Spark におけるディスクを用いた RDD キャッシングの高速化と効果的な利用に関する検討

張 凱輝 +, 谷村 勇輔 + +, 中田 秀基 + +, 小川 宏高 + (+ 筑波大, + 産総研)

背景と目的

- Apache Spark (以下Spark)
 - オープンソースの並列データ処理フレームワーク
 - 中間データをメモリに保持
 - 機械学習やデータマイニングなどの反復計算が高効率
- ディスクと合わせて保持することで、より大量なデー 夕を処理できるが、性能が低下する可能性がある
- 中間データをメモリとディスクを併用する場合とディ スクのみを利用する場合の性能評価

Spark と RDD(Resilient Distributed Datasets)

- Spark は DriverNode と複数 の WorkerNode からなる
- RDD は読み取り専用の分散 データ構造、内部はパーティ ションに分割され、複数の ・ ワーカノードに<mark>分散配置</mark>、 データ処理の単位として分散 並列実行が可能
- ストレージレベルを指定する ことで、RDD はメモリやディ スクに保存可能

*RDDキャッシングの内部アルゴリズム (STORAGE LEVEL: MEMORY_AND_DISK)

評価実験

- 1. メモリとディスクの併用による性能 評価と改善後の性能評価
- 2. ストレージデバイスによる性能評価

• 調查方法

- 1. Spark の機械学習ライブラリ (Mllib) に含まれたベンチマーク (DenseKMeans) と独自のベンチ マーク (RDDTest) を実行
- 2. ストレージレベル、ストレージデバ イス、RDDのサイズ、スレッド数、 などを変更し、性能を測定

・実験環境

CPU	Intel Xeon CPU E5-2620v3 2.40GHz, 6 cores x2
Memory	128 GB
Network	10 Gbps (for HDFS connection)
NVMe-SSD	Intel SSD DC P3700
SSD	OCZ Vertex3 (240GB, SATA6G I/F)
HDD	Hitachi Travelstar 7K320 (SATA3G I/F)
OS	Ubuntu 14.04 (Kernel v.3.13)
File System	Ext4

- Spark v2.1.0 を用いローカル モードで各ベンチマークを実行
- DenseKMeansの入力データは HiBench (6.0) 用いて生成、 −タサイズ:4015 MB

実験結果(1)

- メモリとディスクの併用による影 響 (DenseKMeans)
- メモリが 512MB、1GB、2GB の場 合の実行時間が DISK_ONLY より
- ガベージコレクションの頻発とブ ロックの繰り返しドロップが原因

ドロップされたブロック物とサイブ

トロックされたクロック妖とサイス					
	#Blocks	Size (MB)			
MEMORY_AND_DISK_512MB	600	2,577			
MEMORY_AND_DISK_1GB	746	26,793			
MEMORY_AND_DISK_2GB	715	20,936			
OFF HEAP 512MB	305	1,332			

実験結果(2)

ストレージデバイスによる違い (RDDTest)

ストレージレベル: DISK ONLY、Driverメモリ量: 64GB

OS のバッファキャッシュにより、ディスクの性能はボトルネックになりにくい HDD ではスレッド数が12、RDD サイズが2000MB でI/O 性能が低下

メモリとディスクを併用する場 合のドロップを削減

- 提案手法:一回ディスクヘドロッフ したブロックをメモリに戻させない。
- ドロップの発生回数とドロップされ、 たフロックの合計サイスか失幅削減
- 再ドロップを抑制することで性能が 向上することか確認

ドロップされたブロック数とサイズ

	Original		Modified					
	#Blocks	Size(MB)	#Blocks	Size(MB)				
MEMORY_AND_DISK_512MB	600	2,577	133	610				
MEMORY_AND_DISK_1GB	746	26,793	33	486				
MEMORY AND DISK 2GB	715	20,936	58	473				

まとめ

- ・再ドロップの繰り返しは性能に影響を与える
- 再ドロップを抑制する修正を施すことで、その問題が解決
- ディスクの性能はボトルネックになりにくいが、RDD サイズおよびスレッド数を増加により、ディスクの性能が重要になる

今後の課題

- ・シリアライズなど Spark 内部の仕組みの改善が必要
- GCアルゴリズムの選択や調整により、今回提示した指針は変 わるのか変わらないのかについて評価
- この成果の一部は、国立研究開発法人新エネルギー・産業技術総合開発機構 (NEDO)の委託業務の結果得られたものです。
- 本研究はJSPS科研費 JP16K00116の助成を受けたものです。