Análise na Reta - IMPA

2^a prova (prova final)

27/02/2019

- 1. Prove ou dê contra-exemplo:
 - (a) Se $A, B \subset \mathbb{R}$ são fechados, então $A + B = \{x + y : x \in A, y \in B\}$ é fechado.
 - (b) Se $K \subset \mathbb{R}$ é compacto e todos os pontos de K são isolados então K é finito.
- 2. Prove que se $f: \mathbb{R} \to \mathbb{R}$ é uma função de classe C^{∞} e $\{x \in \mathbb{R} : f(x) = 0\}$ é um conjunto infinito então, para todo inteiro positivo k, $\{x \in \mathbb{R} : f^{(k)}(x) = 0\}$ é um conjunto infinito.
- 3. Prove ou dê contra-exemplo:
 - (a) Se $f, g : \mathbb{R} \to \mathbb{R}$ são convexas, então f + g é convexa.
 - (b) Se $f,g:\mathbb{R}\to\mathbb{R}$ são convexas, então $f\cdot g$ é convexa.
- 4. Sejam $a, h \in \mathbb{R}$ com h > 0, e seja $k \in (0, 1)$. Determine o maior $\delta > 0$ com a seguinte propriedade: para qualquer função derivável $f : [a h, a + h] \to \mathbb{R}$ com $|f'(x)| \le k, \forall x \in [a h, a + h]$ tal que $|f(a) a| < \delta$, existe um único $y \in [a h, a + h]$ tal que f(y) = y.
- 5. Seja $f:[0,+\infty)\to\mathbb{R}$ uma função contínua, positiva e decrescente tal que $\int_0^{+\infty}f(x)dx$ converge. Prove que $\lim_{x\to+\infty}x\cdot f(x)=0$.
- 6. Determine todas as funções contínuas $f:\mathbb{R}\to\mathbb{R}$ tais que, para quaisquer $a,x\in\mathbb{R}$ com a>0,

$$f(x) = \frac{1}{2a} \int_{x-a}^{x+a} f(t)dt.$$

Sugestão: Mostre inicialmente que, se f é uma função como no enunciado, então f(x-a) + f(x+a) = 2f(x)0, para quaisquer $a, x \in \mathbb{R}$ com a > 0.