Dept. Electrical and Computer Engineering

The University of British Columbia

EECE560 Network Analysis and Simulation January 2021

Instructor: Dr. J. R. Martí

ASSIGNMENT No. 5

Due Date: 15 March 2021

Rational Fitting of Transmission Line Functions

In this assignment we will use Bode's asymptotic tracing technique to find a rational function approximations to for a transmission line characteristic impedance function $Z_c(\omega)$. Use the data in the Data_Assign04.txt file of Assignment 4 for the zero sequence mode. To increase the frequency resolution for a better fit, it is suggested to create 10 points per decade by interpolation of the given data points.

- 1. Find a rational function fit of $Z_c(\omega)$ using only four poles, for the frequency range from 10^{-1} Hz to 10^7 Hz.
- 2. Compare the magnitude fit and the phase angle fit. Plot the original function and the rational approximation on the same graph.
- 3. Obtain the network synthesis of $Z_c(\omega)$ in terms of series blocks of parallel RC branches. Calculate the values of the R's and the C's of these branches.
- 4. Comment on your results:
 - (a) Comment on the magnitude fit and the phase fit.
 - (b) What strategy did you use to obtain a good fit?
 - (c) Do you have any suggestions on how the procedure could be improved so that you could get a better fit with the same number of poles and zeroes?
 - (d) Other comments?