Midterm: Theory of Linear Models

Fall 2024

Due: Monday, 10/21 at 10:00am, hard-copy handed-in

Directions:

- Type your solutions in RMarkdown or latex
- Everyone must work independently: no consulting with other students, professors, or posting questions online
- You may use any textbook and your class notes for reference.
- No ChatGPT
- Along with your exam, provide a list of references that you used to complete the problems
- 1. Consider the variance components model $Y=g+\varepsilon$, where Y is an $n\times 1$ response vector, g is a $n\times 1$ random effects vector with distribution $g\sim \mathcal{N}(0,\sigma_g^2K)$, where K is an $n\times n$ symmetric positive definite matrix; assume $\varepsilon\sim \mathcal{N}(0,\sigma^2I_n)$ and that g and ε are independent.
 - a. What is Var(Y)?
 - b. Compute the maximum likelihood estimate for σ_q^2 .
 - c. Suppose X is an $n \times p$ matrix of covariates such that $K = XX^T$. Provide an interpretation of the elements of K with respect to the covariates measured in X.
 - d. Provide an interpretation of the quantity $\frac{\sigma_g^2}{\sigma_g^2 + \sigma_\varepsilon^2}$
 - e. Compute the score test statistic for hypothesis $H_0: \sigma_q^2 = 0$.
 - f. Consider now the model $Y=X\beta+\eta,$ $\eta\sim\mathcal{N}(0,\sigma^2I_n).$ Compute the score test statistic for $H_0:\beta=0.$
 - g. Are the two score test null hypotheses always equivalent? Why or why not?
 - h. Assuming the null hypotheses are equivalent, identify a situation for which the two tests will have different power.
- 2. A random variable $X=\sum_{i=1}^k Z_i^2$, for Z_i independent standard normal random variables, follows a *Chi-Squared* distribution with k degrees of freedom. Show that $Y^T\Sigma^{-1}Y\sim\chi_k^2$ for $Y\sim\mathcal{N}(0,\Sigma)$. Show your work and carefully explain your reasoning for full credit.
- 3. Let P_X and P_W be the projection matrices corresponding respectively to the column spaces of matrices X and W, respectively. Assume X is $n \times r$ with $\operatorname{rank}(X) = r$, and W is $n \times q$ with $\operatorname{rank}(W) = q$. Under what conditions will the projections commute? I.e., when is $P_X P_W = P_W P_X$ true?
- 4. Consider the regression model $Y=X\beta+\varepsilon$ with $\varepsilon\sim\mathcal{N}(0,\Sigma)$, where Σ is a positive definite covariance matrix that is otherwise unspecified.
 - a. Verify that the generalized least squares estimator $\hat{\beta}_G = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1/2} Y$ is unbiased.
 - b. Compute the variance of $\hat{\beta}_G$.
 - c. In this setting, calculate the bias of the usual OLS estimator $\hat{\beta} = (X^T X)^{-1} X^T Y$.
 - d. Compute the variance of $\hat{\beta}$.
 - e. What is the statistical advantage of using $\hat{\beta}_G$ instead of $\hat{\beta}$ when we know that $\Sigma \neq \sigma^2 I_n$? Explain your answer in rigorous statistical terms referring to concepts such as power, variance, mean squared error, bias, etc.
- 5. Consider the regression model $Y=X\beta+arepsilon$, with $\mathbb{E}[arepsilon]=0$. Assume X is full column rank so that

$$\hat{Y} = X(X^T X) - 1X^T Y.$$

- a. Show that $\mathrm{Cov}(\hat{Y},(Y-\hat{Y}))=0.$
- b. Show that if $arepsilon \sim \mathcal{N}(0,\sigma^2 I_n)$, then \hat{Y} and $Y-\hat{Y}$ are independent.
- c. Prove or Disprove: if $\varepsilon \sim \mathcal{N}(0,\Sigma)$, then \hat{Y} and $Y-\hat{Y}$ are independent.

6. Let
$$Y_i=eta\cdot i+arepsilon_i,\,i=1,\ldots,n,\,\mathbb{E}arepsilon_i=0,\,\mathrm{Var}(arepsilon_i)=i^2\sigma^2.$$

- a. Compute the usual Least Squares Estimate for β .
- b. Compute the best linear unbiased estimator for β .
- c. What is the difference in variance for the estimators from parts (a) and (b)?
- 7. Consider the model $Y_{ij}=lpha_i+eta_j+arepsilon_{ij}$, where $i=1,\ldots,a; j=1,\ldots,b$, and $arepsilon_i\stackrel{iid}{\sim}(0,\sigma^2)$.
 - a. Clearly describe the structure of the design matrix for this model. That is, we wish to write the model in matrix form as $Y=X\gamma+\varepsilon$ for some matrix X.
 - b. Recall that a function $\sum c_i \alpha_i + \sum d_j \beta_j$ is estimable iff the linear contrast vector $u^T = (c_1, \ldots, c_a, d_1, \ldots, d_b)$ is in $\mathcal{C}(X^T)$. Identify a condition of $c_1, \ldots, c_a, d_1, \ldots, d_b$ that is necessary and sufficient for the estimability of $u^T \gamma$.