Design & Analysis of Algorithms

CS11313 - **Fall** 2023

Sorting Lower Bound

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log n$ compares in the worst case.

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log n$ compares in the worst case.

are there sorting algorithms that are not comparison-based?

Yes! (e.g. Radix Sort)

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log n$ compares in the worst case.

proposition holds in the worst case only. E.g. Insertion sort does $\Theta(n)$ comparisons in the best case.

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log n$ compares in the worst case.

Put another way. For any comparison-based sorting algorithm, there must be at least one sequence of elements for which the sorting algorithm needs $\sim n \log n$ comparisons to sort.

A comparison tree for three distinct keys (a, b and c)

A comparison tree for three distinct keys (a, b and c)

A comparison tree for three distinct keys (a, b and c)

A comparison tree for three distinct keys (a, b and c)

There are n! unique orderings making n! leaves

of leaves ≤ 2^{height}

A comparison tree for three distinct keys (a, b and c)

There are n! unique orderings making n! leaves

of leaves ≤ 2^{height}

A comparison tree for three distinct keys (a, b and c)


```
# of leaves \leq 2^{\text{height}}

n! \leq 2^{\text{height}}
```

A comparison tree for three distinct keys (a, b and c)


```
# of leaves \leq 2^{\text{height}}

n! \leq 2^{\text{height}}

\log(n!) \leq \log(2^{\text{height}})
```

A comparison tree for three distinct keys (a, b and c)


```
≤ 2<sup>height</sup>
# of leaves
          n! \leq 2^{\text{height}}
    \log(n!) \leq \log(2^{\text{height}})
 \sim n \log(n) \le \text{height} \longrightarrow \text{height represents # of comparisons}
```

Proposition. Any comparison-based sorting algorithm performs $\Omega(n \log n)$ compares in the worst case to sort an arbitrary array of size n.

Proof Sketch.

• Assume the array consists of *n* distinct values a_1 through a_n .

Proposition. Any comparison-based sorting algorithm performs $\Omega(n \log n)$ compares in the worst case to sort an arbitrary array of size n.

- Assume the array consists of *n* distinct values a_1 through a_n .
- There are n! unique orderings for this array. (any sorting algorithm must be able to distinguish between these n! permutations).

Proposition. Any comparison-based sorting algorithm performs $\Omega(n \log n)$ compares in the worst case to sort an arbitrary array of size n.

- Assume the array consists of *n* distinct values a_1 through a_n .
- There are *n*! unique orderings for this array.

 (any sorting algorithm must be able to distinguish between these *n*! permutations).
- Consider a binary decision tree, where each node is labeled with a comparison between two elements ($a_i < a_j$) and each leaf is a possible ordering for the array. (path from the root to a leaf represents a run of a sorting algorithm).

Proposition. Any comparison-based sorting algorithm performs $\Omega(n \log n)$ compares in the worst case to sort an arbitrary array of size n.

- Assume the array consists of *n* distinct values a_1 through a_n .
- There are *n*! unique orderings for this array.

 (any sorting algorithm must be able to distinguish between these *n*! permutations).
- Consider a binary decision tree, where each node is labeled with a comparison between two elements ($a_i < a_j$) and each leaf is a possible ordering for the array. (path from the root to a leaf represents a run of a sorting algorithm).
- The tree has *n*! leaves.

Proposition. Any comparison-based sorting algorithm performs $\Omega(n \log n)$ compares in the worst case to sort an arbitrary array of size n.

- Assume the array consists of *n* distinct values a_1 through a_n .
- There are *n*! unique orderings for this array.

 (any sorting algorithm must be able to distinguish between these *n*! permutations).
- Consider a binary decision tree, where each node is labeled with a comparison between two elements $(a_i < a_j)$ and each leaf is a possible ordering for the array. (path from the root to a leaf represents a run of a sorting algorithm).
- The tree has *n*! leaves.
- The height of a binary tree with n! leaves is $\geq \log_2(n!)$. (the height of the tree is $\log_2(n!)$ if it is a complete tree and possibly more if it is not).

Proposition. Any comparison-based sorting algorithm performs $\Omega(n \log n)$ compares in the worst case to sort an arbitrary array of size n.

- Assume the array consists of *n* distinct values a_1 through a_n .
- There are *n*! unique orderings for this array.

 (any sorting algorithm must be able to distinguish between these *n*! permutations).
- Consider a binary decision tree, where each node is labeled with a comparison between two elements ($a_i < a_j$) and each leaf is a possible ordering for the array. (path from the root to a leaf represents a run of a sorting algorithm).
- The tree has *n*! leaves.
- The height of a binary tree with n! leaves is $\geq \log_2(n!)$. (the height of the tree is $\log_2(n!)$ if it is a complete tree and possibly more if it is not).
- If the longest path in the tree is $\geq \log_2(n!)$ then there must always be a sequence of input that requires $\log_2(n!)$ comparisons to be sorted. (the height of a binary tree is the length of the longest path from the root to a leaf).