Задание номер 2

H. К. Животовский nikita.zhivotovskiy@phystech.edu

12 марта 2017 г.

Задание принимается до 2.00 утра 26 марта по адресу slt.fupm.2017@gmail.com. В начале текста задания обязательно указывается:

- С кем вы делали это задание.
- Какие источники (кроме материалов лекций) вы использовали.

Задание оформляется в формате pdf (текст набирается в latex/Word) и в таком виде, чтобы ваши коллеги могли разобрать текст решения. Задания, оформленные не в соответствии с указанными правилами, не принимаются. Желательно оставлять зазоры между задачами для пометок.

Упражнение 1. Пусть класс S состоит всех тех функций на [0,1], которые принимают значение 1 не более чем на конечном числе точек, а на оставшихся точках равны нулю.

- Докажите, что для его Радемахеровской сложности выполнено $R(S) \geq \frac{1}{2}$.
- ullet Что можно сказать о выполнении равномерных законов больших чисел для \mathcal{S} ?

Указание. Можно ссылаться на результат задачи 1.

Упражнение 2 [Линейные классы при $d \ge n$] Пусть $\mathcal{F} = \{x \to \text{sign}((x,\theta)) | \theta \in \mathbb{R}^d\}$ — класс линейных разделяющих правил.

- Предположим, что $d \ge n$ и точки X_1, \dots, X_n общего положения в \mathbb{R}^d . Покажите, что в этом случае для условной Радемахеровской сложности выполнено $R_n(\mathcal{F}) = 1$.
- Что можно сказать про обучаемость класса с помощью минимизации эмпирического риска?

Упражнение 3 [Гауссовские сложности] Определим Гауссовскую сложность класса \mathcal{F} как $G(\mathcal{F}) = \frac{1}{n} \mathbb{E}_g \mathbb{E}_X \sup_{f \in \mathcal{F}} |\sum_{i=1}^n g_i f(X_i)|$, где $g_i \sim \mathcal{N}(0,1)$ и независимы. Докажите, $R(\mathcal{F}) \leq CG(\mathcal{F})$ для некоторой универсальной константы C > 0.

Указание. Используйте, что для некоторого c>0 имеет место $\mathbb{E}(|g|/c)=1$, где $g\sim\mathcal{N}(0,1)$. Примените неравенство Йенсена, предварительно подставив эту единицу в нужную часть определения.

Упражнение 4 [Размерность Вапника-Червоненкиса]

- Привести пример семейства классификаторов, для которого для любого конечного набора из n различных точек из \mathcal{X} верхняя оценка на функцию роста переходит в равенство. Такие классы называются максимальными.
- Покажите, что VC размерность семейства всех классификаторов в \mathbb{R}^d , образованных выпуклыми замкнутыми множествами, бесконечна.
- Найти VC размерность семейства классификаторов на плоскости, образованных всеми многоугольниками с не более чем 4-мя вершинами.
- Найти VC размерность семейства классификаторов на плоскости, образованных всеми возможными окружностями.
- Пусть семейство классификаторов \mathcal{F} имеет VC размерность d. Рассмотрим семейство классификаторов \mathcal{F}_k , которые получаются голосованием большинства не более чем k классификаторов из \mathcal{F} . Доказать, что VC размерность \mathcal{F} ограничена сверху $O(kd \log(kd))$.

Упражнение 5 [Contraction] Ограничьте $R(\ell \circ \mathcal{F})$ с помощью $R(\mathcal{F})$ в следующих задачах:

- Бинарная классификация с двумя классами $\mathcal{Y} = \{-1,1\}$ и индикаторной функцией потерь.
- \bullet Регрессии с $|Y| \leq a, \sup_{f \in \mathcal{F}} \|f\|_{\infty} \leq b$ и квадратичный функцией потерь.

Задача 1. [Десимметризация] Докажите что,

$$\mathbb{E}\sup_{f\in\mathcal{F}}|Pf-P_nf|\geq \frac{1}{2}R(\mathcal{F})-\frac{C}{2\sqrt{n}},$$

где
$$C = \sup_{f \in \mathcal{F}} ||f||_{\infty}.$$

Задача 2 Докажите эквивалентность трех утверждений для класса ${\mathcal F}$ бинарных классификаторов:

- 1. Класс \mathcal{F} обучаем.
- 2. Класс \mathcal{F} имеет конченую VC размерность.
- 3. Класс ${\cal F}$ является равномерным классом Гливенко-Кантелли.

Обратите внимание, что условие 3 выписано для класса \mathcal{F} , а не для класса $\ell \circ \mathcal{F}$.

Задача 3

- Докажите, что класс положительных линейных решающих правил (первая компонента направляющего вектора неотрицательна) является максимальным в том смысле, что будучи ограниченным на любой конечный набор точек в общем положении, верхняя оценка на функцию роста переходит в точное равенство.
- Является ли максимальным класс всех линейных классификаторов?