Задание по «Инженерной графике» для групп 2126, 2191, 3124, 3125, 3140 и 3190. (седьмая учебная неделя второго семестра).

1. Построение поверхности вращения с линией среза, определение границ различных поверхностей. По своему номеру варианта построить поверхность вращения с линией среза.

Линия среза получается при сечении поверхности вращения плоскостями параллельными оси вращения.

Необходимо построить 3D модель по заданным параметрам с учетом ориентации модели.

Получить рабочий чертеж детали, определить границы и подписать на чертеже из каких простых геометрических тел вращения составлена данная деталь. Работ у выполнить и оформить по образцу.

Там, где стоят знаки вопроса должна, получится линия среза.

Вариант 1

Вариант 3

Вариант 5

7

Вариант 8

Вариант 11

Вариант 14

Вариант

15

Вариант 19

21

Вариант 22

Образец выполненной работы:

В соответствии с ГОСТ 2.305-2008 на рабочем чертеже не должны присутствовать линии невидимого контура.

Размерные числа должны быть проставлены по ГОСТ 2.307-2008.

Файлы 3D модели и рабочего чертежа прикладываются.

2. Особенности оформления рабочих чертежей Валов

Создайте 3D модель Оси или Вала по своему номеру варианта. Оформите рабочий чертеж с необходимыми разрезами или сечениями. Выбирайте взгляд наблюдателя при выполнении разреза разумно, чтобы не показывать лишнюю информацию о детали.

Вал — это деталь машины, вращающаяся в опорах (подшипниках), предназначенная для передачи крутящих моментов от одной детали к другой.

Ось — деталь машины, поддерживающая вращающиеся части машины (колеса). Отличается от вала тем, что не передаёт крутящего момента.

У вашего вала обязательно будет присутствовать шпоночный паз. Шпоночное соединение бывает двух видов: неподвижное и подвижное. Наиболее распространено неподвижное соединение шпонками валов с насаженными на них деталями, например зубчатым колесом.

В таком соединении часть шпонки входит в паз вала, а часть — в паз ступицы зубчатого колеса.

Формы и размеры шпонок стандартизованы и зависят от диаметра вала и условий эксплуатации соединения.

По форме шпонки бывают: призматическими обыкновенными, В валах клиновыми. МЫ выполним отверстие сегментные И призматическую обыкновенную шпонка варианта исполнения 1. В задании даны длина и ширина шпоночного паза. Радиус скругления паза равен половине его ширины.

При необходимости в целях экономии размера формата разорвите *Ортогональную связь* (но ни в коем случае *не параметрическую*).

Образец выполненной работы:

Файлы 3D модели и рабочего чертежа прикладываются.

В отверстие под шпонку создайте с помощью создания вспомогательной смещенной плоскости.