Contents

Co	ontei	its		i				
1	Introduction							
	1.1	Security	y Amplification Theorems	1				
	1.2		verifiable puzzles	1				
	1.3		oution of the Thesis	1				
	1.4		zation of the Thesis	1				
2	\mathbf{Pre}	liminari	ies	3				
	2.1	Notatio	on and Definitions	3				
3	Weakly Verifiable Cryptographic Primitives							
	3.1	Dynam	ic Weakly Verifiable Puzzles	7				
	3.2	Exampl	les	8				
		3.2.1	Message Authentication Codes	8				
		3.2.2	Public Key Signature Scheme	9				
		3.2.3	Bit Commitments	10				
		3.2.4	Automated Turing Tests	11				
	3.3							
		3.3.1	Results of R.Canetti, S.Halevi, and M.Steiner	12				
		3.3.2	Results of Y.Dodis, R.Impagliazzo, R.Jaiswal, V.Kabanets	12				
		3.3.3	Results of T.Holenstein and G.Scheonebeck	12				
	3.4	Limitations of Security Amplification						
4	Sec	urity an	nplification for dynamic weakly verifiable puzzles	13				
	4.1	Main th	neorem	13				
		4.1.1	The k -wise direct product of weakly verifiable puzzle	13				
		4.1.2	Intuition	15				
		4.1.3	Domain partitioning	16				
		4.1.4	Amplification proof for partitioned domain	21				

Contents

4.2	4.1.5 Putting it together	
-	Dendix Basic Inequalities	35 35
Biblio	raphy 3	37

Chapter 1

Introduction

1.1 Security Amplification Theorems

Introduction to security amplification theorems and hardness implication statements. Example of classical results. Problems captured by weakly verifiable puzzles. Contribution of this thesis.

- 1.2 Weakly verifiable puzzles
- 1.3 Contribution of the Thesis
- 1.4 Organization of the Thesis

Overview of the content of the succeeding chapters.

Chapter 2

Preliminaries

In this section we set up notation and terminology used in the thesis.

2.1 Notation and Definitions

(Algorithms, Bitstrings and Circuits) We define a Boolean circuit as a directed acyclic graph with input vertices and vertices implementing logical functions *and*, *or*, and *not*. We denote Boolean circuits using capital letters from the Greek and English alphabet.

We define a probabilistic circuit as a Boolean circuit $C_{m,n}: \{0,1\}^m \times \{0,1\}^n \to \{0,1\}^*$, For input $x \in \{0,1\}^m$ we write to denote $C_{m,n}(x;r)$ where $r \in \{0,1\}^n$ is called auxiliary input. If a probabilistic circuit does not take input x, we slightly abuse notation and write $C_n(r)$. Similarly we use $\{C_n\}$ to denote a family of probabilist circuits that takes only auxiliary input. We make sure that it is clear from the context that probabilist circuits with only auxiliary input are not confused with circuits that do not take auxiliary input.

For a (probabilist) circuit C we write Size(C) to denote the total number of vertices of C.

We define a two phase circuit $C := (C_1, C_2)$ as a circuit where in the first phase a circuit C_1 is used and in the second phase a circuit C_2 . If C_1 and C_2 are probabilistic circuits we write $C(\delta) := (C_1, C_2)(\delta)$ to denote that in both phases C_1 and C_2 take as auxiliary input the same bitstring δ .

It is well known [AB09] that a probabilistic polynomial time algorithm can be represented as a circuit of polynomial size. Moreover, it can be computed in polynomial time and logarithmic space. Therefore, whenever we state a theorem about circuits we can also apply it to polynomial time algorithms.

We write $poly(\alpha_1, \ldots, \alpha_n)$ to denote a polynomial on variables $\alpha_1, \ldots, \alpha_n$. For an algorithm A we write Time(A) to denote the number of steps it takes to

execute A. We say that the algorithm A runs in polynomial time if number of steps required to evaluate A is bounded by poly(|x|), where |x| denotes the length of the input that A takes. Similarly, as for probabilistic circuits we write the randomness used by a probabilistic algorithm explicitly as a bitstring provided as an auxiliary input.

(Probabilities and distributions) For a finite set \mathcal{R} we write $r \stackrel{\$}{\leftarrow} \mathcal{R}$ to denote that r is chosen from \mathcal{R} uniformly at random. For $\delta \in \mathbb{R} : 0 \le \delta \le 1$ we write μ_{δ} to denote the Bernoulli distribution where outcome 1 occurs with probability δ and 0 with probability $1 - \delta$. Moreover, we use μ_{δ}^k to denote the probability distribution over k-tuples where each element of a k-tuple is drawn independently according to μ_{δ} . Finally, let $u \leftarrow \mu_{\delta}^k$ denote that a k-tuple u is chosen according to μ_{δ}^k .

Let $(\Omega, \mathcal{F}, \Pr)$ be a probability space and $n \in \mathbb{N}$. We say that an event $E_n \in \mathcal{F}$ happens almost surely or with high probability if $\Pr[E_n] \geq 1 - 2^{-n} \operatorname{poly}(n)$.

TODO: Non-negligible function and probability

TODO: Define a protocol?

TODO: Define a protocol running time of the protocol

(Interactive protocols) We are often interested in situations where two probabilistic algorithms interact with each other according to some protocol. We limit ourselves to the cases where algorithms interact by means of messages representable by bitstrings. A protocol execution between two probabilistic algorithms A and B is denoted by $\langle A, B \rangle$. The output of A in a protocol execution is denoted by $\langle A, B \rangle_A$ and of B by $\langle A, B \rangle_B$. A sequence of all messages sent by A and B in the protocol execution is called a communication transcript and is denoted by $\langle A, B \rangle_{trans}$.

(Oracle algorithms)

TODO: set up notation

Definition 2.1 (Polynomial time sampleable distribution) We say that a distribution is polynomial time sampleable if it can be approximated by polynomial time algorithm up to exponential factor.

Definition 2.2 (Pairwise independent family of efficient hash functions)

Let \mathcal{D} and \mathcal{R} be finite sets and \mathcal{H} be a family of functions mapping values from \mathcal{D} to values in \mathcal{R} . We say that \mathcal{H} is an efficient family of pairwise independent hash functions if \mathcal{H} has the following properties.

(Pairwise independent) For $\forall x \neq y \in \mathcal{D}$ and $\forall \alpha, \beta \in \mathcal{R}$, it holds

$$\Pr_{hash \, \leftarrow \, \mathcal{H}}[hash(x) = \alpha \mid hash(y) = \beta] = \frac{1}{|\mathcal{R}|}.$$

(Polynomial time sampleable) For every hash $\in \mathcal{H}$ the function hash is sampleable in time poly(log $|\mathcal{D}|$, log $|\mathcal{R}|$).

(Efficiently computable) For every hash $\in \mathcal{H}$ there exists an algorithm running in time $poly(\log |\mathcal{D}|, \log |\mathcal{R}|)$ which on input $x \in \mathcal{D}$ outputs $y \in \mathcal{R}$ such that y = hash(x).

We note that the pairwise independence property is equivalent to

$$\Pr_{hash \leftarrow \mathcal{H}}[hash(x) = \alpha \wedge hash(y) = \beta] = \frac{1}{|\mathcal{R}|^2}.$$

It is well know [CW77] that there exists a family of hash functions meeting the above criteria.

Chapter 3

Weakly Verifiable Cryptographic Primitives

In this chapter we introduce weakly verifiable puzzles. Section 3.1 contains a formal definition of dynamic weakly verifiable puzzles. In Section 3.2 we give a series of cryptographic primitives that are captured by dynamic weakly verifiable puzzles. Finally, in Section 3.3 we give an overview of the previous results in this area that is primarily covered in [CHS04], [DIJK09], and [HS10].

3.1 Dynamic Weakly Verifiable Puzzles

We start by giving the formal definition of dynamic weakly verifiable puzzles.

Definition 3.1 (Dynamic weakly verifiable puzzle.) A dynamic weakly verifiable puzzle (DWVP) is defined by a family of probabilistic circuits $\{P_n\}$. A circuit belonging to $\{P_n\}$ is called a problem poser. A solver $C := (C_1, C_2)$ for P_n is a probabilistic two phase circuit. We write $P_n(\pi)$ to denote the execution of P_n with the randomness fixed to $\pi \in \{0,1\}^n$, and $(C_1, C_2)(\rho)$ to denote the execution of both C_1 and C_2 with the randomness fixed to $\rho \in \{0,1\}^*$.

In the first phase, the problem poser $P_n(\pi)$ and the solver $C_1(\rho)$ interact. As the result of the interaction $P_n(\pi)$ outputs a verification circuit Γ_V and a hint circuit Γ_H . The circuit $C_1(\rho)$ produces no output. The circuit Γ_V takes as input $q \in Q$, an answer $y \in \{0,1\}^*$, and outputs a bit. We say that an answer (q,y) is a correct solution if and only if $\Gamma_V(q,y) = 1$. The circuit Γ_H on input $q \in Q$ outputs a hint such that $\Gamma_V(q,\Gamma_H(q)) = 1$.

In the second phase, C_2 takes as input $x := \langle P_n(\pi), C_1(\rho) \rangle_{trans}$, and has oracle access to Γ_V and Γ_H . The execution of C_2 with the input x and the randomness fixed to ρ is denoted by $C_2(x,\rho)$. The queries of C_2 to Γ_V and Γ_H are called

verification queries and hint queries respectively. The circuit C_2 succeeds if and only if it makes a verification query (q, y) such that $\Gamma_V(q, y) = 1$, and it has not previously asked for a hint query on q.

The above definition generalizes the previous approaches contained in [CHS04], [DIJK09], [HS10]. Some of cryptographic primitives that are dynamic weakly verifiable puzzles are described in Section 3.2.

There is no loss of generality in assuming that a problem poser and a problem solver are defined by probabilistic circuits. The definition embraces also a case where a problem poser and a problem solver are probabilistic polynomial time algorithms by using the well know fact [Hol13b] that probabilistic algorithms can be transform into equivalent family of Boolean circuits of polynomial size.

3.2 Examples

In this section we give examples of cryptographic constructions that are dynamic weakly verifiable puzzles.

3.2.1 Message Authentication Codes

We consider the setting in which two parties a *sender* and a *receiver* communicate over an insecure channel. The messages of the sender may be read and changed by a third party called an *adversary*. The receiver needs a way to ensure that received messages have been indeed sent by the sender and have not been modified by the adversary. The solution is to use message authentication codes.

We assume that all parties are polynomial time algorithms, and messages can be represented as bitstring. Additionally, we assume that the sender and the receive share a secrete key to which an adversary has no access. The sender appends to every message a tag that is as computed as a function of the key and the message. The receiver, using the key, has a way to check whether the tag is valid for the received message. If a tag is valid for the message we say that the receiver accepts the message. Otherwise, the receiver rejects. On the other hand, it should be computationally infeasible for the adversary to find a tag and a message that is accepted by the receiver with non-negligible probability.

We give the following more formal definition based on [Mau13] and [Gol04].

Definition 3.2 (Message Authentication Codes (MAC)) Let $\mathcal{M} \subseteq \{0,1\}^*$ be a set of messages, $\mathcal{K} \subseteq \{0,1\}^n$ a set of keys and $\mathcal{T} \subseteq \{0,1\}^*$ a set of tags where $n \in \mathbb{N}$ is a security parameter. We define the message authentication code as function $f: \mathcal{M} \times \mathcal{K} \to \mathcal{T}$. Furthermore, we say that the message authentication code is secure if it satisfies the following condition:

Let k be chosen uniformly at random from K and $\Gamma_H : \mathcal{M} \to \mathcal{T}$ be an oracle computing a tag for the key k and a message m. We say that MAC is secure if there is no probabilistic polynomial time algorithm with oracle access to Γ_H that with non-negligible probability outputs a message m', as well as corresponding tag t' such that f(m', k) = t' and Γ_H has not been queried for a tag of message m'.

We show how the above definition of MAC is captured by dynamic weakly verifiable puzzles. For fixed security parameter n the sender corresponds to a problem poser, the adversary to a problem solver, and the k key is a bitstring $\pi \in \{0,1\}^n$ taken as auxiliary input by a problem poser. In the first phase, which is non interactive, the problem poser outputs a hint circuit $\Gamma_H : \mathcal{M} \to \mathcal{T}$ that given a message computes a tag and a verification circuit $\Gamma_V : \mathcal{M} \times \mathcal{T} \to \{0,1\}$ that on input $m \in \mathcal{M}$ and $t \in \mathcal{T}$ outputs one if and only if f(m,k) = t.

In the second phase the adversary takes no input (x^*) is empty string) as the first phase was non-interactive and is given oracle access to Γ_H and Γ_V . The adversary succeeds in breaking the security of MAC if it finds a valid tag $t' \in \mathcal{T}$ for a message $m' \in \mathcal{M}$ such that a hint for this message has no been asked before. That corresponds to asking a successful verification query to Γ_V . Conversely, if there is no polynomial time algorithm that succeeds in solving this dynamic weakly verifiable puzzle with non-negligible probability then the message authentication code is secure.

Thus, a game in which an adversary has to break security of MAC is a non interactive dynamic weakly verifiable puzzle.

3.2.2 Public Key Signature Scheme

First we give a definition of public key encryption scheme and what it means for such a scheme to be secure. These definitions are based on [Gol04].

Definition 3.3 (Public key signature scheme) Let Q be the set of messages. A public key encryption scheme is defined by a triple of probabilistic polynomial time algorithms: G – the key generation algorithm, V – the verification algorithm, S – the signing algorithm such that the following conditions are satisfied:

- $G(1^n)$ outputs a pair of bitstrings k_{priv} and k_{pub} . We call k_{priv} a private key and k_{pub} a public key.
- For every k_{priv} , k_{pub} output by G and $q \in Q$ it holds

$$\Pr[V(k_{pub}, q, S(k_{priv}, q))] = 1.$$

We say that signature $s \in S$ is valid for $q \in Q$ if and only if $V(k_{pub}, q, s) = 1$.

Definition 3.4 (Security of public key signature scheme with respect to a chosen message attack) Let an adversary be a probabilistic polynomial time algorithm that takes as input k_{pub} and has oracle access S. We say that the adversary succeeds if it finds a signature $s \in S$ for a message $q \in Q$ such that $V(k_{pub}, q, s) = 1$ and the oracle S has not been asked for a signature of q. We say that the public key encryption scheme is secure if there is no adversary that succeeds with non negligible probability.

Let n be fixed security parameter. We show now that public key signature schemes defined as above are dynamic weakly verifiable puzzles. First the problem poser uses algorithm $G(1^n)$ to obtain k_{pub} and k_{priv} . Next, k_{pub} is sent to the adversary. The problem poser generates a hint circuit $\Gamma_H: \mathcal{Q} \to S$ and a verification circuit $\Gamma_V: \mathcal{Q} \times S \to \{0,1\}$. The hint circuit takes as input $q \in \mathcal{Q}$ and outputs a signature for q. The verification circuit checks whether signature $s \in S$ is valid for message $q \in \mathcal{Q}$. In the second phase the problem solver takes as input k_{pub} , and is given oracle access to Γ_V and Γ_H . It is clear that if the adversary asks a successful verification query (q, s) then it also breaks the security of a signature scheme.

Public key signature schemes are type of puzzles that are dynamic - the problem poser gain oracle access to hint and verification circuits, but are not interactive.

3.2.3 Bit Commitments

We base the following definition of Bit Commitment Protocols on [Hol13a].

Let us consider the following bit commitment protocol that involves two parties a sender and a receiver. We suppose that both the sender and the receiver are polynomial time algorithms. The protocol consists of two phases a commit phase and reveal phase. In the commit phase the sender and the receiver interact such that the sender commits to a value $b \in \{0,1\}$. In the reveal phase the sender opens the commitment by sending to the receiver (y,b') where $y \in \{0,1\}^*$ and $b' \in \{0,1\}$. We require from the bit commitment protocol that it is hard after the commit phase for the receiver to guess b. Additionally, in the reveal the sender can not convince the receiver that was committed to the value $b' \neq b$.

We give the formal definition of Bit Commitment.

Definition 3.5 (Bit Commitment) Let $S_n = (S_1, S_2)$ be a two phase probabilistic circuit and R_n be a probabilistic circuit where n is a security parameter. Both S_n and R_n are of size polynomial in n. The circuit S_1 , used in the commit phase, takes as input a tuple of length n+1 such that (b, ρ_S) where b is interpreted as a bit to which S_n commits and ρ_S the randomness used by the algorithm S_n . The receiver R_n takes only auxiliary input ρ_R that denotes the

randomness used by R_n and $|\rho_R| = n$. The protocol consists of two phases – the commit phase where circuits S_1 , R_1 engage in the protocol execution, and the reveal phase where S_2 and R_2 are used. After the commit phase the receiver generates a circuit V. For fixed $b \in \{0,1\}$ and n we require the bit commit protocol to have the following properties:

Correctness

$$\Pr[V(b, y) = 1] \ge 1 - \varepsilon(k),$$

where ε is negligible function of k.

Hiding Probability over random coins of S_n and R_n that any polynomial size circuit can guess bit b correctly after the commit phase is at most $\frac{1}{2} + \varepsilon(k)$ where $\varepsilon(k)$ is a negligible function of k.

Binding For every polynomial size circuit S_n we have

$$\Pr[V(0, y_0) = 1 \land V(1, y_1) = 1] \le \varepsilon(k),$$

where $\varepsilon(k)$ is a negligible function in k.

The bit commitment protocols can be generalized in the language of weakly verifiable puzzles for a special case when the number of hint queries amounts o zero, and the problem poser can ask at most one verification query. In the context of bit commitment the sender corresponds to a problem solver and the receiver is a problem poser. The first phase is as in Definition 3.5. In the reveal phase the problem poser tries to find a bitstring y such that $V(\neg b, y) = 1$. Thus, breaking the binding property of bit commitment is generalized by an interactive weakly verifiable puzzle that is non dynamic.

3.2.4 Automated Turing Tests

The goal of Automated Turing Tests is to distinguish humans from computers. A frequent application of Automated Turing Tests is preventing computer programs from accessing resources for human beings (like creating an email account). An example of implementation of Automated Turing Tests is CAPTCHA that was defined in [VABHL03]. Loossly speaking, CAPTCHA is a test that human can solve with probability close to 1, but it is hard to write a computer program that has a success probability comparable to the one achieved by humans. An example of CAPTACHA is sending a distorted text. It is easy for most humans to guess the right text, but it might be hard to write a program for which it would also be easy. We note that the definition of hardness is not precessly defined, as it is possible that there exists a program that reaches the success probability close to the one achieved by humans.

CAPTCHAs basing on guessing the distorted text are yet another example of weakly verifiable puzzles. In the first round the problem poser and problem solver engage in interactive protocol, such that after the execution of the protocol the problem poser has a way to verify the solution. The problem poser in the second round takes as input a distorted image, and try to guess the text that was used to generated it. We note that the standard distorted text base CAPTCHAs are non dynamic. The problem poser does not gain access to the hint oracle, only to the verification oracle to which it asks a single query.

Our definition captures also this the above type of problems, additionally it is also applicable in the broader context for a different AI problems.

As it is not know how good the possible algorithm can be to recognize CAPTCHA it is likely that the gap between human performance and a performance of computer programs may be small. Therefore, it is of interest to find a way to amplify this gap. It turns out that it is indeed possible which for not dynamic puzzles was proved in [HS10]. The proof presented in 4 applies also to dynamic context.

3.3 Previous results

- 3.3.1 Results of R.Canetti, S.Halevi, and M.Steiner
- 3.3.2 Results of Y.Dodis, R.Impagliazzo, R.Jaiswal, V.Kabanets
- 3.3.3 Results of T.Holenstein and G.Scheonebeck
- 3.4 Limitations of Security Amplification

Chapter 4

Security amplification for dynamic weakly verifiable puzzles

In this chapter we show that it is possible to amplify security of dynamic weakly verifiable puzzles. In section 4.1 we state the theorem, which is next proved in three steps. First, in Section 4.1.3, we show how to use to partition the domain on which hint and verification queries are asked, next we give a prove of security amplification under the simplifying assumption that there is no collisions of hint and verification queries. Finally, in Section 4.1.5 we combine both former steps which yields the desirable result.

4.1 Main theorem

We start by giving the definition of the k-wise direct product of weaky verifiable puzzles.

4.1.1 The k-wise direct product of weakly verifiable puzzle

Definition 4.1 (k-wise direct-product of DWVPs.) Let $g: \{0,1\}^k \to \{0,1\}$ be a monotone function and $P_n^{(1)}$ a problem poser as in Definition 3.1. The k-wise direct product of $P_n^{(1)}$ is a DWVP defined by a circuit $P_{kn}^{(g)}$. We write $P_{kn}^{(g)}(\pi^{(k)})$ to denote the execution of $P_{kn}^{(g)}$ with the randomness fixed to $\pi^{(k)} := (\pi_1, \ldots, \pi_k)$ where for each $1 \le i \le n : \pi_i \in \{0,1\}^n$. Let $(C_1, C_2)(\rho)$ be a solver for $P_{kn}^{(g)}$ as in Definition 3.1. In the first phase, the algorithm $C_1(\rho)$ sequentially interacts in k rounds with $P_{kn}^{(g)}(\pi^{(k)})$. In the i-th round $C_1(\rho)$ interacts with $P_n^{(1)}(\pi_i)$, and as the result $P_n^{(1)}(\pi_i)$ generates circuits Γ_V^i, Γ_H^i . Finally, after k rounds $P_{kn}^{(g)}(\pi^{(k)})$ outputs a verification circuit

$$\Gamma_V^{(g)}(q, y_1, \dots, y_k) := g(\Gamma_V^1(q, y_1), \dots, \Gamma_V^k(q, y_k))$$

and a hint circuit

$$\Gamma_H^{(k)}(q) := (\Gamma_H^1(q), \dots, \Gamma_H^k(q)).$$

If it is clear from the context, we omit the subscript n and write $P(\pi)$ instead of $P_n(\pi)$ where $\pi \in \{0,1\}^n$.

A verification query (q, y) of a solver C for which a hint query on this q has been asked before cannot be a verification query for which C succeeds. Therefore, without loss of generality, we make the assumption that C does not ask verification queries on q for which a hint query has been asked before. Furthermore, we assume that once C asked a verification query that succeeds, it does not ask any further hint or verification queries.

```
Experiment Success^{P,C}(\pi,\rho)
```

Oracle: A problem poser P, a solver $C = (C_1, C_2)$ for P.

Input: Bitstrings $\pi \in \{0,1\}^n$, $\rho \in \{0,1\}^*$.

Output: A bit $b \in \{0, 1\}$.

run
$$\langle P(\pi), C_1(\rho) \rangle$$

 $(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P$
 $x := \langle P(\pi), C_1(\rho) \rangle_{trans}$

run $C_2^{\Gamma_V,\Gamma_H}(x,\rho)$ if $C_2^{\Gamma_V,\Gamma_H}(x,\rho)$ asks a verification query (q,y) s.t. $\Gamma_V(q,y)=1$ then return 1

return 0

We define the success probability of C in solving a puzzle defined by P as

$$\Pr_{\pi,\rho}[Success^{P,C}(\pi,\rho)=1]. \tag{4.1}$$

Furthermore, we say that C succeeds for π , ρ if $Success^{P,C}(\pi,\rho)=1$.

Theorem 4.2 (Security amplification for dynamic weakly verifiable puzzles.)

Let $P_n^{(1)}$ be a fixed problem poser as in Definition 3.1 and $P_{kn}^{(g)}$ a problem poser for the k-wise direct product of $P_n^{(1)}$. Additionally, let C be a problem solver for $P_{kn}^{(g)}$ asking at most h hint queries and v verification queries. There exists a probabilistic algorithm Gen with oracle access to a solver circuit C, a monotone function $g:\{0,1\}^k \to \{0,1\}$ and problem posers $P_n^{(1)}$, $P_{kn}^{(g)}$. Furthermore, Gen takes as input parameters ε , δ , n, k, h, v, and outputs a solver circuit D

for $P_n^{(1)}$ such that the following holds: If C is such that

$$\Pr_{\substack{\pi^{(k)} \in \{0,1\}^{kn} \\ \rho \in \{0,1\}^*}} \left[Success^{P_{kn}^{(g)},C}(\pi^{(k)},\rho) = 1 \right] \ge 16(h+v) \left(\Pr_{u \leftarrow \mu_{\delta}^k} \left[g(u) = 1 \right] + \varepsilon \right)$$

then D is a two phase probabilistic circuit and satisfies almost surely

$$\Pr_{\substack{\pi \in \{0,1\}^n \\ \rho \in \{0,1\}^*}} \left[Success^{P_n^{(1)},D}(\pi,\rho) = 1 \right] \ge \delta + \frac{\varepsilon}{6k}.$$

Additionally, D requires oracle access to g, $P_n^{(1)}$, C, hint and verification circuits and asks at most $\frac{6k}{\varepsilon} \log\left(\frac{6k}{\varepsilon}\right) h$ hint queries and one verification query. Finally, $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$ with oracle access to C.

4.1.2 Intuition

TODO: add intuition for hashing

The idea of the algorithm Gen is to output a circuit D that solves the input puzzle often. We know that C has high success probability in solving the k-wise direct product of $P^{(1)}$. The algorithm Gen tries to find a puzzle such that when C runs with this puzzle fixed on the first position and disregards whether this puzzle is correctly solved then the assumptions of Theorem 4.2 are true for the (k-1)-wise direct product. If it was possible to find such a puzzle, then Gen could recurse and solve a smaller problem. In the optimistic case we can reach k=1, which means that we found a good circuit for solving a single puzzle by just fixing the initial puzzles of C.

Otherwise, when the first position is disregarded then the success probability of C is not substantially better. This is remarkable, as we know that C performs good for the k-wise direct product. It means that the first position is important, in the sense that C solves the puzzle on that position unusually often. Therefore, it is reasonable to construct the circuit D using C by placing the input puzzle of D on that position, and then finding remaining k-1 puzzles. The (k-1) remaining puzzles are generated by the circuit D, hence it is possible to check whether they are correctly solved by the circuit C. We know that circuit C has good success probability, and the puzzle on the first position is important. Therefore, if we are able to find a (k-1) puzzles such that the fact whether the k-wise direct product is correctly solved depends on whether the puzzle on the first position is correctly solved then we can assume that C is often correct on this first position.

There are some problems with this approach, first we have to ensure that we can make a decision when the algorithm *Gen* should recurse and when not

correctly with high probability. Then, we have to show that it is possible to find a puzzles such that C is often correct on the first position. Finally, we also have to be sure that we do not ask a hint query, on the final verification query to the oracle. To satisfy the last requirement we split the set Q.

4.1.3 Domain partitioning

Let $hash: Q \to \{0, 1, \dots, 2(h+v)-1\}$, the idea is to partition Q such that the set of preimages of 0 for hash contains $q \in Q$ on which C is not allowed to ask hint queries, and the first successful verification query (q, y) of C is such that hash(q) = 0. Therefore, if C makes a verification query (q, y) such that hash(q) = 0, then we know that no hint query is ever asked on this q.

We denote the *i*-th query of C by q_i if it is a hint query, and by (q_i, y_i) if it is a verification query. We define the following experiment CanonicalSuccess in which the set Q is partitioned using a function hash. We say that a solver circuit succeeds in the experiment CanonicalSuccess if it asks a successful verification query (q_j, y_j) such that $hash(q_j) = 0$, and no hint query q_i is asked before (q_i, y_j) such that $hash(q_i) = 0$.

```
Experiment CanonicalSuccess P,C,hash (\pi,\rho)

Oracle: A problem poser P, a solver circuit C = (C_1,C_2) for P, a function hash: Q \to \{0,\dots,2(h+v)-1\}.

Input: Bitstrings \pi \in \{0,1\}^n, \rho \in \{0,1\}^*.

Output: A bit b \in \{0,1\}.

run \langle P(\pi), C_1(\rho) \rangle
(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P
x := \langle P(\pi), C_1(\rho) \rangle_{trans}

run C_2^{\Gamma_V, \Gamma_H}(x,\rho) does not succeed for any verification query then return 0
Let (q_j,y_j) be the first verification query such that \Gamma_V(q_j,y_j) = 1.

if (\forall i < j : hash(q_i) \neq 0) and (hash(q_j) = 0) then return 1 else return 0
```

We define the canonical success probability of a solver circuit C for P with

respect to a function hash as

$$\Pr_{\pi,\rho}[CanonicalSuccess^{P,C,hash}(\pi,\rho) = 1]. \tag{4.2}$$

For fixed hash and P a canonical success of C for bistrings π , ρ is a situation where Canonical Success $P,C,hash(\pi,\rho)=1$.

We show that if a solver circuit C for P often succeeds in the experiment Success, then there exists a function hash such that C also often succeeds in the experiment CanonicalSuccess.

Lemma 4.3 (Success probability in solving DWVP with respect to a function hash.) For fixed P_n let C be a solver for P_n with success probability at least γ , asking at most h hint queries and v verification queries. Let \mathcal{H} be an efficient family of pairwise independent hash functions $Q \to \{0, 1, \dots, 2(h + v) - 1\}$. There exists a probabilistic algorithm FindHash that takes as input parameters γ , n, h, v, and has oracle access to C and P_n . Furthermore, FindHash runs in time poly $(h, v, \frac{1}{\gamma}, n)$, and with high probability outputs a function hash $\in \mathcal{H}$ such that the canonical success probability of C with respect to hash is at least $\frac{\gamma}{16(h+v)}$.

Proof (4.3). We fix a problem poser P and a solver C for P in the whole proof of Lemma 4.3. For $k, l \in \{1, \ldots, (h+v)\}$ and $\alpha, \beta \in \{0, 1, \ldots, 2(h+v)-1\}$ by the pairwise independence property, we have

$$\forall q_k \neq q_l \in Q : \Pr_{hash \leftarrow \mathcal{H}}[hash(q_k) = \alpha \mid hash(q_l) = \beta] = \Pr_{hash \leftarrow \mathcal{H}}[hash(q_k) = \alpha]$$
$$= \frac{1}{2(h+v)}. \tag{4.3}$$

We write $\mathcal{P}_{Success}$ to denote a set containing all (π, ρ) for which $Success^{P,C}(\pi, \rho) = 1$. Let us fix $(\pi^*, \rho^*) \in \mathcal{P}_{Success}$. We are interested in the probability over a choice of function hash of the event $CanonicalSuccess^{P,C,hash}(\pi^*, \rho^*) = 1$. Let

 (q_j,y_j) denote the first query such that $\Gamma_V(q_j,y_j)=1$. We have

$$\Pr_{hash \leftarrow \mathcal{H}} \left[Canonical Success^{P,C,hash}(\pi^*, \rho^*) = 1 \right] \\
= \Pr_{hash \leftarrow \mathcal{H}} [hash(q_j) = 0 \land (\forall i < j : hash(q_i) \neq 0)] \\
= \Pr_{hash \leftarrow \mathcal{H}} [\forall i < j : hash(q_i) \neq 0 \mid hash(q_j) = 0] \Pr_{hash \leftarrow \mathcal{H}} [hash(q_j) = 0] \\
\stackrel{(4.3)}{=} \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}} [\exists i < j : hash(q_i) = 0 \mid hash(q_j) = 0] \right) \\
\stackrel{(*)}{\geq} \frac{1}{2(h+v)} \left(1 - \sum_{i < j} \Pr_{hash \leftarrow \mathcal{H}} [hash(q_i) = 0 \mid hash(q_j) = 0] \right) \\
\stackrel{(4.3)}{=} \frac{1}{2(h+v)} \left(1 - \sum_{i < j} \Pr_{hash \leftarrow \mathcal{H}} [hash(q_i) = 0] \right) \\
\stackrel{(4.3)}{=} \frac{1}{2(h+v)} \left(1 - \sum_{i < j} \Pr_{hash \leftarrow \mathcal{H}} [hash(q_i) = 0] \right) \\
\stackrel{(4.3)}{=} \frac{1}{2(h+v)} \left(1 - \sum_{i < j} \Pr_{hash \leftarrow \mathcal{H}} [hash(q_i) = 0] \right) \\
\stackrel{(4.3)}{\geq} \frac{1}{4(h+v)}, \tag{4.4}$$

where in (*) we used the union bound. Let us denote the set of those (π, ρ) for which $CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1$ by $\mathcal{P}_{Canonical}$. If for π , ρ the circuit C succeeds canonically, then for the same π , ρ we also have $Success^{P,C}(\pi, \rho) = 1$. Hence, $\mathcal{P}_{Canonical} \subseteq \mathcal{P}_{Success}$, and we conclude

$$\Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \right] \\
= \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid (\pi, \rho) \in \mathcal{P}_{Success} \right] \Pr_{\pi, \rho} [(\pi, \rho) \in \mathcal{P}_{Success}] \\
+ \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid (\pi, \rho) \notin \mathcal{P}_{Success} \right] \Pr_{\pi, \rho} [(\pi, \rho) \notin \mathcal{P}_{Success}] \\
= \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid (\pi, \rho) \in \mathcal{P}_{Success} \right] \Pr_{\pi, \rho} [(\pi, \rho) \in \mathcal{P}_{Success}] \\
\geq \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid (\pi, \rho) \in \mathcal{P}_{Success} \right] \cdot \gamma \\
= \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho \in \mathcal{P}_{Success}}} \left[\Pr_{\substack{hash \leftarrow \mathcal{H}}} [CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \right] \cdot \gamma \\
\stackrel{(4.4)}{\geq} \frac{\gamma}{4(h + v)}. \tag{4.5}$$

Algorithm FindHash $^{P,C}(\gamma, n, h, v)$

Oracle: A problem poser P, a solver circuit C for P.

Input: Parameters γ , n. The number of hint queries h and of verification queries v.

Output: A function $hash: Q \rightarrow \{0, 1, \dots, 2(h+v) - 1\}.$

```
\begin{array}{l} \mathbf{for} \ i := 1 \ \mathbf{to} \ 32n(h+v)^2/\gamma^2 \ \mathbf{do:} \\ hash \leftarrow \mathcal{H} \\ count := 0 \\ \mathbf{for} \ j := 1 \ \mathbf{to} \ 32n(h+v)^2/\gamma^2 \ \mathbf{do:} \\ \pi \leftarrow \{0,1\}^n \\ \rho \leftarrow \{0,1\}^* \\ \mathbf{if} \ CanonicalSuccess}^{P,C,hash}(\pi,\rho) = 1 \ \mathbf{then} \\ count := count + 1 \\ \mathbf{if} \ count \geq \frac{\gamma}{12(h+v)} \frac{32(h+v)^2}{\gamma^2} n \ \mathbf{then} \\ \mathbf{return} \ hash \\ \mathbf{return} \ \bot \end{array}
```

We show that FindHash chooses $hash \in \mathcal{H}$ such that the canonical success probability of C with respect to hash is at least $\frac{\gamma}{16(h+v)}$ almost surely. Let \mathcal{H}_{Good} denote a family of functions $hash \in \mathcal{H}$ for which

$$\Pr_{\pi,\rho} \left[Canonical Success^{P,C,hash}(\pi,\rho) = 1 \right] \ge \frac{\gamma}{8(h+v)}, \tag{4.6}$$

and \mathcal{H}_{Bad} be a family of functions $hash \in \mathcal{H}$ such that

$$\Pr_{\pi,\rho} \left[CanonicalSuccess^{P,C,hash}(\pi,\rho) = 1 \right] \le \frac{\gamma}{16(h+v)}. \tag{4.7}$$

Let N denote the number of iterations of the inner loop of FindHash. We consider a single iteration of the outer loop of FindHash in which hash is fixed. We define independent, identically distributed, binary random variables X_1, \ldots, X_N such that

$$X_i = \begin{cases} 1 & \text{if in the } i\text{-th iteration of the inner loop } count \text{ is increased} \\ 0 & \text{otherwise.} \end{cases}$$

We now turn to the case when $hash \in \mathcal{H}_{Bad}$ and show that it is unlikely that hash is returned by FindHash. From (4.7) it follows that $\mathbb{E}_{\pi,\rho}[X_i] \leq \frac{\gamma}{16(h+v)}$. Therefore, for any fixed $hash \in \mathcal{H}_{Bad}$ using the Chernoff bound we get

$$\Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \ge \frac{\gamma}{12(h+v)} \right] \le \Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \ge \left(1 + \frac{1}{3}\right) \mathbb{E}[X_i] \right]$$

$$\le e^{-\frac{\gamma}{16(h+v)} N/27} \le e^{-\frac{2}{27} \frac{(h+v)}{\gamma} n} \stackrel{(*)}{\le} e^{-\frac{2}{27} n}.$$

where in (*) we used the trivial facts that $h+v \ge 1$ and $\gamma \le 1$. The probability that $hash \in \mathcal{H}_{Good}$, when picked, is not returned amounts

$$\Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \le \frac{\gamma}{12(h+v)} \right] \le \Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \le \left(1 - \frac{1}{3}\right) \mathbb{E}[X_i] \right] \\
\le e^{-\frac{\gamma}{8(h+v)} N/18} \le e^{-\frac{2}{9} \frac{(h+v)}{\gamma} n} \stackrel{(*)}{\le} e^{-\frac{2}{9} n}.$$

where we once more used the Chernoff bound. We now show that the probability of picking $hash \in \mathcal{H}_{Good}$ is at least $\frac{\gamma}{8(h+v)}$. To obtain a contradiction suppose that

$$\Pr_{hash \leftarrow \mathcal{H}}[hash \in \mathcal{H}_{Good}] < \frac{\gamma}{8(h+v)}.$$
 (4.8)

From this it follows that we can bound probability of canonical success as follows

$$\begin{aligned} &\Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}}[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1] \\ &= \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}}[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid hash \in \mathcal{H}_{Good}] \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \mu_{Good}}}[hash \in \mathcal{H}_{Good}] \\ &\quad + \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}}[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid hash \notin \mathcal{H}_{Good}] \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \mu_{Good}}}[hash \notin \mathcal{H}_{Good}] \\ &\leq \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \mu_{Good}}}[hash \in \mathcal{H}_{Good}] + \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \mu_{Good}}}[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid hash \notin \mathcal{H}_{Good}] \\ &\leq \frac{\gamma}{8(h+v)} + \frac{\gamma}{8(h+v)} = \frac{\gamma}{4(h+v)}, \end{aligned}$$

which contradicts (4.5). Therefore, we conclude that the probability of choosing a $hash \in \mathcal{H}_{Good}$ amounts at least $\frac{\gamma}{8(h+v)}$.

We show that FindHash picks in one of its iteration $hash \in \mathcal{H}_{Good}$ almost surely. Let K be the number of iterations of the outer loop of FindHash and Y_i be a random variable for the event that in the i-th iteration of the outer loop $hash \notin \mathcal{H}_{Good}$ is picked. We use $\Pr_{hash \leftarrow \mathcal{H}}[hash \in \mathcal{H}_{Good}] \geq \frac{\gamma}{8(h+v)}$ and $K \leq \frac{32(h+v)^2}{\gamma^2}n$, and conclude

$$\Pr_{hash \leftarrow \mathcal{H}} \left[\bigcap_{1 \le i \le K} Y_i \right] \le \left(1 - \frac{\gamma}{8(h+v)} \right)^{\frac{32(h+v)^2}{\gamma^2} n} \le e^{-\frac{\gamma}{8(h+v)} \frac{32(h+v)^2}{\gamma^2} n}$$

$$\le e^{-\frac{4(h+v)}{\gamma} n} \le e^{-n}.$$

It is clear that running time of FindHash is $poly(n, h, v, \gamma)$ with oracle access. This finishes the proof of Lemma 4.3.

4.1.4 Amplification proof for partitioned domain

Let $C = (C_1, C_2)$ be a solver circuit for a dynamic weakly verifiable puzzle as in definition 3.1. We write $C_2^{(\cdot,\cdot)}$ to emphasize that C_2 does not obtain direct access to hint and verification circuits. Instead, whenever C_2 ask hint or verification queries, then it is answered explicitly as in the following code excerpt of the circuit \widetilde{C}_2 .

```
Circuit \widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)
Oracle: A hint circuit \Gamma_H, a circuit C_2,
            a function hash : Q \to \{0, 1, \dots, 2(h+v) - 1\}.
Input: Bitstrings x \in \{0, 1\}^*, \rho \in \{0, 1\}^*.
Output: A pair (q, y).
run C_2^{(\cdot,\cdot)}(x,\rho)
      if C_2^{(\cdot,\cdot)}(x,\rho) asks a hint query on q then
            if hash(q) = 0 then
                  return \perp
            else
                  answer the query of C_2^{(\cdot,\cdot)}(x,\rho) using \Gamma_H(q)
      if C_2^{(\cdot,\cdot)}(x,\rho) asks a verification query (q,y) then
            if hash(q) = 0 then
                  return (q, y)
                  answer the verification query of C_2^{(\cdot,\cdot)}(x,\rho) with 0
return \perp
```

Given $C = (C_1, C_2)$ we define the circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$. Every hint query q asked by \widetilde{C} is such that $hash(q) \neq 0$. Furthermore, \widetilde{C} asks no verification queries. Instead, it returns (q, y) such that hash(q) = 0 or \bot .

For fixed π , ρ , and hash we say that the circuit \widetilde{C} succeeds if for $x := \langle P(\pi), C_1(\rho) \rangle_{trans}$, $(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P$, we have

$$\Gamma_V(\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)) = 1.$$

Lemma 4.4 For fixed P, C, and hash the following statement is true

$$\Pr_{\pi,\rho}[Canonical Success^{P,C,hash}(\pi,\rho)=1] \leq \Pr_{\pi,\rho}[\Gamma_V(\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho))=1] \\ \underset{(\Gamma_V,\Gamma_H):=\langle P(\pi),C_1(\rho)\rangle_{P}}{\underset{r:=\langle P(\pi),C_1(\rho)\rangle$$

Proof. If for fixed π , ρ , and hash the circuit C succeeds canonically, then for the same π , ρ , and hash also \widetilde{C} succeeds. Using this observation, we conclude that

$$\Pr_{\pi,\rho} \left[CanonicalSuccess^{P,C,hash}(\pi,\rho) = 1 \right]$$

$$\leq \mathbb{E}_{\pi,\rho} \left[\Gamma_V(\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)) = 1 \right]$$

$$x := \langle P(\pi), C_1(\rho) \rangle_{trans}$$

$$(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P$$

$$= \Pr_{\pi,\rho} \left[\Gamma_V(\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)) = 1 \right]$$

$$x := \langle P(\pi), C_1(\rho) \rangle_{trans}$$

$$(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P$$

Lemma 4.5 (Security amplification for dynamic weakly verifiable puzzles with respect to hash.) Let $g:\{0,1\}^k \to \{0,1\}$ be a monotone function and $P_n^{(1)}$ a fixed problem poser as in Definition 3.1 and $\widetilde{C}:=(C_1,\widetilde{C}_2)$ a circuit with oracle access to a function hash: $Q \to \{0,1,\ldots,2(h+v-1)\}$ and a solver circuit $C:=(C_1,C_2)$ for $P_{kn}^{(g)}$ which asks at most h hint queries and v verification queries. There exists an algorithm Gen that takes as input parameters ε , δ , n, k, has oracle access to $P_n^{(1)}$, \widetilde{C} , hash, g, and outputs a circuit $D:=(D_1,D_2)$ such that the following holds: If \widetilde{C} is such that

$$\Pr_{\substack{\pi^{(k)} \in \{0,1\}^{kn}, \rho \in \{0,1\}^* \\ x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{trans} \\ (\Gamma_H^{(k)}, \Gamma_V^{(g)}) := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}} \Pr_{\substack{x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}} \\ P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}} \Pr_{\substack{x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}}} \Pr_{\substack{x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}}} \Pr_{\substack{x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}} \Pr_{\substack{x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}}} \Pr_{\substack{x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}}} \Pr_{\substack{x := \langle P$$

then D satisfies almost surely

$$\begin{split} &\Pr[\Gamma_V(D_2^{P^{(1)},\widetilde{C},hash,g,\Gamma_H}(x,\rho))=1] \geq \delta + \frac{\varepsilon}{6k}.\\ &x{:=}\langle P^{(1)}(\pi),D_1^{\widetilde{C}}(\rho)\rangle_{trans}\\ &(\Gamma_H,\Gamma_V){:=}\langle P^{(1)}(\pi),D_1^{\widetilde{C}}(\rho)\rangle_{P^{(1)}} \end{split}$$

Furthermore, D asks at most $\frac{6k}{\varepsilon} \log \left(\frac{6k}{\varepsilon}\right) h$ hint queries and no verification queries. Finally, $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n)$ with oracle access to \widetilde{C} .

Before we give the proof of Lemma 4.5 we define additional algorithms. First, we are interested in the probability that for $u \leftarrow \mu_{\delta}^k$ and a bit b we have $g(b, u_2, \ldots, u_k) = 1$. The estimate of this probability is calculated by EstimateFunctionProbability.

Algorithm EstimateFunctionProbability^g $(b, k, \varepsilon, \delta, n)$

Oracle: A function $g : \{0, 1\}^k \to \{0, 1\}$.

Input: A bit $b \in \{0,1\}$, parameters $k, \varepsilon, \delta, n$.

Output: An estimate \widetilde{g}_b of $\Pr_{u \leftarrow \mu_s^k}[g(b, u_2, \dots, u_k) = 1]$.

$$\begin{array}{l} \textbf{for } i := 1 \textbf{ to } N := \frac{64k^2}{\varepsilon^2} n \textbf{ do:} \\ u \leftarrow \mu_{\delta}^k \\ g_i := g(b, u_2, \dots, u_k) \\ \textbf{return } \frac{1}{N} \sum_{i=1}^N g_i \end{array}$$

Lemma 4.6 The algorithm EstimateFunctionProbability^g $(b, k, \varepsilon, \delta, n)$ outputs an estimate \widetilde{g}_b such that $|\widetilde{g}_b - \Pr_{u \leftarrow \mu_k^k}[g(b, u_2, \dots, u_k) = 1]| \leq \frac{\varepsilon}{8k}$ almost surely.

Proof. We fix the notation as in the algorithm EstimateFunctionProbability. Let us define independent, identically distributed binary random variables K_1, K_2, \ldots, K_N such that for each $1 \leq i \leq N$ the random variable K_i takes value g_i . We use the Chernoff bound to obtain

$$\Pr\left[\left|\widetilde{g}_{b} - \Pr_{u \leftarrow \mu_{\delta}^{k}}\left[g(b, u_{2}, \dots, u_{k}) = 1\right]\right| \geq \frac{\varepsilon}{8k}\right]$$

$$= \Pr\left[\left|\left(\frac{1}{N}\sum_{i=1}^{N}K_{i}\right) - \mathbb{E}_{u \leftarrow \mu_{\delta}^{k}}\left[g(b, u_{2}, \dots, u_{k})\right]\right| \geq \frac{\varepsilon}{8k}\right] \leq 2 \cdot e^{-n/3}.\square$$

The algorithm EvalutePuzzles $P^{(1)}, \tilde{C}, hash(\pi^{(k)}, \rho, n, k)$ evaluates which of the k puzzles of the k-wise direct product defined by $P^{(g)}$ are solved successfully by $\tilde{C}(\rho) := (C_1, \tilde{C}_2)(\rho)$. To decide whether the i-th puzzle of the k-wise direct product is solved successfully we need to gain access to the verification circuit for the puzzle generated in the i-th round of the interaction between $P^{(g)}$ and \tilde{C} . Therefore, the algorithm EvalutePuzzles runs k times $P^{(1)}$ to simulate the interaction with $C_1(\rho)$ each time with a fresh random bitstring $\pi_i \in \{0,1\}^n$ where $1 \leq i \leq k$.

Let us introduce some additional notation. We denote by $\langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i$ the execution of the *i*-th round of the sequential interaction. We use $\langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i_{P^{(1)}}$ to denote the output of $P^{(1)}(\pi_i)$ in the *i*-th round. Finally, we write $\langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i_{trans}$ to denote the transcript of communication in the *i*-th round. We note that the *i*-th round of the interaction between $P^{(1)}$ and C_1 is well defined only if all previous rounds have been executed before.

To make the notation easier in the code excerpts of circuits C_2 , D_2 and EvalutePuzzles we omit superscripts of some oracles. Exemplary, we write $\widetilde{C}_2^{\Gamma_H^{(k)},hash}$ instead of $\widetilde{C}_2^{\Gamma_H^{(k)},C,hash}$ where the superscript of the oracle circuit C

is omitted. We make sure that it is clear from the context which oracles are used.

```
Algorithm EvaluatePuzzles P^{(1)}, \tilde{C}, hash(\pi^{(k)}, \rho, n, k)

Oracle: A problem poser P^{(1)}, a solver circuit \tilde{C} = (C_1, \tilde{C}_2) for P^{(g)}, a function hash: Q \to \{0, 1, \dots, 2(h+v)-1\}.

Input: Bitstrings \pi^{(k)} \in \{0, 1\}^{kn}, \rho \in \{0, 1\}^*, parameters n, k.

Output: A tuple (c_1, \dots, c_k) \in \{0, 1\}^k.

for i := 1 to k do: //simulate\ k rounds of interaction (\Gamma_V^i, \Gamma_H^i) := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{P^{(1)}}^i

x_i := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{trans}^i

x := (x_1, \dots, x_k)

\Gamma_H^{(k)} := (\Gamma_H^1, \dots, \Gamma_H^k)
```

 $(q,y_1,\ldots,y_k):=\widetilde{C}_2^{\Gamma_H^{(k)},hash}(x,
ho)$ $\mathbf{if}\ (q,y_1,\ldots,y_k)=\perp\mathbf{then}$ $\mathbf{return}\ (0,\ldots,0)$ $(c_1,\ldots,c_k):=(\Gamma_V^1(q,y_1),\ldots,\Gamma_V^k(q,y_k))$

return (c_1,\ldots,c_k)

All puzzles used by EvalutePuzzles are generated internally thus the algorithm has access to hint circuit, and can answer itself all queries of \widetilde{C}_2 .

We are interested in the success probability of \widetilde{C} with the bitstring π_1 fixed to π^* where the fact whether \widetilde{C} succeeds in solving the first puzzle defined by $P^{(1)}(\pi_1)$ is neglected, and instead a bit b is used. More formally, we define the surplus $S_{\pi^*,b}$ as

$$S_{\pi^*,b} = \Pr_{\pi^{(k)},\rho} [g(b, c_2, \dots, c_k) = 1 \mid \pi_1 = \pi^*] - \Pr_{u \leftarrow \mu_{\delta}^k} [g(b, u_2, \dots, u_k) = 1],$$
(4.9)

where (c_2, c_3, \ldots, c_k) is obtained as in EvalutePuzzles.

The algorithm EstimateSurplus returns an estimate $\widetilde{S}_{\pi^*,b}$ for $S_{\pi^*,b}$.

```
Algorithm Estimate
Surplus P^{(1)}, \widetilde{C}, g, hash (\pi^*, b, k, \varepsilon, \delta, n)
```

Oracle: A problem poser $P^{(1)}$, a circuit \widetilde{C} for $P^{(g)}$, functions $g: \{0,1\}^k \to \{0,1\}$ and $hash: Q \to \{0,1,\ldots,2(h+v)-1\}$.

Input: A bistring $\pi^* \in \{0,1\}^n$, a bit $b \in \{0,1\}$, parameters $k, \varepsilon, \delta, n$.

Output: An estimate $S_{\pi^*,b}$ for $S_{\pi^*,b}$.

```
\begin{aligned} & \textbf{for } i := 1 \textbf{ to } N := \frac{64k^2}{\varepsilon^2} n \textbf{ do:} \\ & (\pi_2, \dots, \pi_k) \overset{\$}{\leftarrow} \{0, 1\}^{(k-1)n} \\ & \rho \overset{\$}{\leftarrow} \{0, 1\}^* \\ & (c_1, \dots, c_k) := \text{EvalutePuzzles}^{P^{(1)}, \widetilde{C}, hash}((\pi^*, \pi_2, \dots, \pi_k), \rho, n, k) \\ & \widetilde{s}^i_{\pi^*, b} := g(b, c_2, \dots, c_k) \\ & \widetilde{g}_b := \text{EstimateFunctionProbability}^g(b, k, \varepsilon, \delta, n) \\ & \textbf{return } \left(\frac{1}{N} \sum_{i=1}^N \widetilde{s}^i_{\pi^*, b}\right) - \widetilde{g}_b \end{aligned}
```

Lemma 4.7 The estimate $\widetilde{S}_{\pi^*,b}$ returned by EstimateSurplus differs from $S_{\pi^*,b}$ by at most $\frac{\varepsilon}{4k}$ almost surely.

Proof. We use the union bound and similar argument as in Lemma 4.6 which yields that $\frac{1}{N} \sum_{i=1}^{N} \tilde{s}_{\pi^*,b}^i$ differs from $\mathbb{E}[g(b,c_2,\ldots,c_k)]$ by at most $\frac{\varepsilon}{8k}$ almost surely. Together, with Lemma 4.6 we conclude that the surplus estimate returned by EstimateSurplus differs from $S_{\pi^*,b}$ by at most $\frac{\varepsilon}{4k}$ almost surely.

We define the following solver circuit $C' = (C'_1, C'_2)$ for the (k-1)-wise direct product of $P^{(1)}$.

Circuit $C_1'^{\widetilde{C},P^{(1)}}(\rho)$

Oracle: A solver circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$ for $P^{(g)}$, a poser $P^{(1)}$.

Input: A bitstring $\rho \in \{0, 1\}^*$.

Hard-coded: A bitstring $\pi^* \in \{0,1\}^n$.

Simulate $\langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1$

Use $C_1(\rho)$ for the remaining k-1 rounds of interaction.

 $\begin{array}{|c|c|} \hline \textbf{Circuit } \widetilde{C}_2^{\Gamma_H^{(k-1)},\widetilde{C},hash}(x^{(k-1)},\rho) \\ \hline \\ \textbf{Oracle: A hint oracle } \Gamma_H^{(k-1)} := (\Gamma_H^2,\ldots,\Gamma_H^k), \\ & \text{a solver circuit } \widetilde{C} = (C_1,\widetilde{C}_2) \text{ for } P^{(g)}, \\ & \text{a function } hash : Q \rightarrow \{0,1,\ldots,2(h+v)-1\}. \\ \hline \textbf{Input: A transcript of } k-1 \text{ rounds of interaction} \\ & x^{(k-1)} := (x_2,\ldots,x_k) \in \{0,1\}^*, \text{ a bitstring } \rho \in \{0,1\}^* \\ \hline \\ \textbf{Hard-coded: A bitstring } \pi^* \in \{0,1\}^n \\ \hline \\ \hline \\ \textbf{Simulate } \langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1 \\ & (\Gamma_H^*, \Gamma_V^*) := \langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1_{trans} \\ \hline \\ x^* := \langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1_{trans} \\ \hline \end{array}$

$$\Gamma_H^{(k)} := (\Gamma_H^*, \Gamma_H^2, \dots, \Gamma_H^k)
x^{(k)} := (x^*, x_2, \dots, x_k)
(q, y_1, \dots, y_k) := \widetilde{C}_2^{\Gamma_H^{(k)}, hash}(x^{(k)}, \rho)
return (q, y_2, \dots, y_k)$$

We are ready to define the solver circuit $D = (D_1, D_2)$ for $P^{(1)}$ and the algorithm Gen.

```
Circuit D_1^{\widetilde{C}}(r)

Oracle: A solver circuit \widetilde{C} = (C_1, \widetilde{C}_2) for P^{(g)}.

Input: A pair r := (\rho, \sigma) where \rho \in \{0, 1\}^* and \sigma \in \{0, 1\}^*.

Interact with the problem poser \langle P^{(1)}, C_1(\rho) \rangle^1.

Let x^* := \langle P^{(1)}, C_1(\rho) \rangle^1_{trans}.
```

```
Circuit D_2^{P^{(1)},\widetilde{C},hash,g,\Gamma_H}(x^*,r)
Oracle: A poser P^{(1)}, a solver circuit \widetilde{C} = (C_1, \widetilde{C}_2) for P^{(g)},
               functions hash: Q \to \{0, 1, \dots, 2(h+v)-1\}, g: \{0, 1\}^k \to \{0, 1\},
               a hint circuit \Gamma_H for P^{(1)}.
Input: A communication transcript x^* \in \{0,1\}^*, a bitstring r := (\rho, \sigma)
               where \rho \in \{0, 1\}^* and \sigma \in \{0, 1\}^*
Output: A pair (q, y^*).
for at most \frac{6k}{\varepsilon} \log(\frac{6k}{\varepsilon}) iterations do:
        (\pi_2, \ldots, \pi_k) \leftarrow \text{read next } (k-1) \cdot n \text{ bits from } \sigma
        Use x^* to simulate the first round of interiaction of C_1(\rho) with the
problem poser P^{(1)}
       for i := 2 to k do:
               run \langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i
                      (\Gamma_V^i, \Gamma_H^i) := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{D^{(1)}}^i
                      x_i := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{trans}^i
       \Gamma_H^{(k)}(q) := (\Gamma_H(q), \Gamma_H^2(q), \dots, \Gamma_H^k(q))
       (q, y^*, y_2, \dots, y_k) := \widetilde{C}_2^{\Gamma_H^{(k)}, hash}((x^*, x_2, \dots, x_k), \rho)
(c_2, \dots, c_k) := (\Gamma_V^2(q, y_2), \dots, \Gamma_V^k(q, y_k))
        if g(1, c_2, ..., c_k) = 1 and g(0, c_2, ..., c_k) = 0 then
               return (q, y^*)
return \perp
```

```
Algorithm Gen<sup>P^{(1)},\widetilde{C},g,hash (\varepsilon, \delta, n, k)</sup>
Oracle: A poser P^{(1)}, a solver circuit \widetilde{C} for P^{(g)}, functions g:\{0,1\}^k \to \mathbb{C}
\{0,1\},\
                   hash: Q \to \{0, 1, \dots, 2(h+v) - 1\}.
Input: Parameters \varepsilon, \delta, n, k.
Output: A circuit D.
for i := 1 to \frac{6k}{\varepsilon}n do:
         \pi^* \stackrel{\$}{\leftarrow} \{0,1\}^n
         \begin{split} \widetilde{S}_{\pi^*,0} &:= \mathsf{EstimateSurplus}^{P^{(1)},\widetilde{C},g,hash}(\pi^*,0,k,\varepsilon,\delta,n) \\ \widetilde{S}_{\pi^*,1} &:= \mathsf{EstimateSurplus}^{P^{(1)},\widetilde{C},g,hash}(\pi^*,1,k,\varepsilon,\delta,n) \end{split}
         if \exists b \in \{0,1\} : \widetilde{S}_{\pi^*,b} \geq (1-\frac{3}{4k})\varepsilon then
                  Let C_1' have oracle access to \widetilde{C}, and have hard-coded \pi^*
                   Let \widetilde{C}'_2 have oracle access to \widetilde{C}, and have hard-coded \pi^*.
                   \widetilde{C}' := (C_1', \widetilde{C}_2')
                  g'(b_2, \dots, b_k) := g(b, b_2, \dots, b_k)
return Gen^{P^{(1)}, \widetilde{C}', g', hash}(\varepsilon, \delta, n, k-1)
// all estimates are lower than (1 - \frac{3}{4k})\varepsilon
return D^{P^{(1)},\widetilde{C},hash,g}
```

Proof (Lemma 4.5). First let us consider the case where k=1. The function $g:\{0,1\}\to\{0,1\}$ is either the identity or a constant function. If g is the identity function, then the circuit D returned by Gen directly uses \widetilde{C} to find a solution. From the assumptions of Lemma 4.5 it follows that \widetilde{C} succeeds with probability at least $\delta+\varepsilon$. Hence, D trivially satisfies the statement of Lemma 4.5. In the latter case g is a constant function, and the statement is vacuously true.

For the general case, we consider two possibilities. Either Gen in one of the iterations finds an estimate $\widetilde{S}_{\pi,b} \geq (1 - \frac{3}{4k}\varepsilon)$ or it fails and returns the circuit D.

In the former case we define a new monotone function $g'(b_2,\ldots,b_k):=g(b,b_2,\ldots,b_k)$ and a new circuit $\widetilde{C}'=(C_1',\widetilde{C}_2')$ with oracle access to $\widetilde{C}:=(C_1,\widetilde{C}_2)$. By Lemma 4.7 it follows that $S_{\pi^*,b}\geq \widetilde{S}_{\pi^*,b}-\frac{\varepsilon}{4k}\geq (1-\frac{1}{k})\varepsilon$ almost surely. Therefore, the circuit \widetilde{C}' succeeds in solving the (k-1)-wise direct product of puzzles with probability at least $\Pr_{u\leftarrow\mu_{\delta}^{(k-1)}}[g'(u_1,\ldots,u_{k-1})]+(1-\frac{1}{k})\varepsilon$. In this case \widetilde{C}' satisfies the conditions of Lemma 4.5 for the (k-1)-wise direct product of puzzles. Therefore, the recursive call to Gen with access to g' and \widetilde{C} returns

a circuit $D = (D_1, D_2)$ that with high probability satisfies

$$\Pr_{\pi,\rho}[\Gamma_{V}(D_{2}^{P^{(1)},\widetilde{C},hash,g,\Gamma_{H}}(x,\rho)) = 1] \geq \delta + \left(1 - \frac{1}{k}\right)\frac{\varepsilon}{6(k-1)} = \delta + \frac{\varepsilon}{6k}. \quad (4.10)$$

$$x := \langle P^{(1)}(\pi), D_{1}^{\widetilde{C}}(\rho) \rangle_{trans} (\Gamma_{H},\Gamma_{V}) := \langle P^{(1)}(\pi), D_{1}^{\widetilde{C}}(\rho) \rangle_{P^{(1)}}$$

The only point remaining concerns the behavior of Gen when none of the estimates is greater than $(1 - \frac{3}{4k})\varepsilon$. Assume that...

TODO: Give more intuition (and the correct one with references to the equations)

Intuitively this means that \widetilde{C} does not succeed on the remaining k-1 puzzles with much higher probability than an algorithm that correctly solves each puzzle with probability δ . However, from the assumptions of Lemma 4.5 we know that on all k puzzles the success probability of \widetilde{C} is higher. Therefore, it is likely that the first puzzle is correctly solved unusually often. It remains to prove that this intuition is indeed correct.

We fix the notation used in the code excerpt of the circuit D_2 . We consider a single iteration of the outer loop of D_2 , in which values π_2, \ldots, π_k are fixed. Additionally, we write π_1 to denote the randomness of the problem poser and define $c_1 := \Gamma_V(q, y_1)$, where Γ_V is the verification circuit generated by $P^{(1)}(\pi_1)$ in the first phase when interacting with $D_1(r)$. Finally, we introduce the additional notation $\mathcal{G}_b := \{(b_1, b_2, \ldots, b_k) : g(b, b_2, \ldots, b_k) = 1\}$ and $c = (c_1, c_2, \ldots, c_k)$. Using the new notation the following holds

$$\Pr_{u \leftarrow \mu_{\delta}^{k}} [u \in \mathcal{G}_{b}] = \Pr_{u \leftarrow \mu_{\delta}^{k}} [g(b, u_{2}, \dots, u_{k}) = 1]$$

$$\Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{b}] = \Pr_{\pi^{(k)}, \rho} [g(b, c_{2}, \dots, c_{k}) = 1].$$
(4.11)

We fix the randomness π_1 of the problem poser $P^{(1)}$ to π^* and use (4.9), (4.11) to obtain

$$\Pr_{u \leftarrow \mu_{\delta}^{k}} [u \in \mathcal{G}_{1}] - \Pr_{u \leftarrow \mu_{\delta}^{k}} [u \in \mathcal{G}_{0}]
= \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{1} \mid \pi_{1} = \pi^{*}] - \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{0} \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0}) \quad (4.12)$$

We know that the function g is monotone, hence it holds $\mathcal{G}_0 \subseteq \mathcal{G}_1$, and we write (4.12) as

$$\Pr_{u \leftarrow \mu_{\delta}^{k}} [u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}] = \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0}).$$
 (4.13)

Still having $\pi_1 = \pi^*$ fixed we multiply both sides of (4.13) by

$$\Pr_{\substack{x^* := \langle P^{(1)}(\pi^*), D_1(r) \rangle_{trans} \\ (\Gamma_V, \Gamma_H) := \langle P^{(1)}(\pi^*), D_1(r) \rangle_{P^{(1)}}}} \Pr_{\substack{u \leftarrow \mu_\delta^k \\ | \mu \in \mathcal{G}_1 \setminus \mathcal{G}_0 | \\ | \nu \in \mathcal{G}_1 \setminus \mathcal{G}_1 | \\ | \nu \in$$

which yields

$$\Pr_{r} \left[\Gamma_{V}(D_{2}(x^{*}, r)) = 1 \right] \\
x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{p(1)} \\
= \Pr_{r} \left[\Gamma_{V}(D_{2}(x^{*}, r)) = 1 \right] \Pr_{\pi^{(k)}, \rho} \left[c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*} \right] \frac{1}{\Pr_{u \leftarrow \mu_{\delta}^{k}} \left[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \right]} \\
x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{p(1)} \\
- \Pr_{r} \left[\Gamma_{V}(D_{2}(x^{*}, r)) = 1 \right] \left(S_{\pi^{*}, 1} - S_{\pi^{*}, 0} \right) \frac{1}{\Pr_{u \leftarrow \mu_{\delta}^{k}} \left[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \right]} \\
x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{p(1)} \\
(4.14)$$

We analyze the first summand of (4.14). First, we have

$$\Pr_{r} \left[\Gamma_{V}(D_{2}(x^{*}, r)) = 1 \right] \\
x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P^{(1)}} \\
= \Pr_{r} \left[\Gamma_{V}(D_{2}(x^{*}, r)) = 1 \middle| D_{2}(x^{*}, r) \neq \bot \right] \Pr_{r} \left[D_{2}(x^{*}, r) \neq \bot \right] \\
x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \qquad x^{*} = \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P^{(1)}} \\
\stackrel{(*)}{=} \Pr_{\pi^{(k)}, \rho} \left[c_{1} = 1 \middle| c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}, \pi_{1} = \pi^{*} \right] \Pr_{r} \left[D_{2}(x^{*}, r) \neq \bot \right], \quad (4.15) \\
x^{*} = \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans}$$

where in (*) we use the observation that the event $D_2(x^*,r) \neq \bot$ happens if and only if the circuit $D_2(x^*,r)$ finds $\pi^{(k)}$ such that $c \in \mathcal{G}_1 \setminus \mathcal{G}_0$. Furthermore, conditioned on $c \in \mathcal{G}_1 \setminus \mathcal{G}_0$ we have that $\Gamma_V(D_2(x^*,r)) = 1$ occurs if and only if $c_1 = 1$. Inserting (4.15) to the numerator of the first summand of (4.14) yields

$$\Pr_{\substack{x^* := \langle P^{(1)}(\pi^*), D_1(r) \rangle_{trans} \\ (\Gamma_V, \Gamma_H) := \langle P^{(1)}(\pi^*), D_1(r) \rangle_{trans} \\ (\Gamma_V, \Gamma_H) := \langle P^{(1)}(\pi^*), D_1(r) \rangle_{P^{(1)}}} \\
&= \Pr_{\substack{r \\ x^* = \langle P^{(1)}(\pi^*), D_1(r) \rangle_{trans}}} \left[D_2(x^*, r) \neq \bot \right] \Pr_{\substack{\pi^{(k)}, \rho}} \left[c_1 = 1 \mid c \in \mathcal{G}_1 \setminus \mathcal{G}_0, \pi_1 = \pi^* \right] \Pr_{\substack{\pi^{(k)}, \rho}} \left[c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^* \right].$$

$$x^* = \langle P^{(1)}(\pi^*), D_1(r) \rangle_{trans} \tag{4.16}$$

We consider the following two cases. If $\Pr_{\pi^{(k)},\rho}[c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] \leq \frac{\varepsilon}{6k}$ then

$$\Pr_{\pi^{(k)},\rho}[c_1 = 1 \mid c \in \mathcal{G}_1 \setminus \mathcal{G}_0, \pi_1 = \pi^*] \Pr_{\pi^{(k)},\rho}[c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] \le \frac{\varepsilon}{6k}. \quad (4.17)$$

When $\Pr_{\pi^{(k)},\rho}[c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] > \frac{\varepsilon}{6k}$ the circuit D_2 outputs \perp if and only if it fails in all $\frac{6k}{\varepsilon} \log(\frac{6k}{\varepsilon})$ iterations to find $\pi^{(k)}$ such that $c \in \mathcal{G}_1 \setminus \mathcal{G}_0$ which

happens with probability

$$\Pr_{r}[D_{2}(x^{*}, r) = \bot] \le (1 - \frac{\varepsilon}{6k})^{\frac{6k}{\varepsilon} \log(\frac{6k}{\varepsilon})} \le \frac{\varepsilon}{6k}.$$

$$x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans}$$

$$(4.18)$$

We conclude that in both cases by (4.17) and (4.18) we have

$$\Pr_{r} [D_{2}(x^{*}, r) \neq \bot] \Pr_{\pi^{(k)}, \rho} [c_{1} = 1 \mid c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*}]
\times^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans}$$

$$\geq \Pr_{\pi^{(k)}, \rho} [c_{1} = 1 \mid c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k}$$

$$= \Pr_{\pi^{(k)}, \rho} [c_{1} = 1 \land c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k}$$

$$= \Pr_{\pi^{(k)}, \rho} [g(c) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{0} \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k}$$

$$\stackrel{(4.9)}{=} \Pr_{\pi^{(k)}, \rho} [g(c) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{u \leftarrow \mu_{\delta}^{(k)}} [u \in \mathcal{G}_{0}] - S_{\pi^{*}, 0} - \frac{\varepsilon}{6k}. \quad (4.19)$$

We insert (4.19) to (4.14) and calculate the expected value of over π^* which yields

$$\Pr_{\substack{x := \langle P^{(1)}(\pi), D_{1}(r) \rangle_{trans} \\ (\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi), D_{1}(r) \rangle_{P^{(1)}}}} = 1] \ge \mathbb{E}_{\pi^{*}} \left[\frac{\Pr_{\pi^{(k)}, \rho}[g(c) = 1 | \pi_{1} = \pi^{*}] - \Pr_{u \leftarrow \mu_{\delta}^{(k)}}[u \in \mathcal{G}_{0}] - \frac{\varepsilon}{6k}}{\Pr_{u \leftarrow \mu_{\delta}^{(k)}}[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}]} \right] \\
- \mathbb{E}_{\pi^{*}} \left[\left(\Pr_{u \in \mu_{\delta}^{(k)}}[\Gamma_{V}(D_{2}(x^{*}, r)) = 1](S_{\pi^{*}, 1} - S_{\pi^{*}, 0}) + S_{\pi^{*}, 0} \right) \frac{1}{\Pr_{u \leftarrow \mu_{\delta}^{(k)}}[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}]} \right] \cdot \\
x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P^{(1)}} \tag{4.20}$$

We show that if Gen does not recurse, then the majority of estimates is low almost surely. Let us assume that

$$\Pr_{\pi} \left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \wedge \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right] < 1 - \frac{\varepsilon}{6k}, \tag{4.21}$$

then Gen recurses almost surely, because the probability that Gen does not find $\widetilde{S}_{\pi,b} \geq (1 - \frac{3}{4k})\varepsilon$ in all of the $\frac{6k}{\varepsilon}n$ iterations is at most

$$\left(1 - \frac{\varepsilon}{6k}\right)^{\frac{6k}{\varepsilon}n} \le e^{-n}$$

almost surely, where we used Lemma 4.7. Therefore, under the assumption that Gen does not recurse with high probability it holds

$$\Pr_{\pi,\rho}\left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon\right) \land \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon\right)\right] \ge 1 - \frac{\varepsilon}{6k}.\tag{4.22}$$

Let us define a set

$$W = \left\{ \pi : \left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \land \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right\}, \tag{4.23}$$

and use $\overline{\mathcal{W}}$ to denote the complement of \mathcal{W} . We bound the numerator of the second summand in (4.20)

$$\mathbb{E}_{\pi^{*}}[S_{\pi^{*},0} + \Pr_{r} [\Gamma_{V}(D_{2}(x^{*},r)) = 1](S_{\pi^{*},1} - S_{\pi^{*},0})]$$

$$x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans}$$

$$(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P(1)}$$

$$= \mathbb{E}_{\pi^{*}} \left[S_{\pi^{*},0} + \Pr_{r} [\Gamma_{V}(D_{2}(x^{*},r) = 1](S_{\pi^{*},1} - S_{\pi^{*},0}) \mid \pi^{*} \in \overline{\mathcal{W}}] \Pr_{\pi^{*}}[\pi^{*} \in \overline{\mathcal{W}}] \right]$$

$$x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans}$$

$$(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P(1)}$$

$$+ \mathbb{E}_{\pi^{*}} \left[S_{\pi^{*},0} + \Pr_{r} [\Gamma_{V}(D_{2}(x^{*},r)) = 1](S_{\pi^{*},1} - S_{\pi^{*},0}) \mid \pi^{*} \in \mathcal{W}] \Pr_{\pi^{*}}[\pi^{*} \in \mathcal{W}] \right]$$

$$x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans}$$

$$(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{$$

We observe that

$$\Pr_{u \leftarrow \mu_{\delta}^{k}}[g(u) = 1] = \Pr[u \in \mathcal{G}_{0} \lor (u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \land u_{1} = 1)]$$

$$= \Pr[u \in \mathcal{G}_{0}] + \delta \Pr[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}]. \tag{4.25}$$

Finally, we insert (4.24) into (4.20) which yields

$$\Pr_{\substack{x := \langle P^{(1)}(\pi), D_1(\rho) \rangle_{\text{trans}} \\ (\Gamma_V, \Gamma_H) := \langle P^{(1)}(\pi), D_1(\rho) \rangle_{P(1)}}} \left[\frac{\Pr_{\pi^{(k)}, \rho}[g(c) = 1 \mid \pi_1 = \pi^*] - \Pr_{u \leftarrow \mu_{\delta}^k}[u \in G_0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0]} \right].$$

From the assumptions of Lemma 4.5 it follows that

$$\Pr_{\pi^{(k)},\rho}[g(c)=1] \geq \Pr_{u \leftarrow \mu_{\delta}^{(k)}}[g(u)=1] + \varepsilon.$$

thus we get

$$\Pr_{\substack{x := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}} \\ (\Gamma_V, \Gamma_H) := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{P^{(1)}}}} \ge \frac{\Pr_{u \leftarrow \mu_{\delta}^k}[g(u) = 1] + \varepsilon - \Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0]} \\
\ge \frac{\Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0]}{\Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0] - (1 - \frac{1}{6k})\varepsilon} \\
\ge \frac{\varepsilon + \delta \Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0]} \ge \delta + \frac{\varepsilon}{6k}$$
(4.26)

Clearly, the running time of Gen is $poly(k, \frac{1}{\epsilon}, n)$.

4.1.5 Putting it together

In the previous sections we have shown that it is possible to partition the domain Q such that if the number of hint and verification queries is small, then success probability of a solver for the k-wise direct product is still substantial. As shown in Lemma 4.5 we can build a circuit that returns a solution that is likely to be good. It remains to use these build blocks and prove Theorem 4.2.

Proof (of Theorem 4.2). Let $\widetilde{\text{Gen}}$ be the algorithm from Theorem 4.2, and $\widetilde{D} = (D_1, D_2)$ the corresponding solver circuit for P that is output by $\widetilde{\text{Gen}}$ as in Theorem 4.2. They are defined on the following code excerpts.

Circuit $\widetilde{D}_{2}^{D,P^{(1)},hash,g,\Gamma_{V},\Gamma_{H}}(x,\rho)$

Oracle: A circuit $D := (D_1, \widetilde{D}_2)$ from Lemma 4.5, a problem poser $P^{(1)}$, functions $hash : Q \to \{0, 1, \dots, 2(h+v)-1\}, g : \{0, 1\}^k \to \{0, 1\}$ a verification oracle Γ_V , a hint oracle Γ_H .

Input: Bitstrings $x \in \{0,1\}^*, \rho \in \{0,1\}^*$.

 $(q,y) := D_2^{P^{(1)}, \widetilde{C}, hash, g, \Gamma_H}(x, \rho)$ Ask verification query (q, y) to Γ_V .

Algorithm $\widetilde{\mathrm{Gen}}^{P^{(1)},g,C}(n,\varepsilon,\delta,k,h,v)$

Oracle: A problem poser $P^{(1)}$, a function $g: \{0,1\}^k \to \{0,1\}$, a solver circuit C for $P^{(g)}$.

Input: Parameters n, ε , δ , k, h, v.

Return: A circuit $\widetilde{D} = (D_1, \widetilde{D}_2)$.

 $hash := FindHash((h + v)\varepsilon, n, h, v)$

Let $\widetilde{C} := (C_1, \widetilde{C}_2)$ be as in Lemma 4.4 with oracle access to C, hash.

 $D := Gen^{P^{(1)}, \widetilde{C}, g, hash}(\varepsilon, \delta, n, k)$

return $\widetilde{D} := (D_1, \widetilde{D}_2)$

We show that Theorem 4.2 follows from Lemma 4.3 and Lemma 4.5. We fix $P^{(1)}$, g, $P^{(g)}$ in the whole proof and consider a solver circuit $C = (C_1, C_2)$, asking at most h hint queries and v verification queries, such that

$$\Pr_{\pi^{(k)},\rho} \left[Success^{P^{(g)},C}(\pi^{(k)},\rho) = 1 \right] \geq 16(h+v) \Big(\Pr_{u \leftarrow \mu_{\delta}^k} \left[g(u) = 1 \right] + \varepsilon \Big).$$

First, we note that C meets the requirements of Lemma 4.3. Thus, the algorithm $\widetilde{\text{Gen}}$ can call FindHash to obtain hash such that with high probability it holds

$$\Pr_{\pi^{(k)},\rho} \left[\mathit{CanonicalSuccess}^{P^{(g)},C,\mathit{hash}}(\pi^{(k)},\rho) = 1 \right] \geq \Pr_{u \leftarrow \mu_{\delta}^k} \left[g(u) = 1 \right] + \varepsilon.$$

Applying Lemma 4.4 for C we obtain a circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$ that satisfies

$$\Pr_{\substack{\pi^{(k)}, \rho \\ x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{trans} \\ (\Gamma_V^{(g)}, \Gamma_H^{(k)}) := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P(g)}}} [\Gamma_V^{(g)}(\widetilde{C}_2^{\Gamma_H^{(k)}, C_2, hash}(x, \rho)) = 1] \ge \Pr_{\substack{u \leftarrow \mu_{\delta}^k \\ (\Gamma_V^{(g)}, \Gamma_H^{(k)}) := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P(g)}}} [g(u) = 1] + \varepsilon.$$

Now, we use the algorithm Gen as in Lemma 4.5 that yields a circuit $D = (D_1, D_2)$ which with high probability satisfies

$$\Pr_{\pi,\rho} \left[\Gamma_V \left(D_2^{P^{(1)},\tilde{C},hash,g,\Gamma_H}(x,\rho) \right) = 1 \right] \ge \left(\delta + \frac{\varepsilon}{6k} \right). \tag{4.27}$$

$$x := \langle P^{(1)}(\pi), D_1^{\tilde{C}}(\rho) \rangle_{trans} (\Gamma_H, \Gamma_V) := \langle P^{(1)}(\pi), D_1^{\tilde{C}}(\rho) \rangle_{P^{(1)}}$$

Finally, $\widetilde{\text{Gen}}$ outputs $\widetilde{D} = (D_1, \widetilde{D}_2)$ with oracle access to $D, P^{(1)}, hash, g$ such that with high probability it holds

$$\Pr_{\pi,\rho} \left[Success^{P^{(1)},\widetilde{D}}(\pi,\rho) = 1 \right] \ge (\delta + \frac{\varepsilon}{6k}).$$

The running time of FindHash is $poly(h, v, \frac{1}{\varepsilon}, n)$ with oracle calls and of Gen $poly(k, \frac{1}{\varepsilon}, n)$ with oracle access. Thus, the overall running time of \widetilde{Gen} is $poly(k, \frac{1}{\varepsilon}, h, v, n, t)$ with oracle access. Furthermore, the circuit \widetilde{D} asks at most $\frac{6k}{\varepsilon}\log(\frac{6k}{\varepsilon})h$ hint queries and one verification query. Finally, we have $Size(\widetilde{D}) \leq Size(C) \cdot \frac{6k}{\varepsilon}$. This finishes the proof of Theorem 4.2.

4.2 Discussion

Appendix A

Appendix

A.1 Basic Inequalities

Lemma A.1 (Chernoff Bounds) For independent, identically distributed Bernoulli random variables X_1, \ldots, X_n with $X := \sum_{i=1}^n X_i$ with $\Pr[X_i = 1] = p_i$ and $\Pr[X_i = 0] = 1 - p_i$ for all $1 \le i \le n$. we have the following inequalities for $0 \le \delta \le 1$ and $\mathbb{E}[X] = \sum_{i=1}^n p_i$:

$$\Pr[X \ge (1+\delta)\mathbb{E}[X]] \le e^{-\mathbb{E}[X]\delta^2/3} \tag{A.1}$$

$$\Pr[X \le (1 - \delta)\mathbb{E}[X]] \le e^{-\mathbb{E}[X]\delta^2/2} \tag{A.2}$$

$$\Pr[|X - \mathbb{E}[X]| \ge \delta \mathbb{E}[X]] \le 2e^{-\mathbb{E}[X]\delta^2/3}. \tag{A.3}$$

Bibliography

- [AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge University Press, New York, NY, USA, 1st edition, 2009.
- [CHS04] Ran Canetti, Shai Halevi, and Michael Steiner. Hardness amplification of weakly verifiable puzzles. 2004.
- [CW77] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions (extended abstract). In *Proceedings of the Ninth Annual ACM Symposium on Theory of Computing*, STOC '77, pages 106–112, New York, NY, USA, 1977. ACM.
- [DIJK09] Yevgeniy Dodis, Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Security amplification for interactive cryptographic primitives. In *Proceedings of the 6th Theory of Cryptography Conference on Theory of Cryptography*, TCC '09, pages 128–145, Berlin, Heidelberg, 2009. Springer-Verlag.
- [Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New York, NY, USA, 2004.
- [Hol13a] Thomas Holenstein. Complexity theoretic cryptography, Spring 2013.
- [Hol13b] Thomas Holenstein. Lecture notes in complexity theory, Spring 2013.
- [HS10] Thomas Holenstein and Grant Schoenebeck. General hardness amplification of predicates and puzzles. CoRR, abs/1002.3534, 2010.

[Mau13] Ueli Maurer. Lecture notes in cryptography, Spring 2013.

[VABHL03] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. Captcha: Using hard ai problems for security. In *Advances in Cryptology—EUROCRYPT 2003*, pages 294–311. Springer, 2003.