Normalization

Mattew Pike & Yuan Yao

Univeristy of Nottingham Ningbo China (UNNC)

Warm Up

Recall: Relational Model

ID	Name	Salary	Department
M139	John Smith	18000	Marketing
M140	Mary Jones	22000	Marketing
A368	Jane Brown	22000	Accouts
P222	Mark Brown	24000	Personals
A367	David Jones	2000	Accounts

- Attributes, Schema, Tuples.
- Degree of the relation.
- Cardinality of the relation.

Warm up: An example database

sID	Name	Department	Building	mCode	Module
1	John	Computer	B1	DBI, FAI	Database and Interfaces,
	Smith	Science	DI	DDI, IAI	Foundation of Artificial Intelligence
2	Mark	Computer	B1	FAI	Foundation of Artificial Intelligence
	Brown	Science	DI		Foundation of Artificial Intettigence
2	Mary	Computer	B1	PGA, DBI	Programming and Algorithms,
3	Jones	Science	PI	PGA, DBI	Database and Interfaces
4	David	Mathematics	A1	MCS	Mathematics for Computer Scientists
4	Jones	Mathematics	AI	MCS	Mathematics for computer scientist

- \cdot Each staff belongs to one department.
- Each department has its own building.

Warm up: Non-atomic values

sID	Name	Department	Building	mCode	Module
1	John	Computer	B1	DBI, FAI	Database and Interfaces,
1	Smith	Science	DI	DDI, FAI	Foundation of Artificial Intelligence
2	Mark	Computer	B1	FAI	Foundation of Artificial Intelligence
	Brown	Science	DI		
3	Mary	Computer	B1	PGA, DBI	Programming and Algorithms,
3	Jones	Science	DI		Database and Interfaces
4	David	Mathematics	A1	MCS	Mathematics for Computer Scientists
4	Jones	Mathematics	AI	MCS	Mathematics for computer scientists

• How to solve this problem?

Warm up: A table with atomic values

sID	Name	Department	Building	mCode	Module
1	John	Computer	B1	DBI	Database and Interfaces
_	Smith	Science			batabase and internaces
1	John	Computer	B1	FAI	Foundation of Artificial Intelligence
1	Smith	Science	DI	IAI	Touridation of Artificial Intettigence
2	Mark	Computer	B1	FAI	Foundation of Artificial Intelligence
	Brown	Science	DI	FAI	Foundation of Artificial Intettigence
3	Mary	Computer	B1	PGA	Programming and Algorithms
3	Jones	Science	DI		Frogramming and Algorithms
3	Mary	Computer	B1	DBI	Database and Interfaces
	Jones	Science	DI	וטטו	Database and interfaces
4	David	Mathematics	A1	MCS	Mathematics for Computer Scientists
4	Jones	Mathematics	A1	MCS	Mathematics for computer scientists

Warm up: Data Redundancy

sID	Name	Department	Building	mCode	Module
1	John	Computer	B1	DBI	Database and Interfaces
	Smith	Science			
1	John	Computer	B1	FAI	Foundation of Artificial Intelligence
	Smith	Science	D1	IAI	Touridation of Artificial Intettigence
2	Mark	Computer	B1	FAI	Foundation of Artificial Intelligence
	Brown	Science	DI	IAI	roundation of Artificial Intettigence
3	Mary	Computer	B1	PGA	Programming and Algorithms
)	Jones	Science	DI	PGA	Frogramming and Algorithms
3	Mary	Computer	B1	DBI	Database and Interfaces
	Jones	Science	DI	וסט	Database and interfaces
4	David	Mathematics	A1	MCS	Mathematics for Computer Scientists
4	Jones	Mathematics		MCS	Madifernatics for computer scientists

Learning Outcomes

Learning Outcomes

By the end of this lecture, you should be able to

- Understand the basic idea of normalization.
- · Understand the definition of **functional dependencies**.
- · Know what are **Normal Forms**.
- Translate given relations into 1NF.
- Understand the problems of **1NF**.

Normalization

What is normalization?

- Normalization: A technique for producing a set of relations with desirable properties, given the data requirement.
- Desirable properties/requirements:
 - · Minimal number of attributes to support the data requirement.
 - Attributes with a close logical relationship should be defined in the same relation.
 - Minimal redundancy.
- · Why we need it?
 - · Easier to access and maintain data.
 - Minimal storage space.
- Normalization steps: 1NF, 2NF and 3NF

1NF

Normalization to 1NF

• 1NF: The relation contains only atomic values.

sID	Name	Department	Building	mCode	Module
1	John	Computer	B1	DBI, FAI	Database and Interfaces,
	Smith	Science	DI	DDI, IAI	Foundation of Artificial Intelligence
2	Mark	Computer	B1	FAI	Foundation of Artificial Intelligence
	Brown	Science	DI		Touridation of Artificial Intelligence
3	Mary	Computer	B1	PGA, DBI	Programming and Algorithms,
	Jones	Science	DI		Database and Interfaces
4	David	Mathematics	A1	A1 MCS	Mathematics for Computer Scientists
4	Jones	Mathematics	A1	IVICS	Mathematics for computer scientists

1NF

• To convert a relation into 1NF, we need to split all non-atomic values

sID	Name	Department	Building	mCode	Module
1	John	Computer	B1	DBI	Database and Interfaces
+	Smith	Science	DI		Database and interfaces
1	John	Computer	B1	FAI	Foundation of Artificial Intelligence
1	Smith	Science	PI	FAI	Foundation of Artificial Intelligence
2	Mark	Computer	B1	FAI	Foundation of Artificial Intelligence
	Brown	Science	DI	ΓAI	Touridation of Artificial Intelligence
3	Mary	Computer	B1	PGA	Programming and Algorithms
	Jones	Science	PI		Frogramming and Algorithms
3	Mary	Computer	B1	DBI	Database and Interfaces
	Jones	Science	DI	וטט	Database and interfaces
4	David	Mathematics	A1	MCS	Mathematics for Computer Scientists
4	Jones	Mathematics	AI	MCS	Mathematics for computer scientists

INSERT Anomalies

• If we want to add a new staff David Ford from Computer Science with ID = 5.

sID	Name	Department	Building	mCode	Module
1	John Smith	Computer Science	B1	DBI	Database and Interfaces
4	David	Mathematics	A1	MCS	Mathematics for Computer Scientists
	Jones	Jones Mathematics A1	/_	14100	Mathematics for computer scientists
5	David Computer	Null	Null	Null	
	Ford	Science	ivatt	ivatt	Nutt

DELETION Anomalies

· If we want to delete module MCS

sID	Name	Department	Building	mCode	Module
1	John	Computer	B1	DBI	Database and Interfaces
_	Smith	Science	DI		batabase and interfaces
1	John	Computer	B1	FAI	Foundation of Artificial Intelligence
+	Smith	Science	DI	IAI	Touridation of Artificial Intelligence
2	Mark	Computer	B1	FAI	Foundation of Artificial Intelligence
2	Brown	Science	PI	FAI	Foundation of Artificial Intelligence
3	Mary	Computer	B1	PGA	Programming and Algorithms
	Jones	Science	PI		Frogramming and Algorithms
3	Mary	Computer	B1	DBI	Database and Interfaces
	Jones	Science	PI	וטט	Database and interfaces
4	David	Mathematics	A1	MCS	Mathematics for Computer Scientists
4	Jones	Mathematics	AI	MCS	mathematics for computer scientists

DELETION Anomalies

• If we want to delete module MCS

sID	Name	Department	Building	mCode	Module
1	John	Computer	B1	DBI	Database and Interfaces
1	Smith	Science	DI	DDI	Database and interfaces
1	John	Computer	B1	FAI	Foundation of Artificial Intelligence
	Smith	Science	DI	IAI	roundation of Artificial intettigence
2	Mark	Computer	B1	FAI	Foundation of Artificial Intelligence
	Brown	Science	DI	FAI	roundation of Artificial intettigence
3	Mary	Computer	B1	PGA	Programming and Algorithms
	Jones	Science	DI	L PGA	Frogramming and Algorithms
3	Mary	Computer	B1	DBI	Database and Interfaces
3	Jones	Science	DI	וטט	Database and interfaces

UPDATE Anomalies

• Mary Jones is now transferred to the department of Mathematics

sID	Name	Department	Building	mCode	Module
1	John Smith	Computer Science	B1	DBI	Database and Interfaces
1	John Smith	Computer Science	B1	FAI	Foundation of Artificial Intelligence
2	Mark Brown	Computer Science	B1	FAI	Foundation of Artificial Intelligence
3	Mary Jones	Computer Science	B1	PGA	Programming and Algorithms
3	Mary Jones	Computer Science	B1	DBI	Database and Interfaces
4	David Jones	Mathematics	A1	MCS	Mathematics for Computer Scientists

UPDATE Anomalies

• Mary Jones is now transferred to the department of Mathematics

sID	Name	Department	Building	mCode	Module
1	John Smith	Computer Science	B1	DBI	Database and Interfaces
1	John Smith	Computer Science	B1	FAI	Foundation of Artificial Intelligence
2	Mark Brown	Computer Science	B1	FAI	Foundation of Artificial Intelligence
3	Mary Jones	Mathematics	B1	PGA	Programming and Algorithms
3	Mary Jones	Mathematics	B1	DBI	Database and Interfaces
4	David Jones	Mathematics	A1	MCS	Mathematics for Computer Scientists

Solution: Decomposition

- · Decomposition:
 - Decompose a large relation into smaller relations.
- Properties:
 - Lossless-join: any instance of the original relation can be identified in the smaller relations
 - Dependency preservation: all constraints still remain.
- · How to do it?

Functional Dependencies

 Functional Dependencies (FD) is a link between two sets of attributes in a relation.

ID	First	Last

- A set of attributes A functionally determines another set B, $(A \rightarrow B)$:
 - If whenever two rows of the relation have the same value for all the attributes in A, then they also have the same values for all the attributes in B

- $\{ID\} \rightarrow \{First\}$?
- $\{ID\} \rightarrow \{First, Last\}$?
- $\{First\} \rightarrow \{Last\}$?
- $\{ID, First\} \rightarrow \{Last\}$?
- $\{First, Last\} \rightarrow \{ID\}$?

Excercise 1: FDs

sID	Name	Department	Building	mCode	Module	
1	John	Computer	B1	DBI	Database and Interfaces	
	Smith	Science	DI			
1	John	Computer	B1	FAI	Foundation of Artificial Intelligence	
	Smith	Science	DI			
2	Mark	Computer	R1	B1 FAI	Foundation of Artificial Intelligence	
	Brown	Science	DI		Touridation of Artificial Intettigence	
3	Mary	Computer	B1	PGA	Programming and Algorithms	
	Jones	Science	DI PUA		TOA FIOGRAMM	Frogramming and Algorithms
3	Mary	Computer	B1	DBI	Database and Interfaces	
)	Jones	Science	DI			
4	David	Mathematics	A1	MCS	Mathematics for Computer Scientists	
4	Jones	Mathematics	ΑI		Mathematics for computer scientists	

Why we care about FDs?

sID	Name	Department	Building	mCode	Module

Redundancy is ofthen caused by a functional dependency:

- $\{SID\} \rightarrow \{Name, Department\}$
- $\cdot \ \{\textit{Department}\} \rightarrow \{\textit{Building}\}$
- $\{mCode\} \rightarrow \{Module\}$

Normal Forms (e.g., 1NF, 2NF, 3NF):

- Each Normal Form has fewer FDs. (What does it mean?)
- · Not all FDs cause a problem.
- Each NF removes a type of FD that is a problem.
- Need a way to remove FDs.

Properties of FDs

In any relation:

- The candidate keys functionally determine any set of attributes in that relation.
 - K → X, where K is a candidate key, and X is a subset of attributes.
- Any set of attributes is FD on itself
 - $X \rightarrow X$ for any sets of attributes X.

Rules:

- · Reflexivity:
 - If $B \subseteq A$, then $A \rightarrow B$.
- · Argmentation:
 - If $A \rightarrow B$, then $A \cup C \rightarrow B \cup C$.
- Transitivity:
 - If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$.

Examples

sID	Name	Department	Building	mCode	Module
			•••	•••	

- \cdot sID and mCode together is the Primary Key.
 - $\cdot \ \, \{\mathit{SID}, \mathit{mCode}\} \rightarrow \{\mathit{Name}, \mathit{Department}, \mathit{Building}, \mathit{Module}\}, ...$
- Reflexivity:
 - $\{Name, Department\} \rightarrow \{Name\}, \dots$
- · Augmentation:
 - $\{mCode, sID\} \rightarrow \{Module, sID\}$
- Transitivity:
 - $\cdot \ \, \{\text{SID}\} \rightarrow \{\text{Department}\}, \{\text{Department}\} \rightarrow \{\text{Building}\}, \{\text{SID}\} \rightarrow \{\text{Building}\}$

Full vs Partial functional dependency

sID	Name	Department	Building	mCode	Module
	•••			•••	

- Full FDs:
 - $A \rightarrow B$ is a full FD, if there is no such $C \subset A$, $C \rightarrow B$
 - E.g., $mCode \rightarrow Module$
- Partial FDs:
 - $A \rightarrow B$ is a partial FD, if there exists a $C \subset A$, such that $C \rightarrow B$
 - E.g., $\{sID, Name\} \rightarrow \{Department\}$

Summary

Summary

- · Why we want to do normalization?
- · What is normalization.
- · What are normal forms.
- · What is functional dependency.
- · How to convert an unnormalised relation into 1NF.
- We will learn 2NF and 3NF and how to convert relations into them.