1 Vector Space of Polynomials

Let \mathbb{F} be a field. A set V together with a mapping + (sum) and a mapping \cdot (scalar multiplication) with

$$+: V \times V \to V$$
 $\cdot: \mathbb{F} \times V \to V$ $(v, w) \mapsto v + w$ $(\lambda, v) \mapsto \lambda \cdot v$

is called *vector space* (or linear space) over \mathbb{F} , if the following axioms VR1 and VR2 hold:

VR1 (V, +) is a commutative (or abelian) group with neutral element 0, i.e.,

G1 Associativity: $\forall v_1, v_2, v_3 \in V : v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3$

G2 Neutral element: $\forall v \in V: v+0=v$

G3 Inverse element: $\forall v \in V \ \exists_1(-v) \in V : \ v + (-v) = 0$

G4 Commutativity: $\forall v_1, v_2 \in V : v_1 + v_2 = v_2 + v_1$

VR2 The scalar multiplication is consistent/compatible with (V, +) in the following way:

for $\lambda, \mu \in \mathbb{F}$, $v, w \in V$ it holds that

- (i) $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$
- (ii) $\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$
- (iii) $\lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v$
- (iv) $1 \cdot v = v$

Furthermore, let $v_1, \ldots, v_n \in V$, then with the summation and scalar multiplication we can more generally define the **span** as

$$\operatorname{span}(v_1,\ldots,v_n)=\{\sum_{i=1}^n\lambda_iv_i:\lambda_i\in\mathbb{F}\}.$$

Further we say that $v_1, \ldots, v_n \in V$ are **linearly independent** if

$$\sum_{i=1}^{n} \lambda_i v_i = 0 \quad \Rightarrow \quad \lambda_i = 0 \quad \forall \ i.$$

If $v_1, \ldots, v_n \in V$ are linearly independent and $\operatorname{span}(v_1, \ldots, v_n) = V$, then we call v_1, \ldots, v_n a **basis of** V. A mapping $f \colon V_1 \to V_2$ between two vector spaces is called **linear**, if

$$f(\lambda \cdot_1 v +_1 w) = \lambda \cdot_2 f(v) +_2 f(w)$$

for all $v, w \in V$. Here $+_1, \cdot_1$ and $+_2, \cdot_2$ denote the summation and scalar multiplication defined on V_1 and V_2 , respectively. Examples are \mathbb{R}^n and $\mathbb{R}^{m \times n}$ with the usual vector/matrix sum "+" and scalar multiplication "·".

Now we consider another example of a vector space: Let $n \in \mathbb{N}$ and $P_n(\mathbb{R})$ be the set of all polynomials of degree $\leq n$ on \mathbb{R} , i.e., the set $P_n(\mathbb{R})$ contains all functions $p : \mathbb{R} \to \mathbb{R}$ of the form

$$p(x) = \sum_{k=0}^{n} \alpha_k x^k$$

for some $\alpha_0, \ldots, \alpha_n \in \mathbb{R}$. We define a summation and scalar multiplication:

$$+: P_n(\mathbb{R}) \times P_n(\mathbb{R}) \to P_n(\mathbb{R}), \ (p+q)(x) := p(x) + q(x),$$

$$\cdot: \mathbb{R} \times P_n(\mathbb{R}) \to P_n(\mathbb{R}), \quad (r \cdot p)(x) := r \cdot p(x).$$

1. **VR axioms:** Please show that $P_n(\mathbb{R})$ together with the above defined summation and scalar multiplication forms a vector space.

Hint: Check **VR1** and **VR2** with $V = P_n(\mathbb{R})$.

2. Let $k < m \in \mathbb{N}$. Compute

$$\lim_{x \to \infty} \frac{x^k}{x^m}, \quad \text{and} \quad \lim_{x \to \infty} \frac{\sum_{k=0}^{m-1} \alpha_k x^k}{x^m}$$

for arbitrary $\alpha_0, \ldots, \alpha_m \in \mathbb{R}$.

3. **Monomials form a basis:** Please show that the set $B := \{q_0, \dots, q_n\}$ with

$$q_k: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^k$$

is a basis of $P_n(\mathbb{R})$. What is the dimension of the vector space $P_n(\mathbb{R})$?

Hint: Part (ii) basically provides the proof of linear independence and the other assertion is obvious from the definition of p.

4. **Derivative as linear operator:** Show that the operator $\mathcal{D}: P_n(\mathbb{R}) \to P_n(\mathbb{R}), \ p \mapsto p'$, which maps a polynomial to its first derivative, is a \mathbb{R} -linear function.

Hint: For $p(x) = \sum_{k=0}^{n} \alpha_k x^k$ we have $p'(x) = \sum_{k=0}^{n} \alpha_k k x^{k-1}$.

5. Matrix representation of the derivative: Let Φ be the linear, invertible function which maps a polynomial to its coefficients (coordinates in the above basis), i.e.,

$$\Phi: P_n(\mathbb{R}) \to \mathbb{R}^{n+1}, \ \sum_{k=0}^n \alpha_k x^k \mapsto (\alpha_0, \dots, \alpha_n).$$

Please remark shortly why Φ is bijective. What is the matrix representation of the linear function $F: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ defined by

$$F := \Phi \circ \mathcal{D} \circ \Phi^{-1}$$

with respect to the standard basis $\{e_1,\ldots,e_{n+1}\}$? More precisely, derive the matrix $A\in\mathbb{R}^{(n+1)\times(n+1)}$ defined by

$$A := \begin{pmatrix} | & & | \\ F(e_1) & \dots & F(e_{n+1}) \\ | & & | \end{pmatrix}.$$

Solution:

- 1. **VR1:** Show, that $(P_n(\mathbb{R}), +)$ is an abelian group. Let $p(x) = \sum_{k=0}^n \alpha_k x^k$, $q(x) = \sum_{k=0}^n \beta_k x^k$ and $w(x) = \sum_{k=0}^n \gamma_k x^k$ be in $P_n(\mathbb{R})$.
 - (i) Associativity:

$$((p+q)+w)(x) = \sum_{k} [(\alpha_k + \beta_k) + \gamma_k] x^k = \sum_{k} [\alpha_k + (\beta_k + \gamma_k)] x^k = (p + (q+w))(x)$$

(ii) Neutral Element: $0 := \sum_{k=0}^{n} 0 \cdot x^{k}$, then $\forall p \in P_{n}(\mathbb{R})$:

$$(0+p)(x) = \sum (0+\alpha_k)x^k = p(x)$$

(iii) Inverse element: For $p(x) = \sum \alpha_k x^k$ define $-p(x) := \sum (-\alpha_k) x^k$,

$$\Rightarrow (p+(-p))(x)=0.$$

(iv) Commutativity:

$$(p+q)(x) = \sum_{k=\beta_k+\alpha_k} (\alpha_k + \beta_k) x^k = (q+p)(x)$$

1

VR2: Consistency properties: Let $r, s \in \mathbb{R}$.

(i)
$$((r+s)p)(x) = \sum_{k=r\alpha_k+s\alpha_k} (r+s)\alpha_k x^k = (rp)(x) + (sp)(x)$$

2. Let $k < m \in \mathbb{N}$. Then

$$\frac{x^k}{x^m} = x^{k-m} = \frac{1}{x^{m-k}} \xrightarrow{x \to +\infty} 0$$

$$\Rightarrow \forall \alpha_0, \dots, \alpha_m : \frac{\sum_{k=0}^{m-1} \alpha_k x^k}{x^m} = \sum_{k=0}^{m-1} \alpha^k \underbrace{\left(\frac{x^k}{x^m}\right)}_{\to 0} \xrightarrow{x \to +\infty} 0.$$

In particular we can conclude that

$$\forall \alpha_0, \dots, \alpha_m : \sum_{k=0}^{m-1} \alpha^k x^k \neq x^m$$

because otherwise limit $\equiv 1$.

3. a) Linear independence by 2. Asssume $\exists \alpha_0, \ldots, \alpha_n \ (m := \max\{k : \alpha_k \neq 0\})$ not all zero with $\sum_{k=0}^m \alpha_k q_k = 0$

$$\Rightarrow \sum_{k=0}^{m} \alpha_k q_k = \sum_{k=0}^{m-1} \alpha_k q_k + \alpha_m q_m = 0$$

$$\Rightarrow \sum_{k=0}^{m} \alpha_k x^k = (-\alpha_m) x^m$$

contradiction to 2.

b)

$$\mathrm{span}\{q_0,\dots,q_n\}=P_n(\mathbb{R})\ \ \mathrm{by\ definition}$$
 $\Rightarrow\ \ \dim(P_n(\mathbb{R}))=n+1$

4. Let $p=\sum_{k=0}^n \alpha_k q_k$ and $w=\sum_{k=0}^n \beta_k q_k$ and $\lambda\in\mathbb{R}$, then:

$$D(\lambda p + w)(x) = \left(\sum_{k=0}^{n} (\lambda \alpha_k + \beta_k) x^k\right)' = \sum_{k=0}^{n} (\lambda \alpha_k + \beta_k) k x^{k-1}$$
$$= \lambda \sum_{k=0}^{n} \alpha_k k x^{k-1} + \sum_{k=0}^{n} \beta_k k x^{k-1} = \lambda D(p)(x) + D(q)(x)$$

5. We have:

$$D: P_{n}(\mathbb{R}) \to P_{n}(\mathbb{R}), \ p = \sum_{k=0}^{n} \alpha_{k} q_{k} \mapsto p' = \sum_{k=0}^{n-1} \alpha_{k+1} (k+1) q_{k}$$

$$\Phi: P_{n}(\mathbb{R}) \to \mathbb{R}^{n+1}, \ p = \sum_{k=0}^{n} \alpha_{k} q_{k} \mapsto (\alpha_{0}, \dots, \alpha_{n})^{T}$$

$$= (\pi_{0}(p), \dots, \pi_{n}(p))$$

 \to [Φ linear since π_j are linear (see lecture) and bijective since $\{q_0,\ldots,q_n\}$ basis, $\Phi^{-1}:\mathbb{R}^{n+1}\to P_n(\mathbb{R}),\ (\alpha_0,\ldots,\alpha_n)^T\mapsto p=\sum \alpha_k q_k$]

Now consider: $F: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$, $F(\alpha) := \Phi \circ D \circ \Phi^{-1}$

$$(\alpha_{0},\ldots,\alpha_{n})^{T} \qquad \mathbb{R}^{n+1} \qquad \stackrel{A}{\longrightarrow} \qquad \mathbb{R}^{n+1} \qquad (\alpha_{1},2\alpha_{2},3\alpha_{3},\ldots,n\alpha_{n},0) =: \beta$$

$$\{e_{1},\ldots,e_{n+1}\} \qquad \{e_{1},\ldots,e_{n+1}\}$$

$$\downarrow \Phi^{-1} \qquad \Phi \uparrow$$

$$p = \sum_{k=0}^{n} \alpha_{k} q_{k} \qquad P_{n}(\mathbb{R}) \qquad \stackrel{D}{\longrightarrow} \qquad P_{n}(\mathbb{R}) \qquad p' = \sum_{k=0}^{n} \beta_{k} q_{k}$$

$$\{q_{1},\ldots,q_{n+1}\} \qquad \{q_{1},\ldots,q_{n+1}\}$$

$$F(\alpha) = (\Phi \circ D \circ \Phi^{-1})(\alpha)$$

$$= (\Phi \circ D) \left(\sum_{k=0}^{n} \alpha_k q_k \right)$$

$$= \Phi \left(\sum_{k=0}^{n-1} \alpha_{k+1} (k+1) q_k \right)$$

$$= (\alpha_1, 2\alpha_2, 3\alpha_3, \dots, n\alpha_n, 0)^T$$

To obtain the matrix representation we have to evaluate F on the standard basis $\{e_1, \ldots, e_{n+1}\}$:

$$A = \begin{pmatrix} | & & | \\ F(e_1) & \dots & F(e_{n+1}) \\ | & & | \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ \vdots & \vdots & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \ddots & n-1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & n \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$