ATAC-seq

FRIDAY, 5/10/2024

I am repeating the entire ATAC-seq run because the library prep was not working before. I made the mistake of ordering primers that are not compatible with the adaptors on the transposes.

.

ő	Cell lines for ATACseq1																
	Quartzy name	Shortened name	Media	Rack	Box	Locatio D.	T usc drozen	Date drozen Thew out date Change media	Change media	First	Second passage Seeding	Seeding	Seeding time a	ATACseq cell lysis and transposition	Start time	PCR amplification and size selection	Starttime
-	COLO858 WT	WT	RPMI1640	4	00	EI	04/14/2023	05/30/2024	06/01/2024	06/03/2024		06/05/2024	6:00 PM	06/08/2024	7:30 PM	07/01/2024	200 PM
2	COLO858 Cas9 Control	Cas9 Control	RPMI 1640	2	7	0 10	05/03/2022	06/03/2024		06/05/2024	06/08/2024	06/10/2024 3:30 PM		06/13/2024	2:30 PM	07/01/2024	200 PM
т	COLO858 Cas9 FOS KO-B8S	FOS KO-1	RPMI 1640	2	10	14	03/27/2023	06/03/2024	06/05/2024	06/07/2024		06/10/2024 3:30 PM		06/13/2024	2:30 PM	07/01/2024	200 PM
4	COLO858 Cas9 FOSL1 KO-E2S	FOSL1KO-1	RPMI 1640	00	8	F3 0	04/13/2023	06/03/2024	06/05/2024	06/07/2024		06/10/2024 3:30 PM		06/13/2024	2:30 PM	07/01/2024	200 PM
S.	COLO858 Cas9 FOSI,2 KO-A25	FOSL2KO	RPMI 1640	2	9	10	11/07/2023	06/03/2024		06/05/2024 06/08/2024	06/08/2024	06/10/2024 3:30 PM		06/13/2024	2:30 PM	07/01/2024	200 PM
9	COLO858 Cas9 / Positive ORF Control	Cas9 / Positive ORF Control	RPMI 1640	4	4	E4 0	09/09/2023	05/30/2024	06/01/2024	06/03/2024		06/05/2024 6:00 PM		06/08/2024	7:30 PM	07/01/2024	200 PM
-	COLO858 Cas9 FOSL1 KO-E25 / FOSL1 OE	FOSL1 KO-1 / FOSL1 OF	RPMI 1640	00	un	F4 0	05/18/2024	05/30/2024	06/01/2024	06/03/2024		06/05/2024 6:00 PM		06/08/2024	7:30 PM	07/01/2024	2:00 PM
60	COLO858 Positive ORF Control	Positive ORF Control	RPMI 1640 + 5 ug/mL blasticidin	S	Ξ	0 60	03/06/2023	06/10/2024	06/11/2024	06/14/2024 06/18/2024	06/18/2024	06/20/2024 5:00 PM		06/23/2024	6:30 PM	07/02/2024	3:00 PM
6	COLO858 FOS OE	FOS OE	RPMI 1640 + 5 ug/mL blasticidin	s	Ę	F7 0	03/07/2023	06/10/2024	06/11/2024	06/14/2024	06/18/2024	06/20/2024 5:00 PM		06/23/2024	6:30 PM	07/02/2024	3:00 PM
Q	COLO858 FOSL2 OF	FOSL2 OF	RPMI 1640 + 5 ug/mL blesticidin	ın	E	C4 0	03/03/2023	06/10/2024	06/11/2024	06/14/2024 06/18/2024	06/18/2024	06/20/2024	5:00 PM	06/23/2024	6:30 PM	07/02/2024	3:00 PM
F	COLO858 JUNOE	JUNOE	RPMI 1640 + 5 ug/mL blesticidin	5	9	0 68	03/07/2023	06/10/2024	06/11/2024	06/14/2024 06/18/2024	06/18/2024	06/20/2024 5:00 PM		06/23/2024	6:30 PM	07/02/2024	3:00 PM
Ŋ	COLO858 NTC shRNA #2 Control	NTC KD-2 Control	RPMI 1640 + 0.5 ug/mL puromych	-	-	C7 0	09/23/2022	05/20/2024		05/21/2024		05/24/2024 4:00 PM		05/27/2024	4:00 PM	07/02/2024	3:00 PM
ξ	COLO858 JUN shRNA #3	JUNKD	RPMI 1640 + 0.5 ug/mL puromych	00	9	0 91	05/15/2023	05/20/2024		05/21/2024		05/24/2024	4:00 PM	05/27/2024	4:00 PM	07/02/2024	3:00 PM
4	COLO858 JUNB shRNA #1	JUNB KD:1	RPMI 1640 + 0.5 ug/mL puromycin	80	9	64 0	05/15/2023	05/20/2024		05/21/2024		05/24/2024	4:00 PM	05/27/2024	4:00 PM	07/02/2024	3:00 PM
\$	COLO858 JUND #hRNA #1	JUND KD	RPMI 1640 + 0.5 ug/mL puromych	-	9	68 0	02/02/2023	05/20/2024		05/21/2024		05/24/2024	4:00 PM	05/27/2024	4:00 PM	07/02/2024	3:00 PM
18	COLO858 Cas9 / NTC shRNA #2 Control	Cas9 / NTC KD-2 Control	RPMI 1640 + 0.5 ug/mL puromycin	4	0	0 0	07/13/2023	06/11/2024	06/12/2024	06/14/2024		06/17/2024	8:30 PM	06/20/2024	8:00 PM	07/03/2024	200 PM
4	COLO858 Cas9 FOSL2 KO-A2S / JUN shRNA #3 FOSL2 KO / JUN KD	FOSL2KO / JUN KD	RPMI 1640 + 0.5 ug/mL puromycin	4	6	C2 0	09/18/2023	06/11/2024	06/12/2024	06/14/2024		06/17/2024 8:30 PM		06/20/2024	8:00 PM	07/03/2024	200 PM
\$2	COLO858 Cas9 FOS KO-B8S / JUNB shRNA #1	FOS KO-1 / JUNB KD-1	RPMI 1640 + 0.5 ug/mL puromych	4	6	E3 0	09/18/2023	06/11/2024	06/12/2024	06/14/2024		06/17/2024	8:30 PM	06/20/2024	8:00 PM	07/03/2024	2:00 PM
£	COLO858 Cas9 FOS KO-BBS / JUND shRNA #1	FOS KO-1 / JUND KD	RPMI 1640 + 0.5 ug/mL puromych	4	89	13 0	04/18/2023	06/11/2024	06/12/2024	06/14/2024		06/17/2024 8:30 PM		06/20/2024	8:00 PM	07/03/2024	2:00 PM
8	ON COUNTY ON A CHARLES AND A CHARLES OF THE COUNTY OF THE	CACINITION IN	DOMESTIC OF THE PERSON ASSESSED.	,		00	0000000000	A COULT HOW	ACOUNTAGE ACOUNTAGE	A COURT A LOOP		AND OR OF A COUNTY OF		o conociona	10000	ACOCIONEO.	2000

Today I passaged NTC shRNA #2 and JUND shRNA #1 1:5 fold into T75 flasks. I also seeded NTC shRNA #2 at 2:5 dilution in another T75 flask for a trial run of ATACseq library preparation. Additionally I thawed out JUNB shRNA #1, JUN shRNA #3, and COLO858 WT P12.

WEDNESDAY, 5/15/2024

I am trying different Tn5 enzyme to nuclei ratios. The PCR amplification was done with 8 cycles for all samples.

Qubit	concentrations (ng/mL)									
	Sample	1.8x bead elution; 100 bp < DNA < 1000 bp	1.8x supernatant; DNA < 100 bp	0.5x bead elution; DNA > 1000 bp	Е	F	G	н	ı	l
1	0 uL Tn5 enzyme	119	544	34						1
2	1.25 uL Tn5 enzyme	8510	644	7560						1
3	2.5 uL Tn5 enzyme	10800	876	9200						1
4	3.75 uL Tn5 enzyme	18700	768	10560						
5	0 uL Tn5 enzyme and no buffer	230	387	145						

Agilent High Sensitivity D5000 ScreenTape:

- Sizing range: 100-5000 bp
- Typical resolution: 400-5000 bp: 15%
- Sensitivity: 5 pg/uL
- Quantification range: 10 1000 pg/uL

Tapes	Station	dilutions				
	Well	Sample	Portion	Qubit conc. (pg/uL)	Fold dilution factor	Final conc. (pg/uL)
1	B1	0 uL Tn5 enzyme	1.8x bead elution; 100 bp < DNA < 1000 bp	119	1	119
2	C1	1.25 uL Tn5 enzyme	1.8x bead elution; 100 bp < DNA < 1000 bp	8510	20	425.5
3	D1	2.5 uL Tn5 enzyme	1.8x bead elution; 100 bp < DNA < 1000 bp	10800	20	540
4	E1	3.75 uL Tn5 enzyme	1.8x bead elution; 100 bp < DNA < 1000 bp	18700	20	935
5	F1	0 uL Tn5 enzyme	1.8x supernatant; DNA < 100 bp	544	1	544
6	G1	1.25 uL Tn5 enzyme	1.8x supernatant; DNA < 100 bp	644	1	644
7	H1	2.5 uL Tn5 enzyme	1.8x supernatant; DNA < 100 bp	876	1	876
8	A2	3.75 uL Tn5 enzyme	1.8x supernatant; DNA < 100 bp	768	1	768
9	B2	0 uL Tn5 enzyme	0.5x bead elution; DNA > 1000 bp	34	1	34
10	C2	1.25 uL Tn5 enzyme	0.5x bead elution; DNA > 1000 bp	7560	20	378
11	D2	2.5 uL Tn5 enzyme	0.5x bead elution; DNA > 1000 bp	9200	20	460
12	E2	3.75 uL Tn5 enzyme	0.5x bead elution; DNA > 1000 bp	10560	20	528

Coating: Human Plasma Fibronectin Vendor: EMD Millipore

Catalog: FC010

Protocol:

- 1. Make the working solution of fibronectin in 1xDPBS.
- 2. Add 1.5 mL of the working solution to each well.
- 3. Incubate at room temperature inside of the culture hood for 1 hour.
- 4. Aspirate the working solution.
- 5. Add 2 mL of 1xDPBS to each well and aspirate. Repeat for a total of three washes.

Plate	coating	
	А	В
1	Stock solution concentration (ug/mL)	1000
2	Working sollution concentration (ug/mL)	10
3	Number of wells	20
4	Volume per well (mL)	1.5
5	Extra volume (mL)	1
6		
7	Volume of working dilution needed (mL)	31
8	Volume of stock solution (uL)	310
9	Volume of 1x DPBS (mL)	30.69

Cell seeding:

Seeding density in the 6-well plate: 200,000 cells/well; 4 wells: three biological replicates + one wells for counting cells Start ATAC-seq library prep two days after seeding.

^

Ö	Cell Seeding calculations													
	Cell line	Media Se	Seeding density (cells/well)	Total number of wells well (mL)	Volume per well (mL)	Extra factor	Total number of cells needed	Total volume (mL)	Live cell count #1 (cells/mL)	% live	Live cell count #2 % live (cells/mL)	Avg. live cell count (cells/mL)	t Volume of cell sus- pension (ml.)	Volume of media (ml.)
-	WT	RPMI 1640	75000	4		17	330000	13.2	1030000	100	965000 99	99 997500	00 0.331	12.9
2	Cas9 Control	RPMI 1640	75000	4	e	7	330000	13.2	976000	66	818000 100	000 897000	0.368	12.8
e	FOS KO-1	RPMI 1640	75000	4	3	17	330000	13.2	747000	100	720000 100	100 733500	0.450	12.8
4	FOSL1 KO-1	RPMI 1640	100000	4	e	1	440000	13.2	354000	100	464000 100	100 409000	1.076	12.1
un	FOSI,2 KO	RPMI 1640	75000	4	3	17	330000	13.2	676000	66	578000 90	98 627000	0.526	12.7
9	Cas9 / Positive ORF Control	RPMI 1640	75000	4	9	2	330000	13.2	1290000	100	1270000 100	1280000	0.258	12.9
7	FOSL1 KO-1 /FOSL1 OF	RPMI 1640	75000	4	e	7	330000	13.2	709000	66	862000 100	100 785500	0.420	12.8
00	Positive ORF Control	RPMI 1640 + 5 ug/mL blasticidin	75000	4	9	2	330000	13.2	000099	86	682,000 91	98 671000	0.492	12.7
6	FOS OE	RPMI 1640 + 5 ug/mL blasticidin	100000	4	е	2	440000	13.2	1030000	100	982000 94	99 1006000	0.437	12.8
0	FOSL2 OE	RPMI 1640 + 5 ug/mL blasticidin	75000	4	e	2	330000	13.2	823000	100	785000 99	99 804000	0.410	12.8
Ξ	JUN OE	RPMI 1640 + 5 ug/mL blasticidin	100000	4	8	17	440000	13.2	698000	66	703 000 101	100 700500	0.628	12.6
12	NTC KD-2 Control	RPMI 1640 + 0.5 ug/mL puromycin	75000	4	3	17	330000	13.2	665000	97	709000	000289 66	0.480	12.7
13	JUN KD	RPMI 1640 + 0.5 ug/mL puromycin	75000	4	9	2	330000	13.2	518000	66	529000 100	100 523500	00.630	12.6
4	JUNB KD-1	RPMI 1640 + 0.5 ug/mL puromycin	75000	4	е	2	330000	13.2	594000	66	627000 91	98 610500	0.541	12.7
15	JUND KD	RPMI 1640 + 0.5 ug/mL puromycin	75000	4	9	2	330000	13.2	894000	66	96 000 91	98 779500	0.423	12.8
16	Cas9 / NTC KD-2 Control	RPMI 1640 + 0.5 ug/mL puromycin	75000	4	е	2	330000	13.2	916000	100	916000 99	99 916000	0360	12.8
17	FOSL2 KO / JUN KD	RPMI 1640 + 0.5 ug/mL puromycin	75000	4	e	2	330000	13.2	927000	66	763000 99	99 845000	0.391	12.8
18	FOS KO-1 / JUNB KD-1	RPMI 1640 + 0.5 ug/mL puromycin	75000	4	m	P	330000	13.2	414000	66	256000 100	335000	0.985	12.2
19	FOSKO-1 / JUND KD	RPMI 1640 + 0.5 ug/mL puromycin	75000	4	e	17	330000	13.2	638000	100	714000 99	000929 66	0.488	12.7

MONDAY, 5/27/2024

Solutions and reagent setup

Prepare ATAC-seq resuspension buffer (ATAC-RSB). Filter steralize using a 0.22 um filter. Store at 4 deg C for up to 6 months.

ATAC	-seq resuspension buffer		
	Reagent	Volume for 100 mL buffer (mL)	Final conc. (mM)
1	1 M Tris-HCl pH 7.5	1	10
2	5 M NaCl	0.2	10
3	1 M MgCl2	0.3	3
4	UltraPure distilled water	98.5	
5	Total	100	

Digitonin: The recommended digitonin from Promega is supplied at 2% (wt/vol) concentration in DMSO. Dilute this digitonin 1:1 with water to make a 1% (wt/vol) (100x) stock solution. This DMSO-water mixture will no longer freeze at -20 deg C. Store at -20 deg C for up to 6 months.

Prepare fresh buffers

Make the ATAC-seq Lysis Buffer and ATAC-seq Wash Buffer and keep them and DPBS on ice. Be sure to use freshly made ATAC-seq Lysis Buffer and ATAC-seq Wash Buffer each time.

ATAC	-seq Lysis Buffer					
	Reagent	Volume per sample (ul)	Final conc.	Master Mix (ul) 3 cell lines	Master Mix (ul) 4 cell lines	Master Mix (ul) 5 cell lines
1	Cold ATAC-RSB	48.5		480.15	640.2	800.25
2	10% (wt/vol) NP40	0.5	0.1% (wt/vol)	4.95	6.6	8.25
3	10% (wt/vol) Tween-20	0.5	0.1% (wt/vol)	4.95	6.6	8.25
4	1% (wt/vol) digitonin	0.5	0.01% (wt/vol)	4.95	6.6	8.25
5	Total	50		495	660	825

ATAC	-seq Wash Buffer						/
	Reagent	Volume per sample (ul)	Final conc.	Master Mix (ul) 3 cell lines	Master Mix (ul) 4 cell lines	Master Mix (ul) 5 cell lines	
1	Cold ATAC-RSB	990		9801	13068	16335	
2	10% (wt/vol) Tween-20	10	0.1% (wt/vol)	99	132	165	
3	Total	1000		9900	13200	16500	

Cell counting

- 1. Using the plate for cell counting, trypsinize cells and wash them once with cold 1xDPBS. Resuspend cells in 1 mL of ice cold 1x DPBS.
- 2. Count the cells using the cell counter. Note the total number of cells in the plate and calculate how much volume to transfer from each well such that we use 50,000 cells per reaction. For example, if we determine that there are 500,000 cells/mL, we will transfer 100 uL in the next section.

,

ပီ	Cell counts											
	Sample Live cell count #1 (cells/mL)		avii %	Live cell count #2 (cells/mL)	% live	Live cell count #3 (cells/mL) % live		Live cell count #4 (cells/mL) % live		Avg. live cell count (cells/mt) # of cells needed		Volume of cell suspension (ul)
-	WT	344000	86	404000	66					374000	20000	133.69
2	Cas9 Control	436000	96	431000	96	311000	100	322000 98	80	375000	20000	133.33
m	FOS KO-1	202000	100	164000	100	284000	86	289000 90	0	234750	20000	212.99
4	FOSL1 KO-1	131000	100	136000	96	207000	93	344000 94	4	204500	20000	244.50
n	5 FOSL2 KO	267000	86	420000	66	398000	97	360000	6	361250	20000	138.41
9	Cas9 / Positive ORF Control	431000	86	398000	66					414500	20000	120.63
7	FOSL1 KO-1 / FOSL1 OE	245000	100	196000	95					220500	20000	226.76
00	Positive ORF Control	311000	100	382000	100	267000	100	409000 96	9	342250	20000	146.09
6	FOSOE	474000	86	387000	66	245000	86	474000 99	6	395000	20000	126.58
0	FOSL2 OF	365000	66	458000	97	480000	100	442000 100	0	436250	20000	114.61
=	JUNOE	398000	92	480000	100	496000	86	404000 96	9	444500	20000	112.49
12	2 NTC KD-2 Control	338000	6	294000	96					316000	20000	158.23
13	I3 JUNKD	540000	100	202000	98					521000	20000	95.97
14	\$ JUNBKD-1	234000	93	273000	100					253500	20000	197.24
15	15 JUND KD	311000	98	218000	98	333000	94	267000 98	86	282250	20000	177.15
16	5 Cas9 / NTC KD-2 Control	284000	98	305000	86	365000	100	327000 92	2	320250	20000	156.13
17	7 FOSL2 KO / JUN KD	147000	96	245000	98	256000	87	224000 95	ı,	218000	20000	229.36
18	18 FOS KO-1 / JUNB KD-1	142000	90	245000	86	125000	96	131000 100	0	160750	20000	311.04
19	POS KO-1 / JUND KD	289000	100	251000	86	185000	100	175000 100	0	225000	20000	222.22
20	DY GNOT / OX NOT	267000	96	224000	93	229000	86	273000 98		248250	20000	201.41

Cell lysis and transposition

- 1. Move the second 6-well plate and aspirate the media.
- 2. Trypsinize cells and wash them once with cold 1xDPBS. Resuspend cells in 1 mL of ice cold 1x DPBS.
- 3. Transfer 50,000 cells into a 1.5 mL DNA LoBind tube (volume determined above).
- 4. Pellet the cells at 500g for 5 min at 4 deg C in a fixed-angle microcentrifuge.
- 5. Aspirate all the supernatant using two pipetting steps. First, aspirate down to 100 uL with a p1000 pipette. Then, remove the final 100 uL with a p200 pipette.

 [CRITICAL] Make sure to avoid the visible cell pellet when pipetting. Optimal removal of the supernatant and minimal disruption of the cell pellet is attained when the removal of the final 100 uL is performed in a consistent and fluid motion.
- 6. Resuspend the cell pellet in 50 uL of ATAC-seq Lysis Buffer by pipetting up and down three times. ATAC-seq Lysis Buffer should be made fresh each time and mixed thoroughly prior to use.
- 7. Incubate on ice for 3 min. If lysing multiple samples, make sure that all samples are lysed for the same total amount of time by proceeding to Step 8 after 3 min.
- 8. Add 1 mL of ATAC-seq Wash Buffer to dilute the lysis reagents. Invert the tube five times to mix. ATAC-seq Wash Buffer should be made fresh each time and mixed thoroughly prior to use.
- 9. Pellet nuclei at 500g for 10 min at 4 deg C in a fixed-angle microcentrifuge. During this time prepare the Transposition Mix that will be used in step 11 and preheat the thermomixer.
- 10. Aspirate all supernatant using two piptting steps as above.
 - [CRITICAL] Make sure to avoid the visible cell pellet when pipetting. Optimal removal of the supernatant and minimal disruption of the cell pellet is attained when the removal of the final 100 uL is performed in a consistent and fluid motion.
- 11. Resuspend the cell pellet in 50 uL of Transposition Mix by pipetting up and down six times. Transposition Mix should be made fresh each time and mixed thoroughly prior to use.=

Trans	sposition reaction					
	Reagent	Volume per sample (ul)	Final conc.	Master Mix (ul) 3 cell lines	Master mix (ul) 4 cell lines	Master Mix (ul) 5 cell lines
1	2x TD buffer	25	1x	236.25	330	412.5
2	PBS	16.5		155.925	217.8	272.25
3	UltraPure distilled water	5	0.1% (wt/vol)	47.25	66	82.5
4	1% (wt/vol) digitonin	0.5	0.01% (wt/vol)	4.725	6.6	8.25
5	10% (wt/vol) Tween-20	0.5	0.1% (wt/vol)	4.725	6.6	8.25
6	TDE1 TD enzyme (Tn5 transposase)	2.5		23.625	33	41.25
7	Total	50		472.5	660	825

- 2. Remove the tubes from the thermomixer, and immediately terminate the transposition reaction by adding 250 uL (five volumes) of DNA Binding Buffer from the DNA Clean and Concentrator-5 kit and mix well by pipetting or inversion.
- 3. Pulse centrifuge to collect solution in the bottom of the tube.
 - [PAUSE] This solution can be stored at -20 deg C for up to 3 weeks. Allow this mixture to warm back to room temperature and mix throughly before proceeding.
- 4. Clean up the transposition reaction using the DNA Clean and Concentrator-5 kit. Transfer each sample, mixed with the DNA Binding Buffer to a Zymo-Spin Column in a collection tube. Centrifuge at RT for 30 sec at 10,000g and discard the flow through.
- 5. Add 500 ul of DNA Wash Buffer to the column and centrifuge at RT for 30 sec at 10,000g.
- 6. Repeat this wash for a total of two wash steps.
- 7. Perform a final 'dry spin' after the second wash step to remove any traces of residual wash buffer from the column. To do this remove any flowthrough from the collection tube and centrifuge the column and collection tube at RT for 1 min at >13,000g.
- 8. Transfer the column to a clean prelabeled 2 mL DNA LoBind tube. Pipette 23 ul of Elution Buffer directly onto the column membrane and wait for 1 min.
- 9. Centrifuge the column at RT for 1 min at 13,000g to elute the DNA. Use 1 ul of the elution to measure the concentration using Qubit. [PAUSE] This solution can be stored at -20 deg C for as long as necessary

Barcoding of the transposed fragments

1. Assign each sample in the study to a unique pair of adapters:

Custo	om Barcodes Ada	pter 1 (Index i5)			^
	Adapter Name	Adapter Sequence	SampleSheet Barcode - Forward Strand Workflow	SampleSheet Barcode - Reverse Strand Workflow	
1	Ad1.1	AATGATACGGCGACCACCGAGATCTACACTAGATCGCTCGTCGGCAGCGTCAGATGTGTAT	TAGATCGC	GCGATCTA	
2	Ad1.2	AATGATACGGCGACCACCGAGATCTACACCTCTCTATTCGTCGGCAGCGTCAGATGTGTAT	стстстат	ATAGAGAG	
3	Ad1.3	AATGATACGGCGACCACCGAGATCTACACTATCCTCTTCGTCGGCAGCGTCAGATGTGTAT	татсетет	AGAGGATA	
4	Ad1.4	AATGATACGGCGACCACCGAGATCTACACAGAGTAGATCGTCGGCAGCGTCAGATGTGTAT	AGAGTAGA	TCTACTCT	
5	Ad1.5	AATGATACGGCGACCACCGAGATCTACACGTAAGGAGTCGTCGGCAGCGTCAGATGTGTAT	GTAAGGAG	CTCCTTAC	
6	Ad1.6	AATGATACGGCGACCACCGAGATCTACACACTGCATATCGTCGGCAGCGTCAGATGTGTAT	ACTGCATA	TATGCAGT	
7	Ad1.7	AATGATACGGCGACCACCGAGATCTACACAAGGAGTATCGTCGGCAGCGTCAGATGTGTAT	AAGGAGTA	TACTCCTT	
	Ad1 0	AATGATACGCCACCACCACCACACCTACACCTA ACCCTTCGTCGCCAGCGTCAGATGTGTAT	CTAAGCCT	ACCCTTAC	

Cust	om Barcodes Adap	ter 2 (Index i7)	
	Adapter Name	Adapter Sequence	SampleSheet Barcode - All Sequencers
1	Ad2.1	CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGGAGATGTG	TAAGGCGA
2	Ad2.2	CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGTG	CGTACTAG
3	Ad2.3	CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGTG	AGGCAGAA
4	Ad2.4	CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAGATGTG	TCCTGAGC
5	Ad2.5	CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGTG	GGACTCCT
6	Ad2.6	CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAGATGTG	TAGGCATG
7	Ad2.7	CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGGAGATGTG	CTCTCTAC
8	Ad2.8	CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTCTCGTGGGCTCGGAGATGTG	CAGAGAGG

Table	Table3									
	Sample name	Rep#	Ad1 (i5)	SampleSheet Barcode - Forward Strand Workflow	SampleSheet Barcode - Reverse Strand Workflow	Ad2 (i7)	SampleSheet Barcode - All Sequencers			
1	WT	1	1	TAGATCGC	GCGATCTA	1	TAAGGCGA			
2	WT	2	1	TAGATCGC	GCGATCTA	2	CGTACTAG			
3	WT	3	1	TAGATCGC	GCGATCTA	3	AGGCAGAA			
4	Cas9 Control	1	1	TAGATCGC	GCGATCTA	4	TCCTGAGC			
5	Cas9 Control	2	1	TAGATCGC	GCGATCTA	5	GGACTCCT			
6	Cas9 Control	3	1	TAGATCGC	GCGATCTA	6	TAGGCATG			
7	FOS KO-1	1	1	TAGATCGC	GCGATCTA	7	CTCTCTAC			
8	FOS KO-1	2	1	TAGATCGC	GCGATCTA	8	CAGAGAGG			
9	FOS KO-1	3	2	СТСТСТАТ	ATAGAGAG	1	TAAGGCGA			
10	FOSL1 KO-1	1	2	CTCTCTAT	ATAGAGAG	2	CGTACTAG			
11	FOSL1 KO-1	2	2	CTCTCTAT	ATAGAGAG	3	AGGCAGAA			
12	FOSL1 KO-1	3	2	CTCTCTAT	ATAGAGAG	4	TCCTGAGC			
13	FOSL2 KO	1	2	CTCTCTAT	ATAGAGAG	5	GGACTCCT			
14	FOSL2 KO		2	CTCTCTAT		6				
		2	2		ATAGAGAG	7	TAGGCATG			
15	FOSL2 KO	3		CTCTCTAT	ATAGAGAG	8	CTCTCTAC			
16	Cas9 / Positive ORF Control	1	2	CTCTCTAT	ATAGAGAG		CAGAGAGG			
17	Cas9 / Positive ORF Control	2	3	TATCCTCT	AGAGGATA	1	TAAGGCGA			
18	Cas9 / Positive ORF Control	3	3	TATCCTCT	AGAGGATA	2	CGTACTAG			
19	FOSL1 KO-1 / FOSL1 OE	1	3	TATCCTCT	AGAGGATA	3	AGGCAGAA			
20	FOSL1 KO-1 / FOSL1 OE	2	3	TATCCTCT	AGAGGATA	4	TCCTGAGC			
21	FOSL1 KO-1 / FOSL1 OE	3	3	TATCCTCT	AGAGGATA	5	GGACTCCT			
22	Positive ORF Control	1	3	TATCCTCT	AGAGGATA	6	TAGGCATG			
23	Positive ORF Control	2	3	TATCCTCT	AGAGGATA	7	CTCTCTAC			
24	Positive ORF Control	3	3	TATCCTCT	AGAGGATA	8	CAGAGAGG			
25	FOS OE	1	4	AGAGTAGA	TCTACTCT	1	TAAGGCGA			
26	FOS OE	2	4	AGAGTAGA	TCTACTCT	2	CGTACTAG			
27	FOS OE	3	4	AGAGTAGA	TCTACTCT	3	AGGCAGAA			
28	FOSL2 OE	1	4	AGAGTAGA	TCTACTCT	4	TCCTGAGC			
29	FOSL2 OE	2	4	AGAGTAGA	TCTACTCT	5	GGACTCCT			
30	FOSL2 OE	3	4	AGAGTAGA	TCTACTCT	6	TAGGCATG			
31	JUN OE	1	4	AGAGTAGA	TCTACTCT	7	CTCTCTAC			
32	JUN OE	2	4	AGAGTAGA	TCTACTCT	8	CAGAGAGG			
33	JUN OE	3	5	GTAAGGAG	CTCCTTAC	1	TAAGGCGA			
34	NTC KD-2 Control	1	5	GTAAGGAG	CTCCTTAC	2	CGTACTAG			
35	NTC KD-2 Control	2	5	GTAAGGAG	CTCCTTAC	3	AGGCAGAA			
36	NTC KD-2 Control	3	5	GTAAGGAG	CTCCTTAC	4	TCCTGAGC			
37	JUN KD	1	5	GTAAGGAG	CTCCTTAC	5	GGACTCCT			
38	JUN KD	2	5	GTAAGGAG	CTCCTTAC	6	TAGGCATG			
39	JUN KD	3	5	GTAAGGAG	CTCCTTAC	7	CTCTCTAC			
	JUNB KD-1	1	5			8	CAGAGAGG			
40				GTAAGGAG	CTCCTTAC					
41	JUNB KD-1	3	6	ACTGCATA	TATGCAGT	1 2	TAAGGCGA			
	JUNB KD-1	1	6	ACTGCATA	TATGCAGT	3	CGTACTAG			
43	JUND KD			ACTGCATA	TATGCAGT		AGGCAGAA			
44	JUND KD	2	6	ACTGCATA	TATGCAGT	4	TCCTGAGC			
45	JUND KD	3	6	ACTGCATA	TATGCAGT	5	GGACTCCT			
46	Cas9 / NTC KD-2 Control	1		ACTGCATA	TATGCAGT		TAGGCATG			
47	Cas9 / NTC KD-2 Control	2	6		TATGCAGT	7				
48	Cas9 / NTC KD-2 Control	3		ACTGCATA	TATGCAGT	8				
49	FOSL2 KO / JUN KD	1	7	AAGGAGTA	TACTCCTT	1	TAAGGCGA			
50	FOSL2 KO / JUN KD	2	7		TACTCCTT	2	CGTACTAG			
51	FOSL2 KO / JUN KD	3	7	AAGGAGTA	TACTCCTT	3	AGGCAGAA			
52	FOS KO-1 / JUNB KD-1	1	7	AAGGAGTA	TACTCCTT	4	TCCTGAGC			
53	FOS KO-1 / JUNB KD-1	2	7	AAGGAGTA	TACTCCTT	5	GGACTCCT			
54	FOS KO-1 / JUNB KD-1	3	7	AAGGAGTA	TACTCCTT	6	TAGGCATG			
55	FOS KO-1 / JUND KD	1	7	AAGGAGTA	TACTCCTT	7	CTCTCTAC			
56	FOS KO-1 / JUND KD	2	7	AAGGAGTA	TACTCCTT	8	CAGAGAGG			
57	FOS KO-1 / JUND KD	3	8	CTAAGCCT	AGGCTTAG	1	TAAGGCGA			
58	JUN KO / JUND KD	1	8		AGGCTTAG	2	CGTACTAG			
59	JUN KO / JUND KD	2	8		AGGCTTAG	3	AGGCAGAA			
60	JUN KO / JUND KD	3	8		AGGCTTAG	4				

- 1. Transfer each cleaned-up transposed DNA sample to a 200 uL PCR tube.
- 2. Add 25 uL of NEBNext Ultra II Q5 2x Master Mix to each tube.
- 3. Add 2.5 uL of Ad1 and Ad2 to each sample.
- 4. Cap tubes, vortex and spin down to collect all liquid at the bottom of the tube. When completed, each reaction should contain the following:

PCR reaction									
	Reagent	Volume per sample (ul)	Final conc.						
1	Transposed sample	20							
2	NEBNext Ultra II Q5 2x Master Mix	25	1x						
3	5 uM Adapter Ad1 (sample specific)	2.5	0.25 uM						
4	5 uM Adapter Ad2 (sample specific)	2.5	0.25 uM						
5	Total volume	50							

[CRITICAL] The initial 5 min incuabtion at 72 deg C is critical for the success of the amplification reaction. This is because (i) transposed DNA contains nicks and overhangs that must be filled in prior to denaturation and (ii) the polymerase enzyme in the NEBNext Ultra II 6. Q5 2x Master Mix is a hot-start polymerase that becomes active at 45 deg C.

Thermocycler settings										
	Step	Temperature (deg C)	Time	# of cycles						
1	Initial Extention	72	5 min	1						
2	Initial denaturation	98	30 sec	1						
3	Denaturation	98	10 sec							
4	Anealing	68	30 sec	7						
5	Extension	68	45 sec							
6	Hold	4								

7. Remove tubes from the thermocycler, and store on ice. Proceed to the next step immediately.

Library Purification and Size Selection

- 1. Vortex SPRI select beads for 15 sec to resuspend.
- 2. Add 0.5X (22.5 uL) volume of SPRI select beads to fresh 200 uL PCR tubes.
- 3. Add 45 uL of the PCR reaction to the beads and mix well by pipetting up and down 10x.
- 4. Incubate at room temperature for 10 min.
- 5. Place the tubes in the magnetic rack for 5 min.
- 6. Transfer 60 ul of supernatant to new PCR tube.
- 7. Add 1.8X volume (108 ul) SPRI select beads, pipet up and down 10x to mix throughly.
- 8. Incubate at room temperature for 10 min.
- 9. Place the tubes in the magentic rack for 5 min.
- 10. Discard the supernatant.
- 11. Wash beads with 200 uL of 80% EtOH (freshly made). Incubate for 30 sec and remove and discard the supernatant. Repeat for a total of three washes. After the last wash ensure all EtOH is removed by using 10 ul pipette tips.
- 12. Leave the tubes on the magnet with the caps open to allow the EtOH evaporate. It should take approx. 7-10 min.
- 13. Resuspend beads in 20 uL of nuclease-free H2O, pipet up and down 10x to mix throughly.
- 14. Incubate at room temperature for 2 min, then quickly spin the tubes down.
- 15. Place the tubes in the magnetic rack for 5 min.
- 16. Transfer to new microcentrifuge tube.

[PAUSE] Can store samples at -20 deg C.

Library concentration determination

- Qubit
- TapeStation to check the size of the fragments

Agilent High Sensitivity D5000 ScreenTape:

- Sizing range: 100-5000 bp
- Typical resolution: 400-5000 bp: 15%
- Sensitivity: 5 pg/uL
- Quantification range: 10 1000 pg/uL
- aPCR

	Cell line	Rep	Notes	dsDNA Qubit before PCR amplification	Qubit dsDNA after PCR amplification and size	TapeStation (pmol/l); 2-fold	TapeStation	qPCR Molarity	Volume for pool-	Total volume of pooled library
	Cell lille		Notes	(ng/mL)	selection (ng/mL)	diluted	Molarity (nM)	(nM)	ing (ul)	(ul)
1		1		6280	5620	6540	13.08	5.67	0.7054673721	45.41489521
2	WT	2		6140	3240	5700	11.4	4.02	0.9950248756	
3		3		6220	3580	7570	15.14	6.27	0.6379585327	
4		1		6360	4180	8320	16.64	7.01	0.5706134094	
5	Cas9 Control	2		8020	4680	9620	19.24	7.87	0.5082592122	
6 7		3		4680	2720 4940	5820 9980	11.64	3.46	1.1560693642	
8	FOS KO-1	1 2		7160 8720	5700	9830	19.96	7.62 7.96	0.5249343832 0.5025125628	
9	POS KO-1	3		6640	4780	5860	11.72	4.18	0.956937799	
0		1		5720	4540	7540	15.08	5.16	0.7751937984	
11	FOSL1 KO-1	2		5/20	4540 5060	7540 8760	17.52	7.53	0.7751937984	
12	POSET KO-T	3		6460	3700	9140	18.28	4.62	0.5512064993	
13										
4		1 2		5440 6260	4540 3900	8870 7060	17.74 14.12	6.56 6.16	0.6097560976 0.6493506494	
*			I did not make	6260	3900	7060	14.12	6.16	0.6493306494	
15	FOSL2 KO	3	enough transposition mix and I had to remake it specifically for this sample	7520	5440	8620	17.24	7.67	0.5215123859	
6		1		4600	3440	6150	12.3	4.13	0.9685230024	
7	Cas9 / Positive ORF Control	2		3580	3100	4450	8.9	3.03	1.3201320132	
8		3		4860	3140	4800	9.6	3.37	1.1869436202	
19	F0514 V0 4 /	1		9600	4740	6860	13.72	5.64	0.7092198582	
20	FOSL1 KO-1 / FOSL1 OE	2		8180	8180	10300	20.6	9.26	0.4319654428	
21		3		9040	4100	7290	14.58	5.48	0.7299270073	
2		1		13000	6060	7280	14.56	6.03	0.6633499171	
23	Positive ORF Control	2		13340	7520	12500	25	10.83	0.3693444137	
4		3		8420	5600	10300	20.6	5.90	0.6779661017	
25		1		6800	5660	6390	12.78	6.30	0.6349206349	
26	FOS OE	2		9660	6200	9160	18.32	7.05	0.5673758865	
27		3		6800	5700	8440	16.88	5.62	0.7117437722	
28		1		6220	5180	7700	15.4	4.45	0.8988764045	
29	FOSL2 OE	2		6940	5300	8700	17.4	5.90	0.6779661017	
30		3		6460	5040	8880	17.76	5.27	0.7590132827	
31		1		6100	5340	6970	13.94	5.57	0.7181328546	
32	JUN OE	2		6080	6140	8840	17.68	5.73	0.6980802792	
33		3		4139	5260	9500	19	7.09	0.5641748942	
34	NEC VE S	1		5717	4400	6150	12.3	3.83	1.044386423	
35	NTC KD-2 Control	2		7670	4420	6430	12.86	4.33	0.9237875289	
36		3		6557	4460	6570	13.14	4.06	0.9852216749	
37		1		6447	5200	7720	15.44	5.66	0.7067137809	
38	JUN KD	2		4685	3120	3860	7.72	3.64	1.0989010989	
39		3		6096	4260	6170	12.34	4.27	0.9367681499	
40		1		6625	5500	7480	14.96	5.62	0.7117437722	
41	JUNB KD-1	2		5555	4980	6050	12.1	5.60	0.7142857143	
42		3		4883	4460	6400	12.8	4.04	0.9900990099	
43		1		8394	7000	8780	17.56	8.51	0.4700352526	
44	JUND KD	2		6759	4820	5900	11.8	5.55	0.7207207207	
45		3		7458	5020	8940	17.88	5.75	0.6956521739	
46	Cas9 / NTC	1		7393	4120	5640	11.28	4.90	0.8163265306	
47	KD-2 Control	2		7792	4240	6930	13.86	5.88	0.6802721088	
18		3		9020	6460	10600	21.2	8.86	0.4514672686	
19	FOSL2 KO /	1		8522	6920	7890	15.78	9.55	0.4188481675	
0	JUN KD	2		9923	7100	11800	23.6	7.67	0.5215123859	
51		3		12343	8320	13500	27	10.83	0.3693444137	
2	FOS KO-1 /	1		8667	4940	7650	15.3	3.51	1.1396011396	
53	JUNB KD-1	2		6479	4600	6300	12.6	5.40	0.7407407407	
4		3		9874	4780	5710	11.42	4.10	0.9756097561	
55	FOS KO-1 /	1		7108	4520	7920	15.84	5.32	0.7518796992	
56	JUND KD	2		8485	3740	5400	10.8	2.52	1.5873015873	
57		3		6636	4740	7940	15.88	5.99	0.6677796327	
58		1		4715	3380	5940	11.88	3.51	1.1396011396	
59	JUN KO / JUND KD	2		5787	4280	8250	16.5	4.30	0.9302325581	
0	1	3		6540	6380	15700	31.4	9.35	0.4278074866	

FRIDAY, 7/12/2024

TapeStation

ATACseq run D5000 High sensitivity tapestation with two fold dilution.

TapeStation Sample Layout (numbers correspond to the sample numbers in the table above)												
	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	9	17	25	33	41	49	57				
В	2	10	18	26	34	42	50	58				
С	3	11	19	27	35	43	51	59				
D	4	12	20	28	36	44	52	60				
E	5	13	21	29	37	45	53					
F	6	14	22	30	38	46	54					
G	7	15	23	31	39	47	55					
Н	8	16	24	32	40	48	56					

Results:

	2024-07-12 - 13.50.38.pdf	
,	aPCP.	

qPCR

Plan and results are in this excel file:

MONDAY, 9/2/2024

miSeq Results

Analysis:

- FASTQC (version 0.11.5) was used to determine the quality of sequencing and to check for presence of adapters. The quality scores across bases are good and there is some adapter content matching Nextera Transposase Sequence towards the ends of the reads.
- Adapter trimming was performed using Trim Galore (version 0.6.4) using the following arguments: --quality 20 --nextera --length 20 --paired --fastqc_args "--outdir \$FASTQC_OUTDIR" --output_dir \$OUTDIR/ \$FILE_FOR \$FILE_REV. The FASTQC files indicated that the trimming successfully removed adapters.
- Bowtie2 (version 2.5.1) was used for alignement. The reference genome index was build using GRCh38 primary assembly genome pasta and annotation from gencode release version 46. The following arguments were used for read alignment: —end-to-end —very-sensitive —no-mixed —phred33 -X 1000. I set the X argument to 1000, because I am interested in plotting fragment length distribution for each sample and if there are a lot of long reads I want to capture them.
- The sam files were sorted by coordinate using Samtools (version 1.17) sort function.
- The percentage of reads that are PCR duplicates was determined using Picard (version 2.27.5).
- To extract the fragment lengths for each sample, I used Samtools view function: "samtools view -@ 4 -F 0x04 \$FILE | awk -F'\t' 'function abs(x)[return ((x<0.0) ? -x : x)] (print abs(\$9)]' | sort | uniq -c | awk -v OFS="\t" "[print \$2, \$1/2]' > \$OUTPUT_PATH/\$[SAMPLE_ID]_fragmentLen.txt". To plot the fragment length distribution, I imported the txt files to R and made fragment length vs read count line plots using applot2.
- To calculate the % of mitochondrial reads I used ATACseqQC R package.
- The heat maps over transcription start site were plotted using deep tools. First, I generated normalized BigWig files for each sample using the following arguments: bamCoverage -b \$FILE -p 4 -normalizeUsing CPM --ignoreForNormalization chrM -o \$OUTPUT_PATH/\$SAMPLE_ID.bw. Next, I created a matrix file using the following function: computeMatrix scale-regions -S
 \$OUTPUT_PATH/\$SAMPLE_ID.bw -R \$PROJECT_PATH/Hg38_gencode_v46_gtf/gencode.v46.primary_assembly.annotation.gtf
 - --beforeRegionStartLength 3000 --regionBodyLength 5000 --afterRegionStartLength 3000 --skipZeros -o \$SAMPLE_ID.matrix_gene.mat.gz -p 4. The heat map was plotted using the following function: plotHeatmap -m \$(SAMPLE_ID).matrix_gene.mat.gz -out \$(SAMPLE_ID).eps --sortUsing sum.

% reads identified

The percent reads identified is not equal across samples. It ranges from 0.5 to 2.2 %. I will repeat pooling of the libraries to attempt to get a more equal coverage of the libraries.

Read alignment (Bowtie2)

Percentage of reads aligned concordantly exactly 1 time ranges from 77.5 to 84.6%. The majority of the remaining reads were aligned concordantly > 1 times.

PCR duplicates (Picard)

The percentage of duplicates is very low across all of the samples. I used a very low number of PCR cycles.

Percentage of reads that map to mitochondrial DNA (ATACseqQC R package)

The percentage of reads that map to mitochondrial DNA ranges from 1.3 to 7.05%, which I think is considered low.

Fragment length distribution

The samples have a distinct nucleosome-free and mononucleosome peaks. Approximately 40% of reads have lengths that are less than 150 nt long, which corresponds to nucleosome-free region.

Chromatin accessibility around transcription start site (TSS)

miSec	miSeq statistics											
	Library name	% reads identi- fied (PF)	Bowtie2: number of read pairs examined	Bowtie2: Aligned concor- dantly exactly 1 time (%)	Picard: Number of reads examined	Picard: Percent duplicates (%)	AtacQC: Total num- ber of read pairs	AtacQC: Mitochondria rate	AtacQC: Percent of reads that map to mito- chondrial DNA (%)	Number of reads after removal of mitochon- drial reads	% of total reads	
1	WT_rep1	1.0027	137694	82.27	136307	0.19	136307	0.047	4.73	129865	1.06	
2	WT_rep2	1.4087	193450	81.55	191759	0.23	191759	0.048	4.80	182561	1.49	
3	WT_rep3	1.0783	148078	83.19	146709	0.16	146709	0.037	3.73	141244	1.16	
4	Cas9_Control_rep1	0.5546	76146	81.26	75346	0.12	75346	0.054	5.40	71281	0.58	
5	Cas9_Control_rep2	1.1037	151572	79.34	149999	0.34	149999	0.071	7.05	139423	1.14	
6	Cas9_Control_rep3	1.2084	165924	79.88	164337	0.32	164337	0.065	6.55	153578	1.26	
7	FOS_KO_rep1	0.7815	107299	82.04	106140	0.14	106140	0.043	4.32	101552	0.83	
8	FOS_KO_rep2	1.3583	186496	81.46	184549	0.24	184549	0.045	4.48	176272	1.44	
9	FOS_KO_rep3	1.8332	251639	81.27	248449	0.38	248449	0.052	5.15	235642	1.93	
10	FOSL1_KO_rep1	1.5088	207114	83.29	204635	0.14	204635	0.013	1.34	201890	1.65	
11	FOSL1_KO_rep2	1.3704	188147	81.71	185905	0.13	185905	0.015	1.46	183184	1.50	
12	FOSL1_KO_rep3	1.8197	249836	82.49	247325	0.16	247325	0.017	1.71	243097	1.99	
13	FOSL2_KO_rep1	1.8454	253393	80.60	250485	0.24	250485	0.036	3.63	241399	1.98	
14	FOSL2_KO_rep2	1.3199	181186	80.31	179053	0.23	179053	0.042	4.16	171596	1.41	
15	FOSL2_KO_rep3	1.1567	158773	81.39	156551	0.17	156551	0.032	3.19	151559	1.24	
16	Cas9_ORF_Control_rep1	1.335	183294	82.65	181167	0.21	181167	0.038	3.79	174302	1.43	
17	Cas9_ORF_Control_rep2	1.5932	218695	81.44	215498	0.26	215498	0.045	4.47	205870	1.69	
18	Cas9_ORF_Control_rep3	1.5861	217717	79.69 83.09	214495	0.36	214495	0.058	5.77	202122	1.66	
19	FOSL1_KO_OE_rep1											
20	FOSL1_KO_OE_rep2 FOSL1_KO_OE_rep3	1.1578	158951 205721	84.62 84.58	156892 203583	0.14	156892 203583	0.017	1.70	154228 198757	1.26	
21	ORF_Control_rep1	1.4981	205721	84.58	203583	0.16	203583	0.024	2.37	198757	1.63	
23	ORF Control_rep1	1.7347	219410	80.73	216622	0.19	216622	0.028	3.04	210531	1.72	
23	ORF Control_rep2	2.028	238160	80.30	235696	0.21	235696	0.030	3.04	228526	217	
25	FOS OE rep1	1,9798	271722	80.27	268198	0.16	268198	0.020	2.02	262773	2.17	
26	FOS OE rep2	1.6975	232986	80.07	230172	0.10	230172	0.020	2.95	223386	183	
27	FOS_OE_rep3	1.8578	254980	80.27	251690	0.13	251690	0.023	3.08	243927	200	
28	FOSL2 OE rep1	2.2033	302431	79.72	298913	0.28	298913	0.037	3.69	287887	2.36	
29	FOSL2 OE rep2	1 8449	253311	78.97	250370	0.26	250370	0.037	4.01	240340	197	
30	FOSL2 OE rep3	1.8471	253531	79.36	250392	0.21	250392	0.035	3.45	241748	1.98	
31	JUN_OE_rep1	1.6124	221323	80.40	218687	0.18	218687	0.029	2.86	212430	1.74	
32	JUN_OE_rep2	2.1413	293909	80.49	290013	0.19	290013	0.025	2.48	282816	2.32	
33	JUN_OE_rep3	1.7583	241382	78.93	238446	0.18	238446	0.023	2.28	233013	1.91	
34	NTC_KD_Control_rep1	1.7877	245390	81.83	241799	0.21	241799	0.032	3.16	234156	1.92	
35	NTC_KD_Control_rep2	1.7907	245799	81.38	242147	0.31	242147	0.042	4.24	231874	1.90	
36	NTC_KD_Control_rep3	1.41	193626	81.78	191224	0.18	191224	0.036	3.58	184386	1.51	
37	JUN_KD_rep1	1.5735	216052	81.37	213355	0.22	213355	0.037	3.65	205563	1.68	
38	JUN_KD_rep2	1.6533	226928	79.93	223408	0.36	223408	0.053	5.34	211478	1.73	
39	JUN_KD_rep3	1.6469	226088	77.54	214219	0.31	214219	0.051	5.06	203377	1.67	
40	JUNB_KD_rep1	1.4606	200521	82.16	197595	0.18	197595	0.023	2.31	193037	1.58	
41	JUNB_KD_rep2	1.6441	225671	82.43	222355	0.19	222355	0.028	2.79	216143	1.77	
42	JUNB_KD_rep3	1.662	228168	83.04	224922	0.18	224922	0.025	2.47	219361	1.80	
43	JUND_KD_rep1	1.3293	182428	79.46	179905	0.34	179905	0.059	5.92	169257	1.39	
44	JUND_KD_rep2	1.1834	162435	81.39	160073	0.21	160073	0.042	4.16	153416	1.26	
45	JUND_KD_rep3	1.8503	254068	82.22	250830	0.26	250830	0.034	3.39	242315	1.98	
46	Cas9_NTC_KD_Control_rep1	1.4237	195456	80.10	193497	0.34	193497	0.061	6.06	181776	1.49	
47	Cas9_NTC_KD_Control_rep2	1.4513	199267	79.68	197214	0.36	197214	0.056	5.58	186212	1.52	
48	Cas9_NTC_KD_Control_rep3	1.4423	197991	81.21	195779	0.28	195779	0.043	4.28	187390	1.53	
49	FOSL2_KO_JUN_KD_rep1	1.4159	194380	80.70	191650	0.18	191650	0.034	3.39	185155	1.52	
50	FOSL2_KO_JUN_KD_rep2	1.573	215920	81.21	213276	0.17	213276	0.026	2.62	207687	1.70	
51	FOSL2_KO_JUN_KD_rep3	1.4996	205858	81.00	203374	0.18	203374	0.025	2.54	198209	1.62	
52	FOS_KO_JUNB_KD_rep1	0.9673	132806	83.27	131418	0.09	131418	0.023	2.28	128418	1.05	
53	FOS_KO_JUNB_KD_rep2	1.7642	242239	81.63	238677	0.17	238677	0.022	2.19	233448	1.91	
55	FOS_KO_JUNB_KD_rep3	1.7686	242795 208212	83.07 81.95	240233		240233 206031	0.023	2.26	234802 199160	1.92	
55	FOS_KO_JUND_KD_rep1 FOS_KO_JUND_KD_rep2	1.5166	208212	81.95 82.17	206031	0.19	206031	0.033	3.33	199160	1.63	
56	FOS_KO_JUND_KD_rep3	1.4432	297730 198176	82.17 81.71	294407 196220	0.20	294407 196220	0.028	2.76	286278 187654	1.54	
58	JUN KO JUND KD rep1	1.4432	244949	81.71 79.35	196220	0.26	196220	0.044	638	226937	1.54	
59	JUN KO JUND KD rep2	2.1485	294972	78.98	291644	0.48	291644	0.056	5.58	275359	2.25	
60	JUN_KO_JUND_KD_rep3	1.9624	269464	78.06	266287	0.48	266287	0.035	3.45	257097	2.11	
00		13324	203404	76.00	230207	3.28	200287	3.035	3.40	23/09/	2.11	