МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формирования исполнительного адреса.

Вариант №3

Студент гр. 8381	Л	уценко Д.А.
Преподаватель	Ed	ремов М.А.

Санкт-Петербург 2019

Цель работы.

Изучить основные принципы трансляции, отладки и выполнения программ на языке Ассемблера. Разобраться в используемых режимах адресации и получаемых результатах.

Задание.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.
- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.
- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Ход работы.

1. Изменение набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, согласно своему варианту.

2. Трансляция программы с созданием файла диагностических сообщений. Объяснение обнаруженных ошибок и предупреждений и закомментирование операторов с ошибками в тексте программы.

```
C:\>LB2.LST
| Illegal command: LB2.LST.
| C:\>MASM.EXE LB2.ASM
| Microsoft (R) Macro Assembler Version 5.10
| Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.
| Object filename [LB2.OBJ]:
| Source listing [NUL.LST]: 1b2
| Cross-reference [NUL.CRF]:
| LB2.ASM(42): error A2052: Improper operand type
| LB2.ASM(42): warning A4031: Operand types must match
| LB2.ASM(53): warning A4031: Operand types must match
| LB2.ASM(53): error A2046: Multiple base registers
| LB2.ASM(73): error A2046: Multiple base registers
| LB2.ASM(74): error A2047: Multiple index registers
| LB2.ASM(81): error A2006: Phase error between passes
| 47842 + 461465 Bytes symbol space free
| 2 Warning Errors
| 5 Severe Errors
| C:\>_
```

• Ошибка lb2.asm(42): error A2052: Improper operand type (Неверный тип операнда)

Строка 42: mov mem3, [bx]

Тип операнда, нельзя читать из памяти и писать в память одной командой. В данном случае необходимо перевести информацию из памяти в регистр, а затем уже перевести информацию из регистра в необходимый сегмент.

• Предупреждение lb2.asm(49): warning A4031: Operand types must match (Несоответствие типов операндов)

Строка 49: mov cx, vec2[di]

Несоответствие размеров операндов, cx-1 байта, элемент vec2[di]-1 байт.

• Предупреждение lb2.asm(53): warning A4031: Operand types must match (Несоответствие типов операндов)

Строка 53: mov cx, matr[bx][di]

Несоответствие размеров операндов, cx - 2 байта, элемент matr[bx][di] - 1 байт.

• Ошибка lb2.asm(54): error A2055: Illegal register value (Незаконное использование регистра)

Строка 54: mov ax,matr[bx*4][di]

Здесь используется базово-индексная адресация. Такая форма адресации используется в тех случаях, когда в регистре находится адрес начала структуры данных, а доступ надо осуществить к какому-нибудь элементу этой структуры. При данном типе адресации надо сначала изменить значение регистра, затем уже переводить информацию.

Ошибка lb2.asm(73): error A2046: Multiple base registers (несколько базовых регистров)

Строка 73: mov ax,matr[bp+bx]

Нельзя складывать регистры bp и bx. Так как здесь оба регистра базовые, надо сначала сложить значения регистров, и затем уже передавать информацию указателю из одного регистра.

• Ошибка lb2.asm(74): error A2047: Multiple index registers (несколько индексных регистров)

Строка 74: mov ax,matr[bp+di+si]

Нельзя складывать регистры di и si. Так как здесь два индексных регистра, надо сначала сложить значения регистров, и затем уже передавать информацию указателю из одного регистра.

• Ошибка lb2.asm(81): error A2006: Phase error between passes

Строка 95: Main ENDP

Данная ошибка свидетельствует о том, что в функции main содержатся ошибки.

3. Повторная трансляция программы и компоновка загрузочного модуля.

```
Z:\>SET BLASTER=A220 I7 D1 H5 T6

Z:\>MOUNT C "D:\Assembler\DOSBox-0.74-3\comp_arch_materials\labs\tools"

Drive C is mounted as local directory D:\Assembler\DOSBox-0.74-3\comp_arch_materials\labs\tools\

Z:\>C:

C:\>LB2.ASM

Illegal command: LB2.ASM.

C:\>masm LB2.ASM

Microsoft (R) Macro Assembler Version 5.10

Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [LB2.OBJ]: lb2

Source listing [NUL.LST]: lb2Now

Cross-reference [NUL.CRF]:

47832 + 461475 Bytes symbol space free

0 Warning Errors
0 Severe Errors

C:\>
```

4. Выполнение программы в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.

Начальные значения регистров:

$$AX = 0000$$
 $SI = 0000$ $CS = 1A0A$ $IP = 0000$ $Stack = 0000$ $BX = 0000$ $DI = 0000$ $DS = 19F5$ $CX = 00B0$ $BP = 0000$ $ES = 19F5$ $DX = 0000$ $SP = 0018$ $SS = 1A05$

	. Символьный		Содержимое регистров и ячеек памяти			
Адрес команды	код команды	16-ричный код команды	До выполнения	После выполнения		
0000	PUSH DS	1E	(SP)=0018 (IP)=0000 (DS)=19F5 Stack = 0000	(SP)=0016 (IP)=0001 (DS)=19F5 Stack = 19F5		
0001	SUB AX. AX	2BC0	(IP)=0001 (AX)=0000	(IP)=0003 (AX)=0000		

	1	 		, 	
0003	PUSH AX	50	(SP)= 0016 (IP)= 0003 (AX)=0000 Stack = 19F5	(SP)= 0014 (IP)= 0004 (AX)=0000 Stack(+0)= 0000 Stack(+2)=19F5	
0004	MOV AX, 1A07	B9071A	(AX)=0000 (IP)=0004	(AX)=1A07 (IP)=0007	
0007	MOV DS,AX	8ED8	(DS)=19F5 (IP)=0007 (AX) = 1A07	(DS)= 1A07 (IP)= 0009 (AX) = 1A07	
0009	MOV AX, 01F4	B8F401	(AX)=1A07 (IP)=0009	(AX)= 01F4 (IP)= 000C	
000C	MOV CX,AX	8BC8	(IP)=000C (CX)=00B0 (AX) = 01F4	(IP)=000E (CX)=01F4 (AX)=01F4	
000E	MOV BL,24	B324	(BX)=0000 (IP)=000E	(BX)=0024 (IP)=0010	
0010	MOV BH,CE	B7CE	(BX)=0024 (IP)=0010	(BX)=CE24 (IP)=0012	
0012	MOV [0002],FFCE	C7060200CEFF	(IP)=0012	(IP)=0018	
0018	MOV BX,0006	BB0600	(BX)=CE24 (IP)=0018	(BX)=0006 (IP)=001B	
001B	MOV [0000],AX	A30000	(IP)=001B	(IP)=001E	
001E	MOV AL,[BX]	8A07	(AX)=01F4 (IP)=001E	(AX)=0108 (IP)=0020	
0020	MOV	8A4703	(IP) = 0020 $(AX) = 0108$	(IP) = 0023 (AX) = 0105	
	AL,[BX+03]				
0023	MOV CX,	8B4F03	(CX) = 01F4 (IP) = 0023	(CX) = 0105 (IP) = 0026	
0023	[BX+03]	05 IF 05	(H) = 0023	(ii) = 0020	
			(DI) = 0000	(DI) = 0002	
0026	MOV DI, 0002	BF0200	(IP) = 0026	(IP) = 0029	
0029	MOV AL, [DI+ 000E]	8A850E00	(AX) = 0105 (IP) = 0029	(AX) = 011E (IP) = 002D	
0029	· -	8A850E00	' '	(IP)= 002D	

002D	MOV BX, 0003	BB03000	(IP) = 002D (BX) = 0006	(IP) = 0030 (BX) = 0003	
0030	MOV AL, [BX+DI+DI]	8A811600	(IP) = 0030 $(AX) = 011E$	(IP) = 0034 $(AX) = 0107$	
0034	MOV AX, 1A07	B8071A	(AX) = 0107 (IP)= 0034	(AX) = 1A07 (IP) = 0037	
0037	MOV ES, AX	8EC0	(ES) = 19F5 (IP) = 0037	(ES) = 1A07 (IP) = 0039	
0039	MOV AX, ES:[BX]	268B07	(AX) = 1A07 (IP) = 0039	(AX) = 00FF (IP) = 003C	
003C	MOV AX, 0000	B80000	(AX)= 00FF (IP)= 003C	(AX)=0000 (IP) = 003F	
003F	MOV ES, AX	8EC0	(ES) = 1A07 (IP) = 003F	(ES)= 0000 (IP)= 0041	
0041	PUSH DS	1E	(IP)= 0041 (SP)= 0014 Stack(+0)=0000 Stack(+2) = 19F5 Stack(+4) = 0000	(IP)= 0042 (SP)= 0012 Stack(+0)=1A07 Stack(+2) =0000 Stack(+4) =19F5	
0042	POP ES	07	(SP)= 0012 (ES)=0000 (IP)= 0042 Stack(+0)=1A07 Stack(+2) =0000 Stack(+4) =19F5	(SP) = 0014 (ES)=1A07 (IP)= 0043 Stack(+0)=0000 Stack(+2) =19F5 Stack(+4) =0000	
0043	MOV CX, ES:[BX—01]	268B4FFF	(CX) = 0105 (IP) = 0043	(CX)= FFCE (IP)= 0047	

			(AX) = 0000	(AX) = FFCE
0047	XCHG AX, CX	91	(CX) = FFCE	(CX) = 0000
			(IP)=0047	(IP)=0048
0048	MOV DI, 0002	BF0200	(IP) = 0048	(IP) = 004B
004B	MOV ES:[BX+DI], AX	268901	(IP) = 004B	(IP) = 004E
004E	MOV BP, SP	8BEC	(IP) = 004E	(IP) = 0050
OUIL	WO V BI , SI	OBLE	(BP) = 0000	(BP) = 0014
			(IP) = 0050	(IP) = 0054
			(SP)=0014	(SP)=0012
0050	PUSH [0000]	FF360000	Stack(+0)=0000	Stack(+0)=01F4
0020		1130000	Stack(+2) =19F5	Stack(+2) =0000
			Stack(+4) =0000	Stack(+4) =19F5
			(IP) = 0054	(IP) = 0058
			(SP) = 0012	(SP) = 0010
			Stack(+0)=01F4	Stack(+0)=FFCE
0054	PUSH [0002]	FF360200	Stack(+2) =0000	Stack(+2) =01F4
			Stack(+4) =19F5	Stack(+4) =0000
			Stack(+6)=0000	Stack(+6)= 19F5
0058	MOV BP, SP	8BEC	(IP) = 0058	(IP) = 005A
	,,,,		(BP) = 0014	(BP) = 0010
005A	MOX DX,	8B5602	(IP) = 005A	(IP) = 005D
00011	[BP+02]	020002	(DX) = 0000	(DX) = 01F4
			(IP) = 005D	(IP) = FFCE
			(SP) = 0010	(SP)=0016
005D	RET Far	CB	(CS)=1A0A	(CS)=01F4
			Stack(+0)=FFCE	Stack(+0)= 19F5
			Stack(+2) =01F4	Stack(+2) =0000

	Stack(+4) =0000	Stack(+4) =0000
	Stack(+6)= 19F5	Stack(+6)=0000

Выводы.

В ходе выполнения лабораторной работы были приобретены знания о режимах адресации и формировании исполнительного адреса в языке Ассемблера.

Приложение А. Код программы lb2.asm

```
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 8,7,6,5,1,2,3,4
vec2 DB -30,-40,30,40,-10,-20,10,20
matr DB -1,-2,-3,-4,8,7,6,5,-5,-6,-7,-8,4,3,2,1
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
push DS
sub AX, AX
push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx, ax
mov bl, EOL
mov bh, n2
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al, [bx]
; mov mem3, [bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
 ;mov cx,vec2[di]
; Адресация с базированием и индексированием
 mov bx, 3
```

```
mov al,matr[bx][di]
;mov cx,matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ---- вариант 2
mov es, ax
push ds
pop es
mov cx, es: [bx-1]
xchg cx, ax
; ---- вариант 3
mov di, ind
mov es:[bx+di],ax
; ---- вариант 4
mov bp, sp
;mov ax,matr[bp+bx]
 ;mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx, [bp]+2
 ret 2
Main ENDP
CODE ENDS
                                END Main
                       Приложение Б. Листинг.
 Microsoft (R) Macro Assembler Version 5.10
10/16/22 12:35:3
Page 1-1
                    ; Программа изучения режимов адресации про-
цессо
                    pa IntelX86
 = 0024
                         EOL EOU '$'
 = 0002
                         ind EQU 2
 = 01F4
                         n1 EQU 500
 =-0032
                         n2 EQU -50
```

```
; Стек программы
 0000
                         AStack SEGMENT STACK
 0000
                          DW 12 DUP(?)
      000C[
        3333
                ]
 0018
                         AStack ENDS
                    ; Данные программы
 0000
                         DATA SEGMENT
                    ; Директивы описания данных
 0000
      0000
                         mem1 DW 0
                         mem2 DW 0
 0002
      0000
 0004 0000
                         mem3 DW 0
 0006
     08 07 06 05 01 02 vec1 DB 8,7,6,5,1,2,3,4
       03 04
      E2 D8 1E 28 F6 EC vec2 DB -30,-40,30,40,-10,-20,10,20
 000E
       0A 14
      FF FE FD FC 08 07 matr DB -1,-2,-3,-4,8,7,6,5,-5,-6,-7,-
8, 4, 3, 2, 1
       06 05 FB FA F9 F8
       04 03 02 01
 0026
                         DATA ENDS
                    ; Код программы
 0000
                         CODE SEGMENT
                     ASSUME CS:CODE, DS:DATA, SS:AStack
                    ; Головная процедура
 0000
                         Main PROC FAR
 0000
      1E
                    push DS
 0001
      2B C0
                          sub AX, AX
 0003 50
                     push AX
 0004 B8 ---- R
                          mov AX, DATA
 0007 8E D8
                          mov DS, AX
                    ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕ-
ний
```

; Регистровая адресация

```
0009 B8 01F4 mov ax, n1
000C 8B C8
                     mov cx, ax
000E B3 24
                      mov bl, EOL
0010 B7 CE
                       mov bh, n2
                  ; Прямая адресация
0012 C7 06 0002 R FFCE mov mem2, n2
0018 BB 0006 R
                      mov bx, OFFSET vec1
001B A3 0000 R mov mem1,ax
                 ; Косвенная адресация
001E 8A 07
                       mov al, [bx]
                  ; mov mem3, [bx]
                  ; Базированная адресация
0020 8A 47 03
                            mov al, [bx]+3
0023 8B 4F 03
                            mov cx, 3[bx]
                  ; Индексная адресация
Microsoft (R) Macro Assembler Version 5.10
10/16/22 12:35:3
Page 1-2
0026 BF 0002
                       mov di, ind
0029 8A 85 000E R mov al, vec2[di]
                   ;mov cx,vec2[di]
                  ; Адресация с базированием и индексированием
002D BB 0003
                       mov bx,3
0030 8A 81 0016 R
                       mov al,matr[bx][di]
                   ;mov cx,matr[bx][di]
                   ;mov ax,matr[bx*4][di]
                  ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕН-
TOB
                  ; Переопределение сегмента
                  ; ---- вариант 1
0034 B8 ---- R
                      mov ax, SEG vec2
0037 8E CO
                     mov es, ax
```

```
0039 26: 8B 07 mov ax, es:[bx]
003C B8 0000 mov ax, 0
                ; ----- вариант 2
003F 8E C0
                      mov es, ax
0041 1E
                 push ds
0042 07
                 pop es
0043 26: 8B 4F FF mov cx, es:[bx-1]
0047 91
                 xchg cx,ax
                 ; ---- вариант 3
                      mov di, ind
0048 BF 0002
004B 26: 89 01
                      mov es:[bx+di],ax
                 ; ---- вариант 4
004E 8B EC
                      mov bp,sp
                 ;mov ax,matr[bp+bx]
                  ;mov ax,matr[bp+di+si]
                 ; Использование сегмента стека
0050 FF 36 0000 R push mem1
0054 FF 36 0002 R push mem2
0058 8B EC
                      mov bp,sp
005A 8B 56 02
                         mov dx, [bp] +2
005D CA 0002
                      ret 2
0060
                     Main ENDP
                      CODE ENDS
0060
                  END Main
Microsoft (R) Macro Assembler Version 5.10
10/16/22 12:35:3
Symbols-1
Segments and Groups:
                              Length Align Combine
              Name
Class
```

ASTACK			•	•	•	•	•				0018	PARA	STACK
CODE .				•						•	0060	PARA	NONE
DATA .	•	•	•	•	•	•			•		0026	PARA	NONE
Symbols	٠.												

Symbols:

	N a m e	Type Value Attr
EOL		NUMBER 0024
IND		NUMBER 0002
MAIN		F PROC 0000 CODE Length =
0060		
MATR	• • • • • • • •	L BYTE 0016 DATA
MEM1		L WORD 0000 DATA
MEM2		L WORD 0002 DATA
MEM3		L WORD 0004 DATA
N1		NUMBER 01F4
N2		NUMBER -0032
VEC1		L BYTE 0006 DATA
VEC2		L BYTE 000E DATA
@CPU		TEXT 0101h
@FILENAME		TEXT LB2
@VERSION		TEXT 510

47832 + 461475 Bytes symbol space free

⁸³ Source Lines

⁸³ Total Lines

¹⁹ Symbols

- 0 Warning Errors
- O Severe Errors