Personnel scheduling: Models and complexity

Кадравае планаванне: мадэлі і складанасць

Peter Brucker, Rong Qu, Edmund Burke

November 2010

Classification of companies according to different personnel scheduling problems:

- Permanence centred planning
- Fluctuation centered planning
- Mobility centered planning
- Project centered planning

- "пастаянная", "перадвызначаная"
- "хісткая", "гнуткая", "зменлівая"
- "цэнтралізаваная"
- "праэкта-арыентаваная"

The problem: no mathematical models in the literature for general personnel scheduling problems

Праблема: адсутнасць агульнай матэматычнай мадэлі задачы кадравага планавання

Proposing a model

planning horizon [0, T] divided into periods [t, t + 1]

m tasks, j = 1, ..., m

 $D_j(t)$ - number of employees to perform task j in time period [t, t+1[- the demand profile for task j

set E of n employees

subset Q_e of tasks for which e is qualified

working pattern for e is a zero-one vector $w_e(t)_{t=0}^{T-1}$ and an assignment a task from Q_e for each $w_e(t) = 1$ - represented by binary vectors $\pi(j, t)$

Flexible demand modification:

each task j has a duration p_j , must be processed within a time window $[L_i, R_i] \subseteq [0, T], R_i - L_i \ge p_i$

hard constraints

(specify feasible working patterns)

(жорсткія абмежаванні абавязкова мусяць быць выкананыя)

soft constraints

(penalties may be applied)

(няжорсткія абмежаванні накладаюць штрафы)

Project centred planning model

the demand $D_j(t)$ for each task is not fixed for the time periods [t, t+1[a schedule for task j is defined by starting time S_j and processing time p_j $C_j = S_j + p_j$ at least $D_j(k)$ employees in period $[S_j + k - 1, S_j + k[$ precedence constraints $(i, j) \in A$: $S_i + p_i \leq S_j$ $C_{max} = max_{i=1}^m C_j$

Problems #1 - #4

- #1 A nurse rostering problem
- #2 A problem with restricted task changes
- #3 A problem with flexible demand
- #4 A multi-day personnel scheduling problem

Complexity

Polynomially solvable cases

NP-complete cases

Can be solved efficiently by network flow techniques