COLLE 17 = DÉNOMBREMENT ET ESPACES EUCLIDIENS

Dénombrement - Combinatoire :

Exercice 1.

Combien y a-t-il de nombres de 5 chiffres où 0 figure une fois et une seule?

Exercice 2.

Dénombrer les anagrammes des mots suivants :

MATRICE, ANALYSE, ANANAS

Exercice 3.

On part du point de coordonnées (0,0) pour rejoindre le point de coordonnées (p,q) (p et q entiers naturels donnés) en se déplaçant à chaque étape d'une unité vers la droite ou vers le haut. Combien y a-t-il de chemins possibles?

Exercice 4.

Un damier est un plateau carré contenant 100 cases.

1. Combien y a-t-il de manières de placer 50 pièces blanches et 50 pièces noires sur ce damier?

Niveau: Première année de PCSI

2. Soient $n_1, n_2, n_3, n_4 \in \mathbb{N}$ tels que $n_1 + n_2 + n_3 + n_4 = 100$. On dispose de n_1 pièces noires, n_2 pièces blanches, n_3 pièces bleus et n_4 pièces rouges. Combien y a-t-il de manières différentes différentes de placer toutes ces pièces sur un damier.

Exercice 5.

De combien de façons peut-on payer 100 euros avec des pièces de 10, 20 et 50 centimes?

Probabilités sur un espace fini

Exercice 6.

Lors d'une loterie de Noël, 300 billets sont vendus aux enfants de l'école; 4 billets sont gagnants. J'achète 10 billets, quelle est la probabilité pour que je gagne au moins un lot?

Exercice 7.

Dans les barres de chocolat, on trouve des images équitablement réparties de cinq grands mathématiciens, une image par tablette. On veut avoir l'image de Denis Poisson : combien dois-je acheter de barres pour que la probabilité d'avoir la figurine attendue dépasse 80%? Même question pour être sûr à 90%.

Exercice 8.

En cas de migraine trois patients sur cinq prennent de l'aspirine (ou équivalent), deux sur cinq prennent un médicament M présentant des effets secondaires : Avec l'aspirine, 75% des patients sont soulagés. Avec le médicament M, 90% des patients sont soulagés.

- 1. Quel est le taux global de personnes soulagées?
- 2. Quel est la probabilité pour un patient d'avoir pris de l'aspirine sachant qu'il est soulagé?

Exercice 9.

Dans l'ancienne formule du Loto il fallait choisir 6 numéros parmi 49.

- 1. Combien y-a-t-il de grilles possibles? En déduire la probabilité de gagner en jouant une grille.
- 2. Quelle est la probabilité que la grille gagnante comporte 2 nombres consécutifs?

Exercice 10.

Quelle est la probabilité p_n pour que dans un groupe de n personnes choisies au hasard, deux personnes au moins aient le même anniversaire (on considèrera que l'année a toujours 365 jours, tous équiprobables). Montrer que pour $n \geq 23$, on a $p_n \geq \frac{1}{2}$.

Exercice 11.

Dans une salle 60% des personnes sont des femmes; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle est la probabilité pour qu'un porteur de lunettes pris au hasard soit une femme?

Exercice 12.

Un professeur oublie fréquemment ses clés. Pour tout n, on note : E_n l'événement «le jour n, le professeur oublie ses clés», $P_n = P(E_n)$, $Q_n = P(\overline{E_n})$. On suppose que : $P_1 = a$ est donné et que si le jour n

On suppose que : $P_1 = a$ est donné et que si le jour n il oublie ses clés, le jour suivant il les oublie avec la probabilité $\frac{1}{10}$; si le jour n il n'oublie pas ses clés, le jour suivant il les oublie avec la probabilité $\frac{4}{10}$. Montrer que $P_{n+1} = \frac{1}{10}P_n + \frac{4}{10}Q_n$. En déduire une relation entre P_{n+1} et P_n

Quelle est la probabilité de l'événement «le jour n, le professeur oublie ses clés» ?

Exercice 13.

Soient Ω un ensemble fini, $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$) un espace probabilisé et $A_1, ..., A_n$ des événements. Démontrer que :

$$\mathbb{P}(A_1 \cap ... \cap A_n) \ge \left(\sum_{i=1}^n \mathbb{P}(A_i)\right) - (n-1)$$

Niveau: Première année de PCSI

mail: ibotca52@gmail.com

Exercice supplémentaire :

Exercice 14.

1. Soit E un ensemble fini et non vide. Soient n un entier naturel non nul et $A_1,...,A_n,n$ parties de E. Montrer la « formule du crible » :

$$\operatorname{card}(A_1 \cup \dots \cup A_n) = \sum_{i=1}^n \operatorname{card}(A_i) - \sum_{1 \le i_1 < i_2 \le n} \operatorname{card}(A_{i_1} \cap A_{i_2})$$

$$+ \dots + (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} \operatorname{card}(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k})$$

$$+ \dots + (-1)^{n-1} \operatorname{card}(A_1 \cap \dots \cap A_n).$$

2. Combien y a-t-il de permutations σ de $\{1,...,n\}$ vérifiant $\forall i \in \{1,...,n\}$, $\sigma(i) \neq i$? (Ces permutations sont appelées dérangements (permutations sans point fixe)). Indication : noter A_i l'ensemble des permutations qui fixent i et utiliser 1).

On peut alors résoudre un célèbre problème de probabilité, le problème des chapeaux. n personnes laissent leur chapeau à un vestiaire. En repartant, chaque personne reprend un chapeau au hasard. Montrer que la probabilité qu'aucune de ces personnes n'ait repris son propre chapeau est environ $\frac{1}{e}$ quand n est grand.

Espaces Euclidiens:

Exercice 15.

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$, on définit :

$$\langle A|B\rangle = Tr(^tAB)$$

- 1. Démontrer que cette formule définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$
- 2. En déduire que, pour tous $A, B \in \mathcal{S}_n(\mathbb{R})$, on a

$$(Tr(AB))^2 \le Tr(A^2)Tr(B^2)$$

Exercice 16.

Soit E un espace vectoriel euclidien et x,y deux éléments de E. Montrer que x et y sont orthogonaux si et seulement si $||x + \lambda y|| \ge ||x||$ pour tout $\lambda \in \mathbb{R}$.

Exercice 17.

Sur $\mathbb{R}[X]$, on pose $\langle P|Q\rangle=\int_0^1P(t)Q(t)\ dt$. Existe-t-il A élément de $\mathbb{R}[X]$ tel que $\forall P\in\mathbb{R}[X],\ \langle P|A\rangle=P(0)$?

Exercice 18.

Dans \mathbb{R}^4 muni du produit scalaire usuel, on pose : $V_1=(1,2,-1,1)$ et $V_2=(0,3,1,-1)$. On pose $F=\mathrm{Vect}(V_1,V_2)$. Déterminer une base orthonormale de F et un système d'équations de F^{\perp} .

Niveau: Première année de PCSI

Exercice 19.

Pour $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R}), \ N(A) = \operatorname{Tr}({}^tAA).$ Montrer que N est une norme vérifiant de plus $N(AB) \leq N(A)N(B)$ pour toutes matrices carrées A et B. N est-elle associée à un produit scalaire?

Exercice 20.

Soit E un espace préhilbertien et soit $B = \{x \in E; \|x\| \le 1\}$. Démontrer que B est strictement convexe, c'est-à-dire que, pour tous $x, y \in B, x \ne y$ et tout $t \in]0,1[, \|tx + (1-t)y\| < 1$.