CPNA Lecture 14 - Solutions to Linear Simultaneous Equations

Mridul Sankar Barik

Jadavpur University

2023

Linear Systems I

▶ A **linear equation** in variables $x_1, x_2, ..., x_n$ is an equation of the form

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$

where a_1, a_2, \ldots, a_n and b are constant real numbers. The constant a_i is called the coefficient of x_i ; and b is called the constant term of the equation

▶ A system of linear equations (or linear system) is a finite collection of linear equations in same set of variables. For instance, a linear system of n equations in n variables x_1, x_2, \ldots, x_n can be written as

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n
\end{cases} (1)$$

Linear Systems II

▶ The system of linear equations can be written in matrix form

$$AX = B \tag{2}$$

where,

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \text{ and } B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

- ▶ A **solution** of a linear system is a tuple $(s_1, s_2, ..., s_n)$ of numbers that makes each equation a true statement when the values $s_1, s_2, ..., s_n$ are substituted for $x_1, x_2, ..., x_n$ respectively
- The set of all solutions of a linear system is called the solution set of the system

Solution of Linear Systems - Direct Methods I

- ► Yield exact solution in a finite number of arithmetic operations in absence of round-off errors
- ► In practice, we have finite number significant digits, so direct methods cannot lead to exact solutions
- ▶ Errors sometimes may lead to poor or even useless solutions
- Examples: Naive Gauss Elimination, Gauss-Jordon Elimination

Naive Gaussian Elimination I

- Reduces the system of equations to an equivalent upper triangular system which is then solved by back substitution
- ▶ The **augmented matrix** of the general linear system of equation 1 is

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & & & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_n \end{bmatrix}$$
(3)

▶ The **coefficient matrix** of equation 1 is

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

$$(4)$$

Naive Gaussian Elimination II

- Forward Elimination of Unknowns
 - ▶ Reduce the set of equations to an upper triangular system
 - ▶ Eliminate the first unknown, x_1 , from the second through the n^{th} equations
 - ▶ Multiply first row by a_{21}/a_{11} and subtract it from second row
 - ▶ Multiply first row by a_{31}/a_{11} and subtract it from third row
 - ▶ ...
 - We get the following

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a'_{22} & \dots & a'_{2n} & b'_2 \\ \vdots & & & & \\ a'_{n2} & \dots & a'_{nn} & b'_n \end{bmatrix}$$

- ▶ a₁₁ is called the pivot element
- Repeat the above to eliminate the second unknown x₂ from third row onwards

Naive Gaussian Elimination III

• After n-1 iterations we get to an upper triangular matrix

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ & a_{22}^1 & \dots & a_{2n}^1 & b_2^1 \\ & \vdots & & & & \\ & & \dots & a_{nn}^{n-1} & b_n^{n-1} \end{bmatrix}$$
 (5)

- Back Substitution
 - ► Last row can be solved as $x_n = \frac{b_n^{n-1}}{a_{nn}^{n-1}}$
 - The result can be back-substituted into the $(n-1)^{th}$ row to solve for $x_{n-1} = (b_{n-1} a_{n-1}^{n-2} {}_{n} x_{n})/a_{n-1}^{n-2} {}_{n-1}$
 - **•** ...
 - $x_1 = (b_1 \sum_{i=2}^n a_{1j}x_j)/a_{11}$
 - ► General formula for obtaining the x's

$$x_{i} = \frac{b_{i}^{(i-1)} - \sum_{j=i+1}^{n} a_{ij}^{i-1} x_{j}}{a_{ij}^{(i-1)}} \text{ for } i = n-1, n-2, \dots 1$$
 (6)

Naive Gaussian Elimination IV

- Drawbacks
 - Division by Zero
 - During both elimination and back-substitution phase division by zero may occur
 - Pivoting technique partially avoids these problem
 - Round-Off Errors
 - Occurs due to limited significant digits
 - III-Conditioned Systems
 - Small changes in coefficients result in large changes in the solution
 - ► Implication ⇒ wide range of answers can approximately satisfy the equations
 - Singular Systems
 - Determinant of a singular system is zero
 - After elimination stage the algorithm must check whether a zero diagonal element is created; if so, abort

Example of Gaussian Elimination I

Use Gaussian Elimination to solve

$$2x + y + z = 10$$
$$3x + 2y + 3z = 18$$
$$x + 4y + 9z = 16$$

The corresponding augmented matrix is

$$\left[\begin{array}{ccc|c}
2 & 1 & 1 & 10 \\
3 & 2 & 3 & 18 \\
1 & 4 & 9 & 16
\end{array}\right]$$

Eliminating first variable x from equation 2 and 3 by performing transformations $[R_2 - \frac{3}{2}R_1]$ and $[R_3 - \frac{1}{2}R_1]$

$$\begin{bmatrix}
2 & 1 & 1 & 10 \\
0 & \frac{1}{2} & \frac{3}{2} & 3 \\
0 & \frac{7}{2} & \frac{17}{2} & 11
\end{bmatrix}$$

Example of Gaussian Elimination II

Eliminating second variable y from equation 3 by performing transformations $[R_3 - \frac{7}{2} R_2]$, we get the upper triangular form

$$\left[\begin{array}{ccc|c}
2 & 1 & 1 & 10 \\
0 & \frac{1}{2} & \frac{3}{2} & 3 \\
0 & 0 & -2 & -10
\end{array}\right]$$

By backward substitution we get z = 5, y = -9 and x = 7

Gaussian Elimination Algorithm I

Algorithm 1 Triangularization of n Equations in n Unknowns (Forward Elimination)

```
1: for k = 1 to n - 1 in steps of 1 do
2: for j = k + 1 to n in steps of 1 do
3: u = a[j][k]/a[k][k]
4: for i = k to n + 1 in steps of 1 do
5: a[j][i] = a[j][i] - u * a[k][i]
6: end for
7: end for
8: end for
```

Gaussian Elimination Algorithm II

Algorithm 2 Backward Substitution

```
1: x[n] = a[n][n+1]/a[n][n]

2: for i = n-1 to 1 in steps of -1 do

3: sum = 0

4: for j = i+1 to n in steps of 1 do

5: sum = sum + a[i][j] * x[j]

6: end for

7: x[i] = (a[i][n+1] - sum)/a[i][i]

8: end for
```

Gauss-Jordon Elimination I

- A variant of Gauss elimination
- When an unknown is eliminated, it is eliminated from all other equations rather than just the subsequent ones
- All rows are normalized by dividing them by their pivot elements
- ► The elimination step results in an identity matrix rather than a triangular matrix ⇒ so, back substitution is not necessary
- All pitfalls and improvements in Gauss elimination also applies to the Gauss-Jordan method
- ▶ Row Echelon Form: A matrix A is said to be in row echelon form if the following conditions hold
 - 1. All of the rows containing nonzero entries sit above any rows whose entries are all zero
 - The first nonzero entry of any row, called the leading entry of that row, is positioned to the right of the leading entry of the row above it

Gauss-Jordon Elimination II

- ▶ **Reduced Row Echelon Form**: A matrix *A* is said to be in reduced row echelon form if it is in row echelon form, and additionally it satisfies the following two properties:
 - 1. In any given nonzero row, the leading entry is equal to 1
 - The leading entries are the only nonzero entries in their columns
- An augmented matrix in reduced row echelon form corresponds to a solution to the corresponding linear system

Gauss-Jordon Elimination III

Algorithm 3 Gauss-Jordon Method

```
1: for i = 1 to n in steps of 1 do
 2:
       i = i
 3:
        while a[i][i] == 0 \& j \le n do
           Interchange i and (i + 1)^{th} row of matrix a
 4:
 5:
          i = i + 1
 6:
        end while
 7:
        f = a[i][i]
 8:
        for k = i to n + 1 in steps of 1 do
 9:
           a[i][k] = a[i][k]/f
10:
        end for
11:
        for k = 1 to n in steps of 1 do
12:
           if k \neq i then
13:
              f = a[k][i]/a[i][i]
14:
              for p = i to n + 1 in steps of 1 do
15:
                  a[k][p] = a[k][p] - f * a[i][p]
16:
              end for
17:
           end if
18:
        end for
19: end for
```

Example of Gauss-Jordon Elimination I

Use Gauss-Jordon Elimination to solve

$$x + y + z = 5$$
$$2x + 3y + 5z = 8$$
$$4x + 5z = 2$$

The corresponding augmented matrix is

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 5 \\
2 & 3 & 5 & 8 \\
4 & 0 & 5 & 2
\end{array}\right]$$

Dividing R_1 by it's pivot element $a_{11}=1$ or $\left[R_1\leftarrow rac{R_1}{1}
ight]$

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 5 \\
2 & 3 & 5 & 8 \\
4 & 0 & 5 & 2
\end{array}\right]$$

Example of Gauss-Jordon Elimination II

Eliminating first variable x from equation 2 and 3 by performing transformations $[R_2 \leftarrow R_2 - 2R_1]$ and $[R_3 \leftarrow R_3 - 4R_1]$

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 5 \\
0 & 1 & 3 & -2 \\
0 & -4 & 1 & -18
\end{array}\right]$$

Dividing R_2 by it's pivot element $a_{22}=1$ or $[R_2\leftarrow \frac{R_2}{1}]$

$$\left[\begin{array}{ccc|ccc|c}
1 & 1 & 1 & 5 \\
0 & 1 & 3 & -2 \\
0 & -4 & 1 & -18
\end{array}\right]$$

Eliminating second variable y from equation 1 and 3 by performing transformations $[R_1 \leftarrow R_1 - R_2]$ and $[R_3 \leftarrow R_3 - (-4)R_2]$

$$\left[\begin{array}{ccc|c}
1 & 0 & -2 & 7 \\
0 & 1 & 3 & -2 \\
0 & 0 & 13 & -26
\end{array}\right]$$

Example of Gauss-Jordon Elimination III

Dividing R_3 by it's pivot element $a_{33}=13$ or $[R_3\leftarrow \frac{R_3}{13}]$

$$\left[\begin{array}{ccc|c}
1 & 0 & -2 & 7 \\
0 & 1 & 3 & -2 \\
0 & 0 & 1 & -2
\end{array}\right]$$

Eliminating third variable z from equation 1 and 2 by performing transformations $[R_1 \leftarrow R_1 - (-2)R_3]$ and $[R_2 \leftarrow R_2 - 3R_2]$

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -2
\end{array}\right]$$

Now, we directly get the solution as x = 3, y = 4 and z = -2

Matrix Inversion Using Gauss-Jordon Elimination I

- Let A be an invertible $n \times n$ matrix
- ► Suppose that a sequence of elementary row-operations reduces *A* to the identity matrix
- ► Then the same sequence of elementary row-operations when applied to the identity matrix yields A^{-1}
- ▶ Apply the Gauss-Jordan method to the matrix $[A \ I_n]$
- ▶ Suppose the row reduced echelon form of the matrix $[A \ I_n]$ is $[B \ C]$
- ▶ If $B = I_n$, then $A^{-1} = C$ or else A is not invertible

Solution of Linear Systems - Iterative Method I

- Iterative methods start with an approximation to the true solution and if convergent derive a sequence of closer approximations till the required accuracy is obtained
- Amount of computation is dependent on the accuracy required
- Let the system of linear equations be given by

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\
\vdots \\
a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n
\end{cases} (7)$$

- \blacktriangleright We assume the diagonal elements (a_{ii}) to be non zero
- ▶ If not, then the equations should be rearranged

Solution of Linear Systems - Iterative Method II

▶ We can rewrite the equations as

$$\begin{cases} x_{1} = \frac{b_{1}}{a_{11}} - \frac{a_{12}}{a_{11}} x_{2} - \frac{a_{13}}{a_{11}} x_{3} - \dots - \frac{a_{1n}}{a_{11}} x_{n} \\ x_{2} = \frac{b_{2}}{a_{22}} - \frac{a_{21}}{a_{22}} x_{1} - \frac{a_{23}}{a_{22}} x_{3} - \dots - \frac{a_{2n}}{a_{22}} x_{n} \\ \vdots \\ x_{n} = \frac{b_{n}}{a_{nn}} - \frac{a_{n1}}{a_{nn}} x_{1} - \frac{a_{n2}}{a_{nn}} x_{2} - \dots - \frac{a_{n,(n-1)}}{a_{nn}} x_{n-1} \end{cases}$$
(8)

- Suppose the vector $X = [x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, \dots, x_n^{(1)}]$ be a first approximation to the unknowns $x_1, x_2, x_3, \dots, x_n$
- ▶ So, the second approximation is obtained as

$$\begin{cases} x_{1}^{(2)} = \frac{b_{1}}{a_{11}} - \frac{a_{12}}{a_{11}} x_{2}^{(1)} - \frac{a_{13}}{a_{11}} x_{3}^{(1)} - \dots - \frac{a_{1n}}{a_{11}} x_{n}^{(1)} \\ x_{2}^{(2)} = \frac{b_{2}}{a_{22}} - \frac{a_{21}}{a_{22}} x_{1}^{(1)} - \frac{a_{23}}{a_{22}} x_{3}^{(1)} - \dots - \frac{a_{2n}}{a_{22}} x_{n}^{(1)} \\ \vdots \\ x_{n}^{(2)} = \frac{b_{n}}{a_{nn}} - \frac{a_{n1}}{a_{nn}} x_{1}^{(1)} - \frac{a_{n2}}{a_{nn}} x_{2}^{(1)} - \dots - \frac{a_{n,(n-1)}}{a_{nn}} x_{n-1}^{(1)} \end{cases}$$

$$(9)$$

Solution of Linear Systems - Iterative Method III

- ▶ If we write equation 9 in the matrix form X = BX + C then the iteration formula may be written as $X^{(r+1)} = BX^{(r)} + C$
- ► In actual computation, solution vector X^(r+1) is obtained element wise

Jacobi's Method I

▶ The iterative formula for the computation of solution by Jacobi's method is

$$x_i^{(r+1)} = \left(-\sum_{j=1, j \neq i}^n a_{ij} x_j^{(r)} + b_i\right) / a_{ii} \text{ for } i = 1, 2, 3, \dots, n$$
(10)

provided $a_{ii} \neq 0$

Also known as method of simultaneous displacements

Algorithm 4: Jacobi's Method

```
input a \to \text{augmented matrix} of order n \times (n+1), e \to \text{allowed relative error} in the
    result, maxit \rightarrow the maximum number of iterations
output x \rightarrow solution vector
1: for i = 1 to n in steps of 1 do
       x[i] = 0
3: end for
4: for iter = 1 to maxit in steps of 1 do
5:
       big = 0
6:
       for i = 1 to n in steps of 1 do
7:
           sum = 0
8:
           for j = 1 to n in steps of 1 do
9:
              if i \neq i then
10:
                  sum = sum + a[i][j] * x[j]
11:
              end if
12:
           end for
13:
           temp = (a[i][n+1] - sum)/a[i][i]
14:
           relerror = |(x[i] - temp)/temp|
15:
           if relerror > big then
```

Jacobi's Method III

```
16:
             big = relerror
17:
        end if
18:
         x'[i] = temp
19:
       end for
20:
       for i = 1 to n in steps of 1 do
21:
         x[i] = x'[i]
22: end for
23:
       if big < e then
24:
         Write "Converges to a solution"
25:
         Stop
26:
       end if
27: end for
28: Write "Does not converge in maxit number of iterations"
```

Jacobi's Method IV

- The Jacobi iterative method works fine with well-conditioned linear systems
- If the linear system is ill-conditioned, it is most probably that the Jacobi method will fail to converge
- The Jacobi method can generally be used for solving linear systems in which the coefficient matrix is diagonally dominant
 - For each row, the absolute value of the diagonal term is greater than the sum of absolute values of other terms

Gauss-Seidel Method I

- Improves Jacobi's method (faster convergence) by a simple modification
- ▶ Uses an improved component as soon as it is available
- Also known as method of successive displacements
- ► The iterative formula for the computation of solution by Gauss Seidel method is

$$x_{i}^{(r+1)} = \left(-\sum_{j=1}^{i-1} a_{ij} x_{j}^{(r+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(r)} + b_{i}\right) / a_{ii} \text{ for } i = 1, 2, 3, \dots$$
(11)

provided $a_{ii} \neq 0$

Gauss-Seidel Method II

Algorithm 5: Gauss-Seidel Method

```
input a \to \text{augmented matrix} of order n \times (n+1), e \to \text{allowed relative error} in the
    result, maxit \rightarrow the maximum number of iterations
output x \rightarrow solution vector
1: for i = 1 to n in steps of 1 do
       x[i] = 0
3: end for
4: for iter = 1 to maxit in steps of 1 do
5:
       big = 0
6:
       for i = 1 to n in steps of 1 do
7:
           sum = 0
8:
           for j = 1 to n in steps of 1 do
9:
              if i \neq i then
10:
                  sum = sum + a[i][j] * x[j]
11:
              end if
12:
           end for
13:
           temp = (a[i][n+1] - sum)/a[i][i]
14:
           relerror = |(x[i] - temp)/temp|
15:
           if relerror > big then
```

Gauss-Seidel Method III

```
16:
             big = relerror
17:
          end if
18:
          x[i] = temp
19:
       end for
20:
       if big < e then
21:
          Write "Converges to a solution"
22:
          Stop
23:
       end if
24: end for
25: Write "Does not converge in maxit number of iterations"
```

Example of Iterative Method I

Use Jacobi's / Gauss-Seidel Method to solve

$$10x_1 - 2x_2 - x_3 - x_4 = 3$$

$$-2x_1 + 10x_2 - x_3 - x_4 = 15$$

$$-x_1 - x_2 + 10x_3 + 2x_4 = 27$$

$$-x_1 - x_2 - 2x_3 + 10x_4 = -9$$

We rewrite the equations as

$$x_1 = 0.3 + 0.2x_2 + 0.1x_3 + 0.1x_4$$

$$x_2 = 1.5 + 0.2x_1 + 0.1x_3 + 0.1x_4$$

$$x_3 = 2.7 + 0.1x_1 + 0.1x_2 + 0.2x_4$$

$$x_4 = -0.9 + 0.1x_1 + 0.1x_2 + 0.2x_3$$

Initial solution vector x = [0, 0, 0, 0]

Example of Iterative Method II

n x1 x2 x3 x4 1 0.300000 1.500000 2.700000 -0.900000 2 0.780000 1.740000 2.700000 -0.180000 3 0.900000 1.908000 2.916000 -0.108000 4 0.962400 1.960800 2.959200 -0.036000 5 0.984480 1.984800 2.985120 -0.015840 6 0.993888 1.997549 2.997562 -0.006048 7 0.997536 1.997549 2.999013 -0.0002477 8 0.999018 1.999016 2.999013 -0.000394 10 0.999843 1.999843 2.999688 -0.000157 11 0.999937 1.999937 2.999937 -0.000063 12 0.999975 1.999975 2.9999975 -0.000025 13 0.999996 1.999996 2.999996 -0.000004 15 0.999998 1.999998 2.999999 -0.000002 16 0.999999					
2 0.780000 1.740000 2.700000 -0.180000 3 0.900000 1.908000 2.916000 -0.108000 4 0.962400 1.960800 2.959200 -0.036000 5 0.984480 1.984800 2.985120 -0.015840 6 0.993888 1.993824 2.993760 -0.006048 7 0.997536 1.997549 2.997562 -0.002477 8 0.999018 1.999016 2.999013 -0.000979 9 0.999607 1.999607 2.999608 -0.000394 10 0.999843 1.999843 2.999843 -0.000157 11 0.999937 1.999975 2.999975 -0.000063 12 0.999975 1.999975 2.999999 -0.000010 14 0.999996 1.999996 2.999996 -0.000002 15 0.999998 1.999998 2.999999 -0.000001 16 0.999999 1.999999 2.999999 -0.000001	n	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	X4
3 0.900000 1.908000 2.916000 -0.108000 4 0.962400 1.960800 2.959200 -0.036000 5 0.984480 1.984800 2.985120 -0.015840 6 0.993888 1.993824 2.993760 -0.006048 7 0.997536 1.997549 2.997562 -0.002477 8 0.999018 1.999016 2.999013 -0.000979 9 0.999607 1.999607 2.999608 -0.000394 10 0.999843 1.999843 2.999843 -0.000157 11 0.999937 1.999937 2.999937 -0.000063 12 0.999975 1.999975 2.999975 -0.000025 13 0.999990 1.999990 2.999996 -0.000004 15 0.999998 1.999998 2.999999 -0.000002 16 0.999999 1.999999 2.999999 -0.000001	1	0.300000	1.500000	2.700000	-0.900000
4 0.962400 1.960800 2.959200 -0.036000 5 0.984480 1.984800 2.985120 -0.015840 6 0.993888 1.993824 2.993760 -0.006048 7 0.997536 1.997549 2.997562 -0.002477 8 0.999018 1.999016 2.999013 -0.000979 9 0.999607 1.999607 2.999608 -0.000394 10 0.999843 1.999843 2.999843 -0.000157 11 0.999937 1.999937 2.999937 -0.000063 12 0.999995 1.999995 2.999990 -0.000010 14 0.999996 1.999996 2.999996 -0.000002 15 0.999999 1.999998 2.999999 -0.000001 16 0.999999 1.999999 2.999999 -0.000001	2	0.780000	1.740000	2.700000	-0.180000
5 0.984480 1.984800 2.985120 -0.015840 6 0.993888 1.993824 2.993760 -0.006048 7 0.997536 1.997549 2.997562 -0.002477 8 0.999018 1.999016 2.999013 -0.000979 9 0.999607 1.999607 2.999608 -0.000394 10 0.999843 1.999843 2.999843 -0.000157 11 0.999937 1.999937 2.999937 -0.000063 12 0.999995 1.999995 2.999990 -0.000010 14 0.999996 1.999996 2.999996 -0.000002 15 0.999999 1.999999 2.999999 -0.000001 16 0.999999 1.999999 2.999999 -0.000001	3	0.900000	1.908000	2.916000	-0.108000
6 0.993888 1.993824 2.993760 -0.006048 7 0.997536 1.997549 2.997562 -0.002477 8 0.999018 1.999016 2.999013 -0.000979 9 0.999607 1.999607 2.999608 -0.000394 10 0.999843 1.999843 2.999843 -0.000157 11 0.999937 1.999937 2.999937 -0.000063 12 0.999995 1.9999975 2.9999975 -0.000025 13 0.999990 1.999990 2.999990 -0.000004 15 0.999998 1.999998 2.999999 -0.000002 16 0.999999 1.999999 2.999999 -0.000001	4	0.962400	1.960800	2.959200	-0.036000
7 0.997536 1.997549 2.997562 -0.002477 8 0.999018 1.999016 2.999013 -0.000979 9 0.999607 1.999607 2.999608 -0.000394 10 0.999843 1.999843 2.999843 -0.000157 11 0.999937 1.999937 2.999937 -0.000063 12 0.999975 1.9999975 2.9999975 -0.000025 13 0.999990 1.999990 2.999990 -0.000004 14 0.999998 1.999998 2.999998 -0.000002 16 0.999999 1.999999 2.999999 -0.000001	5	0.984480	1.984800	2.985120	-0.015840
8 0.999018 1.999016 2.999013 -0.000979 9 0.999607 1.999607 2.999608 -0.000394 10 0.999843 1.999843 2.999843 -0.000157 11 0.999937 1.999937 2.999937 -0.000063 12 0.999975 1.999975 2.999975 -0.000025 13 0.999990 1.999990 2.999990 -0.000010 14 0.999998 1.999998 2.999998 -0.000002 16 0.999999 1.999999 2.999999 -0.000001	6	0.993888	1.993824	2.993760	-0.006048
9 0.999607 1.999607 2.999608 -0.000394 10 0.999843 1.999843 2.999843 -0.000157 11 0.999937 1.999937 2.999937 -0.000063 12 0.999975 1.999975 2.999975 -0.000025 13 0.999990 1.999990 2.999990 -0.000010 14 0.999996 1.999996 2.999996 -0.000004 15 0.999999 1.999999 2.999999 -0.000001 16 0.999999 1.999999 2.999999 -0.000001	7	0.997536	1.997549	2.997562	-0.002477
10 0.999843 1.999843 2.999843 -0.000157 11 0.999937 1.999937 2.999937 -0.000063 12 0.999975 1.999975 2.999975 -0.000025 13 0.999990 1.999990 2.999990 -0.000010 14 0.999996 1.999996 2.999996 -0.000004 15 0.999998 1.999998 2.999999 -0.000002 16 0.999999 1.999999 2.999999 -0.000001	8	0.999018	1.999016	2.999013	-0.000979
11 0.999937 1.999937 2.999937 -0.000063 12 0.999975 1.999975 2.999975 -0.000025 13 0.999990 1.999990 2.999990 -0.000010 14 0.999996 1.999996 2.999996 -0.000004 15 0.999998 1.999998 2.999998 -0.000002 16 0.999999 1.999999 2.999999 -0.000001	9	0.999607	1.999607	2.999608	-0.000394
12 0.999975 1.999975 2.999975 -0.000025 13 0.999990 1.999990 2.999990 -0.000010 14 0.999996 1.999996 2.999996 -0.000004 15 0.999998 1.999998 2.999998 -0.000002 16 0.999999 1.999999 2.999999 -0.000001	10	0.999843	1.999843	2.999843	-0.000157
13 0.999990 1.999990 2.999990 -0.000010 14 0.999996 1.999996 2.999996 -0.000004 15 0.999998 1.999998 2.999998 -0.000002 16 0.999999 1.999999 2.999999 -0.000001	11	0.999937	1.999937	2.999937	-0.000063
14 0.999996 1.999996 2.999996 -0.000004 15 0.999998 1.999998 2.999998 -0.000002 16 0.999999 1.999999 2.999999 -0.000001	12	0.999975	1.999975	2.999975	-0.000025
15 0.999998 1.999998 2.999998 -0.000002 16 0.999999 1.999999 2.999999 -0.000001	13	0.999990	1.999990	2.999990	-0.000010
16 0.999999 1.999999 2.999999 -0.000001	14	0.999996	1.999996	2.999996	-0.000004
	15	0.999998	1.999998	2.999998	-0.000002
<u>17 1.000000 2.000000 3.000000 -0.000000</u>	16	0.999999	1.999999	2.999999	-0.000001
	17	1.000000	2.000000	3.000000	-0.000000

Table 1: Jacobi's Method

Example of Iterative Method III

		.,	.,	
n	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	X4
1	0.300000	1.560000	2.886000	-0.136800
2	0.886920	1.952304	2.956562	-0.024765
3	0.983641	1.989908	2.992402	-0.004165
4	0.996805	1.998185	2.998666	-0.000768
5	0.999427	1.999675	2.999757	-0.000138
6	0.999897	1.999941	2.999956	-0.000025
7	0.999981	1.999989	2.999992	-0.000005
8	0.999997	1.999998	2.999999	-0.000001
9	0.999999	2.000000	3.000000	-0.000000
10	1.000000	2.000000	3.000000	-0.000000

Table 2: Gauss-Seidel Method

Clearly, Gauss-Seidel method converges faster than Jacobi's method