Machine learning

Model Evaluation, Validation sets and PCA

Exercise VI

פיתוח: משה פרידמן

Model quality evaluation

MODEL

Evaluation

GOOD?

BAD?

R.Brilenkov

שיערוך המודל - Confusion matrix

		Predicted				
		Positive	Negative			
True	Positive	True Positive (TP)	False Negative (FN)			
	Negative	False Positive (FP)	True Negative (TN)			

- True Positive •
- זיהוי נכון של דוגמא חיובית 🌣
- False Positive = False Alarm
 - זיהוי של דוגמא שלילית כחיובית
 - True Negative •
 - זיהוי נכון של דוגמא שלילית
- False Negative = Miss Detection
 - א זיהוי של דוגמא חיובית כשלילית

תרגיל 2א –זיהוי זברות – שערוך המודל – Confusion matrix

	חזוי		n .
		זברה	לא זברה
אמת	זברה		
	לא זברה		

- לצורך זיהוי תמונות של זברות נבנה מסווג שמטרתו להפריד בין זברות לבין חיות אחרות.
 - כאשר המסווג נתקל בתמונה של זברה היא מסווגת תמיד כזברה.
- כאשר המסווג נתקל בתמונה של חיה אחרת, היא מסווגת בטעות כזברה ב- 5% מהמקרים.
 - המסווג הופעל על מאגר תמונות בו יחס הזברות לחיות אחרות הוא 1:1000.
 - בנו את Confusion matrix של המסווג.

תרגיל 2א –זיהוי זברות – שערוך המודל – Confusion matrix - פתרון

		חזוי					
		זברה	לא זברה				
×	זברה	1	0				
אמר	לא זברה	50	950				

- לצורך זיהוי תמונות של זברות נבנה מסווג שמטרתו להפריד בין זברות לבין חיות אחרות.
 - כאשר המסווג נתקל בתמונה של זברה היא מסווגת תמיד כזברה.
- כאשר המסווג נתקל בתמונה של חיה אחרת, היא מסווגת בטעות כזברה ב- 5% מהמקרים.
 - המסווג הופעל על מאגר תמונות בו יחס הזברות לחיות אחרות הוא 1:1000.
 - בנו את Confusion matrix של המסווג.

error-rate – ו accuracy – שיערוך המודל

		Predicted		
		Positive	Negative	
True	Positive	True Positive (TP)	False Negative (FN)	
	Negative	False Positive (FP)	True Negative (TN)	

- מדד Accuracy יחס הדגימות שסווגו נכון לסך הדגימות
- לסך שגויה לסך Error rate יחס הדגימות שסווגו בצורה שגויה לסך הדגימות
 - יתרונות המדדים:
 - פשוטים לחישוב
 - שוטים להבנה
 - * חסרונות המדדים:
 - המדדים מטעים, אם כמות המחלקות לא מאוזנת, בין המחלקה החיובית לשלילית.
 - אין התייחסות למטרת החיזוי (המחלקה החיובית והשלילית מקבלים משקל שווה)

Credit: Dr. Koby Mike

recall – ו precision – שיערוך המודל

How many relevant items are selected?

		Predicted		
		Positive	Negative	
True	Positive	True Positive (TP)	False Negative (FN)	
	Negative	False Positive (FP)	True Negative (TN)	

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

Credit: Dr. Koby Mike

תרגיל 2ב – זיהוי זברות – שערוך המודל – חשבו את מדדי שיערוך המודל הבאים

$$\begin{array}{rcl} precision & = & \frac{TP}{TP + FP} \\ \\ recall & = & \frac{TP}{TP + FN} \end{array}$$

	המודל:	שיערוך	מדדי	את	חשבו
Accuracy	<i>y</i> =				

Error rate =

Precision =

Recall =

		חזוי		
		זברה	לא זברה	
×c	זברה	1	0	
אמת	לא זברה	50	950	

תרגיל 2ב – זיהוי זברות – שערוך המודל – חשבו את מדדי שיערוך המודל הבאים - פתרון

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

חשבו את מדדי שיערוך המודל:

Accuracy =
$$\frac{1+950}{1+950+0+50} \approx 95\%$$

Error rate =
$$\frac{50+0}{1+950+0+50} \approx 5\%$$

Precision =
$$\frac{1}{1+50} \approx 2\%$$

Recall =
$$\frac{1}{1+0}$$
 = 100%

שיערוך המודל – מדד F1

How many selected items are relevant?

Positive

(TP)

False

Positive

(FP)

Negative

How many relevant items are selected?

ממוצע (הרמוני) של מדדי recall-1 precision

0-1 נע בין

מקבל ערכים גבוהים רק אם:

שוב precision-א גם ה

גם ה-recall טוב ♦

Negative

(FN)

True

Negative

(TN)

F1	=	$2 \times precision \times recall$
		precision + recall

Credit: Dr. Koby Mike

תרגיל 2ג – זיהוי זברות – שערוך המודל – חשבו את מדד F1 - פתרון

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

		חזוי					
		זברה	לא זברה				
×c	זברה	1	0				
אמת	לא זברה	50	950				

חשבו את מדדי שיערוך המודל:

Precision =
$$\frac{1}{1+50} \approx 0.0196$$

$$Recall = \frac{1}{1+0} = 1$$

$$F1 =$$

$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$

תרגיל 2ג – זיהוי זברות – שערוך המודל – חשבו את מדד F1 - פתרון

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

		חזוי					
		זברה	לא זברה				
×C	זברה	1	0				
אמת	לא זברה	50	950				

חשבו את מדדי שיערוך המודל:

Precision =
$$\frac{1}{1+50} \approx 0.0196$$

$$Recall = \frac{1}{1+0} = 1$$

$$F1 \approx \frac{2 \cdot 0.0196 \cdot 1}{0.0196 + 1} \approx 0.03846$$

$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$

Multi-class classification evaluation

Multi-class example: diamond classification

The target contains 4 types of diamonds:

ideal, premium, good, and fair.

How could we evaluate the results?

Step 1: confusion matrix

Multi-class example: diamond classification-Confusion matrix

The target contains 4 types of diamonds:

ideal, premium, good, and fair.

We will use the One-vs-Rest strategy approach to transfer it to 4 binary classification problems:

- Task 1: ideal vs . not ideal [premium, good, fair]
- Task 2: premium vs. not premium [ideal, good, fair]
- Task 3: good vs. not good [ideal, premium, fair]
- Task 4: fair vs. vs. not fair [ideal, premium, good]

For each of these tasks we create a binary confusion matrix and derive the precision, recall and F1

- Task 1: ideal vs. not ideal
- Task 2: premium vs. not premium
- Task 3: good vs. not good
- Task 4: fair vs. vs. not fair

pre	ecision	recall	f1-score	support
Ideal	0.58	0.39	0.46	57
Premium	0.49	0.60	0.54	45
Good	0.68	0.73	0.70	74
Fair	0.61	0.64	0.62	74

Macro averaging: arithmetic mean of all metrics.

Question: What's the macro precision?

- Task 1: ideal vs. not ideal
- Task 2: premium vs. not premium
- Task 3: good vs. not good
- * Task 4: fair vs. vs. not fair

pre	ecision	recall	f1-score	support
Ideal	0.58	0.39	0.46	57
Premium	0.49	0.60	0.54	45
Good	0.68	0.73	0.70	74
Fair	0.61	0.64	0.62	74

Macro averaging: arithmetic mean of all metrics.

Question: What's the macro precision?

Answer: (0.58+0.49+0.68+0.61)/4=0.59

Question: What is the TP, FP, FN, TN for

every class?

Task 1: ideal vs. not ideal

♦ TP= , FP= , FN= , TN=

Task 2: premium vs. not premium

♦ TP= , FP= , FN= , TN=

Task 3: good vs. not good

♦ TP= , FP= , FN= , TN=

Task 4: fair vs. vs. not fair

♦ TP= , FP= , FN= , TN=

Confusion matrix 4x4

Question: What is the TP, FP, FN, TN for every class?

Task 1: ideal vs. not ideal

♦ TP= 22, FP=16, FN=35, TN=177

Task 2: premium vs. not premium

♦ TP=27, FP=28, FN=18, TN=177

Task 3: good vs. not good

♦ TP=54, FP=26, FN=20, TN=150

Task 4: fair vs. vs. not fair

* TP=47, FP=30, FN=27, TN=146

Predicted label

Confusion matrix 4x4

Task 1: ideal vs. not ideal

♦ TP= 22, FP=16, FN=35, TN=177

Task 2: premium vs. not premium

♦ TP=27, FP=28, FN=18, TN=177

Task 3: good vs. not good

♦ TP=54, FP=26, FN=20, TN=150

Task 4: fair vs. vs. not fair

TP=47, FP=30, FN=27, TN=146

Confusion matrix 4x4

For **micro-average**, we sum each one of the TP, FP, FN, TN and calculate the evaluation average metrics from the sum.

Exercise: calculate total TP and FN and derive micro-average recall

Task 1: ideal vs. not ideal

♦ TP= 22, FP=16, FN=35, TN=177

Task 2: premium vs. not premium

♦ TP=27, FP=28, FN=18, TN=177

Task 3: good vs. not good

♦ TP=54, FP=26, FN=20, TN=150

Task 4: fair vs. vs. not fair

TP=47, FP=30, FN=27, TN=146

Confusion matrix 4x4

For **micro-average**, we sum each one of the TP, FP, FN, TN and calculate the evaluation average metrics from the sum.

Exercise: calculate total TP and FN and derive micro-average recall

Answer:

TP-total=22+27+54+47=150 FN-total=35+18+20+27=100 Micro-average-Recall= 150/(150+100)=0.6

Validation and validation-sets

Introduction (1)

- Almost invariably, all the pattern recognition techniques that we have introduced have one or more free parameters
 - The number of neighbors in a kNN Classification Rule
 - The bandwidth of the kernel function in Kernel Density Estimation
 - The number of features to preserve in a Subset Selection problem
- Two issues arise at this point
 - Model Selection
 - How do we select the "optimal" parameter(s) for a given classification problem?
 - Validation
 - Once we have chosen a model, how do we estimate its true error rate?
 - The true error rate is the classifier's error rate when tested on the ENTIRE POPULATION
- If we had access to an unlimited number of examples, these questions would have a straightforward answer
 - Choose the model that provides the lowest error rate on the entire population
 - And, of course, that error rate is the true error rate
- However, in real applications only a finite set of examples is available
 - This number is usually smaller than we would hope for!
 - Why? Data collection is a very expensive process

Introduction (2)

- One may be tempted to use the entire training data to select the "optimal" classifier, then estimate the error rate
- This naïve approach has two fundamental problems
 - The final model will normally overfit the training data: it will not be able to generalize to new data
 - The problem of overfitting is more pronounced with models that have a large number of parameters
 - The error rate estimate will be overly optimistic (lower than the true error rate)
 - In fact, it is not uncommon to have 100% correct classification on training data
- The techniques presented in this lecture will allow you to make the best use of your (limited) data for
 - Training
 - Model selection and
 - Performance estimation

The holdout method

Split dataset into two groups

- Training set: used to train the classifier
- Test set: used to estimate the error rate of the trained classifier

The holdout method has two basic drawbacks

- In problems where we have a sparse dataset we may not be able to afford the "luxury" of setting aside a portion of the dataset for testing
- Since it is a single train-and-test experiment, the holdout estimate of error rate will be misleading if we happen to get an "unfortunate" split
- The limitations of the holdout can be overcome with a family of resampling methods at the expense of higher computational cost
 - Cross Validation
 - K-Fold Cross-Validation we will focus on this method
 - Leave-one-out Cross-Validation
 - Random Subsampling
 - Bootstrap

K-Fold Cross-validation

Create a K-fold partition of the the dataset

- For each of K experiments, use K-1 folds for training and a different fold for testing
 - This procedure is illustrated in the following figure for K=4

K-Fold Cross validation

- The advantage of K-Fold Cross validation is that all the examples in the dataset are eventually used for both training and testing
- the true error is estimated as the average error rate on test examples

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

Dimensionality Reduction - PCA

A typical ML flow - diving in

Data Cleaning

- → Duplications
- → Missing Data
- → Outlier Detection

Train-Test split

- + Validation-set
- **Data Exploration**
- → Statistical and descriptive info
- → Visualization
- → Effecting other steps

Feature Engineering

- → Feature Scaling
- → Feature Selection
- → Dimensionality reduction

Unsupervised Learning algo.

→ PCA

Supervised Learning algo.

- → KNN
- → Decision Trees
- → Naïve Bayes

Classification Evaluation

- →Confusion matrix
- → Accuracy ,Error (rate)
- → Precision, Recall
- \rightarrow F1
- → Cross-validation evaluation

Feature selection vs Dimensionality reduction - reminder

הורדת מימדים – PCA – תזכורת

PCA – Principal component analysis

d נתונות לנו n דוגמאות במימד *

(k < d) נרצה למצוא יצוג לכל הדוגמאות במימד נמוך יותר *

האמצעי: קומבינציות לינאריות של המאפיינים * כלומר: הטלה ממימד d למימד הטלה כלומר:

$$\vec{x}_i = (x_{i,1}, x_{i,2}, ..., x_{i,d})$$
 $z_{i,j} = \vec{w}_j \cdot \vec{x}_i$

$$\vec{z}_i = \left(\vec{w}_1 \cdot \vec{x}_i, \vec{w}_2 \cdot \vec{x}_i, \dots, \vec{w}_k \cdot \vec{x}_i\right) = (z_{i,1}, z_{i,2}, \dots, z_{i,k})$$

הורדת מימדים – PCA – תזכורת

$$ec{z} \in \mathbb{R}^k$$

 $ec{z} \in \mathbb{R}^k$ מחפשים ליצג את $ec{x} \in \mathbb{R}^d$ באמצעות st

ע"י שימוש בקומבינציות לינאריות $ec{w}_1,\ldots,ec{w}_k$ של המאפיינים.

 $ec{w}_1,\ldots,ec{w}_k$ ש: איך נבחר את איך נבחר

ת: שגיאת שחזור מינימלית.

$$\left\| \vec{w} \right\|^2 = 1$$

$$z_i = \vec{w} \cdot \vec{x}_i$$

$$\left\| \vec{w} \right\|^2 = 1$$

$$z_i = \vec{w} \cdot \vec{x}_i$$

$$\left\| \vec{w} \right\|^2 = 1$$

$$z_i = \vec{w} \cdot \vec{x}_i$$

$$\tilde{x}_i = z_i \, \vec{w}$$

$$\left\| \vec{w} \right\|^2 = 1$$

$$z_i = \vec{w} \cdot \vec{x}_i$$

$$\tilde{x}_i = z_i \, \vec{w}$$

$$\epsilon\left(\vec{x}_i\right) := \left\|\vec{x}_i - \tilde{x}_i\right\|^2$$

שגיאת שיחזור ריבועית

PCA: Motivation - reminder

- Choose directions such that a total variance of data will be maximum
 - Maximize Total Variance

- Choose directions that are orthogonal
 - Minimize correlation

 Choose k<d orthogonal directions which maximize total variance

PCA: Motivation - reminder

PCA:

- Orthogonal projection of the data onto a lower-dimension linear space that...
 - maximizes variance of projected data (purple line)
 - minimizes the mean squared distance between
 - data point and
 - projections (sum of blue lines)

PCA 2D example

PCA is implemented to project one hundred of 2-D data $X \in \mathbb{R}_{2\times 100}$ on 1-D space.

1st 2D eigenvector Maximal projected variance

https://www.projectrhea.org/rhea/index.php/PCA_Theory_Examples

PCA 2D example

Project to the first eigenvector to reduce the dimension to 1-D space.

PCA example on image

In this example, PCA is applied for the compression of 512-by-512 grey-scale image

https://www.projectrhea.org/rhea/index.php/PCA_Theory_Examples

PCA example on image

first 30 eigenvalues

PCA example on image

https://www.projectrhea.org/rhea/index.php/PCA_Theory_Examples

How to choose k – explained

Proportion of Variance (PoV) explained

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_k + \dots + \lambda_d} - \text{The top k eigen values}$$
 All eigen values

when λ_i are sorted in descending order

- * Typically, stop at PoV>0.9
- * Screen graph plots of PoV vs k, stop at "elbow"