Лабораторная работа № 1

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ МЕТОДОМ ГАУССА С ВЫБОРОМ ГЛАВНОГО ЭЛЕМЕНТА

ЦЕЛЬ РАБОТЫ: изучить и программно реализовать на языке высокого уровня метод Гаусса с выбором главного элемента по столбцу, исследовать его точность и эффективность на тестовых задачах.

Метод Гаусса

К необходимости решения систем линейных алгебраических уравнений (СЛАУ) приводят многие прикладные задачи физики, радиофизики, электроники, других областей науки и техники. По этой причине разработке и исследованию методов решения СЛАУ уделяется повышенное внимание.

Для решения СЛАУ используются как прямые методы, позволяющие получить в случае отсутствия ошибок округления точное решение за конечное, заранее известное количество арифметических операций, так и итерационные методы. Итерационные методы используются для решения СЛАУ большого порядка, а также для уточнения решения, полученного прямыми методами.

Из прямых методов популярным у вычислителей является метод Гаусса (исключения переменных) с выбором главного (максимального по модулю) элемента в столбце. Поиск главного элемента позволяет, с одной стороны, ограничить рост коэффициентов на каждом шаге исключения и, следовательно, уменьшить влияние ошибок округления на точность решения, с другой, обеспечить для невырожденных систем выполнение условия $a_{kk} \neq 0$ (отсутствие аварийных остановов вследствие деления на нуль).

Пусть задана система линейных алгебраических уравнений

$$a_{11}x_{1} + a_{12}x_{2} + \mathbf{L} + a_{1n}x_{n} = b_{1},$$

$$a_{21}x_{1} + a_{22}x_{2} + \mathbf{L} + a_{2n}x_{n} = b_{2},$$

$$\mathbf{L}$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \mathbf{L} + a_{nn}x_{n} = b_{n}.$$
(1.1)

Процесс ее решения методом Гаусса делится на два этапа, называемых соответственно прямым и обратным ходом.

На первом этапе система (1.1) путем последовательного исключе-

ния переменных $x_1, x_2, \mathbf{K}, x_n$ сводится к эквивалентной системе с верхней треугольной матрицей коэффициентов:

$$x_{1} + u_{12}x_{2} + u_{13}x_{3} + \mathbf{L} + u_{1,n-1}x_{n-1} + u_{1n}x_{n} = q_{1},$$

$$x_{2} + u_{23}x_{3} + \mathbf{L} + u_{2,n-1}x_{n-1} + u_{2n}x_{n} = q_{2},$$

$$\mathbf{L}$$

$$x_{n-1} + u_{n-1,n}x_{n} = q_{n-1},$$

$$x_{n} = q_{n}.$$

$$(1.2)$$

Исключение переменной x_k (k-й шаг прямого хода Гаусса) включает вычисление k-й строки треугольной матрицы:

$$u_{kj} = a_{kj}^{(k-1)} / a_{kk}^{(k-1)}; \quad j = \overline{k+1,n},$$
 (1.3)

k-го свободного члена:

$$q_k = b_k^{(k-1)} / a_{kk}^{(k-1)},$$
 (1.4)

преобразование уравнений системы (1.1) с номерами $k+1, k+2, \mathbf{K}, n$:

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - a_{ik}^{(k-1)} u_{kj}; \ b_i^{(k)} = b_i^{(k-1)} - a_{ik}^{(k-1)} q_k,$$

$$i = \overline{k+1,n}; \ j = \overline{k+1,n}.$$
(1.5)

В соотношениях (1.5) переменной внутреннего цикла является j, переменной внешнего цикла – i. Полное число шагов, за которое выполняется прямой ход Гаусса, равно n, т. е. расчеты по формулам (1.3) \div (1.5) выполняются для $k=\overline{1,n}$.

На втором этапе (обратный ход Гаусса) решают систему (1.2):

$$x_n = q_n; \quad x_k = q_k - \sum_{j=k+1}^n u_{kj} x_j; \quad k = \overline{n-1,1},$$
 (1.6)

последовательно определяя неизвестные $x_n, x_{n-1}, \mathbf{K}, x_1$.

Описание алгоритма

Алгоритм решения СЛАУ методом Гаусса с выбором главного элемента по столбцу выглядит следующим образом:

1. Присвоить компонентам массива перестановок IOR(k) исходные значения:

$$IOR(k) = k, \quad k = \overline{1, n},$$

принять, после этого, k = 1.

2. Найти индекс p, для которого

$$|a_{mk}| \ge |a_{lk}|, \quad m = IOR(p), \quad l = IOR(i), \quad i = \overline{k, n}.$$

Это можно сделать так:

- 2.1. Положить *АКК*=0;
- 2.2. Вычислить в цикле ($i = \overline{k, n}$):
 - 2.2.1. l = IOR(i);
 - 2.2.2. Если |a[l,k]| < AKK, то перейти к п. 2.2.1;
 - 2.2.3. M = l; p = i; AKK = |a[l, k]|.
- 3. Поменять местами значения IOR(k) и IOR(p), если $p \neq k$:

$$IOR(p) = IOR(k); \quad IOR(k) = M$$

и выбрать ведущий элемент

$$AMAIN = a[M, k].$$

Если AMAIN = 0, то выйти из программы с информацией об ошибке (IER = 1).

- 4. Исключить переменную x_k с помощью соотношений (1.3) \div (1.5) (прямой ход Гаусса):
 - 4.1. $a[M, j] = a[M, j] / AMAIN; j = \overline{k, n};$
 - 4.2. b[M] = b[M] / AMAIN;
 - 4.3. Вычислить в цикле по i (i = k + 1, n):
 - 4.3.1. l = IOR(i);
 - 4.3.2. $a[l, j] = a[l, j] a[l, k]a[M, j]; \quad j = \overline{k+1, n};$
 - 4.3.3. b[l] = b[l] a[l,k]b[M].
- 5. Увеличить значение k на единицу и вернуться к п. 2, если k < n, иначе завершить прямой ход, вычислив

$$l = IOR[n];$$
 $b[l] = b[l]/a[l,n];$ $x[n] = b[l].$

Если a[l,n]=0, то выйти из программы с сообщением IER=1.

6. Выполнить в цикле для $k = \overline{n-1,1}$ (обратный ход Гаусса):

$$l = IOR[k]; \quad x[k] = b[l] - \sum_{j=k+1}^{n} a[l, j]x[j].$$

Сделаем комментарии к описанному алгоритму. Выбор ведущего элемента a_{kk} предполагает перестановку строк системы (1.1). Про-

граммно это нетрудно сделать, переставляя соответствующие строки матрицы коэффициентов и соответствующие компоненты вектора свободных членов. Подобную операцию можно и не выполнять, если ввести вспомогательный одномерный массив перестановок IOR. Первоначально в пункте 1 алгоритма его элементам IOR(k), $k=\overline{1,n}$, присваиваются исходные значения IOR(k)=k. Обратиться к элементу a_{kj} матрицы коэффициентов с привлечением массива перестановок, значит использовать элемент a[l,j], l=IOR(k), так как первоначально IOR(k)=k. Если IOR(k)=p, то обращение к элементам a[l,j], l=IOR[k], приводит к использованию коэффициентов p-го уравнения системы. Следовательно, вместо перестановок строк матрицы коэффициентов достаточно поменять местами IOR[k] и IOR[p]. Такой подход реализован в приведенном алгоритме при выборе ведущего элемента.

Выбор ведущего элемента по столбцу обеспечивает выполнение условия $a_{kk} \neq 0$, если матрица решаемой системы не вырождена. Сообщение IER=1 в пунктах 3 и 5 алгоритма свидетельствует о вырожденности матрицы.

Задание

- 1. Написать, отладить и исследовать на задачах (табл. 1.1), предложенных преподавателем, программу численного решения систем линейных алгебраических уравнений методом Гаусса с выбором главного элемента по столбцу.
- 2. Вычислить для каждой задачи вектор невязки (для этого до начала выполнения прямого хода Гаусса матрицу **A** и вектор **b** необходимо сохранить)

$$\mathbf{F} = \mathbf{A}\mathbf{x}^* - \mathbf{b}$$

и оценить его норму

$$d = \max_{1 \le i \le n} |F_i|.$$

Содержание электронного отчета

- 1. Текст программы.
- 2. Задачи, результаты их решения, вычисленные значения нормы вектора невязки.

Таблица 1.1

No		Матрица	Вектор b	
1	6	13	-17	2
	13	29	-38	4
	-17	-38	50	-5
2	1	2	1	1
	-1	-2	2	1
	0	1	1	2
3	2.30	5.70	-0.80	-6.49
	3.50	-2.70	5.30	19.20
	1.70	2.30	-1.80	-5.09
4	2.75	1.78	1.11	15.71
	3.28	0.71	1.15	43.78
	1.15	2.70	3.58	37.11
5	8.64	1.71	5.42	10.21
	-6.39	4.25	1.84	3.41
	4.21	7.92	-3.41	12.29
6	21.547	-95.510	-96.121	-49.930
	10.223	-91.065	-7.343	-12.465
	51.218	12.264	86.457	60.812
7	2.60	-4.50	-2.00	19.07
	3.00	3.00	4.30	3.21
	-6.00	3.50	3.00	-18.25
8	2.31	31.49	1.52	40.95
	4.21	22.42	3.85	30.24
	3.49	4.85	28.72	42.81
9	2.50	-3.00	4.60	-1.05
	-3.50	2.60	1.50	-14.46
	-6.50	-3.50	7.30	-17.73
10	0.14	0.24	-0.84	1.11
	1.07	-0.83	0.56	0.48
	0.64	0.43	-0.38	-0.83
11	2.74	-1.18	3.17	2.18
	1.12	0.83	-2.16	-1.15
	0.81	1.27	0.76	3.23
12	1.80	2.50	4.60	2.20
	3.10	2.30	-1.20	3.60
	4.51	-1.80	3.60	-1.70

Продолжение табл. 1.1

No		Матрица	коэффици	ентов А	Вектор b
13	2.0	1.0	-0.1	1.0	1.0
	0.4	0.5	4.0	-8.5	2.0
	0.3	-1.0	1.0	5.2	3.0
	1.0	0.2	2.5	-1.0	-1.0
14	2.21	3.65	1.69	6.99	-8.35
	8.30	2.62	4.10	1.90	-10.65
	3.92	8.45	7.78	2.46	12.21
	3.77	7.21	8.04	2.28	15.45
15	3.81	0.25	1.28	0.75	4.21
	2.25	1.32	4.58	0.49	6.47
	5.31	6.28	0.98	1.04	2.38
	9.39	2.45	3.35	2.28	10.48
16	7.90	5.60	5.70	-7.20	6.68
	8.50	-4.80	0.80	3.50	9.95
	4.30	4.20	-3.20	9.30	8.60
	3.20	-1.40	-8.90	3.30	1.00
17	0.1582	1.1675	0.1768	0.1871	1.6471
	0.1968	0.2071	1.2168	0.2271	1.7471
	0.2368	0.2471	0.2568	1.2671	1.8471
	1.1161	0.1254	0.1397	0.1490	1.5471
18	4.11	-1.26	-5.99	1.29	-0.75
	-1.26	2.00	4.00	0.00	1.08
	3.18	-1.97	0.49	-1.00	3.38
	1.29	3.81	-1.56	0.00	0.87
19	1	1	1	1	10
	1	2	-2	3	11
	2	0	1	0	5
	3	1	2	5	19
20	2	3	11	5	2
	1	1	5	2	1
	2	1	3	2	-3
	1	1	3	4	-3