Total No. of Questions: 8]	20	SEAT No. :	
P4830		[Total No. o	f Pages : 2

[5060] - 735 M.E. (E & TC) (VLSI & Embedded Systems)

		DIGITAL CMOS DESIGN	
		(2013 Pattern)	
Time	e:3 E	Hours] [Max. Marks :	50
		ons to the candidates :-	
	<i>1)</i>	Answer any five questions.	
	<i>2)</i>	Assume Suitable data if necessary.	
	3)	Neat diagrams must be drawn wherever necessary.	
	4)	Use of non programmable pocket calculator is allowed.	
Q 1)	a)	With the help of cross sectional view & equivalent circuit of MOSFI	
		explain various parasitic capacitances involved. Compare the	ese
		capacitances for different operating regions of MOSFET.	[5]
	b) 1	What is meant by technology? What is current technology? List layer	out
			[5]
		design rates in detain.	[°]
Q2)	a)	Along with the suitable example, explain RC delay model. How is	s it
L -)	u)		[5]
	b)	What is significance of static & short circuit power dissipation? How	' to
		minimize them?	[5]
			1
Q3)	a)	Explore CMOS fabrication process in detail.	[4]
	b)	Explain technology scaling & its types along with suitable examples.	[4]
	c)	What is lambda parameter? Mention utility.	[2]
	C)	What is fameda parameter. Wendon denity.	L — J
Q4)	a)	Derive the expression for power delay product. What is its significan	ıce
Z - /	/		[4]
	b)	Explore the methodology involved in logical efforts. Give suital	
		example.	[4]
	c)	Write note on propagation delay.	[2]
	- /		

P.T.O.

Q 5)	a)	Design CMOS logic for $Y = ABC + DEFGH & calculate active are on chip.$	ea 4]
	b)	Draw a typical logic circuit susceptible to hazards. Explain the cause of hazards & explain along with timing diagram in detail.	es 4]
	c)	What is pass transistor logic?	2]
Q6)	a)	What are merits of Transmission Gate (TG)? Design one bit latch usin TGs. Compare with conventional method.	ng 4]
	b)	Draw FSM diagram for 1011 Mealy sequence detector & write HD code for it. How to make this circuit immune to metastability?	L 4]
	c)	Compare CMOS NAND & NOR in detail.	2]
Q 7)	a)	Explain cascode voltage switch logic with appropriate example. [4]	4]
	b) \	What is need of domino logic? Explore in detail.	4]
	c)	What are merits of BiCMOS circuit? Give example. [2	2]
Q8)	a)	List the low power design techniques. Explore any one in detail. [4]	4]
	b)	What materials are being used for improvement of performance? Explain brief.	in (1 }
	c)	Write note on comparison of logic families.	2]
		HHH WALL	
		What materials are being used for improvement of performance? Explain brief. Write note on comparison of logic families.	
[506	50]-7:	2	