Chapter 1 from Sipser

Examples of DFA's

Language recognized by this automaton: $\{w|w \text{ contains at least one 1 and an even} \\ \text{ number of 0s follow the last 1}\}$

A finite automaton for C-style comments

2

A finite automaton for floating point numbers

Definition 1.1

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where,

- 1. Q is a finite set called the **states**
- 2. Σ is a finite set called the **alphabet**
- 3. $\delta: Q \times \Sigma \to Q$ is the transformation function
- 4. $q_0 \in Q$ is the **start state**
- 5. $F \subseteq Q$ is the **set of accept states**.

3

Definition 1.10

Let A and B be languages. We define the regular operations **union**, **concatenation**, and **star**.

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$

5

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- 1. Q is a finite set of states
- 2. Σ is a finite alphabet
- 3. $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ is the transition function
- 4. $q_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states

Theorem 1.12

The class of regular languages is closed under the union operation, i.e. if A_1 and A_2 are regular languages, then $A_1 \cup A_2$ is also a regular language.

Proof:

Let M_1 recognize A_1 where

 $A_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and M_2 recognize A_2 where

 $A_2=(Q_2,\Sigma,\delta_1,q_2,F_2).$ An automaton $M=(Q,\Sigma,\delta,q_0,F)$ that recognizes $A_1\cup A_2$ is constructed as follows:

- $\bullet \ Q = Q_1 \times Q_2$
- $q_0 = (q_1, q_2)$
- $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

6

Theorem 1.19 Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof Let $N=(Q,\Sigma,\delta,q_0,F)$ be a NFA recognizing some language A. We construct a DFA $M=(Q',\Sigma,\delta',q'_0,F')$ also recognizing A.

- 1. $Q' = \mathcal{P}(Q)$
- 2. For $R\subseteq Q$ let $E(R)=\{q|q \text{ can be reached from }R \text{ by traveling along 0 or more }\varepsilon \text{ arrows }\}.$

Then

$$\delta'(R,a) = \bigcup_{r \in R} E(\delta(r,a))$$

- 3. $q_0' = E(\{q_0\})$
- 4. $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$

Corollary 1.20 p56 A language is regular if and only if some nondeterministic finite automaton recognizes it.

Theorem 1.22 (Alternative proof to Theorem 1.19) The class of regular languages is closed under union.

Proof:

9

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ recognize A_1 and let $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ recognize $A_2.$ Construct $N=(Q,\Sigma,\delta,q_0,F)$ to recognize $A_1\cup A_2$

- 1. $Q = \{q_0\} \cup Q_1 \cup Q_2$
- 2. The new state q_0 is the start state of N.
- 3. The accept states are $F = F_1 \cup F_2$
- 4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{arepsilon}$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \\ \delta_2(q,a) & q \in Q_2 \\ \{q_1,q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

10

Theorem 1.23 The class of regular languages is closed under concatenation.

Proof:

$$\begin{split} N_1 &= (Q_1, \Sigma, \delta_1, q_1, F_1) \text{ recognize } A_1 \text{ and } N_2 = \\ (Q_2, \Sigma, \delta_2, q_2, F_2) \text{ recognize } A_2. \text{ Construct } N = \\ (Q, \Sigma, \delta, q_1, F_2) \text{ to recognize } A_1 \circ A_2 \end{split}$$

- 1. $Q = Q_1 \cup Q_2$
- 2. The start state q_1 is the same as the start state of N_1 .
- 3. The accept states are the same as the accept states of N_2 .
- 4. Define δ so that for any $q\in Q$ and any $a\in \Sigma_{\varepsilon}$

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a) & q \in Q_1 \text{ and } q \not \in F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q,a) & q \in Q_2 \end{array} \right.$$

Theorem 1.24 The class of regular languages is closed under the star operation.

Proof

13

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ recognize A_1 and construct $N=(Q,\Sigma,\delta,q_0,F)$ to recognize A_1^* .

- 1. $Q=\{q_0\}\cup Q_1$ i.e. the states of Q are the same as the states of Q_1 plus a new start state.
- 2. The new state q_0 is the start state of N.
- 3. $F = \{q_0\} \cup F_1$
- 4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{arepsilon}$

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a) & q \in Q_1 \text{ and } q \not \in F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{array} \right.$$

14

Definition 1.26

R is a regular expression if R is

- 1. a for some a in the alphabet Σ
- 2. ε
- 3. ∅
- 4. $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions
- 5. $(R_1 \circ R_2)$ where R_1 and R_2 are regular expressions
- 6. (R_1^*) where R_1 is a regular expression

Example

A numerical constant that may inlude a fractional part:

$$\{+, -, \varepsilon\}(DD^* \cup DD^*.D^* \cup D^*.DD^*)$$
 where $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

Examples of generated strings: 72, 3.14159, +7., -.01

Example 1.27

 $\Sigma = \{0,1\}$

7. $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w|w \text{ starts and ends with the same symbol}\}$

8.
$$(0 \cup \varepsilon)1^* = 01^* \cup 1^*$$

9.
$$(0 \cup \varepsilon)(1 \cup \varepsilon) = \{\varepsilon, 0, 1, 01\}$$

10.
$$1^*\emptyset = \emptyset$$

11.
$$\emptyset^* = \{\varepsilon\}$$

17

Lemma 1.29 If a language is described by a regular expression, then it is regular.

Proof: We consider the six cases in the formal definition of regular expressions.

1. R = a for some $a \in \Sigma$. Then $L(R) = \{a\}$ and the following NFA recognizes L(R):

2. $R=\varepsilon$. Then $L(R)=\{\varepsilon\}$ and the following NFA recognizes L(R):

Exercise 1.13 p 86

 $\Sigma = \{0, 1\}$

- (a) $\{w|w \text{ begins with a 1 and ends with a 0}\}$ $\mathbf{1}\Sigma^*\mathbf{0}$
- (b) $\{w|w \text{ contains at least three 1s}\}$ $\Sigma^*1\Sigma^*1\Sigma^*1\Sigma^*$
- (e) $\{w|w \text{ starts with 0 and has odd length,}$ or start with a 1 and has even length} $0(\Sigma\Sigma)^* \cup 1\Sigma(\Sigma\Sigma)^*$

18

3. $R = \emptyset$. Then $L(R) = \emptyset$ and the following NFA recognizes L(R):

- 4. $R = R_1 \cup R_2$
- 5. $R = R_1 \circ R_2$
- 6. $R = R_1^*$

For 4,5 and 6 we convert R_1 and R_2 to NFA's and then use the appropriate construction to combine these outomata or to obtain an automata recognizing $L(R_1^*)$.

Theorem 1.28 A language is regular if and only if some regular expression describes it.

Last time: regular expression \rightarrow NFA This time: NFA \rightarrow regular expression.

We will use a new type of automaton, a generalized nondeterministic finite automaton (GNFA).

A GNFA is a NFA where we use regular expressions as labels on the arrows.

21

A summary of the conversion process:

- Add new begin state with an ε arrow from the new begin state to the old begin state.
- Add a new accept state and ε arrow(s) from the old accept state(s) to the new accept state.
- Select a state (not the new start or accept state) to be ripped (call it q_{rip}). For each pair of states q_i and q_j (may be the same state) with arrows from q_i to q_{rip} and q_{rip} to q_j do the following:

22

• Stop ripping states if only the begin state and end state are left.

Section 1.4 The pumping Lemma

We use the pumping lemma to show that a language is **not** regular.

Theorem 1.37 - The Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s=xyz, satisfying the following three conditions:

- 1. for each $i \geq 0$, $xy^iz \in A$
- 2. |y| > 0 and
- 3. $|xy| \le p$.

Proof: Let M be a DFA recognizing A. Let p be the number of states in M.

Let $s=s_1s_2...s_k$ be any string in A of length $k\geq p$. Let $r_0,r_1...,r_k$ be the states visited in the DFA under the input s.

Note that r_0 is the start state and r_k is an accept state.

Since M has only p states, we have that $r_i=r_j$ for some i< j. Pick the smallest i and j for which this is true.

Let $x=s_1...s_i$, $y=s_{i+1}...s_j$, and $z=s_{j+1}...s_k$. Notice that x,y and z will have the required properties.

26

How do we use the pumping lemma?

Let A be a language. We want to show that A is **not** regular.

- 1. Assume that A regular. Thus we give a proof by contradiction that A is not regular.
- 2. Let p be the pumping length.
- 3. Pick a string s in A of length at least p of a given form. This is the hard part.
- 4. Show that for **any possible way** of writing s as xyz, where x,y and z satisfy requirents 2 and 3 of the pumping lemma, it is always possible to find an i such that xy^iz is not in A
- 5. We conclude by contradiction that A is not regular.

Example 1.38

Show that $A = \{0^n 1^n | n \ge 0\}$ is not regular.

Assume that \boldsymbol{A} is regular and let \boldsymbol{p} be the pumping length.

Let $s = 0^p 1^p$. Note that $|s| = 2p \ge p$.

From the pumping lemma we can write s as xyz such that

- 1. for each $i \geq 0$, $xy^iz \in A$
- 2. |y| > 0 and
- 3. $|xy| \le p$.

Note that y can not contain 0's and 1's, otherwise $xy^2z \notin A$, since the order of the 0's and 1's are not correct in xy^2z . (In this case we pumped up - i.e. we selected $i \ge 2$. Choosing i = 0 is referred to as pumping down.)

Also note that if y contains only 0's, $xy^2z \notin A$, since xy^2z has more 0's than 1's. We get a similar contradiction if y contains only 1's.

We notice for any possible way of dividing s into xyz according to rules 2 and 3 of the pumping lemma, we can always pump up and obtain a string not in A.

Thus by contradiction we conclude that \boldsymbol{A} is not regular.

29

Let |y|=s>0. Then $xy^iz\in A$ for all $i\geq 0$, i.e. (p^2-is) is a square for all $i\geq 0$. Thus $p^2-s,p^2,p^2+s,p^2+2s,...$ are all squares. This is not possible, since the distance between squares gets bigger and bigger $((a+1)^2-a=2a+1\to\infty \text{ as }a\to\infty)$.

We notice that for any possible way of dividing s into xyz according to rules 2 and 3 of the pumping lemma, we can always pump up and obtain a string not in A.

Thus by contradiction we conclude that \boldsymbol{A} is not regular.

Example 1.41

Show that $A = \{1^{n^2} | n \ge 0\}$ is not regular.

Assume that \boldsymbol{A} is regular and let \boldsymbol{p} be the pumping length.

Let
$$s = 1^{p^2}$$
. Note that $|s| = p^2 \ge p$.

From the pumping lemma we can write s as xyz such that

1. for each
$$i \geq 0$$
, $xy^iz \in A$

2.
$$|y| > 0$$
 and

3.
$$|xy| \le p$$
.

30

Exercise 1.17a Show that $A = \{0^n1^n2^n|n \ge 0\}$ is not regular.

Assume that A is regular and let p be the pumping length.

Let
$$s = 0^p 1^p 2^p$$
. Note that $|s| = 3p \ge p$.

From the pumping lemma we can write s as xyz such that

1. for each
$$i \geq 0$$
, $xy^iz \in A$

2.
$$|y| > 0$$
 and

3.
$$|xy| \le p$$
.

Note that y can not contain more than one type of symbol (for example 0's and 1's), otherwise $xy^2z \notin A$, since the order of the symbols will not be correct in xy^2z . (In this case we pumped up - i.e. we selected $i \geq 2$. Choosing i = 0 is referred to as pumping down.)

Also note that if y contains only 0's, $xy^0z \notin A$, since xy^0z has less 0's than 1's (I pumped down just for the fun of it - pumping up also works). We get a similar contradiction if y contains only 1's or only 2's.

We notice for any possible way of dividing s into xyz according to rules 2 and 3 of the pumping lemma, we can always pump up or down and obtain a string not in A.

Thus by contradiction we conclude that A is not regular.

33

Language recognized by both automata: $\{a,b\} \cup \{\text{strings of length 3 or greater}\}$

In the first automaton, states 3 and 4 are equivalent, since they both go to state 5 under both input symbols.

Once we collapse them, we can collapse states 1 and 2 for the same reason, giving the second automaton.

State 0, becomes state 6; states 1 and 2 collapse to become state 7; states 3 and 4 collapse to become state 8; state 5 becomes state 9.

DFA STATE MINIMIZATION

This material is not from Sipser.

EXAMPLE 1

34

Here is the collapse algorithm that works in general.

If state p and q are equivalent, denoted by $p \equiv q$, they are collapsed to the same state.

- 1. Write down a table of all pairs, initially all unmarked.
- 2. Mark $\{p,q\}$ if $p \in F$ and $q \notin F$ and vice versa.
- 3. Repeat the following untill no more changes occur: if there exists an unmarked pair $\{p,q\}$ such

that $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a\in\Sigma$, then mark $\{p,q\}$.

4. When done, $p \equiv q$ if and only if $\{p,q\}$ is not marked.

In the first step, all pairs are unmarked.

After step 2, all pairs consisting of one accept state and one nonaccept have been marked.

37

Under input b, $\{0,3\} \rightarrow \{2,5\}$, which is not marked, so we still don't mark $\{0,3\}$.

We then look at unmarked pairs $\{0,4\}$ and $\{1,2\}$ and find that we cannot mark them yet for the same reasons.

But for $\{1,5\}$ under input a, $\{1,5\} \rightarrow \{3,5\}$, and $\{3,5\}$ is marked. So we mark $\{1,5\}$.

Similarly, under input a, $\{2,5\} \rightarrow \{4,5\}$, which is marked, so we mark $\{2,5\}$.

Under both input a and b, $\{3,4\} \rightarrow \{5,5\}$, which is never marked (it is not even in the table), so we don't mark $\{3,4\}$.

Now look at an unmarked pair, say $\{0,3\}$.

Under input a, 0 and 3 go to 1 and 5 respectively ($\{0,3\} \rightarrow \{1,5\}$).

The pair $\{1,5\}$ is not marked, so we don't mark $\{0,3\}$, at least not yet.

After the first pass of step 3, the table looks like:

Now we make another pass through the table.

As before, $\{0,3\} \rightarrow \{1,5\}$ under input a, but this time $\{1,5\}$ is marked, so we mark $\{0,3\}$.

Similarly, $\{0,4\} \rightarrow \{2,5\}$ under input b, and $\{2,5\}$ is marked, so we mark $\{0,4\}$.

41

EXAMPLE 2

Repeat the previous procedure for the following example:

DFA MINIMIZED

43

This gives:

Now we check the remaining unmarked pairs and find out that $\{1,2\} \rightarrow \{3,4\}$ and $\{3,4\} \rightarrow \{5,5\}$ under both a and b, and neither $\{3,4\}$ nor $\{5,5\}$ is marked, so there are no new marks.

We are left with unmarked pairs $\{1,2\}$ and $\{3,4\}$, indicating that $1 \equiv 2$ and $3 \equiv 4$, thus 1 and 2 are collapsed to one state, and similarly 3 and 4. This is the same result as before.

42

Make sure you end up with:

Thus $0 \equiv 3$, $1 \equiv 4$, $2 \equiv 5$. So there are 3 states in the minimized DFA.