Institut Fresnel

PATRICK C. CHAUMET DANIEL SENTENAC ANNE SENTENAC

IF-DDA Idiot Friendly-Discrete Dipole Approximation

Table des matières

Li	st of	f figures	iii					
1	Gér	Généralités						
	1.1	Introduction	1					
	1.2	Le principe de la DDA						
	1.3	Un mot sur le code						
	1.4	Comment compiler le code						
	1.5	Un mot sur les auteurs						
	1.6	Un mot sur la licence						
	1.7	Comment citer le code						
2	Mé	thodes approchées	5					
	2.1	Introduction	5					
	2.2	Les différentes méthodes approchées utilisées dans le code	6					
		2.2.1 Born						
		2.2.2 Born renormalisé						
		2.2.3 Born à l'ordre 1						
		2.2.4 Rytov						
		2.2.5 Rytov renormalisé						
		2.2.6 Méthode de propagation du faisceau (BPM)						
		2.2.7 Méthode de propagation du faisceau renormalisée (BPM)						
3	Détails numériques							
	3.1	Polarisabilité	9					
	3.2	Correction au tenseur de susceptibilité	10					
	3.3	Résoudre le système d'équation linéaire	10					
4	Ges	stion des configurations	12					
	4.1	Introduction	12					
	4.2	Création et sauvegarde d'une nouvelle configuration	12					
	4.3	Gestion des configurations	12					
5	Pro	opriétés de l'illumination	13					
	5.1	Introduction	13					
	5.2	Le type de faisceau	13					
		5.2.1 Introduction	13					
		5.2.2 Linear plane wave	14					

		5.2.3	Circular plane wave	15
		5.2.4	Multiplane wave	15
		5.2.5	Antenna	15
		5.2.6	Linear Gaussian	15
		5.2.7		16
		5.2.8		16
		5.2.9		16
				17
		5.2.11	(= /	17
		0.2.11	indicate wave	
6	Déf	inition	de l'objet	9
	6.1	Introd	uction	19
	6.2	Type of	l'objet	19
		6.2.1	Sphère	20
		6.2.2		20
		6.2.3		20
		6.2.4		21
		6.2.5		21
		6.2.6		21
		6.2.7		21
		6.2.8		22
		6.2.9		22 22
		6.2.9		22 22
		6.2.10		22 22
			*	22 23
				23 23
			1	23 23
	C O		ů	
	6.3		▲	24
	6.4	Choisi	r la discrétisation	24
7	Etu	de pos	sible avec le code	25
Ť	7.1	_	uction	
	7.2		en champ lointain	
	7.3			26
	7.4			28
	7.5			29
	1.0	10100	couple optique	10
8	Rep	orésent	ation des résultats	80
	8.1			30
	8.2			30
	8.3			31
		8.3.1	*	31
		8.3.2		31
		0.0.2		31
			·	31
		8.3.3	10	31
		8.3.4		32
		0.9.4	Torce of couple optique	ا کے و
9	Ficl	hiers de	e sortie pour matlab, octave, scilab, 3	3
	9.1			33
	9.2		le tous les fichiers de sortie	

Table des figures

1.1	Principe de la DDA : l'objet à étudier (à gauche) est discrétisé en un ensemble de petits dipôles (à droite)	2
	Définition de la direction du faisceau	
6.1	Définition des angles d'Euler selon la convention $Z-X-Z$. Schéma pris sur wikipédia	20
7.1	Schéma simplifié du microscope. Le foyer objet de la lentille objectif est à l'origine du repère. L'axe de la lentille est confondu avec l'axe z et du coté des z positifs	27

Généralités

Sommaire

1.1	Introduction	1
1.2	Le principe de la DDA	1
1.3	Un mot sur le code	3
1.4	Comment compiler le code	3
1.5	Un mot sur les auteurs	4
1.6	Un mot sur la licence	4
1.7	Comment citer le code	4

1.1 Introduction

Ce logiciel permet de calculer la diffraction d'une onde électromagnétique par un objet tridimensionnel. Cette interaction est prise en compte rigoureusement par la résolution des équations de Maxwell, mais peut aussi le faire par des méthodes approchées telles que l'approximation de Born, Rytov ou la BPM. Le code par une interface conviviale permet de choisir des objets canoniques (sphère, cube,...) ainsi que des ondes incidentes prédéfinies (onde plane, faisceau Gaussien,...) ainsi que des objets et incidents arbitraires. Après par des menus déroulants, il est facile d'étudier les sections efficaces, les forces et couples optiques, la diffraction champ proche et champ lointain ainsi que la microscopie.

A noter qu'il existe de nombreuses méthodes permettant d'étudier la diffraction d'une onde électromagnétique par un objet de forme et de permittivité relative arbitraires. Nous n'allons par faire ici une liste exhaustive de ces méthodes, mais le lecteur intéressé peut se reporter à l'article de F. M. Kahnert qui détaille les forces et les faiblesses des méthodes les plus usuelles. ?

La méthode que nous utilisons s'appelle la méthode des dipôles couplés (CDM) ou dipôle discret approximation (DDA). Cette méthode, dite volumique car le champ diffracté est obtenu à partir d'une intégrale dont le support est le volume de l'objet considéré, a été introduite par E. M. Purcell et C. R. Pennypacker en 1973 pour étudier la diffusion de la lumière par des grains dans le milieu interstellaire. La DDA a été par la suite étendue à des objets en présence d'un substrat plan ou dans un système multicouche, voir par exemple Ref. [?]. Nous nous sommes attachés ces dernières années, à d'une part étendre la DDA à des géométries plus complexes (réseaux avec ou sans défaut), et d'autre part à augmenter sa précision. Ces améliorations confèrent à ce chapitre un côté un peu technique, mais elles voient leurs applications dans les chapitres suivants. Mais avant d'étudier plus en détails les dernières avancées de la DDA, rappelons d'abord son principe.

Figure 1.1 : Principe de la DDA : l'objet à étudier (à gauche) est discrétisé en un ensemble de petits dipôles (à droite).

1.2 Le principe de la DDA

Nous présentons dans ce paragraphe la DDA d'une manière volontairement simpliste. Soit un objet de forme et de permittivité relative arbitraires dans un espace homogène, que nous supposerons ici être le vide. Cet objet est soumis à une onde électromagnétique incidente de longueur d'onde λ ($k_0 = 2\pi/\lambda$). Le principe de la DDA consiste à représenter l'objet en un ensemble de N petits cubes d'arête a [par petits, nous entendons plus petits que la longueur d'onde dans l'objet : $a \ll \lambda/\sqrt{\varepsilon}$ (Fig. 1.1)]. Chacun des petits cubes sous l'action de l'onde incidente va se polariser, et donc acquérir un moment dipolaire, dont la valeur va dépendre du champ incident et de son interaction avec ses voisins. Le champ local à la position d'un dipôle localisé en r_i , $E(r_i)$, est, en l'absence de lui-même, la somme de l'onde incidente et du champ rayonné par les N-1 autres dipôles :

$$\boldsymbol{E}(\boldsymbol{r}_i) = \boldsymbol{E}_0(\boldsymbol{r}_i) + \sum_{j=1, i \neq j}^{N} \boldsymbol{T}(\boldsymbol{r}_i, \boldsymbol{r}_j) \alpha(\boldsymbol{r}_j) \boldsymbol{E}(\boldsymbol{r}_j).$$
(1.1)

 E_0 est le champ incident, T la susceptibilité linéaire du champ en espace homogène :

$$T(r_i, r_j) = e^{ik_0 r} \left[\left(3 \frac{r \otimes r}{r^2} - I \right) \left(\frac{1}{r^3} - \frac{ik_0}{r^2} \right) + \left(I - \frac{r \otimes r}{r^2} \right) \frac{k_0^2}{r} \right]$$
(1.2)

avec I la matrice unité et $r = r_i - r_j$. α est la polarisabilité de chaque élément de discrétisation obtenue à partir de la relation de Claussius-Mossotti. Notons que la polarisabilité α , pour respecter le théorème optique, se doit de contenir un terme dit de réaction de rayonnement. L'Eq. (1.1) est vraie pour $i = 1, \dots, N$, et représente donc un système de 3N équations linéaires à résoudre, les champs locaux, $E(r_i)$, étant les inconnus. Une fois le système d'équations linéaires résolu, le champ diffusé par l'objet à une position r arbitraire, est obtenu en faisant la somme de tous les champs rayonnés par chacun des dipôles :

$$\boldsymbol{E}(\boldsymbol{r}) = \sum_{j=1}^{N} \boldsymbol{T}(\boldsymbol{r}, \boldsymbol{r}_j) \alpha(\boldsymbol{r}_j) \boldsymbol{E}(\boldsymbol{r}_j). \tag{1.3}$$

Quand l'objet est en présence d'un substrat plan, ou dans un multicouche, il suffit de remplacer T, par la susceptibilité linéaire du champ du système de référence.

1.3 Un mot sur le code

Nous venons de présenter la DDA telle que l'ont présentée E. M. Purcell and C. R. Pennypacker. Notons qu'une autre méthode très proche de la DDA existe. Cette méthode, dite méthode des moments, part de l'équation intégrale de Lippman Schwinger, est, moyennant quelques hypothèses, strictement identique à la DDA. La démonstration de l'équivalence entre ces deux méthodes étant un peu technique, elle est explicitée dans la Ref. ? .

Les avantages de la DDA sont qu'elle est applicable à des objets de forme arbitraire, inhomogène (chose difficilement réalisable dans le cas de méthode surfacique), et anisotrope (la polarisabilité associée aux éléments de discrétisation devient alors tensorielle). La condition d'onde sortante est automatiquement satisfaite à travers la susceptibilité linéaire du champ. Notons enfin, que seul l'objet est discrétisé, contrairement aux méthodes de différences finies et éléments finis.?

L'inconvénient majeur de la DDA consiste en une croissance rapide du temps de calcul avec l'augmentation du nombre d'éléments de discrétisation, *i.e.*, l'augmentation de la taille du système d'équations linéaires à résoudre. Il existe des moyens pour accélérer la résolution d'un système d'équations linéaires de très grande taille, telle que la méthode des gradients conjugués, mais malgré tout, des valeurs de $N > 10^6$ en espace homogène sont difficiles à traiter.

1.3 Un mot sur le code

Le code est pensé pour avoir une interface conviviale afin que tout le monde puisse l'utiliser sans problème y compris des non spécialistes. Ceci permet alors à des étudiants de premier cycle d'étudier par exemple les bases de la microscopie (critère de Rayleigh, notion d'ouverture numérique,...) ou de la diffraction sans aucun problème; et à des chercheurs, typiquement des biologistes, n'ayant aucune notion des équations de Maxwell de simuler ce que donne un microscope (brightfield, microscope de phase, champ sombre,...) en fonction des paramètres usuels et de l'objet. Néanmoins, ce code peut aussi servir à des physiciens spécialistes de l'électromagnétisme à travers, par exemple, de calculs de forces optiques, de diffraction, de sections efficaces, de champ proche et ceci avec de nombreux types de faisceaux incidents et différentes méthodes de calculs du champ électromagnétique.

Le code présente donc par défaut une interface simple ou tous les détails numériques sont cachés et où de nombreuses options sont alors choisies par défaut. Mais il est facile d'accéder à tous les possibilités de code en cochant l'option interface avancée. Ce guide utilisateur explique le fonctionnement de l'interface avancée en commençant par les différents approches utilisées par le code pour résoudre les équations de Maxwell.

A noter que la convivialité du code est faite au détriment de l'optimisation de la RAM et le code peut donc être gourmand en mémoire pour les gros objets.

1.4 Comment compiler le code

Pour faire tourner le code sur un système linux il est nécessaire d'avoir installé les paquets suivants : qt, qt-devel, gcc-c++ et gfortran. Noter qu'il y a trois versions du code, la première en séquentielle qui utilise FFT singleton, la deuxième en parallèle et qui utilise FFTW (Fast Fourier Transform in the west) et qui nécessite openmp version 4.5 minimum, et la troisième qui utilise en plus le format HDF5 pour sauvegarder les données dans un seul fichier binaire. Par défaut le code est compilé sans HDF5 et FFTW ce qui donne donc un code avec des FFT plus lentes et qui n'est pas parallélisé et une écriture des datas forcément en ascii.

Code par défaut	Code avec FFTW	Code avec FFTW et HDF5
qmake-qt4	qmake-qt4 "CONFIG+=fftw"	qmake-qt4 "CONFIG+=fftw hdf5"
make	make	make
make install	make install	make install

Puis pour lancer le code, taper, cd bin, puis ./cdm.

Sur linux la version avec FFTW nécessite d'installer les packages FFTW avec par exemple "dnf install *fftw*". Pour la version qui utilise en plus HDF5 il faut installer en plus les packages suivant "dnf install hdf hdf5 hdf5-static hdf5-devel".

Le code s'installe aussi sous windows, mais la version parallèle nécessite évidemment d'installer FFTW sur windows.

1.5 Un mot sur les auteurs

- P. C. Chaumet est professeur des universités à l'Institut Fresnel de l'Université d'Aix-Marseille et s'occupe du développement du code source fortran et de l'interface.
- A. Sentenac est directrice de recherche au CNRS et travaille à l'Institut Fresnel de l'Université d'Aix-Marseille et participe au développement du code sur ce qui est lié à la diffraction champ lointain et la microscopie.
- D. Sentenac de l'European Gravitational Observatory en Italie développe l'interface conviviale du code en C++ et Qt.
- G. Henry à l'Institut Fresnel de l'Université d'Aix-Marseille travaille sur la partie compilation du code (Ubuntu, Fedora, etc).

1.6 Un mot sur la licence

La licence est non commerciale : ShareAlike 4.0 International 4.0 International (CC BY-NC-SA 4.0)

Vous êtes libre de :

- partager, copier et redistribuer.
- adapter, changer et construire dessus.

Vous devez sous cette licence suivre les conditions suivantes :

- Attribution Vous devez citer les auteurs en cas d'utilisation du code et indiquer si des changements ont été faits.
- NonCommercial Vous ne pouvez pas utiliser le code dans un but commercial.
- ShareAlike Si vous transformer le code ou l'utilisez dans d'autres codes vous devez citer les auteurs et distribuez votre contribution sous la même licence que l'original.

1.7 Comment citer le code

- Si seuls les fonctions de base du code sont utilisées : P. C. Chaumet, A. Sentenac, and A. Rahmani,
 - Coupled dipole method for scatterers with large permittivity.
 - Phys. Rev. E **70**, 036606 (2004).
- Si le calcul des forces optiques est utilisé alors :
 - P.C. CHAUMET, A. RAHMANI, A. SENTENAC, and G. W. BRYANT, Efficient computation of optical forces with the coupled dipole method.
 - Phys. Rev. E **72**, 046708 (2005).

- Si le calcul des couples optique est utilisé :
 - P. C. CHAUMET and C. BILLAUDEAU,

Coupled dipole method to compute optical torque: Application to a micropropeller.

- J. Appl. Phys. **101**, 023106 (2007).
- Si le faisceau Gaussien rigoureux est utilisé :
 - P. C. CHAUMET,

Fully vectorial highly non paraxial beam close to the waist.

J. Opt. Soc. Am. A 23, 3197 (2006).

Méthodes approchées

Sommaire

2.1 In	roduction
2.2 Le	s différentes méthodes approchées utilisées dans le code
2.2.	Born
2.2.	Born renormalisé
2.2.	Born à l'ordre 1
2.2.4	Rytov
2.2.	Rytov renormalisé
2.2.	Méthode de propagation du faisceau (BPM)
2.2.	Méthode de propagation du faisceau renormalisée (BPM)

2.1 Introduction

Dans le chapitre précédent nous avons présenté la DDA par une approche simplifié où l'objet est un ensemble de petits dipôles rayonnant. Dans une approche plus rigoureuse nous partons des équations de Maxwell en unité Gaussienne :

$$\nabla \times \mathbf{E}^{\mathrm{m}}(\mathbf{r}) = i \frac{\omega}{c} \mathbf{B}(\mathbf{r})$$

$$\nabla \times \mathbf{B}(\mathbf{r}) = -i \frac{\omega}{c} \varepsilon(\mathbf{r}) \mathbf{E}^{\mathrm{m}}(\mathbf{r}),$$
(2.1)

$$\nabla \times \boldsymbol{B}(\boldsymbol{r}) = -i\frac{\omega}{c}\varepsilon(\boldsymbol{r})\boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}),$$
 (2.2)

où $\varepsilon(r)$ est la permittivité relative de l'objet et $E^{\rm m}$ le champ total dans l'objet. En dehors de l'objet nous avons la même relation avec $\varepsilon = 1$. Ceci nous donne l'équation de propagation suivante pour le champ électrique :

$$\nabla \times (\nabla \times \mathbf{E}^{\mathrm{m}}(\mathbf{r})) = \varepsilon(\mathbf{r})k_0^2 \mathbf{E}^{\mathrm{m}}(\mathbf{r}),$$
 (2.3)

avec $k_0 = \omega^2/c^2$. En utilisant la relation $\varepsilon = 1 + 4\pi\chi$ avec χ la susceptibilité linéaire électrique nous avons :

$$\nabla \times (\nabla \times \mathbf{E}^{\mathrm{m}}(\mathbf{r})) - k_0^2 \mathbf{E}^{\mathrm{m}}(\mathbf{r}) = 4\pi \chi(\mathbf{r}) k_0^2 \mathbf{E}^{\mathrm{m}}(\mathbf{r}). \tag{2.4}$$

La solution de cette équation sans second membre est le champ incident et correspond donc au milieu de référence, c'est à dire le milieu en l'absence de l'objet étudié ($\chi = 0$), dans notre cas le vide. Pour résoudre cette équation avec second membre on cherche la fonction de Green solution de

$$\nabla \times (\nabla \times T(\mathbf{r}, \mathbf{r}')) - k_0^2 T(\mathbf{r}, \mathbf{r}') = 4\pi k_0^2 I \delta(\mathbf{r} - \mathbf{r}'). \tag{2.5}$$

2.1 Introduction 7

La solution finale est donc:

$$\boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}) = \boldsymbol{E}_{0}(\boldsymbol{r}) + \int_{\Omega} \boldsymbol{T}(\boldsymbol{r}, \boldsymbol{r}') \chi(\boldsymbol{r}') \boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}') \mathrm{d}(\boldsymbol{r}'), \qquad (2.6)$$

avec E^0 le champ incident solution de l'Eq. (2.4) sans second membre et Ω le volume correspondant au support de l'objet étudié. Quand on résout l'équation dans l'objet, le champ total correspond donc au champ macroscopique dans l'objet. Pour résoudre cette équation on discrétise l'objet en un ensemble de N éléments de forme cubique ayant une arête de taille d et l'intégrale Ω sur l'objet est donc décomposée en une somme d'intégrale sur chacun des éléments de discrétisation de volume $V_i = d^3$:

$$\boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}_{i}) = \boldsymbol{E}^{0}(\boldsymbol{r}_{i}) + \sum_{j=1}^{N} \int_{V_{j}} \boldsymbol{T}(\boldsymbol{r}_{i}, \boldsymbol{r}') \chi(\boldsymbol{r}') \boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}') d\boldsymbol{r}', \qquad (2.7)$$

En supposant le champ, la fonction Green et la permittivité constants dans la maille, nous obtenons :

$$\boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}_{i}) = \boldsymbol{E}^{0}(\boldsymbol{r}_{i}) + \sum_{j=1,}^{N} \boldsymbol{T}(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}) \chi(\boldsymbol{r}_{j}) \boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}_{j}) d^{3}.$$
(2.8)

En utilisant, en première approximation (c'est à dire que la réaction de rayonnement est négligée, mais la prendre en compte ne changerait pas les raisonnements qui suivent), le fait que que $\int_{V_i} T(\mathbf{r}_i, \mathbf{r}') d\mathbf{r}' = -4\pi/3$, voir Ref. ?) pour plus de détails, nous avons :

$$\boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}_{i}) = \boldsymbol{E}^{0}(\boldsymbol{r}_{i}) + \sum_{j=1, i \neq j}^{N} \boldsymbol{T}(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}) \chi(\boldsymbol{r}_{j}) d^{3} \boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}_{j}) - \frac{4\pi}{3} \chi(\boldsymbol{r}_{i}) \boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}_{i}).$$
(2.9)

En passant toutes les dépendances en i à gauche de la relation nous avons au final :

$$E(r_i) = E^0(r_i) + \sum_{j=1, i \neq j}^{N} T(r_i, r_j) \alpha_{CM}(r_j) E(r_j)$$
(2.10)

avec
$$\boldsymbol{E}(\boldsymbol{r}_i) = \frac{\varepsilon(\boldsymbol{r}_i) + 2}{3} \boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}_i)$$
 (2.11)

$$\alpha_{\rm CM}(\mathbf{r}_j) = \frac{3}{4\pi} d^3 \frac{\varepsilon(\mathbf{r}_i) - 1}{\varepsilon(\mathbf{r}_i) + 2}.$$
 (2.12)

Le champ $E(r_i)$ est le champ local, c'est à dire que c'est le champ dans la maille i en l'absence de la maille elle même. En écrivant cette équation pour toutes les valeurs de i nous avons un système d'équations linéaires que nous pouvons écrire symboliquement comme :

$$E = E^0 + AD_{\alpha}E, \tag{2.13}$$

avec \boldsymbol{A} qui contient toutes les fonctions de Green et \boldsymbol{D}_{α} une matrice diagonale qui contient toutes les polarisabilités de chaque élément de discrétisation. Nous détaillons au chapitre suivant comment résoudre rigoureusement ce système d'équation linéaire, mais dans ce présent chapitre nous détaillons les différentes approches possibles pour éviter la résolution du système qui est très gourmande en temps de calcul.

A noter que le champ diffracté par l'objet en dehors du support de l'objet s'écrit simplement comme :

$$E^{d}(\mathbf{r}) = \sum_{j=1}^{N} \mathbf{T}(\mathbf{r}, \mathbf{r}_{j}) \alpha(\mathbf{r}_{j}) E(\mathbf{r}_{j}). \tag{2.14}$$

2.2 Les différentes méthodes approchées utilisées dans le code

2.2.1 Born

Une approximation simple est l'approximation de Born, c'est à dire que le champ macroscopique dans l'objet est le champ incident. Nous avons donc :

$$\boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}_{i}) = \boldsymbol{E}^{0}(\boldsymbol{r}_{i}), \tag{2.15}$$

pour tous les éléments de discrétisation. Après il suffit de faire propager le champ. Il est évident que cette approximation tient si le contraste et la taille de l'objet sont petits.

2.2.2 Born renormalisé

Nous pouvons faire l'hypothèse à l'identique mais sur le champ local, c'est à dire que :

$$\boldsymbol{E}(\boldsymbol{r}_i) = \boldsymbol{E}^0(\boldsymbol{r}_i). \tag{2.16}$$

En considérant la relation entre le champ local et le champ macroscopique nous avons alors :

$$\boldsymbol{E}^{\mathrm{m}}(\boldsymbol{r}_{i}) = \frac{3}{\varepsilon(\boldsymbol{r}_{i}) + 2} \boldsymbol{E}^{0}(\boldsymbol{r}_{i}). \tag{2.17}$$

La phase est la même que dans le cas de l'approximation de Born mais l'amplitude est changée. Cette approximation est meilleure pour des permittivités plus fortes car fait une correction sur l'amplitude du champ macroscopique, nous avons appelé cette approximation Born renormalisé.

2.2.3 Born à l'ordre 1

Sans résoudre le système d'équations linéaires on peut faire un Born renormalisé à l'ordre 1, c'est à dire que l'on effectue :

$$\boldsymbol{E}(\boldsymbol{r}_i) = \boldsymbol{E}^0(\boldsymbol{r}_i) + \sum_{j=1, i \neq j}^{N} \boldsymbol{T}(\boldsymbol{r}_i, \boldsymbol{r}_j) \alpha(\boldsymbol{r}_j) \boldsymbol{E}^0(\boldsymbol{r}_j).$$
(2.18)

Ceci permet de prendre en compte un peu la variation du champ dans l'objet et permet de traiter des objets plus grands mais toujours avec un contraste faible. Il est possible de développer Born à des ordres supérieurs mais quand le contraste devient fort la série ne converge plus...

2.2.4 Rytov

L'approximation de Rytov consiste à changer la phase du champ incident. Pour ce faire nous calculons :

$$\boldsymbol{E}^{\mathrm{d}}(\boldsymbol{r}_i) = \sum_{j=1}^{N} \boldsymbol{T}(\boldsymbol{r}_i, \boldsymbol{r}_j) \chi(\boldsymbol{r}_j) \boldsymbol{E}^{0}(\boldsymbol{r}_j), \qquad (2.19)$$

toujours avec $T(r_i, r_j) = -\frac{4\pi}{3d^3}$, puis le champ macroscopique dans l'objet est estimé par :

$$E_{\beta}^{\mathrm{m}}(\boldsymbol{r}_{i}) = E_{\beta}^{0}(\boldsymbol{r}_{i})e^{E_{\beta}^{\mathrm{d}}(\boldsymbol{r}_{i})/E_{\beta}^{0}(\boldsymbol{r}_{i})}, \tag{2.20}$$

avec $\beta = x, y, z$. Lorsque la composante du champ incidente est nulle alors $E_{\beta}^{\rm m}$ est aussi nulle. Cette approximation permet de traiter des objets grands par rapport à la longueur d'onde, mais toujours avec un contraste faible. Comme pour Born cela demande de faire un produit matrice vecteur. A noter que l'amplitude utilisée c'est celle du champ incident.

2.2.5 Rytov renormalisé

L'approximation de Rytov renormalisée consiste à faire la même chose que Rytov mais en travaillant sur le champ local. Nous avons alors :

$$\boldsymbol{E}^{\mathrm{d}}(\boldsymbol{r}_{i}) = \sum_{j=1, i \neq j}^{N} \boldsymbol{T}(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}) \alpha(\boldsymbol{r}_{j}) \boldsymbol{E}^{0}(\boldsymbol{r}_{j}), \tag{2.21}$$

puis le champ local dans l'objet est estimé par :

$$E_{\beta}(\mathbf{r}_i) = E_{\beta}^0(\mathbf{r}_i) e^{E_{\beta}^{\mathrm{d}}(\mathbf{r}_i)/E_{\beta}^0(\mathbf{r}_i)}.$$
 (2.22)

Cela permet d'avoir un contraste un peu plus fort.

2.2.6 Méthode de propagation du faisceau (BPM)

Cette méthode est complètement différentes des précédentes car elle ne fait pas du tout appelle à la résolution d'un système d'équations linéaires, mais fait la propagation de l'onde en tenant compte de l'indice du milieu. Elle s'applique donc dans le cas d'objet pouvant être très grand mais présentant un contraste faible avec des chocs d'indices très faibles. Pour plus de détails sur la méthode voir Ref. ? mais au final le champ dans l'objet s'écrit comme :

$$\mathbf{E}^{m}(x, y, z + d) = e^{ik_{0}n(x, y, z + d)d} \mathcal{F}^{-1} \left[\mathcal{F}[\mathbf{E}^{m}(x, y, z)] e^{-i(k_{0} - k_{z})d} \right], \tag{2.23}$$

où le calcul du champ à la position (x, y, z + d) se fait avec la valeur de l'indice optique à la même position et de la valeur du champ au plan précédent z. On propage ainsi de maille en maille dans la direction z pour connaître le champ dans tout l'objet. Il est clair qu'avec cette méthode le champ ne se propage que dans la direction des z positifs, il n'y a jamais de réflexion vers l'arrière. A noter que la FFT utilisée à la taille définie par le menu déroulant sur la FFT et surtout pas la taille de l'objet qui pourrait être trop petite et manquée de précision. Le champ diffracté est calculé comme d'habitude, ce qui permet d'être bien meilleur que d'utiliser l'intégrale de Kirchhoff comme c'est souvent fait.

2.2.7 Méthode de propagation du faisceau renormalisée (BPM)

Nous pouvons faire la même hypothèse que précédemment mais sur le champ local, soit :

$$\mathbf{E}(x, y, z + d) = e^{ik_0 n(x, y, z + d)d} \mathcal{F}^{-1} \left[\mathcal{F}[\mathbf{E}(x, y, z)] e^{-i(k_0 - k_z)d} \right].$$
 (2.24)

Détails numériques

Sommaire

3.1	Polarisabilité	
3.2	Correction au tenseur de susceptibilité	
3.3	Résoudre le système d'équation linéaire	

3.1 Polarisabilité

Comme vu au chapitre précédent la DDA découpe l'objet en un ensemble de dipôle ponctuel, où à chaque dipôle ponctuel est associé une polarisabilité α . Il existe différente forme pour cette polarisabilité. La première a avoir été utilisée, et la plus simple qui a été introduite au chapitre précédent, est la relation de Clausius Mossotti (CM)? :

$$\alpha_{\rm CM} = \frac{3}{4\pi} \frac{\varepsilon - 1}{\varepsilon + 2} d^3 = \frac{\varepsilon - 1}{\varepsilon + 2} a^3, \tag{3.1}$$

avec ε la permittivité de l'objet, d la taille de la maille cubique et $a = \left(\frac{3}{4\pi}\right)^{\frac{1}{3}}d$ qui est le rayon de la sphère de même volume que la maille cubique de côté d. Malheureusement cette relation ne conserve pas l'énergie et il faut alors introduire un terme de réaction de rayonnement qui tient compte du fait que des charges en mouvement perdent de l'énergie, et la polarisabilité s'écrit alors?

$$\alpha_{\rm RR} = \frac{\alpha_{\rm CM}}{1 - \frac{2}{3}ik_0^3\alpha_{\rm CM}}.\tag{3.2}$$

Après différentes formes de la polarisabilité ont été établies pour améliorer la précision de la DDA et prendre en compte le caractère non ponctuel dipôle, et on peut citer parmi les plus connues celles de Goedecke et O'Brien?

$$\alpha_{\rm GB} = \frac{\alpha_{\rm CM}}{1 - \frac{2}{3}ik_0^3\alpha_{\rm CM} - k_0^2\alpha_{\rm CM}/a},\tag{3.3}$$

de Lakhtakia? :

$$\alpha_{\rm LA} = \frac{\alpha_{\rm CM}}{1 - 2\frac{\varepsilon - 1}{\varepsilon + 2} \left[(1 - ik_0 a)e^{ik_0 a} - 1 \right]}$$
(3.4)

et de Draine et Goodman?

$$\alpha_{\rm LR} = \frac{\alpha_{\rm CM}}{1 + \alpha_{\rm CM} \left[\frac{(b_1 + \varepsilon b_2 + \varepsilon b_3 S)k_0^2}{d} - \frac{2}{3}ik_0^3 \right]},\tag{3.5}$$

avec $b_1 = -1.891531$, $b_2 = 0.1618469$, $b_3 = -1.7700004$ et S = 1/5.

Dans le code par défaut c'est α_{RR} qui est utilisée par défaut. Dans le cas où la permittivité est anisotrope seule $\alpha_{\rm RR}$ ou $\alpha_{\rm CM}$ seront utilisées.

Une dernière polarisabilité est introduite (PS) qui ne fonctionne que pour les sphères homogènes et marche particulièrement bien pour les métaux. Cela consiste à effectuer un changement de polarisabilité des éléments sur le bord de la sphère en prenant en compte le facteur de dépolarisation de la sphère.?

3.2Correction au tenseur de susceptibilité

Le tenseur de susceptibilité du champ relie le dipôle à la position r_i au champ rayonné par celui-ci à la position r_i par la relation : $E(r_i) = T(r_i, r_j)p(r_i)$. En toute rigueur, dans la DDA, du fait que les dipôles sont associés à un certain volume, c'est l'intégration suivante qui intervient? :

$$E(r_i) = \int_{V_j} T(r_i, r) p(r) dr \approx \left[\int_{V_j} T(r_i, r) dr \right] p(r_j), \tag{3.6}$$

en supposant la maille petite pour pouvoir considérer le champ uniforme dans celle-ci. Il faut donc intégrer le tenseur sur la maille V_i . Cette intégration n'est pas analytique (il faut donc la faire numériquement et cela prend donc du temps) et en fait ne sert que pour les dipôles les plus proches de l'observation, après l'intégration n'apporte aucun gain de précision. Dans le code nous proposons donc la possibilité d'intégrer sur les mailles les plus proches:

$$\int_{V_j} \mathbf{T}(\mathbf{r}_i, \mathbf{r}) d\mathbf{r} \quad \text{si} \quad \frac{\|\mathbf{r}_i - \mathbf{r}_j\|}{d} \le n$$

$$\mathbf{T}(\mathbf{r}_i, \mathbf{r}_j) \quad \text{si} \quad \frac{\|\mathbf{r}_i - \mathbf{r}_j\|}{d} > n.$$
(3.7)

$$T(\mathbf{r}_i, \mathbf{r}_j)$$
 si $\frac{\|\mathbf{r}_i - \mathbf{r}_j\|}{d} > n.$ (3.8)

n peut prendre la valeur entière 0 (par défaut) jusqu'à 5.

3.3 Résoudre le système d'équation linéaire

Nous avons, pour connaître le champ électrique local dans l'objet, c'est à dire à la position des N éléments de discrétisation, à résoudre le système d'équation linéaire suivant :

$$E = E_0 + AD_{\alpha}E, \tag{3.9}$$

où E_0 est un vecteur de taille 3N qui contient les champs incidents sur chacun des éléments de discrétisation. A est une matrice $3N \times 3N$ qui contient tous les tenseurs de susceptibilité linéaire du champ et D_{α} est une matrice diagonale $3N \times 3N$, si l'objet est isotrope, ou bloc diagonal 3×3 si l'objet est anisotrope. E est le vecteur 3N qui contient les champs électriques inconnus. L'équation est résolue par une méthode itérative non linéaire. Le code propose de nombreuses méthodes itératives et celle qui est utilisée par défaut est GPBICG car la plus efficace dans de nombreux cas? Le code s'arrête quand le résidu,

$$r = \frac{\|\boldsymbol{E} - \boldsymbol{A}\boldsymbol{D}_{\alpha}\boldsymbol{E} - \boldsymbol{E}_{0}\|}{\|\boldsymbol{E}_{0}\|},\tag{3.10}$$

est en dessous de la tolérance donnée par l'utilisateur. A noter que la valeur initiale est le champ incident. 10^{-4} est la tolérance utilisée par défaut car c'est un bon compromis entre vitesse et précision. Ci-dessous la liste des méthodes itératives proposées :

GPBICG1: Ref.?
GPBICG2: Ref.?
GPBICGsafe: Ref.?
GPBICGplus: Ref.?
GPBICGAR1: Ref.?
GPBICGAR2: Ref.?
QMRCLA: Ref.?
TFQMR: Ref.?

• CG : Ref. ?

• BICGSTAB : Ref. ?

QMRBICGSTAB1 : Ref. ? QMRBICGSTAB2 : Ref. ?

GPBICOR : Ref. ? CORS : Ref. ?

• BiCGstar-plus Ref. ?

Gestion des configurations

Sommaire

4.1	Introduction	12
4.2	Création et sauvegarde d'une nouvelle configuration	12
4.3	Gestion des configurations	12

4.1 Introduction

Le Code se lance par ./cdm dans le dossier bin pour une configuration linux. Celui-ci a été fait pour être le plus convivial possible et nécessite donc peu d'explication pour son utilisation. Néanmoins certaines conventions ont été prises et demandent à être explicitées.

4.2 Création et sauvegarde d'une nouvelle configuration

Pour démarrer un nouveau calcul, aller sur l'onglet calculation et New. Une nouvelle configuration s'affiche avec des valeurs par défaut. Une fois la nouvelle configuration choisie, pour la sauver il faut choisir de nouveau l'onglet Calculation et Save. On choisit alors le nom de la configuration et on peut ajouter une courte description du calcul fait.

Une autre manière de sauvegarder une configuration, c'est de cliquer directement sur le panneau de la configuration Save configuration. Il apparaît alors deux champs, un pour le nom de la configuration et le deuxième pour sa description.

4.3 Gestion des configurations

Pour gérer toutes les configurations choisies, il faut aller sur l'onglet *Calculation* et *Load*. Il apparaît alors une nouvelle fenêtre avec toutes les configurations sauvées. Pour chaque configuration il y a une courte description que l'utilisateur a rentré, la date, où le fichier configuration a été sauvé, puis les caractéristiques principales de la configuration (longueur d'onde, puissance, col du faisceau, objet, matériau, discrétisation et tolérance de la méthode itérative). Il suffit de cliquer sur une configuration et de cliquer sur *load* pour charger une configuration.

Le bouton delete sert a supprimer une configuration sauvegardée et le bouton export permet d'exporter dans un fichier (nom de la configuration.opt) toutes les caractéristiques de la configuration.

A noter qu'en double cliquant sur la ligne, on peut modifier le champ description.

Propriétés de l'illumination

Sommaire Introduction 5.2.1 13 5.2.2 14 5.2.3 15 5.2.4 15 5.2.5 Antenna 15 5.2.6 Linear Gaussian 15 5.2.7 16 5.2.8 16 5.2.9 16 17 17

5.1 Introduction

Dans la section propriétés de l'illumination, le champ Wavelength permet de rentrer la longueur d'utilisation. Celle-ci se rentre en nanomètre. Le champ P_0 permet de rentrer la puissance du faisceau laser en Watt. Le champ W_0 en nanomètre permet de rentrer pour une onde plane le rayon du faisceau laser et pour un faisceau Gaussien la col du faisceau

5.2 Le type de faisceau

5.2.1 Introduction

Il y a six faisceau prédéfinis, leur direction de propagation est toujours définie de la même manière, avec deux angles θ et φ . Ils sont reliés à la direction donnée par le vecteur d'onde de la manière suivante :

$$k_x = k_0 \sin \theta \cos \varphi \tag{5.1}$$

$$k_y = k_0 \sin \theta \sin \varphi \tag{5.2}$$

$$k_z = k_0 \cos \theta \tag{5.3}$$

où $\mathbf{k}_0 = (k_x, k_y, k_z)$ est le vecteur d'onde parallèle à la direction du faisceau incident et k_0 le nombre d'onde, voir Fig. 5.1.

Figure 5.1 : Définition de la direction du faisceau

Pour la polarisation on utilise le plan (x, y) comme surface de référence. Alors on peut définir une polarisation TM (p) et TE (s) comme en présence d'une surface, voir Fig. 5.2.

Figure 5.2 : Définition de la polarisation du faisceau.

Le repère (x, y, z) sert de référentiel absolu par rapport auquel les différents éléments (illumination plus objets) sont repérés.

5.2.2Linear plane wave

Linear plane wave est une onde plane polarisée linéairement. La première ligne est relative à θ et la deuxième à φ . La troisième ligne est liée à la polarisation, pola=1 en TM et pola=0 en TE. A noter que la polarisation n'est pas forcément purement en TE ou TM : soit pola \in [0 1] tel que $E_{\rm TM}^2 = {\rm pola}^2 E^2$ et $E_{\rm TE}^2 = (1-{\rm pola}^2) E^2$. A noter que la phase est toujours prise nulle à l'origine du repère :

$$\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{E}_0 e^{i\boldsymbol{k} \cdot \boldsymbol{r}},\tag{5.4}$$

avec Irradiance = P_0/S où $S = \pi w_0^2$ est la surface du faisceau et $E_0 = \sqrt{2 \text{Irradiance}/c/\varepsilon_0}$.

5.2.3 Circular plane wave

Circular plane wave est une onde plane polarisée circulairement. La première ligne est relative à θ et la deuxième à φ . La troisième ligne est liée à la polarisation que l'on peut choisir droite (1) ou gauche (-1).

A noter que la phase est prise nulle à l'origine du repère :

$$\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{E}_0 e^{i\boldsymbol{k} \cdot \boldsymbol{r}},\tag{5.5}$$

avec Irradiance = P_0/S où $S = \pi w_0^2$ est la surface du faisceau et $E_0 = \sqrt{2 \text{Irradiance}/c/\varepsilon_0}$.

5.2.4 Multiplane wave

Multiplane wave consiste à choisir comme illumination différentes onde planes cohérentes. Il faut d'abord choisir le nombre d'onde plane désiré, puis pour chacune des ondes planes, il faut choisir son incidence et sa polarisation. Dans ce cas, il faut choisir aussi son amplitude complexe ce qui permet de déphaser les ondes planes les unes par rapport aux autres. La somme de la puissance de chacune des ondes planes est égales à P_0 , et chaque puissance associée à une onde plane est calculée proportionnellement à son amplitude.

5.2.5 Antenna

Antenna consiste à placer un dipôle, p, comme source. On doit donc donner sa localisation dans les coordonnées cartésiennes, ainsi que son orientation, toujours en utilisant les angles d'Euler. Son amplitude est calculée telle que sa puissance rayonnée est égale à P_0 , c'est à dire :

$$P_0 = \frac{1}{4\pi\varepsilon_0} \frac{k^4 c}{3} \|\boldsymbol{p}\|^2. \tag{5.6}$$

A noter que l'antenne peut être en dehors ou dans l'objet.

5.2.6 Linear Gaussian

Linear Gaussian est une onde gaussienne polarisée linéairement. La première ligne est relative à θ et la deuxième à φ . La troisième ligne est liée à la polarisation, pola=1 en TM et pola=0 en TE. A noter que la polarisation n'est pas forcément purement en TE ou TM: soit pola \in [0 1] tel que $E_{\rm TM}^2 = {\rm pola}^2 E^2$ et $E_{\rm TE}^2 = (1-{\rm pola}^2) E^2$.

Les trois lignes suivantes permettent de fixer la position du centre du col en nanomètres dans le repère (x, y, z).

A noter que cette onde Gaussienne peut avoir un col très faible, car elle est calculée sans aucune approximation à travers un spectre d'onde plane. La définition du col est la suivante, pour un faisceau de propageant suivant l'axe z:

$$E(x, y, 0) = E_0 e^{-\rho^2/(2w_0^2)}, (5.7)$$

avec $\rho = \sqrt{x^2 + y^2}$. A partir de cette définition de l'amplitude du champ en z = 0, le faisceau Gaussien est calculé rigoureusement à partir d'un spectre d'onde plane. Si le faisceau est polarisé suivant l'axe x nous avons :?

$$E_x = E_0 \int_0^{k_0} w_0^2 \exp\left(-\frac{w_0^2(k_0^2 - k_z^2)}{2}\right) \exp(ik_z z) J_0\left(\rho\sqrt{k_0^2 - k_z^2}\right) k_z dk_z$$
 (5.8)

$$E_z = -iE_0 \frac{x}{\rho} \int_0^{k_0} w_0^2 \exp\left(-\frac{w_0^2(k_0^2 - k_z^2)}{2}\right) \exp(ik_z z) J_1\left(\rho \sqrt{k_0^2 - k_z^2}\right) \sqrt{k_0^2 - k_z^2} dk_x (5.9)$$

avec J_1 et J_0 les fonctions de Bessel. L'irradiance est calculée au centre du faisceau Gaussien. Le lien entre la puissance est l'amplitude E_0 est :

$$P_0 = \frac{\pi w_0^2}{4} c \varepsilon_0 E_0^2 \left(1 + \frac{(k_0 w_0)^2 - 1}{k_0 w_0} \frac{\sqrt{\pi}}{2} \text{Im}[w(k_0 w_0)] \right)$$
 (5.10)

Irradiance =
$$\frac{E_0^2}{4}c\varepsilon_0 \left(1 + \frac{(k_0 w_0)^2 - 1}{k_0 w_0} \frac{\sqrt{\pi}}{2} \text{Im} \left[w(k_0 w_0/\sqrt{2})\right]\right),$$
 (5.11)

et w() est la fonction Faddeeva. Si on suppose $w() \approx 0$, nous avons $P_0 = \pi w_0^2$ Irradiance et on retrouve la relation vue pour l'onde plane.

5.2.7Circular Gaussian

Circular Gaussian est une onde gaussienne polarisée circulairement. La première ligne est relative à θ et la deuxième à φ . La troisième ligne est liée à la polarisation que l'on peut choisir droite (1) ou gauche (-1).

Les trois lignes suivantes permettent de fixer la position du centre du col en nanomètres dans le repère (x, y, z).

Le calcul se fait donc comme gwavelinear mais avec une quadrature entre la composante $y ext{ et } x.$

5.2.8Circular and linear Gaussian (FFT)

Circular and linear Gaussian (FFT) est une onde gaussienne basée sur le calcul précédent, respectivement. En effet, l'onde plane incident pour le premier plan de l'objet est calculé avec les intégrales définies au dessus, Eq. (5.8), puis après le faisceau gaussien est propagé par FFT comme la beam propagation method. Cela a l'avantage d'aller plus vite quand la boîte est grande car les intégrales sont calculées que sur le premier plan. Par contre il faut choisir un nombre de points de la FFT suffisamment grand pour ne pas tronquer le faisceau gaussien et ne pas avoir des problèmes de périodisation.

5.2.9Linear Guaussian (para)

Linear Guaussian (para) est une onde gaussienne dans le cadre de l'approximation paraxiale polarisée linéairement. La première ligne est relative à θ et la deuxième à φ . La troisième ligne est liée à la polarisation, pola=1 en TM et pola=0 en TE. A noter que la polarisation n'est pas forcément purement en TE ou TM : soit pola ∈ [0 1] tel que $E_{\text{TM}}^2 = \text{pola}^2 E^2 \text{ et } E_{\text{TE}}^2 = (1 - \text{pola}^2) E^2.$

Les trois lignes suivantes permettent de fixer la position du centre du col en nanomètres dans le repère (x, y, z).

L'onde est donc définie de la manière suivante si elle est polarisée suivant x et se propage suivant l'axe z:

$$E_x = E_0 \sqrt{2} \frac{w_0}{w} e^{-\rho^2/w^2} e^{ik_0 \rho^2 R(z)/2} e^{i(k_0 z + \eta)}$$
(5.12)

$$w = \sqrt{2}w_0\sqrt{1 + \frac{z^2}{z_0^2}} \tag{5.13}$$

$$z_0 = k_0 w_0^2 (5.14)$$

$$z_0 = k_0 w_0^2$$

$$R(z) = \frac{z}{z^2 + z_0^2}$$
(5.14)

$$\eta = \tan^{-1}(z/z_0). (5.16)$$

On remarque que quand z=0 l'onde gaussienne à la même amplitude que celle calculée rigoureusement. Le champ à l'origine (au centre du col) et l'irradiance se calculent de la manière suivante :

$$E_0 = \sqrt{\frac{2P_0}{\pi c \varepsilon_0 w_0^2}} \tag{5.17}$$

irradiance =
$$c\varepsilon_0 E_0^2/2 = \frac{P_0}{\pi w_0^2}$$
. (5.18)

L'irradiance est calculée au centre du col. A noter que cette onde Gaussienne est calculée dans le cadre de l'approximation paraxiale et donc ne satisfait pas rigoureusement les équations de Maxwell.

5.2.10 Circular Gaussian (para)

Circular Gaussian (para) est une onde gaussienne polarisée circulairement. La première ligne est relative à θ et la deuxième à φ . La troisième ligne est liée à la polarisation que l'on peut choisir droite ou gauche.

Les trois lignes suivantes permettent de fixer la position du centre du col en nanomètres dans le repère (x, y, z).

Le calcul se fait donc comme g parawavelinear mais avec une quadrature entre la composante y et x.

5.2.11 Arbitrary wave

Dans le cas d'un champ arbitraire celui-ci est défini par l'utilisateur. C'est à dire que celui-ci doit créer lui même le champ, et il convient alors de faire ces fichiers en respectant les conventions choisies par le code.

La description de la discrétisation du champ incident est faite dans un fichier qui est demandé quand on clique sur Props. Par exemple pour la partie réelle de la composante x du champ il doit être construit de la manière suivante :

nx,ny,nz dx,dy,dz

xmin,ymin,zmin

- nx est le nombre de maille suivant l'axe x
- ny est le nombre de maille suivant l'axe y
- ullet nz est le nombre de maille suivant l'axe z
- dx est le pas suivant l'axe x
- \bullet dy est le pas suivant l'axe y
- ullet dz est le pas suivant l'axe z
- xmin l'abscisse la plus petite
- ymin l'ordonnée la plus petite
- zmin la cote la plus petite

puis les fichiers du champ électrique sont créés de la manière suivante pour chacune des composantes du champ partie réelle et imaginaire séparées :

```
open(11, file='Exr.mat', status='new', form='formatted', access='direct', recl=22) \mathbf{do} k=1,nz \mathbf{do} j=1,ny \mathbf{do} i=1,nx
```

```
 \begin{array}{c} ii{=}i{+}nx^*(j{\text -}1){+}nx^*ny^*(k{\text -}1)\\ write(11{\text ,}FMT{\text =}'(D22.15)',rec{\text =}ii) \ dreal(Ex)\\ \textbf{enddo}\\ \textbf{enddo}\\ \textbf{enddo} \end{array}
```

Attention la maille de discrétisation de l'objet doit être plus grande que la maille de discrétisation du champ.

Définition de l'objet

Sommaire		
6.1	Intro	oduction
6.2	Type	e d'objet
	6.2.1	Sphère
	6.2.2	Sphère inhomogène
	6.2.3	Sphères aléatoires (longueur)
	6.2.4	Sphères aléatoires (maillage)
	6.2.5	Cube
	6.2.6	Parallélépipède (longueur)
	6.2.7	Parallélépipède (maille)
	6.2.8	Parallélépipède inhomogène (longueur)
	6.2.9	Parallélépipède inhomogène (maille)
	6.2.10	Ellipse
	6.2.11	Plusieurs sphères
	6.2.12	Cylindre
	6.2.13	Sphères concentriques
	6.2.14	Objet arbitraire
6.3	Choi	sir la permittivité relative
6.4	Choi	sir la discrétisation

6.1 Introduction

Le code propose plusieurs objets prédéfinis et nous allons dans cette section préciser comment rentrer leurs caractéristiques opto-géométriques. A noter que toutes les distances sont à entrer en nanomètre. Le code fera la conversion en mètre.

6.2 Type d'objet

La liste des objets prédéfinis est la suivante :

sphère, cube, parallélépipède, ellipsoïde, plusieurs sphères distinctes, cylindre, sphères concentriques, sphère inhomogène et objet arbitraire.

Quand les objets, comme le cube ou le parallélépipède, ont leurs arrêtes tournées par rapport aux axes du système de coordonnées, les angles d'Euler sont utilisés comme définis

6.2 Type d'objet

Fig. 6.1. Le centre de rotation étant le centre d'inertie de l'objet. La matrice de passage s'écrit alors :

$$\boldsymbol{A} = \begin{pmatrix} \cos(\psi)\cos(\varphi) - \sin(\psi)\cos(\theta)\sin(\varphi) & -\cos(\psi)\sin(\varphi) - \sin(\psi)\cos(\theta)\cos(\varphi) & \sin(\psi)\sin(\theta) \\ \sin(\psi)\cos(\varphi) + \cos(\psi)\cos(\theta)\sin(\varphi) & -\sin(\psi)\sin(\varphi) + \cos(\psi)\cos(\theta)\cos(\varphi) & -\cos(\psi)\sin(\theta) \\ \sin(\theta)\sin(\varphi) & \sin(\theta)\cos(\varphi) & \cos(\theta) \end{pmatrix}$$

Figure 6.1 : Définition des angles d'Euler selon la convention Z - X - Z. Schéma pris sur wikipédia.

6.2.1 Sphère

Pour la sphère il y a 4 champs à remplir :

- Le rayon de la sphère en nanomètre
- L'abscisse du centre de la sphère en nanomètre
- L'ordonnée du centre de la sphère en nanomètre
- La cote du centre de la sphère en nanomètre

6.2.2 Sphère inhomogène

La sphère est constitué avec une permittivité avec un bruit Gaussien avec une longueur de corrélation l_c et une amplitude A et une moyenne ε_r .

Pour la sphère inhomogène il y a 7 champs à remplir :

- Le rayon de la sphère en nanomètre
- L'abscisse du centre de la sphère en nanomètre
- L'ordonnée du centre de la sphère en nanomètre
- La cote du centre de la sphère en nanomètre
- la graine du tirage aléatoire
- La longueur de corrélation l_c
- \bullet L'amplitude d'oscillation A

6.2 Type d'objet

6.2.3 Sphères aléatoires (longueur)

Toutes les sphères sont constituées de la même permittivité et ont le même rayon et sont distribuées aléatoirement dans un parallélépipède :

- ullet L'arête du cube en nanomètre suivant l'axe x
- L'arête du cube en nanomètre suivant l'axe y
- $\bullet\,$ L'arête du cube en nanomètre suivant l'axe z
- L'abscisse du centre du parallélépipède en nanomètre
- L'ordonnée du centre du parallélépipède en nanomètre
- La cote du centre du parallélépipède en nanomètre
- la graine du tirage aléatoire
- le rayon des sphères
- La densité de sphère, soit d =volume des sphères divisé par le volume du parallélépipède donc entre 0 et 0.5. Si la valeur dépasse les deux alors cela correspond au nombre de sphères distribuées aléatoirement dans la boite.

6.2.4 Sphères aléatoires (maillage)

Toutes les sphères sont constituées de la même permittivité et ont le même rayon et sont distribuées aléatoirement dans un parallélépipède :

- L'abscisse du centre du parallélépipède en nanomètre
- L'ordonnée du centre du parallélépipède en nanomètre
- La cote du centre du parallélépipède en nanomètre
- \bullet Nombre de maille dans la direction x
- Nombre de maille dans la direction y
- ullet Nombre de maille dans la direction z
- longueur de la maille en nanomètre
- le rayon des sphères
- la graine du tirage aléatoire
- La densité de sphère, soit d =volume des sphères divisé par le volume du parallélépipède donc entre 0 et 0.5. Si la valeur dépasse les deux alors cela correspond au nombre de sphères distribuées aléatoirement dans la boite.

6.2.5 Cube

Pour le cube il y a 4 champs à remplir :

- L'arête du cube en nanomètre
- L'abscisse du centre de la sphère en nanomètre
- L'ordonnée du centre de la sphère en nanomètre
- La cote du centre de la sphère en nanomètre

6.2.6 Parallélépipède (longueur)

Pour le parallélépipède il y a 9 champs à remplir :

- L'arête du cube en nanomètre suivant l'axe x
- L'arête du cube en nanomètre suivant l'axe y
- ullet L'arête du cube en nanomètre suivant l'axe z
- L'abscisse du centre du parallélépipède en nanomètre
- L'ordonnée du centre du parallélépipède en nanomètre
- La cote du centre du parallélépipède en nanomètre
- Premier angle d'Euler ψ par rotation autour de l'axe z

6.2 Type d'objet

- Deuxième angle d'Euler θ par rotation autour de l'axe x
- \bullet Troisième angle d'Euler φ par rotation autour de l'axe z

6.2.7 Parallélépipède (maille)

Pour le parallélépipède il y a 7 champs à remplir :

- L'abscisse du centre du parallélépipède en nanomètre
- L'ordonnée du centre du parallélépipède en nanomètre
- La cote du centre du parallélépipède en nanomètre
- ullet Nombre de maille dans la direction x
- Nombre de maille dans la direction y
- $\bullet\,$ Nombre de maille dans la direction z
- longueur de la maille en nanomètre

6.2.8 Parallélépipède inhomogène (longueur)

Pour le parallélépipède inhomogène il y a 9 champs à remplir :

- ullet L'arête du cube en nanomètre suivant l'axe x
- \bullet L'arête du cube en nanomètre suivant l'axe y
- ullet L'arête du cube en nanomètre suivant l'axe z
- L'abscisse du centre du parallélépipède en nanomètre
- L'ordonnée du centre du parallélépipède en nanomètre
- La cote du centre du parallélépipède en nanomètre
- la graine du tirage aléatoire
- ullet La longueur de corrélation l_c
- \bullet L'amplitude d'oscillation A

6.2.9 Parallélépipède inhomogène (maille)

Pour le parallélépipède inhomogène il y a 9 champs à remplir :

- L'abscisse du centre du parallélépipède en nanomètre
- L'ordonnée du centre du parallélépipède en nanomètre
- La cote du centre du parallélépipède en nanomètre
- ullet Nombre de maille dans la direction x
- Nombre de maille dans la direction y
- ullet Nombre de maille dans la direction z
- longueur de la maille en nanomètre
- la graine du tirage aléatoire
- La longueur de corrélation l_c
- \bullet L'amplitude d'oscillation A

6.2.10 Ellipse

Pour l'ellipse il y a 9 champs à remplir :

- ullet Le demi axe en nanomètre suivant l'axe x
- \bullet Le demi axe en nanomètre suivant l'axe y
- ullet Le demi axe en nanomètre suivant l'axe z
- L'abscisse du centre de l'ellipse en nanomètre
- L'ordonnée du centre de l'ellipse en nanomètre
- La cote du centre de l'ellipse en nanomètre
- Premier angle d'Euler ψ par rotation autour de l'axe z

6.2 Type d'objet

- Deuxième angle d'Euler θ par rotation autour de l'axe x
- Troisième angle d'Euler φ par rotation autour de l'axe z

6.2.11 Plusieurs sphères

Pour de sphères multiples il convient d'abord de choisir avec la ligne du dessous number of objects le nombre N de sphères désirées. Après quand on clique sur Props il apparaît N fenêtres que l'on rempli comme pour la sphère unique. Attention les sphères doivent être disjointes, sinon le code s'arrête et signale l'erreur.

6.2.12 Cylindre

Pour l'ellipse il y a 8 champs à remplir :

- Le rayon du cylindre en nanomètre
- La longueur du cylindre en nanomètre
- L'abscisse du centre du cylindre en nanomètre
- L'ordonnée du centre du cylindre en nanomètre
- La cote du centre du cylindre en nanomètre
- Premier angle d'Euler ψ par rotation autour de l'axe z
- Deuxième angle d'Euler θ par rotation autour de l'axe x
- Troisième angle d'Euler φ par rotation autour de l'axe z

6.2.13 Sphères concentriques

Pour des sphères concentriques il convient d'abord de choisir avec la ligne du dessous number of objects le nombre N de sphères concentriques. Après quand on clique sur Props il apparaît N fenêtres. La première fenêtre se rempli comme pour la sphère, et pour les fenêtres suivantes il suffit de rentrer le rayon en nanomètre. Les rayons doivent être rentrés dans l'ordre croissants, sinon le code signale l'erreur.

6.2.14 Objet arbitraire

Dans le cas d'un objet arbitraire celui-ci est défini par l'utilisateur. C'est à dire que celui-ci doit créer lui même l'objet, et il convient alors de faire ce fichier d'entrée en respectant les conventions choisies par le code. namefile est le nom du fichier contenant l'objet arbitraire et est demandé quand on choisi objet arbitraire. Celui-ci est codé en séquentiel et en ascii et est forcément décrit dans une boîte parallélépipèdique. Ci dessous sont données les lignes de code permettant de créer ce fichier :

```
\begin{array}{l} {\rm open}(15,{\rm file=namefile,status='old',iostat=ierror})\\ {\rm write}(15,*) \ {\rm nx,ny,nz}\\ {\rm write}(15,*) \ {\rm aretecube}\\ {\bf do} \ i{=}1,{\rm nz}\\ {\bf do} \ j{=}1,{\rm ny}\\ {\bf do} \ k{=}1,{\rm nx}\\ {\rm write}(15,*) \ {\rm xs}(i,j,k),{\rm ys}(i,j,k),{\rm zs}(i,j,k)\\ {\bf enddo}\\ {\bf enddo}\\ {\bf enddo}\\ {\bf do} \ i{=}1,{\rm nz}\\ {\bf do} \ j{=}1,{\rm ny}\\ {\bf do} \ k{=}1,{\rm nx} \end{array}
```

```
if objet isotrope
               write(15,*) eps(i,j,k)
            elseif objet anisotrope
               doi=1,3
                  doij=1,3
                     write(15,*) epsani(ii,jj,i,j,k)
                  enddo
               enddo
            endif
         enddo
     enddo
  enddo
• nx: taille du parallélépipède suivant l'axe x.
\bullet ny : taille du parallélépipède suivant l'axe y.
• nz : taille du parallélépipède suivant l'axe z.
• aretecube : taille de la maille de discrétisation
 x: abscisse des mailles de discrétisation suivant l'axe x.
 y : ordonnée des mailles de discrétisation suivant l'axe y.
\bullet z : cote des mailles de discrétisation suivant l'axe z.
• eps : epsilon de l'objet si isotrope
• epsani : epsilon de l'objet si anisotrope
```

6.3 Choisir la permittivité relative

Quand le ou les objets sont choisis il convient alors de rentrer la permittivité relative. A part l'objet arbitraire, tous les objets définis par défaut dans le code sont considérés comme étant homogènes. Ils peuvent être isotropes ou anisotrope. On choisit donc *iso* ou aniso et on clique sur *Epsilon*.

- *iso*: Apparaît un tableau, ou soit on rentre la permittivité relative à la main (partie réelle et partie imaginaire) ou on choisi un matériau dans la base de donnée.
- aniso: Apparaît un tableau où on rentre la permittivité relative à la main (partie réelle et partie imaginaire) pour toutes les composantes du tenseur anisotrope.

6.4 Choisir la discrétisation

Le nombre N_c rentré dans le champ de la discrétisation correspond au nombre de couche formant l'objet dans sa plus grande direction.

Quelques exemples:

- Pour une ellipse de demi axe (a, b, c), ce sera le plus grand demi axe a qui sera choisi et l'arête de discrétisation sera de $2a/N_c$.
- Pour un cube le nombre de maille sera donc de $N = N_c^3$.

Etude possible avec le code

Sommaire

7.1	Introduction
7.2	Etude en champ lointain
7.3	Microscopy
7.4	Etude en champ proche
7.5	Force et couple optique

7.1 Introduction

Définir son objet avec la bonne orientation n'est pas chose facile. C'est pourquoi la première option *Only dipoles with epsilon*, permet de vérifier rapidement si l'objet rentré est bien celui désiré, sans qu'aucun calcul ne soit lancé. Une fois ceci fait, il y a trois grand champs : l'étude en champ lointain, l'étude en champ proche et les forces optiques.

Important : Notons que dans la DDA le calcul qui prend le plus de temps est le calcul du champ local du fait de la résolution du système d'équations linéaires. Une option a été rajoutée qui consiste à relire le champ local à partir d'un fichier. Quand cette option est sélectionnée, le nom d'un fichier est demandé, soit on rentre un ancien fichier soit un nouveau nom :

- Si c'est un nouveau nom, le calcul de champ local sera effectué puis stocké ainsi que la configuration choisie.
- Si c'est un ancien nom, le champ local sera relu avec une vérification qu'entre l'écriture et la relecture la configuration n'ait pas été changée. Ceci permet de relancer des calculs très rapidement pour une même configuration mais pour différentes études.

Notons aussi que si le calcul demandé a une importante discrétisation et que nous ne sommes pas intéressés pour avoir les fichiers de sortie en .mat (soit pour utiliser matlab, soit juste pour les contrôler), alors nous avons l'option "Do not write mat file". Ceci demande au code d'écrire aucun fichier .mat et permet au code d'aller plus vite, de moins remplir le disque dur et d'être mieux parallélisé.

7.2 Etude en champ lointain

Quand l'option champ lointain est sélectionnée trois possibilités apparaissent :

• Cross section: Cette option permet de calculer la section efficace d'extinction (C_{ext}) , d'absorption (C_{abs}) et de diffusion (C_{sca}) par la différence des deux première, i.e.: $C_{\text{sca}} = C_{\text{ext}} - C_{\text{abs}}$. Les sections efficaces sont évaluées avec:

$$C_{\text{ext}} = \frac{4\pi k_0}{\|\boldsymbol{E}_0\|^2} \sum_{j=1}^{N} \text{Im} \left[\boldsymbol{E}_0^*(\boldsymbol{r}_j) . \boldsymbol{p}(\boldsymbol{r}_j) \right]$$
 (7.1)

$$C_{\text{abs}} = \frac{4\pi k_0}{\|\boldsymbol{E}_0\|^2} \sum_{j=1}^{N} \left[\text{Im} \left[\boldsymbol{p}(\boldsymbol{r}_j) . (\alpha^{-1}(\boldsymbol{r}_j))^* \boldsymbol{p}^*(\boldsymbol{r}_j) \right] - \frac{2}{3} k_0^3 \|\boldsymbol{p}^*(\boldsymbol{r}_j)\|^2 \right]$$
(7.2)

• Cross section+Poynting: Cette option calcule la section efficace de diffusion à partir de l'intégration du champ lointain diffracté par l'objet sur 4π stéradians, le facteur asymétrique et calcule la puissance rayonnée ($\langle S \rangle$. nR^2 avec S le vecteur de Poynting, n la direction d'observation) par unité d'angle solide qui sera représenté en 3D. Les valeurs Ntheta et Nphi permettent de donner le nombre de points utilisés pour calculer la section efficace d'extinction et représenter le vecteur de Poynting. Plus l'objet est grand et plus Ntheta et Nphi doivent être grand ce qui conduit pour des objets de plusieurs longueurs d'onde à des calculs coûteux en temps.

$$C_{\text{sca}} = \frac{k_0^4}{\|\boldsymbol{E}_0\|^2} \int \left\| \sum_{j=1}^N \left[\boldsymbol{p}(\boldsymbol{r}_j) - \boldsymbol{n}(\boldsymbol{n}.\boldsymbol{p}(\boldsymbol{r}_j)) \right] e^{-ik_0 \boldsymbol{n}.\boldsymbol{r}_j} \right\|^2 d\Omega$$
 (7.3)

$$g = \frac{k_0^3}{C_{\text{sca}} \|\boldsymbol{E}_0\|^2} \int \boldsymbol{n} \cdot \boldsymbol{k}_0 \left\| \sum_{j=1}^{N} \left[\boldsymbol{p}(\boldsymbol{r}_j) - \boldsymbol{n}(\boldsymbol{n} \cdot \boldsymbol{p}(\boldsymbol{r}_j)) \right] e^{-ik_0 \boldsymbol{n} \cdot \boldsymbol{r}_j} \right\|^2 d\Omega$$
 (7.4)

$$\langle \mathbf{S} \rangle . \mathbf{n} R^2 = \frac{ck_0^4}{8\pi} \left\| \sum_{j=1}^N \left[\mathbf{p}(\mathbf{r}_j) - \mathbf{n}(\mathbf{n}.\mathbf{p}(\mathbf{r}_j)) \right] e^{-ik_0 \mathbf{n}.\mathbf{r}_j} \right\|^2$$
(7.5)

Une autre solution pour aller plus vite (option quick computation) et de passer par des FFT pour le calcul du champ diffracté. Dans ce cas il convient bien sûr de discrétiser en ayant en tête que la relation $\Delta x \Delta k = 2\pi/N$ relie la maille de la discrétisation avec la taille de la FFT. La valeur de N peut être choisie avec le menu déroulant. Ceci convient pour des objets plus grands que la longueur d'onde. En effet $L = N\Delta x$ correspond à la taille de l'objet, soit $\Delta k = 2\pi/L$, et si la taille de l'objet est trop petite alors le Δk est trop grand est l'intégration est alors imprécise. A noter que, vu que l'intégration se fait sur deux plans parallèle au plan (x,y), ne convient pas si l'incident fait un angle de plus de 70 degrés avec l'axe z. La représentation 3D du vecteur de Poynting se fait comme précédemment, i.e. avec Ntheta et Nphi à partir d'une interpolation sur les points calculés avec la FFT ce qui conduit des fois à des formes bizarres dans le plan (x,y) si N est trop faible.

• Conservation d'énergie. Cette étude permet de calculer la quantité d'énergie absorbée, réfléchie et transmise par l'objet choisi. Si l'objet est non absorbant alors la quantité d'énergie absorbée doit être proche de zéro et traduit le niveau de conservation d'énergie de la DDA. Attention celle-ci peut dépendre de la précision choisie pour la méthode itérative et de la forme de la polarisabilité.

7.3 Microscopy 28

7.3 Microscopy

Cette option demande d'abord le type de microscope voulu : Microscope holographique, microscope brightfield ou microscope darkfield (champ sombre) et phase. Cette option demande l'ouverture numérique de la lentille objectif utilisée (forcément entre 0 et 1). Par défaut les lentilles sont placées parallèlement au plan (x,y) et du coté des z positifs. Le foyer du microscope est placé par défaut à l'origine du repère (Fig. 7.1), mais peut être changé via le champ "Position of the focal plane". Le grossissement du microscope est G et doit être supérieur à 1.

Figure 7.1 : Schéma simplifié du microscope. Le foyer objet de la lentille objectif est à l'origine du repère. L'axe de la lentille est confondu avec l'axe z et du coté des z positifs.

Le calcul peut s'effectuer à partir de la somme du rayonnement des dipôles (très long quand l'objet a beaucoup de dipôles, mais quand l'objet est petit c'est de loin le plus pratique) ou avec des FFT (option quick computation) avec la même valeur de N que celle choisie précédemment (A utiliser quand l'objet est gros et comporte beaucoup de dipôle). Dans ce cas $\Delta x \Delta k = 2\pi/N$ avec Δx la maille de discrétisation de l'objet qui correspond aussi à la discrétisation du plan image. Celui a donc une taille de $L = N\Delta x$. Il est évident que si la maille de discrétisation de l'objet est petite alors il faut un grand N pour avoir un Δk plus petit que k_0 .

Le champ diffracté en champ lointain à une distance r de l'origine ou se situe l'objet s'écrit sous la forme suivante $\mathbf{E}^f = S(k_x, k_y, \mathbf{r}_{\text{objet}}) \frac{e^{ikr}}{r}$. Le champ diffracté dans le plan de Fourier image de la première lentille s'écrit alors $\frac{S(k_x, k_y, \mathbf{r}_{\text{objet}})}{-2i\pi\gamma}$ avec $\gamma = \sqrt{k_0^2 - k_x^2 - k_y^2}$ et l'image à travers le microscope consiste donc à calculer sa transformée de Fourier, $\mathbf{E}^i = \mathcal{F}(\mathbf{E}^f)$.

Pour prendre en compte le grossissement du microscope dans la formation de l'image nous effectuons une rotation du champ diffracté en champ lointain avant d'effectuer sa

transformée de Fourier :

$$\mathbf{E}^i = \mathcal{F}(R(\theta)\mathbf{E}^f) \tag{7.6}$$

with
$$R(\theta) = \begin{pmatrix} u_x^2 + \cos\theta(1 - u_x^2) & u_x u_y (1 - \cos\theta) & u_y \sin\theta \\ u_x u_y (1 - \cos\theta) & u_y^2 + \cos\theta(1 - u_y^2) & -u_x \sin\theta \\ -u_y \sin\theta & u_x \sin\theta & \cos\theta \end{pmatrix}$$
 (7.7)

$$\theta = \sin^{-1}[\sin(-\beta)/G] - \beta \tag{7.8}$$

$$\beta = \cos^{-1}(k_z/k_0) \tag{7.9}$$

$$u_x = -k_y/k_{\parallel} \tag{7.10}$$

$$u_y = k_x/k_{\parallel}. (7.11)$$

Le code offre la possibilité de simuler un microscope en transmission $(k_z > 0)$ ou un microscope en réflexion $(k_z < 0)$. Notons, en transmission uniquement car il n'y a pas de spéculaire en réfléxion, que quand le champ total est calculé (champ diffracté plus champ incident) dans le cas d'une ou des ondes planes, l'onde plane dans l'espace de Fourier est un Dirac que nous plaçons au pixel le plus proche correspondant au vecteur d'onde incident. Dans ce cas la dynamique de l'image est telle que seule l'onde plane incidente est visible et le champ diffracté trop faible pour apparaître. Cette option est surtout intéressante dans le cas d'un faisceau Gaussian.

- *Holographic*: Ce mode calcul le champ diffracté par l'objet (Fourier plane) et l'image obtenue à travers le microscope à la position du foyer image (Image plane) avec et sans la présence du champ incident. Le champ incident est celui défini dans le code dans la partie illumination properties.
- Brightfield: Pour ce microscope il convient aussi de définir l'ouverture numérique du condenseur. Ce microscope considère un éclairement incohérent dans l'ouverture numérique du condenseur. Le code somme donc les éclairement avec de nombreuses incidentes et pour différentes polarisations. Le résultat obtenu est donné uniquement pour image plane sans le champ incident (c'est un champ sombre mais avec un éclairement dans tout le cône du condenseur) et avec le champ incident (brighfield).
- Darkfield & phase: La microscopie en champ sombre éclaire l'objet suivant un anneau dont l'ouverture numérique est égale à celle du condenseur. La somme incohérente de tous les champs diffractés est faite. Le résultat est donné dans image plane sans le champ incident (champ sombre) et pour le microscope de phase il est rajouté au champ obtenu par le champ sombre le champ incident déphasé de $\pi/2$.

7.4 Etude en champ proche

Quand l'option champ proche est sélectionnée deux possibilités apparaissent :

- Local field: Cette option permet de tracer le champ local à la position de chaque élément de discrétisation. Le champ local étant le champ à la position de chaque élément de discrétisation en l'absence de lui même, cela correspond à ce qu'on appelle aussi le champ microscopique. C'est le champ qui est calculé lors de la résolution du système d'équations linéaires.
- Macroscopic field : Cette option permet de tracer le champ macroscopique à la position de chaque élément de discrétisation. Le lien entre le champ local et le champ macroscopique est donné Ref.? :

$$\boldsymbol{E}_{\text{macro}} = 3 \left(\varepsilon + 2 - i \frac{k_0^3 d^3}{2\pi} (\varepsilon - 1) \right)^{-1} \boldsymbol{E}_{\text{local}}$$
 (7.12)

Nous avons donc une relation linéaire avec une petite partie imaginaire qui tient compte de la réaction de rayonnement.

La dernière option permet de choisir le maillage dans lequel le champ local et macroscopique sont représentés.

- Objet: Seul le champ dans l'objet est représenté. Cette option est passée automatiquement à la suivante quand des FFT sont utilisées que ce soit pour l'illumination ou la diffraction. L'option calculant l'émissivité, le choix de calcul avec la méthode de la propagation du faisceau ou l'option de relecture passe aussi à l'option suivante.
- Cube : Le champ est représenté dans un cube ou le parallélépipède contenant l'objet.
- Wide field: Le champ est représenté dans une boite plus grande que l'objet. La taille de la boite est fixée à la taille de l'objet (wide field) + Additional sideband (x, y ou z) de chaque côté de l'objet. Par exemple pour une sphère avec un rayon r = 100 nm et discrétisation de 10, soit une maille de 10 nm, avec un Additional sideband x de 2, 3 pour y et 4 pour z, nous avons une boîte de taille totale:

$$l_x = 100 + 2 \times 2 \times 10 = 140 \text{ nm}$$
 (7.13)

$$l_y = 100 + 2 \times 3 \times 10 = 160 \text{ nm}$$
 (7.14)

$$l_z = 100 + 2 \times 4 \times 10 = 180 \text{ nm}$$
 (7.15)

(7.16)

Le champ à l'intérieur de la zone de champ proche Wide Field est calculé comme :

$$E = E_0 + ADE, \tag{7.17}$$

ce qui dans le cas rigoureux donne le champ dans toute la zone de champ proche, c'est à dire dans l'objet et dans le voisinage qui a été donné par les "Additional sideband".

7.5 Force et couple optique

Quand l'option force est sélectionnée quatre possibilités apparaissent :

- Optical force : Calcul de la force optique s'exerçant sur le ou les objets.
- Optical force density : Permet de tracer la densité de force optique.
- Optical torque : Calcul du couple optique s'exerçant sur le ou les objets. Le couple est calculé pour une origine placé au centre de gravité de l'objet.
- Optical torque density : Permet de tracer la densité de couple force optique.

Le couple et la force optique sont calculées avec??:

$$\mathbf{F} = (1/2) \sum_{j=1}^{N} \operatorname{Re} \left(\sum_{v=1}^{3} p_{v}(\mathbf{r}_{j}) \frac{\partial (E_{v}(\mathbf{r}_{j}))^{*}}{\partial u} \right)$$
(7.18)

$$\Gamma = \sum_{j=1}^{N} \left[\mathbf{r}_{j}^{g} \times \mathbf{F}(\mathbf{r}_{j}) + \frac{1}{2} \operatorname{Re} \left\{ \mathbf{p}(\mathbf{r}_{j}) \times \left[\mathbf{p}(\mathbf{r}_{j}) / \alpha_{\mathrm{CM}}(\mathbf{r}_{j}) \right]^{*} \right\} \right].$$
 (7.19)

où u et v représente x ,y, ou z. \boldsymbol{r}_{j}^{g} est le vecteur entre l'élément j et le centre de masse de l'objet.

Représentation des résultats

Sommaire

8.1	Introduction
8.2	Sorties numériques 30
8.3	Graphiques
8.	3.1 Plot epsilon/dipoles
8.	3.2 Champ lointain et microscopie
8.	3.3 Etude du Champ proche
8.	3.4 Force et couple optique

8.1 Introduction

Trois fenêtres permettent de gérer et représenter les résultats demandés. Celle du haut permet de générer les différentes figures, celle en bas à gauche présente les valeurs numériques demandées et celle en bas à droite est réservée aux représentations graphiques.

8.2 Sorties numériques

Tous les résultats sont donnés dans le système SI.

- Object subunits : Nombre d'éléments de discrétisation de l'objet étudié.
- *Mesh subunits* : Nombre d'éléments de discrétisation du parallélépipède contenant l'objet étudié.
- Mesh size : Taille de l'élément de discrétisation.
- $\lambda/(10n)$: Pour avoir une bonne précision, il est conseillé d'avoir une discrétisation en dessous de la valeur de $\lambda/10$ dans le matériau considéré d'indice optique n.
- k_0 : Nombre d'onde.
- *Irradiance* : Irradiance du faisceau, pour un faisceau Gaussien, elle est estimée au centre du col.
- Field modulus : Module du champ, pour un faisceau Gaussien, il est estimé au centre du col.
- *Tolerance obtained*: Tolérance obtenue pour la méthode itérative choisie. Logiquement en dessous de la valeur demandée.
- Number of products Ax (iterations) : Nombre de produits matrice vecteur effectué par la méthode itérative. Entre parenthèse le nombre d'itération de la méthode itérative.

32 8.3 Graphiques

- Extinction cross section: Valeur de la section efficace d'extinction.
- Absorbing cross section: Valeur de la section efficace d'absorption.
- Scattering cross section: Valeur de la section efficace de diffusion obtenue par section efficace d'extinction- section efficace d'absorption.
- Scattering cross section with integration: Valeur de la section efficace de diffusion obtenue par intégration du champ lointain rayonné par l'objet.
- Scattering assymetric parameter: Facteur asymétrique.
- Optical force x: Force optique suivant l'axe x.
- Optical force y: Force optique suivant l'axe y.
- Optical force z: Force optique suivant l'axe z.
- Optical force modulus : Module de la force optique.
- Optical torque x: Couple optique suivant l'axe x.
- Optical torque y: Couple optique suivant l'axe x.
- Optical torque z: Couple optique suivant l'axe x.
- Optical torque modulus Module du Couple optique.

8.3 Graphiques

Plot epsilon/dipoles 8.3.1

Le bouton Plot epsilon/dipoles permet de voir la position de chaque élément de discrétisation. La couleur de chaque point est associée à la valeur de la permittivité de la maille considérée.

8.3.2 Champ lointain et microscopie

8.3.2.1 **Plot Poynting**

Plot Poynting: permet de tracer le module du vecteur de Poynting en 3D. Attention quand la calcul rapide est utilisé il peut y avoir des effets de discrétisation, dans ce cas il faut augmenter le nombre de maille pour la FFT.

8.3.2.2 Plot microscopy

Plot microscopy: permet de tracer le champ diffracté en champ lointain par l'objet que ce soit le module du champ ou de la composante x, y ou z. Puis le champ vectoriel sur la plan image est représenté en considérant un grossissement G pour le microscope. La focalisatin est faite sur le plan z=0 et ne peut pas être changée. Pour défocaliser il convient donc de jouer sur la position de l'objet.

Le champ diffracté est représenté sur un maillage régulier en $\Delta k_x = \Delta k_y$ tel que $\sqrt{k_x^2 + k_y^2} \le k_0$ NA avec origine des phases à l'origine du repère (x, y, z). Si le calcul est fait par rayonnement des dipôles alors l'image obtenue à pour taille k_0NA et est discrétisé tel que $\Delta k_x = 2k_0 NA/N$, et si celui-ci est fait par transformée de Fourier alors la taille de l'image est fixée par la discrétisation de l'objet Δx avec la relation $\Delta x \Delta k = 2\pi/N$.

Le champ dans le plan image est calculé avec la transformée de Fourier inverse. Nous avons donc avec le calcul par rayonnement des dipôles :

$$\Delta x \Delta k_x = \frac{2\pi}{N}$$

$$\Delta x 2k_0 \text{NA} = 2\pi$$
(8.1)
(8.2)

$$\Delta x 2k_0 \text{NA} = 2\pi \tag{8.2}$$

$$\Delta x = \frac{\lambda}{2NA} \tag{8.3}$$

8.3 Graphiques 33

La taille du pixel de l'image est donc de $\lambda/(2NA)$.

Si le calcul du champ diffracté a été fait par transformée de Fourier alors la discrétisation c'est celle du maillage.

Notons que si le champ arbitraire est utilisé pour le calcul à travers le microscope, l'utilisateur devra rentré un champ qui se propage dans la direction des z positifs et de plus le champ défini devra comprendre le valeur z=0.

8.3.3 Etude du Champ proche

- Le premier bouton *Field* permet de choisir de représenter le champ incident, le champ local ou le champ macroscopique.
- Le bouton *Type* permet de choisir de représenter le module ou la composante x, y ou z du champ étudié.
- Le bouton $Cross\ section\ x\ (y\ {\rm ou}\ z)$ permet de choisir l'abscisse de la coupe (ordonnée ou cote). $Plot\ x\ (y\ {\rm ou}\ z)$ trace la couple. $Plot\ all\ x$ trace toutes les coupes d'un seul coup.

8.3.4 Force et couple optique

- Le premier bouton *Field* permet de choisir de représenter la force ou le couple optique.
- Le bouton *Type* permet de choisir de représenter le module ou la composante x, y ou z du champ étudié.
- Le bouton Cross section x (y ou z) permet de choisir l'abscisse de la coupe (ordonnée ou cote). Plot x (y ou z) trace la couple. Plot all x trace toutes les coupes d'un seul coup.

Fichiers de sortie pour matlab, octave, scilab,...

Sommaire

9.1	Introduction	33
9.2	Liste de tous les fichiers de sortie	34

9.1 Introduction

Il n'est pas forcément nécessaire d'utiliser l'interface graphique du programme pour regarder les résultats. Pour les sorties scalaires tous les résultats sont dans le fichier output et pour les images il est possible d'utiliser directement les fichiers de sortie en ascii ou en hdf5 et les lire à travers d'autres logiciels tels que Matlab, Octave, Scilab,...Dans le bin ifdda.m permet d'avoir une sortie matlab des figures.

Quand l'option avancée est choisie, il est possible de choisir de sauvegader les données soit dans des fichiers .mat séparées, soit dans un seul fichier hdf5.

- Dans le cas du fichier en hdf5, il y a six groupes de créés : option (les options choisies par l'utilisateur), near field (les données de champ proche), microscopy (les données de la microscopie), far field (les données du champ lointain), et dipole (position des éléments de discrétisation et permittivité).
- Pour les fichier.mat toutes les sorties sont formatées sous la forme d'un unique vecteur colonne ou deux vecteurs colonnes si le nombre est un complexe (la partie réelle étant associée à la première colonne et le partie imaginaire à la deuxième colonne).
- Dans le fichier hdf5 toutes les sorties sont formatées sous la forme d'un unique vecteur colonne et avec deux tableaux séparés dans le cas des nombres complexes.
- Dans le cas ou le fichier contient des données tridimensionnelles, celles-ci sont toujours rangées de la manière suivante :

```
\begin{array}{c} \textbf{do i} \!=\! 1,\! nz \\ \textbf{do j} \!=\! 1,\! ny \\ \textbf{do k} \!=\! 1,\! nx \\ & \text{write}(*,\!*) \; \text{data}(i,\! j,\! k) \\ \textbf{enddo} \\ \textbf{enddo} \\ \textbf{enddo} \end{array}
```

Les données tridimensionnelles seront repérées par (3D) en début de ligne.

Un fichier matlab dans le bin est disponible. Son nom est ifdda.m et il permet de tracer toutes les courbes d'un coup à partir des options choisies dans le code. Si les fichiers tridimensionnels sont un peu gros (beaucoup de point de discrétisation), le chargement de ceux-ci peut prendre un peu de temps en .mat, le format hdf5 est alors plus rapide.

9.2 Liste de tous les fichiers de sortie

- x,y,z représentent les différentes coordonnées utilisées.
- (3D) epsilon contient la permittivité de l'objet.
- (3D) xc,yc,zc contiennent les coordonnées de tous les points du maillage.
- (3D) xwf,ywf,zwf contiennent les coordonnées de tous les points du maillage dans lequel le champ proche est calculé quand l'option champ large (wide field) est utilisée.
- (3D complexe) incidentfieldx (x,y) contient la composante x(y,z) du champ incident dans l'objet uniquement.
- (3D) incidentfield contient le module du champ incident dans l'objet uniquement.
- (3D complexe) macroscopicfieldx (x,y) contient la composante x(y,z) du champ macroscopique dans l'objet uniquement.
- (3D) macroscopicfield contient le module du champ macroscopique dans l'objet uniquement.
- (3D complexe) mlocalfieldx (x,y) contient la composante x(y,z) du champ local dans l'objet uniquement.
- (3D) localfield contient le module du champ local dans l'objet uniquement.
- (3D complexe) incidentfieldxwf (x,y) contient la composante x(y,z) du champ incident dans la boite de champ proche en large champ.
- (3D) incidentfieldwf contient le module du champ incident dans la boite de champ proche en large champ.
- (3D complexe) macroscopicfieldxwf (x,y) contient la composante x(y,z) du champ macroscopique dans la boite de champ proche en large champ.
- (3D) macroscopicfieldwf contient le module du champ macroscopique dans la boite de champ proche en large champ.
- (3D complexe) localfieldxwf (x,y) contient la composante x(y,z) du champ local dans la boite de champ proche en large champ.
- (3D) localfieldwf contient le module du champ local dans la boite de champ proche en large champ.
- theta est un tableau qui contient tous les angles theta correspondant à toutes les directions dans lesquelles le vecteur de Poynting est calculé. Il est de taille (Ntheta+1)*Nphi.
- phi est un tableau qui contient tous les angles theta correspondant à toutes les directions dans lesquelles le vecteur de Poynting est calculé. Il est de taille (Ntheta+1)*Nphi.
- poynting contient le module du vecteur de poynting dans la direction theta et phi de taille (Ntheta+1)*Nphi.
- (3D) forcex (y,z) contient la composante x de la force optique dans l'objet uniquement.
- (3D) torquex (y,z) contient la composante x de la force optique dans l'objet uniquement.
- (2D) fourier(x,y,z) contient le champ diffracté dans le plan de fourier en module (x,y,z).

- (2D) fourierinc(x,y,z) contient le champ total dans le plan de fourier en module (x,y,z).
- kxfourier contient les coordonnées du plan de Fourier.
- (2D) image(x,y,z) contient le champ diffracté dans le plan image en module (x,y,z).
- (2D) imageinc(x,y,z) contient le champ total dans le plan image en module (x,y,z).
- (2D) imagebf(x,y,z) contient le champ diffracté dans le plan image en module (x,y,z) pour un microscope champ sombre.
- (2D) imageincbf(x,y,z) contient le champ total dans le plan image en module (x,y,z) pour un microscope brightfield.
- (2D) imagedf(x,y,z) contient le champ diffracté dans le plan image en module (x,y,z) pour un microscope champ sombre.
- (2D) imageincdf(x,y,z) contient le champ total dans le plan image en module (x,y,z) pour un microscope de phase.
- Poynting contient le module de Ponyting dans la direction θ et ϕ .
- theta et phi contiennent la direction θ et ϕ pour Poynting.
- poyntingneg et poyntingnes contiennent Poynting pour $k_z < 0$ et $k_z > 0$ respectivement dans le plan (k_x, k_y) .
- kx et ky contiennent les coordonnées pour poyntingneg et poyntingpos.