# I: Digital Processing and Binary Arithmetic

# 1: Digital Processing

# 1.1: Analogue and Digital Signal



The microprocessor can convert the Analogue Signal to Digital Signal.

#### 1.1.1: The Analogue Signal

- Analogue signal means the signal which can form continuous function of time.
- The voltage, current, displacement and such physical quantities are **Analogue Signal**.

#### 1.1.2: The Digital Signal

It is the digital from of a sequence of of discrete values.

- Discrete means not continuous, which only have values at samples.
- ullet In most digital circuits, the signal only have two values which is called binary signal or logic signal.

## 1.2: The construction of processor



# 2: Binary Arithmetic

## 2.1: Binary Addition

- 1 + 1 = 10
- 1+1+1=11

## 2.2: Binary-Decimal Conversion

• Binary to Decimal:

1 0 1 1 0 1 0 1 1 x 2<sup>7</sup> 0 x 2<sup>6</sup> 1 x 2<sup>5</sup> 1 x 2<sup>4</sup> 0 x 2<sup>3</sup> 1 x 2<sup>2</sup> 0 x 2<sup>1</sup> 1 x 2<sup>0</sup> 1x128 0x64 1x32 1x16 0x8 1x4 0x2 1x1 which added together give 181 (decimal)

- · Decimal to Binary:
  - Use the short-division.

0

-

0

.

### 3: Hexadecimal Arithmetic

## 3.1: The reason why we use Hexadecimal

- The expression of binary numbers is too long to use.
- 4 digits of Binary = 1 digit of Hexadecimal

## 3.2: Binary-Hexadecimal conversion

| Binary | Hexadecimal |
|--------|-------------|
| 0000   | 0           |
| 0001   | 1           |
| 0010   | 2           |
| 0011   | 3           |
| 0100   | 4           |
| 0101   | 5           |
| 0110   | 6           |
| 0111   | 7           |
| 1000   | 8           |
| 1001   | 9           |
| 1010   | Α           |
| 1011   | В           |
| 1100   | С           |
| 1101   | D           |
| 1110   | E           |
| 1111   | F           |

# 4: Negative numbers and Subtraction

# 4.1: The Expression of Subtraction

- It is difficult to do the subtraction, so we use the way of **complementing** to do the subtraction and minus number.
- For the binary, we use the 2's complement arithmetic.
- The substation **a-b** can be expressed as **a+(the complement of b)+1**.

- For the example of decimal, such as 215-145, we can use the compliment of 145, which is 999-145+1=855 (No carried number). Then the result will be 215+855=1070, then if we **omit the carry**, it will be 070.
- For the example of binary, we can simply **invert** the number then **plus 1**, and we should **ignore** the carry out of the highest digit.
- Such as 01101100-00101101, we can first change 00101101 to 11010011. Then the result will be 01101100+11010011=001111111, which ignore the carry out of the highest digit.

#### 4.2: The way processing minus numbers in computers

- In computer, we use the 2's complement to express a number 's minus value.
- The minus number will be marked as **signed number** while the positive number will be **unsigned**.
- For example, in binary, if the number is marked as unsigned, 10010001 will means 145.
- However, if the value is marked as signed, 10010001 will means -111.

# II: Combinational Logic: Introduction

# 1: The Boolean Operation: AND

• If we A+B in binary and 'C' means carry out, 'S' means sum in the digit.

.

| A B | CS  |
|-----|-----|
| 0 0 | 0 0 |
| 0 1 | 0 1 |
| 10  | 0 1 |
| 11  | 1 0 |

- From the 'C' result of the binary truth table, if '0' means 'false' and '1' means 'true', we can define the operator 'AND'.
- AND can be expressed as  ${\cal C}=A.B.$
- Only if both input A and B are '1', the output C = 1.

•



• Logic 1 can also means VCC and logic 0 means 0 V (the ground).

# 2: The Boolean Operation: OR

• The operation **OR** is expressed as Z=X+Y, if there is one or two '1' in the input, the input will be '1'.





# 3: The Boolean Operation: NOT

• It can invert the input '1' to '0' and '0' to '1'.





# 4: The Boolean Operation: OR-EXCLUSIVE

• Only if the input is '1' and '0', not all '1', then the output will be '1'.

•

$$Z = A + B$$

| Α | В | Z |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

- This operator can give the one-digit sum of the input.
- The only difference between EXCLUSIVE-OR and AND is the '1' '1' condition.

# 5: The Boolean Operation: NAND

NAND

$$Z = A \cdot B$$



| Α | В | Z |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

• It is the invert of the AND.

# 6: The Boolean Operation: NOR

$$Z = A + B$$



| Α | В | Z |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

- The inverse of OR.
- Only one of the input is '1' then the output will be '0'.

# 7: The half adder and full adder

#### 7.1: The Half adder

• The half adder use EX-OR to produce sum and another AND to produce the carry out.



#### 7.2: The Full adder

- In addition of the half adder, the full adder can accept the carry out from the previous digit.
- The EX-OR can be used to process the sum in one digit.
- Three AND gates are used to justify whether there is a carry out during the calculation.
- The final OR gates can be used to analysis the result of the AND gates. IF one of them is '1', it will produce a '1' as the carry out to  $C_{out}1$ .



# III: Combinational Boolean Algebra

# 1: The way to simplify the gates

- Truth tables can be used to simplify the gates.
- ullet The second method to simplify is to write the **Boolean Expression**. Such as  $Z=XY+ar{W}$

# 2: The Boolean Algebra

#### 2.1: Distribution Theorem

- A.(B+C) = A.B + A.C
- A + (B.C) = (A + B).(A + C)

### 2.2: Complement Theorem

- $A + \bar{A} = 1$
- $A.\bar{A} = 0$

## 2.3: Redundancy Theorem

- A.B + A = A
- A.(A+B) = A

### 2.4: De Morgan's Law

- $A + B = \bar{A}.\bar{B}$
- $A.B = \bar{A} + \bar{B}$
- It is noted that the operation  $A\ \bar{+}\ B$  means the invert of both **A,B** and **the OR operation**.
- For example, the expression  $X=(C.\bar{D)}+E$ , can be simplified to  $X=(\bar{C.D}).\bar{E}$ , then will be  $X=(\bar{C}+\bar{D}).\bar{E}$

#### 2.5: Commutation Law

- $\bullet \ A+B=B+A$
- A.B = B.A

#### 2.6: Association Law

- (A+B)+C=A+B+C=A+B+C
- (A.B).C = A.(B.C) = A.B.C
- Noted that it does not apply when a expression contain both AND and OR, such as  $(A.B)+C \ / = A.(B+C)$

## 2.7: Idempotency Law

- A + A = A
- A.A = A
- Idempotency means the multiple manipulations have same effect as the first manipulation.