

VLSI Physical Design with Timing Analysis

Lecture – 2: Introduction to VLSI Physical Design

Bishnu Prasad Das

Department of Electronics and Communication Engineering

Contents

- VLSI Design Flow
- Physical Design Flow
- Physical Verification
 - Design Rule Check(DRC)
 - Layout vs. Schematic(LVS)
 - Electrical Rule Check(ERC)
 - Antenna Rule Check(ARC)

VLSI Design Flow

System Specification

- Define overall goals and high-level requirements.
- Specify functionality, performance targets, physical dimensions, and production technology constraints.
- Involve chip architects, circuit designers, product marketers, operation managers, and layout and library designers.

VLSI Design Flow

Top-level MIPS block diagram

Picture Source: Weste, Neil and Harris, David: CMOS VLSI Design: A Circuits and Systems Perspective

Architectural Design

- Decide on the integration of analog and digital blocks.
- Establish memory management strategies.
 - serial/parallel, addressing scheme
- Determine the number and types of computational cores
 - processors, DSP units
- Choose communication protocols and support for standard interfaces.
- Consider using hard and soft intellectual property (IP) blocks.

VLSI Design Flow


```
module Verilog_mod(out1, out2,...,in1, in2...)
  input in1, in2;
  output out1, out2;
  always@(posedge clk) begin
    out1 = in1 + in2;
  i
  end
endmodule
```

RTL: Verilog Code

Functional and Logic Design

- Define the functionality and connectivity of each module.
- Perform functional design to specify high-level behavior.
- Logic design is done at the register-transfer level (RTL) using HDLs.
- Simulate and verify module behavior thoroughly.
- Utilize logic synthesis tools to convert HDL into low-level circuits.

VLSI Design Flow

Circuit Design

- Identify critical elements designed at the transistor level.
- Examples include static RAM blocks, analog circuits, and highspeed functions.
- Use circuit simulation tools like SPICE to verify correctness.
- Consider factors like transistor size, power, and manufacturing variability.

VLSI Design Flow

Physical Design

- Instantiate design components with geometric representations.
- Assign spatial locations (placement) and routing connections (routing) to components.
- Adhere to design rules representing fabrication constraints.
- Consider the impact on performance, area,
 reliability, power, and yield.

VLSI Design Flow

DRC LVS ERC ARC

Physical Verification and Signoff

- Perform design rule checking (DRC) to ensure technology constraints are met.
- Conduct layout vs. schematic (LVS) checking to verify functionality.
- Extract parasitic parameters and verify electrical characteristics.
- Check for potential antenna effects and proper power/ground connections.
- Ensure minimal layout changes at this stage.

VLSI Design Flow

Fabrication

- DRC-clean layout is sent to a silicon foundry for manufacturing (tape out).
- Use photomasks to define patterns on silicon wafers.
- Commonly used wafer sizes (e.g., 200mm to 300mm).

VLSI Design Flow

Chip in a 40-pin dual-inline package

Packaging and Testing

- Choose packaging types such as DIPs, PGAs, or BGAs based on application and cost requirements.
- Describe packaging methods like wire bonding or solder bumps.
- Sequencing of manufacturing, assembly, and testing.
- Testing for functionality, timing, and power.

VLSI Design Flow

Physical Design Cycle

VLSI Physical Synthesis

Physical design cycle transforms a circuit diagram into a layout.

Partitioning breaks the circuit into smaller modules.

Floor planning determines module shapes and

arrangements.

Placement finds spatial locations for cells within each module.

- Clock Tree Synthesis:
 - Determines buffering, gating, and routing of the clock signal.
 - Meets prescribed skew and delay requirements.

Signal Routing:

- Power and ground routing distributes power and ground nets.
- Global routing allocates resources for connections.
 - Example resources include routing tracks in channels and in <u>switch</u>

boxes.

 Detailed routing assigns routes to specific metal layers and routing tracks.

Timing Closure:

Optimizes circuit performance through placement and routing.

Physical Verification

- To ensure correct electrical and logical functionality, the layout must be fully verified after Physical Design.
 - Design Rule Check(DRC)
 - Layout vs Schematic Check(LVS)
 - Electrical Rule Check(ERC)
 - Antenna Rule Check(ARC)

Design Rule Check(DRC)

Design Rules:

- Geometric constraints on layout to ensure successful fabrication.
- Must be followed to avoid any manufacturing defects.
- Minimum allowable drawing dimensions.
- DRC ensures layout data complies with fabrication rules.

Design Rule Check(DRC)

Design Rule Check

Design Rule Examples:

1. Minimum Width

Violation

Fixed

2. Minimum Spacing

Fixed

3. Minimum Enclosure/Overlap

- LVS checks that transistors in a layout are connected in the same way as in the circuit schematic.
- Compares extracted netlist from the layout to the original schematic netlist.

- LVS Errors are classified into two main categories:
 - Compare errors
 - Device mismatch
 - Net mismatch
 - Property errors
 - Port swap errors

- Extraction errors
 - Missing device terminal

- Device extraction error
- Text short and open

O Schematic is golden reference

Electrical Rule Check(ERC)

- Verifies the correctness of power and ground connections
- Verifies that signal transition times (slew), capacitive loads, and fanouts are appropriately bounded.

Antenna Effect:

- Plasma etching of a metal wire connected to a transistor gate can lead to the accumulation of charge, which may damage the gate oxide.
- This is also called
 plasma-induced gate-oxide damage.

Consequences of Antenna Effect:

- Increases gate leakage.
- Changes the threshold voltage.
- Reduces the life expectancy of the transistor.

 Longer wires accumulate more charge and are more likely to damage the gates.

- Diodes formed by source and drain diffusions can conduct significant current during the high-temperature plasma etch.
- These diodes help bleed off the charge from wires, preventing gate oxide damage.

Antenna Rules:

Antenna rules specify the maximum metal area connected to a gate without a source or drain connection to act as a discharge element.

Antenna Rule Violations:

 Long metal 1 connected to the gate of MOSFET can cause damage.

- Fixing Violation:
 - 1. By adding a metal-2 jumper.

- Fixing Violation:
 - 2. By adding a diode.

Thank You

