A Book of Abstract Algebra | (2nd Edition)

Chapter 30, Problem 3EB	Bookmark	Show all steps: ON	
Pro	oblem		
Prove each of the following:			
Every point in $\mathbb{Q} \times \mathbb{Q}$ is constructible from $\{O, A\}$	I). (Use Exercise A5 ar	nd the definition of (
Step-by-s	step solution		
Step			
Here, objective is to prove that every point in $\mathcal{Q} \times \mathcal{Q}$ is constructible from (\mathcal{O}, I) .			
Comment			
Step 2 of 4			
Constructible point:			
The point is either the end point of given unit so determined by previous constructible points is of the point of given unit so	-		

Step 3 of 4

 $Q \times Q$ is a set of all rational numbers

Let a,b are rational numbers. Then the point $(a,b) \in Q \times Q$

But as per the definition of D, (a,0) and (0,b) are constructible from (O,I)

Comment

Step 4 of 4

Consider the below figure

figure:construction of (a,b)

By using compass we can construct the point (0,b) along y-axis.

Construct perpendicular lines to the x-axis passing through (a,0).

Construct perp	endicular lines to the y-axis passing through $(0,b)$.		
Then the perpe	endicular lines intersect at the point (a,b) .		
So, (a,b) is constructible from (O,I) ,			
Therefore, Eve	ry point in $Q \times Q$ is constructible from (O, I) .		
Hence, proved			
Comment			

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development Investor Relations Jobs Join Our Affiliate Program Media Center Site Map

LEGAL & POLICIES

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code
Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Chegg Coupon Sell Textbooks Chegg Play Solutions Manual Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Flashcards Digital Access Codes Learn Chegg Money Chegg Math Solver

CHEGG NETWORK

EasyBib Custon
Internships.com Give U
Thinkful Help w
Help to
Manag
Subscr

CUSTOMER SERVICE

Customer Service
Give Us Feedback
Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy