Engineering Physics I

Conrad A. Mearns

February 7, 2017

Significant Figures

When multiplying or dividing, the result is as precise as the least precise input to the number of digits.

Example: 54.3 * 6.8991 = 374.62113, truncated to 374 or rounded to 375.

When adding or subtracting, the result is as precise as the least precise input to the nuber of digits post decimal place.

Example: 10.65 + 3.0 = 13.65, truncated to 13.6 or rounded to 13.7.

As a general rule (from the professor), round up down to the nearset even number, as always rounding up will accumulate more error.

Variables of Movement and Position

1. Position: Location in space with respect to another object or coordinate system.

x, y, z

- 2. Displacement: Difference in position at two different times. $\Delta x, \Delta y, \Delta z, \Delta x = x_2 X_1$
- 3. Average Velocity: Displacement divided by time. $v_{avg},v_{avg}=\frac{\Delta x}{\Delta t}$
- 4. Speed: Total distance divided by time. $s, s \equiv \frac{d}{t}$
- 5. Instantanious Velocity: Velocity measured at a single time. $v,v=\lim_{t\to a} \frac{\Delta x}{\Delta t}=\lim_{t\to a} \frac{x_2-x_1}{t_2-t_1}$

Motion at Constant Velocity

 $x = x_0 + vt$ The following computes a new position of x according to an object's initial position (x_0) , velocity (v) and the given time passed (t). The equation is a slope-intercept formula.

Velocity at Constant Acceleration

 $v = v_0 + at$ The following computes a new velocity of v according to an object's initial velocity (v_0) , acceleration (a) and the given time passed (t). The equation is a slope-intercept formula.

The following equations can be combined as a system to calculate constant acceleration with velocity, position and time. When given a final velocity v_f and an initial velocity v_0 one can deduce an average velocity (v or v_{avq})

 $v_f = v_0 + at$ and $x = x_0 + vt \to x = x_0 + (\frac{v_0 + v_f}{2})t \to x = x_0 + \frac{1}{2}(v_0 + v_0 + at)t \to x = x_0 + v_0t + \frac{1}{2}at^2$ after simplification.

Vectors and Vector Math

- Scalar \equiv number, units \equiv magnitude
- Vector \equiv number, units, direction \equiv magnitude, direction

Vectors allow for easier representation of position, velocity, and acceleration. A vector of velocity looks like \vec{v} and can be drawn to look like the following.

Vector addition takes two vectors and aligns them tail to tip. For example, suppose the following vectors \vec{a} , \vec{b} and \vec{c} such that $\vec{a} + \vec{b} = \vec{c}$.

Vector addition is communative. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ Vector addition is associativ. $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$

Unit Vectors are vectors of magnitude of 1 that extend in only the x, y, or z direction alone a 3D cartessian system. The vectors are \hat{i} , \hat{j} and \hat{k} respectively. Notation for vectors, when expanded, looks like $\vec{A} = (A_x\hat{i} - A_y\hat{j} + A_z\hat{k})$ which could be = $(12\hat{i} - 7\hat{j} + 14\hat{k})$. Vector addition becomes standard addition, and multiplying vectors by scalars only needs to be distributed.

Circular Motion

Angular vectors use radius unit vector (\hat{r}) and an inclination unit vector $(\hat{\theta})$. Position around a circle can be determined if given an average velocity and

Let $T = \frac{2\pi r}{v}$ where r is the radius and v is the velocity.

Position: $\vec{r}(t) = r \cos \frac{2\pi r}{T} \hat{i} + r \sin \frac{2\pi r}{T} \hat{j}$

Velocity (derivative of position): $\vec{v}(t) = -r\frac{2\pi}{T}\sin\frac{2\pi r}{T}\hat{i} + r\frac{2\pi}{T}\cos\frac{2\pi r}{T}\hat{j}$ Acceleration (derivative of velocity): $\vec{a}(t) = -r\frac{4\pi^2}{T^2}\cos\frac{2\pi r}{T}\hat{i} - r\frac{4\pi^2}{T^2}\sin\frac{2\pi r}{T}\hat{j}$

 $\vec{a}_{centrip} = -\frac{v^2}{r}\hat{r}$