

## Estadística con R

Métodos de Clasificación



### Métodos de Clasificación

- La clasificación supervisada es una de las tares que más frecuentemente son llevadas a cabo por los denominados Sistemas Inteligentes.
- Técnicas Estadísticas: Regresión Logística, Análisis Discriminante, Análisis de conglomerados ó Cluster.
- Inteligencia Artificial: Redes Neuronales, <u>K</u>
  vecinos próximos, los Árboles de Decisión, las
  Máquinas Soporte Vector y Redes Bayesianas.



# Minería de datos aplicada a las técnicas de clasificación

- Partición del conjunto de datos en dos subconjuntos que serán utilizados
  - Entrenamiento (utilizado para estimar los parámetros del modelo)
  - Test (comprobar el comportamiento del modelo estimado)
- Dividir el conjunto de datos en ambos subconjuntos por un procedimiento de muestreo (muestreo aleatorio simple)
- Aplicar una métrica de evaluación



### Métrica de evaluación

Recuento de clasificación binaria:

|             |                 | Valor real de $Y_{i}$ |           |
|-------------|-----------------|-----------------------|-----------|
|             |                 | $Y_i = 0$             | $Y_i = 1$ |
| $\hat{Y_i}$ | $\hat{Y}_i = 0$ | $P_{11}$              | $P_{12}$  |
|             | $\hat{Y}_i = 1$ | $P_{21}$              | $P_{22}$  |

P<sub>11</sub> y P<sub>22</sub> corresponderán a predicciones correctas (valores 0 bien predichos en el primer caso y valores 1 bien predichos en el segundo caso), mientras que P<sub>12</sub> y P<sub>22</sub> corresponderán a predicciones erróneas (valores 1 mal predichos en el primer caso y valores 0 mal predichos en el segundo caso).



# Bondad de Ajuste

#### Índices para medir la bondad del ajuste

| Indice               | Definición                                                                                  | Expresión                                                   |
|----------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Tasa de aciertos     | Cociente entre las predicciones correctas y el total de predicciones                        | $\frac{P_{11} + P_{22}}{P_{11} + P_{12} + P_{21} + P_{22}}$ |
| Tasa de errores      | Cociente entre las predicciones incorrectas y el total de predicciones                      | $\frac{P_{12} + P_{21}}{P_{11} + P_{12} + P_{21} + P_{22}}$ |
| Especificidad        | Proporción entre la frecuencia de valores 0 correctos<br>y el total de valores 0 observados | $\frac{P_{11}}{P_{11} + P_{21}}$                            |
| Sensibilidad         | Razón entre los valores 1 correctos y el total de valores 1 observados                      | $\frac{P_{22}}{P_{12} + P_{22}}$                            |
| Tasa de falsos ceros | Proporción entre la frecuencia de valores 0 incorrectos y el total de valores 0 observados  | $\frac{P_{21}}{P_{11} + P_{21}}$                            |
| Tasa de falsos unos  | Razón entre los valores 1 incorrectos y el total de<br>valores 1 observados                 | $\frac{P_{12}}{P_{12} + P_{22}}$                            |



# Curva ROC (Receiver Operating Characteristic)

- Representación gráfica del rendimiento del clasificador: muestra la distribución de las fracciones de verdaderos positivos y de falsos positivos
- La fracción de verdaderos positivos se conoce como sensibilidad: probabilidad de clasificar correctamente a un individuo cuyo estado real sea definido como positivo.
- La especificidad es la probabilidad de clasificar correctamente a un individuo cuyo estado real sea clasificado como negativo (restar uno de la fracción de falsos positivos)
- La curva ROC también es conocida como la representación de sensibilidad frente a (1-especificidad)



### Curva ROC

#### Tipos de curvas ROC

