Theory of Computer Grames Homework #5

311605004

1. The above MCTS tree is built without considering opponents (i.e., all moves are for one player) by following the UCT formula.

$$a^* = \operatorname{argmax}_{a \in legal} \left(Q(s, a) + c \sqrt{\frac{\log N(s)}{N(s, a)}} \right)$$

where Q(s,a) is the winning rate of the move a from state s, c is 0.1, N(s) is the number of samples on state s, and N(s,a) is the total number of samples on action a for state s.

(a) Indicate which leaf to choose for the next UCT iteration, and depict how the tree will be changed if the expanded node is a loss.

(b) Repeat (a), after (a) is done.

$$\frac{5}{8} + 0.1 \cdot \sqrt{\frac{|s|1}{8}} > 0 + 0.1 \cdot \sqrt{\frac{|s|1}{2}}$$

$$0 + 0.1 \cdot \sqrt{\frac{|s|6}{2}} < \frac{1}{3} + 0.1 \cdot \sqrt{\frac{|s|6}{3}}$$

$$0 + 0.1 \cdot \sqrt{\frac{|s|6}{3}} < 1 + 0.1 \cdot \sqrt{\frac{|s|6}{3}}$$

(c) Repeat (a), after (b) is done.

$$\frac{5}{9} + 0.1 \cdot \sqrt{\frac{|_{5}1^{3}}{9}} > 0 + 0.1 \cdot \sqrt{\frac{|_{5}1^{3}}{2}}$$

$$0 + 0.1 \cdot \sqrt{\frac{|_{5}9}{1}} < \frac{4}{7} + 0.1 \cdot \sqrt{\frac{|_{5}9}{7}}$$

$$\frac{1}{2} + 0.1 \cdot \sqrt{\frac{|_{5}9}{2}} > \frac{2}{4} + 0.1 \cdot \sqrt{\frac{|_{5}7}{4}}$$

(d) Repeat (a) but for a win leaf, after (c) is done

2. For the above UCT, assume that the playout sequence is P1, P2, P3, P4, P5, P6. Calculate all the values of Q(s,a), $\sim Q(s,a)$, N(s,a), $\sim N(s,a)$, after each playout. Note: $\sim Q(s,a)$ and $\sim N(s,a)$ are the RAVE version of Q(s,a) and N(s,a).

	PI	Β Σ	P3	P4	P5	P6
Q(s,a)	0/1	%	%	%	%	%
~O(S,a)	%	丛	浅	3/3	} /4	3/5
N(s,0)	1			1	2	7
~N(s,a)	1	2	3	3	4	5

3. Calculate Q(s,a), $\sim Q(s,a)$, N(s,a), $\sim N(s,a)$, again, assuming the following prior knowledge:

$$H(s,a) = 0.6, H(s,b) = 0.55, H(s,c) = 0.5$$

$$C(s,a) = 5$$
, $C(s,b) = 5$, $C(s,c) = 4$

$$\sim C(s,a) = 8, \sim C(s,b) = 6, \sim C(s,c) = 6$$

Note: H(s,a) is the initial value of Q(s,a) and $\sim Q(s,a)$, while C(s,a) and $\sim C(s,a)$ are the initial values of N(s,a) and $\sim N(s,a)$,.

	PI	Pl	P3	P4	P5	P6
N(SIA)	5+1=6	6	6	6	6+1=7	7
~N(s,a)	8+1=9	9+1=10	10+1=11	U	11+1=12	17+1=13
Q(s,a)	0.6- 0.6	3 6	3	36	(3+0)/(6+1) = 3/7	3
~Q(s,a)	$0.6 - \frac{0.6}{9}$ $= \frac{4.8}{9}$	(4.8+1)/(9+1) = <u>5.8</u>	(5.8+1)/(10+1) = $\frac{6.8}{11}$	6.8	= 17 (68+0)\(11+1)	= <u>7.8</u> = <u>7.8</u>