

SEQUENCE LISTING

<110> Ho, Chien
Tsai, Ching-Hsuan
Fang, Tsuei-Yun
Shen, Tong-Jian

<120> Low Oxygen Affinity Mutant Hemoglobins

<130> 2000-02

<140> US 09/598,218
<141> 2000-06-21

<160> 7

<170> PatentIn Ver. 2.1

<210> 1
<211> 28
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer to
introduce betaN108Q mutation into plasmid pHE2

<400> 1

cgtctgctgg gtcaggtact agtttgcg

28

<210> 2
<211> 30
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer to
introduce mutation alphaD94A into plasmid pHE2

<400> 2

ctgcgtgttg ctccggtaa cttcaaactg

30

<210> 3
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer to
introduce betaL105W mutation into plasmid pHE2

<400> 3
ggaaaacttc cgatggctgg gtaacgtac

29

<210> 4
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer to
introduce betaN108Q mutation into plasmid pHE7

<400> 4
acagaccagt acttgtccca ggagcct

27

<210> 5
<211> 1140
<212> DNA
<213> Human

<400> 5
aatgagctg ttgacaatta atcatcggt cgtataatgt gtggaaattgt gagcggataa 60
caatttacaca caggaaacag aattcgagct cggtagccgg gctacatgga gattaactca 120
atctagaggg tattaataat gtatcgatca aataaggagg aataacatata ggtgcgtgtct 180
cctggccgaca agaccaacgt caaggccgccc tgggttaagg tcggcgcgca cgctggcgag 240
tatggtgccgg aggccctggta gaggatgttc ctgtcccttcc ccaccaccaa gacctacttc 300
ccgcacttcg atctgagcca cggctctgcc caggttaagg gccacggcaa gaaggtggcc 360
gacgcgctga ccaacgcccgt ggcgcacgtg gacgacatgc ccaacgcgct gtccgcctg 420
agcgcacccgtc acgcgcaccaa gcttcgggtg gacccgtca acttcaagct cctaagccac 480
tgcctgtgg tgaccctggc cgccccaccc cccggcggagt tcacccctgc ggtgcacgcc 540
tccctggaca agttcctggc ttctgtgagc accgtgctga cctccaaata ccgttaaact 600
agagggtatt aataatgtat cgcttaataa aggaggaata acatatggtg cacctgactc 660
ctgaggagaa gtctgcccgtt actgcctgt gggcaaggt gacgatggat gaagttggtg 720
gtgaggccct gggcaggctg ctgggtggat acccttggac ccagagggtt tttgagtcct 780
ttggggatct gtccactctt gatgctgtta tggcaaccc taaggtgaag gctcatggca 840
agaaagtgtt cgggtccctt agtgatggcc tggctcacct ggacaaccc aagggcacct 900
ttgcccacact gagtgagctg cactgtgaca agctgcacgt ggatcctgag aacctcaggc 960
tcctgggaca agtactggtc tgtgtgtgg cccatcaactt tggcaaaagaa ttccccccac 1020
cagtgcaggc tgccatatcag aaagtgggtgg ctgggtgtggc taatgcctg gcccacaagt 1080
atcactaagc atgcatctgt tttggcgat gagagaagat ttgcgcctg atacagatta 1140

<210> 6
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer to introduce betaL105W mutation into plasmid pHE7

<400> 6
cctgagaact tcaggtggct aggcaacgtg ctggtc 36

<210> 7
<211> 1140
<212> DNA
<213> Human

<400> 7
aat gagctg ttgacaatta atcatcggt cgataatgt gtggattgt gagcggataa 60
caattt caca caggaa acag aattcg agct cggtaaccgg gctacatgg aattaactca 120
atcttagagg tattaataat gtatcgctta aataaggagg aataacatat ggtgctgtct 180
cctgccgaca agaccaacgt caaggccccc tgggttaagg tcggcgccga cgctggcgag 240
tatggtgccgg aggccttgg gaggatgtt cttgtcccttcc ccaccaccaa gacctactt 300
ccgcacttcg atctgagcca cggctctgccc caggtaagg gccacggcaa gaagggtggcc 360
gacgcgtga ccaacgcccgt ggccgcacgtg gacgacatgc ccaacgcgt gtccgcctg 420
acgcacatgc acgcgcacaa gcttcgggtg gacccggta acttcaagct cctaagccac 480
tgcctgtgg tgacccttggc cggccacccccc cccggccaggt tcacccctgc ggtgcacgccc 540
tccctggaca agttcttggc ttctgtgagc accgtgctga cctccaaata ccgttaaact 600
agagggtatt aataatgtat cgcttaaata aggaggaata acatatggtg cacctgactc 660
ctgaggagaa gtctgcgtt actgcctgt gggcaaggt gacgtggat gaagttggtg 720
gtgaggccct gggcaggctg ctgggtgtt acccttggac ccagaggttc tttgagtccct 780
ttggggatct gtccactcct gatgctgtt tggcaaccc taaggtgaag gctcatggca 840
agaaaagtgtc cgggcctt agtgtatggcc tggctcacct ggacaaccc aagggcacct 900
ttgccacact gagtgagctg cactgtgaca agctgcacgt ggatcctgag aacttcaggt 960
ggcttaggcaa cgtgctggc tgggtgttgg cccatcactt tggcaaaagaa ttcacccac 1020
cagtgcaggc tgcctatcag aaagtggtgg ctgggtgtgg taatgcctg gcccacaagt 1080
atcactaagc atgcatctgt tttggcgat gagagaagat tttcagccctg atacagatta 1140