Modeling data with more than two levels

cont'd

04.04.22

Click here for PDF of slides

Announcements

• Final project - optional draft due Fri, Apr 15, final report due Wed, Apr 27

<u>Click here</u> for Google slides for exercises.

Learning goals

- Write form of model for models with more than two levels.
- Interpret fixed and random effects at each level
- See how three-level models are used in data analysis example
- Use the model to understand the covariance structure among observations

Data: Housing prices in Southampton

The data includes the price and characteristics for 918 houses sold between 1986 and 1991 in Southampton, England. The data were originally collected from a local real estate agency and were analyzed in the 1991 article "Specifying and Estimating Multi-Level Models for Geographical Research" by Kelvyn Jones. The primary variables of interest are

- price: Sales price in thousands of £
- Age: Age of the house
- **Bedrooms**: Number of bedrooms
- House Type: (semi-detached, detached, bungalow, terrace, flat)
- **Central heating**: Whether house has central heating (0: yes, 1: no)
- **Garage**: Number of garages (none, single, double)
- **Districts**: one of 34 districts (baseline:)
- STA 310
- Half-years: Half-year periods beginning the second half of 1986

Data structure

FIGURE 2. Hierarchical data structures

Adapted from Figure 2b from Jones (1991)

Note: The paper uses different symbols to represent parameters than what is in the textbook. The slides will follow the textbook.

Recap

Unconditional means model

$$Y_{ijk} = lpha_0 + ilde{u}_i + u_{ij} + \epsilon_{ijk}$$

(b) 3-level hierarchy

Level

3 District

2 Time

1 House

FIGURE 2. Hierarchical data structures

Level Three

$$a_i = lpha_0 + ilde{u}_i, ~~ ilde{u}_i \sim N(0, \sigma_{ ilde{u}}^2)$$

Level Two

$$a_{ij} = a_i + u_{ij}, \quad u_{ij} \sim N(0, \sigma_u^2)$$

Level One

$$Y_{ijk} = a_{ij} + \epsilon_{ijk}, ~~ \epsilon_{ijk} \sim N(0,\sigma^2)$$

Model A: Unconditional means model

TABLE I. ML estimates for house price variation

	Α	Model B	С	
Fixed effects				
Level 1: house				
Intercept (β_0)	58-1	57.0	56.7	
Age (β_1)		0.0	0.0	
		(0.1)	(0.1)	
House type		` ′	, ,	
detached (β_2)		22.3	21.1	
7 2		(11-2)	(11.0)	
bungalow(β_3)		17.9	15.7	
0 1,5		(5.6)	(5.2)	
terrace (β_4)		2.7	3.0	
•		(1.8)	(2.0)	
flat (β_s)		1.1	-0.9	
		(0.5)	(0.4)	
Bedrooms (β_{6})		9.5	8.0	
· ·		(9.5)	(4.7)	
Central heating (β_7)		−3 ·1	-3.1	
		(2.6)	(2.6)	
Garage				
single (β_s)		6.7	6.6	
		(4.6)	(4.8)	
double (β_{\circ})		26-1	24.1	
-		(6·1)	(5.8)	

The overall mean price of houses in this data set is £ 58,100

Table 1 from Jones (1991)

Model A: Random effects

Random effects Level 1: house Intercept (σ_{ϵ}^2)

Level 2: half-years Intercept (σ_u^2)

Level 3: districts Intercept (σ_{φ}^2)

Bedrooms (σ_{Γ}^2)

Covariance $(\sigma_{\alpha\Gamma})$

$$\hat{
ho}_{time} = rac{169}{397 + 169 + 240} = 0.210$$

$$\hat{
ho}_{district} = rac{240}{397 + 169 + 240} = 0.298$$

Model with covariates

Model B: Add covariates + random intercepts

TABLE I. ML estimates for house price variation

	Α	Model B	С
Fixed effects			
Level 1: house			
Intercept (β_0)	58.1	57.0	56.7
Age (β_1)		0.0	0.0
8- 4-1)		(0.1)	(0.1)
House type		(0 _)	(0 -)
detached (β_{2})		22.3	21.1
4-2		(11-2)	(11.0)
bungalow(β_3)		17.9	15.7
		(5.6)	(5.2)
terrace (β_4)		2.7	3.0
4		(1.8)	(2.0)
flat ($oldsymbol{eta}_{ extsf{s}}$)		1.1	-0.9
		(0.5)	(0.4)
Bedrooms (β_{o})		9.5	8.0
		(9.5)	(4.7)
Central heating (β_7)		-3.1	-3.1
		(2.6)	(2.6)
Garage		(= - /	(/
single (β_s)		6.7	6.6
0.5 (4-8)		(4.6)	(4.8)
double (β_{\circ})		26.1	24.1
V 9'		(6.1)	(5.8)

- 1. Write the composite model.
- 2. <u>Click here</u> to interpret the covariate assigned to your group.

Table 1 from Jones (1991)

Model C: Additional random effect

TABLE I. ML estimates for house price variation

	Α	Model B	С	
Fixed effects				
Level 1: house				
Intercept (β_0)	58.1	57·0	56.7	
Age (β_1)		0.0	0.0	
		(0.1)	(0.1)	
House type				
$detached(\beta_2)$		22.3	21.1	
		(11-2)	(11.0)	
bungalow(β_3)		17.9	15.7	
		(5.6)	(5·2)	
terrace ($oldsymbol{eta}_{\scriptscriptstyle 4}$)		2.7	3.0	
		(1.8)	(2.0)	
flat ($oldsymbol{eta}_{\scriptscriptstyle 5}$)		1.1	-0.9	
		(0.5)	(0.4)	
Bedrooms (β_s)		9.5	8.0	
		(9.5)	(4.7)	
Central heating (β_7)		-3.1	−3 ·1	
		(2.6)	(2.6)	
Garage				
single $(oldsymbol{eta}_s)$		6.7	6.6	
		(4.6)	(4.8)	
double ($oldsymbol{eta}_{\scriptscriptstyle{9}}$)		26.1	24.1	
		(6.1)	(5·8)	

- 1. How does this model differ from Model B?
- 2. Write the composite model.
- 3. Write the Level One, Level Two, and Level Three models.

Visualizing price by district over time

Figure 3 from Jones (1991)

- 1. What do you observe from the plot?
- 2. What terms in the model can be understood from the plot?
- 3. How might you use this type of plot to support decisions you make in the analysis?

<u>Click here</u> to submit your group's response.

Price by district and bedrooms

1100KB 4. District flouse price variations, 1700-1770, based of fever 5 failed in circles for model c

Figure 4 from Jones (1991)

- 1. What do you observe from the plot?
- 2. What terms in the model can be understood from the plot?
- 3. How might you use this type of plot to support decisions you make in the analysis?

<u>Click here</u> to submit your group's response.

Based on the output and visualizations, how does our understanding of the effect of bedrooms differ in Model C compared to Model B?

Covariance structure of observations

What we've done

So far we have discussed...

• the covariance structure between error terms at a given level, e.g. the relationship between u_i and v_i from a Level Two model:

$$egin{bmatrix} u_i \ v_i \end{bmatrix} \sim N\left(egin{bmatrix} 0 \ 0 \end{bmatrix}, egin{bmatrix} \sigma_u^2 & \sigma_{uv} \ \sigma_{uv} & \sigma_v^2 \end{bmatrix}
ight)$$

 how to use the intraclass correlation coefficient to get an idea of the average correlation among observations nested in the same Level Two and/or Level Three observations

Questions we want to answer

Now we want to be able to answer more specific questions about the covariance structure between *observations* at different levels.

- What is the covariance structure of houses in the same district sold in different time periods? $(Y_{ij},Y_{ij'})$
- What is the covariance structure of houses in the same district sold in the same time period? $(Y_{ijk},Y_{ijk'})$
 - How does this structure differ between Model B and Model C in Jones (1991)?

Calculating variance and covariance

Suppose $Y_1=a_1X_1+a_2X_2+a_3$ and $Y_2=b_1X_1+b_2X_2+b_3$ where X_1 and X_2 are random variables and a_i and b_i are constants for i=1,2,3, then we know from probability theory that:

$$Var(Y_1) = a_1^2 Var(X_1) + a_2^2 Var(X_2) + 2a_1a_2 Cov(X_1, X_2)$$

$$Cov(Y_1,Y_2) = a_1b_1Var(X_1) + a_2b_2Var(X_2) + (a_1b_2 + a_2b_1)Cov(X_1,X_2)$$

Note: This extends beyond two random variables

We will use these properties to define the covariance structure of the observations in the model.

Covariance structure under Model B

Let Y_{ijk} be the sales price for the house k in district i sold in time period j, and x_1, \ldots, x_9 be the house-level covariates.

$$Y_{ijk} = lpha_0 + \sum_{i=1}^9 lpha_i x_i + \left[ilde{u}_i + u_{ij} + \epsilon_{ijk}
ight]$$

$$ilde{u}_i \sim N(0,\sigma_{ ilde{u}}^2), \;\; u_{ij} \sim N(0,\sigma_u^2), \;\; \epsilon_{ijk} \sim N(0,\sigma^2)$$

Only use the random effects portion of the model in the variance and covariance derivations.

Variance and covariance derivations

Use Model B to write the derivation of $Var(Y_{ijk})$, the variance of an individual observation.

Variance and covariance derivations

Use Model B to write the derivation of $Cov(Y_{ijk},Y_{ijk'})$, the covariance between houses sold in the same time period that are in the same district.

Variance and covariance derivations

Write the derivation of $Cov(\mathbf{Y}_{ij})$, the covariance matrix for houses sold in the same time period that are in the same district.

Looking ahead

- Calculate the correlation matrix
- Data analysis with three-level models
- Multilevel GLMs

Acknowledgements

- Jones, K. (1991). <u>Specifying and estimating multi-level models for geographical</u> <u>research</u>. Transactions of the institute of British geographers, 148-159.
- Beyond Multiple linear regression
 - <u>Section 9.7: Covariance structure among observations</u>
 - Chapter 10: Multilevel data with more than two levels

