Exercises

Exercise 1 In mathematics, the **Fibonacci sequence** is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted F_n ($n \ge 0$). The sequence commonly starts from 0 and 1.

- 1. Define the Fibonacci numbers \mathcal{F}_n by the recurrence relation.
- 2. Prove that $\sum\limits_{i=1}^n F_i^2 = F_n F_{n+1}$.

Exercise 2 A 4-letter word is selected at random from Σ^4 , where $\Sigma = \{a, b, c, d, e\}$.

- 1. What is the probability that the letters in the word are distinct?
- 2. What is the probability that there are no vowels in the word?
- 3. What is the probability that the word begins with a vowel?

The Well-formed formula (*wff***) of Propositional Logic** can be inductively defined as follows:

- Each propositional variable is, on its own, a formula.
- If φ is a formula, then $\sim \varphi$ is a formula.
- If φ and ψ are formulas, and is any binary connective, then $(\varphi \bullet \psi)$ is a formula. Here could be the usual operators \vee , \wedge , \rightarrow , or \leftrightarrow .

Exercise 3 Let p, q, r be propositional variable. Is the following sequences of symbols a wff? Why?

1.
$$(((p
ightarrow q) \wedge (r
ightarrow s)) \lor (\sim q \land \sim s))$$
.
2. $((p
ightarrow q)
ightarrow ((qq))p)$.

Exercise 4.1 Is the inverse of a bijective function also a function? Explain your idea.

Exercise 4.2 Let the composition $g\circ f$ be a bijection. Do you think $(g\circ f)^{-1}=g^{-1}\circ f^{-1}$? Prove or give a counterexample.

Exercise 5 Let propositions P_n be defined for integers n. Let a be some integer in particular. Now assume that the following two claims are true:

- 1. P_a is true.
- 2. For all integers $k \geq a$, if
 - 1. P(k) is true then P(k+2) is true, and
 - 2. if P(k+1) is true then P(k+3) is true.

In this case, is P_n also true for all integers $n \geq a$? Explain your idea.

Exercise 6 In the graph below, determine which of the following walks are trails, paths, circuits, or simple circuits.

- a. $v_1e_1v_2e_3v_3e_4v_3e_5v_4$ b. $e_1e_3e_5e_5e_6$ c. $v_2v_3v_4v_5v_3v_2$
- d. $v_2v_3v_4v_5v_6v_2$ e. $v_1e_1v_2e_1v_1$ f. v_1

Exercise 7 Let P be the set of all people who have ever lived and define a relation R on P as follows:

• For every $r,s\in P$, $r\mathrel{R} s\iff r$ is an ancestor of s or r=s.

Is ${\it R}$ a partial order relation? Prove or give a counterexample.

Exercise 8 Assuming the following propositions are true:

- 1. Every integer greater than 1 is either a prime number or can be factored into a product of prime numbers.
- 2. If a number is a product of a prime number plus 1 (i.e., n=kp+1), then this number does not have this prime number as a factor.

Prove that there are infinitely many prime numbers.

Comprehensive Exercise - Modulo

Let m and n be integers and let d be a positive integer.

We say that m is congruent to n modulo d (and write $m \equiv n \pmod{d}$) $\iff m = n + kd$ for some integer k.

(Please use this statement as the definition of modulo in this part.)

Exercise 1 Prove that

• if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.

Exercise 2 Prove that

• if $a \equiv b \pmod{n}$, then for any positive integer k, $a^k \equiv b^k \pmod{n}$.

Let d be a positive integer. Define a relation \mathcal{M}_d from \mathbb{N} to \mathbb{N} as follows:

• For all integers m and n, $m \mathcal{M}_d n \iff m \equiv n \pmod{d}$.

Exercise 3.1 Is \mathcal{M}_d an equivalence relation?

Exercise 3.2 Is \mathcal{M}_d a partial order relation?

Let d be a positive integer. Let D be the set of integer numbers from 1 to d, i.e., $D=\{0,1,2,\ldots,d-1\}.$

Define a function $f: \mathbb{N} \to D$ by the rules $f(n) = n \bmod d$.

Exercise 4 Is $f(n) \equiv n \pmod{d}$?

Exercise 5.1 Is f injective?

Exercise 5.2 Is f surjective?

Let the domain be the set of integer numbers from 1 to 100, i.e., $\mathbb{D} = \{1, 2, \dots, 100\}$.

Let P, Q be the extensions of predicates in $\mathbb D$ which are $n\equiv 0\ (\mathrm{mod}\ 2)$ and $n\equiv 0\ (\mathrm{mod}\ 3)$ respectively.

Let T be the extension of predicate in \mathbb{D} which are $n \equiv 0 \pmod{6}$.

Exercise 6.1 How many elements in P?

Exercise 6.2 How many elements in Q?

Exercise 6.3 How many elements neither in P nor Q?

Exercise 6.4 Does $T = P \cap Q$? Prove or or give a counterexample.