Subgraph-Feature Search for Learning Classifiers and Regressors under Fixed Budget Constraint

情報認識学研究室 白川 稜

背景

グラフは広く用いられる重要なデータ構造

- 低分子化合物の構造式
- RNA二次構造
- 自然言語処理における構文木

グラフデータからの教師付き学習

- 創薬の分野
- 生命科学や物質化学の分野

グラフ分類・回帰問題

Input: グラフデータ

G_1	G_2	G_3		G_n
			•••	

予測器

f

Output: グラフの性質

y_1	y_2	y_3		y_n
0.1	0.7	1.2	• • •	0.9

グラフ分類・回帰問題

特徴量

部分グラフの有無

y	G	o	o	000	0	000	000	000	~	
0.1		1	1	1	1	1	1	1	1	
0.7		1	1	1	0	1	1	1	1	
0.9		1	1	1	0	1	1	1	1	
:	:									

<u>問題点</u>

グラフサイズに対して部分グラフの総数は組合せ爆発

既存研究

- 2-step approach [Wale et al., 2007]
- · Simultaneous approach [Saigo et al., 2009][Shirakawa et al., 2018]

Simultaneous approach

モデルの学習と部分グラフ探索・選択を同時に行う

従来手法

分割後の不純度(二乗誤差和:TSS)が最小になる 部分グラフ特徴(g)を深さ優先的に探索

 $\begin{aligned} \operatorname{argmin}_{g} \operatorname{TSS}(D_{0}(g)) + \operatorname{TSS}(D_{1}(g)) \\ D_{0}(g) &: \{ (G_{i}, y_{i}) \in D | G \not\supseteq g \} \\ D_{1}(g) &: \{ (G_{i}, y_{i}) \in D | G \supseteq g \} \end{aligned}$

探索木の包含関係を利用すると子孫ノードでの 分割における不純度の下限値(Bound)が計算可能

Boundの値を用いた枝刈りが可能

従来手法

枝刈りを利用した深さ優先に基づく厳密な特徴探索

<u>問題点</u>

- ・問題のスケールによって枝刈りだけでは不十分
 - → 特徴探索にかかるコストが大きい

改善点

- ・厳密探索 → 事前に探索コストを設定
- ・深さ優先探索 → 不純度およびBoundの値を利用した 効率的な探索方針の考案

提案手法

目的

低コストで高精度なモデルの構築

→ 制限されたコスト内において
より良い特徴を探索する探索方針の考案

手法

- モンテカルロ木探索(MCTS)を応用
- 各特徴の不純度の値を報酬に設定し、事前の探索知識を利用した効率的な探索方針の提案

提案手法

モンテカルロ木探索(MCTS)の一つである
UCTアルゴリズム[Levente et al., 2006]をグラフ探索に適用
UCB(Upper Confidence Bound)の値をもとに探索

<u>手法</u>

以下の操作を反復

- 1. Selection
- 2. Expansion
- 3. Simulation
- 4. Backpropagation

Selection

根ノードを始点にUCBの値に基づき 探索済みノードの末端までノードを選択する

$$UCB = \bar{X}_i + C \times \sqrt{\frac{\ln n}{2n_i}}$$

 $i: 子ノード番号, \overline{X}_i: 報酬平均, C: 探索強度パラメータ, n: 親ノード選択回数, <math>n_i$: 子ノードi選択回数

Expansion

Selectionによって選択された末端ノードから ランダムに子ノードを一つ展開し探索済み集合に 追加する

Simulation

Expansionによって展開されたノードから モンテカルロシミュレーションによりパスを降下

BackpropagationSimulationによって選択されたノードの報酬を計算

報酬 =
$$-\frac{TSS(D_0(g)) + TSS(D_1(g))}{TSS(D_0(g) \cup D_1(g))}$$

報酬をSelectionで選択したパスに逆伝搬

実験準備

実データセット

Dataset	CPDB	Mutag	AIDS(CAvsCM)	CAS
# data	684	188	1503	4337
# (y = +1, -1)	(341, 343)	(125, 63)	(422, 1081)	(2401, 1936)
# nodes	25.2	26.3	59.0	30.3
# edges	25.6	28.1	61.6	31.3

of nodes and edges are average.

<u>人工データセット</u>

実データセット (CAS) より100個のグラフを ランダムサンプリング \rightarrow ランダムラベル(y)付与 上記のデータセットをそれぞれ100セット作成

artificial1: $y \in (+1,-1)$ artificial2: $y \in [+1,-1]$

実験1

2つの人工データセットに対してコスト制約無しに 特徴探索を1回行う

特徴探索における暫定解更新の様子を各手法で比較する

- ・深さ優先探索(従来手法1)
- 最良優先探索(従来手法2)
- モンテカルロ木探索(提案手法)
- ※モンテカルロ木探索の探索強度パラメータ(0.1, 1, 10)

実験1

- 提案手法がより早くに良い特徴を発見
- 探索の後半はあまり重要ではない

実験2

実データセットに対してコスト制約を設けた上で アンサンブルモデルの学習を行う

<u>学習パラメータ</u>

• 木の本数:100

木の深さ:1

ステップ幅:1

<u>コスト制約(一回の特徴探索にかけるノード数)</u>

• CPDB: (1000, 2000, 3000, 4000, 5000)

• Mutag: (100, 200, 300, 400, 500)

• AIDS: (1000, 2000, 3000, 4000, 5000)

• CAS: (5000, 10000, 15000, 20000, 25000)

実験 2 (Training Loss)

実験 2 (ACC)

実験2 (厳密探索との比較)

データ	探索ノード数			実行時間[s]			精度[%]		
	従来	提案	比	従来	提案	比	従来	提案	差
CPDB	7.2×10 ⁶	5.0×10 ⁵	0.070	8.2×10^2	6.2×10	0.076	77.78	78.35	+0.57
Mutag	3.8×10^5	6.0×10 ⁴	0.015	2.3×10^{2}	3.7	0.016	85.03	87.73	+2.70
AIDS	7.9×10 ⁷	2.0×10 ⁵	0.003	2.5×10 ⁴	1.1×10 ²	0.004	81.37	81.84	+0.47
CAS	6.9×10 ⁷	2.0×10 ⁶	0.029	8.0×10 ⁴	1.7×10 ³	0.040	80.82	81.99	+1.17

• 精度の低下なしに省コストを達成

まとめ

- ・既存のグラフ分類・回帰問題の学習アルゴリズムの探索に モンテカルロ木探索を利用した手法を提案
- ・従来手法である深さ優先探索、最良優先探索に対して より少ない探索コストでより良い解を発見
- 特に従来の深さ優先厳密探索の場合と比較すると 約1/10~1/100の探索コストで 同等、それ以上の精度のモデルを構築

質疑

汎化性能

下限値の計算

探索木の特徴:子孫(g')は親(g)の拡大グラフ

$$G_i \not\supseteq g \Rightarrow G_i \not\supseteq g', g' \supseteq g$$

含むグラフが含まない側に移る方向性しかない

任意のグラフの組み合わせを含まない側へ移したときの 不純度を全て計算すれば下限値が求まる

下限値の計算

$$TSS(D_0(g')) + TSS(D_1(g))$$

$$\geq \min_{(\circ,k)} \left[TSS(D_0(g) \setminus S_{(\circ,k)}) + TSS(D_1(g) \cup S_{(\circ,k)}) \right]$$

 $(\circ, k) \in \{\leq, >\} \times \{2, \dots, |D_1(g) - 1|\}$

 $S_{(\leq,k)}$ is a set of k pair (G_i,y_i) selected from $D_1(g)$ in descending order of y $S_{(>,k)}$ is a set of k pair (G_i,y_i) selected from $D_1(g)$ in increasing order of y

計算量:グラフ(g)の頻出度に対して線形オーダー

探索速度

深さ優先は頻出度の低いノードを多く探索 最良優先は頻出度の高いノードを多く探索