作业 十三

- 1. 画出双扭线 $r^2 = a^2 \cos 2\theta$,并求其围成图形的面积.
- 2. 求双纽线 $r^2 = 4\cos 2\theta$ 位于第一象限部分上求一点 M,使得坐标原点 O 与点 M 的连线 OM 将双纽线所围成的位于第一象限部分的图形分为面积相等的两部分.
- 3. 求下列曲线所围成的图形的公共部分的面积:

$$r = 3\cos\theta$$
, $r = 1 + \cos\theta$

- 4. 求由笛卡尔叶形线 $x^3 + y^3 3axy = 0$ (a > 0) 所围图形的面积.
- 5. 求下列各立体的体积:
 - (a) 以椭圆域 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 为底面,且垂直于长轴的截面都是等边三角形的立体;
 - (b) 由曲面 $y^2 + z^2 = e^{-2x}$ 与平面 x = 0, x = 1 所围成的立体.
- 6. 求下列各旋转体的体积:
 - (a) 曲线 $y = \sin x$, $y = \cos x$ $\left(0 \le x \le \frac{\pi}{2}\right)$ 与直线 $x = \frac{\pi}{2}$, x = 0 所围成的图形绕 x 轴旋转所得到的旋转体;
 - (b) 摆线 $\begin{cases} x = a(t \sin t) \\ y = a(1 \cos t) \end{cases}$ (a > 0) 的第一拱 $(0 \le t \le 2\pi)$ 与 x 轴所 围成的图形绕直线 y = 2a 旋转所得的旋转体.
 - (c) 抛物线 $y = \sqrt{8x}$ 与它在点 (2,4) 处的法线及 x 轴所围成的图形绕 x 轴旋转所得的旋转体.
- 7. 用"薄壳法"求下列各旋转体的体积:
 - (a) 由曲线 $y = x(x-1)^2$ 与 x 轴所围绕的图形绕 y 轴旋转所得到的旋转体.
 - (b) 由抛物线 $y = 2x x^2$ 与直线 y = x 及 x 轴所围成的图形绕 y 轴旋转所得的旋转体.

- 8. 设抛物线 $y = ax^2$ ($a > 0, x \ge 0$) 与 $y = 1 x^2$ 的交点为 A,过坐标原点 O 与点 A 的直线与抛物线 $y = ax^2$ 围成一平米图形. 问 a 为何值时,该图形绕 x 轴旋转所得的旋转体体积最大? 并求此最大体积.
- 9. 求下列各旋转体的面积:
 - (a) 立方抛物线 $y = x^3$ 介于 x = 0 与 x = 1 之间的一段弧绕 x 轴旋转 所得到的旋转门.
 - (b) 星形线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ 绕 x 轴旋转所得的旋转面.
- 10. 求抛物线 $y = \sqrt{x-1}$ 与它的通过坐标原点的切线及 x 轴所围成的图形 绕 x 轴旋转所得的旋转体的表面积.
- 11. 计算下列各弧长:
 - (a) 曲线 $y = \ln(\cos x)$ 上从 x = 0 到 $x = \frac{\pi}{4}$ 的一段弧长.
 - (b) 曲线 $y = \int_{-\sqrt{3}}^{x} \sqrt{3 t^2} dt$ 的全长.
 - (c) 曲线 $x = \arctan t$, $y = \frac{\ln(1+t^2)}{2}$ 相应于 $0 \le t \le 1$ 的一段弧.
 - (d) 对数螺线 $r=e^{2\theta}$ 上从 $\theta=0$ 到 $\theta=2\pi$ 的一段弧.
 - (e) 曲线 $\theta = \frac{1}{2} \left(r + \frac{1}{r} \right)$ 相应于 $1 \le r \le 3$ 的一段弧.
- 12. 用铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉击入木板的深度成正比. 在击第一次时,将铁钉击入木板 1 cm. 如果铁锤每次打击铁钉所做的功相等,问铁锤击第二次时,铁钉又被击入木板多少?
- 13. 边长为 a 和 b 的矩形薄片 (a > b),与液面成 α 角斜沉于密度为 ρ 的液体内,长边平行于液面儿位于深 h 处. 试求薄板每面所受的压力.
- 14. 求一质量为 M,半径为 R 的均匀半圆弧对位于其中心的质量为 m 的质点的引力.
- 15. 设 $f \in C[0,1]$, 当 $x \in (0,1)$ 时, f(x) > 0, 并且满足关系式

$$xf'(x) = f(x) + \frac{3a}{2}x^2 (a 为常数)$$

又曲线 y = f(x) 与直线 x = 1 及 x 轴所围成的图形 S 的面积为 2.

- (a) 求函数 f(x);
- (b) 当 a 为何值时, 图形 S 绕 x 轴旋转所得的旋转体体积最小?
- 16. 设 y=f(x) 是微分方程 $y''+2y'+3y=e^{3x}$ 满足初值条件 y(0)=y'(0)=0 的特解,求极限 $\lim_{x\to 0} \frac{\ln{(1+x^2)}}{f(x)}$. (提示:不需求解,只需提取利用洛必达所需的条件)
- 17. 求下列微分方程的解:

a)
$$x^2y' + y = 0$$
; b) $x \sec y dx = (x+1)dy = 0$
c) $(x^2 + 1)\frac{dy}{dx} = xy$; d) $yy' + e^{y^2 + 3x} = 0$

18. 求下列齐次微分方程的解:

a)
$$x\frac{dy}{dx} = y + x \sec \frac{y}{x};$$
 b) $xy' \sin \frac{y}{x} - y \sin \frac{y}{x} + x = 0$

19. 求下列微分方程的解:

a)
$$y' = \left(\frac{2}{x+y}\right)^2$$
; b) $y' = \frac{2x+4y+3}{x+2y+1}$
c) $y' = \frac{1}{(4x+y+1)(4x+y)}$; d) $\frac{dy}{dx} = \frac{y-x+1}{y+x+5}$

20. 求下列初值问题:

a)
$$\frac{dy}{dx} = \frac{xy+3x}{x^2+1}$$
, $y\Big|_{x=2} = 2$; b) $y' = \frac{x}{y} + \frac{y}{x}$, $y(1) = 2$

21. 求下列线性微分方程的解:

a)
$$y' + 4y = x;$$
 b) $\frac{dy}{dx} + y \cos x = e^{-\sin x}$
c) $y' \cos x = y \sin x + \sin 2x, \ x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right);$ d) $dx + (x + y^2)dy = 0$

22. 求下列初值问题:

a)
$$xy' - 3y = x^2$$
, $x > 0$, $y(1) = 0$; b) $t\frac{dx}{dt} = -x + \sin t$, $x(\pi) = 1$

23. 求解下列伯努利方程:

a)
$$x \frac{dy}{dx} + 2y = \frac{y^3}{x}$$
; b) $y' + \frac{1}{x}y = 2x^{-\frac{1}{2}}y^{\frac{1}{2}}$

- 24. 设连续函数 f(x) 满足: $f(x) = \int_0^{2x} f\left(\frac{t}{2}\right) dt + \ln 2$, 求 f(x).
- 25. 函数 y(x) 在 $(-\infty,0]$ 上定义且有连续导数,满足

$$2\int_0^x y(t)\sqrt{1+y'^2(t)}dt = 2x + y^2(x)$$

求 y(x).

26. 求解下列微分方程:

a)
$$y'' = x + \cos x$$
; b) $yy'' - (y')^2 = 0$
c) $y'' = (y')^3 + y'$; d) $y''' = y''$
e) $yy' = (y')^2 - (y')^3$, $y(1) = 1$, $y'(1) = -1$
f) $xy'' + x(y')^2 - y' = 0$, $y(2) = 2$, $y'(2) = 1$.