Syntaks og semantik

Lektion 8

13 marts 2007

Chomsky-hierarkiet

Grammatikker

Perspektivering

Automater med stacke Grammatikker Chomsky-hierarkiet

 $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, hvor delene er Definition: En automat med k stacke, for $k \in \mathbb{N}_0$, er en 6-tupel

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- П : stack-alfabetet
- \bullet $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon}^{k} \to \mathcal{P}(Q \times \Gamma_{\varepsilon}^{k})$: transitionsfunktionen
- $oldsymbol{\circ} q_0 \in Q$: starttilstanden
- $lackbox{0} F \subseteq Q$: mængden af accepttilstande
- k = 0 : NFA
- *k* = 1 : PDA
- $k \ge 2$: Turing-maskine!
- to stacke er nok!

Automater med stacke

Chomsky-hierarkiet

3/15

Definition: En grammatik er en 4-tupel $G = (V, \Sigma, R, S)$, hvor

- V : en endelig mængde af variable
- **2** Σ : en endelig mængde af terminaler, med $V \cap \Sigma = \emptyset$
- $lackbox{0} R: (V \cup \Sigma)^* \, V(V \cup \Sigma)^*
 ightarrow \mathcal{P}ig((V \cup \Sigma)^*ig):$ produktioner
- \circ S \in V : startvariablen
- alle produktioner på formen $A \rightarrow w$, for $A \in V$ og $w \in (V \cup \Sigma)^*$: kontekstfri grammatik
- alle produktioner på formen $A \to \varepsilon$, $A \to a$ eller $A \to aB$, for $A, B \in V$ og $a \in \Sigma$: regulær grammatik

Eksempel på en ikke-kontekstfri grammatik:

$$S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$$

Generere sproget $\{a^nb^nc^n\mid n\in\mathbb{N}_+\}$

2/15

4/15

Automater med stacke	
Grammatikker	
Chomsky-hierarkiet	

Pumpelemmaet

Indirekte beviser

Ikke-kontekstfrie sprog

	Ι⊃	∪, ∘, *	lukket under:	inisme	determ								
	<u> </u>	ja a		indskrænkning	ingen	automater	endelige	grammatikker	regulære			regulære sprog	Type 3
	nej.	ja			indskrænkning	automater	pushdown-	grammatikker	kontekstfrie		sprog	kontekstfrie	Type 2
5/15	ja nej	ja		indskrænkning	ingen		Turing-maskiner	grammatikker	generelle	sprog	enumerable	rekursivt	Type 0

Ikke-kontekstfrie sprog

Indirekte beviser

Ikke-kontekstfrie sprog

Sætning 2.34: For ethvert kontekstfrit sprog A findes der et (naturligt) tal p således at ethvert ord $s \in A$ der har længde

mindst p kan opsplittes i fem stykker, s = uvxyz, med

- |vy| > 0 og $|vxy| \le p$,
- og således at ordene $uv^i xy^i z \in A$ for alle $i \in \mathbb{N}_0$.

Anvendelse: Vis a sproget X ikke er kontekstfrit:

Antag at X er kontekstfrit. Så må det opfylde pumpelemmaet Lad p være pumpelængden.

Find en streng s som

- har $|s| \ge p$, dvs. bør kunne pumpes,
- men som *ikke kan pumpes*, ligegyldigt hvordan man opsplitter s = uvxyz.

Modstrid!

pelemmaet Indirekte beviser Ikke-kontekstirie sprog

7/15

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$.

- Lad b være længden af den længste streng på højresiden af produktionerne i G: $b = \max\{|s| \mid s \in P(A), A \in V\}$
- 2 Lad $p = b^{|V|+1}$. Fejl i bogen! Tag et $s \in A$ med $|s| \ge p$. |V| er antallet af variable i G.

Pumpelemmaet Indirekte beviser Ikke-kontekstfrie sprog

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$.

- Lad b være længden af den længste streng på højresiden af produktionerne i G: $b = \max\{|s| \mid s \in P(A), A \in V\}$
- ② Lad $p = b^{|V|+1}$. Fejl i bogen! Tag et $s \in A$ med $|s| \ge p$.
- **8** Lad τ være et af de parsetræer for s der har færrest punkter. τ har højde mindst |V| + 1.

så τ har *højst b^h blade*. Tegnene i s står i bladene, så s har længde højst b^h . Men $|s| > b^{|V|}$, så h > |V|. Lad h være højden af au. Hvert punkt i au har $\mathit{højst}$ b sønner

9/15

Pumpelemmaet

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$

Lad b være længden af den længste streng på højresiden af produktionerne i G: $b = \max\{|s| \mid s \in P(A), A \in V\}$

- **2** Lad $p = b^{|V|+1}$. Fejl i bogen! Tag et $s \in A \text{ med } |s| \ge p$.
- **8** Lad τ være et af de parsetræer for s der har færrest punkter. τ har højde mindst |V| + 1.
- **a** Lad ℓ være en sti i τ af længde mindst |V| + 2
- indeholder mindst |V|+1 variable (og én terminal), så blandt de sidste |V|+1 variable i ℓ er der en der torekommer to gange. Kald den R.
- $S \Rightarrow uRz \Rightarrow uvRyz \Rightarrow uvxyz$ Lad x være den delstreng af s der deriveres af den sidste Dvs. $R \Rightarrow x$, $R \Rightarrow vRy \Rightarrow vxy$, og forekomst af R kan da skrives vxy, og s = uvxyz. forekomst af R. Strengen der deriveres af den næstsidste

Ikke-kontekstfrie sprog

Indirekte beviser

Ikke-kontekstfrie sprog

Ved at erstatte deltræet med det sidste R som rod, med

Modstrid til (3).

deltræet med det næstsidste R som rod fås derivationen

 $S \Rightarrow uRz \Rightarrow uvRyz \Rightarrow uv^2Ry^2z \Rightarrow uv^2xy^2z$.

Ved at gentage dette fås derivationer til uv^ixy^iz for alle $i \in \mathbb{N}$.

Ved at erstatte deltræet med det næstsidste R som rod

med deltræet med det sidste R som rod fås derivationen

 $S \Rightarrow uRz \Rightarrow uxz$. Dvs.

• $uxz = uv^0xy^0z \in A$

|vy| > 0, for ellers ville s = uxz, og det parsetræ for uxz vi lige har lavet er mindre end det vi startede med

højst |V| + 1, så $|vxy| \le b^{|V|+1} = p$. Fejl i bogen! variable i ℓ , så deltræet med dette R som rod har højde

Sætning: √2 er et irrationelt tal.

Bevis:

- Antag at $\sqrt{2}$ er et rationelt tal
- ② Så må det kunne skrives som en brøk: $\sqrt{2} = \frac{a}{b}$, for to positive heltal a og b.
- Lad brøken være reduceret, dvs. specielt er ikke både a og b lige tal.
- a $\frac{a}{b} = \sqrt{2}$ medfører at $2b^2 = a^2$.
- Hvis a er ulige, er a² også ulige, modstrid til (4)
- Dvs. a må være et lige tal, og med (3) må b så være ulige
- Skriv a = 2c. Så er $2b^2 = a^2 = 4c^2$, dvs. $b^2 = 2c^2$
- Men b er ulige, så det er b² også, modstrid til (7).
- Antagelsen om at $\sqrt{2}$ var et rationelt tal ledte frem til et modstrid, så den må være forkert. Konklusion: √2 er et irrationelt tal.

12/15

10/15

Indirekte beviser Ikke-kontekstfrie sprog

Lad x være den delstreng af s der deriveres af den sidste

forekomst af R. Strengen der deriveres af den næstsidste

Den næstsidste forekomst af R er blandt de sidste |V| + 1

forekomst af R kan da skrives vxy, og s = uvxyz.

Pumpelemmaet

Pumpelemmaet Indirekte beviser Ikke-kontekstfrie sprog

Sætning: Der findes uendeligt mange primtal

bevis:

- **•** Antag at der kun findes endeligt mange primtal. Kald dem p_1, p_2, \dots, p_k .
- **a** Lad $N = p_1 p_2 \dots p_k + 1$.
- N er større end ethvert af primtallene, så det kan ikke være et primtal selv.
- Dvs. der er et primtal der går op i N. Kald det p_i.
- **6** Men $N-1 = p_1 p_2 \dots p_k$, så p_i går også op i N-1.
- **o** Derfor går p_i op i N (N 1) = 1, modstrid.
- Antagelsen om at der kun findes endeligt mange primtal ledte frem til et modstrid, så den må være forkert. Konklusion: Der findes uendeligt mange primtal. Euklid havde ret!

emmaet Indirekte beviser Ikke-kontekstfrie sprog

13/15

Eksempel 2.36: Sproget $B = \{a^n b^n c^n \mid n \in \mathbb{N}_0\}$ er ikke kontekstfrit:

Bevis:

- Antag at B er kontekstfrit, og lad p være dets pumpelængde.
- **2** Lad $s = a^{\rho}b^{\rho}c^{\rho}$. (Et smart valg!) Vi har $|s| \geq \rho$.
- Lad s = uvxyz være den opsplitning af s som pumpelemmaet garanterer. (Vi ved den findes. Vi ved ikke hvordan den ser ud!)
- Hvis v og y hver kun indeholder én slags af symbolerne a, b og c, er der et af symbolerne der ikke er med i v eller y. Strengen uv²xy²z indeholder så for få symboler af denne slags og er derfor ikke indeholdt i B, modstrid!
- Hvis v eller y indeholder mere end én slags symboler, optræder de i uv²xy²z i forkert rækkefølge
- $\Rightarrow uv^2xy^2z \notin B$, modstrid!
- Ligegyldigt hvad får vi en modstrid. ⇒ antagelsen forkert
 ⇒ B er ikke kontekstfrit.

14/15

Pumpelemmaet Indirekte beviser Ikke-kontekstrie sprog

Eksempel 2.38: Sproget $D = \{ww \mid w \in \{0, 1\}^*\}$ er ikke kontekstfrit:

Antag at D er kontekstfrit, og lad p være dets

pumpelængde

- 2 Lad $s = 0^{\rho}1^{\rho}0^{\rho}1^{\rho}$. Vi har $|s| \ge \rho$. Lad s = uvxyz være den opsplitning af s som pumpelemmaet garanterer.
- ⓐ Hvis strengen vxy er en del af det forste 0^p1^p i s, starter anden halvdel af uv^2xy^2z med et 1. Men første halvdel starter stadig med 0, så $uv^2xy^2z \notin D$, modstrid!
- Nvis strengen vxy er en del af det andet 0^p1^p i s, slutter første halvdel af uv^2xy^2z med et 0, men anden halvdel slutter med 1, så $uv^2xy^2z \notin D$, modstrid!
- Så strengen vxy må indeholde midten af s, dvs. vxy er en del af det midterste 1^p0^p . Men |vy|>0, så |x|<|vxy|, dvs. $uv^0xy^0z=0^p1^i0^j1^p$ med i< p eller j< p, så $uv^0xy^0z\notin D$, modstrid!

15/15