Androg ve Sayisal Isaretler Isaret Nedir?

Fiziksel bir olayın elektriksel olarak gösterilmesine isaret denir. Örnegin bir adadaki isi değisimini veya bir elektrik devresinden çekilen akımın değisimi isaretle gösterilebilir. Doğadaki fiziksel olayların hemen hemen hepsi isaretlerle gösterilir ve tanımlanır. Fiziksel isaretlerin değal hali onday yapıdadır. Arrak lofik devre tasarımında sayısal isaretler kullanılır.

- 1) Analog isaret Kesintisiz olarak sürekli değerler alan ve sahip olduğu değerleri devamlı olarak değisen büyüklük olarak tanımlayabiliriz
- 2) Sayısal izoret' En temelde bir ikili işlemdir. 1 veya Odurumu vardır. Belirli bir aralık ikerisinde atlamalı değerler alabilen isaret-Lerdir ikili isarette yalnızca iki farklı durum(değer) vardır. Bu iki değer 1/0, Daire/bosluk, yüksek/algak, var/yak, acık/kapalı

-) Saysal sistemler vaptiklari islemlere göre 3 temel grupta.
incelenir.

1) Bilesik Sayusal Sistem: Lojik devrenih aikisi gitislerih o anki durumu ile dagrudan ilgili olon devreterdir Temel Lofik kapılarla yapılan tasarımlar, toplayıcı ve çıkarıcı devrelere örnek götlere. billriz

2) Ardisil Sayisal Sistemler: Sistemin daha anceden sahip oldugu konum ve mevrut givis degiskenlerinin durumlarına bağlı çıkıs üreten sistemberdir.

der Sayrerlar, kaydedbaler ub.

3) Bellek Sayusal Sistemler: Ardisik lojigih belirli bir durumunun aklanması amacıyla kullanılırlar.

Analogdan Sayısala geniriciler ADC Sayısaldan analoga cevirialer DAC

Bolin 2

Sayı Sistemleri ve Kodlar

5: sayı sistemlerini

d: says sisteminde kullanslan rakam/karakter

R: Toplam degeri

1) Docimal (Onlyk)

Decimal	Binary	Octal	Hexodecimal
•	000000	00	Ø
2	000001	01	-01
3	000010	02	02
4	000011	<i>Ø</i> 3	03
5	000100	.04	oy
6	000101	ø	05
7	000110	06	06
8	000111	07	67
9	001000	10	08
10	00 1001	1	09
11	001010	12	$A \rightarrow 10$
	001100	13	$B \rightarrow 11$
12	010001	4	C -> 12
. 13	001110	16	0 -> 13
14		16	E -> 14
46	00 1111	22	F -> 15

Scanned by CamScanner

Binary sayinin Only saying dentisons (1100101, 1101) 2

$$=1.2^{6}+1.2^{5}+0.2^{4}+0.2^{3}+1.2^{2}+0.2^{1}.1.2^{6}+1.2^{7}+1.2^{7}+0.2^{3}+1.2^{4}$$
 $=(101,8125)_{10}$

8 tabanindan \rightarrow only (decimal)

 $(1278,632)_{g}$ \downarrow () 10

 $=1.8^{3}+2.8^{2}+7.8^{4}+3.8^{3}+6.8^{5}+6.8^{7}+2.8^{3}$
 $=(699,8207)_{10}$

Hexadecimal \rightarrow decimal

 $(88cD2,39F)_{10}=(9)_{10}$
 $=11x16^{4}+\cdots$

Binary \rightarrow Octol

 $(100011100110,110111)_{2}=(4346,67)_{g}$

Binary \rightarrow Hexadecimal

 $(100011100110,110111)_{2}=(886,Dc)_{16}$