Master Thesis

Sébastien Vaucher sebastien.vaucher@unine.ch

13 January 2016

Contents

1	Stat	State of the art																						
	1.1	Article	es .																					2
		1.1.1	XOF	Ring	Ele	pha	nts :	N	ove]	E	ras	ure	\mathbf{C}	$od\epsilon$	es :	for	Big	g D	ata	a [1]			2

1 State of the art

1.1 Articles

1.1.1 XORing Elephants: Novel Erasure Codes for Big Data [1]

The article presents a new family of erasure codes called Locally Repairable Codes (LRCs). These codes enable local repair of faulty data. It means that to repair a file, it is not needed to load all of its blocks, as is common with e.g. Reed-Solomon. The authors implemented their algorithm in Hadoop HDFS and deployed a test to Facebook clusters. The repair process of LRC uses half the disk and network bandwidth compared to Reed-Solomon, at the expense of $14\,\%$ more storage usage.

Bibliography

[1] M. Sathiamoorthy et al., "Xoring elephants: novel erasure codes for big data", in *Proceedings of the VLDB Endowment*, VLDB Endowment, vol. 6, 12 Jan. 2016, pp. 325–336.