Assignment No. 05

Performance	Understanding	Regularity	Total	Dated Sign of Subject Teacher
03	01	01	05	

Date of Performance:	Date of Completion:
----------------------	---------------------

Title: Perform data visualization operations using Tableau on Adult and Iris datasets

Objectives:

To understand different data visualization techniques for Big Data.

Problem Statement:

Perform the following data visualization operations using Tableau on Adult and Iris datasets.

- a. 1D (Linear) Data visualization
- b. 2D (Planar) Data Visualization
- c. 3D (Volumetric) Data Visualization
- d. Temporal Data Visualization
- e. Multidimensional Data Visualization
- f. Tree/ Hierarchical Data visualization
- g. Network Data visualization

Outcomes:

Students will be able to,

1. Visualize the Big Data using Tableau.

Software and Hardware requirements:

- 1. Software: Ubuntu OS/Windows, Tableau Desktop
- 2. Hardware: Processor, Ethernet Connection or WiFi, RAM 1GB, HDD, Sound Card, camera, microphone (depending upon website selection)

Theory:

Introduction:

Tableau is a Business Intelligence tool for visually analyzing the data. Users can create and distribute an interactive and shareable dashboard, which depict the trends, variations, and density of the data in the form of graphs and charts. Tableau can connect to files, relational and Big Data sources to acquire and process data. The software allows data blending and real-time collaboration, which makes it very unique. It is used by businesses, academic researchers, and many government organizations for visual data analysis. It is also positioned as a leader Business Intelligence and Analytics Platform in Gartner Magic Quadrant.

Tableau Features:

Tableau provides solutions for all kinds of industries, departments, and data environments. Following are some unique features which enable Tableau to handle diverse scenarios.

- Speed of Analysis As it does not require high level of programming expertise, any user with access to data can start using it to derive value from the data.
- Self-Reliant Tableau does not need a complex software setup. The desktop version which is used by most users is easily installed and contains all the features needed to start and complete data analysis.
- **Visual Discovery** The user explores and analyses the data by using visual tools like colors, trend lines, charts, and graphs. There is very little script to be written as nearly everything is done by drag and drop.
- Blend Diverse Data Sets Tableau allows you to blend different relational, semi structured and raw data sources in real time, without expensive up-front integration costs. The users don't need to know the details of how data is stored.
- **Architecture Agnostic** Tableau works in all kinds of devices where data flows. Hence, the user need not worry about specific hardware or software requirements to use Tableau.
- **Real-Time Collaboration** Tableau can filter, sort, and discuss data on the fly and embed a live dashboard in portals like SharePoint site or Salesforce. You can save your view of data and allow colleagues to subscribe to your interactive dashboards so they see the very latest data just by refreshing their web browser.
- Centralized Data Tableau server provides a centralized location to manage all of the
 organization's published data sources. You can delete, change permissions, add tags, and
 manage schedules in one convenient location. It's easy to schedule extract refreshes and
 manage them in the data server. Administrators can centrally define a schedule for extracts
 on the server for both incremental and full refreshes.

There are three basic steps involved in creating any Tableau data analysis report.

These three steps are -

- Connect to a data source It involves locating the data and using an appropriate type of connection to read the data.
- Choose dimensions and measures This involves selecting the required columns from the source data for analysis.
- Apply visualization technique This involves applying required visualization methods, such as a specific chart or graph type to the data being analyzed.

For convenience, let's use the sample data set that comes with Tableau installation named sample – superstore.xls. Locate the installation folder of Tableau and go to **My Tableau Repository**. Under it, you will find the above file at **Datasources\9.2\en_US-US**.

Connect to a Data Source

On opening Tableau, you will get the start page showing various data sources. Under the header "Connect", you have options to choose a file or server or saved data source. Under Files, choose

excel. Then navigate to the file "Sample - Superstore.xls" as mentioned above. The excel file has three sheets named Orders, People and Returns. Choose Orders.

Choose the Dimensions and Measures

Next, choose the data to be analyzed by deciding on the dimensions and measures. Dimensions are the descriptive data while measures are numeric data. When put together, they help visualize the performance of the dimensional data with respect to the data which are measures. Choose Category and Region as the dimensions and Sales as the measure. Drag and drop them as shown in the following screenshot. The result shows the total sales in each category for each region

Apply Visualization Technique

In the previous step, you can see that the data is available only as numbers. You have to read and calculate each of the values to judge the performance. However, you can see them as graphs or charts with different colors to make a quicker judgment.

We drag and drop the sum (sales) column from the Marks tab to the Columns shelf. The table showing the numeric values of sales now turns into a bar chart automatically.

You can apply a technique of adding another dimension to the existing data. This will add more colors to the existing bar chart as shown in the following screenshot.

Conclusion:

Thus we have learnt how to Visualize the data in different types (1 1D (Linear) Data visualization, 2D (Planar) Data Visualization, 3D (Volumetric) Data Visualization, Temporal Data Visualization, Multidimensional Data Visualization, Tree/ Hierarchical Data visualization, Network Data visualization) by using Tableau Software.

Write Short Answers for Following Questions:

- 1) What is Data Visualization?
- 2) What are the differences between Tableau desktop and Tableau Server?
- 3) Define parameters in Tableau and their working.
- 4) Differentiate between parameters and filters in Tableau.

Viva Questions:

- 1) What are fact table and Dimension table in Tableau?
- 2) What is Data Blending?
- 3) How many maximum tables can you join in Tableau?
- 4) What different products Tableau provide?