Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2010/2011

AL210 - Algebra 2: Gruppi, Anelli e Campi

Prof. F. Pappalardi

Tutorato 9 - 29 Novembre 2010

Tutore: Matteo Acclavio

www.matematica3.com

Esercizio 1.

Sia K un campo, $\alpha \in K$ e $f(x) \in K[x]$, dimostrare che:

- $\varphi: K[x] \longrightarrow K$ t.c. $\varphi(f(x)) = f(\alpha)$ è un ben definito omomorfismo, determinarne il nucleo e immagine
- Stabilire per quali I = (f(x)) il quoziente $A = \frac{K[x]}{I}$ è integro
- Dimostrare che A ammette elementi nilpotenti non banali (ovvero $Nil(A) \neq \{0\}$) $\iff MCD(f(x), f'(x)) \neq 1$

Esercizio 2.

Sia $\alpha \in \mathbb{Z}$ e sia $\varphi_{\alpha} := \mathbb{Z}[x] \longrightarrow \mathbb{C}$ t.c. $\varphi_{\alpha}(f(x)) = f(\sqrt{\alpha})$, dimostrare che:

- φ é un omomorfismo e $(x^2 \alpha) \subseteq Ker(\varphi)$
- Sia $Im(\varphi_{\alpha}) = \mathbb{Z}[\sqrt{\alpha}] := \{a + b\sqrt{\alpha} \quad t.c. \quad a, b \in \mathbb{Z}\}$ dimostrare che $Im(\varphi_{\alpha}) = \mathbb{Z} \iff \alpha$ è un quadrato perfetto

Esercizio 9.

Verificare che le seguenti applicazioni sono omomorfismi di anelli e determinarne nucleo ed immagine, dire inoltre se il nucleo è un ideale primo o massimale:

(a)
$$\phi : \mathbb{R}[X,Y] \longrightarrow \mathbb{R} \text{ t.c. } \phi(f(X,Y)) = f(0,0);$$

(b)
$$\phi : \mathbb{R}[X] \longrightarrow \mathbb{C} \text{ t.c. } \phi(f(X)) = f(2+i).$$

(c)
$$\phi : \mathbb{Z}[X] \longrightarrow \mathbb{Z} \text{ t.c. } \phi(f(X)) = f(0);$$

(d)
$$\phi : \mathbb{Z}[X] \longrightarrow \mathbb{Z}_n \text{ t.c. } \phi(f(X)) = \overline{f(0)};$$

(e)
$$\phi: \mathbb{Z}[X] \longrightarrow \mathbb{Z}_n$$
 t.c. $\phi(\sum a_i X^i) = \sum \overline{a_i}$;

(f)
$$\phi : \mathbb{Q}[X] \longrightarrow \mathbb{C} \text{ t.c. } \phi(f(X)) = f(i);$$

(g)
$$\phi : \mathbb{Q}[X] \longrightarrow \mathbb{R} \text{ t.c. } \phi(f(X)) = f(\sqrt[3]{2});$$