

CS2080: Applied Privacy for Data Science Intro to Membership Inference Attacks

James Honaker, Priyanka Nanayakkara, Salil Vadhan School of Engineering & Applied Sciences Harvard University

February 3, 2025

Takeaway Message on Reconstruction Attacks

- Every statistic released yields a (hard or soft) constraint on the dataset.
 - Sometimes have nonlinear or logical constraints ⇒ use fancier solvers
 (e.g. SAT or SMT solvers)
- Releasing too many statistics with too much accuracy necessarily determines almost the entire dataset.
- This works in theory and in practice (see readings, ps2).

How to Defend Against Reconstruction

• Q: what is a way that we can release many pretty-accurate estimates of proportions (counts divided by n) on a dataset while ensuring that an adversary can only reconstruct a small fraction of our dataset?

• A:

Subsampling vs. Reconstruction

- Q: If the adversary is just trying to reconstruct a single sensitive bit per individual, what fraction of the dataset should we expect the adversary to reconstruct if we subsample k rows and answer arbitrarily many counts?
- **Guess 1:**
- Guess 2:
- A:

Q: is subsampling a satisfactory privacy defense?

The Utility of Subsampling

Q: why doesn't the subsampling defense disprove the Dinur-Nissim reconstruction theorem?

A:

Q: are attacks still possible if we allow error larger than $1/\sqrt{n}$?

A:

Membership Inference Attacks: Setup

Attacker gets:

- Access to mechanism outputs
- (Some of) Alice's data
- (Possibly) auxiliary info about population
- (Possibly) the code for the mechanism (cf. Kerkhoff's Principle)

Then decides: if Alice is in the dataset X

MIAs: Examples

- Genome-wide Association Studies [Homer et al. `08]
 - release frequencies of SNP's (individual positions)
 - determine whether Alice is in "case group" [w/a particular diagnosis]
- ML as a service [Shokri et al. `17]
 - apply models trained on X to Alice's data

MIAs from Means

Some possible aux:

- The vector $p = (p_1, ..., p_d)$ of population means
- Or the data of several random individuals from the population

Q: how should the Attacker decide "In" vs. "Out"?

A:

MIAs as Hypothesis Testing

Attacker wants to *reject*

The Null Hypothesis H_0 : Alice is not in the dataset, and the dataset is drawn iid from population (given Alice's data and aux)

False Positive Rate (aka Significance Level α , False Alarm, Type I error): FPR = Pr[MIA says "In" | H_0]

Q: Suppose we have an MIA with a very low FPR (e.g. 10^{-9}) and it outputs "In" on a real-world data release. What do we need to know to be confident that Alice is in the dataset?

A:

Why is a Low FPR Important?

• A:

• Q: Suppose an attacker goes on a fishing expedition and tries the MIA out on k people, and the MIA says "In" on one of them. Can the attacker be confident that they're in the dataset?

• A:

True Positive Rate

Alternative Hypothesis H_1 : Alice is a random member of the dataset, which is drawn iid from the population

True Positive Rate (aka "Sensitivity"): $TPR = Pr[MIA says "In" | H_1] = 1 - FNR$

FNR = "false negative rate", type II error β ", "missed detection"

What FPR & TPR are Meaningful?

Hypothesis tests only useful if TPR > FPR.

• MIAs only useful if TPR $\gtrsim 1/n$, where n = size of dataset

• There are very non-private mechanisms w/best TPR = 1/n.

Salil's Opinion: TPR $\gtrsim 1/n \gg$ FPR is most relevant for privacy.

Comparing Attack Frameworks

	Dinur-Nissim Reconstruction	Membership Inference
What is reconstructed?	Explicit attributes	"In" or "Out" attribute
Parameter regime	FPR = o(1), TPR = 1 - o(1)	$TPR \gtrsim 1/n \gg FPR$

- Reconstruction and Membership Inference Attacks are endpoints on a common spectrum.
- Important variables for both:
 - Distributional assumptions
 - Quantity & quality of mechanism outputs needed
 - Auxiliary information used by attacker
 - Comparisons to appropriate baselines