全 主讲人:邓哲也

- · SPFA算法在实现时,需要用到以下四个数组:
- (1) dist[n] 数组存着当前源点到每个点的最短路。
- (2) path[n] 数组的含义同 dijkstra 算法中的 path 数组。
- (3) Q[] 队列数组存放待更新的节点。
- (4) inQ[n] 数组表示当前这个点是否在队列里。

• 下面就利用这张图,来看看 SPFA 算法的执行过程吧!

	S	t	X	y	Z
dist	0	∞	∞	∞	∞
path	-1	-1	-1	-1	-1
inQ	1	0	0	0	0

• 首先把 s 入队。

当前队列: s

	S	t	X	y	${f z}$
dist	<u>0</u>	∞	∞	∞	∞
path	-1	-1	-1	-1	-1
inQ	<u>1</u>	0	0	0	0

• 从队列中取出头元素 s,松弛 \s, t >, \s, y >都成功。

当前队列: t, y

	S	t	X	у	Z
dist	0	<u>6</u>	∞	<u>7</u>	∞
path	-1	<u>s</u>	-1	<u>s</u>	-1
inQ	<u>0</u>	<u>1</u>	0	<u>1</u>	0

- 取出队头元素 t, 松弛 <t, x>, <t, z> 成功,将 x、z 加入队列
- 松弛 <t, y> 失败。

当前队列: y, x, z

	S	t	X	у	Z
dist	0	6	<u>11</u>	7	<u>2</u>
path	-1	S	<u>t</u>	S	<u>t</u>
inQ	0	<u>0</u>	<u>1</u>	1	<u>1</u>

- 取出队头元素 y, 松弛 〈y, x〉成功, x 已经在队列中了
- · 松弛 〈y, z〉失败。

当前队列: x, z

	S	t	X	у	Z
dist	0	6	<u>4</u>	7	2
path	-1	S	<u>y</u>	S	t
inQ	0	0	1	<u>0</u>	1

• 取出队头元素 x, 松弛 <x, t> 成功,将 t 加入队列。

当前队列: z, t

	S	t	X	y	${f z}$
dist	0	<u>2</u>	4	7	2
path	-1	<u>X</u>	у	S	t
inQ	0	<u>1</u>	<u>0</u>	0	1

• 取出队头元素 z, 松弛 <z, s> <z, x> 失败。

当前队列: t

	S	t	X	у	${f z}$
dist	0	2	4	7	2
path	-1	X	у	S	t
inQ	0	1	0	0	<u>0</u>

- 取出队头元素 t,松弛 (t, z)成功,z 加入队列。
- 松弛 <t, y> <t, x> 失败。

当前队列: z

	S	t	X	y	Z
dist	0	2	4	7	<u>-2</u>
path	-1	X	y	S	t
inQ	0	<u>0</u>	0	0	<u>1</u>

- 取出队头元素 z, 松弛 <z, s> <z, x> 失败。
- 队列为空,算法结束。

	S	t	X	у	Z
dist	0	2	4	7	-2
path	-1	X	у	S	t
inQ	0	0	0	0	<u>0</u>

下节课再见