COMPUTER ORGANIZATION (IS F242)

LECT 22: MIPS ARCHITECTURE

Amdahl's Law

 Improving an aspect of a computer and expecting a proportional improvement in overall performance

$$T_{improved} = \frac{T_{affected}}{improvement factor} + T_{unaffected}$$

Suppose a program runs in 100 seconds on a machine, with multiply responsible for 80 seconds of this time.

How much do we have to improve the speed of multiplication if we want the program to run 4 times faster?

■ How much improvement in multiply performance to get 5× overall?

$$20 = \frac{80}{n} + 20$$
 Can't be done!

Corollary: make the common case fast

MIPS as a Performance Metric

- MIPS: Millions of Instructions Per Second
 - Doesn't account for
 - Differences in ISAs between computers
 - Differences in complexity between instructions

$$\begin{aligned} \text{MIPS} &= \frac{\text{Instruction count}}{\text{Execution time} \times 10^6} \\ &= \frac{\text{Instruction count}}{\frac{\text{Instruction count} \times \text{CPI}}{\text{Clock rate}}} \times 10^6 \\ &= \frac{\text{Clock rate}}{\text{CPI} \times 10^6} \end{aligned}$$

CPI varies between programs on a given CPU

MIPS Architecture

Microprocessor without Interlocked Pipeline Stages

Registers	and their	Uses in MIPS
\$zero	0	The constant value 0
\$at	1	Assembler Temporary
\$v0 - \$v1	2-3	Values for function results and Expression evaluation
\$a0 - \$a3	4-7	Arguments
\$t0 - \$t7	8-15	Temporaries
\$ s0 - \$\$	16-23	Saved temporaries
\$t8 - \$t9	24-25	Temporaries
\$k0 - \$k1	26-27	Reserved for OS Kernel
\$gp	28	Global Pointer
\$sp	29	Stack Pointer
\$fp	30	Frame Pointer
\$ra	31	Return Address

Registers in MIPS

Preserved

Saved Registers: \$s0 - \$s7

Stack pointer register: \$sp

Return address register: \$ra

Stack above the stack pointer

Not Preserved

Temporary registers: \$t0 - \$t9

Argument registers: \$a0 - \$a3

Return value registers: \$v0, \$v1

Stack below the stack pointer