2. Existence of exact upper bounds

Last Change: Sept 4, 2009

We introduce several notions leading up to an existence theorem for exact upper bounds: projections, strongly increasing sequences, a partition property, and the bounding projection property.

We start with the important notion of **projections**. By a projection framework we mean a triple (A, I, S) consisting of a nonempty set A, an ideal I on A, and a sequence $\langle S_a : a \in A \rangle$ of nonempty sets of ordinals. Suppose that we are given such a framework. We define $\sup(S)$ in the natural way: it is a function with domain A, and $(\sup(S))(a) =$ $\sup(S_a)$ for every $a \in A$. Thus $\sup(S) \in {}^A\mathrm{Ord}$. Now suppose also that we have a function $f \in {}^{A}\text{Ord}$ such that $f <_{I} \sup(S)$. Then we define the projection of f onto $\prod_{a \in A} S_{a}$, denoted by $f^+ = \operatorname{proj}(f, S)$ by setting, for any $a \in A$,

$$f^{+}(a) = \begin{cases} \min(S_a \backslash f(a)) & \text{if } f(a) < \sup(S_a), \\ f(a) & \text{otherwise.} \end{cases}$$

Note that $f \leq f^+$. Actually $f^+ \notin \prod_{a \in A} S_a$ in general.

[This differs from Abraham, Magidor in some small details. We assume that each S_a is nonempty, while they don't. We define $f^+(a) = f(a)$ if $f(a) \geq \sup(S_a)$, while they define it to be 0 then.]

Proposition 2.1. Let a projection framework be given, with the notation above.

- (i) If $f \in {}^{A}Ord$ and $f <_{I} \sup(S)$, then there is a $g \in \prod_{a \in A} S_{a}$ such that $f^{+} =_{I} g$, $f \leq_I g$, and if $h \in \prod_{a \in A} S_a$ and $f \leq_I h$, then $g \leq_I h$.

 - (ii) If $f_1, f_2 \in {}^AOrd$, $f_1 <_I \sup(S)$, $f_2 <_I \sup(S)$, and $f_1 \le f_2$, then $f_1^+ \le f_2^+$. (iii) If $f_1, f_2 \in {}^AOrd$, $f_1 <_I \sup(S)$, $f_2 <_I \sup(S)$, and $f_1 \le_I f_2$, then $f_1^+ \le_I f_2^+$.

Proof. For (i), define

$$g(a) = \begin{cases} f^+(a) & \text{if } f(a) < \sup(S_a), \\ \min(S_a) & \text{otherwise.} \end{cases}$$

Then $\{a \in A : f^+(a) \neq g(a)\} \subseteq \{a \in A : f(a) \geq \sup(S_a)\} \in I$. So $f^+ =_I g$. Since $f \leq f^+$, it follows that $f \leq_I g$. Now suppose that $h \in \prod_{a \in A} S_a$ and $f \leq_I h$. If $f^+(a) = g(a)$ and $f(a) \leq h(a)$, then either $f(a) < \sup(S_a)$ and $g(a) = f^+(a) = \min(S_a \setminus f(a)) \leq h(a)$, or $\sup(S_a) \leq f(a)$ and $g(a) = \min(S_a) \leq f(a) \leq h(a)$; in any case, $g(a) \leq h(a)$. Hence $g \leq_I h$. So (i) holds.

(ii) and (iii) are clear.
$$\hfill\Box$$

Another important notion in discussing exact upper bounds is as follows. Let I be an ideal over A, L a set of ordinals, and $f = \langle f_{\xi} : \xi \in L \rangle$ a sequence of members of ^AOrd. Then we say that f is strongly increasing under I iff there is a system $\langle Z_{\xi} : \xi \in L \rangle$ of members of I such that

$$\forall \xi, \eta \in L[\xi < \eta \Rightarrow \forall a \in A \setminus (Z_{\xi} \cup Z_{\eta})[f_{\xi}(a) < f_{\eta}(a)]].$$

Under the same assumptions we say that f is very strongly increasing under I iff there is a system $\langle Z_{\xi} : \xi \in L \rangle$ of members of I such that

$$\forall \xi, \eta \in L[\xi < \eta \Rightarrow \forall a \in A \backslash Z_{\eta}[f_{\xi}(a) < f_{\eta}(a)].$$

Proposition 2.2. Under the above assumptions, f is very strongly increasing iff for every $\xi \in L$ we have

(*)
$$\sup\{f_{\alpha} + 1 : \alpha \in L \cap \xi\} \leq_{I} f_{\xi}.$$

Proof. \Rightarrow : suppose that f is very strongly increasing, with sets Z_{ξ} as indicated. Let $\xi \in L$. Suppose that $a \in A \setminus Z_{\xi}$. Then for any $\alpha \in L \cap \xi$ we have $f_{\alpha}(a) < f_{\xi}(a)$, and so $\sup\{f_{\alpha}(a) + 1 : \alpha \in L \cap \xi\} \leq f_{\xi}(a)$; it follows that (*) holds.

 \Leftarrow : suppose that (*) holds for each $\xi \in L$. For each $\xi \in L$ let

$$Z_{\xi} = \{a \in A : \sup\{f_{\alpha}(a) + 1 : \alpha \in L \cap \xi\} > f_{\xi}(a)\};$$

it follows that $Z_{\xi} \in I$. Now suppose that $\alpha \in L$ and $\alpha < \xi$. Suppose that $a \in A \setminus Z_{\xi}$. Then $f_{\alpha}(a) < f_{\alpha}(a) + 1 \le \sup\{f_{\beta}(a) + 1 : \beta \in L \cap \xi\} \le f_{\xi}(a)$, as desired. \square

Lemma 2.3. (The sandwich argument) Suppose that $h = \langle h_{\xi} : \xi \in L \rangle$ is strongly increasing, L has no largest element, and ξ' is the successor in L of ξ for every $\xi \in L$. Also suppose that $f_{\xi} \in {}^{A}Ord$ is such that

$$h_{\xi} <_I f_{\xi} \leq_I h_{\xi'} \text{ for every } \xi \in L.$$

Then $\langle f_{\xi} : \xi \in L \rangle$ is also strongly increasing.

Proof. Let $\langle Z_{\xi} : \xi \in L \rangle$ testify that h is strongly increasing. For every $\xi \in L$ let

$$W_{\xi} = \{ a \in A : h_{\xi}(a) \ge f_{\xi}(a) \text{ or } f_{\xi}(a) > h_{\xi'}(a) \}.$$

Thus by hypothesis we have $W_{\xi} \in I$. Let $Z^{\xi} = W_{\xi} \cup Z_{\xi} \cup Z_{\xi'}$ for every $\xi \in L$. Then if $\xi_1 < \xi_2$, both in L, and if $a \in A \setminus (Z^{\xi_1} \cup Z^{\xi_2})$, then

$$f_{\xi_1}(a) \le h_{\xi_1'}(a) \le h_{\xi_2}(a) < f_{\xi_2}(a).$$

Proposition 2.4. Let I be a proper ideal over A, let $\lambda > |A|$ be a regular cardinal, and let $f = \langle f_{\xi} : \xi < \lambda \rangle$ be a $\langle I |$ increasing sequence of functions in A Ord.

Then f contains a strongly increasing subsequence of length λ iff f has an exact upper bound h such that $\operatorname{cf}(h(a)) = \lambda$ for all $a \in A$.

Proof. \Rightarrow : Let $\langle \eta(\xi) : \xi < \lambda \rangle$ be a strictly increasing sequence of ordinals less than λ , thus with supremum λ since λ is regular, and assume that $\langle f_{\eta(\xi)} : \xi < \lambda \rangle$ is strongly increasing. Hence for each $\xi < \lambda$ let $Z_{\xi} \in I$ be chosen correspondingly. We define for each $a \in A$

$$h(a) = \sup_{a \notin Z_{\xi}} f_{\eta(\xi)}(a)$$

for each $\xi < \lambda$. To see that h is an exact upper bound for f, we are going to apply 1.19. If $f_{\eta(\xi)}(a) > h(a)$, then $a \in Z_{\xi} \in I$. Hence $f_{\eta(\xi)} \leq_I h$ for each $\xi < \lambda$. Then for any $\xi < \lambda$ we have $f_{\xi} \leq_I f_{\eta(\xi)} \leq_I h$, so h bounds every f_{ξ} . Now suppose that $d <_I h$. Let $M = \{a \in A : d(a) \geq h(a)\}$; so $M \in I$. For each $a \in A \setminus M$ we have d(a) < h(a), and so there is a $\xi_a < \lambda$ such that $d(a) < f_{\eta(\xi_a)}(a)$ and $a \notin Z_{\xi_a}$. Since $|A| < \lambda$ and λ is regular, the ordinal $\rho \stackrel{\text{def}}{=} \sup_{a \in A \setminus M} \xi_a$ is less than λ . We claim that $d <_I f_{\eta(\rho)}$ (as desired). In fact, suppose that $a \in A \setminus (M \cup Z_{\rho})$. Then $a \in A \setminus (Z_{\xi_a} \cup Z_{\rho})$, and so $d(a) < f_{\eta(\xi_a)}(a) \leq f_{\eta(\rho)}(a)$. Thus $d <_I f_{\eta(\rho)}$.

It remains to show that $\operatorname{cf}(h(a)) = \lambda$ for all $a \in A$. Actually this does not hold in general for h as we have defined it. So we define a new h' in terms of h. First we need:

(1) There is a $W \in I$ such that $cf(h(a)) = \lambda$ for all $a \in A \setminus W$.

In fact, let

$$W = \{ a \in A : \exists \xi_a < \lambda \forall \xi' \in [\xi_a, \lambda) [a \in Z_{\xi'}] \}.$$

Since $|A| < \lambda$, the ordinal $\rho \stackrel{\text{def}}{=} \sup_{a \in W} \xi_a$ is less than λ . Clearly $W \subseteq Z_{\rho}$, so $W \in I$. For $a \in A \backslash W$ we have $\forall \xi < \lambda \exists \xi' \in [\xi, \lambda)[a \notin Z_{\xi'}]$. This gives an increasing sequence $\langle \sigma_{\nu} : \nu < \lambda \rangle$ of ordinals less than λ such that $a \notin Z_{\sigma_{\nu}}$ for all $\nu < \lambda$. By the strong increasing property it follows that $f_{\eta(\sigma_0)}(a) < f_{\eta(\sigma_1)}(a) < \cdots$. Now $|\{f_{\eta(\xi)} : a \notin Z_{\xi}\}| \leq \lambda$, so $\operatorname{cf}(h(a)) \leq \lambda$. Hence h(a) has cofinality λ . This proves (1).

Now we take W as in (1). Since I is a proper ideal, choose $a_0 \in A \setminus W$, and define

$$h'(a) = \begin{cases} h(a) & \text{if } a \in A \backslash W, \\ h(a_0) & \text{if } a \in W. \end{cases}$$

Then h = I h', and it follows that h' satisfies the properties needed.

 \Leftarrow : Assume that f has an exact upper bound h such that $\mathrm{cf}(h(a)) = \lambda$ for all $a \in A$. Now we define by recursion two sequences $\langle g_{\xi} : \xi < \lambda \rangle$ and $\langle \eta(\xi) : \xi < \lambda \rangle$. Suppose defined for all $\nu < \xi$, in such a way that $g_{\nu} < h$ and $\eta(\nu) < \lambda$ for each $\nu < \xi$. Then by the cofinality assumption, $\sup_{\nu < \xi} g_{\nu} < h$. Hence by the exact upper bound condition, there is a $\rho(\xi) < \lambda$ such that $\sup_{\nu < \xi} g_{\nu} <_I f_{\rho(\xi)}$. We may assume that also $\sup_{\nu < \xi} \eta(\nu) < \rho(\xi)$. Let

$$W = \{ a \in A : (\sup_{\nu < \xi} g_{\nu})(a) \ge f_{\rho(\xi)}(a) \};$$

$$V = \{ a \in A : f_{\rho(\xi)}(a) \ge h(a) \}.$$

Now we define g_{ξ} :

$$g_{\xi}(a) = \begin{cases} f_{\rho(\xi)}(a) & \text{if } a \in A \setminus (W \cup V), \\ (\sup_{\nu < \xi} g_{\nu})(a) + 1 & \text{if } a \in W \cup V. \end{cases}$$

Clearly then we have $g_{\nu} < g_{\xi}$ for all $\nu < \xi$. Now choose $\eta(\xi) < \lambda$ and greater than $\rho(\xi)$ and each $\eta(\nu)$ for $\nu < \xi$. This finishes the construction. Clearly $g_{\xi} =_I f_{\rho(\xi)} <_I f_{\eta(\xi)} <_I f_{\rho(\xi+1)} \le_I g_{\xi+1}$ for all $\xi < \lambda$. Hence by Lemma 2.3 we get that $\langle f_{\eta(\xi)} : \xi < \lambda \rangle$ is strongly increasing.

Now we define a partition property. Suppose that I is an ideal over a set A, λ is an uncountable regular cardinal > |A|, $f = \langle f_{\xi} : \xi < \lambda \rangle$ is a $<_I$ -increasing sequence of members of A Ord, and κ is a regular cardinal such that $|A| < \kappa \le \lambda$. The following property of these things is denoted by $(*)_{\kappa}$:

(*)_{κ} For all unbounded $X \subseteq \lambda$ there is an $X_0 \subseteq X$ of order type κ such that $\langle f_{\xi} : \xi \in X_0 \rangle$ is strongly increasing.

Proposition 2.5. Assume the above notation, with $\kappa < \lambda$. Then $(*)_{\kappa}$ holds iff the set

 $\{\delta < \lambda : \operatorname{cf}(\delta) = \kappa \text{ and } \langle f_{\xi} : \xi \in X_0 \rangle \text{ is strongly increasing for some unbounded } X_0 \subseteq \delta \}$ is stationary in λ .

Proof. Let S be the indicated set of ordinals δ .

 \Rightarrow : Assume $(*)_{\kappa}$ and suppose that $C \subseteq \lambda$ is a club. Choose $C_0 \subseteq C$ of order type κ such that $\langle f_{\xi} : \xi \in C_0 \rangle$ is strongly increasing. Let $\delta = \sup(C_0)$. Clearly $\delta \in C \cap S$.

 \Leftarrow : Assume that S is stationary in λ , and suppose that $X \subseteq \lambda$ is unbounded. Define

 $C = \{\alpha \in \lambda : \alpha \text{ is a limit ordinal and } X \cap \alpha \text{ is unbounded in } \alpha\}.$

We check that C is club in λ . For closure, suppose that $\alpha < \lambda$ is a limit ordinal and $C \cap \alpha$ is unbounded in α ; we want to show that $\alpha \in C$. So, we need to show that $X \cap \alpha$ is unbounded in α . To this end, take any $\beta < \alpha$; we want to find $\gamma \in X \cap \alpha$ such that $\beta < \gamma$. Since $C \cap \alpha$ is unbounded in α , choose $\delta \in C \cap \alpha$ such that $\beta < \delta$. By the definition of C we have that $X \cap \delta$ is unbounded in δ . So we can choose $\gamma \in X \cap \delta$ such that $\beta < \gamma$. Since $\gamma < \delta < \alpha$, γ is as desired. So, indeed, C is closed.

To show that C is unbounded in λ , take any $\beta < \lambda$; we want to find an $\alpha \in C$ such that $\beta < \alpha$. Since X is unbounded in λ , we can choose a sequence $\gamma_0 < \gamma_1 < \cdots$ of elements of X with $\beta < \gamma_0$. Now λ is uncountable and regular, so $\sup_{n \in \omega} \gamma_n < \lambda$, and it is the member of C we need.

Now choose $\delta \in C \cap S$. This gives us an unbounded set X_0 in δ such that $\langle f_{\xi} : \xi \in X_0 \rangle$ is strongly increasing. Now also $X \cap \delta$ is unbounded, since $\delta \in C$. Hence we can define by induction two increasing sequences $\langle \eta(\xi) : \xi < \kappa \rangle$ and $\langle \nu(\xi) : \xi < \kappa \rangle$ such that each $\eta(\xi)$ is in X_0 , each $\nu(\xi)$ is in X, and $\eta(\xi) < \nu(\xi) \leq \eta(\xi+1)$ for all $\xi < \kappa$. It follows by 2.3 that $X_1 \stackrel{\text{def}}{=} \{\nu(\xi) : \xi < \kappa\}$ is a subset of X as desired in $(*)_{\kappa}$.

Finally, we introduce the bounding projection property.

Suppose that $f = \langle f_{\xi} : \xi < \lambda \rangle$ is a $<_I$ -increasing sequence of functions in Ord^A , with λ a regular cardinal > |A|. Also suppose that κ is a regular cardinal and $|A| < \kappa \le \lambda$.

We say that f has the bounding projection property for κ iff whenever $\langle S(a) : a \in A \rangle$ is a system of nonempty sets of ordinals such that each $|S(a)| < \kappa$ and for each $\xi < \lambda$ we have $f_{\xi} <_I \sup(S)$, then for some $\xi < \lambda$, the function $\operatorname{proj}(f_{\xi}, \langle S(a) : a \in A \rangle) <_I$ -bounds f. (Note that (A, I, S) is a projection framework.)

Lemma 2.6. Suppose that I is an ideal over A, $\lambda > |A|$ is a regular cardinal, and $f = \langle f_{\xi} : \xi < \lambda \rangle$ is a $\langle I$ -increasing sequence satisfying $(*)_{\kappa}$ for a regular cardinal κ such that $|A| < \kappa \leq \lambda$. Then f has the bounding projection property for κ .

Proof. Assume the hypothesis of the lemma and of the bounding projection property for κ . For every $\xi < \lambda$ let

$$f_{\xi}^+ = \operatorname{proj}(f_{\xi}, S).$$

Suppose that the conclusion of the bounding projection property fails. Then for every $\xi < \lambda$, the function f_{ξ}^+ is not a bound for f, and so there is a $\xi' < \lambda$ such that $f_{\xi'} \not \leq_I f_{\xi}^+$. Since $f_{\xi} \leq f_{\xi}^+$, we must have $\xi < \xi'$. Clearly for any $\xi'' \geq \xi'$ we have $f_{\xi''} \not \leq_I f_{\xi}^+$. Thus for every $\xi'' \geq \xi'$ we have $f_{\xi''} \not \leq_I f_{\xi}^+$. Thus for every $f_{\xi''} \geq f_{\xi}$ we have $f_{\xi''} \not \leq_I f_{\xi}^+$. Now we define a sequence $f_{\xi}(\mu) f_{\xi}^+$ of elements of $f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi''}$ in $f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu)$ has been defined. Choose $f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu)$. Then let $f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu)$ has been defined for all $f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu)$. Then let $f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu)$ has been defined for all $f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu)$. Then let $f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu)$ has been defined for all $f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu)$. Then let $f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu)$ has been defined for all $f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu) f_{\xi}(\mu)$.

if
$$\xi, \xi' \in X$$
 and $\xi < \xi'$, then $< (f_{\xi}^+, f_{\xi'}) \notin I$.

Since $(*)_{\kappa}$ holds, there is a subset $X_0 \subseteq X$ of order type κ such that $\langle f_{\xi} : \xi \in X_0 \rangle$ is strongly increasing. Let $\langle Z_{\xi} : \xi \in X_0 \rangle$ be as in the definition of strongly increasing.

For every $\xi \in X_0$, let ξ' be the successor of ξ in X_0 . Note that

$$\langle (f_{\xi}^+, f_{\xi'}) \backslash (Z_{\xi} \cup Z_{\xi'} \cup \{a \in A : f_{\xi}(a) \ge \sup(S(a))\}) \notin I,$$

and hence it is nonempty. So, choose

$$a_{\xi} \in \langle (f_{\xi}^+, f_{\xi'}) \backslash (Z_{\xi} \cup Z_{\xi'} \cup \{a \in A : f_{\xi}(a) \ge \sup(S(a))\}).$$

Note that this implies that $f_{\xi}^+(a_{\xi}) \in S(a_{\xi})$. Since $\kappa > |A|$, we can find a single $a \in A$ such that $a = a_{\xi}$ for all ξ in a subset X_1 of X_0 of size κ . Now for $\xi_1 < \xi_2$ with both in X_1 , we have

$$f_{\xi_1}^+(a) < f_{\xi_1'}(a) \le f_{\xi_2}(a) \le f_{\xi_2}^+(a).$$

[The first inequality is a consequence of $a=a_{\xi_1}\in (f_{\xi_1}^+,f_{\xi_1'})$, the second follows from $\xi_1'\leq \xi_2$ and the fact that

$$a = a_{\xi_1} = a_{\xi_2} \in A \backslash (Z_{\xi_1'} \cup Z_{\xi_2}),$$

and the third is true by the definition of $f_{\xi_2}^+$.]

Thus $\langle f_{\xi}^{+}(a) : \xi \in X_{1} \rangle$ is a strictly increasing sequence of members of S(a). This contradicts our assumption that $|S(a)| < \kappa$.

Lemma 2.7. Suppose that I is a proper ideal over A, $\lambda \geq |A|^+$ is a regular cardinal, and $f = \langle f_{\xi} : \xi \in \lambda \rangle$ is a $<_I$ -increasing sequence of functions in AOrd satisfying the bounding projection property for $|A|^+$. Suppose that h is a least upper bound for f. Then h is an exact upper bound.

Proof. Assume the hypotheses, and suppose that $g <_I h$; we want to find $\xi < \lambda$ such that $g <_I f_{\xi}$. By increasing h on a subset of A in the ideal, we may assume that g < h everywhere. (See Proposition 1.24.) Define $S_a = \{g(a), h(a)\}$ for every $a \in A$. By the bounding projection property we get a $\xi < \lambda$ such that $f_{\xi}^+ \stackrel{\text{def}}{=} \operatorname{proj}(f_{\xi}, \langle S_a : a \in A \rangle)$ is an upper bound for f. We shall prove that $g <_I f_{\xi}$, as required.

Since h is a least upper bound, it follows that $h \leq_I f_{\xi}^+$. Thus $M \stackrel{\text{def}}{=} \{a \in A : h(a) > f_{\xi}^+(a)\} \in I$. Also, the set $N \stackrel{\text{def}}{=} \{a \in A : f_{\xi}(a) \geq \sup(S_a)\}$ is in I. Suppose that $a \in A \setminus (M \cup N)$. Then $g(a) < h(a) \leq f_{\xi}^+(a) = \min(S_a \setminus f_{\xi}(a))$, and since $g(a) \in S_a$, this implies that $g(a) < f_{\xi}(a)$. So $g <_I f_{\xi}$, as desired.

Theorem 2.8. (Existence of exact upper bounds) Suppose that I is a proper ideal over A, $\lambda > |A|^+$ is a regular cardinal, and $f = \langle f_{\xi} : \xi \in \lambda \rangle$ is a $<_I$ -increasing sequence of functions in A Ord that satisfies the bounding projection property for $|A|^+$. Then f has an exact upper bound.

Proof. Assume the hypotheses. By 2.7 it suffices to show that f has a least upper bound, and to do this we will apply 1.18. Suppose that f does not have a least upper bound. Since it obviously has an upper bound, this means, by 1.18:

(1) For every upper bound $h \in {}^{A}\text{Ord}$ for f there is another upper bound h' for f such that $h' \leq_{I} h$ and $\{a \in A : h'(a) < h(a)\} \notin I$.

In fact, 1.18 says that there is another upper bound h' for f such that $h' \leq_I h$ and it is not true that $h =_I h'$. Hence $\{a \in A : h(a) < h'(a)\} \in I$ and $\{a \in A : h(a) \neq h'(a)\} \notin I$. So

$${a \in A : h(a) \neq h'(a)} \setminus {a \in A : h(a) < h'(a)} \notin I$$
 and ${a \in A : h(a) \neq h'(a)} \setminus {a \in A : h(a) < h'(a)} = {a \in A : h'(a) < h(a)},$

so (1) follows.

Now we shall define by induction on $\alpha < |A|^+$ a sequence $S^{\alpha} = \langle S^{\alpha}(a) : a \in A \rangle$ of sets of ordinals satisfying the following conditions:

- (2) $|S^{\alpha}(a)| \leq |A|$ for each $a \in A$;
- (3) $f_{\xi}(a) < \sup S^{\alpha}(a)$ for all $\xi \in \lambda$ and $a \in A$;
- (4) If $\alpha < \beta$ and $a \in A$, then $S^{\alpha}(a) \subseteq S^{\beta}(a)$, and if δ is a limit ordinal, then $S^{\delta}(a) = \bigcup_{\alpha < \delta} S^{\alpha}(a)$.

We also define sequences $\langle h_{\alpha} : \alpha < |A|^{+} \rangle$ and $\langle h'_{\alpha} : \alpha < |A|^{+} \rangle$ of functions and $\langle \xi(\alpha) : \alpha < |A|^{+} \rangle$ of ordinals. In fact, we will define h_{α} , h'_{α} , and $\xi(\alpha)$ after defining $S^{\alpha+1}$.

The definition of S^{α} for α limit is fixed by (4), and the conditions (2)–(4) continue to hold. To define S^0 , pick any function k that bounds f (everywhere) and define $S^0(a) = \{k(a)\}$ for all $a \in A$; so (2)–(4) hold.

Suppose that $S^{\alpha} = \langle S^{\alpha}(a) : a \in A \rangle$ has been defined, satisfying (2)–(4); we define $S^{\alpha+1}$. By the bounding projection property for $|A|^+$, there is a $\xi(\alpha) < \lambda$ such that $h_{\alpha} \stackrel{\text{def}}{=} \operatorname{proj}(f_{\xi(\alpha)}, S^{\alpha})$ is an upper bound for f under $<_I$. Then

(5) if $\xi(\alpha) \leq \xi' < \lambda$, then $h_{\alpha} =_{I} \operatorname{proj}(f_{\xi'}, S^{\alpha})$.

In fact, recall that $h_{\alpha}(a) = \min(S^{\alpha}(a) \setminus f_{\xi(\alpha)}(a))$ for every $a \in A$. Now suppose that $\xi(\alpha) < \xi' < \lambda$. Let $M = \{a \in A : f_{\xi(\alpha)}(a) \ge f_{\xi'}(a)\}$. So $M \in I$. For any $a \in A \setminus M$ we have $f_{\xi(\alpha)}(a) < f_{\xi'}(a)$, and hence

$$\min(S^{\alpha}(a)\backslash f_{\xi(\alpha)}(a)) \leq \min(S^{\alpha}(a)\backslash f_{\xi'}(a));$$

it follows that $h_{\alpha} \leq_{I} \operatorname{proj}(f_{\xi'}, S^{\alpha})$. For the other direction, recall that h_{α} is an upper bound for f under \leq_{I} . So $f_{\xi'} \leq_{I} h_{\alpha}$. If a is any element of A such that $f_{\xi'}(a) \leq h_{\alpha}(a)$ then, since $h_{\alpha}(a) \in S^{\alpha}(a)$, we get $\min(S^{\alpha}(a) \setminus f_{\xi'}(a)) \leq h_{\alpha}(a)$. Thus $\operatorname{proj}(f_{\xi'}, S^{\alpha}) \leq_{I} h_{\alpha}$. This checks (5).

Now we apply (1) to get an upper bound h'_{α} for f such that $h'_{\alpha} \leq_I h_{\alpha}$ and $\langle (h'_{\alpha}, h_{\alpha}) \notin I$. We now define $S^{\alpha+1}(a) = S^{\alpha}(a) \cup \{h'_{\alpha}(a)\}$ for any $a \in A$.

(6) If $\xi(\alpha) \leq \xi < \lambda$, then $\operatorname{proj}(f_{\xi}, S^{\alpha+1}) =_I h'_{\alpha}$.

For, we have $f_{\xi} \leq_I h'_{\alpha}$ and, by (5), $h_{\alpha} =_I \operatorname{proj}(f_{\xi}, S^{\alpha})$. If $a \in A$ is such that $f_{\xi}(a) \leq h'_{\alpha}(a)$, $h'_{\alpha}(a) \leq h_{\alpha}(a)$, and $h_{\alpha}(a) = \operatorname{proj}(f_{\xi}, S^{\alpha})(a)$, then $\min(S^{\alpha}(a) \setminus f_{\xi}(a)) = h_{\alpha}(a) \geq h'_{\alpha}(a) \geq f_{\xi}(a)$, and hence

$$\operatorname{proj}(f_{\xi}, S^{\alpha+1})(a) = \min(S^{\alpha+1}(a) \setminus f_{\xi}(a)) = h'_{\alpha}(a).$$

It follows that $\operatorname{proj}(f_{\xi}, S^{\alpha+1}) =_I h'_{\alpha}$, as desired in (6).

Now since $|A|^+ < \lambda$, let $\xi < \lambda$ be greater than each $\xi(\alpha)$ for $\alpha < |A|^+$. Define $H_{\alpha} = \operatorname{proj}(f_{\xi}, S^{\alpha})$ for each $\alpha < |A|^+$. Since $\xi > \xi(\alpha)$, we have $H_{\alpha} =_I h_{\alpha}$ by (5). Note that $H_{\alpha+1} = \operatorname{proj}(f_{\xi}, S^{\alpha+1}) =_I h'_{\alpha}$; so $< (H_{\alpha+1}, H_{\alpha}) \notin I$. Now clearly by the construction we have $S^{\alpha_1}(a) \subseteq S^{\alpha_2}(a)$ for all $a \in A$ when $\alpha_1 < \alpha_2 < |A|^+$. Hence we get

(7) if
$$\alpha_1 < \alpha_2 < |A|^+$$
, then $H_{\alpha_2} \le H_{\alpha_1}$, and $< (H_{\alpha_2}, H_{\alpha_1}) \notin I$.

Now for every $\alpha < |A|^+$ pick $a_{\alpha} \in A$ such that $H_{\alpha+1}(a_{\alpha}) < H_{\alpha}(a_{\alpha})$. We have $a_{\alpha} = a_{\beta}$ for all α, β in some subset of $|A|^+$ of size $|A|^+$, and this gives an infinite decreasing sequence of ordinals, contradiction.

Lemma 2.9. Suppose that I is a proper ideal over $A, \lambda \geq |A|^+$ is a regular cardinal, $f = \langle f_{\xi} : \xi < \lambda \rangle$ is a $<_I$ -increasing sequence of functions in A Ord, $|A|^+ \leq \kappa \leq \lambda$, f satisfies the bounding projection property for κ , and g is an exact upper bound for f. Then

$$\{a \in A : g(a) \text{ is non-limit, or } cf(g(a)) < \kappa\} \in I.$$

Proof. Let $P = \{a \in A : g(a) \text{ is non-limit, or } \operatorname{cf}(g(a)) < \kappa\}$. If $a \in P$ and g(a) is a limit ordinal, choose $S(a) \subseteq g(a)$ cofinal in g(a) and of order type $< \kappa$. If g(a) = 0 let $S(a) = \{0\}$, and if $g(a) = \beta + 1$ for some β let $S(a) = \{\beta\}$. Finally, if g(a) is limit but is not in P, let $S(a) = \{g(a)\}$.

Now for any $\xi < \lambda$ let

$$N_{\xi} = \{ a \in A : f_{\xi}(a) \ge f_{\xi+1}(a) \}$$
 and $Q_{\xi} = \{ a \in A : f_{\xi+1}(a) \ge g(a) \}.$

Then clearly

(*) If $a \in A \setminus (N_{\xi} \cup Q_{\xi})$, then $f_{\xi}(a) < \sup(S(a))$.

It follows that $\{a \in A : f_{\xi}(a) \geq \sup(S)(a)\} \subseteq N_{\xi} \cup Q_{\xi} \in I$. Hence the hypothesis of the bounding projection property holds. Applying it, we get $\xi < \lambda$ such that $f_{\xi}^+ \stackrel{\text{def}}{=} \operatorname{proj}(f_{\xi}, \langle S(a) : a \in A \rangle) <_{I}$ -bounds f. Since g is a least upper bound for f, we get $g \leq_{I} f_{\xi}^{+}$, and hence $M \stackrel{\text{def}}{=} \{a \in A : f_{\xi}^{+}(a) < g(a)\} \in I$. By (*), for any $a \in P \setminus (N_{\xi} \cup Q_{\xi})$ we have $f_{\xi}^{+}(a) = \min(S(a) \setminus f_{\xi}(a)) < g(a)$. This shows that $P \setminus (N_{\xi} \cup Q_{\xi}) \subseteq M$, hence $P \subseteq N_{\xi} \cup Q_{\xi} \cup M \in I$, so $P \in I$, as desired.

Theorem 2.10. Suppose that I is a proper ideal over A, $\lambda > |A|^+$ is a regular cardinal, $f = \langle f_{\xi} : \xi < \lambda \rangle$ is a $<_I$ -increasing sequence of functions in A Ord, and $|A|^+ \le \kappa \le \lambda$, with κ regular. Then the following are equivalent:

- (i) $(*)_{\kappa}$ holds for f.
- (ii) f satisfies the bounding projection property for κ .
- (iii) f has an exact upper bound g such that

$$\{a \in A : g(a) \text{ is non-limit, } or \operatorname{cf}(g(a)) < \kappa\} \in I.$$

Proof. (i) \Rightarrow (ii): Lemma 2.6.

- (ii) \Rightarrow (iii): Since (*) $_{\kappa}$ clearly implies (*) $_{|A|^+}$, this implication is true by Theorem 2.8 and Lemma 2.9.
- (iii) \Rightarrow (i): Assume (iii). By modifying g on a set in the ideal we may assume that g(a) is a limit ordinal and $\operatorname{cf}(g(a)) \geq \kappa$ for all $a \in A$. For each $a \in A$ choose a club $S(a) \subseteq g(a)$ of order type $\operatorname{cf}(g(a))$. Thus the order type of S(a) is $\geq \kappa$. We prove that $(*)_{\kappa}$ holds. So, assume that $X \subseteq \lambda$ is unbounded; we want to find $X_0 \subseteq X$ of order type κ over which f is strongly increasing. To do this, we intend to define by induction on $\alpha < \kappa$ a function $h_{\alpha} \in \prod S$ and an index $\xi(\alpha) \in X$ such that
- (1) $h_{\alpha} <_I f_{\xi(\alpha)} \leq_I h_{\alpha+1}$.
- (2) The sequence $\langle h_{\alpha} : \alpha < \kappa \rangle$ is <-increasing (increasing everywhere; and hence it certainly is strongly increasing).

After we have done this, the sandwich argument (Lemma 2.3) shows that $\langle f_{\xi(\alpha)} : \alpha < \kappa \rangle$ is strongly increasing and of order type κ , giving the desired result.

The functions h_{α} are defined as follows.

- (3) $h_0 \in \prod S$ is arbitrary.
- (4) For a limit ordinal $\delta < \kappa$ let $h_{\delta} = \sup_{\alpha < \delta} h_{\alpha}$.
- (5) Having defined h_{α} , we define $h_{\alpha+1}$ as follows. Since g is an exact upper bound and $h_{\alpha} < g$, choose $\xi(\alpha)$ such that $h_{\alpha} <_I f_{\xi(\alpha)}$. Also, since $f_{\xi} <_I g$ for all $\xi < \lambda$, the projections $f_{\xi}^+ = \operatorname{proj}(f, S)$ are defined. We define

$$h_{\alpha+1}(a) = \begin{cases} \max(h_{\alpha}(a), f_{\xi(\alpha)}^{+}(a)) + 1 & \text{if } f_{\xi(\alpha)}(a) < g(a), \\ h_{\alpha}(a) + 1 & \text{if } f_{\xi(\alpha)}(a) \ge g(a). \end{cases}$$

Thus we have

$$h_{\alpha} <_{I} f_{\xi(\alpha)} \leq_{I} h_{\alpha+1}$$
, for every α . (I.6)

So conditions (1) and (2) hold.

To proceed further we need the following *club quessing theorem*.

Theorem 2.11. (Club guessing) Suppose that κ is a regular cardinal, λ is a cardinal such that $\operatorname{cf}(\lambda) \geq \kappa^{++}$, and $S_{\kappa}^{\lambda} = \{\delta \in \lambda : \operatorname{cf}(\delta) = \kappa\}$. Then there is a sequence $\langle C_{\delta} : \delta \in S_{\kappa}^{\lambda} \rangle$ such that:

- (i) For every $\delta \in S_{\kappa}^{\lambda}$ the set $C_{\delta} \subseteq \delta$ is club, of order type κ .
- (ii) For every club $D \subseteq \lambda$ there is a $\delta \in D \cap S^{\lambda}_{\kappa}$ such that $C_{\delta} \subseteq D$.

The sequence $\langle C_{\delta} : \delta \in S_{\kappa}^{\lambda} \rangle$ is called a *club guessing sequence* for S_{κ}^{λ} .

Proof. First we take the case of uncountable κ . Fix a sequence $C' = \langle C'_{\delta} : \delta \in S_{\kappa}^{\lambda} \rangle$ such that $C'_{\delta} \subseteq \delta$ is club in δ of order type κ , for every $\delta \in S_{\kappa}^{\lambda}$. For any club E of λ , let

$$C' \upharpoonright E = \langle C'_{\delta} \cap E : \delta \in S_{\kappa}^{\lambda} \cap E' \rangle,$$

where $E' = \{ \delta \in E : E \cap \delta \text{ is unbounded in } \delta \}$. Clearly E' is also club in λ . Also note that $C'_{\delta} \cap E$ is club in δ for each $\delta \in S^{\lambda}_{\kappa} \cap E'$. We claim:

(1) There is a club E of λ such that for every club D of λ there is a $\delta \in D \cap E' \cap S_{\kappa}^{\lambda}$ such that $C'_{\delta} \cap E \subseteq D$.

Note that if we prove (1), then the theorem follows by defining $C_{\delta} = C'_{\delta} \cap E$ for all $\delta \in E' \cap S_{\kappa}^{\lambda}$, and $C_{\delta} = C'_{\delta}$ for $\delta \in S_{\lambda}^{\kappa} \setminus E'$.

Assume that (1) is false. Hence for every club $E \subseteq \lambda$ there is a club $D_E \subseteq \lambda$ such that for every $\delta \in D_E \cap E' \cap S_{\kappa}^{\lambda}$ we have

$$C'_{\delta} \cap E \not\subseteq D_E$$
.

We now define a sequence $\langle E^{\alpha} : \alpha < \kappa^{+} \rangle$ of clubs of λ decreasing under inclusion, by induction on α :

- (2) $E^0 = \lambda$.
- (3) If $\gamma < \kappa^+$ is a limit ordinal and E^{α} has been defined for all $\alpha < \gamma$, we set $E^{\gamma} = \bigcap_{\alpha < \gamma} E^{\alpha}$. Since $\gamma < \kappa^+ < \operatorname{cf}(\lambda)$, E^{γ} is club in λ .
- (4) If E^{α} has been defined, let $E^{\alpha+1}$ be the set of all limit points of $E^{\alpha} \cap D_{E^{\alpha}}$, i.e., the set of all $\varepsilon < \lambda$ such that $E^{\alpha} \cap D_{E^{\alpha}} \cap \varepsilon$ is unbounded in ε .

This defines the sequence. Let $E = \bigcap_{\alpha < \kappa^+} E^{\alpha}$. Then E is club in λ . Take any $\delta \in S_{\kappa}^{\lambda} \cap E$. Since $|C'_{\delta}| = \kappa$ and the sequence $\langle E^{\alpha} : \alpha < \kappa^+ \rangle$ is decreasing, there is an $\alpha < \kappa^+$ such that $C'_{\delta} \cap E = C_{\delta} \cap E^{\alpha}$. So $C'_{\delta} \cap E^{\alpha} = C'_{\delta} \cap E^{\alpha+1}$. Hence $C'_{\delta} \cap E^{\alpha} \subseteq D_{E_{\alpha}}$, contradiction.

Thus the case κ uncountable has been finished.

Now we take the case $\kappa = \omega$. For $S = S_{\aleph_0}^{\lambda}$ fix $C = \langle C_{\delta} : \delta \in S \rangle$ so that C_{δ} is club in δ with order type ω . We denote the *n*-th element of C_{δ} by $C_{\delta}(n)$. For any club $E \subseteq \lambda$ and any $\delta \in S \cap E'$ we define

$$C_{\delta}^{E} = \{ \max(E \cap (C_{\delta}(n) + 1)) : n \in \omega \}.$$

This set is cofinal in δ . In fact, given $\alpha < \delta$, there is a $\beta \in E \cap \delta$ such that $\alpha < \beta$ since $\delta \in E'$, and there is an $n \in \omega$ such that $\beta < C_{\delta}(n)$. Then $\alpha < \max(E \cap (C_{\delta}(n) + 1))$, as desired. There may be repetitions in the description of C_{δ}^{E} , but $\max(E \cap (C_{\delta}(n) + 1)) \leq \max(E \cap (C_{\delta}(m) + 1))$ if n < m, so C_{δ}^{E} has order type ω . We claim

(5) There is a closed unbounded $E \subseteq \lambda$ such that for every club $D \subseteq \lambda$ there is a $\delta \in D \cap S \cap E'$ such that $C_{\delta}^E \subseteq D$. [This proves the club guessing property.]

Suppose that (5) fails. Thus for every closed unbounded $E \subseteq \lambda$ there exist a club $D_E \subseteq \lambda$ such that for every $\delta \in D_E \cap S \cap E'$ we have $C_\delta^E \not\subseteq D$. Then we construct a descending sequence E^{α} of clubs in λ as in the case $\kappa > \omega$, for $\alpha < \omega_1$. Thus for each $\alpha < \omega_1$ and each $\delta \in D_{E^{\alpha}} \cap S \cap (E^{\alpha})'$ we have $C_\delta^{E^{\alpha}} \not\subseteq D_{E^{\alpha}}$. Let $E = \bigcap_{\alpha < \omega_1} E^{\alpha}$. Take any $\delta \in S \cap E$. For $n \in \omega$ and $\alpha < \beta$ we have

$$E^{\alpha} \cap (C_{\delta}(n) + 1) \supseteq E^{\beta} \cap (C_{\delta}(n) + 1),$$

and so $\max(E^{\alpha} \cap (C_{\delta}(n)+1)) \geq \max(E^{\beta} \cap (C_{\delta}(n)+1))$; it follows that there is an $\alpha_n < \omega_1$ such that $\max(E^{\beta} \cap (C_{\delta}(n)+1)) = \max(E^{\alpha_n} \cap (C_{\delta}(n)+1))$ for all $\beta > \alpha_n$. Choose γ greater than all α_n . Thus

(6) For all $\varepsilon > \gamma$ and all $n \in \omega$ we have $\max(E^{\varepsilon} \cap (C_{\delta}(n) + 1)) = \max(E^{\gamma} \cap (C_{\delta}(n) + 1))$.

But there is a $\rho \in C_{\delta}^{E^{\gamma}} \setminus D_{E^{\gamma}}$; say that $\rho = \max(E^{\gamma} \cap (C_{\delta}(n) + 1))$. Then $\rho = \max(E^{\gamma+1} \cap (C_{\delta}(n) + 1)) \in E^{\gamma+1} = (E^{\gamma} \cap D_{E^{\gamma}})' \in D_{E^{\gamma}}$, contradiction.

Lemma 2.12. Suppose that:

- (i) I is an ideal over A.
- (ii) κ and λ are regular cardinals such that $|A| < \kappa$ and $\kappa^{++} < \lambda$.
- (iii) $f = \langle f_{\xi} : \xi < \lambda \rangle$ is a sequence of length λ of functions in AOrd that is $<_I$ -increasing and satisfies the following condition:

For every $\delta < \lambda$ with $\operatorname{cf}(\delta) = \kappa^{++}$ there is a club $E_{\delta} \subseteq \delta$ such that for some $\delta' \geq \delta$ with $\delta' < \lambda$,

$$\sup\{f_{\alpha} : \alpha \in E_{\delta}\} \leq_{I} f_{\delta'}.$$

Under these assumptions, $(*)_{\kappa}$ holds for f.

Proof. Assume the hypotheses. Let $S = S_{\kappa}^{\kappa^{++}}$; so S is stationary in κ^{++} . By 2.11, let $\langle C_{\delta} : \delta \in S \rangle$ be a club guessing sequence for S; thus

- (1) For every $\delta \in S$, the set $C_{\delta} \subseteq \delta$ is a club of order type κ .
- (2) For every club $D \subseteq \kappa^{++}$ there is a $\delta \in D \cap S$ such that $C_{\delta} \subseteq D$.

Now let $U \subseteq \lambda$ be unbounded; we want to find $X_0 \subseteq U$ of order type κ such that $\langle f_{\xi} : \xi \in X_0 \rangle$ is strongly increasing. To do this we first define an increasing continuous sequence $\langle \xi(i) : i < \kappa^{++} \rangle \in \kappa^{++} \lambda$ recursively.

Let
$$\xi(0) = 0$$
. For i limit, let $\xi(i) = \sup_{k < i} \xi(k)$.

Now suppose for some $i < \kappa^{++}$ that $\xi(k)$ has been defined for every $k \le i$; we define $\xi(i+1)$. For each $\alpha \in S$ we define

$$h_{\alpha} = \sup\{f_{\eta} : \eta \in \xi[C_{\alpha} \cap (i+1)]\} \text{ and}$$

$$\sigma_{\alpha} = \begin{cases} \text{least } \sigma \in (\xi(i), \lambda) \text{ such that } h_{\alpha} \leq_{I} f_{\sigma} & \text{if there is such a } \sigma, \\ \xi(i) + 1 & \text{otherwise.} \end{cases}$$

Now we let $\xi(i+1)$ be the least member of U which is greater than $\sup\{\sigma_{\alpha}: \alpha \in S\}$. It follows that

(3) If $\alpha \in S$ and the first case in the definition of σ_{α} holds, then $h_{\alpha} <_I f_{\xi(i+1)}$.

Now the set $F \stackrel{\text{def}}{=} \{\xi(k) : k \in \kappa^{++}\}$ is closed, and has order type κ^{++} . Let $\delta = \sup(F)$. Then F is a club of δ , and $\operatorname{cf}(\delta) = \kappa^{++}$. Hence by the hypothesis (iii) of the lemma, there is a club $E_{\delta} \subseteq \delta$ and a $\delta' \in [\delta, \lambda)$ such that (\star) in the lemma holds. Note that $F \cap E_{\delta}$ is club in δ .

Let $D = \xi^{-1}[F \cap E_{\delta}]$. Since ξ is strictly increasing and continuous, it follows that D is club in κ^{++} . Hence by (2) there is an $\alpha \in D \cap S$ such that $C_{\alpha} \subseteq D$. Hence

$$\overline{C}_{\alpha} \stackrel{\text{def}}{=} \xi[C_{\alpha}] \subseteq F \cap E_{\delta}$$

is club in $\xi(\alpha)$ of order type κ . Then by (\star) we have

$$\sup\{f_{\rho}: \rho \in \overline{C}_{\alpha}\} \leq_{I} f_{\delta'}.$$

Now

(5) For every $\rho < \rho'$ both in \overline{C}_{α} , we have $\sup\{f_{\zeta} : \zeta \in \overline{C}_{\alpha} \cap (\rho+1)\} <_I f_{\rho'}$.

To prove this, note that there is an $i < \kappa^{++}$ such that $\rho = \xi(i)$. Now follow the definition of $\xi(i+1)$. There C_{α} was considered (among all other closed unbounded sets in the guessing sequence), and h_{α} was formed at that stage. Now

$$h_{\alpha} = \sup\{f_{\eta} : \eta \in \xi[C_{\alpha} \cap (i+1)]\} \le \sup\{f_{\eta} : \eta \in \xi[C_{\alpha}]\} = \sup\{f_{\eta} : \eta \in \overline{C}_{\alpha}\} \le I f_{\delta'},$$

so the first case in the definition of σ_{α} holds. Thus by (3), $h_{\alpha} <_I f_{\xi(i+1)}$. Clearly $\xi(i+1) \leq \rho'$, so (5) follows.

Now let $\langle \eta(\nu) : \nu < \kappa \rangle$ be the strictly increasing enumeration of \overline{C}_{α} , and set

$$X_0 = \{ \eta(\omega \cdot \rho + 2m) : \rho < \kappa, 0 < m \in \omega \}.$$

Suppose that $\zeta \in X_0$. Say $\zeta = \eta(\omega \cdot \rho + 2m)$ with $\rho < \kappa$ and $0 < m \in \omega$. If $\sigma \in X_0 \cap \zeta$, then $\sigma < \eta(\omega \cdot \rho + 2m - 1) < \zeta$, all in \overline{C}_{α} , so

$$\sup\{f_{\sigma} + 1 : \sigma \in X_{0} \cap \zeta\} \leq_{I} f_{\eta(\omega \cdot \rho + 2m - 1)}$$

$$= \sup\{f_{\sigma} : \sigma \in \overline{C}_{\alpha} \cap (\eta(\omega \cdot \rho + 2m - 1) + 1)\}$$

$$<_{I} f_{\zeta} \quad \text{by (5)}$$

Hence by 2.2, $\langle f_{\zeta} : \zeta \in X \rangle$ is strongly increasing.

Lemma 2.13. Suppose that I is a proper ideal over a set A of regular cardinals such that $|A| < \min(A)$. Assume that $\lambda > |A|$ is a regular cardinal such that $(\prod A, <_I)$ is λ -directed, and $\langle g_{\xi} : \xi < \lambda \rangle$ is a sequence of members of $\prod A$.

Then there is a $<_I$ -increasing sequence $f = \langle f_{\xi} : \xi < \lambda \rangle$ of length λ in $\prod A$ such that: (i) $g_{\xi} < f_{\xi+1}$ for every $\xi < \lambda$.

(ii) $(*)_{\kappa}$ holds for f, for every regular cardinal κ such that $\kappa^{++} < \lambda$ and $\{a \in A : a \le \kappa^{++}\} \in I$.

Proof. Let f_0 be any member of $\prod A$. At successor stages, if f_{ξ} is defined, let $f_{\xi+1}$ be any function in $\prod A$ that <-extends f_{ξ} and g_{ξ} .

At limit stages δ , there are three cases. In the first case, $\operatorname{cf}(\delta) \leq |A|$. Fix some $E_{\delta} \subseteq \delta$ club of order type $\operatorname{cf}(\delta)$, and define

$$f_{\delta} = \sup\{f_i : i \in E_{\delta}\}.$$

For any $a \in A$ we have $\operatorname{cf}(\delta) \leq |A| < \min(A) \leq a$, and so $f_{\delta}(a) < a$. Thus $f_{\delta} \in \prod A$.

In the second case, $\operatorname{cf}(\delta) = \kappa^{++}$, where κ is regular, $|A| < \kappa$, and $\{a \in A : a \le \kappa^{++}\} \in I$. Then we define f'_{δ} as in the first case. Then for any $a \in A$ with $a > \kappa^{++}$ we have $f'_{\delta}(a) < a$, and so $\{a \in A : a \le f'_{\delta}(a)\} \in I$, and we can modify f'_{δ} on this set which is in I to obtain our desired f_{δ} .

In the third case, neither of the first two cases holds. Then we let f_{δ} be any \leq_{I} -upper bound of $\{f_{\xi}: \xi < \delta\}$; it exists by the λ -directedness assumption.

This completes the construction. Obviously (i) holds. For (ii), suppose that κ is a regular cardinal such that $\kappa^{++} < \lambda$ and $\{a \in A : a \le \kappa^{++}\} \in I$. If $|A| < \kappa$, the desired conclusion follows by 2.12. In case $\kappa \le |A|$, note that $\langle f_{\xi} : \xi < \kappa \rangle$ is $\langle -increasing \rangle$, and so is certainly strongly increasing.

Notation. For any set X of cardinals, let

$$X^{(+)} = {\alpha^+ : \alpha \in X}.$$

Theorem 2.14. (Representation of μ^+ as a true cofinality) Suppose that μ is a singular cardinal with uncountable cofinality. Then there is a club C in μ such that

$$\mu^+ = \operatorname{tcf}\left(\prod C^{(+)}, <_{J^{\operatorname{bd}}}\right),$$

where J^{bd} is the ideal of all bounded subsets of $C^{(+)}$.

Proof. Let C_0 be any closed unbounded set of limit cardinals less than μ such that $|C_0| = \operatorname{cf}(\mu)$ and all cardinals in C_0 are above $\operatorname{cf}(\mu)$. Then

(1) all members of C_0 which are limit points of C_0 are singular.

In fact, suppose on the contrary that $\kappa \in C_0$, κ is a limit point of C_0 , and κ is regular. Thus $C_0 \cap \kappa$ is unbounded in κ , so $|C_0 \cap \kappa| = \kappa$. But $\mathrm{cf}(\mu) < \kappa$ and $|C_0| = \mathrm{cf}\mu$, contradiction. So (1) holds. Hence wlog every member of C_0 is singular.

Now we claim

(2)
$$(\prod C_0^{(+)}, <_{I^{\text{bd}}})$$
 is μ -directed.

In fact, suppose that $F \subseteq \prod C_0^{(+)}$ and $|F| < \mu$. For $a \in C_0^{(+)}$ with |F| < a let $h(a) = \sup_{f \in F} f(a)$; so $h(a) \in a$. For $a \in C_0^{(+)}$ with $a \le |F|$ let h(a) = 0. Clearly $f \le_{J^{\text{bd}}} h$ for all $f \in F$. So (2) holds.

(3)
$$(\prod C_0^{(+)}, <_{J^{\mathrm{bd}}})$$
 is μ^+ -directed.

In fact, by (2) it suffices to find a bound for a subset F of $\prod C_0^{(+)}$ such that $|F| = \mu$. Write $F = \bigcup_{\alpha < \operatorname{cf}(\mu)} G_{\alpha}$, with $|G_{\alpha}| < \mu$ for each $\alpha < \operatorname{cf}(\mu)$. By (2), each G_{α} has an upper bound k_{α} under $<_{J^{\operatorname{bd}}}$. Then $\{k_{\alpha} : \alpha < \operatorname{cf}(\mu)\}$ has an upper bound h under $<_{J^{\operatorname{bd}}}$. Clearly h is an upper bound for F.

Now we are going to apply 2.13 to J^{bd} , $C_0^{(+)}$, and μ^+ in place of I, A, and λ ; and with anything for g. Clearly the hypotheses hold, so we get a $<_{J^{\mathrm{bd}}}$ -increasing sequence $f = \langle f_{\xi} : \xi < \mu^+ \rangle$ in $\prod C_0^{(+)}$ such that $(*)_{\kappa}$ holds for f, for every regular cardinal $\kappa < \mu$. By 2.10 and 2.9, f has an exact upper bound h such that for every regular $\kappa < \mu$,

(*)
$$\{a \in C_0^{(+)} : h(a) \text{ is non-limit, or } \mathrm{cf}(h(a)) < \kappa\} \in J^{\mathrm{bd}}.$$

Now the identity function k on $C_0^{(+)}$ is obviously is an upper bound for f, so $h \leq_{J^{\text{bd}}} k$. By modifying h on a set in J^{bd} we may assume that $h(a) \leq a$ for all $a \in C_0^{(+)}$. Now we claim

$$(\star\star)$$
 The set $C_1 \stackrel{\text{def}}{=} \{\alpha \in C_0 : h(\alpha^+) = \alpha^+\}$ contains a club of μ .

Assume otherwise. Then for every club K, $K \cap (\mu \setminus C_1) \neq 0$. This means that $\mu \setminus C_1$ is stationary, and hence $S \stackrel{\text{def}}{=} C_0 \setminus C_1$ is stationary. For each $\alpha \in S$ we have $h(\alpha^+) < \alpha^+$. Hence $\operatorname{cf}(h(\alpha^+)) < \alpha$ since α is singular. Hence by Fodor's theorem $\operatorname{cf}(h(\alpha^+))$ is bounded by some $\kappa < \mu$ on a stationary subset of S. This contradicts (\star) .

Thus $(\star\star)$ holds, and so there is a club $C\subseteq C_0$ such that $h(\alpha^+)=\alpha^+$ for all $\alpha\in C$. Now $\langle f_\xi \upharpoonright C^{(+)}: \xi<\mu^+\rangle$ is $<_{J^{\mathrm{bd}}}$ -increasing. We claim that it is cofinal in $(\prod C^{(+)},<_{J^{\mathrm{bd}}})$. For, suppose that $g\in\prod C^{(+)}$. Let g' be the extension of g to $\prod C_0^{(+)}$ such that g'(a)=0 for any $a\in C_0\backslash C$. Then $g'<_{J^{\mathrm{bd}}}h$, and so there is a $\xi<\mu^+$ such that $g'<_{J^{\mathrm{bd}}}f_\xi$. So $g<_{J^{\mathrm{bd}}}f_\xi\upharpoonright C^{(+)}$, as desired. This shows that $\mu^+=\mathrm{tcf}(\prod C^{(+)},<_{J^{\mathrm{bd}}})$.

Theorem 2.15. If μ is a singular cardinal of countable cofinality, then there is an unbounded set $D \subseteq \mu$ of regular cardinals such that

$$\mu^+ = \operatorname{tcf}\left(\prod D, <_{J^{\operatorname{bd}}}\right).$$

Proof. Let C_0 be a set of regular cardinals with supremum μ , of order type ω .

(1) $\prod C_0/J^{\text{bd}}$ is μ -directed.

For, let $X \subseteq \prod C_0$ with $|X| < \mu$. For each $a \in C_0$ such that |X| < a, let $h(a) = \sup\{f(a) : f \in X\}$, and extend h to all of C_0 in any way. Clearly $h \in \prod C_0$ and it is an upper bound in the $<_{I^{\text{bd}}}$ sense for X.

From (1) it is clear that $\prod C_0/J^{\text{bd}}$ is also μ^+ -directed. By 2.13 we then get a $<_{J^{\text{bd}}}$ -increasing sequence $\langle f_{\xi} : \xi < \mu^+ \rangle$ which satisfies $(*)_{\kappa}$ for every regular $\kappa < \mu^+$. By 2.9 and 2.10, f has an exact upper bound h such that $\{a \in C_0 : h(a) \text{ is non-limit or } \text{cf}(h(a)) < \kappa\} \in J^{\text{bd}}$ for every regular $\kappa < \mu^+$. We may assume that $h(a) \leq a$ for all $a \in C_0$, since the identity function is clearly an upper bound for f; and we may assume that each h(a) is a limit ordinal of uncountable cofinality since $\{a \in C_0 : \text{cf}(h(a)) < \omega_1\} \in J^{\text{bd}}$.

(2)
$$\operatorname{tcf}\left(\prod_{a \in C_0} \operatorname{cf}(h(a)), <_{J^{\operatorname{bd}}}\right) = \mu^+.$$

To prove this, for each $a \in C_0$ let D_a be club in h(a) of order type $\operatorname{cf}(h(a))$, and let $\langle \eta_{a\xi} : \xi < \operatorname{cf}(h(a)) \rangle$ be the strictly increasing enumeration of D_a . For each $\xi < \mu^+$ we define $f'_{\xi} \in \prod_{a \in C_0} \operatorname{cf}(h(a))$ as follows. Since $f_{\xi} <_{J^{\operatorname{bd}}} h$, the set $\{a \in C_0 : f_{\xi}(a) \geq h(a)\}$ is bounded, so choose $a_0 \in C_0$ such that for all $b \in C_0$ with $a_0 \leq b$ we have $f_{\xi}(b) < h(b)$. For such a b we define $f'_{\xi}(b)$ to be the least ν such that $f_{\xi}(b) < \eta_{b\nu}$. Then we extend f'_{α} in any way to a member of $\prod_{a \in C_0} \operatorname{cf}(h(a))$.

(3)
$$\xi < \sigma < \mu^+$$
 implies that $f'_{\xi} \leq_{J^{\text{bd}}} f'_{\sigma}$.

This is clear by the definitions.

Now for each $l \in \prod_{a \in C_0} \operatorname{cf}(h(a))$ define $k_l \in \prod C_0$ by setting $k_l(a) = \eta_{al(a)}$ for all a. So $k_l < h$. Since h is an exact upper bound for f, choose $\xi < \mu^+$ such that $k_l <_{J^{\operatorname{bd}}} f_{\xi}$. Choose a such that $k_l(b) < f_{\xi}(b)$ for all $b \geq a$. Then for all $b \geq a$, $\eta_{bl(b)} < \eta_{bf'_{\xi}(b)}$, and hence $l(b) < f'_{\xi}(b)$. This proves that $l <_{J^{\operatorname{bd}}} f'_{\xi}$. This proves the following two statements.

- (4) $\{f'_{\xi}: \xi < \mu^+\}$ is cofinal in $(\prod_{a \in C_0} \operatorname{cf}(h(a)), <_{J^{\operatorname{bd}}}).$
- (5) $\{f'_{\xi}: \xi < \mu^{+}\}\$ is μ^{+} -directed with respect to $<_{J^{\text{bd}}}$.

These facts yield (2).

Now let $B = \{ cf(h(a)) : a \in C_0 \}$. Define

$$X \in J \text{ iff } X \subseteq B \text{ and } h^{-1}[\text{cf}^{-1}[X]] \in J^{\text{bd}}.$$

By 1.28 we get $\operatorname{tcf}(\prod B/J) = \mu^+$. It suffices now to show that J is the ideal of bounded subsets of B. Suppose that $X \in J$, and choose $a \in C_0$ such that $h^{-1}[\operatorname{cf}^{-1}[X]] \subseteq \{b \in C_0 : b < a\}$. By the choice of h, $X \subseteq \{b \in A : \operatorname{cf}(h(b)) < a\} \in J^{\operatorname{bd}}$, so X is bounded. Conversely, if X is bounded, choose $a \in B$ such that $X \subseteq \{b \in B : b \leq a\}$. Now

$$h^{-1}[\operatorname{cf}^{-1}[X]] = \{ b \in C_0 : \operatorname{cf}(h(b)) \in X \}$$

= \{ b \in C_0 : \text{cf}(h(b)) \le a \},

and this is bounded by the choice of h.