Differentiation 12

Find the derivatives of the following functions of x. 12.1

- (a) $x^2 + 4x + 2$ (b) $4x^3 2x^2 + 1$ (c) $x^9 + 7x^5 2x^4 + 3$ (d) $11x^{10} 10x^{11}$.

- 12.2 For each of the following expressions:
 - (i) multiply out the polynomials and differentiate the result with respect to x;
 - (ii) use the product rule to differentiate and then, by multiplying out, write the answer as a polynomial.

(The answers should be identical.)

- (a) $(x^2 + x)(2x 1)$ (b) $(2x^3 + 1)(x 1)$ (c) $(x^3 x + 1)(x^2 + 3x 1)$
- (d) $(x-1)(x^3+x^2+x+1)$.
- 12.3 Use the product rule to differentiate the following with respect to x (without simplifying the answer).

 - (a) $(x^2 x + 1)(x^2 + x + 1)$ (b) $(x^3 2x^2 + 1)(2x^4 x^2 + 5)$

 - (c) $(x^3 5x + 3)^2$ (d) $(3x^3 2x^2 + 1)(x^7 4x^5 + 2x^2 + 3)$.
- 12.4 Show by repeated application of the product rule that

(fgh)' = f'gh + fg'h + fgh'.

Hence find the derivatives with respect to x of

- (a) x(x+1)(x+3) (b) $(x+1)(x^2+2x+4)(x^3+3x^2+6x+9)$
- Find the derivatives of the following functions of x.

 - (a) $x^{-2} + 2x^{-4} 7x^{-5}$ (b) $x^3 3x^{-1} + \frac{1}{2}x^{-2}$ (c) $x^3 + x + \frac{1}{x} + \frac{1}{x^3}$

- (d) $1 \frac{2}{r^2} + \frac{4}{r^4} \frac{8}{r^8}$.
- 12.6 Use the quotient rule to differentiate the following functions of x.

7

- (a) $\frac{x-2}{x-3}$ (b) $\frac{2x+1}{3x+2}$ (c) $\frac{x^2-1}{x^2+1}$ (d) $\frac{x+1}{x^2+3x+6}$ (e) $\frac{x+1}{x^3}$ (f) $\frac{1-5x^4}{x+2}$ (g) $\frac{x}{x-1} \frac{1}{x+1}$ (h) $\frac{(x-2)(x+3)}{x+4}$.
- What is the rate of change of the circumference C of a circle with respect to the area A of the circle?
- 12.8 On what intervals is the function $y(x) = x^3 + 6x^2$ increasing and decreasing?

- 12.9 Show that if $f(x) = \frac{4x}{x^2 7}$ then $f'(x) \neq 0$ for all x for which f(x) is defined.
- 12.10 Use the chain rule to differentiate the following with respect to x (without simplifying your answers).

- (a) $(2x+1)^4$ (b) $(3-2x)^3$ (c) $(x^2+3x+1)^6$ (d) $(x^2+1+x^{-2})^{-1}$.
- 12.11 Find the derivatives with respect to x of the following expressions.
- (a) $2x^4 3x^{\frac{1}{2}}$ (b) $x^{\frac{4}{3}} + x^{\frac{2}{3}}$ (c) $2x^{\frac{5}{2}} + 4x^{\frac{3}{2}} + 6x^{\frac{1}{2}}$ (d) $x^{\frac{7}{2}} x^{\frac{3}{11}}$

- (e) $(2-3x)^{\frac{1}{3}}$ (f) $(5x+1)^{-\frac{1}{4}}$ (g) $\sqrt{x^2+2x}$ (h) $\frac{1}{\sqrt{x^2-x+6}}$
- 12.12 Find the derivatives with respect to x of
 - (a) $\left(x + \frac{1}{x}\right)^3$ (b) $\sqrt{2x^4 5x + 2}$ (c) $(x^{-1} x^{-2})^{-1/4}$ (d) $\left(\frac{2x^2 1}{x^3 + 3}\right)^{1/3}$

- (e) $\left(1+\sqrt{\frac{x-2}{3}}\right)^4$ (f) $\left(x+\left((3x)^5-2\right)^{-\frac{1}{2}}\right)^{-6}$.
- 12.13 Find the derivatives of csc, sec, and cot.
- 12.14 Find the derivatives with respect to x of
 - (a) $3\sin x$
- (b) $\sin 3x$

- (c) $\sin x^3$ (d) $\sin^3 x$ (e) $3\sin^3 3x^3$.
- 12.15 Find the derivatives with respect to x of

- (a) $3\cos x + 4\tan x$ (b) $\sin^2 x + \cos^2 x$ (c) $\sec(4x 3)$ (d) $x^2 \sec 5x$ (e) $\csc(\sqrt{x})$ (f) $\cot \frac{1}{2x + 1}$ (g) $\sin 3x \cos 5x$ (h) $\frac{\sin x}{x^2 + 1}$ (i) $\tan^3(2x^2 + 1)$ (j) $\frac{1}{1 + \sin x}$ (k) $\frac{1 + \sec x}{1 \sec x}$ (l) $\sqrt{x} \cos x$

- (m) $\sin(\sin x)$ (n) $\sin(\cos(\sin x))$ (o) $\sin\left(\frac{x}{\sin x}\right)$ (p) $\sin\left(\frac{x}{\sin\left(\frac{x}{x}\right)}\right)$.
- 12.16 Find the first, second and third derivatives with respect to x of

- (a) x^2 (b) x^8 (c) x^{-3} (d) $x^{-\frac{1}{2}}$ (e) $\frac{1}{x-3}$ (f) $\frac{1}{(2-3x)^2}$ (g) $\sqrt{x^2+1}$ (h) $\sin 3x$ (i) $\cos x^2$.

- 12.17 Let $f(x) = \tan x$. Prove that $f' = 1 + f^2$, $f'' = 2f(1 + f^2)$, and $f''' = 2(1+f^2)(1+3f^2).$

- 12.18 Let $u(t) = A\sin(\omega t + \phi)$. Determine k if u'' + ku = 0.
- 12.19 Let $f(x) = \sin(\sqrt{x})$, x > 0. Determine a and b if 4xf''(x) + af'(x) + bf(x) = 0. Why did we require x > 0 rather than $x \ge 0$ (the natural domain of f)?
- 12.20 Verify that, for x > 0, $u(x) = \frac{1}{\sqrt{x}} \sin x$ satisfies the equation $x^2 u''(x) + x u'(x) + \left(x^2 \frac{1}{4}\right) u(x) = 0.$
- 12.21 Prove by induction that for $f(x) = x^n$, $n \in \mathbb{N}$,
 - (a) $f^{(n+1)}(x) = 0$, (b) $f^{(n)}(x) = n!$ for all x.
- 12.22 Prove that the *n*th derivative of $f(x) = x^{-\frac{1}{2}}$ is $f^{(n)} = (-1)^n \frac{(2n)!}{2^{2n} n!} x^{-(n+\frac{1}{2})}$ $(n \in \mathbb{N})$.
- 12.23 Verify that $\frac{d \sin x}{dx} = \sin \left(x + \frac{\pi}{2}\right)$ and hence prove by induction that $\frac{d^n \sin x}{dx^n} = \sin \left(x + \frac{n\pi}{2}\right) \quad (n \in \mathbb{N}).$
- 12.24 From the result of 12.23 guess a similar formula for $\frac{d^n \cos x}{dx^n}$ and prove it by induction.
- 12.25 Find the derivatives of arccsc, arcsec, and arccot.
- 12.26 Find the derivatives with respect to x of
 - (a) $\arcsin 2x$; (b) $\arccos \frac{\bar{x}}{5}$; (c) $\arctan 7x$; (d) $\sqrt{\arctan(3x-2)}$;
 - (e) $x \arcsin x + \sqrt{1 x^2}$; (f) $\arccos(\sqrt{1 x^2})$, $0 \le x < 1$;
 - (g) $\arcsin(\cos x)$, $0 < x < \pi$; (h) $\arcsin(\cos x)$, $-\pi < x < 0$.
- 12.27 Suppose that $f^{(n)}$ and $g^{(n)}$ exist. Prove that $(f \cdot g)^{(n)}(a) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(a) \cdot g^{(n-k)}(a)$. (This is sometimes called the general Leibniz rule.)
- 12.28 Prove that it is impossible to have x = f(x)g(x) where f and g are differentiable and f(0) = g(0) = 0. (Hint: differentiate.)
- 12.29 Suppose that f(x) = xg(x) for some function g that is continuous at 0. Prove that f is differentiable at 0, and find f'(0) in terms of g.

12.30 Suppose that f is differentiable at 0 and that f(0) = 0.

Prove that f(x) = xg(x) for some function g which is continuous at 0.

(Hint: define g(x) = f(x)/x for $x \neq 0$ and find a suitable value for g(0).)