## ГОСТ 23751-86

# Oсновные параметры конструкции Printed circuit boards. Basic parameters of structure Bзамен ГОСТ 23751-79

Постановлением Государственного комитета СССР по стандартам от 19 марта 1986 г. № 574 срок действии установлен с 01.07.87 до 01.07.92

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 29.09.88 № 3382

Дата введения <u>01.04.89</u>

Настоящий стандарт распространяется на односторонние (ОПП), двухсторонние (ДПП) и многослойные (МПП) печатные платы на жестком и гибком основании, а так же на гибкие печатные кабели (ГПК).

Стандарт устанавливает основные параметры конструкции печатных плат и печатных кабелей.

Термины, применяемые в настоящем стандарте, – по ГОСТ 20406–75

#### 1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

- 1.1. Настоящий стандарт устанавливает пять классов точности печатных плат и ГПК. Классы точности печатной платы определяют по минимальным предельным отклонениям на размеры и расположение печатных проводников и контактных площадок в соответствии с табл. 3 и 5.
- 1.2. Размеры и предельные отклонения, установленные настоящим стандартом, заданы для узкого места на печатной плате и ГПК, обязательны для любого метода проектирования и удовлетворяют требованиям конструирования печатных плат под автоматизированную сборку аппаратуры. Для свободного места значения размеров и предельных отклонений рекомендуется устанавливать по более низкому классу точности, а для первого класса увеличивать в два и более раз.
- 1.3. Буквенные обозначения размеров конструкции печатных плат и ГПК приведены на черт. 1–4.

FOCT 23752–86

## Односторонняя печатная плата (ОПП)



Черт. 1

 $H_n$  — толщина печатной платы;  $H_m$  — толщина материала основания печатной платы;  $h_\phi$  — толщина фольги; b — гарантийный поясок; D — диаметр контактной площадки; d — диаметр отверстия; S — расстояние между краями соседних элементов проводящего рисунка; t — ширина печатного проводника; Q — расстояние от края печатной платы, выреза, паза до элементов проводящего рисунка

## Двусторонняя печатная плата (ДПП)



Гарантийный поясок для металлизированного отверстия

 $\Gamma$ арантийный поясок для неметаллизированного отверстия

## Черт. 2

1 – металлизированное отверстие: 2 – неметаллизированное отверстие;  $H_{n.c.}$  – суммарная толщина печатной платы;  $h_n$  – толщина химико-гальванического покрытия; h – толщина проводящего рисунка; t – расстояние между центрами (осями) элементов конструкции печатной платы; b – гарантийный поясок.

ΓOCT 23752–86

## Многослойная печатная плата (МПП)

Гибкий печатный кабель (ГПК)



## 2. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

- 2.1. Размеры печатных плат
- 2.1.1 Размеры сторон печатных плат должны соответствовать ГОСТ 10317–79.
- 2.1.2. Предельные отклонения на сопрягаемые размеры контура печатной платы и ГПК не должны быть более 12-го квалитета по ГОСТ 25347–82.

Предельные отклонения на несопрягаемые размеры контура печатной платы и ГПК не должны быть более 14-го квалитета по ГОСТ 25347–82.

2.1.3. Толщину ОПП, ДПП и ГПК  $H_n$  определяют толщиной материала основания с учетом толщины фольги  $h_{\phi}$ .

Толщина МПП – по обязательному приложению.

Предельные отклонения толщин ОПП, ДПП, ГПК – по нормативно-технической документации на конкретный вид материала основания.

Предельные отклонения толщины МПП должны быть:

- $\pm$  0,2 мм для МПП толщиной до 1,5 мм включительно;
- $\pm 0.3$  мм для МПП толщиной свыше 1,5 мм.

*Примечание*. Допускается устанавливать по согласованию с головным технологическим предприятием отрасли более жесткие предельные отклонения толщины МПП.

2.1.4. Суммарную толщину печатной платы или ГПК  $H_{n.c.}$  определяют как сумму толщины печатной платы или ГПК  $H_{n.}$  и суммарной толщины покрытий наружных сло- ёв  $h_n$ .

Предельные отклонения суммарных толщин печатной платы и ГПК не должны быть более суммы предельных отклонений толщин печатной платы или ГПК и покрытий на каждый наружный слой по ГОСТ 9.306–85.

- 2.2. Размеры элементов конструкции
- 2.2.1. Минимальное значение гарантийного пояска **b** приведено.в табл. 1.

Таблица 1

| Условное      | Минимальное значение гарантийного пояска для класса точности |      |      |      |       |  |  |  |  |  |
|---------------|--------------------------------------------------------------|------|------|------|-------|--|--|--|--|--|
| обозначение   | 1                                                            | 2    | 3    | 4    | 5     |  |  |  |  |  |
| <b>b</b> , mm | 0.30                                                         | 0,20 | 0,10 | 0,05 | 0,025 |  |  |  |  |  |

- 2.2.2. Номинальные размеры диаметров металлизированных и неметаллизированные монтажных и переходных (служащих только для соединения проводящих слоёв) отверстий по ГОСТ 10317–79.
- 2.2.3. Предельные отклонения диаметров монтажных и переходных отверстий  $\Delta d$  должны соответствовать указанным в табл. 2.

ГОСТ 23752–86

Таблина 2

| Диаметр                 | Наличие                         | Предельное отклонение диаметра $\Delta d$ , мм, для класса точности |                 |                  |                  |                  |  |  |  |
|-------------------------|---------------------------------|---------------------------------------------------------------------|-----------------|------------------|------------------|------------------|--|--|--|
| отверстия <i>d</i> , мм | металлизации                    | 1                                                                   | 2               | 3                | 4                | 5                |  |  |  |
| До 1,0 вкл.             | Без металлизации                | $\pm 0,10$                                                          | ± 0,10          | ± 0,05           | ± 0,05           | ± 0,025          |  |  |  |
|                         | С металлизацией                 | + 0,05                                                              | +0,05           | + 0              | + 0              | + 0              |  |  |  |
|                         | без оплавления                  | -0.15                                                               | -0,15           | -0,10            | -0,10            | -0,075           |  |  |  |
|                         | С металлизацией и с             | +0,05                                                               | +0,05           | + 0              | + 0              | + 0              |  |  |  |
|                         | оплавлением                     | -0,18                                                               | -0,18           | -0,13            | -0,13            | -0,13            |  |  |  |
| Св. 1,0                 | Без металлизации                | $\pm 0,15$                                                          | $\pm 0,15$      | $\pm 0,10$       | ± 0.10           | ± 0,10           |  |  |  |
|                         | С металлизацией                 | +0,10                                                               | +0,10           | +0,05            | +0,05            | + 0,05           |  |  |  |
|                         | без оплавления                  | -0,20                                                               | $-0,\!20$       | -0.15            | -0,15            | - 0,15           |  |  |  |
|                         | С металлизацией и с оплавлением | + 0.10<br>- 0,23                                                    | +0,10<br>- 0,23 | + 0,05<br>- 0,18 | + 0,05<br>- 0,18 | + 0,05<br>- 0,18 |  |  |  |

*Примечание*. Допускается устанавливать другие значения предельных отклонений при сохранении

- 2.2.4. Номинальные размеры сквозных отверстий под крепежные детали по ГОСТ 11284–75.
- 2.2.5. Ширину печатного проводника выбирают в зависимости от таковой нагрузки. Значения допустимой токовой нагрузки приведены в л. 2.4.4.
- 2.2.6. Предельные отклонения ширины печатного проводника, контактной площадки, концевого печатного контакта, экрана  $\Delta t$  для узкого места должны соответствовать указанным в табл. 3.

Таблица 3

| Наличие металлического покрытия | Предельное отклонение ширины печатного проводника $\Delta t$ , мм, для класса точности |                  |        |        |               |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------|------------------|--------|--------|---------------|--|--|--|
|                                 | 1                                                                                      | 2                | 3      | 4      | 5             |  |  |  |
| Без покрытия                    | ± 0,15                                                                                 | ± 0,10           | ± 0,05 | ± 0,03 | + 0<br>- 0,03 |  |  |  |
| С покрытием                     | + 0,25<br>- 0,20                                                                       | + 0,15<br>- 0,10 | ± 0,10 | ± 0,05 | ± 0,03        |  |  |  |

*Примечание*. Допускается устанавливать другие значения предельных отклонений при сохранении величины допуска.

- 2.3. Позиционные допуски расположения элементов конструкций
- 2.3.1. Значения позиционных допусков расположения осей отверстий  $T_d$  в диаметральном выражении приведены в табл. 4.

Таблица 4

| Размер печатной платы по большей стороне, мм | Значение позиционного допуска расположения осей отверстий $T_d$ , мм $^*$ , для класса точности |      |      |      |      |  |  |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------|------|------|------|------|--|--|--|
|                                              | 1                                                                                               | 2    | 3    | 4    | 5    |  |  |  |
| До 180 включ.                                | 0,20                                                                                            | 0,15 | 0,08 | 0,05 | 0,05 |  |  |  |
| Св. 180 до 360 включ.                        | 0,25                                                                                            | 0,20 | 0,10 | 0,08 | 0,08 |  |  |  |
| Св. 360                                      | 0,30                                                                                            | 0,25 | 0,15 | 0,10 | 0,10 |  |  |  |

- \* Позиционный допуск на расположение осей фиксирующих отверстий на платах, предназначенных для автоматической установки навесных элементов, устанавливают по 4-классу, на расположение монтажных отверстий не ниже 3-го класса не зависимо от сложности платы
- 2.3.2. Предельные отклонения расстояния между центрами двух отверстий печатной платы определяют, как полусумму позиционных допусков расположения центров этих отверстий.
  - 2.3.3. Значения позиционных допусков расположения центров контактных площа-

FOCT 23752–86 5

док  $T_D$  в диаметральном выражении приведены в табл. 5.

Таблица 5

| Вид изделия         | Размер печатной платы по большей сторо- | Значение позиционного допуска расположения центров контактных площадок $T_D$ , мм для класса точности |      |      |      |      |  |  |  |
|---------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|------|------|------|------|--|--|--|
|                     | не, мм                                  | 1                                                                                                     | 2    | 3    | 4    | 5    |  |  |  |
| ОПП; ДПП; ГПК;      | До 180 включ.                           | 0,35                                                                                                  | 0,25 | 0,15 | 0,10 | 0,05 |  |  |  |
| МПП (наружный слой) | Св. 180 до 360 включ.                   | 0,40                                                                                                  | 0,30 | 0,20 | 0,15 | 0,08 |  |  |  |
|                     | Св. 360                                 | 0,45                                                                                                  | 0,35 | 0,25 | 0,20 | 0,15 |  |  |  |
| МПП (внутренний     | До 180 включ.                           | 0,40                                                                                                  | 0,30 | 0,20 | 0,15 | 0,10 |  |  |  |
| слой)               | Св. 180 до 360 включ.                   | 0,45                                                                                                  | 0,35 | 0,25 | 0,20 | 0,15 |  |  |  |
|                     | Св. 360                                 | 0,50                                                                                                  | 0,40 | 0,30 | 0,25 | 0,20 |  |  |  |

2.3.4. Значения позиционных допусков расположения центров (осей) элементов проводящего рисунка относительно центра (оси) любого другого элемента проводящего рисунка  $T_l$  в диаметральном выражении приведены в табл. 6

Таблица 6

| Вид изделия                        | Значение позиционного допуска расположения печатного проводника $T_l$ , мм, для класса точности |      |      |      |      |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------|------|------|------|------|--|--|
|                                    | 1                                                                                               | 2    | 3    | 4    | 5    |  |  |
| ОПП; ДПП; ГПК; МПП (наружный слой) | 0,2                                                                                             | 0,10 | 0,05 | 0,03 | 0,02 |  |  |
| МПП (внутренний слой)              | 0,3                                                                                             | 0,15 | 0,10 | 0,08 | 0,05 |  |  |

- 2.3.5. Формулы для расчета размеров элемента конструкции печатных плат и ГПК приведены в обязательном приложении.
  - 2.4. Электрические параметры
- 2.4.1. Значения допустимых рабочих напряжений между элементами проводящего рисунка, расположенными в соседних слоях печатной платы и ГПК, приведены в табл. 7.

Таблица 7

|                                |                                 | ,                    |  |  |  |  |
|--------------------------------|---------------------------------|----------------------|--|--|--|--|
| Ворожномина можети о поможноми | Значение рабочего напряжения, В |                      |  |  |  |  |
| Расстояние между элементами    | Фонт нимороми ий полимомо (ГФ)  | Фольгированный       |  |  |  |  |
| проводящего рисунка, мм        | Фольгированный гетинакс (ГФ)    | стеклотекстолит (СФ) |  |  |  |  |
| От 0,1 до 0,2 включ.           | _                               | 25                   |  |  |  |  |
| Св. 0,2 » 0,3 »                | -                               | 50                   |  |  |  |  |
| » 0,3 » 0,4 »                  | 75                              | 100                  |  |  |  |  |
| » 0,4 » 0,5 »                  | 150                             | 200                  |  |  |  |  |
| » 0,5 » 0.75 »                 | 250                             | 350                  |  |  |  |  |
| » 0,75 » 1,5 »                 | 350                             | 500                  |  |  |  |  |
| » 1,5 » 2,5 »                  | 500                             | 650                  |  |  |  |  |

- 2.4.2. Значения допустимых рабочих напряжений между элементами проводящего рисунка, расположенными на наружном слое печатной платы или ГПК, приведены в табл. 8.
- 2.4.3. Значения сопротивления печатных проводников длиной 1 м приведены в табл. 9.
- 2.4.4. Допустимую токовую нагрузку на элементы проводящего рисунка в зависимости от допустимого превышения температуры проводника относительно температуры окружающей среды выбирают для:

фольги от  $100-10^6$  до  $250-10^6$  А/м $^2$  (от 100 до 250 А/мм $^2$ ); гальванической меди от  $60-10^6$  до  $100-10^6$  А/м $^2$  (от 60 до 100 А/мм $^2$ );

Таблица 8

|                                                     | Значение рабочего напряжения. В |                                |                    |                                |     |                               |           |       |  |  |  |
|-----------------------------------------------------|---------------------------------|--------------------------------|--------------------|--------------------------------|-----|-------------------------------|-----------|-------|--|--|--|
|                                                     |                                 | Внешние воздействующие факторы |                    |                                |     |                               |           |       |  |  |  |
| Расстояние между элементами проводящего рисунка, мм | Нормали                         | ш ю усло                       | Относите ность (9) | Поних                          |     | атмосфе <sub>ј</sub><br>јение | рное дав- |       |  |  |  |
|                                                     | Нормальные условия              |                                | температу          | 53600 Па<br>(400 мм<br>рт.ст.) |     | 666 Па<br>(5 мм рт. ст.)      |           |       |  |  |  |
|                                                     | ΓФ                              | СФ                             | ΓФ                 | СФ                             | ГΦ  | СФ                            | ГΦ        | СФ    |  |  |  |
| От 0,10 до 0,20 включ.                              |                                 | 25                             |                    | 15                             |     | 20                            |           | 10    |  |  |  |
| Св. 0,20 » 0,30 »                                   | 30                              | 50                             | 20                 | 30                             | 25  | 40                            | 20        | 30    |  |  |  |
| » 0,30 » 0,40 »                                     | 100                             | 150                            | 50                 | 100                            | 80  | 110                           | 30        | 50    |  |  |  |
| » 0,40 » 0,70 »                                     | 150                             | 300                            | 100                | 200                            | 110 | 160                           | 58        | 80    |  |  |  |
| » 0,70 » 1,20 »                                     | 300                             | 400                            | 230                | 300                            | 160 | 200                           | 80        | 100   |  |  |  |
| » 1,20 » 2,00 »                                     | 400                             | 600                            | 300                | 360                            | 200 | 300                           | 100       | 130   |  |  |  |
| » 2,00 » 3,50 »                                     | 500                             | 830                            | 360                | 430                            | 250 | 400                           | 110       | 160   |  |  |  |
| » 3,50 » 5,00 »                                     | 660                             | 1160                           | 500                | 600                            | 330 | 560                           | 150       | 210   |  |  |  |
| » 5,00 » 7,50 »                                     | 1000 1500                       |                                | 660                | 830                            | 500 | 660                           | 200       | 250   |  |  |  |
| » 7,50 » 10,00 »                                    | 1300                            | 2000                           | 830                | 1160                           | 560 | 1000                          | 230       | 300   |  |  |  |
| » 10,00 » 15,00 »                                   | 1800                            | 2300                           | 1160               | 1600                           | 660 | 1160                          | 300       | - 330 |  |  |  |

## Примечания:

- 1. Цепи с напряжением более 250В в МПП применять не рекомендуется.
- 2. Цепи с напряжением более 1800 В для фольгированного гетинакса и 2300 В для фольгированного стеклотекстолита в печатных платах и ГПК применять не рекомендуется.

Таблица 9.

| Толщина           | печатного        |      | Значение сопротивления. Ом, не более |      |       |      |      |      |      |      |      |      |
|-------------------|------------------|------|--------------------------------------|------|-------|------|------|------|------|------|------|------|
| проводн           | ика, мкм         |      | Ширина печатного проводника, мм      |      |       |      |      |      |      |      |      |      |
| без пок-<br>рытия | с покры-<br>тием | 0,10 | 0,15                                 | 0.20 | 0,25  | 0,30 | 0,40 | 0,50 | 0,60 | 0.70 | 0,80 | 1,00 |
| 20                | _                | _    | 5,83                                 | 4,37 | 3,50  | 2,91 | 2,18 | 1,75 | 1,45 | 1,25 | 1,09 | 0,87 |
| 35                | ı                | ı    | ı                                    | 2,50 | 2,01  | 1,66 | 1,25 | 1,00 | 0,83 | 0,71 | 0,52 | 0,50 |
| 50                | ı                | ı    | ı                                    | 1,75 | 1,40  | 1,16 | 0,87 | 0,70 | 0,58 | 0,50 | 0,43 | 0,35 |
| 5                 | 40               | 8,60 | 5,74                                 | 4,30 | 3,44  | 2,86 | 2,14 | 1,72 | 1,42 | 1,23 | 1,07 | 0,86 |
| 20                | 70               | 4,20 | 2,78                                 | 2,09 | 1 ,67 | 1,39 | 1,04 | 0,83 | 0,69 | 0,59 | 0,52 | 0,42 |
| 35                | 80               | 3,20 | 2,12                                 | 1,60 | 1,28  | 1,06 | 0,79 | 0,64 | 0,52 | 0,45 | 0,39 | 0,32 |
| 50                | 90               | 2,60 | 1,71                                 | 1,29 | 1,04  | 0,86 | 0,64 | 0,52 | 0,43 | 0,37 | 0,32 | 0,26 |
| _                 | 40               | 10,0 | 6,60                                 | 5,00 | 4,00  | 3,32 | 2,50 | 2,00 | 1,65 | 1,42 | 1,25 | 1,00 |

ГОСТ 23752–86

#### ПРИЛОЖЕНИЕ

обязательное

7

## Формулы для расчета размеров элементов конструкции печатных плат, ГПК и толщины МПП

1. Наименьший номинальный диаметр D контактной площадки рассчитывают по формуле

$$D = (d + \Delta d_{e.o.}) + 2 \cdot b + \Delta t_{e.o.} + 2 \cdot \Delta d_{mp} + (T_d^2 + T_D^2 + \Delta t_{n.o.}^2)^{\frac{1}{2}}$$

где

 $\Delta d_{s.o.}$  — верхнее предельное отклонение диаметра отверстия;

 $\Delta t_{e.o.}$  — верхнее предельное отклонение диаметра контактной площадки;

 $\Delta d_{mp}$ . — значение подтравливания диэлектрика в отверстии равно 0,03 мм для МПП, для ОПП, ДПП и ГПК — нулю;

 $\Delta t_{n.o.}$  — нижнее предельное отклонение диаметра контактной площадки;

2. Наименьшее номинальное расстояние  $\boldsymbol{l}$  для прокладки n-го количества проводников рассчитывают по формуле

$$l = \frac{D_1 + D_2}{2} + t \cdot n + S \cdot (1+n) + T_1$$

где

 $D_1, D_2$  – диаметры контактных площадок;

*n* – количество проводников.

3. Толщину МПП  $H_n$  рассчитывают по формуле

$$H_n = \sum H_c + (0.6 \div 0.9) \cdot \sum H_{np}$$

где

 $H_c$  — толщина слоя МПП;

 $H_{np}$  — толщина прокладки (по стеклоткани).