GPGPU for Real-Time Data Analytics:

Case Studies – MapReduce (On-Demand Analytics)

Bingsheng He¹, Huynh Phung Huynh², Rick Siow Mong Goh²

¹Nanyang Technological University, Singapore ²A*STAR Institute of High Performance Computing, Singapore

Scope and Goals

- We use MapReduce as an example to demonstrate how GPGPU accelerates ondemand RTDA with MapReduce.
 - Single-GPU acceleration of MapReduce for speedup.
 - GPU integrations into Hadoop for scalability.

Outline

- Why MapReduce on GPUs
- Mars
 - Single-GPU implementation [He et al., PACT'08]
 - Multi-GPU implementation [Fang et al., TPDS'11]
- Other MapReduce Variants
- Summary

GPGPU Programming

- "Assembly languages"
 - DirectX, OpenGL
 - Graphics rendering pipelines
- "C/C++"
 - NVIDIA CUDA, OpenCL
 - Need to think in parallel.
 - Hardware specific optimizations on users.
- "Functional language"?

Without worrying about hardware details—

- Make GPGPU programming much easier.
- Well harness high parallelism and high computational capability of GPUs.

MapReduce

MapReduce Functions

- Process lots of data to produce other data
- Input & Output: a set of records in the form of key/value pair
- Programmer specifies two functions
 - map (in_key, in_value) -> emit
 list(intermediate_key, intermediate_value)
 - reduce (out_key, list(intermediate_value)) -> emit list(out_key, out_value)

MapReduce Workflow

From http://labs.google.com/papers/mapreduce.html

Outline

- Why MapReduce on GPUs
- Mars
 - Single-GPU implementation
 - Multi-GPU implementation
- Other MapReduce Variants
- Summary

MapReduce on GPU

Limitations on GPUs

- Rely on the CPU to allocate memory
 - How to support variable length data?
 - How to allocate output buffer on GPUs?

- Lack of lock support, and/or synchronization can be costly.
 - How to synchronize to avoid write conflict?

Data Structure for Mars

Support variable length record!

A Record = <Key, Value, Index entry>

Key1	Key2	Key3	•••
Value1	Value2	Value3	•••
Index entry1	Index entry2	Index entry3	

An index entry = <key size, key offset, val size, val offset>

Lock-free scheme for result output

Basic idea:

Calculate the offset for each thread on the output buffer.

Lock-free scheme

- 1. Histogram on key size, value size, and record count.
- 2. Prefix sum on key size, value size, and record count.
- 3. Allocate output buffer on GPU memory.
- 4. Perform computing.

Avoid write conflict.

Allocate output buffer exactly once.

Mars Workflow

Optimization According to CUDA features

- Coalesced Access
 - Multiple accesses to consecutive memory addresses are combined into one transfer.
- Build-in vector type (int4, char4 etc)
 - Multiple small data items are fetched in one memory request.
- Shared memory
 - Exploit shared memory in GPU-based Bitonic Sort for Group Stage.
 - Users can explicitly utilize shared memory in their Map/Reduce functions.

MarsCPU vs. Phoenix

Overhead of Phoenix:

- Always need Reduce stage.
- Lock overhead.
- Re-allocate buffer on the fly.
- Insertion sort on static arrays.
 Call memmove() frequently.

MarsCUDA vs. MarsCPU

Speedup:

- Massive thread parallelism
- Memory bandwidth

Outline

- Why MapReduce on GPUs
- Mars
 - Single-GPU implementation
 - Multi-GPU implementation
- Other MapReduce Variants
- Summary

MarsHadoop: Integrating Mars into Hadoop

Notation: GPU Worker CPU Worker

Outline

- Why MapReduce on GPUs
- Mars
 - Single-GPU implementation
 - Multi-GPU implementation
- Other MapReduce Variants
- Summary

Further Enhancements

- A number of projects that improve Mars and MarsHadoop
 - Single-GPU systems
 - MapCG [Hong et al. 10]
 - Shared memory usage [Ji et al. 11; Chen et al. 12]
 - StreamMR [Elteir et al. 11]
 - Multi-GPU systems
 - GPMR [Stuart et al. 11]
 - Pamar [Tan et al. 12]
 - Surena [Kruijf et al. 12]
 - Hybrid map scheduling [Shirahata et al. 10]

MapCG: MapReduce on CPUs and GPUs

- Map and Reduce
 - Based upon CUDA spec
 - Portable for both CPUs and GPUs
- MapCG generates CPU and GPU code with source code generation
- Runtime executes the Map Reduce code
 - CPU (OpenMP)
 - GPU (CUDA)

MapCG: MapReduce on CPUs and GPUs (Cont')

- Specialized memory allocator
 - On CPU
 - One big malloc
 - Pheonix-2 uses allot of small mallocs:
 Inefficient, each intermediate key/value requires malloc
 - On GPU
 - CUDA has no support for on-device malloc (note: when MapCG was developed)
 - Mars uses a "count phase" (mapping is done twice)
 - MapCG uses one big buffer in global memory, and moves a "free space pointer" atomicAdd
- More memory efficient hash table
 - Phoenix and Mars sort the key/value pairs
 - MapCG hashes key/value pairs: More efficient

MapCG: MapReduce on CPUs and GPUs (Cont')

Speedup of MapCG over Mars on GTX280

GPU, using Small, Medium, and Large datasets.

Chuntao Hong et al. Mapcg: writing parallel program portable between cpu and gpu. PACT '10.

GPMR: Multi-GPU MapReduce on GPU Clusters

- A stand-alone library: not a fully-featured MapReduce implementation.
- Handle data movement, out-of-core data management, and maintain full GPU access.

GPU-enabled Hadoop

- Pamar[Tan et al. 12]
 - Uses JCUDA to automatically identify whether the task requires GPU resources.
 - Implements a FCFS scheduler that is aware of heterogeneous environments.
- Surena [Kruijf et al. 12]
 - Monitors and maximizes the GPU utilization.
 - Task resizing: select appropriate task granularity for a particular architecture.

Summary

- Heterogeneous platforms are common in current and future data analytics paradigms.
- GPUs are able to effectively accelerate
 MapReduce, which is the best-practice for on-demand RTDA.
- GPU-enabled Hadoop can be used in solving the on-demand RTDA problems in big data era.

Thank you and Q&A

Feedbacks are welcome:

Bingsheng He, bshe@ntu.edu.sg

Huynh Phung Huynh, huynhph@ihpc.a-star.edu.sg

Rick Goh Siow Mong, gohsm@ihpc.a-star.edu.sg

Tutorial site: http://www3.ntu.edu.sg/home/bshe/GPGPUTut.html

