University of Bristol

COMS21103: Data Structures and Algorithms Problem Set 1

Problem 1: Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set.

Problem 2: Asymptotic notation properties

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

- 1. f(n) = O(g(n)) implies g(n) = O(f(n)).
- 2. $f(n) + g(n) = \Theta(\min(f(n), g(n)))$.
- 3. f(n) = O(g(n)) implies $\lg(f(n)) = O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.
- 4. f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$.
- 5. $f(n) = O((f(n))^2)$.
- 6. f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$.
- 7. $f(n) = \Theta(f(n/2))$.
- 8. $f(n) + o(f(n)) = \Theta(f(n))$.

Problem 3: Relative asymptotic growths

Indicate, for each pair of expressions (A,B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \geq 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	A	B	O	0	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}					
b.	n^k	c^n					
c.	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$					
e.	$n^{\lg c}$	$c^{\lg n}$					
f.	$\lg(n!)$	$\lg(n^n)$					