ECE3700J Introduction to Computer Organization

Homework 6

Assigned: October November 15, 2022

Due: 2:00pm on November 22, 2022

Submit a PDF file on Canvas

1. (10 points) The following code is written in C, where elements within the same row are stored contiguously. Assume each word is a 32-bit integer.

- (1) Which variable references exhibit temporal locality? (5 points) B[I][0], I, J
- (2) Which variable references exhibit spatial locality? (5 points)
 A[I][J]
- 2. (40 points) Below is a list of 32-bit memory address references, given as word addresses: 0x03, 0xB4, 0x2B, 0x02, 0xBF, 0x58, 0xBE, 0x0E, 0xB5, 0x2C, 0xBA, 0xFD
 - (1) For each of these references, identify the tag and the cache index given a direct-mapped cache with 8 one-word blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. (10 points)

	0x03	0xB4	0x2B	0x02	0xBF	0x58	0xBE	0x0E	0xB5	0x2C	0xBA	0xFD
tag	00000	10110	00101	00000	10111	01011	10111	00001	10110	00101	10111	11111
index	011	100	011	010	111	000	110	110	101	100	010	101
Hit/miss	miss											

(2) For each of these references, identify the tag and the cache index given a direct-mapped cache with two-word blocks and a total size of 4 blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. (10 pints)

	0x03	0xB4	0x2B	0x02	0xBF	0x58	0xBE	0x0E	0xB5	0x2C	0xBA	0xFD
tag	00000	10110	00101	00000	10111	01011	10111	00001	10110	00101	10111	11111
index	01	10	01	01	11	00	11	11	10	10	01	10
Hit/miss	miss	miss	miss	miss	miss	miss	hit	miss	hit	miss	miss	miss

(3) You are asked to optimize a cache design for the given references. There are three

direct-mapped cache designs possible, all with a total of 8 words of data: C1 has 1-word blocks, C2 has 2-word blocks, and C3 has 4-word blocks. In terms of miss rate, which cache design is the best? If the miss stall time is 35 cycles, and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is the best cache design? (20 points)

Miss rate: C2 is best, 10/12=83.3%. C1 is 100%, C3 is 11/12=91.7%.

Time: C1: (35+2)*12=444, C2: 35*10+3*12=386, C3: 35*11+5*12=445

Thus C2is the best.

3. (50 points) For a direct-mapped cache design with a 32-bit byte address, the following bits of the address are used to access the cache.

Tag	Index	Offset
31 - 10	9 - 5	4 - 0

- (1) What is the cache block size (in words)? (5 points) 8words
- (2) How many blocks does the cache have? (5 points) 32 blocks
- (3) What is the ratio between total bits required for such a cache implementation over the data storage bits? (5 points)

(32*(1+22+8*32))/(32*8*32)=1.09

Beginning from power on, the following byte addresses for cache references are recorded.

		•			Ac	ldress					
0x00	0x04	0x10	0x84	0xE8	0xA0	0x400	0x1E	0x8C	0xC1C	0xB4	0x884

- (4) (20 points) For each reference, list
 - a) its tag, index, and offset
 - b) whether it is a hit or a miss, and

c) How many blocks were replaced (if any)?

	0x00	0x04	0x10	0x84	0xE8	0xA0	0x400	0x1E	0x8C	0xC1C	0xB4	0x884
tag	0	0	0	0	0	0	1	0	0	11	0	10
index	0	0	0	100	111	101	0	0	100	0	101	100
offset	00000	00100	10000	00100	01000	00000	00000	11110	01100	11100	10100	00100
Hit/miss	miss	hit	hit	miss	miss	miss	miss	miss	hit	miss	hit	miss
replaced							1	1		1		1

- (5) What is the hit ratio? (5 points) 4/12=33.3%
- (6) Show the final state of the cache, with each valid line represented as <index, tag, data>.

(10 points)

<000, 11, Mem[0xC00-0xC1F]>

<100, 10, Mem[0x880-0x89F]>

<101, 0, Mem[0xA0-0xBF]>

<111, 0, Mem[0xE0-0xFF]>