Übungen zu Analysis 1, 4. Übung

1. Sei $\langle K, +, \cdot, P \rangle$ ein angeordneter Körper. Man bestimme die Menge aller $x \in K$ derart, dass

$$4|x| + |5 - 2x| \le 8.$$

- 2. Sei $\langle K, +, \cdot, P \rangle$ ein angeordneter Körper. Ist $M \subseteq K$ nach oben beschränkt und bezeichnet O die Menge aller oberen Schranken von M, so zeige man, dass $O \cap M = \emptyset$ oder $O \cap M = \{z\}$ und dass die zweite Möglichkeit genau dann eintritt, wenn M ein Maximum hat.
- 3. Zeigen Sie für eine Teilmenge M eines angeordneten Körpers K und $x \in K$, dass $\inf(\{x\} + M) = x + \inf M$ in dem Sinne, dass die linke Seite genau dann existiert, wenn die rechte es tut!

Unter der Zusätzlichen Voraussetzung x > 0 zeige man zudem, dass sup($\{x\}$ · M) = x · sup M wieder in dem Sinne, dass die linke Seite genau dann existiert, wenn die rechte es tut!

4. Sei $\langle K, +, \cdot, P \rangle$ ein archimedisch angeordneter Körper. Man bestimme das Supremum und Infimum der Menge

$$M = \left\{ (-1)^n + \frac{3}{n} : n \in \mathbb{N} \right\}.$$

5. Sei $\langle K, +, \cdot, P \rangle$ ein archimedisch angeordneter Körper. Man bestimme die Menge aller oberen Schranken und die Menge aller unteren Schranken der Teilmenge

$$M := \{(-1)^n - \frac{(-1)^n}{n} : n \in \mathbb{N}\} \cup [\frac{1}{2}, 1) \subseteq K.$$

Hat diese Menge ein Infimum bzw. ein Supremum in K? Falls ja, dann bestimme man diese und überprüfe, ob diese auch Minimum bzw. Maximum von M sind!

6. Sei $p(x) = a_k x^k + \cdots + a_0$ ein Polynom mit Koeffizienten a_j aus einem archimedisch angeordneten Körper K, wobei $a_k > 0$. Zeigen Sie, dass es ein $N \in \mathbb{N}$ derart gibt, dass p(n) > 0 für alle $n \ge N$, $n \in \mathbb{N}$.

Hinweis: Zeigen Sie, dass man $a_k = 1$ annehmen kann und schließe von $n > k \max(|a_{k-1}|, \ldots, |a_0|)$ auf p(n) > 0.

7. Sei $\langle K, +, \cdot, P \rangle$ ein archimedisch angeordneter Körper. Dieser enthält bekanntlich \mathbb{Q} – genauer, eine Kopie der rationalen Zahlen. Ist nun $\mathbb{Q} \subsetneq K$, so zeige man, dass es sogar ein $\eta \in K \setminus \mathbb{Q}$ gibt mit $0 < \eta < 1$.

Weiters zeige man, dass zwischen je zwei x < y aus K ein nicht rationales ξ mit $x < \xi < y$ gibt.

Hinweis: Zeigen Sie die letzte Behauptung zunächst für $x, y \in \mathbb{Q}$.

8. Man zeige für $x \in \mathbb{R}$, x > 0, und $r, s \in \mathbb{Q}$, dass $x^{-r} = \frac{1}{r^r}$, $x^r x^s = x^{r+s}$, $(x^r)^s = x^{rs}$.