D3_

Son Min Sang

2021-01-15

Contents

Exercise 1																			 			 		2
Exercise 2																						 		4
Exercise 3																								
Exercise 4																								

Exercise 1

How would you genalize this game with arbitrary value of m_1 (minimum increment), m_2 (maximum increment), and N (the winning number)?

- $S = \{1, 2, \dots, N\}$
- $A = \{a_{m1}, a_{m1} + 1, \dots, a_{m2}\}$
- a_m means the action of incrementing the previous number by m

When
$$State = N - a_{m1}$$
, optimal action = a_{m1}

When
$$State = N - a_{m2}$$
, optimal action = a_{m2}

When
$$State = N - a_{m1} - l - k*(a_{m1} + a_{m2})$$
 $(l \le a_{m2} - a_{m1})$ $(k:integer)$, optimal action $= a_{m1} + l$

Exercise 2

Two players are to play a game. The two players take turns to call out integers. The rules are as follows. Describe A's winning strategy.

- $S = \{1, 2, \dots, 100\}$
- $A_{start} = \{4, 5, 6, 7, 8\}$
- $A_B = \{5, 6, 7, 8, 9\}$
- $A_A = \{2, 3, 4, 5, 6\}$

There is no A's winning strategy

Exercise 3

Exercise 4

Formulate the first example in this lecture note using the terminology including state, action, reward, policy, transition. Describe the optimal policy using the terminology as well.

- $S = \{1, 2, \dots, 31\}$
- $A = \{a_1, a_2\}$
- a_m means the action of incrementing the previous number by m
- • optimal policy: $\pi(N-a_1-k*(a_1+a_2))\,(k:integer)=a_1$
- optimal policy: $\pi(N-a_2-k*(a_1+a_2))\,(k:integer)=a_2$