Question number	Scheme	Marks
6 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{x}}$	M1
	When $x = 9$ $\frac{dy}{dx} = \frac{2}{3}$	A1
	$y-12=\frac{2}{3}(x-9)$	M1
	When $y = 0$ $-12 = \frac{2}{3}(x-9)$	M1
	x = -9 So $(-9,0)$	A1 (5)
(b)	Gradient of Normal: $-\frac{3}{2}$	M1
	$y - 12 = -\frac{3}{2}(x - 9)$	M1
	When $y = 0$ $-12 = -\frac{3}{2}(x-9)$	M1
	x = 17 So $(17,0)$	A1 (4)
(c)	$\frac{1}{2} \times 12 \times 26 = 156$	M1 A1 (2)
Total 11 marks		

Part	Mark	Notes
(a)	M1	For an attempt to differentiate y wrt x. Accept $\frac{dy}{dx} = 2x^{-\frac{1}{2}}$
		Allow as a minimum $\frac{dy}{dx} = kx^{-\frac{1}{2}}$ where k is a constant $\neq 0$
	A1	For $\frac{dy}{dx} = \frac{2}{3}$
	M1	For a complete method to find the equation of a straight line. If they use $y = mx + c$ then they must reach a value for c for this mark.
		Accept the equation of the line with their value of $\frac{dy}{dx}$ using the given
		coordinates.
	M1	For substitution of $y = 0$ to find a value for x
	A1	For (-9,0)
(b)	M1	For gradient of Normal: $-\frac{3}{2}$
		Which is the negative reciprocal of their gradient obtained in (a)
	M1	For a complete method to find the equation of a straight line with a gradient
		of $-\frac{3}{2}$ (ft their gradient of normal)
		If they use $y = mx + c$ then they must reach a value for c for this mark.
	M1	For substitution of $y = 0$ to find a value for x
	A1	For (17,0)
(c)	M1	For any correct method for finding the area of a triangle.
		e.g.,
		1
		$A = \frac{1}{2} \times 12 \times ('17' - '-9') = 156$
		OR
		$A = \frac{1}{2} \begin{bmatrix} 9 & -9 & 17 & 9 \\ 12 & 0 & 0 & 12 \end{bmatrix} = \frac{1}{2} \left[(0 + 0 + 204) - (0 + 0 - 108) \right] = 156$
		77 456
	A1	For 156