Suites numériques

Jérémy Meynier

Exercice 1

- 1. Déterminer $u_n/u_{n+1} = 4u_n + 3$ en fonction de u_0
- 2. Résoudre $u_{n+2} + 4u_{n+1} + 4u_n = 0$
- 3. Résoudre $u_{n+2} + 2u_{n+1} 3u_n = 0$
- 4. Résoudre $u_{n+2} + u_{n+1} + u_n = 0$

Exercice 2

Démontrer le théorème de Césaro : si
$$\lim_{n\to\infty}u_n=l$$
 alors $\lim_{n\to\infty}v_n=\frac{u_0+u_1+\cdots+u_n}{n+1}=l$

Exercice 3

Étudier la suite
$$(u_n)$$
 définie par
$$\begin{cases} u_0 = \frac{\pi}{2} \\ u_{n+1} = \sin(u_n) \end{cases}$$

Exercice 4

Soit a > 0, on considère $P_n : x \mapsto x^n + x^{n-1} + \dots + x - a$

- 1. Montrer que P_n a une seule racine strictement positive, que l'on note U_n .
- 2. Montrer que (U_n) est décroissante.
- 3. Montrer que (U_n) converge et calculer sa limite en fonction de a

Exercice 5

Soit
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n(t)$$

- 1. Montrer que $I_n = \int_0^{\frac{\pi}{2}} \cos^n(t)$, et $I_n > 0$
- 2. Montrer que $\forall n \in \mathbb{N}, I_{n+2} = \frac{n+1}{n+2}I_n$
- 3. Exprimer I_n à l'aide de factoriels pour n=2p et n=2p+1
- 4. Montrer que $(n+1)I_nI_{n+1} = \frac{\pi}{2}$ et $I_{n+2} \le I_{n+1} \le I_n$
- 5. Déterminer un équivalent de I_n