

Graph Analysis and Graph Databases

Semyon Grigorev

Saint Petersburg State University

April 16, 2022

Group Info

- Lead: Semyon Grigorev
 - ▶ PhD (2016), Associate professor (2016, SPbSU)
 - b dblp: https://dblp.org/pid/181/9903.html
 - s.v.grigoriev@spbu.ru
- PhD students: 2
- Master students: 2
- Bachelor students: 4

Group Info

- Lead: Semyon Grigorev
 - ▶ PhD (2016), Associate professor (2016, SPbSU)
 - dblp: https://dblp.org/pid/181/9903.html
 - s.v.grigoriev@spbu.ru
- PhD students: 2
- Master students: 2
- Bachelor students: 4
- Research areas
 - High-performance graph analysis
 - Formal languages constrained path querying
 - Graph databases and graph query languages

High-Performance Graph Analysis

- Linear algebra based algorithms for graph analysis
 - Parallel algorithms on CPU and GPGPU
 - ► Sparse linear algebra
 - GraphBLAS API

High-Performance Graph Analysis

- Linear algebra based algorithms for graph analysis
 - Parallel algorithms on CPU and GPGPU
 - ► Sparse linear algebra
 - GraphBLAS API
- Research directions
 - GraphBLAS-based algorithms design, implementation and evaluation
 - Integration of algorithms to graph databases
 - ▶ Portable multi-GPGPU implementation of GraphBALS-like API

High-Performance Graph Analysis

- Linear algebra based algorithms for graph analysis
 - Parallel algorithms on CPU and GPGPU
 - ► Sparse linear algebra
 - GraphBLAS API
- Research directions
 - GraphBLAS-based algorithms design, implementation and evaluation
 - Integration of algorithms to graph databases
 - ▶ Portable multi-GPGPU implementation of GraphBALS-like API
- Collaboration
 - GraphBLAS community
 - LDBC community

High-Performance Graph Analysis: Results

Tools

- Spla: sparse linear algebra framework for multi-GPU computations based on OpenCL
- ► SPbLA: library of GPGPU-powered sparse boolean linear algebra operations
- ▶ LDBC Graphalytics extension for evaluation of formal language constrained path querying

Papers

- SPbLA: The Library of GPGPU-Powered Sparse Boolean Linear Algebra Operations (GrAPL@IPDPS)
- Evaluation of the context-free path querying algorithm based on matrix multiplication (GRADES-NDA@SIGMOD)

Formal Language Constrained Path Querying (FLPQ)

- Formal languages as path constraints
 - Regular path querying (RPQ)
 - Context-free path querying (CFPQ)
 - Applications
 - **★** Graph analysis
 - ★ Interprocedural static code analysis
 - ★ Graph database querying

Formal Language Constrained Path Querying (FLPQ)

- Formal languages as path constraints
 - Regular path querying (RPQ)
 - Context-free path querying (CFPQ)
 - Applications
 - * Graph analysis
 - ★ Interprocedural static code analysis
 - ★ Graph database querying
- Research directions
 - New algorithms development
 - Complexity analysis
 - ▶ High performance algorithms implementation and evaluation

Formal Language Constrained Path Querying (FLPQ)

- Formal languages as path constraints
 - Regular path querying (RPQ)
 - Context-free path querying (CFPQ)
 - Applications
 - * Graph analysis
 - ★ Interprocedural static code analysis
 - ★ Graph database querying
- Research directions
 - New algorithms development
 - Complexity analysis
 - High performance algorithms implementation and evaluation
- Collaboration
 - ► LDBC community
 - RedisGraph team
 - ▶ Neo4j team

FLPQ: Results

- Tools
 - ► GLL4Graph: CFPQ for Neo4j
 - CFPQ for RedisGraph
 - CFPQ_PyAlgo: set of GrpapBLAS-based FLPQ algorithms
- Papers (> 10)
 - ▶ Multiple-Source Context-Free Path Querying in Terms of Linear Algebra (EDBT, Core A)
 - ► Context-free path querying by matrix multiplication (GRADES-NDA@SIGMOD)
 - Parser combinators for context-free path querying (Scala@ICFP)