

#### Language Processing and Digital Humanities

# Drug Question Answering

Final Project - NLP Course - Dr. Asgari

Sara Azarnoush MohammadReza Daviran Nona Ghazizadeh Sina Abdous Hadis Ahmadian Mahsa Yazdani

# Outline

- Introduction
- Datasets
  - PubMed
  - ☐ PubMed QA
  - Translation
- Models
  - ☐ Translation
  - Embedding
  - Elastic Search
  - Summarization
    - Bert
    - ☐ LLM
- Web Based Demo
- Results

#### Introduction

The Drug Question Answering System presented in this work aims to provide comprehensive answers to queries in both English and Persian languages within the medical domain. The system utilizes a combination of natural language processing techniques, embedding generation, translation, information retrieval, and summarization to achieve its goal.

# Related Works



# DoctorGLM: Fine-tuning your Chinese Doctor is not a Herculean Task



#### Approach

- Create datasets for medical papers and medical question answering
- Create datasets for medical translation
- Finetune translation model
- Create embedding for our data and query
- Use Elastic-Search for vector searching
- Fine-tune summarization model
- Use LLMs for summarization

# Pipeline



# Datasets



#### **Pubmed Dataset**

- Free resource for biomedical and life sciences literature search and retrieval.
- Contains over 35 million citations and abstracts of biomedical literature.
- Does not provide full-text journal articles (Links to full text available from other source)
- Exceeds 100GB in size
  - Impractical to download the entire dataset into Google Colab
  - Download focused on abstracts of articles published in 2023
- Initial attempt used E-utilities API for data retrieval.
  - Encountered limitations in data retrieval process.
- Shifted to using EDirect for data retrieval.
  - Utilized EDirect on a Unix system.
- Retrieved data saved into a text file.
- Processed text file into a structured CSV file.



#### PubMed QA Dataset

- Innovative biomedical question answering (QA) dataset
- Answer research questions with yes/no/maybe
- Utilize corresponding abstracts for answering
- 1k expert-annotated QA instances
- 61.2k unlabeled QA instances
- 211.3k artificially generated QA instances
- Question: Derived from research article titles or content
- Context: Abstract content without conclusion
- Long Answer: Abstract conclusion, likely answers the research question
- Yes/No/Maybe Answer: Summarizes the conclusion's stance

#### PubMed Summarization Dataset

- Comprises around 133,000 PubMed articles and their abstracts
- Abstracts inherently function as "summaries" of articles
- utilized to fine-tune base models for summarization tasks
- Summarization tasks involve input of biomedical text (article) and output of summary (abstract)
- Used subset of dataset employed due to resource constraints
- Used to fine-tuned T5, BioBart, Falcon-7B models

#### **Translation Dataset**

- Translate medical terminology for diseases and drugs between English and Persian
- Scarcity of existing datasets in medical translation domain
- Generate a dataset for fine-tuning translation models
- Curate disease names in English and Persian
- Three synthetic medical sentences in both English and Persian for each disease
- Content covers symptoms, treatments, and pharmaceutical interventions
- Contextually relevant and coherent content ensured by ChatGPT API
- High-quality dataset suitable for training and evaluation



# Models



#### **Translation**

- English to Persian translation for medical context
- Employed "SMaLL-100" model architecture
  - Designed for low-resource languages and complex translations
- Enhance model's proficiency in translating disease-related text
- Model's refined ability to translate between English and Persian especially in the domain of medical conditions
- Improving language understanding and translation skills in medical context
- Enabling two-way translation for medical content
- Evaluation based on accurate translation of medical terminology and disease descriptions (BLEU)



#### **Translation Evaluation**

#### English to Farsi

| BLUE-1 | 0.60297 |
|--------|---------|
| BLUE-2 | 0.49301 |
| BLUE-3 | 0.43094 |
| BLUE-4 | 0.39818 |

#### Farsi to English

| BLUE-1 | 0.78158 |
|--------|---------|
| BLUE-2 | 0.71473 |
| BLUE-3 | 0.66086 |
| BLUE-4 | 0.60995 |

# **Translation Comparison**

| Question                                                             |                                                                        |  |
|----------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Medical fa_en                                                        | Google Translate                                                       |  |
| نشانه های حمله قلبی چییست                                            |                                                                        |  |
|                                                                      |                                                                        |  |
| علائم حملات قلبی شامل آنژین (درد سینه یا ناراحتی)، تنگی نفس، درد یا  | بر اساس حقایق پزشکی ارائه شده، علائم حمله قلبی شامل آنژین صدری         |  |
| ناراحتی در بدن بالا (مانند دست ها، پشت، گردن، فک یا معده) است، تهوع، | (درد یا ناراحتی قفسه سینه)، ایسکمی بخش ST (که با تغییرات در بخش        |  |
| خستگی سر و عطسه سرما.                                                | ST نوار قلب مشخص می شود)، افت فشار خون (فشار خون پایین) و علائم        |  |
|                                                                      | مربوط به فشار خون پایین است. مناسبت ها.                                |  |
| درمان سرطان ریه چیست                                                 |                                                                        |  |
|                                                                      | بر اساس حقایق پزشکی ارائه شده، درمان سرطان ریه شامل درمان              |  |
| بر پایه اطلاعات پزشکی ارائه شده، درمان سرطان ریه شامل شیمی درمانی،   | سیتواستاتیک، درمان تسکینی و رادیوتراپی است. نشان داده شده است که       |  |
| درمان تشعشعی و درمان آرامشی است. شیمی درمانی مزایای درمان پیشرفته    | درمان سیتواستاتیک باعث بهبود بقا در بیماران مبتلا به کارسینوم سلول غیر |  |
| سرطان ریه غیر کوچک را نشان داده است، به ویژه در بیماران با سرطان     | کوچک در مراحل IV یا IIIB با درگیری پلور یا N2-N3 و با وضعیت            |  |
| سلول های غیر کوچک در مراحل چهارم یا IIIB با شرکت سلول یا ن۲-ن۲       | عملکرد ۲ یا کمتر است. درمان تسکینی برای بیماران مبتلا به سرطان کیسه    |  |
| و با وضعیت عملکرد ۲ یا کمتر است. درمان سیتواستاتیک، نوعی درمان،      | صفرا غیرقابل برداشت استفاده می شود و هدف آن بهبود علائم و کیفیت        |  |
| پیش بینی مستقل از بقاء است. گزینه های درمان آرامشی برای سرطان ریه    | زندگی است. رادیوتراپی به عنوان درمان کمکی یا تسکین دهنده برای          |  |
| شامل درمان تشعشعی با دوز مختلف، مانند ۲۵ گی در بخش های ۵ یا ۵۰       | متاستاز ریه در کارسینوم نازوفارنکس استفاده می شود و نشان داده شده      |  |
| گی در بخش های ۲۰ است. انتخاب درمان به وضعیت کلی بیمار بستگی          | است که بقای کلی را بهبود می بخشد. انتخاب گزینه های رادیوتراپی برای     |  |
| دارد، هیچ تفاوتی در بقاء بین دو گزینه مشاهده نشده است.               | سرطان پروستات به ترجیح بیمار بستگی دارد و برخی از بیماران به دلیل      |  |
| SCHOOL SALES SEE CONTRACTOR SALES SEE                                | نگرانی در مورد سمیت، دوز کمتری از پرتودرمانی را انتخاب می کنند.        |  |
| علايم سرطان ريه چيست                                                 |                                                                        |  |
|                                                                      |                                                                        |  |
| علائم سرطان ریه ذکر شده در حقایق پزشکی ارائه شده، تنگی نفس، درد و    | علائم سرطان ریه ذکر شده در حقایق پزشکی ارائه شده، تنگی نفس، درد و      |  |
| دیسفاژی است.                                                         | دیسفاژی است.                                                           |  |

### **Embedding**

- Read and process context from datasets
- Embed data using BioBert model
- Embed context and translated input question
- BioBert is a specialized variant of BERT (Bidirectional Encoder Representations from Transformers)
- Embeddings are numerical representations capturing semantic meaning and contextual information
- Enable comparison and measurement of similarity between text components

#### **Elastic Search**

- Searching among embeddings
- Locate specific embeddings efficiently
- Create a database containing collected embeddings
  - Utilize Elastic Search for database creation
  - A common tool for vector searching due to its efficient indexing process
- Search query embedding within the saved embeddings database
- Elastic Search facilitates this search.
- Elastic Search's indexing algorithms are optimized for vector searching



#### Summarization - BioBert / T5

- Due to resource constraints, GPT (large model) couldn't be fine-tuned for biomedical QA domain
- Experimented with smaller, fine-tuned language models for summarization tasks
- Choose BioBart and T5 large models for fine-tuning
- Using a dataset of 1000 pubmed articles and their abstracts (Pubmed summarization dataset)
- Fine-tuned T5 model demonstrated acceptable and comparable summarization performance to GPT
- GPT still displayed superior performance compared to fine-tuned T5 and BioBart models

#### **Summarization - LLM**

- Attempted to enhance model performance using LoRA and Falcon-7b
  - Limited by resource constraints.
- Relied on a dataset of 3000 PubMed articles with abstracts.
- Overcame limitations with GPT-3.5-turbo model API for text summarization.
- Addressed binary questions using summarization outputs
- Utilized Bio-Bart and T5 models alongside GPT model
- Meticulously compared and contrasted summarized outputs
  - GPT-based approach consistently demonstrated superior accuracy



#### **Summarization Evaluation**

Comparison of different summarization components with 10 samples

| Model   | Accuracy |
|---------|----------|
| GPT     | 0.7      |
| BioBert | 0.4      |
| T5      | 0.6      |

# **Proposed Model Problems**

#### Resource Problems

- Generating datasets
- Training Process
- Cannot Make Architecture More Complicated
- Storage



# Web Based Demo



#### Web-Based Demo



# Web-Based Demo (English)

on echocardiography.

#### Ask what's on your mind!

What are the main signs of a heart attack?

Options

Choose your summarizer

GPT ▼

Answer

The main signs of a heart attack include anginal episodes, ST segment ischaemia, elevated cardiac troponin (cTn), and wall motion abnormalities (WMAs)

## Web-Based Demo (Farsi)

#### Ask what's on your mind!

نشانه های حمله ی قلبی جیست

ANSWER

#### **Options**

Choose your summarizer

**GPT** 



#### Answer

. حلائم حملات قلبي شامل آنڙين (درد سينه يا ناراحتي)، تنگي نفس، در د يا نار احتي در مناطق ديگر بدن بالا (مانند دست ها، پشت، گردن، فک يا معده) است، تهوع، سردر د و عطسه سرما

# Evaluation



#### Results

# Comparison of overall performance with different summarization components with 50 samples on PubMed QA

#### yes/no/maybe questions

| Summarization<br>Model | Pipeline<br>Accuracy |
|------------------------|----------------------|
| GPT                    | 0.61                 |
| BioBert                | 0.28                 |
| T5                     | 0.39                 |

# Conclusion & Future Work



#### Conclusion & Future Works

- Work on Architecture of Models: better LLMs
- Data: Farsi data, process
- Train our model on more data
- Improve Web Based Demo of Models
- bias , security, validity

#### References

- <u>Introducing Shallow Multilingual Machine Translation Model for Low-Resource Languages</u>
- Evidence Extraction to Validate Medical Claims in Fake News Detection
- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer



Thank you