PSTAT160A Stochastic Processes

Section 4

Authors: Denisse Alejandra Escobar Parra, John Inston

Date: October 21, 2025

Problem 1 - Dobrow Q2.1

A Markov chain has transition matrix

$$P := \begin{bmatrix} 0.1 & 0.3 & 0.6 \\ 0 & 0.4 & 0.6 \\ 0.3 & 0.2 & 0.5 \end{bmatrix},$$

with initial distribution $\alpha = \begin{bmatrix} 0.2 & 0.3 & 0.5 \end{bmatrix}$. Find the following:

- 1. $\mathbb{P}(X_7 = 3 | X_6 = 2)$,
- 2. $\mathbb{P}(X_9 = 2|X_1 = 2, X_5 = 1, X_7 = 3),$
- 3. $\mathbb{P}(X_0|X_1=1)$,
- 4. $\mathbb{E}[X_2]$.

Problem 2 - Dobrow Q2.2

Let $X_0, X_1, ...$ be a Markov chain with transition matrix

$$P = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix},$$

and initial distribution $\alpha = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$. Find the following:

- 1. $\mathbb{P}(X_2 = 1 | X_1 = 3)$,
- 2. $\mathbb{P}(X_1 = 3, X_2 = 1),$
- 3. $\mathbb{P}(X_1 = 3 | X_2 = 1)$,
- 4. $\mathbb{P}(X_9 = 1 | X_1 = 3, X_4 = 1, X_7 = 2).$

Problem 3 - Dobrow Q2.4

For the general two-state chain with transition matrix

$$P = \begin{bmatrix} 1 - p & p \\ q & 1 - q \end{bmatrix},$$

1

and initial distribution $\alpha = \begin{bmatrix} \alpha_1 & \alpha_2 \end{bmatrix}$ find the following:

- 1. the two-step transition matrix
- 2. the distribution X_1 .

Problem 4 - Dobrow Q2.6

A tetrahedron die has four faces labelled 1, 2, 3 and 4. In repeated independent rolls of the die $R_0, R_1, ...,$ let $X_n = \max(R_0, ..., R_n)$ be the maximum value after n+1 rolls, for $n \ge 0$:

- 1. Give an intuitive argument for why X_0, X_1, \dots is a Markov chain, and exhibit the transition matrix.
- 2. Find $\mathbb{P}(X_3 \geq 3)$.

Problem 5 - Dobrow Q2.7

Let $X_0, X_1, ...$ be a Markov chain with transition matrix P. Let $Y_n = X_{3n}$, for n = 0, 1, 2, ... Show that $Y_0, Y_1, ...$ is a Markov chain and exhibit its transition matrix.