Lecture 8 Support Vector Machines

EE-UY 4563/EL-GY 9123: INTRODUCTION TO MACHINE LEARNING PROF. SUNDEEP RANGAN, WITH MODIFICATION BY YAO WANG

Learning Objectives

- □ Interpret weights in linear classification of images
- ☐ Define the margin in linear classification
- ☐ Describe the SVM classification problem.
- □ Write equations for solutions of constrained optimization using the Lagrangian.
- ☐ Describe a kernel SVM problem
- Select SVM parameters from cross-validation

Outline

- Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
 - ☐ Maximum margin classifiers
 - ■Support vector machines
 - ☐ Constrained optimization
 - ☐ Kernel trick

MNIST Digit Classification

This sample of handwriting is being collected for use in testing computer recognition of hand printed numbers and letters. Please print the following characters in the boxes that appear below.

HANDWRITING SAMPLE FORM

- ☐ Problem: Recognize hand-written digits
- ☐ Original problem:
 - Census forms
 - Automated processing
- □ Classic machine learning problem
- ☐ Benchmark

From Patrick J. Grother, NIST Special Database, 1995

A Widely-Used Benchmark

Classifiers [edit]

This is a table of some of the machine learning methods used on the database and their error rates, by type of classifier:

Type	Classifier \$	Distortion +	Preprocessing ♦	Error rate (%) \$
Linear classifier	Pairwise linear classifier	None	Deskewing	7.6 ^[9]
K-Nearest Neighbors	K-NN with non-linear deformation (P2DHMDM)	None	Shiftable edges	0.52 ^[14]
Boosted Stumps	Product of stumps on Haar features	None	Haar features	0.87 ^[15]
Non-Linear Classifier	40 PCA + quadratic classifier	None	None	3.3 ^[9]
Support vector machine	Virtual SVM, deg-9 poly, 2-pixel jittered	None	Deskewing	0.56 ^[16]
Neural network	2-layer 784-800-10	None	None	1.6 ^[17]
Neural network	2-layer 784-800-10	elastic distortions	None	0.7 ^[17]
Deep neural network	6-layer 784-2500-2000-1500-1000-500-10	elastic distortions	None	0.35 ^[18]
Convolutional neural network	Committee of 35 conv. net, 1-20-P-40-P-150-10	elastic distortions	Width normalizations	0.23 ^[8]

- ☐ We will look at SVM today
- Not the best algorithm
- ☐ But quite good
- ☐...and illustrates the main points

Downloading MNIST

```
■MNIST data is available in many sources
import tensorflow as tf
                                                        ■ Note: It has been removed from sklearn
(Xtr,ytr),(Xts,yts) = tf.keras.datasets.mnist.load_data()
print('Xtr shape: %s' % str(Xtr.shape))
                                                         ☐ Tensorflow version:
print('Xts shape: %s' % str(Xts.shape))

    60000 training samples

ntr = Xtr.shape[0]
                                                           10000 test samples
nts = Xts.shape[0]
nrow = Xtr.shape[1]
                                                         ☐ Each sample is a 28 x 28 images
ncol = Xtr.shape[2]
                                                         □ Grayscale: Pixel values \in \{0,1,...,255\}
Xtr shape: (60000, 28, 28)
                                                           ∘ 0 = Black and
Xts shape: (10000, 28, 28)

    255 = White
```


Matrix and Vector Representation

- \square For this demo, we reshape data from $N \times 28 \times 28$ to $N \times 784$
- ☐ But, you can easily go back and forth
- □Also, scale the pixel values from -1 to 1

$$S = Mat(x) = \begin{bmatrix} s_{11} & \cdots & s_{1,28} \\ \vdots & \vdots & \vdots \\ s_{28,1} & \cdots & s_{28,28} \end{bmatrix}$$

$$x = \text{vec}(S) = \begin{bmatrix} x_1 & \cdots & x_{784} \end{bmatrix}$$

 $784 = 28^2$

Displaying Images in Python

4 random images in the dataset

A human can classify these easily

```
def plt_digit(x):
   nrow = 28
   ncol = 28
   xsq = x.reshape((nrow,ncol))
   plt.imshow(xsq, cmap='Greys_r') ◀
                                                 Key command
   plt.xticks([])
   plt.yticks([])
# Convert data to a matrix
X = mnist.data
y = mnist.target
# Select random digits
                                                 Sample
nplt = 4
nsamp = X.shape[0]
                                                 permutation is
Iperm = np.random.permutation(nsamp)
                                                 necessary for this
# Plot the images using the subplot command
                                                 dataset, as the
for i in range(nplt):
   ind = Iperm[i]
                                                 original data is
   plt.subplot(1,nplt,i+1)
                                                 ordered by digits
    plt digit(X[ind,:])
```


Try a Logistic Classifier

```
ntr1 = 5000
Xtr1 = Xtr[Iperm[:ntr1],:]
ytr1 = ytr[Iperm[:ntr1]]
```

- ☐ Train on 5000 samples
 - To reduce training time.
 - In practice want to train with ~40k
- ☐ Select correct solver (lbfgs)
 - Others can be very slow. Even this will take minutes

Performance

- □Accuracy = 89%. Very bad
- ☐ Some of the errors seem like they should have been easy to spot
- ■What went wrong?

```
nts1 = 5000
Iperm_ts = np.random.permutation(nts)
Xts1 = Xts[Iperm_ts[:nts1],:]
yts1 = yts[Iperm_ts[:nts1]]
yhat = logreg.predict(Xts1)
acc = np.mean(yhat == yts1)
print('Accuaracy = {0:f}'.format(acc))
```

Accuaracy = 0.891000

Recap: Logistic Classifier

- $\square \text{Will select } \hat{y} = \arg \max_{k} P(y = k | x) = \arg \max_{k} z_{k}$
 - \circ Output z_k which is largest
- \square When is z_k large?

Interpreting the Logistic Classifier Weights

- \square Suppose $\mathbf{z} = \mathbf{W}\mathbf{x}$. Then: $z_k = \mathbf{w}_k^T \mathbf{x}$
 - \circ w_k is 784-dim row of W
- \square When is z_k large?
- \square Theorem (proof on board): If u is any vector, then

$$\arg\max_{\|x\|=1} u^T x = \frac{u}{\|u\|}$$

- \square Conclusion: For a given ||x||, $z_k = w_k^T x$ is maximized when $x = \alpha w_k$
 - \circ Output of class k will be large when x is aligned with w_k
 - Called the "matched filter" in signal processing

Visualizing the Weights

- ☐ Each class weight can be viewed as an image.
- \square Class weight output z_k will be large when it is aligned with w_k

Optimized weights for logistic classifier

Why are they blurry?

Problems with Logistic Classifier

- ☐ Linear weighting cannot capture many deformities in image
 - Rotations
 - Translations
 - Variations in relative size of digit components
- ☐ Can be improved with preprocessing
 - E.g. deskewing, contrast normalization, many methods
- □ Is there a better classifier?

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- Maximum margin classifiers
- ■Support vector machines
- ☐ Constrained optimization
- ☐ Kernel trick

Linear Separability and Non-Uniqueness of Separating plane

- ☐ When the samples are linearly separable, one can find a separating hyper-plane as a linear classifier.
- ☐ Separating hyper-plane is not unique
- ☐ Fig. on right: Many separating planes
- ☐Which one is optimal?

Hyperplane Basics

□ A hyperplane in d-dimensional space is defined by

$$b + w_1 x_1 + \cdots w_d x_d = 0$$
 or $b + \mathbf{w}^T \mathbf{x} = 0$

- ☐ The parameters are unique only to a scaling factor:
 - \circ (b, w) and $(\alpha b, \alpha w)$ define the same plane.
 - For unique definition, we can require ||w||=1.
- □ The norm vector to the hyperplane is $w/\|w\|$.
- \square Distance of any point **x** to the hyperplane is $f(x)/\|\mathbf{w}\|$, where $f(x) = b + \mathbf{w}^T x$.
- ■See ESL Sec. 4.5.
- □ESL: Hastie, Tibshirani, Friedman, "The Elements of Statistical Learning". 2nd Ed. Springer.

Recap: Linear Separability and Margin

- \square Given training data (x_i, y_i) , i = 1, ..., N
- \square Binary class label: $y_i = \pm 1$
- \square Perfectly linearly separable if there exists a $\theta = (b, w_1, ..., w_d)$ and $\gamma > 0$ s.t.:

$$m = \frac{\gamma}{\|\mathbf{w}\|}$$

- $b + w_1 x_{i1} + \cdots w_d x_{id} > \gamma$ when $y_i = 1$
- $b + w_1 x_{i1} + \cdots w_d x_{id} < -\gamma$ when $y_i = -1$
- $\square(w,b)$ defines the separating hyperplane
- \blacksquare m is the margin: the minimal distance of a sample to the plane
- ☐ Single equation form:

$$y_i(b + w_1x_{i1} + \cdots w_dx_{id}) > \gamma$$
 for all $i = 1, \dots, N$

Recall that the distance of a point x to the line is $(b + w^T x)/||w||$. For points on the margin line, $b + w^T x = \gamma$, distance m= $\gamma/||w||$.

Which separating plane is better?

From Fig. 9.2 and Fig. 9.3 in ISL.

Maximum Margin Classifier

- ☐ For the classifier to be more robust to noise, we want to maximize the margin!
- □ Define maximum margin classifier

$$\max_{w,\gamma} \gamma$$
• Such that $y_i(b + \mathbf{w}^T \mathbf{x}) \ge \gamma$ for all i
•
$$\sum_{i=1}^d w_i^2 \le 1$$

Maximizes the margin

Ensures all points are correctly classified

Scaling on weights

- ☐ Called a constrained optimization
 - Objective function and constraints
 - More on this later.
- ■See closed form solution in Sec. 4.5.2 in ESL. Note notation difference.

Visualizing Maximum Margin Classifier

- ☐ Fig. 9.3 of ISL
- ☐ Margin determined by closest points to the line
 - The maximal margin hyperplane represents the midline of the widest "slab" that we can insert between two classes
- ☐ In this figure, there are 3 points at the margin

ISL: James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer. 2013.

Problems with MM classifier

- □ Data is often not perfectly separable
 - Only want to correctly separate most points

- ☐ MM classifier is not robust
 - A single sample can radically change line

Fig. 9.4

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- ☐ Maximum margin classifiers
- Support vector machines
- ☐ Constrained optimization
- ☐ Kernel trick

Support Vector Machine

- ■Support Vector Machine (SVM)
 - Vladimir Vapnik, 1963
 - But became widely-used with kernel trick, 1993
 - More on this later
- ☐Got best results on character recognition
- ☐ Key idea: Allow "slack" in the classification
 - Support vector classifier (SVC): Directly use raw features.
 Good when the original feature space is roughly linearly separable
 - Support vector machine (SVM): Map the raw features to some other domain through a kernel function

Hinge Loss

- \Box Fix $\gamma = 1$
- □ Want ideally: $y_i(\mathbf{w}^T \mathbf{x} + b) \ge 1$ for all samples i
 - Equivalently, $y_i z_i \ge 1$, $z_i = b + \mathbf{w}^T \mathbf{x}$
- ☐ But, perfect separation may not be possible
- □ Define hinge loss or soft margin:
 - $L_i(\mathbf{w}, b) = \max(0, 1 y_i z_i)$
- ☐ Starts to increase as sample is misclassified:
 - $y_i z_i \ge 1 \Rightarrow \text{Sample meets margin target}, \ L_i(w) = 0$
 - ∘ $y_i z_i \in [0,1)$ ⇒ Sample margin too small, small loss
 - $y_i z_i \leq 0 \Rightarrow$ Sample misclassified, large loss

SVM Optimization

- \square Given data (x_i, y_i)

$$J(\mathbf{w}, b) = C \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)) + \frac{1}{2} ||\mathbf{w}||^2$$

Hinge loss term

Attempts to reduce

Misclassifications

C controls final margin

margin=1/||w||

- \square Constant C > 0 will be discussed below
- Note: ISL book uses different naming conventions.
 - We have followed convention in sklearn

Alternate Form of SVM Optimization

☐ Equivalent optimization:

$$\min J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}), \qquad J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}) = C \sum_{i=1}^N \epsilon_i + \frac{1}{2} \|\boldsymbol{w}\|^2$$

■ Subject to constraints:

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \epsilon_i$$
 for all $i = 1, ..., N$

- ϵ_i = amount sample i misses margin target
- \square Sometimes write as $J_1(w, b, \epsilon) = C \|\epsilon\|_1 + \frac{1}{2} \|w\|^2$
 - $\| \epsilon \|_1 = \sum_{i=1}^N \epsilon_i \,$ called the "one-norm"
 - Generally one-norm would have absolute sign over ϵ_i . But in this case, when the constraint is met, ϵ_i >=0.

Interpreting Parameters

- \square Margin is 1/||w||
- \square Parameter ϵ_i called the slack variable
 - $\epsilon_i = 0 \Rightarrow$ Sample on correct side of margin
 - $0 \le \epsilon_i < 1 \Rightarrow$ Sample violates the margin (are inside the margin)
 - \circ $\epsilon_i \ge 1 \Rightarrow$ Sample misclassified (wrong side of hyperplane)
- \square Parameter C:
 - Balance between first term (violations) and second term (inverse of margin)
 - C large: Forces minimum number of violations, but small margin.
 - Highly fit to data. Low bias, higher variance
 - C small: Enables more samples violations, but large margin.
 - Higher bias, lower variance
 - Found by cross-validation

Support Vectors

- □ Support vectors: Samples that either:
 - Are exactly on margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$
 - Or, on wrong side of margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \leq 1$
- ☐ Changing samples that are not SVs
 - Does not change solution
 - Provides robustness

Illustrating Effect of C

- ☐ Fig. 9.7 of ISL
 - Note: *C* has opposite meaning in ISL than python
 - Here, we use python meaning
- \square Low C:
 - Leads to large margin
 - But allow many violations of margin.
 - Many more SVs
 - Reduces variance by using more samples
- ☐ Large C:
 - Leads to small margin
 - Reduce number of violations, and fewer SVs.
 - Highly fit to data. Low bias, higher variance
 - More chance to overfit

Relation to Logistic Regression

□ Logistic regression also minimizes a loss function:

$$J(\mathbf{w}, b) = \sum_{i=1}^{N} L_i(\mathbf{w}, b), \qquad L_i(\mathbf{w}, b) = \ln P(y_i | \mathbf{x}_i) = -\ln(1 + e^{-y_i z_i})$$

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- ☐ Maximum margin classifiers
- ■Support vector machines
- Constrained optimization
- ☐ Kernel trick

Constrained Optimization

- ☐ In many problems, variables are constrained
- □ Constrained optimization formulation:
 - Objective: Minimize f(w)
 - Constraints: $g_1(\mathbf{w}) \le 0, ..., g_M(\mathbf{w}) \le 0$
- ■Examples:
 - Minimize the mpg of a car subject to a cost or meeting some performance
 - In ML: weight vector may have constraints from physical knowledge
- \square Often write constraints in vector form: Write $g(\mathbf{w}) \leq 0$

$$g(\mathbf{w}) = [g_1(\mathbf{w}), \dots, g_m(\mathbf{w})]^T$$

Lagrangian

- \square Constrained optimization: Min f(w) s.t. $g(w) \leq 0$
- \square Consider first a single constraint: g(w) is a scalar
- □ Define Lagrangian: $L(\mathbf{w}, \lambda) = f(\mathbf{w}) + \lambda g(\mathbf{w})$
 - w is called the primal variable
 - λ is called the dual variable
- \square Dual minimization: Given a dual parameter λ , minimize

$$\widehat{\boldsymbol{w}}(\lambda) = \arg\min_{\boldsymbol{w}} L(\boldsymbol{w}, \lambda), \qquad L^*(\lambda) = \min_{\boldsymbol{w}} L(\boldsymbol{w}, \lambda)$$

- Minimizes a weighted combination of objective and constraint.
- Higher $\lambda \Rightarrow$ Weight constraint more (try to make $g(\mathbf{w})$ smaller)
- Lower $\lambda \Rightarrow$ Weight objective more (try to make f(w) smaller)

KKT Conditions

- \square Given objective f(w) and constraint g(w)
- \square KKT Conditions: $\widehat{\boldsymbol{w}}$, $\widehat{\lambda}$ satisfy:
 - \hat{w} minimizes the Lagrangian: $\hat{w} = \arg\min_{w} L(w, \hat{\lambda})$
 - Either
 - $g(\widehat{\boldsymbol{w}}) = 0$ and $\widehat{\lambda} \geq 0$ [active constraint]
 - $g(\widehat{\boldsymbol{w}}) < 0$ and $\widehat{\lambda} = 0$ [inactive constraint]
- ☐ Theorem: Under some technical conditions,
 - \circ if $\hat{\boldsymbol{w}}$, $\hat{\lambda}$ are local mimima of the constrained optimization, they must satisfy KKT conditions

General Procedure for Single Constraint

■Suppose:

- $\mathbf{w} = (w_1, ..., w_d)^T$: d unknown primal variables
- $g(\mathbf{w}) \leq 0$: scalar constraint
- □ Case 1: Assume constraint is active:
 - Solve w and λ : $\partial L(w,\lambda)/\partial w_i=0$ and g(w)=0 (resulting from setting $\partial L(w,\lambda)/\partial \lambda=0$)
 - $\circ d + 1$ unknowns and d + 1 equations
 - Verify that $\lambda \geq 0$
- □ Case 2: Assume constraint is inactive
 - Solve primal objective $\partial f(\mathbf{w})/\partial w_i = 0$ ignoring constraint
 - $\circ d$ unknowns and d equations
 - Verify that constraint is satisfied: $g(\mathbf{w}) \leq 0$

KKT Conditions Illustrated

☐ Example 1: Constraint is "active"

$$\min_{w} w^2 \quad s.t. \ w + 1 \le 0$$

☐ Example 2: Constraint is "inactive"

$$\min_{w} w^2 \quad s.t. \ w - 1 \le 0$$

☐ Examples worked on board with illustration

Multiple Constraints

- □ Now consider constraint: $g(\mathbf{w}) = [g_1(\mathbf{w}), ..., g_M(\mathbf{w})]^T \le 0$.
- ☐ Lagrangian is:

$$L(\mathbf{w}, \lambda) = f(\mathbf{w}) + \lambda^T g(\mathbf{w}) = f(\mathbf{w}) + \sum_{m=1}^{M} \lambda_m g_m(\mathbf{w})$$

- Weighted sum of all *M* constraints
- \circ λ is called the dual vector
- □KKT conditions extend to:
 - \widehat{w} minimizes the Lagrangian: $\widehat{w} = \arg\min_{w} L(w, \widehat{\lambda})$
 - \circ For each $m=1,\ldots,M$
 - $g_m(\widehat{\boldsymbol{w}}) = 0$ and $\hat{\lambda}_m \geq 0$ [active constraint]
 - $g_m(\widehat{\boldsymbol{w}}) < 0$ and $\hat{\lambda}_m = 0$ [inactive constraint]

SVM Constrained Optimization

☐ Recall: SVM constrained optimization

$$\min J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}), \qquad J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}) = C \sum_{i=1}^N \epsilon_i + \frac{1}{2} \|\boldsymbol{w}\|^2$$

- ∘ Constraints: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 \epsilon_i$ and $\epsilon_i \ge 0$ for all i = 1, ..., N
- □ After applying KKT conditions and some algebra [beyond this class], solution is
 - \circ Optimal weight vector: $m{w} = \sum_{i=1}^N lpha_i y_i m{x}_i$ linear combination of instances
 - \circ Dual parameters $lpha_i$ minimize

$$\sum_{i=1}^{N} \alpha_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \quad \text{s. t. } 0 \le \alpha_i \le C$$

Support Vectors

- \square Classifier weight is: $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$
- \square Can show that $\alpha_i > 0$ only when x_i is a support vector
 - On boundary or violating constraint
 - \circ Otherwise $\alpha_i = 0$

Correlation Interpretation of SVM

☐ Classifier weight is:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

- \square Now suppose we are given a new sample x to classify
- \square Classifier discriminant function for any test sample x is:

$$\circ \hat{z}(x) = \mathbf{w}^T x + b = \sum \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b$$

- ☐ Classifier output
 - $\circ \hat{y}(x) = \operatorname{sign}(\hat{z}(x))$
 - \circ Measure "correlation" $oldsymbol{x}_i^Toldsymbol{x}$ of new sample $oldsymbol{x}$ with each support vector $oldsymbol{x}_i$ in training data
 - Predicted label depends on the weighted average of labels for the support vectors, with weights proportional to the correlation of the test sample with the support vector.

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- ☐ Maximum margin classifiers
- ■Support vector machines
- ☐ Constrained optimization
- Kernel trick

Transform Problem

- \square Transform problem: replace x with $\phi(x)$
 - Enables more rich, non-linear classifiers
 - Examples: polynomial classification $\phi(x) = [1, x, x^2, ..., x^{d-1}]$
- ☐ Tries to find separation in a feature space

The SVM algorithm

From https://www.dtreg.com/solution/view/20

Transform Problem

□SVM problem in transformed domain:

$$J(\mathbf{w}, b) = C \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \phi(\mathbf{x}_i) + b)) + \frac{1}{2} ||\mathbf{w}||^2$$

■ Solution is of the form:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \phi(\mathbf{x}_i)$$

□ Classifier discriminant function:

$$z = b + \mathbf{w}^T \mathbf{x} = b + \sum_{i=1}^{N} \alpha_i y_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x})$$

$$K(x_i, x) = \text{"kernel"}$$

Kernel Trick

□Classifier is:

$$z = b + \mathbf{w}^T \mathbf{x} = b + \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}), \quad K(\mathbf{x}_i, \mathbf{x}) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x})$$

$$\hat{y} = \operatorname{sign}(z) = \begin{cases} 1 & \text{if } z > 0 \\ -1 & \text{if } z < 0 \end{cases}$$

- \square Do not need to explicitly compute $\phi(x)$
- \square Can directly compute kernel $K(x_i, x)$
 - Provided kernel corresponds to some $\phi(x)$

Understanding the Kernel

- \square Kernel function $K(x_i, x)$:
 - \circ measures "similarity" between new sample x and training data x_i
 - $K(x_i, x)$ large $\Rightarrow x_i, x$ close
 - $K(x_i, x) \approx 0 \Rightarrow x_i, x \text{ far}$
- $\Box \text{Linear discriminant } z = b + \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x})$
 - \circ Weighs sample x_i that are close to x

Possible Kernels

☐ Radial basis function:

$$K(x, x') = \exp[-\gamma ||x - x'||^2]$$

- \circ 1/ γ indicates width of kernel
- □ Polynomial kernel: $K(x, x') = |x^T x|^d$
 - Typically d=2

Parameter Selection

- □ Consider SVM with:
 - \circ Parameter C > 0, RBF with $\gamma > 0$
- \square Higher C or γ
 - Fewer SVs
 - Classifiers averages over smaller set
 - Lower bias, but higher variance
- ☐ Typically select via cross-validation
 - Try out different (C, γ)
 - Find which one provides highest accuracy on test set
- ☐ Python can automatically do grid search

http://peekaboo-vision.blogspot.com/2010/09/mnist-for-ever.html

Multi-Class SVMs

- \square Suppose there are K classes
- One-vs-one:
 - Train $\binom{K}{2}$ SVMs for each pair of classes
 - Test sample assigned to class that wins "majority of votes"
 - Best results but very slow
- □One-vs-rest:
 - \circ Train K SVMs: train each class k against all other classes
 - \circ Pick class with highest z_k
- ☐ Sklearn has both options

MNIST Results

- ☐ Run classifier
- □ Very slow
 - Several minutes for 40,000 samples
 - Slow in training and test
 - Major drawback of SVM
- \square Accuracy ≈ 0.984
 - Much better than logistic regression
- ☐ Can get better with:
 - pre-processing
 - More training data
 - Optimal parameter selection

```
from sklearn import svm
# Create a classifier: a support vector classifier
svc = svm.SVC(probability=False, kernel="rbf", C=2.8, gamma=.0073,verbose=10)
svc.fit(Xtr,ytr)
[LibSVM]
SVC(C=2.8, cache size=200, class weight=None, coef0=0.0,
  decision function shape=None, degree=3, gamma=0.0073, kernel='rbf',
  max iter=-1, probability=False, random state=None, shrinking=True,
  tol=0.001, verbose=10)
yhat1 = svc.predict(Xts)
acc = np.mean(yhat1 == yts)
print('Accuaracy = {0:f}'.format(acc))
```

Accuaracy = 0.984000

MNIST Errors

■Some of the error are hard even for a human

What you should know

- □ Interpret weights in linear classification of images (logistic regression): Match filters
- ☐ Understand the margin in linear classification and maximum margin classifier
- □SVM classifier: Allow violation of margin by introducing slack variables (More robust than linear classifier)
- ☐ Solve constrained optimization using the Lagrangian.
 - Understand KKT conditions for a single constraint
- □ Extend to nonlinear classifier by feature transformation: SVM with nonlinear kernels
- Select SVM parameters from cross-validation

