### КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Фізичний факультет

Кафедра фізики функціональних матеріалів



## РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

### ФІЗИКА БІОМОЛЕКУЛ

### для студентів

галузь знань 10: Природничі науки спеціальність 104: Фізика та астрономія

освітній рівень бакалавр

освітня програма фізичне матеріалознавство/неметалічне матеріалознавство

вид дисципліни вибіркова (ВК5.2.3)

 Форма навчання
 денна

 Навчальний рік
 2025/2026

 Семестр
 7

 Кількість кредитів ЕСТЅ
 4

Мова викладання, навчання

та оцінювання українська

Форма заключного контролю залік

Викладач: д. ф.-м. н. професор Оксана ДМИТРЕНКО



Розробник: Дмитренко Оксана Петрівна доктор фізико-математичних наук, професор кафедри фізики функціональних матеріалів.

|                                                                              | dkl                 | ки функціональних матеріалів<br>(Микола КУЛІШ) |
|------------------------------------------------------------------------------|---------------------|------------------------------------------------|
|                                                                              | Протокол № 1        | 0 від «23» травня 2022 р.                      |
| Схвалено науково-методичною комісією ф                                       | різичного факультег | y                                              |
| Протокол № 11 від «10» червня 2022 року<br>Голова науково-методичної комісії | Del 3               | (Олег ОЛІХ)                                    |
| «»2022 року                                                                  |                     |                                                |

### ЗАТВЕРДЖЕНО

- **1. Мета** дисципліни отримання знань з основ фізики біологічних макромолекул, фізики білків і нуклеїнових кислот та фізики ферментів для сприяння розвитку логічного і аналітичного мислення студентів
- 2. Попередні вимоги до опанування або вибору навчальної дисципліни:
  - 1. Знати основи загальної фізики, термодинаміки.
  - 2. Вміти застосовувати попередні знання з курсів математичного аналізу, диференціальних та інтегральних рівнянь, загальної фізики.
  - 3. Володіти елементарними навичками користування персональним комп'ютером.
- **3. Анотація навчальної дисципліни**: Спеціальна навчальна дисципліна «Фізика біомолекул» є складовою частиною циклу професійної підготовки фахівців освітньо-кваліфікаційного рівня «бакалавр».
- **4. Завдання (навчальні цілі)**: формування фізичного мислення у студентів в межах матеріалу, що вивчається. Дисципліна готує студентів до сприймання матеріалу спецкурсів, передбачених програмою спеціалізації.

### Інтегральних:

Здатність розв'язувати складні спеціалізовані задачі та практичні проблеми з фізики у професійній діяльності або у процесі подальшого навчання, що передбачає застосування певних теорій і методів фізики і характеризується складністю та невизначеністю умов.

### Загальних:

- ЗК2. Здатність застосовувати знання у практичних ситуаціях.
- 3К3. Навички використання інформаційних і комунікаційних технологій.
- ЗК5. Здатність приймати обгрунтовані рішення.
- ЗК8. Здатність оцінювати та забезпечувати якість виконуваних робіт.
- ЗК12. Здатність спілкуватися державною мовою як усно, так і письмово.
- ЗК13. Здатність спілкуватися іноземною мовою.

### Фахових:

- ФКЗ. Здатність оцінювати порядок величин у різних дослідженнях, так само як точності та значимості результатів.
- ФК4. Здатність працювати із науковим обладнанням та вимірювальними приладами, обробляти та аналізувати результати досліджень.
- ФК5. Здатність виконувати обчислювальні експерименти, використовувати чисельні методи для розв'язування фізичних та астрономічних задач і моделювання фізичних систем.
- ФК6. Здатність моделювати фізичні системи та астрономічні явища і процеси.
- ФК7. Здатність використовувати базові знання з фізики та астрономії для розуміння будови та поведінки природних і штучних об'єктів, законів існування та еволюції Всесвіту.
- ФК9. Здатність працювати з джерелами навчальної та наукової інформації.
- ФК10. Здатність самостійно навчатися і опановувати нові знання з фізики, астрономії та суміжних галузей. ФК11. Розвинуте відчуття особистої відповідальності за достовірність результатів досліджень та дотримання принципів академічної доброчесності разом з професійною гнучкістю.
- ФК13. Орієнтація на найвищі наукові стандарти обізнаність щодо фундаментальних відкриттів та теорій, які суттєво вплинули на розвиток фізики, астрономії та інших природничих наук.

#### 5. Результати навчання за дисципліною:

|      | Результат навчання                                                    | Форми       | Методи         |             |
|------|-----------------------------------------------------------------------|-------------|----------------|-------------|
| (1.  | знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність) | (та/або     | оцінювання та  | Відсоток у  |
|      |                                                                       | методи і    | пороговий      | підсумковій |
| TC - | T. D.                                                                 | технології) | критерій       | оцінці з    |
| Код  | Код Результат навчання                                                |             | оцінювання (за | дисципліни  |
|      |                                                                       |             | необхідності)  |             |
| 1.1  | Знати: фізичні властивості біологічних макромолекул, фізику           | Лекції,     | Модульна       | 50          |
|      | білків і нуклеїнових кислот та фізику ферментів, конфірмаційні        | лаабора-    | контрольна     |             |
|      |                                                                       | _           | робота,        |             |
|      |                                                                       | торні,      | Опитування в   |             |
|      | макромолекулами у розчині, взаємодію ДНК, ферментів; кінетику         |             | ,              |             |

|     |                                                                  |           | процесі лекції, |    | l |
|-----|------------------------------------------------------------------|-----------|-----------------|----|---|
| 1.2 | Вміти: використовувати отримані знання на практиці при           | на робота | перевірка       | 50 |   |
|     | розв'язанні завдань теоретичного та прикладного характеру. Уміти |           | рефератів та    |    |   |
|     | розв'язувати стандартні задачі, набути навичок самостійного      |           | інших форм      |    |   |
|     |                                                                  |           | самостійної     |    | l |
|     | використання і вивчення літератури.                              |           | роботи, залік   |    | l |

# 6. Співвідношення результатів навчання дисципліни із програмними результатами навчання

| навчання                                                                               |             | 1   |
|----------------------------------------------------------------------------------------|-------------|-----|
| Результати навчання дисципліни (ВК5.2.3)                                               | 1.1         | 1.2 |
| Програмні результати навчання (назва)                                                  |             |     |
| ПРН1. Знати, розуміти та вміти застосовувати основні положення загальної та            | +           |     |
| теоретичної фізики, зокрема, класичної, релятивістської та квантової механіки,         |             |     |
| молекулярної фізики та термодинаміки, електромагнетизму, хвильової та квантової        |             |     |
| оптики, фізики атома та атомного ядра для встановлення, аналізу, тлумачення,           |             |     |
| пояснення й класифікації суті та механізмів різноманітних фізичних явищ і процесів для |             |     |
| розв'язування складних спеціалізованих задач та практичних проблем з фізики.           |             |     |
| ПРНЗ. Знати і розуміти експериментальні основи фізики: аналізувати, описувати,         | +           |     |
| тлумачити та пояснювати основні експериментальні підтвердження існуючих фізичних       |             |     |
| теорій.                                                                                |             |     |
| ПРН4. Вміти застосовувати базові математичні знання, які використовуються у фізиці та  | +           |     |
| астрономії: з аналітичної геометрії, лінійної алгебри, математичного аналізу,          |             |     |
|                                                                                        |             |     |
| диференціальних та інтегральних рівнянь, теорії ймовірностей та математичної           |             |     |
| статистики, теорії груп, методів математичної фізики, теорії функцій комплексної       |             |     |
| змінної, математичного моделювання.                                                    | <u> </u>    |     |
| ПРН14. Знати і розуміти основні вимоги техніки безпеки при проведенні                  | +           |     |
| експериментальних досліджень, зокрема правила роботи з певними видами обладнання       |             |     |
| та речовинами, правила захисту персоналу від дії різноманітних чинників, небезпечних   |             |     |
| для здоров'я людини.                                                                   |             |     |
| ПРН7. Розуміти, аналізувати і пояснювати нові наукові результати, одержані у ході      | +           |     |
| проведення фізичних та астрономічних досліджень відповідно до спеціалізації.           |             |     |
| ПРН8. Мати базові навички самостійного навчання: вміти відшуковувати потрібну          | +           |     |
| інформацію в друкованих та електронних джерелах, аналізувати, систематизувати,         |             |     |
| розуміти, тлумачити та використовувати її для вирішення наукових і прикладних          |             |     |
| завдань.                                                                               |             |     |
| ПРН10. Вміти планувати дослідження, обирати оптимальні методи та засоби досягнення     |             | +   |
| мети дослідження, знаходити шляхи розв'язання наукових завдань та вдосконалення        |             |     |
| застосованих методів.                                                                  |             |     |
| ПРН11. Вміти упорядковувати, тлумачити та узагальнювати одержані наукові та            |             |     |
|                                                                                        |             | +   |
| практичні результати, робити висновки.                                                 |             |     |
| ПРН12. Вміти представляти одержані наукові результати, брати участь у дискусіях        |             | +   |
| стосовно змісту і результатів власного наукового дослідження.                          | <del></del> |     |
| ПРН14. Знати і розуміти основні вимоги техніки безпеки при проведенні                  |             | +   |
| експериментальних досліджень, зокрема правила роботи з певними видами обладнання       |             |     |
| та речовинами, правила захисту персоналу від дії різноманітних чинників, небезпечних   |             |     |
| для здоров'я людини.                                                                   |             |     |
| ПРН16. Мати навички роботи із сучасною обчислювальною технікою, вміти                  |             | +   |
| використовувати стандартні пакети прикладних програм і програмувати на рівні,          |             |     |
| достатньому для реалізації чисельних методів розв'язування фізичних задач,             |             |     |
| комп'ютерного моделювання фізичних та астрономічних явищ і процесів, виконання         |             |     |
| обчислювальних експериментів.                                                          |             |     |
| ПРН18. Володіти державною та іноземною мовами на рівні, достатньому для усного і       |             | +   |
| письмового професійного спілкування та презентації результатів власних досліджень.     |             |     |
| ПРН22. Розуміти значення фізичних досліджень для забезпечення сталого розвитку         |             | +   |
| суспільства.                                                                           |             | '   |
| cychiliberba.                                                                          |             |     |

### 7. Схема формування оцінки:

### 7.1. Форми оцінювання студентів:

### - семестрове оцінювання:

- **1.** Модульна контрольна робота 1 (10 балів 20 балів). Захист реферату 1 (5 балів 10 балів).
- **2.** Модульна контрольна робота 2 (10 балів 20 балів). Захист реферату 2 (5 балів 10 балів).

Підсумкове оцінювання у формі іспиту:

|          | Частина 1 | Частина 2 | іспит | Підсумкова оцінка |
|----------|-----------|-----------|-------|-------------------|
| Мінімум  | 15        | 15        | 0     | 60                |
| Максимум | 30        | 30        | 40    | 100               |

Студент не допускається до заліку, якщо під час семестру набрав менше 30 балів.

### 7.2. Організація оцінювання:

Контроль здійснюється за модульно-рейтинговою системою, яка складається із 2 змістових модулів. Система оцінювання знань включає поточний, модульний та семестровий контроль знань. Результати навчальної діяльності студентів оцінюються за 100-бальною шкалою. Форми поточного контролю: оцінювання домашніх робіт, письмових самостійних завдань, тестів та контрольних робіт, виконаних студентами під час практичних занять. Модульний контроль: 2 модульні контрольні роботи. Студент може отримати максимально за модульні контрольну роботу 60 балів (по 30 балів за кожну). Підсумковий семестровий контроль проводиться у формі заліку (40 балів). Заліковий білет включає 2 теоретичні питання (по 20 балів) та задачу (20 балів).

### 7.3. Шкала відповідності

| Відмінно / Excellent       | 90-100 |
|----------------------------|--------|
| Добре / Good               | 75-89  |
| Задовільно / Satisfactory  | 60-74  |
| <b>Незадовільно</b> / Fail | 0-59   |

8. Структура навчальної дисципліни. Тематичний план лекцій та лабораторних робіт

| №   | Номер і назва теми                                            |          | Кількість годин |     |  |
|-----|---------------------------------------------------------------|----------|-----------------|-----|--|
| п/п |                                                               |          | Л/Р             | C/P |  |
|     | Змістовий модуль 1 Фізика макромолекул, білків та нуклеї      | нових ки | слот            |     |  |
|     | Фізика біологічних макромолекул.                              |          |                 |     |  |
| 1   | Вступ. Макромолекули і високоеластичність. Конформація        | 5        | 2               | 14  |  |
| 1   | макромолекул. Просторова структура макромолекул. Гідрофобна   |          | 2               | 14  |  |
|     | взаємодія. В'язкість розчинів та дифузія.                     |          |                 |     |  |
| 2   | Фізика білків. Первинна і вторинна структура білків. Домени і | 5        | 2               | 15  |  |
|     | третинна структура білків.                                    | 3        |                 | 13  |  |
|     | Фізика нуклеїнових кислот.                                    |          |                 |     |  |
|     | Первинна структура нуклеїнових кислот. Подвійна спіраль ДНК і |          |                 |     |  |
| 3   | внутрішньомолекулярна взаємодія. Конформація ДНК.             | 8        | 4               | 20  |  |
|     | Взаємодія подвійної спіралі з малими молекулами та іонами.    |          |                 |     |  |
|     | Третинна структура нуклеїнових кислот.                        |          |                 |     |  |
|     | Змістовий модуль 2 Фізика ферментів                           |          |                 |     |  |
|     | Фізика ферментів                                              |          |                 |     |  |
| 4   | Ферментний каталіз. Дія ферментів. Конформаційні властивості  | 10       | 4               | 30  |  |
|     | ферментів. Взаємодія ферментів. Міоглобін і гемоглобін.       |          |                 |     |  |
|     | ВСЬОГО                                                        | 28       | 12              | 79  |  |

Загальний обсяг 120 год., в тому числі:

Лекцій — *28год.*, лаб. роб. *12 год*.

Самостійна робота – 79 год.

### 9. Рекомендовані джерела:

### Основні:

- 1. Волькенштейн М.В. Биофизика. М.: Наука, 1988.-592с.
- 2. Костюк П.Г., Гродзинський Д.М., Зима В.Л., Магура И.С., Сидорик Е.П., Шуба М.Ф. Биофизика. Киев, Высшая школа, 1988.-503с.
- 3. Самойлов В.О. Медицинская биофизика. Санкт-П: спецлит, 2004.-624с.

### Додаткові:

- 1. Физиология человека. Под ред. Р.Шмидта и Г. Тевса, в 3-х томах. М.: Мир, 1996.-850с.
- 2. Физиология человека. Под ред. В.М.Покровского, Г.Ф. Коротько, в 2-х томах. М.: Медицина, 1997.- 650с.