Homework of Machine Learning Techniques: Quiz 4

Neural Network and Deep Learning

1. A fully connected Neural Network has L=2; $d^{(0)}=5,$ $d^{(1)}=3,$ $d^{(2)}=1.$ If only products of the form $w_{ij}^{(\ell)}x_i^{(\ell-1)},$ $w_{ij}^{(\ell+1)}\delta_j^{(\ell+1)},$ and $x_i^{(\ell-1)}\delta_j^{(\ell)}$ count as operations (even for $x_0^{(\ell-1)}=1$), without counting anything else, which of the following is the total number of operations required in a single iteration of backpropagation (using SGD on one data point)? \bigcirc 47 \bigcirc 43 \bigcirc 53 \bigcirc 59 none of the other choices 2. Consider a Neural Network without any bias terms $x_0^{(\ell)}$. Assume that the network contains $d^{(0)} = 10$ input units, 1 output unit, and 36 hidden units. The hidden units can be arranged in any number of layers $\ell = 1, \dots, L-1$, and each layer is fully connected to the layer above it. What is the minimum possible number of weights that such a network can have? \bigcirc 46 \bigcirc 44 one of the other choices \bigcirc 43 \bigcirc 45 3. Following Question 2, what is the maximum possible number of weights that such a network can have? \bigcirc 510 \bigcirc 520 none of the other choices \bigcirc 500 \bigcirc 490

Autoencoder

4. Assume an autoencoder with $\tilde{d}=1$. That is, the $d\times \tilde{d}$ weight matrix W becomes a $d\times 1$ weight vector \mathbf{w} , and the linear autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2.$$

We can solve this problem with stochastic gradient descent by defining

$$\operatorname{err}_n(\mathbf{w}) = \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2$$

and calculate $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$. What is $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$?

- $\bigcirc (4\mathbf{x}_n 4)(\mathbf{w}^T\mathbf{w})$
- O none of the other choices
- $\bigcirc (4\mathbf{w} 4)(\mathbf{x}_n^T \mathbf{x}_n)$
- $\bigcirc 2(\mathbf{x}_n^T \mathbf{w})^2 \mathbf{w} + 2(\mathbf{x}_n^T \mathbf{w})(\mathbf{w}^T \mathbf{w})$
- $\bigcirc 2(\mathbf{x}_n^T \mathbf{w})^2 \mathbf{x}_n + 2(\mathbf{x}_n^T \mathbf{w})(\mathbf{w}^T \mathbf{w}) \mathbf{w} 4(\mathbf{x}_n^T \mathbf{w}) \mathbf{w}$
- 5. Following Question 4, assume that noise vectors $\boldsymbol{\epsilon}_n$ are generated i.i.d. from a zero-mean, unit variance Gaussian distribution and added to \mathbf{x}_n to make $\tilde{\mathbf{x}}_n = \mathbf{x}_n + \boldsymbol{\epsilon}_n$, a noisy version of \mathbf{x}_n . Then, the linear denoising autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T(\mathbf{x}_n + \boldsymbol{\epsilon}_n)\|^2$$

For any fixed \mathbf{w} , what is $\mathcal{E}(E_{in}(\mathbf{w}))$, where the expectation \mathcal{E} is taken over the noise generation process?

- $\bigcirc \ \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n \mathbf{w}\mathbf{w}^{T^2}\mathbf{x}_n\|^2$
- $\bigcirc \ \ \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \mathbf{w} \mathbf{w}^T \mathbf{x}_n^2 + d(\mathbf{w}^T \mathbf{w})^2$
- \bigcirc none of the other choices
- $\bigcirc \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n \mathbf{w} \mathbf{w}^T \mathbf{x}_n\|^2 + (\mathbf{w}^T \mathbf{w})^2$
- $\bigcirc \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n \mathbf{w} \mathbf{w}^T \mathbf{x}_n\|^2 + \frac{1}{d} (\mathbf{w}^T \mathbf{w})^2$

Nearest Neighbor and RBF Network

- 6. Consider getting the 1 Nearest Neighbor hypothesis from a data set of two examples $(\mathbf{x}_+, +1)$ and $(\mathbf{x}_-, -1)$. Which of the following linear hypothesis $g_{LIN}(\mathbf{x}) = \text{sign}(\mathbf{w}^T\mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to the hypothesis?
 - \bigcirc none of the other choices
 - \bigcirc $\mathbf{w} = 2(\mathbf{x}_{+} \mathbf{x}_{-}), b = +\mathbf{x}_{+}^{T}\mathbf{x}_{-}$
 - \bigcirc **w** = 2(**x**₋ **x**₊), b = +||**x**₊||² ||**x**₋||²
 - \bigcirc $\mathbf{w} = 2(\mathbf{x}_{-} \mathbf{x}_{+}), b = -\mathbf{x}_{+}^{T}\mathbf{x}_{-}$
 - $\bigcirc \mathbf{w} = 2(\mathbf{x}_{+} \mathbf{x}_{-}), b = -\|\mathbf{x}_{+}\|^{2} + \|\mathbf{x}_{-}\|^{2}$
- 7. Consider an RBF Network hypothesis for binary classification

$$g_{RBFNET}(\mathbf{x}) = \text{sign} \left(\beta_{+} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{+}\|^{2}) + \beta_{-} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{-}\|^{2}) \right)$$

and assume that $\beta_+ > 0 > \beta_-$. Which of the following linear hypothesis $g_{LIN}(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to $g_{RBFNET}(\mathbf{x})$?

- $\bigcirc \mathbf{w} = 2(\boldsymbol{\mu}_{+} \boldsymbol{\mu}_{-}), b = \ln \left| \frac{\beta_{+}}{\beta_{-}} \right| \|\boldsymbol{\mu}_{+}\|^{2} + \|\boldsymbol{\mu}_{-}\|^{2}$
- $\bigcirc \mathbf{w} = 2(\mu_{-} \mu_{+}), b = \ln \left| \frac{\beta_{-}}{\beta_{+}} \right| + \|\mu_{+}\|^{2} \|\mu_{-}\|^{2}$
- $\bigcirc \mathbf{w} = 2(\beta_{+}\boldsymbol{\mu}_{+} + \beta_{-}\boldsymbol{\mu}_{-}), b = -\beta_{+}\|\boldsymbol{\mu}_{+}\|^{2} + \beta_{-}\|\boldsymbol{\mu}_{-}\|^{2}$

	$\bigcirc \mathbf{w} = 2(\beta_{+}\boldsymbol{\mu}_{+} + \beta_{-}\boldsymbol{\mu}_{-}), \ b = +\beta_{+}\ \boldsymbol{\mu}_{+}\ ^{2} - \beta_{-}\ \boldsymbol{\mu}_{-}\ ^{2}$ $\bigcirc \text{ none of the other choices}$
8.	Assume that a full RBF network (page 9 of class 214) using RBF($\mathbf{x}, \boldsymbol{\mu}$) = [[$\mathbf{x} = \boldsymbol{\mu}$]] is solved for squared error regression on a data set where all inputs \mathbf{x}_n are different. What are the optimal coefficients β_n for each RBF(\mathbf{x}, \mathbf{x}_n)?
	$\bigcirc y_n$
	$\bigcirc \ \mathbf{x}_n\ ^2 y_n^2$ $\bigcirc \text{ none of the other choices}$
	\bigcirc hole of the other choices \bigcirc $\ \mathbf{x}_n\ y_n$
	$\bigcirc y_n^2$
	Matrix Factorization
9.	Consider matrix factorization of $\tilde{d}=1$ with alternating least squares. Assume that the $\tilde{d}\times N$ user factor matrix V is initialized to a constant matrix of 1. After step 2.1 of alternating least squares (page 10 of lecture 215), what is the optimal w_m , the $\tilde{d}\times 1$ movie 'vector' for the m-th movie?
	\bigcirc the average rating of the m -th movie
	\bigcirc the total rating of the <i>m</i> -th movie
	\bigcirc the maximum rating of the m -th movie
	\bigcirc the minimum rating of the m -th movie
	one of the other choices
10.	Assume that for a full rating matrix R, we have obtained a perfect matrix factorization $R = V^T W$. That is, $r_{nm} = \mathbf{v}_n^T \mathbf{w}_m$ for all n,m . Then, a new user $(N+1)$ comes. Because we do not have any information for the type of the movie she likes, we initialize her feature vector \mathbf{v}_{N+1} to $\frac{1}{N} \sum_{n=1}^{N} \mathbf{v}_n$ the average user feature vector. Now, our system decides to recommend her a movie m with the maximum predicted score $\mathbf{v}_{N+1}^T \mathbf{w}_m$. What would the movie be?
	○ the movie with the largest maximum rating
	one of the other choices
	the movie with the smallest rating variance
	○ the movie with the largest minimum rating
	○ the movie with the largest average rating
	Experiment with Backprop neural Network
11	Implement the backpropagation algorithm (page 16 of lecture 212) for d - M -1 neural network with
11.	tanh-type neurons, including the output neuron . Use the squared error measure between the
	output $g_{NNET}(\mathbf{x}_n)$ and the desired y_n and backprop to calculate the per-example gradient. Because
	of the different output neuron, your $\delta_1^{(L)}$ would be different from the course slides! Run the algorithm on the following set for training (each row represents a pair of (\mathbf{x}_n, y_n) ; the first column is $(\mathbf{x}_n)_1$; the second one is $(\mathbf{x}_n)_2$; the third one is y_n):
	hw4_nnet_train.dat
	and the following set for testing:
	hw4_nnet_test.dat

Page 3

Fix T=50000 and consider the combinations of the following parameters:

	• the number of hidden neurons M • the elements of $w_{ij}^{(\ell)}$ chosen independently and uniformly from the range $(-r,r)$ • the learning rate η Fix $\eta=0.1$ and $r=0.1$. Then, consider $M\in\{1,6,11,16,21\}$ and repeat the experiment for 500 times. Which M results in the lowest average E_{out} over 500 experiments? $\bigcirc 11$ $\bigcirc 16$ $\bigcirc 1$ $\bigcirc 21$ $\bigcirc 6$
12.	Following Question 11, fix $\eta=0.1$ and $M=3$. Then, consider $r\in\{0,0.001,0.1,10,1000\}$ and repeat the experiment for 500 times. Which r results in the lowest average E_{out} over 500 experiments? $ \bigcirc 0 $ $ \bigcirc 0.1 $ $ \bigcirc 0.001 $ $ \bigcirc 10 $ $ \bigcirc 1000 $
13.	Following Question 11, fix $r=0.1$ and $M=3$. Then, consider $\eta \in \{0.001, 0.01, 0.1, 1, 10\}$ and repeat the experiment for 500 times. Which η results in the lowest average E_{out} over 500 experiments? $ \bigcirc 0.01 $ $ \bigcirc 0.001 $ $ \bigcirc 10 $ $ \bigcirc 0.1 $ $ \bigcirc 1$
14.	Following Question11, deepen your algorithm by making it capable of training a d -8-3-1 neural network with tanh-type neurons. Do not use any pre-training. Let $r=0.1$ and $\eta=0.01$ and repeat the experiment for 500 times. Which of the following is true about E_{out} over 500 experiments? $\bigcirc 0.02 \leq E_{out} < 0.04$ $\bigcirc \text{none of the other choices}$ $\bigcirc 0.04 \leq E_{out} < 0.06$ $\bigcirc 0.06 \leq E_{out} < 0.08$ $\bigcirc 0.00 \leq E_{out} < 0.02$ Experiment with 1 Nearest Neighbor
15.	Implement any algorithm that 'returns' the 1 Nearest Neighbor hypothesis discussed in page 8 of
	lecture 214. $g_{\text{nbor}}(\mathbf{x}) = y_m \text{ such that } \mathbf{x} \text{ closest to } \mathbf{x}_m$
	Run the algorithm on the following set for training:
	hw4_knn_train.dat
	and the following set for testing: hw4_knn_test.dat
	Which of the following is closest to $E_{in}(g_{nbor})$?

	\bigcirc 0.2
	\bigcirc 0.3
	\bigcirc 0.0
	\bigcirc 0.1
	\bigcirc 0.4
16.	Following Question 15, which of the following is closest to $E_{out}(g_{nbor})$?
	\bigcirc 0.30
	\bigcirc 0.28
	$\bigcirc 0.34$
	$\bigcirc 0.32$
	\bigcirc 0.26
17.	Now, implement any algorithm for the k Nearest Neighbor with $k = 5$ to get $g_{5\text{-nbor}}(\mathbf{x})$. Run the algorithm on the same sets in Question 15 for training/testing. Which of the following is closest to $E_{in}(g_{5\text{-nbor}})$?
	\bigcirc 0.1
	\bigcirc 0.2
	\bigcirc 0.3
	$\bigcirc 0.4$
	\bigcirc 0.0
18.	Following Question 17, Which of the following is closest to $E_{out}(g_{5\text{-nbor}})$
	\bigcirc 0.28
	\bigcirc 0.26
	$\bigcirc 0.34$
	\bigcirc 0.32
	\bigcirc 0.30
	Experiment with k-Mean
	Experiment with k-ivican
19.	Implement the k-Means algorithm (page 16 of lecture 214). Randomly select k instances from $\{\mathbf{x}_n\}$ to initialize your $\boldsymbol{\mu}_m$ Run the algorithm on the following set for training:
	hw4_kmeans_train.dat and repeat the experiment for 500 times. Calculate the clustering E_{in} by $\frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{M} [[\mathbf{x}_n \in S_m]] \ \mathbf{x}_n - \boldsymbol{\mu}_m\ ^2$
	as described on page 13 of lecture 214 for $M = k$. For $k = 2$, which of the following is closest to the average E_{in} of k -Means over 500 experiments?
	\bigcirc 0.5
	\bigcirc 1.0
	\bigcirc 2.5
	\bigcirc 1.5
	\bigcirc 2.0

20. For k = 10, which of the following is closest to the average E_{in} of k-Means over 500 experiments?

- \bigcirc 1.0
- O 1.5
- \bigcirc 2.0
- \bigcirc 0.5
- \bigcirc 2.5