

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Figure 1: General structure of activators of non-genomic Estrogen-Like Signalling (ANGELS).

Figure 2: Estrogen deficiency causes increased apoptosis of osteoblasts and osteocytes in murine vertebral bone.

Figure 3: Inhibition of apoptosis of osteoblastic cells.

Figure 4: Inhibition of apoptosis of MLO-Y4 osteocytic cells by ANGELS

Figure 5: Blockade of the anti-apoptotic effect of estrogen and ANGELS by ICI 182,780 in osteoblastic cells

Figure 6: Inhibition of the antiapoptotic effect of estrogen and ANGELS by ICI 182,780 in MLO-Y4 osteocytic cells

Figure 7: Estrogen receptor α or β is required for the antiapoptotic effects of 17 β estradiol, 17 α estradiol, and estratriene-3-ol on etoposide-induced apoptosis (experiment 1/21/99).

Figure 8: Activation of Extracellular Signal Regulated Kinases (ERKs)

Figure 9: The effect of estrogenic compounds on the activation of ERK1/2 is blocked by a specific inhibitor.

Figure 10: The specific inhibitor of ERK activation abolishes the anti-apoptotic effect of the estrogenic compounds.

Figure 11: Unlike 17β estradiol, estratriene-3-ol does not transactivate an estrogen response element through ER α .

C₁₆H₂₂O₂
MW=246

[2S-(2a,4a α ,10a β)]-1,2,3,4,4a,9,10,10a-octahydro-7-hydroxy-2-methyl-2-phenanthrenemethanol

C₁₆H₂₀O₂
MW=244

[2S-(2a,4a α ,10a β)]-1,2,3,4,4a,9,10,10a-octahydro-7-hydroxy-2-methyl-2-phenanthrenecarboxaldehyde

Figure 12

Figure 13

Docket/App No.: 3650.1006-010
Title: Methods and Compositions...
Inventors: Stavros C. Manolagas, *et al.*

Figure 14: Mechanisms of Estrogen Receptor Action

Formation occurs only on sites of previous osteoclastic bone resorption.

Anti-resorptive Non anti-resorptive (i.e. ANGELS)

**Small and slow increase
in trabecular thickness**

**Large and rapid increase
in trabecular thickness**

**Anti-fracture efficacy
(through inhibition of osteocyte apoptosis)**

Figure 15: Implications of the effects of anti-resorptive vs. non anti-resorptive agents on apoptosis

R^1 AND/OR R^2 SUBSTITUTION:

	STRUCTURE
HYDROXY	-OH
METHYL	-CH ₃
METHYL ET	-OCH ₃
ACETYL	$\begin{array}{c} \text{O}-\text{C}-\text{CH}_3 \\ \\ \text{C} \end{array}$
ETHYL ET	$\begin{array}{c} \text{O}-\text{CH}_2-\text{CH}_3 \\ \\ \text{C} \end{array}$
J. J. (OR 1)	$\begin{array}{c} \text{OCH}_3 \\ \\ \text{OCH}_3 \end{array}$
DIMETHYL ET	$\begin{array}{c} \text{OCH}_3 \\ \\ \text{OCH}_3 \end{array}$
ETHYL-	$\begin{array}{c} \text{C}\equiv\text{CH} \\ \\ \text{C} \end{array}$
BENZYL	$\begin{array}{c} \text{O}-\text{C} \\ \\ \text{C}_6\text{H}_5 \end{array}$
BENZYL ET	$\begin{array}{c} \text{OCH}_2-\text{C} \\ \\ \text{C}_6\text{H}_5 \end{array}$
GLUCURONIC ACID	C ₆ H ₈ O ₅
SULFATE SODIUM	OSO ₃ Na
CHELATE	=
VALINE	-C ₅ H ₉ CO
CYCLOPENTYLPROPYL	$\begin{array}{c} \text{C} \\ \\ -\text{O}-\text{C}-(\text{CH}_2)_2-\text{C}_5\text{H}_5 \end{array}$
PROPIOLIC ACID	$\begin{array}{c} \text{C} \\ \\ -\text{O}-\text{C}-(\text{CH}_2)_2 \end{array}$
HEMISUCCINIC ACID	-C ₄ H ₄ O ₅
PALMITIC ACID	-C ₁₆ H ₃₂ O ₂

Figure 16A

R₁ AND/OR R₂ SUBSTITUTIONS

STRUCTURE

SODIUM PHOSPHATE -O-PO₃Na₂

ENANTHIDE -C₇H₁₂O

GLUCURONIDE SODIUM Salt -C₆H₈O₆Na

STEARATE -C₁₈H₃₄O

TERTIARY AMMONIUM SALT -N-(C₂H₅)₃

CYPICOLIC ACID

17b ESTER

17a ESTER

Figure 16B

Figure 17

Figure 18

Figure 19: Effect of the all peptide on the 17 β E $_2$ -induced ERE activity in 293 cells

Figure 20: Effect of the all peptide on the 17 β E₂-induced inhibition of IL-6 activity in 293 cells

Figure 21: Effect of the all peptide on the Etoposide-induced apoptosis of 17b-BSA-activated 293 cells