Кафедра ИУ-4

«Проектирование и технология производства ЭС»

Журнал практических работ

по курсу: «Физические основы микроэлектроники»

Для студентов приборостроительных специальностей					
	20 / учебный год				
Студент	Группа				
(фамилия,	и. о.)				
Преподаватель	Допуск к экзамену (зачету) Подпись				
(фамилия, и. о.)	(число)				

Москва

2023

Программа

к учебному плану направления подготовки 551100 (654300)

ПРОЕКТИРОВАНИЕ И ТЕХНОЛОГИЯ ЭЛЕКТРОННЫХ СРЕДСТВ,

специальностям

220500 Проектирование и технология электронно-вычислительных средств и 200800 Проектирование и технология радиоэлектронных средств.

$N_{\underline{0}}$	Виды учебных работ	Объем работ в часах			
		Всего	6 сем.		
	На дисциплину	144	144		
1	Аудиторная работа	85	85		
1.1	- лекции	51	51		
1.2	- семинары	17	17		
1.3	- лабораторные занятия	17	17		
1.4	Самостоятельная работа:	59	59		
	Домашние задания:	-	-		
	Курсовая работа	-	-		
	Самостоятельное изучение раздела				
1.5	Виды отчетности по дисциплине				
	Контрольная работа				
	Рубежный контроль				
			PK3 (15)		
	Зачеты	-	-		
	Экзамены		экзамен		

Отчет по практической работе № 8

«Определение типа кремниевого полупроводника и расчет его некоторых параметров с использованием MATLAB на основании данных, полученных с использованием эффекта Холла»

дата		анием эффекта Холла»	
диги	Оценка	Бонус за	подпись
		сложность	
Цели работы:			
цели рассты.			
Задачи работы:			
зиди пт рисстан.			
_			
		<u> ус за сложность – 2 бал</u>	
Написание теор	етической части (рефе	рата) по квантовому эфф	екту Холла (по согласован
преподавателем)	или реализация ниже	изложенной методики ра	<u>ксчета в среде MATLAB.</u>
•	*	*	-
Unazveri variane	WE TOODSTUUD WAS	сти (ответы на контролы	ula paupaali)
краткии конспе	ект теоретической час	сти (ответы на контрольн	161C BUILDOCH 7
		1	
[
I			
l			
1,			
l			
2			
2			
2			
2			
2			
2			
3			
3			
3			
1			

5		
•		
•		
0.		
•		
'абп	1. Ознакомление с необходимыми исходными данными:	
	периментах по изучению эффекта Холла, проведенных с образцами кр	емния
	ены следующие данные:	CWITIPIN,
031y 1	опы олодующие данные.	
No	Параметр	Значение
1	Длина образца полупроводника, см, смотри в Прил.1	Эна тение
2	Ширина образца полупроводника, см, смотри в Прил.1	+
3	Толщина образца полупроводника, см, смотри в Прил.1	
4	Ток, мА, смотри в Прил.1	
5	Магнитная индукция, Тл, смотри в Прил.1	
6	Напряжение, приложенное к полупроводнику, В, смотри в Прил.1	
7	Напряжение Холла, мВ, смотри в Прил.1	
8	Температура, град К	300
9	Коэффициент Холла для кремния	1.18

тапы расче	тов и предста	івления резу.	льтатов		

- 1. Номер варианта задания соответствует порядковому номеру ФИО студента в списке группы. Свой вариант задания следует выбрать из приложения №1 к данному журналу и вписать ручкой данные в таблицу 1 "Ознакомление с необходимыми исходными данными" в колонку «Значение».
- 2. Затем, согласно руководству пользователя запустите программную среду MATLAB, запустите .m-файл, полученный у преподавателя.
 - 3. В полученный программный код вставить свои исходные данные согласно номеру вашего варианта (см приложение №1 к данному журналу) и запустить файл нажатием большой зеленой треугольной кнопки в верхней части меню (команда Run). Ниже приведены формулы для расчета, используемые в программном коде
 - 3.1. Расчет концентрации основных носителей $N_{\rm осн}$

$$N_{
m och} = \frac{IB}{qU_H d}$$

Где R_н – постоянная Холла

I — ток через образец

В – магнитная индукция

Q – заряд электрона

d – ширина образца

 $U_{\rm H}$ - напряжение Холла

3.2. Расчет Холловской подвижности носителей

$$\mu_H = \frac{U_H L}{a U B}$$

 Γ де L – длина образца

a — толщина образца

U - напряжение, приложенное к полупроводнику (в направлении тока)

3.3. Расчет подвижности, связанной с протеканием основного тока

$$\mu_{\text{och}} = \frac{\mu_H}{R_H}$$

3.4. Расчет коэффициента диффузии

$$D = \frac{kT\mu_H}{q}$$

Где k — постоянная Больцмана T — температура

- 4. В окне Command Window можно посмотреть результаты расчета с комментариями.
- 5. Результаты расчета записать в таблицу:

Таб.2 Результаты расчета

Название столбцов	Тип полупрово дника, из которого выполнен образец (р- тип или п- тип)	Концентра ция основных носителей, см ⁻³	Холловская подвижность носителей, см ² · В ⁻¹ · с ⁻¹	Подвижность, связанная с протеканием основного тока, см²· В ⁻¹ · с ⁻¹	Коэффици ент диффузии, см ² · c-1
Параметр					

6. Обратите внимание на соблюдение необходимых размерностей вводимых параметров и результатов расчета

7. Нарисовать рисунок с образцом кремния в виде параллелепипеда и обозначить все размеры, напряжения (с указанием знаков + и -), тип полупроводника и направление магнитного поля.

Место для изображения рисунка

8. Построить при помощи Matlab график зависимости напряжения Холла на образце от величины магнитной индукции по нижеприведенной формуле для B в диапазоне от 0 до 3 Тл. Остальные параметры взять согласно варианту и расчетным значениям.

$$U_H = \frac{IB}{qN_{\text{och}}d}$$

Лист с распечаткой графика вклеить в настоящий отчет. Проанализировав полученный график, написать в п.10, после основных выводов причину очень широкого применения в технике эффекта Холла.

Место для вклеивания графика

Место для вклеивания листинга

Фрагмент листинга программного кода (вклеить полный код со своими исходными данными)

```
%Расчет некоторых параметров полупроводника в эксперименте с эффектом Холла
%Расчет концентрации основных носителей, см-3
R_h=1.18 % коэффициент Холла
I=5*1e-3 % A, Toĸ
В=1 % Тл, магнитная индукция
q=1.6e-19 % Кл, заряд электрона
U_h=2*1e-3 % В, напряжение Холла
d=0.1*1e-2 % M, ширина образца
N_osnovn=(R_h*I*B)/(q*U_h*d)
N_osnovn_sm=N_osnovn*1e-6
fprintf(1, 'Концентрация основных нос
                                     ителей, M-3 = g\r\n' , N_osnovn)
fprintf(1, 'Концентрация основны посителей, см-3 = %g\r\n', N_osnovn_sm)
%Расчет Холловской подвижности носителей, см2*В-1*с-1
L=1*1e-2 % M, длина образца в мурах
а=0.2*1e-2 % М, толщина образца в метрах
В=1 %Тл, магнитная индукция
U=0.245 % В, напряжение, приложенное к образцу
Mu_h=(U_h*L)/(a*U*B)
Mu_h_sm=Mu_h*1e4
fprintf(1, 'Холловская подвижн
                              сть носителей, cm2*B-1*c-1 = g\r\n'
,Mu_h_sm)
%Расчет подвижности, связанной с протеканием основного тока
```

10. Сформулируйте выводы по работе

Контрольные вопросы

- 1. Что такое эффект Холла?
- 2. Что такое Холл-фактор или коэффициент Холла?
- 3. Что называется холловской подвижностью носителей?
- 4. Что такое постоянная Холла?
- 5. От чего зависит постоянная Холла?
- 6. Каким образом эффект Холла позволяет установить тип полупроводника?
- 7. Может ли эффект Холла помочь определить степень загрязнения полупроводника неконтролируемыми примесями? Если да, то каким образом?
- 8.Зависит ли постоянная Холла от температуры?
- 9. Какой знак (положительный или отрицательный) имеет постоянная Холла для полупроводника р-типа?
- 10. Какой знак (положительный или отрицательный) имеет постоянная Холла для полупроводника n-типа?

СПИСОК ЛИТЕРАТУРЫ

- 1. Андреев В.В., Столяров А.А. Физические основы наноинженерии. М.: Изд-во МГТУ им.Н.Э.Баумана. 2011.
- 2. Гуртов В.А. Твердотельная электроника.-М.: Техносфера. 2005.
- 3. Драгунов В.П., Неизвестный И.Г., Гридчин В.А. Основы наноэлектроники.- Новосибирск: Изд-во НГТУ, 2000.
- 4. Шик А.Я., Бакуева Л.Г., Мусихин С.Ф., Рыков С.А. Физика низкоразмерных систем, СПб, Наука, 2001.
 - 5. Пасынков В.В., Сорокин В.С. Материалы электронной техники, СПб, 2003.
 - 6. Степаненко И.П. Основы микроэлектроники: учебное пособие для вузов. 2-е изд. М.: Лаборатория базовых знаний, 2001.
- 7. Старосельский В.И. Физика полупроводниковых приборов микроэлектроники: учебное пособие. М.: Юрайт, 2011.
 - 8. Зиненко, В.И. Основы физики твердого тела [Текст]: учеб. пособие для вузов / В.И. Зиненко, Б.И. Сорокин, Р.И. Турчин. М.: Издательство физикоматематическойлитературы, 2001. 336с.
- 9. Электронные, квантовые приборы и микроэлектроника: Учебное пособие для вузов / Под ред. Н.Д. Федорова. М.: Радио и связь, 2002.
 - 10. Зегря Г.Г., Перель В.И. Основы физики полупроводников. М.: Физматлит, 2009. Н.А. Афанасьева, Л.П. Булат. Физические основы электроники. Учебное пособие. СПб.: СПБ ГУНиПТ, 2010. -181c.
 - 11. Андреев В.В., Балмашнов А.А., Корольков В.И., Лоза О.Т., Милантьев В.П. Физическая электроника и ее современные приложения. Учеб. пособие. М.: РУДН, 2008. 383 с.
 - 12. Шалимова К. В. Физика полупроводников. М.: Энергоатомиздат, 1985 392 с.
 - 13. Зеегер К. Физика полупроводников. М.: Мир, 1977 615 с.
 - 14. Кучис Е. В. Гальваномагнитные эффекты и методы их исследования. -
 - .: Радио и связь, 1990 264 с.
 - 15. Бонч-Бруевич В. Ш., Калашников С. Г. Физика полупроводников. М.: Наука, 1990 678 с.

Варианты номеров для выполнения задания

Номер варианта соответствует порядковому номеру ФИО студента в списке группы.

Номер	Длина	Ширина	Толщина	Ток, <i>I</i>	Магнитная	Напряжение,	Напряже
варианта	образца	образца	образца	мА	индукция,	приложенно	ние
	полупро	полупро	полупров		В Тл	ек	Холла,
	водника	водника,	одника, а			полупроводн	мВ
	L, cm	d см	СМ			ику(в	(положитель ное или
						направлении	отрицательн
						тока), <i>U</i> В	oe), U _H
1	0,8	0,18	0,08	4,0	0,8	0,15	1,8
2	0,9	0,19	0,09	4,5	0,9	0,2	-1,9
3	1,1	0,21	0,11	5,5	1,1	0,275	-2,1
4	1,2	0,22	0,12	6,0	1,2	0,30	2,2
5	1,3	0,23	0,13	6,5	1,3	0,325	-2,3
6	1,4	0,24	0,14	7,0	1,4	0,345	2,4
7	1,5	0,25	0,15	7,5	1,5	0,375	-2,5
8	1,6	0,26	0,16	8,0	1,6	0,40	2,6
9	1,7	0,27	0,17	8,5	1,7	0,425	-2,7
10	1,8	0,28	0,18	9,0	1,8	0,445	2,8
11	1,9	0,29	0,19	9,5	1,9	0,475	-2,9
12	2,0	0,30	0,20	10,0	2,0	0,50	3,0
13	2,1	0,31	0,21	10,5	2,1	0,525	-3,1
14	2,2	0,32	0,22	11,0	2,2	0,545	3,2
15	2,3	0,33	0,23	11,5	2,3	0,575	3,3
16	2,4	0,34	0,24	12,0	2,4	0,60	-3,4
17	2,5	0,35	0,25	12,5	2,5	0,625	3,5
18	2,6	0,36	0,26	13,0	2,6	0,645	-3,6
19	2,7	0,37	0,27	13,5	2,7	0,675	3,7
20	2,8	0,38	0,28	14,0	2,8	0,70	-3,8
21	2,9	0,39	0,29	14,5	2,9	0,725	3,9
22	3,0	0,40	0,30	15,0	3,0	0,745	-4,0
23	3.1	0,41	0,31	15,5	3.1	0,775	4,1
24	3,2	0,42	0,32	16,0	3,2	0,80	4,2
25	1,0	0,2	0,1	5,0	1,0	0,245	2,0

```
%Расчет некоторых параметров полупроводника в эксперименте с эффектом Холла
%Расчет концентрации основных носителей, см-3
R h=1.18 % коэффициент Холла
I=5*1e-3 % A, Ток
В=1 % Тл, магнитная индукция
q=1.6e-19 % Кл, заряд электрона
U h=2*1e-3 % В, напряжение Холла
d=0.1*1e-2 % M, ширина образца
%Расчет концентрации основных носителе N osnovn sm, см-3
N_{osnovn}=(I*B)/(q*U_h*d)
N osnovn sm=N osnovn*1e-6
fprintf(1, 'Концентрация основных носителей, м-3 = % g\r\n', N_osnovn)
fprintf(1, 'Kонцентрация основных носителей, см-3 = \%g\r\n', N osnovn sm)
%
%Расчет Холловской подвижности носителей,см2*В-1*с-1
L=1*1e-2 % M, длина образца в метрах
а=0.2*1е-2 % М,ширина образца в метрах
В=1 %Тл, магнитная индукция
U=0.245 % В, напряжение, приложенное к образцу
Mu h=(abs(U h)*L)/(a*U*B)
Mu_h_sm=Mu_h*1e4
fprintf(1,'Xолловская подвижность носителей, cm2*B-1*c-1 = %g\r\n',Mu\_h\_sm)
%Расчет подвижности, связанной с протеканием основного тока
Mu_h_osn=Mu_h_sm/R_h
fprintf(1, 'Подвижность, связанная с протеканием основного тока, см2*B-1*c-1 = % g\r\n'
,Mu_h_osn)
%Расчет коэффициента диффузии
k=1.38*1e-23 % Дж/К
T = 300
D=k*T*Mu h sm/q
fprintf(1,'Kоэффициент диффузии, cm2*c-1 = %g\r\n',D)
% Рисуем график зависимости напряжения Холла U holl на образце от величины
% магнитной индукции по нижеприведенной формуле для В
%в диапазоне от 0 до 3 Тл
B=[1:0.1:3]
% Сначала вычисляем значения Холла U holl
U holl=I*B/(q*N osnovn*d)*1000 % умножаем на 1000, чтобы перевести в милливольты
plot(B,U holl)
xlabel('Магнитная индукция, Тл');
ylabel('Напряжение Холла, мВ');
```