Contents

Preface					
0	nitialization 1 An Effective Theory Approach				
1	Pretraining1.1 Gaussian Integrals1.2 Probability, Correlation and Statistics, and All That1.3 Nearly-Gaussian Distributions	21			
2	Neural Networks2.1 Function Approximation2.2 Activation Functions2.3 Ensembles	43			
3	Effective Theory of Deep Linear Networks at Initialization 3.1 Deep Linear Networks	56 59			
4	RG Flow of Preactivations 4.1 First Layer: Good-Old Gaussian 4.2 Second Layer: Genesis of Non-Gaussianity 4.3 Deeper Layers: Accumulation of Non-Gaussianity 4.4 Marginalization Rules 4.5 Subleading Corrections 4.6 RG Flow and RG Flow	79 90 96 100			
5	Effective Theory of Preactivations at Initialization 5.1 Criticality Analysis of the Kernel	123			

vi

		5.3.1 General Strategy	. 126			
		5.3.2 No Criticality: Sigmoid, Softplus, Nonlinear Monomials, etc	. 128			
		5.3.3 $K^* = 0$ Universality Class: tanh, sin, etc				
		5.3.4 Half-Stable Universality Classes: SWISH, etc. and GELU, etc				
	5.4	Fluctuations				
		5.4.1 Fluctuations for the Scale-Invariant Universality Class				
		5.4.2 Fluctuations for the $K^* = 0$ Universality Class				
	5.5	Finite-Angle Analysis for the Scale-Invariant Universality Class				
6	Bayesian Learning					
	6.1	Bayesian Probability	. 154			
	6.2	Bayesian Inference and Neural Networks	. 156			
		6.2.1 Bayesian Model Fitting	. 157			
		6.2.2 Bayesian Model Comparison	. 165			
	6.3	Bayesian Inference at Infinite Width	. 169			
		6.3.1 The Evidence for Criticality	. 169			
		6.3.2 Let's Not Wire Together	. 173			
		6.3.3 Absence of Representation Learning	. 178			
	6.4	Bayesian Inference at Finite Width				
		6.4.1 Hebbian Learning, Inc	. 179			
		6.4.2 Let's Wire Together				
		6.4.3 Presence of Representation Learning	. 186			
7	Gradient-Based Learning					
	7.1	Supervised Learning				
	7.2	Gradient Descent and Function Approximation	. 194			
8	$\mathbf{R}\mathbf{G}$	RG Flow of the Neural Tangent Kernel				
	8.0	Forward Equation for the NTK				
	8.1	First Layer: Deterministic NTK				
	8.2	Second Layer: Fluctuating NTK				
	8.3	Deeper Layers: Accumulation of NTK Fluctuations				
		8.3.0 Interlude: Interlayer Correlations				
		8.3.1 NTK Mean				
		8.3.2 NTK-Preactivation Cross Correlations				
		8.3.3 NTK Variance	. 221			
9		ective Theory of the NTK at Initialization	227			
	9.1	Criticality Analysis of the NTK				
	9.2	Scale-Invariant Universality Class				
	9.3	$K^* = 0$ Universality Class				
	9.4	Criticality, Exploding and Vanishing Problems, and None of That	241			

Contents

10	Ker	nel Lea	arning	24	7
	10.1	A Sma	all Step	. 24	8
		10.1.1	No Wiring	. 25	0
		10.1.2	No Representation Learning	. 25	0
	10.2	A Giai	nt Leap	. 25	2
		10.2.1	Newton's Method	. 25	3
		10.2.2	Algorithm Independence	. 25	7
		10.2.3	Aside: Cross-Entropy Loss	. 25	9
		10.2.4	Kernel Prediction	. 26	1
	10.3		alization		
		10.3.1	Bias–Variance Tradeoff and Criticality	. 26	7
			Interpolation and Extrapolation		
	10.4		Models and Kernel Methods		
			Linear Models		
			Kernel Methods		
		10.4.3	Infinite-Width Networks as Linear Models	. 28	7
11	Rep	resent	ation Learning	29	1
			ential of the Neural Tangent Kernel		
	11.2	RG Flo	ow of the dNTK	. 29	6
		11.2.0	Forward Equation for the dNTK	. 29	7
		11.2.1	First Layer: Zero dNTK	. 29	9
		11.2.2	Second Layer: Nonzero dNTK	. 30	0
			Deeper Layers: Growing dNTK		
	11.3		ve Theory of the dNTK at Initialization		
			Scale-Invariant Universality Class		
			$K^* = 0$ Universality Class		
	11.4		near Models and Nearly-Kernel Methods		
			Nonlinear Models		
			Nearly-Kernel Methods		
		11.4.3	Finite-Width Networks as Nonlinear Models	. 33	0
∞			of Training	33	
	$\infty.1$	Two M	fore Differentials	. 33	7
	$\infty.2$	Trainii	ng at Finite Width	. 34	7
			A Small Step Following a Giant Leap		
			Many Many Steps of Gradient Descent		
			Prediction at Finite Width		
	$\infty.3$	RG Flo	ow of the ddNTKs: The Full Expressions	. 38	4
E	Epil	08116; .	Model Complexity from the Macroscopic Perspective	38	q

viii

\mathbf{A}	Information in Deep Learning								
	A.1	Entropy and Mutual Information	400						
	A.2	Information at Infinite Width: Criticality	409						
	A.3	Information at Finite Width: Optimal Aspect Ratio	411						
В	Res	idual Learning	425						
	B.1	Residual Multilayer Perceptrons	428						
	B.2	Residual Infinite Width: Criticality Analysis	429						
	B.3	Residual Finite Width: Optimal Aspect Ratio	431						
	B.4	Residual Building Blocks	436						
Re	efere	nces	43 9						
Index									