	EIN 52	26
	Binomial Dist	ribution
	Applications to	Quality
Note	x Need Calculator	Karen E. Schmahl Ph.D., P.E.
		COLLEGE OF ENGINEERING

The Binomial Distribution

Binomial distribution assumptions:

- 1. All trials are identical.
- 2. Each outcome is either a "success" or "failure".
- 3. The probability of a success is constant.
- 4. All trials are independent

probability of getting exactly 3 blocks out of the 4?

Understanding the	e assumptions
-------------------	---------------

For each of these situations/questions, indicate if binomial distribution is applicable

Yes / No A process has a historical 1st pass yield rate of 92%. If a sample of 100 parts is taken from the process, what is the probability that exactly 1 part is defective?

4

Binomial Distribution in Quality

Examples – questions answered based on binomial distribution

- How many items must I sample in my receiving inspection process to ensure adequate vendor quality is received?
- How much improvement in yield was realized after overhaul of the equipment?
- Did our proportion of orders that have complaints significantly decline after implementation of the new process.
- Can I really say that one vendor is better than the other based on the percent defective in the samples that they provided.

The Binomial Distribution

- A number of trials, n, are made with outcomes observed.
- One outcome is labeled "success," and the other outcome is labeled "failure."
- The probability of a success is denoted by p. The probability of a failure (often denoted by q) is then 1 p.

A process has a historical $1^{\rm st}$ pass yield rate of 92%. A sample of 100 parts is taken from the process.

n = # of trials = 100 parts

Success: defective part >>>> P(defective part) = p = .08Failure: good part >>>> P(defective part) = q = 0.92

A process has a historical 1st pass yield rate of 92%. A sample of 100 parts is taken from the process.

What is the probability that the first 3 parts taken for the sample are defective and the rest are good?

B. 0.08

C. (0.08)3(0.92)97

D. (0.92)3(0.08)97

What is the probability that the last 3 parts taken for the sample are defective and the rest are good?

A. 0.920

B. 0.08

C. (0.08)97(0.92)3

D. (0.92)97(0.08)3

How many different outcomes (combinations) can you have that have 3 defective parts and 97 good parts?

A. 147,440 B. 161,700

C. 204,118

D. 198,240

A process has a historical 1st pass yield rate of 92%. A sample of 100 parts is taken from the process.

What is the probability that the 5th, 23rd and 42nd parts taken for the sample are defective and the rest are good?

A. $(0.08)^5(0.08)^{23}(0.08)^{42}$ B. $(0.08)^3(0.92)^{97}$ C. $(0.92)^3(0.08)^{97}$

True / False Since each different combination of three is mutually exclusive, to find the probability of getting exactly 3 in the sample, I could add up the probabilities of each of the individual outcomes with 3 defectives in it.

What is the probability of getting exactly 3 defective parts in the sample?

A. 0.0543

B. 0.0800

C. 0.0157

D. 0.0254

Binomial Distribution

The probability of exactly x occurrences in n trials in an event that has a constant probability of occurrence

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

where p = probability of successn = the number of trials

x = the number successes

and
$$\binom{n}{x} = \frac{n!}{x!(n-x)!} = nCx$$

A process has a historical 1st pass yield rate of 92%. What is the probability of getting exactly 3 defectives in a sample of size 100?

$$p(3) = {3 \choose 100} 0.08^3 (1 - 0.08)^{100 - 3}$$

 $= (161,700)0.08^3(0.92)^{97}$

= 0.0254

where p = probability of defective = 0.08n = number in sample = 100

x = defective in sample = 3

A package distril	oution company	has a compla	$p(x) = \binom{n}{x} p^x (1-p)$
rate of 10% on o	rders shipped.	30 orders are	shipped.
What is the prob	ability that exac	tly 2 orders re	sult in complaints?
The number of complaints out of			esult in 2 order
A. 324	B. 435	C. 524	D. 456
The probability of	of any one of the	ose combination	ons is
A. 0.10 ² *0.90 ²⁸	B. 0.10 ²⁸	*0.90 ²	C. 0.10 ² *0.90 ³⁰
The probability t	hat exactly 2 or	ders result in o	complaints is
A. 0.2277	B. 0.0800	C. 0.0157	
			10

			$p(x) = \binom{n}{x} p^x (1-p)^n$
	stribution company n orders shipped.		
What is the pr	obability that none	of the orders re	sult in complaints?
A. 0.0424	B. 0.0800	C. 0.0157	D. 0.0254
What is the pr	obability that there	e will be less than	3 complaints?
A. 0.0543	B. 0.589	C. 0.411	D. 0.0254
What is the pr	obability that there	e will at least 1 co	omplaint?
A. 0.0543	B. 0.0800	C. 0.9576	D. 0.0254

The Binomial Distribution

Binomial distribution assumptions:

- 1. All trials are identical.
- 2. Each outcome is either a "success" or "failure".
- 3. The probability of a success is constant.
- 4. All trials are independent

A lot contains 1000 components, 5% of which are known to be defective. Ten components are sampled from the lot. What is the probability that exactly 1 is defective?

Does this problem meet the above assumptions?

Yes

No

A lot contains 1000 components, 5% of which are defective
Ten components are sampled from the lot. What is the
probability that exactly 1 is defective?

N=1000

$$p(x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$$

Define success as defect r= successes in population = 5% times 1000 = 50 x= successes in sample = 1

 $\binom{N}{n}$

P(1)

1.67E+21 2.63E+23 0.317 50

Large Finite Populations

A lot contains 1000 components, 5% of which are defective. Ten components are sampled from the lot. What is the probability that exactly 1 is defective?

If the sample size is no more than 10% of a large population, the binomial distribution may be used to model the number of successes.

Large Finite Populations

A lot contains 1000 components, 5% of which are defective. Ten components are sampled from the lot. What is the probability that exactly 1 is defective?

Trials not truly independent, p not constant 5% defective: 50 out of 1000 are defective. $P(1^{st} \text{ component defective}) = 50/1000 = .05$ P(2nd component defective/1st component defective)

=49/999=.049

Large Finite Populations

A lot contains 1000 components, 5% of which are defective. Ten components are sampled from the lot. What is the probability that exactly 1 is defective?

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

n=10 p=.05

$$p(1) = {10 \choose 1}.05^{1} (1 - .05)^{10-1} = 0.3151$$

Can count both successes & failures

Sampling from Small Finite
Population
Small finite population
p changes are seat observation is drawn.

Constant p assumed.

Constant p assumed.

Constant p assumed.

Constant p assumed.

Very large population N in c 10% of N

Exact

Approximate with

Hypergeometric

Discrete – counted data

Classic Binomial
Replicated experiments p known and constant independent trials

Approximate with

Binomial Distribution

$p(x) = \frac{\binom{r}{x}}{}$	$\frac{\binom{N-r}{n-x}}{\binom{N}{n}}$	$\binom{n}{x}$ p *(1-	9) ^{n-x}	$\binom{n}{x} = \frac{n!}{x! (n-x)!}$
	Practi	ice Proble	em	
had a cand 12 booths.	fair, 65 comp y dish at the b What is the p ith a candy dis	ooth. You or robability that	ly have	time to visit
True / False	For this prol approximati	blem I can use on to the hype		
P(x=8) = ?				

