Estimação Inteligente de Idade de Telespectadores para Aplicações de Sugestão de Conteúdo em *Smart* TVs

Trabalho de Conclusão de Curso I

por

Nicoli P. Araújo, Elloá B. Guedes

{npda.eng, ebgcosta, }@uea.edu.br

do

Núcleo de Computação Escola Superior de Tecnologia Universidade do Estado do Amazonas Manaus – Amazonas – Brasil

Outline

- 1. Apresentação
- 2. Fundamentação Teórica
- 3. Trabalhos Relacionados
- 4. Conjunto de Dados
- 5. Resultados
- 6. Considerações Finais

Apresentação 2/51

Contextualização e Motivação

Smart TVs

- Conexão à internet
- Transmissão de conteúdos advindos de outros dispositivos eletrônicos

PNAD 2015

Responsáveis por 68, 2% do total de televisores vendidos no primeiro semestre de 2017

Causas:

- ➡ Benefícios resultantes do uso de Smart TVs quando comparadas aos aparelhos convencionais
- ► Encerramento da transmissão de sinal analógico da televisão aberta
- ➤ Copa do Mundo 2018
- ▶ Tecnologia 4K

Contextualização e Motivação

▶ Recomendação de Conteúdo:

- Dificuldades práticas
- Smart TVs possuem dispositivos para captura de imagens, como câmeras
- Sistemas inteligentes de identificação de características
- Recomendação de conteudo
- Controle Parental

Apresentação 4/:

Objetivos

- ▶ Objetivo Geral: Desenvolvimento de estratégias inteligentes, baseadas na utilização de técnicas de Deep Learning, para estimação da idade de telespectadores a partir de fotografias faciais
- Objetivos Específicos:
 - 1. Referencial teórico sobre redes neurais convolucionais
 - 2. Smart TVs possuem dispositivos para captura de imagens, como câmeras
 - 3. Consolidar uma base de dados
 - 4. Identificar tecnologias adequadas
 - 5. Propor, treinar e testar diferentes estimadores de idade
 - 6. Avaliar comparativamente os estimadores propostos

Apresentação 5/5

Justificativas

- Melhor experiência de provimento de conteúdo e de configurações personalizadas
 - Controle Parental
- ▶ Prática e a proposição de soluções envolvendo *Machine Learning*
- Laboratório de Sistemas Inteligentes (LSI)

Apresentação 6/5

Metodologia

- ▶ Fundamentação teórica sobre Machine Learning
- Fluxo de atividades de machine learning (Marsland)
 - Consolidar uma base de dados
 - ▶ Proposição de diferentes modelos de redes neurais convolucionais
 - ➡ Treinamento das redes neurais convolucionais
 - Teste das redes
 - Comparação de métricas de desempenho
- Escrita da proposta e do projeto final do trabalho de conclusão de curso

presentação 7/9

Cronograma

Tabela 1: Cronograma de atividades levando em consideração os dez meses (de 02/2018 a 12/2018) para a realização do TCC.

						2018					
	02	03	04	05	06	07	80	09	10	11	12
Escrita da Proposta	Х	Х	Х	Х	Х						
Fundamentação Teórica sobre	Χ	Χ	Χ	Χ							
ML											
Consolidação da Base de Dados		Χ	Χ								
Proposição de Modelos de CNNs				Χ	Χ	Χ	Χ	Χ			
Defesa da Proposta					Χ						
Escrita do Trabalho Final						Χ	Χ	Χ	Χ	Χ	Χ
Treinamento das CNNs					Χ	Χ	Χ	Χ	Χ	Χ	
Teste das CNNs					Χ	Χ	Χ	Χ	Χ	Χ	Χ
Comparação de Métricas de						Χ	Χ	Χ	Χ	Χ	Χ
Desempenho											
Defesa do Trabalho Final											X

Outline

- 1. Apresentação
- 2. Fundamentação Teórica
- 3. Trabalhos Relacionados
- 4. Conjunto de Dados
- 5. Resultados
- 6. Considerações Finais

Fundamentação Teórica 9/51

Smart TVs

- Capacidades interativas
- Conexão à internet
- Conteúdo de mídia transmitido a partir de outros dispostivo

Fundamentação Teórica 10/51

S

Fundame

Smart TVs

PNAD 2015

- ▶ 103 milhões de aparelhos de televisões em residências e pontos comerciais
- ▶ 16 milhões de Smart TVs
- ▶ 94% destas Smart TVs foram adquiridas entre 2014 e 2015
- **▶** 68, 2% do total de televisores vendidos no primeiro semestre de 2017

Fundamentação Teórica 13/5

Smart TVs

- ♣ Benefícios resultantes do uso de Smart
- ♣ Encerramento da transmissão de sinal analógico da televisão aberta
- Copa do Mundo 2018
- Tecnologia 4K

Fundamentação Teórica 14/5

Classificação Indicativa

- Sistema de garantias dos direitos da criança e do adolescente
- Reserva-se o direito final aos pais e responsáveis
- Órgão responsável: Cocind, vinculada ao Ministério da Justiça
- Análise de classificação indicativa
 - Grau de incidência de conteúdos impróprios

Fundamentação Teórica 15/5

Machine Learning

- Estudo sistemático de algoritmos e sistemas que são capazes de melhorar seu desempenho com a experiência
- Modelo ou função que mapeie as instâncias do espaço de entrada para o de saída
- Paradigmas de Aprendizado
 - Aprendizado Supervisionado
 - Aprendizado Não-Supervisionado
 - Aprendizado por Reforço
- Tarefas de Aprendizado
 - Classificação
 - Regressão

Fundamentação Teórica 16/5

- Cérebro humano
- Neurônios: unidades de processamento simples
- Capacidade de capturar tendências
- Generalização

Fundamentação Teórica 17/5

▶ McCulloch e Pitts

Figura 3: Representação de um neurônio artificial

Fundamentação Teórica 18/51

- ▶ Perceptron de Rosenblatt (1958)
 - Algoritmo de aprendizado
 - **▶** Endereçar apenas problemas linearmente separáveis

Fundamentação Teórica 19/5

Figura 4: Arquiteturas populares de RNAs.

Tabela 2: Exemplos de funções de ativação

Nome	Gráfico	Equação	Intervalo
Identidade ou Linear		$\sigma(\mathbf{z}) = \mathbf{z}$	$(-\infty, +\infty)$
Tangente Hiperbólica		$\sigma(z) = tanh(z) = \frac{(e^z - e^{-z})}{(e^z + e^{-z})}$	(-1,1)
Sigmoide ou Logística		$\sigma(\mathbf{z}) = \frac{1}{1 + \mathrm{e}^{-\mathrm{x}}}$	(0,1)
Unidade Linear Retificada		$\sigma(\mathbf{z}) = \max(0, \mathbf{z})$	$[0,\infty)$

rundame<u>ntação Teórica</u> 21/5

- ▶ Hiperparâmetros de uma RNA
 - Taxa de aprendizado
 - Funções de ativação
 - Arquitetura da rede
 - batch size
 - Número de épocas

Fundamentação Teórica 22/51

- Algoritmo de treinamento de uma RNA
- **▶** Entrada: Conjuntos de exemplos e respectivos rótulos (X, Y), rede neural a ser treinada, número de épocas e, taxa de aprendizado η e *batch size* b.
- Saida: Rede neural treinada.
 - 1. Inicialização dos vetores de pesos w e *bias* b
 - 2. Para cada batch = 1,..., b do conjunto de dados:
 - 2.1 Fase *forward*: Calcular previsões \hat{y} e custos J.
 - 2.2 Fase backwards: Calcular gradientes dos pesos $\nabla_{\mathbf{w}^c}$ e bias $\nabla_{\mathbf{b}^c}$
 - 2.3 Atualizar valores dos pesos e *bias* a partir do gradiente descendente.

Fundamentação Teórica 23/5

- Capacidade de representar e reconhecer características sucessivamente complexas
- Adição de níveis ou camadas de operações não-lineares
- Resolver problemas complexos com um desempenho cada vez maior
 - Aumento recente da quantidade de dados disponíveis sobre temas complexos
 - Aumento da disponibilidade de recursos computacionais para executar modelos mais robustos

Fundamentação Teórica 24/5

Evolução de profunidade, taxa de erro e número de parâmetros das redes

Pestimação Inteligente de Idade de Telespectadores

Breve Histórico

- ▶ (1950) Proposição de modelos lineares simples: McCulloch e Pitts; Perceptron
- - LeNet
- ► (2006) Modelos compostos de várias camadas sucessivas de operações não lineares utilizados para o aprendizado de determinada tarefa

Fundamentação Teórica 26/5

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 - Imagenet
 - ▶ 14 milhões de imagens de 21 mil categorias organizadas hierarquicamente

Erro top-5

Fundamentação Teórica 27/5

Figura 6: Evolução do erro dos modelos vencedores da competição ILSVRC pela profundidade das redes neurais

- ▶ Topologia bem definida e estrutura em grade
- Operações de convolução em pelo menos uma de suas camadas
- Destaca-se no reconhecimento de padrões em dados de alta dimensionalidade

Fundamentação Teórica 29/5

Convolução

$$S(i,j) = I(i,j) * K(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$
 (1)

Figura 7: Papel das camadas convolucionais e feature maps nas CNNs.

Fundamentação Teórica 30/51

Figura 8: Componentes de uma camada de uma rede neural convolucional.

Fundamentação Teórica 31/5

- ▶ Hiperparâmetros de uma CNN
 - Pooling
 - Padding
 - Strides

Fundamentação Teórica 32/5

- Arquiteturas que trouxeram contribuições importantes
- Comuns ainda hoje no cenário de DL

Fundamentação Teórica 33/51

- LeNet (1998)
 - Conjunto de dados Modified National Institute of Standards and Technology (MNIST)
 - ▶ Imagens em escala de cinza de tamanho 32 × 32
 - Amplamente utilizada por bancos

IMAGEM DA LENET

Fundamentação Teórica 34/5

- ▶ AlexNet (2012)
 - Primeira CNN ganhadora do desafio ILSVRC
 - Imagens de 1000 categorias da ImageNet
 - Erro top-5 igual a 15.4%
 - Treinamento: duas GPU GTX 580 por 5 a 6 dias

IMAGEM DA AlexNet

Fundamentação Teórica 35/5

- **VGG** (2014)
 - **Erro top-5 de 7.3**%
 - Treinamento em 4 GPUs Nvidia Titan Black por duas a três semanas
 - ➤ Erro top-5 igual a 15.4%

IMAGEM DA VGG

Fundamentação Teórica 36/5

Modelos Canônicos de Redes Neurais

- Inception ou GoogLeNet (2014)
 - 22 camadas convolucionais
 - ➡ Treinamento em algumas GPUs de alta performance por uma semana
 - **Erro top-5 de 6.7**%

Figura 9: Bloco Inception da CNN GoogLeNet

Fundamentação Teórica Full Inception module 37/51

Modelos Canônicos de Redes Neurais

- ResNet (2015)
 - > Total de 152 camadas
 - Treinamento em 8 GPUs por duas a três semanas
 - Erro top-5 de 3.6%

Figura 10: Bloco Residual da CNN ResNet.

Fundamentação Teórica 38/5

Transfer Learning

- ResNet (2015)
 - > Total de 152 camadas
 - Treinamento em 8 GPUs por duas a três semanas
 - **▶** Erro top-5 de 3.6%

Figura 11: Bloco Residual da CNN ResNet.

Fundamentação Teórica 39/5

- 1. Apresentação
- 2. Fundamentação Teórica
- 3. Trabalhos Relacionados
- 4. Conjunto de Dados
- 5. Resultados
- 6. Considerações Finais

Trabalhos Relacionados 40/51

Trabalhos Relacionados

- **Lima & Guedes** et al. (2015, 2016)
 - ▶ Previsão de precipitações um dia à frente
 - Tarefa de classificação
 - Time Delay Neural Networks
 - Dados de 1970 a 2010
 - Acurácia: 99.7%

Limitação:

Ausência do volume associado às precipitações

Vantagens:

- Dados advindos de estações meteorológicas
- Utilização de dados defasados
- ➤ Tipo de redes neurais considerado

Trabalhos Relacionados 41/5

- 1. Apresentação
- 2. Fundamentação Teórica
- 3. Trabalhos Relacionados
- 4. Conjunto de Dados
- 5. Resultados
- 6. Considerações Finais

Conjunto de Dados 42/51

Conjunto de Dados

- **▶ Período de dados**: 1950 a 2015
 - ♣ 65 anos de dados
 - Volume mensal de precipitações
 - ▶ Departamento de Meteorologia da UEA

- Análise descritiva dos dados
 - Diferentes características a cada mês
 - Presença de outliers
 - Ampla dispersão, etc.

Conjunto de Dados 43/5

Conjunto de Dados

- Mês com maior volume de precipitação: Março: 321.58mm
- Mês com menor volume de precipitação: Agosto: 54.56mm

Conjunto de Dados 44/51

Conjunto de Dados

- **Indices Climáticos**: Niño 1+2, 3, 3.4 e 4
 - Relação com os fenômenos El Niño e La Niña
 - Influência na variabilidade das chuvas na bacia amazônica

▶ TSA: Temperatura na Superfície do Atlântico

Conjunto de Dados 45/51

- 1. Apresentação
- 2. Fundamentação Teórica
- 3. Trabalhos Relacionados
- 4. Conjunto de Dados
- 5. Resultados

6. Considerações Finais

Resultados 46/51

Resultados

- Identificação de uma rede neural para previsão do volume de precipitações em cada mês do ano
- Acurácia média: 92, 16%
- Não foi possível identificar um único modelo de RNAs capaz de capturar todas as características de todos os meses

Contraste com o trabalho de Lima & Guedes

Resultados 47/51

Resultados

Tabela 3: Redes neurais com maior acurácia para previsão do volume de precipitações em Manaus nos diferentes meses do ano.

Mês	Arquitetura	Função de Ativação	Taxa de Aprendizado	Taxa de Decréscimo	Acurácia
1	(37, 9, 1)	Tangente Hiperbólica	0.0001	0.003	0.93
2	(37, 7, 1)	Sigmoidal	0.0001	0.003	0.93
3	(37, 8, 4, 1)	Tangente Hiperbólica	0.0001	0.001	1.00
4	(37, 4, 1)	Tangente Hiperbólica	0.0001	0.001	0.87
5	(37, 8, 1)	Tangente Hiperbólica	0.0100	0.001	0.93
6	(37, 5, 1)	Tangente Hiperbólica	0.0100	0.003	0.87
7	(37, 8, 1)	Tangente Hiperbólica	0.0100	0.003	0.93
8	(37, 6, 6, 1)	Sigmoidal	0.0001	0.003	0.93
9	(37, 8, 4, 1)	Tangente Hiperbólica	0.0001	0.003	1.00
10	(37, 8, 1)	Tangente Hiperbólica	0.0001	0.003	0.87
11	(37, 8, 1)	Tangente Hiperbólica	0.0001	0.001	0.93
12	(37, 9, 3, 1)	Tangente Hiperbólica	0.0100	0.003	0.87

Resultados 48/51

- 1. Apresentação
- 2. Fundamentação Teórica
- 3. Trabalhos Relacionados
- 4. Conjunto de Dados
- 5. Resultados

6. Considerações Finais

Considerações Finais 49/51

Considerações Finais

Contribuições

- ➡ Utilização de Aprendizagem de Máquina para previsão de precipitações
- Defasamento temporal e utilização de índices climáticos
- ▶ Identificação de 12 RNAs, sendo uma para cada mês do ano
- Acurácia média: 92, 16%

Considerações Finais 50/51

Considerações Finais

Contribuições

- ▶ Utilização de Aprendizagem de Máquina para previsão de precipitações
- Defasamento temporal e utilização de índices climáticos
- ▶ Identificação de 12 RNAs, sendo uma para cada mês do ano
- Acurácia média: 92, 16%

Trabalhos Futuros

- Comparar outras técnicas de Aprendizagem de Máquina
- Previsão do volume anual de precipitações

Considerações Finais 50/5

51/51