Fizika snov

Rok Kos

Gimnazija Vič, Tržaška cesta 72

Kazalo

1	FIZIKALNE KOLIČINE IN ENOTE	
	1.1 Osnovne in sestavljene enote	3
	1.2 Predpone	3
	1.3 Merjenje	3
	1.4 Računanje z napakami	4
	1.5 Grafična predstavitev rezultatov	5
	PREMO IN KRIVO GIBANJE	
	2.1 Premo gibanje	6
	2.2 Hitrost	6
	2.3 Enakomerno gibanie	7

1 FIZIKALNE KOLIČINE IN ENOTE

Fizikalna količina je produkt merskega števila in merske enote.

1.1 Osnovne in sestavljene enote

Osnovne fizikalne količine	Osnovne fizikalne enote
dolžina	m
masa	kg
čas	S
el. tok	Α
temperatura	K
svetilnost	cd
količina snovi	mol

Vse ostale enote lahko zapišemo s temi.

Sestavljene fizikalne enote: $\frac{m}{s}$, N, J, W..

$$1N = \frac{1kgm}{s^2}$$

1.2 Predpone

$$\begin{array}{cccc} \text{M} & 10^6 \\ \text{k} & 10^3 \\ \text{h} & 10^2 \\ \text{da} & 10 \\ \text{d} & 10^{-1} \\ \text{c} & 10^{-2} \\ \text{m} & 10^{-3} \\ \mu & 10^{-6} \\ \text{n} & 10^{-9} \\ \text{p} & 10^{-12} \\ \text{f} & 10^{-15} \\ \end{array}$$

1.3 Merjenje

NAPAKE:

 SLUČAJNE(odvisne od natačnosti merilca) → te napake se da zmanjašati z večkratnim merjenjem

• SISTEMATIČNE(odvisne od merilne naprave) → se jih <u>neda odpraviti</u> z večkratnim merjenjem

Vse meritve zapišemo v **tabelo**

dolžina I	[m]
1	x_1
2	x_2
3	<i>x</i> ₃
:	:
n	x_n

Izračun povprečne vrednosti : \overline{x}

$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Absolutna Napaka Δx

 Δx je največje odstopanje meritve od povprečne vrednosti.

$$x = \overline{x} \pm \Delta x$$

Relativna Napaka δx

$$\delta x = \frac{\Delta x}{\overline{x}}$$

$$x = \overline{x}(1 \pm \frac{\Delta x}{\overline{x}})$$

1.4 Računanje z napakami

Vsota in razlika

$$a = \overline{a} \pm \Delta a$$

$$b = \overline{b} \pm \Delta b$$

$$(a+b)_{max} = (\overline{a} + \Delta a) + (\overline{b} + \Delta b) = (\overline{a} + \overline{b}) + (\Delta a + \Delta b)$$

$$(a+b)_{min} = (\overline{a} - \Delta a) + (\overline{b} - \Delta b) = (\overline{a} + \overline{b}) - (\Delta a + \Delta b)$$

$$a+b = (\overline{a} + \overline{b}) \pm (\Delta a + \Delta b)$$

$$a-b = (\overline{a} - \overline{b}) \pm (\Delta a + \Delta b)$$

Pri seštevanju in odštevanju seštevamo **absolutne napake. Množenje in deljenje**

$$a = \overline{a} \pm \Delta a$$

$$b = \overline{b} \pm \Delta b$$

$$ab_{max} = (\overline{a} + \Delta a)(\overline{b} + \Delta b) = \overline{a}\overline{b} + \overline{a}\Delta b + \overline{a}\Delta b + \Delta a\Delta b^{*0}$$

$$= \overline{a}\overline{b}(1 + \frac{\Delta a}{\overline{a}} + \frac{\Delta b}{\overline{b}}) = \overline{a}\overline{b}(1 + (\delta a + \delta b))$$

$$ab_{min} = (\overline{a} - \Delta a)(\overline{b} - \Delta b) = \overline{a}\overline{b} - \overline{a}\Delta b - \overline{a}\Delta b + \Delta a\Delta b^{*0}$$

$$= \overline{a}\overline{b}(1 - \frac{\Delta a}{\overline{a}} - \frac{\Delta b}{\overline{b}}) = \overline{a}\overline{b}(1 - (\delta a + \delta b))$$

$$ab = \overline{a}\overline{b}(1 \pm (\delta a + \delta b))$$

$$\frac{a}{b} = \frac{\overline{a}}{b}(1 \pm (\delta a + \delta b))$$

Pri množenju in deljenju seštevamo **realtivne napake. Potenciranje**

$$a = \overline{a} \pm \Delta a$$
$$a^n = \overline{a}^n (1 \pm (n\delta a))$$

1.5 Grafična predstavitev rezultatov

- 1. Urejene osi(enote, številke)
- 2. Pravilno vnešene meritve
- 3. Premica, ki se najbolj prilega
- 4. Smerni koeficient(z enotami)
- 5. Fizikalni pomen smernega koeficienta(hitrost, fizikalna količina)

$$k = \frac{y_2 - y_1}{x_2 - x_1}$$

Zveza: S = vt

2 PREMO IN KRIVO GIBANJE

2.1 Premo gibanje

Premik definiramo kot <u>razdaljo</u> med <u>začetno</u> in <u>kočno lego</u>, kateremu lahko določimo smer.(se vprašamo kam)

Zapis:

Kartezični(Vektor) \rightarrow (-60km, -70km) ali (x, y) Cilindrične kordinate \rightarrow (-92km, 230°C) ali (r, α)

Pot se vedno **veča** zato nikoli ne gre v **minus**.

2.2 Hitrost

Hitrost nam pove kakšna pot naredimo v določenem času. Hitrost je vektorska kolilčina odvisna od smeri. Poznamo tudi skalarne količine(npr. Masa).

Enačbe, ki so svete:

$$v = v_0 + at$$

$$s = v_0 t + \frac{at^2}{2}$$

$$v^2 = v_0^2 + 2as$$

2.3 Enakomerno gibanje

To je gibanje pri katerem je **hitrost konstantna**. Primer: krogla, ki jo iztrelimo v breztežnostnem prostoru.

$$a = 0$$

$$v = v_0$$

$$s = v_0 * t \rightarrow v_0 = \frac{s}{t}$$

$$v^2 = v_0^2$$

Naklon pove hitrost

$$f = tan\alpha = k$$
$$k = \frac{\Delta y}{\Delta x} = \frac{\Delta s}{\Delta t} = v$$

Ploščina pod krivuljo nam pove prepotovano pot.

$$s = t * v$$