

Sciences physiques

Classe: 4^{ème} MATH

Série: RLC (1)

Nom du prof: Mr HADJ SALAH WAJIH

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

www.takiacademy.com

73.832.000

Exercice 1: S 30 min

Un condensateur de capacité $C = 0.1 \,\mu\text{F}$ est initialement chargé sous une tension U_0 .

Il est branché, à t=0, aux bornes d'une portion de circuit série comportant une bobine d'inductance L inconnue et de résistance interne $r=10\,\Omega$ et un résistor de résistance R_0 variable.

La figure 1 donne l'évolution au cours du temps de la tension

- $u_{\rm C}(t)$ aux bornes du condensateur lorsque $R_0 = 600 \,\Omega$.
- 1º) a Déterminer graphiquement la valeur de U₀.
- **b** Calculer la valeur de l'énergie électrostatique $E_{\mathbb{C}}(0)$ initialement emmagasinée par le condensateur.
- 2^{0}) Etablir l'équation différentielle qui gère l'évolution de la tension $u_{C}(t)$ au cours du temps.
- 3°) a Déterminer graphiquement la valeur de la pseudopériode Tdes oscillations électriques.
- ${f b}$ En négligeant la différence entre la pseudo période T $\,$ -10

et la période propre $T_0 = 2\pi\sqrt{LC}$ des oscillations électriques, calculer la valeur de l'inductance L de la bobine utilisée.

- a Associer, en le justifiant, chacune des courbes (a) et
 (b) à l'énergie qu'elle représente.
- **b** Montrer que l'énergie électromagnétique $E = E_C + E_{L-2}$ emmagasinée par le circuit décroit au cours du temps.
- c D'après la figure 2, déterminer l'énergie E_{th} dissipée par effet Joule à l'instant t=2 ms.
- d Calculer la valeur de Eth en exploitant la figure 1.

Exercice 2:

(5) 40 min

On considère le circuit électrique schématisé ci-contre : Le condensateur est initialement chargé sous une tension U_0 . A la date t=0, on ferme l'interrupteur K et on enregistre les variations de la tension $u_C(t)$ aux bornes du condensateur au cours du temps.

Physique

On obtient le graphe ci-contre :

- 1º) a Déterminer la valeur de la tension U₀.
- **b** Quelle est, à t = 0, la valeur de l'intensité du courant électrique.
- c Préciser le signe de l'intensité du courant i(t) juste après la fermeture du circuit.
- d A partir du graphe, déterminer la valeur de la pseudo-période T des oscillations.

En considérant que la valeur de T est très proche de

celle de la période propre $T_0 = 2\pi\sqrt{L.C}$ du circuit, calculer la valeur de la capacité C du condensateur.

- 2^0) a Quelle est la valeur de l'énergie électrostatique $E_C(0)$ initialement stockée par le condensateur ? En déduire la valeur initiale E(0) de l'énergie électromagnétique emmagasinée par le circuit.
- b Déterminer la valeur E(3T) de l'énergie électromagnétique encore emmagasinée par le circuit après troi oscillations.
- c Calculer la valeur E_{th} de l'énergie perdue par l'oscillateur après trois oscillations. A quoi est due cette perte d'énergie ? Sous quelle forme se manifeste-t-elle ?
- 3°) On modifie le circuit électrique en changeant soit la valeur de R₀, soit celle de L, soit les deux en même temps. On enregistre chaque fois les variations de la tension u_C(t) aux bornes du condensateur au cours du temps. On obtient les trois graphes (a), (b) et (c) ci-dessous :

On admettra que dans tous les cas, la pseudo-période reste sensiblement égale à la période propre.

- a Quel est le graphe qui correspond à la modification de R_0 ? la nouvelle valeur R_0 est-elle plus grande ou plus petite ? Justifier la réponse.
- b En exploitant les deux autres graphes, déduire si la nouvelle valeur L' est plus grande ou plus petite ?
- c Quel est alors le graphe qui correspond à l'utilisation des valeurs R₀ et L'? Justifier la réponse.

Taki Academy www.takiacademy.com

Exercice 3:

(5) 40 min

Un condensateur de capacité $C = 0.1 \,\mu\,F$ est initialement chargé sous une tension U_0 . Il est branché, à t = 0,

aux bornes d'une portion de circuit série comportant une bobine d'inductance L inconnue et de résistance interne $r=10\,\Omega$ et un résistor de résistance R_0 variable.

 $u_{\rm C}(t)$ aux bornes du condensateur lorsque $R_0 = 600 \,\Omega$.

1°) a - Déterminer graphiquement la valeur de U₀.

b - Calculer la valeur de l'énergie électrostatique $E_C(0)$ initialement emmagasinée par le condensateur.

 2^{0}) Etablir l'équation différentielle qui gère l'évolution de la tension $u_{C}(t)$ au cours du temps.

3°) a - Déterminer graphiquement la pseudo période T des oscillations électriques.

b - En négligeant la différence entre la pseudo période T

et la période propre $T_0 = 2\pi\sqrt{LC}$ des oscillations électriques, calculer la valeur de l'inductance L de la

bobine utilisée.

- a Associer, en le justifiant, chacune des courbes (a) et
 (b) à l'énergie qu'elle représente.
- ${f b}$ Montrer que l'énergie électromagnétique $E=E_C+E_L$ emmagasinée par le circuit décroit au cours du temps.
- c D'après la figure 2, déterminer l'énergie E_{th} dissipée par effet Joule à l'instant t=2 ms.
- d Calculer la valeur de Eth en exploitant la figure 1.

5°) On fait varier la valeur de la résistance R₀ et on enregistre chaque fois la variation au cours du temps de la

tension uc aux bornes du condensateur.

Les deux courbes de la figure 3 ci-dessous correspondent à $R_0 = 1600\,\Omega$ et $R_0 = 9600\,\Omega$.

- a Préciser le nom du régime amorti correspondant à chacune des courbes (a) et (b).
- **b** Associer, en le justifiant, chacune des courbes (a) et (b) à la valeur de la résistance R₀ correspondante.

Figure 3