NII International Internship program Segmented Fusion

Warping, Refinement

20180110

Sylvia

Advisors: Prof. A.Sugimoto

Ass.Prof. D.Thomas

Summary

Summary

- Previously
 - Warp meshes by irregular extrapolation
- Progress
 - Modify the warping in spine part which has more than 8 corners
 - Implement the new warping method in Fusion and Refinement

Presenter: Sylvia

Warping in spine

In 1D, if there are more than two points, the interpolation cannot be linear.

Presenter: Sylvia

Lie Algebra Warping

- $\mathbf{T}_1 = \mathbf{e}^{\mathbf{x}_1} \in \mathbb{SE}(3), \mathbf{T}_2 = \mathbf{e}^{\mathbf{x}_2} \in \mathbb{SE}(3)$
- $\mathbf{x}_1, \mathbf{x}_2 \in \mathfrak{se}(3)$
- $\mathbf{T} = e^{wx_1 + (1-w)x_2}$, where $0 \le w \le 1$

Presenter: Sylvia

Advisors: Prof. A.Sugimoto, Ass.Prof. D.Thomas

Resource: 031_Lie.avi

Fusion

I implemented the same warping in Fusion.

Fusion mesh

Presenter: Sylvia

Refinement

I use least square to optimize the distance between vertex and depth image, and find one transform matrix for each bounding-box.

Resource: 031_refinement.avi

Presenter: Sylvia

Next step

Refinement

Presenter: Sylvia