- 1. Consider the function  $f(x) = \sqrt{5x}$  on [4,6]. It is clear that p = 5 is a fixed point of f.
  - (a) (10 points) Check all of the conditions of Theorem 2.8 and justify a conclusion that the iterative sequence  $\{p_n\}$  (for  $p_0 \in [4,6]$  and for  $p_0 \neq 5$ ) converges linearly to p=5.

First we must check that f(x) is continuous on [4,6], such that  $\forall x \in [4,6], f(x) \in [4,6]$ .

$$f(x) = \sqrt{5x}$$

$$f(4) = \sqrt{5 \times 4} = 2\sqrt{5} f(x) \in [2\sqrt{5}, \sqrt{30}]$$
 
$$f(6) = \sqrt{5 \times 6} = \sqrt{30}$$

$$\therefore \forall x \in [4, 6], \ f(x) \in [4, 6]$$



The blue line is the function  $f(x) = \sqrt{5x}$  and the red line is the function f(x) = x

A we will see later, the derivative of thus function is never less than zero on [4,6], the function is continuous and increasing. Thus the first condition of Theorem 2.8 is met.

Now we must find a positive constant  $k \mid k < 1 \land \forall x \in (4,6), \mid f'(x) \mid \leq k$ .

$$f'(x) = \frac{\sqrt{5}}{2\sqrt{x}}$$

$$f'(4) = \frac{\sqrt{5}}{2\sqrt{4}} \qquad f'(6) = \frac{\sqrt{5}}{2\sqrt{6}}$$

$$= \frac{\sqrt{5}}{4} \qquad = \frac{\sqrt{30}}{12}$$

$$f'(x) \in (\frac{\sqrt{30}}{12}, \frac{\sqrt{5}}{4})$$

$$= \frac{\sqrt{30}}{12} < f'(x) < \frac{\sqrt{5}}{4} \le k < 1$$

Thus,

$$\therefore k \in \left[\frac{\sqrt{5}}{4}, 1\right)$$



The blue line is the function f'(x) and the red shaded area is  $|f'(x)| \le k < 1$ .

Thus the second condition of Theorem 2.8 is met. Since  $\forall x \in [4,6], f'(x) \neq 0$  any  $x \in [4,6], x \neq 5$  will converge linearly to unique fixed point x=5.

(b) (10 points) Generate a table including values of  $p_i$  and  $\frac{|p_i-5|}{|p_{i-1}-5|^1}$  for  $0 \le i \le 20$ .

|    |                  | $ Pi=1  \forall  $ |
|----|------------------|--------------------|
| i  | $p_i$            | Asymptotic Error   |
| 0  | 4.58257569495584 | 0.5217803813052    |
| 1  | 4.7867398586908  | 0.510895361703103  |
| 2  | 4.89220801821161 | 0.50544832769337   |
| 3  | 4.94581035736896 | 0.502724244716311  |
| 4  | 4.97283136521286 | 0.501362132467313  |
| 5  | 4.98639717893233 | 0.500681067497319  |
| 6  | 4.99319395724437 | 0.500340533906638  |
| 7  | 4.99659581977788 | 0.500170266973093  |
| 8  | 4.9982976200792  | 0.500085133489079  |
| 9  | 4.99914873757483 | 0.500042566744727  |
| 10 | 4.99957435066968 | 0.500021283373047  |
| 11 | 4.99978717080521 | 0.500010641685841  |
| 12 | 4.99989358427018 | 0.50000532084444   |
| 13 | 4.99994679185198 | 0.500002660418948  |
| 14 | 4.99997339585521 | 0.500001330210742  |
| 15 | 4.99998669790991 | 0.500000665095256  |
| 16 | 4.99999334895053 | 0.50000033258057   |
| 17 | 4.99999667447416 | 0.500000166323559  |
| 18 | 4.9999983372368  | 0.500000083061597  |
| 19 | 4.99999916861833 | 0.500000041664331  |
| 20 | 4.99999958430915 | 0.500000021366322  |

(c) (5 points) Estimate the asymptotic error constant  $\lambda$ .

$$\lambda = \frac{1}{2}$$

- 2. Show that the sequences below converge linearly to p=0. How many terms are required before  $|p_n-p|<5\times 10^{-2}$ ?
  - (a) (10 points)  $p_n = \frac{1}{n}$

$$\lim_{n \to \infty} \frac{\mid p_{n+1} \mid}{\mid p_n \mid^{\alpha}} = \lim_{n \to \infty} \frac{\mid \frac{1}{n+1} \mid}{\mid \frac{1}{n} \mid^{\alpha}} = \lim_{n \to \infty} \frac{n^{\alpha}}{n+1}$$

We will have convergence for  $\alpha = 1$ , but not  $\alpha = 2$  so this sequence will converge linearly to 0.

Terms to be within  $5 \times 10^{-2}$ 

$$|p_n - p| < 5 \times 10^{-2} \to \frac{1}{n} < 5 \times 10^{-2} \to \boxed{n > 20}$$

(b) (10 points) 
$$p_n = \frac{1}{n^2}$$

$$\lim_{n \to \infty} \frac{|p_{n+1}|}{|p_n|^{\alpha}} = \lim_{n \to \infty} \frac{\left|\frac{1}{(n+1)^2}\right|}{\left|\frac{1}{n^2}\right|^{\alpha}} = \lim_{n \to \infty} \left(\frac{n^{\alpha}}{n+1}\right)^2$$

Similarly to part a, will have convergence for  $\alpha = 1$ , but not  $\alpha = 2$  so this sequence will also converge linearly to 0.

Terms to be within  $5 \times 10^{-2}$ 

$$|p_n - p| < 5 \times 10^{-2} \to \frac{1}{n^2} < 5 \times 10^{-2} \to 20 < n^2 \to \boxed{n > \sqrt{20} \approx 4.47214}$$

3. (10 points) Show that  $p_n = \left(\frac{1}{10}\right)^{2^n}$  converges to 0 quadratically.

$$\lim_{n \to \infty} \frac{|p_{n+1}|}{|p_n|^{\alpha}} = \lim_{n \to \infty} \frac{|10^{-2^{n+1}}|}{|10^{-2^n}|^{\alpha}} = \lim_{n \to \infty} \frac{10^{-2^n 2}}{10^{-2^n \alpha}}$$

We will have convergence for  $\alpha = 1$  as well as  $\alpha = 2$ , but not  $\alpha = 3$ , so this this sequence will quadratically to 0.

4. (a) (10 points) Write down the formula for a sequence  $p_n$  that converges to p = 0 with order  $\alpha = 3$ .

$$p_n = 100^{-3^n}$$

(b) (5 points) Generate the first 5 terms of this sequence.

| n | $p_n$                |  |
|---|----------------------|--|
| 0 | $1 \times 10^{-2}$   |  |
| 1 | $1 \times 10^{-6}$   |  |
| 2 | $1 \times 10^{-18}$  |  |
| 3 | $1 \times 10^{-54}$  |  |
| 4 | $1 \times 10^{-162}$ |  |