latex-math Macros

compiled: 2024-03-21

Latex macros like $\frac{\#1}{\#2}$ with arguments are displayed as $\frac{\#1}{\#2}$.

Note that macro declarations may only span a single line to be displayed correctly in the below tables.

Contents

basic-math	2
basic-ml	4
ml-ensembles	8
ml-eval	9
ml-feature-sel	11
ml-gp	12
ml-hpo	13
ml-infotheory	14
ml-interpretable	15
ml-mbo	16
ml-multitarget	17
ml-nn	18
ml-online	19
ml-survival	20
ml-svm	21
ml-trees	22

basic-math

$\begin{array}{ c c c c } \hline \\ \text{NN} & \text{NN} & \text{NN}, \text{naturals} \\ \text{ZZ} & \text{ZZ}, \text{ integers} \\ \text{QQ} & \text{QQ}, \text{ rationals} \\ \text{RR} & \text{RR} & \text{RR}, \text{ reals} \\ \text{CC} & \text{CC} & \text{CC}, \text{ complex} \\ \text{\continuous} & \mathcal{C} & \text{CC}, \text{ space of continuous functions} \\ \text{MM} & \text{Mmachine numbers} \\ \text{NM} & \text{Mmachine numbers} \\ \text{Nepsm} & \epsilon_m & \text{maximum error} \\ \text{Setzo} & \{0,1\} & \text{set } 0,1 \\ \text{Setmp} & \{-1,+1\} & \text{set } -1,1 \\ \text{Vunitint} & [0,1] & \text{unit interval} \\ \text{Vat} & \tilde{x} & \text{x tilde} \\ \text{Vargmax} & \text{arg max} & \text{argmax} \\ \text{Vargmin} & \text{arg min} & \text{argmin} \\ \text{Vargminlim} & \text{arg min} & \text{argmin} \\ \text{Vargminlim} & \text{arg min} & \text{argmin} \\ \text{Vargmaxlim} & \text{arg max} & \text{argmin} \\ \text{Vargmaxlim} & \text{arg max} & \text{argmin} \\ \text{Vargmaxlim} & \text{arg max} & \text{argmin} \\ \text{Vargmaxlim} & \text{II} & \text{II}, \text{ indicator} \\ \text{Vorder} & \mathcal{O} & \text{O}, \text{order} \\ \text{Voig0} & \mathcal{O} & \text{Big-O Landau} \\ \text{Vittleo} & O & \text{Little-o Landau} \\ \text{Vpd} & \frac{\partial \#1}{\partial \#2} & \text{partial derivative} \\ \text{Vfloorlr} & [\#1] & \text{floor} \\ \text{Ceillr} & [\#1] & \text{ceiling} \\ \text{Sumin} & \sum_{i=1}^{n} & \text{summation from } i{=}1 \text{ to n} \\ \text{Sumin} & \sum_{j=1}^{n} & \text{summation from } i{=}1 \text{ to p} \\ \text{Sumjp} & \sum_{j=1}^{p} & \text{summation from } i{=}1 \text{ to p} \\ \text{Sumik} & \sum_{i=1}^{k} & \text{summation from } i{=}1 \text{ to p} \\ \text{Sumik} & \sum_{i=1}^{k} & \text{summation from } i{=}1 \text{ to g} \\ \text{Sumyg} & \sum_{j=1}^{g} & \text{summation from } i{=}1 \text{ to g} \\ \text{Sumyg} & \sum_{j=1}^{g} & \text{summation from } i{=}1 \text{ to g} \\ \text{Summation from } i{=}1 \text{ to g} \\ \text{Sumpg} & \sum_{j=1}^{g} & \text{summation from } i{=}1 \text{ to g} \\ \text{Sumpg} & \sum_{j=1}^{g} & \text{summation from } i{=}1 \text{ to g} \\ \text{Sumpg} & \sum_{j=1}^{g} & \text{summation from } i{=}1 \text{ to g} \\ \text{Sumpg} & \sum_{j=1}^{g} & \text{summation from } i{=}1 \text{ to g} \\ \text{Sumpg} & \sum_{j=1}^{g} & \text{summation from } i{=}1 \text{ to g} \\ \text{Sumpg} & \sum_{j=1}^{g} & \text{summation from } i{=}1 \text{ to g} \\ \text{Sumpg} & \sum_{j=1}^{g} & \text{summation from } i{=}1 \text{ to g} \\ \text{Sumpg} & \sum_{j=1}^{g} & \text{summation from } i{=}1 \text{ to g} \\ \text{Sumpg} & \sum_{j=1}^{g} & \text{summation from } i{=}1 $	Magno	Notation	Comment
\[\begin{array}{c c c c c c c c c c c c c c c c c c c	Macro	Notation	Comment
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & \\ \hline & & & & & & &$			
$\begin{tabular}{ c c c c c } \hline & C & C, complex \\ \hline & C & C, space of continuous functions \\ \hline & M & M & machine numbers \\ \hline & & maximum error \\ \hline & & setzo & \{0,1\} & set 0, 1 \\ \hline & & setmp & \{-1,+1\} & set -1, 1 \\ \hline & & & & x tilde \\ \hline & & & & & x tilde \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		•	
\setmp\[\{-1,+1\} \] set -1, 1 \unitint\[[0,1] \] unit interval \\ \tau \tau \tau \tau \tau \tau \tau \t			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		
\text \(\text{x} \) x tilde \\ \argmax \) argmax \\ argmin \\ argmin \) argmin \\ \argmin\ \argmin\ \argmin\ \argmin\ \argmin\ \argmax\ \argmax\ \argmax\ \argmin\ \argmax\ \argmax\ \argmin\ \argmax\ \argmax\ \argmax\ \argmin\ \argmax\ \argmax\ \argmin\			
\argmax \ arg max \ argmax \ argmin \ argmax \ argmax \ argmin \			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	-	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	_	-	
\sign \sign \sign, \sign, \signum \\I \\ \text{I} \\ \\ \text{I} \\ \text{I} \\ \\ \text{I} \\ \\ \text{I} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	_	_	
\I \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	_	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	_		
\big0 \(\mathcal{O} \) Big-O Landau \\ \littleo \) \(o \) Little-o Landau \\ \pd \) \(\frac{\partial p}{\partial m^2} \) \(\text{partial derivative} \) \\ \frac{\frac{pm}{l}}{\partial m^2} \] \(\text{partial derivative} \) \\ \\ \text{ceillr} \) \(\begin{array}{c} \begin{array}{c} \partial derivative \\ \frac{pm}{l}} \] \(\text{ceiling} \) \\ \\ \text{sumin} \) \(\sumin	•		
\littleo o Little-o Landau \\pd $\frac{\partial\#1}{\partial\#2}$ partial derivative \\floor\lfl	•	_	,
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
\floorlr \begin{array}{c c c c c c c c c c c c c c c c c c c			
\ceillr $\begin{bmatrix} m\\ m\end{bmatrix}$ ceiling \summation \summa	-		
\sumin $\sum_{i=1}^{n} \qquad \text{summation from i=1 to n}$ \sumin $\sum_{i=1}^{m} \qquad \text{summation from i=1 to m}$ \sumjn $\sum_{j=1}^{n} \qquad \text{summation from j=1 to p}$ \sumjp $\sum_{j=1}^{p} \qquad \text{summation from j=1 to p}$ \sumik $\sum_{i=1}^{k} \qquad \text{summation from i=1 to k}$ \sumkg $\sum_{k=1}^{g} \qquad \text{summation from k=1 to g}$ \sumpside \sumpside \sumpside \sum_{i=1}^{g} \text{summation from j=1 to g}	•	[#1]	
\sum jg $\sum_{i=1}^{k=1}$ summation from j=1 to g	\ceillr	#1	ceiling
\sum jg $\sum_{i=1}^{k=1}$ summation from j=1 to g	\sumin	$\sum_{i=1}^{n}$	summation from $i=1$ to n
\sum jg $\sum_{i=1}^{k=1}$ summation from j=1 to g	\sumim	$\sum_{i=1}^{m}$	summation from $i=1$ to m
\sum jg $\sum_{i=1}^{k=1}$ summation from j=1 to g	\sumjn	$\sum_{n=1}^{n}$	summation from j=1 to p
\sum jg $\sum_{i=1}^{k=1}$ summation from j=1 to g	\sumin	$\sum_{p}^{j=1}$	summation from i=1 to p
\sum jg $\sum_{i=1}^{k=1}$ summation from j=1 to g	(2 umjp	j=1 k	
\sum jg $\sum_{i=1}^{k=1}$ summation from j=1 to g	\sumik	$\sum_{i=1}^{\infty}$	summation from i=1 to k
\sum jg $\sum_{i=1}^{g}$ summation from j=1 to g	\sumkg	k=1	summation from $k=1$ to g
	\sumjg	$\sum_{i=1}^{g}$	summation from j=1 to g
\meanin $\frac{1}{n} \sum_{i=1}^{n}$ mean from i=1 to n	\meanin	$\frac{1}{n}\sum_{i=1}^{n}$	mean from $i=1$ to n
\meanin $\frac{1}{n}\sum_{i=1}^{n}$ mean from i=1 to n \meanim $\frac{1}{m}\sum_{i=1}^{m}$ mean from i=1 to n	\meanim	$\frac{1}{m} \sum_{i=1}^{n-1}$	mean from $i=1$ to n

\meankg	$\frac{1}{g} \sum_{k=1}^{g}$	mean from k=1 to g
\prodin	$\prod_{i=1}^{n}$	product from $i=1$ to n
\prodkg	$\prod_{k=1}^{g}$	product from $k=1$ to g
\prodjp	$\prod_{j=1}^{p}$	product from $j=1$ to p
\one	1	1, unitvector
\zero	0	0-vector
\id	I	I, identity
\diag	diag	diag, diagonal
\trace	tr	tr, trace
\spn	span	span
\scp	$\langle \#1, \#2 \rangle$	<.,.>, scalarproduct
\mat	(#1)	short pmatrix command
\Amat	\mathbf{A}	matrix A
\Deltab	$oldsymbol{\Delta}$	error term for vectors
\ P	${\mathbb P}$	P, probability
\E	${ m I}\!{ m E}$	E, expectation
\var	Var	Var, variance
\cov	Cov	Cov, covariance
\corr	Corr	Corr, correlation
\normal	\mathcal{N}	N of the normal distribution
\iid	$\overset{i.i.d}{\sim}$	dist with i.i.d superscript
\distas	#1 ~	is distributed as

basic-ml

Macro	Notation	Comment
\Xspace	\mathcal{X}	X, input space
\Yspace	${\mathcal Y}$	Y, output space
\Zspace	${\mathcal Z}$	Space of sampled datapoints! Also defined identically in ml-only
\nset	$\{1,\ldots,n\}$	set from 1 to n
\pset	$\{1,\ldots,p\}$	set from 1 to p
\gset	$\{1,\ldots,g\}$	set from 1 to g
\Pxy	\mathbb{P}_{xy}	P_xy
\Exy	\mathbb{E}_{xy}	E_xy: Expectation over random variables xy
\xv	x	vector x (bold)
\xtil	$ ilde{\mathbf{x}}$	vector x-tilde (bold)
\yv	\mathbf{y}	vector y (bold)
\xy	(\mathbf{x},y)	observation (x, y)
\xvec	$(x_1,\ldots,x_p)^{ op}$	(x1,, xp)
\Xmat	X	Design matrix
\allDatasets	\mathbb{D}	The set of all datasets
\allDatasetsn	\mathbb{D}_n	The set of all datasets of size n
\D	\mathcal{D}	D, data
\Dn	\mathcal{D}_n	D_n, data of size n
\Dtrain	$\mathcal{D}_{ ext{train}}$	D_train, training set
\Dtest	$\mathcal{D}_{ ext{test}}$	D_test, test set
\xyi	$(\mathbf{x}^{(\#1)}, y^{(\#1)})$	(x^i, y^i) , i-th observation
\Dset	$\left(\left(\mathbf{x}^{(1)}, y^{(1)}\right), \dots, \left(\mathbf{x}^{(n)}, y^{(n)}\right)\right)$	$\{(x1,y1)\},, (xn,yn)\}, data$
\defAllDatasetsn	$(\mathcal{X} imes \mathcal{Y})^n$	Def. of the set of all datasets of size n
\defAllDatasets	$\bigcup_{n\in\mathbb{N}}(\mathcal{X}\times\mathcal{Y})^n$	Def. of the set of all datasets
\xdat	$\{\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}\}$	$\{x1,, xn\}$, input data
\ydat	$egin{aligned} igcup_{n \in \mathbb{N}} (\hat{\mathcal{X}} imes \mathcal{Y})^n \ ig\{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)} ig\} \ ig\{ \mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)} ig\} \end{aligned}$	$\{y1,, yn\}$, input data
\yvec	$\left(y^{(1)},\ldots,y^{(n)}\right)^{\top}$	(y1,, yn), vector of outcomes
\xi	$\mathbf{x}^{(\#1)}$	x^i, i-th observed value of x
\yi	$y^{(\#1)}$	y^i, i-th observed value of y
-		· ·
\xivec	$\left(x_1^{(i)},\ldots,x_p^{(i)}\right)^{\scriptscriptstyle op}$	(x1 ⁱ ,, xp ⁱ), i-th observation vector
\xj	\mathbf{x}_{j}	x_{j} , j-th feature
\xjvec	$\left(x_j^{(1)},\dots,x_j^{(n)} ight)^ op$	$(x^1_j,, x^n_j)$, j-th feature vector
\phiv	ϕ	Basis transformation function phi
\phixi	$\phi^{(i)}$	Basis transformation of xi: $phi^{}i := phi(xi)$
\lamv	$\stackrel{'}{\lambda}$	lambda vector, hyperconfiguration vector
\Lam	Λ	Lambda, space of all hoos
\preimageInducer	$\left(\bigcup_{n\in\mathbb{N}}(\mathcal{X} imes\mathcal{Y})^n ight) imesoldsymbol{\Lambda}$	Set of all datasets times the hyperparameter space
\preimageInducerShort	$\mathbb{D} \times \mathbf{\Lambda}$	Set of all datasets times the hyperparameter space
\ind	\mathcal{I}	Inducer, inducing algorithm, learning algorithm
\ftrue	$f_{ m true}$	True underlying function (if a statistical model is assumed)
\ftruex	$f_{ m true}({f x})$	True underlying function (if a statistical model is assumed)
,= ======	J 11 UC (/	

\fx	$f(\mathbf{x})$	f(x), continuous prediction function
\fdomains	$f:\mathcal{X} o\mathbb{R}^g$	f with domain and co-domain
\Hspace	$\overset{\circ}{\mathcal{H}}$	hypothesis space where f is from
\fbayes	f^*	Bayes-optimal model
\fxbayes	$f^*(\mathbf{x})$	Bayes-optimal model
\fkx	$f_{\#1}(\mathbf{x})$	$f_{j}(x)$, discriminant component function
\fh	$\hat{\hat{f}}^{''}$	f hat, estimated prediction function
\fxh	$\hat{f}(\mathbf{x})$	fhat(x)
\fxt	$f(\mathbf{x} \mid \boldsymbol{\theta})$	$f(x \mid theta)$
\fxi	$f\left(\mathbf{x}^{(i)}\right)$	$f(x^{-}(i))$
\fxih	$\hat{f}\left(\mathbf{x}^{(i)}\right)$	$f(x^{(i)})$
\fxit	$f\left(\mathbf{x}^{(i)}\right)\mid\boldsymbol{\theta}$	$f(x^{(i)} \mid \text{theta})$
\fhD	$\hat{f}_{\mathcal{D}}$	fhat_D, estimate of f based on D
\fhDtrain	$\hat{f}_{\mathcal{D}_{ ext{train}}}^{\mathcal{D}}$	fhat_Dtrain, estimate of f based on D
\fhDnlam	$f_{ au_{ ext{train}}}$	model learned on Dn with hp lambda
	$f_{\mathcal{D}_n, oldsymbol{\lambda}}$	
\fhDlam	$f_{\mathcal{D},oldsymbol{\lambda}}$	model learned on D with hp lambda
\fhDnlams	$f_{\mathcal{D}_n,oldsymbol{\lambda}^*}$	model learned on Dn with optimal hp lambda
\fhDlams	$f_{\mathcal{D}, \boldsymbol{\lambda}^*}$	model learned on D with optimal hp lambda
\hx	$h(\mathbf{x})$	h(x), discrete prediction function
\hh	\hat{h}	h hat
\hxh	$\hat{h}(\mathbf{x})$	hhat(x)
\hxt	$h(\mathbf{x} \boldsymbol{\theta})$	$h(x \mid theta)$
\hxi	$h\left(\mathbf{x}^{(i)}\right)$	$h(x^{(i)})$
\hxit	$h\left(\mathbf{x}^{(i)} \mid oldsymbol{ heta} ight)$	$h(x^{(i)} \mid theta)$
\hbayes	h^*	Bayes-optimal classification model
\hxbayes	$h^*(\mathbf{x})$	Bayes-optimal classification model
\yh	\hat{y}	yhat for prediction of target
\yih	$\hat{y}^{(i)}$	yhat^(i) for prediction of ith targiet
\resi	$\overset{\circ}{\hat{y}^{(i)}}-\hat{y}^{(i)}$	
\thetah	$\hat{ heta}$	theta hat
\thetab	$\hat{\theta}$	theta vector
\thetabh	$\hat{ heta}$	theta vector hat
\thetat	$oldsymbol{ heta}^{[\#1]}$	theta [*] [t] in optimization
\thetatn	$oldsymbol{ heta}^{[\#1+1]}$	theta $[t+1]$ in optimization
\thetahDnlam	$\hat{m{ heta}}_{\mathcal{D}_n,m{\lambda}}$	theta learned on Dn with hp lambda
\thetahDlam	$\hat{ heta}_{\mathcal{D},oldsymbol{\lambda}}$	theta learned on D with hp lambda
\mint	$\min_{oldsymbol{ heta} \in \Theta}$	min problem theta
\argmint	$rg \min_{oldsymbol{ heta} \in \Theta}$	argmin theta
\pdf	p	p
\pdfx	$p(\mathbf{x})$	p(x)
\pixt	$\pi(\mathbf{x} \mid \boldsymbol{\theta})$	pi(x theta), pdf of x given theta
\pixit	$\pi\left(\mathbf{x}^{(\#1)}\midoldsymbol{ heta} ight)$	$pi(x^i theta)$, pdf of x given theta
\pixii	$\pi\left(\mathbf{x}^{(\#1)}\right)$	$pi(x^i)$, pdf of i-th x
\pdfxy	$p(\mathbf{x}, y)$	p(x, y)

```
\pdfxyt
                                         p(\mathbf{x}, y \mid \boldsymbol{\theta})
                                                                                                    p(x, y \mid theta)
\pdfxyit
                                         p\left(\mathbf{x}^{(i)}, y^{(i)} \mid \boldsymbol{\theta}\right)
                                                                                                    p(x^(i), y^(i) \mid theta)
                                         p(\mathbf{x}|y = \#1)
                                                                                                    p(x \mid y = k)
\pdfxyk
\lpdfxyk
                                         \log p(\mathbf{x}|y = #1)
                                                                                                    \log p(x \mid y = k)
                                         p\left(\mathbf{x}^{(i)}|y=\#1\right)
\pdfxiyk
                                                                                                    p(x^i \mid y = k)
                                                                                                    pi k, prior
\pik
                                         \pi_{\#1}
\lpik
                                         \log \pi_{\#1}
                                                                                                    log pi k, log of the prior
                                         \pi(\boldsymbol{\theta})
                                                                                                     Prior probability of parameter theta
\pit
\post
                                         \mathbb{P}(y=1\mid \mathbf{x})
                                                                                                    P(y = 1 | x), post. prob for y=1
                                         \mathbb{P}(y = \#1 \mid \mathbf{x})
                                                                                                    P(y = k \mid y), post. prob for y=k
\postk
\pidomains
                                         \pi: \mathcal{X} \to [0,1]
                                                                                                    pi with domain and co-domain
\pibayes
                                                                                                    Bayes-optimal classification model
                                         \pi^*
\pixbayes
                                         \pi^*(\mathbf{x})
                                                                                                    Bayes-optimal classification model
                                                                                                    pi(x), P(y = 1 | x)
\pix
                                         \pi(\mathbf{x})
\piv
                                                                                                    pi, bold, as vector
                                         \pi
                                                                                                    pi k(x), P(y = k \mid x)
\pikx
                                         \pi_{\#1}({\bf x})
                                         \pi_{\#1}(\mathbf{x} \mid \boldsymbol{\theta})
                                                                                                    pi k(x \mid theta), P(y = k \mid x, theta)
\pikxt
\pixh
                                                                                                    pi(x) hat, P(y = 1 \mid x) hat
                                         \hat{\pi}(\mathbf{x})
\pikxh
                                         \hat{\pi}_{\#1}(\mathbf{x})
                                                                                                    pi_k(x) hat, P(y = k \mid x) hat
                                         \hat{\pi}(\mathbf{x}^{(i)})
                                                                                                    pi(x^{(i)}) with hat
\pixih
                                         \hat{\pi}_{\#1}(\mathbf{x}^{(i)})
                                                                                                    pi k(x^{(i)}) with hat
\pikxih
                                         p(y \mid \mathbf{x}, \boldsymbol{\theta})
                                                                                                    p(y \mid x, theta)
\pdfygxt
                                         p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})
\pdfyigxit
                                                                                                    p(y^i |x^i, theta)
                                                                                                    \log p(y \mid x, \text{ theta})
\lpdfygxt
                                         \log p(y \mid \mathbf{x}, \boldsymbol{\theta})
                                         \log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)
\lpdfyigxit
                                                                                                    \log p(y^i | x^i, \text{ theta})
                                          \mathbb{P}(\mathbf{x}|y=\#1)\mathbb{P}(y=\#1)
\bayesrulek
                                                                                                     Bayes rule
\muk
                                                                                                    mean vector of class-k Gaussian (discr analysis)
                                         \mu_k
\eps
                                                                                                    residual, stochastic
                                         \epsilon^{(i)}
                                                                                                    epsilon<sup>*</sup>i, residual, stochastic
\epsi
\epsh
                                                                                                    residual, estimated
                                         yf(\mathbf{x})
\yf
                                                                                                    y f(x), margin
                                         y^{(i)}f\left(\mathbf{x}^{(i)}\right)
\yfi
                                                                                                    y^i f(x^i), margin
                                         \hat{\Sigma}
                                                                                                     estimated covariance matrix
\Sigmah
                                         \hat{\Sigma}_i
\Sigmahj
                                                                                                     estimated covariance matrix for the j-th class
\Lyf
                                         L(y, f)
                                                                                                    L(v, f), loss function
                                         L(y,\pi)
                                                                                                    L(y, pi), loss function
\Lypi
\Lxy
                                         L(y, f(\mathbf{x}))
                                                                                                    L(y, f(x)), loss function
                                         L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)
                                                                                                    loss of observation
\Lxyi
\Lxyt
                                         L(y, f(\mathbf{x} \mid \boldsymbol{\theta}))
                                                                                                    loss with f parameterized
\Lxyit
                                         L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)
                                                                                                    loss of observation with f parameterized
                                         L(y^{(i)}, f(\tilde{x}^{(i)} \mid \theta))
                                                                                                    loss of observation with f parameterized
\Lxym
                                         L(y, \pi(\mathbf{x}))
                                                                                                    loss in classification
\Lpixy
\Lpiv
                                         L(y, \boldsymbol{\pi})
                                                                                                    loss in classification
                                         L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)}\right)\right)
                                                                                                    loss of observation in classification
\Lpixyi
                                         L(y, \pi(\mathbf{x} \mid \boldsymbol{\theta}))
\Lpixyt
                                                                                                    loss with pi parameterized
```

VI and annual to	$T(\cdot,(i) = (-\cdot,(i) + 0))$	1f-1
\Lpixyit	$L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$	loss of observation with pi parameterized
\Lhxy	$L\left(y,h(\mathbf{x})\right)$	L(y, h(x)), loss function on discrete classes
\Lr	L(r)	L(r), loss defined on residual (reg) / margin (classif)
\lone	$ y-f(\mathbf{x}) $	L1 loss
\ltwo	$(y-f(\mathbf{x}))^2$	L2 loss
\lbernoullimp	$\ln(1 + \exp(-y \cdot f(\mathbf{x})))$	Bernoulli loss for -1, +1 encoding
\lbernoullizo	$-y \cdot f(\mathbf{x}) + \log(1 + \exp(f(\mathbf{x})))$	Bernoulli loss for 0, 1 encoding
\lcrossent	$-y\log(\pi(\mathbf{x})) - (1-y)\log(1-\pi(\mathbf{x}))$	cross-entropy loss
\lbrier	$(\pi(\mathbf{x}) - y)^2$	Brier score
\risk	$\mathcal R$	R, risk
\riskbayes	\mathcal{R}^*	
\riskf	$\mathcal{R}(f)$	R(f), risk
\riskdef	$\mathbb{E}_{y \mathbf{x}}\left(L\left(y, f(\mathbf{x})\right)\right)$	risk def (expected loss)
\riskt	$\mathcal{R}(oldsymbol{ heta})$	R(theta), risk
\riske	$\mathcal{R}_{ ext{emp}}$	R_{emp} , empirical risk w/o factor 1 / n
\riskeb	$ar{\mathcal{R}}_{ ext{emp}}$	R_emp, empirical risk w/ factor 1 / n
\riskef	$\mathcal{R}_{ ext{emp}}(f)$	$R_{emp}(f)$
\risket	$\mathcal{R}_{ ext{emp}}(oldsymbol{ heta})$	R_emp(theta)
\riskr	$\mathcal{R}_{ ext{reg}}$	R_reg, regularized risk
\riskrt	$\mathcal{R}_{ ext{reg}}(oldsymbol{ heta})$	$R_reg(theta)$
\riskrf	$\mathcal{R}_{\mathrm{reg}}(f)$	$R_{reg}(f)$
\riskrth	$\hat{\mathcal{R}}_{ ext{reg}}^{-}(oldsymbol{ heta})$	hat R_reg(theta)
\risketh	$\hat{\mathcal{R}}_{ ext{emp}}(oldsymbol{ heta})$	hat R_emp(theta)
\LL	$\mathcal{L}^{m_{r}}$	L, likelihood
\LLt	$\mathcal{L}(oldsymbol{ heta})$	L(theta), likelihood
\LLtx	$\mathcal{L}(\hat{m{ heta}} \mathbf{x})$	L(theta x), likelihood
\logl	ℓ	l, log-likelihood
\loglt	$\ell(oldsymbol{ heta})$	l(theta), log-likelihood
\logltx	$\ell(\hat{m{ heta}} \mathbf{x})$	l(theta x), log-likelihood
\errtrain	$\operatorname{err}_{\operatorname{train}}$	training error
\errtest	$\mathrm{err}_{\mathrm{test}}$	test error
\errexp	$\overline{\mathrm{err}_{\mathrm{test}}}$	avg training error
\thx	$oldsymbol{ heta}^ op\mathbf{x}$	linear model
\olsest	$(\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}$	OLS estimator in LM

ml-ensembles

Macro	Notation	Comment
\b1	$b^{[\#1]}$	baselearner, default m
\blh	$\hat{b}^{[\#1]}$	estimated base learner, default m
\blx	$b^{[\#1]}({f x})$	baselearner, default m
\fM	$f^{[M]}(\mathbf{x})$	ensembled predictor
\fMh	$\hat{f}^{[M]}(\mathbf{x})$	estimated ensembled predictor
\ambifM	$\Delta\left(f^{[M]}(\mathbf{x})\right)$	ambiguity/instability of ensemble
\betam	$\beta^{[\stackrel{?}{\#}1]}$	weight of basemodel m
\betamh	$\hat{eta}^{[\#1]}$	weight of basemodel m with hat
\betaM	$eta^{[M]}$	last baselearner
\fm	$f^{[\#1]}$	prediction in iteration m
\fmh	$\hat{f}^{[\#1]}$	prediction in iteration m
\fmd	$f^{[\#1-1]}$	prediction m-1
\fmdh	$\hat{f}^{[\#1-1]}$	prediction m-1
\errm	$\mathrm{err}^{[\#1]}$	weighted in-sample misclassification rate
\wm	$w^{[\#1]}$	weight vector of basemodel m
\wmi	$w^{[\#1](i)}$	weight of obs i of basemodel m
\thetam	$oldsymbol{ heta}^{[\#1]}$	parameters of basemodel m
\thetamh	$\hat{m{ heta}}^{[\#1]}$	parameters of basemodel m with hat
\blxt	$b(\mathbf{x}, \boldsymbol{\theta}^{[\#1]})$	baselearner, default m
\ens	$\sum_{\substack{\widetilde{r}[\#1]}}^{\widetilde{M}} \beta^{[m]} b(\mathbf{x}, \boldsymbol{\theta}^{[m]})$	ensemble
\rmm		pseudo residuals
\rmi	$ ilde{r}^{[\#1](i)}$	pseudo residuals
\Rtm	$R_t^{[\#1]}$	terminal-region
\Tm	$T^{[\#1]}$	terminal-region
\ctm	$c_t^{[\#1]} \ \hat{c}_t^{[\#1]} \ ilde{c}_t^{[\#1]}$	mean, terminal-regions
\ctmh	$\hat{c}_t^{[\#1]}$	mean, terminal-regions with hat
\ctmt	$ ilde{c}_t^{[\#1]}$	mean, terminal-regions
\Lp	L'	
\Ldp	L''	
\Lpleft	$L_{ m left}'$	
\ts	$oldsymbol{ heta}^{\star}$	theta*
\bljt	$b^{[j]}(\mathbf{x}, \boldsymbol{\theta})$	BL j with theta
\bljts	$b^{[j]}(\mathbf{x}, oldsymbol{ heta}^{\star})$	BL j with theta*

ml-eval

Macro	Notation	Comment
\ntest	$n_{ m test}$	size of the test set
\ntrain	$n_{ m train}$	size of the train set
\ntesti	$n_{ m test,\#1}$	size of the i-th test set
\ntraini	$n_{ m train,\#1}$	size of the i-th train set
$\$ Jtrain	$J_{ m train}$	index vector train data
\Jtest	$J_{ m test}$	index vector test data
$\$ Jtraini	$J_{ m train,\#1}$	index vector i-th train dataset
\Jtesti	$J_{ m test,\#1}$	index vector i-th test dataset
\Dtraini	$\mathcal{D}_{ ext{train},\#1}$	D_train,i, i-th training set
\Dtesti	$\mathcal{D}_{ ext{test},\#1}$	D_test,i, i-th test set
\JSpace	$\{1,\ldots,n\}_{n}^{\#1}$	space of train indices of size n_train
\JtrainSpace	$\{1,\ldots,n\}^{n_{\mathrm{train}}}$	space of train indices of size n_train
\JtestSpace	$\{1,\dots,n\}^{n_{\mathrm{test}}}$	space of train indices of size n_test
\yJ	$\mathbf{y}_{\#1}$	output vector associated to index J
\yJDef	$\begin{pmatrix} y^{(J^{(1)})}, \dots, y^{(J^{(m)})} \end{pmatrix}$	def of the output vector associated to index J
\ JJ	Ì	cali-J, set of all splits
\JJset	$((J_{\mathrm{train},1},J_{\mathrm{test},1}),\ldots,(J_{\mathrm{train},B},J_{\mathrm{test},B}))$	$(Jtrain_1,Jtest_1) \dots (Jtrain_B,Jtest_B)$
\Itrainlam	$\mathcal{I}(\mathcal{D}_{ ext{train}},oldsymbol{\lambda})$	
\GE	GE	GE
\GEh	$\widehat{ ext{GE}}$	GE-hat
\GEfull	$\operatorname{GE}(\mathcal{I}, \boldsymbol{\lambda}, \#1, \rho)$	GE full
\GEhholdout	$\widehat{\operatorname{GE}}_{J_{ ext{train}},J_{ ext{test}}}(\mathcal{I},oldsymbol{\lambda}, J_{ ext{train}} , ho)$	GE hat holdout
\GEhholdouti	$\widehat{\operatorname{GE}}_{J_{ ext{train},\#1},J_{ ext{test},\#1}}(\mathcal{I},oldsymbol{\lambda}, J_{ ext{train},\#1} , ho)$	GE hat holdout i-th set
\GEhlam	$\widehat{\mathrm{GE}}(oldsymbol{\lambda})$	GE-hat(lam)
\GEhlamsubIJrho	$\widehat{\operatorname{GE}}_{\mathcal{I},\mathcal{J}, ho}(oldsymbol{\lambda})$	$GE-hat_I,J,rho(lam)$
\GEhresa	$\widehat{\mathrm{GE}}(\mathcal{I},\mathcal{J}, ho,oldsymbol{\lambda})$	$GE-hat_I,J,rho(lam)$
\GErhoDef	$\lim_{n_{ ext{test}} o \infty} \mathbb{E}_{\mathcal{D}_{ ext{train}}, \mathcal{D}_{ ext{test}} \sim \mathbb{P}_{xy}} \left[ho \left(\mathbf{y}_{J_{ ext{test}}}, F_{J_{ ext{test}}, \mathcal{I}(\mathcal{D}_{ ext{train}}, oldsymbol{\lambda})} ight) ight]$	GE formal def
\agr	agr	aggregate function
\GEf	$\operatorname{GE}\left(\hat{f} ight)$	GE of a fitted model
\GEfh	$\widehat{ ext{GE}}\left(\widehat{f} ight)$	GEh of a fitted model
\GEfL	$\operatorname{GE}\left(\widehat{f},L ight)$	GE of a fitted model wrt loss L
\Lyfhx	$L\left(\hat{y},\hat{f}(\mathbf{x})\right)$	pointwise loss of fitted model
\GEnf	$GE_n\left(\hat{f}_{\#1} ight)$	GE of a fitted model
\GEind	$GE_n(\mathcal{I}_{L,O})$	GE of inducer
\GED	$\mathrm{GE}_{\mathcal{D}}$	GE indexed with data
\EGEn	EGE_n	expected GE
\EDn	$\mathbb{E}_{ D =n}$	expectation wrt data of size n
\rhoL	$ ho_L^{-}$	perf. measure derived from pointwise loss
\F	F	matrix of prediction scores

\Fi	$oldsymbol{F}^{(\#1)}$	i-th row vector of the predscore mat
\FJ	$F_{\#1}$	predscore mat idxvec \hat{J}
\FJf	$F_{J,f}^{''}$	predscore mat idxvec J and model f
\FJtestfh	$F_{J_{ ext{test}},\hat{f}}$	predscore mat idxvec Jtest and model f hat
\FJ testftrain	$F_{J_{ ext{tesi}},\mathcal{I}(\mathcal{D}_{ ext{train}},oldsymbol{\lambda})}$	predscore mat idxvec Jtest and model f
\FJtestftraini	$F_{I_1},\dots,\sigma_{I_p}$	predscore mat i-th idxvec Jtest and model f
\FJfDef	$\left(f(\mathbf{x}^{(J^{(1)})}),\ldots,f(\mathbf{x}^{(J^{(m)})})\right) \ igcup_{m\in\mathbb{N}}\left(\mathcal{Y}^m imes\mathbb{R}^{m imes g} ight)$	def of predscore mat idxvec J and model f
\preimageRho	$\bigcup_{m\in\mathbb{N}} \left(\mathcal{Y}^m imes \mathbb{R}^{m imes g} ight)$	Set of all datasets times HP space
\np	n_{+}	no. of positive instances
\nn	n_{-}	no. of negative instances
\rn	π_{-}	proportion negative instances
\rp	π_+	proportion negative instances
\tp	#TP	true pos
\fap	#FP	false pos (fp taken for partial derivs)
\tn	$\#\mathrm{TN}$	true neg
\fan	#FN	false neg

ml-feature-sel

$egin{array}{llll} & x_{j_0} \\ ext{xjEins} & x_{j_1} \\ ext{xl} & \mathbf{x}_l \\ ext{pushcode} \end{array}$	Macro	Notation	Comment
\mathbf{x}_l	\xjNull	x_{j_0}	
	\xjEins	x_{j_1}	
\pushcode	\xl	\mathbf{x}_l	
'I' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	\pushcode		

ml-gp

Macro	Notation	Comment
\fvec	$\left[f\left(\mathbf{x}^{(1)}\right),\ldots,f\left(\mathbf{x}^{(n)}\right)\right]$	function vector
\fv	f	function vector
\kv	k	cov matrix partition
\kxxp	$k\left(\mathbf{x},\mathbf{x}'\right)$	cov of x, x'
\kxij	$k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$	$cov of x_i, x_j$
\mv	m	GP mean vector
\Kmat	K	GP cov matrix
\gaussmk	$\mathcal{N}(\mathbf{m}, \mathbf{K})$	Gaussian w/ mean vec, cov mat
\gp	$\mathcal{GP}\left(m(\mathbf{x}), k\left(\mathbf{x}, \mathbf{x}'\right)\right)$	Gaussian Process Definition
\ls	ℓ	length-scale
\sqexpkernel	$\exp\left(-\frac{\ \mathbf{x}-\mathbf{x}'\ ^2}{2\ell^2}\right)$	squared exponential kernel
\fstarvec	$\left[f\left(\mathbf{x}_{*}^{(1)}\right),\ldots,f\left(\mathbf{x}_{*}^{(m)}\right)\right]$	pred function vector
\kstar	\mathbf{k}_*	cov of new obs with x
\kstarstar	\mathbf{k}_{**}	cov of new obs
\Kstar	\mathbf{K}_*	cov mat of new obs with x
\Kstarstar	\mathbf{K}_{**}	cov mat of new obs
\preddistsingle	$f_* \mid \mathbf{x}_*, \mathbf{X}, \mathbf{f}$	predictive distribution for single pred
\preddistdefsingle	$\mathcal{N}(\mathbf{k}_*^{ op}\mathbf{K}^{-1}\mathbf{f},\mathbf{k}_{**}-\mathbf{k}_*^{ op}\mathbf{K}^{-1}\mathbf{k}_*)$	Gaussian distribution for single pred
\preddist	$f_* \mid \mathbf{X}_*, \mathbf{X}, \mathbf{f}$	predictive distribution
\preddistdef	$\mathcal{N}(\mathbf{K}_*^{T}\mathbf{K}^{-1}\mathbf{f}, \mathbf{K}_{**} - \mathbf{K}_*^{T}\mathbf{K}^{-1}\mathbf{K}_*)$	Gaussian predictive distribution

ml-hpo

Macro	Notation	Comment
\Ilam	$rac{\mathcal{I}_{oldsymbol{\lambda}}}{ ilde{oldsymbol{\Lambda}}}$	inducer with HP
\LamS		search space
\lami	$oldsymbol{\lambda}^{(\#1)}$	lambda i
\clam	$c(oldsymbol{\lambda})$	c(lambda)
\clamh	$c(\hat{oldsymbol{\lambda}})$	c(lambda-hat)
\lams	$egin{array}{c} c(\hat{oldsymbol{\lambda}}) \ oldsymbol{\lambda}^* \ \hat{oldsymbol{\lambda}} \end{array}$	theoretical min of c
\lamh	$\hat{oldsymbol{\lambda}}$	returned lambda of HPO
\lamp	$\pmb{\lambda}^+$	proposed lambda
\clamp	$c(\boldsymbol{\lambda}^+)$	c of proposed lambda
\archive	$\mathcal A$	archive
\archivet	$\mathcal{A}^{[\#1]}$	archive at time step t
\tuner	${\mathcal T}$	tuner
\tunerfull	$egin{aligned} \mathcal{T}_{\mathcal{I}, ilde{oldsymbol{\Lambda}}, ho,\mathcal{J}} \ \hat{c}(oldsymbol{\lambda}) \end{aligned}$	tuner with inducer, search space, perf measure, resampling strategy
\chlam	$\hat{c}(oldsymbol{\lambda})$	post mean of SM
\shlam	$\hat{\sigma}(oldsymbol{\lambda})$	post sd of SM
\vhlam	$\hat{\sigma}^2(oldsymbol{\lambda})$	post var of SM
\ullet ulam	$u(\boldsymbol{\lambda})$	acquisition function
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	λ^*	minimum of the black box function Psi
\metadata	$\left\{\left(oldsymbol{\lambda}^{(i)},\Psi^{[i]} ight) ight\}$	metadata for the Gaussian process
\lamvec	$(\lambda^{[1]},\ldots,\lambda^{[m_{\mathrm{init}}]})$	vector of different inputs
$\mbox{\mbox{\mbox{minit}}}$	$m_{ m init}$	size of the initial design
\lambu	$\lambda_{ m budget}$	single lambda_budget component HP
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\lambda_{ m fid}$	single lambda fidelity
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\lambda_{ ext{fid}}^{ ext{low}}$	single lambda fidelity lower
\lamfidu	$\lambda_{ m fid}^{ m \widetilde{upp}}$	single lambda fidelity upper
\etahb	$\eta_{ m HB}$	HB multiplier eta

ml-infotheory

Macro	Notation	Comment
\entx	$-\sum_{x\in\mathcal{X}}p(x)\cdot\log p(x)$	entropy of x
\dentx	$-\int_{\mathcal{X}} \widetilde{f}(x) \cdot \log f(x) dx$	diff entropy of x
\jentxy	$-\sum_{x\in\mathcal{X}}p(x,y)\cdot\log p(x,y)$	joint entropy of x, y
\jdentxy	$-\int_{\mathcal{X},\mathcal{Y}} f(x,y) \cdot \log f(x,y) dx dy$	joint diff entropy of x, y
\centyx	$-\sum_{x\in\mathcal{X}}^{\mathcal{X}} p(x) \sum_{y\in\mathcal{Y}} p(y x) \cdot \log p(y x)$	cond entropy $y x$
\cdentyx	$-\int_{\mathcal{X},\mathcal{Y}} f(x,y) \cdot \log f(y x) dx dy$	cond diff entropy $y x$
\xentpq	$-\sum_{x\in\mathcal{X}}^{n} p(x) \cdot \log q(x)$	cross-entropy of p, q
\kldpq	$D_{KL}(p\ q)$	KLD between p and q
\kldpqt	$D_{KL}(p\ q_{m{ heta}})$	KLD divergence between p and parameterized q
\explogpq	$\mathbb{E}_p\left[\log\frac{p(X)}{q(X)}\right]$	expected LLR of p, q (def KLD)
\sumlogpq	$\sum_{x \in \mathcal{X}} p(x) \cdot \log \frac{p(x)}{q(x)}$	expected LLR of p, q (def KLD)

ml-interpretable

Macro	Notation	Comment
\pert	$\tilde{\#1}^{\#2 \#3}$	command to express that for #1 the subset #2 was perturbed given subset #3
\fj	f_j	marginal function f_j, depending on feature j
\fnj	\widetilde{f}_{-j}	marginal function f_{-j}, depending on all features but j
\fS	f_S	marginal function f_S depending on feature set S
\fC	f_C	marginal function f_C depending on feature set C
\fhj	$egin{aligned} &f_C\ \hat{f}_j\ \hat{f}_{-j}\ \hat{f}_S\ &\hat{f}_C \end{aligned}$	marginal function fh_j, depending on feature j
\fhnj	\hat{f}_{-j}	marginal function fh_{-j} , depending on all features but j
\fhS	\hat{f}_S	marginal function fh_S depending on feature set S
\fhC	\hat{f}_C	marginal function fh_C depending on feature set C
\XSmat	\mathbf{X}_S	Design matrix subset
\XCmat	\mathbf{X}_C	Design matrix subset
\Xnj	\mathbf{X}_{-j}	Design matrix subset $-j = \{1,, j-1, j+1,, p\}$
\fhice	$\hat{f}_{\#1,ICE}$	ICE function
\Scupj	$S \cup \{j\}$	coalition S but without player j
\Scupk	$S \cup \{k\}$	coalition S but without player k
\SsubP	$S \subseteq P$	coalition S subset of P
\SsubPnoj	$S \subseteq P \setminus \{j\}$	coalition S subset of P without player j
\SsubPnojk	$S \subseteq P \setminus \{j, k\}$	coalition S subset of P without player k
\phiij	$S \subseteq P \setminus \{j, k\}$ $\hat{\phi}_{j}^{(i)}$ \mathcal{G}	Shapley value for feature j and observation i
\Gspace	\mathcal{G}^{\H}	Hypothesis space for surrogate model
\neigh	$\phi_{\mathbf{x}}$	Proximity measure
\zv	${f z}$	Sampled datapoints for surrogate
\Gower	d_G	Gower distance

ml-mbo

Macro	Notation	Comment
\xvsi	$\mathbf{x}^{[\#1]}$	x at iteration i
\ysi	$y^{[\#1]}$	y at iteration i
\Dt	$\mathcal{D}^{[\#1]}$	archive at iteration t
\Dts	$\mathcal{D}^{[t]} = \{ (\mathbf{x}^{[i]}, y^{[i]}) \}_{i=1,\dots,t}$	archive at iteration t fully
\fh	\hat{s}	surrogate mean
\sh	\hat{s}	surrogate se
\fmin	$f_{ m min}$	current best

ml-multitarget

Macro	Notation	Comment
\Tspace	\mathcal{T}	
\tv	\mathbf{t}	
\tim	$\mathbf{t}_m^{(i)}$	
\yim	$y_m^{(i)}$	

ml-nn

Macro	Notation	Comment
\neurons	z_1,\ldots,z_M	vector of neurons
\hidz	${f z}$	vector of hidden activations
\biasb	b	bias vector
\biasc	c	bias in output
\wtw	\mathbf{w}	weight vector (general)
\Wmat	\mathbf{W}	weight vector (general)
\wtu	u	weight vector of output neuron
\Oreg	$R_{reg}(\theta X,y)$	regularized objective function
\Ounreg	$R_{emp}(\theta X,y)$	unconstrained objective function
\Pen	$\Omega(\theta)$	penalty
\Oregweight	$R_{reg}(w X,y)$	regularized objective function with weight
\Oweight	$R_{emp}(w X,y)$	unconstrained objective function with weight
\Oweighti	$R_{emp}(w_i X,y)$	unconstrained objective function with weight w_i
\Oweightopt	$J(w^* X,y)$	unconstrained objective function withoptimal weight
\Oopt	$\hat{J}(\theta X,y)$	optimal objective function
\Odropout	$J(\theta, \mu X, y)$	dropout objective function
\Loss	$L(y, f(\mathbf{x}, \boldsymbol{\theta}))$	
\Lmomentumnest	$L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta} + \varphi \boldsymbol{\nu}))$	momentum risk
\Lmomentumtilde	$L(y^{(i)}, f(x^{(i)}, \tilde{\boldsymbol{\theta}}))$	Nesterov momentum risk
\Lmomentum	$L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta}))$	
\Hess	H	
\nub	ν	
\uauto	L(x, g(f(x)))	undercomplete autoencoder objective function
\dauto	$L(x, g(f(\tilde{x})))$	denoising autoencoder objective function
\deltab	δ	
\Lossdeltai	$L(y^{(i)}, f(\mathbf{x}^{(i)} + \boldsymbol{\delta} \boldsymbol{\theta}))$	
\Lossdelta	$L(y, f(\mathbf{x} + \boldsymbol{\delta} \boldsymbol{\theta}))$	

ml-online

Macro	Notation	Comment
\Aspace	\mathcal{A}	
\norm	$ #1 _2$	
\label{lin}	$L^{ t lin}$	
\lzeroone	L^{0-1}	
\lhinge	$L^{\mathtt{hinge}}$	
\lexphinge	$\widetilde{L^{ exttt{hinge}}}$	
\lconv	$L^{\mathtt{conv}}$	
\FTL	FTL	
\FTRL	FTRL	
\OGD	OGD	
\EWA	EWA	
\REWA	REWA	
\EXPthree	EXP3	
\EXPthreep	EXP3P	
\reg	ψ	
\Algo	Algo	

ml-survival

Macro	Notation	Comment
\Ti	$T^{(\#1)}$??
\Ci	$C^{(\#1)}$??
\oi	$o^{(\#1)}$??
\ti	$t^{(\#1)}$??
\deltai	$\delta^{(\#1)}$	
\Lxdi	$L\left(\boldsymbol{\delta}, f(\mathbf{x})\right)$	

ml-svm

Macro	Notation	Comment
\sv	SV	supportvectors
\sl	ζ	slack variable
\slvec	$\begin{pmatrix} \zeta^{(1)}, \zeta^{(n)} \\ \zeta^{(\#1)} \end{pmatrix}$	slack variable vector
\sli	3	i-th slack variable
\scptxi	$\left\langle oldsymbol{ heta},\mathbf{x}^{(i)} ight angle$	scalar prodct of theta and xi
\svmhplane	$\hat{y}^{(i)}\left(\langle \boldsymbol{ heta}, \mathbf{x}^{(i)} \rangle + \theta_0\right)$	SVM hyperplane (normalized)
\alphah	$\hat{\alpha}$	alpha-hat (basis fun coefficients)
\alphav	lpha	vector alpha (bold) (basis fun coefficients)
\alphavh	$\hat{m{lpha}}$	vector alpha-hat (basis fun coefficients)
\dualobj	$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle$	min objective in lin svm dual
\HS	Φ	H, hilbertspace
\phix	$\phi(\mathbf{x})$	feature map x
\phixt	$\phi(ilde{\mathbf{x}})$	feature map x tilde
\kxxt	$k(\mathbf{x}, ilde{\mathbf{x}})$	kernel fun x, x tilde
\scptxifm	$\left\langle oldsymbol{ heta}, \phi(\mathbf{x}^{(i)}) ight angle$	scalar prodct of theta and xi

ml-trees

Macro	Notation	Comment
\Np	\mathcal{N}	(Parent) node N
\Npk	\mathcal{N}_k	node N_k
\N1	\mathcal{N}_1	Left node N_1
\Nr	\mathcal{N}_2	Right node N_2
\pikN	$\pi_{\#1}^{(\mathcal{N})}$	class probability node N
\pikNh	$\hat{\pi}_{\#1}^{(\mathcal{N})}$	estimated class probability node N
\pikNlh	$\hat{\pi}_{\#1}^{(\tilde{\mathcal{N}}_1)}$ $\hat{\pi}(\mathcal{N}_2)$	estimated class probability left node
\pikNrh	$\hat{\pi}_{\#1}^{(\mathcal{N}_2)}$	estimated class probability right node