Develop and integrate the stiffness matrix of the Physical Element described below. This element is a four-node plane stress quadrilateral element with two degrees of freedom per node. This stiffness matrix is given by:

$$[K] = \int_{-1}^{1} \int_{-1}^{1} [B]^{T} [D] [B] \det [J] t_{e} d\xi d\eta$$

in which $\det [J]$ is the determinant of the Jacobian Matrix:

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix}$$

[B] is the strain-displacement matrix with $\{\varepsilon\} = [B] \{d\}$ and [D] is the linear isotropic stiffness matrix:

$$[D] = \frac{E}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}$$

Use the following material properties: $E = 70 \, \text{GPa}, \, \nu = 0.33$.

Assume the element is 2.5 mm thick.

The nodal coordinates (x, y) of the physical element are:

Node
$$1 = (-0.25, -1.0)$$

Node $2 = (1.0, -0.50)$

Node
$$2 = (1.0, -0.50)$$

Node
$$3 = (0.75, 0.25)$$

Node
$$4 = (0.75, 0.50)$$

with shape functions:

$$N_1 = \frac{1}{4}(1-\xi)(1-\eta)$$

$$N_2 = \frac{1}{4}(1+\xi)(1-\eta)$$

$$N_3 = \frac{1}{4}(1+\xi)(1+\eta)$$

$$N_4 = \frac{1}{4}(1 - \xi)(1 + \eta)$$

Solution:

The stiffness matrix [K] is defined by the following integral:

$$[K] = t_e \int_{-1}^{1} \int_{-1}^{1} [B]^T [D] [B] \det [J] d\xi d\eta$$

with integrand Φ :

$$\Phi_i = \begin{bmatrix} B \end{bmatrix}^T \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B \end{bmatrix} \det \begin{bmatrix} J \end{bmatrix}$$

Evaluation of this integral for a four-node element as described in the problem statement is complex or impossible to do analytically. To approximate the stiffness matrix of this element we will utilize Gaussian Quadrature. Using preexisting knowledge regarding the formation of a 4-point quadrature, we can bypass several complex steps. The quadrature for our stiffness matrix takes the following form:

$$[K] = ([K]_1 + [K]_2 + [K]_3 + [K]_4) * t_e$$

where the $[K]_i$ are the integrand of the stiffness matrix equation evaluated at some pre-selected quadrature points.

$$[K]_1 = \Phi(\xi_1, \eta_1)$$

$$[K]_2 = \Phi(\xi_2, \eta_2)$$

$$[K]_3 = \Phi(\xi_3, \eta_3)$$

$$[K]_4 = \Phi(\xi_4, \eta_4)$$

For this quadrature the points are as follows:

$$\Phi(\xi_1, \eta_1) = \frac{1}{\sqrt{3}}(-1, -1)$$

$$\Phi(\xi_2, \eta_2) = \frac{1}{\sqrt{3}}(1, -1)$$

$$\Phi(\xi_3, \eta_3) = \frac{1}{\sqrt{3}}(1, 1)$$

$$\Phi(\xi_4, \eta_4) = \frac{1}{\sqrt{3}}(-1, 1)$$

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} \frac{\partial N_1}{\partial \xi} & \frac{\partial N_2}{\partial \xi} & \frac{\partial N_3}{\partial \xi} & \frac{\partial N_4}{\partial \xi} \\ \frac{\partial N_1}{\partial \eta} & \frac{\partial N_2}{\partial \eta} & \frac{\partial N_3}{\partial \eta} & \frac{\partial N_4}{\partial \eta} \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \\ x_4 & y_4 \end{bmatrix}$$

From MATLAB, [J] for an arbitrary ξ and η :

$$J = \begin{bmatrix} \frac{\eta}{8} + \frac{3}{4} & \frac{1}{16} - \frac{3\eta}{16} \\ \frac{\xi}{8} - \frac{1}{4} & \frac{9}{16} - \frac{3\xi}{16} \end{bmatrix}$$

From MATLAB, det [J] for an arbitrary ξ and η :

$$\det\left[J\right] = \frac{3\,\eta}{128} - \frac{19\,\xi}{128} + \frac{7}{16}$$

[B] is given by:

$$[B] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} [J]^{-1} & 0 \\ 0 & [J]^{-1} \end{bmatrix} \begin{bmatrix} N_{1,\xi} & 0 & N_{2,\xi} & 0 & N_{3,\xi} & 0 & N_{4,\xi} & 0 \\ N_{1,\eta} & 0 & N_{2,\eta} & 0 & N_{3,\eta} & 0 & N_{4,\eta} & 0 \\ 0 & N_{1,\xi} & 0 & N_{2,\xi} & 0 & N_{3,\xi} & 0 & N_{4,\xi} \\ 0 & N_{1,\eta} & 0 & N_{2,\eta} & 0 & N_{3,\eta} & 0 & N_{4,\eta} \end{bmatrix}$$

From MATLAB, [B] for an arbitrary ξ and η (denoted by k and e respectively):

$$B =$$

where

From MATLAB, the integrand
$$\Phi$$
 for an arbitrary ξ and η (denoted by k and e respectively):

$$[[((#23 - #25) (#31 - #33) + (#17 - #7) (#29 - #13)) #1,$$

3 e - 19 k + 56 3 e - 19 k + 56

```
((#27 - #5) (#31 - #33) + (#23 - #25) (#29 - #13)) #1,
-((#23 - #25) (#31 - #32) + (#17 - #7) (#29 - #12)) #1,
-((#27 - #5) (#31 - #32) + (#23 - #25) (#29 - #12)) #1,
((#23 - #25) (#30 - #32) + (#17 - #7) (#28 - #12)) #1,
((#27 - #5) (#30 - #32) + (#23 - #25) (#28 - #12)) #1,
-((#23 - #25) (#30 - #33) + (#17 - #7) (#28 - #13)) #1,
-((#27 - #5) (#30 - #33) + (#23 - #25) (#28 - #13)) #1],
[((#9 - #11) (#29 - #13) + (#15 - #3) (#31 - #33)) #1,
((#15 - #3) (#29 - #13) + (#31 - #33) (#19 - #21)) #1,
-((#9 - #11) (#29 - #12) + (#15 - #3) (#31 - #32)) #1,
-((#15 - #3) (#29 - #12) + (#31 - #32) (#19 - #21)) #1,
((#9 - #11) (#28 - #12) + (#15 - #3) (#30 - #32)) #1,
((#15 - #3) (#28 - #12) + (#30 - #32) (#19 - #21)) #1,
-((#9 - #11) (#28 - #13) + (#15 - #3) (#30 - #33)) #1,
-((#15 - #3) (#28 - #13) + (#30 - #33) (#19 - #21)) #1],
[-((#23 - #24) (#31 - #33) + (#17 - #6) (#29 - #13)) #1,
-((#27 - #4) (#31 - #33) + (#23 - #24) (#29 - #13)) #1,
((#23 - #24) (#31 - #32) + (#17 - #6) (#29 - #12)) #1,
((#27 - #4) (#31 - #32) + (#23 - #24) (#29 - #12)) #1,
-((#23 - #24) (#30 - #32) + (#17 - #6) (#28 - #12)) #1,
-((#27 - #4) (#30 - #32) + (#23 - #24) (#28 - #12)) #1,
```

```
((#23 - #24) (#30 - #33) + (#17 - #6) (#28 - #13)) #1,
((#27 - #4) (#30 - #33) + (#23 - #24) (#28 - #13)) #1],
[-((#9 - #10) (#29 - #13) + (#15 - #2) (#31 - #33)) #1,
-((#15 - #2) (#29 - #13) + (#31 - #33) (#19 - #20)) #1,
((#9 - #10) (#29 - #12) + (#15 - #2) (#31 - #32)) #1,
((#15 - #2) (#29 - #12) + (#31 - #32) (#19 - #20)) #1,
-((#9 - #10) (#28 - #12) + (#15 - #2) (#30 - #32)) #1,
-((#15 - #2) (#28 - #12) + (#30 - #32) (#19 - #20)) #1,
((#9 - #10) (#28 - #13) + (#15 - #2) (#30 - #33)) #1,
((#15 - #2) (#28 - #13) + (#30 - #33) (#19 - #20)) #1],
[((#22 - #24) (#31 - #33) + (#16 - #6) (#29 - #13)) #1,
((#26 - #4) (#31 - #33) + (#22 - #24) (#29 - #13)) #1,
-((#22 - #24) (#31 - #32) + (#16 - #6) (#29 - #12)) #1,
-((#26 - #4) (#31 - #32) + (#22 - #24) (#29 - #12)) #1,
((#22 - #24) (#30 - #32) + (#16 - #6) (#28 - #12)) #1,
((#26 - #4) (#30 - #32) + (#22 - #24) (#28 - #12)) #1,
-((#22 - #24) (#30 - #33) + (#16 - #6) (#28 - #13)) #1,
-((#26 - #4) (#30 - #33) + (#22 - #24) (#28 - #13)) #1],
[((#8 - #10) (#29 - #13) + (#14 - #2) (#31 - #33)) #1,
((#14 - #2) (#29 - #13) + (#31 - #33) (#18 - #20)) #1,
-((#8 - #10) (#29 - #12) + (#14 - #2) (#31 - #32)) #1,
```

```
-((#14 - #2) (#29 - #12) + (#31 - #32) (#18 - #20)) #1,
((#8 - #10) (#28 - #12) + (#14 - #2) (#30 - #32)) #1,
((#14 - #2) (#28 - #12) + (#30 - #32) (#18 - #20)) #1,
-((#8 - #10) (#28 - #13) + (#14 - #2) (#30 - #33)) #1,
-((#14 - #2) (#28 - #13) + (#30 - #33) (#18 - #20)) #1],
[-((#22 - #25) (#31 - #33) + (#16 - #7) (#29 - #13)) #1,
-((#26 - #5) (#31 - #33) + (#22 - #25) (#29 - #13)) #1,
((#22 - #25) (#31 - #32) + (#16 - #7) (#29 - #12)) #1,
((#26 - #5) (#31 - #32) + (#22 - #25) (#29 - #12)) #1,
-((#22 - #25) (#30 - #32) + (#16 - #7) (#28 - #12)) #1,
-((#26 - #5) (#30 - #32) + (#22 - #25) (#28 - #12)) #1,
((#22 - #25) (#30 - #33) + (#16 - #7) (#28 - #13)) #1,
((#26 - #5) (#30 - #33) + (#22 - #25) (#28 - #13)) #1],
[-((#8 - #11) (#29 - #13) + (#14 - #3) (#31 - #33)) #1,
-((#14 - #3) (#29 - #13) + (#31 - #33) (#18 - #21)) #1,
((#8 - #11) (#29 - #12) + (#14 - #3) (#31 - #32)) #1,
((#14 - #3) (#29 - #12) + (#31 - #32) (#18 - #21)) #1,
-((#8 - #11) (#28 - #12) + (#14 - #3) (#30 - #32)) #1,
-((#14 - #3) (#28 - #12) + (#30 - #32) (#18 - #21)) #1,
((#8 - #11) (#28 - #13) + (#14 - #3) (#30 - #33)) #1,
((#14 - #3) (#28 - #13) + (#30 - #33) (#18 - #21)) #1]]
```

where

5398230694108405 #38 (e + 6)

$$#37 == 3 e - 19 k + 56$$

From MATLAB, $[K]_1$:

$$[K]_1 =$$

Columns 1 through 2

14020.8948929524	7969.14111437039
7969.14111437039	25974.606564508
-9714.81607093324	-6231.22823878262
-6308.67080895101	-6244.91306623978
-3756.88746372825	-2135.3249259652
-2135.3249259652	-6959.87485267606
-549.191358290926	397.412050377436
474.854620545818	-12769.8186455922

Columns 3 through 4

-9714.81607093324	-6308.67080895101
-6231.22823878262	-6244.91306623978
12462.9822177267	1605.00089114581
1605.00089114581	4595.39016861992
2603.07712082345	1690.40324857222
1669.65257443581	1673.31941290152
-5351.24326761689	3013.26666923298
2956 57477320101	-23, 796515281649

Columns 5 through 6

-3756.88746372825	-2135.3249259652
-2135.3249259652	-6959.87485267606
2603.07712082345	1669.65257443581
1690.40324857222	1673.31941290152
1006.65496196059	572.158589490423
572.158589490423	1864.89284619623
147.155380944205	-106.486237961031
-127.236912097439	3421.66259357831

Columns 7 through 8

-549.191358290926	474.854620545818
397.412050377436	-12769.8186455922
-5351.24326761689	2956.57477320101
3013.26666923298	-23.796515281649
147.155380944205	-127.236912097439
-106.486237961031	3421.66259357831
5753.27924496361	-3304.19248164938
-3304.19248164938	9371.9525672955

From MATLAB, $[K]_2$:

$$[K]_2 =$$

Columns 1 through 2

7588.9253023072 3526.13735617572

From MATLAB, $[K]_3$:

$$[K]_3 =$$

COTUMNS I CHICURI	mns 1 through 2	ımns :	Col
-------------------	-----------------	--------	-----

1404.37112147306	798.210936563748
798.210936563748	2601.68752631868
1984.32974657417	937.719704897028
916.96903076062	6825.14587349537
-5241.18437801994	-2978.96377041304
-2978.96377041304	-9709.63003363951
1852.48350997271	1243.03312895227
1263.78380308868	282.796633825457

Columns 3 through 4

1984.32974657417	916.96903076062
937.719704897028	6825.14587349537
6912.33021532338	-1308.18949358814
-1308.18949358814	20122.5274204681
-7405.61943318509	-3422.17501176582
-3499.6175819342	-25471.7911689538
-1491.04052871246	3813.39547459334
3870.08737062532	-1475.88212500972

Columns 5 through 6

-5241.18437801994	-2978.96377041304
-2978.96377041304	-9709.63003363951
-7405.61943318509	-3499.6175819342
-3422.17501176582	-25471.7911689538
19560.3663906067	11117.6441450884
11117.6441450884	36236.8326082394
-6913.56257940168	-4639.06279274118
-4716 50536290956	-1055 41140564606

Columns 7 through 8

1852.48350997271	1263.78380308868
1243.03312895227	282.796633825457
-1491.04052871246	3870.08737062532
3813.39547459334	-1475.88212500972

AEE 546 Finite Element Analysis I	Homework 4	Evan Burke 1 November 2022
-6913.56257940168 -4639.06279274118 6552.11959814143 -417.36581080443	-4716.50536290956 -1055.41140564606 -417.36581080443 2248.49689683032	
From MATLAB, $[K]_4$:		
	$[K]_4 =$	
Columns 1 through 2		
7449.82559864112 3100.30015594989 68.5872100647694 -933.097186753958 -7262.44185599477 -5649.56907856129 -255.970952711119 3482.36610936536	3100.30015594989 19171.8899629945 -912.34651261755 2482.19802935211 -5592.87718252932 -12390.3988323572 3404.92353919698 -9263.68915998941	
Columns 3 through 4		
68.5872100647694 -912.34651261755 775.134467548404 -339.568129723115 2049.11953797532 -15.3708704171405 -2892.84121558849 1267.28551275781	-933.097186753958 2482.19802935211 -339.568129723115 622.328809173003 5.37980371926812 -781.964103677629 1267.28551275781 -2322.56273484748	
Columns 5 through 6		
-7262.44185599477 -5592.87718252932 2049.11953797532 5.37980371926812 12860.7405445254 5607.5750796251 -7647.41822650596	-5649.56907856129 -12390.3988323572 -15.3708704171405 -781.964103677629 5607.5750796251 10254.0331714148 57.3648693533256	

2918.32976461997

-20.0777008150566

Columns 7 through 8

-255.970952711119	3482.36610936536
3404.92353919698	-9263.68915998941
-2892.84121558849	1267.28551275781
1267.28551275781	-2322.56273484748
-7647.41822650596	-20.0777008150566
57.3648693533256	2918.32976461997
10796.2303948056	-4729.57392130811
-4729.57392130811	8667.92213021693

Finally, from MATLAB, [K]:

$$\left[K\right] = (\left[K\right]_1 + \left[K\right]_2 + \left[K\right]_3 + \left[K\right]_4) * t_e =$$

7.62E + 04	3.85E + 04	-3.68E+04	-1.65E+04	-4.67E + 04	-3.52E+04	7.34E + 03	1.32E + 04
3.85E + 04	1.36E + 05	-1.60E+04	1.62E + 04	-3.52E+04	-9.56E + 04	1.28E + 04	-5.67E + 04
-3.68E+04	-1.60E+04	9.32E + 04	-1.89E+04	-2.06E+04	9.64E + 03	-3.58E+04	2.53E+04
-1.65E+04	1.62E + 04	-1.89E+04	9.77E + 04	1.01E + 04	-9.51E+04	2.53E+04	-1.88E+04
-4.67E+04	-3.52E+04	-2.06E+04	1.01E + 04	9.97E + 04	4.11E+04	-3.24E+04	-1.60E+04
-3.52E+04	-9.56E + 04	9.64E + 03	-9.51E+04	4.11E+04	1.68E + 05	-1.55E+04	2.22E+04
7.34E+03	1.28E + 04	-3.58E+04	2.53E+04	-3.24E+04	-1.55E+04	6.08E + 04	-2.25E+04
1.32E + 04	-5.67E + 04	2.53E + 04	-1.88E + 04	-1.60E + 04	2.22E+04	-2.25E+04	5.32E + 04