ECOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ENSEA - ABIDJAN

INSTITUT SOUS-RÉGIONAL DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ISSEA - YAOUNDÉ

ÉCOLE NATIONALE DE LA STATISTIQUE ET DE L'ANALYSE ÉCONOMIQUE ENSAE - DAKAR ÉCOLE NATIONALE D'ÉCONOMIE APPLIQUÉE ET DE MANAGEMENT ENEAM - COTONOU

JUIN 2021

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Mathématiques

CORRIGÉ de la 1^{ère} COMPOSITION DE MATHÉMATIQUES

Le sujet est constitué de deux problèmes indépendants. Tout résultat donné dans l'énoncé pourra être admis dans les questions suivantes. Le plus grand soin sera apporté à la rédaction et à la présentation des résultats.

1 Problème d'analyse

On note \mathbb{R} , le corps des nombres réels. On note \mathcal{C}^0 l'ensemble des fonctions continues de [a,b] dans \mathbb{R} avec a et b deux réels tels que a < b. Pour tout $x \in [a,b]$ et tout réel r > 0, on note $B(x,r) = \{y \in [a,b] : |y-x| < r\}$ la boule ouverte centrée en x de rayon r, intersectée avec l'ensemble [a,b].

Partie 1.1

1. Soit $f \in \mathcal{C}^0$. Soit $x \in [a, b]$, on pose

$$E_x = \{ y \in [a, b] : f(y) \le f(x) \}$$

l'ensemble des réels $y \in [a, b]$ tels que l'image par f est inférieure à f(x). Montrer que

$$E_x = f^{-1}(] - \infty, f(x)])$$

c'est-à-dire que E_x est l'image réciproque de $]-\infty, f(x)]$ par la fonction f. Soit $y \in E_x$, alors $f(y) \leq f(x)$ donc $f(y) \in]-\infty, f(x)]$ donc $y \in f^{-1}(]-\infty, f(x)]$). Réciproquement si $y \in f^{-1}(]-\infty, f(x)]$) alors $f(y) \in]-\infty, f(x)]$ donc $f(y) \leq f(x)$ et $y \in E_x$.

- 2. Montrer que E_x est une partie fermée de [a,b]. C'est l'image réciproque d'une partie fermée par une fonction continue.
- 3. En déduire que E_x est une partie compacte. C'est une partie fermée de [a,b] qui est une partie compacte, donc c'est une partie compacte.

- 4. Soient x et $y \in [a, b]$. Montrer que si $E_x = E_y$ alors f(x) = f(y). On a $x \in E_x = E_y$ donc $f(x) \le f(y)$. Et $y \in E_y = E_x$ donc $f(y) \le f(x)$.
- 5. On construit une suite $(x_n)_{n\in\mathbb{N}}$ telle que $E_{x_n}\subset E_{x_{n+1}}$. Montrer que la suite $(f(x_n))_{n\in\mathbb{N}}$ est croissante. Soit $n\in\mathbb{N}$, alors $x_n\in E_{x_n}$ par définition, et $x_n\in\mathbb{E}_{x_{n+1}}$ par hypothèse. Donc $f(x_n)\leq f(x_{n+1})$, ce qui montre la croissance de la suite.
- 6. On pose $M = \sup_{x \in [a,b]} f(x)$ la borne supérieure de f. Montrer que pour tout $x \in [a,b]$, on a $E_x \subset f^{-1}(]-\infty,M]$). La borne M n'est pas $+\infty$, car f est bornée car continue sur un compact. Soit $x \in [a,b]$, alors pour tout $y \in E_x$, $f(y) \leq f(x) \leq M$ donc $y \in f^{-1}(]-\infty,M]$), ce qui conclut la démonstration.
- 7. Soit $\varepsilon > 0$. Pour tout $x \in [a, b]$, on pose

$$V_x^{\varepsilon}(f) = \{ y \in [a, b] : |f(y) - f(x)| < \varepsilon \}$$

l'ensemble des réels $y \in [a, b]$ tels que l'image par f est proche de f(x) à ε près. Montrer que

$$V_x^{\varepsilon}(f) = f^{-1}(|f(x) - \varepsilon, f(x) + \varepsilon|).$$

Soit $y \in V_x^{\varepsilon}(f)$, alors par définition de la valeur absolue $f(y) < \varepsilon + f(x)$ et $f(y) > f(x) - \varepsilon$, ce qui conclut la démonstration par équivalence.

- 8. Montrer que $V_x^{\varepsilon}(f)$ est une partie ouverte de [a,b]. $V_x^{\varepsilon}(f)$ est l'image réciproque d'une partie ouverte par une fonction continue, donc c'est une partie ouverte.
- 9. Construire une fonction $h \in \mathcal{C}^0$ telle qu'il existe $x^* \in [a,b]$ avec $V_{x^*}^{\varepsilon}(h)$ qui n'est pas une partie ouverte de \mathbb{R} . On pose h la fonction constante égale à 7 sur [a,b] = [0,1] alors pour $x^* = 0.33$ (par exemple, mais tout autre point fonctionne) $V_{0.33}^{\varepsilon}(h) = \{y \in [0,1] : |h(y)-7| < \varepsilon\} = \{y \in [0,1] : |7-7| < \varepsilon\}$ donc $V_{x^*}^{\varepsilon}(h) = [0,1]$ qui n'est pas une partie ouverte de \mathbb{R} .
- 10. Soit g une fonction définie sur [a,b] qui vérifie la propriété suivante :

Propriété (P). Pour tout réel $\varepsilon > 0$, il existe un réel r > 0 tel que pour tout $x, y \in [a, b]$

$$y \in B(x,r) \Longrightarrow y \in V_x^{\varepsilon}(g).$$

Montrer que la fonction g est continue. Soit g une fonction qui vérifie la propriété (P). Soit $\epsilon > 0$, et $x_0 \in [a, b]$. Pour montrer que g est continue au point x_0 , il faut montrer qu'il existe r > 0 tel que, pour tout $g \in]x_0 - r, x_0 + r[\cap [a, b], \text{ on ait } |g(y) - g(x_0)| < \varepsilon$. Or si $g \in B(x_0, r)$ avec le réel g donné par la propriété alors $g \in V_{x_0}^{\varepsilon}(g)$ donc g donc g est donc continue.

- 11. Soit f une fonction dérivable telle que $f' \in \mathcal{C}^0$. Montrer qu'elle vérifie la propriété (P). Par théorème des accroissements, $|f(x) f(y)| \leq \sup_{z \in [a,b]} |f'(z)| |x y|$. Si f' est identiquement nulle, la fonction f est constante et vérifie évidemment la propriété (P) car $V_x^{\varepsilon}(f) = [a,b]$ pour tout x et ε , donc tout réel r > 0 convient. Sinon, pour tout $\varepsilon > 0$, on pose $r = \frac{\varepsilon}{\sup_{z \in [a,b]} |f'(z)|}$, et |x y| < r implique $|f(x) f(y)| < \varepsilon$.
- 12. Soit $f \in \mathcal{C}^0$. On suppose que f ne vérifie pas la propriété (P) pour un réel $\varepsilon > 0$ fixé. Construire deux suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}} \in [a, b]$ telles que, pour tout entier $n \in \mathbb{N}$

$$|x_n - y_n| < (b-a)2^{-n}$$
 et $|f(x_n) - f(y_n)| \ge \varepsilon$.

Si f ne vérifie pas la propriété (P), cela veut dire que pour tout réel r > 0, et en particulier pour $r = (b-a)2^{-n}$, il existe $(x,y) \in [a,b]^2$ tels que $y \in B(x,r)$ et $y \notin V_x^{\varepsilon}(f)$, donc $|f(x) - f(y)| \ge \varepsilon$. En particulier pour $r = (b-a)2^{-n}$, on a les suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ voulues.

13. Soit f une fonction de \mathcal{C}^0 . Montrer que f vérifie la propriété (P). Supposons que f ne vérifie pas la propriété (P) pour un $\varepsilon > 0$ quelconque. Par propriété de Bolzano-Weierstrass, dans la partie compacte [a,b], les deux suites admettent des suites extraites convergentes. Par l'inégalité $|x_n-y_n|<(b-a)2^{-n}$, on conclut que les suites extraites convergent vers une limite commune ℓ . Par continuité, les suites $(f(x_{\phi(n)}))$ et $(f(y_{\phi(n)}))$ convergent toutes deux vers $f(\ell)$, ce qui est une contradiction avec $|f(x_{\phi(n)})-f(y_{\phi(n)})| \ge \epsilon$ pour tout n. Donc f vérifie forcément la propriété (P).

Partie 1.2

14. Rappeler la formule des coefficients de Newton $(C_n^k)_{0 \le k \le n, n \in \mathbb{N}}$ tels que pour tous réels x et y et tout entier $n \in \mathbb{N}$, on a l'identité

$$(x+y)^n = \sum_{k=0}^n C_n^k x^k y^{n-k}.$$

C'est la formule du binôme de Newton. On pose $C_n^k = \frac{n!}{k!(n-k)!}$ pour tout $n \in \mathbb{N}^*$ et tout $k \in \mathbb{N}$ tel que $0 \le k \le n$.

15. Montrer que pour tout $z \in [a, b]$, pour tout $n \in \mathbb{N}$, on a

$$\sum_{k=0}^{n} kC_n^k (z-a)^k (b-z)^{n-k} = n(z-a)(b-a)^{n-1}.$$

$$\sum_{k=0}^{n} k C_n^k (z-a)^k (b-z)^{n-k} = \sum_{k=1}^{n} n \frac{(n-1)!}{(k-1)!(n-k)!} (z-a)^k (b-z)^{n-k}$$

$$= n \sum_{k=1}^{n} C_{n-1}^{k-1} (z-a)^k (b-z)^{n-k}$$

$$= n \sum_{k=0}^{n-1} C_{n-1}^k (z-a)^{k+1} (b-z)^{n-1-k}$$

$$= n (z-a)(b-a)^{n-1}$$

16. Montrer que pour tout $z \in [a, b]$, pour tout $n \in \mathbb{N}$, on a

$$\sum_{k=0}^{n} k(k-1)C_n^k(z-a)^k(b-z)^{n-k} = n(n-1)(z-a)^2(b-a)^{n-2}.$$

$$\sum_{k=0}^{n} k(k-1)C_{n}^{k}(z-a)^{k}(b-z)^{n-k} = \sum_{k=2}^{n} n(n-1)\frac{(n-2)!}{(k-2)!(n-k)!}(z-a)^{k}(b-z)^{n-k}$$

$$= n(n-1)\sum_{k=2}^{n} C_{n-2}^{k-2}(z-a)^{k}(b-z)^{n-k}$$

$$= n(n-1)\sum_{k=0}^{n-2} C_{n-2}^{k}(z-a)^{k+2}(b-z)^{n-2-k}$$

$$= n(n-1)(z-a)^{2}(b-a)^{n-2}$$

17. Montrer que pour tout $z \in [a, b]$, pour tout $n \in \mathbb{N}$, et tout $p \in \mathbb{N}$ tel que $1 \le p \le n+1$, on a

$$\sum_{k=0}^{n} k(k-1) \dots (k-p+1) C_n^k (z-a)^k (b-z)^{n-k} = n(n-1) \dots (n-p+1) (z-a)^p (b-a)^{n-p}.$$

Avec la première question pour $(x+y)^n$, en dérivant p fois par rapport à x:

$$\frac{d^p}{dx^p}(x+y)^n = n(n-1)\dots(n-p+1)(x+y)^{n-p}$$
$$= \sum_{k=0}^n C_n^k k(k-1)\dots(k-p+1)x^{k-p}y^{n-k}.$$

Il suffit de prendre y = b - z et x = z - a et de multiplier le tout par $(z - a)^p$. On peut aussi faire un calcul direct, ou faire une démonstration par récurrence.

18. Montrer que

$$(k(b-a) - n(z-a))^{2} = (b-a)^{2}(k(k-1)) + (b-a)^{2}k - 2n(b-a)(z-a)k + n^{2}(z-a)^{2}.$$

On développe le membre de gauche par une identité remarquable, et on simplifie les deux premiers termes du membre de droite.

19. En déduire que pour tout $z \in [a, b]$, pour tout $n \in \mathbb{N}$, on a

$$\sum_{k=0}^{n} (k(b-a) - n(z-a))^{2} C_{n}^{k} (z-a)^{k} (b-z)^{n-k} = n(z-a)(b-z)(b-a)^{n}.$$

On a $(k(b-a)-n(z-a))^2 = (b-a)^2[k(k-1)] + (b-a)^2[k] - 2n(b-a)(z-a)[k] + n^2(z-a)^2$. Donc avec les questions précédentes,

$$\sum_{k=0}^{n} (k - nx)^{2} C_{n}^{k} x^{k} (1 - x)^{n-k}$$

$$= n(n-1)(z-a)^{2} (b-a)^{n} + (b-a)^{2} n(z-a)(b-a)^{n-1}$$

$$-2n(b-a)n(z-a)^{2} (b-a)^{n-1} + n^{2} (z-a)^{2} (b-a)^{n}$$

$$= (z-a)(b-a)^{n} (nn(z-a) - n(z-a) + (b-a)n - 2nn(z-a) + nn(z-a))$$

$$= (z-a)(b-a)^{n} (-n(z-a) + (b-a)n)$$

$$= (z-a)(b-a)^{n} n(b-z)$$

20. Soit $f \in \mathcal{C}^0$. Montrer qu'il existe une constante C > 0 telle que pour tout r > 0, pour tout $z \in [a,b]$, pour tout $n \in \mathbb{N}^*$, pour tout $k \in \{0,\ldots,n\}$ vérifiant $\left|a + \frac{k}{n}(b-a) - z\right| \ge r$, on a

$$\left| f(z) - f\left(a + \frac{k}{n}(b-a)\right) \right| \le C \frac{(na + k(b-a) - nz)^2}{n^2 r^2}.$$

On pose $C = 2 \sup_{x \in [a,b]} |f(x)|$. Puisque $\frac{(na + k(b-a) - nz)^2}{n^2r^2} \ge 1$, on a

$$\left| f(z) - f\left(a + \frac{k}{n}(b-a)\right) \right| \le C \le C \frac{(na + k(b-a) - nz)^2}{n^2 r^2}$$

21. Soit $\varepsilon > 0$ et $f \in \mathcal{C}^0$. Montrer qu'il existe r > 0 tel que pour tout $z \in [a, b]$, pour tout $n \in \mathbb{N}^*$, pour tout $k \in \{0, \dots, n\}$ on a

$$\left| f(z) - f\left(a + \frac{k}{n}(b-a)\right) \right| \le \varepsilon + C \frac{(na + k(b-a) - nz)^2}{n^2 r^2}.$$

On prend le r donné par la partie 1.1. Soit $z \in [a,b]$, alors on a deux possibilités :

Le cas
$$\left|z-a+\frac{k}{n}(b-a)\right| < r$$
, qui implique $\left|f(z)-f\left(a+\frac{k}{n}(b-a)\right)\right| \le \varepsilon$.
Le cas $\left|z-a+\frac{k}{n}(b-a)\right| \ge r$, qui se traite par la question précédente.

22. En déduire qu'il existe une constante D > 0 ne dépendant que de la fonction f telle que pour tout $z \in [a, b]$, pour tout $n \in \mathbb{N}^*$

$$\left| f(z) - \sum_{k=0}^{n} f\left(a + \frac{k}{n}(b-a)\right) C_n^k \frac{(z-a)^k (b-z)^{n-k}}{(b-a)^n} \right| \leq \varepsilon + \frac{D}{nr^2}.$$

On fait apparaître $\frac{(b-z+z-a)^n}{(b-a)^n}$ devant f(z) et on développe le numérateur par la formule de Newton pour obtenir une somme

$$\sum_{k=0}^{n} \left| f(z) - f\left(a + \frac{k}{n}(b-a)\right) \right| C_n^k \frac{(z-a)^k (b-z)^{n-k}}{(b-a)^n}.$$

On utilise la majoration de la question 20 en deux termes. Pour le premier terme en ε , on rassemble la somme par la formule de Newton, ce qui donne le terme ε . Pour le deuxième terme $C\frac{(na+k(b-a)-nz)^2}{n^2r^2}$, on utilise la question 18 qui donne la majoration

$$\sum_{n=0}^{n} C \frac{(na+k(b-a)-nz)^2}{n^2r^2} C_n^k \frac{(z-a)^k(b-z)^{n-k}}{(b-a)^n} \le \frac{C}{n^2r^2} n(z-a)(b-z)$$

et on obtient une majoration uniforme en remarquant que $(z-a)(b-z) \le (b-a)^2$. Il suffit donc de poser $D = C(b-a)^2 = 2 \sup_{x \in [a,b]} |f(x)|(b-a)^2$.

2 Problème d'algèbre

Soit V un endomorphisme sur l'anneau des polynômes $\mathbb{R}[X]$. Les compositions successives de l'endomorphisme V seront notées V^m pour tout $m \in \mathbb{N}$, avec la convention V^0 étant l'endomorphisme identité.

Partie 2.1

On pose V l'endomorphisme suivant

$$V: \mathbb{R}[X] \to \mathbb{R}[X]$$

 $P \mapsto \frac{1}{2}P\left(\frac{X}{2}\right) + \frac{1}{2}P\left(\frac{X+1}{2}\right).$

- 1. Montrer que pour tout polynôme P de degré $n \in \mathbb{N}$, V(P) est également un polynôme de degré au plus $n \in \mathbb{N}$. Par translation/dilatation, on reste un polynôme et le degré n'est pas modifié, et par combinaison linéaire, le degré ne peut que diminuer.
- 2. Pour tout $n \in \mathbb{N}$, on note V_n l'application

$$V_n : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$

$$P \mapsto \frac{1}{2}P\left(\frac{X}{2}\right) + \frac{1}{2}P\left(\frac{X+1}{2}\right)$$

définie sur le sous-espace $\mathbb{R}_n[X]$ des polynômes de degré au plus $n \in \mathbb{N}$. Montrer que V_n est bien un endomorphisme. $V_n(\lambda P + Q) = \lambda V_n(P) + V_n(Q)$.

- 3. On fixe $n \in \mathbb{N}$. Montrer que la suite $(v_{n,m})_{m \in \mathbb{N}}$ telle que $v_{n,m} := \dim(\operatorname{Ker} V_n^m) + \operatorname{rang}(V_n^m)/2$ pour $m \in \mathbb{N}$ est croissante. Par théorème du rang, quelque soit $m \in \mathbb{N}$, on a $\dim(\operatorname{Ker} V_n^m) + \operatorname{rang}(V_n^m) = \dim \mathbb{R}_n[X] = n+1$. Donc $\dim(\operatorname{Ker} V_n^m) + \operatorname{rang}(V_n^m)/2 = n+1 \operatorname{rang}(V_n^m)/2$. Soit $Q \in \operatorname{Im} V_n^{m+1}$ alors il existe $P \in \mathbb{R}_n[X]$ tel que $V_n^{m+1}(P) = Q = V_n^m(V_n(P))$. Donc $Q \in \operatorname{Im} V_n^m$ et $\operatorname{Im} V_n^m = \operatorname{Im} V_n^m$. Donc $\operatorname{rang}(V_n^m)$ est une suite décroissante. La suite $v_{n,m}$ est donc croissante.
- 4. Montrer que, quelque soit $n \in \mathbb{N}$, la suite $(v_{n,m})_{m \in \mathbb{N}}$ converge quand $m \to +\infty$. La suite est majorée par n+1, donc elle converge.
- 5. Donner la matrice M de $\mathcal{M}_{3,3}(\mathbb{R})$ qui représente l'endomorphisme V_2 dans la base canonique $\mathcal{B} = \{1, X, X^2\}$ de $\mathbb{R}_2[X]$.

$$V_2(1) = \frac{1}{2} + \frac{1}{2} = 1, V_2(X) = \frac{X}{4} + \frac{1}{2}\frac{X+1}{2} = \frac{2X+1}{4}$$
 et

$$V_2(X^2) = \frac{1}{2}\frac{X^2}{4} + \frac{1}{2}\frac{(X+1)^2}{4} = \frac{2X^2 + 2X + 1}{8}.$$

D'où la matrice

$$M = \left(\begin{array}{ccc} 1 & 1/4 & 1/8 \\ 0 & 1/2 & 1/4 \\ 0 & 0 & 1/4 \end{array}\right).$$

6. En déduire Ker V_2 et Im V_2 . La matrice est de rang 3 donc Im $V_2 = \mathbb{R}_2[X]$ et Ker $V_2 = \{0\}$.

Partie 2.2

A partir de cette question, et jusqu'à la fin du problème, on fixe n=2. On cherche à étudier la limite d'endomorphisme V_2^m pour $m \to +\infty$.

- 7. Calculer la limite de $v_{2,m}$ quand $m \to +\infty$. Puisque le rang de la matrice est 3, alors il ne diminue pas avec les compositions. Donc $v_{2,m} = 0 + 3/2 = 3/2$ est une suite constante de limite 3/2.
- 8. Montrer qu'il existe une base \mathcal{C} qui diagonalise l'endomorphisme V_2 . La matrice possède un polynôme caractéristique scindé à racines simples réelles, donc elle est diagonalisable.
- 9. Calculer les valeurs propres de l'endomorphisme V_2 et les vecteurs propres associés. 1 est vecteur propre associé à la valeur propre 1. De plus $V_2(1-2X) = 1 X 1/2 = (1-2X)/2$ donc est vecteur propre associé à la valeur propre $\frac{1}{2}$. Et

$$V_2\left(\frac{1}{6} - X + X^2\right) = \frac{1}{6} - \frac{X}{2} - \frac{1}{4} + \frac{2X^2 + 2X + 1}{8}$$
$$= \frac{4 - 12X - 6 + 6X^2 + 6X + 3}{24} = \frac{1}{4}\left(\frac{1}{6} - X + X^2\right),$$

d'où le dernier vecteur propre associé à la valeur propre $\frac{1}{4}$.

10. Calculer la matrice de passage \mathcal{P} de la base \mathcal{B} à la base \mathcal{C} . Avec la base trouvée en question 8, qui diagonalise V_2 , on a

$$\mathcal{P} = \left(\begin{array}{ccc} 1 & 1 & 1/6 \\ 0 & -2 & -1 \\ 0 & 0 & 1 \end{array}\right).$$

11. Calculer l'inverse de la matrice \mathcal{P} .

$$\mathcal{P}^{-1} = \left(\begin{array}{ccc} 1 & 1/2 & 1/3 \\ 0 & -1/2 & -1/2 \\ 0 & 0 & 1 \end{array}\right).$$

12. Donner la matrice Δ de V_2 dans la base \mathcal{C} . A permutation près des coefficients diagonaux, on obtient

$$\Delta = \mathcal{P}^{-1}M\mathcal{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/4 \end{pmatrix}.$$

13. Soit $Q = cX^2 + bX + a$ un polynôme de $\mathbb{R}_2[X]$ avec $a, b, c \in \mathbb{R}$. Calculer les coordonnées de Q dans la base C. Par la matrice \mathcal{P}^{-1} on obtient

$$Q = \frac{6a + 3b + 2c}{6} - \frac{b + c}{2}(1 - 2X) + c\left(\frac{1}{6} - X + X^2\right)$$

14. Calculer la matrice qui représente l'endomorphisme V_2^m pour tout $m \in \mathbb{N}$ dans la base canonique.

$$\begin{pmatrix} 1 & 1 & 1/6 \\ 0 & -2 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2^m & 0 \\ 0 & 0 & 1/4^m \end{pmatrix} \begin{pmatrix} 1 & 1/2 & 1/3 \\ 0 & -1/2 & -1/2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1/2^m & 1/(6 \cdot 4^m) \\ 0 & -1/2^{m-1} & -1/4^m \\ 0 & 0 & 1/4^m \end{pmatrix} \begin{pmatrix} 1 & 1/2 & 1/3 \\ 0 & -1/2 & -1/2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1/2 - 1/2^{m+1} & 1/3 - 1/2^{m+1} + 1/(6 \cdot 4^m) \\ 0 & 1/2^m & 1/2^m - 1/4^m \\ 0 & 0 & 1/4^m \end{pmatrix} .$$

- 15. Montrer que les coordonnées de $V_2^m(Q)$ dans la base $\mathcal C$ convergent. On peut passer à la limite dans la matrice précédente, pour obtenir $\lim_{m\to +\infty}V_2^m(Q)=a+b/2+c/3$ en tant que polynôme, ce qui correspond à la convergence des coordonnées.
- 16. Soit $\|\cdot\|$ une norme sur l'espace vectoriel $\mathbb{R}_2[X]$. On note $\|\cdot\|$ la norme d'endomorphisme associée, c'est-à-dire que pour tout endomorphisme V on définit

$$\|V\|\| := \max_{Q \in \mathbb{R}_2[X], Q \neq 0} \frac{\|V(Q)\|}{\|Q\|}.$$

Montrer que $|\|V_2\|| \ge 1$. Si Q est un vecteur propre (non nul) de V_2 alors $V_2(Q) = \lambda Q$ avec $\lambda \in \{1, 1/2, 1/4\}$. Donc $\frac{\|V_2(Q)\|}{\|Q\|} = \lambda$ et $|\|V_2\|| \ge \max\{1, 1/2, 1/4\} = 1$.

17. Montrer qu'il existe un endomorphisme U de $\mathbb{R}_2[X]$ tel que

$$||V_2^m(Q) - U(Q)|| \underset{m \to +\infty}{\longrightarrow} 0.$$

On pose U l'endomorphisme tel que $U(a+bX+cX^2)=a+b/2+c/3$ alors

$$||V_2^m(Q) - U(Q)|| \le ||-b/2^{m+1} - c/2^{m+1} + c/(6 \cdot 4^m)|| + ||P||/2^m \underset{m \to +\infty}{\longrightarrow} 0.$$

où le polynôme P est explicite, mais dont la décomposition est inutile pour conclure.

18. Donner la matrice de $\mathcal{M}_{3,3}(\mathbb{R})$ qui représente l'endomorphisme U dans la base \mathcal{C} .

$$\left(\begin{array}{ccc} 1 & 1/2 & 1/3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

- 19. Calculer le rang de la matrice qui représente l'endomorphisme U dans la base C. Le rang est 1.
- 20. En déduire si la suite $v_{2,m} = \dim(\text{Ker } V_2^m) + \operatorname{rang}(V_2^m)/2$ converge ou non vers $\dim(\text{Ker } U) + \operatorname{rang}(U)/2$. La suite $v_{2,m}$ est constante égale à 3/2, et $\dim(\text{Ker } U) + \operatorname{rang}(U)/2 = 5/2$. Donc elle ne converge pas, même si $V_2^m(Q) \to U(Q)$ pour tout $Q \in \mathbb{R}_2[X]$.

ÉCOLE NATIONALE DE LA STATISTIQUE ET DE L'ANALYSE ÉCONOMIQUE ENSAE - DAKAR

ÉCOLE NATIONALE D'ÉCONOMIE APPLIQUÉE ET DE MANAGEMENT ENEAM - COTONOU

JUIN 2021

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Mathématiques

Corrigé de la 2ème COMPOSITION DE MATHÉMATIQUES (Durée de l'épreuve : 4 heures)

Dans toute cette épreuve, N désigne l'ensemble des entiers naturels, R l'ensemble des nombres réels, e le nombre de Néper et Ln le logarithme népérien.

Exercice n° 1

Soit la matrice
$$A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$$
, où $(a,b) \in \mathbb{R}^2$

1. Etudier la diagonalisation de A (on précisera les valeurs propres et les sous espaces propres associés).

La matrice étant symétrique, elle est diagonalisable.

On obtient : det
$$(A - \lambda I) = (a + 2b - \lambda)(a - b - \lambda)^2$$
.

Pour $b \neq 0$

 $\lambda = a - b$ est une valeur propre double, dont le sous espace propre associé est le plan d'équation : x + y + z = 0.

 $\lambda = a + 2b$ a pour vecteur propre associé (1,1,1).

Pour
$$b=0$$
, $A=a^3 I$

2. On suppose que $a \neq 0$; $b \neq 0$, calculer A^n pour $n \in N$

La matrice A est semblable \grave{a} : $D = \begin{pmatrix} a-b & 0 & 0 \\ 0 & a-b & 0 \\ 0 & 0 & a-b \end{pmatrix}$ et $A^n = PD^n P^{-1}$, avec $P = \frac{1}{3} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix}$ pour obtenir : $A^n = \frac{1}{3} \begin{pmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{pmatrix}$, où $\begin{pmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{pmatrix}$, où

$$P = \frac{1}{3} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \text{ pour obtenir : } A^n = \frac{1}{3} \begin{pmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{pmatrix}, \text{ où }$$

$$\begin{cases} a_n = 2(a-b)^n + (a+2b)^n \\ b_n = (a+2b)^n - (a-b)^n \end{cases}$$

3. Déterminer, dans la base canonique de R^3 , la matrice de la projection orthogonale sur le sous espace vectoriel d'équation : x + y + z = 0.

Cette matrice s'écrit : $M = X(X^TX)^{-1}X^T$, où $X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -1 \end{pmatrix}$. On obtient alors :

$$M = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

4. Déterminer, dans la base canonique de R^3 , la matrice de la symétrie orthogonale par rapport au sous espace vectoriel d'équation : x + y + z = 0.

La matrice de la symétrie est :
$$S = 2M - I = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$

Exercice n° 2

Soit $f: \mathbb{R}^4 \to \mathbb{R}^4$ définie par : $f(x, y, z, t) = (\alpha x + y, x + \alpha y, z + t, z + t)$, où α est un paramètre réel non nul.

1. Déterminer le noyau et l'image de f selon les valeurs de α .

La matrice associée à cette application linéaire est : $M = \begin{pmatrix} \alpha & 1 & 0 & 0 \\ 1 & \alpha & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$.

Pour le noyau de f on doit avoir : $\alpha x + y = 0$; $x + \alpha y = 0$; z + t = 0.

Si $\alpha \neq \pm 1$, $Ker f = \{0, 0, z, -z\}$, $\dim(Ker f) = 1 \Rightarrow \dim(Im f) = 3$ et $Im f = \{X, Y, Z, Z\}$ Si $\alpha = 1$, $Ker f = \{x, -x, z, -z\}$, $\dim(Ker f) = 2 \Rightarrow \dim(Im f) = 2$ et $Im f = \{X, -X, Z, Z\}$ Si $\alpha = -1$, $Ker f = \{x, x, z, -z\}$, $\dim(Ker f) = 2 \Rightarrow \dim(Im f) = 2$ et $Im f = \{X, X, Z, Z\}$

2. Etudier la diagonalisation de la matrice associée à f selon les valeurs de α (on précisera les valeurs propres).

2

On a : $\det(M - \lambda I) = \lambda(\lambda - 2)(\alpha - \lambda - 1)(\alpha - \lambda + 1)$, les valeurs propres sont : $0, 2, \alpha + 1, \alpha - 1$.

La diagonalisation va dépendre des multiplicités de ces valeurs propres :

$$\begin{cases} \alpha \pm 1 = 0 \\ \alpha \pm 1 = 2 \end{cases} \Rightarrow \begin{cases} \alpha = -1, 1 \\ \alpha = 1, 3 \end{cases}$$

Si $\alpha = 1$, $\lambda = 0$ est une valeur propre double ainsi que $\lambda = 2$ et les sous espaces vectoriels propres sont de dimension 2. La matrice est donc diagonalisable.

Si $\alpha = -1$, $\lambda = 0$ est une valeur propre double et les deux autres -2 et 0 et le sous espace vectoriel propre pour 0 est de dimension 2. La matrice est donc diagonalisable.

Si $\alpha = 3$, $\lambda = 2$ est une valeur propre double et les deux autres sont 0 et 4 et le sous espace vectoriel propre associé à 2 est de dimension 2. La matrice est donc diagonalisable.

Dans tous les autres cas, les 4 valeurs propres sont distinctes, donc la matrice est, dans tous les cas, diagonalisable.

Exercice n° 3

Soient a et b deux entiers strictement positifs. On considère le polynôme P_n défini par :

$$P_n(x) = \frac{x^n (bx - a)^n}{n!}$$
, où $n \in \mathbb{N}$.

1. Montrer que le polynôme P_n et toutes ses dérivées prennent des valeurs entières pour x=0 et x = a/b

On développe ce polynôme par la formule du binôme d'une part et par la formule de Mac Laurin d'autre part pour obtenir :

$$P_n(x) = \sum_{k=0}^n (-1)^{n-k} \frac{C_n^k}{n!} b^k a^{n-k} x^{n+k} = \sum_k \frac{P_n^{(h)}(0)}{h!} x^k$$
. On en déduit :

$$P_n^{(h)}(0) = 0$$
 si $h < n$ ou $h > 2n$ et

$$P_n^{n+k}(0) = (-1)^{n-k} (n+k)! \frac{C_n^k}{n!} b^k a^{n-k} \text{ si } h = n+k \ (k=0,...n)$$

Chaque terme étant un entier, $P_n^{n+k}(0)$ est un entier.

Pour
$$x = \frac{a}{b}$$
, on pose $u = x - \frac{a}{b}$, il vient :

$$P_n(x) = \left(\frac{a}{b} + u\right)^n \frac{b^n u^n}{n!} = \frac{u^n (a + bu)^n}{n!} = Q_n(u)$$

Les dérivées de $Q_n(u)$ sont des entiers en zéro et sont égales aux dérivées de $P_n(x)$ en $x = \frac{a}{b}$, car le développement de Taylor de P_n en a/b est le développement de Mac Laurin pour Q_n

2. Etudier la convergence de la suite (I_n) définie par : $I_n = \int_0^{\pi} P_n(x) \sin(x) dx$

Posons
$$M = \sup_{0 \le x \le \pi} |x(bx - a)|$$
, alors $|I_n| \le \int_0^{\pi} |P_n(x)\sin(x)| dx \le \int_0^{\pi} |P_n(x)| dx \le \int_0^{\pi} \frac{M^n}{n!} dx = \pi \frac{M^n}{n!}$

Donc la limite de (I_n) est nulle.

3. Montrer que si π était un nombre rationnel et si on prenait a et b des entiers tels que $a/b = \pi$, le nombre I_n serait un entier non nul, en contradiction avec le résultat de la question précédente.

3

Pour tout $x \in [0, \pi]$, on a: $x(bx-a) \ge 0$, donc $x^n (bx-a)^n \sin x \ge 0$.

Par ailleurs $x \in [\pi/4, 3\pi/4]$, $x^n (bx-a)^n \sin x \ge (\pi/4)^n b^n (\pi/4)^n (\sqrt{2}/2)$

Par conséquent :
$$I_n \ge \frac{1}{n!} \int_{\pi/4}^{3\pi/4} \left(\frac{b}{4}\right)^n \frac{\sqrt{2}}{2} dx > 0$$

Donc on trouve que I_n est un entier (question 1) strictement positif, ce qui est contraire au résultat de la question 2.

Exercice n° 4

Soit
$$I = \int_{0}^{1} \frac{Lnt}{t^2 - 1} dt$$

1. Montrer que *I* est convergente.

La fonction $\frac{Lnt}{t^2-1}$ est continue sur]0,1[. En $1, \frac{Lnt}{t^2-1} \approx \frac{t-1}{(t-1)^t t+1)} \approx \frac{1}{t+1} \rightarrow 1/2$.

En 0, $\frac{Lnt}{t^2-1} \approx -Lnt$ dont l'intégrale est convergente au voisinage de 0.

2. Pour tout entier naturel k, calculer $J_k = \int_0^1 t^k Lnt dt$

L'intégrale est bien convergente et on intègre par parties :

$$J_{k} = \left[\frac{t^{k+1} Lnt}{k+1}\right]_{0}^{1} - \int_{0}^{1} \frac{t^{k}}{1+k} dt = -\frac{1}{(k+1)^{2}}$$

3. Montrer que pour tout entier n supérieur ou égal à 1, on a :

$$\sum_{k=0}^{n} \frac{1}{(2k+1)^2} = I - \int_{0}^{1} \frac{t^{2n+2} Lnt}{t^2 - 1} dt$$

On a:
$$\sum_{k=0}^{n} \frac{1}{(2k+1)^2} = -\sum_{k=0}^{n} J_{2k} = -\sum_{k=0}^{n} \int_{0}^{1} t^{2k} Lnt dt = -\int_{0}^{1} \frac{1-t^{2n+2}}{1-t^2} Lnt dt$$

4. Montrer que l'on peut prolonger par continuité en 0 et 1, la fonction $t \to \frac{t^2 Lnt}{t^2 - 1}$ La fonction se prolonge par continuité par 0 en 0, et par ½ en 1.

4

5. Montrer qu'il existe une constante M>0, tel que : $\forall t \in]0,1[,\left|\frac{t^2 Lnt}{t^2-1}\right| \leq M$

Toute fonction continue sur un compact est borné.

6. En déduire que :
$$I = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{(2k+1)^2}$$

$$\left| \int_{0}^{1} \frac{t^{2n+2} Lnt}{t^{2} - 1} dt \right| \le \int_{0}^{1} t^{2n} \left| \frac{t^{2} Lnt}{t^{2} - 1} \right| dt \le M \int_{0}^{1} t^{2n} dt = \frac{M}{2n+1} \to 0$$

Evident avec les questions 3 et 6.

Exercice n° 5

Soient les fonctions réelles f_1 et f_2 définies respectivement par : $f_1(x) = \frac{x+2}{2-x}$ et $f_2(x) = \frac{12+6x+x^2}{12-6x+x^2}$

1. Etudier les variations de ces deux fonctions et donner l'allure de leurs graphes dans un même repère.

La fonction f_1 est une hyperbole équilatère qui admet comme asymptotes les droites d'équation x=2 et y=-1.

La fonction f_2 admet pour dérivée : $f_2(x) = \frac{-12(x^2 - 12)}{(12 - 6x + x^2)^2}$.

Cette fonction est décroissante de $\left[-\infty, -2\sqrt{3}\right]$, croissante sur $\left[-2\sqrt{3}, +2\sqrt{3}\right]$, puis décroissante sur $\left[-2\sqrt{3}, +\infty\right[$. La droite d'équation y=1 est une asymptote.

2. Déterminer le point d'intersection des graphes de f_1 et f_2 .

Le point A(0,1) répond à la question.

3. Trouver deux polynômes différents P_1 et P_2 de même degré n, tels que : $\begin{cases} f_1(x) = P_1(x) + x^n e_1(x) \\ f_2(x) = P_2(x) + x^n e_2(x) \end{cases}$, où e_1 et e_2 sont des fonctions définies au voisinage de zéro telles que $\lim_{x \to 0} e_1(x) = \lim_{x \to 0} e_2(x) = 0$

5

Il s'agit de développer ces fonctions au voisinage de zéro par la formule de Taylor.

On a:
$$f_1(x) = \frac{x+2}{2-x} = \frac{1}{2}(x+2)(1-\frac{1}{2}x)^{-1} = \frac{1}{2}(2+x)(1+\frac{x}{2}+....+\frac{x^n}{2^n}+o(x^n))$$

D'où
$$f_1(x) = 1 + \sum_{k=1}^{n} \frac{x^k}{2^{k-1}} + x^n e_1(x)$$

Pour la deuxième fonction, on ne cherchera pas à expliciter le polynôme.

$$f_2(x) = \frac{12 + 6x + x^2}{12 - 6x + x^2} = 1 + x \left(1 + \frac{x^2 - 6x}{12}\right)^{-1}$$

4. Préciser la position relative des deux graphes au voisinage du point A(0,1).

Supposons
$$f_1(x) \ge f_2(x) \Leftrightarrow 2x^3 \ge 0$$

Au voisinage du point considéré, le graphe de f_1 est au-dessus de celui de f_2 pour x>0 et en dessous dans le cas contraire.

Exercice n° 6

1. On considère une suite (u_n) de nombres réels positifs qui vérifie : $\frac{u_{n+1}}{u_n} = 1 - \frac{\beta}{n} + o(\frac{1}{n})$, où β est une constante réelle. Etudier la convergence de la série de terme général u_n selon les valeurs du paramètre β .

Pour
$$\alpha > 0$$
, posons $v_n = n^{-\alpha}$, on a: $\frac{v_{n+1}}{v_n} - \frac{u_{n+1}}{u_n} = \frac{\beta - \alpha}{n} + o\left(\frac{1}{n}\right)$

- Si
$$\beta \neq \alpha$$
 et pour *n* grand, $\frac{v_{n+1}}{v_n} - \frac{u_{n+1}}{u_n}$ est du signe de $\beta - \alpha$.

- Si
$$\beta > 1$$
, on choisit α tel que : $1 < \alpha < \beta$, alors $\sum v_n$ est convergente et $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$, donc $\sum u_n$ converge (rapport de d'Alembert).

- Si
$$\beta < 1$$
, on choisit α tel que : $1 > \alpha > \beta$, alors $\sum v_n$ est convergente et $\frac{u_{n+1}}{u_n} \ge \frac{v_{n+1}}{v_n}$, donc $\sum u_n$ converge (idem pour $\beta = 1$).

2. Etudier la convergence de la série de terme général :
$$\frac{1 \times 3 \times 5 \dots \times (2n-1)}{2 \times 4 \times 6 \dots \times (2n)}$$

On a :
$$\frac{u_{n+1}}{u_n} = \frac{2n+1}{2n+4} = 1 - \frac{3}{2n}(1+\frac{2}{n})^{-1} = 1 - \frac{3}{2}n + \lambda(\frac{1}{n^2})$$
, donc la série est convergente.