PART IV

SPECTRAL THEOREM

In these notes we go through the basic theory of C^* -algebras and spectral theory. The topics in this document will include spectral mapping theorem, Gelfand-Naimark theory, and spectral theorem.

1 | Spectral mapping theorem

Our goal is now to abstract out the properties of operators on Hilbert spaces and study them. This will help us study more general quantum systems. Let \mathcal{A} be a Banach space over \mathbb{C} i.e., \mathcal{A} is a vector space with a norm such that it's also complete under this norm. It's called a Banach algebra if it has a product structure such that,

$$||AB|| \le ||A|| \, ||B||.$$

Since $||A_1B_1-A_2B_2|| \le ||A_1|| ||B_1-B_2|| + ||B_2|| ||A_1-A_2||$ the multiplication map is continuous. An involutive Banach algebra or a *-algebra is a Banach algebra with a *-operation,

$$A \mapsto A^*$$

such that, $(A^*)^* = A$, $(A+B)^* = A^* + B^*$, $(\lambda A)^* = \overline{\lambda} A^*$, $(AB)^* = B^*A^*$, and $||A|| = ||A^*||$. All these properties are imported from what we expect from the adjoint operation on operators on Hilbert spaces.

A *-algebra that satisfies,

$$||A^*A|| = ||A^*|| ||A|| = ||A||^2,$$

is called a C^* -algebra. It can be checked that the algebra of bounded operators on a Hilbert space \mathcal{H} forms a C^* -algebra with respect to the adjoint operation. By embedding into the operators on the algebra every C^* -algebra can be made to contain the unit element. Hence we will assume every C^* -algebra to be unital in this document.

An element $A \in \mathcal{A}$ is said to be invertible if there exists a unique element A^{-1} such that $AA^{-1} = A^{-1}A = 1$. The set of all invertible elements forms a group and is called the general linear group of \mathcal{A} . Denoted by $\mathcal{G}(\mathcal{A})$. Our aim is to show that $\mathcal{G}(\mathcal{A})$ is open in \mathcal{A} .

Consider the unit ball around $1 \in A$, i.e., $B_1(1) = \{A \mid ||A-1|| \le 1\}$. Since $||A-1|| \le 1$, $\sum_{n \ge 0} ||A-1||^n < \infty$, so, $A' = \sum_{n \ge 0} (A-1)^n$ converges.

$$AA' = A'A = (1 - (1 - A))A' = A' - (1 - A)A' = \sum_{n \ge 0} (1 - A)^n - (1 - A)A'$$
$$= \sum_{n \ge 0} (1 - A)^n - \sum_{n \ge 1} (1 - A)^n = 1.$$

So, every $A \in B_1(1)$ is invertible. As a corollary, if $||A|| < |\lambda|$, then $(A - \lambda)$ is invertible with the inverse, $(A - \lambda)^{-1} = -\sum_{n \geq 0} A^n/\lambda^{n+1}$. Since left multiplication by an element $L_B(A) = BA$ is continuous, for $B \in \mathcal{G}(A)$, L_B is invertible with inverse $L_{B^{-1}}$.

Since the open unit ball around 1 is invertible 1 is in the interior of $\mathcal{G}(\mathcal{A})$. Using this we can obtain open balls around every element $B \in \mathcal{G}(\mathcal{A})$ using translations. $B \in \mathcal{G}(\mathcal{A})$, then the continuous map L_B takes the open ball around 1 to an open ball around B i.e., $L_B(B_1(1))$ is an open ball around B entirely contained in $\mathcal{G}(\mathcal{A})$. Hence $\mathcal{G}(\mathcal{A})$ is open.

2 | Gelfand-Naimark Theory

The Gelfand-Naimark theorem gives a Hilbert nullstellensatz type relation between geometric objects and commutative C^* -algebras. All algebras in this section will be assumed unital and commutative.

Let \mathcal{A} be a commutative Banach algebra, a multiplicative functional φ is a linear functional that's also an algebra homomorphism, $\varphi : \mathcal{A} \to \mathbb{C}$,

$$\varphi: AB \mapsto \varphi(A)\varphi(B).$$

The set of all multiplicative functionals will be called the spectrum of \mathcal{A} denoted by, $\sigma(\mathcal{A})$. The reason for this name will soon become clear. Multiplicative linear functionals are also called characters in some books.

Let $\varphi \in \sigma(A)$, for any $A \in A$, we have, $\varphi(A) = \varphi(1 \cdot A) = \varphi(1)\varphi(A)$, or $\varphi(1) = 1$. If A is invertible then $\varphi(A^{-1})\varphi(A) = \varphi(A^{-1}A) = 1$ or $\varphi(A)$ is non-zero. Suppose $|\varphi(A)| \nleq ||A||$, then, $A - |\varphi(A)|$ is invertible.

$$\varphi(A - |\varphi(A)|) = \varphi(A) - |\varphi(A)|$$

adjusting the phase of A this term can be made zero. This is however a contradiction as φ is non-zero for invertible elements of A. So for every $\varphi \in \sigma(A)$, we have $|\varphi(A)| \leq ||A||$. Equipped with the weak* topology, $\sigma(A)$ is a closed subset of the closed unit ball B of A^* .

$$\sigma(\mathcal{A}) \subset B$$
, is closed

By Alaoglu's theorem, A, $\sigma(A)$ is a compact Hausdorff space.

A left (or right, in our case it's irrelevant as we are dealing with commutative algebras) ideal of \mathcal{A} is a subalgebra $\mathcal{I} \subset \mathcal{A}$ such that $AB \in \mathcal{I}$ whenever $A \in \mathcal{I}$ and for all $B \in \mathcal{A}$. \mathcal{I} is a proper ideal if $\mathcal{I} \neq \mathcal{A}$, and \mathcal{I} is a maximal ideal if it's not contained in any proper ideal. If an ideal contains invertible an element, say A then $AA^{-1} = 1 \in \mathcal{I}$ which means that $B \in \mathcal{I}$ for all $B \in \mathcal{A}$, or $\mathcal{I} = \mathcal{A}$. If $A \in \mathcal{A}$ is not invertible then $\mathcal{I}_A = \{BA \mid B \in \mathcal{A}\}$ is an ideal containing A. Let $\overline{\mathcal{I}}$ be the closure of \mathcal{I} . Since the invertible elements of \mathcal{A} form a group and is an open set in \mathcal{A} . $\overline{\mathcal{I}}$ cannot contain the identity of \mathcal{A} . $\overline{\mathcal{I}}$ is a proper ideal. Every ideal is contained in some maximal ideal, and since the closure of a proper ideal is also a proper ideal, the maximal ideals are closed. The collection of all maximal ideals of \mathcal{A} will be denoted by $\mathcal{M}(\mathcal{A})$. Every non invertible element is contained in some maximal ideal.

Let $\varphi \in \sigma(\mathcal{A})$, for $A \in \ker(\varphi)$, and for all $B \in \mathcal{A}$,

$$\varphi(AB) = \varphi(A)\varphi(B) = 0,$$

so $AB \in \ker(\varphi)$. So it's an ideal. Since $\varphi(1) = 1 \notin \ker(\varphi)$ it's a proper ideal. Suppose $\ker(\varphi)$ is not a maximal ideal, and let $\ker(\varphi) \subseteq \mathcal{I}$ with \mathcal{I} a proper ideal.

Let $A \in \mathcal{I} \setminus \ker(\varphi)$, then we have, $A = (A - \varphi(A) \cdot 1) + \varphi(A) \cdot 1$. So, we can write $A = A' + \lambda \cdot 1$, for some $A' = A - \varphi(A) \cdot 1 \in \ker(\varphi)$ and $\lambda \in \mathbb{C}$. So, 1 is in the span of A and $\ker(\varphi)$. Equivalently, $\mathcal{I} = \mathcal{A}$ (!). $\ker(\varphi)$ is indeed a maximal ideal. Our goal is to relate the maximal ideals and multiplicative linear functionals.

THEOREM 2.1.

$$\varphi \mapsto \ker(\varphi),$$

is a one-to-one correspondence between $\sigma(A)$ and $\mathcal{M}(A)$.

Sketch of Proof

Suppose $\ker(\varphi) = \ker(\varkappa)$, every $A \in \mathcal{A}$ can be written as, $A = \varphi(A) \cdot 1 + B$ for some $B \in \ker(\varphi)$. So we have, $\varkappa(A) = \varphi(A)\varkappa(1) + \varkappa(B)$. Since $\ker(\varphi) = \ker(\varkappa)$ we have $\varkappa(B) = 0$ and hence for all $A \in \mathcal{A}$,

$$\varphi(A) = \varkappa(A),$$

or $\varphi = \varkappa$. Hence the mapping $\varphi \mapsto \ker(\varphi)$ is injective.

Suppose \mathcal{I} is a maximal ideal. Let $\pi: \mathcal{A} \to \mathcal{A}/\mathcal{I}$ be the quotient map. \mathcal{A}/\mathcal{I} inherits algebra structure from \mathcal{A} and also inherits a norm $||A + \mathcal{I}|| = \inf\{||A + I|| \mid I \in \mathcal{I}\}$ making it a Banach algebra.

 \mathcal{A}/\mathcal{I} has no non-trivial ideals, because otherwise if \mathcal{I}' is an ideal of \mathcal{A}/\mathcal{I} then, consider $\pi^{-1}(\mathcal{I}')$. For all $J \in \pi^{-1}(\mathcal{I}')$ and $A \in \mathcal{A}$ since $\pi(J) \in \mathcal{I}'$ we have,

$$\pi(JA) = \pi(J)\pi(A) \in \mathcal{I}'.$$

So, $JA \in \pi^{-1}(\mathcal{I}')$ and hence $\pi^{-1}(\mathcal{I}')$ is an ideal. Since $\mathcal{I} \subsetneq \pi^{-1}(\mathcal{I}')$ it cannot be a maximal ideal. This is a contradiction as we assumed it to be a maximal ideal. Hence every non-zero element of \mathcal{A}/\mathcal{I} is invertible because otherwise we can construct an ideal containing the element. By Gelfand-Mazur theorem we have,

$$\mathcal{A}/\mathcal{I} \cong \mathbb{C} \cdot 1$$

Let the above isomorphism be φ . The composition, $\varphi \circ \pi$ is in $\sigma(\mathcal{A})$ with $\ker(\varphi \circ \pi) = \mathcal{I}$. The map $\varphi \mapsto \ker(\varphi)$ is surjective.

This allows us to think of $\mathcal{M}(\mathcal{A})$ as a compact Hausdorff space. For every $A \in \mathcal{A}$ we have a map, $\widehat{A}(\varphi) = \varphi(A)$. With the weak* topology on $\sigma(\mathcal{A})$, \widehat{A} is a continuous map on $\sigma(\mathcal{A})$. The map,

$$\Gamma:A\mapsto \widehat{A}$$

is called Gelfand tranformation on \mathcal{A} . It's a map from \mathcal{A} to $C(\sigma(\mathcal{A}))$. Here C(X) means continuous maps on X to \mathbb{C} . If $A, B \in \mathcal{A}$ then we have,

$$\widehat{AB}(\varphi) = \varphi(AB) = \varphi(A)\varphi(B) = \widehat{A}(\varphi)\widehat{B}(\varphi).$$

So, the Gelfand transformation is an algebra homomorphism, and $\widehat{1}(\varphi) = \varphi(1) = 1$, so $\widehat{1}$ is a constant function. If A is invertible then for all $\varphi \in \sigma(A)$ we have, $\varphi(AA^{-1}) = 1$ or $\varphi(A)$ is non vanishing. Conversely suppose \widehat{A} is never vanishing, and suppose A is not invertible, then there exists a maximal ideal \mathcal{I}_A containing A. Let the associate multiplicative functional be φ_A such that $\ker \varphi_A = \mathcal{I}_A$. So we have,

$$\varphi_A(A) = \widehat{A}(\varphi_A) = 0$$

this is a contradiction as we started with the assumption that \widehat{A} is non-vanishing. Hence A is invertible if and only if \widehat{A} is non-vanishing. A *-algebra \mathcal{A} is said to be symmetric if

$$\Gamma(A^*) = \widehat{A^*} = \overline{\widehat{A}}.$$

Our goal is to show that for commutative C^* -algebras the Gelfand transform is an isometric isomorphism.

THEOREM 2.2.

$$\|\widehat{A}\|_{sup} \le \|A\|.$$

Sketch of Proof

Let $\lambda \in \sigma(A)$, i.e., $A - \lambda$ is not invertible. There exists φ_A such that $\varphi_A(A - \lambda) = 0$. So, we have,

$$\varphi_A(A) = \lambda.$$

So, λ is in the range of \widehat{A} . Conversely, suppose μ is in the range of \widehat{A} , then there exists $\varphi \in \sigma(A)$ such that $\widehat{A}(\varphi) = \mu$, or $\varphi(A - \lambda) = 0$, which means that $A - \lambda$ is not invertible. So, range of \widehat{A} is same as spectrum of $\sigma(A)$.

Now,
$$\|\widehat{A}\|_{sup} = \sup_{\varphi \in \sigma(\mathcal{A})} \{|\widehat{A}(\varphi)|\}$$
. So, $\|\widehat{A}\|_{sup} = \rho(A) \leq \|A\|$.

Suppose \mathcal{A} is symmetric, i.e., $\widehat{A^*} = \overline{\widehat{A}}$, then for all self-adjoint elements, $A = A^*$, $\widehat{A} = \overline{\widehat{A}}$. \widehat{A} is a real valued function. Conversely, every element A can be written as a combination of self-adjoint operators, $A = A_1 + iA_2$, so we have, $A^* = A_1^* - iA_2^*$, and hence,

$$\widehat{A}^* = \widehat{A}_1 - i\widehat{A}_2 = \overline{\widehat{A}}.$$

So, \mathcal{A} is symmetric if and only if \widehat{A} is real valued function for self-adjoint A.

If \mathcal{A} is a C^* -algebra then we have $||B^*B|| = ||B||^2$ for all $B \in \mathcal{A}$. Let $A \in \mathcal{A}$ be self-adjoint, consider B = A + it, then we have,

$$||B||^2 = ||B^*B|| = ||A||^2 + t^2$$

Since, $\varphi(B)^2 \le ||B||^2 = ||A||^2 + t^2$, we get,

$$\begin{split} \varphi(A+it)^2 &= (Re(\varphi(A)) + iIm(\varphi(A)) + it)^2 \\ &= Re(\varphi(A))^2 + Im(\varphi(A))^2 + 2Im(\varphi(A))t + t^2 \leq \|A\|^2 + t^2. \end{split}$$

Which means $Re(\varphi(A))^2 + Im(\varphi(A))^2 + 2Im(\varphi(A))t \leq ||A||^2$ i.e., right side is independent of t, so on the left side $Im(\varphi(A))$ must be zero. Hence $\varphi(A)$ is real valued for all $\varphi \in \sigma(A)$ or equivalently \widehat{A} is real valued for all $A = A^*$. Hence C^* -algebras are symmetric.

THEOREM 2.3. If A is symmetric then $\Gamma(A)$ is dense in $C(\sigma(A))$.

Sketch of Proof

The proof is an application of B. If \mathcal{A} is symmetric then $\Gamma(\mathcal{A})$ is closed under conplex conjugation because,

$$\Gamma(A)^* = \Gamma(A^*).$$

So, $\Gamma(\mathcal{A})$ is a self-adjoint subalgebra. $\Gamma(1) = 1$, so $\Gamma(\mathcal{A})$ contains constant functions, and $\Gamma(\mathcal{A})$ separates the points on $\sigma(\mathcal{A})$, because if $\varphi, \varkappa \in \sigma(\mathcal{A})$ with $\varphi \neq \varkappa$ then there exists $A \in \mathcal{A}$ such that $\varphi(A) \neq \varkappa(A)$ i.e., $\Gamma(A)$ is such that $\Gamma(A)(\varphi) \neq \Gamma(A)(\varkappa)$.

So by Stone-Weierstrass theorem
$$\Gamma(\mathcal{A})$$
 is a dense subset of $C(\sigma(\mathcal{A}))$.

Suppose $A \in \mathcal{A}$, let $\sigma(A)$ be the spectrum of the operator, i.e., $\sigma(A) = \{\lambda \mid (A - \lambda) \text{ is not intertible}\}$. Suppose $\lambda \in \sigma(A)$ then $A - \lambda$ is not invertible, hence there exists some maximal ideal \mathcal{I}_{λ} containing $A - \lambda$. Let $\varphi_{\lambda} \in \sigma(\mathcal{A})$ such that $\ker(\varphi_{\lambda}) = \mathcal{I}_{\lambda}$. Or equivalently, $\varphi_{\lambda}(A - \lambda) = 0$, or

$$\varphi_{\lambda}(A) = \lambda$$

So, to each $\lambda \in \sigma(A)$ we have a multiplicative functional φ_{λ} such that $\varphi_{\lambda}(A) = \lambda$.

If $\mathcal{A} = [A, 1]$, i.e., if \mathcal{A} is generated by the identity and the operator A then $\varphi \in \sigma(\mathcal{A})$ is determined by its action on A. Since $\varphi(A^{-1}) = \varphi(A)^{-1}$ and $\varphi(A^*) = \overline{\varphi(A)}$ we have, $\widehat{A}(\varphi_1) = \widehat{A}(\varphi_2) \implies \varphi_1 = \varphi_2$. The map,

$$\widehat{A}: \sigma([A,1]) \to \sigma(A)$$

is injective and surjective.

THEOREM 2.4. (GELFAND-NAIMARK THEOREM) If A is a unital commutative C^* -algebra then Γ is an isometric *-isomorphism of A to $C(\sigma(A))$.

Sketch of Proof

Suppose A is a commutative Banach algebra, we will show that $\|\widehat{A}\|_{\sup} = \|A\|$ if and only if $\|A^{2^k}\| = \|A\|^{2^k}$ for $k \ge 1$. If $\|\widehat{A}\|_{\sup} = \|A\|$ then,

$$||A^{2^k}|| \le ||A||^{2^k} = ||\widehat{A}||_{\sup}^{2^k} = ||\widehat{A}^{2^k}||_{\sup} \le ||A^{2^k}||.$$

Here in the first step we used the product norm inequality, in the second step the assumption that $\|\widehat{A}\|_{\sup} = \|A\|$, in the third step the definition of sup norm, and in the fourth step the fact that $\varphi(A) \leq \|A\|$ for all $\varphi \in \sigma(A)$. So,

$$\|\widehat{A}\|_{\text{sup}} = \|A\| \implies \|A^{2^k}\| = \|A\|^{2^k}.$$

Conversely, if $||A^{2^k}|| = ||A||^{2^k}$ for all $k \geq 1$, we have, $||A^{2^k}||^{1/2^k} = ||A||$, but since $\lim_k ||A^{2^k}||^{1/2^k} = \rho(A)$ and since $||\widehat{A}||_{sup} = \rho(A)$, we have,

$$||A^{2^k}|| = ||A||^{2^k} \implies ||\widehat{A}||_{sup} = ||A||.$$

Now for the case of commutative C^* -algebra \mathcal{A} , for any $B \in \mathcal{A}$, the element $A = B^*B$ is self-adjoint and hence,

$$||A^{2^k}|| = ||(A^{2^k-1})^*(A^{2^k-1})|| = ||A^{2^k-1}||^2.$$

So, we have $||A^{2^k}|| = ||A||^{2^k}$ and hence $||\widehat{A}||_{sup} = ||A||$. Since A is a C^* -algebra we also have, $||B^*B|| = ||B^2||$, so we have,

$$||B||^2 = ||A|| = ||\widehat{A}||_{sup} = ||\widehat{B}|^2||_{sup} = ||\widehat{B}||^2_{sup}.$$

 Γ is an isometry with closed, dense and injective range.

3 | Spectral Theorem

- $4 \mid \text{TLDR}$
- A | Alaoglu's theorem
- $\mathbf{B} \mid \mathbf{Stone\text{-}Weierstrass}$ Theorem

REFERENCES

 $[1]\ \ {\rm V}\ {\rm S}\ {\rm SUNDER},$ Functional Analysis: Spectral Theory, Birkhauser Advanced Texts, 1991