REC'D 1 5 AUG 2003
WIPO PCT

PCT/JP03703900

30.06.03

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 3月29日

出 願 番 号 Application Number:

特願2002-094971

[ST. 10/C]:

[| P 2 0 0 2 - 0 9 4 9 7 1]

出 願 人
Applicant(s):

三洋電機株式会社島取三洋電機株式会社

PRIOR TO A

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 7月31日

今井康

BEST AVAILABLE COPY

【書類名】

特許願

【整理番号】

BCA1-0125

【提出日】

平成14年 3月29日

【あて先】

特許庁長官殿

【国際特許分類】

G01L 5/00

G06T 1/00

H01L 29/84

【発明者】

【住所又は居所】

鳥取県鳥取市南吉方3丁目201番地 鳥取三洋電機株

式会社内

【氏名】

日浦 さやか

【発明者】

【住所又は居所】

鳥取県鳥取市南吉方3丁目201番地 鳥取三洋電機株

式会社内

【氏名】

山内 踏夫

【特許出願人】

【識別番号】

000001889

【氏名又は名称】

三洋電機株式会社

【特許出願人】

【識別番号】

000214892

【氏名又は名称】

鳥取三洋電機株式会社

【代理人】

【識別番号】

100111383

【弁理士】

【氏名又は名称】

芝野 正雅

【連絡先】

03-3837-7751 知的財産センター 東京事

務所

【手数料の表示】

【予納台帳番号】 013033

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9904451

【包括委任状番号】 9904463

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】 圧力センサ

【特許請求の範囲】

【請求項1】 複数のセンサ部を備えた圧力センサにおいて、センサ部は空 洞部を挟んで対向配置する一対の電極を有し、前記センサ部の一方の電極に信号 を供給する配線を設け、一方の電極と前記配線を前記配線よりも高抵抗なコンタ クト部により電気的に接続したことを特徴とする圧力センサ。

複数の第一配線と複数の第二配線を交差させて配置し、両配 【請求項2】 線の交差部付近にセンサ部を設けた圧力センサにおいて、前記センサ部は、前記 第一配線と電気的に接続する第一電極と、前記第一電極上に形成された空洞部と 、前記空洞部を挟んで前記第一電極と対向配置すると共に第二配線と電気的に接 続する第二電極とを有し、前記第一配線と前記第一電極を第一配線よりも高抵抗 のコンタクト部を介して接続したことを特徴とする圧力センサ。

【請求項3】 前記コンタクト部は多結晶シリコンで形成されていることを 特徴とする請求項1または請求項2に記載の圧力センサ。

【請求項4】 前記コンタクト部の膜厚が200~1000Åであることに 特徴とする請求項3に記載の圧力センサ。

【請求項5】 前記コンタクト部は導電性不純物を混入したシリコン層で形 成されていることを特徴とする請求項1または請求項2に記載の圧力センサ。

【請求項6】 前記コンタクト部の膜厚が50~3000点であることを特 徴とする請求項5に記載の圧力センサ。

【請求項7】 コンタクト部にホウ素又はリンが1.0×10 11 ~1.0× 10¹⁵/cm²混入されていることを特徴とする請求項1~請求項6のいずれか に記載の圧力センサ。

【請求項8】 複数の第一配線と複数の第二配線を交差させて配置し、両配 線の交差部付近にセンサ部を設けた圧力センサにおいて、前記センサ部は、前記 第一配線と電気的に接続する第一電極と、前記第一電極上に形成された空洞部と 、前記空洞部を挟んで前記第一電極と対向配置すると共に前記第二配線と電気的 に接続する第二電極とを有し、前記第一配線と前記第一電極はスイッチング素子 を介して接続されていることを特徴とする圧力センサ。

【請求項9】 前記スイッチング素子が薄膜トランジスタであり、前記薄膜トランジスタのゲート電極とソース電極が第一配線に接続し、ドレイン電極が第一電極に接続することを特徴とする請求項8に記載の圧力センサ。

【請求項10】 複数の第一配線と複数の第二配線を交差させて配置し、両配線の交差部付近にセンサ部を設けた圧力センサにおいて、前記センサ部は、前記第一配線と電気的に接続する第一電極と、前記第一電極上に形成された空洞部と、前記空洞部を挟んで前記第一電極と対向配置すると共に前記第二配線と電気的に接続する第二電極とを有し、前記第二配線と前記第二電極は薄膜トランジスタを介して接続され、前記薄膜トランジスタのゲート電極とソース電極が第二電極に接続し、ドレイン電極が第二配線に接続することを特徴とする圧力センサ。

【請求項11】 複数の第一配線に順次走査信号を供給することを特徴とする請求項2~請求項10のいずれかいに記載の圧力センサ。

【請求項12】 前記センサ部により指紋を検知することを特徴とする請求 項1~請求項11のいずれかに記載の圧力 エンサ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は圧力センサに関し、特に指からの圧力を電気的な信号に変換して指紋を検知するセンサに関する。

[0002]

【従来の技術】

個々を識別する装置として指紋センサが用いられており、この指紋センサには 簡単で且つ精度良く指紋を検知することが要求されている。この種の指紋センサ としては指紋を光学的に検知するものや電気的に検知するものなど、様々なタイ プのものが研究、開発されている。例えば特開平9-126918号公報や特開 平10-300610号公報には、電極を有するマイクロセンサ部をマトリクス 状に配置し、指からの圧力を電気信号に変換して指紋を検知するものが記載され ている。このマイクロセンサ部は、2枚の電極の間に空洞を介在させた状態で対

111

[0003]

図11には製造途中におけるマイクロセンサ部の断面図を示す。シリコン基板 101上にはエッチングバリア層102が積層され、その上に所定のパターンで Au又はTiによる第一金属層103が形成される。この第一金属層103は可 変コンデンサの第一電極、若しくは、マイクロコンタクタの第一端子として使用 される。第一金属層103に対応して多結晶シリコン又はAlからなる隔膜10 4を形成し、隔膜104上にAu又はTiからなる第二金属層105を形成する 。そして基板101の表面全体を窒化シリコンからなる絶縁膜106で覆う。マ イクロセンサ部の表面には第二金属膜105及び絶縁膜106に隔膜104まで 達する開口107が形成され、開口107の部分で隔膜が外部に露出する。なお 図11ではこの状態を示している。この後で基板101にウェットエッチングを 行うが、このとき溶液が多結晶シリコン又はAlからなる隔膜104をエッチン グレ、隔膜104が取り除かれて空洞が形成される。エッチング終了後に開口手 07を窒化シリコンなどで塞ぎ、空間を密閉する。そしてマイクロセンサに指か らの圧力が加わると、その圧力に応じて絶縁膜106及び第二金属層105が第 一金属層103側へ湾曲し、その状態に応じた電気信号を出力して、指紋の形状 を検知する。

[0004]

【発明が解決しようとする課題】

第一金属層103に第一配線を、第二金属層105に第二配線をそれぞれ接続し、第一配線に走査信号を供給してそのときの第二配線の出力を検出することで各マイクロセンサの状態を感知する。この第一金属層103と第一配線は同一の金属層をパターニングして一体に形成され、マイクロセンサの第一金属層103が第一配線から突出した形状になる。同様に第二金属層105と第二配線も同一の金属層をパターニングして一体に形成され、マイクロセンサの第二金属層105が第二配線から突出した形状になる。

[0005]

このときの指紋の検知状態の一例を図12に示す。図12のS1~S5が第一

[0006]

しかしマイクロセンサの金属層が接続する配線と同一材料により一体形成されているため、第二配線に流れる信号が走査されていないマイクロセンサを介して他の第一配線に流れてしまうことがあった。つまり第二配線L2を流れる信号はマイクロセンサA2、B2介して第一配線S1、S2に流れてしまうことがある。また第二配線L3を流れる信号はマイクロセンサD3、E3を介して第一配線S4、S5に流れてしまうことがある。そのためマイクロセンサA1、E4を介して第二配線L1、L4にも信号が流れ、その結果、マイクロセンサC1~C4までに圧力が掛かっていると誤検知することになり、精度の低下につながっている。

[0007].

Jan 197 1

そこで本発明は、誤検知を防止し、高精度な圧力センサを提供することを目的 ・ とする。

[0008]

【課題を解決するための手段】

上記課題を解決するために本発明の圧力センサは、複数の第一配線と複数の第二配線を交差させて配置し、両配線の交差部付近にセンサ部を設け、センサ部は、第一配線と電気的に接続する第一電極と、第一電極上に形成された空洞部と、空洞部を挟んで第一電極と対向配置すると共に第二配線と電気的に接続する第二電極とを有し、第一配線と第一電極を第一配線よりも高抵抗のコンタクト部を介して接続したことを特徴とする。

[0009]

また、複数の第一配線と複数の第二配線を交差させて配置し、両配線の交差部

[0010]

【発明の実施の形態】

以下、本発明の実施の形態を図に基づいて説明する。この実施例では圧力センサとして指紋センサの場合を説明するが、本発明は指紋センサ以外の圧力センサにも有効である。

[0011]

図1は本発明の指紋センサの概略を示す全体図である。1は透明なガラス基板であり、ガラス基板1上には行方向に存在する複数の第一配線2と列方向に存在する複数の第二配線3がマトリクス状に形成されている。この実施例では基板としてガラス基板1を用いたが、ガラス基板に限定するものではなく、プラステイックフィルムなどでもよい。4は第一配線2と第二配線3の交差部付近上設けられたセンサ部、5は第二配線3上に設けられた通気口部である。複数のセンサ部4をマトリクス状に並べた領域が指紋を検知する指紋検知領域に該当し、通気口部5は指紋検知領域外に設けられている。なお、センサ部4を組み込んだ指紋センサ装置には指を置くための領域が設けられているが、ここでいう指紋検知領域とはこの指紋センサ装置の指を置くための領域ではなく、センサ部4が存在する領域のことを意味する。通気口部5はセンサ部4が並ぶ列方向の延長線上に存在し、この列方向に並ぶセンサ部4群の両端に隣接して配置されている。なお、通気口部5をこのセンサ部4群の両端に隣接して配置されている。なお、通気口部5をこのセンサ部4群の一方の端部に隣接して配置してもよい。6は第一配線2に走査信号を供給する走査回路、7は第二配線3に流れる信号を検知する感知回路である。

[0012]

センサ部4の詳細な構成は後述するが、センサ部4では第一配線2に接続する 第一電極8と第二配線3に接続する第二電極9が空洞部10を介して対向配置し ている。第二電極9は指からの圧力に応じて第一電極8側に湾曲し、所定以上の

6/

[0013]

図2はセンサ部4及び通気口部5の平面図を示し、図3は図2のA-Aに沿った断面であるセンサ部4の断面図、図4は図2のB-Bに沿った断面である通気口部5の断面図、図5は図2のC-Cに沿った断面図である。

[0014]

まずセンサ部4の構造について説明する。ガース基板1上には全面にSiNxによる下層絶縁膜11が積層されている。下層絶縁膜11が積層されている。下層絶縁度11上に複数の第一配線2がそれぞれ平行に配置され、センサ部4に第一電極8が形成される。この第一配線2と第一電極8は共に下層絶縁膜11上に積層された金属層をパターニングして形成され、この金属層としては例えばA1とMoによる積層構造が用いられる。第一電極8は、センサ部4の中央部に位置する円状部8aと、センサ部の周囲に位置する環状部8bと、円状部8aと環状部8bを接続する接続部8cとを備えている。

[0015]

12は第一配線2と第一電極8を電気的に接続する細長状のコンタクト層であり、多結晶層や金属層により形成されている。このコンタクト層12は第一配線2や第一電極8の金属よりも高抵抗な部材で形成する。ここでコンタクト層12の抵抗をR、第一配線22に供給される走査信号の電圧をE、第二配線3を流れる電流をIとすると、E=IRの関係が成り立つ。従って1つのセンサ部4を介して第二配線3に流れる信号は、電流値がIになる。しかし、第二配線3を流れ

in the second

[0016]

このコンタクト層 1 2 には膜厚均等に成膜でき、光学的手段を用いてパターン 形成可能なものがよく、多結晶シリコンや導電性不純物を混入したアモルファス シリコン層がよい。

[0017]

コンタクト層 1 2 が多結晶 S i の場合、S i 層を下層絶縁膜 1 1 に積層し、その S i 層をアニール処理、パターニング処理を施して多結晶のコンタクト層 1 2 を形成する。このコンタクト層 1 2 の 應厚は 2 0 0 ~ 1 0 0 0 Å が適している。そしてコンタクト層 1 2 に P 又は B を パオンドープする。ドープ量は 1. 0 × 1 0 11 ~ 1. 0 × 1 0 15 / c 温 が重している。その後、このコンタクト層 1 2 に 一部が重なるように第一配線 2 及び第一電極 8 を形成する。

[0018]

またコンタクト層がn+-Si の場合、下層絶縁膜11 に膜厚が50 ~ 3 0 0 0 ÅのSi 層を積層し、このSi 層に1. 0×1 0 $11 \sim 1$. 0×1 0 15 / c m^2 のP又はBをイオンドープする。その後Si 層をパターニングしてコンタクト層 12 を形成し、このコンタクト層 12 に一部が重なるように第一配線 2 及び第一電板 8 を形成する。

[0019]

コンタクト層 1 2 の抵抗は感知回路 7 で検出できる最小の電流値を元にして決める。また、高抵抗のコンタクト層 1 2 を用いる場合は、配線抵抗を小さくする必要がある。抵抗は距離に比例するため、走査回路 6 から離れるほど走査回路 6 までの抵抗も高くなる。そのため走査回路 6 から遠いところに位置するセンサ部 4 までの配線抵抗がコンタクト層 1 2 と同程度の抵抗になった場合、感知回路 7

[0020]

13はSiNxまたは SiO_2 などによる第一絶縁膜であり、下層絶縁膜 11 や第一配線 2 などを覆っている。第一絶縁膜 13 はセンサ部 4 にも存在するが、センサ部 4 の中央付近には円形状のセンサ孔 14 が形成され、第一電極の円状部 8 a の中央部分を露出させている。このセンサ孔 14 の大きさや厚さ(センサ孔 14 周縁の第一絶縁膜 13 の厚さ)はセンサの感度に影響する。

[0021]

第一電極の円状部8aの周囲を第一絶縁膜13で覆っているため、第二電極9が第一電極8と大きな範囲で密着することがなく、第二電極9が第一電極8に接触した後に第一絶縁膜13付近から第二電極9が第一電極8と離れる。そして第一絶縁膜13が厚くなるほど、第二電極9の弾力性が弱くても元の状態に戻りやすくなるが、第二電極9が第一電極8に接触する可能性も低くなる。

[0022]

をクレサ孔14が大きいときは第一電極8の露出部分が多くなり、第二電極9と接触する可能性が増える。従ってセンサ部4に掛かる小さな圧力の検知が可能になるが、それだけ過度の検知にもなりやすい。それに対してセンサ孔14が小さくなると第一電極8の露出部分が少なくなり、第二電極9と接触する可能性が少なくなるため、その分だけ圧力に対して鈍感なセンサになる。なお、この実施例ではセンサ孔14を円形状にしたが、この形状に限定するのではなく、四角形状などにしてもよい。

[0023]

第一絶縁膜13から露出した第一電極8は空洞部10を介在させて第二電極9と対向配置する。空洞部10の形成方法は後述するが、センサ部4を平面方向から見たとき、空洞部10は第一電極の環状部8bまで広がっている。また、センサ部4の4隅にはリリース口15が設けられ、空洞部10はこのリリース口15にまで延在している。

[0024]

[0025]

16は第二絶縁膜、17は保護膜であり、第一絶縁膜13や第二配線2上に積層される。この実施例では共にSiNxで形成されている。なお、これらの膜16、17はSiNxに限定するものではなく、SiO2でもよく、ポリイミドやポリアクリレートなどの有機絶縁膜でもよい。詳細は後述するが、第二絶縁膜16と保護膜17は別工程で形成される。第二絶縁膜16にはリリース口15が形成され、リリース口15を形成した後で第二絶縁膜16上に保護膜17を形成するため、リリース口15は保護膜17で塞がれる。そして、リリース口を塞ぐ促護膜17と第二絶縁膜16上に積層される保護膜17は同時形成されるが、膜としては連続せずに分かれている。このリリース口15を塞ぐ保護膜17が閉塞部に相当する。

[0026]

センサ部4では、第二電極9上の第二絶縁膜16と保護膜17が円形状に取除かれ、第二電極9が露出している。そのため第二電極9が湾曲しやすくなり、指紋の凸部が第二電極9に当たったときに第二電極9が湾曲して第一電極8と接触するため、圧力に対して敏感なセンサ部4になる。それに対して、第二電極9上に第二絶縁膜16や保護膜17を残した場合、その分だけ第二電極9が湾曲し難くなるため、圧力に対して鈍感なセンサ部4になる。第二電極9の湾曲のしやすさはセンサ部4の感度に影響し、圧力に対して敏感になるほど圧力の検知のし過ぎにより指紋の輪郭が不明瞭になり、圧力に対して鈍感になるほど指紋を検知できない部分が存在するため指紋が不鮮明になる。したがって敏感になりすぎても

[0027]

さらに、薄膜状の第二絶縁膜16や保護膜17が第二電極9上に存在すると第二電極9の補強及び保護の役割を果すため、それだけ第二電極9の破損は少なくなる。この実施例では第二絶縁膜16と保護膜17を除去しているが、これらの条件を考慮して、第二電極9上に第二絶縁膜16や保護膜17の厚み方向の一部を取除き、中央部分を薄くしてもよい。このとき薄くした部分はセンサ部4を中心として円形状にするとよい。

[0028]

次に通気口部5について説明する。20は通気口部の中央付近に位置し、下層 絶縁膜11上に形成されたダミー電極である。ダミー電極20は中心に開口を有 するドーナツ状の金属層であり、第一配線2や第一電極8と同一工程で形成され る。従って、例えば下層絶縁膜11の全面にMoとA1の積層構造からなる金属 層を積層し、この金属層をパターニングしてダミー電極20、第一配線2、第一 電極8を同時形成する。そしてダミー電極20は第一配置20 、独立して設けられている。第一絶縁膜13は下層絶縁膜11やダミー電極2 0を覆うように積層され、通気口部5の中央付近では第一絶縁膜13を取除いて 下層絶縁膜11やダミー電極20の一部を露出している。

[0029]

2 1 は通気口部 5 に位置する補助電極であり、センサ部の第二電極 9 と同様に M o 等からなる金属層を 5 0 μ m× 5 0 μ mの正方形状にパターニングし、 4 隈 にリリース口 1 5 を形成している。通気口部 5 の補助電極 2 1 はその形状がセンサ部の第二電極 9 と類似しているが、指紋を検知する機能はなく、第二配線 4 の一部として存在する。補助電極 2 1 と第一絶縁膜 1 3 の間には第二空洞部 2 2 が設けられ、この第二空洞部 2 2 はセンサ部の空洞部 1 0 と空間的に連通し、両空洞部 1 0、 2 2 間を空気が流れるようになっている。補助電極 2 1 上には第二絶縁膜 1 6 が積層され、補助電極 2 1 と同様にリリース口 1 5 が設けられている。

[0030]

\$ 1 Tax

通気口部5の中央には補助電極21及び第二絶縁膜16を貫通する通気口23が形成されている。そして通気口23に対応する位置にはダミー電極20、第一絶縁膜13が存在しない。第二絶縁膜16上に保護膜17を積層するとき、リリース口15はこの保護膜17の一部によって塞がれて第二空洞部22との連通状態を絶たれるが、通気口23では保護膜17が下層絶縁膜11上に積層されるため第二空洞部22との連通状態を維持する。通気口部5では補助電極上の第二絶縁膜16、保護膜17は取除かれず、そのまま残っている。従って第二絶縁膜16、保護膜17により補助電極21の湾曲が規制され、通気口23の周辺が補強されることになり、製造中に通気口23は第二空洞部22と連通している。

[0031]

24は中空状でその内部を空気が行き来できる通路部であり、通気口部5とセンサ部4の間や隣接するセンサ部4間に位置し、センサ部4の空洞部10同士やセンサ部4の空洞部10と通気口部5の第二空洞部22をつないでいる。通路部24は、その底面を下層絶縁度11で、個面や上面を第二配線3の金属層で構成している。通路部24により各センサ部4の空洞部10と通気口部5の第二空洞部22が空間的に連通状態により、近天口23を介して外気の行き来が可能になる。また通路部24の横幅は空洞部10の横幅よりも狭くなっているため、通気口23から入ってきた塵埃が通路部24を介して空洞部10に侵入することを防止できる。

[0032]

このような構造により、保護膜17により各リリース口15を塞いだ後でも、センサ部4の空洞部10内をほぼ外気圧と同じ気圧に保つことができ、そのため真空引きを行う工程中にセンサ部4の第二電極9が破損することを防止できる。さらにセンサ部4とは別に通気口部5を設けているため、センサ部4の空洞部10内に塵埃が侵入することを防止でき、故障の少ない圧力センサを得ることができる。

[0033]

次にセンサ部4と通気口部5の製造工程を図面に基づいて説明する。図6はセンサ部4の製造工程を示す断面図(図3の断面図に相当)、図7はセンサ部4の

[0034]

ガラス基板1上にSiNxからなる下層絶縁膜11を積層し、下層絶縁膜11上にSi層を積層する。Si層をアニール処理によって多結晶化し、その後でフォトリソグラフィ法によりコンタクト層12に相当する部分だけSi層を残す。その後、MoとAlの積層構造をした金属層をスパッタ法等により下層絶縁膜11上に形成し、フォトリソグラフィ法により図6(a)、図7(a)、図8(a)に示すような第一配線2、第一電極8、ダミー電極20を形成する。このときダミー電極20は中央に開口がない円板状に形成される。

[0035]

次に、下層絶縁膜11や第一配線2上にSiNxを積層して第一絶縁膜13を形成する。そしてエッチング工程によって、第一絶縁膜13は円状部8aとダミー電極20に対応する部分が取除かれている。センサ部4では図6(b)、図7h)に示すように、円状部8a上の第一絶縁膜13を円形状に取除き、センサ孔141至度している。こうして円状部8aの中央部分を露出させ、円状部8aの周縁部分を第一絶縁膜11で被覆している。また通気口部5では図8(b)、図9(a)に示すように、ダミー電極20上の第一絶縁膜13を円形状に取除いている。そしてダミー電極20の中央部分を露出させながら、ダミー電極20の周縁部分は第一絶縁膜13で被覆されている。ダミー電極20上の第一絶縁膜13のオング部分は、通気口23よりも大きくなっている。円状部8a上に存在する第一絶縁膜13の割合は圧力センサの感度に影響し、ダミー電極20上に存在する第一絶縁膜13の割合は通気口23の大きさに影響する。

[0036]

次に、第一絶縁膜13や露出した第一電極8、ダミー電極20上にA1からなる金属層を積層する。その後、フォトリソグラフィー法などでこの金属層を所定形状にパターニングし、中間層25を形成する。この中間層25は最終的には取除かれるが、中間層25の存在した部分が空洞部10や通路部24になる。従って、センサ部4では図6(c)、図7(c)に示す形状の中間層25になり、通

[0037]

次に、中間層25や第一絶縁膜13上に金属層をスパッタ法により積層する。この金属層はMoとA1の積層構造になる。この金属層上にレジストを塗布し、フォトリングラフィ法による露光、現像、エッチング処理を施して第二電極9や連結部30を含む第二配線3を形成する。このとき中間層25は第二配線3の金属層で完全に覆われた状態になる。図6(d)、図7(d)に示すように、センサ部4では中間層25を完全に覆うほぼ四角形状の第二電極9が形成されている。このとき、まだ第二電極9にはリリース口15を形成しない。また図8(d)、図9(c)に示すように、通気口部5にも中間層25を完全に覆うほぼ四角形状の補助電極21が形成され、この工程のときには補助電極21にもリリース口15と通気口23を形成しない。通路部24に相当する中間層25は連結部30で覆われ、この連結部30により隣接するセンサ部4の第二電極9を電気的に連結する。

[0038]

次に、第二電極 9 や第一絶縁膜 1 3 上に S i N x を積層 U、第二絶縁膜 1 6 を 形成する。そしてセンサ部 4 では図 6 (e) 、図 7 (e) に示すようにリリース

[0039]

次に、MoとA1の両方の材質を除去するエッチング処理をする。このエッチング処理により第二絶縁膜16から露出している部分の金属層が除去される。エッチング方法としては、ドライエッチングとウェットエッチングの両方が利用できる。例えば、エッチング液にリン酸、硝酸、酢酸の混合液を用いれば、MoとA1の両方がエッチングできる。このエッチング処理により、センサ部4では図6(f)に示すようにリリース口15に対応する部分の第二電極9と中間層25が取除かれる。また、通気口部5では図8(f)に示すように、リリース口15に対応する部分の補助電極21、中間層25、ダミー電極20が取除かれる。

[0040]

次に、中間層 2 5 だけを除去するエッチング処理を行う。 このとさウェットエッチングを行い、エッチング液に塩酸、リン酸、水の混合液を用いる。エッチング液はリリース口 1 5 を通じて中間層 2 5 に達し、中間層 2 5 の端部から順にエッチングする。混合比が塩酸:リン酸:水=1:5:1のエッチング液を使用した場合、中間層 2 5 の A 1 と 第二配線 3 などを構成する M o との間に電池効果が生じ、A 1 が短時間でエッチングされる。電池効果によりA 1 を積極的にエッチングされる場合、エッチング液としては特にリン酸が塩酸の 5 倍以上含まれていればその効果が得られるが、塩酸:リン酸=1:5 のエッチング液のときには同時に多量の泡が発生する。そこで実験によりさらに研究を重ねた結果、塩酸:リン酸:水=1:10:1のエッチング液を用いたときに、泡の発生が少なく且つA 1 が短時間で積極的にエッチングできた。このエッチング処理により中間層 2 5 を確実に取除くことができ、各空洞部 1 0、2 2 や通路部 2 4 が形成される(図 8 (g)、図 9 (d))。

[0041]

その後、第二絶縁膜16上にSiNェを積層し、保護膜17を形成する。この SiNxは例えばСVDで形成され、ほぼ同じ厚みの膜がガラス基板1上の全面 に積層される。このときリリース口15や通気口23では第二絶縁膜16などが 存在しないため、リリース口15では第一絶縁膜13上に、通気口23では下層 絶縁膜11上にそれぞれ保護膜17が積層される。この保護膜17は、センサ部 4のリリース口15を塞ぐと同時に通気口部5の通気口23は塞がない程度の厚 さに設定されている。空洞部10は中間層25により形成されるため、中間層2 5の厚さが空洞部10の厚さとなり、空洞部10内の厚さはほぼ均一になる。そ して空洞部10の厚さが、リリース口15の下方の空間の底面からリリース口1 5までの距離に相当する。従って、空洞部10の厚さをd1、リリース口を塞ぐ 保護膜17 (閉塞部) の厚さをdとしたとき、d1≤dであればリリース口15 を確実に塞ぐことができる。それに対して、通気口23の周囲部分には第一絶縁 膜13とダミー電極20が存在し、通気口23部分には第一絶縁膜13とダミー 電極20が取除かれているため、通気口23部分の底面はリリース口15部分の 底面よりも下がった所に位置する。従って、運気口23の下方の空間の底面から 通気口23までの距離をd2、東一無縁膜13の厚さをd3、ダミー電極20の 厚さをd4としたとき、d2 = d1 + d3 + d4になり、d < d2であれば保護 膜17を積層しても通気口23が塞がることはない。この条件を満たす保護膜1 7を積層することで、センサ部4では図6(g)に示すようにリリース口15が 塞がれ、リリース口15から空洞部10内に塵埃が侵入することを防止できる。 また通気口部5では図8(h)に示すように通気口23が第二空洞部22と連通 するため、各センサ部4の空洞部10の圧力を外気とほぼ同じにすることができ る。

[0042]

その後、図6(h)、図7(f)に示すようにセンサ部4の第二電極9上の第二絶縁膜16と保護膜17を取除く。この第二絶縁膜16と保護膜17は第一電極8の円状部8aから環状部8b付近までの領域が取除かれ、この領域の第二電極9が湾曲しやすくなる。これで圧力に対して敏感なセンサ部4を形成することができる。

. e.

このようにセンサ部4に空洞部10を形成し、その形成に用いたリリース口15を塞いだとしても、空洞部10が外気と通気可能な状態を維持する。従って、例えこの後の製造工程でセンサ部を真空引きした空間に置いたとしても、空洞部10の内外で大きな気圧差が生じることを防止でき、第二電極9には大きな負荷がかからない。よって、センサ部4の破損を防ぐことができ、歩留まりが向上する。

[0044]

この実施例では第一配線2と第一電極8を第一配線2よりも高抵抗のコンタクト層12により接続したが、高抵抗のコンタクト層12の変わりにスイッチング素子を設けてもよい。図10はスイッチング素子として薄膜トランジスタ31(以下にTFTと示す)を設けたときの指紋検知領域を模式的に示した概略図である。第一配線2と第一電極8はTFT31で接続され、TFT31のゲート電極とソース電極は第一配線2に接続し、TFT31のドレイン電極は第一電極8と接続する。このTFT31はaーSi又はpーSiで形成され、そのチャネル部分の大きをは一手でネル長L=3~10μm、チャネル幅W=5~30μmになる。なお、各センサ部4や通気口部5などの形状は先の実施例と同じである。そして走査信号が供給された第一配線2ではそれにつながるTFT31がONになり、第一電極8に走査信号を供給する。走査されていない第一配線2につながるTFT31はOFFになるため、第二配線3を流れる信号が走査されていないセンサ部4の第二電極9、第一電極8に伝わっても、その第一電極8から第一配線2に伝わることを防止できる。

[0045]

なお、第一配線2と第一電極8をTFT31で接続する場合を説明したが、第二配線3と第二電極9をTFTで接続してもよい。この場合、第二配線は第二電極9を連結して形成するものでなく、第二電極9とは別に第二配線を設ける。そしてTFTのゲート電極とソース電極を第二電極9に接続し、ドレイン電極を第二配線に接続する。そうすれば第一電極8を介して第二電極9に走査信号が入力されたときにTFTがONになり、第二配線に信号が流れる。

【発明の効果】

本発明によれば、センサ部の電極と配線をこの配線よりも高抵抗のコンタクト 部により接続した構成、又は電極と配線をスイッチング素子を介して接続した構 成であるため、各センサ部の加圧状態を正確に検知することができ、高精度な圧 カセンサを実現することができる。

【図面の簡単な説明】

【図1】

本発明の実施例である指紋センサの概略を示す全体図である。

【図2】

指紋センサのセンサ部及び通気口部の平面図である。

【図3】

センサ部の断面概略図である。

【図4】

通気口部の断面概略図である。

【図5】

センサ部と通気口部を含む断面概略図である。

【図6】

センサ部の製造工程を説明する断面図である。

【図7】

センサ部の製造工程を説明する平面図である。

【図8】

通気口部の製造工程を説明する断面図である。

【図9】

通気口部の製造工程を説明する平面図である。

【図10】

本発明の第二実施例の指紋検知領域を模式的に示した概略図である。

【図11】

従来の指紋センサの製造途中の状態を示す断面図である。

【図12】

従来の指紋検知領域を模式的に示した全体図である。

【符号の説明】

- 2 第一配線
- 3 第二配線
- 4 センサ部
- 8 第一電極
- 9 第二電極
- 10 空洞部
- 12 コンタクト層
- 31 TFT

【書類名】

図面

【図1】

【図4】

【図5】

【図6】

【図7】

【図8】

【図11】

【書類名】

要約書

【要約】

【課題】 誤検知を防止して、高精度な圧力センサを提供することを目的とする

0

【解決手段】 複数の第一配線2と複数の第二配線3をマトリクス状に配置し、両配線の交差部付近にセンサ部4を設ける。各センサ部4は、第一配線2と電気的に接続する第一電極8と、第一電極8上に形成された空洞部10と、空洞部10を挟んで第一電極8と対向配置すると共に第二配線3と電気的に接続する第二電極9とを有する。そして第一配線2と第一電極8とは第一配線2よりも高抵抗のコンタクト部12を介して接続する。

【選択図】 図2

出証特2003-3060827

特願2002-094971

出願人履歴情報

識別番号

[000001889]

1. 変更年月日

1990年 8月24日

[変更理由]

新規登録

住 所

大阪府守口市京阪本通2丁目18番地

氏 名 三海

三洋電機株式会社

2. 変更年月日 [変更理由]

1993年10月20日

大性四」

住所変更

住 所

大阪府守口市京阪本通2丁目5番5号

氏 名 三洋電機株式会社

特願2002-094971

出願人履歴情報

識別番号

[000214892]

1. 変更年月日 [変更理由]

住 所

氏名

1990年 8月24日 新規登録

鳥取県鳥取市南吉方3丁目201番地

鳥取三洋電機株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.