第13章 典型相关分析

李高荣

北京师范大学统计学院

E-mail: ligaorong@bnu.edu.cn

- 1 相关系数的定义
- 2 总体的典型相关分析
 - 总体的典型相关的定义
 - 典型相关系数的性质
- ③ 样本典型相关分析
 - 样本典型相关
 - 典型相关系数个数的检验
- 4 典型相关分析的R语言应用
 - 典型相关分析的程序
 - 案例分析

微信公众号: BNUlgr

- 扫二维码获取在线课件和相关教学电子资源
- 请遵守电子资源使用协议

- 典型相关分析(canonical correlation analysis) 是研究两随机向量相 关程度的一个重要方法。
- 问题:如何刻画随机变量和随机向量、随机向量和随机向量之间的相关程度?

- 典型相关分析(canonical correlation analysis) 是研究两随机向量相 关程度的一个重要方法。
- 问题:如何刻画随机变量和随机向量、随机向量和随机向量之间的相关程度?
- \bullet Pearson相关系数: 度量随机变量X和随机变量Y之间的相关程度
- ② 复相关系数: 度量随机向量X和随机变量Y之间的相关程度
- ◎ 典型相关系数: 度量随机向量X和随机向量Y之间的相关程度

4 / 63

定义13.1: 复相关系数

随 机 变 量Y与 随 机 向 量X的复 相 关 系 数(multiple correlation coefficient)就 是Y与X的 线 性 组 合a'X在 $a \in \mathbb{R}^p$ 上 的Pearson相 关 系 数 $\rho(Y,a'X)$ 的最大值,即

$$\rho(Y, X) = \max_{\boldsymbol{a} \in \mathbb{R}^p} \rho(Y, \boldsymbol{a}'X) = \max_{\boldsymbol{a} \in \mathbb{R}^p} \frac{\Sigma_{YX} \boldsymbol{a}}{\sigma_{Y} \sqrt{\boldsymbol{a}' \Sigma_{X} \boldsymbol{a}}}.$$

• 应用Cauchy-Schwarz不等式,有

$$\max_{oldsymbol{a} \in \mathbb{R}^p} rac{(oldsymbol{\Sigma}_{YX}oldsymbol{a})^2}{oldsymbol{a}'oldsymbol{\Sigma}_{X}oldsymbol{a}} = oldsymbol{\Sigma}_{YX}oldsymbol{\Sigma}_{X}^{-1}oldsymbol{\Sigma}_{XY},$$

其中

- ight
 angle 在 $a=c\Sigma_X^{-1}\Sigma_{XY}$ 时取得最大值
- ▷ c为任一非零的常数
- 因此, Y和X 复相关系数为:

$$\rho(\mathbf{Y}, \mathbf{X}) = \frac{1}{\sigma_{\mathbf{Y}}} \sqrt{\boldsymbol{\Sigma}_{\mathbf{Y}\mathbf{X}} \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{Y}}}.$$

6 / 63

- ullet 可以证明:当 $a=\sum_{X}^{-1}\sum_{XY}$ 时,Y-a'X的方差取得最小值,说明Y和a'X 最相关
- ullet 可见: $a=\Sigma_X^{-1}\Sigma_{XY}$ 对应于线性模型中的回归系数,即

$$Y = a_0 + \mathbf{a}'\mathbf{X} + \varepsilon$$

• 因此,复相关系数的平方 $\rho^2(Y,X)$ 常常被用来刻画线性模型的拟合程度

• 设 $X = (X_1, \dots, X_p)'$ 和 $Y = (Y_1, \dots, Y_q)'$ 分别为p维和q维随机向量, 其协方差矩阵为:

$$\mathsf{Cov}\left(egin{array}{c} X \ Y \end{array}
ight) = oldsymbol{\Sigma} = \left(egin{array}{cc} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array}
ight),$$

其中

- \triangleright $\Sigma_{11} = \mathsf{Cov}(X) 为 p \times p$ 的正定矩阵
- $\Sigma_{22} = \text{Cov}(Y)$ 为 $q \times q$ 的正定矩阵
- \triangleright $\Sigma_{12} = \Sigma'_{21} = \mathsf{Cov}(X, Y) 为 p \times q$ 的矩阵
- 设a 和b分别为p维和q维任意非零的常数向量,则

$$\rho(\mathbf{a}'\mathbf{X},\mathbf{b}'\mathbf{Y}) = \frac{\mathbf{a}'\Sigma_{12}\mathbf{b}}{\sqrt{(\mathbf{a}'\Sigma_{11}\mathbf{a})(\mathbf{b}'\Sigma_{22}\mathbf{b})}}.$$

8 / 63

• 相关系数 $\rho(a'X,b'Y)$ 不受anb常数倍的影响,为了简单,对a'Xnb'Y进行标准化,令

$$\operatorname{Var}(\boldsymbol{a}'\boldsymbol{X}) = \boldsymbol{a}'\boldsymbol{\Sigma}_{11}\boldsymbol{a} = 1,$$

 $\operatorname{Var}(\boldsymbol{b}'\boldsymbol{Y}) = \boldsymbol{b}'\boldsymbol{\Sigma}_{22}\boldsymbol{b} = 1.$ (1.1)

定理13.1.1

a'X和b'Y的最大相关系数为:

$$\max_{\boldsymbol{a},\boldsymbol{b}} \rho(\boldsymbol{a}'\boldsymbol{X},\boldsymbol{b}'\boldsymbol{Y}) = \sqrt{\lambda_1},$$

且在方差约束条件(1.1)下,最大值在

$$oldsymbol{a} = rac{1}{\sqrt{\lambda_1}} oldsymbol{\Sigma}_{11}^{-1} oldsymbol{\Sigma}_{12} oldsymbol{b}, \qquad oldsymbol{b} = oldsymbol{\Sigma}_{22}^{-1/2} oldsymbol{eta}$$

时达到,其中 λ_1 和 β 分别为矩阵

$$\mathbf{D} = \mathbf{\Sigma}_{22}^{-1/2} \mathbf{\Sigma}_{21} \mathbf{\Sigma}_{11}^{-1} \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1/2}$$

的最大特征值和最大特征值所对应的特征向量。

定理13.1.1 表明:

- lacktriangle 达到最大相关系数的 $m{b}$ 和 $m{a}$,只需求得 $m{b}$,则 $m{a}$ 可由 $m{a}=rac{1}{\sqrt{\lambda_1}}m{\Sigma}_{11}^{-1}m{\Sigma}_{12}m{b}$ 得到
- ② 由b 和a的对称性,先计算 $a=\sum_{11}^{-1/2} heta$,其中heta 为矩阵

$$\mathbf{\Sigma}_{11}^{-1/2}\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1/2}$$

的最大特征值 $\lambda_{
m I}$ 所对应的标准化的特征向量,则

$$\boldsymbol{b} = \frac{1}{\sqrt{\lambda_1}} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} \boldsymbol{a}.$$

- $\sqrt{\lambda_1}$ 称为X和Y的第一典型相关系数
 - * 当 $\sqrt{\lambda_1}$ 越接近于0时,说明X 和Y的相关程度越弱
 - ® 当 $\sqrt{\lambda_1}$ 越接近于1时,说明X 和Y的相关程度越强
- 问题: $a'X \cap b'Y$ 的相关关系 $\sqrt{\lambda_1}$ 能完全反映X 和Y 的相关程度吗?

• 定义

$$\mathbf{R} = \mathbf{\Sigma}_{11}^{-1/2} \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1/2}.$$

- 可见, \mathbf{R} 就是对X和Y分别标准化后的协方差矩阵,即 $\mathbf{R} = \mathrm{Cov}(\mathbf{\Sigma}_{11}^{-1/2}X,\mathbf{\Sigma}_{22}^{-1/2}Y)$ 。
- 由定理13.1.1 不难发现: a'X 和b'Y的最大相关关系 $\sqrt{\lambda_1}$ 就是 \mathbf{R} 的最大奇异值
- β 和 θ 分别为R'R和RR' 最大特征值对应于的标准化后的特征向量

定义13.2: 总体的典型相关

记R的奇异值分解为:

$$\mathbf{R} = \mathbf{P} \mathbf{\Lambda} \mathbf{Q}'$$

这里, $\mathbf{P} = (\boldsymbol{\theta}_1, \cdots, \boldsymbol{\theta}_k)$ 和 $\mathbf{Q} = (\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_k)$ 分别为 $p \times k$ 和 $q \times k$ 的列正交矩阵,且 $\Lambda = \operatorname{diag}(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_k})$,其中 $\lambda_1 \geq \cdots \geq \lambda_k > 0$ 为 \mathbf{R} 的非奇异值, $\boldsymbol{\theta}_i$ 和 $\boldsymbol{\beta}_i$ 分别为 $\mathbf{R}\mathbf{R}'$ 和 $\mathbf{R}'\mathbf{R}$ 对应于共同的特征值 λ_i 的标准化的特征向量,且 $k = \operatorname{rank}(\mathbf{R})$ 。则称

$$\boldsymbol{a}_i = \boldsymbol{\Sigma}_{11}^{-1/2} \boldsymbol{\theta}_i, \qquad \boldsymbol{b}_i = \boldsymbol{\Sigma}_{22}^{-1/2} \boldsymbol{\beta}_i, \qquad i = 1, \cdots, k,$$

分别为X和Y的典型相关向量,称 $(a_i'X,b_i'Y)$ 为X和Y的第i对典型相关变量,称 $\sqrt{\lambda_i}$ 为X和Y的第i个典型相关系数,记作 ρ_i 。

• a',X和b',Y方差皆标准化为1,即

$$\operatorname{Var}(\boldsymbol{a}_{i}^{\prime}\boldsymbol{X}) = \boldsymbol{a}_{i}^{\prime}\boldsymbol{\Sigma}_{11}\boldsymbol{a}_{i} = \boldsymbol{\theta}_{i}^{\prime}\boldsymbol{\theta}_{i} = 1,$$

$$\operatorname{Var}(\boldsymbol{b}_{i}'\boldsymbol{Y}) = \boldsymbol{b}_{i}'\boldsymbol{\Sigma}_{22}\boldsymbol{b}_{i} = \boldsymbol{\beta}'\boldsymbol{\beta} = 1.$$

因此, a',X和b',Y的相关系数为:

$$\rho(\mathbf{a}_i'\mathbf{X},\mathbf{b}_i'\mathbf{Y}) = \frac{\mathbf{a}_i'\mathbf{\Sigma}_{12}\mathbf{b}_i}{\sqrt{\mathbf{a}_i'\mathbf{\Sigma}_{11}\mathbf{a}_i}\sqrt{\mathbf{b}_i'\mathbf{\Sigma}_{22}\mathbf{b}_i}} = \mathbf{\theta}_i'\mathbf{R}\boldsymbol{\beta}_i = \sqrt{\lambda}_i = \rho_i.$$

• 对任意 $1 \le i \ne j \le k$,都有

$$\begin{aligned} &\mathsf{Cov}(\boldsymbol{a}_i'\boldsymbol{X},\boldsymbol{a}_j'\boldsymbol{X}) = \boldsymbol{a}_i'\boldsymbol{\Sigma}_{11}\boldsymbol{a}_j = \boldsymbol{\theta}_i'\boldsymbol{\theta}_j = 0, \\ &\mathsf{Cov}(\boldsymbol{a}_i'\boldsymbol{X},\boldsymbol{b}_j'\boldsymbol{Y}) = \boldsymbol{a}_i'\boldsymbol{\Sigma}_{11}\boldsymbol{b}_j = \boldsymbol{\theta}_i'\mathbf{R}\boldsymbol{\beta}_j = 0, \\ &\mathsf{Cov}(\boldsymbol{b}_i'\boldsymbol{Y},\boldsymbol{b}_j'\boldsymbol{Y}) = \boldsymbol{b}_i'\boldsymbol{\Sigma}_{22}\boldsymbol{b}_j = \boldsymbol{\beta}_i'\boldsymbol{\beta}_j = 0. \end{aligned}$$

• 分别记X和Y的k个典型相关变量为:

$$\boldsymbol{\eta} = (\eta_1, \cdots, \eta_k)' = \mathbf{A} \boldsymbol{X}, \quad \boldsymbol{\zeta} = (\zeta_1, \cdots, \zeta_k)' = \mathbf{B} \boldsymbol{Y},$$

其中

$$\triangleright$$
 B = $(\boldsymbol{b}_1, \cdots, \boldsymbol{b}_k)'$ 为 $k \times q$ 的矩阵

• 于是,有

$$\operatorname{Cov}\left(egin{array}{c} oldsymbol{\eta} \ oldsymbol{\zeta} \end{array}
ight) = \left(egin{array}{cc} \mathbf{I}_k & oldsymbol{\Lambda} \ oldsymbol{\Lambda} & \mathbf{I}_k \end{array}
ight),$$

其中 $\Lambda = \operatorname{diag}(\rho_1, \cdots, \rho_k)$ 。

- 典型相关分析的目的:
 - lacktriangleday 将X和Y通过线性变化AX和BY,使得X和Y 的协方差阵 Σ_{12} 化简为对角矩阵 Λ
 - ② $Cov(AX) = I_k 和 Cov(BY) = I_k$,即变化后所得的各典型相关变量间互不相关

性质13.2.1

典型相关变量 $a_i'X$ 和 $b_i'Y$ 的方差都被标准化为1,且不同组的典型相关变量是不相关的。

性质13.2.2

典型相关向量 a_i 和 b_i 具有如下互换关系:

$$oldsymbol{a}_i = rac{1}{
ho_i} oldsymbol{\Sigma}_{11}^{-1} oldsymbol{\Sigma}_{12} oldsymbol{b}_i, \qquad oldsymbol{b}_i = rac{1}{
ho_i} oldsymbol{\Sigma}_{22}^{-1} oldsymbol{\Sigma}_{21} oldsymbol{a}_i, \qquad i = 1, \cdots, k.$$

性质13.2.3

典型相关向量 a_i 和 b_i 分别为

$$\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} \Leftrightarrow \Sigma_{22}^{-1}\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$$

的特征向量。

证明:由定义13.2得:
$$\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\Sigma_{11}^{-1/2}\boldsymbol{\theta}_{i}=\lambda_{i}\Sigma_{11}^{-1/2}\boldsymbol{\theta}_{i}$$
。

结合
$$a_i = \Sigma_{11}^{-1/2} \theta_i$$
,可得

$$\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\boldsymbol{a}_{i}=\lambda_{i}\boldsymbol{a}_{i}.$$

同理可证:
$$\Sigma_{22}^{-1}\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\boldsymbol{b}_i = \lambda_i\boldsymbol{b}_i$$
。

依据性质13.2.3,可以采用如下步骤求第i对典型相关向量。

步骤1: 计算矩阵 $\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ 和 $\Sigma_{22}^{-1}\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$ 对应于特征值 λ_i 的特征向量 ξ_i 和 η_i ;

步骤2: X和Y的第i对典型相关向量为

$$oldsymbol{a}_i = oldsymbol{\xi}_i / \sqrt{oldsymbol{\xi}_i' oldsymbol{\Sigma}_{22} oldsymbol{\xi}_i}, \qquad oldsymbol{b}_i = oldsymbol{\eta}_i / \sqrt{oldsymbol{\eta}_i' oldsymbol{\Sigma}_{11} oldsymbol{\eta}_i}.$$

•可以验证由上所求的 a_i 和 b_i 满足标准化条件:

$$\boldsymbol{a}_i' \boldsymbol{\Sigma}_{11} \boldsymbol{a}_i = 1, \quad \boldsymbol{b}_i' \boldsymbol{\Sigma}_{22} \boldsymbol{b}_i = 1.$$

常用计算典型相关向量的两大软件:

- SAS软件"CANCORR"程序直接将 ξ_i 和 η_i 作为典型相关向量输出;
- ② R语言中函数cancor()输出的典型相关向量满足条件: $a_i'\Sigma_{11}a_i=b_i'\Sigma_{22}b_i$,并不要求其等于1。

定理13.2.1

对固定的 $r(1 \le r \le k)$,记

$$f_r = \max_{\boldsymbol{a},\boldsymbol{b}} \boldsymbol{a}' \boldsymbol{\Sigma}_{12} \boldsymbol{b},$$

其中a和b满足约束条件:

$$\mathbf{a}' \Sigma_{11} \mathbf{a} = 1, \quad \mathbf{b}' \Sigma_{22} \mathbf{b} = 1, \quad \mathbf{a}'_{i} \Sigma_{11} \mathbf{a} = 0, \quad i = 1, \dots, r - 1.$$
 (2.1)

则 $f_r = \sqrt{\lambda_r}$, 且最大值在 $a = a_r \approx b = b_r$ 处达到。

证明:由于 $a'\Sigma_{12}b$ 与 $(a'\Sigma_{12}b)^2$ 在同处取得极大值,故下面考虑 $(a'\Sigma_{12}b)^2$ 的极值问题。

第一步:对于固定a,关于b求最大化:

$$\max_{\boldsymbol{b}' \sum_{22}^{\boldsymbol{b}} \boldsymbol{b} = 1} (\boldsymbol{a}' \Sigma_{12} \boldsymbol{b}) = \max_{\boldsymbol{b}} \frac{(\boldsymbol{b}' \Sigma_{21} \boldsymbol{a})^2}{\boldsymbol{b}' \Sigma_{22} \boldsymbol{b}}.$$

令 $l = \Sigma_{21}a$, 由Cauchy-Schwarz不等式, 其最大值为

$$l'\Sigma_{22}^{-1}l = a'\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}a.$$
 (2.2)

23 / 63

第二步:关于a最大化式(2.2)。令 $\theta = \Sigma_{11}^{1/2}a$,则在约束条件(2.1)下最大化式(2.2)的问题等价于

$$\max_{\theta} \theta' \mathbf{R} \mathbf{R}' \theta, \tag{2.3}$$

其中 θ 满足约束条件:

$$\theta'\theta=1, \qquad \theta'_i\theta=0, \qquad i=1,\cdots,r-1.$$

注意到

$$\mathbf{R}\mathbf{R}' = \sum_{i=1}^p \lambda_i \boldsymbol{\theta}_i \boldsymbol{\theta}_i'.$$

记
$$\mathbf{W}_r = \sum_{i=r}^p \lambda_i \boldsymbol{\theta}_i \boldsymbol{\theta}_i'$$
,于是最大化式(2.3)等价于

$$\max_{\substack{\boldsymbol{\theta} \in \mathbb{R}^p \\ \boldsymbol{\theta}' \boldsymbol{\theta} = 1}} \boldsymbol{\theta}' \mathbf{W}_r \boldsymbol{\theta}. \tag{2.4}$$

应用Rayleigh-Ritz定理,可得:式(2.4)在 $\theta = \theta_r$ 处取得最大值,最大值为 \mathbf{W}_r 的最大特征值 λ_r 。

第三步:证明最大值 $f_r = \sqrt{\lambda_r}$ 在 $a = a_r + nb = b_r$ 处取得。可得

$$\mathbf{R}\boldsymbol{\beta}_r = \rho_r \boldsymbol{\theta}_r.$$

因此,有 $a_r'\Sigma_{12}b_r=\theta_r\mathbf{R}\beta_r=\rho_r\theta_r'\theta_r=\rho_r$ 。

定理13.2.2

记 $X^* = \mathbf{U}'X + \mathbf{u}$, $Y^* = \mathbf{V}'Y + \mathbf{v}$, 其中 \mathbf{U} 和 \mathbf{V} 分别为 $\mathbf{p} \times \mathbf{p}$ 和 $\mathbf{q} \times \mathbf{q}$ 任意可逆的常数矩阵, \mathbf{u} 和 \mathbf{v} 分别为 $\mathbf{p} \times \mathbf{1}$ 和 $\mathbf{q} \times \mathbf{1}$ 的常数向量。则 X^* 和 Y^* 典型相关系数就等于X和Y典型相关系数; X^* 和 Y^* 典型相关向量分别为 $\mathbf{a}_i^* = \mathbf{U}^{-1}\mathbf{a}_i$ 和 $\mathbf{b}_i^* = \mathbf{V}^{-1}\mathbf{b}_i$,其中 \mathbf{a}_i 和 \mathbf{b}_i 分别为X和Y典型相关向量。

26 / 63

证明:注意到

$$\operatorname{Cov}(X^*) = \Sigma_{11}^* = \mathbf{U}' \Sigma_{11} \mathbf{U}, \qquad \operatorname{Cov}(Y^*) = \Sigma_{22}^* = \mathbf{V}' \Sigma_{22} \mathbf{V},$$
 $\operatorname{Cov}(X^*, Y^*) = \Sigma_{12}^* = \mathbf{U}' \Sigma_{12} \mathbf{V},$

EL

$$(\boldsymbol{\Sigma}_{11}^*)^{-1}\boldsymbol{\Sigma}_{12}^*(\boldsymbol{\Sigma}_{22}^*)^{-1}\boldsymbol{\Sigma}_{21}^* = \boldsymbol{U}^{-1}(\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21})\boldsymbol{U}$$

与 $\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ 具有相同的非零特征值,故 X^* 和 Y^* 的典型相关系数与X和Y的 典型相关系数完全相同。

另外,记

$$\mathbf{A}^* = (\mathbf{a}_1^*, \cdots, \mathbf{a}_k^*)', \qquad \mathbf{B}^* = (\mathbf{b}_1^*, \cdots, \mathbf{b}_k^*)'.$$

易证
$$\mathbf{A}^* = \mathbf{A}(\mathbf{U}')^{-1}$$
和 $\mathbf{B}^* = \mathbf{B}(\mathbf{V}')^{-1}$,其中 $\mathbf{A} = (\mathbf{a}_1, \cdots, \mathbf{a}_k)'$ 为 $k \times p$ 的矩阵, $\mathbf{B} = (\mathbf{b}_1, \cdots, \mathbf{b}_k)'$ 。

于是,有

$$\operatorname{Cov}(\mathbf{A}^*X^*) = \operatorname{Cov}(\mathbf{A}X) = \mathbf{I}_k, \qquad \operatorname{Cov}(\mathbf{B}^*Y^*) = \operatorname{Cov}(\mathbf{B}Y) = \mathbf{I}_k,$$

$$Cov(\mathbf{A}^*X^*, \mathbf{B}^*Y^*) = Cov(\mathbf{A}X, \mathbf{B}Y) = \Lambda.$$

• 对X和Y作标准化得 $X^* = (\operatorname{diag}(\Sigma_{11}))^{-1/2}X$ 和 $Y^* = (\operatorname{diag}(\Sigma_{22}))^{-1/2}Y$,这里 $\operatorname{diag}(A)$ 表示由方阵A 的对角元素构成的对角矩阵。

推论13.2.1

X*和Y*与X和Y具有相同的典型相关系数和相应的典型相关变量组,且 两者典型相关向量间满足:

$$oldsymbol{a}_i^* = \operatorname{diag}(oldsymbol{\Sigma}_{11})^{1/2}oldsymbol{a}_i, \qquad oldsymbol{b}_i^* = \operatorname{diag}(oldsymbol{\Sigma}_{22})^{1/2}oldsymbol{b}_i,$$

或

$$\boldsymbol{a}_i = (\operatorname{diag}(\boldsymbol{\Sigma}_{11}))^{-1/2} \boldsymbol{a}_i^*, \qquad \boldsymbol{b}_i = (\operatorname{diag}(\boldsymbol{\Sigma}_{22}))^{-1/2} \boldsymbol{b}_i^*.$$

- 设 $\{(x_i',y_i')',i=1,\cdots,n\}$ 是来自正态总体(X',Y')'独立同分布的简单随机样本,其总体分布为 $N_{p+q}(\mu,\Sigma)$,其中n>p+q
- Σ 的无偏估计为样本协方差矩阵S = V/(n-1), 其中V为离差矩阵
- 样本协方差矩阵有如下的剖分:

$$\mathbf{S} = \left(egin{array}{cc} \mathbf{S}_{11} & \mathbf{S}_{12} \ \mathbf{S}_{21} & \mathbf{S}_{22} \end{array}
ight).$$

30 / 63

样本典型相关向量的算法:

步骤1: 令 $\mathbf{W}_1 = \mathbf{S}_{11}^{-1} \mathbf{S}_{12} \mathbf{S}_{22}^{-1} \mathbf{S}_{21}$ 和 $\mathbf{W}_2 = \mathbf{S}_{22}^{-1} \mathbf{S}_{21} \mathbf{S}_{11}^{-1} \mathbf{S}_{12}$, 其中 $m = \min(p, q)$;

步骤2: 计算 \mathbf{W}_1 的前m个最大特征值 $r_1^2 \geq \cdots \geq r_m^2$;

步骤3: 计算 \mathbf{W}_1 和 \mathbf{W}_2 相应于特征值 r_i^2 的特征向量 $\boldsymbol{\theta}_i$ 和 $\boldsymbol{\beta}_i$, $i=1,\cdots,m$, 令

$$\widehat{\boldsymbol{a}}_i = rac{oldsymbol{ heta}_i}{oldsymbol{ heta}_i' \mathbf{S}_{11} oldsymbol{ heta}_i}, \qquad \widehat{oldsymbol{b}}_i = rac{oldsymbol{eta}_i}{oldsymbol{ heta}_i' \mathbf{S}_{22} oldsymbol{eta}_i},$$

则 $r_i = \sqrt{r_i^2} \lambda X$ 和Y的第i个样本典型相关系数, $U_i = \hat{a}_i' X$ 和 $V_i = \hat{b}_i' Y$ 为其第i 对样本典型相关变量, $i = 1, \cdots, m$ 。

定理13.3.1

当 $\operatorname{rank}(\Sigma_{12}) = p$,且 $\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ 具有不同的特征值时,样本典型相关变量 $(\widehat{a}_i'X,\widehat{b}_i'Y)$ 和样本典型相关系数 r_i 分别为总体典型相关变量 $(a_i'X,b_i'Y)$ 和典型相关系数 ρ_i 的极大似然估计。

例

对Fisher Iris数据集,包含150个数据样本,每个数据包含4个属性:

萼片长度 (X_1) 、萼片宽度 (X_2) 、花瓣长度 (Y_1) 和花瓣宽度 (Y_2) 。本例考

虑 $X = (X_1, X_2)'$ 与 $Y = (Y_1, Y_2)'$ 间的典型相关分析。

•解:对萼片长度 (X_1) 、萼片宽度 (X_2) 、花瓣长度 (Y_1) 和花瓣宽度 (Y_2) 的数据进行标准化处理,并计算样本相关矩阵,分别如下:

$$\mathbf{S_{11}} = \begin{pmatrix} 1.000 & -0.118 \\ -0.118 & 1.000 \end{pmatrix}, \quad \mathbf{S_{22}} = \begin{pmatrix} 1.000 & 0.963 \\ 0.963 & 1.000 \end{pmatrix},$$

$$\mathbf{S_{12}} = \left(\begin{array}{cc} 0.872 & 0.818 \\ -0.428 & -0.366 \end{array} \right).$$

• 可算得

$$\mathbf{S}_{11}^{-1}\mathbf{S}_{12}\mathbf{S}_{22}^{-1}\mathbf{S}_{21} = \begin{pmatrix} 0.731 & -0.367 \\ -0.301 & 0.170 \end{pmatrix}.$$

- 计算 $\mathbf{S}_{11}^{-1}\mathbf{S}_{12}\mathbf{S}_{22}^{-1}\mathbf{S}_{21}$ 的特征值为 $\lambda_1=0.885$ 和 $\lambda_2=0.0154$,相应的标准化的特征向量分别为 $\boldsymbol{\xi}_1=(0.922,-0.388)$ '和 $\boldsymbol{\xi}_2=(0.456,0.890)$ '。
- 进一步, 可算得

$$\mathbf{S}_{22}^{-1}\mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{S}_{12} = \begin{pmatrix} 1.306 & 1.193 \\ -0.455 & -0.405 \end{pmatrix}.$$

- 相应于 λ_1 和 λ_2 的标准化的特征向量分别为 $\eta_1=(0.943,-0.333)'$ 和 $\eta_2=(-0.679,0.734)'$ 。
- 因此,样本典型相关系数为: $r_1 = \sqrt{\lambda_1} = 0.941$ 和 $r_2 = \sqrt{\lambda_2} = 0.124$ 。

- 计算满足 $\hat{a}_i \mathbf{S}_{11} \hat{a}_i = \hat{b}_i' \mathbf{S}_{22} \hat{b}_i = 1$ 典型相关向量。
- 第1 对典型相关向量为:

$$\widehat{\boldsymbol{a}}_1 = \boldsymbol{\xi}_1 / \sqrt{\boldsymbol{\xi}_1' \mathbf{S}_{11} \boldsymbol{\xi}_1} = \begin{pmatrix} 0.885 \\ -0.373 \end{pmatrix},$$

$$\widehat{\boldsymbol{b}}_1 = \boldsymbol{\eta}_1 / \sqrt{\boldsymbol{\eta}_1' \mathbf{S}_{22} \boldsymbol{\eta}_1} = \begin{pmatrix} 1.499 \\ -0.529 \end{pmatrix};$$

● 第2对典型相关向量为:

$$\widehat{\boldsymbol{a}}_2 = \boldsymbol{\xi}_2 / \sqrt{\boldsymbol{\xi}_2' \mathbf{S}_{11} \boldsymbol{\xi}_2} = \begin{pmatrix} 0.480 \\ 0.935 \end{pmatrix},$$

$$\widehat{\boldsymbol{b}}_2 = \boldsymbol{\eta}_2 / \sqrt{\boldsymbol{\eta}_2' \mathbf{S}_{22} \boldsymbol{\eta}_2} = \begin{pmatrix} 3.387 \\ -3.666 \end{pmatrix}.$$

• 从而得第1对样本典型相关变量:

$$U_1 = \widehat{a}_1' X^* = 0.885 X_1^* - 0.373 X_2^* = 1.069 X_1 - 0.855 X_2,$$

$$V_1 = \widehat{b}_1' Y^* = -1.499 Y_1^* + 0.529 Y_2^* = 0.8491 Y_1 - 0.6938 Y_2,$$

其中

- ▷ X*和Y*分别为X和Y 的标准化向量
- ▷ U₁近似等于萼片长度与萼片宽度的差
- ▷ V1近似等于花瓣长度与花瓣宽度的差
- 第1 对样本典型相关变量可分别解释为花萼和花瓣的相对宽窄特征。
- 第1样本典型相关系数为0.941,说明鸢尾花的萼片形状与花瓣形状高度相关。

Figure: 左图: Iris数据的第1组典型相关变量的散点图; 右图: Iris数据的第2对典型相关变量的散点

图。

• 第2对典型相关变量为:

$$U_2 = \widehat{a}_2' X^* = 0.480 X_1^* + 0.935 X_2^* = 0.5797 X_1 + 2.1463 X_2,$$
$$V_2 = \widehat{b}_2' Y^* = 3.387 Y_1^* - 3.666 Y_2^* = 1.9187 Y_1 - 4.8095 Y_2,$$

其中

- ▶ U₂ 近似等于萼片1/2长度与2倍宽度的和,可解释为萼片的大小
- ▶ V₂ 近似等于花瓣2倍长度与5倍宽度的差,可分别解释为花瓣的细长程度
- 从图可以看出:第2对典型相关变量的散点图几乎看不出什么趋势。因此,花 瓣和萼片长度和宽度可以通过第1对典型相关变量来刻画。

```
attach(iris)
iris.std = scale(iris[1:4])
cc=cancor(iris.std[,1:2], iris.std[,3:4]) ##基于相关系数阵
CC
#### 输出结果:
$cor
[1] 0.9409690 0.1239369
$xcoef
                   [,1] [,2]
Sepal.Length -0.07251736 0.03932826
Sepal.Width 0.03052965 0.07663824
$ycoef
                   [.1] [.2]
Petal.Length -0.12279948 -0.2774814
Petal.Width 0.04332444 0.3003309
```

- 首先检验 $H_0: k=0$, 即X和Y不相关, $\Sigma=0$ 。
- 在正态假设下,该检验就是X和Y的独立性检验。由似然比检验统计 量为:

$$\lambda_0^{2/n} = |\mathbf{I}_p - \mathbf{S}_{11}^{-1} \mathbf{S}_{12} \mathbf{S}_{22}^{-1} \mathbf{S}_{21}| = \prod_{i=1}^p (1 - r_i^2).$$

• 当 $n \to \infty$ 时, Bartlett(1938)提出了一个渐近分布:

$$W_0 = -\left(n - \frac{p+q+3}{2}\right) \ln \prod_{i=1}^{p} (1 - r_i^2) \to \chi_{pq}^2.$$

• 若检验X和Y独立,则不必要对X和Y进行典型相关分析。

- 问题: 下面检验仅有s个非零典型相关系数。
- 类似于 W_0 ,用后p-s个样本典型相关系数得到该检验的一个近似的检验统计量:

$$W_s = -\left(n - \frac{p+q+3}{2}\right) \ln \prod_{i=s+1}^{p} (1-r_i^2) \to \chi^2_{(p-s)(q-s)}.$$

- 当 $W_s > \chi^2_{(p-s)(q-s)}(\alpha)$ 时,则认为典则相关系数的个数大于s
- 需要进一步检验(非零)典型相关系数的个数是否等于s+1,···, 直到原假设被接受为止

• Glynn和Muirhead (1978)给出了 W_s 的一个改进,并建议采用检验统计量为:

$$L_s = -\left(n-s-rac{p+q+3}{2} + \sum_{i=1}^s rac{1}{r_i^2}
ight) \ln \prod_{i=s+1}^p (1-r_i^2) o \chi^2_{(p-s)(q-s)}.$$

例

取显著性水平 $\alpha = 0.05$, 对(萼片长度, 萼片宽度)与(花瓣长度, 花瓣宽度)间的非零典型相关系数的个数k作显著性检验。

4 D > 4 D > 4 E > 4 E > E 990

- 解: 已知n=150, p=q=2, 计算得: 样本典型相关系数为 $r_1=0.941$ 和 $r_2=0.124$ 。
- 进一步, 计算得pq = 2×2 = 4, 且

$$W_0 = -\left(150 - \frac{2+2+3}{2}\right) \left[\ln(1-r_1^2) + \ln(1-r_2^2)\right] \approx 319.661.$$

- 相应的p值为 $Pr(\chi_4^2 > 319.661) \approx 6.20749 \times 10^{-68} < 0.05 = \alpha$ 。
- 因此,认为(萼片长度,萼片宽度)与(花瓣长度,花瓣宽度)间至少存在1个典型相关系数。

• 下面检验k=2。计算(p-1)(q-1)=1. 且

$$W_1 = -\left(150 - \frac{2+2+3}{2}\right)\ln(1-r_2^2) \approx 2.268.$$

- 相应的p值为 $Pr(\chi_1^2 > 2.268) \approx 0.132 > 0.05 = \alpha$ 。
- 因此,可以认为(萼片长度,萼片宽度)与(花瓣长度.花瓣宽度)间仅存在1个显 著不为零的典型相关系数。
- 采用改进的Bartlett卡方检验. 计算

$$L_0 = -\left(150 - \frac{2+2+3}{2}\right) \left[\ln(1-r_1^2) + \ln(1-r_2^2)\right] \approx 319.661,$$

$$L_1 = -\left(150 - \frac{2+2+3}{2} + \frac{1}{r_1^2}\right) \ln(1-r_2^2) \approx 2.270.$$

- R语言提供的函数cancor()的问题:
 - ▷ 没有包含关于典型相关系数个数的显著性检验
 - ▷ 提供的典型相关向量是未被标准化
- 为方便使用,编写典型相关分析的函数cancor2(),输出结果包括:
 - ▷ 典型相关系数
 - ▷ 典型相关系数个数的检验(Bartlett卡方检验和其调整的Bartlett卡方检验)
 - ▷ 典型相关向量
- 编写函数cancor2()所需的两个检验函数:
 - 基于典型相关系数Bartlett卡方检验的函数corcoef.test()
 - 基于Glynn和Muirhead (1978)改进的Bartlett检验函数corcoef.Atest()

```
#### Bartlett卡方检验的函数corcoef.test()
corcoef.test = function(r, n, p, q) {
m = length(r); W = rep(0, m); lambda = 1
P.value = rep(0, m); k = c(m:1)
  for (i in m:1) {
    lambda = lambda * (1-r[i]^2);
    W[i] = -log(lambda)
  for (i in 1:m) {
    W[i] = (n-i+1-1/2*(p+q+3))*W[i]
    P.value[i] = pchisq(W[i], (p-i+1)*(q-i+1), lower.tail=F)
    P.value[i] = round( P.value[i], 3)
 W[i] = round(W[i],3)
W.chisquare = round(W,3)
A = cbind(k, W.chisquare, P.value); A
```

```
#### 改进的Bartlett检验函数corcoef.Atest()
corcoef.Atest = function(r, n, p, q){
  m = length(r); W = rep(0, m); lambda = 1
  P. value = rep (0, m); k = c (m:1)
 for (i in m:1) {
    lambda = lambda * (1-r[i]^2);
   W[i] = -log(lambda) }
  s = 0;
  for (i in 1:m) {
   W[i] = (n-i+1-1/2*(p+q+3)+s)*W[i]
   P.value[i] = pchisq(W[i], (p-i+1)*(q-i+1), lower.tail=F)
    s = s+1/r[i]^2
    P.value[i] = round(P.value[i], 3)
    W[i] = round(W[i], 3)
W.adjust = round(W, 3)
A = cbind(k, W.adjust, P.value); A
```

```
cancor2 = function(x, y, dec=4){
 x = as.matrix(x); v = as.matrix(v)
 n = \dim(x)[1]; q1 = \dim(x)[2]; q2 = \dim(y)[2]; q = \min(q1,q2)
 S11 = cov(x); S12 = cov(x,y); S21 = t(S12); S22 = cov(y)
 E1 = eigen(solve(S11)%*%S12%*%solve(S22)%*%S21)
 E2 = eigen(solve(S22) %* S21 %* Solve(S11) %* S12)
  rsquared = E1$values[1:q]
  lengthx = diag(diag(t(E1$vectors)%*%S11%*%E1$vectors))
  lengthy = diag(diag(t(E2$vectors)%*%S22%*%E2$vectors))
 a = round(E1$vectors**%solve(sgrt(lengthx)), dec)
 b = round(E2$vectors**%solve(sgrt(lengthy)), dec)
  r = sart(rsquared)
list(cor=round(r,dec), Bartlett.test=corcoef.test(r, n, q1, q2),
     Adjusted.Bartlett.test = corcoef.Atest(r, n, q1, q2),
     a.Coefficients = a, b.Coefficients = b)
```

函数cancor2()的使用说明如下:

- 对样本协方差矩阵的典型相关分析,可直接对原数据直接采用函数cancor2()进行分析;
- ② 对样本相关系数矩阵的典型相关分析,先用函数scale()对数据进行标准化,然后对标准化的数据采用函数cancor2()进行分析。

例

下表是51位心肌梗死疾病患者的总胆固醇 (X_1) 、甘油三酯 (X_2) 、高密度脂蛋白胆固 醇(X_3)、低密度脂蛋白胆固醇(X_4)、载脂蛋白 $A(X_5)$ 、载脂蛋白 $B(X_6)$ 的数据。由于 总胆固醇 (X_1) 、高密度脂蛋白胆固醇 (X_3) 和载脂蛋白 $A(X_5)$ 的指标高易降低心肌梗死 发病的发生,而其余三项指标高则易增加心肌梗死发病的可能性。因此,相对于 心肌梗死疾病,总胆固醇(X_1)、高密度脂蛋白胆固醇(X_3)和载脂蛋白 $A(X_5)$ 指标被认 为是"好"胆固醇,而甘油三酯(X_2)、低密度脂蛋白胆固醇(X_4)和载脂蛋白 $B(X_6)$ 被认 为"坏"胆固醇。本例考虑"好"胆固醇和"坏"胆固醇间的典型相关问题。

Table: 心肌梗死患者指标数据

序号	X_1	X_2	X_3	X_4	X_5	X_6	序号	X_1	X_2	X_3	X_4	X_5	X_6
1	245	157	38	168	1.10	1.01	27	178	131	49	98	1.18	1.27
2	236	275	40	125	1.22	1.12	28	240	127	33	174	0.78	0.90
3	238	354	38	126	0.90	1.06	29	180	211	27	106	0.85	0.69
4	233	250	31	150	1.02	0.98	30	161	91	39	88	0.94	0.52
5	240	149	35	170	1.26	1.13	31	236	95	38	171	1.01	0.83
6	235	166	40	164	1.30	1.15	32	168	106	36	104	0.87	0.58
7	204	365	38	90	1.33	0.95	33	174	141	28	103	0.81	0.73
8	200	95	43	100	1.24	0.98	34	215	168	38	134	0.88	0.87
9	297	240	38	207	1.14	1.51	35	268	185	28	203	0.75	0.97
10	177	97	49	108	1.49	1.02	36	178	100	43	117	0.98	0.65
11	200	172	43	116	1.25	1.03	37	198	112	53	123	0.98	0.72
12	195	211	47	106	1.22	0.94	38	180	114	48	110	1.02	0.80

序号	X_1	X_2	X_3	X_4	X_5	X_6	序号	X_1	X_2	X_3	X_4	X_5	X_6
13	166	217	33	86	1.10	0.74	39	134	60	36	84	0.98	0.58
14	144	111	28	46	0.71	0.65	40	204	118	63	119	1.02	0.84
15	233	107	42	156	0.95	0.77	41	168	80	52	90	1.07	0.80
16	156	107	45	106	0.93	0.74	42	219	157	28	142	1.02	0.83
17	201	117	45	147	1.06	0.85	43	189	158	43	115	0.92	0.80
18	134	58	60	65	1.03	0.54	44	180	90	59	102	1.32	0.90
19	195	93	51	141	1.22	0.72	45	177	227	75	64	1.40	0.99
20	262	257	62	142	1.56	0.80	46	172	55	51	102	1.31	0.97
21	194	171	42	114	1.11	0.71	47	166	110	40	96	1.18	0.99
22	165	70	36	110	1.22	0.96	48	210	166	42	130	1.28	1.02
23	183	249	44	88	1.12	0.57	49	166	217	33	86	1.10	0.74
24	143	91	24	108	0.67	0.65	50	223	186	73	113	1.62	0.98
25	228	223	34	136	1.05	0.84	51	136	72	67	46	1.45	0.84
26	264	186	41	183	1.22	0.92							

```
library(GGally); Heart = read.table("Tab13-1.txt")
colnames(Heart) = c("X1", "X2", "X3", "X4", "X5", "X6")
ggpairs(data = Heart)
```


• 记"好"胆固醇和"坏"胆固醇向量分别为:

$$X = (X_1, X_3, X_5)', \qquad Y = (X_2, X_4, X_6)'.$$

- 由矩阵散点图看出: "好"胆固醇中的X₁与"坏"胆固醇中的X₂, X₄和X₆ 之间都具有较高的相关系数
- •对"好"胆固醇X和"坏"胆固醇Y两组变量进行典型相关分析

55 / 63

```
Heart.S = scale(Heart); subset = c(1, 3, 5)
Good.Heart = Heart.S[, subset]; Bad.Heart = Heart.S[, -subset]
cancor2 (Good. Heart, Bad. Heart)
#### 输出结果:
$cor
[1] 0.9705 0.5551 0.1039
$Bartlett.test
    k W.chisquare P.value
[1,] 3
          150.006 0.000
[2,] 2 17.255 0.002
[3,] 1 0.483 0.487
```

```
$Adjusted.Bartlett.test
    k W.adjust P.value
[1,] 3 150.006 0.000
[2, ] 2 17.658 0.001
[3, ] 1 0.530 0.467
$a.Coefficients
       [,1] [,2] [,3]
[1,] -0.9582 -0.0887 0.4149
[2,] 0.1949 -0.2704 1.3371
[3,] -0.0083 1.1692 -0.7334
$b.Coefficients
       [,1] [,2] [,3]
[1,] -0.3508 0.0635 -1.0024
[2,1 -0.8290 -0.7083 0.2983
[3,] -0.0711 1.0863 0.4516
```

该结果表明:

- 第1、2和3对典型相关变量的相关系数分别为0.971, 0.555 和0.104
- 第1对和第2对典型相关系数显著, 而第3典型相关系数不显著
- 第1对典型相关变量可被表示为:

$$U_1 = -0.958X_1^* + 0.195X_3^* - 0.008X_5^*,$$

$$V_1 = -(0.351X_2^* + 0.829X_4^* + 0.071X_6^*),$$

其中

- ▷ U1主要代表了总胆固醇
- ▷ V₁主要代表了低密度脂蛋白胆固醇,同时与甘油三酯相关性也较强

• 第2对典型变量可被表示为:

$$U_2 = -0.089X_1^* - 0.270X_3^* + 1.169X_5^*,$$

$$V_2 = 0.063X_2^* - 0.708X_4^* + 1.086X_6^*.$$

- U₂主要代表了载脂蛋白A
- V2近似反映了载脂蛋白B与低密度脂蛋白胆固醇相对差的
- 最后,可以使用程序包candisc中的函数cancor()进行典型相关分析,并用函数plot()进行典型相关分析的可视化

```
library(candisc)
cc.heart = candisc::cancor(Good.Heart, Bad.Heart)
par(mfrow = c(1,3))
plot(cc.heart, which = 1); plot(cc.heart, which = 2)
plot(cc.heart, which = 3)
```


- 三个图中的斜率逐渐变小,说明3对典型相关系数的大小在逐渐变小,这也一致于前面的数值分析结果;
- 3对典型相关变量均为正相关,说明"好"胆固醇和"坏"胆固醇有强的正相关性。

谢谢,请多提宝贵意见!

マロケマ部ケマミケマミケ ミ めのの