

Aptitude-Permutations-And-Combinations

? For more notes visit

https://rtpnotes.vercel.app

\equiv Reference Playlist

https://youtube.com/playlist?list=PL8p2I9GklV454LdGfDOw0KkNazKuA-6B2&feature=shared

- Aptitude-Permutations-And-Combinations
 - Basic Formula
 - Question 1
 - Question 2
 - Question 3
 - Question 4
 - Question 5
 - Question 6
 - Question 6
 - Question 7
 - Question 8
 - Question 9
 - Question 10
 - Question 11
 - Question 12

$$n! = n \times (n - 1) \times ... 3x 2 \times 1$$

$$nCr = \frac{n!}{(n-r)! r!}$$

$$nPr = \frac{n!}{(n-r)!}$$

Question 1

Find number of ways to arrange the word WATCH

- No of letters = 5
- No of ways to arrange = 5! = 5x4x3x2x1 = 120 ways

Question 2

Find number of ways to arrange the word ENGINEERING

- No of letters = 11
- Letters which are repeating
 - E 3
 - N 3
 - G 2
 - I 2
 - R 1
- 11! / 3! x 3! x 2! x 2!

Arrange DIGEST, such that Vowels are on the start and end

- Vowels in DIGEST = I and E
- We need to arrange DGST and I,E
 - DGST = 4!
 - IE = 2!
- When its AND
 - Multiply
- · When its OR
 - Add
- Here we need to arrange DGST AND IE
- So multiplying
 - 4! x 2! = 24
- 24 Ways of arranging

Question 4

Arrange DAUGHTER such that all vowels stay together

- Vowels in DAUGHTER
 - A,U,E
- Consonants in DAUGHTER
 - DGHTR
- A,U and E should be together
 - Consider it as one object
- DGHTR(Vowels)
 - There are 6 letters to arrange(Considering Vowels as one letter)
 - 6! ways to arrange
- AUE
 - 3! ways to arrange
- Total arrangements = 6! x 3!

RTPNOTES.vercel.app

Question 5

Arrange DAUGHTER such that all vowels should never be together

- Subtract Arrangements of DGHTR(Vowels) from no of arrangements in DAUGHTER
- 8! 6! x 3! = 40320 4320 = 36000

Question 6

In how many ways a committee of 6 members be selected from 7 men and 5 ladies, consisting of 4 men and 2 ladies

- · We need to select 4 from 7 men
 - => $^{7}C_{4}$
- · We need to select 2 from 5 ladies
 - => 5C_2
- Consisting of 4 men AND 2 ladies
 - · Since its AND, we need to multiply
- => $^{7}C_{4}$ x $^{5}C_{2}$ = 350

Question 6

A Box contains 2 white, 3 black and 4 red balls. In how many ways can 3 balls be drawn from the box if alteast 1 black ball is to be included in the draw

RTPNOTES.vercel.app

2 White balls

3 Black balls

4 Red balls

Three balls are drawn

Total possible combination

$$\Rightarrow$$
 9 P₃

Combination without black

$$\Rightarrow^2 C_2 \times^4 C_1 +^2 C_1 \times^4 C_2 +^4 C_3$$

The combination with atleast one black

$$\Rightarrow \frac{9 \times 8 \times 7}{3 \times 2 \times 1} - [1 \times 4 + 2 \times \frac{12}{2} + 4]$$

$$\Rightarrow 12(7) - [20]$$

$$\Rightarrow 84 - 20 = 64$$

64 Combination include atleast one black

Hence the correct answer is 64

Question 7

In an examination there are three multiple choice questions and each question has 4 choices. The number of ways in which a student can fail to get all answers correct is

Since each question has 4 options

i.e there are 4 choices or 4 ways to answer a question

 \therefore Number of ways to answer 3 questions is $4 \times 4 \times 4 = 64$

Out of 64 ways, there is only one way which has all the answer correct.

So, number of ways in which a student fails to get all answer correct is 64 – 1 = 63 ways.

Question 8

A committee of 5 members is to be formed out of 3 trainees, 4 professors and 6 research associates. In how many different ways can this be done, if the committee should have 4

professors and 1 research associate or all 3 trainees and 2 professor

Five members team with 4 professors and 1 research associate can be selected in

=
$$^4C_4 imes ^6C_1 = 1 imes 6 = 6 ways$$

Vive members team with 3 trainees and 2 professors can be selected

in =
$$^3C_2 imes ^4C_2 = 1 imes 6 = 6 ways$$

Total number of required ways = 6 + 6 = 12

Question 9

In how many different ways can the letters of the word 'DIRECTOR' be arranged so that the vowels are always together?

RTPNOTES.vercel.app

Question 10

Out of 5 women and 4 men, a committee of three members is to be formed in such a way that at least one member is a woman. In how many different ways can it be done?

If there are no restrictions, 3 members are to be selected from 9 people. so $9C3 \Rightarrow 84$

The number of ways of selecting all 3 members being men only from 4 men = 4 C 3 = 4

=> answer = 84 - 4 = 80

Question 11

There are 6 teachers. Out of them two are primary teachers, two are middle teachers and two are secondary teachers. They are to stand in a row, so as the primary teachers, middle teachers and secondary teachers are always in a set. The number of ways in which they can do so is?

There are 2 primary teacher.

They can stand in a row in $P(2, 2) = 2! = 2 \times 1$ ways = 2 ways.

There are 2 secondary teachers. They can stand in row in

 $P(2, 2) = 2! = 2 \times 1 \text{ ways} = 2 \text{ ways}.$

These three sets can be arranged in themselves in

 $3! = 3 \times 2 \times 1 = 6$ ways.

Hence the required number of ways $2 \times 2 \times 2 \times 6 = 48$.

Question 12

In how many ways can a cricket eleven be chosen out of 14 players?

• $^{14}C_{11}$