Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Química Programa de Pós-Graduação em Engenharia Química

EQP 0000-Nome da Disciplina Prof: Nome do Professor

Nome do Trabalho

Nome do Aluno

PORTO ALEGRE, RS 22 DE MARÇO DE 2016

1 Texto Simples

As seções com texto simples estarão dispostas desta maneira. Além das seções também será possível adionar até quatro níveis.

1.1 Segundo nível

Também temos dois tipos de citação:

Citação normal, no final da frase (FLÔRES; STAUDT; SOARES, 2016; SOARES et al., 2013). Ou podemos também utilizar a citação dentro do texto como por exemplo: Flôres, Staudt e Soares (2016) fez algumas coisas legais e mais algun texto explicando alguma coisa que Soares et al. (2013).

1.1.1 Terceiro nível

Podemos fazer uso de ítens:

- Algum texto 1
- Algum texto 2
- Algum texto 3

depois o texto continua da mesma maneira.

Quarto nível Algum texto

2 Equações

As equações são numeradas automaticamente. Também podemos utilizar a referência cruzada para as equações

2.1 Equações simples

A Equação 1 é o modelo de coeficiente de atividade NRTL

$$\ln \gamma_i = \frac{\sum_j x_j \tau_{ji} G_{ij}}{\sum_k x_k G_{ki}} + \sum_j \frac{x_j G_{ij}}{\sum_k x_k G_{kj}} \left(\tau_{ij} - \frac{\sum_m x_m \tau_{mj} G_{mj}}{\sum_k x_k G_{kj}} \right) \tag{1}$$

Podemos também escrever a Equação 1 de forma mais comprimida

$$\ln \gamma_i = \frac{\sum_j x_j \tau_{ji} G_{ij}}{\sum_k x_k G_{ki}} + \sum_j \frac{x_j G_{ij}}{\sum_k x_k G_{kj}} \left(\tau_{ij} - \frac{\sum_m x_m \tau_{mj} G_{mj}}{\sum_k x_k G_{kj}} \right)$$
(1)

onde

$$\tau_{ji} = \frac{g_{ij} - g_{ii}}{RT} \tag{2}$$

$$G_{ji} = \rho_{ji} \exp\left(-\alpha_{ji}\tau_{ji}\right) \tag{3}$$

Também podemos utilizar subequações

$$\tau_{ji} = \frac{g_{ij} - g_{ii}}{RT} \tag{4a}$$

$$G_{ji} = \rho_{ji} \exp\left(-\alpha_{ji}\tau_{ji}\right) \tag{4b}$$

2.2 Equações longas

Também podemos escrever equações muito longas, como a Equação 5

$$\ln \gamma_i = q \left(1 - \ln \sum_j x_j G_{ji} - \sum_j \frac{x_j G_{ij}}{\sum_k x_k G_{kj}} \right)$$

$$+ p \left[\frac{\sum_j x_j \tau_{ji} G_{ij}}{\sum_k x_k G_{ki}} + \sum_j \frac{x_j G_{ij}}{\sum_k x_k G_{kj}} \left(\tau_{ij} - \frac{\sum_m x_m \tau_{mj} G_{mj}}{\sum_k x_k G_{kj}} \right) \right]$$
(5)

3 Tabelas

Podemos também apresentar tabelas simples, como a Tabela 1, assim como tabelas bastante complexas como a Tabela 2, apenas cuidado para que não extrapole a página.

Tabela 1: Resumo dos valores de R^2 e AARD para os sistemas estudados.

		Δt	n^{vap}	C_P^l		
	NP	R^2	AARD	R^2	AARD	
Atérmicas	52	0,9973	0,0222	0,9498	0,0993	
Aromáticos	27	0,9910	0,0095	0,8109	0,0509	
Ciclo-alcanos	19	0,9457	0,0235	0,7455	0,1039	
Alcenos	34	0,9865	0,0309	0,8048	$0,\!1365$	
Perfluorocarbonos	22	0,8933	0,0428			

 ω

Tabela 2: Parâmetros do modelo F–SAC+Disp estimados neste trabalho. Parâmetros de volume e área R_k e Q_k foram obtidos diretamente de cálculos COSMO.

Grupo	Eletrostático ^a			Subgrupo	COSMO		Dispersãoª	
	$Q_k^+/\text{Å}^2$	$Q_k^-/\text{\AA}^2$	$\sigma_k^+/e{\rm nm}^{-2}$	Suegrupe	$R_k/\text{Å}^3$	$Q_k/\text{\AA}^2$	δ^0	$\delta_T \mathrm{K}$
CH ₂	9,4108	2,3078	0,0419	CH ₃	31,91	33,86	0,0304	0,4481
				CH_2	24,54	$21,\!44$	0,0575	0,3038
				CH	14,03	$15,\!19$	0,0990	0,0658
				С	6,53	-8,73	0,0419	0,0591
CF_2	14,7465	4,7221	0,2808	CF ₃	57,98	62,02	0,0166	0,1884
				CF ₂	37,11	$26,\!44$	0,0173	0,3364
				CF	8,86	$-26,\!82$	0,0271	0,1413
c-CH ₂	0,5782	0,9331	$0,\!2769$	c-CH ₂	24,12	$24,\!22$	0,0499	$0,\!3245$
				c-CH	16,21	8,86	0,1371	$0,\!5237$
				$c-CH_2(5)^b$	24,25	25,92	0,0448	0,1424
C=C	7,4666	7,9029	0,0004	$CH_2 = CH$	48,16	$61,\!22$	0,0378	0,3374
				CH=C	28,54	33,91	0,0865	1,9474
				c-CH=CH	36,86	$42,\!37$	0,0393	0,2071
ACH	8,8928	11,3638	0,4420	ACH	19,26	21,02	0,0406	0,3054
				AC	10,89	7,28	0,1858	0,0000

^a Parâmetros estimados ^b Ciclo-pentano

4 Figuras

Figuras combinadas

Figura 1: Superfície de contato para as moléculas de perfluorohexano e *n*-hexano obtidos utilizando o pacote COSab-GAMESS (GREGERSON; BAL-DRIDGE, 2003) com o método BP86 e a função de base KTZVP, imagem renderizada pelo pacote JCOSMO (GERBER; SOARES, 2010).

Figuras simples

Figura 2: Perfil $-\sigma$ das moléculas de perfluorohexano e n-hexano obtidos utilizando o pacote COSab-GAMESS (GREGERSON; BALDRIDGE, 2003) com o método BP86 e a função de base KTZVP.

Figuras em arquivos.pdf Fazer os gráficos, se necessário

Figura 3: Diagrama de equilíbrio P-xy da mistura de de propano (1) e n-butano (2) calculados com as EoSs PR e vdW utilizando a regra de mistura vdW

Figura 4: $f_2(x) = -x_1^4 + x_1^3 + 20$.

Referências

- FLÔRES, G. B.; STAUDT, P. B.; SOARES, R. D. P. Including dispersive interations in the F-SAC model. *Fluid Phase Equilibria*, Elsevier Ltd, p. 10–11, 2016. ISSN 03783812. Disponível em: http://dx.doi.org/10.1016/j.fluid.2016.02.043.
- GERBER, R. P.; SOARES, R. de P. Prediction of infinite-dilution activity coefficients using UNIFAC and COSMO-SAC variants. *Ind. Eng. Chem. Res.*, v. 49, n. 16, p. 7488–7496, 2010.
- GREGERSON, L.; BALDRIDGE, K. Outlying Charge, Stability, Efficiency, and Algorithmic Enhancements in the Quantum-Mechanical Solvation Method, COSab-GAMESS. *H. Chimica Acta*, v. 86, n. 12, p. 4112–4132, dec 2003.
- SOARES, R. de P. et al. Functional-Segment Activity Coefficient Model. 2. Associating Mixtures. *Ind. Eng. Chem. Res.*, v. 52, n. 32, p. 11172–11181, 2013.