第13周习题课:第二型曲线曲面积分

一、知识回顾与讨论

两类积分的回顾与对比

			1	
	积			
	分	*************************************		
	对	7144/1/1/1 41/1 11/1/3/		
	象			
第一型	函	曲线(无向) $\mathbf{r} = \mathbf{r}(t)$	曲面(无向) $\mathbf{r} = \mathbf{r}(u, v)$	
	数	$\int f \mathrm{d}l$	$\iint f\mathrm{d}\sigma$	
	f	γ	Σ	
		微弧长		
		$\mathrm{d}l = \left\ \mathbf{r}'(t) \right\ \mathrm{d}t$	面积微元	
		$=\sqrt{\left\langle \mathbf{r}'(t),\mathbf{r}'(t)\right\rangle}\mathrm{d}t$	$d\sigma = \sqrt{EG - F^2} dudv$	
		$=\sqrt{\mathbf{r}'(t)^T\mathbf{r}'(t)}\mathrm{d}t(直角坐标系)$	$= \sqrt{\begin{vmatrix} E & F \\ F & G \end{vmatrix}} du dv = \sqrt{\begin{vmatrix} \left\langle \frac{\partial \mathbf{r}}{\partial u}, \frac{\partial \mathbf{r}}{\partial u} \right\rangle & \left\langle \frac{\partial \mathbf{r}}{\partial u}, \frac{\partial \mathbf{r}}{\partial v} \right\rangle \\ \left\langle \left\langle \frac{\partial \mathbf{r}}{\partial v}, \frac{\partial \mathbf{r}}{\partial u} \right\rangle & \left\langle \frac{\partial \mathbf{r}}{\partial v}, \frac{\partial \mathbf{r}}{\partial v} \right\rangle \end{vmatrix}} du dv$	
			$= \sqrt{\det \left[\left(\frac{\partial \mathbf{r}}{\partial (u, v)} \right)^T \frac{\partial \mathbf{r}}{\partial (u, v)} \right]} du dv (\mathbb{1} $	
		背景:由线密度求质量	背景:由面密度求质量	
第二型	向	路径(有向曲线) $\mathbf{r} = \mathbf{r}(t)$	定向曲面: 带有指定单位法向量场的曲面 (Σ, \mathbf{n})	
	量	物理背景: 力场做功、流速场	物理背景:流速场通量、电场通量、磁场通量	
	场	环量 $\int \mathbf{F} \cdot d\mathbf{r} = \int \mathbf{F} \cdot \boldsymbol{\tau} dl$,($\boldsymbol{\tau}$ 是路	$\iint \mathbf{F} \cdot \mathbf{n} d\sigma$	
	F	γ γ	JJ Σ	
		径的正向单位切向量场)		
		平面流速场通量 $\int \mathbf{F} \cdot \mathbf{n} dl$		
		γ		
	微	一阶微分形式	二阶微分形式	
	分	$\omega = X dx + Y dy + Z dz$	$\omega = X dy \wedge dz + Y dz \wedge dx + Z dx \wedge dy$	
	形	$\int \omega$	$\iint \omega$	
	式	3 γ	Σ Σ	
	ω			

两类积分的转化

第二型积分转为第一型积分:
$$\int_{\gamma} \mathbf{F} \cdot \mathbf{\tau} dl$$
 , $\int_{\gamma} \mathbf{F} \cdot \mathbf{n} dl$, $\iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} d\sigma$

第一型积分转为第二型积分: 给定函数 f 构造向量场 $\mathbf{F} = f\mathbf{r}$ 或 $\mathbf{F} = f\mathbf{n}$ 。

第二型曲线积分的计算

1、代入适当的参数方程转为一元定积分

- 2、构造原函数, $\omega = \mathrm{d}f$,则 $\int_{\gamma} \omega = f(B) f(A)$ 。存在原函数的充分条件是:向量场 \mathbf{F} 无旋($\mathrm{rot}\,\mathbf{F} = 0$)/微分形式 ω 是恰当形式($\mathrm{d}\omega = 0$),区域/曲面单连通。
- 3、选择适当的平面区域或曲面用 Green 公式或 Stokes 公式转为平面重积分或第二型曲面积分

Green 公式/Stokes 公式(环量与旋度)
$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \operatorname{rot} \mathbf{F} d\sigma$$
 , $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\Sigma} \operatorname{rot} \mathbf{F} d\sigma$

Green 公式(通量与散度)
$$\int_{\gamma} \mathbf{F} \cdot \mathbf{n} dl = \iint_{D} \operatorname{div} \mathbf{F} d\sigma$$

$$\int_{\gamma} \omega = \iint_{\Sigma} d\omega ,$$

对 $\omega = X dx + Y dy + Z dz$,

$$\begin{split} \mathrm{d}\omega &= \left(\frac{\partial X}{\partial x}\,\mathrm{d}x + \frac{\partial X}{\partial y}\,\mathrm{d}y + \frac{\partial X}{\partial z}\,\mathrm{d}z\right) \wedge \,\mathrm{d}x + \left(\frac{\partial Y}{\partial x}\,\mathrm{d}x + \frac{\partial Y}{\partial y}\,\mathrm{d}y + \frac{\partial Y}{\partial z}\,\mathrm{d}z\right) \mathrm{d}y \\ &+ \left(\frac{\partial Z}{\partial x}\,\mathrm{d}x + \frac{\partial Z}{\partial y}\,\mathrm{d}y + \frac{\partial Z}{\partial z}\,\mathrm{d}z\right) \wedge \,\mathrm{d}z \\ &= \left(\frac{\partial Z}{\partial y} - \frac{\partial Y}{\partial z}\right) \mathrm{d}y \wedge \mathrm{d}z + \left(\frac{\partial X}{\partial z} - \frac{\partial Z}{\partial x}\right) \mathrm{d}z \wedge \,\mathrm{d}x + \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y}\right) \mathrm{d}x \wedge \,\mathrm{d}y \\ &= \left|\frac{\mathrm{d}y \wedge \mathrm{d}z}{\partial x} - \frac{\partial}{\partial x} - \frac{\partial}{\partial x}\right| X \\ &= \left|\frac{\mathrm{d}z \wedge \mathrm{d}x}{\partial x} - \frac{\partial}{\partial y}\right| Y \\ &= \left|\frac{\mathrm{d}z \wedge \mathrm{d}x}{\partial x} - \frac{\partial}{\partial z}\right| Z \end{split}$$

直角坐标系下,

$$\mathbf{rot}\,\mathbf{F} = \begin{pmatrix} \frac{\partial Z}{\partial y} - \frac{\partial Y}{\partial z} \\ \frac{\partial X}{\partial z} - \frac{\partial Z}{\partial x} \\ \frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y} \end{pmatrix}$$
是向量场 $\mathbf{F} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ 的旋度。(对应 Stokes 公式)

对平面向量场 $\mathbf{F} = \begin{pmatrix} X \\ Y \end{pmatrix}$,旋度 $\mathrm{rot} \, \mathbf{F} = \frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y}$ 。(对应环量-旋度 Green 公式)

$$\int_{\gamma} X dx + Y dy = \iint_{D} \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y} \right) dx dy$$

对平面向量场
$$\mathbf{F} = \begin{pmatrix} X \\ Y \end{pmatrix}$$
,散度 $\operatorname{div} \mathbf{F} = \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} = \operatorname{tr} \frac{\partial (X,Y)}{\partial (x,y)}$ 。(对应通量-散度 Green 公式)

$$\int_{\gamma} -Y dx + X dy = \iint_{D} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right) dx dy$$

注: 微分形式表达的 Green 公式只有一个, 但物理意义的 Green 公式有两个。

使用 Green 公式/Stokes 公式时,要把曲线作为一个平面区域/曲面的边界,并且注意曲线定向与曲面定向相协调(站在曲线上沿曲线正向前进时,平面区域/曲面位于左手一侧,想一想在运动场跑道上跑步的人就知道了)

第二型曲面积分的计算

- 1、选择适当的参数方程,代入并转为二维重积分
- 2、利用向量场的特殊性和第二型曲面积分的物理含义(通量)
- 3、利用 Gauss 公式(散度定理),把曲面积分转成关于散度的三重积分,要注意曲面定向与空间定向相协调。

一些建议

- 1、利用对称性,但如何利用(坐标变换会带来曲线曲面的变化、定向的变化以及向量场的变化)
- 2、利用积分对曲线曲面的可加性,以及对向量场/微分形式的线性,对积分进行分解。比如曲线积分时分离出其中具有原函数的部分,对积分进行化简。

二、习题

第二型曲线积分

1.
$$\int_{L: \mathcal{H}(1,\pi) \widehat{\mathbb{P}}|(2,\pi)} \left(1 - \frac{y^2}{x^2} \cos \frac{y}{x}\right) dx + \left(\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}\right) dy$$

2. 计算积分 $I = \int_{\Gamma} (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz$, 其中Γ为第一卦限中球面片

 $x^2 + y^2 + z^2 = 1$ ($x, y, z \ge 0$) 的边界曲线绕球面外法向量逆时针旋转。(课本习题 4.4 题 3 (4), page 192)

3. 设C为闭曲线: |x|+|y|=2, 逆时针为正向。

计算(i)
$$\oint_{C^+} \frac{ax dy - by dx}{|x| + |y|}$$
, (ii) $\oint_{C^+} \frac{x dy - y dx}{4x^2 + y^2}$ 。

4. 已知函数 f(x) 在整个实轴 **R** 上二次连续可微,满足 f'(0) = 0 ,且使得一阶微分形式 [f(x) + y(x - f(x))]dx + f'(x)dy 是全微分,求 f(x) ,并使上述一阶微分形式由 A(0,0) 到 $B(\frac{\pi}{2},\pi)$ 逐段光滑曲线 L 上积分的值为 $\frac{\pi^2}{8}$ 。

- 5. 设 Q(x,y) 在全平面上连续可微, 已知曲线积分 $\int_{L} 2xy dx + Q(x,y) dy$ 与路径无关, 并且对于任意的 t , 有 $\int_{(0,0)}^{(1,t)} 2xy dx + Q(x,y) dy = \int_{(0,0)}^{(t,1)} 2xy dx + Q(x,y) dy$. 求函数 Q(x,y) .
- 6. 已知积分 $\int_L (x + xy \sin x) dx + \frac{f(x)}{x} dy$ 与路径无关, f(x) 为可微函数,且 $f\left(\frac{\pi}{2}\right) = 0$,
 - (1) 求 f(x);
 - (2) 对(1)中求得的 f(x), 求函数 u = u(x, y) 使得 $du = (x + xy \sin x) dx + \frac{f(x)}{x} dy$;
 - (3) 对(1)中求得的 f(x), 求上述积分, 其中积分路径为从 $A(\pi,1)$ 到 $B(2\pi,0)$ 的任意路径.

第二型曲面积分

- 7. 计算第一型曲面积分 $I=\iint_S |z| d\sigma$,以及第二型曲面积分 $J=\iint_{S^+} |z| dx \wedge dy$, 其中曲面 S 为球面 $S:x^2+y^2+z^2=a^2$; 定向曲面 S^+ 的外侧。
- 8. 记 S 为锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 2x$ 所截的有限部分。规定曲面 S 的正向向下,所得的定向曲面记为 S^+ 。求下面两个积分的值。

$$(i) \iint_S z \mathrm{d}\sigma \ . \qquad (ii) \quad \iint_{S^+} \sqrt{x^2 + y^2 + z^2} \left(x \mathrm{d}y \wedge \mathrm{d}z + y \mathrm{d}z \wedge \mathrm{d}x + z \mathrm{d}x \wedge \mathrm{d}y \right).$$

- 9. 求 积 分 $I = \iint_{\Sigma} f(x) dy \wedge dz + g(y) dz \wedge dx + h(z) dx \wedge dy$, 其 中 Σ 为 长 方 体 $[0,a] \times [0,b] \times [0,c]$ 的边界外侧,函数 f(x) , g(y) 和 h(z) 均为连续函数。
- 10. 记 S^+ 为圆柱面 $x^2+y^2=1$ 位于 $0\leq z\leq 2$ 的部分,外法向为正,计算曲面积分 $I=\iint_{S^+}x(y-z)\mathrm{d}y\wedge\mathrm{d}z+(x-y)\mathrm{d}x\wedge\mathrm{d}y$
- 11. 计算高斯积分 $I = \iint_S \frac{\cos(\mathbf{r}, \mathbf{n})}{\|\mathbf{r}\|^2} d\sigma$, 其中 S 为一个不经过原点的光滑封闭曲面,其中 \mathbf{n} 为 S 上点 $\mathbf{r} = (x, y, z)$ 处的单位外法线向量.
- 12. 设 $f:[0,+\infty)\to \mathbb{R}$ 是 $C^{(1)}$ 函数,满足 f(0)=1,且对区域 $R^+=\{(x,y,z)\,|\,x>0\}$ 内任何一个 光滑有向封闭曲面 S ,都有 $\iint_S xf(x)\mathrm{d}y \wedge \mathrm{d}z xyf(x)\mathrm{d}z \wedge \mathrm{d}x \mathrm{e}^{2x}z\mathrm{d}x \wedge \mathrm{d}y = 0$ 。求 f(x) 。

13. 设
$$D \subset \mathbf{R}^2$$
为开集, $u(x,y)$ 为调和函数 $\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, (x,y) \in D\right)$,证明

(i)
$$u(x_0, y_0) = \frac{1}{2\pi} \int_{\partial D} \left(u \frac{\partial \ln r}{\partial \mathbf{n}} - \ln r \frac{\partial u}{\partial \mathbf{n}} \right) dl$$
, $\not\equiv (x_0, y_0) \in D$, $r = \sqrt{(x - x_0)^2 + (y - y_0)^2}$,

n 为 D 的外法向量;

(ii)
$$u(x_0, y_0) = \frac{1}{2\pi R} \int_{\partial B((x_0, y_0), R)} u(x, y) dl$$
, $\sharp \oplus B((x_0, y_0), R) \subset D$.