In this challenge, there is a connected undirected graph where each of the nodes is a color. Given a color, find the shortest path connecting any two nodes of that color. Each edge has a weight of 1. If there is not a pair or if the color is not found, print -1.

For example, given $graph_nodes = 5$, and 4 edges $g_from = [1, 2, 2, 3]$ and $g_to = [2, 3, 4, 5]$ and colors for each node are arr = [1, 2, 3, 1, 3] we can draw the following graph:

Each of the nodes is labeled [node]/[color] and is colored appropriately. If we want the shortest path between color ${\bf 3}$, blue, we see there is a direct path between nodes ${\bf 3}$ and ${\bf 5}$. For green, color ${\bf 1}$, we see the path length ${\bf 2}$ from ${\bf 1} \to {\bf 2} \to {\bf 4}$. There is no pair for node ${\bf 4}$ having color ${\bf 2}$, red.

Function Description

Complete the findShortest function in the editor below. It should return an integer representing the length of the shortest path between two nodes of the same color, or -1 if it is not possible.

findShortest has the following parameter(s):

- g nodes: an integer, the number of nodes
- · g from: an array of integers, the start nodes for each edge
- g to: an array of integers, the end nodes for each edge
- ids: an array of integers, the color id per node
- · val: an integer, the id of the color to match

Input Format

The first line contains two space-separated integers n and m, the number of nodes and edges in the graph. Each of the next m lines contains two space-separated integers $g_from[i]$ and $g_to[i]$, the nodes connected by an edge.

The next line contains n space-seperated integers, ids[i], representing the color id of each node from 1 to n. The last line contains the id of the color to analyze.

Note: The nodes are indexed from 1 to n.

Constraints

$$1 \le n \le 10^6 \ 1 \le m \le 10^6 \ 1 \le ids[i] \le 10^8$$

Output Format

Print the single integer representing the smallest path length or -1.

Sample Input 0

43

12

13

42

1211

Sample Output 0

1

Explanation 0

In the above image the distance between the closest nodes having color label ${\bf 1}$ is ${\bf 1}$.

Sample Input 1

43

12

13

42

1234

2

Sample Output 1

-1

Explanation 1

Sample Input 2

5 4

12

13

24

35

12332

2

Sample Output 2

3

Explanation 2

