

Outline for Today

1st slot (45 min):

- 1. Goals
- 2. Feature Engineering: Brief Recap
- 3. Node Embeddings
 - a. Deep Walk
 - b. Node2Vec
 - c. Limitations
 - d. Examples
- 4. Summary & Take-Home Messages

2nd slot (45 min):

Coding Tutorial: PyTorch Geometric

Goals for Today's Lecture

Objective for Today's Lecture:

- 1. Gain an understanding with various methods for encoding nodes as low-dimensional vectors that effectively summarizing their positions within the graph and the structure of their local graph neighborhood.
- 2. Delve into learning node embeddings through unsupervised approaches.

Different Types of Tasks

Traditional ML Pipeline

Traditional ML pipeline uses feature engineering and node attributes.

We give a brief overview of the hand-crafted features for:

- Nodes,
- Links.

Node-level Tasks

Traditional Features: Node Level Features

Node Degree: the degree kv of node v is the number of edges (neighboring nodes) the node has.

Also:

- Node centrality takes the node importance in a graph into account,
- Clustering coefficient how connected v's neighbouring nodes,
- Graphlets how many pre-defined subgraphs are in the graph.

Edge-Level Tasks

- Predict new links based on the existing links.
- The key is to design features for pairs of nodes.

Traditional Features: Edge Level Features

Distance-based feature: shortest-path distance between two nodes

Also:

- Local neighborhood overlap # of neighbouring nodes,
- Global neighborhood overlap.

Graph Representation Learning

Graph Representation Learning

Goal: Efficient task-independent feature learning for machine learning with graphs!

Node Embeddings

Given graph G = (V, E):

- V nodes,
- A the adjacency matrix (assume binary),
- E edges.

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Node Embeddings

Given graph G = (V, E):

- V nodes,
- E edges.

Goal is to encode nodes as low-dimensional vectors that similarity in the latent space correspond to relationships in the graph.

Node Embeddings

An Encoder-Decoder Perspective

Encoder maps nodes $v \in V$ to vector embeddings:

$$ENC(v) \, = \, z_v \, \in \, \mathbb{R}^d$$

Simplest encoding approach: Shallow Encoding

An Encoder-Decoder Perspective

Decoder (or pairwise decoder) maps from embeddings to the similarity score:

$$\mathrm{DEC}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^+$$

Applying the **decoder** to a pair of embeddings:

$$DEC(ENC(u), ENC(v)) = DEC(z_u, z_v) \approx \text{similarity}(u, v)$$

Similarity function: is a graph-based similarity measure between nodes.

Loss function: to be defined.

An Encoder-Decoder Perspective

Method	Decoder	Similarity measure	Loss function
Lap. Eigenmaps Graph Fact. GraRep HOPE	$egin{aligned} \ \mathbf{z}_u - \mathbf{z}_v\ _2^2 \ \mathbf{z}_u^ op \mathbf{z}_v \ \mathbf{z}_u^ op \mathbf{z}_v \ \mathbf{z}_u^ op \mathbf{z}_v \end{aligned}$	$egin{aligned} & ext{general} \ & extbf{A}[u,v] \ & extbf{A}[u,v],, extbf{A}^k[u,v] \ & ext{general} \end{aligned}$	$\begin{aligned} & \text{DEC}(\mathbf{z}_u, \mathbf{z}_v) \cdot \mathbf{S}[u, v] \\ & \ \text{DEC}(\mathbf{z}_u, \mathbf{z}_v) - \mathbf{S}[u, v] \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_u, \mathbf{z}_v) - \mathbf{S}[u, v] \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_u, \mathbf{z}_v) - \mathbf{S}[u, v] \ _2^2 \end{aligned}$
$\begin{array}{c} {\rm DeepWalk} \\ {\rm node2vec} \end{array}$	In today's lecture		

Objective: maximize $\mathbf{z}_v^T \mathbf{z}_u$ for node pairs (u, v) that are **similar**.

similarity
$$(u, v) \approx \mathbf{z}_v^{\mathrm{T}} \mathbf{z}_u$$

What is "Similar Nodes"?

Should two nodes have a similar embedding if they...

- are linked?
- share neighbors?
- have similar "structural roles"?

In today's lecture: we learn node similarity definition that uses random walks, and how to optimize embeddings for such a similarity measure.

Random Walk Approaches

Framework Summary

This is unsupervised/self-supervised way of learning node embeddings:

- We are not utilizing node labels,
- We are not utilizing node features,
- The goal is to directly estimate a set of coordinates (the embedding) of a node so that some aspect of the network structure is preserved.

Random Walk Embeddings

Two nodes have similar embeddings if they tend to co-occur on random walks over the graph.

We need to estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R.

Why Random Walk?

1. **Expressivity:** Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information.

Idea: if random walk starting from node u visits v, u and v are similar (high-order multi-hop information).

2. **Efficiency:** Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks.

Connection with word2vec

The basic idea is to **predict** a missing word from a <u>context</u>. What is **context**?

Example: "the quick red fox jumps over the lazy brown dog"

Skip-gram - the 'context' is *each* word from the surrounding *central* word. Based on the *central* word we predict each word from this surrounding.

Positive pairs: (context word, central word).

Random Walk Embeddings

Our goal is to learn a mapping $f(u) = z_u \in \mathbb{R}^d$ that preserves similarity, i.e. embeddings of the nodes which are nearby in the network are close.

Nearby nodes: $N_R(u)$ neighbourhood of u obtained by some random walk strategy R.

Log-likelihood objective:

learn feature representations that are predictive of the nodes in its random walk neighborhood.

Run short fixed-length random walks starting from each node $u \in V$ using strategy R.

For each node u collect $N_R(u)$.

Optimize:
Given node *u*, predict its neighbors.

$$\max_{f} \sum_{u \in V} \log P(N_{R}(u) | \mathbf{z}_{u})$$

Equivalently,
$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

Optimize embeddings to maximize the likelihood of random walk co-occurrences.

Run short fixed-length random walks starting from each node $u \in V$ using strategy R.

For each node *u* collect $N_R(u)$.

Optimize: Given node *u*, predict its neighbors.

$$\max_{f} \sum_{u \in V} \log P(N_{R}(u) | \mathbf{z}_{u})$$

Equivalently,
$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_P(u)} -\log(P(v|\mathbf{z}_u))$$

Optimize embeddings to maximize the likelihood of random walk co-occurrences.

Parameterize using softmax:
$$P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^T \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^T \mathbf{z}_n)}$$

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log rac{\exp(\mathbf{z}_u^ op \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^ op \mathbf{z}_n)}$$

Sum over all nodes u.

Sum over nodes *v* seen on random walks starting from *u*.

Predicted probability of *u* and *v* co-occurring on random walk.

Optimizing random walk embeddings: Finding embeddings that minimize \mathcal{L} .

random walk.

Negative Sampling

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log rac{\exp(\mathbf{z}_u^ op \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^ op \mathbf{z}_n)}$$
 very expensive!

Solution: Negative sampling

$$-\log \frac{\exp(\mathbf{z}_u^{\top} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\top} \mathbf{z}_n)} \approx \log \left(\sigma(\mathbf{z}_u^{\top} \mathbf{z}_v)\right) - \sum_{i=1}^k \log \left(\sigma(\mathbf{z}_u^{\top} \mathbf{z}_{n_i})\right)$$

- 1. Higher *k* gives more robust estimates.
- 2. Higher *k* corresponds to higher bias on negative events.

In practice k = 5 - 20.

How to Define the Random Walk Strategy *R*?

DeepWalk approach: run fixed-length, unbiased random walks starting from each node.

Biased Walks: node2vec

Goal: Develop biased 2nd order random walk R to generate network neighborhood $N_R(u)$ of node u.

Idea: use flexible, biased random walks that can trade off between local and global views of network.

Biased Walks: node2vec

Two classic strategies to define a neighborhood $N_R(u)$ of a given node u:

Walk of length 3 ($N_R(u)$ of size 3):

$$N_{BFS}(u) = \{s_1, s_2, s_3\}$$
 Local microscopic view.

$$N_{DFS}(u) = \{s_4, s_5, s_6\}$$
 Global macroscopic view.

Interpolating BFS & DFS

Biased fixed-length random walk $extbf{ extit{R}}$ that given a node $extbf{ extit{u}}$ generates neighborhood $N_R(u)$

Two hyperparameters:

- 1. Return parameter **p**:
 - a. return back to the previous node
- 2. In-out parameter *q*:
 - a. Moving outwards (DFS) vs. inwards (BFS),
 - b. Intuitively, *q* is the "ratio" of BFS vs. DFS.

p and **q** ranges: positive real numbers

Biased Walks: node2vec

Walker came over edge (s1, w) and is at w. Where to go next?

1/p, 1/q, 1 are unnormalized probabilities

- *p* − return parameter
- q − "walk away" parameter

Biased Walks: node2vec

Walker came over edge (s1, w) and is at w. Where to go next?

- BFS-like walk:
 - Low value of p (keep the walk "local" close to the starting point);
 - High value of q
- DFS-like walk:
 - \circ Low value of q
 - High value of p

Training: node2vec & Deep Walk

- 1. Compute random walk probabilities (node2vec)
- 2. Simulate r random walks of length l starting from each node u (node2vec/Deep Walk)
- 3. Optimize the node2vec objective using SGD (node2vec/Deep Walk)

Summary

- 1. Node2vec / Deep Walk methods: embed nodes so that distances in embedding space reflect node similarities in the original network.
- 2. Notion of node similarity: Random walk methods.
- 3. Random walk methods serve a solid baseline for node classification / link prediction.
- No one method wins in all cases.

How we use node embeddings

Limitations of node2vec / Deep Walk

- 1. Can not obtain embeddings for unseen nodes;
- 2. Can not capture well the structural similarity;

- 3. Can not utilize directly node, edge and graph features;
- 4. Sensitive to the walk length, p/q choice.

Other Random Walk Ideas

- 1 metapath2vec
- 2. Watch Your Step: Learning Node Embeddings via Graph Attention
- 3. LINE
- 4. struc2vec
- 5. HARP

Take-Home Messages

- 1. We discussed graph representation learning how to learn node embeddings for downstream tasks, without feature engineering.
- 2. We can use these embeddings for all level tasks: node/link/graph
- 3. Encoder-decoder framework powerful setup:
 - a. Encoder: embedding lookup
 - b. Decoder: predict score based on embedding to match node similarity
- 4. Node similarity measure: (biased) random walk (node2vec/Deep Walk)

BIOMEDICAL INFORMATICS

Slides & Image Credits

- 1. CS224W: Machine Learning with Graphs
- 2. Graph Representation Learning Book
- 3. <u>DeepWalk: Online Learning of Social Representations</u>
- 4. <u>node2vec: Scalable Feature Learning for Networks</u>
- 5. Efficient Estimation of Word Representations in Vector Space
- 6. <u>Distributed Representations of Words and Phrases and their Compositionality</u>
- 7. word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method

