AL310 AA16/17 (Teoria delle E	Equazioni)			ESA	ME .	DI FI	NES	$_{\rm EME}$	STRI	比	Roma, 21 Dicembre 2016
COGNOME	esercizi acco: ETTANO RI	mpag SPO	$\frac{1}{STE}$	o le ri	ispost TTE	se con SUA	spieg $LTRL$	gazior I <i>FOC</i>	ni chia GLI. S	are ed esse Scrivere il	enziali. Inserire le risposte negl proprio nome anche nell'ultima
	FIRMA	1	2	3	4	5	6	7	8	ТОТ.	

1. Rispondere alle seguenti domande fornendo una giustificazione di una riga:

a.	a. E' vero che	il campo di spezzament	to su \mathbf{F}_p di $f(X) \in \mathbf{F}_p[X]$ ha semp	ore $p^{\deg f}$ elementi?	

b. E' vero che per ogni $a \in \mathbf{Q}^*$, il grado $[\mathbf{Q}[a^{1/4}]: \mathbf{Q}] = 4$?

d. È vero che tutti i gruppi di Galois dei polinomi di grado 5 sono tutti sottogruppi di S_5 ?

2.	Fornire un esempio di u	ın polinomio irriducibile	di grado sei il cui gruppo d	li Galois è isomorfo a $S_3.$	
3.	Sia p un numero primo. η_H .	Sia $H \subset \operatorname{Gal}(\mathbf{Q}[\zeta_p]/\mathbf{Q})$	l'unico sottogruppo con $(p$ -	-1)/2 elementi. Si determin	ni il periodo di Gauss
3.	Sia p un numero primo. η_H .	Sia $H \subset \operatorname{Gal}(\mathbf{Q}[\zeta_p]/\mathbf{Q})$	l'unico sottogruppo con $(p$ -	-1)/2 elementi. Si determin	ni il periodo di Gauss
3.	Sia p un numero primo. η_H .	$\mathrm{Sia}\ H\subset\mathrm{Gal}(\mathbf{Q}[\zeta_p]/\mathbf{Q})$	l'unico sottogruppo con $(p$ -	- 1)/2 elementi. Si determir	ni il periodo di Gauss
3.	Sia p un numero primo. η_H .	Sia $H\subset \operatorname{Gal}(\mathbf{Q}[\zeta_p]/\mathbf{Q})$	l'unico sottogruppo con $(p$ -	-1)/2 elementi. Si determir	ni il periodo di Gauss

4. Dopo aver dimostrato che $X^2 + 3 \in \mathbf{F}_5[X]$ è irriducibile, si consideri $\mathbf{F}_{5^2} = \mathbf{F}_5[\alpha], \alpha^2 = 2$ e si determinino i generatori d $\mathbf{F}_5[\alpha]^*$.
5. Descrivere il reticolo dei sottocampi del campo ciclotomico $\mathbf{Q}[\zeta_{15}]$ menzionando i ciascun caso i generatori.

6. Si enunci nella completa generalità il Teorema di corrispondenza di Galois.
7. Dopo aver enunciato il Teorema dell'elemento primitivo, si consideri $E = \mathbf{Q}[\sqrt{3}, \sqrt{-2}, \sqrt{-6}]$. Determinare un elemento primitivo $\gamma \in E$ su \mathbf{Q} e scriverne il polinomio minimo su \mathbf{Q} . Descrivere inoltre tutti i sottocampi di E .
8. Determinare un numero algebrico il cui polinomio minimo sui razionali ha un gruppo di Galois isomorfo a C_{24} .