

Appunti di Algoritmi e Strutture Dati

a.a. 2017/2018

 $\begin{array}{c} {\rm Autore:} \\ {\bf Timoty~Granziero} \end{array}$

Repository:

https://github.com/Vashy/ASD-Notes

Indice Indice

Indice

1		ione del $28/02/2018$	5
	1.1	Problem Solving	5
	1.2	Cosa analizzeremo nel corso	6
		1.2.1 Approfondimento sul tempo di esecuzione T(n)	6
	1.3	Problema dell'ordinamento (sorting)	6
	1.4	Insertion Sort	7
		1.4.1 Invarianti e correttezza	8
2	Lez	ione del $02/03/2018$	9
	2.1	Modello dei costi	9
	2.2	Complessità di IS	10
		2.2.1 Caso migliore	10
		2.2.2 Caso peggiore	10
		2.2.3 Caso medio	11
	2.3	Divide et Impera	11
	2.4	Merge Sort	11
		2.4.1 Invarianti e correttezza	13
3	Lez	ione del $07/03/2018$	15
	3.1	Approfondimento sull'induzione	15
		3.1.1 Induzione ordinaria	15
		3.1.2 Induzione completa	15
	3.2	Complessità di Merge Sort	15
	3.3	Confronto tra IS e MS	17
4	Lez	ione dell' $08/03/2018$	18
	4.1	, ,	18
		4.1.1 Limite asintotico superiore	19
		4.1.2 Limite asintotico inferiore	21
		4.1.3 Limite asintotico stretto	
	4.2	Metodo del limite	
	4.3	Alcune proprietà generali	
5	Lez	ione del $09/03/2018$	24
	5.1	Complessità di un problema	24
	5.2	Esempio: limite inferiore per l'ordinamento basato su scambi .	$\frac{1}{24}$
	5.3	Soluzione di ricorrenze	25
	3.3	5.3.1 Metodo di sostituzione	26
6	Lez	ione del 14/03/2018	28

	T 1.
Indiae	India
Indice	Indice

7		Master Theorem	31 31
8	Lezi 8.1 8.2	Heapsort	36 36 37 40
9		Quicksort	43 44 44 45
10	10.1 10.2	Quicksort a tre partizioni	47 48 48 50
11	11.1	Radix Sort	52 52 53 53
12		Chaining	
13		done del 05/04/2018 5 Open Addressing 13.1.1 Hashing uniforme	59 59 60
14			34 64

	T 1.
Indiae	India
Indice	Indice

15		ione del 26/04/2018 Alberi Binari di Ricerca (ABR)	65
		15.1.1 Visita simmetrica	
		15.1.2 Ricerca	66
		15.1.3 Successore di un nodo	68
		15.1.4 Inserimento	
		15.1.5 Eliminazione di un nodo	69
16	Lezi	ione del 27-28/04/2018	71
		Red-Black Trees	71
		16.1.1 Complessità algoritmi RB-Trees	73
		16.1.2 RB-Insert e RB-Delete	73
-1 -	.	1 1 1 00 04/07/0010	= 0
17		doni del 03-04/05/2018	78
	11.1	Arricchimento di Strutture Dati	78 78
		17.1.1 Statistiche d'ordine	78 81
		17.1.2 Teorema den admento degli RB-Trees	81
		17.1.5 Interval frees	01
18	Lezi	ioni del $09-10-11/05/2018$	83
		Programmazione Dinamica	83
		18.1.1 Taglio delle aste	83
		18.1.2 Prodotto di Matrici	88
		18.1.3 Cammino minimo di un grafo*	92
19	Lezi	ioni del $16/05/2018$	93
		Altri esempi di progr. dinamica	93
	1011	19.1.1 Longest Common Subsequence (LCS)	93
Aŗ	pen	dices	93
\mathbf{A}	Rac	colta algoritmi	93
	A.1	Insertion Sort	93
	A.2	Merge Sort	93
	A.3	Insertion Sort ricorsivo	94
		A.3.1 Correttezza di Insertion-Sort(A, j)	94
		A.3.2 Correttezza di Insert(A, j)	95
	A.4	CheckDup	95
		A.4.1 Correttezza di $DMerge(A,p,q,r)$	96
	A.5	SumKey	96
		A.5.1 Correttezza di Sum(A, key)	97
	A.6	Heapsort	99

Ind	dice		
	A.7	Code con priorità	00
В	Esei	cizi 10)2
	B.1	Ricorrenze	02
	B.2	Esercizi svolti il 06/04/2018	02
	B.3	Esercizio del 03/05/2018	05

19 Lezioni del 16/05/2018

19.1 Altri esempi di progr. dinamica

19.1.1 Longest Common Subsequence (LCS)

Consideriamo le **basi azotate** del DNA: Adenina, Citosina, Guanina, Timina (A, C, G, T).

Date due stringhe

 $x_1: A C T A C C T G$ $x_2: A T C A C C$

Definiamo

eliot distance: n passi per rendere uguali le due stringhe.

LCS tra x_1 e x_2 : A T A C C

Consideriamo $X=x_1\dots x_m,$ e una sua sottosequenza $x_{i_1}\dots x_{i_k}$ con $i_1,\dots,i_k\in\{1,\dots,m\}$

Problema Date due sequenze

$$X=x_1\dots x_m$$

$$Y = y_1 \dots y_n$$

Trovare $W = w_1 \dots w_k$ tale che:

- 1. W è sottosequenza di X e Y;
- 2. la lunghezza sia massima.

Osservazioni

- 1. C'è una sottosequenza comune;
- 2. LCS non è unica (e.g. consideriamo le stringhe AB e BA. La loro LCS è sia A che B)

$$LCS(X,Y) =$$
insieme di LCS di $X \in Y$

3. Ricerca esaustiva impossibile.

Sottostruttura ottima Mi riduco a prefissi

$$X = x_1 \dots x_m$$

Prefissi $X^k = x_1 \dots x_k \quad k \leq m$ (ad esempio $X^0 \ \mbox{\'e} \ \varepsilon$)

Sia
$$W = w_1 \dots w_k \in LCS(X, Y)$$

Allora

- 1. Se $x_m = y_n$ allora $w_k = x_m = y_n$ e $W^{k-1} \in LCS(X^{m-1}, Y^{n-1});$
- 2. Se $x_m \neq y_n$
 - (2a) se $x_m \neq w_k$ allora $W \in LCS(X^{m-1}, Y)$;
 - (2b) se $y_n \neq w_k$ allora $W \in LCS(X, Y^{n-1})$.

Dimostrazione

1.

$$X = x_1 \dots x_{m-1} x_m$$
$$Y = y_1 \dots y_{n-1} y_n$$

$$\circ \ w_k = x_m = y_n$$

Se
$$w_k \neq x_m \Rightarrow W$$
 sottoseq. di X^{m-1}, Y^{n-1}

Impossibile, Wx_m sarebbe sottoseq. di X e Y più lunga di W

o
$$W^{k-1} \in LCS(X^{m-1}, Y^{n-1})$$

 W^{k-1} se non ottima, esisterebbe W' sottoseq. di X^{m-1} e Y^{n-1}
tale che $|W'| > |W^{k-1}|$, ottenendo $W'x_m$ sottoseq. di X e Y con $|W'x_m| > |W^{k-1}x_m| = |W|$, assurdo.

- $2. \ x_m \neq y_n$
 - $(2a) x_m \neq w_k$

$$\Rightarrow W$$
è sottoseq. di X^{m-1}

Wè sottoseq. di ${\cal Y}$

$$W \in LCS(X^{m-1}, Y)$$
? (è ottima?)

Se <u>no,</u> esisterebbe W' sottoseq. di X^{m-1} e Y

Assurdo, dato che W' è anche sottoseq. di X e Y, inoltre W è ottima per X e Y;

(2b) Duale.

Espressione ricorsiva Valore della soluzione ottima

Dati

$$X = x_1 \dots x_m$$

$$Y = y_1 \dots y_n$$
 $C[i,j] =$ lunghezza di LCS di X^i e Y^j

$$C[i,j] = \begin{cases} 0 & \text{se } i = 0 \text{ o } j = 0 \\ C[i-1,j-1] + 1 & \text{se } i,j > 0 \text{ e } x_i = y_j \\ max(C[i-1,j],C[i,j-1]) & \text{se } i,j > 0 \text{ e } x_i \neq y_j \end{cases}$$

$$b[i,j] = \begin{cases} \nwarrow & \text{se } x_i = y_j \text{ e } C[i,j] = 1 + C[i-1,j-1] \\ \leftarrow & \text{se } x_i \neq y_j \text{ e } C[i,j] = C[i-1,j] \\ \uparrow & \text{se } x_i \neq y_j \text{ e } C[i,j] = C[i,j-1] \end{cases}$$

Pseudocodice

```
LCS(X,Y)
     m = X.len, n = Y.len
 2
     for i = 0 to m /\!\!/ \Theta(m)
 3
          C[i, 0] = 0
 4
     for j = 1 to n /\!\!/ \Theta(n)
 5
          C[0,j] = 0
 6
     for i = 1 to m /\!\!/ \Theta(n \cdot m)
 7
          for j = 1 to n
                if X[i] = Y[j] /\!\!/ C'è un match
 8
 9
                     C[i,j] = C[i-1,j-1]
10
                     b[i,j] = \mathbb{K}
11
                else
                     if C[i-1,j] \ge C[i,j-1]
12
                           C[i,j] = C[i-1,j]
13
                           b[i,j] = \leftarrow
14
15
                     else
                           C[i,j] = C[i,j-1]
b[i,j] = \uparrow
16
17
18
     return b, c
PRINTLCS(X, Y)
1 \quad b, C = LCS(X, Y)
2 PRINTLCSREC(X, b, m, n)
```

```
PRINTLCSREC(X, b, i, j)
    if i > 0 and j > 0
          \quad \textbf{if} \ b[i,j] = \, \nwarrow \quad
2
                 \overrightarrow{\text{PRINTLCSREC}}(X,b,i-1,j-1)
3
                 \mathrm{Print}X[i]
4
          else if b[i,j] = \leftarrow
5
                 PRINTLCSREC(X, b, i - 1, j)
6
7
          {f else}
                 PRINTLCSREC(X, b, i, j - 1)
8
```