CHRIST (Deemed to be University), Bengaluru – 560 029

MID SEMESTER EXAMINATION - August 2018

(Semester-5)

PROGRAMME NAME: BSc MAX. MARKS: 50 COURSE NAME: NUMBER THEORY TIME: 2 Hours

COURSE CODE: MAT541C

INSTRUCTIONS

- All rough work should be done in the answer script. Do not write or scribble in the question paper except your register number.
- Verify the Course code / Course title & number of pages of questions in the question paper.
- Make sure your mobile phone is switched off and placed at the designated place in the hall
- Malpractices will be viewed very seriously.
- Answers should be written on both sides of the paper in the answer booklet. No sheets should be detached from the answer booklet.
- Answers without the question numbers clearly indicated will not be valued. No page should be left blank in the middle of the answer booklet.

Part A – Answer any Four Questions. $4 \times 3 = 12$ Marks

- 1. If a|bc and gcd(a,b) = 1, then show that a|c.
- 2. Show that the sum of squares of two odd numbers is not a perfect square.
- 3. If $p, q_1, q_2, q_3, ..., q_n$ are all primes and p divides $p | a_i$ for some $i, 1 \le i \le n$.
- 4. What is the remainder when $1^5 + 2^5 + 3^5 + \cdots + 100^5$ is divisible by 4?
- 5. If a is an odd integer, then show that $a^2 \equiv 1 \pmod{8}$.
- 6. Let $P(x) = \sum_{k=0}^{m} c_k x^k$ be a polynomial function of x with integer coefficients and let $a \equiv b \pmod{n}$. Then show that $P(a) \equiv P(b) \pmod{n}$.

Part B – Answer any Four Questions. $4 \times 7 = 28$ Marks.

- 7. For $n \ge 1$, verify that 43 divides $6^{n+2} + 7^{2n+1}$.
- 8. Use Euclidean algorithm to determine the GCD and LCM of 272 and 1479.
- 9. Determine all integer solutions of the Diophantine equation 56x + 72y = 40.
- 10. Show that the number $\sqrt{2}$ is irrational.
- 11. Using the theory of congruences, verify that $89|2^{44} 1$ and $97|2^{48} 1$
- 12. Use Chinese Remainder Theorem, solve the following system of linear congruences.

 $x \equiv 2 \pmod{3}$ $x \equiv 3 \pmod{5}$ $x \equiv 2 \pmod{7}$

Part C – Answer any One Question. $1 \times 10 = 10$ Marks

- 13. Given integers a and b, not both of which are zero, show that there exist integers x and y such that gcd(a, b) = ax + by. Hence, show that the set $T = \{ax + by : x, y \text{ are integers}\}$ is the set of all multiples of gcd(a, b).
- 14. Given an integer b > 1, show that any positive integer N can uniquely be written in terms of the powers of b as $N = a_m b^m + a_{m-1} b^{m-1} + a_{m-2} b^{m-2} + \dots + a_2 b^2 + a_1 b + a_2 0$.
