Metody optymalizacji L1

Gabriel Budziński 254609

May 22, 2023

1 Zadanie 1

1.1 Opis Modelu

w - wektor szerokości desek, d - wektor zapotrzebowań, p - macierz podziałów postaci $\mathbb{N}^{|w| \times k}$, gdzie $k \in \mathbb{N}$.

1.1.1 Zmienne decyzyjne

Zmienne decyzyjne mają postać wektora x spełniającego nierówność $x \ge 0$ o długości odpowiadającej liczbie możliwych cięć deski.

1.1.2 Ograniczenia

W modelu występuje tylko jeden typ ograniczeń:

$$(\forall i \in [|w|]) (x \cdot p_{*i} \geqslant d_i)$$

gdzie · to iloczyn skalarny

1.1.3 Funkcja celu

W zadanym problemie staramy się minimalizować odpady z cięcia, co sprowadza się do minimalizacji zużycia standardowych desek, a w takim razie funkcja celu, którą minimalizujemy ma postać

$$\sum_{i=1}^{k} x_i$$

1.2 Wyniki i interpretacja

Optymalnym rozwiązaniem jest

liczba sztuk	liczba desek szerokości 7	liczba desek szerokości 5	liczba desek szerokości 3
37	2	1	1
28	1	3	0
9	1	0	5

co daje odpowiednio 111,121 oraz 82 deski zadanych szerokości, a odpad wyniósł 18 cali.

2 Zadanie 2

2.1 Opis Modelu

n - liczba zadań, p - wektor czasów wykonania zadań $\in \mathbb{R}^n, r$ - wektor czasów gotowości zadania $\in \mathbb{R}^n, w$ - wektor wag zadań $\in \mathbb{R}^n, M$ - duża liczba (np. $M > \sum_{i=1}^n p_i$), wszystkie dane $\geqslant 0$

2.1.1 Zmienne decyzyjne

• c - wektor czasów zakończenia zadań $\in \mathbb{R}^n_+$

2.1.2 Ograniczenia

• spełnienie warunków gotowości

$$(\forall i \in [n]) (c_i - p_i \geqslant r_i)$$

• wymuszenie rozłączności zadań

$$(\forall i, j \in [n]) (i < j \implies c_i \leqslant c_j - p_j + M(1 - y_{ij}))$$
$$(\forall i, j \in [n]) (i < j \implies c_j \leqslant c_i - p_i + My_{ij})$$

2.1.3 Funkcja celu

Funkcja celu, którą minimalizujemy to

$$\sum_{i=1}^{n} c_i w_i$$

2.2 Wyniki i interpretacja

Dla przykładowych danych n=3, p=(2,3,2), w=(1,1,5), r=(2,3,5) program zwrócił rozwiązanie postaci

O wartości funkcji celu 49.

3 Zadanie 3

3.1 Opis Modelu

n - liczba zadań, m - liczba maszyn, p - wektor czasów wykonania zadań $\in \mathbb{R}^n$, r - macierz relacji poprzedzania $\in \{0,1\}^{n\times n}$, M - duża liczba (np. $M>\sum_{i=1}^n p_i$), wszystkie dane $\geqslant 0$

3.1.1 Zmienne decyzyjne

- $\bullet \ s$ wektor czasów rozpoczęcia zadań $\geqslant 0$
- c wektor numerów maszyn, na których wykonano dane zdanie $\in [m]^n$
- y binarna macierz pomocnicza do wymuszania rozłączności zadań na danej maszynie $\in \{0,1\}^{n \times n}$
- x binarna macierz pomocnicza do sprawdzania, czy zadania są wykonywane na tej samej maszynie $\in \{0,1\}^{n\times n\times 3}$
- ullet C ograniczenie górne czasów zakończenia zadań

3.1.2 Ograniczenia

 $\bullet\,$ ustawienie wartości x

$$(\forall i, j \in [n]) (i < j \implies Lx_{ij1} + bx_{ij2} + (b + \delta)x_{ij3} \le c_i - c_j \le (b - \delta)x_{ij1} + bx_{ij2} + Ux_{ij3})$$

gdzie $L = -m, U = m, \delta = 0.1, b = 0$

$$(\forall i, j \in [n]) \left(\sum_{k \in \{1,2,3\}} x_{i,j,k} = 1 \right)$$

• wymuszenie rozłączności zadań na tej samej maszynie

$$(\forall i, j \in [n]) (i < j \implies s_i + M(y_{ij} + (1 - x_{ij2})) \ge s_j + p_j)$$

 $(\forall i, j \in [n]) (i < j \implies s_j + M((1 - y_{ij}) + (1 - x_{ij2})) \ge s_i + p_i)$

• wymuszenie zadanego poprzedzania

$$(\forall i, j \in [n]) (i < j \land r_{ij} = 1 \implies s_i + p_i \leqslant s_j)$$

ullet ustawienie C jako ograniczenia górnego na czas zakończenia

$$(\forall i \in [n]) (C \geqslant s_i + p_i)$$

3.1.3 Funkcja celu

Funkcja celu przyjmuje wartość C, które staramy się zminimalizować.

3.2 Wyniki i interpretacja

Po optymalizacji model odpowiada rozwiazaniu,

które spełnia zadane założenia i ma wartość funkcji celu C=9.

4 Zadanie 4

4.1 Opis Modelu

n - liczba zadań, p - liczba odnawialnych zasobów, N - wektor górnych ograniczeń zużycia zasobu $\in \mathbb{R}^p$, t - wektor czasu trwania dla każdego z zadań $\in \mathbb{N}^n$, r - macierz zużycia każdego z zasobów przez każde z zadań $\in \mathbb{R}^{p \times n}$, u - macierz relacji poprzedzania $\in \{0,1\}^{n \times n}$, T - horyzont czasowy (np. suma wszystkich czasów wykonania), wszystkie dane $\geqslant 0$

4.1.1 Zmienne decyzyjne

- x binarna macierz momentów rozpoczęcia każdego z zadań $\in \{0,1\}^{n \times T}$
- C ograniczenie górne czasów zakończenia zadań $\in \mathbb{N}$

4.1.2 Ograniczenia

• Każde zadanie rozpoczyna się tylko raz

$$(\forall i \in [n]) \left(\sum_{j=1}^{T} x_{ij} = 1 \right)$$

• wymuszenie zadanego poprzedzania

$$(\forall i, j \in [n]) \left(i < j \land u_{ij} = 1 \implies \sum_{k=1}^{T} x_{ik} \cdot (k-1) + t_i \leqslant \sum_{k=1}^{T} x_{jk} \cdot (k-1) \right)$$

 $\bullet\,$ ustawienie Cjako ograniczenia górnego

$$(\forall i \in [n]) \left(\sum_{k=1}^{T} x_{ik} \cdot (k-1) + t_i \leqslant C \right)$$

• wymuszenie zadanych ograniczeń na zasoby

$$(\forall a \in [p], k \in [T]) \left(\sum_{i=1}^{n} \left(\sum_{l=max\{1, k-t_i+1\}}^{k} x_i l \right) \cdot r_a i \leqslant N_a \right)$$

4.1.3 Funkcja celu

Funkcja celu przyjmuje wartość C, które staramy się zminimalizować.

4.2 Wyniki i interpretacja

Po optymalizacji model odpowiada rozwiązaniu,

które spełnia zadane założenia i ma wartość funkcji celu C=237.

Co warto zauważyć, solver Cbc poradził sobie z zadaniem w 17 sekund, w przeciwieństwie do GLPK, który nie wyznaczył optimum w rozsądnym czasie.