Assignment 4 - Flugzeugabsturz

Amelie Dzierzawa & Moritz Ruge November 10, 2024

Aufgabe 4 - 1: Recherche - Boeing Absturz

a) Maßnahmen:

- Startverbot nach dem 2. Absturz von der FAA
- Entwicklung einer neuen Software-Architektur für Flugkontrollsysteme der Boeing 737 max (Fail-Safe-Prinzip mehr Sicherheit)

Ursachen:

- Stabilisierungssoftware MCAS(Maneuvering Characteristics Augmentation System) (soll Flugzeug vor Stromabrissretten) war fehlerhaft: hat Nase von Flugzeug nach unten gedrückt weil es falsche Daten von defektem Anstellwinkelsensor bekam
- 2 Bordcomputer kontrollieren sich nicht gegenseitig sondern abwechselnd
- ullet Gerücht über Softwarefehler: Warnlicht funktioniert nicht \longrightarrow sollte anzeigen wenn 2 Anstellwinkelsensoren unterschiedliche Daten anzeigen
- Co-Pilot hat Anweisungen des Piloten sehr langsam und unzureichend umgesetzt
- Schon zuvor im Training durch Schwächen aufgefallen

Mitte 2024 kommt raus:

Boeing bekennt sich schuldig, US-Regierung betrogen zu haben um Gerichtsprozess der 2 Abstürze zu entkommen (Haben gegen Complianceund Ethik-programm verstoßen, trotz Deal)

b): Warum entwickelt? Was sind die Unterschiede?

- Weiterentwicklung des Vorgägners
 - Andere Triebwerke
 - Mehr Platz
 - Größere Effizienz (Aerodynamische Änderungen)
- Wurde als Kurzstreckenflugzeug Entwickelt
- Sollte an Airbus verlorene Markanteile aufholen

Ziele:

- Entwicklung eines Flugzeuges, dass mit der Konkurrenz (Airbus A320neo) mithalten kann[1]
 - Reduzierung des Treibstoffverbrauchs um 15% (wie vom A320neo)
 - Erste Schätzung lagen bei 10-12\%, später bei 14,5\%

• MCAS

- Für alle ungewöhnlichen Fluglagen
- Vergleich der Messdaten zweier Sensoren zur Erfassung des Anstellwinkels
- MCAS läst nur aus wenn beide Daten übereinstimmen
 - * Kann nur einmal ausgelösen
- MCAS kann Steuereingabe über Steuerhorn des Piloten nicht mehr außer Kraft setzten

• Vorher:

- MCAS bekam Daten nur von einem einzelnen Sensor
- Auslösung wiederholte sich immer wieder \longrightarrow Sensor meldete erneut erhöhten Anstellwinkel

• Neu:

- Beide Sensoren liefern die Daten an MCAS
 - * Und beide Datensätze müssen übereinstimmen
- Verhältnis zu Manual Electric Trim Wheel:
 - Switch wurde ausgeschaltet
 - * Trim Wheel konnte nicht mehr genutzt werden
 - Switch wurde wieder angeschaltet \longrightarrow MCAS wurde wieder Aktiviert
 - Berücksichtigte Datenquelle durch MCAS:
 - * Nur einer von zwei Sensoren lieferte Daten an MCAS
 - Rolle von MCAS in Abstürze:
 - * MCAS hat nur von einen Sensor Daten erhalten
 - * Sensor war defekt, da druch den Anstellwinkel falsch berechnet
 - * MCAS hat die Nase des Flugzeugs immer wieder nach Unten gedrückt um den Anstellwinkel zu "Korrigieren"

d) FAA und der Absturz

• FAA

- Federal Abiation Administration
- Bundesluftfahrtbehörde der USA
- Regulierung der zivilen Luftfahrt und des kommerziellen Lufttransports in den USA
- Nach den beiden Abstürzen wurde die Zertifizierung von der FAA im Jahre 2020 überholt[2]
 - * Firmen müssen bei Design/- oder Änderungen von Flugeingenschaften, einen neuen Antrag stellen

• Zertifizierungsprozess

- 4 Flugzeuge intensiv geprüft
- Sollte als Folgeversion des 737NG(Next Generation) zertifiziert werden (Supplemental type certificate – STC)
- FAA hat Boeing erlaubt für die FAA Sicherheitsanalysen anzufertigen[3]
 - * Analyse wurde für die Zertifizierung benutzt (auch in der EU)
- -es muss weniger neu Zertifiziert werden \longrightarrow Pilotenausbildung muss nicht angepasst werden, bedarf an Pilotenausbildung wird reduziert \longrightarrow weniger Kosten

• MCAS FAA

 MCAS wurde nicht auf Fehler geprüft (außer von Boeing selbst), da es nicht nötig war von den Protokollen her

• MCAS Einstufung

- Major
- Keine Fehlerbaumanalyse
- Bewertung der Fehler erforderte keine wietere Analyse

4-2

Gründe & Urgründe

- Unzureichende Überprüfung von MCAS
- Analyse von Sicherheitsrelevanten Systeme von Boeing selbst
- Zu wenig Sensoren
- Fehlerhafte Architektur in MCAS
- Unzureichende Ausbildung und Schulung der Piloten

Verantwortung

- FAA hätte besser kontrollieren müssen
- Co-Pilot hätte sich selbst besser einschätzen können
- Architekten und Techniker des Flugzeugs
- Manager von Boeing, die auf höhere Gewinnmaximierung aus sind

Warum hat der Zertifizierungsprozess nicht geleistet was er sollte?

- FAA hat nicht genau genug kontrolliert MCAS wurde nicht analysiert
- Boeing hat Sicherheitsrelevante Informationen unterschlagen um Geld zu Sparen (STC)

Vorbeugung

- Bessere Kontrollen
- Bessere Schulung des Personals
- Sicherheitsrelevante Überprüfungen von Öffentlichen Organisationen

References

- [1] Wikipedia contributors. *Boeing 737 MAX*. URL: https://en.wikipedia.org/wiki/Boeing_737_MAX#Design. (accessed: 09.11.2024).
- [2] Haley Davoren. FAA adopts strict new policy on aircraft design changes in wake of deadly Boeing 737 MAX crashes. URL: https://www.globalair.com/articles/faa-adopts-strict-new-policy-on-aircraft-design-changes-in-wake-of-deadly-boeing-737-max-crashes?id=6674. (accessed: 09.11.2024).

[3] Dominic Gates. Flawed analysis, failed oversight: How Boeing, FAA certified the suspect 737 MAX flight control system. URL: https://www.seattletimes.com/business/boeing-aerospace/failed-certification-faa-missed-safety-issues-in-the-737-max-system-implicated-in-the-lion-air-crash/. (accessed: 09.11.2024).

Nach Abstürzen der Boeing 737-Max Grundlegender Softwarefehler in der Boeing 737 Max gefunden Mängel der Boeing 737 max für absturz verantwortlich Boeing 737 max 737 max updates mantrim Wikibrief - Boeing 737 MAX Certification