Programação Dinâmica

Prof. Anderson Almeida Ferreira

Adaptado do material elaborado por Andrea labrudi Tavares

Programação Dinâmica

- 1950, Bellman
- Evitar recálculos dos subproblemas em comum
 - Menor para maior (bottom-up)
 - Tabelas ou memoização
- É uma técnica de programação
- Foi desenvolvida na época em que "programação" significava "método tabular".
- Usada para problemas de otimização
 - Encontre a solução a com o valor ótimo.
 - Minimizar ou maximizar

Programação Dinâmica

Quatro passos do método

- Caracterize a estrutura de uma solução ótima.
- Recursivamente defina o valor de uma solução ótima.
- Compute o valor de uma solução ótima de maneira bottom-up.
- Construa a solução ótima por meio da informação computada.

Fibonacci: definindo recorrência

```
\frac{\text{RecFibo}(n):}{\text{if } (n < 2)} \text{return } n \text{else} \text{return RecFibo}(n-1) + \text{RecFibo}(n-2)
```

• Grafo de recorrência

- Subproblemas nós
- Dependência arestas

Fibonacci: definindo recursão

```
\frac{\text{RecFibo}(n):}{\text{if } (n < 2)}
\text{return } n
\text{else}
\text{return RecFibo}(n - 1) + \text{RecFibo}(n - 2)
\frac{\text{MemFibo}(n):}{\text{if } (n < 2)}
\text{return } n
\text{else}
```

 $F[n] \leftarrow \text{MemFibo}(n-1) + \text{MemFibo}(n-2)$

if F[n] is undefined

return F[n]

- Grafo de recorrência
 - Subproblemas nós
 - Dependência arestas

Memoização

Fibonacci: definindo recursão

```
\frac{\text{RecFibo}(n):}{\text{if } (n < 2)}
\text{return } n
\text{else}
\text{return RecFibo}(n - 1) + \text{RecFibo}(n - 2)
\frac{\text{MemFibo}(n):}{\text{if } (n < 2)}
\text{return } n
```

 $F[n] \leftarrow \text{MemFibo}(n-1) + \text{MemFibo}(n-2)$

if F[n] is undefined

return F[n]

else

- Grafo de recorrência
 - Subproblemas nós
 - Dependência arestas

Memoização

Fibonacci: usando tabela

```
RECFIBO(n):
   if (n < 2)
        return n
   else
        return RecFibo(n-1) + RecFibo(n-2)
MemFibo(n):
  if (n < 2)
       return n
  else
        if F[n] is undefined
             F[n] \leftarrow \text{MemFibo}(n-1) + \text{MemFibo}(n-2)
       return F[n]
ITERFIBO(n):
  F[0] \leftarrow 0
  F[1] \leftarrow 1
  for i \leftarrow 2 to n
       F[i] \leftarrow F[i-1] + F[i-2]
  return F[n]
```

- Grafo de recorrência
 - Subproblemas nós
 - Dependência arestas
- Memoização

Fibonacci: usando tabela

```
RECFIBO(n):

if (n < 2)

return n

else

return RECFIBO(n - 1) + \text{RECFIBO}(n - 2)

MEMFIBO(n):

if (n < 2)

return n

else

if F[n] is undefined

F[n] \leftarrow \text{MemFibO}(n - 1) + \text{MemFibO}(n - 2)

return F[n]

ITERFIBO(n):

F[0] \leftarrow 0
```

 $F[1] \leftarrow 1$ for $i \leftarrow 2$ to n

return F[n]

 $F[i] \leftarrow F[i-1] + F[i-2]$

- Grafo de recorrência
 - Subproblemas nós
 - Dependência arestas
- Memoização

- Tabela
 - Ordenação parcial

Fibonacci: economizando espaço

```
\frac{\text{RecFibo}(n):}{\text{if } (n < 2)}
\text{return } n
\text{else}
\text{return RecFibo}(n-1) + \text{RecFibo}(n-2)
\frac{\text{MemFibo}(n):}{\text{if } (n < 2)}
\text{return } n
\text{else}
\text{if } F[n] \text{ is undefined}
F[n] \leftarrow \text{MemFibo}(n-1) + \text{MemFibo}(n-2)
\text{return } F[n]
```

- Grafo de recorrência
 - Subproblemas nós
 - Dependência arestas
- Memoização

return curr

Tabela

- Ordenação parcial
- Economizando memória

Problemas alvo para Programação Dinâmica (PD)

- Problema pode ser dividido em subproblemas menores.
- Sub-estrutura ótima (princípio da otimalidade)
 - Solução ótima do problema inclui soluções ótimas dos subproblemas.
- Subproblemas são sobrepostos.
 - Número "pequeno" de subproblemas distintos.

Linearização de Grafos Direcionados Acíclicos (DAGs)

Algoritmo de Linearização:

Percorrer vértices na ordem de grau de entrada.

Diminuir das arestas a cada passo.

Recorrência a partir de DAGs

Algoritmo de menor caminho em DAGs

```
\begin{aligned} & \text{initialize all dist}(\cdot) \text{ values to } \infty \\ & \text{dist}(s) = 0 \\ & \text{for each } v \in V \backslash \{s\} \text{, in linearized order:} \\ & \text{dist}(v) = \min_{(u,v) \in E} \{ \text{dist}(u) + l(u,v) \} \end{aligned}
```

Subproblemas Menores Subestrutura Ótima

Subsequência Crescente Mais Longa

 Problema: Dada uma sequência de números naturais, definir qual a subsequência crescente com mais elementos.

5 2 8 6 3 6 9 7

MSC: Recorrência e DAG implícito

 $5 \quad 2 \quad 8 \quad 6 \quad 3 \quad 6 \quad 9 \quad 7$

SCML: Recorrência

Etapa1:

$$L(j) = 1 + \max\{L(i) : (i, j) \in E\}$$

Maior caminho em DAG

$$SCML = \max_{1 \le j \le n} \{L(j)\}$$

Etapa 2: Algoritmo Recursivo

$$L(j) = 1 + \max\{L(i) : (i, j) \in E\}$$

Etapa 3: Algoritmo Iterativo (Tabela)

 Vetor L, preenchido da menor posição para maior.

Etapa 3: Complexidade

```
for j = 1, 2, ..., n:

L(j) = 1 + \max\{L(i) : (i, j) \in E\}
return \max_j L(j)
```

Etapa 4: Construindo solução

```
for j = 1, 2, ..., n:

L(j) = 1 + \max\{L(i) : (i, j) \in E\}
return \max_j L(j)
```

Distância de Edição

- Transformar uma sequência em outra ao menor custo.
 - Casamento, substituição, inserção, remoção.

SITUADO ESTUDO-

Edição: Subproblemas

• Problema: Alinhar duas sequências de caracteres $x[1 \cdots m]$ $y[1 \cdots n]$ E(m, n)

Etapa 1: Equação de Recorrência

• Problema: Alinhar duas sequências de caracteres $x[1 \cdots m]$ $y[1 \cdots n]$ E(m,n)

Subproblema: alinhamento de prefixos

$$E(i,j)$$
 $x[i]$ or $x[i]$ or $x[i]$ $y[j]$

Composição: remover, inserir, casar

$$E(i,j) = \min\{1 + E(i-1,j), 1 + E(i,j-1), \operatorname{diff}(i,j) + E(i-1,j-1)\}$$

Distância de Edição - DAG

Etapa 2: Algoritmo Recursivo

$$E(i,j) \ = \ \min\{1 + E(i-1,j), \ 1 + E(i,j-1), \ \operatorname{diff}(i,j) + E(i-1,j-1)\}$$

Etapa 3: Algoritmo Iterativo

$$E(i,j) = \min\{1 + E(i-1,j), 1 + E(i,j-1), \operatorname{diff}(i,j) + E(i-1,j-1)\}$$

Etapa 3: Complexidade

```
for i=0,1,2,\dots,m: E(i,0)=i for j=1,2,\dots,n: E(0,j)=j for i=1,2,\dots,m: for j=1,2,\dots,m: E(i,j)=\min\{E(i-1,j)+1,E(i,j-1)+1,E(i-1,j-1)+\text{diff}(i,j)\} return E(m,n)
```

 $\bullet\Theta(mn)$ de tempo e espaço

Distância de Edição - Exemplo

		Р	0	L	I	N	0	М	I	А	L
	0	1	2	3	4	5	6	7	8	9	10
E	1	1	2	3	4	5	6	7	8	9	10
X	2	2	2	3	4	5	6	7	8	9	10
Р	3	2	3	3	4	5	6	7	8	9	10
0	4	3	2	3	4	5	5	6	7	8	9
N	5										
E	6										
N	7										
С	8										
I	9										
Α	10										
L	11										

Etapa 4: Solução I – armazenar

```
for i=0,1,2,\dots,m: E(i,0)=i for j=1,2,\dots,n: E(0,j)=j for i=1,2,\dots,m: for j=1,2,\dots,m: E(i,j)=\min\{E(i-1,j)+1,E(i,j-1)+1,E(i-1,j-1)+\text{diff}(i,j)\} return E(m,n)
```

Etapa 4: Solução I – calcular

```
\begin{split} &\text{for } i=0,1,2,\dots,m:\\ &E(i,0)=i\\ &\text{for } j=1,2,\dots,n:\\ &E(0,j)=j\\ &\text{for } i=1,2,\dots,m:\\ &\text{for } j=1,2,\dots,n:\\ &E(i,j)=\min\{E(i-1,j)+1,E(i,j-1)+1,E(i-1,j-1)+\text{diff}(i,j)\}\\ &\text{return } E(m,n) \end{split}
```

Problema da mochila

 Ladrão está com uma mochila que suporta no máximo 10 quilos e quer o maior lucro possível

Item	Weight	Value
1	6	\$30
2	3	\$14
3	4	\$16
4	2	\$9

Etapa 1: Equação de Recorrência

K(w, j)

$$K(w,j) = \max\{K(w-w_j, j-1) + v_j, K(w, j-1)\}$$

$$K(w, j) = \max\{K(w, j-1), K(w-w_j, j-1) + v_j\}$$

Etapa 2: Algoritmo Recursivo

$$K(w,j) = \max\{K(w - w_j, j - 1) + v_j, K(w, j - 1)\}\$$

Etapa 3: Algoritmo Iterativo

$$K(w,j) = \max\{K(w - w_j, j - 1) + v_j, K(w, j - 1)\}\$$

Etapa 3: Complexidade

```
Initialize all K(0,j)=0 and all K(w,0)=0 for j=1 to n: for w=1 to W: if w_j>w: K(w,j)=K(w,j-1) else: K(w,j)=\max\{K(w,j-1),K(w-w_j,j-1)+v_j\} return K(W,n)
```

- Somente para valores inteiros
- •Θ(Wn)

Item	Weight	Value
1	6	\$30
2	3	\$14
3	4	\$16
4	2	\$9

$k \stackrel{d}{_{k}}$	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0							
2	0							
3	0							
4	0							

Etapa 4: Solução

```
Initialize all K(0,j)=0 and all K(w,0)=0 for j=1 to n: for w=1 to W: if w_j>w: K(w,j)=K(w,j-1) else: K(w,j)=\max\{K(w,j-1),K(w-w_j,j-1)+v_j\} return K(W,n)
```

• AxBxCxD, de dimensões 50x20, 20x1,1x10, e 10x100, respectivamente

Fonte: Dasgupta et al., 2006

Parenthesization	Cost computation	Cost
$A \times ((B \times C) \times D)$	$20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100$	120,200
$(A \times (B \times C)) \times D$	$20 \cdot 1 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100$	60,200
$(A \times B) \times (C \times D)$	$50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100$	7,000

Figure 6.7 (a) $((A \times B) \times C) \times D$; (b) $A \times ((B \times C) \times D)$; (c) $(A \times (B \times C)) \times D$.

Fonte: Dasgupta et al., 2006

A₁ x A₂ x A₃ x A₄

$$C(1,1)$$
 $C(1,2)$ $C(1,3)$ $C(1,4)$ $C(2,2)$ $C(2,3)$ $C(2,4)$ $C(3,3)$ $C(3,4)$ $C(4,4)$

C(i,j) custo mínimo para multiplicar as matrizes de i a j.

- Multiplicar n matrizes
 - $-A_1 \times A_2 \times ... \times A_n$, com dimensões $m_0 \times m_1$, $m_1 \times m_2$, ..., $m_{n-1} \times m_n$, respectivamente.
 - Qual a ordem ótima de realizar tal multiplicação?
 - C(i,j) = custo mínimo para multiplicar $A_i \times A_{i+1} \times ...$ $\times A_i$
 - A quantidade de subproblemas depende do número de multiplicações, |j-i|.
 - O menor subproblema, i=j, C(i,i) = 0

- Cada multiplicação divide o problema em dois subproblemas:
 - Para algum k, $A_i \times A_{i+1} \times ... \times A_k$ e $A_{k+1} \times A_{k+2} \times ... \times A_j$
 - $-C(i,j) = \min_{i \leq k < i} \{C(i,k) + C(k+1,j) + m_{i-1} * m_k * m_j$

```
for i=1 to n: C(i,i)=0 for s=1 to n-1: for i=1 to n-s: j=i+s \\ C(i,j)=\min\{C(i,k)+C(k+1,j)+m_{i-1}\cdot m_k\cdot m_j: i\leq k< j\} return C(1,n)
```

Considerações Finais

- Diferença entre PD e D&C
 - Sobreposição de problemas

- Definição da Equação de Recorrência
 - Grafo induzido
 - Automatização dos passos

Memoização