Digitalna vezja UL, FRI

Vaja 10, Avtomati

Avtomat

Moore: S(t+1)=F[X,S(t)],Y=G[S(t)]

Mealy: S(t+1)=F[X,S(t)],Y=G[X,S(t)]

DV Trebar

Vaja 1: Avtomat za razpoznavanje niza

Realizirati želimo avtomat za razpoznavanje desetiškega števila 9, ki se pojavlja v zaporednem nizu dvojiških vrednosti 0 in 1, če je spredaj vrednost 0. Ob pojavu števila 9 naj se izhod nastavi na 1, sicer pa je enak 0. Zahteve:

- 1. Določite vhodno množico (X), izhodno množico (Y) in množico stanj (S).
- 2. Narišite diagram prehajanja stanj
- 3. Zapišite tabelo prehajanja stanj
- 4. Realizirajte avtomat z D pomnilno celico in 4/1 MUXi
- 5. Preverite delovanje avtomata v logisimu z uporabo naslednjih vrednosti na vhodu:

```
X=0100100111010010
Y=0000010000000010
```

Rešitev:

Množice: X=(0,1), Y=(0,1), S=(S0, S1, S2, S3, S4, S5)

Vaja 1:

- Realizirajte avtomat z enim vhodom –x in enim izhodom y. Na vhodu je prisoten digitalni signal (0,1) z določenimi kombinacijami ničel in enic. Na izhod naj bo priključena lučka, ki zasveti (y=1), če se je pojavilo zaporedje 011.
- Za realizacijo uporabite dve JK pomnilni celici in logična vrata (NAND) za določanje vhodov za eno pomnilno celico ter 4/1 MUX za drugo pomnilno celico, izhod y pa realizirajte z logičnimi vrati (AND, OR, NOT).

<u>x:</u> 1001101100101100

<u>γ</u>: 0000100100000100

Vaja 1: Diagram prehajanja stanj

- Moore:
- Diagram prehajanja stanj za razpoznavanje niza 011 v zaporedju ničel in enic na vhodu. Izhod y naj se postavi na 1 vsakič, ko se pojavi iskani niz.

<u>Vhod</u>: 1001101100101100

Na vhodu se 3x pojavi niz 011

<u>lzhod</u>: 0000100100000100

Na izhodu = 1 ob vsakem pojavu niza 011

Vaja 1: Načrtovanje avtomata

Kodiranje stanj:

	Q_1	Q_0
s ₀	0	0
sı	0	1
s ₂	1	0
s ₃	I	I

JK pomnilni celici:

	Q_1	Q_0	Q_1	Q_0	У	J ₁ =K ₁	$J_0 = K_0$
Х	(t)	(t)	(t+1)	(t+1)			
0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	0
0	1	0	0	1	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	1	0	0	1
1	1	1	0	0	1	1	1

Vaja 1: Funkcije J=K in izhod y

$$J_1 = K_1 = X.Q_0 \vee \overline{X}.Q_1 = (X \uparrow Q_0) \uparrow (\overline{X} \uparrow Q_1)$$

$J_0=K_0$

Izhod Y:

$$y = Q_1 Q_0$$

Vaja 1: Shema logičnega vezja

Vaja 2 Semafor

Realizirajte krmilnik za semaforja avto-pešec, ki sta predstavljena na spodnji sliki:

- Krmilnik naj reagira na vhodni signal B, ki ga upravlja pešec.
- Pri realizaciji lahko
 - A) izpustite stanje, ko imata oba semaforja rdečo luč: Rg, Yr, Gr
 - > B) stanja so: Rg, Rr, Yr, Gr
- Poenostavitev:
 - > A) posamezne kombinacije luči lahko gorijo enak časovni interval.
 - B) na semaforju za pešca naj gori zelena luč 40 sec
- Pri določanju stanj pazite na varnost pešcev!

Semafor

- ∘ R rdeča luč avto, Y rumena luč avto, G zelena luč avto
- 。 r rdeča luč pešec, g zelena luč pešec
- B gumb (1 pritisnjen, 0 ni pritisnjen)

- Narišite diagram prehajanja stanj in izpolnite aplikacijsko tabelo.
- Pri realizaciji uporabite dve JK pomnilni celici. Za določanje vhodov prve pomnilne celice uporabite 4/1 MUX, za določanje vhodov druge pomnilne celice logična vrata NAND.
- Funkcije za prižiganje luči realizirajte z logičnimi vrati (AND, OR, NOT).