数字逻辑与部件设计

2. 逻辑代数

逻辑电路,及其化简

逻辑函数: $S = F(A, B, C \cdots)$

$$A + B = S$$

$$S = \bar{A}B + A\bar{B} = A \oplus B$$

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 10$$

基本逻辑运算: 3种运算就可以表达所有的逻辑

或运算

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

与运算

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

非运算

$$\overline{0} = 1$$

$$\overline{1} = 0$$

低

优先级

正逻辑、负逻辑

• 正逻辑: 高电平表示逻辑1, 低电平表示逻辑0。

• 负逻辑: 高电平表示逻辑 0, 低电平表示逻辑 1。

同一电路,采用哪种逻辑都可以, 不涉及电路本身结构与性能好坏; 但使同一电路具有不同的逻辑功能。

真值表	输入	变量	输出变量 	
	Α	В	F	
全	L	L	L	
全 部 输	L	Н	L	
入 组 合	Н	L	L	
合	Н	Н	Н	
	输入	输出电平	· 关系	

门	逻辑: -	正设
F	В	Α
0	0	0
0	1	0
0	0	1
1	1	1
戊门	逻辑:真	负沒
F	В	Α
1	1	1
4	0	1

0

电路(原理)图 schematic

用电路元件符号表示电路连接的图

- 输入在原理图的左边(或顶部)
- 输出在原理图的右边(或底部)
- 无论何时, 门必须从左流向右
- 最好使用直线,而不使用拐角线
- 在有实心点的十字相交处相连
- 在无实心点的十字相交处不相连
- 在T型接头处相连(美国)

复合逻辑门

"与非"门

实现"与非"运算 功能的逻辑电路

$$F = \overline{A \cdot B \cdot C \cdots}$$

通用门

$$A \cdot B = \overline{\overline{A \cdot B} \cdot \overline{A \cdot B}} \quad A \cdot B = \overline{\overline{A + A} + \overline{B + B}}$$

$$A + B = \overline{\overline{A \cdot A} \cdot \overline{B \cdot B}}$$

$$\overline{A} = \overline{A \cdot A}$$

"或非"门

实现"或非"运算 功能的逻辑电路

$$F = \overline{A + B + C \cdots}$$

通用门

一种可以独自实现 所有逻辑函数的门

$$A \cdot B = \overline{\overline{A + A} + \overline{B + B}}$$

$$A + B = \overline{\overline{A \cdot A} \cdot \overline{B \cdot B}} \quad A + B = \overline{\overline{A + B} + \overline{A + B}}$$

$$\overline{A} = \overline{A + A}$$

"与或非"门

不常用 不经济

$$F = \overline{AB + CD + \cdots}$$

"异或"门

实现"异或"运算 功能的逻辑电路

$$F = A \oplus B$$
$$= \bar{A}B + A\bar{B}$$

有奇数个变量=1, 则,运算结果=1;

有偶数个变量=1, 则,运算结果=0。

"同或"门

实现"同或"运算 功能的逻辑电路

$$F = A \odot B$$
$$= AB + \bar{A}\bar{B}$$

有奇数个变量=0, 则,运算结果=0;

有偶数个变量=0, 则,运算结果=1。

7 / 60

"与**非门**"作为通用门 universal gate

$$F = \overline{A} + B = \overline{\overline{\overline{A} + B}} = \overline{A \cdot \overline{B}} = \overline{A \cdot \overline{B} \cdot B}$$

$$\overline{A\cdot A}=\overline{A}$$

(a) 1 个与非门用作非门

$$\overline{\overline{A \cdot B} \cdot \overline{A \cdot B}} = A \cdot B$$

(b) 2 个与非门用作与门

$$\overline{\overline{A \cdot A} \cdot \overline{B \cdot B}} = A + B$$

(c) 3 个与非门用作或门

"或非门"作为通用门

$$\mathbf{F} = \overline{\mathbf{A}} + \mathbf{B} = \overline{\overline{\overline{\mathbf{A}} + \mathbf{B}}} = \overline{\overline{\overline{\mathbf{A}} + \mathbf{A}} + \mathbf{B}} + \overline{\overline{\mathbf{A}} + \overline{\mathbf{A}} + \mathbf{B}}$$

 $\overline{A+A}=\overline{A}$

(a) 1 个或非门用作非门

$$\overline{\overline{A+B}} + \overline{\overline{A+B}} = A+B$$

(b) 2 个或非门用作或门

$$\overline{\overline{A} + A} + \overline{\overline{B} + B} = A \cdot B$$

(c) 3 个或非门用作与门

异或

$$A \oplus 0 = A$$

$$A \bigoplus A = 0$$

$$A \oplus 1 = \bar{A}$$

$$A \oplus 1 = \bar{A}$$
 $A \oplus \bar{A} = 1$

$$A \oplus B = B \oplus A$$

$$A \oplus B \oplus C = (A \oplus B) \oplus C$$

• 多个变量异或运算,可两两依次运算,也可用两两运算的结果再运算:

$$F = A \oplus B \oplus C \oplus D = [(A \oplus B) \oplus C] \oplus D = (A \oplus B) \oplus (C \oplus D)$$

• 多个变量异或运算的结果: 取决于变量为1的个数:

$$F = A \oplus B \oplus C \oplus D \oplus \cdots =$$
 $\begin{cases} \mathbf{1}, \ \mathbb{0} \oplus \mathbb{0} \oplus \mathbb{0} \oplus \mathbb{0} \oplus \mathbb{0} \oplus \mathbb{0} \\ \mathbf{0}, \ \mathbb{0} \oplus \mathbb{0} \oplus \mathbb{0} \oplus \mathbb{0} \oplus \mathbb{0} \oplus \mathbb{0} \end{pmatrix}$

异或、同或

互为反函数

$$\overline{A} \oplus \overline{B} = \overline{\overline{A}B} + A\overline{\overline{B}}$$

$$= (\overline{A} + B)(A + \overline{B})$$

$$= AB + \overline{A}\overline{B}$$

$$= A \odot B$$

又互为对偶

$$(\mathbf{A} \oplus \mathbf{B})' = (\bar{A} \cdot B + A \cdot \bar{B})'$$

$$= (\bar{A} + B) \cdot (A + \bar{B})$$

$$= AB + \bar{A}\bar{B}$$

$$= \mathbf{A} \odot \mathbf{B}$$

基本逻辑门

复杂逻辑门

$$F = X\overline{Y} + \overline{X}Y$$
$$= X \oplus Y$$

$$X \longrightarrow F$$

$$F = XY + \overline{XY}$$

$$= X \oplus Y$$

$$= X \odot Y$$

$$F = \overline{WX + YZ}$$

$$F = (\overline{W + X})(Y + Z)$$

$$F = WX + YZ$$

$$F = (W + X)(Y + Z)$$
12 / 60

逻辑任务

逻辑代数:一个封闭的代数系统

由一个逻辑变量集,常量0和1,"或"、"与"、"非"三种基本运算构成。

- 逻辑变量: 用字母表示其值可以变化的量。如: A、B…
 - ▶ 取值: 0、1。 逻辑常量 0、1无大小、正负之分
- 逻辑运算: 与、或、非 ……
- 逻辑函数: $F = f(A_1, A_2, ..., A_n)$ 取值: 0 < 1
 - > 逻辑函数的相等: 任意输入二者输出均相等

$$F_1 = f_1(A_1, A_2, ..., A_n)$$

 $F_2 = f_2(A_1, A_2, ..., A_n)$
 $F_3 = F_2(A_1, A_2, ..., A_n)$

爱尔兰 数学家 1849年创建

逻辑代数的公理

公理1: 0-1 律	A + 0 = A, $A + 1 = 1$	$A \cdot 0 = 0$, $A \cdot 1 = A$
公理2: 互补律	$A + \overline{A} = 1$	$A \cdot \bar{A} = 0$
公理3: 交换律	A + B = B + A	$A \cdot B = B \cdot A$
公理4: 结合律	(A + B) + C = A + (B + C)	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$
公理5: 分配律	$A \cdot (B + C) = A \cdot B + A \cdot C$	$A + (B \cdot C) = (A + B) \cdot (A + C)$

Venn Diagram

文氏图验证

普通代数中没有

逻辑代数的定理

定理1: 0-1律	0 + 0 = 0, 0 + 1 = 1 1 + 0 = 1, 1 + 1 = 1	$0 \cdot 0 = 0, 0 \cdot 1 = 0$ $1 \cdot 0 = 0, 1 \cdot 1 = 1$
定理2: 重叠律	A + A = A	$A \cdot A = A$
定理3: 摩根定理	$\overline{A+B}=\overline{A}\cdot\overline{B}$	$\overline{A\cdot B}=\overline{A}+\overline{B}$
定理4: 吸收律	$A + A \cdot B = A$	$A \cdot (A + B) = A$
定理5: 并项律	$A \cdot \bar{B} + A \cdot B = A$	$(A + \bar{B}) \cdot (A + B) = A$
定理6: 消除律	$A + \bar{A} \cdot B = A + B$	$A \cdot (\bar{A} + B) = A \cdot B$
定理7: 自反律	$ar{\overline{A}}$	=A

16 / 60

【提醒】逻辑运算,不是算术运算

• 没有定义减法:

$$A + B = A + C$$
 不能 = 两端同时 $-A$, 导出: $B = C$

• 没有定义**除法**:

$$A \cdot B = A \cdot C$$
 不能 = 两端同时÷A, 导出: $B = C$

• 没有定义**乘方**:

$$A \cdot A \neq A^2$$

• 允许提取公因子: AB + AC = A(B + C)

定理2: 等幂律 证明

公理1: 0-1 律	A + 0 = A, $A + 1 = 1$	$A \cdot 0 = 0, A \cdot 1 = A$
公理2: 互补律	$A + \overline{A} = 1$	$A \cdot \bar{A} = 0$
公理3: 交换律	A + B = B + A	$A \cdot B = B \cdot A$
公理4: 结合律	(A+B)+C=A+(B+C)	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$
公理5: 分配律	$A \cdot (B + C) = A \cdot B + A \cdot C$	$A + (B \cdot C) = (A + B) \cdot (A + C)$

证:
$$A + A = (A + A) \cdot 1$$
 1(右) 证: $A \cdot A = A \cdot A + 0$ 1(左)
$$= (A + A) \cdot (A + \overline{A})$$
 2(左)
$$= A \cdot A + A \cdot \overline{A}$$
 2(右)
$$= A + (A \cdot \overline{A})$$
 5(右)
$$= A(A + \overline{A})$$
 5(左)
$$= A + 0$$
 2(右)
$$= A \cdot 1$$
 2(左)
$$= A$$
 1(左)
$$= A$$
 1(右)

L8 / 60

完备证明法

证明:
$$(BC) + \overline{B}D + CD = BC + \overline{B}D$$

В	С	D	$BC + \overline{B}D + CD$	$BC + \overline{B}D$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

摩根定理 DeMorgan Theorems

定理6 摩根定理

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

【证】
$$\diamondsuit F = A \cdot B$$
, $G = \overline{A} + \overline{B}$, 则,

$$F + G$$

$$= A \cdot B + \overline{A} + \overline{B}$$

$$= (A + \overline{A} + \overline{B})(B + \overline{A} + \overline{B})$$

$$= (1 + \overline{B})(1 + \overline{A}) = \mathbf{1}$$

由公理2互补律有: $\overline{F} = G$

Augustus De Morgan (1806-1871)

A	B	$A \cdot B$	$\overline{A\cdot B}$	Ā	\overline{B}	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0
						20 / 60

摩根定理的应用

与非门、非或门 等价性 验证

A	В	\overline{AB}	$\overline{A} + \overline{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

或非门、非与门 等价性验证

A	В	$\overline{A+B}$	$\overline{A} \overline{B}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

摩根定理

推气泡法

•
$$Y = \overline{A \cdot B} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

• Forward:

推气泡法

- 从输出端**反向**推气泡或从输入端**正向**推气泡,将**与门**换成**或门**,反之亦然。
- 从输出端推气泡反向到输入端,把气泡放置在门的输入端。
- 向后推所有门输入端的气泡,把气泡放在门的输出端。

3个重要规则①

①代入规则

任何一个含有变量A的逻辑等式,如果 将所有出现A的位置都代之以同一个逻辑函数F,则等式仍然成立。

用途:可将公理、定理中的变量用任意函数代替,得到更多的等式。

【例】若
$$A(B+C) = AB + AC$$
 则 $(A+D)(B+C) = (A+D)B + (A+D)C$

【例】因
$$\overline{AB} = \overline{A} + \overline{B}$$
 则 $\overline{ABC} = \overline{A} + \overline{BC} = \overline{A} + \overline{B} + \overline{C}$

②反演规则

③对偶规则

3个重要规则②

②反演规则

如果将逻辑函数F表达式中所有的"•"变成"+", "+"变成"•", " $\mathbf{1}$ "变成" $\mathbf{0}$ ", "**0**"换成"**1**",**原变**量变成**反变**量,**反变**量变成**原变**量,并保持原函数中 的运算顺序不变,则所得到的新的函数为原函数F的反函数 \overline{F} 。

用途: 求函数的**反函数**。

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

摩根定理
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
 $\overline{A \cdot B} = \overline{A} + \overline{B}$

的推广

【例】若
$$F = \bar{A} \cdot B + C \cdot \bar{D}$$

则 $\bar{F} = (A + \bar{B}) \cdot (\bar{C} + D)$
但 $\bar{F} \neq A + \bar{B} \cdot \bar{C} + D$

对偶式

如果将逻辑函数F表达式中所有的"•"变成"+", "+"变成"•", " $\mathbf{1}$ "变成" $\mathbf{0}$ ", "0"换成"1", 原变量变成反变量, 反变量变成原变量, 并保持原函数中 的运算顺序不变,则所得到的新的函数为原函数F的对偶式 F'。

3个重要规则③

③对偶规则	若两个逻辑函数表达式 $F = G$ (相等	F(F),则其对偶式 $F'=G'$ (也相等)。
公理1: 0-1律	A + 0 = A, $A + 1 = 1$	$A \cdot 0 = 0$, $A \cdot 1 = A$
公理2: 互补律	$A + \overline{A} = 1$	$A \cdot \bar{A} = 0$
公理3: 交换律	A + B = B + A	$A \cdot B = B \cdot A$
公理4: 结合律	(A+B)+C=A+(B+C)	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$
公理5: 分配律	$A \cdot (B + C) = A \cdot B + A \cdot C$	$ \bullet \ A + (B \cdot C) = (A + B) \cdot (A + C) $
定理1: 0-1律	0+0=0, $0+1=1$, $1+0=1$, $1+1=1$	$0 \cdot 0 = 0, \ 0 \cdot 1 = 0, \ 1 \cdot 0 = 0, \ 1 \cdot 1 = 1$
定理2: 重叠律	A + A = A	$A \cdot A = A$
定理3: 摩根定理	$\overline{A+B}=\overline{A}\cdot\overline{B}$	$\overline{A \cdot B} = \overline{A} + \overline{B}$
定理4: 吸收律	$A + A \cdot B = A$	$A \cdot (A + B) = A$
定理5: 消除律	$A + \bar{A} \cdot B = A + B$	$A \cdot (\bar{A} + B) = A \cdot B$
定理6: 并项律	$A \cdot B + A \cdot \overline{B} = A$	$(A+B)\cdot (A+\bar{B})=A^{26/60}$

对偶规则的应用

• 当证明一个逻辑等式困难时,可以通过证明其对偶式(相对容易)

【例】证明:
$$A + BC = (A + B) \cdot (A + C)$$

其对偶式: A(B+C) AB+AC

由乘法分配律: A(B+C) = AB+AC 由对偶规则: $A+BC = (A+B)\cdot (A+C)$

• 当或-与式**化简**困难时,先转换为**对偶式(与-或式)**化简,再转换为**对偶式(或-与式**)

【例】 化简: $F = (A + \overline{B})(B + C)(\overline{A} + C)$

其对偶式: $F' = A\bar{B} + BC + \bar{A}C$ $= A\bar{B} + (B + \bar{A})C = A\bar{B} + \overline{A\bar{B}}C = A\bar{B} + C$

再求对偶式: $\mathbf{F} = (F')' = (A\overline{B} + C)' = (\mathbf{A} + \overline{\mathbf{B}}) \cdot \mathbf{C}$

$$x + \overline{x}y = x + y$$

表述系統定

逻辑函数表达式的基本形式

- 无论什么形式都可以变换成两种基本形式。
- ① "与-或"表达式 Sum-Of-Products

$$F(A, B, C) = A + \bar{A}B + A\bar{B}C$$
$$= A + \bar{A}B$$

② "或-与" 表达式 Product-Of-Sums

$$F(A,B,C) = A(\bar{A} + B)(A + \bar{B} + C)$$

- 基本形式都不唯一。为了"唯一",引入标准形式。
- ③ 标准"与-或"表达式

由若干最小项相"或"构成

$$F(A,B,C) = \bar{A}\bar{B}C + A\bar{B}C + ABC$$

4 标准"或-与"表达式

由若干最大项相"与"构成

$$F(A,B,C) = (A+B+C)(A+\overline{B}+C)$$

"与-或"

"或-与"

$$F_{2} = x(\bar{y} + z)(\bar{x} + y + \bar{z})$$

$$\bar{y}$$

$$z$$

$$\bar{x}$$

$$y$$

$$z$$

 $F_3 = AB + C(D + E)$

$$A \longrightarrow B$$
 $C \longrightarrow F_3$
 $C \longrightarrow B$
 $C \longrightarrow F_3$
 $C \longrightarrow B$
 $C \longrightarrow B$

= AB + CD + CE

GAL器件的原理图

真值表 → 表达式

$$S = \bar{A} \cdot B + A \cdot \bar{B}$$

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

$$F = \bar{A} \cdot B \cdot C$$

假定: =1时用原变量

=0时用反变量

$$G = \bar{F} = \overline{\bar{A} \cdot B \cdot C}$$
$$= A + \bar{B} + \bar{C}$$

G	F	С	В	Α
1	0	0	0	0
1	0	1	0	0
1	0	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	0	0	1	1
1	0	1	1	1
	00			

最小项 minterm

- n个变量函数"与项"包含全部n个变量
- 每个变量都以原变量或反变量仅出现1次
- n个变量可以构成 2^n 个最小项

编号	x	у
m_0	0	0
m_1	0	1
m_2	1	0
m_3	1	1

最小项			
$\overline{x}\cdot \overline{y}$			
$\overline{x} \cdot y$			
$x \cdot \overline{y}$			
$x \cdot y$			

$$000 001 010 011 111$$

$$F(A,B,C) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}B\bar{C} + \bar{A}BC + ABC$$

$$= m_0 + m_1 + m_2 + m_3 + m_7$$

$$= \sum m(0,1,2,3,7)$$

maxterm 最大项

- n个变量函数"或项"包含全部n个变量
- 每个变量都以原变量或反变量仅出现一次
- n个变量可以构成 2^n 个最大项

编号	x	у	
M_0	0	0	
M_1	0	1	
M_2	1	0	
M_3	1	1	

$$x + y$$

$$x + \overline{y}$$

$$\overline{x} + y$$

$$\overline{x} + \overline{y}$$

$$0 \quad 0) (1 \quad 1$$

最大项

$$(0 0 0)(1 0 0)(1 1 1)$$

$$F(A,B,C) = (A+B+C)(\bar{A}+B+C)(\bar{A}+\bar{B}+\bar{C})$$

$$= M_0 \cdot M_4 \cdot M_7$$

$$= \prod M(0,4,7)$$
33/60

【例】用逻辑函数的标准式表示

•
$$F_1 = \bar{x}\bar{y}\bar{z} + \bar{x}yz + x\bar{y}\bar{z} = m_0 + m_3 + m_4 = \Sigma m(0.3.4)$$

•
$$F_2 = m_1 + m_2 + m_5 + m_6 + m_7 = \Sigma m(1,2,5,6,7)$$

= $\bar{x}\bar{y}z + \bar{x}y\bar{z} + x\bar{y}z + xy\bar{z} + xyz$

•
$$F_3 = (x + y + \bar{z})(x + \bar{y} + z)(\bar{x} + y + \bar{z})(\bar{x} + \bar{y} + z)(\bar{x} + \bar{y} + \bar{z})$$

 $= M_1 M_2 M_5 M_6 M_7 = \prod M(1, 2, 5, 6, 7)$

$$F_4 = M_0 M_3 M_4 = \prod M(0,3,4) = (x+y+z)(x+\bar{y}+\bar{z})(\bar{x}+y+z)$$

最小项、最大项

对于一个具有n个变量的逻辑问题,在输入变量的任意一种取值情况下,总有:

- ① 必有且仅有一个**最大项**的逻辑值为 $\mathbf{0}(x + y + z)$; 必有且仅有一个**最小项**的逻辑值为 $\mathbf{1}(x \cdot y \cdot z)$.
- ② 任意两个不同的**最小项**之积为0; $m_i \cdot m_j = 0$ $(i \neq j)$ 任意两个不同的**最大项**之和为1. $M_i + M_j = 1$
- ③ 全体最小项之和为1; $\sum_{i=0}^{2^{n}-1} m_i = 1$ $\prod_{i=0}^{2^{n}-1} M_i = 0$

x	у	\boldsymbol{z}	最小项	标识	最大项	标识
0	0	0	$\overline{x}\overline{y}\overline{z}$	m_0	x + y + z	M_0
0	0	1	$\overline{x}\overline{y}z$	m_1	$x + y + \overline{z}$	M_1
0	1	0	$\overline{x} y \overline{z}$	m_2	$x + \overline{y} + z$	M_2
0	1	1	$\overline{x} y z$	m_3	$x + \overline{y} + \overline{z}$	M_3
1	0	0	$x \overline{y} \overline{z}$	m_4	$\overline{x} + y + z$	M_4
1	0	1	$x \overline{y} z$	m_5	$\overline{x} + y + \overline{z}$	M_5
1	1	0	$x y \bar{z}$	m_6	$\overline{x} + \overline{y} + z$	M_6
1	1	1	x y z	m_7	$\overline{x} + \overline{y} + \overline{z}$	M_7

④ 下标相同的最小项和最大项互为反函数。 $m_i = \overline{M}_i$

同一逻辑问题,表达式之间的关系

① 一个<u>逻辑函数</u>与<u>其反函数</u>的逻辑表达之间,存在**互补**关系:

若
$$F = \Sigma m_i$$
,则 $\overline{F} = \Pi M_i$

② 一个逻辑函数的两种范式逻辑表达之间,存在以下关系:

若
$$F = \Sigma m_i$$
, 则 $F = \Pi M_i$, 其中 $i \neq j$ 。

A	В	C	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

【例】求 $F(ABC) = \Sigma m(0,1,3,6,7)$,求F的**和之积**形式及其反函数 \overline{F} 。

【解】原函数 $F(ABC) = \Sigma m(0,1,3,6,7) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}BC + AB\bar{C} + ABC$

根据关系① $\bar{F}(ABC) = \Pi M(0,1,3,6,7)$

$$= (A+B+C)(A+B+\bar{C})(A+\bar{B}+\bar{C})(\bar{A}+\bar{B}+C)(\bar{A}+\bar{B}+\bar{C})$$

根据关系② $F(ABC) = \Pi M(2,4,5) = (A + \bar{B} + C)(\bar{A} + B + C)(\bar{A} + B + \bar{C})$

转换为:标准"与-或"表达式

方法1

由真值表直接写出最小项表达式。

$$Y = AB\bar{C} + BC$$

Y(A,B,C) =	$\Sigma m(3)$, 6	,7)
	1		↑

Α	В	С	$AB\bar{C}$	BC	Υ
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	1	0	1
1	1	1	0	1	1

转换为:标准"与-或"表达式

方法2

- ① 将给定的逻辑函数化为若干**乘积项之和**的形式(**积之和**)
- ② 利用公式 $A + \overline{A} = 1$ 将每个乘积项缺少的因子补全

$$Y = AB\bar{C} + BC$$

$$= AB\bar{C} + (A + \bar{A})BC$$

$$= AB\bar{C} + ABC + \bar{A}BC$$

$$= m_6 + m_7 + m_3$$

$$Y(A, B, C) = \Sigma m(3,6,7)$$

【练习1】 $F = A + \bar{B}C$ 转化为标准与-或式

■
$$F = A (B + \bar{B}) + \bar{B}C$$

 $= AB + A\bar{B} + \bar{B}C$
 $= AB(C + \bar{C}) + A\bar{B}(C + \bar{C}) + (A + \bar{A})\bar{B}C$
 $= ABC + AB\bar{C} + A\bar{B}C + A\bar{B}\bar{C} + \bar{A}\bar{B}C$ Note: Remove Duplicates

$$F = \bar{A}\bar{B}C + A\bar{B}\bar{C} + A\bar{B}C + AB\bar{C} + ABC$$
$$= m_1 + m_4 + m_5 + m_6 + m_7$$

$$F(A,B,C) = \sum m(1,4,5,6,7)$$

转换为:标准"或-与"表达式

方法1

由真值表直接写出最大项表达式。

$$Y = \overline{A}B + AC$$

$$Y(A,B,C) = \Pi M(0,1,4,6)$$

Α	В	С	ĀΒ	AC	Υ
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	1	0	1
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	0	0	0
1	1	1	0	1	1

转换为:标准"或-与"表达式

方法2

- ① 将给定的逻辑函数式化为若干多项式相乘的**或-与**(和之积)
- ② 利用公式 $x\bar{x} = 0$ 将缺少的变量补齐

$$Y = \overline{A}B + AC$$

$$= (\overline{A}B + A)(\overline{A}B + C) \qquad \text{先转换为和之积}$$

$$= (A + \overline{A})(A + B)(\overline{A} + C)(B + C)$$

$$= (A + B + C\overline{C})(\overline{A} + B\overline{B} + C)(A\overline{A} + B + C)$$

$$= (A + B + C)(A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + C) (A + B + C)(\overline{A} + B + C)$$

$$= (A + B + C)(A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

$$Y(A, B, C) = \Pi M(0,1,4,6)$$

 $= M_0 M_1 M_4 M_6$

【练习2】 $F = xy + \bar{x}z$ 转化为标准或-与式

■
$$F = xy + \bar{x}z$$

= $(xy + \bar{x})(xy + z)$
= $(x + \bar{x})(y + \bar{x})(x + z)(y + z)$
= $(\bar{x} + y)(x + z)(y + z)$
 $\bar{x} + y = \bar{x} + y + z\bar{z} = (\bar{x} + y + z)(\bar{x} + y + \bar{z})$
 $x + z = x + z + y\bar{y} = (x + y + z)(x + \bar{y} + z)$
 $y + z = y + z + x\bar{x} = (x + y + z)(\bar{x} + y + z)$
■ $F = (x + y + z)(x + \bar{y} + z)(\bar{x} + y + z)$

$$F(x, y, z) = \prod M(0,2,4,5)$$

 $= M_0 M_2 M_4 M_5$

"与或" → "与或非"

【例】用与或非门实现函数 $F = A\overline{B} + B\overline{C} + C\overline{A}$

方法1: 对F两次求反

方法2: 对
$$\overline{F}$$
一次求反

$$F = \overline{A\overline{B} + B\overline{C} + C\overline{A}}$$

$$ar{F} = \overline{A}\overline{B} + B\overline{C} + C\overline{A} = \cdots = ABC + \overline{A} \cdot \overline{B} \cdot \overline{C}$$

$$F = \overline{F} = \overline{ABC} + \overline{A} \cdot \overline{B} \cdot \overline{C}$$

• 函数式 → 逻辑图

$$Y = \bar{A}B\bar{C} + \overline{A + \bar{B}C} + C$$

- ① 函数式
- 2 真值表
- ③ 逻辑图
- 4 波形图
- 5 卡诺图
- 6 HDL

• 逻辑图 → 函数式

$$Y = \bar{A}BC + AB\bar{C}$$

• 函数式 → 真值表

$$Y = A + \bar{B}C + \bar{A}B\bar{C}$$

Α	В	С	A	$\bar{B}C$	ĀBĒ	Υ
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	1	1
0	1	1	0	0	0	0
1	0	0	1	0	0	1
1	0	1	1	1	0	1
1	1	0	1	0	0	1
1	1	1	1	0	0	1

- 1 函数式
- 2 真值表
- ③ 逻辑图
- 4 波形图
- 5 卡诺图
- 6 HDL

• 真值表 → 波形图

	Α	В	С	Υ
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0
	1	0	0	0
	1	0	1	1
	1	1	0	1
ļ	1	1	1	1

1 函数式

2 真值表

3 逻辑图

4 波形图

5 卡诺图

6 HDL

• 波形图 → 真值表

Υ	С	В	Α
0	0	0	0
1	1	0	0
1	0	1	0
0	1	1	0
0	0	0	1
1	1	0	1
0	0	1	1
1	1	1	1

- ① 函数式
- ② 真值表
- ③ 逻辑图
- 4 波形图
- 5 卡诺图
- 6 HDL

传数化估篇

电路优化

$$G = ABC + ABD + E + ACF + ADF \qquad \longrightarrow \qquad G = AB(C + D) + E + A(C + D)F$$

$$G = A(B+F)(C+D) + E$$

$$G = (AB + AF)(C + D) + E$$

化简的标准

逻辑函数表达式越简单,设计出来的相应逻辑电路也越简单。

最简"与-或"表达式的标准:

- 表达式中"与"项个数最少
- 每个"与"项中的变量个数最少

【例】
$$F1 = A + \overline{AB} + AB$$

$$= A + B(A + \overline{A})$$

$$= A + B(1)$$

$$= A + B$$

最简"或-与"表达式的标准:

- 表达式中"或"项个数最少
- 每个"或"项中的变量个数最少

$$F2 = (xy + w)(xy + z)$$

$$= xyxy + xyz + wxy + wz$$

$$= xy + xyz + wxy + wz$$

$$= xy(1 + z + w) + wz$$

$$= xy(1) + wz$$

$$= xy + wz$$
50/60

化简逻辑函数

【例】
$$F3 = AB + A\overline{B} + C$$

$$F3 = AB + A\overline{\overline{B} + C}$$

$$= AB + A(B\bar{C})$$

$$=AB+AB\bar{C}$$

$$= AB(1 + \overline{C})$$

$$= AB(1)$$

$$= AB$$

$$F4 = (x\overline{y} + \overline{w}z)(w\overline{x} + y\overline{z})$$

$$F4 = (x\bar{y} + \bar{w}z)(w\bar{x} + y\bar{z})$$

$$= x\bar{y}w\bar{x} + x\bar{y}y\bar{z} + \bar{w}zw\bar{x} + \bar{w}zy\bar{z}$$

$$= \bar{y}w(x\bar{x}) + x\bar{z}(y\bar{y}) + z\bar{x}(w\bar{w}) + \bar{w}y(z\bar{z})$$

$$= \bar{y}w(0) + x\bar{z}(0) + z\bar{x}(0) + \bar{w}y(0)$$

$$= 0 + 0 + 0 + 0$$

$$= 0$$

【练习3】

- 写出 $F_2 = \bar{x}\bar{y}z + \bar{x}yz + x\bar{y}$ 的真值表,画出逻辑门电路图。
- 化简F2函数,写新函数出真值表,画出新函数的逻辑图。

x	y	Z	$\boldsymbol{F_2}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

【练习4】化简下列逻辑函数

②
$$x + \overline{x}y = (x + \overline{x})(x + y) = x + y$$

$$(5) (x+y)(\overline{x}+z)(y+z) = \frac{x\overline{x}}{x} + xz + yz + \overline{x}y$$

$$= (x+y)(\overline{x}+z)$$

1. 并项法: $xy + x\overline{y} = x$

$$F_{1} = A\overline{\overline{B}CD} + A\overline{B}CD$$

$$= A$$

$$F_{2} = A\overline{B} + ACD + \overline{A}\overline{B} + \overline{A}CD$$

$$= \overline{B} + CD$$

$$F_3 = \bar{A}B\bar{C} + A\bar{C} + \bar{B}\bar{C} = \bar{C}(\bar{A}B + A + \bar{B})$$
$$= \bar{C}(\bar{A}B + A + \bar{B}) = \bar{C}(\bar{A}B + \bar{A}B) = \bar{C}$$

$$F_4 = B\bar{C}D + BC\bar{D} + B\bar{C}\bar{D} + BCD$$
$$= B$$

2. 吸收法: x + xy = x

$$F_1 = (\overline{AB} + C)ABD + AD$$
$$= AD$$

$$F_2 = AB + AB\bar{C} + ABD + AB(\bar{C} + \bar{D})$$
$$= AB$$

$$F_3 = A + \overline{A} \cdot \overline{BC} (\overline{A} + \overline{BC} + \overline{D}) + BC$$
$$= A + BC$$

3. 消去法: $x + \overline{x}y = x + y$

$$F_1 = \bar{B} + ABC$$
$$= \bar{B} + AC$$

$$F_2 = A\overline{B} + B + \overline{A}B$$
$$= A + B$$

$$F_3 = AC + \bar{A}D + \bar{C}D$$
$$= AC + D$$

$$x + \bar{x}y$$

$$= (x + \bar{x})(x + y)$$

$$= x + y$$

4. 消项法:
$$xy + \overline{x}z + yz = xy + \overline{x}z$$

 $xy + \overline{x}z + yzw = xy + \overline{x}z$

$$F_{1} = AC + A\overline{B} + \overline{B} + \overline{C}$$

$$= AC + A\overline{B} + \overline{B}\overline{C}$$

$$= AC + \overline{B}\overline{C} + A\overline{B}$$

$$= AC + \overline{B}\overline{C}$$

$$F_{2} = A\overline{B}C\overline{D} + \overline{A}\overline{B}E + \overline{A}C\overline{D}E$$

$$= (A\overline{B})C\overline{D} + \overline{A}\overline{B}(E) + \overline{A}(C\overline{D})(E)$$

$$= A\overline{B}C\overline{D} + \overline{A}\overline{B}E$$

推导:

$$xy + \bar{x}z + yz$$

$$= xy + \bar{x}z + yz(x + \bar{x})$$

$$= xy + \bar{x}z + xyz + \bar{x}yz$$

$$= xy + \bar{x}z$$

5. 配项法: x + x = x, $x + \overline{x} = 1$

$$F_{1} = \bar{A}B\bar{C} + \bar{A}BC + ABC$$

$$= (\bar{A}B\bar{C} + \bar{A}BC) + (\bar{A}BC + ABC) = \bar{A}B + BC$$

$$= \bar{A}B(\bar{C} + C) + ABC = \bar{A}B + ABC$$

$$= B(\bar{A} + AC) = B(\bar{A} + C) = \bar{A}B + BC$$

$$F_{2} = A\bar{B} + \bar{A}B + B\bar{C} + \bar{B}C$$

$$= A\bar{B} + B\bar{C} + \bar{A}B(C + \bar{C}) + (A + \bar{A})\bar{B}C$$

$$= A\bar{B} + B\bar{C} + \bar{A}BC + \bar{A}B\bar{C} + \bar{A}B\bar{C}$$

$$= (A\bar{B} + A\bar{B}C) + (B\bar{C} + \bar{A}B\bar{C}) + (\bar{A}BC + \bar{A}B\bar{C})$$

$$= A\bar{B} + B\bar{C} + \bar{A}C$$

化简 综合练习

$$Y = AC + \overline{B}C + B\overline{D} + C\overline{D} + A(B + \overline{C}) + \overline{A}BC\overline{D} + A\overline{B}DE$$

$$= AC + \overline{B}C + B\overline{D} + C\overline{D} + AB + A\overline{C} + \overline{A}BC\overline{D} + A\overline{B}DE$$

$$= A + \overline{B}C + B\overline{D} + C\overline{D} + AB + \overline{A}BC\overline{D} + A\overline{B}DE$$

$$= A + \overline{B}C + B\overline{D} + C\overline{D} + \overline{A}BC\overline{D} \qquad \text{消因子法: } x + \overline{x}y = x + y$$

$$= A + \overline{B}C + B\overline{D} + C\overline{D} + BC\overline{D} \qquad \text{消因子法: } x + \overline{x}y = x + y$$

$$= A + BC + B\overline{D} + C\overline{D} + BC\overline{D} \qquad \text{îd} \qquad \text{id} \qquad \text{id}$$

常用公式

基本	$x + 0 = x$ $x + 1 = 1$ $x + x = x$ $x + \bar{x} = 1$	$x \cdot 0 = 0$ $x \cdot 1 = x$ $x \cdot x = x$ $x \cdot \bar{x} = 0$
重叠律	x + x = x	$x \cdot x = x$

重叠律
$$x + x = x$$

$$x + y = y + x$$
$$(x + y) + z = x + (y + z)$$

$$\overline{x+y+z} = \overline{x} \cdot \overline{y} \cdot \overline{z}$$

$$x + x \cdot y = x$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$x \cdot y = y \cdot x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$\overline{x\cdot y\cdot z}=\overline{x}+\overline{y}+\overline{z}$$

$$x \cdot (x + y) = x$$

$$x + y \cdot z = (x + y) \cdot (x + z)$$

交換律

结合律

摩根定理

吸收律

分配律

$$x + \overline{x}y = x + y$$
$$xy + \overline{x}z + yzw = xy + \overline{x}z$$