

INTERNATIONAL BACCALAUREATE ORGANIZATION

CHEMISTRY DATA BOOKLET

March 2003

To be used in the teaching and examination of Diploma Programme chemistry

Valid for examination sessions from May 2003

http://www.xtremepapers.net

Chemistry Data Booklet First published August 2001 Reprinted with minor corrections March 2003

© International Baccalaureate Organization 2001

Organisation du Baccalauréat International Route des Morillons 15 Grand-Saconnex, Genève CH-1218 SWITZERLAND

Notes

This booklet cannot be used for paper 1 of the examination (HLP1 and SLP1), but the periodic table given on page 4 will be available as part of these examination papers. Clean copies of this booklet must be made available to candidates for papers 2 and 3 (HLP2, HLP3, SLP2 and SLP3).

Contents

1.	Some Relevant Equations	2
2.	Physical Constants	2
3.	Fundamental Particles	2
4.	Names of the First 103 Elements	3
5.	The Periodic Table	4
6.	Melting Points and Boiling Points of the Elements	5
7.	First Ionization Energy, Electron Affinity and Electronegativity of the Elements	6
8.	Atomic and Ionic Radii of the Elements	7
9.	Covalent Bond Lengths	8
10.	Average Bond Enthalpies at 298 K	8
11.	Organic Compounds—Thermodynamic Data	9
12.	Ellingham Diagram	10
13.	Enthalpies of Combustion	11
14.	Lattice Enthalpies at 298 K (Experimental and Theoretical Values)	12
15.	Standard Electrode Potentials	13
16.	Strengths of Organic Acids and Bases	14
17.	Acid-base Indicators	15
18.	Infrared Data	16
19.	¹ H NMR Data	17
20.	2-amino Acids	18
21.	Structural Formulas of Some Important Medicines and Drugs	20
22.	Structural Formulas of Some Important Biological Molecules	22

1. Some Relevant Equations

$$E = hf$$

$$\Delta G^{\ominus} = \Delta H^{\ominus} - T \Delta S^{\ominus}$$

$$E = mc^2$$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$\log_{10} \frac{I_o}{I} = \in lc$$

$$k = Ae^{\frac{-E_a}{RT}}$$

$$k = Ae^{\frac{-E_a}{RT}} \qquad \qquad \ln k = -\frac{E_a}{RT} + \ln A$$

$$[A] = [A]_o e^{-kt}$$

$$[A] = [A]_o e^{-kt}$$
 or $\ln \frac{[A]_o}{[A]} = kt$

2. Physical Constants

Avogadro's constant (L) = 6.02×10^{23} mol⁻¹

Gas constant (R) = 8.31 J K⁻¹ mol⁻¹

Molar volume of an ideal gas at 273 K, 1.01×10^5 Pa = 2.24×10^{-2} m³ mol⁻¹ (22.4 dm³ mol⁻¹)

Speed of light in a vacuum (c) = 3.00×10^8 m s⁻¹

Planck constant (h) = $6.63 \times 10^{-34} \text{ J s}$

Specific heat capacity of water = $4.18 \text{ kJ kg}^{-1} \text{ K}^{-1} \text{ (} = 4.18 \text{ J g}^{-1} \text{ K}^{-1} \text{)}$

Ionic product constant for water $(K_w) = 1.00 \times 10^{-14} \,\mathrm{mol^2 \, dm^{-6}}$ at 298 K

$$(1 \text{ atm} = 1.01 \times 10^5 \text{ Pa})$$

$$(1 \text{ dm}^3 = 1 \text{ litre} = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3)$$

3. Fundamental Particles

	Proton	Neutron	Electron
Mass/kg	1.672648×10^{-27}	1.674954×10^{-27}	9.109534×10^{-31}
Charge/C	1.602189×10^{-19}	0	1.602189×10^{-19}

4. Names of the First 103 Elements

Element	Symbol	Atomic Number	Element	Symbol	Atomic Number
actinium	Ac	89	mercury	Hg	80
aluminium	Al	13	molybdenum	Mo	42
americium	Am	95	neodymium	Nd	60
antimony	Sb	51	neon	Ne	10
argon	Ar	18	neptunium	Np	93
arsenic	As	33	nickel	Ni	28
astatine	At	85	niobium	Nb	41
barium	Ba	56	nitrogen	N	7
berkelium	Bk	97	nobelium	No	102
beryllium	Be	4	osmium	Os	76
bismuth	Bi	83	oxygen	О	8
boron	В	5	palladium	Pd	46
bromine	Br	35	phosphorus	P	15
cadmium	Cd	48	platinum	Pt	78
caesium	Cs	55	plutonium	Pu	94
calcium	Ca	20	polonium	Po	84
californium	Cf	98	potassium	K	19
carbon	C	6	praseodymium	Pr	59
cerium	Ce	58	promethium	Pm	61
chlorine	Cl	17	protactinium	Pa	91
chromium	Cr	24	radium	Ra	88
cobalt	Co	27	radon	Rn	86
copper	Cu	29	rhenium	Re	75
curium	Cm	96	rhodium	Rh	45
dysprosium	Dy	66	rubidium	Rb	37
einsteinium	Es	99	ruthenium	Ru	44
erbium	Er	68	samarium	Sm	62
europium	Eu	63	scandium	Sc	21
fermium	Fm	100	selenium	Se	34
fluorine	F	9	silicon	Si	14
francium	Fr	87	silver	Ag	47
gadolinium	Gd	64	sodium	Na	11
gallium	Ga	31	strontium	Sr	38
germanium	Ge	32	sulfur	S	16
gold	Au	79	tantalum	Ta	73
hafnium	Hf	72	technetium	Tc	43
helium	He	2	tellurium	Te	52
holmium	Но	67	terbium	Tb	65
hydrogen	Н	1	thallium	Tl	81
indium	In	49	thorium	Th	90
iodine	I	53	thulium	Tm	69
iridium	Ir	77	tin	Sn	50
iron	Fe	26	titanium	Ti	22
krypton	Kr	36	tungsten	W	74
lanthanum	La	57	uranium	Ü	92
lawrencium	Lr	103	vanadium	V	23
lead	Pb	82	xenon	Xe	54
lithium	Li	3	ytterbium	Yb	70
lutetium	Lu	71	yttrium	Y	39
magnesium	Mg	12	zinc	Zn	30
manganese	Mn	25	zirconium	Zr	40
mendelevium	Md	101	Zircomani	<u></u>	ro
menacie viulii	IVIU	101			

5. The Periodic Table

	1	7		ļ									?	4	n	0	_	0
	1 H 1.01				Atomic Number	Vumber												2 He 4.00
<u> </u>	3 Li 6.94	4 Be 9.01			Element Atomic Mass	ent Mass							5 B 10.81	6 C 12.01	ر N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
<u> </u>	11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95
<u> </u>	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
<u> </u>	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30
<u> </u>	55 Cs 132.91	56 Ba 137.34	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.21	77 Ir 192.22	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn (222)
	87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)															

71 Lu	174.97	103	Γ r	(260)
$\mathbf{q}\mathbf{X}$	173.04	102	$^{ m N}$	(259)
m L	168.93	101	Md	(258)
68 Er	167.26	100	Fm	(257)
6 4	164.93	66	Es	(254)
66 Dy	162.50	86	Cť	(251)
65 Tb	158.92	76	Bk	(247)
64 Gd	157.25	96	Cm	(247)
63 Eu	151.96	95	Am	(243)
62 Sm	150.35	94	Pu	(244)
61 Pm	146.92	93	$\mathbf{N}_{\mathbf{p}}$	(237)
PN	144.24	92	Ω	238.03
59 Pr	140.91	91	Pa	231.04
58 Ce	140.12	06	\mathbf{Ih}	232.04
- -		+	÷	

6. Melting Points and Boiling Points of the Elements

	-	He	4	25	Ne Se	27	84	Ar	87	117	Kr	121	161	Xe	166	202	Rn	211			
				54	Ā	85	172	ت ت	239	266	Br	332	387	ı	458	575	At	610			
				22	0	90	392	S	718	490	Se	958	723	Te	1263	527	Po	1235			
				63	Z	77	317	Ь	553	688	As		904	Sb	2023	545	Bi	1833			
				4100	C	5100	1683	\mathbf{S}	2628	1211	Ge	3103	505	Sn	2543	601	Pb	2013			
				2573	В	3931	936	Al	2740	303	Ga	2676	429	In	2353	577	П	1730			
										£69	Zn	1180	594	Cd	1038	234	Hg	630			
										1357	Cu	2840	1235	\mathbf{Ag}	2485	1338	Au	3080			
										1726	ï	3005	1825	Pd	3413	2045	Pt	4100			
										1768	లి	3143	2239	Rh	4000	2683	Ir	4403			
										1808	Fe	3023	2583	Ru	4173	3327	os	5300			
										1517	Mn	2235	2445	Тс	5150	3453	Re	5900			
	5	<u>4</u>	ent		¥					2130	Ç	2755	2890	Mo	4885	3680	M	5930			
	7	M.pt/K	Element		B.pt/K					1973	>	3650	2741	Np	5015	3269	Та	8695			
ļ										1933	Ξ	3560	2125	Zr	4650	2503	Hf	5470			
										1814	Sc	3104	1780	Y	3611	1194	La	3730	1320	Ac	3470
				1551	Be	3243	922	Mg	1363	1112	Ca	1757	1042	Sr	1657	983	Ba	2023	973	Ra	1413
	14	Н	20	454	Li	1600	371	Na	1156	337	K	1047	312	Rb	961	302	S	952	300	Fr	950
ns	n Progr	ramm	e: Che	mistr	v Dati	a Roc	oklet 1	March	2003	<u> </u>											

7. First Ionization Energy, Electron Affinity and Electronegativity of the Elements

2370 He	2080 Ne	1520 Ar	1350 Kr	1170 Xe	1040 Rn	
	1680 -348 F 4.0	1260 -364 CI	1140 -342 Br 2.8	1010 -314 I 2.5	920 At 2.2	
	1310 -142 (O' +844) O 3.5	1000 -200 (S ⁻ +532) S 25	941 Se 2.4	870 Te 2.1	812 Po 2.0	
	1400 -3 N 3.0	1060 -70 P	966 As 2.0	833 Sb 1.9	703 Bi 1.9	
	1090 -120 C 2.5	786 -180 Si 1.8	762 Ge 1.8	707 Sn 1.8	716 Pb 1.8	
	799 -29 B	577 -47 Al 1.5	577 Ga 1.6	556 In 1.7	590 T1 1.8	
			908 Zn 1.6	866 Cd 1.7	1010 Hg 1.9	
			745 Cu 1.9	732 Ag 1.9	891 Au 2.4	
			736 Ni 1.8	803 Pd	866 Pt 2.2	
			757 Co 1.8	745 Rh 2.2	887 Ir 2.2	
		1	762 Fe 1.8	724 Ru 2.2	841 Os 2.2	
Electron affinity / kJ mol ⁻¹	t ivity		716 Mn 1.5	699 Tc 1.9	762 Re 1.9	
First ionization energy / kJ mol ⁻¹	Element Electronegativity		653 Cr 1.6	694 Mo	770 W 1.7	
First ionization energy / kJ mol	Ele		648 V 1.6	653 Nb 1.6	760 Ta 1.5	
			661 Ti 1.5	669 Zr 1.4	531 Hf 1.3	
			632 Sc 1.3	636 Y 1.2	540 La 1.1	669 Ac 1.1
	900 Be 1.5	736 Mg	590 Ca 1.0	548 Sr 1.0	502 Ba 0.9	510 Ra 0.9
1310 -72 H 2.1	519 -52 Li 1.0	494 -71 Na 0.9	418 K 0.8	402 Rb 0.8	376 Cs 0.7	381 Fr 0.7

8. Atomic and Ionic Radii of the Elements

	Не		Ne			Ar			Kr			Xe			Rn			
		58	Ā	133 (1-)	66	C	181 (1-)	114	Br	196 (1-)	133	Ι	219 (1-)	140	At			
		99	0	146 (2-)	104	S	190 (2-)	117	Se	202 (2-)	137	Te	222 (2-)	140	Po			
		70	Z	171 (3-)	110	Ь	212 (3-)	121	As	222 (3-)	141	Sb	245 (3-)	170	Bi	120 (3+)		
		77	၁	260 (4-)	117	Si	42 (4+) 271 (4-)	122	Ge	53 (4+) 272 (4-)	162	Sn	112 (2+) 71 (4+)	175	Pb	120 (2+) 84 (4+)		
		88	В	16 (3+)	143	Al	45 (3+)	141	Ga	62 (3+)	166	In	81 (3+)	171	I	95 (3+)		
								133	Zn	74 (2+)	149	Cd	97 (2+)	152	Hg	127 (1+) 110 (2+)		
								128	Cu	96 (1+) 69 (2+)	144	\mathbf{Ag}	126 (1+)	144	Au	137 (1+) 85 (3+)		
								124	ï	72 (2+)	138	Pd		138	Pt			
								125	ဝ	74 (2+) 63 (3+)	134	Rh	86 (2+)	135	Ir	(4+)		
								126	Fe	76 (2+) 64 (3+)	133	Ru	65 (4+)	134	Os	67 (4+)		
					·			129	Mn	80 (2+) 60 (4+)	135	Тс		137	Re			
	Atomic radius/ 10-12 m	ent						125	Cr	63 (3+)	136	Mo	68 (4+)	137	W	68 (4+)		
		Element	Ionic radius/	10 ⁻¹² m				131	^	88 (2+) 59 (5+)	141	NP	70 (5+)	143	Ta	73 (5+)		
								146	Τ̈́	90 (2+) 68 (4+)	157	Zr	80 (4+)	157	Hf	81 (4+)		
								160	Sc	81 (3+)	180	Y	93 (3+)	188	La	115 (3+)	200	Ac
-		112	Be	30 (2+)	160	Mg	65 (2+)	197	Ca	94 (2+)	215	\mathbf{Sr}	110 (2+)	217	Ba	34 (2+)	220	Ra
	30 H 154 (1-)	152	ij	68 (1+)	186	Na	98 (1+)	231	K	133 (1+)	244	Rb	148 (1+)	262	Cs	167 (1+)	270	Fr

9. Covalent Bond Lengths

C-C 0.154 Si-H C=C 0.134 N-H C≡C 0.120 P-H C-C (in benzene) 0.139 O-H	0.109 0.146 0.101 0.142
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.096 0.135 0.092 0.128 0.141 0.160 0.143 0.122 0.136 0.147 0.127 0.116 0.135 0.138 0.177 0.169 0.193 0.214

10. Average Bond Enthalpies at 298 K

Bond	ΔH / kJ mol ⁻¹	Bond	ΔH / kJ mol ⁻¹
Н–Н	436	С–Н	412
D-D	442	Si–H	318
C-C	348	N–H	388
C=C	612	P–H	322
C≡C	837	O–H	463
C–C (benzene)	518	S–H	338
Si–Si	226	F–H	562
Ge–Ge	188	Cl–H	431
Sn-Sn	151	Br–H	366
N-N	163	I–H	299
N=N	409		
N≡N	944	C-O	360
P-P	172	C=O	743
0-0	146	C-N	305
0=0	496	C=N	613
S–S	264	C≡N	890
F–F	158	C-F	484
Cl–Cl	242	C-Cl	338
Br–Br	193	C–Br	276
I–I	151	C–I	238
		Si–O	374

11. Organic Compounds—Thermodynamic Data

Substance	Formula	State	ΔH _f Θ / kJ mol ⁻¹	ΔG _f ^Θ / kJ mol ⁻¹	S [⊖] / J K ⁻¹ mol ⁻¹
methane	CH ₄	g	-75	-51	186
ethane	C_2H_6	g	-85	-33	230
propane	C_3H_8	g	-104	-24	270
butane	C_4H_{10}	g	-125	-16	310
pentane	C_5H_{12}	g	-146	-8	348
hexane	C_6H_{14}	g	-167	0	387
ethene	C_2H_4	g	52	68	219
propene	C_3H_6	g	20	63	267
but-1-ene	C_4H_8	g g	1	72	307
cis-but-2-ene	C_4H_8	g g	-6	67	301
trans-but-2-ene	C_4H_8	g	-10	64	296
ethyne	C_2H_2	g	227	209	201
propyne	C ₃ H ₄	g	185	194	248
buta-1,3-diene	C_4H_6		112	152	279
cyclohexane	$C_{6}H_{12}$	g 1	-156	27	204
benzene	C_6H_{12} C_6H_6		83	130	269
benzene	C_6H_6	g 1	49	125	173
	C_6H_6 $C_6H_5CH_3$		50	123	320
methylbenzene		g	30	131	360
ethylbenzene	C ₆ H ₅ CH ₂ CH ₃	g			
phenylethene	CH-CH	g	148	214	345
chloromethane	CH₃Cl	g	-82	-59	234
dichloromethane	CH ₂ Cl ₂	1	-117	-63	179
trichloromethane	CHCl ₃	1	-132	-72	203
bromomethane	CH₃Br	g	-36	-26	246
tribromomethane	CHBr ₃	1	-20	3	222
iodomethane	CH₃I	1	-8	20	163
triiodomethane	CHI ₃	S	141		
chloroethane	C_2H_5Cl	g	-105	-53	276
bromoethane	C_2H_5Br	1	-85		
iodoethane	C_2H_5I	1	-31		
chloroethene	C_2H_3Cl	g	31	52	264
1,2-dichloroethane	CH ₂ ClCH ₂ Cl	1	-166	-80	208
chlorobenzene	C_6H_5Cl	g	52	99	314
methanol	CH₃OH	g	-201	-162	238
methanol	CH₃OH	1	-239	-166	127
ethanol	C_2H_5OH	g	-235	-169	282
ethanol	C_2H_5OH	1	-278	-175	161
phenol	C_6H_5OH	S	-163	-51	146
methanal	НСНО	g	-116	-110	219
ethanal	CH₃CHO	g	-166	-134	266
propanone	$(CH_3)_2CO$	g	-216	-152	295
methanoic acid	НСООН	1	-409	-346	129
ethanoic acid	CH₃COOH	1	-487	-392	160
benzoic acid	C ₆ H ₅ COOH	S	-385	-245	167
ethyl ethanoate	CH ₃ COOC ₂ H ₅	1	-481	-	
ethanamide	CH ₃ CONH ₂	S	-320		
methylamine	CH ₃ NH ₂	g	-28	28	242
ethylamine	$C_2H_5NH_2$	g g	-49	37	285
•					
urea	CO(NH ₂) ₂	S	-333	-47	105

12. Ellingham Diagram

Standard Gibbs free energy changes of formation, ΔG^{\ominus}_{f} , for oxides given per mole of oxygen gas as a function of temperature.

Temperature / K

13. Enthalpies of Combustion

The values of the molar enthalpy of combustion (ΔH_c^{\ominus}) in the following table refer to a temperature of 298 K and a pressure of 1.01 \times 10⁵ Pa (1 atm).

Substance	Formula	State	$\Delta H_{ m c}^{\ominus}$ / kJ mol $^{-1}$	Substance	Formula	State	$\Delta H_{ m c}^{\ominus}$ / kJ mol-1
hydrogen	H_2	ьa	-286	propan-1-ol	C_3H_7OH	1	-2010
sulfur	S	o o	-297	butan-1-ol	C ₄ H ₉ OH	1	-2673
carbon (graphite)	C	S	-394	phenylmethanol	C ₆ H ₅ CH ₂ OH	1	-4056
carbon (diamond)	C	s	-395	cyclohexanol	$C_6H_{11}OH$	S	-3727
carbon monoxide	CO	ac	-283	phenol	C ₆ H ₅ OH	s	-3064
methane	CH_4	ac	068-	ethoxyethane	$(C_2H_5)_2O$	П	-2727
ethane	C_2H_6	ac	-1560	methanal	НСНО	مخ	-561
propane	C_3H_8	ac	-2220	ethanal	CH ₃ CHO	Τ	-1167
butane	$\mathbf{C}_{4}\mathbf{H}_{10}$	ac	-2877	benzaldehyde	C ₆ H ₅ CHO	1	-3520
pentane	C_5H_{12}	ac	-3509	propanone	$(CH_3)_2CO$	_	-1786
hexane	C_6H_{14}	1	-4194	pentan-3-one	$(C_2H_5)_2CO$	1	-3078
octane	C_8H_{18}	-	-5512	phenylethanone	CH ₃ COC ₆ H ₅	S	-4138
cyclohexane	$\mathrm{C}_6\mathrm{H}_{12}$	1	-3924	diphenylmethanone	$(C_6H_5)_2CO$	s	-6512
ethene	C_2H_4	1	-1409	methanoic acid	HCOOH	Ι	-263
buta-1,3-diene	$\mathrm{C}_4\mathrm{H}_6$	ac	-2542	ethanoic acid	CH ₃ COOH	Τ	-876
ethyne	C_2H_2	ac	-1299	benzoic acid	C ₆ H ₅ COOH	S	-3227
benzene	C_6H_6	ac	-3273	ethanedioic acid	$(COOH)_2$	S	-246
methylbenzene	$C_6H_5CH_3$	1	-3909	ethyl ethanoate	CH ₃ COOC ₂ H ₅	1	-2246
naphthalene	$\mathbf{C}_{10}\mathbf{H}_8$	1	-5157	ethanamide	CH ₃ CONH ₂	s	-1182
anthracene	$\mathbf{C}_{14}\mathbf{H}_{10}$	S	-7114	benzamide	C ₆ H ₅ CONH ₂	S	-3546
chloroethane	C_2H_5C1	S	-1325	methylamine	CH_3NH_2	ьa	-1072
bromoethane	C_2H_5Br	ac	-1425	ethylamine	$C_2H_5NH_2$	مه	-1709
iodoethane	C_2H_5I	ac	-1490	phenylamine	$C_6H_5NH_2$	Ι	-3397
(chloromethyl)benzene	C ₆ H ₅ CH ₂ Cl	1	-3709	nitrobenzene	C ₆ H ₅ NO ₂	Τ	-3094
trichloromethane	CHCl ₃	1	-373	urea	$CO(NH_2)_2$	s	-634
methanol	CH ₃ OH	1	-715	glucose	$C_6H_{12}O_6$	S	-2816
ethanol	C_2H_5OH	1	-1371	sucrose	$C_{12}H_{22}O_{11}$	S	-5644

14. Lattice Enthalpies at 298 K (Experimental and Theoretical Values)

The lattice enthalpy $(\Delta H^{\ominus}_{\text{lattice}})$ values given relate to the endothermic process $MX(s) \to M^{+}(g) + X^{-}(g)$ in which the gaseous ions of a crystal are separated to an infinite distance from each other.

Experimental Values

The data in these two tables are experimental values obtained by means of a suitable Born-Haber cycle.

Alkali metal halides	$\Delta H_{ m lattice}^{\ominus}$ / kJ mol -1			
	F	Cl	Br	I
Li	1022	846	800	744
Na	902	771	733	684
K	801	701	670	629
Rb	767	675	647	609
Cs	716	645	619	585

Other substances	$\Delta H_{ m lattice}^{\ominus}$ / kJ mol ⁻¹	Other substances	$\Delta H_{ m lattice}^{\ominus}$ / kJ mol ⁻¹
CaF ₂	2602	MgS	3238
BeCl_2	3006	CaS	2966
$MgCl_2$	2493	SrS	2779
$CaCl_2$	2237	BaS	2643
$SrCl_2$	2112	CuCl	976
$BaCl_2$	2018	AgF	955
MgO	3889	AgCl	905
CaO	3513	AgBr	890
SrO	3310	AgI	876
BaO	3152	NH ₄ Cl	640

Theoretical Values

These two tables contain lattice enthalpies calculated from electrostatic principles on the basis of a purely ionic model for the crystal.

Alkali metal halides	$\Delta H_{ m lattice}^{\ominus}$ / kJ mol -1			
	${f F}$	Cl	Br	I
Li	1004	833	787	728
Na	891	766	732	686
K	795	690	665	632
Rb	761	674	644	607
Cs	728	636	611	582

Other substances	$\Delta H_{ m lattice}^{\ominus}$ / kJ mol ⁻¹	Other substances	$\Delta H_{ m lattice}^{\oplus}$ / kJ mol ⁻¹
CaF ₂	2611	AgF	870
MgO	3929	AgCl	770
CaO	3477	AgBr	758
SrO	3205	AgI	736
BaO	3042		

15. Standard Electrode Potentials

Oxidized species	+	Reduced species	<i>E</i> e / V
$Li^+(aq) + e^-$	=	Li(s)	-3.03
$K^+(aq) + e^-$	=	K(s)	-2.92
$Ca^{2+}(aq) + 2e^{-}$	=	Ca(s)	-2.87
$Na^+(aq) + e^-$	=	Na(s)	-2.71
$Mg^{2+}(aq) + 2e^{-}$	\rightleftharpoons	Mg(s)	-2.36
$Al^{3+}(aq) + 3e^{-}$	\rightleftharpoons	Al(s)	-1.66
$Mn^{2+}(aq) + 2e^{-}$	\rightleftharpoons	Mn(s)	-1.18
$H_2O(1) + e^{-}$	=	$^{1}/_{2}H_{2}(g) + OH^{-}(aq)$	-0.83
$Zn^{2+}(aq) + 2e^{-}$	=	Zn(s)	-0.76
$Fe^{2+}(aq) + 2e^{-}$	=	Fe(s)	-0.44
$Ni^{2+}(aq) + 2e^{-}$	=	Ni(s)	-0.23
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-}$	\rightleftharpoons	Sn(s)	-0.14
$Pb^{2+}(aq) + 2e^{-}$	=	Pb(s)	-0.13
$H^+(aq) + e^-$	\rightleftharpoons	$^{1}/_{2}H_{2}(g)$	0.00
$Cu^{2+}(aq) + e^{-}$	\rightleftharpoons	$Cu^+(s)$	+0.15
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^-$	=	$H_2SO_3(aq) + H_2O(l)$	+0.17
$Cu^{2+}(aq) + 2e^{-}$	=	Cu(s)	+0.34
$\frac{1}{2}O_2(g) + H_2O(1) + 2e^{-1}$	=	2OH ⁻ (aq)	+0.40
$Cu^+(aq) + e^-$	\rightleftharpoons	Cu(s)	+0.52
$\frac{1}{2}I_{2}(s) + e^{-}$	\rightleftharpoons	I ⁻ (aq)	+0.54
$Fe^{3+}(aq) + e^{-}$	\rightleftharpoons	$Fe^{2+}(aq)$	+0.77
$Ag^{+}(aq) + e^{-}$	=	Ag(s)	+0.80
$\frac{1}{2}Br_{2}(1) + e^{-}$	=	Br ⁻ (aq)	+1.09
$\frac{1}{2}O_2(g) + 2H^+(aq) + 2e^-$	\rightleftharpoons	$H_2O(1)$	+1.23
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^-$	\rightleftharpoons	$2Cr^{3+}(aq) + 7H_2O(1)$	+1.33
$\frac{1}{2}Cl_{2}(g) + e^{-}$	⇌	Cl ⁻ (aq)	+1.36
$MnO_4^-(aq) + 8H^+(aq) + 5e^-$	=	$Mn^{2+}(aq) + 4H_2O(l)$	+1.51
$\frac{1}{2}F_{2}\left(g\right) +e^{T}$	=	F(aq)	+2.87

16. Strengths of Organic Acids and Bases

The acid strengths in the following tables are given in terms of p K_a values, where p K_a = -log₁₀ K_a . The dissociation constant, K_a , values are for aqueous solutions at 298 K. Base strengths are given in terms of p K_b values.

Carboxylic Acids

Name	Formula	pK_a
methanoic	НСООН	3.75
ethanoic	CH₃COOH	4.76
propanoic	CH ₃ CH ₂ COOH	4.87
butanoic	CH ₃ (CH ₂) ₂ COOH	4.82
2-methylpropanoic	(CH ₃) ₂ CHCOOH	4.85
pentanoic	CH ₃ (CH ₂) ₃ COOH	4.86
2,2-dimethylpropanoic	(CH ₃) ₃ CCOOH	5.05
benzoic	C ₆ H ₅ COOH	4.20
phenylethanoic	C ₆ H ₅ CH ₂ COOH	4.31

Halogenated Carboxylic Acids

Name	Formula	pK_{a}
chloroethanoic	CH ₂ ClCOOH	2.86
dichloroethanoic	CHCl ₂ COOH	1.29
trichloroethanoic	CCl_3COOH	0.65
fluoroethanoic	CH_2FCOOH	2.66
bromoethanoic	$CH_2BrCOOH$	2.90
iodoethanoic	CH₂ICOOH	3.17

Phenols

Name	Formula	pK _a
phenol	C ₆ H₅OH	10.00
2-nitrophenol	$O_2NC_6H_4OH$	7.21
3-nitrophenol	$O_2NC_6H_4OH$	8.35
4-nitrophenol	$O_2NC_6H_4OH$	7.15
2,4-dinitrophenol	$(O_2N)_2C_6H_3OH$	4.01
2,4,6-trinitrophenol	$(O_2N)_3C_6H_2OH$	0.42

Alcohols

Name	Formula	pK_{a}
methanol ethanol	CH_3OH C_2H_5OH	15.5 16 (approximately)

Amines

Name	Formula	$pK_{ m b}$
ammonia	NH_3	4.75
methylamine	CH_3NH_2	3.36
ethylamine	$CH_3CH_2NH_2$	3.27
dimethylamine	$(CH_3)_2NH$	3.28
trimethylamine	$(CH_3)_3N$	4.20
diethylamine	$(C_2H_5)_2NH$	3.07
triethylamine	$(C_2H_5)_3N$	3.36
phenylamine	$C_6H_5NH_2$	9.38

17. Acid-base Indicators

			Colour o	change
Indicator	pK_a	pH range	Acid	Alkali
methyl orange	3.7	3.1–4.4	red	yellow
bromophenol blue	4.0	3.0-4.6	yellow	blue
bromocresol green	4.7	3.8-5.4	yellow	blue
methyl red	5.1	4.2-6.3	red	yellow
bromothymol blue	7.0	6.0-7.6	yellow	blue
phenol red	7.9	6.8-8.4	yellow	red
phenolphthalein	9.3	8.3–10.0	colourless	red

18. Infrared Data

Characteristic ranges for infrared absorption due to stretching vibrations in organic molecules.

Bond	Organic molecules	Wavenumber / cm ⁻¹
C-Cl	halogenoalkanes	700 to 800
С-О	alcohols, ethers, esters	1000 to 1300
C=C	alkenes	1610 to 1680
С=О	aldehydes, ketones, acids, esters	1680 to 1750
C≡C	alkynes	2070 to 2250
О–Н	"hydrogen bonded" in acids	2500 to 3300
С–Н	alkanes, alkenes, arenes	2840 to 3095
О–Н	"hydrogen bonded" in alcohols, phenols	3230 to 3550
N–H	primary amines	3350 to 3500

19. ¹H NMR Data

Typical proton chemical shift values (δ) relative to TMS = 0. (These values can vary slightly in different solvents.)

Type of proton	Chemical shift/ppm
R—CH ₃	0.9
R — CH_2 — R	1.3
R ₃ CH	2
CH_3 — C OR	2.0
R CH ₃	2.1
CH_3	2.3
R—C≡C—H	2.6
R—CH ₂ —Hal	3.2–3.7
ROCH ₃	3.8
R — C — O — CH_2R	4.1
О С С С С Н 3	4.0–4.2
R—O—H	0.5–6.5 (can vary considerably under different conditions)
RHC=CH ₂	4.9–5.9
ОН	7
Н	7.3
R - C H	9.7
О — Н	11.5

20. 2-amino Acids

Common name	Symbol	Structural formula	pH of isoelectric point
alanine	Ala	H ₂ N—CH—COOH CH ₃	6.0
arginine	Arg	$\begin{array}{c c} H_2N-\!$	10.8
asparagine	Asn	H_2N — CH — $COOH$ CH_2 — C — NH_2 O	5.4
aspartic acid	Asp	H ₂ N—CH—COOH CH ₂ —COOH	2.8
cysteine	Cys	H ₂ N—CH—COOH CH ₂ —SH	5.1
glutamine	Gln	H_2N — CH — $COOH$ CH_2 — CH_2 — C — NH_2 O	5.7
glutamic acid	Glu	H ₂ N—CH—COOH CH ₂ —CH ₂ —COOH	3.2
glycine	Gly	H ₂ N—СН ₂ —СООН	6.0
histidine	His	H_2N — CH — $COOH$ H CH_2 — N	7.6
isoleucine	Ile	H ₂ N—CH—COOH CH ₃ —CH—CH ₂ —CH ₃	6.0

Common name	Symbol	Structural formula	pH of isoelectric point
leucine	Leu	H ₂ N—CH—COOH CH ₂ CH ₃ —CH—CH ₃	6.0
		CH ₃ —CH—CH ₃	
lysine	Lys	H ₂ N—CH—COOH CH ₂ —CH ₂ —CH ₂ —NH ₂	9.7
methionine	Met	H ₂ N—CH—COOH CH ₂ —CH ₂ —S—CH ₃	5.7
phenylalanine	Phe	H ₂ N—CH—COOH CH ₂	5.5
proline	Pro	Н	6.3
serine	Ser	H ₂ N—CH—COOH CH ₂ —OH	5.7
threonine	Thr	H ₂ N—CH—COOH CH ₃ —CH—OH	5.6
tryptophan	Trp	H ₂ N—CH—COOH CH ₂ N H	5.9
tyrosine	Tyr	H ₂ N—CH—COOH CH ₂ —OH	5.7
valine	Val	H ₂ N—CH—COOH CH ₃ —CH—CH ₃	6.0

21. Structural Formulas of Some Important Medicines and Drugs

cisplatin

Lidocaine

lysergic acid diethylamide (LSD)

$$F_3C$$
 CH_2
 $NH_2^+CI^ CH_3$

fluoxetine hydrochloride (prozac®)

$$O = P - O$$

$$O = P - O$$

$$CH_3$$

$$CH_2$$

$$H$$

$$CH_3$$

$$H$$

$$\begin{array}{c} \text{CH}_3 \\ \text{OH} \\ \text{H}_3\text{C} \\ \text{O} \end{array} \begin{array}{c} \text{OH} \\ \text{CH}_2 \\ \text{CH}_2 \end{array} \begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \end{array} \begin{array}{c} \text{CH}_2 \\ \text{CH}_3 \end{array}$$

tetrahydrocannabinol (THC)

psilocybin

indole

22. Structural Formulas of Some Important Biological Molecules

The haem group from cytochrome oxidase

CH₂

СООН

ĊН₂

-ĊH₂

HOOC-