Math40002 Analysis 1

Problem Sheet 2

1. Fix $S \subset \mathbb{R}$ with an upper bound, and suppose that $S \neq \emptyset$ and $S \neq \mathbb{R}$. Give proofs or counterexamples to each of the following statements.

- (a) If $S \subset \mathbb{Q}$ then $\sup S \in \mathbb{Q}$.
- (b) If $S \subset \mathbb{R} \setminus \mathbb{Q}$ then $\sup S \in \mathbb{R} \setminus \mathbb{Q}$.
- (c) If $S \subset \mathbb{Z}$ then $\sup S \in \mathbb{Z}$.
- (d) $S \cap \left\{ \frac{n}{m} \in \mathbb{Q} : n, m \in \mathbb{N}, m \leq 10^{100} \right\}$ has a minimum if it is nonempty.
- (e) There exists a max S if and only if sup $S \in S$.
- (f) $\sup S = \inf(\mathbb{R} \backslash S)$.
- (g) $\sup S = \inf(\mathbb{R}\backslash S) \iff S$ is an interval of the form $(-\infty, a)$ or $(-\infty, a]$.
- 2. Fix nonempty sets $S_n \subset \mathbb{R}$, $n = 1, 2, 3, \ldots$ Prove that

$$\sup \left\{ \sup S_1, \sup S_2, \sup S_3, \ldots \right\} = \sup \left(\bigcup_{n=1}^{\infty} S_n \right),$$

in the sense that if either exists then so does the other, and they are equal.

3. Take bounded, nonempty $S, T \subset \mathbb{R}$. Define $S+T:=\{s+t: s\in S, t\in T\}$. Prove

$$\sup(S+T) = \sup S + \sup T.$$

 $4.* \text{ Fix } a \in (0,\infty) \text{ and } n \in \mathbb{N}. \text{ We will prove } \exists x \in \mathbb{R} \text{ such that } x^n = a. \text{ Set}$

$$S_a := \{ s \in [0, \infty) : s^n < a \}$$

and show S is nonempty and bounded above, so we may define $x := \sup S_a$.

For $\epsilon \in (0,1)$ show $(x+\epsilon)^n \le x^n + \epsilon[(x+1)^n - x^n]$. (Hint: multiply out.)

Hence show that if $x^n < a$ then $\exists \epsilon \in (0,1)$ such that $(x+\epsilon)^n < a$. (*)

If $x^n > a$ deduce from (*) that $\exists \epsilon \in (0,1)$ such that $(\frac{1}{x} + \epsilon)^n < \frac{1}{a}$. (**)

Deduce contradictions from (*) and (**) to show that $x^n = a$.

5. Suppose $0 < q \in \mathbb{Q}$ and $a \in (0, \infty)$. Write $q = \frac{m}{n}$ with $m, n \in \mathbb{N}$ and define

$$a^q := x^m,$$

where $x =: a^{1/n}$ is defined in the last question. Show this is well defined, and make a definition of a^{-q} .

Show that $(ab)^q = a^q b^q$ and $(a^{q_1})^{q_2} = a^{q_1 q_2}$ for any $a, b \in (0, \infty)$ and $q, q_1, q_2 \in \mathbb{Q}$.

6. For real numbers x, y, z, consider the following inequalities.

(a)
$$|x+y| \le |x| + |y|$$

(e)
$$|x| < |y| + |x - y|$$

(b)
$$|x+y| \ge |x| - |y|$$

(f)
$$|x| \ge |y| - |x - y|$$

$$|x+y| \ge |y| - |x|$$

(e)
$$|x| \le |y| + |x - y|$$

(f) $|x| \ge |y| - |x - y|$
(g) $|x - y| \le |x - z| + |y - z|$

(a)
$$|x+y| \le |x| + |y|$$

(b) $|x+y| \ge |x| - |y|$
(c) $|x+y| \ge |y| - |x|$
(d) $|x-y| \ge ||x| - |y||$

 \mathbf{Prove} (a) from first principles. Why is it called the "triangle inequality"? **Deduce** (b,c,d,e,f,g) from (a).

You should prepare starred questions * to discuss with your personal tutor.