CONTENTS

	About the Author xii				
	<i>*</i>				
	CHAPTER				
Intr	oduction				
1.1	Introduction to System Dynamics 2				
1.2	Units 9				
1.3	Developing Linear Models 11				
1.4	Function Identification and Parameter Estimation 17				
1.5	Chapter Review 26				
Prob	lems 26				
СН	APTER 2				
	amic Response and the Laplace				
Trar	nsform Method 30				
2.1	Differential Equations 31				
2.2	The Laplace Transform Method 37				
2.3	Solving Equations with the Laplace				
	Transform 47				
2.4	Partial-Fraction Expansion 61				
2.5	Response Parameters and Stability 70				
2.6	Transfer Functions 82				
2.7	The Impulse and Numerator Dynamics 85				
2.8	Additional Examples 91				
2.9	Computing Expansion Coefficients with				
	MATLAB 98				
2.10	100				
2.11	Chapter Review 107				
	ences 108				
Proble	ems 108				
СНА	APTER 3				
Modeling of Rigid-Body Mechanical					
Systems 117					

Preface vii

3.3	Equi	valent Mass	and Inc	ertia	131
3.4	Gene	eral Planar M	lotion	140	
3.5	Addi	itional Exam	ples :	145	
3.6	Chap	oter Review	154		
Reference 155					
Proble	ms	155			

CHAPTER 4 Spring and Damper Elements in Mechanical Systems 168

Syste	ems 168
4.1	Spring Elements 169
4.2	Modeling Mass-Spring Systems 180
4.3	Energy Methods 190
4.4	Damping Elements 199
4.5	Additional Modeling Examples 210
4.6	Collisions and Impulse Response 222
4.7	MATLAB Applications 226
4.8	Chapter Review 230
Refere	ences 231
Proble	ems 231

CHAPTER 5

Block Diagrams, State-Variable Models, and Simulation Methods 250

Simulation Methods 250
Part I. Model Forms 251
Transfer Functions and Block DiagramModels 251
5.2 State-Variable Models 260
Part II. MATLAB Methods 271
5.3 State-Variable Methods with MATLAB 271
5.4 The MATLAB ode Functions 279
Part III. Simulink Methods 291
5.5 Simulink and Linear Models 291
5.6 Simulink and Nonlinear Models 297
5.7 Chapter Review 308
References 309
Problems 200

3.1

3.2

Translational Motion 118

Rotation About a Fixed Axis 123

CHAPTER 6

Electrical and Electromechanical Systems 319

- **6.1** Electrical Elements 320
- **6.2** Circuit Examples 326
- 6.3 Transfer Functions and Impedance 336
- **6.4** Operational Amplifiers 346
- 6.5 Electric Motors 351
- **6.6** Analysis of Motor Performance 360
- **6.7** Sensors and Electroacoustic Devices 370
- 6.8 MATLAB Applications 373
- **6.9** Simulink Applications 382
- **6.10** Chapter Review 385

Problems 386

CHAPTER 7

Fluid and Thermal Systems 396

- Part I. Fluid Systems 397
- **7.1** Conservation of Mass 397
- 7.2 Fluid Capacitance 402
- **7.3** Fluid Resistance 407
- 7.4 Dynamic Models of Hydraulic Systems 411
- 7.5 Pneumatic Systems 427
- Part II. Thermal Systems 430
- **7.6** Thermal Capacitance 431
- 7.7 Thermal Resistance 432
- 7.8 Dynamic Models of Thermal Systems 441
- Part III. MATLAB and Simulink Applications 449
- **7.9** MATLAB Applications 449
- **7.10** Simulink Applications 453
- 7.11 Chapter Review 458

Reference 458

Problems 458

CHAPTER 8

System Analysis in the Time Domain 473

- **8.1** Response of First-Order Systems 475
- **8.2** Response of Second-Order Systems 484
- 8.3 Description and Specification of Step Response 495
- **8.4** Parameter Estimation in the Time Domain 503
- **8.5** MATLAB Applications 512

- 8.6 Simulink Applications 514
- **8.7** Chapter Review 516

Problems 516

CHAPTER 9

System Analysis in the Frequency Domain 525

- 9.1 Frequency Response of First-Order Systems 526
- 9.2 Frequency Response of Higher-OrderSystems 538
- **9.3** Frequency Response Applications 550
- 9.4 Filtering Properties of Dynamic Systems 562
- **9.5** Response to General Periodic Inputs 569
- **9.6** System Identification from Frequency Response 574
- 9.7 Frequency Response Analysis Using MATLAB 579
- 9.8 Chapter Review 581

Problems 582

CHAPTER 10

Introduction to Feedback Control Systems 592

- 10.1 Closed-Loop Control 593
- 10.2 Control System Terminology 599
- 10.3 Modeling Control Systems 600
- 10.4 The PID Control Algorithm 614
- 10.5 Control System Analysis 622
- 10.6 Controlling First-Order Plants 627
- 10.7 Controlling Second-Order Plants 636
- **10.8** Additional Examples 644
- 10.9 MATLAB Applications 658
- **10.10** Simulink Applications 665
- 10.11 Chapter Review 668

Reference 669

Problems 669

CHAPTER II

Control System Design and the Root Locus Plot 683

- 11.1 Root Locus Plots 684
- 11.2 Design Using the Root Locus Plot 689

Tuning Controllers 719	
Saturation and Reset Windup	725
State-Variable Feedback 732	
MATLAB Applications 741	
Simulink Applications 749	
Chapter Review 750	
ences 751	
ms 751	
	Saturation and Reset Windup State-Variable Feedback 732 MATLAB Applications 741 Simulink Applications 749 Chapter Review 750 cnces 751

CHAPTER 12 Compensator Design and the Bode Plot 768

	9	
12.1	Series Compensation 769	
12.2	Design Using the Bode Plot 788	
12.3	MATLAB Applications 803	
	Simulink Applications 808	

12.5 Chapter Review 809

Problems 810

CHAPTER 13 Vibration Applications 819

13.1 Base Excitation 82013.2 Rotating Unbalance 825

13.3 Vibration Absorbers 831
13.4 Modes of Vibrating Systems 839
13.5 Active Vibration Control 848
13.6 Nonlinear Vibration 852
13.7 MATLAB Applications 861

13.8 Chapter Review 863 References 864

APPENDICES

Problems 865

- A. Guide to Selected MATLAB Commands and Functions 872
- B. Fourier Series 879
- C. Developing Models from Data 881
- D. Introduction to MATLAB (on the text website)
- E. Numerical Methods (on the text website)

Answers to Selected Problems 896 Glossary 904 Index 907