Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

Capítulo 2 Movimento a uma dimensão.

- Observação de movimento linear
- Definição de velocidade e aceleração instantânea.
- Modelos de movimento 1D
- Solução analítico
- Solução numérico

Bibliografia:

Serway, cap. 2 Sørenssen, cap. 4 Villate, cap. 1

Movimento a 1 dimensão

Movimento sem mudança de direção

Movimento em que o caminho pode ser parametrizado com um escalar

Movimento num eixo independente

Como podemos descrever o movimento?

Posição ←→ velocidade ←→ aceleração

Observação de movimento em 1 dimensão

Vídeo de record mundial de Usain Bolt, Berlim 2009 https://youtu.be/3nbjhpcZ9 g

Observação de movimento em 1 dimensão

Em cada instante a posição do Usain Bolt é diferente. A posição é uma quantidade instantânea.

Indica-se a posição ao longo da pista por x(t) e é referenciada no eixo OX.

Neste caso é conveniente colocar a origem do eixo no ponto da partida dos atletas.

Origem do eixo

X

Pelas mesmas razões a velocidade também é uma quantidade instantânea.

Indica-se por $v_x(t)$. O índice x é para indicar que é referenciado no eixo OX.

A posição x(t) e a velocidade $v_x(t)$ podem ser positivos ou negativos!

O desempenho de Bolt nos 100m foi medido.

100m Mer. (23 5.80 4.5

- # Tempos de Usain Bolt a correr os 100 m
- # ficheiro dataUsainBolt.txt
- # 1º conjunto: final olimpica em Pequim, 2008
- # 2º conjunto: record mundial, Berlim 2009
- # Medalha de ouro e record mundial

# x (m)	t1 (s)	t2 (s)	
0	0	0	
10	1.83	1.89	
20	2.87	2.88	
30	3.78	3.78	
40	4.65	4.64	
50	5.50	5.47	
60	6.32	6.29	
70	7.14	7.10	
80	7.96	7.92	
90	8.79	8.75	
100	9.69	9.58	

Pode-se analisar como foi o seu movimento. A lei do movimento x = x(t)

Que se pode afirmar sobre a velocidade de Usain Bolt?

Velocidade média:

$$\overline{v_x} = \frac{\text{distância percorrida}}{\text{tempo}} = \frac{100 \text{ m}}{9.58 \text{ s}} = 10.4 \text{ m/s} = 37.6 \text{ Km/h}$$

Velocidade média em cada percurso de 10 m?

$$\overline{v_{\chi}} = \frac{x_{i+1} - x_i}{t_{i+1} - t_i}$$

x_i	x_{i+1}	$\overline{v_{\chi}}$	
0.0	10.0	5.3	
10.0	20.0	10.1	
20.0	30.0	11.1	
30.0	40.0	11.6	
40.0	50.0	12.0	
50.0	60.0	12.2	
60.0	70.0	12.3	
70.0	80.0	12.2	
80.0	90.0	12.0	
90.0	100.0	12.0	Unidades SI

A **velocidade** de Usain Bolt evolui no tempo.

Começou com velocidade nula, mas rapidamente aumentou a sua velocidade.

t_i	x_i		x_{i+1}
0.0	0.0 1	10.0	5.3
1.89	10.0	20.0	10.1
2.88	20.0	30.0	11.1
3.78	30.0	40.0	11.6
4.64	40.0	50.0	12.0
5.47	50.0	60.0	12.2
6.29	60.0	70.0	12.3
7.10	70.0	80.0	12.2
7.92	80.0	90.0	12.0
8.75	90.0	100.0	12.0
9.58	100.0)	

Aceleração também varia ao longo do percurso

- Nos instantes iniciais a velocidade altera-se muito (de 0 até ~11 m/s)
- Nos instantes médios até ao final a velocidade é ~12 m/s.

Aceleração média nos primeiros 50m:

$$\overline{a_x} = \frac{\text{variação de velocidade}}{\text{tempo}} = \frac{12.0 - 0.0}{5.47 - 0.0} = 2.19 \text{ m/s}^2$$

Nos segundos 50m:
$$\overline{a_x} = 0.0$$

Podemos calcular aceleração nos intervais?

 $\overline{v_{x}}$

$$\overline{a_x} = \frac{v_{i+1} - v_i}{t_{i+1} - t_i}$$
 quais tempos correspondem a cada velocidade?

Para a velocidade tanto como a aceleração, temos muitos poucos valores, os tempos a que correspondem não estão bem definidos.

Idealmente queremos muitos mais intervalos, para intervalos de tempo muito mais pequenos:

No limite quando
$$\delta t o 0$$

$$v_{x}(t) = \frac{dx}{dt}$$

$$a_x(t) = \frac{dv_x}{dt} = \frac{d}{dt}\frac{dx}{dt} = \frac{d^2x}{dt^2}$$

Relação entre as quantidade de interesse do movimento

Posição (instantânea):

Velocidade instantânea:

Aceleração instantânea:

$$x(t)$$

$$v_x(t) = \frac{dx}{dt}$$

$$\downarrow$$

$$a_x(t) = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$$

Se souber como a posição varia no tempo, x(t), saberei a velocidade e a aceleração.

Exemplo: Se $x(t) = \frac{1}{2}gt^2$ $\Rightarrow v_x(t) = gt \Rightarrow \begin{cases} v_x(t) = gt \\ a_x(t) = g \end{cases}$

E se souber a aceleração instantânea?

Relação entre as quantidade de interesse do movimento

Posição (instantânea):
$$x(t)$$
 Velocidade instantânea:
$$v_x(t) = \frac{dx}{dt}$$
 Aceleração instantânea:
$$a_x(t) = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$$

E se souber a aceleração instantânea $a_x(t)$?

Cálculo integral:
$$a_{x}(t)$$

$$v_{x}(t) - v_{x}(t_{0}) = \int_{t_{0}}^{t} a_{x}(t) dt$$

$$\downarrow$$

$$x(t) - x(t_{0}) = \int_{t_{0}}^{t} v_{x}(t) dt$$

Modelo de movimento sabendo a aceleração instantânea

Muitas vezes o modelo do movimento é definido em termos de a_x :

i. aceleração constante

Exemplo: $a_{\chi}(t) = g$ aceleração devido a gravidade $a_{\chi}(t) = 0$ é um caso particular

ii. aceleração depende do tempo

 $a_{\chi}(t)$ é uma função conhecida

Ex.: aceleração de um carro

iii. acelaração depende da velocidade

 $a_{\chi}(v)$ é conhecida (temos que encontrar $a_{\chi}(t)$)

Ex.: queda com resistência do ar

iv. acelaração depende da posição

 $a_x(x)$ é conhecida

Ex.: uma massa afixada a uma mola (mais em capítulos 4 e 5)

Aceleração constante

 $a_x(t) = a$ aceleração constante [e conhece-se condições iniciais $v_x(t_0)$ e $x(t_0)$] e usando cálculo integral:

$$v_{x}(t) = v_{x}(t_{0}) + \int_{t_{0}}^{t} a dt = v_{x}(t_{0}) + a (t - t_{0})$$

$$x(t) = x(t_0) + \int_{t_0}^{t} v_x(t) dt = x(t_0) + v_x(t_0)(t - t_0) + \frac{1}{2}a(t^2 - t_0^2) - at_0(t - t_0)$$

Se $t_0 = 0$:

$$v_x(t) - v_x(0) = g t$$
 $\Rightarrow v_x(t) = v_x(0) + a t$ velocidade linear em tempo

$$x(t) - x(0) = v_x(0) t + \frac{1}{2}gt^2$$
 $\implies x(t) = x(0) + v_x(0) t + \frac{1}{2}at^2$

Eliminando t entre estes dois temos também:

$$v_x(t)^2 = v_x(0)^2 + 2a[x(t) - x(0)]$$

Aceleração Constante

Ex: Queda de uma bola de ténis.

Os valores de posição e de velocidade registados de uma experiência estão no gráfico:

quando é largada, $v_{\chi}(t_0)=0$

Também se faz $t_0 = 0$

A dependência da velocidade no tempo parece linear.

Ex: Queda de uma bola de ténis.

Hipótese: a velocidade é linear no tempo ⇒ aceleração é constante (gravidade)

Efeito da resistência do ar é muito pequeno e estamos a considerar velocidade pequenas.

Regressão linear:

$$m = 9.84 \pm 0.06 \text{ m/s}^2$$

 $b = -0.01 \pm 0.03 \text{ m/s}$ $v_x(t) = b + m t$
 $r^2 = 0.9999$

Se compararmos com as equações de aceleração constante:

$$\begin{cases} v_{\chi}(t) = v_{\chi}(0) + g t \\ x(t) = x(0) + v_{\chi}(0) t + \frac{1}{2}gt^{2} \end{cases}$$

$$g = m = 9.84 \pm 0.06 \,\mathrm{m/s^2}$$

$$v_x(0) = b = -0.01 \pm 0.03 \text{ m/s}$$

Bom modelo!

Aceleração não constante

Ex: Queda de um volante de badmington, em que a *resistência do ar é muito elevada* e o movimento pode apresentar velocidade elevadas. Caso em que o volante é largado.

Os valores de posição registados de uma experiência estão no gráfico

- Para instantes 0 < t < 1.00 s o movimento não parece uniforme.
- Para t > 1.25 s o movimento parece ser uniforme (linear).

Modelo: além de gravidade, modelamos a resistência do ar

- Para velocidades pequenas, o efeito tempo deve ser muito pequena
- Para velocidades maiores, deve depender da velocidade e retardar o movimento.

Ou seja deve originar uma aceleração negativa.

Vamos supor que é proporcional ao quadrado da velocidade

$$a_y^{(res)} = -D |v_y| |v_y|$$

sempre oposta ao sentido do movimento

Então a aceleração do volante será:

$$a_{y}(t) = g - D$$
$$v_{y}|v_{y}|$$

em que o parâmetro D é positivo.

Modelo

$$a_y(t) = g - D |v_y|v_y|$$

Como determinar o parâmetro D ?

A partir deste momento, a velocidade é constante $\left|v_{\mathcal{Y}}\right| = v_T$

velocidade terminal

Concorda com os dados: a velocidade é constante para tempos maiores.

$$0 = g - Dv_T|v_T|$$

$$\Rightarrow D = \frac{g}{v_T |v_T|} = \frac{g}{v_T^2}$$

Se medimos a velocidade limite saberemos o valor de D.

9.50

1.873

```
# Tempos de queda livre de um volante de badmington no ar.
# altura inicial 9.50 m
# Peastrel et al, American Journal of Physics, 48, 511-513 (1980)
# y(m)
             t (s)
0
             0
0.61
             0.347
1.00
             0.470
1.22
            0.519
                                                                v_T = \frac{9.50 - 8.50}{1.873 - 1.726} = 6.8 \, m/s
            0.582
1.52
1.83
             0.650
2.00
            0.674
2.13
             0.717
2.44
             0.766
            0.823
2.74
                                                               a_{y}(t) = g - \frac{g}{v_{T}^{2}} v_{y} |v_{y}|
3.00
             0.870
             1.031
4.00
5.00
             1.193
             1.354
6.00
             1.501
7.00
             1.726
8.50
```


estes dados estão no e-learning, ficheiro: data_cap2_queda_volante.txt

Modelo:

$$v_y(0) = 0$$
 $a_y(t) = g - \frac{g}{v_T^2} v_y |v_y|$ $g = 9.8 \, m/s^2$ $v_T = 6.80 \, \text{m/s}.$

$$g = 9.8 \, m/s^2$$

$$v_T = 6.80 \text{ m/s}.$$

Por integração analítica:

$$\Rightarrow y(t) = \frac{v_T^2}{g} \ln \left[\cosh \left(\frac{gt}{v_T} \right) \right]$$

(Python também tem um pacote para cálculo simbólico).

Acordo muito bom entre a lei do movimento e os dados.

Bom modelo!

Se fizer a aceleração devida à resistência do ar proporcional à velocidade não se obtêm acordo

O que podemos fazer quando não há (ou não sabemos) uma solução analítica?

Quando a aceleração é constante, e em alguns casos mais complexos, temos solução analítica

Quando a aceleração depende de tempo, de velocidade ou de posição, em muitos casos não temos uma solução analítica.

Temos que recorrer a uma solução numérica: efetivamente, simulação

o primeiro método que vamos aprender chama-se o Método de Euler

Método de Euler

Definição da derivada de uma função

$$v_{x}(t) = \lim_{\delta t \to 0} \frac{x(t+\delta t) - x(t)}{\delta t}$$

aproximar com

$$v_{\chi}(t) \approx \frac{x(t+\delta t)-x(t)}{\delta t}$$

com δt pequeno (mas não zero)

Leonhard Euler 1707-1783

Multiplicar por δt

$$\Rightarrow$$
 $x(t + \delta t) - x(t) \approx v_x(t) \times \delta t$

$$\Rightarrow x(t+\delta t) \approx x(t) + v_x(t) \times \delta t$$

Se soubermos no mesmo instante, t, a **posição** x(t) e a **velocidade** $v_x(t) = \frac{dx(t)}{dt}$ (a sua derivada)

Podemos calcular (aproximadamente) o valor da posição num instante posterior, $x(t + \delta t)$.

Método de Euler

Temos

$$x(t + \delta t) \approx x(t) + v_x(t) \times \delta t$$

Comecando com $x(0) = x_0$

Obtêm-se
$$x(\delta t) = x_0 + v_x(0) \times \delta t$$

e de novo
$$x(\delta t + \delta t) = x(\delta t) + v_x(\delta t) \times \delta t$$

e
$$x(2\delta t + \delta t) = x(2\delta t) + v_x(2\delta t) \times \delta t$$

Leonhard Euler 1707-1783

Pode-se calcular a posição em qualquer instante posterior ao instante inicial.

etc.

O método de Euler é um **método numérico de integração:** sabendo $v_{\chi}(t)$ pode-se calcular $\chi(t)$

Compare
$$x(t) = x(t_0) + \int_{t_0}^{t} v_x(t) dt$$

Tem-se de escolher o passo temporal δt de modo a conseguir a convergência da solução

Implementar em python o método de Euler para resolver a equação diferencial

$$\frac{dx(t)}{dt} = v_{\chi}(t),$$

Queremos calcular valores de x(t) de δt em δt começando em $t_0=0$ até $t=t_f$

Parâmetros:

$$egin{array}{lll} \delta t & {
m passo \ temporal} \\ t_0 = 0 & {
m instante \ inicial} \\ t_f & {
m instante \ final} \\ x_0 = 0 & {
m posição \ inicial} \\ v_x(0) = 0 & {
m velocidade \ inicial} \\ \end{array}$$

e sabemos calcular

 $v_{x}(t)$ em cada instante

Relação entre passo de tempo e número de passos

Com N passos de δt , o tempo decorrido é $t_f - t_0 = N \ \delta t$

$$N = \frac{t_f - t_0}{\delta t}$$

número de passos

$$\delta t = \frac{t_f - t_0}{N}$$

passo temporal

$$egin{array}{ll} \delta t & {
m passo \ temporal} \\ t_0 = 0 & {
m instante \ inicial} \\ t_f & {
m instante \ final} \\ x_0 = 0 & {
m posição \ inicial} \\ \end{array}$$

$$v_{x}(0)=0$$

velocidade inicial

e sabemos calcular

 $v_x(t)$ em cada instante

$$N = \frac{t_f - t_0}{\delta t}$$

número de passos

METODO DE EULER:

$$\begin{aligned} x(0) &= x_0 \\ x(\delta t) &\approx x(0) + v_x(0) \times \delta t \\ x(\delta t + \delta t) &\approx x(\delta t) + v_x(\delta t) \times \delta t \end{aligned}$$

•••

$$x(i\delta t) \approx x((i-1)\delta t) + v_x((i-1)\delta t) \times \delta t$$

•••

$$x(N\delta t) \approx x((N-1)\delta t) + v_x((N-1)\delta t) \times \delta t$$

Variáveis

Array de tempos

t=numpy.linspace(t0,tf,N+1)

Array de posições

X=numpy.zeros(N+1) ou numpy.empty(N+1)

(Array de velocidades)

$$x(0) = x_0$$
 \rightarrow $x[0]$ corresponde ao $t[0] = 0$ \rightarrow $x(\delta t) \approx x_0 + v_x(0) \times \delta t$ \rightarrow $x[1]$ corresponde ao $t[1] = \delta t$ \rightarrow $x(i\delta t) \approx x \left((i-1)\delta t \right) + v_x \left((i-1)\delta t \right) \times \delta t$ \rightarrow $x[i]$ corresponde ao $t[i] = i\delta t$ \rightarrow $x(N\delta t) \approx v_x \left((N-1)\delta t \right) + v_x \left((N-1)\delta t \right) \times \delta t$ \rightarrow $x[N]$ corresponde ao $t[N] = N\delta t = t_f$

indexação: de 0 a N, num total de N+1 elementos

Exemplo do Método de Euler

Queda livre de uma bola te ténis, sem resistência do ar

$$t_0 = 0$$

$$x(0) = 0$$

$$v_x(0) = 0$$

Aceleração é constante:

$$a_{\chi}(t) = +g$$

Já resolvemos este problema por integração analítica.

Agora vamos encontrar a velocidade e a posição pelo **Método de Euler**, e podemos comparar com o resultado exato.

X

Estrutura

- 1. Initializar
- Constantes
- Condições iniciais
- Numero de passos
- Variáveis
- 2. Algoritmo
- Iteração do método de Euler
- 3. Resultados
- Apresentar resultados
- Gráficos etc.

```
# Integração numérica de dx/dt = vx, pelo Método de Euler
# queda livre com vx = g*t
import numpy as np
#constantes
dt = 0.01
                                        # passo de tempo
tf=4.0
t0=0
x0=0
v0x=0
g = 9.80
# numero de passos
n=np.int((tf-t0)/dt+0.1)
                          # +0.1 para não arredondar para baixo
# criar arrays
t=np.zeros(n+1)
                                        # n+1 elementos; último índice n
x=np.zeros(n+1)
vx=np.zeros(n+1)
#valores iniciais nos arrays
vx[0]=v0x
t[0]=t0
x[0]=x0
# Método de Euler (n+1 elementos)
for i in range(n):
  vx[i]=g*t[i]
                          # último x[n]=x[n-1]+vx[n-1]*dt
  x[i+1]=x[i]+vx[i]*dt
  t[i+1]=t[i]+dt
# Apresentar resultados
```

Exemplo do Método de Euler

Escolha do passo temporal δt

Para um tempo final t_f (t_0 =instante inicial)

$$N = \frac{t_f - t_0}{\delta t}$$
 ou $\delta t = \frac{t_f - t_0}{N}$

Número de passos N e δt são inversamente proporcionais

Resultados dependem no passo temporal δt

Na figura, para t_f = 5s:

$$δt$$
=0.5s N=10 $δt$ =0.25s N=20

aproxima-se mais aos valores exatos

Movimento uniformemente acelerado (aceleração=g)

Exemplo do Método de Euler Escolha do passo temporal δt

Vamos usar o erro na posição em *t*=2s para avaliar o método

δ t	N	$x(2)_{Euler}$	$\varepsilon_{global} = x(2)_{exato} - x(2)_{Euler} $
0.5	4	14.7	4.9
0.25	8	17.15	2.45
0.1	20	18.62	0.98
0.05	40	19.1	0.50
0.01	200	19.502	0.10
0.005	400	19.550	0.05
$x(2)_{exato}$		19.6000	

O erro global do método de Euler é **proporcional ao passo, ou seja inversamente proporcional ao número de passos** *N***.**

Método de Euler

E se não sabemos a velocidade?

$$\lim_{\delta t \to 0} \frac{v_{x}(t+\delta t) - v_{x}(t)}{\delta t} = a_{x}(t)$$

aproximado por

$$rac{v_{\chi}(t+\delta t)-v_{\chi}(t)}{\delta t}pprox a_{\chi}(t)$$
 para δt pequenos

Leonhard Euler 1707-1783

Então pelo mesmo racioncínio de antes:

$$v_{x}(t + \delta t) \approx v_{x}(t) + a_{x}(t) \times \delta t$$

Se soubermos no mesmo instante, t, a **velocidade** $v_x(t)$ e a **aceleração** $a_x(t) = \frac{dv_x(t)}{dt}$ (a sua derivada) Podemos calcular o valor da velocidade num instante posterior, $t + \delta t$.

Método de Euler cálculo de velocidade

$$v_x(t + \delta t) \approx v_x(t) + a_x(t) \times \delta t$$

E outra vez,

Comecando com
$$v_x(0) = v_{x0}$$

Obtêm-se
$$v_x(\delta t) = v_{x0} + a_x(0) \times \delta t$$

e de novo
$$v_x (\delta t + \delta t) = v_x(\delta t) + a_x(\delta t) \times \delta t$$

e
$$v_x(2\delta t + \delta t) = v_x(2\delta t) + a_x(2\delta t) \times \delta t$$
 etc.

Leonhard Euler 1707-1783

Pode-se calcular a velocidade em qualquer instante posterior ao instante inicial.

Método de Euler velocidade e posição

Podemos combinar o cálculo de posição e velocidade, fazendo duas integrações numéricas ao mesmo tempo:

$$x(t + \delta t) \approx x(t) + v_x(t) \times \delta t$$

$$v_{x}(t + \delta t) \approx v_{x}(t) + a_{x}(t) \times \delta t$$

Se se conhecer

$$x(0) = x_0$$

$$v_{\chi}(0) = v_{\chi 0}$$

Obtêm-se

$$x(\delta t) \approx x_0 + v_x(0) \times \delta t$$

$$v_x(\delta t) \approx v_{x0} + a_x(0) \times \delta t$$

e de novo

$$x(\delta t + \delta t) \approx x(\delta t) + v_x(\delta t) \times \delta t$$

$$v_{x}(\delta t + \delta t) \approx v_{x}(\delta t) + a_{x}(\delta t) \times \delta t$$

e

$$x(2\delta t + \delta t) \approx x(2\delta t) + v_x(2\delta t) \times \delta t$$

$$v_x(2\delta t + \delta t) \approx v_x(2\delta t) + a_x(2\delta t) \times \delta t$$

..

•••

Implementação posição e velocidade

```
# Integração numérica de dx/dt = vx, e dv/dt = ax pelo Método de Euler
import numpy as np
#constantes
dt=0.01
                                     # passo de tempo
tf=4.0
t0=0
x0 = 0
v0x=0
g=9.80
# numero de passos
n=np.int((tf-t0)/dt+0.1) # +0.1 para não arredondar para baixo
# criar arrays
                                     # n+1 elementos; último índice n
t=np.zeros(n+1)
x=np.zeros(n+1)
vx=np.zeros(n+1)
#inicializar
vx[0]=v0x
t[0]=t0
x[0]=x0
# Método de Euler (n+1 elementos)
for i in range(n):
  ax[i] = g # neste exemplo é simples,
                        # mas pode ser qualquer função de x[i] e vx[i]
  x[i+1]=x[i]+vx[i]*dt
  vx[i+1]=vx[i] + ax[i]*dt # atualizar velocidade sabendo aceleração
  t[i+1]=t[i]+dt
```

Erro cometido na aproximação de Euler

A fórmula no método de Euler é apenas aproximada

$$v_{\chi}(t + \delta t) = v_{\chi}(t) + a_{\chi}(t) \times \delta t + ERRO$$

Para saber o tamanho deste erro, comparamos com a série de Taylor:

Série de Taylor, exato

$$v_{\chi}(t+\delta t) = v_{\chi}(t) + \frac{dv_{\chi}}{dt} \bigg|_{t} \delta t + \frac{1}{2} \frac{d^{2}v_{\chi}}{dt^{2}} \bigg|_{t} \delta t^{2} + \frac{1}{3!} \frac{d^{3}v_{\chi}}{dt^{3}} \bigg|_{t} \delta t^{3} + \sigma(\delta t^{4}) \quad \lim_{\delta t \to 0} \frac{\delta t^{n}}{n!} = 0$$

$$= v_{x}(t) + a_{x}(t) \delta t + \frac{1}{2} \frac{d^{2}v_{x}}{dt^{2}} \bigg|_{t} \delta t^{2} + \frac{1}{3!} \frac{d^{3}v_{x}}{dt^{3}} \bigg|_{t} \delta t^{3} + \sigma(\delta t^{4})$$

corresponde ao método de Euler

erro de truncatura

Erro cometido na aproximação de Euler

$$v_{x}(t + \delta t) = v_{x}(t) + a_{x}(t) \delta t$$

Exato

$$v_{\chi}(t+\delta t) = v_{\chi}(t) + a_{\chi}(t) \delta t + \underbrace{\frac{1}{2} \frac{d^2 v_{\chi}}{dt^2} \Big|_{t} \delta t^2 + \frac{1}{3!} \frac{d^3 v_{\chi}}{dt^3} \Big|_{t} \delta t^3 + \sigma(\delta t^4)}_{\text{erro (de truncatura)}}$$

Erro de truncatura local (um passo) proporcional a δt^2 .

O cálculo de $v_{\chi}(t_f)$ usou N passos temporais δt .

O erro global ao fim de N passos é proporcional a N δt 2

que é igual a
$$N\left(\frac{t_f-t_0}{N}\right)^2=\frac{\left(t_f-t_0\right)^2}{N}=\left(t_f-t_0\right)\delta t$$

O erro de truncatura é proporcional ao inverso do número de passos N, e proporcional ao passo δt

Erro em x(t) obtem-se de forma semelhante:

Série de Taylor:

$$x(t+\delta t) = x(t) + \frac{dx}{dt} \bigg|_{t} \delta t + \frac{1}{2} \frac{d^{2}x}{dt^{2}} \bigg|_{t} \delta t^{2} + \frac{1}{3!} \frac{d^{3}x}{dt^{3}} \bigg|_{t} \delta t^{3} + \sigma(\delta t^{4})$$

Método de Euler

$$x(t + \delta t) = x(t) + [v_x(t) + \Delta v_x(t)]\delta t$$

Exato

$$x(t + \delta t) = x(t) + v_x(t) \delta t + \Delta v_x(t) \delta t + \frac{1}{2} \frac{d^2 x}{dt^2} \Big|_{t} \delta t^2 + \frac{1}{3!} \frac{d^3 x}{dt^3} \Big|_{t} \delta t^3 + \sigma(\delta t^4)$$
erro (de truncatura)

 $\Delta v_x(t)$ = Erro em v_x até tempo t, proporcional a δt (slide anterior)

 \Rightarrow Erro de truncatura local (um passo) proporcional a δt^2 .

O erro global ao fim de N passos é proporcional a N $\delta t^2 = N \left(\frac{t_f - t_0}{N}\right)^2 = \frac{\left(t_f - t_0\right)^2}{N} = \left(t_f - t_0\right)\delta t$

O erro de truncatura é proporcional ao **inverso** do **número de passos** N, e **proporcional ao passo** δt , tanto para x(t) como para $v_x(t)$

Acorda com os resultados numéricos:

Erro na posição em *t*=2s

δ t	N	$x(2)_{Euler}$	$\varepsilon_{global} = x(2)_{exato} - x(2)_{Euler} $
0.5	4	14.7	4.9
0.25	8	17.15	2.45
0.1	20	18.62	0.98
0.05	40	19.1	0.50
0.01	200	19.502	0.10
0.005	400	19.550	0.05
$x(2)_{exato}$		19.6000	

O erro global do método de Euler é **proporcional ao passo, ou seja inversamente proporcional ao número de passos** *N*.

Resumo: Movimento a 1D

 Quando a aceleração é constante, a solução pode ser obtida analiticamente utilizando as equações cinemáticas

$$v_x(t) = v_x(0) + a t$$

$$x(t) = x(0) + v_x(0) t + \frac{1}{2} a t^2$$

$$v_x(t)^2 = v_x(0)^2 + 2a[x(t) - x(0)]$$

- Em alguns casos de aceleração não constante, uma solução analítica pode ser obtida por integração
- O método de Euler funciona para qualquer função de aceleração, e dá resultados fiáveis se escolhemos um passo de tempo δt adequado

Os mesmos métodos são aplicáveis

ao **movimento ao longo de uma curva**, utilizando a distância ao longo da curva como a posição ou aos casos em que o movimento numa dimensão **é independente de outros** movimentos (por exemplo, a posição vertical de um para-quedista)