Escuela Rafael Díaz Serdán Matemáticas 3 ° de Secundaria (2022-2023)

Examen de la Unidad 2

Prof.: Julio César Melchor Pinto

Nombre del alumno: _	
Fecha de aplicación:	

Aprendizajes a evaluar:

- Resuelve problemas mediante la formulación y la solución algebraica de ecuaciones cuadráticas.
- Analiza y compara diversos tipos de variación a partir de sus representaciones tabular, gráfica y algebraica, que resultan de modelar situaciones y fenómenos de la Física y de otros contextos.

Calificaciones:

Pregunta	Puntos	Obtenidos
1	20	
2	40	
3	40	
Total	100	

Instrucciones:

Lee con atención cada pregunta y realiza lo que se te pide. De ser necesario, desarrolla tus respuestas en el espacio determinado para cada pregunta o en una hoja en blanco por separado, anotando en ella tu nombre completo, el número del problema y la solución propuesta.

Gráficas de ecuaciones cuadráticas

Figura 1: Grafica de x^2 (rojo), su negarivo $-x^2$ (azul) y su variación en el término independiente (líneas punteadas).

Ecuación cuadrática

Una **ecuación cuadrática** completa en una variable es una ecuación del tipo

$$ax^2 + bx + c = 0 \tag{1}$$

donde a, b y c son enteros, decimales o fraccionarios y a no es igual a 0. Como el mayor exponente de la variable es 2 también se le conoce como **ecuación** de segundo grado.

Formas de una ecuación cuadrática

$$ax^2+bx+c=0$$
 Forma general o estándar $a(x-x_1)(x-x_2)=0$ Forma factorizada $a(x-h)^2+k=0$ Forma canónica

Discriminante δ

El discriminante δ es un parámetro que indica cuantas soluciones tiene una ecuación cuadrática:

Número de soluciones =
$$\begin{cases} 2 & \text{si } \delta > 0 \\ 1 & \text{si } \delta = 0 \\ 0 & \text{si } \delta < 0 \end{cases}$$

Fórmula para las soluciones de una ecuación cuadrática

$$x = \frac{-b \pm \sqrt{\delta}}{2a}$$
 donde, $\delta = b^2 - 4ac$

que se pueden escribir en una sola expresión:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Vocabulario

 $\begin{array}{l} \textbf{signo} \rightarrow \text{característica} + \text{o} - \text{de una cantidad.} \\ \textbf{ecuación} \rightarrow \text{expresiones algebráicas con un signo} \\ \text{'='}. \end{array}$

 $factor \rightarrow aquello que se multiplica.$

 $\mathbf{factorizar} \to \mathbf{convertir}$ una expresión algebráica en un producto.

coeficiente \rightarrow número que multiplica a una literal; ejemplo: a, b, c son coeficientes de $ax^2 + bx + c$.

ecuación cuadrática $\rightarrow 0 = ax^2 + bx + c$.

 $\mathbf{raíces} \to \mathbf{soluciones}$ de una ecuación cuadrática.

 $formula \rightarrow ecuación.$

Factiorización de una ecuación cuadrática

Factorizar una ecuación cuadrática significa escribirla como una multiplicación (expresiones algebraicas separadas por paréntesis), y sirve para encontrar las soluciones a una ecuación cuadrática de forma rápida:

- 1. Verifica si existe un factor en común para los coeficientes a, b y c y divide la ecuación entre el factor común (obtendras una ecuación cuadrática de la forma $x^2 + bx + c = 0$).
- 2. Escribe dos paréntesis, de esta forma:

$$x^2 + bx + c = \left(x - x_1\right) \cdot \left(x - x_2\right)$$

3. Coloca en los espacios dos números que al sumarlos tengan el valor de b y al multiplicarlos el valor de c.

$$b = x_1 + x_2$$

$$c = x_1 \cdot x_2$$

- 4. Verifica el signo de los coeficientes a y b.
- [20 puntos] Antoine se encuentra en un balcón y lanza una pelota a su perro, que está a nivel del suelo. La altura h(t) de la pelota (en metros sobre el suelo), t segundos después de que Antoine la lanzó, está modelada por:

$$h(t) = -2t^2 + 4t + 16$$

¿Cuántos segundos después de ser lanzada la pelota llegará al suelo?

Į			

2 Encuentra las soluciones a las siguientes ecuaciones cuadráticas. Puedes utilizar el método de tu preferencia

$[10 \text{ puntos}] \ x^2 - 11x + 18 = 0$		

(2b) [10 puntos] $2x^2 - 2x - 180 = 0$

		\
1	20	. '
1	4	1.

(2c) [10 puntos] $2x^2 - 16x + 14 = 0$

/		
6) .	ı١
. 4	۷.	L /
/		

[10 puntos] $6x^2 + 36x + 54 = 0$

ones?			que de ancho. ¿C	
	rectangular tiene imensiones del te	Se coloca una co	erca alrededor de	los 110