Numerical methods for the Heston model

School of Applied Mathematics
A Thesis
Presented to the
Getulio Vargas Foundation

In Partial Fulfillment of the Requirements for the Degree M.Sc. of Applied Mathematics

Fernando O. Teixeira

setembro 12, 2017

Approved for the Division (Mathematics)

Hugo Alexander de la Cruz Cancino

Acknowledgements

Any one who considers arithmetical methods of producing random digits is, of course, in a state of \sin . - John von Neumann

Table of Contents

Chapter 1: altadvisor: 'Your Other Advisor'	1
Chapter 2: Literature Review	3
Chapter 3: The Heston Model Implementation	5
3.1 Characteristic Function	5
3.2 Euler Scheme	6
3.3 Kahl-Jackel	7
3.4 Exact Algorithm	7
3.4.1 Generate a sample of V_t given V_0	7
3.4.2 Generate a sample of $\int_0^t V_s ds$ given V_t, V_0	8
3.4.3 Compute $\int_0^t \sqrt{V_s} dB_s$ given V_t , V_0 and $\int_0^t V_s ds$	
Chapter 4: This chunk ensures that the thesisdown package is	11
Chapter 5: Conclusion	13
Chapter 6: Black-Scholes formula	15
References	15

List of Tables

List of Figures

Abstract

The preface pretty much says it all. Second paragraph of abstract starts here.

Dedication

You can have a dedication here if you wish.

altadvisor: 'Your Other Advisor'

Chapter 2 Literature Review

The Heston Model Implementation

In section ?? we presented Heston's SDE system in one of its structures. Another common way [1,3,10] to write down the system is using the property presented in subsection ?? as in equation (3.1).

$$dS_t = \mu S_t dt + \rho \sqrt{V_t} dB_t + \sqrt{1 - \rho^2} \sqrt{V_t} S_t dW_t$$

$$dV_t = k(\theta - V_t) dt + \sigma \sqrt{V_t} dB_t$$
(3.1)

3.1 Characteristic Function

The Heston model characteristic function is firstly presented in the 1993 Steven Heston's paper [8] and is described below [5]:

$$f(S_t, V_t, t) = e^{A(T-t) + B(T-t)S_t + C(T-t)V_t + i\phi S_t}$$
(3.2)

If we let $\tau = T - t$, then the explicit form of the Heston characteristic function is:

$$f(i\phi) = e^{A(\tau) + B(\tau)S_t + C(\tau)V_t + i\phi S_t}$$

$$A(\tau) = ri\phi\tau + \frac{\kappa\theta}{\sigma^2} \left[-(\rho\sigma i\phi - \kappa - M)\tau - 2\ln\left(\frac{1 - Ne^{M\tau}}{1 - N}\right) \right]$$

$$B(\tau) = 0$$

$$C(\tau) = \frac{(e^{M\tau} - 1)(\rho\sigma i\phi - \kappa - M)}{\sigma^2(1 - Ne^{M\tau})}$$
Where:
$$M = \sqrt{(\rho\sigma i\phi - \kappa)^2 + \sigma^2(i\phi + \phi^2)}$$

$$N = \frac{\rho\sigma i\phi - \kappa - M}{\rho\sigma i\phi - \kappa + M}$$

This function is the driving force behind the following formula, that calculates the fair valur of a European call option at time t, given a strike price K, that expires at

time T [5]:

$$C = \frac{1}{2}S(t) + \frac{e^{-r(T-t)}}{\pi} \int_0^\infty \Re\left[\frac{K^{-i\phi}f(i\phi+1)}{i\phi}\right] d\phi$$
$$-Ke^{-r(T-t)} \left(\frac{1}{2} + \frac{1}{\pi} \int_0^\infty \Re\left[\frac{K^{-i\phi}f(i\phi)}{i\phi}\right] d\phi\right)$$
(3.3)

3.2 Euler Scheme

Given the fact that the underlying asset is temporal dependent upon the solution of the SDE's volatility, we simulate the volatility's path before the asset's. If the Black-Scholes model enabled using Ito's Lemma directly for solving S_t , this equation system requires numerical methods. We present here the Euler Scheme - Full Truncation algorithm (and compare to other similar schemes) [3] along with some insights on how it was implemented in R. The Euler discretization brings approximation paths to stock prices and variance processes. If we set $t_0 = 0 < t_1 < \cdots < t_M = T$ as partitions of a time interval of M equal segments of length δt , we have the following discretization for the stock price:

$$S_{t+1} = S_t + rS_t + \sqrt{V_t}S_t Z_s (3.4)$$

And for the variance process:

$$V_{t+1} = V_{t,1} + \kappa(\theta - V_{t,2}) + \sigma\sqrt{V_{t,3}}Z_v^{1}$$
(3.5)

 Z_s being a standard normal random variable, i.e. $N \sim (0,1)$, we set Z_t and Z_v as two independent standard normal random variables and Z_s and Z_v having correlation ρ . This means we can write $Z_s = \rho Z_v + \sqrt{1-\rho^2} Z_t$

The immediate observable problem in the proposed discretization scheme is that V can become negative with non-zero probability making the computation of $\sqrt{V_t}$ impossible [1]. There are several proposed fixes that can be used as you can see below:

Scheme	$V_{t,1}$	$V_{t,2}$	$V_{t,3}$
Reflection Partial Truncation Full Truncation	$egin{array}{c c} \mid V \mid \\ V \\ V \end{array}$	$\begin{array}{c c} V \\ V \\ V^+ \end{array}$	$ \begin{array}{c c} V \\ V^+ \\ V^+ \end{array} $

Where $V^+ = \max(V, 0)$ and |V| is the absolute value of V.

We chose to fix our discretization using the Full-Truncation (FT) scheme and thus, rewrite the equations as follows:

$$S_{t+1} = S_t + rS_t + \sqrt{V_t^+} S_t Z_s \tag{3.6}$$

$$V_{t+1} = V_t + \kappa(\theta - V_t^+) + \sigma \sqrt{V_t^+} Z_v$$
 (3.7)

3.3. Kahl-Jackel 7

3.3 Kahl-Jackel

Kahl-Jackel propose a discretization method they refer to as the "IJK" method [1,10] that coupled with the implicit Milstein scheme for the variance lands the system of equations (3.8) and (3.9). It is possible to verify that this discretization always results in positive paths for V if $4\kappa\theta > \sigma^2$. Unfortunately, this inequality is rarely satisfied when we plug real market data to calibrate the parameters.

$$\ln \hat{S}(t+\Delta) = \ln \hat{S}(t) - \frac{\Delta}{4} \left(\hat{V}(t+\Delta) + \hat{V}(t) \right) + \rho \sqrt{\hat{V}(t)} Z_v \sqrt{\Delta}$$

$$+ \frac{1}{2} \left(\sqrt{\hat{V}(t+\Delta)} + \sqrt{\hat{V}(t)} \right) \left(Z_S \sqrt{\Delta} - \rho Z_V \sqrt{\Delta} \right) + \frac{1}{4} \sigma \rho \Delta \left(Z_V^2 - 1 \right)$$

$$\hat{V}(t+\Delta) = \frac{\hat{V}(t) + \kappa \theta \Delta + \sigma \sqrt{\hat{V}(t)} Z_V \sqrt{\Delta} + \frac{1}{4} \sigma^2 \Delta \left(Z_V^2 - 1 \right)}{1 + \kappa \Delta}$$

$$(3.8)$$

3.4 Exact Algorithm

In 2006, Broadie-Kaya [3] propose a method that has a faster convergence rate, $\mathcal{O}\left(s^{-1/2}\right)$ than some of the more famous schemes, such as Euler's and Milstein's discretizations. They build their idea to generate an exact sample from the distribution of the terminal stock price based on numerous papers [8]. The stock price and variance are as follows:

$$S_t = S_0 \exp\left[\mu t - \frac{1}{2} \int_0^t V_s ds + \rho \int_0^t \sqrt{V_s dB_s} + \sqrt{1 - \rho^2} \int_0^t \sqrt{V_s} dW_s\right]$$
(3.10)

The squared volatility of the variance process is:

$$V_t = V_0 + \kappa \theta t - \kappa \int_0^t V_s ds + \sigma \int_0^t \sqrt{V_s dB_s}$$
 (3.11)

The algorithm used to generate the model consists in four steps as follows:

- Step 1. Generate a sample of V_t given V_0
- Step 2. Generate a sample of $\int_0^t V_s ds$ given V_t , V_0
- Step 3. Compute $\int_0^t \sqrt{V_s} dB_s$ given V_t , V_0 and $\int_0^t V_s ds$
- Step 4. Generate a sample from the probability distribution of S_t , given $\int_0^t \sqrt{V_s} dB_s$ and $\int_0^t V_s ds$

3.4.1 Generate a sample of V_t given V_0

The distribution of V_t given V_0 for 0 < t is a noncentral chi-squared distribution [2,4]:

$$V_t = \frac{\sigma^2(1 - e^{-\kappa t})}{4\kappa} \mathcal{X}_{\delta}^2 \left(\frac{4\kappa e^{-\kappa t}}{\sigma^2(1 - e^{-\kappa t})} \times V_0 \right)$$

where $\delta = \frac{4\theta\kappa}{\sigma^2}$ and $\mathcal{X}^2_{\delta}(\lambda)$ denotes a noncentral chi-squared random variable with δ degrees of freedom and λ as its noncentrality parameter.

Broadie and Kaya [3] sample generating Poisson and gamma distributions as in Johnson et al. [9]. We used the built-in function in R [11] which uses this exact method for sampling.

3.4.2 Generate a sample of $\int_0^t V_s ds$ given V_t , V_0

After generating V_t , we follow the instructions in [3,9]. We use the characteristic function (3.12) to compute the probability density function F(x).

$$\Phi(a) = \mathbb{E}\left[exp\left(ia\int_{0}^{t} V_{s}ds \mid V_{0}, V_{t}\right)\right]
= \frac{\gamma(a)e^{(-1/2)(\gamma(a)-\kappa)t}(1-e^{-\kappa t})}{\kappa(1-e^{-\gamma(a)t})}
\times exp\left\{\frac{V_{0}+V_{t}}{\sigma^{2}}\left[\frac{\kappa(1+e^{-\kappa t})}{1-e^{-\kappa t}} - \frac{\gamma(a)(1+e^{-\gamma(a)t})}{1-e^{-\gamma(a)t}}\right]\right\}
\times \frac{I_{0.5\delta-1}\left[\sqrt{V_{0}V_{t}}\frac{4\gamma(a)e^{-0.5\gamma(a)t}}{\sigma^{2}(1-e^{-\gamma(a)t})}\right]}{I_{0.5\delta-1}\left[\sqrt{V_{0}V_{t}}\frac{4\kappa e^{-0.5\kappa t}}{\sigma^{2}(1-e^{-\kappa t})}\right]}$$
(3.12)

where $\gamma(a) = \sqrt{\kappa^2 - 2\sigma^2 i a}$, δ was previously defined and $I_v(x)$ is the modified Bessel function of the first kind.

The probability distribution function is obtained in [2,3] by Fourier inversions using Feller [6]. We use the approach in Gil-Pelaez [7], equation (3.13). We define V(u,t) the random variable with the same distribution as the integral $\int_u^t V_s ds$, conditional on V_u and V_t :

$$F(x) \equiv Pr\{V(u,t) \le x\} = F_X(x) = \frac{1}{2} - \frac{1}{\pi} \int_0^\infty \frac{\text{Im}[e^{-iux}phi(u)]}{u} du$$
 (3.13)

Im denotes the imaginary part of $e^{-iux}phi(u)$. Equation (3.13) is computed numerically and we then sample it by inversion.

Furthermore, we also introduce a simpler version for this step, that computes this integral approximation, using the solution $\int_u^t V_s ds = \frac{1}{2} (V_u + V_t)$

3.4.3 Compute $\int_0^t \sqrt{V_s} dB_s$ given V_t , V_0 and $\int_0^t V_s ds$

From equation (3.11) we are now able to compute this integral.

$$\int_0^t \sqrt{V_s dB_s} = \frac{V_t - V_0 - \kappa \theta t + \kappa \int_0^t V_s ds}{\sigma}$$
(3.14)

The last step of the algorithm consists of computing the conditional distribution of $log S_t$ based on the fact that the process for V_t is independent from dB_t , and the distribution of $\int_0^t \sqrt{V_s} dB_s$ is normal with mean 0 and variance $\int_0^t V_s ds$, given V_t .

$$m(u,t) = \log S_0 + \left[\mu t - \frac{1}{2} \int_0^t V_s ds + \rho \int_0^t \sqrt{V_s dB_s} + \sqrt{1 - \rho^2} \int_0^t \sqrt{V_s} dW_s \right]$$

and variance

$$\sigma^2(0,t) = \left(1 - \rho^2\right) \int_0^t V_s ds$$

We generate the S_t sample using a standard normal random variable Z and set:

$$S_t = e^{m(0,t) + \sigma(0,t)Z}$$

This chunk ensures that the thesisdown package is

Conclusion

Chapter 6 Black-Scholes formula

References

- [1] L.B. Andersen, Efficient simulation of the heston stochastic volatility model, (2007).
- [2] J. Baldeaux, E. Platen, Functionals of multidimensional diffusions with applications to finance, Springer Science & Business Media, 2013.
- [3] M. Broadie, Ö. Kaya, Exact simulation of stochastic volatility and other affine jump diffusion processes, Operations Research. 54 (2006) 217–231.
- [4] J.C. Cox, J.E. Ingersoll Jr, S.A. Ross, A theory of the term structure of interest rates, Econometrica: Journal of the Econometric Society. (1985) 385–407.
- [5] R. Dunn, P. Hauser, T. Seibold, H. Gong, Estimating option prices with heston's stochastic volatility model, (2014).
- [6] W. Feller, Introduction to the theory of probability and its applications, vol. 2, II (2. Ed.) New York: Wiley. (1971).
 - [7] J. Gil-Pelaez, Note on the inversion theorem, Biometrika. 38 (1951) 481–482.
- [8] S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies. 6 (1993) 327–343.
- [9] N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, vol. 2 of wiley series in probability and mathematical statistics: Applied probability and statistics, (1995).
- [10] C. Kahl, P. Jäckel, Fast strong approximation monte carlo schemes for stochastic volatility models, Quantitative Finance. 6 (2006) 513–536.
- [11] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2017.
- [12] M. Romano, N. Touzi, Contingent claims and market completeness in a stochastic volatility model, Mathematical Finance. 7 (1997) 399–412.
- [13] L. Scott, Simulating a multi-factor term structure model over relatively long discrete time periods, in: Proceedings of the Iafe First Annual Computational Finance Conference, 1996.
- [14] G.A. Willard, Calculating prices and sensitivities for path-independent derivatives securities in multifactor models, The Journal of Derivatives. 5 (1997) 45–61.