COMMUNITY-DRIVEN HIERARCHICAL FUSION OF NUMEROUS CLASSIFIERS

APPLICATION TO VIDEO SEMANTIC INDEXING

Hervé BREDIN

perso.limsi.fr/bredin bredin@limsi.fr

Late fusion (aka score fusion)

- N: number of shots in test set
- K: number of classifiers
 - x_{kn} : score returned by classifier k for shot n, the higher, the more likely to contain the concept.
 - α_k : performance obtained by classifier k, (inferred) average precision
- Performance-driven weighted score fusion

$$f\left(\mathbf{x}_n\right) = \sum_{k} \alpha_k \cdot x_{kn}$$

$$f(\mathbf{x}) = \alpha_i \cdot \mathbf{x}_i + \alpha_j \cdot \mathbf{x}_j$$

« Does combining two classifiers always yield better results than the two of them taken separately? »

Agreement between classifiers

Spearman rank correlation coefficient

$$\rho_{ij} = \frac{\sum_{n=1}^{n=N} (r_{in} - \overline{r_i}) (r_{jn} - \overline{r_j})}{\sqrt{\sum_{n=1}^{n=N} (r_{in} - \overline{r_i})^2 \sum_{n=1}^{n=N} (r_{jn} - \overline{r_j})^2}}$$

- $\rho_{ij} = 0$: classifiers are independent
- $\rho_{ij}=1$: rankings are identical

$$f(\mathbf{x}) = \alpha_i \cdot \mathbf{x}_i + \alpha_j \cdot \mathbf{x}_j$$

« Does combining two classifiers always yield better results than the two of them taken separately? »

Communities of classifiers

- Graph of classifiers
 - One node per classifier
 - Complete undirected graph
 - Weights of edge (i, j)

$$A_{ij} = \max(0, \rho_{ij})$$

- Automatic community detection
 - Maximization of graph modularity
 - Louvain approach (Blondel et al., 2008)

Communities of classifiers

Community-driven hierarchical fusion

Step 1 – community detection

Step 2 – intra-community fusion

$$\mathbf{x}_{c} = \sum_{k=1}^{k=K} \delta_{c}\left(k\right) \widehat{\mathbf{x}_{k}}$$

• Step 3 – inter-community fusion

$$\mathbf{x} = \sum_{c=1}^{c=c} \alpha_c \widehat{\mathbf{x}_c}$$

Community-driven hierarchical fusion

Experiments on TRECVid 2010

- Baseline flat fusion ($f(\mathbf{x}_n) = \sum_{k=1}^{n} \alpha_k \cdot x_{kn}$)
- Contrastive hierarchical approaches
 - Random communities
 - Agglomerative clustering

Fusion	Ari. mean xinfAP	Geo. mean xinfAP
Flat (no norm.)	0.0595 (-3%)	0.0186 (-9%)
Flat (TanH)	0.0614	$\boldsymbol{0.0204}$
Random $(50\times)$	0.0618 (+1%)	0.0214 (+5%)
Complete-link*	0.0679 (+11%)	0.0266 (+31%)
Single-link*	0.0686 (+12%)	0.0258 (+27%)
Louvain	0.0634 (+3%)	0.0264 (+30%)

Experiments on TRECVid 2010

TRECVid 2011

- IRIM 4
 - Community-driven hierarchical fusion
 - MAP: **0.134**
- IRIM 1 (5th consortium/lab)
 - IRIM 4 + contextual reranking
 - MAP: 0.139
- Quaero 1: 0.153
- Best MAP : 0.173 (Tokyotech/Canon)

COMMUNITY-DRIVEN HIERARCHICAL FUSION OF NUMEROUS CLASSIFIERS

APPLICATION TO VIDEO SEMANTIC INDEXING

Hervé BREDIN

perso.limsi.fr/bredin bredin@limsi.fr

Modularity

$$\mathcal{Q} = rac{1}{\sum_{i,j} A_{ij}} \sum_{i,j} \left[A_{ij} - rac{\sum\limits_{k} A_{ik} \sum\limits_{k} A_{kj}}{\sum\limits_{i,j} A_{ij}}
ight] \delta_{ij}$$

tanh score normalization

$$\widehat{x_{kn}} = \frac{1}{2} \left\{ \tanh \left[0.01 \left(\frac{x_{kn} - \mu_k}{\sigma_k} \right) \right] + 1 \right\}$$