Equations du second degré : visions graphiques et algorithmiques.

Première ES, lycée Murat

Nous allons reprendre aujourd'hui l'activité du manuel que nous n'avions pas pu finir il y a deux semaines.

Pour cela, il faut commencer par ouvrir le logiciel geogebra (pour ceux qui n'ont pas geogebra sur leur ordinateur, vous pouvez ouvrir la version en ligne sur

https://www.geogebra.org/graphing

A partir de la question 1 de l'activité 2 p 63 du manuel

Un fichier geogebra comportant les curseurs qu'il vous est demandé d'utiliser est disponible sur https://premiere6-murat-maths.github.io/TPs/secondDegre.ggb

Commencez donc par le télécharger puis ouvrez le avec geogebra.

Dans cette partie, on considère une fonction polynôme du second degré f sous forme canonique $f(x) = \alpha(x-\beta)^2 + \gamma$. On cherche les éventuelles solutions à l'équation f(x) = 0. Dans tout, ce qui suit, on va $\alpha > 0$.

- 1. Sur votre cahier d'activités, répondez aux questions 1)b, c) de la page 63 de votre manuel.
- 2. Complétez le tableau ci-dessous :

$\gamma > 0$	$\gamma = 0$	$\gamma < 0$

Bilan : Connaissant la forme canonique, nous venons de voir que seul le paramètre a une influence sur le nombre de solutions.

3. En utilisant les formules données dans le cours liant γ à a,b et c montrez que

$$\gamma = \frac{b^2 - 4ac}{4a}.$$

4. A partir de ce que vous avez mis dans le tableau et de la question précédente, déduire que si $\Delta > 0$ l'équation du second degré a deux solutions, si $\Delta = 0$ elle n'en a qu'une, qu'elle n'en a aucune si $\Delta < 0$.

1 Des algorithmes

1.1 Calculs de solutions d'équations

Sur votre cahier d'activités, calculez le discriminant et résolvez les équations du second degré suivantes :

- 1. $3x^2 2x + 1 = 0$.
- 2. $x^2 3x + 1 = 0$.

1.2 Le calcul du discriminant

Lancez le logiciel algobox. Téléchargez les fichiers disc.alg et solve.alg disponibles sur https://premiere6-murat-maths.github.io/TPs

Pour les télécharger, faire un clic droit et "enregistrer la cible sous".

Avec algobox, ouvrez le fichier "disc.alg". Vous voyez l'algorithme suivant :

- 1. Lancez l'algorithme avec algobox.
- 2. Sur votre cahier d'activité, répondez aux questions suivantes :
 - (a) A quoi servent les lignes 8, 9, 10?
 - (b) Que faut-il modifier dans la ligne 11 pour que l'algorithme renvoie la valeur du discriminant associé à l'équation $Ax^2 + Bx + C$?
 - (c) Faites les modifications nécessaires avec algobox pour que l'algorithme calcule le discriminant.
 - (d) Vérifiez que votre algorithme est correct en comparant les discriminants renvoyés par le programme et ceux que vous avez calculé dans la partie précédente.

1.3 Le calcul des solutions d'une équation du second degré

Ouvrez désormais le fichier "solve.alg" avec algobox. Vous avez devant vous un algorithme de la forme suivante :

```
1: VARIABLES
2: A EST_DU_TYPE NOMBRE
3: B EST_DU_TYPE NOMBRE
```

```
4: C EST_DU_TYPE NOMBRE
5: D EST_DU_TYPE NOMBRE
6: SOL EST DU TYPE NOMBRE
7: DEBUT_ALGORITHME
       LIRE A
9:
       LIRE B
10:
       LIRE C
       D PREND_LA_VALEUR B^2 - 4 * A * C
11:
       AFFICHER D
12:
13:
       SI (D<0) ALORS
          DEBUT SI
14:
15:
          AFFICHER "Il n'y a pas de solution"
16:
         FIN_SI
17:
       SI (D=0) ALORS
18:
          DEBUT_SI
19:
          SOL PREND_LA_VALEUR B/A
20:
          AFFICHER SOL
21:
          FIN_SI
       SI (D>0) ALORS
22:
23:
          DEBUT_SI
          SOL PREND_LA_VALEUR (-B+sqrt(D))/(2*A)
24:
25:
          AFFICHER SOL
26:
          FIN SI
27: FIN_ALGORITHME
```

- 1. A quoi servent les instructions "Si... Alors..."?
- 2. Par quelle ligne faut il remplacer la ligne 19 pour qu'elle devienne correcte ?
- 3. Écrivez cette ligne dans Algobox.
- 4. Que manque-t-il dans le dernier bloc "Si... Alors..." pour que l'algorithme soit correct ?
- 5. Ajoutez deux variables "SOL+" et "SOL-" au début de l'algorithme.
- 6. Modifiez la ligne 24 pour que ce soit SOL+ et non pas SOL qui prenne la valeur (-B+sqrt(D))/(2*A).
- 7. Après la ligne 24, ajoutez une ligne pour donner sa valeur à *SOL*—.