Give light and people will find the way. —Ella Baker

Relationship Between AR and MA

- The best part about AR models and MA models is that they are the same thing

 approximately.
- In certain situations (stationarity), AR models can be represented as an infinite MA model.
- In certain situations (invertible), MA models can be represented as an infinite AR model.

ARMA Model

- There is nothing to limit both an AR process and an MA process to be in the model simultaneously.
- These "mixed" models are typically used to help reduce the number of parameters needed for good estimation in the model.
- For example, the most basic model with only one lag of each piece the ARMA(1,1) model.

$$Y_{t} = \omega + \phi Y_{t-1} + \theta e_{t-1} + e_{t}$$

Notation

- ARMA(p,q) is used to denote mixture models...p indicates the number of autoregressive terms and q represents the number of moving average terms
- For example, ARMA(2,3) is the following model:

$$Y_{t} = \omega + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \theta_{1}e_{t-1} + \theta_{2}e_{t-2} + \theta_{3}e_{t-3} + e_{t}$$

• If the above model (on right hand side) is done on the first differences, then we say this is an ARIMA(2,1,3)

Correlation graphs

- Although correlation graphs can potentially help us, they become very complicated with these mixed models.
- There are some important things to note:
 - Characteristics from both are in the correlation functions.
 - All of the functions tail off exponentially as the lags increase.
 - We tend to look for "spikes" to help us "guess" best model...spikes in ACF would potentially indicate MA terms and spikes in the PACF would potentially indicate AR terms
- Let's try a couple....

Recall the Quotes data set:

Quotes_train %>% gg_tsdisplay(Quotes,plot_type = 'partial')

Try some models:

```
quotes_model <-Quotes_train %>% model(
ar1 = ARIMA(Quotes ~ pdq(1,0,0) + PDQ(0,0,0)),
ma1 = ARIMA(Quotes ~ pdq(0,0,1) + PDQ(0,0,0)),
search1 = ARIMA(Quotes),
search2 = ARIMA(Quotes,stepwise = F))
quotes_model2<-as.data.frame(quotes_model)
t(quotes_model2)
```

OUTPUT:

ar1 ARIMA(1,0,0) w/ mean ma1 ARIMA(0,0,1) w/ mean search1 ARIMA(1,0,1) w/ mean search2 ARIMA(1,0,1) w/ mean

Take a look at models:

glance(quotes_model) %>% arrange(AICc) %>% select(.model:BIC)

.model <chr></chr>	sigma2 <dbl></dbl>	log_lik <dbl></dbl>	AIC <dbl></dbl>	AICc <dbl></dbl>	BIC <dbl></dbl>
search1	2.542801	-66.78471	141.5694	142.8597	147.9035
search2	2.542801	-66.78471	141.5694	142.8597	147.9035
mal	2.750904	-68.68142	143.3628	144.1128	148.1134
arl	2.785908	-68.79466	143.5893	144.3393	148.3399

Clearly, ARMA(1,1) looks best...let's see if we get white noise...

quotes_model %>% select(search1) %>% gg_tsresiduals()

quotes_model %>% select(search1) %>% residuals() %>% ggPacf()

augment(quotes_model) %>% filter(.model=='search1') %>% features(.innov,ljung_box, lag=10, dof = 2)

.model	lb_stat	lb_pvalue	
<chr></chr>	<dbl></dbl>	<dbl></dbl>	
search1	3.596194	0.8915972	

Second example: Hurricane (mean maximum velocity)

Hurricane.ts<- hurricane %>% as_tsibble(index=Year) autoplot(Hurricane.ts,MeanVMax)+labs(title="Time Series of Yearly Mean Velocity for Hurricanes", x="Time", y="MPH")

Hurricane.ts %>% features(MeanVMax,unitroot_ndiffs)

Need to look at differences:

Hurricane_train %>% gg_tsdisplay(mean_diff,plot_type = 'partial')


```
hurr_model <-Hurricane_train %>% model(ar3 = ARIMA(MeanVMax ~ 0 + pdq(3,1,0) + PDQ(0,0,0)),
    ma2 = ARIMA(MeanVMax ~ 0 + pdq(0,1,2) + PDQ(0,1,0)),
    arima32 = ARIMA(MeanVMax~0 + pdq(3,1,2) + PDQ(0,0,0)),
    search1 = ARIMA(MeanVMax),
    search2 = ARIMA(MeanVMax,stepwise = F))
hurr_model2<-as.data.frame(hurr_model)
t(hurr_model2)
glance(hurr_model) %>% arrange(AICc) %>% select(.model:BIC)
```

ar3 ARIMA(3,1,0) ma2 ARIMA(0,1,2) arima32 ARIMA(3,1,2) search1 ARIMA(0,0,2) w/ mean search2 ARIMA(0,0,2) w/ mean

.model <chr></chr>	sigma2 <dbl></dbl>	log_lik <dbl></dbl>	AIC <dbl></dbl>	AICc <dbl></dbl>	BIC <dbl></dbl>
arima32	94.60665	-538.9024	1089.805	1090.401	1107.788
ma2	97.36121	-542.3252	1090.650	1090.817	1099.642
search2	93.05631	-540.1616	1094.323	1095.118	1115.351
search1	96.28303	-543.9478	1095.896	1096.173	1107.911
ar3	107.88596	-549.0493	1106.099	1106.378	1118.088

MA(2)

ARIMA(3,1,2)

White noise test:

augment(hurr_model) %>% filter(.model=='arima32') %>% features(.innov,ljung_box, lag=10, dof = 5)

.model	lb_stat	lb_pvalue	
<chr></chr>	<dbl></dbl>	<dbl></dbl>	
arima32	5.151377	0.3976869	

FORECASTING

Quotes data set:

```
quotes_model %>% select(search1) %>% fabletools::forecast(h=4) %>% autoplot(Quotes_train) quotes_for<-quotes_model %>% select(search1) %>% fabletools::forecast(h=4) quotes_resid<-Quotes$Quotes[37:40]-quotes_for$.mean MAPE<-mean(abs(quotes_resid/Quotes$Quotes[37:40])) MAE<-mean(abs(quotes_resid))
```

MAPE 0.2330841 MAE 3.9527

Hurricane data set:

hurr_model %>% select(arima32) %>% fabletools::forecast(h=8) %>% autoplot(Hurricane_train)

hurr_for<-hurr_model %>% select(arima32) %>% fabletools::forecast(h=8)

hurr_resid<-hurricane\$MeanVMax[150:157]-hurr_for\$.mean

MAPE<-mean(abs(hurr_resid/hurricane\$MeanVMax[150:157]))

MAE<-mean(abs(hurr_resid))

MAPE

0.060676

MAE

5.98627

NOTE: It forecasts the **actual values**....NOT the differenced value

Questions?

