Nom	•
1 10111	•

Prénom:

Groupe:

Questionnaire 1

Exercice 1.

Déterminer les primitives des fonctions suivantes en précisant leur domaine de définition.

1)
$$f_1: x \mapsto x^4 - 3x^3 + 1$$
, 2) $f_2: x \mapsto \exp(2x)$,

$$2) \ f_2: x \mapsto \exp(2x)$$

3)
$$f_3: x \mapsto \frac{1}{1+2x}$$
.

Réponse	

		حــه

Prénom: Nom:

Groupe:

Questionnaire 2

Exercice 1.

Calculer l'intégrale suivante à l'aide d'une intégration par parties

$$I = \int_1^2 x^3 \ln(x) \, dx.$$

Réponse	:
recponse	•

Calculer l'intégrale $I = \int_0^{\sqrt{\pi}} (x^3 - \sqrt{\pi}x^2 + 3x) dx$.

Réponse :

Donner le domaine de définition puis calculer la dérivée de la fonction f définie par

$$f(x) = \sqrt{x^2 - 3x + 2}.$$

Réponse :

Exercice 2.

Étudier les variations de la fonction f définie par

$$f(x) = \ln\left(\frac{1-x}{x-2}\right).$$

Réponse :

Questionnaire 3

SExercice 1.

Calculer les intégrales suivantes à l'aide d'une intégration par parties.

1)
$$I_1 = \int_0^{\pi/3} x^2 \sin(3x) \, dx$$
,

2)
$$I_2 = \int_0^{\pi/3} e^{2x} \cos(3x) dx$$
.

	v
Dánansa	
Réponse :	
	1 1
	I I
	1 1
	1 1
	1 1
	1 1
	1 1

Exercice 2.

Calculer les dérivées secondes des fonctions suivantes en précisant leur domaine de définition :

1)
$$f_1: x \mapsto \exp(\frac{1}{x}),$$

$$2) \ f_2: x \mapsto \ln(\ln x).$$

Réponse :	
	1 1 1
	1 1 1
	1 1

Exercice 3.Calculer les intégrales suivantes à l'aide d'un changement de variables :

- 1) $I_1 = \int_1^4 \frac{1}{t + \sqrt{t}} dt$ en prenant comme changement de variables $x = \sqrt{t}$,
- **2)** $I_2 = \int_0^1 \frac{e^t}{1 + e^{2t}} dt.$

Réponse :	

S Exercice 4.

Soit le domaine D de \mathbb{R}^2 défini par

$$D = \left\{ (x, y) \in \mathbb{R}^2 \mid 1 \le x \le 2, 0 \le y \le \frac{1}{x} \right\}$$

- 1) Représenter graphiquement le domaine D.
- **2)** Calculer l'aire du domaine D.

