CLAIMS

1. An agent for optical resolution which comprises:

a 1-alkoxybicyclo (3.3.0) -2-oxaoctane compound represented by the 5 formula (1),

a 1-hydroxybicyclo (3.3.0) -2-oxaoctane compound represented by the formula (2) or

a bicyclo $\{3.3.0\}$ -2-oxa-1-octene compound represented by the formula $\{3\}$:

10

$$R^{3}$$
 R^{4}
 R^{5}
 R^{6}
 R^{11}
 R^{7}
 R^{8}
 R^{8}
 R^{10}
 R^{9}
 R^{10}
 R^{9}
 R^{10}
 R^{10}

$$R^{3}$$
 R^{4}
 R^{5}
 R^{6}
 R^{11}
 R^{7}
 R^{8}
 R^{8}
 R^{10}
 R^{9}
 R^{9}
 R^{10}

$$R^{3}$$
 R^{4}
 R^{6}
 R^{11}
 R^{7}
 R^{8}
 R^{9}
 R^{9}
 R^{10}
 R^{9}

wherein R^1 to R^{10} each independently represents hydrogen atom or an alkyl group having 1 to 20 carbon atoms, R^{11} represents a condensed polycyclic hydrocarbon group or a group having at least three cyclic structures, and R^{12} represents an alkyl group having 1 to 6 carbon atoms.

5

10

15

2. A process for producing an optically active substance which comprises the steps of:

bringing a 1-alkoxybicyclo [3.3.0] -2-oxaoctane compound represented by the formula [1], a 1-hydroxybicyclo [3.3.0] -2-oxaoctane compound represented by the formula [2] or a bicyclo [3.3.0] -2-oxa-1-octene compound represented by the formula [3], into reaction with a mixture of optically active substances having active hydrogen atom to form a mixture of diastereomers;

resolving the mixture of the diastereomers into each diastereomer; and

decomposing at least one of the diastereomers obtained by resolution to obtain an (R) optically active substance or an (S) optically active substance:

$$R^{3}$$
 R^{4}
 R^{5}
 R^{6}
 R^{11}
 R^{7}
 R^{8}
 R^{10}
 R^{9}
 R^{9}
 R^{10}

$$R^{2}$$
 R^{1}
 OH
 O
 R^{10}
 R^{4}
 R^{5}
 R^{6}
 R^{11}
 R^{7}
 R^{8}
 R^{8}
 \cdots [2]

wherein R^1 to R^{10} each independently represents hydrogen atom or an alkyl group having 1 to 20 carbon atoms, R^{11} represents a condensed polycyclic hydrocarbon group or a group having at least three cyclic structures, and R^{12} represents an alkyl group having 1 to 6 carbon atoms.

3. A 1-alkoxybicyclo [3.3.0] -2-oxaoctane compound represented by the formula [1], a 1-hydroxybicyclo [3.3.0] -2-oxaoctane compound represented by the formula [2] or a bicyclo [3.3.0] -2-oxa-1-octene compound represented by the formula [3]:

$$R^{2}$$
 R^{1}
 OR^{12}
 O
 R^{10}
 R^{4}
 R^{5}
 R^{6}
 R^{11}
 R^{7}
 R^{8}
 R^{8}
 \cdots

$$R^{3}$$
 R^{4}
 R^{5}
 R^{6}
 R^{11}
 R^{7}
 R^{8}
 R^{8}
 R^{10}
 R^{9}
 R^{9}
 R^{10}
 R^{10}

$$R^{3}$$
 R^{4}
 R^{5}
 R^{6}
 R^{11}
 R^{7}
 R^{8}
 R^{8}
 R^{9}
 R^{10}
 R^{9}

wherein R^1 to R^{10} each independently represents hydrogen atom or an alkyl group having 1 to 20 carbon atoms, R^{11} represents fluorenylmethyl group or fluorenylidenemethyl group, and R^{12} represents an alkyl group having 1 to 6 carbon atoms.

4. A 1-methoxybicyclo [3.3.0] -2-oxaoctane compound represented by the formula [4]:

wherein R¹¹ represents bis(4-cyclohexylphenyl)methyl group,

4-(9-phenanthryl)phenyl group, 4-(1-pyrenyl)phenyl group, 4-(5-acenaphthenyl)phenyl group or 4-(9-anthryl)phenyl group.