Fall 2019 Statistics 201A (Introduction to Probability at an advanced level) - Lecture Twenty Four

Aditya Guntuboyina

03 December, 2019

1 Moment Generating Functions of Random Vectors

We shall next move to the last topic of the class: the multivariate normal distribution. For this, it is helpful to know about moment generating functions of random vectors.

The Moment Generating Function of an $n \times 1$ random vector Y is defined as

$$M_Y(a) := \mathbb{E}e^{a^TY}$$

for every $a \in \mathbb{R}^n$ for which the expectation exists. Note that when $a = (0, \dots, 0)^T$ is the zero vector, it is easy to see that $M_Y(a) = 1$.

Just like in the univariate case, Moment Generating Functions determine distributions when they exist in a neighbourhood of a=0.

Moment Generating Functions behave very nicely in the presence of independence. Suppose $Y_{(1)}$ and $Y_{(2)}$ are two random vectors and let $Y = (Y_{(1)}^T, Y_{(2)}^T)^T$ be the vector obtained by putting $Y_{(1)}$ and $Y_{(2)}$ together in a single column vector. Then $Y_{(1)}$ and $Y_{(2)}$ are independent if and only if

$$M_Y(a) = M_{Y_{(1)}}(a_{(1)}) M_{Y_{(2)}}(a_{(2)}) \qquad \text{for every } a = (a_{(1)}^T, a_{(2)}^T)^T \in \mathbb{R}^n.$$

Thus under independence, the MGF factorizes and conversely, when the MGF factorizes, we have independence.

2 The Multivariate Normal Distribution

The multivariate normal distribution is defined in the following way.

Definition 2.1. A random vector $Y = (Y_1, \dots, Y_n)^T$ is said to have the multivariate normal distribution if every linear function a^TY of Y has the univariate normal distribution.

Remark 2.1. It is important to emphasize that for $Y = (Y_1, \ldots, Y_n)^T$ to be multivariate normal, every linear function $a^TY = a_1Y_1 + \ldots a_nY_n$ needs to be univariate normal. It is not enough for example to just have each Y_i to be univariate normal. It is very easy to construct examples where each Y_i is univariate normal but $a_1Y_1 + \cdots + a_nY_n$ is not univariate normal for many vectors $(a_1, \ldots, a_n)^T$. For example, suppose that $Y_1 \sim N(0,1)$ and that $Y_2 = \xi Y_1$ where ξ is a discrete random variable taking the two values 1 and -1 with probability 1/2 and ξ is independent of Y_1 . Then it is easy to see that

$$Y_2|\xi = 1 \sim N(0,1)$$
 and $Y_2|\xi = -1 \sim N(0,1)$.

This means therefore that $Y_2 \sim N(0,1)$ (and that Y_2 is independent of ξ). Note however that $Y_1 + Y_2$ is not normal as

$$\mathbb{P}\{Y_1 + Y_2 = 0\} = \mathbb{P}\{\xi = 1\} = \frac{1}{2}.$$

Thus, in this example, even though Y_1 and Y_2 are both N(0,1), the vector $\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$ is not multivariate normal.

Example 2.2. We have seen earlier in the class that if Z_1, \ldots, Z_n are **independent** and univariate normal, then $a_1Z_1 + \ldots a_nZ_n$ is normal for every a_1, \ldots, a_n . Therefore a random vector $Z = (Z_1, \ldots, Z_n)^T$ that is made up of **independent** Normal random variables has the multivariate normal distribution. In fact, we shall show below that if Y has a multivariate normal distribution, then it should necessarily be the case that Y is a linear function of a random vector Z that is made of independent univariate normal random variables.

2.1 Moment Generating Function of a Multivariate Normal

Suppose $Y = (Y_1, ..., Y_n)^T$ is multivariate normal. Let $\mu = \mathbb{E}(Y)$ and $\Sigma = Cov(Y)$ be the mean vector and covariance matrix of Y respectively. Then, as a direct consequence of the definition of multivariate normality, it follows that the MGF of Y equals

$$M_Y(a) = \mathbb{E}(e^{a^T Y}) = \exp\left(a^T \mu + \frac{1}{2} a^T \Sigma a\right). \tag{1}$$

To see why this is true, note that by definition of multivariate normality, a^TY is univariate normal. Now the mean and variance of a^TY are given by

$$\mathbb{E}(a^T Y) = a^T \mu$$
 and $Var(a^T Y) = a^T Cov(Y) a = a^T \Sigma a$

so that

$$a^T Y \sim N(a^T \mu, a^T \Sigma a)$$
 for every $a \in \mathbb{R}^n$.

Then (1) directly follows from the formula for the MGF of a univariate normal.

Note that the MGF of Y (given by (1)) only depends on the mean vector μ and the covariance matrix Σ of Y. Thus the distribution of every multivariate normal vector Y is characterized by the mean vector μ and covariance Σ . We therefore use the notation $N_n(\mu, \Sigma)$ for the multivariate normal distribution with mean μ and covariance Σ .

2.2 Connection to i.i.d N(0,1) random variables

Suppose that the covariance matrix Σ of Y is positive definite. Let A be an invertible $n \times n$ matrix so that $\Sigma = AA^T$ (such matrices exist; for example, one can take A to be the unique positive definite square root of Σ ; see e.g., https://yutsumura.com/a-positive-definite-matrix-has-a-unique-positive-definite-square-root/).

Let $Z := A^{-1}(Y - \mu)$. The formula (1) allows the computation of the MGF of Z as follows:

$$\begin{split} M_Z(a) &= \mathbb{E}e^{a^T Z} \\ &= \mathbb{E} \exp \left(a^T A^{-1} (Y - \mu) \right) \\ &= \exp(-a^T A^{-1} \mu) \mathbb{E} \exp \left(a^T A^{-1} Y \right) \\ &= \exp(-a^T A^{-1} \mu) M_Y ((A^{-1})^T a) \\ &= \exp(-a^T A^{-1} \mu) \exp \left(a^T A^{-1} \mu + \frac{1}{2} (a^T A^{-1}) \Sigma ((A^{-1})^T a) \right) \\ &= \exp(-a^T A^{-1} \mu) \exp \left(a^T A^{-1} \mu + \frac{1}{2} (a^T A^{-1}) A A^T ((A^{-1})^T a) \right) \\ &= \exp \left(\frac{1}{2} a^T a \right) = \prod_{i=1}^n \exp(a_i^2 / 2). \end{split}$$

The right hand side above is clearly the MGF of a random vector having n i.i.d standard normal random variables. Thus because MGFs uniquely determine distributions, we conclude that $Z = (Z_1, \ldots, Z_n)^T$ has independent standard normal random variables. We have thus proved that: If $Y \sim N_n(\mu, \Sigma)$ and Σ is p.d, then the components $Z_1, \ldots Z_n$ of $Z = A^{-1}(Y - \mu)$ are independent standard normal random variables. This implies that Y equals the linear combination $Y = AZ + \mu$ of a random vector Z consisting of independent N(0,1) random variables. Here A is any invertible matrix for which $AA^T = \Sigma$.

3 Joint Density of the Multivariate Normal Distribution

Suppose $Y = (Y_1, \dots, Y_n)^T$ is a random vector that has the multivariate normal distribution. What then is the joint density of Y_1, \dots, Y_n ?

Let $\mu = \mathbb{E}(Y)$ and $\Sigma = Cov(Y)$ be the mean vector and covariance matrix of Y respectively. For Y to have a joint density, we need to assume that Σ is positive definite. We have then seen in the previous section that the components Z_1, \ldots, Z_n of Z are independent standard normal random variables where

$$Z = A^{-1}(Y - \mu)$$
 and $AA^T = \Sigma$.

Because Z_1, \ldots, Z_n are independent standard normals, their joint density equals

$$f_{Z_1,\dots,Z_n}(z_1,\dots,z_n) = (2\pi)^{-n/2} \prod_{i=1}^n e^{-z_i^2/2} = (2\pi)^{-n/2} \exp\left(-\frac{1}{2}z^T z\right)$$

where $z = (z_1, ..., z_n)^T$.

Using the above formula and the fact that $Y = \mu + AZ$, we can compute the joint density of Y_1, \ldots, Y_n via the Jacobian formula. This gives

$$f_{Y_1,\dots,Y_n}(y_1,\dots,y_n) = f_{Z_1,\dots,Z_n}(A^{-1}(y-\mu))\det(A^{-1})$$
$$= \frac{1}{(2\pi)^{n/2}\sqrt{\det(\Sigma)}}\exp\left(\frac{-1}{2}(y-\mu)^T\Sigma^{-1}(y-\mu)\right)$$

where $y = (y_1, ..., y_n)^T$.

4 Properties of Multivariate Normal Random Variables

Suppose $Y = (Y_1, ..., Y_n)^T \sim N_n(\mu, \Sigma)$. Note then that μ is the mean vector $\mathbb{E}(Y)$ of Y and Σ is the covariance matrix Cov(Y). The following properties are very important.

1. Linear Functions of Y are also multivariate normal: If A is an $m \times n$ deterministic matrix and c is an $m \times 1$ deterministic vector, then $AY + c \sim N_m(A\mu + c, A\Sigma A^T)$.

Reason: Every linear function of AY + c is obviously also a linear function of Y and, thus, this fact follows from the definition of the multivariate normal distribution.

2. If Y is multivariate normal, then every random vector formed by taking a subset of the components of Y is also multivariate normal.

Reason: Follows from the previous fact.

3. Independence is the same as Uncorrelatedness: If $Y_{(1)}$ and $Y_{(2)}$ are two random vectors such that $Y = (Y_{(1)}^T, Y_{(2)}^T)^T$ is multivariate normal. Then $Y_{(1)}$ and $Y_{(2)}$ are independent if and only if $Cov(Y_{(1)}, Y_{(2)}) = 0$.

Reason: The fact that independence implies $Cov(Y_{(1)}, Y_{(2)}) = 0$ is obvious and does not require any normality. The key is the other implication that zero covariance implies independence. For this, it is enough to show that the MGF of Y equals the product of the MGFs of $Y_{(1)}$ and $Y_{(2)}$. The MGF of Y equals

$$M_Y(a) = \exp\left(a^T \mu + \frac{1}{2} a^T \Sigma a\right)$$

where $\Sigma = Cov(Y)$.

Note that $Y_{(1)}$ and $Y_{(2)}$ are also multivariate normal so that

$$M_{Y_{(i)}}(a_{(i)}) = \exp\left(a_{(i)}^T \mu_{(i)} + \frac{1}{2} a_{(i)}^T \Sigma_{ii} a_{(i)}\right)$$
 for $i = 1, 2$

where

$$\mu_{(i)} := \mathbb{E}(Y_{(i)})$$
 and $\Sigma_{ii} := Cov(Y_{(i)}).$

Now if $\Sigma_{12} := Cov(Y_{(1)}, Y_{(2)})$ and $\Sigma_{21} = Cov(Y_{(2)}, Y_{(1)}) = \Sigma_{12}^T$, then observe that

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}^T & \Sigma_{22} \end{pmatrix}$$

As a result, if $a = (a_{(1)}, a_{(2)})^T$, then

$$a^{T} \Sigma a = a_{(1)}^{T} \Sigma_{11} a_{(1)} + a_{(2)}^{T} \Sigma_{22} a_{(2)} + 2a_{(1)}^{T} \Sigma_{12} a_{(2)}.$$

Under the assumption that $\Sigma_{12} = 0$, we can therefore write

$$a^T \Sigma a = a_{(1)}^T \Sigma_{11} a_{(1)} + a_{(2)}^T \Sigma_{22} a_{(2)}$$

from which it follows that

$$M_Y(a) = M_{Y_{(1)}}(a_{(1)})M_{Y_{(2)}}(a_{(2)}).$$

Because the MGF of $Y = (Y_{(1)}, Y_{(2)})^T$ factorizes into the product of the MGF of $Y_{(1)}$ and the MGF of $Y_{(2)}$, it follows that $Y_{(1)}$ and $Y_{(2)}$ are independent. Thus under the assumption of multivariate normality of $(Y_{(1)}, Y_{(2)})^T$, uncorrelatedness is the same as independence.

4. Suppose $Y = (Y_1, ..., Y_n)^T$ is a multivariate normal random vector. Then two components Y_i and Y_j are independent if and only if $\Sigma_{ij} = 0$ where $\Sigma = Cov(Y)$.

Reason: Follows directly from the previous three facts.

5. Independence of linear functions can be checked by multiplying matrices: Suppose Y is multivariate normal. Then AY and BY are independent if and only if $A\Sigma B^T = 0$.

Reason: Note first that

$$\begin{pmatrix} AY \\ BY \end{pmatrix} = \begin{pmatrix} A \\ B \end{pmatrix} Y$$

is multivariate normal. Therefore AY and BY are independent if and only if Cov(AY, BY) = 0. The claimed assertion then follows from the observation that $Cov(AY, BY) = A\Sigma B^T$.