boostcamp Al Tech

Wrap up

▼ 목차

唆 기술적인 도전

최종 순위

가장 큰 issue라고 생각한 내용

Class간 분포의 불균형

검증(Validation) 전략

검증(Validation) 전략에서 아쉬운 점

Model Architecture & Hyper parameters

앙상블 방법

시도했으나 잘 되지 않았던 것들

- 🏆 학습과정에서의 교훈
- ♥ 마주한 한계와 도전 숙제

아쉬웠던 점들

한계/교훈을 바탕으로 다음 스테이지에서 새롭게 시도해볼 것

2주에 걸친 Stage 1 - Image Classification이 끝이 났다.

그동안 시도했던 방법들, 아쉽거나 부족했던 점들에 대해 적어보고자 한다.

🥑 기술적인 도전

최종 순위

Public LB - 32 / 224
F1 Score 0.7660
Accuracy 81.1111%

Private LB - 37 / 224
F1 Score 0.7506
Accuracy 80.4762%

가장 큰 issue라고 생각한 내용

Class간 분포의 불균형

• 나이, 성별, 마스크 착용 여부를 고려한 결과 class간의 분포가 너무 불균형했다 (83 ~ 3660)

• 나이 기준을 60세 → 58세를 기준으로 변경 (179 ~ 3660)

• 해결 방법

- 인위적으로 작은 개수의 class의 image를 augmentation해서 늘려주거나 (oversampling), 큰 개수의 image를 작게 해주는 방법(undersampling)이 있지만,
- Loss 자체에서 해결해주는 방법을 사용했다 (Focal loss)
- 인위적으로 image 개수를 조정하는 방법이 들인 노력에 비해 효과적이지 않다는 조 언을 참고했다. (실제로 테스팅해보지 않아서 정확한 성능의 차이는 확인하지 못했 다.)
- EDA결과 성별 등 라벨이 이상한 부분은 수정해서 학습 진행

검증(Validation) 전략

- 적합한 parameter를 찾을 때는, train set : validation set = 8 : 2의 비율로 두고 진행했다
- 그 중 적합한 parameter가 나올 때에는 train set: validation set = 9.5: 0.5의 비율로 두고 제출용 모델을 만들었다. 그 이유는 최종 제출할 때는 모든 데이터들이 학습되는 것이 이득이기 때문인데, 모든 데이터는 train set에 올인하면 그 중 어떤 모델이 좋은지 알수 없기 때문이었다.
- K-Fold validation을 사용하는 것이 보통 사용하는 방법이고, 정석(?)이라고 생각하는데, 사용하지 않은 이유는 하나의 최종 모델을 만드는데 많은 시간이 소모된다고 느꼈기때문이었다.

검증(Validation) 전략에서 아쉬운 점

• Baseline(Python project) 코드를 사용했는데, 마지막날에 생각해본 내용이라서 적용할 시간이 부족했지만, Train set과 Validation set을 나누는 기준이 random이기 때문에,

Validation set의 클래스 분포가 전체 데이터셋의 클래스 분포를 반영하지 못한다는 단점이 있다.

(MaskSplitByProfileDataset 기준으로는 약간 커버된다고 생각한다. 마스크 클래스에 대해서는 비율이 보존되기 때문, 그래도 반영하지 못한다)

• Validation metric을 accuracy를 사용했는데, 문제의 목표를 이해한다면, maximum f1 score & minimum loss를 기준으로 모델을 저장하는 방법을 사용해야 한다고 생각한다.

Model Architecture & Hyper parameters

- 공통 사항
 - Optimizer : AdamP
 - → SGD 는 학습 속도가 너무 느리고, Adam 은 직접 테스트해보지 못했지만, Adam 가 더 우수한 성능을 나타낸다는 공통적인 이야기가 있어서 선정했다.
 - Dataset: MaskSplitByProfileDataset
 - Learning rate : 5e-4, Steplr
- 1. 아키텍처: EfficientNet b5
 - LB 점수: F1 score 0.7575, Accuracy 80.5873%
 - Traning time augmentaion : Center Crop , CLAHE
 - CLAHE를 사용한 이유 : 얼굴의 특징을 강조할 수 있기 때문 → 나이 판별에 효 과적일 것이라고 생각

- Img size : Center Crop한 이미지 크기 사용 (320 * 256)
- Loss: F1 loss + Focal loss (gamma = 5)
- 특이 사항

다른 EfficientNet b5 backbone 모델보다 성능이 더 잘나왔던 이유는, Loss값을 두 개 사용했기 때문이라고 생각한다.

Epoch은 30으로 설정하였고, 14 epoch 지점에서 최고 Validation Accuracy 85.74%를 기록한 모델이다.

2. 아키텍처: EfficientNet - b5

- LB 점수: F1 score 0.7478, Accuracy 79.5714%
- Traning time augmentaion: Center Crop, CLAHE

- Img size : Center Crop한 이미지 크기 사용 (320 * 256)
- Loss: F1 loss + Focal loss (gamma = 5)
- 특이 사항

1번 모델과 차이점은 learning rate인데, 너무 빠르게 training set에 과적합되어서 (4~5에폭이면 거의 90% 중반의 accuracy 수렴) 일부러 lr을 1e-5로 하고, lr decay 를 5epoch마다 주었던 모델이다.

Epoch은 30으로 설정하였고, 최고 Validation Accuracy 85.54%를 기록한 모델이다.

3. 아키텍처 : Resnext50

- LB 점수: F1 score 0.7317, Accuracy 78.1587%
- Traning time augmentaion: Center Crop, CLAHE
- Img size : Center Crop한 이미지 크기 사용 (320 * 256)
- Loss: F1 loss + Focal loss (gamma = 5)
- 특이 사항

EfficientNet과 다른 모델 구조를 사용했다.

4. 아키텍처: EfficientNet - b6

- LB 점수: F1 score 0.7134, Accuracy 76.8730%
- Traning time augmentaion: Resize, Normalize
- Img size: Normalize한 이미지 크기 사용 (128 * 96)
- Loss: Focal loss (gamma = 2)
- 특이 사항

Augmentation이 Base Augmentation이다.

5. 아키텍처 : ViT (Vision Transformer)

- LB 점수: F1 score 0.7026, Accuracy 76.2381%
- Traning time augmentaion: Center Crop, CLAHE
- Img size : Center Crop한 이미지 크기 사용 (384 * 384)
- Loss: F1 loss + Focal loss (gamma = 5)
- 특이 사항

다른 모델과 달리 Transformer가 적용된 모델

Soft voting하면 기존의 모델과 구조가 다르기 때문에 성능이 좋아질 수 있다고 생각하지만, Hard voting을 시도했기 때문에 앙상블에서도 큰 성능 향상이 이루어지지 않았다.

Image의 input size가 모델에 종속적이다.

앙상블 방법

- 제출한 submission 기준으로 Public LB에서 가장 f1-score가 높았던 8개의 모델을 hard voting을 시도했다.
- 그 결과, 최고 Single model의 f1 score(0.7575)보다 성능이 향상되었다(0.7660).
- 8개의 모델 이외에 더 숫자를 줄이거나, 늘리거나, 가장 성능이 좋은 모델에 가중치를 두고 앙상블을 시도해도 첫 번째로 시도했던 성능을 넘지 못했다.
- 오히려 마지막날 제출기회를 거의 다 소모해버리기만 했다..!
- Soft voting을 시도하면 성능이 어떻게 변했을지 궁금한데 시도해보지 못해 아쉬웠다.

시도했으나 잘 되지 않았던 것들

- 초반 30 epochs는 Focal loss로 진행하고, 그 중 best 모델을 저장하고, 그 뒤에는 F1 loss로 10 epoch정도 진행했다.
 - 오히려 best 모델보다 성능이 안좋아졌는데, 이 방법은 좋지 않은 것 같다,,!
- EfficientNet의 종류가 b0 ~ b7까지 있고, 숫자가 커질수록 더 규모가 큰(parameter가 많은)모델인데, b7이 좋지 않았다. 최고 점수를 기록한 모델은 b5모델이고, 그 다음은 b6 모델이었는데, 다른 hyper parameter를 고정하고, model만 바꾼 것이 아니기 때문에, 꼭 모델의 요인이라고만 볼 수 없기도 하다.
 - 하지만 피어 세션에서 다른 캠퍼의 이야기도 있고, hyper parameter의 요인이라기에는 성능 차이가 어느정도 나기 때문에, 꼭 큰 모델이라고 좋은 성능을 내는 것은 아닌 것 같다.

피어 세션에서도 이야기한 부분이긴 한데, 한 캠퍼분의 이야기는, 더 좋은 모델을 쓰면 성능이 더 좋아질것 이라는 절대적인 룰이 존재한다고 생각했는데, 이번 경험을 계기로 그생각이 바뀐 것 같다고 말했다. 근데 그 이유는 잘 모르겠다고 하셨다. Underfitting이라기에 적합하지 않은 training - validation score의 흐름이기 때문에, 어떤 이유인지 궁금하다.

- 피어 세션에서 좋은 동료를 만난 덕에 많은 도움을 받았다. 매일 만나는 사람이 다르다보니 분위기 등등 많은 점이 새로웠지만, 그게 매일 랜덤으로 조를 만나는 묘미인것 같다.
- Hard voting하는 좋은 방법이나, loss를 두개 같이 쓰는 방법, CLAHE Augmentation 등등 많은 팁들을 받았고, 그만큼 내가 전달해주지 못한 것에 대한 아쉬움이 있다.
- 피어 세션 뿐만 아니라 토론게시판에서 EDA 결과를 공유하거나, training time을 줄이는 팁과 같이 정말 많은 정보들이 있었다.
- 이 밖에 많은 팁들과 좋은 방법을 제시해주셨지만, 얻은 정보에 비해 내가 들인 노력이 적어서 많은 시도를 하지 못한 것 같다.
- 다음 stage에서는 토론 게시판에 좋은 글을 써보는 것을 목표로 새로운 것을 시도해보면 좋을 것 같다.
- 그래도 얻은 내용은 유의미한 score를 얻었다는 것과, Python project 기반 pipeline의 구조를 이해하는 데 많은 도움이 되었다는 것이다.
- Tensorboard 라는 tool을 처음 사용해보는데, 사용법에 점점 적응하면서 편하게 사용했다.

🦞 마주한 한계와 도전 숙제

아쉬웠던 점들

- 성킴님 마스터 세션에서 올인하라는 내용을 많이 강조하셨는데, 지금 돌아보면 2주동안 올인했나?에 대한 질문에 선뜻 그렇다고 대답하기 어려운 것 같다.
- nni, wandb 등등 정말 많은 툴들을 소개해주셨는데, 모델 돌리기에 급급해서 많이 적용 해보지 못한 것이 아쉽다.
- Baseline 코드가 좋아서 그 코드를 기반으로 진행했는데, 대회가 끝나고 나서 든 생각은 Baseline 코드 안에 갇혀있었다는 느낌을 받았다.
- 새로운 것을 시도하고 동작 방식을 이해하려면 Baseline은 단지 Base로 생각해야 하는 데, Baseline에 너무 의존했다는 생각을 했다.
- 순위적으로는 마감 하루 전 밤에 10등이었는데, 어느순간 public이 32등이 되어있고, private는 37등,
- 순위에 그렇게 신경쓰지 않았지만 막상 아쉽다.

한계/교훈을 바탕으로 다음 스테이지에서 새롭게 시도해볼 것

- 토론 게시판에 글 쓰기
- nni, wandb 적용해보기
- 새로운 내용 찾아서 시도해보기
- 학습 정리 잘하고, 실험 내용 기록 잘하기 (마지막에 정리하기 어렵다)