

Universidade de Brasília - UnB Faculdade UnB Gama - FGA

DoGuide: o Cão-Guia Robô

Autores: Adriana Aguiar, Bruno Henrique, Bruno Pablo, Daniel Eliezer, Ernando Braga, Eugenio Sales, Gabriel Mendanha, Gustavo Nogueira, Julie Delchova, Luan Otoniel, Lucas Hideo, Matheus de Avila, Wanderson Santos, Wellingthon Diego

Brasília, DF 2022

Lista de abreviaturas e siglas

IGDF International Guide Dog Federation

IBGE Instituto Brasileiro de Geografia e Estatística

NBR Norma Brasileira

API Application Programming Interface

MaaS Mobility as a Service

HTTP Hypertext Transfer Protocol

CI Continuous Integration

CD Continuous Delivery

REST Representational State Transfer

AMQP Advanced Message Queuing Protocol

IoT Internet of Things

PubSub Publisher-Subscriber

GPS Global Positioning System

GPIO General Purpose Input/Output

SoC System on Chip

RAM Random Access Memory

Li-ion Íon-Lítio

LiPo Polímero de Lítio

NiCd Níquel-Cádmio

NiMH Níquel-Metal Hidreto

FATEC Faculdade de Técnologia de Catanduva

CPU Unidade Central de Processamento (CPU em inglês)

ULA Unidade Lógico-Aritmética

Sumário

1	INTRODOÇÃO	4
1.1	Detalhamento do problema	5
1.2	Levantamento de normas técnicas relacionadas ao problema	5
1.3	Identificação de soluções comerciais	6
1.4	Objetivos da solução proposta	7
1.4.1	Objetivo Geral	7
1.4.2	Objetivos Específicos	7
2	CONCEPÇÃO E DETALHAMENTO DA SOLUÇÃO	8
2.1	Requisitos Gerais	8
2.1.1	Requisitos Funcionais	8
2.1.2	Requisitos Não-Funcionais	11
2.2	Arquitetura Geral da Solução	13
2.2.1	Arquitetura Geral de Eletrônica e Energia	13
2.2.2	Arquitetura Geral do Software	19
2.2.3	Arquitetura da Estrutura	21
2.2.4	Arquitetura do Software	23
	REFERÊNCIAS	27
	APÊNDICE A – ASPECTOS DE GERENCIAMENTO DO PRO-	
	JETO	30
A.1	Termo de abertura do projeto	30
A.1.1	Orçamento preliminar	30
A.1.1.1	Orçamento preliminar de Eletrônica e Energia	30
A.1.1.2	Orçamento preliminar de Software	34
A.1.1.3	Orçamento preliminar de Estrutura	35
A.2	Lista É / Não É	36
A.3	Organização da Equipe	36
A.4	Repositórios	36
A.5	EAP (Estrutura Analítica de Projeto) Geral do Projeto	37
A.5.1	EAP (Estrutura Analítica de Projeto) de Software	38
A.5.2	EAP (Estrutura Analítica de Projeto) de Eletrônica e Energia	39
A.5.3	EAP (Estrutura Analítica de Projeto) de Estruturas	40
A.5.4	EAP (Estrutura Analítica de Projeto) de Gerência	41

A.6	Definição de atividades e cronograma de execução		
A.7	Levantamento de riscos	46	
	APÊNDICE B – AUTOAVALIAÇÃO DOS INTEGRANTES 5	54	

1 Introdução

O Brasil apresenta 45,6 milhões de pessoas com algum tipo de deficiência seja motora, auditiva, mental/intelectual e visual o que corresponde a 23,9% da população brasileira. Portadores de deficiência visual representam uma parcela significativa nesses números como é registrado no censo demográfico de 2010 do Instituto Brasileiro de Geografia e Estatística Instituto Brasileiro de Geografia e Estatística (IBGE) que apresenta mais de 29,2 milhões da população como portador de algum tipo de deficiência visual. Desse total mais de 506 mil não conseguem ver de modo algum e 6 milhões possuem grande dificuldade para enxergar. (IBGE, 2010)

As alternativas para auxiliar as pessoas nessa condição física mais usuais são as bengalas, contudo uma das alternativas que tem sido considerada e sua demanda tem crescido gradualmente são os cães-guia que auxiliam na locomoção nas atividades cotidianas dos acompanhantes. Nesse sentido, em escala mundial, a Federação Internacional de Cães-Guia (International Guide Dog Federation (IGDF)) trata do treinamento desses animais, não sendo obrigatória a instituição treinadora estar filiada nem o cão estar registrado nessa federação. A fins de referência, serão utilizados os dados da IGDF que registra menos de 200 cães-guia em atividade no Brasil o que representa um número desproporcional em panorama com os portadores de deficiência visual existentes e a fila de 500 pessoas solicitantes. (VENTURA, 2021)

SOUZA (2020) descreve as principais funções dos cães-guia:

Guiar seu dono dentro de casa e em espaços públicos, ajudar seu dono a atravessar a rua, desviar de obstáculos – como buracos, pessoas, elevações no caminho, ir em qualquer direção ordenada, se manter sempre à esquerda e um pouco à frente do seu dono, ajudar o tutor a entrar no transporte público e não se distrair com outros animais ou com cheiro de comida. (SOUZA, 2020)

1.1 Detalhamento do problema

O custo para o treinamento de um cão-guia no Brasil, que dura aproximadamente 2 anos, é de 60 mil reais de acordo com o Instituto Magnus, maior centro de treinamento da América Latina e filiado ao IGDF (VENTURA, 2021). Esses cães são treinados e entregues à partir de uma avaliação de compatibilidade da personalidade do futuro dono em potencial, contudo eles não trabalham sozinhos, dependendo da orientação e mobilidade do seu dono para identificar, por exemplo, o momento oportuno para atravessar a rua, aspecto do qual o portador de deficiência visual deve saber identificar através dos ruídos. (LENSCOPE, 2021)

Nesses 2 anos de treinamento, mesmo após o investimento de tempo e dinheiro, nem todos podem desempenhar a tarefa de cão-guia. De cada dez animais que passam por esse processo, de quatro a seis são habilitados realmente para a função, pois há perdas por problemas de saúde, além dos animais que não têm vocação para a tarefa por questões comportamentais. (ARBEX, 2019) Para o zootecnista Cláudio Fudimoto (2021) eles precisam ser cães calmos, assertivos e que tenham energia para trabalhar, mas que não sejam muito agitados. (SILVA, 2021) Outros fatores a serem analisados para melhor adaptação são os perfis do dono em potencial em comparativo com o cão: altura de ambos, ritmo de caminhada e estilo de vida do candidato.(ARBEX, 2019)

Entre 8 e 10 anos de atuação como cão-guia, os animais se aposentam, pois perdem algumas habilidades pela idade avançada. Sendo assim, o tutor que necessitar do auxilio de um cão-guia deverá solicitar outro para desempenhar essa função, entrando na fila de adoção e repetindo o processo até encontrar um cão compatível. (SILVA, 2021)

1.2 Levantamento de normas técnicas relacionadas ao problema

A Lei 12.587/12 estabelece a Política Nacional de Mobilidade Urbana que determina que a União institua as diretrizes para o desenvolvimento urbano, tanto os transportes quanto as questões de política urbana para que as pessoas consigam se movimentar conforme suas atividades. (BRASIL, 2012) No entanto a acessibilidade a locais de uso comum é a maior dificuldade relatada por deficientes visuais. Em entrevista para a Folha de Pernambuco em 2019 os portadores de deficiência visual entrevistados falam sobre as dificuldades de andar pelas ruas tendo que pedir ajuda à terceiros o que dificulta no processo de ganhar autonomia em função da falta da estrutura urbana. (BARBOSA, 2019)

A única lei que trata de cães-guia no Brasil é a Lei nº 11.126 de Junho de 2005 sobre o direito do portador de deficiência visual de ingressar e permanecer em ambientes de uso coletivo acompanhado de cão-guia (BRASIL, 2005). Essa lei, conjuntamente com a Política Nacional de Mobilidade Urbana, citada anteriormente, garantem a mobilidade

e o livre espaço para esses cidadãos.

A Norma Brasileira (NBR) 9050 que trata da acessibilidade a edificações, mobiliário, espaços e equipamentos urbanos cita os parâmetros antropométricos com destaque para as dimensões referencias de deslocamento para pessoas acompanhadas de cão-guia. (ABNT, 2015) Outras informações a serem consideradas dessa norma são as referências quanto à dimensões mínimas de calçada e altura e largura de degraus, que serão utilizadas como parâmetros no dimensionamento do cão-guia, e principais problemas em mobilidade relatados por portadores de deficiência visual.

1.3 Identificação de soluções comerciais

À partir de pesquisas foi possível encontrar duas soluções comerciais que podem ajudar portadores de deficiência visual a se locomover, contudo alguns possuem performances, desenvolvimento e propostas diferentes. Tais soluções e seus comparativos com o *DoGuide* podem ser visualizados na Tabela 1.

Tabela 1 – Características das soluções comerciais encontradas em comparativo com a solução proposta.

Critério	MobiLysa	LIGHBOT	DoGuide
Desviar de obstáculos	SIM	SIM	SIM
Operar em ambientes internos	SIM	SIM	SIM
Operar em ambientes externos	NÃO	NÃO	SIM
Interação por comandos de voz	SIM	SIM	SIM
Subir e descer peque- nos degraus	NÃO	NÃO	SIM
Portabilidade	SIM	NÃO	SIM
Bateria com autonomia maior que 7 horas	SIM	-	SIM

Segundo a *Vixsystem*, empresa que desenvolveu a Mobilysa que é um produto brasileiro, ela é um robô guia idealizado para proporcionar autonomia e qualidade de vida especialmente para pessoas com deficiência visual. Porém o MobiLysa não possui

integração para planejamento de rotas para o usuário, e é focada em integração com Espaços Inteligentes (lugares com uma rede de sensores e câmeras para serem integradas ao Mobilysa), sendo uma solução voltada mais para a mobilidade no ambiente local. (RNP, 2020)

Quanto ao LIGHBOT é um cão-guia robô desenvolvido pela NSK do Japão, sua principal atuação é em ambientes hospitalares tanto para idosos quanto para deficientes visuais. A comunicação do usuário com o cão para receber o comando é através de um controle remoto onde o usuário indica qual o destino, dentro da localidade do hospital, ele quer ir. (NSK, 2015)

1.4 Objetivos da solução proposta

1.4.1 Objetivo Geral

Cão-guia robô que visa guiar o usuário portador de deficiência visual a se locomover tanto em ambientes internos quanto externos.

1.4.2 Objetivos Específicos

- Obedecer a comandos de voz desviando de obstáculos;
- Direcionar o usuário à melhor rota;
- Alertar o usuário sobre aspectos do percurso (profundidades, desníveis etc);
- Proporcionar maior independência e autonomia ao usuário.

2 Concepção e Detalhamento da Solução

2.1 Requisitos Gerais

É importante levantar as principais problemas a serem solucionados no desenvolvimento do projeto, portanto os tópicos a seguir irão apresentar os Requisitos Funcionais, necessidades a serem resolvidas, e os Não- Funcionais: como será feito.

2.1.1 Requisitos Funcionais

Tabela 2 – Requisitos Funcionais Gerais.

ID	Requisito	Descrição	Objetivo
RF01	Desviar de Obstáculos.	O sistema deve ser capaz de identificar e evitar adversidades no caminho.	Prosseguir o trajeto de maneira efetiva e segura.
RF02	Definir Trajeto	O sistema deve compreender e traçar o melhor caminho a ser percorrido pelo robô	Definir rota a ser percorrida
RF03	Armazenar Rotas	Armazenamento das principais rotas a serem utilizadas rotineiramente pelo usuário.	Facilitar a utilização do sistema
RF04	Feedback de Status do Robô	Informar o usuário sobre o estado das funcionalidades(Bateria, Dados Móveis, temperatura, etc)	Deixar o usuário ciente do status do robô.
RF05	Evitar colisões em alturas de até 2 metros.	O robô deve ser capaz de avisar o usuário caso detecte obstáculo alto	Deixar o usuário ciente de obstáculos altos.
RF06	Evitar acidentes em buracos de até 60 centíme- tros de profundi- dade	O produto deve ser capaz de desviar de buracos no caminho.	Guiar o usuário para percurso sem buracos.
RF07	Manter um bom feedback de acu- rácia dos mode- los	O sistema deve reportar constantes feedbacks do usuário sobre a acurá- cia do modelo	Para que a solução mantenha a segu- rança e a coesão

RF08	Emitir alertas por voz para o usuário	O sistema deve alertar por voz o usuários sobre obstáculos	Comunicar com o usuário e dar ins- truções claras
RF09	Receber comandos dos usuário por voz	O sistema deverá receber por voz co- mandos do usuário	Operar com maior praticidade
RF10	Guiar o usuário de acordo com suas necessida- des	O sistema deverá garantir que o robô andará alinhado de acordo com os comandos	Garantir o alinha- mento do produto com o usuário
RF11	Captar vídeo em tempo real	Captura de vídeo para processamento da imagem com Visão Computacional	Capturar imagens para posterior pro- cessamento
RF12	O robô deve ser capaz de retor- nar a base para recarregamento	Em locais onde é fisicamente possível, o robô quando não estiver em atividade deve retornar para a base para recarregar, ou a desejo do usuário	Garantir que o robô possa estar recarregando sempre que possível e de forma prática
RF13	Possuir sistema Low Power	O sistema deve possuir o menor gasto possível de energia	Garantir maior autonomia da bateria
RF14	Identificação de chuva	Possuir sensor de chuva e sistema que garanta ao usuário ir para local seco em caso de chuva	Assegurar que usuário irá para ambiente seco caso esteja chovendo
RF15	Possuir bateria com autonomia mínima de 8 ho- ras	A bateria deve ser projetada para su- portar altas jornadas de uso	Garantir maior tempo possível sem que o sistema precise carregar novamente
RF16	Possuir um car- regador compa- tível	O carregador deve suprir às necessidades da bateria	Garantir carrega- mento adequado para bateria di- mensionada
RF17	Carregador wi- reless	O carregamento da bateria deve ser sem fio	Garantir segurança e conforto ao usuá- rio

RF18	Possuir uma bateria reserva	Em caso de descarga total da bateria principal, manter o hardware básico funcionando	Garantir alimenta- ção do sistema em casos de emergên- cia	
RF19	Conectar ao smartphone do usuário	Através de Bluetooh ser possível fazer a conexão do smartphone ao Do-Guide	Permitir o controle e comunicação via smartphone do usuário através de Internet of Things (IoT)	
RF20	Suportar carregamentos	A parte estrutural do robô deve ser capaz de suportar todos os compo- nentes do produto	Garantir que o robô suporte as cargas decorrentes do uso cotidiano	
RF21	Velocidade média compatível e ajustável	O robô deve aceitar o ajuste de velocidade de acordo com a solicitação do usuário	Garantir que o robô acompanhe o ritmo de caminhada do usuário	
RF22	Compatibilidade com bengalas comerciais	O robô deve aceitar modelos específicos de bengalas comerciais	Garantir maior versatilidade ao produto e pratici- dade ao usuário. Este deve conseguir utilizar a bengala desacoplando-a do sistema	
RF23	Mobilidade em terrenos irregulares	O sistema deve ser capaz de atuar em terrenos irregulares e passar por determinados obstáculos de tama- nho limitado, como meio-fio	Garantir que o robô acompanhe o usuá- rio em eventuais ro- tas que tenham tre- chos irregulares	
RF24	Funcionar em si- tuações de baixa ou nenhuma lu- minosidade	O sistema deve ser capaz de levar o usuário ao seu destino mesmo em si- tuações de baixa ou nenhuma lumi- nosidade	Garantir que o usuário consiga chegar ao seu destino independentemente da luminosidade	

	Deve possuir		
	integração	O sistema deve ser capaz de inte-	Para prover melhor
RF25	com sistemas	grar outros sistemas de mobilidade	soluções de passeio
	Mobility as a	que ampliam a usabilidade	e maior conforto
	Service (MaaS)		
		O robô deve ser capaz reconhecer	Garantir que o
	Auxiliar locomo- ambiente internos(casas, por exem-		usuário consiga an-
RF26	ção em ambien- plo), assim reconhecendo obstáculo		dar em ambientes
	tes internos	e ajudando o usuário a ser locomover	internos de forma
		nesses ambientes de forma segura	segura
	Manter-se posi-	O sistema deverá garantir que o robô	Garantir o posicio-
RF27	cionado à frente	andará à frente e a esquerda/direita	namento adequado
	do usuário	do usuário durante o trajeto	do robô

2.1.2 Requisitos Não-Funcionais

Tabela3 – Requisitos Não-Funcionais.

ID	Requisito	Descrição	Objetivo	
RNF01	Performace	O tempo de resposta de tarefas deve ser mínimo para as tarefas do usuá- rio	Desempenho do Sistemas	
RNF02	Segurança	Para proteger dados confidenciais do usuário como rotas e comandos	Desenvolver Recursos de Seguranças	
RNF03	Adaptabilidade	O robô deve ser capaz de ser adaptar aos vários tipos de ambientes descri- tos em seu escopo	Promover desempe- nho e efetividade nas tarefas do robô	
RNF04	Sistema de refrigeração	Possuir um sistema de ventilação para a proteção da bateria e com- ponentes eletrônicos	Proteger bateria e componentes eletrônicos	
RNF05	Sistema de re- frigeração único para micropro- cessador	Possuir sistema de ventilação único para o microprocessador	Ajudar no desempenho do processador	
RNF06	Identificação de chuva	Possuir sensor de chuva e sistema que garanta ao usuário ir para local seco em caso de chuva	Assegurar que usuário irá para ambiente seco caso esteja chovendo	

RNF07	Manutenibilidade	Garantir que os sistemas internos não molhem e que carcaça seja de fácil higienização	Proteger os sistemas internos e facilidade na manutenção preventiva
RNF08	Dimensões compactas	Tamanho e peso compatíveis com o uso em locais fechados	Atuar em locais abertos e fechados
RNF09	Compartimento para outros subsistemas	Comportar motores, bateria, componentes eletrônicos, eixos, engrenagens, mecanismos etc	Comportar demais componentes do sistema como todo
RNF10	Confiabilidade	O sistema deve informar o usuário em casos de falhas, como estado da bateria e instabilidade de conexão com a internet	Apresentar confiabilidade ao usuário
RNF11	Facilidade de uso do sistema	O sistema deve ser intuitivo e de fácil utilização	Tornar a aprendiza- gem e uso o mais fá- cil possível para o usuário
RNF12	Manutenibilidade - Modularidade	O sistema deve seguir padrões de de- senvolvimento claros	Tornar menos custosa o desenvolvimento e manutenção
RNF13	Eficiência	O sistema deve usar apenas o necessário de seus recursos	Manter uma maior otimização do sis- tema
RNF14	Usabilidade	O sistema deve ser claro quanto as suas instruções	Para que o usuário possua clareza de suas ações no uso do sistema
RNF15	Segurança	O sistema deve manter segurança no tráfego dos dados do usuário	Para que o sistema atue dentro das normas e leis es- tabelecidas quanto ao uso de dados
RNF16	Portabilidade	O sistema deve possuir peças e módulos de fácil substituibilidade	Para garantir rapidez e eficiência de custo ao necessitar de um reparo ou manutenção

RNF17	Confiabilidade	O sistema deve ser capaz de se recu- perar em caso de falhas não progra- madas ou esperadas	Para que evite que o usuário se depare com mal funciona- mentos
DME10	RNF18 Leveza	O sistema deve ser leve para ajudar	Melhor durabili-
RIVE 18		na boa autonomia da bateria	dade da bateria

2.2 Arquitetura Geral da Solução

A Figura 1 visa mostrar de forma geral como a integração dos subsistemas do DoGuide irão resolver e entregar a proposta do produto. Nas subseções a seguir será discorrido como cada subsistema implementará suas respectivas soluções.

Figura 1 – Diagrama Geral da Solução do DoGuide. Fonte: Autoria Própria

2.2.1 Arquitetura Geral de Eletrônica e Energia

Para melhor entendimento da arquitetura de Eletrônica, é importante inferir algumas informações. Sendo assim, serão explicadas as definições de sensor, atuador, microprocessador e microcontrolador. Os sensores são dispositivos quem tem uma sensibilidade

a algum fator energético no ambiente no qual ele está inserido e tem o objetivo de retornar ao sistema informações de grandezas mensuráveis como: profundidade, temperatura, posição, velocidade, aceleração, dentre outros. Os sensores são divididos em analógicos, em que sua saída pode assumir vários valores com o passar do tempo dentro da sua faixa de operação, e digitais, que sua saída assume somente dois valores em sua saída: zero e um (WENDLING, 2010).

Os atuadores são componentes que tem a capacidade de converter energia, sejam elas elétrica, hidráulica ou pneumática, em energia mecânica (INÁCIO, 2009). Os atuadores que serão utilizados no DoGuide tem o objetivo de converter energia elétrica em energia mecânica, sendo relês e motores em corrente contínua. Enquanto o *driver* é utilizado para posicionamento com maior precisão dos atuadores em questão, ele é responsável pelo controle dos movimentos dos motores. (BANARCOSO V. NOLL, 2008)

Os microprocessadores são circuitos integrados que executam instruções, dadas a a ele por meio de um programa, como operações aritméticas, lógica booleana, podendo também controlar a entrada e saída de dados, permitindo a comunicação com outros dispositivos e periféricos, sendo necessária a composição com outros dispositivos para o seu funcionamento como: memória, controladores de entrada e saída de dados, memoria de acesso rápido (Random Access Memory (RAM)), etc. (PEREIRA et al., 2011). Os microcontroladores são circuitos integrados que possuem Unidade Central de Processamento (CPU em inglês) (CPU), uma Unidade Lógico-Aritmética (ULA) e um microprocessador, além de possuírem também os periféricos para comunicação serial, timers, osciladores e dispositivos de I/Os (Entradas/Saídas) (MARTINAZZO et al., 2014). De forma geral, os microcontroladores possuem microprocessadores mais fracos do que os microprocessadores que trabalham com componentes separados, devido a sua complexidade. Na figura 2 é possível observar o diagrama de blocos de um microcontrolador.

Figura 2 – Diagrama de blocos de um microcontrolador. Fonte: (PEREIRA et al., 2011)

Para o bom êxito do projeto, é necessário que seja pensada uma arquitetura de

processamento, em relação aos microcontroladores e processadores que serão escolhidos, do robô que não seja superdimensionada tampouco subdimensionada. Com uma arquitetura superdimensionada o projeto ficaria com um poder de processamento maior do que o necessário, além do desperdício de componentes e portas General Purpose Input/Output (GPIO), o que tornaria o projeto com um custo financeiro de fabricação maior, além da necessidade de maior alocação desses componentes devido ao seu tamanho. Com uma arquitetura subdimensionada o robô precisará de uma quantidade de processamento maior do que a disponível, o que trará lentidão e comprometimento do funcionamento correto da maquina. Por isto, foi optado por não fazer a escolha dos microcontroladores, processadores ou System on Chip (SoC) que serão utilizados pelo DoGuide, refinando esses detalhes de acordo com as necessidades e especificações que surgirão no decorrer do projeto.

Para a Arquitetura Geral de Eletrônica foi observado os requisitos do sistema do produto *DoGuide*, buscando dar suporte de processamento dos dados e controle dos sensores e atuadores, assim envolvendo todas as áreas. A arquitetura em questão será organizada com a "Central de Processamento "que será desempenhada por um computador de placa única (representado pelo microprocessador e microcontrolador na figura 3) que receberá as informações além de desempenhar o controle dos seguintes sistemas: Captura de Imagem, Locomoção, Localização, Posição, Iluminação, Identificação de Chuva, Comunicação e Conexão. A figura 3, mostra a arquitetura geral da solução de Eletrônica para o atual projeto.

Figura 3 – Diagrama Geral da Solução de Eletrônica. Fonte: Autoria Própria

Para o alinhamento correto do *DoGuide* em relação ao usuário, ou seja, para a identificação de que o robô está andando para frente, os sensores de posição serão necessários. No desvio de obstáculos frontais em 2 metros a frente, de buracos de até 40 centímetros de profundidade e em altura de até 2 metros, os sensores de distância serão utilizado e alocados de maneira calculada para identificar com melhor precisão estes empecilhos no caminho. Na comunicação com o usuário serão utilizados alto-falantes e módulo de reconhecimento de voz. Para se fornecer uma localização efetiva ao usuário, será utilizado o módulo Global Positioning System (GPS). Já a conexão com o *smartphone* será realizada por rede sem fio o que permitirá a integração do GPS do próprio celular do usuário com o produto (*DoGuide*) por meio Application Programming Interface (API).

Pensando na segurança e viabilidade do sistema mesmo em adversidades, se pensou em rotas de segurança caso comece a chover no meio do percurso, onde a partir do momento que o produto perceber que está chovendo, a rota mudará para o local abrigado até que a chuva pare, para este requisito se empregará o módulo sensor de chuva. Para garantir a eficácia da câmera em locais escuros e pouco iluminados, será disposto um sensor de luminosidade que quando não detectar certa quantidade de luz, acionará o sistema de iluminação do DoGuide e possibilitará a funcionalidade da câmera mesmo em tais ambientes.

Figura 4 – Diagrama Geral da Solução de Energia. Fonte: Autoria Própria

Enquanto a Arquitetura Geral de Energia, consiste na solução energética por meio

de uma bateria de lítio recarregável que funcionará como fonte de alimentação para todos componentes do produto, desde a Central de Processamento e Controle, câmeras, sensores, até os sistemas do produto, incluindo os motores e aos componentes ligados a eles, câmera e sensores. Como pode ser observado na figura 4 .

O carregamento destas baterias se dará por meio de um adaptador receptor com o intuito de um carregamento sem fio, este deverá estar em contato com a superfície de um carregador *wireless* para que a recarga seja concluída de forma rápida e eficaz.

Este formato de alimentação foi definido com base na necessidade de movimentação e funcionamento do *DoGuide*. Ressalta-se que a escolha do uso de bateria alimentada por meio da rede elétrica foi feita em detrimento do uso de painel solar fotovoltaico, cogitado inicialmente. Por ser um equipamento que atuará sendo utilizado pelo usuário durante sua movimentação, um dos principais requisitos estruturais foi que o peso do produto não fosse elevado e fosse compacto. Assim, o uso de uma estrutura fotovoltaica não só elevaria o peso, como também dificultaria o transporte do item, quando necessário, pelo utilizador. Além desses fatores, tem-se também o risco de aquecimento do *DoGuide*, causado pelas células solares, que poderia vir a causar danos à saúde do usuário pela exposição contínua à fonte de calor.

Portanto, com isso em vista e sabendo que o uso de baterias recarregáveis têm se tornado cada vez maior em diversos produtos eletrônicos, principalmente por possuírem um ciclo de vida elevado, alta densidade de potência, possuírem diversos tamanhos e serem menos agressoras ao meio ambiente. Atualmente, há 5 modelos de bateria que são altamente utilizadas em equipamentos eletrônicos e são elas: Íon-Lítio (Li-ion), Polímero de Lítio (LiPo), Chumbo-ácido, Níquel-Cádmio (NiCd) e Níquel-Metal Hidreto (NiMH). Assim, a tabela a seguir (TRINDADE, 2006) foi usada como base para selecionar o tipo de bateria que mais condiz com as necessidades do produto.

	-		, ,	
	Vida útil	Tensão	Densidade	Tempo
Tipo de bateria			de Energia	para re-
	(ciclos)	da célula	$(\mathrm{Wh/kgl})$	carga
Íon-Lítio	600-3000	3.6	110-160	2 a 4h
Polímero de Lítio	600-3000	3.7	100-130	2 a 4h
Chumbo-ácido	200-300	2.0	30-50	16h
Níquel-Cádmio	500-1000	1.2	45-80	1h
Níquel-Metal Hidreto	500-1000	1.2	60-120	1 a 4h

Tabela 4 – Tipos de Bateria. Fonte: (TRINDADE, 2006)

Assim, tendo em vista os dados apresentados na Tabela 4, as baterias de íon-lítio apresentam melhor densidade de energia e potência, maior valor de tensão por célula, melhor eficiência durante o carregamento e são mais fáceis de serem adquiridas no mercado, caso necessário.

2.2.2 Arquitetura Geral do Software

A Arquitetura Geral de Software para o *DoGuide* consiste de três pilares cruciais para que a solução entregue o resultado esperado, espelhando-se em soluções já existentes como serviços em Nuvem, integração com serviços de terceiros e uma arquitetura robusta para ser utilizada na parte Robótica do produto (DUDEK; JENKIN, 2010), tendo em vista o principal desafio a autonomia do *DoGuide* em reconhecer e mapear a área ao seu redor e conseguir responder e sugerir ações para o usuário assistida de uma inferência de modelo de Visão Computacional (FERREIRA; SANTOS; SCHETTINO, 2018) usando-se Redes Neurais Profundas(Deep Learning) (RUAN et al., 2019), para garantir uma melhor acurácia e performance.

A principal função do *DoGuide* é ser um guia seguro e confiável, e ao mesmo tempo oferecer comodidade e conforto, pensando nisso o *DoGuide* deve implementar integrações com serviços de terceiros como Google e Moovit para uma maior segurança e conforto do usuário ao transitar em meio urbano e ao utilizar transporte público, utilizando-se desses serviços que são denominados MaaS Figura 5.

Figura 5 – Mobilidade como Serviço (Mobility as a Service). Fonte: (SIEMENS, 2020)

O sistema de robótica contará com uma arquitetura Assíncrona Orientada a Eventos combinado com um padrão de Mensageria, que é uma solução para que sistemas distribuídos possam se comunicar por meio de eventos(mensagens) gerenciadas por um módulo

central utilizando protocolo Advanced Message Queuing Protocol (AMQP), e o padrão Blackboard (Quadro-Negro) (LIMSOONTHRAKUL et al., 2009), onde uma base de conhecimento comum é continuadamente populada por diversos tipos de dados específicos de onde é possível retirar uma solução, sendo utilizado bastante para soluções em carros autônomos.

Com isso temos os principais pontos do *DoGuide* focando na experiência do usuário, segurança e conforto. Utilizando de serviços em nuvem para maior escalabilidade e menor custo, assim como uma robusta arquitetura para a implementação robótica do produto.

Figura 6 – Diagrama Geral da Solução do Software. Fonte: Autoria Própria

2.2.3 Arquitetura da Estrutura

Na concepção estrutural do *DoGuide*, foram consideradas as arquiteturas de projetos já existentes no mercado como o robô guia Lysa, mostrado na Figura 7, e o protótipo da Faculdade de Técnologia de Catanduva (FATEC) em São Paulo, apresentado na Figura 8. Ambos apresentam uma estrutura principal que acomoda todos os componentes e rodas dispostas em formato de triciclo. No entanto, ambos apresentam a limitação de não ultrapassar pequenos obstáculos, incluindo meio-fio.

Figura 7 – Robô-guia Lysa. Fonte: (RNP, 2020)

Figura 8 – Projeto de robô-guia da FATEC. Fonte: (GONCALVES, 2019)

Com o intuito de atender esse requisito, além de ser capaz de operar em terrenos irregulares, o DoGuide deve incorporar a roda estrela presente em carrinhos de carga, como o apresentado na Figura 9.

Assim, é apresentado na Figura 10 o esboço do *DoGuide*. Uma estrutura compacta e leve inspirada nos modelos concorrentes, mas capaz de passar por pequenos obstáculos como buracos, subir e descer meios-fios, além de terrenos irregulares. Para atender todas as demandas, o cão-guia robô dispõe de um pequeno chassi de metalon que deve abrigar itens como motores, sistemas de engrenagens, baterias e componentes eletrônicos, dentre outros. O metalon é escolhido pela sua leveza mas também por suas propriedades mecânicas e facilidade de obtenção e usinagem.

Envolvendo o chassi, são incluídas duas carcaças fabricadas em materiais poliméricos. Essas carcaças têm a função de proteger o chassi e demais componentes por ele

Figura 9 – Exemplo de carrinho de carga com roda estrela. Fonte: (CARROLEVE, 2022)

abrigado, além de ser facilmente removível para manutenção e higienização do *DoGuide*. A opção por material polimétrico é também feita com base nas características de leveza e propriedades mecânicas que atendem os requisitos de projeto.

O sistema de tração, por sua vez, deve ser composto de um motor para cada uma das quatro rodas estrela, permitindo que o robô suba ou desça meios-fios, por exemplo. Com isso, o *DoGuide* deve possuir quatro motores no total, sendo que o torque de cada motor deve ser transmitido às demais rodas por conjuntos de engrenagens. Já o sistema de direção do produto deve ser feito através do controle de rotação de cada roda estrela, isto é, o lado contrário ao qual pretende-se virar deve possuir velocidade de rotação menor.

Além disso, para oferecer maior comodidade e versatilidade ao usuário, o *DoGuide* deve ter compatibilidade com bengalas para cegos já encontradas no mercado. Assim, o usuário não fica "refém" de um modelo específico próprio do sistema. O presente produto deve permitir que o usuário encaixe ou desencaixe a bengala que já possui.

Assim sendo, a princípio, o *DoGuide* é projetado com as dimensões mostradas na Figura 11 e peso aproximado de 4 kg.

Figura 10 – Esboço do *DoGuide*. Vista em perspectiva. Fonte: Autoria Própria.

2.2.4 Arquitetura do Software

A Arquitetura do Software será feita baseando-se nos dois contextos da solução, uma arquitetura para o robô como pode ser visto na Figura 12 que conterá toda a integração com Eletrônica e Estruturas mais a parte que diz respeito as respostas e interações com o usuário e serviços em nuvem, e o segundo contexto dos serviços em nuvem que ampliam as funcionalidades do *DoGuide* presente na Figura 13, como o planejamento de rotas para viagens, comunicação com serviços externos e base de dados.

Para a Arquitetura do robô presente na Figura 12 foram escolhidas uma Arquitetura Assíncrona (GAT, 1991) (GAT, 1992) baseada em eventos (LIMSOONTHRAKUL et al., 2009), utilizando um padrão de Mensageria (Publisher-Subscriber (PubSub)), proporcionando à solução uma robustez ao lidar com os vários tipos de entrada que o sistema pode ter e responder aos mesmos sem bloquear o funcionamento da aplicação.

E para a Arquitetura dos serviços em nuvem, deverá implementar uma arquitetura Hexagonal (MARTIN, 2017) como apresentado na Figura 13, pela alta manutenibilidade, pela facilidade de testar seus módulos, e ser independente e agnóstico do mundo externo por conta de seus adaptadores e portas, permitindo manter o domínio da aplicação intacto gerando pouco acoplamento entre os módulos (camadas). As APIs devem seguir os padrões Representational State Transfer (REST) para comunicação utilizando protocolo Hypertext Transfer Protocol (HTTP). A API deverá estar disponível em nuvem para consumo e integração com o robô, e a implementação da infraestrutura em nuvem permite um menor gasto em infraestrutura, maior escalabilidade e rapidez para pipelines de

Figura 11 — Vistas frontal e superior do DoGuide com estimativas de tamanho. Dimensões em milímetros. Fonte: Autores.

Continous Integration (CI) e Continous Delivery (CD).

Figura 12 – Arquitetura Assíncrona utilizando padrão Mensageria e Blackboard.Fonte: Autores.

Figura 13 – Arquitetura Hexagonal. Fonte: Autores.

Referências

ARBEX, G. Saiba quanto custa o processo de formação de um cão guia. 2019. Disponível em: https://forbes.com.br/colunas/2019/11/saiba-quanto-custa-o-processo-de-formacao-de-um-cao-guia/. Citado na página 5.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *NBR 9050*: acessibilidade a edificações, mobiliário, espaços e equipamentos urbanos. Rio de Janeiro, 2015. Citado na página 6.

BANARCOSO V. NOLL, B. M. G. N. G. Desenvolvimento de um driver de corrente didático para acionamento de motores de passo aplicados ao ensino de eletrônica de potência e mecatrônica. 2008. Disponível em: https://sobraep.org.br/site/uploads/2018/06/rvol13no2p10.pdf. Citado na página 14.

BARBOSA, I. Pessoas com deficiência visual relatam seus maiores obstáculos. 2019. Disponível em: https://www.folhape.com.br/noticias/ pessoas-com-deficiencia-visual-relatam-seus-maiores-obstaculos/98782/>. Citado na página 5.

BRASIL. Lei nº 11.126, de 27 de junho de 2005. Diário Oficial da República Federativa do Brasil, Brasília, DF, 2005. Disponível em: http://www.planalto.gov.br/ccivil_03/ _ato2004-2006/2005/lei/l11126.htm>. Citado na página 5.

BRASIL. Lei nº 12.587, de 03 de janeiro de 2012. Diário Oficial da República Federativa do Brasil, Brasília, DF, 2012. Disponível em: http://www.planalto.gov.br/ccivil_03/ _ato2011-2014/2012/lei/l12587.htm>. Citado na página 5.

CARROLEVE. Carrinho de carga armazém capacidade 250kg com roda estrela - carroleve-crarm250ste7r. 2022. Disponível em: https://www.lojadomecanico.com.br/produto/145477/42/447/ carrinho-de-carga-armazem-capacidade-250kg-com-roda-estrela-carroleve-crarm250ste7r>. Citado na página 22.

DUDEK, G.; JENKIN, M. Computational Principles of Mobile Robotics. 2nd. ed. USA: Cambridge University Press, 2010. ISBN 0521692121. Citado na página 19.

FERREIRA, F. C.; SANTOS, M. F.; SCHETTINO, V. B. Computational vision applied to mobile robotics with position control and trajectory planning: Study and application. In: 2018 19th International Carpathian Control Conference (ICCC). [S.l.: s.n.], 2018. p. 253–258. Citado na página 19.

GAT, E. Integrating reaction and planning in a heterogeneous asynchronous architecture for mobile robot navigation. *SIGART Bull.*, Association for Computing Machinery, New York, NY, USA, v. 2, n. 4, p. 70–74, jul 1991. Disponível em: https://doi.org/10.1145/122344.122357. Citado na página 23.

Referências 28

GAT, E. Integrating planning and reacting in a heterogeneous asynchronous architecture for controlling real-world mobile robots. In: AAAi. [S.l.: s.n.], 1992. v. 1992, p. 809. Citado na página 23.

GONCALVES, D. O cão-guia robótico pode ser uma realidade nas ruas brasileiras em breve. 2019. Disponível em: https://www.redbull.com/br-pt/cao-guia-robotico. Citado na página 21.

IBGE. Censo Demográfico 2010: Características Gerais da População, Religião e Pessoas com Deficiência. Rio de Janeiro, Brasil, 2010. 211 p. Citado na página 4.

INÁCIO, M. J. Sensores e atuadores. Faculdade de Ciências do Tocantins, 2009. Citado na página 14.

LENSCOPE. . cão-guia: quando é indicado e como ter. 2021. Disponível em: https://lenscope.com.br/blog/cao-guia/. Citado na página 5.

LIMSOONTHRAKUL, S. et al. A modular system architecture for autonomous robots based on blackboard and publish-subscribe mechanisms. In: [S.l.: s.n.], 2009. p. 633 – 638. Citado 2 vezes nas páginas 20 e 23.

MARTIN, R. C. Clean architecture. In: A Craftsman's Guide to Software Structure and Design. [S.l.: s.n.], 2017. p. 148–158. Citado na página 23.

MARTINAZZO, C. A. et al. Arduino: Uma tecnologia no ensino de física. *Revista Perspecfiva*, v. 38, n. 143, 2014. Citado na página 14.

NSK. Nsk improves lighbot (guide robot with indoor navigation and obstacle avoidance). 2015. Disponível em: https://www.nsk.com/company/news/2015/press1202d.html#. Citado na página 7.

PEREIRA, L. A. M. et al. Software embarcado, o crescimento e as novas tendências deste mercado. *Revista de Ciências Exatas e Tecnologia*, v. 6, n. 6, p. 85–94, 2011. Citado na página 14.

RNP. Mobilysa: Autonomia, confiança e mobilidade para os deficientes visuais. 2020. Disponível em: https://www.rnp.br/noticias/mobilysa-autonomia-confianca-e-mobilidade-para-os-deficientes-visuais. Citado 2 vezes nas páginas 7 e 21.

RUAN, X. et al. Mobile robot navigation based on deep reinforcement learning. In: 2019 Chinese Control And Decision Conference (CCDC). [S.l.: s.n.], 2019. p. 6174–6178. Citado na página 19.

SIEMENS. Mobility as a service (maas) empowering intermodal mobility. 2020. Disponível em: https://www.mobility.siemens.com/global/en/portfolio/intermodal/mobility-marketplace.html. Citado na página 19.

SILVA, R. Além do cão guia: como funciona o treinamento dos cães de assistência. 2021. Disponível em: https://canaldopet.ig.com.br/guia-bichos/cachorros/2021-07-08/alem-do-cao-guia--como-funciona-o-treinamento-dos-caes-de-assistencia.html>. Citado na página 5.

Referências 29

SOUZA, J. Cão guia - o seu guia completo sobre o assunto. 2020. Disponível em: https://www.petfriendlyturismo.com.br/2020/12/03/tudo-sobre-cao-guia/. Citado na página 4.

TRINDADE, R. H. L. Estudo das características de baterias recarregáveis possíveis de serem utilizadas no projeto satélite universitário. 2006. Disponível em: http://www.bibl.ita.br/xiiencita/ELE-12.pdf. Citado na página 18.

VENTURA, L. S. Fila para obter cão-guia no brasil tem mais de 500 pessoas. 2021. Disponível em: https://brasil.estadao.com.br/blogs/vencer-limites/fila-para-obter-cao-guia-no-brasil-tem-mais-de-500-pessoas/. Citado 2 vezes nas páginas 4 e 5.

WENDLING, M. Sensores. *Universidade Estadual Paulista. São Paulo*, v. 2010, p. 20, 2010. Citado na página 14.

APÊNDICE A – Aspectos de gerenciamento do projeto

A.1 Termo de abertura do projeto

Figura 14 – Logomarca do produto DoGuide. Fonte: Autoria Própria

O *DoGuide* é um robô que consegue executar as funções de um cão-guia, com características de evitar colisões em altura e em obstáculos à frente, evitar acidentes envolvendo profundidade, desvio automático dos obstáculos e alerta por voz.

A.1.1 Orçamento preliminar

A.1.1.1 Orçamento preliminar de Eletrônica e Energia

Os custos de aquisição incluem equipamentos, espaço de trabalho, transporte e alimentação para 3 engenheiros eletrônicos e 2 engenheiros de Energia.

Tabela 5 – Orçamento estimado de aquisição -Eletrônica e Energia. Fonte: autoria própria.

Recurso	Quantidade	Custo unitário	Custo total
Apple MacBook Air (M1)	5	R\$ 8.000,00	R\$ 40.000,00

Coworking	2 meses	R\$ 2.100,00 (mês)	R\$ 2.100,00
Transporte	42 dias	R\$ 22,00 (dia)	R\$ 924,00
Alimentação	42 dias	R\$ 60,00 (dia)	R\$ 2.520,00
Total	-	-	R\$ 45.544,00

Segue o orçamento preliminar dos componentes eletrônicos para a confecção de um produto.

Tabela 6 – Orçamento estimado de componentes -Eletrônica e Energia. Fonte: autoria própria.

Componente	Quantidade	Custo unitário	Custo Total
Raspberry Pi 4 Model			
B (componente ainda			
não confirmado no	1	R\$ 949,00	R\$ 949,00
projeto, sendo assim			
uma possibilidade)			
MSP430F5438IPZ			
(componente ainda			
não confirmado no	1	R\$ 60,00	R\$ 60,00
projeto, sendo assim			
uma possibilidade)			
Módulo MP3 DF-	1	R\$ 27,90	R\$ 27,90
Player Mini	1	100 21,90	100 21,90
Acelerômetro e Giros-	1	R\$ 19,90	R\$ 19,90
cópio	1	100 15,50	10 15,50
Conversor de Nível	1	R\$ 5,90	R\$ 5,90
Lógico RC	1	1τΦ 0,50	πψ 0,50
Sensor de Luminosi-	2	R\$ 1,40	R\$ 2,80
dade		1,10	160 2,00
Módulo GPS com An-	1	R\$ 79,00	R\$ 79,00
tena	1	100 10,00	10 10,00
Módulo Câmera para	1	R\$ 49,90	R\$ 49,90
Raspberry Pi	1	100 40,00	1τψ 40,00
Sensor de Chuva	1	R\$ 7,30	R\$ 7,30

Módulo Sensor de Dis-	5	R\$ 14,90	R\$ 74,50
tância Ultrassônico	3	100 14,90	100 74,50
Módulo de Reconheci-	1	R\$ 185,98	R\$ 185,98
mento de Voz	1	πφ 100,90	100,90
Driver Ponte H	2	R\$ 27,50	R\$ 49,00
Painel de led	2	R\$ 29,50	R\$ 59,00
Jumpers Macho-	120	R\$ 12,9040un	R\$ 38,70
Fêmea	120	1to 12,9040um	11.0 30,70
Jumpers Macho-	80	R\$ 16,0640un	R\$ 32,12
Macho	00	1tw 10,0040um	160 32,12
Total	_	-	R\$ 1.641,00

Custo dos instrumentos necessários para confecção do produto no contexto de Eletrônica e Energia, está listada na tabela 7.

Tabela 7 – Orçamento de Instrumentos Necessários - Eletrônica e Energia. Fonte: autoria própria.

Instrumento	Quantidade	Custo unitário	Custo Total
Multímetro	3	R\$ 404,00	R\$ 1.212,00
Estação de solda	1	R\$ 570,00	R\$ 570,00
Ferro de solda + suga- dor	3	R\$ 75,00	R\$ 225,00
Conjunto de alicates Mini	1	R\$ 130,00	R\$ 130,00
Osciloscópio	1	R\$ 3.980,00	R\$ 3.980,00
Jogo de pinças antiestáticas	1	R\$ 46,00	R\$ 46,00
Jogo de chaves de pre- cisão	1	R\$ 25,00	R\$ 25,00
Lupa de mesa com LED e garras	1	R\$ 120,00	R\$ 120,00
Manta anti-estática	1	R\$ 94,00	R\$ 94,00
Pontas de prova	3	R\$ 48,90/par	R\$ 146,70
Protoboard	3	R\$ 150,00	R\$ 150,00
Total	-	-	R\$ 6.998,70

O salário dos funcionários foi estimado utilizando a média salarial para o cargo.

Tabela 8 – Custo de funcionários -Eletrônica e Energia. Fonte: Autoria Própria.

Carga	Quantidade	Salário	Custo mensal
Engenheiro Eletrônico	3	R\$ 7.756,00	R\$ 40.000,00
Engenheiro de Energia	2	R\$ 7.756,00	R\$ 2.100,00
Total	5	-	R\$ 38.780,00

Serão necessários três engenheiros eletrônicos para o planejamento e execução do sistema eletrônico do produto, e dois engenheiros de energia para o dimensionamento e implementação do sistema de alimentação do produto.

O custo de manutenção inclui o valor da visita do técnico responsável pela manutenção preventiva do produto.

Tabela 9 – Custo de manutenção e suporte - Eletrônica e Energia. Fonte: Autoria Própria.

Carga	Quantidade	Salário	Custo mensal
Técnico em Eletrônica	N	R\$ 2.500,00	N *R\$ 2.500,00
Total	-	-	N *R\$ 2.500,00

O custo com os técnicos está relacionado à quantidade dos produtos (N) em operação, sendo N técnico(s) responsável(is) por realizar a manutenção de acordo com a demanda da região.

Tabela 10 – Orçamento estimado geral - Eletrônica e Energia Fonte: autoria própria.

Custos	Previsto	Frequência de Gastos
Aquisição	R\$ 18.300,00	Unitário

Equipe	R\$ 38.780,00	Mensal
Manutenção	N * R\$ 2.500,00	Mensal
Componentes	R\$ 1.641,00	Por Produto
Instrumentos	R\$ 1.608,88	Unitário
Total Aproximado	R\$ 111.069,88	2 meses

- Parâmetros utilizados para o cálculo na tabela 10: N: 1 técnico para realizar manutenção e suporte em regiões com no mínimo 7 usuários ;

A.1.1.2 Orçamento preliminar de Software

Tabela 11 – Orçamento estimado de aquisição - Software. Fonte: autoria própria.

Recurso	Quantidade	Custo unitário	Custo total
Apple MacBook Air (M1)	5	R\$ 8.000,00	R\$ 40.000,00
Coworking	2 meses	R\$ 2.100,00 (mês)	R\$ 2.100,00
Transporte	42 dias	R\$ 22,00 (dia)	R\$ 924,00
Alimentação	42 dias	R\$ 60,00 (dia)	R\$ 2.520,00
Total	-	-	R\$ 45.544,00

Tabela 12 – Orçamento estimado de funcionários - Software. Fonte: autoria própria.

Cargo	Quantidade	Salário	Custo mensal
Desenvolvedor	5	R\$ 8.000,00	R\$40.000,00
Total	5	-	R\$40.000,00

Tabela 13 – Orçamento estimado de infraestrutura - Software. Fonte: autoria própria.

Serviço	Empresa	Custo
Internet 10GB*	Vivo	R\$ 130,00 mensal

Hospedagem**	AWS	$U10(R\ 53,28)\ \mathrm{mensal}$
Google Maps API***	Google	$U20(R\ 106,57)\ \mathrm{mensal}$

Orçamento estimado geral - Software. Fonte: autoria própria.

Custos	Previsto	Frequência de gastos	
Custos	Previsto	Frequência de gastos	
Aquisição	R\$ 45.544,00	Unitário	
Equipe	R\$ 40.000,00	Mensal	
	U\$ 10,00		
Infraestrutura	+ R\$ 130,00	Mensal	
	+ U\$ 20,00		
Total aproximado*	R\$ 85.703,00	-	

A.1.1.3 Orçamento preliminar de Estrutura

A respeito do orçamento preliminar da estrutura do DoGuide, em complemento a Tabela 14, faz-se as seguintes considerações:

- Os custos estimados para a carcaça referem-se a uma impressão $3\mathrm{D}$;
- Em relação ao chassi, refere-se ao material utilizado na própria usinagem da estrutura, os outros produtos são provenientes de compras externas;
- Para os serviços de usinagem e serralheria serão utilizadas as ferramentas da FGA, outros já estão embutidos nos custos

Tabela 14 – Orçamento preliminar de Estrutura. Fonte: Autores.

Item	Qtd.	Preço Unitário	Preço Total
Motor - Servo TowerPro MG946R	4	R\$ 49,90	R\$ 199,60
Carcaça	1	R\$ 194,87	R\$194,87
Chassi	1	R\$ 249,00	R\$ 249,00
Rodas Estreladas	4	R\$ 62,40	R\$ 249,60
Rolamentos	4	R\$ 2,68	R\$10,72
Total Aproximado*	_	-	R\$ 903,79

Para a estimativa de gastos com os projetistas, são levadas em considerações os salários médios de engenheiros aeronáuticos, engenheiros automotivos e engenheiros mecânicos, apresentados em sites de busca de emprego. Assim, foi elaborada a Tabela (15) com os gastos estimados com os funcionários de projeto.

Tabela 15 – Orçamento com funcionários do Setor de Estruturas. Fonte: Autores.

Cargo	Salário	Número de	Custo Total
		Funcionários	(2 meses)
Engenheiro Automotivo - Júnior	R\$ 4.655,54	2	R\$ 18.662,16
Engenheiro Mecânico - Júnior	R\$ 4.551,34	2	R\$ 18.205,36
Total	-	-	R\$ 36.827,52

A.2 Lista É / Não É

Tabela 16 – Lista "É/Não é"do produto DoGuide. Fonte: autoria própria.

É	Não é	
Robô que desempenha tarefas como um cão-guia	Bengala	
Assistente para deficiente visual	Carregador de objetos	
Robô integrado ao smartphone	Carregador de pessoas (ex: Hoverboard)	
	Um brinquedo	

A.3 Organização da Equipe

A organização da equipe do projeto DoGuide pode ser vista no fluxograma da Figura 15 à seguir:

A.4 Repositórios

A organização do repositório será feito através da plataforma GitHub, onde será mantido um repositório público para a organização dos documentos para cada entrega(Pontos de Controle), e para armazenamento e versionamento das simulações e códigos necessários para o projeto

Figura 15 – Organização da Equipe. Fonte: Autoria Própria

A.5 EAP (Estrutura Analítica de Projeto) Geral do Projeto

A.5.1 EAP (Estrutura Analítica de Projeto) de Software

Figura 16 – Estrutura Analítica do Projeto. Fonte: Autoria Própria

A.5.2 EAP (Estrutura Analítica de Projeto) de Eletrônica e Energia

Figura 17 – Estrutura Analítica do Projeto de Eletrônica e Energia. Fonte: Autoria Própria

A.5.3 EAP (Estrutura Analítica de Projeto) de Estruturas

Figura 18 – Estrutura Analítica do Projeto de Estruturas. Fonte: Autoria Própria

A.5.4 EAP (Estrutura Analítica de Projeto) de Gerência

Figura 19 — Estrutura Analítica do Projeto de Gerência. Fonte: Autoria Própria

 ${\bf A}$ distribuição das equipes para melhor visualização da atuação da gerência nos subgrupos pode ser visualizado na Figura 15.

A.6 Definição de atividades e cronograma de execução

À seguir são apresentados os cronogramas de execução para o *DoGuide* distribuídos por Geral, que compreende as reuniões em grupo e/ou dos diretores ou de orientação geral com os professores sobre o documento, e os cronogramas das subdivisões das equipes (Software, Eletrônica & Energia e Estrutura) com as tarefas e prazos estipulados.

Tabela 17 – Atividades e Cronograma de Execução Geral Fonte: autoria própria.

Atividade	Data da Atividade	Observação	Participação
Reunião Ge-	31/01/2022	Definição de organização da equipe desenvolvimento. Discussão sobre as características do projeto	
Determinação do escopo do produto	01/02/2022	Definição das características principais. Preenchimento da tabela "Faz - Não Faz"do produto.	Diretores e Coordenador- Geral
Discussão so- bre pendên- cias de tare- fas	02/02/2022	Análise do Termo de Abertura do Projeto e falhas	Diretores e Coordenador- Geral
Reunião Geral	07/02/2022	Fechamento do documento escrito para revisão dos orientadores e discussão sobre a melhor ferramenta para apresentação do Ponto de Controle 1.	Todos os integrantes presentes.
Revisão e orientação do Documento	11/02/2022	Reunião com os professores Aléx e Felício para orientação sobre o documento pré-pronto	Grupo parcialmente presente

Tabela 18 – Atividades e Cronograma de Execução da equipe de Software Fonte: autoria própria.

Atividade	Data da	Observeção	Dontiainsaão
	Atividade	Observação	Participação

Reunião Se-		Definição de Riscos, Requisi-	Todos os in-
manal Soft-	04/02/2022	tos e Solução Geral da parte	tegrantes pre-
ware		de Software.	sentes.
Reunião com Professor Chaim	09/02/2022	Apresentação da Solução geral de software.	Todos os integrantes de software presentes.
Reunião Se- manal Soft- ware	11/02/2022	Discussão da arquitetura de Software e possíveis tecnolo- gias que podem ser emprega- das na solução.	Todos os integrantes presentes.
Reunião Se- manal Soft- ware	12/02/2022	Pesquisa sobre tecnologias para arquitetura do robô (mensageria, comunicação com os componentes eletrônicos e comunicação do robô com serviços em cloud).	Todos os integrantes presentes.

Tabela 19 – Atividades e Cronograma de Execução da Equipe de Eletrônica & Energia
 $Fonte:\ autoria$ pr'opria.

Atividade	Data da	Observação	Participação	Data de
Attvidade	Atividade	Obsel vação	1 ar ticipação	Entrega

Atribuição de Tarefas	03/02/2022	 Definir as Necessidades/Requisitos e Soluções do projeto para as áreas de Eletrônica e Energia; Montar o EAP de Eletrônica e Energia; Organização e atribuição de atividades dos componentes da equipe. Definição do cronograma interno para PC1. 	Toda a equipe de Eletrônica	-
Desenvolvimento da parte atri- buída	03/02/2022 (Data da Atribui- ção)	 Encontrar componentes eletrônicos (sensores e módulos) aplicáveis a proposta do projeto; Pesquisar funções e preços dos componentes selecionados; Introdução. 	Adriana	09/02/2022
Desenvolvimento da parte atri- buída	03/02/2022 (Data da Atribui- ção)	 Levantamento da Raspberry; Escolha do melhor microcontrolador Low Power; 	Gabriel Men- danha	06/02/2022

Desenvolvimento da parte atri- buída	03/02/2022 (Data da Atribui- ção)	 Fechamento da EAP de Eletrônica; Diagrama da Arquitetura; Listar os Riscos e Requisitos referentes à Eletrônica 	Julie Del- chova	09/02/2022
Desenvolvimento da parte atri- buída	03/02/2022 (Data da Atribui- ção)	 Pesquisa e escolha da fonte a ser utilizada; Levantamento de energia gasta dos componentes escolhidos e possível bateria 	Daniel Elie- zer	09/02/2022
Desenvolvimento da parte atri- buída	03/02/2022 (Data da Atribui- ção)	 Pesquisa e escolha da possível fonte a ser utilizada de acordo com os requisitos; Levantamento de energia gasta dos componentes escolhidos e possível bateria 	Luan Otoniel	09/02/2022

Tabela 20 – Atividades e Cronograma de Execução da Equipe de Estruturas Fonte: autoria própria.

A 4:: J - J -	Data da	Observaçõe	Dantiainaaãa
Atividade	Atividade	Observação	Participação

Reunião de equipe	02/02/2022	 Levantamento de dúvidas para reunião com o professor Alex e com os professores Rhander e Ronne; Organização das atribuições de cada membro da equipe de estruturas Discussão sobre requisitos funcionais e não funcionais. 	Toda equipe estrutura	a de
Entregas do PC1	04/02/2022	EAP, riscos do projeto, custos, es- boço e detalhamento dos requisi- tos. Entregas divididas entre os in- tegrantes do grupo.	Toda equipe estrutura	a de
Reunião com os professores Rhan- der e Ronne	04/02/2022	 Discussão sobre a solução proposta pelo grupo; Seleção do melhor formato: geometrias que não dificultassem manufatura; Seleção do material adequado: escolha da melhor opção como fibra de vidro; Discussão sobre motores: um para cada trio de rodas para o melhor movimento de avanço do conjunto: 	Toda equipe estrutura	a de
Reunião de alinhamento	07/02/2022	Fechamento das soluções para a parte estrutural do <i>DoGuide</i>	Toda equipe estrutura	a de

A.7 Levantamento de riscos

Os principais riscos levantados para a execução do projeto podem ser vistos nos tópicos conforme se segue:

Tabela 21 – Tabela de riscos do produto DoGuide. Fonte: $autoria\ pr\'opria.$

Risco	Descrição do	Probabilidade	Impacto	Resposta ao
	risco	de ocorrência	_	risco
Planejamento de rotas mal otimizado	Rotas que o usuário devem fazer estarem mal otimizadas por conta de má interpretação dos dados	Baixo	Alto	Inserir rotinas de validação de dados, assim como reports contínuos da saúde das APIs
Falha na Co- municação de API Trajetó- ria	Eventuais problemas de comunicação com API para traçar a rota seja pelo Maps ou Moovit.	Baixo	Alto	Orientar o usuário sobre possíveis problemas(feedback) e aguardar até que a comunicação seja feita novamente.
Limite de Armazenamento de Rotas	Evitar encher o armazenamento do robô com muitas rotas	Médio	Médio	Estiplular as principais N rotas a partir de um rankeamento das rotas mais utilizadas ou limitar em N trajetos a serem armazenados
Ausência de banda de internet	Eventuais proble- mas com o limite de banda de inter- net atingido	Médio	Médio	Informar o usuá- rio sobre instabili- dade de conexão
Modelo de Visão Compu- tacional com baixa acurácia	Modelo ser inca- paz de trabalhar com os dados que estão sendo co- letados ou estar com mal treina- mento	Médio	Alto	Gerar Logs e Reports contí- nuos para que sejam feitas atu- alizações o mais rápido possível

Má validação da qualidade do código fonte	Não possuir métricas ou estar coletando métricas insuficientes a respeito do código fonte e do ciclo de vida de desenvoluimente.	Baixo	Média	Manter uma boa cultura de De- vOps e pipelines automatizados
Dimensionament incorreto das baterias	Erro no dimensio- namento da bate- toia que pode cau- sar gastos excessi- vos de bateria ou o fornecimento do produto.	Médio	Alto	Dimensionar a bateria em concordancia com a potência que o sistema necessite e implementar um sistema de segurança em caso de sobrecarga.
Dimensionamer incorreto dos fios condutores	Erro no dimensi- onamento dos fios to pode causar gas- tos excessivos ou a inoperação dos componentes ele- trônicos.	Baixo	Alto	Calcular a potencia utilizada em cada sistema do projeto a fim de que não haja sobrecarga nos fios por efeito Joule e nem que haja disperdicio de orçamento pelo fio ter um diametro alem do necessário.
Alocação in- correta das baterias	Problema ao carregar as bateriais devido a alocação indevida no sistema, causando o não carregamento destas.	Baixo	Alto	Identificar corretamente o local onde as baterias devem ser alocadas, assim como a polaridade correta das mesmas
Recarga in- completa da bateria	A recarga incompleta afetará o tempo de funcionamento do produto.	Alto	Médio	Informar o usuário sobre o estado real da bateria em determinados espaços de tempo

Falha no car- regador das baterias	Carregador ser incapaz de carregar de forma efetiva as baterias, inutilizando o produto por falta de alimentação.	Médio	Alto	Dimensionar o carregador de forma com que ele consiga carregar a bateria completamente
Aquecimento do circuito	Aquecimento provocado pelos componentes do circuito	Alta	Média	Garantir um sis- tema de arrefe- cimento adequado para o circuito
Mau funcio- namento nos sensores	Sensores com falta de funcionamento ou com uma má calibração.	Alto	Alto	Fazer uma calibração automática de todos os sensores automaticamente antes do uso.
Falha na captação dos comandos do usuário	Erro de comunicação do usuário para a maquina que impede o correto funcionamento para a necessidade requerida naquele momento pelo usuário.	Alto	Alto	Escolher o melhor sistema de capta- ção de informa- ções para que esse erro seja reduzido ao máximo
Falha na emissão dos alertas para usuário	Erro de comunicação da maquina para o usuário, não o alertando de maneira correta e descumprindo com a real intenção do produto.	Alto	Alto	Dar ao usuário alertas redundantes: Se houver falha em um primeiro alerta, haverão outros alertas idênticos que evitão esse tipo de acidente.

Produto não ser capaz de captar as imagens	Erro operacional na camera do robô que impossi- bilite a captura de imagens a serem processadas	Medio	Médio	Projetar o sistema de forma que também funcione sem a câmera, utilizando, assim, somente os sensores.
Delay no processamento das imagens	Tempo de processamento da imagem maior do que o tempo de reação do robô	Médio	Alto	Utilizar um hard- ware que consiga fazer esse proces- samento no me- nor tempo possí- vel
Produto andar de maneira des- coordenada	Falta de calibra- ção nos drivers motores que irão garantir a loco- moção do robô	Baixa	Alto	Fazer uma calibração automática de todos os drivers de motores automaticamente antes do uso.
Não ser capaz de guiar de maneira auto- mática	Robô não ser capaz de guiar o usuário de maneira automática, tendo que o usuário levar o robô manualmente	Baixa	Alto	Fazer a checagem automática de funcionamento antes da utilização do usuário.
Sistema consumir mais energia do que calculado	Uso de energia além do esperado e calculado para o produto, diminuindo o tempo útil de uso.	Alto	Média	Projetar de maneira correta a potencia elétrica utilizada por cada parte do robô, com uma margem de segurança para várias condições adversas.

Não ser capaz de detectar chuva	Falha no sensor que detecta chuva.	Média	Alto	Utilização de mais sensores que detectam chuva e a calibração automática deste sensor.
Não ser capaz de identificar falta de ilumi- nação	Falha no sensor que detecta ilumi- nação, sendo ele principalmente a câmera	Média	Baixo	Projetar o sistema de forma que também funcione sem iluminação, utilizando, assim, somente os sensores.
Falha no acionamento da lanterna	Falha no aciona- mento da lanterna	Média	Baixo	Projetar o sistema de forma que também funcione sem iluminação, utilizando, assim, somente os sensores.
Obstáculos di- ferentes	não funcionalidade do produto devido obstáculos não levantados em projeto.	Alto	Alto	Fazer a checagem automatica de funcionamento antes da utiliza- ção do usuário
Falha na co- municação e integração dos sistemas	Sistemas não se integrarem de maneira correta	Médio	Alto	Ter a disponibi- lidade de atua- lizações no soft- ware que soluci- onam novos pro- blemas.
Forças externas	Forças externas maiores que as previstas inicial- mente	Baixo	Médio	Aumentar o fator de segurança para o projeto de estru- tura

Clima	Fatores climáticos externos que im- peçam o funciona- mento dos subsis-	Alto	Alto	Projetar a estrutura para que os componentes internos não tenham a possibilidade de entrar
	temas;			em contato com umidade
Resposta mecanica ao sistema eletrônico	Falta de resposta em tempo hábil entre sistemas mecânicos e controladores;	Medio	Alto	Utilizar a melhor relação entre hardware e software para que o usuário a resposta seja o mais rápido possível
Materiais	Desconforto do usuário com os materiais utilizados, ou mal funcionamento do robô por falha no critério de escolha do material.	Baixo	Baixo	Projetar a estrutura com materias que os seres humanos têm mais afinidade para manuseio e que suportam as solicitações de carregamento
Não funciona- lidade	Não sincronismo (eficiente) dos mecanismos de tração e direção impossibilitando a execução da tarefa.	Medio	Alto	Definir precisamente as posições e dimensões dos componetes
hiperdimension de subsiste- mas	Não suportar a carga miníma(subsistemas amento muito pesados) de outros subsistemas de maneira inviabilizar o projeto.	Baixo	Alto	Verificar a carga total dos subsistemas a qual o cão guia será submetido e projetar a estrutura para que suporte essas solicitações

Meios de pro- dução	Necessidade de tecnologia de fabricação ou peças com elevado grau de sofisticação não acessíveis.	Alto	Alto	Simplificar o design dos componentes e propor métodos de fabricação de fácil acesso
Praticidade.	Criar uma estrutura não funcional e que traga mais transtornos e trabalho ao usuário que benefícios.	Medio	Médio	Se ater com as di- mensões e peso do projeto para que seja leve e que seja o mais com- pacto possível
Ergonômico	Expor o usuário a situações, posições, forças e esforços que tragam alguma lesão física ou mental ao usuário.	Baixo	Médio	Projetar a estrutura de forma ergonômica para que não cause desconforto para o usuário

APÊNDICE B – Autoavaliação dos integrantes

Conforme as atividades executadas por todos os membros da equipe, cada um se avaliou conforme a tabela que se segue:

Integrante	Matrícula	Área	Autoavaliação
Adriana Aguiar de Sousa	150153341	Eletrônica	 Pesquisa de módulos eletrônicos e sensores úteis ao projeto, suas especificações e preços; Revisão e correção do relatório; Responsável pelo texto da Introdução (com exceção do parágrafo da norma 9050 e da Tabela de soluções comerciais); Participação frequente em todas as reuniões e atividades da diretoria e da área de eletrônica.
Bruno Henrique Sousa Duarte	170138551	Software	 Participação frequente nas reuniões e discussões relacionadas à área de software e geral; Colaboração no levantamento de custos, riscos, requisitos funcionais e não funcionais; Colaboração na escrita da documentação referente à área de software.

Bruno Pablo Alves Dias	160114896	Estrutura	 Participação frequente de todas reuniões e atividades no setor de estruturas; Participação na definição do escopo de projeto, levantamento de requisitos e afins.
Daniel Eliezer	170139751	Energia	 Participação frequente em todas as reuniões e atividades do grupo e da área de energia; Colaboração na solução de energia como um todo; Colaboração na escolha da fonte de alimentação; Colaboração na confecção do diagrama de blocos de energia.

Ernando Braga	160151732	Software	 Participação frequente em todas as reuniões e atividades da diretoria e da área de software; Colaboração na definição do escopo, requisitos, riscos e escrita da documentação; Colaboração na confecção de diagramas geral da solução de software e da arquitetura do software do DoGuide; Colaboração da confecção do diagrama geral da solução do DoGuide Colaboração na organização do repositório. Colaboração nos documentos de gerência do projeto
Eugênio Sales Siqueira	170033112	Software	 Participação nas reuniões e discussões relacionadas à área de software; Colaboração no levantamento de riscos, requisitos funcionais e não funcionais.

	170010571	Eletrônica	 Participação nas reuniões e atividades relacionadas ao projeto de de modo geral e no setor de Eletrônica; Colaboração quanto ao protótipo de componentes e arquitetura da
Gabriel Mendanha da Costa			parte eletrônica do projeto; • Colaboração quanto a parte teórica em eletrônica;
			• Colaboração quanto ao levanta- mento de riscos na parte de ele- trônica;
			Confecção da tabela de levanta- mento de riscos do projeto;
			• Participação em todas as reu- niões da diretoria e da área de software;
Gustavo Nogueira	170144259	Software	 Participação na elaboração dos documentos de requisitos, riscos e custos do projeto;
			 Participação na elaboração do tópico de soluções comerciais existentes;
			• Participação na elaboração do TAP.

Julie Delchova	150133693	Eletrônica	 Participação em todas as reuniões gerais, da diretoria e da área de Eletrônica e Energia; Participação na definição do escopo, requisitos, riscos e custos do projeto; Colaboração da confecção do digrama geral da Arquitetura de Eletrônica; Colaboração nos documentos de gerência do projeto. Colaboração na Estrutura Analítica do Projeto na parte de Eletrônica
Luan Otoniel	190128755	Energia	 Participação frequente em todas as reuniões e atividades do grupo e da área de energia; Colaboração na solução de energia como um todo; Definição dos riscos e requisitos relacionados a área de energia; Colaboração na confecção do diagrama de blocos de energia.
Lucas Hideo	170149595	Estrutura	 Participação frequente de todas reuniões e atividades no setor de estruturas e no geral; Estimativa do plano de custo estruturais.

Matheus de Avila Mariano	160137896	Estruturas	 Participação frequentemente de todas as reuniões e atividades da diretoria e do setor de estruturas; Colaboração na definição do escopo, requisitos e escrita da documentação; Desenho do esboço do DoGuide.
Wanderson Santos	170064191	Estrutura	 Definição de mecanismo de movimentação, requisitos funcionais e não funcionais da estrutura; Auxílio em definição de materiais e riscos estruturais; Participação frequente em todas as reuniões gerais e do setor da estrutura.
Wellingthon Diego Resende de Lima	150152183	Software	 Participação nas reuniões e discussões relacionadas à área de software; Colaboração na elaboração e revisão da documentação.