

CONCOURS D'ACCES EN 1^{ére} ANNEE DU CYCLE PREPARATOIRE 08 Août 2011 **Epreuve de physique Durée: 1h15**

Remarques importantes:

- 1) Parmi les réponses proposées il n'y a qu'une SEULE qui est juste.
- 2) Cochez la case qui correspond à la réponse correcte sur la fiche de réponses et assurez vous que les trois autres cases sont intactes (bien vides)
- 3) Réponse juste = 1 point ; Réponse fausse = -1 point ; Pas de réponse = 0 point.
- 4) Plus qu'une case cochée pour une question = -1 point.
- 5) Aucune documentation n'est autorisée.
- 6) L'utilisation des téléphones portables est strictement interdite.

QUESTION DIRECTES:

EX1 : Le moment d'inertie d'une sphère de rayon r et de masse m est :

A)
$$J_{\Delta} = \frac{1}{2} m r^2$$

B)
$$J_{\Delta} = \frac{2}{3} m r^2$$

C)
$$J_{\Delta} = \frac{1}{12} m r^2$$

D) Aucune des trois réponses

EX 2 : Le coefficient d'induction d'un solénoïde de longueur L, de rayon R formé de N spires de **surface S est :** (μ_0 perméabilité du vide)

A)
$$L = \mu_0 N^2 \frac{R}{I}$$

B)
$$L = \mu_0 N \frac{S^2}{L}$$

C) $L = \mu_0 N^2 \frac{S}{L}$

C)
$$L = \mu_0 N^2 \frac{s}{L}$$

$$D) L = \mu_0 N \frac{R^2}{L}$$

EX 3 : Dans un circuit RLC en série, la dissipation de la puissance électrique est due à :

- A) La bobine
- B) Le condensateur
- C) La résistance
- D) La bobine + le condensateur

Problème 1

Afin de visser un écrou d'axe (Δ) passant par O, on exerce, à l'extrémité d'une clé, une force F=20N comme l'indique la figure 1. On donne OA = 0,15m et α = 50°.

EX 4 : Le moment de \vec{F} par rapport à (Δ) est :

- A) $\mathcal{M} = 3.3 \text{ N.m}$
- B) $\mathcal{M} = -3.3 \text{ N.m}$
- C) $\mathcal{M} = 2.3 \text{ N.m}$
- D) $\mathcal{M} = -2.3 \text{ N.m}$

Problème 2

Une barre MN déposée verticale sur deux rails parallèles distants de 1=0,26 m et liés par une résistance R=2 Ω . (Figure 2).

On dépose l'ensemble dans un champ magnétique uniforme \vec{B} dirigé de manière verticale à la surface délimitée par les rails et la barre MN et d'intensité 0,5 T.

On fait bouger la barre sur les deux rails avec une vitesse $V = 0.05 \ m \ .s^{-1}$, tout en gardant la même direction durant le mouvement.

EX 5 : La force électromotrice est :

- A) e=5mV
- B) e=-5mV
- C) e=5V
- D) e=-5V

EX 6: l'intensité du courant induit est :

- A) 6 mA
- B) 4,5 mA
- C) 2,5 mA
- D) 0.5 mA

EX 7 : Ce phénomène décrit :

- A) Courants de Foucaud
- B) Bobine de Helmholtz
- C) Loi de Faraday-Linz
- D) Aucune des trois réponses

Problème 3

Une demi-sphère creuse, d'épaisseur négligeable, de centre O et de rayon R = 80 cm, repose par son sommet S sur un plan horizontal. Elle est maintenue fixe dans cette position.

Un petit solide S_0 de masse m = 10g assimilable à un point matériel peut glisser sans frottement sur la surface interne de la demi-sphère. On désigne par M sa position et par θ l'angle $(\overline{OS}, \overline{OM})$ Soit A la projection de *M* sur le plan horizontal (figure 3).

On communique à ce solide, à partir d'une position initiale M, une vitesse \vec{V} tangente à la demi-sphère et parallèle au plan horizontale de façon à ce que le solide décrive on cercle horizontal passant par M. On donne l'accélération de la gravitation $g = 10 \text{ m. s}^{-2}$

EX 8 : Pour la position de M telle que SA = R/2, On aura :

- A) $\|\vec{V}\| = 1.9 \text{ m/s}$
- B) $\|\vec{V}\| = 1.6 \text{ m/s}$
- C) $\|\vec{V}\| = 1.5 \text{ m/s}$
- D) $\|\vec{V}\| = 1.3 \text{ m/s}$

EX 9 : Pour la même position de M, nous aurons :

- A) $\omega = 3.25 \, rad/s$
- B) $\omega = 3.75 \, rad/s$
- C) $\omega = 4 \, rad/s$
- D) $\omega = 4.75 \, rad/s$

EX 10 : L'énergie cinétique du solide S_0 au court de ce mouvement sera :

- A) $E_C = 8,45 \cdot 10^{-3} J$
- B) $E_C = 11,25 \cdot 10^{-3} J$ C) $E_C = 12,8 \cdot 10^{-3} J$ D) $E_C = 18,05 \cdot 10^{-3} J$

Problème 4

Un transformateur monophasé abaisse une tension sinusoïdale de va leur efficace $U_1 = 380 V$ en une tension sinusoïdale de va leur efficace $U_2 = 220 V$

Il alimente, sous une tension de 220 V, un moteur fournissant une puissance utile \mathcal{P}_M = 1,5 kW. Le moteur a un rendement de 80% et le transformateur un rendement de 92%.

EX 11 : Si le facteur de puissance du secondaire $\cos\phi_2$ est égal à 0,85, l'intensité efficace I_2 du courant traversant le moteur sera :

A) $I_2 \cong 5A$

C) $I_2 \cong 15A$

B) $I_2 \cong 10A$

D) $I_2 \cong 20A$

EX 12 : La puissance $\mathcal{Q}_{\scriptscriptstyle{\mathrm{E}1}}$ fournie au primaire :

- A) $\mathbf{Q}_{E1} = 2040 \text{ W}$
- C) $P_{E1} \cong 2060 \text{ W}$
- B) $\mathbf{P}_{E1} \cong 2140 \text{ W}$
- D) $\mathbf{P}_{E1} \cong 2160 \text{ W}$

EX 13 : Le rendement global de la chaîne Transformateur-Moteur η_{ch} est :

A) $\eta_{ch} = 92,6\%$

C) $\eta_{ch} = 12\%$

B) $\eta_{ch} = 80\%$

D) $\eta_{ch} = 73.6\%$

Problème 5

Un circuit électrique comporte une bobine de résistance $R=10\Omega$. Une source de tension $u=50\sqrt{2}\sin\omega t$ (ω négligeable), un ampèremètre donnant l'intensité efficace I d'impédance négligeable.

EX 14 : Lorsque $\omega = 10^3 \ rad$. s^{-1} I = 0,1 A. L'inductance de la bobine est ainsi égale à :

A) L≅0,5 H

C) L≅0,3 H

B) L≅1,5 H

D) L≅1,3 H

Pour les mêmes données ci-dessus, on souhaite placer un condensateur en série avec la bobine.

EX 15 : Afin que l'intensité soit en phase avec la tension u aux bornes de l'ensemble, son intensité C est :

A) $C = 5\mu F$

C) $C = 3\mu F$

B) $C = 4\mu F$

D) $C=2\mu F$

UNIVERSITE CADI AYYAD ECOLE NATIONALE DES SCIENCES APPLIQUEES MARRAKECH

Correction du concours d'entrée en 1ère année du Cycle Préparatoire

Fiche de réponses Epreuve de Physique (Durée 1h : 30min)			

Remarques Importantes:

- 1) La documentation, les calculatrices et les téléphones portables sont interdits.
- 2) Parmi les réponses proposées il n'y en a qu'une qui est juste.
- 3) Cochez la case qui correspond à la réponse correcte sur cette fiche.
- 4) Réponse juste = 1 point; Réponse fausse = 1 point; Pas de Réponse = 0 point.

Noter Bien : Plus qu'une case cochée = - 1 point.

	A	В	С	D
Exercice 1				X
Exercice 2			X	
Exercice 3			X	
Exercice 4				X
Exercice 5		X		
Exercice 6			X	
Exercice 7			X	
Exercice 8			X	
Exercice 9		X		
Exercice 10		X		
Exercice 11		X		
Exercice 12	X			
Exercice 13				X
Exercice 14	X			
Exercice 15				X

Réservé aux correcteurs

\mathbf{R}^{+}	R	
	. 1	
Total		

ROYAUME DU MAROC UNIVERSITE ABDELMALEK ESSAADI Ecole Nationale des Sciences Appliquées

Tanger le 08/08/2011

CONCOURS D'ENTREE EN 1ère ANNEE DU CYCLE PREPARATOIRE

Epreuve de Physique

(Nombre de pages 4 et une fiche réponse à remettre au surveillant, correctement remplie, à la fin de l'épreuve)

Parmi les réponses proposées, une seule est juste. Pour chaque question répondre sur la fiche réponse par une croix dans la case correspondante.

(Barème : une réponse juste : +1, une réponse fausse : -1, pas de réponse : 0)

ELECTRICITE

La figure suivante montre deux condensateurs reliés à une pile de 6V.

Déterminer la charge que porterait le condensateur équivalent aux deux condensateurs s'il était sous la même tension de 6V.

a) 4 10⁻⁴ C b) 6 10⁻⁴ C

c)8 10-4 C

Question 2:

Si l'intensité dans un circuit fermé est 5 A alors la charge qui traverse ce circuit en 10s sera

a) 2C

b) 50C

c) 100 C

Un faisceau continu d'électrons dirigé vers une cible transporte 1,6 µC de charge négative pendant 100ms.

Question 3:

Déterminer le nombre d'électrons envoyés par seconde.

a) 1 10¹⁴ électron/s

b) 1.1 10¹⁴ électron/s

c) 1.2 1014 électron/s

Question 4 : La différence de potentiel entre les électrodes d'une pile voltaïque quand elle ne débite aucun courant est égale : a) nulle b) 15 V c) f.é.m.

Ouestion 5:

En général, plus une pile voltaïque est grande:

- a) plus la tension qu'elle peut fournir est grande
- b) plus l'intensité qu'elle peut débiter est grande
- c) plus le potentiel qu'elle peut développer est grande

Concours d'entrée en 1eie année du Cycle Préparatoire de l'ENSA de Tanger - Epreuve de Physique-Chimie 1/4

Moutamadris.ma 1988

Une pile produit 49,9 V lorsqu'elle débite un courant de 5,5 A et 58,0 V lorsqu'il s'en écoule 1,8 A.

Question 6:

Calculez sa f.é.m. et sa résistance interne

a) 62 V et 2,2 Ω

b) 42 V et 2 Ω

c) 82 V et 3 Ω

Une centrale électrique fournit 560 kW à une usine au moyen d'une ligne de tension ayant une résistance de 3,2 Ω .

Ouestion 7:

Déterminez la quantité de puissance économisée si l'électricité est transportée sous une tension de 40 000 V plutôt que de 12 000 V :

a) 3342 W

b) 6342 W

c)5342 W

L'intensité d'un courant se traduit par l'équation suivante : I = 24 sin 377t, où I est exprimé en ampères et t en secondes.

Question 8 : La fréquence du courant est : a) 40 Hz

b) 35 Hz.

c) 60 Hz.

Sur le circuit ci-dessous, deux sources de tension égales sont montées en parallèle.

Ouestion 9:

Calculer la résistance interne r. r est égale à :

a) 30 Ohm

b) 20 Ohm c) 10 Ohm

Ouestion 10:

Sur le circuit ci-dessous, les tensions aux bornes B et D sont

a) 12 V, 12 V

b) -12V, 12 V

c) -12V, 0V

Concours d'entrée en 1 et année du Cycle Préparatoire de l'ENSA de Tanger - Epreuve de Physique-Chimie 2/4

MECANIQUE

Deux corps A et B de masses différentes (m_A > m_B) entament au même temps une chute libre sans vitesse initiale à partir de la même hauteur.

Ouestion 11:

Quel est le corps qui va atterrir le premier

a) A

b) B

c) au même temps

Question 12:

Considérons le corps A en deux cas de chute libre : sans vitesse initiale (cas 1) et avec vitesse initiale horizontale v (cas 2).

Comparer les temps des chutes t_1 et t_2 dans les deux cas 1 et 2 :

a) $t_2 > t_1$

b) $t_2 = t_1$

c) $t_2 < t_1$

Question 13:

Soit α l'angle que fait la vitesse initiale de chute libre d'un corps A avec la verticale.

Pour la même hauteur, le temps de chute

a) augmente si α décroît

b) augmente si α croit

c) indifférent

Un pendule simple formé d'une bille de masse m et d'un fil inextensible de longueur l'oscille autour de la position d'équilibre (verticale) sans frottement.

Question 14:

Si θ_0 est l'angle maximal atteint par le pendule, l'énergie mécanique de la masse m sera

a) $E_m = mgl\cos\theta + (\frac{1}{2}) ml^2 (d\theta/dt)^2$ b) $E_m = mgl(1-\cos\theta) + (\frac{1}{2}) ml^2 (d\theta/dt)^2$

c) m g $l \cos\theta_0$

Ouestion 15:

La vitesse maximale atteinte par la masse du pendule simple est

a) $l\omega_0\theta_0 \cos\omega_0 t$

b) $l\omega_0\theta_0 \sin\omega_0 t$

c) $l\omega_0\theta_0$

Question 16:

La pulsation des oscillations est

a) $\omega_0 = l/g$

b) $\omega_0 = \sqrt{\frac{g}{l}}$ c) $\omega_0 = \sqrt{\frac{l}{g}}$

Question 17:

Un corps A de masse m de vitesse V_0 heurte élastiquement un corps B au repos et de même masse.

Après le choc élastique :

a) $V_A = V_B = 0$ b) $V_A = 0$ et $V_B = V_0$ c) $V_A = V_B = \frac{V_0}{2}$

Une masse m est accrochée à un ressort de raideur K dont l'autre extrémité est fixée. La masse est lâchée sans vitesse initiale après son écartement de sa position d'équilibre. Question 18:

Concours d'entrée en 1ere année du Cycle Préparatoire de l'ENSA de Tanger Epreuve de Physique-Chimie 3/4

La pulsation des oscillations est

a) $\omega_0 = \sqrt{k/m}$ b) $\omega_0 = \sqrt{m/k}$ c) $\omega_0 = K/m$

Si Δl est l'allongement du ressort alors l'énergie potentielle du système horizontal (ressort + masse) sera

a) $E_p = (K/2m) \Delta l^2$

b) $E_p = (K/2) \Delta l^2$

c) $E_p = mg\Delta l$

Ouestion 20:

Deux coureurs A et B entament à l'instant initiale une course tel que B devance A de 20m et que A devrait courir 100m pour franchir la ligne d'arrivée.

Si B a une vitesse constante de 10m/s, quelle est la vitesse que A devrait avoir pour franchir la ligne d'arrivée au même temps que B:

a) 10.5m/s

b) 11.5m/s

c) 12,5 m/s

OPTIQUE

On place un objet AB de dimension 10 mm à la distance 200 cm en avant d'une lentille convergente de focale 100 cm.

Question 21 : A quelle distance de la lentille se trouve l'image de AB?

a) 200 cm

b) 300 cm

c) 150 cm

Question 22 : Quelle est la dimension de l'image de AB?

a) -10 mm

b) -20 mm

c) -15 mm

Un rayon lumineux dans l'air tombe sur la surface d'un liquide ; il fait un angle $\alpha = 56^{\circ}$ avec le plan horizontal.

La déviation entre le rayon incident et le rayon réfracté est $\delta = 13,5^{\circ}$ Question 23 : Quel est l'indice n du liquide ?

a) 1,6

b) 1,98

c) 1,33

Sur la figure ci-contre d'un prisme, les orientations des angles sont choisies pour que les valeurs des angles i, i', r, r' et D soient Question 24: Exprimer A en fonction de r, et r'

a) A = r + r' b) A = r - r'c) A = -r - r'

Question 25: Exprimer D en fonction des angles i, i', A.

a) D = i + i' - A

b) D = i + i' + A

c) D=i-i'+A

MECANIQUE

Deux corps A et B de masses différentes (m_A > m_B) entament au même temps une chute libre sans vitesse initiale à partir de la même hauteur.

Ouestion 11:

Quel est le corps qui va atterrir le premier

a) A

b) B

c) au même temps

Question 12:

Considérons le corps A en deux cas de chute libre : sans vitesse initiale (cas 1) et avec vitesse initiale horizontale v (cas 2).

Comparer les temps des chutes t_1 et t_2 dans les deux cas 1 et 2 :

a) $t_2 > t_1$

b) $t_2 = t_1$

c) $t_2 < t_1$

Question 13:

Soit α l'angle que fait la vitesse initiale de chute libre d'un corps A avec la verticale.

Pour la même hauteur, le temps de chute

a) augmente si α décroît

b) augmente si α croit

c) indifférent

Un pendule simple formé d'une bille de masse m et d'un fil inextensible de longueur l'oscille autour de la position d'équilibre (verticale) sans frottement.

Question 14:

Si θ_0 est l'angle maximal atteint par le pendule, l'énergie mécanique de la masse m sera

a)
$$E_m = mgl\cos\theta + (\frac{1}{2}) ml^2 (d\theta/dt)$$

a)
$$E_m = mgl\cos\theta + (\frac{1}{2}) ml^2 (d\theta/dt)^2$$
 b) $E_m = mgl(1-\cos\theta) + (\frac{1}{2}) ml^2 (d\theta/dt)^2$

c) m g $l \cos\theta_0$

Ouestion 15:

La vitesse maximale atteinte par la masse du pendule simple est

a) $l\omega_0\theta_0 \cos\omega_0 t$

b) $l\omega_0\theta_0 \sin\omega_0 t$

c) $l\omega_0\theta_0$

Question 16:

La pulsation des oscillations est

a) $\omega_0 = l/g$

b) $\omega_0 = \sqrt{\frac{g}{l}}$ c) $\omega_0 = \sqrt{\frac{l}{g}}$

Ouestion 17:

Un corps A de masse m de vitesse V_0 heurte élastiquement un corps B au repos et de même masse.

Après le choc élastique :

a) $V_A = V_B = 0$ b) $V_A = 0$ et $V_B = V_0$ c) $V_A = V_B = \frac{V_0}{2}$

Une masse m est accrochée à un ressort de raideur K dont l'autre extrémité est fixée. La masse est lâchée sans vitesse initiale après son écartement de sa position d'équilibre. Question 18:

Concours d'entrée en 1ere année du Cycle Préparatoire de l'ENSA de Tanger Epreuve de Physique-Chimie 3/4

La pulsation des oscillations est

a) $\omega_0 = \sqrt{k/m}$ b) $\omega_0 = \sqrt{m/k}$ c) $\omega_0 = K/m$

Si Δl est l'allongement du ressort alors l'énergie potentielle du système horizontal (ressort + masse) sera

a) $E_p = (K/2m) \Delta l^2$

b) $E_p = (K/2) \Delta l^2$

c) $E_p = mg\Delta l$

Ouestion 20:

Deux coureurs A et B entament à l'instant initiale une course tel que B devance A de 20m et que A devrait courir 100m pour franchir la ligne d'arrivée.

Si B a une vitesse constante de 10m/s, quelle est la vitesse que A devrait avoir pour franchir la ligne d'arrivée au même temps que B:

a) 10.5m/s

b) 11.5m/s

c) 12,5 m/s

OPTIQUE

On place un objet AB de dimension 10 mm à la distance 200 cm en avant d'une lentille convergente de focale 100 cm.

Question 21 : A quelle distance de la lentille se trouve l'image de AB?

a) 200 cm

b) 300 cm

c) 150 cm

Question 22 : Quelle est la dimension de l'image de AB?

a) -10 mm

b) -20 mm

c) -15 mm

Un rayon lumineux dans l'air tombe sur la surface d'un liquide ; il fait un angle $\alpha = 56^{\circ}$ avec le plan horizontal.

La déviation entre le rayon incident et le rayon réfracté est $\delta = 13.5^{\circ}$ Question 23 : Quel est l'indice n du liquide ?

a) 1,6

b) 1,98

c) 1,33

Sur la figure ci-contre d'un prisme, les orientations des angles sont choisies pour que les valeurs des angles i, i', r, r' et D soient

Question 24 : Exprimer A en fonction de r, et r'

a) A = r + r' b) A = r - r'c) A = -r - r'

Question 25: Exprimer D en fonction des angles i, i', A.

a) D = i + i' - A

b) D = i + i' + A

c) D = i - i' + A