Chapter 2

1 Section 1

1. Let S be a set. Prove that the law of composition defined by ab = a for all a, b in S is associative.

Solution: use algebra to demonstrate order of groupings doesn't matter We'll show that $a \circ (b \circ c) = (a \circ b) \circ c$. For any $a, b, c \in S$, the composition $a \circ (b \circ c) = a \circ b = a$. Also $(a \circ b) \circ c = a \circ c = a$. Therefore this composition is associative.

Takeaway: projection is associative.

2. . Prove the properties of inverses that are listed near the end of the section.

The properties are:

• If an element a has both a left inverse ℓ and a right inverse r, then the left inverse and the right inverse are equal.

Solution: use algebra to show equality. We'll use algebra to show that $\ell = r$. Given $a\ell = 1$, multiply both sides by r. This gives $\ell ar = 1r = r$. Using associativity we have $\ell(ar) = r$. But since ar = 1, as r is a right inverse, this simplifies to $\ell = r$.

• If a is invertible, its inverse is unique. Solution: assume there are multiple inverses and show they are equal.

Suppose a is invertible. This means there exists at least one inverse a^{-1} . Let b, c be other, possibly different inverses for a. Then

$$ca = ba \implies caa^{-1} = baa^{-1} \implies c = b$$

showing that b = c.

• Inverses multiply in the opposite order: $(ab)^{-1} = b^{-1}a^{-1}$.

Solution: use algebra to demonstrate the property holds.

This requires that a and b individually have inverses. Using associativity:

$$ab(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = a1a^{-1} = aa^{-1} = 1$$

• An element a may have a left inverse or a right inverse, though it is not invertible.

Solution: show an example

• Let \mathbb{N} denote the set $\{1,2,3,\ldots\}$, and let $s:\mathbb{N}\to\mathbb{N}$ be the *shift* map function defined by s(n)=n+1. Prove that s has no right inverse, but that it has infinitely many left inverses. Solution: explore the function's properties and form a proof.

Suppose s has a right inverse t. Then t must be a function from \mathbb{N} to \mathbb{N} such that s(t(n)) = n. We can also write this as t(n) + 1 = n. This clearly works if t(n) = n - 1. However if n = 1 then n - 1 is not in the target set \mathbb{N} . In this sense s cannot have a right inverse.

If s has a left inverse then t(s(n)) = n for all n. I.e. t(n+1) = n. We can define t(n) = n-1 and since t can never receive a number lower than 2 as input, we don't have the problem before of t(n) mapping out of \mathbb{N} . However, t must still be defined on the entire set \mathbb{N} , so we can map 1 to any natural number we like. For example we could have t_1 which maps 1 to 1, t_{29} which maps 1 to 29, etc. In this sense each t_k is a left inverse of s and there are infinitely many different ones, one for each natural number.

2 Section 2

- 2.1 First
- 2.2 Second

- 2.3 third
- 2.4 fourth
- 2.5 In the definition of a subgroup, the identity element in *H* is required to be the identity of *G*. One might require only that *H* have an identity element, not that it need be the same as the identity of *G*. Show that if *H* has an identity at all, then it is the identity of *G*. Show the analogous statement is true for inverses.

Solution: isolate the essential difference between the objects then show they must be equal. Suppose $H \leq G$ and e is the identity of H. Then for any $h \in H$, eh = he = h. Now take some $g \in G$ that is not in H (if there is no such g then H = G and e is the identity in G, as the group identity is unique). Let eg = g'. Perhaps $g \neq g'$ and e is not the identity in G. However, using associativity:

shows hg = hg'. We apply the cancellation law to get g = g'. That means eg = g for any $g \in G$ not in H and e is already the identity for H. Therefore e behaves as the identity in G as well, and since group identities are unique, e must be the identity of G.

For inverses, suppose $h \in H$ has an inverse h^{-1} in H but a possibly different inverse $j \in G$. Then in G, $hh^{-1} = hj$ and by the cancellation law $h^{-1} = j$.