运筹学通论I

胡晓东

应用数学研究所

中国科学院数学与系统科学研究院

Http://www.amt.ac.cn/member/huxiaodong/

3. 最优性条件 - 无约束

定理 20. 设函数 f(x) 在点 x^* 处可微。若存在一个向量 d 满足 $\nabla f(x^*)d < 0$,则存在一个实数 $\delta > 0$ 使得,对任意 $\lambda \in (0, \delta)$,有 $f(x^*+\lambda d) \leq f(x^*)$,即 d 是函数 f(x) 在点 x^* 处的一个下降方向。

证明. (练习) 因为函数 f(x) 在点 x^* 处可微,所以有 $f(x^*+\lambda d) = f(x^*) + \lambda \nabla f(x^*) d + \lambda / |d| \alpha(x^*;\lambda d),$

其中当 $\lambda \to 0$ 时, $\alpha(x^*; \lambda d) \to 0$ 。等式两边同除 λ ,即可得证。

定理 21 (一阶必要条件) 设函数 f(x) 在点 x^* 处可微。若 x^* 是一个局部最小解,则 $\nabla f(x^*) = \mathbf{0}$ 。

证明. (练习) 若 $\nabla f(x^*) \neq 0$,则取 $d = -\nabla f(x^*)$ 。再由定理 20,即可得证。

3. 最优性条件 - 无约束 (续一)

定理 22 (二阶必要条件) 设 f(x) 在点 x^* 处二阶可微。若 x^* 是一个局部最小解,则 $\nabla f(x^*) = 0$,且海森阵 $H(x^*)$ 是半正定的。

证明. (练习*) 考虑任意一个方向向量 d。因为 f(x) 在点x* 处二阶可微,所以有

$$f(x^* + \lambda d) = f(x^*) + \lambda \nabla f(x^*) d + \lambda^2 d^T H(x^*) d/2 + \lambda^2 ||d||^2 \alpha(x^*; \lambda d),$$

其中当 $\lambda \to 0$ 时, $\alpha(x^*;\lambda d) \to 0$ 。再由 定理 21 可得 $\nabla f(x^*)=0$ 。 将上述等式两边同除 λ^2 ,可得

$$\frac{f(x^*+\lambda d)-f(x^*)}{\lambda^2}=d^TH(x^*)d/2+||d||^2\alpha(x^*;\lambda d).$$

又因为x*是一个局部最小解,所以当 λ 充分小时,有

3. 最优性条件 - 无约束 (续二)

定理 23 (充分条件) 设 f(x) 在点 x^* 处二阶可微。 若 $\nabla f(x^*)=0$ 且 海森阵 $H(x^*)$ 是正定的,则 x^* 是一个局部最小解。

证明. (练习*) 对任意向量x,都有

$$f(x) = f(x^*) + \nabla f(x^*) (x - x^*) + (x - x^*)^T H(x^*) (x - x^*)/2 + ||x - x^*||^2 \alpha(x^*; x - x^*),$$

其中当 $x \rightarrow x^*$ 时, $\alpha(x^*; x - x^*) \rightarrow 0$ 。

采用反证法。假设 x^* 不是一个局部最小解,则存在一个序列 $\{x_k\} \to x^*$ 使得对每个 k 都有 $f(x_k) < f(x^*)$ 。现定义一个序列 $(x_k-x^*)/||x_k-x^*||=d_k$ 。则当 $k\to\infty$ 时, $d_k\to d$,其中||d||=1。又因为 $\nabla f(x^*)=0$,所以有 $d^T H(x^*)d\le 0$,与 $H(x^*)$ 是正定矩阵的假设相矛盾。

3. 最优性条件 - 有约束

定义 12. 设 S 是 E^n 上的一个非空闭集。则 S 在点 x^* 处的可行方向锥 $D(x^*)$ 定义为

 $D(x^*) \equiv \{d \mid d \neq 0 \text{ 且} \exists \delta > 0, \text{ 使得 } \forall \lambda \in (0, \delta), x^* + \lambda d \in S\}.$ 每一个向量 $d \in D(x^*)$ 都称为点 x^* 处的可行方向。

由定义 5 可知,在点 x^* 处沿着方向 $d \in D(x^*)$ 做一个微小移动,即可到达一个可行点(解)。另外,由定理 20 可知,若 $\nabla f(x^*)d < 0$,则 d 是点 x^* 处的一个改进方向。下述定理说明,若 x^* 是一个局部最小解,且 $\nabla f(x^*)d < 0$,则 $d \notin D(x^*)$ 。

3. 最优性条件 - 有约束(续一)

定理 24. (必要条件) 考虑求最小值问题 $\min\{f(x) | x \in S\}$,其中 $S \in E^n$ 上的一个非空集合。设函数 f(x) 在点 x^* 处可微。若 x^* 是一个局部最小解,则 $F(x^*) \cap D = \emptyset$,其中 $D \in S$ 在点 x^* 处的可行方向锥, $F(x^*) = \{d \mid \nabla f(x^*)d < 0\}$ 。

证明 (**练习***) 采用反证法。假设存在一个向量 $d \in F(x^*) \cap D$ 。则由 **定理 20** 和局部最小解的定义,可得如下矛盾:

存在某个 $\delta_{\mathbf{i}} > 0$, 使得对任意 $\lambda \in (0, \delta_{\mathbf{i}})$ 都有 $f(x^* + \lambda d) \leq f(x^*)$ 而且

存在某个 $\delta_2 > 0$, 使得对任意 $\lambda \in (0, \delta_2)$ 都有 $x^* + \lambda d \in S$ 。与 x^* 是一个局部最小解的假设矛盾。

3. 最优性条件 - 不等式约束

定理 25. (必要条件) 考虑求最小值问题 $\min\{f(x)|g_i(x) \leq 0, i=1,2,...,m$ 且 $x \in S$ },其中 S 是 E^n 上的一个非空开集合。设 x^* 是一个可行解,并令 $I=\{i \mid g_i(x^*)=0\}$ 。 另设函数 f(x) 和 $g_i(x)$, $i \in I$,在点 x^* 处都是可微的,且 $g_i(x)$, $i \notin I$,在点 x^* 处是连续的。若 x^* 是一个局部最小解,则 $F(x^*) \cap G(x^*)=\emptyset$,其中 $F(x^*) = \{d \mid \nabla f(x^*)d < 0$ }, $G(x^*)=\{d \mid \nabla g_i(x^*)d < 0$ 且 $i \in I$ }。

证明. (练习*) 设 $d \in G(x^*)$ 。则存在一个实数 $\delta_1 > 0$ 使得对任意 $\lambda \in (0, \delta_1)$ 都有 $x^* + \lambda d \in S$ 。此外,还存在一个实数 $\delta_2 > 0$,使得对任意 $\lambda \in (0, \delta_2)$ 且 $i \notin I$,都有 $g_i(x^* + \lambda d) < 0$ 。因而,存在一个实数 $\delta_3 > 0$,使得对任意 $\lambda \in (0, \delta_3)$ 且 $i \in I$ 都有 $g_i(x^* + \lambda d) < g_i(x^*)$ 。因此 $d \in D$,其中D 是点 x^* 处的可行方向锥。由此可得 $G(x^*) \subset D$ 。再由定理 24 即得

3. 最优性条件 - 不等式约束(续一)

Min
$$(x-3)^2 + (y-2)^2$$

s.t.
$$x^2 + y^2 \le 5$$

$$x + y \leq 3$$

$$x, y \geq 0.$$

$$g_1(x) = x^2 + y^2 - 5$$
,

$$g_2(x) = x + y - 3$$
,

$$g_3(x) = -x$$

$$g_4(x) = -y;$$

$$\nabla f(x) = [2(x-3), 2(y-2)]$$

在非最优解处

xdhu $F(x^*) \cap G(x^*) \neq \emptyset$

3. 最优性条件 - 不等式约束(续二)

Min
$$(x-3)^2 + (y-2)^2$$

s.t.
$$x^2 + y^2 \le 5$$

$$x + y \leq 3$$

$$x, y \geq 0.$$

$$x*=(2, 1)$$

$$\nabla g_1(x^*) = (4, 2),$$

$$\nabla g_2(x^*) = (1, 1),$$

$$\nabla f(x^*) = (-2, -2).$$

x* 是一个最优解

3. 最优性条件 - 不等式约束(续三)

定理 26. (Fritz John 条件, 1948) 考虑求最小值问题

$$\min\{f(x) \mid g_i(x) \leq 0, i=1,2,...,m, \exists x \in S\},\$$

其中S 是 E^n 上的一个非空凸集。 设 x^* 是一个可行解,且令 $I=\{i \mid g_i(x^*)=0\}$ 。 此外,假定 f(x) 和 $g_i(x)$, $i \in I$,在点 x^* 处可微,且 $g_i(x)$, $i \notin I$,在 x^* 处连续。若 x^* 是一个局部最小解,则存在实数 u_0 和 u_i , $i \in I$,使得

$$u_0 \nabla f(x^*) + \sum_{i \in I} u_i \nabla g_i(x^*) = 0, \quad u_0, u_i \ge 0, \quad i \in I \perp (u_0, u_I) \ne 0.$$

此外,若 $g_i(x)$, $i \notin I$,也在点 x^* 处可微,则 $u_0 \nabla f(x^*) + \sum_{i=1}^{i=m} u_i \nabla g_i(x^*) = 0$,且对每一个指标i都有 $u_i g_i(x^*) = 0$, $(u_0, u) \neq 0$ 。

3. 最优性条件 - 不等式约束(续四)

证明. 由**定理 25** 可知,不存在一个向量d 使得 $\nabla f(x^*)d < 0$ 且对每一个 $i \in I$,都有 $\nabla g_i(x^*)d < 0$ 。现令 A 为 $\nabla f(x^*)$ 和 $\nabla g_i(x^*)$, $i \in I$,作为行向量的矩阵。因而 Ad < 0 没有解。再由Gordan 定理,可知存在一个非零向量 $p \geq 0$ 使得 $A^Tp = 0$ 。再将向量p 的分量分别记为 u_0 和 u_i , $i \in I$,即可得证定理的第一部分。定理的第二部分也可证得,只要令 $u_i = 0$ 当 $i \notin I$ 时。

练习. 证明Gordan 定理

设A是一个 $m \times n$ 的矩阵,则以下两个线性系统恰有一个有解

系统1 Ax < 0, x 是一个n 维向量;

系统2 $A^Ty = 0$ 且 $y \ge 0$, y 是一个非0的 m 维向量。

提示: 若系统1无解,则 $S_1 \cap S_2 = \emptyset$,其中 $S_1 = \{z = Ax \mid x \in E^n\}$, $S_2 = \{z \in E^m \mid z < 0\}$ 。

3. 最优性条件 - 不等式约束(续五)

在Fritz John 条件中,实数 u_0 和每一个 u_i 通常称为 拉格朗日 乘子。每一个条件 $u_i g_i(x^*) = 0$ 称为互补松弛条件。如果相应的不等式不是严格的, $g_i(x) < 0$,那么一定有 $u_i = 0$ 。同样地,只有当相应的不等式是严格的时候,才可能有 $u_i > 0$ 。

如果拉格朗日乘子 u_0 等于0,那么FritzJohn条件就与目标函数f(x)的梯度无关。这个条件仅仅说明了,存在所有严格约束条件函数的梯度的非负且非平凡的线性和,其值为0。因此,这个条件对于寻找问题的最优解没有实际帮助。

人们提出了许多条件,以确保**拉格朗日乘子** $u_0 > 0$,它们通常称为**约束规格**。特别地,**Karush** [1939,硕士论文,芝加哥大学数学系],**Kuhn** 和 **Tucker** [1951,普林斯顿大学]独立的给出了最优解的必要条件,它们实际上就是 **Fritz John 条件**再加上性质 $u_0 > 0$ 。

3. 最优性条件 - 不等式约束(续六)

定理 27. (K-K-T 必要条件) 考虑求最小值问题 $\min\{f(x) \mid g_i(x) \le 0, i=1,2,...,m$ 且 $x \in S\}$,其中S 是 E^n 上的一个非空开集。 设 x^* 是一个可行解,另令 $I=\{i \mid g_i(x^*)=0\}$ 。此外,设函数 f(x) 和 $g_i(x)$, $i \in I$,在点 x^* 处是可微的,且 $g_i(x)$, $i \notin I$,在点 x^* 处是连续的, ∇g_i , $i \in I$,是线性无关的。若 x^* 是一个局部最小解,则存在实数 u_i , $i \in I$,使得

 $\nabla f(x^*) + \sum_{i \in I} u_i \nabla g_i(x^*) = 0, \quad \exists u_i \geq 0, \quad i \in I_\circ$

此外,若函数 $g_i(x)$, $i \notin I$, 在点x*处也是可微的,则

$$\nabla f(x^*) + \sum_{i=1}^{i=m} u_i \nabla g_i(x^*) = 0,$$

$$u_i g_i(x^*) = 0, u_i \ge 0, i=1,..., m_0$$

证明(练习)可由定理26直接推出。

3. 最优性条件 - 不等式约束(续七)

K-K-T 条件可以借助向量表 述如下:

$$\nabla f(x^*) + u^T \nabla g(x^*) = 0,$$

$$u^T g(x^*) = 0,$$

$$u_i \ge 0.$$

亦即, $-\nabla f(x^*)$ 属于取严格约束相应函数的梯度所张成 $g_1 \leq 0$ 的锥。

 x_1 $g_2 \leq 0$ ∇g_3 x_2 $g_3 \leq 0$

练习题:前例中, (2,1)和(1,2)

是否都满足K-K-T条件?

3. 最优性条件 - 不等式约束(续八)

定理 28. (K-K-T 充分条件) 考虑求最小值问题 $\min\{f(x) \mid g_i(x) \le 0, i=1,..., m$,且 $x \in S\}$,其中 $S \in E^n$ 上的一个非空开集。设 x^* 是一个可行解,另令 $I=\{i \mid g_i(x^*)=0\}$ 。此外,假设f(x)是伪凸函数,而 $g_i(x)$, $i \in I$,是拟凸函数且在点 x^* 处可微。若 K-K-T条件在点 x^* 处成立,则 x^* 是一个全局最优解。

证明.(练习**) 由函数 g_i 的拟凸性可知,对每个 $i \in I$ 都有

$$g_i(x^* + \lambda(x - x^*)) = g_i(\lambda x + (1 - \lambda)x^*)$$

 $\leq \max\{g_i(x), g_i(x^*)\} = g_i(x^*)_{\circ}$

因而根据**定理19**,可得 $\nabla g_i(x^*)(x-x^*) \leq 0$ 。将不等式乘以 u_i 并取遍 I 中的所有指标 i 相加,即得 $\sum u_i \nabla g_i(x^*)(x-x^*) \leq 0$ 。再根据 K-K-T 条件,可得 $\nabla f(x^*)(x-x^*) \geq 0$ 。最后根据函数 f(x) 在点 x^* 处是伪凸的(定义 10),即得 $f(x^*) \leq f(x)$ 。

3. 最优性条件 - 等式与不等式约束

定理29. (K-K-T 必要条件)

考虑求最小值问题 $\min\{f(x) \mid g_i(x) \leq 0, i=1,..., m; h_j(x)=0, j=1,2,...,k; x \in S\}$,其中 S 是一个开集合。设 x^* 是一个可行解, $I=\{i \mid g_i(x^*)=0\}$ 。 假设目标函数 f(x) 和约束函数 g_i , $i \in I$ 在点 x^* 处可微,约束函数 g_i , $i \notin I$,在点 x^* 处连续, h_j 在点 x^* 处 连续可微。再假设 ∇g_i , $i \in I$,和 ∇h_j 是线性无关的。若 x^* 是一个局部最小解,则存在实数 u_i , $i \in I$ 和 v_j ,j=1,2,...,k 使得 $\nabla f(x^*) + \sum_{i \in I} u_i \nabla g_i(x^*) + \sum_{j} v_j \nabla h_j(x^*) = 0, u_i \geq 0, i \in I$ 。

若函数 g_i , $i \notin I$, 也在点 x^* 处可微,则

$$\nabla f(x^*) + \sum_{i=1}^{i=m} u_i \nabla g_i(x^*) + \sum_{j=1}^{j=k} v_j \nabla h_j(x^*) = 0,$$

$$u_i g_i(x^*) = 0, \quad u_i \ge 0, \quad i=1,\dots,m.$$

3. 最优性条件 - 等式与不等式约束(续一)

定理 30. (K-K-T 充分条件) 考虑求最小值问题

```
\min f(x)
s.t. g_i(x) \le 0, i = 1, 2, ..., m,
h_j(x) = 0, i = 1, 2, ..., k,
x \in S, 其中S \neq E^n上一个非空开集。
```

设 x^* 是一个可行解, $I=\{i \mid g_i(x^*)=0\}$ 。假设在点 x^* 处满足 K-K-T条件。另令 $J=\{j \mid v_j>0\}$, $L=\{l \mid v_l<0\}$ 。若在点 x^* 处

f(x) 是伪凸的,

 g_i , $i \in I$, 是拟凸的,

 $h_i(x)$, $j \in J$, 是拟凸的,且h(x), $l \in L$, 是拟凹的,

则 ** 是一个全局最优解。

3. 对偶问题

原始问题

Min
$$f(x)$$

s.t. $g_i(x) \le 0$, $i = 1, 2, ..., m$;
 $h_j(x) = 0$, $j = 1, 2, ..., k$,
 $x \in S$.

拉格朗日对偶问题

Max
$$\theta(u, v) = \inf \{ f(x) + \sum_{i=1}^{m} u_i g_i(x) + \sum_{j=1}^{k} v_j h_j(x) \mid x \in S \}$$

s.t. $u \ge 0$

注意,在求最大值问题的目标函数 $\theta(u,v)$ 的表达式中,借助拉格朗日乘子 u_i 和 v_j ,不等式和等式约束条件都融入到了目标函数中了。

思考题: 由拉格朗日对偶问题是否可推出线性规划对偶问题?

3. 对偶问题(续一)

为了给出对偶问题直观的几何上的解释,考虑仅带有不等式约束的原始问题。在 (z_1, z_2) -平面上,我们用G表示集合 $\{(z_1, z_2) | z_1 = g(x), z_2 = f(x), x \in S \}$ 。原始问题是求G中位于 z_2 -轴左侧的坐标最小的一个点,而对偶问题是求支撑平面的一个斜率使其与 z_2 -轴的交点坐标最大。

注意, $z_2 + u z_1 = \alpha$ 是一个直线方程,其斜率为-u 且在 z_2 -轴上的截距为 α 。

3. 对偶定理

定理 31 (弱对偶定理) 设x 是原始问题的一个可行解,(u,v) 是对偶问题的一个可行解。则有 $f(x) \ge \theta(u,v)$ 。

证明 (练习). 由 $\theta(u,v)$ 的定义,可得 $u \ge 0$, $g_i(x) \le 0$, $h_j(x) = 0$, 则有 $\theta(u,v) = \inf\{f(x) + \sum u_i g_i(x) + \sum v_j h_j(x) \mid x \in S\}$ $\le f(x) + \sum u_i g_i(x) + \sum v_j h_j(x)$

3. 对偶定理(续一)

推论 $1\inf\{f(x)|g_i(x)\leq 0, h_j(x)=0, x\in S\} \geq \sup\{\theta(u,v)|u\geq 0\}$ 。

推论 2 若 $f(x^*) \le \theta(u^*, v^*)$, 其中 $u \ge 0$, $g_i(x^*) \le 0$, $h_j(x^*) = 0$, $x^* \in S$, 则 x^* 和 (u^*, v^*) 分别是原始问题和对偶问题的最优解。

推论 3 若 $\inf\{f(x) \mid g_i(x) \leq 0, h_j(x) = 0, x \in S\} = -\infty$,则当 $u \geq 0$ 时,有 $\theta(u, v) = -\infty$ 。

推论 4 若 $\sup\{\theta(u,v) \mid u \geq 0\} = \infty$,则原始问题不存在可行解。

我们用向量函数表示法, $g(x): E^n \to E^m$, $h(x): E^n \to E^k$,其中向量的第 i 个分量分别是 $g_i(x)$ 和 $h_i(x)$ 。

3. 对偶定理(续二)

引理 6 设 S 是 E^n 上的一个非空凸集, $\alpha(x)$ 和 g(x) 是两个凸函数,令 h(x)=Ax-b。若下述**系统 1** 无解 x,则下述**系统 2** 有解 (u_0,u,v) 。反之亦成立只要 $u_0>0$ 。

系统 1: $\alpha(x) < 0$, $g(x) \le 0$, h(x) = 0, 存在某个 $x \in S$.

系统 2: $u_0\alpha(x) + u g(x) + v h(x) \ge 0$, 对于所有 $x \in S$,

 $(u_0, u) \ge 0, (u_0, u, v) \ne 0$

证明.(练习**)假定系统1不存在解。我们考虑集合

Ψ = {(p,q,r) | $p > \alpha(x)$, $q \ge g(x)$, r = h(x), 存在某个 $x \in S$ }。 注意,Ψ是一个凸集且 $0 \notin \Psi$ 。 由分离定理可知,存在一个非 0向量(u_0 , u, v) 使得对每个 (p, q, r) \in cl Ψ , 都有 $u_0 p + uq + vr \ge 0$ 。 又因 p 和 q 可取得任意地大,故有 $u_0 \ge 0$, $u \ge 0$ 。 再注意到,对于每个 $x \in S$,都有 (p, q, r) = ($\alpha(x)$, g(x), h(x)) \in cl Ψ 。 因而系统2 有解。

3. 对偶定理(续三)

证明(**续**) 证明逆命题。假设**系统2**有解 (u_0, u, v),其中 $u_0 \ge 0$, $u \ge 0$,且对每个 $x \in S$,都满足 $u_0 \alpha(x) + ug(x) + vh(x) \ge 0$ 。现设存在某个 $x \in S$ 满足 $g(x) \le 0$,h(x) = 0。由上述不等式,可得 $u_0 \alpha(x) \ge 0$ 。而因为假设 $u_0 > 0$, $\alpha(x) \ge 0$,所以**系统1** 无解。

定理 32 (强对偶定理)

设 S 是 E^n 上的一个非空凸集合,f(x) 和 g(x) 都是凸函数,令 h(x) = Ax - b。假设存在某个 $x^* \in S$ 满足 $g(x^*) < 0$, $h(x^*) = 0$,且 $0 \in \text{int } H(S)$,其中 $H(S) = \{h(x) \mid x \in S\}$ 。则

 $\inf\{f(x) \mid x \in S, g(x) \le 0, h(x) = 0\} = \sup\{\theta(u, v) \mid u \ge 0\}.$

而且,若下确界 inf 是有限的,则sup{ $\theta(u,v) | u \ge 0$ } 在 (u^*, v^*) 处达到,其中 $u^* \ge 0$ 。若 inf 在点 x^* 处达到,则 $u^*g(x^*)=0$ 。

3. 对偶定理(续四)

证明. (练习**) 令 $\gamma \equiv \inf \{ f(x) \mid x \in S, g(x) \leq 0, h(x) = 0 \}$ 。 若 $\gamma = -\infty$,则 $\sup \{ \theta(u, v) \mid u \geq 0 \} = -\infty$ 。 当 γ 是有限时,考虑系统 $f(x) - \gamma < 0$, $g(x) \leq 0, h(x) = 0, x \in S$ 。 若它不存在解,则存在一个非 0 向量 (u_0, u, v) ,其中 $(u_0, u) \geq 0$ 且对所有 $x \in S$,都满足

$$u_0(f(x)-\gamma)+ug(x)+vh(x)\geq 0$$

我们首先证明 $u_0 > 0$ 。应用反证法,假设 $u_0 = 0$ 。 则有 $ug(x^*) + vh(x^*) \geq 0$,由此可得 u = 0。因而对于所有 $x \in S$ 都有 $vh(x) \geq 0$ 。然而, $0 \in \text{int } H(S)$,故可选取 $x \in S$ 使得 $h(x) = -\lambda v$ 且 $\lambda > 0$ 。因此, $vh(x) = -\lambda ||v||^2 \geq 0$,产生矛盾。又因为 $u_0 > 0$,所以可假设对所有 $x \in S$,都有 $f(x) + u^*g(x) + v^*h(x) \geq \gamma$ 。 再由定理31,即得 $\theta(u^*, v^*) = \gamma$ 。

若下确界 inf 在点x*处达到,则 $f(x*)=\gamma, x*\in S, g(x*)\leq 0$,h(x*)=0。因而有 ug(x*)=0。

24

3. 鞍点定理

定理 33 (鞍点定理)

设 $S \in E^n$ 上的一个非空凸集, $f(x): E^n \to E^1$, $g(x): E^n \to E^m$, $h(x): E^n \to E^k$ 。假定存在一个 $x^* \in S$ 和 (u^*, v^*) ,其中 $u^* \ge 0$ 且

 $\phi(x^*, u, v) \le \phi(x^*, u^*, v^*) \le \phi(x, u^*, v^*) \ \forall \ x \in S, \quad (u, v), \quad u \ge 0,$

其中 $\phi(x, u, v) \equiv f(x) + ug(x) + vh(x)$ 。则 x^* 和 (u^*, v^*) 分别是原始问题和对偶问题的最优解。

反之,设 S, f(x)和 g(x) 都是凸的,且 h(x) 是一个仿射函数。 另设 $0 \in \text{int } H(S)$ 。若 x^* 是原始问题的一个最优解,则存在一个 (u^*, v^*) ,其中 $u^* \geq 0$,且满足上述不等式。

3. 鞍点定理(续一)

证明 (练习**) 因为对所有 $u \ge 0$ 和所有 $v \in E^k$,都有 $f(x^*) + ug(x^*) + vh(x^*) = \phi(x^*, u, v) \le \phi(x^*, u^*, v^*) = f(x^*) + u^*g(x^*) + v^*h(x^*)$

所以有 $g(x^*) \le 0$, $h(x^*) = 0$, x^* 是原始问题的一个可行解。在上述不等式中,令 u = 0, $v = v^*$, 即得 $u^*g(x^*) \ge 0$ 。又因 $u^* \ge 0$ 且 $g(x^*) \le 0$,故有 $u^*g(x^*) = 0$ 。注意

$$f(x^*) = f(x^*) + u^*g(x^*) + v^*h(x^*)$$

$$= \phi(x^*, u^*, v^*)$$

$$\leq \phi(x, u^*, v^*) \text{ (由定理的假设)}$$

$$= f(x) + u^*g(x) + v^*h(x).$$

因此有 $f(x^*) \le \theta(u, v) = \inf\{f(x) + ug(x) + vh(x) | x \in S\}$,这是因为 对所有 $x \in S$,上述不等式都成立。再由**推论2**可知, x^* 和 $u^* \ge 0$ 分别是原始问题和对偶问题的最优解。

3. 鞍点定理(续二)

证明 (续) 反之,设 x^* 是原始问题的一个最优解。则又定理 **32** 可知,存在一个 (u^*,v^*) ,其中 $u^* \ge 0$,满足 $f(x^*) = \theta(u^*,v^*)$ 和 $u^*g(x^*) = 0$ 。再由函数 $\theta(u,v)$ 的定义可得

$$f(x^*) = f(x^*) + u^*g(x^*) + v^*h(x^*) = \phi(x^*, u^*, v^*)$$

$$= \theta(u^*, v^*) = \inf \{ f(x) + u^*g(x) + v^*h(x) \mid x \in S \}$$

$$\leq f(x) + u^*g(x) + v^*h(x), \quad \text{对任意} x \in S$$

$$= \phi(x, u^*, v^*),$$

即得第二个不等式。

第一个不等式成立是因为 $u \ge 0$ 和 $g(x^*) \le 0$,有 $\phi(x^*, u, v) = f(x^*) + ug(x^*) + vh(x^*) \le f(x^*) = \phi(x^*, u^*, v^*).$

在某些凸性的假设下,**K-K-T**条件中的拉格朗日乘子同样也是鞍点判定条件中的系数。