Fahrzeugmechatronik I Aktoren

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Fluidische Aktoren Anwendungsbeispiele in der Fahrzeugtechnik

Fluidische Aktoren Hydraulik vs. Pneumatik

Merkmal	Hydraulik-Aktor	Pneumatik-Aktor
Druckbereich mit An	wendungen:	
Niederdruck	30–50 bar	bis 1 bar
	Werkzeugmaschinen	Steuerungen
Mitteldruck	bis 170 bar Transportanlagen, Bauma- schinen, Fahrantriebe	
Hochdruck	bis 420 bar	6–10 bar
	Pressen, Spannvorrichtungen, Flugzeughydraulik	Pressen, Spannvorrichtungen, Arbeitsgeräte
Geschwindigkeit	klein	groß
Strömung	bis 5 m/s	bis 40 m/s
Arbeitskolben	bis 0,15 m/s	0,01-1,5 m/s
Kräfte/Momente	groß	klein
Regelbarkeit:		•
Geschwindigkeit	sehr gut	schlecht
Kraft/Moment	sehr gut	gut
Leistungsdichte	sehr groß	klein
Kompressibilität		
des Fluids	klein	groß
Leckverlust	gering	groß
Fluidrückführung in	Behälter	Umgebung

Heimann, Gerth, Popp: Mechatronik

Hydraulische Aktoren Hydraulik vs. Elektrodynamik

Eigenschaften	Elektrodynamische Aktoren	Hydraulische Aktoren
Vorteile	 gute Stellgenauigkeit großer Frequenzbereich großer Einsatzbereich kompakte Einheiten bedarfsgerechter Energieverbrauch 	 Hohe Leistungsdichte (ohne Versorgung) große Kräfte flexibles Package
Nachteile	 große bewegte Massen relativ kleine Kräfte 	 "schmutzige" Technik Variantenvielfalt (z.B. Leitungen) Beeinflussung des Systemverhaltens durch Fluiddynamik
Regel- frequenzbereich	< 1000 Hz	< 250 Hz

Hydraulische Aktoren Hydraulik vs. Elektrodynamik

Elektrodynamik

Hydraulische Aktoren Hydraulik vs. Elektrodynamik

Hydraulische Aktoren Hydraulik vs. Elektrodynamik

Beispiel PKW-Lenkung

Elektrische Aktoren ermöglichen eine bedarfsgerechte Ansteuerung

Prof. Dr.-Ing. S. Müller

Seite 8

Hydraulische Aktoren Prinzipielle Funktionsweise

Grundlagen hydraulischer Aktoren Beispiel für prinzipielle Funktionsweise

Grundlagen hydraulischer Aktoren Symbolik nach DIN ISO 1219-1 (Auswahl)

lfd.Nr.	Symbol	Bedeutung
1		Strömungsrichtung des Fluids
2	_	Verstellbarkeit
3	Betätigungsarten	
3a		Muskelkraft
3b		Stößel oder Taster
3c	W_	Feder
3d		Elektromagnet (schaltend)
3e		Proportionalmagnet

Grundlagen hydraulischer Aktoren Symbolik nach DIN ISO 1219-1 (Auswahl)

3f		hydraulisch direktwirkend
3g		hydraulisch indirektwirkend
3h	M	Elektromotor
4		Druckleitung, Rückflußleitung, elektrische Leitung
5		Steuerleitung, Leckleitung, Spül- oder Ent- lüftungsleitung
6	-	flexible Leitung
7	+	Leitungskreuzung (keine Verbindung)
8	+ +	Leitungsverbindung

Grundlagen hydraulischer Aktoren Symbolik nach DIN ISO 1219-1 (Auswahl)

9	<u>î</u>	Entlüftung, kontinuierlich
10	Ш	Behälter, Leitungsende unterhalb des Flu- idspiegels
11	Q	Druckflüssigkeitsspeicher
12	⊙ →	Druckquelle
14	\$ =	Pumpe mit konstantem Verdrängungsvolu- men, einer Förderrichtung und einer Dreh- richtung
15	\$	Pumpe mit veränderbarem Verdrängungsvo- lumen und zwei Förderrichtungen
16	\$ =	Rotationsmotor mit konstantem Verdrän- gungsvolumen und einer Drehrichtung
17	Ø=	Rotationsmotor mit veränderbarem Verdrängungvolumen und zwei Drehrich- tungen
18		einfachwirkender Zylinder mit Tauchkolben
19	TÈ	doppeltwirkender Zylinder mit einseitiger Kolbenstange

Grundlagen hydraulischer Aktoren Symbolik nach DIN ISO 1219-1 (Auswahl)

20	台目	doppeltwirkender Zylinder mit zweiseitiger Kolbenstange
21		Teleskopzylinder einfachwirkend
22	*	Drosselventil einstellbar
23		Absperrventil
24	\$	Rückschlagventil, ohne Druckabfall
25	*	Rückschlagventil, mit Druckabfall
26	*	Rückschlagventil, entsperrbar
27		4/3-Wegeventil
28	W	4/2-Wegeventil mit Elektromagnet und Federrückführung

Grundlagen hydraulischer Aktoren Symbolik nach DIN ISO 1219-1 (Auswahl)

29		Servoventil, zweistufig, mit positiver Überdeckung
30		Druckbegrenzungsventil, direktgesteuert, mit externem Leckanschluß
31	1	Druckreduzierventil, einstufig,
32		2-Wege-Stromregelventil
33		3-Wege-Stromregelventil
34	\Diamond	Filter
35		Kühler
36		Vorwärmer
37	(Manometer
38		Volumenstrommesser
39	•	Thermometer

Grundlagen hydraulischer Aktoren Druckreduzierventil - Beispiel

Grundlagen hydraulischer Aktoren Stromregelventil – Beispiel Pkw-Lenkung

Grundlagen hydraulischer Aktoren Stromregelventil – Beispiel Pkw-Lenkung

Unterstützungskennlinie

Prof. Dr.-Ing. S. Müller

Seite 22

Vielen Dank für Ihre Aufmerksamkeit!