S	tarted on	Saturday, 24 September 2022, 4:16 PM
	State	Finished
Com	pleted on	Saturday, 24 September 2022, 4:17 PM
Ti	me taken	1 min 19 secs
	Marks	0.00/25.00
	Grade	0.00 out of 10.00 (0 %)
_		
Question 1		
Not answere	ed	
Marked out	of 1.00	
Find the	"best" big-	oh notation to describe the complexity of the algorithm.
	_	prints all bit strings of length <i>n</i> .
7 (17 (1801	Territ error	States an ole serings of length m
_ a.	O(2 ⁿ)	
○ b.	O(n!)	
○ c.	None of th	ese
_ d.	O(n ²)	
_ e.	O(n ⁿ)	

The correct answer is: $O(2^n)$

Question 2
Not answered
Marked out of 1.00

Given the Euclidean algorithm.

ALGORITHM 1 The Euclidean Algorithm.

procedure gcd(a, b): positive integers) x := a y := bwhile $y \neq 0$ $r := x \mod y$ x := y y := rreturn $x\{gcd(a, b) \text{ is } x\}$

Use the Euclidean algorithm to find gcd(-27, 12).

How many divisions are required?

- o a. 4
- b. None of these
- oc. 5
- od. 2
- e. 3

Your answer is incorrect.

The correct answer is: 3

Question 3		
Not answered		
Marked out of 1.00		

Encrypt the message NEED HELP using the function $f(p) = (p + 7) \mod 26$

- a. None of these
- b. UKKL OLSW
- c. ULKK OLSW
- d. ULLK OLSV
- e. ULLK OLSW

Your answer is incorrect.

The correct answer is: ULLK OLSW

Given the Euclidean algorithm. ALGORITHM 1 The Euclidean Algorithm. **procedure** gcd(a, b): positive integers) x := ay := bwhile $y \neq 0$ $r := x \bmod y$ x := yy := r**return** $x\{\gcd(a,b) \text{ is } x\}$ Use the Euclidean algorithm to find gcd(-28, 8). How many divisions are required? a. None of these o b. 4 oc. 5 od. 3 e. 2

Your answer is incorrect.

The correct answer is:

Question 5
Not answered
Marked out of 1.00
Encrypt the message BUY using the function f(p) = (p + 14) mod 26
○ a. PIM

ob. PJN

oc. None of these

d. PHM

e. PIN

Your answer is incorrect.

The correct answer is: PIM

Not answered

Marked out of 1.00

Determine whether the integers in the set {21, 34, 55} are pairwise relatively prime.

(That is, we need each pair of (21, 34), (34, 55), (21, 55) to be relatively prime)

- \bigcirc a. No, because gcd(34, 55) \neq 1
- \bigcirc b. No, because gcd(21, 55) \neq 1
- \bigcirc C. No, because gcd(21, 34) \neq 1
- d. Yes

Your answer is incorrect.

The correct answer is:

Yes

Not answered

Marked out of 1.00

Give the best big-oh estimate for the function

$$f(n) = 1 + 2 + 3 + ... + n$$

- a. None of these
- \bigcirc b. $O(n^3)$
- \bigcirc c. $O(n^4)$
- \bigcirc d. $O(n^2)$
- e. O(n)

Your answer is incorrect.

$$1 + 2 + 3 + ... + n = n(n + 1)/2 = O(n^2)$$

The correct answer is: $O(n^2)$

Question 8
Not answered
Marked out of 1.00
A message has been encrypted to be LMV using the encryption function $f(p) = (p + 8) \mod 26$. Decrypt the message.
o a. END
○ b. DEN
○ c. None of these
○ d. DEM
e. DIE

The correct answer is: DEN

Question 9
Not answered
Marked out of 1.00
Find the sum
(112) ₃
+
$(210)_3$
Express your answers as a base 3 expansion.
○ a. (322) ₃
○ b. (1022) ₃
c. None of these
od. (122) ₃
○ e. (2022) ₃

The correct answer is: $(1022)_3$

The correct answer is: (ii) only

Not answered

Marked out of 1.00

A sequence of pseudorandom numbers is generated using the pure multiplicative generator $x_{n+1} = 3x_n \mod 11$ with seed x_0 Given $x_2 = 7$, find x_1 and x_3 .

- a. None of these
- o b. 10, 2
- o. 6, 10
- d. 2, 6
- e. 7, 10

Your answer is incorrect.

The correct answer is:

6, 10

Question 12
Not answered
Marked out of 1.00
Decide whether each of these integers is congruent to -15 modulo 9.
a) 15
b) -39
○ a. Yes, No
○ b. Yes, Yes
oc. No, Yes
od. No, No

The correct answer is: No, No

Question 13

Not answered

Marked out of 1.00

Which of the following integers are relatively prime to 15?

- a. 3, 5
- ob. 2,7
- o. 5, 7
- d. 2, 3
- e. None of the others

Your answer is incorrect.

The correct answer is:

2, 7

Not answered

Marked out of 1.00

Find

(64 mod 33)⁷³ mod 15

- o a. 1
- ob. 3
- oc. 5
- od. None of these
- e. 13

Your answer is incorrect.

The correct answer is:

Not answered

Marked out of 1.00

Suppose $\phi(n)$ counts the number of integers x such that $0 < x \le n$ and gcd(x, n) = 1 (x is relatively prime to n) Find $\phi(4)$, $\phi(5)$.

- a. 3, 4
- b. None of these
- c. 2, 4
- od. 2, 3
- e. 1, 4

Your answer is incorrect.

The correct answer is:

2, 4

Question 16
Not answered
Marked out of 1.00
Find 2 ¹⁰³ mod 15
○ a. 1
○ b. 4
○ c. 2
e. None of these

The correct answer is:

Question 17
Not answered
Marked out of 1.00
A message has been encrypted to be BXC using the encryption function $f(p) = (p + 15) \mod 26$. Decrypt the message.
 a. MOM b. MEN c. MIN d. None of these
e. MAI

The correct answer is: MIN

Not answered

Marked out of 1.00

Given that $x^k(\log x + 13)$ is $O(x^3)$.

Find the largest value of the integer k.

- a. 3
- ob. 0
- c. None of these
- od. 2
- e. 1

Your answer is incorrect.

The correct answer is:

Not answered

Marked out of 1.00

Find the least integer k such that f(x) is $O(x^k)$

if $f(x) = 100x^2 + x^2 \log x$

- _ a. 3
- ob. 4
- oc. 1
- od. 2

Your answer is incorrect.

The correct answer is:

Question 20	
Not answered	
Marked out of 1.00	

Give as good a big-oh estimate as possible for (nlogn + n)(n² + 1).

a. O(n²logn)

b. None of these

c. O(n³)

d. o(n²)

e. O(n³logn)

Your answer is incorrect.

The correct answer is: $O(n^3logn)$

Question 21
Not answered
Marked out of 1.00
Decide whether each of these integers is congruent to 23 modulo 11.
a) -32
b) -66
a. No, No
○ b. Yes, Yes
c. No, Yes
od. Yes, No

The correct answer is:

Yes, No

Question 22		
Not answered		
Marked out of 1.00		
Convert the integer 38 to a base 3 expansion.		
○ a. 2011		
○ b. None of these		
○ c. 1120		
od. 1201		
○ e. 1102		

The correct answer is: 1102

Not answered

Marked out of 1.00

Determine whether each of these functions is $\Omega(x^2)$.

- \circ a. f(x) = 23x + 1
- $b. f(x) = 7x^2 + 15x$
- \circ c. $f(x) = x \log x + 7x$
- od. $f(x) = 2^{2021}$
- e. None of these

Your answer is incorrect.

The correct answer is:

 $f(x) = 7x^2 + 15x$

Not answered

Marked out of 1.00

Given the bubble sort algorithm.

ALGORITHM 4 The Bubble Sort.

procedure $bubblesort(a_1, ..., a_n : real numbers with <math>n \ge 2$) **for** i := 1 **to** n - 1

for j := 1 to n - i

if $a_j > a_{j+1}$ **then** interchange a_j and a_{j+1}

 $\{a_1,\ldots,a_n \text{ is in increasing order}\}$

Use the bubble sort to sort 6, 2, 3, 1, 5.

Showing the lists obtained after the first pass (i = 1).

- a. 2, 3, 1, 5, 6
- b. 2, 3, 1, 6, 5
- c. 2, 1, 3, 5, 6
- d. None of these
- e. 1, 2, 3, 5, 6

Your answer is incorrect.

The correct answer is:

2, 3, 1, 5, 6

Question 25	
Not answered	
Marked out of 1.00	
Find a + b if	
a = -37 mod 7	
and b = 37 mod 7	
a. 10	
○ b. 7	
○ c. 0	
○ d1	
o e. None of these	
Your answer is incorrect.	
The correct answer is:	
7	
«	>>