

RAIO

RA8816

144x65 Character/Graphic LCD Driver Specification

Version 1.7

July 4, 2008

RAIO Technology Inc.
@Copyright RAIO Technology Inc. 2008

	Update History								
Version	Date	Description							
1.0	September 5, 2005	First Release							
1.1	December 19, 2005	Update Table 5-3							
1.2	January 10, 2006	 Modify Table 5-15 Modify Figure 6-17 and 6-18: Memory Write/Read on 6800(8-Bit) I/F Update Section 6-4-2: Voltage Regulator Modify Table 6-3: Select V_{REF} Modify the parameter of Table 9-2 							
1.2B	March 9, 2006	 Modify the description of TEST[20] of Table 4-4 Modify Figure A-2, A-3 and A-4 							
1.3	May 8, 2006	 Update section 6-4-2: Voltage Regulator Update Table 9-8 Add Figure 9-5B and Table 9-7B 							
1.4	July 12, 2006	Update Table 8-1: Bump Size and Pitch Update Table 9-2: Oscillator Frequency							
1.5	January 23, 2007	 Update Section 5-2 Register Contents: The description of Scroll Offset Register (SCOR) Update Section 6-4-1 Booster Circuit: Figure 6-24: Application circuit of Booste, and the Note: The capacitor value of C1 is 1uF and C2 is 1uF. Update Section 9-2 DC Characteristic: Table 9-2 Update Section 9-3-1 Parallel Interface: Table 9-4 							
1.6	December 20, 2007	 Update Figure 3-2: Internal Block Update Table 4-1: the name of Serial Clock Update Table 5-9: the Key Scan Data Update Table 6-3: Select V_{REF} Update Table 6-4: Keyboard Code of Auto-Mode Update Figure 6-33, 6-34 and 6-35 ASCII Table Update the Section 9-3-1, the parameter of Write Data Setup Time Update Table 9-5 \ 9-6 \ 9-7A: The unit of Access Time. 							
1.7	July 4, 2008	 Update Table 4-1,4-4, 4-5: the discription of pin name Update Table 9-2: DC Characteristic 							

Chapter	Contents	Page
1. General Description .		5
3. Block Diagram		5
4. Pin Definition		7
4-1 MPU Interface		7
4-2 Clock and Power		8
4-3 LCD Panel Interface		9
<u> </u>	າ	
_		
-		
_		
•		
-		
•		
	uit	
•		
•		
' '		
·		
•	Shift	
	link	
• •	III IK	
<u> </u>		
• •		

7-6 Vertical Scroll	50
8. Pin Diagram	
8-1 COG Pad	
8-2 Pad X/Y Coordinate	53
9. Electrical Characteristic	
9-1 Absolute Maximum Ratings	58
9-2 DC Characteristic	
9-3 Timing Characteristic	59
9-3-1 Parallel Interface	59
9-3-2 Serial Interface	60
9-3-3 Reset Interface	63
Appendix A	64
A-1 COG Application	
A-1-1 Basic Connection of Serial I/F	64
A-1-2 Basic Connection of Parallel I/F	65
A-1-3 Other Application for FPC	65
A-2 ITO	

1. General Description

The RA8816 is a Dot-Matrix LCD Driver that supports both character and graphic mode. It built-in a 256Kbyte character ROM that consists of Chinese, English and ASCII fonts. The embedded 1170Byte display RAM supports up to 144x65 dots LCD panel. The RA8816 also provides a scrolling buffer memory for scrolling functions. It supports up, down, left and right scrolling features, and all of the scrolling is execute by hardware.

In character mode, the RA8816 supports Chinese BIG5 code or GB code. The system(MPU) does not need take a lot of time to show the Chinese font in graphic mode. It also provides small ASCII(8x8) and big ASCII(8x16) font for English character, Japanese, European and Latin. The RA8816 integrates much powerful hardware that including Contrast adjustment, 4x5 Key-Scan, eight General Purpose I/O and EL Backlight signals for EL driver.

The RA8816 is a high integration chip of LCD Controller. It reduce a lot of time for system develop, and save much cost for hardware system that due to it provides many features for related LCD display application.

2. Feature

- Support both Character and Graphic Mode
- Support 8080/6800 8/4-bit Parallel Interface, 3-Wire/4-Wire Serial Interface, IIC interface
- Built-in 256KB Font ROM: Chinese, English, ASCII, Japanese, Latin, Latin-ext A, Latin-ext B
- Support ASCII 8x8/8x16 Half Size Font, 16x16 Full Size Chinese Font
- Support Maximum 144Seg x 65Com LCD Panel. 4 x 9 Chinese Fonts(16x16), or 8 x 18 English Fonts(8x8)
- Built-in 1170 Bytes Display RAM and 450Byte Scrolling Buffer

- Support 1/65 Duty, 1/9~1/5 Bias Panel
- Built-in 2X~4X(Voltage Booster), Voltage Regulator, Voltage Follower
- Eight General Purpose I/O
- Built-in 4x5 Key-scan Circuit
- Support Horizontal/Vertical Scrolling Functions
- Built-in 256Byte SRAM for Create Font
- Provide Signals for EL Driver
- Provide 32-Steps Contrast Adjuster
- Build-in RC Oscillator
- Voltage Operation: VDD → 2.7~3.8V
- Package: Gold Bump Die

3. Block Diagram

Figure 3-1: System Block

The RA8816 is consisted of Display RAM, 256Kbyte Font ROM, Command Registers, LCD Controller, LCD Driver, Voltage Booster, Voltage Regulator, MPU Interface and Key-Scan circuit.

Figure 3-2: Internal Block

4. Pin Definition

4-1 MPU Interface

Table 4-1

Pin Name	1/0	Description
riii ivame	I/O	Description
		Data Bus When the MPU use parallel mode and 8-bit interface then all of the DB[70] are valid. When use 4-bit interface then only DB[30] are valid, and DB[74] have to keep floating.
		When P/\overline{S} is "0", then the interface between MPU and RA8816 is Serial Mode. The pins DB[76](SMOD[10]) are used to select which serial mode:
		SMOD: Serial Mode
DB[70] DB0: SCK DB1: SDA/SDO DB2: RS/SDI	I/O	0 0 : IIC interface, SCK, SDA are used 0 1 : 3-Wire, SCK, SDA, $\overline{\text{CS}}$ are used. 1 0 : 4-Wire, SCK, SDA, RS, $\overline{\text{CS}}$ are used. 1 1 : 4-Wire, SCK, SDO, SDI, $\overline{\text{CS}}$ are used.
DB3: CS DB[76]: SMOD		In serial mode, all of the related signals are defined by DB[30]: SCK(DB0): Serial Clock. SDA(DB1): Bi-direction Mode Serial Data. SDO(DB1): Data Out. RS(DB2): Memory/Register Cycle Select. SDI(DB2): Serial Data In.
		CS (DB3) : Chip Select, active low. In the IIC mode, WR, RD and DB[52] are used as the IIC device address - IICA[50] to avoid conflict with other IIC devices. The unused pin must keep NC for serial mode.
RD EN	I	Read Control or Enable When use 8080 series interface, RD is the read signal and active low. When use 6800 series interface, EN is the Enable signal and active high. In the IIC mode, RD is used as IIC device address - IICA[4]. This pin must keep VDD for 3 or 4-wires serial mode.
WR R/W	I	Write Control or Read-Write Control When use 8080 series interface, WR is the write signal and active low. When use 6800 series interface, this pin is R/W, active high for read cycle and active low for write cycle. In the IIC mode, WR is used as IIC device address - IICA[5]. This pin must keep VDD for 3 or 4-wires serial mode.
D/C RS	I	Data/Command Select or Register Select) When use 8080 series interface, this is Data or Command signal. When D/C is "0", means Register Cycle(or Command Cycle). When D/C is "1", means Data Access Cycle(Data Cycle). When use 6800 series interface, this is the RS signal. When RS is "0", means Register Cycle and "1" means Data Access Cycle.

		This pin must keep VDD for serial mode.
CS	I	Chip Select This is a chip enable for RA8816. This pin must keep VDD for serial mode.
ĪNT	0	Interrupt Signal This is an interrupt output for MPU. Active low ∘
C86	I	MPU Select C86 = 0 → The MPU interface is 8080 series. C86 = 1 → The MPU interface is 6800 series(Default). This pin must keep VDD for serial mode.
BIT4	I	Data Bit Select BIT4 = 0→ The parallel mode is use 8-bit data bus. BIT4 = 1→ The parallel mode is use 4-bit data bus(Default). This pin must keep VDD for serial mode.
P/S	I	Parallel/Serial Select P/S = 0 → The MPU interface is serial mode(Default). See the setting of DB[76]. P/S = 1 → The MPU interface is parallel mode.

4-2 Clock and Power

Table 4-2

Pin Name	I/O	Description
V0~V4	0	Voltage Source of LCD Driver The relationship of the power is VLCD>V0≥V1≥V2≥V3≥V4≥VSS ∘
C1P, C1M	I	Capacitor Input These are used to connect a capacitor for internal Booster.
C2P, C2M	I	Capacitor Input These are used to connect a capacitor for internal Booster.
C3P	I	Capacitor Input These are used to connect a capacitor for internal Booster.
VLCD	0	Booster Output
VREF	I	Reference Voltage Input This is the refeence voltage input when use an external regulator.
VR	I	Voltage Adjustment Applies voltage between V0 and VSS. Using a resistive divider.
CLK_SEL	I	Clock Select This pin is used to select the clock source. When CLK_SEL is "1", the clock is generated by internal RC oscillator. When CLK_SEL is "0", the system clock is drived by external pin - EXT_CLK.
EXT_CLK	I	External Clock When CLK_SEL is "0", this pin is the external clock input. When CLK_SEL is "1", this pin do not used and has to connect VDD or GND.
VDD VDDP	Р	VDD Power
GND GNDP	Р	Ground

4-3 LCD Panel Interface

Table 4-3

Pin Name	I/O	Description
SEG0 ~ SEG143	0	Segment Signals for Panel
COM0 ~ COM63	0	Common Signals for Panel
COMS_A COMS_B	0	Icon Common Signals for Panel
DUMY[50]	0	Dummy PAD

4-4 Misc.

Table 4-4

Pin Name	I/O	Description
KST[30]	0	Key Strobe Output
KIN[40]	I	Key Data Input For pins that are not used, please connect them to VDD.
IO[70]	I/O	General Purpose I/O
EL_CHRG	0	EL Charge Signal
EL_DCHG	0	EL Discharge Signal
RST	I	Reset RST=0, RA8816 will be reset. RST=1, Normal condition, there is an embedded Pull-High resistor in it.
TEST[20]	I	Test Pins These pins must contact to GND in normal mode.
S[10], FG	I	Test Pins These pins must keep NC for normal mode.

Table 4-5: Pin Definition of Parallel/Serial Mode of MPU

			Paralle	l Mode		Serial Mode				
Pin Name	I/O	8080		6800		IIC	3-Wire	4-Wire	4-Wire	
		8Bit	4Bit	8Bit	4Bit	IIC	3-Wile	(A-Typ)	(B-Typ)	
DB7	I/O	DB7	* ¹	DB7		0	0	1	1	
DB6	I/O	DB6		DB6		0	1	0	1	
DB5	I/O	DB5		DB5		IICA3		-		
DB4	I/O	DB4		DB4		IICA2				
DB3	I/O	DB3	DB3	DB3	DB3	IICA1	CS	CS	CS	
DB2	I/O	DB2	DB2	DB2	DB2	IICA0		RS	SDI	
DB1	I/O	DB1	DB1	DB1	DB1	SDA	SDA	SDA	SDO	
DB0	I/O	DB0	DB0	DB0	DB0	SCK	SCK	SCK	SCK	
RD, EN		RD	RD	EN	EN	IICA4	1* ²	1* ²	1* ²	
$\overline{\overline{WR}}$, R/ $\overline{\overline{W}}$		\overline{WR}	\overline{WR}	R/\overline{W}	R/\overline{W}	IICA5	1* ²	1* ²	1* ²	
D/\overline{C} , RS	I	D/C	D/C	RS	RS	1* ²	1* ²	1* ²	1* ²	
CS		CS	CS	cs	CS	1	1	1	1	
C86	I	0	0	1	1	1	1	1	1	
BIT4	I	0	1	0	1	1	1	1	1	
P/S		1	1	1	1	0	0	0	0	

Note1: "--" means not used and keep floating(NC).

Note2: In serial mode the unused parallel pins have to connect to 1(VDD).

5. Registers Description

5-1 Register Table

Table 5-1: Register Table

ID	Name	D7	D6	D5	D4	D3	D2	D1	D0	Description	
0	DWFR	B/C		NW5	NW4	NW3	NW2	NW1	NW0	Wave Form Select	
1	PWRR	SRST	MCLR		IO_IEN	KWK	IOWK	DOFF_Z	SLP	Power Control	
2	SYSR	LS3	LS2	LS1	LS0	GB_EN	1	RS1	RS0	System Setting	
3	MWMR	BMOD1	BMOD0	BIEN	ASCS	BOLD	INV	MD1	MD0	Memory Mode	
4	CURCR	Н3	H2	H1	H0		BLK	CR	CUR_E N	Cursor Control	
5	X-CUR			X5	X4	X3	X2	X1	X0	Cursor X Position	
6	Y-CUR		Y6	Y5	Y4	Y3	Y2	Y1	Y0	Cursor Y Position	
7	KEYR	KSB	KDB1	KDB0	KSTB_S EL	K_AUTO	IRE	KF1/ KSTB1	KF0/ KSTB0	Key-scan Control	
1	KSDR	SIRQ	KSTB1	KSTB0	KSD4	KSD3	KSD2	KSD1	KSD0	Key-scan Data	
	KODK	SIRQ	AKD6	AKD5	AKD4	AKD3	AKD2	AKD1	AKD0	Ney-scan Data	
8	SWSXR				SSX4	SSX3	SSX2	SSX1	SSX0	X-Scroll Start	
9	SWSYR			SSY5	SSY4	SSY3	SSY2	SSY1	SSY0	Y-Scroll Start	
Α	SWRXR				SRX4	SRX3	SRX2	SRX1	SRX0	X-Scroll Range	
В	SWRYR	PINV		SRY5	SRY4	SRY3	SRY2	SRY1	SRY0	Y-Scroll Range	
С	SCOR	SL7	SL6	SL5/SR5	SL4/SR4	SL3/SR3	SL2/SR2	SL1/SR1	SL0/SR0	Scroll Unit	
D	ASCR	SPD3	SPD2	SPD1	SPD0	STP3	STP2	STP1	STP0	Auto Scroll Control	
Е	SCCR	SCR_IM D1	SCR_IM D0	SCR_M D	SBUF	SCR_DI R1	SCR_DI R0	SCR_IN TEN	AUTO_S CR	Scroll Control	
F	ISR	BF				IO_I	SCR_I	KI	BI	Interrupt Status	
10	CSTR	BR2	BR1	BR0	CT4	CT3	CT2	CT1	СТ0	Contrast	
11	DRCR_A	BOFF	EN_R	EN_G	ROFF	IDIR	ı	CDIR	SDIR	Driver Control	
12	DRCR_B	CK_BS1	CK_BS0	RR2	RR1	RR0	IRS	HD1	HD0	Driver Control	
13	BLTR	BLK_EN	PBK_EN	1	INV	BLT3	BLT2	BLT1	BLT0	Blink Setting	
14	IODR	OE7	OE6	OE5	OE4	OE3	OE2	OE1	OE0	I/O Port Direction	
15	IODAR	IOD7	IOD6	IOD5	IOD4	IOD3	IOD2	IOD1	IOD0	I/O Port Data	
16	ELCR	EL_EN		-	-	ELT3	ELT2	ELT1	ELT0	EL Control	
17	CGMI			-			UMI2	UMI1	UMI0	Create Font Select	
18	CGMD	CGMD7	CGMD6	CGMD5	CGMD4	CGMD3	CGMD2	CGMD1	CGMD0	Create Font Data	

5-2 Register Contents

The RA8816 accept two Command Cycle from MPU. One is Register Cycle(RS = 0) and the other is Memory Cycle(RS = 1). The MPU has to assign the register number of RA8816 that before access these registers. Therefore, the first byte that MPU pass to RA8816 will be store into Index Register. And RA8816 will assume the next byte is read from or write into the register which Index Register assigned.

IR (Index Register)

RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	ID4	ID3	ID2	ID1	ID0

ID[4..0]: These bits are used to store the register number that MPU want to access on next cycle.

The ID[[4..0] provide 32 register number(00h~1Fh). But currently the RA8816 only used 25 registers (00h~18h). All of these registers are be initially to "00h" after RESET.

Memory Data (RAMD)

RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0/1	1	D7	D6	D5	D4	D3	D2	D1	D0

If RS is "1", It means MPU execute the Memory Cycle for RA8816. When RW is "0", MPU will write data to Display RAM or ICON RAM that according the setting of MD[1..0](REG[03h] bit1-0). For example, MPU writes Big5/GB/ASCII code to memory in Text Mode, or write bitmap data to display memory in Graphic mode. When RW is "1", the MPU read data from different paths of RA8816. It depend on the operation mode as following:

- 1. Full Size Text Mode: From up to down of Left side(16-Bytes), and then up to down of Right side(16-Bytes), total is 32-Bytes.
- 2. Half Size Text Mode: From up to down, total 16-Bytes data.
- 3. Small ASCII Text Mode: From up to down, total 8-Bytes data.
- 4. Graphics Mode: From left to right, each reading is one byte(8-Pixels).

[00h] Driver Waveform Register (DWFR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	B/C		NW5	NW4	NW3	NW2	NW1	NW0

B/C: Select waveform of drive. $0 \rightarrow B$ -Type waveform. $1 \rightarrow C$ -Type waveform.

NW[5..0]: These bits are used to assign the Segment/Row number that when internal Frame signals can to it and want to change the state. This function support only when B/C is "1" (C-Type wave form).

[01h] Power Control Register (PWRR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	SRST	MCLR		IO_IEN	KWK	IOWK	DOFF_Z	SLP

SRST: S/W reset. 1 → All of the register will be initialed again except the display memory. Once this bit set to 1 then RA8816 has to take 50us for operation and cannot accept any new command from MCU.
0 → No action.

MCLR: Clear memory. 1 → Clear the Display RAM data to "00h". Once this bit set to 1 then RA8816 has to take 100ms for operation and cannot accept any new command from MCU. 0 → No action. Please note that MCLR and SRST should not be set to "1" simultaneously or the MCLR function will has no effect.

IO_IEN: I/O Interrupt Setup. 0 → I/O port Interrupt Disable. 1 → I/O Interrupt Enable.

KWK: Key-scan wake up Setting. 0 → Key-scan Wake up function off. 1 → Key-scan wake up function on.

IOWK: I/O wake up Setting. 0 → I/O port wake up function off. 1 → I/O port wake up function on.

DOFF_Z: Display off. 0 → LCD driver and display off. 1 → LCD driver and display on.

SLP: Sleep mode setting. 1 → Enter sleep mode, and turn off the clock. 0 → RA8816 wake up. This bit was clear to "0" when wake up from I/O port or Key-scan.

[02h] System Register (SYSR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	LS3	LS2	LS1	LS0	GB_EN		RS1	RS0

LS[3..0]: Setup the segment number. The maximum segment of RA8816 is 144.

Table 5-2

LS3	LS2	LS1	LS0	Line No.
0	0	0	0	16
0	0	0	1	32
0	0	1	0	48
0	0	1	1	64
0	1	0	0	80
0	1	0	1	96
0	1	1	0	112
0	1	1	1	128
1	0	0	0	144
		:		Reserved
1	1	1	1	Reserved

GB_EN: Setup the GB code or BIG5 code. $1 \rightarrow$ GB Code. $0 \rightarrow$ BIG5 Code.

RS[1..0]: Setup the common number. The maximum common of RA8816 is 64(Not including Icon).

Table 5-3

						С	ommon (Output Pa	ads		
Duty	RS1	RS0	Status	COM	COM	СОМ	COM	COM	СОМ	COM	COMS
				[0-15]	[16-23]	[24-26]	[27-36]	[37-39]	[40-47]	[48-63]	COMIS
			Normal	COM			NC			COM	
1/33	_	_	Normal	[0-15]			NC			[16-31]	COMS
1/33	1/33 0 0		COM		NC				COM	COIVIS	
			Reverse	[31-16]			NC		[15-0]		
1/49	•	4	Normal	COM	[0-23]		NC		COM	[24-47]	COMS
1/49	0	1	Reverse	COM[4	47-24]		NC		COM	l[23-0]	COMS
1/55	1	0	Normal	(COM[0-26	i]	NC	(COM[27-5	3]	COMS
1/55	ļ	U	Reverse	С	OM[53-2	7]	NC		COM[26-0	0]	COMS
1/65	1	1	Normal				COM[0-6	3]	•		COMS
1/05			Reverse	•			COM[63-	0]	•		

[03h] Memory Write Mode Register (MWMR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	BMOD1	BMOD0	BIEN	ASCS	BOLD	INV	MD1	MD0

BMOD[1..0]: Setup the range for memory written.

Table 5-4

BMOD1	BMOD0	Memory Range of Write
0	0	Normal Display Range
0	1	Display Range + Scroll-Buffer
1	Х	Scroll-Buffer

BIEN: Busy interrupt control. 1 → Busy interrupt enable (After write data to memory). 0 → Busy interrupt disable.

ASCS: Select ASCII Table ∘ 0 → Select ASCII Table-1. 1 → Select ASCII Table-2. Refer Chapter 6-9.

BOLD: Select Bold Font to write Display RAM. 0 → Normal font. 1 → Bold font. **INV:** Select reverse font to write Display RAM. 0 → Normal font. 1 → Reverse font.

MD[1..0]: Select operation mode for Display RAM.

Table 5-5

MD1	MD0	Operation Mode			
0	0	Graphic Mode			
0	1	Small ASCII (8X8)			
1	0	Big ASCII(8X16)			
1	1	Full Size(16X16)			

When Full-Size mode(MD[1..0] = 11), if the first byte data is less than 80h, RA8816 will assume it's an ASCII code and show the Big ASCII font. But if want to show the Big ASCII font that code is large than 80h, then the operation mode has to change to Big ASCII mode(MD[1..0] = 10).

[04h] Cursor Control Register (CURCR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	H3	H2	H1	H0		BLK	CR	CUR_EN

H[3..0]: Setup the cursor height.

Table 5-6

-	Table 5-6													
Н3	H2	H1	H0	Height(Pixel)										
0	0	0	0	1										
0	0	0	1	2										
0	0	1	0	3										
0	0	1	1	4										
0	1	0	0	5										
0	1	0	1	6										
0	1	1	0	7										
0	1	1	1	8										
1	0	0	0	9										
1	0	0	1	10										
1	0	1	0	11										
1	0	1	1	12										
1	1	0	0	13										
1	1	0	1	14										
1	1	1	0	15										
1	1	1	1	16										

In Small ASCII mode(8X8), the H3 is reserved. The setting of cursor height is only form $1\sim8$ pixels(H[3..0] = $\times000$ b \sim x111b).

BLK: Cursor blink select. 0 → No Blinking. 1 → Cursor Blinking.

CR: Cursor return. 0 → No action. 1 → Cursor return. Cursor will return to the left of panel.

CUR EN: Cursor display select. 0 → Cursor hides. 1 → Cursor Display.

[05h] Cursor Position Register of X (X-CUR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0			X5	X4	Х3	X2	X1	X0

X[5..0]: Setup the cursor position on segment. The unit is 8-pixels. Because maximum segment of RA8816 is 144-pixels, therefore the range of X[5..0] is 0~11h. When the X[5..0] is 20h or 21h, then the cursor position is assign to horizontal Scroll-Buffer.

[06h] Cursor Position Register of Y (Y-CUR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0		Y6	Y5	Y4	Y3	Y2	Y1	Y0

Y[6..0]: Setup the cursor position on common. The unit is 1-pixels. Because maximum common of RA8816 is 64-pixels, therefore the range of Y[6..0] is 0~3Fh. When the Y[6..0] is 40h~4Fh, then the cursor position is assign to vertical Scroll-Buffer. When Y[6..0] is 50h then cursor is located at COMS(Icon).

[07h] Key-scan Control Register (KEYR) (Write Only)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	KOD	I/DD4	KDD0	KSTB_SE	N ALITO	ב	KF1/	KF0/
U	KSB	KDB1	KDB0	L	K_AUTO	IRE	KSTB1	KSTB0

KSB: Key-scan control. 0 → Key-scan disable. 1 → Key-scan enable.

KDB[1..0]: Setup the de-bounce times of Key-scan in Auto-Mode. The one time means the time that Key-scan for one loop.

Table 5-7

KDB1	KDB0	Times
0	0	8
0	1	16
1	0	32
1	1	64

KSTB_SEL: In non-Auto-mode, 0 → the DB[1..0] are defined as KF[1..0]. 1 → The DB[1..0] are defined as KSTB[1..0] ∘ In Auto-Mode, the DB[1..0] is also defined as KF[1..0].

K_AUTO: Setup the scan mode. 1 → Auto-Mode. The RA8816 will auto detect the key and store the code into AKD[6..0] for MPU reading. 0 → Non-Auto-Mode. The RA8816 will not store the code to AKD[6..0]. The MPU has to read data from KSTB[1..0] and KSD[4..0] to make sure which key was pressed. Of course, MPU could know if not only one key pressed at the same time In Non-Auto-Mode.

IRE: Setup the Interrupt of Key-scan. 0 → Hardware Interrupt disable while key is pressed. 1 → Generate hardware interrupt while key is pressed.

KF[1..0]: Setup the frequency of Key-scan.

Table 5-8

KF1	KF0	Pulse Width	Key-scan Cycle Time (4x5)		
0	0	256us	1.024ms		
0	1	512us	2.048ms		
1	0	1.024ms	4.096ms		
1	1	2.048ms	9.182ms		

KSTB[1..0]: In Non-Auto-Mode, These two bits are used to setup the strobe for the Row of key matrix. If any key pressed, the MPU can read data from KSTB[1..0] and KSD[4..0] to make sure which key was pressed. The strobe data are also readable from Bit[6..5] of register KSDR.

[07h] Key-scan Data Register (KSDR) (Read Only)

If K AUTO = 0:

_								
RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	SIRQ	KSTB1	KSTB0	KSD4	KSD3	KSD2	KSD1	KSD0

SIRQ: Indicate the interrupt of Key-scan. This bit was clear when REG[0Fh] bit 1 write "0".

KSTB[1..0]: These two bit show which pin of KST[3..0] active.

KSD[4..0]: KIN Return Data. These bits are used in Non-Auto-Mode. The MPU can read data from KSTB[1..0] and KSD[4..0] to make sure which key was pressed.

If K_AUTO = 1:

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	SIRQ	AKD6	AKD5	AKD4	AKD3	AKD2	AKD1	AKD0

SIRQ: Indicate the interrupt of Key-scan. This bit was clear when REG[0Fh] bit 1 write "0".

AKD[6..0]: Scan Data(Code). In Auto–Mode, the MPU read data from this register to know the status of key matrix. The RA8816 supports 4x5 key matrix -- total 20Keys. The BCD number of 0~19h are mapping to these keys.

Table 5-9

AKD[60]	Scan Data
0~19	Key No. Input
20~39	Long Key No. Input
42	Key Release
Other	Reserved

[08h] Scroll Window Start X Register (SWSXR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0				SSX4	SSX3	SSX2	SSX1	SSX0

SSX[4..0]: Setup Segment (X) start point of scroll window. The unit is half size width(8-Pixels).

[09h] Scroll Window Start Y Register (SWSYR)

			<u> </u>					
RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0			SSY5	SSY4	SSY3	SSY2	SSY1	SSY0

SSY[5..0]: Setup the Common (Y) start point of scroll window. The unit is pixel.

[0Ah] Scroll Window Range X Register (SWRXR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0				SRX4	SRX3	SRX2	SRX1	SRX0

SRX[4..0]: Setup Segment (X) offset of scroll window. The unit is half size width(8-Pixels).

[0Bh] Scroll Window Range Y Register (SWRYR)

				<u> </u>				
RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	PINV		SRY5	SRY4	SRY3	SRY2	SRY1	SRY0

PINV: Invert area select. 0 → Whole screen invert. 1 → Partial screen invert.

SRY[5..0]: Setup the Common (Y) offset of scroll window. The unit is pixel.

[0Ch] Scroll Offset Register (SCOR)

ı	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
ı	0	SL7	SL6	SL5/SR5	SL4/SR4	SL3/SR3	SL2/SR2	SL1/SR1	SL0/SR0

SL[7..0]: Setup the shift unit of horizontal scroll. The unit is pixel and active when register SCR_MD (REG[0Eh]bit 5) is clear to "0".

SR[5..0]: Setup the shift unit of vertical scroll. The unit is pixel and active when register SCR_MD (REG[0Eh]bit 5) is set to "1".

In auto scroll mode, this register is also used to setup the start position of scroll of Common or Segment. In Non-Auto-Scroll mode, the shift unit of this register cannot over the range of scroll area – REG[08h~0Bh].

[0Dh] Auto-Scroll Control Register (ASCR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	SPD3	SPD2	SPD1	SPD0	STP3	STP2	STP1	STP0

SPD[3..0]: Setup the speed of auto scroll.

Table 5-10

SPD3	SPD2	SPD1	SPD0	Scroll Time
0	0	0	0	1 Unit
0	0	0	1	3 Units
0	0	1	0	5 Units
0	0	1	1	7 Units
0	1	0	0	17 Units
0	1	0	1	19 Units
0	1	1	0	21 Units
0	1	1	1	23 Units
1	0	0	0	129 Units
1	0	0	1	131 Units
1	0	1	0	133 Units
1	0	1	1	135 Units
1	1	0	0	145 Units
1	1	0	1	147 Units
1	1	1	0	149 Units
1	1	1	1	151 Units

1 Unit = 1 Frame Times

STP[3..0]: Setup the shift unit on auto scroll mode.

Table 5-11

STP3	STP2	STP1	STP0	Shift Pixel
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	7
0	1	1	1	8
1	0	0	0	9
1	0	0	1	10
1	0	1	0	11
1	0	1	1	12
1	1	0	0	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	16

[0Eh] Scroll Control Register (SCCR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	SCR_IM	SCR_IM	SCR MD	SBUF	SCR_DI	SCR_DI	SCR_INT	AUTO_S
U	D1	D0	SCR_MD	SBUF	R1	R0	EN	CR

SCR_IMD[1..0]: The definition is as following and they are available at Auto–Scroll-Mode.

0X: Setup 1-pixel shift to caused interrupt(SCR INTEN must be 1).

10: Setup 8-pixel shift to caused interrupt(SCR_INTEN must be 1)

11: Setup 16-pixel shift to caused interrupt(SCR INTEN must be 1)

SCR_MD: Scroll Mode Select. 0 → Non-Auto-Scroll, the scroll offset clear to "0". 1→ Auto-Scroll Mode.
 SBUF: Scroll-Buffer Control. 0 → Scroll-Buffer disable. The scroll will not including the Scroll-Buffer, only for display area. 1→ Scroll-Buffer enable. The scroll area is including the display and Scroll-Buffer.
 SCR_DIR[1..0]: Select the direction of scroll.

Table 5-12

SCR_DIR1	SCR_DIR0	Direction of Scroll
0	0	Left to Right(Horizontal)
0	1	Right to Left(Horizontal)
1	0	Up to Down(Vertical)
1	1	Down to Up(Vertical)

SCR_INTEN: Setup the scroll interrupt. 0 → Scroll interrupt disable. 1 → In auto scroll mode, when scrolling 1, 8 or 16-pixels generate an interrupt to MPU.

AUTO_SCR: Auto-Scroll control. $0 \rightarrow$ Stop the Auto-Scroll. If want to close the Auto-Scroll mode or display new data on the screen, then the Bit5 - SCR_MD must clear to 0 first. $1 \rightarrow$ Auto-Scroll going.

[0Fh] Interrupt Status Register (ISR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	BF				IO_I	SCR_I	KI	BI

BF: Busy Flag. 1 → Display RAM is in busy(Data Write). 0 → Display RAM is idle(Write complete).

IO_I: I/O Port Interrupt. 1 → Interrupt for I/O port. 0 → No I/O port interrupt.

SCR_I: Scroll interrupt. 1 → Interrupt for scroll complete , 0 → No scroll Interrupt.

KI: Key-scan interrupt. 1 → Interrupt for key pressed. 0 → No Key pressed Interrupt.

BI: Busy Interrupt. 1 → Interrupt for the activity of writing data to display RAM completed. 0 → No busy Interrupt

[10h] Contrast Adjust Register (CSTR)

ĺ	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	BR2	BR1	BR0	CT4	CT3	CT2	CT1	CT0

BR[2..0]: Setup the LCD Bias(Base on 144x65).

Table 5-13

10010 0 10									
BR2	BR1	BR0	Bias						
0	0	0	1/5						
0	0	1	1/6						
0	1	0	1/7						
0	1	1	1/8						
1	0	0	1/9						
1	0	1	1/9						
1	1	0	1/9						
1	1	1	1/9						

CT[4..0]: Setup the Contrast(32 Levels). Normally it depends on the liquid, power and panel size to adjust the best display quality.

Table 5-14

CT4	СТЗ	CT2	CT1	СТО	Contrast						
0	0	0	0	0	Light						
0	0	0	0	1							
		:									
		:									
1	1	1	1	1	Dark						

[11h] Driver Control Register1 (DRCR_A)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	BOFF	EN_R	EN_G	ROFF	IDIR		CDIR	SDIR

- **BOFF:** Booster control. 1 → Internal Booster enable. 0→ Internal Booster is disabled and using the external voltage.
- **EN_R:** Reference voltage control. 1 → Internal reference voltage enable for Regulator. 0 → Disable the internal reference voltage. The Regulator use external reference voltage.
- **EN_G:** V0 control. 1 → The V0 is generated by internal Regulator. 0 → Use external power for V0, and the EN R and BOFF have to clear "0" (Off) to reduce power consumption.
- **ROFF:** Voltage Follower control. 1 → Internal Voltage Follower enable for LCD Bias voltage. 0 → Disable internal Voltage Follower, and use external voltage to generate LCD Bias voltage. If use external Voltage Follower, then EN_G, EN_R and BOFF have to clear "0"(Off) to reduce power consumption.
- **IDIR**: Icon sequence select. 0 → Icon sequence is fixed. 1→ Icon sequence follow the setting of CDIR/SDIR.
- **CDIR:** Common sequency select. 0 → Pins COM0~63 are mapping to Common 0~63. 1→ Pins COM0~63 are mapping to Common 63~0.
- **SDIR:** Segment sequency select. 0 → Pins SEG0~143 are mapping to Segment 0~143. 1→ Pins SEG0~143 are mapping to Segment 143~0.

[12h] Driver Control Register (DRCR_B)

			• –	,				
RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	CK BS1	CK BS0	RR2	RR1	RR0	IRS	HD1	HD0

CK_BS[1..0]: Select the clock of Booster. Assume the RC oscillator clock is 100KHz.

Table 5-15

CK_BS1	CK_BS0	Clock of Booster
0	0	SYS_CLK/2 → 50KHz
0	1	SYS_CLK/4 → 25KHz
1	0	SYS_CLK/6 → 16.7KHz
1	1	SYS_CLK/8 → 12.5KHz

RR[2..0]: Setup the Resistor Ratio of Regulator. The ratio is V_{REF} : V_0 , Please refer to Section 6-4-2.

Table 5-16

RR2	RR1	RR0	Resistor Ratio
0	0	0	X3
0	0	1	X3.5
0	1	0	X4
0	1	1	X4.5
1	0	0	X5
1	0	1	X5.5
1	1	0	X6
1	1	1	X6.4

Note: The VREF is 2.1V.

IRS: Select the resistors for the V0 voltage level adjustment. 1 → Use the internal resistors. 0 → Do not use the internal resistors. The V0 voltage level is regulated by an external resistive voltage divider that is attached to the VR signal.

HD[1..0]: Setup the LCD driving current. Normally big panel use bigger driving current to void bad display quality.

Table 5-17

14510 0 11									
HD1	ID1 HD0 Driving Cu								
0	0	Min.							
0	1								
1	0	↓							
1	1	Max.							

[13h] Blink Timer Register (BLTR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	BLK_EN	PBK_EN		INV	BLT3	BLT2	BLT1	BLT0

BLK_EN: Blinking. 0 → Blinking off. 1 → Blinking on.

PBK_EN: Whole or Partial Blinking selection. 0 → Whole screen Blinking. 1 → Partial screen Blinking. The blinking area is depending on the scroll window. That means the partial area is setting by register SWSXR, SWSYR, SWRXR and SWRYR. When the Partial Blinking off, the above four registers had better clear to 0. Note, only BLK_EN set to "1" when blink is active.

INV: Setup display reverse. 0 → Normal display. 1 → Display reverse. The reverse area is depend on the Bit7(PINV) of register SWRYR.

BLT[3..0]: Setup blinking time.

Table 5-18

BLT3	BLT2	BLT1	BLT0	Blink Time (Unit: Frames)
0	0	0	0	8
0	0	0	1	16
0	0	1	0	24
0	0	1	1	32
0	1	0	0	40
0	1	0	1	48
0	1	1	0	56
0	1	1	1	64
1	0	0	0	72
1	0	0	1	80
1	0	1	0	88
1	0	1	1	96
1	1	0	0	104
1	1	0	1	112
1	1	1	0	120
1	1	1	1	128

[14h] I/O Direction Control Register (IODR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	OE7	OE6	OE5	OE4	OE3	OE2	OE1	OE0

OE[7..0]: Select the I/O port direction. 0 → Input. 1 → Output.

[15h] I/O Data Register (IODAR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	IOD7	IOD6	IOD5	IOD4	IOD3	IOD2	IOD1	IOD0

IO[7..0]: This register stores the input data of I/O port when I/O port is input mode.

[16h] EL Control Register (ELCR)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	EL_EN				ELT3	ELT2	ELT1	ELT0

EL_EN: EL signals output . 0 → Off. 1 → On.

ELT[3..0]: Setup the output time of EL signals. The following table is base on the RC oscillator fix at 45KHz. The output time is longer when RC oscillator clock is slower.

Table 5-19

ELT3	ELT2	ELT1	ELT0	Output Time(Sec)
0	0	0	0	1
0	0	0	1	2
0	0	1	0	4
0	0	1	1	6
0	1	0	0	8
0	1	0	1	10
0	1	1	0	12
0	1	1	1	14
1	0	0	0	16
1	0	0	1	18.
1	0	1	0	20
1	0	1	1	22
1	1	0	0	24
1	1	0	1	26
1	1	1	0	28
1	1	1	1	30

RAIO TECHNOLOGY INC. 23/68 www.raio.com.tw

[17h] CGRAM Register (CGMI)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0						UMI2	UMI1	UMI0

UMI[2..0]: Select the create font number. The RA8816 allow user create eight 16x16 full size font. The mapping font code is FFF0h~FFF7h.

Table 5-20

UMI2	UMI1	UMI0	Font Code
.0	0	0	FFF0h
0	0	1	FFF1h
0	1	0	FFF2h
0	1	1	FFF3h
1	0	0	FFF4h
1	0	1	FFF5h
1	1	0	FFF6h
1	1	1	FFF7h

[18h] CGRAM Data Register (CGMD)

RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	CGMD7	CGMD6	CGMD5	CGMD4	CGMD3	CGMD2	CGMD1	CGMD0

CGMD[7..0]: This register is used to transfer or read the data of 16x16 full size font. The MPU write continuous 32-bytes data of bit-map of 16x16 full size font into this register that after program the REG[17h]. If user want to show the self-create font, just write the two bytes font code to RA8816.

6. Function Description

6-1 MPU Interface

6-1-1 Parallel Interface

The MPU interface of RA8816 supports both 8080 and 6800 series with in 4-Bit or 8-bit bus width. If the "C86" connects to GND, then the MPU is defined as 8080 type interface. If pin "C86" connects to VDD, then it's defined as 6800 type interface. Refer to the Figure 6-1 and 6-2.

If the pin "BIT4" connects to GND, then the bus width of MPU interface is 8-Bit. If the pin "BIT4" connects to VDD, then the bus width is 4-Bit. And only the DB[3..0] of data bus are available.

Figure 6-1: 8080 (4/8-Bit) MPU Interface

Figure 6-2: 6800 (4/8-Bit) MPU Interface

RAIO TECHNOLOGY INC. 25/68 www.raio.com.tw

6-1-2 Serial Interface

The RA8816 aslo support three type serial interface. One is 3-Wires, one is IIC mode, and the others are 4-Wires(A-Type, B-Type). This feature is control by the pin "P/S" and DB[7..6]. Refer to Table 4-1. In serial mode the DB[7..6] are used as SMOD[1..0] to select the different serial mode. Please also refer to Table 6-1. The Figure 6-3 to 6-5 are the interface diagram of MPU and RA8816 which in serial mode.

Table 6-1

SMOD	Serial Interface Mode
0 0	IIC(2-Wire). Use signals SCK, SDA and IICA[50]
0 X	3-Wires. Use signals SCK, SDA and $\overline{\text{CS}}$.
1 0	4-Wires (A-Type). Use signals SCK, SDA, RS and $\overline{\text{CS}}$.
1 1	4-Wires (B-Type). Use signals SCK, SDO, SDI and $\overline{\text{CS}}$.

Figure 6-3: IIC interface Diagram

In the IIC mode, $\overline{\text{WR}} \cdot \overline{\text{RD}}$ and DB[5..2] are consist to the IICA[5..0] for the address selection of IIC Bus device. The address setting is available only not conflict to other device.

In the 4-wire B-Type serial mode, the SCK signal has to add an external pull-hi rsistor as Figure 6-6.

Figure 6-4: 3-Wires MPU interface

Figure 6-5: 4-Wires(A-Type) MPU interface

Figure 6-6: 4-Wires(B-Type) MPU interface

6-1-3 Register Read/Write

The RA8816 accepts two access cycles from MPU. One is the read cycle from register and the other is write cycle to register. Another is read data from memory or write data to memory. As description of Chapter 5-2, MPU must tell the RA8816 that which register will be access. Therefore the first data that write to RA8816 is to select the register number. And the second data is the exact data that writing into or reading from this register.

Because the features of RA8816 are controlled by the contents of internal registers. So if we write data to register is like to give a command to RA8816. Therefore we can say that the Register Access Cycle is same as Command Cycle.

The Figure 6-7 and 6-8 show the register access timing of 8080 MPU(8-Bit) with RA8816. Figure 6-9 and 6-10 show the register access timing of 6800MPU(8-Bit) interface. Figure 6-11 to 6-14 show the register access timing of serial interface.

Figure 6-7: Register Wrie on 8080(8-Bit) I/F

Figure 6-8: Register Read on 8080(8-Bit) I/F

Figure 6-10: Register Read on 6800(8-Bit) I/F

Figure 6-11a: Register Write on IIC I/F

From Master to Slave

From Save to Master

May be not need

Ack: Acknowledge(SDA LOW)

NA: Not Acknowledge(SDA HIGH)

RW: Master Read(1) / Write(0) Command

RS : Select Register(0) / Memory(1)

Figure 6-11b: Register Read on IIC I/F

Figure 6-12: Register Read/Write Access on 3-Wires I/F

Figure 6-13: Register Read/Write Access on 4-Wires(A-Type) I/F

Figure 6-14: Register Read/Write Access on 4-Wires(B-Type) I/F

6-1-4 Memory Read/Write

Another cycle for MPU to RA8816 is memory Read/Write cycle. Normally it used to show information on the LCD screen. A memory writing means to write a data into the mapping address that cursor located in the memory. After a memory writing is completed, the cursor will auto increase. And the data of next memory write will fill into the new memory address that new curser position located. Because all of the memory read/write cycles are transfer the display data, so we can abbreviate the name of Memory Access Cycle to Data Cycle.

The Figure 6-15 and 6-16 show the memory access timing of 8080 MPU(8-Bit) with RA8816. Figure 6-17 and 6-18 show the memory access timing of 6800MPU(8-Bit) interface. Figure 6-19 to 6-22 show the memory access timing of serial interface.

Figure 6-15: Memory Write on 8080(8-Bit) I/F

Figure 6-16: Memory Read on 8080(8-Bit) I/F

Figure 6-17: Memory Write on 6800(8-Bit) I/F

Figure 6-18: Memory Read on 6800(8-Bit) I/F

Figure 6-19a: Memory Write Access on IIC

圖 6-19b: Memory Read Access on IIC

Figure 6-20: Memory Read/Write Access on 3-Wries I/F

Figure 6-21: Memory Read/Write Access on 4-Wires(A-Type) I/F

Figure 6-22: Memory Read/Write Access on 4-Wires(B-Type) I/F

6-2 Memory

The RA8816 built-in three memory:

- 1. 256Kbyte Font ROM
- 2. 1170Byte Display RAM
- 3. Character Generator RAM(CGRAM)

The 256Kbyrte Font ROM stores bit map data of Chinese font. It also including English, Japaness, Europen, Latin(Latin-ext A, Latin-ext B) and ASCII. In text mode, RA8816 will read the bit map data from Font ROM and pass to display RAM that when RA8816 received the standard code from MPU. The LCD control citcuit will read data of display RAM continuous and send to driver circuit. So the text will show on the LCD screen. Therefore, the MPU will save a lot of time to caculate the position of cursor and read mant bit map data from font ROM then write to display RAM. The MPU will promote the display efficiency to handle Chinese text display. And it will reduce the system develope time.

The display range of RA8816 is 144x65 dots. So it needs 1170Byte(144*65/8) display RAM. In addition, RA8816 also built-in a scroll buffer to provide the scrlling and shiftting functions.

The Character Generator RAM(CGRAM) is used for user to create special fonts. There are eight space of full size font to reserved for user. Their codes are fixed from FFF0h to FFF7h. The MPU could write the mapping code to RA8816 and show the bit map font on screen that after the user font(writing 32 byte to CGRAM) was created.

6-3 System Clock

The clock of RA8816 is generated by the internal circuit. Normally the clock frequency is around 55KHz. When the bit0(SLP) of register PWRR set to "1", then the clock will be stop.

Whe the input pin "CLK_SEL" set to "0", then system clock can also input from external clock through pin "EXT_CLK".

6-4 LCD Driver and Power Circuit

Figure 6-23: LCD Driver and Power Supply Circuit Block

The driver circuit of RA8816 is a low power design. The power supply circuit is consist of Booster, Voltage Regulator and Voltage Follower. For different requirement of power, the Driver Control Register(REG[11h]) is used to enable or disaable for related circuit.

The user could use the setting of register REG[11h] to select the internal or external power. Please refer to the following of Table 6-2.

(Driver Control Register (DRCR_A) D7 D6 D5 D4		Booster	Voltage Regulator	Reference Voltage(VREF) of Voltage Regulator	Voltage Follower	External Power	
1	1	1	1	ON	ON	Internal	ON	VDD
0	1	1	1	OFF	ON	Internal	ON	VLCD, VDD
1	0	1	1	ON	ON	External	ON	VREF, VDD
0	0	1	1	OFF	ON	External	ON	VLCD, VREF, VDD
0	0	0	1	OFF	OFF	Don't Need	ON	V0, VDD
0	0	0	0	OFF	OFF	Don't Need	OFF	V0~V4, VDD

Table 6-2: Setting Table of Power Circuit

6-4-1 Booster Circuit

Figure 6-24: Application circuit of Booster

The RA8816 built-in a Booster which create $2\sim4$ times of "V_{DD}-V_{SS}" that we called "VLCD". The VLCD is supply the power for next stage curcuit – Voltage Regulator and internal Driver cuicuit. If connect an 1uF capacitor on pin C1P and C1M, then the VLCD is eaual to 2*VDD. If the pin C2P and C2M also connect n 1uF capacitor then the VLCD is 3*VDD. If the pin C3P and C1M connect n 1uF capacitor then the VLCD is 4*VDD. Refer to the following description of Figure 6-24.

Because the RA8816 supports maximumn LCD panel is 144x65. Therefore sometimes you can get the good display quality that base on lower power such as 5V only. In that case, user only need to connect 5V to VDD, VLCD, C1P and C2P. And you do not need to add capacitor on C1P/C1M and C2P/C2M.

The clock source of Booster is also control by register DRCR_B. Please refer to the description of REG[12h] in Chapter 5-2. Normally, if use the internal Driver Power, then the application circuit is follow Figure 6-25. If use external VLCD, that means do not use the internal Booster, then the connection is show as Figure 6-26.

Figure 6-26: External VLCD

Note: The capacitor value of C1 is 1uF and C2 is 1uF.

6-4-2 Voltage Regulator

The Voltage Regulator is consists of Band-Gap and OP-Amp. The purpose is used to generated a stable power - V_0 for Voltage Follower. The RA8816 also built-in a 32-level adjust circuit and a fixed voltage - V_{IREF} to generate a reference voltage V_{REF} . This V_{REF} is for for Voltage Regulator to generated V_0 . The basic formula is as following:

$$V_0 = (1+R1/R2) * V_{REF} = (1+R1/R2)*(1-(62-2\alpha)/162)*V_{IREF}$$

The α is the setting of CT[4:0] of Register CSTR. When CT[4:0]=1Fh then $V_{REF}=V_{IREF}$.

Figure 6-24: Voltage Regulator

The resistor ratio(V_{REF} and V_0) of Voltage Regulator is adjustable by register DRCR_B. There are total eight cases - 3/3.5/4/4.5/5/5.5/6/6.4. Refer to the description of Bit[5..3] of register RCR_B on Chapter 5-2. If want to use external resistor divisor then refer to the Bit2 of register DRCR_B and Figure 6-27b.

Figure 6-27b: Use external Resistor Divisor

The V_{REF} of RA8816 is supplied from internal circuit or external V_{REF} Pin. Please refer to Table 6-3:

Table 6-3: Select V _{REF}

V _{REF} Type	DRCR-A Bit6 (EN_R)	DRCR-A Bit5 (EN_G)	Temperature Gradient	Unit	V _{REF}
Internal V _{REF}	1	1	-0.05	%/°C	(1-(63-α)/162)*V _{IREF}
F (1)/	0	1	-	-	V D:
External V _{REF}	Х	0	-	-	V _{REF} Pin

Normally the internal V_{IREF} value is 2.1V. When Voltage Regulator Circuit off(EN_G=0) then the Reference Voltage Circuit is be off too. The Voltage Regulator also provide -0.05% auto adjust for temperature compensation.

6-4-3 Voltage Follower

The internal Voltage Follower provides V0~V4 power for LCD Driver circuit. Of course, the user could select internal or external Voltage Follower. The relationship of V0~V4 and VLCD is as following:

VLCD > V0 > V1 > V2 > V3 > V4 > GND

Figure 6-28A shows the circuit of using internal Voltage Follower. For external V0~V4, the connection is show as Figure 6-28B.

Figure 6-28B Use External Voltage Follower

6-4-4 LCD Driver

The Segment/Common Driver of RA8816 is used to latch the data of pre-stage, then send to Level Shifter for combination. The combined data will follow the Timing Generator to control the switchs then pass the V0~V4 to Common and Segment.

Figure 6-29: The Segment and Common Driver

The LCD Bias of RA8816 is adjustable by register CSTR that from 1/5 to 1/9. The user can also adjust the display quality from this register. Meanwhile, the driving current is also adjustable by register DRCR B that in order to meet different panel.

The DOFF_Z of register PWRR is used to cotrol the On/Off of LCD Panel, When DOFF_Z is set to "0" then LCD Driver was closed. At this state, the driver output signals COM0~COM63, SEG0~SEG143, COMS_A and COMS_B are connected to GND, and the screen of LCD Panel turned Off.

6-5 Interrupt

The RA8816 provide an interrupt signal (INT) to response three possible interrupt:

- ◆ Busy Interrupt— When the data write to display RAM was complete.
- ◆ Scroll Interrupt When the scroll window shifted 1, 8 or 16-pixels.
- ◆ Key-scan Interrupt When a key was pressed.

The interrupt of above can be enabled or disable by register. The MPU can read the interrupt message form interrupt status register. The $\overline{\text{INT}}$ is active low, so when MPU detect the interrupt happen then must clear interrupt status for $\overline{\text{INT}}$ return to high. If user do not use the hardware interrupt ($\overline{\text{INT}}$), then MPU can get the interrupt message by reading the status register.

6-6 Key-Scan

The RA8816 built-in 4x5 key-scan circuit for extra key board function to help user integrate a key matrix application. In auto-mode, MPU can read the key code from register to know the key was short-press, long-presee or key released. User can also adjust the cycle time of key-scan. Figure 6-30 is the simple application curcuit. Table 6-4 is the mapping keyboard code of key matrix as Figure 6-30. So MPU knows which key be pressed by reading register – KSDR.

Figure 6-30: 4x5 Key Matrix Curcuit

Table 6-4: Ke	yboard Cod	ge(RCD Co	ode) of Au	ito-Mode

		Short-	Press	Long-Press						
	KST3	KST2	KST1	KST0	KST3	KST2	KST1	KST0		
KIN0	15	10	05	00	35	30	25	20		
KIN1	16	11	06	01	36	31	26	21		
KIN2	17	12	07	02	37	32	27	22		
KIN3	18	13	08	03	38	33	28	23		
KIN4	19	14	09	04	39	34	29	24		

In Auto-Mode of Key-Scan function, if the key pressed over one second, then the RA8816 will cause interrupt and change the data of register – KSDR to a long-press code. Therefore MPU knows which key was pressed ove one second.

6-7 I/O Port

The RA8816 provide eight general purpose I/O pins. Each I/O pin is easy to setup as input or output. They can use to drive LED, wakeup the RA8816 or provide information for whole system.

RAiO TECHNOLOGY INC. 40/68 www.raio.com.tw

6-8 EL Signals

The RA8816 provides two special signals for EL driver circuit. The signals active time can also setup by register ELCR. The waveform and application are show as Figure 6-31 and 6-32.

Figure 6-31: Control Signals for EL Driver

Figure 6-32: EL Driver Circuit

6-9 ASCII Block

The RA8816 built-in three ASCII block which contines ASCII and special symbol for user to show on display directly in text mode. Actually these three ASCII block are store in 256Kbyte Font ROM(see Chapter 6-2). As the Figures 6-33~6-35, the left of each table is the High Nibble, and the right is the Low Nibble. The selection of these block is by MD0 and MD1 of register MWMR.

The Figure 6-33 is the table of small ASCII. Each character size is 8x8 dots. Therefore if the LCD panel size is 144Segx65Com then it can show eight rows, and each row has 18 samll ASCII font. Figure 6-34 and 6-35 are the table of big ASCII. For the same panel size, it can show four row, and each row has 18 character.

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
0		0	0	F	╦	╗	Г	$\overline{}$	7	•	•	=	_		F	8
1	١	4	ı	ᆫ	쓰	뒤	L	ㅗ	7	ı	ı	\parallel	Ι	#	•	Ŧ
2		!	"	#	\$	%	8,	,	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	0	A	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	Μ	N	0
5	Ρ	Q	R	S	Т			W	Х	Υ	Z	[\setminus]	^	_
6	٢	а	Ь	С		e	f	9	h	i	j	k	1	m	n	0
7	Ρ	٩	r	s	t			W	х	У	z	(Ι)	~	Г
8	ç	ü	é	å	ä	à	á	ç	ê	ë	è	ï	î	ì	Ä	Å
9	É	æ	Æ	ô	ö	ò	û	ù	ÿ	ŏ	Ü	¢	£	¥	R	f
Α	á	í	ó	ú	ñ	Ñ	Á	Å	Α	ä	Ã	Ê	Ë	È	Í	Î
В	Ϊ	Ì	Ó	В	ô	ò	ő	ő	Ú	Ô	Ù	œ	Œ	G	H	ĦŤ
С	9		Γ	7	,	•	Ŧ	7		÷	Ξ	Ħ	ħ	ı	3	ŋ
D	-		1	'n			ħ	ŧ	2	ን	\Box	Ħ	Ð	Z	t	9
E	9	Ŧ	ŋ	Ŧ	ŀ	t	Ξ	Z	*	J	ñ	E	7	7	#	₹
F	Ę	4	×	ŧ	Þ	1	3	ž	ÿ.	ıŀ	V		7	Þ.	*	•

Figure 6-33: Samll ASCII(Table 0)

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
0		8	0	ſſ	ī	1	Γ	Т	٦	•		=	_	-	F	8
1	Þ	4		L	片		L	Τ	L					‡	•	•
2		ļ	"	#	\$	%	8	-	()	*	+	,	-	•	7
3	0	1	2	3	4	5	6	7	8	9	:	;	<	Ш	>	?
4	Q	Α	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	М	Ν	0
5	Ρ	Q	R	S	Т	J	٧	Z	Х	Υ	Z	[/]	<	
6	ţ	а	b	С	d	е	f	00	h	i	j	k	1	m	n	0
7	р	q	r	S	t	а	>	3		y	z	٤		9	2	
8	đ	Ą	ą	Ł	Ğ		Ć	Ś	Ű		Ş	İ	Ź	Цŀ	ź	Ż
9	Ń	ń	Č	ł	ğ	:	ć	Ś	ű	č	Ş	ı	Ţ	ę	ţ	ż
Α	á	į	¢	£	€	¥	Š	Ø	Š	0	ā	«	7	-	®	-
В	۰	±	2	3	ž	μ	¶		ž	1	2	>>	Œ	œ	Ϋ	į
C	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ϊ
D	Đ	Ñ	Ò	Ó	ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
E	à	á	â	ã	ä	å	æ	Ç	è	é	ê	ë	ì	ĺ	Î	Ϊ
F	ð	ñ	ò	ó	ô	õ	Ö	÷	Ø	ù	ú	û	ü	ý	Þ	ÿ

Figure 6-34: Big ASCII (Table 1)

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
0		8	0	ſſ	ī	1	Γ	Т	٦	•		=	_	-	F	8
1	Þ	4	I	L	JL	IJ	L	Ι	J	I				\$	•	₹
2		ļ	"	#	\$	%	8	-	()	*	+	,	_		7
3	0	1	2	3	4	5	6	7	8	9	••	;	~	=	>	?
4	@	Α	В	С	D	Ε	F	G	Н	Ι	J	Κ	┙	М	N	0
5	Ρ	Q	R	S	Т	U	٧	М	Х	Υ	Z	[/]	^	
6	¢	а	b	С	d	е	f	g	h	i	j	k	1	m	n	О
7	р	q	r	s	t	u	٧	W	×	y	Z	w	_	3	2	
8	Ψ		Ξ	ıl	ıll	C	Ų		Π	F)	Ŋ	Ħ	•	٠	Å
9	4	¢	ଡ	Ø	ę	=	Ξ	+	+	-	×	٠ŀ	æ	π	Σ	
A		Ë	Ъ	ŕ	Θ	S		Ϊ	J	Ъ	Њ	ħ	Ŕ		ý	Ų
В	Α	Б	В	Γ	Д	Ε	Ж	3	И	Й	К	Л	Μ	Н	0	П
C	Ρ	C	Т	У	Φ	Х	Ц	4	Ш	Щ	Ъ	Ы	Ъ	Э	Ю	Я
D	а	6	В	Г	д	е	ж	3	И	Й	К	Л	Σ	Н	0	П
E	p	С	Т	У	ф	×	Ц	Ч	Ш	Щ	Ъ	Ы	Д	Э	ю	Я
F	Νþ	ë	ħ	ŕ	Θ	s	İ	Ϊ	j	љ	њ	ħ	Ŕ	§	ÿ	ų

Figure 6-35: Big ASCII (Table 2)

6-10 Power Control

The RA8816 supports Normal Mode and Sleep Mode for operation. If write "1" to bit0 of register PWRR, then RA8816 will enter sleep mode. The functions of LCD display and driver will stop. All of the signals of COM and SEG will keep low, Key Strobe signals will keep high, and I/O keep the original state. Because the RC clock was stop, so the power consumption is very low.

The RA8816 provide three way to wake up the system:

- 1. Write "0" to the bit0 of register PWRR.
- 2. Key-scan to wake up
- 3. I/O wake up

In wake up phase, the RA8816 will wake up the RC oscillator first, and it will take around 250ms. Then the RA8816 is enable to accept the command from MPU and LCD driver wake up for activity.

The VDD power operation range of RA8816 is 2.5~3.6V. But on the COG module, some power consumption will lose on the connection of FPC and chip that due to the ITO layout issue. So normally the VDD power range of COG module on the FPC side is around V2.7~3.8V.

7. Display Functions

7-1 Text Mode

The RA8816 built-in a 256KB Font ROM that including Traditional Chinese or Simpled Chinese, English, Japaness, ASCII, Europen and Latin(Latin-ext A, Latin-ext B). In text mode, it supports full-size font(Chinese or English) display or half-size(English) display. The full-size font is consist of 16x16 bit map. And half-size is consist of 8x16 or 8x8. Refer to the following Figure 7-1:

Figure 7-1: Full-Size and Half-Size Font

The Chinese display is operating at text mode. So if the RA8816 received two Chinese codes(BIG5 or GB) then the mapped font will show on the cursor position. Because each Chinese code including two bytes data, therefore the MPU has to send the code twice – High byte and Low byte. For English or Numeric, only one byte is need. The maximum supports panel size of RA8816 is 144x65dots. So in text mode it could show 9x4 Chinese fonts and 18x8 English fonts.

The register MWMR is used to setup the font size for display. The user can also select the different display mode such as bold, inverse or normal mode in this register.

7-2 Graphic Mode

In the graphics mode, the RA8816 is fill the bit map data into display memory directly. So if the [MD1, MD0] of register is set to "00" (Graphics Mode), then write the data into memory, the data will show on the screen that cursor pointed.

Figure 7-2: Graphics Mode Display

The display RAM size of RA8816 is 1170Byte(144*65/8). Each memory bit is mapping to the LCD panel. If the data is "1" then the mapped dot is turn on. Please refer the Figure 7-3.

Figure 7-3: Display Data Mapping to the Screen

The RA8816 also provide a clean feature to clear all of the display RAM. If the "MCLR" of register PWRR is set to "1", then all of contents of Display RAM will be clear to "0". In the graphics mode, the user could select the blinking or inverse through register BLTR. The blinking are is assigned by the size of Scroll Window.

RAiO TECHNOLOGY INC. 45/68 www.raio.com.tw

7-3 Cursor Setting

7-3-1 Cursor Position and Shift

The unit of Segment Address is 8-Bit, Commom is 1-Bit. For example, if user want to show a font "制" on the third position(full-size) of top, then the register X-CUR has to set 04h and Y-CUR set to 00h. If the second row want to show "器" as Figure 7-4, then the X-CUR set to 00h and Y-CUR set to 10h.

Both of text mode and graphics mode, the cursor position are use the same resgister X-CUR and Y-CUR. If fill data to display RAM or show a Chinese font on the screen, the cursor will auto increase, and the boundary is the display window.

144(Segment) x 64(Common)

Figure 7-4: An Example for Cursor Setting

7-3-2 Cursor Display and Blink

The RA8816 provides cursor On/Off and blinking features. These functions are control by register CURCR. The cycle time of blinking is depend on the setting of register BLTR. The range is from 8 to 128 frames.

7-3-3 Cursor Height

The cursor height is also setting by register CURCR. For full-size mode the cursor height is adjustable from 1 to 16 pixels, and half size is form 1 to 8 pixels. Please refer to Figure 7-5.

Figure 7-5: Cursor Height

7-4 Display Window

Normally, the Display Window size is same as LCD panel. It's setting by register SYSR. The maximum range is 144(Segment)x64(Common). The RA8816 provide a extra Common(Com-S) as the selection of Icon. Therefore the total 144 Icon for usage. Before access the Com-S, the register Y-CUR has set to 50h, then program the X-CUR to select Icon.

The RA8816 provides two positions for the panel layout of COM-S. It's convenient for user to deisgn the position of Icon for their application. Refer to the Figure 7-6.

Figure 7-6: Display Window and Icon

7-5 Horizontal Scroll

The RA8816 provides Horizontal Scroll feature. User could assign the range of srolling, scroll unit and speed. Refer to the following example as Figure 7-7. The scroll unit is set to 2 pixels.

Figure 7-7: Horizontal Scroll

The RA8816 allows horizontal scroll for right or left way. The user could use the scrolling buffer to show the Shift funtion. For example, store the data or text on the Horizontal Scroll Buffer first, then fill the new data/text into the buffer that after the screen shift 16pixels. You can repeat these action and find the screen is shift like caption of advertisement. The Figure 7-8 is an example to show he Horizontal Shift. The shift unit is 8pixels and the gray area is the scroll buffer. The displat data will not show on the screen.

Please refer to application note for the related horizontal scroll feature.

Figure 7-8: Horizontal Shift

7-6 Vertical Scroll

The RAS8816 alos provides the Vertical Scroll and Shift features that like horizontal function. User could assign the range of srolling, scroll unit and speed. Refer to the following example as Figure 7-9. The vertical scroll unit is set to 2 pixels.

The RA8816 allows vertical scroll for up or down way. The user could use the scrolling buffer to show the Shift funtion. For example, store the data or text on the Vertical Scroll Buffer first, then fill the new data/text into the buffer that after the screen shift 16pixels. Please refer to application note for the related vertical scroll features.

Figure 7-9: Vertical Scroll

8. Pin Diagram

8-1 COG Pad

Figure 8-1: Pin Diagram

Table 8-1: Bump Size and Pitch

Chip Size:	9900 μ m x 1968 μ m	
	PAD 1~20, PAD 124~142 (COM Pads)	66 μ m x 22 μ m
Bump Size:	PAD 143~319 (COM/SEG Pads)	22 μ m x 66 μ m
	PAD 24~123 (MCU/Power Pads)	52 μ m x 76 μ m
	PAD 21~23 (S1, FG, S0)	47 μ m x 76 μ m
	PT1: PAD 1~20, PAD 124~142	60 μ m
	PT2: PAD 144~159, PAD 160~303, PAD 304~318	50 μ m
	PT3A: PAD 21~23,PAD 24~43, PAD 44~63, PAD 64~69 PAD 70~74, PAD 119~123	80 μ m
	PT3B: PAD 118~119	88.28 μ m
	PT4A: PAD 77 to 78	88 μ m
Bump Pitch:	PT4B: PAD 79 to 118	88.44~88.59 μ m
	PT5: PAD 44 to 43	90 μ m
	PT6: PAD 63 to 64	130 μ m
	PT7: PAD 69 to 70	150 μ m
	PT8: PAD 74 to 75	220 μ m
	PT9: PAD 75 to 76	95.76 μ m
	PT10: PAD 76 to 77	81.37 μ m
	PT11: PAD 159 to 160	90 μ m
	PT12: PAD 303 to 304	90 μ m
	PT13: PAD 23 to 24	80.2 μ m
	PT14: PAD 78 to 79	88 μ m
	PT15: PAD 143 to 144	59.51 μ m
	PT16: PAD 318 to 319	50.79 μ m
Bump Height	15 ± 3 μ m	

Figure 8-3: Fixed Point Dimension

8-2 Pad X/Y Coordinate

Pad No.	Pad Name	Х	Y
1	DUMY0	-4883.61	471.47
2	COM49	-4883.61	411.47
3	COM48	-4883.61	351.47
4	COM47	-4883.61	291.47
5	COM46	-4883.61	231.47
6	COM45	-4883.61	171.47
7	COM44	-4883.61	111.47
8	COM43	-4883.61	51.47
9	COM42	-4883.61	-8.53
10	COM41	-4883.61	-68.53
11	COM40	-4883.61	-128.53
12	COM39	-4883.61	-188.53
13	COM38	-4883.61	-248.53
14	COM37	-4883.61	-308.53
15	COM36	-4883.61	-368.53
16	COM35	-4883.61	-428.53
17	COM34	-4883.61	-488.53
18	COM33	-4883.61	-548.53
19	COM32	-4883.61	-608.53
20	DUMY1	-4883.61	-668.53
21	S1	-4421.31	-917.53
22	FG	-4341.31	-917.53
23	S0	-4261.31	-917.53
24	VLCD	-4178.61	-917.78
25	VLCD	-4098.61	-917.78
26	VLCD	-4018.61	-917.78
27	VLCD	-3938.61	-917.78
28	VLCD	-3858.61	-917.78
29	VLCD	-3778.61	-917.78
30	C3P	-3698.61	-917.78
31	C3P	-3618.61	-917.78
32	C2M	-3538.61	-917.78

Pad No.	Pad Name	Х	Υ		
33	C2M	-3458.61	-917.78		
34	C2P	-3378.61	-917.78		
35	C2P	-3298.61	-917.78		
36	C1M	-3218.61	-917.78		
37	C1M	-3138.61	-917.78		
38	C1P	-3058.61	-917.78		
39	C1P	-2978.61	-917.78		
40	V0	-2898.61	-917.78		
41	V0	-2818.61	-917.78		
42	V0	-2738.61	-917.78		
43	V0	-2658.61	-917.78		
44	V1	-2568.61	-917.78		
45	V1	-2488.61	-917.78		
46	V1	-2408.61	-917.78		
47	V1	-2328.61	-917.78		
48	V2	-2248.61	-917.78		
49	V2	-2168.61	-917.78		
50	V2	-2088.61	-917.78		
51	V2	-2008.61	-917.78		
52	V3	-1928.61	-917.78		
53	V3	-1848.61	-917.78		
54	V3	-1768.61	-917.78		
55	V3	-1688.61	-917.78		
56	V4	-1608.61	-917.78		
57	V4	-1528.61	-917.78		
58	V4	-1448.61	-917.78		
59	V4	-1368.61	-917.78		
60	VREF	-1288.61	-917.78		
61	VREF	-1208.61	-917.78		
62	VR	-1128.61	-917.78		
63	VR	-1048.61	-917.78		
64	GND	-918.61	-917.78		

Pad No.	Pad Name	Х	Y		
65	GND	-838.61	-917.78		
66	GND	-758.61	-917.78		
67	GND	-678.61	-917.78		
68	GNDP	-598.61	-917.78		
69	GNDP	-518.61	-917.78		
70	VDDP	-368.61	-917.78		
71	VDDP	-288.61	-917.78		
72	VDD	-208.61	-917.78		
73	VDD	-128.61	-917.78		
74	VDD	-48.61	-917.78		
75	GND	171.39	-917.78		
76	VDD	267.15	-917.78		
77	NC	348.52	-917.78		
78	NC	436.52	-917.78		
79	DB7	525.04	-917.78		
80	DB6	613.55	-917.78		
81	DB5	702.06	-917.78		
82	DB4	790.58	-917.78		
83	DB3	879.09	-917.78		
84	DB2	967.6	-917.78		
85	DB1	1056.11	-917.78		
86	DB0	1144.63	-917.78		
87	RD	1233.21	-917.78		
88	\overline{WR}	1321.72	-917.78		
89	D/C	1410.24	-917.78		
90	CS	1498.75	-917.78		
91	C86	1587.26	-917.78		
92	BIT4	1675.78	-917.78		
93	P/S	1764.29	-917.78		
94	ĪNT	1852.73	-917.78		
95	EXT_CLK	1941.31	-917.78		
96	CLK_SEL	2029.83	-917.78		
97	KST3	2118.27	-917.78		
98	KST2	2206.78	-917.78		

Pad No.	Pad Name	Х	Υ
99	KST1	2295.3	-917.78
100	KS0	2383.81	-917.78
101	KIN4	2472.39	-917.78
102	KIN3	2560.91	-917.78
103	KIN2	2649.42	-917.78
104	KIN1	2737.93	-917.78
105	KIN0	2826.44	-917.78
106	107	2914.89	-917.78
107	106	3003.4	-917.78
108	IO5	3091.91	-917.78
109	IO4	3180.43	-917.78
110	IO3	3268.94	-917.78
111	IO2	3357.45	-917.78
112	IO1	3445.97	-917.78
113	100	3534.48	-917.78
114	EL_DCHG	3622.99	-917.78
115	EL_CHRG	3711.5	-917.78
116	RST	3800.09	-917.78
117	TEST2	3888.6	-917.78
118	TEST1	3977.11	-917.78
119	TEST0	4065.39	-917.78
120	GND	4145.39	-917.78
121	GND	4225.39	-917.78
122	VDD	4305.39	-917.78
123	VDD	4385.39	-917.78
124	DUMY2	4883.61	-657.03
125	COMS_B	4883.61	-597.03
126	COM0	4883.61	-537.03
127	COM1	4883.61	-477.03
128	COM2	4883.61	-417.03
129	COM3	4883.61	-357.03
130	COM4	4883.61	-297.03
131	COM5	4883.61	-237.03
132	COM6	4883.61	-177.03

Pad No.	Pad Name	Х	Y	
133	COM7	4883.61	-117.03	
134	COM8	4883.61	-57.03	
135	COM9	4883.61	2.97	
136	COM10	4883.61	62.97	
137	COM11	4883.61	122.97	
138	COM12	4883.61	182.97	
139	COM13	4883.61	242.97	
140	COM14	4883.61	302.97	
141	COM15	4883.61	362.97	
142	DUMY3	4883.61	422.97	
143	DUMY4	4445.15	917.78	
144	COM16	4385.64	917.78	
145	COM17	4335.64	917.78	
146	COM18	4285.64	917.78	
147	COM19	4235.64	917.78	
148	COM20	4185.64	917.78	
149	COM21	4135.64	917.78	
150	COM22	4085.64	917.78	
151	COM23	4035.64	917.78	
152	COM24	3985.64	917.78	
153	COM25	3935.64	917.78	
154	COM26	3885.64	917.78	
155	COM27	3835.64	917.78	
156	COM28	3785.64	917.78	
157	COM29	3735.64	917.78	
158	COM30	3685.64	917.78	
159	COM31	3635.64	917.78	
160	SEG0	3545.64	917.78	
161	SEG1	3495.64	917.78	
162	SEG2	3445.64	917.78	
163	SEG3	3395.64	917.78	
164	SEG4	3345.64	917.78	
165	SEG5	3295.64	917.78	
166	SEG6	3245.64	917.78	

Pad No.	Pad Name	X	Υ
167	SEG7	3195.64	917.78
168	SEG8	3145.64	917.78
169	SEG9	3095.64	917.78
170	SEG10	3045.64	917.78
171	SEG11	2995.64	917.78
172	SEG12	2945.64	917.78
173	SEG13	2895.64	917.78
174	SEG14	2845.64	917.78
175	SEG15	2795.64	917.78
176	SEG16	2745.64	917.78
177	SEG17	2695.64	917.78
178	SEG18	2645.64	917.78
179	SEG19	2595.64	917.78
180	SEG20	2545.64	917.78
181	SEG21	2495.64	917.78
182	SEG22	2445.64	917.78
183	SEG23	2395.64	917.78
184	SEG24	2345.64	917.78
185	SEG25	2295.64	917.78
186	SEG26	2245.64	917.78
187	SEG27	2195.64	917.78
188	SEG28	2145.64	917.78
189	SEG29	2095.64	917.78
190	SEG30	2045.64	917.78
191	SEG31	1995.64	917.78
192	SEG32	1945.64	917.78
193	SEG33	1895.64	917.78
194	SEG34	1845.64	917.78
195	SEG35	1795.64	917.78
196	SEG36	1745.64	917.78
197	SEG37	1695.64	917.78
198	SEG38	1645.64	917.78
199	SEG39	1595.64	917.78
200	SEG40	1545.64	917.78

Pad No.	Pad Name	Х	Y	
201	SEG41	1495.64	917.78	
202	SEG42	1445.64	917.78	
203	SEG43	1395.64	917.78	
204	SEG44	1345.64	917.78	
205	SEG45	1295.64	917.78	
206	SEG46	1245.64	917.78	
207	SEG47	1195.64	917.78	
208	SEG48	1145.64	917.78	
209	SEG49	1095.64	917.78	
210	SEG50	1045.64	917.78	
211	SEG51	995.64	917.78	
212	SEG52	945.64	917.78	
213	SEG53	895.64	917.78	
214	SEG54	845.64	917.78	
215	SEG55	795.64	917.78	
216	SEG56	745.64	917.78	
217	SEG57	695.64	917.78	
218	SEG58	645.64	917.78	
219	SEG59	595.64	917.78	
220	SEG60	545.64	917.78	
221	SEG61	495.64	917.78	
222	SEG62	445.64	917.78	
223	SEG63	395.64	917.78	
224	SEG64	345.64	917.78	
225	SEG65	295.64	917.78	
226	SEG66	245.64	917.78	
227	SEG67	195.64	917.78	
228	SEG68	145.64	917.78	
229	SEG69	95.64	917.78	
230	SEG70	45.64	917.78	
231	SEG71	-4.36	917.78	
232	SEG72	-54.36	917.78	
233	SEG73	-104.36	917.78	
234	SEG74	-154.36	917.78	

Pad No.	Pad Name	Х	Υ
235	SEG75	-204.36	917.78
236	SEG76	-254.36	917.78
237	SEG77	-304.36	917.78
238	SEG78	-354.36	917.78
239	SEG79	-404.36	917.78
240	SEG80	-454.36	917.78
241	SEG81	-504.36	917.78
242	SEG82	-554.36	917.78
243	SEG83	-604.36	917.78
244	SEG84	-654.36	917.78
245	SEG85	-704.36	917.78
246	SEG86	-754.36	917.78
247	SEG87	-804.36	917.78
248	SEG88	-854.36	917.78
249	SEG89	-904.36	917.78
250	SEG90	-954.36	917.78
251	SEG91	-1004.36	917.78
252	SEG92	-1054.36	917.78
253	SEG93	-1104.36	917.78
254	SEG94	-1154.36	917.78
255	SEG95	-1204.36	917.78
256	SEG96	-1254.36	917.78
257	SEG97	-1304.36	917.78
258	SEG98	-1354.36	917.78
259	SEG99	-1404.36	917.78
260	SEG100	-1454.36	917.78
261	SEG101	-1504.36	917.78
262	SEG102	-1554.36	917.78
263	SEG103	-1604.36	917.78
264	SEG104	-1654.36	917.78
265	SEG105	-1704.36	917.78
266	SEG106	-1754.36	917.78
267	SEG107	-1804.36	917.78
268	SEG108	-1854.36	917.78

Pad No.	Pad Name	X	Y
269	SEG109	-1904.36	917.78
270	SEG110	-1954.36	917.78
271	SEG111	-2004.36	917.78
272	SEG112	-2054.36	917.78
273	SEG113	-2104.36	917.78
274	SEG114	-2154.36	917.78
275	SEG115	-2204.36	917.78
276	SEG116	-2254.36	917.78
277	SEG117	-2304.36	917.78
278	SEG118	-2354.36	917.78
279	SEG119	-2404.36	917.78
280	SEG120	-2454.36	917.78
281	SEG121	-2504.36	917.78
282	SEG122	-2554.36	917.78
283	SEG123	-2604.36	917.78
284	SEG124	-2654.36	917.78
285	SEG125	-2704.36	917.78
286	SEG126	-2754.36	917.78
287	SEG127	-2804.36	917.78
288	SEG128	-2854.36	917.78
299	SEG129	-2904.36	917.78
290	SEG130	-2954.36	917.78
291	SEG131	-3004.36	917.78
292	SEG132	-3054.36	917.78
293	SEG133	-3104.36	917.78
294	SEG134	-3154.36	917.78
295	SEG135	-3204.36	917.78
296	SEG136	-3254.36	917.78
297	SEG137	-3304.36	917.78
298	SEG138	-3354.36	917.78
299	SEG139	-3404.36	917.78
300	SEG140	-3454.36	917.78
301	SEG141	-3504.36	917.78
302	SEG142	-3554.36	917.78

Pad No.	Pad Name	Х	Υ
303	SEG143	-3604.36	917.78
304	COMS_A	-3694.36	917.78
305	COM63	-3744.36	917.78
306	COM62	-3794.36	917.78
307	COM61	-3844.36	917.78
308	COM60	-3894.36	917.78
309	COM59	-3944.36	917.78
310	COM58	-3994.36	917.78
311	COM57	-4044.36	917.78
312	COM56	-4094.36	917.78
313	COM55	-4144.36	917.78
314	COM54	-4194.36	917.78
315	COM53	-4244.36	917.78
316	COM52	-4294.36	917.78
317	COM51	-4344.36	917.78
318	COM50	-4394.36	917.78
319	DUMY5	-4445.15	917.78

9. Electrical Characteristic

9-1 Absolute Maximum Ratings

Table 9-1

Parameter	Symbol	Rating	Unit
Supply Voltage Range	V_{DD}	-0.3 to 6.5	V
Input Voltage Range	V_{IN}	-0.3 to V _{DD} +0.3	V
External VLCD Voltage Range	V_{LCD}	-0.3 to 14	V
Operation Temperature Range	T _{OPR}	-40 to 85	$^{\circ}\!\mathbb{C}$
Storage Temperature Range	T _{ST}	-55 to 125	$^{\circ}\!\mathbb{C}$

9-2 DC Characteristic

Table 9-2

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Operating Voltage	V_{DD}	2.8	3.3	3.8	V	
VLCD Voltage	V_{LCD}	6		12	V	
Input High Voltage	V_{IH}	$0.8 \times V_{DD}$	-	V_{DD}	٧	
Input Low Voltage	V_{IL}	0	1	$0.2 \times V_{DD}$	>	
Output High Voltage	V_{OH}	$0.8 \times V_{DD}$	1	V_{DD}	>	
Output Low Voltage	V_{OL}	0	1	$0.2 \times V_{DD}$	>	
Input Leakage Current	I _{IL}	-1	1	+1	μΑ	V _{IN} = V _{DD}
Output Leakage Current	I_{OL}	-3		+2	μΑ	V _{IN} = V _{DD}
Oscillator Frequency	F_CL	85	95	105	Khz	
Operating Mode Current (Normal Mode Current)	I _{SB}	0.29	0.50	1.1	mA	Min.:*1 Typ.:*2 Max.:*3
Display Off Current	I _{DISPLAY}		197		μΑ	
Sleep Mode Current	I _{SLEEP}		0.2		μΑ	

1:No loading, T_A =25 $^{\circ}$ C, SEG=144, COM=64, F_{CL} = 100KHz, V_{DD} =3.3V, REG[12h] Bit1-0= 00b, Booster setup: VLCD=2x V_{DD} 2:No loading, T_A =25 $^{\circ}$ C, SEG=144, COM=64, F_{CL} = 100KHz, V_{DD} =3.3V, REG[12h] Bit1-0= 10b, Booster setup: VLCD=3x V_{DD} 3:No loading, T_A =25 $^{\circ}$ C, SEG=144, COM=64, F_{CL} = 100KHz, V_{DD} =3.3V, REG[12h] Bit1-0= 11b, Booster setup: VLCD=4x V_{DD} =4.5V, REG[12h] Bit1-0= 11b, Booster setup: VLCD=4x V_{DD}

9-3 Timing Characteristic

9-3-1 Parallel Interface

Figure 9-1: 6800 MPU Timing

6800 MPU Interface

Table 9-3

Item	Signal	Symbol	Condition	Rat	ing	Unit	
itom	Oigilai	Cymbol	Condition	Min.	Max.		
Address Setup Time	RS, CS	tcsw6		0			
Read/Write Setup Time	R/W	twen6		10			
Read/Write Hold Time		t RWH6		10			
Enable Access Time		t AC6		90			
Access Cycle Time	EN toyo	EN	tcyc6	Command Cycle	200		ns
Addeds Cycle Time			Data Cycle	400			
Write Data Setup Time		t _{DS6}		10			
Write Data Hold Time	DB[70]	t DH6		10			
Read Data Access Time		tos6		30	50		
Read Data Hold Time		t oH6		10			

Figure 9-2: 8080 MPU Timing

8080 MPU Interface

Table 9-4

Item	Signal	nal Symbol Condition		nal Symbol Condition		Rat	ing	Unit
Kem	Olgilai	Cymbol	Condition	Min.	Max.	Ome		
Address Setup Time	RS, CS	tcsw8		10				
Address Hold Time	RS, CS	t csн8		10				
Read/Write Access Time		t _{AC8}		90				
Access Cycle Time	tcycs		Command Cycle	200				
7.00000 Cyolo Timo		Data Cycle	400		ns			
Write Data Setup Time		t _{DS8}		10				
Write Data Hold Time	DB[70]	t DH8		10				
Read Data Setup Time		tos8		30	50			
Read Data Setup Time		t он8		10				

9-3-2 Serial Interface

Figure 9-3: 3-Wire Timing

3-Wire Serial Interface

Table 9-5

Item	Signal	Symbol Condition	Condition	Rating		Unit
	Oigilai	Cymson	Condition	Min.	Max.	O
Access Time	CS	t cyc3		3.6		μs
CS Setup Time	CS	tcsH3		20		
Clock Low Pulse Width	SCK	t CKL3		100		
Clock High Pulse Width	SCK	t cкнз		100		ns
Data Setup Time	SDA	t _{DS3}		20		
Data Hold Time	03/1	t DH3		10		

Figure 9-4: 4-Wire(A-Type) Timing

4-Wire(A-Type) Serial Interface

Table 9-6

Item	Signal	Symbol	Symbol Condition	Rating		Unit
	O.g.iai	- Cy		Min.	Max.	J
Access Time	CS	tcyc4A		3.4		μs
CS Setup Time	CS	t csH4		20		
Clock Low Pulse Width	SCK	t CKL4		100		
Clock High Pulse Width		t CKH4		100		ns
Data Setup Time	SDA, RS	t DS4		20		
Data Hold Time]	t DH4		10		

Figure 9-5A: 4-Wire(B Type) Timing

4-Wire(B-Type) Serial Interface

Table 9-7A

ltem	Signal	Symbol	Condition	Rating		Unit
				Min.	Max.	J
Access Time	CS	t CYC4A		3.6		μs
CS Setup Time		tcsH4		20		
Clock Low Pulse Width	SCK	t CKL4		100		
Clock High Pulse Width		t CKH4		100		
Data Write Setup Time	SDI	t DS4		20		ns
Data Write Hold Time		t DH4		10		
Data Read Setup Time	SDO	tos4B		20		
Data Read Hold Time		t 0H4B		10		

Figure 9-5B: IIC Timing

IIC Serial Interface

Table 9-7B

Item	Signal	Symbol	Rating		Unit	
item	Signal	Symbol	Min	Max	Offic	
SCK Clock Frequency	SCK	f_{SCL}		500	KHz	
Bus Free Time Between STOP and START	SCK/SDA	t _{BUF}	1	-	us	
LOW Period of SCK Clock	SCK	t _{Low}	200		ns	
HIGH Period of SCK Clock	SCK	t _{High}	200		ns	
Data Setup Time	SCK/SDA	t _{DSIIC}	100		ns	
Data Hold time	SCK/SDA	t _{DHIIC}	100		ns	

9-3-3 Reset Interface

Figure 9-6: Reset Timing

Table 9-8

Item	Signal Sy	Symbol	Condition	Rating		Unit
1.5	O.g.ia.	- Cymines		Min.	Max.	
Reset Pulse Width	RST	t rst		30		ms
Reset Complete Hold			F _{CL} = 100KHz			
Time	RST	t RSTH	(Internal RC	150		ms
			Oscillator)			

Appendix A.

A-1 COG Application

A-1-1 Basic Connection of Serial I/F

Figure A-1: COG Module

Figure A-2: Example(A) of Basic Connection of Serial(3-Wires) I/F

The RA8816 provide many interfaces for MPU that including parallel, 3-Wire serial, 4-Wire serial, IIC, and some useful I/O interface like I/O and Key-scan. Therefore there are many options for user to connect the COG die to FPC. The Figure A-1 is a simple of COG module. And the Figure A-2 is an example for RA8816 COG die that connect to FPC for basic 3-wire interface. Please note the unused parallel signals of MPU have to connect to VDD.

A-1-2 Basic Connection of Parallel I/F

Figure A-3: Example(A) of Basic Connection of Parallel I/F

Figure A-3 is an example for RA8816 COG die that connect to FPC for basic parallel interface.

A-1-3 Other Application for FPC

The Figure A-4 is another example that uses 3-wires MPU I/F, 3-times VDD, internal RC Oscillator, EL driving, 2 I/O signals and 2x2 Key-scan. In this case, the FPC only uses 27pins. Some configure pin are connect to VDD or GND through ITO resistance, such as C86, BIT4, P/ $\overline{\text{S}}$, CLK_SEL and EXT_CLK. The unused parallel signals of MPU and KIN have to tie to VDD.

The RA8816 also provides two common outputs for Icon that let the panel layout easier to meet their application.

The pad number 75, 76, 120, 121, 122, 123 are VDD or GND. Their purposes are used to pull-up or pull-down for some signals on panel. They do not need to connect to FPC.

Figure A-4: Example of COG Module

The Figure A-5 is an example for 144x65 LCD panel.

Figure A-5: The Connection of RA8816 with LCD Panel(144x65)

Figure A-6: The Connection of RA8816 with LCD Panel(144x32)

The Figure A-6 is an example of connection that use 144x32 panel. In this case, it supports two row for full size(16x16) or four rows for half-size(8x8) fonts. Please refer to Table5-3 for the Common signals connection

A-2 ITO

Table A-1: ITO Resistance of COG

PAD Name	ITO(Ohm)	PAD Name	ITO(Ohm)	PAD Name	ITO(Ohm)
VDD , VDDP	150	C1M	200	BIT4	600
GND , GNDP	150	C2P	200	P/S	600
VREF	200	C2M	200	CLK_SEL	600
VLCD	200	C3P	200	EXT_CLK	600
VR	200	DB[70]	600	KST[30]	600
V4	200	RD , EN	600	KIN[40]	600
V3	200	\overline{WR} , R/ \overline{W}	600	IO[70]	600
V2	200	D/\overline{C} , RS	600	EL_CHRG	600
V1	200	cs	600	EL_DCHG	600
V0	200	ĪNT	600	RST	600
C1P	200	C86	600	TEST[20]	600

Figure A-7: ITO Layout Example - VLCD

The RA8816 power signals (such as VDD, GND, VLCD, V[4..0], C1P, C1M, C2P, C2M) have to keep the smaller ITO resistance(less than 15 ohm is better) for panel layout. So the wires of layout need to keep as thick as possible to reduce the ITO resistance. The Figure A-7 is an example for VLCD layout of panel. Because the RA8816 provide six pads for VLCD, therefore the layout engineer has to connect all of these pads to FPC. In this case, the VLCD is three times of VDD, so the C3P have to connect to VLCD and do not forget keep the wire thicker.

Figure A-8: ITO Layout Example

The Figure A-8 is a layout example of RA8816 to FPC on COG module. The VDD and GND of RA8816 should as close as possible to FPC. The RA8816 provide six GND pad, user have to connect these six pads to FPC with a thick wire. For the design of FPC, the related power signals(VDD, GND, VLCD) of layout need to keep as thick as possible to reduce the wire resistance. And the VDD, GND pad of FPC keep double width than other signals. For example, if panel resolution is 128x64 then use 4X VDD for booster and LCD voltage less than 9V is better.