Summary for "Elementary Number Theory: Second Edition by Underwood Dudley"

Agro Rachmatullah 2018-12-10

1 Integers

Definition 1.1. a divides b (written $a \mid b$) if and only if there is an integer d such that ad = b.

Examples $3 \mid 6, 15 \mid 60, 9 \mid 9, -4 \mid 16, \text{ and } 2 \mid -100.$

Definition 1.2. If a does not divide b, we write $a \nmid b$.

Examples $10 \nmid 5$ and $3 \nmid 7$.

Lemma 1.1. If $d \mid a$ and $d \mid b$, then $d \mid (a + b)$.

Example $2 \mid 4 \text{ and } 2 \mid 10, \text{ so } 2 \mid 12.$

Lemma 1.2. If $d \mid a_1, d \mid a_2, ... d \mid a_n$, then $d \mid (c_1a_1 + c_2a_2 + ... + c_na_n)$ for any integers $c_1, c_2, ..., c_n$

Example $2 \cdot 6 + 4 \cdot 9 = 12 + 36 = 48$. Because $3 \mid 6$ and $3 \mid 9$, we conclude that $3 \mid 48$.

Definition 1.3. d is the greatest common divisor of a and b (written d = (a, b)) if and only if

- (i) $d \mid a$ and $d \mid b$, and
- (ii) if $c \mid a$ and $c \mid b$, then $c \leq d$

Examples (2,6) = 2 and (5,7) = 1.