TD 3 - Groupe symétrique, premières actions de groupes

† Groupe symétrique

Exercice 1. Calculer les produits de permutations suivants.

$$1. \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 2 & 6 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 4 & 3 & 5 \end{pmatrix}.$$

$$2. \ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}.$$

- 3. $(1 \ 4 \ 3 \ 2) \circ (1 \ 3 \ 2)$.
- 4. $(2\ 5\ 4) \circ (1\ 4\ 2\ 3) \circ (2\ 4)$.
- 5. $(1974) \circ (4382) \circ (45972)$.

Exercice 2. Pour $\sigma \in \mathfrak{S}_n$, on définit le *support* de σ comme l'ensemble $\{i \in [1, n] \mid \sigma(i) \neq i\}$. Déterminer le support, l'ordre et la signature des permutations suivantes.

$$1. \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 2 & 7 & 5 & 6 & 1 \end{pmatrix}.$$

$$2. \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 3 & 5 & 6 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 5 & 4 & 2 & 6 \end{pmatrix}.$$

- 3. $(1\ 5\ 4\ 2)\circ(3\ 5\ 4)$.
- 4. $(1\ 2\ 3) \circ (1\ 2\ 4) \circ (2\ 3\ 4) \circ (1\ 3\ 4)$.

Exercice 3. Déterminer l'ordre dans \mathfrak{S}_8 des éléments suivants :

$$\begin{cases}
(1\ 2) \circ (3\ 4), \\
(5\ 7\ 3) \circ (2\ 3\ 8),
\end{cases}$$

$$\begin{cases}
(1\ 2\ 3\ 4) \circ (5\ 6\ 7) \circ (8\ 2), \\
(1\ 2\ 4\ 5\ 6\ 7\ 8\ 3) \circ (3\ 4\ 5\ 6\ 7\ 8) \circ (1\ 2).
\end{cases}$$

Exercice 4 (Cardinal).

- 1. Soit $n \ge 2$. On pose $H := \{ \sigma \in \mathfrak{S}_n \mid \sigma(n) = n \}$. Montrer que H est isomorphe à \mathfrak{S}_{n-1} .
- 2. Soient $\sigma, \sigma' \in \mathfrak{S}_n$. Montrer que $\sigma H = \sigma' H$ si et seulement si $\sigma(n) = \sigma'(n)$. En déduire que $|\mathfrak{S}_n/H| = n$.
- 3. Montrer par récurrence sur $n \ge 2$ que $|\mathfrak{S}_n| = n!$.

Exercice 5 (Générateurs). On rappelle que les transpositions engendrent le groupe symétrique. On rappelle également la formule $\sigma(i_1 \cdots i_k)\sigma^{-1} = (\sigma(i_1) \cdots \sigma(i_k))$.

- 1. Montrer que l'ensemble $E := \{(1 \ 2), \dots, (1 \ n)\}$ engendre toutes les transpositions. En déduire que E engendre \mathfrak{S}_n .
- 2. En déduire que l'ensemble $\{(1\ 2), (2\ 3), \ldots, (n-1\ n)\}$ des transpositions consécutives engendre \mathfrak{S}_n .
- 3. En déduire que l'ensemble $\{(1\ 2), (1\ 2\ \cdots\ n)\}$ engendre \mathfrak{S}_n .

† Actions de groupes

Exercice 6. Soient k un corps, et soit V un k-espace vectoriel de dimension finie. Montrer que la multiplication scalaire de k sur V induit une action de groupe de k^* sur V. Quels sont les orbites de cette action?

Exercice 7 (Équivalence des matrices). Soient k un corps, et $n, m \ge 1$ deux entiers.

- 1. Rappeler la loi de groupe définie sur le produit direct $GL_m(\mathbb{k}) \times GL_n(\mathbb{k})$. On pose $G := GL_m(\mathbb{k}) \times GL_n(\mathbb{k})$ dans la suite.
- 2. Montrer que l'on définit une action de groupe de G sur $\mathcal{M}_{m,n}(\mathbb{k})$ en posant

$$\alpha: G \times \mathcal{M}_{m,n}(\mathbb{k}) \longrightarrow \mathcal{M}_{m,n}(\mathbb{k})$$

 $((P,Q),A) \longmapsto (P,Q) \cdot A := PAQ^{-1}.$

- 3. Montrer que deux matrices $A, A' \in \mathcal{M}_{m,n}(\mathbb{k})$ sont dans la même orbite sous l'action de G si et seulement si elles représentent dans des bases différentes la même application linéaire $f : \mathbb{k}^n \to \mathbb{k}^m$. On dit alors que A et A' sont équivalentes.
- 4. Montrer que deux matrices équivalentes ont le même rang.
- 5. Montrer que toute matrice $A \in \mathcal{M}_{m,n}(\mathbb{k})$ est équivalente à une unique matrice de la forme

$$I_{m,n,r} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

où $r = \operatorname{rang}(A)$. En déduire que deux matrices sont équivalentes si et seulement si elles ont le même rang.

Exercice 8 (Similitude des matrices). Soient k un corps, et soit $n \ge 1$ un entier.

1. Montrer que l'on définit une action de groupe de $GL_n(\mathbb{k})$ sur $\mathcal{M}_n(\mathbb{k})$ en posant

$$\alpha: \operatorname{GL}_n(\Bbbk) \times \mathcal{M}_n(\Bbbk) \longrightarrow \mathcal{M}_n(\Bbbk)$$

$$(P, A) \longmapsto P \cdot A := PAP^{-1}.$$

- 2. Montrer que deux matrices $A, A' \in \mathcal{M}_n(\mathbb{k})$ sont dans la même orbite sous l'action de $\mathrm{GL}_n(\mathbb{k})$ si et seulement si elles représentent le même endomorphisme de \mathbb{k}^n dans des bases différentes de \mathbb{k}^n . On dit alors que A et A' sont semblables.
- 3. Montrer que deux matrices semblables sont toujours équivalentes au sens de l'exercice 7.
- 4. Montrer que l'action α se restreint en une action de $GL_n(\mathbb{k})$ sur l'ensemble $\mathcal{D}_n(\mathbb{k})$ des matrices diagonalisables sur \mathbb{k} . Montrer que deux matrices $A, A' \in \mathcal{D}_n(\mathbb{k})$ sont semblables si et seulement si elles ont les mêmes valeurs propres.

Exercice 9 (Demi-plan de Poincaré). On considère $G := \mathrm{GL}_2^+(\mathbb{R})$ l'ensemble des matrices de taille 2 à déterminant strictement positif. On pose

$$\mathbb{H}:=\{z\in\mathbb{C}\ |\ \Im\mathrm{m}(z)>0\}.$$

- 1. Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$. Montrer que pour tout $z \in \mathbb{H}$, on a $cz + d \neq 0$. Montrer également que $\frac{az+b}{cz+d} \in \mathbb{H}$.
- 2. Montrer que l'on définit une action de groupe de G sur $\mathbb H$ en posant

$$\forall M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G, \ z \in \mathbb{H}, \ M \cdot z = \frac{az+b}{cz+d}$$

- 3. Soit $z \in \mathbb{H}$, montrer qu'il existe $M \in G$ telle que $M \cdot i = z$. En déduire que l'action ci-dessus est transitive.
- 4. Soient $M \in G$ et soit $z \in \mathbb{H}$. Montrer que, pour tout $\lambda \in \mathbb{R}$, on a $\lambda M \in G$ et $\lambda M \cdot z = M \cdot z$.