Mad Bot Schematics Tree

Power		Motor Drive	,	мси
	7			
		File: drive.kicad_sch		Etta analisation transfer
File: power.kicad_sch		rite: drive.kicad_scri		File: controller.kicad_sch
Sensors				

File: sensors.kicad_sch

+BATT could be coming from battery or USB 5V

Power

USB-C Connector

VBUS VBUS Δ D1 CHRG_LED U5 MCP73831T-2ACI_OT R9 C15 470 Q2 +BATT STAT Q_PMOS_GSD \Diamond VBAT GND PWR_FLAG C17 R7 4.7uF LiPo 2k **VBUS** S2 SHIELD D3 GND GND D_Schottky 500mA charging current R10 250k GND

https://electronics.stackexchange.com/questions/644680/is-this-usb-circuit-with-esd-done-correctly

Buck-Boost 3.3V Regulator

To ensure stability and excellent transient response, it is recommended to use a minimum of $10\mu F/X7R/1206$ capacitors at the output. For surface mount applications, Taiyo Yuden or TDK ceramic capacitors, X7R series Multilayer Ceramic Capacitor is recommended.

At least a 10μF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible to the VIN and GND pins of the IC is recommended.

Vdrive = 6V Vdrive GND PWR_FLAG Max Vin: 1.3V to 6V

Boost 6V Regulator

Testpoints Vdrive TP6 Vdrive VCC TP4 VCC +BATT TP5 BATT

Power indicators

Motor drivers

Encoder connections + Motor power VCC \uparrow GND M1_OUT1 M1_OUT2 J2 EncoderConn ENC1_A ENC1_B PWR_FLAG GND VCC Ŷ GND M2_0UT1 M2_0UT2 J1 EncoderConn ENC2_A ENC2_B GND VCC \uparrow GND M3_0UT2 J3 EncoderConn ENC3_A ENC3 B GND

Square-marked shape on encoder as the 1st pin.
Encoder is facing pins-down.
Connector on the encoder is through-holes on a 2mm pitch.

MI_SENSE

MI_SENSE2

MI_SENSE3

O TP3
MI_SENSE3

M_SLEEP: Pull high for H-bridge normal operation.
Pull low to disable the H-bridge output and enter low-power sleep mode.
Internal pull-down.

on using UARTO as a normal peripheral it can be reconfigured to act as other peripherals https://www.esp32.com/viewtopic.php?t=38137

ToF Sensor

Camera

I2C Addresses: 0x60 for writing and 0x61 for reading.

