

Contents

- > Introduction
- Exploratory data analysis
- > Modelling
- > Results
- > Conclusions

Introduction

Why Washington DC?

- > It's a small state which enabled us to use regional data such as weather data
- ➤ The city experiences a range of climate conditions, from hot summers to cold winters
- Complex energy data due to the recent change in energy sources
- The city has shown a commitment to sustainable energy and various energy-related policies

Objective

Understand and forecast residential electricity sales (MWh) in Washington D.C.

Data sources

Energy Data: EIA, Energy Information Administration, an independent organization doing statistics and analysis.

Market Data: EIA, Energy Information Administration

Weather Data: Meteostat Python package

How it works?

- Select location (coordinates),
- Range
- start/end time
- It localize the nearest weather stations
- Collect data

Exploratory Data Analysis

Residential sales time series

Seasonal plot

Seasonal subseries

Autocorrelation for residential sales

Partial autocorrelation for residential sales

Lags plot

STL decomposition

Seasonally adjusted values comparison

An insight on our dataset

Current generation

In 2019, the District claimed that 100% of the city's electricity come from renewable sources by 2032, including at least 5.5% from solar energy.

Target: Sales Residential				
Variables	Correlation			
Biomass	0.433			
Gas	0.361			
Solar, thermal	0.289			

An insight on our dataset

Market Data

Target: Sales Residential				
Variables	Correlation			
Customers transportation	0.457			
Biomass	0.433			
Customers residential	0.401			
Heat and power (commercial) cogeneration	0.396			
Gas	0.361			
Price Residential	0.339			
Customers commercial	0.336			
Solar, thermal, and photovoltaic	0.289			
tmin	0.284			

An insight on our dataset

Weather data

Target: Sales Residential				
Variables	Correlation			
tmin	0.284			
tavg	0.257			
tmax	0.240			
wspd	-0.204			
prcp	0.105			
pres	-0.098			

Modelling

- 1. Benchmark models
- 2. Linear regression
- 3. Multiple linear regression
- 4. Holt-Winters exponential smoothing
- 5. ARIMA
- 6. KNN
- 7. Gradient Boosting
- 8. GAM

Train and test set

• Model fitting on pre 2022 and forecasting and testing on 2022

Benchmarks: drift, mean, naive, seasonal naive

ME	RMSE	MAE	MPE	MAPE	ACF1
8,666.49	39,612.47	33,123.80	0.86	15.57	0.51
33,614.06	51,223.47	40,570.13	13.15	17.39	0.51
8,678.17	39,613.76	33,122.00	0.86	15.57	0.51
-747.67	9,587.53	8,307.67	-0.55	3.87	-0.09
	8,666.49 33,614.06 8,678.17	8,666.49 39,612.47 33,614.06 51,223.47 8,678.17 39,613.76	8,666.49 39,612.47 33,123.80 33,614.06 51,223.47 40,570.13 8,678.17 39,613.76 33,122.00	8,666.49 39,612.47 33,123.80 0.86 33,614.06 51,223.47 40,570.13 13.15 8,678.17 39,613.76 33,122.00 0.86	8,666.49 39,612.47 33,123.80 0.86 15.57 33,614.06 51,223.47 40,570.13 13.15 17.39 8,678.17 39,613.76 33,122.00 0.86 15.57

SNAIVE residuals analysis

Linear models: trend and trend + season

Forecast of linear model: trend and trend + season

Linear models: Residuals histogram

Durbin Watson = 1.199, p-value =
0.00000000002131

Durbin Watson = 1.7889, p-value = 0.04598

Linear models: ACF residuals

Multiple linear regression variable selection

- Variable selection through AIC stepwise selection
- Multiple collinearity reduction through max VIF variable suppression (VIF = 7 threshold)

Variable	P_Value
(Intercept)	0.000001
Electric.GeneratorsIndependent.Power.Producers	0.000040
Solar.Thermal.and.Photovoltaic	0.894031
Price_commercial	0.300827
Price_industrial	0.135612
Customers_transportation	0.000000
Price_total	0.654119
tavg	0.443434
prcp	0.472792
wspd	0.062141

^{*} Full train data

Multiple linear regression forecast

MLR Predictions vs Actual

Holt-Winters exponential smoothing method

ARIMA: differencing

ARIMA: second differencing

ARIMA forecasting (auto arima)

Time

model	ME	RMSE	MAE	MPE	MAPE	ACF1
ARIMA	-6,853.93	22,223.89	18,591.54	-4.63	9.24	0.02

SARIMA forecasting (manual arima)

Formula \approx ARIMA(5,1,0)(1,0,1)[12]

.model	ME	RMSE	MAE	MPE	MAPE	ACF1
ARIMA_manual	-2,920.62	8,273.20	6,367.99	-1.76	3.19	-0.01

Residuals manual SARIMA

KNN regression

MAPE

5.94

Generalized Boosted Regression Modeling (GBM)

Generalized additive model (GAM)

GAM Test Results

.model	ME	RMSE	MAE	MPE	MAPE
GAM complete	-12,077.36	16,358.58	13,710.96	-6.39	7.14
GAM splitted	34,059.33	43,300.14	38,227.46	15.49	17.98

Test from Full Training

Test from Split Training

Results and Conclusions

Results

Model	Predictors	RMSE	MAE	MAPE		
Benchmarks				111		
Drift	last 2 values	39,612	33,124	16		
Mean	mean	51,223	40,570	17		
Naïve	last value	39,614	33,122	16		
Seasonal naïve	last value from same s	9,588	8,308	3.87		
Linear Regression						
TSLM	t + s	11,233	8,958	4.53	◄	AIC: 5,997
MLR	***	37,464	32,672	15.79		
MLR 2012	***	40,805	35,221	16.86		
ARIMA						
ARIMA	ARIMA(5,1,0)(1,0,1)[12]	8,273	6,368	3.19		AIC: 5,389
auto ARIMA	ARIMA(5,1,0)	22,224	18,592	9.24		0,0
Non-Parametric						
Gradient Boosting	Decision Trees	9,642	8,775	4.22	◄	AIC: N/A
KNN	2 NN	14,145	11,701	5.94		•
Exponential Smoothing						
Holt-Winters'(+)	AAA	10,237	7,739	3.87	◄	AIC: 6,489
Blended						
GAM	***	16,358	13,711	7.14		
GAM 2012	***	43,300	38,227	17.39		

^{***}these models are based on numerous predictors and smoothing parameters determined through stepwise regression.

Conclusions

- Best models:
 - Seasonal ARIMA
 - Seasonal Naive
 - TSLM with trend and seasonality
- Very simple methods such as SNAIVE perform very well on forecasting
- Gradient Boosting performs decently, but black box model lowers interpretability
- ➤ Holt-Winters appears to capture consistent seasonal variation well, but has a worse AIC than best models

Final Overview and Future Directions

Problem Formulation & Data Collection

Exploratory Data Analysis

Modelling

Model Selection

Modeled over 20 years of electricity sales data in residential homes in DC as a case study for energy consumption in US.

Determined trends and seasonality in data, studied history of energy sources in DC, and performed subjective feature selection. Ran ~ dozen models on training set (full or post-2012) and tested on last year of data. After assessing performance metrics, AIC, and behavior of residuals, determined a couple options for future forecasting: **seasonal naive**, **tslm**, and **SARIMA**.

References

https://www.eia.gov/electricity/data.php

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.

Guidolin, M. (2023). Innovation Diffusion Models: Theory and Practice. John Wiley & Sons.

