一、计算题(1-6 小题, 共 36 分)

解:
$$\begin{vmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ e & f & 1 & 2 \\ g & h & 3 & 4 \end{vmatrix} = -2(ad - bc)$$

2. (6分) 设
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, 求 A^{2022}

解:
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (1 & 1)$$
, $A^{2021} = 2^{2021} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

3. (6分) 设
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $P_1 = \begin{pmatrix} 1 & 10 \\ 0 & 1 \end{pmatrix}$, $P_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 求 $P_1 A P_2^2$.

$$\mathbf{P}_{1}AP_{2}^{2} = \begin{pmatrix} 1 & 10 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{2} = \begin{pmatrix} 1 & 10 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 31 & 42 \\ 3 & 4 \end{pmatrix}$$

4. (6分) 设
$$A = \begin{pmatrix} 4 & 0 \\ 1 & 4 \end{pmatrix}$$
, 且满足 $AB = A + 3B$, 求矩阵 B .

M:
$$AB = A + 3B \Rightarrow AB - 3B = A \Rightarrow (A - 3E)B = A \Rightarrow B = (A - 3E)^{-1}A$$

$$(A - 3E \mid A) = \begin{pmatrix} 1 & 0 & | 4 & 0 \\ 1 & 1 & | 1 & 4 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & | 4 & 0 \\ 0 & 1 & | -3 & 4 \end{pmatrix} B = \begin{pmatrix} 4 & 0 \\ -3 & 4 \end{pmatrix}$$

5. (6 分)设五元非齐次线性方程组 Ax = b的系数矩阵 A的秩为 4, $\beta_1, \beta_2, \beta_3$ 是它的三个解且满足 $\beta_1 + \beta_2 = (3,1,-1,2,2)^T$, $\beta_1 + \beta_3 = (2,0,-2,2,2)^T$,求 Ax = b的通解.

解:因为系数矩阵 A 的秩为 4,所以 $(\beta_1 + \beta_2) - (\beta_1 + \beta_3) = \beta_2 - \beta_3 = (1,1,1,0,0)^T$ 是齐次

方程的基础解系. 又 $A(\beta_1+\beta_3)=2b$,所以 $\frac{1}{2}(\beta_1+\beta_3)=(1,0,-1,1,1)^T$ 是 Ax=b 的特解.

故通解为
$$A = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \\ 1 \end{pmatrix} + k \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

6. (6分) 已知
$$\mathbb{R}^2$$
 的两组基: $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 和 $\beta_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, 求从基 α_1 , α_2

到基 β_1 , β_2 的过渡矩阵.

解: 设过渡矩阵为P,则 $(\beta_1, \beta_2) = (\alpha_1, \alpha_2)P \Rightarrow (\alpha_1, \alpha_2)^{-1}(\beta_1, \beta_2) = P$

$$\begin{pmatrix} 1 & -1 & | & 1 & 2 \\ 1 & 1 & | & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 1 & 2 \\ 0 & 2 & | & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 1 & 2 \\ 0 & 1 & | & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & \frac{3}{2} & \frac{3}{2} \\ 0 & 1 & | & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

$$\therefore P = \begin{pmatrix} \frac{3}{2} & \frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

二、解答题(7-9 小题, 共 40 分)

7. (12 分) 讨论线性方程组
$$\begin{cases} x_1+x_2+x_3=1\\ x_1+ax_2+a^2x_3=2 \end{cases}$$
 解的情况。
$$x_1+bx_2+b^2x_3=4$$

Fig.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & b & b^2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & b & b^2 \end{vmatrix} = (a-1)(b-1)(b-a)$$

当|A|≠0 时,即 a≠1,b≠1且a≠b时,方程组有唯一解。

当
$$a = 1$$
 时, $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & b & b^2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & b & b^2 & 4 \end{pmatrix}$,方程组无解。

当
$$b=1$$
时, $A=\begin{pmatrix}1&1&1&1\\1&a&a^2&2\\1&1&1&4\end{pmatrix}$ $\rightarrow \begin{pmatrix}1&1&1&1\\1&1&a^2&2\\0&0&0&3\end{pmatrix}$,方程组无解。

当
$$a = b$$
 时, $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & a & a^2 & 2 \\ 1 & b & b^2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & a & a^2 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}$,方程组无解。

.....6 分

8. (12 分) 已知向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, 求此向量组的所有极大线性无关组。

解: 先求得向量组的秩为 2,6 分

因此极大无关组中有两个向量,从而任意两个向量都是极大无关组,共有6组。

.....6分

- **9. (16 分)** 判断二次型 $f(x_1,x_2) = x_1^2 + 2x_1x_2 + x_2^2$ 的正定性,并用正交变换将其化成标准形。
- **解**:二次型的矩阵为 $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$,各阶顺序主子式分部为 1,0,因此矩阵不正定,从而二

次型不正定.

.....4 分

 $\frac{\mathbf{k}^2}{\mathbf{k}^2}$ 的特征值为 $\lambda_1 = 0$, $\lambda_2 = 2$.

 λ_1 对应的特征向量为: $p_1 = (-1,1)^T$,单位化得 $q_1 = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})^T$.

$$\lambda_2$$
 对应的特征向量为: $p_2 = (1,1)^T$,单位化得 $q_1 = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})^T$.

令
$$Q = \begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$
,则 $Q^TAQ = diag\{0,2\}$,正交变换 $x = Qy$ 将二次型化成:

$$f(x,y) = 2y_2^2$$

三、证明题(10-12,每小题 8分,共 24分)

10. (8分) 已知方阵 A, 若 $A^3 = O$, 证明: E - A 可逆, 且 $(E - A)^{-1} = E + A + A^2$.

直接验证即可

11. (8分) 已知正交阵Q和两单位向量 α , β ,设 $\alpha_1=Q\alpha$, $\beta_1=Q\beta$,证明: 向量 $\alpha_1+\beta_1$ 与 $\beta_1-\alpha_1$ 正交

$$[\alpha_1 + \beta_1, \beta_1 - \alpha_1] = (\alpha_1 + \beta_1)^T (\beta_1 - \alpha_1) = (\alpha + \beta)^T Q^T Q (\beta - \alpha)$$

证明:
$$= (\alpha + \beta)^T (\beta - \alpha) = \alpha^T \beta - \alpha^T \alpha + \beta^T \beta - \beta^T \alpha = 0$$

(∵ $\alpha^T \beta = \beta^T \alpha, \alpha^T \alpha = \beta^T \beta = 1$)

故向量 $\alpha_1 + \beta_1 与 \beta_1 - \alpha_1$ 正交.

12. (8分) 设 $b \neq 0$, β 是非齐次线性方程组Ax = b的一个解, $\alpha_1, \alpha_2, \alpha_3$ 是齐次线性方程组Ax = 0的基础解系,证明:向量组 $\beta, \beta + \alpha_1, \beta + 2\alpha_2, \beta + 3\alpha_3$ 线性无关.

证明: 设
$$k_0\beta + k_1(\beta + \alpha_1) + k_2(\beta + 2\alpha_2) + k_3(\beta + 3\alpha_3) = 0$$
, 即

$$(k_0 + k_1 + 2k_2 + 3k_3)\beta + k_1\alpha_1 + 2k_2\alpha_2 + 3k_3\alpha_3 = 0$$

于是

$$0 = A((k_0 + k_1 + 2k_2 + 3k_3)\beta + k_1\alpha_1 + 2k_2\alpha_2 + 3k_3\alpha_3) = (k_0 + k_1 + 2k_2 + 3k_3)A\beta = (k_0 + k_1 + 2k_2 + 3k_3)b$$

又
$$b \neq 0$$
,所以 $k_0 + k_1 + 2k_2 + 3k_3 = 0$,从而 $k_1\alpha_1 + 2k_2\alpha_2 + 3k_3\alpha_3 = 0$.

再由
$$\alpha_1, \alpha_2, \dots, \alpha_m$$
线性无关,可得 $k_1 = 2k_2 = 3k_3 = 0$. 即: $k_1 = k_2 = k_3 = 0$

再由
$$k_0 + k_1 + 2k_2 + 3k_3 = 0$$
可得 $k_0 = 0$,从而 $k_0 = k_1 = k_2 = k_3 = 0$,