งานประชุมวิชาการ และนวัตกรรม กฟภ. ปี 2564

Data Driven Business in Digital Utility Era ขับเคลื่อนธุรกิจด้วยฐานข้อมูลในยุค Digital Utility

การพัฒนาระบบจำหน่ายไฟฟ้าแรงต่ำด้วยการติดตั้งสาย Aerial Bundled Cable (ABC)

นายอนุวัตร อภิวัฒนานนท์ ¹, นายศุภกิจ บุญเรื่อง ², นายณัฐดนัย คงถวิลวงศ์ ³
¹กองวิศวกรรมระบบไฟฟ้า การไฟฟ้าส่วนภูมิภาค anuwat.api@pea.co.th
²กองวิศวกรรมระบบไฟฟ้า การไฟฟ้าส่วนภูมิภาค supphakit.boo@pea.co.th
³กองวิศวกรรมระบบไฟฟ้า การไฟฟ้าส่วนภูมิภาค natdanai.kon@pea.co.th

1. หัวข้อบทความ

ชื่อภาษาไทย : การพัฒนาระบบจำหน่ายไฟฟ้าแรงต่ำด้วยการติดตั้งสาย Aerial Bundled Cable (ABC) ชื่อภาษาอังกฤษ : Low Voltage Distribution System Development by Aerial Bundled Cable (ABC)

2. ที่มาและความสำคัญ

กองวิศวกรรมระบบไฟฟ้า (กวฟ.) มีหน้าที่ดำเนินการจัดทำแบบมาตรฐานการก่อสร้างระบบจำหน่ายไฟฟ้าแรงต่ำ ของ PEA โดยมุ่งเน้นให้ระบบไฟฟ้ามีความมั่นคง ปลอดภัย และเป็นระเบียบเรียบร้อย กวฟ. จึงได้จัดทำแผนงานพัฒนาและยกระดับ มาตรฐานการก่อสร้างระบบจำหน่ายไฟฟ้าแรงต่ำ โดยทำการทดลองติดตั้งสายชนิด Aerial Bundled Cable (ABC) ระบบจำหน่ายไฟฟ้าแรงต่ำ ซึ่งสาย ABC เป็นอุปกรณ์ที่มีใช้แพร่หลายในประเทศต่างๆ รวมทั้งประเทศเพื่อนบ้าน นอกจากนี้สาย ABC ยังสามารถ ใช้ได้กับทุกสภาพพื้นที่ และสภาพอากาศ การติดตั้งสาย ABC ในระบบจำหน่ายไฟฟ้าแรงต่ำสามารถลดปัญหาสายนิวทรัลในระบบ จำหน่ายขาดซึ่งทำให้ลดปัญหาแรงดันเกินในระบบไฟฟ้าของผู้ใช้ไฟฟ้า รวมทั้งการติดตั้งสาย ABC สามารถลดระยะห่างจากพื้นถึง ระบบจำหน่ายแรงต่ำ ทำให้เกิดความปลอดภัยต่อประชาชน, ระบบไฟฟ้า มีความเป็นระเบียบเรียบร้อย และเป็นภาพลักษณ์ที่ดี ต่อ PEA นอกจากนี้ในการทดลองติดตั้งดังกล่าวยังได้มีการจัดทำแบบมาตรฐาน ในรูปแบบ 3 มิติ เพื่อความสะดวกต่อผู้ปฏิบัติ ในการนำแบบมาตรฐานไปใช้อ้างอิงต่อไป

3. เนื้อหา และรายละเอียด

รูปที่ 1 การติดตั้งระบบจำหน่ายแรงต่ำในปัจจุบัน

ปัจจุบันการก่อสร้างระบบจำหน่ายไฟฟ้าแรงต่ำของ PEA ติดตั้งโดยใช้แร็คแรงต่ำจับยึดสายอะลูมิเนียมหุ้มฉนวน PVC ในแนวดิ่งบนเสาคอนกรีต ตามแบบมาตรฐาน "การติดตั้งแร็คแรงต่ำกับเสาคอนกรีต 9 เมตร สำหรับทางตรง 0 – 5 องศา และ ทางโค้ง 5 – 60 องศา" (การประกอบเลขที่ 0207)^[1] ซึ่งในบางพื้นที่หลังจากที่มีการก่อสร้างระบบจำหน่ายแรงต่ำไปแล้ว มีการ

ปรับปรุงยกระดับถนนเพิ่มเติม หรือในบางพื้นที่มีการพาดสายระบบจำหน่ายแรงต่ำข้ามถนน ทำให้อาจมีระยะห่างจากพื้นถนน ถึงระบบจำหน่ายแรงต่ำไม่เป็นไปตามมาตรฐาน อาจทำให้เกิดอันตรายต่อประชาชนทั่วไปได้ หรือในบางพื้นที่มีการติดตั้งสายสื่อสาร โทรคมนาคมร่วมกับระบบจำหน่ายแรงต่ำบนเสาไฟฟ้า อาจทำให้เกิดการสัมผัสระหว่างจุดเปลือยในระบบจำหน่ายแรงต่ำกับสาย สะพานของสายสื่อสารฯ เป็นเหตุให้เกิดเพลิงไหม้อยู่บ่อยครั้ง ต่อมา PEA มีการปรับปรุงระบบจำหน่ายแรงต่ำที่มีปัญหาระยะห่าง โดยใช้วิธีติดตั้งสายพันร่วมหลายสาย "(การประกอบเลขที่ 0304)^[2] และ ประกอบสายแรงต่ำตามแบบมาตรฐาน "การประกอบสายแรงต่ำเป็นสายพันร่วมหลายสาย "(การประกอบเลขที่ 9526)^[3] โดยใช้ สายนิวทรัลเป็นสายกลางและพันสายเฟสรอบสายนิวทรัลไปในทิศทางเดียวกัน การปรับรูปแบบการติดตั้งนี้เพื่อเพิ่มระยะห่างจาก พื้นถนนถึงระบบจำหน่ายแรงต่ำในบริเวณที่มีปัญหา แต่ยังพบปัญหาผิดพลาดในการลำดับเฟสแรงต่ำ เนื่องจากสายอะลูมิเนียม หุ้มฉนวนไม่ได้มีเครื่องหมายกำหนดลำดับเฟสไว้ และปัญหาความมั่นคงแข็งแรงของการติดตั้ง เนื่องจากสายหุ้มฉนวนไม่ได้ออกแบบ สำหรับการติดตั้งแบบพันร่วมหลายสาย

รูปที่ 2 ตัวอย่างแบบมาตรฐานการติดตั้งระบบจำหน่ายแรงต่ำ

จากปัญหาการติดตั้งที่มีอยู่ ทำให้ กองวิศวกรรมระบบไฟฟ้า (กวฟ.) จึงมีแนวคิดในการปรับปรุงและพัฒนา การติดตั้งให้มาตรฐานของ PEA เพื่อยกระดับความมั่นคงของระบบไฟฟ้า ซึ่งสาย ABC มีการใช้งานในหลายประเทศทั่วโลกและ ในภูมิภาคเอเชีย โดยการติดตั้งสาย ABC ในระบบจำหน่ายไฟฟ้าแรงต่ำมีข้อดีดังนี้

- การติดตั้งสาย ABC สามารถเพิ่มระยะห่างจากพื้นถนนถึงระบบจำหน่ายแรงต่ำได้
- การติดตั้งสาย ABC เป็นการลดจุดเปลือยในระบบจำหน่ายแรงต่ำ โดยใช้อุปกรณ์ IPC ติดตั้งร่วมด้วย
- การติดตั้งสาย ABC มีความมั่นคงแข็งแรงและความปลอดภัยเพิ่มขึ้น
- การติดตั้งสาย ABC มีการระบุสายเฟสและสายนิวทรัลชัดเจน ป้องกันการผิดพลาดในการติดตั้ง
- การติดตั้งสาย ABC มีโอกาสที่ทำให้สายนิวทรัลขาดมีน้อยลง

รูปที่ 3 Aerial Bundled Cable (ABC) Configuration

นอกจากนั้นได้ทำการศึกษาเพิ่มเติมการใช้งานสายเซอร์วิสดรอพซึ่งเป็นสาย ABC แรงต่ำ จากผู้ผลิตสายไฟ Phelps Dodge^[4] สายไฟฟ้าชนิดนี้เป็นสายอะลูมิเนียมรีดแข็งแบบตีเกลียวรวมศูนย์กลมอัดแน่น ฉนวนเป็นครอสลิงกด์พอลิเอทีลีน ชนิดเติมผงคาร์บอน และ/หรือวัสดุเติมเต็มอื่นๆอย่างน้อยร้อยละ 10 โดยน้ำหนัก การประกอบสายเฟสอย่างน้อย 1 เส้น ต้องพันรอบสายนิวทรัล โดย อัตราส่วนการตีเกลียวเท่ากับ 25 ถึง 60 เท่าของเส้นผ่านศูนย์กลางของตัวนำหุ้มฉนวน 1 เส้น มีทิศทางของเกลียวทางขวา

เพื่อเป็นการยกระดับมาตรฐานของ PEA และรองรับโหลดที่เพิ่มขึ้นของระบบจำหน่ายแรงต่ำในอนาคต การนำ สาย ABC แรงต่ำ เข้ามาใช้ในระบบจำหน่ายแรงต่ำของ PEA จึงต้องศึกษาเรื่องพิกัดการนำกระแสของสายไฟฟ้าเพิ่มเติม โดยสาย อะลูมิเนียมหุ้มฉนวน PVC เดิมของ PEA ขนาด 95 ตร.มม. สามารถนำกระแสได้ 210 A ซึ่งมีขนาดใหญ่ที่สุดที่ติดตั้งในระบบ นำมา เปรียบเทียบกับสาย ABC แรงต่ำที่เท่ากันขนาด 95 ตร.มม. ฉนวน PE สามารถนำกระแสได้ 209 A อ้างอิงจาก IEC 60502 & TNB Specification Current Rating at still wind, ambient temperature = 30°C^[5] สำหรับการรองรับโหลดที่เพิ่มขึ้นของระบบ จำหน่ายแรงต่ำในอนาคตอาจพิจารณาขนาดสายที่ใหญ่ขึ้นในลำดับถัดไป ขนาดสาย 120 ตร.มม. สามารถนำกระแสได้ 246 A

รูปที่ 4 Aerial Bundled Cable (ABC) Data

จากการศึกษา รวบรวมข้อมูล และประชุมหารือกับหน่วยงานที่เกี่ยวข้อง PEA จึงได้จัดทำสเปค "LV insulated Aerial Bundled Cables (ABC) for overhead distribution" สเปคเลขที่ RCBL-068/2563 สำหรับใช้ในโครงการทดลองติดตั้ง ตามความต้องการและความเหมาะสมสำหรับใช้ในพื้นที่ของ PEA เอง โดยกำหนดให้เป็นสายอะลูมิเนียมรีดแข็งแบบตีเกลียวรวมศูนย์ กลมอัดแน่น ฉนวนเป็นครอสลิงกด์พอลิเอทีลีน แต่ละสายมีการกำหนดการระบุสายไว้ โดยสายเฟสให้มีลิ่มที่ตัวสายตามลำดับเฟสยาว ตลอดทั้งสาย และสายนิวทรัลไม่มีลิ่มที่สายหรือทำเครื่องหมายสีขาวยาวตลอดทั้งสาย ขนาด 70, 95, 120 และ 150 ตร.มม.

รูปที่ 5 สเปคสาย ABC แรงต่ำ (สเปคเลขที่ RCBL-068/2563)

กองวิศวกรรมระบบไฟฟ้า (กวฟ.) ซึ่งมีหน้าที่กำหนดมาตรฐานการติดตั้งระบบไฟฟ้าของ PEA ได้ดำเนินการ ขออนุมัติหลักการนำสาย ABC มาใช้งานในระบบจำหน่ายแรงต่ำของ PEA [6] โดยให้ทดลองใช้งานในพื้นที่นำร่องตามความเหมาะสม และเพื่อให้โครงการทดลองติดตั้งสามารถดำเนินการได้อย่างเป็นรูปธรรม สามารถทำการทดลองติดตั้งได้อย่างถูกต้องตามมาตรฐาน ที่กำหนด และมองเห็นภาพการติดตั้งได้ชัดเจน กวฟ. จึงได้จัดทำแบบมาตรฐานการก่อสร้างระบบไฟฟ้า 3 มิติ ที่ใช้ในโครงการทดลอง ติดตั้งขึ้น เช่น การติดตั้งสาย ABC ทางตรง การติดตั้งสาย ABC ทางโค้ง และการติดตั้งสาย ABC สำหรับการต่อแยกสาย รวมถึง จัดทำแบบอุปกรณ์ประกอบ 3 มิติ ที่ใช้ประกอบติดตั้งทั้งหมด เช่น Hook Bolt, Suspension Clamp และ Tension Clamp ฯลฯ

รูปที่ 6 ตัวอย่างการติดตั้งสาย ABC และอุปกรณ์ประกอบต่างๆ

ตารางที่ 1 เปรียบเทียบข้อมูลระหว่างสายไฟฟ้าอะลูมิเนียม หุ้มฉนวน PVC กับ สาย ABC

รายละเอียด	รูปแบบการติดตั้งในปัจจุบัน	การติดตั้งรูปแบบใหม่
	(สายไฟฟ้าอะลูมิเนียม หุ้มฉนวน PVC)	(สาย ABC)
พิกัดกระแสสายไฟฟ้าขนาด 95 ตร.มม.	210	209* *IEC 60502 & TNB Specification Current Rating at still wind, ambient temperature = 30°C
ระยะห่างระหว่างสายไฟฟ้า กับสายสื่อสารโทรคมนาคม	ประมาณ 600 มิลลิเมตร 200 มม. 800 มม. 410 มม. สายอะลุมิเนียมทุ้มฉบวน สายสื่อสารีเทรคมบาคม	ประมาณ 1,200 มิลลิเมตร 200 มม. สาย AERIA BUNDELD CONDUCTOR 1,200 มม. สายสื่อสาร์โทรคมนาคม
รายละเอียดการติดตั้ง	ติดตั้งโดยใช้แร็คแรงต่ำ เรียงลำดับเฟสในแนวดิ่ง	สายเฟสพันรอบสายนิวทรัล ติดตั้งโดยใช้ แคล้มป์สำหรับแขวนสาย ABC
อุปกรณ์ประกอบการติดตั้ง	ลูกถ้วย ลูกรอก และแร็คแรงต่ำ	ใช้อุปกรณ์สำหรับแขวนสาย และอุปกรณ์จับยึด
ภาพการติดตั้ง		

4. ผลลัพธ์ / ประโยชน์ที่คาดว่าจะได้รับ

การติดตั้งสาย ABC ในระบบจำหน่ายแรงต่ำ เป็นการยกระดับมาตรฐานระบบไฟฟ้าของ PEA และเป็นทางเลือก ในการติดตั้งระบบจำหน่ายแรงต่ำในบริเวณที่มีข้อจำกัดในการติดตั้ง เพื่อเพิ่มความปลอดภัยและเป็นระเบียบเรียบร้อย ลดปัญหา นิวทรัลในระบบจำหน่ายขาด ลดระยะเวลาในการปฏิบัติงาน อีกทั้งยังสร้างทัศนียภาพและภาพลักษณ์ที่ดีให้กับ PEA

5. โอกาสในการขยายผล / การต่อยอด / การนำไปประยุกต์ใช้งาน

สาย ABC ที่นำมาติดตั้งในระบบจำหน่ายแรงต่ำ เป็นสายไฟฟ้าที่ใช้ในหลายประเทศทั่วโลก และในภูมิภาคเอเชีย รวมถึงอุปกรณ์ประกอบต่างๆ สามารถนำมาประยุกต์ใช้ในระบบจำหน่ายของ PEA ได้ ซึ่งเป็นทางเลือกในการติดตั้งระบบจำหน่าย แรงต่ำในบริเวณที่มีข้อจำกัดการติดตั้งในแต่ละพื้นที่ของ PEA ทั่วประเทศ ปรับได้ตามความต้องการของผู้ใช้ระบบไฟฟ้าในแต่ละพื้นที่ และสามารถต่อยอดพัฒนาแบบมาตรฐานการก่อสร้างระบบไฟฟ้า 3 มิติ ในแบบมาตรฐานอื่นๆของ PEAเพื่อให้แบบมาตรฐาน สามารถแสดงการประกอบติดตั้งอุปกรณ์และดูรายละเอียดเฉพาะจุดได้อย่างขัดเจน และก่อสร้างระบบจำหน่ายได้ถูกต้องตามแบบ มาตรฐาน พร้อมทั้งสามารถจัดทำรายการวัสดุอุปกรณ์ประกอบแบบมาตรฐานได้อย่างถูกต้องและรวดเร็ว

6. เอกสารอ้างอิง

- [1] แบบมาตรฐาน การติดตั้งแร็คแรงต่ำกับเสาคอนกรีต 9 เมตร สำหรับทางตรง 0 5 องศา และ ทางโค้ง 5 60 องศา (การประกอบ เลขที่ 0207)
- [2] แบบมาตรฐาน "การติดตั้งสายพันร่วมหลายสาย" (การประกอบเลขที่ 0304)

- [3] แบบมาตรฐาน "การประกอบสายแรงต่ำเป็นสายพันร่วมหลายสาย" (การประกอบเลขที่ 9526)
- [4] สเปคสายชนิด Aerial Bundled Cable (ABC) แรงต่ำ ของการไฟฟ้านครหลวงจากผู้ผลิตสายไฟ Phelps Dodge
- [5] IEC 60502 & TNB Specification Current Rating at still wind, ambient temperature = 30 $^{\circ}$ C
- [6] อนุมัติหลักการนำสาย Aerial Bundled Cable (ABC) มาใช้งานในระบบจำหน่ายแรงต่ำของ PEA

QR CODE ดาวน์โหลดเอกสารอ้างอิง