grid.major.x = element_blank())

BRM

Reviewer


```
## Q2 number of simulation studies
q2 <- ggplot(data = sim_res_fac, aes(x = nsimstudies_q2, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="Number of simulation studies in article", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q2</pre>
```


Aims of the study defined?

mutate(dgptype_q4 = as.factor(dgptype_q4)) %>%

```
mutate(dgptype_q4 = reorder(dgptype_q4, dgptype_q4, length, decreasing = TRUE)) %>%
    ggplot(aes(x = dgptype_q4, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="Type of DGP", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q4
```

Type of DGP

Q6 How many conditions? summary(sim_res_num\$nconds_q6)

```
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
                                                       NA's
##
       1.0
               5.0
                      16.0
                              185.8
                                       96.0 6000.0
breaks <- c(1, 10, 100, 1000, 10000)
q6 \leftarrow ggplot(data = sim_res_num, aes(x = log(nconds_q6))) +
    geom_histogram(breaks = seq(0, log(10000), 0.5), col = 1, alpha = 0.5) +
    scale_x_continuous(breaks = log(breaks), labels = breaks) +
    scale_y_continuous(breaks = seq(0, 10, 2)) +
    labs(x = NULL, title = "How many simulation conditions?", fill = "Journal")
q6
```

Warning: Removed 1 rows containing non-finite values (`stat_bin()`).

How many factors varied?


```
## Q7 Fully factorial?
q7b <- ggplot(data = sim_res_fac, aes(x = dgmfactorial_q7, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="How are factors varied?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q7b</pre>
```


Q8 How many repetitions? summary(sim_res_num\$nsim_q8)

```
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                                      NA's
                                              Max.
##
         1
               100
                       900
                             12198
                                      1000 1000000
breaks <- c(1, 10, 100, 1000, 10000, 100000, 1000000)
q8 <- ggplot(data = sim_res_num, aes(x = log(nsim_q8))) +
    geom_histogram(breaks = seq(0, log(2000000), 0.5), col = 1, alpha = 0.5) +
    labs(x = NULL, title ="How many repetitions?", fill = "Journal") +
    scale_x_continuous(breaks = log(breaks), labels = breaks)
q8
```

Warning: Removed 6 rows containing non-finite values (`stat_bin()`).


```
## Q9 Are the number of repetitions justified?
q9 <- ggplot(data = sim_res_fac, aes(x = nsimjustified_q9, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title = "Are the number of repetitions justified?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q9</pre>
```

Are the number of repetitions justified?


```
## Q10 Is the estimand stated?
q10 <- ggplot(data = sim_res_fac, aes(x = estimandstated_q10, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="Is the estimand stated?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q10</pre>
```

Is the estimand stated?

Q11 How many estimands? summary(sim_res_num\$nestimands_q11)

```
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                                       NA's
                                               Max.
##
      1.00
              2.00
                      4.00
                              20.11
                                      15.00 384.00
                                                          11
breaks <- c(1, 3, 10, 30, 100, 300)
q11 \leftarrow ggplot(data = sim_res_num, aes(x = log(nestimands_q11))) +
    geom_histogram(breaks = seq(0, log(500), 0.4), col = 1, alpha = 0.5) +
    scale_x_continuous(breaks = log(breaks), labels = breaks) +
    labs(x = NULL, title ="How many estimands?", fill = "Journal")
q11
```

Warning: Removed 11 rows containing non-finite values (`stat_bin()`).


```
## Q12 Are estimands aggregated?
q12 <- ggplot(data = sim_res_fac, aes(x = estimandsagg_q12, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title = "Are estimands aggregated?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q12</pre>
```

Are estimands aggregated?


```
## Q13 How are the true parameters specified?
q13 <- ggplot(data = sim_res_fac, aes(x = truetheta_q13, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title = "How are the true parameters specified?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q13</pre>
```


Warning: Removed 1 rows containing non-finite values (`stat_count()`).


```
## Q15 What is the evaluation target of the simulation?
q15a <- sim_res_fac %>%
    mutate(target_q15 = as.factor(target_q15)) %>%
    mutate(target_q15 = reorder(target_q15, target_q15, length)) %>%
    ggplot(aes(x = target_q15, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="What is the evaluation target of the simulation?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.y = element_blank()) +
    coord_flip()
q15a
```

What is the evaluation target of the simulation?


```
## Q15 Which performance measures were used?
# Spread "Other" apart
# TODO add to the visualization after deciding on treatment of bias
```

```
q15_other <- sim_res_fac %>%
  separate_wider_delim(pmother_q15,
                       delim = ",",
                       names_sep = "_",
                       too_few = "align_start") %>%
  pivot_longer(cols = contains("pmother"),
              names_to = NULL,
              values to = "pmother",
              values_drop_na = TRUE) %>%
  select(pmother, journal) %>%
  # remove whitespace
  mutate(pmother = str_trim(pmother)) %>%
 mutate(pmother = str_replace(pmother, ".*correlation.*", "correlation")) %>%
  mutate(pmother = str_replace(pmother, ".*standard deviation.*", "standard deviation")) %>%
  mutate(pmother = as.factor(pmother)) %>%
  mutate(pmother = forcats::fct_lump_n(pmother, 3)) %>%
  group_by(journal) %>%
  count(pmother) %>%
  rename(PM = pmother,
         count = n)
# Visualize
q15b <- sim_res_fac %>%
    group_by(journal) %>%
    summarise("Convergence" = sum(pmconvergence_q15 == "yes"),
              "Bias" = sum(pmbias_q15 == "yes"),
              "Empirical SE" = sum(pmempse_q15 == "yes"),
              "(R)MSE" = sum(pm_r_mse_q15 == "yes"),
              "Coverage" = sum(pmcover_q15 == "yes"),
              "Type I error rate" = sum(pmtypeierror_q15 == "yes"),
              "Power" = sum(pmpower_q15 == "yes"),
              "CI width" = sum(pmciwidth_q15 == "yes"),
              "Other" = sum(!is.na(pmother_q15))) %>%
    gather(key = "PM", value = "count", "Convergence", "Bias", "(R)MSE",
           "Empirical SE", "Coverage", "Type I error rate",
           "Power", "CI width", "Other") %>%
   bind_rows(q15_other) %>%
    mutate(PM = as.factor(PM)) %>%
   mutate(PM = reorder(PM, count, sum)) %>%
   ggplot(aes(x = PM, y = count, fill = journal)) +
   geom_bar(stat = "identity") +
   labs(x = NULL, title ="Performance measure", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.y = element_blank()) +
    coord_flip()
q15b
```

Performance measure


```
## # A tibble: 18 x 3
##
      reviewer pmbias_q15 pmother
##
      <fct>
               <fct>
                          <chr>
##
  1 FB
                          absolute bias
               yes
  2 FB
##
                          relative bias
               yes
##
  3 FB
                          relative bias
               yes
## 4 FB
               no
                          absolute bias
##
  5 FB
                          bias of standard errors
               yes
##
  6 FB
                          relative bias
               no
##
  7 FB
                          relative bias
               yes
## 8 FB
                          relative bias
               no
## 9 FB
                          relative bias of standard errors
               no
## 10 FB
               no
                          relative bias
## 11 FB
                          relative bias
               no
## 12 FB
                          relative bias
               no
## 13 FB
                          relative bias of se
               no
## 14 FB
                          relative bias
               no
                          absolute relative bias
## 15 FB
               no
## 16 FB
               yes
                          relative bias of se
```

```
## 17 FB
                          relative bias
               no
## 18 BS
                          SD of SE bias (as uncertainty)
               yes
## Q16 Is Monte Carlo uncertainty reported anywhere?
q16 <- sim res fac %>%
  mutate(mcerrors_q16 = as.factor(mcerrors_q16)) %>%
  mutate(mcerrors_q16 = reorder(mcerrors_q16, mcerrors_q16, length)) %%
  ggplot(aes(x = mcerrors_q16, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title = "Is Monte Carlo uncertainty reported anywhere?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.y = element_blank()) +
    coord_flip()
q16
```

Is Monte Carlo uncertainty reported anywhere?


```
## Q17 In which way are the results reported?
q17 <- sim_res_fac %>%
    group_by(journal) %>%
    summarise("Figure" = sum(resultsfigure_q17 == "yes"),
              "Table" = sum(resultstable_q17 == "yes"),
              "Text" = sum(resultstext_q17 == "yes"),
              "Other" = sum(resultsother_q17 == "yes")) %>%
    gather(key = "Type", value = "count", "Figure", "Table", "Text", "Other") %>%
   mutate(Type = as.factor(Type)) %>%
   mutate(Type = reorder(Type, count, sum, decreasing = TRUE)) %>%
    ggplot(aes(x = Type, y = count, fill = journal)) +
    geom_bar(stat = "identity") +
   labs(x = NULL, title = "In which way are the results reported?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q17
```



```
## Q18 Which software was used to conduct the simulation?
q18a <- ggplot(data = sim_res_fac, aes(x = software_1_q18, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="Which primary software was used?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.y = element_blank()) +
    coord_flip()
q18a</pre>
```

Which primary software was used?

Which software was used?


```
## Q19 Are there userwritten commands/packages/macros?
q19 <- ggplot(data = sim_res_fac, aes(x = userwritten_q19, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="Are there userwritten commands/packages/macros?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q19</pre>
```


Is code provided?


```
## Q21 If code is provided, is a seed provided?
q21 <- ggplot(data = sim_res_fac, aes(x = seedprovided_q21, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="If code is provided, is a seed provided?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q21</pre>
```

If code is provided, is a seed provided?

Is information on the computational environment provided?

Is information on the operating system provided?

q24 <- sim_res_fac %>%

How confident was reviewer in coding of the article?

Descriptives

The following still needs some cleaning.

```
# detailed per-journal descriptives
journal_describe <- sim_res_fac %>%
  split(.$journal) %>%
 purrr::map(~Hmisc::describe(.x))
# In a tidy way for long summary table
summary_vars <- c(</pre>
  "reviewer", "simstudy_q1",
  "nsimstudies_q2", "whichsim", "aimsdefined_q3",
 "dgptype_q4",
  # "dgpparameters_q5",
  # "nconds q6",
  "factorsvaried_q7", "dgmfactorial_q7",
  # "nsim_q8",
  "nsimjustified_q9",
  "estimandstated_q10",
  # "nestimands_q11",
  "estimandsagg_q12", "truetheta_q13",
  # "nmethods_q14",
  "target_q15",
  "pmconvergence_q15", "pmbias_q15", "pmempse_q15", "pm_r_mse_q15",
  "pmcover_q15", "pmtypeierror_q15", "pmpower_q15", "pmciwidth_q15",
```

```
"pmsclear_q15", "mcerrors_q16",
  "resultsfigure_q17", "resultstable_q17", "resultstext_q17",
 "resultsother_q17", "software_1_q18", "software_2_q18",
  "software_3_q18", "software", "userwritten_q19",
  "codeprovided_q20", "seedprovided_q21",
  "compenvironment_q22", "compos_q23",
  "coding confidence"
sim_res_fac %>%
  as.data.frame() %>%
  group_by(journal) %>%
  pivot_longer(cols = starts_with("software"),
              names_to = NULL,
              values_to = "software",
              values_drop_na = TRUE) %>%
  mutate(software = as.factor(software)) %>%
  pivot_longer(cols = any_of(summary_vars),
              names_to = "col", values_to = "response") %>%
  select(journal, col, response) %>%
  group_by(journal, col) %>%
  count(response) %>%
  # filter(!is.na(response)) %>%
  # View()
  pivot_wider(id_cols = c(col, response),
             names_from = journal,
              values_from = n,
              values_fill = 0) %>%
  arrange(factor(col, levels = summary_vars)) %>%
  rowwise() %>%
  mutate(Sum = sum(BRM, MBRM, PM)) %>%
  knitr::kable("latex", longtable = TRUE, caption = "Grouped by Journal") %>%
  kableExtra::column_spec(1, bold = TRUE) %>%
  kableExtra::collapse_rows(columns = 1:2, valign = "top")
```

Table 1: Grouped by Journal

col	response	BRM	MBRM	PM	Sum
reviewer	BS	11	15	13	39
	FB	5	16	16	37
	SP	22	7	11	40
simstudy_q1	yes	38	38	40	116
$nsimstudies_q2$	1	24	26	21	71
	2	6	8	14	28
	3	6	4	5	15
	5	1	0	0	1
	6	1	0	0	1
whichsim	1	31	26	31	88
	NA	7	11	8	26
	2	0	1	0	1
	3	0	0	1	1
	no	1	1	1	3
	unclear	2	1	0	3

$aims defined_q3$

	yes	35	36	39	110
$ m dgptype_q4$	parametric based on actual data	3	6	8	17
	parametric thin-air	34	31	31	96
	NA	1	0	0	1
	resampled	0	1	1	2
factorsvaried_q7	1	8	8	12	28
	2	3	2	9	14
	3	11	14	1	26
	5	3	4	4	11
	6	3	2	2	7
	4	8	6	6	20
	7	2	0	2	4
	unclear	0	1	0	1
	0	0	1	4	5
dgmfactorial_q7	fully-factorial	35	29	31	95
agimacionai_q;	one-at-a-time	1	5	4	10
	partially-factorial	2	4	5	11
nsimjustified_q9	no	32	36	37	105
ոշույյսշմուշսզջ		6	2	3	110
estimandstated_q10	yes	6	3	2	11
estimanustateu_q10	no unclear	4	5 5	0	9
		27	30	36	93
	yes NA			0	
	not applicable	1 0	0	2	$\frac{1}{2}$
		31	~	$\frac{2}{33}$	93
${\rm estimandsagg_q12}$	no		29		
	unclear	1	4	0	5
	yes	6	5	7	18
truetheta_q13	estimated	2	3	2	7
	known	36	35	36	107
	not applicable	0	0	2	2
target _q15	design	1	2	2	5
	estimation	19	26	28	73
	estimation, testing	4	3	0	7
	model selection	2	4	1	7
	other	3	0	4	7
	prediction	3	1	1	5
	testing	6	2	4	12
${ m pmconvergence_q15}$	no	33	30	25	88
	yes	5	8	12	25
	unclear	0	0	3	3
pmbias_q15	no	22	13	26	61
	yes	16	25	14	55
${ m pmempse_q15}$	no	36	33	29	98
	yes	2	5	11	18
$pm_r_mse_q15$	no	24	20	24	68
	yes	14	18	16	48
pmcover_q15	no	27	27	31	85
	yes	11	11	9	31
pmtypeierror_q15	no	26	31	28	85
	yes	12	7	12	31
pmpower_q15	no	29	31	28	88
_	yes	9	7	12	28
	no	36	33	38	107

1	. 1	4 -
pmciwid	t.h	a15
Piliciwia		4±0

pmciwidtn_qra	yes		5	2	9
pmsclear_q15	no	2	1	3	6
<u> </u>	unclear	3	0	2	5
	yes	33	37	32	102
	NA	0	0	3	3
mcerrors_q16	boxplot	1	4	2	7
— -	nowhere	29	28	33	90
	plot	1	0	0	1
	plot, table	1	0	0	1
	standard deviation	5	1	0	6
	text	1	0	1	2
	figures	0	1	0	1
	reference intervals	0	1	0	1
	tables, text	0	2	0	2
	NA	0	1	0	1
	quantile plots	0	0	1	1
	ranges	0	0	1	1
	table	0	0	2	2
resultsfigure_q17	no	7	17	23	47
5 — -	yes	31	21	17	69
resultstable_q17	no	16	8	9	33
	yes	22	30	31	83
resultstext_q17		38	36	38	112
— -	no	0	2	2	4
resultsother_q17		32	34	36	102
— -	yes	6	4	4	14
software	unclear	3	4	2	9
	C++	1	0	0	1
	JAGS	1	0	1	2
	Java	1	0	0	1
	MATLAB	3	2	1	6
	Mplus	2	2	3	7
	Python	3	1	0	4
	R	22	26	29	77
	SAS	2	2	0	4
	Stan	0	1	1	2
	Ox	0	0	1	1
	flexMIRT	0	0	1	1
	Stata	0	0	1	1
userwritten_q19	no	20	21	12	53
	unclear	4	2	4	10
	yes	14	15	24	53
${ m codeprovided}_{f q20}$	accessible online	19	6	18	43
	not accessible	19	32	22	73
${ m seedprovided} { m _q21}$	yes	9	5	11	25
	not found	29	33	29	91
${f compenvironment}_{f q22}$	no	11	10	7	28
	fully	1	0	1	2
	minimal	16	24	27	67
	partially	10	4	5	19
$compos_q23$	no	35	36	37	108
	fully	2	1	1	4
	. 11	1	1	2	4
	partially great	24	18	28	70

medium	10	18	11	39
poor	4	2	1	7

```
# Ungrouped and with proportions
sim_res_fac %>%
 as.data.frame() %>%
 pivot_longer(cols = starts_with("software"),
              names_to = NULL,
              values_to = "software",
              values_drop_na = TRUE) %>%
 mutate(software = as.factor(software)) %>%
 pivot_longer(cols = any_of(summary_vars),
              names_to = "col", values_to = "response") %>%
  select(col, response) %>%
  group_by(col) %>%
  count(response) %>%
  arrange(factor(col, levels = summary_vars)) %>%
 knitr::kable("latex", longtable = TRUE, caption = "Ungrouped") %>%
 kableExtra::column_spec(1, bold = TRUE) %>%
 kableExtra::collapse_rows(columns = 1:2, valign = "top")
```

Table 2: Ungrouped

col	response	n
reviewer	BS	39
	FB	37
	SP	40
$simstudy_q1$	yes	116
${ m nsimstudies}_{ m q2}$	1	71
	2	28
	3	15
	5	1
	6	1
whichsim	1	88
	2	1
	3	1
	NA	26
$aimsdefined_q3$	no	3
	unclear	3
	yes	110
$ m dgptype_q4$	parametric based on actual data	17
	parametric thin-air	96
	resampled	2
	NA	1
factorsvaried_q7	unclear	1
	1	28
	2	14
	3	26
	5	11
	6	7
	0	5
	4	20
	7	4

dgmfactorial_q7	fully-factorial	95
	one-at-a-time	10
	partially-factorial	11
nsimjustified_q9	no	105
3 = 1	yes	11
estimandstated_q10	no	11
— •	unclear	9
	yes	93
	not applicable	2
	NA	1
estimandsagg_q12	no	93
	unclear	5
	yes	18
truetheta_q13	not applicable	2
-	estimated	7
	known	107
target_q15	design	5
-	estimation	73
	estimation, testing	7
	model selection	7
	other	7
	prediction	5
	testing	12
pmconvergence_q15	no	88
	unclear	3
	yes	25
pmbias_q15	no	61
	yes	55
pmempse_q15	no	98
	yes	18
$pm_r_mse_q15$	no	68
	yes	48
${ m pmcover}_{ m q15}$	no	85
	yes	31
pmtypeierror_q15	no	85
	yes	31
$pmpower_q15$	no	88
	yes	28
$ m pmciwidth_q15$	no	107
	yes	9
pmsclear_q15	no	6
	unclear	5
	yes	102
	NA	3
	boxplot	7
	figures	1
	nowhere	90
	plot	1
	plot, table	1
	quantile plots	1
	ranges	1
	reference intervals	1
	standard deviation	6
	table	2

	tables, text	2
	text	2
	NA	1
resultsfigure_q17	no	47
	yes	69
resultstable_q17	no	33
	yes	83
resultstext_q17	no	4
	yes	112
resultsother_q17	no	102
	yes	14
software	unclear	9
	C++	1
	JAGS	2
	Java	1
	MATLAB	6
	Mplus	7
	Ox	1
	Python	4
	R	77
	SAS	4
	flexMIRT	1
	Stan	2
	Stata	1
userwritten_q19	no	53
	unclear	10
	yes	53
codeprovided_q20	accessible online	43
	not accessible	73
${ m seedprovided}$	yes	25
	not found	91
$compenvironment_q22$	no	28
	fully	2
	minimal	67
	partially	19
compos_q23	no	108
	fully	4
	partially	4
coding_confidence	great	70
	medium	39
	poor	7

sessionInfo()

```
[3] LC TIME=en US.UTF-8
                                   LC_COLLATE=en_US.UTF-8
##
    [5] LC_MONETARY=en_US.UTF-8
                                   LC_MESSAGES=en_US.UTF-8
   [7] LC PAPER=en US.UTF-8
                                   LC NAME=C
   [9] LC_ADDRESS=C
                                   LC_TELEPHONE=C
##
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Europe/Zurich
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                                datasets methods
                                                                    base
## other attached packages:
## [1] kableExtra_1.3.4.9000 knitr_1.43
                                                    forcats_1.0.0
## [4] stringr_1.5.0
                             ggpubr_0.6.0
                                                    colorspace_2.1-0
## [7] ggplot2_3.4.2
                             tidyr_1.3.0
                                                    dplyr_1.1.2
##
## loaded via a namespace (and not attached):
   [1] gtable_0.3.3
                          xfun_0.39
                                             htmlwidgets_1.6.2 rstatix_0.7.2
   [5] vctrs 0.6.3
                          tools 4.3.1
                                             generics 0.1.3
                                                               tibble 3.2.1
##
  [9] fansi_1.0.4
                          highr_0.10
                                             cluster_2.1.4
                                                               pkgconfig_2.0.3
## [13] data.table 1.14.8 checkmate 2.2.0
                                             webshot 0.5.5
                                                               lifecycle 1.0.3
## [17] compiler_4.3.1
                          farver_2.1.1
                                             munsell_0.5.0
                                                               carData_3.0-5
## [21] htmltools 0.5.5
                          yaml_2.3.7
                                             htmlTable 2.4.1
                                                               Formula 1.2-5
## [25] pillar_1.9.0
                                                               rpart_4.1.19
                          car 3.1-2
                                             Hmisc_5.1-0
## [29] abind 1.4-5
                          tidyselect_1.2.0
                                            rvest_1.0.3
                                                               digest_0.6.33
## [33] stringi_1.7.12
                          purrr_1.0.1
                                             labeling_0.4.2
                                                               cowplot_1.1.1
## [37] fastmap_1.1.1
                          grid_4.3.1
                                             cli_3.6.1
                                                               magrittr_2.0.3
                          utf8_1.2.3
                                                               foreign_0.8-84
## [41] base64enc_0.1-3
                                             broom_1.0.5
## [45] withr_2.5.0
                          scales_1.2.1
                                             backports_1.4.1
                                                               rmarkdown_2.23
## [49] httr_1.4.6
                          nnet_7.3-18
                                             gridExtra_2.3
                                                               ggsignif_0.6.4
## [53] evaluate_0.21
                          viridisLite_0.4.2 rlang_1.1.1
                                                               glue_1.6.2
## [57] xml2_1.3.5
                          svglite_2.1.1
                                             rstudioapi_0.15.0 R6_2.5.1
## [61] systemfonts_1.0.4
```