Games, graphs, and machines

Anand Deopurkar

Function or not?

Do the following rules define functions?

- 1. $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(s) = s^2$.
- 2. $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(s) = s/2.
- 3. $f: \mathbb{Z} \to \mathbb{R}$ defined by f(s) = s/2.
- 4. $f: \mathbb{R} \to \mathbb{R}$ defined by $f(s) = \sqrt{s}$.
- 5. $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(s) = \begin{cases} 1 & \text{if } s > 0 & -1, \\ \text{if } s < 0 & \end{cases}.$$

1

Number of functions

Suppose $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$.

- 1. How many functions are there from A to B?
- 2. How many of these are injective functions?
- 3. How many of these are surjective functions?

Number of functions (continued)

Suppose A has size n and B has size m.

How many functions are there from A to B?

Suppose $n \le m$. How many functions are injective?

The inverse function

Suppose $f: S \to T$ is a bijection.

The inverse of f is the function $g: T \to S$ defined by the property that if t = f(s) then s = g(t).

- 1. Suppose $f: \{1,2,3\} \rightarrow \{1,2,3\}$ sends $1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 1$. Find its inverse g.
- 2. Find a function $f: \{1,2,3\} \rightarrow \{1,2,3\}$ which is its own inverse.
- 3. Find a function $f: \mathbb{R} \to \mathbb{R}$ which is its own inverse.

Input/Output relation

Consider $R \subset \mathbb{R} \times \mathbb{R}$ defined by

$$R = \{(x, y) \mid x^3 - xy + x - 1 = 0\}.$$

Is *R* the input/output relation of a function $f: \mathbb{R} \to \mathbb{R}$?