# APRENDIZAJE AUTOMÁTICO

Práctica 5



#### REGRESIÓN LINEAL REGULARIZADA

La función coste devuelve el coste y el gradiente de la regresión lineal regularizada para los ejemplos X.

```
function [J, grad] = coste(theta, X, y, lambda)
    warning("off", "Octave:broadcast");

m = length(X(:,1));

X = [ones(m, 1), X];
    valoresH = (X * theta);

a = (valoresH - y) .^ 2;

J = (1/2/m) * sum(a) + (lambda/2/m) * sum(theta.^2);

# Sumandos
a = (valoresH .- y) .* X;
# Poner a cero para no incluir el primero
theta(1) = 0;

grad = ((1/m * sum(a)) .+ ((lambda/m) .* theta)')';

warning("on", "Octave:broadcast");
```

endfunction

A partir del siguiente código, comprobamos que para un valor de *lambda = 1* y *theta = [1;1]* obtenemos un coste de 303.993.

```
load ex5data1.mat;

lambda = 0;
iters = 50;

thetaIni = [1;1];

funCoste = @(p)coste(p,X,y,lambda);

opciones = optimset ('Gradobj', 'on', 'MaxIter', iters);
[thetaProc, cost] = fmincg (funCoste, thetaIni, opciones);
cla;
hold on;
plot(X,y, 'x', 'markersize', 12, 'color', 'red');
plot(xRecta , thetaProc(1) .+ thetaProc(2) .* xRecta);

xlabel ("Change in water level (x)");
ylabel ("Water flowing out the dam (y)");
hold off;
```

Con la función *fmincg* proporcionada, se obtiene un vector *theta* que define una recta ajustada a los ejemplos de entrenamiento. El ajuste a algunos datos no es óptimo, eso se resolverá definiendo otro tipo de función (polinómica).



A continuación generaremos curvas de aprendizaje que se ajusten mejor a todos los ejemplos de entrenamiento utilizando subconjuntos de los mismos.

```
load ex5data1.mat;
lambda = 0;
maxIters = 50;
thetaIni = [1;1];
mEntren = length(X(:,1));
mPrueba = length(Xval(:,1));
funCoste = @(p)coste(p,X,y,lambda);
opciones = optimset ('Gradobj', 'on', 'MaxIter', maxIters);
for m = 1:mEntren
      funCoste = @(p)coste(p,X(1:m,:),y(1:m),lambda);
      [thetaProc, cost] = fmincg (funCoste, thetaIni, opciones);
      errorPrueba(m) = err(thetaProc, Xval, yval);
      errorEntren(m) = err(thetaProc, X(1:m,:),y(1:m));
endfor
cla;
hold on;
plot(1:mEntren, errorEntren, 'color', 'blue');
plot(1:mEntren, errorPrueba, 'color', 'green');
title ("Curva de aprendizaje para la regresion lienal");
ylabel ("Error");
xlabel ("Numero de ejemplos de entrenamiento");
hold off;
Función para calcular el coste (error):
function r = err(theta, X, y)
      warning("off", "Octave:broadcast");
      m = length(X(:,1));
      X = [ones(m, 1), X];
      valoresH = (X * theta);
      a = (valoresH - y) .^ 2;
      r = (1/2/m) * sum(a)
      warning("on", "Octave:broadcast");
endfunction
```

# La gráfica generada es la siguiente:



Se observa que a mayor número de ejemplos de entrenamiento, el error con los ejemplos de validación cae rápidamente, mientras que el error con los propios elementos de entrenamiento sube.

#### REGRESIÓN POLINOMIAL

El objetivo de este apartado es conseguir un mayor ajuste a los ejemplos de entrenamiento. Para ello, usaremos unos nuevos ejemplos generados a partir de la siguiente función:

```
function r = genera(X, p)

r = X;
for i=2:p
   r = [r X.^i];
end
endfunction
```

Posteriormente, hay que normalizar los atributos para reducir el rango entre todos ellos. Esta normalización ha sido realizada con la función *featureNormalize* proporcionada con la práctica.

A continuación, se vuelve aplicar regresión lineal a los nuevos datos vara obtener el valor *theta* que minimiza el error con un valor *lambda = 0 (sin regularización)*.

```
clear;
load ex5data1.mat;
lambda = 0;
maxIters = 50;
p = 8;
thetaIni = ones(p+1,1);
mEntren = length(X(:,1));
mPrueba = length(Xval(:,1));
X_{gen} = genera(X,p);
[X_norm, mu, sigma] = featureNormalize(X_gen);
funCoste = @(t)coste(t,X_norm,y,lambda);
opciones = optimset ('Gradobj', 'on', 'MaxIter', maxIters);
[thetaProc, cost] = fmincg (funCoste, thetaIni, opciones);
cla;
hold on;
plot(X,y, 'x', 'markersize', 12, 'color', 'red');
plotFit(min(X),max(X), mu, sigma, thetaProc, p);
xlabel ("Cambio en el nivel del agua (x)");
ylabel ("Agua que derrama la presa (y)");
title ("Regresion polinomica (lambda = 0)");
```



Al aumentar el número de iteraciones de fmincg, se observa que la gráfica cambiaba notablemente: pasaba igual por los ejemplos de entrenamiento (las X), sin embargo por la derecha crecía, no decrecía.

A continuación se vuelven a generar las curvas de aprendizaje para la hipótesis polinomial. Para ello se vuelve a aplicar regresión lineal a subconjuntos de los ejemplos de validación. Éstos previamente han sido transformados y normalizados al igual que los ejemplos de entrenamiento.

```
clear;
load ex5data1.mat;
lambda = 0;
maxIters = 100;
p = 8;
thetaIni = ones(p+1,1);
mEntren = length(X(:,1));
mPrueba = length(Xval(:,1));
X_{gen} = genera(X,p);
[X_norm, mu, sigma] = featureNormalize(X_gen);
Xval gen = genera(Xval, p);
Xval_norm = Xval_gen;
Xval_norm = bsxfun(@minus, Xval_norm, mu);
Xval_norm = bsxfun(@rdivide, Xval_norm, sigma);
funCoste = @(p)coste(p,X,y,lambda);
opciones = optimset ('Gradobj', 'on', 'MaxIter', maxIters);
for m = 1:mEntren
```

```
funCoste = @(p)coste(p,X_norm(1:m,:),y(1:m),lambda);
   [thetaProc, cost] = fmincg (funCoste, thetaIni, opciones);
   errorPrueba(m) = err(thetaProc, Xval_norm, yval);
   errorEntren(m) = err(thetaProc, X_norm(1:m,:),y(1:m));

endfor

cla;
hold on;
plot(1:mEntren, errorEntren, 'color', 'blue');
plot(1:mEntren, errorPrueba, 'color', 'green');

title ("Curva de aprendizaje para la regresion polinomial");
ylabel ("Error");
xlabel ("Numero de ejemplos de entrenamiento");
hold off;
```

### Curva de aprendizaje para la regresion polinomial



#### SFLECCIÓN DEL PARÁMETRO LAMBDA

El objetivo de este apartado es encontrar el valor de *lambda* que minimice el error sobre los ejemplos de validación. Para ello se muestra los valores de error para los ejemplos de entrenamiento y un conjunto de ejemplos de validación. Se harán pruebas para los siguiente valores de lambda: 0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10.

```
clear;
load ex5data1.mat;
lambda = 0;
maxIters = 100;
p = 8;
thetaIni = ones(p+1,1);
mEntren = length(X(:,1));
X_{gen} = genera(X,p);
[X_norm, mu, sigma] = featureNormalize(X_gen);
Xval_gen = genera(Xval, p);
Xval_norm = Xval_gen;
Xval_norm = bsxfun(@minus, Xval_norm, mu);
Xval norm = bsxfun(@rdivide, Xval norm, sigma);
opciones = optimset ('Gradobj', 'on', 'MaxIter', maxIters);
lambda = [0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10];
for i = 1:length(lambda)
      funCoste = @(t)coste(t,X_norm,y,lambda(i));
      [thetaProc, cost] = fmincg (funCoste, thetaIni, opciones);
      errorPrueba(i) = err(thetaProc, Xval norm, yval);
      errorEntren(i) = err(thetaProc, X_norm,y);
endfor
cla;
hold on;
size(lambda)
size(errorEntren)
plot(lambda, errorEntren, 'color', 'blue');
plot(lambda, errorPrueba, 'color', 'green');
title ("Curva de aprendizaje para la regresion lineal");
ylabel ("Error");
xlabel ("Lambda");
hold off;
```

Se obtiene la siguiente curva de aprendizaje:



Se observa que el lambda óptimo es 1. Probando el coste de la función respecto a los datos de testeo XTest e Ytest, habiendo sido modificados para ser de grado 8 y normalizado con la mu y sigma de X, con el siguiente código:

```
lambda = 1;
maxIters = 100;
p = 8;
thetaIni = ones(p+1,1);
mEntren = length(X(:,1));

X_gen = genera(X,p);
[X_norm, mu, sigma] = featureNormalize(X_gen);

Xtest_gen = genera(Xtest, p);
Xtest_norm = Xtest_gen;
Xtest_norm = bsxfun(@minus, Xtest_norm, mu);
Xtest_norm = bsxfun(@rdivide,Xtest_norm, sigma);

opciones = optimset ('Gradobj', 'on', 'MaxIter', maxIters);
funCoste = @(t)coste(t,X_norm,y,lambda);
[thetaProc, cost] = fmincg (funCoste, thetaIni, opciones);
```

## Se obtiene un error de 2.8657

Nota: se obtienen unos resultados ligeramente diferentes a los del enunciado tanto en este apartado como en el anterior