# RISC-V External Debug Support Version 0.13-DRAFT 99e01fa6717a33fd11de4f68c7612ae87f2a8418

Tim Newsome <tim@sifive.com>

Wed Jun 27 07:59:23 2018 -0700

# **Preface**

Warning! This draft specification will change before being accepted as standard, so implementations made to this draft specification will likely not conform to the future standard.

### Acknowledgments

I would like to thank the following people for their time, feedback, and ideas: Bruce Ableidinger, Krste Asanovic, Allen Baum, Mark Beal, Alex Bradbury, Zhong-Ho Chen, Monte Dalrymple, Vyacheslav Dyachenko, Peter Egold, Robert Golla, Richard Herveille, Po-wei Huang, Scott Johnson, Aram Nahidipour, Rishiyur Nikhil, Gajinder Panesar, Klaus Kruse Pedersen, Antony Pavlov, Ken Pettit, Wesley Terpstra, Megan Wachs, Stefan Wallentowitz, Ray Van De Walker, Andrew Waterman, and Andy Wright.

# Contents

| P | refac | ee .                                    | i  |
|---|-------|-----------------------------------------|----|
| 1 | Intr  | roduction                               | 1  |
|   | 1.1   | Terminology                             | 1  |
|   |       | 1.1.1 Context                           | 1  |
|   | 1.2   | About This Document                     | 2  |
|   |       | 1.2.1 Structure                         | 2  |
|   |       | 1.2.2 Register Definition Format        | 2  |
|   |       | 1.2.2.1 Long Name (shortname, at 0x123) | 2  |
|   | 1.3   | Background                              | 3  |
|   | 1.4   | Supported Features                      | 3  |
| 2 | Sys   | tem Overview                            | 5  |
| 3 | Deb   | bug Module (DM)                         | 7  |
|   | 3.1   | Debug Module Interface (DMI)            | 8  |
|   | 3.2   | Reset Control                           | 8  |
|   | 3.3   | Selecting Harts                         | 8  |
|   |       | 3.3.1 Selecting a Single Hart           | 9  |
|   |       | 3.3.2 Selecting Multiple Harts          | 9  |
|   | 3.4   | Run Control                             | 9  |
|   | 3.5   | Abstract Commands                       | 10 |

|      | 3.5.1   | Abstract Command Listing                          | 1 ا         |
|------|---------|---------------------------------------------------|-------------|
|      |         | 3.5.1.1 Access Register                           | 1           |
|      |         | 3.5.1.2 Quick Access                              | 2           |
|      |         | 3.5.1.3 Access Memory                             | 13          |
| 3.6  | Progra  | m Buffer                                          | 14          |
| 3.7  | Overvi  | new of States                                     | 5           |
| 3.8  | System  | n Bus Access                                      | 5           |
| 3.9  | Quick   | Access                                            | 17          |
| 3.10 | Securi  | ty 1                                              | 17          |
| 3.11 | Debug   | Module Registers                                  | 8           |
|      | 3.11.1  | Debug Module Status (dmstatus, at 0x11) 1         | 18          |
|      | 3.11.2  | Debug Module Control (dmcontrol, at 0x10)         | 21          |
|      | 3.11.3  | Hart Info (hartinfo, at 0x12)                     | 23          |
|      | 3.11.4  | Hart Array Window Select (hawindowsel, at 0x14)   | 24          |
|      | 3.11.5  | Hart Array Window (hawindow, at 0x15)             | 25          |
|      | 3.11.6  | Abstract Control and Status (abstractcs, at 0x16) | 25          |
|      | 3.11.7  | Abstract Command (command, at 0x17)               | 26          |
|      | 3.11.8  | Abstract Command Autoexec (abstractauto, at 0x18) | 27          |
|      | 3.11.9  | Device Tree Addr 0 (devtreeaddr0, at 0x19)        | 27          |
|      | 3.11.10 | Next Debug Module (nextdm, at 0x1d)               | 35          |
|      | 3.11.11 | Abstract Data 0 (data0, at 0x04)                  | 35          |
|      | 3.11.12 | Program Buffer 0 (progbuf0, at 0x20)              | 35          |
|      | 3.11.13 | 3 Authentication Data (authdata, at 0x30)         | <u> 5</u> 6 |
|      | 3.11.14 | 4 Halt Summary 0 (haltsum0, at 0x40) 2            | 26          |
|      | 3.11.15 | 5 Halt Summary 1 (haltsum1, at 0x13) 2            | 26          |
|      | 3.11.16 | 6 Halt Summary 2 (haltsum2, at 0x34)              | 30          |
|      | 3.11.17 | 7 Halt Summary 3 (haltsum3, at 0x35)              | 30          |
|      | 3.11.18 | 8 System Bus Address 127:96 (sbaddress3, at 0x37) | 30          |

|   |      | 3.11.19 System Bus Access Control and Status (sbcs, at 0x38) | 31        |
|---|------|--------------------------------------------------------------|-----------|
|   |      | 3.11.20 System Bus Address 31:0 (sbaddress0, at 0x39)        | 32        |
|   |      | 3.11.21 System Bus Address 63:32 (sbaddress1, at 0x3a)       | 33        |
|   |      | 3.11.22 System Bus Address 95:64 (sbaddress2, at 0x3b)       | 34        |
|   |      | 3.11.23 System Bus Data 31:0 (sbdata0, at 0x3c)              | 34        |
|   |      | 3.11.24 System Bus Data 63:32 (sbdata1, at 0x3d)             | 35        |
|   |      | 3.11.25 System Bus Data 95:64 (sbdata2, at 0x3e)             | 35        |
|   |      | 3.11.26 System Bus Data 127:96 (sbdata3, at 0x3f)            | 36        |
| 4 | RIS  | C-V Debug                                                    | 37        |
|   | 4.1  | Debug Mode                                                   | 37        |
|   | 4.2  | Load-Reserved/Store-Conditional Instructions                 | 38        |
|   | 4.3  | Single Step 3                                                | 38        |
|   | 4.4  | Reset                                                        | 38        |
|   | 4.5  | dret Instruction 3                                           | 39        |
|   | 4.6  | Core Debug Registers                                         | 39        |
|   |      | 4.6.1 Debug Control and Status (dcsr, at 0x7b0)              | 39        |
|   |      | 4.6.2 Debug PC (dpc, at 0x7b1)                               | 41        |
|   |      | 4.6.3 Debug Scratch Register 0 (dscratch0, at 0x7b2)         | 42        |
|   |      | 4.6.4 Debug Scratch Register 1 (dscratch1, at 0x7b3)         | 42        |
|   | 4.7  | Virtual Debug Registers                                      | 42        |
|   |      | 4.7.1 Privilege Level (priv, at virtual)                     | 43        |
| 5 | Trig | eger Module                                                  | <b>45</b> |
|   | 5.1  | Trigger Registers                                            | 46        |
|   |      | 5.1.1 Trigger Select (tselect, at 0x7a0)                     | 47        |
|   |      | 5.1.2 Trigger Data 1 (tdata1, at 0x7a1)                      | 47        |
|   |      | 5.1.3 Trigger Data 2 (tdata2, at 0x7a2)                      | 48        |
|   |      | 5.1.4 Trigger Data 3 (tdata3, at 0x7a3)                      | 48        |

|   |     | 5.1.5        | Trigger Info (tinfo, at 0x7a4)               | 48 |
|---|-----|--------------|----------------------------------------------|----|
|   |     | 5.1.6        | Match Control (mcontrol, at 0x7a1)           | 49 |
|   |     | 5.1.7        | Instruction Count (icount, at 0x7a1)         | 52 |
|   |     | 5.1.8        | Interrupt Trigger (itrigger, at 0x7a1)       | 53 |
|   |     | 5.1.9        | Exception Trigger (etrigger, at 0x7a1)       | 54 |
| 6 | Deb | oug Tra      | ansport Module (DTM)                         | 57 |
|   | 6.1 | JTAG         | Debug Transport Module                       | 57 |
|   |     | 6.1.1        | JTAG Background                              | 57 |
|   |     | 6.1.2        | JTAG DTM Registers                           | 58 |
|   |     | 6.1.3        | IDCODE (at 0x01)                             | 58 |
|   |     | 6.1.4        | DTM Control and Status (dtmcs, at 0x10)      | 59 |
|   |     | 6.1.5        | Debug Module Interface Access (dmi, at 0x11) | 60 |
|   |     | 6.1.6        | BYPASS (at 0x1f)                             | 61 |
|   |     | 6.1.7        | Recommended JTAG Connector                   | 62 |
| A | Har | dware        | Implementations                              | 65 |
|   | A.1 | Abstra       | act Command Based                            | 65 |
|   | A.2 | Execu        | tion Based                                   | 65 |
| В | Deb | ougger       | Implementation                               | 67 |
|   | B.1 | Debug        | g Module Interface Access                    | 67 |
|   | B.2 | Main         | Loop                                         | 68 |
|   | B.3 | Haltin       | g                                            | 68 |
|   | B.4 | Runni        | ng                                           | 68 |
|   | B.5 | Single       | Step                                         | 68 |
|   | B.6 | Access       | sing Registers                               | 68 |
|   |     | <b>D</b> 0.4 |                                              | 00 |
|   |     | B.6.1        | Using Abstract Command                       | 68 |

| RISC-V External Debug Support Version 0.13-DRAFT | vii  |
|--------------------------------------------------|------|
| B.7 Reading Memory                               | . 69 |
| B.7.1 Using System Bus Access                    | . 69 |
| B.7.2 Using Program Buffer                       | . 70 |
| B.7.3 Using Abstract Memory Access               | . 71 |
| B.8 Writing Memory                               | . 71 |
| B.8.1 Using System Bus Access                    | . 71 |
| B.8.2 Using Program Buffer                       | . 72 |
| B.8.3 Using Abstract Memory Access               | . 72 |
| B.9 Triggers                                     | . 73 |
| B.10 Handling Exceptions                         | . 74 |
| B.11 Quick Access                                | . 74 |
| Index                                            | 76   |
| C Change Log                                     | 79   |

# List of Figures

| 2.1 | RISC-V Debug System Overview | <br>6  |
|-----|------------------------------|--------|
| 3.1 | Run/Halt Debug State Machine | <br>16 |

# List of Tables

| 1.2 | Register Access Abbreviations                | 2  |
|-----|----------------------------------------------|----|
| 3.1 | Use of Data Registers                        | 10 |
| 3.2 | Meaning of cmdtype                           | 11 |
| 3.6 | Abstract Register Numbers                    | 14 |
| 3.7 | System Bus Data Bits                         | 17 |
| 3.8 | Debug Module Debug Bus Registers             | 19 |
| 4.1 | Core Debug Registers                         | 36 |
| 4.3 | Virtual address in DPC upon Debug Mode Entry | 42 |
| 4.4 | Virtual Core Debug Registers                 | 43 |
| 4.5 | Privilege Level Encoding                     | 43 |
| 5.1 | action encoding                              | 46 |
| 5.2 | Trigger Registers                            | 46 |
| 5.5 | Suggested Breakpoint Timings                 | 49 |
| 6.1 | JTAG DTM TAP Registers                       | 58 |
| 6.5 | JTAG Connector Diagram                       | 62 |
| 6.6 | JTAG Connector Pinout                        | 63 |
| B.1 | Memory Read Timeline                         | 71 |

# Chapter 1

# Introduction

When a design progresses from simulation to hardware implementation, a user's control and understanding of the system's current state drops dramatically. To help bring up and debug low level software and hardware, it is critical to have good debugging support built into the hardware. When a robust OS is running on a core, software can handle many debugging tasks. However, in many scenarios, hardware support is essential.

This document outlines a standard architecture for external debug support on RISC-V platforms. This architecture allows a variety of implementations and tradeoffs, which is complementary to the wide range of RISC-V implementations. At the same time, this specification defines common interfaces to allow debugging tools and components to target a variety of platforms based on the RISC-V ISA.

System designers may choose to add additional hardware debug support, but this specification defines a standard interface for common functionality.

# 1.1 Terminology

A platform is a single integrated circuit consisting of one or more components. Some components may be RISC-V cores, while others may have a different function. Typically they will all be connected to a single system bus. A single RISC-V core contains one or more hardware threads, called harts.

#### 1.1.1 Context

This document is written to work with:

- 1. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2
- 2. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10

### 1.2 About This Document

#### 1.2.1 Structure

This document contains two parts. The main part of the document is the specification, which is given in the numbered sections. The second part of the document is a set of appendices. The information in the appendix is intended to clarify and provide examples, but is not part of the actual specification.

#### 1.2.2 Register Definition Format

All register definitions in this document follow the format shown below. A simple graphic shows which fields are in the register. The upper and lower bit indices are shown to the top left and top right of each field. The total number of bits in the field are shown below it.

After the graphic follows a table which for each field lists its name, description, allowed accesses, and reset value. The allowed accesses are listed in Table 1.2.

Names of registers and their fields are hyperlinks to their definition, and are indexed on page 76.

#### 1.2.2.1 Long Name (shortname, at 0x123)

| 31 |    | 8 | 7   | 0     |
|----|----|---|-----|-------|
|    | 0  |   | fie | eld   |
|    | 24 |   |     | <br>8 |

| Field | Description                                 | Access | Reset |
|-------|---------------------------------------------|--------|-------|
| field | Description of what this field is used for. | R/W    | 15    |

Table 1.2: Register Access Abbreviations

| R     | Read-only.                                              |  |
|-------|---------------------------------------------------------|--|
| R/W   | Read/Write.                                             |  |
| R/W0  | Read/Write. Only writing 0 has an effect.               |  |
| R/W1  | Read/Write. Only writing 1 has an effect.               |  |
| R/W1C | Read/Write. For each bit in the field, writing 1 clears |  |
|       | that bit. Writing 0 has no effect.                      |  |
| W     | Write-only. When read this field returns 0.             |  |
| W1    | Write-only. Only writing 1 has an effect.               |  |

### 1.3 Background

There are several use cases for dedicated debugging hardware, both internal to a CPU core and with an external connection. This specification addresses the use cases listed below. Implementations can choose not to implement every feature, which means some use cases might not be supported.

- Debugging low-level software in the absence of an OS or other software.
- Debugging issues in the OS itself.
- Bootstrapping a system to test, configure, and program components before there is any executable code path in the system.
- Accessing hardware on a system without a working CPU.

In addition, even without a hardware debugging interface, architectural support in a RISC-V CPU can aid software debugging and performance analysis by allowing hardware triggers and breakpoints. This specification aims to define common resources which can be used for different cases.

When debugging software, this specification distinguishes between two forms of external debugging. The first is *halt mode* debugging, where an external debugger halts some or all components of a platform and inspects their state while they are in stasis. The debugger can read and/or modify state, then direct the hardware to execute a single instruction, or continue to run freely.

The second is run mode debugging. In this mode a software debug agent runs on a component (eg. triggered by a timer interrupt or breakpoint on a RISC-V core) which transfers data to or from the debugger without halting the component, only briefly interrupting its program flow. This functionality is essential if the component is controlling some real-time system (like a hard drive) where long timing delays could lead to physical damage. This requires additional software support (both on the system as well as on the debugger), and efficient communication channels between the component and the debugger.

## 1.4 Supported Features

The debug interface described in this specification supports the following features:

- 1. All hart registers (including CSRs) can be read/written.
- 2. Memory can be accessed either from the hart's point of view, through the system bus directly, or both.
- 3. RV32, RV64, and future RV128 are all supported.
- 4. Any hart in the platform can be independently debugged.

- 5. A debugger can discover almost <sup>1</sup> everything it needs to know itself, without user configuration.
- 6. Each hart can be debugged from the very first instruction executed.
- 7. A RISC-V hart can be halted when a software breakpoint instruction is executed.
- 8. Hardware single-step can execute one instruction at a time.
- 9. Debug functionality is independent of the debug transport used.
- 10. The debugger does not need to know anything about the microarchitecture of the harts it is debugging.
- 11. Arbitrary subsets of harts can be halted and resumed simultaneously. (Optional)
- 12. Arbitrary instructions can be executed on a halted hart. That means no new debug functionality is needed when a core has additional or custom instructions or state, as long as there exist programs that can move that state into GPRs. (Optional)
- 13. Registers can be accessed without halting. (Optional)
- 14. A running hart can be directed to execute a short sequence of instructions, with little overhead. (Optional)
- 15. A system bus master allows memory access without involving any hart. (Optional)
- 16. A RISC-V hart can be halted when a trigger matches the PC, read/write address/data, or an instruction opcode. (Optional)

This document does not suggest a strategy or implementation for hardware test, debugging or error detection techniqes. Scan, BIST, etc. are out of scope of this specification, but this specification does not intend to limit their use in RISC-V systems.

It is possible to debug code that uses software threads, but there is no special debug support for it.

<sup>&</sup>lt;sup>1</sup>Notable exceptions include information about the memory map and peripherals.

# Chapter 2

# System Overview

Figure 2.1 shows the main components of External Debug Support. Blocks shown in dotted lines are optional.

The user interacts with the Debug Host (eg. laptop), which is running a debugger (eg. gdb). The debugger communicates with a Debug Translator (eg. OpenOCD, which may include a hardware driver) to communicate with Debug Transport Hardware (eg. Olimex USB-JTAG adapter). The Debug Transport Hardware connects the Debug Host to the Platform's Debug Transport Module (DTM). The DTM provides access to one or more Debug Modules (DMs) using the Debug Module Interface (DMI).

Each hart in the platform is controlled by exactly one DM. Harts may be heterogeneous. There is no further limit on the hart-DM mapping, but usually all harts in a single core are controlled by the same DM. In most platforms there will only be one DM that controls all the harts in the platform.

DMs provide run control to their harts in the platform. Abstract commands provide access to GPRs. Additional registers are accessible through abstract commands or by writing programs to the optional Program Buffer.

The Program Buffer allows the debugger to execute arbitrary instructions on a hart. This mechanism can be used to access memory. An optional system bus access block allows memory accesses without using a RISC-V hart to perform the access.

Each RISC-V hart may implement a Trigger Module. When trigger conditions are met, harts will halt and inform the debug module that they have halted.



Figure 2.1: RISC-V Debug System Overview

# Chapter 3

# Debug Module (DM)

The Debug Module implements a translation interface between abstract debug operations and their specific implementation. It might support the following operations:

- 1. Give the debugger necessary information about the implementation. (Required)
- 2. Allow any individual hart to be halted and resumed. (Required)
- 3. Provide status on which harts are halted. (Required)
- 4. Provide read and write access to a halted hart's GPRs. (Required)
- 5. Provide access to a reset signal that allows debugging from the very first instruction after reset. (Required)
- 6. Provide a mechanism to allow debugging harts immediately out of reset (regardless of the reset cause). (Optional)
- 7. Provide access to other hart registers. (Optional)
- 8. Provide a Program Buffer to force the hart to execute arbitrary instructions. (Optional)
- 9. Allow multiple harts to be halted, resumed, and/or reset at the same time. (Optional)
- 10. Allow memory access from a hart's point of view. (Optional)
- 11. Allow direct System Bus Access. (Optional)

In order to implement memory access, a target must implement at least one of Program Buffer, System Bus Access, or Abstract Access Memory command mechanisms.

A single DM can debug up to  $2^{20}$  harts.

### 3.1 Debug Module Interface (DMI)

Debug Modules are slaves to a bus called the Debug Module Interface (DMI). The master of the bus is the Debug Transport Module(s). The Debug Module Interface can be a trivial bus with one master and one slave, or use a more full-featured bus like TileLink or the AMBA Advanced Peripheral Bus. The details are left to the system designer.

The DMI uses between 7 and 32 address bits. It supports read and write operations. The bottom of the address space is used for the first (and usually only) DM. Extra space can be used for custom debug devices, other cores, additional DMs, etc. If there are additional DMs on this DMI, the base address of the next DM in the DMI address space is given in nextdm.

The Debug Module is controlled via register accesses to its DMI address space.

#### 3.2 Reset Control

The Debug Module controls a global reset signal, ndmreset (non-debug module reset), which can reset, or hold in reset, every component in the platform, except for the Debug Module and Debug Transport Modules. Exactly what is affected by this reset is implementation dependent, as long as it is possible to debug programs from the first instruction executed. The Debug Module's own state and registers should only be reset at power-up and while dmactive in dmcontrol is 0. The halt state of harts should be maintained across system reset provided that dmactive is 1, although trigger CSRs may be cleared.

Due to clock and power domain crossing issues, it may not be possible to perform arbitrary DMI accesses across system reset. While ndmreset or any external reset is asserted, the only supported DM operation is accessing dmcontrol. The behavior of other accesses is undefined.

There is no requirement on the duration of the assertion of ndmreset. The implementation must ensure that a write of ndmreset to 1 followed by a write of ndmreset to 0 triggers system reset. The system may take an arbitrarily long time to come out of reset, as reported by allunavail, anyunavail, or other implementation specific indicators.

When harts have been reset, they must set a sticky havereset state bit. The conceptual havereset state bits can be read for selected harts in anyhavereset and allhavereset in dmstatus. These bits must be set regardless of the cause of the reset. The havereset bits for the selected harts can be cleared by writing 1 to ackhavereset in dmcontrol. The havereset bits may or may not be cleared when dmactive is low.

# 3.3 Selecting Harts

Up to  $2^{20}$  harts can be connected to a single DM. The debugger selects a hart, and then subsequent halt, resume, reset, and debugging commands are specific to that hart.

To enumerate all the harts, a debugger must first determine HARTSELLEN by writing all ones to

hartsel (assuming the maximum size) and reading back the value to see which bits were actually set. Then it selects each hart starting from 0 until either anynonexistent in dmstatus is 1, or the highest index (depending on HARTSELLEN) is reached.

The debugger can discover the mapping between hart indices and mhartid by using the interface to read mhartid, or by reading the system's Device Tree.

#### 3.3.1 Selecting a Single Hart

All debug modules must support selecting a single hart. The debugger can select a hart by writing its index to hartsel. Hart indexes start at 0 and are contiguous until the final index.

#### 3.3.2 Selecting Multiple Harts

Debug Modules may implement a Hart Array Mask register to allow selecting multiple harts at once. The Nth bit in the Hart Array Mask register applies to the hart with index N. If the bit is 1 then the hart is selected. Usually a DM will have a Hart Array Mask register exactly wide enough to select all the harts it supports, but it's allowed to tie any of these bits to 0.

The debugger can set bits in the hart array mask register using hawindowsel and hawindow, then apply actions to all selected harts by setting hasel. If this feature is supported, multiple harts can be halted, resumed, and reset simultaneously.

Only the actions initiated by dmcontrol can apply to multiple harts at once, Abstract Commands apply only to the hart selected by hartsel.

#### 3.4 Run Control

For every hart, the Debug Module contains 4 conceptual bits of state: halt request, resume request, halt-on-reset request, and hart reset. (The hart reset and halt-on-reset request bits are optional.) These bits all reset to 0. A debugger can write them for the currently selected harts through haltreq, resumereq, setresethaltreq/clrresethaltreq and hartreset in dmcontrol. In addition the DM receives halted, running, and resume ack signals from each hart.

When a running hart receives a halt request, it responds by halting and asserting its halted signal. The halted signals of all selected harts are reflected in the allhalted and anyhalted bits. haltreq is ignored by halted harts.

When a halted hart receives a resume request, it responds by resuming, clearing its halted signal, and asserting its running signal and resume ack signals. The resume ack signal is lowered when the resume request is deasserted. These status signals of all selected harts are reflected in allresumeack, anyresumeack, allrunning, and anyrunning. resumereq is ignored by running harts.

When halt or resume is requested, a hart must respond in less than one second, unless it is unavailable. (How this is implemented is not further specified. A few clock cycles will be a more typical

latency).

The DM can implement optional halt-on-reset bits for each hart, which it indicates by setting hasresethaltreq to 1. This means the DM implements the setresethaltreq and clrresethaltreq bits. Writing 1 to setresethaltreq sets the halt-on-reset request bit for each selected hart. When a hart's halt-on-reset request bit is set, the hart will immediately enter debug mode on the next deassertion of its reset. This is true regardless of whether or not the hart's reset is caused by the DM's ndmreset/hartreset signals. The hart's halt-on-reset request bit remains set until cleared by the debugger writing 1 to clrresethaltreq while the hart is selected, or by debug module reset.

#### 3.5 Abstract Commands

The DM supports a set of abstract commands, most of which are optional. Depending on the implementation, the debugger may be able to perform some abstract commands even when the selected hart is not halted. Debuggers can only determine which abstract commands are supported by a given hart in a given state by attempting them and then looking at cmderr in abstractcs to see if they were successful. Commands may be supported with some options set, but not with other options set. If a command has unsupported options set, the DM must set cmderr to 2 (not supported).

Example: Every system must support the Access Register command, but may not support accessing CSRs. If the debugger requests to read a CSR in that case, the command will return "not supported."

Debuggers execute abstract commands by writing them to command. Debuggers can determine whether an abstract command is complete by reading busy in abstracts. If the command takes arguments, the debugger must write them to the data registers before writing to command. If a command returns results, the Debug Module must ensure they are placed in the data registers before busy is cleared. Which data registers are used for the arguments is described in Table 3.1. In all cases the least-significant word is placed in the lowest-numbered data register. The argument width depends on the command being executed, and is MXLEN where not explicitly specified.

The Abstract Command interface is designed to allow a debugger to write commands as fast as possible, and then later check whether they completed without error. In the common case the debugger will be much slower than the target and commands succeed, which allows for maximum throughput. If there is a failure, the interface ensures that no commands execute after the failing one. To discover which command failed, the debugger has to look at the state of the DM (eg. contents of command) or hart (eg. contents of a register modified by a Program Buffer program) to determine which one failed.

Table 3.1: Use of Data Registers

| Argument Width | arg0/return value | arg1         | arg2         |
|----------------|-------------------|--------------|--------------|
| 32             | data0             | data1        | data2        |
| 64             | data0, data1      | data2, data3 | data4, data5 |
| 128            | data0-data3       | data4-data7  | data8-data11 |

#### 3.5.1 Abstract Command Listing

This section describes each of the different abstract commands and how their fields should be interpreted when they are written to command.

Each abstract command is a 32-bit value. The top 8 bits contain cmdtype which determines the kind of command. Table 3.2 lists all commands.

Table 3.2: Meaning of cmdtype

| cmdtype | Command                 | Page |
|---------|-------------------------|------|
| 0       | Access Register Command | 11   |
| 1       | Quick Access            | 12   |
| 2       | Access Memory Command   | 13   |

#### 3.5.1.1 Access Register

This command gives the debugger access to CPU registers and program buffer. It performs the following sequence of operations:

- 1. Copy data from the register specified by regno into the arg0 region of data, if write is clear and transfer is set.
- 2. Copy data from the arg0 region of data into the register specified by regno, if write is set and transfer is set.
- 3. Execute the Program Buffer, if postexec is set.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An implementation may detect an upcoming failure early, and fail the overall command before it reaches the step that would cause failure.

Debug Modules must implement this command and must support read and write access to all GPRs when the selected hart is halted. Debug Modules may optionally support accessing other registers, or accessing registers when the hart is running. If this command is supported for a register while the hart is running, it must also be supported for a register while the hart is halted. Each individual register (aside from GPRs) may be supported differently across read, write, and halt status.

The encoding of aarsize was chosen to match spaccess in spcs.

| 31   | 24  | 23 | 22   | 20   | 19 | 18       | 17       | 16    | 15    | 0 |
|------|-----|----|------|------|----|----------|----------|-------|-------|---|
| cmdt | ype | 0  | aars | size | 0  | postexec | transfer | write | regno |   |
| 8    |     | 1  | ;    | 3    | 1  | 1        | 1        | 1     | 16    |   |

| Field    | Description                                            |  |  |  |  |  |  |
|----------|--------------------------------------------------------|--|--|--|--|--|--|
| cmdtype  | This is 0 to indicate Access Register Command.         |  |  |  |  |  |  |
| aarsize  | 2: Access the lowest 32 bits of the register.          |  |  |  |  |  |  |
|          | 3: Access the lowest 64 bits of the register.          |  |  |  |  |  |  |
|          | 4: Access the lowest 128 bits of the register.         |  |  |  |  |  |  |
|          | If aarsize specifies a size larger than the register's |  |  |  |  |  |  |
|          | actual size, then the access must fail. If a reg-      |  |  |  |  |  |  |
|          | ister is accessible, then reads of aarsize less than   |  |  |  |  |  |  |
|          | or equal to the register's actual size must be sup-    |  |  |  |  |  |  |
|          | ported.                                                |  |  |  |  |  |  |
|          | This field controls the Argument Width as refer-       |  |  |  |  |  |  |
|          | enced in Table 3.1.                                    |  |  |  |  |  |  |
| postexec | When 1, execute the program in the Program             |  |  |  |  |  |  |
|          | Buffer exactly once after performing the transfer,     |  |  |  |  |  |  |
|          | if any.                                                |  |  |  |  |  |  |
| transfer | 0: Don't do the operation specified by write.          |  |  |  |  |  |  |
|          | 1: Do the operation specified by write.                |  |  |  |  |  |  |
|          | This bit can be used to just execute the Pro-          |  |  |  |  |  |  |
|          | gram Buffer without having to worry about plac-        |  |  |  |  |  |  |
|          | ing valid values into aarsize or regno.                |  |  |  |  |  |  |
| write    | When transfer is set: 0: Copy data from the spec-      |  |  |  |  |  |  |
|          | ified register into arg0 portion of data.              |  |  |  |  |  |  |
|          | 1: Copy data from arg0 portion of data into the        |  |  |  |  |  |  |
|          | specified register.                                    |  |  |  |  |  |  |
| regno    | Number of the register to access, as described in      |  |  |  |  |  |  |
|          | Table 3.6. dpc may be used as an alias for PC if       |  |  |  |  |  |  |
|          | this command is supported on a non-halted hart.        |  |  |  |  |  |  |

#### 3.5.1.2 Quick Access

Perform the following sequence of operations:

- 1. If the hart is halted, the command sets cmderr to halt/resume and does not continue.
- 2. Halt the hart. If the hart halts for some other reason (e.g. breakpoint), the command sets cmderr to halt/resume and does not continue.
- 3. Execute the Program Buffer. If an exception occurs, cmderr is set to exception and the program buffer execution ends, but the quick access command continues.
- 4. Resume the hart.

Implementing this command is optional.

| 31 | 1 2   | 24 | 23 |    | 0 |
|----|-------|----|----|----|---|
| С  | mdtyp | е  |    | 0  |   |
|    | 8     |    |    | 24 |   |

| Field   | Description                                 |
|---------|---------------------------------------------|
| cmdtype | This is 1 to indicate Quick Access command. |

#### 3.5.1.3 Access Memory

This command lets the debugger perform memory accesses, with the exact same memory view and permissions as the selected hart has. This includes access to hart-local memory-mapped registers, etc. The command performs the following sequence of operations:

- 1. Copy data from the memory location specified in arg1 into the arg0 portion of data, if write is clear.
- 2. Copy data from the arg0 portion of data into the memory location specified in arg1, if write is set.
- 3. Increment arg1, if aampostincrement is set.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An access may only fail if the hart, running M mode code, might encounter that same failure when it attempts the same access. An implementation may detect an upcoming failure early, and fail the overall command before it reaches the step that would cause failure.

Debug Modules may optionally implement this command and may support read and write access to memory locations when the selected hart is running or halted. If this command supports memory accesses while the hart is running, it must also support memory accesses while the hart is halted.

The encoding of aamsize was chosen to match sbaccess in sbcs.

| 31      |    | 24            | 23  |                | 22      | 20    |                |    | 19 |      |    |
|---------|----|---------------|-----|----------------|---------|-------|----------------|----|----|------|----|
| cmdtype |    | ype aamvirtua |     | ual            | aamsize |       | aampostincreme |    |    | reme | nt |
|         | 8  |               | 1   |                | ;       | 3     |                |    | 1  |      |    |
|         | 18 | 17            | 16  | 15             |         | 14    | 4              | 13 |    | 0    |    |
| 0       |    | write         | tar | arget-specific |         | fic 0 |                |    |    |      |    |
| 2       |    | 1             |     | 2              |         |       |                | 14 |    |      |    |

| Field            | Description                                       |
|------------------|---------------------------------------------------|
| cmdtype          | This is 2 to indicate Access Memory Command.      |
| aamvirtual       | An implementation does not have to implement      |
|                  | both virtual and physical accesses, but it must   |
|                  | fail accesses that it doesn't support.            |
|                  | 0: Addresses are physical (to the hart they are   |
|                  | performed on).                                    |
|                  | 1: Addresses are virtual, and translated the way  |
|                  | the would be from M mode, with mprv set.          |
| aamsize          | 0: Access the lowest 8 bits of the memory loca-   |
|                  | tion.                                             |
|                  | 1: Access the lowest 16 bits of the memory loca-  |
|                  | tion.                                             |
|                  | 2: Access the lowest 32 bits of the memory loca-  |
|                  | tion.                                             |
|                  | 3: Access the lowest 64 bits of the memory loca-  |
|                  | tion.                                             |
|                  | 4: Access the lowest 128 bits of the memory loca- |
|                  | tion.                                             |
|                  | This field controls the Argument Width as refer-  |
|                  | enced in Table 3.1.                               |
| aampostincrement | After a memory access has completed, if this bit  |
|                  | is 1, increment arg1 (which contains the address  |
|                  | used) by the number of bytes encoded in aamsize.  |
| write            | 0: Copy data from the memory location specified   |
|                  | in arg1 into arg0 portion of data.                |
|                  | 1: Copy data from arg0 portion of data into the   |
|                  | memory location specified in arg1.                |
| target-specific  | These bits are reserved for target-specific uses. |

Table 3.6: Abstract Register Numbers

| 0x0000 - 0x0fff | CSRs. The "PC" can be accessed here through dpc.       |
|-----------------|--------------------------------------------------------|
| 0x1000 - 0x101f | GPRs                                                   |
| 0x1020 - 0x103f | Floating point registers                               |
| 0xc000 - 0xffff | Reserved for non-standard extensions and internal use. |

# 3.6 Program Buffer

To support executing arbitrary instructions on a halted hart, a Debug Module can include a Program Buffer that a debugger can write small programs to. Systems that support all necessary functionality using abstract commands only may choose to omit the Program Buffer.

A debugger can write a small program to the Program Buffer, and then execute it exactly once with the Access Register Abstract Command, setting the postexec bit in command. The debugger can write whatever program it likes (including jumps out of the Program Buffer), but the program must end with ebreak or c.ebreak. To save hardware, an implementation may support an implied ebreak that is executed when a hart runs off the end of the Program Buffer. This is indicated in impebreak. With this feature, a Program Buffer of just 2 32-bit words can offer efficient debugging.

If progbufsize is 1, impebreak must be 1. It is possible that the Program Buffer can hold only one 32-or 16-bit instruction, so the debugger must only write a single instruction in this case, regardless of its size. This instruction can be a 32-bit instruction, or a compressed instruction in the lower 16 bits accompanied by a compressed nop in the upper 16 bits.

The slightly inconsistent behavior with a Program Buffer of size 1 is to accommodate hardware designs that prefer to stuff instructions directly into the pipeline when halted, instead of having the Program Buffer exist in the address space somewhere.

If the debugger executes a program that does not terminate with an ebreak instruction, the hart will remain in Debug Mode until it is reset.

While these programs are executed, the hart does not leave Debug Mode (see Section 4.1). If an exception is encountered during execution of the Program Buffer, no more instructions are executed, the hart remains in Debug Mode, and cmderr is set to 3 (exception error). If the debugger executes a program that doesn't terminate, then it loses control of the hart.

Executing the Program Buffer may clobber dpc. If that is the case, it must be possible to read/write dpc using an abstract command with postexec not set. The debugger must attempt to save dpc between halting and executing a Program Buffer, and then restore dpc before leaving Debug Mode.

Allowing Program Buffer execution to clobber dpc allows for direct implementations that don't have a separate PC register, and do need to use the PC when executing the Program Buffer.

The Program Buffer may be implemented as RAM which is accessible to the hart. A debugger can determine if this is the case by executing small programs that attempt to write and read back relative to pc while executing from the Program Buffer. If so, the debugger has more flexibility in what it can do with the program buffer.

#### 3.7 Overview of States

Figure 3.1 shows a conceptual view of the states passed through by a hart during run/halt debugging as influenced by the different fields of dmcontrol, abstractcs, abstractauto, and command.

### 3.8 System Bus Access

A debugger can access memory from a hart's point of view using a Program Buffer or the Abstract Access Memory command. (Both these features are optional.) A Debug Module may also include a



Figure 3.1: Run/Halt Debug State Machine. As only a small amount of state is visibile to the debugger, the states and transitions are conceptual.

System Bus Access block to provide memory access without involving a hart, regardless of whether Program Buffer is implemented. The System Bus Access block uses physical addresses.

The System Bus Access block may support 8-, 16-, 32-, 64-, and 128-bit accesses. Table 3.7 shows which bits in sbdata are used for each access size.

| Lai         | Table 3.1. System bus Data bits    |  |  |  |  |  |
|-------------|------------------------------------|--|--|--|--|--|
| Access Size | Data Bits                          |  |  |  |  |  |
| 8           | sbdata0 bits 7:0                   |  |  |  |  |  |
| 16          | sbdata0 bits 15:0                  |  |  |  |  |  |
| 32          | sbdata0                            |  |  |  |  |  |
| 64          | sbdata1, sbdata0                   |  |  |  |  |  |
| 128         | sbdata3, sbdata2, sbdata1, sbdata0 |  |  |  |  |  |

Table 3.7: System Bus Data Bits

Depending on the microarchitecture, data accessed through System Bus Access may not always be coherent with that observed by each hart. It is up to the debugger to enforce coherency if the implementation does not. This specification does not define a standard way to do this, as it is implementation/platform specific. Possibilities may include writing to special memory-mapped locations, or executing special instructions via the Program Buffer.

Implementing a System Bus Access block has several benefits even when a Debug Module also implements a Program Buffer. First, it is possible to access memory in a running system with minimal impact. Second, it may improve performance when accessing memory. Third, it may provide access to devices that a hart does not have access to.

### 3.9 Quick Access

Depending on the task it is performing, some harts can only be halted very briefly. There are several mechanisms that allow accessing resources in such a running system with a minimal impact on the running hart.

First, an implementation may allow some abstract commands to execute without halting the hart.

Second, the Quick Access abstract command can be used to halt a hart, quickly execute the contents of the Program Buffer, and let the hart run again. Combined with instructions that allow Program Buffer code to access the data registers, as described in 3.11.3, this can be used to quickly perform a memory or register access. For some systems this will be too intrusive, but many systems that can't be halted can bear an occasional hiccup of a hundred or less cycles.

Third, if the System Bus Access block is implemented, it can be used while a hart is running to access system memory.

### 3.10 Security

To protect intellectual property it may be desirable to lock access to the Debug Module. To allow access during a manufacturing process and not afterwards, a reasonable solution could be to add a

fuse bit to the Debug Module that can be used to be permanently disable it. Since this is technology specific, it is not further addressed in this spec.

Another option is to allow the DM to be unlocked only by users who have an access key. Between authenticated, authbusy, and authdata arbitrarily complex authentication mechanism can be supported. When authenticated is clear, the DM must not interact with the rest of the platform, nor expose details about the harts connected to the DM. All DM registers should read 0, while writes should be ignored, with the following mandatory exceptions:

- 1. authenticated in dmstatus is readable.
- 2. authbusy in dmstatus is readable.
- 3. version in dmstatus is readable.
- 4. dmactive in dmcontrol is readable and writable.
- 5. authdata is readable and writable.

### 3.11 Debug Module Registers

The registers described in this section are accessed over the DMI bus. Each DM has a base address (which is 0 for the first DM). The register addresses below are offsets from this base address.

When read, unimplemented Debug Module DMI Registers return 0. Writing them has no effect.

For each register it is possible to determine that it is implemented by reading it and getting a non-zero value (eg. sbcs), or by checking bits in another register (eg. progbufsize).

#### 3.11.1 Debug Module Status (dmstatus, at 0x11)

The address of this register will not change in the future, because it contains version. It has changed from version 0.11 of this spec.

This register reports status for the overall Debug Module as well as the currently selected harts, as defined in hasel.

Harts are nonexistent if they will never be part of this system, no matter how long a user waits. Eg. in a simple single-hart system only one hart exists, and all others are nonexistent. Debuggers may assume that a system has no harts with indexes higher than the first nonexistent one.

Harts are unavailable if they might exist/become available at a later time, or if there are other harts with higher indexes than this one. Eg. in a multi-hart system some might temporarily be powered down, or a system might support hot-swapping harts. Systems with very large number of harts may permanently disable some during manufacturing, leaving holes in the otherwise continuous hart index space. In order to let the debugger discover all harts, they must show up as unavailable even if there is no chance of them ever becoming available.

Table 3.8: Debug Module Debug Bus Registers

| Address         Name         Fage           0x04         Abstract Data 1         28           0x0f         Abstract Data 11         21           0x10         Debug Module Control         21           0x11         Debug Module Status         18           0x12         Hart Info         23           0x13         Halt Summary 1         29           0x14         Hart Array Window Select         25           0x15         Hart Array Window         25           0x16         Abstract Control and Status         25           0x17         Abstract Command         26           0x18         Abstract Command Autoexec         27           0x19         Device Tree Addr 0         27           0x1a         Device Tree Addr 1         20           0x1c         Device Tree Addr 2         28           0x20         Program Buffer 0         28           0x21         Program Buffer 15         28           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x3a         System Bus Address 63:32         33                                                                 |         | Name                                 |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------|------|
| 0x0f         Abstract Data 11           0x10         Debug Module Control           0x11         Debug Module Status           0x12         Hart Info           0x13         Halt Summary 1           0x14         Hart Array Window Select           0x15         Hart Array Window           0x16         Abstract Control and Status           0x17         Abstract Command           0x18         Abstract Command Autoexec           0x19         Device Tree Addr 0           0x1a         Device Tree Addr 1           0x1b         Device Tree Addr 2           0x1c         Device Tree Addr 3           0x1d         Next Debug Module           0x20         Program Buffer 0           0x2f         Program Buffer 15           0x30         Authentication Data           0x34         Halt Summary 2           0x35         Halt Summary 3           0x37         System Bus Address 127:96           0x38         System Bus Address 31:0           0x3a         System Bus Address 63:32           0x3a         System Bus Data 31:0           0x3d         System Bus Data 63:32           0x3e         System Bus Data 63:32 <td< td=""><td>Address</td><td>Name</td><td>Page</td></td<> | Address | Name                                 | Page |
| 0x10         Debug Module Control         21           0x11         Debug Module Status         18           0x12         Hart Info         23           0x13         Halt Summary 1         29           0x14         Hart Array Window Select         25           0x15         Hart Array Window         25           0x16         Abstract Control and Status         25           0x17         Abstract Command         26           0x18         Abstract Command Autoexec         27           0x19         Device Tree Addr 0         27           0x1a         Device Tree Addr 1         20           0x1b         Device Tree Addr 2         20           0x1c         Device Tree Addr 3         28           0x20         Program Buffer 0         28           0x21         Program Buffer 15         28           0x30         Authentication Data         29           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x3a         System Bus Address 63:32         33           0x3b         System Bus Data 63:32         34                                               |         |                                      | 28   |
| 0x11         Debug Module Status         18           0x12         Hart Info         23           0x13         Halt Summary 1         29           0x14         Hart Array Window Select         25           0x15         Hart Array Window         25           0x16         Abstract Control and Status         25           0x17         Abstract Command         26           0x18         Abstract Command Autoexec         27           0x19         Device Tree Addr 0         27           0x1a         Device Tree Addr 1         20           0x1b         Device Tree Addr 2         20           0x1c         Device Tree Addr 3         28           0x20         Program Buffer 0         28           0x21         Program Buffer 15         28           0x30         Authentication Data         29           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x3a         System Bus Address 63:32         33           0x3a         System Bus Data 31:0         34           0x3c         System Bus Data 63:32         35                                               |         |                                      |      |
| 0x12       Hart Info       23         0x13       Halt Summary 1       29         0x14       Hart Array Window Select       25         0x15       Hart Array Window       25         0x16       Abstract Control and Status       25         0x17       Abstract Command       26         0x18       Abstract Command Autoexec       27         0x19       Device Tree Addr 0       27         0x1a       Device Tree Addr 1       20         0x1b       Device Tree Addr 2       22         0x1c       Device Tree Addr 3       22         0x1d       Next Debug Module       28         0x20       Program Buffer 0       28         0x21       Program Buffer 15       29         0x30       Authentication Data       29         0x34       Halt Summary 2       30         0x35       Halt Summary 3       30         0x37       System Bus Address 127:96       30         0x38       System Bus Address 63:32       33         0x3a       System Bus Address 63:32       33         0x3b       System Bus Data 63:32       34         0x3c       System Bus Data 63:32       35                                                                                                                       |         | _                                    |      |
| 0x13       Halt Summary 1       29         0x14       Hart Array Window Select       25         0x15       Hart Array Window       25         0x16       Abstract Control and Status       25         0x17       Abstract Command       26         0x18       Abstract Command Autoexec       27         0x19       Device Tree Addr 0       27         0x1a       Device Tree Addr 1       27         0x1b       Device Tree Addr 2       28         0x1c       Device Tree Addr 3       28         0x1d       Next Debug Module       28         0x20       Program Buffer 0       28         0x2f       Program Buffer 15       29         0x30       Authentication Data       29         0x34       Halt Summary 2       30         0x35       Halt Summary 3       30         0x37       System Bus Address 127:96       30         0x38       System Bus Address 63:32       33         0x3a       System Bus Address 63:32       33         0x3b       System Bus Data 31:0       34         0x3c       System Bus Data 63:32       35         0x3c       System Bus Data 95:64       35                                                                                                            | 0x11    | _                                    | 18   |
| 0x14       Hart Array Window       25         0x15       Hart Array Window       25         0x16       Abstract Control and Status       25         0x17       Abstract Command       26         0x18       Abstract Command Autoexec       27         0x19       Device Tree Addr 0       27         0x1a       Device Tree Addr 1       27         0x1b       Device Tree Addr 2       28         0x1c       Device Tree Addr 3       28         0x1d       Next Debug Module       28         0x20       Program Buffer 0       28         0x21       Program Buffer 15       29         0x34       Halt Summary 2       30         0x34       Halt Summary 3       30         0x37       System Bus Address 127:96       30         0x38       System Bus Address 31:0       32         0x3a       System Bus Address 63:32       33         0x3b       System Bus Data 31:0       34         0x3c       System Bus Data 63:32       35         0x3e       System Bus Data 95:64       35         0x3f       System Bus Data 127:96       36                                                                                                                                                            | 0x12    | Hart Info                            | 23   |
| 0x15       Hart Array Window       25         0x16       Abstract Control and Status       25         0x17       Abstract Command       26         0x18       Abstract Command Autoexec       27         0x19       Device Tree Addr 0       27         0x1a       Device Tree Addr 1       28         0x1b       Device Tree Addr 2       28         0x1c       Device Tree Addr 3       28         0x2d       Program Buffer 0       28         0x2f       Program Buffer 15       28         0x30       Authentication Data       29         0x34       Halt Summary 2       30         0x35       Halt Summary 3       30         0x37       System Bus Address 127:96       30         0x38       System Bus Address 31:0       32         0x3a       System Bus Address 63:32       33         0x3b       System Bus Data 31:0       34         0x3c       System Bus Data 63:32       35         0x3e       System Bus Data 95:64       35         0x3f       System Bus Data 127:96       36                                                                                                                                                                                                        | 0x13    | Halt Summary 1                       | 29   |
| 0x16         Abstract Control and Status         25           0x17         Abstract Command         26           0x18         Abstract Command Autoexec         27           0x19         Device Tree Addr 0         27           0x1a         Device Tree Addr 1         28           0x1b         Device Tree Addr 2         28           0x1c         Device Tree Addr 3         28           0x2d         Program Buffer 0         28           0x2f         Program Buffer 15         29           0x30         Authentication Data         29           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x38         System Bus Address 31:0         32           0x3a         System Bus Address 63:32         33           0x3b         System Bus Address 95:64         34           0x3c         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                  | 0x14    | Hart Array Window Select             | 25   |
| 0x17       Abstract Command       26         0x18       Abstract Command Autoexec       27         0x19       Device Tree Addr 0       27         0x1a       Device Tree Addr 1       20         0x1b       Device Tree Addr 2       20         0x1c       Device Tree Addr 3       20         0x1d       Next Debug Module       28         0x20       Program Buffer 0       28         0x2f       Program Buffer 15       29         0x30       Authentication Data       29         0x34       Halt Summary 2       30         0x35       Halt Summary 3       30         0x37       System Bus Address 127:96       30         0x38       System Bus Address 31:0       32         0x3a       System Bus Address 63:32       33         0x3b       System Bus Data 31:0       34         0x3c       System Bus Data 63:32       35         0x3e       System Bus Data 95:64       35         0x3f       System Bus Data 127:96       36                                                                                                                                                                                                                                                                | 0x15    | Hart Array Window                    | 25   |
| 0x18         Abstract Command Autoexec         27           0x19         Device Tree Addr 0         27           0x1a         Device Tree Addr 1         27           0x1b         Device Tree Addr 2         28           0x1c         Device Tree Addr 3         28           0x1d         Next Debug Module         28           0x20         Program Buffer 0         28           0x2f         Program Buffer 15         29           0x30         Authentication Data         29           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x38         System Bus Address Control and Status         31           0x39         System Bus Address 31:0         32           0x3a         System Bus Address 63:32         33           0x3b         System Bus Data 31:0         34           0x3c         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                           | 0x16    | Abstract Control and Status          | 25   |
| 0x19         Device Tree Addr 0         27           0x1a         Device Tree Addr 1         20x1b           0x1b         Device Tree Addr 2         20x1c           0x1c         Device Tree Addr 3         20x1d           0x1d         Next Debug Module         28           0x20         Program Buffer 0         28           0x2f         Program Buffer 15         29           0x30         Authentication Data         29           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x38         System Bus Address Control and Status         31           0x39         System Bus Address 31:0         32           0x3a         System Bus Address 63:32         33           0x3b         System Bus Data 31:0         34           0x3d         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                              | 0x17    | Abstract Command                     | 26   |
| 0x1a         Device Tree Addr 1           0x1b         Device Tree Addr 2           0x1c         Device Tree Addr 3           0x1d         Next Debug Module         28           0x20         Program Buffer 0         28           0x2f         Program Buffer 15         29           0x30         Authentication Data         29           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x38         System Bus Address 63:32         31           0x39         System Bus Address 31:0         32           0x3a         System Bus Address 63:32         33           0x3b         System Bus Data 31:0         34           0x3d         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                          | 0x18    | Abstract Command Autoexec            | 27   |
| 0x1b         Device Tree Addr 2           0x1c         Device Tree Addr 3           0x1d         Next Debug Module         28           0x20         Program Buffer 0         28           0x2f         Program Buffer 15         29           0x30         Authentication Data         29           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x38         System Bus Address Control and Status         31           0x39         System Bus Address 31:0         32           0x3a         System Bus Address 63:32         33           0x3b         System Bus Data 31:0         34           0x3c         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                                                       | 0x19    | Device Tree Addr 0                   | 27   |
| 0x1c         Device Tree Addr 3           0x1d         Next Debug Module         28           0x20         Program Buffer 0         28           0x2f         Program Buffer 15         29           0x30         Authentication Data         29           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x38         System Bus Access Control and Status         31           0x39         System Bus Address 31:0         32           0x3a         System Bus Address 63:32         33           0x3b         System Bus Data 31:0         34           0x3c         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                                                                                                  | 0x1a    | Device Tree Addr 1                   |      |
| 0x1d         Next Debug Module         28           0x20         Program Buffer 0         28           0x2f         Program Buffer 15         29           0x30         Authentication Data         29           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x38         System Bus Address 217:96         30           0x38         System Bus Address 31:0         32           0x3a         System Bus Address 63:32         33           0x3b         System Bus Address 95:64         34           0x3c         System Bus Data 31:0         34           0x3d         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                                                                                            | 0x1b    | Device Tree Addr 2                   |      |
| 0x20         Program Buffer 0         28           0x2f         Program Buffer 15         29           0x30         Authentication Data         29           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x38         System Bus Address Control and Status         31           0x39         System Bus Address 31:0         32           0x3a         System Bus Address 63:32         33           0x3b         System Bus Data 31:0         34           0x3c         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0x1c    | Device Tree Addr 3                   |      |
| 0x2f         Program Buffer 15           0x30         Authentication Data         29           0x34         Halt Summary 2         30           0x35         Halt Summary 3         30           0x37         System Bus Address 127:96         30           0x38         System Bus Address Control and Status         31           0x39         System Bus Address 31:0         32           0x3a         System Bus Address 63:32         33           0x3b         System Bus Address 95:64         34           0x3c         System Bus Data 31:0         34           0x3d         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x1d    | Next Debug Module                    | 28   |
| 0x30       Authentication Data       29         0x34       Halt Summary 2       30         0x35       Halt Summary 3       30         0x37       System Bus Address 127:96       30         0x38       System Bus Address Control and Status       31         0x39       System Bus Address 31:0       32         0x3a       System Bus Address 63:32       33         0x3b       System Bus Address 95:64       34         0x3c       System Bus Data 31:0       34         0x3d       System Bus Data 63:32       35         0x3e       System Bus Data 95:64       35         0x3f       System Bus Data 127:96       36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0x20    | Program Buffer 0                     | 28   |
| 0x34       Halt Summary 2       30         0x35       Halt Summary 3       30         0x37       System Bus Address 127:96       30         0x38       System Bus Address Control and Status       31         0x39       System Bus Address 31:0       32         0x3a       System Bus Address 63:32       33         0x3b       System Bus Address 95:64       34         0x3c       System Bus Data 31:0       34         0x3d       System Bus Data 63:32       35         0x3e       System Bus Data 95:64       35         0x3f       System Bus Data 127:96       36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0x2f    | Program Buffer 15                    |      |
| 0x35       Halt Summary 3       30         0x37       System Bus Address 127:96       30         0x38       System Bus Access Control and Status       31         0x39       System Bus Address 31:0       32         0x3a       System Bus Address 63:32       33         0x3b       System Bus Address 95:64       34         0x3c       System Bus Data 31:0       34         0x3d       System Bus Data 63:32       35         0x3e       System Bus Data 95:64       35         0x3f       System Bus Data 127:96       36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x30    | Authentication Data                  | 29   |
| 0x37         System Bus Address 127:96         30           0x38         System Bus Access Control and Status         31           0x39         System Bus Address 31:0         32           0x3a         System Bus Address 63:32         33           0x3b         System Bus Address 95:64         34           0x3c         System Bus Data 31:0         34           0x3d         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x34    | Halt Summary 2                       | 30   |
| 0x38         System Bus Access Control and Status         31           0x39         System Bus Address 31:0         32           0x3a         System Bus Address 63:32         33           0x3b         System Bus Address 95:64         34           0x3c         System Bus Data 31:0         34           0x3d         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0x35    | Halt Summary 3                       | 30   |
| 0x39       System Bus Address 31:0       32         0x3a       System Bus Address 63:32       33         0x3b       System Bus Address 95:64       34         0x3c       System Bus Data 31:0       34         0x3d       System Bus Data 63:32       35         0x3e       System Bus Data 95:64       35         0x3f       System Bus Data 127:96       36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0x37    | System Bus Address 127:96            | 30   |
| 0x3a       System Bus Address 63:32       33         0x3b       System Bus Address 95:64       34         0x3c       System Bus Data 31:0       34         0x3d       System Bus Data 63:32       35         0x3e       System Bus Data 95:64       35         0x3f       System Bus Data 127:96       36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x38    | System Bus Access Control and Status | 31   |
| 0x3b         System Bus Address 95:64         34           0x3c         System Bus Data 31:0         34           0x3d         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0x39    | System Bus Address 31:0              | 32   |
| 0x3c       System Bus Data 31:0       34         0x3d       System Bus Data 63:32       35         0x3e       System Bus Data 95:64       35         0x3f       System Bus Data 127:96       36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x3a    | System Bus Address 63:32             | 33   |
| 0x3d         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x3b    | System Bus Address 95:64             | 34   |
| 0x3d         System Bus Data 63:32         35           0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x3c    | System Bus Data 31:0                 | 34   |
| 0x3e         System Bus Data 95:64         35           0x3f         System Bus Data 127:96         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0x3d    |                                      | 35   |
| 0x3f   System Bus Data 127:96   36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0x3e    |                                      | 35   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x3f    |                                      | 36   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x40    | Halt Summary 0                       | 29   |

This entire register is read-only.



| Field          | Description                                          | Access   | Reset  |
|----------------|------------------------------------------------------|----------|--------|
| impebreak      | If 1, then there is an implicit ebreak instruction   | R        | Preset |
|                | at the non-existent word immediately after the       |          |        |
|                | Program Buffer. This saves the debugger from         |          |        |
|                | having to write the ebreak itself, and allows the    |          |        |
|                | Program Buffer to be one word smaller.               |          |        |
|                | This must be 1 when progbufsize is 1.                |          |        |
| allhavereset   | This field is 1 when all currently selected harts    | R        | -      |
|                | have been reset but the reset has not been ac-       |          |        |
|                | knowledged.                                          |          |        |
| anyhavereset   | This field is 1 when any currently selected hart     | R        | -      |
|                | has been reset but the reset has not been acknowl-   |          |        |
|                | edged.                                               |          |        |
| allresumeack   | This field is 1 when all currently selected harts    | R        | -      |
|                | have acknowledged the previous resume request.       |          |        |
| anyresumeack   | This field is 1 when any currently selected hart     | R        | -      |
|                | has acknowledged the previous resume request.        |          |        |
| allnonexistent | This field is 1 when all currently selected harts do | R        | -      |
|                | not exist in this system.                            |          |        |
| anynonexistent | This field is 1 when any currently selected hart     | R        | -      |
|                | does not exist in this system.                       |          |        |
| allunavail     | This field is 1 when all currently selected harts    | R        | -      |
|                | are unavailable.                                     |          |        |
| anyunavail     | This field is 1 when any currently selected hart is  | R        | -      |
|                | unavailable.                                         |          |        |
| allrunning     | This field is 1 when all currently selected harts    | R        | -      |
| _              | are running.                                         |          |        |
| anyrunning     | This field is 1 when any currently selected hart is  | R        | -      |
|                | running.                                             |          |        |
| allhalted      | This field is 1 when all currently selected harts    | R        | -      |
|                | are halted.                                          |          |        |
| 1              | Contin                                               | ued on n |        |

Continued on next page

| Field           | Description                                         | Access | Reset  |
|-----------------|-----------------------------------------------------|--------|--------|
| anyhalted       | This field is 1 when any currently selected hart is | R      | -      |
|                 | halted.                                             |        |        |
| authenticated   | 0 when authentication is required before using the  | R      | Preset |
|                 | DM. 1 when the authentication check has passed.     |        |        |
|                 | On components that don't implement authentica-      |        |        |
|                 | tion, this bit must be preset as 1.                 |        |        |
| authbusy        | 0: The authentication module is ready to process    | R      | 0      |
|                 | the next read/write to authdata.                    |        |        |
|                 | 1: The authentication module is busy. Accessing     |        |        |
|                 | authdata results in unspecified behavior.           |        |        |
|                 | authbusy only becomes set in immediate response     |        |        |
|                 | to an access to authdata.                           |        |        |
| hasresethaltreq | 1 if this Debug Module supports halt-on-reset       | R      | Preset |
|                 | functionality controllable by the setresethaltreq   |        |        |
|                 | and clrresethaltreq bits. 0 otherwise.              |        |        |
| devtreevalid    | 0: devtreeaddr0-devtreeaddr3 hold informa-          | R      | Preset |
|                 | tion which is not relevant to the Device Tree.      |        |        |
|                 | 1: devtreeaddr0-devtreeaddr3 registers hold         |        |        |
|                 | the address of the Device Tree.                     |        |        |
| version         | 0: There is no Debug Module present.                | R      | 2      |
|                 | 1: There is a Debug Module and it conforms to       |        |        |
|                 | version 0.11 of this specification.                 |        |        |
|                 | 2: There is a Debug Module and it conforms to       |        |        |
|                 | version 0.13 of this specification.                 |        |        |
|                 | 15: There is a Debug Module but it does not con-    |        |        |
|                 | form to any available version of this spec.         |        |        |

### 3.11.2 Debug Module Control (dmcontrol, at 0x10)

This register controls the overall Debug Module as well as the currently selected harts, as defined in hasel.

Throughout this document we refer to hartsel, which is hartselhi combined with hartsello. While the spec allows for 20 hartsel bits, an implementation may choose to implement fewer than that. The actual width of hartsel is called HARTSELLEN. It must be at least 0 and at most 20. A debugger should discover HARTSELLEN by writing all ones to hartsel (assuming the maximum size) and reading back the value to see which bits were actually set.

| 31      | 30        | 29        | 28           | 27 | 26    | 25 16     |
|---------|-----------|-----------|--------------|----|-------|-----------|
| haltreq | resumereq | hartreset | ackhavereset | 0  | hasel | hartsello |
| 1       | 1         | 1         | 1            | 1  | 1     | 10        |

| 15        | 6 | 5 | 4 | 3               | 2               | 1        | 0        |
|-----------|---|---|---|-----------------|-----------------|----------|----------|
| hartselhi |   | C | ) | setresethaltreq | clrresethaltreq | ndmreset | dmactive |
| 10        |   | 2 | ) | 1               | 1               | 1        | 1        |

| Field        | Description                                           | Access | Reset |
|--------------|-------------------------------------------------------|--------|-------|
| haltreq      | Writes the halt request bit for all currently se-     | W      | -     |
|              | lected harts. When set to 1, each selected hart       |        |       |
|              | will halt if it is not currently halted.              |        |       |
|              | Writing 1 or 0 has no effect on a hart which is       |        |       |
|              | already halted, but the bit must be cleared to 0      |        |       |
|              | before the hart is resumed.                           |        |       |
|              | Writes apply to the new value of hartsel and hasel.   |        |       |
| resumereq    | Writes the resume request bit for all currently se-   | W      | _     |
|              | lected harts. When set to 1, each selected hart       |        |       |
|              | will resume if it is currently halted.                |        |       |
|              | The resume request bit is ignored while the halt      |        |       |
|              | request bit is set.                                   |        |       |
|              | Writes apply to the new value of hartsel and hasel.   |        |       |
| hartreset    | This optional field writes the reset bit for all the  | R/W    | 0     |
|              | currently selected harts. To perform a reset the      |        |       |
|              | debugger writes 1, and then writes 0 to deassert      |        |       |
|              | the reset signal.                                     |        |       |
|              | If this feature is not implemented, the bit always    |        |       |
|              | stays 0, so after writing 1 the debugger can read     |        |       |
|              | the register back to see if the feature is supported. |        |       |
|              | Writes apply to the new value of hartsel and hasel.   |        |       |
| ackhavereset | Writing 1 to this bit clears the havereset bits for   | W      | -     |
|              | any selected harts.                                   |        |       |
|              | Writes apply to the new value of hartsel and hasel.   |        |       |
| hasel        | Selects the definition of currently selected harts.   | R/W    | 0     |
|              | 0: There is a single currently selected hart, that    |        |       |
|              | selected by hartsel.                                  |        |       |
|              | 1: There may be multiple currently selected harts     |        |       |
|              | - that selected by hartsel, plus those selected by    |        |       |
|              | the hart array mask register.                         |        |       |
|              | An implementation which does not implement the        |        |       |
|              | hart array mask register must tie this field to 0.    |        |       |
|              | A debugger which wishes to use the hart array         |        |       |
|              | mask register feature should set this bit and read    |        |       |
|              | back to see if the functionality is supported.        |        |       |
| hartsello    | The low 10 bits of hartsel: the DM-specific index     | R/W    | 0     |
|              | of the hart to select. This hart is always part of    |        |       |
|              | the currently selected harts.                         |        |       |
| hartselhi    | The high 10 bits of hartsel: the DM-specific index    | R/W    | 0     |
|              | of the hart to select. This hart is always part of    |        |       |
|              | the currently selected harts.                         |        |       |

Continued on next page

| Field           | Description                                          | Access | Reset |
|-----------------|------------------------------------------------------|--------|-------|
| setresethaltreq | This optional field writes the halt-on-reset request | W      | 0     |
|                 | bit for all currently selected harts. When set to    |        |       |
|                 | 1, each selected hart will halt upon the next de-    |        |       |
|                 | assertion of its reset. The halt-on-reset request    |        |       |
|                 | bit is not automatically cleared. The debugger       |        |       |
|                 | must write to clrresethaltreq to clear it.           |        |       |
|                 | Writes apply to the new value of hartsel and hasel.  |        |       |
|                 | If hasresethaltreq is 0, this field is not imple-    |        |       |
|                 | mented.                                              |        |       |
| clrresethaltreq | This optional field clears the halt-on-reset request | W      | 0     |
|                 | bit for all currently selected harts.                |        |       |
|                 | Writes apply to the new value of hartsel and hasel.  |        |       |
| ndmreset        | This bit controls the reset signal from the DM to    | R/W    | 0     |
|                 | the rest of the system. The signal should reset      |        |       |
|                 | every part of the system, including every hart,      |        |       |
|                 | except for the DM and any logic required to access   |        |       |
|                 | the DM. To perform a system reset the debugger       |        |       |
|                 | writes 1, and then writes 0 to deassert the reset.   |        |       |
| dmactive        | This bit serves as a reset signal for the Debug      | R/W    | 0     |
|                 | Module itself.                                       |        |       |
|                 | 0: The module's state, including authentication      |        |       |
|                 | mechanism, takes its reset values (the dmactive bit  |        |       |
|                 | is the only bit which can be written to something    |        |       |
|                 | other than its reset value).                         |        |       |
|                 | 1: The module functions normally.                    |        |       |
|                 | No other mechanism should exist that may result      |        |       |
|                 | in resetting the Debug Module after power up,        |        |       |
|                 | including the platform's system reset or Debug       |        |       |
|                 | Transport reset signals.                             |        |       |
|                 | A debugger may pulse this bit low to get the De-     |        |       |
|                 | bug Module into a known state.                       |        |       |
|                 | Implementations may use this bit to aid debug-       |        |       |
|                 | ging, for example by preventing the Debug Mod-       |        |       |
|                 | ule from being power gated while debugging is        |        |       |
|                 | active.                                              |        |       |

# 3.11.3 Hart Info (hartinfo, at 0x12)

This register gives information about the hart currently selected by hartsel.

This register is optional. If it is not present it should read all-zero.

If this register is included, the debugger can do more with the Program Buffer by writing programs

which explicitly access the data and/or dscratch registers.

This entire register is read-only.

| 31 | 24 | 23    | 20   | 19 | 17 | 16         | 15   | 12   | 11   | 0    |
|----|----|-------|------|----|----|------------|------|------|------|------|
| 0  |    | nscra | atch | (  | )  | dataaccess | data | size | data | addr |
| 8  | 3  | 4     |      | 9  | 3  | 1          | 4    | Į.   | 1    | 2    |

| Field      | Description                                        | Access | Reset  |
|------------|----------------------------------------------------|--------|--------|
| nscratch   | Number of dscratch registers available for the     | R      | Preset |
|            | debugger to use during program buffer execution,   |        |        |
|            | starting from dscratch0. The debugger can make     |        |        |
|            | no assumptions about the contents of these regis-  |        |        |
|            | ters between commands.                             |        |        |
| dataaccess | 0: The data registers are shadowed in the hart by  | R      | Preset |
|            | CSR registers. Each CSR register is MXLEN bits     |        |        |
|            | in size, and corresponds to a single argument, per |        |        |
|            | Table 3.1.                                         |        |        |
|            | 1: The data registers are shadowed in the hart's   |        |        |
|            | memory map. Each register takes up 4 bytes in      |        |        |
|            | the memory map.                                    |        |        |
| datasize   | If dataaccess is 0: Number of CSR registers dedi-  | R      | Preset |
|            | cated to shadowing the data registers.             |        |        |
|            | If dataaccess is 1: Number of 32-bit words in the  |        |        |
|            | memory map dedicated to shadowing the data         |        |        |
|            | registers.                                         |        |        |
|            | Since there are at most 12 data registers, the     |        |        |
|            | value in this register must be 12 or smaller.      |        |        |
| dataaddr   | If dataaccess is 0: The number of the first CSR    | R      | Preset |
|            | dedicated to shadowing the data registers.         |        |        |
|            | If dataaccess is 1: Signed address of RAM where    |        |        |
|            | the data registers are shadowed, to be used to     |        |        |
|            | access relative to zero.                           |        |        |

# 3.11.4 Hart Array Window Select (hawindowsel, at 0x14)

This register selects which of the 32-bit portion of the hart array mask register (see Section 3.3.2) is accessible in hawindow.

| 31 |    | 15 | 14     | 0      |
|----|----|----|--------|--------|
|    | 0  |    | hawing | lowsel |
|    | 17 |    | 1.     | <br>5  |

| Field       | Description                                       | Access | Reset |
|-------------|---------------------------------------------------|--------|-------|
| hawindowsel | The high bits of this field may be tied to 0, de- | R/W    | 0     |
|             | pending on how large the array mask register is.  |        |       |
|             | Eg. on a system with 48 harts only bit 0 of this  |        |       |
|             | field may actually be writable.                   |        |       |

#### 3.11.5 Hart Array Window (hawindow, at 0x15)

This register provides R/W access to a 32-bit portion of the hart array mask register (see Section 3.3.2). The position of the window is determined by hawindowsel. I.e. bit 0 refers to hart hawindowsel \*32, while bit 31 refers to hart hawindowsel \*32 + 31.

Since some bits in the hart array mask register may be constant 0, some bits in this register may be constant 0, depending on the current value of hawindowsel.



# 3.11.6 Abstract Control and Status (abstractcs, at 0x16)

Writing this register while an abstract command is executing causes **cmderr** to be set to 1 (busy) if it is 0.

| 31 | 29 | 28    | 24     | 23 |    | 13 | 12   | 11 | 10  | 8    | 7 | 4 | 3    | 0     |
|----|----|-------|--------|----|----|----|------|----|-----|------|---|---|------|-------|
| (  | )  | progb | ufsize |    | 0  |    | busy | 0  | cmd | lerr | ( | ) | data | count |
| :  | 3  |       | 5      |    | 11 |    | 1    | 1  | 3   |      | 4 | 1 |      | 4     |

| Field       | Description                                        | Access | Reset  |
|-------------|----------------------------------------------------|--------|--------|
| progbufsize | Size of the Program Buffer, in 32-bit words. Valid | R      | Preset |
|             | sizes are 0 - 16.                                  |        |        |
| busy        | 1: An abstract command is currently being exe-     | R      | 0      |
|             | cuted.                                             |        |        |
|             | This bit is set as soon as command is written, and |        |        |
|             | is not cleared until that command has completed.   |        |        |

Continued on next page

| Field     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Access       | Reset  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|
| Field     | Gets set if an abstract command fails. The bits in this field remain set until they are cleared by writing 1 to them. No abstract command is started until the value is reset to 0.  This field only contains a valid value if busy is 0. 0 (none): No error.  1 (busy): An abstract command was executing while command, abstractcs, abstractauto was written, or when one of the data or progbuf registers was read or written. This status is only written if cmderr contains 0.  2 (not supported): The requested command is not supported, regardless of whether the hart is running or not.  3 (exception): An exception occurred while executing the command (eg. while executing the Program Buffer).  4 (halt/resume): The abstract command couldn't execute because the hart wasn't in the required state (running/halted).  5 (bus): The abstract command failed due to a bus error (eg. alignment, access size, timeout). | Access R/W1C | Reset  |
|           | 7 (other): The command failed for another reason.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |        |
| datacount | Number of data registers that are implemented as part of the abstract command interface. Valid sizes are 0 - 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R            | Preset |

#### 3.11.7 Abstract Command (command, at 0x17)

Writes to this register cause the corresponding abstract command to be executed.

Writing this register while an abstract command is executing causes **cmderr** to be set to 1 (busy) if it is 0.

If cmderr is non-zero, writes to this register are ignored.

cmderr inhibits starting a new command to accommodate debuggers that, for performance reasons, send several commands to be executed in a row without checking cmderr in between. They can safely do so and check cmderr at the end without worrying that one command failed but then a later command (which might have depended on the previous one succeeding) passed.

| 31 | 24     | 23 |         | 0 |
|----|--------|----|---------|---|
| cr | ndtype |    | control |   |
|    | 8      |    | 24      |   |

| Field   | Description                                      | Access | Reset |
|---------|--------------------------------------------------|--------|-------|
| cmdtype | The type determines the overall functionality of | W      | 0     |
|         | this abstract command.                           |        |       |
| control | This field is interpreted in a command-specific  | W      | 0     |
|         | manner, described for each abstract command.     |        |       |

#### 3.11.8 Abstract Command Autoexec (abstractauto, at 0x18)

This register is optional. Including it allows more efficient burst accesses. A debugger can detect whether it is support by setting bits and reading them back.

Writing this register while an abstract command is executing causes **cmderr** to be set to 1 (busy) if it is 0.

| 31       | 16      | 15 | 12 | 11     | 0       |
|----------|---------|----|----|--------|---------|
| autoexec | progbuf | C  | )  | autoex | kecdata |
| 16       | 3       | 4  | Į  |        | 12      |

| Field           | Description                                      | Access | Reset |
|-----------------|--------------------------------------------------|--------|-------|
| autoexecprogbuf | When a bit in this field is 1, read or write ac- | R/W    | 0     |
|                 | cesses to the corresponding progbuf word cause   |        |       |
|                 | the command in command to be executed again.     |        |       |
| autoexecdata    | When a bit in this field is 1, read or write ac- | R/W    | 0     |
|                 | cesses to the corresponding data word cause the  |        |       |
|                 | command in command to be executed again.         |        |       |

#### 3.11.9 Device Tree Addr 0 (devtreeaddr0, at 0x19)

When devtreevalid is set, reading this register returns bits 31:0 of the Device Tree address. Reading the other devtreeaddr registers returns the upper bits of the address.

When system bus mastering is implemented, this must be an address that can be used with the System Bus Access module. Otherwise, this must be an address that can be used to access the Device Tree from the hart with ID 0.

If devtreevalid is 0, then the devtreeaddr registers hold identifier information which is not further specified in this document.

The Device Tree itself is described in the RISC-V Privileged Specification.

This entire register is read-only.



#### 3.11.10 Next Debug Module (nextdm, at 0x1d)

If there is more than one DM accessible on this DMI, this register contains the base address of the next one in the chain, or 0 if this is the last one in the chain.

This entire register is read-only.



#### 3.11.11 Abstract Data 0 (data0, at 0x04)

data0 through data11 are basic read/write registers that may be read or changed by abstract commands. datacount indicates how many of them are implemented, starting at sbdata0, counting up. Table 3.1 shows how abstract commands use these registers.

Accessing these registers while an abstract command is executing causes cmderr to be set to 1 (busy) if it is 0.

Attempts to write them while busy is set does not change their value.

The values in these registers may not be preserved after an abstract command is executed. The only guarantees on their contents are the ones offered by the command in question. If the command fails, no assumptions can be made about the contents of these registers.



#### 3.11.12 Program Buffer 0 (progbuf0, at 0x20)

progbuf0 through progbuf15 provide read/write access to the optional program buffer. progbufsize indicates how many of them are implemented starting at progbuf0, counting up.

Accessing these registers while an abstract command is executing causes cmderr to be set to 1 (busy) if it is 0.

Attempts to write them while busy is set does not change their value.



#### 3.11.13 Authentication Data (authdata, at 0x30)

This register serves as a 32-bit serial port to the authentication module.

When authbusy is clear, the debugger can communicate with the authentication module by reading or writing this register. There is no separate mechanism to signal overflow/underflow.



#### 3.11.14 Halt Summary 0 (haltsum0, at 0x40)

Each bit in this read-only register indicates whether one specific hart is halted or not. Unavailable/nonexistent harts are not considered to be halted.

The LSB reflects the halt status of hart {hartsel[19:5],5'h0}, and the MSB reflects halt status of hart {hartsel[19:5],5'h1f}.

This entire register is read-only.



#### 3.11.15 Halt Summary 1 (haltsum1, at 0x13)

Each bit in this read-only register indicates whether any of a group of harts is halted or not. Unavailable/nonexistent harts are not considered to be halted.

This register may not be present in systems with fewer than 33 harts.

The LSB reflects the halt status of harts {hartsel[19:10],10'h0} through {hartsel[19:10],10'h1f}. The MSB reflects the halt status of harts {hartsel[19:10],10'h3e0} through {hartsel[19:10],10'h3ff}.

This entire register is read-only.



#### 3.11.16 Halt Summary 2 (haltsum2, at 0x34)

Each bit in this read-only register indicates whether any of a group of harts is halted or not. Unavailable/nonexistent harts are not considered to be halted.

This register may not be present in systems with fewer than 1025 harts.

The LSB reflects the halt status of harts {hartsel[19:15],15'h0} through {hartsel[19:15],15'h3ff}. The MSB reflects the halt status of harts {hartsel[19:15],15'h7c00} through {hartsel[19:15],15'h7fff}.

This entire register is read-only.



#### 3.11.17 Halt Summary 3 (haltsum3, at 0x35)

Each bit in this read-only register indicates whether any of a group of harts is halted or not. Unavailable/nonexistent harts are not considered to be halted.

This register may not be present in systems with fewer than 32769 harts.

The LSB reflects the halt status of harts 20'h0 through 20'h7fff. The MSB reflects the halt status of harts 20'hf8000 through 20'hfffff.

This entire register is read-only.



#### 3.11.18 System Bus Address 127:96 (sbaddress3, at 0x37)

If sbasize is less than 97, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don't do anything else.



| Field   | Description                                     | Access | Reset |
|---------|-------------------------------------------------|--------|-------|
| address | Accesses bits 127:96 of the physical address in | R/W    | 0     |
|         | sbaddress (if the system address bus is that    |        |       |
|         | wide).                                          |        |       |

# 3.11.19 System Bus Access Control and Status (sbcs, at 0x38)

|             | 31          | 29  | 28     | 23    |     | 22        |     | 21    |      | 2    | 20        |      |
|-------------|-------------|-----|--------|-------|-----|-----------|-----|-------|------|------|-----------|------|
|             | sbversion   |     | C      | )     | sbb | usyerror  | sbl | busy  | sb   | read | onadd     | r    |
|             | 3           |     | 6      | 5     |     | 1         |     | 1     |      |      | 1         |      |
| 19          | 17          |     | 1      | 16    |     | 15        | ,   | 14    | 4    | 12   | 11        | 5    |
| sb          | sbaccess sb |     | autoir | ncrem | ent | sbreado   | nda | ta    | ber  | ror  | r sbasize |      |
|             | 3           |     |        | 1     |     | 1         |     |       | 3    |      | -         | 7    |
|             | 4           |     |        | 3     |     | 2         |     | 1     | L    |      | 0         |      |
| sbaccess128 |             | 128 | sbac   | cess6 | 4 : | sbaccess3 | 32  | sbacc | ess1 | .6   | sbacc     | ess8 |
| 1           |             |     |        | 1     |     | 1         |     | ]     |      |      | 1         | _    |

| Field        | Description                                          | Access | Reset |
|--------------|------------------------------------------------------|--------|-------|
| sbversion    | 0: The System Bus interface conforms to mainline     | R      | 1     |
|              | drafts of this spec older than 1 January, 2018.      |        |       |
|              | 1: The System Bus interface conforms to this ver-    |        |       |
|              | sion of the spec.                                    |        |       |
|              | Other values are reserved for future versions.       |        |       |
| sbbusyerror  | Set when the debugger attempts to read data          | R/W1C  | 0     |
|              | while a read is in progress, or when the debug-      |        |       |
|              | ger initiates a new access while one is already in   |        |       |
|              | progress (while sbbusy is set). It remains set until |        |       |
|              | it's explicitly cleared by the debugger.             |        |       |
|              | While this field is non-zero, no more system bus     |        |       |
|              | accesses can be initiated by the Debug Module.       |        |       |
| sbbusy       | When 1, indicates the system bus master is busy.     | R      | 0     |
|              | (Whether the system bus itself is busy is related,   |        |       |
|              | but not the same thing.) This bit goes high im-      |        |       |
|              | mediately when a read or write is requested for      |        |       |
|              | any reason, and does not go low until the access     |        |       |
|              | is fully completed.                                  |        |       |
|              | Writes to sbcs while sbbusy is high result in un-    |        |       |
|              | defined behavior. A debugger must not write to       |        |       |
|              | sbcs until it reads sbbusy as 0.                     |        |       |
| sbreadonaddr | When 1, every write to sbaddress0 automatically      | R/W    | 0     |
|              | triggers a system bus read at the new address.       |        |       |
|              | 0 1                                                  |        |       |

Continued on next page

| Field           | Description                                           | Access       | Reset  |
|-----------------|-------------------------------------------------------|--------------|--------|
| sbaccess        | Select the access size to use for system bus ac-      | R/W          | 2      |
|                 | cesses.                                               |              |        |
|                 | 0: 8-bit                                              |              |        |
|                 | 1: 16-bit                                             |              |        |
|                 | 2: 32-bit                                             |              |        |
|                 | 3: 64-bit                                             |              |        |
|                 | 4: 128-bit                                            |              |        |
|                 | If sbaccess has an unsupported value when the         |              |        |
|                 | DM starts a bus access, the access is not per-        |              |        |
|                 | formed and sberror is set to 3.                       |              |        |
| sbautoincrement | When 1, sbaddress is incremented by the access        | R/W          | 0      |
|                 | size (in bytes) selected in sbaccess after every sys- |              |        |
|                 | tem bus access.                                       |              |        |
| sbreadondata    | When 1, every read from sbdata0 automatically         | R/W          | 0      |
|                 | triggers a system bus read at the (possibly auto-     |              |        |
|                 | incremented) address.                                 |              |        |
| sberror         | When the Debug Module's system bus master             | R/W1C        | 0      |
|                 | causes a bus error, this field gets set. The bits     |              |        |
|                 | in this field remain set until they are cleared by    |              |        |
|                 | writing 1 to them. While this field is non-zero, no   |              |        |
|                 | more system bus accesses can be initiated by the      |              |        |
|                 | Debug Module.                                         |              |        |
|                 | An implementation may report "Other" (7) for          |              |        |
|                 | any error condition.                                  |              |        |
|                 | 0: There was no bus error.                            |              |        |
|                 | 1: There was a timeout.                               |              |        |
|                 | 2: A bad address was accessed.                        |              |        |
|                 | 3: There was an alignment error.                      |              |        |
|                 | 4: An access of unsupported size was requested.       |              |        |
|                 | 7: Other.                                             | D            | D .    |
| sbasize         | Width of system bus addresses in bits. (0 indi-       | R            | Preset |
| 100             | cates there is no bus access support.)                | D            | D /    |
| sbaccess128     | 1 when 128-bit system bus accesses are supported.     | R            | Preset |
| sbaccess64      | 1 when 64-bit system bus accesses are supported.      | R            | Preset |
| sbaccess32      | 1 when 32-bit system bus accesses are supported.      | R            | Preset |
| sbaccess16      | 1 when 16-bit system bus accesses are supported.      | R            | Preset |
| sbaccess8       | 1 when 8-bit system bus accesses are supported.       | $\mathbb{R}$ | Preset |

# 3.11.20 System Bus Address 31:0 (sbaddress0, at 0x39)

If sbasize is 0, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don't do anything

else.

If sberror is 0, sbbusyerror is 0, and sbreadonaddr is set then writes to this register start the following:

- 1. Set sbbusy.
- 2. Perform a bus read from the new value of sbaddress.
- 3. If the read succeeded and shautoincrement is set, increment shaddress.
- 4. Clear sbbusy.



| Field   | Description                                   | Access | Reset |
|---------|-----------------------------------------------|--------|-------|
| address | Accesses bits 31:0 of the physical address in | R/W    | 0     |
|         | sbaddress.                                    |        |       |

#### 3.11.21 System Bus Address 63:32 (sbaddress1, at 0x3a)

If sbasize is less than 33, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don't do anything else.



| Field   | Description                                         | Access | Reset |
|---------|-----------------------------------------------------|--------|-------|
| address | Accesses bits 63:32 of the physical address in      | R/W    | 0     |
|         | sbaddress (if the system address bus is that wide). |        |       |

#### 3.11.22 System Bus Address 95:64 (sbaddress2, at 0x3b)

If sbasize is less than 65, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don't do anything else.



| Field   | Description                                         | Access | Reset |
|---------|-----------------------------------------------------|--------|-------|
| address | Accesses bits 95:64 of the physical address in      | R/W    | 0     |
|         | sbaddress (if the system address bus is that wide). |        |       |

#### 3.11.23 System Bus Data 31:0 (sbdata0, at 0x3c)

If all of the sbaccess bits in sbcs are 0, then this register is not present.

Any successful system bus read updates sbdata. If the width of the read access is less than the width of sbdata, the contents of the remaining high bits may take on any value.

If sberror or sbbusyerror both aren't 0 then accesses do nothing.

If the bus master is busy then accesses set sbbusyerror, and don't do anything else.

Writes to this register start the following:

- 1. Set sbbusy.
- 2. Perform a bus write of the new value of sbdata to sbaddress.
- 3. If the write succeeded and sbautoincrement is set, increment sbaddress.
- 4. Clear sbbusy.

Reads from this register start the following:

- 1. "Return" the data.
- 2. Set sbbusy.

- 3. If sbautoincrement is set, increment sbaddress.
- 4. If sbreadondata is set, perform another system bus read.
- 5. Clear sbbusy.

Only sbdata0 has this behavior. The other sbdata registers have no side effects. On systems that have buses wider than 32 bits, a debugger should access sbdata0 after accessing the other sbdata registers.



| Field | Description                   | Access | Reset |
|-------|-------------------------------|--------|-------|
| data  | Accesses bits 31:0 of sbdata. | R/W    | 0     |

#### 3.11.24 System Bus Data 63:32 (sbdata1, at 0x3d)

If sbaccess64 and sbaccess128 are 0, then this register is not present.

If the bus master is busy then accesses set sbbusyerror, and don't do anything else.



| Field | Description                                      | Access | Reset |
|-------|--------------------------------------------------|--------|-------|
| data  | Accesses bits 63:32 of sbdata (if the system bus | R/W    | 0     |
|       | is that wide).                                   |        |       |

#### 3.11.25 System Bus Data 95:64 (sbdata2, at 0x3e)

This register only exists if sbaccess128 is 1.

If the bus master is busy then accesses set sbbusyerror, and don't do anything else.



| Field | Description                                      | Access | Reset |
|-------|--------------------------------------------------|--------|-------|
| data  | Accesses bits 95:64 of sbdata (if the system bus | R/W    | 0     |
|       | is that wide).                                   |        |       |

# 3.11.26 System Bus Data 127:96 (sbdata3, at 0x3f)

This register only exists if sbaccess128 is 1.

If the bus master is busy then accesses set sbbusyerror, and don't do anything else.



| Field | Description                                       | Access | Reset |
|-------|---------------------------------------------------|--------|-------|
| data  | Accesses bits 127:96 of sbdata (if the system bus | R/W    | 0     |
|       | is that wide).                                    |        |       |

# Chapter 4

# RISC-V Debug

Modifications to the RISC-V core to support debug are kept to a minimum. There is a special execution mode (Debug Mode) and a few extra CSRs. The DM takes care of the rest.

### 4.1 Debug Mode

Debug Mode is a special processor mode used only when a hart is halted for external debugging. How Debug Mode is implemented is not specified here.

When executing code from the Program Buffer, the hart stays in Debug Mode and the following apply:

1. All operations are executed at machine mode privilege level, except that mprv in mstatus may be ignored according to mprven.

In general, the debugger is expected to be able to simulate all the effects of mprv. The exception is the case of Sv32 systems, which need mprv functionality in order to access 34-bit physical addresses. Other systems are likely to tie mprven to 0.

- 2. All interrupts (including NMI) are masked.
- 3. Exceptions don't update any registers. That includes cause, epc, tval, dpc, and mstatus. They do end execution of the Program Buffer.
- 4. No action is taken if a trigger matches.
- 5. Trace is disabled.
- 6. Counters may be stopped, depending on stopcount in dcsr.
- 7. Timers may be stopped, depending on stoptime in dcsr.
- 8. The wfi instruction acts as a nop.

9. Almost all instructions that change the privilege level have undefined behavior. This includes ecall, mret, hret, sret, and uret. (To change the privilege level, the debugger can write prv in dcsr). The only exception is ebreak. When that is executed in Debug Mode, it halts the hart again but without updating dpc or dcsr.

# 4.2 Load-Reserved/Store-Conditional Instructions

The reservation registered by an lr instruction on a memory address may be lost when entering Debug Mode or while in Debug Mode. This means that there may be no forward progress if Debug Mode is entered between lr and sc pairs.

This is a behavior that debug users must be aware of. If they have a breakpoint set between a lr and sc pair, or are stepping through such code, the sc may never succeed. Fortunately in general use there will be very few instructions in such a sequence, and anybody debugging it will quickly notice that the reservation is not occurring. The solution in that case is to set a breakpoint on the first instruction after the sc and run to it.

# 4.3 Single Step

A debugger can cause a halted hart to execute a single instruction and then re-enter Debug Mode by setting step before setting resumereq.

If executing or fetching that instruction causes an exception, Debug Mode is re-entered immediately after the PC is changed to the exception handler and the appropriate tval and cause registers are updated.

If executing or fetching the instruction causes a trigger to fire, Debug Mode is re-entered immediately after that trigger has fired. In that case cause is set to 2 (trigger) instead of 4 (single step). Whether the instruction is executed or not depends on the specific configuration of the trigger.

If the instruction that is executed causes the PC to change to an address where an instruction fetch causes an exception, that exception does not occurr until the next time the hart is resumed. Similarly, a trigger at the new address does not fire until the hart actually attempts to execute that instruction.

#### 4.4 Reset

If the halt signal (driven by the hart's halt request bit in the Debug Module) is asserted when a hart comes out of reset, the hart must enter Debug Mode before executing any instructions, but after performing any initialization that would usually happen before the first instruction is executed.

#### 4.5 dret Instruction

To return from Debug Mode, a new instruction is defined: dret. It has an encoding of 0x7b200073. On harts which support this instruction, executing dret in Debug Mode changes pc to the value stored in dpc. The current privilege level is changed to that specified by prv in dcsr. The hart is no longer in debug mode.

Executing dret outside of Debug Mode causes an illegal instruction exception.

It is not necessary for the debugger to know whether an implementation supports dret, as the Debug Module will ensure that it is executed if necessary. It is defined in this specification only to reserve the opcode and allow for reusable Debug Module implementations.

# 4.6 Core Debug Registers

The supported Core Debug Registers must be implemented for each hart that can be debugged. They are CSRs, accessible using the RISC-V csr opcodes and optionally also using abstract debug commands.

These registers are only accessible from Debug Mode.

Table 4.1: Core Debug Registers
lress | Name | | F

| Address | Name                     | Page |
|---------|--------------------------|------|
| 0x7b0   | Debug Control and Status | 39   |
| 0x7b1   | Debug PC                 | 41   |
| 0x7b2   | Debug Scratch Register 0 |      |
| 0x7b3   | Debug Scratch Register 1 |      |

#### 4.6.1 Debug Control and Status (dcsr, at 0x7b0)

cause priorities are assigned such that the least predictable events have the highest priority.

| 31    | 28    | 27 1     | 6 | 1     | 5   |   | 14 | 13    | 3   |    | 12    |    | 11   | 10        |
|-------|-------|----------|---|-------|-----|---|----|-------|-----|----|-------|----|------|-----------|
| xdebı | ıgver | 0        |   | ebre  | akm | า | 0  | ebrea | aks | eb | reaku | st | epie | stopcount |
| 4     | Į.    | 12       |   |       | l   |   | 1  | 1     |     |    | 1     |    | 1    | 1         |
|       |       | 9        | 8 | 8     | 3   | 5 |    | 4     | 3   |    | 2     | 1  | 0    |           |
|       |       | stoptime |   | cause | : ( | 0 | mp | rven  | nm  | ip | step  | р  | rv   |           |
|       |       | 1        |   | 3     |     | 1 |    | 1     | 1   |    | 1     |    | 2    |           |

| Field     | Description                                         | Access | Reset  |
|-----------|-----------------------------------------------------|--------|--------|
| xdebugver | 0: There is no external debug support.              | R      | Preset |
|           | 4: External debug support exists as it is described |        |        |
|           | in this document.                                   |        |        |
|           | 15: There is external debug support, but it does    |        |        |
|           | not conform to any available version of this spec.  |        |        |
| ebreakm   | When 1, ebreak instructions in Machine Mode         | R/W    | 0      |
|           | enter Debug Mode.                                   |        |        |
| ebreaks   | When 1, ebreak instructions in Supervisor Mode      | R/W    | 0      |
|           | enter Debug Mode.                                   |        |        |
| ebreaku   | When 1, ebreak instructions in User/Application     | R/W    | 0      |
|           | Mode enter Debug Mode.                              |        |        |
| stepie    | 0: Interrupts are disabled during single stepping.  | R/W    | 0      |
|           | 1: Interrupts are enabled during single stepping.   |        |        |
|           | Implementations may hard wire this bit to 0. The    |        |        |
|           | debugger must read back the value it writes to      |        |        |
|           | check whether the feature is supported. If not      |        |        |
|           | supported, interrupt behavior can be emulated by    |        |        |
|           | the debugger.                                       |        |        |
| stopcount | 0: Increment counters as usual.                     | R/W    | Preset |
|           | 1: Don't increment any counters while in Debug      |        |        |
|           | Mode or on ebreak instructions that cause en-       |        |        |
|           | try into Debug Mode. These counters include the     |        |        |
|           | cycle and instret CSRs. This is preferred for       |        |        |
|           | most debugging scenarios.                           |        |        |
|           | An implementation may choose not to support         |        |        |
|           | writing to this bit. The debugger must read back    |        |        |
|           | the value it writes to check whether the feature is |        |        |
|           | supported.                                          |        |        |
| stoptime  | 0: Increment timers as usual.                       | R/W    | Preset |
|           | 1: Don't increment any hart-local timers while in   |        |        |
|           | Debug Mode.                                         |        |        |
|           | An implementation may choose not to support         |        |        |
|           | writing to this bit. The debugger must read back    |        |        |
|           | the value it writes to check whether the feature is |        |        |
|           | supported.                                          |        |        |

Continued on next page

| Field  | Description                                          | Access | Reset |
|--------|------------------------------------------------------|--------|-------|
| cause  | Explains why Debug Mode was entered.                 | R      | 0     |
|        | When there are multiple reasons to enter Debug       |        |       |
|        | Mode in a single cycle, hardware should set cause    |        |       |
|        | to the cause with the highest priority.              |        |       |
|        | 1: An ebreak instruction was executed. (priority     |        |       |
|        | 3)                                                   |        |       |
|        | 2: The Trigger Module caused a breakpoint ex-        |        |       |
|        | ception. (priority 4)                                |        |       |
|        | 3: The debugger requested entry to Debug Mode.       |        |       |
|        | (priority 2)                                         |        |       |
|        | 4: The hart single stepped because step was set.     |        |       |
|        | (priority 1)                                         |        |       |
|        | Other values are reserved for future use.            |        |       |
| mprven | When 1, mprv in mstatus takes effect during de-      | R/W    | 0     |
|        | bug mode. When 0, it is ignored during debug         |        |       |
|        | mode. Implementing this bit is optional. If not      |        |       |
|        | implemented it should be tied to 0.                  |        |       |
| nmip   | When set, there is a Non-Maskable-Interrupt          | R      | 0     |
|        | (NMI) pending for the hart.                          |        |       |
|        | Since an NMI can indicate a hardware error condi-    |        |       |
|        | tion, reliable debugging may no longer be possible   |        |       |
|        | once this bit becomes set. This is implementation-   |        |       |
|        | dependent.                                           |        |       |
| step   | When set and not in Debug Mode, the hart will        | R/W    | 0     |
|        | only execute a single instruction and then enter     |        |       |
|        | Debug Mode. If the instruction does not com-         |        |       |
|        | plete due to an exception, the hart will immedi-     |        |       |
|        | ately enter Debug Mode before executing the trap     |        |       |
|        | handler, with appropriate exception registers set.   | - /    |       |
| prv    | Contains the privilege level the hart was operating  | R/W    | 3     |
|        | in when Debug Mode was entered. The encoding         |        |       |
|        | is described in Table 4.5. A debugger can change     |        |       |
|        | this value to change the hart's privilege level when |        |       |
|        | exiting Debug Mode.                                  |        |       |
|        | Not all privilege levels are supported on all harts. |        |       |
|        | If the encoding written is not supported or the      |        |       |
|        | debugger is not allowed to change to it, the hart    |        |       |
|        | may change to any supported privilege level.         |        |       |

# 4.6.2 Debug PC (dpc, at 0x7b1)

Upon entry to debug mode, dpc is updated with the virtual address of the next instruction to be executed. The behavior is described in more detail in Table 4.3.

| Cause          | Virtual Address in DPC                                     |
|----------------|------------------------------------------------------------|
| ebreak         | Address of the ebreak instruction                          |
| single step    | Address of the instruction that would be executed          |
|                | next if no debugging was going on. Ie. $pc + 4$ for        |
|                | 32-bit instructions that don't change program flow,        |
|                | the destination PC on taken jumps/branches, etc.           |
| trigger module | If timing is 0, the address of the instruction which       |
|                | caused the trigger to fire. If timing is 1, the address of |
|                | the next instruction to be executed at the time that       |
|                | debug mode was entered.                                    |
| halt request   | Address of the next instruction to be executed at the      |
|                | time that debug mode was entered                           |

Table 4.3: Virtual address in DPC upon Debug Mode Entry

When resuming, the hart's PC is updated to the virtual address stored in dpc. A debugger may write dpc to change where the hart resumes.

|   | MXLEN-1 | 0 |
|---|---------|---|
|   | dpc     |   |
| _ | MXLEN   |   |

### 4.6.3 Debug Scratch Register 0 (dscratch0, at 0x7b2)

Optional scratch register that can be used by implementations that need it. A debugger must not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this register internally).

#### 4.6.4 Debug Scratch Register 1 (dscratch1, at 0x7b3)

Optional scratch register that can be used by implementations that need it. A debugger must not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this register internally).

# 4.7 Virtual Debug Registers

Virtual debug registers are a requirement on the debugger SW/interface, not on the Core designer.

Users of the debugger shouldn't need to know about the core debug registers, but may want to change things affected by them. A virtual register is one that doesn't exist directly in the hardware, but that the debugger exposes as if it does.

Table 4.4: Virtual Core Debug Registers

| Address | Name            | Page |
|---------|-----------------|------|
| virtual | Privilege Level | 43   |

Table 4.5: Privilege Level Encoding

| Encoding | Privilege Level  |
|----------|------------------|
| 0        | User/Application |
| 1        | Supervisor       |
| 3        | Machine          |

# 4.7.1 Privilege Level (priv, at virtual)

User can read this register to inspect the privilege level that the hart was running in when the hart halted. User can write this register to change the privilege level that the hart will run in when it resumes.

This register contains prv from dcsr, but in a place that the user is expected to access. The user should not access dcsr directly, because doing so might interfere with the debugger.

| Field | Description                                         | Access | Reset |
|-------|-----------------------------------------------------|--------|-------|
| prv   | Contains the privilege level the hart was operating | R/W    | 0     |
|       | in when Debug Mode was entered. The encoding        |        |       |
|       | is described in Table 4.5, and matches the priv-    |        |       |
|       | ilege level encoding from the RISC-V Privileged     |        |       |
|       | ISA Specification. A user can write this value to   |        |       |
|       | change the hart's privilege level when exiting De-  |        |       |
|       | bug Mode.                                           |        |       |

# Chapter 5

# Trigger Module

Triggers can cause a breakpoint exception, entry into Debug Mode, or a trace action without having to execute a special instruction. This makes them invaluable when debugging code from ROM. They can trigger on execution of instructions at a given memory address, or on the address/data in loads/stores. These are all features that can be useful without having the Debug Module present, so the Trigger Module is broken out as a separate piece that can be implemented separately.

Each trigger may support a variety of features. A debugger can build a list of all triggers and their features as follows:

- 1. Write 0 to tselect.
- 2. Read back tselect and check that it contains the written value. If not, exit the loop.
- 3. Read tinfo.
- 4. If that caused an exception, the debugger must read tdata1 to discover the type. (If type is 0, this trigger doesn't exist. Exit the loop.)
- 5. If info is 1, this trigger doesn't exist. Exit the loop.
- 6. Otherwise, the selected trigger supports the types discovered in info.
- 7. Repeat, incrementing the value in tselect.

There are two ways to check whether a given trigger is the last one to support these implementations:

- 1. When no hardware triggers are implemented at all, all related registers return 0. The algorithm above terminates when checking type.
- 2. When 2 triggers are implemented, tselect is just a single bit that selects one of the two. When the debugger writes 2, it reads back as 0 which terminates the enumeration.

# 5.1 Trigger Registers

These registers are CSRs, accessible using the RISC-V csr opcodes and optionally also using abstract debug commands.

Most trigger functionality is optional. All tdata registers follow write-any-read-legal semantics. If a debugger writes an unsupported configuration, the register will read back a value that is supported (which may simply be a disabled trigger). This means that a debugger must always read back values it writes to tdata registers, unless it knows already what is supported. Writes to one tdata register may not modify the contents of other tdata registers, nor the configuration of any trigger besides the one that is currently selected.

The trigger registers are only accessible in machine and Debug Mode to prevent untrusted user code from causing entry into Debug Mode without the OS's permission.

Table 5.1: action encoding

| Table 9.1. action encoding                             |
|--------------------------------------------------------|
| Description                                            |
| Raise a breakpoint exception. (Used when software      |
| wants to use the trigger module without an external    |
| debugger attached.)                                    |
| Enter Debug Mode. (Only supported when the             |
| trigger's dmode is 1.)                                 |
| Start tracing.                                         |
| Stop tracing.                                          |
| Emit trace data for this match. If it is a data access |
| match, emit appropriate Load/Store Address/Data. If    |
| it is an instruction execution, emit its PC.           |
| Reserved for future use.                               |
|                                                        |

Table 5.2: Trigger Registers

| 10010 0.2. 1118801 1008150015 |                   |      |  |  |  |
|-------------------------------|-------------------|------|--|--|--|
| Address                       | Name              | Page |  |  |  |
| 0x7a0                         | Trigger Select    | 47   |  |  |  |
| 0x7a1                         | Trigger Data 1    | 47   |  |  |  |
| 0x7a1                         | Match Control     | 49   |  |  |  |
| 0x7a1                         | Instruction Count | 52   |  |  |  |
| 0x7a1                         | Interrupt Trigger | 53   |  |  |  |
| 0x7a1                         | Exception Trigger | 54   |  |  |  |
| 0x7a2                         | Trigger Data 2    | 48   |  |  |  |
| 0x7a3                         | Trigger Data 3    | 48   |  |  |  |
| 0x7a4                         | Trigger Info      | 48   |  |  |  |

#### 5.1.1 Trigger Select (tselect, at 0x7a0)

This register determines which trigger is accessible through the other trigger registers. The set of accessible triggers must start at 0, and be contiguous.

Writes of values greater than or equal to the number of supported triggers may result in a different value in this register than what was written. To verify that what they wrote is a valid index, debuggers can read back the value and check that tselect holds what they wrote.

Since triggers can be used both by Debug Mode and M Mode, the debugger must restore this register if it modifies it.



#### 5.1.2 Trigger Data 1 (tdata1, at 0x7a1)

| MXLEN-1 | MXLEN-4 | MXLEN-5 | MXLEN-6   | 0 |
|---------|---------|---------|-----------|---|
| ty      | pe      | dmode   | data      |   |
|         | 1       | 1       | MXLEN - 5 |   |

| Field | Description                                         | Access | Reset  |
|-------|-----------------------------------------------------|--------|--------|
| type  | 0: There is no trigger at this tselect.             | R/W    | Preset |
|       | 1: The trigger is a legacy SiFive address match     |        |        |
|       | trigger. These should not be implemented and        |        |        |
|       | aren't further documented here.                     |        |        |
|       | 2: The trigger is an address/data match trig-       |        |        |
|       | ger. The remaining bits in this register act as     |        |        |
|       | described in mcontrol.                              |        |        |
|       | 3: The trigger is an instruction count trigger. The |        |        |
|       | remaining bits in this register act as described in |        |        |
|       | icount.                                             |        |        |
|       | 4: The trigger is an interrupt trigger. The re-     |        |        |
|       | maining bits in this register act as described in   |        |        |
|       | itrigger.                                           |        |        |
|       | 5: The trigger is an exception trigger. The re-     |        |        |
|       | maining bits in this register act as described in   |        |        |
|       | etrigger.                                           |        |        |
|       | 15: This trigger exists (so enumeration shouldn't   |        |        |
|       | terminate), but is not currently available.         |        |        |
|       | Other values are reserved for future use.           |        |        |

Continued on next page

| Field | Description                                     | Access | Reset  |
|-------|-------------------------------------------------|--------|--------|
| dmode | 0: Both Debug and M Mode can write the tdata    | R/W    | 0      |
|       | registers at the selected tselect.              |        |        |
|       | 1: Only Debug Mode can write the tdata regis-   |        |        |
|       | ters at the selected tselect. Writes from other |        |        |
|       | modes are ignored.                              |        |        |
|       | This bit is only writable from Debug Mode.      |        |        |
| data  | Trigger-specific data.                          | R/W    | Preset |

# 5.1.3 Trigger Data 2 (tdata2, at 0x7a2)

Trigger-specific data.



# 5.1.4 Trigger Data 3 (tdata3, at 0x7a3)

Trigger-specific data.



# 5.1.5 Trigger Info (tinfo, at 0x7a4)

This entire register is read-only.

| XLEN-1    | 16 | 15 |      | 0 |
|-----------|----|----|------|---|
| 0         |    |    | info |   |
| XLEN - 16 |    |    | 16   |   |

| Field | Description                                           | Access | Reset  |
|-------|-------------------------------------------------------|--------|--------|
| info  | One bit for each possible type enumerated in          | R      | Preset |
|       | tdata1. Bit N corresponds to type N. If the bit is    |        |        |
|       | set, then that type is supported by the currently     |        |        |
|       | selected trigger.                                     |        |        |
|       | If the currently selected trigger doesn't exist, this |        |        |
|       | field contains 1.                                     |        |        |
|       | If type is not writable, this register may be unim-   |        |        |
|       | plemented, in which case reading it causes an il-     |        |        |
|       | legal instruction exception. In this case the de-     |        |        |
|       | bugger can read the only supported type from          |        |        |
|       | tdata1.                                               |        |        |

#### 5.1.6 Match Control (mcontrol, at 0x7a1)

This register is accessible as tdata1 when type is 2.

Address and data trigger implementation are heavily dependent on how the processor core is implemented. To accommodate various implementations, execute, load, and store address/data triggers may fire at whatever point in time is most convenient for the implementation. The debugger may request specific timings as described in timing. Table 5.5 suggests timings for the best user experience.

Table 5.5: Suggested Breakpoint Timings

| 00                          | 1                        |
|-----------------------------|--------------------------|
| Match Type                  | Suggested Trigger Timing |
| Execute Address             | Before                   |
| Execute Instruction         | Before                   |
| Execute Address+Instruction | Before                   |
| Load Address                | Before                   |
| Load Data                   | After                    |
| Load Address+Data           | After                    |
| Store Address               | Before                   |
| Store Data                  | Before                   |
| Store Address+Data          | Before                   |
|                             |                          |

This trigger type may be limited to address comparisons (select is always 0) only. If that is the case, then tdata2 must be able to hold all valid virtual addresses but it need not be capable of holding other values.

| MXLEN-1 | MXLEN-4 | MXLEN-5 | MXLEN-6 | MXLEN-11 | MXLEN-12   | 21 | 20  | 19     |  |
|---------|---------|---------|---------|----------|------------|----|-----|--------|--|
| ty      | pe      | dmode   | mas     | kmax     | 0          |    | hit | select |  |
| 4       | 1       | 1       | 6       |          | MXLEN - 32 |    | 1   | 1      |  |

| 18     | 17  | 12  | 11    | 10  | 7   | 6 | 5 | 4 | 3 | 2       | 1     | 0    |
|--------|-----|-----|-------|-----|-----|---|---|---|---|---------|-------|------|
| timing | act | ion | chain | mat | tch | m | 0 | S | u | execute | store | load |
| 1      |     |     | 1     | 4   |     | 1 | 1 | 1 | 1 | 1       | 1     | 1    |

| Field   | Description                                         | Access | Reset  |
|---------|-----------------------------------------------------|--------|--------|
| maskmax | Specifies the largest naturally aligned powers-of-  | R      | Preset |
|         | two (NAPOT) range supported by the hardware         |        |        |
|         | when match is 1. The value is the logarithm base    |        |        |
|         | 2 of the number of bytes in that range. A value     |        |        |
|         | of 0 indicates that only exact value matches are    |        |        |
|         | supported (one byte range). A value of 63 corre-    |        |        |
|         | sponds to the maximum NAPOT range, which is         |        |        |
|         | $2^{63}$ bytes in size.                             |        |        |
| hit     | If this optional bit is implemented, the hardware   | R/W    | 0      |
|         | sets it when this trigger matches. The trigger's    |        |        |
|         | user can set or clear it at any time. The trigger's |        |        |
|         | user can use this bit to determine which trigger(s) |        |        |
|         | matched. If the bit is not implemented, it is al-   |        |        |
|         | ways 0 and writing it has no effect.                |        |        |
| select  | 0: Perform a match on the virtual address.          | R/W    | 0      |
|         | 1: Perform a match on the data value loaded/s-      |        |        |
|         | tored, or the instruction executed.                 |        |        |

Continued on next page

| Field   | Description                                                                                             | Access | Reset |
|---------|---------------------------------------------------------------------------------------------------------|--------|-------|
| timing  | 0: The action for this trigger will be taken just before the instruction that triggered it is executed, | R/W    | 0     |
|         | but after all preceding instructions are are com-                                                       |        |       |
|         | mitted.                                                                                                 |        |       |
|         | 1: The action for this trigger will be taken af-                                                        |        |       |
|         | ter the instruction that triggered it is executed.                                                      |        |       |
|         | It should be taken before the next instruction is executed, but it is better to implement triggers      |        |       |
|         | and not implement that suggestion than to not                                                           |        |       |
|         | implement them at all.                                                                                  |        |       |
|         | Most hardware will only implement one timing or                                                         |        |       |
|         | the other, possibly dependent on select, execute,                                                       |        |       |
|         | load, and store. This bit primarily exists for the                                                      |        |       |
|         | hardware to communicate to the debugger what                                                            |        |       |
|         | will happen. Hardware may implement the bit                                                             |        |       |
|         | fully writable, in which case the debugger has a little more control.                                   |        |       |
|         | Data load triggers with timing of 0 will result in                                                      |        |       |
|         | the same load happening again when the debugger                                                         |        |       |
|         | lets the hart run. For data load triggers, debug-                                                       |        |       |
|         | gers must first attempt to set the breakpoint with                                                      |        |       |
|         | timing of 1.                                                                                            |        |       |
|         | A chain of triggers that don't all have the same                                                        |        |       |
|         | timing value will never fire (unless consecutive in-                                                    |        |       |
| a atian | structions match the appropriate triggers).                                                             | D/W    | 0     |
| action  | The action to take when the trigger fires. The values are explained in Table 5.1.                       | R/W    | 0     |
| chain   | 0: When this trigger matches, the configured ac-                                                        | R/W    | 0     |
|         | tion is taken.                                                                                          | 10, 11 |       |
|         | 1: While this trigger does not match, it prevents                                                       |        |       |
|         | the trigger with the next index from matching.                                                          |        |       |
|         | Because chain affects the next trigger, hardware                                                        |        |       |
|         | must zero it in writes to mcontrol that set dmode                                                       |        |       |
|         | to 0 if the next trigger has dmode of 1. In addition                                                    |        |       |
|         | hardware should ignore writes to mcontrol that set dmode to 1 if the previous trigger has both          |        |       |
|         | dmode of 0 and chain of 1. Debuggers must avoid                                                         |        |       |
|         | the latter case by checking chain on the previous                                                       |        |       |
|         | trigger if they're writing mcontrol.                                                                    |        |       |
|         | Implementations that wish to limit the maximum                                                          |        |       |
|         | length of a trigger chain (eg. to meet timing re-                                                       |        |       |
|         | quirements) may do so by zeroing chain in writes                                                        |        |       |
|         | to mcontrol that would make the chain too long.                                                         |        |       |

Continued on next page

| Field   | Description                                          | Access | Reset |
|---------|------------------------------------------------------|--------|-------|
| match   | 0: Matches when the value equals tdata2.             | R/W    | 0     |
|         | 1: Matches when the top M bits of the value          |        |       |
|         | match the top M bits of tdata2. M is MXLEN-1         |        |       |
|         | minus the index of the least-significant bit con-    |        |       |
|         | taining 0 in tdata2.                                 |        |       |
|         | 2: Matches when the value is greater than (un-       |        |       |
|         | signed) or equal to tdata2.                          |        |       |
|         | 3: Matches when the value is less than (unsigned)    |        |       |
|         | tdata2.                                              |        |       |
|         | 4: Matches when the lower half of the value equals   |        |       |
|         | the lower half of tdata2 after the lower half of the |        |       |
|         | value is ANDed with the upper half of tdata2.        |        |       |
|         | 5: Matches when the upper half of the value          |        |       |
|         | equals the lower half of tdata2 after the upper      |        |       |
|         | half of the value is ANDed with the upper half of    |        |       |
|         | tdata2.                                              |        |       |
|         | Other values are reserved for future use.            |        |       |
| m       | When set, enable this trigger in M mode.             | R/W    | 0     |
| S       | When set, enable this trigger in S mode.             | R/W    | 0     |
| u       | When set, enable this trigger in U mode.             | R/W    | 0     |
| execute | When set, the trigger fires on the virtual address   | R/W    | 0     |
|         | or opcode of an instruction that is executed.        |        |       |
| store   | When set, the trigger fires on the virtual address   | R/W    | 0     |
|         | or data of a store.                                  |        |       |
| load    | When set, the trigger fires on the virtual address   | R/W    | 0     |
|         | or data of a load.                                   |        |       |

#### 5.1.7 Instruction Count (icount, at 0x7a1)

This register is accessible as tdata1 when type is 3.

This trigger type is intended to be used as a single step that's useful both for external debuggers and for software monitor programs. For that case it is not necessary to support count greater than 1. The only two combinations of the mode bits that are useful in those scenarios are  ${\tt u}$  by itself, or  ${\tt m}$ ,  ${\tt s}$ , and  ${\tt u}$  all set.

If the hardware limits count to 1, and changes mode bits instead of decrementing count, this register can be implemented with just 2 bits. One for u, and one for m and s tied together. If only the external debugger or only a software monitor needs to be supported, a single bit is enough.

| MXLEN-1 MXLEN-4 |    | MXLEN-5 | MXLEN-6    | 25 | 24  | 23 1  | 10 | 9 | 8 | 7 | 6 | 5 	 0  |   |
|-----------------|----|---------|------------|----|-----|-------|----|---|---|---|---|--------|---|
| ty              | pe | dmode   | 0          |    | hit | count |    | m | 0 | s | u | action | ] |
|                 | 1  | 1       | MXLEN - 30 |    | 1   | 14    |    | 1 | 1 | 1 | 1 | 6      | _ |

| Field  | Description                                                 | Access | Reset |
|--------|-------------------------------------------------------------|--------|-------|
| hit    | If this optional bit is implemented, the hardware           | R/W    | 0     |
|        | sets it when this trigger matches. The trigger's            |        |       |
|        | user can set or clear it at any time. The trigger's         |        |       |
|        | user can use this bit to determine which trigger(s)         |        |       |
|        | matched. If the bit is not implemented, it is al-           |        |       |
|        | ways 0 and writing it has no effect.                        |        |       |
| count  | When count is decremented to 0, the trigger fires.          | R/W    | 1     |
|        | Instead of changing count from 1 to 0, it is also           |        |       |
|        | acceptable for hardware to clear $m$ , $s$ , and $u$ . This |        |       |
|        | allows count to be hard-wired to 1 if this register         |        |       |
|        | just exists for single step.                                |        |       |
| m      | When set, every instruction completed or excep-             | R/W    | 0     |
|        | tion taken in M mode decrements count by 1.                 |        |       |
| S      | When set, every instruction completed or excep-             | R/W    | 0     |
|        | tion taken in S mode decrements count by 1.                 |        |       |
| u      | When set, every instruction completed or excep-             | R/W    | 0     |
|        | tion taken in U mode decrements count by 1.                 |        |       |
| action | The action to take when the trigger fires. The              | R/W    | 0     |
|        | values are explained in Table 5.1.                          |        |       |

# 5.1.8 Interrupt Trigger (itrigger, at 0x7a1)

This register is accessible as tdata1 when type is 4.

This trigger may fire on any of the interrupts configurable in mie (described in the Privileged Spec). The interrupts to fire on are configured by setting the same bit in tdata2 as would be set in mie to enable the interrupt.

Hardware may only support a subset of interrupts for this trigger. A debugger must read back tdata2 after writing it to confirm the requested functionality is actually supported.

The trigger only fires if the hart takes a trap because of the interrupt. (Eg. it does not fire when a timer interrupt occurs but that interrupt is not enabled in mie.)

When the trigger fires, all CSRs are updated as defined by the Privileged Spec, and the requested action is taken just before the first instruction of the interrupt/exception handler is executed.

| MXLEN-1 | MXLEN-4 | MXLEN-5 | MXLEN-6 | MXLEN-7    | 10 | 9 | 8 | 7 | 6 | 5 0    |
|---------|---------|---------|---------|------------|----|---|---|---|---|--------|
| ty      | ре      | dmode   | hit     | 0          |    | m | 0 | s | u | action |
|         | 1       | 1       | 1       | MYLEN - 16 |    | 1 | 1 | 1 | 1 | 6      |

| Field  | Description                                         | Access | Reset |
|--------|-----------------------------------------------------|--------|-------|
| hit    | If this optional bit is implemented, the hardware   | R/W    | 0     |
|        | sets it when this trigger matches. The trigger's    |        |       |
|        | user can set or clear it at any time. The trigger's |        |       |
|        | user can use this bit to determine which trigger(s) |        |       |
|        | matched. If the bit is not implemented, it is al-   |        |       |
|        | ways 0 and writing it has no effect.                |        |       |
| m      | When set, enable this trigger for interrupts that   | R/W    | 0     |
|        | are taken from M mode.                              |        |       |
| S      | When set, enable this trigger for interrupts that   | R/W    | 0     |
|        | are taken from S mode.                              |        |       |
| u      | When set, enable this trigger for interrupts that   | R/W    | 0     |
|        | are taken from U mode.                              |        |       |
| action | The action to take when the trigger fires. The      | R/W    | 0     |
|        | values are explained in Table 5.1.                  |        |       |

#### 5.1.9 Exception Trigger (etrigger, at 0x7a1)

This register is accessible as tdata1 when type is 5.

This trigger may fire on up to MXLEN of the Exception Codes defined in mcause (described in the Privileged Spec, with Interrupt=0). Those causes are configured by writing the corresponding bit in tdata2. (Eg. to trap on an illegal instruction, the debugger sets bit 2 in tdata2.)

Hardware may support only a subset of exceptions. A debugger must read back tdata2 after writing it to confirm the requested functionality is actually supported.

When the trigger fires, all CSRs are updated as defined by the Privileged Spec, and the requested action is taken just before the first instruction of the interrupt/exception handler is executed.

| MXLEN-1 | MXLEN-4 | MXLEN-5 | MXLEN-6 | MXLEN-7    | 10 | 9 | 8 | 7 | 6 | 5 0    |
|---------|---------|---------|---------|------------|----|---|---|---|---|--------|
| type    |         | dmode   | hit     | 0          |    | m | 0 | S | u | action |
| Δ       |         | 1       | 1       | MXLEN - 16 |    | 1 | 1 | 1 | 1 | 6      |

| Field | Description                                         | Access | Reset |
|-------|-----------------------------------------------------|--------|-------|
| hit   | If this optional bit is implemented, the hardware   | R/W    | 0     |
|       | sets it when this trigger matches. The trigger's    |        |       |
|       | user can set or clear it at any time. The trigger's |        |       |
|       | user can use this bit to determine which trigger(s) |        |       |
|       | matched. If the bit is not implemented, it is al-   |        |       |
|       | ways 0 and writing it has no effect.                |        |       |
| m     | When set, enable this trigger for exceptions that   | R/W    | 0     |
|       | are taken from M mode.                              |        |       |

Continued on next page

| Field  | Description                                       | Access | Reset |
|--------|---------------------------------------------------|--------|-------|
| S      | When set, enable this trigger for exceptions that | R/W    | 0     |
|        | are taken from S mode.                            |        |       |
| u      | When set, enable this trigger for exceptions that | R/W    | 0     |
|        | are taken from U mode.                            |        |       |
| action | The action to take when the trigger fires. The    | R/W    | 0     |
|        | values are explained in Table 5.1.                |        |       |

# Chapter 6

# Debug Transport Module (DTM)

Debug Transport Modules provide access to the DM over one or more transports (eg. JTAG or USB).

There may be multiple DTMs in a single platform. Ideally every component that communicates with the outside world includes a DTM, allowing a platform to be debugged through every transport it supports. For instance a USB component could include a DTM. This would trivially allow any platform to be debugged over USB. All that is required is that the USB module already in use also has access to the Debug Module Interface.

Using multiple DTMs at the same time is not supported. It is left to the user to ensure this does not happen.

This specification defines a JTAG DTM in Section 6.1. Additional DTMs may be added in future versions of this specification.

# 6.1 JTAG Debug Transport Module

This Debug Transport Module is based around a normal JTAG Test Access Port (TAP). The JTAG TAP allows access to arbitrary JTAG registers by first selecting one using the JTAG instruction register (IR), and then accessing it through the JTAG data register (DR).

#### 6.1.1 JTAG Background

JTAG refers to IEEE Std 1149.1-2013. It is a standard that defines test logic that can be included in an integrated circuit to test the interconnections between integrated circuits, test the integrated circuit itself, and observe or modify circuit activity during the components normal operation. This specification uses the latter functionality. The JTAG standard defines a Test Access Port (TAP) that can be used to read and write a few custom registers, which can be used to communicate with debug hardware in a component.

#### 6.1.2 JTAG DTM Registers

JTAG TAPs used as a DTM must have an IR of at least 5 bits. When the TAP is reset, IR must default to 00001, selecting the IDCODE instruction. A full list of JTAG registers along with their encoding is in Table 6.1. If the IR actually has more than 5 bits, then the encodings in Table 6.1 should be extended with 0's in their most significant bits. The only regular JTAG registers a debugger might use are BYPASS and IDCODE, but this specification leaves IR space for many other standard JTAG instructions. Unimplemented instructions must select the BYPASS register.

Table 6.1: JTAG DTM TAP Registers

| Address | Name                          | Description                          | Page |
|---------|-------------------------------|--------------------------------------|------|
| 0x00    | BYPASS                        | JTAG recommends this encoding        |      |
| 0x01    | IDCODE                        | JTAG recommends this encoding        |      |
| 0x10    | DTM Control and Status        | For Debugging                        | 59   |
| 0x11    | Debug Module Interface Access | For Debugging                        | 60   |
| 0x12    | Reserved (BYPASS)             | Reserved for future RISC-V debugging |      |
| 0x13    | Reserved (BYPASS)             | Reserved for future RISC-V debugging |      |
| 0x14    | Reserved (BYPASS)             | Reserved for future RISC-V debugging |      |
| 0x15    | Reserved (BYPASS)             | Reserved for future RISC-V standards |      |
| 0x16    | Reserved (BYPASS)             | Reserved for future RISC-V standards |      |
| 0x17    | Reserved (BYPASS)             | Reserved for future RISC-V standards |      |
| 0x1f    | BYPASS                        | JTAG requires this encoding          |      |

### 6.1.3 IDCODE (at 0x01)

This register is selected (in IR) when the TAP state machine is reset. Its definition is exactly as defined in IEEE Std 1149.1-2013.

This entire register is read-only.

| 31   | 28  | 27      | 12  | 11   | 1    | 0 |
|------|-----|---------|-----|------|------|---|
| Vers | ion | PartNum | ber | Manı | ıfld | 1 |
| 4    |     | 16      |     | 11   |      | 1 |

| Field      | Description                                         | Access | Reset  |
|------------|-----------------------------------------------------|--------|--------|
| Version    | Identifies the release version of this part.        | R      | Preset |
| PartNumber | Identifies the designer's part number of this part. | R      | Preset |
| Manufld    | Identifies the designer/manufacturer of this part.  | R      | Preset |
|            | Bits 6:0 must be bits 6:0 of the designer/manufac-  |        |        |
|            | turer's Identification Code as assigned by JEDEC    |        |        |
|            | Standard JEP106. Bits 10:7 contain the modulo-      |        |        |
|            | 16 count of the number of continuation characters   |        |        |
|            | (0x7f) in that same Identification Code.            |        |        |

#### 6.1.4 DTM Control and Status (dtmcs, at 0x10)

The size of this register will remain constant in future versions so that a debugger can always determine the version of the DTM.

| 31 | 18 | 17           | 16       | 15 | 14 | 12 | 11   | 10   | 9   | 4  | 3    | 0    |
|----|----|--------------|----------|----|----|----|------|------|-----|----|------|------|
|    | 0  | dmihardreset | dmireset | 0  | id | le | dmis | stat | abi | ts | vers | sion |
|    | 14 | 1            | 1        | 1  |    | 3  | 2    |      | 6   |    | 4    |      |

| Field        | Description                                         | Access | Reset  |
|--------------|-----------------------------------------------------|--------|--------|
| dmihardreset | Writing 1 to this bit does a hard reset of the DTM, | W1     | 0      |
|              | causing the DTM to forget about any outstand-       |        |        |
|              | ing DMI transactions. In general this should only   |        |        |
|              | be used when the Debugger has reason to expect      |        |        |
|              | that the outstanding DMI transaction will never     |        |        |
|              | complete (e.g. a reset condition caused an inflight |        |        |
|              | DMI transaction to be cancelled).                   |        |        |
| dmireset     | Writing 1 to this bit clears the sticky error state | W1     | 0      |
|              | and allows the DTM to retry or complete the pre-    |        |        |
|              | vious transaction.                                  |        |        |
| idle         | This is a hint to the debugger of the minimum       | R      | Preset |
|              | number of cycles a debugger should spend in Run-    |        |        |
|              | Test/Idle after every DMI scan to avoid a 'busy'    |        |        |
|              | return code (dmistat of 3). A debugger must still   |        |        |
|              | check dmistat when necessary.                       |        |        |
|              | 0: It is not necessary to enter Run-Test/Idle at    |        |        |
|              | all.                                                |        |        |
|              | 1: Enter Run-Test/Idle and leave it immediately.    |        |        |
|              | 2: Enter Run-Test/Idle and stay there for 1 cycle   |        |        |
|              | before leaving.                                     |        |        |
|              | And so on.                                          |        |        |
| dmistat      | 0: No error.                                        | R      | 0      |
|              | 1: Reserved. Interpret the same as 2.               |        |        |
|              | 2: An operation failed (resulted in op of 2).       |        |        |
|              | 3: An operation was attempted while a DMI ac-       |        |        |
|              | cess was still in progress (resulted in op of 3).   |        |        |
| abits        | The size of address in dmi.                         | R      | Preset |
| version      | 0: Version described in spec version 0.11.          | R      | 1      |
|              | 1: Version described in spec version 0.13 (and      |        |        |
|              | later?), which reduces the DMI data width to 32     |        |        |
|              | bits.                                               |        |        |
|              | 15: Version not described in any available version  |        |        |
|              | of this spec.                                       |        |        |

#### 6.1.5 Debug Module Interface Access (dmi, at 0x11)

This register allows access to the Debug Module Interface (DMI).

In Update-DR, the DTM starts the operation specified in op unless the current status reported in op is sticky.

In Capture-DR, the DTM updates data with the result from that operation, updating op if the current op isn't sticky.

See Section B.1 and Table B.1 for examples of how this is used.

The still-in-progress status is sticky to accommodate debuggers that batch together a number of scans, which must all be executed or stop as soon as there's a problem.

For instance a series of scans may write a Debug Program and execute it. If one of the writes fails but the execution continues, then the Debug Program may hang or have other unexpected side effects.

| abits+33 | 34 | 33 | 2    | 1  | 0 |
|----------|----|----|------|----|---|
| address  |    |    | data | ор |   |
| abits    |    |    | 32   | 2  |   |

| Field   | Description                                    | Access | Reset |
|---------|------------------------------------------------|--------|-------|
| address | Address used for DMI access. In Update-DR this | R/W    | 0     |
|         | value is used to access the DM over the DMI.   |        |       |
| data    | The data to send to the DM over the DMI during | R/W    | 0     |
|         | Update-DR, and the data returned from the DM   |        |       |
|         | as a result of the previous operation.         |        |       |

Continued on next page

| Field | Description                                          | Access | Reset |
|-------|------------------------------------------------------|--------|-------|
| ор    | When the debugger writes this field, it has the      | R/W    | 2     |
|       | following meaning:                                   |        |       |
|       | 0: Ignore data and address. (nop)                    |        |       |
|       | Don't send anything over the DMI during              |        |       |
|       | Update-DR. This operation should never result in     |        |       |
|       | a busy or error response. The address and data       |        |       |
|       | reported in the following Capture-DR are unde-       |        |       |
|       | fined.                                               |        |       |
|       | 1: Read from address. (read)                         |        |       |
|       | 2: Write data to address. (write)                    |        |       |
|       | 3: Reserved.                                         |        |       |
|       | When the debugger reads this field, it means the     |        |       |
|       | following:                                           |        |       |
|       | 0: The previous operation completed successfully.    |        |       |
|       | 1: Reserved.                                         |        |       |
|       | 2: A previous operation failed. The data scanned     |        |       |
|       | into dmi in this access will be ignored. This status |        |       |
|       | is sticky and can be cleared by writing dmireset in  |        |       |
|       | dtmcs.                                               |        |       |
|       | This indicates that the DM itself responded with     |        |       |
|       | an error. Note: there are no specified cases in      |        |       |
|       | which the DM would respond with an error, and        |        |       |
|       | DMI is not required to support returning errors.     |        |       |
|       | 3: An operation was attempted while a DMI re-        |        |       |
|       | quest is still in progress. The data scanned into    |        |       |
|       | dmi in this access will be ignored. This status is   |        |       |
|       | sticky and can be cleared by writing dmireset in     |        |       |
|       | dtmcs. If a debugger sees this status, it needs to   |        |       |
|       | give the target more TCK edges between Update-       |        |       |
|       | DR and Capture-DR. The simplest way to do that       |        |       |
|       | is to add extra transitions in Run-Test/Idle.        |        |       |
|       | (The DTM, DM, and/or component may be in             |        |       |
|       | different clock domains, so synchronization may      |        |       |
|       | be required. Some relatively fixed number of TCK     |        |       |
|       | ticks may be needed for the request to reach the     |        |       |
|       | DM, complete, and for the response to be syn-        |        |       |
|       | chronized back into the TCK domain.)                 |        |       |

#### 6.1.6 BYPASS (at 0x1f)

1-bit register that has no effect. It is used when a debugger does not want to communicate with this TAP.

This entire register is read-only.

0

#### 6.1.7 Recommended JTAG Connector

To make it easy to acquire debug hardware, this spec recommends a connector that is compatible with the Atmel AVR JTAG Connector, as described below.

The connector is a .05"-spaced, gold-plated male header with .016" thick hardened copper or beryllium bronze square posts (SAMTEC FTSH-105 or equivalent). Female connectors are compatible  $20\mu m$  gold connectors.

Viewing the male header from above (the pins pointing at your eye), a target's connector looks as it does in Table 6.5. The function of each pin is described in Table 6.6.

Table 6.5: JTAG Connector Diagram

| TCK  | 1 | 2  | GND     |
|------|---|----|---------|
| TDO  | 3 | 4  | VCC     |
| TMS  | 5 | 6  | (SRSTn) |
| (NC) | 7 | 8  | (TRSTn) |
| TDI  | 9 | 10 | GND     |

Target connectors may be shrouded. In that case the key slot should be next to pin 5. Female headers should have a matching key.

Debug adapters should be tagged or marked with their isolation voltage threshold (i.e. unisolated, 250V, etc.).

All debug adapter pins other than GND should be current-limited to 20mA.

|       | Table 6.6: JTAG Connector Pinout |                                                        |  |  |  |  |
|-------|----------------------------------|--------------------------------------------------------|--|--|--|--|
| 1     | TCK                              | JTAG TCK signal, driven by the debug adapter. This     |  |  |  |  |
|       |                                  | pin must be clearly marked in both male and female     |  |  |  |  |
|       |                                  | headers.                                               |  |  |  |  |
| 5     | TMS                              | JTAG TMS signal, driven by debug adapter.              |  |  |  |  |
| 9     | TDI                              | JTAG TDI signal, driven by the debug adapter.          |  |  |  |  |
| 3     | TDO                              | JTAG TDO signal, driven by the target.                 |  |  |  |  |
| 8     | TRSTn                            | Test Reset (optional, only used by some devices. Used  |  |  |  |  |
|       |                                  | to reset the JTAG TAP Controller).                     |  |  |  |  |
| 4     | VCC                              | Reference voltage for logic high. A debug adapter      |  |  |  |  |
|       |                                  | may attempt to draw up to 20mA from this pin to        |  |  |  |  |
|       |                                  | power itself, but a target is not obligated to provide |  |  |  |  |
|       |                                  | that power.                                            |  |  |  |  |
| 2, 10 | GND                              | Target ground.                                         |  |  |  |  |
| 6     | SRSTn                            | Active-low reset signal, driven by the debug adapter.  |  |  |  |  |
|       |                                  | Asserting reset should reset any RISC-V cores as well  |  |  |  |  |
|       |                                  | as any other peripherals on the PCB. It should not     |  |  |  |  |
|       |                                  | reset the debug logic. Although connecting this pin is |  |  |  |  |
|       |                                  | optional, it is recommended as it allows the debugger  |  |  |  |  |
|       |                                  | to hold the target device in a reset state, which may  |  |  |  |  |
|       |                                  | be essential to debug some scenarios. If not           |  |  |  |  |
|       |                                  | implemented in a target, this pin must not be          |  |  |  |  |
|       |                                  | connected.                                             |  |  |  |  |

### Appendix A

## Hardware Implementations

Below are two possible implementations. A designer could choose one, mix and match, or come up with their own design.

#### A.1 Abstract Command Based

Halting happens by stalling the hart execution pipeline.

Muxes on the register file(s) allow for accessing GPRs and CSRs using the Access Register abstract command.

Memory is accessed using the Abstract Access Memory command or through System Bus Access.

#### A.2 Execution Based

This implementation only implements the Access Register abstract command for GPRs on a halted hart, and relies on the Program Buffer for all other operations.

This method uses the hart's existing pipeline and ability to execute from arbitrary memory locations to avoid modifications to a hart's datapath. When the halt request bit is set, the Debug Module raises a special interrupt to the selected hart(s). This interrupt causes each hart to enter Debug Mode and jump to a defined memory region that is serviced by the DM. When taking this exception, pc is saved to dpc and cause is updated in dcsr.

The code in the Debug Module causes the hart to execute a "park loop". In the park loop the hart writes its mhartid to a memory location within the Debug Module to indicate that it is halted. To allow the DM to individually control one out of several halted harts, each hart polls for flags in a DM-controlled memory location to determine whether the debugger wants it to execute the Program Buffer or perform a resume.

To execute an abstract command, the DM first populates some internal words of program buffer

according to command. When transfer is set, the DM populates these words with lw <gpr>, 0x400(zero) or sw 0x400(zero), <gpr>>. 64- and 128-bit accesses use ld/sd and lq/sq respectively. If transfer is not set, the DM populates these instructions as nops. If execute is set, execution continues to the debugger-controlled Program Buffer, otherwise the DM causes a ebreak to execute immediately.

When ebreak is executed (indicating the end of the Program Buffer code) the hart returns to its park loop. If an exception is encountered, the hart jumps to a defined debug exception address within the Debug Module. The code at that address causes the hart to write to an address in the Debug Module which indicates exception. Then the hart jumps back to the park loop. The DM infers from the write that there was an exception, and sets cmderr appropriately.

To resume execution, the debug module sets a flag which causes the hart to execute a dret. When dret is executed, pc is restored from dpc and normal execution resumes at the privilege set by prv.

data0 etc. are mapped into regular memory at an address relative to zero with only a 12-bit imm. The exact address is an implementation detail that a debugger must not rely on. For example, the data registers might be mapped to 0x400.

For additional flexibility, progbuf0, etc. are mapped into regular memory immediately preceding data0, in order to form a contiguous region of memory which can be used for either program execution or data transfer.

### Appendix B

## Debugger Implementation

This section details how an external debugger might use the described debug interface to perform some common operations on RISC-V cores using the JTAG DTM described in Appendix ??. All these examples assume a 32-bit core but it should be easy to adapt the examples to 64- or 128-bit cores.

To keep the examples readable, they all assume that everything succeeds, and that they complete faster than the debugger can perform the next access. This will be the case in a typical JTAG setup. However, the debugger must always check the sticky error status bits after performing a sequence of actions. If it sees any that are set, then it should attempt the same actions again, possibly while adding in some delay, or explicit checks for status bits.

#### B.1 Debug Module Interface Access

To read an arbitrary Debug Module register, select dmi, and scan in a value with op set to 1, and address set to the desired register address. In Update-DR the operation will start, and in Capture-DR its results will be captured into data. If the operation didn't complete in time, op will be 3 and the value in data must be ignored. The busy condition must be cleared by writing dmireset in dtmcs, and then the second scan scan must be performed again. This process must be repeated until op returns 0. In later operations the debugger should allow for more time between Capture-DR and Update-DR.

To write an arbitrary Debug Bus register, select dmi, and scan in a value with op set to 2, and address and data set to the desired register address and data respectively. From then on everything happens exactly as with a read, except that a write is performed instead of the read.

It should almost never be necessary to scan IR, avoiding a big part of the inefficiency in typical JTAG use.

#### B.2 Main Loop

A debugger continuously monitors all harts to see if any of them have spontaneously halted. To do this efficiently when there are many harts, it uses the haltsum registers. Assuming the maximum number of harts exist, first it checks haltsum3. For each bit set there, it writes hartsel, and checks haltsum2. This process repeats through haltsum1 and haltsum0. Depending on how many harts exist, the process should start at one of the lower haltsum registers.

#### B.3 Halting

To halt one or more harts, the debugger selects them, sets haltreq, and then waits for allhalted to indicate the harts are halted before clearing haltreq to 0.

#### B.4 Running

First, the debugger should restore any registers that it has overwritten. Then it can let the selected harts run by setting resumereq. Once allresumeack is set, the debugger knows the hart has resumed, and it can clear resumereq. Note that harts might halt very quickly after resuming (e.g. by hitting a software breakpoint) so the debugger cannot use allhalted/anyhalted to check whether the hart resumed.

#### B.5 Single Step

Using the hardware single step feature is almost the same as regular running. The debugger just sets **step** in **dcsr** before letting the hart run. The hart behaves exactly as in the running case, except that interrupts may be disabled (depending on **stepie**) and it only fetches and executes a single instruction before re-entering Debug Mode.

#### B.6 Accessing Registers

#### B.6.1 Using Abstract Command

Read so using abstract command:

| Op    | Address | Value                                      | Comment                      |
|-------|---------|--------------------------------------------|------------------------------|
| Write | command | $aarsize = 2,  transfer,  0\mathrm{x}1008$ | Read s0                      |
| Read  | data0   | -                                          | Returns value that was in s0 |

Write mstatus using abstract command:

| Op    | Address | Value                                 | Comment       |
|-------|---------|---------------------------------------|---------------|
| Write | data0   | new value                             |               |
| Write | command | aarsize = 2, transfer, write, $0x300$ | Write mstatus |

#### B.6.2 Using Program Buffer

Abstract commands are used to exchange data with GPRs. Using this mechanism, other registers can be accessed by moving their value into/out of GPRs.

Write mstatus using program buffer:

| Op    | Address  | Value         | Comment                               |
|-------|----------|---------------|---------------------------------------|
| Write | progbuf0 | csrw s0,      |                                       |
|       |          | MSTATUS       |                                       |
| Write | progbuf1 | ebreak        |                                       |
| Write | data0    | new value     |                                       |
| Write | command  | aarsize = 2,  | Write s0, then execute program buffer |
|       |          | postexec,     |                                       |
|       |          | transfer,     |                                       |
|       |          | write, 0x1008 |                                       |

Read f1 using program buffer:

| Op    | Address  | Value             | Comment                          |
|-------|----------|-------------------|----------------------------------|
| Write | progbuf0 | fmv.x.s s0, f1    |                                  |
| Write | progbuf1 | ebreak            |                                  |
| Write | command  | postexec          | Execute program buffer           |
| Write | command  | transfer $0x1008$ | read s0                          |
| Read  | data0    | -                 | Returns the value that was in f1 |

#### B.7 Reading Memory

#### B.7.1 Using System Bus Access

With system bus access, addresses are physical system bus addresses.

Read a word from memory using system bus access:

| Op    | Address    | Value                        | Comment                |
|-------|------------|------------------------------|------------------------|
| Write | sbcs       | sbaccess = 2, $sbreadonaddr$ | Setup                  |
| Write | sbaddress0 | address                      |                        |
| Read  | sbdata0    | -                            | Value read from memory |

Read block of memory using system bus access:

| Op    | Address    | Value                          | Comment                                     |
|-------|------------|--------------------------------|---------------------------------------------|
| Write | sbcs       | sbaccess = 2, $sbreadonaddr$ , | Turn on autoread and autoincrement          |
|       |            | sbreadondata, sbautoincrement  |                                             |
| Write | sbaddress0 | address                        | Writing address triggers read and increment |
| Read  | sbdata0    | -                              | Value read from memory                      |
| Read  | sbdata0    | -                              | Next value read from memory                 |
| •••   |            |                                |                                             |
| Write | sbcs       | 0                              | Disable autoread                            |
| Read  | sbdata0    | -                              | Get last value read from memory.            |

#### B.7.2 Using Program Buffer

Through the Program Buffer, the hart performs the memory accesses. Addresses are physical or virtual (depending on mprven and other system configuration).

Read a word from memory using program buffer:

| Op    | Address  | Value                   | Comment                               |
|-------|----------|-------------------------|---------------------------------------|
| Write | progbuf0 | lw s0, 0(s0)            |                                       |
| Write | progbuf1 | ebreak                  |                                       |
| Write | data0    | address                 |                                       |
| Write | command  | write, postexec, 0x1008 | Write s0, then execute program buffer |
| Write | command  | 0x1008                  | Read s0                               |
| Read  | data0    | -                       | Value read from memory                |

Read block of memory using program buffer:

| Op    | Address      | Value                     | Comment                                          |
|-------|--------------|---------------------------|--------------------------------------------------|
| Write | progbuf0     | lw s1, 0(s0)              |                                                  |
| Write | progbuf1     | addi s0, s0, 4            |                                                  |
| Write | progbuf2     | ebreak                    |                                                  |
| Write | data0        | address                   |                                                  |
| Write | command      | write, postexec, $0x1008$ | Write s0, then execute program buffer            |
| Write | command      | postexec, 0x1009          | Read \$1, then execute program buffer            |
| Write | abstractauto | autoexecdata [0]          | Set autoexecdata [0]                             |
| Read  | data0        | -                         | Get value read from memory, then execute program |
|       |              |                           | buffer                                           |
| Read  | data0        | -                         | Get next value read from memory, then execute    |
|       |              |                           | program buffer                                   |
| •••   |              |                           |                                                  |
| Write | abstractauto | 0                         | Clear autoexecdata [0]                           |
| Read  | data0        | -                         | Get last value read from memory.                 |

TODO: Table B.1 shows the scans involved in reading a single word using this method.

Table B.1: Memory Read Timeline

|      | JTAG State | Activity |
|------|------------|----------|
| TODO | TODO       | TODO     |

#### B.7.3 Using Abstract Memory Access

Abstract memory accesses act as if they are performed by the hart, although the actual implementation may differ.

Read a word from memory using abstract memory access:

| Op    | Address | Value                    | Comment                |
|-------|---------|--------------------------|------------------------|
| Write | data1   | address                  |                        |
| Write | command | cmdtype=2, $aamsize = 2$ |                        |
| Read  | data0   | 1                        | Value read from memory |

Read block of memory using abstract memory access:

| Op    | Address      | Value                     | Comment                                         |
|-------|--------------|---------------------------|-------------------------------------------------|
| Write | abstractauto | 1 F                       | Re-execute the command when data0 is accessed   |
| Write | data1        | address                   |                                                 |
| Write | command      | cmdtype=2, $aamsize =2$ , |                                                 |
|       |              | aampostincrement =1       |                                                 |
| Read  | data0        | -   H                     | Read value, and trigger reading of next address |
| •••   |              |                           |                                                 |
| Write | abstractauto | 0 I                       | Disable auto-exec                               |
| Read  | data0        | - (                       | Get last value read from memory.                |

#### B.8 Writing Memory

#### B.8.1 Using System Bus Access

With system bus access, addresses are physical system bus addresses.

Write a word to memory using system bus access:

| C   | p Address    | Value   | Comment |
|-----|--------------|---------|---------|
| Wri | e sbaddress0 | address |         |
| Wri | e sbdata0    | value   |         |

Write block of memory using system bus access:

| Op    | Address    | Value                           | Comment               |
|-------|------------|---------------------------------|-----------------------|
| Write | sbcs       | sbaccess = 2, $sbautoincrement$ | Turn on autoincrement |
| Write | sbaddress0 | address                         |                       |
| Write | sbdata0    | value0                          |                       |
| Write | sbdata0    | value1                          |                       |
| •••   |            |                                 |                       |
| Write | sbdata0    | valueN                          |                       |

#### B.8.2 Using Program Buffer

Through the Program Buffer, the hart performs the memory accesses. Addresses are physical or virtual (depending on mprven and other system configuration).

Write a word to memory using program buffer:

| Op    | Address  | Value                   | Comment                               |
|-------|----------|-------------------------|---------------------------------------|
| Write | progbuf0 | sw s1, 0(s0)            |                                       |
| Write | progbuf1 | ebreak                  |                                       |
| Write | data0    | value                   |                                       |
| Write | command  | write, 0x1008           | Write s0                              |
| Write | data0    | address                 |                                       |
| Write | command  | write, postexec, 0x1009 | Write s1, then execute program buffer |

Write block of memory using program buffer:

| Op    | Address      | Value                   | Comment                               |
|-------|--------------|-------------------------|---------------------------------------|
| Write | progbuf0     | sw s1, 0(s0)            |                                       |
| Write | progbuf1     | addi s0, s0, 4          |                                       |
| Write | progbuf2     | ebreak                  |                                       |
| Write | data0        | address                 |                                       |
| Write | command      | write, 0x1008           | Write s0                              |
| Write | data0        | value0                  |                                       |
| Write | command      | write, postexec, 0x1009 | Write s1, then execute program buffer |
| Write | abstractauto | autoexecdata [0]        | Set autoexecdata [0]                  |
| Write | data0        | value1                  |                                       |
|       |              |                         |                                       |
| Write | data0        | valueN                  |                                       |
| Write | abstractauto | 0                       | Clear autoexecdata [0]                |

#### B.8.3 Using Abstract Memory Access

Abstract memory accesses act as if they are performed by the hart, although the actual implementation may differ.

| TT7 * 1  | 1 /     |             | •      | 1 , ,    |             |         |
|----------|---------|-------------|--------|----------|-------------|---------|
| Write a  | word to | memory      | using  | abstract | memory      | access. |
| 111100 a | WOIG UO | III CIII CI | abilia | abbutact | III CIII CI | access. |

| Op    | Address | Value                          | Comment |
|-------|---------|--------------------------------|---------|
| Write | data1   | address                        |         |
| Write | data0   | value                          |         |
| Write | command | cmdtype=2, aamsize =2, write=1 |         |

Write block of memory using abstract memory access:

| Op    | Address      | Value                     | Comment                                       |
|-------|--------------|---------------------------|-----------------------------------------------|
| Write | data1        | address                   |                                               |
| Write | data0        | value0                    |                                               |
| Write | command      | cmdtype=2, aamsize =2,    |                                               |
|       |              | write=1, aampostincrement |                                               |
|       |              | =1                        |                                               |
| Write | abstractauto | 1                         | Re-execute the command when data0 is accessed |
| Write | data0        | value1                    |                                               |
| Write | data0        | value2                    |                                               |
| •••   | •••          |                           |                                               |
| Write | data0        | valueN                    |                                               |
| Write | abstractauto | 0                         | Disable auto-exec                             |

#### B.9 Triggers

A debugger can use hardware triggers to halt a hart when a certain event occurs. Below are some examples, but as there is no requirement on the number of features of the triggers implemented by a hart, these examples may not be applicable to all implementations. When a debugger wants to set a trigger, it writes the desired configuration, and then reads back to see if that configuration is supported.

Enter Debug Mode just before the instruction at 0x80001234 is executed, to be used as an instruction breakpoint in ROM:

| tdata1 | 0x105c     | action=1, match=0, m=1, s=1, u=1, execute=1 |
|--------|------------|---------------------------------------------|
| tdata2 | 0x80001234 | address                                     |

Enter Debug Mode right after the value at 0x80007f80 is read:

| tdata1 | 0x4159     | timing=1, action=1, match=0, m=1, s=1, u=1, |  |
|--------|------------|---------------------------------------------|--|
|        |            | load=1                                      |  |
| tdata2 | 0x80007f80 | address                                     |  |

Enter Debug Mode right before a write to an address between 0x80007c80 and 0x80007cef (inclusive):

| tdata1 0 | 0x195a     | action=1, chain=1, match=2, m=1, s=1, u=1, |
|----------|------------|--------------------------------------------|
|          |            | store=1                                    |
| tdata2 0 | 0x80007c80 | start address (inclusive)                  |
| tdata1 1 | 0x115a     | action=1, match=2, m=1, s=1, u=1, store=1  |
| tdata2 1 | 0x80007cf0 | end address (exclusive)                    |

Enter Debug Mode right before a write to an address between 0x81230000 and 0x8123ffff (inclusive):

| tdata1 | 0x10da     | action=1, match=1, m=1, s=1, u=1, store=1        |
|--------|------------|--------------------------------------------------|
| tdata2 | 0x81237fff | 16 bits to match exactly, then 0, then all ones. |

Enter Debug Mode right after a read from an address between 0x86753090 and 0x8675309f or between 0x96753090 and 0x9675309f (inclusive):

| tdata1 0 | 0x41a59    | timing=1, action=1, chain=1, match=4, m=1, s=1, |  |
|----------|------------|-------------------------------------------------|--|
|          |            | u=1, load=1                                     |  |
| tdata2 0 | 0xfff03090 | Mask for low half, then match for low half      |  |
| tdata1 1 | 0x412d9    | timing=1, action=1, match=5, m=1, s=1, u=1,     |  |
|          |            | load=1                                          |  |
| tdata2 1 | 0x7fff8675 | Mask for high half, then match for high half    |  |

#### **B.10** Handling Exceptions

Generally the debugger can avoid exceptions by being careful with the programs it writes. Sometimes they are unavoidable though, eg. if the user asks to access memory or a CSR that is not implemented. A typical debugger will not know enough about the platform to know what's going to happen, and must attempt the access to determine the outcome.

When an exception occurs while executing the Program Buffer, cmderr becomes set. The debugger can check this field to see whether a program encountered an exception. If there was an exception, it's left to the debugger to know what must have caused it.

#### B.11 Quick Access

There are a variety of instructions to transfer data between GPRs and the data registers. They are either loads/stores or CSR reads/writes. The specific addresses also vary. This is all specified in hartinfo. The examples here use the pseudo-op transfer dest, src to represent all these options.

Halt the hart for a minimum amount of time to perform a single memory write:

| Op    | Address  | Value             | Comment                       |
|-------|----------|-------------------|-------------------------------|
| Write | progbuf0 | transfer arg2, s0 | Save s0                       |
| Write | progbuf1 | transfer s0, arg0 | Read first argument (address) |
| Write | progbuf2 | transfer arg0, s1 | Save s1                       |
| Write | progbuf3 | transfer s1, arg1 | Read second argument (data)   |
| Write | progbuf4 | sw s1, 0(s0)      |                               |
| Write | progbuf5 | transfer s1, arg0 | Restore s1                    |
| Write | progbuf6 | transfer s0, arg2 | Restore s0                    |
| Write | progbuf7 | ebreak            |                               |
| Write | data0    | address           |                               |
| Write | data1    | data              |                               |
| Write | command  | 0x10000000        | Perform quick access          |

This shows an example of setting the m bit in mcontrol to enable a hardware breakpoint in M mode. Similar quick access instructions could have been used previously to configure the trigger that is being enabled here:

| Op    | Address  | Value                | Comment                    |
|-------|----------|----------------------|----------------------------|
| Write | progbuf0 | transfer arg0, s0    | Save s0                    |
| Write | progbuf1 | li s0, (1 << 6)      | Form the mask for m bit    |
| Write | progbuf2 | csrrs x0, tdata1, s0 | Apply the mask to mcontrol |
| Write | progbuf3 | transfer s0, arg2    | Restore s0                 |
| Write | progbuf4 | ebreak               |                            |
| Write | command  | 0x10000000           | Perform quick access       |

## Index

| aampostincrement, 14                  | count, 53            |
|---------------------------------------|----------------------|
| aamsize, 14                           | 1                    |
| aamvirtual, 14                        | data, 35, 36, 48, 60 |
| aarsize, 12                           | data0, 28            |
| abits, 59                             | dataaccess, 24       |
| abstractauto, 27                      | dataaddr, 24         |
| abstractcs, 25                        | datacount, 26        |
| Access Memory, 13                     | datasize, 24         |
| Access Register, 11                   | dcsr, 39             |
| ackhavereset, 22                      | devtreeaddr0, 27     |
| action, 51, 53–55                     | devtreevalid, 21     |
| address, 31, 33, 34, 60               | dmactive, 23         |
| allhalted, 20                         | dmcontrol, 21        |
| allhavereset, 20                      | dmi, 60              |
| allnonexistent, 20                    | dmihardreset, 59     |
| allresumeack, 20                      | dmireset, 59         |
| allrunning, 20                        | dmistat, 59          |
| allunavail, 20                        | dmode, 48            |
| anyhalted, 21                         | dmstatus, 18         |
| anyhavereset, 20                      | dpc, 41              |
| anynonexistent, 20                    | dscratch0, 42        |
| anyresumeack, 20                      | dscratch1, 42        |
| anyrunning, 20                        | dtmcs, 59            |
| anyunavail, 20                        | 1 1 40               |
| authbusy, 21                          | ebreakm, 40          |
| authdata, 29                          | ebreaks, 40          |
| authenticated, 21                     | ebreaku, 40          |
| autoexecdata, 27                      | etrigger, 54         |
| autoexecutata, 27 autoexecprogbuf, 27 | execute, 52          |
| autoexceptogout, 21                   | field, 2             |
| busy, 25                              | neiu, 2              |
| BYPASS, 61                            | haltreq, 22          |
|                                       | haltsum0, 29         |
| cause, 41                             | haltsum1, 29         |
| chain, 51                             | haltsum2, 30         |
| clrresethaltreq, 23                   | haltsum3, 30         |
| cmderr, 26                            | hartinfo, 23         |
| cmdtype, 12–14, 27                    | hartreset, 22        |
| command, 26                           | hartsel, 21          |
| control, 27                           | hartselhi, 22        |
|                                       | 1101 0001111, 22     |

| hartsello, 22                                | sbaddress1, 33                        |
|----------------------------------------------|---------------------------------------|
| hasel, 22                                    | sbaddress2, 34                        |
| hasresethaltreq, 21                          | sbaddress3, 30                        |
| hawindow, 25                                 | sbasize, 32                           |
| hawindowsel, 24, 25                          | sbautoincrement, 32                   |
| hit, 50, 53, 54                              | sbbusy, 31                            |
|                                              | sbbusyerror, 31                       |
| icount, 52                                   | sbcs, 31                              |
| IDCODE, 58                                   | sbdata0, 34                           |
| idle, 59                                     | sbdata1, 35                           |
| impebreak, 20                                | sbdata2, 35                           |
| info, 49                                     | sbdata3, 36                           |
| itrigger, 53                                 | sberror, 32                           |
| 1 1 70                                       | sbreadonaddr, 31                      |
| load, 52                                     | sbreadondata, 32                      |
| m 59 54                                      | sbversion, 31                         |
| m, 52–54                                     | select, 50                            |
| Manufld, 58                                  | setresethaltreq, 23                   |
| maskmax, 50                                  | shortname, 2                          |
| match, 52                                    | step, 41                              |
| mcontrol, 49                                 | stepie, 40                            |
| mprven, 41                                   | stopcount, 40                         |
| ndmreset, 23                                 | stoptime, 40                          |
| nextdm, 28                                   | store, 52                             |
| nmip, 41                                     | ,                                     |
| nscratch, 24                                 | target-specific, 14                   |
|                                              | tdata1, 47                            |
| op, 61                                       | tdata2, 48                            |
|                                              | tdata3, 48                            |
| PartNumber, 58                               | timing, $51$                          |
| postexec, 12                                 | tinfo, 48                             |
| priv, 43                                     | transfer, 12                          |
| progbuf0, 28                                 | tselect, 47                           |
| progbufsize, 25                              | type, 47                              |
| prv, 41, 43                                  |                                       |
| 0.11.4                                       | u,  52–55                             |
| Quick Access, 12                             | Vergion 58                            |
| nome 10                                      | Version, 58                           |
| regno, 12                                    | version, 21, 59                       |
| resumereq, 22                                | write, 12, 14                         |
| s, 52–55                                     | , , , , , , , , , , , , , , , , , , , |
| sbaccess, 32                                 | xdebugver, 40                         |
| sbaccess128, 32                              |                                       |
| sbaccess16, 32                               |                                       |
| sbaccess32, 32                               |                                       |
| sbaccess64, 32                               |                                       |
| sbaccess8, 32                                |                                       |
| shaddress0, 32                               |                                       |
| 31 KM II |                                       |

## Appendix C

# Change Log

| Revision     | Date       | Author(s)   | Description                                                               |
|--------------|------------|-------------|---------------------------------------------------------------------------|
| 99e01fa      | 2018-06-27 | Tim Newsome | Add target-specific bits to abstract access memory. (#295)                |
| 4a0152d      | 2018-06-19 | Tim Newsome | Only write busy to \Fcmderr if \Fcmderr is 0. (#296)                      |
| b0dc615      | 2018-06-16 | Tim Newsome | Rebuild the PDF.                                                          |
| 90873eb      | 2018-06-16 | Tim Newsome | Fix typo in abstract access memory examples. (#297)                       |
| 5 fe 8 e 0 8 | 2018-06-16 | Tim Newsome | dret is a section, not a subsection of reset (#294)                       |
| abfd8a0      | 2018-06-14 | Tim Newsome | Revert "Only write busy to \Fcmderr if \Fcmderr is $0$ ."                 |
| 7c66968      | 2018-06-14 | Tim Newsome | Only write busy to \Fcmderr if \Fcmderr is 0.                             |
| 0f28f27      | 2018-06-08 | Tim Newsome | Abstract memory (#283)                                                    |
| 7c840dd      | 2018-06-08 | Tim Newsome | Specify an Exception Trigger (#266)                                       |
| 9d0d8af      | 2018-06-06 | Tim Newsome | Clarify what address space these registers are in (#281)                  |
| a7f293d      | 2018-06-03 | Tim Newsome | Add missing dependency to Makefile (#285)                                 |
| 37893aa      | 2018-05-30 | Tim Newsome | Make trigger types writable. (#279)                                       |
| 6730cc0      | 2018-05-29 | Tim Newsome | Explain priority assignment rationale. (#277)                             |
| b6d5d66      | 2018-05-25 | Tim Newsome | Prevent M mode triggers affecting D mode ones (#282)                      |
| 08ee84f      | 2018-05-22 | Tim Newsome | Reading tselect doesn't guarantee a valid trigger. (#271)                 |
| 6dfe375      | 2018-04-18 | Megan Wachs | Debug Module should be capitalized                                        |
| dac2120      | 2018-04-11 | Megan Wachs | resethaltreq: Proposal for forcing a hart into debug<br>mode out of reset |
| 3b6442f      | 2018-05-16 | Tim Newsome | tdata2 need only hold valid addresses if select=0 (#278)                  |
| 68501cb      | 2018-04-26 | mwachs5     | mprven: Add a bit to enable MPRV to take effect in debug mode             |
| 9fcabe0      | 2018-05-03 | Megan Wachs | Appendix: correct and clarify what debugger vs DM does                    |

| $30773 \mathrm{fd}$  | 2018-05-03 | Tim Newsome   | Debuggers must not write sbcs while sbbusy is set (#270) |
|----------------------|------------|---------------|----------------------------------------------------------|
| 50d8cd8              | 2018-05-03 | Megan Wachs   | Remove merge commits from the changelog                  |
| 3b7a296              | 2018-05-02 | Tim Newsome   | Fix typo.                                                |
| b26072b              | 2018-05-02 | Tim Newsome   | Explain that 1 in hart array mask means selected         |
| 41f6026              | 2018-05-02 | Megan Wachs   | Examples: Give an example of CSR access with             |
| 4110020              | 2010 00 02 | Wegan wacms   | Quick Access (#268)                                      |
| 675bb14              | 2018-05-01 | Tim Newsome   | Replace XLEN with MXLEN. #257                            |
| 848cca1              | 2018-04-30 | Megan Wachs   | Overview Diagram: increase number of Progbuf             |
| 0100041              | 2010 01 00 | Wiegem Weelig | words (#267)                                             |
| a719ee6              | 2018-04-25 | Megan Wachs   | fix misspelled name                                      |
| 097c701              | 2018-04-23 | Tim Newsome   | Fix typo.                                                |
| 01 dabd5             | 2018-04-23 | Tim Newsome   | Incorporate review feedback.                             |
| ca7a9d0              | 2018-04-18 | Tim Newsome   | Add trigger examples for match types 1, 4, and 5         |
| cd5a15c              | 2018-04-16 | Tim Newsome   | Give a few trigger examples.                             |
| 4375927              | 2018-04-12 | Tim Newsome   | Clarify that maskmax applies only to NAPOT trigger       |
| acadfe9              | 2018-04-13 | Megan Wachs   | NMI: debugging may not be possible if an NMI hap-        |
|                      |            |               | pens                                                     |
| 8 fb 190 c           | 2018-04-12 | Tim Newsome   | Another attempt at SBA errors.                           |
| 714c5d1              | 2018-04-11 | Megan Wachs   | Core Debug: all interrupts are masked includes NMI       |
| 56 fbd9d             | 2018-04-11 | Megan Wachs   | DCSR: add nmip bit to indicate NMI is pending            |
| fffe3c2              | 2018-04-10 | Tim Newsome   | Clarify SBA unsupport access size error.                 |
| b4006ac              | 2018-04-10 | Tim Newsome   | Clarify high bits of sbdata in narrow reads.             |
| 4ca83dd              | 2018-03-28 | Tim Newsome   | Clarify progbuf=1 some more                              |
| 3b62243              | 2018-03-26 | Tim Newsome   | Clarify debugger requirements when progbufsize=1         |
| ffba4d0              | 2018-03-26 | Tim Newsome   | Explain why progbufsize=1 is special                     |
| 6b88905              | 2018-03-19 | Megan Wachs   | haltsum1: correct its address to be BWC and not          |
|                      |            |               | overlap with ABSTRACTAUTO                                |
| 2382e2e              | 2018-03-06 | Megan Wachs   | Correct some inaccuarices in the chisel generated files  |
| 3e88e11              | 2018-03-06 | Megan Wachs   | travis: add 'make chisel' target to regression           |
| 32cbb $9$ b          | 2018-03-19 | Tim Newsome   | Nonexistent/unavailable harts are not halted.            |
| f8a7bb7              | 2018-03-19 | Tim Newsome   | More clarification.                                      |
| e21ae4c              | 2018-03-16 | Tim Newsome   | Allow any bit in hart array mask to be tied to 0         |
| efb7e45              | 2018-03-15 | Tim Newsome   | Change dcsr.prv reset value to 3                         |
| f19946b              | 2018-03-15 | Tim Newsome   | Clarify hart array mask register size.                   |
| ddec145              | 2018-03-14 | Tim Newsome   | Be more precise about core vs hart                       |
| 4e5f4ad              | 2018-03-14 | Tim Newsome   | Review feedback.                                         |
| 8ac9273              | 2018-03-14 | Tim Newsome   | Be more precise about processor vs hart                  |
| 83c9774              | 2018-03-14 | Tim Newsome   | Clarify abstract command errors.                         |
| $4 \mathrm{ebc} 177$ | 2018-03-14 | Tim Newsome   | hawindowsel can be smaller, depends on $\#$ of harts     |
| 11e1b5c              | 2018-03-14 | Tim Newsome   | Split future ideas section into a notes doc              |
| bafeeaa              | 2018-03-13 | Tim Newsome   | Rebuild PDF                                              |
| 6a85d53              | 2018-03-13 | Tim Newsome   | Incorporate review feedback.                             |
| f213315              | 2018-03-09 | Tim Newsome   | Clarify user responsibilities when debugging lr/sc       |
| 3641305              | 2018-03-09 | Tim Newsome   | Remove implemented features from Future Ideas.           |
| 1135 bf3             | 2018-03-06 | Tim Newsome   | Incorporate feedback.                                    |
| 8f35e7e              | 2018-03-05 | Megan Wachs   | gt_1024: Clarify that some registers may not be          |
|                      |            |               | present for small numbers of harts                       |

| 600 07                      | 0010 00 14 | 3.6 337 1      | 1 1 1                                                                  |
|-----------------------------|------------|----------------|------------------------------------------------------------------------|
| 683ae37                     | 2018-02-14 | Megan Wachs    | hartsum-¿haltsum                                                       |
| ee51758                     | 2018-02-14 | Megan Wachs    | Modification of ¿ 1024 hart proposal that maintains                    |
| 970 1000                    | 2010 00 05 | m. N           | backwards compatibility                                                |
| 370d222                     | 2018-03-05 | Tim Newsome    | Rephrase description of hit bit.                                       |
| eee5e0c                     | 2018-03-05 | Tim Newsome    | Clarify multiple DMs/harts                                             |
| 4d5acef                     | 2018-02-28 | Tim Newsome    | Clarify what happens when \Fauthenticated is clear                     |
| 6a0c9ec                     | 2018-02-27 | Tim Newsome    | Move hit bit per review feedback.                                      |
| 097 bd8e                    | 2018-02-21 | Tim Newsome    | Fix link to pre-built pdf                                              |
| d21774b                     | 2018-02-21 | Omer Faruk IR- | Python interpreter to be used should default to                        |
|                             |            | MAK            | Python2                                                                |
| a8c10cf                     | 2018-02-20 | Tim Newsome    | Incorporate review feedback.                                           |
| a0f947c                     | 2018-02-20 | Tim Newsome    | Make trigger hit bit optional.                                         |
| 77e4634                     | 2018-02-08 | Tim Newsome    | Add hit bit to hardware triggers.                                      |
| 140390a                     | 2018-02-05 | Tim Newsome    | Better wording.                                                        |
| e35b1ff                     | 2018-02-05 | Tim Newsome    | Move Reg Access Abbrev table after sample register                     |
| e887433                     | 2018-02-05 | Tim Newsome    | Use longtable instead of xtabular.                                     |
| 5c84437                     | 2018-01-31 | Tim Newsome    | Abstract Command data usage depends on the com-                        |
|                             |            |                | mand                                                                   |
| 3d508ea                     | 2018-01-25 | Tim Newsome    | HARTSELBITS-; HARTSELLEN and other feed-                               |
|                             |            |                | back                                                                   |
| eb653f7                     | 2018-01-24 | Tim Newsome    | Be explicit about the size of \Fhartsel.                               |
| 822bd81                     | 2018-01-24 | Tim Newsome    | Revert incrementing version number.                                    |
| 4c755af                     | 2018-01-24 | Tim Newsome    | \Fsbbusyerror also inhibits new accesses.                              |
| 457413d                     | 2018-01-24 | Tim Newsome    | Update how to enumerate all harts.                                     |
| 2180801                     | 2018-01-18 | Tim Newsome    | Fix ambiguity in busy error reporting.                                 |
| 3140efa                     | 2018-01-09 | Tim Newsome    | Re-apply e698a5001aa4583d31dde484d78f4f10e4e3148f                      |
| 3140e1a                     | 2010-01-03 | Tim Newsome    | . No need to list out all the consecutive registers.                   |
| 390daa7                     | 2018-01-18 | mwachs5        | sbaddress: Only writes to address will actually cause                  |
| 590daa1                     | 2010-01-10 | IIIwaciisə     |                                                                        |
| E-020f2                     | 2012 01 12 | Magan Washa    | an error. Reads while busy are permitted. Remove reference to "caches" |
| 5c820f3                     | 2018-01-18 | Megan Wachs    |                                                                        |
| 4533648                     | 2018-01-18 | Megan Wachs    | correct access spelling                                                |
| d37c1ac                     | 2018-01-16 | Tim Newsome    | Fix table column overruns by going full manual                         |
| e9100ea                     | 2018-01-16 | Tim Newsome    | Correct when sbbusy error is set for being busy.                       |
| c029cc7                     | 2018-01-16 | Tim Newsome    | Complete partial sentence.                                             |
| 494338a                     | 2018-01-15 | Tim Newsome    | Add clarifications about error handling.                               |
| e14c34e                     | 2018-01-15 | Tim Newsome    | Incorporate review feedback.                                           |
| 68720e5                     | 2018-01-15 | Tim Newsome    | Remove H bits from triggers.                                           |
| b8eb62a                     | 2018-01-15 | Tim Newsome    | Clarify when sbaccess is checked for validity                          |
| 8b50d29                     | 2018-01-12 | Tim Newsome    | Add \Fsbbusy, to avoid race clearing \Fsberror                         |
| 50b1b41                     | 2018-01-12 | Tim Newsome    | Clarify: writes to \Rsbdata0 write the new data                        |
| 7f26759                     | 2018-01-12 | Tim Newsome    | Clarify exactly which bits are used for SB access.                     |
| $47\mathrm{a}019\mathrm{c}$ | 2018-01-11 | Tim Newsome    | Fix typo.                                                              |
| a49d6ad                     | 2018-01-11 | Tim Newsome    | sbreadonaddr is R/W                                                    |
| 42195c2                     | 2018-01-11 | Tim Newsome    | Fix cut-and-paste error.                                               |
| 6c95235                     | 2018-01-11 | Tim Newsome    | Add sbaddress3, for future proofing.                                   |
| e3345ea                     | 2018-01-11 | Tim Newsome    | Incorporate review feedback.                                           |
| 6da48f8                     | 2018-01-11 | Tim Newsome    | Remove dmerr.                                                          |
| e99c092                     | 2018-01-10 | Tim Newsome    | Add system bus version field.                                          |
| 200000                      | _010 01 10 |                | Jovom od Oblini                                                        |

| a6aa531                                        | 2018-01-10     | Tim Newsome             | Talk about all data and progbuf regs in first reg     |
|------------------------------------------------|----------------|-------------------------|-------------------------------------------------------|
| af272db                                        | 2018-01-09     | Megan Wachs             | Update dret font                                      |
| 3d579d8                                        | 2018-01-09     | Tim Newsome             | Explicitly list data[1-10] and progbuf[1-15]          |
| c6481ae                                        | 2018-01-09     | Tim Newsome             | Revert "Explicitly list data[1-10] and progbuf[1-15]" |
| e698a50                                        | 2018-01-09     | Tim Newsome             | Explicitly list data[1-10] and progbuf[1-15]          |
| e547ed5                                        | 2018-01-09     | Tim Newsome             | Clarify that we deal in physical addresses only.      |
| b377b89                                        | 2018-01-09     | Tim Newsome             | Revert "Clarify that we deal in physical addresses    |
|                                                |                |                         | only."                                                |
| f7da066                                        | 2018-01-09     | Tim Newsome             | Clarify that we deal in physical addresses only.      |
| 99a1599                                        | 2018-01-09     | Tim Newsome             | Clarify that \Fdatasize contains at most 12.          |
| ae6e88a                                        | 2018-01-09     | mwachs5                 | dret: Legal only in Debug Mode                        |
| 18f392d                                        | 2017-11-24     | Tim Newsome             | Get rid of sbsingleread in favor of sbreadonaddr      |
| 5754a3b                                        | 2018-01-05     | Megan Wachs             | Use a different word than "clobbered"                 |
| aca7e0b                                        | 2018-01-03     | Megan Wachs             | Add missing "to"s to abstractauto description         |
| d59ddf3                                        | 2018-01-03     | Megan Wachs             | Correct plurality of halted harts in haltsum          |
| 57c53ed                                        | 2017-12-22     | Tim Newsome             | Put parens around all macros that need it.            |
| 7ded846                                        | 2017-12-18     | Tim Newsome             | Refer to existing hart instead of "valid"             |
| 68b8ac8                                        | 2017-12-15     | Tim Newsome             | Make \Fhaltsel WARL.                                  |
| 6a72f45                                        | 2017-12-18     | Tim Newsome Tim Newsome | Mark this as a draft, which it is.                    |
| $\frac{\text{da}72145}{\text{dd}8\text{d8}71}$ | 2017-12-18     | Tim Newsome Tim Newsome | Properly deal with \ chars in the changelog.          |
|                                                |                | Tim Newsome Tim Newsome | ·                                                     |
| 42f920c                                        | 2017-12-18     |                         | Deal with \ chars in the changelog.                   |
| b13891c                                        | 2017-12-15     | Tim Newsome             | Revert "Make \Fhaltsel WARL."                         |
| 26d76a0                                        | 2017-12-15     | Tim Newsome             | Make \Fhaltsel WARL.                                  |
| afda8d7                                        | 2017-11-28     | mwachs5                 | update PDF                                            |
| 134d310                                        | 2017-11-28     | Megan Wachs             | Correct compressed version of ebreak                  |
| caa1258                                        | 2017-11-27     | Megan Wachs             | badaddr -¿ tval (Priv Spec 1.9 -¿ 1.9.1)              |
| 32b0f08                                        | 2017-11-22     | Tim Newsome             | Incorporate feedback.                                 |
| 2f7aa54                                        | 2017-11-22     | Tim Newsome             | Simplify, and explain trigger behavior.               |
| 3e5887f                                        | 2017-11-21     | Tim Newsome             | Clarify some single step corner cases.                |
| f4b9ae2                                        | 2017-11-21     | Tim Newsome             | Make ackhavereset write-only. (#178)                  |
| efe3dc8                                        | 2017-11-21     | Tim Newsome             | Make hartreset R/W (#177)                             |
| ce1b359                                        | 2017-11-17     | Megan Wachs             | Reset clarifications (#172)                           |
| 852a70d                                        | 2017-11-16     | Megan Wachs             | icount: remove warning (#173)                         |
| 363348f                                        | 2017-11-16     | Tim Newsome             | Explain cache coherency wrt to system bus access      |
|                                                |                |                         | (#171)                                                |
| 26ea898                                        | 2017 - 11 - 15 | Tim Newsome             | Refer to ISA and priv docs.                           |
| ffc8c62                                        | 2017-11-03     | Tim Newsome             | Mention the index in "about this doc"                 |
| a4257ef                                        | 2017-11-02     | Tim Newsome             | Add an index to the document.                         |
| f5f45a5                                        | 2017-10-30     | Megan Wachs             | Add 'has reset' status and control (#168)             |
| 46f3f54                                        | 2017-10-25     | Tim Newsome             | Incorporate review feedback.                          |
| 104247f                                        | 2017-10-24     | Megan Wachs             | Update README.md                                      |
| 6dd5c80                                        | 2017-10-24     | Megan Wachs             | Update README.md                                      |
| cb1a847                                        | 2017-10-24     | Megan Wachs             | Add a note to the README about the built PDF          |
| e00625f                                        | 2017-10-18     | Tim Newsome             | Include pdf.                                          |
| c23e729                                        | 2017-10-18     | Tim Newsome             | Clarify more.                                         |
| 83f9faf                                        | 2017-10-11     | Tim Newsome             | Clarify what \Fimpebreak does.                        |
| 78082b5                                        | 2017-10-11     | Tim Newsome             | Mention \Fimpebreak in Program Buffer description.    |
|                                                |                |                         | , 1                                                   |

| 0378324             | 2017-10-11 | mwachs5                    | Add legend and update some transitions on the Ab-  |
|---------------------|------------|----------------------------|----------------------------------------------------|
|                     |            |                            | stract Command State Machine diagram               |
| fa2b600             | 2017-10-11 | Megan Wachs                | add missing period                                 |
| 0610630             | 2017-10-11 | Megan Wachs                | Just do simple hmode -; dmode replacement          |
| 16e11f3             | 2017-10-11 | Tim Newsome                | Remove hmode reference, to fix build.              |
| 84b9a6a             | 2017-10-11 | Tim Newsome                | Add \Fimpebreak, to support of implicit ebreak.    |
| cc90b77             | 2017-10-11 | mwachs5                    | Remove reference to 'H' mode from the figure       |
| cc6a9de             | 2017-10-11 | Megan Wachs                | Change old reference to 'hmode' to 'dmode'         |
| ea2877d             | 2017-10-10 | Tim Newsome                | Move how-to-debug into the relevant section.       |
| 486ecc6             | 2017-10-05 | Tim Newsome                | Refuse unsupported bus accesses.                   |
| 6ca221d             | 2017-10-05 | Tim Newsome                | haltreq, resumereq, hartreset are per-hart bits    |
| d4118ab             | 2017-09-30 | Tim Newsome                | ndmreset can't reset logic required to access DM.  |
| c6bd8d1             | 2017-09-29 | Tim Newsome                | and -;, or                                         |
| 58c2441             | 2017-09-29 | Tim Newsome                | Mention \Fstepie in Single Step                    |
| 94c5f78             | 2017-09-29 | Tim Newsome                | Clarify ndmreset.                                  |
| 12810b4             | 2017-09-29 | Tim Newsome                | Clarify that sbaddress is physical.                |
| 5862fdf             | 2017-09-29 | Tim Newsome Tim Newsome    | Unify M mode and mprv comment.                     |
| aea1bd5             | 2017-09-29 | Tim Newsome Tim Newsome    | Define behavior when haltred and resumered are set |
| 146b348             | 2017-09-29 |                            |                                                    |
|                     |            | Megan Wachs                | remove superflous 'an' remove superfluous 'a'      |
| a5d16c4             | 2017-09-28 | Megan Wachs<br>Tim Newsome | •                                                  |
| 052a8ab             | 2017-09-28 |                            | Clarify that a debugger can lose hart control.     |
| cc52cff             | 2017-09-28 | Tim Newsome                | Add \Fdmerr.                                       |
| 25685eb             | 2017-09-28 | Tim Newsome                | Explain that bus master or progbuf is required.    |
| f75ee7d             | 2017-09-28 | Tim Newsome                | Clarify debugger can discover "almost" everything  |
| 71e6788             | 2017-09-27 | Tim Newsome                | Remove description of manual stepping.             |
| 9aea347             | 2017-09-27 | Tim Newsome                | Move Running/Single Step near Halting.             |
| 2090d9b             | 2017-09-27 | Tim Newsome                | data0 should be sbdata0 in this table.             |
| 5858cfe             | 2017-09-27 | Tim Newsome                | Clarify why \Rpriv exists.                         |
| bc3c2aa             | 2017-09-27 | Tim Newsome                | Mention where priv encoding comes from.            |
| ef77cc4             | 2017-09-27 | Tim Newsome                | One more attempt to clarify DPC after single step. |
| 80a288e             | 2017-09-27 | Tim Newsome                | Clarify instret not incrementing on ebreak.        |
| c163d22             | 2017-09-20 | Tim Newsome                | Remove ebreakh.                                    |
| 9971075             | 2017-09-20 | Tim Newsome                | Clarify we're talking about privilege              |
| 3 fbe 495           | 2017-09-20 | Tim Newsome                | Clarify that we're talking about *implementation*  |
| 3684854             | 2017-09-20 | Tim Newsome                | Use steps environment in sbdata0.                  |
| d4eda18             | 2017-09-20 | Tim Newsome                | Explain that only sbdata0 has side effects.        |
| ae781c6             | 2017-09-20 | Tim Newsome                | Don't refer to internal system bus registers.      |
| 875922e             | 2017-09-20 | Tim Newsome                | Explain sbdata0 being stale a bit more.            |
| cd44fd5             | 2017-09-20 | Tim Newsome                | Clarify autoread                                   |
| 194484b             | 2017-09-20 | Tim Newsome                | Clarify hawindow.                                  |
| 02f1aac             | 2017-09-20 | Tim Newsome                | Clarify that \Fdataaddr is relative to \Rzero.     |
| 0e $9$ b $6$ ae     | 2017-09-20 | Tim Newsome                | Clarify nonexistent vs unavailable.                |
| b55ff41             | 2017-09-20 | Tim Newsome                | Fix devtreevalid.                                  |
| 2eccb $86$          | 2017-09-20 | Tim Newsome                | Explicitly state which registers are read-only.    |
| 4af505c             | 2017-09-20 | Tim Newsome                | Show section numbers for registers.                |
| cbd5573             | 2017-09-20 | Tim Newsome                | Thank Nikhil                                       |
| 19c206f             | 2017-09-20 | Tim Newsome                | Clarify how to determine whether progbuf is RAM    |
| $0651 \mathrm{f7d}$ | 2017-09-20 | Tim Newsome                | Explain what happens if ebreak is missing.         |
|                     |            |                            |                                                    |

| e889dae            | 2017-09-20 | Tim Newsome                | Move figure of states into its own section.                                   |
|--------------------|------------|----------------------------|-------------------------------------------------------------------------------|
| cff7b80            | 2017-09-20 | Tim Newsome                | Explain when \Ftransfer might be used.                                        |
| 6b2ee61            | 2017-09-20 | Tim Newsome                | Explain where \Fsize encoding came from.                                      |
| c9f3b73            | 2017-09-14 | Tim Newsome                | Fix typo.                                                                     |
| 4b25400            | 2017-09-13 | Tim Newsome                | Mention dpc in CSRs abstract register numbers.                                |
| c3ee426            | 2017-09-13 | Tim Newsome                | Move abstract regno table closer to its reference.                            |
| 111b9a3            | 2017-09-13 | Tim Newsome                | cycle -; operation                                                            |
| 994afdc            | 2017-09-13 | Tim Newsome                | Account for multiple selected harts.                                          |
| aa4a297            | 2017-09-13 | Tim Newsome                | Halt Control -; Run Control                                                   |
| e97c821            | 2017-09-13 | Tim Newsome                | continuous -; contiguous                                                      |
| 97f73ff            | 2017-09-13 | Tim Newsome                | Clarify ndmreset behavior.                                                    |
| 6078220            | 2017-09-13 | Tim Newsome                | Explain ndmreset                                                              |
| a3d4f30            | 2017-09-13 | Tim Newsome                | Describe 'halt region'                                                        |
| 272b3d9            | 2017-09-13 | Tim Newsome                | Clarify accessing unimplemented DM DMI regs                                   |
| 3e91f1b            | 2017-09-13 | Tim Newsome                | Clarify either Prog Buf or Sys Bus Acc is required                            |
| e8a6145            | 2017-09-13 | Tim Newsome                | Clarify CSR access; remove serial port                                        |
| ce20766            | 2017-09-13 | Tim Newsome                | Remove section referencing itself.                                            |
| 1195a61            | 2017-09-18 | Tim Newsome                | Generate constants to be unsigned for clang.                                  |
| 8967b0a            | 2017-08-16 | Megan Wachs                | Compressed instructions are c.foo, not foo.c                                  |
| b5698a9            | 2017-08-16 | Megan Wachs                | clarify progbufsize description                                               |
| d221bab            | 2017-08-16 | Megan Wachs                | Remove progbufsize enums from register description                            |
| 0498102            | 2017-08-16 | Megan Wachs                | appendix: Use standard assembly format for sw                                 |
| 4456d99            | 2017-08-10 | Tim Newsome                | Rename progsize to progbufsize.                                               |
| 55d5b66            | 2017-08-09 | Tim Newsome Tim Newsome    | Clarify that trigger comparisons are unsigned.                                |
| 21e35ef            | 2017-08-09 | Tim Newsome Tim Newsome    | Configuration String -; Device Tree                                           |
| f044f45            | 2017-08-09 | Tim Newsome Tim Newsome    | Don't require a target to provide 25mA on VCC.                                |
| c883943            | 2017-08-02 | Tim Newsome Tim Newsome    | Add table of Abstract Command Types                                           |
| 985a3df            | 2017-08-02 | Tim Newsome Tim Newsome    | Fix and speed up build.                                                       |
| 95b9108            | 2017-08-02 | mwachs5                    | DTM: Clarify that there are no cases when DMI                                 |
| 9909100            | 2017-06-02 | IIIwaciis5                 | would actually return an error.                                               |
| 9c9e0c0            | 2017-08-02 | mwachs5                    | SystemBus: No longer returns error. So DMI has no                             |
| 9096000            | 2017-00-02 | IIIwaciisə                 | 'error' return code.                                                          |
| 5ba18f9            | 2017-07-27 | Tim Newsome                | Fix more typos.                                                               |
| dbc65bf            | 2017-07-27 | Tim Newsome Tim Newsome    | Fix typos.                                                                    |
| bba0ad9            | 2017-07-26 | Tim Newsome Tim Newsome    | Tighten up introduction lists.                                                |
| e22d5eb            | 2017-07-26 | Tim Newsome Tim Newsome    | Add version constants for "not compatible".                                   |
| c79038e            | 2017-07-26 | Tim Newsome                | Small clarification.                                                          |
| 9df0411            | 2017-07-20 | Tim Newsome Tim Newsome    | Incorporate review feedback.                                                  |
| d67419c            | 2017-07-21 | Tim Newsome Tim Newsome    | <del>-</del>                                                                  |
| 9f50c05            | 2017-07-21 | Tim Newsome Tim Newsome    | Clarify dpc contents. Use LL instead of L for 64-bit constant suffix.         |
| 23 fd 24 a         | 2017-07-11 | Megan Wachs                | Cleaning up whitespaces                                                       |
| c5ab04c            | 2017-07-10 | Megan Wachs                | Update abstract_commands.xml                                                  |
| 6e8cdf1            | 2017-07-10 |                            | -                                                                             |
| cf6e3f2            | 2017-07-10 | Megan Wachs<br>Megan Wachs | Update abstract_commands.xml clarify DCSR.cause                               |
| 79ffbb9            | 2017-07-10 | Megan Wachs                | Clarify implications of CSR read, write, halt                                 |
| 7911bb9<br>013e191 | 2017-07-10 | Megan Wachs                |                                                                               |
| 231e457            | 2017-07-10 | Megan Wachs                | Clarify when you would get error halt/resume Quick Access error clarification |
| c54c2f2            | 2017-07-10 | mwachs5                    | serial: add the XML file, not the TEX file                                    |
| 0040212            | 2011-01-03 | mwachs9                    | serial and the AML me, not the TEA me                                         |

| ac77477          | 2017-07-03 | mwachs5                       | serial: Fix compile errors after moving serial port to                      |
|------------------|------------|-------------------------------|-----------------------------------------------------------------------------|
|                  |            |                               | appendix                                                                    |
| 6defcb8          | 2017-07-03 | mwachs5                       | serial: Move serial ports out of main spec and into<br>Future Work appendix |
| a28f639          | 2017-06-30 | mwachs5                       | remove trace dependencies from Makefile                                     |
| 52a122b          | 2017-06-30 | mwachs5                       | remove trace section                                                        |
| d9e166b          | 2017-06-30 | mwachs5                       | remove trace registers                                                      |
| 7caf $4$ e $5$   | 2017-06-30 | mwachs5                       | remove trace appendix                                                       |
| 4688988          | 2017-06-29 | mwachs5                       | DCSR: define a 'stepie' bit which may be hard-wired                         |
| 1000000          | 201, 00 20 | 11111001100                   | to 0.                                                                       |
| 9a0492c          | 2017-06-13 | Megan Wachs                   | Add missing period and some other small text edits                          |
| 13ccdbf          | 2017-06-13 | Megan Wachs                   | fix typo in ProgBuf register macro                                          |
| b01f989          | 2017-06-13 | mwachs5                       | implementations: be a bit more concrete about the                           |
| 5011000          | 201, 00 10 | III Waalisa                   | one example implementation we have.                                         |
| a7b5f83          | 2017-06-13 | mwachs5                       | jtagdtm: Move it out of the appendix as it is really                        |
| a. 55165         | 201, 00 10 | III Waalisa                   | part of the specification                                                   |
| 87aceb0          | 2017-06-13 | Megan Wachs                   | remove "spontaneous"                                                        |
| 50b9950          | 2017-06-13 | Megan Wachs                   | Forward reference for anynonexistent                                        |
| adea3e2          | 2017-06-13 | Megan Wachs                   | More clarifications on dret                                                 |
| 1b8dd0e          | 2017-06-13 | Megan Wachs                   | Define DRET instruction                                                     |
| 617 da4c         | 2017-06-08 | Megan Wachs                   | Update description of R/W1C                                                 |
| de2c56b          | 2017-06-08 | Megan Wachs                   | Clarify that DCSR is also not updated on ebreak                             |
| efa615d          | 2017-06-07 | Tim Newsome                   | Increase xdebugver field size to 4 bits. (#92)                              |
| a0e147a          | 2017-06-07 | Tim Newsome                   | Address some review comments.                                               |
| 89ffe50          | 2017-06-06 | mwachs5                       | NDMRESET: Clarify what it may and may not do                                |
| 1932 da0         | 2017-06-06 | mwachs5                       | DPC: Clarifications on its meaning                                          |
| 6470fdb          | 2017-06-06 | mwachs5                       | ABSTRACTCS: Correct inconsistency on the num-                               |
| 0 -1 0 - 1 0 - 1 |            |                               | ber of data words.                                                          |
| 3ca82b4          | 2017-06-06 | Megan Wachs                   | More corrections for R vs R/W1C on SERCS                                    |
| 9705 fb8         | 2017-06-06 | Megan Wachs                   | Correct a bunch of W0 registers                                             |
| 1347371          | 2017-06-05 | Tim Newsome                   | Add interested to domain Add interested to domain.                          |
| 989c60d          | 2017-06-05 | Tim Newsome                   | Fix language. We can only halt harts, not cores.                            |
| 517a08b          | 2017-06-05 | Tim Newsome                   | Incorporate review feedback.                                                |
| 802 be 28        | 2017-06-05 | Tim Newsome                   | Clarify/fix Quick Access example.                                           |
| b8cc523          | 2017-06-02 | Tim Newsome                   | Add included tex files as dependencies. $(#78)$                             |
| 15f864a          | 2017-06-01 | Tim Newsome                   | Language cleanups, consistency and typo fixes.                              |
| 4ecae86          | 2017-06-01 | Tim Newsome                   | Add page numbers to list-of-register tables.                                |
| 59b3e4a          | 2017-05-19 | Megan Wachs                   | Setting up a Travis regression to check for build errors (#72)              |
| 124bf44          | 2017-05-17 | mwachs5                       | Debug Module: CMDERR is Write-1-to clear, not R/W0                          |
| bb6c7f0          | 2017-05-17 | mwachs5                       | SW Registers file should be XML, not TEX                                    |
| d360358          | 2017-05-10 | Megan Wachs                   | Remove virtual register from core_registers.xml                             |
| 4550000          | 201, 00 10 | (Temporary Acct.)             | Tomo, o , in dam 1081000 Hom coro_regioners.Ami                             |
| bfc64fb          | 2017-05-10 | Megan Wachs (Temporary Acct.) | Add missing sw_registers.tex file                                           |
|                  |            |                               |                                                                             |

| 0512f5d     | 2017-05-06 | mwachs5 | Move virtual 'prv' register to a seperate section to                                 |
|-------------|------------|---------|--------------------------------------------------------------------------------------|
|             |            |         | make it more clear it is not a real register.                                        |
| 6b3c9d7     | 2017-05-06 | mwachs5 | Clarify haltreq/resumereq/resumack                                                   |
| 0a487eb     | 2017-04-26 | mwachs5 | jtag: Change specified JTAG pinout from Coretex to AVR, to provide for TRSTn option. |
| 93cdfaf     | 2017-04-26 | mwachs5 | DM: Clarify that DATA/PROGBUF can't be writ-                                         |
|             |            |         | ten while busy.                                                                      |
| ef98f23     | 2017-04-19 | mwachs5 | jtag: Make it clear that a NOP is really a NOP.                                      |
| a6f8efa     | 2017-04-17 | mwachs5 | single_step: Exceptions count as the 'step' completion.                              |
| bf11e9e     | 2017-04-17 | mwachs5 | resumeack: fix some LaTeX cross references                                           |
| 4afa081     | 2017-04-11 | mwachs5 | halt/resumereq: Clarify what setting them to 0 or 1                                  |
|             |            |         | does                                                                                 |
| 297a39b     | 2017-04-06 | mwachs5 | fix chisel build                                                                     |
| 082c499     | 2017-04-06 | mwachs5 | Rename resumed to resumeack, and add more text                                       |
|             |            |         | about what these bits mean.                                                          |
| 909d617     | 2017-04-06 | mwachs5 | Correct some cross references after removing all the multiply listed registers       |
| dd09914     | 2017-04-06 | mwachs5 | Add 'resumedall' and 'resumedany' bits to avoid race                                 |
|             |            |         | condition on about to resume and just halted                                         |
| feb88fc     | 2017-04-05 | mwachs5 | JTAG DTM: Clarify that leading bits are 0 for more                                   |
|             |            |         | than 5-bit IR                                                                        |
| 75b $96$ ea | 2017-04-04 | mwachs5 | use renamed dm_registers file                                                        |
| 9f3ec7e     | 2017-04-04 | mwachs5 | debugger_implementation: remove some old TODO                                        |
|             |            |         | and commentary.                                                                      |
| 45 dd5b5    | 2017-04-04 | mwachs5 | Don't list out every single DM register for those that                               |
|             |            |         | are just indexed versions                                                            |
| b8b3aa2     | 2017-04-04 | mwachs5 | remove core-side register definitions from Debug                                     |
|             |            |         | Module. Rename dm1 to dm                                                             |
| d979a13     | 2017-04-04 | mwachs5 | remove core-side serial port specification, as these                                 |
|             |            |         | should look like implementation-specific devices with                                |
|             |            |         | appropriate drivers.                                                                 |
| b56870b     | 2017-04-04 | mwachs5 | Remove the wording about 'debug exception', as it is                                 |
|             | 201=0400   | , ~     | called breakpoint exception in the RISC-V Spec.                                      |
| 1e9347d     | 2017-04-03 | mwachs5 | Add description of hasel                                                             |
| 0dda84d     | 2017-04-03 | mwachs5 | JTAG DTM: Clean up TAP register descriptions                                         |
| 82ccde $5$  | 2017-04-03 | mwachs5 | JTAG DTM: Add a hard DMI bit which cancels the                                       |
| 1 10 0 11   | 2017 04 02 | 1 =     | outstanding DMI transaction                                                          |
| bd2a3d1     | 2017-04-03 | mwachs5 | remove preexec                                                                       |
| 02c733a     | 2017-04-03 | mwachs5 | remove preexec from Abstract State diagram.                                          |
| 1e271d6     | 2017-04-03 | mwachs5 | Update Debugger implementation for DMI register access, and fix tex compile issues.  |
| 155 dda4    | 2017-04-03 | mwachs5 | Rewrite HW Implementation examples to describe a                                     |
|             |            |         | pure abstract command approach, and to not rely                                      |
|             |            |         | on harts executing every instruction which is fetched                                |
|             |            |         | from the Debug Module                                                                |
| 556c2be     | 2017-04-03 | mwachs5 | minor wording edits about RISC-V core registers                                      |
| 523c64a     | 2017-04-03 | mwachs5 | Edits to the Debug Module section.                                                   |

| 10.0716    | 0017 04 00        | 1 ~            | 11                                                                            |
|------------|-------------------|----------------|-------------------------------------------------------------------------------|
| b9a371f    | 2017-04-03        | mwachs5        | add missing trace.tex file.                                                   |
| 58b2396    | 2017-04-03        | mwachs5        | Re-order the JTAG DTM Sections                                                |
| a8827e2    | 2017-04-03        | mwachs5        | Edits to the System Overview.                                                 |
| c5417ce    | 2017-04-03        | mwachs5        | add more sections as seperate files.                                          |
| 287d5c6    | 2017-04-03        | mwachs5        | moving more files to seperate tex files.                                      |
| 9e873f4    | 2017-04-03        | mwachs5        | move trigger info into seperate file.                                         |
| 2c89a86    | 2017-04-03        | mwachs5        | move risc-v core debug info into seperate file.                               |
| e676491    | 2017-04-03        | mwachs5        | Move System Overview to separate file                                         |
| 03df6ee    | 2017-04-03        | mwachs5        | Move Debug Module description to a seperate file.                             |
| 5faa $430$ | 2017-04-03        | mwachs5        | add back in JTAG DTM in appendix                                              |
| 7b28b11    | 2017-04-03        | mwachs5        | Move jtag DTM to appendix. Move some text to commentary.                      |
| cc183ba    | 2017-04-03        | mwachs5        | move introduction to a seperate file. Comment out reading order.              |
| f727d14    | 2017-04-03        | mwachs5        | Use Chapters vs Sections. Needs reorganization.                               |
| 815951d    | 2017-04-03        | mwachs5        | Formatting updates. Make this look more like the                              |
| 0100014    | 2011 01 00        | III Waciiso    | RISC-V specs. Need to use chapter vs. section                                 |
| 69ffaf8    | 2017-03-31        | mwachs5        | Move XML files into a subdirectory.                                           |
| b276384    | 2017-03-31        | mwachs5        | Remove debug_rom.S                                                            |
| 112bbac    | 2017-03-31        | mwachs5        | figures: reorganize the figures into directories.                             |
| 1e5c068    | 2017-03-27        | Megan Wachs    | Add LICENSE                                                                   |
| fc17730    | 2017-03-22        | Po-wei Huang   | Change some halt mode into debug mode.                                        |
| 8ccf029    | 2017-03-22        | Po-wei Huang   | All halt mode changed to debug mode to synchronize                            |
|            |                   | g              | with the priv spec.                                                           |
| f143d9e    | 2017-03-21        | mwachs5        | Correct duplicated progbuf register names                                     |
| 0797ec1    | 2017-03-17        | mwachs5        | autoexec: make autoexec bits match the number of data words there really are. |
| 8e76d93    | 2017-03-17        | mwachs5        | dm1_registers: move a few more things around. Re-                             |
|            |                   |                | duce abstract data words back to 12.                                          |
| f8bf292    | 2017-03-17        | mwachs5        | dm1_registers: resolve some address conflicts and inconsistencies             |
| a74dff9    | 2017-03-17        | mwachs5        | access_register: some small bit changes                                       |
| 2e6b0ca    | 2017-03-15        | mwachs5        | config string: Fix LaTeX compile errors.                                      |
| f83260a    | 2017-03-10        | mwachs5        | Abstract Commands: clarify that 32-bit reads should                           |
|            |                   |                | always work. This allows reading MISA.                                        |
| 6f9347a    | 2017-03-10        | mwachs5        | Config String: change the Abstract Command to                                 |
|            |                   |                | DMI registers. Allow the same registers to be used                            |
|            |                   |                | for unspecified identifier information.                                       |
| 4ea10ff    | 2017-03-10        | mwachs5        | abstract: Make autoexec apply to all data and prog-                           |
| 1001011    | 2011 00 10        | III Waciiso    | buf words. Make a seperate register which is optional.                        |
| 5008436    | 2017-03-10        | mwachs5        | abstract: Allow up to 16 progbuf and/or data words.                           |
| 3000130    | 201, 00 10        | III Waciiso    | Inform debugger about dscratch registers available                            |
|            |                   |                | for its use.                                                                  |
| aaa13e5    | 2017-03-06        | mwachs5        | Command: use the name 'cmdtype' not 'type' to al-                             |
| aaaioo     | 2011 00-00        | III W COLLDO   | low easier auto-generation of Scala code.                                     |
| e9bb72c    | 2017-03-06        | mwachs5        | Hart Array: Add registers for hart array.                                     |
| 5d17a35    | 2017-03-06        | mwachs5        | DM: Move addresses around for better separation of                            |
| ourrago    | <b>∠∪11-∪1-∪1</b> | 111 M (MC1120) | Divi. Move addresses around for Deliter seperation of                         |
|            |                   |                | functionalities in HW                                                         |

| 25ccaa8            | 2017-03-06               | mwachs5            | CONTROL: Rename control and status registers toCS for consistency and to accurately reflect their |
|--------------------|--------------------------|--------------------|---------------------------------------------------------------------------------------------------|
|                    |                          |                    | functionality.                                                                                    |
| 45cf6c2            | 2017-03-06               | mwachs5            | Errors: fix up the bit assignments in SERSTATUS                                                   |
| 20-1-5-0           | 2017 02 06               | 1 <b>r</b>         | with the addition of error bit.                                                                   |
| 38cb5a0<br>b436d77 | 2017-03-06<br>2017-03-03 | mwachs5<br>mwachs5 | Errors: Make errors write-1-to-clear.                                                             |
| D450U11            | 2017-03-03               | mwachso            | triggers: Clarify that matches are against virtual addresses.                                     |
| 793bb85            | 2017-03-03               | mwachs5            | triggers: Add suggested timings for best user experience.                                         |
| 2669866            | 2017-03-03               | mwachs5            | stoptime/stopcycle: Make their functionality match<br>their name. Allow any reset value.          |
| c85a1cf            | 2017-03-01               | mwachs5            | config_string: Simplify the Config String Address ab-                                             |
|                    |                          |                    | stract command.                                                                                   |
| a303a6b            | 2017-03-02               | Megan Wachs        | Update README.md                                                                                  |
| 92a4923            | 2017-03-01               | mwachs5            | serial: tweak addresses.                                                                          |
| b09f460            | 2017-03-01               | mwachs5            | serial: tweak addresses.                                                                          |
| 6477837            | 2017-03-01               | mwachs5            | chisel: tweaks to class names.                                                                    |
| be83e3e            | 2017-02-28               | Tim Newsome        | Clarify stoptime, stopcycle.                                                                      |
| c17c17c            | 2017-02-27               | Tim Newsome        | Abstract command that returns config string addr.                                                 |
| 096 dfbc           | 2017-02-27               | Tim Newsome        | Acknowledge Alex.                                                                                 |
| c0253ab            | 2017-02-24               | Tim Newsome        | Explain tdata1 type a bit more.                                                                   |
| e43ac2e            | 2017-02-24               | Tim Newsome        | Clarify how to enumerate triggers again.                                                          |
| c6e3e20            | 2017-02-23               | Tim Newsome        | Revert previous commit.                                                                           |
| ef770bf            | 2017-02-23               | Tim Newsome        | mcontrol and icount mask tdata2, not tdata1.                                                      |
| 27806f2            | 2017-02-23               | mwachs5            | rename 'type' to 'cmdtype' purely so my auto-                                                     |
|                    |                          |                    | generation scripts work.                                                                          |
| e46798d            | 2017-02-22               | mwachs5            | Add Abstract Commands to automatic chisel                                                         |
| b3bb939            | 2017-02-21               | mwachs5            | Generate Chisel headers as well for Debug Module.                                                 |
| c9db98c            | 2017-02-22               | Tim Newsome        | Simplify description of op statuses.                                                              |
| bda39cc            | 2017-02-22               | mwachs5            | Add explicit type field to Abstract Command.                                                      |
| f83a1ca            | 2017-02-22               | mwachs5            | Finish up replacement of ibuf-¿progbuf                                                            |
| 9666e51            | 2017-02-22               | mwachs5            | IBUF-¿PROGBUF                                                                                     |
| 5308ecd            | 2017-02-22               | mwachs5            | Remove last references to "Instruction Supply"                                                    |
| f6ebde9            | 2017-02-22               | Tim Newsome        | Move authentication to a serial protocol.                                                         |
| 0 f 0 79 c 8       | 2017-02-22               | Tim Newsome        | Reserve bit for per-hart reset.                                                                   |
| f2c93ac            | 2017-02-22               | Tim Newsome        | Clarify that directive resets authentication.                                                     |
| f5e7b1c            | 2017-02-22               | Alex Bradbury      | Clarify that the halt state of all harts is maintained through reset                              |
| 3dfe8fd            | 2017-02-22               | Tim Newsome        | More Debug Mode -; Halt Mode.                                                                     |
| d29fc1f            | 2017-02-22               | Tim Newsome        | Debug Mode -; Halt Mode                                                                           |
| $55\mathrm{d}6030$ | 2017-02-21               | Tim Newsome        | Generate debug_defines.h as part of normal make                                                   |
| b0e6a7f            | 2017-02-21               | Tim Newsome        | Minor clarifications.                                                                             |
| 0f $9$ 8 $8$ 5 $c$ | 2017-02-20               | Tim Newsome        | Various clarifications.                                                                           |
| 0802d5a            | 2017-02-15               | mwachs5            | Use consistent 'Control and Status' naming for CS                                                 |
|                    |                          |                    | registers.                                                                                        |
| $5\mathrm{accc7d}$ | 2017-02-15               | Tim Newsome        | Change all the "other" JTAG IRs to just reserved.                                                 |
| bcbd7da            | 2017-02-15               | mwachs5            | sm_diagram: Show using resumered bit to resume.                                                   |
|                    |                          |                    |                                                                                                   |

| 18f6e55    | 2017 - 02 - 14 | Tim Newsome  | Introduce resumered command, similar to haltred.      |
|------------|----------------|--------------|-------------------------------------------------------|
| 4b62c40    | 2017-02-14     | mwachs5      | SystemBus: Clean up some formatting and error         |
|            |                |              | specification notes.                                  |
| bc97723    | 2017-02-14     | mwachs5      | quick-access: Update SM Diagram for Quick Access      |
| d27066e    | 2017-02-14     | Tim Newsome  | Clarify haltreq bit.                                  |
| 6f8ec43    | 2017-02-14     | Tim Newsome  | Always generate long constants when required.         |
|            |                |              |                                                       |
| c6ac6bc    | 2017-02-13     | Tim Newsome  | Include field descriptions in C header file.          |
| b849213    | 2017-02-13     | Tim Newsome  | Fix the build.                                        |
| 1cf8033    | 2017-02-12     | mwachs5      | jtag: More clarifications                             |
| 6203bd $6$ | 2017-02-12     | Megan Wachs  | Update requirements—W GPRs Required                   |
| f2b43a7    | 2017-02-12     | Megan Wachs  | Remove double 'the'                                   |
| 2c64ef1    | 2017-02-12     | Megan Wachs  | Remove comma                                          |
| f84abce    | 2017-02-12     | Megan Wachs  | Whitespace edits and address come comments            |
| 23c2648    | 2017-02-11     | mwachs5      | jtag_dtm: ask for clarification on TAP sharing.       |
| 7020d23    | 2017-02-11     | mwachs5      | jtag_dtm: Clarifications, DBUS-¿DMI                   |
| 292d49c    | 2017-02-11     | Megan Wachs  | fix indentation                                       |
| b879b86    | 2017-02-11     | Megan Wachs  | Add missing period                                    |
| bbe0521    | 2017-02-11     | mwachs5      | Make comments on program buffer size match the        |
| 5500021    | 2011 02 11     | III Waliot   | address map.                                          |
| 4ceaa37    | 2017-02-11     | mwachs5      | Flesh out and edit the introduction/background Add    |
| 4ccaao i   | 2011 02 11     | mwaciiso     | a description of use cases this spec has in mind, and |
|            |                |              |                                                       |
| 1 (00.16   | 0017 00 11     | m· N         | what it doesn't cover.                                |
| cbf89d6    | 2017-02-11     | Tim Newsome  | Rewrite Quick Access.                                 |
| 170bff1    | 2017-02-10     | Megan Wachs  | Allow size 4 for the program buffer                   |
| c911e6e    | 2017-02-10     | Tim Newsome  | Clarify use of dmactive.                              |
| 2ca296f    | 2017-02-09     | Tim Newsome  | Reserve command register space for custom use.        |
| e49666e    | 2017-02-09     | Tim Newsome  | Clarify hart index change per Megan's comments.       |
| 84865e9    | 2017-02-09     | Tim Newsome  | Add header prefix for abstract commands.              |
| 2434f4f    | 2017-02-09     | Tim Newsome  | Select harts by index instead of hart ID.             |
| 7 bf 112 a | 2017-02-09     | Tim Newsome  | Generate correct headers for ¿32-bit registers.       |
| 7f0f09a    | 2017-02-08     | Tim Newsome  | Reset dbus status to "failure" to avoid confusion.    |
| 8b1c6f0    | 2017-02-08     | Megan Wachs  | Fix line wrap issue                                   |
| 345c33f    | 2017-02-08     | Megan Wachs  | Call out "arg0" specifically.                         |
| 9f080f5    | 2017-02-08     | Megan Wachs  | Clarify "arguments" to commands                       |
| 259badd    | 2017-02-08     | Tim Newsome  | Make haltsum/halt registers mandatory.                |
| eb0f1d3    | 2017-02-03     | Tim Newsome  | , –                                                   |
|            |                |              | Allow for early abstract command failures.            |
| bb49bd1    | 2017-02-07     | Tim Newsome  | Clarify error handling a little.                      |
| 3fc0a97    | 2017-02-07     | Tim Newsome  | Explain when abstract data regs may be clobbered.     |
| c37167e    | 2017-02-07     | Tim Newsome  | Fix old language in description of halt registers.    |
| 6943c96    | 2017-02-07     | Tim Newsome  | Generate more useful C header files from reg defs     |
| 98639df    | 2017-02-05     | mwachs5      | Include the SM Diagram as a figure. Also some minor   |
|            |                |              | capitalization fixes.                                 |
| a95e4c3    | 2017-02-05     | mwachs5      | Update State Machine diagram to show uncertainty      |
|            |                |              | of halt bit during auto halt/resume.                  |
| ba76744    | 2017-02-05     | Tim Newsome  | Combine loabits and hiabits.                          |
| 02b1d92    | 2017-02-05     | Tim Newsome  | DMI can get away with just 6 address bits.            |
| 35d6e33    | 2017-02-05     | mwachs5      | Update State machine diagram to show BUSY with-       |
| 3040000    | 2011 02-00     | III W WOILDO | out HALTED                                            |
|            |                |              | OUV IIIIIII                                           |

| f511b05        | 2017-02-04 | Tim Newsome | Clarify command busy bit.                            |
|----------------|------------|-------------|------------------------------------------------------|
| d0f8961        | 2017-02-03 | mwachs5     | Update figures                                       |
| e18a68d        | 2017-02-03 | Tim Newsome | Clarify prehalt/postresume failure.                  |
| ac3e2a9        | 2017-02-02 | Tim Newsome | Clarify abstract command failure behavior.           |
| ce4baee        | 2017-02-02 | Tim Newsome | Add Quick Access section.                            |
| 0490377        | 2017-02-02 | Tim Newsome | Add prehalt and postresume to reg command.           |
| 67515bd        | 2017-02-02 | Tim Newsome | Deal with a few minor TODOs.                         |
| 96456fc        | 2017-02-02 | Tim Newsome | Turn register names into links.                      |
| 317cd98        | 2017-02-02 | Tim Newsome | Explain what register access is required.            |
| f3ad2f2        | 2017-02-01 | Tim Newsome | Revert Plain Exception implementation to be simple   |
| a0ad281        | 2017-02-01 | Tim Newsome | execb -¿ preexec, execa -¿ postexec                  |
| 1d4a2c3        | 2017-02-01 | Tim Newsome | Limit Program Buffer sizes to 0, 1, 8.               |
| cc40815        | 2017-02-01 | Tim Newsome | Incorporate Po-wei's feedback.                       |
| c8b45d6        | 2017-02-01 | Tim Newsome | Clarify how all autoexec bits work.                  |
| dbb1deb        | 2017-02-01 | Tim Newsome | Remove stale TODO.                                   |
| c5f8f59        | 2017-02-01 | Tim Newsome | Explain why cmderr inhibits starting new commands.   |
| 5c69194        | 2017-02-01 | Tim Newsome | Fix editing error.                                   |
| 50f7c48        | 2017-02-01 | Tim Newsome | Remove empty hart info register.                     |
| 781c68e        | 2017-02-01 | Megan Wachs | Update README.md                                     |
| f46b32e        | 2017-02-01 | mwachs5     | Add a diagram of Abstract Command flow.              |
| 633bd $63$     | 2017-02-01 | Tim Newsome | Move Reading Order into About This Document          |
| 51ec $4$ d $1$ | 2017-02-01 | Tim Newsome | Add reading order section.                           |
| 03d20ad        | 2017-02-01 | Tim Newsome | autoexec0 applies to data0, not inst0.               |
| c302353        | 2017-01-31 | Tim Newsome | Don't rely on hart fetching instructions once.       |
| 2558c25        | 2017-01-31 | Tim Newsome | Change how exceptions in Halt Mode are handled.      |
| a36ddce        | 2017-01-31 | Tim Newsome | Add size to abstract register command.               |
| 64 de 458      | 2017-01-31 | Tim Newsome | Detail bus master reads.                             |
| c08486f        | 2017-01-31 | Megan Wachs | reset: Add some comments (#5)                        |
| 1558049        | 2017-01-30 | Tim Newsome | Automate Change Log.                                 |
| 51525a4        | 2017-01-29 | Tim Newsome | Update System Overview                               |
| 7d39ac0        | 2017-01-29 | Tim Newsome | Update Supported Features.                           |
| 9e7cbea        | 2017-01-29 | Tim Newsome | Update RISC-V Core section.                          |
| 515188d        | 2017-01-29 | Tim Newsome | Update Hardware Implementations section.             |
| 4b19ed8        | 2017-01-29 | mwachs5     | system_bus: be consistent and always call it 'System |
|                |            |             | Bus'. Even if some dislike the name, we should be    |
| 0 00 1         | 2015 01 00 | m, 37       | consistent and clear in the spec.                    |
| 9ccef3d        | 2017-01-29 | Tim Newsome | Fleshed out some debugger implementation.            |
| 04b9176        | 2017-01-28 | Tim Newsome | Rename debug exception to breakpoint exception.      |
| 5ac4ea1        | 2017-01-27 | Tim Newsome | WIP on big update on instruction supply.             |
| 2d9c3e2        | 2017-01-27 | Tim Newsome | Reorganize dm registers.                             |
| de50ba8        | 2017-01-27 | Tim Newsome | Abstract command support is already addressed.       |
| 5085046        | 2017-01-26 | mwachs5     | Rename registers and fields like 'access' that were  |
| 1011 000       | 0017 01 00 | m· N        | confusingly the same name.                           |
| 10bbf6f        | 2017-01-26 | Tim Newsome | Fix #2: DM address space table                       |
| a05c582        | 2017-01-26 | Tim Newsome | Add debugger inspection as a feature.                |
| 4062681        | 2017-01-24 | Tim Newsome | Add publish target.                                  |
| 5c8bb83        | 2017-01-24 | Tim Newsome | Clarify use of data registers.                       |
| 1504da6        | 2017-01-24 | Tim Newsome | Replace manual date with automatic git hash/date.    |

| 997f2a0   | 2017 - 01 - 23 | Tim Newsome | Deal with unsupported abstract commands.           |
|-----------|----------------|-------------|----------------------------------------------------|
| cb6f2b8   | 2017 - 01 - 23 | Tim Newsome | Renumber registers to prevent duplicates.          |
| 8b4db96   | 2017 - 01 - 23 | Tim Newsome | Don't print out addresses if they're not provided. |
| b00cd21   | 2017 - 01 - 23 | Tim Newsome | Add an abstract command.                           |
| 675b556   | 2017 - 01 - 23 | Tim Newsome | Reorganize DM bits into functional group regs.     |
| 5 fc 7512 | 2017-01-23     | Tim Newsome | Remove bits 33:32 from sbdata[23].                 |
| ceb5d66   | 2017-01-20     | Tim Newsome | Starting point for a comprehensive spec            |