ADVANCED ANALYSIS OF ALGORITHMS CPS 5440

- It is used, when the solution can be recursively described in terms of solutions to subproblems (optimal substructure)
- Finds solutions to subproblems and stores them in memory for later use
- More efficient than "brute-force methods", which solve the same subproblems repeatedly

- DP is a method for solving certain kinds of problems
- DP can be applied when the solution of a problem includes solutions to subproblems
- We need to find a recursive formula for the solution
- We can recursively solve subproblems,
 Starting from the trivial case, and saving their solutions in memory
- In the end, we'll get the solution to the whole problem

□ Properties of a problem that can be solved with dynamic programming

- Simple Subproblems
 - Break the original problem into smaller subproblems that have the same structure
- Optimal Substructure
 - The solution to the problem must be a composition of subproblem solutions
- Subproblems Overlap
 - Optimal subproblems to unrelated problems can contain subproblems in common

☐ General Strategy of Dynamic Programming

- 1. Structure:
 - What's the structure of an optimal solution in terms of solutions to its subproblems?
- 2. Recursion:
 - Give a recursive definition of an optimal solution in terms of optimal solutions to smaller problems
- 3. Memory:
 - Use a data structure (often a table) to store smaller solutions The optimal value found in the table
- 4. Reconstruction:
 - Reconstruct the optimal solution what produced the optimal value

LONGEST COMMON SUBSEQUENCE (LCS)

Application: comparison of two DNA strings

- Example: X = ABCBDAB and Y = BDCABA,
 - BCA is a common subsequence and
 - BCBA and BDAB are two LCSs

LCS: BRUTE FORCE ALGORITHM

- **Solution:** For every subsequence of X, check whether it is a subsequence of Y, and record it if it is longer than the longest previously found.
- |X| = m, |Y| = n
- Analysis:
 - There are 2^m subsequences of X to check.
 - For each subsequence, scan *Y* for the first letter. From there scan for the second letter, etc., up to the *n* letters of *Y*.
 - Each check takes $\theta(n)$ time
 - The worst-case running time is $\theta(n*2^m)$. exponential time complexity !!!

LCS: BRUTE FORCE ALGORITHM | EXAMPLE

$$X = ABCB$$
 $Y = ABDC$

• Enumerate all subsequence of *X*

	Subsequence		Subsequence
0000	""	1000	A
0001	В	1001	AB
0010	С	1010	AC
0011	СВ	1011	ACB
0 1 0 0	В	1100	AB
0 1 0 1	BB	1101	ABB
0110	ВС	1110	ABC
0 1 1 1	ВСВ	1111	ABCB

LCS: BRUTE FORCE ALGORITHM | EXAMPLE

$$X = ABCB$$
 $Y = ABDC$

• Check if each subsequence of *X* exists in *Y*

Subsequence	Exists?	Subsequence	Exists?
(6)	F	A	T
В	Т	AB	Т
С	Т	AC	Т
СВ	F	ACB	F
В	Т	AB	T
BB	F	ABB	F
ВС	Т	ABC	Т
ВСВ	F	ABCB	F

LCS: BRUTE FORCE ALGORITHM | EXAMPLE

$$X = ABCB$$
 $Y = ABDC$

Select the existing subsequence with the maximum length (Multiple optimal solutions may exist)

Subsequence	Exists?	Subsequence	Exists?
(6))	F	A	Т
В	Т	AB	Т
С	Т	AC	Т
СВ	F	ACB	F
В	Т	AB	Т
BB	F	ABB	F
ВС	Т	ABC	Т
BCB	F	ABCB	F

- Let X_i denote the i-th prefix x[1..i] of x[1..m], and
- $\blacksquare X_0$ denotes an empty prefix
- We will first compute the *length of an LCS of* X_m *and* Y_n , *LenLCS* (m, n), and then use information saved during the computation for finding the actual subsequence
- We need a recursive formula for computing LenLCS(i, j).

If X_i and Y_j end with the same character x_i = y_j,
 the LCS must include the character.
 If it did not,
 we could get a longer LCS by adding the common character.

- If X_i and Y_j do not end with the same character, there are two possibilities:
 - Either the LCS does not end with x_i
 - Or it does not end with y_i
- Let Z_k denote an LCS of X_i and Y_j

 X_i and Y_j end with $x_i = y_j$

$$X_i \left[x_1 \ x_2 \cdots x_{i-1} \right] x_i$$

$$Y_j y_1 y_2 \cdots y_{j-1} y_j$$

$$Z_k$$
 is Z_{k-1} followed by $Z_k = y_j = x_i$ where

$$Z_{k-1}$$
 is an LCS of X_{i-1} and Y_{j-1} and

$$LenLCS(i,j) = LenLCS(i-1,j-1) + 1$$

 X_i and Y_j end with $x_i = y_j$

$$X_i ABCD$$

$$Y_j y_1 y_2 \cdots y_{j-1} y_j$$

$$Y_{j} A C B D$$

$$Z_k A C D$$

 Z_k is Z_{k-1} followed by $Z_k = y_j = x_i$ where

 Z_{k-1} is an LCS of X_{i-1} and Y_{j-1} and

$$LenLCS(i,j) = LenLCS(i-1,j-1) + 1$$

 X_i and Y_j end with $x_i \neq y_j$

$$X_i x_1 x_2 \cdots x_{i-1} x_i$$

$$Y_j y_1 y_2 \cdots y_{j-1} y_j$$

$$Z_k \begin{bmatrix} z_1 z_2 \cdots z_{k-1} & z_k \neq y_j \end{bmatrix}$$

$$Z_k$$
 is an LCS of X_i and Y_{j-1}

$$X_i \quad x_1 \quad x_2 \cdots x_{i-1} x_i$$

$$Y_j y_1 \cdots y_{j-1} y_j$$

$$\boldsymbol{Z}_{k} \left[\boldsymbol{z}_{1} \, \boldsymbol{z}_{2} \cdots \boldsymbol{z}_{k-1} \, \middle| \, \boldsymbol{z}_{k} \neq \boldsymbol{x}_{i} \, \right]$$

$$Z_k$$
 is an LCS of X_{i-1} and Y_j

$$LenLCS(i,j) = \max\{LenLCS(i,j-1), LenLCS(i-1,j)\}$$

 X_i and Y_j end with $x_i \neq y_j$

 $LenLCS(i,j) = \max\{LenLCS(i,j-1), LenLCS(i-1,j)\}$

□The recurrence equations

$$lenLCS(i,j) = \begin{cases} 0 & if \ i = 0, or \ j = 0 \\ lenLCS(i-1,j-1) + 1 & if \ i,j > 0 \ and \ x_i = y_j \\ \max\{lenLCS(i-1,j), lenLCS(i,j-1)\} & otherwise \end{cases}$$

LCS RECURSIVE ALGORITHMS | EXAMPLE

LCS RECURSIVE ALGORITHMS | EXAMPLE

LCS DYNAMIC PROGRAMMING TOP DOWN

- Store the solutions of subproblems in a look-up table
- Check if the subproblem has already been solved
- If so, retrieve the solution from the table
 - Do not recompute the same subproblem multiple times
- If not, compute the subproblem and update the table

LCS DYNAMIC PROGRAMMING FRAMEWORKS

- Top-Down DP
 - Recursive Algorithm + Explicit memo (i.e., lock-up) table

- Bottom-Up DP
 - Iterative Algorithm + Implicit memo (i.e., lock-up) table

LCS LENGTH ALGORITHM | BOTTOM UP

```
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y_0
4. for j = 1 to n c[0,j] = 0 // special case: X_0
5. for i = 1 to m // for all X_i
  6. for j = 1 to n // for all Y_i
  7. if (X_i == Y_i)
  8.
     c[i,j] = c[i-1,j-1] + 1
       else c[i,j] = max(c[i-1,j], c[i,j-1])
10. return c[m,n] // return LCS length for X and Y
```

We'll see how LCS algorithm works on the following example:

- $\mathbf{X} = \mathbf{ABCB}$
- $\mathbf{Y} = \mathbf{BDCAB}$
- What is the Longest Common Subsequence of X and Y?
- \blacksquare LCS(X, Y) = BCB

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c[5,4]

LCS EXAMPLE (0)

ABCB BDCAB

LCS-Length(X, Y)

1. m = length(X) // get the # of symbols in X

2. n = length(Y) // get the # of symbols in Y

3. for i = 1 to m c[i,0] = 0 // special case: Y_0

4. for j = 1 to n c[0,j] = 0 // special case: X_0

5. for i = 1 to m // for all X_i

6. for j = 1 to n // for all Y_i

7. if $(X_i = Y_i)$

8. c[i,j] = c[i-1,j-1] + 1

9. else c[i,j] = max(c[i-1,j], c[i,j-1])

10. return c[m,n] // return LCS length for X and Y

	j	0	1	2	3	4	5	n
i		Yj	В	D	C	A	В	_
0	Xi	0	0	0	0	0	0	
1	A	0						
2	В	0						
3	C	0						
4	В	0						
m								

for i = 1 to m c[i,0] = 0

for j = 1 to n c[0,j] = 0

LCS EXAMPLE (I)

ABCB BDCAB

LCS-Length(X, Y)

1. m = length(X) // get the # of symbols in X

2. n = length(Y) // get the # of symbols in Y

3. for i = 1 to m c[i,0] = 0 // special case: Y_0

4. for j = 1 to n c[0,j] = 0 // special case: X_0

5. for i = 1 to m // for all X_i

6. for j = 1 to n // for all Y_i

7. if $(X_i = Y_i)$

8. c[i,j] = c[i-1,j-1] + 1

9. else c[i,j] = max(c[i-1,j], c[i,j-1])

10. return c[m,n] // return LCS length for X and Y

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS EXAMPLE (3)

ABCB BDCAB

```
LCS-Length(X, Y)

1. m = length(X) // get the # of symbols in X

2. n = length(Y) // get the # of symbols in Y

3. for i = 1 to m  c[i,0] = 0 // special case: Y_0

4. for j = 1 to n  c[0,j] = 0 // special case: X_0

5. for i = 1 to m // for all X_i

6. for j = 1 to n // for all Y_j

7. if (X_i == Y_j)

8. c[i,j] = c[i-1,j-1] + 1

9. else c[i,j] = max(c[i-1,j],c[i,j-1])
```

10. return c[m,n] // return LCS length for X and Y

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS EXAMPLE (4)

ABCB BDCAB

```
    m = length(X) // get the # of symbols in X
    n = length(Y) // get the # of symbols in Y
    for i = 1 to m c[i,0] = 0 // special case: Y<sub>0</sub>
    for j = 1 to n c[0,j] = 0 // special case: X<sub>0</sub>
    for i = 1 to m // for all X<sub>i</sub>
    for j = 1 to n // for all Y<sub>i</sub>
    if (X<sub>i</sub> == Y<sub>i</sub>)
```

8.
$$c[i,j] = c[i-1,j-1] + 1$$

LCS-Length(X, Y)

9. else
$$c[i,j] = max(c[i-1,j], c[i,j-1])$$

10. return c[m,n] // return LCS length for X and Y

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS EXAMPLE (5)

```
LCS-Length(X, Y)

1. m = length(X) // get the # of symbols in X

2. n = length(Y) // get the # of symbols in Y

3. for i = 1 to m  c[i,0] = 0 // special case: Y_0

4. for j = 1 to n  c[0,j] = 0 // special case: X_0

5. for i = 1 to m // for all X_i

6. for j = 1 to n // for all Y_j

7. if (X_i == Y_j)

8. c[i,j] = c[i-1,j-1] + 1

9. else c[i,j] = max(c[i-1,j],c[i,j-1])

10. return c[m,n] // return LCS length for X and Y
```


if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS EXAMPLE (6)

```
LCS-Length(X, Y)
```

- 1. m = length(X) // get the # of symbols in X
- 2. n = length(Y) // get the # of symbols in Y
- 3. for i = 1 to m c[i,0] = 0 // special case: Y_0
- 4. for j = 1 to n c[0,j] = 0 // special case: X_0
- 5. for i = 1 to m // for all X_i
 - 6. for j = 1 to n // for all Y_i
- 7. if $(X_i = Y_i)$
- 8. c[i,j] = c[i-1,j-1] + 1
- 9. else c[i,j] = max(c[i-1,j], c[i,j-1])
- 10. return c[m,n] // return LCS length for X and Y

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS EXAMPLE (7)

ABCB BDCAB

```
    m = length(X) // get the # of symbols in X
    n = length(Y) // get the # of symbols in Y
    for i = 1 to m c[i,0] = 0 // special case: Y<sub>0</sub>
    for j = 1 to n c[0,j] = 0 // special case: X<sub>0</sub>
    for i = 1 to m // for all X<sub>i</sub>
    for j = 1 to n // for all Y<sub>i</sub>
    if (X<sub>i</sub> == Y<sub>i</sub>)
```

c[i,j] = c[i-1,j-1] + 1

LCS-Length(X, Y)

else c[i,j] = max(c[i-1,j], c[i,j-1])

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS EXAMPLE (8)

ABCB BDCAB

```
1. m = length(X) // get the # of symbols in X

2. n = length(Y) // get the # of symbols in Y

3. for i = 1 to m  c[i,0] = 0 // special case: Y_0

4. for j = 1 to n  c[0,j] = 0 // special case: X_0

5. for i = 1 to m // for all X_i

6. for j = 1 to n // for all Y_j

7. if (X_i == Y_j)
```

8. c[i,j] = c[i-1,j-1] + 1

LCS-Length(X, Y)

- 9. else c[i,j] = max(c[i-1,j],c[i,j-1])
- 10. return c[m,n] // return LCS length for X and Y

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS EXAMPLE (10)

```
LCS-Length(X, Y)
```

- 1. m = length(X) // get the # of symbols in X
- 2. n = length(Y) // get the # of symbols in Y
- 3. for i = 1 to m c[i,0] = 0 // special case: Y_0
- 4. for j = 1 to n c[0,j] = 0 // special case: X_0
- 5. for i = 1 to m // for all X_i
 - 6. for j = 1 to n // for all Y_j
- 7. if $(X_i = Y_i)$
- 8. c[i,j] = c[i-1,j-1] + 1
- 9. else c[i,j] = max(c[i-1,j], c[i,j-1])
- 10. return c[m,n] // return LCS length for X and Y

	j	0	1	2	3	4	5
i		Yj	B	D	(C)	A	B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	\bigcirc	0	1	1	2		
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS EXAMPLE (11)

```
LCS-Length(X, Y)
```

- 1. m = length(X) // get the # of symbols in X
- 2. n = length(Y) // get the # of symbols in Y
- 3. for i = 1 to m c[i,0] = 0 // special case: Y_0
- 4. for j = 1 to n c[0,j] = 0 // special case: X_0
- 5. for i = 1 to m // for all X_i
 - 6. for j = 1 to n // for all Y_j
- 7. if $(X_i = Y_i)$
- 8. $c[\underline{i},\underline{j}] = c[\underline{i}-1,\underline{j}-1] + 1$
- 9. else $c[\underline{i},\underline{j}] = \max(c[\underline{i}-1,\underline{j}],c[\underline{i},\underline{j}-1])$
- 10. return c[m,n] // return LCS length for X and Y

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS EXAMPLE (12)

```
LCS-Length(X, Y)
```

- 1. m = length(X) // get the # of symbols in X
- 2. n = length(Y) // get the # of symbols in Y
- 3. for i = 1 to m c[i,0] = 0 // special case: Y_0
- 4. for j = 1 to n c[0,j] = 0 // special case: X_0
- 5. for i = 1 to m // for all X_i
 - 6. for j = 1 to n // for all Y_i
- 7. if $(X_i = Y_i)$
- 8. c[i,j] = c[i-1,j-1] + 1
- 9. else c[i,j] = max(c[i-1,j], c[i,j-1])
- 10. return c[m,n] // return LCS length for X and Y

LCS EXAMPLE

	j	0	1	2	3	4	5
i		Yj	B	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2	2
4	B	0	1				

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS EXAMPLE (13)

ABCB BDCAB

```
LCS-Length(X, Y)
```

- 1. m = length(X) // get the # of symbols in X
- 2. n = length(Y) // get the # of symbols in Y
- 3. for i = 1 to m c[i,0] = 0 // special case: Y_0
- 4. for j = 1 to n c[0,j] = 0 // special case: X_0
- 5. for i = 1 to m // for all X_i
 - 6. for j = 1 to n // for all Y_j
 - 7. if $(X_i = Y_i)$
 - 8. c[i,j] = c[i-1,j-1] + 1
 - 9. else c[i,j] = max(c[i-1,j], c[i,j-1])
- 10. return c[m,n] // return LCS length for X and Y

LCS EXAMPLE

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS EXAMPLE (14)

ABCB BDCAB

```
LCS-Length(X, Y)

1. m = length(X) // get the # of symbols in X

2. n = length(Y) // get the # of symbols in Y

3. for i = 1 to m  c[i,0] = 0 // special case: Y_0

4. for j = 1 to n  c[0,j] = 0 // special case: X_0

5. for i = 1 to m // for all X_i

6. for j = 1 to n // for all Y_j

7. if (X_i == Y_j)

8. c[i,j] = c[i-1,j-1] + 1

9. else c[i,j] = max(c[i-1,j],c[i,j-1])
```

10. return c[m,n] // return LCS length for X and Y

LCS EXAMPLE

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2 🔨	2
4	B	0	1	1	2	2	3

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB BDCAB

LCS EXAMPLE (15)

```
LCS-Length(X, Y)
```

- 1. m = length(X) // get the # of symbols in X
- 2. n = length(Y) // get the # of symbols in Y
- 3. for i = 1 to m c[i,0] = 0 // special case: Y_0
- 4. for j = 1 to n c[0,j] = 0 // special case: X_0
- 5. for i = 1 to m // for all X_i
 - 6. for j = 1 to n // for all Y_j
- 7. if $(X_i = Y_i)$
- 8. $c[\underline{i},\underline{j}] = c[\underline{i}-1,\underline{j}-1] + 1$
- 9. else c[i,j] = max(c[i-1,j], c[i,j-1])
- 10. return c[m,n] // return LCS length for X and Y

LCS ALGORITHM RUNNING TIME

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

- O(m*n)
- Since each c[i,j] is calculated in constant time, and there are $m \ast n$ elements in the array

HOW TO FIND ACTUAL LCS

- So far, we have just found the *length* of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y

Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1,j-1]

For each c[i,j] we can say how it was acquired:

HOW TO FIND ACTUAL LCS

Remember that

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- So, we can start from c[m,n] and go backwards
- Look first to see if 2nd case above was true
- If not, then c[i,j] = c[i-1, j-1]+1, so remember x[i] (because x[i] is a part of LCS)
- When i=0 or j=0 (i.e., we reached the beginning), output remembered letters in reverse order

HOW TO FIND ACTUAL LCS

Here's a recursive algorithm to do this:

```
LCS_print(x, m, n, c) {
  if (c[m][n] == c[m-1][n]) // go up?
    LCS_print(x, m-1, n, c);
  else if (c[m][n] == c[m][n-1] // go left?
    LCS_print(x, m, n-1, c);
  else { // it was a match!
    LCS_print(x, m-1, n-1, c);
    print(x[m]); // print after recursive call
```

FINDING LCS

FINDING LCS

LCS (reversed order): B C B

LCS (straight order): **B C B** (this string turned out to be a palindrome ©)

Longest Common Subsequence ⇒ Longest Common Substring

LONGEST COMMON SUBSTRING

- Given two strings, the task is to find the Longest Common Substring present in the given strings in the same order.
- The substring is a contiguous sequence of characters within a string.
- For example, "bit" is a substring of the string "Interviewbit".

Example:

Input s1: "dadef" s2: "adwce"

Output: 2

Explanation: Substring "ad" of length 2

is the longest.

Input s1: "abcdxyz"

s2: "xyzabcd"

Output: 4

Explanation: Substring "abcd" of length 4 is the

longest.

LCS WRITING THE RECURRENCE EQUATION

□The recurrence equations

$$lenLCS(i,j) = \begin{cases} 0 & if \ i = 0, or \ j = 0 \\ lenLCS(i-1,j-1) + 1 & if \ i,j > 0 \ and \ x_i = y_j \\ \frac{max\{lenLCS(i-1,j), lenLCS(i,j-1)\}}{max\{lenLCS(i,j-1,j), lenLCS(i,j-1)\}} \end{cases} o therwise$$

LCS LENGTH ALGORITHM | BOTTOM UP

```
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y_0
4. for j = 1 to n c[0,j] = 0 // special case: X_0
5. for i = 1 to m // for all X_i
  6. for j = 1 to n // for all Y_i
  7. if (X_i == Y_i)
  8.
     c[i,j] = c[i-1,j-1] + 1
       else c[i,j] = max(c[i-1,j],c[i,j-1])
10. return c[m,n] // return LCS length for X and Y
```

LCS LENGTH ALGORITHM | BOTTOM UP

Consider the below example –

str1 = "ABCXYZAY"

str2 =" "XYZABCB"

The longest common substring is "XYZA", which is of length 4.

		Α	В	С	X	Υ	Z	A	Υ
	0	0	0	0	0	0	0	0	0
X	0	0	0	0	1	0	0	0	0
) Y [0	0	0	0	0	2	0	0	1
z	0	0	0	0	0	0	3	0	0
A	0	1	0	0	0	0	0	4	0
В	0	0	2	0	0	0	0	0	0
С	0	0	0	3	0	0	0	0	0
В	0	0	1	0	0	0	0	0	0

IMPLEMENTATION

- 1. Longest Common Subsequence
- 2. Longest Common Substring

QUESTIONS/ANSWERS

LCS | OPTIMAL SUBSTRUCTURE PROOF OF LCS

- □ Often when solving a problem, we start with what is known and then figure out how to construct a solution.
- \square The optimal substructure analysis takes the reverse strategy: assume you have found an optional solution (Z below) and figure out what you must have done to get it!

\square *Notation:*

- $X_i = prefix \langle x_1, ..., x_i \rangle$
- $Y_i = prefix \langle y_1, ..., y_i \rangle$

☐ Theorem:

Let $Z = \langle z_1, ..., z_k \rangle$ be any LCS of $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$. Then

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$, and Z_{k-1} is an LCS of X_{m-1} and Y_{m-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m \Rightarrow Z$ is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n \Rightarrow Z$ is an LCS of X and Y_{n-1} .

LCS | OPTIMAL SUBSTRUCTURE PROOF OF LCS

□ *Sketch of proofs*:

 \triangleright (1) can be proven by contradiction:

If $z_k \neq x_m$, then we could append $x_m = y_n$ to Z to obtain a common subsequence of X and Y of length k+1, contradicting the supposition that Z is a longest common subsequence of X and Y.

Thus, we must have $z_k = x_m = y_n$.

Now, the prefix Z_{k-1} is a length-(k-1) common subsequence of X_{m-1} and Y_{m-1} . We wish to show that it is an LCS.

Suppose for the purpose of contradiction that there is a common subsequence W of X_{m-1} and Y_{n-1} with length greater than k-1. Then, appending $x_m=y_n$ to W produces a common subsequence of X and Y whose length is greater than k, which is a contradiction.

LCS | OPTIMAL SUBSTRUCTURE PROOF OF LCS

- □ Sketch of proofs (cont.):
- \triangleright (2) and (3) have symmetric proofs: Suppose there exists a subsequence W of X_{m-1} and Y (or of X and Y_{n-1}) with length > k. Then W is a common subsequence of X and Y, contradicting Z being an LCS.
- Therefore, an LCS of two sequences contains as prefix an LCS of prefixes of the sequences. We can now use this fact construct a recursive formula for the value of an LCS.