Results on the PASCAL PROMO challenge

Ivan Markovsky

University of Southampton

Comments

- it is natural to think of the promotions as inputs (causes) and the sales as outputs (effects)
- multivariable data: m = 1000 inputs, p = 100 outputs
- T = 1095 data points—very few, relative to m and p
- even static linear model y = Au is unidentifiable (A can not be recovered uniquely from (u_d, y_d)) for $T < T_{min} := 10^5$
- prior knowledge that a few (\leq 50) inputs affect each output helps ($T_{min} = 5000$) but doesn't recover identifiability
- this prior knowledge makes the problem combinatorial

The challenge

Data: consists of two (simulated) time series

$$u_d(1), ..., u_d(1095) \in \{0, 1\}^{1000}$$
 promotions $y_d(1), ..., y_d(1095) \in \mathbb{R}^{100}$ product sales

Challenge: find \leq 50 promotions that affect each product sales

Proposed model

Main assumptions:

- 1. static input-output relation $y_j(t) = a_j u(t)$ (this implies that one output can not affect other outputs)
- 2. there is offset and seasonal component, which is sine, i.e.,

Base line:
$$y_{\text{bl},j}(t) := b_j + c_j \sin(\omega_j t + \phi_j)$$

The model is

$$y_j(t)=y_{{\sf bl},j}(t)+{\sf A}u(t)$$
 or, with ${\sf Y}:=egin{bmatrix} y(1) & \cdots & y(T) \end{bmatrix},\ {\sf U}:=egin{bmatrix} u(1) & \cdots & u(T) \end{bmatrix},\ {\sf etc.},$ ${\sf Y}={\sf Y}_{\sf bl}(b,c,\omega,\phi)+{\sf A}U$

Identification problem

Parameters:

 $A \in \mathbb{R}^{p \times m}$ — input/output (feedthrough) matrix

 $b := (b_1, \dots, b_p) \in \mathbb{R}^p$ — vector of offsets

 $c := (c_1, \dots, c_p) \in \mathbb{R}^p$ — vector of amplitudes

 $\omega := (\omega_1, \dots, \omega_p) \in \mathbb{R}^p$ — vector of frequencies

 $\phi := (\phi_1, \dots, \phi_p) \in [-\pi, \pi]^p$ — vector of phases

Identification problem:

minimize over the parameters $\|Y_d - Y_{bl}(b, c, \omega, \phi) - AU_d\|$ subject to each row of *A* has at most 50 nonzero elements.

combinatorial, constrained, nonlinear, least squares problem

Identification of the autonomous term

The problem decouples into *p* independent problems:

minimize over
$$b_j, c_j, \omega_j \in \mathbb{R}$$
, $\phi_j \in [-\pi, \pi]$ $\|y_{d,j} - y_{\text{bl},j}(b_j, c_j, \omega_j, \phi_j)\|_2$ (1)
$$(y_{d,j} - j\text{th row of } Y_d, \quad y_{\text{bl},j} - j\text{th row of } Y_{\text{bl}})$$

A special case of the line spectral estimation problem, for which solution subspace and maximum likelihood (ML) methods exist.

We use the ML approach, *i.e.*, local optimization, assuming $\omega_i = 12\pi/T$ (one year period) or $6\pi/T$ (half year period).

Furthermore, we eliminate the "linear" parameters b_j, c_j by projection \leadsto VARPRO method

Solution approach

Model: $\hat{y}_i(t) = b_i + c_i \sin(\omega_i t + \phi_i) + Au(t)$

Linear in A, b, c. Nonlinear in ω, ϕ . Combinatorial in A.

Our approach: Split the problem into two stages:

- 1. Baseline estim.: minimize over b, c, ω, ϕ , assuming A = 0. Nonlinear LS problem. We use local optimization.
- 2. I/O function etim.: minimize over A, b, c, with ω, ϕ fixed. This is a combinatorial problem. We use the ℓ_1 heuristic.

This approach simplifies the solution but leads to suboptimality.

Choice of the regularization parameter γ_i

If we fix the nonzero elements to be the first 10 elements, the optimal solution (with this choice of the nonzero elements) is

$$a_j := \begin{bmatrix} (y_{dj} - y_{bl,j}) U_d(1:10,:)^+ & 0_{1 \times (m-10)} \end{bmatrix}$$

Let *a** be the optimal solution over all choices of the nonzero elements.

Since $||a_i^*||_1 = \gamma_i$, a heuristic choice for γ_i is $\gamma_i := ||a_i||_1$.

Identification of the term involving the inputs

Problem:

minimize over
$$b_j, c_j, a_j || y_{d,j} - y_{bl,j}(b_j, c_j, \phi_j^*, \omega_j^*) - a_j^\top U_d ||_2$$

subject to a_j has at most 50 nonzero elements (2)

Proposed heuristic:

minimize over
$$b_j, c_j, a_j \quad \|y_{\mathsf{d},j} - y_{\mathsf{bl},j}(b_j, c_j, \phi_j^*, \omega_j^*) - a_j^\top U_{\mathsf{d}}\|_2$$

subject to $\|a_j\|_1 \leq \gamma_j$ (3)

 $\gamma_i > 0$ is parameter controlling the sparsity vs accuracy trade-off

Complete model (baseline and 25 inputs)

Algorithm

- 1. Input: $U_d \in \mathbb{R}^{m \times T}$ and $Y_d \in \mathbb{R}^{p \times T}$.
- 2. Preprocessing: detect and remove redundant inputs.
- 3. For j = 1 to p
 - 3.1 Identify the baseline $\rightsquigarrow (\omega_i^*, \phi_i^*, c_i^*, a_i^*)$
 - 3.2 Identify the I/O relation $\rightsquigarrow (b_i^*, c_i^*, a_i^*)$, sparsity pattern of a_i^*
 - 3.3 Solve (2) with fixed sparsity pattern, $\phi_j = \phi_j^*$ and $\omega_j = \omega_j^*$ $\leftrightarrow (b_j^*, c_j^*, a_j^*)$
- 4. Postprocessing: add zero rows in A^* corresponding to the removed inputs
- 5. Output: $Y_{bl}(b^*, c^*, \omega^*, \phi^*)$ and A^*

Nonuniqueness of the solution

For uniqueness of A, we need U_d to be full row rank.

Special cases that lead to rank deficiency of *U*:

- Zero inputs can't affect the output. Removing them leads to an equivalent reduced model. For maximum sparsity, assign zero weights in A to those inputs.
- Inputs that are multiples of other inputs lead to essential nonuniqueness that can not be recovered by the sparsity.

Preprocessing step: remove redundant inputs.

Results on the PROMO challenge

Total: 2321 true inputs, 1796 identified inputs, of which 507 correct.

Code: http://www.ecs.soton.ac.uk/~im/challenge.tar