# Question Answering with Knowledge Base (KBQA)

Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base (ACL2015)

q = "Who first voiced Meg on Family Guy?"



- (1) EntityLinkingScore(FamilyGuy, "Family Guy") = 0.9
- (2) PatChain("who first voiced meg on <e>", cast-actor) = 0.7
- (3) QuesEP(q, "family guy cast-actor") = 0.6
- (4) ClueWeb("who first voiced meg on <e>", cast-actor) = 0.2
- (5) ConstraintEntityWord("Meg Griffin", q) = 0.5
- (6) ConstraintEntityInQ("Meg Griffin", q) = 1
- (7) AggregationKeyword(argmin, q) = 1
- (8) NumNodes(s) = 5
- (9) NumAns(s) = 1

| Method   | Prec. | Rec. | F <sub>1</sub> |
|----------|-------|------|----------------|
| PatChain | 48.8  | 59.3 | 49.6           |
| +QuesEP  | 50.7  | 60.6 | 50.9           |
| +ClueWeb | 51.3  | 62.6 | 51.8           |

### 方法:

1 Entity Liking:

S-MART: Novel tree-based structured learning algorithms applied to tweet entity linking. (ACL 2015), 文章证明linking效果对最终效果有明显影响。

- 2、PatChain: pattern以及关系链得分; QuesEP: question以及整体推断的匹配得分; ClueWeb: 使用ClueWeb训练每个sentence两个entity以及可能存在的关系。
- 3、使用DSSM进行匹配。
- 4、使用lambda-rank对所有可能的推断进行排序。

#### 数据集:

WEBQUESTIONS dataset

评测脚本:

from http://www-nlp.stanford.edu/software/sempre/.

Question Answering on Freebase via Relation Extraction and Textual Evidence https://github.com/syxu828/QuestionAnsweringOverFB.

方法:

1、Entity Liking:

数据集: WEBQUESTIONS dataset

# An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global Knowledge (ACL2017)

方法:

本文提出了Neural Cross-Attention Model旨在针对所有的答案进行排序。每一个候选答案包含这样几个部分:实体、关系、类型、上下文(Answer context is the 1-hop entities and predicates which connect to the answer entity along the answer path.)

Cross-Attention Model分为两个部分:

- 1、Answer-towards-question(A-Q) attention: Each answer aspect should focus on different words of the same question. 计算每个候选答案的不同部分与问题的得分时候加权query token
- 2、Question-towards-answer(Q-A) attention: 在整合query 和 candidate answer时候对不同的部分得分加权。

数据集: WEBQUESTIONS dataset



Figure 2: The architecture of the proposed crossattention based neural network. Note that only one aspect(in orange color) is depicted for clarity. The other three aspects follow the same way.

| Methods              | Avg $F_1$ |
|----------------------|-----------|
| Bordes et al., 2014b | 29.7      |
| Bordes et al., 2014a | 39.2      |
| Yang et al., 2014    | 41.3      |
| Dong et al., 2015    | 40.8      |
| Bordes et al., 2015  | 42.2      |
| our approach         | 42.9      |

Table 1: The evaluation results on WebQuestions.

## Improved Neural Relation Detection for Knowledge Base Question Answering (ACL 2017)

### 方法:

- 1、本篇文章首先利用关系对实体进行reranking。
- 2、其次,采用如下图所示的方法匹配相应关系,在这里topic entity只保留一种。
- 3、最后结合上述两个得分得到最后的结果。

感觉超参数较多,没有之前ranking 的方法更好;创新的地方在于relation的表示,以及entity的 ranking等。



数据集: SimpleQuestions and WebQSP目的是更加偏重于检测relation extraction 的效果。

|                                                         |                      | Accuracy        |        |  |
|---------------------------------------------------------|----------------------|-----------------|--------|--|
| Model                                                   | Relation Input Views | SimpleQuestions | WebQSP |  |
| AMPCNN (Yin et al., 2016)                               | words                | 91.3            | -      |  |
| BiCNN (Yih et al., 2015)                                | char-3-gram          | 90.0            | 77.74  |  |
| BiLSTM w/ words                                         | words                | 91.2            | 79.32  |  |
| BiLSTM w/ relation names                                | rel₋names            | 88.9            | 78.96  |  |
| Hier-Res-BiLSTM (HR-BiLSTM)                             | words + rel₋names    | 93.3            | 82.53  |  |
| w/o rel_name                                            | words                | 91.3            | 81.69  |  |
| w/o rel_words                                           | rel_names            | 88.8            | 79.68  |  |
| w/o residual learning (weighted sum on two layers)      | words + rel_names    | 92.5            | 80.65  |  |
| replacing residual with attention (Parikh et al., 2016) | words + rel_names    | 92.6            | 81.38  |  |
| single-layer BiLSTM question encoder                    | words + rel_names    | 92.8            | 78.41  |  |
| replacing BiLSTM with CNN (HR-CNN)                      | words + rel_names    | 92.9            | 79.08  |  |

# Reading Comprehension Style Question Answering

# MACHINE COMPREHENSION USING MATCH-LSTM AND ANSWER POINTER (ICLR 2017) https://github.com/shuohangwang/SeqMatchSeq

## 方法:

- 1、使用Match-LSTM(利用attention将query中words加权),将问题作为前提,将文章作为假设。 最终得到文章中所有词语的隐状态。
- 2、预测: 1) 选择单词的位置序列(sequence model)2)开始结束的位置(boundary model)数据集: SQuAD



Figure 1: An overview of our two models. Both models consist of an LSTM preprocessing layer, a match-LSTM layer and an Answer Pointer layer. For each match-LSTM in a particular direction,  $\bar{h}_i^q$ , which is defined as  $\mathbf{H}^q \alpha_i^\intercal$ , is computed using the  $\alpha$  in the corresponding direction, as described in either Eqn. (2) or Eqn. (5).

|                                                | l   | $ \theta $ | Exact Match |      | F1   |      |
|------------------------------------------------|-----|------------|-------------|------|------|------|
|                                                |     |            | Dev         | Test | Dev  | Test |
| Random Guess                                   | -   | 0          | 1.1         | 1.3  | 4.1  | 4.3  |
| Logistic Regression                            | -   | -          | 40.0        | 40.4 | 51.0 | 51.0 |
| DCR                                            | -   | -          | 62.5        | 62.5 | 71.2 | 71.0 |
| Match-LSTM with Ans-Ptr (Sequence)             | 150 | 882K       | 54.4        | -    | 68.2 | -    |
| Match-LSTM with Ans-Ptr (Boundary)             | 150 | 882K       | 61.1        | -    | 71.2 | -    |
| Match-LSTM with Ans-Ptr (Boundary+Search)      | 150 | 882K       | 63.0        | -    | 72.7 | -    |
| Match-LSTM with Ans-Ptr (Boundary+Search)      | 300 | 3.2M       | 63.1        | -    | 72.7 | -    |
| Match-LSTM with Ans-Ptr (Boundary+Search+b)    | 150 | 1.1M       | 63.4        | -    | 73.0 | -    |
| Match-LSTM with Bi-Ans-Ptr (Boundary+Search+b) | 150 | 1.4M       | 64.1        | 64.7 | 73.9 | 73.7 |
| Match-LSTM with Ans-Ptr (Boundary+Search+en)   | 150 | 882K       | 67.6        | 67.9 | 76.8 | 77.0 |

Table 2: Experiment Results. Here "Search" refers to globally searching the spans with no more than 15 tokens, "b" refers to using bi-directional pre-processing LSTM, and "en" refers to ensemble method.

# BI-DIRECTIONAL ATTENTION FLOW FOR MACHINE COMPREHENSION (ICLR 2017) BIDAF

allenai.github.io/bi-att-flow/



Figure 1: BiDirectional Attention Flow Model (best viewed in color)

### 方法:

- 1、Character Embedding Layer
- 2. Word Embedding Layer
- 3、Contextual Embedding Layer: 使用LSTM encode
- 4、Attention Flow Layer:不同于match-LSTM这里包含两种attention。
  - 1) Context-to-guery Attention.类似于match-LSTM
  - 2) Query-to-context Attention.对similar matrix按query维度取max后过softmax
- 5、Modeling Layer:使用LSTM encode上述信息。

|                                           | Single | Model | Ense | mble |                        |      |         |
|-------------------------------------------|--------|-------|------|------|------------------------|------|---------|
|                                           | EM     | F1    | EM   | F1   |                        | EM   | F1      |
| Logistic Regression Baseline <sup>a</sup> | 40.4   | 51.0  | -    | -    | No char embedding      | 65.0 | 75.4    |
| Dynamic Chunk Reader <sup>b</sup>         | 62.5   | 71.0  | -    | -    | No word embedding      | 55.5 | 66.8    |
| Fine-Grained Gating <sup>c</sup>          | 62.5   | 73.3  | -    | -    | No C2Q attention       | 57.2 | 67.7    |
| Match-LSTM <sup>d</sup>                   | 64.7   | 73.7  | 67.9 | 77.0 | No Q2C attention       | 63.6 | 73.7    |
| Multi-Perspective Matching <sup>e</sup>   | 65.5   | 75.1  | 68.2 | 77.2 | Dynamic attention      | 63.5 | 73.6    |
| Dynamic Coattention Networks <sup>f</sup> | 66.2   | 75.9  | 71.6 | 80.4 | BIDAF (single)         | 67.7 | 77.3    |
| $R	ext{-}Net^g$                           | 68.4   | 77.5  | 72.1 | 79.7 | BIDAF (ensemble)       | 72.6 | 80.7    |
| BIDAF (Ours)                              | 68.0   | 77.3  | 73.3 | 81.1 | (b) Ablations on the S | QuAD | dev set |

(a) Results on the SQuAD test set

Table 1: (1a) The performance of our model BIDAF and competing approaches by Rajpurkar et al.  $(2016)^a$ , Yu et al.  $(2016)^b$ , Yang et al.  $(2016)^c$ , Wang & Jiang  $(2016)^d$ , IBM Watson<sup>e</sup> (unpublished), Xiong et al.  $(2016b)^f$ , and Microsoft Research Asia<sup>g</sup> (unpublished) on the SQuAD test set. Results shown here reflect the SQuAD leaderboard (stanford-qa.com) as of 6 Dec 2016, 12pm PST. (1b) The performance of our model and its ablations on the SQuAD dev set. Ablation results are presented only for single runs.

6、Output Layer:通过Modeling Layer (M)首先预测出起始位置,然后放入Bi-LSTM中预测结束位置。

数据集: SQuAD

# Gated Self-Matching Networks for Reading Comprehension and Question Answering (ACL 2017)

## 方法:

- 1、相比较之前两种方法加入门控机制,类似match-LSTM。
- 2、Gated Attention-based Recurrent Networks: 在match-LSTM输入前加入sigmoid决定passage 中各部分的重要程度。
- 3、Self-Matching Attention:根据上下文推断答案,因此这里就是passage中一个词语与context vector关系。

数据集: SQuAD

|                                                   | Dev Set     | Test Set    |
|---------------------------------------------------|-------------|-------------|
| Single model                                      | EM / F1     | EM / F1     |
| LR Baseline (Rajpurkar et al., 2016)              | 40.0 / 51.0 | 40.4 / 51.0 |
| Dynamic Chunk Reader (Yu et al., 2016)            | 62.5 / 71.2 | 62.5 / 71.0 |
| Match-LSTM with Ans-Ptr (Wang and Jiang, 2016b)   | 64.1 / 73.9 | 64.7 / 73.7 |
| Dynamic Coattention Networks (Xiong et al., 2016) | 65.4 / 75.6 | 66.2 / 75.9 |
| RaSoR (Lee et al., 2016)                          | 66.4 / 74.9 | -/-         |
| BiDAF (Seo et al., 2016)                          | 68.0 / 77.3 | 68.0 / 77.3 |
| jNet (Zhang et al., 2017)                         | -/-         | 68.7 / 77.4 |
| Multi-Perspective Matching (Wang et al., 2016)    | -/-         | 68.9 / 77.8 |
| FastQA (Weissenborn et al., 2017)                 | -/-         | 68.4 / 77.1 |
| FastQAExt (Weissenborn et al., 2017)              | -/-         | 70.8 / 78.9 |
| R-NET                                             | 71.1 / 79.5 | 71.3 / 79.7 |
| Ensemble model                                    |             |             |
| Fine-Grained Gating (Yang et al., 2016)           | 62.4 / 73.4 | 62.5 / 73.3 |
| Match-LSTM with Ans-Ptr (Wang and Jiang, 2016b)   | 67.6 / 76.8 | 67.9 / 77.0 |
| RaSoR (Lee et al., 2016)                          | 68.2 / 76.7 | -/-         |
| Dynamic Coattention Networks (Xiong et al., 2016) | 70.3 / 79.4 | 71.6 / 80.4 |
| BiDAF (Seo et al., 2016)                          | 73.3 / 81.1 | 73.3 / 81.1 |
| Multi-Perspective Matching (Wang et al., 2016)    | -/-         | 73.8 / 81.3 |
| R-NET                                             | 75.6 / 82.8 | 75.9 / 82.9 |
| Human Performance (Rajpurkar et al., 2016)        | 80.3 / 90.5 | 77.0 / 86.8 |

### Attention-over-Attention Neural Networks for Reading Comprehension (ACL 2017)

方法:使用attention over attention的方法进行加权,但是稍有所不同。文章利用该种方法对baseline产生的结果进行重排序,预测时候也是预测词语的概率之和。

数据集: CNN news datasets and CBTest NE/CN datasets.

Teaching machines to read and comprehend.

The goldilocks principle: Reading children's books with explicit memory representaions.



|                                                | CNN News |      | СВТе  | st NE | СВТе  | st CN |
|------------------------------------------------|----------|------|-------|-------|-------|-------|
|                                                | Valid    | Test | Valid | Test  | Valid | Test  |
| Deep LSTM Reader (Hermann et al., 2015)        | 55.0     | 57.0 | -     | -     | -     | -     |
| Attentive Reader (Hermann et al., 2015)        | 61.6     | 63.0 | -     | -     | -     | -     |
| Human (context+query) (Hill et al., 2015)      | -        | -    | -     | 81.6  | -     | 81.6  |
| MemNN (window + self-sup.) (Hill et al., 2015) | 63.4     | 66.8 | 70.4  | 66.6  | 64.2  | 63.0  |
| AS Reader (Kadlec et al., 2016)                | 68.6     | 69.5 | 73.8  | 68.6  | 68.8  | 63.4  |
| CAS Reader (Cui et al., 2016)                  | 68.2     | 70.0 | 74.2  | 69.2  | 68.2  | 65.7  |
| Stanford AR (Chen et al., 2016)                | 72.4     | 72.4 | -     | -     | -     | -     |
| GA Reader (Dhingra et al., 2016)               | 73.0     | 73.8 | 74.9  | 69.0  | 69.0  | 63.9  |
| Iterative Attention (Sordoni et al., 2016)     | 72.6     | 73.3 | 75.2  | 68.6  | 72.1  | 69.2  |
| EpiReader (Trischler et al., 2016)             | 73.4     | 74.0 | 75.3  | 69.7  | 71.5  | 67.4  |
| AoA Reader                                     | 73.1     | 74.4 | 77.8  | 72.0  | 72.2  | 69.4  |
| AoA Reader + Reranking                         | -        | -    | 79.6  | 74.0  | 75.7  | 73.1  |
| MemNN (Ensemble)                               | 66.2     | 69.4 | -     | -     | -     | -     |
| AS Reader (Ensemble)                           | 73.9     | 75.4 | 74.5  | 70.6  | 71.1  | 68.9  |
| GA Reader (Ensemble)                           | 76.4     | 77.4 | 75.5  | 71.9  | 72.1  | 69.4  |
| EpiReader (Ensemble)                           | -        | -    | 76.6  | 71.8  | 73.6  | 70.6  |
| Iterative Attention (Ensemble)                 | 74.5     | 75.7 | 76.9  | 72.0  | 74.1  | 71.0  |
| AoA Reader (Ensemble)                          | -        | -    | 78.9  | 74.5  | 74.7  | 70.8  |
| AoA Reader (Ensemble + Reranking)              | _        | _    | 80.3  | 75.6  | 77.0  | 74.1  |

# A Constituent-Centric Neural Architecture for Reading Comprehension (ACL 2017)

方法:

1、基于短语匹配,即短语句法树。

不同于现有的线形模型,加入句法信息,缺点难以复现,改进空间不大。

数据集: SQuAD



|                                                           | Exact Match (EM,%) | F1 (%) |
|-----------------------------------------------------------|--------------------|--------|
| Single model                                              |                    |        |
| Logistic Regression (Rajpurkar et al., 2016)              | 40.0               | 51.0   |
| Fine Grained Gating (Yang et al., 2016)                   | 60.0               | 71.3   |
| Dynamic Chunk Reader (Yu et al., 2016)                    | 62.5               | 71.2   |
| Match-LSTM with Answer Pointer (Wang and Jiang, 2016)     | 64.1               | 73.9   |
| Dynamic Coattentation Network (Xiong et al., 2016)        | 65.4               | 75.6   |
| Multi-Perspective Context Matching (Wang et al., 2016)    | 66.1               | 75.8   |
| Recurrent Span Representations (Lee et al., 2016)         | 66.4               | 74.9   |
| Bi-Directional Attention Flow (Seo et al., 2016)          | 68.0               | 77.3   |
| Ensemble                                                  |                    |        |
| Fine Grained Gating (Yang et al., 2016)                   | 62.4               | 73.4   |
| Match-LSTM with Answer Pointer (Wang and Jiang, 2016)     | 67.6               | 76.8   |
| Recurrent Span Representations (Lee et al., 2016)         | 68.2               | 76.7   |
| Multi-Perspective Context Matching (Wang et al., 2016)    | 69.4               | 78.6   |
| Dynamic Coattentation Network (Xiong et al., 2016)        | 70.3               | 79.4   |
| Bi-Directional Attention Flow (Seo et al., 2016)          | 73.3               | 81.1   |
| CCNN Ablation (single model)                              |                    |        |
| Replacing tree LSTM with chain LSTM                       | 63.5               | 73.9   |
| Replacing chain-of-trees LSTM with independent tree LSTMs | 64.8               | 75.2   |
| Removing the attention layer                              | 63.9               | 74.3   |
| Replacing tree-guided attention with flat attention       | 65.6               | 75.9   |
| CCNN (single model)                                       | 69.3               | 78.5   |
| CCNN (ensemble)                                           | 74.1               | 82.6   |

# Structural Embedding of Syntactic Trees for Machine Comprehension (2017 EMNLP)

相比较上面一篇结果稍差, 思想类似。



Two-Stage Synthesis Networks for Transfer Learning in Machine Comprehension (2017 EMNLP)

https://github.com/ davidgolub/QuestionGeneration

# WIKIREADING: A Novel Large-scale Language Understanding Task over Wikipedia (2016 ACL)

## Coarse-to-Fine Question Answering for Long Documents (2017 ACL)

方法:

动态选择所需要的句子,并尝试使用增强学习方法训练。



| Dataset     | Learning              | Accuracy |
|-------------|-----------------------|----------|
|             | First                 | 26.7     |
|             | BASE                  | 40.1     |
|             | ORACLE                | 43.9     |
| WIKIREADING | PIPELINE              | 36.8     |
| Long        | SOFTATTEND            | 38.3     |
|             | REINFORCE ( $K=1$ )   | 40.1     |
|             | REINFORCE ( $K=2$ )   | 42.2     |
|             | First                 | 44.0     |
|             | BASE                  | 46.7     |
|             | ORACLE                | 60.0     |
| Wiki        | PIPELINE              | 45.3     |
| SUGGEST     | SOFTATTEND            | 45.4     |
|             | REINFORCE ( $K=1$ )   | 45.4     |
|             | REINFORCE ( $K=2$ )   | 45.8     |
|             | FIRST                 | 71.0     |
|             | HEWLETT ET AL. (2016) | 71.8     |
|             | BASE                  | 75.6     |
|             | ORACLE                | 74.6     |
| WIKIREADING | SOFTATTEND            | 71.6     |
|             | PIPELINE              | 72.4     |
|             | REINFORCE ( $K=1$ )   | 73.0     |
|             | REINFORCE (K=2)       | 73.9     |

# **Generative Question Answering**

Neural Generative Question Answering (IJCAI 2016) https://github.com/jxfeb/Generative\_QA(数据) A: "He is 2.29m and visible from space."



部分

方法: 模型分

1、Interpreter: RNN encoder

2、Enquirer:文章提出了两种方案,实际上可以抽象成检索问题。

3、Answerer:这个地方做了一个分类器,用于判断是从vocabulary中选择,还是从KB中选择。

数据(问问爬下来的)

| Models  | Single | Multi | Mixed |
|---------|--------|-------|-------|
| CopyNet | 9.7    | 0.8   | 8.7   |
| GenQA   | 47.2   | 28.9  | 45.1  |
| COREQA  | 58.4   | 42.7  | 56.6  |

Table 4: The AE accuracies (%) on real world test data.

| Models  | Correctness | Fluency | Coherence |
|---------|-------------|---------|-----------|
| CopyNet | 0           | 13.3    | 3.3       |
| GenQA   | 26.7        | 33.3    | 20        |
| COREQA  | 46.7        | 50      | 60        |

Table 5: The ME results (%) on sampled mixed test data.

Generating Natural Answers by Incorporating Copying and Retrieving Mechanisms in Sequence-to-Sequence Learning (ACL 2017) http://www.nlpr.ia.ac.cn/cip/shizhuhe/publications.html

### 方法:

不同于传统的seq2seq model,在生成答案的时候,来源于vocabulary,source question以及 matched KB:

- 1、Predict-mode
- 2、Copy-mode



Figure 2: The overall diagram of COREQA.

#### 3、Retrieve-mode

#### **Query Revised**

Question Generation for Question Answering (2017 EMNLP)

Learning to Paraphrase for Question Answering (2017 EMNLP)

提出三种改写Question的方法,感觉和ASK THE RIGHT QUESTIONS-ACTIVE QUESTION REFORMULATION WITH REINFORCEMENT LEARNING没有本质区别。

数据集: WEBQUESTIONS, GRAPHQUESTIONS, WIKIQA



Figure 1: We use three different methods to generate candidate paraphrases for input q. The question and its paraphrases are fed into a neural model which scores how suitable they are. The scores are normalized and used to weight the results of the question answering model. The entire system is trained end-to-end using question-answer pairs as a supervision signal.

## Open-domain Question Answering

Reading Wikipedia to Answer Open-Domain Questions (2017 ACL)

EVIDENCE AGGREGATION FOR ANSWER RE-RANKING IN OPEN-DOMAIN QUESTION ANSWERING (2018 ICLR)

方法:

对检索出来的文章中候选答案进行重排序。

Leveraging Knowledge Bases in LSTMs for Improving Machine Reading (2017 ACL) 方法:

使用facts增强QA的效果。

R3: Reinforced Ranker-Reader for Open-Domain Question Answering (2018 AAAI) 方法:

使用增强学习来指导文章的排序。