

5XICO Electronic-Systems Engineering

Twan Basten, Martijn Hendriks

Electrical Engineering

modules

ES ELECTRONIC SYSTEMS

M6c – SysML blocks part 3

5XICO Electronic-Systems Engineering

Martijn Hendriks

Slides in part based on a slide set of Kees Goossens and Dip Goswami

parametric diagram

in this lecture

modeling design alternatives

modeling measures of effectiveness (moes)

- constraint blocks
- parameteric diagrams

ES ELECTRONIC SYSTEMS TU/e

a simplified² MBSE method

- SysML package diagram
- 2. stakeholders SysML UC diagrams, UC descriptions measures of effectiveness (moes)
- SysML requirement diagrams
- 4. create multiple alternatives
 - SysML BDDs system decomposition
 - SysML IBDs interconnections
 - SysML Activity diagrams UC refinements
 - SysML Allocations activities to blocks
- 5. requirements tracking
 - SysML Allocation reqs to blocks/activities
- 6. SysML PAR diagrams covering all moes
 - POOSL models makespan
 - analytical model profit
 - verification

think – pair – share

how to model structural design alternatives?

- specialization (BDDs)
 - add features
 - redefine features
 - restrict multiplicity
 - restrict type
 - add or change default value
- structural variation
 - composite or reference association (BDDs)
 - multiplicities (BDDs)
 - connections between parts (IBDs)

SysML – running example

A vehicle has a power train as one of its components. This power train can have a combustion engine, hybrid engine, or be fully electric. A hybrid power train has a single electric engine, and a fully electric one can have two or four (electric) engines. A combustion engine needs a fuel tank, and cars with an electric engine need a battery pack. Finally, we have 4 and 6-cylinder combustion engines.

Direct fuel

sources: motorola, aa1car.com

SysML – modeling design alternatives

3 classification hierarchies

SysML – modeling design alternatives

«Block»

think - pair - share

how many vehicle configurations are specified here

a simplified² MBSE method

- SysML package diagram
- 2. stakeholders SysML UC diagrams, UC descriptions measures of effectiveness (moes)
- SysML requirement diagrams
- 4. create multiple alternatives
 - SysML BDDs system decomposition
 - SysML IBDs interconnections
 - SysML Activity diagrams UC refinements
 - SysML Allocations activities to blocks
- 5. requirements tracking
 - SysML Allocation reqs to blocks/activities
- 6. SysML PAR diagrams covering all moes
 - POOSL models makespan
 - analytical model profit
 - verification

SysML – diagram overview

diagrams are views on the model (i.e., on a subset of model elements)

M6c - SysML blocks

SysML – measures of effectiveness (moes)

SysML – running example

Vehicle range depends on the average fuel consumption, and on the capacity of the fuel tank. Average fuel consumption is determined by the consumption in the city and by the consumption on the highway, and by the usage scenario (i.e., the ratio between city and highway usage).

sources: motorola, aa1car.com

Electrically assisted power steering

Steer-by-wire

Electric throttle

valve control

think – pair – share

what are the two expressions that relate

- range
- fuelCapacity
- cityConsumption
- highwayConsumption
- ratio
- averageConsumption

Vehicle range depends on the average fuel consumption, and on the capacity of the fuel tank. Average fuel consumption is determined by the consumption in the city and by the consumption on the highway, and by the usage scenario (i.e., the ratio between city and highway usage).

SysML – parametrics – model elements

constraint blocks

- constraint property (equivalent to a part)
 - expression as a text string using a domain-specific expression language (Java, C, MATLAB, ...)
- constraint parameter
 - appears in a constraint property
 - can be bound to other parameters and to (value) properties of the block (binding connector)
 - typically, constraint parameters are value types

constraint blocks can be composed (e.g., on a bdd)

 use composite association to build more complex constraints **bdd** [package] Parametrics [Range analysis] <<ConstraintBlock>> **FuelConsumption** constraints avgCons = ratio * cityC + (1-ratio) * hwC parameters avgCons: Real[1] ratio: Real[1] cityC: Real[1] hwC: Real[1]

SysML – constraint modeling with a bdd

SysML – parametric diagram (an IBD of a ConstraintBlock)

ES ELECTRONIC SYSTEMS TU

SysML – parametrics – recommended reading

Chapter 8, except 8.6 - 8.9

SysML – measures of effectiveness (moes)

SysML – constraint modeling with a bdd

ES ELECTRONIC SYSTEMS TU

SysML – parametric diagram for trade analysis

ES ELECTRONIC SYSTEMS

SysML – parametric diagram for trade analysis

optimization - a Pareto space

multiple objectives, e.g. time and energy

SysML – diagram overview

diagrams are views on the model (i.e., on a subset of model elements)

M6c - SysML blocks

modules

to remember

modeling of structural design alternatives constraint blocks are special blocks with

- constraint properties
- constraint parameters

parametric diagram (special ibd) to specify the analysis of moes

connects constraint properties

Papyrus model feedback

- deadline next Monday
- one model per group
- via Canvas; see instructions how to submit the model

ES ELECTRONIC SYSTEMS TU