ÁLGEBRA DAS PROPOSIÇÕES

Agora, que já aprendemos muito sobre proposições, estamos preparados para aprender sobre a álgebra das proposições.

6.1 Propriedades da Conjunção

Sejam p, q e r proposições simples quaisquer e sejam <u>t e c proposições</u> também simples, cujos valores lógicos respectivos são V (verdade) e F (falsidade) (ALENCAR FILHO, 2003). Pois t representa uma tautologia e c representa uma contradição. Considere as propriedades:

(a) Idempotente : $p \land p \Leftrightarrow p$

р	р∧р	$p \land p \longleftrightarrow p$
V	V	V
F	F	V

Veja na tabela-verdade que essa equivalência é válida, pois a bicondicional é uma tautologia.

(b) Comutativa : $p \land q \Leftrightarrow q \land p$

p	q	p∧q	q∧p	$p \land q \leftrightarrow q \land p$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	F	F	V

Indica que na conjunção a ordem das proposição não altera o resultado.

Outro exemplo: $x > 1 \land x \neq 0 \Leftrightarrow x \neq 0 \land x > 1$.

Lembre que a conjunção é um conectivo binário. Quando a proposição composta contém apenas conjunção (como no exemplo dado), é preciso aplicar uma das conjunções em dois literais (proposições simples) e utilizar o resultado obtido para aplicar a outra conjunção no literal que ainda não foi utilizado. Essa propriedade informa que a ordem dos literais não afeta o resultado.

(c) Associativa : $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

F	,	q	r	p∧q (1)	1 ∧ r	q∧r	p∧(q ∧r)	$(p \land q) \land r \longleftrightarrow p \land (q \land r)$
7	7	V	V	V	V	V	V	V
	7	V	F	V	F	F	F	V
	7	F	V	F	F	F	F	V
	7	F	F	F	F	F	F	V
F	7	V	V	F	F	V	F	V
I	7	V	F	F	F	F	F	V
F	7	F	V	F	F	F	F	V
I	7	F	F	F	F	F	F	V

As colunas 5 e 7 são equivalentes, por isso a bicondicional é uma tautologia.

t ∧ outro valor = outro valor.

t é elemento neutro.

(d) Identidade: $p \wedge t \Leftrightarrow p e p \wedge c \Leftrightarrow c$

p	t	С	p∧t	p∧c	p∧t↔p	$p \land c \leftrightarrow c$
V	V	F	V	F	V	V
F	V	F	F	F	V	V

c ∧ outro valor = c. c é elemento absorvente. As colunas equivalentes são 1, 4 e 3, 5.

Estas propriedades exprimem que t é um <u>elemento neutro</u> e que c é um <u>elemento absorvente</u> da conjunção.

6.2 Propriedades da Disjunção

Sejam p, q e r proposições simples quaisquer e sejam t e c proposições também simples cujos valores lógicos respectivos são V (verdade) e F (falsidade) (ALENCAR FILHO, 2003).

Considere as propriedades da disjunção:

(a) Idempotente : $p \lor p \Leftrightarrow p$

p	p∨p	$p \lor p \longleftrightarrow p$
V	V	V
F	F	V

(b) Comutativa : $p \lor q \Leftrightarrow q \lor p$

p	q	p∨q	q∨p	$p \lor q \longleftrightarrow q \lor p$
V	V	V	V	V
V	F	V	V	V
F	V	V	V	V
F	F	F	F	V

(c) Associativa : $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$

p	q	r	p∨q	$(p \lor q) \lor r$	q∨r	$p \lor (q \lor r)$	$(p \lor q) \lor r \longleftrightarrow p \lor (q \lor r)$
V	V	V	V	V	V	V	V
V	V	F	V	V	V	V	V
V	F	V	V	V	V	V	V
V	F	F	V	V	F	V	V
F	V	V	V	V	V	V	V
F	V	F	V	V	V	V	V
F	F	V	F	V	V	V	V
F	F	F	F	F	F	F	V

As colunas 5 e 7 são equivalentes

(d) Identidade: $p \lor t \Leftrightarrow t e p \lor c \Leftrightarrow p$

	p	t	С	p∨t	p∨c	p∨t↔t	$p \lor c \longleftrightarrow p$
	V	V	F	V	V	V	${f V}$
Γ	F	V	F	V	F	V	V

t v outro valor = t. t é elemento absorvente.

c v outro valor = outro valor. t é elemento neutro.

As colunas equivalentes são 1, 5 e 2, 4.

Estas propriedades exprimem que t é um <u>elemento absorvente</u> e que c é um <u>elemento</u> neutro da disjunção.

6.3 Propriedades da Conjunção e da Disjunção

(a) Distributivas

(i)
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

p	q	r	q∨r	$p \land (q \lor r)$	p∧q	p∧r	$(p \land q) \lor (p \land r)$
V	V	V	V	V	V	\mathbf{V}	V
V	V	F	V	V	V	F	V
V	F	V	V	V	F	\mathbf{V}	V
\mathbf{V}	F	F	F	F	F	F	F
F	V	V	V	F	F	F	F
F	V	F	V	F	F	F	F
F	F	V	V	F	F	F	F
F	F	F	F	F	F	F	F

Faça uma analogia desta propriedade lógica com a propriedade distributiva na matemática substituindo a conjunção pela multiplicação e a disjunção pela adição.

As colunas 5 e 8 são equivalentes

Observe que ao aplicar a propriedade distributiva troca-se o conectivo principal da proposição. O conectivo externo do parênteses passa a ser interno e vice-versa.

Assim, a proposição: "Carlos estuda <u>e</u> Jorge ouve música <u>ou</u> lê" é equivalente à proposição: "Carlos estuda <u>e</u> Jorge ouve música <u>ou</u> Carlos estuda <u>e</u> Jorge lê".

Lógica e Matemática Discreta

(ii)
$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

p	q	r	q∧r	$p\lor(q\land r)$	p∨q	p∨r	$(p \lor q) \land (p \lor r)$
V	V	V	V	V	V	\mathbf{V}	V
V	V	F	F	V	V	\mathbf{V}	V
V	F	V	F	V	V	V	V
V	F	F	F	V	V	\mathbf{V}	V
F	V	V	V	V	V	V	V
F	V	F	F	F	V	F	F
F	F	V	F	F	F	V	F
F	F	F	F	F	F	F	F

As colunas 5 e 8 são equivalentes

Observe que os valores de q não (b) Absorção

proposição composta. Isso ocorre

interferem no resultado da

(i) $p \land (p \lor q) \Leftrightarrow p$

porque na conjunção:

i) se o valor de p for F, o resultado é F (pois a conjunção só é V se as proposições que a compõem forem ambas V).

p	q	p∨q	$p \land (p \lor q)$	$p \land (p \lor q) \longleftrightarrow p$
V	V	V	V	V
V	F	V	V	V
F	V	V	F	V
F	F	F	F	V

ii) se o valor de p for V, o resultado depende da outra

As colunas 1 e 4 são equivalentes, por isso a bicondicional é uma tautologia.

proposição. Esta outra proposição(ii) $p \lor (p \land q) \Leftrightarrow p$

como é uma disjunção que contém o literal p (cujo valor é V) tem resultado V. Assim, a proposição final só depende do valor de p, absorvendo o valor de q.

p	p	p∧q	$p\lor(p\land q)$	$p\lor(p\land q)\longleftrightarrow p$
V	V	\mathbf{V}	V	V
V	F	F	V	V
F	V	F	F	V
F	F	F	F	V

As colunas 1 e 4 são equivalentes

(c) Regras de DE MORGAN (1806 – 1871)

Com De Morgan pode-se colocar a negação associada a cada uma das proposições, sejam elas conjunções ou disjunções ou seja (ALENCAR FILHO, 2003):

(i) ~ $(p \land q) \Leftrightarrow$ ~ $p \lor$ ~ q (ex. Não é verdade que a rua está molhada e também suja equivale a dizermos que __ a rua não está molhada ou não está suja.)

Álgebra das Proposições

Explicando o exemplo, quando montamos uma conjunção ela é formada por duas proposições que ocorrem ao mesmo tempo. Para que uma conjunção formada por duas proposições seja F, uma das duas proposições falhou.

р	q	p∧q	~(p∧q)	~p	~q	~pV~q
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

Outro exemplo:

A negação da proposição

" Pedro é inteligente e estuda."

é a proposição:

"Pedro não é inteligente ou Pedro não estuda."

As colunas 4 e 7 são equivalentes

(ii) \sim (p \vee q) \Leftrightarrow \sim p \wedge \sim q (ex. "Não é verdade que eu tirei mais de 5 na prova ou que eu tirei menos de 3 na prova". Equivale dizer que "eu não tirei mais de 5 na prova e também não tirei menos que 3 na prova".

Explicando o exemplo, quando temos uma disjunção, uma das duas proposições é verdadeira. Para que eu negue uma disjunção, não basta apenas uma ser falsa, as duas devem ser falsas.

p	q	p∨q	~(p∨q)	~p	~q	~p^~q
V	V	V	F	F	F	F
V	F	V	F	F	V	F
F	V	V	F	V	F	F
F	F	F	V	V	V	V

Outro exemplo:

A negação da proposição

"Rafael é médico ou professor."

é a proposição:

"Rafael não é médico e Rafael não é professor".

As colunas 4 e 7 são equivalentes

Regras de De Morgan:

- (i) Negar que duas preposições são ao mesmo tempo verdadeiras equivale a afirmar que uma pelo menos é falsa.
- (ii) Negar que pelo menos uma de duas preposições é verdadeira equivale a afirmar que ambas são falsas.

Conceitos

As regras de De Morgan mostram como é possível definir a disjunção a partir da conjunção e da negação, ou a conjunção a partir da disjunção e da negação.

6.4 Negação da Condicional

Como p \rightarrow q \Leftrightarrow ~ p \vee q (ex. "Se choveu então a rua está molhada."), temos (ALENCAR FILHO, 2003):

Observe que não tem como fazer a negação da condicional. Primeiro é preciso a exprimir pela proposição equivalente, que é a disjunção de literais. Daí na disjunção, pode-se aplicar a negação através da regra de De Morgan.

$\sim (p \rightarrow q) \Leftrightarrow \sim (\sim p \lor q) \Leftrightarrow \sim \sim p \land \sim q$, ou seja, $\sim (p \rightarrow q) \Leftrightarrow p$	Λ
~q, como se pode ver na tabela-verdade abaixo:	

p	q	$p \rightarrow q$	~(p → q)	~q	p∧~q
V	V	\mathbf{V}	F	F	F
V	F	F	V	V	V
F	V	V	F	F	F
F	F	V	F	V	F

Atenção

A condicional $p \rightarrow q$ não possui as propriedades **idempotente**, **comutativa e associativa**, pois as tabelas-verdade de $p \rightarrow p$ **e** p, $p \rightarrow q$ **e** $q \rightarrow p$, $(p \rightarrow q) \rightarrow r$ **e** $p \rightarrow (q \rightarrow r)$ não são idênticas.

Isso significa que na condicional a ordem das proposições altera o resultado final.

6.5 Negação da Bicondicional

aplica-se as regras de equivalência da bi-condicional e da condicional

aplica-se a regra de De Morgan na equivalência da bi-condicional

aplica-se a regra de De Morgan em cada parênteses.

aplica a regra de equivalência da dupla negação. Como p \longleftrightarrow q \Longleftrightarrow (p \longrightarrow q) \land (q \longrightarrow p), temos (ALENCAR FILHO, 2003):

 $p \longleftrightarrow q \Longleftrightarrow (\sim p \lor q) \land (\sim q \lor p)$, e, portanto:

$${\scriptstyle \sim (p \longleftrightarrow q) \, \Longleftrightarrow \, \sim (\sim p \lor q) \, \lor \, \sim (\sim q \lor p)}$$

$$\sim (p \leftrightarrow q) \Leftrightarrow (\sim \sim p \land \sim q) \lor (\sim \sim q \land \sim p)$$

$$\sim (p \leftrightarrow q) \Leftrightarrow (p \land \sim q) \lor (q \land \sim p)$$

Como se pode ver na tabela-verdade abaixo:

p	q	p↔q	~(p ↔ q)	~q	p∧~q	~p	~p/\q	(p∧~q)∨ (~p∧q)
								(~p∧q)
V	V	V	F	F	F	F	F	F
V	F	F	V	V	V	F	F	V
F	V	F	V	F	F	V	V	V
F	F	V	F	V	F	V	F	F

A tabela verdade das proposições $\sim (p \leftrightarrow q)$, $p \leftrightarrow \sim q$, $\sim p \leftrightarrow q$ são idênticas

p	q	$p \leftrightarrow q$	~(p ↔ q)	~q	p↔~q	~p	~p\leftarrow q
V	V	\mathbf{V}	F	F	F	F	F
V	F	F	V	V	V	F	V
F	V	F	V	F	V	V	V
F	F	V	F	V	F	V	F

Portanto,
$$\sim (p \leftrightarrow q) \Leftrightarrow p \leftrightarrow \sim q \Leftrightarrow \sim p \leftrightarrow q$$

A bicondicional $\mathbf{p} \longleftrightarrow \mathbf{q}$ não possui a propriedade **idempotente**, pois as tabelas-verdade de $\mathbf{p} \longleftrightarrow \mathbf{p}$ e \mathbf{p} não são idênticas. Mas goza das propriedades comutativa e associativa.

Todas essas

iremos aprender.

equivalências são muito importantes para o que

6.6 Equivalências Notáveis

Nos próximos capítulos, utilizaremos as seguintes equivalências:

- 1. Idempotência (ID): $p \land p \Leftrightarrow p$; $p \lor p \Leftrightarrow p$
- **2.** Comutação (COM) : $p \land q \Leftrightarrow q \land p$; $p \lor q \Leftrightarrow q \lor p$
- 3. Associação (ASSOC): $(p \land q) \land r \Leftrightarrow p \land (q \land r); (p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$
- **4. Identidade (IDENT):** $p \land T \Leftrightarrow p$; $p \land C \Leftrightarrow C$; $p \lor T \Leftrightarrow T$; $p \lor C \Leftrightarrow p$ obs.: T = Tautologia e c: Contradição
- 5. Distributiva (DIST): $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r); p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
- 6. Absorção (ABS): $p \land (p \lor q) \Leftrightarrow p; p \lor (p \land q) \Leftrightarrow p$
- 7. De Morgan (DM): \sim (p \wedge q) \Leftrightarrow \sim p \vee \sim q; \sim (p \vee q) \Leftrightarrow \sim p \wedge \sim q
- **8. Condicional (COND):** $p \rightarrow q \iff p \lor q$
- 9. Bicondicional (BICOND): $p \longleftrightarrow q \iff (p \to q) \land (q \to p); p \longleftrightarrow q \iff (p \land q) \lor (\sim p \land \sim q)$
- **10.** Contraposição (CP): $p \rightarrow q \iff \sim q \rightarrow \sim p$
- 11. Dupla negação (DN): ~~p ⇔ p
- 12. Exportação Importação (EI): $p \land q \Rightarrow r \iff p \Rightarrow (q \Rightarrow r)$

Lógica e Matemática Discreta

Atividades

ATIVIDADE 11 – Para exercitar, vamos realizar algumas das atividades propostas por (PINHO, 1999, p. 75):

1. Demonstrar as propriedades **comutativa** e **associativa** da bicondicional, isto é:

(a)
$$p \leftrightarrow q \Leftrightarrow q \leftrightarrow p$$

(b)
$$(p \leftrightarrow q) \leftrightarrow r \Leftrightarrow p$$

 $\leftrightarrow (q \leftrightarrow r)$

2. Demonstrar, por tabelas-verdade, as equivalências:

(a)
$$p \rightarrow q \land r \Leftrightarrow (p \rightarrow q) \land (p \rightarrow r)$$

(b)
$$p \rightarrow q \lor r \Leftrightarrow (p \rightarrow q) \lor (p \rightarrow r)$$

- 3. Dar, em linguagem corrente, a negação das seguintes proposições:
- (a) O céu é azul e as nuvens são brancas.
- (b) É falso que não está frio ou chovendo.
- (c) Não é verdade que Maria faz informática, mas não medicina.
- 4. Demonstrar as seguintes regras de De Morgan:

(a)
$$\sim$$
 (p \wedge q \wedge r) \Leftrightarrow \sim p \vee \sim q \vee \sim r

(b)
$$\sim$$
 (p \vee q \vee r) \Leftrightarrow \sim p \wedge \sim q \wedge \sim r

Indicações

Para maior compreensão, ler o capítulo 7 – Álgebra das Proposições do livro ALENCAR FILHO, Edgard de. Iniciação à Lógica Matemática. São Paulo: Nobel, 2003.