AGENT-BASED MODEL TO SIMULATE PATIENT INFLOW IN AN ICU

MASTER THESIS OF

VIVEK & KEYVAN

A Decision Support System for Hospitals

MODELING ICU DYNAMICS

Close links between predictions for mortality and length of stay recorded in the literature

Utilize knowledge acquired in binary model for the predictive model in the ABM

MODELING ICU DYNAMICS

New agents are initialized

Step 2

Some patients enter the ICU if capacity is available

Step 3

Patients receive care from doctors and nurses

MODEL PROCESSES

Step 4

Prediction about patient's outcomes at the end of the day

New agents are initialized

Random draw of the number of incoming patients

Simulate each patient

 Draw age, medical condition, gender and vital signs based on empirical distributions

Some patients enter the ICU if capacity is available

Check the number of available beds

Add patients to the ICU until it is full

Patients receive care from doctors and nurses

Patients receive caretime units for doctors and ses

These units accumulate and are used in the prediction model

Prediction about patient's outcomes at the end of the day

Prediction of outcomes with 1 day time horizon

- Trained on daily snapshots of the MIMIC data
- Determines if the patient stays, dies or is discharged

Return to Step 1 on the next day

Prediction of outcomes with 1 day time horizon

- Trained on daily snapshots of the MIMIC data
- Determines if the patient stays, dies or is discharged

Key Features

DEATHRATE_CAT_1.0

DEATHRATE_CAT_2.0

mechvent

days_since_admission

Length of Stay Dynamics

Overall matches the data, other than days 6
to 7

MODEL DYNAMICS

Cumulative Nurse Caretime Dynamics

- Ordered patients by cumulative caretime
- Model works well for 80% of patients

MODEL DYNAMICS

Care Unit Allocation

 Model runs provide a suggestion for allocation of beds in the ICU

Make use of our Mortality prediction model

Introduce more complex interactions between caregivers and patients into our ABM

Incorporate other performance metrics like costs and longer-term medical outcomes

Additional useful information

Prediction of outcomes with 1 day time horizon

- Ran ABM with SVM and XGB
- Final choice: SVM

Length of Stay Dynames for Fatalities

SVM significantly outperformed XGB here

MODEL DYNAMICS

Service Level Dynamics

- All around 100% here due to parameters
- Can give the likelihood of meeting a desired level of service

Service Level Dynamics

Service Level Dynamics

