Raport z Symulacji Urn

Jan Ryszkiewicz

Opis wyników

Wramach zadania przeprowadziłem symulację wrzucana kul do n
 urn po50razy śledząc następujące informacje:

- B moment pierwszej kolizji,
- C minimalna liczba rzutów, po której w kazdej z urn jest co najmniej jedna kula,
- D minimalna liczba rzutów, po której w kazdej z urn są co najmniej dwie kule,
- \bullet *U* liczba pustych urn po wrzuceniu n kul.
- D-C liczba rzutów od momentu C
n potrzebna do tego, zeby w każdej urnie były conajmniej dwie kule.

Na wykresach (pliki .png w folderze /plots) przedstawiam wyniki pojedynczych symulacji oraz ich średnie wartości dla danych n.

Wnioski na temat wartości śledzonych danych

- B warto zauważyć, że pierwsza kolizja ma mniejsce bardzo szybko
- \bullet C bardzo duże wartości w stosunku do n, odchylenie rośnie wraz z n
- D podobnie do C(n)
- \bullet U rośnie stale liniowo, odhylenie od średniej jest minimalne
- \bullet D-C bardzo chaotyczne wyniki, średnia wizualizuje ogólną tendencję

Wnioski na temat asymptotyki

- $\frac{b(n)}{n}$ zbiega do 0
- $\frac{b(n)}{\sqrt{n}}$ wydaje się oscylować wokół 1 czyli te funkcje uzyskują podobne wartości
- $\frac{u(n)}{n}$ między 0.365 a 0.370, tak samo jak poprzednia, wydaje się stałą więc asymptotycznie funkcje są równe
- $\frac{c(n)}{n}$ wydaje się rosnąć, kształt przypomina \sqrt{x} , możliwe że c(n) jest podobna do n \sqrt{n}
- $\frac{c(n)}{n^2}$ zbiega do 0
- $\frac{c(n)}{n\ln{(n)}}$ oscyluje nieco powyżej 1 co sugeruje asymptotyczną równość
- $\frac{d(n)}{n}$ wydaje się rosnąć, kształt przypomina \sqrt{x} , możliwe że d(n) jest podobna do n \sqrt{n}
- $\frac{d(n)}{n^2}$ zbiega do 0
- $\frac{d(n)}{n\ln{(n)}}$ wydaje się bardzo powolnie zbiegać do 0, ciężko określić

- $\frac{d(n)-c(n)}{n}$ oscyluje nieco powyżej 2 wydaje się stałą więc prawdopodobnie asymptotycznie funkcje są równe
- $\frac{d(n)-c(n)}{n\ln{(n)}}$ wydaje się bardzo powolnie zbiegać do 0, ciężko określić
- $\frac{d(n)-c(n)}{n\ln\ln(n)}$ funkcje są sobie równe, iloraz jest asymptotycznie = 1

Birthday paradox oraz coupon collector's problem

0.1 Użycie nazw

- Paradoks urodzinowy jak szybko dojdziemy do kolizji (ten sam dzień urodzin) w pewnej grupie ludzi jest dobrym obrazem prezentowanych danych, szansa na kolizję rośnie znacznie szybciej niż mogłoby się wydawać stąd nazwa "paradoks"
- Problem zbieracza kuponów załóżmy że mamy do zebrania 10 kuponów i w każdej paczce jest losowy kupon, jeżeli chcemy zebrać wszystkie kupony to musimy średnio otworzyć własnie taką liczbę paczek, stąd nazwa.

0.2 Birthday paradox a funkcje hashujące

"Birthday paradox" pokazuje jak łatwo może dojść do kolizji w funkcji hashującej. Sam paradoks mówi że jeśli w pokoju znajdują się 23 osoby to szansa na to że mają urodziny tego samego dnia wynosi >50% co pokazuje jak szybko wbrew intuicji szansa na kolizję (tutaj daty urodzin) wzrasta.

Jan Ryszkiewicz