3 - Базовая теория чисел

А. Массовое разложение на множители

1.0 с, 64 мегабайта

Дано много чисел. Требуется разложить их все на простые множители.

Входные данные

В первой строке задано число n ($2 \le n \le 300000$). В следующих nстроках заданы числа a_i ($2 \le a_i \le 10^6$), которые нужно разложить на

Выходные данные

Для каждого числа выведите в отдельной строке разложение на простые множители в порядке возрастания множителей.

входные	данные		
4 60 14 3 55			
выходные	е данные		
2 2 3 5 2 7 3 5 11			

В. Просеивай!

2 секунды, 512 мегабайт

Для положительного целого n определим функции:

- d(n) минимальный делитель n, больший 1, по определению положим d(1) = 0
- $s_0(n)$ количество различных делителей n.
- $s_1(n)$ сумма всех делителей n.
- $\phi(n)$ функция Эйлера, количество целых чисел k, таких что $1 \le k \le n$ и GCD(n, k) = 1.

По данному числу n вычислите $\sum_{k=1}^n d(k)$, $\sum_{k=1}^n s_0(k)$, $\sum_{k=1}^n s_1(k)$ и

$$\sum_{k=1}^{n} \varphi(k)$$

Входные данные

В единственной строке записано число n ($1 \le n \le 10^7$).

Выходные данные

выведите четыре числа: $\sum_{k=1}^{n} d(k)$, $\sum_{k=1}^{n} s_0(k)$, $\sum_{k=1}^{n} s_1(k)$ и $\sum_{k=1}^{n} \varphi(k)$

входные данные выходные данные 28 27 87 32

C. Взлом RSA

2 секунды, 64 мегабайта

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Желающий использовать систему RSA для получения сообщений должен сгенерировать два простых числа p и q, вычислить n = pq и сгенерировать два числа e и d такие, что $\{ed \equiv 1 \pm od\{(p-1)(q-1)\}\}$ (заметим, что $\{(p-1)(q-1) = \varphi(n)\}$).

Числа n и e составляют открытый ключ и являются общеизвестными. Число d является секретным ключом, также необходимо хранить в тайне и разложение числа n на простые множители, так как это позволяет вычислить секретный ключ d.

Сообщениями в системе RSA являются числа из \mathbb{Z}_n . Пусть M исходное сообщение. Для его шифрования вычисляется значение $C=M^e \mod n$ (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение ${\cal C}$ передается по каналу связи. Для его расшифровки необходимо вычислить значение $M=C^d \bmod n$, а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на основе только этих данных.

Входные данные

Программа получает на вход три натуральных числа: $n, e, C, n \le 10^9$, $e \le 10^9$, C < n. Числа n и e являются частью какой-то реальной схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\varphi(n)$. Число C является результатом шифрования некоторого сообщения M.

Выходные данные

Выведите одно число M ($0 \le M \le n$), которое было зашифровано такой криптосхемой.

входные	е данные		
143			
113			
41			
выходные данные			
123			

D. Прямая

1 second, 256 megabytes

Своим уравнением Ax + By + C = 0 задана прямая на плоскости. Требуется найти любую принадлежащую этой прямой точку, координаты которой — целые числа от -5.10^{18} до 5.10^{18} включительно, или выяснить что таких точек нет.

Входные данные

В первой строке содержатся три целых числа $A,\,B$ и C $(-2\cdot10^9 \le A, B, C \le 2\cdot10^9)$ — соответствующие коэффициенты уравнения прямой. Гарантируется, что $A^2 + B^2 > 0$.

Выходные данные

Если искомая точка существует, выведите ее координаты, иначе выведите единственное число -1.

3/20/2020

_	E 21114		Codeforces
\mathbf{a}	пачи	-	Coneiorces

входные данные				
2 5 3				
выходные данные				
6 -3				

Е. Китайская теорема

1 секунда, 256 мегабайт

Решите в целых числах систему уравнений

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m}, \end{cases}$$

где n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Входные данные

Первая строка входных данных содержит число $N, 1 \leq N \leq 10^4,$ количество тестов, для которых нужно решить задачу.

Следующие N строк содержат по четыре целых числа a_i , b_i , n_i и m_i ($1 \le n_i, m_i \le 10^9$, $0 \le a_i < n_i$, $0 \le b_i < m_i$).

Выходные данные

Для каждого из тестов выведите искомое наименьшее неотрицательное число $x_i.$

```
входные данные

2

1 0 2 3

3 2 5 9

выходные данные

3

38
```

Codeforces (c) Copyright 2010-2020 Михаил Мирзаянов Соревнования по программированию 2.0