University of British Columbia, Vancouver GEOS 300 - Microscale Weather and Climate Knox

Study Questions - Lecture 21

- 1. At a tower you measure the following average air temperatures: $\overline{T_1} = 15^{\circ}\text{C}$ and $\overline{T_2} = 10^{\circ}\text{C}$, at heights $z_1 = 1\,\text{m}$ and $z_2 = 11\,\text{m}$. Calculate $\Delta \overline{T}/\Delta z$ and $\Delta \overline{\theta}/\Delta z$.
- 2. Redo the calculation for air temperatures $\overline{T_1}=10.0^{\circ}\mathrm{C}$ and $\overline{T_2}=11.0^{\circ}\mathrm{C}$, at heights $z_1=1\,\mathrm{m}$ and $z_2=6\,\mathrm{m}$.
- 3. For question 1 and 2 calculate Q_H using the K-Theory. Given is the eddy diffusivity $K_H = 0.2 \,\mathrm{m^2 \, s^{-1}}$. Use appropriate values form Tables in Oke, T. R. 'Boundary Layer Climates'.
- 4. At the tower you measure a carbon dioxide concentration of $\overline{\rho_{c1}} = 14 \,\mathrm{mmol}\,\mathrm{m}^{-3}$ and $\overline{\rho_{c2}} = 15 \,\mathrm{mmol}\,\mathrm{m}^{-3}$, at heights $z_1 = 1 \,\mathrm{m}$ and $z_2 = 11 \,\mathrm{m}$. Calculate $\Delta \overline{\rho_c}/\Delta z$ and the mass flux density of carbon dioxide using the K-Theory and the Reynolds analogy.
- 5. At the tower you measure also measure absolute humidity of $\overline{\rho_{v1}} = 5$, g m⁻³ and $\overline{\rho_{v2}} = 4$ g m⁻³, at the same heights $z_1 = 1$ m and $z_2 = 11$ m. Calculate $\Delta \overline{\rho_v}/\Delta z$ and the mass flux density of water vapour E (in g m⁻² s⁻¹) using the K-Theory and Reynolds analogy.
- 6. Calculate Q_E from question 5.