Measuring and Explaining Local Government Efficiency in Natural Resource Rich Countries:

The case of Chilean Municipalities

Javier Beltran¹ 01-11-2019

¹ E-Mail: jbeltran2006@gmail.com

Queensland University of Technology

Research Question:

What role does income inequality play in explaining differences in municipal efficiency?

What do we know about the Link between (Local Government) Efficiency and Income Inequality?

Trade-off between efficiency and equity:

- Pursuing equality can reduce efficiency (see Okun 1975; Browning & Johnson 1984; Andersen & Maibom 2016)
- But, equality could also be an important ingredient in promoting and sustaining growth (see Berg & Ostry 2011; kumhof, Rancière & Winant 2015)

Local Government Efficiency (LGE): The interest has been on:

Measuring LGE

- Parametric (SFA) vs nonparametric (DEA) measurement techniques
- Provision of single services vs overall efficiency
- Selection of inputs and outputs (outcomes)
- Input oriented vs output oriented approach

Explaining differences in LGE

- Discretionary factors (associated with the measurement process)
- Non-discretionary (contextual) factors
 - Economic Financial
 - Social Demographic -Geographic
 - Political Institutional

Hypotheses

About the level of inefficiency of Chilean municipalities

Chilean municipalities show an average level of inefficiency of 30%.

See Pacheco, Sanchez & Villena, 2013

About the relationship between LGE and income inequality

 H_0 : Higher income inequality could negatively affect municipal efficiency.

See Tandon ,2005; Jottier, Ashworth, & Heyndels, 2012; Ortega, Sanjuán, & Casquero, 2017

 H_1 : Income inequality does not have a significant association with municipal efficiency

Data & Methodology

Data

• Sample of 324 municipalities

Inputs - Output Data used to measure LGE

- National System of Municipal Information, SINIM (2006-2017)
- In total 3888 observations

County-Level Data on Contextual Factors

- National Socioeconomic Characterization Survey, CASEN (2006 2009 -2011 - 2013 - 2015 - 2017)
- SINIM
- "Servicio de Impuestos Internos", SII
- National Institute of statistics, INE
- in total 1944 observations

Methodology: Two Stage Approach

First Stage: DEA analysis

- Input oriented assuming variable returns to scale
- Result: A vector of **efficiency scores (ES)** for each municipality

Second Stage: Regression Analysis

- **Dependent variable**: DEA efficiency scores
- Independent variables:
 - Measure of Income inequality + Remaining contextual factors
 - County (zone) specific + time effects
- Estimation method: Censored regression + Instrumental Variable (IV)
- Proposed Instrument:

$$pss_firms = \frac{\text{Number of firms in primary sector}}{\text{Total number of firms}}$$

Inputs and Outputs used in DEA: Summary Statistics

- All monetary data is in Chilean pesos of 2017
- All indicators in per capita terms

Statistic	Mean	St. Dev.	Min	Max
X1:Operational Expenditure	108.19	106.66	0.00	1,542.19
X2:Personnel Expenditure	47.94	40.67	7.66	629.25
X3:Education Expenditure	202.08	131.86	0.00	3,267.76
X4:Health Expenditure	68.36	46.41	0.00	415.80
X5:Municipal Facilities	0.001	0.001	0.00	0.02
Y1:Own Permanent Revenues	71.81	112.91	4	1,618
Y2:Enrollment Public Schools	0.61	0.26	0.03	2.08
Y3:Medical Consultations	1.83	1.16	0.00	27.88
Y4:Community Organizations	0.01	0.01	0.00	0.16

Correlation Matrix Numeric Contextual Factors

Analysis & Results

First Stage:

DEA

Chile: Geographic and Regional Administrative Division

Results: Returns to Scale by Zone

RTS	North	Centre_North	Centre_South	South
CRS	25.00	33.33	17.1	13.77
DRS	47.15	21.97	42.6	41.67
IRS	27.85	44.70	40.3	44.56

Efficiency Scores by Zone and Region

Unit	n_counties	mean	median	sd	\min	max
North	41	0.83	0.86	0.19	0.26	1
XV	3	0.88	1.00	0.22	0.27	1
I	6	0.73	0.80	0.28	0.26	1
II	8	0.98	1.00	0.07	0.70	1
III	9	0.79	0.79	0.14	0.53	1
IV	15	0.80	0.81	0.16	0.49	1
Centre_North	121	0.88	0.94	0.14	0.32	1
V	36	0.82	0.84	0.15	0.39	1
XIII	52	0.95	1.00	0.09	0.47	1
VI	33	0.81	0.82	0.15	0.32	1
Centre_South	116	0.82	0.83	0.15	0.34	1
VII	30	0.81	0.82	0.15	0.40	1
VIII	54	0.84	0.88	0.15	0.34	1
IX	32	0.77	0.77	0.16	0.40	1
South	46	0.77	0.77	0.18	0.31	1
XIV	12	0.74	0.74	0.13	0.46	1
X	25	0.74	0.75	0.19	0.31	1
XI	6	0.89	0.98	0.15	0.44	1
XII	3	0.85	0.91	0.17	0.52	1
Country	324	0.83	0.86	0.16	0.26	1

Evolution Efficiency Scores by Zone (Full Period)

Second Stage:

Regression Analysis

Model Comparisons - Censored Cross-sectional regressions

	Dependent variable: Efficiency Score (VRS)							
	2006	2009	2011	2013	2015	2017		
gini	-0.228	-0.447**	-0.393*	-0.242	-0.189	-0.371*		
log(income)	0.119*	0.249***	0.208***	0.164**	0.221***	0.257***		
agroland	-0.002***	-0.003***	-0.003***	-0.001	-0.002***	-0.001		
log(density)	0.019**	0.032***	0.021***	0.034***	0.017**	0.005		
own	-0.002*	-0.002	-0.003**	-0.004***	0.002*	-0.002		
education	-0.018	-0.038*	-0.046**	-0.026	-0.009	-0.020		
IDD	-0.005**	-0.006***	-0.004*	-0.001	-0.004*	-0.006***		
professional	0.001	-0.0001	-0.0002	0.003**	0.002	0.0003		
mcf	0.002*	0.002**	0.002**	0.0003	0.0004	0.0004		
LEFT mayor	-0.016	0.012	0.008	0.003	0.020	-0.022		
RIGHT mayor	0.007	-0.002	0.032	0.013	0.038	0.002		
reg_cap	-0.039	-0.061	-0.043	-0.106*	0.0004	-0.012		
Centre South	0.068**	0.126***	0.050	0.028	0.054*	0.040		
North	-0.019	0.099**	0.056	0.135***	0.006	0.034		
South	-0.051	0.044	0.015	-0.025	-0.019	-0.065*		
Observations	324	324	324	324	324	324		
Log Likelihood	-14.778	12.330	-15.924	-24.773	-1.200	6.937		
Akaike Inf. Crit.	63.555	9.339	65.848	83.546	36.400	20.127		

Note:

*p<0.1; **p<0.05; ***p<0.01

Model Comparisons - Panel Data

	Dependent variable: Efficiency Score (VRS)							
	censored $regression$				$instrumental \ variable$			
	Pooled	RE	Pooled RE		OLS IV	Tobit IV		
	(1)	(2)	(3)	(4)	(5)	(6)		
gini	-0.033 (0.082)	-0.049 (0.068)	-0.282^{***} (0.081)	-0.189^{***} (0.073)	-1.434*** (0.432)	-1.196^* (0.538)		
$\log(\text{income})$			0.184*** (0.026)	0.106*** (0.025)	0.258*** (0.054)	0.292*** (0.069)		
agroland			-0.002*** (0.0003)	-0.002^{***} (0.0004)	-0.002^{***} (0.0003)	-0.002*** (0.0003)		
$\log(density)$			0.022*** (0.003)	0.020*** (0.005)	0.012*** (0.003)	0.021*** (0.003)		
own			-0.002^{***} (0.001)	-0.001** (0.001)	-0.001*** (0.0004)	-0.001*** (0.0005)		
education			-0.022^{***} (0.008)	-0.005 (0.008)	-0.034*** (0.008)	-0.033** (0.010)		
IDD			-0.004^{***} (0.001)	-0.005*** (0.001)	-0.002** (0.001)	-0.003** (0.001)		
professional			0.001* (0.0005)	-0.00004 (0.0005)	0.0004 (0.0004)	0.0008 (0.0005)		
mcf			0.001*** (0.0003)	0.002*** (0.0004)	0.001*** (0.0003)	0.001** (0.0004)		

Conclusions & Future Research

Conclusions

DEA

- The "production function" of municipalities can be described by one showing variable returns to scale.
- About 3/4 of municipalities shows some degree of ineficiency.
- The average level of inefficiency is 17%, with higher levels in the Centre area of the country and lower levels in the South.
- Efficiency shows a ciclical behaviour and, on average, has remained stable in the period 2006 2017.

Regression analysis

This paper offers empirical evidence of a negative relationship between inequality and efficiency, that is, a reduction of income inequality (or an increase in equality) could have positive effects on economic efficiency, at least at the level of local governments.

Limitations and Future Research

Limitations

- Results sensitive to the selection and number of inputs and outputs (External validity)
- Associated with observational data and causal inference

Future research

- Program evaluation in Chilean municipalities (for instance, assigning municipalities to "treatment" using as running variable county population or the level of income percapita)
- Given the current situation of the country: What about the issue of reverse causality?

Thanks for Listening!

Appendix 1: Inputs and Outputs for DEA

Appendix 2: Contextual factors

