IAM COMPACT Study 7

Dietary shift to lower animal protein consumption

September 4, 2023

Outline

- Motivation and the Model
- System-wide effects
 - GHG emissions
 - Water consumption
 - Premature deaths
 - Land use
- Future work

Motivation and the Model

Motivation

Literature has analyzed how a transition to healthy diets can benefit health, biodiversity, land use, and climate (Lancet-EAT)

But...

- * it is unclear how this transition will occur
- * the system-wide effects that could derive from this transition

We'll study the Flexitarian Vegetarian or Vegan (FVV) diet.

Objective

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:
 - GHG emissions
 - Water consumption
 - Premature deaths
 - Land use
 - Nutritional values

The model

Assumptions

- 1. Each person decides to become FVV independently but is influenced by 3 factors:
 - Social pressure
 - ▶ Percentage of the population following the FVV diet by 2100
 - ▶ Peak year when the majority of the population will shift
- 2. Once a person decides to follow the FVV diet, will stick to this decision for the rest of the century

The model

Binomial distribution with probability p

Where the probability p is influenced by

- * Social pressure
- ★ Percentage of the population following the FVV diet by 2100
- * Peak year when the majority of the population will shift

The model

Binomial distribution with probability p

→ Exogenous

Where the probability p is influenced by

- ⋆ Social pressure
- ★ Percentage of the population following the FVV diet by 2100
- * Peak year/when the majority of the population will shift

Uncertainty considerations

Each factor value is randomly chosen from a Normal Distribution $\mathit{N}(\mu,\sigma)$

Uncertainty considerations

Each factor value is randomly chosen from a Normal Distribution $N(\mu,\sigma)$

Recap

Fix parameters of social pressure influence

Fix parameters of final FVV population %

Fix parameters of peak year when more FVV shifts

Create the FVV distribution

Example

Example

Scenario Behavior change Reference

System-wide effects

GHG emissions

Abs MTCO2 regional GHG avoided emissions in 2030

GHG emissions

Water consumption

Annual water consumption abs difference in 2030

Water consumption

Avoided premature deaths

Annual avoided deaths in 2030

Land use

Future work

- ⋆ Study nutritional values
- * Create multiple scenarios to see which one has better system-wide effects. Maybe considering different regional levels of FVV?
- ⋆ Do a similar study for trade (with VWT) and transport. Maybe simplified?