Une théorie probabiliste de l'apprentissage supervisé de similarité pour l'optimisation en un point de la courbe ROC

Journées de Statistique 2018

Robin Vogel, Stéphan Clémençon et Aurélien Bellet.

Une théorie probabiliste de l'apprentissage supervisé de similarité pour l'optimisation en un point de la courbe ROC

- 1. Contexte et motivation,
- 2. Formalisation,
- 3. Garanties de généralisation pour l'ERM,
- 4. Mise à l'échelle par échantillonnage.
- 5. Perspective

Contexte et motivation (1/2)

L'authentification biométrique valide l'identité d'un individu par ses attributs biologiques.

Une mesure enregistrée x (ex: photo de passeport) est comparée à une mesure capturée x' (ex: photo à l'aéroport) pour prendre une décision quant à leur correspondance.

La décision est faite par le seuillage d'une similarité S entre deux mesures.

Soit un seuil $t \in \mathbb{R}$, si S(x, x') > t, alors x et x' sont considérées correspondantes.

Deux types d'erreur différents peuvent être commises:

- I Accepter à tort une identité : faux positif (FP),
- II Rejeter à tort une identité : faux négatif (FN).

L'erreur de type I est généralement plus critique que l'autre.

La courbe ROC résume les erreurs pour chaque seuil.

Représente le taux de vrais positifs (1-FNR) en fonction du taux de faux positifs (FPR). Permet de comparer deux similarités.

Contexte et motivation (2/2)

Le seuil t est alors choisi et fixé pour garantir un certain FPR, généralement très petit.

Des exemples raisonnables de FPR ciblés peuvent être $FPR = 10^{-3}$ ou $FPR = 10^{-6}$.

La fonction de similarité S est apprise à partir de données, en optimisant un critère.

Il est optimisé sur une base de données $(X_i, Y_i)_{i=1}^n$, avec X_i une mesure (ex: visage) et Y_i son identité associée.

Les critères n'optimisent souvent pas le TPR à FPR fixé.

Des exemples de critères sont:

- l'aire sous la courbe ROC (AUC),
- l'erreur de classification.

Nous étudions donc l'optimisation du TPR à FPR fixé.

Ce problème s'écrit, sur une classe S_0 de fonctions de similarité:

$$(P_{\alpha})$$
 $\max_{S \in \mathcal{S}_0, t \in \mathbb{R}} \text{TPR}_S(t), \text{ s.c } \text{FPR}_S(t) \leq \alpha.$

Formalisation

Nos données $(X_i, Y_i)_{i=1}^n$ sont similaires à celles de la classification.

 $(X_i,Y_i)_{i=1}^n$ sont des copies i.i.d. de (X,Y), avec $X \in \mathbb{R}^d, Y \in \{1,\dots,K\}$.

Nous étudions un problème plus général que l'optimisation en un point de la courbe ROC:

$$(T_{\alpha})$$
 $\max_{S \in \mathcal{S}} R^{+}(S)$, s.c. $R^{-}(S) \leq \alpha$, \rightarrow solution S^{*} .

où $R^+(S) = \mathbb{E}[S(X,X') \mid Y = Y']$ et $R^-(S) = \mathbb{E}[S(X,X') \mid Y \neq Y']$.

 $\textbf{Choisir} \quad \mathcal{S} = \{\mathbb{I}\{S(x,x') > t\} \mid S \in \mathcal{S}_0, t \in \mathbb{R}\} \ \text{pour} \ \left(\mathbf{T}_{\alpha}\right) \ \text{nous ramène au problème} \ \left(\mathbf{P}_{\alpha}\right).$

Les estimateurs naturels des quantités $R^+(S)$ et $R^-(S)$ sont :

$$R_n^+(S) = \frac{1}{n_+} \sum_{i < j} S(X_i, X_j) \cdot \mathbb{I}\{Y_i = Y_j\} \text{ et } R_n^-(S) = \frac{1}{n_-} \sum_{i < j} S(X_i, X_j) \cdot \mathbb{I}\{Y_i \neq Y_j\},$$

où n_+ et n_- sont les nombres de paires positives et négatives.

La version empirique (E_{α}) de (T_{α}) s'écrit:

$$(\mathbf{E}_{\alpha})$$
 $\max_{S \in \mathcal{S}} R_n^+(S), \text{ s.c. } R_n^-(S) \le \alpha + \Phi, \longrightarrow \text{ solution } \hat{S}_n.$

où Φ tolère les variations de R_n^- autour de se moyenne.

Garanties de généralisation pour l'ERM

Nos résultats garantissent localement la proximité entre la ROC de \widehat{S}_n et celle de S^* .

Théorème. Supposons que S est une classe VC-major de VC dimension $V < +\infty$, que $0 \le S \le 1$ pour tout $S \in S$ et que $p = \mathbb{P}\{Y = Y'\}$ ne s'approche pas de zéro. Soit $\delta \in (0,1)$, $n \ge 1 + 4p^{-2}\log(3/\delta)$,

$$\Phi_{n,\delta} = 2cp^{-1}\sqrt{\frac{V}{n}} + 2p^{-1}(1+p^{-1})\sqrt{\frac{\log(3/\delta)}{n-1}},$$

alors avec probabilité $\geq 1 - \delta$,

$$R^{+}(\hat{S}_{n}) \ge R^{+}(S^{*}) - \Phi_{n,\delta} \ et \ R^{-}(\hat{S}_{n}) \le \alpha + \Phi_{n,\delta}.$$

L'ordre en n de la borne sur R^+ peut être amélioré.

Une analyse de la variance de l'excès de risque sur R^+ amène à des ordres entre $n^{-1/2}$ et $n^{-3/4}$.

Conséquences de (Mammen & Tsybakov, 1995).

Garanties de généralisation (Eléments de preuve)

 R_n^+ et R_n^- sont des ratios de U-statistiques:

Definition. Soit V_1, \ldots, V_n des v.a. i.i.d. dans un espace mesurable \mathcal{X} , K une fonction $\mathcal{X} \times \mathcal{X} \to [0,1]$, alors $U_n = (1/n(n-1)) \sum_{i \neq j} K(V_i, V_j)$ est appelée U-statistique de degré 2 de noyau K. C'est l'estimateur non biaisé de $\mathbb{E}[K(V_1, V_2)]$ de plus petite variance.

Des résultats classiques de concentration existent pour les U-statistiques.

Soit U_n une U-statistique de noyau borné par 1, avec probabilité > $1 - \delta$,

$$|U_n - \mathbb{E}[U_n]| \le \sqrt{\frac{\log(2/\delta)}{n-1}}.$$

(Hoeffding, 1963)

La minimisation de critères liés au meilleur test de niveau α a été étudiée.

Ce travail nous fournit la propriété suivante:

$$\mathbb{P}\left\{\left(R^{+}(S^{*}) - R^{+}(\hat{S}_{n}) \geq \Phi\right) \cap \left(R^{-}(\hat{S}_{n}) \leq \alpha + \Phi\right)\right\}, \qquad \text{(Scott and Nowak, 2005)}$$

$$\geq 1 - \mathbb{P}\left\{\sup_{S \in \mathcal{S}} |R_{n}^{+}(S) - R^{+}(S)| > \Phi\right\} - \mathbb{P}\left\{\sup_{S \in \mathcal{S}} |R_{n}^{-}(S) - R^{-}(S)| > \Phi\right\}.$$

Mise à l'échelle par échantillonnage

Généralement, nous avons beaucoup de classes avec peu d'observations par classe.

K grand, $n_k = \sum_{i=1}^n \mathbb{I}\{Y_i = k\}$ petit, pour tout $k \in \{1, ..., K\}$.

Le nombre de paires moyenné pour calculer R_n^- est alors quadratique en n.

Exemple: base de données LFW: 2×10^5 paires positives pour 9×10^7 paires négatives.

Pour résoudre (E_{α}) , on peut estimer R^- avec moins de paires.

Nous introduisons un estimateur \widetilde{R}_{B}^{-} , qui moyenne B paires sélectionnées aléatoirement.

Si B est de l'ordre de n, l'ordre en n des garanties de généralisation n'est pas affecté.

Théorème. Supposons que S est une classe VC-major de VC dimension $V < +\infty$, que $0 \le S \le 1$ pour tout $S \in S$. Pour tout $\delta > 0$, avec probabilité $\ge 1 - \delta$,

$$\sup_{S \in \mathcal{S}} \left| \tilde{R}_{B}^{-}(S) - R_{n}^{-}(S) \right| \le \sqrt{2 \frac{V \log(1 + n^{2}) + \log(2/\delta)}{B}}$$

(Clémençon & Colin & Bellet, 2016)

Perspective

Nous avons trouvé des garanties pour l'optimisation en un point de la courbe ROC.

Ainsi que présenté une stratégie pour sa mise à l'échelle.

Nous aimerions nous approcher de la solution de (P_{α}) : $\max_{S \in \mathcal{S}_0, t \in \mathbb{R}} \mathrm{TPR}_S(t), \ \mathrm{s.c} \ \mathrm{FPR}_S(t) \leq \alpha.$ Optimiser l'AUC ou faire de la classification n'optimise pas notre critère.

Approche: Résoudre (E_{α}) pour une famille S.

 \rightarrow Dans quelle mesure S^* optimise bien la ROC en un point ?

Si $S = {\mathbb{I}{S(x,x') > t} \mid S \in S_0, t \in \mathbb{R}}$, parfaitement.

Si S est constitué de fonctions linéaires, probablement assez peu.

 \rightarrow Comment s'approcher de \widehat{S}_n ?

Si S est constitué des fonctions linéaires, c'est très facile.

Merci!

Reférences

- Hoeffding, Wassily. Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association, 58(301):13-30, 1963.
- Scott, Clayton and Nowak, Robert. A Neyman-Pearson approach to statistical learning. IEEE Transactions on Information Theory, 51(11):3806-3819, 2005.
- Clémençon, Stephan, Colin, Igor and Bellet, Aurélien. Scaling-up Empirical Risk Minimization:
 Optimization of Incomplete U-statistics. Journal of Machine Learning Research, 17(76):1-36, 2016.

Our paper:

 Vogel, Robin, Clémençon, Stéphan and Bellet, Aurélien. A Probabilistic Theory of Supervised Similarity Learning for Pointwise ROC Curve Optimization. To appear in ICML 2018.

Appendice

Distributions de scores des courbes ROC présentées en introduction.

