

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 4: Proteção em Instalações Elétricas – Aula 10

Instalações Elétricas I Engenharia Elétrica

4.3.2- Fusíveis

- O fusível é o dispositivo mais simples construtivamente.
- Características elétricas:
 - Tensão nominal:
 - Alta tensão ou baixa tensão;
 - Corrente nominal;
 - Corrente de curto-circuito;
 - Resistência de contato;
 - Característica de desligamento (efeito rápido ou retardado);
 - Possuem elevada capacidade de interrupção de corrente, com grande aplicação no meio industrial;
- Atuam pela fusão do elemento fusível, que está localizado na parte interna do mesmo.

Tipos de Fusíveis

- A normatização IEC 60269 e NBR (11840 a 11849) definem três tipos de fusíveis, todos limitadores de corrente:
 - gG
 - Proteção contra corrente de sobrecarga e curto-circuito;
 - Uso doméstico (para $I_n < 100A$) e industrial;
 - Podem ser manipulados por pessoas não qualificadas, a nível doméstico.
 - gM e aM:
 - Proteção somente contra curto-circuito, aplicado a circuito de motores;
 - É utilizado em conjunto com relé térmico e contator;
 - Só deve ser manipulado por pessoas autorizadas.

Tipos de fusíveis

- Existem vários tipos:
 - Rolha
 - Cartucho
 - Vidro;
 - DIAZED
 - SILIZED
 - NEOZED
 - NH;
 - Etc.

Fusível Tipo Rolha, Vidro e Cartucho

DIAZED

DIAZED

- Palavra Alemã, que significa em "formato de garrafa"
- DIA Diâmetro
- Z duas partes (bipartido)
- ED Rosca do tipo Edson
- Tipo D segundo a NBR 11844;
- Aplicados para proteção dos condutores de rede de energia elétrica e circuitos de comando;
- Podem ser do tipo rápido ou retardado.

SILIZED E NEOZED

Silized ou Sistor

- São fusíveis ultra rápidos na curva tempo-corrente.
- Tem aplicação na proteção de equipamentos com semicondutores (tiristores e diodos) em retificadores e conversores.

Neozed

- Fusíveis com menor dimensão e com retardo de atuação.
- Aplicados em redes de distribuição elétrica e circuitos de comando.

NH

- N H
 Baixa Tensão (500 Vca / 250 Vcc);
 Alta capacidade de ruptura (120 kA até 500 V_{ca}; 100 kA até 500V_{cc});
 - Reúnem as características de fusível retardado para correntes de sobrecarga e fusível rápido para correntes de curto-circuito;
 - São aplicados a circuitos de motores, para partida direta;
 - Possuem contatos prateados, que proporcionam baixas perdas.

Curva Característica Tempo-Corrente

Curva Característica de Fusíveis

Curva Característica de Fusíveis

Dimensionamento de Fusíveis

- Similar ao dimensionamento dos Disjuntores Termomagnéticos
- Sobrecarga

(a)
$$I_P \le I_n \le I_z$$
 (b) $I_2 \le 1,45 \times I_z$ $I_2 = 1,6 I_n \text{ (para } I_n > 16 \text{ A})$ $I_2 = 1,9 I_n \text{ (para } 4 < I_n \le 16 \text{ A})$

Fusíveis gG

$$I_2 = 1,6 I_n \text{ (para } I_n > 16 A$$

 $I_2 = 1,9 I_n \text{ (para } 4 < I_n \le 16 A$
 $I_2 = 2,1 I_n \text{ (para } I_n \le 4 A)$

Curto-Circuito

$$I^2 t \le k^2 S^2 \qquad \qquad t = \frac{k^2 S^2}{I^2}$$

Onde Tdd ≤t (Tempo que o dispositivo deve atuar para uma corrente I)

4.4- Dispositivos Diferenciais Residuais

- Segundo a NBR 5410/2004 os dispositivos diferenciais residuais possuem múltiplas funções, como:
 - Proteção dos condutores contra sobrecorrentes;
 - Proteção das pessoas contra choques elétricos;
 - Proteção contra incêndios;
 - Controlam o isolamento da instalação elétrica, impedindo o desperdício de energia por fuga excessiva de corrente na instalação elétrica.
- O que vem a ser um dispositivo diferencial residual?
 - São dispositivos de proteção que atuam quando existe uma corrente residual (fuga de corrente) circulando na instalação;
 - Tem a principal função de proteger as pessoas contra eventuais acidentes com choque elétrico, contato direto e indireto;

Princípio de funcionamento do DDR

- Fuga de Corrente:
 - São causadas primordialmente por falha no isolamento ou por falhas internas dos equipamentos.
- $\bullet \quad I_1 = I_2 + I_d$
 - Em condições normais: $I_d = 0$
- A corrente de fuga pode ser devido a falha de isolação ou a um choque elétrico.
 - $I_d = I_1 I_2$
 - O DDR atua medindo a todo instante a corrente diferencial residual.

Funcionamento do DDR

DDR Bipolar

- Formado por uma bobina principal, enrolada sobre um núcleo magnético.
- Em condições normais de operação o fluxo resultante é nulo.
- A bobina secundária é ligada a um relé.
- Caso a corrente diferencial-residual seja superior ao limite de atuação, a bobina secundária envia um sinal para o relé abrir os contatos principais.
- O botão de teste (T) permite testar o DR. Este causa um desequilíbrio, provocando a atuação do DR.

Funcionamento Mecânico do Dispositivo DR

A - Posição fechada.

- M- Imã Permanente
- N- Parte móvel do núcleo
- G- Mola
- L- Alavanca de desengate intermediário
- L₁- Alavanca
- D- Dente de engate
- P- Pino

Funcionamento Mecânico do Dispositivo DR

C - Posição aberta após o disparo.

Funcionamento do DDR

Sensibilidade:

- É o valor de corrente que fará com que o DDR desarme, chamada corrente diferencial-residual de atuação ($I\Delta n$);
- DR com I∆n < 30mA são classificados como DR de alta sensibilidade.
 - São utilizados na proteção tanto por contato indireto como contato direto.
 - São de uso obrigatório em instalações de baixa tensão (NBR 5410/2004).
- DR com $I\Delta n > 30$ mA são classificados como DR de baixa sensibilidade.
 - São utilizados na proteção contra incêndios e em esquemas de aterramento IT.

Curva de Atuação do DDR

Fonte: Catalogo de Produtos Pial Legrand 2004 e 2005

Especificação Técnica do Dispositivo DR

- As principais características técnicas são:
 - Corrente Nominal $(I_n A)$;
 - Corrente diferencial-residual nominal de atuação $I_{\Delta N}$ (mA);
 - 30 mA, 100 mA, 300 mA, 500 mA.
 - Tensão nominal $V_n(V)$;
 - Capacidade de Interrupção I_{cn}(kA);
 - Frequência- f (Hz);
 - Número de pólos − 2 ou 4 pólos (bipolar ou tetrapolar).
 - Bipolar: (F+N), (F+F) preferencialmente.
 - Tetrapolar: (F+F+F+N), (F+F+F) e (F+F+N).
- Podem ser encontrados de diversos tipos:
 - Interruptor diferencial residual;
 - Disjuntor com proteção diferencial-residual;
 - Tomadas com interruptor diferencial residual incorporado;

Disjuntor Diferencial Residual

Interruptor Diferencial Residual

	2 módulos	4 módulos
Aplicação	fase-neutro fase-fase	2 fases e neutro
		3 fases
		3 fases e neutro

Principais Características Técnicas

Normas IEC 1008 e BS EN 61008
Números de módulos 2 e 4
Corrente nominal (In) 25, 40 , 63, 80 e 100A
Sensibilidade (IAn) 30, 100, 300 e 500mA
Tensão Máxima: 400V± 10%
Frequência: 50/60Hz
Fixação Trilho Din 35mm
Terminais 25mm_ até 40 A, 50mm_ até 100 A
Tipo AC
Temperatura ambiente25 °C+55°C
Montagem Qualquer posição
Peso - 2 pólos 250 g
Peso - 4 pólos 368g
Nº de Manobras - 2 pólos
Elétricas / Mecânicas 10.000 / 20.000
Nº de Manobras - 4 pólos Elétricas / Mecânicas 10.000 / 20.000

Fonte: Catálogo de Produtos GE

4.4.1- O DDR e a Proteção contra Choque Elétrico

- O que é um choque elétrico?
 - É a sensação fisiopatológica sentida por uma pessoa ao ficar sujeita a uma diferença de potencial entre as mãos, entre mão(s) e pé(s), entre os pés, ou entre a cabeça e membro(s).
- Os choques mais perigosos são aqueles que incluem em seu percurso o coração e o cérebro. Mas são raros...
- O choque mais comum envolve o caminho braço, coração e o pé. Dependendo da intensidade da corrente a pessoa pode até morrer.
- Estudos na década de 20 levaram ao levantamento dos efeitos da correntes no corpo humano.
 - Normas IEC 479, 479-1 e 479-2.

Reações Fisiológicas do Choque Elétrico

• A figura abaixo ilustra as zonas tempo/corrente dos efeitos da corrente alternada, bem como as reações fisiológicas sobre as pessoas.

Corrente de Choque Elétrico

- Quando uma pessoa toca uma parte ativa da instalação, duas resistências são importantes:
 - A resistência interna da pessoa (R_M);
 - A resistência da ligação à terra (R_{st}).
- No caso de acidente, o pior caso ocorre para quando R_{st}=0.
- A resistência do corpo humano varia:
 - Entre as mãos ou entre a mão e pé possui valor médio de 1000Ω ;
- Para uma tensão de falha de 220V, a corrente que circula pelo corpo humano é de 220 mA (127 mA para 127V).
- Esta corrente pode matar? E aí que atua o DDR....

4.4.2- Prescrições da NBR 5410 sobre DDR

- A NBR 5410:2004 estabelece as prescrições mínimas quanto a aplicação dos dispositivos DR:
 - Deve-se usar DR de alta sensibilidade (I∆n≤30mA), para proteção contra contato direto e indireto;
 - Obrigatoriedade do uso de dispositivos DR de alta sensibilidade:
 - Locais que contenham banheira ou chuveiro devem possuir proteção I∆n≤30mA;
 - Circuitos que sirvam pontos de utilização em locais como banheira ou chuveiro;
 - Circuitos de tomadas de corrente situadas em áreas internas que possam vir a alimentar equipamentos no exterior;
 - Circuitos que, em locais de habitação, sirvam pontos de utilização situados em cozinha, copascozinhas, lavanderias, áreas de serviço, garagens e em áreas internas molhadas em uso normal ou sujeitas a lavagens.
 - O uso de DR não dispensa, em nenhuma hipótese o uso do condutor de proteção, em toda sua extensão;

4.4.3-Instalação do DDR no QDC

- A proteção dos circuitos com o DDR pode ser realizada da seguinte forma:
 - Individualmente, por ponto de utilização;
 - Em cada circuito;
 - Por grupo de circuitos.
- Na figura ao lado é apresentado a aplicação do DDR em cada circuito.
 - -DTM + IDR;

Instalação do DDR no QDC

- Na figura ao lado é apresentado a aplicação do DDR por grupo de circuitos
 - -DTM + IDR;

Instalação do DDR no QDC

Instalação do Interruptor Diferencial Residual

Instalação do Disjuntor Diferencial Residual

