Plateforme de coordination pour échanger l'énergie, réguler et prédire la production/consommation dans le cadre d'un réseau électrique intelligent

Stage réalisé à l'UNIGE et encadré par Giovanna Di Marzo Serugendo, dans le cadre du projet TELEGRAM

Motivation : les smartgrids permettent de :

- Suivre l'utilisation de l'énergie (production, distribution et consommation)
- Diminuer les coûts en énergie
- Réduire les pics d'utilisation
- Décentraliser la distribution
- Favoriser les énergies renouvelables

Plan

- Présentation des missions
- Etat de l'art
- Architecture du système
- Conception du modèle de coordination
- Mise en place de la prédiction
- Résultats
- Contributions du stage
- Conclusion

Présentation des missions

Missions développées dans la présentation :

- Modèle de coordination pour les échanges d'énergie
- Régulation de l'énergie de manière instantanée et pro-active
- Prédiction de la production et consommation à l'aide des chaînes de Markov

Autres missions:

- · Outil de visualisation et de suivi du nœud
- Simulateur de données de production et consommation d'énergie
- Protection des données échangées

Etat de l'art

Modèle Gamma (inspiré de la chimie)

[J.P. Banâtre "The gamma model and its disciplineof programming" (1990)]

[J. L.Fernandez-Marquez. "BIO-CORE : Bio-inspired Self-organising Mechanisms Core (2011)] Modèles de coordination

Réseaux intelligent

Prédiction

Approches agent pour les réseaux intelligents

Architecture holonique à différents niveaux

[David Menga, ... "A Generic Holonic Control Architecture for Heterogeneous Multi-Scale SmartMicro-Grids..(2014)]"

Application des chaînes de Markov sur la production d'énergie solaire

[Reihaneh Haji "Development of a Markov-Chain-Based Solar" (2020)]

Architecture du système

Modèle de coordination de SAPERE

Adaptation pour les échanges d'énergie

Utilisation de l'auto-composition pour générer un contrato

Données échangées :

Requête en énergie Offre en énergie Contrat

Confirmation producteur

Etape 1 : envoi des requêtes

Etape 2 : envoi des offres

Etape 3 : émission d'un nouveau contrat

Etape 4 : envoi du contrat à valider

Etape 5: envoi d'une approbation

Etape 6 : actualisation du contrat

Adaptations dynamiques

Certaines situations amènent à régénérer des contrats dynamiquement

- Nouvelle requête urgente
- Surproduction (arrêt d'un producteur)
- Replanification pour éviter un dépassement de seuil

Utilisation des chaînes de Markov

- Etat du nœud
 - => les 5 composantes : wattage demandé, produit, consommé, manquant et disponible
- Définition des états de Markov

S1	S2	S3	S4	S5	S6	S 7
{0 W}]0 W,600 W[[600 W,1200 W[[1200 W,1800 W[[1800 W,2400 W[[2400 W,3000 W[[3000 W,+∞[

• Découpage de l'espace des variables (tranches horaires)

- Enregistrement des nombres d'observations
- Matrice de transition

Time window : 06:00-07:00											
requested	S1	S2	S3	S4	S5	S6	S7				
S1 (10)	0.300 (3)	0.600 (6)				0.100 (1)					
S2 (62)		0.919 (57)	0.065 (4)		0.016 ₍₁₎						
S3 (36)			0.889 (32)	0.056 (2)		0.028 (1)	0.028 (1)				
S4 (106)				0.962 (102)	0.009 (1)	0.019 (2)	0.009 (1)				
S5 ₍₇₎					0.714 (5)	0.143 (1)	0.143 (1)				
S6 (118)				0.008 (1)		0.941 (111)	0.051 რ				
S7 ₍₀₎				0.333 (3)		0.444 (4)	0.222 (2)				

Temps de réponse en secondes pour établir les contrats

Taux de réussite des prédictions

Résultats

Régulation en cas de surproduction

Démo génération de contrats

Contributions du stage

- ✓ Modèle de coordination pour les échanges d'énergie
- ✓ Régulation de l'énergie de manière instantanée et pro-active
- ✔ Prédiction de la production et consommation à l'aide de chaînes de Markov
- ✓ Outil de visualisation et de suivi du nœud
- ✓ Simulateur de données de production et consommation d'énergie
- ✓ Protection des données échangées

Conclusion

- Gérer les échanges d'énergie entre voisins
- Intégrer la tarification de l'énergie
- Rattacher plusieurs contrats à un consommateur
- Générer un contrat pour un besoin ultérieur
- Améliorer la prédiction : qualité des données de prédiction et variables utilisées
- Améliorer la visualisation sur l'application web (vues plus intuitives)
- Déployer le modèle sur un environnement réel

Perspectives:

- Intérêt des collectivités
- Notoriété des smartgrids (Gain apporté : suivi, coût, réduction des pics, décentralisation, intégration des énergies renouvelables)

Références

- Jean-Pierre Banâtre et Daniel Le Métayer. "The gamma model and its disciplineof programming". In :Science of Computer Programming15.1 (1990), p. 55-77.issn:0167-6423.doi:https://doi.org/10.1016/0167-6423(90)90044-E.url:https://www.sciencedirect.com/science/article/pii/016764239090044E.
- J. L.Fernandez-Marquez, G.Serugendo et Sara Montagna. "BIO-CORE: Bio-inspired Self-organising Mechanisms Core". In :BIONETICS. 2011.
- Reihaneh Haji, Mahdizadeh Zargaret, Mohammad Hossein et Yaghmaee Moghaddam. "Development of a Markov-Chain-Based Solar Generation Model for Smart MicrogridEnergy Management System". In :IEEE Transactions on Sustainable Energy11.2(2020), p. 736-745.doi:10.1109/TSTE.2019.2904436.
- David Menga, Sylvain Frey, Ada Diaconescu et IsabelleDemeure. "A Generic Ho-Ionic Control Architecture for Heterogeneous Multi-Scale and Multi-Objective SmartMicro-Grids." In :ACM Trans. Autonom.2014.doi:http://dx.doi.org/10.1145/0000000.0000000.
- Houssem Ben Mahfoudh. "Learning-based coordination model for spontaneous". Thèse de doct. Université de Genève, 2020

Questions

