Теория чисел в криптографии

14 апреля 2019 г., АНО Школа 21

Важные определения

Наибольшим общим делителем двух целых чисел а и b, одновременно не равных нулю, называется такое наибольшее целое число d, на которое a и b делятся без остатка.

Основная теорема арифметики

Каждое натуральное число n>1 можно представить в виде $n=p_1\cdot p_2\cdot p_3\cdot ...\cdot p_k$, где p_n - простые числа, причем такое представление единственно с точностью до перестановки.

Малая теорема Ферма

Если $a \in \mathbb{Z}$ не делится на простое число p, то $a^{p-1} \equiv 1 \pmod{p}$. Данная теорема лежит в основе теста простоты Ферма.

- 1. Докажите, что если $a \equiv b \pmod{m}$ и $c \equiv d \pmod{m}$, то
 - (a) $a + c \equiv b + d \pmod{m}$;
 - (b) $a \cdot c \equiv b \cdot d \pmod{m}$.
- 2. Найти наибольший общий делитель чисел 2^n-1 и 2^m-1 , где $n,m\in\mathbb{N}$
- 3. Докажите, что:
 - (a) $\varphi(m^2) = m \cdot \varphi(m) \ \forall m \in \mathbb{N};$
 - (b) $\varphi(m^k) = m^{k-1} \cdot \varphi(m) \ \forall m, k \in \mathbb{N}.$
- 4. Доказать, что если $n \in \mathbb{N}$ составное, то хотя бы один простой делитель n лежит на промежутке $[2; \lfloor \sqrt{n} \rfloor]$.
- 5. Применить тест Ферма для проверки на простоту чисел 511 и 509.

Алгоритм Шифрования RSA (Rivest, Shamir и Adleman)

- 1. Сформировать "модуль" $n = p \cdot q$, $p \cdot q большие простые числа.$
- 2. Посчитать $\varphi(n)$.
- 3. Выбрать "Открытую Экспоненту" e, такую что $1 < e < \varphi(n), (e, \varphi(n)) = 1$.
- 4. Выбрать "закрытую экспоненту" d, такую что $d \cdot e 1 : \varphi(n)$.
- 5. Опубликовать пару (e, n).
- 6. Отправляющая сторона шифрует сообщение $m:E(m)=m^e \mod n$.
- 7. Принимающая сторона расшифровывает принятое сообщение $m': D(m') = m'^d \mod n$.

Теория чисел в криптографии

14 апреля 2019 г., АНО Школа 21

Важные определения

Наибольшим общим делителем двух целых чисел а и b, одновременно не равных нулю, называется такое наибольшее целое число d, на которое a и b делятся без остатка.

Основная теорема арифметики

Каждое натуральное число n>1 можно представить в виде $n=p_1\cdot p_2\cdot p_3\cdot ...\cdot p_k$, где p_n - простые числа, причем такое представление единственно с точностью до перестановки.

Малая теорема Ферма

Если $a \in \mathbb{Z}$ не делится на простое число p, то $a^{p-1} \equiv 1 \pmod{p}$. Данная теорема лежит в основе теста простоты Ферма.

- 1. Докажите, что если $a \equiv b \pmod{m}$ и $c \equiv d \pmod{m}$, то
 - (a) $a + c \equiv b + d \pmod{m}$;
 - (b) $a \cdot c \equiv b \cdot d \pmod{m}$.
- 2. Найти наибольший общий делитель чисел 2^n-1 и 2^m-1 , где $n,m\in\mathbb{N}$
- 3. Докажите, что:
 - (a) $\varphi(m^2) = m \cdot \varphi(m) \ \forall m \in \mathbb{N};$
 - (b) $\varphi(m^k) = m^{k-1} \cdot \varphi(m) \ \forall m, k \in \mathbb{N}.$
- 4. Доказать, что если $n \in \mathbb{N}$ составное, то хотя бы один простой делитель n лежит на промежутке $[2; \lfloor \sqrt{n} \rfloor]$.
- 5. Применить тест Ферма для проверки на простоту чисел 511 и 509.

Алгоритм Шифрования RSA (Rivest, Shamir и Adleman)

- 1. Сформировать "модуль" $n = p \cdot q$, $p \cdot q большие простые числа.$
- 2. Посчитать $\varphi(n)$.
- 3. Выбрать "Открытую Экспоненту" e, такую что $1 < e < \varphi(n), (e, \varphi(n)) = 1$.
- 4. Выбрать "закрытую экспоненту" d, такую что $d \cdot e 1 : \varphi(n)$.
- 5. Опубликовать пару (e, n).
- 6. Отправляющая сторона шифрует сообщение $m:E(m)=m^e \mod n$.
- 7. Принимающая сторона расшифровывает принятое сообщение $m': D(m') = m'^d \mod n$.

